

Network Security Cryptography

Prof. Dr. Stefan Heiss

- Eavesdropping, Sniffing
- Impersonation, Spoofing, Unauthorized Access
- Replaying attacks
- Denial of Services (DoS)
- Misuse of resources

IT-Security: Aims

- Confidentiality
- Integrity
- Availability
- Authenticity
- Non-Repudiation
- Access Control

IT-Security: Mechanisms

- Confidentiality
- Integrity
- Availability
- Authenticity
- Non-Repudiation
- Access Control

- Encryption
- Message Digest, MAC, Digital Signature
- Network Filter, Firewall, Robust Impl.
- MAC, Key (physical token), Biometric identification
- Digital Signature
- Secure Configurations, Best Security Practices,
 Security awareness of users, Policies

Cryptographic Algorithms

- Cryptographic secure Pseudo Random Number Generators (PRNGs)
- Message Digests (Cryptographic Hash Functions)

- Symmetric Ciphers
- MACs (Message Authentication Codes)

- Asymmetric Ciphers
- Digital Signatures
- Key derivation algorithms / schemes

Kerkhoff's Principle

Kerckhoffs von Nieuwenhof (1835-1903):

 The security of a cryptographic algorithm should not depend on its nondisclosure.

 Today's best practice: Only use and implement well-known algorithms that have been thoroughly investigated by the community of international distinguished cryptographers. (E.g.: Contest for election of AES)

Do not rely on "Security by obscurity"!

Cryptographic Secure PRNGs

- JCA implementations: <u>SecureRandom</u>
- Recommendation for Random Number Generation Using Deterministic Random Bit Generators, NIST Special Publication 800-90A, June 2015

http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

DRBG Functional Model:

SecureRandom_PerformanceDemo


```
public class SecureRandom_PerformanceDemo {
12
13
14
        static Random rng = new SecureRandom();
15
        static byte[] b = \text{new byte}[1];
16
        public static void main(String[] args) throws Exception {
17
          for ( int i = 0; i < 100; i++ ) {
18
19
            long t1 = System.nanoTime();
20
            rnq.nextBytes(b);
21
            rng.nextLong();
            System.out.println(System.nanoTime() - t1);
22
23
24
25
```

Standard Random() implementations are NO CSPRNGs!

Example: Java's <u>Random</u> class implements the PRNG based on the following linear congruential formula:

```
public static long nextSeed(long seed) {
   return (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
}</pre>
```

- $x_{n+1} = (25214903917 \cdot x_n + 11) \mod 2^{48}$
- (Only the bits from (int)(seed >>> 16) are return via the Random API.)

```
public static void findNextIntValue(long r1, long r2) {
    long seed = (r1 << 16);
    while( (nextSeed(seed) >>> 16) != r2 ) {
        ++seed;
    }
    System.out.println("Next value: " +
        Long.toHexString( nextSeed(nextSeed(seed)) >>> 16) );
}
```

Message Digests

- Cryptographic Hash Functions
- Digital Fingerprints
- JCA implementations: <u>MessageDigest</u>

A Message Digest (Cryptographic Hash Function H is a mapping of the set of all binary sequences of finite length $m = (m_1, m_2, m_3,...)$ to the set of binary sequences of some fixed length n:

$$H(m) = (h_1, h_2, ..., h_n) \in (F_2)^n$$

Preimage resistence

Given a sequence
$$(h_1,h_2,...,h_n) \in (F_2)^n$$
, it is practically impossible to find a sequence $(s_1,s_2,s_3,...)$ with $H(s_1,s_2,s_3,...) = (h_1,h_2,...,h_n)$.

Collision resistence

It is practically not possible to find two sequences $(s_1,s_2,s_3,...)$ and $(t_1,t_2,t_3,...)$ with $H(s_1,s_2,s_3,...) = H(t_1,t_2,t_3,...)$.

