- -> A tree is an undirected graph with no yells-
- equivalently, a tree is a connected graph with a node and (n-1) edges.

6 nodes 4 nodes 5 edges 3 edges

13 nodes 12 edges

7 nodes & edges \times .

-> Filesystem enructures our inherently brees.

-> Abstract syntax trees to decompose. souce code and makematical expressions for easy evaluation.

- -> Every webpage is a tree as an HTML Dom structure
- -> Trees in game theory (Prisoners dillema)

=> storing undirected trees

index all nodes from [0,n).

edge list representation.

[(011), (114), (4.5), (4.8),

(1,3), (3,7), (3,6), (2,3)

(6,9)]

011

- Super jast and easy to use.

-> storing a tree as a list lacks the structure to do efficiently query all the neighbors of a node.

adjacency list representation

5 -> [4]

(1

0 -> [1] 1 -> [013,4] $6 \rightarrow [3,9]$

 $2 \rightarrow [3]$ $7 \rightarrow [3]$

 $3 \rightarrow [1,2,6,7]$ 8 → [4]

 $q \rightarrow [6]$ 4 -> [15,8]

-> can also be supresented as adjacency matrix (0(n2) space), -> not used offen.

=> Rooted brees -> Tree with a designated root node.

Binary trees -> every node has almost two child nodes.

⇒ Binary search bree (BS7) node. left -> val & node -> val & node right -> val.

> Storing rooted trees

(4

maintain a pointer to mod node so you can access the free and files contents. Each node has a list of superence pointers to dildren.

-> Flattened away representation

0	1	2	3	4	5	b	7	8	9	10	11	12	13	14	-i.
9	8	7	C	5	l	2	ϕ	2	3	4	φ	ϕ	2		

Root node is indexed O

Let i be the index of oursent node.

lyt rode -> 2i+1
right rode -> 2i+2

Rcúprocally, parent of node i is $L\left(\frac{i-1}{2}\right)$