Theoretische Informatik Kapitel 5 – Kontextsensitive und \mathcal{L}_0 -Sprachen

Sommersemester 2024

Dozentin: Mareike Mutz im Wechsel mit Prof. Dr. M. Leuschel Prof. Dr. J. Rothe

CF versus CS

Theorem

CF ist echt in CS enthalten.

Beweis:

Nach dem Pumping-Lemma für kontextfreie Sprachen ist

$$L = \{a^m b^m c^m \mid m \ge 1\}$$

nicht kontextfrei.

- Andererseits ist L kontextsensitiv, wie die Grammatik aus einem früheren Beispiel zeigt.
- Somit ist $L \in CS CF$, also $CF \subset CS$.

Ziel: Automatenmodelle für CS und für \mathfrak{L}_0 .

Turingmaschinen

- Ein grundlegendes, einfaches, abstraktes Algorithmenmodell ist die Turingmaschine, die 1936 von Alan Turing (1912 bis 1954) in seiner bahnbrechenden Arbeit "On computable numbers, with an application to the Entscheidungsproblem" eingeführt wurde.
- Wir betrachten wieder zwei Berechnungsparadigma:
 - Determinismus und
 - Nichtdeterminismus.
- Es ist zweckmäßig, zuerst das allgemeinere Modell der nichtdeterministischen Turingmaschine zu beschreiben.
 Deterministische Turingmaschinen ergeben sich dann sofort als ein Spezialfall.
- PDAs und somit auch NFAs und DFAs sind spezielle TMs.

Turingmaschinen: Modell und Arbeitsweise

Abbildung: Eine Turingmaschine

- Eine Turingmaschine ist ausgestattet mit:
 - k beidseitig unendlichen Arbeitsbändern,
 - die in Felder unterteilt sind,
 - in denen Buchstaben oder das □-Symbol stehen können.
 - Das □-Symbol signalisiert ein leeres Feld.

Turingmaschinen: Modell und Arbeitsweise

- Auf den Arbeitsbändern findet die eigentliche Rechnung statt.
- Zu Beginn einer Rechnung:
 - steht das Eingabewort auf dem Eingabeband, und
 - alle anderen Felder enthalten das □-Zeichen.
- Am Ende der Rechnung erscheint das Ergebnis der Rechnung auf dem Ausgabeband.
- Auf jedes Band kann je ein Schreib-Lese-Kopf zugreifen. Dieser kann in einem Takt der Maschine
 - den aktuell gelesenen Buchstaben überschreiben und dann
 - eine Bewegung um ein Feld nach rechts oder
 - links ausführen oder aber
 - auf dem aktuellen Feld stehenbleiben.
 - Gleichzeitig kann sich der aktuelle Zustand der Maschine ändern, den sie sich in ihrem inneren Gedächtnis ("finite control") merkt.

Nichtdeterministische Turingmaschine: Syntax

Definition

Eine (nichtdeterministische) Turingmaschine mit k Bändern (kurz k-Band-TM) ist ein 7-Tupel $M = (\Sigma, \Gamma, Z, \delta, z_0, \Box, F)$, wobei

- Σ das Eingabe-Alphabet ist,
- Γ das Arbeitsalphabet mit $\Sigma \subseteq \Gamma$,
- Z eine endliche Menge von Zuständen mit $Z \cap \Gamma = \emptyset$,
- $\delta: Z \times \Gamma^k \to \mathfrak{P}(Z \times \Gamma^k \times \{L, R, N\}^k)$ die Überführungsfunktion,
- $z_0 \in Z$ der Startzustand,
- $\square \in \Gamma \Sigma$ das "Blank"-Symbol (oder Leerzeichen) und
- $F \subseteq Z$ die Menge der Endzustände.

Deterministische Turingmaschine: Syntax

Definition

Der Spezialfall der *deterministischen Turingmaschine mit k Bändern* ergibt sich, wenn die Überführungsfunktion δ von $Z \times \Gamma^k$ nach $Z \times \Gamma^k \times \{L, R, N\}^k$ abbildet.

Bemerkung:

- Für k = 1 ergibt sich die 1-Band-Turingmaschine (1-Band-TM).
- Jede k-Band-TM kann durch eine 1-Band-Turingmaschine simuliert werden, wobei sich die Rechenzeit höchstens quadriert.
- Spielt die Effizienz eine Rolle, kann es dennoch sinnvoll sein, mehrere Bänder zu haben.
- Wir beschränken uns im Folgenden auf 1-Band-Turingmaschinen.

