Capítulo 1

Números complejos-Problemas

Números complejos en forma binómica y polar. Módulo de complejos.

1. Dados
$$Z_1 = 2 + 4i$$
, $Z_2 = 3 - i$, $Z_3 = 1 + 2i$, hallar $(Z_1 + Z_2)^2 - \frac{Z_2}{Z_3}$

- 2. Calcular $\frac{1-Z}{1+Z}$, siendo $Z = \cos(\theta) + i \sin(\theta)$
- 3. Hallar el valor de $m \in \mathbb{R}$ para que $Z = \frac{1+mi}{m+i}$ verifique:
 - a) Re(Z)=0, b) Im(Z)=0, c) |Z|=1, d) Z esté en la bisectriz del segundo cuadrante.
- 4. Hallar los números complejos cuya suma es 3 y cuyo cociente es imaginario puro, sabiendo que el módulo del dividendo es la mitad que el del divisor. Encontrar todas las soluciones.
- 5. Sabiendo que el complejo $(1+i+i^2+\cdots+i^{22})(3+ki)$ tiene módulo 5, hallar razonadamente el valor del número real k.
- 6. Dado un número complejo $Z_1 \neq 0$, hállense todos los complejos $Z \neq Z_1$ para los que $Z_2 = \frac{Z + Z_1}{Z Z_1}$ es:
 a) real,
 b) imaginario puro.
- 7. Calcular el valor del número real $\left(1+\sqrt{3}i\right)^n+\left(1-\sqrt{3}i\right)^n$ siendo n un número natural.
- 8. Hallar dos números complejos sabiendo que la diferencia entre ambos es real, la suma tiene parte real 8, y su producto es 11 16i.
- 9. Demuestra que $\overline{iz} = -i\overline{z}$

Lugares geométricos.

- 10. Indicar la región del plano que satisface cada una de las siguientes condiciones:
 - a) |Z-1|+|Z+1| < 2, b) |Z-2|-|Z+2| > 3, c) |Z| = Re(Z) + 1,
 - d) |Z-5| = |Z-i|, e) |Z-4| > 1, f) $Im(Z) \ge 2$,
 - g) $0 < \operatorname{Re}(iZ) < 1$.

- 2
 - 11. Hallar y describir el conjunto de todos los números complejos tales que:

a)
$$\frac{1}{Z} + \frac{1}{\overline{Z}} = 1$$
, b) $\left| \frac{Z-1}{Z+1} \right| \le 1$

- 12. ¿Qué lugar geométrico determinan los puntos Z, tales $\left| \frac{1-Z}{1+Z} \right| = p$ siendo p > 0 y $p \neq 1$?. ¿Y si p = 1?
- 13. Hallar las coordenadas de los vértices de un cuadrado, inscrito en una circunferencia centrada en el origen, sabiendo que uno de los vértices es el número complejo 1 + 2i.

Raíces, exponenciales, logaritmos y potenciación compleja.

14. Calcular el valor de los siguientes complejos:

a)
$$\sqrt[3]{-2+2i}$$
, b) $(1+i)^{-3i}$, c) $\sqrt[5]{(1+i)^3}$, d) $\frac{1}{\sqrt[4]{-16i}}$.

15. Hallar los siguientes logaritmos complejos, indicando sus valores principales:

a)
$$\ln(4)$$
, b) $\ln(-2)$, c) $\ln(-i)$, d) $\ln(2-3i)$.

- 16. Obtener la suma y el producto de las raíces n-ésimas de la unidad.
- 17. Calcula y representa los afijos de las raíces cúbicas de $\frac{2i^9+i^{-7}}{3i}$. Expresar el resultado en forma binómica.
- 18. Hallar el argumento del complejo Z que tenga módulo 1, siendo

$$Z = (1+i)^{\left(\frac{9\pi}{4} + i \ln \sqrt{2}\right)}.$$

- 19. Calcular $Z = ln\sqrt{t}$ siendo t un número complejo de módulo 1 y que verifica $\frac{t}{1+\sqrt{3}i} \in \mathbb{R}$.
- 20. Utilizando la fórmula de Moivre, hallar en función de $\cos x$ y sen x:

a)
$$\sin 5x$$
, b) $\cos 7x$.

- 21. Los afijos de Z_1 , Z_2 , Z_3 , Z_4 , Z_5 y Z_6 son los vértices consecutivos de un hexágono regular. Sabiendo que $Z_1 = 0$ y $Z_4 = 4 + 6i$, hallar los restantes vértices.
- 22. Expresar en forma binómica $z=i\mathrm{e}^{(i\frac{7\pi}{4})}$

Soluciones de algunos de los problemas propuestos.

1.-
$$\frac{79 + 157 i}{5}$$

$$2.-\frac{-\sin\theta}{1+\cos\theta}i.$$

3.-a)
$$m=0;$$
 b) $m=\pm 1;$ c) $\forall m\in\mathbb{R};$ d) $m=-1\pm \sqrt{2}.$

4.-
$$Z_1 = \frac{3}{5} + \frac{6}{5}i$$
, $Z_2 = \frac{12}{5} - \frac{6}{5}i$; $Z_1' = \frac{3}{5} - \frac{6}{5}i$, $Z_2' = \frac{12}{5} + \frac{6}{5}i$.

5.-
$$k = \pm 4$$
.

7.-
$$2^{n+1}\cos\frac{n\pi}{3}$$
.

10.- a) Imposible, b) Zona interior de la hipérbola $\frac{x^2}{\frac{9}{4}} - \frac{y^2}{\frac{7}{4}} = 1$, e) Exterior de la circunferencia de centro (4,0) y radio 1.

12.- Circunferencias de centro
$$\left(\frac{1+p^2}{1-p^2},0\right)$$
 y radio $r=\frac{2p}{1-p^2}.$

16.- $S=0,\,P=\pm 1$ según sea n
 par o impar.

18.-
$$\alpha = \left(\ln\sqrt{2}\right)^2 + \frac{81\pi^2}{16}$$
.