1 Week 1

2 Week 2

- (a) δ -rings
- (b) prisms
- (c) prismatic site
- (d) Hodge-Tate comparison
- (e) étale comparison
- (f) Nygaard filtration.

2.1 δ -rings

Definition 2.1.1. A δ -ring is a pair $(A, \delta : A \to A)$ where δ is not a ring homomorphism but satisfies the property that,

$$\phi: A \to A \quad \phi(x) = x^p + p\delta(x)$$

is a ring homomorphism.

Remark. We will usually assume that A is a $\mathbb{Z}_{(p)}$ -algebra but this is not necessary. On $\mathbb{Z}_{(p)}$ we have $\phi(x) = x$ is the only possible lift so,

$$\delta(x) = \frac{x - x^p}{p}$$

Proposition 2.1.2. $(\mathbb{Z}_{(p)}, \delta)$ is the initial δ -ring.

Remark. Suppose that $p^n = 0$ in A then $\delta'(p^n) = 0$

Proposition 2.1.3. The forgetful functor δ -Rings to Rings has a left and right inverse. The right adjoint is given by Witt vectors the left adjoint is given by free δ -rings

Remark. The free δ -ring structure $A\{x\} = A[x_1, x_2, \dots]$ with $\delta(x_i) = x_{i+1}$

Definition 2.1.4. $\alpha \in A$ is distinguished if $\delta(\alpha)$ is a unit.

Example 2.1.5. The following are distinguished,

- (a) $p \in \mathbb{Z}_p$
- (b) $x p \in \mathbb{Z}_p[[x]]$
- (c) for $A_{\inf} = W(R^{\flat})$ each $\xi \in \ker(A_{\inf} \to R)$ is distinguished.

Definition 2.1.6. A δ -ring is *perfect* if ϕ is an isomorphism.

Proposition 2.1.7. The following categories are equivalent:

- (a) perfect p-complete δ -rings
- (b) p-complete p-torsion-free rings A with A/p perfect
- (c) perfect \mathbb{F}_p -algebras.

2.2 Prisms

Definition 2.2.1. A prism is a pair (A, I) with $I \subset A$ Cartier divisor such that A is (p, I)-adically complete with $p \in I + \phi(I)A$. The category of prisms is a full subcategory of the category of pairs (A, I) with maps $f: (A, I) \to (B, J)$ meaning $f(I) \subset J$.

Remark. $p \in I + \phi(I)A \iff$ after ind-Zariski localization $I = (\zeta)$ where ζ is distinguished.

Definition 2.2.2. A prism is,

- (a) perfect if A is perfect
- (b) bounded if $A[p^{\infty}] = A[p^n]$.
- (c) orientable if I is principal
- (d) oriented if I is given a canonical generator
- (e) crystaline if I = (p) which implies oriented and bounded.

Proposition 2.2.3. If $f:(A,I)\to(B,J)$ is a morphism of prisms then f(I)B=J.

Theorem 2.2.4. There is an equivalence of categories between,

- (a) perfect prisms
- (b) perfectoid rings.

Remark. Thus perfect prisms are orientable.

Proposition 2.2.5. If (A, I) is perfect then,

$$\operatorname{Hom}\left(A/I, B/J\right) = \operatorname{Hom}\left((A, I), (B, J)\right)$$

2.3 Tilting Equivalence

For $R \to S$ a map of perfectoid rings, let R = A/I and S = B/J for some perfect prisms. Then $R^{\flat} = A/p$ and $S^{\flat} = B/p$. By the lifting we get a unique map $(A, I) \to (B, J)$ and hence a map of δ -rings $A \to B$ which gives a map $A/p \to B/p$ giving the map of tilts $R^{\flat} \to S^{\flat}$.

2.4 Prismatic Site

Let X be a p-adic formal scheme. Let (A, I) be a bounded prism with a map $X \to \operatorname{Spf}((A/I))$. The site $(X/A)_{\geq}$ whose objects are pairs of a prism (B, J) over (A, I) and a map $\operatorname{Spf}(B/J) \to X$ over $\operatorname{Spf}(A/I)$.

The absolute prismatic site $(X)_{\geq}$ are just prisms (B, J) equipped with a map $\mathrm{Spf}(B/J) \to X$.

If $X = \operatorname{Spf}(A/I)$ then $(X/A)_{\geq}$ are just prisms over (A, I).

