Operating Systems Notes

Marie Burer

16-1-24

Contents

1	Introduction to OS	5
${f 2}$	OS Structure and Architecture	8

Course Outline

Information:

- CS:3620 Operating Systems
- Instructor: Guanpeng Li
- Location: 110 MacLean Hall
- Hours: Tuesday/Thursday, 8:00 AM 9:15 AM
- Prerequesite: CS:2210, CS:2230, and CS:2630 with a minimum grade of C-
- TA: A K M Muhitul Islam

Modality:

- Lectures in person
- Office Hours: Tuesday/Thursday, 2:30 PM 4:30 PM
- Location: IATL 340

Grading:

- Homework: 40%
 - 6-8 assignments
 - Programming tasks

- In-class activities: 20%
 - Quizzes:
 - * Multiple-choice
 - * Close book
 - Exercises:
 - * Open questions
 - * Individual or group
 - * BYO laptop
- Final Exam: 40%
 - Technical interview
 - Written exam

Policy:

- 3 days late policy
- Cannot make up quizzes or exercises
- Can discuss homework with colleagues
- Cannot share code
- Cannot copy from internet
- If you copy code from StackOverflow, credit it
- When in doubt, ask the instructor/TA

1 Introduction to OS

What is an operating system?

An operating system (OS) is system software that manages computer hardware and software resources and provides common services for computer programs. (Wikipedia)

- Definition has changed over years
 - Originally, very bare bones
 - Evolved to include more
- Operating System (OS)
 - Interface between the user and the architecture
 - Implements a virtual machine that is easier to program than raw hardware
- Middleware between user programs and system hardware
- Manages hardware: CPU, main memory, I/O devices

OS: Traditional View:

- Interface between user and architecture
 - Hides architectural details
- Implements Virtual machine:

- Easier to program
- Illusionist
 - Bigger, faster, reliable
- Government
 - Divides resources
 - "Taxes" = overhead

New Developments in OS:

- Operating systems: active field of research
 - Demands on OS's growing
 - New application spaces (Web, Grid, Cloud)
 - Rapidly evolving hardware
- Open-source operating systems
 - Linux etc.
 - You can contribute to and develop OS's
 - Excellent research platform

OS: Salient Features

• Services: The OS provides standard services which the hardware implements

- Coordination: The OS coordinates multiple applications and users to achieve fairness and efficiency
- Design an OS so that the machine is convenient to use and efficient

Why study OS?

- Abstraction: How to get the OS to give users an illusion of infinite resources
- System Design: How to make tradeoffs between performance, convenience, simplicity, and functionality
- Basic Understanding: The OS provides the services that allow application programs to work at all
- System Intersection Point: The OS is the point where hardware and software meet

Not many operating systems are under development, so you are unlikely to get a job building an OS. However, understanding operating systems will enable you to use your computer more efficiently

Build Large Computer Systems

- OS as an example of large system design
- Goals:

2 OS Structure and Architecture

Modern OS Functionality:

- Concurrency
- I/O Devices
- Memory management
- Files
- Distributed systems and networks

OS Principles:

- OS as juggler
- OS as government
- OS as complex system
- OS as history teacher

Protection:

• Kernel mode vs User Mode

To protect the system from aberrant users, some instructions are restricted to use only by the OS

Users may not

- address I/O directly
- use instructions that manipulate the state of memory
- set the mode bits that determine user or kernel mode
- disable and enable interrupts
- halt the machine

In kernel mode, the OS can do all of these things

• Hardware needs to support at least both kernel and user

Crossing Protection Boundaries:

System call: OS procedure that executes privileged instructions

- Causes a trap
- The trap handler uses the parameter to jump
- The handler saves caller's state so it can restore control
- The architecture must permit this

Memory Protection:

- Architecture must provide support to the OS to protect user programs and itself
- The simplest technique is to use base and limit registers
- Instantiated by the OS before starting a program

• The CPU checks user reference ensuring it falls between base and limit values