Lecture 15: Database Normalization

Dr Kieran T. Herley 2019-2020

School of Computer Science & Information Technology University College Cork

Summary

The perils of redundancy in DB design. Normalization as methodology for reducing redundancy. Functional dependencies.

More on Database Design

- Designs produced by ER approach may need further refinement and tuning
- Why?
 - Eliminate certain undesirable redundancy patterns (normalization)
 - (Also performance tuning to enhance query performance etc.)

A Simple Database

	suppliers					
snum	city					
S1	Smith	20	London			
S2	Jones	10	Paris			
S3	Blake	10	Paris			
S4	Clark	20	London			
S5	Adams	30	Athens			
parte						

pnum	pname	colour	weight
P1	Nut	Red	12
P2	Bolt	Green	17
P3	Screw	Blue	17
P4	Screw	Red	14
P5	Cam	Red	12
P6	Cog	Red	19

ordered_from					
snum	quantity				
S1	P1	300			
S1	P2	200			
S1	P3	400			
S1	P4	200			
S1	P5	100			
S1	P6	100			
S2	P1	300			
S2	P2	400			
S3	P2	200			
S4	P2	200			
S4	P4	300			
S4	P5	400			

A simple (but not perfect) design for DB for managing a company's orders for spare parts:

- Keeps track of suppliers we use and items we require
- Also track details of outstanding orders

Assumption: "status" captures some city-dependent characteristic such as delivery charge.

A Not-So-Good Design

suppliers'					
snum sname					
Smith	London				
Jones	Paris				
S3 Blake					
Clark	London				
Adams	Athens				
	sname Smith Jones Blake Clark				

-					
pnum	pnum pname		weight		
P1	Nut	Red	12		
P2	Bolt	Green	17		
P3	Screw	Blue	17		
P4	Screw	Red	14		
P5	Cam	Red	12		
P6	Cog	Red	19		

ordered_from $^\prime$					
snum	pnum	quantity	status		
S1	P1	300	20		
S1	P2	200	20		
S1	P3	400	20		
S1	P4	200	20		
S1	P5	100	20		
S1	P6	100	20		
S2	P1	300	10		
S2	P2	400	10		
S3	P2	200	30		
S4	P2	200	20		
S4	P4	300	20		
S4	P5	400	20		

This variation contains undesirable redundancy

- Supplier status info. replicated many times in ordered_by'
- May complicate efforts to modify this info.

What's So Bad About Redundancy?

Design Principle

Avoid redundancy as far as possible

What's So Bad About Redundancy?

Design Principle

Avoid redundancy as far as possible

Watchword

One fact in one place

What's So Bad About Redundancy?

Design Principle

Avoid redundancy as far as possible

Watchword

One fact in one place

Redundancy Pitfalls

Space Usage Duplicating information in several places wastes space

Anomalies

<u>Update Anomalies</u> If we change one copy of a datum, we need to change them all, otherwise inconsistencies arise <u>Also</u> insertion and deletion anomalies (examples later)

Normalization

Normalization

- Normal forms capture desirable traits that reduce risk of certain DB inconsistensies
- Form hierarchy of increasing stringency:

$$1NF < 2NF < 3NF \cdots$$

First Normal Form

R is in First Normal Form (1NF) if and only if it contains atomic values only (i.e. no multi-valued attributes).

6

Our first Design (Poor)

	first					
snum	status	city	pnum	quantity		
S1	20	London	P1	300		
S1	20	London	P2	200		
S1	20	London	P3	400		
S1	20	London	P4	200		
S1	20	London	P5	100		
S1	20	London	P6	100		
S2	10	Paris	P1	300		
S2	10	Paris	P2	400		
S3	10	Paris	P2	200		
S4	20	London	P2	200		
S4	20	London	P4	300		
S4	20	London	P5	400		

parts					
pnum	pname	colour	weight		
P1	Nut	Red	12		
P2	Bolt	Green	17		
P3	Screw	Blue	17		
P4	Screw	Red	14		
P5	Cam	Red	12		
P6	Cog	Red	19		

Basically, we mash suppliers and orders information together

What's Wrong With This Design?

first						
snum	snum status city pnum quantity					
S1	20	London	P1	300		
S1	20	London	P2	200		
S1	20	London	P3	400		
S1	20	London	P4	200		
S1	20	London	P5	100		
S1	20	London	P6	100		
S2	10	Paris	P1	300		
S2	10	Paris	P2	400		
S3	10	Paris	P2	200		
S4	20	London	P2	200		
S4	20	London	P4	300		
S4	20	London	P5	400		

narts

pnum	pname	colour	weight
P1	Nut	Red	12
P2	Bolt	Green	17
P3	Screw	Blue	17
P4	Screw	Red	14
P5	Cam	Red	12
P6	Cog	Red	19

Update Anomaly City value for suppliers replicated; on updates need to modify all copies, else . . .

Insertion Anomaly Cannot record supplier's details (city) until that supplier supplies at least one part.

