# Auslander's Theorem for permutation actions on noncommutative algebras

(arXiv:1705.00068)

Jason Gaddis

Miami University





#### Introduction

This project is joint work with my collaborators at Wake Forest University.



Ellen Kirkman



Frank Moore



Robert Won

# Invariant Theory



Formally, symmetry is a property of invariance (or stability) with respect to some transformation. This may mean a geometric transformation (reflection, rotation, scaling), or it may relate to change with respect to the passage of time, change in temperature, etc.

Emily Noether proved that there is a correspondence between symmetries of physical systems and conservation laws in physics. Studying symmetry may lead to answers to fundamental questions regarding the shape of the universe.

# Invariant Theory

In classical (algebraic) invariant theory, one generally studies actions of groups on polynomial rings.

Throughout, we will consider polynomials over an algebraically closed field  $\Bbbk$  of characteristic zero.

Let G be a group acting (as linear automorphisms) on  $A = \mathbb{k}[x_1, \dots, x_n]$ . Our primary object of interest will be  $A^G$ , the subring of invariants.

Note: We regard A as an algebra (ring + vector space over k), so a linear automorphism really means a k-linear automorphism.

# Invariant Theory - Examples

Formally,  $A^G = \{ p \in A : g(p) = p \text{ for all } g \in G \}.$ 

Let  $A = \mathbb{k}[x, y]$ .

- If  $G = \langle \sigma \rangle$  where  $\sigma(x) = x$  and  $\sigma(y) = -y$ , then  $A^G = \mathbb{k}[x, y^2]$ .
- If  $G = \langle \sigma \rangle$  where  $\sigma(x) = y$  and  $\sigma(y) = x$ , then  $A^G = \mathbb{k}[xy, x + y]$ .
- If  $G = \langle \sigma \rangle$  where  $\sigma(x) = -x$  and  $\sigma(y) = -y$ , then  $A^G = \mathbb{k}[x^2, y^2, xy]$ .

Note that in the first two examples,  $A^G$  is again a polynomial ring. However, in the last example  $A^G \cong \mathbb{k}[a,b,c]/(ab-c^2)$ .

# Shephard-Todd-Chevalley

An element  $g \in G$  is a reflection if g fixes a codimension 1 subspace of  $\mathbb{k}[x_1,\ldots,x_n]$ . In the case of a group acting linearly on a polynomial ring, we can represent  $g \in G$  as a matrix M. Then g is a reflection if all but one of the eigenvalues of M are 1.

# Theorem (Shephard-Todd 1954, Chevalley 1955)

Let G be a finite group acting on  $A = \mathbb{k}[x_1, \dots, x_n]$ . Then  $A^G \cong A$  if and only if G is generated by reflections.

The group G is small if it contains no reflections.

# Invariant Theory - Example

The following result is typically attributed to my great<sup>8</sup> (mathematical) grandfather Carl Gauss.



#### Theorem

Let  $A = \mathbb{k}[x_1, \dots, x_n]$  and  $G = \mathcal{S}_n$  acting on A by permutations (so  $\sigma(x_i) = x_{\sigma(i)}$ ). Then  $A^G$  is a polynomial ring generated by the elementary symmetric functions in the  $x_i$ .

#### A "dual" to STC

The skew group algebra A#G has basis  $A\otimes G$  and multiplication

$$(a \otimes g)(b \otimes h) = (ag(b)) \otimes gh$$
 for all  $a, b \in A, g, h \in G$ .

#### Example

Let  $A = \mathbb{k}[x, y]$  and let  $G = \langle \sigma \rangle$  where  $\sigma(x) = y$  and  $\sigma(y) = x$ . Then in A#G we have,

$$x\sigma \cdot y\sigma = (x\sigma(y))\sigma^2 = x^2e.$$

#### A "dual" to STC

Define the Auslander map  $\gamma_{A,G}:A\#G\mapsto \operatorname{End}_{A^G}(A)$  by  $a\#g\mapsto (b\mapsto ag(b)).$ 



## Theorem (Auslander 1962)

If G is small, then  $\gamma_{A,G}$  is an isomorphism.

Auslander's theorem first appeared in his 1962 paper, "On the purity of the branch locus". It is not actually stated as a theorem at all! The result relates finitely generated projective modules over  $\mathbb{k}[x,y]\#G$  to maximal Cohen-Macaulay modules over  $\mathbb{k}[x,y]^G$ .

