Subgroup structure of simple (algebraic) groups

Raffaele Rainone

University of Southampton

PGR seminar

November 23, 2011

Table of Contents

- MOTIVATIONS
- PRELIMINARIES
 - Classification of simple algebraic groups
 - Classification of finite simple groups
 - Almost simple groups
- FINITE SIMPLE GROUPS
 - O'Nan Scott Theorem
 - Aschbacher Theorem
- 4 Simple algebraic groups
 - Classical groups
 - Intermezzo
 - Exceptional groups

GROUP ACTIONS

Let G be a group and Ω be a set. An action of G on Ω is

$$G\times\Omega\to\Omega$$

such that

- $1.\omega = \omega$;
- $g.(h.\omega) = (gh).\omega$.

Transitive action

The orbit of $\alpha \in \Omega$ is $G.\alpha = \{g.\alpha \mid g \in G\}$. We write $G/\Omega = \{G.\alpha \mid \alpha \in \Omega\}$.

DEFINITION

The action of G on Ω is transitive if $|G/\Omega| = 1$.

EXAMPLE

- **1** Let $\Omega = \{1, ..., n\}$, we consider the standard action S_n ;
- **②** Let G be any group and $H \leq G$, the standard action of G on G/H is transitive.

Transitive action

The stabilizer of $\alpha \in \Omega$ is $G_{\alpha} = \{g \in G \mid g.\alpha = \alpha\} \leq G$.

Proposition

Let G act transitively on Ω . Then the action is equivalent to the standard action of G on G/G_{α} for any α in Ω .

Primitive action

G acts on Ω . A system of imprimitivity is a non-trivial partition

$$\Omega = \Omega_1 \cup \ldots \cup \Omega_n$$

preserved by G, i.e. if $\alpha, \beta \in \Omega_i$ then $\forall g \in G, g.\alpha, g.\beta \in \Omega_i$. Whenever such partition exists we say the action to be imprimitive.

DEFINITION

An action is primitive if it is transitive and it is not imprimitive.

Proposition

- The action of G on Ω is primitive if, and only if, G_{α} is maximal.
- The primitive action of G on Ω is equivalent to the standard action of G on G/G_{Ω} .

- MOTIVATIONS
- PRELIMINARIES
 - Classification of simple algebraic groups
 - Classification of finite simple groups
 - Almost simple groups
- FINITE SIMPLE GROUPS
 - O'Nan Scott Theorem
 - Aschbacher Theorem
- SIMPLE ALGEBRAIC GROUPS
 - Classical groups
 - Intermezzo
 - Exceptional groups

An algebraic group is a closed subgroup of $GL_n(k)$, where $n \ge 1$ and k is an algebraically closed field of characteristic $p \ge 0$.

EXAMPLE

$$\mathsf{SL}_n(k) = \{A \in \mathsf{GL}_n(k) \mid \det A = 1\}$$

Abstract group theory

- subgroup
- normal subgroup
- simple group

ALGEBRAIC GROUP THEORY

- closed subgroup
- closed normal subgroup
- simple algebraic group

Simple algebraic groups are classified by root system (Dynking), as

Classical

$$A_n, B_n, C_n, D_n$$

Exceptional

$$\textit{E}_{6},\textit{E}_{7},\textit{E}_{8},\textit{F}_{4},\textit{G}_{2}$$

Remark

$$SL_{n+1}(k) \not\cong \mathrm{PSL}_{n+1}(k)$$
, both in A_n .

CFSG (1832-2004)

The finite simple groups are

- (I) Cyclic, C_p , p prime;
- (II) Alternating A_n , $n \geq 5$;
- (III) Lie type:
 - Classical

$$\mathrm{PSL}_n(q), \mathrm{PSU}_n(q), \mathrm{PSp}_n(q), \\ \mathrm{P}\Omega_{2n+1}(q), \mathrm{P}\Omega_{2n}^+(q), \mathrm{P}\Omega_{2n}^-(q)$$

Exceptional

$$G_2(q), F_4(q), \ldots, {}^2F_4(2)'$$

(IV) 26 sporadic groups.

A group G is almost simple if there exists a simple group T such that

$$T \subseteq G \leq \operatorname{Aut}(T)$$

- MOTIVATIONS
- PRELIMINARIES
 - Classification of simple algebraic groups
 - Classification of finite simple groups
 - Almost simple groups
- FINITE SIMPLE GROUPS
 - O'Nan Scott Theorem
 - Aschbacher Theorem
- SIMPLE ALGEBRAIC GROUPS
 - Classical groups
 - Intermezzo
 - Exceptional groups

THE O'NAN - SCOTT THEOREM

For G, S_n or A_n . Let H be a subgroup of S_n or A_n not containing A_n . Then either $H \in \mathcal{A}(G)$ or $H \in \mathcal{S}$.

