OSGUS, July 13, 2018

Exploring vHTS approaches with HTC

Spencer S. Ericksen

Associate Scientist

UW-CCC, Drug Development Core, Small Molecule Screening Facility

Why am I here?

- We want to promote early stage drug discovery efforts on campus!
- Need to reduce costs to increase participation.
- Early Stage Drug Discovery: looking for needle in haystack.
- **HTS** assays of 10,000s to millions compounds.
- · \$1-100 per compound!

What is vHTS?

- Filter using **vHTS** first! Prioritize a much smaller subset testing.
- Enrichment for active compounds can greatly reduce costs.
- Use docking to predict potential for compound-target interaction.

Overview

- vHTS: the structure-based approach
- single docking programs
- consensus scoring
- advanced consensus scoring
- pose consensus scoring
- ensemble consensus scoring

What is docking?

- Docking looks for best compound binding orientation on a target.
- Search is guided by a scoring function that evaluates favorability of each sampled configuration.
- Many docking programs exist with different search strategies and scoring functions.
- Docking score is crude estimate of binding favorability for a given compound.

DUD-E: Benchmarking Data Set to Validate Docking-Based VS Methods

- "A <u>D</u>atabase of <u>U</u>seful <u>D</u>ecoys: <u>E</u>nhanced"
- 102 protein targets
- 22,886 active compounds with minimum potency 1 μM (or better)
- 100-600 ligands per target
- ~50 decoys for each active ligand (~2% actives)
- Decoys property-matched but dissimilar 2-D topology.
 - Properties: MW, LogP, HBA, HBD, rotatable bonds, net charge
 - ECFP4, keep 25% most dissimilar
- Actives are clustered. Diversity of actives is promoted by keeping max of 3 tightest binders in each cluster.

Structure-based virtual screening

Dock Compound Library

MOLID	SCORE
ZINC36206438	
ZINC36206438 ZINC59310217	58.63
	58.72
ZINC61596674	56.35
ZINC67458535	47.40
CHEMBL1221861	60.66
ZINC10123401	52.39
ZINC64526095	66.13
ZINC24002103	56.72
ZINC09612655 ZINC24002105	58.84
ZINC24002105 CHEMBL38532	38.95
ZINC40824467	74.19
ZINC40824467 ZINC59829723	50.10
ZINC59829723 ZINC37520295	58.29
ZINC37520295 ZINC49812309	44.78 38.01
ZINC49812309 ZINC14558020	53.31
CHEMBL472090	58.71
ZINC36207525	69.07
ZINC14010625	68.48
CHEMBL274782	63.97
ZINC63949457	55.35
ZINC39657146	48.74
ZINC23197109	58.72
ZINC25520953	63.14
ZINC09282496	43.71
ZINC60343267	62.18
ZINC58790750	62.53
CHEMBL400392	65.96
ZINC52096905	49.96
ZINC48922871	49.59
ZINC33058380	45.11
ZINC64684798	56.64
ZINC21076300	68.36
ZINC29461868	50.65
CHEMBL26183	58.56
ZINC61908006	66.40
ZINC15429053	54.10
CHEMBL323258	74.94
ZINC05091951	58.47
ZINC02759924	48.25
ZINC54596097	42.68
ZINC19899314	65.54
ZINC53113244	38.99
ZINC40947055	61.87
ZINC36611787	60.04
CHEMBL419085	65.96
ZINC35844701	58.57
ZINC01296699	39.07
ZINC39914438	49.68
ZINC00706129	48.34
ZINC34747432 ZINC43220997	52.55 47.45
ZINC43220997 ZINC37619890	47.45 54.49
ZINC37619890 ZINC15666896	54.49 55.50
711ACT20009A0	33.30

Sort Compounds by Docking Scores

Scores

Docking programs have different search and scoring strategies

Docking Program	Search Algorithm	Scoring Function
AutoDock v4.2	Lamarkian Genetic Algorithm with Simulated Annealing	Forcefield
DOCK v6.7	Incremental Construction (Anchor-and-grow)	Forcefield
FRED v3.0.1	Exhaustive rigid docking search, discretized configuration space	Empirical
HYBRID v3.0.1	Exhaustive rigid docking search, discretized configuration space	Empirical + Knowledge-Based
PLANTS v1.2	Ant Colony Optimization	Empirical
rDock v2013.1	Genetic Algorithm, Monte Carlo, Minimization	Empirical
Smina (Vina) 1.1.2	Exhaustive flexible docking search, discretized configuration space	Knowledge-Based
Surflex v3.040	Incremental Construction with Matching Algorithm	Empirical
	Docking Scoring	→

