

Einführung in die Algebra

Aufarbeitung der Übungsaufgaben

Tobias Wedemeier

13. November 2014 gelesen von Prof. Dr. Kramer

Inhaltsverzeichnis

Zettel 1 Aufgabe 1.2 Aufgabe 1.4					 •														 	1 1 1
Zettel 2																				2
Aufgabe 2.1																			 	2
Aufgabe 2.3																			 	2
Zettel 3																				3
Aufgabe 3.1																			 	3
Aufgabe 3.2																			 	3
Index																				Α
Abbildungsverz	eic	hn	ıis																	В

Zettel 1

Aufgabe 1.2

Sei G eine Gruppe. A,B Untergruppen von G. Z: Wenn $A \cup B$ eine Untergruppe ist, dann gilt: $A \subseteq B$ oder $b \subseteq A$.

Beweis:

Annahme: $A \not\subseteq B$. Also ex. ein $a \in A \setminus B$ und $b \in B$ beliebig. Betrachte $ab \in A \cup B$, da AB Untergruppe. Also ist $ab \in A$ oder $ab \in B$.

Sei $ab \in B$ und $b^{-1} \in B$, da B Untergruppe, folgt, dass $abb^{-1} = a \in B$. \d zur Annahme.

Also $ab \in A$ und $a^{-1} \in A$, da A Untergruppe, folgt, dass $a^{-1}ab = b \in A$. Da b beliebig war, folgt $B \subseteq A$.

Aufgabe 1.4

Gruppe $G.\ A,B$ Untergruppen.Wir definieren $AB := \{ab \mid a \in A, b \in B\}.$

- (i) Die Menge AB ist im allgemeinen keine Untergruppe.
- (ii) Wenn weiter gilt AB = BA, dann ist AB eine Untergruppe.

Beweise klar! (✓)

Zettel 2

Aufgabe 2.1

Eine Gruppe G hat **Exponent** k, wenn für jedes Gruppenelement $g \in G$ gilt: $g^k = e$. **Z**yGruppen mit Exponent 2 sind abelsch.

Beweis:

 $\overline{\text{Aus } g^2} = e \text{ folgt } g = g^{-1} \ \forall g \in G. \ a, b \in G \text{ beliebig}$

$$ab = (ab)^{-1} \overset{\mathsf{G}}{=} \overset{\mathsf{Gruppe}}{=} b^{-1}a^{-1} = ba$$

Anmerkung: Gruppen mit Exponenten 3 sind im allgemeinen nicht abelsch.

Aufgabe 2.3

Menge X und Sym(X). Der **Träger einer Permutation** $\sigma \in Sym(X)$ ist definiert wie folgt: $supp(\sigma) := supp(\sigma)$ $\{x \in X \mid \sigma(x) \neq x\}.$

- (i) Wenn $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$ für $\rho, \sigma \in Sym(X)$ gilt, dann folgt $\rho \circ \sigma = \sigma \circ \rho$.
- (ii) Wenn $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$ und $\rho \circ \sigma = \operatorname{id} \operatorname{für} \sigma, \rho \in \operatorname{Sym}(X)$ gilt, dann folgt $\rho = \sigma = \operatorname{id}$.

Beweis:

$$\text{(i) Es gilt: } \rho \circ \sigma = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right. \\ \text{oder } \sigma \circ \rho = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right.$$

Da $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$ gilt und somit x nicht von beiden Permutationen verändert wird. Da Permutationen bijektiv nach Definition sind, ist dies wohldefiniert.

$$\text{(ii) Nach (i) gilt, dass } \rho \circ \sigma = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right.$$
 gilt.

Also muss $\rho(x)=x$ gelten, da $\rho\circ\sigma$ gilt, analog $\sigma(x)=x$. Also folgt $\rho=\sigma=\mathrm{id}$.

Zettel 3

Aufgabe 3.1

Gegeben seinen Gruppen G und H.

- (i) G abelsch $\Leftrightarrow f: G \to G, \ f(g) = g^{-1}$ ist Gruppenhomomorphismus.
- (ii) Gruppenhomomorphismus $\phi:G\to H.$ Weiter sei $g\in G$ mit $o(g)<\infty.$ Die Ordnung von $\phi(g)$ ist eine Teiler der Ordnung von g.

Beweis:

<u>zu (i):</u> ⇒:

$$f(gh) = (gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1} = f(g)f(h)$$

Also f ein Gruppenhomomorphismus.

 \Leftarrow :Seien $g,h\in G$ bel. Da f ein Gruppenhomomorphismus ist gilt

$$gh = f((gh)^{-1}) = f(h^{-1}g^{-1}) = f(h^{-1})f(g^{-1}) = hg$$

Also ist G abelsch.

<u>zu (ii):</u> Da $o(g) < \infty$, ex. ein $n \in \mathbb{N}$ mit o(g) = n. Wir haben also

$$e_H = \phi(e_G) = \phi(g^n) = \phi(g)^n$$

Also ist $o(\phi(g)) < \infty$, folglich ex. ein $m \in \mathbb{N}$ mit $o(\phi(g)) = m$. Angenommen $m \nmid n$. Dann ex. $k, l \in \mathbb{N}, \ 1 \leq k < m$, so dass gilt: $n = l \cdot m + k$. Dann folgt

Aufgabe 3.2

Sei G eine Gruppe und $H \subseteq G$ eine Untergruppe.

(i) Die Abbildung

$$\psi: \{gH \mid g \in G\} \to \{Hg \mid g \in G\}, \ gH \mapsto Hg^{-1}$$

ist eine wohldefinierte Abbildung, die die Linksnebenklassen bijektiv auf die Rechtsnebenklassen abbildet.

(ii) Es gelte [G:H]=2. Die Untergruppe H ist ein Normalteiler in G.

Beweis:

zu (i): Wohldefiniertheit:

Gegeben sei gH = g'H. Z_7 : $Hg^{-1} = Hg'^{-1}$.

$$(gH)^{-1} = \{(gh)^{-1} \mid h \in H\} = \{h^{-1}g^{-1} \mid h \in H\} = \{hg^{-1} \mid h \in H\} = Hg^{-1}$$

Da gH=g'H gilt, folgt $(gH)^{-1}=(g'H)^{-1}$ und mit der obigen Gleichung folgt $Hg^{-1}=Hg'^{-1}$. Also ist ψ wohldefiniert (oder mit gH=g'H folgt $g\in g'H$, also $\exists h\in H$ mit g=g'h). ψ injektiv: Sei $\psi(gH)=\psi(g'H)$. Also

$$Hg^{-1} = Hg'^{-1} \Rightarrow g^{-1} \in Hg'^{-1} \Rightarrow \exists h \in H: \ g^{-1} = hg'^{-1}$$
$$\Rightarrow g = g'h^{-1} \Rightarrow g \in g'H \Rightarrow gH = g'H$$

Also ist ψ injektiv.

 ψ surjektiv: Sei $Hg \in \{Hg \mid g \in G\}$ beliebig. Dann ist $g^{-1}H$ ein Urbild von Hg unter ψ . Also ist ψ bijektiv.

<u>zu (ii):</u>

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar!

Exponent, 2

Träger einer Permutation, 2

Abbildungsverzeichnis