Discovery of new solid-state materials for Li & Na ion battery

Rochish Manda^a, Lingzi Sang^b

^aDepartment of Metallurgical & Materials Engineering, Indian Institute of Technology, Kharagpur ^bDepartment of Chemistry, University of Alberta, Canada | lsang@ualberta.ca

Energy cannot be created or destroyed, but can be **converted** from one form to another.

Abstract

The Why?

The future is Electric! - both for the grid & home appliances.

> Key concerns for a .
Safety (thermal stability), higher energy (& power) density, long cycle life.

Safety can be improved when the traditional liquid electrolyte (organic, hence flammable) in Li/Na battery is replaced by a solid-state electrolyte (inorganic, thermally more stable).

> Key challenges: Finding this solid-state electrolyte with high ionic conductivity (comparable to that of liquid electrolytes) & higher energy density.

The How?

With careful selection of solid electrolyte materials & with improvement of solid electrolyte interfaces to reduce interfacial resistance with active electrodes.

Solid Electrolyte

Active Materials

LiMn,O4 (LMO) & LiCoO, (LCO)

These materials determine the energy storage capability of the battery.

Synthesis

Interlayer

Li-TFSI (7 M)

These materials increase the ionic conductivity at solid electrolyte-electrode interface, by enhancing the interfacial contact & hence decreasing the grain boundary resistance at the interface.

Characterization:

Cyclic charge-discharge technique - Traditional electrolyte (LiPF_c) vs solvate (Li-TFSI)

Future directions

1. Solid electrolyte -

It Softice December 2.

With ever increasing demand for secondary batteries, to lower the costs of SE production, furthur research has to be carried on improving various properties of the Na_PS_SE & on developing several other possible Na SE materials - by furthur increasing ionic conductivity, thermal stability & compatibility between solid electrolytes & electrodes.

2. Active materials (cathodes & anodes) -

arthur insights into the crystal structure and electrochemistry of new active materials will be helpful in providing a platform on which future optimisation of required active materials for Na-ion batteries can be based upon - for higher energy density, longer cycle-life & at a much lower cost of the active materials.

3. Interlayer materials -

Since the intercalation kinetics & reductive stability are enhanced in the Li solvate (Li-TFSI), this process of designing superconcentrated organic electrolyte can also be employed in *Na-ion batteries*.

References

Acknowledgement

- I, Rochish Manda, acknowledge University of Alberta for this research project & I am thankful to Dr. Lingzi Sang for her continual support during this research.
- I would also like to thank Internship Programs coordinator Ms. Ashley Seibert for this unique

Contact

e-mail: rochish@iitkgp.ac.in Phone: +(91) 7477752999