Exercise 8.5

(a) block size

Spatial locality 를 이용한 miss rate 가 줄어든다. 또한 block size 가 증가하면 초기에

반생하는 Compulsory misses 가 줄어든다.
하지만 block size가 커지면 가져보는

data 도 많기 때문에 memory 에서

cache로 가져온는 시간, 즉 miss

penalty 가 증가한다. 그리고 block

size가 커지면 Conflict misses 가

증가한다.

(b) associativity

associativity 가 증가하면

Conflict misses 가 코에든다.

하지만 associativity 가 증가한수록

Cpu가 찾는 시간이 증가한다.

(c) cache size

Cache Size 가 증가하면

capacity misses 가 감소하고

conflict misses 가 감소하고

라지만 Cpu가 접하는 시간은
증가한다.

Exercise 8.7

(a) False

Counter example:

A 2-word cache with block size of 1 word and access pattern:

0 4 8 0 4 8

2-way set associative cache miss rate is 100%, direct mapped cache miss rate is $\frac{5}{6} \times 100 = 83.3\%$

(b) True

16-kB direct mapped cache 가 8-kB direct mapped cache 보다 Cache Size 가 더 크기 때문에 miss rate 가 같은수는 있지만 보통 16-kB direct mapped cache 가 더 낮은 miss rate 를 갖는다. block size 가 공가하면

Spatial locality 를 이용하여 compulsory
misses 가 로머든다. 따라서 보통은

block size 가 커지면 miss rate 가

작아건다. 하지만 같은 associativity 미교
같은 total capacity 미기 때문에

Conflict misses 는 증가한다.

Exercise 8.8

b: block size given in numbers of words

S: number of sets

N: number of Ways

A: number of address bits

(a) What is the cache capacity, C?

$$C = b \times S \times N \times 4$$
 bytes

(b) What is the total number of bits required to store the tags?

(c) What are S and N for a fully associative cache of capacity C words with block size b?

$$S=1$$
, $N=C/b$

(d) What is S for a direct mapped couche of Size C words and block size b?

Exercise 8.9

(a) direct mapped cache, b= 1 word

set o	40 → 80 → 0
Set 1	44 -> 84 -> 4
set 2	$48 \rightarrow 88 \rightarrow 8$ $4c \rightarrow 8c \rightarrow c$
,	4c → 0c / 0
	44 -> 14
	98 -> 18
1	9c → 1C
	20
•	
	70
	78
set 15	70

$$set = \frac{16}{1} = 167H$$

10,74,78,7C,20 이 hit d고 나머지는 Miss 이기 때문에

miss rate
$$=\frac{20}{25} \times 100 = 80\%$$

(b) fully associative cache, b= 1 word

									,		Ton					1
	40	44	48	40	70	74	78	1c	80	84	88	8C	90	94	98	90
Set 0	>0	>4	>8	→ C	→10	>14	>(8	>1C	→20							

(c) two - way set associative cache, b=1 word
$$set = \frac{16}{2 \times 1} = 8 \text{ } 74$$

set o	40 -> 0	80 → 20
set I	44 → 4	84
set 2	48 → 8	88
set 3	4c → c	8c
set 4	70 -> 10	90
set 5	n4 → 14	94
set 6	18 -> 18	98
set 1	10 → 10	90

$$hit$$
 가나도 없기 때문에 miss rate 는 $\frac{25}{25} \times 100 = 100\%$ 이다.

(d) direct mapped cache,
$$b = 2$$
 words
$$set = \frac{16}{1 \times 3} = 8 \times 14$$

set o
$$(40, 44) \rightarrow (80, 84) \rightarrow (0, 4)$$

set 1 $(48, 4c) \rightarrow (88, 8c) \rightarrow (8, c)$
set 2 $(90, 94) \rightarrow (10, 14)$
set 3 $(98, 9c) \rightarrow (18, 1c)$
set 4 $(20, 24)$
set 5 $(10, 14)$
set 7 $(18, 1c)$

40, 48, 80, 88, 90, 98, 0, 8, 10, 18 of miss old then $\frac{10}{25} \times 100 = 40\%$ old.

