

Languages and Machines

L2: Context-Free Grammars

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Previously: Regular Sets / Languages

- ightharpoonup Recursively defined over an alphabet Σ from
 - **>** Q
 - $ightharpoonup \{\epsilon\}$
 - ▶ $\{a\}$ for all $a \in \Sigma$

by applying union, concatenation, and Kleene star.

- ▶ Regular expressions: a notation to denote *regular languages*
- Example:

The regular expression

denotes the regular set

$$\{a\}^*(\{c\}\cup\{d\})\{b\}^*$$

The regular expression of a set is not unique

Language $L = \{a, b\}^* \{bb\} \{a, b\}^*$ is a regular set over $\Sigma = \{a, b\}$:

1. From the basis, $\{a\}$ and $\{b\}$ are regular sets

- 1. From the basis, $\{a\}$ and $\{b\}$ are regular sets
- 2. Applying union and Kleene star, we obtain $\{a, b\}^*$

- 1. From the basis, $\{a\}$ and $\{b\}$ are regular sets
- 2. Applying union and Kleene star, we obtain $\{a, b\}^*$
- 3. Using concatenation, $\{b\}\{b\} = \{bb\}$ is regular

- 1. From the basis, $\{a\}$ and $\{b\}$ are regular sets
- 2. Applying union and Kleene star, we obtain $\{a, b\}^*$
- 3. Using concatenation, $\{b\}\{b\} = \{bb\}$ is regular
- 4. Applying concatenation twice yields $\{a, b\}^*\{bb\}\{a, b\}^*$

Useful to algebraically manipulate regular expressions, and construct equivalent ones. They relate **syntactically different** regular expressions that denote the **same** language:

- $ightharpoonup \emptyset u = u\emptyset = \emptyset$
- $ightharpoonup \epsilon u = u\epsilon = u$

Useful to algebraically manipulate regular expressions, and construct equivalent ones.

They relate **syntactically different** regular expressions that denote the **same** language:

- $ightharpoonup \emptyset u = u\emptyset = \emptyset$
- $ightharpoonup \epsilon u = u\epsilon = u$
- $\blacktriangleright \ \emptyset^* = \emptyset$
- $ightharpoonup \epsilon^* = \epsilon$

Useful to algebraically manipulate regular expressions, and construct equivalent ones.

They relate **syntactically different** regular expressions that denote the **same** language:

$$ightharpoonup \emptyset u = u\emptyset = \emptyset$$

$$ightharpoonup \epsilon u = u\epsilon = u$$

$$ightharpoonup$$
 $\emptyset^* = \emptyset$

$$ightharpoonup \epsilon^* = \epsilon$$

$$ightharpoonup u | v = v | u$$

$$ightharpoonup u | \emptyset = u$$

$$ightharpoonup u | u = u$$

$$ightharpoonup u(v \mid w) = uv \mid uw$$

$$\blacktriangleright (u | v)w = uw | vw$$

$$u^* = (u^*)^*$$

$$\blacktriangleright (uv)^*u = u(vu)^*$$

$$egin{aligned} (u\,|\,v)^* &= (u^*\,|\,v)^* \ &= u^*(u\,|\,v)^* = (u\,|\,vu^*)^* \ &= (u^*\,v^*)^* = u^*(vu^*)^* \ &= (u^*\,vu^*)^* \end{aligned}$$

Useful to algebraically manipulate regular expressions, and construct equivalent ones.

They relate **syntactically different** regular expressions that denote the **same** language:

$$ightharpoonup \emptyset u = u\emptyset = \emptyset$$

$$ightharpoonup \epsilon u = u\epsilon = u$$

$$ightharpoonup$$
 $0* = 0$

$$ightharpoonup \epsilon^* = \epsilon$$

$$ightharpoonup u | v = v | u$$

$$ightharpoonup u | \emptyset = u$$

$$ightharpoonup u | u = u$$

$$ightharpoonup u(v \mid w) = uv \mid uw$$

$$\blacktriangleright (u | v)w = uw | vw$$

$$u^* = (u^*)^*$$

$$\blacktriangleright (uv)^*u = u(vu)^*$$

$$egin{aligned} (u\,|\,v)^* &= (u^*\,|\,v)^* \ &= u^*(u\,|\,v)^* = (u\,|\,vu^*)^* \ &= (u^*\,v^*)^* = u^*(vu^*)^* \ &= (u^*\,vu^*)^* \end{aligned}$$

Language $L=a^*b^*$ is another regular set over $\{a,b\}$:

Language $L = a^*b^*$ is another regular set over $\{a, b\}$:

From the basis, $\{a\}$ and $\{b\}$ are regular sets; then we use Kleene star (twice), and finally we use concatenation.

