МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

Институт Финансовых Технологий и Экономической Безопасности Кафедра Финансового мониторинга

Лабораторная работа №5 по дисциплине «Эконометрика»

Выполнил студент группы С20-702: Проверил:

Нуритдинходжаева А.А. Домашова Д.В.

Оглавление

. Исходные данные и постановка задачи	
л т	_
2. Линейная модель множественной регрессии	3
В. Нелинейная модель множественной регрессии	5
* *	
l. Сравнение моделей	/
5. Вывод	8
Трипожение А	1.0
Приложение А	

1. Исходные данные и постановка задачи

По данным Приложения А провести регрессионный анализ:

- 1. Из экономических или других соображений подобрать параметрический класс нелинейных зависимостей для модели регрессии.
- 2. Линеаризовать модель, оценить параметры и провести содержательный анализ.

Использованные данные:

- у Валовой региональный продукт на душу населения (тыс.руб);
- х₄ Потребление картофеля на душу населения в кг;
- х₅ Потребление масло растительного и других жиров на душу населения в кг;
- х7 Потребление овощей и бахчевых на душу населения в кг;
- х₉ Потребление хлеба и хлебных продуктов на душу населения в кг;
- x_{11} Расходы консолидированных бюджетов субъектов РФ на здравоохранение на душу населения (тыс. рублей).

2. Линейная модель множественной регрессии

Выявим зависимость между результативным признаком у и объясняющими переменными $x_4, x_5, x_7, x_9, x_{11}$.

Рисунок 1 Результаты оценивания параметров регрессионной модели

Таблица 1 Оценка коэффициентов уравнения регрессии

		egression Summary for Dependent Variable: y (Лист1 in лаб5) R= ,32760122 R?= ,10732256 djusted R?= ,05082399 F(5,79)=1,8996 p								
N=85 b* Std.Err. b Std.Err. of b* t(79) p-v										
Interc ept			3014,535	2379,105	1,26709	0,208847				
x4	-0,046470	0,119250	-9,067	23,266	-0,38969	0,697817				
x5	-0,237210	0,133930	-334,268	188,730	-1,77114	0,080394				
x7	0,182194	0,114134	24,795	15,532	1,59631	0,114412				
x9	-0,031018	0,138493	-4,239	18,929	-0,22397	0,823359				
x11	0,142262	0,118040	35,221	29,224	1,20519	0,231726				

Уравнение регрессии:

$$y^{A} = 3014,535_{(2379,105)} - 9,067_{(23,266)} - 334,268_{(188,730)} + 24,795_{(15,532)} - 4,239_{(18,929)} + 35,221_{(29,224)}$$

Методом пошаговой регрессии с исключением переменных получили следующие результаты:

```
Multiple Regression Results: Лист1 in ла65

Multiple Regression Results (Step 4)

Dependent: y Multiple R = ,25624480 F = 5,832892
R?= ,06566140 df = 1,83

No. of cases: 85 adjusted R?= ,05440431 p = ,017926
Standard error of estimate:2365,4667738

Intercept: 5125,9526919 Std.Error: 1643,303 t( 83) = 3,1193 p = ,0025

x5 b*=-,26
```

Рисунок 2 Результаты оценивания параметров модели

Таблица 2 Результаты оценивания ЛММР методом пошаговой регрессии

		tegression Summary for Dependent Variable: y (Лист1 in лаб5) R= ,25624480 R?= ,06566140 djusted R?= ,05440431 F(1,83)=5,8329 p									
N=85	b* Std.Err. b Std.Err. of b* t(83) p-value										
Interc ept			5125,953	1643,303	3,11930	0,002493					
х5	-0,256245	0,106099	-361,091	149,512	-2,41514	0,017926					

После устранения мультиколлинеарности в модели осталась одна значимая переменная x₅. Уравнение регрессии выглядит следующим образом:

$$y^{\wedge} = 5125,953_{(1643,303)} - 361,091_{(149,512)}x_5$$

Поскольку можно допустить нормальный характер распределения регрессионных остатков,

Рисунок 3 График распределения регрессионных остатков

на основании отчета о результатах регрессионного анализа делаем вывод:

- модель регрессии значима;
- существенное влияние на результативный признак у -валовой региональный продукт на душу населения, оказывает объясняющая переменная x_5 потребление масла растительного и других жиров на душу населения в кг;
- коэффициент детерминации составил $R^2 = 0.6566140$, т.е. 65,66% доли вариации результирующей переменной объясняется переменной x_5 , а 34,34% доли вариации объясняется неучтенными в модели факторами.

