Antilles Guyane. 2016. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

1) a) Représentons la situation par un arbre de probabilités.

b) La probabilité demandée est $P(\overline{D})$. D'après la formule des probabilités totales,

$$\begin{split} P\left(\overline{D}\right) &= P(A) \times P_{A}\left(\overline{D}\right) + P(B) \times P_{B}\left(\overline{D}\right) \\ &= 0,65(1-0,08) + (1-0,65)(1-0,05) = 0,65 \times 0,92 + 0,35 \times 0,95 = 0,598 + 0,3325 = 0,9305. \end{split}$$

$$P(\overline{D}) = 0,9305.$$

c) La probabilité demandée est $P_{\overline{D}}(A)$.

$$P_{\overline{D}}(A) = \frac{P\left(A \cap \overline{D}\right)}{P\left(\overline{D}\right)} = \frac{0,65 \times 0,92}{0,9305} = 0,6427 \text{ arrondi à } 10^{-4}.$$

$$P_{\overline{D}}(A) = 0,6427 \text{ arrondi à } 10^{-4}.$$

- 2) Notons X la variable aléatoire égale au nombre d'ampoules sans défaut. La variable aléatoire X suit une loi binomiale de paramètres n=10 et p=0,92 (probabilité qu'une ampoule sortie de la machine A soit sans défaut). En effet,
 - 10 expériences identiques et indépendantes sont effectuées;
 - chaque expérience a deux issues à savoir « l'ampoule est sans défaut » avec une probabilité p=0,92 et

« l'ampoule a un défaut » avec une probabilité $1-\mathfrak{p}=0,08.$

La probabilité demandée est $P(X \ge 9)$.

$$\begin{split} P(X\geqslant 9) &= P(X=9) + P(X=10) = \binom{10}{9} \times 0,92^9 \times 0,08 + 0,92^{10} \\ &= 0,8121 \text{ arrondi à } 10^{-4}. \end{split}$$

Partie B

1) a) Soit $a \ge 0$.

$$P(T \leqslant \alpha) = \int_0^\alpha \lambda e^{-\lambda x} \ dx = \left[-e^{-\lambda x} \right]_0^\alpha = \left(-e^{-\lambda \alpha} \right) - \left(-e^0 \right) = 1 - e^{-\lambda \alpha},$$

puis

$$P(T \geqslant \alpha) = 1 - P(T \leqslant \alpha) = 1 - (1 - e^{-\lambda \alpha}) = e^{-\lambda \alpha}.$$

b) Soient a et t deux réels positifs.

$$\begin{split} P_{T\geqslant t}(T\geqslant t+\alpha) &= \frac{P((T\geqslant t+\alpha)\cap (T\geqslant t))}{P(T\geqslant t)} = \frac{P(T\geqslant t+\alpha)}{P(T\geqslant t)} \\ &= \frac{e^{-\lambda(t+\alpha)}}{e^{-\lambda t}} = e^{-\lambda t-\lambda\alpha+\lambda t} \\ &= e^{-\lambda\alpha} = P(T\geqslant \alpha). \end{split}$$

2) a) On sait que
$$E(T) = \frac{1}{\lambda}$$
 et donc $\lambda = \frac{1}{10\,000} = 0,000\,1.$

b)
$$P(T \ge 5000) = e^{-0.000 \text{ 1} \times 5000} = e^{-0.5} = 0.6065 \text{ arrondi à } 10^{-4}.$$

c) La probabilité demandée est $P_{T\geqslant 7000}(T\geqslant 12\ 000).$

$$P_{T\geqslant 7000}(T\geqslant 12\ 000) = P_{T\geqslant 7000}(T\geqslant 7000+5000) = P(T\geqslant 5000) = e^{-0.5} = 0,6065\ \mathrm{arrondi}\ \mathrm{\grave{a}}\ 10^{-4}.$$

$$P_{T\geqslant 7000}(T\geqslant 12\ 000)=0,6065\ {
m arrondi}\ {
m à}\ 10^{-4}.$$

Partie C

1) Ici, n=1000 et p=0,06. On note que $n\geqslant 30$ puis que np=60 et n(1-p)=940 de sorte que $np\geqslant 5$ et $n(1-p)\geqslant 5$. Un intervalle de fluctuation asymptotique au seuil 95% est

$$\left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right] = \left[0,06 - 1,96 \frac{\sqrt{0,06 \times 0,94}}{\sqrt{1000}}; 0,06 + 1,96 \frac{\sqrt{0,06 \times 0,94}}{\sqrt{1000}} \right]$$

$$= [0,0452; 0,0748].$$

en arrondissant de manière à élargir un peu l'intervalle.

