Ven diagram æt A AMB \mathcal{B}

What is a set?

A willection of objects.

backgack -> let.

Capital letter A,B, Q. to

pen book box - elements

denote a set

lower case letter -> dements

(soo elemens

finite set } 1, 2, 3, }

{ wooleynoty }

two sets have identically [same] 2, 1} elaments are unoxided

{ 1, 2 } = { 1, 2, 2 } repeated elements

0. 9 9...9 = I

2.9. - . 9

(0,9 ··- -9)

Operations on sets

Supset
$$A \subseteq B$$
 if any $X \in A$ then $X \in B$.

proper subset
$$A \neq B$$
: $A \subseteq B$
there is some $x \in B$ s.t. $x \notin A$

$$\{1,2\}$$
 $\{1,2,3\}$ $\{1,2,3\}$ $\{1,2,3\}$ $\{1,2,3\}$ $\{1,2,3\}$

intersection and union.

finite union finite intersetion

agebraic. $\sum_{n=1}^{N} X_n$ $\sum_{n=1}^{N} \frac{1}{n^2} = \frac{7^2}{6}$ $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$

add up
all real numbers
between o and j
illegal.

i=1 Ai = A, U Az U.... V. Ab

XE [0,1] XE [0,1]

B(E) legal -> well defined

BCO -> Pixture

surprisingly notal fact:

prove A = B

we need $A \subseteq B$ and $B \subseteq A$.

Complements:

complement of A (is U)

AC= XX | XEU)

and X & A. V= Have

H= dick

U=IR A= IO, IJ $A^{c}=(-\infty,0)U(1,\infty)$

Set mining (difference)

 $\frac{A-B}{A \setminus B} := A \cap B^{\circ} := \{ \times \mid \times \in A \text{ and } x \notin B \}$

e.g. $U=\mathbb{R}$ A=[0,1] $A\setminus B=[0,\frac{1}{2}]$ $B=(\frac{1}{2},\infty)$

complements & set difference works for finitely many countably, sets

A,B,C

Symmetric difference.	
$A \triangle B = (A-B) \cup (B-A)$	
= (AVB)(ADB)	
Cardinality, ordering of sets.	
A or card(A) # of elements in set A	j
When A is a finite set.	
(A) is just counting.	
(AUB) = (A + B - ADB	
When A is infinite, want. [A] still preserve the above law.	

Power set P(S) of S $S = \{a, b, c\}$ $S = \{a, b, c\}$ S =

ordered pairs Set elements of not have order.

(a, b) $\in \mathbb{R}^2$ set set

Cartesian product $A \times B$ $|(a, b)| = |A| \times |B|$ $|(a, b)| = |A| \times |A|$ $|A| \times |A|$

Moth.

Set. (I,2) = (1,2)

Vector. \leftarrow array = (1,2,2,--)

an element

in Cartesian product.

