## Κεφάλαιο 5

#### ιεραρχία της μνήμης

Η ευφυΐα είναι η σύζυγος, η φαντασία είναι η ερωμένη και η μνήμη είναι η υπηρέτρια. -- Βίκτωρ Ουγκώ

## Τεχνολογίες μνήμης

- Στατική RAM (Static RAM SRAM)
  - 0.5ns 2.5ns, \$400 \$1000 avá GB
- Δυναμική RAM (Dynamic RAM DRAM)
  - 50ns 70ns, \$10 \$20 avá GB
- Μαγνητικός δίσκος
  - 5ms 20ms, \$0.07 \$0.1 avá GB
- Ιδανική μνήμη ->
  - Χρόνος προσπέλασης → SRAM
  - Χωρητικότητα και κόστος/GB → Δίσκος



## Τοπικότητα Αναφοράς (locality)

- Τα προγράμματα προσπελάζουν ένα μικρό μέρος του χώρου δ/νσεών τους κάθε φορά
- Χρονική τοπικότητα (temporal locality)
  - Αντικείμενα που προσπελάστηκαν πρόσφατα είναι πιθανό να προσπελαστούν πάλι σύντομα
  - π.χ., εντολές σε ένα βρόχο, μεταβλητές επαγωγής (induction variables)
- Χωρική τοπικότητα (spatial locality)
  - Αντικείμενα κοντά σε αυτά που προσπελάστηκαν πρόσφατα είναι πιθανόν να προσπελαστούν σύντομα
  - π.χ., προσπέλαση ακολουθίας εντολών, δεδομένα πινάκων...

# Σχηματισμοί αναφοράς στη Μνήμη



Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journa 10(3): 168-192 (1971)

## Εκμετάλλευση της τοπικότητας

- Ιεραρχία μνήμης
- Αποθήκευσε τα πάντα στο δίσκο
- Αντίγραψε τα πρόσφατα προσπελασθέντα (και τα κοντινά τους) αντικείμενα από το δίσκο σε μια μικρότερη μνήμη DRAM
  - Κύρια μνήμη
- Αντίγραψε τα πιο πρόσφατα προσπελασθέντα (και τα κοντινά τους) αντικείμενα από τη DRAM σε μια μικρότερη μνήμη SRAM
  - **Κρυφή μνήμη** (cache) προσαρτημένη στη CPU

## Κρυφή μνήμη



## Ιεραρχία Μνήμης



## Επίπεδα ιεραρχίας μνήμης



- Μπλοκ block (Γραμμή line): μονάδα αντιγραφής
  - Μπορεί να περιέχει πολλές λέξεις
- Αν τα δεδομένα βρίσκονται στο ανώτερο επίπεδο:
  - Ευστοχία (hit): προσπέλαση ικανοποιείται από το ανώτερο επίπεδο
    - Λόγος\_ευστοχίας (hit ratio): ευστοχίες/προσπελάσεις
- Αν τα δεδομένα απουσιάζουν:
  - Αστοχία (miss): το μπλοκ αντιγράφεται από το χαμηλότερο επίπεδο
    - Απαιτούμενος χρόνος: ποινή αστοχίας (miss penalty)
    - Λόγος\_αστοχίας (miss ratio):
    - αστοχίες/προσπελάσεις= 1 Λόγος\_ευστοχίας

## Κρυφή μνήμη (cache memory)

- Κρυφή μνήμη (cache memory)
  - Το επίπεδο της ιεραρχίας μνήμης που είναι πλησιέστερα στη CPU
- Δεδομένες προσπελάσεις X₁, ..., X<sub>n-1</sub>, X<sub>n</sub>

| X <sub>4</sub>   |
|------------------|
| X <sub>1</sub>   |
| X <sub>n-2</sub> |
|                  |
| X <sub>n-1</sub> |
| X <sub>2</sub>   |
|                  |
| X <sub>3</sub>   |

| X <sub>4</sub>                |
|-------------------------------|
| X <sub>4</sub> X <sub>1</sub> |
| X <sub>n-2</sub>              |
|                               |
| X <sub>n-1</sub>              |
| X <sub>2</sub>                |
| X <sub>n</sub>                |
| X <sub>3</sub>                |

- Πώς γνωρίζουμε αν τα δεδομένα είναι παρόντα;
- Πού κοιτάζουμε;

α. Πριν από την αναφορά στο  $X_n$  β. Μετά από την αναφορά στο  $X_n$ 

#### Κρυφή μνήμη άμεσης απεικόνισης



## Ετικέτες και έγκυρα bit

- Πώς γνωρίζουμε ποιο συγκεκριμένο μπλοκ βρίσκεται σε μια θέση της κρυφής μνήμης;
  - Αποθήκευση της δ/νσης του μπλοκ μαζί με τα δεδομένα
  - Στη πραγματικότητα, χρειάζονται μόνο τα bit υψηλής τάξης
  - ονομάζονται ετικέτα (tag)
- Και αν δεν υπάρχουν δεδομένα σε μια θέση;
  - Έγκυρο (valid) bit: 1 = παρόντα, 0 = όχι παρόντα
  - Αρχικά 0

- 8 μπλοκ, 1 λέξη/μπλοκ, άμεσης απεικόνισης
- Αρχική κατάσταση

| Αριθμοδείκτης | V | Ετικέτα | Δεδομένα |
|---------------|---|---------|----------|
| 000           | N |         |          |
| 001           | N |         |          |
| 010           | N |         |          |
| 011           | N |         |          |
| 100           | N |         |          |
| 101           | N |         |          |
| 110           | N |         |          |
| 111           | N |         |          |

| Δ/νση λέξης | Δυαδική δ/νση | Ευστοχία/αστοχία | Μπλοκ κρυφής μνήμης |
|-------------|---------------|------------------|---------------------|
| 22          | 10 110        | Αστοχία          | 110                 |

| Αριθμοδείκτης | V | Ετικέτα | Δεδομένα   |
|---------------|---|---------|------------|
| 000           | N |         |            |
| 001           | N |         |            |
| 010           | N |         |            |
| 011           | N |         |            |
| 100           | N |         |            |
| 101           | N |         |            |
| 110           | Υ | 10      | Mem[10110] |
| 111           | N |         |            |

