Ensemble Learning

COSC 480A: Applied Machine Learning

Spring 2021

Prof. Apthorpe

Outline

- Main Idea
- Voting Classifiers
- Bagging & Pasting
- Random Forests
- Stacking
- Boosting
- Takeaways

Main Idea

- Improve classification performance by combining many models
 - Many diverse perspectives better than one opinion

Thought Experiment

Voting Classifiers

 Key Idea: Different types of models represent different aspects of underlying phenomenon

Voting Classifiers

- "Hard" voting classifier
 - Evenly weight "vote" from all classifiers
- "Soft" voting classifier
 - Use predicted probability to weight "votes"

 How do KNN, SVM, and decision trees estimate prediction probabilities?

Bagging & Pasting

- Key Idea: Stochastic classifiers may have high variance
- Implementation: Training multiple instances of the same type of classifier on subsets of training data will reduce variance
 - Bagging: Sampling with replacement
 - Pasting: Sampling without replacement

Hard or soft voting for final prediction

Random Forests

Many decision trees trained using bagging or pasting

- Limit max depth or number of leaf nodes to increase diversity
- Reduces variance from stochastic decision tree training (CART or ID3)
- More robust feature importance metrics than single decision tree
- Competes with deep learning when data has obvious features
- Few hyperparameters, robust to overfitting, generally good results!

Stacking

- **Key Idea:** Hard and soft voting can't express that some models may be better or worse than others at prediction task
- Implementation: Train a meta-model to weight votes of each classifier

Cross-Validation Stacking

$$\hat{y} = \sum_{m \in M} v_m \, h_m(\mathbf{x})$$

Prediction

Sum of weighted votes of *m* classifiers in ensemble

$$\mathbf{v} = \underset{\mathbf{v}}{\operatorname{argmin}} \sum_{i=1}^{N} E(y_i, \sum_{m=1}^{M} v_m h_m^{-1}(\mathbf{x}))$$

Choose weights that minimize the sum of the leave-one-out cross-validation errors across the ensemble

Stacking

- Key Idea: Hard and soft voting can't express that some models may be better or worse than others at prediction task
- Implementation: Train a meta-model to weight votes of each classifier

Boosting

- **Key Idea:** Shallow ML classifiers can exhibit **bias errors**, i.e. mistakes due to assumptions that simplify learning but miss underlying complexities of data
 - How does a depth 2 decision tree exhibit bias? How about a linear SVM?

• *Implementation:* Train multiple classifiers in sequence, each to correct mistakes made by the previous

Train each successive model to predict the error of the previous

Final label is sum of sequential predictions

AdaBoost

Weak learner: any classifier that does better (even if only slightly better) than random guessing

AdaBoost + any weak learner

- Zero training error with enough boosting rounds
- Improved test error with additional rounds

AdaBoost + decision trees

- Competes with deep learning when data has obvious features
- Many fewer parameters and hyperparameters than deep learning
- Easier to tune with much less chance of overfitting than deep learning

Takeaways

- Ensemble methods can be applied to any supervised classifier
 - If computation time permits, give it a try!

- Diverse set of simple models
 - Better than one simple model
 - Often better than one complex model

Random Forests and AdaBoost are among best supervised ML methods

5-Minute Break

Programming Practice

EnsembleLearning.ipynb