Рисунок 4 График оценки функции регрессии

На основании графического анализа проверим гипотезу о наличии автокорреляции (H₀: автокорреляция отсутствует) и проверим ее с помощью критерия Дарбина-Уотсона.

Таблица 3 Значение статистики Дарбина-Уотсона

	Durbin-Watson d (Лист1 in лаб5) and serial correlation of residuals					
	Durbin- Serial					
	Watson d	Corr.				
Estimate	2,141141	-0,103722				

Для расчета критического значения критерия воспользуемся таблицей значений статистики Дарбина-Уотсона. В нашем случае для n=85, k=1 получаем $d_{\scriptscriptstyle H}=1,62$, $d_{\scriptscriptstyle B}=1,67$. Так как $d_{\scriptscriptstyle B}<$ DW < 4- $d_{\scriptscriptstyle B}$, то нулевую гипотезу об отсутствии автокорреляции первого порядка принимаем, т.е. делаем вывод об отсутствии автокорреляции.

3. Нелинейная модель множественной регрессии

Построим нелинейную функцию регрессии:

Рисунок 5 Результаты оценивание параметров регрессионной модели

Таблица 4 Оценка коэффициентов нелинейного уравнения регрессии

	Regression Summary for Dependent Variable: In y (Лист1 in лаб5) R= ,50326933 R?= ,25328002 djusted R?= ,20541336 F(5,78)=5,2914 p							
N=84	N=84 b* Std.Err. b Std.Err. of b* b (78) p-\							
Interc ept			3,31100	4,831039	0,68536	0,495148		
ln x5	-0,059900	0,126269	-0,40805	0,860157	-0,47439	0,636551		
ln x4	0,061456	0,111538	0,34119	0,619230	0,55099	0,583218		
ln x7	0,360718	0,106333	2,12808	0,627316	3,39235	0,001091		
ln x9	-0,263307	0,137038	-1,73321	0,902047	-1,92142	0,058332		
In x11	0,243615	0,117441	0,40999	0,197646	2,07435	0,041345		

Уравнение регрессии:

$$y_{i1} \wedge^* = 3,31100_{(4,831039)} - 0,40805_{(0,860157)} x_{i5}^* + 0,34119_{(0.619230)} x_{i4}^* + 2,12808_{(0,627316)} x_{i7}^* - 1,73321_{(0,902047)} x_{i9}^* + 0.40999_{(0,197646)} x_{i11}^*$$

Методом пошаговой регрессии с исключением переменных получили следущие результаты:

Рисунок 6 Результаты оценивания параметров модели

Таблица 5 Результаты оценивания нелинейной ММР методом пошаговой регрессии

	1 иомица 5 1 езулотито оценивания неминеиной мімі метооом пошиговой регрессии										
	Regression Summary for Dependent Variable: In у (Лист1 in лаб5) R= ,45998889 R?= ,21158978										
	Adjusted R?= ,19	Adjusted R?= ,19212286 F(2,81)=10,869 p									
N=84	b* Std.Err. b Std.Err. of b* b std.Err. of b										
Interc ept			9,49405	3,804521	2,49547	0,014610					
ln x7	0,302764	0,099153	1,78617	0,584960	3,05350	0,003060					
ln x9	-0,377830	0,099153	-2,48705	0,652674	-3,81056	0,000269					

Поскольку проведенный анализ регрессионных остатков подтвердил нормальный характер их распределения,

Рисунок 7 Гистограмма регрессионных остатков

то делаем выводы:

- модель регрессии значима;
- существенное влияние на результативный признак у -валовой региональный продукт на душу населения, оказывает объясняющая переменная x_7 и x_{11} потребление овощей и бахчевых на душу населения в кг, расходы консолидированных бюджетов субъектов РФ на здравоохранение на душу населения;
- коэффициент детерминации составил $R^2 = 0.25328002$, т.е. 25,32% доли вариации результирующей переменной объясняется переменными x_7 и x_{11} , а 74,68% доли вариации объясняется неучтенными в модели факторами.

Оценка уравнения регрессии выглядит следующим образом:

$$y_{i1}^{*} = 9,49405_{(3,804521)} + 1,78617_{(0,584960)}x_{i7}^{*} - 2,48705_{(0,652674)}x_{i9}^{*}$$

Проверим гипотезу о наличии автокорреляции (H_0 : автокорреляция отсутствует) и проверим ее с помощью критерия Дарбина-Уотсона.