Turingmaschine: Arbeitsweise

• Statt $(z', b, x) \in \delta(z, a)$ mit $z, z' \in Z$, $x \in \{L, R, N\}$, $a, b \in \Gamma$ schreiben wir kurz:

$$(z,a) \rightarrow (z',b,x),$$

oder (wenn es keine Verwechslungen geben kann):

$$za \rightarrow z'bx$$
.

- Dieser Turingbefehl bedeutet: Ist im Zustand z der Kopf auf einem Feld mit aktueller Inschrift a, so wird:
 - a durch b überschrieben,
 - der neue Zustand z' angenommen und
 - eine Kopfbewegung gemäß x ∈ {L, R, N} ausgeführt (d.h., ein Feld nach Links, ein Feld nach Rechts oder Neutral, also Stehenbleiben).

- Turingmaschinen kann man sowohl als Akzeptoren auffassen, die Sprachen (also Wortmengen) akzeptieren,
- als auch zur Berechnung von Funktionen benutzen.
- In diesem Abschnitt betrachten wir Turingmaschinen als Akzeptoren;
- die Funktionsberechnung einer Turingmaschine wird später definiert.

Definition

• Eine *Konfiguration einer TM M* = $(\Sigma, \Gamma, Z, \delta, z_0, \Box, F)$ ist ein Wort

$$k \in \Gamma^* Z \Gamma^*$$
.

Dabei bedeutet $k = \alpha z \beta$, dass

- $\alpha\beta$ die aktuelle Bandinschrift ist (also das Wort, in das die Eingabe bisher transofrmiert wurde),
- der Kopf auf dem ersten Symbol von β steht und
- z der aktuelle Zustand von M ist.
- Auf der Menge $\mathfrak{K}_M = \Gamma^* Z \Gamma^*$ aller Konfigurationen von M definieren wir eine binäre Relation \vdash_M wie folgt.
 - Intuitiv gilt $k \vdash_M k'$ für $k, k' \in \mathfrak{K}_M$ genau dann, wenn k' aus k durch eine Anwendung von δ hervorgeht.

• Formal: Für alle $\alpha = a_1 a_2 \cdots a_m$ und $\beta = b_1 b_2 \cdots b_n$ in Γ^* ($m \ge 0$, $n \ge 1$) und für alle $z \in Z$ sei

$$\alpha z\beta \vdash_{M} \left\{ \begin{array}{ll} a_{1}a_{2}\cdots a_{m}z'cb_{2}\cdots b_{n} & \text{falls } (z,b_{1})\rightarrow (z',c,N), \ m\geq 0, \ n\geq 1 \\ a_{1}a_{2}\cdots a_{m}cz'b_{2}\cdots b_{n} & \text{falls } (z,b_{1})\rightarrow (z',c,R), \ m\geq 0, \ n\geq 2 \\ a_{1}a_{2}\cdots a_{m-1}z'a_{m}cb_{2}\cdots b_{n} & \text{falls } (z,b_{1})\rightarrow (z',c,L), \ m\geq 1, \ n\geq 1. \end{array} \right.$$

Sonderfälle:

- 1 und $(z, b_1) \rightarrow (z', c, R)$ (d.h., M läuft nach rechts, trifft auf \square): $a_1 a_2 \cdots a_m z b_1 \vdash_M a_1 a_2 \cdots a_m c z' \square$.
- ② m = 0 und $(z, b_1) \rightarrow (z', c, L)$ (d.h., M läuft nach links, trifft auf \square): $zb_1b_2\cdots b_n \vdash_M z' \square cb_2\cdots b_n$.

- Die Startkonfiguration von M bei Eingabe x ist stets z_0x .
- Die Endkonfigurationen von M bei Eingabe x haben die Form αzβ mit z ∈ F und α, β ∈ Γ*. M hält an, falls eine Endkonfiguration erreicht wird, oder falls kein Turingbefehl mehr auf die aktuelle Konfiguration von M anwendbar ist.
- Sei \vdash_{M}^{*} die reflexive, transitive Hülle von \vdash_{M} .
- Die von der TM M akzeptierte Sprache ist definiert durch

$$L(M) = \{ x \in \Sigma^* \mid z_0 x \vdash_M^* \alpha z \beta \text{ mit } z \in F \text{ und } \alpha, \beta \in \Gamma^* \}.$$

Turingmaschine

Bemerkung:

- Da im Falle einer nichtdeterministischen TM jede Konfiguration mehrere Folgekonfigurationen haben kann, ergibt sich ein Berechnungsbaum,
 - dessen Wurzel die Startkonfiguration und
 - dessen Blätter die Endkonfigurationen sind.
- Die Knoten des Berechnungsbaums von M(x) sind die Konfigurationen von M bei Eingabe x.
- Für zwei Konfigurationen k und k' aus \Re_M gibt es genau dann eine gerichtete Kante von k nach k', wenn gilt:

$$k \vdash_M k'$$
.