Message Digests – Applications

Integrity checks

Example: Check of MD5 message digest after some file download

Protection of secrets

Example: Password files

Construction of PRNGs and stream ciphers

Construction of MAC's (keyed hash)

Iterated Hash Functions – General Construction

(a) high-level view

See: Handbook of Applied Cryptography, Chapter 9

(b) detailed view

$$l(m_1) = \cdots = l(m_n) = r$$

$$f: \mathbb{Z}_2^{r+s} \to \mathbb{Z}_2^s$$

$$t_i := f(m_i||t_{i-1})$$

$$g: \mathbb{Z}_2^s \to \mathbb{Z}_2^l$$

Hash Functions – Important Examples

Н	l = l(H(m))	$r = l(m_i)$	$s = l(t_i)$	$min\{l(pad)\}$
MD5	128	512	128	65
SHA-1	160	512	160	65
SHA-224	224	512	256	65
SHA-256	256	512	256	65
SHA-512/224	224	1024	512	129
SHA-512/256	256	1024	512	129
SHA-384	384	1024	512	129
SHA-512	512	1024	512	129
SHA3-224	224	1152	1600	4
SHA3-256	256	1088	1600	4
SHA3-384	384	832	1600	4
SHA3-512	512	576	1600	4

(b) detailed view

$$l(m_1) = \cdots = l(m_n) = r$$

$$f: \mathbb{Z}_2^{r+s} \to \mathbb{Z}_2^s$$

$$t_i := f(m_i || t_{i-1})$$

$$g: \mathbb{Z}_2^s \to \mathbb{Z}_2^l$$

Hash Functions - Weaknesses

Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD

Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo Yu, August 2004

http://eprint.iacr.org/2004/199.pdf

The first collision for full SHA-1

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, Yarik Markov, 2017 https://shattered.io/


```
13
      public class MessageDigest Demo {
14
15
        public static void main(String[] args) throws Exception {
16
17
          FileInputStream fis
18
           = new FileInputStream("shattered-1.pdf");
19
         byte[] m = fis.readAllBytes();
20
21
          MessageDigest md = MessageDigest.getInstance("SHA-1");
byte[] hashValue = md.digest(m);
23
            System.out.println("Data:");
24
25
            System.out.println(Dump.dump(m));
26
            System.out.println("Hash value of shattered-1.pdf:");
27
      //
28
            System.out.println(Dump.dump(hashValue));
29
30
```

Symmetric Ciphers

JCA implementations: Cipher

Key exchange:

 Alice and Bob must share a secret key, which has to be exchanged over a secure channel, before it can be used to initialize an encryption algorithm to encrypt messages.

Key storage:

Keys have to be securely managed and stored.

Brute Force Attacks

• Aim of constructions of cipher algorithms:

- No attack has a better performance than a Brute Force attack.
- This means: The size of the key space |K| (number of possible keys) is directly proportional to the security of the algorithm.

Types of Symmetric Ciphers

Stream ciphers

- Block ciphers
- Modes of operation:
 - ECB (Electronic Codebook Modus)
 - CBC (Cipher Block Chaining Modus)
 - CFB (Cipher Feedback Modus)
 - OFB (Output Feedback Modus)
 - •

Symmetric Ciphers – Stream Ciphers

One Time Pad (OTP)

Plaintext (Bitstream)

One Time Pad k (generated by a real random process)

Ciphertext

One Time Pad (OTP) - Pros

- A truely randomly generated one time pad is the only cipher that guarantees absolut (provable) security.
- The only information that can be deduced from eavesdropping is the length of the plaintext.

One Time Pad (OTP) - Cons

Key establishment

The one time pad has to be exchanged over some other secure channel prior to its use.

Key length

The one time pad (key) has to be as long as the plaintext.

Reusability

Reusage of a one time pad is strictly prohibited, as it would allow an attack by statistical analysis.

Key generation

Costly, as a real physicaly random process has to be used.

