

第四讲:XGBoost实战

AI100学院 2017年6月

► Recall:处理数据科学任务的一般流程

• 模型训练

Roadmap

- 特征工程
- 评估准则
- XGBoost参数调优
- XGBoost多线程*

▶数据分析

- 对数据进行探索性的分析的工具包:pandas、matplotlib / seaborn
- 读取训练数据,取少量样本进行观测,并查看数据规模和数据类型
 - 标签、特征意义、特征类型等
- 分析每列特征的分布
 - 直方图
 - 包括标签列(对分类问题,可看出类别样本是否均衡)
 - 检测奇异点 (outliers)
- 分析每两列特征之间的相关性
 - 特征与特征之间信息是否冗余
 - 特征与标签是否线性相关
- 特征工程

案例分析:

Two Sigma Connect: Rental Listing Inquiries

- 根据公寓的listing 内容,预测纽约市某公寓租赁listing的受欢迎程度
- 标签: interest_level, 该listing被咨询的次数
 - 有三个取值::'high', 'medium', 'low'
 - 是一个多类分类任务

• Listing内容有:

- 浴室和卧室的数目bathrooms, bedrooms
- 地理位置 (longitude 、latitude)
- 地址: display_address、street_address
- building_id、 listing_id、 manager_id
- Created:创建日期
- Description:更多描述信息
- features: 公寓的一些特征描述
- photos: a list of photo links

价格: price

https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/dat

http://www.ai100.ai/

▶直方图

- 直方图:每个取值在数据集中出现的次数,可视为概率函数(PDF)的估计(seaborn可视化工具比较简单)
 - import seaborn as sns
 - %matplotlib inline (seaborn 是基于matplotlib 的)
 - sns.distplot(train.price.values, bins=50, kde=True)
- 核密度估计
 - Kernel Density Estimation, KDE
 - 对直方图的加窗平滑

▶ 直方图 (cont.)

- 在分类任务中,我们关心不同类别的特征分布
 - 核密度估计
 - order = ['low', 'medium', 'high']
 - sns.violinplot(x='interest_level', y='price', data=train, order = order)

http://www.ai100.ai/

▶奇异点

- 可以通过直方图或散点图发现奇异点
 - 直方图的尾巴
 - 散点图上孤立的点
- 可以通过只保留某些分位数内的点去掉奇异点
 - 如0.5%-99.5%,或>99%
 - ulimit = np.percentile(train.price.values, 99)
 - train['price'].ix[train['price']>ulimit] = ulimit

▶相关性

- 相关性可以通过计算相关系数或打印散点图来发现
- 相关系数:两个随机变量x,y之间的线性相关程度

$$- r = \frac{\sum_{i=0}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n} (x_i - \bar{x})^2 \sum_{i=0}^{n} (y_i - \bar{y})^2}}$$

- $-1 \le r \le 1$
- 通常|r| > 0.5,认为两者相关性比较强

$$\begin{cases} r=0 & 完全不线性相关 \\ r>0 & 正相关 \\ r<0 & 负相关 \end{cases}$$
 不线性相关并不代表不相关,可能高阶相关,如 $y=x^2$

http://www.ai100.ai/

►相关性(cont.)

- 我们希望特征与标签强相关
 - 一分类直方图可以从某种程度上看出特征与标签的相关性:不同类别的直方图差异大
- 特征与特征之间强相关的话意味着信息冗余
 - 可以两个特征可以只保留一个特征
 - 或采用主成分分析 (PCA)等降维
- 示例:4_corr_AllstateClaimsSeverity.ipynb

▶数据类型

- XGBoost 模型内部将所有的问题都建模成一个回归预测问题,输入特征只能是数值型。
- 如果给定的数据是不同的类型,必须先将数据变成数值型。

▶类别型特征 (categorical attributes)

- LabelEncoder: 对不连续的数字或者文本进行编号
 - 可用在对字符串型的标签编码(测试结果需进行反变换)
 - 编号默认有序数关系
 - 存储量小
- 如不希望有序数关系: OneHotEncoder:将类别型整数输入从1维 $\rightarrow K$ 维的稀疏编码
 - □:对XGBoost, OneHotEncoder不是必须, 因为XGBoost对特征进行排序从 而进行分裂建树;如果用OneHotEncoder得到稀疏编码, XGBoost建树过程中 对稀疏特征处理速度块
 - 输入必须是数值型数据(对字符串输入,先调用LabelEncoder变成数字,再用OneHotEncoder)
 - _ 存储要求高

▶类别型特征 (cont.)

