CPSC 500 Fundamentals of Algorithm Design and

Analysis

Lecturer: Prof. Will Evans Lecture Date: Nov. 13, 2013 Scribe: Ben Zhu

1. Overview

In this lecture, we continued on our discussion about *max flow*/min cut problem. We began our discussion from *Pennant Race Problem* which was introduced at the end of last lecture. Then we discussed another problem, *Open Pit Mining Problem*. Afterwards we started to discuss *Linear Programming Duality* with how to verify our solutions to linear programming problems.

2. Pennant Race Problem

Input

A list of teams $T_1,\,T_2,\,...,\,T_n$ with win/less record for each team

A special team A

A list of games remaining to be played

Output

Is it possible for team A to end the season winning the most (at least as many) as any team?

Example

Team	Wins
Α	3
T ₁	4
T_2	6
T ₃	5
T_4	4
_	

Games to play:

 (A, T_1) (A, T_3) (A, T_4) (T_1, T_2) (T_1, T_3) (T_2, T_3) (T_2, T_4)

Solution

Step 1: Assume A wins all games, let w=6 and we will have

Team	Wins
Α	6=w
T_1	4=w ₁
T ₂	6=w ₂
T ₃	5=w ₃
T_4	4=w ₄

Step 1.5: Check that $w \ge w_i$, for all T_i If not, A has no hope.

Step 2: Calculate max flow using the following flow network

If flow value = # games remaining then A has chance, otherwise A has no hope.

3. Open Pit Mining Problem

Input

Directed graph G = (V, E) where V = set of cubes of earth E = {(u, v) | u must be removed before v} And a function w(v) = value of cube v

Output

Which cubes should be removed?

Example

We can consider this problem as to find the most profitable initial set, where an initial set is a set of vertices that has no incoming edges.

Idea

Convert the problem to a network flow so that any finite capacity cut corresponds to an initial set, and a minimum capacity cut corresponds to a max profit initial set.

Solution

- Make all existing edges have ∞ capacity.
 So any cut (S, T) where T is not an initial set has ∞ capacity.
- 2. If w(u) is positive, add edge

$$u \xrightarrow{w(u)} t$$

If w(u) is negative, add edge

For example,

3. For any initial set U, the capacity of the corresponding cut (S,T), i.e. $((V-U) \cup \{S\}, U \cup \{t\})$

$$c(S,T) = \sum_{u! \in U, w(u) > 0} w(u) + \sum_{v \in U, w(v) < 0} -w(v)$$

4. Add sum of all negative weight values to both sides of equality, we will have

$$c(S,T) + \sum_{v \in U, w(v) < 0} w(v) = \sum_{u! \in U, w(u) > 0} w(u) + \sum_{v! \in U, w(v) < 0} w(v)$$

where $\sum_{v \in U, w(v) < 0} w(v)$ is independent of U and $\sum_{u! \in U, w(u) > 0} w(u) + \sum_{v! \in U, w(v) < 0} w(v)$ is profit of cubes not removed.

So minimizing c(S,T) is the same as maximizing profit of cubes that are removed.

4. Linear Programming Duality

Example

We want to compute: $\max x_1 + 6x_2$

Add we have these following constraints:

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

We may come up with a solution that $x_1 = 100, x_2 = 300, value = 1900.$

Then how should we verify our solution?

Intuitively we would think of using the constraints, like

(5)
$$x_2 \le 1500$$

$$(1) x_1 + x_2 \le 400$$

Then we will have $x_1 + 6x_2 \le 1900$

Multipliers

Here we introduce the multipliers as follows,

$$y_1 \quad x_1 \leq 200$$

$$y_2 x_2 \le 300$$

$$y_3 x_1 x_2 \le 400$$

Then we have $(y_1+y_3)x_1+(y_2+y_3)x_2\leq 200y_1+300y_2+400y_3$, (*) and constraints for the multipliers as follows,

$$y_1, y_2, y_3 \ge 0$$

$$y_1 + y_3 \ge 1$$

$$y_2 + y_3 \ge 6$$

If the constraints are true, then the right side of (*), $200y_1 + 300y_2 + 400y_3$, is the upper bound of $x_1 + 6x_2$.

So we want to choose y_1, y_2, y_3 to minimize $200y_1 + 300y_2 + 400y_3$ and we get another linear programming problem.

5. Conclusion

In this lecture, further discussed the max flow/min cut problem which was introduced during last lecture. We began our discussion from Pennant Race Problem and moved forward to another

example, *Open Pit Mining Problem*. Afterwards, we started to discuss *Linear Programming Duality* with how to verify our solutions. We will have one more lecture to cover linear programming.

References

- [1] Wikipedia, "Maximum flow problem," http://en.wikipedia.org/wiki/Max_flow
- [2] Wikipedia, "Max-flow min-cut theorem," http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem