Time Series Forecasting-Rose Project Report

Mr. Akash Kamble

June_A Batch

Program: DSBA

***** Table of Contents:

1.	Time Series Forecasting – Rose Wine Sales Data Set	Pg. no.			
	Executive Summary	5			
	Introduction	5			
	Sample of the dataset	5			
	Basic EDA	6			
1.	Problem Statement 1	8			
1.1	Read the data as an appropriate Time Series data and plot the data.	8			
1.2	Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.	10			
1.3	Split the data into training and test. The test data should start in 1991.	15			
1.4	Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.	17			
1.5	Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.	20			
1.6	Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.	24			
1.7	Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.	24			
1.8					
1.9	Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.	37			
1.10	Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.	39			

***** List of Figures:

1	Fig 1.1: Boxplot for each year
2	Fig 1.2: Series Plot
3	Fig 1.2.1: Series Plot after treatment of missing values
4	Fig 1.3: Yearly Sales Boxplot
5	Fig 1.4: Monthly Sales Boxplot
6	Fig 1.5: Mean of monthly wine sales
7	Fig 1.6: Plotting the cross tab
8	Fig 1.7: Percentage change in wine sales
9	Fig 1.8: Additive Decomposition
10	Fig 1.9: Multiplicative Decomposition
11	Fig 1.10: Test Train Graph
12	Fig 1.11: Forecast – Linear Regression
13	Fig 1.12: Forecast – Naïve Approach
14	Fig 1.13: Forecast – Simple Average
15	Fig 1.14: Forecast – Trailing Moving Average
16	Fig 1.15: Forecast – Trailing Moving Average
17	Fig 1.16: Forecast – Trailing Moving Average with different params
18	Fig 1.17: Forecast – Simple exponential Smoothing
19	Fig 1.18: Forecast – Simple exponential Smoothing with different params
20	Fig 1.19: Forecast – Double exponential Smoothing
21	Fig 1.20: Forecast – Double exponential Smoothing with different params
22	Fig 1.21: Forecast – Triple exponential Smoothing
23	Fig 1.22: Forecast – Triple exponential Smoothing with different params
24	Fig 1.23: Rolling mean & STD deviation
25	Fig 1.24: Rolling mean & STD deviation with order 1 differentiation
26	Fig 1.25: Residual Diagnostics
27	Fig 1.25: Rolling mean, std. deviation, PACF and ACF plots
28	Fig 1.27: Residual Diagnostics
29	Fig 1.28: Predictions with confidance bands
30	Fig 1.29: Forecast for the next 12 months

***** List of Tables:

1	Table 1.1: Data Sample
2	Table 1.2: Cross Tab
3	<u>Table 1.3: Training Data Set</u>
4	<u>Table 1.4: Testing Dataset</u>
5	Table 1.5: Forecasting on test data
6	Table 1.6: Forecasting on test data
7	Table 1.7: Forecasting on test data
8	Table 1.8: Forecasting on test data
9	Table 1.9: RMSE on various trailing moving average
10	Table 1.10: Forecast on test dataset
11	Table 1.11: Forecasting on test data
12	Table 1.12: Forecasting on test data
13	Table 1.13: Forecasting on test data
14	Table 1.14: AD Fuller Test Result
15	<u>Table 1.15: AD Fuller Test Result</u>
16	Table 1.16: AIC Values
17	Table 1.17: ARIMAX Result
18	Table 1.17: AIC Values
19	Table 1.18: SARIMAX Result
20	Table 1.18: ARIMAX Result
21	Table 1.19: SARIMAX Result
22	Table 1.20: Models with RMSE values
23	Table 1.21: Forecast for the next 12 months

1. Time Series Forecasting for Rose Wine Sales

Lead of the Executive Summary

Intend of the study is to use different time series forecasting methods to forecast the sales for Rose wines of ABC company.

Introduction

We will built various models, evaluate the model on basis of RMSE score and finally choose the best model.

Sample of the dataset

	Rose
YearMonth	
1980-01-01	112.0
1980-02-01	118.0
1980-03-01	129.0
1980-04-01	99.0
1980-05-01	116.0

Table 1.1: Data Sample

Dataset has records of monthly Rose wine sales from year 1980 to 1995.

Lesson Exploratory Data Analysis (EDA)

- Let's check for missing values in the data frame
 - There are missing values in the data set.

• Checking for outliers present in the data

greatlearning

Fig 1.1: Boxplot for each year

From above boxplots,

- There are outliers present in the data.
- Box plot is just to understand the data distribution and not for any treatment.

Problem Statement 1:

You the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

Q1.1. Read the data as an appropriate Time Series data and plot the data.

Read the data as an appropriate time series data:

	Rose
YearMonth	
1980-01-01	112.0
1980-02-01	118.0
1980-03-01	129.0
1980-04-01	99.0
1980-05-01	116.0

Table 1.1: Data Sample

Plotting the data:

Fig 1.2: Series Plot

- Data values are stored in correct time order and there are some missing values (they are treated in further section).
- There is strong downtrend trend component present in the dataset.
- Seasonal trend is present.
- It can be inferred by looking at the data that the series is multiplicative in nature.

Q1.2 Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Exploratory Data Analysis (EDA)

• Treating Missing Values:

- There are missing values present in the data set.
- Therefore, we should interpolate the values
- Following is the graph after treating the missing values

Fig 1.2.1: Series Plot after treatment of missing values

• Yearly Sales Boxplot:

Fig 1.3: Yearly Sales Boxplot

- There are outliers present in yearly sales data, same is the reason for spikes in the line plot.
- There is clearly downtrend present in the series.

• Monthly Sales Boxplot:

Fig 1.4: Monthly Sales Boxplot

- There seems to be higher sales in last two months of the year.
- Highest sales are contributed by December month for each year, followed by November.
- Monthly Sales lineplot:

Fig 1.5: Mean of monthly wine sales

- There is too much of variance in monthly sales of rose wine.
- Cross tab for monthly and yearly wine sales:
 - Cross Tab

YearMonth	1	2	3	4	5	6	7	8	9	10	11	12
YearMonth												
1980	112.0	118.0	129.0	99.0	116.0	168.0	118.000000	129.000000	205.0	147.0	150.0	267.0
1981	126.0	129.0	124.0	97.0	102.0	127.0	222.000000	214.000000	118.0	141.0	154.0	226.0
1982	89.0	77.0	82.0	97.0	127.0	121.0	117.000000	117.000000	106.0	112.0	134.0	169.0
1983	75.0	108.0	115.0	85.0	101.0	108.0	109.000000	124.000000	105.0	95.0	135.0	164.0
1984	88.0	85.0	112.0	87.0	91.0	87.0	87.000000	142.000000	95.0	108.0	139.0	159.0
1985	61.0	82.0	124.0	93.0	108.0	75.0	87.000000	103.000000	90.0	108.0	123.0	129.0
1986	57.0	65.0	67.0	71.0	76.0	67.0	110.000000	118.000000	99.0	85.0	107.0	141.0
1987	58.0	65.0	70.0	86.0	93.0	74.0	87.000000	73.000000	101.0	100.0	96.0	157.0
1988	63.0	115.0	70.0	66.0	67.0	83.0	79.000000	77.000000	102.0	116.0	100.0	135.0
1989	71.0	60.0	89.0	74.0	73.0	91.0	86.000000	74.000000	87.0	87.0	109.0	137.0
1990	43.0	69.0	73.0	77.0	69.0	76.0	78.000000	70.000000	83.0	65.0	110.0	132.0
1991	54.0	55.0	66.0	65.0	60.0	65.0	96.000000	55.000000	71.0	63.0	74.0	106.0
1992	34.0	47.0	56.0	53.0	53.0	55.0	67.000000	52.000000	46.0	51.0	58.0	91.0
1993	33.0	40.0	46.0	45.0	41.0	55.0	57.000000	54.000000	46.0	52.0	48.0	77.0
1994	30.0	35.0	42.0	48.0	44.0	45.0	45.333333	45.666667	46.0	51.0	63.0	84.0
1995	30.0	39.0	45.0	52.0	28.0	40.0	62.000000	NaN	NaN	NaN	NaN	NaN