Таблица 5 Значение статистики Дарбина-Уотсона

	1400	inga s sha territe emantitemitiki Zapotina v omeona					
	Durbin-Watson d (Лист1 in лаб5) and serial correlation of residuals						
	Durbin- Serial						
	Watson d	Corr.					
Estimate	1,686044	0,133645					

Для расчета критического значения критерия воспользуемся таблицей значений статистики Дарбина-Уотсона. В нашем случае для n=85, k=1 получаем $d_{\scriptscriptstyle H}=1,62$, $d_{\scriptscriptstyle B}=1,67$. Так как $d_{\scriptscriptstyle B}<$ DW < 4- $d_{\scriptscriptstyle B}$, то нулевую гипотезу об отсутствии автокорреляции первого порядка принимаем, т.е. делаем вывод об отсутствии автокорреляции.

Перейдем к уравнению регрессии с исходными показателями:

$$y_{i1}^{\wedge} = 13280,4725 * x_7^{(1,78617)} * x_9^{(-2,48705)}$$

4. Сравнение моделей

Таким образом, в данной работе по имеющимся данным были построены две модели: одна – линейная, другая - нелинейная. Для сравнения полученных оценок уравнений регрессии найдем модельные значения.

При построении линейной модели регрессии получили:

$$y^{\wedge} = 5125,953_{(1643,303)} - 361,091_{(149,512)}x_5$$

При построении нелинейной модели получили:

$$y_{i1}^{=13280,4725} x_7^{(1,78617)} x_9^{(-2,48705)}$$

Найдем модельные значения:

лин	нелин
1732,492	545,3332
829,9812	567,8263
1263,579	519,7973
641,7083	729,8225
1420,112	765,5165
1107,841	863,8031
1506,305	602,4747
928,3062	517,7125
1532,05	739,2799
1246,933	565,3254
601,1939	879,7349
1720,829	856,1707
427,7619	412,4969
2387,258	539,8293
1318,465	752,0239
1274,123	865,5918
209,1213	422,1692
2362,596	966,7483
45,58318	583,0913
1669,734	681,2815
1345,294	286,0064
989,0056	572,1146
953,1132	510,3186
1188,183	638,9607
1995,113	681,1494
2046,569	1236,796
1281,525	505,5722
2176,923	757,7717

2186,925	1183,301
451,1245	599,4302
1009,299	648,0874
1018,832	854,2325
1111,199	1160,773
750,2884	858,3825
870,0261	791,6514
630,0812	974,2301
2209,529	1012,832
-147,131	300,0471
699,7717	95,04347
-518,152	276,6094
1512,01	368,1549
1849,558	927,5962
890,8611	225,7897
1325,073	957,0074
241,114	320,238
1652,33	291,6815
191,8611	324,1597
1792,65	741,6343
1556,785	757,9518
1292,972	568,2631
1763,582	648,0896
1655,146	508,1273
1575,201	597,5641
601,9883	589,0048
1493,666	465,3544
2133,339	693,4313
1271,09	785,0776

Таблица 6 Модельные значения 1827,639 | 830,4177 1024,393 619,479 1648,394 608,8155 1509,121 659,2174 1363,782 917,812 1264,265 824,2325 1794,997 870,3897 956,0741 225,2654 1265,782 76,92378 677,9257 660,0925 1210,932 383,5084 1352,48 587,113 840,4167 397,1663 1164,749 593,91 552,1938 436,6504 948,2385 798,9169 1818,576 655,3267 1589,717 323,3613 810,085 262,0421 294,9526 184,8573 738,6439 2515,265 770,0057 1022,009 1929,539 695,7082 700,6745 624,1955 896,9274 517,6387 694,8248 559,1114

-279,976

1828,362

281,2608

457,3058

5. Вывод

В данной работе были выявлена зависимость между результативным признаком у - валовой региональный продукт на душу населения (тыс.руб) и объясняющими переменными x_4 — потребление картофеля на душу населения в кг, x_5 — потребление масло растительного и других жиров на душу населения в кг, x_7 — потребление овощей и бахчевых на душу населения в кг, x_9 — потребление хлеба и хлебных продуктов на душу населения в кг, x_{11} — расходы консолидированных бюджетов субъектов РФ на здравоохранение на душу населения (тыс. рублей). Линейная молель:

$$y^{\wedge} = 5125,953_{(1643,303)} - 361,091_{(149,512)}x_5$$

Из полученной модели следует, что с увеличением потребления масла растительного и других жиров на 1 кг, валовой региональный продукт уменьшится на 361,091 тыс.руб.

