On Efficient Long-Term Extreme Response Estimation for a Moored Floating Structure

HyeongUk Lim¹, Lance Manuel¹, Ying Min Low²

¹University of Texas at Austin, Austin, Texas, USA ²National University of Singapore

ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering Madrid, Spain • June 17-22, 2018

Paper No. OMAE 2018-78763

Overview

- Background and Motivation
- Problem Definition and Example Structure
- Surrogate model for long-term extreme response using Polynomial Chaos Expansion (PCE)
- Results
- Conclusions

K

Background and Motivation

- Of interest Long-term surge motion extreme response of a moored floating structure
- Uncertainty in such response extremes comes from:
 - (1) variability in sea state conditions (H_s and T_p)
 - (2) variability in simulated wave train time series (given H_s and T_p) due to random phases
- An Uncertainty Quantification Framework based on Polynomial Chaos Expansion (PCE) is developed that can treat these two sources of uncertainty in different ways primary source: (H_s, T_p) , directly in PCE; secondary source: phase vector, Θ .
- **❖** Validation:
 - → PCE "surrogate" extreme compared to Monte Carlo Simulation (MCS) "truth" systems

Introduction

Long-term analysis using Monte Carlo Simulation (MCS) is expensive. Proposal: Generalized Polynomial Chaos Expansion (PCE) framework for predicting long-term surge motion extreme response of a moored floating structure

- We consider uncertainty in:
 - environmental variables (significant wave height, H_s , and spectral peak period, T_p)
 - time-varying short-term loads (random phase vector to generate waves in each sea state).
- ❖ Validation studies involve PCE vs. MCS long-term response on the simple moored floating structure

Uncertainty in Environment

ightharpoonup Metocean Characterization for $H_{\mathcal{S}}$ and $T_{\mathcal{P}}$

Distribution $f(H_s, T_p)$ for a North Sea location (Haver, 2002)

$$f(H_{s}, T_{p}) = f(H_{s})f(T_{p}|H_{s})$$

$$f(H_{s}) = \frac{1}{\sqrt{2\pi}\xi H_{s}}e^{-\frac{(\ln H_{s} - \mu_{h})^{2}}{2\xi^{2}}}I(H_{s} \leq \hat{\eta}) + \frac{\hat{\gamma}}{\rho}\left(\frac{H_{s}}{\rho}\right)^{\hat{\gamma}-1}e^{-\left(\frac{H_{s}}{\rho}\right)^{\hat{\gamma}}}I(H_{s} > \hat{\eta})$$

$$f(T_{p}|H_{s}) = \frac{1}{\sqrt{2\pi}\sigma T_{p}}e^{-\frac{(\ln T_{p} - \mu_{t})^{2}}{2\sigma^{2}}}$$

$$0$$

$$0$$

$$15$$

$$T_{p}(s)$$

$$\mu_h = 0.77, \quad \xi = 0.6565, \quad \hat{\eta} = 2.90, \quad \rho = 2.691, \quad \hat{\gamma} = 1.503$$
 $\mu_t(H_s) = 1.134 + 0.892 H_s^{0.225}$
 $\sigma^2(H_s) = 0.005 + 0.120 e^{-0.455 H_s}$

Uncertainty in Response

Simple Moored Floating Structure

$$M\ddot{u}(t) + 2\zeta\sqrt{KM}\dot{u}(t) + Ku(t) = F_{WF}(t) + F_{LF}(t)$$
 $first-order$
 $first-orde$

Frequency response function (m/N): $H(\omega) = (-\omega^2 M + i\omega C + K)^{-1}$

Irregular sea surface elevation process (wave train)

$$\eta(t) = \sum_{r=1}^{R} a_r e^{i(\omega_r t + \theta_r)}$$
 $a_r = \sqrt{2S_{\eta}(\omega_r)\Delta\omega}$; R large $\theta_r = \text{rth term in}$
random phase vector

$$u(t) = \sum_{r=1}^{R} H(\omega_r) T^{(1)}(\omega_r) A_r e^{i\omega_r t} + \sum_{r=1}^{R} \sum_{\substack{s=1 \ r \neq s}}^{R} H(\omega_r - \omega_s) T^{(2)}(\omega_r, \omega_s) A_r A_s^* e^{i(\omega_r - \omega_s)t}$$

$$A_r = a_r e^{i\theta_r} \equiv a_r (H_s, T_p) e^{i\theta_r}$$

Reference: Low (2017)

