Introdução ao Cálculo - MAW117 Rogério Lourenço - rogerio.lourenco.im.ufrj@gmail.com Lista Complementar 3

- 1. Um retângulo de lados x e y é inscrito em um círculo de raio 3. Escreva a área desse retângulo como função de x.
- 2. Um retângulo tem um dos lados sobre o eixo x e os dois vértices superiores em cima da curva S, onde

$$S = \{(x, y) \in \mathbb{R}^2 | y = 9 - x^2 \}.$$

Se o vértice superior direito do retângulo for dado pelo ponto (x, y), escreva a área do retângulo como função de x.

3. No plano \mathbb{R}^2 , considere um triângulo retângulo cujos vértices são a origem (0,0) e os pontos (x,0) e (0,y), para x>0 e y>0.

Escreva a área desse triângulo como função de x, sabendo que a hipotenusa passa pelo ponto (3,5).

- 4. A função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2 6x + 11$ é injetiva?
- 5. Considere a função $f:]-2,2[\to \mathbb{R}$ dada por

$$f(x) = \frac{x}{x^2 - 4}.$$

Calcule f^{-1} e ache $f^{-1}(1/2)$.

6. Se $f(x) = \frac{8}{\sqrt{x}+2}$, qual o domínio e contradomínio para que seja inversível? Calcule a inversa.

O mesmo para $g(x) = \frac{2x-5}{x+4}$.

- 7. Seja $f(x)=x^2-4x+9$, com domínio $[2,+\infty)$. Qual o contradomínio para que exista f^{-1} ? Calcule f^{-1} .
- 8. Ache o maior domínio em $\mathbb R$ e a imagem das seguintes funções:
 - (a) $f(x) = 4 x^2$;
 - (b) $g(x) = 5 + \sqrt{9 x}$;
 - (c) $h(x) = \frac{5x}{x-8}$.
- 9. Sejam $h,f,g:\mathbb{R}\to\mathbb{R}.$ Ache exemplos de f e g tal que $h=f\circ g,$ onde $h(x)=(x^2+6x-4)^5.$
- 10. Qual o domínio da função

$$f(x) = \sqrt{\frac{x^2 - 5x}{x^2 - 9}}.$$

11. Sejam $f,g:\mathbb{R}\to\mathbb{R}$ dadas por

$$f(x) = x^2 + 4x$$

 \mathbf{e}

$$g(x) = 3x - 5.$$

Determine $f \circ g \in g \circ f$.

- 12. Simplifique as expressões abaixo:
 - (a) $\frac{(x^2)^4 x^5}{x^4 (x^3)^2}$;
 - (b) $\ln((x+5)^3\sqrt{2x-7});$
 - (c) $\ln\left(\frac{x^4}{(2x-1)^3(7x-5)^8}\right)$;
 - (d) $(\log_9 3) \cdot (\log_5 \frac{1}{25});$
 - (e) $\log_4 \frac{36}{5} + \log_4 \frac{10}{9}$;
 - (f) $\ln(\ln e) + \log_2 8$.
- 13. Resolva a equação

$$6(5^{2x-9}) = 24.$$

Escreva a solução usando ln.

- 14. Resolva as equações:
 - (a) $e^{2x} 2e^x 15 = 0$;
 - (b) $\log_2(x+35) \log_2 x = 3$;
 - (c) $\log_6(x-11) + \log_6(x-6) = 2$;
 - (d) $(\ln x)^2 = \ln(x^4)$;
 - (e) $2 \ln x \ln(x+2) = 0$;
 - (f) $\ln(x-3) + \ln(x+1) = \ln(x+7)$;
 - (g) $3 \cdot 5^{2x+1} = 18 \cdot 2^{5x-3}$.