Cou	de 18MAB1011 Name CALCULUS AND LINEAR ALGEBRA					urse egory	Б	3		Basic Sciences							L 3	T 1	P 0	C 4		
Co	equisite ourses e Offering	Nil g Department Mathematics	Co-requisite Courses Nil	/ Codes/Standards			ressive urses	Nil														
Course	e Learnin	g Rationale (CLR): The purpose of learn	ing this course is to:			Le	arning					P	rogran	n Leai	rning (Outco	mes (PLO)			
CLR-1	: Applio	cation of Matrices in problems of Science an	d Enaineerina			1	2	3	1	2	3	4	5 6	5 7	8	9	10	11	12	13	14	15
	: Utilize : Apply : Utilize : Applic	e Taylor series, Maxima minima, composite in the concept of Differential Equations in probe the concepts of radius of curvature, evolute cation of Sequences and Series in all proble	unction and Jacobian in solving rea- time app plems of Science and Engineering p, envelope in problems of Science and Engir	neering	S	► Level of Thinking (Bloom)		Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Curarie	fundamental de la constantina della constantina	Individual & Team Work	Communication	Project Mgt. & Finance			2	
		Outcomes (CLO): At the end of this course, learners will be able to:					Expecte	Expecte	Engine	Problen		Analysi	Modern	Society	Ethics	Individu	Commu	Project		PS0 - 1	PSO-2	PSO - 3
	 Apply Matrices, Eigenvalues and Eigen Vectors Reduce to Quadratics form in Science and Engineering problem solving Apply Maxima and Minima, Jacobian, and Taylor series to solve problems in Science and Engineering 80 8 85 8 						30	H	-	Н		 H -	-	-	Н	-	-	Н	-	-	-	
	CLO-2: Apply Maxima and Minima, Jacobian, and Taylor series to solve problems in Science and Engineering CLO-3: Solve the different types of Differential Equations in Science and Engineering applications						85 8		-	H	-			-	-	Н	-	-	Н	-	-	-
CLO-4	CLO-4: Identify Radius, Centre, envelope and Circle of of curvature and apply them in the problem solving							90	Н	Н	-	"		-	-	Н	-	-	Н	-	-	-
CLO-5: Apply convergence and divergence of series using different test and apply sequences and Series in the problem so. CLO-6: Identify, Analyze and Apply mathematical techniques to arrive at solutions in Science and Engineering						2		30 90	- H	Н	H	-			-	H	-	-	H	-	-	-
						1 1											1			ı		
Duratio	on (hour)	12	12	12							12								12		_	
S-1	SLO-1	Characteristic equation	Functions of two variables – Partial derivatives	Linear equations of sec constant coefficients wh	hen P	I=0 or	ехр.	coor	dinates	S		Cartesi				es of F verge		e ter	ms –	l est o)†	
•	SLO-2	Eigen values of a real matrix	Total differential	Linear equations of sec constant coefficients wh	hen P	l=sinx	or cos		ius of C dinates		ure –	Cartesi	an		Com	pariso	on tes	t – In	tegral	test-		
S-2	SLO-1	Eigen vectors of a real matrix	Total differential	Linear equations of sec constant coefficients wh	hen P	l=poly	nomial	Radi	ius of C	Curvat	ure –	Polar c	oordina	ates	Com	pariso	on tes	t – In	tegral	test-		
0-2	SLO-2	Eigen vectors of a real matrix	second order terms	coefficients when PI=ex	Linear eqn. of second order with constant coefficients when PI=exp. with sinx / Cosx			Curvat	ure –	Polar c	oordina	ates	Com	pariso	on tes	t – In	tegral	test				
S-3	SLO-1	Properties of Eigen values	Taylor's expansion with two variables up to third order terms	oefficients when PI= exp.I with polynomial Circle of curvature			D'Ale	embei	ts Ra	tio te	st,											
3-3	SLO-2	Cayley – Hamilton theorem	Maxima and Minima	Linear eqn. of 2 nd order with const. coeff. when PI=polynomial with sinax or cosax				D'Ale	embei	ts Ra	tio te	st,										
6.4	SLO-1 Problem solving using tutorial sheet 1 Problem solving using tutorial sheet 4 Problem solving using tutorial sheet 4						Prob	olem sc	olving	using	tutorial	sheet	11	Prob	lem s	olving	usin	g tutoi	rial sh	eet 1	4	
S-4	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using t	tutoria	al shee	t 6		lication neering		adius	of curv	ature ii	n	Prob	lem s	olving	usin	g tutoi	rial sh	eet 1	4
S-5	SLO-1	Finding A inverse using Cayley – Hamilton theorem	Maxima and Minima	Linear equations of sec coefficients	cond o	order v	ariable	Cen	tre of c	urvatı	ıre				Raal	oe's ro	oot tes	st.				
3-0	SLO-2	Finging higher powers of A using Cayley – Hamilton theorem	Maxima and Minima	Linear equations of second order variable			Centre of curvature				Raabe's root test.											
0.0	SLO-1	orthogonal reduction of a symmetric matrix to diagonal form	Maxima and Minima	Homogeneous equation of Euler type			Cen	Centre of curvature				Covergent of Exponential Series										
S-6		authorizant radication of a summantile martine	Canatraja ad Marrima and Minima hu	Hamananan and an and an indian			, ,	-							1							

Constrained Maxima and Minima by Lagrangian Multiplier method

Constrained Maxima and Minima by

Lagrangian Multiplier method

S-7

SLO-2

SLO-1

orthogonal reduction of a symmetric matrix

orthogonal reduction of a symmetric matrix

to diagonal form

to diagonal form

Homogeneous equation of Legendre's

Homogeneous equation of Legendre's

Evolute of a parabola

Evolute of an ellipse

Cauchy's Root test

Log test

	SLO-2	orthogonal reduction of a symmetric matrix to diagonal form	Constrained Maxima and Minima by Lagrangian Multiplier method	Equations reducible to homogeneous form	Envelope of standard curves	Log test
S-8	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
3-0	SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 9	Applications of Curvature in engineering	Problem solving using tutorial sheet 15
	SLO-1	Reduction of Quadratic form to canonical	Jacobians of two Variables	Equations reducible to homogeneous form	Beta Gamma Functions	Alternating Series: Leibnitz test
S-9	SLO-2	Quadratic form to canonical form by orthogonal transformations	Jacobians of Three variables	Variation of parameters	Beta Gamma Functions and Their Properties	Alternating Series: Leibnitz test
S-10	SLO-1	Quadratic form to canonical form by orthogonal transformations	Jacobians problems	Variation of parameters	Sequences – Definition and Examples	Series of positive and Negative terms.
3-10	SLO-2	Orthogonal matrices	Jacobians Problems	Simultaneous first order equations with constant co-efficient.	Series – Types of Convergence	Series of positive and Negative terms.
C 44	SLO-1	Reduction of quadratic form to canonical form	Properties of Jacobians and Problems	Simultaneous first order equations with constant co-efficient.	Series of Positive terms – Test of Convergence-	Absolute Convergence
S-11	SLO-2	Reduction of quadratic form to canonical form	Properties of Jacobians and problems	Simultaneous first order equations with constant co-efficient.	Comparison test – Integral test-	Conditional Convergence
S-12	SLO-1	Problem solving using tutorial sheet 3	Application of Taylor's series Maxima Minima Jacobians in Engineering	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13	Problem solving using tutorial sheet 13
3-12	SLO-2	Applications of Matrices in Engineering	Application of Taylor's series Maxima Minima Jacobians in Engineering	Applications of Differential Equation in engineering	Problem solving using tutorial sheet 13	Applications Convergence of series in engineering

Learning
Resources

- 1. B. H. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010
- 5. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

Learning Assess	ment											
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ woightogo)	
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	Filiai Examination	n (50% weightage)	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %	_	30 %	_	30 %	_	30 %	_	30%	_	
LOVOIT	Understand	10 70		00 70		00 70		00 70		0070		
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_	
LGVGI Z	Analyze	70 /0	_	70 /0	_	40 70	_	40 70	_	4070	_	
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%		
Level 3	Create	20 /0	-	30 /0	-	30 70	-	30 /0	-	3070	-	
	Total 100 %			100	00 % 100 %				0 %	100 %		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. Srinivasan, SRMIST

Cou		18MAB102T Course Name	ADVANCED CALCULUS AND COMPLEX A	NALYSIS		urse egory		В				Bas	ic Scie	ences					L 3	•	P 0	C 4
	equisite	18MAB101T	Co-requisite Nil				ressiv															\equiv
	urses		Courses	10 1 101 1 1			urses	1 411														
Cours	Offerin	g Department Mathematics	Data Book	/ Codes/Standards		Nil																
Cours	e Learnir	ng Rationale (CLR): The purpose of learn	ning this course is to:			Le	arning	J	Program Learning Outcomes (PLO)													
CLR-1	: Evalu	uate Double and triple Integral and apply the	m in problems in Engineering Industries			1	2	3	1	2	3	4	5	6 7	8	9	10	11	12	13	14	15
CLR-2	: Evalu	uate Surface, Volume Integral are Application	n of Gauss theorem, Stokes and Green's the												2							
CLR-3	: Tran	sform engineering problems into ODE, PDE	and Integrals and solve them using Laplace /	complex analytic met	thods	Ê	(%	<u>@</u>	on.			arch		1	2	~						
CLR-4 CLR-5	: To ki	now the properties of Complex functions and	apply them in the all Engineering fields nctions using Residue theorem and apply the	m in Engineering field	10	Bloc) Co	but (ledg		men	Rese	<u>σ</u>	1.5	old I	Wor		& Finance	_			
CLR-5			nctions using Residue theorem and apply the formed in to simple mathematical constructs a		18	ing (ficier	in m	wou	ysis	elop	gu,	Jsag	fure for	5	eam	E	Fin	Learning			
OLIV-0	· lucin	ny now Engineering problems can be transit	inned in to simple mathematical constitucts a	na solve the same		hi A	Pro	Atta	g	Anal	Dev	Des	<u> </u>			∞ ⊢	icatic	gt. 8	Ea			
Cours	e I earnir	ng Outcomes (CLO): At the end of this co	urse learners will be able to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	S S	Individual & Team Work	Communication	Project Mgt.	Life Long	PS0 - 1	0-2) – 3
							ËX	EX	Ë						Ethics			Pro		PS	PSO	PSO
		uate multiple integrals using change of varial		rdinany Differential Ed	quotiono	3		90 85	H	-	Н	- Н			-	Н	-	-	Н	-	-	_
	CLO-2: Apply techniques of vector calculus in problems involving Science and Engineering. Solving Ordinary Differential Equations 3 90 85 H H H CLO-3: Apply techniques of Laplace Transforms and inverse transform for problems in Science and Engineering 2 85 80 - H								-	Н	-	-	Н	-	-	÷						
	CLO-4: Apply complex analytic functions and its properties in solving problems 3 80 80 H H - H									-	H	-	-	Н	-	-	-					
	CLO-5: Evaluate improper integrals using Residue theorem involving problems in Science and Engineering 2 80 90 - H H									-	Н	-	-	Н	-	-	-					
CLO-6: Create mathematical constructs for engineering problems and identify solutions to solve them 3 90 80 H H H -								-	Н	-	-	-										
Durati	on (hour)	12	12		12				12 12													
	SLO-1	Evaluation of double integration Cartesian and plane polar coordinates	Review of vectors in 2,3 dimensions	Laplace Transforms	of stand	lard fui	nctions	Definition of Analytic Function – Cauchy Riemann equations Cauchy's integral formulae					nulae - Problems									
S-1	SLO-2	Evaluation of double integration of plane polar coordinates	Gradient, divergence,	Transforms propertie	es				Cauchy Riemann equations				Cauchy's integral formulae- Problems									
	SLO-1	Evaluation of double integration of plane	curl – Solenoidal	Transforms of	1-			Pro	perties (of anal	lytic fu	ınction	funct	ons	Cau	ichy's	integra	al forn	nulae-	Proble	ems	
S-2		polar coordinates Evaluation of double integration of plane		Derivatives and Inte				Det	erminati	ion of a	analvt	ic func	tion u	sina –								
	SLO-2	polar coordinates	Irrotational fields	Transform of derivat				Milr	e-Thon	nson's	metho	od			Tay	lor's e.	kpansi	ons w	ith sin	nple p	roble	ms
	SLO-1	Evaluation of double integral by changing of order of integration	Vector identities (without proof) – Directional derivatives		nitial value theorems (without proof) and verification for some problems Determination of analytic function using – Milne-Thomson's method			Tay	lor's e.	kpansi	ions v	ith sin	nple p	roble	ms							
S-3	SLO-2	Evaluation of double integral by changing of order of integration	Line integrals	Final value theorems (without proof) and Determination of analytic fund verification for some problems Milne-Thomson's method			tion u	sing –	Lau	rent's	expans	sions	with si	imple	prob	ems						
					Pro	blem so	lving u	ısing t	utorial	sheet	10	Prol	blem s	olving	using	tutoria	al she	et 13				
5-4	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	t 4 Problem solving using tuto			t 7	Pro	blem so	lving u	ısing t	utorial	sheet	10	Prol	blem s	olving	using	tutori	al she	et 13	
S-5	SLO-1	Evaluation of double integral by changing of order of integration	Line integrals	Inverse Laplace transform fractions		01		Cor	nformal	тарріі	ngs: r	nagnit	fication	1	Lau	rent's	expans	sions	with si	imple	prob	ems
3-3	SLO-2	Area as a double integral (Cartesian)	Surface integrals	Inverse Laplace transforms using fractions				Cor	Conformal mappings: rotation				Singularities									
S-6	SLO-1	Area as a double integral (Cartesian)	Surface integrals				Inverse Laplace transforms using second			Cor	Conformal mappings: inversion				Types of Poles and Residues							
3-0	SLO-2	Area as a double integral (polar)	Volume Integrals	LT using Convolution the			blems	Cor	Conformal mappings: inversion Ty			Types of Poles and Residues										

S-7	SLO-1	Area as a double integral (polar)	Green's theorem (without proof),	LT using Convolution theorem -problems only	Conformal mappings: reflection	Cauchy's residue theorem (without proof)-
3-1	SLO-2	Triple integration in Cartesian coordinates	Green's theorem (without proof),	ILT using Convolution theorem -problems only	Conformal mappings: reflection	Contour integration: Unit circle.
S-8	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	ng using tutorial sheet 5 Problem solving using tutorial sheet 8 Problem solving using tutorial sheet 1		Problem solving using tutorial sheet 14
3-0	SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Conversion from Cartesian to polar in double integrals	Gauss divergence theorem (without proof), verification	LT of periodic functions -problems only	bilinear transformation	Contour integration: Unit circle.
3-9	SLO-2	Conversion from Cartesian to polar in double integrals	Gauss divergence theorem (without proof) applications to cubes.	LT of periodic functions -problems only	bilinear transformation	Contour integration: Unit circle
S-10	SLO-1	Triple integration in Cartesian coordinates	Gauss divergence theorem (without proof applications to parallelepiped.	Solve linear second order ordinary diff. equations with constant coefficient only	bilinear transformation	Contour integration: semicircular contour.
3-10	SLO-2	Triple integration in Cartesian coordinates	Stoke's theorems (without proof) –	Solve linear second order ordinary diff	bilinear transformation	Contour integration: semicircular contour.
S-11	SLO-1	Triple integration in Cartesian coordinates	Stoke's theorems (without proof) – Applications to cubes	Solution of Integral equation and integral equation involving convolution type	Cauchy's integral theorem (without proof)	Contour integration: semicircular contour.
5-11	SLO-2	Volume using triple Integral	Stoke's theorems (without proof) – Applications to parallelepiped only.	Solution of Integral equation and integral equation involving convolution type	Cauchy's integral theorem applications	Contour integration: semicircular contour.
6 12	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12	SLO-2	Application of Multiple integral in engineering	Application of Line and Volume Integrals in engineering		Application of Bilinear Transformation and Cauchy Integral in engineering	Application Contour integration in engineering

Learning
Resources

- 1. B. H. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons,2006. 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010 5. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

Learning Assess	ment											
	Bloom's			Conti	nuous Learning Asse	essment (50% weig	htage)			Final Evamination	n (50% weightage)	
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	i (50% weightage)	
	Level of Triiriking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %	_	30 %		30%		
Level I	Understand	40 /0	-	30 /0	-	30 /0	-	30 /6	-	3076	-	
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_	
Level 2	Analyze	70 /0	_	40 /0		40 /0	_	70 /0		4070		
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%		
LEVEL 3	Create	20 /0	-	JU /0	-	JU /0	-	30 /0	-	3070	-	
	Total	100) %	100) %	10	0 %	100	0 %	100 %		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. Srinivasan, SRMIST

Course Code	18MAB201T	Course Name	TRANSFORMS AND BOUNDARY VALUE PROBLEMS	Course Category	В	Basic Sciences	3	1	0	4
Pre-requis	ite		Co-requisite	Progre	ssive					

Pre-requisite Courses	18MAB102T	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering	Department	Mathematics	Data Book / Codes/Standards	Nil

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng						Prog	ram L	.earn	ing O	utcor	nes (PLO)				
CLR-1: Describe types of Partial differential equations interpret solutions relate PDE to the respective branches of engineering	1	2	3	ŀ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Relate Fourier series expansion in solving problems under RMS value and Harmonic Analysis.											>								
CLR-3: Infer the most general form to the PDE and relate to half range sine and cosine series, as the case may be		<u></u>	_					arch			ustainability								
CLR-4: Evaluate the various types of integral transforms	<u>8</u>	y (%)	ıt (%)		dge		ent	sse			ain		Work		90				
CLR-5: Conclude that the purpose of studying z transform is to solve linear difference equations having constant coefficients	9 9	ency	men		Ne l	S	elopment	ı, Re	Usage	Ф	Sust		m V		Finance	В			
CLR-6: Predicting the importance of PDE, Fourier series, Boundary value problems and Fourier, Z – transform applications	Thinking (Bloom)	Proficie	Attainment		Knowlec	Analysis	Selc Selc	sign,	SO I	Culture	∞		Team	ion	& F	earning			
					ing	Ans	& De	, De	Tool	S S	nent		al &	icat	/gt.				
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering	Problem	Design 8	Analysis	Modern ⁻	Society &	Environr	Ethics	Individua	Communication	Project Mgt.	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Determine Partial differential equation	2	85	80		М	Н	L	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-2: Explain the expansion of a discontinuous function as an infinite form of trigonometric sine and cosine series.	2	85	80		М	Н	-	Μ	М	-	-	-	Μ	L		Н	-	-	-
CLO-3: Decide a proper form of solution for the differential equations which are of hyperbolic and parabolic type	2	85	80		М	Н	-	-	1	-	-	1	Μ	-		Н	-	-	-
CLO-4: justify the relationship between aperiodic signals and linear combination of exponentials.	2	85	80		М	Н	-	М	-	-	-	1	М	L	-	Н	-	-	-
CLO-5: Relate signal analysis with that of z transform	2	85	80		М	Н	L	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-6: Relate PDE, Fourier series, Boundary value problems, Fourier and Z transforms	2	85	80		L	L	L	Н	Н	Н	L	Н	Н	Н	-	Н	-	-	-