Uncertainty in Response

First-Order (Wave-Frequency)

$$u_{WF}(t) = \sum_{r=1}^{R} H(\omega_r) T^{(1)}(\omega_r) A_r e^{i\omega_r t} = \sum_{r=1}^{R} H(\omega_r) T^{(1)}(\omega_r) a_r e^{i(\omega_r t + \theta_r)}$$

Second-Order (Diff-Frequency)
$$u_{LF}(t) = \sum_{r=1}^{R} \sum_{\substack{s=1 \ r \neq s}}^{R} H(\omega_r - \omega_s) T^{(2)}(\omega_r, \omega_s) A_r A_s^* e^{i(\omega_r - \omega_s)t} \cong \sum_{k=1}^{R} H(\omega_k) T^N(\omega_k) A_k e^{i\omega_k t}$$

Non-Gaussian (o-2 rad/s)

Uncertainty in Response

Quantity of Interest (QoI) – Short-term Extreme Response, Z

Qol:
$$Z = \max\{u(t); 0 \le t \le T\}$$
, T : duration; 30 mins

 $G_{Z|H_S,T_p}(z) = P(Z > z|H_S,T_p)$: exceedance probability of and wave-driven z given H_S and T_p

Z is defined for a given pair of H_s and T_p (random short-term sea state parameters) Uncertainty in Z depends on random H_s and T_p and on $\mathbf{\Theta} = [\theta_1, ..., \theta_R]^T$

Useful in design: $G_Z(z) = \iint G_{Z|H_S,T_p}(z) f(H_S,T_p) dH_S dT_p \rightarrow \text{Long-term distribution of } Z$ $\mathbf{X} \equiv \{H_S,T_p,\mathbf{\Theta}\} \rightarrow Z(\mathbf{X}); \text{ for } R \sim \text{O}(10^3), \text{ the no. of random inputs influencing Z is too large.}$ Need efficient method to assess uncertainty in Z.

We will explore using Uncertainty Quantification

 \rightarrow developing a surrogate for Z using PCE (Polynomial Chaos Expansion). How?

Monte Carlo Simulations and PCE-based Surrogate Models

$$Z \equiv Z(H_s, T_p, \mathbf{O}) \cong \hat{Z}(H_s, T_p)$$

$$= \sum_{i=1}^{N} c_i He_i(\xi(H_s, T_p))$$

 H_s and T_p are treated explicitly as RVs

 $oldsymbol{\Theta}$ is implicitly considered in PCE coefficients, c_i

$$G_Z(z) = \iint G_{Z|H_S,T_p}(z) f(H_S,T_p) dH_S dT_p$$
: unconditional exceedance probability

MCS estimate:
$$G_Z^{MC}(z) = \frac{1}{N_T} \sum_{k=1}^{N_T} I(Z > z | H_S^{(k)}, T_p^{(k)}, \boldsymbol{\Theta}^{(k)})$$

PCE estimate:
$$G_{\hat{Z}}^{PCE}(z) = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_s^{(k)}, T_p^{(k)})$$

For estimate of $G_{\widehat{Z}}^{PCE}(z)$

 \rightarrow need appropriate choices of polynomial order (p) and number of "truth system" simulations (N_E)

Polynomial Chaos Expansion (PCE)

❖ For UQ, uncertain QoI, Z, is expressed, using PCE:

$$\mathbf{X} = \{H_S, T_p\} \quad Z \equiv Z(\mathbf{X}) = \sum_{i=0}^{\infty} c_i \psi_i(\xi(\mathbf{X})) \qquad \begin{array}{l} \xi \colon \text{Rosenblatt transformation} \\ \Phi(q_1) = F_{H_S}(h) \\ \Phi(q_2) = F_{T_p|H_S}(t|h) \end{array}$$

