TD V : Les espaces L^p et la mesure de Lebesgue sur \mathbb{R}^n

1 Espaces L^p

Exercice 1. Soient (X, \mathscr{A}, μ) un espace mesuré, et $p, q, r \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Si $f \in L^p(X, \mu)$ et $g \in L^q(X, \mu)$, montrer qu'on a $fg \in L^r(X, \mu)$ et $\|fg\|_r \leqslant \|f\|_p \|g\|_q$.

Exercice 2. Inclusions entre espaces L^p

- 1. Soit (X, \mathcal{A}, μ) un espace mesuré tel que $\mu(X) < +\infty$. Si $p, q \in [1, +\infty]$ vérifient p < q, montrer que $L^q(X, \mu) \subset L^p(X, \mu)$.
- 2. On considère \mathbb{N} muni de la mesure de comptage. Si $p, q \in [1, +\infty]$ vérifient p < q, montrer que $\ell^p \subset \ell^q$.
- 3. On considère \mathbb{R} muni de la mesure de Lebesgue et $p, q \in [1, +\infty]$ tels que p < q. Donner un exemple de fonctions $f \in L^p(\mathbb{R})$ telle que $f \notin L^q(\mathbb{R})$, et un exemple de fonction $g \in L^q(\mathbb{R})$ telle que $g \notin L^p(\mathbb{R})$.

Exercice 3. On considère \mathbb{R} muni de la mesure de Lebesgue λ_1 .

- 1. Pour tout $n \in \mathbb{N}^*$, on note $f_n(x) = e^{-n|x|}$. Montrer que $f_n \in L^p(\mathbb{R})$ pour tout $p \in [1, +\infty]$ et tout $n \in \mathbb{N}^*$. Calculer $||f_n||_p$.
- 2. Pour tout $n \in \mathbb{N}^*$, on note $g_n(x) = \frac{1}{(n+|x|)^2}$. Montrer que $g_n \in L^p(\mathbb{R})$ pour tout $p \in [1, +\infty]$ et tout $n \in \mathbb{N}^*$. Calculer $||g_n||_p$.
- 3. On considère les normes $\|.\|_1$ et $\|.\|_2$ sur $E = L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Ces deux normes sont équivalentes sur E s'il existe 0 < a < b tels que $a\|f\|_1 \le \|f\|_2 \le b\|f\|_1$ pour tout $f \in E$. Montrer que $\|.\|_1$ et $\|.\|_2$ ne sont pas équivalentes sur E.

2 Mesure de Lebesgue sur \mathbb{R}^n

Exercice 4.

- 1. Soit $D = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y > 0 \text{ et } 1 < x^2 + y^2 < 4\}$. Calculer $\int_D \frac{xy}{x^2 + y^2} dx dy$.
- 2. Soit $B \subset \mathbb{R}^3$ la boule unité, et a > 1. Calculer $\int_B \frac{1}{\sqrt{x^2 + y^2 + (z a)^2}} dx dy dz$

Exercice 5. Soient a, b > 1 et D l'ouvert de \mathbb{R}^2 contenant le point (1, 1) et délimité par les droites d'équation y = ax et $y = \frac{x}{a}$, et par les hyperboles d'équation $y = \frac{b}{x}$ et $y = \frac{1}{bx}$.

Pour tout $(x,y) \in \mathbb{R}^2$, on note u = xy et $v = \frac{x}{y}$. Montrer que $(x,y) \in D \Leftrightarrow (u,v) \in]\frac{1}{b}, b[\times]\frac{1}{a}, a[$ et calculer $\lambda_2(D)$ en faisant un changement de variables.

Exercice 6. La fonction Bêta d'Euler

On considère la fonction $B: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}$ définie par $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$.

- 1. Montrer que la fonction B est bien définie et que $B(x,y) = B(y,x) = 2\int_0^{\frac{\pi}{2}} \sin^{2x-1}\theta \cos^{2y-1}\theta d\theta$.
- 2. Soit $U = \mathbb{R}_+^* \times]0,1[$ et $F: U \to \mathbb{R}^2$ définie par F(u,v) = (uv,u(1-v)).
 - (a) Montrer que F est un difféomorphisme de U sur $V = (\mathbb{R}_+^*)^2$.
 - (b) Pour $x, y \in \mathbb{R}_+^*$, soit $I(x, y) = \int_{(\mathbb{R}_+^*)^2} s^{x-1} t^{y-1} e^{-(s+t)} ds dt$. Calculer I(x, y) en utilisant le changement de variable (s, t) = F(u, v) et en déduire que $B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$.
- 3. Calculer $B(\frac{1}{2},\frac{1}{2})$. En déduire $\Gamma(\frac{1}{2})$ et $\Gamma(\frac{2n+1}{2})$ pour tout $n\in\mathbb{N}.$

3 Convolution

Exercice 7. Soit $f = \mathbb{1}_{[-\frac{1}{2}, \frac{1}{2}]}$.