No single program works for all targets

• No way to decide *a priori* which program is best for a new target

Individual Docking Algorithms

Target Class	Target	AD42	DOCK6	FRED	HYBRID	PLANTS	rDock	Smina	Surflex	Best
GPCR	ADRB1	0.68	0.78	0.77	0.65	0.86	0.81	0.79	0.80	0.86
GPCR	DRD3	0.69	0.59	0.79	0.81	0.69	0.66	0.68	0.71	0.81
Ion Channel	GRIA2	0.73	0.60	0.79	0.77	0.73	0.77	0.75	0.77	0.79
Kinase	BRAF	0.73	0.60	0.75	0.69	0.54	0.79	0.86	0.71	0.86
Kinase	CDK2	0.76	0.61	0.81	0.85	0.68	0.74	0.71	0.69	0.85
Kinase	PLK1	0.60	0.48	0.80	0.75	0.65	0.68	0.57	0.60	0.80
Kinase	SRC	0.65	0.64	0.65	0.66	0.52	0.68	0.67	0.66	0.68
Miscellaneous	FABP4	0.67	0.54	0.84	0.82	0.74	0.60	0.77	0.79	0.84
Receptor	ESR1	0.82	0.54	0.88	0.81	0.77	0.87	0.86	0.74	0.88
Receptor	ESR2	0.77	0.48	0.89	0.89	0.69	0.80	0.79	0.68	0.89
Other Enzymes	ACE	0.78	0.72	0.80	0.84	0.84	0.62	0.61	0.76	0.84
Other Enzymes	GLCM	0.55	0.60	0.70	0.81	0.64	0.77	0.51	0.79	0.81
Other Enzymes	HDAC8	0.70	0.90	0.87	0.76	0.82	0.71	0.86	0.83	0.90
Other Enzymes	HIVINT	0.54	0.65	0.74	0.60	0.76	0.67	0.81	0.66	0.81
Other Enzymes	PDE5A	0.68	0.65	0.84	0.82	0.79	0.78	0.74	0.66	0.84
Other Enzymes	PTN1	0.66	0.76	0.76	0.78	0.72	0.76	0.66	0.88	0.88
Protease	ADA17	0.51	0.40	0.59	0.69	0.58	0.58	0.54	0.70	0.70
Protease	FA10	0.86	0.81	0.79	0.82	0.80	0.90	0.84	0.76	0.90
Protease	HIVPR	0.63	0.66	0.74	0.78	0.79	0.64	0.74	0.81	0.81
Protease	MMP13	0.67	0.60	0.77	0.87	0.71	0.67	0.67	0.76	0.87
Protease	TRY1	0.79	0.82	0.80	0.83	0.81	0.74	0.75	0.93	0.93
	mean	0.69	0.64	0.78	0.78	0.72	0.73	0.72	0.75	0.84
	std. dev.	0.09	0.12	0.07	0.08	0.10	0.09	0.10	0.08	0.06

Docking Compute Expenses

- Compute time for docking depends the search space, search quality, and complexity of the scoring function.
- To dock millions of compounds, we cut corners.
- Docking time varies between programs (~1 minute/compound).

(seconds)

Program	Time	Std. Dev.
AD4	435.6	197.1
Dock	719.2	592.9
Fred	15.6	5.7
Hybrid	9.3	2.9
Plants	43.4	20.5
rDock	49.3	26.7
Smina	250.1	172.8
Surflex	78.9	1159.6

How do we scale to HTC resources?

- Each docking run is independent--pleasantly parallelizable!
- · Typical docking codes don't benefit from specialized hardware or multiple cores.
- To maximize throughput:
 - Enable "Flock" and "Glide" to access more nodes.
 - Split compound library up into small chunks.
 - Number of compounds should run in ~2hr for a given docking program.
 - Chunk size varies from 5—500 compounds!
 - Dock each chunk on a single slot—to scavenge ANY open slots. Dock compounds within chunk serially.
 - Checkpointing is enabled and a wrapper script is used to track the compounds completed in case job is evicted and migrates to another node.

How do we benefit from HTC?

