CSC 466 Analysis of Board Games

By Lucas Summers, Braeden Alonge, Nathan Lim, and Xiuyuan Qiu

Agenda

- 1 The Dataset
- 2 Collaborative Filtering
- 3 Clustering
- 4 Regression
- 5 Conclusion

Part 1 The Dataset

Overview

- Data source: BoardGameGeek (online forum & community)
- Covers ~22,000 games, ~411,000 unique users, ~19M user ratings
- Split into 9 different .csv files, covering a total of almost 100 features for the games, game designers, users, etc.

Browse - Forums - GeekLists - Shopping - Community - Help -

Sign In Join (it's free)!

Explore

Dashboard

Designer Diary: Takeover

by Ron Sierra - BoardGameGeek News

BGG.CON 2025 Registration Opens March 14th

by CaptainQwyx - BGG.CON

Top 10 90 Minute Games

by boardgamegeektv

Designer Diary: 23 Knives

by T. Brown - BoardGameGeek News

Cities - GameNight!

by heccubus

THE HOTNESS

Top 50 trending games today

The Tables

- GAMES: core information (47 features) about each game
- USER_RATINGS: individual ratings (~19M total) from ~411K users
- RATINGS_DISTRIBUTION: rating counts (0.0 10.0) for each game
- THEMES: game themes represented by binary flags
- MECHANICS: game mechanics (e.g. dice rolling) represented by binary flags
- **SUBCATEGORIES**: game subcategories (e.g. fantasy) represented by binary flags
- ARTISTS_REDUCED, DESIGNERS_REDUCED, PUBLISHERS_REDUCED: information about artists, designers, and publishers of the games

Research Questions

- 1. Which attributes of a game tend to produce the highest user ratings?
- 2. Can we cluster board games into meaningful categories based on mechanics, themes, and categories?
- 3. How effectively can we predict a "value" metric (e.g., average rating) for a board game from its attributes?
- 4. Given a user's past game ratings, can we predict their rating of new games based on ratings of similar users?

Part 2 Collaborative Filtering

Data Preprocessing

400k users x 22k games = 9B cells

Filter:

Most popular 1% of games (219) Users w/50+ ratings for this 1%

Train on this!

Methods

- Reused much of our implementations from lab 5 (CF lab)
 - KNN w/adjusted weighted sum + cosine similarity
- Mean Absolute Error with randomly selected sampling and tests
- Examined results overall and by game

Results

- 5 test samples of size 100:
 - Average MAE of 0.92 with a std. deviation of 0.08

- On a per-game basis, some games had noticeably
 - higher/lower performance ranging from ~0.4 to ~1.9 MAE

Initial Conclusions

- Predicting ratings performed effectively with the filtered data
- High similarity scores among users reflected similar rating patterns
 - Very common rating pattern amongst users (~7/10)
- Variability in user perception of specific games directly correlated with model performance

Baseline Comparison

Baseline: predict the average game score (7.1) for every query

- Error with $\mu = 1.069$, $\sigma = 0.857$
- RMSE: 1.54

Collaborative filtering on all 2,836,563 ratings

- Error with $\mu = 0.879$, $\sigma = 0.748$
- RMSE: 1.15

sidenote: CF took 2500+ cpu credit-hours (3 months)

Colab Filtering does something! Most errors are ≤ 1.

Colab Filtering Applet

Rate 10 random games to get personalized suggestions!

Conclusions 2

We beat a baseline:

```
1.069 \rightarrow 0.879 \text{ MAE}
1.54 \rightarrow 1.15 \text{ RMSE}
```

Qualitative Evaluation

Using the applet, pretended to be a user that likes:

```
minifigures (2/3 games with minifigures suggested)
card games (1/3 games with a lot of cards suggested)
social deduction games (1/3 games with social deduction suggested)
history (0/3 games with history suggested)
```

Part 3 Clustering

Data Preprocessing

- Merged GAMES data with MECHANICS, THEMES, and SUBCATEGORIES based on id
- Filtered games to only those with >=100 user ratings
- Final dataset reduced from 21,925 to 12,239 games
- 432 total features

Methods

- Feature selection & PCA
 - Only used binary attributes (392 in total)
 - 1: the game has the feature, 0: the game doesn't
 - PCA applied to reduce dimensionality

■ 71 components for 80% variance

Methods (cont.)

- Split dataset into two groups:
 - High-rated games (>=7) and low-rated games (<6)
 - Further removed 5677 games

Methods (cont.)

- Agglomerative hierarchical clustering used
 - Grid search over n_clusters from 5-15, various linkage options, and distance metrics
 - o Grid search optimized using Calinski-Harabasz score
 - Clusters then examined manually for feature prevalences
 - Decision Tree also trained to see which features
 distinguish a cluster from other clusters

Results

Results (high-rated games)

- Cluster 0: Card-Based Games (21%)
 - Defined by hand management, drafting, deckbuilding, along with fantasy and fighting themes
- Cluster 1: Classic Strategy Games (31.4%)
 - O Defined by area majority/influence, tile placement, worker placement, along with economic & city building themes
- Cluster 2: Dice-Based Adventure Games (14.5%)
 - O Defined by dice rolling, variable player powers, cooperative gameplay, along with fantasy, adventure, & fighting themes

• ...

