Interpretable & Efficient Deep RL for Autonomous Driving

Mohammadamin Kiani, Danial Parnian

Department of Computer Engineering, Sharif University of Technology {mohammadamin.kiani01, danial.parnian01}@sharif.edu

Interpretable & Efficient Deep RL for Autonomous Driving

Mohammadamin Kiani Danial Parnian Deep Reinforcement Learning, September 2025

Motivation & Problem

- · End-to-end RL can adapt but tends to be black-box; safety/legal require interpretability.
- · Two complementary angles:
- -(A) Latent world-model + MaxEnt RL: interpretable perception via decoded bird's-eye masks.
- (B) ICCT: interpretable control via small crisp trees with sparse linear leaves.
- Goal: trustworthy, robust urban driving fast learning, safe behavior, human-auditable decisions.

(A) Latent MaxEnt RL: Formulation

MDP: $\mathcal{M} = (S, A, R, T, \gamma, \rho_0)$, policy $\pi(a|s)$. MaxEnt RL in latent state z;:

$$\max_{A} \mathbb{E}\left[\sum_{i=1}^{H} \tau(z_i, a_i) - \log \pi_{\phi}(a_i | z_i)\right]$$

(Optimized with SAC for stability/exploration.) Mask quality (avg. pixel diff.): $e = \frac{1}{N} \sum_{i} \frac{|\phi_{i} - \phi_{i}|}{|\phi_{i} - \phi_{i}|}$

Model & Decoder

Chen Fig. 4: Sequential latent model with policy in z_i and mask decoder.

Chen Fig. 6: Bird's-eye semantic mask (map, route, objects, ego).

- Multi-modal inputs (camera+LiDAR) → compact z_t.
- Decode z, to a 64×64×3 mask to explain perception.
- Train jointly: variational acquential model + SAC on z_i; mask supervised only during training.
- · Roward shaping: lane-keeping, speed compliance, collision/lat-accel penalties.

Results & Failure Modes

Chen Ftg. 9: Reconstructions

- Chen Ptg. 8: Learning curves,
- · Latent-RL variants learn faster and reach higher saymptotes than classic deep RL ba
- Masks remain faithful (mean error ≈ 0.032), enabling human inspection.
- · Fatluros: Rare/occluded objects can degrade maste, preceding control errors.

(B) ICCT: Interpretable Control via Differentiable Trees

Goal: Directly learn a policy $\pi_{\theta}(a|s)$ represented as a small, human-readable decision tree.

- Interpretable Continuous Control Tree (ICCT): A tree where • Decision nodes are crisp rules on a single state feature: $z_k > b_k$
- Leaf nodes are sparse linear controllers: $a_d = z : \beta_d x_j + \delta_d$

Key Idea: Differentiable Crispification. To enable gradient-based RL, the model uses a "fuzzy" form during training that can be converted to a 'crisp' interpretable form. This process is made differentiable.

Paleja Ftq. 1: The ICCT framework

Differentiable Tree-Building:

- I. Node Crispification: A differentiable 'one-hot' function selects the single most important feature for the decision
- 2. Outcome Crispification: A second 'one-hot' function converts the sigmoid probability into a hard left/right branch
- 3. Sparse Leaf Controller: A 'k-hot' selection identifies the most salient features for the linear controller at each leaf. This allows direct optimization of a transparent policy using standard RL algorithms like SAC.

Algorithm 1: ICCT Action Choice

Input: ICCT I(-), state x, sparsity e, training flag t Output: action a

1: NODE CRISP: $\sigma(\alpha(\mathbf{w}^T\mathbf{x} = b)) \rightarrow \sigma(\alpha(w_k \mathbf{z}_k = b))$

2 DUTCOME_CRISP: $\sigma(...) \rightarrow 1(\alpha(w_k x_k - b) > 0)$

3 L ← INTERPRETABLE MODE ROUTING(x)

 $4: I_c^* \leftarrow \text{ENFORCE CONTROLLER SPARSITY}(e, l_d)$

5: If training flag t is TRUE then

6: Sample a $\sim \mathcal{N}(l_d^r(\mathbf{x}), \gamma_d)$ (exploration)

 $2: a \leftarrow E(x)$ (exploitation)

9: end if

ICCT Results

ICCTs produce policies that are not only interpretable but also high-performing and efficient.

