

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA CR-

(NASA-CR-134424) INVESTIGATION OF SPACE SHUTTLE LAUNCH VEHICLE EXTERNAL TANK NOSE CONFIGURATION EFFECTS (MODEL 67-OTS) IN THE ROCKWELL INTERNATIONAL 7 BY 7 FOOT TRISONIC WIND TUNNEL (IA69) (Chrysler Corp.) 342 p G3/18 06542

N75-14809

Unclas

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER

HOUSTON, TEXAS

DATA MANagement services

DMS-DR-2122 NASA CR-134,424

INVESTIGATION OF SPACE SHUTTLE LAUNCH VEHICLE

EXTERNAL TANK NOSE CONFIGURATION EFFECTS (MODEL 67-OTS)

IN THE ROCKWELL INTERNATIONAL 7- BY 7-FOOT

TRISONIC WIND TUNNEL (IA69)

Ву

Robert Mennell, Robert Rogge Shuttle Aero Sciences Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

Ву

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

Rockwell Trisonic 280

NASA Series Number: IA69 Model Number:

67-0TS

Test Dates:

11 through 14 January 1974

Occupancy Hours:

FACILITY COORDINATOR:

R. B. Russell Mail Code BD02 Rockwell International B-1 Division Los Angeles International Airport Los Angeles, Ca. 90009

Phone: (213) 670-9151 x 3343

PROJECT ENGINEERS:

AERODYNAMICS ANALYSIS ENGINEER:

Robert Rogge, Robert Mennell & Steve Houlihan; Mail Code BD02 Rockwell International Space Div. Los Angeles International Airport Los Angeles, Ca. 90009

Henry G. Webb Mail Code ACO7

Rockwell International Space Div. 12214 Lakewood Blvd.

Downey, Ca. 90241

Phone: (213) 670-9151 x 3343

Phone: (213) 922-2702

DATA MANAGEMENT SERVICES

Prepared by: Liaison -- V. W. Sparks, D. A. Sarver

Operations -- M. M. Moser, Jr.

Reviewed by: G. G. McDonald, J. L. Glynn

Approved:

N. D. Kemp, Manager

Data Management Services

Concurrence: Z.D. Daniel
Manager
J. G. Swider, Manager

Flight Technology Branch

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

INVESTIGATION OF SPACE SHUTTLE LAUNCH VEHICLE EXTERNAL TANK NOSE CONFIGURATION EFFECTS (MODEL 67-OTS)

TRISONIC WIND TUNNEL (IA69)

By Robert Mennell & Robert Rogge*

ABSTRACT

Experimental aerodynamic investigations were conducted on an 0.015-scale representation of the Space Shuttle Launch Configuration in the Rockwell International Trisonic Wind Tunnel during the time period of January 11 to 14, 1974. The NASA designation for this test period was IA69.

The primary test objectives were to investigate shock wave formation and record the aerodynamic stability and control effects generated by a new external tank nose configuration (MCR 467) at a Mach number of 1.2. Schlieren photographs were taken at angles of attack of -4°, 0°, and 4°, $\beta = 0^{\circ}$ with force and pressure data recorded over the alpha range of $-4^{\circ} \le \alpha < 4^{\circ}$ at $\beta = \pm 4^{\circ}$.

The launch configuration model, consisting of the VL70-000140A/B Orbiter, the VL78-000041B ET, and the VL77-000036A SRBs, was sting mounted on a 2.5-inch Task type internal balance entering through the ET base region. Wing, body, and base pressure lines for all orifices were routed internally through the model to the sting support system. Parametric variation consisted only of altering the ET nose configuration.

^{*} Rockwell International Space Division

(THIS PAGE INTENTIONALLY LEFT BLANK)

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	3
NOMENCLATURE	5
CONFIGURATIONS INVESTIGATED	. 10
TEST FACILITY DESCRIPTION	13
DATA REDUCTION	15
TABLES	
I. TEST CONDITIONS	18
II. RUN NUMBER/DATA SET COLLATION SUMMARY	19
III. MODEL DIMENSIONAL DATA	20
IV. PRESSURE INSTRUMENTATION	47
FIGURES	
MODEL	48
DATA	61
APPENDICES	•
A. TABULATED SOURCE DATA - FORCE	
B. TABULATED SOURCE DATA - PRESSURE	

INDEX OF MODEL FIGURES

Figure	Title	Page
1.	Axis systems.	48
2.	Model sketches.	
a	. Mated Vehicle	49
b	. Orbiter Three View	50
C	. Aft Orbiter/ET Attach Hardware	51
d.	Front Orbiter/ET Attach Hardware	52
e.	. External Tank, T ₁₂	53
f.	External Tank Nose Variation, T ₁₉	54
g.	Solid Rocket Booster, S ₁₂	55
h.	Definition of Model Base and Cavity Areas	56
i.	Base Pressure Tap Locations	57
j.	Wing Pressure Orifice Locations	58
k.	Fuselage Pressure Orifice Locations	59
3.	Model photographs.	
a.	Front View, TWT Installation Configuration 0 ₁ T ₄ S ₁ P ₂ P ₇	60
b.	Front View, TWT Installation Configuration O, T, S, P, Pc	60

INDEX OF DATA FIGURES

FIGURE	TITLE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	PAGES
	FORCE DATA			
4	Effect of External Tank Nose Configuration, Longitudinal Char.	A B C	CONF. CONF. CONF.	1-5 6 7
5	Effect of External Tank Nose Configuration, Lat./Dir. Char., Beta = 0 and +4	D	CONF., β	8
6	Effect of External Tank Nose Configuration, Lat./Dir. Char., Beta = 0 and -4	D	CONF., B	9
	PRESSURE DATA			
7	Effect of External Tank Nose Config. On Orbiter Pressures, Beta = 0, -4			
	· - Wing Top	E	CONF., β, α, 2Y/B	1-6
	- Wing Bottom	E F	CONF., β, α, X/C CONF., β, α, 2Y/B CONF., β, α, X/C	7-24 25-30 31-45
	- Orbiter Fuselage	G H	CONF., β , α , γ C CONF., β , α , χ /L	46-57 58-75
8	Effect of External Tank Nose Config. on Orbiter Pressures, Beta = 0, +4			
	- Wing Top	E F	CONF., α, β, 2Y/B	76-81
	- Wing Bottom	Ε	CONF., α , β , X/C CONF., α , β , 2Y/B	82-99 100-105
	- Orbiter Fuselage	`F G H	CONF., α, β, X/C CONF., α, β, PHI CONF., α, β, X/L	106-120 121-132 133-150

INDEX OF DATA FIGURES (Concluded)

FIGURE	TITLE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	PAGES
9	Effect of Mach Number on Orbiter Pressure Loading			
	- Wing Top	E F	MACH, α, 2Y/B MACH, α, X/C	151 - 156 157-174
	- Wing Bottom	E F	MACH, α, 2Y/B MACH, α, X/C	175-180 181-195
	- Orbiter Fuselage	G H	MACH, α, PHI MACH, α, X/L	196-207 208-225

PLOTTED COEFFICIENTS SCHEDULE:

- (A): CL, CDF, CN, CA, CAF, CLM VS. ALPHA
- (B): CL VS. CDF AND CLM
- (C): L/DF VS. ALPHA
- (D): CY, CYN, CBL VS. ALPHA
- (E): CP VS. X/C
- (F): CP VS. 2Y/B
- (G): CP VS. X/L
- (H): CP VS. PHI

NOMENCLATURE

<u>Symbol</u>	SADSAC Symbol	<u>Definition</u>
A _b ACPS		attitude control propulsion system base area, ft ² (total for right + left)
A _{bET}		external tank total base area, ft ²
A _b oms		orbital maneuvering system base area, ft ²
A _b ORB		Orbiter total base area, ft ²
A _b SRB	,	SRB shroud base area (minus projected nozzle base area, total for right + left), ft ²
A _b Srbn		SRB nozzle base area, ft ² (total for right + left)
A _{CET}		external tank cavity area, ft ²
^A C _{ET}		Orbiter cavity area, ft ²
C _A BAL		balance chord force coefficient, uncorrected
c _{Ab} acps		chord force coefficient-correction due to ACPS base pressures. (Corrected to P_0 using A_b) ACPS
c _{AbET}		chord force coefficient correction due to ET base pressure. (Corrected to P_0 using $A_{b_{\mbox{\footnotesize ET}}}$)
C _A DOMS		chord force coefficient correction due to OMS base pressure. (Corrected to P_{o} using A_{b}) ρ_{OMS}
c _{Aborb}		chord force coefficient correction due to Orbiter base pressure. (Corrected to P_0 using A_b) ORB

NOMENCLATURE (Continued)

c _{AbSRB}	·	chord force coefficient correction due to SRB shroud base pressure. (Corrected to P_0 using $A_{b \ SRB}$)
C _{Ab} SRBN		chord force coefficient correction due to SRB nozzle base pressure. (Corrected to P_{o} using A_{b}) SRBN
c _{Ac_{ET}}		chord force coefficient correction due to ET cavity pressure. (Corrected to ${\rm P_B}$ using ${\rm A_{C}}_{\rm ET}$
c _{Acorb}	CACORD	chord force coefficient correction due to Orbiter cavity pressure. (Corrected to P_{B} using A_{C}) ORB
$^{C}A_{F}$	CAF	launch vehicle forebody chord force coefficient. (Corrected to P_0)
$^{c}A_{T}$	CA	launch vehicle total chord force coefficient. (Corrected to $P_{\mbox{\footnotesize B}}$)
c _L	CBL	launch vehicle rolling-moment coefficient
c_D	CD	launch vehicle total chord force coefficient. (Corrected to $P_{\rm B}$)
c_{D_F}	CDF	launch vehicle forebody drag coefficient. (Corrected to $P_{\rm o}$)
CL	CL	launch vehicle total lift coefficient. (Corrected to P_{B})
c _r		launch vehicle forebody lift coefficient. (Corrected to $P_{\rm o}$)
c _m	CLM	launch vehicle total pitching-moment coefficient. (Corrected to $P_{\rm B}$)

NOMENCLATURE (Continued)

c _m F		launch vehicle forebody pitching-moment coefficient (Corrected to P_{0})
c_N	CN	launch vehicle normal-force coefficient
c _p i	CP(I)	launch vehicle pressure coefficient at station i
c _y	CY	launch vehicle sideforce coefficient
C _n	CYN	launch vehicle yawing-moment coefficient
i		incidence angle of Orbiter reference plane with respect to ET reference plane, deg.
<i>L</i> _{REF}	L _{REF}	reference length, in
Mo	MACH	tunnel freestream Mach number
MRP(X _T ,Y	′ _T ,Z _T)	moment reference point in ET coordinate system
PB		orbiter base pressure
Pi		model absolute pressure, psfa
Po	PO	tunnel freestream static pressure, psfa
^{P}T	PT	tunnel freestream total pressure, psfa
q .	Q(PSF)	tunnel freestream dynamic pressure, psf
RN	RN/L	tunnel Reynolds number, millions per foot
S _{REF}	S_{REF}	reference area, ft ²
$T_{\mathbf{o}}$	Т0	tunnel freestream static temperature, °R
T _T	TT	tunnel freestream total temperature, °R
		•

NOMENCLATURE (Continued)

W _F i	,	model pressure weighting factor, (either 0 or 1)
X _{CP}	XCP	launch vehicle center of pressure location
X _o		orbiter longitudinal station, in.
X _T		ET longitudinal station, in.
Yo		orbiter spanwise station, in.
Y _T		ET spanwise station, in.
a	ALPHA	launch vehicle angle of attack, deg
β	BETA	launch vehicle angle of sideslip, deg
δa	AILRON	aileron deflection $(\delta_{e_L} - \delta_{e_R})/2$, deg
δ _{BF} .	BDFLAP	body flap deflection, deg.
δ _e	ELEVON	elevon deflection $(\delta_{e_L} + \delta_{e_R})/2$, deg
$^{\delta}R$	RUDDER	rudder deflection, deg
δSB	SPDBRK	speed brake deflection angle, deg
ΛLE		wing leading edge sweep angle, deg
φ .	PHI	radial location of orbiter nose static pressure tap location, deg
a		aileron
ACPS		attitude control propulsion system
BAL		internal balance
e		elevon
ET		external tank
i		model pressure orifice number

NOMENCLATURE (Concluded)

I :	,	inboard
L		left
0		outboard
MPS		main propulsion system
OMS		orbiter maneuvering system
r		rudder
R		right
SRB		solid rocket booster
SRBN		solid rocket booster nozzle
b	BREF	reference span; m, ft, in
	X/L	longitudinal location on orbiter fuselage
η	2Y/B	spanwise location on orbiter wing surface
	X/C	chordwise location on orbiter wing surface
L/D _f	L/DF	lift to forebody drag ratio

CONFIGURATIONS INVESTIGATED

The model used for this test period was an 0.015-scale representation of the Rockwell International Space Shuttle Launch Vehicle consisting of Orbiter, external oxygen-hydrogen tank (ET), and solid rocket boosters (SRB). The VL70-000140A/B Orbiter model was of the blended wing body design utilizing a double delta wing $(75^{\circ}/45^{\circ}\Lambda_{LE})$, full span elevons (unswept hingeline), a centerline vertical tail with rudder and/or speedbrake deflection capability, and an orbital maneuvering system (OMS) mounted on the aft fuselage. The ET, per VL78-000041B, and the SRB's, per VL77-000036A, were designed to incorporate all full scale attach structures, protuberances, fairings, fuel feed and vent lines, etc. The alternate ET nose tested was per model dwg. SS-A01167.

The Orbiter model was constructed primarily of cast aluminum while both the ET and SRB's were of machined aluminum. The ET was designed to accept a sting-mounted 2.5-inch diameter Task type balance for use in force measurement. Orifices were located in the Orbiter, ET, and SRB base regions for use in recording base pressure levels per figures 2h and 2i. Additional pressure orifices were located in the Orbiter per figures 2j and 2k.

The following letter designations were used to describe the various launch vehicle configurations:

Symbol	<u>Definition</u>			
AT ₉	Attach structure-rear SRB/ET per Rockwell lines VL72-000106, model dwg. SS-A01168			
AT ₁₂	Attach structure-left rear ORB/ET per Rockwell lines VL78-000050, model dwg. SS-A01167			

AT 13 Attach structure-right rear ORB/ET per Rockwell lines VL78-000050, model dwg. SS-A01167 AT₁₄ Attach structure-front SRB/ET per Rockwell lines VL77-000051A, model dwg SSA-01168 AT₁₅ Attach structure-front ORB/ET, location per Rockwell lines VL72-000088D, model dwg. SS-A01167 Orbiter fuselage per Rockwell lines VL70-000140A/B, model B₂₆ dwg. SS-A00147 C_{q} Orbiter canopy per Rockwell lines VL70-000140A/B, VL70-000143A, model dwg. SS-A00147 E₂₆ Orbiter full span, unswept hingeline elevons per Rockwell lines VL70-000200, model dwg. \$S-A00148 Orbiter body flap per Rockwell lines VL70-000145, model dwg. F_7 SS-A00147 FL_1 ET/ORB. LOX feed line per Rockwell lines VL78-000050, model dwg. SS-A01167 ET/ORB. LH 2 feed line per Rockwell lines VL78-000050, model FL_2 dwg. SS-A01167 Orbiter OMS/RCS pods per Rockwell lines VL70-000145, model . M₇ dwg. SS-A00147 Orbiter OMS engine nozzles per Rockwell lines VL70-000140A, N₂₈ model dwg. SS-A00147 SRB engine nozzles per Rockwell lines VL77-000036A N₄₁ PS_1 SRB electrical tunnel fairing per model dwg. SS-A01168 PS_2 SRB attach ring per Rockwell lines VL77-000036A, model dwg. SS-A01168 SRB separation rocket fairing per Rockwell lines VL77-000036A, PS_3 model dwg. SS-A01168 ET₁₂ LOX vent line fairing per Rockwell lines VL78-000031A, PT_1 model dwg. SS-A01167 ET LOX feed line per Rockwell lines VL78-000031A, model dwg. PT₂ SS-A01167

PT3 ET LH2 feed line per Rockwell lines VL78-000031A, model dwg. SS-A01167 ET₁₉ LOX vent line per model dwg. SS-A01167 PTR Orbiter rudder per Rockwell lines VL70-000146A, model dwg. R_5 SS-A00148 SRB per Rockwell lines VL77-000036A, model dwg. SS-A01167 S₁₂ T₁₂ ET per Rockwell lines VL78-000041A, model dwg. SS-A01167 nose @ sta. 309.00 ET per model dwg. SS-A01167. Nose @ sta. 324.27 T19 Orbiter centerline vertical tail per Rockwell lines VL70-000146A, ٧8 model dwg. SS-A00148 W₁₁₆ Orbiter double delta wing per Rockwell lines VL70-000200, model dwg. SS-A00148

In order to facilitate the writing of various launch configuration nomenclature, the following abbreviations were used:

Symbol	<u>Definition</u>
01	Orbiter $B_{26} C_9 M_7 N_{28} F_7 W_{116} E_{26} V_8 R_5$
T	External Tank T ₁₂
T ₄	External Tank T ₁₉
s ₁	Solid Rocket Booster S ₁₂ N ₄₁
P ₂	Fairings PS ₁ , PS ₂ , and PS ₃
P ₆	Components PT ₁ , PT ₂ , PT ₃ , AT ₉ , AT ₁₂ , AT ₁₃ , AT ₁₄ , AT ₁₅ , FL ₁ , FL ₂
P ₇	Components PT ₂ , PT ₃ , PT ₈ , AT ₉ , AT ₁₂ , AT ₁₃ , AT ₁₄ , AT ₁₅ , FL ₁ , FL ₂

TEST FACILITY DESCRIPTION

The Rockwell International Trisonic Wind Tunnel is an intermittent blow down facility with a 7- by 7-foot tandem test section capable of testing force, inlet, pressure, and flutter models at Mach numbers from 0.1 to 3.5.

