Lecture 15: Hypothesis Testing Part II

Chapter 4.3

Previously... Statistical Hypothesis Testing

A hypothesis test is a method for using sample data to decide between two competing hypotheses about the population parameter:

- A null hypothesis H₀.
 i.e. the status quo that is initially assumed to be true, but will be tested.
- ► An alternative hypothesis H_A. i.e. the challenger.

There are two potential outcomes of a hypothesis test. Either we

- ▶ reject H₀
- ▶ fail to reject H₀

Previously... Decision Errors

Hypothesis tests will get things right sometimes and wrong sometimes:

Test conclusion

		do not reject H_0	reject H_0 in favor of H_A
Truth	H ₀ true	OK	Type I Error
	H_A true	Type II Error	OK

Two kinds of errors:

- ► Type I Error: a false positive (test result)
- ► Type II Error: a false negative (test result)

- ---

Type I Errors: US Criminal Justice System

Defendants must be "guilty beyond a reasonable doubt": better to let a guilty person go free, than put an innocent person in jail.

- ► H₀: the defendant is innocent
- ► H_A: the defendant is guilty

thus "rejecting H_0 " is a guilty verdict \Rightarrow putting them in jail

In this case:

- ► Type I error is putting an innocent person in jail (considered worse)
- ▶ Type II error is letting a guilty person go free.

Type II Errors: Airport Screening

An example of where Type II errors are more serious: airport screening.

H₀: passenger X does not have a weapon

HA: passenger X has a weapon

Failing to reject H_0 when H_A is true is not "patting down" passenger X when they have a weapon.

Hence the long lines at airport security.

_ . _ .

Goals for Today

- ► Define significance level
- ► Tie-in p-Values with sampling distributions
- Example

Significance Level

Hypothesis testing is built around rejecting or failing to reject the null hypothesis.

i.e. we do not reject H_0 unless we have strong evidence.

As a rule of thumb, when H_0 is true, we do not want to incorrectly reject H_0 more than 5% of the time.

i.e. $\alpha = 0.05 = 5\%$ is the significance level.

With 95% confidence intervals from earlier, we expect it to miss the true population parameter 5% of the time. This corresponds to $\alpha=0.05$.

.

Thought experiment: Coin Flips

Say you flip a coin you think is fair 1000 times. Say you observe

- ▶ 501 heads? Do you think the coin is biased?
- ▶ 525 heads? Do you think the coin is biased?
- ▶ 900 heads? Do you think the coin is biased?

Thought experiment: p-Values

Intuitively, a p-value quantifies how extreme an observation is given the null hypothesis.

The smaller the p-value, the more extreme the observation, where the meaning of extreme depends on the context.

Note the p-value is different than the population proportion p (bad historical choice).

p-Values

Definition: The p-value or observed significance level is the probability of observing a test statistic as extreme or more extreme (in favor of the alternative) as the one observed, assuming H_0 is true.

It is NOT the probability of H_0 being true. This is the most common misinterpretation of the p-value.

Thought experiment: Coin Flips

You have a coin that test for fairness with n=1000 flips. Set $p_0=0.5$ (coin is fair) and define a "success" as getting heads.

$$H_0: p = p_0$$

 $vs \quad H_A: p \neq p_0$

- ► The point estimate \hat{p} of p is $\frac{\# \text{ of successes}}{\# \text{ of trials}}$.
- ightharpoonup Since it is based on a sample, \widehat{p} has a sampling distribution
- ▶ The standard error is $\sqrt{\frac{p(1-p)}{n}}$ (Chapter 6).
- ► Furthermore, since conditions hold, the sampling distribution is Normal (CLT)

11 / 22

Sampling Distribution of \hat{p}

Under H_0 that the coin is fair, i.e. $p = p_0 = 0.5$, the sampling distribution of \hat{p} when n = 1000 is:

$$\widehat{p} = \frac{501}{1000}$$

12 / 22

Say we observe...

$$\widehat{p} = \frac{525}{1000}$$

$$\hat{p} = \frac{900}{1000}$$

15 / 22

Example about Sleep Habits

A poll found that college students sleep about 7 hours a night. Researchers suspect that Reedies sleep more. They want to investigate this claim at a pre-specified $\alpha=0.05$ level.

They sample n=110 Reedies and find that $\overline{x}=7.42$ and s=1.75 and the histogram looks like:

Example about Sleep Habits

Let $\mu={\rm true}$ population mean # of hours Reedies sleep a night.

Then $\mu_0 = 7$ and:

- ► H_0 : $\mu = \mu_0 = 7$
- ▶ $H_A: \mu > 7$

Example about Sleep Habits

We check the 3 conditions to use the Normal model:

- 1. Independence: n = 110 < 10% of 1,453 (Reed enrollment)
- 2. $n \ge 30$
- 3. The distribution of the n=110 observations (Figure 4.14) is not too skewed.

If H_0 is true, then \overline{x} has mean μ_0 . So in our case for \overline{x}

$$z = \frac{\overline{x} - \text{null value}}{SE} = \frac{7.42 - 7}{\frac{1.75}{\sqrt{110}}} = 2.47$$

Example about Sleep Habits

In our case, since $H_{\rm A}$: μ > 7, more extreme means to the right of z=2.47.

If H_0 is true, then the null distribution looks like this:

Hence, the p-value is 0.007.

10 / 00

Example about Sleep Habits

Since the p-value $0.007 < 0.05 = \alpha$, the pre-specified significance level, it has a high degree of extremeness, and thus we reject H_0 .

Conclusion: we reject (at the $\alpha=0.05$ significance level) the hypothesis that the average # of hours of Reedies sleep is 7, in favor of the hypothesis that sleep more.

20 / 22

Example about Sleep Habits

Correct interpretation of the p-value: If the null hypothesis is true ($\mu=7$), the probability of observing a sample mean $\overline{x}=7.42$ or greater is 0.007.

Incorrect interpretation of the p-value: The probability that the null hypothesis ($\mu = 7$) is true is 0.007.

Next Time

- ▶ How big a sample size to I need? i.e. power calculations
- ► Statistical vs practical significance