INSTITUTO SUPERIOR TÉCNICO

Search and Planning

2022/2023 Academic Year

1st Period

1st Exam

November 14, 2022

Duration: 2h

- This is a closed book exam.
- Ensure that your name and number are written on all pages.

EXAM SOLUTION

I. Modeling as a CSP (2 + 2 = 4/20)

1) An antisymmetric matrix is a square matrix that satisfies the identity $A^T = -A$. For example, matrix A is antisymmetric:

$$A = \begin{pmatrix} 0 & 2 & 3 \\ -2 & 0 & -1 \\ -3 & 1 & 0 \end{pmatrix}$$

Propose a formulation of the problem of deciding whether a matrix 3×3 is antisymmetric as a constraint network. Consider that the values in the matrix range from -9 to 9. Identify variables, domains, and constraints. Ensure that all variables are node consistency.

Solution:

Variables: x_{ij} , $1 \le i, j \le 3$, corresponding to the contents of the matrix.

$$A = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

Domains:

$$D(x_{ij}) = \{-9, ..., 9\}, \quad \forall_{1 \le i, j \le 3}$$

Constraints:

$$x_{ji} = -x_{ij}, \quad \forall_{1 \le i \le j \le 3}$$

Variables x_{11} , x_{22} , x_{33} are used in unary constraints:

$$x_{11} = -x_{11}$$

$$x_{22} = -x_{22}$$

$$x_{33} = -x_{33}$$

To ensure node consistency, the domains should be updated to:

$$D(x_{11}) = D(x_{22}) = [D(x_{33}) = \{0\}]$$

2) A magic hexagon of order n is an arrangement of numbers in a centered hexagonal pattern with n cells on each edge, in such a way that the numbers in each row, in all three directions, sum to the same magic constant M. A normal magic hexagon contains the consecutive integers from 1 to $3n^2 - 3n + 1$. It turns out that normal magic hexagons exist only for n = 1 (which is trivial, as it is composed of only 1 cell) and n = 3. Moreover, the solution of order 3 is essentially unique and is shown in the figure.

Propose a formulation of the problem of deciding whether a magic hexagon with n = 3 is a normal magic hexagon. Identify variables, domains, and constraints.

Solution:

Note that the numbers range from 1 to 19 and M = 38. 19 Variables:

Domains: the same for all variables [1..19] Constraints: AllDifferent(A,B,C,...,S)

$$A+B+C = D+E+F+G = ... = Q+R+S = 38,$$

 $A+D+H = B+E+I+M = ... = L+P+S = 38,$
 $C+G+L = B+F+K+P = ... = H+M+Q = 38.$

II. Inference in CSP (1 + 1.5 + 1.5 = 4/20)

1) Consider a four-variable X_0, X_1, X_2, X_3 constraint network with the respective domains $D_0 = \{1, 2, 3, 4, 7\}, D_1 = \{2, 4, 6, 8\}, D_2 = \{3, 4, 5, 7, 8, 9\}, D_3 = \{6, 7, 8\}$. The constraints are: $X_0 = X_2, X_3 > X_0$ and $X_0 > X_1$.

Apply AC-3 to the network according to the algorithm that is given below.

```
AC-3(兄)
Input: A network of constraints \mathcal{R} = (X, D, C).
Output: \mathcal{R}', which is the largest arc-consistent network equivalent to \mathcal{R}.
1. for every pair \{x_i, x_j\} that participates in a constraint R_{ij} \in \mathcal{R}
2.
           queue \leftarrow queue \cup \{(x_i, x_j), (x_j, x_i)\}
3. endfor
4. while queue \neq {}
           select and delete (x_i, x_j) from queue
6.
          REVISE((x_i), x_i)
7.
          if REVISE((x_i), x_i) causes a change in D_i
8.
                 then queue \leftarrow queue \cup \{(x_k, x_i), k \neq i, k \neq j\}
           endif
10. endwhile
```

Solution:

Edge	New Domain	Edges to Reconsider
('X0', 'X1')	X0=[3, 4, 7]	_
('X1', 'X0')	X1=[2, 4, 6]	_
('X0', 'X2')	X0=[3, 4, 7]	_
('X2', 'X0')	X2=[3, 4, 7]	_
('X0', 'X3')	X0=[3, 4, 7]	_
('X3', 'X0')	X3=[6, 7, 8]	_

The algorithm terminates with the domains $D_0 = D_2 = \{3,4,7\}, D_1 = \{2,4,6\}$ and $D_3 = \{6,7,8\}.$

2) Consider a four-variable X_1, X_2, X_3, X_4 constraint network with the respective domains $D_1 = \{1, 2, 3, 4, 7\}, D_2 = \{2, 4, 6, 8\}, D_3 = \{3, 4, 5, 7, 8, 9\}, D_4 = \{6, 7, 8\}$. The constraints are: $X_1 = X_3$ and $X_4 > X_1 + X_2$. Apply the PC-2 algorithm.