Turingmaschine

• Ein Pfad im Berechnungsbaum von M(x) ist eine Folge

$$k_0 \vdash_M k_1 \vdash_M \cdots \vdash_M k_t \vdash_M \cdots$$

von Konfigurationen, also eine Rechnung von M(x).

- Der Berechnungsbaum einer nichtdeterministischen TM (NTM) kann unendliche Pfade haben
- Im Falle einer deterministischen TM (DTM) wird jede Konfiguration außer der Startkonfiguration eindeutig (deterministisch) durch ihre Vorgängerkonfiguration bestimmt. Der Berechnungsbaum einer DTM entartet zu einer linearen Kette
 - von der Startkonfiguration zu einer Endkonfiguration, falls die Maschine bei dieser Eingabe hält;
 - andernfalls geht die Kette ins Unendliche.

Turingmaschine: einfaches Beispiel

$$M = (\{a, b, c\}, \{a, b, c, \Box\}, \{z_0, z_1, z_2, z_3\}, \delta, z_0, \Box, \{z_3\}) \text{ mit } \delta:$$

$$z_0 a \rightarrow z_0 a R \quad z_0 b \rightarrow z_1 b R \quad z_0 b \rightarrow z_2 b R$$

$$z_1 b \rightarrow z_1 b R \quad z_1 \Box \rightarrow z_3 \Box N$$

$$z_2 c \rightarrow z_0 c R$$

Schritt	links	Z	rechts	Schritt	links	Z	rechts
1	λ	<i>z</i> ₀	aabcabb	6	aabca	<i>z</i> ₀	bb
2	а	<i>z</i> ₀	abcabb	7	aabcab	<i>Z</i> ₁	b
3	aa	<i>z</i> ₀	bcabb	8	aabcabb	<i>z</i> ₁	
4	aab	<i>z</i> ₂	cabb	9	aabcabb	<i>z</i> ₃	
5	aabc	<i>z</i> ₀	abb				

Turingmaschine: Beispiel - Berechnungsbaum

$$M = (\{a,b,c\},\{a,b,c,\Box\},\{z_0,z_2,z_2\},\delta,z_0,\Box,\{z_3\}) \text{ mit } \delta\colon z_0 a \to z_0 a R \quad z_0 b \to z_1 b R \quad z_0 b \to z_2 b R \\ z_1 b \to z_1 b R \quad z_1 \Box \to z_3 \Box N \quad z_2 c \to z_0 c R \\ \text{Berechnungsbaum für Startkonfiguration} = \lambda \ z_0 \ \text{aabcabb}$$

Turingmaschine: Beispiel

Beispiel: Betrachte die Sprache $L = \{a^n b^n c^n \mid n \ge 1\}$. Eine Turingmaschine, die L akzeptiert, ist definiert durch

$$\textit{M} = (\{\textit{a},\textit{b},\textit{c}\}, \{\textit{a},\textit{b},\textit{c},\textit{A},\textit{B},\textit{C},\Box\}, \{\textit{z}_{0},\textit{z}_{1},\ldots,\textit{z}_{6}\}, \delta,\textit{z}_{0},\Box, \{\textit{z}_{6}\})$$

Tabelle: Liste δ der Turingbefehle von M für die Sprache $L = \{a^n b^n c^n \mid n \ge 1\}$

Turingmaschine: Beispiel

Die folgende Tabelle gibt die Bedeutung der einzelnen Zustände von *M* sowie die mit den einzelnen Zuständen verbundene Absicht an:

Z	Bedeutung	Absicht
<i>z</i> ₀	Anfangszustand	neuer Zyklus
<i>Z</i> ₁	ein a gemerkt	nächstes b suchen
<i>Z</i> ₂	je ein a, b gemerkt	nächstes <i>c</i> suchen
<i>Z</i> ₃	je ein a, b, c getilgt	rechten Rand suchen
<i>Z</i> ₄	rechter Rand erreicht	Zurücklaufen und Test, ob alle a, b, c getilgt
<i>Z</i> ₅	Test nicht erfolgreich	Zurücklaufen zum linken Rand und neuer Zyklus
<i>Z</i> ₆	Test erfolgreich	Akzeptieren

Tabelle: Interpretation der Zustände von M

Turingmaschine: Beispiel

Die (deterministische) Konfigurationenfolge von *M* bei Eingabe von *aabbcc* ist:

