neural network

May 4, 2023

```
[]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras import Sequential, layers, optimizers, models
from random import randint

#* for small network, using GPU will not provide a lot of speed improvement ->
the following line limits the machine to use only CPU instead
tf.config.set_visible_devices([], 'GPU')
```

1 Data Processing

data from UCI Machine Learning Repositories: https://archive.ics.uci.edu/ml/datasets/SkillCraft1+Master+Table source: Thompson JJ, Blair MR, Chen L, Henrey AJ (2013) Video Game Telemetry as a Critical Tool in the Study of Complex Skill Learning. PLoS ONE 8(9): e75129.

[]:	LeagueIndex	Age	HoursPerWeek	TotalHours	APM	SelectByHotkeys	\
0	5	27.0	10.0	3000.0	143.7180	0.003515	
1	5	23.0	10.0	5000.0	129.2322	0.003304	
2	4	30.0	10.0	200.0	69.9612	0.001101	
3	3	19.0	20.0	400.0	107.6016	0.001034	
4	3	32.0	10.0	500.0	122.8908	0.001136	
•••	•••		***			•••	
3335	4	20.0	8.0	400.0	158.1390	0.013829	
3336	5	16.0	56.0	1500.0	186.1320	0.006951	
3337	4	21.0	8.0	100.0	121.6992	0.002956	
3338	3	20.0	28.0	400.0	134.2848	0.005424	
3339	4	22.0	6.0	400.0	88.8246	0.000844	

	${\tt AssignToHotkeys}$	UniqueHotkeys	MinimapAttacks	MinimapRightClicks	\
0	0.000220	7	0.000110	0.000392	
1	0.000259	4	0.000294	0.000432	
2	0.000336	4	0.000294	0.000461	
3	0.000213	1	0.000053	0.000543	
4	0.000327	2	0.000000	0.001329	
•••	***	•••	•••	***	
3335	0.000504	7	0.000217	0.000313	
3336	0.000360	6	0.000083	0.000166	
3337	0.000241	8	0.000055	0.000208	
3338	0.000182	5	0.000000	0.000480	
3339	0.000108	2	0.000000	0.000341	
	NumberOfPACs Gap	pBetweenPACs A	ctionLatency A	ctionsInPAC \	
0	0.004849	32.6677	40.8673	4.7508	
1	0.004307	32.9194	42.3454	4.8434	
2	0.002926	44.6475	75.3548	4.0430	
3	0.003783	29.2203	53.7352	4.9155	
4	0.002368	22.6885	62.0813	9.3740	
•••	•••	***	***	***	
3335	0.003583	36.3990	66.2718	4.5097	
3336	0.005414	22.8615	34.7417	4.9309	
3337	0.003690	35.5833	57.9585	5.4154	
3338	0.003205	18.2927	62.4615	6.0202	
3339	0.003099	45.1512	63.4435	5.1913	
	TotalMapExplored	WorkersMade	UniqueUnitsMade	ComplexUnitsMade '	\
0	TotalMapExplored	WorkersMade 0.001397	UniqueUnitsMade 6	ComplexUnitsMade 0.0	\
0 1			-	_	\
	28	0.001397	6	0.0	\
1	28 22 22	0.001397 0.001193 0.000745	6 5 6	0.0 0.0 0.0	\
1 2 3	28 22 22 19	0.001397 0.001193 0.000745 0.000426	6 5 6 7	0.0 0.0 0.0 0.0	\
1 2	28 22 22	0.001397 0.001193 0.000745 0.000426 0.001174	6 5 6	0.0 0.0 0.0	\
1 2 3 4 	28 22 22 19 15	0.001397 0.001193 0.000745 0.000426 0.001174	6 5 6 7 4	0.0 0.0 0.0 0.0 0.0	\
1 2 3 4 3335	28 22 22 19 15 	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035	6 5 6 7 4 	0.0 0.0 0.0 0.0 0.0	\
1 2 3 4 3335 3336	28 22 22 19 15 30 38	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343	- 6 5 6 7 4 7	0.0 0.0 0.0 0.0 0.0 	
1 2 3 4 3335 3336 3337	28 22 22 19 15 30 38 23	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 	
1 2 3 4 3335 3336 3337 3338	28 22 22 19 15 30 38 23 18	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	\
1 2 3 4 3335 3336 3337	28 22 22 19 15 30 38 23	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 	\
1 2 3 4 3335 3336 3337 3338	28 22 22 19 15 30 38 23 18 20	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000476	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 3 4 3335 3336 3337 3338 3339	28 22 22 19 15 30 38 23 18 20 ComplexAbilities	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000476	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 3 4 3335 3336 3337 3338 3339	28 22 22 19 15 30 38 23 18 20 ComplexAbilitiesU 0.000	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000476	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 3 4 3335 3336 3337 3338 3339	28 22 22 19 15 30 38 23 18 20 ComplexAbilitiesU 0.000 0.000	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000934 0.000476	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 3 4 3335 3336 3337 3338 3339	28 22 22 19 15 30 38 23 18 20 ComplexAbilitiesU 0.000 0.000	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000476 Used 0000 0208 0189	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 3 4 3335 3336 3337 3338 3339	28 22 22 19 15 30 38 23 18 20 ComplexAbilitiesU 0.000 0.000 0.000 0.000	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000476 Used 0000 0208 0189 0384	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 3 4 3335 3336 3337 3338 3339	28 22 22 19 15 30 38 23 18 20 ComplexAbilitiesU 0.000 0.000	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000476 Used 0000 0208 0189 0384	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 3 4 3335 3336 3337 3338 3339	28 22 22 19 15 30 38 23 18 20 ComplexAbilitiesU 0.000 0.000 0.000 0.000	0.001397 0.001193 0.000745 0.000426 0.001174 0.001035 0.001343 0.002014 0.000934 0.000476 Used 0000 0208 0189 0384 0019	- 6 5 6 7 4 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

```
      3336
      0.000388

      3337
      0.000000

      3338
      0.000000

      3339
      0.000054
```