Paleja Ftg. 5: Physical robot demonstration of an ICCT policy controlling a vehicle in a 14-car traffic scenario

Quantitative Highlights:

- · High Performance: Matches or outperforms deep black-box models (MLPs) by up to 33% in complex au-
- · Extreme Parameter Efficiency: Achieves top performance with a 300x-600x reduction in the number of policy parameters compared to deep learning baselings
- · Verifiable & Robust: The simple tree structure is amenable to formal verification and was demonstrated on a 14-ear physical robot platform, proving real-world applicability.

Methodology Comparison:

Both papers target interpretability in AD, but focus on different parts of the problem:

Paper (A) - Latent MaxEnt RL:

- · Focus: Interpretable Perception.
- · Answers: "What does the agent see?"
- Method: Learns a compressed latent state z_t and uses a decoder to translate it into a human-understandable
- Limitation: The control policy \u03c4(a|z_i) is still a black-box MLP.

Paper (B) - ICCT:

· Focus: Interpretable Control

- · Answers: "Why did the agent take this action?"
- · Method: The policy itself is a white-box docision tree. The path from state to action is explicit and transable.
- · Limitation: Assumes a pre-processed, meaningful state vector.

Synergy: The two approaches are highly complementary. One could build a fully interpretable system by using model (A) to generate semantic features from naw sensor data, which are then fed into the transparent ICCT policy (B).

References

Chen, Li, Tomizuka. Interpretable End-to-End Urban Autonomous Driving with Latent arXiv:2001.08726 (2020).

arXiv:2001.05726 (2020).
[2] Falsa, Ni, Shu, et al. Learning Interpretable, High-Performing Policies for Autonomous Driving.
arXiv:2506.02302 (2023).
[3] Frahach, Avi, et al. Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep
Reinforcement Learning and Demonstrations. arXiv:2206.18306 (2022).

Motivation & Problem

- End-to-end RL can adapt but tends to be black-box; safety/legal require interpretability.
- Two complementary angles:
 - -(A) Latent world-model + MaxEnt RL: interpretable perception via decoded bird's-eye masks.
 - $-(\mathbf{B})$ **ICCT**: interpretable *control* via small crisp trees with sparse linear leaves.
- Goal: **trustworthy**, **robust** urban driving fast learning, safe behavior, human-auditable decisions.

(A) Latent MaxEnt RL: Formulation

MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, R, T, \gamma, \rho_0 \rangle$, policy $\pi(a \mid s)$.

MaxEnt RL in latent state z_t :

$$\max_{\phi} \mathbb{E} \left[\sum_{t=1}^{H} r(z_t, a_t) - \log \pi_{\phi}(a_t \,|\, z_t) \right]$$

(Optimized with SAC for stability/exploration.)

Mask quality (avg. pixel diff.): $e = \frac{1}{N} \sum_{i} \frac{\|\hat{m}_{i} - m_{i}\|_{1}}{W \times H \times C}$

Model & Decoder

Chen Fig. 4: Sequential latent model with policy in z_t and mask decoder.

Chen Fig. 6: Bird's-eye semantic mask (map, route, objects, ego).

Key points

- Multi-modal inputs (camera+LiDAR) \rightarrow compact z_t .
- Decode z_t to a $64 \times 64 \times 3$ mask to explain perception.
- Train jointly: variational sequential model + SAC on z_t ; mask supervised only during training.
- Reward shaping: lane-keeping, speed compliance, collision/lat-accel penalties.

Results & Failure Modes

Chen Fig. 9: Reconstructions.

Chen Fig. 8: Learning curves.

- Latent-RL variants learn **faster** and reach **higher** asymptotes than classic deep RL baselines.
- Masks remain faithful (mean error ≈ 0.032), enabling human inspection.
- Failures: Rare/occluded objects can degrade masks, preceding control errors.

