Introduction to Shape Manifolds

Geometry of Data

September 24, 2020

What is Shape?

Shape is the geometry of an object modulo position, orientation, and size.

Geometry Representations

- Landmarks (key identifiable points)
- Boundary models (points, curves, surfaces, level sets)
- Interior models (medial, solid mesh)
- Transformation models (splines, diffeomorphisms)

Landmarks

From Dryden & Mardia, 1998

- A landmark is an identifiable point on an object that corresponds to matching points on similar objects.
- This may be chosen based on the application (e.g., by anatomy) or mathematically (e.g., by curvature).

Landmark Correspondence

More Geometry Representations

Points

(Fourier, splines)

(solid interior)

Transformation Models

From D'Arcy Thompson, On Growth and Form, 1917.

A metric space structure provides a comparison between two shapes.

Examples: Shape Spaces

Kendall's Shape Space

Space of Diffeomorphisms

Tangent Spaces

Infinitesimal change in shape:

A **tangent vector** is the velocity of a curve on M.

Shape Equivalences

Two geometry representations, x_1, x_2 , are **equivalent** if they are just a translation, rotation, scaling of each other:

$$x_2 = \lambda R \cdot x_1 + v,$$

where λ is a scaling, R is a rotation, and v is a translation.

In notation: $x_1 \sim x_2$

Equivalence Classes

The relationship $x_1 \sim x_2$ is an **equivalence** relationship:

- ▶ Reflexive: $x_1 \sim x_1$
- Symmetric: $x_1 \sim x_2$ implies $x_2 \sim x_1$
- ► Transitive: $x_1 \sim x_2$ and $x_2 \sim x_3$ imply $x_1 \sim x_3$

We call the set of all equivalent geometries to x the equivalence class of x:

$$[x] = \{y : y \sim x\}$$

he set of all equivalence classes is our shape space.

Kendall's Shape Space

- Define object with k points.
- ▶ Represent as a vector in \mathbb{R}^{2k} .
- Remove translation, rotation, and scale.
- End up with complex projective space, \mathbb{CP}^{k-2} .

What do we get when we "remove" scaling from \mathbb{R}^2 ?

What do we get when we "remove" scaling from \mathbb{R}^2 ?

What do we get when we "remove" scaling from \mathbb{R}^2 ?

What do we get when we "remove" scaling from \mathbb{R}^2 ?

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.
- ▶ An object is then a point $(z_1, z_2, ..., z_k) \in \mathbb{C}^k$.
- ▶ Removing **translation** leaves us with \mathbb{C}^{k-1} .
- How to remove scaling and rotation?

Scaling and Rotation in the Complex Plane

Recall a complex number can be written as $z=re^{i\phi}$, with modulus r and argument ϕ .

Complex Multiplication:

$$se^{i\theta} * re^{i\phi} = (sr)e^{i(\theta+\phi)}$$

Multiplication by a complex number $se^{i\theta}$ is equivalent to scaling by s and rotation by θ .

Removing Scale and Rotation

Multiplying a centered point set, $\mathbf{z} = (z_1, z_2, \dots, z_{k-1})$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Thus the shape of z is an equivalence class:

$$[\mathbf{z}] = \{(wz_1, wz_2, \dots, wz_{k-1}) : \forall w \in \mathbb{C}\}$$

This gives complex projective space \mathbb{CP}^{k-2} – much like the sphere comes from equivalence classes of scalar multiplication in \mathbb{R}^n .

Alternative: Shape Matrices

Represent an object as a real $d \times k$ matrix.

Preshape process:

- Remove translation: subtract the row means from each row (i.e., translate shape centroid to 0).
- Remove scale: divide by the Frobenius norm.

Orthogonal Procrustes Analysis

Problem:

Find the rotation R^* that minimizes distance between two $d \times k$ matrices A, B:

$$R^* = \arg\min_{R \in SO(d)} ||RA - B||^2$$

Solution:

Let $U\Sigma V^T$ be the SVD of BA^T , then

$$R^* = UV^T$$

Geodesics in 2D Kendall Shape Space

Let A and B be $2 \times k$ shape matrices

- 1. Remove centroids from *A* and *B*
- 2. Project onto sphere: $A \leftarrow A/\|A\|$, $B \leftarrow B/\|B\|$
- 3. Align rotation of *B* to *A* with OPA
- 4. Now a geodesic is simply that of the sphere, S^{2k-1}

Where to Learn More

Books

- Dryden and Mardia, Statistical Shape Analysis, Wiley, 1998.
- Small, The Statistical Theory of Shape, Springer-Verlag, 1996.
- Kendall, Barden and Carne, Shape and Shape Theory, Wiley, 1999.
- Krim and Yezzi, Statistics and Analysis of Shapes, Birkhauser, 2006.