Turingmaschine: Beispiel aabbcc komplett

Schritt	links	Z	rechts	Schritt	links	Z	rechts
1	λ	z_0	aabbcc	15		z_0	AaBbCc□
2	Α	<i>z</i> ₁	abbcc	16	□A	z_0	aBbCc□
3	Aa	<i>z</i> ₁	bbcc	17	□AA	<i>z</i> ₁	BbCc□
4	AaB	z_2	bcc	18	□AAB	<i>z</i> ₁	bCc□
5	AaBb	z_2	cc	19	□AAB <mark>B</mark>	z_2	Cc□
6	AaBbC	z_3	С	20	□AABBC	z_2	с□
7	AaBbCc	<i>z</i> ₃		21	□AABBCC	z_3	
8	AaBbC	Z_4	c□	22	□AABBC	z_4	C□
9	AaBb	<i>z</i> ₅	Cc□	23	□AABB	z_4	CC□
10	AaB	<i>Z</i> 5	bCc□	24	□AAB	<i>Z</i> 4	BBC□
11	Aa	<i>z</i> ₅	BbCc□	25	□AA	z_4	BBCC□
12	A	<i>z</i> ₅	aBbCc□	26	□A	z_4	ABBCC□
13	λ	<i>Z</i> 5	AaBbCc□	27		z_4	AABBCC□
14	λ	<i>z</i> ₅	□ AaBbCc□	28	λ	z_4	□ AABBCC□
				29		<i>z</i> ₆	AABBCC□

Linear beschränkte Automaten

- Linear beschränkte Automaten sind spezielle Turingmaschinen, die nie den Bereich des Bandes verlassen, auf dem die Eingabe steht.
- Dazu ist es zweckmäßig, den rechten Rand der Eingabe wie folgt zu markieren (auf dem linken Rand steht der Kopf zu Beginn der Berechnung sowieso und kann diesen im ersten Takt markieren):
 - Verdoppele das Eingabe-Alphabet Σ zu $\widehat{\Sigma} = \Sigma \cup \{\widehat{a} \mid a \in \Sigma\}$.
 - ② Repräsentiere die Eingabe $a_1 a_2 \cdots a_n \in \Sigma^+$ durch das Wort

$$a_1 a_2 \cdots a_{n-1} \hat{a}_n$$

über $\widehat{\Sigma}$.

Linear beschränkte Automaten

Definition

- Eine nichtdeterministische TM M heißt linear beschränkter Automat (kurz LBA), falls für alle Konfigurationen αzβ und
 - für alle Wörter $x = a_1 a_2 \cdots a_{n-1} a_n \in \Sigma^+$ mit

$$z_0 a_1 a_2 \cdots a_{n-1} \widehat{a}_n \vdash_M^* \alpha z \beta$$

gilt:
$$|\alpha\beta| = n$$
, und

- für $x = \lambda$ mit $z_0 \square \vdash_M^* \alpha z \beta$ gilt: $\alpha \beta = \square$.
- Die vom LBA M akzeptierte Sprache ist definiert durch

$$L(M) = \left\{ a_1 a_2 \cdots a_{n-1} a_n \in \Sigma^* \middle| \begin{array}{l} z_0 a_1 a_2 \cdots a_{n-1} \widehat{a}_n \vdash_M^* \alpha z \beta \\ \text{mit } z \in F \text{ und } \alpha, \beta \in \Gamma^* \end{array} \right\}.$$

Theorem

$$L \in CS \iff L = L(M)$$
 für einen LBA M.

Beweis: (\Rightarrow) Es sei L eine kontextsensitive Sprache und

$$G = (\Sigma, N, S, P)$$

eine Typ-1-Grammatik mit L(G) = L.

Wir beschreiben den gesuchten LBA M für L informal wie folgt.

- ② Wähle nichtdeterministisch eine Regel $u \to v$ aus P und suche eine beliebiges Vorkommen von v in der aktuellen Bandinschrift von M.
- **3** Ersetze v durch u. Ist dabei |u| < |v|, so verschiebe entsprechend alle Symbole rechts der Lücke, um diese zu schließen.
- Ist die aktuelle Bandinschrift nur noch das Startsymbol S, so halte im Endzustand und akzeptiere;
 - andernfalls gehe zu (2) und wiederhole.

Die so konstruierte Turingmaschine M ist ein LBA, weil alle Regeln in P nichtverkürzend sind.

