## 2º EE – ES238 – Eletrônica 1

 $f{1}$ ) (a) (3 pontos) Demonstre que o módulo do ganho no circuito-filtro abaixo é dado por

$$\left|G_{filtro}\right| = \left|\frac{v_o}{v_{in}}\right| = \frac{2\pi R_2 C_2 f_{in}}{\sqrt{\left[1 - \left(\frac{f_{in}}{f_o}\right)^2\right]^2 + \left(\frac{f_{in}}{Qf_o}\right)^2}}$$

onde  $f_o = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$  é a frequência de ressonância do filtro,  $Q = \sqrt{\frac{R_2}{R_1}} \left(\frac{\sqrt{C_1C_2}}{C_1+C_2}\right)$  é o fator de qualidade do filtro,  $f_{in}$  é a frequência de entrada,  $v_{in}$  é a tensão de entrada, e  $v_o$  é a tensão de saída do circuito.



- (b) (2,5 pontos) Com  $R_1=R_2=1k\Omega$  e  $C_1=C_2=159nF$ , determine Q e  $f_o$ , em seguida, usando o LTSpice, empregado o amp-op OP27, plote o gráfico de  $|G_{filtro}|$  em decibel (dB) em função da frequência de entrada ( $f_{in}$  em escala log na faixa 10Hz a 100kHz), <u>verificando e indicando</u> qual a velocidade de atenuação (em dB) com a frequência na banda de corte. OBS: Apresente também seu diagrama (circuito) esquemático contendo todas as informações empregadas na simulação.
- **2)** (2 pontos) Dado o circuito abaixo com tecnologia MOS determine qual a função lógica da saída Y, em termos das entradas A, B, C e D. <u>Atenção:</u> explique sua resposta descrevendo o que acontece com cada transistor (corte ou saturação) e os níveis de tensão envolvidos para chegar a sua conclusão empregando tabela verdade.



OBS: Procure ser claro nas suas respostas. Use letra legível, bom português e seja organizado. Boa Sorte!!!

**3)** (a) (1,5 ponto) Resolva o circuito conversor abaixo calculando a saída  $V_0$  em função das entradas binárias  $b_0$ ,  $b_1$ ,  $b_2$  e  $b_3$  expressando seu resultado numa única fórmula matemática, ou seja, determine  $V_0 = f(b_0, b_1, b_2, b_3)$  Volts, onde f(.) é uma função das entradas  $b_0$ ,  $b_1$ ,  $b_2$  e  $b_3$ , em que  $b_i = 0$  é a entrada ligada ao terra e  $b_i = 1$  é a entrada ligada a +5V.



(b) (1,0 ponto) Em seguida, estabeleça todos os valores da tabela abaixo de V<sub>0</sub> (em Volts) em função de todos os possíveis valores da <u>palavra binária</u> b<sub>3</sub>b<sub>2</sub>b<sub>1</sub>b<sub>0</sub> e determine qual é o fundo da escala.

| $\mathbf{b_3b_2b_1b_0}$ | Vo (Volts) |
|-------------------------|------------|
| 0000                    | ?          |
| 0001                    | ?          |
| 0010                    | ?          |
| 0011                    | ?          |
| 0100                    | ?          |
| 0101                    | ?          |
| 0110                    | ?          |
| 0111                    | ?          |
| 1000                    | ?          |
| 1001                    | ?          |
| 1010                    | ?          |
| 1011                    | ?          |
| 1100                    | ?          |
| 1101                    | ?          |
| 1110                    | ?          |
| 1111                    | ?          |