- (c) 2-way set associative cache,
- (a) direct mapped cache, b=1 word

$$Set = \frac{16}{1 \times 1} = 167H$$

Set	16	1 -11
261	2×2	4 >11

	The state of the s
t 0	
1	84
	88 > 388
	38C →8C → 18C
	And a second and the
	and all the second deleters the second deleter
	A 0
	Ao
	and the second s
	The second section of the second seco
	AC
	No. of Contractions of the Contraction of Contracti
	N4 → 34
	$ \begin{array}{c} 14 \rightarrow 34 \\ 78 \rightarrow 38 \end{array} $
	7C >13C
1	110 7170

seto	(Ao, A4)	(80,84)
Set I	(388,38c) → (88,8c) → (188,18c) → (A8,Ac)	(A8, Ac) → (388, 38c) →(88, 8c)
	(70,74)	(30, 34)
Set 3	(18,7c) → (138,13c) → (38,3c)	(38,3c) → (78,7c)

84, A0, AC를 제el하면 모두
miss 이기 때문에
miss rate는 11/4×100= 79%이다.

14, Ao, 38C, 84, 8C, 7C, 34 th hit old sensel hit rate = $\frac{7}{14}$ miss rate = $\frac{1}{14} \times 100 = 50\%$

(b) fully associative cache, b= 2 words

				1			(-2 20)	162 241
	(70,74)	(AO, A4)	(18,10)	(388,380)	(A8, AC)	(80,84)	(88-86)	(30,34)
seto	→(38,3c)	→(138,13C)			→(188,18c)	→(70,74)	>(AO, A4)	-)(A8,AC)
	→(80,84)	→(88,86)			→ (30,34)			

18,380,80,70,388 thit old culture hit rate = $\frac{5}{14}$, miss rate = $\frac{14-5}{14} \times 100 = \frac{9}{14} \times 100 = \frac{64\%}{14}$ old.

(d) direct mapped cache, b = 4 words
$$set = \frac{16}{1 \times 4} = 4 \times 14$$

seto ((380,384, 388, 38c) → (80,84,88,8c) + (380,384,388,38c) → (180,184, 188,18c)
set I	
se+2	(AO, A4, A8, AC)
æ+3	(10,14,18,1c) → (30,34,38,3c) → (130,134,138,13c)

AO,
$$18$$
, AC, 88 , 8C, 10 , 38 of hit old red and hit rate = $\frac{1}{14}$ x no =

Exercise 8,12

(c)
$$31 - (c+2-n) + 1$$

$$= 32 - (c+2-n)$$

$$= 30 - (c-n) = 5745$$

(d) # tag bits
$$\times$$
 # blocks
= $(30 - (c-n)) \times 2^{c-(b'-2)}$
= $(30 - (c-n)) \times 2^{c+2-b'}$

Exercise 8.14

- (a) EMEZIAN 있는 word? 对好 on-chip cache an 生計學 off-chip cache an 别다.
- (b) on-chip cache? 4-way set associative objected set = $\frac{512}{4}$ = 128 = 2^9 # or 1. Set bits $\frac{1}{4}$ $\frac{1}{2}$ bits olth. I word = 4 bytes of $\frac{512}{4}$ = 128 = 2^9 # old, size $\frac{16 \text{ bytes}}{4 \text{ bytes}}$ = 4 word old, the size $\frac{16 \text{ bytes}}{4 \text{ bytes}}$ = 4 word old, the offset bits $\frac{1}{2}$ bits olth. Tag bits $\frac{1}{2}$ $\frac{1}{2}$ bits olth. Second -level cache $\frac{1}{2}$ direct mapped old tay $\frac{1}{2}$ bits olth. Set = $\frac{256k}{7}$ = $\frac{256k}{7}$ olth. Tay olth. Tay bits $\frac{1}{2}$ bits olth. block size $\frac{16 \text{ bytes}}{4 \text{ bytes}}$ = 4 word old, cathed block offset bits $\frac{1}{2}$ bits olth.