Language $L = a^*b^*$ is another regular set over $\{a, b\}$:

- From the basis, $\{a\}$ and $\{b\}$ are regular sets; then we use Kleene star (twice), and finally we use concatenation.
- $ightharpoonup L = \{a^n b^m \, | \, n \geq 0, m \geq 0\}$

Language $L = a^*b^*$ is another regular set over $\{a, b\}$:

- From the basis, $\{a\}$ and $\{b\}$ are regular sets; then we use Kleene star (twice), and finally we use concatenation.
- $ightharpoonup L = \{a^n b^m \, | \, n \geq 0, m \geq 0\}$
- ▶ Given $u \in L$, the number of occurrences of a in u is **independent** from the number of occurrences of b. That is, we don't necessarily have that $n_a(u) = n_b(u)$.

Language $L = a^*b^*$ is another regular set over $\{a, b\}$:

- From the basis, $\{a\}$ and $\{b\}$ are regular sets; then we use Kleene star (twice), and finally we use concatenation.
- $ightharpoonup L = \{a^n b^m \, | \, n \geq 0, m \geq 0\}$
- ▶ Given $u \in L$, the number of occurrences of a in u is **independent** from the number of occurrences of b. That is, we don't necessarily have that $n_a(u) = n_b(u)$.

What about the language $L' = \{a^k b^k \mid k \geq 0\}$?

Language $L = a^*b^*$ is another regular set over $\{a, b\}$:

- From the basis, $\{a\}$ and $\{b\}$ are regular sets; then we use Kleene star (twice), and finally we use concatenation.
- $ightharpoonup L = \{a^n b^m \, | \, n \geq 0, m \geq 0\}$
- ▶ Given $u \in L$, the number of occurrences of a in u is **independent** from the number of occurrences of b. That is, we don't necessarily have that $n_a(u) = n_b(u)$.

What about the language $L' = \{a^k b^k \mid k \geq 0\}$?

Intuition: we must "remember" $k=n_a(u)$ when generating occurrences of b

Language $L = a^*b^*$ is another regular set over $\{a, b\}$:

- From the basis, $\{a\}$ and $\{b\}$ are regular sets; then we use Kleene star (twice), and finally we use concatenation.
- $ightharpoonup L = \{a^n b^m | n \ge 0, m \ge 0\}$
- ▶ Given $u \in L$, the number of occurrences of a in u is **independent** from the number of occurrences of b. That is, we don't necessarily have that $n_a(u) = n_b(u)$.

What about the language $L' = \{a^k b^k \mid k \geq 0\}$?

- Intuition: we must "remember" $k=n_a(u)$ when generating occurrences of b
- There are regular expressions for *specific* strings in L': a b, aa bb, aaa bbb,... This is not general enough.
- L' is not a regular language! What is it then? How can we generate it?

Context-Free Grammars

A formal system used to generate the strings of a language.

A quadruple (V, Σ, P, S) where

- V is a set of variables or nonterminals
- $ightharpoonup \Sigma$ is an alphabet of terminals, disjoint from V
- ▶ P is a finite set of production rules, taken from set $V \times (V \cup \Sigma)^*$. We write $A \to w$ instead of (A, w).
- $ightharpoonup S \in V$ is the start symbol.

Context-Free Grammars

A formal system used to generate the strings of a language.

A quadruple (V, Σ, P, S) where

- V is a set of variables or nonterminals
- $ightharpoonup \Sigma$ is an alphabet of terminals, disjoint from V
- ▶ P is a finite set of production rules, taken from set $V \times (V \cup \Sigma)^*$. We write $A \to w$ instead of (A, w).
- $ightharpoonup S \in V$ is the start symbol.

