

Time limit: 6000 ms Memory limit: 256 MB

There is a wall of N rows and M columns of tiles. Some tiles on the wall are *colorable*, while the others are *non-colorable*. You are to color all the colorable tiles using C types of color pigments. Each type of color pigment has a unique color. Every colorable cell needs to be in one of these C colors. Additionally, there should be no three colorable cells within any 2×2 square that have a same color. In how many ways (modulo $1\,000\,000\,007$) can you color the entire wall?

Standard input

The input has a single integer ${\cal T}$ on the first line, the number of test cases.

Each test case has three integers N,M,C on the first line. The next N lines each has M characters describing one row of the wall. Each character is either a dot \square , denoting a colorable tile, or a hash \square , denoting a non-colorable tile.

Standard output

For each test case, output the number of ways to color the wall modulo $1\,000\,000\,007(10^9+7)$ on a single line.

Constraints and notes

- $1 \le T \le 10$
- $N, M \geq 2$
- $N \times M \le 75$
- $2 \le C \le 4$
- There is at least one colorable tile on the wall.
- \bullet For 50% of the test files, N=2.

Input	Output	Explanation
3 2 2 2 2	6 342 177840	$\bullet \;$ Case 1: The illustration shows the 6 different ways of coloring a 2×2 wall using $C=2$ colors.
2 3 3 2 6 4 ##		
#		

 \bullet Case 2: There are 342 different ways, which are too many to enumerate here. Here are two valid ways to color the 2×3 wall with C=3 colors:

Here are two invalid ways. They are invalid because the highlighted red 2×2 square contains three cells of a same color.