- A_1 subset stabilisers (intransitive);
- A_2 stabilisers of certain partitions of Ω , (imprimitive);
- \mathcal{A}_3 stabilisers of cartesian product structures of Ω , (primitive wreath product);
- \mathcal{A}_4 stabilisers of affine structure of Ω ;
- A_5 stabilisers of T^k , (diagonal type).
 - S Primitive almost-simple groups.

STRUCTURE OF THE \mathcal{A}_i FAMILIES

A_i	Structure in S_n	comments
\mathcal{A}_1	$S_k \times S_{n-k}$	$k \neq n/2$
\mathcal{A}_2	$S_m \wr S_t$	n = mt
\mathcal{A}_3	$S_k \wr S_d$	$n = k^d$
\mathcal{A}_4	$AGL_d(p) = p^d : GL_d(p)$	$n = p^d, p$ prime
A_5	$T^k.(S_k \times \mathrm{Out}(T))$	$n= T ^{k-1}, k\geq 2$

EXAMPLE: A_3

The family A_1, A_2 complete classifies imprimitive maximal subgroups of A_n .

Let $n = k^2$, put the points of $\Omega = \{1, ..., k^2\}$ into a matrix

$$\begin{pmatrix} 1 & 2 & \dots & k \\ k+1 & k+2 & \dots & 2k \\ \vdots & & \ddots & \vdots \\ (k-1)k & \dots & \dots & k^2 \end{pmatrix}$$

And $H \cong S_k \times S_k$ is imprimitive in S_n . Adjoining the permutation that reflects in the main diagonal we get

$$S_k \wr S_2$$

that is primitive and maximal (for $k \geq 5$).

 $S_3 \wr S_2 \leq S_9$ is not maximal.

The S family

Let G be an almost simple group, i.e.

$$T \subseteq G \leq \operatorname{Aut}(T)$$

Let M be a maximal subgroup of G. The action of G on G/M is primitive. Therefore

$$G \hookrightarrow S_{|G:M|}$$

CLASSIFICATION OF MAXIMAL SUBGROUPS OF S_n, A_n

THEOREM (LIEBECK - PRAEGER - SAXL, 1987)

All the maximal subgroup of S_n and A_n are classified.

ASCHBACHER THEOREM

Let G be a finite simple group of Lie type (classical, Cl(V)). Let H be a maximal subgroup of G. Then either $H \in C(G)$ or $H \in S$.

- \mathcal{C}_1 stabilizers of totally singular or non-singular subspaces;
- C_2 stabilizers of decomposition $V = \bigoplus_{i=1}^t V_i$, dim $V_i = n/t$;
- \mathcal{C}_3 stabilizers of extension/subfield field of \mathbb{F}_q of prime index b;
- \mathcal{C}_5 stabilizers of tensor product decompositions $V = \bigotimes_{i=1}^t V_i$, dim $V_i = a$;
- $C_6 \operatorname{dim} V = r^m \text{ and } H \text{ is "local"};$
- C_7 stabilizers of bilinear or quadratic form.

ASCHBACHER THEOREM

Let G be a finite simple group of Lie type (classical, Cl(V)). Let H be a maximal subgroup of G. Then either $H \in C(G)$ or $H \in S$.

- \mathcal{C}_1 stabilizers of totally singular or non-singular subspaces;
- C_2 stabilizers of decomposition $V = \bigoplus_{i=1}^t V_i$, dim $V_i = n/t$;
- \mathcal{C}_3 stabilizers of extension/subfield field of \mathbb{F}_q of prime index b;
- \mathcal{C}_5 stabilizers of tensor product decompositions $V = \bigotimes_{i=1}^t V_i$, dim $V_i = a$;
- $C_6 \operatorname{dim} V = r^m \text{ and } H \text{ is "local"};$
- C_7 stabilizers of bilinear or quadratic form.
- S almost simple groups acting irreducibly and tensor-indecomposably.

