Convolution Algorithm

Dr. Cyril Prasanna Raj P.

Director – Angstromers Engg. Services

Professor – Dept. of ECE

CIT, Bangalore

Realizing convolution algorithm

$$X_m = \sum_{n=0}^{N-1} x_n w^{nm},$$

 $X_m = \sum x_n w^{nm}$, where N is the size of the vectors, $w = e^{2i\pi/N}$

$$X_m = \sum_{n=0}^{N/2-1} x_n w^{nm} + w^{mN/2} \sum_{n=0}^{N/2-1} x_{n+N/2} w^{nm},$$

$$X_m = \sum_{n=0}^{N/2-1} x_{2n} w^{2nm} + w^m \sum_{n=0}^{N/2-1} x_{2n+1} w^{2nm}.$$

Matix representation

$$\begin{pmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \\ X_7 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 & w^4 & w^5 & w^6 & w^7 \\ 1 & w & w^2 & w^3 & w^4 & w^5 & w^6 & w^7 \\ 1 & w^2 & w^4 & w^6 & w^8 & w^{10} & w^{12} & w^{14} \\ 1 & w^3 & w^6 & w^9 & w^{12} & w^{15} & w^{18} & w^{21} \\ 1 & w^4 & w^8 & w^{12} & w^{16} & w^{20} & w^{24} & w^{28} \\ 1 & w^5 & w^{10} & w^{15} & w^{20} & w^{25} & w^{30} & w^{35} \\ 1 & w^6 & w^{12} & w^{18} & w^{24} & w^{30} & w^{36} & w^{42} \\ 1 & w^7 & w^{14} & w^{21} & w^{28} & w^{35} & w^{42} & w^{49} \end{pmatrix}$$

$$\left(\begin{array}{c} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{array}\right)$$

$$X_m = \sum_{n=0}^{N-1} x_n w^{nm},$$

Matix representation – arranging in even terms

$\left(\begin{array}{c}X_0\end{array}\right)$	1	1	1	1	1	1	1	1	(
X_1	1	w^2	w^4	w^6	w	w^3	w^5	w^7	
X_2	1	w^4	w^8	w^{12}	w^2		w^{10}		
X_3	1	w^6		w^{18}			w^{15}		
X_4	1	w^8						w^{28}	
X_5	1	w^{10}						w^{35}	
X_6	1	w^{12}					w^{30}		
$\left(\begin{array}{c}X_7\end{array}\right)$	1	w^{14}	w^{28}	w^{42}	w^7	w^{21}	w^{35}	w^{49}	

 x_7

 x_0

Matix representation – arranging in even terms

$\left(\begin{array}{c}X_0\end{array}\right)$	1	1	1	1	1	1	1	1	1
X_1		1	w^4	w^2	w^6	w	w^5	w^3	w^7
X_2		1	w^8		w^{12}		w^{10}	w^6	w^{14}
X_3	_	_1	w^{12}	w^6	w^{18}	w^3	w^{15}	w^9	w^{21}
X_4	_	1	w^{16}	w^8	w^{24}		w^{20}	w^{12}	w^{28}
X_5		1	w^{20}	w^{10}	w^{30}		w^{25}		w^{35}
X_6		1	w^{24}		w^{36}		w^{30}	w^{18}	w^{42}
X_7		1	w^{28}	w^{14}	w^{42}	w^7	w^{35}	w^{21}	w^{49}

Replacing with twiddle factors (mod 8)

г		ı		I		ı	-
1	1	1	1	1	1	1	1
			w^6				w^7
1	w^8	w^4	w^{12}	w^2	w^{10}	w^6	w^{14} w^{21}
1	w^{12}	w^6	w^{18}	w^3	w^{15}	w^9	w^{21}
1	w^{16}	w^8	w^{24}	w^4	w^{20}	w^{12}	w^{28}
1	w^{20}	w^{10}	w^{30}	w^5	w^{25}	w^{15}	w^{35}
1	w^{24}	w^{12}	w^{36}	w^6	w^{30}	w^{18}	w^{42}
1	w^{28}	w^{14}	w^{42}	w^7	w^{35}	w^{21}	w^{42} w^{49}

