

Contents

~		
2.	Methodology	5
1.	Introduction	3

- 3. Results
- 4. Future Work
 - 5. References 14

13

Introduction

- 1. Quadcopter aircrafts are widely used in security, rescue, plant protection, transportation, and other fields.
- 2. Real flight issues: assembly, maintenance, battery and so on.
- 3. These factors affect flight efficiency and extremely extend the development cycle. Therefore, simulation environments for the quadcopter test is used.
- 4. Simulation platforms: Gazebo [1] [figure 1], jMavSim [2] [figure 2] and so on.
- 5. Gazebo is widely used in the robots, cars, and drone simulation.

Methodology

Altitude	Longitude	Latitude	PixelX	PixelY	YLatitude
123.7985229	-122.140125	47.6419267	256	144	47.6419267
174.5480347	-122.140165	47.6419267	257	167	47.6419267
174.8162537	-122.140165	47.6419267	257	168	47.6419267
176.4992676	-122.140165	47.6419267	257	169	47.6419267
177.9062653	-122.140165	47.6419267	257	169	47.6419267
178.6100311	-122.140165	47.6419267	257	171	47.6419267
180.3651276	-122.140165	47.6419267	257	171	47.6419267
181.2619781	-122.140165	47.6419267	257	171	47.6419267
182.8026276	-122.140165	47.6419267	257	173	47.6419267
184.0067596	-122.140165	47.6419267	257	173	47.6419267
185.7004089	-122.140165	47.6419267	257	174	47.6419267
186.8738556	-122.140165	47.6419267	257	176	47.6419267
187.9985809	-122.140165	47.6419267	257	176	47.6419267
189.4416962	-122.140165	47.6419267	257	177	47.6419267
190.2579041	-122.140165	47.6419267	257	177	47.6419267
191.8865051	-122.140165	47.6419267	257	177	47.6419267
193.0978851	-122.140165	47.6419267	257	178	47.6419267

Haversine distance

$$D(x,y) = 2\arcsin\left[\sqrt{\sin^2((x_{lat} - y_{lat})/2) + \cos(x_{lat})\cos(y_{lat})\sin^2((x_{lon} - y_{lon})/2)}\right]$$

Sr. Nr.	Drone		Target		Distance.
or, inf.	Latitude	Longitude	Latitude	Longitude	Distance
1	47.64192669	-122.140165	47.64192669	-122.1401251	1.91 nm
2	47.63749272	-122.140165	47.64185602	-122.1384163	3.88 nm
3	47.63749273	-122.140165	47.64116615	-122.1384163	9.94 nm
4	47.63749272	-122.140165	47.641468	-122.140165	7.07 Å
5	47.63749253	-122.1401649	47.63749253	-122.1401649	1.7 mm

Results

Results

Future Work

- 1) Some more sets of images, n target locations will be acquired for training, testing and validation.
- 2) Moving vehicle detecting, tracking, and geolocating.
- 3) Efficiency for small object detection in complex scenes.
- 4) Flight control method in terms of the previous image processing results to lead the UAV that is following the moving vehicle.
- 5) Optional parameters: Gimball's roll, pitch, yaw; Target altitude, TimeOfDay

References

- 1) N. Koenig and A. Howard, "Design and use paradigms for Gazebo, an open-source multi-robot simulator," 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 2004, pp. 2149-2154 vol.3, doi: 10.1109/IROS.2004.1389727.
- 2) jMAVSim. url: https://github.com/DrTon/jMAVSim.
- 3) S. Shah, D. Dey, C. Lovett and A. Kapoor. "AirSim: high-fidelity visual and physical simulation for autonomous vehicles". In: *IEEE Transactions on Geoscience and Remote Sensing* (2017), p. 14.

THINKY