

Anuncios

- Evaluación final
 - Examen teórico
 - Preguntas opción múltiple
 - < 1hr
 - Examen práctico
 - Resolución de problemas
 - 24 hr
 - Sesión de resolución de dudas

Discusión tarea

- Ecuaciones diferenciales en la vida real
- Ejercicios de diferenciación
 - Que eligieron
- Detección de esquinas de Harris

Integrales de superficie

¿Qué es una integral?

- Integral de Riemann
 - f(x) una función
 - Intervalo [a, b]
 - Serie de intervalos Δx_k que parten a [a,b]
 - Cada x_k^* pertenece Δx_k $\int_a^b f(x) dx = \lim_{\Delta x_k \to 0} \sum_{k=1}^n f(x_k^*) \Delta x_k$

. Integral numérica

- No podemos $\lim_{\Delta x_k \to 0}$
- Nos aproximamos a Δx_k muy pequeño
 - •¿Qué tan pequeño?
- Como seleccionamos x_k^*
 - Borde izquierdo
 - Borde derecho
 - Centro
 - Aleatorio

Métodos de integración

- Integración simple
- Punto medio
- Trapecio
- Simpson
- Cuadratura de gauss
- Monte Carlo

Integración Simple

• Serie de puntos $a = x_0 \dots x_n = b$ $\int_a^b f(x) dx \approx \sum_{k=1}^n f(x_{k-1}) * (x_k - x_{k-1})$

- Simple de implementar
- Simple de calcular
- Poco precisa

Punto medio

• Serie de puntos $a = x_0 \dots x_n = b$ $\int_a^b f(x) dx \approx \sum_{k=1}^n f\left(\frac{x_{k-1} + x_k}{2}\right) * (x_k - x_{k-1})$

- Menos simple de implementar
- Menos simple de calcular
- Un poco más precisa

Trapezoide

• Serie de puntos $a = x_0 ... x_n = b$ $\int_a^b f(x) dx \approx \sum_{k=1}^n \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) * (x_k - x_{k-1})$

- Simple de implementar
- Menos simple de calcular
- ¿más precisa?
 - lectura

Monte Carlo

- Evalúa la ecuación en puntos aleatorios
- No es determinística
- Pasos
 - Se generan puntos aleatorios en el dominio
 - Se evalúa la función en estos puntos
 - Aproxima la integral

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{1}{n}\sum_{k=1}^{n} f(x_{k})$$

Simpson

- Interpola los puntos
 - Interpolación cuadrática
- Integra la interpolación
- Regla 1/3 de Simpson

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Cuadratura de Gauss

 Utiliza puntos y pesos óptimos para minimizar el error

$$\int_{-1}^{1} f(x) \approx \sum_{k=1}^{n} w_i f(x_i)$$

• Se transforma el intervalo [a,b] a [-1,1]

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{b-a}{2}z + \frac{b+a}{2}\right) \frac{b-a}{2}dz$$

Cuadratura gauss

- Se elige la formula
 - Se eligen los pesos
- Se calcula la suma

$\sum_{k=1}^{n}$	$w_i f$	(x_i)
k=1		

	# Puntos	Puntos	Pesos
5	1	0	2
	2	$\pm \frac{1}{\sqrt{3}}$	1
	2	0	<u>8</u>
	3	$\pm \frac{3}{\sqrt{5}}$	<u>5</u> 9
	4	$\pm \sqrt{\frac{3}{7} - \frac{3}{7}} \sqrt{\frac{6}{5}}$	$\frac{18 + \sqrt{30}}{36}$
	4	$\pm \sqrt{\frac{3}{7} + \frac{3}{7}} \sqrt{\frac{6}{5}}$	$\frac{18 - \sqrt{30}}{36}$

. Múltiples dimensiones

- $f(x) \rightarrow f(x,y)$
- [a,b] → [ax,bx] y [ay,by]
- $ax = x_0 ... x_n = bx$ y $ay = y_0 ... y_n = by$
- Integración simple

Múltiples dimensiones

Punto medio

Trapezoide

$$\begin{array}{l} \bullet \sum_{k=1}^{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) * (x_k - x_{k-1}) \rightarrow \\ \sum_{k=1}^{n} \left(\frac{f(x_{k-1}, y_{k-1}) + f(x_k, y_{k-1}) + f(x_{k-1}, y_k) + f(x_k, y_k)}{4} \right) * \\ (x_k - x_{k-1})(y_k - y_{k-1}) \end{array}$$

Múltiples dimensiones

Monte carlo

•
$$(b-a)\frac{1}{N}\sum_{k=1}^{n} f(x_k) \to (bx-ax)(by-ay)\frac{1}{n}\sum_{k=1}^{n} f(x_k, y_k)$$

- Cuadratura de Gauss
 - No es tan sencillo

https://numfactory.upc.edu/web/Calculo2/P2_Integracio/html/Integral2DQuad.html

Tarea

• Encuentra el valor de π Integra la función

$$f(x,y) = \begin{cases} 1 \sin x^2 + y^2 < 0 \\ 0 \sin x^2 + y^2 > 0 \end{cases}$$

• ¿Qué es mejor? ¿Punto medio o trapecio?