# Noncommutative Invariant Theory

There are two (standard) ways to extend classical invariant theory to the noncommutative setting:

• One could replace A with a noncommutative algebra.

# Example

Let  $\mathbb{k}_{-1}[x_1,\ldots,x_n] = \mathbb{k}\langle x_1,\ldots,x_n : x_ix_j + x_jx_i = 0$  for  $i \neq j\rangle$  denote the (-1)-skew polynomial ring in n variables.

• One could replace G with a Hopf algebra.

#### Example

The Sweedler algebra  $H_2 = \mathbb{k}\langle g, x : g^2 = 1, x^2 = 0, gx + xg = 0 \rangle$  acts on  $\mathbb{k}[u, v]$  by g(u) = u, g(v) = -v, x(u) = 0, x(v) = u.

# AS regular algebras

An algebra A is connected  $\mathbb{N}$ -graded if it has a vector space decomposition

$$A = \bigoplus_{i=0}^{\infty} A_i$$

such that  $A_iA_j \subset A_{i+j}$  and  $A_0 = \mathbb{k}$ . Throughout, a graded algebra is understood to be connected  $\mathbb{N}$ -graded.

#### Definition

A graded algebra A is Artin-Schelter (AS) regular if

- $\operatorname{gldim}(A) = d < \infty$ ;
- $\mathsf{GKdim}(A) < \infty$ ;
- $\operatorname{Ext}_{A}^{i}(\mathbb{k}) = \delta_{id}\mathbb{k}(\ell)$ .

The constant  $\ell$  is the Gorenstein parameter of A.

# AS regular algebras

Examples of AS regular algebras include

- The (-1)-skew polynomial ring  $\mathbb{k}_{-1}[x_1,\ldots,x_n]$ .
- More generally, for  $q \in \mathbb{k}^{\times}$ , the q-skew polynomial ring is defined as  $\mathbb{k}_q[x_1, \dots, x_n] = \mathbb{k}\langle x_1, \dots, x_n : x_i x_j q x_j x_i = 0$  for  $i < j\rangle$ .
- The three-dimensional Sklyanin algebra with parameters  $(a, b, c) \in \mathbb{P}^2$  is generated by  $x_0, x_1, x_2$  with three relations

$$0 = ax_ix_{i+1} + bx_{i+1}x_i + cx_{i+2}^2$$
 indices mod *i*.

#### Question

In what context do the Shephard-Todd-Chevalley Theorem and Auslander's theorem hold when A is replaced by an AS regular algebra?

#### Reflections

But first...

#### Question

What do we mean by a reflection in the noncommutative setting?

In general, it is too much to ask that  $A^G \cong A$ .

#### Example

Let  $A = \mathbb{k}_{-1}[x, y]$  and  $G = \langle g \rangle$  where g(x) = y and g(y) = -x. Then  $A^G = \mathbb{k}[x^2 + y^2, xy]$ . Note that g is not a reflection in the classical sense.

#### Definition

A finite group G acting linearly on an AS regular algebra A is a reflection group if  $A^G$  is AS regular.

#### Reflections

Let A be a graded algebra. The trace function of a graded automorphism g acting on A is defined to be the formal power series

$$\operatorname{\mathsf{Tr}}_{A}(g,t) = \sum_{j=0}^{\infty} \operatorname{\mathsf{tr}}\left(\left.g\right|_{A_{j}}\right) t^{j}.$$

#### Definition (Kirkman, Kuzmanovich, and Zhang 2008)

Let A be a graded algebra of GK dimension n. Then  $g \in G$  is a quasi-reflection if its trace series is of the form

$$\mathsf{Tr}_{\mathcal{A}}(g,t) := rac{1}{(1-t)^{n-1}q(t)}, \quad q(1) 
eq 0.$$

# Conjecture (NC Shephard-Todd-Chevalley)

Let A be an AS regular algebra and G a finite group of graded automorphisms of A. Then  $A^G$  is AS regular if and only if G is generated by quasi-reflections of A.

# Theorem (Kirkman, Kuzmanovich, and Zhang 2008)

The conjecture holds when A is a noetherian AS regular algebra A with Hilbert series  $H_A(t) = (1-t)^{-n}$  (a so-called quantum polynomial ring) and G is a finite abelian group of graded automorphisms of A.

