List of Todos

Lemma 0.1. [Proposition 5.2 Analog] The elements t_i , for i a vertex of Γ , satisfy the relations (R2) and (R3).

After Lemma ?? we have left to check the relations (R2) when both i and j are connected to k and the relations (R3). Beginning with the relations (R2), and following cases a-f from Corollary 2.3 in Barot and Marsh:

a) i)

$$t_i t_j = s_k s_i s_k^{-1} s_k s_j s_k^{-1} = s_k s_i s_j s_k^{-1} = s_k s_j s_i s_k^{-1} = t_j t_i$$

ii)

$$t_i t_j = s_i s_j = s_j s_i = t_j t_i$$

b) i)

$$t_{i}t_{j}t_{i} = s_{k}s_{i}s_{k}^{-1}s_{j}s_{k}s_{i}s_{k}^{-1}$$

$$= s_{k}s_{i}s_{j}s_{k}s_{j}^{-1}s_{i}s_{k}^{-1}$$

$$= s_{k}s_{j}s_{i}s_{k}s_{i}s_{j}^{-1}s_{k}^{-1}$$

$$= s_{k}s_{j}s_{k}s_{i}s_{k}s_{j}^{-1}s_{k}^{-1}$$

$$= s_{j}s_{k}s_{j}s_{i}s_{j}^{-1}s_{k}^{-1}s_{j}$$

$$= s_{j}s_{k}s_{i}s_{k}^{-1}s_{j}$$

$$= s_{j}s_{k}s_{i}s_{k}^{-1}s_{j}$$

$$= t_{i}t_{j}t_{i}$$

$$t_{j}t_{k}^{-1}t_{i}t_{k} = s_{j}s_{k}^{-1}s_{k}s_{i}s_{k}^{-1}s_{k}$$

$$= s_{j}s_{i}$$

$$= s_{i}s_{j}$$

$$= t_{k}^{-1}t_{i}t_{k}t_{j}$$

ii)

$$t_i t_j = s_i s_k s_j s_k^{-1} = s_i s_j^{-1} s_k s_j = s_j^{-1} s_k s_j s_i = s_k s_j s_k^{-1} s_i = t_j t_i$$

c) i)

$$t_i t_j = s_k s_i s_k^{-1} s_k s_j s_k^{-1} = s_k s_i s_j s_k^{-1} = s_k s_j s_i s_k^{-1} = t_j t_i$$

ii)
$$t_i t_j = s_i s_j = s_j s_i = t_j t_i$$

2

$$\begin{split} t_i t_j t_i t_j t_i^{-1} t_i^{-1} t_i^{-1} t_j^{-1} &= s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} s_j s_k s_i^{-1} s_k^{-1} s_j^{-1} s_k s_i^{-1} s_k^{-1} s_j^{-1} \\ &= s_k s_i s_k^{-1} s_j s_k s_i s_j s_k s_j^{-1} s_i^{-1} s_j s_k^{-1} s_j^{-1} s_i^{-1} s_k^{-1} s_j^{-1} \\ &= s_k s_i s_k^{-1} s_k s_j s_k s_i s_k s_i^{-1} s_k^{-1} s_j^{-1} s_k^{-1} s_j^{-1} \\ &= s_k s_j s_i s_k s_i s_k s_i^{-1} s_k^{-1} s_i^{-1} s_k^{-1} s_j^{-1} s_k^{-1} \\ &= s_k s_j s_i s_k s_i s_k s_i^{-1} s_k^{-1} s_i^{-1} s_k^{-1} s_j^{-1} s_k^{-1} \\ &= e \end{split}$$

We also have

$$t_j t_k^{-1} t_i t_k = s_j s_k^{-1} s_k s_i s_k^{-1} s_k = s_i s_j = t_k^{-1} t_i t_k t_j$$

ii)

$$t_{i}t_{j} = s_{i}s_{k}s_{j}s_{k}^{-1}$$

$$= s_{i}s_{j}^{-1}s_{k}s_{j}$$

$$= s_{j}^{-1}s_{k}s_{j}s_{i}$$

$$= s_{k}s_{j}s_{k}^{-1}s_{i}$$

$$= t_{j}t_{i}$$

e) i)

$$\begin{split} t_i t_j t_i t_j t_i^{-1} t_i^{-1} t_i^{-1} t_j^{-1} &= s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} s_j s_k s_i^{-1} s_k^{-1} s_j^{-1} s_k s_i^{-1} s_k^{-1} s_j^{-1} \\ &= s_i^{-1} s_k s_i s_j s_i^{-1} s_k s_i s_j s_i^{-1} s_k^{-1} s_i s_j^{-1} s_i^{-1} s_i^{-1} s_k^{-1} s_i s_j^{-1} \\ &= s_i^{-1} s_k s_j s_k s_j s_k^{-1} s_j^{-1} s_k^{-1} s_j^{-1} s_i \\ &= e \end{split}$$

We also have

$$t_j t_k^{-1} t_i t_k = s_j s_k^{-1} s_k s_i s_k^{-1} s_k = s_j s_i = s_i s_j = t_i t_j$$

ii)

$$\begin{split} s_k^{-1} t_i t_j t_i^{-1} t_j^{-1} s_k &= s_k^{-1} s_i s_k s_j s_k^{-1} s_i^{-1} s_k s_j^{-1} \\ &= s_i s_k s_i^{-1} s_j s_i s_k^{-1} s_i^{-1} s_j^{-1} \\ &= e \end{split}$$

f) i)

$$\begin{aligned} s_k^{-1} t_i t_j t_i t_j^{-1} t_i^{-1} t_j^{-1} &= s_i s_k^{-1} s_j s_k s_i s_k^{-1} s_j^{-1} s_k s_i^{-1} s_k^{-1} s_j^{-1} s_k \\ &= e \end{aligned}$$

$$t_{i}t_{j}^{-1}t_{k}t_{j}t_{i}^{-1}t_{j}^{-1}s_{k}^{-1}t_{j} = s_{k}s_{i}s_{k}^{-1}s_{j}^{-1}s_{k}s_{j}s_{k}s_{i}^{-1}s_{k}^{-1}s_{k}^{-1}s_{k}^{-1}s_{k}^{-1}s_{k}^{-1}s_{k}^{-1}s_{j}^{-1}s_{k}^$$

ii) This follows from part (i) by symmetry