Data types

CLEANING DATA IN PYTHON

Daniel Chen Instructor

Prepare and clean data

	name	sex	treatment a	treatment b
0	Daniel	male	-	42
1	John	male	12	31
2	Jane	female	24	27

Data types

```
print(df.dtypes)
```

```
name object
sex object
treatment a object
treatment b int64
dtype: object
```

- There may be times we want to convert from one type to another
 - Numeric columns can be strings, or vice versa

Converting data types

```
df['treatment b'] = df['treatment b'].astype(str)
df['sex'] = df['sex'].astype('category')
df.dtypes
```

```
name object
sex category
treatment a object
treatment b object
dtype: object
```


Categorical data

- Converting categorical data to 'category' dtype:
 - Can make the DataFrame smaller in memory
 - Can make them be utilized by other Python libraries for analysis

Cleaning data

Numeric data loaded as a string

	name	sex	treatment a	treatment b
0	Daniel	male	_	42
1	John	male	12	31
2	Jane	female	24	27

Cleaning data

Numeric data loaded as a string

	name	sex	treatment a	treatment b
0	Daniel	male	-	42
1	John	male	12	31
2	Jane	female	24	27

Cleaning bad data

```
name object
sex category
treatment a float64
treatment b object
dtype: object
```

Let's practice!

CLEANING DATA IN PYTHON

Using regular expressions to clean strings

CLEANING DATA IN PYTHON

Daniel Chen Instructor

String manipulation

- Much of data cleaning involves string manipulation
- Most of the world's data is unstructured text
- Also have to do string manipulation to make datasets consistent with one another

Validate values

- 17
- \$17
- \$17.89
- \$17.895

String manipulation

- Many built-in and external libraries
- re library for regular expressions
 - A formal way of specifying a pattern
 - Sequence of characters
- Pattern matching
 - Similar to globbing

17	
\$17	
\$17.00	
\$17.89	
\$17.895	

17	\d
\$17	
\$17.00	
\$17.89	
\$17.895	

17	12345678901	\d*
\$17		
\$17.00		
\$17.89		
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	
\$17.00		
\$17.89		
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$
\$17.00		
\$17.89		
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00		
\$17.89		
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	
\$17.89		
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*
\$17.89		
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89		
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89	\$12345678901.24	
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89	\$12345678901.24	\\$\d*\.\d{2}
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89	\$12345678901.24	\\$\d*\.\d{2}
\$17.895		

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89	\$12345678901.24	\\$\d*\.\d{2}
\$17.895	\$12345678901.999	

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89	\$12345678901.24	\\$\d*\.\d{2}
\$17.895	\$12345678901.999	^\\$\d*\.\d{2}\$

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89	\$12345678901.24	\\$\d*\.\d{2}
\$17.895	\$12345678901.999	^\\$\d*\.\d{2}\$

17	12345678901	\d*
\$17	\$12345678901	\\$\d*
\$17.00	\$12345678901.42	\\$\d*\.\d*
\$17.89	\$12345678901.24	\\$\d*\.\d{2}
\$17.895	\$12345678901.999	^\\$\d*\.\d{2}\$

• "I have 17.89 USD"

Using regular expressions

- Compile the pattern
- Use the compiled pattern to match values
- This lets us use the pattern over and over again
- Useful since we want to match values down a column of values

Using regular expressions

```
import re

pattern = re.compile('\$\d*\.\d{2}')

result = pattern.match('$17.89')

bool(result)
```

True

Let's practice!

CLEANING DATA IN PYTHON

Using functions to clean data

CLEANING DATA IN PYTHON

Daniel Chen Instructor

Complex cleaning

- Cleaning step requires multiple steps
 - Extract number from string
 - Perform transformation on extracted number
- Python function

apply()

```
print(df)
```

```
treatment a treatment b

Daniel 18 42

John 12 31

Jane 24 27
```

```
df.apply(np.mean, axis=0)
```

```
treatment a 18.000000
treatment b 33.333333
dtype: float64
```


apply()

```
print(df)
```

```
treatment a treatment b

Daniel 18 42

John 12 31

Jane 24 27
```

```
df.apply(np.mean, axis=1)
```

```
Daniel 30.0

John 21.5

Jane 25.5

dtype: float64
```


Applying functions

	Job#	Doc #	Borough	Initial Cost	Total Est. Fee
0	121577873	2	MANHATTAN	\$75000.00	\$986.00
1	520129502	1	STATEN ISLAND	\$0.00	\$1144.00
2	121601560	1	MANHATTAN	\$30000.00	\$522.50
3	121601203	1	MANHATTAN	\$1500.00	\$225.00
4	121601338	1	MANHATTAN	\$19500.00	\$389.50

Write the regular expression

```
import re
from numpy import NaN

pattern = re.compile('^\$\d*\.\d{2}$')
```

Writing a function

example.py

```
def my_function(input1, input2):
    # Function Body
    return value
```

Write the function

diff_money.py

```
def diff_money(row, pattern):
    icost = row['Initial Cost']
   tef = row['Total Est. Fee']
    if bool(pattern.match(icost)) and bool(pattern.match(tef)):
        icost = icost.replace("$", "")
        tef = tef.replace("$", "")
        icost = float(icost)
        tef = float(tef)
        return icost - tef
    else:
        return(NaN)
```

