Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

1.

2.

3.

4.

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HARHIU
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น A H H I R U
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น AIHURH

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

8.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HHI
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น HHI
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น IHH

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
0.
      BST tree2;
      tree2.insert('G');
1.
2.
      tree2.insert('0');
3.
      tree2.insert('I');
      tree2.insert('N');
4.
      tree2.insert('G');
5.
6.
      tree2.insert('M');
7.
      tree2.insert('E');
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	GEOIGNMRTY
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	EGGIMNORTY
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	EGMNTYTROG

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น GEOIGNMRTY
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EGMIMNORTY
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น EGMNTYTROG

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	3E0MGR
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	EGGMOR
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	EGMROG

5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
8.
      tree3.insert('H');
9.
```

```
หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HØFEDCBA
```


6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	EFAH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	EFGH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	HGFE

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ) BST ที่ไม่ balance โพสารเก incert เข้าไปทำในวังมูลอาจจะ เป็นใจเลื่อนนั้น
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัง อย่างไร (ขอสั้นๆ) BST ที่ balance โพทร แบบไล่ balance มนทาจะไปเช่ ผี่งโดยใจนนั่วมากกล่าและกาจให้เฉลาในการ seich พน
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
10.	ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ)