

Preliminary datasheet EasyPACK™ Modul mit CoolSiC™ Trench MOSFET und PressFIT / NTC

Eigenschaften

- Elektrische Eigenschaften
 - $V_{DSS} = 1200 V$
 - $I_{DN} = 63 \text{ A} / I_{DRM} = 125 \text{ A}$
 - Niedrige Schaltverluste
 - Niederinduktives Design
 - Geeignete Infineon Gate-Treiber finden Sie unter https://www.infineon.com/gdfinder
- Mechanische Eigenschaften
 - PressFIT Verbindungstechnik
 - AlN Substrat mit kleinem thermischen Widerstand
 - Integrierter NTC Temperatur Sensor
 - Robuste Montage durch integrierte Befestigungsklammern

Potenzielle Anwendungen

- Anwendungen mit hohen Schaltfrequenzen
- Motorantriebe
- USV-Systeme
- DC/DC Wandler
- Schnellladesäulen

Produktvalidierung

 Qualifiziert für Industrieanwendungen entsprechend den relevanten Tests der IEC 60747, 60749 und 60068

Beschreibung

FS13MR12W2M1H_C55 EasyPACK[™] Modul

Inhalt

	Beschreibung	1
	Eigenschaften	1
	Potenzielle Anwendungen	1
	Produktvalidierung	1
	Inhalt	2
1	Gehäuse	3
2	MOSFET	3
3	Body diode (MOSFET)	5
4	NTC-Widerstand	
5	Kennlinien	7
6	Schaltplan	12
7	Gehäuseabmessungen	13
8	Modul-Label-Code	
-	Änderungshistorie	
	Disclaimer	

FS13MR12W2M1H_C55 EasyPACK™ Modul

1 Gehäuse

1 Gehäuse

Tabelle 1 Isolationskoordination

Parameter	Symbol	Notiz oder Prüfbedingung	Werte	Einh.
Isolations-Prüfspannung	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Innere Isolation		Basisisolierung (Schutzklasse 1, EN61140)	AlN	
Vergleichszahl der Kriechwegbildung	CTI		> 200	
Relativer Temperaturindex (elektr.)	RTI	Gehäuse	140	°C

Tabelle 2 Charakteristische Werte

Parameter	Symbol	Symbol Notiz oder Prüfbedingung		Werte		
			Min	Тур	Мах	
Modulstreuinduktivität	L _{sCE}			13		nH
Modulleitungswiderstand, Anschlüsse - Chip	R _{CC'+EE'}	T _H = 25 °C, pro Schalter		4.6		mΩ
Lagertemperatur	$T_{\rm stg}$		-40		125	°C
Anpresskraft für mech. Bef. pro Feder	F		40		80	N
Gewicht	G			39		g

Anmerkung: The current under continuous operation is limited to 25 A rms per connector pin.

Functional isolation applies for the NTC inside module, detailed description refers to AN2009-10, chapter 2.1. A isolation test voltage of 1.5kV RMS, f = 50Hz, t = 1min is applied between NTC and the other components inside module.

2 MOSFET

Tabelle 3 Höchstzulässige Werte

Parameter	Symbol	Notiz oder Prüfbeding	ıng	Werte	Einh.
Drain-Source-Spannung	V _{DSS}		T _{vj} = 25 °C	1200	V
Drain-Dauergleichstrom	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 90 °C	62.5	Α
Periodischer Drain- Spitzenstrom	/ _{DRM}	verified by design, t _p limited by T _{vjmax}		125	А
Gate-source Spannung, max. transiente Spannung	V _{GS}	D < 0.01	D < 0.01		V
Gate-source Spannung, max. statische Spannung	V _{GS}			-7/20	V

FS13MR12W2M1H_C55 **EasyPACK**[™] **Modul**

2 MOSFET

Empfohlene Werte Tabelle 4

Parameter	Symbol	Notiz oder Prüfbedingung	Werte	Einh.
Ein-Zustand Gate Spannung	V _{GS(on)}		1518	V
Aus-Zustand Gate Spannung	$V_{\rm GS(off)}$		-50	V

Charakteristische Werte Tabelle 5

Parameter	Symbol	Notiz oder Prüfbedingu	ng		Werte		Einh.
				Min	Тур	Max	
Einschaltwiderstand	R _{DS(on)}	I _D = 62.5 A	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		11.7		mΩ
			V _{GS} = 18 V, T _{vj} = 125 °C		18.9		
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 150 ^{\circ}\text{C}$		21.7		
			$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		14		
Gate-Schwellenspannung	V _{GS(th)}	$I_D = 28 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V})$		3.45	4.3	5.15	V
Gateladung	Q _G	$V_{\rm DD}$ = 800 V, $V_{\rm GS}$ = -3/18 V			0.2		μC
Interner Gatewiderstand	R _{Gint}	T _{vj} = 25 °C			7.5		Ω
Eingangskapazität	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		6.05		nF
Ausgangskapazität	Coss	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.3		nF
Rückwirkungskapazität	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.02		nF
C _{OSS} Speicherenergie	E _{OSS}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		118		μJ
Drain-Source-Reststrom	I _{DSS}	V _{DS} = 1200 V, V _{GS} = -3 V	T _{vj} = 25 °C		0.04	111	μA
Gate-Source-Reststrom	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Einschaltverzögerungszeit	t _{d on}	$I_{\rm D} = 62.5 \text{A}, R_{\rm Gon} = 5.1 \Omega,$	T _{vj} = 25 °C		58		ns
(ind. Last)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		58		
			T _{vj} = 150 °C		58		
Anstiegszeit (induktive	t _r	$I_{\rm D} = 62.5 \text{A}, R_{\rm Gon} = 5.1 \Omega,$	T _{vj} = 25 °C		15		ns
Last)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		15		
			T _{vi} = 150 °C		15		

