

Приставки для единиц измерения количества информации/данных: проблема

Linux Ubuntu 14

Microsoft Windows 7

33 097 216 байт — это **33,1** МБ или **31,5** МБ?

Приставки для единиц измерения количества информации/данных: решение

- **1.** IEEE 1541-2002 Институт инженеров по электротехнике и радиоэлектронике.
- 2. ISO/IEC 80000-13:2008 Международная организация по стандартизации.
- 3. ГОСТ ІЕС 60027-2-2015 Международная электротехническая комиссия.

Приставки единиц СИ	Новые двоичные префиксы	Δ ,%
килобайт (kB) = 10 ³ байт	кибибайт (КіВ, КиБ) = 2¹º байт	2
мегабайт (MB) = 10 ⁶ байт	мебибайт (МіВ, МиБ) = 2 ²⁰ байт	5
гигабайт (GB) = 10 ⁹ байт	гибибайт (GiB, ГиБ) = 2³0 байт	7
терабайт (ТВ) = 10 ¹² байт	тебибайт (ТіВ, ТиБ) = 2 ⁴⁰ байт	10

Краткое обозначение битов и байтов: b = bit = бит, B = Б = байт 1024 B = 1024 Б = 8192 b = 8192 бит = 8 Кибит = 1 КиБ = 1 КіВ

Приставки для единиц измерения количества информации/данных: детали

Полное произношение названий приставок

З КиБ = «три кибибайта» = «три килобинарных (kilobinary) байта».

7 Гибит = «семь гибибитов» = «семь гигабинарных (gigabinary) битов».

Сложившаяся практика использования приставок

Объем памяти (HDD, RAM, Cache): 512 KiB = 524 288 bytes.

Скорость передачи данных: 512 kbps = 512 000 bps = 512 000 бит/с.

Типовая задача

Сколько мегабит содержится в двух гигабинарных байтах?

$$2\Gamma$$
иБ = $2 \cdot 2^{30}$ Б = $16 \cdot 2^{30}$ бит = $\frac{16 \cdot 2^{30}}{1000000}$ Мбит ≈ 17180 Мбит (округл.)

Системы счисления: историческая справка

Основание	Кто и как использовал		
нет	Австралийские племена	3=два-один, 4=два-два, 5=два-два-один, 6=два-два-два, 7=много	
5	Африканские племена		
12	Тибетцы, нигерийцы		
20	Индейцы Майя, кельты		
60	Вавилоняне, шумеры		
10	5 век (Индия) 16 век (Европа) 17 век (Россия)		

$$X_{(q)} = X_{n-1}X_{n-2}X_1X_0, X_{-1}X_{-2}X_{-m}$$

 $X_{(q)}$ — запись числа в системе счисления с основанием q;

 x_i — натуральные числа меньше q, т.е. цифры;

n — число разрядов целой части;

т - число разрядов дробной части.

$$X_{(q)} = x_{n-1}q^{n-1} + x_{n-2}q^{n-2} + ... + x_1q^1 + x_0q^0 + x_{-1}q^{-1} + x_{-2}q^{-2} + ... + x_{-m}q^{-m}$$

$$X_{(q)} = \sum_{i=-m}^{n-1} x_i \cdot q^i$$

ПРИМЕРЫ:
$$123_{(4)} = 1*4^2 + 2*4 + 3$$
 (если основание СС не указано => 10-ричная СС) $456,78_{(10)} = 4*10^2 + 5*10^1 + 6*10^0 + 7*10^{-1} + 8*10^{-2}$

Перевод из одной СС в другую. Пример 1

$$231_{(10)} = ABC_{(10)} = ...HGFE_{(8)} = ...+ H*8³ + G*8² + F*8 + Е, при натуральных H, G, F, E < 8.$$
 Как найти E, F, G, H?