Additive Synchronous Stream Ciphers

Additive Synchronous Stream Ciphers – Pros

- The keystream is independent of the plaintext. (Keystream can be precalculated.)
- Encryption is a simple (fast) XOR operation.
- Decryption = Encryption

Additive Synchronous Stream Ciphers - Cons

Key establishment

The key has to be exchanged over some other secure channel prior to its use.

Reusability

Reusage of the same key is strictly prohibited, as it compromises the encryption scheme.

Integrity

Integrity is not protected: Single bits can be switched by an attacker.

- Additive Synchronous Stream Cipher specified in:
 - RFC 8439 ChaCha20 and Poly1305 for IETF Protocols
- Currently the only alternative to the AES cipher defined for record layer protocol encryption in TLS 1.3 (used in combination with the Poly1305 authenticator).
 See RFC 8446, B.4. Cipher Suites).


```
31
         Cipher cipher = Cipher.getInstance("ChaCha20");
32
33
         byte[] key = new byte[32];
34
          for (byte i = 0; i < 32; ++i) {
35
           kev[i] = i;
36
37
          SecretKeySpec keyChaCha20 = new SecretKeySpec(key, "ChaCha20");
38
39
         byte[] nonce
40
           = new byte[]\{0, 0, 0, 0, 0, 0, 0, 0x4a, 0, 0, 0\};
41
         AlgorithmParameterSpec params
42
           = new ChaCha20ParameterSpec(nonce, 1);
43
          cipher.init(Cipher.ENCRYPT MODE, keyChaCha20, params);
44
45
         byte[] m = ("Ladies and Gentlemen of the class of '99:"
46
           + " If I could offer you only one tip for the future,"
           + " sunscreen would be it.").getBytes();
47
         byte[] c = cipher.doFinal(m);
48
```

Symmetric Ciphers – Block Ciphers

$$m \in (F_2)^n$$
 (block)

$$k \in K = (F_2)^s$$

$$E: K \times (F_2)^n \rightarrow (F_2)^n$$

$$E_k: (F_2)^n \rightarrow (F_2)^n$$

$$c \in (F_2)^n$$
 (cipher block)

Block Ciphers

How many different block ciphers can be defined for the encryption of blocks of length n?

• Why not use random permutations of the set of all 2ⁿ blocks of length n for the construction of block ciphers?

Design of Block Ciphers

- A block cipher shall exhibit the same statistical features as a random permutation of all 2ⁿ blocks of length n.
- Encryption and Decryption shall be efficiently implementable in SW and HW (runtime performance, memory requirements).
- Block ciphers are usually organized in rounds, where the following types of basic operations are repeatedly executed:
 - Permutations of the bits of a block.
 - Substitutions (S-Boxes) of values in subblocks.

The most prominent Block Cipher

AES (Advanced Encryption Standard)

- Specified key lengths: 128, 192, 256 bit
- Block length: 128 bit
- Winning algorithm (Rijndal algorithm) from an international contest (organised by NIST).
- US Federal Standard <u>FIPS PUB 197</u>, published 2001.
- Nice animation available in Cryptool1
 - https://www.cryptool.org/en/ct1
 - CryptTool -> Indiv. Procedures -> Visualisation of Algorithms -> AES -> Rijndale
 Animation -> Steuerung -> Abspielen

Block Ciphers

- The length of plaintext data must be a multiple of n.
 - Padding operations are needed.
- Simply encrypting data block by block (ECB modus) may allow dictionary attacks. To prevent such attacks, use:
 - CBC modus
 - Random IV values

ECB	Electronic Code Book
CBC	Cipher Block Chaining
IV	Initialization Vector

ECB mode (Electronic Code Book)

Cipher_ECB_Demo


```
18
          byte[] key = Dump.hexString2byteArray(
19
           "0102030405060708090A0B0C0D0E0F10");
20
          SecretKey secretKey = new SecretKeySpec(key, "AES");
21
          Cipher cipher
22
23
           = Cipher.getInstance("AES/ECB/NOPADDING");
24
25
          cipher.init(Cipher.ENCRYPT MODE, secretKey);
26
27
          byte[] m = new byte[48];
35
          byte[] c = cipher.doFinal(m);
36
          System.out.println("Ciphertext:");
37
          System.out.println(Dump.dump(c));
38
40
          cipher.init(Cipher.DECRYPT MODE, secretKey);
41
          byte[] m2 = cipher.doFinal(c);
          System.out.println("Decrypted Ciphertext:");
42
43
          System.out.println(Dump.dump(m2));
```

