INSTRUCTION	TYPE	OPCODE	SEL	ALU	MNEMONIC	OPERATION
NO OPERATION	R	0000	XXXX	00000	NOP	PC<=PC+1
ADD IMMEDIATE	IM	0001	R[x] addr	ZZZZ	ADD R[x], #data	$R[x] \le R[x] + \#data$
ADD	R	0010	0000	00001	ADD R[x], R[y]	R[x] <= R[x] + R[y]
SUBSTRACT	R	0010	0001	00010	SUB R[x], R[y]	R[x] <= R[x] - R[y]
INCREMENT	R	0011	0000	00011	INC R[x]	R[x] <= R[x] + 1
DECREMENT	R	0011	0001	00100	DEC R[x]	R[x] <= R[x] - 1
SHIFT LEFT	R	0100	0000	00101	SHL R[x], R[y]	R[x]=R[x]<< R[y]
SHIFT RIGHT	R	0100	0001	00110	SHR R[x], R[y]	R[x]=R[x]>>R[y]
LOGICAL NOT	R	0101	0000	00111	NOT R[x]	$R[x] \le NOT R[x]$
LOGICAL NOR	R	0101	0001	01000	NOR R[x]	$R[x] \le NOR R[x]$
LOGICAL NAND	R	0101	0010	01001	NAND R[x]	$R[x] \le NAND R[x]$
LOGICAL XOR	R	0101	0011	01010	XOR R[x]	$R[x] \le XOR R[x]$
LOGICAL AND	R	0101	0100	01011	AND R[x]	$R[x] \le AND R[x]$
LOGICAL OR	R	0101	0101	01100	OR R[x]	$R[x] \le OR R[x]$
CLEAR	R	0101	0110	01101	CLR R[x]	R[x]<=0
SET	R	0101	0111	01110	SET R[x]	R[X]<=1
SET IF LESS THAN	R	0101	1111	01111	SLT R[x], R[y]	IF $R[x] < R[y]$ THEN $R[x] = FF$
RESET IF LESS THAN	R	0101	1110	10000	RLT R[x], R[y]	IF R[x] <r[y] r[x]="00</td" then=""></r[y]>
MOVE	R	0101	1000	10001	MOV R[x], R[y]	$R[y] \le R[x]$
LOAD INDIRECT	EM	1000	XXXX	10010	LD R[x], R[y]	$R[x] \le MEM[R[y]]$
STORE INDIRECT	EM	1001	XXXX	10011	STR R[x], R[y]	$MEM[R[x]] \le R[y]$
LOAD REGISTER	EM	1010	R[x] addr	10100	LD R[x], #addr	R[x]<=MEM[#addr]
STORE REGISTER	EM	1011	R[x] addr	10101	STR R[x], #addr	MEM[#addr]<=R[x]
JUMP	BR	1100	XXXX	ZZZZZ	JMP #addr	PC<=#addr
BRANCH IF ZERO	BR	1101	XXXX	ZZZZZ	JZ #offset	IF R[x]==0, PC<=PC+offset
BRANCH IF NOT ZERO	BR	1110	XXXX	ZZZZZ	JNZ #offset	IF R[x]<>0, PC<=PC+offset