2) La fréquence d'ampoules défectueuses observée est $f = \frac{71}{1000} = 0,071$. La fréquence f appartient à l'intervalle de fluctuation et on ne peut donc remmettre en cause l'affirmation de l'entreprise.

EXERCICE 2

1) Soit Ω le point d'affixe 2. Soient z un nombre complexe puis M le point du plan d'affixe z.

$$M \in \mathscr{C} \Leftrightarrow |z-2| = 1 \Leftrightarrow |z-z_{\Omega}| = 1 \Leftrightarrow \Omega M = 1.$$

 \mathscr{C} est donc le cercle de centre Ω et de rayon 1.

2) Soit $\mathfrak a$ un réel. Soient x un réel puis M le point de $\mathcal D$ d'abscisse x. Les coordonnées du point M sont $(x,\mathfrak a x)$ puis l'affixe du point M est $z_M = x + \mathfrak i \mathfrak a x$.

$$\begin{split} M &\in \mathscr{C} \Leftrightarrow |z_M - 2| = 1 \Leftrightarrow |x + i\alpha x - 2| = 1 \Leftrightarrow |(x - 2) + i\alpha x|^2 = 1 \\ &\Leftrightarrow (x - 2)^2 + (\alpha x)^2 = 1 \Leftrightarrow x^2 - 4x + 4 + \alpha^2 x^2 - 1 = 0 \\ &\Leftrightarrow \left(\alpha^2 + 1\right) x^2 - 4x + 3 = 0 \quad (E). \end{split}$$

Puisque $a^2+1>0$, (E) est une équation du second degré. Son discriminant est

$$\Delta = (-4)^2 - 4 \times (\alpha^2 + 1) \times 3 = 16 - 12\alpha^2 - 12 = 4 - 12\alpha^2 = -12\left(\alpha^2 - \frac{1}{3}\right)$$
$$= -12\left(\alpha - \frac{1}{\sqrt{3}}\right)\left(\alpha + \frac{1}{\sqrt{3}}\right).$$

1er cas. Si $\alpha > \frac{1}{\sqrt{3}}$ ou $\alpha < -\frac{1}{\sqrt{3}}$, alors $\Delta < 0$ et donc l'équation (E) n'a pas de solution. Dans ce cas, le cercle $\mathscr C$ et la droite $\mathscr D$ n'ont pas de point commun.

2ème cas. Si $\alpha = \frac{1}{\sqrt{3}}$ ou $\alpha = -\frac{1}{\sqrt{3}}$, alors $\Delta = 0$ et donc l'équation (E) a exactement une solution. Dans ce cas, le cercle $\mathscr C$ et la droite $\mathscr D$ ont exactement un point commun. La droite $\mathscr D$ est alors tangente au cercle $\mathscr C$.

3ème cas. Si $-\frac{1}{\sqrt{3}} < \alpha < \frac{1}{\sqrt{3}}$, alors $\Delta > 0$ et donc l'équation (E) a exactement deux solutions. Dans ce cas, le cercle $\mathcal E$ et la droite $\mathcal D$ ont exactement deux points communs.

EXERCICE 3

Partie A

1) Soit x un réel non nul.

$$f(x) = xe^{1-x^2} = x \times e \times e^{-x^2} = \frac{x^2}{x} \times e \times \frac{1}{e^{x^2}} = \frac{e}{x} \times \frac{x^2}{e^{x^2}}.$$

Déjà, $\lim_{x\to +\infty} \frac{e}{x} = 0$. Ensuite, d'après un théorème de croissances comparées, $\lim_{x\to +\infty} \frac{e^{x^2}}{x^2} = \lim_{X\to +\infty} \frac{e^X}{X} = +\infty$. Par passage à l'inverse, on obtient $\lim_{x\to +\infty} \frac{x^2}{e^{x^2}} = 0$. En multipliant, on obtient finalement $\lim_{x\to +\infty} f(x) = 0 \times 0 = 0$.

