

Lattice QCD: Sample matter (ψ) and gauge (U) fields $\propto \exp(-S[U, \bar{\psi}, \psi])$

Ising model: Sample matter configurations $\propto \exp(-H/T)$

Bayesian inference: Sample parameters $\propto \pi(\theta)\mathcal{L}(\theta)$

All involve sampling from high-dimensional, dependent probability distributions

⇒ How can we build high-dimensional pseudo-random number generators?

Hamiltonian Monte Carlo: Recent Developments

Tom Loredo Dept. of Astronomy, Cornell University

Astrophysics Lunch — 15 Oct 2014

Agenda

1 Monte Carlo integration/posterior sampling

2 Hamiltonian Monte Carlo

3 Challenges, developments

4 Stan

Notation

$$p(\theta|D, M) = \frac{p(\theta|M)p(D|\theta, M)}{p(D|M)}$$
$$= \frac{\pi(\theta)\mathcal{L}(\theta)}{Z} = \frac{q(\theta)}{Z}$$

- M = model specification
- D specifies observed data
- $\theta = \text{model parameters}$
- $\pi(\theta) = \text{prior pdf for } \theta$
- $\mathcal{L}(\theta) = \text{likelihood for } \theta \text{ (likelihood function)}$
- $q(\theta) = \pi(\theta)\mathcal{L}(\theta) =$ "quasiposterior"
- Z = p(D|M) = (marginal) likelihood for the model

Marginal likelihood:

$$Z = \int d heta \; \pi(heta) \mathcal{L}(heta) = \int d heta \; q(heta)$$

Statistical mechanics analogy:

$$q(\theta) = \exp[-U(\theta)/T]$$
 for $U(\theta) \equiv -\log[\pi(\theta)\mathcal{L}(\theta)]$

Posterior corresponds to T=1Marginal likelihood is Z(1) for partition function Z(T)

Bayesian Computation

Parameter space integrals

For model with m parameters, we need to evaluate integrals like:

$$\int d^m \theta \ g(\theta) \, \pi(\theta) \, \mathcal{L}(\theta) \ = \ \int d^m \theta \ g(\theta) \, \widehat{q(\theta)}^{} \pi(\theta) \, \mathcal{L}(\theta)$$

- $g(\theta) = 1 \rightarrow p(D|M)$ (norm. const., model likelihood)
- $g(\theta) = \theta \rightarrow \text{posterior mean for } \theta$
- $g(\theta) = \text{'box'} \rightarrow \text{probability } \theta \in \text{credible region}$
- $g(\theta) = 1$, integrate over subspace \rightarrow marginal posterior
- $g(\theta) = \delta[\psi \psi(\theta)] \rightarrow \text{propagate uncertainty to } \psi(\theta)$

Monte Carlo Integration

 $\int g \times p$ is just the *expectation of g*; suggests approximating with a *sample average*:

$$\int d\theta \ g(\theta) p(\theta) \approx \frac{1}{n} \sum_{\theta_i \sim p(\theta)} g(\theta_i) + O(n^{-1/2}) \quad \left[\begin{array}{c} \sim O(n^{-1}) \ \text{with} \\ \text{quasi-MC} \end{array} \right]$$

This is like a cubature rule, with equal weights and random nodes

Ignores smoothness \rightarrow poor performance in 1-D, 2-D

Avoids curse: $O(n^{-1/2})$ regardless of dimension

Why/when it works

- Independent sampling & law of large numbers → asymptotic convergence in probability
- Error term is from CLT; requires finite variance

Practical problems

- $p(\theta)$ must be a density we can draw IID samples from—perhaps the prior, but. . .
- $O(n^{-1/2})$ multiplier (std. dev'n of g) may be large
- \rightarrow IID* Monte Carlo can be hard if dimension $\gtrsim 5$ –10

^{*}IID = independently, identically distributed

Posterior sampling

$$\int d\theta \ g(\theta)p(\theta|D) \approx \frac{1}{n} \sum_{\theta_i \sim p(\theta|D)} g(\theta_i) + O(n^{-1/2})$$

When $p(\theta)$ is a posterior distribution, drawing samples from it is called *posterior sampling*:

- One set of samples can be used for many different calculations (so long as they don't depend on low-probability events)
- This is the most promising and general approach for Bayesian computation in high dimensions—though with a twist (MCMC!)