- 低基数 (low-cardinality) 类别型特征: OneHotEncoder
 - 1维→K维, K为该特征不同的取值数目
 - 所以通常在K<10的情况下采用
- 高基数 (high-cardinality) 类别型特征:通常有成百上千个不同的取值,可先降维
 - 如邮政编码、街道名称...
 - 聚类 (Clustering) : 1 维 → K维 , K为聚类的类别数
 - 主成分分析 (principle component analysis, PCA): 但对大矩阵操作费资源
 - 均值编码:在贝叶斯的架构下,利用标签变量,有监督地确定最适合特定特征的编码方式

Reference: Mean Encoding: A Preprocessing Scheme for High-Cardinality Categorical Features http://www.ai100.ai/http://helios.mm.di.uoa.gr/~rouvas/ssi/sigkdd/sigkdd.vol3.1/barreca.pdf

▶均值编码

- 均值编码:将特征每个可能的取值k(共有K种取值),编码为它对应的标签取c值的概率,即p(y=c|x=k)
 - 有监督编码方式,可用于分类和回归
- 以分类问题为例,设标签取值共有C类,则编码特征为C-1维
 - $-\sum_{c=1}^{C} p(y=c|x=k) = 1$,所以少一个自由度
 - 后验概率p(y = c | x = k)估计:

$$- p(y = c | x = k) = \frac{p(y = c, x = k)}{p(x = k)} = \frac{(y = c, \exists x = k)}{(x = k)}$$
的样本数量

►均值编码 (cont.)

• 真正编码采用的是先验概率p(y=c)和后验概率p(y=c|x=c)

http://www.ai100.ai/

▶日期型特征

- 日期特征:年月日
- 时间特征:小时分秒
- 时间段:早中晚
- 星期,工作日/周末
- import pandas as pd
- train['created'] = pd.to_datetime(train['created'])
- train['date'] = train['created'].dt.date
- train["year"] = train["created"].dt.year
- train['month'] = train['created'].dt.month
- train['day'] = train['created'].dt.day
- train['hour'] = train['created'].dt.hour
- train['weekday'] = train['created'].dt.weekday
- train['week'] = train['created'].dt.week
- train['quarter'] = train['created'].dt.quarter
- train['weekend'] = ((train['weekday'] == 5) & (train['weekday'] == 6))train['wd'] = ((train['weekday'] != 5) & (train['weekday'] != 6))

> 文本型特征

- 可用词云(wordcloud)可视化
 - 文本词频统计函数,自动统计词的个数,以字典形式内部存储, 在显示的时候词频大的词的字体更大
 - from wordcloud import WordCloud
 - wordcloud = WordCloud(background_color='white', width=600, height=300, max_font_size=50, max_words=40)
 Wordcloud for features
 - wordcloud.generate(text)

Rent List Inquries任务中的features特征

hwasherLaundry in Building

▶特征工程小结

- 如果知道数据的物理意义(领域专家),可能可以设计更多特征
 - 如Higgs Boson任务中有几维特征是物理学家设计的,还有些有高能物理研究经验的竞赛者设计了其他一些特征
 - 如房屋租赁任务中,利用常识可设计出一些特征
- 如果不是领域专家,一些通用的规则:
 - 字符串型特征:Label编码
 - 时间特征:年月日、时间段(早中晚)...
 - 数值型特征:加减乘除,多项式, log, exp
 - 低基数类别特征:one-hot编码
 - 高基数类别特征:先降维,再one-hot编码;均值编码

▶特征工程小结 (cont.)

- 非结构化特征
 - 文本
 - 语音
 - 图像 / 视频
 - fMRI
- 利用领域知识设计特征
 - 如曾经流行的图像目标检测特征HOG...
- 利用深度学习从数据中学习特征表示

采用end-to-end方式一起学习特征和分类 / 回归 / 排序 学习好特征可以送入XGBoost学习器

▶数据预处理

- from sklearn.preprocessing import ...
 - 数据标准化
 - 数据归一化
 - 数据二值化
 - 数据缺失
 - ②:XGBoost对数据预处理要求少,以上操作都不是必须

▶信息泄漏

- 信息泄漏:训练数据特征不应该包含标签的信息
 - 如Rent Listing Inquries任务中图片压缩文件里文件夹的创造时间: 加入这个特征后,模型普遍能提高0.01的public LB分数

案例分析: Two Sigma Connect: Rental Listing Inquiries

• 案例代码: 4_FE_RentListingInqueries.ipynb

二、评价指标

▶回归问题的评价指标

- 第二讲提到的损失函数可以作为评价指标
- L1: mean absolute error (MAE)

$$- MAE = \frac{1}{N} \sum_{i=0}^{N} |\hat{y}_i - y_i|$$

• L2: Root Mean Squared Error (RMSE)

$$- RMSE = \sqrt{\frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i)^2}$$

- Root Mean Squared Logarithmic Error (RMSLE)
 - https://www.kaggle.com/wiki/RootMeanSquaredLogarithmicError

$$- RMSLE = \sqrt{\frac{1}{N} \sum_{i=0}^{N} (log(\hat{y}_i + 1) - log(y_i + 1))^2}$$

