EXAMENUL DE BACALAUREAT – 2011 Proba E. c) Probă scrisă la MATEMATICĂ MO

MODEL

(30 de puncte)

2p

Filiera teoretică, profilul real, specializarea matematică-informatică.

Filiera vocațională, profilul militar, specializarea matematică-informatică.

BAREM DE EVALUARE ȘI DE NOTARE

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

 $\left|1-i\sqrt{3}\right| = \sqrt{1+\left(-\sqrt{3}\right)^2} =$ 3p 2p $= \sqrt{4} = 2$ 2. $x^2 + x + 1 - y = 0$ 1p 2p $\operatorname{Im}_f = \left[\frac{3}{4}, +\infty\right)$ 2p 3. 1p 2p 2p $b_7 = 96$ **4.** $\log_a x = \log_a 9 - \log_a 8$ 2p $\log_a x = \log_a \frac{9}{8} \Rightarrow x = \frac{9}{8}$ **3**p $m_d = -\frac{1}{2} \Rightarrow m_{d'} = 2$ unde $d \perp d'$ 2p 3p Ecuația dreptei d' este y = 2x - 4 $\cos^2 x = 1 - \sin^2 x = \frac{1}{\alpha}$ 2p $\cos x = \pm \frac{1}{2}$ 1p

SUBIECTUL al II-lea (30 de puncte)

1.a) $A(2) - A(0) = \begin{pmatrix} 0 & -4 & 16 \\ 0 & 0 & -8 \\ 0 & 0 & 0 \end{pmatrix}$ $(A(2) - A(0))^3 = O_3$ $(A(2) - A(0))^{2010} = O_3$ 1p

 $x \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \cos x = -\frac{1}{3}$

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

b)	$A(x)A(y) = \begin{pmatrix} 1 & -2x - 2y & 4y^2 + 8xy + 4x^2 \\ 0 & 1 & -4x - 4y \\ 0 & 0 & 1 \end{pmatrix}$ Finalizare	3p 2p
c)		1p
	$\det(A(x)) = 1 \neq 0$, deci matricea este inversabilă	_
	$A(x)A(-x) = A(0) = I_3$	2p
	$(1 2r 4r^2)$	
	$A^{-1}(r) - A(-r) - \begin{bmatrix} 1 & 2\lambda & 4\lambda \\ 0 & 1 & 4r \end{bmatrix}$	2n
	$A^{-1}(x) = A(-x) = \begin{pmatrix} 1 & 2x & 4x^2 \\ 0 & 1 & 4x \\ 0 & 0 & 0 \end{pmatrix}$	2p
2.a)	$x * \frac{1}{2} = \frac{1}{2} * x = x, \forall x \in G$	1n
		1p
	Verificare	3 p
	Legea "*" are element neutru $e = \frac{1}{2}$	
	Legea * are element neutru $e = \frac{1}{2}$	1p
b)	Orice element din G este simetrizabil şi $x'=1-x$	3р
	$0 < x' < 1$, deci $x' \in G$	2p
c)	Justificarea faptului că funcția f este bijectivă	2p
	1 (x-1)(y-1)	•
	$f(x*y) = \frac{1}{x*y} - 1 = \frac{(x-1)(y-1)}{xy}$	2p
	$f(x)f(y) = \left(\frac{1}{x} - 1\right)\left(\frac{1}{y} - 1\right) = \frac{(x-1)(y-1)}{xy} = f(x*y)$	1p

SUBIECTUL al III-lea (30 de puncte)

	Eere unin ieu (ev ue punete)	
1.a)	$\lim_{x \to 5} \frac{f(x) - f(5)}{x - 5} =$ $= \lim_{x \to 5} (x - 2)(x - 3)(x - 4) =$ $= 6$	2p 2p 1p
b)	$\frac{f(n+1)-1}{f(n)-1} = \frac{n-1}{n-5}$	1p
	$\lim_{n \to +\infty} \left(\frac{f(n+1)-1}{f(n)-1} \right)^n = \lim_{n \to +\infty} \left(\frac{n-1}{n-5} \right)^n =$	1p
	$= \lim_{n \to +\infty} \left(1 + \frac{4}{n-5} \right)^n =$	1p 2p
	$=e^4$	•
c)	f(2)=1, f(3)=1, f(4)=1, f(5)=1	1p
	f continuă pe intervalele [2,3], [3,4], [4,5]	1p
	f derivabilă pe intervalele $(2,3), (3,4), (4,5)$	1p
	Din teorema lui Rolle și din faptul că f' este de gradul trei rezultă că $f'(x) = 0$ are exact trei	2p
	soluții reale distincte	•
2.a)	$I_0 = \int_0^1 \frac{1 - x}{x^2 + 1} dx =$	1p

Probă scrisă la **Matematică** Barem de evaluare și de notare

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

	$\int_{0}^{1} \frac{1}{x^2 + 1} dx = arctgx \Big _{0}^{1} = \frac{\pi}{4}$	1p
	$\int_{0}^{1} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \ln \left(x^{2} + 1 \right) \Big _{0}^{1} = \frac{\ln 2}{2}$	2p
	$I_0 = \frac{\pi}{4} - \frac{\ln 2}{2}$	1p
b)	$I_2 - I_0 = \int_0^1 \frac{\left(x^2 + x + 1\right)^2 - 1}{x^2 + 1} dx =$	1p
	$= \int_{0}^{1} \left(x^{2} + 2x + 2\right) dx - \int_{0}^{1} \frac{2}{x^{2} + 1} dx =$	1p
	$=\frac{10}{3}-2\int_{0}^{1}\frac{dx}{x^{2}+1}=$	1p
	$=\frac{10}{3}-\frac{\pi}{2}\not\in\mathbb{Q}$	2p
c)	$X^2 + 1$ divide $(X^2 + X + 1)^{4n+1} - X$	2p
	$\frac{(x^2 + x + 1)^{4n+1} - x}{x^2 + 1} = g(x), \text{ unde } g \in \mathbb{Z}[X]$	1p
	$\int_{0}^{1} g(x) dx \in \mathbb{Q}$	2p