Linear algebra

1 | Matrices

Linear systems

Definition 1.1. A linear equation is an equation of the form

$$a_1x_1 + \dots + a_nx_n = b$$

where x_1, \ldots, x_n are the *variables* or *unknowns* and $a_i, b \in \mathbb{R}$, $i = 1, \ldots, n$, are the coefficients of the equation. The term b is usually called *constant term*.

Definition 1.2. A system of linear equations is a collection of one or more linear equations involving the same set of variables.

Definition 1.3. Let

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

be a system of linear equations. A solution of a system of equations is a set of numbers c_1, \ldots, c_n such that

$$a_{i1}c_1 + \dots + a_{in}c_n = b_i$$

for $i=1,\ldots,m$. A linear system may behave in three possible ways:

- 1. The system has a unique solution.
- 2. The system has infinitely many solutions.
- 3. The system has no solution.

Definition 1.4. Two systems of equations are *equivalent* if they have the same solutions.

Matrices

Definition 1.5 (Matrix). A matrix **A** with coefficients in \mathbb{R} is a table of real numbers arranged in rows and columns. That is, **A** is of the form:

$$\mathbf{A} = (a_{ij}) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

for some values $a_{ij} \in \mathbb{R}$, i = 1, ..., m and j = 1, ..., n. The set of $m \times n$ matrices with real coefficients is denoted by $\mathcal{M}_{m \times n}(\mathbb{R})^1$.

Definition 1.6. Let $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $\alpha \in \mathbb{R}$. If $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$, we define the $sum \ \mathbf{A} + \mathbf{B}$ as:

$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})$$

We define the product $\alpha \mathbf{A}$ as:

$$\alpha \mathbf{A} = (\alpha a_{ij})$$

Proposition 1.7 (Properties of addition and scalar multiplication of matrices). The following properties are satisfied:

1. Commutativity:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

for all $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m \times n}(\mathbb{R})$.

2. Associativity:

$$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$$

for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{M}_{m \times n}(\mathbb{R})$.

3. Additive identity element: $\exists \mathbf{0} \in \mathcal{M}_{m \times n}(\mathbb{R})$ such that

$$A + 0 = A$$

for all $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$.

4. Additive inverse element: $\forall \mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R}) \ \exists (-\mathbf{A}) \in \mathcal{M}_{m \times n}(\mathbb{R})$ such that

$$\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$$

5. Distributivity:

$$(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A}$$

for all $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ and all $\alpha, \beta \in \mathbb{R}$.

Definition 1.8. Let $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $\mathbf{B} \in \mathcal{M}_{n \times p}(\mathbb{R})$. We define the *product* \mathbf{AB} as

$$\mathbf{AB} = (c_{ij})$$
 where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Proposition 1.9 (Properties of matrix product). The following properties are satisfied:

1. Associativity:

$$(AB)C = A(BC)$$

for all $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$, $\mathbf{B} \in \mathcal{M}_{n \times p}(\mathbb{R})$ and $\mathbf{C} \in \mathcal{M}_{p \times q}(\mathbb{R})$.

2. Multiplicative identity element: $\exists \mathbf{I}_n \in \mathcal{M}_n(\mathbb{R})$ such

$$\mathbf{AI}_n = \mathbf{A} \quad \forall \mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R}) \text{ and}$$

 $\mathbf{I}_n \mathbf{A} = \mathbf{A} \quad \forall \mathbf{A} \in \mathcal{M}_{n \times p}(\mathbb{R})$

3. Distributivity:

$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC},$$

for all $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $\mathbf{C} \in \mathcal{M}_{n \times p}(\mathbb{R})$.

Definition 1.10. We say that a matrix $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ is invertible if there is a matrix $\mathbf{B} \in \mathcal{M}_n(\mathbb{R})$ satisfying

$$AB = BA = I_n$$

The set of invertible matrices of size n over \mathbb{R} is denoted by $\mathrm{GL}_n(\mathbb{R})^2$.

Lemma 1.11. The product of invertible matrices is invertible.

¹ In the case when m = n we will denote $\mathcal{M}_{n \times n}(\mathbb{R})$ by $\mathcal{M}_n(\mathbb{R})$.

²Or more generally, the set of invertible matrices of size n over a field (see definition ??) K is denoted by $GL_n(K)$.

Echelon form of a matrix

Definition 1.12. Let $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ be a matrix. The *i-th pivot of* \mathbf{A} is the first nonzero element in the *i*-th row of \mathbf{A} .

Definition 1.13 (Row echelon form). A matrix $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ is in *row echelon form* if:

- All rows consisting of only zeros are at the bottom.
- The pivot of a nonzero row is always strictly to the right of the pivot of the row above it.

Definition 1.14 (Reduced row echelon form). A matrix $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ is in reduced row echelon form if:

- It is in row echelon form.
- Pivots are equal to 1.
- Each column containing a pivot has zeros in all its other entries.

Theorem 1.15 (Gauß' theorem). Let $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ be a matrix. Then, there is a matrix $\mathbf{P} \in \mathrm{GL}_m(\mathbb{R})$ such that $\mathbf{P}\mathbf{A} = \mathbf{A}'$ is in reduced row echelon form. Moreover, \mathbf{A}' is uniquely determined by \mathbf{A} .

Theorem 1.16 (PAQ reduction theorem). Let $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ be a matrix. Then, there exist matrices $\mathbf{P} \in \mathrm{GL}_m(\mathbb{R})$ and $\mathbf{Q} \in \mathrm{GL}_n(\mathbb{R})$ such that

$$\mathbf{PAQ} = \left(rac{\mathbf{I}_r \mid \mathbf{0}}{\mathbf{0} \mid \mathbf{0}}
ight).$$

The number r is uniquely determined by \mathbf{A} .

Rank of a matrix

Definition 1.17 (Rank). Let $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ be a matrix and suppose

$$\mathbf{PAQ} = \left(egin{array}{c|c} \mathbf{I}_r & \mathbf{0} \ \hline \mathbf{0} & \mathbf{0} \end{array}
ight)$$

for some matrices $\mathbf{P} \in \mathcal{M}_m(\mathbb{R})$ and $\mathbf{Q} \in \mathcal{M}_n(\mathbb{R})$. We define the rank of \mathbf{A} , denoted by rank \mathbf{A} , as the number ones in the matrix \mathbf{PAQ} , that is, rank $\mathbf{A} := r$.

Proposition 1.18. Let $\mathbf{A}, \mathbf{A}' \in \mathcal{M}_{m \times n}(\mathbb{R}), \mathbf{B}, \mathbf{B}' \in \mathcal{M}_{1 \times n}(\mathbb{R})$ and $\mathbf{P} \in \mathrm{GL}_m(\mathbb{R})$ be matrices. Suppose we have a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{B}$. If $\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = (\mathbf{A}' \mid \mathbf{B}')^3$, then the systems $\mathbf{A}\mathbf{x} = \mathbf{B}$ and $\mathbf{A}'\mathbf{x} = \mathbf{B}'$ are equivalent.

Corollary 1.19. The reduced row echelon form of an invertible matrix is the identity matrix.

Definition 1.20 (Transposition). Let $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ be a matrix. If $\mathbf{A} = (a_{ij})$, we define the *transpose* \mathbf{A}^{T} of \mathbf{A} as the matrix $\mathbf{A}^{\mathrm{T}} = (b_{ij})$, where $b_{ij} = a_{ji}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

Proposition 1.21. Let $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$ be a matrix. Then, rank $\mathbf{A} = \operatorname{rank} \mathbf{A}^{\mathrm{T}}$.

Theorem 1.22 (Rouché-Frobenius theorem). Let $\mathbf{A}\mathbf{x} = \mathbf{B}$ be a system of equations with n variables. The system is:

• determined and consistent if and only if

$$\operatorname{rank} \mathbf{A} = \operatorname{rank}(\mathbf{A} \mid \mathbf{B}) = n$$

• indeterminate with s free variables if and only if

$$\operatorname{rank} \mathbf{A} = \operatorname{rank}(\mathbf{A} \mid \mathbf{B}) = n - s$$

• inconsistent if and only if

$$\operatorname{rank} \mathbf{A} \neq \operatorname{rank}(\mathbf{A} \mid \mathbf{B})$$

Determinant of a matrix

Definition 1.23 (Determinant). A determinant is a function det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ satisfying the following properties:

1. If $\mathbf{A} = (\mathbf{a}_1 \mid \cdots \mid \mathbf{a}_n)$, where \mathbf{a}_i are column vectors in \mathbb{R}^n for $i = 1, \ldots, n$ and $\mathbf{a}_j = \lambda \mathbf{u} + \mu \mathbf{v}$ for some other column vectors \mathbf{u} and \mathbf{v} , then:

$$\det \mathbf{A} = \det(\mathbf{a}_1 \mid \dots \mid \mathbf{a}_j \mid \dots \mid \mathbf{a}_n) =$$

$$= \det(\mathbf{a}_1 \mid \dots \mid \mathbf{a}_{j-1} \mid \lambda \mathbf{u} + \mu \mathbf{v} \mid \mathbf{a}_{j+1} \mid \dots \mid \mathbf{a}_n) =$$

$$= \lambda \det(\mathbf{a}_1 \mid \dots \mid \mathbf{a}_{j-1} \mid \mathbf{u} \mid \mathbf{a}_{j+1} \mid \dots \mid \mathbf{a}_n) +$$

$$+ \mu \det(\mathbf{a}_1 \mid \dots \mid \mathbf{a}_{j-1} \mid \mathbf{v} \mid \mathbf{a}_{j+1} \mid \dots \mid \mathbf{a}_n)$$

- 2. The determinant changes its sign whenever two columns are swapped.
- 3. $\det \mathbf{I}_n = 1$ for all $n \in \mathbb{N}$.