Решение: (...+
$$H*8^3 + G*8^2 + F*8 + E$$
)/8 = ...+ $H*8^2 + G*8^1 + F$ (плюс остаток E) => (... $HGFE_{(8)}$)/8 = ... $HGF_{(8)}$ (с остатком E)

Номер шага (<i>i</i>)	0	1	2	3	4	•••
Частное от деления на 8	231	28	3	0	0	0
Остаток от деления на 8	0	7	4	3	0	0

OTBET: E=7, F=4, G=3, H=0.
$$231_{(10)} = 347_{(8)}$$

Задача: $231_{(10)} = ?_{(2)}$

Ход решения →

OTBET: $231_{(10)} = 11100111_{(2)}$

Задача:
$$0.15_{(10)} = ?_{(3)} = 0.$$
ABCD... $_{(3)} = A/3^1 + B/3^2 + C/3^3 + D/3^4 + ...$

Решение:
$$(A/3^1 + B/3^2 + C/3^3 + D/3^4 + ...)*3 = A*3^0 + (B/3^1 + C/3^2 + D/3^3 + ...)$$

$$=> 3*0,ABCD..._{(3)} = A,BCD..._{(3)}$$

Номер шага (<i>i</i>)	0	1	2	3	4	5	•••
Целая часть после умножения дробной части на 3	0	0	1	1	1	0	
Дробная часть после умножения на 3	0,15	0,45	0,35	0,05	0,15	0,45	

OTBET:
$$0.15_{(10)} = 0.011101110..._{(3)} = 0.01111_{(3)}$$

Задача: $0,8125_{(10)} = ?_{(2)}$

Ход решения →

0	8125
	2
1	, 625
	2
1	, 250
	2
0	,5
	2
1	0

OTBET: $0.8125_{(10)} = 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-4} = 0.1101_{(2)}$

$$231_{(10)} = 11100111_{(2)}$$

$$0,8125_{(10)} = 0,1101_{(2)}$$

$$231,8125_{(10)} = 11100111,1101_{(2)}$$

Перевод из СС с основанием 2 в СС с основанием 4

Сложный путь: 1) CC-2 -> CC-10: $10100_{(2)} = 20_{(10)}$

2) CC-10 -> CC-4: $20_{(10)} = 110_{(4)} => 10100_{(2)} = 110_{(4)}$

Примечание: «СС-*N*» означает «система счисления с основанием *N*»

Простой путь:

$$x_{i+1}2^{i+1} + x_{i}2^{i} + \dots + x_{3}2^{3} + x_{2}2^{2} + x_{1}2^{1} + x_{0}2^{0}$$

$$x_{2k+1}2^{2k+1} + x_{2k}2^{2k} + \dots + x_{3}2^{2*1+1} + x_{2}2^{2*1} + x_{1}2^{1} + x_{0}2^{0}$$

$$2^{2k}(x_{2k+1}2^{1} + x_{2k}) + \dots + 2^{2}(x_{3}2^{1} + x_{2}) + 2^{0}(x_{1}2^{1} + x_{0})$$

$$4^{k}(x_{2k+1}2^{1} + x_{2k}) + \dots + 4^{1}(x_{3}2^{1} + x_{2}) + 4^{0}(x_{1}2^{1} + x_{0})$$

Преобразование из СС-2 в СС-2^k и обратно

Двоичная <-> Четверичная	Двоичная <-> Восьмеричная	Двоичная <-> Шестнадцатеричная
00 <-> 0	000 <-> 0	0000 <-> 0
01 <-> 1	001 <-> 1	0001 <-> 1
10 <-> 2	010 <-> 2	0010 <-> 2
11 <-> 3	011 <-> 3	0011 <-> 3
	100 <-> 4	•••
	101 <-> 5	1101 <-> D
	110 <-> 6	1110 <-> E
	111 <-> 7	1111 <-> F

Пример: 1111110001,1110001 $_{(2)}$ = 0011 1111 0001,1110 0010 $_{(2)}$ = 3F1,E2 $_{(16)}$

Преобразование из СС-N в СС-N^k и обратно

Из CC-N в CC-Nk

- дополнить число, записанное в СС с основанием N, незначащими нулями так, чтобы количество цифр было кратно k;
- разбить полученное число на группы по k цифр, начиная от нуля;
- заменить каждую такую группу эквивалентным числом, записанным в СС с основанием N^k .

