)uest	ion [code	urs Oij					, ,	t unc	résolutio
e 48 t	ops/tours	. Donner	r sa résc	olution ϵ	en degrés				_p
''						 	 		
l						 	 		
<u> </u>						 			
e 48 te	ion [code ops/tours.	. Le mot	eur est s	suivi d'u					en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr
e 48 te	ops/tours	. Le mot	eur est s	suivi d'u				lution	en degr

Question [codeurs 03] Soit un codeur mesurant la position d'un onstitué d'un disque de 12 fentes, 2 canaux en quadrature. Donner la	
iveau de la sortie du moteur.	☐f ☐p ■ j
onstitué d'un disque de 12 fentes, 2 canaux en quadrature. Le moteur est	t suivi d'un réducteur d
onstitué d'un disque de 12 fentes, 2 canaux en quadrature. Le moteur est	t suivi d'un réducteur d
onstitué d'un disque de 12 fentes, 2 canaux en quadrature. Le moteur est	t suivi d'un réducteur d
onstitué d'un disque de 12 fentes, 2 canaux en quadrature. Le moteur est	t suivi d'un réducteur d
Question [codeurs 04] Soit un codeur mesurant la position d'un onstitué d'un disque de 12 fentes, 2 canaux en quadrature. Le moteur est apport 32. Donner la résolution en degrés au niveau de la sortie du réduc	t suivi d'un réducteur d

Soit un codeur mesurant la position d'un moteur. La documentation

Question [codeurs 05]

								р
		Soit un o						
stion [codeur	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd			Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn
le 500 impulsi	ions, $\bar{3}$ car	naux. Le	moteur e	est suivi o	d'un réd		5,88.	Donn

	rés au niveau de la sortie du mo
	ion d'un moteur. La document
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
estion [codeurs 08] Soit un codeur mesurant la posit ule 1000 impulsions par tour. Le moteur est suivi d'un lution en degrés au niveau de la sortie du réducteur.	ion d'un moteur. La document
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
de 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn
ıle 1000 impulsions par tour. Le moteur est suivi d'un	ion d'un moteur. La document réducteur de rapport 3. Donn

	uivi d'un système poulie-courroie (poulie de largeur 25 mm, de pas 5 mm, de 31 dents et
	n 24.67 mm). Donner la résolution en mm au niveau de la courroie.
Г	, , , , , , , , , , , , , , , , , , ,
_	
tipu	stion [codeurs 11] Soit un codeur mesurant la position d'un moteur. La documentat le 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu être la fréquence minimale d'acquisition de la carte d'acquisition ?
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu
tipu	ale 1000 impulsions par tour. Le vitesse maximale du moteur est de 5000 tour/min. Qu

stipule 500 fentes 2 voies en quadrature. Le vitesse maximale du moteur est de 8000 tour/min.

Soit un codeur mesurant la position d'un moteur. La documentation

Question [codeurs 12]

lle doit être la fréquence minimale d'acquisition de la carte d'acquisition ?	fp