Lemma 1.24. Whenever two columns of a matrix are identical, the determinant is 0.

Proposition 1.25. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a matrix in its row echelon form. If $\mathbf{A} = (a_{ij})$, then:

$$\det \mathbf{A} = \prod_{i=1}^{n} a_{ii}$$

Proposition 1.26. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a matrix. The following are equivalent:

- 1. **A** is not invertible.
- 2. rank $\mathbf{A} < n$.
- 3. $\det \mathbf{A} = 0$.

Theorem 1.27. Let det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ be a determinant. Then, for all matrices $\mathbf{A}, \mathbf{B} \in \mathcal{M}_n(\mathbb{R})$:

$$\det(\mathbf{AB}) = \det \mathbf{A} \det \mathbf{B}.$$

Corollary 1.28. Let det, det' : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ be two determinants. Then, for all matrix $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$:

$$\det \mathbf{A} = \det' \mathbf{A}$$

³Here $(\mathbf{A} \mid \mathbf{B})$ denotes the augmented matrix obtained by appending the columns of \mathbf{B} to the columns of \mathbf{A} .

Proposition 1.29. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. Then:

$$\det \mathbf{A} = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$

Proposition 1.30. For all matrix $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$:

$$\det \mathbf{A} = \det \mathbf{A}^T$$

Proposition 1.31. Let $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. We denote by \mathbf{A}_{ij} the square matrix obtained from \mathbf{A} by removing the i-th row and j-th column. Then, for every $i \in \{1, \ldots, n\}$,

$$\det \mathbf{A} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det \mathbf{A}_{ij}.$$

Definition 1.32. Let $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. We define the cofactor matrix \mathbf{C} of \mathbf{A} as:

$$\mathbf{C} = (b_{ij}), \text{ where } b_{ij} = (-1)^{i+j} \det \mathbf{A}_{ij}^{4}.$$

We define the adjugate matrix $\operatorname{adj} \mathbf{A}$ of \mathbf{A} as:

$$\operatorname{adj} \mathbf{A} = \mathbf{C}^{\mathrm{T}}.$$

Theorem 1.33. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. Then:

$$\mathbf{A} \operatorname{adj} \mathbf{A} = (\det \mathbf{A}) \mathbf{I}_n$$

Moreover if det $\mathbf{A} \neq 0$, then:

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \operatorname{adj} \mathbf{A}$$

2 | Vector spaces

Introduction and basic definitions

Definition 1.34. A vector space over a field⁵ K is a set V together with two operations

$$\begin{array}{ccc} +: V \times V \longrightarrow V & & \cdot: K \times V \longrightarrow V \\ (\mathbf{v}_1, \mathbf{v}_2) \longmapsto \mathbf{v}_1 + \mathbf{v}_2 & & (\lambda, \mathbf{v}) \longmapsto \lambda \cdot \mathbf{v} \end{array}$$

that satisfy the following properties:

- 1. $\mathbf{v}_1 + (\mathbf{v}_2 + \mathbf{v}_3) = (\mathbf{v}_1 + \mathbf{v}_2) + \mathbf{v}_3 \quad \forall \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in V.$
- 2. $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}_2 + \mathbf{v}_1 \quad \forall \mathbf{v}_1, \mathbf{v}_2 \in V$.
- 3. $\exists \mathbf{0} \in V \text{ such that } \mathbf{v} + \mathbf{0} = \mathbf{v} \quad \forall \mathbf{v} \in V.$
- 4. $\forall \mathbf{v} \in V$ there exists $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
- 5. $\lambda \cdot (\mu \cdot \mathbf{v}) = (\lambda \mu) \cdot \mathbf{v} \quad \forall \mathbf{v} \in V \text{ and } \forall \lambda, \mu \in K.$
- 6. $1 \cdot \mathbf{v} = \mathbf{v} \quad \forall \mathbf{v} \in V$, where 1 denotes the multiplicative identity element in K.
- 7. $\lambda \cdot (\mathbf{v}_1 + \mathbf{v}_2) = \lambda \cdot \mathbf{v}_1 + \lambda \cdot \mathbf{v}_2 \quad \forall \mathbf{v}_1, \mathbf{v}_2 \in V \text{ and } \forall \lambda \in K.$
- 8. $(\lambda + \mu) \cdot \mathbf{v} = \lambda \cdot \mathbf{v} + \mu \cdot \mathbf{v} \quad \forall \mathbf{v} \in V \text{ and } \forall \lambda, \mu \in K.$

In these conditions, we say that $(V, +, \cdot)$ is a vector space⁶.

Definition 1.35. Let V be a vector space over a field K and $U \subseteq V$ be a subset of V. Then, U is a vector space over K if the following property is satisfied:

$$\lambda \mathbf{u}_1 + \mu \mathbf{u}_2 \in U \quad \forall \mathbf{u}_1, \mathbf{u}_2 \in U \text{ and } \forall \lambda, \mu \in K$$

Definition 1.36. Let V be a vector space and $U \subseteq V$. U is a vector subspace of V if it's itself a vector space with the operations defined in V.

Definition 1.37. Let V be a vector space over a field K. A linear combination of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ is a vector of the form

$$a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$$

where $a_i \in K$, $i = 1, \ldots, n$.

Definition 1.38. Let V be a vector space over a field K and $U \subseteq V$. The set

$$\langle U \rangle = \{a_1 \mathbf{u}_1 + \dots + a_n \mathbf{u}_n : a_i \in K, \mathbf{u}_i \in U, i = 1, \dots, n\}$$

is called subspace generated by U.

Lemma 1.39. Let V be a vector space and $U \subseteq V$. Then, $\langle U \rangle$ is a vector subspace of V. Moreover, $\langle U \rangle$ is the smallest subspace containing U.

Definition 1.40. Let V be a vector space and $U \subseteq V$. We say that U is a *generating set of* V if $\langle U \rangle = V$.

Linear independence

Definition 1.41. Let V be a vector space over a field K. The vectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ are *linearly independent* if the unique solution of the equation

$$a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n = 0$$

for $a_i \in K$, i = 1, ..., n, is $a_1 = \cdots = a_n = 0$. Otherwise we say that the vectors $\mathbf{v}_1, ..., \mathbf{v}_n$ are linearly dependent.

Lemma 1.42. Let V be a vector space. The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent if and only if one of them is a linear combination of the others.

Definition 1.43. Let V be a vector space. A *basis of* V is an ordered set $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ of vectors of V such that:

- 1. $\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle = V$.
- 2. $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

Lemma 1.44 (Steinitz exchange lemma). Let V be a vector space, \mathfrak{B} be bases of V be and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$ be linearly independent vectors of V. Then, we can exchange k appropriate vectors of \mathfrak{B} by $\mathbf{v}_1, \ldots, \mathbf{v}_k$ to define a new basis.

 $^{{}^{4}\}mathbf{C}$ is usually denoted as $\operatorname{cof}\mathbf{A}$.

⁵See definition ??.

⁶For simplicity we will denote the vector space only by V and if the context is clear we won't refer to its associated field. Moreover sometimes we will also omit the product \cdot between a scalar and a vector.

Corollary 1.45. Let V be a vector space that has a finite basis $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$. Then, all basis of V be are finite and they have the same number (n) of vectors.

Lemma 1.46. Let V be a vector space. Suppose we have a generating set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V. Then, V be admits a basis formed with a subset of S.

Definition 1.47. Let V be a finite vector space. The dimension of V, denoted by dim V, is the number of vectors in any basis of V.

Definition 1.48. Let V be a finite vector space over a field K, $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of V be and $\mathbf{v} \in V$. Suppose

$$\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$$

for some $a_i \in K$, i = 1, ..., n. We call $(a_1, ..., a_n) \in K^n$ coordinates of \mathbf{v} on the basis \mathfrak{B} and we denote it by $[\mathbf{v}]_{\mathfrak{B}}$.

Proposition 1.49. Let V be a vector space. If $\dim V < \infty$, the maximum number of linearly independent vectors is equal to $\dim V$. If $\dim V = \infty$, there is no such maximum.

Proposition 1.50. Let V be a vector space of dimension n. Then, n is de minimum size of a generating set of V.

Proposition 1.51. Let V be a finite vector space and U be a vector subspace of V. Then, $\dim U \leq \dim V$ and

$$\dim U = \dim V \iff U = V$$

Sum of subspaces

Lemma 1.52. Let V be a vector space and $U, W \subseteq V$ be two vector subspaces of V. Then, the intersection $U \cap W$ is a vector subspace of V.

Definition 1.53. Let V be a vector space and $U, W \subseteq V$ be two vector subspaces of V. The *sum of* U *and* W is:

$$U + W = \langle U \cup W \rangle = \{ \mathbf{u} + \mathbf{w} : \mathbf{u} \in U, \mathbf{w} \in W \}$$

Proposition 1.54 (Graßmann formula). Let V be a finite vector space and $U, W \subseteq V$ be two vector subspace of V. Then:

$$\dim(U+W) + \dim(U \cap W) = \dim U + \dim W$$

Lemma 1.55. Let V be a vector space and $U, W \subseteq V$ be two vector subspaces of V. Then, $U \cap W = \{0\}$ if and only if all vectors $\mathbf{v} \in U + W$ can be written uniquely as $\mathbf{v} = \mathbf{u} + \mathbf{w}$, with $\mathbf{u} \in U$ and $\mathbf{w} \in W$.

