Public-key Compression for SIKE

Michael Naehrig Joost Renes

Microsoft Research

Radboud University

10 December 2019

Post-Quantum Cryptography

(generic post-quantum crypto intro...)

Ostrich — Turkey

https://blog.cloudflare.com/the-tls-post-quantum-experiment/

Ostrich — Turkey — Chicken

https://blog.cloudflare.com/the-tls-post-quantum-experiment/

$$\left\{ \begin{array}{l} (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + A \cdot x^2 + x \right\} \cup \{\infty\} \\ \\ \mathbf{Rational\ map} \\ \left(f(x,y) / g(x,y), h(x,y) / k(x,y) \right) \\ \\ \left\{ \begin{array}{l} (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + \overline{A} \cdot x^2 + x \right\} \cup \{\infty\} \end{array} \right.$$

$$\left\{ (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + A \cdot x^2 + x \right\} \cup \{\infty\}$$

$$\left\{ (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + \overline{A} \cdot x^2 + x \right\} \cup \{\infty\}$$

$$\left\{ \begin{array}{l} (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + A \cdot x^2 + x \right\} \cup \{\infty\} \\ \\ \textbf{Isogeny} \ (\infty \mapsto \infty) & \text{Described by roots of g} \\ \\ \left(f(x)/g(x), y \cdot h(x)/k(x) \right) \\ \\ \left\{ \ (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + \overline{A} \cdot x^2 + x \right\} \cup \{\infty\} \\ \end{array}$$

$$\left\{ \begin{array}{l} (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + A \cdot x^2 + x \, \right\} \cup \left\{ \infty \right\} \\ \\ \textbf{Isogeny} \left(\infty \mapsto \infty \right) & \text{Described by roots of } \mathbf{g} \\ \\ \left(f(x)/g(x), y \cdot h(x)/k(x) \, \right) \\ \\ \textbf{Isogeny degree} \sim \# \operatorname{roots}(g) \\ \\ \sim \deg(g) \\ \\ \left\{ \left(x,y \right) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + \overline{A} \cdot x^2 + x \, \right\} \cup \left\{ \infty \right\}$$

$$\left\{ \begin{array}{l} (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + A \cdot x^2 + x \, \right\} \cup \left\{ \infty \right\} \\ \\ \text{Isogeny } (\infty \mapsto \infty) & \text{Described by roots of g} \\ \\ \left(f(x)/g(x), y \cdot h(x)/k(x) \, \right) \\ \\ \text{Cyclic isogeny} & \text{Isogeny degree} \sim \# \operatorname{roots}(g) \\ \\ \text{when } \ker(g) = \langle T \rangle & \sim \deg(g) \\ \\ \\ \left\{ (x,y) \in \overline{\mathbb{F}}_p \times \overline{\mathbb{F}}_p \mid y^2 = x^3 + \overline{A} \cdot x^2 + x \, \right\} \cup \left\{ \infty \right\}$$

$$\phi \\ \langle [\ell^0] T \rangle \bullet$$

E •

Ε_φ

E •

 \bullet E_{ϕ}

E •

Ε_φ

E •

Ε_φ

$$\begin{pmatrix} P \\ Q \end{pmatrix}$$

$$\begin{pmatrix} P \\ Q \end{pmatrix} \qquad \qquad \begin{pmatrix} \phi(P) \\ \phi(Q) \end{pmatrix}$$

$$\begin{pmatrix} P \\ Q \end{pmatrix} \qquad \qquad \begin{pmatrix} \phi(P) \\ \phi(Q) \end{pmatrix}$$

$$\begin{pmatrix} P \\ Q \end{pmatrix}$$

$$\begin{pmatrix} \phi(P) \\ \phi(Q) \end{pmatrix}$$

 $\binom{R}{S}$

$$\begin{pmatrix} P \\ Q \end{pmatrix} \qquad \qquad \begin{pmatrix} \phi(P) \\ \phi(Q) \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} R \\ S \end{pmatrix}$$

$$\begin{pmatrix} P \\ Q \end{pmatrix} \qquad \qquad \begin{pmatrix} \phi(P) \\ \phi(Q) \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} R \\ S \end{pmatrix}$$

$$\begin{pmatrix} P \\ Q \end{pmatrix} \qquad \qquad \begin{pmatrix} \phi(P) \\ \phi(Q) \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} R \\ S \end{pmatrix}$$

Speedups/slowdowns for (1) - (3)

	ℓ	p434	p503	p610	p751
SIKE-2 This	2	9 649 7 921	13 332 11 039	24 238 20 269	35 294 30 922
SIKE-2 This	3	7 062 7 368	9 859 10 211	16 830 17 497	28 258 29 397

Table 1: Efficiency for isogeny + basis gen. in 10³ cycles on Skylake.