[3338 rows x 19 columns]

2 Model Construction

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 16)	304
dense_1 (Dense)	(None, 8)	136
dense_2 (Dense)	(None, 8)	72

Total params: 512 Trainable params: 512 Non-trainable params: 0 _____ Epoch 1/10 2023-05-04 01:10:20.963508: W tensorflow/tsl/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz accuracy: 0.1771 Epoch 2/10 accuracy: 0.1984 Epoch 3/10 94/94 [=============] - Os 503us/step - loss: 1.7758 accuracy: 0.2423 Epoch 4/10 94/94 [============] - Os 503us/step - loss: 1.7183 accuracy: 0.2603 Epoch 5/10 accuracy: 0.3093 Epoch 6/10 accuracy: 0.3259 Epoch 7/10 94/94 [=============] - Os 481us/step - loss: 1.6041 accuracy: 0.3322 Epoch 8/10 94/94 [=============] - Os 484us/step - loss: 1.5644 accuracy: 0.3435 Epoch 9/10 accuracy: 0.3425 Epoch 10/10

accuracy: 0.3472

accuracy: 0.3024

Test accuracy: 0.30239519476890564

4

3 Prediction

```
[]: model: Sequential = models.load_model('../model/8LeagueSkills_NeuralNetwork.h5')
    predictions = model.predict(x_train)
    for _ in range(10):
        i = randint(0, len(predictions))
        print(f'Prediction: {rank[np.argmax(predictions[i])]}, Actual:
      →{rank[y_train[i]]}')
    94/94 [======== ] - 0s 403us/step
    Prediction: Diamond, Actual: Diamond
    Prediction: Diamond, Actual: Platinum
    Prediction: Diamond, Actual: Master
    Prediction: Diamond, Actual: Diamond
    Prediction: Diamond, Actual: Diamond
    Prediction: Silver, Actual: Silver
    Prediction: Gold, Actual: Gold
    Prediction: Diamond, Actual: Diamond
    Prediction: Diamond, Actual: Platinum
    Prediction: Diamond, Actual: Diamond
```