| Δ/νση λέξης | Δυαδική δ/νση | Ευστοχία/αστοχία | Μπλοκ κρυφής μνήμης |
|-------------|---------------|------------------|---------------------|
| 26          | 11 010        | Αστοχία          | 010                 |

| Αριθμοδείκτης | V | Ετικέτα | Δεδομένα   |
|---------------|---|---------|------------|
| 000           | N |         |            |
| 001           | N |         |            |
| 010           | Υ | 11      | Mem[11010] |
| 011           | N |         |            |
| 100           | N |         |            |
| 101           | N |         |            |
| 110           | Υ | 10      | Mem[10110] |
| 111           | N |         |            |

| Δ/νση λέξης | Δυαδική δ/νση | Ευστοχία/αστοχία | Μπλοκ κρυφής μνήμης |
|-------------|---------------|------------------|---------------------|
| 22          | 10 110        | Ευστοχία         | 110                 |
| 26          | 11 010        | Ευστοχία         | 010                 |

| Αριθμοδείκτης | V | Ετικέτα | Δεδομένα   |
|---------------|---|---------|------------|
| 000           | N |         |            |
| 001           | N |         |            |
| 010           | Υ | 11      | Mem[11010] |
| 011           | N |         |            |
| 100           | N |         |            |
| 101           | N |         |            |
| 110           | Υ | 10      | Mem[10110] |
| 111           | N |         |            |

| Δ/νση λέξης | Δυαδική δ/νση | Ευστοχία/αστοχία | Μπλοκ κρυφής μνήμης |
|-------------|---------------|------------------|---------------------|
| 16          | 10 000        | Αστοχία          | 000                 |
| 3           | 00 011        | Αστοχία          | 011                 |
| 16          | 10 000        | Ευστοχία         | 000                 |

| Αριθμοδείκτης | V | Ετικέτα | Δεδομένα   |
|---------------|---|---------|------------|
| 000           | Y | 10      | Mem[10000] |
| 001           | N |         |            |
| 010           | Υ | 11      | Mem[11010] |
| 011           | Y | 00      | Mem[00011] |
| 100           | N |         |            |
| 101           | N |         |            |
| 110           | Υ | 10      | Mem[10110] |
| 111           | N |         |            |

| Δ/νση λέξης | Δυαδική δ/νση | Ευστοχία/αστοχία | Μπλοκ κρυφής μνήμης |
|-------------|---------------|------------------|---------------------|
| 18          | 10 010        | Αστοχία          | 010                 |

| Αριθμοδείκτης | V | Ετικέτα | Δεδομένα   |
|---------------|---|---------|------------|
| 000           | Υ | 10      | Mem[10000] |
| 001           | N |         |            |
| 010           | Y | 10      | Mem[10010] |
| 011           | Υ | 00      | Mem[00011] |
| 100           | N |         |            |
| 101           | N |         |            |
| 110           | Υ | 10      | Mem[10110] |
| 111           | N |         |            |

## Υποδιαίρεση της διεύθυνσης



## Αστοχίες κρυφής μνήμης

- Σε περίπτωση ευστοχίας, η CPU συνεχίζει κανονικά
- Σε περίπτωση αστοχίας
  - Καθυστερεί η διοχέτευση της CPU
  - Προσκομίζει το μπλοκ από το επόμενο επίπεδο της ιεραρχίας
  - Αστοχία κρυφής μνήμης εντολών
    - Επανεκκίνηση προσκόμισης εντολής
  - Αστοχία κρυφής μνήμης δεδομένων
    - Ολοκλήρωση προσπέλασης δεδομένων

# Ταυτόχρονη εγγραφή (write through):

- Σε ευστοχία εγγραφής δεδομένων, θα μπορούσε να γίνει μόνο ενημέρωση του μπλοκ στην κρυφή μνήμη
  - Αλλά τότε η κρυφή μνήμη και η μνήμη θα είναι ασυνεπείς
- Ταυτόχρονη εγγραφή: ενημέρωσε και τη κύρια μνήμη
- Αλλά έχει αποτέλεσμα οι εγγραφές να διαρκούν περισσότερο
  - π.χ., αν το βασικό CPI είναι ίσο με 1, το 10% των εντολών είναι αποθηκεύσεις, και η εγγραφή στη μνήμη διαρκεί 100 κύκλους
    - Πραγματικό CPI = 1 + 0.1×100 = 11
- Λύση: προσωρινή μνήμη εγγραφής (write buffer)
  - Κρατά δεδομένα που περιμένουν να γραφούν στη μνήμη
  - Η CPU συνεχίζει αμέσως
    - Καθυστερεί στην εγγραφή μόνο αν η προσωρινή μνήμη εγγραφής είναι ήδη γεμάτη

# Ταυτόχρονη εγγραφή



## Ετερόχρονη εγγραφή (Write back)

- Σε ευστοχία εγγραφής δεδομένων, ενημέρωσε **μόνο** το μπλοκ στην κρυφή μνήμη
  - Παρακολούθησε αν κάθε μπλοκ είναι «ακάθαρτο» (dirty)
- Όταν ένα «ακάθαρτο» μπλοκ αντικαθίσταται
  - Γράψε το πίσω στη μνήμη
  - Μπορεί να χρησιμοποιήσει μια προσωρινή μνήμη εγγραφής ώστε να αντικατασταθεί το μπλοκ που θα διαβαστεί πρώτο

## Κατανομή εγγραφών

- Write allocation
- Τι πρέπει να γίνει σε αστοχία εγγραφής;
- Εναλλακτικές για ταυτόχρονη εγγραφή
  - Κατανομή σε αστοχία (allocate on miss): προσκόμιση του μπλοκ
  - Εγγραφή από γύρω (write around): όχι προσκόμιση του μπλοκ
    - Αφού τα προγράμματα συχνά γράφουν ένα ολόκληρο μπλοκ πριν το διαβάσουν (π.χ., απόδοση αρχικών τιμών)
- Για την ετερόχρονη εγγραφή
  - Συνήθως γίνεται προσκόμιση του μπλοκ