Durat	on (hour)	12	12	12	12	12
S-1	SLO-1	Formation of partial differential equation by eliminating arbitrary constants	conditions for existence of Fourier Series	Classification of second order partial differential equations	Introduction of Fourier Transforms	Introduction of Z-transform
3-1	SLO-2	Formation of partial differential equation by eliminating two or more arbitrary constants	Fourier series –related problems in $(0,2\pi)$	Method of separation of variables	Fourier Transforms- problems	Z-transform-elementary properties
	SLO-1	Formation of partial differential equation by eliminating arbitrary functions	Fourier series –related problems in $(-\pi,\pi)$	One dimensional Wave Equation and its possible solutions	Properties of Fourier transforms	Z-transform- change of scale property, shifting property
S-2	SLO-2	Formation of partial differential equation by eliminating two or more arbitrary functions	Change of interval Fourier series –related problems in (0,2 <i>l</i>)	One dimensional Wave Equation-initial displacement with zero initial velocity-type 1 Algebraic function	Standard results of Fourier transform	Z-transform of $a^n, \frac{1}{n}, \frac{1}{n+1}$
S-3	SLO-1	Formation of partial differential equation by eliminating arbitrary functions of the form $\phi(u, v) = 0$	Fourier series –related problems in $(-l,l)$	One dimensional Wave Equation-initial displacement with zero initial velocity-type 2 Trigonometric function	Fourier Sine Transforms - problems	Z-transform of $\frac{1}{n^2}$, $\frac{1}{(n+1)^2}$
3-3	SLO-2	Solution of first order non-linear partial differential equations-standard type I F(p,q)=0	Fourier series –half range cosine series related problems $(0,\pi)$	One dimensional Wave Equation-initial displacement with zero initial velocity-type 3 – Midpoint of the string is displaced	Fourier Cosine Transforms - problems	Z-transform of $r^n\cos n\theta$
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
0.5		Solution of first order nonlinear partial differential equations-standard type –II Clairaut's form	Fourier series –half range cosine series related problems(0, l)	One dimensional Wave Equation-initial displacement with non-zero initial velocity Type 1 Algebraic function	Properties of Fourier sine Transforms	Z-transform of $r^n \sin n heta$
S-5	SLO-2	Solution of first order non-linear partial differential equations-standard type III $F(z, p, q)$ =0	Fourier series –half range sine series related problems $(0,\pi)$	One dimensional Wave Equation-initial displacement with non-zero initial velocity Type 2 Trigonometric function	Fourier sine Transforms applications	Initial value theorem

		Califica of first and a new linear newtiel		Move Ferreties initial displacement with	1	
S-6	SLO-1	Solution of first order non-linear partial differential equations-standard type-IV separation of variable $f(x, p) = g(y, q)$	related problems(0, l)	Wave Equation-initial displacement with non-zero initial velocity Type 3 split function	Properties of Fourier cosine Transforms	Finial value theorem
	SLU-2	Lagrange's linear equation: Method of grouping		One dimensional heat equation and its possible solutions	Fourier cosine Transforms applications	Inverse Z-transform- long division method
S-7	SLO-1	Lagrange's linear equation: Method of multipliers	Parseval's Theorem (without proof)-related problems in cosine series	One dimensional heat equation related problems	Convolution of two function	Inverse Z-transform, related problems, long division method
3-1		More problems in Lagrange's linear equation: Method of multipliers	Parseval's Theorem (without proof)-related problems in sine series	One dimensional heat equation -Steady state conditions	Convolution Theorem	Inverse Z-transform, Partial fraction method
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients-CF and PI Type 1: e^{ax+by}	Introduction to Harmonic Analysis	One dimensional heat equation -Steady state conditions more problems	Parseval's Identity for Fourier transform	Inverse Z-transform, Partial fraction method related problems
	SLO-2	PI Type2.: sin(ax+by) or cos(ax+by)	Harmonic Analysis for finding harmonic in $(0,2\pi)$	One dimensional heat equation -Steady state conditions with zero velocity	Parseval's Identity for Fourier sine & cosine transforms	Inverse Z-transform - residue theorem method
S-10	SLO-1	Type 3: PI of polynomial	Harmonic Analysis for finding harmonic in $(0,2l)$	One dimensional heat equation -Steady state conditions with zero velocity more problems	Parseval's Identity for Fourier sine & cosine transforms applications	Inverse Z-transform - residue theorem method-problems
5-10	SLO-2	Type 4 Exponential shifting $e^{ax+by}f(x,y)$	Harmonic Analysis for finding harmonic in periodic interval (0, T)	One dimensional heat equation -Steady state conditions with zero velocity more related problems	Fourier Transforms Using Differentiation property	Convolution theorem (without proof)
S-11	SLO-1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients type 5 General rule	Harmonic Analysis for finding cosine series	Steady state conditions and Non-zero boundary conditions- related problems	Solving integral equation	Convolution theorem applications
		Applications of Partial differential equations in Engineering		Steady state conditions and Non-zero boundary conditions- more problems	Self-reciprocal using Fourier Transform, sine and cosine transform	Solution of linear difference equations with constant coefficients using Z-transform
S-12	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
3-12	SLO-2	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15

Learning
Resources

- 1. B. H. Erwin kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2006
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2015
 3. Veerarajan T., Transforms and Partial Differential Equations, Tata McGraw-Hill, New Delhi,2012
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 3rd Edition, 2010 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, for third semester, Laxmi Publications, 3rd Edition, 2014

Learning Assess	ment										
	Bloom's		Continuous Learning Assessment (50% weightage)								n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	i (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 /0	-	30 /6	-	30 /0	-	30 /0	-	30%	_
Level 2	Apply	40 %		40 %	_	40 %	_	40 %		40%	_
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
LEVEI 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100) %	10	0 %	10	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Prof. Ganapathy Subramanian K S, SRMIST

Course Code 18MAB202T Course Name NUMERICAL METHODS FOR ENGINEERS Course Substituting Part of the Course Categor Substituting Part of the Course Substitution Part of the Course Substitution Part of the Course Subst

Pre-requisite Courses	18MAB102T	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	Mathema	tics	Data Book / Codes/Standards	Nil	

Course L Rational		The purpose of learning this course is to:	Lea	rni	ng			Pro	gra	am	Lea	rnir	ng C	Out	con	ıes	(PL	-0)		
CLR-1:	Apply the	numerical techniques for solutions of transcendental and simultaneous	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:		e concept of interpolation for finding iate values of a well-known data.																		
CLR-3:		e concept of numerical differentiation and on in physical problems.																		
CLR-4:		numerical techniques for solutions of differential equations.							4			lity								
CLR-5:		numerical techniques for solutions of ferential equations	Sloom)	(%) A:	nt (%)	edge		ent	eseard			Sustainability		Vork		acc				
CLR-6:	problems	analytical ability in solving mathematical numerically as applied to the respective of Engineering.	Level of Thinking (Bloom)	Proficienc	Expected Attainment (%)	Engineering Knowledge	Analysis	Developm	Design, R	ool Usage	Society & Culture	ent & Sust		Individual & Team Work	cation	Project Mgt. & Finance	Learning			
	_earning es (CLO):	At the end of this course, learners will be able:	evel of T	Expected	Expected	Engineeri	Problem /	Design &	Analysis,	Modern T	Society &	Environment &	Ethics	ndividual	Communication	Project M	Life Long	50-1	PSO - 2	
CLO-1:		the algebraic, transcendental and eous equations.	3	85	Q		Н			-				М	L		Н			1.1.
CLO-2:	To find th	ne finite differences and interpolation.	3	85	8	М	Н		М	М				М			Н			
CLO-3:	To solve	numerical Differentiation and integration.	3	85	8	М	Н							М			Н			
CLO-4:		the numerical solutions of ordinary al equations.	3	85	8	М	Н		М					М	L		Н			
CLO-5:	To solve equations	the numerical solutions of partial differential s	3	85	8	М	Н	L						M			Н			
CLO-6:	To solve engineer	the problems numerically in science and ing	3	85	8	М	Н							М			Н			

	Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
Duration (hour)	12	12	12	12	12
S-1 SLO-1	Method of Least Squares – Curve	First and Higher order differences.	Numerical Differentiation.	Numerical solutions for ordinary	Numerical solutions for partial differential

		fitting.			differential equations.	equations.
	SLO-2	Fitting a straight line.	Forward differences and backward differences.	Newton's forward difference formulae to compute first and higher order derivatives.	Solution by Taylor's series method.	Classification of partial differential equations.
S-2	SLO-1	Fitting a parabola.	Central Differences.	Newton's backward differences formulae to compute first and higher order derivatives.	Solutions of First order simultaneous differential equations by Taylor's series method.	Solution of Elliptic Equations.
	SLO-2	Calculation of the sum of the squares of the residuals of straight line and parabola.	Operators Relations between the operators.	Problems by Newton's forward and backward differences formulae.	Euler's method.	Solution of Laplace Equations by Leibmann's Iterative process.
S-3	SLO-1	Solution of Algebraic and Transcendental equations.	Interpolation – Newton-Gregory Forward Interpolation formulae.	Applications of Newton's forward difference formulae to compute first and higher order derivatives.	Applications of Euler's method.	Solution of Laplace Equations by Leibmann's Iterative process.
3-3	SLO-2	Newton-Raphson method.	Interpolation – Newton-Gregory Backward Interpolation formulae.	Applications of Newton's backward difference formulae to compute first and higher order derivatives.	Improved Euler's method.	Solution of Poisson Equations.
	SLO-1	Problem solving using tutorial sheet 1.	Problem solving using tutorial sheet 4.	Problem solving using tutorial sheet 7.	Problem solving using tutorial sheet 10.	Problem solving using tutorial sheet 13.
S-4	SLO-2	Problem solving using tutorial sheet 1.	Problem solving using tutorial sheet 4.	Problem solving using tutorial sheet 7.	Modified Euler's method	Problem solving using tutorial sheet 13.
	SLO-1	Bisection method and its applications.	Additional problems using Newton-Gregory Forward Interpolation formulae.	Additional problems for Newton's forward formulae to compute the application problems.	Applications of Improved and Modified Euler's method.	Problems for Poisson Equations.
S-5	SLO-2	Problems using bisection method.	Additional problems using Newton-Gregory Backward Interpolation formulae.	compute the	Runge-Kutta method of fourth order.	Additional problems for Poisson Equations.
0.0	SLO-1	Regula-Falsi method.	Divided differences.	Numerical Integration.	Solution by Runge- Kutta method of fourth order.	Solution of Parabolic equations.
S-6	SLO-2	Problems using false position method.	Formation of divided difference table.	Trapezoidal rule.	Additional problems using Runge-Kutta method of fourth	Bendre-Schmidt formula.

