

SEMICONDUCTOR

INTRODUCTION

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Atomic Structure

Properties of Semiconductor

Two Types of Extrinsic Semiconductor

ATOMIC STRUCTURE

VALENCE ORBIT

The <u>valence orbit</u> (or valence shell) is the outermost electron shell of an atom. It contains the valence electron(s), which control the <u>electrical properties</u> of the atom.

Copper Atom

CONDUCTOR

<u>Conductors</u> are materials that allow the electric current to flow through them.

valence electrons

<u>Less</u> than 4 electrons

<u>example</u>

Copper

Silver

Gold

Copper Atom

INSULATOR

<u>Insulators</u> are materials that do not conduct electricity.

valence electrons

More than 4 electrons

<u>example</u>

Rubber

Plastic

Sulfur

Sulfur Atom

SEMICONDUCTOR

<u>Semiconductors</u> are materials that have an electrical conductivity between that of a conductor and an insulator.

valence electrons

Exactly 4 electrons

<u>example</u>

Silicon

Carbon

Germanium

Silicon Atom

PROPERTIES OF SEMICONDUTOR

THE SILICON ATOM

A <u>valence saturation</u> occurs when an atom's outermost electron shell (valence orbit) reaches its maximum capacity of <u>8 electrons</u>.

Silicon Crystal

INTRINSIC SEMICONDUCTOR

Silicon Crystal

An <u>intrinsic semiconductor</u> is a pure semiconductor.

At room temperature, it acts like an **insulator**.

EXTRINSIC SEMICONDUCTOR

Group III Elements

B Al Ga In

Boron Aluminum Gallium Indium

Doping is the process of <u>adding impurity atoms</u> to an intrinsic crystal to alter its electrical conductivity.

Group V Elements

TWO TYPES OF EXTRINSIC SEMICONDUCTOR

TWO TYPES OF FLOW

Electron flow is the movement of **free electrons** in a semiconductor (or conductor).

Hole flow is the movement of "empty spaces" (holes) left behind when electrons jump in the valence band.

Electron Flow

Hole Flow

N-TYPE SEMICONDUCTOR

An <u>n-type</u> semiconductor is created by doping intrinsic semiconductor with a <u>pentavalent</u> impurity.

Arsenic (As)

<u>example</u>

Antimony (Sb)

Phosphorus (P)

Silicon Crystal

N-TYPE SEMICONDUCTOR

An **n-type** semiconductor is created by doping intrinsic semiconductor with a **pentavalent** impurity. example

Arsenic (As)

Antimony (Sb)

Phosphorus (P)

Doped with Phosphorus

N-TYPE SEMICONDUCTOR

An **n-type** semiconductor is created by doping intrinsic semiconductor with a **pentavalent** impurity. majority carriers

Electrons

minority carriers

Holes

Doped with Phosphorus

P-TYPE SEMICONDUCTOR

A <u>p-type</u> semiconductor is created by doping intrinsic semiconductor with a <u>trivalent</u> impurity. <u>example</u>

Aluminum (Al)

Boron (B)

Gallium (Ga)

Indium (In)

Silicon Crystal

P-TYPE SEMICONDUCTOR

A <u>p-type</u> semiconductor is created by doping intrinsic semiconductor with a <u>trivalent</u> impurity. <u>example</u>

Aluminum (Al)

Boron (B)

Gallium (Ga)

Indium (In)

Doped with Boron

P-TYPE SEMICONDUCTOR

A **p-type** semiconductor is created by doping intrinsic semiconductor with a **trivalent** impurity. majority carriers

Holes

minority carriers

Electrons

Doped with Boron

EXERCISE

A doped semiconductor has 10 billion silicon atoms and 15 million pentavalent atoms. If the ambient temperature is 25° C, how many free electrons and holes are there inside the semiconductor?

Solution

EXERCISE

In reference to the previous example, if 5 million trivalent atoms are added instead of pentavalent atoms, how many holes are there inside the semiconductor?

Solution

ENERGY LEVELS

Electronvolt (eV) is the energy needed to move one electron through a potential difference of 1 volt.

Conductor

Conduction Band

Energy Gap = 0 eV

Valence Band

<u>Insulator</u>

Conduction Band

Energy Gap > 5 eV

Valence Band

Semiconductor

Conduction Band

Energy Gap = 1.1 eV (Si)

Energy Gap = 0.67 eV (Ge)

Energy Gap = 1.41 eV (GaAs)

Valence Band

LABORATORY