(wird fortgesetzt...)

EasyPACK[™] Modul

3 Body diode (MOSFET)

Tabelle 5 (Fortsetzung) Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingu	ng		Werte		Einh.
				Min	Тур	Max	
Abschaltverzögerungszeit	$t_{\sf doff}$	$I_{\rm D}$ = 62.5 A, $R_{\rm Goff}$ = 5.1 Ω ,	T _{vj} = 25 °C		114		ns
(ind. Last)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		126		
			T _{vj} = 150 °C		129		
Fallzeit (induktive Last)	t_{f}	$I_{\rm D}$ = 62.5 A, $R_{\rm Goff}$ = 5.1 Ω ,	T _{vj} = 25 °C		34		ns
		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		36		
			T _{vj} = 150 °C		37		
Einschaltverlustenergie	$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 5.1 \Omega, \text{ di/dt} = 3.2$	<i>T</i> _{vj} = 25 °C		1.39		mJ	
pro Puls			T _{vj} = 125 °C		1.57		
			T _{vj} = 150 °C		1.64		
Abschaltverlustenergie pro	$E_{ m off}$	$I_{\rm D}$ = 62.5 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		1.06		mJ
Puls		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 5.1 \Omega, \text{ dv/dt} = 13$	T _{vj} = 125 °C		1.14		
			T _{vj} = 150 °C		1.15		
Wärmewiderstand, Chip bis Kühlkörper	R_{thJH}	pro MOSFET, $\lambda_{\text{grease}} = 1 \text{ W}$	/(m·K)		0.661		K/W
Temperatur im Schaltbetrieb	T _{vj op}			-40		150	°C

Anmerkung: The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Note AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

3 Body diode (MOSFET)

Tabelle 6 Höchstzulässige Werte

Parameter	Symbol	Notiz oder Prüfbedingung		Werte	Einh.
Body Diode-Gleichstrom	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _H = 90 °C	30	Α

Tabelle 7 Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingung			Werte		Einh.
				Min	Тур	Max	
Durchlassspannung	V_{SD}	$I_{SD} = 62.5 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.14	5.35	V
			T _{vj} = 125 °C		3.88		
			T _{vi} = 150 °C		3.82		

EasyPACK[™] **Modul**

4 NTC-Widerstand

4 NTC-Widerstand

Tabelle 8 Charakteristische Werte

Parameter	Symbol	Symbol Notiz oder Prüfbedingung		Werte		
			Min	Тур	Max	
Nennwiderstand	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Abweichung von R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Verlustleistung	P ₂₅	T _{NTC} = 25 °C			20	mW
B-Wert	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-Wert	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-Wert	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		К

Anmerkung: Eine detaillierte Beschreibung der NTC-Eigenschaften finden Sie in der AN2009-10, Kapitel 4.

EasyPACK[™] Modul

5 Kennlinien

5 Kennlinien

Ausgangskennlinie (typisch), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Ausgangskennlinie (typisch), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Ausgangskennlinienfeld (typisch), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 150 \,^{\circ}\text{C}$

Einschaltwiderstand (typisch), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

EasyPACK[™] Modul

5 Kennlinien

Einschaltwiderstand (typisch), MOSFET

$$\mathsf{R}_{\mathsf{DS}(\mathsf{on})} = \mathsf{f}(\mathsf{T}_{\mathsf{v}\mathsf{j}})$$

 $I_D = 62.5 A$

Übertragungscharakteristik (typisch), MOSFET

$$I_D = f(V_{GS})$$

 $V_{DS} = 20 V$

Gate-Source Schwellspannung (typisch), MOSFET

$$V_{GS(th)} = f(T_{vj})$$

 $V_{GS} = V_{DS}$

Gateladungs Charakteristik (typisch), MOSFET

 $V_{GS} = f(Q_G)$

 I_D = 62.5 A, T_{vi} = 25 °C

EasyPACK[™] Modul

5 Kennlinien

Kapazitäts Charakteristik (typisch), MOSFET

 $C = f(V_{DS})$

 $f = 100 \text{ kHz}, T_{vi} = 25 \text{ °C}, V_{GS} = 0 \text{ V}$

Schaltzeiten (typisch), MOSFET

 $t = f(I_D)$

 R_{Goff} = 5.1 Ω , R_{Gon} = 5.1 Ω , V_{DD} = 600 V, T_{vj} = 150 °C, V_{GS} = -3/18 V