Two synchronous motor driven centrifugal compressors, operating in series, supply dry air at a rate of 40 lb/sec. to eight storage spheres having a total volume of 214,000 ft³. The air is dried to a moisture content of 0.0001 lb. or less of water per lb. of dry air (approx. -35°F dew point) and stored at a pressure of ten atmospheres. Flow from the air storage spheres is regulated by a servo controlled value. The eight-foot diameter valve opens within two seconds to control and stabilize the settling chamber at a preselected pressure.

Downstream of the settling chamber is a fixed nozzle which provides a transition from the circular cross-section of the settling chamber to the rectangular cross-section of the variable nozzle. Two seven-foot wide steel plates, supported between parallel walls by hydraulic jacks, form the floor and ceiling of the flexible nozzle section. Changes in nozzle contour to produce variations in Mach number are accomplished by means of these jacks and require 30 to 50 minutes to complete.

The two test sections for supersonic, transonic, and subsonic testing are 7- by 7-feet and are permanently installed in a tandem arrangment. The standard supersonic test section (for testing at Mach numbers greater than 1.3) is in the downstream end of the flexible nozzle. The test section

for subsonic and transonic operation is located in the downstream end of the porous wall area. An access door to the test section is located in the variable diffuser.

The variable diffuser downstream of the porous wall area may be adjusted to provide subsonic Mach number control, to generate transonic Mach numbers, and to minimize start time for supersonic testing with models having high tunnel blockage.

An equivalent 5° conical expansion angle is provided in a fixed diffuser which completes the basic tunnel circuit. Downstream of the diffuser is a sound abatement muffler building where the air is exhausted to the atmosphere.

DATA REDUCTION

The aerodynamic force and moment data presented were measured by the Task Corporation 2.5-inch diameter MK XB internal strain gage balance. The data have been corrected for orbiter, external tank, and solid rocket booster base pressure drag, sting and balance deflections, and model weight tare.

The corrections to the axial force were accomplished in the following manner.

where
$$\begin{array}{c} c_{A_T} &= c_{A_{BAL}} + c_{A_{C_{ORB}}} + c_{A_{C_{ET}}} \\ c_{A_{C_{ORB}}} &= -c^*_{A_{C_{ORB}}} + c^*_{A_{b_{ORB}}} \\ c_{A_{C_{ET}}} &= -c^*_{A_{C_{ET}}} + c^*_{A_{b_{ET}}} \\ c_{A_{C_{ET}}} &= -c_{P_8} \left(\frac{{}^{A_{C_{ORB}}}}{S_{REF}}\right) \text{ WF}_8 \\ c_{A_{b_{ORB}}} &= -c_{P_1} \left(\frac{{}^{A_{b_{ORB}}}}{S_{REF}}\right) \text{ WF}_1 \\ c_{A_{b_{CET}}} &= -c_{P_9} \left(\frac{{}^{A_{C_{ET}}}}{S_{REF}}\right) \text{ WF}_9 \\ c_{A_{b_{ET}}} &= -c_{P_5} \left(\frac{{}^{A_{C_{ET}}}}{S_{REF}}\right) \text{ WF}_5 \\ c_{P_1} &= \frac{{}^{P_1} - {}^{P_0}}{q}, \text{ where i is manifold pressure.} \\ \end{array}$$

The following reference dimensions were used for reducing all aerodynamic data to coefficient form:

Symbol	<u>Definition</u>	Value		
A _b ACPS	ACPS base area, ft ²	Full Scale 37.778	Model Value 0.0085	
A _{bET}	ET base area, ft ²	572.555	0.1288	
A _b OMS	OMS base area, ft ²	52.000	0.0117	

A _{borb}	Orbiter base area, ft ²		337.778	0.0760
A _b srb	SRB base area, ft ²		184.332	0.0415
A _{bSRBN}	SRB nozzle base area, ft^2		217.792	0.0490
A _{CET}	ET balance cavity area, ft ²			0.0451
A _{CORB}	Orbiter balance cavity area, ft^2			0.0340
L _{REF} = B _{REF}	Orbiter body length, in.		1290.300	19.3550
MRP	Launch configuration C.G., in.	x_T	979.000	14.6850
		Y_{T}	0.0	0.0
		Z_{T}	400.000	6.0000
S _{REF}	Orbiter wing area, ft ²		2690.000	0.6053
WFi	Pressure weighting factor		0 or 1	

The following table describes the manifold system used to record and tabulate the 19 base pressure taps shown in figure 2(i).

PRESSURE COEFFICIENT MANIFOLD NUMBER	BASE PRESSURE TAP NUMBERS	LOCATION
1	1,2,3,4	Orbiter base
2	-	Spare
3	5 6	OMS base ACPS base
4	-	Spare
5	7,8,9,10,11	ET base
6	13,14	SRB base
7	15	SRBN base
8	16,17	Orbiter cavity
9	18,19	ET cavity

TEST: IA69 TWT	280		DATE: 1/21/74
	TEST COI	NDITIONS	
L	<u> </u>		
MACH NUMBER	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
1.08	7.4 x 10 ⁶ /ft.	8.6	45° to 70°
1.22	7.2 x 10 ⁶ /ft.	9.2	45° to 70°
	<u> </u>		
		·	
BALANCE UTILIZED: _	Task 2.5-ir	nch Mk X B	
	CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
NF*	5500 1bs	<u>±0.25%</u>	
\$F*	2750 lbs	±0.25%	
AF	1250 1bs	_±0,25%	
РМ		-	
RM	4000 in-1bs	.0.35%	
YM	4000 TH-TDS	±0.25%	
COMMENTS:			1
* Each	gage		,

DATA SET	A69			- -	ЭHD.	DAT	A 2E	I/RU	N NU				_ATIO		AM A	ARY	·	L.			21/74	NUMBERS		_
DENTIFIER	CONFI	GURATION		α	β		de		SR		Jds			d8/	-		17	PE	NO. OF RUNS	17.7		1/2		T
F3XOI	0,7,5	, P2 P6		A	0		0		0		10	5		0			7		2	4		6		T
02			_		4								İ		1				7	1	 	5		1
03	1	Y			4					 	1-1				-†-	-	1					7		1
04	0,745	SIP2P1	,	1	4						1-1				1		-			†		8		1
05	4		_		0					<u> </u>					7		1				†	9		1
06	 			1	4						1-1	7			十		11		-	1	1	10	-	1
07					4				 		††				+		 -	-		1	1	1771		1
08				1	0				<u> </u>	 	1-1				_		† -					12		1
09	·	1		1	0			-		 	 					···-	\top			·		17		1
10		Y			4				-	1		_			1						 	/3		1
	OITISI	P2P6			4		_		 	 	 				- -		1		_	1	-	14		1
12			- 11 - 1 - 1 1 - 1		0			ļ		 	\sqcap				\dagger		$\dagger \exists$		-	1	1	16		1
13		1			4		-		1			_		1	+		$\dagger \dagger$		1		1	15		1
								·							Ī									1
IOTE:	The "X"	in the d	ata	et.	ide	ntii	ier	will	he	an "/	4" f	on	forc	e dat	a :	_a_"	<u>'</u>	for	win	unn	er_sur	ace		
	pressure	data; ar	า "L"	fo	W	ng]	ower	sur	face	pres	sur	·e	data,	an	í	F" f	þr	ort	iter	fuse	lage p	ressure		1
	data, or	a "B" f	or b	ase	pre	ssur	e da	ta.																
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																					,	l
		3	19			5		31	······································	37			43		19		Ę.	55		61		67	7	75
<u> </u>	A.F.												CAC									ببديل		<u></u>
ar OR	B	X(A) =	-4	·, ϕ	4			CI	DE≯£1 	CENT	٤			P	=	PRE	نک	IRE	: 〉	TA	/AR (1)	IDVAR	(2)	(4)

19

TABLE III. - MODEL DIMENSIONAL DATA

MODEL COMPONENT	: Attach Struc	ture ATo		
GENERAL DESCRIF	PTION; Aft SRB/	ET attach	structure (3 member	structure)
Model Scale: C	0.015			
DRAWING NO:	VL72-000106			
DIMENSIONS:	<u>MEMBER</u>		FULL SCALE	MODEL SCALE
	#1	x_B	1515	22.725
		$\mathbf{Y}_{\mathbf{B}}$	<u>+</u> 56	± .840
		z_{B}	50	.750
		x_{T}	2058	30.870
		$Y_{\mathbf{T}}$	<u>+</u> 158	2.370
		$z_{ m T}$	450	6.75
	#2	x_B	1515	22.725
		\mathbf{Y}_{B}	<u>+</u> 76	± 1.140
		z_B	18	.270
		$\mathbf{x}_{\mathbf{T}}$	2058	30.870
		$\mathbf{Y}_{\mathbf{T}}$	160	2.400
		z_{T}	445	6.675
	#3	ХB	1515	22.725
		$\mathbf{Y}_{\mathbf{B}}$	<u>+ 56</u>	<u>+</u> -840
		z_B	- 50	750
		x_{T}	2058	30.870
		$\mathbf{Y}_{\mathbf{T}}$	+ 158	± 2.370
		z_{T}	350	5.250

Diameter of Members: TBD

MODEL COMPONENT:	Attach Struc	ture AT	12:	,
GENERAL DESCRIPTI	ON: Left rear	<u>Orbiter</u>	-/ET attach structure	(2 member structure)
Model Scale: 0.0	015			
DRAWING NO. VI	78-000050			
DIMENSION:	MEMBER		FULL SCALE	MODEL SCALE
	#1	x_{o}	1303	19.545
		Y_{O}	96	_1.440
		z_{o}	258	3.870
		x_{T}	1859	27.885
		YŢ	115	1.725
		z_{T}	510	7.650
	#2	Хo	1317	19.755
		Y_{\circ}	96	_1.440
		z_{o}	258	3.870
		$\mathbf{x}_{\mathbf{T}}$	2058	30.870
·		\mathtt{Y}_{T}	115	1.725

Diameter of Members: TBD

510

 $Z_{\mathbf{T}}$

7.650

TABLE III. - Continued.

MODEL	COMPONENT:	Attach	Structure AT12	
•				

GENERAL DESCRIPTION: Right rear orbiter/ET attach structure (3 member structure)

Model Scale: 0.015

MODEL NO. VL78-000050

DIMENSION:	MEMBER		FULL SCALE	MODEL SCALE
	#1	χ_{o}	1313	19.695
		$Y_{\mathbf{O}}$	+96	1.44
		7 ₀	258	3.870
		$x_{\mathbf{T}}$	1859	<u> 27.885</u>
		$\mathbf{Y}_{\mathbf{T}}$	_115	1.725
		z_{T}	<u>-510</u>	7.650
	10			
	#2	Х _о	1317	19.755
		$\mathbf{Y}_{\mathbf{O}}$	+96	1.440
		7.0	258	3.870
		$X_{\mathbf{T}}$	2058	30.870
		$\mathbf{Y}_{\mathbf{T}}$	-115	-1. 725
		$Z_{\mathbf{T}}$	510	7.650
	10			
	#3	Х	1317	19.755
		Yo	96	1.440
		z_o	<u> 258</u>	3.870
		$x_{\mathbf{T}}$	2058	30.870
		$\mathbf{Y}_{\mathbf{T}}$	0	0
		$z_{ m T}$	566	8.490

Diameter of Members: TBD

MODEL COMPONENT: Attach Struc	ture AT, 4	<u> </u>	
GENERAL DESCRIPTION: Forward	SRB/ET a	ttach structure	
Model Scale: 0.015			
DRAWING NO: <u>VL77-000051A</u>			·
DIMENSION:		FULL SCALE	MODEL SCALE
	x_{B}	404	6.060
	\mathbf{Y}_{B}	<u>± 177</u>	2.655
	$z_{\rm B}$	0	0
	$x_{\mathbf{T}}$	947	14.205
	$Y_{\mathbf{T}}$	<u>+</u> 167	2.505
	$Z_{\mathbf{T}^{-1}}$	100	6 000

Model Component: Attach Structure A_{T15}

General Description: Forward attach structure between

orbiter and external tank. Modified to accept Rockwell International Trisonic

Wind Tunnel Starting Loads.

model scale: .015

	Full Scale	Model Scale
χ_{o}	391.00	5.865
Y_{0}	0.0	0.0
$\chi_{\mathbf{T}}$	998.87	16.980
Y_{T}	0.0	0.0
Diameter, in	1. 33.33	0.500

MODEL COMPONENT: BODY - (B26)									
GENERAL DESCRIPTION: Orbiter Fuselage Confi	guration 140 A/B								
NOTE: B ₂₆ identical to B ₂₄ except underside of fuselage refaired to									
accept W ₁₁₆ .									
Model Scale = 0.015	·								
DRAWING NUMBER: VL70-000193 VL70-000140A									
DIMENSIONS:	FULL-SCALE	MODEL SCALE							
Length (Body Fwd Sta $X_0 = 235$) - in.	1290.3	19.355							
Max. Width (at $X_0 = 1520$) - in.	262.0	3.93							
Max. Depth (at $X_0 = 1464$) - in.	250.0	3.75							
Fineness Ratio	0.26357	0.26357							
Area - ft ²									
Max. Cross-Sectional	340.88462	0.07670							
Planform	· · · · · · · · · · · · · · · · · · ·								
Wetted									
Base									

MODEL COMPONENT : Canopy (Cg)	,						
GENERAL DESCRIPTION:Configuration 140 A/B Orbiter Fuselage							
	·						
Model Scale = 0.015	Model Dra	wing No. SS-A00147					
DRAWING NUMBER: VL70-000140A VL70-000143A							
DIMENSIONS :	FULL SCALE	MODEL SCALE					
Length (X ₀ =434.643 to 670), in.	235.357	3.530					
Max Width (@ X ₀ =513.127),))7	152.412	2.286					
Max Depth (@ X ₀ =485.0), λη	25.000	0.375					
Fineness Ratio							
Area							
Max. Cross—Sectional							
Planform							
Wetted							
Base							

GENERAL DESCRIPTION: Configuration 140 A/B	Orbiter Elevon		
NOTE: VL70-000.200 data for (1) of (2) s	ides. Identical t	o E ₂₅ except	
airfoil thickness			
Model Scale = 0.015	odel Scale = 0.015 Model Drawings No. SS-A		
DRAWING NUMBER: VL70-000140 B	٠.	·	
DIMENSIONS:	FULL-SCALE	MODEL SCALE	
Area	223.5814	0.0503	
Span (equivalent), 117.	368.34	5.525	
Inb'd equivalent chord, in.	119.623	1.794	
Outb'd equivalent chord, in.	55.1922	0.828	
Ratio movable surface chord/ total surface chord			
At Inb'd equiv. chord	0.2096	0.2096	
At Outb'd equiv. chord	0.4004	0.4004	
Sweep Back Angles, degrees			
Leading Edge	0.00	··· 0.00	
Tailing Edge	-10.056	-10.056	
Hingeline	0.00	0.00	
Area Moment (Normal to hinge line), f+3	851.1502	0.00287	

MODEL COMPONENT: Body Flap (F7)	
GENERAL DESCRIPTION: Configuration	on140 A/B Orbiter Body Flap
NOTE: Body flap has variable center	line deflection of +13.75° and
-14.25° from null position.	linge line located at X _o =1528.3,
$Z_0 = 284.3$	Model Drawing No. SS-A00147
Model Scale = 0.015 DRAWING NUMBER VL70-000	D140A, VI.70-000145
DIMENSION:	FULL SCALE MODEL SCALE
Length ($X_0=1520 \text{ to } X_0=1613$) - IN	93.000 1.395
Max Width - IN.	262.000 3.930
Max Depth $(X_0 = 1520)$ - IN.	23.000 0.345
Fineness Ratio	
Area - Ft ²	
Max Cross-Sectional	<u>· </u>
Planform	_150.5250 0.0339
Wetted	
Base	41.84722 0.00941

MODEL COMPONENT Feed	line FL1		
DESCRIPTION: LOX feed	line between	ET and orbiter	
MODEL SCALE: 0.015			
DRAWING NO: VL78-0000	50		
DIMENSIONS:		FULL SCALE	MODEL SCALE
$\boldsymbol{\epsilon}$ at: \mathbf{x}_{T}		2063.5	30.953
$\mathtt{Y}_{\mathtt{T}}$	•	70	-1.053
x_{o}		1330.5	19.958
			-1.053
Diameter, in.		18.5	.278

MODEL COMPONENT:	Feed line	FL ₂			
DESCRIPTION: LH2	feed line	between E	T and	orbiter	
MODEL SCALE: 0.0	015				
DRAWING NO.:	VL78-0000	50			
DIMENSIONS:			·		
				FULL SCALE	MODEL SCALE
$oldsymbol{\xi}$ at $ exttt{X}_{oldsymbol{\Gamma}}$				2063.5	_ 30.953
$\mathtt{Y}_{\mathtt{T}}$				70	1.053
x_o				1330.5	19.958
Yo				70	1.053
Diameter	מו.			70 E	0.74

MODEL DIMENSIONAL DATA

MODEL COMPONENT OMS Pod (M7)		·····
GENERAL DESCRIPTION Configuration	140 A/B Orbiter	OMS-Pod
Model Scale = 0.015	Model Drawing	No. 55 -A00147
VL70-000140A DRAWING NUMBER: VL70-000145		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length(OMS Fwd Sta X _o =1233.0) -IN	327.000	4.905
Max Width (@ X ₀ =1450.0) - IN.	94.5	1.418
Max Depth (@ $X_0=1493.0$) - IN.	109.000	1.635
Fineness Ratio	 .	
Area		
Max. Cross-Sectional	·	
Planform		
Wetted		
Base	·	

MODEL COMPONENT: NOZZLES - (N 28)				
GENERAL DESCRIPTION: Configuration	140 A/B O	rbiter OMS	Nozzle	
	!			
MODEL SCALE = 0.015	<u> </u>		Model Draw	ing No. SS-A00147
DRAWING NO. VL70-000140A				
DIMENSIONS			FULL SCALE	MODEL SCALE
Mach No.	•			
Length ~ in.				
Gimbal Point to Exit Plane				
Throat to Exit Plane		-		
Diameter~in.				
Exit			***************************************	
Throat				
Inlet				
Area \sim ft ² .	,			
Exit				
Throat				المحاسبة والمحاسبة والمحاس
Gimbal Point (station)∼in.				
X			1518.00	22.77
Y			± 88.0	1.32
Z ,			492.0	7.38
Null Position~deg.				
Pitch			15° 49'	15° 491
Yaw			12° 17'	12° 17'

MODEL COMPONENT: NOZZLES - N41	·	
GENERAL DESCRIPTION: Configuration 4 BSRM Nozzl	es	
MODEL SCALE = 0.015		
VL72-000088E DRAWING NO. VL77-000036A		
DIMENSIONS	FULL SCALE	MODEL SCALE
Mach No.		
Length ~ in.	,	
Gimbal Point to Exit Plane	141.3	2.120
Throat to Exit Plene		
Diameter~in.		
Exit	141.3	2.120
Throat		
Inlet		
Area \sim ft ² .	,	
Exit	108.89 95	0.0245
Throat		
Gimbal Point (station)~in.		
X	1796.15	26.942
Y	±243.0	±3.645
Z	400.0	6.0
Null Position ~ deg.		
Pitch	0°	0°
Yew	0°	0°
FS of Nozzle Exit Plane (X_T) IN.	2484	37.260

MODEL COMPONENT: SRB Protuberance PS1		
DESCRIPTION: Electrical tunnel fairing	on top of each SRB	
MODEL SCALE: 0.015		
DRAWING NO: None		
DIMENSION: (Data for 1 of 2)		
	FULL SCALE	MODEL SCALE
Leading edge at XB	<u>467</u>	7.001
${f C}$ of tunnel ${f Y}_{f B}$	0	0
Trailing edge at X_{B}	1820	27.30
Height, 10.	3	.045
Width, in.	6	.090
-A _{LE} , deg.	72	72

MODEL COMPONENT: SRB Protuberance	PS ₂	
DESCRIPTION: SRB/ET attach ring		
MODEL SCALE: 0.015		
DRAWING NO.: VL77-000036A		
DIMENSIONS: (Data for 1 of 2)		
	FULL SCALE	MODEL SCALE
C at X _B	1515	22.725
Width, In.	10	15
Heighth, In.	10	.15

MODEL COMPONE	NT: SRB Protube	erance PS3					
DESCRIPTION:_	Separation rocket	fairing on	each SRB	nozzle	shroud	locate	d
30° inboard	from top centerli	lne.					
MODEL SCALE:_	0.015						
DRAWING NO.:_	VL77-000036A						
DIMENSIONS:	(Data for 1 of 2)						
			FULL	SCALE	MO	DEL SC	ALE
Leading e	edge at X _B		17	96		26.940	<u> </u>
Trailing	edge at X_B		_ <u>18</u>	89		28.335	;

Radial location is 30° inboard from top centerline.

MODEL COMPON	ENT: ET Protuberance	PT ₁	
DESCRIPTION:	LOX Vent Line Fairing on	Tank Tl2 Nose	
MODEL SCALE:	.015		
DRAWING NO	VL78-000031A		
		FULL SCALE	MODEL SCALE
DIMENSIONS:	Leading edge at X_{T}	321	4.815
	$\mathbf{Y}_{\mathbf{T}}$	_ 0	0
	Trailing edge at X _T	947	14.205
	$\mathtt{Y}_{\mathbf{T}}$	70	1,053

MODEL COMPONENT: ET Protuberance PT2		
DESCRIPTION: LOX feed lines on vehicle 4 tank	secured to tank	by brackets
with 50-inch spacing		
MODEL SCALE: 0.015		
DRAWING NO. VL78-000031A		
	FULL SCALE	MODEL SCALE
DIMENSIONS: Leading edge at X_{T}	947	14.205
$\mathtt{Y}_{\mathbf{T}}$	70	-1.053
Trailing edge at X_{T}	1330	19.950
\mathtt{Y}_{T}	_70	-1.053
Bracket spacing from $X_T = 997$, in.	50	85

MODEL COMPONENT: ET Protuberance PT3		
DESCRIPTION: LH2 feed line on vehicle 4 tan	k secured to tan	k by brackets
with 50-inch spacing.		
MODEL SCALE: 0.015	•	
DRAWING NO. VL78-000031A		
· · · · · · · · · · · · · · · · · · ·		
	FULL SCALE	MODEL SCALE
DIMENSIONS: Leading edge at X _T	947	14.205
\mathtt{Y}_{T}	70	1.053
Trailing edge at $X_{\mathbb{T}}$	1330	19.950
$\mathbf{Y_T}$	70	1.053
Bracket spacing from $X_T = 997, In$.	50	.85

TABLE III. - Continued.

Model Component: ET Protuberance PT8

General Description: LOX Vent Line Fairing on Tank T19 Nose.

Model Scale: .015

	Full Scale	Model Scale
Leading Edge @ XT	364.0	5.460
\mathtt{Y}_{T}	11.67	0.175
Trailing Edge @ X _T	947.00	14.205
${ m Y}_{ m T}$	- 70.00	1.053

MODEL COMPONENT: RUDDER - R5		
GENERAL DESCRIPTION: Configuration 140 A	/B Orbiter Rudder	
Model Scale = 0.015	Model Draw	ing No. SS-A00148
DRAWING NUMBER: VI.70-000095, 1	<u>/</u> 1.70-000146A	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - FT ²	106.38	0,0239
Span (equivalent) - IN.	201.0	3.015
Inb'd equivalent chord, Ha.	91.585	1.374
Outb'd equivalent chord, in.	50.833	0.762
Ratio movable surface chord/ total surface chord		
At Inb ⁴ d equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees	•	•
Leading Edge	34.83	34.83
Tailing Edge	26.25	26.25
Hingeline	34.83	34.83
Area Moment (Normal to hinge line)- (Product of Area and Mean Chord)	FT ³ 526.13	0.00178

MODEL COMPONENT: BO	OSTER SOLID ROCK	CET MOTOR - (512)	
GENERAL DESCRIPTION:		A, Data for (1) of (2) sides,
Model Scale = 0.015			
DRAWING NUMBER	VL72-00008 VL77-00003		·
DIMENSION:	•	FULL SCALE	MODEL SCALE
Length (Includes No	ezzle) - IN.	1741.0	26.115
Mox Width (Tank Die	a) - IN.	142.3	2.135
Mox Depth (Aft Shro	oud) - IN.	192.0	2.880
Fineness Ratio		9.06771	9.06771
Area - FT ²			
Max Cross-Sectio	nał	201.06193	0.0452
Planform			
Wetted			
Base			•
WP of BSRM Centerline	$z (Z_T) - IN.$	400	6.000
FS of BSRM Nose (XT)	- IN.	743	11.145

MODEL COMPONENT: EXTERNAL TANK - (T)	2)	
GENERAL DESCRIPTION: External Oxygen	Hydrogen Tank	
NOTE: Identical to Tll with external	fuel lines added	
Model Scale = 0.015.		
DRAWING NUMBER VL78-0000 VL78-0000		
DIMENSION:	FULL SCALE	MODEL SCALE
Length - IN. (Nose @ $X_T = 309$)	1865	27.975
Max Width (Dia) - IN.	324	4.86
Max Depth, in.		
Fineness Ratio	5.75617	5.75617
Area - FT ²		
Max Cross-Sectional	572.555	0.1288
Planform		
Wetted		
Base		:
WP of Tank Centerline (Zp) - IN.	400.0	6.000

MODEL COMPONENT: EXTERNAL TANK T19		,
GENERAL DESCRIPTION: External Oxygen -		Tank. Same
as T12 except for nose configuration	•	
Model Scale: .015 DRAWING NUMBER: MCR 467		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length - in. (Nose @ $X_T = 324.27$)	1849.73	27.746
Max. Width , in.	330.00	4.950
Max. Depth		
Fineness Ratio		
Area , ft ²		
Max. Cross-Sectional	593.98	0.1336
Planform		
Wetted		
Base		
W.P. of ET Centerline, in.	400.00	6.000

MODEL COMPONENT: VERTICAL - V 8			
GENERAL DESCRIPTION: Configuration	140 A/B Orbiter V	ertical Tail	
NOTE: Similar to V5 with radius o	n TE upper corner	and LE lower con	ner
where vertical meets fusela	ge.		
Model Scale = 0.015	70-000140A	Model Drawing N	No. SS-A00148
	70-000146A 70-000146A		
DIMENSIONS:		FULL-SCALE	MODEL SCALE
TOTAL DATA			
Area (Theo) Ft ² Planform Span (Theo) In Aspect Ratio Rate of Taper Taper Ratio Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W. P. of .25 MAC Airfoil Section		413.253 315.720 1.675 0.507 0.40399 45.00 25.947 41.130 268.500 108.470 199.80756 1463.50 635.522 0.00	0.09298 4.73580 1.675 0.507 0.40399 45.00 25.947 41.130 4.02750 1.62705 2.99711 21.95250 9.53283 0.00
Leading Wedge Angle De	g e g	10.00 14.920 2.00 13.17 0.00	10.00 14.920 0.0300 0.00296 0.00

MODEL COMPONENT: WING- (W116)		
GENERAL DESCRIPTION: Configuration 140 A/B Orbiter	Wing	
NOTE: Identical to W114 except airfoil thickness.	Dihedral angle is al	ong
trailing edge of wing.		· · · · · · · · · · · · · · · · · · ·
Model Scale = 0.015	Model Drawing No.	
TEST NO.	DWG. NO. VL70-000140)
DIMENSIONS:	FULL-SCALE MODEL	SCALE
TOTAL DATA		
Area (Theo.) Ft ² Planform		6053
Span (Theo In.		.050 .265
Aspect Ratio Rate of Taper	1.177 1	. 177
Taper Ratio Dihedral Angle, degrees(at X ₀ =1506.623,Y ₀ =		. 200 . 500
Incidence Angle, degrees 105, 20= 282.75)		500
Aerodynamic Twist, degrees Sweep Back Angles, degrees		.000
Leading Edge		.00
Trailing Edge 0.25 Element Line		209
Chords: , 177		339
Rcot (Theo) B.P.O.O. Tip, (Theo) B.P.	137.8486	.068
MAC	7/7:01	.222 7.051
Fus. Sta. of .25 MAC W.P. of .25 MAC	291.00	.365
B.L. of .25 MAC	187.33491 2	.810
EXPOSED DATA Area (Theo) Ft ²	1014.4403	.408
Area (Theo) Ft Span, (Theo) In. BP108	736.6816	1.050
Aspect Ratio		2.058 0.2451
Taper Ratio Chords,\n		.559
Root BP108		-06
Tip 1.00 <u>b</u> 2		.314
MAC Fus. Sta. of .25 MAC	1164.237	7.464
WaPa of .25 MAC		.380 .595
B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	239.07780	
XXXX-64	0.113	0.113
$Root \underline{b} = 0.425$		
$Tip \mathbf{b} = 1.00$	0.12	0.12
Data for (1) of (2) Sides		
Leading Edge Cuff 2		.0266
Leading Edge Intersects Fus M. L. @ Sta	505.0	7.575
Leading Edge Intersects Wing @ Sta	1084.5	15.053

TABLE IV. - PRESSURE INSTRUMENTATION

ORBITER WING STATIC TAP LOCATIONS

% Chord	Y _O = 250 C = 388.67			Y _O = 365 C = 257.0		
% chord	17	Upper Wing Tap No.	Lower Wing Tap No.	X	Upper Wing Tap No.	Lower Wing Tap No.
0 0.05 0.15 0.40 0.725 0.95	0(L.E.) 19.47 58.33 155.47 281.80 369.27	22 23 24 25 26 27	28 29 30 31 32	0(L.E.) 12.87 39.13 102.80 186.33 244.13	33 34 35 36 37 38	39 40 41 42 43

ORBITER NOSE STATIC TAP LOCATIONS

\$XO	235	265	325	380	450	500
0° 40° 90° 180°	1 ,	2 3 4 5	6 7 8 9	11 12 13	14 15 16 17	18 19 20 21

Notes:

- (1) Full Scale Dimensions
- (2) Left Hand Only

Figure 1. Axis Systems

a, Mated Vehicle

Figure 2. - Model sketches.

b. Orbiter Three View

Figure 2. - Continued.

c. Aft Orbiter/ET Attach Hardware

Figure 2. - Continued.

d. Front Orbiter/ET Attach Hardware

Figure 2. - Continued.

f. External Tank Nose Variation, T_{19} Figure 2. - Continued.

Figure 2. - Continued.

h. Definition of Model Base and Cavity AreasFigure 2. - Continued.

NOTE: Refer to Data Reduction section for pressure manifold system.

j. Base Pressure Tap Locations

Figure 2. - Continued.