Example. We write

for the grammar $G = (V, \Sigma, P, S)$ where

- ▶ nonterminals $V \supseteq \{S, B\}$, with start symbol S
- ▶ Terminals $\Sigma \supseteq \{a, b\}$
- ▶ Production rules $P = \{(S, aSa), (S, aBa), (B, bB), (B, b)\}$

$$G: S
ightarrow aSa \mid aBa \ B
ightarrow bB \mid b$$

ightharpoonup L(G), the language of G, is

ightharpoonup L(G), the language of G, is $\{a^i\ b^j\ a^i\ |\ i\geq 1, j\geq 1\}$

- ightharpoonup L(G), the language of G, is $\{a^i\ b^j\ a^i\ |\ i\geq 1, j\geq 1\}$
- ▶ Some derivation steps: $S \Rightarrow_{(1)} aSa$ and $baB \Rightarrow_{(3)} babB$
- Let \Rightarrow^* denote the reflexive, transitive closure of \Rightarrow . Some (*G*-)derivations: $baB \Rightarrow^* baB$ and $baB \Rightarrow^*_{(3,3,4)} babbb$

- ightharpoonup L(G), the language of G, is $\{a^i \ b^j \ a^i \mid i \geq 1, j \geq 1\}$
- ▶ Some derivation steps: $S \Rightarrow_{(1)} aSa$ and $baB \Rightarrow_{(3)} babB$
- Let \Rightarrow^* denote the reflexive, transitive closure of \Rightarrow . Some (*G*-)derivations: $baB \Rightarrow^* baB$ and $baB \Rightarrow^*_{(3,3,4)} babbb$
- Some sentential forms:

$$S\Rightarrow_{(1)} aSa\Rightarrow_{(1)} aaSaa\Rightarrow_{(2)} aaaBaaa\Rightarrow_{(4)} aaabaaa$$

► The sentential form *aaabaaa* is a sentence: it only has terminals. Its derivation can be shown using a derivation (or parse) tree.

$$G_1: egin{array}{cccc} S &
ightarrow & A \ b \ A \ b \ A \end{array} egin{array}{cccc} A \ b \ A \ b \ A \end{array} egin{array}{cccc} A \ b \ A \ b \ A \end{array}$$

$$egin{array}{lll} G_2:&S&
ightarrow&a\:S\mid b\:A\ &A&
ightarrow&a\:A\mid b\:C\ &C&
ightarrow&a\:C\mid\epsilon \end{array}$$

What are $L(G_1)$ and $L(G_2)$?

$$G_1: egin{array}{cccc} S &
ightarrow & A \ b \ A \ b \ A \end{array} egin{array}{cccc} A \ b \ A \ b \ A \end{array}$$

What are $L(G_1)$ and $L(G_2)$?

▶ $L(G_1) = L(G_2)$ contains strings over $\{a, b\}$ with **exactly** two occurrences of b. Regular expression: a*ba*ba*.

$$G_1: S
ightarrow AbAbA \ A
ightarrow AA
ightarrow A
ightarrow A$$

What are $L(G_1)$ and $L(G_2)$?

- ▶ $L(G_1) = L(G_2)$ contains strings over $\{a, b\}$ with **exactly** two occurrences of b. Regular expression: a*ba*ba*.
- $ightharpoonup G_2$ builds strings in a left-to-right manner

$$egin{array}{lll} G_2:&S&
ightarrow&a\:S\mid b\:A\ &A&
ightarrow&a\:A\mid b\:C\ &C&
ightarrow&a\:C\mid\epsilon \end{array}$$

What are $L(G_1)$ and $L(G_2)$?

- ▶ $L(G_1) = L(G_2)$ contains strings over $\{a, b\}$ with **exactly** two occurrences of b. Regular expression: a*ba*ba*.
- $ightharpoonup G_2$ builds strings in a left-to-right manner
- ▶ Modify G₁ to generate strings with at least two occurrences of b:

$$G_1': S
ightarrow A b A b A \ A
ightarrow A A b A | b A | \epsilon$$

More Terminology

- A derivation can transform any nonterminal in the string
- ► A leftmost derivation transforms the first nonterminal that occurs in a left-to-right reading of the string
- ► A grammar is ambiguous if there is a sentence with two different leftmost derivations.

Example. Consider the grammar

$$S \hspace{.1in}
ightarrow \hspace{.1in} aSb \hspace{.1in} \mid \hspace{.1in} aSbb \hspace{.1in} \mid \hspace{.1in} \epsilon$$

A sentence that shows that this grammar is ambiguous: aabbb.

Regular Grammars

A grammar (V, Σ, P, S) is regular if every production rule in P has one of the following forms $(a \in \Sigma \text{ and } A, B \in V)$:

- ightharpoonup A
 ightarrow aB or
- $ightharpoonup A
 ightarrow \epsilon$

A language is regular iff it is generated by a regular grammar.