 \clubsuit A truncated PCE for Z that involves polynomials up to order p is:

$$Z(X) \approx Z^{PCE}(X) = \sum_{i=0}^{N-1} c_i \psi_i (\xi(X)), \quad N = \sum_{k=0}^{p} {N_X + k - 1 \choose k} = {N_X + p \choose p}$$

$$\overline{He}_i(q_j) = (-1)^i \frac{1}{\varphi(q_j)} \frac{d^i \varphi(q_j)}{dq^i} \qquad \qquad \varphi(q_j) = \frac{1}{\sqrt{2\pi}} e^{-\frac{q_j^2}{2}}$$

- Multivariate Hermite polynomials are basis functions (Askey scheme)
- \clubsuit The i^{th} multi-dimensional Hermite polynomial is: $He_i(\boldsymbol{Q}) = \prod_{j=1}^n \overline{He}_{\alpha_i}(Q_j)$

PCE Example: Building a Surrogate Model for Qol

2 variables, order-2 Hermite polynomials
$$\mathbf{X} = \{X_1, X_2\}, \ p = 2 \Rightarrow \mathbf{Q} = \{Q_1, Q_2\}$$
 $N = \sum_{k=0}^{p} {N_X + k - 1 \choose k} = \sum_{k=0}^{2} {2 + k - 1 \choose k} = 6$

$$Z(X) \approx Z^{PCE}(X) = \sum_{i=0}^{N-1} c_i \psi_i \big(\xi(X) \big) = \sum_{i=0}^{5} c_i He_i(Q_1, Q_2) = c_0 He_0 + c_1 He_1 + c_2 He_2 + c_3 He_3 + c_4 He_4 + c_5 He_5$$

Univariate polynomials

$$\overline{He}_{i}(Q_{j}) = (-1)^{i} \frac{1}{\varphi(Q_{j})} \frac{d^{i}\varphi(Q_{j})}{dq^{i}}$$

$$\varphi(Q_{j}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{Q_{j}^{2}}{2}}$$

$$\overline{He}_{0}(Q_{j}) = 1$$

$$\overline{He}_{1}(Q_{j}) = Q_{j}$$

$$\overline{He}_{2}(Q_{j}) = Q_{j}^{2} - 1$$

i	multi-index					
l	Q_1	Q_2				
0	0	0				
1	1	0				
2	0	1				
3	2	0				
4	1	1				
5	0	2				

Bivariate polynomials

$$\begin{aligned} He_0(Q_1,Q_2) &= \overline{He}_0(Q_1) \cdot \overline{He}_0(Q_2) = 1 \\ He_1(Q_1,Q_2) &= \overline{He}_1(Q_1) \cdot \overline{He}_0(Q_2) = Q_1 \\ He_2(Q_1,Q_2) &= \overline{He}_0(Q_1) \cdot \overline{He}_1(Q_2) = Q_2 \\ He_3(Q_1,Q_2) &= \overline{He}_2(Q_1) \cdot \overline{He}_0(Q_2) = Q_1^2 - 1 \\ He_4(Q_1,Q_2) &= \overline{He}_1(Q_1) \cdot \overline{He}_1(Q_2) = Q_1 \cdot Q_2 \\ He_5(Q_1,Q_2) &= \overline{He}_0(Q_1) \cdot \overline{He}_2(Q_2) = Q_2^2 - 1 \end{aligned}$$

Polynomial Chaos Expansion (PCE) using Spectral Projection

• Spectral projection (quadrature-based integration) can be used to compute the coefficients, c_i :

$$c_i = \frac{E[Z(\mathbf{X})He_i(\mathbf{Q})]}{E[He_i^2(\mathbf{Q})]}$$

• The denominator may be derived analytically; the numerator is approximated as

$$\sum_{x_{1k}=1}^{n_q} \sum_{x_{2k}=1}^{n_q} \cdots \sum_{x_{(N_X)k}=1}^{n_q} Z(x_{1k}, x_{2k}, \cdots, x_{(N_X)k}) He_i(Q(x_{1k}, x_{2k}, \cdots, x_{(N_X)k})) \underbrace{w_{1k}w_{2k} \cdots w_{(N_X)k}}_{\text{quadrature points}}) He_i(Q(x_{1k}, x_{2k}, \cdots, x_{(N_X)k})) \underbrace{w_{1k}w_{2k} \cdots w_{(N_X)k}}_{\text{quadrature points}}$$