					order.	
S-7	SLO-1	Solution of system of equations Direct Method - Gauss Elimination method.	Properties of Divided differences.	Simpson's one third rule.	Predictor-Corrector Methods.	Bendre-Schmidt formula.
O-1	SLO-2	Solution of system of equations Direct Method – Gauss-Jordan method.	Properties of Divided differences.	Simpson's three eighth rule.	Milne-Thomson Method.	Bendre-Schmidt formula.
	SLO-1	Problem solving using tutorial sheet 2.	Problem solving using tutorial sheet 5.	Problem solving using tutorial sheet 8.	Problem solving using tutorial sheet 11.	Problem solving using tutorial sheet 14.
S-8	SLO-2	Problem solving using tutorial sheet 2.	Problem solving using tutorial sheet 5.	Problem solving using tutorial sheet 8.	Problems for Milne- Thomson Method.	Problem solving using tutorial sheet 14.
S-9	SLO-1	Solution of system of equations Iterative Method – Gauss- Jacobi method.	Newton's Divided difference formula.	More problems using Trapezoidal rule.	Application of Milne- Thomson Method.	Crank-Nicolson formula.
	SLO-2	Problems using Gauss-Jacobi method.	Problems by Newton's Divided difference formula.	More problems using Simpson's one third rule.	Adam's Bashforth method.	Crank-Nicolson formula.
S-	SLO-1	Solution of system of equations Iterative Method – Gauss-Seidal method.	Additional problems by Newton's Divided difference formula.	More problems using Simpson's three eighth rule.	Problems using Adam's Bashforth method.	Crank-Nicolson formula.
10	SLO-2	Problems using Gauss- Seidal method.	Lagrange's Interpolation formula.	Applications of Trapezoidal rule – Simpson's one third rule and Simpson's three eighth rules.	Application of Adam's Bashforth method.	Solution of Hyperbolic equations.
S-	SLO-1	Power method.	Problems by Lagrange's Interpolation formula.	Application problems	Additional problems for Milne-Thomson Method.	Solution of Hyperbolic equations by Explicit formula.
11	SLO-2	Finding Eigen values by power method.	Inverse interpolation.	Applications problems for Trapezoidal rule – Simpson's one third rule and Simpson's three eighth rules.	Additional problems for Adam's Bash forth Method	More problems in Hyperbolic equations using Explicit formula.
S-	SLO-1	Problem solving using tutorial sheet 3.	Problem solving using tutorial sheet 6.	Problem solving using tutorial sheet 9.	Problem solving using tutorial sheet 12.	Problem solving using tutorial sheet 15.
12	SLO-2	Applications of numerical techniques to solve	Application of interpolation for finding intermediate	Applications of Numerical integration.	Applications of ordinary differential equation.	Applications of partial differential equation.

	algebraic, transcendental and simultaneous equations	values of a well-known data
Learning Resources	2. S.S. Sastry, 3. E. Balaguru 4. M.K.Jain, S Wiley Easte	I, Numerical Methods in engineering and science, Khanna Publishers, 42 nd edition, 2012. Introductory Methods of Numerical Analysis, PHI, 4 th edition, 2005. samy, Computer Oriented Statistical and Numerical Methods – Tata McGraw Hill., 2000. RK Iyengar and R.L.Jain, Numerical Methods for Scientific and Engineering Computation, ern Ltd., 4 th edition, 2003. nkataraman, Numerical Methods in Science and Engineering, National Publishing Co., 2005.

	Level of	Co	ntinuous Assessm	ent	,	Final Examination
	Thinking	CLA - 1 (10%)	CLA - 2 (15%)	CLA - 3 (15%)	CLA -4 (10%) #	(50%)
Level	Rememb er	40.0/	20.0/	20.0/	00.0/	2004
1	Understa nd	40 %	30 %	30 %	30 %	30 %
	Apply Analyze	40 %	40 %	40 %	40 %	40 %
Level	Evaluate	20 %	20.0/	20.0/	20.0/	00.0/
3	Create	20 %	30 %	30 %	30 %	30 %

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

SLO – Session Learning Outcome

	ourse Designers) Experts from Industry						
	Mr.V.Maheshwaran	CTS, Chennai	maheshwaranv@yahoo.co m				
(b) Experts from Higher Tech	nnical Institutions			1		
3	Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm.ac.in	4	Dr.Nanjundan	Bangalore University	nanzundan@gm ail.com
(b) Internal Experts				.1	1	
5	Dr.A. Govindarajan	SRMIST	govindarajan.a@ktr.srmuni v.ac.in	6	Dr. Sundarammal kesavan	SRMIST	sundarammal.k @ktr.srmuniv.ac in

To emerge as a World - Class University in creating and disseminating knowledge, and providing students a unique learning experience in Science, Technology, Medicine, Management and other areas of scholarship that will best serve the world and betterment of mankind.

MOVE UP through international alliances and collaborative initiatives to achieve global excellence. ACCOMPLISH A PROCESS to advance knowledge in a rigorous academic and research environment.

ATTRACT AND BUILD PEOPLE in a rewarding and inspiring environment by fostering freedom, empowerment, creativity and innovation.

CTAT-1 - 21-01-2020 CLAT-2 - 25-02-2020CLAT-3 - 06-04-2020

Course coordinator

Last working Date: 24-04-2020

Afandosajans Hod / maths 2/1/2020

Course		Course		Course			L	Τ	P	С
Code	18MAB203T	Name	PROBABILITY AND STOCHASTIC PROCESSES	Category	BS	Basic Sciences	3	1	0	4

Pre-requisite Courses	18MAB201T		Co-requisite Courses	NII		Progressive Courses	NIL
Course Offering	Department	Mathematics			Data Book / Codes/Standards	Statistical tables	•

Course Le	earning Rational	e (CLR): The purpose of learning this course is to:		.earn	ing						Pro	gram	Learn	ing O	utcoi	nes (PLO)				
CLR-1:	Describe the a	pplications on discrete and continuous random variables.	1	2	3	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Assess the ap	olications of two dimensional random variables.				t															†
CLR-3 :	Infer the vario	us modes of convergence of random variables and their limit																			
CLR-4:	Relate the spe	cialized knowledge in random processes in signals and systems.																			
CLR-5 :	Determine the systems	applications of spectral density functions and linear time invariant	(moon)	y (%)	ıt (%)		agb		ent	esearch			Sustainability		Vork		ээ				
CLR-6:	Interpret rando practical engir	 Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Inalysis	Design & Development	Design, Research	Modern Tool Usage	Culture	જ		Individual & Team Work	cation	yt. & Finance	Leaming				
Course Le	•	At the end of this course, learners will be able to:	evel of T	zxpected	-xpected		- - - - - - - - - - - - - - - - - - -	Problem Analysis	Design &	Analysis,	Aodern T	Society & Culture	Environment	Ethics	ndividual	Communication	Project Mgt.	ife Long	PSO - 1	PSO - 2	PSO - 3
CLO-1 :	Compare the f	undamentals between discrete and continuous random variables.	3	85	80	Ī	М	H	L			0,			M	L		Н			
CLO-2 :	Choose the m	odel and analyze systems using two dimensional random variables.	3	85	80	1	М	Н		М	М				М			Н			1
CLO-3 :	Describe limit	heorems using various inequalities.	3	85	80	Ī	М	Н							М			Н			+
CLO-4 :	Interpret the o	haracteristics of random processes.	3	85	80	1	М	Н		М					М	L		Н			
CLO-5 :	Evaluate probl	ems on spectral density functions and linear time invariant systems.	3	85	80		М	Н	L						М			Н			
CLO-6:	Explain how ra	ndom variables and stochastic processes can be described and	3	85	80		М	Н							М			Н			

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
Duration (hour)	12	12	12	10	14
S-1	SLO-1	One dimensional random variable: Discrete Case- Probability function, Cumulative Distribution Function	Two dimensional random variables-Discrete case	Limit theoremsMarkov's inequality	Random Processes- Introduction	Power spectral density function- properties
	SLO-2	Continuous random variable- Probability density function	Probability function of (X,Y)- Marginal probability distribution	Chebyshev's inequality without proof	Classification of random processes	Proof of properties
	SLO-1	Cumulative distribution function- properties	Conditional probability distribution of (X,Y)	Chebyshev's inequality - Applications	Distribution of the process	Problems on power spectral density function
S-2	SLO-2	Problems on one dimensional random variables	Problems on discrete random variables	Chebyshev's inequality – Applications using Binomial distribution	Averages of the process	Problems on power spectral density function
S-3	SLO-1	Expectation, variance	Continuous random variables- Joint PDF	Chebyshev's inequality— Applications using Exponential distribution	Stationary ,SSS,WSS processes	Power density spectrum
	SLO-2	Moments-raw and central moments	Marginal Probability distributions	The weak law of large numbers	Problems on stationary and SSS processes	Problems based on power density spectrum
	SLO-1	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-4	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-5	SLO-1	Characteristic function - properties	Conditional probability distribution of (X,Y)	Central limit theorem without proof	Problems on WSS process	Linear system with random inputs
J-0	SLO-2	Characteristic function	Problems on continuous two dimensional random variables	Central limit theorem - Applications	Problems on WSS process	Representation of system in the form of convolution

