Группа вращений трехмерного пространства

Рассмотрим все вращения трехмерного пространства вокруг фиксированной точки — начала координат. Под произведением двух вращений g_1 и g_2 будем понимать вращение g, состоящее в последовательном применении сначала g_2 и затем g_1 . Символически запишем это так: $g=g_1g_2$. Нетрудно проверить, что совокупность G всех вращений образует группу, т.е. что при таком определении умножения выполнены все групповые аксиомы. Единицей группы e, единичным вращением, является поворот на нулевой угол.

Описание группы вращений при помощи ортогональных матриц

Пусть x — некоторый вектор, исходящий из начала координат, вращение g переводит его в вектор x':

$$x' = gx \tag{1}$$

Рассмотрим ортогональную систему координат с центром в точке O, обозначим через e_1 , e_2 , e_3 единичные вектора, отложенные вдоль координатных осей. Вращение g переводит эту тройку векторов в тройку других взаимно ортогональных векторов, которые будем обозначать g_1 , g_2 , g_3 . Вектора g_k , k=1,2,3 задаются проекциями на оси e_i , i=1,2,3; обозначим через $g_{ik}=(g_k,e_i)$ проекцию вектора g_k на i-ую ось. Объединим проекции в матрицу

$$\begin{vmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{vmatrix}$$
 (2)

Будем обозначать эту матрицу так же g и называть ее матрицей вращения g. Выпишем соотношение (1) покоординатно

$$x_i' = \sum_{k=1}^{3} g_{ik} x_k, \tag{3}$$

где x_k – координаты вектора x, а x_i' – координаты вектора x'. Найдем, каким условиям должны удовлетворять числа g_{ik} . Так как вращение не меняет длин и углов, то оно не меняет скалярного произведения векторов. Таким образом, если x' = gx и y' = gy, то

$$\sum_{i=1}^{3} x_i' y_i' = \sum_{k=1}^{3} x_k y_k \tag{4}$$

Подставим в левую часть равенства (4) вместо x_i' и y_i' их выражения по формуле (3):

$$\sum_{i,k,l} g_{ik} g_{il} x_k y_l = \sum_k x_k y_k \tag{5}$$

Сравнивая коэффициенты при произведениях $x_k y_l$ в левой и правой частях, получаем:

$$\sum_{i=1}^{3} g_{ik} g_{il} = \delta_{kl}, \tag{6}$$

где δ_{kl} – кронекеровская дельта, определенная следующими соотношениями: $\delta_{kl}=1$, если $k=l,\,\delta_{kl}=0$, если $k\neq l$. Равенство (6) может быть записано в матричной форме:

$$g^{\mathsf{T}}g = e \tag{7}$$

или

$$g^{\top} = g^{-1}. \tag{8}$$

Матрицы, удовлетворяющие равенствам (7), (8), называются ортогональными матрицами. Если взять детерминант обеих частей равенства (7), то получим $\det(g^{\top})\det(g) = 1$, т.е. $|\det(g)|^2 = 1$, и

$$det (g) = \pm 1.$$
(9)

Итак, группа вращений G может быть реализована (представлена) как группа ортогональных матриц третьего порядка с единичным детерминантом.

Введение параметров в группу вращений

Так как каждое вращение есть вращение вокруг некоторой оси, то оно может быть полностью определено путем задания оси вращения и задания угла поворота вокруг нее. Так, вращение может быть задано вектором $\xi = (\xi_1, \xi_2, \xi_3)$, направленным вдоль оси вращения и равным по величине углу поворота. Направление вектора будем выбирать так, чтобы угол поворота не превосходил π . Координаты векторов, описывающих всевозможные вращения, будут удовлетворять условию $\xi_1^2 + \xi_2^2 + \xi_3^2 \leqslant \pi^2$, и, значит, заполнять шар радиуса π . Ясно, что различные внутренние точки шара описывают различные вращения, а две диаметрально противоположные точки на поверхности сферы – одно и то же вращение на угол π (поворот на угол π в двух противоположных направлениях приводит к одному и тому же результату).