3.1 4 Leagues Prediction

```
[]: fourLeague_data = filtered_data.copy()
     rank: dict = {1: 'Bronze-Silver', 2: 'Gold-Platinum', 3: 'Diamond-Master', 4:

¬'GrandMaster-Professional'}
     fourLeague data.loc[fourLeague_data['LeagueIndex'] == 2, 'LeagueIndex'] = 1
     fourLeague_data.loc[fourLeague_data['LeagueIndex'] == 3, 'LeagueIndex'] = 2
     fourLeague_data.loc[fourLeague_data['LeagueIndex'] == 4, 'LeagueIndex'] = 2
     fourLeague_data.loc[fourLeague_data['LeagueIndex'] == 5, 'LeagueIndex'] = 3
     fourLeague_data.loc[fourLeague_data['LeagueIndex'] == 6, 'LeagueIndex'] = 4
     fourLeague_data.loc[fourLeague_data['LeagueIndex'] == 7, 'LeagueIndex'] = 4
     fourLeague_data.loc[fourLeague_data['LeagueIndex'] == 8, 'LeagueIndex'] = 4
     predict = 'LeagueIndex'
     x = np.array(fourLeague_data.drop([predict], axis=1))
     y = np.array(fourLeague_data[predict])
     x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)
     model = Sequential()
     model.add(layers.Dense(16, input_shape=(18,), activation='sigmoid'))
     model.add(layers.Dense(8, activation='sigmoid'))
     # model.add(layers.Dense(8, activation='relu'))
     model.add(layers.Dense(5, activation='softmax')) #? Dense(4) doesn't work
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 16)	304
dense_4 (Dense)	(None, 8)	136
dense_5 (Dense)	(None, 5)	45

Total params: 485 Trainable params: 485 Non-trainable params: 0

Output Shape	 Param #
(None, 16)	304
(None, 8)	136
(None, 5)	45
	(None, 16) (None, 8)

Total params: 485 Trainable params: 485 Non-trainable params: 0

```
Epoch 1/10
```

94/94 [============] - 0s 608us/step - loss: 1.5841 -

accuracy: 0.2400

Epoch 2/10

accuracy: 0.4078

```
accuracy: 0.4078
  Epoch 4/10
  accuracy: 0.4078
  Epoch 5/10
  accuracy: 0.4078
  Epoch 6/10
  accuracy: 0.4075
  Epoch 7/10
  0.4081
  Epoch 8/10
  accuracy: 0.4095
  Epoch 9/10
  accuracy: 0.4291
  Epoch 10/10
  accuracy: 0.4670
  accuracy: 0.4731
  Test accuracy: 0.473053902387619
[]: predictions = model.predict(x_train)
   for _ in range(10):
     i = randint(0, len(predictions))
     print(f'Prediction: {rank[np.argmax(predictions[i])]}, Actual:
   →{rank[y_train[i]]}')
  94/94 [=======] - 0s 434us/step
  Prediction: Gold-Platinum, Actual: GrandMaster-Professional
  Prediction: Gold-Platinum, Actual: Bronze-Silver
  Prediction: Gold-Platinum, Actual: Bronze-Silver
  Prediction: Gold-Platinum, Actual: Bronze-Silver
  Prediction: Gold-Platinum, Actual: Diamond-Master
  Prediction: Gold-Platinum, Actual: Gold-Platinum
  Prediction: Diamond-Master, Actual: GrandMaster-Professional
  Prediction: Gold-Platinum, Actual: GrandMaster-Professional
  Prediction: Gold-Platinum, Actual: GrandMaster-Professional
  Prediction: Diamond-Master, Actual: Gold-Platinum
```

Epoch 3/10

3.2 3 Leagues Prediction

