# Разбор кейса В поисках интересного



### Задача

Разработать концепцию архитектуры сервиса по выделению наиболее интересного фрагмента трека для пользователя с целью сокращения длительности аудио контента.

### Бизнес-метрики

- Индекс удовлетворенности CSI
- Количество пользователей за период



### Основная гипотеза для MVP

Наиболее популярные жанры музыки имеют структуру треков с повторяющимися частями, в которых сконцентрированы самые запоминающиеся ходы и приемы (хуки) — в припевах. При этом зачастую в музыке непосредственно перед припевом имеются гармонические ходы с нарастанием напряжения перед последующим разрешением и наиболее эмоционально заряженные строчки в песне.

Будем считать часть перед припевом и припев самым интересным местом.

Таким образом, задача сводится к Music Track Structure Segmentation/Classification и поиску повторяющихся частей песен с последующей разметкой сниппета.

Статистика по популярности жанров: <u>1</u>, <u>2</u>, <u>3</u>

### Papers and Technologies Research

- Finding Choruses in Songs with Python на основе статьи
- Audio-Based Music Structure Analysis: Current Trends, Open Challenges, and Applications
- Music Segmentation PhD Defense
- Automatic Structural Segmentation of Music
- Youtube Most Replayed Part Prediction
- и так далее...



### Non-ML Baseline

**Идея:** Разметка структуры трека на основе анализа повторения нот — находим припев с помощью матриц подобия и размечаем необходимый отрывок. [<u>источник</u>]



Хроматограмма нот, сжатая до одной октавы



Считаются матрицы подобия каждого фрейма трека



Похожие секции выделяются и размечают структуру трека



#### Pros

 Простота и дешевизна:
 не нужны вычисления на видеокартах и разметка

#### Cons

- Возможна низкая точность, т.к. выделяются повторенные один в один части трека
- Низкая скорость инференса

### CV Solution - Hook-net

**Идея:** После выделения фичей из аудио, обучаем сверточную нейросеть на основе U-net — Hook-net, которая классифицирует отрезки треков по частям и проводит сегментацию. [ucmoчнuk]



| Pros                          | Cons                                     |  |
|-------------------------------|------------------------------------------|--|
| - Учитывается структура трека | - Накладные расходы выше Non-ML Baseline |  |

### RNN Solution - LSTM

**Идея:** аудиоинформация и, в частности, музыка может быть обработана не только как изображения, но и как последовательность — возможно применение NLP подходов — Bi-Directional LSTM сеть так же справляется с задачей сегментации

и анализа структуры треков. [источник]

Трек — Получение признаков методами DSP:

Constant-Q Transform

Mel-Frequency Cepstral Coefficients

Tempogram



Мультиклассовая классификация каждого фрейма последовательности

| Pros                                                                                                                                                      | Cons                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| - Теоретически может учитывать контекст повторяющихся<br>структур внутри трека при поиске самого интенсивного<br>припева, а не просто размечать структуру | - Более тяжелая архитектура сети |  |

### Transformer Solution - Attention-based PGL-SUM

**Идея:** Задача выделения наиболее просматриваемого фрагмента была решена для видео с помощью архитектуры PGL-SUM, основанной на двух контурах Attention — глобальной и локальной. Возможно данная архитектура справится с аналогичной задачей для аудио. [ucmoчнuk]



| Pros                                                                             | Cons                                 |
|----------------------------------------------------------------------------------|--------------------------------------|
| - Двойной контур Attention должен улучшить качество разметки по сравнению с LSTM | - Еще более тяжелая архитектура сети |

## Метрики



<u>ML-метрики для оценки качества и мониторинга:</u>

- 1. IoU по перекрытию ground truth сегмента и предсказания
- 2. Accuracy
- 3. Precision, Recall, F1-score

#### Полезные показатели для мониторинга при А\В-тестировании гипотез:

- 1. Mean Opinion Score формировать по опросам пользователей
- Conversion Rate конверсия прослушивания трека после прослушивания сниппета (возможно потребуется учитывать предпочтения пользователя для повышения адекватности показателя)

