

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра дискретной математики и алгоритмики

Зязюлькин Сергей Павлович

Построение больших непересекающихся ациклических подграфов в геометрических графах

Научный руководитель: кандидат физ.-мат. наук В.И. Сарванов

Постановка задачи

- ✓ изучение основных сведений о проблеме построения больших непересекающихся ациклических подграфов;
- ✓ разработка точных экспоненциальных алгоритмов решения задачи построения больших непересекающихся ациклических подграфов;
- ✓ поиск новых классов геометрических графов, допускающих полиномиальное решение задачи построения больших непересекающихся ациклических подграфов;
- ✓ программная реализация разработанных алгоритмов.

Геометрических граф

Задача построения непересекающегося остовного дерева

Теорема. Пусть G — геометрический граф, обладающий следующими свойствами: степень любой вершины не меньше трех, индекс пересечения графа не меньше двух. Задача построения NST в графе G является NP-трудной.

Параметризованные алгоритмы решения задачи построения непересекающегося остовного дерева

Теорема. Пусть G — геометрический граф, содержащий k пар пересекающихся ребер. За время $O^*(1.9276^k)$ можно построить NST в графе G, если оно существует.

Полиномиально разрешимые случаи задачи построения непересекающегося остовного дерева

Теорема. Пусть G — выпуклый геометрический граф на n вершинах. Задача построения NST в графе G может быть решена за время $O(n^3)$ с использованием метода динамического программирования.

Теорема. Пусть G такой геометрический граф, что для произвольной тройки e_i , e_j , e_k его ребер выполняется условие $e_i \cap e_j \neq \emptyset$ и $e_i \cap e_k \neq \emptyset \Rightarrow e_j \cap e_k \neq \emptyset$. Тогда задача построения NST в графе G является полиномиально разрешимой.

Задача пересечения двух матроидов

Теорема. Пусть на вход алгоритма решения задачи ТМІ подаются матроиды $M_1 = (E, X_1)$ и $M_2 = (E, X_2)$, а задача поиска цикла в зависимом множестве может быть решена за время O(C(|E|)) для каждого из матроидов M_1 , M_2 . Тогда алгоритм решения задачи ТМІ корректно решает задачу ТМІ за время $O(|E|^3C(|E|))$.

Матроид пересечений

Геометрический граф с индексом пересечения 1

Задача построения большого непересекающегося ациклического подграфа

Теорема. Пусть G = (V, E) – геометрический граф, на множестве ребер E которого может быть построен матроид пересечений. Пусть $E' \subseteq E$ – некоторое зафиксированное подмножество ребер графа G. Тогда задача построения NST C зафиксированным множеством ребер E' и задача построения наибольшего непересекающегося ациклического подграфа C множеством зафиксированных ребер C' могут быть решены для графа C за полиномиальное время.

Задача построения непересекающегося остовного дерева

Теорема. Пусть G — геометрический граф, имеющий k пар пересекающихся ребер. Задача построения NST может быть решена для графа G за время $O^*(1.4143^k)$.

Задача построения наибольшего непересекающегося ациклического подграфа

Теорема. Пусть G — геометрический граф, имеющий k пар пересекающихся ребер. Задача построения наибольшего непересекающегося ациклического подграфа может быть решена для графа G за время $O^*(1.4143^k)$.

Вогнутый геометрический граф

Задача построения непересекающегося остовного дерева в вогнутом геометрическом графе

Теорема. Пусть G - выпуклый или вогнутый геометрический граф на <math>n вершинах. Задача построения NST в графе G может быть решена за время $O(n^3)$ с использованием метода динамического программирования.

Заключение

- ✓ разработан и программно реализован алгоритм решения задачи пересечения двух матроидов с возможностью фиксирования множества элементов, которое обязано входить в пересечение;
- ✓ предложен способ применения алгоритма решения задачи пересечения двух матроидов с возможностью фиксирования множества обязательных элементов для решения задачи построения непересекающегося остовного дерева и задачи построения наибольшего непересекающегося ациклического подграфа в геометрическом графе;
- ✓ разработан и программно реализован алгоритм частичного перебора с отсечениями для решения задачи построения непересекающегося остовного дерева в геометрическом графе, дана оценка трудоемкости разработанного алгоритма;
- ✓ разработан и программно реализован алгоритм частичного перебора с отсечениями для решения задачи построения наибольшего непересекающегося ациклического подграфа в геометрическом графе, дана оценка трудоемкости разработанного алгоритма;
- ✓ введено понятие вогнутого геометрического графа, предложен точный полиномиальный алгоритм решения задачи построения непересекающегося остовного дерева в вогнутом геометрическом графе.

СПАСИБО ЗА ВНИМАНИЕ!