There are important sheaves,

$$\mathcal{O}_{\geq}:(B,J)\mapsto B$$
 and $\overline{\mathcal{O}_{\geq}}:(B,J)\mapsto B/J$

There is a pushforward map $\nu_*: \mathfrak{Sh}(X/A)_{\geq} \to \mathfrak{Sh}(X_{\text{\'et}})$. Then the prismatic cohomology is,

$$\geqq_{X/A} = R\nu_*\mathcal{O}_{\geqq} \in D(X_{\operatorname{\acute{e}t}}, A) \quad \text{ and } \geqq_{X/A} = R\nu_*\overline{\mathcal{O}_{\geqq}} \in D(X_{\operatorname{\acute{e}t}}, \mathcal{O}_X)$$

Then as A/I-modules,

$$\overline{\geqq}_{X/A} = \underset{X/A}{\geqq}_{X/A} \otimes_A^{\mathbb{L}} A/I$$

2.5 Hodge-Tate Comparison

For any A/I-module M we define,

$$M\{i\} := M \otimes_{A/I} I^i/I^{i+1}$$

Then then there is a distinguished triangle,

$$\overline{\supsetneqq}_{X/A}\{i+1\} \to \supsetneqq_{X/A} \otimes_A^{\mathbb{L}} I^i/I^{i+2} \to \overline{\supsetneqq}_{X/A}\{i\}$$

which gives rise to a differential,

$$\beta_I: H^i(\overline{\rightleftharpoons}_{X/A}\{i\}) \to H^{i+1}(\overline{\rightleftharpoons}_{X/A}\{i+1\})$$

and therefore,

$$H^{\bullet}(\overline{\stackrel{>}{\rightleftharpoons}}_{X/A}\{\bullet\}$$

is a differential-graded ring. Therefore,

$$\eta_X^0: \mathcal{O}_X \to H^0(\overline{\geq}_{X/A}\{0\})$$

extends to a map,

$$\eta_X: \Omega^{\bullet}_{X/(A/I)} \to H^{\bullet}(\overline{\rightleftharpoons}_{X/A} \{\bullet\})$$

Theorem 2.5.1 (Comparison). If X is smooth the map η_X is an isomorphism (in the derived category).

2.6 Fibers

For $X \to \operatorname{Spf}(R)$ we define $X_{\eta} := X \times_{\operatorname{Spf}(R)} \operatorname{Spa}\left(R\left[\frac{1}{p}\right], R\right)$. Then

3 FFFF

4 Sept 29

Definition 4.0.1. Let k be a (noncommutative) ring and A a (noncommutative) k-algebra. If A is a flat k-algebra then the *Hochschild Homology* $HH_{\bullet}(A/k)$ is defined as the complex associated (via Dold-Kan) to the simplicial ring $SHH_{\bullet}(A/k)$ with,

$$SHH_n(A/k) = A^{\otimes (n+1)}$$

where $d_i(a_0 \otimes \cdots \otimes a_n) = a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n$ for i < n and $d_n(a_0 \otimes \cdots \otimes a_n) = a_n a_0 \otimes \cdots \otimes a_{n-1}$ which is distinct because A is noncommutative.

Remark. Then $HH_0(A/k) = A/[A,A]$ and in the commutative case $HH_1(A/k) = \Omega^1_{A/k}$.

Proposition 4.0.2. There are natural isomorphisms,

$$HH_n(A/k) \xrightarrow{\sim} \operatorname{Tor}_n^{A \otimes_k A^{\operatorname{op}}} (A, A)$$

Definition 4.0.3. We say that an A'-algebra A is étale if A' is projective as an A-module and A' is a projective $A' \otimes_A A'$ -module.

Remark. When everything is commutative,

(a) if A' is étale over A then,

$$HH_{\bullet}(A/k) \otimes_A^{\mathbf{LL}} A' \xrightarrow{\sim} HH_{\bullet}(A'/k)$$

Theorem 4.0.4. Let A be k-smooth (and everything is commutative). Then,

$$\Omega_{A/k}^{\bullet} \to \widehat{HH_{\bullet}}(A/k)$$

is a map of graded rings.

4.1 Extending HH to all k-algebras

Consider the diagram of functors,

Where D is the derived category of k-modules. Then $\widetilde{HH}_{\bullet}(A/k)$ is the left Kan extension. In general, in the commutative case,

$$HH_{\bullet}(A/k) \xrightarrow{\sim} A \otimes_{A \otimes_k^{\mathbf{LL}} A}^{\mathbf{LL}} A$$

in the derived category.