Notes:

- (1) Full Scale Dimensions
- (2) Pressure Orifices on Left Hand Side of Model
- (3) X/c = 0,.05, .15, .40, .725, and .95
 - j. Wing Pressure Orifice Locations

Figure 2. - Continued.

Notes:

- (1) All Dimensions Full Scale
- (2) Pressure Orifices on Left Hand Side of Model

k. Fuselage Pressure Orifice Locations

Figure 2. - Concluded.

a. Front View, TWT Installation Configuration 01 T4 S1 P2 P7

b. Front View, TWT Installation Configuration 0_1 T $_1$ S $_1$ P $_2$ P $_6$ Figure 3. - Model Photographs

DATA FIGURES - FORCE

FIG 4 EFFECT OF EXTERNAL TANK NOSE CONFIGURATION, LONGITUDINAL CHAR.

(A)MACH = 1.22

PAGE

1 .

2

.04

.02

FIG 4 EFFECT OF EXTERNAL TANK NOSE CONFIGURATION. LONGITUDINAL CHAR.

(A)MACH = 1.22

(A)MACH 1.22 = PAGE

FIG 4 EFFECT OF EXTERNAL TANK NOSE CONFIGURATION, LONGITUDINAL CHAR.

(A)MACH = 1.22

PAGE

FIG 4 EFFECT OF EXTERNAL TANK NOSE CONFIGURATION, LONGITUDINAL CHAR.

(A)MACH = 1.22

7

(A)MACH = 1.22PAGE 8

FIG 6 EFFECT OF EXTERNAL TANK NOSE CONFIGURATION, LAT/DIR CHAR, BETA=OAND-4
(A)MACH = 1.22
PAGE 9

DATA FIGURES - PRESSURE

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 2Y/B = .534 PAGE 1

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 2Y/B = .780 PAGE 2

ALPHA =

.000

2Y/B

3

MACH

ALPHA =

4.000

2Y/B

1.200

MACH

.534

PAGE

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITÉR PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = 4.000 2Y/B = .780 PAGE 6

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0.-4 MACH = 1.200 ALPHA = -4.000 X/C = .000 PAGE 7

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 mach = 1.200 ALPHA = -4.000 X/C = .050 PAGE 8

MACH =

1.200

ALPHA =

-4.000

X/C

.150

PAGE -

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 X/C = .725 PAGE 11

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 X/C = .950 PAGE 12

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = .000 X/C = .000 PAGE 13

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = .000 X/C = .050 PAGE 14

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. -4
MACH = 1.200 ALPHA = .000 X/C = .150
PAGE 15

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 mach = 1.200 ALPHA = .000 X/C = .400 PAGE 16

MACH =

1.200

ALPHA =

.000

X/C

.725

PAGE

17

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = .000 X/C = .950 PAGE 18

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = 4.000 X/C = .000 PAGE 19

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 mach = 1.200 ALPHA = 4.000 X/C = .050 PAGE 20

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = 4.000 X/C = .150

PAGE 21

C.o.

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0.-4 MACH = 1.200 ALPHA = 4.000 X/C = .725 PAGE 23

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = 4.000 X/C = .950 PAGE 24

MACH

1.200

ALPHA = -4.000

2Y/B =

.534

PAGE

25

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 2Y/B = .780 PAGE 26

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = .000 2Y/B = .534

PAGE 27

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0.-4 MACH = 1.200 ALPHA = .000 2Y/B = .780 PAGE 28

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4
MACH = 1.200 ALPHA = 4.000 2Y/B = .534 PAGE 29

-.2

-.6

-.8

-1.0

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 X/C = .150 PAGE 32

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0.-4 MACH = 1.200 ALPHA = -4.000 X/C = .400 PAGE 33

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 X/C = .725 PAGE 34

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4
MACH = 1.200 ALPHA = -4.000 X/C = .950 PAGE 35

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = .000 X/C = .050 PAGE 36

MACH =

1.200

ALPHA =

.000

X/C

.150

PAGE

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = .000 X/C = .400 PAGE 38

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0.-4 MACH = 1.200 ALPHA = .000 X/C = .725 PAGE 39

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0.-4 MACH = 1.200 ALPHA = .000 X/C = .950 PAGE 40

MACH

1.200

ALPHA =

4.000

X/C

.050

PAGE

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = 4.000 X/C = .400 PAGE 43

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = 4.000 X/C = .725 PAGE 44

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4
MACH = 1.200 ALPHA = 4.000 X/C = .950 PAGE 45

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = -4.000 PHI = 40.000 PAGE 47

MACH

1.200

ALPHA =

-4.000

PHI

= 180.000

PAGE

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4
MACH = 1.200 ALPHA = .000 PHI = 40.000 PAGE 51

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = .000 PHI = 180.000 PAGE 53

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = 4.000 PHI = 90.000 PAGE 56

MACH =

1.200

ALPHA =

4.000

PHI

= 180.000

PAGE

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4 MACH = 1.200 ALPHA = -4.000 X/L = .252 PAGE 60

.295

PAGE

.388

PAGE

1.200

ALPHA =

.000

X/L

.388

PAGE

FIG 7 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, -4

MACH = 1.200 ALPHA = 4.000 X/L = .205

PAGE 71

PAGE

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4 mach = 1.200 ALPHA = -4.000 2Y/B = .534 PAGE 76

.780

PAGE

1.200

ALPHA =

.000

2Y/B =

.780

PAGE

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4 MACH = 1.200 ALPHA = 4.000 2Y/B = .534 PAGE 80

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4 MACH = 1.200 ALPHA = -4.000 X/C = .000 PAGE 82

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4 MACH = 1.200 ALPHA = -4.000 X/C = .050 PAGE 83

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4 mach = 1.200 ALPHA = -4.000 X/C = .150 PAGE 84

1 .200

ALPHA = -4.000

X/C

.400

PAGE

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0, +4

MACH = 1.200 ALPHA = -4.000 X/C = .950 PAGE 87

1.200

MACH

ALPHA =

a000

X/C

.050

PAGE

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4 MACH = 1.200 ALPHA = .000 X/C = .150 PAGE 90

ALPHA =

.000

X/C

.400

PAGE

91

1.200

MACH

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4

MACH = 1.200 ALPHA = .000 X/C = .725

PAGE 92

1.200

ALPHA =

.000

X/C

.950

PAGE

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4

MACH = 1.200 ALPHA = 4.000 X/C = .000

PAGE 94

DATA SET SYMBOL CONFIGURATION DESCRIPTION [RF3U05] O IASS CI 14 SI P2 P7 VING UPPER SURFACE PRESS. .000 [RF3U04] O IASS CI 14 SI P2 P7 VING UPPER SURFACE PRESS. 4.000 [RF3U03] O IASS CI 15 SI P2 P6 VING UPPER SURFACE PRESS. 4.000 [RF3U03] O IASS CI 11 SI P2 P6 VING UPPER SURFACE PRESS. 4.000

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4

MACH = 1.200 ALPHA = 4.000 X/C = .400 PAGE 97

1.200

ALPHA =

4.000

X/C

.950

PAGE

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4

MACH = 1.200 ALPHA = -4.000 2Y/B = .534

PAGE :CC

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0. +4

MACH = 1.200 ALPHA = -4.000 2Y/B = .780 PAGE :0:

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4

MACH = 1.200 ALPHA = .000 2Y/B = .534

PAGE :02

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +
MACH = 1.200 ALPHA = 4.000 2Y/B = .534 PAGE 104

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4
MACH = 1.200 ALPHA = -4.000 X/C = .050 PAGE :06

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4 MACH = 1.200 ALPHA = -4.000 X/C = .:50 PAGE :CT

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0. +4

MACH = 1.200 ALPHA = -4.000 X/C = .400 PAGE 108

FIG 8: EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4
MACH = 1.200 ALPHA = -4.000 X/C = .950
PAGE ::0

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4

MACH = 1.200 ALPHA = .000 X/C = .150 PAGE 112

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4

MACH = 1.200 ALPHA = .000 X/C = .400 PAGE ::3

1.200 .000 .725 PAGE MACH X/C

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0. +4

MACH = 1.200 ALPHA = 4.000 X/C = .050 PAGE 116

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4
MACH = 1.200 ALPHA = 4.000 X/C = .150
PAGE 1:7

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0. + MACH = 1.200 ALPHA = 4.000 X/C = .950 PAGE 120

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4

MACH = 1.200 ALPHA = -4.000 PHI = .000 PAGE 121

PAGE 128 = 180.000 ALPHA = .000 1.200 MACH

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. + AMACH = 1.200 ALPHA = 4.000 PHI = .000 PAGE 129

:30 40.000 PAGE MACH 1.200 4.000

MACH 1.200 ALPHA = 4.000 = 90.000 PAGE :3:

1.200

A_PHA =

-4.000

MACH =

.182

⊃÷GE

:33

1.200

ALPHA =

-4.000

X.7L

.349

PAGE

:37

MACH

1.200

-4.000

A_PHA =

XZL

.388

PAGE

:38

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES, BETA = 0, +4

MACH = 1.200 A_PHA = .000 X/L = .295 PAGE 142

/∆_1

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4

MACH = 1.200 ALPHA = 4.000 X/L = .252

PAGE 147

FIG 8 EFFECT OF EXTERNAL TANK NOSE CONFIG ON ORBITER PRESSURES. BETA = 0. +4

MACH = 1.200 ALPHA = 4.000 X/L = .295

PAGE 148

ALPHA

SYMBOL

PAGE 152

FIG 9 EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING

ALPHA

FIG 9 EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING

SYMBOL

MADH

FIG 9 EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING

SYMBOL

X/C

ALPHA

FIG 9 EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING

PAGE 172

FIG 9 EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING

ALPHA

SYMBOL

SYMBOL MACH

184

PAGE

.000

.000

ELEVON

SPOORK

FIG 9 EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING

SYMBOL

PARAMETRIC VALUES

SYMBOL

HACH

ALPHA

PARAMETRIC VALUES

PARAMETRIC VALUES
BETA .000 ELEVON .000
RUDDER .000 SPDBRK .000
BDFLAP .000

FIG 9 EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING

PAGE

NGE

208

SYMBOL

HOAM

X/L

ALPHA

PARAMETRIC VALUES

SYMBOL

X/L

PARAMETRIC VALUES

Cg

SYMEGLO PARAMETRIC VALUES **SETA** .000 ELEVON .000 1,220 .000 RUCCOER .000 SPOBRIK **BOFLAP** CONFIGURATION DESCRIPTION .0000 1.6 1.4 1.2 1.0 <u>ප</u> .8 COEFFICIENT, .6 .2 PRESSURE .0 -.4 -.6 - .8 -1.0₋₂₀ 100 160 180 ANGULAR LOCATION ON ORBITER FUSELAGE SURFACE, PHI. DEG. EFFECT OF MACH NUMBER ON ORBITER PRESSURE LOADING FIG

APPENDIX A TABULATED SOURCE DATA - FORCE

Tabulations of plotted data are available on request from Data Management Services.

DATE 11 SEP 74

GRADIENT

.21880

.06120

.25740

-.00031

-.07900

-.02334

-.00290

.00012

.00460

-.00007

.00030

.00004

.44990

-.000098

.00000

.00000

		1A69 O1 T	4 31 P2 P7				(RF3A	07) { 17 A	PR 74)
	REFERENCE DATA	•					PARAMETRI	C DATA	
SREF = LREF = BREF = SCALE =	19.3550 INCHES YM	RP = 14.6850 INCH RP = ,0000 INCHE RP = 6.0000 INCHE	3			BETA = BDFLAP = SPOBRK =	-4.000 .000 .000	ELEVON = RUDDER =	.000 .000
	· RU	N NO. 11/2 RN/L =	7.30 G	RADIENT INTE	RVAL = -5.	.00/ 5.00			
	MACH ALPHA 1.218 -4.190 1.218090 1.218 3.970 GRADIENT	ON CAF -,28040 .25950 -,01640 .26150 .21700 .25630 .06096 -,00039	CLM .10590 .00900 07940 02271	CY .17100 .16280 .15900 00147	CYN -,07520 -,07120 -,06980 ,00066	CBL .02940 .03300 .03500 .00069	CA .4659D .4630D .4552O ~,DD131	CACORB 0001D 0001D 0001D 0000D	
		IA69 O1 T	4 Si P2 P7				(RF3AL	08) { 17 A	PR 74)
	REFERENCE DATA						PARAMETRIC		
SREF = UREF = SCALE =	.6053 SQ.FT. XM 19.3550 INCHES YM 19.3550 INCHES 2M .0150	RP = .0000 INQ+€	8			BETA = BOFLAP = SPOBRK =	.000 .000 .000	ELEVON = RUDDER =	.000 .000
	RU	1 NO. 12/ 2 - RN/L =	7.30 GR	MOJENT INTE	RVAL = -5.	00/ 5.00			
	MACH ALPHA 1.222 -4.070 1.222 .070 1.222 4.150 GRADIENT	CN CAF28010 .2617001130 .26290 .22140 .25690 .0610200058	CLM .11260 .01160 07640 02324	Cy 00550 00630 00530 .00002	CYN .00580 .00650 .00630 .00006	.00001 .00000 .00000 .00001	CA .45930 .45700 .45060 00106	CACCRB .00000 .00000 .00000 .00000	
		1A 69 01 T4	S1 P2 P7				(RF3AC)9) (17 A	PR 74)
	REFERENCE DATA						PARAMETRIC		,
SREF = LREF = BREF = SCALE =	.6053 50.FT. XXR 19.3550 INCHES YHR 19.3550 INCHES ZMR .0150	RP = 1,0000 INCHES RP = 6,0000 INCHES	3			BETA = BDFLAP = SPDBRK =	.000 .000 .000	ELEVON = RUDDER =	.000 .000
	RUN	! NO. 17/2 RN/L =	7.20 GR	ADIENT INTER	RVAL = -5.0	00/ 5.00			
	MACH ALPHA 1.221 -4.010 1.221 .030 1.221 4.080	CN CAF 27630 .25990 01170 .26200 .21880 .25740	CLM .10980 .01020	CY 00390 00520 00290	CYN ,00520 ,00610	.00000 .00000	CA ,45690 ,45490	CACCRB -00000 -00000	

1.221

1,221

-.100

4.000

GRADIENT

-.01850

.21210

.06077

.26300

.25790

-.00045

.01360

-,07530

-.02304

-.00460

.00000

.00043

.00540

.00270

-.00024

סטטטט.

.00050

.00006

.45800

.45210

-.00094

.00000

פטטטטס.