## Παράδειγμα: Intrinsity FastMATH

- Ενσωματωμένος επεξεργαστής MIPS
  - Διοχέτευση 12 σταδίων
  - Προσπέλαση εντολής και δεδομένου σε κάθε κύκλο
- Διαιρεμένη (split) κρυφή μνήμη: ξεχωριστή I-cache και Dcache
  - Η κάθε μία των 16ΚΒ: 256 μπλοκ × 16 λέξεις ανά μπλοκ
  - D-cache: ταυτόχρονη ή ετερόχρονη εγγραφή
- Ρυθμοί αστοχίας SPEC2000
  - I-cache: 0.4%
  - D-cache: 11.4%
  - Σταθμισμένος μέσος όρος: 3.2%

## Παράδειγμα: Intrinsity FastMATH



## Κύρια μνήμη με κρυφές μνήμες

- Χρήση DRAM για κύρια μνήμη
  - Σταθερό πλάτος (π.χ., 1 λέξη)
  - Συνδέεται με δίαυλο σταθερού πλάτους που χρησιμοποιεί ρολόι
    - Το ρολόι του διαύλου είναι τυπικά πιο αργό από της CPU
- Παράδειγμα ανάγνωσης μπλοκ κρυφής μνήμης
  - 1 κύκλος διαύλου για μεταφορά της διεύθυνσης
  - 15 κύκλοι διαύλου ανά προσπέλαση DRAM
  - 1 κύκλος διαύλου ανά μεταφορά δεδομένων
- Για μπλοκ των 4 λέξεων, και DRAM πλάτους 1 λέξης
  - Ποινή αστοχίας = 1 + 4×15 + 4×1 = 65 κύκλοι διαύλου
  - Εύρος ζώνης (bandwidth) = 16 byte / 65 κύκλοι = 0.25 byte/κύκλο

## Αύξηση 'εύρους ζώνης' μνήμης



- Ποινή αστοχίας = 1 + 15 + 1 = 17 κύκλοι διαύλου
- Εύρος ζώνης = 16 byte / 17 κύκλοι = 0.94 Β/κύκλο
- «Πλεκτή» (interleaved) μνήμη με 4 σειρές (banks)
  - Ποινή αστοχίας = 1 + 15 + 4×1 = 20 κύκλοι διαύλου
  - Εύρος ζώνης = 16 byte / 20 κύκλοι = 0.8 Β/κύκλο

α. Οργάνωση μνήμης εύρους μίας λέξης

## Πλεκτή οργάνωση μνήμης



- ARM Cortex-A8 cache: 1-4 banks for L2
- Intel i7 cache:
  - 4 banks for L1
  - 8 banks for L2

#### Μέτρηση απόδοσης κρυφής μνήμης

- Συστατικά του χρόνου CPU
  - Κύκλοι εκτέλεσης προγράμματος
    - Περιλαμβάνει το χρόνο ευστοχίας κρυφής μνήμης
  - Κύκλοι καθυστέρησης (stall) μνήμης
    - Κυρίως από αστοχίες κρυφής μνήμης
- Με απλουστευτικές παραδοχές:

Memory stall cycles=

$$= \frac{\text{Memory accesses}}{\text{Program}} \times \text{Miss rate} \times \text{Miss penalty}$$

$$= \frac{Instructios}{Program} \times \frac{Misses}{Instruction} \times Miss penalty$$

## Μέσος χρόνος προσπέλασης

- ο χρόνος ευστοχίας είναι σημαντικός για την απόδοση
- Μέσος χρόνος προσπέλασης μνήμης (Average memory access time AMAT)
  - ΑΜΑΤ = Χρόνος ευστοχίας + Ρυθμός αστοχίας × Ποινή αστοχίας
- Παράδειγμα
  - CPU με ρολόι του 1 ns,
  - χρόνος ευστοχίας = 1 κύκλος,
  - ποινή αστοχίας = 20 κύκλοι, ρυθμός αστοχίας = 5%
  - $\blacksquare$  AMAT = 1 + 0.05 × 20 = 2ns
    - 2 κύκλοι ανά εντολή

#### Παράδειγμα απόδοσης κρυφής μνήμης

- Ρυθμός αστοχίας κρυφής μνήμης εντολών (I-cache) =
  2%
- Ρυθμός αστοχίας κρυφής μνήμης δεδομένων (D-cache)4%
- Ποινή αστοχίας = 100 κύκλοι
- Βασικό CPI (ιδανική κρυφή μνήμη) = 2
- οι εντολές load & store είναι το 36% των εντολών
- Κύκλοι αστοχίας ανά εντολή:
  - $\blacksquare$  I-cache: 0.02 × 100 = 2
  - **D**-cache:  $0.36 \times 0.04 \times 100 = 1.44$
- Πραγματικό CPI = 2 + 2 + 1.44 = 5.44
  - Η ιδανική CPU είναι 5.44/2 = 2.72 φορές ταχύτερη

## Συσχετιστικές κρυφές μνήμες

- Πλήρως συσχετιστική (fully associative)
  - Κάθε μπλοκ μπορεί να πάει σε οποιαδήποτε περιοχή της κρυφής μνήμης
  - Απαιτεί ταυτόχρονη αναζήτηση όλων των καταχωρίσεων
  - Συγκριτής σε κάθε καταχώριση (ακριβό)
- Συσχετιστική συνόλου n-δρόμων (n-way set associative)
  - Κάθε σύνολο περιέχει η καταχωρίσεις
  - ο αριθμός μπλοκ καθορίζει το σύνολο
    - (Αριθμός μπλοκ) modulo (#Συνόλων στη κρυφή μνήμη)
  - Ταυτόχρονη αναζήτηση όλων των καταχωρίσεων ενός δεδομένου συνόλου
  - η συγκριτές (λιγότερο ακριβό)

#### Παράδειγμα συσχετιστικής κρυφής μνήμης



## Φάσμα συσχετιστικότητας

#### Για μια κρυφή μνήμη με 8 καταχωρίσεις

#### Συσχετιστική συνόλου ενός δρόμου (άμεσης απεικόνισης)

| Μπλοκ Ε | τικέτα | Δεδοι | μένα    |         |        |       |        |         |
|---------|--------|-------|---------|---------|--------|-------|--------|---------|
| 0       |        |       | Συσχετι | TTIKŃ / | συνόλ  | ου δύ | ιο δοό | 111.337 |
| 1       |        |       |         | _       |        |       | -      | _       |
| 2       |        |       | Σύνολο  | Етік.   | Δεδομ. | Етік. | Δεδομ  | •<br>   |
| 3       |        |       | 0       |         |        |       |        |         |
| 4       |        |       | 1       |         |        |       |        |         |
| 5       |        |       | 2       |         |        |       |        |         |
|         |        |       | 3       |         |        |       |        |         |
| 6       |        |       |         |         |        |       |        |         |
| 7       |        |       |         |         |        |       |        |         |