- Very large number of compounds
- · Large numbers of targets
- Extensive docking parameter testing
- Benchmarking of different programs
- Hypothetical 100 node cluster = 3.5 million/day
- Local SMSF (3 nodes) = 35,000/day
- · 100s of millions to billions of dockings!

- As expected the mean score for actives (red) was higher than for decoys (blue).
- Interestingly, the standard deviation in scores was also higher for actives than for decoys

average quantile-normalized score over programs

standard deviation quantile-normalized score over programs

Boosting Consensus Scoring (BCS)

In docking, the static approximation of target protein is severe!

Colored string shows progress of MD trajectory of HIV integrase projected onto 3 principal component dimensions based on binding pocket geometry.

The trajectory begins near the crystal structure conformation (labeled). Individual snapshots from trajectory are shown as small spheres.

Protein conformations were clustered based on binding pocket geometry.

White string shows progress of MD trajectory of HIV integrase projected onto 3 principal component dimensions based on binding pocket geometry.

The trajectory begins near the crystal structure conformation (labeled). Individual snapshots from trajectory are shown as small spheres.

Protein conformations were clustered based on binding pocket geometry. Conformers are colored by their cluster ID (small colored spheres).

The 20 other large spheres indicate conformers selected as cluster reps (most central conformation in each cluster).

The crystal structure and the other 20 representatives were docked using the program smina. These were colored by their virtual screening performance based on the ROCAUC metric (red=0.74 to blue=0.860).

Single Program

Docking Score Matrix for a Single Compound

Consensus Scoring

Ensemble Scoring

Consensus + Ensemble Scoring

"Smart" Consensus + Ensemble Scoring

	cdk	(2								
							Cons			
	fred	hybrid	plants	rdock	smina	surflex	Scoring	frame	срор	RMSD
xtal structure	0.53	0.75	0.66	0.79	0.64	0.68	0.81			
	0.79	0.79	0.69	0.79	0.75	0.64	0.82	3	5	1.8
	0.73	0.76	0.65	0.79	0.74	0.67	0.81	20	26	1.9
	0.63	0.70	0.58	0.76	0.65	0.60	0.72	65	44	2.8
	0.66	0.77	0.62	0.78	0.68	0.67	0.76	88	29	2.9
	0.65	0.74	0.57	0.73	0.66	0.61	0.73	320	93	2.9
	0.70	0.76	0.63	0.76	0.69	0.64	0.76	422	20	2.9
	0.67	0.77	0.60	0.76	0.64	0.69	0.75	150	53	3.0
	0.70	0.74	0.62	0.76	0.70	0.67	0.76	115	28	3.0
	0.58	0.64	0.47	0.62	0.60	0.60	0.63	482	65	3.0
cluster rens	0.56	0.63	0.49	0.68	0.60	0.62	0.65	536	115	3.1
cluster reps	0.58	0.68	0.55	0.70	0.64	0.62	0.68	223	50	3.1
	0.63	0.73	0.59	0.73	0.65	0.63	0.71	342	44	3.2
	0.66	0.74	0.59	0.72	0.66	0.62	0.71	857	46	3.3
	0.68	0.75	0.66	0.77	0.73	0.69	0.79	624	41	3.3
	0.62	0.69	0.55	0.70	0.66	0.61	0.70	942	78	3.3
	0.67	0.76	0.61	0.74	0.67	0.61	0.73	672	55	3.3
	0.62	0.72	0.54	0.67	0.62	0.61	0.69	834	78	3.4
	0.58	0.69	0.58	0.75	0.69	0.69	0.74	722	68	3.4
	0.61	0.70	0.54	0.69	0.65	0.67	0.70	380	41	3.5
	0.61	0.71	0.53	0.73	0.61	0.65	0.70	917	22	3.6
Ensemble	0.68	0.77	0.59	0.78	0.70	0.67	0.75			
Scoring										