```
[]: threeLeague_data = filtered_data.copy()
    rank: dict = {1: 'Bronze-Silver-Gold', 2: 'Platinum-Diamond-Master', 3:
     threeLeague_data.loc[threeLeague_data['LeagueIndex'] == 2, 'LeagueIndex'] = 1
    threeLeague data.loc[threeLeague data['LeagueIndex'] == 3, 'LeagueIndex'] = 1
    threeLeague_data.loc[threeLeague_data['LeagueIndex'] == 4, 'LeagueIndex'] = 2
    threeLeague_data.loc[threeLeague_data['LeagueIndex'] == 5, 'LeagueIndex'] = 2
    threeLeague_data.loc[threeLeague_data['LeagueIndex'] == 6, 'LeagueIndex'] = 2
    threeLeague_data.loc[threeLeague_data['LeagueIndex'] == 7, 'LeagueIndex'] = 3
    threeLeague_data.loc[threeLeague_data['LeagueIndex'] == 8, 'LeagueIndex'] = 3
    predict = 'LeagueIndex'
    x = np.array(threeLeague_data.drop([predict], axis=1))
    y = np.array(threeLeague_data[predict])
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)
    model = Sequential()
    model.add(layers.Dense(16, input_shape=(18,), activation='sigmoid'))
    model.add(layers.Dense(8, activation='sigmoid'))
    # model.add(layers.Dense(8, activation='relu'))
    model.add(layers.Dense(4, activation='softmax')) #? Dense(3) doesn't work
    model.summary()
     #! using optimizer = 'adam' does not work for M1 architecture
    model.compile(optimizer=optimizers.Adam(),
      ⇔loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    model.fit(x_train, y_train, epochs=10)
    test_loss, test_acc = model.evaluate(x_test, y_test)
    print(f'Test accuracy: {test_acc}')
    model.save('../model/3LeagueSkills_NeuralNetwork.h5')
```

Model: "sequential_2"

La	yer (type)	Output	Shape	Param #
de	nse_6 (Dense)	(None,	16)	304
de	nse_7 (Dense)	(None,	8)	136
de	nse_8 (Dense)	(None,	4)	36

Total params: 476
Trainable params: 476
Non-trainable params: 0

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 16)	304
dense_7 (Dense)	(None, 8)	136
dense_8 (Dense)	(None, 4)	36

Total params: 476 Trainable params: 476 Non-trainable params: 0

Epoch 1/10

accuracy: 0.6654

Epoch 2/10

94/94 [===========] - Os 602us/step - loss: 0.7036 -

accuracy: 0.6654

Epoch 3/10

accuracy: 0.7004

Epoch 4/10

accuracy: 0.7490

Epoch 5/10

accuracy: 0.7600

Epoch 6/10

94/94 [============] - Os 589us/step - loss: 0.5343 -

accuracy: 0.7790

Epoch 7/10

94/94 [=============] - Os 513us/step - loss: 0.5162 -

accuracy: 0.7886

Epoch 8/10

94/94 [==========] - Os 508us/step - loss: 0.5030 -

accuracy: 0.7923

Epoch 9/10

94/94 [==========] - Os 521us/step - loss: 0.4982 -

accuracy: 0.7889

Epoch 10/10

```
accuracy: 0.7893
   accuracy: 0.7904
   Test accuracy: 0.7904191613197327
[]: predictions = model.predict(x_train)
    for in range(10):
       i = randint(0, len(predictions))
       print(f'Prediction: {rank[np.argmax(predictions[i])]}, Actual:__

√{rank[y_train[i]]}')

   94/94 [=======] - 0s 439us/step
   Prediction: Platinum-Diamond-Master, Actual: Platinum-Diamond-Master
   Prediction: Platinum-Diamond-Master, Actual: Platinum-Diamond-Master
   Prediction: Platinum-Diamond-Master, Actual: Platinum-Diamond-Master
   Prediction: Platinum-Diamond-Master, Actual: Platinum-Diamond-Master
   Prediction: Bronze-Silver-Gold, Actual: Platinum-Diamond-Master
   Prediction: Platinum-Diamond-Master, Actual: Platinum-Diamond-Master
```

3.3 2 Leagues Prediction