CBC mode (Cipher Block Chaining) - Encryption

CBC mode (Cipher Block Chaining) - Decryption

Cipher_CBC_Demo


```
20
          byte[] key = Dump.hexString2byteArray(
21
           "0102030405060708090A0B0C0D0E0F10");
22
          SecretKey secretKey = new SecretKeySpec(key, "AES");
23
          Cipher cipher
24
           = Cipher.getInstance("AES/CBC/PKCS5PADDING");
25
26
27
          byte[] ivBytes = new byte[16];
          new SecureRandom().nextBytes(ivBytes);
28
29
          IvParameterSpec iv = new IvParameterSpec(ivBytes);
          cipher.init(Cipher.ENCRYPT_MODE, secretKey, iv);
30
31
32
          byte[] m = new byte[48];
```


CFB mode (Cipher Feedback) - Decryption


```
byte[] key = Dump.hexString2byteArray(
19
20
           "0102030405060708090A0B0C0D0E0F10");
21
          SecretKey secretKey = new SecretKeySpec(key, "AES");
22
23
          Cipher cipher
           = Cipher.getInstance("AES/CFB24/NOPADDING");
24
25
26
          byte[] ivBytes = new byte[16];
27
          (new Random()).nextBytes(ivBytes);
28
          IvParameterSpec iv = new IvParameterSpec(ivBytes);
          cipher.init(Cipher.ENCRYPT MODE, secretKey, iv);
29
30
31
          byte[] m = "Test".getBytes();
32
33
          System.out.println("Plaintext:");
34
          System.out.println(Dump.dump(m));
35
          System.out.println();
36
37
          byte[] c = cipher.doFinal(m);
38
```


OFB mode (Output Feedback) - Decryption


```
19
          byte[] key = Dump.hexString2byteArray(
20
           "0102030405060708090A0B0C0D0E0F10");
21
          SecretKey secretKey = new SecretKeySpec(key, "AES");
22
23
          Cipher cipher
             = Cipher.getInstance("AES/OFB24/NOPADDING");
24
25
           = Cipher.getInstance("AES/OFB/NOPADDING");
26
27
          byte[] ivBytes = new byte[16];
28
          (new SecureRandom()).nextBytes(ivBytes);
29
          IvParameterSpec iv = new IvParameterSpec(ivBytes);
30
          cipher.init(Cipher.ENCRYPT MODE, secretKey, iv);
31
          byte[] m = "Test".getBytes();
32
33
34
          System.out.println("Plaintext:");
35
          System.out.println(Dump.dump(m));
36
          System.out.println();
37
          byte[] c = cipher.doFinal(m);
38
```



```
18
          byte[] key = Dump.hexString2byteArray(
19
           "0102030405060708090A0B0C0D0E0F10");
20
          SecretKey secretKey = new SecretKeySpec(key, "AES");
21
22
          Cipher cipher
23
           = Cipher.getInstance("AES/CTR/NOPADDING");
24
25
          byte[] ctr = Dump.hexString2byteArray(
26
          "FFFFFFF FFFFFFF FFFFFFF FFFFFFE");
27
          IvParameterSpec iv = new IvParameterSpec(ctr);
28
          cipher.init(Cipher.ENCRYPT MODE, secretKey, iv);
29
30
         byte[] m = new byte[35];
31
         byte[] c = cipher.doFinal(m);
32
```


MAC's (Message Authentication Codes)

MACK

Message Authentication Codes

A Message Authentication is a hash function that depends on a key k.