hiv	or								
-						Cons			
fred	hybrid	plants	rdock	smina	surflex	Scoring	frame	срор	RMSD
0.67	0.68	0.77	0.66	0.77	0.64	0.82			
0.75	0.70	0.77	0.67	0.78	0.68	0.83	2	9	1.6
0.57	0.57	0.70	0.63	0.75	0.67	0.76	15	18	2.1
0.69	0.66	0.78	0.66	0.79	0.62	0.83	153	28	2.4
0.66	0.64	0.76	0.73	0.82	0.62	0.85	102	30	2.6
0.66	0.66	0.78	0.72	0.84	0.66	0.89	74	38	2.6
0.68	0.67	0.75	0.70	0.84	0.61	0.84	126	16	2.7
0.65	0.62	0.75	0.74	0.80	0.62	0.83	211	87	2.9
0.61	0.62	0.75	0.71	0.84	0.60	0.82	182	38	2.9
0.57	0.67	0.73	0.66	0.81	0.62	0.80	31	9	2.9
0.62	0.59	0.74	0.77	0.83	0.66	0.81	39	15	3.0
0.59	0.56	0.75	0.66	0.83	0.67	0.82	328	43	3.4
0.61	0.53	0.71	0.68	0.76	0.63	0.77	394	118	3.6
0.61	0.60	0.72	0.69	0.79	0.58	0.77	409	71	3.6
0.61	0.63	0.76	0.70	0.79	0.69	0.84	962	46	3.9
0.56	0.61	0.78	0.74	0.80	0.58	0.82	736	154	3.9
0.62	0.67	0.73	0.68	0.82	0.59	0.80	552	75	4.0
0.62	0.65	0.74	0.61	0.80	0.57	0.78	837	35	4.0
0.60	0.66	0.75	0.70	0.81	0.67	0.83	906	41	4.1
0.56	0.62	0.73	0.61	0.80	0.56	0.75	803	39	4.1
0.54	0.57	0.76	0.70	0.83	0.58	0.79	647	91	4.2
0.64	0.65	0.76	0.73	0.85	0.65	0.87			

Target: HIV integrase scaffolds protein conf retrieved total Active Bemis-Murcko Scaffolds 60 cons_mean_14 60 cons_mean_00 60 cons_mean_15 12 cons_mean_11 14 60 cons mean 17 10 60 14 cons_mean_12 60 60 cons_mean_05 16 15 60 cons_mean_01 13 cons_mean_04 60 cons_mean_09 16 60 cons_mean_10 12 60 cons_mean_18 12 60 cons mean 16 60 15 60 cons_mean_02 cons_mean_19 60 60 cons_mean_06 10 60 cons_mean_03 10

Conclusions

HTC is a fabulous resource for massive structure-based vHTS

HTC enables rapid cycles of development, testing, validation of docking-based VS

HTC will enable more sophisticated MD-based approaches to SBVS

Thank You!

- UWCCC-Drug Development Core
- Mike Hoffmann (PI)
- Scott Wildman & Ken Satyshur
- Michael Newton & Tony Gitter
- Open Science Grid & CHTC
- · Facilitators: Lauren Michael & Christina Koch

Extra Slides on Ensemble Docking

Ensemble Docking general procedure

- Choose some reference structure of target protein with bound compound from theory or experiment.
- **Enumeration**: perform MD simulation to examine possible conformational states of the bound-state of target protein
- Selection: select subset of snapshots from simulation to serve as representative target conformers.
- **Docking:** Dock large library of decoy/active compounds to each target conformer. Apply consensus? How many programs?
- Scoring: Models, Features, Predictions: Besides docking scores, what other types of features may be derived from docking outputs.

Ensemble Docking technical procedure

- Reference structure based on crystal structure used in DUD-E data set.
 - Standard protein preparation: add missing atoms, strip water molecules, detergents, non-essential ions, etc.
 - structure is energy minimized—this is the reference structure.

• Enumeration:

- NPT MD simulation of holoform for 100 ns at 1 atm, 300K, explicit water, neutralizing Na⁺ or Cl⁻ ions. PBC
- Frames dumped every 0.100 ns (1000 total frames), energy minimized.

• Selection:

- Target protein conformers are aligned on C_a reference atoms.
- Conformers clustered using pocket atom coordinates as features.
- Pocket atoms defined as heavy atoms from residues within 10Å of original bound compound position. HAC, n=20 clusters, Ward's linkage, select most central representatives.

Ensemble Docking technical procedure

• Docking:

- Dock DUD-E decoy/active compounds to each target conformer
- Used 6 of our best programs with default docking prototcols.
- Tried both static and dynamic search space: use initial ligand position and dynamic ligand position.