.00000

OI TA 81 PO 87

1409	O1 14 S1 P2 P7	(RF3A10)	(17 APR 74)

		1A69	O1 T4 S1 P2 P	7			(RF3A1	0) (17 A	PR 74)
	REFERENCE DATA						PARAMETRIC	DATA	
SAEF = LREF = BREF = SCALE =	.6053 SQ.FT, XMR 19.3550 INCHES 19.3550 INCHES 2MR .0150	P = ,0000	INCHES INCHES INCHES			BETA = BUFLAP = SPOBRK =	4,000 ,000 ,000	ELEVON = RUDDER =	.000 .000
	RUN	NO, 13/ 2	RN/L = 7,30	GRADIENT INTE	RVAL = -5,	00/ 5.00			
	MACH ALPHA 1.217 -4.150 1.21707U 1.217 4.01D GRADIENT	27780 01540 .21880	AF CLM 27250 .1047 27090 .0090 263400829 001120229	017130 16620	CYN .08420 .08030 .07800 ~.00076	CBL 02840 03210 03340 00061	CA .46430 .46130 .45220 00148	CACCRB .00000 .00000 .00000	
		1469	O1 T1 S1 P2 P	6			(RF3A1	1) (17 A	PR 74)
	REFERENCE DATA						PARAMETRIC	DATA	
SREF = LREF = BREF = SCALE =	19.3550 INO-ES YMRF 19.3550 INO-ES ZMRF .0150	0000 =	INCHE INCHES INCHES			BETA = BOFLAP = SPOBRK =	4,000 .000 .000	ELEVON = RUDDER =	.000
	RUN	NO, 14/2 F	7,20	GRADIENT INTE	RVAL = -5.0	00/ 5,00			
	MACH ALPHA 1.217 -4.100 1.217220 1,217 4.040 GRADIENT	27220 .2 02440 .2 .22000 .2	AF CLM 27140 .10260 27170 .01200 2632008190 3010202260	17100 16620	CYN .08240 .07910 .07720 00064	CBL 02830 03170 03330 00061	CA .46320 .46080 .45260 00131	CACCRB .00000 .00000 .00000	
		e9 A1	O1 T1 S1 P2 P6	5			(RF3A1	2) (17 A	PR 74)
	REFERENCE DATA						PARAMETRIC	DATA	
SREF = LREF = BREF = SCALE =	.6053 SQ.FT. XMRP 19.3550 INCHES YMRP 19.3550 INCHES ZMRP .0150	.0000	INCHES			BETA = BOFLAP = SPDBRK =	.000 .000 .000	ELEVON = RUDDER =	.000
	RUN	NO, 16/2 R	N/L = 7.20	GRADIENT INTE	RVAL = -5.0	00/ 5.00			
	MACH ALPHA 1.221 -4.190		F CLM (6160 .11340		CYN .00470	CBL .00000	CA .45980	CACORB	

• •		• •		•
ОΔ	ΤĒ	13	2012 F	74

TABULATED SCURCE DATA, R.I. TWT 280 - IA69

PAGE 3

1A69 O1 T1 S1 P2 P6

(RF3A13) (17 APR 74)

REFERENCE DATA

PARAMETRIC DATA

MEF	2	.6053 \$4.FT,	XHRP	=	14.6850 INCHE		BETA =	-4,000	ELEVON =	.000
LREF	E	19.3550 INCHES	YMRP	=	.0000 INCHES	• .	BOFLAP =	.000	RUDDER =	.000
BREF		19.3550 INCHES '	ZMRP	Ξ	6.0000 INCHES		SPOBRK =	.000		,
SCALE	=	.0150								

RUN NO.	15/ 2	RN/L =	7,20	GRADIENT	INTERVAL =	-5.00/	5.00
---------	-------	--------	------	----------	------------	--------	------

MACH	· ALPHA	ØΝ	CAF	CLM .	CY	CYN	CBL	CA.	CACORB
1,216	-4.250	28180	.25990	10590	.16810	07260	.02950	.46660	.00000
1.218	060	01190	.26360	.00630	16060	~,06940	.03310	.46440	00010
1.218	4 .020	.21810	.25700	07990	.15500	~.06560	.03490	.45640	00010
	GRADIENT	.06047	00035	02247	00158	.00085	.00065	00123	09001

APPENDIX B TABULATED SOURCE DATA - PRESSURE

Tabulations of plotted data are available on request from Data Management Services.

DATE U7 CCT 74

TABULATED SCURCE DATA, R.I. TWT 280 - 1A69

1A69 CI TI SI P2 P6 BASE PRESSURES (RF3801) (16 APR 74)

PAGE 1

PARAMETRIC DATA

REFERENCE DATA

SREF = 2690,0000 SQ.FT. XMRP = 979,0000 TNK ST BETA = .000 ELEVON = coo. UREF = 1290,3000 IN. YMRP = JUDGO TAK BP RUDDER = .000 SPDERK ≈ .000 8REF = 1290,3000 IN. ZMRP = 400,0000 TNK WL EDFLAF = ,000

SCALE = .0150

MACH (1) = 1.070ALFHA (1) = -4.230 RN/L = 7.400

SECTION (1) BASE DEPENDENT VARIABLE OF

1.0000 X/L

TAP NO

1.000 -.3806

2.000 ענטט.

3.000 -.3544

4,000 .0000 5.000 -.4732

6.000 -.4402

7.000 -.4071

8.000 -.3808

9.000 -.4391

MACH (1) = 1.078ALFHA (2) = -.030 RN/L = 7.400

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3722

2.000 .0000

3.000 -.3675

4.000 כטטט.

5.000 -.4652

6.000 -.4776

7.000 -.4199

8.000 -.3723

IA69 C4 T1 S1 P2 P6 BASE FRESSURES

(RF3801)

MACH (1) = 1.078 ALPHA (3) = 4.000 RN/L = 7.400 SECTION (1) BASE DEPENDENT VARIABLE CP X/L 1.0000 TAP NO 1.000 -.3585 2,000 .0000 3.000 -.3547 4.000 ,טטטט 5,000 -.4494 6.000 -.4713 7.000 -.4161 8.000 -.3594 9.000 -.4201 MACH (2) = 1.220 ALFHA (1) = -4.120 GN/L = 7.400 DEPENDENT VARIABLE CP SECTION (1) BASE X/L 1.0000 TAP NO 1,000 -.3389 2,000 נטטטט. 3.000 -.3131 4.000 .0000 5,000 -.3919 6.000 -.4003 7.000 -.3469 6.000 -.3381 9.000 -.3603 MACH (2) = 1.22() ALPHA (2) = RN/L = 7,400 .110 DEPENDENT VARIABLE CP SECTION (1) BASE **X**∕L 1,0000 TAP NO 1,000 -.3334 2.000 .0000 3.000 -.3247 4.000 .0000 5.000 -.3705 6.000 -.4375 7,000 -.3596 6.000 -.3320 9.000 -.3462

DATE U7 CCT 74

TABULATED SCURCE DATA, R.I. TWT 280 - 1469

FAGE 3

IA69 Ct T1 S1 P2 P6 BASE PRESSURES

(RF3801)

MACH (2) = 1,220 ALPHA (3) = 4,200

RN/L = 7.400

SECTION (1) BASE

DEFENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3388

2,000 .0000

3.000 -.3332

4,000 .0000

5.000 -.3573 6.000 -.4474

7.000 -.3818

8.000 -.3387

9.000 -.3269

. _ _

IA69 Ct T1 S1 P2 P6 BASE PRESSURES

(RF3E02) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

SREF	= 2690.0000 Sa.FT.	XMRP =	979,0000 TNK ST	BETA =	-4.000	ELEVON =	.000
LREF	= 1290,3000 IN,	YMRP =	.0000 TNK BP	RUDDER =	נטט.	SPDERK =	.000
DOCC	- 190/1 2/3/31 TNI	7460 -	ACCO ANNOUNCE THAT ILL	DAD 40 *	1337		

SCALE = .0150

MACH (1) = 1.216 ALPHA (1) = -4.150RN/L = 7.400

SECTION (1) BASE DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3504

2.000 .0000

3.000 -.3217 4,000 ,טטטט,

5,000 -.3953

6,000 -.4289

7,000 -.3625

6.000 -.3515

9.000 -.3686

MACH (1) = 1.216 ALPHA (2) = .050 RN/L = 7.400

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1,000 -.3379

2,000 .0000

3,000 -.3315

4.000 .0000

5.000 -.3683

6.000 -.4666

7,000 -,3886

8.000 -.3414

DATE U7 CCT 74

PAGE 5

IA69 CI TI SI PZ P6 BASE PRESSURES

(RF3802)

MACH (1) = 1.216 ALPHA (3) = 4.140 RN/L = 7.400

SECTION (1)BASE

. DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3407

2,000 .0000

3.000 -.3384

4.000 .0000 5.000 -.3553

6,000 -.4775

7.000 -.4047

8.000 -.3435

IA69 CI TI SI P2 P6 BASE PRESSURES

(RF3803) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

sref =	2690.0000 SQ.FT.	XMRP	=	979.0000 TNK ST	BETA	=	4.000	ELEVON =	.000
LREF ≖	1290.3000 IN.	YMRP	=	.0000 TNK 6P	RUDDER	=	.000	SPDE/TK =	נכט.
eref =	1290.3000 IN.	ZMRP	=	400,0000 TNK WL	EXDFLAP	=	.000		
SCALE =	.0150								

MACH (1) = 1.216 ALPHA (1) = -4.200 RN/L = 7.300

SECTION (1) BASE DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3385

2,000 טטנט.

3,000 -.3210

4.000 .0000

5.000 -.3937 6.000 -.3750

7.000 -.3338

8.000 -.3386

9.000 -.3694

= (2) ALFLA (2) = .000 RN/L = 7.300

SECTION (1)BASE DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1,000 -.3289

2.000 .0000

3,000 -,3209

4.000 iceco.

5.000 -.3709

6.000 -.3851

7.000 -.3354

8.000 -.3279

DATE U7 CCT 74

TABULATED SCURCE DATA, R.I. TWT 280 - 1A69

PAGE 7

IA69 C4 T1 S1 P2 P6 BASE FRESSURES

(RF38U3)

MACH (1) = 1,216 ALPHA (3) = 4,110 RN/L = 7,300

SECTION (1) DASE

DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1.000 -.3325

2,000 .0000

3.000 -.3246

4,000 .0000 5,000 -.3464

6.000 -.4136

7.000 -.3625

0.000 ~.3297

IA69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF3804) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

53£F =	2690.0000 SQ.FT.	XMRP	=	979.0000 TNK ST	BETA	= 4,000	ELEVON =	בטט.
LREF =	1290,3000 IN.	YMRP	=	,0000 TNK BP	RUDDER	= .000	SFDE/₹K =	.000
eref =	1290.3000 IN.	ZMRP	=	400,0000 TNK W.	BDFLAP	= .000	ı	
SCALE ≈	-015 0							

MACH (1) = 1.215 ALPHA (1) = -4.210 RN/L = 7.200

SECTION (1) BASE DEPENDENT VARIABLE OF

X/L 1.0000

TAP NO

1.000 -.3386

2,000 .0000

3.000 -.3173

4,000 .0000

5.000 ~.3808

6,000 -.3699

7,000 -,3417

8.000 -.3383

9.000 -.3563

MACH (1) = 1.215 ALPHA (2) = .010 RNL = 7,200

SECTION (1)BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3276

2,000 .0000

3,000 -,3198

4,000 .0000

5,000 -.3586

6.000 -.3818

7.000 -.3469

0.000 -.3262

DATE U7 CCT 74

TABULATED SCURCE DATA, R.I. TWT 280 - IA69

AGE S

IA69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF3804)

MAOH (1) = 1.215 ALPHA (3) = 4.140

RN/L = 7.200

SECTION (1)BASE

DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1.000 -.3337

2.000 .0000

3.000 -.3225

4,000 .0000

5.000 -.3341 6.000 -.4084

7.000 -.3791

8.000 -.3302

1A69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF3805) (16 APR 74)

טכט. SREF = 2690.0000 SQ.FT. XMRP = 979.0000 TMK ST BETA = .000 ELEVON = LREF = 1290.3000 IN. YMRP = .0000 TNK 8P RUDDER = .000 SPDE/RK ≃ BREF = 1290.3000 IN. ZMRP = 400.0000 TNK WL EDFLAP = .000

SCALE = .0150

MACH (1) = 1.220 ALPHA (1) = -4.150

SECTION (1) BASE DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1.000 -.3396

.2.000 .0000

3.000 -.3159

4,000 .0000

5.000 -.3754

6.000 -.3924 7.000 -.3637

8,000 -.3398

9.000 -.3433

MACH (1) = 1.220 ALPHA (2) =

SECTION (1)BASE DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1,000 -.3322

2.000 .0000

3.000 -.3247

4.000 .0000

5.000 -.3542

6.000 -.4271

7.000 -.3653

8.000 -.3308

IA69 Ct 74 St P2 P7 BASE PRESSURES

(RF3805)

MACH (1) = 1.220 ALPHA (3) = #.200 RN/L = 7.200

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1,000 -.3377

2,000 .0000

3,000 -.3325

4.000 .0000 5.000 -.3352

6.000 -.4441

7.000 -.3911

8.000 -.3384

IA69 Ct T4 S1 P2 P7 BASE PRESSURES

(RF3806) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

sref =	2690,0000 54.FT.	XMRP	=	979.0000 TNK ST	BETA =	-4,000	ELEVON =	.000
u₹£F =	1290,3000 IN.	YMRP	±	.0000 TNK BP	RUDDER =	,000	SPDERK =	.000
BREF =	1290,3000 IN.	ZMRP	#	400,0000 TNK WL	BDFLAP =	.000		
SCALE =	.0150							

MACH (1) = 1.215 ALPHA (1) = -4.030 RN/L = 7.200

SECTION (1)BASE DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1,000 -,3492 2.000 .0000

3.000 -.3277

4,000 כטטט,

5,000 -.3805

6.000 -.4414

7.000 -.3849

8,000 -.3526

9.000 -.3554

MACH (1) = 1.215 ALPHA (2) = .150 FAVL = 7,200

SECTION (1)BASE

DEPENDENT VARIABLE OF

X/L 1.0000

TAP NO

1.000 -.3398

2,000 .0000

3,000 -,3329

4.000 מטטטי

5.000 -.3572

6.000 -.4622

7.000 -.3927

8,000 -,3438

9,000 -,3209

PAGE 13

1A69 C1 T4 S1 F2 F7 BASE PRESSURES

(RF3806)

MACH (1) = 1.215 ALFHA (3) = 4.330

SECTION (1) BASE

DEPENDENT VARIABLE CP

Χ/L 1,0000 TAP NO . 1.000 -,3420 2.000 ,0000 3,000 -.3374 4,000 .0000 5.000 -.3369 6.000 -.4739 7.000 -.4116 8.000 -.3452

IA69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF38U7) (16 APR 74)

-	r	F	=		•	N	ce	D	4	TA	ı

PARAMETRIC DATA

sref =	2690.0000 SQ.FT.	XMRP	=	979.0000 TNK ST	CETA =	-4,000	ELEVON =	.000
UREF =	1290.3000 IN.	YMRP	=	.0000 TNK BP	RLDDER =	.000	SPDERK =	.000
BREF =	1290.3000 IN.	ZMRP	=	400,0000 TNK WL	EDFLAP =	.000		
SCALE TO	/14.6I3							

MACH (1) = 1.218 ALPHA (1) = -4.190 RN/L = 7.300

. SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO 1.000 -.3478

2,000 .0000

3.000 -.3326

4,000 .0000 5.000 -.4047

6.000 -.4747

7.000 -,4072

8.000 -.3503

9.000 -.3813

MACH (1) = 1.218ALFHA (2) = - .090

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1.000 -.3371

2.000 .0000

3,000 -.3287

4.000 .0000

5.000 -.3912

6,000 -.4678

7.000 -.4061

8.000 -,3403

IA69 Ct 74 St P2 P7 BASE PRESSURES

(RF3807)

MACH (1) = 1.218 ALPHA (3) = 3.970

RN/L = 7.300

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1.000 -.3365

2.000 .0000

3.000 -.3311

4,000 .0000

5.000 -.3768

6.000 -.4699 7.000 -.4110

8,000 -.3394

IA69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF3808) (16 APR 74)

REFERENCE DATA

FARAMETRIC DATA

sref =	2690.0000 SQ.FT.	XM TP	=	979.UUUU TNK ST	BETA	=	.טטט.	ELEVON =	.000
UREF =	1290.3000 IN.	YMRP	=	.0000 TNK BP	RUDDER	=	ندن.	SPDERK =	.000
eref =	1290.3000 IN.	ZMRP	=	400,0000 TNK WL	EDFLAP	=	.000		
SCALE =	.D150								

MACH (1) = 1.222 ALPHA (1) = -4.070 RN/L = 7.300

SECTION (1)BASE DEPENDENT VARIABLE CP

X/L 1.0000 TAP NO 1,000 -.3410

2,000 .0000 3.000 -.3259

4.000 ,0000 5,000 -.3999

6.000 -.4183

7,000 -.3725 8.000 -.3401

9,000 -.3705

.070 RN/L = 7.300 MACH (1) = 1.222 ALPHA (2) =

DEFENDENT VARIABLE OF SECTION (1) BASE

XL 1.0000

TAP NO 1.000 -.3314

2,000 .0000

3.000 -.3243 4.000 .0000

5.000 -.3852

6.000 -.4288

7.000 -.3747

0.000 -.3300

PAGE 17

IA69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF38U8)

MACH (1) = 1.222 ALPHA (3) = 4.150

RN/L = 7.300

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3336

0000. 000.s

3,000 -.3288

4.000 .0000

5.000 -.3728 6.000 -.4359

7.000 -.3912

0.000 -.3330

IA69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF3809) (16 AFR 74)

