

Saturation Vapor Pressure $e_{_S}$

Maximum amount of water that air can hold

Any extra amount would condense out

Exponentially: larger increase when the temperature is high

Why water boils when es is equal to atmospheric pressure

Percentage of the saturation vapor pressure that the actual water vapor pressure:

Actual water vapor pressure

$$RH = \frac{e}{e_s} \times 100\%$$

Saturation water vapor pressure

Percentage of the saturation vapor pressure that the actual water vapor pressure:

Actual water vapor pressure

$$RH = \frac{e}{e_s} \times 100\%$$

Saturation water vapor pressure

Compare the amount of water vapor in these two atmosphere:

1. RH=50%, T=10 C; 2. RH=50%, T = 30 C.

What may happen when RH=100%?

What may happen when RH=100%?

$$T_W = T$$

What may happen when RH=100%?

$$T_W = T$$

Human body cools by evaporating sweat. What if T_W reaches human body temperature?

What may happen when RH=100%?

$$T_W = T$$

Human body cools by evaporating sweat. What if T_W reaches human body temperature?

Human no longer be able to dump heat into environment - they would overheat and die in a few hours!

Percentage Change

Weight increased to 182 lbs from 168 lbs:

$$100 \times \frac{182 - 168}{168} \% = 8.3\%$$

He hit 39 home runs in 2019 and 29 in 2020:

$$100 \times \frac{29 - 39}{39} \% = -25.6\%$$

(Not required) How is T_W influenced by atmosphere temperature T_{ℓ} relative humidity RH, and air pressure p?

Try it and think!

by Tim Brice and Todd Hall

Enter a	temperature, relative humidity and actual station pressure			
Temperature:		wet-bulb	unit	dewpoint
95	Fahrenheit ○ Celsius ○ Kelvin	89.35	Fahrenheit	87.86
RH:		31.86	Celsius	31.04
80	%	305.02	Kelvin	304.2
Enter y	your actual station pressure (not the altimeter setting):			
760	○ in of mercury ○ mm of mercury ○ millibars (hPA)			
Convert		Clear Value	es	

Increase T, increase T_W

89.35 -> 94.09

Enter a	temperature, relative humidity and actual station pressure			
Temperature:		wet-bulb	unit	dewpoint
100	• Fahrenheit • Celsius • Kelvin	94.09	Fahrenheit	92.72
RH:		34.49	Celsius	33.73
80	%	307.66	Kelvin	306.89
Enter y	our actual station pressure (not the altimeter setting):			
760	○ in of mercury ○ mm of mercury ○ millibars (hPA)			
Convert		Clear Values		

by $\underline{\text{Tim Brice}}$ and $\underline{\text{Todd Hall}}$

Enter a	temperature, relative humidity and actual station pressure			
Temperature:		wet-bulb	unit	dewpoint
95	• Fahrenheit Celsius Kelvin	89.35	Fahrenheit	87.86
RH:		31.86	Celsius	31.04
80	%	305.02	Kelvin	304.2
Enter y	your actual station pressure (not the altimeter setting):			
760	○ in of mercury ○ mm of mercury ○ millibars (hPA)			
Convert		Clear Value	es	

89.35 -> 92.26

Enter a	temperature, relative humidity and actual station pressure			
Temperature:		wet-bulb	unit	dewpoint
95	► Fahrenheit ○ Celsius ○ Kelvin	92.26	Fahrenheit	91.6
RH:		33.48	Celsius	33.11
90	%	306.64	Kelvin	306.27
Enter y	our actual station pressure (not the altimeter setting):			
760	○ in of mercury ○ mm of mercury ○ millibars (hPA)			
Convert		Clear Values		

Increase RH, increase T_{W:} less evaporation

by <u>Tim Brice</u> and <u>Todd Hall</u>

Enter a	temperature, relative humidity and actual station pressure			
Temperature:		wet-bulb	unit	dewpoint
95	• Fahrenheit Celsius Kelvin	89.35	Fahrenheit	87.86
RH:		31.86	Celsius	31.04
80	%	305.02	Kelvin	304.2
Enter y	your actual station pressure (not the altimeter setting):			
760	○ in of mercury ○ mm of mercury ○ millibars (hPA)			
Convert		Clear Value	es	

89.35 -> 90.18

Enter a	temperature, relative humidity and actual station pressure			
Temperature:		wet-bulb	unit	dewpoint
95	• Fahrenheit Celsius Kelvin	90.18	Fahrenheit	87.86
RH:		32.32	Celsius	31.04
80	%	305.48	Kelvin	304.2
Enter y	our actual station pressure (not the altimeter setting):			
1400	○ in of mercury ○ mm of mercury ○ millibars (hPA)			
Convert		Clear Value	es	

Increase p, increase TW: less evaporation