

Diode circuits can often be analyzed using linear models.

The offset ideal model approximates the nonlinear I-V characteristic in Fig. 3 as a piecewise linear graph with a threshold voltage parameter $V_{\rm on}$. The typical value for a silicon diode is $V_{\rm on}=0.7~{\rm V}$.

Fig. 4: Offset ideal model I-V characteristic of a diode. If $V_D < V_{\rm on}$, we approximate $I_D = 0$. Otherwise, if $I_D > 0$, we approximate $V_D = V_{\rm on}$. These two regions define two diode states, called OFF and ON.

Within each diode state, the diode can be replaced with a simpler linear element. If the diode is OFF, it can be replaced by an open circuit which has $I_D=0$ and can have any value of V_D . Otherwise, the diode is ON and it can be replaced by an element with fixed voltage drop $V_D=V_{\rm on}$ and any value of I_D .

	Condition	State	Behavior	Replacement Rule	
	$V_D < V_{ m on}$	OFF	$I_D = 0$	+ V _D - + V _D	
	$I_D > 0$	ON	$V_D = V_{ m on}$	+ V _D - + V _{On}	
Ŧ	Table 1. Diode states and replacement rules				

Table 1: Diode states and replacement rule

Fig. 7: Diode clipper with the diode OFF. When $V_{\rm in} < V_1 + V_{\rm on}$ in Fig. 1, the diode is OFF and is replaced by an open circuit in this figure. Now, we apply KVL to obtain: $V_{\rm in} = I_1R_1 + V_{\rm out}$. Note that $I_1 = 0$ since R_1 is not part of a complete circuit. Therefore, $V_{\rm out} = V_{\rm in}$.

Fig. 8: Diode clipper with the diode ON. When $V_{\rm in} > V_1 + V_{\rm on}$ in Fig. 1, the diode is ON and is replaced by an element with voltage drop $V_{\rm on}$ in this figure. Now, we apply KVL to obtain: $V_1 + V_{\rm on} = V_{\rm out}$. Therefore, $V_{\rm out} = V_1 + V_{\rm on}$.

combining the results from Fig. 7 and Fig. 8 gives

$$V_{
m out} = \left\{ egin{array}{ll} V_{
m in}, & {
m if} \ V_{
m in} < V_1 + V_{
m on}, \ V_1 + V_{
m on}, & {
m if} \ V_{
m in} > V_1 + V_{
m on}. \end{array}
ight.$$

Fig. 4: Amplifier inputoutput characteristic. $V_{\rm out}$ is constant at V_{CC} in the OFF mode, linearly decreasing in the ACTIVE mode and constant at $V_{CE,\rm sat}$ in the SATURATED mode. The transition from OFF to ACTIVE happens at $V_{\rm in} = V_{BE,\rm on}$ and the transition from ACTIVE to SATURATED happens at $V_{\rm in} = V_{\rm in}^*$, derived as (2) below.

(2)

The fact that a diode allows current to flow in only one direction means that it can rectify a sinusoidal voltage waveform by blocking its negative part.

Fig. 2: Half-wave rectifier. A half-wave rectifier circuit consists of a diode in series with a resistor. The input voltage $V_{\rm in}$ is applied across the diode and the resistor. The output voltage $V_{\rm out}$ is taken across the resistor.

Fig. 4: Half-wave rectifier with the diode ON. When $V_{\rm in} > V_{\rm on}$ in Fig. 1, the diode is ON and is replaced by an element with voltage drop $V_{\rm on}$ in this figure. Now, we apply KVL to obtain: $V_{\rm in} = V_{\rm on} + V_{\rm out}$. Therefore, $V_{\rm out} = V_{\rm in} - V_{\rm on}$.

Combining the results from Fig. 3 and Fig. 4 gives

$$V_{\text{out}} = \begin{cases} 0, & \text{if } V_{\text{in}} < V_{\text{on}}, \\ V_{\text{in}} - V_{\text{on}}, & \text{if } V_{\text{in}} > V_{\text{on}}. \end{cases}$$
 (1)

We take the following as given: the input voltage $V_{\rm in}$; the circuit constants V_{CC} , R_1 and R_2 ; and the BJT parameters β , $V_{BE,\rm on}$ and $V_{CE,\rm sat}$. We now show how equations (1) to (7) define three operating modes for the BJT, called OFF, ACTIVE and SATURATED, and derive expressions for V_{BE} , I_B , I_C and V_{CE} in each mode.

Conditions	Mode	Behavior: Derivation and Reasons		
$V_{\rm in} < V_{BE, \rm on}$	OFF	$V_{BE} = V_{\text{in}}$ from BJT input model (3) $I_B = 0$ from BJT input model (3) $I_C = 0$ from BJT output model (5) $V_{CE} = V_{CC}$ from output loop KVL (2)		
$V_{ m in} > V_{BE, m on}$ $V_{CE} > V_{CE, m sat}$	ACTIVE	$\begin{aligned} V_{BE} &= V_{BE,\text{on}} & \text{from BJT input model (4)} \\ I_{B} &= \frac{V_{\text{in}} - V_{BE,\text{on}}}{R_{1}} & \text{from input loop KVL (1)} \\ I_{C} &= \beta I_{B} & \text{from BJT output model (6)} \\ V_{CE} &= V_{CC} - I_{C}R_{2} & \text{from output loop KVL (2)} \end{aligned}$		
$V_{\rm in} > V_{BE, { m on}}$ $V_{CE} \not> V_{CE, { m sat}}$	SATURATED	$V_{CE} = V_{CE,sat} $ from BJT output model (7) $I_C = \frac{V_{CC} - V_{CE,sat}}{R_2} \equiv I_{C,sat} $ from output loop KVL (2) $V_{BE} = V_{BE,on} $ from BJT input model (4) $I_B = \frac{V_{in} - V_{BE,on}}{R_1} $ from input loop KVL (1)		

Table 1: BJT operating modes.

