Project 4

Each group should

- Submit one lab report to Canvas by May 10, 11:59 pm.
- Include a thoughtful and reflective paragraph from each team member summarizing what has been learned.
- Include a section describing the work done by each member of the group.
- Attach your well-documented code in the appendix of the report.
- 1. (DHS, page 80) Computer Exercises Problem 2.
- 2. Consider a two-dimensional classification problem that involves two classes, ω_1 and ω_2 , which are modeled by Gaussian distributions with means $\mu_1 = [0, 0]^T$ and $\mu_2 = [2, 2]^T$, respectively, and common covariance matrix $\Sigma = \begin{bmatrix} 1 & 0.25 \\ 0.25 & 1 \end{bmatrix}$. Assuming equal priors.
 - (a) Form and plot a data set X consisting of 500 points from ω_1 and another 500 points from ω_2 .
 - (b) Assign each one of the points of \mathcal{X} to either ω_1 or ω_2 , according to the Bayes decision rule, and plot the points with different colors, depending on the class they are assigned to. Plot the corresponding classifier.
 - (c) Based on (b), compute the error probability.
 - (d) Let $\lambda_{11} = \lambda_{22} = 0$, $\lambda_{12} = 1$, $\lambda_{21} = 0.005$. Assign each of the points of X to either ω_1 or ω_2 , to minimize the overall risk.
 - (e) Based on (d), compute the overall risk.
 - (f) Comment on the results above.