	SLO-1	Binomial distribution -moments	Independent random variables	Central limit theorem- Applications using Poisson random variables	Autocorrelation function - properties	Unit impulse response of the system							
S-6	SLO-2	Binomial distribution- Applications	Cumulative distribution function-properties of F(x,y)	Central limit theorem- Applications using Exponential random variables	Proof of properties	Properties							
	SLO-1	Poisson distribution-moments	Expected values of two dimensional random variables	The strong law of large numbers	Problems on autocorrelation function	Applications of unit impulse function							
S- 7	SLO-2	Poisson distribution - Applications	Covariance and correlation	The strong law of large numbers	Application of autocorrelation function	Einstein Weiner- Khinchine Relationship							
	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14							
S-8	SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 14								
S-9	SLO-1	Exponential distribution- moments	Conditional expected values	One sided Chebychev's inequality	Cross correlation- properties	Problems on Khinchine relationship							
5-9	SLO-2	Exponential distribution- Applications	Problems on uncorrelated random variables	Cauchy Schwartz inequality	Proof of properties	Cross power density spectrum-properties							
S-10	SLO-1	Normal Distribution-moments	Functions of two dimensional random variables	Chernoff bounds	Problems on cross correlation function	Proof of properties							
0-10	SLO-2	Normal Distribution-Applications	Probability density functions of the type Z=XY	Chernoff bounds for the standard normal variate	Ergodicity	Cross power density spectrum-problems							
S-11	SLO-1	Function of a random variable	Probability density functions of the type Z=X-Y	Chernoff bounds for the Poisson random variate	Mean ergodic process	Cross power density spectrum							
3- 11	SLO-2	Function of a random variable	Probability density functions of the type Z=X/Y	Jenson's inequality	Mean ergodic theorem	Cross power density spectrum							
S-12	SLO-1	Problem solving using tutorial sheet 3	Problem solving using sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15							
	SLO-2	Applications of random variables in engineering	Application of two dimensional random variables in Engineering	Applications of Central limit Theorem in engineering	Applications of random process in engineering	Applications Power spectral density functions in engineering							
		1. A. Papoulis, S. Uniikrishna Pillai	•										
		2. Henry Stark, Probability and Random Processes with Applications to Signal Processing, Third Edition, Pearson											
Learning Resources		3. Veerarajan T., Probability, Statis	stics and Random Processes with 0	Queueing Theory and Queueing	Networks, 4th Edition, McGraw-Hill	Education, New Delhi,2015							
Nesources		4. Sheldon Ross , Afirst course in	•										
		5. S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, 11th Edition, 2015.											

	Level of Thinking	Level of Thinking Continuous Assessment											
		CLA – 1 (10%)	CLA – 2 (15%)	CLA – 3 (15%)	CLA – 4 (10%)								
Level 1	Remember	40%	30%	30%	40%								
Level	Understand	40 /6	30%	30%	4076	30%							
	Apply												
Level 2	Analyze	40%	40%	40%	40%	40%							
Level 3	Evaluate												
	Create	20%	30%	30%	20%	30%							

CA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., SLO – Session Learning Outcome

Со	urse Designers					
	(a) Experts from	Industry				
1	Mr.V.Maheshwaran	CTS, Chei	nnai	maheshwaranv@yahoo.com		
	(b) Experts from	Higher Techn	ical Institutions			
2	Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm.ac.in	3 Dr.Nanjundan	Bangalore University	nanzundan@gmail.com
(c)	Internal Experts					
4	Dr.A.Govindarajan	SRMIST	govindarajan.a@ktr.srmuniv.ac.in	5 Dr.Srinivasan	SRMIST	

To emerge as a World - Class University in creating and disseminating knowledge, and providing students a unique learning experience in Science, Technology, Medicine, Management and other areas of scholarship that will best serve the world and betterment of mankind.

MOVE UP through international alliances and collaborative initiatives to achieve global excellence. ACCOMPLISH A PROCESS to advance knowledge in a rigorous academic and research environment.

Course		0MA D204T	Course	DDOD A DIL ITY A	ND OUTUEING THEODY	Cour	se Ca	ategor	ry	В	,	Basic S								L	T	Р	С
Code	1	8MAB204T	Name	PROBABILITY A	ND QUEUEING THEORY					В		sasic (scieno	ces						3	1	0	4
Pre-requ Course		18MAB102T		-requisite Courses	Nil			Prog	ressi	ve C	ours	es ^	lil										
Course Of	ffering	Department	Mathe	matics	Data Book / Codes/Stand	ards	٨	lil															
		Rationale (CLI		ırpose of learning t		Learn	ing						Pro	aram	l ear	ning	Outo	ome	s (PI	O)			
Course Lea	Course Learning Outcomes (CLO): At the end of this course, learners will be able to					1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 : CLR-3 : CLR-4 : CLR-5 : CLR-6 :	Gain the probabe To Assesituation To inte	e knowledge an ility using Theo ess the approp n to determine rpret the decision struct chain of o et random varia	nd acquire the retical distriberiate model at the probabilition using Mardecisions from the part and Quebes an	utions and apply and solin ty kov queueing appl m the past situation euing theory in eng	tribution to find the g any realistic problem ications as using Markovians tineering problems.	Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge		Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO-2	PSO-3
		1		Continuous Rando		3	85	80	М		L	-	-	-	-	-	М	-	-	Н	-	-	-
	Distribu	ıtion		,	screte and Continuous	3	85		М			М	М	-	-	-	М	L	-	Н	1	-	-
CLO-3:	Decisio	on Models using	g sampling te	chniques in Large	and Small samples	3	85	80	М	Н	-	-	-	-	-	-	М	-	-	Н	-	-	-
				endall's notation		3			М		-	-	-	-	-	-	М	L	-	Н	1	-	-
CLO-5:	To Eva	luate the proba	bility in unce	rtain situations usii	ng Markov chain rule	3		80	М		L	М	-	-	-	-	М	-	-	Н	1	-	-
CLO-6:	Solving	and analyzing	the problem	s in random variab	les and Queuing theory.	3	85	80	М	Н	-	-	-	-	-	-	М	-	-	Н	-	-	-

	ration hour)	12	12	12	12	12
S-1	SLO-1	Probability Basic concepts and Axioms	Discrete Probability distribution	Sampling distribution, Null Hypothesis, Alternate Hypothesis	Introduction to F-test	Markov Process and Introduction of a Markov Chain
	SLO-2	Conditional probability, Multiplication theorem	Introduction to Binomial distribution	One tailed test, two tailed test	Problems on F-test	Past and Future - Step and State
S-2	SLO-1	Discrete and continuous Random variables	MGF, Mean, Variance of Binomial distribution	Level of significance, Critical region	Chi square test -Goodness of fit	One step Transition Probability N step transition Probability
	SLO-2	Probability mass function, cdf	Applications of Binomial distribution	Large samples test	Problems on Chi square test - Goodness of fit	Chapman-kolmogorov theorem definition
S-3	SLO-1	Continuous Random variables	Fit a Binomial distribution.	Student - t test Single Proportion	Problems on Chi-square test Independent- Attributes	Initial Probability distribution problems Using Markov Chain
		pdf and cdf applications	Introduction to Poisson Distribution	Two Sample proportions	Problems on Chi-square test Independent- Attributes with standard distributions	Initial Probability distribution problems Using Markov Chain
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-5	SLO-1	Expectation and Variance	MGF , Mean , Variance of Poisson distribution	Large sample test- Single Mean	Introduction to Queueing Theory and Applications. Kendall, notation	Classification of States of a Markov Chain
	SLO-2	Problems on Expectation and Variance	Applications of Poisson Distribution	Difference of Means	Introductio n to M/M/1 : infinity/ FIFO	Irreducible, Non irreducible, a period, Persistent, Non null Persistent
S-6	SLO-1	Moment Generating Function	Fit a Poisson Distribution	Problems on difference of Means	Ls, Lq, Ws,Wq	Problems on Classification of a Markov Chain
	SLO-2	Problems on MGF	Introduction , MGF Mean, Variance of Geometric distribution	Applications of Difference of Means	M/M/1 :Infinity /FIFO problems	Problem on Classification of a Markov Chain
S-7	SLO-1	Functions of Random variables	Applications of Geometric Distribution, problems on Memory less property	Introduction to small samples	M/M/1 :Infinity /FIFO problems	Classification of states of a Markov Chain
		Problems on Functions of Random variable	Introduction , MGF, Mean, Variance of Uniform Distribution	Introduction to small Samples	M/M/1 :Infinity /FIFO problems	Stationary and steady state
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Tchebycheffs inequality	Applications of Uniform Distribution problems	Problems on single mean -small samples	Single Server Model with Finite System Capacity, Characteristics of the Model (M/M/1): (K/FIFO)	Problems on Classification- State-stationary using Markov Chain
	SLO-2	Introduction to theoretical distribution	Introduction , MGF, Mean, Variance of Exponential distribution	Problems on single mean -small samples	Effective arrival rate	Problems on Stationary and steady state

S-10	SLO-1	Tchebycheffs	Applications of Exponential distribution problems	samples	(K/FIFO)	Problems on Ergodicity using Markov Chain
		inequality	Introduction to Normal distribution	Problems on difference of mean- small samples	Problems on Model (M/M/1) : (K/FIFO)	Problems on Ergodicity using Markov Chain
S-11	SLO-1		Applications of Normal distribution problems	Applications of paired - t test	Problems on Model (M/M/1) : (K/FIFO)	Problems on Ergodicity
	SLO-2	Chenychevs	Practical applications of Normal distribution	Problems of paired - t test.	Problems on Model (M/M/1) : (K/FIFO)	Problems on Ergodic and Non Ergodic Using Markovchains
S-12	SLO-1	0 0	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
3-12	SLO-2		Applications of distribution to find the probability using Theoretical distributions	Applications of solving any realistic problem situation to determine the probability	Applications of Queueing decision models	Applications of constructing chain of decisions from the past situations using Monrovians