- 当不想在预测值/真值很大时惩罚很大时采用RMSLE

Cost Functions

Root Mean Squared Error (RMSE)

Root Mean Squared Log Error (RMSLE)

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\underline{y_i} + \hat{y}_i)^2}$$

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

When predicted and actual is small:

For the same predicted & actual, RMSE & RMSLE is same (the blue vertical line)

▶分类任务的评价指标

- 第二讲提到的损失函数可以作为评价指标
- logistic / 负log似然损失:

- logloss =
$$-\frac{1}{N}\sum_{i=0}^{N}\sum_{j=0}^{M}y_{ij}logp_{ij}$$
,

- M为类别数 , y_{ij} 为二值 , 当第i个样本为第j类时 $y_{ij} = 1$, 否则取0 ; p_{ij} 为模型预测的第i个样本为第j类的概率
- 当M=2时, $\log \log s = -\frac{1}{N} \sum_{i=0}^{N} \left(y_i \log p_i + (1-y_i) \log (1-p_i) \right)$ $-y_i$ 为第i个样本类别, p_i 为模型预测的第i个样本为第1类的概率
- 0-1损失对应的Mean Consequential Error (MCE)

$$- MCE = -\frac{1}{N} \sum_{\hat{y}_i \neq y_i} 1$$

▶两类分类任务中更多评价指标

- ROC / AUC
- PR曲线
- MAP@n

False Positive & False Negative

- 0-1损失:假设两种错误的代价相等
 - False Positive (FP) & False Negative (FN)
- 有些任务中可能某一类错误的代价更大
 - 如蘑菇分类中将毒蘑菇误分为可食用代价更大
 - 因此单独列出每种错误的比例:混淆矩阵
- 混淆矩阵 (confusion matrix)
 - 真正的正值 (true positives)
 - 假的正值 (false positives)
 - 真正的负值 (true negatives)
 - _ 假的负值 (false negatives)

	$\hat{y} = 1$	$\hat{y} = 0$	Σ
y = 1	#TP	#FN	N_{+}
y = 0	#FP	#TN	N_{-}
Σ	$\hat{N}_{_+}$	\hat{N}_{\perp}	

confusion matrix

- Scikit-learn实现了多类分类任务的混淆矩阵
- sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
 - y_true: N个样本的标签真值
 - y_pred: N个样本的预测标签值
 - labels: C个类别在矩阵的索引顺序,缺省为y_true或y_pred类别出现的顺序
 - sample_weight: N个样本的权重

Receiver Operating Characteristic (ROC)

$$\hat{y} = 1$$
 $\hat{y} = 0$ Σ
 $y = 1$ #TP #FN N_{+}
 $y = 0$ #FP #TN N_{-}
 Σ \hat{N}_{+} \hat{N}_{-}

$$accuracy = \frac{TP + TN}{N}$$

$$error rate = \frac{FP + TN}{N}$$

	y = 1	y = 0	y = 1	y = 0
$\hat{y} = 1$	TP/\hat{N}_{+} =precision	FP/\hat{N}_{+} =FDP	TP/N_{+} =TPR	FP/N_{-} =FPR
$\hat{y} = 0$	FN/\hat{N}_{-}	TN/\hat{N}_{-} =NPV	FN/N_{+} =FNR	TN/N_{-} =TNR

PPV - positive predictive value, **precision**

TPR - true positive rate, sensitivity, recall, hit rate

FPR – False positive rate, **false alarm**, fallout

Receiver Operating Characteristic (ROC)

- 上面我们讨论给定阈值 τ 的TPR和FPR
- 如果不是只考虑一个阈值,而是在一些列阈值上运行检测器,并画出 TPR和FPR为阈值τ的隐式函数,得到ROC曲线在此处键入公式。

▶PR曲线

- Precision and Recall (PR曲线):用于稀有事件检测,如目标检测、信息检索
 - 负样本非常多,因此 $FPR = FP/N_{-}$ 很小,比较TPR和FPR不是很有信息(ROC曲线中只有左边很小一部分有意义) \rightarrow 只讨论正样本
 - Precision (精度,查准率,正确率):以信息检索为例,对于一个查询,返回了一系列的文档,正确率指的是返回结果中相关文档占的比例
 - precision=返回结果中相关文档的数目/返回结果的数目
 - Recall (召回率 , 查全率) : 返回结果中相关文档占所有相关 文档的比例
 - Recall=返回结果中相关文档的数目/所有相关文档的数目

►PR曲线(cont.)