PC-2(兄)

Input: A network $\Re = (X, D, C)$.

Output: \mathcal{R}' a path-consistent network equivalent to \mathcal{R} .

- 1. $Q \leftarrow \{(i, k, j) \mid 1 \le i < j \le n, 1 \le k \le n, k \ne i, k \ne j\}$
- 2. while Q is not empty
- 3. select and delete a 3-tuple (i, k, j) from Q
- 4. $R_{ij} \leftarrow R_{ij} \cap \pi_{ij} (R_{ik} \bowtie D_k \bowtie R_{ki}) / * (REVISE-3((i, j), k))$
- 5. **if** R_{ij} changed then
- 6. $Q \leftarrow Q \cup \{(l, i, j) (l, j, i) \mid 1 \le l \le n, l \ne i, l \ne j\}$
- 7. endwhile

Solution:

Note: Since $X_4 > X_1 + X_2$ is a ternary constraint, PC-2 ignores it. However, we can induce that $X_4 > X_1$ and $X_4 > X_2$. Consider these two constraints instead when applying PC-2.

Initial Constraints:

 R_{12} :{all domain values combinations}

 R_{13} :{(3,3),(4,4),(7,7)}

 R_{14} :{((1,6),(1,7),(1,8),(2,6),(2,7), (2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(7,8)}

 R_{23} :{all domain values combinations}

 R_{24} : {(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,7),(6,8)}

 R_{34} :{all domain values combinations}

Initial Queue Q with triplets $\{(2,1,3),(2,1,4),(3,1,4),(1,2,3),(1,2,4),(3,2,4),(1,3,2),(1,3,4),(2,3,4),(1,4,2),(1,4,3),(2,4,3)\}$ with 12 elements

	Triplet	Relation update	Additions to Q
1	(2,1,3)	$R_{23} = \{(*,5), (*,8), (*,9)\}$	(1,2,3),(4,2,3),(1,3,2),(4,3,2)
2	(2,1,4)	_	_
3	(3,1,4)	$R_{34} = \{(5,*), (8,*), (9,*), (7,6), (7,7)\}$	(1,3,4),(2,3,4),(1,4,3),(2,4,3)
4	(1,2,3)	_	_
5	(1,2,4)	_	_
6	(3,2,4)	_	_
7	(1,3,2)	$R_{12} = \{(1, *), (2, *)\}$	(3,1,2), (4,1,2), (3,2,1), (4,2,1)
8	(1,3,4)	$R_{14} = \{(1,*), (2,*)\}$	(2,1,4), (3,1,4), (2,4,1), (3,4,1)
9	(2,3,4)	_	_
10	(1,4,2)	$R_{12} = \{(*,8)\}$	(3,1,2),(4,1,2),(3,2,1),(4,2,1)
11	(1,4,3)	_	_
12	(2,4,3)	$R_{23} = \{(*,5), (*,8), (*,9), (8,*)\}$	(1,2,3),(4,2,3),(1,3,2),(4,3,2)
13	(4,2,3)	_	_
14	(4,3,2)	_	_
15	(3,1,2)	_	_
16	(4,1,2)	_	_
17	(3,2,1)	_	_
18	(4,2,1)	_	_
19	(2,1,4)	_	_
20	(3,1,4)	_	_
21	(2,4,1)	_	_
22	(3,4,1)	_	_
23	(1,2,3)	_	_
24	(1,3,2)	_	_

Note: Since Rev-3((x,y),z) = Rev-3((y,x),z) there is no need to add (y,z,x) if (x,z,y) is already in Q (the opposite also holds)

Final Constraints:

 R_{12} : {(3,2),(3,4),(3,6),(4,2),(4,4),(4,6),(7,2),(7,4),(7,6)}

 R_{13} :{(3,3),(4,4),(7,7)}

 R_{14} :{(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(7,8)}

 R_{23} : {(2,3),(2,4),(2,7),(4,3),(4,4),(4,7),(6,3),(6,4),(6,7)}

 R_{24} :{(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,7),(6,8)}

 R_{34} :{(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(7,8)}

- 3) Consider the following network illustrated in the figure.
 - Variables: x, y, z
 - Domains: $D_x = [0..4], D_y = [1..5], D_z = [5..10]$
 - Constraints: x < y, y < z, x < z.

a. Explain why it is directional path-consistent considering ordering $x,\,y \prec z.$

b. Explain why it is NOT directional path-consistent considering ordering $x, z \prec y$.

c. Show a partial assignment to the variables such that backtracking is required with ordering $x, z \prec y$.