Es gilt:

$$x \in L(G) \iff ext{es gibt eine Ableitung } S \vdash_G^* x \ \iff ext{es gibt eine Rechnung von } M, ext{die diese} \ ext{Ableitung in umgekehrter Reihenfolge simuliert} \ \iff ext{} x \in L(M).$$

Turingmaschine: Beispiel ksG nach TM (alternativ)

Beispiel kSG G = $(\Sigma, \{S, T\}, S, \{S \to aTb, aT \to ab\})$. Leicht abgeänderte Übersetzung: anstatt Verschieben, werden wir leere Zellen mit E markieren. Wir bauen auch streng genommen keinen LBA (wir erlauben eine Verschiebung mit Blanks).

```
\Gamma = \{a, b, S, T, E, \Box\} \ Z = \{z0, z1, z11, z2, z3, z4, z5, z6\}, \ F = \{z6\}.
\delta = \{ (z0, a) \mapsto (z1, S, R), (z0, a) \mapsto (z2, a, R), (z0, a) \mapsto (z0, a, R), (z0, b) \mapsto (z0, b, R),
(z0, S) \mapsto (z0, S, R), (z0, T) \mapsto (z0, T, R),
(z1, T) \mapsto (z11, E, R), (z1, E) \mapsto (z1, E, R), (z11, b) \mapsto (z3, E, L),
(z2, b) \mapsto (z3, T, L), (z2, E) \mapsto (z2, E, R),
(z3, a) \mapsto (z3, a, L), (z3, b) \mapsto (z3, b, L), (z3, S) \mapsto (z3, S, L), (z3, T) \mapsto (z3, T, L),
(z3, E) \mapsto (z3, E, L), (z3, Blank) \mapsto (z0, Blank, R), (z3, Blank) \mapsto (z4, Blank, R),
(z4, E) \mapsto (z4, E, R), (z4, S) \mapsto (z5, S, R), (z5, E) \mapsto (z5, E, R), (z5, Blank) \mapsto (z6, Blank, N)
```

Wie müsste dieser Automat geändert werden, damit hier wie gewünscht ein LBA entsteht?

Turingmaschine: Beispiel ksG nach TM

Beispiel kSG G = $(\Sigma, \{S, T\}, S, \{S \to aTb, aT \to ab\})$. Leicht abgeänderte Übersetzung: anstatt Verschieben, werden wir leere Zellen mit E markieren. Wir bauen auch streng genommen keinen LBA (wir erlauben eine Verschiebung mit Blanks).

Hier ist der Berechnungsbaum für die Eingabe abb:

Turingmaschine: Beispiel ksG nach TM

Beispiel kSG G = $(\Sigma, \{S, T\}, S, \{S \rightarrow aTb, aT \rightarrow ab\})$. Leicht abgeänderte Übersetzung: anstatt Verschieben, werden wir leere Zellen mit E markieren. Wir bauen auch streng genommen keinen LBA (wir erlauben eine Verschiebung mit Blanks).

Hier ist ein erfolgreicher Ausführungspfad für die Eingabe abb.

Schritt	links	z	rechts	Schritt	links	Z	rechts
1	λ	<i>z</i> 0	abb	17		<i>z</i> 3	SEE
3	а	<i>z</i> 2	bb	19	λ	<i>z</i> 3	□SEE
5	λ	<i>z</i> 3	aTb	21		z4	SEE
6	λ	<i>z</i> 3	□aTb	22	□S	<i>z</i> 5	EE
8		<i>z</i> 0	aTb	23	□SE	<i>z</i> 5	E
12	$\Box S$	<i>z</i> 1	Tb	25	□SEE	<i>z</i> 5	
15	□SE	<i>z</i> 11	b	26	□SEE	<i>z</i> 6	
16	□S	<i>z</i> 3	EE				

(⇔)

- Sei $M = (\Sigma, \Gamma, Z, \delta, z_0, \Box, F)$ ein LBA mit L(M) = L.
- Ist x die Eingabe und ist $k \in \mathfrak{K}_M = \Gamma^* Z \Gamma^*$ eine Konfiguration mit

$$z_0x\vdash_M^* k$$
,

so müssen wir sichern, dass gilt:

$$|k| \leq |x|$$
.

 Um Konfigurationen durch Wörter der Länge |x| darzustellen, verwenden wir für die zu konstruierende Typ-1-Grammatik G das Alphabet

$$\Delta = \Gamma \cup (Z \times \Gamma).$$

 Beispielsweise hat die Konfiguration k = azbcd mit z ∈ Z und a, b, c, d ∈ Γ über dem Alphabet Δ die Darstellung

$$k' = a(z,b)cd$$

und somit die Länge 4 = |abcd|.

Abbildung: Darstellung von Konfigurationen durch Wörter.

