Lagrangian density	$\frac{2}{3}t_2\;\omega_{_{K}\lambda}^{_{K}\lambda}\;\omega_{_{K}\lambda}^{_{\lambda}'}+\frac{1}{3}t_2\;\omega_{_{K}\lambda}^{_{\lambda}'}\;\omega_{^{K}\lambda}^{_{\lambda}'}+f^{\alpha\beta}\;\tau_{_{\alpha\beta}}+\omega_{^{\alpha\beta\chi}}\;\sigma_{_{\alpha\beta\chi}}^{_{\alpha\beta\chi}}-r_3\;\partial_{_{1}}\omega_{_{K}\lambda}^{_{K}\lambda}\;\partial_{_{1}}\omega_{_{\lambda}}^{_{\alpha}}+$	$rac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{\kappa}\partial^{eta}\omega^{lpha}_{eta} + rac{1}{3}r_2\partial_{eta}\omega^{lpha}_{eta}\partial_{\kappa}\omega^{lpha}\partial^{eta} - rac{2}{3}r_2\partial_{eta}\omega^{eta}_{eta}\partial_{\kappa}\omega^{eta}\partial_{\kappa} + rac{1}{3}r_2\partial_{eta}\omega^{eta}\partial_{\kappa}\partial_{\kappa}\omega^{eta}\partial_{\kappa}\partial_{\kappa}\omega^{eta}\partial_{\kappa}\partial_{\kappa}\omega^{eta}\partial_{\kappa}\partial_{\kappa}\partial_{\kappa}\partial_{\kappa}\partial_{\kappa}\partial_{\kappa}\partial_{\kappa}\partial_{\kappa$	$3r_3\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $3r_3\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $r_3\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ +	$2r_3\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + \frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\ \theta} - \frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} + \frac{1}{6}t_2\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda} +$	$\frac{1}{3}t_2 \; \omega_{i\theta k} \; \partial^k f^{i\theta} - \frac{2}{3}t_2 \; \omega_{ik\theta} \; \partial^k f^{i\theta} - \frac{1}{3}t_2 \; \omega_{\theta ik} \; \partial^k f^{i\theta} + \frac{2}{3}t_2 \; \omega_{\theta k i} \; \partial^k f^{i\theta} -$	$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\theta}^{\theta} + \frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\theta}^{\theta} + \frac{1}{3}r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} +$	$\frac{2}{3} r_2 \partial_\kappa \omega^{\theta \alpha \beta} \partial^\kappa \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^\beta \omega_{\alpha}^{\alpha \lambda} \partial_\lambda \omega_{\alpha \beta}^{\prime} + \frac{2}{3} r_2 \partial^\beta \omega_{\lambda}^{\lambda \alpha} \partial_\lambda \omega_{\alpha \beta}^{\prime} -$	$A r_{\alpha} \beta \beta_{(1)} \lambda \alpha \beta_{(1)} \alpha \beta_{(2)} \alpha \beta_{(1)} \alpha \beta_{(1)} \beta_{(2)} + 3 r_{\alpha} \beta_{(1)} \alpha \beta_{(1)} \beta_{(2)}$
	+			+		+		

- <u>-</u> 2	0	0	0	0	0	0	0
α $\tau_1^{\#2}$)		
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{^{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_3}$	0	0	0
$\tau_{1}^{\#1}{}_{\!$	$-\frac{i\sqrt{2}}{kr_3+k^3r_3}$	$\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	$\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$	$-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2 r_3}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{i\sqrt{2}}{kr_3+k^3r_3}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha ^{eta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_{1+}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$ au_1^{\#2} +^{lpha}$

α		0	0	0	0	0	0
$\alpha f_1^{\#2}$)		
r#1	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$)	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_3$	0	0	0
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}$	$\frac{\sqrt{2} t_2}{3}$	£ 3	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_3 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\begin{vmatrix} -\frac{1}{3} \ \overline{l} \ \sqrt{2} \ kt_2 \end{vmatrix}$	0	0	0	0
·	$\omega_{1}^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha ^{eta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

_	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$ au_{0}^{\#1} \dagger$	0	0	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints					
SO(3) irreps	#				
$\tau_{0+}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3				
$\sigma_1^{\#2\alpha} == 0$	3				
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3				
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5				
$\tau_{2+}^{\#1\alpha\beta} == 0$	5				
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5				
Total #:	29				

0

0

 $f_{0}^{\#1}$

0

0

0

0 0

0 0

 $\omega_{0}^{#1}$ + $f_{0}^{#1}$ + $f_{0}^{#1}$ + $f_{0}^{#2}$ + $\omega_{0}^{#1}$ +

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$\frac{\#1}{2}$ † $^{\alpha\beta\chi}$	0	0	0

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No ma

(No massless particles)