#### Συσχετιστική συνόλου τεσσάρων δρόμων

| Σύνολο | Етік. | Δεδομ | . Етік. | Δεδομ | і. Етік. | Δεδομ. | Етік. | Δεδομ. |
|--------|-------|-------|---------|-------|----------|--------|-------|--------|
| 0      |       |       |         |       |          |        |       |        |
| 1      |       |       |         |       |          |        |       |        |

#### Συσχετιστική συνόλου οκτώ δρόμων (πλήρως συσχετιστική)

| Етік. | Δεδομ. | Етік. | Δεδομ. | Етік. | Δεδομ. | Етік. | Δεδομ | . Етік. | Δεδομ. | Етік. | Δεδομ | Етік. | Δεδομ. | Етік. | Δεδομ. |  |
|-------|--------|-------|--------|-------|--------|-------|-------|---------|--------|-------|-------|-------|--------|-------|--------|--|
|       |        |       |        |       |        |       |       |         |        |       |       |       |        |       |        |  |

### Παράδειγμα συσχετιστικότητας

- Σύγκριση κρυφών μνημών με 4 μπλοκ
  - Άμεσης απεικόνισης, συσχετιστική συνόλου 2 δρόμων, πλήρως συσχετιστική
  - Ακολουθία προσπελάσεων μπλοκ: 0, 8, 0, 6, 8

#### Άμεσης απεικόνισης

| Δ/νση<br>μπλοκ | Αριθμοδεί-<br>κτης κρυφής | Ευστοχία/<br>αστοχία | Περιεχόμενα κρυφής μνήμης μετά την προσπέλαση |   |        |   |  |  |  |
|----------------|---------------------------|----------------------|-----------------------------------------------|---|--------|---|--|--|--|
| μποκ           | μνήμης                    | αστοχία              | 0                                             | 1 | 2      | 3 |  |  |  |
| 0              | 0                         | miss                 | Mem[0]                                        |   |        |   |  |  |  |
| 8              | 0                         | miss                 | Mem[8]                                        |   |        |   |  |  |  |
| 0              | 0                         | miss                 | Mem[0]                                        |   |        |   |  |  |  |
| 6              | 2                         | miss                 | Mem[0]                                        |   | Mem[6] |   |  |  |  |
| 8              | 0                         | miss                 | Mem[8]                                        |   | Mem[6] |   |  |  |  |

## Παράδειγμα συσχετιστικότητας

#### Συσχετιστική συνόλου 2 δρόμων

| Δ/νση | Αριθμο-                     | Ευστοχία/ | Περιεχόμενα κρυφής μνήμης μετά την προσπέλαση |        |       |  |  |  |  |
|-------|-----------------------------|-----------|-----------------------------------------------|--------|-------|--|--|--|--|
| μπλοκ | δείκτης<br>κρυφής<br>μνήμης | αστοχία   | Se                                            | t 0    | Set 1 |  |  |  |  |
| 0     | 0                           | miss      | Mem[0]                                        |        |       |  |  |  |  |
| 8     | 0                           | miss      | Mem[0]                                        | Mem[8] |       |  |  |  |  |
| 0     | 0                           | hit       | Mem[0]                                        | Mem[8] |       |  |  |  |  |
| 6     | 0                           | miss      | Mem[0]                                        | Mem[6] |       |  |  |  |  |
| 8     | 0                           | miss      | Mem[8]                                        | Mem[6] |       |  |  |  |  |

#### Πλήρως συσχετιστική

| Δ/νση<br>μπλοκ | Ευστοχία/<br>αστοχία | Περιεχόμενα κρυφής μνήμης μετά την προσπέλαση |        |        |  |  |  |  |  |
|----------------|----------------------|-----------------------------------------------|--------|--------|--|--|--|--|--|
| 0              | miss                 | Mem[0]                                        |        |        |  |  |  |  |  |
| 8              | miss                 | Mem[0]                                        | Mem[8] |        |  |  |  |  |  |
| 0              | hit                  | Mem[0]                                        | Mem[8] |        |  |  |  |  |  |
| 6              | miss                 | Mem[0]                                        | Mem[8] | Mem[6] |  |  |  |  |  |
| 8              | hit                  | Mem[0]                                        | Mem[8] | Mem[6] |  |  |  |  |  |

#### Πόση συσχετιστικότητα;

- Αυξημένη συσχετιστικότητα μειώνει το ρυθμό αστοχίας
  - Αλλά με μειούμενα οφέλη όσο αυξάνεται
- Προσομοίωση συστήματος με κρυφή μνήμη δεδομένων (D-cache) 64ΚΒ, μπλοκ των 16 λέξεων, μετροπρ/τα SPEC2000
  - 1 δρόμου: 10.3%
  - 2 δρόμων: 8.6%
  - 4 δρόμων: 8.3%
  - 8 δρόμων: 8.1%

#### Οργάνωση κρυφής μνήμης - συσχετιστικής συνόλου 4-δρόμων



#### Πολιτική αντικατάστασης

- **Αμεση απεικόνιση:** καμία επιλογή
- Συσχετιστική συνόλου:
  - Προτίμησε τη μη έγκυρη καταχώριση, **αν** υπάρχει.
  - Αλλιώς, διάλεξε ανάμεσα στις καταχωρίσεις του συνόλου
- Λιγότερο πρόσφατα χρησιμοποιημένη (Least-recently used LRU)
  - Διάλεξε αυτή που δεν χρησιμοποιήθηκε για το μεγαλύτερο διάστημα
    - Απλή για 2δρόμων, διαχειρίσιμη για 4δρόμων, υπερβολικά δύσκολη από εκεί και πέρα
- Tuxaía
  - Δίνει περίπου την ίδια απόδοση με την LRU για μεγάλη συσχετιστικότητα