Schaltzeiten (typisch), MOSFET

 $t = f(R_c)$

 V_{DD} = 600 V, I_{D} = 62.5 A, T_{vj} = 150 °C, V_{GS} = -3/18 V

Stromsteilheit (typisch), MOSFET

 $di/dt = f(R_G)$

 V_{DD} = 600 V, I_{D} = 62.5 A, V_{GS} = -3/18 V

EasyPACK[™] Modul

5 Kennlinien

Spannungssteilheit (typisch), MOSFET

 $dv/dt = f(R_G)$

$$V_{DD}$$
 = 600 V, I_{D} = 62.5 A, V_{GS} = -3/18 V

Schaltverluste (typisch), MOSFET

 $E = f(I_D)$

$$R_{Goff} = 5.1 \Omega$$
, $R_{Gon} = 5.1 \Omega$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

Schaltverluste (typisch), MOSFET

 $E = f(R_G)$

$$V_{DD}$$
 = 600 V, I_{D} = 62.5 A, V_{GS} = -3/18 V

Sicherer Rückwärts-Arbeitsbereich (RBSOA), MOSFET

 $I_D = f(V_{DS})$

$$R_{Goff} = 5.1 \Omega$$
, $T_{vj} = 150 \, ^{\circ}$ C, $V_{GS} = -3/18 \, \text{V}$

EasyPACK[™] Modul

5 Kennlinien

Transienter Wärmewiderstand, MOSFET

$$Z_{th} = f(t)$$

Durchlasskennlinie der Body-Diode (typisch), MOSFET

$$I_{SD} = f(V_{SD})$$

$$T_{vj} = 25 \,^{\circ}\text{C}$$

Durchlassspannung der Body-Diode (typisch), MOSFET

 $V_{SD} = f(T_{vj})$

$$I_{SD} = 62.5 A$$

Temperaturkennlinie (typisch), NTC-Widerstand

$$R = f(T_{NTC})$$

6 Schaltplan

6 Schaltplan

Abbildung 1

(infineon

7 Gehäuseabmessungen

7 Gehäuseabmessungen

Abbildung 2

EasyPACK[™] **Modul**

8 Modul-Label-Code

8 Modul-Label-Code

Code format	Data Matrix		Barcode C	Code128
Encoding	ASCII text		Code Set	Ą
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Module serial number 1 - 5 Module material number 6 - 11 Production order number 12 - 19 Date code (production year) 20 - 21		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			6550549911530

Abbildung 3

EasyPACK[™] Modul

Änderungshistorie

Änderungshistorie

Dokumentenrevision	Freigabedatum	Beschreibung
0.10	2023-07-11	Initial version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-07-11 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABH174-001

Wichtiger Hinweis

Die in diesem Dokument enthaltenen Angaben stellen keinesfalls Garantien für die Beschaffenheit oder Eigenschaften des Produktes ("Beschaffenheitsgarantie") dar.

Für Beispiele, Hinweise oder typische Werte, die in diesem Dokument enthalten sind, und/oder Angaben, die sich auf die Anwendung des Produktes beziehen, ist jegliche Gewährleistung und Haftung von Infineon Technologies ausgeschlossen, einschließlich, ohne hierauf beschränkt zu sein, die Gewähr dafür, dass kein geistiges Eigentum Dritter verletzt ist.

Des Weiteren stehen sämtliche, in diesem Dokument enthaltenen Informationen, unter dem Vorbehalt der Einhaltung der in diesem Dokument festgelegten Verpflichtungen des Kunden sowie aller im Hinblick auf das Produkt des Kunden sowie die Nutzung des Infineon Produktes in den Anwendungen des Kunden anwendbaren gesetzlichen Anforderungen, Normen und Standards durch den Kunden.

Die in diesem Dokument enthaltenen Daten sind ausschließlich für technisch geschultes Fachpersonal bestimmt. Die Beurteilung der Eignung dieses Produktes für die beabsichtigte Anwendung sowie die Beurteilung der Vollständigkeit der in diesem Dokument enthaltenen Produktdaten für diese Anwendung obliegt den technischen Fachabteilungen des Kunden.

Warnhinweis

Aufgrund der technischen Anforderungen können Produkte gesundheitsgefährdende Substanzen enthalten. Bei Fragen zu den in diesem Produkt enthaltenen Substanzen, setzen Sie sich bitte mit dem nächsten Vertriebsbüro von Infineon Technologies in Verbindung.

Sofern Infineon Technologies nicht ausdrücklich in einem schriftlichen, von vertretungsberechtigten Infineon Mitarbeitern unterzeichneten Dokument zugestimmt hat, dürfen Produkte von Infineon Technologies nicht in Anwendungen eingesetzt werden, in welchen vernünftigerweise erwartet werden kann, dass ein Fehler des Produktes oder die Folgen der Nutzung des Produktes zu Personenverletzungen führen.