# The Auslander Map

# Conjecture (NC Auslander's Theorem)

If A is an AS regular algebra and G a finite group acting linearly on A without quasi-reflections, then the Auslander map is an isomorphism.

One can try to adapt the original proof to the noncommutative setting.

In general, with the right initial conditions, injectivity is not a problem. On the other hand, to prove surjectivity, the original proof requires that every minimal prime ideal in A is unramified over  $A^G$ .

We have run into quantum rigidity, that is, noncommutative algebras have few prime ideals.

# Some progress

#### Theorem (Mori, Ueyama 2015)

Let A be a noetherian AS-regular algebra of dimension  $d \geq 2$  and  $G \subset GrAut\ A$  a finite ample subgroup. Then  $A\#G \cong End_{A^G}(A)$  as graded algebras.

One problem with the ampleness condition, apart from being hard to check, is that it implies something stronger than Auslander's theorem. It actually implies that  $A^G$  is a graded isolated singularity.

# Pertinency

Let A be a graded algebra and write  $A = \bigoplus_n A_n$ . The Gelfand-Kirillov (GK) dimension of A is

$$\mathsf{GKdim}(A) := \limsup_{n \to \infty} \log_n(\dim_k A_n).$$

#### Definition (Bao, He, Zhang 2016)

Let A be an graded algebra with  $\operatorname{GKdim} A < \infty$  and G a finite group acting linearly on A. The pertinency of the action of G on A is defined to be

$$p(A, G) = \mathsf{GKdim}(A + + \mathsf{GKdim}(A + \mathsf{GK$$

where  $(f_G)$  is the two-sided ideal generated by  $f_G = \sum_{g \in G} 1 \# g$ .

# Theorem (BHZ)

Given the above setup,  $A\#G\cong \operatorname{End}_{A^G}(A)$  if and only if  $\operatorname{p}(A,G)\geq 2$ .

# Pertinency

#### Example (BHZ)

Consider  $W = \langle \sigma \rangle$ ,  $|\sigma| = n \geq 2$ , acting on  $\mathbb{k}_{-1}[x_1, \dots, x_n]$  by  $\sigma : x_i \mapsto x_{i+1}, x_n \mapsto x_1$  for  $1 \leq i \leq n-1$ . If  $n = 2^d$ ,  $d \geq 2$ , then

$$p(\mathbb{k}_{-1}[x_1,\ldots,x_n],W)=n\geq 2.$$

Hence, the Auslander map is an isomorphism in this case.

#### Question

Is the Auslander map an isomorphism for  $\mathbb{k}_{-1}[x_1,\ldots,x_n]$  and any subgroup of  $\mathcal{S}_n$ ?

# Strategery

We need to understand the ideal

$$(f_G) = \left(\sum_{g \in G} 1 \# g\right).$$

## Theorem (BHZ)

Let A be finitely generated over a central subalgebra T. Let A' be the image of the map

$$A \hookrightarrow A \# G \rightarrow (A \# G)/(f_G)$$

and let  $T' \subseteq A'$  be the image of T. Then

$$\mathsf{GKdim}\ T' = \mathsf{GKdim}\ A' = \mathsf{GKdim}(A\#G)/(f_G).$$

So we need only understand  $(f_G) \cap A$  or even  $(f_G) \cap T$ .

Let  $J \subset (f_G) \cap T$  be an ideal.

Assuming we can show GKdim  $T/J \le n-2$  we have

$$p(A, G) = \operatorname{\mathsf{GKdim}}(A + \operatorname{$$

Thus, under this assumption, the Auslander map is an isomorphism for A and G.

# Producing elements

Let R be a commutative algebra and G a finite group acting on R.

For  $g \in G$ , let I(g) be the ideal generated by  $\{r - g.r : r \in R\}$ .

## Lemma (Brown, Lorenz 1994)

$$\prod_{\substack{g \in G \\ g \neq e}} I(g) \subset (f_G) \cap R$$

There are two problems with applying/adapting this lemma:

- The proof of this lemma is highly commutative.
- It produces elements of degree |G| 1 = n! 1, often much higher than lowest degree element in  $(f_G)$ .

However, the idea can be adapted for algebras with large centers.