Задача: $1020101_{(3)} = ?_{(27)}$

Решение: $1020101_{(3)} = 001 020 101_{(3)} = 16A?_{(27)}$

Из CC-N^k в CC-N

• заменить каждую цифру числа, записанного в СС с основанием N^k , эквивалентным набором из k цифр СС с основанием N.

Задача: $2345_{(125)} = ?_{(5)}$

Решение: $2345_{(125)} = 002\ 003\ 004\ 010_{(5)} = 2003004010_{(5)}$

Задача. Робинзон Крузо нашёл на острове 60 камней. Сколько прошедших дней можно ими закодировать в разных СС?

Пример СС-10:

463502-й день из 999999 возможных, где 999999 = 10⁶ - 1

Возможные варианты в других СС:

 2^{30} , 3^{20} , 4^{15} , 5^{12} , 6^{10} , 7^{8} , 8^{7} , 9^{6} , 10^{6} , 11^{5} , 12^{5} , ..., 20^{3} , ..., 30^{2} , ..., 60^{1}

В какой СС количество кодируемых дней наибольшее?

Оптимальная система счисления (продолжение)

Если взять N камней, а за основание СС принять число X, то получится N/X разрядов, которыми можно закодировать $y=X^{N/X}$ дней (для простоты полагаем, что количество разрядов может быть нецелым).

Вывод: оптимальная система счисления имеет основание e=2,7183...

Каким может быть основание позиционной СС?

$$X_{(q)} = \sum_{k=-m}^{n-1} d_k \cdot q^k$$

m — количество цифр справа от запятой,

n — количество цифр слева от запятой,

 $d_{_{\scriptscriptstyle k}}$ — цифра числа, стоящая на k-й позиции,

q — основание системы счисления.

Пример: **789,13**₁₀ = **7***10² + **8***10¹ + **9***10⁰ + **1***10⁻¹ + **3***10⁻²

Что если *q* отрицательно? иррационально? переменно?

Система счисления Бергмана

Любое действительное число можно представить в виде

$$x = \sum_{k=-m}^{n-1} d_k \cdot z^k$$
, где $d_k \in \{0,1\}$, $z = \frac{1+\sqrt{5}}{2}$

Джорж Бергман (р. 1943)

m — количество цифр справа от запятой, n — количество цифр слева от запятой, d_{k} — цифра числа, стоящая на k-й позиции, z — число золотой пропорции. Запись числа x в системе Бергмана имеет вид : $x_{(E)} = d_{n-1} \dots d_{2} d_{1} d_{0}$, $d_{-1} d_{-2} d_{-3} \dots d_{-m} {}_{(E)}$

$$2_{(10)} = 10,01_{(5)} = z^{1}+z^{-2}$$

$$3_{(10)} = 11,01_{(5)} = z^{1}+z^{0}+z^{-2}$$

$$3_{(10)} = 100,01_{(5)} = z^{2}+z^{-2}$$

Чтобы исключить неоднозначность, используют запись с наибольшим количеством разрядов, т. е. $3_{_{(10)}} = 100,01_{_{(5)}}$

Применение: запись иррациональных чисел конечным числом цифр: $10_{(5)} = 2,61803399...$, контроль арифметических операций, коррекция ошибок, самосинхронизация кодовых последовательностей при передаче по каналу связи.

Система счисления Цекендорфа (фибоначчиева СС)

Любое целое число можно представить в виде

$$x = \sum_{k=1}^{n} d_k F_k$$
, где $d_k \in \{0,1\}$, а F_k – числа Фибоначчи (ЧФ)

Эдуард Цекендорф (1901-1983)

n — количество цифр в записи числа, $d_{_k}$ — цифра числа, стоящая на k-й позиции, каждое ЧФ есть сумма двух предыдущих ЧФ: $F_{_i}$ = {1, 1, 2, 3, 5, 8, 13, ...} , где i = 0, 1,... . Запись числа x в системе Цекендорфа будет иметь вид $x_{(\amalg)} = d_n d_{n-1} \dots d_{1(\amalg)}$

Проблема неуникальности: 16 = 8 + 5 + 2 + 1 = 13 + 3, т.е. $16 = 11011_{(L)} = 100100_{(L)}$. Чтобы исключить неоднозначность, введён запрет на использование двух единиц подряд: т. е. $16_{(10)} = 100100_{(L)}$, а запись $11011_{(L)}$ считается ошибочной!