- Einen δ -Übergang von $(z, a) \to (z', b, N)$ in M stellt man als Regel $(z, a) \to (z', b)$ dar.
- Einen δ -Übergang von M wie etwa

$$(z,a) \rightarrow (z',b,L)$$

kann man durch nichtverkürzende Regeln der Form

$$c(z,a) \rightarrow (z',c)b$$

für alle $c \in \Gamma$ beschreiben.

• Einen δ -Übergang von $(z, a) \to (z', b, R)$ stellt man als Regeln $(z, a)c \to b(z', c)$ für alle $c \in \Gamma$ beschreiben.

- Die Menge aller solcher Regeln der Grammatik heiße P'.
- Es gilt für alle $k_1, k_2 \in \mathfrak{K}_M$:

$$k_1 \vdash_M^* k_2 \iff k_1^{'} \vdash_{G'}^* k_2^{'}$$

wobei k_i' , $i \in \{1,2\}$, die obige Darstellung der Konfiguration k_i bezeichnet und G' die Grammatik mit Regelmenge P' ist.

 Wir brauchen jetzt ein paar "kleine Tricks" um, den Initialzustand des LBAs aufzubauen, die Kodierung des letzten Buchstabens (â) zu behandeln, und bei Erreichen des Endzustands den Zustand wegzuwerfen (damit nur Buchstaben in Σ übrigbleiben).

TM versus Typ-1-Grammatik - Beispiel

Leicht angepasste Version von früherem Beispiel (ist formal kein LBA, da die TM \square rechts liest): M =

$$(\{a,b\},\{a,b,\Box\},\{z_0,z_1,z_2,z_3\},\delta,z_0,\Box,\{z_3\}) \text{ mit } \delta$$
:

$$z_0a \rightarrow z_0aR$$
 $z_0b \rightarrow z_1bR$ $z_0b \rightarrow z_2bR$

$$z_1b \rightarrow z_1bR$$
 $z_1\Box \rightarrow z_3\Box N$ $z_2a \rightarrow z_0aR$

So soll sich die Grammatik im Vergleich zur TM verhalten (abgesehen von □, wo wir *abab̂* anstatt *abab*□ benutzen müssen):

#	links	Z	rechts	CSG	#	I.	Z	r.	CSG
1	λ	<i>z</i> ₀	abab	(z_0,a) bab	5	abab	<i>z</i> ₁		$abab(z_1, \Box)$
2	а	z_0	bab	$a(z_0,b)ab$	6	abab	<i>z</i> ₃		$abab(z_3, \Box)$
3	ab	z_2	ab	$ab(z_2,a)b$					
4	aba	z_0	b	$aba(z_0,b)$					

TM versus Typ-1-Grammatik - Beispiel

$$\delta$$
 von M : $egin{array}{lll} z_0 a
ightarrow z_0 a R & z_0 b
ightarrow z_1 b R & z_0 b
ightarrow z_2 b R \ & z_1 b
ightarrow z_1 b R & z_1 \square
ightarrow z_3 \square N & z_2 a
ightarrow z_0 a R \ & z_1 \square
ightarrow z_2 \cap z_2 \cap z_3 \cap$

Versuch einer Grammatik G mit $\Sigma = \{a, b, \Box\}$, $N = \{S, S_1, (z_0, a), \dots, (z_2, \Box)\}$, Regeln $R = \{S \mapsto S_1, \Box, S_1 \mapsto S_1 a, S_1 \mapsto S_1 b, S_1 \mapsto (z_0, a), S_1 \mapsto (z_0, b), S_1 \mapsto (z_0\Box), (z_0, a)a \mapsto a(z_0, a), (z_0, a)b \mapsto a(z_0, b), (z_0, a)\Box \mapsto a(z_0, \Box), (z_0, b)a \mapsto b(z_1, a), (z_0, b)b \mapsto b(z_1, b), (z_0, b)\Box \mapsto b(z_1, \Box), (z_0, b)a \mapsto b(z_2, a), (z_0, b)b \mapsto b(z_2, b), (z_0, b)\Box \mapsto b(z_2, \Box), (z_1, b)a \mapsto b(z_1, a), (z_1, b)b \mapsto b(z_1, b), (z_1, b)\Box \mapsto b(z_1, \Box), (z_1, \Box) \mapsto (z_3, \Box), (z_2, a)a \mapsto a(z_0, a), (z_2, a)b \mapsto a(z_0, b), (z_2, a)\Box \mapsto a(z_0, \Box) \}$

Ableitung:
$$S \vdash_G S_1 \Box \vdash_G S_1 b \Box \vdash_G S_1 ab \Box \vdash_G S_1 bab \Box \vdash_G (z_0, a)bab \Box \vdash_G a(z_0, b)ab \Box \vdash_G aba(z_2, a)b \Box \vdash_G abab(z_1, \Box) \vdash_G abab(z_3, \Box)$$

Was fehlt noch: Unterstützung von $\hat{a}, \hat{b}, abab$ ableiten und nicht $abab(z_3, \Box)$. Bei einer Regel wie

 $z_1b \to z_1cR$ in δ müssen wir auch zwischen dem neuen Bandinhalt c und dem akzeptierten Wort mit b unterscheiden.

