Summary of Tests and Equations for Series and Sequences

1. Basic Definitions

- Sequence Convergence: A sequence $\{a_n\}$ converges to L if $\lim_{n\to\infty} a_n = L$.
- Series Convergence: The series $\sum a_n$ converges if the partial sums $S_n = \sum_{k=1}^n a_k$ approach a finite limit as $n \to \infty$.

2. Tests for Series Convergence and Divergence

Divergence Test (Test for Divergence)

If $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$ diverges. If $\lim_{n\to\infty} a_n = 0$, this test is inconclusive.

Geometric Series Test

For a series $\sum ar^n$, it converges if |r| < 1 and diverges if $|r| \ge 1$.

• Sum for a convergent geometric series: $S = \frac{a}{1-r}$.

p-Series Test

A p-series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Comparison Test

For $\sum a_n$ and a positive comparison series $\sum b_n$:

- If $0 \le a_n \le b_n$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- If $0 \le b_n \le a_n$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Limit Comparison Test

If $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, where $0 < L < \infty$, then $\sum a_n$ and $\sum b_n$ both converge or diverge.

Ratio Test

For a series $\sum a_n$, calculate $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$:

- If L < 1, the series converges absolutely.
- If L > 1, the series diverges.
- If L = 1, the test is inconclusive.

Root Test

For a series $\sum a_n$, calculate $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$:

- If L < 1, the series converges absolutely.
- If L > 1, the series diverges.
- If L = 1, the test is inconclusive.

Alternating Series Test (Leibniz Test)

For an alternating series $\sum (-1)^{n-1}b_n$:

• The series converges if b_n is decreasing and $\lim_{n\to\infty} b_n = 0$.

3. Absolute and Conditional Convergence

- Absolute Convergence: If $\sum |a_n|$ converges, then $\sum a_n$ converges absolutely.
- Conditional Convergence: If $\sum a_n$ converges but $\sum |a_n|$ diverges, then $\sum a_n$ converges conditionally.

4. Power Series

A power series $\sum a_n x^n$ converges within its **radius of convergence** R.

- Interval of Convergence: (-R, R)
- Ratio Test for Radius: $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ if this limit exists.