- Precision and Recall (PR曲线)
 - 阈值变化时的P和R

 $Precsion = TP/\hat{N}_{+}$:检测结果真正为正的比例

 $Recall = TP/N_+$:被正确检测到的正样本的比例

Precision: the fraction of our detection are actually positive
Recall: the fraction of the positives we actually detected

► AP

- Precision只考虑了返回结果中相关文档的个数,没有考虑文档之间的序。
- 对一个搜索引擎或推荐系统而言,返回的结果必然是有序的,而且越相关的文档排的越靠前越好,于是有了AP的概念。
- AP: Average Precision,对不同召回率点上的正确率进行平均
 - $-AP = \int_0^1 p(k)dr = \sum_{k=0}^n p(k)\Delta r(k)$
 - 即PR曲线下的面积 (Recall: AUC为ROC下的面积)
 - 其中k为返回文档中的序位,n为返回文档的数目,p(k)为列表中k截止点的 precision, $\Delta r(k)$ 表示从k-1到k Recall的变化。
- 上述离散求和表示等价于: $AP = \sum_{k=0}^{n} p(k) rel(k) /$ <mark>相关文档数目</mark>,其中 rel(k)为示性函数,即第k个位置为相关文档取1,否则取0.
 - 计算每个位置上的precision,如果该位置的文档是不相关的则该位置 precision=0

♀ 然后对所有的位置的precision再做average

http://www.ai100.ai/

Mean Average Precision

- 多个查询的AP平均:
 - $MAP = \left(\sum_{q=0}^{Q} AP(q)\right)/(Q) ,$
 - 其中Q为查询的数目, n为文档数目

$ightharpoonup MAP@K (MAP_K)$

- 在现代web信息检索中, recall其实已经没有意义,因为相 关文档有成千上万个,很少有人会关心所有文档。
- Precision@K:在第K个位置上的Precision,
 - 对于搜索引擎,考虑到大部分作者只关注前一、两页的结果,所以Precision@10, Precision@20对大规模搜索引擎非常有效
- MAP@K:多个查询Precision@K的平均

►F1 分数

- 亦被称为F1 score, balanced F-score or F-measure
- Precision 和 Recall 加权平均: $F1 = \frac{2*(Precision*Recall)}{(Precision+Recall)}$
 - 最好为1,最差为0
 - 多类: 每类的F1平均值

Scikit-Learn: Scoring

- 用交叉验证(<u>cross_val_score</u>和<u>GridSearchCV</u>)评价模型性能时,用scoring参数定义评价指标。
- 评价指标是越高越好,因此用一些损失函数当评价指标时,需要再加负号,如neg_log_loss, neg_mean_squared_error
- 详见sklearn文档:
 - http://scikit-learn.org/stable/modules/model_evaluation.html#log-loss

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'average_precision'	metrics.average_precision_score	
'fl'	metrics.f1 score	for binary targets
'fl_micro'	metrics.fl_score	micro-averaged
'fl_macro'	metrics.fl_score	macro-averaged
'fl_weighted'	metrics.fl_score	weighted average
'fl_samples'	metrics.f1 score	by multilabel sample
'neg_log_loss'	metrics.log loss	requires predict_proba sup port
'precision' etc.	metrics.precision score	suffixes apply as with 'fl'
'recall' etc.	metrics.recall score	suffixes apply as with 'fl'
'roc_auc'	metrics.roc auc score	
Clustering		
'adjusted_rand_score'	metrics.adjusted rand score	
Regression		
'neg_mean_absolute_error'	metrics.mean absolute error	
'neg_mean_squared_error'	metrics.mean squared error	
'neg_median_absolute_error'	metrics.median absolute error	
'r2'	metrics.r2 score	

www.ai100.ai/

Scikit-Learn: sklearn.metrics

- metrics模块还提供为其他目的而实现的预测误差评估函数
 - 分类任务的评估函数如表所示,其他任务评估函数请见:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

