Selezioni nazionali 2010

Esercizio 3: Pesca bizzarra (pesca)

Difficoltà D = 2 (tempo limite 2 sec).

Descrizione del problema

Pinco Panco e Panco Pinco hanno deciso di andare a pesca di ostrichette, ciascuno con la propria barca. Poiché sanno solo andare in direzione Nord o in direzione Est, Pinco Panco e Panco Pinco decidono di dividere concettualmente la zona di pesca in quadrati adiacenti, con i lati nelle direzioni Nord-Sud e Est-Ovest, ossia disposti come in un foglio a quadretti, e numerati secondo le coordinate cartesiane intere. Pertanto, ogni quadrato della griglia è univocamente identificato da una coppia di interi (I,J), ossia è collocato all'incrocio della colonna I e della riga J nella suddetta divisione (dove 1 $\leq I < 2^{31}$ e $1 \leq J < 2^{31}$).

Ciascuna barca si muove soltanto in due direzioni, attraverso uno dei seguenti **comandi** numerici, che vengono inviati da una base a terra:

- +D (=Nord) per spostarsi dal quadrato attualmente occupato (I, J) al quadrato (I, J + D) attraversando **tutti** i D-1 quadrati intermedi sulla colonna I, dove D è un intero positivo;
- -D (=**Est**) per spostarsi dal quadrato attualmente occupato (I,J) al quadrato (I + D, J) attraversando **tutti** i D-1 quadrati intermedi sulla riga J, dove D è un intero positivo;

Una sequenza di comandi è quindi una sequenza di interi diversi da zero che termina con zero. Pinco Panco e Panco Pinco utilizzano lo stesso quadrato $A=(I_0,J_0)$ di partenza: i loro sistemi di navigazione sono sincronizzati e ogni barca riceve dalla base a terra la propria sequenza di comandi con la garanzia che i quadrati attraversati da entrambe le barche sono solo quello di partenza A e quello di arrivo B. Soltanto alcuni dei quadrati sono pescosi e la base a terra è a conoscenza della loro posizione.

Entrambe le barche iniziano quindi il percorso dal quadrato di partenza $A=(I_0,J_0)$ e ciascuna viene pilotata con la corrispondente sequenza di comandi. Durante il percorso, ciascuna barca prende un'estremità di un'enorme rete da pesca (ebbene sì, Pinco Panco e Panco Pinco usano la rete per pescare le ostrichette!). Le due estremità dovranno essere ricongiunte nel quadrato di arrivo B: in questo modo, verranno catturate tutte le ostrichette che si troveranno nella zona racchiusa dall'enorme rete.

Per esempio, siano I_0 =3 e J_0 =2. Nella figura, i P=5 quadrati con un asterisco sono pescosi e i quadrati colorati indicano quelli percorsi delle due barche, con le sequenze di comandi +3 -3 +1 -2 +1 -2 0 e -2 -2 +1 -1 +1 -1 +1 -1 +2 0 (notare che possono esserci più numeri consecutivi dello stesso segno). Risultano Q=3 quadrati pescosi nella zona delimitata dalla rete (quelli identificati da (4,5), (5,3) e (8,5)).

Aiuta Pinco Panco e Panco Pinco a calcolare il numero Q di quadrati pescosi che saranno inglobati dalla rete in questo modo. In tale conteggio, vanno considerati anche i quadrati attraversati dalle due barche.

Dati di input

Il file input.txt è composto da P+4 righe, dove P è il numero totale di quadrati pescosi.

La prima riga contiene un intero P per indicare che la zona di pesca contiene P quadrati pescosi. La seconda riga contiene due interi I_0 e J_0 separati da uno spazio, per indicare che il quadrato di partenza è (I_0, J_0) .

Le successive P righe contengono le coordinate dei P quadrati pescosi. Ogni riga è composta da due interi I e J separati da uno spazio (dove $1 \le I < 2^{31}$ e $1 \le J < 2^{31}$), per indicare che quel quadrato pescoso ha coordinate (I, J).

La penultima riga contiene una sequenza di interi diversi da 0 e terminata da uno 0, separati da uno spazio: rappresenta la prima sequenza di comandi (dove 0 è semplicemente utilizzato per indicare la fine della sequenza di interi).

L'ultima riga contiene anch'essa una sequenza di interi diversi da 0, terminata da zero, separati da uno spazio: rappresenta la seconda sequenza di comandi.

Dati di output

Il file output.txt è composto da una sola riga contenente il numero $\mathcal Q$ di quadrati pescosi che sono inglobati dalla rete.

Assunzioni

- $1 \le P \le 1000000$
- $1 \le I_0 < 2^{31}$

- $1 \le J_0 < 2^{31}$
- \bullet Una sequenza di comandi contiene M interi diversi da 0, per un qualche valore 2 $\leq M \leq 1000000$.

Esempi di input/output

File input.txt	File output.txt
5	3
3 2	
2 7	
4 5	
5 3	
8 5	
9 2	
+3 -3 +1 -2 +1 -2 0	
-2 -2 +1 -1 +1 -1 +1 -1 +2 0	

Nota/e

• Nessuna.