Backpropagation through time of RNN

Hao Ni University College London The Alan Turing Institute

Loss function

For a task of predicting the sequential output, the loss function is often in the additive form as follows:

Loss Function:
$$L(\bar{o}, \bar{y}) = \sum_{t=1}^{T} E(o_t, y_t),$$

where y_t and o_t are the actual/estimated output at time t respectively, $\bar{o} = (o_t)_{t=1}^T$ and $\bar{y} = (y_t)_{t=1}^T$.

For concreteness, we consider $E(o, y) := ||o - y||_2^2$ in the rest of this talk¹, which is commonly used for the regression problem. For ease of notation, we write $E_t := E(o_t, y_t)$.

4□ > 4□ > 4□ > 4 = > = 0 < 0</p>

Hao Ni (UCL and ATI)

Optimization

Optimization of RNN

- Stochastic/Mini-batch Gradient Decent;
- Gradient calculation: Backpropagation through Time.

Goal: To compute $\frac{dE_t}{dV}$, $\frac{dE_t}{dU}$, $\frac{dE_t}{dW}$.

$$\begin{array}{ll} \frac{dE_t}{dV} & = & \frac{\partial E_t}{\partial o_t} \cdot \frac{\partial o_t}{\partial V} \\ \frac{dE_t}{dU} & = & \frac{\partial E_t}{\partial o_t} \cdot \frac{\partial o_t}{\partial U} = \frac{\partial E_t}{\partial o_t} \frac{\partial o_t}{\partial s_t} \cdot \frac{ds_t}{dU} \\ \frac{dE_t}{dW} & = & \frac{\partial E_t}{\partial o_t} \frac{\partial o_t}{\partial s_t} \cdot \frac{ds_t}{dW} \end{array}$$

Derivative Computation

The computation of total derivatives boils down to

- $\frac{\partial E_t}{\partial o_t}$, $\frac{\partial o_t}{\partial s_t}$, $\frac{\partial o_t}{\partial V}$;
- $\frac{ds_t}{dW}$, $\frac{ds_t}{dU}$.

First let us explain the derivation of the partial derivatives $\frac{\partial E_t}{\partial o_t}$ and $\frac{\partial o_t}{\partial s_t}$. The computation of $\frac{\partial o_t}{\partial t}$ is similar and hence left for the homework.

$$\frac{\partial E_t}{\partial o_t} = \frac{\partial (||o_t - y_t||_2^2)}{\partial o_t} = 2(o_t - y_t).$$

Recall that $o_t = g(Vs_t)$ where $s_t \in \mathbb{R}^{n_1}$, $o_t \in \mathbb{R}^e$ and V is a matrix of size (e, n_1) . $\frac{\partial o_t}{\partial s_t}$ is a matrix of size (e, n_1) , i.e.

$$\frac{\partial o_t}{\partial s_t} = \left(\frac{\partial o_t^{(i)}}{\partial s_t^{(j)}}\right)_{i \in [e], i \in [n_1]}.$$
(1)

Lemma

If $g: \mathbb{R} \to \mathbb{R}$ is differentiable and $o_t = g(Vs_t)$, then it holds that $\forall i \in [e]$ and $j \in [n_1]$,

$$\frac{\partial o_t^{(i)}}{\partial s_t^{(j)}} = V_{ij} g' \left(\sum_{k=1}^{n_1} V_{ik} s_t^{(k)} \right). \tag{2}$$

Proof.

For any $\forall i \in [e]$,

$$o_t^{(i)} = (g(Vs_t))^{(i)} = g\left(\sum_{t=1}^{n_1} V_{ik} s_t^{(k)}\right).$$

Then by Chain rule it follows that for any $j \in [n_1]$,

$$\frac{\partial o_t^{(i)}}{\partial s_t^{(j)}} = V_{ij}g'\left(\sum_{k=1}^{n_1} V_{ik}s_t^{(k)}\right).$$

Derivation of $\frac{ds_t}{dU}$ and $\frac{ds_t}{dW}$

By the definition of s_t , the recurrence of $\frac{ds_t}{dU}$ and $\frac{ds_t}{dW}$ holds as follows:

$$s_{t} = h(Ux_{t} + Ws_{t-1}) \implies \frac{ds_{t}}{dU} = \frac{\partial s_{t}}{\partial U} + \frac{\partial s_{t}}{\partial s_{t-1}} \frac{ds_{t-1}}{dU}$$
$$\frac{ds_{t}}{dW} = \frac{\partial s_{t}}{\partial W} + \frac{\partial s_{t}}{\partial s_{t-1}} \frac{ds_{t-1}}{dW}.$$

Lemma (Recurrence Structure of $\frac{ds_t}{dU}$ and $\frac{ds_t}{dW}$)

For any $t \in \{1, 2, \cdots, T\}$,

$$\frac{ds_t}{dU} = \frac{\partial s_t}{\partial U} + \sum_{k=0}^{t-1} \left(\prod_{j=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial U},$$

$$\frac{ds_t}{dW} = \frac{\partial s_t}{\partial W} + \sum_{k=0}^{t-1} \left(\prod_{i=t+1}^t \frac{\partial s_i}{\partial s_{i-1}} \right) \frac{\partial s_k}{\partial W}. \tag{4}$$

(3)

Proof.

Since $s_t = h(Ux_t + Ws_{t-1})$ and s_{t-1} also depends on U, it follows:

$$\frac{ds_t}{dU} = \frac{\partial s_t}{\partial U} + \frac{\partial s_t}{\partial s_{t-1}} \frac{ds_{t-1}}{dU}.$$

Applying the above equation for the term $\frac{ds_{t-1}}{dU}$, it follows that

$$\frac{ds_t}{dU} = \frac{\partial s_t}{\partial U} + \frac{\partial s_t}{\partial s_{t-1}} \frac{ds_{t-1}}{dU}
= \frac{\partial s_t}{\partial U} + \frac{\partial s_t}{\partial s_{t-1}} \left(\frac{\partial s_{t-1}}{\partial U} + \frac{\partial s_{t-1}}{\partial s_{t-2}} \frac{ds_{t-2}}{dU} \right)$$

Repeating this procedure until reaching t=0, we have the formula Equation (3). The rigorous proof can be done as follows by induction.

Backpropagation through time

Algorithm (Compute $\frac{ds_T}{dU}$ and $\frac{ds_T}{dW}$)

- 1: Initialize $\frac{ds_T}{dU} \leftarrow \frac{\partial s_T}{\partial U}$;
- 2: Initialize $z \to \mathbf{Id}_{n_1 \times n_1}$.
- 3: **for** t = T : -1 : 1 **do**
- 4: $z \leftarrow z \frac{\partial s_t}{\partial s_{t-1}}$
- 5: $\frac{ds_T}{dU} \leftarrow \frac{ds_T}{dU} + z \frac{\partial s_t}{\partial U}$ 6: $\frac{ds_T}{dW} \leftarrow \frac{ds_T}{dW} + z \frac{\partial s_t}{\partial W}$
- 7: end for
- 8: Output $\frac{ds_T}{dU}$ and $\frac{ds_T}{dW}$.

Thanks for your attention!

9/9