# Πολυεπίπεδες κρυφές μνήμες

- **Κύρια κρυφή μνήμη** (L-1) συνδέεται με τη CPU
  - Μικρή, αλλά γρήγορη
- Η κρυφή μνήμη δευτέρου επιπέδου (L-2 cache) εξυπηρετεί αστοχίες της κύριας κρυφής μνήμης
  - Μεγαλύτερη, πιο αργή, αλλά και πάλι ταχύτερη από τη κύρια μνήμη
- Η κύρια μνήμη εξυπηρετεί αστοχίες της κρυφής μνήμης L-2
- Μερικά συστήματα υψηλών επιδόσεων περιλαμβάνουν και κρυφή μνήμη L-3

#### Παράδειγμα πολυεπίπεδης κρυφής μνήμης

- Δίνονται
  - Βασικό CPU CPI = 1, ρυθμός ρολογιού = 4GHz (Άρα: Κύκλος = 0.25ns)
  - Ρυθμός αστοχίας = 2%
  - Χρόνος προσπέλασης κύριας μνήμης = 100ns
- Μόνο με μία κύρια κρυφή μνήμη (L-1)
  - Ποινή αστοχίας = 100ns/0.25ns = 400 κύκλοι
  - Πραγματικό CPI =  $1 + 0.02 \times 400 = 9$

#### Παράδειγμα (συνεχ.)

- Τώρα προσθέτουμε και κρυφή μνήμη L-2
  - Χρόνος προσπέλασης = 5ns
  - Καθολικός ρυθμός αστοχίας προς κύρια μνήμη = 0,5%
- Αστοχία στην L-1 και ευστοχία στην L-2
  - Ποινή = 5ns/0.25ns = 20 κύκλοι
- Αστοχία και στην L-1 και στην L-2
  - Επιπλέον ποινή = 400 κύκλοι
- $\blacksquare$  CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3,4
- Λόγος απόδοσης = 9/3,4 = 2,6

#### Ζητήματα πολυεπίπεδων κρυφών μνημών

- Κύρια κρυφή μνήμη L-1
  - Εστιάζει στον ελάχιστο χρόνο ευστοχίας
- Κρυφή μνήμη L-2
  - Εστιάζει στο χαμηλό ρυθμό αστοχίας για να αποφύγει τις προσπελάσεις της κύριας μνήμης
  - ο χρόνος ευστοχίας έχει μικρότερη συνολική επίδραση
- Αποτελέσματα
  - Η κρυφή μνήμη L-1 είναι συνήθως μικρότερη από την περίπτωση μίας μοναδικής κρυφής μνήμης
  - Το μέγεθος μπλοκ της L-1 είναι μικρότερο από το μέγεθος μπλοκ της L-2

| Διεύθυνση (10) | Διεύθυνση (2)        | Επιτυχία/<br>Αποτυχία | # Μπλόκ Κρυφής Μνήμης              |
|----------------|----------------------|-----------------------|------------------------------------|
| 22             | 10110 <sub>two</sub> | miss                  | $(10110_{two} \mod 8) = 110_{two}$ |
| 26             | 11010 <sub>two</sub> | miss                  | $(11010_{two} \mod 8) = 010_{two}$ |
| 22             | 10110 <sub>two</sub> | hit                   | $(10110_{two} \mod 8) = 110_{two}$ |
| 26             | 11010 <sub>two</sub> | hit                   | $(11010_{two} \mod 8) = 010_{two}$ |
| 16             | 10000 <sub>two</sub> | miss                  | $(10000_{two} \mod 8) = 000_{two}$ |
| 3              | 00011 <sub>two</sub> | miss                  | $(00011_{two} \mod 8) = 011_{two}$ |
| 16             | 10000 <sub>two</sub> | hit                   | $(10000_{two} \mod 8) = 000_{two}$ |
| 18             | 10010 <sub>two</sub> | miss                  | $(10010_{two} \mod 8) = 010_{two}$ |
| 16             | 10000 <sub>two</sub> | hit                   | $(10000_{two} \mod 8) = 000_{two}$ |

| Index | V | Tag | Data |
|-------|---|-----|------|
| 000   | N |     |      |
| 001   | N |     |      |
| 010   | N |     |      |
| 011   | N |     |      |
| 100   | N |     |      |
| 101   | N |     |      |
| 110   | N |     |      |
| 111   | N |     |      |

| Index | V | Tag               | Data                           |
|-------|---|-------------------|--------------------------------|
| 000   | N |                   |                                |
| 001   | N |                   |                                |
| 010   | N |                   |                                |
| 011   | N |                   |                                |
| 100   | N |                   |                                |
| 101   | N |                   |                                |
| 110   | Υ | 10 <sub>two</sub> | Memory (10110 <sub>two</sub> ) |
| 111   | N |                   |                                |

| Index | V | Tag               | Data                           |
|-------|---|-------------------|--------------------------------|
| 000   | N |                   |                                |
| 001   | N |                   |                                |
| 010   | Υ | 11 <sub>two</sub> | Memory (11010 <sub>two</sub> ) |
| 011   | N |                   |                                |
| 100   | N |                   |                                |
| 101   | N |                   |                                |
| 110   | Υ | 10 <sub>two</sub> | Memory (10110 <sub>two</sub> ) |
| 111   | N |                   |                                |

| Index | V | Tag               | Data                           |
|-------|---|-------------------|--------------------------------|
| 000   | Υ | 10 <sub>two</sub> | Memory (10000 <sub>two</sub> ) |
| 001   | N |                   |                                |
| 010   | Υ | 11 <sub>two</sub> | Memory (11010 <sub>two</sub> ) |
| 011   | N |                   |                                |
| 100   | N |                   |                                |
| 101   | N |                   |                                |
| 110   | Υ | 10 <sub>two</sub> | Memory (10110 <sub>two</sub> ) |
| 111   | N |                   |                                |

| Index | V | Tag               | Data                           |
|-------|---|-------------------|--------------------------------|
| 000   | Υ | 10 <sub>two</sub> | Memory (10000 <sub>two</sub> ) |
| 001   | N |                   |                                |
| 010   | Υ | 11 <sub>two</sub> | Memory (11010 <sub>two</sub> ) |
| 011   | Υ | 00 <sub>two</sub> | Memory (00011 <sub>two</sub> ) |
| 100   | N |                   |                                |
| 101   | N |                   |                                |
| 110   | Υ | 10 <sub>two</sub> | Memory (10110 <sub>two</sub> ) |
| 111   | N |                   |                                |

| Index | V | Tag               | Data                           |
|-------|---|-------------------|--------------------------------|
| 000   | Y | 10 <sub>two</sub> | Memory (10000 <sub>two</sub> ) |
| 001   | Ν |                   |                                |
| 010   | Υ | 10 <sub>two</sub> | Memory (10010 <sub>two</sub> ) |
| 011   | Υ | 00 <sub>two</sub> | Memory (00011 <sub>two</sub> ) |
| 100   | N |                   |                                |
| 101   | N |                   |                                |
| 110   | Υ | 10 <sub>two</sub> | Memory (10110 <sub>two</sub> ) |
| 111   | N |                   |                                |