Note that $I_{C,\mathrm{sat}}$, which is called the saturation current, is the maximum value of I_C among all the modes. In contrast, $V_{CE,\mathrm{sat}}$ is the minimum value of V_{CE} . After some practice, you are expected to recall and evaluate the derivation for each mode by looking at a circuit diagram like Fig. 1 or Fig. 3.

$$G = \frac{V_{CE,\text{sat}} - V_{CC}}{V_{\text{in}}^* - V_{BE,\text{on}}} \tag{1}$$

The constant output voltages V_{CC} in OFF mode and $V_{CE,\mathrm{sat}}$ in SATURATED mode are explained by the behavior of V_{CE} in those modes. The transition input voltage $V_{BE,\mathrm{on}}$ between OFF and ACTIVE is the boundary between the conditions on V_{in} in those modes.

At the transition input voltage between ACTIVE and SATURATED, the BJT obeys the behavior of both of these modes. In particular, we follow these steps to derive $V_{\rm in}^*$:

$$I_C = I_{C,\text{sat}} = \frac{V_{CC} - V_{CE,\text{sat}}}{R_2}$$
 SATURATED mode I_C formula
$$I_B = \frac{I_C}{\beta}$$
 from ACTIVE mode I_C formula
$$V_{\text{in}}^* = V_{\text{in}} = V_{BE,\text{on}} + I_B R_1$$
 from ACTIVE mode I_B formula

The overall expression is:

$$V_{\rm in}^* = V_{BE, \rm on} + \frac{R_1}{\beta R_2} (V_{CC} - V_{CE, \rm sat}),$$
 (2)

where V_{CC} , R_1 and R_2 are known circuit constants and β , $V_{BE,on}$ and $V_{CE,sat}$ are known BJT parameters. Substituting equation (2) into equation (1), gives another formula for the gain of the common emitter amplifier:

$$G = -\frac{\beta R_2}{R_1} \tag{3}$$

Fig. 5: Voltage signal amplification. If $V_{\rm in}$ is a signal between $V_{BE,{\rm on}}$ and $V_{\rm in}^*$, then $V_{\rm out}$ is an amplified and inverted copy that exists between V_{CC} and $V_{CE,{\rm sat}}$.

Fig. 6: Voltage signal amplification with clipping. If $V_{\rm in}$ is a signal that goes below $V_{BE,\rm on}$ and above $V_{\rm in}^*$, then $V_{\rm out}$ is an amplified and inverted copy that is clipped at V_{CC} above and $V_{CE,\rm sat}$ below.

Conditions	Mode	Behavior under Linear Model
$V_{GS} < V_{TH}$	OFF	$I_D = 0$
$V_{GS} > V_{TH}$ $V_{DS} > V_{GS} - V_{TH}$	ACTIVE	$I_D = k(V_{GS} - V_{TH})^2$
$V_{GS} > V_{TH}$ $V_{DS} < V_{GS} - V_{TH}$	ОНМІС	$I_D = k(V_{GS} - V_{TH})V_{DS}$

Table 1: NMOS transistor operating modes.

Fig. 9: NMOS transistor connected a Thévenin subcircuit. You can apply the load line method to analyze an NMOS transistor connected to a Thévenin subcircuit, consisting of V_{DD} and R_D . Intersect the NMOS output I-V characteristic in Fig. 8 with the Thévenin subcircuit's I-V characteristic to find the operating point (V_{DS}, I_D) and the mode which it represents.

Fig. 7: The circuit symbol for an NMOS transistor. The input voltage V_{GS} drops from gate to source. (Note that $V_{GS} = V_G$ in Fig. 3 and Fig. 4 since the body and source terminals are grounded in those diagrams.) On the output side, I_D flows into the drain and V_{DS} drops from drain to source. Notice that the NMOS transistor symbol incorporates the symbol for a capacitor to signify the gate's capacitative properties.

If the input V_{GS} is fixed, an output I-V characteristic can be traced relating I_D to V_{DS} . Varying V_{GS} therefore produces a family of curves. We model the operation of an NMOS transistor by dividing the I-V space into 3 modes, OFF, ACTIVE and OHMIC, and fitting linear equations to each I-V curve in each mode.

MOSFET Type	Logic Circuit Symbol	A = 0 Approximation	A = 1 Approximation
NMOS	Gate Source	Gate A Source	Gate A - Source
PMOS	Source Gate A—d Drain	Source Gate A—d	Source Gate A—d

Table 1: MOSFET logic circuit symbols and approximations.

The logic circuit symbol for an NMOS transistor (shown above in Table 1) is slightly different to its analog circuit symbol. In a logic circuit, an NMOS transistor is always drawn with the drain terminal at the top and the source terminal at the bottom. In contrast, the logic circuit symbol for a PMOS transistor is always drawn with the source terminal at the top and the drain terminal at the bottom. The PMOS transistor symbol includes a bubble at the gate terminal that represents logical inversion (to be explained below). Note also that the input A labeled at the gate terminal of each MOSFET in Table 1 is a logical value. When A = 0, the voltage at the gate terminal is close to ground; when A = 1, the gate terminal voltage is close to V_{DD} .

