MOTOR SYSTEM

Motor system

- Concerned with the voluntary movements mediated by skeletal muscles.
- Translates thoughts, sensations and emotions in to actions
- Somatic motor activities
 - Depends on the pattern and rate of discharge of final common pathway
 - -Alpha motor neurons
 - -neurons in cranial motor nerves

Inputs to the motor neurons

- Arises from
 - Same spinal segment
 - Suprasegmental areas
 - other spinal segments
 - brain stem
 - cerebral cortex
- Effects mediates
 - Directly
 - Via interneurons
 - Via gamma efferents

Final common pathway

- 1. Corticospinal tract
- 2. Rubrospinal tract
- 3. Dorsal vestibulospinal tract
- 4. Olivospinal tract
- 5. Reticulospinal tract
- 6. Ventral vestibulospinal tract
- 7. Tectospinal tract
- 8. Sensory afferents

Control of voluntary activity

- Planned with in the Brain
- Commands are sent to the alpha motor neurons via descending tracts
 - Corticospinal tract
 - Corticobulbar tract

Inputs to the motor neurons

- bring about voluntary activity
- Adjust the body posture
- Coordinates the action of various muscles

Control of Body posture and coordination

- Body posture adjustment
 - Continuously adjusted by posture regulating mechanism
- Coordination of the muscle activity
 - By basal ganglia and cerebellum.
- The main descending pathways are
 - Rubrospinal tract
 - Reticulospinal tract
 - Tectospinal tract
 - Vestibulospinal tract

General motor control

- Commands originate in the cortical association areas
- Movements are planned in the
 - Cerebral cortex
 - Basal ganglia
 - Lateral cerebellum
- Basal ganglia and cerebellum sends information to the
 - Premotor cortex
 - Motor cortex

- Motor commands from the motor cortex carried to the motor neurons via
 - Corticospinal tracts
 - Corticobulbar tracts
- cortricospinal tract
 - To alpha motor neurons in the spinal cord

- Corticobilbar tract
 - To motor nuclei of cranial nerves

General motor control

Control of axial and distal muscles

- Axial and proximal muscles of limbs and gross movements
 - Controlled by Medial and Ventral pathways in the brain stem and spinal cord
- **Distal** limb muscles with fine skilled movements
 - Controlled by lateral pathways in the brain stem and spinal cord

Lower motor neuron(LMN)

- Cranial and spinal motor neurons
 - Directly innervates the skeletal muscles
- Motor cranial nerve nuclei
 - Innervates the muscles of head and neck area
 - E.g. 3rd cranial nerve extra occular muscles 12th cranial nerve tongue

Upper motor neuron(UMN)

- The neurons in the brain and spinal cord that influence the activity of LMN
- Consists of descending
 - Posture regulating pathways
 - Corticospinal and corticobulbar tracts
 - Cerebellar pathways

Lower motor neuron lesion

- Due to damage to the
 - Motor nuclei of -
- i.anterior horn cells in the spinal cord
- ii.cranial nerves

Axons of

- i.cranial nerves
- ii.spinal motor nerves
- Results skeletal muscle denervation

Features of Lower motor neuron lesion

- Affected muscle or muscle groups will show
 - 1. Flaccid paralysis
 - 2. Muscular atrophy
 - 3. Decreased tone (hypotonia)
 - 4. Diminished or absent tendon reflexes
 - 5. Fasciculation-can be seen clinically
 - 6. Fibrillation -can only be detected with EMG

Lower motor neuron lesion

- Fasciculation visible contractions of groups of muscles
 - Indicates anterior horn cell lesion
- Fibrillation
 - Increased muscle fiber excitability
 - Not visible
 - Detected using EMG

Upper motor neuron lesion

- Lesions of
 - Posture regulating pathways-cause spasticity
 - Cerebellar pathways causes incoordination
 - Pure Corticospinal and corticobulbar tracts- results weakness(paresis) and hypotonia
- Corticospinal and corticobulbar tract lesions are considers as UMN lesions
 - Pure corticospinal and corticobulbar lesions are extremely rare.

