Problem set 7

[Revised Feb 03, 9:48 PM]

Linear algebra

1. Write a Python funtion called mat vec which computes the matrix vector product

$$y = Ax$$

where $\mathbf{A} \in \mathbb{R}^{M \times N}$, $\mathbf{y} \in \mathbb{R}^{M}$ and $\mathbf{x} \in \mathbb{R}^{N}$.

Note that the i^{th} element of \mathbf{y} is given by

$$y_i = \sum_{j=1}^N a_{ij} x_j.$$

- You should complete the function provided in mat_vec.py
 To test your code, execute python3 mat vec.py
- · The code provided uses the following test data

2. Write a Python funtion called mat_mult which computes the matrix-matrix product

$$A = BC$$
.

where $\mathbf{B} \in \mathbb{R}^{M \times N}$, $\mathbf{C} \in \mathbb{R}^{N \times P}$ and $\mathbf{A} \in \mathbb{R}^{M \times P}$.

Note that the $ij^{\rm th}$ element of ${\bf A}$ is given by

$$a_{ij} = \sum_{k=1}^{N} b_{ik} c_{kj}$$

- You should complete the function provided in mat_mult.py. To test your code,
 execute python3 mat mult.py
- The code provided uses the following test data

```
B = np.array( [[1.0, 2.0, 3.0], \
        [4.0, 5.0, 6.0]] )
```

```
C = np.array( [[1.0, 2.0, 3.0], \
        [4.0, 5.0, 6.0], \
        [7.0, 8.0, 9.0]] )
```

3. In this question we use the following matrix

and vector

```
b = numpy.array([1.1, 2.2, 3.3])
```

- \circ Compute the LU factorization of A using scipy.linalg.lu factor().
- Use $scipy.linalg.lu_solve()$ to solve Ax = b where b is given above. Store the solution for x in the variable x0.
- Use numpy.linalg.solve() with the A matrix and b vector (given above).
 Store the solution in the variable x1.
- Verify by computing the maximum difference between x0 and x1 that the two solutions are identical.
- 4. The file create_tridiag.py contains functions to create tri-diagonal matrices assembled as dense matrices (create_mat()) and sparse matrices (create_sparse_mat()). We wish to compare the solve time associated with using LU with a dense matrix format and a sparse matrix format

We wish to assemble the following triadiagonal matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 0 & \dots & \dots & 0 \\ -2 & 1 & -2 & 0 & 0 & \dots \\ 0 & -2 & 1 & -2 & 0 & \dots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & \dots & 0 & -2 & 1 & -2 \\ 0 & \dots & \dots & 0 & -2 & 1 \end{bmatrix}$$

for different size matrices $\mathbf{A} \in \mathbb{R}n \times n$.

For the dense solver use xd = numpy.linalg.solve(Ad, b). For the sparse solver use xs = scipy.sparse.linalg.spsolve(As, b), where Ad is the dense matrix and As is the sparse tri-diagonal matrix.

- Use <u>create_mat()</u> to assemble a sparse 3×3 tri-diagonal matrix with 1 on the diagonal and -2 on the off-disagonal. Print the solution and verify it is correct.
- Use create_sparse_mat() to assemble a 3 × 3 tri-diagonal matrix with 1 on the diagonal and -2 on the off-disagonal. Store the result in As . Print the solution and verify it is correct using print(As.toarray()).
- Time how long it takes to solve each $\mathbf{A}\mathbf{x} = \mathbf{b}$ with dense and sparse matrices when \mathbf{A} is given by an $n \times n$ matrix and \mathbf{n} is given by $\mathbf{n} = [6000, 7000, 8000, 9000, 10000]$. Use $\mathbf{b} = \text{numpy.ones}(\mathbf{n}[i])$.
- Plot the solve time (y-axis) required to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ using sparse and dense matrices as a function of n (x-axis)

You can time Python code using the following

```
import time

t_start = time.perf_counter()

# SOLVE Ax = b HERE

t_end = time.perf_counter()
time_solve = t_end - t_start
```