C		
metrics.accuracy_score(y_true, y_pred[,])	Accuracy classification score.	
metrics.auc(x, y[, reorder])	Compute Area Under the Curve (AUC) using the trapezoidal rule	
metrics.average precision score(y_true, y_score)	Compute average precision (AP) from prediction scores	
metrics.brier score loss(y_true, y_prob[,])	Compute the Brier score.	
metrics.classification_report(y_true, y_pred)	Build a text report showing the main classification metrics	
metrics.cohen kappa score(y1, y2[, labels,])	Cohen's kappa: a statistic that measures inter-annotator agreement.	
metrics.confusion_matrix(y_true, y_pred[,])	Compute confusion matrix to evaluate the accuracy of a classification	
metrics.fl_score(y_true, y_pred[, labels,])	Compute the F1 score, also known as balanced F-score or F-measure	
metrics.fbeta_score(y_true, y_pred, beta[,])	Compute the F-beta score	
metrics.hamming_loss(y_true, y_pred[,])	Compute the average Hamming loss.	
metrics.hinge_loss(y_true, pred_decision[,])	Average hinge loss (non-regularized)	
metrics.jaccard_similarity_score(y_true, y_pred)	Jaccard similarity coefficient score	
metrics.log_loss(y_true, y_pred[, eps,])	Log loss, aka logistic loss or cross-entropy loss.	
<pre>metrics.matthews_corrcoef(y_true, y_pred[,])</pre>	Compute the Matthews correlation coefficient (MCC) for binary classes	
metrics.precision_recall_curve(y_true,)	Compute precision-recall pairs for different probability thresholds	
metrics.precision_recall_fscore_support()	Compute precision, recall, F-measure and support for each class	
metrics.precision_score(y_true, y_pred[,])	Compute the precision	
metrics.recall_score(y_true, y_pred[,])	Compute the recall	t
metrics.roc_auc_score(y_true, y_score[,])	Compute Area Under the Curve (AUC) from prediction scores	
metrics.roc_curve(y_true, y_score[,])	Compute Receiver operating characteristic (ROC)	
matrice many one localty trace ty model 1)	Zara and alongification long	

tp://www.ai100.ai/

► XGBoost支持的目标函数

- Objective: 定义学习任务及相应的学习目标,可选的目标函数如下:
 - "reg:linear" -线性回归。
 - "reg:logistic"—逻辑回归。
 - "binary:logistic"—二分类的逻辑回归问题,输出为概率。
 - "binary:logitraw"—二分类的逻辑回归问题,输出的结果为wTx。
 - "count:poisson"-计数问题的poisson回归,输出结果为poisson分布。
 - "multi:softmax" -让XGBoost采用softmax目标函数处理多分类问题
 - "multi:softprob"—和softmax一样,但是输出的是ndata*nclass的向量,可以将该向量 reshape成ndata行nclass列的矩阵。没行数据表示样本所属于每个类别的概率。
 - "rank:pairwise" -set XGBoost to do ranking task by minimizing the pairwise loss

► XGBoost自定义目标函数

- 在GBDT训练过程,当每步训练得到一棵树,要调用目标函数得到其梯度作为下一棵树拟合的目标
- XGBoost在调用obj函数时会传入两个参数:preds和dtrain
 - preds为当前模型完成训练时,所有训练数据的预测值
 - dtrain为训练集,可以通过dtrain.get_label()获取训练样本的label
 - 同时XGBoost规定目标函数需返回当前preds基于训练label的一阶和二阶梯度
- # user define objective function, given prediction, return gradient and second order gradient
- # this is log likelihood loss
- def logregobj(preds, dtrain): #自定义损失函数
 - labels = dtrain.get_label()
 - preds = 1.0 / (1.0 + np.exp(-preds))
 - grad = preds labels
 - hess = preds * (1.0-preds)

#梯度 #2阶导数

- return grad, hess
- 参数:obj='logregobj'

► XGBoost支持的评价函数

· 'eval_metric'The choices are listed below,评估指标:

- "rmse": root mean square error
- "logloss": negative log-likelihood
- "error": Binary classification error rate. It is calculated as #(wrong cases)/#(all cases). For the predictions, t he evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the ot hers as negative instances.
- "merror": Multiclass classification error rate. It is calculated as #(wrong cases)/#(all cases).
- "mlogloss": Multiclass logloss
- "auc": Area under the curve for ranking evaluation.
- "ndcg":Normalized Discounted Cumulative Gain
- "map":Mean average precision
- "ndcg@n", "map@n": n can be assigned as an integer to cut off the top positions in the lists for evaluation.
 - "ndcg-","map-","ndcg@n-","map@n-": In XGBoost, NDCG and MAP will evaluate the score of a list wit hout any positive samples as 1. By adding "-" in the evaluation metric XGBoost will evaluate these score a http://www.ai100.ai/