$$\lim_{x\to +\infty} f(x) = 0.$$

2) a) Pour tout réel x,

$$f'(x) = 1 \times e^{1-x^2} + x \times \left((-2x)e^{1-x^2} \right) = e^{1-x^2} - 2x^2e^{1-x^2} = \left(1 - 2x^2 \right)e^{1-x^2}.$$

b) Pour tout réel x, $e^{1-x^2} > 0$ et donc pour tout réel x, f'(x) est du signe de $1-2x^2 = -2\left(x^2 - \frac{1}{2}\right) = -2\left(x - \frac{1}{\sqrt{2}}\right)\left(x + \frac{1}{\sqrt{2}}\right)$. Le cours sur le signe d'un trinôme du second degré permet alors de dresser le tableau de variations de f:

Ī	x	$-\infty$		$-\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{2}}$		$+\infty$
	f'(x)		_	0	+	0	_	
	f	0/	<u></u>	$-\sqrt{e/2}$		$\sqrt{e/2}$		

$$f\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{1-\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{e^{1/2}}{\sqrt{2}} = 1, 16... \text{ et } f\left(-\frac{1}{\sqrt{2}}\right) = -\sqrt{\frac{e}{2}} = -1, 16...$$

Partie B

- 1) Il semble que \mathcal{C}_g soit au-dessus de \mathcal{C}_f sur \mathbb{R} et que \mathcal{C}_f et \mathcal{C}_g ait un point commun et un seul, à savoir leur point d'abscisse 1.
- 2) Soit $x \in]-\infty,0]$. Puisque la fonction exponentielle est streitement positive sur \mathbb{R} , on a $f(x) \leq 0$ et g(x) > 0. En particulier, f(x) < g(x).
- 3) a) Soit x > 0.

$$\begin{split} f(x) \leqslant g(x) &\Leftrightarrow x e^{1-x^2} \leqslant e^{1-x} \\ &\Leftrightarrow \ln\left(x e^{1-x^2}\right) \leqslant \ln\left(e^{1-x}\right) \; (\operatorname{car} x e^{1-x^2} > 0 \; \operatorname{et} \; e^{1-x} > 0) \\ &\Leftrightarrow \ln(x) + \ln\left(e^{1-x^2}\right) \leqslant 1 - x \Leftrightarrow \ln(x) + 1 - x^2 \leqslant 1 - x \\ &\Leftrightarrow \ln(x) - x^2 + x \leqslant 0 \Leftrightarrow \Phi(x) \leqslant 0. \end{split}$$

b) Pour tout réel x > 0,

$$\Phi'(x) = \frac{1}{x} - 2x + 1 = \frac{1 + x(-2x + 1)}{x} = \frac{-2x^2 + x + 1}{x}.$$

Pour tout réel x > 0, $\Phi'(x)$ est du signe de $-2x^2 + x + 1$. Le discriminant de ce trinôme est $\Delta = 1^2 - 4 \times (-2) \times 1 = 9$. Le trinôme $-2x^2 + x + 1$ a deux racines distinctes à savoir $x_1 = \frac{-1 + \sqrt{9}}{-2 \times 2} = -\frac{1}{2}$ et $x_1 = \frac{-1 - \sqrt{9}}{-2 \times 2} = 1$. Le cours sur le signe d'un trinôme du second degré montre alors que la fonction Φ' est strictement positive sur]0,1[, strictement négative sur $]1,+\infty[$ et s'annule en 1. La fonction Φ est donc strcitement croissante sur]0,1[et strictement décroissante sur $[1,+\infty[$.

c) En particulier, la fonction Φ admet un maximum en 1 et ce maximum est

$$\Phi(1) = \ln(1) - 1^2 + 1 = 0.$$

On en déduit que pour tout réel x > 0, $\Phi(x) \leq \Phi(1)$ ou encore $\Phi(x) \leq 0$.