• Definiere $G = (\Sigma, N, S, P)$ so

$$N = \{S, A\} \cup (\Delta \times \Sigma);$$

$$P = \{S \to A(\hat{a}, a) \mid a \in \Sigma\} \cup \tag{1}$$

$$\{A \rightarrow A(a,a) \mid a \in \Sigma\} \cup$$
 (2

$$\{A \to ((z_0, a), a) \mid a \in \Sigma\} \cup \tag{3}$$

$$\left\{ (\alpha_1, a)(\alpha_2, b) \to (\beta_1, a)(\beta_2, b) \middle| \begin{array}{l} \alpha_1 \alpha_2 \to \beta_1 \beta_2 \in P' \\ \text{für } a, b \in \Sigma \end{array} \right\} \cup (4)$$

$$\{(\alpha_1, \mathbf{a}) \to (\beta_1, \mathbf{a}) \mid \alpha_1 \to \beta_1 \in \mathbf{P}' \text{ für } \mathbf{a}, \mathbf{b} \in \Sigma\} \cup$$
 (5)

$$\{((z,a),b)\to b \mid z\in F, a\in \Gamma, b\in \Sigma\} \cup \tag{6}$$

$$\{(a,b)\to b\mid a\in\Gamma,b\in\Sigma\}.\tag{7}$$

Offenbar ist G eine Typ-1-Grammatik.

Die Idee hinter dieser Konstruktion von *G* ist die folgende:

• Die Regeln (1), (2) und (3) ermöglichen Ableitungen der Form

$$S \vdash_G^* ((z_0, a_1), a_1)(a_2, a_2) \cdots (a_{n-1}, a_{n-1})(\hat{a}_n, a_n).$$

Dabei ist

$$((z_0, a_1), a_1)(a_2, a_2) \dots (a_{n-1}, a_{n-1})(\hat{a}_n, a_n)$$

ein Wort mit *n* Buchstaben über dem Alphabet $\Delta \times \Sigma \subseteq N$.

- Jeder Buchstabe ist ein Paar. Dabei stellen
 - die ersten Komponenten die Startkonfiguration dar:

$$z_0 a_1 a_2 \cdots a_{n-1} \hat{a}_n = (z_0, a_1) a_2 \cdots a_{n-1} \hat{a}_n$$

• und die zweiten Komponenten das Eingabewort

$$X = a_1 a_2 \cdots a_{n-1} a_n$$

- Mit den Regeln der Form (4, 5) simuliert G dann die Rechnung von M bei Eingabe $x = a_1 a_2 \cdots a_{n-1} a_n$, wobei
 - die Regeln aus P' auf die ersten Komponenten der Paare angewandt werden und
 - die zweiten Komponenten unverändert bleiben.

Die Simulation der Rechnung von M(x) ist beendet, sobald eine Endkonfiguration erreicht ist.

- Regeln der Form (6) und (7) löschen schließlich die ersten Komponenten der Paare weg. Übrig bleiben die zweiten Komponenten, also das akzeptierte Eingabewort x.
- Wird nie eine Endkonfiguration von M(x) erreicht, so kommen die Löschregeln (6) der Grammatik G nie zur Anwendung.

 Zusammengefasst folgt aus der obigen Idee formal die Äquivalenzenkette:

$$\begin{array}{lll} x \in \mathcal{L}(\mathcal{M}) & \Longleftrightarrow \\ S & \vdash_G^* & ((z_0,a_1),a_1)(a_2,a_2)\cdots(a_{n-1},a_{n-1})(\hat{a}_n,a_n) \\ & & \text{mit (1), (2) und (3)} \\ & \vdash_G^* & (\gamma_1,a_1)\ldots(\gamma_{k-1},a_{k-1})((z,\gamma_k),a_k)(\gamma_{k+1},a_{k+1})\cdots(\gamma_n,a_n) \\ & & \text{mit (4), wobei } z \in F, \, \gamma_i \in \Gamma, \, a_i \in \Sigma \\ & \vdash_G^* & a_1a_2\cdots a_n = x \\ & & \text{mit (6) und (7)} \\ & \Longleftrightarrow & x \in \mathcal{L}(G), \end{array}$$

womit der Satz bewiesen ist.