# Σήματα διασύνδεσης



#### Κρυφή μνήμη 3 επιπέδων - i7-2620M CPU



Συσχετιστική οργάνωση συνόλου 8-δρόμων Μέγεθος γραμμής: 64 byte

# Καταστάσεις Κρυφής Μνήμης



Ετερόχρονη εγγραφή

# Εικονική μνήμη (virtual memory)

- Σρήση της κύριας μνήμης ως «κρυφής μνήμης» για τη δευτερεύουσα αποθήκευση (το δίσκο)
  - Διαχείριση από το υλικό της CPU και από το Λειτουργικό Σύστημα (ΛΣ)
- Τα προγράμματα μοιράζονται την κύρια μνήμη
  - Καθένα παίρνει έναν ιδιωτικό χώρο εικονικών διευθύνσεων που κρατάει τον κώδικα και τα δεδομένα του που χρησιμοποιούνται συχνά
  - Προστασία από άλλα προγράμματα
- Η CPU και το ΛΣ μεταφράζουν τις εικονικές δ/νσεις σε φυσικές δ/νσεις
  - Το «μπλοκ» εικονικής μνήμης λέγεται σελίδα (page)
  - Η «αστοχία» μιας μετάφρασης εικονικής μνήμης ονομάζεται σφάλμα σελίδας (page fault)

#### Μετάφραση διευθύνσεων

Σελίδες σταθερού μεγέθους (π.χ., 4Κ)



Φυσική διεύθυνση

### Ποινή σφάλματος σελίδας

- Σε περίπτωση σφάλματος, η σελίδα πρέπει να προσκομιστεί από το δίσκο
  - Διαρκεί εκατομμύρια κύκλους ρολογιού
  - Διαχείριση από τον κώδικα του ΛΣ
- Προσπάθεια ελαχιστοποίησης του ρυθμού σφαλμάτων σελίδας
  - Πλήρως συσχετιστική τοποθέτηση
  - «Έξυπνοι» αλγόριθμοι αντικατάστασης

#### Πίνακες σελίδων (page tables)

- Αποθηκεύουν πληροφορίες τοποθέτησης
  - Πίνακας από καταχωρίσεις πίνακα σελίδων, δεικτοδοτείται από τον αριθμό εικονικής σελίδας
  - Καταχωρητής πίνακα σελίδων στη CPU δείχνει στον πίνακα σελίδων στη φυσική μνήμη
- Αν η σελίδα βρίσκεται στη μνήμη
  - Η καταχώριση του πίνακα σελίδων αποθηκεύει τον αριθμό φυσικής σελίδας
  - Και επιπλέον άλλα bit κατάστασης (αναφοράς, «ακάθαρτο», ...)
- Αν η σελίδα δεν βρίσκεται στη μνήμη
  - Η καταχώριση του πίνακα σελίδων μπορεί να αναφέρεται σε μια Θέση στο δίσκο (swap space)

#### Μετάφραση με πίνακα σελίδων



#### Απεικόνιση σελίδων στην αποθήκευση



### Αντικατάσταση και εγγραφές

- Για τη μείωση του ρυθμού σφαλμάτων σελίδας, προτιμάται η αντικατάσταση της λιγότερο πρόσφατα χρησιμοποιημένης σελίδας (least-recently used LRU)
  - Το bit αναφοράς (reference bit λέγεται και bit χρήσης, use bit) στην καταχώριση του πίνακα σελίδων γίνεται 1 στην προσπέλαση της σελίδας
  - Κατά περιόδους μηδενίζεται από το ΛΣ
  - Μια σελίδα με bit αναφοράς = 0, δεν έχει χρησιμοποιηθεί πρόσφατα
- Οι εγγραφές στον δίσκο διαρκούν εκατομμύρια κύκλους
  - Ένα πλήρες μπλοκ, όχι μεμονωμένες θέσεις
  - Η ταυτόχρονη εγγραφή (write through) δεν έχει νόημα
  - Χρήση μόνο ετερόχρονης εγγραφής (write-back)
  - Το «ακάθαρτο» bit στην καταχώριση του πίνακα σελίδας γίνεται 1 όταν γίνεται λειτουργία εγγραφής στη σελίδα

# Γρήγορη μετάφραση με TLB

- Η μετάφραση δ/νσεων απαιτεί επιπλέον αναφορές στη μνήμη
  - Μία για τη προσπέλαση της καταχώρισης του πίνακα σελίδων
  - Έπειτα, για την πραγματική προσπέλαση μνήμης
- Αλλά η προσπέλαση των πινάκων σελίδων έχει ισχυρή «τοπικότητα»
  - Συνεπώς, χρήση μιας γρήγορης κρυφής μνήμης για καταχωρίσεις πίνακα σελίδων μέσα στη CPU
  - Λέγεται κρυφή μνήμη αναζήτησης μετάφρασης (Translation Lookaside Buffer - TLB)
  - Τυπικά: 16-512 καταχωρίσεις πίνακα σελίδων, 0.5-1 κύκλοι για ευστοχία, 10-100 κύκλοι για αστοχία, 0.01%-1% ρυθμός αστοχίας
  - Τις αστοχίες χειρίζεται το υλικό ή/και το λογισμικό συστήματος

