Week 4

Using motors/props
PID tuning

Administration

- Make sure you include all requested info in reports, and submit your code.
- Be sure to make suggested corrections in canvas
- Practice flying

Milestones (overview)

- 1. Show assembled quad in rig with props
- 2. P controller (pitch DOF) with props in test rig
- 3. D controller (pitch DOF) with props in test rig
- 4. PD controller (pitch DOF) with props in test rig.
- 5. Test filter values in imu

(Stretch goal) PID controller (pitch DOF) with props in rig

Propeller safety

- Treat props as if they are ------
- Penalties to grade for not following safety procedures (in addition to possibly hurting yourself)

Propeller safety

- Safety glasses on at all times during class/after hours, starting once the first props are put on.
 - Tip speed >200 f/s
- Treat quadrotor with connected battery as if it could spin motors at full force at any time.
 - Whenever props are on, and battery connected, you must wear safety glasses.
 - Don't have one person always handling the quad and the other coding
- Do not touch propellers while in motion, or allow them to touch anything.
- Ensure propellers are tightly attached (ask for help if needed)
- If propellers on, do not power up quad unless you confirm that it is secured.
- Do not execute motion of propeller unless partner is ready.
- If quad is out of control, hold down and disconnect battery

Attaching Props

Ensure correct orientation of prop, observing its curvature

Adding propellers

- Ensure props are for the correct direction and securely tightened.
- Check props clear Pi/wires/rubber bands
- Ensure no motor speeds above 1000.
- Ensure safe propeller usage.
- Safety glasses!

Battery Safety

- Do not modify wiring while battery plugged into robot
- Do not power using USB any more
- Battery safety!!
 - Do not short (don't keep near metal objects that could short it as well)
 - Do not charge or use, without a person watching
 - Do not unplug battery cable adaptor from charger
 - Store robots without battery

Battery charging

- Each group has limited batteries
- Recharge a battery when voltage alarm beeps
- When taking a fresh battery charge any empty batteries you can.
- Be sure to recharge all batteries before next class
- Hold connector when unplugging
- Ensure settings are as shown in picture on next page
- To charge, press start, wait for confirmation, and press start again

Battery charging

Quad assembly

Do not power the board on until milestone 1 is checked off

- 1. Have me flash a new program on board
- 2. Attach PI with 3 small screws
- 3. Attach PCB,PI, PCB bracket with 1 big screw
- 4. Attach props
- 5. Attach test rig (so pitch DOF can move freely)
 - Keep wire short, <1 inch
 - Use cardboard to keep from damaging table

Milestone 1

Have us check off on quad

Proportional controller

- Use code updates to command motors
 - No change needed
 - Be sure to call motor_enable() before loop, but after IMU calibration.
- Use
 - Thrust_neutral = 500
 - Thrust_amplitude = 100
 - Adjust P_{gain} so the motors on high side stop at a tilt of approximately 20 degrees
 - Test by turning off D controller (set $D_{gain} = 0$)

Milestone 2

- Turn off motors and exit program if:
 - Pitch have absolute values > 45 degrees
 - Gyro rate limit
 - User presses Control+c
 - Joystick kill
 - Joystick timeout
- P controller is apparent, no lag
- Generate and show plot of how motor speeds and pitch angle (both from accel and complementary filter) change vs time
 - Still moved by hand.

Milestone 2 plot example

Derivative (D) controller

- Desired Pitch angular velocity is 0. where pitch_velocity is read directly from gyro.
- Larger the velocity, the stronger the motors will try to bring velocity to 0.
- Correct signs cause robot to feel viscous/resists motion
- Incorrect signs cause robot to try to increase velocity
- Make sure no motor speed exceeds 1000
- Test by turning off P controller (set P_{gain} =0)

Milestone 3

- D controller is apparent, no lag
- Safety limits still work
- Graph showing 4 motor pwm values, Pitch value (from filter), Gyro value (speed), vs time.

PD controller

- Hints for adjusting P and D
 - 1. First turn off D and increase P gain until it is just strong enough to lift to zero pitch.
 - 2. Slowly add D gain until oscillations disappear
 - 3. Slowly add P until it just starts to oscillate.
 - 4. Goto 2 until you cant improve
- Too much P, slower oscillations around desired angle, too little, no correction
- Too much D, High speed oscillations not at set point, too little will not stop P oscillations

Graph pitch response

Underdamped (too much P or too little D)

Milestone 4

- PD controller is apparent, no lag
 Can hold position, track joystick commands
- Safety limits still work
- Graph showing 4 motor pwm values, Pitch value (from filter), Pitch value from Complementary filter.

Milestone 5, DLPF

- Change filter bandwidth on IMU
- graph the effect different bandwidth (there are 3 choices) has on angle sensing (from accel and from complementary filter)

5.3.10 Register 0x40: ACC_CONF Accelerometer configuration register.

Bit	Name	Access	Reset value	Description	
[7:4]	acc_bwp	RW	0x0A	This parameter influences the bandwidth of the accelerometer low pass filter. For details, see section 4.4.1. Possible values:	
				acc_bwp	Filter setting
				0x08	OSR4 (4-fold oversampling)
				0x09	OSR2 (2-fold oversampling)
				0x0A	Normal
				others	reserved

Stretch milestone

- PID controller is apparent, no lag
- Safety limits still work
- Graph showing 4 motor pwm values, Pitch value (from filter), all vs time.