Learning Resources

- Veerarajan T, Probability , Statistics and Random Processes, Tata Mc. Graw Hill, 1st Reprint 2004 S.C. Gupta, V.K.Kapoor, Fundamentals of Mathematical Statistics, 9th ed.,, Sultan Chand& Sons, 1999 Gross. D and Harri.C.M. Fundamentals of Queuing theory, John Wiley and Sons, 1985
- 1. 2. 3.
- Trivedi K S, Probability and Statistics with reliability, Queueing and Computer Science Applications, prentice Hall of India, New Delhi, 1984
 Allen .A.O., Probability Statistics and Queueing theory, Academic Press

	0. 7111011	., , ,	Tobability	Otatiotico ai	a Quouoni	g thoory, rioddonno	1 1000				
Learning	g Assessment										
	Bloom's Level of	Continu	ous Learr	ning Assessr	nent (50% v	weightage)				Final Exa	mination (50%
	Thinking	CLA – 1	(10%)	CLA - 2 (15	%)	CLA – 3 (15%)		CLA – 4 (10%)#		weightage	·
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %	-	30 %	-	30 %	-	30%	-	30%	-
	Understand										
Level 2	Apply	40 %	_	40 %	-	40 %	1	40	-	40%	-
	Analyze										
Level 3	Evaluate	20 %	_	30 %	-	30 %	1	30%	-	30%	-
	Create										
	Total	100 %		100 %		100 %		100 %		100 %	

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. V. Srinivasan, SRMIST

Course Learning Syllabus (includes Learning Outcomes & Learning Plan&Assessment Plan)

Course	1014102017	Course	PROBABILITY AND STATISTICS	Course	DC	Rasic Sciences	L	T	P	С
Code	18MAB301T	Name	PROBABILITY AND STATISTICS	Category	BS	Basic Sciences	3	1	0	4

Pre-requisite Courses	18MAB201T/18M	AB203T	Co-requisite Courses	NII	Progressive Courses	
Course Offering	Department	Mathematics		Data Book / Codes/Standards	Statistical tables	

1

Learning

2 3

Course Le	carning Rationale (CLR): The purpose of learning this course is to:
CLR-1 :	To apply the basic rules and theorems of probability theory such as Baye's Theorem, to determine probabilities that help to solve engineering problems and to determine the expectation and variance of a random variable from its distribution.
CLR-2 :	To appropriately choose, define and/or derive probability distributions such as the Binomial, Poisson and Normal etc to model and solve engineering problems.
CLR-3 :	To learn how to formulate and test hypotheses about means, variances and proportions and to draw conclusions based on the results of statistical tests.
CLR-4 :	To understand how regression analysis can be used to develop an equation that estimates how two variables are related and how the analysis of variance procedure can be used to determine if means of more than two populations are equal.
CLR-5 :	To comprehend the fundamentals of quality control and the methods used to control systems and processes.
CLR-6:	Acquired the knowledge of probability and statistics and its applications to the respective branches of Engineering.

	more than two populat	ions are equal.	_		_				
CLR-5 :	To comprehend the fur used to control systems	ndamentals of quality control and the methods and processes.	(Bloom)	Proficiency (%)	Attainment (%)				
CLR-6:	Acquired the knowledge of probability and statistics and its applications to the respective branches of Engineering.								
Course L (CLO):	earning Outcomes	At the end of this course, learners will be able to:	Level of Thinking	Expected	Expected				
CLO-1 :	probabilities that help	owledge of probability concepts, to determine o to solve engineering problems. and to determine ariance of a random variable from its distribution		85	80				
CLO-2 :	, ,	iving probability distributions such as the Binomial, tc and apply them tn the problems involving Science	3	85	80				
CLO-3 :	Acquire knowledge in variances and proport	3	85	80					

				9.			9 -				,			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
М	Н	L						М	L		Н			
М	Н		М	М				М			Н			
М	Н							М			Н			

Program Learning Outcomes (PLO)

() ()-4 '	Getting the knowledge of Regression analysis, ANOVA and apply them in the problems in Science and Engineering	3	85	80	М	Н	L	М		M L	Н	
CLO-5 :	Understanding the concept and applications of statistical quality control charts in technology and industries	3			М	Н	М			М	Н	
CLO- 6:	To solve the problems based on probability and statistics in science and engineering	3	85	80	М	Н				М	Н	

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
	ation our)	12	12	12	12	12
S-1		probability concepts, Types of Events	Discrete distributions	Sampling	Correlation and Properties	Introduction and Process Control
	SLO-2	Axioms and theorems	Binomial distribution	Small and large samples	Karl pearson's correlation coefficient	Types of Control charts
	SLO-1 Conditional probability Baye's theorem – without prod		M.G.F	Hypothesis Testing	Spearman's rank correlation coefficient	Control charts for variables
S-2	SLO-2	Applications- Baye's Theorem.	mean	Large sample test-Test of significance for single proportion	Problems on rank correlation – non repeated ranks	Control chart for attributes
	SLO-1	Random variables – Discrete case	variance	Test of significance for difference of proportions	Problems on repeated ranks	Control limits and drawing conclusions
S-3	SLO-2	Probability Mass function	Fitting binomial distribution	More problems on test 2	Linear Regression lines and Properties	Control chart for mean and range when \overline{X} and R data given directly
<i>c a</i>	SLO-1	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-4	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Applications of correlation in engineering	Problem solving using tutorial sheet 14
	SLO-1	Cumulative distribution function	Poisson distribution	Test of significance for single mean	regression coefficient Problems	More problems on \overline{X} and R data given directly
S-5	SLO-2	Mathematical expectation – discrete case	M.G.F, mean	Test of significance for difference of means	More problems in regression coefficients	Control chart for mean and range- when \overline{X} and R data not given directly
	SLO-1	Variance	variance	Small sample tests	Relation between correlation and regression	more problems on \overline{X} and R data not given directly
S-6 SLO-2		Probability density function	Fitting Poisson distribution	Student's t- test for single mean	problems on relation between correlation and regression	Control chart for mean and S.D when mean S.D values given directly
<i>S-7</i>	SLO-1	Cumulative distribution	Geometric distribution-M.G.F,	't' test for the difference of	Applications of regression in	More problems on \overline{X} and S

		function	mean, variance	means	engineering	
	SLO-2	Mathematical expectation- continuous case	Memory less property	More problems on t- test	Applications of regression in engineering	Control chart for mean and S.D when mean S.D values not given directly
	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-8	SLO-2 Problem solving using to sheet 2		Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Variance	Continuous distribution:	Fisher's F-test	Introduction to ANOVAAnalysis of Variance – One way Classification	More problems on \overline{X} and S
	SLO-2	Raw Moments	Uniform distribution – MGF, Mean, Variance	Test of significance for two sample variances	Problems on one way classification	Control chart for attributes- np chart
	SLO-1	Central Moments	Exponential distribution - MGF, Mean, Variance	Chi square test- for goodness of fit	More problems on one way classification	More problems on np-chart
S-10	SLO-2	Moment generating function	Memory less property	Problems on goodness of fit	ANOVA – two way classification	p- chart
	SLO-1	MGF- discrete random variable	Normal distribution	Chi square test- for independence of attributes	Problems on two way classification	More problems on p- chart
S-11	SLO-2	MGF- continuous random variable	Problems on Normal distribution	More problems on Chi square test- for independence of attributes	More problems on two way classification	Control chart for the defects in a single unit- c- chart
	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12	SLO-2	Applications of Probability and Random variables in Engineering field	Application of distributions in Engineering	Applications and the importance of samplingin various fields of engineering	Engineering Applications of ANOVA, Correlation and Regression	Engineering applications of control chart
.earnin		2. Johnson. R.A., Mille	 rse in Probability, 6th Ed., P er &Freund's, Probability an pability and Statistics Tata I	d Statistics for Engineers, 6	s th Edition, Pearson's Educat	ion, New Delhi, 2000.

Learning Resources

- 3. Veerarajan T., Probability and Statistics, Tata McGraw-Hill, New Delhi, 2010.
- 4. Devore (JL), Probability and Statistics, 5^{th} Edition: For Engineering and the Sciences.
- 5. Vijay K. Rohatgi., A.K. Md. Ehsanes Saleh, An Introduction to Probability and Statistics, 2 Edition, Wiley, 2008

	Lovel of Thinking		Continuou	is Assessment		Final Framination (FOO()
	Level of Thinking	CLAT- 1 (10%)	CLAT – 2 (15%)	CLAT – 3 (15%)	CLAT – 4 (10%) #	Final Examination (50%)
Level 1	Remember	40 %	30 %	30 %	30 %	30 %
Level 1	Understand	40 %	30 %	30 %	30 %	30 %
Level 2	Apply	40 %	40 %	40 %	40 %	40 %
Level 2	Analyze	40 %	40 /0	40 /0	40 %	40 %
Level 3	Evaluate	20 %	30 %	30 %	30 %	30 %
Level 3	Create	20 %	30 %	30 %	30 %	30 %

#CA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., SLO – Session Learning Outcome

Course Designers					
(a) Experts from Industry					
1 Mr.V.Maheshwaran	CTS, Chennai	maheshwaranv@yahoo.com			
(b) Experts from Higher Technic	al Institutions				
2 Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm.ac.in	3 Dr.Nanjundan	Bangalore University	nanzundan@gmail.com
(b) Internal Experts					
4 Dr.A.Govindarajan	SRMIST	govindarajan.a@ktr.srmuniv.a	c.in 5 Dr.Srinivasan	SRMIST	srinivasan.va@srmuniv.ac.in

To emerge as a World - Class University in creating and disseminating knowledge, and providing students a unique learning experience in Science, Technology, Medicine, Management and other areas of scholarship that will best serve the world and betterment of mankind.