Regular Grammars

A grammar (V, Σ, P, S) is regular if every production rule in P has one of the following forms $(a \in \Sigma \text{ and } A, B \in V)$:

- ightharpoonup A
 ightarrow aB or
- $ightharpoonup A
 ightarrow \epsilon$

A language is regular iff it is generated by a regular grammar.

Example. A non-regular grammar for the regular expression (ab)*a*:

$$egin{array}{lll} S &
ightarrow & abSA \mid \epsilon \ A &
ightarrow & Aa \mid \epsilon \end{array}$$

An equivalent regular grammar:

$$egin{array}{lll} S &
ightarrow & aB & | & \epsilon \ B &
ightarrow & bS & | & bA \ A &
ightarrow & aA & | & \epsilon \ \end{array}$$

Suppose we are given

- lacksquare $L_1=\{a^kb^m\,|\,k\geq 1, m\geq 0\}$, represented by aa*b*
- ightharpoonup G is defined as

$$egin{array}{ccccc} A &
ightarrow & aA & aB \ B &
ightarrow & bB & \epsilon \end{array}$$

How to prove $L_1 = L(G)$?

We split the thesis in two implications: $L_1 \subseteq L(G)$ and $L(G) \subseteq L_1$. A sketch for each proof:

We split the thesis in two implications: $L_1 \subseteq L(G)$ and $L(G) \subseteq L_1$. A sketch for each proof:

$$\blacktriangleright \ L_1 \subseteq L(G)$$

Two steps to show that $u = a^k b^m$ is in L(G):

- 1. $A \Rightarrow^* a^k B$ (proven by induction on k)
- 2. $B \Rightarrow^* b^m$ (proven by induction on m)

This suffices to show that $A \Rightarrow^* u$.

We split the thesis in two implications: $L_1 \subseteq L(G)$ and $L(G) \subseteq L_1$. A sketch for each proof:

$$ightharpoonup L_1 \subseteq L(G)$$

Two steps to show that $u = a^k b^m$ is in L(G):

- 1. $A \Rightarrow^* a^k B$ (proven by induction on k)
- 2. $B \Rightarrow^* b^m$ (proven by induction on m)

This suffices to show that $A \Rightarrow^* u$.

$$ightharpoonup L(G) \subseteq L_1$$

If $u \in L(G)$ then there is a derivation $A \Rightarrow^* u$.

To prove $u = a^k b^m$, note that for u to be a sentence we need:

- 1. $n \in \mathbb{N}$ applications of $A \to aA$
- 2. one application of $A \rightarrow aB$
- 3. $m \in \mathbb{N}$ applications of $B \to bB$
- 4. one application of $B \to \epsilon$

Thus, $u \in L(G)$ implies $u = a^n a b^m = a^k b^m$, with k = n + 1. Therefore, $u \in aa^*b^*$.

Productivity

Theorem

Let G be a productive grammar.

Assume that $w \in L(G)$ has length |w| = k.

Then every derivation of w according to G has length $\leq 2k + 1$.

Goal

We want to show that every context-free language has a **productive** grammar in which every symbol is **useful**.

Obtaining a productive grammar is a prerequisite for obtaining particular normal forms (such as Chomsky's)

Productive Grammars

A grammar (V, Σ, P, S) is called **productive** if it satisfies:

- 1. The start symbol S is nonrecursive, i.e., it does not occur at the righthand side of any production rule in P.
- 2. For every production rule $(A \to w) \in P$ with $A \neq S$, we have $w \in \Sigma$ or $|w| \geq 2$.

Note: The empty string ϵ is generated iff $S \to \epsilon$.

A Recipe

- 1. Make the start symbol nonrecursive
- 2. Remove all forbidden ϵ -productions
 - Ensure that ϵ is not produced by nonterminals different from S
 - Essentially noncontracting grammars, nullable nonterminals
- 3. Remove forbidden chain productions
 - Production rules of the form $A \rightarrow B$, with $A, B \in V$
 - Reflexive-transitive closure of →

Given a grammar G and any of its transformations G', we must check that L(G) = L(G').

Running Example

Consider the grammar G:

$$egin{array}{lll} A &
ightarrow & aA \mid B \ B &
ightarrow & bB \mid \epsilon \end{array}$$

We have, e.g., $\{\epsilon, a, b, ab, abbb\} \subseteq L(G)$.