Definition 1.56 (Direct sum). Let V be a vector space and $U, W \subseteq V$ be two vector subspaces of V. Then, the sum U + W is direct if $U \cap W = \{0\}$. In this case we denote the sum as $U \oplus W$. More generally, if $U_1, \ldots, U_n \subseteq V$ are vector subspaces of V, the sum $U = U_1 + \cdots + U_n$ is direct if all vector $\mathbf{u} \in U$ can be written uniquely as $\mathbf{u} = \mathbf{u}_1 + \cdots + \mathbf{u}_n$, where $\mathbf{u}_i \in U_i$ for $i = 1, \ldots, n$. In this case we denote the sum by $U_1 \oplus \cdots \oplus U_n$.

Rank of a matrix

Definition 1.57. Let $\mathbf{A} \in \mathcal{M}_{n \times m}(\mathbb{R})$. The row rank of \mathbf{A} is the dimension of the subspace generated by the rows of \mathbf{A} in \mathbb{R}^m . Analogously, the column rank of \mathbf{A} is the dimension of the subspace generated by the columns of \mathbf{A} in \mathbb{R}^n .

Proposition 1.58. Let $\mathbf{A} \in \mathcal{M}_{n \times m}(\mathbb{R})$. Then, the row rank of \mathbf{A} is equal to the column rank of \mathbf{A} . Therefore, we refer to it simply as rank of \mathbf{A} or rank \mathbf{A} .

Definition 1.59. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. A minor of order k of \mathbf{A} is a submatrix $\mathbf{A}' \in \mathcal{M}_k(\mathbb{R})$ obtained from \mathbf{A} selecting k rows and k columns of \mathbf{A} .

Proposition 1.60. Let $\mathbf{A} \in \mathcal{M}_{n \times m}(\mathbb{R})$. Then:

rank $\mathbf{A} = \max\{k : \mathbf{A} \text{ has an invertible minor of order } k\}$

Quotient vector space

Definition 1.61. Let V be a vector space and $U \subseteq V$ be a vector subspace. We say that $W \subseteq V$ is a *complementary subspace of* U if $U \oplus W = V$.

Definition 1.62. Let V be a finite vector space of dimension n and $U \subseteq V$ be a vector subspace of dimension m. Then, there exists a complementary subspace of U and its dimension is n-m.

Definition 1.63. Let V be a vector space and $U \subseteq V$ be a vector subspace. We say the vectors $\mathbf{v}_1, \mathbf{v}_2 \in V$ are equivalent modulo U, $\mathbf{v}_1 \sim_U \mathbf{v}_2$, if $\mathbf{v}_1 - \mathbf{v}_2 \in U$.

Lemma 1.64. Let V be a vector space and $U \subseteq V$ be a vector subspace. Then, \sim_U is an equivalence relation and, moreover, if $\mathbf{v} \in V$ the *equivalence class* $[\mathbf{v}]$ *of* \mathbf{v} is:

$$[\mathbf{v}] = \mathbf{v} + U := \{\mathbf{v} + \mathbf{u} : \mathbf{u} \in U\}$$

Definition 1.65. Let V be a vector space over a field K and $U \subseteq V$ be a vector subspace. We define the *quotient* space V/U under \sim_U as the set of equivalence classes with the operations defined as:

$$[\mathbf{v}_1] + [\mathbf{v}_2] = [\mathbf{v}_1 + \mathbf{v}_2] \qquad \lambda[\mathbf{v}_1] = [\lambda \mathbf{v}_1]$$

for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ and all $\lambda \in K$.

Proposition 1.66. Let V be a vector space over a field K and $U \subseteq V$ be a vector subspace. The set V/U together with the two operations defined above is a vector space over K.

Proposition 1.67. Let V be a finite vector space of dimension n and $U \subseteq V$ be a vector subspace. Then:

$$\dim \binom{V/_U} = \dim V - \dim U$$

3 | Linear maps

Definition 1.68. Let U, V be two vector spaces over a field K. A function $f: U \to V$ is a *linear map* if $\forall \mathbf{u}_1, \mathbf{u}_2 \in U$ and $\forall \lambda \in K$ the following two conditions are satisfied:

- 1. $f(\mathbf{u}_1 + \mathbf{u}_2) = f(\mathbf{u}_1) + f(\mathbf{u}_2)$.
- 2. $f(\lambda \mathbf{u}_1) = \lambda f(\mathbf{u}_1)$.

Proposition 1.69. Let U, V be two vector spaces over a field K. Then, if $f: U \to V$ is a linear map, $\forall \mathbf{u}_1, \mathbf{u}_2 \in U$ and $\forall \lambda, \mu \in K$ we have:

- 1. $f(\mathbf{0}) = \mathbf{0}$.
- 2. $f(-\mathbf{u}_1) = -f(\mathbf{u}_1)$.
- 3. $f(\lambda \mathbf{u}_1 + \mu \mathbf{u}_2) = \lambda f(\mathbf{u}_1) + \mu f(\mathbf{u}_2)$.

Proposition 1.70. Let U, V, W be three vector spaces. If $f: U \to V$ and $g: V \to W$ are linear maps, then $g \circ f: U \to W$ is a linear map.

Proposition 1.71. Let U, V be two vector spaces. If $f: U \to V$ is a bijective linear map, then $f^{-1}: U \to V$ is a linear map.

Proposition 1.72. Let U, V be two vector spaces, $f: U \to V$ be a linear map and $W \subseteq U$ and $Z \subseteq V$ be vector subspaces. Then:

- 1. $f(W) = \{f(\mathbf{w}) : \mathbf{w} \in W\} \subseteq V$ is a vector subspace.
- 2. $f^{-1}(Z) = \{ \mathbf{u} \in U : f(\mathbf{u}) \in Z \} \subseteq U$ is a vector subspace.

In particular, f(V) is denoted by $\lim f$ and $f^{-1}(\{0\})$ is denoted by $\ker f$ and these subspaces are called *image of* f and *kernel of* f, respectively. More precisely, their definitions are:

$$\operatorname{im} f = \{ f(\mathbf{u}) : \mathbf{u} \in U \} \qquad \ker f = \{ \mathbf{u} \in U : f(\mathbf{u}) = 0 \}$$

Proposition 1.73. Let U, V be two vector spaces and $f: U \to V$ be a linear map. Then:

- 1. f is injective if and only if $\ker f = \{0\}$
- 2. f is surjective if and only if im f = V.

Corollary 1.74. Let U, V be two finite vector spaces and $f: U \to V$ be a linear map. Then:

- 1. f is injective if and only if $\dim(\ker f) = 0$
- 2. f is surjective if and only if $\dim(\operatorname{im} f) = \dim V$.

Definition 1.75.

- A monomorphism is an injective linear map.
- An epimorphism is a surjective linear map.
- An isomorphism is a bijective linear map.
- An endomorphism is a linear map from a vector space to itself.

• An automorphism is a bijective endomorphism.

Definition 1.76. We say that two vector spaces U and V are *isomorphic*, $V \cong U$, if there exists an isomorphism between them.

Proposition 1.77. Let U, V be two vector spaces and $f: U \to V$ be a monomorphism. If $\mathbf{u}_1, \ldots, \mathbf{u}_n \in U$ are linearly independent vectors, then $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_n)$ are linearly independent.

Lemma 1.78. Let U, V be two vector spaces and $f: U \to V$ be a linear map. If $\mathbf{u}_1, \dots, \mathbf{u}_n \in U$, then:

$$\langle f(\mathbf{u}_1), \dots, f(\mathbf{u}_n) \rangle = f(\langle \mathbf{u}_1, \dots, \mathbf{u}_n \rangle)$$

Corollary 1.79. Let U, V be two vector spaces and $f: U \to V$ be an epimorphism. If $\langle \mathbf{u}_1, \dots, \mathbf{u}_n \rangle = U$, then $\langle f(\mathbf{u}_1), \dots, f(\mathbf{u}_n) \rangle = V$.

Corollary 1.80. Let U, V be two vector spaces and $f: U \to V$ be an isomorphism. If $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ is a basis of U, then $(f(\mathbf{u}_1), \dots, f(\mathbf{u}_n))$ is a basis of V.

Theorem 1.81 (Coordination theorem). Let V be a finite vector space over a field K of dimension n and $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of V. Then, the function $f: K^n \to V$ defined by

$$f(a_1,\ldots,a_n)=a_1\mathbf{v}_1+\cdots a_n\mathbf{v}_n$$

is a isomorphism.

Corollary 1.82. Two finite vector spaces are isomorphic if and only if they have the same dimension.

Isomorphism theorems

Theorem 1.83 (First isomorphism theorem). Let U, V be two vector spaces and $f: U \to V$ be a linear map. Then, there exists an isomorphism $\tilde{f}: U/\ker f \to \operatorname{im} f$ satisfying $f = \tilde{f} \circ \pi$, where $\pi: U \to U/\ker f$, $\pi(\mathbf{u}) = [\mathbf{u}]$.

