Review of Lecture 17

Occam's Razor

The simplest model that fits the data is also the most plausible.

complexity of $h \longleftrightarrow complexity$ of \mathcal{H}

unlikely event ←→ significant if it happens

Sampling bias

Data snooping

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 18: Epilogue

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

It's a jungle out there

semi–supervised learning Gaussian pr	overfitting ocesses determin	stochastic	_	2 A 1A1	[Qlearning
Histribution_from		C dimension	aata	snooping	learning curves
collaborative filtering decision trees	nonlinear transform	mation	sampling	bias neural netw	mixture of expe orks no free
active learning		aining versus bias-	testing variance tra	noisy targets adeoff wea	
ordinal regression	cross validation	logistic reg	gression	data contamination	
ensemble learning		types of lea		perceptrons	hidden Markov mo
ploration versus exploitati	error measures on	kernel	methods	-	nical models
	is learning feasible			order constraint	
clustering	regularizati	on weight	decay	Occam's razor	Boltzmann macł

3/23 © M Creator: Yaser Abu-Mostafa - LFD Lecture 18

The map

VC

bias-variance

complexity

bayesian

linear

neural networks

SVM

nearest neighbors

RBF

gaussian processes

SVD

graphical models

(PCA etc.)

supervised

unsupervised

reinforcement

active

online

© M Creator: Yaser Abu-Mostafa - LFD Lecture 18

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

Probabilistic approach

Extend probabilistic role to all components

 $P(\mathcal{D} \mid h = f)$ decides which h (likelihood)

How about $P(h = f \mid \mathcal{D})$?

© A Creator: Yaser Abu-Mostafa - LFD Lecture 18

The prior

 $P(h = f \mid \mathcal{D})$ requires an additional probability distribution:

$$P(h = f \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid h = f) P(h = f)}{P(\mathcal{D})} \propto P(\mathcal{D} \mid h = f) P(h = f)$$

P(h = f) is the **prior**

 $P(h = f \mid \mathcal{D})$ is the **posterior**

Given the prior, we have the full distribution

Example of a prior

Consider a perceptron: h is determined by $\mathbf{w}=w_0,w_1,\cdots,w_d$

A possible prior on \mathbf{w} : Each w_i is independent, uniform over [-1,1]

This determines the prior over h - P(h=f)

Given \mathcal{D} , we can compute $P(\mathcal{D} \mid h = f)$

Putting them together, we get $P(h = f \mid \mathcal{D})$

$$\propto P(h = f)P(\mathcal{D} \mid h = f)$$

A prior is an assumption

Even the most "neutral" prior:

The true equivalent would be:

© M Creator: Yaser Abu-Mostafa - LFD Lecture 18

If we knew the prior

 \dots we could compute $P(h=f\mid \mathcal{D})$ for every $h\in \mathcal{H}$

 \Longrightarrow we can find the most probable h given the data

we can derive $\mathbb{E}(h(\mathbf{x}))$ for every \mathbf{x}

we can derive the error bar for every x

we can derive everything in a principled way

© A Creator: Yaser Abu-Mostafa - LFD Lecture 18

When is Bayesian learning justified?

1. The prior is valid

trumps all other methods

2. The prior is **irrelevant**

just a computational catalyst

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

What is aggregation?

Combining different solutions h_1, h_2, \cdots, h_T that were trained on \mathcal{D} :

Regression: take an average

Classification: take a vote

a.k.a. ensemble learning and boosting

Different from 2-layer learning

In a 2-layer model, all units learn **jointly**:

In aggregation, they learn independently then get combined:

each unit attempts to contribute positively to approximating the function

each unit (could be separate hypotheses) tries to replicate the function 14/23

Two types of aggregation

1. After the fact: combines existing solutions

they were developed solely with a view to performance individually, nobody was thinking of putting them together (so no one thought of deliberately getting a different model in order to contribute)

Example. Netflix teams merging "blending"

2. Before the fact: creates solutions to be combined

Example. Bagging - resampling ${\mathcal D}$

Decorrelation - boosting

Create h_1, \cdots, h_t, \cdots sequentially: Make h_t decorrelated with previous h's:

Say we have so far 60% correct (in classification) and 40% wrong combining the first few hypotheses. To make the next h fairly independent of the previous, emphasize the examples from D we did badly on (give them bigger weights in training) and deemphasize the ones we got right, so as far as the new distribution is concerned, it looks like we have a weighted error of 50% (as if it were a random guess). So taking this distribution and learn on it and get better than 50%, the new hypothesis is adding value to what we had before.

Emphasize points in ${\mathcal D}$ that were misclassified

Choose weight of h_t based on $E_{
m in}(h_t)$

© M Creator: Yaser Abu-Mostafa - LFD Lecture 18

Blending - after the fact

For regression,
$$h_1,h_2,\cdots,h_T$$
 \longrightarrow $g(\mathbf{x})=\sum_{t=1}^I \alpha_t \; h_t(\mathbf{x})$

Choose alpha's will be Principled choice of α_t 's: minimize the error on an "aggregation data set" pseudo-inverse

Some α_t 's can come out negative

Most valuable h_t in the blend?

You evaluate the performance of the summation both with and without each h_t - the difference is the contribution of the solution. So if there are two h_t doing identically the same thing, taking one out just means the other hypothesis will contribute everything that is needed. Meanwhile those hypotheses which are more diverse/fringe often have greater actual contribution to the blend, even if the individual performance of the model on the problem is not as good..

If we use MSE, algorithm to

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

Course content

Professor Malik Magdon-Ismail, RPI

Professor Hsuan-Tien Lin, NTU

Course staff

Carlos Gonzalez (Head TA)

Ron Appel

Costis Sideris

Doris Xin

Filming, production, and infrastructure

Leslie Maxfield and the AMT staff

Rich Fagen and the IMSS staff

© A Creator: Yaser Abu-Mostafa - LFD Lecture 18

Caltech support

IST - Mathieu Desbrun

E&AS Division - Ares Rosakis and Mani Chandy

Provost's Office - Ed Stolper and Melany Hunt

© M Creator: Yaser Abu-Mostafa - LFD Lecture 18

Many others

Caltech TA's and staff members

Caltech alumni and Alumni Association

Colleagues all over the world

To the fond memory of

Faiza A. Ibrahim