MOVE UP through international alliances and collaborative initiatives to achieve global excellence. ACCOMPLISH A PROCESS to advance knowledge in a rigorous academic and research environment.

			DISCRTE MATHEMATICS FOR ENGINEERS				L	T	Р	С
Course Code	18MAB302T	Course Name	J. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Course Category	BS	Basic Sciences	3	1	0	4

Pre-requisite Courses 18MAB102T		Co-requisite Courses NII		Progressive Courses	Nil
Course Offering Department	Mathematics		Data Book / Codes/Standards	nil	

Learning

Course Le	arning Rationale (CLR): The purpose of learning this course is to:
CLR-1:	Apply set theory, functions and relations in storage, communication and manipulation of data
CLR-2:	Apply number theory concepts in computer engineering such as public key crypto system.
CLR-3:	Apply mathematical reasoning in computer science such as design of computer circuit, verification of programs.
CLR-4:	Learning about groups, rings and fields. Solving problems on coding theory.
CLR-5:	Using graph models in computer network and shortest path problems Apply graph coloring in problems involving scheduling and assignments.
CLR-6:	Applymathematical reasoning, combinatorial analysis, algebraic structures and graph theory in solving mathematical problems as applied to the respective branches of Engineering.

CLR-3:	programs.	(F)	(%)	(%)
CLR-4:	Learning about groups, rings and fields. Solving problems on coding theory.	(Bloom)		
CLR-5:	Using graph models in computer network and shortest path problems Apply graph coloring in problems involving scheduling and assignments.	king (B	Proficiency	Attainment
CLR-6:	Applymathematical reasoning, combinatorial analysis, algebraic structures and graph theory in solving mathematical problems as applied to the respective branches of Engineering.	of Thinking		_
Course Lea	rning Outcomes (CLO): At the end of this course, learners will be able to:	evel	Expected	Expected
CLO-1:	Problem solving in sets, relations and functions.	3	85	80
CLO-2:	Solving problems in basic counting principles, inclusion exclusion and number theory.	3	85	80
CLO-3:	Solving problems of mathematical logic, inference theory and mathematical induction.	3	85	80
CLO-4:	Gaining knowledge in groups, rings and fields. Solving problems in coding theory.	3	85	80
CLO-5:	Gaining knowledge in graphs and properties. Learning about trees, minimum spanning trees and graph coloring.	3	85	80
CLO-6:	Learning mathematical reasoning, combinatorial analysis, algebraic structures and graph theory.	3	85	80

		H H Problem Analysis Problem Analysis Problem Analysis Design & Development Problem Analysis Design & Development Problem Analysis Design & Development Problem Pr													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Engineering Knowledge			Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics			∞ర				PSO - 3
M			L						M	L		Н			
M		Н		M	M				M			Н			
М		Н							M			Н			
М		Н		М					М			Н			
М		Н	L						М	L		Н			
M	1	Н							М			Н			

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
Durati	ion (hour)	12	12	12	12	12
S-1	SLO-1	Sets and examples. Operations on sets.	Permutation and Combination	Propositions and Logical operators	Binary operation on a set- Groups and axioms of groups.	Basic concepts - Basic Definitions- degree and Hand shaking theorem.
3-1	SLO-2	Laws of Set theory- Proving set identities using laws of set theory.	Simple problems using addition and product rules.	Truth values and truth tables.	Properties of groups.	Some Special Graphs – complete, regular and bipartite graphs.
S-2	SLO-1 Partition of a set – examples.		Principle of inclusion and exclusion	Propositions generated by a set-Symbolic writing using conditional and biconditional connectives.	Permutation group, equivalence classes with addition modulo m and multiplication modulo m.	Isomorphism of graphs – necessary conditions.
	SLO-2	Cartesian product of sets.	Problems using inclusion and exclusion principle.	Writing converse inverse and contra positive of a given conditional.	Cyclic groups and properties.	Isomorphism- simple examples.
S-3	SLO-1	Relations – Properties.	Pigeon-hole principle and generalized pigeon-hole principle.	Tautology, contradiction and contingency- examples.	Subgroups and necessary and sufficiency of a subset to be a subgroup.	Paths, cycles and circuits.
3-3	SLO-2	Equivalence relation and partial order relation	Problems on pigeon-hole principle.	Proving tautology and contradiction using truth table method.	Group homomorphism and properties.	Connectivity in undirected graphs – connected graphs and odd degree vertices.
S-4	SLO-1	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
3-4	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-5	SLO-1	Poset - Graphs of relations Digraphs	Divisibility and prime numbers.	Equivalences – truth table method to prove equivalences.	Rings- definition and examplesZero devisors.	Eulerian and Hamiltonian graphs.
3-3	SLO-2	Hasse diagram – problems.	Fundamental theorem of arithmetic – problems.	Implications- truth table method to prove implications.	Integral domain- definition , examples and properties.	Necessary and sufficient condition for a graph to be Eulerian- examples.
S-6	SLO-1	Closures of relations- examples	Finding prime factorization of a given number.	Laws of logic and some equivalences.	Fields – definition, examples and properties.	Matrix representation of graphs- adjacent and incidence matrices and examples.
3-0	SLO-2	Transitive closure and warshall's algorithm	Some more problems using fundamental theorem of arithmetic.	Proving equivalences and implications using laws of logic.	Coding Theory – Encoders and decoders- Hamming codes.	Isomorphism using adjacency.
S-7	SLO-1	Functions – definitions, domain and range	Division algorithm- greatest common divisorand	Rules of inference – Rule P, Rule T and Rule	Hamming distance.	Digraphs – in degree and out degree – Hand

		of a function - examples	properties-problems.	СР	Error detected by an encoding function.	shaking theorem.
	SLO-2	Types of functions- one- one and onto- bijection- examples.	Euclid's algorithm for finding GCD(a,b)-examples	Direct proofs	examples.	Verification of hand shaking theorem in digraphs.
S-8	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
3-0	SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Composition of functions – examples.	Problems using Euclid's algorithm.	Problems using direct method.	Error correction using matrices.	Graph colouring – chromatic number- examples.
3-9	SLO-2	Associativity of composition of functions – Identity and inverse of functions.	Least common Multiple(LCM)- relation between LCM and GCD.	Problems using CP rule.	Problems on error correction using matrices.	Four colourtheorem(statement only) and problems.
S-10	SLO-1	Necessary and sufficiency of existence of inverse of a function.	Problems on LCM.	Inconsistency and indirect method of proof.	Group codes-error correction in group codes- parity check matrix.	Trees – definitions and examples. Properties.
5-10	SLO-2	Uniqueness of identity	Finding LCM and GCD using prime factorization.	Inconsistent premises and proof by contradiction (indirect method).	Problems on error correction in group codes.	Properties continued.
	SLO-1	Inverse of composition	Finding GCD and LCM using Euclid's algorithm.	Principle of mathematical induction.	Procedure for decoding group codes.	Spanning trees – examples.
S-11	SLO-2	Checking if a given function is bijection and if so, finding inverse, domain and range- problems.	More problems on GCD and LCM.	Problems based on Mathematical Induction	Problems on decoding group codes.	Kruskal's algorithm for minimum spanning trees.
	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12	SLO-2	Applications of sets, relations and functions in Engineering.	Applications of sets, relations and functions in Engineering.	Applications of sets, relations and functions in Engineering.	Applications of sets, relations and functions in Engineering.	Applications of sets, relations and functions in Engineering.
		Kenneth H.Rosen, Discrete M	lathematics and its Application, Seventh edition,	 Tata McGraw-Hill Publishing company PVT .Ltd	., New Delhi, 2012.	
Learning	earning esources	2. Tremblay J. P. and Manohar	R., Discrete Mathematical Structures with applica	tions to Computer Science, Tata McGraw Hill P	ublishing Co., 35th edition,2008.	
Resources		NarsingDeo, Graph Theory w	ith applications to Engineering and Computer science	ence, Prentice-Hall of India pvt. Ltd., New Delhi,	2004.	
		4. C.L. Liu, Elements of Discrete	e Mathematics, 4th Edition, McGraw Higher ED, 2	2012.		
		T.Veerarajan, Discrete Mathe	matics with Graph Theory and Combinatorics, Ta	ata McGraw Hill, 2015.		

Level of Think	Lovel of Thinking		Continuous Assessment			Final Examination (50%)
	Level of Thinking	CLA – 1 (10%)	CLA – 2 (15%)	CLA – 3 (15%)	CLA -4 (10%) #	Final Examination (50%)
Level 1		40 %	30 %	30 %	30 %	30 %
Level 2		40 %	40 %	40 %	40 %	40 %
Level 3	Evaluate Create	20 %	30 %	30 %	30 %	30 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., SLO – Session Learning Outcome

Course Designers						
(a) Experts from Industry						
1 Mr.V.Maheshwaran	CTS, Chennai	maheshwaranv@yahoo.com				
(b) Experts from Higher Technical Institutions			•			
2 Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm.ac.in	3	Dr.Nanjundan	Bangalore University	nanzundan@gmail.com
(b) Internal Experts			•			
4 Dr.A.Govindarajan	SRMIST	govindarajan.a@ktr.srmuniv.ac.in	5	Dr.Sundarammalkesavan	SRMIST	sundarammal.k@ktr@srmuniv.ac.in

To emerge as a World - Class University in creating and disseminating knowledge, and providing students a unique learning experience in Science, Technology, Medicine, Management and other areas of scholarship that will best serve the world and betterment of mankind.