Challenge: How to build a RNG that samples from a posterior?

Accept-Reject Algorithm

Goal: Given $q(\theta) \equiv \pi(\theta)\mathcal{L}(\theta)$, build a RNG that draws samples from the probability density function (pdf)

$$f(\theta) = \frac{q(\theta)}{Z}$$
 with $Z = \int d\theta \, q(\theta)$

The probability for a region under the pdf is the area (volume) under the curve (surface).

 \rightarrow Sample points uniformly in volume under q; their θ values will be draws from $f(\theta)$.

The fraction of samples with θ ("x" in the fig) in a bin of size $\delta\theta$ is the fractional area of the bin.

How can we generate points uniformly under the pdf?

Suppose $q(\theta)$ has compact support: it is nonzero over a finite contiguous region of θ -space of length/area/volume V.

Generate *candidate* points uniformly in a rectangle enclosing $q(\theta)$.

Keep the points that end up under q.

Basic accept-reject algorithm

- 1. Find an upper bound Q for $q(\theta)$
- 2. Draw a candidate parameter value θ' from the uniform distribution in V
- 3. Draw a uniform random number, u
- 4. If the ordinate $uQ < q(\theta')$, record θ' as a sample
- Goto 2, repeating as necessary to get the desired number of samples.

Efficiency = ratio of areas (volumes), Z/(QV).

Curse of dimensionality: Efficiency declines quickly with dimension!

Take-away idea: Propose candidates that may be accepted or rejected

Markov Chain Monte Carlo

Accept/Reject aims to produce *independent* samples—each new θ is chosen irrespective of previous draws.

To enable exploration of complex pdfs, let's introduce dependence: Choose new θ points in a way that

- Tends to move toward regions with higher probability than current
- Tends to avoid lower probability regions

The simplest possibility is a *Markov chain*:

```
p(\text{next location}|\text{current and previous locations})
= T(\text{next location}|\text{current location})
```

A Markov chain "has no memory."

Reversibility/Detailed Balance

A sufficient (but not necessary!) condition for there to be an equilibrium distribution is the *detailed balance* or *reversibility* condition:

$$p_{eq}(x)T(y|x) = p_{eq}(y)T(x|y)$$
 or $\frac{T(y|x)}{T(x|y)} = \frac{p_{eq}(y)}{p_{eq}(x)}$

If we set $p_{\rm eq}=q/Z$, and we build a reversible transition distribution for this choice, then the equilibrim distribution will be the posterior distribution

How can we build T(y|x) to target a particular $p_{eq}(x)$?

Metropolis-Hastings algorithm

Given a target quasi-distribution q(x) (it need not be normalized):

- 1. Specify a proposal distribution k(y|x) (make sure it is irreducible and aperiodic).
- 2. Choose a starting point x; set t = 0 and $S_t = x$
- 3. Increment t
- 4. Propose a new state $y \sim k(y|x)$
- 5. If q(x)k(y|x) < q(y)k(x|y), set $S_t = y$; goto (3)
- 6. Draw a uniform random number u
- 7. If $u < \frac{q(y)k(x|y)}{q(x)k(y|x)}$, set $S_t = y$; else set $S_t = x$; goto (3)

The art of MCMC is in specifying the proposal distribution k(y|x)

We want:

- New proposals to be accepted, so there is movement
- Movement to be significant, so we explore efficiently

These desiderata compete!