Running Example

Consider the grammar G:

$$egin{array}{lll} A &
ightarrow & aA \mid B \ B &
ightarrow & bB \mid \epsilon \end{array}$$

We have, e.g., $\{\epsilon, a, b, ab, abbb\} \subseteq L(G)$. Why is G not productive?

Running Example

Consider the grammar *G*:

$$egin{array}{lll} A &
ightarrow & aA \mid B \ B &
ightarrow & bB \mid \epsilon \end{array}$$

We have, e.g., $\{\epsilon, a, b, ab, abbb\} \subseteq L(G)$. Why is G not productive?

Consider now G', a productive variant of G:

$$egin{array}{lll} T &
ightarrow & A \mid B \mid \epsilon \ A &
ightarrow & aA \mid a \mid aB \ B &
ightarrow & bB \mid b \end{array}$$

Do we have $\{\epsilon, a, b, ab, abbb\} \subseteq L(G')$?

Step 1: Nonrecursive Start Symbol

- $G = (V, \Sigma, P, S)$ is essentially noncontracting if S is nonrecursive and $(A \to \epsilon) \notin P$ for any $A \neq S$.
- $A \in V$ is nullable for G if there is a G-derivation $A \Longrightarrow^* \epsilon$.

1. Obtain the set of nullable nonterminals for the input grammar:

$$egin{array}{lll} T &
ightarrow & A \ A &
ightarrow & aA \mid B \ B &
ightarrow & bB \mid \epsilon \end{array}$$

The set is $\{T, A, B\}$, obtained using Algorithm 1 in the Reader.

1. Obtain the set of nullable nonterminals for the input grammar:

$$egin{array}{lll} T &
ightarrow & A \ A &
ightarrow & aA \mid B \ B &
ightarrow & bB \mid \epsilon \end{array}$$

The set is $\{T, A, B\}$, obtained using Algorithm 1 in the Reader.

2. Use that set to extend the set of production rules:

$$\begin{array}{cccc} T & \rightarrow & A \mid \epsilon \\ A & \rightarrow & aA \mid B \mid a \mid \epsilon \\ B & \rightarrow & bB \mid \epsilon \mid b \end{array}$$

1. Obtain the set of nullable nonterminals for the input grammar:

$$egin{array}{lll} T &
ightarrow & A \ A &
ightarrow & aA \mid B \ B &
ightarrow & bB \mid \epsilon \end{array}$$

The set is $\{T, A, B\}$, obtained using Algorithm 1 in the Reader.

2. Use that set to extend the set of production rules:

$$egin{array}{lll} T &
ightarrow & A \mid \epsilon \ A &
ightarrow & aA \mid B \mid a \mid \epsilon \ B &
ightarrow & bB \mid \epsilon \mid b \end{array}$$

3. Remove forbidden production rules $A \rightarrow \epsilon$:

$$\begin{array}{ccc} T & \rightarrow & A \mid \epsilon \\ A & \rightarrow & aA \mid B \mid a \\ B & \rightarrow & bB \mid b \end{array}$$

Does this grammar still generate L(G)?

Step 3: Remove chain production rules

1. Given the chain relation \rightarrow , get its reflexive, transitive closure:

$$egin{array}{lll} T &
ightarrow & A \mid \epsilon \ A &
ightarrow & aA \mid B \mid a \ B &
ightarrow & bB \mid b \end{array}$$

Chain relation: $T \rightarrow A, A \rightarrow B$

Closure: $T \rightarrow^* A$, $A \rightarrow^* B$, $T \rightarrow^* T$, $A \rightarrow^* A$, $B \rightarrow^* B$, $T \rightarrow^* B$

Step 3: Remove chain production rules

1. Given the chain relation \rightarrow , get its reflexive, transitive closure:

$$\begin{array}{ccc} T & \rightarrow & A \mid \epsilon \\ A & \rightarrow & aA \mid B \mid a \\ B & \rightarrow & bB \mid b \end{array}$$

Chain relation: $T \rightarrow A$, $A \rightarrow B$

Closure: $T \rightarrow^* A$, $A \rightarrow^* B$, $T \rightarrow^* T$, $A \rightarrow^* A$, $B \rightarrow^* B$, $T \rightarrow^* B$