Нелинейная модель:

$$v_{i1}^{\wedge} = 13280,4725 * x_7^{(1,78617)} * x_9^{(-2,48705)}$$

Из полученной модели следует, что с увеличением потребление овощей и бахчевых на 1 кг, валовой региональный продукт увеличится на 1,78617 тыс.руб, а с увеличением потребления хлеба и хлебных продуктов на 1 кг, валовой региональный продукт уменьшится на 2,48705 тыс.руб.

Если рассмотреть модельные значения (таблица 6), то можно прийти к выводу, что значения для первой и второй моделей не совпадают имеют сильный разброс.

Стандартная ошибка регрессии значительно уменьшилась:

Для линейной модели: 2365,4667738

Для нелинейной модели: 0,983870915

Коэффициент детерминации увеличился:

Для линейной модели: $R^2 = 0.06566140$

Для нелинейной модели: R2=0,21158978

Учитывая процесс исследования, можно сделать вывод, что лучше взять нелинейную модель регрессии исходя из исходных данных, в обоих моделях отсутствует автокорреляция, не нормальное распределение в линейной модели и нормальное распределение в нелинейной модели, низкий коэффициент детерминации в обеих моделях, значительное уменьшение стандартной ошибки регрессии в нелинейной модели.

Приложение А

субьект РФ	у	x4	х5	x7	x9	x11
Белгородская область	955,95	82,54	9,40	103,58	101,13	7,36
Брянская область	397,71	67,21	11,90	114,52	106,93	4,64
Владимирская область	537,43	57,43	10,70	103,37	102,95	5,89
Воронежская область	1002,60	59,06	12,42	118,66	99,17	5,61
Ивановская область	249,76	58,88	10,26	101,34	86,86	2,88
Калужская область	545,11	62,47	11,13	111,97	88,89	6,28
Костромская область	202,93	60,56	10,02	94,62	91,04	5,84
Курская область	496,70	80,59	11,62	114,44	110,92	5,38
Липецкая область	570,38	61,64	9,95	102,40	88,74	5,61
Московская область	5128,44	56,25	10,74	97,91	95,72	11,53
Орловская область	265,67	62,62	12,53	93,85	77,73	4,49
Рязанская область	436,04	55,13	9,43	99,47	81,93	5,93
Смоленская область	348,06	85,92	13,01	102,93	112,63	3,82
Тамбовская область	354,30	60,19	7,58	81,62	85,57	2,94
Тверская область	485,17	62,04	10,54	107,64	91,35	4,62
Тульская область	681,61	62,74	10,67	122,64	94,81	6,84
Ярославская область	606,82	63,83	13,62	93,65	104,26	5,51
г. Москва	19673,00	48,07	7,65	105,90	81,62	18,96
Республика Карелия	325,18	59,89	14,07	93,66	91,58	5,93
Республика Коми	720,67	48,42	9,57	88,19	82,38	11,06
Ненецкий автономный округ	331,12	46,99	10,47	68,25	97,15	43,40
Архангельская область	559,05	47,80	11,46	95,94	93,88	8,46
Вологодская область	630,14	56,19	11,56	97,72	99,61	6,42
Калининградская область	519,72	65,66	10,91	97,06	90,55	7,56
Ленинградская область	1224,51	56,70	8,67	94,50	86,58	10,63
Мурманская область	616,91	49,22	8,53	90,74	66,16	11,00
Новгородская область	273,54	54,31	10,65	86,67	91,72	6,04
Псковская область	197,13	61,48	8,17	86,25	77,68	5,93
г. Санкт-Петербург	5124,59	48,50	8,14	106,97	75,79	14,93
Республика Адыгея	132,24	51,53	12,95	123,56	110,50	4,70
Республика Калмыкия	88,95	42,01	11,40	104,34	94,84	5,47
Республика Крым	469,28	55,74	11,37	133,01	101,04	8,09
Краснодарский край	2569,81	50,04	11,12	130,36	88,04	5,39
Астраханская область	602,31	50,57	12,12	133,38	101,04	5,68
Волгоградская область	961,41	58,59	11,79	118,38	95,82	4,33
Ростовская область	1637,75	61,46	12,45	136,16	97,46	4,12
г. Севастополь	136,93	46,34	8,08	127,70	91,63	7,23
Республика Дагестан	718,50	91,49	14,60	156,75	173,14	2,69
Республика Ингушетия	73,19	67,76	12,26	77,52	165,78	2,21
Кабардино-БалкарскаяРеспублика	171,04	46,34	15,63	118,43	146,28	2,94
Карачаево-ЧеркесскаяРеспублика	92,02	68,35	10,01	103,10	118,04	4,28