Random walk Metropolis (RWM)

Propose an *increment*, z, from the current location, not dependent on the current location, so y = x + z with a specified PDF K(z), corresponding to

$$k(y|x) = K(y - x)$$

The proposals would give rise to a *random walk* if they were all accepted; the M-H rule modifies them to be a kind of directed random walk

Most commonly, a symmetric proposal is adopted:

$$k(y|x) = K(|y - x|)$$

The acceptance probability simplifies:

$$\alpha(y|x) = \min \left[\frac{q(y)}{q(x)}, 1 \right]$$

Key issues: shape and scale (in all directions) of K(z)

RWM in 2-D

Small step size \rightarrow good acceptance rate, but slow exploration

Random Walks

Random walk Metropolis and most other MCMC updates execute a *random walk* through parameter space:

- Moves are local, with a characteristic scale /
- Total distance traversed over time $t \propto \sqrt{t}$

This is a relatively slow (albeit steady) rate of exploration

Multimodality \rightarrow even slower exploration; only rare large jumps can move between modes

We need methods designed to make large moves

Agenda

Monte Carlo integration/posterior sampling

2 Hamiltonian Monte Carlo

3 Challenges, developments

4 Stan

Auxiliary variables

The accept/reject method for sampling a d-D density:

• Sample from a *uniform* (d + 1)-D density (with a complicated boundary):

• Report the marginal samples for the *d* original dimensions

A paradoxical notion motivating some advanced MCMC methods is that making the problem "harder" (higher-dimensional) may actually make it *easier*

Double the dimensionality!

$$p(x, P) \propto q(x) \times f(P)$$

$$p(x) = \int dP \, p(x, P) \propto q(x)$$

$$p(P) = \int dx \, p(x, P) \propto f(P)$$

- Pick *P* ∼ *f*(*P*)
- Move along a contour in phase space
- Drop P, keep x

Will work if the phase space motion corresponds to sampling p(x, P)

Hamiltonian (Hybrid) Monte Carlo

Give samples "momentum" so moves tend to go in the same direction a while; use derivatives to guide the evolution \rightarrow suppress random walks

Adds *d* additional variables, *P*, with a joint Gaussian dist'n:

$$\log p(\theta, P) = -\left[U(\theta) + \frac{1}{2}P^2\right]; \qquad U(\theta) \equiv -\log q(\theta)$$

Sample P from a Gaussian, and use it to generate proposals via

$$\dot{\theta} = P; \qquad \dot{P} = -\frac{\partial H}{\partial \theta}$$

Hamiltonian dynamics \rightarrow reversible, preserves volume, keeps p constant (proposals always accepted)

Numerical integration (1-D)

Sampling a 1-D Student-t dist'n with dof= 5

HMC vs. random walk (2-D)

Figure 3: A trajectory for a 2D Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of 0.25. The ellipses plotted are one standard deviation from the means. The initial state had $q=[-1.50,-1.55]^{r}$ and $p=[-1,1]^{r}$.

Agenda

Monte Carlo integration/posterior sampling

2 Hamiltonian Monte Carlo

3 Challenges, developments

4 Stan

Challenges for basic HMC

- Tuning parameters:
 - Choosing time step size, ϵ , and integration length, L
 - Handling problems with very different scales along different dimensions
- Computing the needed derivatives

Tuning integration length *No-U-Turn Sampler (NUTS)*

Multilevel models: parameter-dependent scales

Goal: Learn a flux dist'n from photon counts

Qualitative

θ F_1 F_2 R_2 R_3 R_4 R_5 R_7 R_8

Quantitative

$$\theta = (\alpha, s) \text{ or } (\mu, \sigma)$$

$$\pi(\theta) = \text{Flat}(\mu, \sigma)$$

Source properties

$$p(F_i|\theta) = \operatorname{Gamma}(F_i|\theta)$$

Observed data

$$p(n_i|F_i) = Pois(n_i|\epsilon_iF_i)$$

Mass matrix = metric

Add d additional variables, P, with a correlated Gaussian dist'n:

$$\log p(\theta, P) = -\left[U(\theta) + \frac{1}{2}P \cdot M^{-1} \cdot P\right]; \qquad U(\theta) \equiv -\log p(\theta)$$

M introduces d more tuning parameters!

