Intervals, Transformations, and Slope Solution (version 40)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-3,4) \cup (8,9)$
Negative	$(-9, -3) \cup (4, 8)$
Increasing	$(-8,2) \cup (6,9)$
Decreasing	$(-9, -8) \cup (2, 6)$
Domain	(-9,9)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 40)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=46$ and $x_2=56$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 9 & 46 \\ 25 & 56 \\ 46 & 25 \\ 56 & 9 \\ \end{array}$$

$$\frac{f(56) - f(46)}{56 - 46} = \frac{9 - 25}{56 - 46} = \frac{-16}{10}$$

The greatest common factor of -16 and 10 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-8}{5}$$

2