Применение: минимизация числа зёрен маиса в счётах у инков, кодирование данных с маркером завершения «11».

Любое целое число можно представить в виде

$$x = \sum_{k=1}^{n} d_k k!$$
, где $0 \le d_k \le k$, $k! = 1 \cdot 2 \cdot 3 \cdot ... \cdot k$.

n — количество цифр в записи числа, d_{ν} — цифра числа, стоящая на k-й позиции,

Запись числа х в факториальной системе счисления будет иметь вид:

$$x_{(\Phi)} = d_n d_{n-1} \dots d_{1(\Phi)}.$$

Примеры:
$$310_{(\Phi)} = 3*3! + 1*2! + 0*1! = 201_{(10)}$$

$$106_{(10)} = d_5*5! + d_4*4! + d_3*3! + d_2*2! + d_1*1! = ... \text{подбор } d_1, d_2, d_3, d_4, d_5 ... = 0 *5! + 4 *4! + 1 *3! + 2 *2! + 0 *1! = 4120_{(\Phi)}$$

Перевод чисел из СС-10 в факториальную СС

Дано:
$$x = d_4 d_3 d_2 d_{1(\Phi)} = (2 \cdot 3 \cdot 4) d_4 + (2 \cdot 3) d_3 + (2) d_2 + (1) d_1$$
.

- 1) $(x \operatorname{div} 2) = (3.4)d_4 + (3)d_3 + d_5$ (и остаток, равный d_1).
- 2) $(x \operatorname{div} 2) \operatorname{div} 3 = (4) d_4 + d_3$ (и остаток, равный d_2).
- 3) $((x \operatorname{div} 2) \operatorname{div} 3) \operatorname{div} 4 = d_4 (и остаток, равный <math>d_3).$
- 4) $(((x \operatorname{div} 2)\operatorname{div} 3)\operatorname{div} 4)\operatorname{div} 5 = 0$ (и остаток, равный d_{4}).

Примечание: «A div B» означает целочисленное деление A на B.

« $A \mod B$ » означает остаток от деления $A \bowtie B$.

Пример: $106_{(10)} = ?_{(\Phi)}$

- 1) $106 \mod 2 = 53$, $d_1 = 106 \mod 2 = 0$
- 2) $53 \mod 3 = 17$, $d_2 = 53 \mod 3 = 2$
- 4) $4 \mod 5 = 0$, $d_4 = 4 \mod 5 = 4$

2) 53 mod 3 = 17,
$$d_2 = 53 \mod 3 = 2$$

3) 17 mod 4 = 4, $d_3 = 17 \mod 4 = 1$ $x_{(\Phi)} = d_4 d_3 d_2 d_{1(\Phi)} = 4120_{(\Phi)}$

Факториальная СС: применение

Проблема: как упорядочить перестановки букв АБВ: 1-АБВ, 2-АВБ, 3-ВБА, 4-ВАБ, 5-БАВ, 6-БВА.

Пример. Пусть имеется n=5 чисел (1,2,3,4,5) и нужно найти все их перестановки. Известно, что всего существует n! = 5! = 120 таких перестановок. Как найти перестановку, если задан её номер k?

Решение. Найдём 21-ю перестановку (k=21). Переведём k в факториальную систему: $21=3*3!+1*2!+1*1!=311_{\scriptscriptstyle(\Phi)}$. Дополним его до (n-1) разрядов: $311_{\scriptscriptstyle(\Phi)}\to0311_{\scriptscriptstyle(\Phi)}$.

Расставим символы по местам:

OTBET: 42315

Значение k	0	1	2	3	***	21	 119
k-я перестановка	12345	21345	13245	23145		42315	 54321

Transcription of the property of the property

СС с отрицательным основанием или цифрами

1. Нега-позиционные (с отрицательным основанием). Примеры в нега-десятичной СС:

•
$$123_{(-10)} = 1 \cdot (-10)^2 + 2 \cdot (-10)^1 + 3 \cdot (-10)^0 = 100 - 20 + 3 = 83_{(10)}$$

•
$$58_{(-10)} = 5 \cdot (-10)^1 + 8 \cdot (-10)^0 = -50 + 8 = -42_{(10)}$$

Числа с чётным количеством цифр — отрицательные.

