Code ▼

Math 189 HW 1

Authors: David Thai, Shir Levin, Stanley Park.

Math 189 Section B

Code

model <chr></chr>	mpg <dbl></dbl>	cyl <int></int>	disp <dbl></dbl>	hp <int></int>	drat <dbl></dbl>	wt <dbl></dbl>	qsec <dbl></dbl>	vs <int></int>	am <int> ▶</int>
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
1-10 of 32 rows 1-10 of 12 columns						Previous	1 2	3 4	Next

1. Calculate Sample mean and Variance

Hide

```
cars <- subset(cars, select= -c(model))
#View(cars)
colMeans(cars)</pre>
```

mpg	cyl	disp	hp	drat	wt	qsec	vs
am 20.090625	6.187500	230.721875	146.687500	3.596563	3.217250	17.848750	0.437500
0.406250 gear	carb						
3.687500	2.812500						

Hide

sapply(cars, var)

```
mpg cyl disp hp drat wt qs
ec vs
3.632410e+01 3.189516e+00 1.536080e+04 4.700867e+03 2.858814e-01 9.573790e-01 3.193166e+
00 2.540323e-01
    am gear carb
2.489919e-01 5.443548e-01 2.608871e+00
```

2. The diagonal of the variance matrix is the variances of each variable. The diagonals of the corrleation matrix is 1. They are also both symmetric.

Hide

cov(cars)

	mpg cy	l disp	hp	drat	wt	qs
ec	VS					
mpg 36.324		0 -633.09721	-320.732056	2.19506351	-5.1166847	4.509149
19 2.017137		1 100 66020	101 021452	0.66036604	1 2672710	1 006054
cyl -9.172 84 -0.729838		1 199.66028	101.931452	-0.66836694	1.3673710	-1.886854
	208 199.660282	2 15260 70002	6721 150660	47 06401015	107 6942040	06 051601
45 -44.377620		3 13300.79963	0/21.136009	-47.00401913	107.0042040	-90.031081
	056 101.931451	6 6721.15867	4700.866935	-16.45110887	44.1926613	-86.770080
65 -24.987903		0 0/21:1300/	1,00.000333	10.13110007	11.1720013	00.770000
drat 2.195		9 -47.06402	-16.451109	0.28588135	-0.3727207	0.087140
73 0.118649						
wt -5.116		0 107.68420	44.192661	-0.37272073	0.9573790	-0.305481
61 -0.273661	29					
qsec 4.509	149 -1.886854	8 -96.05168	-86.770081	0.08714073	-0.3054816	3.193166
13 0.670564	52					
vs 2.017	137 -0.729838	7 -44.37762	-24.987903	0.11864919	-0.2736613	0.670564
52 0.254032	26					
am 1.803	931 -0.465725	8 -36.56401	-8.320565	0.19015121	-0.3381048	-0.204959
68 0.042338	71					
gear 2.135		5 -50.80262	-6.358871	0.27598790	-0.4210806	-0.280403
23 0.076612						
carb -5.363		3 79.06875	83.036290	-0.07840726	0.6757903	-1.894112
90 -0.463709		_				
	_	ar carl				
mpg 1.8039		55 -5.3631048				
cyl -0.4657	2581 -0.64919 1210 -50.80262					
-	6452 -6.35887					
=	.5121 0.27598					
wt -0.3381		06 0.6757903				
qsec -0.2049		32 -1.8941129				
vs 0.0423		29 -0.4637096				
am 0.2489						
gear 0.2923						
carb 0.0463						

cor(cars)

```
disp
                                           hp
                                                    drat
           mpg
                     cyl
                                                                 wt
                                                                          qsec
vs
           am
     mpg
640389 0.59983243
cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958 -0.59124207 -0.8
108118 -0.52260705
disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799 -0.43369788 -0.7
104159 -0.59122704
    -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479 -0.70822339 -0.70822339
230967 -0.24320426
drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406 0.09120476 0.4
402785 0.71271113
    -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000 -0.17471588 -0.5
549157 -0.69249526
qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159 1.00000000 0.7
445354 -0.22986086
     0.6640389 - 0.8108118 - 0.7104159 - 0.7230967 0.44027846 - 0.5549157 0.74453544
000000 0.16834512
     0.5998324 \ -0.5226070 \ -0.5912270 \ -0.2432043 \ \ 0.71271113 \ -0.6924953 \ -0.22986086
                                                                               0.1
683451 1.00000000
gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870 -0.21268223 0.2
060233 0.79405876
carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059 -0.65624923 -0.5
696071 0.05753435
          gear
                     carb
     0.4802848 - 0.55092507
mpg
cyl -0.4926866 0.52698829
disp -0.5555692 0.39497686
    -0.1257043 0.74981247
hp
drat 0.6996101 -0.09078980
    -0.5832870 0.42760594
qsec -0.2126822 -0.65624923
     0.2060233 -0.56960714
vs
     0.7940588 0.05753435
am
gear 1.0000000 0.27407284
carb 0.2740728 1.00000000
```

3. Scatterplot between Wt and Mpg

Hide

plot(cars\$wt, cars\$mpg)

4. Drawing 3D scatterplot using columns of mtcars

```
Hide
#install.packages("tidyverse")
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
 method
                 from
 print.tbl_lazy
 print.tbl sql
— Attaching packages
- tidyverse 1.3.2 —

✓ ggplot2 3.3.5

                    ✓ purrr
                              0.3.4

✓ tibble 3.1.8

                    ✓ dplyr
                              1.0.7

✓ tidyr

          1.2.1
                    ✓ stringr 1.4.0
          2.1.3
                    ✓ forcats 0.5.1
✓ readr
— Conflicts ——
                                                                                    - tidy
verse conflicts() —
* dplyr::filter() masks stats::filter()
* dplyr::lag() masks stats::lag()
```

Hide

```
#scatterplot3d(x = cars$mpg, y=cars$wt, z=cars$cyl)
#plot_ly(x=cars$mpg, y=cars$wt, z=cars$cyl, type="scatter3d", mode="markers", color=cars
$cyl)
#lot3d(cars$wt, cars$disp, cars$mpg, type = "s", size = 0.75, lit = FALSE)
cars |>
    ggplot(aes(mpg, wt)) + geom_point(alpha=0.5, size=2, aes(color=cyl))
```


5. Pairwise scatterplot

Hide

pairs(cars)

6. Yes it looks like cylinders has an impact on the relationship between weight and MPG. The lighter the shade of blue of an observation, the more cylinders it has. From the scatterplot in 4, we can clearly see that there is a linear relationship between the shades of blue and points with similar weight and MPG. Cars with lower weight and mpg have lighter shades of blue than those with heavier weights and higher mpg.