(B) ICCT: Interpretable Control via Differentiable Trees

Goal: Directly learn a policy $\pi_{\theta}(a|s)$ represented as a small, human-readable decision tree.

Interpretable Continuous Control Tree (ICCT): A tree where:

- Decision nodes are crisp rules on a *single* state feature: $x_k > b_i$.
- Leaf nodes are sparse linear controllers: $a_d = \sum \beta_{dj} x_j + \delta_d$.

Key Idea: Differentiable Crispification. To enable gradient-based RL, the model uses a "fuzzy" form during training that can be converted to a "crisp" interpretable form. This process is made differentiable.

Paleja Fig. 1: The ICCT framework.

Differentiable Tree-Building:

- 1. Node Crispification: A differentiable 'one-hot' function selects the single most important feature for the decision rule.
- 2. Outcome Crispification: A second 'one-hot' function converts the sigmoid probability into a hard left/right branch decision.
- 3. Sparse Leaf Controller: A 'k-hot' selection identifies the most salient features for the linear controller at each leaf. This allows direct optimization of a transparent policy using standard RL algorithms like SAC.

Algorithm 1: ICCT Action Choice

```
Input: ICCT \mathcal{I}(\cdot), state \mathbf{x}, sparsity e, training flag t Output: action \mathbf{a}
1: NODE_CRISP: \sigma(\alpha(\tilde{\mathbf{w}}^T\mathbf{x}-b)) \to \sigma(\alpha(w_kx_k-b))
2: OUTCOME_CRISP: \sigma(\ldots) \to \mathbf{1}(\alpha(w_kx_k-b)>0)
3: l_d \leftarrow \text{INTERPRETABLE\_NODE\_ROUTING}(\mathbf{x})
4: l_d' \leftarrow \text{ENFORCE\_CONTROLLER\_SPARSITY}(e, l_d)
5: if training flag t is TRUE then
6: Sample \mathbf{a} \sim \mathcal{N}(l_d'(\mathbf{x}), \gamma_d) (exploration)
7: else
8: \mathbf{a} \leftarrow l_d'(\mathbf{x}) (exploitation)
9: end if
```

ICCT Results

ICCTs produce policies that are not only interpretable but also high-performing and efficient.

Paleja Fig. 5: Physical robot demonstration of an ICCT policy controlling a vehicle in a 14-car traffic scenario.

Quantitative Highlights:

- High Performance: Matches or outperforms deep black-box models (MLPs) by up to 33% in complex autonomous driving scenarios.
- Extreme Parameter Efficiency: Achieves top performance with a 300x-600x reduction in the number of policy parameters compared to deep learning baselines.
- Verifiable & Robust: The simple tree structure is amenable to formal verification and was demonstrated on a 14-car physical robot platform, proving real-world applicability.

Methodology Comparison:

Both papers target interpretability in AD, but focus on different parts of the problem.

Paper (A) - Latent MaxEnt RL:

- Focus: Interpretable Perception.
- Answers: "What does the agent see?"
- Method: Learns a compressed latent state z_t and uses a decoder to translate it into a human-understandable bird's-eye view mask.
- Limitation: The control policy $\pi(a|z_t)$ is still a black-box MLP.

Paper (B) - ICCT:

- Focus: Interpretable Control.
- Answers: "Why did the agent take this action?"
- Method: The policy itself is a white-box decision tree. The path from state to action is explicit and traceable.
- Limitation: Assumes a pre-processed, meaningful state vector.

Synergy: The two approaches are highly complementary. One could build a fully interpretable system by using model (A) to generate semantic features from raw sensor data, which are then fed into the transparent ICCT policy (B).

References

- [1] Chen, Li, Tomizuka. Interpretable End-to-End Urban Autonomous Driving with Latent Deep RL. arXiv:2001.08726 (2020).
- [2] Paleja, Niu, Silva, et al. Learning Interpretable, High-Performing Policies for Autonomous Driving. arXiv:2202.02352 (2023).
- [3] Prakash, Avi, et al. Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations. arXiv:2205.15805 (2022).