► XGBoost自定义评价函数

- # user defined evaluation function, return a pair metric_name, result
- # NOTE: when you do customized loss function, the default prediction value is margin
- # this may make builtin evaluation metric not function properly
- # for example, we are doing logistic loss, the prediction is score before logistic transformation
- # the builtin evaluation error assumes input is after logistic transformation
- # Take this in mind when you use the customization, and maybe you need write customized evaluation function
- def flerror(preds, dtrain):
 - labels = dtrain.get_label()
 - preds = 1.0 / (1.0 + np.exp(-preds))
 - pred = [int (i>0.5) for i in preds]
- 参数: feval = 'evalerror'

http://blog.csdn.net/lujiandong1/article/details/52791117

三、参数调优

►XGBoost参数列表

参数	说明	
max_depth	树的最大深度。树越深通常模型越复杂,更容易过拟合	
learning_rate	学习率或收缩因子。学习率和迭代次数 / 弱分类器数目n_estimators相关。 缺省:0.1	
n_estimators	弱分类器数目. 缺省:100	
slient	参数值为1时,静默模式开启,不输出任何信息	
objective	待优化的目标函数,常用值有: binary:logistic 二分类的逻辑回归,返回预测的概率 multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。 multi:softprob 和 multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。支持用户自定义目标函数	
nthread	用来进行多线程控制。 如果你希望使用CPU全部的核,那就不用缺省值-1,算法会自动检测它。	
booster	选择每次迭代的模型,有两种选择: gbtree:基于树的模型,为缺省值。 gbliner:线性模型	
gamma	节点分裂所需的最小损失函数下降值	
min_child_weight	叶子结点需要的最小样本权重 (hessian)和	
max_delta_step	允许的树的最大权重	ai/

►XGBoost参数列表

参数	说明	
少 致		
subsample	构造每棵树的所用样本比例(样本采样比例),同GBM	
colsample_bytree	构造每棵树的所用特征比例	
colsample_bylevel	树在每层每个分裂的所用特征比例	
reg_alpha	L1/L0正则的惩罚系数	
reg_lambda	L2正则的惩罚系数	
scale_pos_weight	正负样本的平衡	
base_score	每个样本的初始估计,全局偏差	
random_state	随机种子	
seed	随机种子	
missing	当数据缺失时的填补值。缺省为np.nan	0 ai/
kwargs	XGBoost Booster的Keyword参数	0.ai/

▶参数类别

- 通用参数:这部分参数通常我们不需要调整,默认值就好
- 学习目标参数:与任务有关,定下来后通常也不需要调整
- booster参数:弱学习器相关参数,需要仔细调整,会影响模型性能

▶通用参数

- booster:弱学习器类型
 - 可选gbtree (树模型)或gbliner (线性模型)
 - 默认为gbtree (树模型为非线性模型,能处理更复杂的任务)
- silent:是否开启静默模式
 - 1:静默模式开启,不输出任何信息
 - 默认值为0:输出一些中间信息,以助于我们了解模型的状态
- nthread:线程数
 - 默认值为-1,表示使用系统所有CPU核

▶学习目标参数

- objective: 损失函数
 - 支持分类 / 回归 / 排序
- eval_metric:评价函数
- seed: 随机数的种子
 - 默认为0
 - 设置seed可复现随机数据的结果,也可以用于调整参数

▶booster参数

- 弱学习器的参数,尽管有两种booster可供选择,这里只介绍 gbtree
- 1. learning_rate: 收缩步长 vs. n_estimators: 树的数目
 - 较小的学习率通常意味着更多弱分学习器
 - 通常建议学习率较小($\eta < 0.1$),弱学习器数目n_estimators大 $f_m(\mathbf{x}_i) = f_{m-1}(\mathbf{x}_i) + \eta \beta_m \phi_m(\mathbf{x}_i)$
 - 可以设置较小的学习率,然后用交叉验证确定n_estimators

▶booster参数

- 2. 行(subsample)列(colsample_bytree、colsample_bylevel)下采样比例
 - 默认值均为1,即不进行下采样,使用所有数据
 - 随机下采样通常比用全部数据的确定性过程效果更好,速度更快
 - 建议值:0.3 0.8

▶booster参数

- 3. 树的最大深度: max_depth
 - max_depth越大,模型越复杂,会学到更具体更局部的样本
 - 需要使用交叉验证进行调优,默认值为6,建议3-10
- 4. min_child_weight:孩子节点中最小的样本权重和
 - 如果一个叶子节点的样本权重和小于min_child_weight则分裂过程 结束

►Kaggle竞赛优胜者的建议

- Tong He (XGBoost R语言版本开发者) : 三个最重要的参数为:树的**数目**、树的**深度**和**学习率**。建议参数调整策略为:
 - 采用默认参数配置试试
 - 如果系统过拟合了,降低学习率
 - 如果系统欠拟合,加大学习率

► Kaggle竞赛优胜者的建议 (cont.)