Supersingular Isogeny Key Encapsulation - https://sike.org.

$$\begin{pmatrix} P \\ Q \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \hat{\phi}(R) \\ \hat{\phi}(S) \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} P \\ Q \end{pmatrix} = \begin{pmatrix} \hat{\phi}(R) \\ \hat{\phi}(S) \end{pmatrix}$$

$$[a]P + [b]Q = \hat{\phi}(R)$$
$$[c]P + [d]Q = \hat{\phi}(S)$$

$$[a]P + [b]Q = \hat{\phi}(R)$$
$$[c]P + [d]Q = \hat{\phi}(S)$$

$$\tau(Q, \hat{\varphi}(R)) = \tau(P, Q)^{-a}
\tau(P, \hat{\varphi}(R)) = \tau(P, Q)^{b}
\tau(Q, \hat{\varphi}(S)) = \tau(P, Q)^{-c}
\tau(P, \hat{\varphi}(S)) = \tau(P, Q)^{d}$$

$$[a]P + [b]Q = \hat{\phi}(R)$$
$$[c]P + [d]Q = \hat{\phi}(S)$$

$$\tau(Q, \hat{\phi}(R)) = \tau(P, Q)^{-a}
\tau(P, \hat{\phi}(R)) = \tau(P, Q)^{b}
\tau(Q, \hat{\phi}(S)) = \tau(P, Q)^{-c}
\tau(P, \hat{\phi}(S)) = \tau(P, Q)^{d}$$
(reduced) Tate pairing

$$[a]P + [b]Q = \hat{\phi}(R)$$
$$[c]P + [d]Q = \hat{\phi}(S)$$

$$\begin{array}{c|ccc}
\tau(Q,\hat{\phi}(R)) & = & \tau(P,Q)^{-a} \\
\tau(P,\hat{\phi}(R)) & = & \tau(P,Q)^{b} \\
\tau(Q,\hat{\phi}(S)) & = & \tau(P,Q)^{-c} \\
\tau(P,\hat{\phi}(S)) & = & \tau(P,Q)^{d}
\end{array}$$
(reduced) Tate pairing

```
Output: \tau(P, \hat{\phi}(R))
f \leftarrow 1
for i = 1 to e do
f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))
end for
```

```
Output: \tau(P, \hat{\phi}(R))
f \leftarrow 1
for i = 1 to e do
f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))
end for
```


Output:
$$\tau(P, \hat{\phi}(R))$$
 $\mathcal{S}_{[2]P}$ $f \leftarrow 1$ $\mathcal{S}_{[4]P}$ for $i = 1$ to e do $\mathcal{S}_{[8]P}$ $f \leftarrow f^2 \cdot \mathcal{S}_{[2^i]P}(\hat{\phi}(R))$ end for

Output: $\tau(P,\hat{\phi}(R))$	$g_{[2]P}$
$f \leftarrow 1$	$g_{[4]P}$
for $i = 1$ to e do	$g_{[8]P}$
$f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))$	$g_{[16]P}$
end for	:

```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

```
\mathcal{S}[2]P
\mathcal{S}[4]P
\mathcal{S}[8]P
\mathcal{S}[16]P
\vdots
```

```
Output: \tau(P, \hat{\phi}(S))
f \leftarrow 1
for i = 1 to e do
f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(S))
end for
```

```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

```
\begin{array}{c} \mathcal{S}[2]P \\ \mathcal{S}[4]P \\ \mathcal{S}[8]P \\ \mathcal{S}[16]P \\ \vdots \end{array}
```

```
Output: \tau(P, \hat{\phi}(S))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(S))

end for
```

```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

```
Output: \tau(P, \hat{\varphi}(S))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\varphi}(S))

end for
```

```
\begin{array}{c} & \mathcal{S}[2]P \\ & \mathcal{S}[4]P \\ & \mathcal{S}[8]P \\ & \mathcal{S}[16]P \\ & \vdots \end{array}
```

```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

```
Output: \tau(P, \hat{\varphi}(S))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\varphi}(S))

end for
```



```
Output: \tau(P, \hat{\phi}(R))
f \leftarrow 1
for i = 1 to e do
f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))
end for
```

```
Output: \tau(P, \hat{\varphi}(S))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\varphi}(S))

end for
```



```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

```
Output: \tau(P, \hat{\varphi}(S))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\varphi}(S))

end for
```



```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

Output:
$$\tau(P, \hat{\phi}(S))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(S))$
end for

$$\mathcal{S}[2]P$$
 $\mathcal{S}[4]P$
 $\mathcal{S}[8]P$
 $\mathcal{S}[16]P$
 \vdots