Scoring

- Each program produces 20 scores for each compound—one for each target conformation.
- Scores were normalized (z-scores) for each conformer/program
- 120 z-scores for each compound (6 progs *20 target conformers)
- Take mean, median, max of these scores for final compound ranking.
- Apply standard ROCAUC and EF1 metrics

single program: "smina"	Protein Conformer	cdk2 ROCAUC	fa10 ROCAUC	glcm ROCAUC	hivint ROCAUC	hivpr ROCAUC	Protein Conformer	All 5 targets ROCAUC
xtal Rep	cid_gro1	0.724	0.762	0.493	0.769	0.740	cid_gro1	0.698
Cluster Reps	cid_00 cid_01 cid_02 cid_03 cid_04 cid_05 cid_06 cid_07 cid_08 cid_09 cid_10 cid_11 cid_12 cid_13 cid_14 cid_15 cid_16 cid_17 cid_18 cid_19	0.654 0.598 0.608 0.608 0.664 0.729 0.640 0.653 0.733 0.656 0.702 0.631 0.624 0.652 0.655 0.682 0.642 0.752 0.688 0.676	0.747 0.754 0.711 0.751 0.619 0.756 0.704 0.628 0.707 0.786 0.756 0.654 0.662 0.583 0.712 0.676 0.762 0.709 0.768 0.687	0.529 0.535 0.512 0.523 0.558 0.600 0.559 0.558 0.516 0.482 0.586 0.579 0.537 0.519 0.563 0.616 0.570 0.594 0.593 0.573	0.749 0.841 0.836 0.783 0.811 0.810 0.746 0.826 0.787 0.812 0.810 0.800 0.830 0.774 0.775 0.812 0.789 0.862 0.823 0.832	0.745 0.764 0.761 0.762 0.750 0.742 0.728 0.714 0.738 0.730 0.726 0.745 0.708 0.732 0.701 0.740 0.748 0.732 0.733	cid_00 cid_01 cid_02 cid_03 cid_04 cid_05 cid_06 cid_07 cid_08 cid_09 cid_10 cid_11 cid_12 cid_13 cid_14 cid_15 cid_16 cid_17 cid_18 cid_19	
		0.662	0.707	0.555	0.805	0.736	cid_00-19	0.693
Consensus	mean_norm mean_raw	0.699 0.702	0.758 0.759	0.589 0.609	0.872 0.871	0.760 0.760	mean_norm mean_raw	0.736 0.740

cdk2		ROCAUC							EF1					
cid	fred	hybrid	plants	rdock	smina	surflex	cons	fred	hybrid	plants	rdock	smina	surflex	cons
gro1	0.532	0.749	0.664	0.787	0.643	0.679	0.808	1.7	12.4	4.0	14.6	4.2	3.2	12.9
0	0.653	0.740	0.572	0.731	0.662	0.613	0.731	3.6	6.1	1.7	7.2	1.9	1.5	5.7
1	0.564	0.630	0.486	0.676	0.603	0.621	0.651	1.9	2.5	1.1	1.3	1.1	1.3	0.2
2	0.581	0.644	0.472	0.621	0.603	0.597	0.631	1.5	1.9	0.4	1.5	0.8	1.5	1.9
3	0.625	0.725	0.535	0.670	0.619	0.615	0.687	1.5	4.9	1.9	3.0	1.7	0.2	1.9
4	0.668	0.764	0.609	0.737	0.671	0.609	0.733	3.6	4.9	1.3	7.4	3.6	0.8	3.8
5	0.683	0.754	0.656	0.766	0.730	0.685	0.792	3.8	9.1	2.5	7.8	5.1	1.7	7.8
6	0.582	0.676	0.551	0.696	0.639	0.622	0.680	1.9	3.0	1.1	4.4	1.7	0.4	3.0
7	0.615	0.693	0.554	0.702	0.661	0.610	0.702	3.0	2.7	1.3	6.6	3.2	0.6	3.0
8	0.732	0.756	0.645	0.789	0.741	0.668	0.806	8.2	5.5	3.4	10.4	7.8	1.9	10.3
9	0.627	0.705	0.578	0.761	0.652	0.605	0.717	2.3	4.2	0.2	8.7	3.6	1.3	2.5
10	0.699	0.737	0.617	0.760	0.703	0.670	0.764	3.4	7.6	1.9	9.1	4.0	2.7	7.4
11	0.673	0.769	0.597	0.764	0.637	0.694	0.751	3.8	7.8	4.0	10.8	3.2	2.3	5.7
12	0.611	0.711	0.530	0.730	0.609	0.650	0.702	3.2	2.5	2.3	7.8	0.4	1.3	1.1
13	0.611	0.702	0.537	0.693	0.651	0.670	0.702	1.7	3.0	0.8	3.8	1.9	2.5	2.3
14	0.656	0.737	0.595	0.717	0.657	0.619	0.715	3.4	4.4	1.3	7.8	3.6	0.4	3.8
15	0.577	0.692	0.579	0.749	0.689	0.695	0.737	0.8	2.3	0.8	5.1	0.8	2.3	2.1
16	0.635	0.732	0.585	0.733	0.648	0.633	0.710	4.0	5.9	1.1	7.6	1.5	0.6	4.2
17	0.788	0.787	0.694	0.795	0.752	0.641	0.816	15.6	14.6	4.0	11.4	8.0	2.5	17.5
18	0.699	0.764	0.630	0.758	0.685	0.636	0.762	3.8	8.2	4.2	5.5	4.2	1.1	6.3
19	0.655	0.766	0.618	0.776	0.679	0.667	0.764	3.8	9.5	3.6	11.7	4.4	1.5	8.9
ons	0.692	0 772	0.504	0 777	0.701	0.672	0.754	4.0	0.1	2.7	11 0	2 5	0.6	2.0
ens	0.682	0.773	0.594	0.777	0.701	0.673	0.754	4.0	8.4	2.7	11.0	2.5	0.6	3.8
								28278	28278	28294	28303	28304	28304	28305

