Object detection is a crucial task in computer vision that involves identifying and localizing objects within an image. Over the years, various architectures have been developed, improving accuracy, speed, and robustness. The object detection family can be categorized into two primary types:

- 1. Two-Stage Object Detectors (Region Proposal-Based)
- 2. One-Stage Object Detectors (Regression-Based)
- 3. Transformer-Based Object Detectors (Recent Advances)

One Stage Detuctous

1) YOLO 2016 Ridmon V1 - V12

2) SSD (Single Shot Multibox) 2016 Cons: less accurate

3) Retina Net 2017

FPN (Feature Pyruamid Network)
High Accuracy with Real Time Speeds
Computationally Expensive

Treansformere Based Detectores

DETR (Detection Tuansformer) 2020 Cons: Computationally Vury Expansive Fliminates (NMS) Advantages: - EZE OD without Anchous

a) Defoumable DETR 2021 Defoumable Attention to focus only on relevant objects

3) DINO (DETR with improved Noisy)
optimization
Timproves training convergence

and detection accuracy.

Comparison of Object Detection Architectures				
Architecture	Туре	Speed	Accuracy	Notable Features
R-CNN	Two-Stage	Slow	High	Uses Selective Search
Fast R-CNN	Two-Stage	Faster	High	Rol Pooling
Faster R-CNN	Two-Stage	Faster	Very High	RPN for region proposals
Mask R-CNN	Two-Stage	Slower	Very High	Adds segmentation masks
YOLOv3	One-Stage	Very Fast	High	Multi-scale detection
YOLOv5	One-Stage	Real-time	High	Lightweight, efficient
SSD	One-Stage	Fast	Medium	Multi-scale feature maps
RetinaNet	One-Stage	Moderate	Very High	Focal Loss for imbalance
DETR	Transformer	Slow	Very High	End-to-end detection
Deformable DETR	Transformer	Faster	Very High	Focused attention mechanism