MATH 531 HOMEWORK 6 Fisher information March 12, 2024

Each subsection counts for 10 points – 50 points total and the extra credit counts for 5.

1. Assume a linear model

$$\mathbf{y} = X\beta + \mathbf{e}$$

where \mathbf{y} is an vector of length n and X is a full rank, $n \times p$ matrix. \mathbf{e}_i are independent $N(0, \sigma^2\Omega)$. Also suppose that β_T is "true" value for β and $\hat{\beta}$ the Generalized Least Squares (GLS) /MLE estimate and $\hat{\sigma}$ the MLE for σ . Here Ω is a known correlation matrix.

- (a) Identify the formulas for the MLEs $\hat{\beta}$ and $\hat{\sigma}_{MLE}$.
- (b) Derive the Fisher information for this model when evaluated at the true values of β and σ^2 . (You should reparametrize σ^2 as ω as in the lectures to make derivatives easier.)
- (c) Do the GLS estimates for β have a covariance matrix that achieves the Cramer-Rao lower bound (the inverse Fisher information matrix)?
- (d) The GLS estimate for σ^2 based on previous homework differs slightly from the MLE but it is unbiased.

$$\hat{\sigma}_{GLS}^2 = \frac{1}{(n-p)} (\mathbf{y} - X\hat{\beta})^T \Omega^{-1} (\mathbf{y} - X\hat{\beta})$$

and has variance $\frac{2\sigma^4}{(n-p)}$

Show that that the variance of this estimate achieves the Cramer-Rao lower bound in the limit as $n \to \infty$.

2. Now supposed that Ω above depends on an additional statistical parameter, say $\Omega(\alpha)$. (This is common in models for spatial and time series data.) Derive the Fisher Information for this extended model. Explain why finding the GLS estimate in this case is problematic.