hivpr		ROCAUC							EF1					
cid	fred	hybrid	plants	rdock	smina	surflex	cons	fred	hybrid	plants	rdock	smina	surflex	cons
gro1	0.654	0.685	0.803	0.598	0.740	0.806	0.824	1.5	5.5	13.8	4.7	4.7	11.6	20.0
0	0.616	0.628	0.805	0.669	0.740	0.837	0.812	3.8	4.3	19.2	8.0	9.3	14.4	19.4
1	0.578	0.635	0.821	0.715	0.761	0.826	0.839	3.0	6.8	22.2	7.3	8.8	17.9	21.1
2	0.588	0.605	0.832	0.714	0.758	0.823	0.835	3.0	5.5	21.8	9.1	5.6	17.2	20.5
3	0.561	0.491	0.800	0.662	0.720	0.791	0.759	2.7	2.1	16.6	5.4	3.9	13.4	11.8
4	0.543	0.602	0.845	0.694	0.747	0.818	0.821	1.3	4.5	19.2	4.5	7.5	9.3	19.6
5	0.596	0.576	0.827	0.720	0.743	0.825	0.839	4.6	4.7	18.3	6.0	5.8	19.8	19.4
6	0.601	0.602	0.810	0.667	0.733	0.823	0.810	5.3	6.0	17.7	7.5	6.2	16.0	19.6
7	0.673	0.629	0.830	0.672	0.723	0.818	0.839	6.5	6.0	20.9	6.9	6.2	13.2	20.1
8	0.606	0.610	0.816	0.712	0.737	0.796	0.817	4.2	4.3	19.4	9.3	4.5	12.1	18.8
9	0.604	0.610	0.795	0.668	0.734	0.824	0.811	4.4	4.2	17.7	4.5	5.8	17.0	18.3
10	0.590	0.615	0.845	0.666	0.731	0.825	0.824	2.5	5.5	18.5	4.9	7.5	9.1	22.2
11	0.480	0.531	0.827	0.700	0.717	0.789	0.777	2.1	4.7	15.3	7.8	2.8	7.8	17.2
12	0.555	0.596	0.824	0.740	0.748	0.819	0.817	2.7	7.8	20.1	6.2	5.4	13.8	17.5
13	0.531	0.547	0.781	0.637	0.696	0.770	0.745	1.5	3.8	11.8	6.3	5.6	11.0	14.9
14	0.540	0.577	0.814	0.739	0.728	0.804	0.812	2.7	6.2	15.7	8.2	5.0	11.2	17.4
15	0.511	0.593	0.812	0.700	0.697	0.800	0.783	1.1	3.4	14.6	6.3	4.1	12.3	17.5
16	0.689	0.665	0.821	0.654	0.741	0.803	0.839	6.6	3.8	17.7	3.7	6.2	12.3	20.7
17	0.601	0.584	0.834	0.679	0.740	0.797	0.809	4.4	6.2	15.9	5.8	7.3	8.8	19.2
18	0.612	0.629	0.840	0.750	0.727	0.821	0.845	3.8	6.0	20.5	7.5	3.9	12.5	23.1
19	0.549	0.601	0.823	0.737	0.736	0.811	0.827	2.3	5.9	15.7	7.3	4.3	14.2	18.8
ens	0.604	0.617	0.834	0.726	0.754	0.843	0.836	5.5	12.5	21.8	11.8	6.0	25.4	24.4
								35199	35786	36174	36188	36184	36193	36224