REFERENCE DATA

PARAMETRIC DATA

SREF :	=	2690,0000 SQ.FT.	XMRP	=	979,0000 TNK ST	BETA	=	.000	ELEVON =	.000
LREF :	=	1290,3000 IN.	YMRP	=	.0000 TAK BP	RUDDER	=	.000	SPDERK =	.000
BREF :	=	1290.3000 IN.	ZMRP	=	400,0000 TNK WL	BOFLAF	=	.000		

SCALE = .0150

MAOH (1) = 1.221 ALPHA (1) = -4.010 RN/L = 7.200

SECTION (1) BASE DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1.000 -.3411

2.000 .0000 3.000 -.3245

4,000 .0000

5.000 -.3980

6.000 -.4220

7.000 -.3680

8,000 -.3409

9.000 -.3663

MACH (1) = 1,221 ALFHA (2) = .030 RN/L = 7.200

SECTION (1) BASE

DEPENDENT VARIABLE OF

X/L 1,0000

TAP NO

1.000 -.3305

2.000 .0000

3.000 -.3237

4,000 .0000

5.000 -.3788

6.000 -.4308

7.000 -.3765

8,000 -.3297

TABULATED SCURCE DATA, R.I. TWT 280 - 1A69

PAGE 19

IA69 CA T4 SI P2 P7 BASE PRESSURES

(RF3809)

MACH (1) = 1.221 ALFHA (3) = 4,080 FRVL = 7,200

SECTION (1)BASE

DEPENDENT VARIABLE CP

X/L 1,0000

TAP NO

1.000 -.3341

2,000 .0000

3.000 -.3295

4.000 .0000

5.000 -.3638

6.000 -.4352

7,000 -.3887

8.000 -.3337

9,000 -.3382

IA69 C1 T4 S1 P2 P7 BASE PRESSURES

(RF3810) (16 AFR 74)

172	- -	1757	V.F	Π Δ	TA

PARAMETRIC DATA

SREF ≖	2690.0000 SQ.FT.	MRP	=	979.0000 TNK ST	BETA	=	4.000	ELEVON =	.000
UREF =	1290.3000 IN.	YMRP	#	.0000 TNK BP	FEQUUA	=	נטט.	SPDBRK =	.000
2₹	1290.3000 IN.	ZMRP	=	400,0000 TNK WL	EOFLAP	=	.000		
SCALE =	.0150								

MACH (1) = 1.217 ALPHA (1) = -4.150 RN/L = 7.300

SECTION (1) BASE DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3348

2.000 .0000

3.000 -.3172

4.000 .0000

5,000 -.4044

6,000 -.3774

7.000 -.3374

8.000 -.3365

9.000 -.3814

MACH (1) = 1.217 ALPHA (2) = +.070 RN/L = 7,300

SECTION (1) BASE

DEPENDENT VARIABLE OF

X/L 1,0000

TAP NO

1,000 -.3285

2.000 .0000

3.000 -.3176

4.000 .0000

5.000 -.3935

6.000 -.3796

7.000 -.3559

8.000 -.3293

IA69 CI T4 SI P2 P7 BASE PRESSURES

(RF3810)

MACH (1) = 1.217 ALPHA (3) = 4.010 RN/L = 7.300

SECTION (1)BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3280

2.000 ,0000

3,000 -.3125

4,000 .0000

5.000 -.3742

6.000 -.4001 7.000 -.3731

8.000 -.3281

PAGE 22

IA69 CI TI SI P2 P6 BASE PRESSURES

(RF3811) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

sref =	2690.0000 SQ.FT.	XMRP	=	979.0000 TNK ST	BETA	= .	4,000	ELEVON =	.000
UREF ≃	1290,3000 IN.	YMRP	=	.0000 1NK 6P	RUDDER	=	,000	SPDERK =	,000
eref =	1290.3000 IN.	ZMRP	=	400,0000 TNK W.	EDFLAP	=	.ccc		
SCALE =	.0150								

RN/L = 7.200

MACH (1) = 1.217 ALPHA (1) = -4.100

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3341

2,000 .0000 3.000 -.3167

4.000 .0000

5,000 -.4042

6,000 -.3704

7.000 -.3447

0.000 -.3351

9.000 -.3803

MACH (1) = 1.217 ALPHA (2) = -.220

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3264

2.000 .0000

3.000 -.3143

4.000 .0000

5.000 -.3907

6.000 -.3770

7.000 -.3549

8.000 ~.3279

IA69 CI TI SI P2 P6 BASE PRESSURES

(RF3811)

MACH (1) = 1.217 ALPHA (3) = 4.040

RN/L = 7.200

SECTION (1)BASE

DEPENDENT VARIABLE CP

WL 1.0000

TAP NO

1.000 -.3283

2,000 .0000

3,000 -.3137

4.000 .0000

5.000 -.3738

6.000 -,4008

7.000 -.3797

8,000 -.3284

IA69 CO TI SI PZ P6 BASE PRESSURES

(RF3812) (16 AFR 74)

E	ìF	FF	DF1	UCE"	DΔ	TΑ

PARAMETRIC DATA

SREF	2	2690.0000 Sq.FT.	XMRP	=	979,0000 TNK ST	BETA	= .0	w	ELEVON =	.000
LREF	=	1290.3000 IN.	YMRP	z	JUDDO TNK BP	RUDDER	= ,0	œ	SPDERK =	.000
BREF	=	1290.3000 IN.	ZMRP	=	400,0000 TNK WL	EDFLAP	= ,0	כט		

SCALE = .D150

MACH (1) = 1.221 ALPHA (1) = -4.190 RN/L = 7.200

SECTION (1) BASE DEPENDENT VARIABLE CP

X/L 1,0000

. . .

TAP NO

1.000 -.3391

2.000 .0000

3,000 -.3235

4,000 ,0000

5,000 -,3998

6.000 -.4221

7,000 -,3809

8,000 -.3380

9.000 -.3703

MAO+ (1) = 1.221 ALP+A (2) = -.100 RN/L = 7.200

SECTION (1) BASE DEPENDENT VARIABLE OF

X/L 1,0000

TAP NO

1.000 -.3327

2,000 ,0000

3,000 -.3244

4,000 .0000

5.000 -.3880

6.000 -.4258

7.000 -.3793

8.000 -.3317

IA69 Ct T1 S1 P2 P6 BASE PRESSURES

(RF3812)

MACH (1) = 1.221 ALPHA (3) = 4.000 RN/L = 7.200

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3349

2.000 .0000

3,000 -.3297

4.000 .0000

5,000 -.3780

6,000 -.4307 7,000 -.3858

8.000 -.3340

IA69 C1 T1 S1 P2 P6 BASE PRESSURES

(RF3813) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

skef =	2690.0000 Sq.FT.	XMRP	=	979,0000 TNK ST	BETA :	-4,000	ELEVON =	.000
UREF ≠	1290,3000 IN.	YMRP	æ	.0000 TNK BP	RUDDER :	.000	SPDERK #	,000
eref =	1290,3000 IN.	ZMRP	=	400,0000 TNK WL	BOFLAP =	.000		
66446	(24.842							

MACH (1) = 1.218 ALFHA (1) = -4.250 RN/L = 7.200

SECTION (1)BASE DEPENDENT VARIABLE CP

1.0000 X/L

TAP NO

1.000 -.3480

2.000 .0000

3.000 -.3333

4.000 .0000

5.000 -.4065

6.000 -.4732

7.000 -.4076 8,000 -.3495

9.000 -.3822

MACH (1) = 1.218 ALPHA (2) = -.060 RN/L = 7.200

SECTION (1)BASE

DEPENDENT VARIABLE OP

X/L 1,0000

TAP NO

1.000 -.3362

2.000 נטטטט.

3.000 -.3266

4,000 .0000

5.000 -.3917

6.000 -.4607

7.000 -.4042

8.000 -.3382

TABULATED SOURCE DATA, R.I. TWT 280 - IA69

PAGE 27

IA69 CE TI SI P2 P6 BASE PRESSURES

(RF3813)

MACH (1) = 1.218 ALPHA (3) = 4.020

RN/L = 7.200

SECTION (1) BASE

DEPENDENT VARIABLE CP

X/L 1.0000

TAP NO

1.000 -.3374

0000.

3.000 -.3318

4,000 .0000

5.000 -.3767

6.000 -.4698 7.000 -.4151

8.000 -.3393

9.000 -.3538

٠,

. .

IA69 CI TI SI P2 P6 ORBITER FUSELAGE PRESSURES

(RE3FU1) (16 APR 74)

REFERENCE DATA	PARAMETRIC DATA

Stef =	2690.0000 SQ.FT,	XMRP	æ	979.0000 TNK ST	BETA	=	.000	ELEVON =	.000
LREF =	.N1 000E.0eS1	YMRP	=	.CCCC TNK BP	RUDDER	=	.000	SPDBRK =	.000
eref =	1290.3000 IN.	ZMRP	=	400.0000 TNK WL	EDFLAP	=	.000		
SCALE =	.0150								

MACH (1) = 1.078 ALPHA (1) = -4.230 FN/L = 7.400

SECTION (1) FUSELAGE DEPENDENT VARIABLE CP

X/L	.1821	·2U54	.2519	.2945	.3488	.3875
But						

.000 1,2709 .4458 .4433 -.5770 -.4055 40,000 .5163 .3290 .1236 -.2917 -.2844 90.000 .5206 .2826 .2194 .0351 -.2322 180,000 .6533 .4180 .5098 .7178 -.7915

MACH (1) = 1.078 ALPHA (2) = -.030 RN/L = 7.400

SECTION (1) FUSELAGE DEPENDENT VARIABLE OF

X/L	,1821	.2054	.2519	.2945	.3488	.3875	
PHI							

.000 1.2869 . 3945 .3486 -.5667 -.3505 40,000 .4876 .2577 .0733 -.3097 -.2895 90,000 .0286 -.2248 .4652 .2137 ,1729 180,000 .5470 .2949 .6713 -.8375 .4196

MACH (1) = 1.078 ALPHA (3) = 4.000 RN/L = 7.400

SECTION (1) FUSELAGE DEPENDENT VARIABLE OF

x/L .1621 .2054 .2519 .2945 .3488 .3875

HI.

.000 1.2870 .3340 .2771 -.5189 -.2270 40.000 .4557 .2078 .0150 -.3118 -.1672 90,000 .4221 .1605 .1127 .0195 -.2192 180.000 .4518 .1639 .3241 .6295 -.9005

90,000

180,000

.4943

.5048

.2468

.1926

.1516

.2704

.1089 -.0887

.7319 -.6782

(RF3FU1)

IA69 CI TI SI P2 P6 ORBITER FUSELAGE PRESSURES MAOH (2) = 1,220 ALPHA (1) = -4.120 RN/L = 7.400 SECTION (1) FUSELAGE DEPENDENT VARIABLE CP X/L .1821 .2054 .2519 .2945 .3488 .3875 PHI .4835 .000 1.3639 .5052 -,4432 -.2545 40,000 .5881 .3720 .2116 -.1620 -.0831 90.000 .5786 .3355 .2943 .1615 -.0709 180,000 .6891 .6008 - .5939 .4433 .5584 MACH (2) = 1,220 ALPHA (2) = .110 RNL = 7.400 SECTION (1) FUSELAGE DEPENDENT VARIABLE CP X/L .1821 .2054 .2519 .2945 .3488 .3875 PHI .000 1,3881 .4582 .4129 -.4620 -.2586 40,000 .5654 .3002 .1555 -.2125 -.3001 90.000 .5399 .2843 .2300 .1288 -.0705 160.000 .5934 .2967 .4439 .7566 -.6330 MACH (2) = 1.220 ALPHA (3) = 4.200RN/L = 7.400 SECTION (1) FUSELAGE DEPENDENT VARIABLE CP X/L .1821 .2054 .2519 .2945 .3488 .3875 HI .000 1.3723 .3911 .3418 -.4569 -.2130 .5322 40.000 .2578 .1291 -.2593 -.3687

90.000

180,000

.6500

.4791

.3316

.1743

.2692

.2020 .0032

.3176 .7027 -.6847

נטטט,

.000

1A69 C4 T1 S1 P2 P6 ORBITER FUSELAGE PRESSURES

(RF3FU2) (16 APR 74)

SPORKK =

-4.000 ELEVON =

.000

CCO.

BETA =

EDFLAP =

REFERENCE DATA	PARAMETRIC DATA
COUNTY OF THE INC.	LANGE TO THE PERSON OF THE PER

			T. XMRP					
UREF :	1290.	3000 IN.	YMRP	=	,0000 TN	K 8P		
DREF :	1290.	3000 IN.	ZMRP	≃ 400	אד טטטט. דא	K WL		
SCALE :	= .	0150						
MACH	(1) =	1.216	ALPHA (1) = -	4.150	RN/L	=	7,400
SECTIO	N (1)F	JSELAGE			DEPEND	ENT VARIA	SLE CP	
X/L	.18	321 .20	54 .2519	,2945	.3488	.3875		
FHI								
			28 .5385		4767	2840		
40.00	ប ប	טל	93 .4491	.3367	0963	0845		
90,00	ט	.73	.4527	,3944	.2612	.0234		
180,00	D	-67	70 .4453	.5487	.7797	5980		
масн (1) =	1.216	ALFHA (2) =	.050	RN/L	z	7.400
SECTIC	V (1)FU	SELAGE			DEPENDE	NT VARIAB	LE OP	
X/L	.18	21 .205	4 .2519	.2945	.3488	.3875		
PHI								
.000	1.41	3 0 .489	7 .4722		4951			
40.000	_		5 .3854					
	ì		4 .3839					
180,000)	.568	2 .3050	.4454	.7335	6324		
MACH (1) =	1.216	ALPHA (3) = 4	.140	RNVL	=	7.400
SECTION	(1)FU	SELAGE			DEFENDE	NT VARIABI	E CP	
×∕L	,182	205.	4 .2519	.2945	.3488	.3875		
D-1 2								
.000	1.397	2 .460	6 .4101		5135	-,2838		
40.000		.707.	.3425	.2952	1499	1521		

X/L

X/L

X/L

TABULATED SCURCE DATA, R.I. TWT 280 - 1A69

PAGE 31

IA69 CI TI SI P2 P6 CRB! TER FUSELAGE PRESSURES

(RF3FU3) (16 AFR 74)

REFERENCE DATA

PARAMETRIC DATA

SREF =	2690.0000 SQ.FT,	₩ ₹₽	=	979.0000 TNK ST	BETA =	4,090	ELEVON =	.000
LREF #	1290.3000 IN.	YMRP	#	.0000 TNK 8P	RUDOER ≃	נטט.	SPDERK =	.000
eref =	1290.3000 IN.	ZMRP	=	400,0000 TNK WL	BOFLAP =	.000		
SCALE =	.0150			٤				

MACH (1) = 1.216 ALPHA (1) = -4.200

.2519 .2945 .3488 .3875

SECTION (1) FUSELAGE

.1821 .2054

.6659

DEPENDENT VARIABLE CP

PHI .000 1.2799 .4549 .5012 -.4616 -.2268 40.000 .4256 .3479 .0900 -.1929 -.2451 90,000 .4050 .2515 .2215 .0450 -.1653 180,000

.4151

MACH (1) = 1.216 ALPHA (2) = ,000 RN/L = 7.300

.1821 .2054 .2519 .2945 .3488 .3875

.5494

SECTION (1) FUSELAGE

DEPENDENT VARIABLE CP

.7741 -.5530

.000 1.3011 .4355 .4296 -.4671 -.2875 40.000 .4020 .2694 .0319 -.2752 -.2139 90.000 .3572 .1603 .1614 .0240 -.1595 180,000 .5674 .2636 .4362 .7295 -.5961

MACH (1) = 1.216 ALFHA (3) = 4.110RN/L = 7.300

SECTION (1) FUSELAGE

DEPENDENT VARIABLE OF

.2945 .3468 .3675

.4157 .000 1.2794 .3653 -.4812 -.2880 40.000 .3805 .2231 .0017 -.3421 -.1982 90.000 . 31 41 .1312 .0741 .0205 -.1733 180,000 .4748 .1690 .2830 .6979 -.6511

.1821 .2054 .2519

.000

.000

1A69 Ct T4 S1 P2 P7 CRBITER FUSELAGE PRESSURES

(RF3FU4) (16 AFR 74)