(a) Store table of $g_{[2^i]P}$

```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

Output:
$$\tau(P, \hat{\phi}(S))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(S))$
end for

$$egin{array}{c} \mathcal{S}_{[2]P} \ \mathcal{S}_{[4]P} \ \mathcal{S}_{[8]P} \ \mathcal{S}_{[16]P} \ dots \end{array}$$

(a) Store table of
$$g_{[2^i]P}$$

(b) $P = (x, y)$ in $\mathbb{F}_p \times \mathbb{F}_p$

```
Output: \tau(P, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\phi}(R))

end for
```

Output:
$$\tau(P, \hat{\varphi}(S))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{[2^i]P}(\hat{\varphi}(S))$
end for

(a) Store table of
$$g_{[2^i]P}$$

(b) $P = (x, y)$ in $\mathbb{F}_p \times \mathbb{F}_p$

Output:
$$\tau(Q, \hat{\phi}(R))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{[2^i]Q}(\hat{\phi}(R))$
end for

(a) Store table of
$$g_{[2^i]P}$$

(b) $P = (x, y)$ in $\mathbb{F}_p \times \mathbb{F}_p$

Output:
$$\tau(Q, \hat{\phi}(R))$$
 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{[2^i]Q}(\hat{\phi}(R))$
end for

(a) Store table of
$$g_{[2^i]P}$$

(b) $P = (x, y)$ in $\mathbb{F}_p \times \mathbb{F}_p$

```
Output: \tau(Q, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\phi}(R))

end for
```


- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$

(c)
$$Q = \psi(P) = (-x, iy)$$

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$

(c)
$$Q = \psi(P) = (-x, iy)$$

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$

(c)
$$Q = \psi(P) = (-x, iy)$$

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$

(c)
$$Q = \psi(P) = (-x, iy)$$

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$

(c)
$$Q = \psi(P) = (-x, iy)$$

```
Output: \tau(Q, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\phi}(R))

end for
```

Output:
$$\tau(Q, \hat{\phi}(S))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\phi}(S))$
end for

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$
- (c) $Q = \psi(P) = (-x, iy)$

Output:
$$\tau(Q, \hat{\phi}(R))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\phi}(R))$
end for

Output:
$$\tau(Q, \hat{\varphi}(S))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\varphi}(S))$
end for

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$

(c)
$$Q = \psi(P) = (-x, iy)$$

```
Output: \tau(Q, \hat{\varphi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\varphi}(R))

end for
```

Output:
$$\tau(Q, \hat{\varphi}(S))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\varphi}(S))$
end for

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$
- (c) $Q = \psi(P) = (-x, iy)$

```
Output: \tau(Q, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\phi}(R))

end for
```

Output:
$$\tau(Q, \hat{\varphi}(S))$$

 $f \leftarrow 1$
for $i = 1$ to e do
 $f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\varphi}(S))$
end for

- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$

(c)
$$Q = \psi(P) = (-x, iy)$$

```
Output: \tau(Q, \hat{\phi}(R))

f \leftarrow 1

for i = 1 to e do

f \leftarrow f^2 \cdot g_{\psi([2^i]P)}(\hat{\phi}(R))

end for
```


- (a) Store table of $g_{[2^i]P}$
- (b) P = (x, y) in $\mathbb{F}_p \times \mathbb{F}_p$
- (c) $Q = \psi(P) = (-x, iy)$

Speedups for (4)

	ℓ	p434	p503	p610	p751
SIKE-2 This	2	5 821 1 954	8 033 2 676	13 458 4 525	21 908 7 348
SIKE-2 This	3			11 365 4 214	

Table 2: Efficiency of pairing in 10^3 cycles on Skylake.

 $Supersingular\ Isogeny\ Key\ Encapsulation-{\tt https://sike.org}.$

Speedups for SIKE

	pk	KeyGen	Encaps	Decaps
SIKE-2	330 B	6 482	10 563	11 290
SIKE-2-comp	196 B	16 397	20 056	18622
This	196 B	10 849	16 600	15 682

Table 3: Efficiency of KEM in 10³ cycles on Skylake for p434.

Supersingular Isogeny Key Encapsulation - https://sike.org.

Speedups for SIKE

	pk	KeyGen	Encaps	Decaps
SIKE-2			_	
SIKE-2-comp	-41%	153%	90%	65%
This	-41%	67%	57%	39%

Table 3: Efficiency of KEM in percentage on Skylake for p434.

 $Supersingular\ Isogeny\ Key\ Encapsulation-{\tt https://sike.org}.$

Thanks for your atthention!