- 4) a) D'après la question 3)a), pour tout x > 0, on a $f(x) \leq g(x)$ et d'après la question 2), pour tout $x \leq 0$, on a $f(x) \leq g(x)$. Ainsi, \mathcal{C}_f est au-dessous de \mathcal{C}_g sur \mathbb{R} et la conjecture de la question 1) de la partie B est donc valide.
- b) D'après le résultat admis par l'énoncé, f(x) = g(x) équivaut à $\Phi(x) = 0$ ou encore x = 1. Les courbes \mathcal{C}_f et \mathcal{C}_g ont donc un point commun et un seul à savoir le point A de coordonnées (1, g(1)) ou encore (1, 1).
- c) On a $x_A = 1$ et $f(x_A) = 1 = g(x_A)$. D'autre part, $f'(x_A) = (1 2 \times 1^2) e^{1 1^2} = -1$ et $g'(x_A) = -e^{1 1} = -1$. Ceci montre déjà que les courbes \mathscr{C}_f et \mathscr{C}_g ont le même tangente au point A. Une équation de cette tangente commune est y = -(x 1) + 1 ou encore y = -x + 2.

Partie C

1) Pour tout réel x, $f(x) = xe^{1-x^2} = -\frac{1}{2} \times (-2x)e^{1-x^2} = -\frac{1}{2} \times \left(1-x^2\right)'e^{1-x^2}$ et donc, une primitive de f sur $\mathbb R$ est la fonction F définie par : pour tout réel x, $F(x) = -\frac{1}{2}e^{1-x^2}$.

2)
$$\int_0^1 \left(e^{1-x} - xe^{1-x^2} \right) dx = \left[-e^{1-x} + \frac{1}{2}e^{1-x^2} \right]_0^1 = \left(-e^0 + \frac{1}{2}e^0 \right) - \left(-e^1 + \frac{1}{2}e^1 \right) = \frac{e-1}{2}.$$

 $\textbf{3)} \ \text{Pour tout réel } x \ \text{de } [0,1], \ f(x) \leqslant g(x). \ \text{Donc}, \\ \int_0^1 \left(e^{1-x} - xe^{1-x^2}\right) dx \ \text{est l'aire, exprimée en unités d'aire, du domaine du plan compris entre } \mathscr{C}_f \ \text{et } \mathscr{C}_g \ \text{d'une part, et les droites d'équations respectives } x = 0 \ \text{et } x = 1 \ \text{d'autre part.}$

Partie A

1) Algorithme complété

Variables :	X est un nombre entier Y est un nombre entier
Début :	Pour X variant de -5 à 10 Pour Y variant de -5 à 10 Si 7X - 3Y = 1 Alors afficher X et Y Fin Si Fin Pour Fin Pour
Fin:	

- 2) a) $7 \times 1 3 \times 2 = 1$ et donc le couple $(x_0, y_0) = (1, 2)$ est un couple d'entiers relatifs solution de l'équation (E).
- b) Soit (x, y) un couple d'entiers relatifs.

$$7x - 3y = 1 \Leftrightarrow 7x - 3y = 7x_0 - 3y_0 \Leftrightarrow 7(x - x_0) = 3(y - y_0)$$
.

Donc, si (x,y) est solution de l'équation (E), alors l'entier 3 divise l'entier $7(x-x_0)$. Puisque 3 et 7 sont premiers entre eux, le théorème de GAUSS permet d'affirmer que l'entier 3 divise l'entier $x-x_0$. Donc, il existe un entier relatif k tel que $x-x_0=3k$ ou encore tel que $x=x_0+3k$. De même, il existe un entier relatif k' tel que $y-y_0=7k'$ ou encore tel que $y=y_0+7k'$.

Réciproquement, soient k et k' deux entiers relatifs puis $x = x_0 + 3k$ et $y = y_0 + 7k'$.

$$7x-3y=1 \Leftrightarrow 7\left(x_{0}+3k\right)-3\left(y_{0}+7k'\right)=1 \Leftrightarrow 7x_{0}-3y_{0}+21(k-k')=1 \Leftrightarrow 21(k-k')=0 \Leftrightarrow k=k'.$$

Les couples d'entiers relatifs solutions de l'équation (E) sont les couples de la forme $(1+3k,2+7k), k \in \mathbb{Z}$.

c) Soient k un entier relatif puis x = 1 + 3k et y = 2 + 7k.