MOVE UP through international alliances and collaborative initiatives to achieve global excellence. ACCOMPLISH A PROCESS to advance knowledge in a rigorous academic and research environment.

Template 6: Course Learning Syllabus

Course Learning Syllabus (// includes Learning Outcomes & Learning Plan & Assessment Plan)

				_	_		L	Т	Р	С
Course Code	18MAB303T	Course Name	BIO STATISTICS FOR BIOTECHNOLOGISTS	Course Category	В	Basic Sciences	3	1	0	4

Pre-requisite Courses 18MAB102T	Co-requisite Cours	5 INIL	Progressive Courses	NIL
Course Offering Department	Mathematics	Data Book / Codes/Standards	Statistical tables	

Course Lea	arning Rationale (CLR): The purpose of learning this course is to:		Learnin	3						Progra	ım Learn	ing Out	tcomes	(PLO)					
CLR-1:	To gain knowledge in measures of central tendency, dispersion, Skewness and moments in Biotechnology.	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	To appropriately choose, define and / or derive probability distributions such as Binomial, Poisson and Normal distributions to solve biology related problems.																		
CLR-3:	To learn how to formulate and test the hypothesis of single means and difference of means for large samples and to understand and apply Chi-square test for goodness of fit and independence of attributes in Biological topics.	(mc	(%)	(%)	e de		=	earch			Sustainability		논		an an				
CLR-4:	To learn to formulate and test the hypothesis about means, variances for small samples using t and F test and to have knowledge in ANOVA in Biology related topics.	g (Bloo	Proficiency (%)	Attainment (%)	owledg	.s	opmen	n, Res	age	Ф	Sustair		Team Work		Finance	gui			
CLR-5:	To gain knowledge in correlation and regression lines and also get expose to Non- Parametric tests in Biology.	of Thinking (Bloom)	Profic	Attain	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture				Communication	∞	Learning			
CLR- 6	Assess problems and determine the appropriate method to solve problems in application areas of Biotechnology	evel of T	xpected	Expected,	gineeri	, məldı	sign &	alysis,	dem T	ciety &	Environment &	Ethics	Individual &	mmuni	Project Mgt.	Life Long	0-1	0-2	0-3
Course Lea	arning Outcomes (CLO): At the end of this course, learners will be able to:	Fe	M X	X	П	Pro	De	Ā	≥	So	ᇤ	亩	<u>Pu</u>	ပိ	Pro	ij	PSO	PSO	PSO
CLO-1:	Understand solve numerical problems in measures of central tendency and dispersion.	3	85	80	M	Н	L						М	L		Н			
CLO-2:	Solving problems related to probability distributions applicable to bio technologists.	3	85	80	M	Н		М	М				М			Н			
CLO-3:	Evaluate the given problems relating to large sample test of mean and difference of mean and Chi-square tests.	3	85	80	М	Н							М			Н			
CLO-4:	Choose and solve problems with t test, F test and ANOVA.	3	85	80	М	Н		M					M	L		Н			
CLO-5:	Evaluate problems on concepts of correlation, regression and non parametric tests.	3	85	80	М	Н	L						М			Н			
CLO-6:	The learners will be able to mathematically formulate and solve numerical problems related to Biotechnogy.	3	85	80	М	Н							М			Н			

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
Du	ration (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to discrete types of statistical data	Introduction to probability concepts, Random experiment, Trail, Sample space, Sample size, Events(only definitions, properties without proof and simple problems)	Sampling Theory - Basic concepts	Introduction to small sample test	Introduction to Correlation and Regression
	SLO-2	Introduction to continuous types of statistical data	Problems on Probability related to biological applications.	Population, Sample, Sampling distribution, population parameters and sample statistic	small sample tests based on t- distribution for single mean	Karl Pearson's coefficient of correlations
S-2	SLO-1	Measures of central tendency – Introduction to Arithmetic mean, median, Mode	Types of Events: Impossible, Simple, Mutually Exclusive and Independent events(only definitions, properties without proof)	Testing of hypothesis, Null and Alternate hypothesis, Single tailed and two tailed tests, Type- I and Type –II errors	Problems on t-test for single mean	Problems on Karl Pearson's coefficient of correlations
	SLO-2	Problems in Arithmetic mean	Simple problems	Acceptance and Rejection Regions, Level of Significance, Degrees of freedom and Confidence limits	Small sample tests based on t- distribution for difference of means	Spearman's rank correlation coefficient problems
S-3	SLO-1	Problems in median	Problems based on Addition and Multiplication Theorems	Large sample tests based on normal distribution (Z - test)	Problems on t- distribution for difference of means	Spearman's rank correlation coefficient problems
	SLO-2	Problems in mode	Baye's Theorem (without proof) and its applications	Z-Test for single proportion and difference of proportions and problems	Paired t-test	Regression lines and its applications
S-4	SLO-1	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13

	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-5 —	SLO-1	Measures of dispersion, Range , Quartile deviation	Introduction to one dimensional random variables	Z-Test for single mean	Problems on Paired t-test	Problems related to Regression lines.
	SLO-2	Mean deviation	Discrete Random variable, Probability mass function , Distribution function, Properties (without proof), Applications	Problems on Z-Test for single mean	F-test for equality of variances	Non-parametric tests - The sign test
S-6	SLO-1	Standard deviation and Co-efficient of variation	Continuous Random variable, Probability density function , Distribution function, Properties (without proof), Applications	Z-Test for difference of means	Problems on F-test for equality of variances	The sign test additional problems
	SLO-2	Problems on Standard deviation and Coefficient of variation	Simple problems on discrete random variables and continuous random variables	Problems on Z-Test for difference of means	Problems on F-test for equality of variances	The Wilcoxon rank sum test or The Man Whitney U test problems
S-7 -	SLO-1	Karl Pearson's coefficient of Skewness	Mathematical Expectation	Introduction to Chi- square test	Introduction to Analysis of Variance (ANOVA)	The Wilcoxon rank sum test or The Man Whitney U test problems
	SLO-2	Problems on coefficient of Skewness	Variance, Properties (without proof), Application related problems	Chi -square test for goodness of fit	Problems on ANOVA –One -way classifications	The Kruskal Walis test problems
S-8	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
	SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Introduction to moments	Binomial distribution, Application to population Genetics	Problems on Chi -square test for goodness of fit	Problems on ANOVA –One -way classifications	The Kruskal Walis test problems
	SLO-2	Raw and Central moments problems	Simple problems on Binomial distribution	Chi -square test for Independence of attributes – Problems formulations	Problems on ANOVA –One -way classifications	The Kruskal Walis test problems
S-10	SLO-1	Moments about the point x=a problems.	Poisson Distribution, Application to population Genetics	Chi -square test for Independence of attributes using contingency table	ANOVA –Two -way classifications	The Wilcoxon signed ranked test problem
	SLO-2	Additional problems on moments	Normal Distribution, Application to population Genetics	Problems on Chi -square test for Independence of attributes using contingency table	Applications of ANOVA –Two –way classification problems.	The Wilcoxon signed ranked test problem
S-11 —	SLO-1	Problems on finding central moments given moments about a point	Problems on Poisson and Normal distribution	Additional problems on Chi-square test	ANOVA –Two –way classification problems.	Additional problems on all the non parametric tests
	SLO-2	Additional problems on finding central moments	Additional problems on Normal distribution.	Problems on Chi-square test.	ANOVA –Two –way classification problems	Additional problems on all the non parametric tests
S-12 —	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
	SLO-2	Engineering applications of Measures of central tendency and dispersion	Application of distributions in Engineering	Engineering applications of sampling techniques	Applications of ANOVA in engineering fields	Engineering Applications of Correlation, Regression and Non-parametric methods
Learning Resources		Myra L. Samuels, Jeffery A. Wit Bernard Rosner, Fundamentals B K Mahajan, Methods in Bio-st K. Kalyanaraman, Hareesh N.R	ner, Andrew schaffner, Statistics for the Life Sc of Biostatistics, Brooks/core, Seventh edition, 2 atistics for Medical students and Research worl amanathan, P. N. Harikumar, Statistical method Statistics Tenth Edition by Gupta & Kapoor, Sul	2011. kers, Seventh Edition, 2010. s for Research A step by step Approach Using	IBM SPSS, Atlantic, First Edition, 2016.	

	Level of Thinking	Continuous Assessment				Final Everyingtion (F09/)	
		CA – 1 (10%)	CA – 2 (15%)	CA – 3 (15%)	CA – 4 (10%) #	Final Examination (50%)	
Level 1	Remember	40 %	30 %	30 %	30 %	30 %	
	Understand						
Level 2	Apply	40 %	oly 40 %	40 %	40 %	40 %	40 %
	Analyze		40 /6	40 /0	40 /0	40 /6	
Level 3	Evaluate	20 %	30 %	30 %	30 %	30 %	
	Create			30 /0			

[#] CA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., SLO – Session Learning Outcome

Course Designers							
(a) Experts from Industry							
1 Mr.V.Maheshwaran	CTS, Chennai	maheshwaranv@yahoo.com					
(b) Experts from Higher Technical Institutions							
2 Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm.ac.in 3 Dr.Nanju	ndan Bangalore University	nanzundan@gmail.com			
(b) Internal Experts							
4 Dr.A.Govindarajan	SRMIST	govindarajan.a@ktr.srmuniv.ac.in 5 Dr.Sriniva	san SRMIST	srinivasan.va@srmuniv.ac.in			

To emerge as a World - Class University in creating and disseminating knowledge, and providing students a unique learning experience in Science, Technology, Medicine, Management and other areas of scholarship that will best serve the world and betterment of mankind.

MOVE UP through international alliances and collaborative initiatives to achieve global excellence. ACCOMPLISH A PROCESS to advance knowledge in a rigorous academic and research environment.