• By averaging values of Z at quadrature points, spectral projection can account for the uncertainty due to random phases in sea surface elevations (Nguyen et al, 2018 – for WEC extremes)

Polynomial Chaos Expansion (PCE) using Linear Regression

 N_E response valuations conducted account for random H_S , T_p values and variability from Θ

$$c = \arg\min_{c_{i}} \sum_{m=1}^{N_{E}} \left[Z(X^{(m)}) - \sum_{i=0}^{N-1} c_{i} H e_{i}(\xi(X^{(m)})) \right]^{2}$$

$$Hc = Z \implies \begin{bmatrix} He_{0}(\xi(X^{(1)})) & \cdots & He_{N-1}(\xi(X^{(1)})) \\ \vdots & \ddots & \vdots \\ He_{0}(\xi(X^{(N_{E})})) & \cdots & He_{N-1}(\xi(X^{(N_{E})})) \end{bmatrix} \begin{bmatrix} c_{0} \\ \vdots \\ c_{N-1} \end{bmatrix} = \begin{bmatrix} Z(X^{(1)}) \\ \vdots \\ Z(X^{(N_{E})}) \end{bmatrix}$$

$$H: N_{E} \times N \qquad c: N \times 1 \qquad Z: N_{E} \times 1$$

Least squares solution: $c = (H^T H)^{-1} H^T Z$

Training Data for PCE Surrogate Development

Response Stochastic Simulations

$$k$$
th sample of $(H_s, T_p, \Theta) \rightarrow A_r = a_r e^{i\theta_r}, \qquad a_r = \sqrt{2S_{\eta}(\omega_r)\Delta\omega}$

$$u^{(k)}(t) = \sum_{r=1}^{R} H(\omega_r) T^{(1)}(\omega_r) A_r e^{i\omega_r t} + \sum_{r=1}^{R} \sum_{\substack{s=1 \ r \neq s}}^{R} H(\omega_r - \omega_s) T^{(2)}(\omega_r, \omega_s) A_r A_s^* e^{i(\omega_r - \omega_s)t}$$

$$Z^{(k)} = \max\{u^{(k)}(t); 0 \le t \le T\}$$

involving randomness of H_s and T_p , $\mathbf{\Theta} = [\theta_1, ..., \theta_R]^T$

- Using Inverse Fast Fourier Transform, realizations of 30-min time series are done quite efficiently
- Relative importance of WF and LF components to the response is evident

Parameters for PCE-based Surrogate Models

Estimation of $\hat{Z}(H_S, T_p)$ depends on p (order of polynomial) and N_E (no. of evaluations)

$$\#(\mathbf{c}) = {p + \#(H_S, T_p) \choose p} = {3 + 2 \choose 3} = 10, \qquad \mathbf{c} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{Z}$$

For $G_Z(z) = 10^{-3}$ levels: given p = 3, uncertainty in extremes reduced as N_E increases

Parameters for PCE-based Surrogate Models

10 sets of MCS and PCE; order-3 polynomials

100 samples for estimation of $oldsymbol{c}$ yield comparable uncertainty for PCE vs. MCS

Exceedance Probabilities of Extreme Surge Motion

A rule of thumb: $p \ge 3$ and $N_E \le 3N$ to achieve satisfactory accuracy for $G_Z(z) \le 10^{-4}$ (Sudret, 2007; Blatman, 2010)

But $\hat{Z}(H_s, T_p)$ does not explicitly account for uncertainty introduced by Θ

 \rightarrow larger N_E is needed; $N_E = 10N$

A proper choice of the polynomial order (p): 3 The number of simulations (N_E) of the truth system:

$$10 \times N = 100; \ N = {2+p \choose 2} = {5 \choose 2} = 10$$

Slightly greater variability than MCS but no bias in the PCE predictions

Drawn Samples for PCE and MCS

Recall that $G_Z(z) = \iint G_{Z|H_S,T_p}(z) f(H_S,T_p) dH_S dT_p$

Inaccuracy in PCE G_Z prediction may result from deficient approximations of $(Z|H_S, T_p)$

of samples: 10×100 (PCE) vs 100,000 (MCS)

