MATH 308 D200, Fall 2019

8. Simplex algorithm for maximum basic feasible tableau (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

1/9

So Far We Know.....

- ▶ How to describe a problem as a maximization LP problem.
- ▶ How to convert the problem to canonical form.
- ▶ How to convert the canonical form to canonical slack form (slack variables).
- ▶ How to write an initial Tucker tableau for the canonical problem.
- ▶ There is a one-to-one correspondence between maximum Tucker tableaux and basic solutions of the problem.
- How to transform Tucker tableaux using pivoting and go from one basic solution to another

Lemma

Basic solution represented by a Tucker tableau is feasible if and only if $\tilde{b}_1, \tilde{b}_2, \dots, \tilde{b}_m \geqslant 0$.

Proof.

 $\tilde{a}_{m1}\tilde{x}_1 + \tilde{a}_{m2}\tilde{x}_2 + \cdot \cdot \cdot + \tilde{a}_{mn}\tilde{x}_n \, \leqslant \, \tilde{b}_m$

In basic solution, $\tilde{x}_1 = \tilde{x}_2 = \cdots = \tilde{x}_n = 0$, and hence the system is consistent.

SA for MBFT

Algorithm (SA for MBFT)

- **1.** We have MBFT $(b_1, b_2, ..., b_m \ge 0)$
- **2.** If $c_1, c_2, ..., c_n \leq 0 \Longrightarrow \mathsf{STOP}$; the current basic feasible solution is optimal.
- **3.** Choose any j with $c_j > 0$
- **4.** If $a_{1j}, a_{2j}, \ldots, a_{mj} \leq 0 \Longrightarrow \mathsf{STOP}$; the problem is unbounded.
- 5. Compute

$$\alpha = \min_{1 \le i \le m} \{b_i/a_{ij} : a_{ij} > 0\}$$

and choose any p with $b_p/a_{pj}=\alpha$. Pivot on a_{pj} and go to the **Step 1**.

SFU department of mathematics

If we pivot as in Step 5, the resulting tableau is again maximum basic feasible.

Proof.

If we pivot as in Step 5, the resulting tableau is again maximum basic feasible.

Proof.

Assume that before Step 5 the basis is $B = \{n+1, n+2, \dots n+m\}$. The corresponding BFS is $x_1 = x_2 = \dots = x_n = 0$, and $x_{n+i} = b_i \ge 0$ for $1 \le i \le n$.

Assume Step 5 chooses pivot element $a_{p,j}$, so x_j enters the basis and x_p leaves the basis.

If we pivot as in Step 5, the resulting tableau is again maximum basic feasible.

Proof.

Assume that before Step 5 the basis is $B = \{n+1, n+2, \dots n+m\}$.

The corresponding BFS is $x_1 = x_2 = \cdots = x_n = 0$, and $x_{n+i} = b_i \ge 0$ for $1 \le i \le n$.

Assume Step 5 chooses pivot element $a_{p,j}$, so x_j enters the basis and x_p leaves the basis.

After the pivot, each of x_1, x_2, \ldots, x_n remains zero, except that x_j changes from 0 to

(1)
$$\alpha = b_p/a_{pj} = \min\{b_i/a_{ij} : 1 \le i \le m, a_{ij} > 0\}$$

$$(2) \geq 0.$$

It remains to show that $x_{n+k} \ge 0$ for $1 \le k \le m$, after the pivot.

If we pivot as in Step 5, the resulting tableau is again maximum basic feasible.

Proof.

Assume that before Step 5 the basis is $B = \{n+1, n+2, \dots n+m\}$.

The corresponding BFS is $x_1 = x_2 = \cdots = x_n = 0$, and $x_{n+i} = b_i \ge 0$ for $1 \le i \le n$.

Assume Step 5 chooses pivot element $a_{p,j}$, so x_j enters the basis and x_p leaves the basis.

After the pivot, each of x_1, x_2, \dots, x_n remains zero, except that x_j changes from 0 to

(1)
$$\alpha = b_p/a_{pj} = \min\{b_i/a_{ij} : 1 \le i \le m, a_{ij} > 0\}$$

$$\geq 0.$$

It remains to show that $x_{n+k} \ge 0$ for $1 \le k \le m$, after the pivot.

