The CYK Algorithm

The CYK Algorithm

- The membership problem:
 - Problem:
 - Given a context-free grammar G and a string w
 - $G = (V, \Sigma, P, S)$ where
 - » V finite set of variables
 - » \sum (the alphabet) finite set of terminal symbols
 - » P finite set of rules
 - » S start symbol (distinguished element of V)
 - » V and \sum are assumed to be disjoint
 - **G** is used to generate the string of a language
 - Question:
 - Is w in L(G)?

The CYK Algorithm

- J. Cocke
- D. Younger,
- T. Kasami
 - Independently developed an algorithm to answer this question.

The CYK Algorithm Basics

- The Structure of the rules in a Chomsky Normal Form grammar
- Uses a "dynamic programming" or "table-filling algorithm"

Chomsky Normal Form

- Normal Form is described by a set of conditions that each rule in the grammar must satisfy
- Context-free grammar is in CNF if each rule has one of the following forms:

```
A 

BCat most 2 symbols on right side
```

A □ a, or terminal symbol

 $S \square \lambda$ null string

where B, C \in V – {S}

Construct a Triangular Table

- Each row corresponds to one length of substrings
 - Bottom Row Strings of length 1
 - Second from Bottom Row Strings of length 2

•

Top Row – string 'w'

Construct a Triangular Table

- X_{i,i} is the set of variables A such that
 A □ w_i is a production of G
- Compare at most n pairs of previously computed sets:

$$(X_{i,i}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}) \dots (X_{i,j-1}, X_{j,j})$$

Construct a Triangular Table

Table for string 'w' that has length 5

Example CYK Algorithm

- Show the CYK Algorithm with the following example:
 - CNF grammar G
 - S □ AB | BC
 - A □ BA | a
 - B □ CC | b
 - C □ AB | a
 - w is baaba
 - Question Is baaba in L(G)?

Calculating the Bottom ROW

- $X_{1,2} = (X_{i,i}, X_{i+1,j}) = (X_{1,1}, X_{2,2})$
- \Box {B}{A,C} = {BA, BC}
- Steps:
 - Look for production rules to generate BA or BC
 - There are two: S and A
 - $X_{1,2} = \{S, A\}$

S □ AB | BC A □ BA | a B □ CC | b C □ AB | a

- $X_{2,3} = (X_{i,i}, X_{i+1,j}) = (X_{2,2}, X_{3,3})$
- $\Box \{A, C\}\{A, C\} = \{AA, AC, CA, CC\} = Y$
- Steps:
 - Look for production rules to generate Y
 - There is one: B
 - $X_{2,3} = \{B\}$

- S □ AB | BC A □ BA | a B □ CC | b
- C □ AB | a

- $X_{3,4} = (X_{i,i}, X_{i+1,i}) = (X_{3,3}, X_{4,4})$
- \Box {A, C}{B} = {AB, CB} = Y
- Steps:
 - Look for production rules to generate Y
 - There are two: S and C
 - $X_{3,4} = \{S, C\}$

S □ AB | BC A □ BA | a B □ CC | b C □ AB | a

- $X_{4,5} = (X_{i,i}, X_{i+1,j}) = (X_{4,4}, X_{5,5})$
- \Box {B}{A, C} = {BA, BC} = Y
- Steps:
 - Look for production rules to generate Y
 - There are two: S and A
 - $X_{4,5} = \{S, A\}$

- S □ AB | BC A □ BA | a
- B □ CC | b
- C □ AB | a

{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	a	b	a

•
$$X_{1,3} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{1,1}, X_{2,3}), (X_{1,2}, X_{3,3})$

- \Box {B}{B} **U** {S, A}{A, C}= {BB, SA, SC, AA, AC} = Y
- Steps:
 - Look for production rules to generate Y
 - There are NONE: S and A

•
$$X_{1,3} = \emptyset$$
• no elements in this set (empty set)

S \square AB $|$ BC AB $|$ BC BA $|$ a

B \square CC $|$ b

C □ AB | a

no elements in this set (empty set)

Ø				_
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{2,4} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{2,2}, X_{3,4}), (X_{2,3}, X_{4,4})$

- \Box {A, C}{S, C} **U** {B}{B}= {AS, AC, CS, CC, BB} = Y
- Steps:
 - Look for production rules to generate Y
 - There is one: B
 - $X_{2,4} = \{B\}$

Ø	{B}			
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}

b a a b

•
$$X_{3,5} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{3,3}, X_{4,5}), (X_{3,4}, X_{5,5})$

- [A,C]{S,A} U {S,C}{A,C}
 = {AS, AA, CS, CA, SA, SC, CA, CC} = Y
- Steps:
 - Look for production rules to generate Y
 - There is one: B
 - $X_{3.5} = \{B\}$

S

AB | BC

AB | BC

CC | b

CB AB | a

		1		
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}

b a a b

Final Triangular Table

{S, A, C}	□ X, ,			
Ø	{S, A, C}			
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	a

- Table for string 'w' that has length 5
- The algorithm populates the triangular table

Example (Result)

• Is baaba in L(G)?

Yes

```
We can see the S in the set X_{1n} where 'n' = 5
We can see the table
the cell X_{15} = (S, A, C) then
if S \in X_{15} then baaba \in L(G)
```

Theorem

- The CYK Algorithm correctly computes X in for all i and j; thus w is in L(G) if and only if S is in X_{1n}.
- The running time of the algorithm is O(n³).

Question

• Show the CYK Algorithm with the following example:

CNF grammar **G**

- S □ AB | BC
- A □ BA | a
- B □ CC | b
- C □ AB | a

w is ababa

Question Is ababa in L(G)?