Let 
$$T=\Bbbk[x_1^2,x_2^2,x_3^2]\subset C(V_3)$$
 and  $f=\sum_{\sigma\in\mathcal{S}_3}1\#\sigma$ . Define

$$f_{1} = x_{1}^{2} f - f x_{2}^{2}$$

$$= (x_{1}^{2} - x_{2}^{2}) \#(1) + (x_{1}^{2} - x_{2}^{2}) \#(13)$$

$$+ (x_{1}^{2} - x_{3}^{2}) \#(23) + (x_{1}^{2} - x_{3}^{2}) \#(123)$$

$$f_{2} = x_{1}^{2} f_{1} - f_{1} x_{3}^{2}$$

$$= (x_{1}^{2} - x_{2}^{2})(x_{1}^{2} - x_{3}^{2}) \#(1) + (x_{1}^{2} - x_{3}^{2})(x_{1}^{2} - x_{2}^{2}) \#(23)$$

$$f_{3} = x_{2}^{2} f_{2} - f_{2} x_{3}^{2}$$

$$= (x_{1}^{2} - x_{2}^{2})(x_{1}^{2} - x_{3}^{2})(x_{2}^{2} - x_{3}^{2}) \#(1) \in (f) \cap C(A).$$

This provides only one of the elements we need. We must use noncommutativity to obtain the second element.

Recall

$$f_2 = (x_1^2 - x_2^2)(x_1^2 - x_3^2)\#(1) + (x_1^2 - x_3^2)(x_1^2 - x_2^2)\#(23).$$

Now

$$g_{23} = (x_2 f_2 - f_2 x_3)(x_2 - x_3)$$

$$= (x_1^2 - x_2^2)(x_1^2 - x_3^2)(x_2 - x_3)^2 \#(1)$$

$$= (x_1^2 - x_2^2)(x_1^2 - x_3^2)(x_2^2 + x_3^2) \#(1) \in (f) \cap C(A).$$

We can similarly construct  $g_{12}$  and  $g_{13}$ . Set  $g = g_{12} + g_{13} + g_{23}$ .

# Example: $\mathbb{k}_{-1}[x_1, x_2, x_3]$ and $\mathcal{S}_3$

The elements

$$f_3 = (x_1^2 - x_2^2)(x_1^2 - x_3^2)(x_2^2 - x_3^2)$$

$$g = (x_1^2 - x_2^2)(x_1^2 - x_3^2)(x_2^2 + x_3^2)$$

$$+ (x_1^2 - x_2^2)(x_1^2 + x_3^2)(x_2^2 - x_3^2)$$

$$+ (x_1^2 + x_2^2)(x_1^2 - x_3^2)(x_2^2 - x_3^2)$$

are relatively prime in  $T = \mathbb{k}[x_1^2, x_2^2, x_3^2]$  and GKdim  $T/(f_3, g) \leq 1$ .

# Theorem (G-Kirkman-Moore-Won)

Let G be any subgroup of  $S_n$  acting on  $V_n = \mathbb{k}_{-1}[x_1, \dots x_n]$  as permutations. Then  $p(V_n, G) \geq 2$  so the Auslander map is an isomorphism.

# All the Auslanders!

#### Theorem (G-Kirkman-Moore-Won)

The Auslander map is an isomorphism for the following:

- subgroups of  $S_n$  acting on  $\mathbb{k}_{-1}[x_1,\ldots,x_n]$ ,
- subgroups of  $S_n$  acting on the (-1)-quantum Weyl algebra,
- subgroups of  $S_3$  acting on the three-dimensional Sklyanin algebra S(1,1,-1).
- the cyclic group  $\langle (1\ 2\ 3) \rangle$  acting on a generic three-dimensional Sklyanin algebra S(a, b, c),
- subgroups of weighted permutations acting on the down-up algebra A(2,-1)
- $\langle -I_n, (1\ 3)(2\ 4) \rangle$  acting on  $\mathbb{k}_{-1}[x_1, x_2, x_3, x_4]$ .

# Graded isolated singularities

# Definition (Ueyama 2013)

 $A^G$  is a graded isolated singularity if gldim tails  $A^G < \infty$ .