4.2 Cyclic Homology

Work with A flat over k. Then $HH_n(A/k)$ has a circle action of $\mathbb{Z}/(n+1)\mathbb{Z}$ on,

$$HH_n(A/k) = A^{\otimes (n+1)}$$

given by the brading of tensor product (exchanging terms),

$$t_n: a_0 \otimes \cdots \otimes a_n = a_n \otimes a_0 \otimes \cdots \otimes a_{n-1}$$

Then we define,

$$N = \sum_{i=0}^{n} (-1)^{i} t_{n}^{i} : A^{\otimes (n+1)} \to A^{\otimes (n+1)}$$

and likewise,

$$B = (1 - (-1)^n t_n) s_0 N : A^{\otimes n} \to A^{\otimes n} \to A^{\otimes (n+1)} \to A^{\otimes (n+1)}$$

where s_0 is a degeneracy map. Write $\pm t$ for $(-1)^n t_n$.

Lemma 4.2.1. (a)
$$(1 - \pm t)b' = n(1 - \pm t)$$

- (b) b'N = Nb
- (c) $s_0b' + b's = 1$

- (d) $B^2 = 0$
- (e) Bb = -bB.

Therefore, B gives a map on the homology of $HH_{\bullet}(A/k)$ such that,

$$HH_n(A/k) \xrightarrow{B} HH_{n+1}(A/k)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\Omega^n(A/k) \xrightarrow{d} \Omega^{n+1}(A/k)$$

commutes.

5 Intro to Σ

- (a) W_S -modules and definition
- (b) points and divisors
- (c) contracting prop. of F
- (d) global sections
- (e) line bundles.

Prismatisation functor $X \mapsto X^{\geq}$. Then,

$$D_{\geq}^{\bullet}(X) \xrightarrow{\sim} D^{\bullet}(X^{\geq})$$

This is like how sheaves on the de Rham site correspond to sheaves on the de Rham stack.

Let $X = \mathrm{Spf}(\mathbb{Z}_p)$ then,

$$\geqq_X = \mathbb{Z}_p[[x]][0]$$

Maps $X \to \mathrm{Spf}\,(\mathbb{Z}_p)$ should correspond to maps $X^{\stackrel{>}{=}} \to \Sigma$.

5.1 Witt Vectors

Let $W = \operatorname{Spec}(\mathbb{Z}[x_0, x_1, \dots]) \to \operatorname{Spf}(\mathbb{Z}_p)$ Then,

$$Z_p[x_0, x_1, \dots] = \operatorname{Spec}(\mathbb{Z}_p\{x\})$$

is the free δ -ring. Let $Z \subset W$ be cut out by $p = x_0 = 0$ and $x_1 \neq 0$. Then $W_{\text{prim}} = \widehat{W}_Z$ is the completion. Then,

$$W_{\text{prim}} = \text{Spf}\left(\mathbb{Z}_p[x_0, x_1, \dots][x_1^{-1}]^{\vee}, (p, x_0)\right)$$

Then W_{prim} is Frobenius stable so we get a diagram,

$$\begin{array}{ccc} W_{\text{prim}} & \xrightarrow{F} & W_{\text{prim}} \\ \downarrow & & \downarrow \\ W & \xrightarrow{F} & W \end{array}$$

Also W is a ring scheme. Consider,

$$W^{\times} \times W \to W$$
 via $(\lambda, x) \mapsto \lambda^{-1} x$

Then get $W^{\times} \to W_{\text{prim}} \to W_{\text{prim}}$. Therefore we can define the following stack.

Definition 5.1.1. Let $\Sigma = [W_{\text{prim}}/W^{\times}]$ meaning it is the stackification of the functor,

$$R \mapsto W_{\text{prim}}(R)/W^{\times}(R)$$

Definition 5.1.2. Let $W_S = W \times_{\operatorname{Spf}(\mathbb{Z}_p)} S$. Then a W_S -module is a commutative affine group scheme with an action of W_S .

Definition 5.1.3. Then M is invertible if fpqc locally isomorphic to W_S . This is equivalent to a W_S^{\times} -torsor.