The value of x_{n+k} is determined by row k of the tableau

$$a_{k1}x_1 + a_{k2}x_2 + \cdots + a_{kj}x_j + \ldots + a_{kn}x_n - b_k = -x_{n+k}$$

After the pivot, the equation is

$$0 + 0 + \ldots + 0 + a_{ki}\alpha + 0 + \ldots + 0 - b_k = -x_{n+k}$$

so the pivot changes x_{n+k} from b_k to $b_k - a_{kj}\alpha$. We claim that $b_k - a_{kj}\alpha \ge 0$.

If we pivot as in Step 5, the resulting tableau is again maximum basic feasible.

Proof.

Assume that before Step 5 the basis is $B = \{n+1, n+2, \dots n+m\}$.

The corresponding BFS is $x_1 = x_2 = \cdots = x_n = 0$, and $x_{n+i} = b_i \ge 0$ for $1 \le i \le n$.

Assume Step 5 chooses pivot element $a_{p,j}$, so x_j enters the basis and x_p leaves the basis.

After the pivot, each of x_1, x_2, \ldots, x_n remains zero, except that x_j changes from 0 to

(1)
$$\alpha = b_p/a_{pj} = \min\{b_i/a_{ij} : 1 \le i \le m, a_{ij} > 0\}$$

$$\geq 0.$$

It remains to show that $x_{n+k} \ge 0$ for $1 \le k \le m$, after the pivot.

The value of x_{n+k} is determined by row k of the tableau

$$a_{k1}x_1 + a_{k2}x_2 + \cdots + a_{kj}x_j + \ldots + a_{kn}x_n - b_k = -x_{n+k}.$$

After the pivot, the equation is

$$0 + 0 + \ldots + 0 + a_{kj}\alpha + 0 + \ldots + 0 - b_k = -x_{n+k}$$

so the pivot changes x_{n+k} from b_k to $b_k - a_{kj}\alpha$. We claim that $b_k - a_{kj}\alpha \ge 0$.

If $a_{kj} > 0$, then $\alpha \le b_k/a_{kj}$ by (1), so $b_k - a_{kj}\alpha \ge 0$, as claimed.

If $a_{kj} \leq 0$, then $a_{kj}\alpha \leq 0$ by (2), so $b_k - a_{kj}\alpha \geq b_k \geq 0$, as claimed.

If the algorithm stops at Step 2., the basic solution is optimal.

Proof.

Note

If all $c_j < 0$ (j = 1, ..., n), the problem has a unique solution. However if some $c_j = 0$, the problem may have infinitely many solutions.

If the algorithm stops at Step 4., the problem is unbounded.

Proof.

SA for MBFT – used to illustrate next example

	(ind	var's)		-1	
a ₁₁	a 12		a_{1n}	b_1	
a 21	a 22		a_{2n}	b ₂	
:	÷	٠.,	Ė	:	$=-(dep\;var's)$
a _{m1}	a_{m2}		a_{mn}	b _m	
c ₁	C 2		Cn	d	= f

- **1.** We have MBFT $(b_1, b_2, ..., b_m \ge 0)$
- **2.** If $c_1, c_2, \ldots, c_n \leq 0 \Longrightarrow \mathsf{STOP}$; the current basic feasible solution is optimal.
- **3.** Choose any j with $c_j > 0$
- **4.** If $a_{1j}, a_{2j}, \ldots, a_{mj} \leq 0 \Longrightarrow \mathsf{STOP}$; the problem is unbounded.
- 5. Compute

$$\alpha = \min_{1 \le i \le m} \{b_i/a_{ij} : a_{ij} > 0\}$$

and choose any p with $b_p/a_{pj}=\alpha$. Pivot on a_{pj} and go to the **Step 1**.

SFU department of mathematics

Example

In each tableau below, mark the next step of the SA for MBFT.

a)	1	3	2
	-1	2	-1
	1	-1	2
	-1	5	-2

b)	1	3	2
	-1	2	1
	1	-1	5
	-1	5	-2

c)	1	3	2
	-1	2	3
	-3	-1	2
	0	-3	-2

d)	0	3	2
	-1	2	3
	-3	-1	2
	1	-3	-2

f)	0	3	2
	-1	2	3
	-3	-1	2
	1	3	-2

Drawbacks of the Simplex Algorithm for MBFT

The SA for MBFT will only work on maximum basic feasible tableaux (MBFT).

(i) We need at least one basic **feasible** solution to start with: maximize $f(x_1, x_2) = x_1 - 2x_2 + 3$ subject to $x_1 + x_2 \ge 1$ $2x_1 + x_2 \leq 5$ $x_1, x_2 \ge 0$

(ii) Algorithm may go into infinite loop—Strayer, pp 58-59.