2. Extend the production rules using →*:

$$\begin{array}{cccc} T & \rightarrow & A \mid \epsilon \mid B \\ A & \rightarrow & aA \mid B \mid a \mid aB \\ B & \rightarrow & bB \mid b \end{array}$$

Step 3: Remove chain production rules

1. Given the chain relation \rightarrow , get its reflexive, transitive closure:

$$\begin{array}{ccc} T & \rightarrow & A \mid \epsilon \\ A & \rightarrow & aA \mid B \mid a \\ B & \rightarrow & bB \mid b \end{array}$$

Chain relation: $T \rightarrow A, A \rightarrow B$

Closure:
$$T \rightarrow^* A$$
, $A \rightarrow^* B$, $T \rightarrow^* T$, $A \rightarrow^* A$, $B \rightarrow^* B$, $T \rightarrow^* B$

2. Extend the production rules using →*:

$$egin{array}{lll} T &
ightarrow & A \mid \epsilon \mid B \ A &
ightarrow & aA \mid B \mid a \mid aB \ B &
ightarrow & bB \mid b \end{array}$$

3. Remove all chain rules $A \rightarrow B$, with $A \neq T$:

$$egin{array}{lll} T &
ightarrow & A \mid \epsilon \mid B \ A &
ightarrow & aA \mid a \mid aB \ B &
ightarrow & bB \mid b \end{array}$$

Summing up

1. Make start symbol nonrecursive:

2. Remove ϵ -productions \rightsquigarrow Essentially contracting grammar

3. Remove chain production rules → Productive grammar

Chomsky Normal Form

A grammar $G = (V, \Sigma, P, S)$ is in **Chomsky normal form** if every production rule has one of the following forms:

- 1. $A \rightarrow BC$ with nonterminals A, B, C and $B \neq S$ and $C \neq S$
- 2. $A \rightarrow a$ with a nonterminal A and a terminal symbol a
- 3. $S \rightarrow \epsilon$ for the start symbol S.

Chomsky Normal Form

A grammar $G = (V, \Sigma, P, S)$ is in **Chomsky normal form** if every production rule has one of the following forms:

- 1. $A \rightarrow BC$ with nonterminals A, B, C and $B \neq S$ and $C \neq S$
- 2. $A \rightarrow a$ with a nonterminal A and a terminal symbol a
- 3. $S \rightarrow \epsilon$ for the start symbol S.

A productive grammar can be transformed into Chomsky normal form by introducing new nonterminals with new production rules:

Useful, Generating & Generated Symbols

Let $G = (V, \Sigma, P, S)$ be a grammar. Let $x \in V \cup \Sigma$ be a symbol.

x is useful if there is a derivation

$$S \implies^* uxv \implies^* w \qquad \text{with } u, v \in (V \cup \Sigma)^* \text{ and } w \in \Sigma^*$$

- x is called useless if it is not useful
- x is generating if $x \implies^* w$ holds for some $w \in \Sigma^*$
- x is generated if there are $u, v \in (V \cup \Sigma)^*$ with $S \Longrightarrow^* uxv$.

Therefore:

- Useful symbols are both generating and generated
- However, generating and generated symbols may not be useful

Example 2.14

$$egin{array}{lll} S &
ightarrow & AB \mid cS \mid \epsilon \ A &
ightarrow & a \ B &
ightarrow & bB \end{array}$$

- B is not useful: it is useless, as it doesn't lead to any sentence
- A is generating, thanks to rule $A \rightarrow a$
- A is generated, thanks to rule $S \rightarrow AB$
- Still, A is useless: if it occurs in a sentential form, it comes with B, which is useless

Removal of Useless Symbols (Alg. 2)

To remove useless symbols in a given grammar G:

- 1. Compute the set T of generating nonterminals.
- 2. Assume $S \in T$ (i.e. non-empty L(G)). Transform G into a grammar G'' by
 - removing all nonterminals not in T, and
 - removing all production rules in which these nonterminals occur
- 3. Compute the set U of symbols generated by G''.
- 4. Transform G'' into G' by removing symbols not in U, and removing all production rules in which such symbols occur.

Taking Stock

- ► There are languages that are not regular
- Context-free grammars and languages
- Proving equality of languages
- Normal forms for context-free grammars
- ▶ Briefly: Useless symbols

Next time

Finite state machines: Recognizing regular languages (Sec 3.1 - 3.2)