Results (high-rated games)

- Cluster 3: War Simulation Games (20%)
 - Defined by dice rolling, simulation, hexagon grid, along with WWII, modern warfare, and aviation themes
- Cluster 4: Party & Deduction Games (13%)
 - Defined by deduction, cooperative gameplay, dice rolling, along with science fiction, murder/mystery, and humor themes

Results (high-rated games)

- No one path to excellence in terms of rating
 - varied approaches, from themed adventures to economic strategy to card games
- Successful mechanic integration for each cluster
 - Balanced dice mechanics in Cluster 2 (Dice-Based Adventure Games)
 - Coherent themes in Cluster 3 (War Simulation Games)
 - Social interaction value in Cluster 4 (Party and Deduction Games)

Results (low-rated games)

- Cluster 0: Family & Children's Games (49.2%)
 - O Defined by dice rolling, roll/spin and move, and dexterity, along with themes of Movies/TV, economic, & trivia
- Cluster 1: Card Games (34.6%)
 - Defined by hand management, set collection,
 betting/bluffing, with themes of humor and animals
- Cluster 2: Monopoly-Style Games (1.9%)
 - Defined by roll/spin and move, negotiation, and trading, with economic and movies/TV themes
- ...

Results (low-rated games)

- Cluster 3: War Simulation Games (3.4%)
 - Defined by dice rolling, hexagon grid, and simulation, with themes of WWII and modern warfare
- Cluster 4: Themed Fantasy Games (10.9%)
 - Defined by dice rolling and hand management, with themes of fantasy and fighting

Results (low-rated games)

- Games with an over reliance on luck do not seem to be well received (ex. roll/spin move feature)
- Themes without substance (fantasy, movies/TV, video games) in Cluster 2 and 4 show that rehashing existing games is not a recipe for success
- Outdated designs (Cluster 2: Monopoly-Style Games) do not perform well
- Games (Cluster 0: Children's Games) that are too childish for strategy gamers or too complex for families

Conclusions

- Execution, quality, and effective integration of features was more important than features alone
 - o ex. War Games
- Players prefer games with strategic depth; excessive reliance on luck-driven mechanics led to lower ratings
 - o ex. Card Games

Part 4 Regression

Data Preprocessing

- Filtered attributes to include only numerics
- Filtered games to only those with >=100 user ratings
- Final dataset reduced from 21,925 to 12,239 games

Methods: Linear Regression

Assumes linear relationship

Simplicity allows for easy interpretation

 In contrast, complex relationship representation is limited

Methods: Random Forest Regressor

• Accounts for nonlinear relationship

Predictions aggregated from multiple decision trees

Aim to improve accuracy and reduce overfitting

Methods: Random Forest Regressor (cont.)

- Implemented Grid Search with the following parameters:
 - o n_estimators: The number of trees in the forest
 - max_depth: The maximum depth of the forest, and
 - min_samples_split: The minimum number of samples required to split an internal node.
- 5-fold cross-validation → 36 param combinations, 180 fits

Results: Linear Regression

• Evaluated Mean Squared Error (MSE), Mean Average Error (MAE), and coefficient of determination (R²)

- Model Performance:

- Mean Squared Error (MSE): 0.1219
- Mean Absolute Error (MAE): 0.2557
- R² Score: **0.8166**

Results: Linear Regression

Results: Random Forest Regressor

• Evaluated Mean Squared Error (MSE), Mean Average Error (MAE), and coefficient of determination (R²)

- Model Performance:

- Mean Squared Error (MSE): 0.02795
- Mean Absolute Error (MAE): 0.09931
- R² Score: **0.95797**

Results: Comparative Analysis

- Linear Regression
 - Mean Squared Error (MSE):0.1219
 - Mean Absolute Error (MAE): 0.2557
 - R² Score: **0.8166**

- Random Forest Regressor
 - Mean Squared Error (MSE): 0.02795
 - Mean Absolute Error (MAE): 0.09931
 - R² Score: **0.95797**

Results: Comparative Analysis

Conclusions

 We can build a model to accurately predict a value metric, average rating, given game attributes.

- There is a correlation between game attributes and overall rating of game
 - Better represented as a nonlinear relationship

Part 5 Conclusion

Summary

- Explored board game data from BoardGameGeek
- Performed analysis with Collaborative Filtering, Clustering, and Regression Models
- All three analytic approaches were successful with their own insights

Our Experience

- Data analysis is iterative—not a one-step process
- Initial findings led us to continually ask "why?" for deeper insights
- Multiple analytical methods gave us a complete dataset perspective

Societal Impact

- Findings can help designers to create engaging games aligned with consumer preference
- Over-reliance on predictive models risks reduction in creative diversity and can lead to formulaic games
- Niche games become more niche, mainstream becomes more mainstream
- Communal and global economy boost for mainstream game developers