Карачаево-ЧеркесскаяРеспублика	92,02	68,35	10,01	103,10	118,04	4,28
Республика СевернаяОсетия-Алания	173,24	60,86	9,07	133,94	98,24	5,66
Чеченская Республика	241,63	72,18	11,73	94,08	134,53	3,48
Ставропольский край	827,04	53,32	10,53	103,10	80,39	3,47
Республика Башкортостан	1810,09	57,59	13,53	95,78	118,42	5,86
Республика Марий Эл	204,08	54,42	9,62	86,64	114,40	2,71
Республика Мордовия	263,35	42,77	13,66	89,37	112,11	4,73
Республика Татарстан	2795,85	71,82	9,23	99,00	86,51	6,44
Удмуртская Республика	721,35	59,35	9,88	109,84	92,40	4,11
Чувашская Республика	339,77	90,92	10,62	108,93	103,13	3,90
Пермский край	1495,01	55,02	9,31	100,71	92,46	5,10
Кировская область	370,26	48,02	9,61	87,36	92,06	2,47
Нижегородская область	1621,91	46,08	9,83	96,19	92,43	5,08
Оренбургская область	1107,16	62,56	12,53	110,33	102,59	4,83
Пензенская область	448,98	50,94	10,06	98,59	104,03	5,11
Самарская область	1687,92	47,73	8,29	92,97	84,96	4,74
Саратовская область	811,77	53,59	10,68	131,47	103,66	3,49
Ульяновская область	420,32	55,91	9,13	102,88	84,98	4,74
Курганская область	233,47	58,80	11,36	114,08	102,97	3,94
Свердловская область	2529,55	43,26	9,63	88,86	86,66	6,33
Тюменская область	8919,09	55,98	10,02	100,52	91,70	0,00
Ханты-Мансийский автономный			,	,	.,,,,,	-,,,,,
округ - Югра	4563,06	55,11	10,42	101,30	80,72	29,96
Ямало-Ненецкий автономный округ	3100,56	50,03	10,69	103,10	85,36	32,07
Челябинская область	1545,58	42,00	9,22	96,64	79,72	4,75
Республика Алтай	58,98	57,58	11,55	78,07	117,77	6,94
Республика Тыва	79,21	47,84	10,69	49,01	129,85	6,09
Республика Хакасия	256,25	76,33	12,32	108,91	97,09	5,64
Алтайский край	630,81	66,57	10,84	89,69	105,05	4,44
Красноярский край	2692,24	54,27	10,45	94,16	91,67	7,72
Иркутская область	1545,68	72,59	11,87	91,27	104,90	6,10
Кемеровская область	1110,42	62,30	10,97	92,88	90,35	5,59
Новосибирская область	1409,19	107,73	12,67	93,85	103,01	5,04
Омская область	772,95	64,40	11,57	96,35	82,34	3,69
Томская область	622,81	50,37	9,16	93,02	86,94	5,83
Республика Бурятия	285,83	63,35	9,79	75,88	99,78	7,54
Республика Саха (Якутия)	1220,32	43,06	11,95	71,98	104,55	11,46
Забайкальский край	364,56	53,15	13,38	70,30	118,27	5,17
Камчатский край	279,67	48,52	7,23	71,64	68,69	17,42
Приморский край	1066,72	56,71	11,37	98,95	85,18	6,21
Хабаровский край	802,97	42,64	8,85	77,31	74,32	7,01
Амурская область	412,48	89,36	12,26	100,52	93,74	6,77
Магаданская область	213,58	44,60	11,71	78,30	84,47	38,84
Сахалинская область	1173,89	48,71	12,27	86,16	87,72	48,49
Еврейская автономная область	56,57	58,62	14,97	70,83	100,45	7,63
Чукотский автономный округ	94,88	40,48	9,13	68,96	81,05	54,84