DSBDAL Assignment 09 - Data Analytics 2

- 1. Implement logistic regression using Python/R to perform classification on Social_Network_Ads.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset

```
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m

import numpy as np import pandas as pd import seaborn as sns

ds = pd.read_csv('/content/drive/My Drive/DSBDL/Assignment9/data.csv') ds

	User ID	Gender	Age	EstimatedSalary	Purchased		
0	15624510	Male	19	19000	0		
1	15810944	Male	35	20000	0		
2	15668575	Female	26	43000	0		
3	15603246	Female	27	57000	0		
4	15804002	Male	19	76000	0		
395	15691863	Female	46	41000	1		
396	15706071	Male	51	23000	1		
397	15654296	Female	50	20000	1		
398	15755018	Male	36	33000	0		
399	15594041	Female	49	36000	1		
400 rows × 5 columns							

Next steps:

Generate code with ds

View recommended plots

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	User ID	400 non-null	int64
1	Gender	400 non-null	object
2	Age	400 non-null	int64
3	EstimatedSalary	400 non-null	int64
4	Purchased	400 non-null	int64

dtypes: int64(4), object(1)
memory usage: 15.8+ KB

ds.describe()

	User ID	Age	EstimatedSalary	Purchased	\blacksquare
count	4.000000e+02	400.000000	400.000000	400.000000	ılı
mean	1.569154e+07	37.655000	69742.500000	0.357500	
std	7.165832e+04	10.482877	34096.960282	0.479864	
min	1.556669e+07	18.000000	15000.000000	0.000000	
25%	1.562676e+07	29.750000	43000.000000	0.000000	
50%	1.569434e+07	37.000000	70000.000000	0.000000	
75%	1.575036e+07	46.000000	88000.000000	1.000000	
max	1.581524e+07	60.000000	150000.000000	1.000000	

ds.isna().sum()

User ID 0
Gender 0
Age 0
EstimatedSalary 0
Purchased 0
dtype: int64

from sklearn.preprocessing import LabelEncoder

ds['Gender'] = LabelEncoder().fit_transform(ds['Gender'])
ds

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	1	19	19000	0
1	15810944	1	35	20000	0
2	15668575	0	26	43000	0
3	15603246	0	27	57000	0
4	15804002	1	19	76000	0
395	15691863	0	46	41000	1
396	15706071	1	51	23000	1
397	15654296	0	50	20000	1
398	15755018	1	36	33000	0
399	15594041	0	49	36000	1
400 ro	ws x 5 colu	mne			

400 rows × 5 columns

Next steps:

Generate code with ds

View recommended plots

ds.corr()

	User ID	Gender	Age	EstimatedSalary	Purchased	
User ID	1.000000	-0.025249	-0.000721	0.071097	0.007120	ıl.
Gender	-0.025249	1.000000	-0.073741	-0.060435	-0.042469	
Age	-0.000721	-0.073741	1.000000	0.155238	0.622454	
EstimatedSalary	0.071097	-0.060435	0.155238	1.000000	0.362083	
Purchased	0.007120	-0.042469	0.622454	0.362083	1.000000	

sns.heatmap(ds.corr(), cmap = 'twilight', annot = True)

from sklearn.metrics import confusion matrix, classification report

matrix = confusion_matrix(y_test, y_pred)
print(matrix)

print(classification_report(y_test, y_pred))

[[61 2] [12 25]]

[12 23]]	precision	recall	f1-score	support
0	0.84	0.97	0.90	63
1	0.93	0.68	0.78	37
accuracy			0.86	100
macro avg	0.88	0.82	0.84	100
weighted avg	0.87	0.86	0.85	100

from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, re

```
matrix = confusion_matrix(y_test, y_pred)
tn, fp, fn, tp = matrix.ravel()
```

print("True Positives: ", tp)
print("True Negatives: ", tn)
print("False Positives: ", fp)
print("False Negatives: ", fn)
print()

print("Accuracy: ", (tp + tn) / (tp + tn + fn + fp))
print("Recall: ", tp / (tp + fn))

print("Precision: ", tp / (tp + fp))

True Positives: 25
True Negatives: 61
False Positives: 2
False Negatives: 12

Accuracy: 0.86

Recall: 0.6756756756756757 Precision: 0.9259259259259

print("Accuracy: ", accuracy_score(y_test, y_pred))
print("Recall: ", recall_score(y_test, y_pred))
print("Precision: ", precision_score(y_test, y_pred))

Accuracy: 0.86

Recall: 0.6756756756756757 Precision: 0.9259259259259259