# Theorem (Ueyama 2016)

If  $A^G$  is a graded isolated singularity, then

- $A^G$  is an AS-Gorenstein algebra of dimension  $d \ge 2$ ,
- $A \in \mathsf{CM}^{\mathsf{gr}}(A^\mathsf{G})$  is a (d-1)-cluster tilting module, and
- $\operatorname{Ext}_{A^G}^1(A, M)$  and  $\operatorname{Ext}_{A^G}^1(M, A)$  are f.d. for  $M \in \operatorname{CM}^{\operatorname{gr}}(A^G)$ .

# Theorem (Mori and Ueyama 2016)

If  $GKdim\ A \ge 2$ ,  $A^G$  is a graded isolated singularity if and only if  $dim_k\ A\#G/(f_G) < \infty$  if and only if p(A,G) = n.

# Graded isolated singularities

## Theorem (BHZ)

Let  $A = \mathbb{k}_{-1}[x_1, \dots, x_{2^n}]$  and  $G = \langle (1 \ 2 \ \dots \ 2^n) \rangle$ . Then  $p(A, G) = 2^n$  so A<sup>G</sup> is a graded isolated singularity.

## Theorem (G-Kirkman-Moore-Won)

For the following,  $A^G$  is a graded isolated singularity:

- $\langle (1\ 2)(3\ 4), (1\ 3)(2\ 4) \rangle$  acting on  $\mathbb{k}_{-1}[x_1, x_2, x_3, x_4]$ ,
- $\langle (1\ 2)(3\ 4)\cdots(2n-1\ 2n)\rangle$  acting on  $\mathbb{k}_{-1}[x_1,\ldots,x_{2n}]$ ,
- $\langle (1\ 2\ 3) \rangle$  acting on a generic Sklyanin algebra S(a,b,c),
- $\langle -I_n, (1\ 3)(2\ 4) \rangle$  acting on  $\mathbb{k}_{-1}[x_1, x_2, x_3, x_4]$ .

Auslander's Theorem March 31, 2018

# Whither the upper bounds?

Constructing elements of  $(f_G)$  gives lower bounds for p(A, G). Can we find upper bounds as well?

#### Theorem (G-Kirkman-Moore-Won)

If  $G' \leq G$  then  $p(A, G) \leq p(A, G')$ .

This resolves a conjecture of Bao-He-Zhang for the group case.

#### Corollary (G-Kirkman-Moore-Won)

Let A be a noetherian connected graded algebra and suppose G contains a quasi-reflection g. If A and  $A^{\langle g \rangle}$  have finite global dimension, then the Auslander map  $\gamma_{A,G}$  is not an isomorphism.

# Computing pertinency exactly

Lower bounds: constructing elements of  $(f_G)$ 

Upper bounds: subgroup theorem

Subgroups of  $S_3$  acting on  $\mathbb{k}_{-1}[x_1, x_2, x_3]$ :

| conjugacy class              | p(A,G) |
|------------------------------|--------|
| ⟨(12)⟩                       | 2      |
| ⟨(123)⟩                      | 2 or 3 |
| $\langle (12), (23) \rangle$ | 2      |

# Computing pertinency exactly

Subgroups of  $S_4$  acting on  $\mathbb{k}_{-1}[x_1, x_2, x_3, x_4]$ :

| conjugacy class                      | p(A, G) |
|--------------------------------------|---------|
| ⟨(12)⟩                               | 2       |
| ⟨(12)(34)⟩                           | 4       |
| ⟨(123)⟩                              | 2 or 3  |
| ⟨(1234)⟩                             | 4       |
| $\langle (12), (34) \rangle$         | 2       |
| $\langle (12)(34), (13)(24) \rangle$ | 4       |
| $\langle (1234), (24) \rangle$       | 2       |
| $\langle (123), (124) \rangle$       | 2 or 3  |
| $\langle (123), (12) \rangle$        | 2       |
| $\langle (1234), (12) \rangle$       | 2       |
|                                      |         |

# Other questions

- What is the pertinency of  $\langle (1\ 2\ 3) \rangle$  acting on  $\mathbb{k}_{-1}[x_1,x_2,x_3]$  as permutations (computational evidence suggests it is 2)? In general, need more methods for constructing upper bounds.
- Direct connections between Tr and pertinency?
- Weighted permutations? Have some partial results in this direction.
- Hopf actions! A theorem of Chan, Kirkman, Walton, and Zhang (2016) shows that the Auslander map is an isomorphism for A an AS regular algebra of dimension 2 and H a semisimple Hopf algebra.

# Thank You!