$12n_{0475} \ (K12n_{0475})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^7 - u^6 + 6u^5 - 3u^4 + 8u^3 - 6u^2 + 2b + 2u - 2, -u^7 + 2u^6 - 7u^5 + 7u^4 - 9u^3 + 4u^2 + 4a - 6u - 2, u^9 - u^8 + 10u^7 - 3u^6 + 30u^5 + 4u^4 + 36u^3 + 8u - 4 \rangle$$

$$I_2^u = \langle b + 1, 2a^2 - au + 1, u^2 + 2 \rangle$$

$$I_1^v = \langle a, b-1, v^2 + v - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 15 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^7 - u^6 + 6u^5 - 3u^4 + 8u^3 - 6u^2 + 2b + 2u - 2, -u^7 + 2u^6 + \dots + 4a - 2, u^9 - u^8 + \dots + 8u - 4 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{7} - \frac{1}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{7} + \frac{1}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{4}u^{7} - \frac{1}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{8} + \frac{1}{4}u^{7} + \dots + \frac{5}{2}u^{2} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{4}u^{7} + \frac{7}{4}u^{5} + \dots + \frac{3}{2}u - \frac{1}{2} \\ \frac{1}{4}u^{7} - \frac{1}{4}u^{6} + \dots + 2u^{3} + \frac{3}{2}u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{8} - 2u^{6} + \dots + \frac{1}{2}u + \frac{1}{2} \\ u^{7} + 5u^{5} + 3u^{4} + 6u^{3} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{8} + u^{7} + \dots + \frac{1}{2}u - \frac{1}{2} \\ u^{7} + 5u^{5} + 3u^{4} + 6u^{3} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{4}u^{8} - \frac{3}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{8} - \frac{5}{4}u^{6} + \dots + \frac{1}{2}u^{2} + \frac{3}{2}u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^8 + u^7 10u^6 + 4u^5 31u^4 37u^2 2u 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^9 - 5u^8 + \dots + 20u + 121$
c_{2}, c_{5}	$u^9 + 3u^8 + 7u^7 + 8u^6 + 9u^5 - 14u^4 + 29u^3 + 8u^2 - 14u + 11$
c_3, c_4, c_{10}	$u^9 + u^8 + 10u^7 + 3u^6 + 30u^5 - 4u^4 + 36u^3 + 8u + 4$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$u^9 + 2u^8 - 7u^7 - 14u^6 + 16u^5 + 33u^4 - 5u^3 - 13u^2 + 7u + 3$
<i>c</i> ₉	$u^9 - 19u^8 + \dots + 1064u + 212$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^9 + 13y^8 + \dots - 137056y - 14641$
c_{2}, c_{5}	$y^9 + 5y^8 + \dots + 20y - 121$
c_3, c_4, c_{10}	$y^9 + 19y^8 + \dots + 64y - 16$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^9 - 18y^8 + \dots + 127y - 9$
<i>c</i> ₉	$y^9 + 7y^8 + \dots + 50048y - 44944$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.356661 + 1.085780I		
a = -0.402756 - 1.012080I	6.51508 + 2.26295I	5.26586 - 3.19513I
b = -0.703349 + 0.767146I		
u = -0.356661 - 1.085780I		
a = -0.402756 + 1.012080I	6.51508 - 2.26295I	5.26586 + 3.19513I
b = -0.703349 - 0.767146I		
u = -0.218744 + 0.648601I		
a = 0.771686 + 0.526493I	1.07917 - 0.96089I	3.53169 + 3.58492I
b = -0.432002 - 0.509023I		
u = -0.218744 - 0.648601I		
a = 0.771686 - 0.526493I	1.07917 + 0.96089I	3.53169 - 3.58492I
b = -0.432002 + 0.509023I		
u = 0.325488		
a = 0.946130	-1.12741	-12.9160
b = 0.860684		
u = 0.47728 + 2.04979I		
a = -0.410722 + 0.825671I	17.8250 + 0.9503I	4.58159 - 0.40162I
b = 0.27104 - 2.15157I		
u = 0.47728 - 2.04979I		
a = -0.410722 - 0.825671I	17.8250 - 0.9503I	4.58159 + 0.40162I
b = 0.27104 + 2.15157I		
u = 0.43538 + 2.08426I		
a = 0.068727 - 0.946296I	-7.58379 - 6.45137I	4.07876 + 2.00413I
b = 1.93397 + 1.37424I		
u = 0.43538 - 2.08426I		
a = 0.068727 + 0.946296I	-7.58379 + 6.45137I	4.07876 - 2.00413I
b = 1.93397 - 1.37424I		

