Movimento Retilíneo (Parte 2)

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

08 de novembro de 2016

Plano de Aula

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

Sumário

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

Pensamento

Pensamento

Frase

Eu consigo calcular o movimento dos corpos celestiais, mas não a loucura das pessoas.

Quem?

Isaac Newton (1643-1727) Físico inglês

Sumário

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

O que é Física?

Um dos objetivos da Física...

• Estudar características do movimento;

O que é Física?

Um dos objetivos da Física...

- Estudar características do movimento;
- Ex.: Rapidez com que eles se realizam.

Aplicações

- Engenheiros da NASCAR → desempenho de carros;
- Médicos → mapeamento do fluxo de sangue;
- Motoristas → redução de velocidade.

Movimento Unidimensional

É o estudo do movimentos de objetos em linha reta.

Movimentos

Movimento Unidimensional

Propriedade Gerais:

- Trajetória (retilínea):
 - vertical:
 - horizontal; ou
 - inclinada.
- "Forças" que atuam sobre o objeto;
 - Velocidade;
 - Direção
- Tipo de objeto:
 - Partícula;
 - Fluido...

Posição e Deslocamento

- Ponto de referência: origem;
- Sentido: positivo ou negativo;
- Unidade de comprimento: m (por exemplo).

Posição e Deslocamento

Deslocamento

A mudança de posição x_1 para a posição x_2 está associado a um deslocamento Δx :

$$\Delta x = x_2 - x_1$$

Símbolo A

Associado à variação de grandezas, correspondendo à diferença entre os valores final e inicial.

Cuidado!!!

Distância efetivamente percorrida é diferente de deslocamento.

Posição e Deslocamento

Deslocamento é uma grandeza vetorial

- Módulo;
- Direção;
- Sentido.

Exercício

Considere três pares de posições iniciais e finais, respectivamente, ao longo do eixo x. A que pares correspondem deslocamentos negativos:

- \bullet -3 m, + 5 m;
- 2 -3 m, -7 m;
- 3 7 m, -3 m.

Gráfico posição × tempo

Notação

x(t) representa a função x em relação a t.

Gráfico posição × tempo

Velocidade Média

Velocidade Média

$$v_{\mathsf{m\'ed}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

- x_1 é a posição no instante t_1 ;
- x_2 é a posição no instante t_2 ;
- No SI, a unidade de v_{méd} é m/s;
- v_{méd} também é uma grandeza vetorial.

Gráfico posição × tempo

Este é um gráfico da posição x em função do tempo t.

Para determinar a velocidade média. trace uma linha reta do início ao fim e calcule a inclinação da reta.

Velocidade Escalar Média

Velocidade Escalar Média

$$s_{m\'ed} = \frac{distância\ total}{\Delta t}$$

- s_{méd} não é uma grandeza vetorial;
- o valor de s_{méd} pode ser diferente do valor de v_{méd}.

Velocidade Escalar Média

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

- Qual foi o deslocamento total, do início da viagem até chegar ao posto de gasolina?
- ② Qual é o intervalo de tempo Δt entre o início da viagem e o instante em que você chega ao posto?

Velocidade Escalar Média

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

- Qual é a velocidade média v_{méd} do início da viagem até a chegada ao posto de gasolina? Determine a solução numericamente e graficamente.
- Suponha que para encher um bujão de gasolina, pagar e caminhar de volta para o carro você leva 45 min. Qual é a velocidade escalar média do início da viagem até o momento em que você chega de volta ao lugar onde deixou o carro?

Gráfico posição × tempo

Sumário

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

Velocidade Instantânea

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Velocidade Instantânea

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

• v também é uma grandeza vetorial.

Velocidade Instantânea

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

• v também é uma grandeza vetorial.

Velocidade Escalar Instantânea

Velocidade escalar instantânea, ou, simplesmente, **velocidade escalar**, é o módulo da velocidade, ou seja, a velocidade desprovida de qualquer indicação de direção ou sentido.

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

$$x = 3t - 2$$

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

1
$$x = 3t - 2$$

$$x = -4t^2 - 2$$

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?
- **1** x = 3t 2
- $x = -4t^2 2$

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

1
$$x = 3t - 2$$

$$x = -4t^2 - 2$$

Gráfico posição × tempo

Gráfico velocidade × tempo

Gráficos de x(t) e v(t)

Gráfico aceleração × tempo

Gráficos de v(t) e a(t)

Bônus (0,5 pt)

Desafio

(Halliday 2.72) Uma pedra é lançada verticalmente para cima a partir da borda do terraço de um edifício. A pedra atinge a altura máxima 1,60 s após ter sido lançada e, em seguida, caindo paralelamente ao edifício, chega ao solo 6,00 s após ter sido lançada. Em unidades do SI:

- com que velocidade a pedra foi lançada?
- Qual foi a altura máxima atingida pela pedra em relação ao terraço?
- Qual é a altura do edifício?

Informações úteis

- Candidaturas (10 de novembro, 17h20);
- Resposta escrita e apresentação (17 de novembro, 19h00).

Movimento Retilíneo (Parte 2)

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

08 de novembro de 2016