Upper motor neuron lesion

- Normally lesions involves
 - corticospinal and corticobulbar fibers
 - With some posture regulating pathways
- Therefore features are mixed

Features of Upper motor neuron lesion

- Weakness(paresis)
- Spasticity
- Exaggerated tendon reflexes
- Clonus
- Positive Babinski sign
- Absent superficial abdominal reflexes
- Spasticity
 - Increased resistance to rapid muscle stretch

Corticospinal and corticobulbar tracts

- Both have fibers originating from the cortical motor areas
- Corticospinal tract
 - fibers pass form cortex to the spinal motor neurons
- two pathways
 - 1. Lateral corticospinal tact
 - 2. Anterior corticospinal tract

Lateral corticospinal tract(pyramidal tract)

- forms pyramid in the medulla and known as pyramidal tract
- 80% of fibers cross the midline in the medulla
- Directly control the distal limb muscles
- Initiate skilled fine voluntary movements
- Facilitatory to alpha motor neurons

Anterior corticospinal tract

- Consists rest of 20% of fibers
- Remain uncrossed
- Cross the midline at the level of the synapses with motor neurons
- ends primarily on interneurons
- controls axial and proximal limb muscles
- concerned with posture adjustments and gross movements

The corticospinal tracts

Corticobulbar tract

- Fibers originates in the cortical motor areas
- pass to the cranial motor nuclei in the brain stem

Corticobulbar tract

Cortical motor areas

- Influences motor activity via corticospinal and bulbar tracts
- Important areas
 - Primary motor cortex
 - premotor cortex
 - supplementary motor cortex
 - Posterior pareital cortex
 - Primary somatic sensory cortex
 - Areas for specific motor function
 - e.g. speech- Broca's area

Cortical motor areas

Primary motor cortex

- In the precentral gyrus
- Various parts of the contralateral body is represented
- shows somatotrophic localization
- facial area represented bilaterally
- cortical representation of body part
 - is proportionate in size to the skill with which the part is used for
- fine voluntary movements are represented in a large cortical area

Primary motor cortex

- Speech and hand movements are represented in a large areas
- concerned with movements of
 - lips,tongue,and pharynx
- Of the hand thumb has a greater representation than the fingers
- cells are arranged in columns
- receive extensive sensory inputs
- Produces discrete skilled movements

Cortical representation of the body

Premotor cortex

- On the lateral surface of the brain
- concerned with postural control
- provides part of the corticospinal and corticobulbar out put.

Posterior pareital cortex

- Project the premotor cortex
- concern with execution of learned sequence of movements

Supplementary motor area

- On the medial side of the hemisphere
- projects to the prermotor cortex on the lateral surface

Primary somatic sensory area

- on the post central gyrus
- areas I and II

Corticospinal and corticobulbar tracts

- 30% of fibers from motor cortex
- 30% from premotor cortex
- 40% from pareital lobe

Extra pyramidal system

- Descending tract that do not pass through the pyramids
- consists of many different pathways
- concerned with postural control
- Main tracts are
 - Rubrospinal tract
 - Reticulospinal tract
 - Tectospinal tract
 - Vestibulospinal tract
 - Olivospinal tract

Lateral corticospinal tract Damage

Babinski sign

- when lateral aspect of the sole is scratched
- dorsiflexion of the great toe and fanning of the other toes occurs
- suggestive of lateral corticospinal tract lesion
- has a localization value

Supraspinal Regulation of stretch reflex

- Cortical and brain stem areas
 - facilitates and inhibits the stretch reflex
 - increase or decrease the spindle sensitivity
- facilitation areas
 - reticular facilitatory area (RFA)
 - vestibular nuclei
- Inhibitory areas
 - motor cortex
 - basal ganglia
 - cerebellum
 - reticular inhibitory area (RIA)

Regulatory areas of stretch reflex

Supraspinal Regulation of stretch reflex

- Reticular facilitatory area discharges spontaneously-stimulates y efferents
- Reticular inhibitory area driven by motor cortex and cerebellum
- Inhibition by basal ganglia act through descending tracts

Effects of damage to regulatory areas

- Damage to inhibitory areas results
 Removal of inhibition to the Reticular facilitatory area
 - Removal of inhibition to the γ efferents
 - y efferent discharge is increased
 - Muscle spindle sensitivity increased
 - Reflexes become hyperactive- Exaggerated reflexes
 - Muscle tone become increased

Removal of inhibition to the vestibular nuclei

- Facilitation of stretch reflex
- Increased excitability of alpha motor neurons
- Resulting rigidity