Again the set of all binary sequences of finite length $m = (m_1, m_2, m_3,...)$ is mapped to the set of binary sequences of some fixed length n:

$$Mac_k(m) = (h_1, h_2, ..., h_n) \epsilon (F_2)^n$$

Message Authentication Codes

Applications:

Protection of message authenticity within a (closed) group of users with a common secret key.

Constructions of MAC's:

- CBC MAC based on a symmetric block cipher
- HMAC (Hash MAC) based on a hash function

RFC 2104 - Keyed-Hashing for Message Authentication

- Hash function H, using a compression function which compresses b bytes from the input per round.
- (Example: **b** = **64** for SHA-1)
- Hash output length h (Example: h = 20 für SHA-1)
- HMAC(m) = H(k XOR opad | H(k XOR ipad | m))

```
ipad = 0x36 \mid 0x36 \mid ... \mid 0x36 (b Bytes)
```

opad = 0x5c | 0x5c | ... | 0x5c (b Bytes)

RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

- HKDF-Extract(salt, IKM) -> PRK
- HKDF-Expand(PRK, info, L) -> OKM
- Used in TLS 1.3 for key derivations, see RFC 8446, 7.1.

```
7.1. Key Schedule
  The key derivation process makes use of the HKDF-Extract and
  HKDF-Expand functions as defined for HKDF [RFC5869], as well as the
   functions defined below:
       HKDF-Expand-Label (Secret, Label, Context, Length) =
            HKDF-Expand(Secret, HkdfLabel, Length)
       Where HkdfLabel is specified as:
       struct {
           uint16 length = Length;
           opaque label<7..255> = "tls13 " + Label;
           opaque context<0..255> = Context;
       } HkdfLabel;
       Derive-Secret (Secret, Label, Messages) =
            HKDF-Expand-Label (Secret, Label,
                              Transcript-Hash (Messages), Hash.length)
```

TLS 1.3 – Key Schedule


```
PSK -> HKDF-Extract = Early Secret
          +----> Derive-Secret(., "ext binder" | "res binder", "")
                                = binder key
          +----> Derive-Secret(., "c e traffic", ClientHello)
                                = client_early_traffic_secret
          +----> Derive-Secret(., "e exp master", ClientHello)
                                = early exporter master secret
   Derive-Secret(., "derived", "")
(EC)DHE -> HKDF-Extract = Handshake Secret
          +----> Derive-Secret(., "c hs traffic",
                                ClientHello...ServerHello)
                                = client_handshake_traffic_secret
          +----> Derive-Secret(., "s hs traffic",
                                ClientHello...ServerHello)
                                = server_handshake_traffic_secret
   Derive-Secret(., "derived", "")
0 -> HKDF-Extract = Master Secret
          +----> Derive-Secret(., "c ap traffic",
                                ClientHello...server Finished)
                                = client_application_traffic_secret_0
          +----> Derive-Secret(., "s ap traffic",
                                ClientHello...server Finished)
                                = server_application_traffic_secret_0
          +----> Derive-Secret(., "exp master",
                                ClientHello...server Finished)
                                = exporter_master_secret
          +----> Derive-Secret(., "res master",
                                ClientHello...client Finished)
                                = resumption master secret
```


AEAD Algorithms

Authenticated Encryption with Associated Data

- Algorithm for combined encryption/decryption and MAC calculation/verification
- Encryption and MAC calculation:
 - Input: Plaintext P, Additional Data A, Key k, Nonce IV
 - Output: Ciphertext $C = E_{k,IV}(P)$, MAC $T = MAC_{k,IV}(A,C)$
- AEAD algorithm used with TLS:
 - Galois/Counter Mode (GCM) of operation of the AES algorithm (NIST Special Publication 800-38D)
 - ChaCha20 and Poly1305 (<u>RFC 8439</u>)

GCM – Encryption and MAC (Tag) calculation

Figure 3: GCM-AE $_K(IV, P, A) = (C, T)$.

