0.1 H19 数学選択

- $\boxed{7}$ (1)ch $F \neq 2$ より $\alpha \neq -\alpha$ である. したがって $F(\alpha)/F$ は Galois 拡大である. id $\neq \sigma \in \operatorname{Gal}(F(\alpha)/F)$ を とる. $\sigma(\alpha) = -\alpha$ である. $F(\beta) = F(\alpha)$ より $\sigma(\beta) = -\beta$ である. よって $F(\alpha\beta) = \alpha\beta$ より $\alpha\beta \in F$ である. すなわち $ab = (\alpha\beta)^2$ となり F の平方数.
- (2)(a)Gal $(L/F)\cong \mathbb{Z}/4\mathbb{Z}=\left\{\bar{0},\bar{1},\bar{2},\bar{3}\right\}$ であるから,唯一の真部分群 $\left\{\bar{0},\bar{2}\right\}$ に対応する中間体 K が唯一の非自明な中間体である.
- (b)F 上 2 次の元とすると $F(\xi)/F$ は 2 次拡大であるから $F(\xi)=K=F(\gamma)$ である. このとき $L=K(\xi)=F(\xi)$ となり矛盾する. したがって 4 次の元である.
- (c) ξ の F 上の最小多項式は $(x^2-p)^2=q^2c$ である.この方程式の解は $\pm\sqrt{p\pm q\gamma}$ である.L/K は Galois 拡大であるから, $L=K(\sqrt{p+q\gamma})=K(\sqrt{p-q\gamma})$ である.したがって $(p+q\gamma)(p-q\gamma)=p^2-q^2\gamma^2=(a+b\gamma)^2$ なる $a,b\in F$ が存在する. $p^2-q^2c-a^2-b^2c=2ab\gamma$ より ab=0 である.

a=0 のとき, $p^2-q^2c=b^2c$ より $p^2=(b^2+q^2)c$ である.よって $c=(\frac{pb}{b^2+q^2})^2+(\frac{pq}{b^2+q^2})^2$ とできる.

b=0 なら $\sqrt{p^2-q^2c}=a\in F$ である。 $\sigma(\sqrt{p+q\gamma})=\sqrt{p-q\gamma}$ に対して $\sigma(\sqrt{p-q\gamma})=\sigma(a/\sqrt{p+q\gamma})=\frac{a}{\sqrt{p-q\gamma}}=\sqrt{p+q\gamma}$ である。 したがって $\sigma^2=\mathrm{id}$ である。 $\tau(\sqrt{p+q\gamma})=-\sqrt{p+q\gamma}$ とすると $\tau^2=\mathrm{id}$ である。 これは $\mathrm{Gal}(L/K)$ が巡回拡大であることに矛盾。