## Práctica 2 - Cálculos combinatorios. Resultados igualmente probables.

## Santiago

1. Consideremos mensajes enviados en código binario (0 y 1). ¿Cuántos mensajes es posible enviar con 10 dígitos o menos? Con n dígitos hay  $2^n$  posibles mensajes. Entonces, si tengo la posibilidad de enviar hasta 10 dígitos.

#mensajes = 
$$\sum_{i=1}^{10} 2^i = 2^{11} - 1$$

- 2. Un experimentador está estudiando los efectos de la temperatura, la presión y el tipo de catalizador en la producción de cierta reacción química. Se consideran para las experiencias tres temperaturas diferentes, cuatro presiones distintas y cinco catalizadores diferentes. Si cualquier experimento particular implica utilizar una temperatura, una presión y un catalizador:
  - (a) ¿Cuántos experimentos distintos son posibles realizar?

Hay 3 temperaturas, 4 presiones y 5 catalizadores. Entonces,

$$\#experimentos = 3 \cdot 4 \cdot 5 = 60$$

(b) ¿Cuántos experimentos distintos existen que impliquen el uso de la temperatura más baja y las dos presiones más bajas?

Hay una única temperatura más baja, y hay una restricción a 2 presiones en particular, por ende

$$\#experimentos' = 1 \cdot 2 \cdot 5 = 10$$

(c) Suponga que se tiene que realizar cinco experimentos diferentes el primer día de experimentación y los experimentos se realizar al azar. ¿Cuál es la probabilidad de que se utilice un catalizador diferente en cada experimento?

Los casos favorables: el primer experimento no tiene restricción, entonces hay 5 opciones. Para el segundo, no puedo usar el catalizador del primero, así que hay 4 opciones, por los mismos motivos, para el tercero hay 3, para el cuarto 2 y para el quinto 1. Casos totales: no hay restricción alguna en los experimentos, así que siendo A = "no se repite el catalizador", se tiene que

$$P(A) = \frac{\text{casos favorables}}{\text{casos totales}} = \frac{5!}{5^5}$$

3. Se lanzan dos dados, sea "a" el número del primer dado y "b" el del segundo. ¿Cuál es la probabilidad de que la ecuación  $x^2 + ax + b^2 = 0$  tenga raíces reales?

Para que las raíces sean reales:

$$a^2 - 4b^2 > 0 \rightarrow a > 2b$$

Tenemos que el espacio muestral es

$$\Omega = \{(i, j) : i, j = 1, 2, 3, 4, 5, 6\}$$

Los casos favorables son

$$B = \{(2,1)(3,1)(4,1)(5,1)(6,1)(4,2)(5,2)(6,2)(6,3)\}$$

Sea A = "la ecuación tiene raíces reales"

$$P(A) = \frac{\#B}{\#\Omega} = \frac{9}{36}$$

1

4. En una habitación, 10 personas tiene insignias numeradas del 1 al 10. Se eligen 3 personas al azar.

(a) ¿Cuál es la probabilidad de que el número menor de las insignias de las personas elegidas sea 5?

Los casos favorables involucran una selección de la insignia 5 y dos selecciones de números mayores. Hay  $1 \cdot 5 \cdot 4$  casos favorables, mientras que los casos totales son  $10 \cdot 9 \cdot 8$ . Entonces

$$P(\text{menor de las insignias es 5}) = \frac{5 \cdot 4}{10 \cdot 9 \cdot 8} = \frac{20}{720} = \frac{1}{36}$$

(b) ¿Cuál es la probabilidad de que el número mayor de las insignias sea 5?

Para los casos favorables necesito sacar el 5, luego tengo que sacar dos insignias menores. Con lo cual hay  $1 \cdot 4 \cdot 3$  casos favorables.

$$P(\text{mayor de las insignias es 5}) = \frac{4 \cdot 3}{10 \cdot 9 \cdot 8} = \frac{12}{720} = \frac{1}{60}$$

5. Se eligen al azar dos números entre los primeros números  $1, 2, \dots, n$ . ¿Cuál es la probabilidad que sean consecutivos si los escogemos con sustitución? ¿Y si lo hacemos sin sustitución?.

Si es con sustitución, hay n opciones para el primero, si se se seleccionó el 1 o n hay 1 opción para el segundo, para los n-2 restantes hay 2. Los casos totales son  $n^2$ , entonces

$$P(\text{consecutivos con sustitución}) = \frac{(n-2)\cdot 2 + 2\cdot 1}{n^2} = \frac{2n-2}{n^2} = \frac{2}{n} - \frac{2}{n^2}$$

El caso sin sustitución sólo me cambia los casos totales

$$P(\text{consecutivos sin sustitución}) = \frac{2n-2}{n \cdot (n-1)} = \frac{2}{n}$$