NIST Special Publication 800-38D

Steps:

- 1. Let $H = \text{CIPH}_K(0^{128})$.
- 2. Define a block, J_0 , as follows: If len(IV)=96, then let $J_0 = IV \parallel 0^{31} \parallel 1$. If len(IV) \neq 96, then let $s = 128 \lceil \text{len}(IV)/128 \rceil \text{-len}(IV)$, and let $J_0 = \text{GHASH}_H(IV \parallel 0^{s+64} \parallel [\text{len}(IV)]_{64})$.
- 3. Let $C=GCTR_K(inc_{32}(J_0), P)$.
- 4. Let $u = 128 \cdot \lceil \ln(C)/128 \rceil \ln(C)$ and let $v = 128 \cdot \lceil \ln(A)/128 \rceil \ln(A)$.
- 5. Define a block, S, as follows: $S = GHASH_H(A \parallel 0^{\nu} \parallel C \parallel 0^{u} \parallel [len(A)]_{64} \parallel [len(C)]_{64}).$
- 6. Let $T = MSB_t(GCTR_K(J_0, S))$.
- 7. Return (*C*, *T*).

GCM – Encryption in CTR mode

Figure 2: $GCTR_K(ICB, X_1 || X_2 || ... || X_n^*) = Y_1 || Y_2 || ... || Y_n^*$.

NIST Special Publication 800-38D

GCM - GHASH function

Figure 1: GHASH_{*H*} ($X_1 || X_2 || ... || X_m$) = Y_m .

NIST Special Publication 800-38D

Let R be the bit string $11100001 \parallel 0^{120}$.

The • operation on (pairs of) the 2^{128} possible blocks corresponds to the multiplication operation for the binary Galois (finite) field of 2^{128} elements. The fixed block, R, determines a representation of this field as the modular multiplication of binary polynomials of degree less than 128.

Algorithm 1: *X*•*Y*

Input:

blocks X, Y.

Output:

block $X \bullet Y$.

Steps:

- 1. Let $x_0x_1...x_{127}$ denote the sequence of bits in X.
- 2. Let $Z_0 = 0^{128}$ and $V_0 = Y$.
- For i = 0 to 127, calculate blocks Z_{i+1} and V_{i+1} as follows:

$$Z_{i+1} = \begin{cases} Z_i & \text{if } x_i = 0; \\ Z_i \oplus V_i & \text{if } x_i = 1. \end{cases}$$

$$V_{i+1} = \begin{cases} V_i >> 1 & \text{if } LSB_1(V_i) = 0; \\ (V_i >> 1) \oplus R & \text{if } LSB_1(V_i) = 1. \end{cases}$$

4. Return Z_{128} .

GCM – Decryption and MAC (Tag) verification

Figure 4: GCM-AD_K (IV, C, A, T) = P or FAIL.

NIST Special Publication 800-38D

Public Key Cryptography

Problem

Usage of symmetric ciphers require the exchange of secret keys over some secure channel.

Basic Idea

Usage of a mathematical operation, whose inversion is not computational feasible without the knowledge of a key value (trap door function).

- Factorization of integers
- Calculation of discrete logarithms in Z_p
- Calculation of discrete logarithms in groups defined by elliptic curves over finite fields

First published solutions:

- W. Diffie, M.E. Hellman, New Directions in Cryptography, 1976
- R.C. Merkle, Secure Communication over Insecure Channels, 1978
- R.L. Rivest, A. Shamir, L.M. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, 1978

• Algorithms from public key cryptography:

- Key derivation algorithms / schemes
- Asymmetric Ciphers (encryption without a shared secret key)
- Digital Signatures

Key Derivation

Diffie-Hellman (DH) key derivation

- Key derivation scheme proposed by W. Diffie and M.E. Hellman in New Directions in Cryptography (1976).
- Based on the mathematical (computational) problem of finding **discrete** logarithms. (Multiplicative order of an element in $\langle g \rangle$ for some fixed $g \in \mathbb{Z}_n$.)
- ECDH (Elliptic Curve Diffie-Hellman): Based on the problem of determining the order of a point of an elliptic curve defined over a finite field.
 - Applying elliptic curves in cryptography was suggested by N. Koblitz and
 V. S. Miller in 1985.
 - Widely used since ~2005.