PCE Short-term Extreme Response Prediction Accuracy

Specific sea states H_s (m)- T_p (s): 0.73-7.14; 2.16-8.98; 5.58-11.56

 H_s : 0.1, 0.5, 0.9 non-exceedance marginal quantiles; e.g., $P(H_s < 0.73) = 0.1$

 T_p : conditional median values for associated H_s values; e.g., $F_{T_p|H_s=0.73}(7.14)=0.5$

by 100 realizations of random phases

$$E[Z(H_s, T_p, \mathbf{\Theta})]$$

 $Z = \max\{u(t); 0 \le t \le 30 \text{ mins }\}$

$$\hat{Z}(H_s, T_p)$$

H_s (m)	T_p (s)	Truth System	PCE1	PCE2	PCE3	PCE4	PCE5	PCE6	PCE7	PCE8	PCE9	PCE10	Mean
0.73	7.14	0.034	0.041	0.036	0.011	-0.012	0.076	0.079	0.047	-0.072	0.026	0.025	0.026
2.16	8.98	0.250	0.232	0.266	0.285	0.271	0.238	0.234	0.244	0.294	0.282	0.262	0.261
5.58	11.56	1.340	1.220	1.216	1.317	1.419	1.215	1.246	1.347	1.495	1.264	1.374	1.311

Monte Carlo Simulations with Importance Sampling

Importance sampling can be used to reduce sampling variability resulted from long-term uncertainty

MCS-IS estimate:
$$G_Z^{MC-IS}(z) = \frac{1}{N_T} \sum_{k=1}^{N_T} I(Z > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(h^{(k)}, t^{(k)})}{h(h^{(k)}, t^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(Z > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(h^{(k)})}{h(h^{(k)})}$$

- PDF h is chosen to result in more higher H_s samples
- $\Rightarrow \mu_{H_s}^f = 2.54 \text{ m}; \mu_{H_s}^h = \mu_{H_s}^f + 1 = 3.54 \text{ m}$

of MCS samples: 10,000 # of MCS-IS samples: 10,000

Because of the weights ($\frac{f}{h}$ < 1 at high H_s), G_Z under 10^{-4} can be estimated, even with 10^4 samples

PCE with Importance Sampling

Importance sampling can also be used in PCE

PCE-IS estimate:
$$G_{\hat{Z}}^{PCE}(z) = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^{(k)}) \times \frac{f(q_1^{(k)}, q_2^{(k)})}{h(q_1^{(k)}, q_2^{(k)})} = \frac{1}{N_T} \sum_{k=1}^{N_T} I(\hat{Z} > z | H_S^{(k)}, T_p^$$

Note that q_1 and q_2 are independent standard normal variables (f)

ightharpoonup PDF h is chosen to obtain more samples in higher Q_1 ranges

***** Ex)
$$\mu_{Q_1}^f = 0$$
; $\mu_{Q_1}^h = \mu_{Q_1}^f + 0.77$; $F_{H_S}^{-1}(\Phi(0.77)) = 3.54$ (m)

of MCS samples: 100,000 # of PCE samples: 100,000 # of PCE-IS samples: 100,000

There is no complexity in selecting importance sampling density (h)

Conclusions

- Prediction of long-term extreme response of a simple moored floating offshore structure was carried out using a Polynomial Chaos Expansion (PCE) surrogate
- The moored floating structure subjected to first-order and second-order wave loading was considered in numerical studies
- \diamond Uncertainty in the response extremes was treated by explicit inclusion of H_s and T_p in PCE; uncertainty resulting from random phases in the wave train was accounted for by using multiple suites of data in linear regression, used for PCE coefficient estimation
- PCE surrogates yielded accurate prediction when compared against the truth system MCS and with significant saving; importance sampling leads to unbiased prediction with even better control (reduced confidence intervals on long-term predictions)

Acknowledgment

Discussions with Mr. Phong Nguyen (PhD Candidate) Lead author of closely related work, On the Development of an Efficient Surrogate Model for Predicting Long-term Extreme Loads on a Wave Energy Converter, OMAE2018-78766, Thursday, 15:30 – Session 9-4-1

gracias!