II.
$$I_2^u = \langle b+1, \ 2a^2 - au + 1, \ u^2 + 2 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a\\-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a\\2a-1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -a - \frac{1}{2}u\\-au - 2a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a+1\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a\\-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_9 c_{10}	$(u^2+2)^2$
c_6, c_7, c_8	$(u^2+u-1)^2$
c_{11}, c_{12}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4, c_9 c_{10}	$(y+2)^4$
c_6, c_7, c_8 c_{11}, c_{12}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.414210I		
a =	1.144120I	12.1725	4.00000
b = -1.00000)		
u =	1.414210I		
a =	-0.437016I	4.27683	4.00000
b = -1.00000			
u =	-1.414210I		
a =	$-\ 1.144120I$	12.1725	4.00000
b = -1.00000			
u =	-1.414210I		
a =	0.437016I	4.27683	4.00000
b = -1.00000			

III.
$$I_1^v = \langle a, \ b-1, \ v^2+v-1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -v+1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -v+1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -v+1 \\ -v \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_4, c_9 c_{10}	u^2
<i>C</i> ₅	$(u+1)^2$
c_6, c_7, c_8	$u^2 - u - 1$
c_{11}, c_{12}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_9 c_{10}	y^2
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.618034		
a = 0	-0.657974	6.00000
b = 1.00000		
v = -1.61803		
a = 0	7.23771	6.00000
b = 1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^9 - 5u^8 + \dots + 20u + 121)$
c_2	$(u-1)^{2}(u+1)^{4}$ $\cdot (u^{9} + 3u^{8} + 7u^{7} + 8u^{6} + 9u^{5} - 14u^{4} + 29u^{3} + 8u^{2} - 14u + 11)$
c_3, c_4, c_{10}	$u^{2}(u^{2}+2)^{2}(u^{9}+u^{8}+10u^{7}+3u^{6}+30u^{5}-4u^{4}+36u^{3}+8u+4)$
c_5	$(u-1)^4(u+1)^2$ $\cdot (u^9 + 3u^8 + 7u^7 + 8u^6 + 9u^5 - 14u^4 + 29u^3 + 8u^2 - 14u + 11)$
c_6, c_7, c_8	$(u^{2} - u - 1)(u^{2} + u - 1)^{2}$ $\cdot (u^{9} + 2u^{8} - 7u^{7} - 14u^{6} + 16u^{5} + 33u^{4} - 5u^{3} - 13u^{2} + 7u + 3)$
<i>c</i> 9	$u^{2}(u^{2}+2)^{2}(u^{9}-19u^{8}+\cdots+1064u+212)$
c_{11}, c_{12}	$(u^{2} - u - 1)^{2}(u^{2} + u - 1)$ $\cdot (u^{9} + 2u^{8} - 7u^{7} - 14u^{6} + 16u^{5} + 33u^{4} - 5u^{3} - 13u^{2} + 7u + 3)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^9+13y^8+\cdots-137056y-14641)$
c_2, c_5	$((y-1)^6)(y^9 + 5y^8 + \dots + 20y - 121)$
c_3, c_4, c_{10}	$y^{2}(y+2)^{4}(y^{9}+19y^{8}+\cdots+64y-16)$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$((y^2 - 3y + 1)^3)(y^9 - 18y^8 + \dots + 127y - 9)$
<i>c</i> 9	$y^{2}(y+2)^{4}(y^{9}+7y^{8}+\cdots+50048y-44944)$