- Owen Zhang (常使用XGBoost)建议:
 - n_estimators和learning_rate:固定n_estimators为100(数目不大,因为树的深度较大,每棵树比较复杂),然后调整learning_rate
 - 树的深度max_depth:从6开始,然后逐步加大
 - min_child_weight : 1/sqrt√rare_events , 其中rare_events 为稀有事件的数目
 - 列采样colsample_bytree / colsample_bylevel : 在[0.3, 0.5]之间
 进行网格搜索
 - 行采样subsample:固定为1
 - gamma: 固定为0.0

Kaggle竞赛案例分析:

Otto Group Product Classification Challenge

- 竞赛官网: https://www.kaggle.com/c/otto-group-product-classification-challenge
- 电商商品分类:
 - Target:共9个商品类别
 - 93个特征:整数型特征

- 参数调优的一般方法

- 1. 选择较高的学习率(learning rate),并选择对应于此学习率的理想的树数量
 - 学习率以工具包默认值为0.1。
 - XGBoost直接引用函数 "cv"可以在每一次迭代中使用交叉验证,并返回理想的树数量(因为交叉验证很慢,所以可以import两种XGBoost:直接引用xgboost(用 "cv"函数调整树的数目)和XGBClassifier —xgboost的sklearn包(用GridSearchCV调整其他参数)。
- 2. 对于给定的学习率和树数量,进行树参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree, colsample_bylevel)
- 3. xgboost的正则化参数(lambda, alpha)的调优
- 4. 降低学习率,确定理想参数

可参考:http://blog.csdn.net/u010657489/article/details/51952785

• 1. 采用缺省参数,此时learning_rate =0.1 (较大), 观察 n estimators的合适范围

- 参数设为1000, earlystop = 50
- cv函数在n_estimators =699时停止
- cv测试误差为0.482744

max_depth=5, min_child_weight=1, gamma=0, subsample=0.3, colsample_bytree=0.8, colsample_bylevel=0.7,

- 2.1 max_depth 和 min_child_weight 参数调整
 - 这两个参数对结果影响很大
 - 我们先大范围地粗调参数(步长为2),再小范围微调
 - $\max_{depth} = \operatorname{range}(3,10,2)$
 - $\min_{\text{child_weight}} = \text{range}(1,6,2)$

最小交叉验证测试误差: -0.471956

max_depth: 7

min_child_weight: 5

http://www.ai100.ai/

- 2.2 max_depth 和 min_child_weight 参数微调
 - 在max_depth=7和min_child_weight=5周围微调
 - $\max_{depth} = [6,7,8]$
 - min_child_weight = [4,5,6]
 - 最小交叉验证测试误差: -0.471302
 - max_depth: 6
 - min_child_weight: 4

• 2.3 调整max_depth=6 和 min_child_weight=4后,再次调整

n_estimators

- 参数设为1000, earlystop = 50

- cv函数在n_estimators =645时停止

XGBoost n_estimators vs Log Loss

- 3. gamma 参数调整
 - 通常缺省值(0)表现还不错,如计算资源允许,可以调整(略)

- 4. 行列采样参数: subsample和colsample_bytree
 - 这两个参数可分别对样本和特征进行采样,从而增加模型的鲁棒性
 - 现在[0.3-1.0]之间调整,粗调时步长0.1
 - 微调时步长为0.05(略)

Best: -0.461137 subsample: 0.7,

colsample_bytree: 0.6

- 注: colsample_bylevel通常0.7-0.8可以得到较好的结果。如计算资源允许,

■ 也可以进一步调整

$$\Omega(\phi(\mathbf{x})) = \gamma T + \frac{1}{2}\lambda \sum_{t=1}^{T} w_t^2$$

- 5. 正则参数调整: reg_alpha (L2)和reg_lambda(L0)
 - $\text{ reg_alpha} = [0.1, 1] \# L1, \text{ default} = 0$
 - $\text{ reg_lambda} = [0.5, 1, 2]$ # L2, default = 1
 - Best: -0.458950 using {'reg_alpha': 1, 'reg_lambda': 0.5)

reg_lambda似乎越小越好reg_alpha似乎越大越好

如计算资源允许,可进一步增大reg_alpha,减小reg_lambda

• 6. 降低学习率,调整树的数目

- 调用xgboost的cv函数
 - 0.1: 669棵树收敛, cv测试误差为0.469456
 - 0.01:2000棵树还没有收敛, cv测试误差为0.501644
 - 0.05: 1386棵树收敛, cv测试误差为0.465813

```
xgb6 = XGBClassifier( learning_rate =0.05,
n_estimators=2000,
max_depth=6,
min_child_weight=4,
subsample=0.7,
```

colsample_bytree=0.6,

colsample_bylevel=0.7,

 $reg_alpha = 1$,

 $reg_lambda = 0.5,$

objective= 'multi:softprob',

seed=3)