Такой способ описания вращений выявляет топологическую структуру группы вращений, а именно, эта группа топологически эквивалентна шару, у которого отождествлены диаметрально противоположные точки границы.

Представленные выше результаты показывают, что вращение g может быть описано при помощи девяти параметров, а именно элементами g_{ik} матрицы вращения g; однако эти параметры не являются независимыми, они связаны соотношениями (6). Примером описания вращения при помощи независимых параметров являются углы Эйлера.

Пусть вращение g переводит координатные оси Ox, Oy, Oz в оси Ox', Oy', Oz'. Обозначим линию пересечения плоскостей xOy и x'Oy' через Ol (ее принято называть nunueu ysnos). Придадим ей направление таким образом, чтобы наблюдатель, смотря вдоль заданного направления, видел угол между осями Oz и Oz' (меньше π), отложенным против часовой стрелки. Это условие задает направление линии узлов во всех ситуциях, за исключением тех, в которых угол между осями Oz, Oz' равен 0 или π .

Обозначим через φ угол между осью Ox и линией узлов Ol, через ψ – угол между Ol и осью Ox' и через θ – между Oz и Oz'. Пусть g_{φ} и g_{ψ} обозначают вращения вокруг оси Oz, g_{θ} – вращение вокруг оси Ox.

Вращение g может быть представлено композицией $g = \widetilde{g}_{\psi}\widetilde{g}_{\theta}g_{\varphi}$ трех поворотов g_{φ} , \widetilde{g}_{θ} , \widetilde{g}_{ψ} вокруг осей Oz, Ol, Oz', соответственно. В результате вращения g_{φ} ось Ox совпадет с линией узлов Ol; ось Oz перейдет в ось Oz' в результате вращения \widetilde{g}_{θ} ; вращение \widetilde{g}_{ψ} переведет линию узлов Ol в Ox' (ось Oy в результате вращений g_{φ} и \widetilde{g}_{ψ} перейдет в Oy').

Повороты \widetilde{g}_{θ} и \widetilde{g}_{ψ} были сделаны вокруг вспомогательных осей Ol и Oz'; представим их в виде поворотов относительно первоначальных осей Ox и Oz. Поворот \widetilde{g}_{θ} является преобразованием новой системы координатных осей, полученной из первоначальной, действием g_{φ} , следовательно $\widetilde{g}_{\theta} = g_{\varphi}g_{\theta}g_{\varphi}^{-1}$. Аналогично, $\widetilde{g}_{\psi} = (\widetilde{g}_{\theta}g_{\varphi})g_{\psi}(\widetilde{g}_{\theta}g_{\varphi})^{-1}$. Подставим в выражение для композиции поворотов g:

$$g = \widetilde{g}_{\psi}\widetilde{g}_{\theta}g_{\varphi} = (\widetilde{g}_{\theta}g_{\varphi})g_{\psi}(\widetilde{g}_{\theta}g_{\varphi})^{-1}\widetilde{g}_{\theta}g_{\varphi} = \widetilde{g}_{\theta}g_{\varphi}g_{\theta} = g_{\varphi}g_{\theta}g_{\psi}$$

$$(10)$$

То есть, последовательность поворотов на углы φ , θ , ψ вокруг вспомогательных систем осей, получаемых в результате осуществления каждого следующего поворота, эквивалентна последовательности поворотов относительно исходных осей, сделанных в обратном порядке ψ , θ , φ .

Три угла φ, θ, ψ являются независимыми и полностью определяют поворот g. Согласно определениям, они изменяются в пределах, $0 \leqslant \varphi \leqslant 2\pi$, $0 \leqslant \psi \leqslant 2\pi$, $0 \leqslant \theta \leqslant \pi$. Разные наборы эйлеровых углов (φ, θ, ψ) , взятые из этих интервалов, определяют разные повороты, за исключением случаев $\theta = 0$ и $\theta = \pi$. В этих особых случаях плоскости xOy и x'Oy' совпадают, и линия их пересечения, линия узлов Ol, оказывается неопределена. Варьируя ориентацию линии узлов в плоскости, заключаем, что в случае $\theta = 0$ пары углов (φ, ψ) и $(\varphi + \alpha, \psi - \alpha)$ определяют один и тот же поворот для любого α ; аналогично, в случае $\theta = \pi$ пары углов (φ, ψ) и $(\varphi + \alpha, \psi + \alpha)$ эквивалентны для любого α . Выразим элементы матрицы поворота g через углы Эйлера. Вспользуемся полученным выражением для поворота g через повороты g_{φ} , g_{θ} и g_{ψ} относительно исходной системы координат.