TM versus Typ-0-Grammatik

Theorem

 $L \in \mathfrak{L}_0 \iff L = L(M)$ für eine Turingmaschine M.

Beweis: (\Rightarrow)

- Wie im ersten Teil des Beweises des Satzes oben, wobei man bei verkürzenden Regeln Symbole nach rechts verschieben muss.
- Da G nun nicht nur nichtverkürzende Regeln enthält, erhält man i. A. keinen LBA, sondern eine TM.

TM versus Typ-0-Grammatik

(⇔)

- Man kann die gleiche Konstruktion wie im zweiten Teil des Beweises des Satzes oben verwenden, man muss nur □ berücksichtigen und kann sich die Behandlung von â sparen.
- Da eine TM keine lineare Beschränkung auf dem Band hat, können in Regeln vom Typ (4) Konfigurationen k mit |k| > |x| aufgebaut werden. Solche Konfigurationen entsprechen Wörtern in G, die Nichtterminale der Form (α, a) mit $a = \lambda$ enthalten.
- Um solche Nichtterminale wieder zu löschen, müssen diese durch λ ersetzt werden, d.h., es werden verkürzende Regeln benötigt.
- Somit erhalten wir i. A. keine kontextsensitive, sondern eine Grammatik vom Typ 0.

TM versus Typ-0-Grammatik

Bemerkung:

- Im Satz oben ist es dabei gleichgültig, ob die TM M deterministisch oder nichtdeterministisch ist.
- Da man jede nichtdeterministische TM durch deterministische TMs simulieren kann, folgt

```
\mathfrak{L}_0 = \{L(M) \mid M \text{ ist eine deterministische TM}\}
= \{L(M) \mid M \text{ ist eine nichtdeterministische TM}\}.
```

 Im Gegensatz dazu ist es im Satz über LBA versus CS wesentlich, dass der LBA M eine nicht deterministische TM ist.

Erstes und zweites LBA-Problem

Bemerkung:

Bis heute offen ist das

<u>Erste LBA-Problem:</u> Sind deterministische und nichtdeterministische LBAs äquivalent?

• Hingegen ist das ebenfalls 1964 von Kuroda gestellte

Zweite LBA-Problem: Ist die Klasse der durch nichtdeterministische LBAs akzeptierbaren Sprachen komplementabgeschlossen?

inzwischen gelöst worden, und zwar unabhängig und etwa zeitgleich 1988 von Neil Immerman und Robert Szelepcsényi.

Charakterisierungen durch Automaten

	reguläre Grammatik
Тур 3	deterministischer endlicher Automat (DFA)
	nichtdeterministischer endlicher Automat (NFA)
	regulärer Ausdruck
deterministisch	LR(1)-Grammatik
kontextfrei	deterministischer Kellerautomat (DPDA)
Typ 2	kontextfreie Grammatik
	Kellerautomat (PDA)
Typ 1	kontextsensitive Grammatik
	linear beschränkter Automat (LBA)
Тур 0	Typ-0-Grammatik
	Turingmaschine (NTM bzw. DTM)

Determinismus vs. Nichtdeterminismus

Deterministischer	Nichtdeterministischer	äquivalent?
Automat	Automat	
DFA	NFA	ja
DPDA	PDA	nein
DLBA	LBA	?
DTM	NTM	ja

Abschlusseigenschaften

	Тур 3	det. kf.	Тур 2	Тур 1	Тур 0
Schnitt	ja	nein	nein	ja	ja
Vereinigung	ja	nein	ja	ja	ja
Komplement	ja	ja	nein	ja	nein
Konkatenation	ja	nein	ja	ja	ja
Iteration	ja	nein	ja	ja	ja
Spiegelung	ja	nein	ja	ja	ja

Komplexität des Wortproblems

Definition (Wortproblem)

Für $i \in \{0, 1, 2, 3\}$ definieren wir das Wortproblem für Typ-i-Grammatiken wie folgt:

$$\operatorname{Wort}_i = \{(G, x) \mid G \text{ ist Typ-}i\text{-Grammatik und } x \in L(G)\}$$

Typ 3 (DFA gegeben)	lineare Komplexität
det. kf.	lineare Komplexität
Typ 2 (CNF gegeben)	Komplexität $\mathcal{O}(n^3)$ (CYK-Algorithmus)
Typ 1	exponentielle Komplexität
Typ 0	unentscheidbar (d.h. algorithmisch nicht lösbar)