	Protein Conf	cdk2 ROCAUC	fa10 ROCAUC	glcm ROCAUC	hivint ROCAUC	hivpr ROCAUC
	cons_mean_gro1 (xtal)	0.789	0.834	0.691	0.808	0.823
	cons_mean_00	0.714	0.650	0.668	0.757	0.815
	cons_mean_01	0.647	0.781	0.584	0.810	0.844
	cons_mean_02	0.623	0.732	0.584	0.780	0.839
	cons_mean_03	0.675	0.724	0.602	0.760	0.770
ROCAUC	cons_mean_04	0.719	0.597	0.669	0.815	0.825
	cons_mean_05	0.783	0.794	0.596	0.831	0.843
	cons_mean_06	0.675	0.644	0.578	0.751	0.816
using our bost 6	cons_mean_07	0.693	0.594	0.645	0.796	0.842
using our best 6	cons_mean_08	0.791	0.653	0.634	0.810	0.822
docking programs	cons_mean_09	0.711	0.849	0.611	0.815	0.810
	cons_mean_10	0.752	0.777	0.679	0.815	0.829
	cons_mean_11	0.744	0.640	0.692	0.812	0.789
	cons_mean_12	0.694	0.667	0.597	0.871	0.825
	cons_mean_13	0.695	0.625	0.573	0.835	0.751
	cons_mean_14	0.700	0.728	0.668	0.812	0.819
	cons_mean_15	0.736	0.626	0.627	0.792	0.793
	cons_mean_16	0.703	0.805	0.620	0.730	0.840
	cons_mean_17	0.798	0.760	0.665	0.825	0.817
	cons_mean_18	0.751	0.822	0.658	0.763	0.849
	cons_mean_19	0.756	0.673	0.653	0.806	0.832
	ens_mean_fred	0.655	0.538	0.480	0.634	0.614
	ens_mean_hybrid	0.764	0.630	0.722	0.632	0.632
	ens_mean_plants	0.594	0.542	0.673	0.764	0.834
	ens_mean_rdock	0.777	0.854	0.668	0.729	0.726
	ens_mean_smina	0.701	0.764	0.576	0.851	0.754
	ens_mean_surflex	0.673	0.654	0.594	0.645	0.843
	full_mean	0.744	0.745	0.658	0.855	0.841
	iuii_iiicaii	0.744	0.743	0.036	0.033	0.041

	Protein Conf	cdk2 EF1	fa10 EF1	glcm EF1	hivint EF1	hivpr EF1
	cons_mean_gro1 (xtal)	13.3	10.6	29.6	11.0	18.5
	cons_mean_00	5.3	1.9	22.2	9.0	19.0
	cons_mean_01	0.6	7.1	9.3	12.0	20.1
	cons_mean_02	1.3	3.9	16.7	14.0	19.8
	cons_mean_03	1.1	4.7	20.4	11.0	11.9
EF1	cons_mean_04	3.2	1.3	20.4	13.0	19.2
C1 1	cons_mean_05	6.3	4.7	7.4	12.0	17.9
	cons_mean_06	2.1	2.4	18.5	5.0	17.7
in a a con la cata C	cons_mean_07	2.5	8.0	13.0	12.0	18.3
using our best 6	cons_mean_08	10.8	2.6	16.7	8.0	18.8
docking programs	cons_mean_09	3.0	8.4	22.2	19.0	17.9
31 3	cons_mean_10	6.8	4.8	24.1	8.0	20.7
	cons_mean_11	5.7	7.6	18.5	11.0	15.1
	cons_mean_12	0.6	1.9	16.7	11.0	16.4
	cons_mean_13	1.5	7.1	22.2	9.0	13.8
	cons_mean_14	2.5	6.1	20.4	10.0	15.7
	cons_mean_15	1.7	0.9	20.4	16.0	15.3
	cons_mean_16	4.9	5.0	11.1	9.0	19.8
	cons_mean_17	15.2	5.8	20.4	10.0	17.9
	cons_mean_18	5.9	9.3	18.5	10.0	20.3
	cons_mean_19	7.2	7.3	22.2	11.0	17.7
	ens_mean_fred	3.2	1.0	8.7	11.4	4.8
	ens_mean_hybrid	7.8	2.3	15.2	7.6	11.3
	ens_mean_plants	2.7	2.4	31.4	15.0	21.8
	ens_mean_rdock	11.0	13.4	24.1	5.0	11.8
	ens_mean_smina	2.5	3.2	5.6	12.0	6.0
	ens_mean_surflex	0.6	4.7	18.5	7.0	25.4
	full_mean	3.2	5.0	24.1	13.0	22.6