Deletion Anomaly If we delete last tuple for a supplier, we lose all info. about that supplier.

Functional Dependencies

Dependencies Dependencies capture how different attributes in our table(s) interrelate

Definition

Given relation R, attribute Y is functionally dependent on attribute X (denoted $X \to Y$) if and only if, whenever two tuples of R agree on their X-value, they are also guaranteed to agree also on their Y-value.

Normalization Design methodology guided by careful analysis of these can help reduce undesirable redundancy patterns

Note Dependencies are dictated (directly or indirectly) by the semantics of the database attributes.

FDs in First Design

Definition

Given relation R, attribute Y is functionally dependent on attribute X if and only if, whenever two tuples of R agree on their X-value, they are also guaranteed to agree also on their Y-value.

Dependencies:

parts:

pnum -> pname

pnum -> weight

pnum -> colour

first:

snum -> status, city

city -> status

Note: each attribute dependent on table key, but there

			first			
	snum	status	city	pnum	quantity	
	S1	20	London	P1	300	
	S1	20	London	P2	200	
	S1	20	London	P3	400	
	S1	20	London	P4	200	
	S1	20	London	P5	100	
	S1	20	London	P6	100	
	S2	10	Paris	P1	300	
	S2	10	Paris	P2	400	
	S3	10	Paris	P2	200	
	S4	20	London	P2	200	
	S4	20	London	P4	300	
	S4	20	London	P5	400	
,	, qty	р	arts		-	

pnum	pname	colour	weight
P1	Nut	Red	12
P2	Bolt	Green	17
P3	Screw	Blue	17
P4	Screw	Red	14
P5	Cam	Red	12
P6	Cog	Red	19

Towards a Better Design

```
first table
first(snum, status, city, pnum, quantity)
Diagnosis Attributes status, city in first "relate" only to part of key
(snum) not the whole key (snum, pnum)
first:
pnum, snum -> status, city, qty
snum -> status, city
city -> status
Such "non-full dependencies" are problematic
Prescription Remove such dependencies by splitting first into
second(snum, status, city)
ordered_from(snum, pnum, quantity)
Schemas without non-full dependencies are in Second Normal Form
(2NF)
```

Our second Design (Better)

second			
snum	status	city	
S1	20	London	
S2	10	Paris	
S3	10	Paris	
S4	20	London	
S5	30	Athens	

ordered_from			
snum	pnum	quantity	
S1	P1	300	
S1	P2	200	
S1	P3	400	
S1	P4	200	
S1	P5	100	
S1	P6	100	
S2	P1	300	
S2	P2	400	
S3	P2 200		
S4	P2	200	
S4	P4	300	
S4	P5	400	

Solves the three specific anomalies mentioned earlier, but . . .

Problems With Second Design

second			
snum	status	city	
S1	20	London	
S2	10	Paris	
S3	10	Paris	
S4	20	London	
S5	30	Athens	

ordered_from

snum	pnum	quantity
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Update Anomaly The status value for each city is replicated many times; if the status for London changes, then either we must update all the tuples for that city or worse have inconsistent status info. for that city in our table.

Insertion Anomaly Cannot enter status values for city until we have a supplier located in that city.

Deletion Anomaly If we delete the only tuple for a particular city, we lose the status info for that city.

Dependencies In Second Design

```
second table second(snum, status, city)
Diagnosis "indirect" (transitive) dependence of status on snum via city
snum -> city
city -> status
snum -> status
Such dependencies are problematic
Prescription To eliminate problem split second table into
suppliers(snum, city)
cities(city, status)
Schemas with no transitive dependecies are in Third Normal Form (3NF)
```

The Final Design

ordered_from(snum, pnum, quantity)
parts(pnum, pname, colour, weight)
suppliers(snum, city)
cities(name, status)

suppliers			
snum	sname city		
S1	Smith	London	
S2	Jones	Paris	
S3	Blake	Paris	
S4	Clark	London	
S5	Adams	Athens	

parts

Į	pnum	pname	colour	weight
	P1	Nut	Red	12
ı	P2	Bolt	Green	17
ı	P3	Screw	Blue	17
ı	P4	Screw	Red	14
ı	P5	Cam	Red	12
Į	P6	Cog	Red	19

Cities		
status name		
London	20	
Paris	10	
Athens	30	

	ordered_from			
snum	pnum	quantity		
S1	P1	300		
S1	P2	200		
S1	P3	400		
S1	P4	200		
S1	P5	100		
S1	P6	100		
S2	P1	300		
S2	P2	400		
S3	P2	200		
S4	P2	200		
S4	P4	300		
S4	P5	400		

ordered from

In a Nutshell

" [Every] non-key [attribute] must provide a fact about the key, the whole key, and nothing but the key [so help me Codd] " (Attributed to Bill Kent)

Notes and Acknowledgements

The suppliers-Part example is adapted from "An Introduction to Database Systems" (3rd ed.) by C. J. Date.