Figure 1

Corollary 1.84. Let U, V be two vector spaces such that $\dim U = n$ and let $f: U \to V$ be a linear map. Then:

$$\dim(\ker f) + \dim(\operatorname{im} f) = n$$

Corollary 1.85. Let U, V be two finite vector spaces of dimensions n and $f: U \to V$ be a linear map. Then:

f is injective \iff f is surjective \iff f is bijective

Theorem 1.86 (Second isomorphism theorem). Let V be a vector space and $U, W \subseteq V$ be two vector subspaces. Then, there exists an isomorphism

$$U/U \cap W \cong U + W/W$$

Theorem 1.87 (Third isomorphism theorem). Let U, V, W be three vector spaces such that $W \subseteq U \subseteq V$. Then, there exists an isomorphism

$$(V/W)/(U/W) \cong V/U$$

Theorem 1.88. Let U, V be two vector spaces over a field $K, \mathfrak{B} = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ be a basis of U and $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ be any vectors of V. Then, there exists a unique linear map $f: U \to V$ such that $f(\mathbf{u}_i) = \mathbf{v}_i, i = 1, \dots, n$.

Matrix of a linear map

Proposition 1.89. Let U, V be two finite vector spaces over a field K with $\dim U = n$ and $\dim V = m$, \mathfrak{B} and \mathfrak{B}' be bases of U be and V respectively and $f: U \to V$ be a linear map. Then, there exists a matrix $\mathbf{A} \in \mathcal{M}_{m \times n}(K)$ such that $\forall \mathbf{u} \in U$:

$$[f(\mathbf{u})]_{\mathfrak{B}'} = \mathbf{A}[\mathbf{u}]_{\mathfrak{B}}$$

The matrix **A** is called *matrix of f in the basis* \mathfrak{B} *and* \mathfrak{B}' and it is denoted by $[f]_{\mathfrak{B},\mathfrak{B}'}^{7}$.

Corollary 1.90. Let V be a finite vector space, \mathfrak{B} and \mathfrak{B}' be two basis of V respectively and id : $V \to V$ be the identity linear map. Then, $\forall \mathbf{u} \in V$ we have:

$$[\mathbf{u}]_{\mathfrak{B}'}=[\mathrm{id}]_{\mathfrak{B},\mathfrak{B}'}[\mathbf{u}]_{\mathfrak{B}}$$

The matrix $[id]_{\mathfrak{B},\mathfrak{B}'}$ is called *change-of-basis matrix*.

Proposition 1.91. Let U, V, W be three vector spaces, $\mathfrak{B}, \mathfrak{B}', \mathfrak{B}''$ be bases of U, V and W respectively and $f: U \to V$ and $g: V \to W$ be linear maps. Then, $g \circ f: U \to W$ has the following matrix in the basis \mathfrak{B} and \mathfrak{B}'' :

$$[g \circ f]_{\mathfrak{B},\mathfrak{B}''} = [g]_{\mathfrak{B}',\mathfrak{B}''}[f]_{\mathfrak{B},\mathfrak{B}'}$$

Corollary 1.92. Let V be a finite vector space, \mathfrak{B} and \mathfrak{B}' be two basis of V. Then, the matrix $[id]_{\mathfrak{B},\mathfrak{B}'}$ is invertible and

$$([\mathrm{id}]_{\mathfrak{B},\mathfrak{B}'})^{-1} = [\mathrm{id}]_{\mathfrak{B}',\mathfrak{B}}$$

Corollary 1.93. Let U, V be two finite vector spaces, \mathfrak{B} and \mathfrak{B}' be bases of U and V respectively and $f: U \to V$ be a linear map. Then:

- 1. f is injective \iff rank $[f]_{\mathfrak{B},\mathfrak{B}'} = \dim U$.
- 2. f is surjective \iff rank $[f]_{\mathfrak{B},\mathfrak{B}'} = \dim V$.

Corollary 1.94. Let U, V be two finite vector spaces. A linear map $f: U \to V$ is an isomorphism if and only if there exist basis \mathfrak{B} and \mathfrak{B}' of U and V respectively such that $[f]_{\mathfrak{B},\mathfrak{B}'}$ is invertible.

Proposition 1.95 (Change of basis formula). Let U, V be two finite vector spaces, \mathfrak{B}_1 and \mathfrak{B}_2 be bases of U, \mathfrak{B}'_1 and \mathfrak{B}'_2 be bases of V and $f:U\to V$ be a linear map. Then:

$$[f]_{\mathfrak{B}_2,\mathfrak{B}_2'}=[\mathrm{id}]_{\mathfrak{B}_1',\mathfrak{B}_2'}[f]_{\mathfrak{B}_1,\mathfrak{B}_1'}[\mathrm{id}]_{\mathfrak{B}_2,\mathfrak{B}_1}$$

⁸If U = V, we denote $\mathcal{L}(V, V)$ simply as $\mathcal{L}(V)$.

Lemma 1.96. Let U, V be two finite vector spaces over a field K with $\dim U = n$ and $\dim V = m$ and \mathfrak{B} and \mathfrak{B}' be bases of U be and V respectively. Then, any matrix $\mathbf{A} \in \mathcal{M}_{m \times n}(K)$ determines a linear map $f: U \to V$ with $[f]_{\mathfrak{B},\mathfrak{B}'} = \mathbf{A}$.

Theorem 1.97. Let U, V be two finite vector spaces and $f: U \to V$ be a linear map. Then, there exist basis \mathfrak{B} of U and \mathfrak{B}' of V such that:

$$[f]_{\mathfrak{B},\mathfrak{B}'} = \left(\begin{array}{c|c} \mathbf{I}_r & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} \end{array}\right)$$

where $r = \dim (\operatorname{im} f)$.

Dual space

Lemma 1.98. Let U, V be two finite vector spaces over a field K. Then, the set

$$\mathcal{L}(U,V) := \{f : f \text{ is a linear map from } U \text{ to } V\}^8$$

is a vector space over K with the operations defined as:

- 1. $(f+g)(\mathbf{u}) = f(\mathbf{u}) + f(\mathbf{u}) \quad \forall f, g \in \mathcal{L}(U, V)$ and $\forall \mathbf{u} \in U$.
- 2. $(f\lambda)(\mathbf{u}) = \lambda f(\mathbf{u}) \quad \forall f, g \in \mathcal{L}(U, V), \ \forall \mathbf{u} \in U \text{ and } \forall \lambda \in K.$

Proposition 1.99. Let U, V be two finite vector spaces over a field K with dim U = n and dim V = m. Then, for all basis \mathfrak{B} of U be and \mathfrak{B}' of V, the function

$$\mathcal{L}(U,V) \longrightarrow \mathcal{M}_{m \times n}(K)$$

 $f \longmapsto [f]_{\mathfrak{B},\mathfrak{B}'}$

is a isomorphism.

Corollary 1.100. Let U, V be two finite vector spaces with $\dim U = n$, $\dim V = m$. Then, $\dim \mathcal{L}(U, V) = nm$.

Definition 1.101. Let V be a vector space over a field K. We define the dual space V^* of V as:

$$V^* := \mathcal{L}(V, K)$$

Proposition 1.102. Let V be a finite vector space over a field K with dim V = n and \mathfrak{B} be a basis of V. Then, the function

$$V^* \longrightarrow \mathcal{M}_{1 \times n}(K)$$

 $\omega \longmapsto [\omega]_{\mathfrak{B},1}$

is a isomorphism. Therefore, $\dim V^* = \dim V.$

Definition 1.103. We define the *Kronecker delta* δ_{ij} as the function:

$$\delta_{ij} = \begin{cases} 0 & \text{if} \quad i \neq j \\ 1 & \text{if} \quad i = j \end{cases}$$

Definition 1.104. Let V be a finite vector space and $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of V. We define the *dual basis* \mathfrak{B}^* of \mathfrak{B} as the basis of V^* formed by (η_1, \dots, η_n) where

$$\eta_i(\mathbf{v}_i) = \delta_{ij}$$

⁷If U = V and $\mathfrak{B} = \mathfrak{B}'$, we denote $[f]_{\mathfrak{B},\mathfrak{B}}$ simply by $[f]_{\mathfrak{B}}$.

 \mathfrak{B} be a basis of V and $(\mathbf{v}_1^*, \dots, \mathbf{v}_n^*)$ be the dual basis of \mathfrak{B} . Then, $\forall \mathbf{v} \in V$:

$$[\mathbf{v}]_{\mathfrak{B}} = (\mathbf{v}_1^*(\mathbf{v}), \dots, \mathbf{v}_n^*(\mathbf{v})) \in K^n$$

Lemma 1.106. Let V be a vector space over a field K, $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of V and \mathfrak{B}^* be the dual basis of \mathfrak{B} . Then, $\forall \omega \in V^*$:

$$[\omega]_{\mathfrak{B}^*} = (\omega(\mathbf{v}_1), \dots, \omega(\mathbf{v}_n)) \in K^n$$

Definition 1.107 (Dual map). Let U, V be two vector spaces over a field K and $f \in \mathcal{L}(U,V)$. The function f^* defined by

$$f^*: U^* \longrightarrow V^*$$
$$\omega \longmapsto \omega \circ f$$

is a linear map and it's called dual map of f.

