FP: Oct. 17 Ken Wakita

MinCaml types

Type (τ)	Explanation	Examples of members	
π	Primitive type	true/false: bool 0, ±1, ±2, ±3,: for int 3.14: float "string": string	
τ 1 \rightarrow \rightarrow τ n \rightarrow τ	Functional type	<pre># cos;; - : float -> float = <fun></fun></pre>	
τ 1 × × τ n	Tupple type	(true, 1, 3.14);; -: bool * int * float = (true, 1, 3.14)	
au array	Array type	# Array.create 3 1.0;; - : float array = [1.; 1.; 1.]	
α	Type variable (introduced for the	(whatever)	

Tour guide: Typing rule ABC

- · const
- · operators
- variable usage and definition
- tuple and array
- array indexing

- conditional
- pattern matching against tuples
- function application
- · let rec

op is a primitive operator that takes values of $\pi 1, ..., \pi n$ and gives a value of π

c is a constant member of π

$$\Gamma \vdash e_1 : \pi_1 \quad \dots \quad \Gamma \vdash e_n : \pi_n$$

c は π 型の定数

op は π_1, \ldots, π_n 型の値を受け取って π 型の値を返すプリミティブ演算

$$\Gamma \vdash c : \pi$$

$$\Gamma \vdash op(e_1, \ldots, e_n) : \pi$$

 $\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 : \tau_2$

$$\Gamma(x) = \tau$$

 $\Gamma \vdash$ if e_1 then e_2 else $e_3 : au$

 $\Gamma \vdash e_1 : \mathtt{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau$

$$\Gamma dash exttt{let} \ x = e_1 \ exttt{in} \ e_2 : au_2$$

$$\Gamma \vdash x : \tau$$

 $\Gamma, x: \tau_1 \to \ldots \to \tau_n \to \tau, y_1: \tau_1, \ldots, y_n: \tau_n \vdash e_1: \tau$

$$\Gamma \vdash e : \tau_1 \to \ldots \to \tau_n \to \tau$$

$$\Gamma, x: \tau_1 \to \ldots \to \tau_n \to \tau \vdash e_2: \tau'$$

$$\Gamma \vdash \mathtt{let} \; \mathtt{rec} \; x \; y_1 \; \ldots \; y_n = e_1 \; \mathtt{in} \; e_2 : au'$$

$$\Gamma \vdash e_1 : \tau_1 \quad \dots \quad \Gamma \vdash e_n : \tau_n$$

$$\Gamma \vdash e \ e_1 \ \dots \ e_n : \tau$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \dots \quad \Gamma \vdash e_n : \tau_n}{\Gamma \vdash (e_1, \dots, e_n) : \tau_1 \times \dots \times \tau_n}$$

 $\Gamma dash e_1 : \mathtt{int} \quad \Gamma dash e_2 : au$

 $\Gamma \vdash \texttt{Array.create} \ e_1 \ e_2 : \tau \ \texttt{array}$

$$\Gamma \vdash e_1 : au$$
 array $\Gamma \vdash e_2 : \mathtt{int}$

$$\Gamma \vdash e_1.(e_2) : au$$

$$\Gamma dash e_1 : au$$
 array $\Gamma dash e_2 : \mathtt{int}$ $\Gamma dash e_3 : au$

$$\Gamma \vdash e_1.(e_2) \leftarrow e_3 : \mathtt{unit}$$

図 3: MinCaml の型つけ規則

Typing: preliminary

- Typing environment (Γ): a set of typing assumption (e.g.: $\Gamma = x$: σ means "x has type σ under Γ)
- · Typing relation (Γ l- e: σ): e is an expression of type σ under Γ
- Typing rule: Above the line: the premise / Below the line: conclusion

Interpretation of the typing rule for function definition

$$\Gamma, x: au_1 o \ldots o au_n o au, y_1: au_1, \ldots, y_n: au_n dash e_1: au$$

$$\Gamma, x: au_1 o \ldots o au_n o au dash e_2: au'$$

$$\Gamma \vdash \mathtt{let} \; \mathtt{rec} \; x \; y_1 \; \ldots \; y_n = e_1 \; \mathtt{in} \; e_2 : au'$$

- Assumption
 - Γ , fadd: float \rightarrow float \rightarrow float, y1: float, y2: float |-y1+.y2|: float
 - Γ , fadd: float \rightarrow float \rightarrow float \rightarrow float (from function application)
- Conclusion Γ |- let rec fadd y1 y2 = y1 +. y2 in fadd 3.0 (5.0 +. 7.0) : float

Interpretation of functional application

$$\Gamma \vdash e : \tau_1 \to \dots \to \tau_n \to \tau$$

$$\Gamma \vdash e_1 : \tau_1 \quad \dots \quad \Gamma \vdash e_n : \tau_n$$

$$\Gamma \vdash e \quad e_1 \quad \dots \quad e_n : \tau$$

- Assumption
 - $\Gamma \vdash fadd : float \rightarrow float \rightarrow float$
 - Γ | -3.0 : float Γ | -(5.0 + .7.0) : float
- Conclusion Γ |- fadd 3.0 (5.0 + . 7.0) : float