$$g_{\varphi} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad g_{\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, \quad g_{\psi} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$g = g_{\varphi}g_{\theta}g_{\psi} = \begin{bmatrix} \cos\varphi\cos\psi - \cos\theta\sin\varphi\sin\psi & -\cos\varphi\sin\psi - \cos\theta\sin\varphi\cos\psi & \sin\varphi\sin\theta\\ \sin\varphi\cos\psi + \cos\theta\cos\varphi\sin\psi & -\sin\varphi\sin\psi + \cos\theta\cos\varphi\cos\psi & -\cos\varphi\sin\theta\\ \sin\psi\sin\theta & \cos\psi\sin\theta & \cos\psi\end{bmatrix}$$

Заметим, что замена $(\varphi, \theta, \psi) \to (\pi - \varphi, \theta, \pi - \psi)$ переводит матрицу g в $g^{\top} = g^{-1}$. То есть, если поворот g задан углами (φ, θ, ψ) , то обратный поворот задается углами $(\pi - \varphi, \theta, \pi - \psi)$.

Связь группы вращений с группой унитарных матриц второго порядка

Покажем, что вращения трехмерного пространства можно описывать комплексными матрицами второго порядка. Для этого рассмотрим стереографическую проекцию сферы на плоскость – каждой точке P сферы относится точка ζ в плоскости, лежащая на луче O'P, исходящем из северного полюса O'. Вращение трехмерного пространства вокруг центра сферы переводит друг в друга точки сферы и порождает тем самым некоторое преобразование в плоскости.

Рассмотрим сферу диаметра 1. Из подобия треугольников $\Delta {\rm ANP}$ и $\Delta {\rm BN}\zeta$ получаем связь между координатами $x,\ y,\ z$ точки P сферы и координатами $\xi,\ \eta$ точки ζ плоскости:

$$\xi = \frac{x}{\frac{1}{2} - z}, \qquad \eta = \frac{y}{\frac{1}{2} - z}.$$

Вводим комплексную переменную $\zeta = \xi + i\eta$:

$$\zeta = \xi + i\eta = \frac{x + iy}{\frac{1}{2} - z} \tag{11}$$

Т.к. точка Р принадлежит сфере единичного диаметра, то ее координаты $x,\,y,\,z$ удовлетворяют соотношению

Рис. 1: Стереографическая проекция

$$x^2 + y^2 + z^2 = \frac{1}{4}. (12)$$

Используем это соотношение при преобразовании ζ :

$$\zeta = \frac{x+iy}{\frac{1}{2}-z} = \frac{(x+iy)(x-iy)}{\left(\frac{1}{2}-z\right)(x-iy)} = \frac{x^2+y^2}{\left(\frac{1}{2}-z\right)(x-iy)} = \frac{\left(\frac{1}{2}-z\right)\left(\frac{1}{2}+z\right)}{\left(\frac{1}{2}-z\right)(x-iy)} = \frac{\frac{1}{2}+z}{x-iy}.$$
 (13)

Найдем преобразование плоскости, отвечающее вращению на угол φ вокруг оси Oz. Имеем:

$$x' = x \cos \varphi - y \sin \varphi$$

$$y' = x \sin \varphi + y \cos \varphi$$

$$z' = z$$
(14)

$$\zeta' = \frac{x' + iy'}{\frac{1}{2} - z} = \frac{x(\cos\varphi + i\sin\varphi) + iy(\cos\varphi + i\sin\varphi)}{\frac{1}{2} - z} = \exp(i\varphi)\frac{x + iy}{\frac{1}{2} - z} = \exp(i\varphi)\zeta \qquad (15)$$