Table 1.2: Cross Tab

• Plotting the Cross Tab:

Fig 1.6: Plotting the cross tab

- We can infer that December month is the highest wine selling month throughout the study period.

• Percentage change in Sales of Rose Wine:

Fig 1.7: Percentage change in wine sales

- We can infer that there is lot of variation in percentage change in sales of Rose wines.
- Decomposition of Time Series:

Fig 1.8: Additive Decomposition

Fig 1.9: Multiplicative Decomposition

- There is a clear downtrend throughout the series.
- There is seasonal component present in the data set.
- Here in both the cases i.e. additive and multiplicative, the residuals are similar. We can say Multiplicative decomposition fits the best looking at the original series.

Q1.3 Split the data into training and test. The test data should start in 1991.

• Training Dataset:

Table 1.3: Training Data Set

• Testing Dataset:

Table 1.4: Testing Dataset

• Test Train Graph

Fig 1.10: Test Train Graph

Q1.4 Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

1. Linear Regression

- Step 1: Import necessary libraries from sklearn.linear_model import LinearRegression
- Step 2: Apply logistic regression by using function
 - LR_model = LinearRegression()
- Step 3: Forecasting on test data:

	Rose	time	RegOnTime
YearMonth			
1991-01-01	54.0	1	137.321144
1991-02-01	55.0	2	136.826766
1991-03-01	66.0	3	136.332388
1991-04-01	65.0	4	135.838010
1991-05-01	60.0	5	135.343632

Table 1.5: Forecasting on test data

Fig 1.11: Forecast – Linear Regression

- RMSE Score: 71.59

2. Naïve Approach:

• Step 1: Import necessary libraries
No specific library required

• Step 2: Apply Naïve model by using function No specific function required

• Step 3: Forecasting on test data:

```
YearMonth
1991-01-01 132.0
1991-02-01 132.0
1991-03-01 132.0
1991-04-01 132.0
1991-05-01 132.0
Freq: MS, Name: Naive, dtype: float64
```

Table 1.6: Forecasting on test data

Fig 1.12: Forecast – Naïve Approach

- RMSE Score: 79.71

3. Simple Average Model

• Step 1: Import necessary libraries
No specific library required

• Step 2: Apply Simple Average by using function No specific function required

• Step 3: Forecasting on test data:

	Rose	mean_forecast
YearMonth		
1991-01-01	54.0	53.854545
1991-02-01	55.0	53.854545
1991-03-01	66.0	53.854545
1991-04-01	65.0	53.854545
1991-05-01	60.0	53.854545

Table 1.7: Forecasting on test data

Fig 1.13: Forecast – Simple Average

- RMSE Score: 15.75

4. Moving Average Model

• Step 1: Import necessary libraries
No specific library required

• Step 2: Apply Moving Average by using function

Moving_Average['Trailing_2'] = Moving_Average['Rose'].rolling(2).mean()

 $Moving_Average['Trailing_4'] = Moving_Average['Rose'].rolling(4).mean()$

Moving_Average['Trailing_6'] = Moving_Average['Rose'].rolling(6).mean()

Moving_Average['Trailing_8'] = Moving_Average['Rose'].rolling(8).mean()

• Step 3: Forecasting on test data:

	Rose	Trailing_2	Trailing_4	Trailing_6	Trailing_8
YearMonth					
1980-01-01	112.0	NaN	NaN	NaN	NaN
1980-02-01	118.0	115.0	NaN	NaN	NaN
1980-03-01	129.0	123.5	NaN	NaN	NaN
1980-04-01	99.0	114.0	114.50	NaN	NaN
1980-05-01	116.0	107.5	115.50	NaN	NaN
1980-06-01	168.0	142.0	128.00	123.666667	NaN
1980-07-01	118.0	143.0	125.25	124.666667	NaN
1980-08-01	129.0	123.5	132.75	126.500000	123.625
1980-09-01	205.0	167.0	155.00	139.166667	135.250
1980-10-01	147.0	176.0	149.75	147.166667	138.875

Table 1.8: Forecasting on test data

Fig 1.14: Forecast – Trailing Moving Average

2pointTrailingMovingAverage	10.402622
4pointTrailingMovingAverage	13.176123
6pointTrailingMovingAverage	13.299874
8pointTrailingMovingAverage	13.997297

Table 1.9: RMSE on various trailing moving average

5. Simple Moving Average Model

- <u>Step 1: Import necessary libraries</u> from statsmodels.tsa.api import SimpleExpSmoothing
- Step 2: Apply Simple Moving Average by using function SES_model = SimpleExpSmoothing(SES_train['Rose']) SES_model_autofit = SES_model.fit(optimized=True)
- Step 3: Forecasting on test data:

	Rose	Predict
YearMonth		
1991-01-01	54.0	87.104999
1991-02-01	55.0	87.104999
1991-03-01	66.0	87.104999
1991-04-01	65.0	87.104999
1991-05-01	60.0	87.104999

Table 1.10: Forecast on test dataset

Fig 1.15: Forecast – Trailing Moving Average

- RMSE Score: 36.79

• Step 6: Iterate through different parameters (alpha, beta, gamma)

Fig 1.16: Forecast – Trailing Moving Average with different params

- New RMSE Score: 36.43

6. Double Exponential Smoothing Model

• <u>Step 1: Import necessary libraries</u> from statsmodels.tsa.api import Holt

Step 2: Apply Double Exponential Smoothing Model by using function DES_model = Holt(DES_train['Rose']) DES_model_autofit = DES_model.fit(optimized=True)

• Step 3: Forecasting on test data:

	Rose	Predict
YearMonth		
1991-01-01	54.0	72.063249
1991-02-01	55.0	71.568871
1991-03-01	66.0	71.074493
1991-04-01	65.0	70.580115
1991-05-01	60.0	70.085736

Table 1.12: Forecasting on test data

Step 4: Plot the Forecasts:

Fig 1.19: Forecast - Double exponential Smoothing

Step 5: Calculate the RMSE

RMSE Score: 84.29

Step 6: Iterate through different parameters (alpha, beta, gamma)

Fig 1.20: Forecast – Double exponential Smoothing with different params

New RMSE Score: 15.26

7. Triple Exponential Smoothing Model

Step 1: Import necessary libraries from statsmodels.tsa.api import ExponentialSmoothing

• Step 2: Apply Triple Exponential Smoothing Model by using function

TES model =

ExponentialSmoothing(TES train['Rose'],trend='additive',seasonal='multiplicative')

<u>TES_model_autofit = TES_model.fit(optimized=True)</u>

Step 3: Forecasting on test data:

	Rose	Predict
YearMonth		
1991-01-01	54.0	56.411071
1991-02-01	55.0	63.801331
1991-03-01	66.0	69.500435
1991-04-01	65.0	60.599603
1991-05-01	60.0	67.889542

Table 1.13: Forecasting on test data

• Step 4: Plot the Forecasts:

Fig 1.21: Forecast – Triple exponential Smoothing

• Step 5: Calculate the RMSE

- RMSE Score: 20.37

• Step 6: Iterate through different parameters (alpha, beta, gamma)