Theorem 1.108. Let U, V be two finite vector spaces, \mathfrak{B} and \mathfrak{B}' be bases of U and V respectively and $f \in \mathcal{L}(U, V)$. Then:

$$[f^*]_{\mathfrak{B}'^*,\mathfrak{B}^*} = ([f]_{\mathfrak{B},\mathfrak{B}'})^{\mathrm{T}}$$

Double dual space

Definition 1.109 (Double dual space). Let V be a vector space over a field K. The double dual space V^{**} of V is defined as:

$$V^{**} := (V^*)^* = \mathcal{L}(V^*, K)$$

Proposition 1.110. Let V be a vector space over a field K and $\mathbf{v} \in V$. We define the function:

$$\phi_{\mathbf{v}}: V^* \longrightarrow K$$
$$\omega \longmapsto \omega(\mathbf{v})$$

which is linear. This map induces an injective linear map Φ defined by:

$$\Phi: V \longrightarrow V^{**}$$

$$\mathbf{v} \longmapsto \phi_{\mathbf{v}}$$

Moreover, if dim $V < \infty$, Φ is a natural isomorphism⁹.

Annihilator space

Definition 1.111. Let V be a vector space and $U \subseteq V^*$ be a vector subspace of V^* . We define the annihilator of U as:

$$U^0 = \{ \mathbf{v} \in V : \omega(\mathbf{v}) = 0 \ \forall \omega \in U \}$$

Lemma 1.112. Let V be a vector space and $U \subseteq V^*$ be a vector subspace of V^* . If $U = \langle \omega_1, \dots, \omega_n \rangle$, then U^0 is the set of solutions of the system:

$$\begin{cases} \omega_1(\mathbf{v}) = 0 \\ \vdots \\ \omega_n(\mathbf{v}) = 0 \end{cases}$$

Lemma 1.105. Let V be a vector space over a field K, **Lemma 1.113.** Let V be a vector space and $U \subseteq V^*$ be a vector subspace of V^* . Then, U^0 is a vector subspace of

> **Theorem 1.114.** Let V be a finite vector space and $U \subseteq V^*$ be a vector subspace of V^* . Then:

$$\dim U^0 + \dim U = \dim V$$

Definition 1.115. Let V be a vector space and $U \subseteq V$ be a vector subspace of V. We define the annihilator of U

$$U^0 = \{ \omega \in V^* : \omega(\mathbf{v}) = 0 \ \forall \mathbf{v} \in U \}$$

Lemma 1.116. Let V be a vector space and $U \subseteq V$ be a vector subspace of V. If $U = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$, then:

$$U^0 = \{ \omega \in V^* : \omega(\mathbf{v}_1) = \dots = \omega(\mathbf{v}_n) = 0 \}$$

Proposition 1.117. Let V be a vector space. Then, whether $U \subseteq V$ or $U \subseteq V^*$, we have:

$$(U^0)^0 = U$$

| Classification of endomorphisms

Definition 1.118. Let V be a vector space over a field K and $\lambda \in K$. A homothety of ratio λ is a linear map $f: V \to V$ such that $f(\mathbf{v}) = \lambda \mathbf{v} \ \forall \mathbf{v} \in V$.

Similarity

Definition 1.119. Let V be a vector space and $f, g \in$ $\mathcal{L}(V)$. We say that f and g are similar if there are basis \mathfrak{B} and \mathfrak{B}' of V such that $[f]_{\mathfrak{B}} = [g]_{\mathfrak{B}'}$.

Lemma 1.120. Let V be a vector space, \mathfrak{B} and \mathfrak{B}' basis of V and $f \in \mathcal{L}(V)$. If $\mathbf{M} = [f]_{\mathfrak{B}}$, $\mathbf{N} = [f]_{\mathfrak{B}'}$ and $\mathbf{P} = [\mathrm{id}]_{\mathfrak{B},\mathfrak{B}'}$, then:

$$\mathbf{M} = \mathbf{P}^{-1} \mathbf{N} \mathbf{P}$$

Definition 1.121. Let K be a field. Two matrices $\mathbf{M}, \mathbf{N} \in \mathcal{M}_n(K)$ are similar if there exists a matrix $\mathbf{P} \in \mathrm{GL}_n(K)$ such that $\mathbf{M} = \mathbf{P}^{-1}\mathbf{NP}$.

Proposition 1.122. Let V be a finite vector space and $f,g \in \mathcal{L}(V)$.

- 1. f and g are similar if and only if for all basis \mathfrak{B} of V the matrices $[f]_{\mathfrak{B}}$ and $[g]_{\mathfrak{B}}$ are similar.
- 2. f and g are similar if and only if there is an automorphism $h \in \mathcal{L}(V)$ such that $g = h^{-1}fh$.

 $^{^{9}}$ This means that the definition of Φ does not depend on a choice of basis.

Diagonalization

Definition 1.123. Let K be a field. A matrix $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(K)$ is diagonal if $a_{ij} = 0$ whenever $i \neq j$. That is, \mathbf{A} is of the form:

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

Definition 1.124. Let K be a field. A matrix $\mathbf{A} \in \mathcal{M}_n(K)$ is *diagonalizable* if it is similar to diagonal matrix.

Definition 1.125. An endomorphism is *diagonalizable* if its associated matrix in some basis is diagonalizable.

Definition 1.126. Let V be a vector space over a field K and $f \in \mathcal{L}(V)$. We say that a nonzero vector $\mathbf{v} \in V$ is an eigenvector of f with eigenvalue $\lambda \in K$ if $f(\mathbf{v}) = \lambda \mathbf{v}$.

Lemma 1.127. Let V be a vector space over a field K, $f \in \mathcal{L}(V)$ and $\lambda \in K$. The eigenvectors of f of eigenvalue λ are the nonzero vectors of the subspace $\ker(f - \lambda \mathrm{id})$, called *eigenspace corresponding to* λ .

Lemma 1.128. Let V be a vector space over a field K with dim V = n, \mathfrak{B} be a basis of V and $f \in \mathcal{L}(V)$. Then, $\det([f - x \mathrm{id}]_{\mathfrak{B}})$ is a polynomial on the variable x of degree n and with coefficients in K. Moreover, the dominant coefficient is $(-1)^n$ and the constant term is $\det([f]_{\mathfrak{B}})$.

Corollary 1.129. Let V be a vector space of dimension n and $f \in \mathcal{L}(V)$. Then, f has at most n distinct eigenvalues.

Corollary 1.130. Let V be a vector space over \mathbb{C} and $f \in \mathcal{L}(V)$. Then, f has at least one eigenvalue.

Definition 1.131. Let K be a field and $\mathbf{A} \in \mathcal{M}_n(K)$. The polynomial $p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}_n)$ is called *characteristic polynomial of* \mathbf{A} .

Proposition 1.132. Let V be a vector space and $f \in \mathcal{L}(V)$. For all basis \mathfrak{B} of V, the characteristic polynomial of $[f]_{\mathfrak{B}}$ is the same. Therefore, we denote it $p_f(\lambda)$ and we refer to it as *characteristic polynomial of* f.

Proposition 1.133. Let V be a vector space and $f \in \mathcal{L}(V)$. Then, eigenvectors of f of distinct eigenvalues are linearly independent.

Corollary 1.134. Let V be a vector space and $f \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_n$ are the distinct eigenvalues of f and $V_{\lambda_1}, \ldots, V_{\lambda_n}$ are their corresponded eigenspaces. Then,

$$V_{\lambda_1} + \cdots + V_{\lambda_n}$$

is a direct sum.

Proposition 1.135. Let V be a finite vector space of dimension $n, f \in \mathcal{L}(V)$ and λ be a root of multiplicity m of the characteristic polynomial $p_f(x)$. Then:

$$1 \le \dim(\ker(f - \lambda \mathrm{id})) \le m$$

Theorem 1.136 (Diagonalization theorem). Let V be a finite vector space and $f \in \mathcal{L}(V)$. f is diagonalizable if and only if:

- 1. $p_f(x) = (-1)^n (x \lambda_1)^{m_1} \cdots (x \lambda_k)^{m_k}$ with distinct $\lambda_1, \dots, \lambda_k \in K$.
- 2. $\dim(\ker(f \lambda_i \operatorname{id})) = m_i, i = 1, \dots, k.$

Corollary 1.137. Let V be a finite vector space with $\dim V = n$ and $f \in \mathcal{L}(V)$. If f has n distinct eigenvalues, f is diagonalizable.

Proposition 1.138. Let V be a finite vector space and $f, g \in \mathcal{L}(V)$ such that f and g are similar. Then:

f is diagonalizable $\iff g$ is diagonalizable

Lemma 1.139. Let K be a field and $\mathbf{A}, \mathbf{B} \in \mathcal{M}_n(K)$ be similar matrices. Then, $\forall k \in \mathbb{N}, \mathbf{A}^k$ and \mathbf{B}^k are similar.

Lemma 1.140. Let V be a finite vector space over a field K with dim V=n and $f\in \mathcal{L}(V)$. Then, the function $\phi_f:K[x]\to\mathcal{L}(V)$ defined by

$$\phi_f(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1f + \dots + a_nf^n$$

is linear and satisfies:

$$\phi_f((pq)(x)) = \phi_f(p(x))\phi_f(q(x)) \quad \forall p(x), q(x) \in K[x]$$

Definition 1.141. Let V be a finite vector space with $\dim V = n$ and $f \in \mathcal{L}(V)$. The *minimal polynomial* $m_f(x) \in K[x]$ of f is the unique a polynomial satisfying:

- $m_f(f) = 0$.
- m_f is monic.
- m_f is of minimum degree.