$$-5 \leqslant x \leqslant 10 \Leftrightarrow -5 \leqslant 1 + 3k \leqslant 10 \Leftrightarrow -2 \leqslant k \leqslant 3$$

et

$$-5\leqslant y\leqslant 10\Leftrightarrow -5\leqslant 2+7k\leqslant 10\Leftrightarrow -1\leqslant k\leqslant \frac{8}{7}\Leftrightarrow -1\leqslant k\leqslant 1.$$

Finalement,

$$-5 \leqslant x \leqslant 10 \text{ et } -5 \leqslant y \leqslant 10 \Leftrightarrow -1 \leqslant k \leqslant 1.$$

k=-1 fournit le couple $(-2,-5),\ k=0$ fournit le couple (1,2) et k=1 fournit le couple (4,9).

Il y a exactement trois couples (x,y) d'entiers relatifs solutions de (E) tels que $-5 \le x \le 10$ et $-5 \le y \le 10$ à savoir les couples (-2,-5), (1,2) et (4,9).

Partie B

1) a) Soit n un entier naturel.

$$\begin{cases} x_{n+1} = -\frac{13}{2}x_n + 3y_n \\ y_{n+1} = -\frac{35}{2}x_n + 8y_n \end{cases} \Rightarrow \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} -\frac{13}{2} & 3 \\ -\frac{35}{2} & 8 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \Rightarrow X_{n+1} = MX_n.$$

- b) On sait alors que pour tout entier naturel $n, X_n = M^n X_0$.
- 2) a)

$$P^{-1}MP = \begin{pmatrix} 7 & -3 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} -\frac{13}{2} & 3 \\ -\frac{35}{2} & 8 \end{pmatrix} \begin{pmatrix} -2 & -3 \\ -5 & -7 \end{pmatrix} = \begin{pmatrix} \frac{-91+105}{2} & 21-24 \\ \frac{65-70}{2} & -15+16 \end{pmatrix} \begin{pmatrix} -2 & -3 \\ -5 & -7 \end{pmatrix}$$
$$= \begin{pmatrix} 7 & -3 \\ -\frac{5}{2} & 1 \end{pmatrix} \begin{pmatrix} -2 & -3 \\ -5 & -7 \end{pmatrix} = \begin{pmatrix} -14+15 & -21+21 \\ 5-5 & \frac{15-14}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

Donc, $P^{-1}MP = D$ où D est la matrice diagonale $\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

- b) On sait que pour tout entier naturel n, $D^n = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2^n} \end{pmatrix}$.
- c) Montrons par récurrence que pour tout entier naturel n, $M^n = PD^nP^{-1}$.
 - $\bullet \ P \times D^0 \times P^{-1} = P \times I_2 \times P^{-1} = P \times P^{-1} = I_2 = M^0.$
 - Soit $n \ge 0$. Supposons que $M^n = PD^nP^{-1}$. Alors,

$$\begin{split} M^{n+1} &= M^n \times M \\ &= PD^nP^{-1}PDP^{-1} \; (\mathrm{par \; hypoth\`ese \; de \; r\'ecurrence}) \\ &= PD^nI_2DP^{-1} = PD^nDP^{-1} \\ &= PD^{n+1}P^{-1}. \end{split}$$

On a montré par récurrence que pour tout entier naturel n, $M^n = PD^nP^{-1}$.

3) Soit n un entier naturel.

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = X_n = M^n X_0 = \begin{pmatrix} -14 + \frac{15}{2^n} & 6 - \frac{6}{2^n} \\ -35 + \frac{35}{2^n} & 15 - \frac{14}{2^n} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 + \frac{3}{2^n} \\ -5 + \frac{7}{2^n} \end{pmatrix}.$$

Pour tout entier naturel n, $x_n = -2 + \frac{3}{2^n}$ et $y_n = -5 + \frac{7}{2^n}$.

4) Soit n un entier naturel.

$$7x_n - 3y_n = 7\left(-2 + \frac{3}{2^n}\right) - 3\left(-5 + \frac{7}{2^n}\right) = -14 + \frac{21}{2^n} + 15 - \frac{21}{2^n} = 1.$$

Donc, pour tout entier naturel n, le point A_n appartient à la droite \mathcal{D} .