Write the function

```
print(df_subset.head())
```

```
Job #
                         Borough Initial Cost Total Est. Fee
           Doc #
121577873
                      MANHATTAN
                                    $75000.00
                                                      $986.00
                                                               7401
                                                     $1144.00
520129502
                  STATEN ISLAND
                                        $0.00
                                                               -114
121601560
                      MANHATTAN
                                    $30000.00
                                                      $522.50
                                                               2947
121601203
                      MANHATTAN
                                     $1500.00
                                                      $225.00
                                                                127
121601338
                      MANHATTAN
                                    $19500.00
                                                      $389.50
                                                               1911
```


Let's practice!

CLEANING DATA IN PYTHON

Duplicate and missing data

CLEANING DATA IN PYTHON

Daniel Chen Instructor

Duplicate data

- Can skew results
- .drop_duplicates() method

	name	sex	treatment a	treatment b
0	Daniel	male	_	42
1	John	male	12	31
2	Jane	female	24	27
3	Daniel	male	_	42

Duplicate data

- Can skew results
- .drop_duplicates() method

	name	sex	treatment a	treatment b
0	Daniel	male	_	42
1	John	male	12	31
2	Jane	female	24	27
3	Daniel	male	_	42

Drop duplicates

```
df = df.drop_duplicates()
print(df)
```

```
name sex treatment a treatment b

0 Daniel male - 42

1 John male 12 31

2 Jane female 24 27
```

Missing data

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2.0
1	NaN	1.66	Male	No	Sun	Dinner	3.0
2	21.01	3.50	Male	No	Sun	Dinner	3.0
3	23.68	NaN	Male	No	Sun	Dinner	2.0
4	24.59	3.61	NaN	NaN	Sun	NaN	4.0

Missing data

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2.0
1	NaN	1.66	Male	No	Sun	Dinner	3.0
2	21.01	3.50	Male	No	Sun	Dinner	3.0
3	23.68	NaN	Male	No	Sun	Dinner	2.0
4	24.59	3.61	NaN	NaN	Sun	NaN	4.0

- Leave as-is
- Drop them
- Fill missing value

Count missing values

```
tips_nan.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill 202 non-null float64
       220 non-null float64
tip
   234 non-null object
sex
smoker 229 non-null object
       243 non-null object
day
            227 non-null object
time
            231 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 13.4+ KB
None
```


Drop missing values

```
tips_dropped = tips_nan.dropna()
tips_dropped.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 147 entries, 0 to 243
Data columns (total 7 columns):
total_bill 147 non-null float64
     147 non-null float64
tip
    147 non-null object
sex
smoker 147 non-null object
       147 non-null object
day
    147 non-null object
time
       147 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 9.2+ KB
```


Fill missing values with .fillna()

- Fill with provided value
- Use a summary statistic

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill 244 non-null float64
    220 non-null float64
tip
      244 non-null object
sex
            229 non-null object
smoker
            243 non-null object
day
      227 non-null object
time
      244 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 13.4+ KB
```


Fill missing values with a test statistic

- Careful when using test statistics to fill
- Have to make sure the value you are filling in makes sense
- Median is a better statistic in the presence of outliers

```
mean_value = tips_nan['tip'].mean()
print(mean_value)
2.964681818181819
tips_nan['tip'] = tips_nan['tip'].fillna(mean_value)
tips_nan.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total_bill
             244 non-null float64
             244 non-null float64
tip
             244 non-null object
sex
smoker
             229 non-null object
             243 non-null object
day
             227 non-null object
time
             244 non-null float64
size
dtypes: float64(3), object(4)
memory usage: 13.4+ KB
```


Let's practice!

CLEANING DATA IN PYTHON

Testing with asserts

CLEANING DATA IN PYTHON

Daniel Chen Instructor

Assert statements

- Programmatically vs visually checking
- If we drop or fill NaNs, we expect 0 missing values
- We can write an assert statement to verify this
- We can detect early warnings and errors
- This gives us confidence that our code is running correctly

Asserts

Google stock data

	Date	Open	High	Low	Close	Volume	Adj Close
О	2017-02-09	831.729980	NaN	826.500000	830.059998	1192000.0	NaN
1	2017-02-08	830.530029	834.250000	825.109985	829.880005	1300600.0	829.880005
2	2017-02-07	NaN	NaN	823.289978	NaN	1664800.0	NaN
3	2017-02-06	820.919983	822.390015	NaN	821.619995	NaN	821.619995
4	2017-02-03	NaN	826.130005	819.349976	820.130005	1524400.0	820.130005

Test column

```
assert google.Close.notnull().all()
```

```
AssertionError Traceback (most recent call last)
<ipython-input-49-eec77130a77f> in <module>()
----> 1 assert google.Close.notnull().all()
AssertionError:
```


Test column

```
google_0 = google.fillna(value=0)
assert google_0.Close.notnull().all()
```

Let's practice!

CLEANING DATA IN PYTHON