1. Calculer f * f et f * f * f.

On donne
$$f * f * f(x) = \begin{cases} 0 & \text{si } |x| > \frac{3}{2} \\ \frac{1}{2}(x + \frac{3}{2})^2 & \text{si } -\frac{3}{2} \leqslant x \leqslant -\frac{1}{2} \\ -x^2 + \frac{6}{8} & \text{si } -\frac{1}{2} \leqslant x \leqslant \frac{1}{2} \\ \frac{1}{2}(x - \frac{3}{2})^2 & \text{si } \frac{1}{2} \leqslant x \leqslant \frac{3}{2} \end{cases}$$

- 2. On note $f^{*n}=f^{*n-1}*f$ avec $f^{*1}=f$ et $n\geqslant 2$. Vérifier que pour tout $n\geqslant 1,$ $f^{*n}\in L^1(\mathbb{R})$ et que $\|f^{*n}\|_1=1$.
- 3. Montrer que pour tout $n \ge 2$, f^{*n} est de classe C^{n-2} .

Exercice 8. Soient $p \in [1, +\infty[$ et soit q son exposant conjugué. Soient $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$ et h = f * g.

- 1. Montrer que h(x) est bien définie pour tout $x \in \mathbb{R}^n$ et que h est une fonction bornée sur \mathbb{R}^n .
- 2. Montrer que pour tout $x, u \in \mathbb{R}^n$ on a $h(x+u) h(x) = (\tau_{-u}f f) * g$ et en déduire que h est continue sur \mathbb{R}^n .
- 3. Soient A, B deux boréliens de \mathbb{R}^n de mesures non nulles et finies. Calculer $\int_{\mathbb{R}^n} \mathbb{1}_A * \mathbb{1}_B d\lambda_n$ et en déduire que $\mathbb{1}_A * \mathbb{1}_B$ est une fonction continue non nulle.

4 Pour s'entrainer

Exercice 9. Soient $a_1, \ldots, a_n \in \mathbb{R}$ des nombres réels deux à deux distincts, et soit $\mu = \delta_{a_1} + \cdots + \delta_{a_n}$, mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- 1. Soient $f,g:\mathbb{R}\to\mathbb{R}$ deux fonctions mesurables. A quelle condition nécessaire et suffisante a-t-on f=g μ -p.p. ?
- 2. Montrer que pour tout $p, q \in [0, +\infty]$ on a $L^p(\mathbb{R}, \mu) = L^q(\mathbb{R}, \mu)$.
- 3. Montrer que $L^p(\mathbb{R},\mu)$ est un espace vectoriel de dimension finie et en donner une base.

Exercice 10. Inégalité d'interpolation

Soient (X, \mathcal{A}, μ) un espace mesuré, et $p, q, r \in [1, +\infty]$ tels que p < r < q.

- 1. Montrer qu'il existe un unique $a \in]0,1[$ tel que $\frac{1}{r} = \frac{a}{p} + \frac{1-a}{q}.$
- 2. Pour toute fonction mesurable $f: X \to \mathbb{C}$, montrer que $||f||_r \leqslant ||f||_p^a ||f||_q^{1-a}$. Que dit cette inégalité sur les espaces $L^p(X)$, $L^q(X)$ et $L^r(X)$?

Exercice 11. Soit (X, \mathscr{A}, μ) un espace mesuré pour lequel les parties de mesures non nulles ont une mesure uniformément minorée : $0 < \alpha = \inf\{\mu(A) \mid A \in \mathscr{A} \text{ et } \mu(A) > 0\}$.

- 1. Donner un exemple d'espace mesuré ayant cette propriété.
- 2. Soit $p \in [0, +\infty[$, et soit $f \in L^p(X)$.
 - (a) Soit $c < \|f\|_{\infty}$. Montrer qu'il existe une partie mesurable E telle que $\mu(E) > 0$ et $|f(x)| \ge C$ pour tout $x \in E$. En déduire que $\int_X |f|^p d\mu \ge C^p \alpha$.
 - (b) Montrer que $||f||_{\infty} \leqslant \alpha^{-\frac{1}{p}} ||f||_{p}$.
- 3. Soient $p,q\in[0,+\infty[$ tels que p< q. En utilisant ce qui précède, montrer que $\|f\|_q\leqslant \alpha^{\frac{1}{q}-\frac{1}{p}}\|f\|_p$
- 4. Que disent ces inégalités sur les inclusions entre espaces $L^p(X)$ et $L^q(X)$?