Proposition 1.142. Let V be a vector space over a field K and $f \in \mathcal{L}(V)$. If $p(x) \in K[x]$ is such that p(f) = 0, then $m_f(x) \mid p(x)$.

Cayley-Hamilton theorem

Theorem 1.143 (Cayley-Hamilton theorem). Let K be a field, $n \ge 1$ and $\mathbf{A} \in \mathcal{M}_n(K)$. Then:

$$m_{\mathbf{A}}(x) \mid p_{\mathbf{A}}(x) \mid m_{\mathbf{A}}(x)^n$$

Therefore $p_{\mathbf{A}}(\mathbf{A}) = 0$ and $m_{\mathbf{A}}(x)$ and $p_{\mathbf{A}}(x)$ have the same irreducible factors.

Corollary 1.144. Let K be a field and $\mathbf{A} \in \mathrm{GL}_n(K)$ be a matrix with $p_{\mathbf{A}}(x) = a_0 + a_1 x + \cdots + (-1)^n x^n$. Then:

$$\mathbf{A}^{-1} = -\frac{1}{a_0} \left(\mathbf{A}^{n-1} + a_{n-1} \mathbf{A}^{n-2} + \dots + a_2 \mathbf{A} + a_1 \mathbf{I}_n \right)$$

Lemma 1.145. Let V be a finite vector space over a field K, \mathfrak{B} be a basis of V and $f \in \mathcal{L}(V)$. Then $\forall \lambda, \mu \in K$ and $\forall r, s \in \mathbb{N}$:

- 1. $[f^r]_{\mathfrak{B}} = ([f]_{\mathfrak{B}})^r$.
- 2. $[\lambda f]_{\mathfrak{B}} = \lambda [f]_{\mathfrak{B}}$.
- 3. $[\lambda f^r + \mu f^s]_{\mathfrak{B}} = [\lambda f^r]_{\mathfrak{B}} + [\mu f^s]_{\mathfrak{B}}$.

Lemma 1.146. Let V be a finite vector space over a field K, $f \in \mathcal{L}(V)$ and \mathbf{v} be an eigenvector of f of eigenvalue λ . Then, $\forall p(x) \in K[x]$ we have:

$$p(f)(\mathbf{v}) = p(\lambda)\mathbf{v}$$

Theorem 1.147 (Cayley-Hamilton theorem). Let V be a finite vector space over a field K such that dim V = n and $f \in \mathcal{L}(V)$. Then:

$$m_f(x) \mid p_f(x) \mid m_f(x)^n$$

Definition 1.148. A field K satisfying that all polynomial with coefficient in K of degree greater o equal to 1 factorizes as a product of linear factors is called an *algebraically closed field*.

Definition 1.149. Let V be a vector space and $f \in \mathcal{L}(V)$. We say that $U \subseteq V$ is an *invariant subspace of* V *under* f if $f(U) \subseteq U$.

Lemma 1.150. Let V be a vector space and $f \in \mathcal{L}(V)$.

1. If $U \subseteq V$ is an invariant subspace of V under f, then:

$$p_{f|_{U}}(x) \mid p_{f}(x)^{10}$$

- 2. If U_1 and U_2 are invariant subspaces of V under f such that $V = U_1 \oplus U_2$, then:
 - $p_f(x) = p_{f_{|U_1}}(x) \cdot p_{f_{|U_2}}(x)$.
 - $m_f(x) = \text{lcm}(m_{f|_{U_1}}(x), m_{f|_{U_2}}(x)).$

Lemma 1.151. Let V be a vector space, $f \in \mathcal{L}(V)$ and $a(x), b(x) \in K[x]$. Suppose m(x) = lcm(a(x), b(x)) and d(x) = gcd(a(x), b(x)). Then:

- 1. $\ker(a(f)) + \ker(b(f)) = \ker(m(f))$.
- 2. $\ker(a(f)) \cap \ker(b(f)) = \ker(d(f))$.

In particular, if a(x) and b(x) are coprime and a(f)b(f) = 0, then:

$$V = \ker(a(x)) \oplus \ker(b(x))$$

Theorem 1.152. Let V be a finite vector space such that $\dim V = n$ and $f \in \mathcal{L}(V)$. If $p_f(x) = q_1(x)^{n_1} \cdots q_r(x)^{n_r}$ and $m_f(x) = q_1(x)^{m_1} \cdots q_r(x)^{m_r}$ with $q_i(x)$ distinct irreducible factors, then:

$$V = \ker(q_1(f)^{m_1}) \oplus \cdots \oplus \ker(q_r(f)^{m_r})$$

Moreover, dim $(\ker(q_i(f)^{m_i})) = n_i \deg(q_i(x)).$

Jordan form

Definition 1.153. Let K be a field and $\mathbf{A} \in \mathcal{M}_n(K)$. A *jordan bloc of* \mathbf{A} is a square submatrix composed by a value $\lambda \in K$ on the principal diagonal, ones on the diagonal just below the principal diagonal and zeros elsewhere. That is, a Jordan bloc is a matrix of the form:

$$\begin{pmatrix} \lambda & 0 & 0 & \cdots & 0 \\ 1 & \lambda & 0 & \ddots & \vdots \\ 0 & 1 & \lambda & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & \lambda \end{pmatrix}$$

Proposition 1.154. Let V be a finite vector space over a field K with $\dim V = n$ and $f \in \mathcal{L}(V)$. If $p_f(x) = \pm (x - \lambda_1)^{n_1} \cdots (x - \lambda_k)^{n_k}$, there exists a basis \mathfrak{B} of V such that

$$[f]_{\mathfrak{B}} = egin{pmatrix} \mathbf{J}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_2 & \ddots & dots \\ dots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{J}_r \end{pmatrix}$$

where $\mathbf{J}_1, \dots, \mathbf{J}_r$ are Jordan blocs associated with eigenvalues $\lambda_1, \dots, \lambda_k$ satisfying:

- 1. For i = 1, ..., k, the sum of the sizes of Jordan blocs associated with the eigenvalue λ_i is n_i .
- 2. The sizes of Jordan blocs are determined by $\dim(\ker((f \lambda_i \operatorname{id})^r)), r = 1, \dots, n_i 1.$

Proposition 1.155. Let V be a finite vector space over a field K with $\dim V = n$ and $\mathbf{A} \in \mathcal{M}_n(K)$. If $p_{\mathbf{A}}(x) = \pm (x - \lambda_1)^{n_1} \cdots (x - \lambda_k)^{n_k}$, there exist a matrix $\mathbf{P} \in \mathrm{GL}_n(K)$ such that:

$$\mathbf{P}^{-1}\mathbf{AP} = egin{pmatrix} \mathbf{J}_1 & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{J}_2 & \ddots & dots \ dots & \ddots & \ddots & \mathbf{0} \ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{J}_r \end{pmatrix}$$

where $\mathbf{J}_1, \dots, \mathbf{J}_r$ are Jordan blocs associated with eigenvalues $\lambda_1, \dots, \lambda_k$ satisfying properties 1 and 2.

Theorem 1.156. Let V be a vector space and $f, g \in \mathcal{L}(V)$ be such that $p_f(x) = (x - \lambda_1)^{n_1} \cdots (x - \lambda_k)^{n_k}$. If g satisfies:

- 1. $p_f(x) = p_g(x)$
- 2. $m_f(x) = m_g(x)$
- 3. $\dim(\ker((f-\lambda \mathrm{id})^r)) = \dim(\ker((g-\lambda \mathrm{id})^r)) \ \forall \lambda \in K$ $\forall r > 1$

then f is similar to g.

5 | Symmetric bilinear forms

First definitions

Definition 1.157. Let U, V, W be three vector spaces over a field K. We say that a function $\varphi : U \times V \to W$ is bilinear if $\forall \mathbf{u}_1, \mathbf{u}_2, \mathbf{u} \in U, \ \forall \mathbf{v}_1, \mathbf{v}_2, \mathbf{v} \in V$ and $\forall \lambda \in K$ we have:

- 1. $\varphi(\mathbf{u}_1 + \mathbf{u}_2, \mathbf{v}) = \varphi(\mathbf{u}_1, \mathbf{v}) + \varphi(\mathbf{u}_2, \mathbf{v}).$
- 2. $\varphi(\lambda \mathbf{u}, \mathbf{v}) = \lambda \varphi(\mathbf{u}, \mathbf{v}).$
- 3. $\varphi(\mathbf{u}, \mathbf{v}_1 + \mathbf{v}_2) = \varphi(\mathbf{u}, \mathbf{v}_1) + \varphi(\mathbf{u}, \mathbf{v}_2)$.
- 4. $\varphi(\mathbf{u}, \lambda \mathbf{v}) = \lambda \varphi(\mathbf{u}, \mathbf{v}).$

Definition 1.158. Let V be a vector space over a field K. A bilinear form from V onto K is a bilinear map $\varphi: V \times V \to K$.

Definition 1.159. Let V be a vector space over a field K. A bilinear form $\varphi: V \times V \to K$ is symmetric if

$$\varphi(\mathbf{v}_1, \mathbf{v}_2) = \varphi(\mathbf{v}_2, \mathbf{v}_1) \quad \forall \mathbf{v}_1, \mathbf{v}_2 \in V$$

¹⁰Here $f_{|U}$ is the function f restricted to the subspace U.