Solution:

- a. Considering the ordering $x,y \prec z$, for every pair of values that x and y can have with respect to the constraint x < y, there is a value for z that respects the constraints y < z and x < z.
- b. Considering the ordering $x,z \prec y$, there are pairs of values for x and z that break the constraints x < y and y < z.
- c. x=4, z=5

III. Search in CSP (2.5 + 1.5 = 4/20)

1) Consider the graph with 8 nodes $A_1, A_2, A_3, A_4, H, T, F_1, F_2$. A_i is connected to A_{i+1} for all i, each A_i is connected to H, H is connected to T, and T is connected to each F_i . Find a 3-coloring of this graph by hand using the following strategy: backtracking with conflict-directed backjumping, the variable order $A_1, H, A_4, F_1, A_2, F_2, A_3, T$, and the value order R, G, B.

Solution:

- a. $A_1 = R$.
- b. H = R conflicts with A_1 .
- c. H = G.
- d. $A_4 = R$.
- e. $F_1 = R$.
- f. $A_2 = R$ conflicts with $A_1, A_2 = G$ conflicts with H, so $A_2 = B$.
- g. F2 = R.
- h. $A_3 = R$ conflicts with A_4 , $A_3 = G$ conflicts with H, $A_3 = B$ conflicts with A2, so backtrack. Conflict set is $\{A_2, H, A_4\}$, so jump to A2. Add $\{H, A_4\}$ to A_2 's conflict set.
- i. A_2 has no more values, so backtrack. Conflict set is $\{A_1, H, A_4\}$ so jump back to A_4 . Add $\{A_1, H\}$ to A_4 's conflict set.
- j. $A_4 = G$ conflicts with H, so $A_4 = B$.
- k. $F_1 = R$
- 1. $A_2 = R$ conflicts with $A_1, A_2 = G$ conflicts with H, so $A_2 = B$.
- m. $F_2 = R$
- n. $A_3 = R$.
- o. T = R conflicts with F_1 and F_2 , T = G conflicts with H, so T = B.
- p. Success! $(A_1 = R, H = G, A_4 = B, F_1 = R, A_2 = B, F_2 = R, A_3 = R, T = B)$

2) Consider a simple version of WALKSAT as illustrated in the figure. Illustrate the use of WALKSAT until a solution is found, with the occurrence of at least two violated constraints, for the CNF formula $\varphi = \{(A \lor B), (\neg B \lor C \lor D), (\neg C), (\neg A \lor \neg D)\}.$

procedure WALKSAT

Input: A network $\Re = (X, D, C)$, number of flips MAX_FLIPS, MAX_TRIES, probability p.

Output: "True," and a solution, if the problem is consistent, "false," and an inconsistent best assignment, otherwise.

- 1. for i = 1 to MAX_TRIES do
- 2. **start** with a random initial assignment \bar{a} .
- 3. Compare best assignment with \bar{a} and retain the best.
- 4. for i = 1 to MAX_FLIPS
 - if \bar{a} is a solution, return true and \bar{a} .
 - else,
 - i. pick a violated constraint C, randomly
 - ii. choose with probability p a variable-value pair (x,a') for x ∈ scope (C), or, with probability 1 p, choose a variable-value pair (x,a') that minimizes the number of new constraints that break when the value of x is changed to a' (minus 1 if the current constraint is satisfied).
 - iii. Change x's value to a'.
- 5. endfor
- 6. return false and the best current assignment.

Solution:

A possible execution of WALKSAT with at least two violated constraints could be the following:

Random assignment: {(A,True),(B,False),(C,True),(D,True)}

Pick violated constraint: $(\neg C)$ Flip assignment: C = False

Pick violated constraint: $(\neg A \lor \neg D)$

Flip assignment: D = False

Assignment {(A,True),(B,False),(C,False),(D,False)} is a SOLUTION!

IV. Plan Space Planning (2 + 2 = 4/20)

1) Consider a 2-digit binary counter that starts at 00, so that we want to get to 11. More precisely, $s_0 = \{d_2 = 0, d_1 = 0\}$ and $g = \{d_2 = 1, d_1 = 1\}$. There are two action templates, *incr-x0-to-x1* and *incr-01-to-10*, being *incr-x0-to-x1* defined as follows:

```
incr-x0-to-x1
pre: d1=0
eff: d1=1
```

a. Define action incr-01-to-10.

b. List the sequence of actions that are part of the plan for solving this problem.