Т.е. вращению на угол φ отвечает преобразование плоскости $\zeta' = \exp(i\varphi)\,\zeta$. Рассмотрим вращение на угол θ вокруг оси Ох. Заметим, что при таком вращении выражение

$$\omega = \frac{y + iz}{\frac{1}{2} - x} \tag{16}$$

умножается на $\exp(i\theta)$, т.е.

$$\omega' = \exp(i\theta)\,\omega. \tag{17}$$

Выразим ω через ζ (и соответственно ω' через ζ'). Рассмотрим отношение:

$$\frac{\omega + i}{\omega - i} = \frac{\frac{y + iz}{\frac{1}{2} - x} + i}{\frac{y + iz}{\frac{1}{2} - x} - i} = \frac{y + iz + i\left(\frac{1}{2} - x\right)}{y + iz - i\left(\frac{1}{2} - x\right)} = \frac{-(x + iy) + \left(z + \frac{1}{2}\right)}{(x - iy) + \left(z - \frac{1}{2}\right)},\tag{18}$$

$$x + iy = \zeta \left(\frac{1}{2} - z\right), \quad x - iy = \left(z + \frac{1}{2}\right)\zeta^{-1} \tag{19}$$

$$\frac{\omega + i}{\omega - i} = \frac{\zeta \left(z - \frac{1}{2}\right) + \left(z + \frac{1}{2}\right)}{\zeta^{-1} \left(z + \frac{1}{2}\right) + \left(z - \frac{1}{2}\right)} = \zeta \tag{20}$$

Аналогично получаем

$$\frac{\omega' + i}{\omega' - i} = \zeta'. \tag{21}$$

Выражаем ω через ζ в выражении (20) и ω' через ζ' в выражении (21), подставляем выражения в соотношение (17), связывающее ω и ω' :

$$\omega = -i\frac{1+\zeta}{1-\zeta}, \qquad \omega' = -i\frac{1+\zeta'}{1-\zeta'} \tag{22}$$

$$\frac{\zeta' + 1}{\zeta' - 1} = \exp(i\theta) \frac{\zeta + 1}{\zeta - 1} \tag{23}$$

Решая это уравнение относительно ζ' , мы получаем преобразование, отвечающее вращения на угол θ вокруг оси Ох:

$$\zeta' = \frac{\zeta \left(\exp\left(i\theta\right) + 1\right) + \left(\exp\left(i\theta\right) - 1\right)}{\zeta \left(\exp\left(i\theta\right) - 1\right) + \left(\exp\left(i\theta\right) + 1\right)}$$

$$\frac{\exp\left(i\theta\right) + 1}{\exp\left(i\theta\right) - 1} = \frac{\exp\left(2i\theta\right) - 1}{\exp\left(2i\theta\right) - 2\exp\left(i\theta\right) + 1} = \frac{\exp\left(i\theta\right) - \exp\left(-i\theta\right)}{\exp\left(i\theta\right) + \exp\left(-i\theta\right) - 2} = -i\frac{\sin\theta}{1 - \cos\theta} = -i\cot\frac{\theta}{2}$$

$$\cot\frac{\theta}{2} = \frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = \frac{\sin\theta}{1 - \cos\theta}$$

$$\zeta' = \frac{\zeta(\exp(i\theta) + 1) + (\exp(i\theta) - 1)}{\zeta(\exp(i\theta) - 1) + (\exp(i\theta) + 1)} = \frac{\zeta(\exp(i\theta) + 1) + 1}{\zeta(\exp(i\theta) - 1)} = \frac{-i\zeta \cot \frac{\theta}{2} + 1}{\zeta - i \cot \frac{\theta}{2}}$$
(25)

$$\zeta' = \frac{\zeta \cos \frac{\theta}{2} + i \sin \frac{\theta}{2}}{i\zeta \sin \frac{\theta}{2} + \cos \frac{\theta}{2}}$$
(26)