- **2.** Симметричные (с отрицательными цифрами). Например, в симметричной пятеричной СС вместо привычных цифр {0, 1, 2, 3, 4} используются {-2, -1, 0, 1, 2}:
 - $20\overline{2}10_{(5C)} = (2)\cdot5^4 + (0)\cdot5^3 + (-2)\cdot5^2 + (1)\cdot5^1 + (0)\cdot5^0 = 1250 50 + 5 = 1205_{(10)}$
 - $\overline{2}02\overline{1}0_{(5C)} = (-2)\cdot 5^4 + (0)\cdot 5^3 + (2)\cdot 5^2 + (-1)\cdot 5^1 + (0)\cdot 5^0 = -1250 + 50 5 = -1205_{(10)}$

Симметричные СС определены только для нечётных оснований!

Применение. В негапозиционных и симметричных СС не требуется специального знака для обозначения отрицательных чисел. Это позволяет использовать их для представления отрицательных чисел в компьютерах.

Классическое правило округления – к ближайшему целому:

	Число	Округл.
	1,1	1,0
	2,9	3,0
	5,0	5,0
	3,4	3,0
	8,6	9,0
Сумма	21,0	21,0

	Число	Округл.
	1,5	2,0
	2,5	3,0
	5,5	6,0
	3,5	4,0
	8,5	9,0
Сумма	21,5	24,0

2	<
)
C	2
Ç	5
Č)
Č	
Č	Ó
_	4

Копеечная часть зарплаты	Округление до целых рублей
0,33	0
0,51	1
0,89	1
0,49	0
•••	
0,50	1
0,73	1
0,20	0

VS

Сумма2

В первом столбце из 100 возможных значений только одно приводит к накоплению ошибки в 50 коп., поэтому

В среднем (Сумма2 - Сумма1) = = (10000/100) * 50 коп. = = 50 руб. переплаты!

Проблемы округления чисел в различных СС

В системах счисления с чётным основанием накапливается ошибка округления:

<u>Основание 10</u>: **1, 2, 3, 4**,

← округление в меньшую сторону

5, 6, 7, 8, 9, ← округление в бо́льшую сторону

← нет ошибки округления

В системах счисления с нечётным основанием этой проблемы нет:

Основание 7: **1, 2, 3**

← округление в меньшую сторону

4. 5. 6

← округление в большую сторону

← нет ошибки округления

Актуальна ли проблема накопления ошибки округления для симметричных СС?

Решение проблемы с округлением в СС с чётным основанием

Суть решения — использовать неклассические правила округления:

- Случайное округление: используется датчик случайных чисел при принятии решения о том, в большую или меньшую сторону следует округлять.
- Банковское округление (к ближайшему чётному): $3.5 \approx 4$, но $2.5 \approx 2$.
- **К ближайшему нечётному**: $3,5 \approx 3$, но $2,5 \approx 3$. Аналогично: $4,3_{(6)} \approx 5_{(6)}$.
- **Чередующееся**: направление округления меняется на противоположное при каждой операции округления (необходимо «помнить» о предыдущем округлении).

Примечание. Каждое из правил можно применять как полностью универсально, так и комбинировано с классическим правилом округления, дополняя его лишь при округлении пограничных значений.

Непозиционные системы счисления

Славянская кириллическая нумерация:

A = 1, B = 2, $\Gamma = 3$, $\Delta = 4$...

аддитивная запись

 $444 = YM\Delta$, = $400 (Y) + 40 (M) + 4 (<math>\Delta$).

Китайская нумерация:

аддитивно-мультипликативная запись

444 = 四百四十四 =

= 4*100 + 4*10 + 4

Римская (латинская) нумерация:

CX = 50 + 10 = 60

аддитивно-субтрактивная запись

XC = 50 - 10 = 40

Недостатки непозиционных систем счисления по сравнению с позиционными:

- Сложно выполнять арифметические операции с большими числами.
- Длина записи числа (т. е. количество цифр) немонотонно зависит от его величины.