Ejercicio 1: Análisis Vectorial de un Triángulo

Javier A.

Ejercicio 1

Un triángulo está definido por los puntos A(1,2,0), B(4,6,0) y C(3,2,5). A partir de esta información, realice lo siguiente:

1. Represente los vectores \overrightarrow{AB} , \overrightarrow{AC} , y \overrightarrow{BC} .

Desarrollo para verificar los resultados:

$$\overrightarrow{AB} = (4 - 1, 6 - 2, 0 - 0)$$

$$\overrightarrow{AB} = \boxed{(3, 4, 0)}$$

$$\overrightarrow{AC} = (3 - 1, 2 - 2, 5 - 0)$$

$$\overrightarrow{AC} = \boxed{(2, 0, 5)}$$

$$\overrightarrow{BC} = (3 - 4, 2 - 6, 5 - 0)$$

$$\overrightarrow{BC} = \boxed{(-1, -4, 5)}$$

2. Calcule la longitud (norma) de cada vector.

Desarrollo de las normas:

$$\begin{split} \|\vec{AB}\| &= \sqrt{3^2 + 4^2 + 0^2} \\ &= \sqrt{9 + 16 + 0} \\ &= \sqrt{25} \\ &= \boxed{5} \\ \|\vec{AC}\| &= \sqrt{2^2 + 0^2 + 5^2} \\ &= \sqrt{4 + 0 + 25} \\ &= \sqrt{29} \\ &\approx \boxed{5,385} \\ \|\vec{BC}\| &= \sqrt{(-1)^2 + (-4)^2 + 5^2} \\ &= \sqrt{1 + 16 + 25} \\ &= \sqrt{42} \\ &\approx \boxed{6,480} \end{split}$$

3. Determine algebraicamente el ángulo entre los vectores \overrightarrow{AB} y \overrightarrow{AC} .

Desarrollo del producto punto:

$$\vec{u} \cdot \vec{v} = x_u x_v + y_u y_v + z_u z_v$$

Sustituyendo con $\vec{AB} = (3, 4, 0)$ y $\vec{AC} = (2, 0, 5)$:

$$\vec{AB} \cdot \vec{AC} = (3)(2) + (4)(0) + (0)(5)$$

= 6 + 0 + 0
= 6

Resultado: $\vec{AB} \cdot \vec{AC} = 6$

4. Interprete el resultado: ¿qué tipo de triángulo es (agudo, recto u obtuso)?

Para interpretar el tipo de triángulo, analizamos el ángulo θ entre \vec{AB} y \vec{AC} usando la relación entre producto punto y ángulo:

$$\vec{AB} \cdot \vec{AC} = ||\vec{AB}|| \, ||\vec{AC}|| \cos(\theta)$$

Con $\vec{AB} \cdot \vec{AC} = 6$, $\|\vec{AB}\| = 5$ y $\|\vec{AC}\| = \sqrt{29}$, se tiene:

$$6 = (5)(\sqrt{29})\cos(\theta)$$
$$\cos(\theta) = \frac{6}{5\sqrt{29}} \approx 0.223$$
$$\theta = \cos^{-1}(0.223) \approx \boxed{77.1^{\circ}}$$

Criterio de clasificación:

Si $\theta < 90^\circ$ \rightarrow triángulo agudo Si $\theta = 90^\circ$ \rightarrow triángulo recto Si $\theta > 90^\circ$ \rightarrow triángulo obtuso

Conclusión: Como $77,1^{\circ} < 90^{\circ}$, el triángulo es **AGUDO**.

2

5. Represente el triángulo en Geogebra utilizando la herramienta de vectores.

Análisis Vectorial Ejercicio 1

 $Representar\ el\ tri\'angulo\ en\ Geogebra\ con\ los\ puntos:$

 $A(1,2,0),\,B(4,6,0) \ge C(3,2,5)$

Dibujar los vectores \vec{AB} , \vec{AC} y \vec{BC} y visualizar el ángulo de 77,1° entre \vec{AB} y \vec{AC} .

extbfNota: Adjuntar el enlace o archivo de Geogebra correspondiente.

extbfEnlace: https://www.geogebra.org/3d/tmjswe7b