Fig 1.22: Forecast – Triple exponential Smoothing with different params

- New RMSE Score: 9.22

Q1.5 Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

- Since ARIMA/SARIMA model requires a stationary series, a formal stationarity test needs to be applied to the time series under consideration.
- Augmented Dickey-Fuller Test: A formal test to check whether time series data follows stationary process.
 - 1. H0: Time series is non-stationary
 - 2. H1: Time series is stationary
- Following is the result of AD-Fuller Test:

Fig 1.23: Rolling mean & STD deviation

Results of Dickey-Fuller Test:	
Test Statistic	-1.876699
p-value	0.343101
#Lags Used	13.000000
Number of Observations Used	173.000000
Critical Value (1%)	-3.468726
Critical Value (5%)	-2.878396
Critical Value (10%)	-2.575756
dtype: float64	

Table 1.14: AD Fuller Test Result

- P-value is 0.24 which is greater than level of significance (0.05). Therefore, we failed to reject the null hypothesis. Thus, the series is non-stationary.
- Now, we need to take 1st order difference so as to convert the non-stationary series into stationary series.

- Following is the result of AD fuller test on 1st order difference.

Fig 1.24: Rolling mean & STD deviation with order 1 differentiation

Results of Dickey-Fuller Test:					
Test Statistic	-8.044392e+00				
p-value	1.810895e-12				
#Lags Used	1.200000e+01				
Number of Observations Used	1.730000e+02				
Critical Value (1%)	-3.468726e+00				
Critical Value (5%)	-2.878396e+00				
Critical Value (10%)	-2.575756e+00				
dtype: float64					

Table 1.15: AD Fuller Test Result

- P-value is 1.81e-12 which is lesser than level of significance (0.05). Therefore, we reject the null hypothesis. Thus, the series is now stationary.

Q1.6 Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE?

Automated ARIMA Model

- <u>Step 1: Import necessary libraries</u> from statsmodels.tsa.arima.model import ARIMA
- Step 2: Apply automated ARIMA by selecting range of p, d & q values
 - Range of 'p': 0 to 2 (2 is inclusive)
 - Range of 'd': 1 (as 1st differential of series is stationary)
 - Range of 'q': 0 to 2 (2 is inclusive)
- Step 3: Sort AIC values in ascending order

	param	AIC
2	(0, 1, 2)	1279.671529
5	(1, 1, 2)	1279.870723
4	(1, 1, 1)	1280.574230
7	(2, 1, 1)	1281.507862
8	(2, 1, 2)	1281.870722
1	(0, 1, 1)	1282.309832
6	(2, 1, 0)	1298.611034
3	(1, 1, 0)	1317.350311
0	(0, 1, 0)	1333.154673

Table 1.16: AIC Values

- Step 4: Selecting the best parameter with lowest AIC
 - p: 0 (Partial autocorrelation)
 - d: 1 (degree of differentiation)
 - q: 2 (Autocorrelation)
- **Step 5:** ARIMAX Result:

		SARI	MAX Resul	ts			
Dep. Variable: Rose No. Observations: 132							
Model:		ARIMA(0, 1,	Log	Likelihood		-636.836	
Date:	Su	n, 20 Feb 20	22 AIC			1279.672	
Time:		22:16:	48 BIC			1288.297	
Sample:		01-01-19 - 12-01-19				1283.176	
Covariance	Type:	C	pg				
=======	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1	-0.6970	0.072	-9.689	0.000	-0.838	-0.556	
ma.L2	-0.2042	0.073	-2.794	0.005	-0.347	-0.061	
sigma2	965.8407	88.305	10.938	0.000	792.766	1138.915	
Ljung-Box	L1) (Q):	========	0.14	Jarque-Bera	========= (JB):	3	==== 9.24
Prob(Q):		0.71	Prob(JB):			0.00	
Heteroskedasticity (H):		0.36	Skew:			0.82	
Prob(H) (t	wo-sided):		0.00	Kurtosis:		!	5.13
=======	=========	========	=======	=======	=======		====