Discrete Logarithms

Let $b \in \mathbb{N}$, $n \in \mathbb{N}$.

DL-Problem: Determine for a given

 $c = b^e \mod n$

the exponent

e.

$$n \in \mathbb{N}$$
 prime number $b \in \{2,3,...,(n-2)\}$

$$n \in \mathbb{N}$$
 prime number $b \in \{2,3,...,(n-2)\}$

- n-1 should have a big prime factor q, such that q divides the order of b.
- The order of b should be large.

Elliptic Curves over Finite Fields

• ECC (Elliptic Curve Cryptography) is based on the group structure on the sets of points of an Elliptic Curve defined over F_p or F_{2^n} .

Elliptic Curve Diffie-Hellman (EC-DH) key derivation

Asymmetric Ciphers

RSA public key encryption scheme

- Public key encryption scheme proposed by R.L. Rivest, A. Shamir, L.M.
 Adleman in A Method for Obtaining Digital Signatures and Public-Key
 Cryptosystems (1978)
- Depends on the mathematical (computational) problem of factorizing integers.

If *p* is a prime number and *z* any number coprime to p,

i.e.
$$gcd(p,z) = 1$$
, then

$$z^{p-1} \equiv 1 \pmod{p}$$

Proof:

- Put: $t = (1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1)) \mod p$
- Multiplication with z defines a bijective mapping:

$$m: \mathbb{Z}_p \to \mathbb{Z}_p, \ m(x) = (x \cdot z) \bmod p$$

It follows that:

$$t \equiv 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \equiv (1 \cdot z) \cdot (2 \cdot z) \cdot (3 \cdot z) \cdot \dots \cdot ((p-1) \cdot z) \equiv t \cdot z^{p-1} \pmod{p}$$

• Division in \mathbb{Z}_p by $t \neq 0$ gives the claimed identity.

A consequence of Fermat's Lemma

Let p,q be prime numbers $(p \neq q)$ and $r \in \mathbb{Z}$ with:

$$r \equiv 1 \pmod{\text{lcm}(p-1, q-1)}$$

Then:

$$z^r \equiv z \pmod{(p \cdot q)}$$
 for all $z \in \mathbb{Z}$

Proof:

- If $z \equiv 0 \pmod{p}$, then $z^r \equiv 0 \pmod{p}$.
- If p does not divide z and r = 1 + n(p-1), then:

$$z^r = z \cdot (z^{(p-1)})^n \equiv z \pmod{p}$$

Similarly:

$$z^r \equiv z \pmod{q}$$

Generation of an RSA key pair

- Chose two random primes p and q (> 2^{1000})
- Put n = pq, v = lcm(p 1, q 1)
- Define a <u>public exponent</u> e with:

$$gcd(e, v) = 1$$

Determine the <u>private exponent</u> d with:

$$ed \equiv 1 \pmod{v}$$

• Key pair $(k_{pub,} k_{priv})$:

$$k_{pub} = (n,e)$$

$$k_{priv} = (n, d)$$

RSA encryption and decryption

Encryption of a message m (< n):</p>

$$c = E(m) = m^e \mod n$$

Decryption of c:

$$D(c) = c^d \bmod n$$

• D(c) = m follows from $e \cdot d \equiv 1 \pmod{v}$ and Fermat's lemma:

$$D(c) = c^d \mod n = (m^e)^d \mod n = m^{ed} \mod n = m \mod n = m$$

Digital Signatures

- FIPS PUB 186-4: Digital Signature Standard (DSS)
 - Chapter 4: The Digital Signature Algorithm (DSA)
 - Chapter 5: The RSA Digital Signature Algorithm
 - Chapter 6: The Elliptic Curve Digital Signature Algorithm (ECDSA)

