Problem 3.11

Show that if the message signal m(t) is low-pass, then the Hilbert transform $\hat{m}(t)$ is also low-pass with the same bandwidth as m(t).

Solution

The Fourier transform of the Hilbert transform $\hat{m}(t)$ is defined by

$$\hat{M}(f) = -j\operatorname{sgn}(f)M(f)$$

where $M(f) = \mathbf{F}[m(t)]$. To illustrate, let the spectrum M(f) be as shown in Fig. 1(a). Then, the corresponding spectrum $\hat{M}(f)$ is as shown in part (b) of the figure. The spectrum $\hat{M}(f)$ is therefore also low-pass, occupying the frequency band $-W \le f \le W$ just like M(f).

Figure 1