C_i	rough tructure in $GL_n(q)$	comments
	rough tructure in GEn(q)	comments
\mathcal{C}_1	maximal parabolic	
\mathcal{C}_2	$GL_m(q) \wr S_t$	n = mt
\mathcal{C}_3	$GL_a(q^b).b$	n = ab, b prime
\mathcal{C}_4	$GL_n(q_0)$	$q=q_0^b$, b prime
\mathcal{C}_5	$(GL_{a}(q)\circ\ldots\circGL_{a}(q)).S_t$	$n = a^t$
\mathcal{C}_6	$(\mathbb{Z}_{q-1}\circ r^{1+2s}).\mathrm{Sp}_{2s}(r)$	$n=r^a, r$ prime
\mathcal{C}_7	$\operatorname{Sp}_n(q), \operatorname{SO}_n(q), \operatorname{U}_n(q^{1/2}) < \operatorname{SL}_n(q)$	

- MOTIVATIONS
- PRELIMINARIES
 - Classification of simple algebraic groups
 - Classification of finite simple groups
 - Almost simple groups
- FINITE SIMPLE GROUPS
 - O'Nan Scott Theorem
 - Aschbacher Theorem
- SIMPLE ALGEBRAIC GROUPS
 - Classical groups
 - Intermezzo
 - Exceptional groups

LIEBECK-SEITZ THEOREM

Let $G = \operatorname{Cl}(V)$ (over k, algebraically closed) and H be a closed maximal subgroup. Then either $H \in \mathcal{C}(G)$ or $H \in \mathcal{S}$.

- C_1 stabilizers of totally singular or non-singular subspaces;
- C_2 stabilizers of decomposition $V = \bigoplus_{i=1}^t V_i$, dim $V_i = n/t$;
- \mathcal{C}_3 stabilizers of extension/subfield field of \mathbb{F}_q of prime index b;
- \mathcal{C}_5 stabilizers of tensor product decompositions $V = \bigotimes_{i=1}^t V_i$, dim $V_i = a$;
- $C_6 \operatorname{dim} V = r^m \text{ and } H \text{ is "local"};$
- C_7 stabilizers of bilinear or quadratic form.

LIEBECK-SEITZ THEOREM

Let $G = \operatorname{Cl}(V)$ (over k, algebraically closed) and H be a closed maximal subgroup. Then either $H \in \mathcal{C}(G)$ or $H \in \mathcal{S}$.

- C_1 stabilizers of totally singular or non-singular subspaces;
- C_2 stabilizers of decomposition $V = \bigoplus_{i=1}^t V_i$, dim $V_i = n/t$;
- \mathcal{C}_5 stabilizers of tensor product decompositions $V = \bigotimes_{i=1}^t V_i$, dim $V_i = a_i$,
- $C_6 \operatorname{dim} V = r^m \text{ and } H \text{ is "local"};$
- C_7 stabilizers of bilinear or quadratic form.

Liebeck-Seitz Theorem

Let $G = \operatorname{Cl}(V)$ (over k, algebraically closed) and H be a closed maximal subgroup. Then either $H \in \mathcal{C}(G)$ or $H \in \mathcal{S}$.

- C_1 stabilizers of totally singular or non-singular subspaces;
- C_2 stabilizers of decomposition $V = \bigoplus_{i=1}^t V_i$, dim $V_i = n/t$;
- \mathcal{C}_5 stabilizers of tensor product decompositions $V = \bigotimes_{i=1}^t V_i$, dim $V_i = a$;
- $C_6 \operatorname{dim} V = r^m \text{ and } H \text{ is "local"};$
- C_7 stabilizers of bilinear or quadratic form.
- S almost simple groups acting irreducibly and tensor-indecomposably.

From Algebraic to finite: Frobenius automorphism

Let k be an algebraically closed field of characteristic p > 0.

$$\sigma : \mathsf{GL}_n(k) \to \mathsf{GL}_n(k)$$

$$(a_{ij}) \mapsto (a_{ij}^{p^m})$$

Then, say $q = p^m$,

$$\operatorname{\mathsf{GL}}_n(q) = \left(\operatorname{\mathsf{GL}}_n(k)\right)^\sigma = \{x \in \operatorname{\mathsf{GL}}_n(k) \mid \sigma(x) = x\}$$

If G is any algebraic group $G_0 = G^{\sigma}$ is a finite simple group.

Remark

It is possible to deduce the Aschbacher theorem by the Leibeck-Seitz theorem.

Lang's Theorem

THEOREM

Let $G \leq GL_n(k)$ be a connected linear algebraic group, where k is an a.c. field of characteristic p > 0. Then the map $g \mapsto g^{-1}\sigma(g)$ is surjective.

Thanks to this if we know the conjugacy classes of subgroups in G we know the conjugacy classes of the image subgroups in G^{σ} , as well.

Algebraic

$$E_6, E_7, E_8, F_4, G_2$$

- Finite
 - of Lie type

$$G_2(q), F_4(q), E_6(q), {}^2E_6(q), {}^3D_4(q), E_7(q), E_8(q)$$

• Suzuki-Ree groups

$$^{2}B_{2}(2^{2n+1}), ^{2}G_{2}(3^{2n+1}), ^{2}F_{4}(2^{2n+1})$$

Tits group

$$^{2}F_{4}(2)'$$