

KATEDRA KYBERNETIKY

Semestrální práce z předmětu KKY/ZDO

VARROA DETECTOR

 $\begin{array}{l} Vitek\ Po\'{o}r-poorv@students.zcu.cz\\ Petr\ Trnka-trnkpe@students.zcu.cz \end{array}$

Obsah

1	Zadání	2
2	Návrh	2
3	Program	2
4	Experimenty	3
5	Závěr	6

1 Zadání

Navrhněte a naprogramujte nástroj pro detekci kleštíka (varroa destructor) v obraze. Vstupními daty jsou snímky směsného odpadu ze dna úlu (tzv. měl). Cílem je detekovat tvar kleštíků v daném snímku s úspěšností F1-skóre alespoň 55%.

2 Návrh

V semestrální práci budeme vycházet z vizuální podoby varroázy, tj. její velikosti (cca 2x2 px na QR kódu), tvaru (kulovitý, elipsoidický) a barevného odstínu.

Nejprve provedeme segmentaci podle předem odhadnuté škály hnědé barvy v šedotónu (odhad bude proveden na základ referenční varroázy). Dalším možným přístupem k segmentaci je použití metody Otsua. Tímto krokem bychom měli vyloučit pozadí a výrazně světlejší či výrazně tmavší objekty než varroáza.

V segmentovaném obrazu poté budeme hledat objekty, které mají eliptický tvar odhadnutého poloměru. Eliptické objekty budeme hledat jako kružnice pomocí vlastnosti kompaktnost s určitou míru tolerance.

3 Program

Program byl vytvořen v prostředí Python verze 3.8.5 (64 bit). Program byl vyvíjen za pomoci vývojářského prostředí Visual Studio 2019 a veškeré testování v rámci vývoje bylo prováděno pomocí modulu s testovacími případy. Odkaz na git

https://github.com/vitekpoor/ZDO2021

Vstupem programu je n-dimenzionální pole, jehož tvar je počet obrázků, výška, šířka a barevné kanály. Program také pracuje se souborem *config.json*, který načítá při inicializaci. Tento soubor musí existovat v adresáři, kde je program spouštěn a definuje hyperparametry programu.

Výstupem programu je obdobné n-dimenzionální pole poli na vstupu ale bez posledního prvku určující barevné kanály. Výstupem je tedy binární maska, která označuje detekované kleštíky.

Program obsahuje modul **test_zdo2021**, který obsahuje testovací scénáře jednonásobného a vícenásobného spuštění programu. Jelikož je program psán formou knihovní funkce, je doporučeno jeho spouštění provádět pomocí testů.

Jako testovací prostředí byl použit pytest verze 6.1.1. v prostředí Visual Studia.

Konfigurační soubor obsahuje následující parametry:

- **threshold** Určuje ruční práh pro segmentaci vstupního obrázku prahováním (v procentech).
- circ-min Určuje dolní mez odhadu kruhovosti jedné detekované oblasti.
- circ-max Určuje horní mez odhadu kruhovosti jedné detekované oblasti.
- area-min Určuje minimální plochu jedné detekované oblasti.
- area-max Určuje maximální plochu jedné detekované oblasti.

Výše zmíněné parametry byly odvozeny na základě experimentálních měření (viz. Experimenty).

Samotné jádro programu, které provádí detekci je v modulu zdo2021 ve skriptu main.py. Jedná se z pohledu objektového programování o třídu s názvem **VarroaDetector**. Detekce je potom určena její metodou **predict(self, data)**. V rámci inicializace se načítá konfigurační soubor.

4 Experimenty

Jak již bylo zmíněno výše, veškeré experimenty byly prováděny výhradně pomocí modulu s testovacími případy. V rámci experimentů jsme pracovali s vlastnostmi:

- Práh Parametr segmentace prahováním.
- Eulerovo číslo Vlastnost oblasti získané metodou třetí strany (region props).
- **Kruhovost** Odhad kruhovosti pomocí vzorce $(4 * \pi * \text{Obsah}) / (prop.perimeter^2)$.
- **Obsah** Vlastnost oblasti získané metodou třetí strany (region props).

Experimenty byly prováděny vždy nad celou datovou sadou (adresář test/test_dataset). Výsledné F1-skóre je tedy aritemtický přůměr všech dílčích výsledků celé datové sady. Konfigurace s nejvyšším průměrným F1-skórem byla zvolena jako optimální pro náš detektor. Určení hodnot shrnuje následující tabulka konfigurací:

Threshold	Circ-min	Circ-max	Area-min	Area-max	Euler	F1-skóre
Otsu	0.7	1.1	100	-	-	0.0143
0.15	0.7	1.1	100	-	_	0.0512
0.25	0.7	1.1	100	_	_	0.1155
0.30	0.7	1.1	100	-	_	0.1396
0.40	0.7	1.1	100	_	-	0.0841
0.30	0.7	1.1	250	_	_	0.1693
0.30	0.7	1.1	500	-	_	0.0148
0.30	0.7	1.1	300	-	_	0.1352
0.30	0.7	1.1	200	-	_	0.1911
0.30	0.7	1.3	200	-	_	0.1911
0.30	0.7	1.0	200	-	_	0.1911
0.30	0.7	1.0	200	-	1	0.1653
0.30	0.8	1.0	200	-	_	0.1584
0.30	0.8	0.9	200	-	_	0.1645
0.30	0.7	1.1	200	1000	_	0.2259
0.30	0.7	1.1	200	750	_	0.2392
0.30	0.7	1.1	200	400	_	0.2171
0.30	0.7	1.1	200	500	_	0.2411
0.30	0.7	1.1	200	500	1	0.2101

Tabulka 1: Tabulka parametrů a průměrné F1-skóre pro jednotlivé konfigurace programu.

Nutno dodat, že ne všechny experimenty obsahují kompletní konfiguraci programu. Například Eulerovo číslo je použito pouze u dvou experimentů, jelikož při jeho použití vždy F1-skóre pokleslo. Obdobně maximální povolený obsah oblasti byl použit až při posledních experimentech, jelikož jsme na začátku vycházeli pouze z hodnot prahu, kruhovosti a minimální oblasti.

Z Tabulky 1 je patrné, že optimální hondnoty konfigurace z provedených experimentů jsou: práh na 30% jasového histogramu, kruhovost od 70% podobnosti kruhu a obsah oblasti mezi 200 až 500 body obrazu. Lze si povšimnout, že například rozšíření horního omezení kruhovosti nemá dopad při určité konfiguraci na výsledné skóre.

Pro vybranou konfiguraci bylo F1-skóre počítáno z těchto dílčích výsledků:

0.3802 0.14710.06050.00000.35920.00000.56650.11840.00000.43420.61650.00000.10980.00000.3630 0.00000.00000.17460.00000.08350.49760.69290.33810.4419 0.32580.54250.38870.35010.0000

Lze vidět, že jeden z obrázků použité datové sady měl úspěšnost detekce 69%. Na druhou stranu existují i takové případy, kde je úspěšnost detekce nulová.

5 Závěr

V rámci této práce byl vytvořen program, který se pokouší detekovat kleštíka na specifickém obrázku. Jak lze vidět z výsledků experimentů, úspěšnost F1-skóre tohoto programu je pro některé konkrétní vstupní obrazy až 69%. V průměru nad danou datovou sadu dosahuje jeho úspěšnost však pouhých 24%.

Zásadní nedostatek programu je v odhadu konfigurace programu, jelikož jsme z časových důvodů zdaleka neprokryli všechny možnosti. Další problém vidíme v QR kódu, který obsahuje každý obraz a jehož části se po segmentaci a následné detekci mohou jevit jako falešně pozitivní jedinci kleštíka. Tento problém je řešitelný například použitím některé z morfologických operací (uzavření) a následné odstranění oblasti výrazně větší, než maximální odhadnutá velikost kleštíka.

Dalším přístupem, vzhledem k požadovanému F1-skóre, by bylo nastavit výslednou masku na samé pozitivní případy a poté v ní odmazávat oblasti, které určitě kleštík nejsou. Tímto přístupem bychom začínali pokaždé na 50% skóre. Domníváme se totiž, že čím víc jsme modifikovali spodní mez obsahu oblasti, tím víc nám rostlo výsledné skóre. To znamená, že jsme na výstupu označovalí více falešně pozitivních vzorků a odchylovali jsme se od koncepčně "správné" detekce, ve které chceme detekovat co nejméně objektů s co největší přesností.