Calculating Propagators and Saving Memory

1. Continuous Gaussian chain

For continuous Gaussian chain used in PSCF, the architecture of an *acyclic* block copolymer (BCP) chain, which consists of $n_B \ge 1$ (linear homopolymer) **blocks** connecting $n_V = n_B + 1$ **vertices** (note that an acyclic chain can be constructed by adding, in each step, a block and a new vertex to an existing vertex), including both joints (J) and free ends (E), is described by specifying the vertices j and $k \in [0, n_B]$ connected by each block i (=0,..., n_B -1). Each block i has two (one-end-integrated) propagators $q_i(\mathbf{r},s)$ and $q_i^{\dagger}(\mathbf{r},s)$, where \mathbf{r} denotes the spatial position, and $s=0,\ldots,N_i\Delta s$ with N_i being the number of steps along the chain contour into which the block is uniformly discretized, $\Delta s \equiv f_i/N_i$ being the step-size, and f_i being the volume fraction of block i in the copolymer chain; in the REPS-K method ($K=0,\ldots,4$; see REPS.pdf for details), N_i must be an integer multiple of 2^K (i.e., $M_i \equiv N_i/2^K$ must be a positive integer). We calculate in Step I all the forward propagators $q_i^{\dagger}(\mathbf{r},s)$, then in Step II all the backward propagators $q_i^{\dagger}(\mathbf{r},s)$.

Hereafter we take the calculation of propagators for block i as an example. To calculate its contribution to the volume-fraction field (at a spatial position \mathbf{r}) of its segment type, we need to evaluate $\int_0^{f_i} ds q_i(\mathbf{r}, s) q_i^{\dagger}(\mathbf{r}, s) \approx \Delta s \sum_{k'=1}^{M_i} \sum_{k=0}^{2^k} c_k q_{i, 2^K (k'-1)+k} q_{i, 2^K (k'-1)+k}^{\dagger}$ using the Romberg integration (denoted by RI-K; see RI.pdf for details), where c_k 's are the coefficients used in RI-K, $q_{i,j} \equiv q_i(\mathbf{r}, j\Delta s)$, and $q_{i,j}^{\dagger} \equiv q_i^{\dagger}(\mathbf{r}, j\Delta s)$. To reduce the memory usage, we use the "slice" algorithm proposed in Ref. 1: We store $q_{i,j}$ for all i at their "check points" with j=0 and $j = N_i - \left(\sum_{i=1}^{l} i - 1\right) = N_i - \frac{l(l+1)}{2} + 1$ only for **positive integer** values of $l < l_{\text{max}}$ (in the **descending** order) in Step I above, where $j > 0 \implies l^2 + l - 2(N_i + 1) < 0 \implies l_{\text{max}} = \left(\sqrt{8N_i + 9} - 1\right)/2$. In Step II above, we only store q_{i,j^*}^{\dagger} for the current value of j^* (= N_i , N_i -1,...,0); note that q_{i,j^*-1}^{\dagger} needs to be calculated out of place in REPS-K due to its successive halving of Δs . If $q_{i,j}$ is available (e.g., when j^* is a check point), we then directly calculate the contribution of j^* to the above integral; otherwise, we calculate all $q_{i,j}$ between the corresponding check points enclosing j^* and store them in the same places as the no-longer-needed q-values, then calculate their contribution to the above integral. Compared to the usual approach of calculating and storing all propagators before calculating the volume-fraction fields, the "slice" algorithm reduces the memory usage by a factor of $\sqrt{2N_i}$ for large N_i at the cost of increasing the computation by 50% (i.e., solving $q_{i,j}$ twice).

Similarly, to calculate the contribution of block i to the system stress (which vanishes when the bulk periodicity of an ordered phase formed by BCP self-assembly is found), we evaluate $\sum_{\mathbf{q}} \frac{\mathrm{d}\hat{\Phi}_i(\mathbf{q})}{\mathrm{d}\mathbf{q}} \frac{\partial q}{\partial \mathbf{0}} \int_0^{f_i} \mathrm{d}s \hat{q}_i(\mathbf{q}, s) \hat{q}_i^{\dagger}(-\mathbf{q}, s) \text{ in the same way as above, where } \hat{\Phi}_i(q) = \exp\left(-b_i^2 q^2/6\right)$ with b_i being the statistical segment length of block i, $\hat{q}_i(\mathbf{q}, s) \equiv \int \mathrm{d}\mathbf{r} \exp\left(-\sqrt{-1}\mathbf{q} \cdot \mathbf{r}\right) q_i(\mathbf{r}, s)/V$ and $\hat{q}_i^{\dagger}(\mathbf{q}, s) \equiv \int \mathrm{d}\mathbf{r} \exp\left(-\sqrt{-1}\mathbf{q} \cdot \mathbf{r}\right) q_i^{\dagger}(\mathbf{r}, s)/V$ with \mathbf{q} being the wavevector and V the system volume,

 $q = |\mathbf{q}|$, and the vector $\boldsymbol{\theta}$ denotes the (up to six) unit-cell parameters.

2. Discrete chain

On the other hand, an *acyclic* discrete chain used in PSCF+ consists of $n_B \ge 1$ (linear homopolymer) **blocks** connected by $n_J = n_B - 1$ **joint bonds** (**JBs**) each connecting two end-segments of different blocks (note that an acyclic chain here can be constructed by adding, in each step, a joint bond and a new block to an existing block). Each block i has $N_i \ge 1$ segments, for which two propagators need to be calculated. A block of $N_i = 1$ (i.e., a **joint segment, JS**) is considered as a vertex, and the two end-segments of a block of $N_i \ge 2$ are considered as two vertices connected by a **block bond** (**BB**) of $N_i = N_i - 2$; a **vertex** can be either a joint (**J**, not necessarily a **JS**) or a free end (E, which is an end-segment), and has at most one BB connected to it. The chain then consists of $n_b \ge 1$ **v-bonds**, including both **JBs** (for which $N_i = 0$) and **BBs** each characterized by its N_i and effective bond length b_i ($i' = 0, ..., n_b - 1$), connecting $n_V = n_b + 1$ vertices, and its architecture is described by specifying the vertices j and $k \in [0, n_b]$ connected by each v-bond i'. Each block i (i.e., all vertices and BB i' with $N_i \ge 1$) has two propagators $q_i(\mathbf{r}, s)$ and $q_i^{\dagger}(\mathbf{r}, s)$, where $s = 1, ..., N_i$. We calculate in Step I all the forward propagators $q_i(\mathbf{r}, s)$, then in Step II all the backward propagators $q_i^{\dagger}(\mathbf{r}, s)$.

Hereafter we take the calculation of propagators for block i as an example. To calculate its contribution to the volume fraction field (at a spatial position \mathbf{r}) of the species to which the block

belongs, we need to evaluate
$$\sum_{j=0}^{N_i-1}q_{i,j}q_{i,j}^{\dagger}$$
, where $q_{i,j}\equiv q_i(\mathbf{r},s=j+1)$ and $q_{i,j}^{\dagger}\equiv q_i^{\dagger}(\mathbf{r},s=j+1)$. To

reduce the memory usage, the above "slice" algorithm with slight modification will be implemented in PSCF+ soon; same for calculating the contribution of a BCP component due to its bonds to the system stress.

References:

1. Qiang, Y. Chap. 6.3.2 in The High-Performance Algorithms for Self-Consistent Field Theory. PhD Thesis, Fudan University, Shanghai, China, 2022.