Table 1.17: ARIMAX Result

• Step 6: Residual Diagnostics:

Fig 1.25: Residual Diagnostics

- RMSE Score: 37.31

> Automated SARIMA Model

• Step 1: Import necessary libraries import statsmodels.api as sm

- Step 2: Apply automated SARIMA by selecting range of p, d & q values
 - Range of 'p': 0 to 2 (2 is inclusive)
 - Range of 'd': 1 (as 1st differential of series is stationary)
 - Range of 'q': 0 to 2 (2 is inclusive)
- Step 3: Sort AIC values in ascending order

	param	seasonal	AIC
26	(0, 1, 2)	(2, 1, 2, 12)	774.969119
		(2, 1, 2, 12)	
80	(2, 1, 2)	(2, 1, 2, 12)	776.996101
17	(0, 1, 1)	(2, 1, 2, 12)	782.153872
79	(2, 1, 2)	(2, 1, 1, 12)	783.703652

Table 1.17: AIC Values

- Step 4: Selecting the best parameter with lowest AIC (p,d,q)(P,D,Q) = (0,1,2)(2,1,2,12)
- Step 5: SARIMAX Result:

			SARIMAX	Result	S			
Dep. Varial Model: Date: Time: Sample:					Log			132 -380.485 774.969 792.622 782.094
Covariance	Type:			opg				
=======	coef	std err	z	P:	-==== z	[0.025	0.975]	
ma.L1	-0.9524	0.184	-5.166	0.	000	-1.314	-0.591	
ma.L2	-0.0764	0.126	-0.605	0.	545	-0.324	0.171	
ar.S.L12	0.0480	0.177	0.271	0.	786	-0.299	0.395	
ar.S.L24	-0.0419	0.028	-1.513	0.	130	-0.096	0.012	
ma.S.L12	-0.7526	0.301	-2.503	0.	012	-1.342	-0.163	
ma.S.L24	-0.0721	0.204	-0.354	0.	723	-0.471	0.327	
sigma2	187.8660	45.275	4.149	0.	000	99.129	276.603	
====== Ljung-Box	======== (L1) (0):	=======	0.06	Jarque	 -Bera	:======= ı (JB):		==== 4.86
Prob(Q):	. , ,		0.81	Prob(. ,		0.09
, .,	asticity (H):		0.91	Skew:	•			0.41
			0.79	Kurtos	is:			3.77
Prob(H) (t	wo-sided): =======		0.79	Kurtos	is:	.=======	.======	3.77 ====

Table 1.18: SARIMAX Result

• Step 6: Residual Diagnostics:

Fig 1.25: Residual Diagnostics

• Step 7: Calculate the RMSE

- RMSE Score: 16.50

Q1.7 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

> Cut-off based ARIMA Model

• Step 1: Import necessary libraries import statsmodels.api as sm

Rolling Mean & Standard Deviation Original 100 Rolling Mean Rolling Std 50 0 -50 -100-150 1984 1986 1980 1982 1988 1990

• Step 2: Decide the cut-off points of ACF and PACF

Fig 1.25: Rolling mean, std. deviation, PACF and ACF plots

- It can be inferred that there is a seasonality after every 12 months which is recurring in nature.
- Here, p = 2 as 3 lag are falling outside the significance blue band.
- d=1 as order of differencing is 1 as original series was non-stationary but became stationary after differencing)
- q=2 as two lags are falling above the significance blue band. Seasonality after 12 lags is seen in plots.
- ACF & PACF plot are done using 95% confidence interval bands.
- Therefore, (p,d,q)(P,D,Q) = (2,1,2)(2,1,0,12)

• Step 3: Building model

manual_ARIMA = ARIMA(train_a_sarima['Rose'], order=(2,1,2),freq='MS')

results_manual_ARIMA = manual_ARIMA.fit()

• **Step 4:** ARIMAX Result:

		SARI	MAX Resul	ts		
Dep. Vari	======================================	 Ro	se No.	========= Observations:	=======	132
Model:		ARIMA(2, 1,	2) Log	Likelihood		-635.935
Date:	Su	n, 20 Feb 20	22 AIC			1281.871
Time:		22:16:	47 BIC			1296.247
Sample:		01-01-19 - 12-01-19	980 HQIC 990			1287.712
Covarianc	e Type:	C	pg			
======	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.4540	0.469	-0.969	0.333	-1.372	0.464
	0.0001			0.999		
	-0.2541			0.580		
ma.L2	-0.5984	0.430	-1.390	0.164	-1.442	0.245
sigma2	952.1601	91.424	10.415	0.000	772.973	1131.347
====== Ljung-Box	(L1) (Q):	========	0.02	Jarque-Bera	(JB):	34.16
Prob(Q):			0.88	Prob(JB):		0.00
Heteroske	dasticity (H):		0.37	Skew:		0.79
Prob(H) (two-sided):		0.00	Kurtosis:		4.94
=======				=========		

Table 1.18: ARIMAX Result

• Step 6: Residual Diagnostics:

Table 1.26: Residual Diagnostics

• Step 7: Calculate the RMSE

- RMSE Score: 36.87

Cut-off based SARIMA Model

• Step 1: Import necessary libraries import statsmodels.api as sm

• Step 2: Decide the cut-off points of ACF and PACF

Fig 1.25: Rolling mean, std. deviation, PACF and ACF plots

- It can be inferred that there is a seasonality after every 12 months which is recurring in nature.
- Here, p = 2 as 3 lag are falling outside the significance blue band.
- d=1 as order of differencing is 1 as original series was non-stationary but became stationary after differencing)
- q=2 as two lags are falling above the significance blue band. Seasonality after 12 lags is seen in plots.
- ACF & PACF plot are done using 95% confidence interval bands.
- Therefore, (p,d,q)(P,D,Q) = (2,1,2)(2,1,0,12)

• Step 3: Building model

manual_SARIMA_12 = sm.tsa.statespace.SARIMAX(train_a_sarima['Rose'].values,
order=(2, 1, 2),
seasonal order=(2, 1, 0, 12),
enforce_stationarity=False,
enforce_invertibility=False)
results_manual_SARIMA_12 = manual_SARIMA_12.fit(maxiter=1000)

• **Step 4:** SARIMAX Result:

SARIMAX Results								
Dep. Varia			2) /2 4 5	y		Observations:	=======	132
Model:	SARI	MAX(2, 1,	2)x(2, 1, [-390.390
Date:			Sun, 20 Fe					794.780
Time:			22	:16:50	BIC			812.508
Sample:				0	HQI	C		801.938
				- 132				
Covariance	Type:			opg				
=======		=======		======	=====			
	coef	std err	Z	P>	z	[0.025	0.975]	
ar.L1	-0.2172	2.170	-0.100	0.9	920	-4.470	4.036	
ar.L2	0.0743	0.202	0.369	0.	712	-0.321	0.470	
ma.L1	-0.7312	2.160	-0.339	0.	735	-4.964	3.502	
ma.L2	-0.3219	2.250	-0.143	0.8	886	-4.732	4.088	
ar.S.L12	-0.3877	0.086	-4.491	0.0	999	-0.557	-0.218	
	-0.1506		-2.387			-0.274		
			5.583			153.061		
Ljung-Box ((L1) (Q):		0.00	Jarque	-Bera	(JB):		1.22
Prob(Q):			0.98	Prob(J	B):			0.54
, ,,	asticity (H):			Skew:				0.19
Prob(H) (tw			0.69	Kurtos	is:			3.42
=========	==========			======				====

Table 1.19: SARIMAX Result

• Step 6: Residual Diagnostics:

Fig 1.27: Residual Diagnostics

• Step 7: Calculate the RMSE

- RMSE Score: 17.91

Q1.8 Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

	Test RMSE
Alpha=0.1 ,Beta=0.2, Gamma=0.2, TripleExponentialSmoothing	9.223504
2 point Trailing Moving Average	10.402622
4pointTrailingMovingAverage	13.176123
6pointTrailingMovingAverage	13.299874
8pointTrailingMovingAverage	13.997297
Alpha=1.49, Beta= 3.07, Double Exp. Smoothing	15.268947
Simple Average	15.759783
(0, 1, 2)(2, 1, 2, 12) , SARIMA iteration Model	16.500245
(2,1,2)(2,1,0,12) SARIMA Manual Model	17.914615
Alpha =0.063, Beta =0.054, Gamma =1.496e-07, Triple Exp. Smoothing	20.370572
Alpha=0.075,SimpleExponentialSmoothing	36.432370
Alpha=0.098, Simple Exp. Smoothing	36.796242
(2,1,2) ARIMA Manual Model	36.871197
(0,1,2) ARIMA Manual Model	37.306480
LR_Model	71.596828
Naive_Model	79.718773
Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing	84.295759

Table 1.20: Models with RMSE values

- We can conclude from above that Tripple Exponential Smoothing model with alpha=0.1, beta=0.2 and gamma=0.2 is the best suited with RMSE value of 9.22.

Q1.9 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

8. <u>Triple Exponential Smoothing Model</u>

- <u>Step 1: Import necessary libraries</u> from statsmodels.tsa.api import ExponentialSmoothing
- <u>Step 2: Apply Triple Exponential Smoothing Model by using function</u>
 <u>TES_model = Exponential Smoothing (TES_train['Rose'], trend='additive', seasonal='Multiplicative')</u>

TES_model_autofit = TES_model.fit(optimized=True)

• Step 3: Forecasting on test data:

	Rose	Predict
YearMonth		
1991-01-01	54.0	56.411071
1991-02-01	55.0	63.801331
1991-03-01	66.0	69.500435
1991-04-01	65.0	60.599603
1991-05-01	60.0	67.889542

Table 1.13: Forecasting on test data

• Step 4: Plot the Forecasts:

Fig 1.21: Forecast – Triple exponential Smoothing

• Step 5: Calculate the RMSE

- RMSE Score: 20.37

• Step 6: Iterate through different parameters (alpha, beta, gamma)

Fig 1.22: Forecast – Triple exponential Smoothing with different params

- New RMSE Score: 9.22

• Step 7: Predictions

1995-08-01	47.607992
1995-09-01	48.284484
1995-10-01	50.279657
1995-11-01	58.461229
1995-12-01	82.116597
1996-01-01	31.696348
1996-02-01	39.431810
1996-03-01	45.360026
1996-04-01	46.803005
1996-05-01	40.722234
1996-06-01	46.994555
1996-07-01	54.041101
Freq: MS, dty	pe: float64

Table 1.21: Forecast for the next 12 months

Fig 1.28: Predictions

• Step 8: Forecast for the next 12 months

Fig 1.29: Forecast for the next 12 months

- Sa;es for the forecasted is more or less similar to the sales of year 1995.

Q1.10 Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

- Triple exponential smoothing model seems to be best suited for series with random fluctuations.
- In the month of December, rose wine sales peaked which is due to festive season (might be Christmas).
- Trend component in the series shows downtrend trend throughout the year.
- Trend component is strong and have heavy weightage in the prediction.

Suggestions for the ABC Company:

- Looking at the sales we can say that there is continuous downtrend.
 So, company should decide whether to continue such variety of wine. Because managing a product takes too much of money and efforts and with such a low sales it becomes very difficult to be profitable.
- 2. Company should see improve the sales in the 1st three quarter of the year so as to gain more revenue.
- 3. Brand building is another key to enhance the revenue.

End of the Report