SPDORK =

REFERENCE DATA

PARAMETRIC DATA

.000

.000

4.000 ELEVON =

BETA =

RUDDER =

BOFLAP =

STEF	= 2690.0	0000 \$0.FT.	XMRP	= 979	אד סטטט.	K ST		
LITEF :	= 1290,3	MI DOOR	YMRP	=	.0000 TN	K BP		
eref :	1290,3	9000 IN.	ZMRP	= 400	.0000 TN	K WL		
SCALE :	0	150						
		•						
MACH	(1) =	1.215	ALPHA (1	i) = -	4.210	RN/L	=	7.200
SECTIO	N / 4150	SELAGE			-			
SEC / IC	M (1)-O	SELAGE			DEFEND	ENT VARIAE	SLE CP	
X/L	.18	21 .2054	.2519	.2945	.3488	.3875		
PHI								
.00	U 1.27	31 .4347	.5378		4667	2395		
40.00	ט	.4149	.3555					
90.00	O	.4158	.2501	.2194	.0452	1575		
180.00			.4241	,5505	,7797	5518		
MACH {	1) =	1.215 A	THA (5) =	.010	RNL	=	7.200
SECTIO	N (1)ELS	ELAGE			DEDENDE	NT VARIAB	F 70	
X/L	.182	2054	.2519	.2945				
X/L	.182	2054	.2519	.2945				
Ħ·I								
,000 ,000	0 1.301	5 .4150	.4548		.3488	.3e75		
#+! .000 40,000) 1.301)	5 .4150 .3766	.4548 .2797	.0498	.3488 4809 2452	.3875 3171 3377		
#+1 ,000 49,000 99,000	0 1.301 0	5 .4150 .3766 .3634	.4548 .2797 .1604	.0498 .1656	.3488 4809 2452 .0275	.3875 3171 3377 1666		
#+! .000 40,000	0 1.301 0	5 .4150 .3766	.4548 .2797 .1604	.0498 .1656	.3488 4809 2452 .0275	.3875 3171 3377 1666		
##I ,000 40,000 90,000 180,000	1.3G1))	5 .4150 .3766 .3634 .5633	.4548 .2797 .1604 .2764	.0498 .1656 .4378	4809 2452 .0275 .7281	.3875 3171 3377 1666 5915		
##I ,000 40,000 90,000 180,000	1.3G1))	5 .4150 .3766 .3634	.4548 .2797 .1604 .2764	.0498 .1656 .4378	4809 2452 .0275 .7281	.3875 3171 3377 1666 5915		
PHI ,000 40,000 90,000 180,000) 1.301)))	5 .4150 .3766 .3634 .5633	.4548 .2797 .1604 .2764	.0498 .1656 .4378	.3488 4809 2452 .0275 .7281	.3875 3171 3377 1666 5915	=	
PHI ,000 40,000 90,000 180,000) 1.301)))	5 .4150 .3766 .3634 .5633	.4548 .2797 .1604 .2764	.0498 .1656 .4378	.3488 4809 2452 .0275 .7281	.3875 3171 3377 1666 5915	=	
FHI ,000 49,000 99,000 180,000 MACH (SECTION	1.301))) ((1) FUS	5 .4150 .3766 .3634 .5633	.4548 .2797 .1604 .2764 .2744 (3)	,0498 .1656 .4378 = 4	.348848092452 .0275 .7281 .140 DEPENDE	.38753171337716665915 RN/L	=	
FHI ,000 40,000 90,000 180.000 MACH (SECTION	1.301))) ((1) FUS	5 .4150 .3766 .3634 .5633 1.215 AI	.4548 .2797 .1604 .2764 .2744 (3)	,0498 .1656 .4378 = 4	.348848092452 .0275 .7281 .140 DEPENDE	.38753171337716665915 RN/L	=	
FHI .000 40,000 90,000 180.000 MACH (SECTION X/L	1.301 1) = ((1) FUS .182	5 .4150 .3766 .3634 .5633 1.215 AL ELAGE 1 .2054	.4548 .2797 .1604 .2764 .2HA (3)	.0498 .1656 .4378 = 4	.3488 4809 2452 .0275 .7281 .140 DEFENDED	.3875 3171 3377 1666 5915 RN/L NT VARIABL	=	
#HI .000 40,000 90,000 180.000 MACH (SECTION X/L #HI .000	1.301 1) = (1) Fus .182	5 .4150 .3766 .3634 .5633 1.215 AI ELAGE 1 .2054	.4548 .2797 .1604 .2764 LPHA (3)	.0498 .1656 .4378 = 4	.348848092452 .0275 .7281 .140 DEPENDED .34885015	.38753171337716665915 RN/L NT VARIABL .3875	=	
#HI .000 49,000 99,000 180,000 MACH (SECTION X/L PHI .000 40,000	1.301 1) = (1) Fus .182	5 .4150 .3766 .3634 .5633 1.215 AI ELAGE 1 .2054	.4548 .2797 .1604 .2764 .2HA (3)	.0498 .1656 .4378 = 4	.3488 4809 2452 .0275 .7281 .140 DEPENDED .3488 5015 3336	.38753171337716665915 RN/L NT VARIABL .387530962641	=	

.2850

.6989 -.6500

.4796 .1772

180,000

90,000. 180,000

.4977

.1910

.2869

.7394 -.6786

.000

.000

1A69 C4 T4 S1 P2 P7 ORBITER FUSELAGE PRESSURES

(RF3FU5) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

.000

RUDDER =

EDFLAP =

NOVELES COOL

.000 SPDBRK =

	IVE)	DIENCE IN	NIA.					
SREF =	2690.000	D SQ.FT.	MRP	= 979	אד טטטט.	K ST		
LREF ≥	1290,300	D.IN.	YMRP	=	אד טטטט.	K 8P		
eref =	1290,300 1290,300	J IN.	ZMRP	= 400	.0000 TN	K WL		
	.015							
маон (1) = 1	.220 A	ILPHA (1) =	4.150	RN/L	=	7,200
SECTION	(1) FUSE	-AGE			DEPEND	ENT VARIA	LE CF	•
X/L	.1821	.2054	.2519	.2945	.3488	.3875		
PHI								
.000	1.3520	.4571	.5220		4357	2554		
40.000		.5583	.3726	.2148	1550	0770		
90.000		.5780	.3336	.2949	.1634	0709		
180.000		.6875	.4452	.5581	.8030	5915		
маон (1) = 1.	220 A	LPHA (2:) =	.080	RNL	=	7.200
SECTION	(1)FUSEL	AGE			DEPENDE	ONT VARIAB	LE CP	
WL.	.1821	.2054	.2519	.2945	.3488	.3875		
PHI								
.000	1,3861				4506			
40.000		.5342	.2776	.1518	2236	2273		
90,000			.2749			~.0836		
180.000		.5861	.2984	.4445	.7584	6290		
4CH (1	.) = 1.3	220 AL	. Рн а (3)	= 4	.200	RN/L	=	7.200
SECTION	(1)FUSEL	AGE			DEFENDE	BAIFAN TM	E (P	
/L	.1821	.2054	.2519	.2945	.3488	.3875		
PHI					,			
.000	1,3708	.3020	.3160		-,4624	2356		
40.000		.5116	.2104	.1269	2720	3474		•

IA69 CE T4 SI P2 P7 CRBITER FUSELAGE FRESSURES

(RF3FU6) (16 AFR 74)

REFERENCE DATA

PARAMETRIC DATA

SREF = 2690.0000 SQ.FT.	XMRP =	979.0000 TNK ST		SETA =	-4,000	ELEVON =	.000
LREF = 1290.3000 IN.	YMRP =	.0000 TNK BP		RUDDER =	CCO.	SPOBRK =	.000
OREF = 1290.3000 IN.	ZMRP =	400,0000 TNK WL		BOFLAP =	.000		
SCALE = .0150							
MACH (,1) = 1.215 A	LPHA (1)	= -4.030 RN/L	= 7.200				

SECTION (1) FUSELAGE DEPENDENT VARIABLE OF

X/L	,1821	.2054	.2519	.2945	.3488	.3875

PHI

.000	1.3706	.4899	.5409		-,4757	-,2846
40,000		,6881	,4412	.3183	0989	0848
90,000		.7309	.4482	.3922	.2596	.0232
180,000		.6772	.4408	.5466	.7822	5999

MACH (1) = 1.215 ALPHA (2) = .150 RN/L = 7.200

SECTION (1) FUSELAGE DEPENDENT VARIABLE CP

X/L .1821 .2054 .2519 .2945 .3488 .3875

A+I

.000	1.4030	.4642	.4739		4876	2983
40.000		.6878	.3813	.2929	1219	1986
90,000		.6864	.3861	.3247	.2332	.0082
180,000		.5687	.3042	.4416	.7307	-,6309

MACH (1) = 1.215 ALPHA (3) = 4.330 RN/L = 7.200

SECTION (1) FUSELAGE DEPENDENT VARIABLE CP

X/L	.1821	.2054	.2519	.2945	.3488	.3875
₽HI						

.000	1.3953	.3898	.3625		4490	2374
40,000		.6652	.3127	.2818	1610	1729
90,000		.6446	. 3323	.2572	.1936	0040
180,000		.4753	.1726	.3017	.7063	6856

PAGE 35

IA69 Ct T1 S1 P2 P6 WING UPPER SURFACE PRESS.

(RF3U01) (16 AFR 74)

REFERENCE DATA

PARAMETRIC DATA

```
SREF = 2690.0000 $0.FT. XMRP = 979.0000 IN.
                                                                          BETA =
                                                                                      .000 ELEVON =
                                                                                                        .000
UREF = 1290.3000 IN.
                        YMRP =
                                   .0000 TNK BP
                                                                          RUDDER =
                                                                                      .000 SPDBRK =
BREF = 1290,3000 IN.
                        ZMRP = 400,0000 TNK WL
                                                                          BOFLAP =
                                                                                      .ccc
SCALE ≈
        .0150 SCALE
MACH (1) = 1.078 ALPHA (1) = -4.230
                                             RN/L = 7.400
```

SECTION (1) UPPER WING

.5340 .7800

DEPENDENT VARIABLE CP

X/C .000 .4930 .4045 .050 .1086 .0545 .150 -.2191 -.2192 .400 -.3445 -.5067 .725 -.1264 -.1906

MACH (1) = 1.078 ALPHA (2) = -.030 RN/L = 7.400

SECTION (1) UPPER WING

.950 -.2321 -.2151

DEFENDENT VARIABLE CP

2Y/B .5340 .7800

Х/C

2Y/B

.000 .5526 .5177 .050 -.0396 -.1164 .150 -.3659 -.3740 .400 -.4765 -.6552 .725 -.1330 -.3268 .950 -.2416 -.2150

MACH (1) = 1,078 ALPHA (3) = 4,000 RN/L = 7,400

SECTION (1) UPPER WING

DEPENDENT VARIABLE CP

2Y/B .5340 .7800

ЖC

.000 .5348 .5021 .050 -.2289 -.3661 .150 -.5502 -.5705 .400 -.6037 -.8109 .725 -.2530 -.4881 .950 -.2652 -.4773

```
IA69 CI TI SI P2 P6 WING UPPER SURFACE FRESS.
```

(RF3UU1)

MACH (2) = 1.22U ALPHA (1) = -4.120 RN/L = 7.400

SECTION (1) UPPER WING

DEPENDENT VARIABLE CP

2Y/B .5340 .7800

X/C

.000 .5424 .4806

.050 .2023 .1631

.150 -.0947 -.0843 .400 -.2592 -.3615

.725 .0399 -.1632

.950 -.0938 -.1298

MACH (2) = 1.220 ALFHA (2) = .110 RN/L = 7.400

SECTION (1) UPPER WING

DEPENDENT VARIABLE CP

27/8 .5340 .7800

X/C

.000 .5956 .5559

.050 .0375 .0140

.150 -.2636 -.2166 .400 -.3532 -.4821

.725 -.0874 -.4932

.950 -.1071 -.2079

MACH (2) = 1.220 ALFHA (3) = 4.200 RN/L = 7.400

SECTION (1) UPPER WING

DEPENDENT VARIABLE OF

2Y/8 .5340 .7800

Χ/C

.000 .5802 .5867

.050 -.1729 -.1867

.150 -.4506 -.3922

.400 -.4358 -.6235

.725 -.2233 -.6233

.950 -.1328 -.3329

```
DATE U7 CCT 74
```

TABULATED SCURCE DATA, R.I. TWT 280 - IA69

PAGE 37

.000

.000

1A69 CE TI SI P2 P6 WING UPPER SURFACE PRESS.

(RF3UU2) (16 APR 74)

REFERENCE DATA PARAMETRIC DATA SREF = 2690,0000 SQ.FT. XMRP = 979,0000 IN. BETA = -4.000 ELEVON = UREF = 1290,3000 IN. YMRP = .0000 TNK BP RUDDER = .UUU SPDORK = BREF = 1290,3000 IN. ZMRP = 400,0000 TNK WL EDFLAP = .000 SCALE = .0150 SCALE MACH (1) = 1.216 ALFHA (1) = -4.150 RN/L = 7.400 SECTION (1) UPPER WING DEPENDENT VARIABLE CP 2Y/B .5340 .7800 X/C .000 .6394 .5058 .050 .2325 .1915 .150 -.1131 -.0908 .400 -.2998 -.3945 .725 .0129 ~.4309 .950 -.0482 -.1647 MACH (1) = 1.216, ALFHA (2) = .050 RNL = 7.400 SECTION (1) UPPER WING DEPENDENT VARIABLE CP 2Y/B .5340 .7800 X/C .000 .7013 .6508 .0774 .050 .0404 .150 -.2839 -.2107 .400 -.4118 -.5064 .725 -.1616 -.5448 .950 -.0550 -.2143

MACH (1) = 1.216 ALPHA (3) = 4.140 RN/L = 7.400

SECTION (1) UPPER WING

2Y/B

DEPENDENT VARIABLE OF

X/C
.000 .6968 .6736
.050 -.1199 -.1757
.150 -.4411 -.3907
.400 -.5478 -.6416
.725 -.2699 -.6575
.950 -.1096 -.2881

.5340 ,7800

,000 000

.150 -.3928 -.4028 .400 -.4371 -.6044 .725 -.1472 -.4184 .950 -.1812 -.3313

IA69 CE TE SE P2 P6 WING UPPER SURFACE PRESS.

(RF3U03) (16 APR 74)

REFERENCE DATA		PARAMETRIC DATA
LREF = 1290,3000 IN. YMRP =	99.0000 IN. 99.0000 TNK 8P 100.0000 TNK W.	BETA = 4.000 ELEVON = RUDDER = .000 SPOORK = EDFLAP = .000
MACH (1) = 1.216 ALPHA (1) =	-4.200 RN/L = 7.300	
SECTION (1) UPPER WING	DEPENDENT VARIABLE CP	
21/8 .5340 .7800		
v c ,		
.000 .4702 .3798		
.050 .1782 .1317		
.15009960914		
.40024523386		
.72501460589		
.95014031494		
MACH (1) = 1.216 ALPHA (2) =	.000 RAVL = 7.300	·
SECTION (1) UPPER WING	DEFENDENT VARIABLE CP	
2Y/B .5340 .7800	٠.	•
x/c		
.000 .5323 .4669		
.050 .01860087		1
.15023832330		
.40034174686		
.72503872581		
.95016121498		
MACH (1) = 1.216 ALPHA (3) =	4.110 RWL = 7.300	
SECTION (1) UPPER WING	DEPENDENT VARIABLE CP	
27/8 .5340 .7800		
x/c		
.000 .5064 .4806		
.05016422169		

TABULATED SCURCE DATA, R.I. TWT 28U - 1A69

PAGE 39

IA69 CI T4 SI P2 P7 WING UPPER SURFACE PRESS.