$\int_{0}^{W^{0}}$	W^0						
	W^4						
	W^0						
	W^4						
	W^0						
W^0	W^4	W^2	W^6	W^5	W^1	W^7	W^3
	W^0						
	W^4						

FFT algorithm

 x_0

 x_4

 x_2

 x_6

 x_1

 x_5

 x_3

| W^0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| W^0 | W^4 | W^2 | W^6 | W^1 | W^5 | W^3 | W^7 |
| W^0 | W^0 | W^4 | W^4 | W^2 | W^2 | W^6 | W^6 |
| W^0 | W^4 | W^6 | W^2 | W^3 | W^7 | W^1 | W^5 |
| W^0 | W^0 | W^0 | W^0 | W^4 | W^4 | W^4 | W^4 |
| W^0 | W^4 | W^2 | W^6 | W^5 | W^1 | W^7 | W^3 |
| W^0 | W^0 | W^4 | W^4 | W^6 | W^6 | W^2 | W^2 |
| W^0 | W^4 | W^6 | W^2 | W^7 | W^3 | W^5 | W^1 |

X_0		1	1	1	1	1	1	1	1
X_1		1	-1	w^2	$-w^2$	w	-w	w^3	$-w^3$
X_2		1	1	-1	-1	w^2	w^2	$-w^2$	$-w^2$
X_3	_	1	-1	$-w^2$	w^2	w^3	$-w^3$	w	-w
X_4	_	1	1	1	1	-1	-1	-1	-1
X_5		1	-1	w^2	$-w^2$	-w	w	$-w^3$	w^3
X_6		1	1	-1	-1	$-w^2$	$-w^2$	w^2	w^2
X_7		1	-1	$-w^2$	w^2	$-w^3$	w^3	-w	w _

Recursive matrix multiplications

The recursive sum can be represented as a sequence of matrix transformations:

$$(X) = [A_2][A_1][A_0][P](x),$$

$$\begin{bmatrix} 1 & \cdot & W^0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & W^2 & \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot & W^4 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & W^6 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & W^0 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & W^2 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & W^4 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & W^6$$

 x_4

 x_1

1) an address generator

ILLUSTRATION OF THE BIT-REVERSED INDICES.

Index	binary	Bit reversed index	binary
0	000	0	000
1	001	4	100
2	010	2	010
3	011	6	110
4	100	1	001
5	101	5	101
6	110	3	011
7	111	7	111

2) a "butterfly" operator to do the complex multiply/add,

3) A memory and

4) roots-of-unity(twiddle factor) generator

Computation time

N	1000	10^{6}	10^{9}
N^2	10^{6}	10^{12}	10^{18}
$Nlog_2N$	10^{4}	20×10^6	$30 x 10^9$

$$10^{18} ns \rightarrow 31.2 \ years$$

$$30 \times 10^9 ns \rightarrow 30 seconds$$

		BRUTE FORCE	FFT	
N	$r = \log_2 N$	$4N^2$	$2N\log_2 N$	speedup
2	1	16	4	4
4	2	64	16	4
8	3	256	48	5
1,024	10	4,194,304	20,480	205
65,536	16	$1.7\cdot 10^{10}$	$2.1 \cdot 10^6$	$^{\sim}10^{4}$

1	1	1	1	1	1	1	1
1	-1	w^2	$-w^2$	w	-w	w^3	$-w^3$
1	1	-1	-1	w^2	w^2	$-w^2$	$-w^2$
1	-1	$-w^2$	w^2	w^3	$-w^3$	w	-w
1	1	1	1	-1	-1	-1	-1
1	-1	w^2	$-w^2$	-w	w	$-w^3$	w^3
1	1	-1	-1	$-w^2$	$-w^2$	w^2	
				_		-w	

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & w^2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -w^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -w^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

