Calcul numérique - 1

A. Comprendre la droite des nombres réels

On peut représenter les nombres réels sur un axe gradué.

- D'une part, tout nombre correspond à une *position* précise sur l'axe des réels.
- D'autre part, tout nombre peut aussi représenter un déplacement sur l'axe, à gauche si négatif, à droite si positif.

- Un nombre interprété comme une position, peut représenter de l'argent (si positif) ou une dette (si négatif).
- Un nombre interprété comme un déplacement peut représenter un gain (si positif) ou une perte (si négatif).

B. Ajouter ou soustraire des nombres réels

• Ajouter ou soustraire c'est appliquer un déplacement sur l'axe. C'est cumuler des gains ou des pertes.

Méthode. Pour additionner deux nombres réels :

- Si les nombres ont le même signe, on ajoute les nombres sans signe, et on garde le signe initial.
- Si les nombres ont des signes différents, on soustrait les nombres sans signe, on garde le signe du plus éloigné de 0.

Exemples. Calculer 2 + -3.

2 + -3 = -(3 - 2) = -1

Calculer -5 + -3.

-5 + -3 = -(5 + 3) = -8

Calculer -5.2 + 7.

-5.2 + 7 = +(7 - 5.2) = 1.8

Méthode. Soustraire c'est additionner l'opposé.

Exemple.

Calculer -5 - 7.

-5-7=-5+-7=-(5+7)=-12

Méthode. Pour additionner ou soustraire *plusieurs* nombres réels, on commence par les deux premiers, puis le résultat avec le troisième, puis le résultat avec le quatrième, etc...

Exemple. Calculer -5 + 7 - 3 + -2.

-5+7-3+-2=2-3-2=-1-2=

Exercice B1. Calculer:

3 - 5 + 2 - 6 =

2-3+-2--6=

3.5 - 6.8 + 1.3 =

C. <u>Multiplier des nombres réels.</u>

Méthode. Pour multiplier deux nombres réels : On multiplie sans signe, et on applique la règle des signes :

+ multiplié par + donne +

+ multiplié par - donne -

multiplié par + donne -

multiplié par – donne +

Exemples. Calculer 5×-7 .

 $5 \times -7 = -35$

5 € perdus 7 fois, c'est 35 € de perdus.

Calculer -10×-2 .

 $-10 \times -2 = 20$

Une dette de 10 € perdue 2 fois, c'est 20 € de gagnés.

Exercice C1. Calculer:

 $4 \times -2 \times -3 \times 2 =$

 $-5 \times -1 \times -1 \times -2 \times -3 =$

Calcul numérique - 2

D. Diviser des nombres réels.

Méthode. Pour diviser deux nombres réels : On divise sans signe, et on applique la règle des signes identique à x :

- + divisé par + donne +
- + divisé par donne -
- divisé par + donne –
- divisé par donne +

Exemples.

$$\frac{100}{25} = \frac{4}{100}$$

100 € donnés équitablement à 25 personnes, fait gagner 4 € à chacun.

100 € pris équitablement à 5 personnes, fait perdre 20 € à chacun.

$$\frac{-100}{2} = -50$$

Une dette de 100 € donnée équitablement à 2 personnes, fait perdre 50 € à chacun

Une dette de 60 € prise équitablement à 3 personnes, fait gagner 20 € à chacun.

Exercice D1. Calculer:

$$\frac{80}{-4} =$$

$$\frac{-0,12}{6} =$$

$$\frac{3}{0.5} =$$

$$\frac{-18}{5} =$$

Calcul numérique - 3

E. <u>Déterminer une valeur approchée de précision donnée.</u>

• Rappels :
$$10^{-1} = \frac{1}{10}$$
 $10^{-2} = \frac{1}{100}$ $10^{-k} = \underbrace{0, \dots 0}_{k \text{ zéros}} 1$ $10^1 = 10$ $10^2 = 100$ $10^k = \underbrace{1 \underbrace{0 \dots 0}_{k \text{ zéros}}}_{}$

• La précision peut être *absolue* : « à 0,001 près » / « à 10^{-3} près » / « au millième près » ou *relative* : « à 3 *chiffres significatifs* près ».

Méthode. Pour donner la valeur approchée par défaut d'un nombre à une certaine précision :

- On coupe le nombre à la précision indiquée. (En gardant des 0 si on coupe avant la virgule)
- Si le nombre est positif, on ne fait rien. Si le nombre est négatif, on ajoute 1 au dernier chiffre du nombre coupé.

Exemples. Quelle est la valeur approchée par défaut de 132,058 à 0,01 près ? $132,058 \approx 132,058$ Quelle est la valeur approchée par défaut de 132,058 à 2 chiffres significatifs près ? $132,058 \approx 132,058 \approx 132,058$ Quelle est la valeur approchée par défaut de -132,058 à 1 près ? $-132,058 \approx 132,058 \approx 132,058$

Méthode. Pour donner la valeur approchée par excès d'un nombre à une certaine précision :

- On coupe le nombre à la précision indiquée.
- Si le nombre est positif, on ajoute 1 au dernier chiffre du nombre coupé. Si le nombre est négatif, on ne fait rien.

Exemples.	Quel est la valeur approchée par excès de 17,251 à 10^{-1} près ? $17,251 \approx$	17,3
	Quel est la valeur approchée par excès de 17,251 à 4 chiffres significatifs près ? 1	7,251 ≈

Méthode. Pour donner la valeur approchée *par arrondi* d'un nombre à une certaine précision :

- On coupe le nombre à la précision indiquée.
- Si le chiffre qui suit est 5, 6, 7, 8 ou 9, alors on ajoute 1 au dernier chiffre du nombre coupé.

Exemple.	Quel est l'arrondi de 5216,34 à 2 chiffres significatifs près ?	$5216,34 \approx 5200$
	Quel est l'arrondi de 5216,34 à la dizaine près ? $5216,34 \approx$	

Exercice E1.

a) Quelle est la valeur approchée par défaut de 302,59 à 0,1 près ?		
b) Quel est l'arrondi de 33,78 à 1 près ?	33,78 ≈	
c) Quelle est la valeur approchée par excès de $12,311$ à 10^{-2} près ?		
d) Quel est l'arrondi de 94,15 à 3 chiffres significatifs près ?		
e) Quelle est la valeur approchée par excès de $-3031,2$ à la centaine près ?	−3031,2 ≈	
f) Quelle est la valeur approchée par défaut de 109,2 à 2 chiffres significatifs près ?	109,2 ≈	

F. <u>Ecrire un nombre en notation scient</u>ifique

Méthode.

- Pour écrire un grand nombre en **notation scientifique**, par exemple 3125,58: On divise ce nombre par 10 (on décale la virgule à gauche) plusieurs fois, jusqu'à ce que la virgule soit juste après le 1^{er} chiffre. $3125,58 = \frac{3,12558 \times 10^3}{125,58} = \frac{3}{125,58} \times \frac{10^3}{125,58} = \frac{3}{12$
- Pour écrire un petit nombre en notation scientifique, par exemple 0,00052: On <u>multiplie</u> par 10 (on décale la virgule à droite) plusieurs fois jusqu'à ce que la virgule soit après le 1^{er} chiffre. $0,00052 = \frac{5,2 \times 10^{-4}}{10^{-4}}$

Exercice F1. Mettre en notation scientifique les nombres suivants :

a)
$$532 =$$
 b) $12,3 =$ c) $0,0181 =$

d)
$$0.2 =$$
 e) $1290.9 =$ f) $0.00002 =$

g)
$$490.1 =$$
 h) $0.09071 =$