四、XGBoost并行处理

►XGBoost速度秘籍

- XGBoost用C++实现,显示地采用OpenMP API做并行处理
 - 建单棵树时并行(Random Forest在建不同树时并行,但Boosting增加树是一个串行操作)
- 在准备建树数据时高效(近似建树、稀疏、Cache、数据分块)
- 交叉验证也支持并行(由scikit-learn 提供支持)

▶并行处理——建树

- XGBoost用C++实现,显示地采用OpenMP API做并行处理
 - 建单棵树时并行
- XGBoost的scikit-learn接口中的参数nthread 可指定线程数
 - -1 表示使用系统所有的核资源
 - model = XGBClassifier(nthread=-1)

▶并行处理——建树 (cont.)

- 确认系统支持多线程:建立几个不同线性的模型,观察不同模型的速度是否有差异
- # evaluate the effect of the number of threads
- results = []
- $num_{threads} = [1, 2, 3, 4]$
- for n in num_threads:
 - start = time.time()
 - model = XGBClassifier(nthread=n)
 - model.fit(X_train, y_train)
 - elapsed = time.time() start
 - print(n, elapsed)
- results.append(elapsed)

000

Kaggle竞赛的Otto数据集上的结果:

- (1, 115.51652717590332)
- (2, 62.7727689743042)
- (3, 46.042901039123535)
- (4, 40.55334496498108)

▶并行处理——交叉验证

- scikit-learn 支持的k折交叉验证也支持多线程
 - cross_val_score() 函数中的参数:n_ jobs
 - -1 表示使用系统所有的CPU核
 - results = cross_val_score(model, X, label_encoded_y, cv=kfold, scoring= 'neg_log_loss' , n_jobs=-1, verbose=1)

▶并行处理——建树 vs. 交叉验证

- 并行处理的三种配置
 - 交叉验证并行, XGBoost建树不并行
 - 交叉验证不并行, XGBoost建树并行
 - 交叉验证并行, XGBoost建树并行
- Otto数据集上的10折交叉验证实验结果:
 - Single Thread XGBoost, Parallel Thread CV: 359.854589
 - Parallel Thread XGBoost, Single Thread CV: 330.498101
 - Parallel Thread XGBoost and CV: 313.382301

并行XGBoost比并行交叉验证好,两者都并行更好

四、结束语

►XGBoost总结

- XGBoost是一个用于监督学习的非参数模型
 - 目标函数(损失函数、正则项)
 - 参数(树的每个分支分裂特征及阈值)
 - 优化:梯度下降

参数优化

- 决定模型复杂度的重要参数: learning_rate, n_estimators, max_depth, min_child_weight, gamma, reg_alpha, reg_lamba
- 随机采样参数也影响模型的推广性: subsample, colsample_bytree,
 colsample_bylevel

▶其他未涉及的部分

- 分布式XGBoost
 - AWS
 - YARN Cluster
 - **–** ...
- GPU加速
- 并行计算与内存优化的细节
 - 课堂内容主要关注XGBoost的对外接口

►XGBoost资源

- XGBoost官方文档: https://xgboost.readthedocs.io/en/latest/
 - Python API: http://xgboost.readthedocs.io/en/latest/python/python_api.html
- Github: https://github.com/dmlc/xgboost
 - 很多有用的资源:https://github.com/dmlc/xgboost/blob/master/demo/README.md
 - GPU加速: https://github.com/dmlc/xgboost/blob/master/plugin/updater_gpu/README.md
- XGBoost原理: XGBoost: A Scalable Tree Boosting System
 - https://arxiv.org/abs/1603.02754

▶其他资源

- XGBoost参数调优:
 - https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuningxgboost-with-codes-python/
 - 中文版: http://blog.csdn.net/u010657489/article/details/51952785
- Owen Zhang, Winning Data Science Competitions
 - https://www.slideshare.net/OwenZhang2/tips-for-data-sciencecompetitions?from_action=save
- XGBoost User Group:
 - https://groups.google.com/forum/#!forum/xgboost-user/

THANK YOU

北京智百科技有限公司

实战

- 建议代码风格
 - 特征处理为一个文件, 每维特征处理单独定义一个函数
 - 训练数据和测试数据处理尽量分开
 - 如果自己编写特征处理函数,尽量参照sklearn中Encoder的风格:初始化、用训练数据进行fit,对训练数据和测试数据进行transform
 - 学习器参数调整 / 训练为一个文件
 - 系统测试一个文件
- 学习优胜者的经验, 体会对特征的细致处理
 - Rent Listing Inquires任务中对如features特征