Matrix associated with a bilinear form

Definition 1.160. Let V be a finite vector space over a field K, $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of V and $\varphi : V \times V \to K$ be a symmetric bilinear form. We define the matrix of the bilinear form φ with respect to the basis \mathfrak{B} as the matrix $[\varphi]_{\mathfrak{B}} \in \mathcal{M}_n(K)$ defined as:

$$[\varphi]_{\mathfrak{B}} = \begin{pmatrix} \varphi(\mathbf{v}_1, \mathbf{v}_1) & \varphi(\mathbf{v}_1, \mathbf{v}_2) & \cdots & \varphi(\mathbf{v}_1, \mathbf{v}_n) \\ \varphi(\mathbf{v}_2, \mathbf{v}_1) & \varphi(\mathbf{v}_2, \mathbf{v}_2) & \cdots & \varphi(\mathbf{v}_2, \mathbf{v}_n) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi(\mathbf{v}_n, \mathbf{v}_1) & \varphi(\mathbf{v}_n, \mathbf{v}_2) & \cdots & \varphi(\mathbf{v}_n, \mathbf{v}_n) \end{pmatrix}$$

Lemma 1.161. Let V be a finite vector space over a field K, \mathfrak{B} be a basis of V and $\varphi: V \times V \to K$ be a symmetric bilinear form. Then:

$$\varphi(\mathbf{v}_1, \mathbf{v}) = ([\mathbf{v}_1]_{\mathfrak{B}})^{\mathrm{T}} [\varphi]_{\mathfrak{B}} [\mathbf{v}]_{\mathfrak{B}} \quad \forall \mathbf{v}_1, \mathbf{v} \in V$$

Proposition 1.162. Let V be a finite vector space over a field K, \mathfrak{B} be a basis of V and $\varphi: V \times V \to K$ be a symmetric bilinear form. Then:

$$\varphi$$
 is symmetric $\iff [\varphi]_{\mathfrak{B}}$ is symmetric

Proposition 1.163. Let V be a finite vector space over a field K, \mathfrak{B} and \mathfrak{B}' be bases of V and $\varphi: V \times V \to K$ be a symmetric bilinear form. Then:

$$[\varphi]_{\mathfrak{B}'} = ([\mathrm{id}]_{\mathfrak{B}',\mathfrak{B}})^{\mathrm{T}} [\varphi]_{\mathfrak{B}} [\mathrm{id}]_{\mathfrak{B}',\mathfrak{B}}$$

Orthogonal basis

Definition 1.164. Let V be a finite vector space over a field K, $\varphi: V \times V \to K$ be a symmetric bilinear form and $\mathbf{v_1}, \mathbf{v_2} \in V$.

- We say that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal if $\varphi(\mathbf{v}_1, \mathbf{v}_2) = 0$
- If $\mathbf{v}_1 \neq 0$, we say that \mathbf{v}_1 is isotropic if $\varphi(\mathbf{v}_1, \mathbf{v}_1) = 0$.

Definition 1.165. Let V be a finite vector space over a field K, $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of V and $\varphi : V \times V \to K$ be a symmetric bilinear form.

- We say that \mathfrak{B} is orthogonal with respect to φ if $\varphi(\mathbf{v}_i, \mathbf{v}_i) = 0 \ \forall i \neq j$.
- We say that \mathfrak{B} is orthonormal with respect to φ if $\varphi(\mathbf{v}_i, \mathbf{v}_i) = \delta_{ii}$.

Theorem 1.166. Let V be a finite vector space over a field K, $\mathfrak B$ be a basis of V and $\varphi:V\times V\to K$ be a symmetric bilinear form. Then, V has an orthogonal basis with respect to φ and an orthonormal basis with respect to φ .

Corollary 1.167. Let K be a field with char $K \neq 2$ and $\mathbf{A} \in \mathcal{M}_n(K)$ be a symmetric matrix. Then, there exists a matrix $\mathbf{P} \in \mathrm{GL}_n(K)$ such that $\mathbf{P}^{\mathrm{T}}\mathbf{A}\mathbf{P}$ is diagonal.

Orthogonal decompositions

Definition 1.168. Let V be a finite vector space over a field $K, U \subseteq V$ be a vector subspace of V and $\varphi : V \times V \to K$ be a symmetric bilinear form. We define the *orthogonal complement of* U as:

$$U^{\perp} = \{ \mathbf{v} \in V : \varphi(\mathbf{v}, \mathbf{u}) = 0 \ \forall \mathbf{u} \in U \}$$

Definition 1.169. Let V be a finite vector space over a field K and $\varphi: V \times V \to K$ be a symmetric bilinear form. We define the *radical of* φ as:

$$\operatorname{rad} \varphi = V^{\perp}$$

We say that φ is nonsingular if rad $\varphi = \{0\}$.

Definition 1.170. Let V be a finite vector space over a field K, $\varphi: V \times V \to K$ be a nonsingular symmetric bilinear form and $\mathbf{v}_0 \in V$. We define $\varphi_{\mathbf{v}_0}: V \to K$, $\varphi_{\mathbf{v}_0}(\mathbf{v}) = \varphi(\mathbf{v}_0, \mathbf{v})$. Then, the function

$$V \longrightarrow V^*$$

 $\mathbf{v}_0 \longmapsto \varphi_{\mathbf{v}_0}$

is a isomorphism.

Definition 1.171. Let V be a finite vector space over a field $K, U \subseteq V$ be a vector subspace of V and $\varphi : V \times V \to K$ be a nonsingular symmetric bilinear form. Then:

- 1. $\dim V = \dim U + \dim U^{\perp}$.
- 2. $(U^{\perp})^{\perp} = U$.
- 3. If $\varphi_{|U}$ is nonsingular, then $V = U \oplus U^{\perp}$.

Definition 1.172. Let V be a finite vector space over a field K, $U_1, U_2 \subseteq V$ be vector subspaces of V and $\varphi: V \times V \to K$ be a symmetric bilinear form. We say that the sum $U_1 + U_2$ is orthogonal if it is direct and $\varphi(\mathbf{u}_1, \mathbf{u}_2) = 0 \ \forall \mathbf{u}_1 \in U_1 \ \text{and} \ \mathbf{u}_2 \in U_2$. In this case, we denote $U_1 + U_2$ by $U_1 \perp U_2$.

Proposition 1.173. Let V be a finite vector space over a field K, $U_1, U_2 \subseteq V$ be vector subspaces of V such that $V = U_1 \perp U_2$ and $\varphi : V \times V \to K$ be a symmetric bilinear form. Then, $\forall \mathbf{v} \in V$ there exist unique $\mathbf{u}_1 \in U_1$ and $\mathbf{u}_2 \in U_2$ such that $\mathbf{v} = \mathbf{u}_1 + \mathbf{u}_2$.

Definition 1.174. Let V be a finite vector space over a field K, $U_1, U_2 \subseteq V$ be vector subspaces of V such that $V = U_1 \perp U_2$ and $\varphi : V \times V \to K$ be a symmetric bilinear form. The function

$$\pi: V = U_1 \perp U_2 \longrightarrow U_i$$
$$\mathbf{v} = \mathbf{u}_1 + \mathbf{u}_2 \longmapsto \mathbf{u}_i$$

for i = 1, 2 is called orthogonal projection of V onto U_i according to the decomposition $V = U_1 \perp U_2$.

Method 1.175 (Gram-Schmidt process). Let V be a finite vector space over a field K, $\mathfrak{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be a basis of V and $\varphi : V \times V \to K$ be a symmetric bilinear form. $\forall \mathbf{u}, \mathbf{v} \in V$, we define

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\varphi(\mathbf{u}, \mathbf{v})}{\varphi(\mathbf{u}, \mathbf{u})}\mathbf{u}$$

We will create an orthogonal basis $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ of V from that: \mathfrak{B} . We define \mathbf{u}_i , $i=1,\ldots,n$ to be:

$$\mathbf{u}_{1} = \mathbf{v}_{1}$$

$$\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{2})$$

$$\mathbf{u}_{3} = \mathbf{v}_{3} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{3}) - \operatorname{proj}_{\mathbf{u}_{2}}(\mathbf{v}_{3})$$

$$\vdots$$

$$\mathbf{u}_{n} = \mathbf{v}_{n} - \sum_{i=1}^{n-1} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v}_{n})$$

To obtain an orthogonal basis $(\mathbf{e}_1, \dots, \mathbf{e}_n)$ of V from \mathfrak{B} , define \mathbf{e}_i , $i = 1, \ldots, n$ to be:

$$\mathbf{e}_i = \frac{\mathbf{u}_i}{\sqrt{\varphi(\mathbf{u}_i, \mathbf{u}_i)}}$$

Sylvester's law of inertia

Definition 1.176. An orthogonal geometry over a field K is a pair (V,φ) , where V is a vector space over K and φ is a symmetric bilinear form over V.

Definition 1.177. Let (V_1, φ_1) , (V_2, φ_2) be two orthogonal geometries over a field K. An isometry from (V_1, φ_1) to (V_2, φ_2) is an isomorphism $f: V_1 \to V_2$ such that

$$\varphi_2(f(\mathbf{u}), f(\mathbf{v})) = \varphi_1(\mathbf{u}, \mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in V_1$$

We say that (V_1, φ_1) and (V_2, φ_2) are isometric if there exists an isometry between them.