```
[]: twoLeague_data = filtered_data.copy()
     rank: dict = {1: 'Bronze-Silver-Gold-Platinum', 2:
      ⇔'Diamond-Master-GrandMaster-Professional'}
     twoLeague data.loc[twoLeague data['LeagueIndex'] == 2, 'LeagueIndex'] = 1
     twoLeague data.loc[twoLeague data['LeagueIndex'] == 3, 'LeagueIndex'] = 1
     twoLeague_data.loc[twoLeague_data['LeagueIndex'] == 4, 'LeagueIndex'] = 1
     twoLeague_data.loc[twoLeague_data['LeagueIndex'] == 5, 'LeagueIndex'] = 2
     twoLeague_data.loc[twoLeague_data['LeagueIndex'] == 6, 'LeagueIndex'] = 2
     twoLeague data.loc[twoLeague_data['LeagueIndex'] == 7, 'LeagueIndex'] = 2
     twoLeague_data.loc[twoLeague_data['LeagueIndex'] == 8, 'LeagueIndex'] = 2
     predict = 'LeagueIndex'
     x = np.array(twoLeague_data.drop([predict], axis=1))
     y = np.array(twoLeague_data[predict])
     x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)
     model = Sequential()
     model.add(layers.Dense(16, input_shape=(18,), activation='sigmoid'))
```

Model: "sequential_3"

Layer (type)	Output Shape	Param #
dense_9 (Dense)	(None, 16)	304
dense_10 (Dense)	(None, 8)	136
dense_11 (Dense)	(None, 3)	27

Total params: 467 Trainable params: 467 Non-trainable params: 0

Layer (type)	Output Shape	Param #
dense_9 (Dense)	(None, 16)	304
dense_10 (Dense)	(None, 8)	136
dense_11 (Dense)	(None, 3)	27

Total params: 467
Trainable params: 467
Non-trainable params: 0

Epoch 1/10

accuracy: 0.5320

```
Epoch 2/10
  accuracy: 0.6109
  Epoch 3/10
  accuracy: 0.7617
  Epoch 4/10
  accuracy: 0.7733
  Epoch 5/10
  accuracy: 0.7776
  Epoch 6/10
  accuracy: 0.7766
  Epoch 7/10
  accuracy: 0.7853
  Epoch 8/10
  accuracy: 0.7919
  Epoch 9/10
  accuracy: 0.7933
  Epoch 10/10
  accuracy: 0.7909
  accuracy: 0.7695
  Test accuracy: 0.7694610953330994
[]: predictions = model.predict(x_train)
   for _ in range(10):
     i = randint(0, len(predictions))
     print(f'Prediction: {rank[np.argmax(predictions[i])]}, Actual:__
   →{rank[y_train[i]]}')
  94/94 [======== ] - 0s 400us/step
  Prediction: Diamond-Master-GrandMaster-Professional, Actual: Diamond-Master-
  GrandMaster-Professional
  Prediction: Bronze-Silver-Gold-Platinum, Actual: Bronze-Silver-Gold-Platinum
  Prediction: Diamond-Master-GrandMaster-Professional, Actual: Diamond-Master-
  GrandMaster-Professional
  Prediction: Bronze-Silver-Gold-Platinum, Actual: Bronze-Silver-Gold-Platinum
  Prediction: Bronze-Silver-Gold-Platinum, Actual: Bronze-Silver-Gold-Platinum
  Prediction: Bronze-Silver-Gold-Platinum, Actual: Bronze-Silver-Gold-Platinum
  Prediction: Bronze-Silver-Gold-Platinum, Actual: Bronze-Silver-Gold-Platinum
```

Prediction: Diamond-Master-GrandMaster-Professional, Actual: Diamond-Master-

GrandMaster-Professional

Prediction: Diamond-Master-GrandMaster-Professional, Actual: Diamond-Master-

GrandMaster-Professional

Prediction: Diamond-Master-GrandMaster-Professional, Actual: Diamond-Master-

GrandMaster-Professional