Exercice 12.

- 1. Soit $D = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \text{ et } x^2 + y^2 < 1\}$. Calculer $\int_D \frac{1}{1 + x^2 + y^2} dx dy$.
- 2. Soit $D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 < z < a \text{ et } x^2 + y^2 < a^2\}$. Calculer $\int_D \frac{z}{\sqrt{x^2 + y^2}} dx dy dz$.

Exercice 13. Soit $D = \{(x,y) \in \mathbb{R}^2 \mid x < y < 2x \text{ et } x < y^2 < 2x\}$. Calculer $\int_D \frac{y}{x} dx dy$ en utilisant le changement de variables $u = \frac{x}{y}$, $v = \frac{y^2}{x}$.

Exercice 14. Soient $f, g \in L^1(\mathbb{R})$ deux fonctions paires. Montrer que f * g est paire. Que peut-on dire si f et g sont impaires? Si l'une est paire et l'autre impaire?

Exercice 15. Soient f et g deux fonctions de classe C^1 sur \mathbb{R} , bornées et de dérivées bornées. On suppose de plus que $f \in L^1(\mathbb{R})$ et $g' \in L^1(\mathbb{R})$. Montrer que f * g est bien définie sur \mathbb{R} et est une fonction de classe C^2 .

Exercice 16. Extrait d'un sujet d'examen

On considère \mathbb{R}^3 muni de sa tribu borélienne et de la mesure de Lebesgue λ_3 . Pour tout $u, v \in \mathbb{R}^3$ on note [u, v] le segment d'extrémités u et v défini par $[u, v] = \{(1 - t)u + tv \mid t \in [0, 1]\}$.

Dans la suite on identifie \mathbb{R}^3 à $\mathbb{R}^2 \times \mathbb{R}$, on pourra donc noter (x, s) les points de \mathbb{R}^3 , avec $x \in \mathbb{R}^2$ et $s \in \mathbb{R}$.

Soit $A \in \mathcal{B}(\mathbb{R}^2)$, le cône C_A de sommet $(0,1) \in \mathbb{R}^3$ et de base A est l'union des segments de \mathbb{R}^3 joignant (0,1) à un point de $A \times \{0\}$: $C_A = \bigcup_{x \in A} [(0,1),(x,0)]$.

- 1. Montrer que C_A est un borélien de \mathbb{R}^3 .
- 2. Pour tout $s \in \mathbb{R}$, déterminer $(C_A)_{.,s} = \{x \in \mathbb{R}^2 \mid (x,s) \in C_A\}$. En déduire $\lambda_2((C_A)_{.,s})$.
- 3. Calculer $\lambda_3(C_A)$ en fonction de $\lambda_2(A)$.
- 4. Soit h > 0. On note $C_{A,h}$ le cône de sommet $(0,h) \in \mathbb{R}^3$ et de base $A: C_{A,h}$ est l'union des segments de \mathbb{R}^3 joignant (0,h) à un point de $A \times \{0\}$. Que vaut $\lambda_3(C_{A,h})$?
- 5. En identifiant \mathbb{R}^{n+1} à $\mathbb{R}^n \times \mathbb{R}$, généraliser ce qui précèdes aux cônes de \mathbb{R}^{n+1} de sommet $(0,1) \in \mathbb{R}^n \times \mathbb{R}$ et de base $A \in \mathcal{B}(\mathbb{R}^n)$.

Exercice 17. Extrait d'un sujet d'examen

On rappelle que la fonction bêta d'Euler est définie par $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ et vérifie

$$B(x,y) = B(y,x) = 2 \int_0^{\frac{\pi}{2}} \sin^{2x-1}\theta \cos^{2y-1}\theta d\theta = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Pour a, b > 0, on note $I_{a,b} = \int_D |x|^{a-1} |y|^{b-1} dx dy$, où $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ est le disque unité de \mathbb{R}^2 .

- 1. En utilisant des coordonnées polaires, exprimer $I_{a,b}$ à l'aide de la fonction Γ .
- 2. Même question pour $J_{a,b,c} = \int_B |x|^{a-1}|y|^{b-1}|z|^{c-1}dxdydz$, où B est la boule unité de \mathbb{R}^3 .