Definition 1.178. Let V be a vector space over a field K and φ_1 , φ_2 be symmetric bilinear forms. We say that φ_1 and φ_2 are equivalent if and only if (V, φ_1) and (V, φ_2) are isometric.

Definition 1.179. Let $A, B \in \mathcal{M}_n(\mathbb{R})$. We say that A and \mathfrak{B} are congruent if there exists a matrix $\mathbf{P} \in \mathrm{GL}_n(\mathbb{R})$ such that

$$\mathbf{A} = \mathbf{P}^{\mathrm{T}} \mathbf{B} \mathbf{P}$$

Proposition 1.180. Let V be a finite vector space over a field K, \mathfrak{B}_1 be a basis of V and φ_1 , φ_2 be symmetric bilinear forms. Then the following statements are equiva-

- 1. The orthogonal geometries (V, φ_1) and (V, φ_2) are isometric.
- 2. There exists a basis \mathfrak{B}_2 of V such that $[\varphi_1]_{\mathfrak{B}_1} =$ $[\varphi_2]_{\mathfrak{B}_2}$.
- 3. The matrices $[\varphi_1]_{\mathfrak{B}_1}$ and $[\varphi_2]_{\mathfrak{B}_2}$ are congruent.

Theorem 1.181 (Sylvester's law of inertia). Let V be a finite vector space over \mathbb{R} and φ be a symmetric bilinear form over V. Then, there exists a basis \mathfrak{B} of V such

$$[\varphi]_{\mathfrak{B}} = \begin{pmatrix} 0 & & & & & & & & \\ & \ddots & & & & & & \\ & 0 & & & & & \\ & & 1 & & & & \\ & & & 1 & & & \\ & & & \ddots & & & \\ & & & & & -1 & \\ & & & & & \ddots & \\ & & & & & -1 & \end{pmatrix}$$

where in the diagonal there are r_0 zeros, r_+ ones and $r_$ minus ones and the triplet (r_0, r_+, r_-) doesn't depend on the basis \mathfrak{B} .

Definition 1.182. Let V be a finite vector space over \mathbb{R} and φ be a symmetric bilinear form over V. Let \mathfrak{B} be an orthogonal basis of V with respect to φ . We define the rank of φ as:

$$rank \varphi = rank([\varphi]_{\mathfrak{B}})$$

We define the signature of φ as:

$$\operatorname{sig}\varphi=(r_+,r_-)$$

where r_{+} is el number of positive real numbers on the diagonal of $[\varphi]_{\mathfrak{B}}$ and r_{-} is el number of negative real numbers on the diagonal of $[\varphi]_{\mathfrak{B}}$.

Theorem 1.183. Let (V_1, φ_1) , (V_2, φ_2) be two orthogonal geometries over \mathbb{R} of finite dimension. Then, (V_1, φ_1) and (V_2, φ_2) are isometric if and only if dim $V_1 = \dim V_2$ and $\operatorname{sig} \varphi_1 = \operatorname{sig} \varphi_2$.

Inner products

Definition 1.184. Let V be a finite vector space over \mathbb{R} and φ be a symmetric bilinear form over V. We say that φ is positive-definite if

$$\varphi(\mathbf{v}, \mathbf{v}) > 0 \quad \forall \mathbf{v} \in V \setminus \{0\}$$

We say that φ is negative-definite if

$$\varphi(\mathbf{v}, \mathbf{v}) < 0 \quad \forall \mathbf{v} \in V \setminus \{0\}^{11}$$

Definition 1.185. Let V be a vector space over \mathbb{R} . An $inner\ product\ over\ V$ is a positive-definite symmetric bilinear form over V.

Definition 1.186. An Euclidean vector space is a pair (V,φ) , where V is a vector space over \mathbb{R} and φ is an inner product over V.

Theorem 1.187 (Cauchy-Schwartz inequality). Let (V,φ) be an Euclidean vector space. Then:

$$\varphi(\mathbf{v}_1, \mathbf{v}_2)^2 \le \varphi(\mathbf{v}_1, \mathbf{v}_1) \varphi(\mathbf{v}_2, \mathbf{v}_2) \quad \forall \mathbf{v}_1, \mathbf{v}_2 \in V$$

Definition 1.188. Let V be a vector space over \mathbb{R} . A $norm \ on \ V$ is a function

$$\|\cdot\|:V\longrightarrow\mathbb{R}$$

$$\mathbf{v}\longmapsto\|\mathbf{v}\|$$

such that:

1.
$$\|\mathbf{v}\| = 0 \iff \mathbf{v} = \mathbf{0} \ \forall \mathbf{v} \in V$$
.

¹¹The terms positive-semidefinite and negative-semidefinite are used when $\forall \mathbf{v} \in V \setminus \{0\}, \varphi(\mathbf{v}, \mathbf{v}) \geq 0$ or $\varphi(\mathbf{v}, \mathbf{v}) \leq 0$, respectively.

- 2. $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|, \forall \mathbf{v} \in V, \lambda \in \mathbb{R}.$
- 3. $\|\mathbf{v}_1 + \mathbf{v}_2\| \le \|\mathbf{v}_1\| + \|\mathbf{v}_2\|, \forall \mathbf{v}_1, \mathbf{v}_2 \in V^{12}$.

Proposition 1.189. Let (V, φ) be an Euclidean vector space. Then, the function

$$\|\cdot\|_{\varphi}:V\longrightarrow\mathbb{R}$$

$$\mathbf{v}\longmapsto\|\mathbf{v}\|_{\varphi}=\sqrt{\varphi(\mathbf{v},\mathbf{v})}$$

is a norm called norm associated with the inner product φ .

Definition 1.190. Let (V, φ) be an Euclidean vector space and $\mathbf{v}_1, \mathbf{v}_2 \in V \setminus \{0\}$. We define the *angle with respect to* φ *between* \mathbf{v}_1 *and* \mathbf{v}_2 as the unique $\theta \in [0, \pi]$ such that:

$$\cos\theta = \frac{\varphi(\mathbf{v}_1, \mathbf{v}_2)}{\|\mathbf{v}_1\|_{\varphi} \|\mathbf{v}_2\|_{\varphi}}$$

Spectral theorem

Definition 1.191. Let (V, φ) be a finite Euclidean vector space and $f \in \mathcal{L}(V)$. Then, there exists a unique $f' \in \mathcal{L}(V)$ such that

$$\varphi(f(\mathbf{v}_1), \mathbf{v}_2) = \varphi(\mathbf{v}_1, f'(\mathbf{v}_2)) \quad \forall \mathbf{v}_1, \mathbf{v}_2 \in V$$

This f' is called adjoint of f.

Definition 1.192. Let (V, φ) be a finite Euclidean vector space and $f \in \mathcal{L}(V)$. f is called *auto-adjoint* if f = f'.

Lemma 1.193. Let (V, φ) be a finite Euclidean vector space of dimension n and $f \in \mathcal{L}(V)$ be auto-adjoint. Then, there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$p_f(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$

Definition 1.194. Let K be a field and $A \in GL_n(K)$ be a matrix. We say that A is *orthogonal* if and only if

$$\mathbf{P}\mathbf{P}^{\mathrm{T}} = \mathbf{P}^{\mathrm{T}}\mathbf{P} = \mathbf{I}_n$$

The set of orthogonal matrices of size n over K is denoted by $\mathcal{O}_n(K)$.

Theorem 1.195 (Spectral theorem). Let (V, φ) be a a finite Euclidean vector space and $f \in \mathcal{L}(V)$ be auto-adjoint. Then, V has an orthonormal basis of eigenvectors of f. In particular, f diagonalizes.

Corollary 1.196. Let K be a field. All symmetric matrices $A \in \mathcal{M}_n(K)$ are diagonalizable. More precisely, there exists $\mathbf{P} \in \mathcal{O}_n(K)$ such that $\mathbf{P}^{\mathrm{T}}\mathbf{A}\mathbf{P}$ is diagonal.

Definition 1.197. Let $A = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{C})$. We define the *complex conjugate* $\overline{\mathbf{A}}$ of \mathbf{A} as $\overline{\mathbf{A}} = (\overline{a_{ij}})$.

Proposition 1.198. Let $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m \times n}(\mathbb{C}), \mathbf{C} \in \mathcal{M}_{n \times p}(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Then:

- 1. $\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$.
- 2. $\overline{\mathbf{AC}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{C}}$.
- 3. $\overline{\lambda \cdot \mathbf{A}} = \overline{\lambda} \cdot \overline{\mathbf{A}}$.

Corollary 1.199. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix. Then, there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$p_{\mathbf{A}}(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$

Theorem 1.200 (Descartes' rule of signs). Let $P(x) = a_0 + \cdots + a_n x^n \in \mathbb{R}[x]$:

- 1. The number of positive roots of P(x) is at most equal to the number of sign variations in the sequence $[a_d, a_{d-1}, \ldots, a_1, a_0]$.
- 2. If $P(x) = a_n(x \alpha_1)^{n_1} \cdots (x \alpha_r)^{n_r}$, then the number of positive roots of P(x) is equal to the number of sign variations in the sequence (having in account multiplicity).

¹²Note that $\forall \mathbf{v} \in V$ we have: $0 = \|\mathbf{v} + (-\mathbf{v})\| \le \|\mathbf{v}\| + \|-\mathbf{v}\| = 2\|\mathbf{v}\| \implies \|\mathbf{v}\| \ge 0$.