Remark. An S-point of $[W_{\text{prim}}/W^{\times}]$ is by definition an W^{\times} -torsor over S equipped with a map to $(W_{\text{prim}})_S$. This is the same data as a W_S -module M with a map $\xi: M \to W_S$ factoring through $(W_{\text{prim}})_S$ which is the same as having fibers in kernel of ξ_1 but in kernel of ξ_2 .

Definition 5.1.4. A better definition of Σ is therefore,

$$\Sigma: S \mapsto \{(M, \xi) \mid M \text{ invertible } W_S\text{-module and } \xi: M \to W_S \text{ is primitive}\}$$

which is a category fibered in groupoids.

6 Oct 13

Definition 6.0.1. A generalized Cartier divisor (\mathscr{I}, α) is a pair of an invertible \mathcal{O}_X -module \mathscr{I} equipped with a map (not necessarily injective),

$$\alpha: \mathscr{I} \to \mathcal{O}_X$$

Let Cart(X) be the groupoid of generalized Cartier divisors.

Remark. A generalized Cartier divisor (\mathcal{I}, α) is a Cartier divisor exactly when α is injective.

Proposition 6.0.2. Given $f: X \to Y$ there is a map $f^*: \operatorname{Cart}(Y) \to \operatorname{Cart}(X)$ taking $\alpha: \mathscr{I} \to \mathcal{O}_Y$ to $f^*\alpha: f^*\mathscr{I} \to f^*\mathcal{O}_Y = \mathcal{O}_X$ making Cart a pre-stack.

Remark. If f is non-flat it need not pullback Cartier divisors to Cartier divisors. This is why we introduce generalized Cartier divisors.

Proposition 6.0.3. Cart is an algebraic stack in the fpqc topology. Indeed Cart = $[\mathbb{A}^1/\mathbb{G}_m]$.

Remark. We will write Cart(R) := Cart(Spec(R)).

Now let R be p-nilpotent and consider $W(R) \to R$ giving a map $\operatorname{Cart}(W(R)) \to \operatorname{Cart}(R)$ which is functorial in R. Then \widetilde{WCart} is the stack sending $R \mapsto \operatorname{Cart}(W(R))$. Thus there is a map $\widetilde{\operatorname{WCart}} \to \operatorname{Cart}$.

7 Oct 27

Definition 7.0.1. A morphism $f: X \to S$ is *syntomic* if,

- (a) f is locally of finite presentation
- (b) f is flat
- (c) f is a locally a complete intersection morphism meaning for each $x \in X$ there is an affine open $x \in U \to V$ with ring map $A \to B$ is a local complete intersection.

Proposition 7.0.2. Let $f: X \to S$ be flat and finitely presented. Then the following are equivalent,

- (a) f is syntomic
- (b) $H_i(\mathbb{L}_{X/S}) = 0$ for i < 0 and $H_0(\mathbb{L}_{X/S})$ is locally free.

Remark. Note that if we required $\mathbb{L}_{X/S} \xrightarrow{\sim} \Omega_{X/S}[0]$ in the derived category for a locally-free $\Omega_{X/S}$ then f would be smooth. We are requiring less.

Lemma 7.0.3. (a) smooth maps are syntomic

- (b) syntomic morphisms are stable under composition and base change
- (c) Consider a diagram,

with f flat and X, Y smooth over S then f is syntomic

(d) if A is noetherian, and $X \to \operatorname{Spec}(A)$ is syntomic then X locally is of the form,

Spec
$$(A[T_1,\ldots,T_n]/(f_1,\ldots,f_r))$$

with f_1, \ldots, f_r Koszul-regular.

Corollary 7.0.4. If p is zero on A then the map,

$$\phi A[T_1,\ldots,T_d] \to A[T_1,\ldots,T_d]$$

given by $T_i \mapsto T_i^p$ is syntomic and faithfully flat.

Proof. Flat because ϕ is finite locally free (in fact globally free) and then faithfully flat by surjectivity. Then we conclude by (c) of the previous lemma.

Corollary 7.0.5. The sequence,

$$0 \longrightarrow \mu_{p^n} \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_m \longrightarrow 0$$

is exact in the syntomic topology.

Proof. The only nontrivially part is the surjectivity of $p^n: \mathbb{G}_m \to \mathbb{G}_m$ as sheaves on the syntomic topology. This holds because $p^n: \mathbb{G}_m \to \mathbb{G}_m$ is syntomic and faithfully flat. Thus for any map $X \to \mathbb{G}_m$ we pullback to get a surjective syntomic cover of X lifting the map.