# Γρήγορη μετάφραση με TLB



### Αστοχίες TLB

- Αν η σελίδα είναι στην μνήμη
  - Φόρτωσε την καταχώριση πίνακα σελίδων από τη μνήμη και ξαναπροσπάθησε
  - Μπορεί να γίνει διαχείριση στο υλικό
    - Μπορεί να γίνει πολύπλοκη σε σύνθετες δομές πινάκων σελίδων
  - Ή σε λογισμικό
    - Ειδική εξαίρεση (exception), με βελτιστοποιημένο χειριστή (handler)
- Αν η σελίδα δεν βρίσκεται στην μνήμη (σφάλμα σελίδας)
  - Το ΛΣ χειρίζεται τη προσκόμιση της σελίδας από το δίσκο, και την ενημέρωση του πίνακα σελίδων
  - Έπειτα, η CPU επανεκκινεί την εντολή που προκάλεσε το σφάλμα

### Χειριστής αστοχίας TLB

- Η αστοχία TLB σημαίνει:
  - Σελίδα παρούσα στη μνήμη, αλλά η καταχώριση πίνακα σελίδων δεν βρίσκεται στον TLB, ή
  - Σελίδα απούσα από την μνήμη
- Πρέπει να αναγνωριστεί η αστοχία TLB πριν γραφτεί νέα τιμή στον καταχωρητή προορισμού
  - Δημιουργία εξαίρεσης
- Ο χειριστής αντιγράφει την καταχώριση πίνακα σελίδων από τη μνήμη στον TLB
  - Έπειτα, επανεκκινεί την εντολή
- Αν η σελίδα είναι απούσα, θα συμβεί σφάλμα σελίδας

# Χειριστής σφάλματος σελίδας

- Χρήση της εικονικής δ/νσης που προκαλεί το σφάλμα για εύρεση της καταχώρισης πίνακα σελίδων
- Εντοπισμός της σελίδας στο δίσκο
- Επιλογή σελίδας για αντικατάσταση
  - Αν είναι «ακάθαρτη», πρώτα γράφεται στο δίσκο
- Ανάγνωση και μεταφορά τής σελίδας στη μνήμη, και ενημέρωση πίνακα σελίδων
- Η διαδικασία γίνεται πάλι εκτελέσιμη
  - Επανεκκίνηση από την εντολή που προκάλεσε το σφάλμα

#### Αλληλεπίδραση TLB και κρυφής μνήμης



# Προστασία μνήμης

- Διεργασίες μπορεί να μοιράζονται μέρη του εικονικού χώρου δ/νσεών τους
  - Αλλά απαιτείται προστασία από εσφαλμένη προσπέλαση
  - Χρειάζεται βοήθεια από το ΛΣ
- Υποστήριξη υλικού για προστασία του ΛΣ
  - Προνομιούχος κατάσταση επόπτη (supervisor mode), λέγεται και κατάσταση λειτουργίας πυρήνα (kernel mode)
  - Προνομιούχες εντολές
  - οι πίνακες σελίδων και άλλες πληροφορίες κατάστασης είναι προσπελάσιμες μόνο σε κατάσταση λειτουργίας επόπτη
  - Κλήση συστήματος (system call exception,  $\pi.\chi.$ , syscall στο MIPS)

# Η ιεραρχία μνήμης

- Κοινές αρχές ισχύουν σε όλα τα επίπεδα της ιεραρχίας μνήμης
  - Με βάση τις έννοιες των κρυφών μνημών
- Σε κάθε επίπεδο της ιεραρχίας
  - Τοποθέτηση μπλοκ
  - Εύρεση μπλοκ
  - Αντικατάσταση σε περίπτωση αστοχίας
  - Πολιτική εγγραφής

### Τοποθέτηση μπλοκ

- Καθορίζεται από τη συσχετιστικότητα
  - Αμεσης απεικόνισης (συσχετιστική 1 δρόμου)
    - Μία επιλογή για τοποθέτηση
  - Συσχετιστική συνόλου η δρόμων
    - η επιλογές μέσα σε ένα σύνολο
  - Πλήρως συσχετιστική
    - οποιαδήποτε θέση
- Μεγαλύτερη συσχετιστικότητα μειώνει το ρυθμό αστοχίας
  - Αυξάνει την πολυπλοκότητα, το κόστος, και το χρόνο προσπέλασης

#### LRU vs Random

#### Ρυθμός αστοχίας για Συσχετιστική Συνόλου 2-δρόμων

| Size   | Random | LRU   |
|--------|--------|-------|
| 16 KB  | 5.7%   | 5.2%  |
| 64 KB  | 2.0%   | 1.9%  |
| 256 KB | 1.17%  | 1.15% |

#### Αντικατάσταση

- Επιλογή καταχώρισης για αντικατάσταση σε περίπτωση αστοχίας
  - Λιγότερο πρόσφατα χρησιμοποιημένη (Least recently used LRU)
    - Πολύπλοκο και ακριβό υλικό για υψηλή συσχετιστικότητα
  - Tuxaía
    - Παρόμοια απόδοση με την LRU, ευκολότερη στην υλοποίηση
- Εικονική μνήμη
  - Προσέγγιση της LRU με υποστήριξη υλικού

# Πολιτική εγγραφής

- Ταυτόχρονη εγγραφή (write-through)
  - Ενημέρωση και του υψηλότερου και του χαμηλότερου επιπέδου
  - Απλοποιεί την αντικατάσταση, αλλά μπορεί να χρειαστεί προσωρινή μνήμη εγγραφής (write buffer)
- Ετερόχρονη εγγραφή (write-back)
  - Ενημέρωση μόνο του υψηλότερου επιπέδου
  - Ενημέρωση του χαμηλότερου όταν το μπλοκ αντικαθίσταται
  - Απαιτεί αποθήκευση περισσότερης κατάστασης
- Στην εικονική μνήμη
  - Μόνο η ετερόχρονη εγγραφή είναι εφικτή, με δεδομένο το μεγάλο λανθάνοντα χρόνο του δίσκου

# Προέλευση των αστοχιών

- Υποχρεωτικές αστοχίες (compulsory misses), λέγονται και ψυχρής εκκίνησης (cold start misses)
  - Πρώτη προσπέλαση σε ένα μπλοκ
- Αστοχίες χωρητικότητας (capacity misses)
  - Λόγω περιορισμένου μεγέθους της κρυφής μνήμης
  - Ένα μπλοκ που αντικαταστάθηκε προσπελάζεται αργότερα και πάλι
- Αστοχίες διένεξης (conflict misses), λέγονται και αστοχίες σύγκρουσης (collision misses)
  - Σε μία όχι πλήρως συσχετιστική κρυφή μνήμη
  - Λόγω ανταγωνισμού για τις καταχωρίσεις ενός συνόλου
  - Δεν θα συνέβαιναν σε μια πλήρως συσχετιστική κρυφή μνήμη με το ίδιο συνολικό μέγεθος