Signing a message

Verifying a signature

DSA Domain Parameters

- p: prime number of bit length L
- q: a prime divisor of p-1 of bit length N
- g: element of $GF(p)^*$ with o(g) = q

Selection of Parameter Sizes and Hash Functions for DSA:

•
$$L = 1024$$
, $N = 160$

•
$$L = 2048$$
, $N = 224$

•
$$L = 2048$$
, $N = 256$

•
$$L = 3072$$
, $N = 256$

Digital Signature Algorithm (DSA) - FIPS PUB 186-4, Chapter 4

DSA Domain Parameters

- p: prime number of bit length L
- q: a prime divisor of p-1 of bit length N
- g: element of $GF(p)^*$ with o(g) = q

DSA Key Pairs

- x: private key with 0 < x < q
- y: public key $y = g^x \mod p$

Digital Signature Algorithm (DSA) - FIPS PUB 186-4, Chapter 4

- Domain Parameters: p, q, g
- Key Pair: x, y
- Signature Generation for message M
 - k: per message newly generated secret random number, 0 < k < q</p>
 - $r := (g^k \mod p) \mod q$
 - z: Hash(M) (leftmost N bits)
 - $s := (k^{-1}(z + xr)) \mod q$

• $\operatorname{Sig}_{x}(M) := (r, s)$

Digital Signature Algorithm (DSA) - FIPS PUB 186-4, Chapter 4

- Domain Parameters: p, q, g
- Key Pair: x, y
- Signature for M: Sig_x(M)=(r, s), $r = (g^k \mod p) \mod q$, $s = (k^1(z + xr)) \mod q$
- Signature Verification (given M, $\operatorname{Sig}_{x}(M) = (r, s), y$)
 - $w := s^{-1} \mod q$
 - z: Hash(M) (leftmost N bits)
 - $u_1 := (zw) \mod q$
 - $u_2 := (rw) \mod q$
 - $v := ((g^{u_1} y^{u_2}) \mod p) \mod q$
 - Sig_x(M) ok iff v = r

FIPS PUB 186-4, Ch. 6

- relates strongly to ANS X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA)
- FIPS PUB 186-4, Appendix D: Recommended Elliptic Curves for Federal Government Use
- Certicom Research: Standards for Efficient Cryptography
 - SEC 1: Elliptic Curve Cryptography
 - SEC 2: Recommended Elliptic Curve Domain Parameters

ECDSA Domain Parameters

- E: elliptic curve over F = GF(p) or $F = GF(2^m)$
- q: a large prime divisor of |E| = qh (with cofactor h)
- G: point of E with o(G) = q

ECDSA Domain Parameters

- **E**: elliptic curve over F = GF(p) or F = GF(2^m)
- q: a large prime divisor of |E| = qh (with cofactor h)
- G : point of E with o(G) = q

ECDSA Key Pair

- x: private key with 0 < x < q
- Y: public key $Y = x \cdot G$

- Domain Parameters: E, q, G
- Key Pair: x, Y
- Signature Generation for message M
 - k: per message newly generated secret random number, 0 < k < q
 - $R := k \cdot G = (R_x, R_y), r := R_x \mod q$
 - z: Hash(M) (leftmost N bits)
 - $s := (k^{-1}(z + xr)) \mod q$

• $\operatorname{Sig}_{x}(M) := (r, s)$

- Domain Parameters: E, q, G
- Key Pair: x, Y
- Signature for M: Sig_x(M)=(r, s), $r = (k \cdot G)_x \mod q$, $s = (k^1(z + xr)) \mod q$
- Signature Verification (given M, Sig_x(M) = (r, s), Y)
 - $w := s^{-1} \mod q$
 - z: Hash(M) (leftmost N bits)
 - $u_1 := (zw) \mod q$
 - $u_2 := (rw) \mod q$
 - $V := u_1 \cdot G + u_2 \cdot Y$, $v := V_x \mod q$
 - $\operatorname{Sig}_{x}(M)$ ok iff v = r