Is there hope for "Smart" Ensemble Scoring?

		mean				max					
ROCAUC		xtal	ens	xtal+ens	ens5	xtal		ens	xtal+ens	ens5	
	cdk2	0.808	0.754	0.760	0.807	0.784		0.778	0.787	0.799	
	fa10	0.844	0.746	0.756	0.844	0.835		0.822	0.827	0.838	
	glcm	0.706	0.666	0.670	0.695	0.738		0.692	0.698	0.746	
	hivint	0.824	0.875	0.877	0.910	0.781		0.790	0.792	0.815	
	hivpr	0.824	0.836	0.837	0.857	0.798		0.818	0.815	0.838	
EF1		xtal	ens	xtal+ens	ens5	xtal		ens	xtal+ens	ens5	_
	cdk2	12.9	3.8	4.2	12.0	9.3		10.8	11.4	14.6	
	fa10	12.3	6.0	6.3	8.0	9.9		6.5	8.2	11.4	
	glcm	27.8	22.2	24.1	29.6	20.4		14.8	14.8	13.0	18.5
	hivint	13.0	21.0	21.0	24.0	4.0		6.0	6.0	9.0	
	hivpr	20.0	24.4	25.0	26.9	6.2		10.3	10.1	13.4	
	rocauc	best_cids		ef1	best_cids	rocauc	be	st_cids		ef1	best_cids
	cdk2	17,8,5,19,10		cdk2	17,8,19,5,10	cdk2	17,	,8,5,19,10		cdk2	17,19,8,10,5
	fa10	9,18,16,5,1		fa10	18,9,7,1,13	fa10	9,1	18,6,5,1		fa10	9,7,1,13,16
	glcm	11,10,17,4,1	4	glcm	19,0,10,9,6	glcm	11,	,8,4,7,10		glcm	9,0,18,4,14
	hivint	12,5,13,17,1	4	hivint	9,5,2,7,15	hivint	12	,10,11,4,19		hivint	14,15,17,9,3
	hivpr	18,1,5,7,16		hivpr	18,10,1,16,2	hivpr	1,1	18,2,12,5		hivpr	1,19,6,5,9

Next Steps for Ensemble Docking

- get missing docking data from key programs (Fred/Hybrid)
- evaluate diversity of active compound retrieval
- explore longer trajectory or enhanced sampling techniques
 - apo vs. holo?
- Boolean masking of docking scores based on pose consensus?
- consider more protein conformers?
- consider fewer protein conformers (smart selection):
 - transfer learning
 - supervised learning
 - active learning?
 - unsupervised selection?
- consider using ensemble of available experimental structure?

ML Approaches

• Transfer Learning: train ML model using data from all off-targets:

```
label model

y = f ( dp1 { min, 25%, 50%, 75%, max },

dp2 { min, 25%, 50%, 75%, max },

dp3 { min, 25%, 50%, 75%, max },

dp6 { min, 25%, 50%, 75%, max } )

dp6 { min, 25%, 50%, 75%, max } )
```

apply model to predict labels for compounds docked to on-target

ML Approaches

- Supervised, pick subset of protein conformers:
 - "all-stars": take top 5 best performing conformers (5 out of 20)
 - "the draft" (heuristic): start with best conformer than add conformers incrementally with maximal gain ⊕
 - "champions": (brute-force) take optimal set of 5 from all combinations: 20-choose-5 = 15504 🙁