#### Συμβιβασμοί σχεδίασης κρυφής μνήμης

| Σχεδιαστική αλλαγή    | Επίδραση στο ρυθμό<br>αστοχίας      | Αρνητική επίπτωση<br>στην απόδοση |
|-----------------------|-------------------------------------|-----------------------------------|
| Αύξηση μεγέθους       | Μείωση των αστοχιών                 | Μπορεί να αυξήσει το              |
| κρυφής μνήμης         | χωρητικότητας                       | χρόνο προσπέλασης                 |
| Αύξηση                | Μείωση των αστοχιών                 | Μπορεί να αυξήσει το              |
| συσχετιστικότητας     | διένεξης                            | χρόνο προσπέλασης                 |
| Αύξηση μεγέθους μπλοκ | Μείωση των<br>υποχρεωτικών αστοχιών | Αυξάνει την ποινή<br>αστοχίας.    |

# Έλεγχος κρυφής μνήμης (παράδειγμα)

- Άμεση απεικόνιση, ετερόχρονη εγγραφή (write-back), κατανομή σε εγγραφή (write allocate)
  - Μέγεθος μπλοκ: 4 λέξεις (16 byte)
  - Μέγεθος κρυφής μνήμης: 1024 μπλοκ (16 KB)
  - Διευθύνσεις byte των 32 bit
  - Έγκυρο (valid) bit και «ακάθαρτο» (dirty) bit ανά μπλοκ
  - Ανασταλτική (blocking) κρυφή μνήμη
    - Η CPU περιμένει να ολοκληρωθεί η προσπέλαση



#### Πρόβλημα συνοχής κρυφής μνήμης

- Cache Coherence
- Έστω ότι δύο πυρήνες CPU μοιράζονται έναν φυσικό χώρο διευθύνσεων
  - Κρυφές μνήμες ταυτόχρονης εγγραφής (write-through)

| Χρονικό<br>βήμα | Συμβάν                 | Κρυφή<br>μνήμη της<br>CPU A | Κρυφή<br>μνήμη της<br>CPU B | Μνήμη |
|-----------------|------------------------|-----------------------------|-----------------------------|-------|
| 0               |                        |                             |                             | 0     |
| 1               | Η CPU Α διαβάζει το Χ  | 0                           |                             | 0     |
| 2               | Η CPU Β διαβάζει το Χ  | 0                           | 0                           | 0     |
| 3               | Η CPU Α γράφει 1 στο Χ | 1                           | 0                           | 1     |

# Ορισμός συνοχής

- Άτυπα: οι αναγνώσεις πρέπει να επιστρέφουν την πιο πρόσφατα γραμμένη τιμή
- Τυπικά:
  - ο Ρ γράφει Χ, ο Ρ διαβάζει Χ (χωρίς ενδιάμεσες εγγραφές)
    - ⇒ η ανάγνωση επιστρέφει την τιμή που γράφηκε
  - ο P<sub>1</sub> γράφει X, ο P<sub>2</sub> διαβάζει X (αρκετά αργότερα)
    - ⇒ η ανάγνωση επιστρέφει την τιμή που γράφηκε
  - ο P<sub>1</sub> γράφει X, ο P<sub>2</sub> γράφει X
    - ⇒ όλοι οι επεξεργαστές βλέπουν τις εγγραφές με την ίδια σειρά
      - Καταλήγουν με την ίδια τελική τιμή για το Χ

#### Πρωτόκολλα συνοχής κρυφής μνήμης

- Λειτουργίες που εγγυώνται τη συνοχή
  - Μετανάστευση (migration) δεδομένων σε τοπικές κρυφές μνήμες
    - Μειώνει το εύρος ζώνης για την κοινόχρηστη μνήμη
  - Αναπαραγωγή κοινόχρηστων δεδομένων μόνο για ανάγνωση
    - Μειώνει τη διαμάχη για προσπέλαση
- Πρωτόκολλα κατασκοπίας (snooping)
  - Κάθε κρυφή μνήμη παρακολουθεί τις αναγνώσεις/εγγραφές στο δίαυλο
- Πρωτόκολλα βασισμένα σε κατάλογο
  - οι κρυφές μνήμες και η μνήμη καταγράφουν την κατάσταση των μπλοκ σε έναν κατάλογο (directory)

#### Ενέργειες Μετάφρασης Διευθύνσεων



#### TLB, Εικονική/κρυφή μνήμη, συνδυασμοί

| TLB  | Πίκακας<br>σελίδων | Κρυφή<br>μνήμη |         |
|------|--------------------|----------------|---------|
| hit  | hit                | miss           | Πιθανό  |
| miss | hit                | hit            | Πιθανό  |
| miss | hit                | miss           | Πιθανό  |
| miss | miss               | miss           | Πιθανό  |
| hit  | miss               | miss           | Αδύνατο |
| hit  | miss               | hit            | Αδύνατο |
| miss | miss               | hit            | Αδύνατο |

#### Συμπερασματικές παρατηρήσεις

- Οι γρήγορες μνήμες είναι μικρές, οι μεγάλες μνήμες είναι αργές
  - Θέλουμε γρήγορες, μεγάλες μνήμες 🕾
  - Η χρήση κρυφής μνήμης δίνει αυτήν την ψευδαίσθηση Θ
- Αρχή της τοπικότητας
  - Τα προγράμματα χρησιμοποιούν συχνότερα ένα μικρό μέρος του χώρου μνήμης
- Ιεραρχία μνήμης
  - $\blacksquare$  κρυφή μνήμη L1  $\leftrightarrow$  κρυφή μνήμη L2  $\leftrightarrow$  ...  $\leftrightarrow$  μνήμη DRAM  $\leftrightarrow$  δίσκος
- Η σχεδίαση του συστήματος μνήμης είναι κρίσιμη για τους πολυεπεξεργαστές