

Operating Systems

Introduction to CPU Scheduling

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Spring 2024

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle
 - Process execution consists of a cycle of CPU execution and I/O wait

```
load
store
                    CPU burst
add
store
read from file
  wait for I/O
                   I/O burst
store
increment index
                   CPU burst
write to file
  wait for I/O
                   I/O burst
load
store
                   CPU burst
```


Basic Concepts

CPU burst followed by I/O burst

CPU burst distribution is of main concern

load store add store **CPU** burst read from file I/O burst wait for I/O store increment index **CPU** burst write to file I/O burst wait for I/O load store **CPU** burst add store read from file I/O burst wait for I/O

Histogram of CPU-burst Times

CPU Scheduler

- The CPU scheduler selects from among the processes in ready queue and allocates a CPU core to one of them.
 - Queue may be ordered in various ways.

https://www.tutorialandexample.com/process-schedulers-and-process-queue/

CPU Scheduler (cont.)

- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates

CPU Scheduler (cont.)

- Four possible scheduling situations
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates

- For situations 1 and 4, there is no choice in terms of scheduling.
 - A new process must be selected for execution.
 - If at least one process exists in the ready queue
- For situations 2 and 3, however, there is a choice.

Preemptive and Nonpreemptive Scheduling

- Non-preemptive (or cooperative)
 - Circumstances 1 and 4

- Preemptive
 - Circumstances 2 and 3

Preemptive and Non-preemptive Scheduling (cont.)

Non-preemptive scheduling

 Once the CPU has been allocated to a process, the process keeps the CPU until it releases it either by terminating or by switching to the waiting state.

- Virtually all modern operating systems use preemptive scheduling algorithms.
 - Including Windows, MacOS, Linux, and UNIX

Scheduling Criteria

- CPU utilization
- Throughput
- Turnaround time
- Waiting time
- Response time

CPU Utilization

Keep the CPU as busy as possible.

Throughput

Number of processes that complete their execution per time unit.

Turnaround Time

- Amount of time to execute a particular process.
- Sum of the periods spent waiting, in the ready queue, executing on the CPU, and doing I/O.

Waiting Time

Amount of time a process has been waiting in the ready queue.

Response Time

 Amount of time it takes from when a request was submitted until the first response is produced.

Scheduling Algorithm Optimization Criteria

Criteria

Min or Max?

CPU utilization

Throughput

Turnaround time

Waiting time

Response time

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

