МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 2381	Комосский Е.А.
Преподаватель	Шевская Н.В.

Санкт-Петербург

2022

Цель работы.

Изучить способы работы с Машиной Тьюринга и использовать полученные знания для выполнения заданий.

Задание.

Вариант 1.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' – последний в строке, то удалить его. Если первый встретившийся символ 'b' – предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

a

b

c

" " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы.

Таблица 1 – Состояния

Состояние	a	b	С	Пробел(" ")
q1	a,R,q2	b, R, q3	c,R,q2	" ",R,q1
q2	a,R,q2	b, R, q3	c,R,q2	" ", L, q5
q3	a,R,q7	b, R, q7	c,R,q7	" ", L, q4
q4	" ",N,q0	" ",N,q0	" ",N,q0	" ",N,q0
q5	a,L,q5	-	c,L,q5	" ",R,q6
q6	" ",N,q0	-	" ",N,q0	-
q7	a,R,q9	b, R, q9	c,R,q9	" ", L, q8
d8	" ", L, q0	" ",L,q0	" ",L,q0	-
q 9	a,L,q15	b, L, q16	c,L,q17	" ", L, q18
q10	a,R,q14	a,R,q14	a,R,q14	-
q11	b,R,q14	b,R,q14	b,R,q14	-
q12	c,R,q14	c,R,q14	c,R,q14	-
q13	" ",R,q14	" ",R,q14	" ",R,q14	" ",R,q20
q14	a,R,q19	b,R,q19	c,R,q19	" ",N,q19
q15	a,L,q10	b, L, q10	c,L,q10	" ", L, q10
q16	a,L,q11	b, L, q11	c,L,q11	" ", L, q11
q17	a, L, q12	b, L, q12	c,L,q12	" ", L, q12
q18	a, L, q13	b, L, q13	c,L,q13	" ", L, q13
q19	a,R,q9	b, R, q9	c,R,q9	" ",N,q9
q20	" ",N,q0	" ",N,q0	" ",N,q0	" ",N,q0

- q0 завершение работы
- q1 поиск первой буквы
- q2 если первая буква не "b", то поиск первого вхождения в строке
- q3 поиск символа, после b

- q4 если пробел после "b", то удаляем "b"
- q5 если "b" в строке нет, то возвращаемся в её начало
- q6 удаление первого символа
- q7 поиск второго символа после "b"
- q8 если второй символ пробел, то удаляем первый
- q9 поиск символа, который надо переместить на два назад
- q10, q11, q12, q13 замена символов на а, b, с и " " соответственно
- q14, q19 шаги вправо, для поиска символа для переноса
- q15, q16, q17, q18 шаги влево для замены на а, b, с и " " соответственно
- q20 если при перемещении в q13 символ пробел, значит все перемещения, кроме одного, завершены. Перемещаем пробел и завешаем выполнение.

Сначала задаём значения для переменных $R=1,\ L=-1,\ N=0,\$ которые отвечают за перемещение машины. В mem пользователь входит начальную ленту. В q записывается начальное состояние "q1". В ind записана начальная позиция в введённой ленте. В цикле, который работает, пока состояние не станет "q0", мы записываем символ, шаг и состояние. Обновляем символ на ленте и состояние, делаем шаг. После выполнения цикла программа выводит итоговую ленту на экран.

Разработанный программный код см. в приложении А.

Результаты тестирования см. в приложении Б.

Выводы.

Был изучен механизм работы Машины Тьюринга. Полученные знания были применены на практике для составления таблицы состояний и решения поставленной задачи.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main lb3.py

```
R, L, N = 1, -1, 0
table = {
    'q1': {' ': [' ', R, 'q1'], 'a': ['a', R, 'q2'], 'b': ['b', R, 'q3'],
'c': ['c', R, 'q2'], },
    'q2': {' ': [' ', L, 'q5'], 'a': ['a', R, 'q2'], 'b': ['b', R, 'q3'],
'c': ['c', R, 'q2'], },
    'q3': {' ': [' ', L, 'q4'], 'a': ['a', R, 'q7'], 'b': ['b', R, 'q7'],
'c': ['c', R, 'q7'], },
    'q4': {' ': [' ', N, 'q0'], 'a': [' ', N, 'q0'], 'b': [' ', N, 'q0'],
'c': [' ', N, 'q0']},
    'q5': {' ': [' ', R, 'q6'], 'a': ['a', L, 'q5'], 'c': ['c', L, 'q5'],
    'q6': {'a': [' ', N, 'q0'], 'c': [' ', N, 'q0'], },
    'q7': {' ': [' ', L, 'q8'], 'a': ['a', R, 'q9'], 'b': ['b', R, 'q9'],
'c': ['c', R, 'q9'], },
    'q8': {'a': [' ', L, 'q0'], 'b': [' ', L, 'q0'], 'c': [' ', L, 'q0'],
    'q9': {' ': [' ', L, 'q18'], 'a': ['a', L, 'q15'], 'b': ['b', L,
'q16'], 'c': ['c', L, 'q17'], },
    'q10': {'a': ['a', R, 'q14'], 'b': ['a', R, 'q14'], 'c': ['a', R,
'q14'], },
    'q11': {'a': ['b', R, 'q14'], 'b': ['b', R, 'q14'], 'c': ['b', R,
    'q12': {'a': ['c', R, 'q14'], 'b': ['c', R, 'q14'], 'c': ['c', R,
'q14'], },
    'q13': {' ': [' ', R, 'q20'], 'a': [' ', R, 'q14'], 'b': [' ', R,
'q14'], 'c': [' ', R, 'q14'], },
    'q14': {' ': [' ', N, 'q19'], 'a': ['a', R, 'q19'], 'b': ['b', R,
'q19'], 'c': ['c', R, 'q19'], },
    'q15': {' ': [' ', L, 'q10'], 'a': ['a', L, 'q10'], 'b': ['b', L,
'q10'], 'c': ['c', L, 'q10'], },
    'q16': {' ': [' ', L, 'q11'], 'a': ['a', L, 'q11'], 'b': ['b', L,
'q11'], 'c': ['c', L, 'q11'], },
    'q17': {' ': [' ', L, 'q12'], 'a': ['a', L, 'q12'], 'b': ['b', L,
'q12'], 'c': ['c', L, 'q12'], },
'q18': {' ': [' ', L, 'q13'], 'a': ['a', L, 'q13'], 'b': ['b', L, 'q13'], 'c': ['c', L, 'q13'], },
    'q19': {' ': [' ', N, 'q9'], 'a': ['a', R, 'q9'], 'b': ['b', R,
'q9'], 'c': ['c', R, 'q9'], },
    'q20': {' ': [' ', N, 'q0'], 'a': [' ', N, 'q0'], 'b': [' ', N,
'q0'], 'c': [' ', N, 'q0'], },
mem = list(input())
q = 'q1'
ind = 0
while q != 'q0':
    s, mov, st = table[q][mem[ind]]
    mem[ind] = s
    ind += mov
    q = st
print(''.join(mem))
```

ПРИЛОЖЕНИЕ Б ТЕСТИРОВАНИЕ

Таблица 2 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	"baac "	" bc "	Программа удалила два символа после "b"
2.	" aaa "	" aa "	Программа удалила первый символ, так как "b" в строке нет
3.	" ba "	"b "	Программа удалила символ после "b"