(C) AMAT = trache + MRrache (tmm + MRmm tvm) 인데 Virtual memory of 記 L2 cache of 以空至

AMAT = touche + MRanche (the tarke + MR 12 cache tam) olth.

trache = on-chip cache oil access st= time oil,

MR cache = on-chip cache on149 miss rate olth.

The course to second - level course of access it time of,

MR 12 cache to second - level cache of Mel miss rate oft.

TMM & main memory of access the timeolth.

: ta + (1-A)(tb+(1-B) tm)

(d) on - chip cache = 이용하면 second (evel cache 에서 hit 의 된다.
hit 임메도 북가고 on - chip cache 에서 hit가 된다.

하기만 on - chip cache 가 disabled 되면 second (evel cache 의 cache 이 access 하기 로메운데 Second level cache 의 hit rate 가 들라간다.

Exercise 8.16

MR cache = 5% = 0.05

(b) average memory access time of 4 ns of 71 and 601 $\frac{4 \text{ ns}}{1 \text{ ns}} = 4 \text{ clocks of ch.}$ main memory on access the time of 6 ons of 91 and 600 s = 60 clocks of ch.

:
$$CPI = 4 + 4 = 8 \text{ cycles (load)}$$

$$CPI = 4 + 3 = 1 \text{ cycles (store)}$$

Average CPI
$$= (0.11 + 0.02) \times 3) + (0.52 \times 4) + (0.1 \times 7) + (0.25 \times 8)$$

$$= 5.17 \text{ eydes}$$

(d) Average CPI =
$$5.17 + (0.01 \times 60) = 9.37$$
 eycles

Exercise 8,20

(a)
$$8MB$$
 0123 $2^3 \times 2^{20} = 2^{23}$ 614777 23 bits 01777 .

$$\frac{2^{32}}{2^{2}} = \begin{bmatrix} 2^{20} & \text{Virtual pages} \end{bmatrix}$$

(c)
$$\frac{8MB}{4kR} = \frac{2^{23}}{2^{2}} = 2^{2}$$
 physical pages

(d) Virtual page number:
$$log_2 2^2 = 20 \text{ bits}$$

Physical page number: $log_2 2'' = 11 \text{ bits}$

(e)
$$\frac{\# \text{Virtual Pages}}{\# \text{Physical Pages}} = \frac{2^{20}}{2''} = 2^{9} \text{ 7H21 Virtual Pages 7} + \frac{2^{10}}{2''} = 2^{10} \text{ Physical Pages oil Mapped 21ct.}$$

address 0x00000000 주위의 data를 operating 강분 memory address 가 0x01000000 인 프로그램을 생각하보면, Physical Page of 이미 두개의 Virtual Page 사이에서 제속 바꾸므로 심각한 스래성은 유반한다.

- Virtual page it 220 it ol= 2

 20 page table entries olth.
- (g) 가는 entry는 physical page number 11 bits et Valid bit 16it, dirty bit 1 bit 3HM

 3 11+1+1 = 13 bits of 现象the 1 byte of 8 bits 0171

 世代号에 2 bytes >+ 现象the.
 - (h) page table of Zim More 2 bytes × 2° = 2° bytes ofth.

Exercise 8,22

TLB7+ SLEZEM:

$$AMAT = \left[t_{TLB} + MR_{TLB} (t_{MM}) \right] + \left[t_{crothe} + MR_{cache} (t_{MM} + MR_{MM} t_{VM}) \right]$$

$$= \left[1 + 0.005 (100) \right] + \left[1 + 0.02 (100 + 0.000003 \times 1000000) \right]$$

$$= \left[4.11 \text{ Cycles} \right]$$

(b) Valid bit = 1 bit

Virtual page number = 20 bits

physical page number = 11 bits

3tuel entry & HEAE Valid bit et Virtual page number,

(d) TLBE Fully associative of 23 depth = 1012, width = 2048 bit oft.

1× 2048 bit SRAM