(RF3UD4) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

 SREF
 =
 2690,0000 \$2,FT.
 XMRP
 =
 979,0000 IN.
 8ETA
 =
 4,000 ELEVON
 .000

 LREF
 =
 1290,3000 IN.
 YMRP
 =
 .000 TIN BP
 RUDDER
 .000
 SFDBR
 .000

 BREF
 =
 1290,3000 IN.
 ZMRP
 =
 400,0000 TIN WL
 8DFLAP
 .000

 SCALE
 .0150 SCALE
 .0150 SCALE
 .0150 SCALE
 .0150 SCALE
 .0150 SCALE

MACH (1) = 1.215 ALPHA (1) = -4.210 RN/L = 7.200

SECTION (1) UPPER WING

DEPENDENT VARIABLE CP

2Y/8 .5340 .7800 X/C .000 .4671 .3816 .050 .1753 .1299

> .150 .0000 -.0908 .400 -.2442 -.3357

.725 -.0132 -.0584 .950 -.1400 -.1503

MACH (1) = 1.215 ALPHA (2) = .010 RNVL = 7.200

SECTION (1) UPPER WING

DEPENDENT VARIABLE CP

27/8 .5340 .7800

Х/C

.000 .5314 .4718 .050 .0170 -.0081

.150 .0000 -.2318

.400 -.3417 -.4688

.725 -.0403 -.2669 .950 -.1595 -.1535

MACH (1) = 1.215 ALPHA (3) = 4.140 RN/L = 7.200

SECTION (1) UPPER WING

DEPENDENT VARIABLE CP

2Y/8 .5340 .7800

X/C

.000 .5117 .4894

.050 -.1676 -.2105

.150 .0000 -.3991

.400 -.4349 -.6048

.725 -.1504 -.4304

.950 -.1800 -.3310

IA69 CO TA SI P2 P7 WING UPPER SURFACE PRESS.

(RF3U05) (16 AFR 74)

REFERENCE DATA PARAMETRIC DATA

 SREF = 2690,0000 \$2,FT.
 XMRP = 979,0000 [N.
 BETA = .000 ELEVON = .000

 LREF = 1290,3000 [N.
 YMRP = .0000 TNX BP
 RUDGE = .000

 BREF = 1290,3000 [N.
 ZMRP = .0000 TNX WL
 BEFLAP = .000

SCALE = .0150 SCALE

MACH (1) = 1.220 ALPHA (1) = -4.150 RN/L = 7.200

SECTION (1) UPPER WING DEPENDENT VARIABLE CP

2Y/B .5340 .7800

X/C

.000 .5476 .4818

.050 .2041 -.0030

.150 .0000 -.0853

.400 -.2628 -.3611

.725 .0401 -.1710

.950 -.0940 -.1297

MACH (1) = 1.220 ALPHA (2) = 0.080 RN/L = 7.200

SECTION (1) UPPER WING DEPENDENT VARIABLE OF

21/8 .5340 .7800

X/C

.000 .6004 .5611

.050 .0402 -.0028

.150 .0000 -.2148

.400 -.3557 -.4790

.725 -.0875 -.4916

.950 -.1048 -.2043

MAOH (1) = 1.220 ALPHA (3) = 4.200 MVL = 7.200

SECTION (1) UPPER WING DEPENDENT VARIABLE OF

21/8 .5340 .7800

X/C

.000 .5996 .5855

.050 -.1594 -.0033

.150 .0000 -.3888

.400 -.4376 -.6202

.725 -.2220 -.6185

.950 -.1294 -.3196

TABULATED SCURCE DATA, R.I. TWT 280 - 1A69

PAGE 41

.000

IA69 C1 T4 S1 P2 P7 WING UPPER SURFACE FRESS.

(RF3UD6) (16 AFR 74)

REFERENCE DATA

.725 -.2710 -.6541 .950 -.1103 -.2890

PARAMETRIC DATA

CCC.

RUDDER =

EOFLAP =

-4,000 ELEVON =

.000 SPOERK =

				- 1			~									
SKEF	=	2	690.	.000	sQ.F	т.	XMF	P	=	979,0000	IN.					
LREF	=	1	290.	300	.NI C		YM	P	=	979,0000 0000,	TNK	86				
eref	2	1	290.	,300	IN.		ZM	P	=	400,0000	TNK	WL				
SCALE	<u> </u>			O150) SCAL	£				•						
MACH	•	1)	=	. 1.	.215	AL	РНА	(1	ı) =	-4,030		R	WL.	=	7.200	
SECT	ION	(1)(PPD:	WING	•				DEPE	ENDE	NT VAI	RIABL	E (P		
2Y/B			.5	340	.78	00										
χC																
•	œ		.6	448	.58	55										
•	U5U		.2	299	00	28										
					09											
					39						•					
	725				43 16											
•	aou		-,0	493	15	15										
MACH	(:	1)	=	1.	215	ALI	N F	(2) =	.150		RN	VL	=	7,200	
S €CT	ICN	•	1)U	PPER	WING					DEPE	NOEN	T VAR	IABL	E CP		
2Y/B			. 5	340	.780	ω										
жc																
.0	נוטכ		. 71	J5 3	• 647	79										
					00											
•1	50		.u	טטכ	214	16										
					509	-										
					542											
.9	50		0	542	206	.3										
ном	(1	,	=	1.2	215	ALF	на н	3)	=	4.330		RN	/L	=	7,200	
SECTI	CN	•	1)UF	PER	WING					DEPE	NDEN	T VAR	IABLE	æ		
8/YB			.53	40	.780	U										
жc																
	W				.669											
					002											
					-,395											
4	רעו		- 54	C?	- 643											

.725 -.2880 -.2728 .950 -.7756 -.6172 .000

.000

1469 Of TI SI P2 P6 WING LOWER SURFACE PRESS.

(RF3LU1) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

.000

.000 ELEVON = .000 SPOERK =

BETA =

RUDDER = EDFLAP =

		D.D.K.L. 00	117					
sref =	2690,000	Ú SQ.FT.	XMRP	=	979.0000	IN.		
eref =	1290,300 1290,300	O IN.	ZMRP	=	400,0000	TNK WL		
SCALE =	.015	O SCALE						
MACH (1) = 1	.U78 A	LFHA (1) =	-4.230	RN	/ L =	7.400
	•							
SECTION	(1)LOWE	R WING			DEPE	NDENT VAR	IABLE C	P
6 14 45								
2Y/8	.5340	.7800						
хc								
	-,4902	_ E00E						
	1685							
.400		0172						
	2997							
	7686							
	-							
MACH (1) = 1.	.078 AL	JPHA (2	2) =	030	RN	'L =	7.400
SECTION	(1) LOWER	WING			DEPE	VDENT VARI	ABLE CF)
2Y/B	.5340	.7800						
х⁄с								
	1181	_ /7/14.0						
	0053							
.400	.1203							
	-,2780							
	-,7781							
MACH (1) = 1.	078 AL	РНА (3) =	4.000	RIV	L =	7.400
SECTION	(1)LOWER	WING			DEPEN	DENT VARIA	able cp	
2Y/8	.5340	.7800						
x/c								
.050	.1142	.2994						
.150								
.400	.1589	.0697			2.			

TABULATED SCURCE DATA, R.I. TWT 280 - IA69

FAGE 43

1A69 Of T1 S1 P2 P6 WING LOWER SURFACE FRESS.

(RF3LU1)

MACH (2) = 1,220 ALPHA (1) = -4,120 RN/L = 7,400

SECTION (1) LOWER WING

DEPENDENT VARIABLE CP

2Y/B .5340 .7800

X/C

.050 -.4071 -.5181

.150 -.1238 -.4067

.400 .0401 -.0748

.725 -.1250 -.0679

.950 -.5712 -.3686

= (2) = 1.220 ALFHA (2) = .110 RN/L = 7.400

SECTION (1) LOWER WING

DEPENDENT VARIABLE CP

2Y/8 .5340 .7800

X/C

.050 -.0800 -.0751

.150 .0193 .0612

.400 .1727 .1915

.725 -.0893 -.0803

.950 -.5449 -.3823

MACH (2) = 1.220 ALPHA (3) = 4.200

SECTION (1) LOWER WING

DEPENDENT VARIABLE CP

2Y/8 .5340 .7800

X/C

.050 .1789 .3684

.150 .1999 .2835

.400 .2493 .2080

.725 -.1029 -.0859

.950 -.5527 -.3969

FAGE 44

IA69 CO TI SI PZ P6 WING LOWER SURFACE PRESS.

(RF3LU2) (16 AFR 74)

REFERENCE DATA

PARAMETRIC DATA

SREF = 2690,000 SR.FT. XMR = 979,000 IN. BETA = -4.00 ELEVCN = .000 UNEF = 1290,300 IN. YMR = .000 TINK & .000 F.E. REF = 1290,300 IN. ZMRF = .000 TINK WL .000 F.E. REF = 1290,300 IN. ZMRF = .000 F.E. REF =

SCALE = .D15U SCALE

MACH (1) = 1.216 ALPHA (1) = -4.150 RNVL = 7.400

SECTION (1) LOWER WING DEFENDENT VARIABLE CP

2Y/B .5340 .7800

ЖC

.050 -.3842 -.4749

.150 -.0923 -.3965

.400 .0607 .0546

.725 -.0610 -.0300 .950 -.5308 -.3380

MACH (1) = 1.216 ALPHA (2) = .050 RNVL = 7.400

SECTION (1) LOWER WING DEPENDENT VARIABLE OF

27/8 .5340 .7800

ЖC

.050 -.0343 -.0249

.150 .0552 .2617

.400 .3239 .2220

.725 -.0255 -.0468

.950 -.5119 -.3543

MAOH (1) = 1.216 ALPHA (3) = 4.140 RNL = 7.400

SECTION (1) LOVER WING DEPENDENT VARIABLE OF

21/8 .5340 .7800

X/Ç

.050 .2126 .4493

.159 .2807 .3565

.400 .3519 .2500

.725 -.0299 -.0529

.950 -.5188 -.3696

TABULATED SCURCE DATA, R.I. TWT 280 - 1A69

BOFLAP =

.000

PAGE 45

IA69 CE TI SI P2 P6 WING LOWER SURFACE PRESS. (RF3LU3) (16 APR 74)

> REFERENCE DATA PARAMETRIC DATA

SREF = 2690,0000 SQ.FT. XMRP = 979,0000 IN. .000 SETA = 4.000 ELEVON = UREF = 1290.3000 IN. YMRP = .0000 TNK BP RUDDER = .000 SP00RK = coo. BREF = 1290,3000 IN. ZMRP = 400,0000 TNK WL

SCALE = .0150 SCALE

MACH (1) = 1.216 ALFHA (1) = -4.200

SECTION (1) LOWER WING DEPENDENT VARIABLE OF

2Y/B .5340 .7800

X/C

.050 -.2934 -.5567

.150 -.0855 -.1662

.400 -.0071 -.1222

.725 -.2927 -.1445

.950 -.4940 -.4350

MACH (1) = 1.216 ALPHA (2) = RN/L = 7.300

SECTION (1) LOWER WING

DEPENDENT VARIABLE OF

2Y/8 .5340 .7600

X/C

-.0327 -.0377 .050

.150 .0327 .0337

.400 .0331 .0680

.725 -.2452 -.1421

.950 -.5473 -,4409

MACH (1) = 1.216 ALPHA (3) = 4,110'RN/L = 7,300

SECTION (1) LOWER WING

DEPENDENT VARIABLE CP

2Y/8 .5340 .7800

X/C

.050 .1385 .2706

.150 .1428 .1891

.450 .1207 .1351

-.2341 -.1531 .725

.950 -.5525 -,4548

DATE UT CCT 74	TABULATED SCURCE DATA, R.I. TWT 280 - 1469	PAGE	46
ONIE OF CCI IT	INDUCATED SCOULD PAINT WILL FOR THOSE		

(RF3LD4) (16 APR 74) IA69 CO T4 SI P2 P7 WING LOWER SURFACE PRESS.

,טטט

CCC.

PARAMETRIC DATA REFERENCE DATA 4.000 ELEVON = SREF = 2690.0000 SQ.FT. XMRP = 979.0000 IN. BETA = .000 SPDERK = LREF = 1290.3000 IN. YMRP = .0000 TNK BP RUDDER = EDFLAP = .oco BREF = 1290.3000 IN. ZMRP = 400.0000 TNK WL.SCALE ≃ .0150 SCALE MAOH (1) = 1.215 ALPHA (1) = -4.210 RN/L = 7.200SECTION (1) LOWER WING DEPENDENT VARIABLE CP 2Y/8 .5340 .7800 X/C .050 -.2902 -.5553 .150 -.0891 -.1711 .400 -.0054 -.1223 .725 -.2857 -.1440 .950 -.4834 -.4345 MACH (1) = 1.215 ALPHA (2) =.010 RN/L = 7.200DEPENDENT VARIABLE OF SECTION (1) LOWER WING 2Y/8 .5340 .7800 X/C .050 -.0289 -.0338 .150 .0351 .0406 .400 .0746 .0393 -.2400 -.1423 .725 .950 -.5456 -.4392 MACH (1) = 1.215 ALFHA (3) = 4.140 DEPENDENT VARIABLE CP SECTION (1) LOWER WING 2Y/8 .5340 .7800

ΧC

.050

.150 .400

.725

.1402 .2681

.1442 .1892

.1314 .1344 -,2295 -.1514

.950 -.5506 -.4531

TABULATED SCURCE DATA, R.I. TWT 280 - 1A69

PAGE 47

1A69 OI T4 SI P2 P7 WING LOWER SURFACE PRESS.

(RF3LU5) (16 APR 74)

REFERENCE DATA

PARAMETRIC DATA

	2690.0000 S4.F7.	XMRP	=	979.0000 IN.	θε	ΓA	=	.000	ELEVON =	.000
LREF =	1290.3000 IN.	YMRP	=	JOOO TNK 8P	RU	OEI		.000	SPDERK =	נטט
eref =	1290,3000 IN.	ZMRP	=	400,0000 TNK W.	eo	LAF	=	בטט.		
SCALE =	.0150 SCALE									

MACH (1) = 1.220 ALRHA (1) = -4.150 RN/L = 7.200

SECTION (1) LOWER WING

DEPENDENT VARIABLE OF

2Y/B .5340 .7800

X/C

.050 -.4001 -.5121

.150 -.1298 -.4009

.400 .0471 -.0593

.725 -.1291 -.0690

.950 ~.5725 ~.3680

MACH (1) = 1,220 ALPHA (2) = .080 RN/L = 7.20

SECTION (1) LOWER WING

DEFENDENT VARIABLE OF

2Y/8 .5340 .7800

X/C

.050 -.0864 -.0850

.150 .0193 .0730

.400 .1570 .1908

.725 -.0909 -.0785

.950 -.5469 -.3835

MACH (1) = 1.220 ALPHA (3) = 4.200 GN/L = 7.200

SECTION (1) LOWER WING

DEPENDENT VARIABLE CP

21/8 .5340 .7800

X/C

.050 .1639 .3564

.150 .1922 .2761

.400 .2423 .2069

.725 -.1023 -.0860

.950 -.5543 -.3978

IA69 C1 T4 S1 F2 P7 WING LOWER SURFACE FRESS.

(RF3L06) (16 AFR 74)

REFERENCE DATA PARAMETRIC DATA

 SREF = 2690,0000 SQ.FT.
 XMRP = 979,0000 IN.
 BETA = -4,000 ELEVEN = .000

 LREF = 1290,3000 IN.
 YMRP = .0000 TNK 6P
 RUDDER = .000 SFDBRK = .000

BREF = 1290.3000 IN. ZMRP = 400.0000 TNK WL BDFLAP = .000

SCALE = .0150 SCALE

MACH (1) = 1.215 ALPHA (1) = -4.030 RNVL = 7.200

SECTION (1) LOWER WING DEPENDENT VARIABLE OF

2Y/8 .5340 .7800

ЖC

.050 -.3734 -.4671

.150 -.0861 -.3764

.400 .0997 .0893 .725 -.0568 -.0289

.950 -.5311 -.3407

MACH (1) = 1.215 ALPHA (2) = .150 RN/L = 7.200

SECTION (1) LOWER WING DEPENDENT VARIABLE OF

27/8 .5340 .7800

Х/C

.050 -.0513 -.0247

.150 .0540 .2509

.400 .3194 .2235 .725 -.0271 -.0485

.950 -.5151 -.3570

MACH (1) = 1.215 ALPHA (3) = 4.330 RNVL = 7.200

SECTION (1) LOWER WING DEPENDENT VARIABLE OF

21/8 .5340 .7800

: X/C

.050 .2137 .4565

.150 .2846 .3623

.400 .3554 .2540

.725 -.0282 -.0529

.950 -.5202 -.3701