Contents

Módulo 1: Conjuntos y Sistemas Numéricos - Clase 4

Título: Números Reales: Propiedades y Operaciones Fundamentales

Objetivos:

- Comprender la estructura y propiedades fundamentales de los números reales.
- Aplicar las propiedades de los números reales en la resolución de ecuaciones y desigualdades.
- Realizar operaciones básicas (suma, resta, multiplicación, división) con números reales, incluyendo fracciones.
- Identificar y aplicar las propiedades de las fracciones, incluyendo simplificación y operaciones.

Contenido Teórico Detallado:

1. El Conjunto de los Números Reales ():

- Definición: El conjunto de los números reales () es la unión de los conjuntos de números racionales () e irracionales (). En otras palabras, cualquier número que pueda representarse en la recta numérica es un número real.
- Propiedades Fundamentales de los Números Reales:
 - Cerradura: Para cualquier a, b , a + b y a * b
 - Conmutativa: Para cualquier a, b , a + b = b + a y a * b = b * a.
 - **Asociativa:** Para cualquier a, b, c , (a + b) + c = a + (b + c) y (a * b) * c = a * (b * c).
 - **Distributiva:** Para cualquier a, b, c , a * (b + c) = a * b + a * c.
 - **Identidad:** Existe un elemento neutro para la suma (0) tal que a + 0 = a para todo a Existe un elemento neutro para la multiplicación (1) tal que a * 1 = a para todo a.
 - **Inverso:** Para cada a , existe un inverso aditivo (-a) tal que a + (-a) = 0. Para cada a , a 0, existe un inverso multiplicativo (a^{1} o 1/a) tal que a * (1/a) = 1.

• Números Fraccionarios (Racionales):

- Definición: Un número fraccionario (o racional) es aquel que puede expresarse como una fracción p/q, donde p y q son enteros y q 0.
- Representación: Las fracciones pueden ser propias (p < q), impropias (p > q) o iguales a la unidad (p = q). Las fracciones impropias pueden convertirse en números mixtos (un entero y una fracción propia).
- Fracciones Equivalentes: Dos fracciones p/q y r/s son equivalentes si p * s = q * r.
- Simplificación de Fracciones: Dividir tanto el numerador como el denominador por su máximo común divisor (MCD) para obtener la forma más simple de la fracción.
- Operaciones con Fracciones:
- Suma y Resta: Para sumar o restar fracciones, deben tener un denominador común. Si no lo tienen, se deben encontrar fracciones equivalentes con un denominador común (generalmente el mínimo común múltiplo, MCM).
- Multiplicación: Para multiplicar fracciones, se multiplican los numeradores entre sí y los denominadores entre sí: (p/q) * (r/s) = (p * r) / (q * s).
- **División:** Para dividir fracciones, se multiplica la primera fracción por el inverso multiplicativo de la segunda: (p/q) / (r/s) = (p/q) * (s/r) = (p * s) / (q * r).

Ejemplos y Casos de Estudio:

1. Demostración de la Propiedad Distributiva:

• Sea a = 2, b = 3, c = 4.

- a * (b + c) = 2 * (3 + 4) = 2 * 7 = 14.
- a * b + a * c = 2 * 3 + 2 * 4 = 6 + 8 = 14.
- Por lo tanto, a * (b + c) = a * b + a * c.
- Simplificación de Fracciones:
- Simplificar la fracción 24/36.
- El MCD de 24 y 36 es 12.
- 24/36 = (24/12) / (36/12) = 2/3.
- Operaciones con Fracciones:
- Sumar 1/2 + 1/3.
- El MCM de 2 y 3 es 6.
- 1/2 = 3/6 y 1/3 = 2/6.
- 1/2 + 1/3 = 3/6 + 2/6 = 5/6.
- Multiplicar 2/5 * 3/4.
- (2/5) * (3/4) = (2 * 3) / (5 * 4) = 6/20 = 3/10 (simplificando).
- Dividir $1/4 \div 2/3$.
- (1/4) / (2/3) = (1/4) * (3/2) = 3/8.

Problemas Prácticos y Ejercicios con Soluciones:

- 1. **Ejercicio:** Aplique las propiedades commutativa y asociativa para simplificar: 5 + (x + 3) + 2.
 - Solución: 5 + (x + 3) + 2 = (5 + 3) + x + 2 = 8 + x + 2 = x + 10.
 - Ejercicio: Simplifique la fracción 42/56.
 - Solución: El MCD de 42 y 56 es 14. 42/56 = (42/14) / (56/14) = 3/4.
 - **Ejercicio:** Realice la siguiente operación: (2/3) + (1/4) (5/6).
 - Solución: El MCM de 3, 4 y 6 es 12. (2/3) = (8/12), (1/4) = (3/12), (5/6) = (10/12). (8/12) + (3/12) (10/12) = (8 + 3 10) / 12 = 1/12.
 - **Ejercicio:** Resuelva: $(3/5) \div (9/10) * (1/2)$.
 - Solución: (3/5) / (9/10) = (3/5) * (10/9) = 30/45 = 2/3. (2/3) * (1/2) = 2/6 = 1/3.
 - Ejercicio: Demuestre que la suma de un número racional y un número irracional es siempre un número irracional.
 - Solución: Supongamos que la suma de un racional (a) y un irracional (b) es un racional (c). Entonces, a + b = c. Despejando b, obtenemos b = c a. Como c y a son racionales, su diferencia (c a) también sería racional. Pero esto contradice el hecho de que b es irracional. Por lo tanto, la suposición inicial es falsa, y la suma de un racional y un irracional debe ser irracional.

Materiales Complementarios Recomendados:

- Libro de Texto: Cualquier libro de texto de Álgebra Universitaria (Capítulo sobre Números Reales y Fracciones).
- Khan Academy: Videos y ejercicios sobre números reales y fracciones.
- Materiales de apoyo en línea sobre álgebra de números reales.