- Euclidean manifold HMC: Use the Hessian at the mode
- Riemannian manifold HMC: Use position-dependent $M(\theta)$

Riemann manifold HMC

Agenda

Monte Carlo integration/posterior sampling

2 Hamiltonian Monte Carlo

3 Challenges, developments

4 Stan

Stan: mc-stan.org

Stan

Stan is a probabilistic programming language implementing full Bayesian statistical inference with

MCMC sampling (NUTS, HMC)

and penalized maximum likelihood estimation with

· Optimization (BFGS)

Stan is coded in C++ and runs on all major platforms (Linux, Mac, Windows).

Stan is freedom-respecting, open-source software (new BSD core, GPLv3 interfaces).

Interfaces

Download and getting started instructions, organized by interface:

- RStan v2.4.0 (R)
- PyStan v2.4.0 (Python)
- · CmdStan v2.4.0 (shell, command-line terminal)

Manual & Examples

Models are portable across interfaces, so these are cross-platform:

- Modeling Language Manual
- Example Models

Home

RStan

PyStan

CmdStan

Manual

Examples

Groups

Contribute

Source

Citations

Team

Shop

http://mc-stan.org/ https://groups.google.com/d/forum/stan-users

How Stan Got its Name

- · "Stan" is not an acronym; Gelman mashed up
 - 1. Eminem song about a stalker fan, and
 - 2. Stanislaw Ulam (1909–1984), co-inventor of Monte Carlo method (and hydrogen bomb).

Ulam holding the Fermiac, Enrico Fermi's physical Monte Carlo simulator for random neutron diffusion

Stan capabilities

- · Hamiltonian Monte Carlo (HMC)
 - sample parameters on unconstrained space
 - → transform + Jacobian adjustment
 - gradients of the model wrt parameters
 - → automatic differentiation
 - sensitive to tuning parameters → No-U-Turn Sampler
- No-U-Turn Sampler (NUTS)
 - warmup: estimates mass matrix and step size
 - sampling: adapts number of steps
 - maintains detailed balance
- · Optimization
 - BFGS, Newton's method

From Daniel Lee

RMHMC, ensemble samplers in progress. . .

Stan "Pumps" example (number counts!)

```
Flux \theta_i \sim \operatorname{Gamma}(\alpha,\beta) Exponential cutoff Expected counts \lambda_i = \theta_i t_i
```

Observed counts $x_i \sim \text{Poisson}(\lambda_i)$


```
22 lines (18 sloc) 0.313 kb
       data {
       int<lower=0> N;
        int<lower=0> x[N];
         real t[N]:
       parameters {
         real<lower=0> alpha;
         real<lower=0> beta;
         real<lower=0> theta[N]:
       model {
         alpha ~ exponential(1,0):
         beta ~ gamma(0.1, 1.0);
         for (i in 1:N){
         theta[i] ~ gamma(alpha, beta);
           x[i] ~ poisson(theta[i] * t[i]):
```

Inaugural "Stan model of the week"

Models light curves of 20,000 Pan-STARRS1 observations of 80 SN IIP

Stan status

- Team: ~12 members, distributed
- 4 Interfaces: CmdStan, RStan, PyStan, MStan
- 700+ on stan-users mailing list
- Actual number of users unknown
 - User manual: 6658 downloads since 2/14
 - PyStan: 1299 downloads in the last month
 - CmdStan / RStan / MStan: ?
- 75+ citations over 2 years
 - stats, astrophysics, political science
 - ecological forecasting: phycology, fishery
 - genetics, medical informatics

Stan Store

T-Shirts & Mugs

Current Products

400

\$ 15 + shipping

\$ 15 + shipping

\$ 22 + shipping

\$ 24 + shipping

\$ 15 + shipping

