# Lecture 4: Protocol Independent Multicast

7COM1030 - Multicast and Multimedia Networking

Dr. Xianhui Che (Cherry)

x.che@herts.ac.uk

**School of Computer Science** 

University of Hertfordshire, UK







# **Topics**

- Introduction to PIM
- PIM Dense Mode (PIM-DM)
- PIM Sparse Mode (PIM-SM)



### Two Modes of PIM

- Protocol Independent Multicast (PIM):
  - Runs in two modes: PIM Dense Mode (PIM-DM) and PIM Sparse Mode (PIM-SM).
- PIM-DM builds source-based trees using flood-and-prune
- PIM-SM builds core-based trees as well as source-based trees with explicit joins.
- Sources are considered **shortest-path** trees from the perspective of the **unicast** routing tables.





### Revision

#### **Flooding**

- Forward packets on all non-RPF interfaces
- Receiver drops packets not received on RPF interface



#### Grafting

- When a receiver joins, one needs to re-activate a pruned routing table entry
- Sending a *Graft* message disables prune, and reactivates routing table entry.



# Pruning • Prune message

- Prune message temporarily disables a routing table entry
- Effect: Removes a link from the multicast tree No multicast messages are sent on a pruned link
- Prune message is sent in response to a multicast packet
- Question: Why is routing table only temporarily disabled?



#### Alternative: Explicit Join

- This only works if the receiver knows the source
- Receiver sends a Join message to RPF neighbor
- Join message creates (S,G) routing table entry
- Join message is passed on





# **Topics**

- Introduction to PIM
- PIM Dense Mode (PIM-DM)
- PIM Sparse Mode (PIM-SM)





### PIM-DM

- Flood-and-Prune
- When building a sourcebased tree, routing tables are set according to RPF forwarding
- Send a prune message when a packet is received on a non-RPF interface or when there are no receivers downstream





# PIM Messages (PIM version 2)

| → 32 bit                   |      |          |          |  |  |  |
|----------------------------|------|----------|----------|--|--|--|
| Version (= 2)              | Туре | Reserved | Checksum |  |  |  |
| Message type specific part |      |          |          |  |  |  |

| PIM messages                   | Type | PIM-DM   | PIM-SM       |
|--------------------------------|------|----------|--------------|
| Hello                          | 0    | ✓        | ✓            |
| Register                       | 1    |          | $\checkmark$ |
| Register-Stop                  | 2    |          | <b>√</b>     |
| Join/Prune                     | 3    | ✓        | ✓            |
| Bootstrap                      | 4    |          | ✓            |
| Assert                         | 5    | ✓        | ✓            |
| Graft                          | 6    | ✓        |              |
| Graft-Ack                      | 7    | <b>√</b> |              |
| Candidate-RP-<br>Advertisement | 8    |          | <b>√</b>     |

- Encapsulated in IP datagrams with protocol number 103.
- PIM messages can be sent as unicast or multicast packet
- 224.0.0.13 is reserved as the *ALL-PIM-Routers* group



# Hello Messages

- ▶ PIM Hello messages are sent periodically on each PIMenabled interface.
- They allow a router to learn about the neighboring PIM routers on each interface.
- Hello messages are also the mechanism used to elect a Designated Router (DR), and to negotiate additional capabilities.
- A router must record the Hello information received from each PIM neighbor.



# **Topics**

- Introduction to PIM
- PIM Dense Mode (PIM-DM)
- PIM Sparse Mode (PIM-SM)





### Revision

#### Core-Based Tree

- Core is called rendezvouspoint (RP)
- Receivers know RP (statically configured or dynamically elected)
- Receiver sends a *Join* message to RPF neighbour with respect to core
- ▶ Join message creates (\*, G) routing table entry



#### **Core-Based Tree** Source sends data to

Core forwards data according to routing table entry

the core







### PIM-SM: Initial Phase

- Initially, a multicast receiver expresses its interest in joining a multicast group via IGMP.
- One of the receiver's local routers is elected as the DR for that subnet.
- On receiving the receiver's expression of interest, the DR then sends a PIM *Join* message towards the RP for that multicast group.





### **PIM-SM: Data transmission**

- Source sends multicast packet to RP
- Packet is attached to an RP Register message
- When packet reaches RP, it is forwarded in the tree
- Also: RP sends a *Join* message on reverse path to
   S1





### PIM-SM: Data transmission

- When *Join* messages reaches R1, it sends a native multicast packet to the RP (in addition to the packet attached to the register message)
- When RP receives native multicast packet it sends a register stop message to R1. This message stops the transmission of register messages from R1.





# PIM-SM: Switching to Source-Based Tree

- When data to receivers
   exceeds a threshold, routers
   switch to a source-based tree
- This is done by sending an explicit Join message to the source
- There may be duplicate packets being sent for some time





# PIM-SM: Switching to source-based tree

- When data arrives from source (as opposed to RP), a *Prune* message is sent to the RPT
- Now: data is forwarded only along the shortest-path tree





## **Questions?**

- **Email:** x.che@herts.ac.uk
- Office: LB218
- **Tel:** 01707286206