### Датасет

- 1. Открытые датасеты
- 2. Разметка на Я.Толоке
- 3. Youtube scraping возможно получение данных о Most Reviewed Part через API [Stackoverflow thread]
- 4. Генерация примеров
- 5. Аугментация для увеличения датасета:
  - а. Добавление шумов и глитчирование
  - Изменение тональности
  - с. Перемешивание частей трека (в случае полностью размеченной структуры)

### Доступные датасеты

| Датасет           | Количество<br>треков | Features                                    | Примечание                                  |
|-------------------|----------------------|---------------------------------------------|---------------------------------------------|
| <u>FMA</u>        | 106,574              | DSP фичи, полученные с помощью librosa      | Необходима разметка, 30-<br>секундные треки |
| <u>SALAMI</u>     | 1359                 | Иерархические аннотации<br>структуры треков | Ограничен по исполнителям и<br>жанрам       |
| The Harmonix Set  | 912                  | DSP фичи, метадата, структура               | Ограничен по исполнителям и<br>жанрам       |
| <u>SPAM</u>       | 50                   | DSP фичи, метадата, структура               | Ограничен по исполнителям и<br>жанрам       |
| <u>RWC</u>        | 300                  | DSP фичи, метадата                          | Платный, нет разметки структуры             |
| <u>Isophonics</u> | 300                  | DSP фичи, метадата, структура               | Ограничен по исполнителям и<br>жанрам       |

# Яндекс.Толока 🏻 🎇 **Toloka**)

- 1. Разметка структуры всего трека скорее всего будет требовать толокеров высокого уровня и займет не только больше времени, но и будет больше стоить. Возможно рациональней будет упростить задачу и просить толокеров определить только наиболее интересный регион трека по их мнению.
- 2. При этом необходимо оставить возможность для выбора у толокера какието жанры могут быть нелюбимыми и разметка интересного региона в таком случае будет необъективной. Вопрос объективности при опросах возможно решить методами статистики [Пример].
- 3. Пулы следует формировать с большим количеством перекрытий, чтобы агрегация региона после разметки была наиболее объективна.
- 4. Набор треков должен быть сбалансирован по жанрам и возможно составлен из жанровых топ-листов для упрощения задачи толокерам.

Я.Толока и разметка аудио

## Возможные трудности

| Описание                          | Вариант решения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Жанры<br>со сложной<br>структурой | Техно, джаз, академические жанры имеют структуру отличную от популярных и выделение фрагмента на основе повторяющихся сегментов может вызвать трудности. Для подобных жанров можно выделять фрагмент на основе простых эвристик — начало\середина трека, например, пока не будет статистики их реального прослушивания для дообучения модели.                                                                                                                                                                            |
| Различная длина<br>треков         | Для треков короче выделяемого сниппета — выделяется весь трек. В остальных случаях для подачи в сеть требуется последовательность фиксированной длины. Тогда принимается величина продолжительности трека, к которой будут нормализоваться все отправляемые нейросети треки. При этом треки короче этой величины будут иметь частоту высокую семплирования, а длинней, соответственно, низкую. Для очень длинных треков, возможно, проще будет разбивать трек на части и искать по ним, или же использовать иной подход. |

### Архитектура системы

relistened

region

**New Track** Model Database Добавление трека Дообучение на истории прослушиваний Tracks: History: Users: track id track id user id metadata user id personal info timestamp most

Texнологии
librosa
Pytorch
PostgreSQL
Airflow
MLflow
DVC





listened

region

### Оценка сроков реализации

- 1. Сбор, подготовка и очистка датасета: ~1 месяц
- 2. Реализация и эксперименты с архитектурами моделей: ~2 месяца
- 3. Создание MVP для Demo Review: ~1 месяц

Итого: ~4 месяца на реализацию MVP

### Оценка ресурсов

- 1. Аренда Яндекс.Облако для обучения\инференса модели: ~75к/мес
- 2. ФОТ: ~100-150к/мес на сотрудника + отчисления
- 3. Оборудование (ноутбук для удалённой работы): ~100-150к на сотрудника

# Спасибо!