Solution:

```
a. incr-01-to-10
  pre: d2=0, d1=1
  eff: d2=1, d1=0
```

b. incr-x0-to-x1, incr-01-to-10, incr-x0-to-x1

2) Consider a simple planning problem in which there are three locations L={home, bakery, florist} and two products $P = \{bread, flowers\}$, that is, $B = L \cup P$. There are no rigid relations. There are two action templates,

```
\begin{array}{lll} \text{go}\,(1,m) & \text{buy}\,(p,l) \\ \text{pre:} & \text{at}\,(1) & \text{pre:} & \text{at}\,(1)\,, \,\, \text{sells}\,(l,p) \\ \text{eff:} & \text{at}\,(m)\,, \,\, \neg \,\, \text{at}\,(l) & \text{eff:} & \text{have}\,(p) \end{array}
```

where $l,m \in L$ and $p \in P$. The initial state s_0 and the goal g are

```
s_0 = \{at (home), sells (bakery, bread), sells (florist, flowers) \};
g = \{at (home), have (bread), have (flowers) \}.
```

In the context of Plan-Space Search (PSP):

a. Write down the initial partial plan containing dummy actions a_0 and a_g that represent s_0 and g, respectively.

Solution:

b. Identify the flaws in the initial plan.

Solution:

There are two flaws corresponding to open goals: have(bread) and have(flowers).

c. Apply PSP to the initial partial plan.

Solution:

V. Temporal Planning (2 + 2 = 4/20)

1) Consider a timeline $(\mathcal{T}, \mathcal{C})$. **Justify** the sentence "If \mathcal{C} is consistent then $(\mathcal{T}, \mathcal{C})$ may or may not be consistent". **Give an example** for each one of the two situations.

Solution:

An instance of $(\mathcal{T}, \mathcal{C})$ is consistent if it satisfies all the constraints in C and does not specify two different values for a state variable at the same time. A timeline $(\mathcal{T}, \mathcal{C})$ is consistent if its set of consistent instances is not empty.

Consider two examples to illustrate both cases. For the two examples, consider $C = (t_1 < t_3 < t_4 < t_2)$.

First, consider $\mathcal{T} = \{[t_1, t_3] loc(r_1) : (l_1, l_2), [t_4, t_2] loc(r_1) = l_2\}$, where r_1, l_1, l_2 are constants. There is at least one instance that is consistent, e.g. with $t_1 = 0, t_3 = 1, t_4 = 2, t_2 = 3$. Hence, $(\mathcal{T}, \mathcal{C})$ is consistent as well.

Now, consider $\mathcal{T} = \{[t_1, t_2]loc(r_1) = l_1, [t_3, t_4]loc(r_1) = l_2\}$. \mathcal{T} is inconsistent because $loc(r_1)$ has two values during $[t_3, t_4]$, no matter the grounding of $(\mathcal{T}, \mathcal{C})$. Hence, $(\mathcal{T}, \mathcal{C})$ is inconsistent.

2) Run algorithm Path-Consistency (PC) on the following temporal network. Briefly **explain** the meaning of the output.

```
 \begin{aligned} \mathsf{PC}(\mathcal{V}, \mathcal{E}) \\ \text{for } k = 1, \dots, n \text{ do} \\ \text{for each pair } i, j \text{ such that } 1 \leq i < j \leq n, i \neq k, \text{ and } j \neq k \text{ do} \\ r_{ij} \leftarrow r_{ij} \cap [r_{ik} \bullet r_{kj}] \\ \text{if } r_{ij} = \varnothing \text{ then return } inconsistent \end{aligned}
```


Solution:

```
k: 1 i: 2 j: 3 || Rij /\ [Rik * Rkj]: [4, 7] || Rij: [4, 7] || Rik * Rkj: [-inf, inf] || Rik: [-5, -1] || Rkj: [-inf, inf] || k: 1 i: 2 j: 4 || Rij /\ [Rik * Rkj]: [5, 5] || Rij: [5, 8] || Rik * Rkj: [-3, 5] || Rik: [-5, -1] || Rkj: [2, 6] || k: 1 i: 3 j: 4 || Rij /\ [Rik * Rkj]: [4, 6] || Rij: [4, 6] || Rik * Rkj: [-inf, inf] || Rik: [-inf, inf] || Rkj: [2, 6] || k: 2 i: 1 j: 3 || Rij /\ [Rik * Rkj]: [5, 12] || Rij: [-inf, inf] || Rik * Rkj: [5, 12] || Rik: [1, 5] || Rkj: [4, 7] || k: 2 i: 1 j: 4 || Rij /\ [Rik * Rkj]: [6, 6] || Rij: [2, 6] || Rik * Rkj: [6, 10] || Rik: [1, 5] || Rkj: [5, 5] || k: 2 i: 3 j: 4 || Rij /\ [Rik * Rkj]: [4, 1] || Rij: [4, 6] || Rik * Rkj: [-2, 1] || Rik: [-7, -4] || Rkj: [5, 5] || INCONSISTENT! Rij /\ [Rik * Rkj] = \{\}
```

The output means that the temporal network is inconsistent, i.e. there is no consistent assignment to t_1, t_2, t_3, t_4 .