Examen médian : OS02 - Théorie de la décision - 2 h

Documents autorisés : Polycopiés distribués et un formulaire.

Sujet 1 : [\simeq 7 points] Considérons la distribution \mathcal{F}_p dont la densité de probabilité f(x;p) est définie par :

$$f(x;p) = \begin{cases} p^2 x \exp(-px) & \text{si } x \ge 0, \\ 0 & \text{si } x < 0 \end{cases}, \text{ où } p > 0 \text{ est le paramètre.}$$

- 1. Montrer que la famille des lois $\mathcal{P} = \{\mathcal{F}_p\}_{p>0}$ admet un rapport de vraisemblance monotone. Déterminer T(x). Dessiner la fonction $T \mapsto g(T)$.
- 2. Vérifier les conditions de la proposition 2.2.1.
- 3. Soit ξ une (seule!) observation (l'échantillon de taille n=1) de distribution \mathcal{F}_p . Déterminer un test $\delta(\xi)$ Uniformément le Plus Puissant (UPP) dans la classe \mathcal{K}_{α} pour choisir entre $\mathcal{H}_1 = \{p \leq p_0\}$ contre $\mathcal{H}_2 = \{p > p_0\}$.
- 4. Calculer les risques $\alpha_1 = \mathbb{P}_{p_1}(\delta = \mathcal{H}_2)$ et $\alpha_2 = \mathbb{P}_{p_2}(\delta = \mathcal{H}_1)$ où $p_1 < p_0 < p_2$.

Indication: La proposition 2.2.1 est définie pour le cas où le rapport de vraisemblance $T \mapsto \Lambda(T)$ est une fonction monotone croissante de T. Dans le cas où le rapport de vraisemblance $\Lambda(T)$ est une fonction monotone décroissante de T il faut adapter l'écriture du test UPP.

Réponses:

1) Le rapport de vraisemblance est

$$\Lambda(x) = \frac{f(x; p_2)}{f(x; p_1)} = \left(\frac{p_2}{p_1}\right)^2 e^{-(p_2 - p_1)x} = g(T(x)), \quad \text{où } g(T) = \left(\frac{p_2}{p_1}\right)^2 e^{-(p_2 - p_1)T} \ \text{ et } T(x) = x.$$

On peut constater que la fonction $T \mapsto g(T)$ est décroissante pour tous les $p_2 > p_1 > 0$. La fonction $T \mapsto g(T)$ est représentée sur la figure 1 a). Donc, la famille $\mathcal{P} = \{\mathcal{F}_p\}_{p>0}$ admet un rapport de vraisemblance monotone.

2) Les conditions de la proposition 2.2.1 sont les suivantes : i) la famille $\mathcal{P} = \{\mathcal{F}_p\}_{p>0}$ est paramètrée par un paramètre scalaire et cette famille possède un rapport de vraisemblance monotone ;

Fig. 1 – a) La fonction $T \mapsto g(T)$. b) Les densités $f(x; p_1)$ et $f(x; p_2)$ avec $p_1 = 0.5$ et $p_2 = 2$.

ii) la fonction $c\mapsto R(c)=\mathbb{P}_{p_0}(T(\xi)\leq c)$ est continue pour c>0. On vérifie la deuxième condition :

$$R(c) = \mathbb{P}_{p_0}(T(\xi) \le c) = \mathbb{P}_{p_0}(\xi \le c) = \int_0^c p_0^2 x e^{-p_0 x} dx = 1 - e^{-p_0 c} - p_0 c e^{-p_0 c}.$$

La fonction $c \mapsto R(c) = \mathbb{P}_{p_0}(T(\xi) \le c)$ est représentée sur la figure 2 a).

3) Puisque la fonction $T \mapsto g(T)$ est décroissante, le test δ *UPP* dans la classe \mathcal{K}_{α} pour choisir entre $\mathcal{H}_1 = \{p \leq p_0\}$ contre $\mathcal{H}_2 = \{p > p_0\}$ est

$$\delta(\xi) = \begin{cases} \mathcal{H}_1 & \text{si} \quad T(\xi) = \xi > h(\alpha) \\ \mathcal{H}_2 & \text{si} \quad T(\xi) = \xi \leq h(\alpha) \end{cases}$$

4) Les risques α_1 et α_2 sont calculés de la façon suivante :

$$\alpha_1 = \mathbb{P}_{p_1}(\delta = \mathcal{H}_2) = \mathbb{P}_{p_1}(\xi \le h) = 1 - e^{-p_1 h} - p_1 h e^{-p_1 h} = 1 - e^{-p_1 h} (1 + p_1 h),$$

$$\alpha_2 = \mathbb{P}_{p_2}(\delta = \mathcal{H}_1) = \mathbb{P}_{p_2}(\xi > h) = \int_h^\infty p_2^2 x e^{-p_2 x} dx = e^{-p_2 h} (1 + p_2 h)$$

Les fonctions $h \mapsto \alpha_1(h)$ et $h \mapsto \alpha_2(h)$ sont représentées sur la figure 2 b).

Sujet 2: $[\simeq 9 \text{ points}]$

Soit ξ une observation (l'échantillon de taille n=1) de distribution \mathcal{F} , dont la densité de probabilité est f. On considère l'hypothèse de base $\mathcal{H}_1 = \{f = f_1\}$ et l'hypothèse concurrente

FIG. 2 – a) La fonction $c \mapsto R(c) = \mathbb{P}_{p_0}(T(\xi) \le c)$ avec $p_0 = 1$. b) Les risques α_1 et α_2 comme fonctions de h pour $p_1 = 0.5$ et $p_2 = 2$.

 $\mathcal{H}_2 = \{f = f_2\}$. Les densités f_1 et f_2 sont définies de la façon suivante :

$$f_1(x) = \begin{cases} 1 & \text{si} \quad x \in [0, 1], \\ 0 & \text{si} \quad x \notin [0, 1] \end{cases} \qquad f_2(x) = \begin{cases} 2x & \text{si} \quad x \in [0, 1], \\ 0 & \text{si} \quad x \notin [0, 1] \end{cases}$$

- 1. Déterminer la statistique $\Lambda(\xi)$ du test δ du rapport de vraisemblance pour choisir entre \mathcal{H}_1 et \mathcal{H}_2 .
- 2. Calculer les risques α_1, α_2 en fonction du seuil h. La fonction $c \mapsto R(c) = \mathbb{P}_1(\Lambda(\xi) \geq c)$, est-elle continue sur c > 0?
- 3. Déterminer le risque α_2 en fonction de $\alpha_1 : \alpha_1 \mapsto \alpha_2(\alpha_1)$ et dessiner (approximativement!) sa courbe representative en coordonnées $\alpha_1 O \alpha_2$.
- 4. Ce test $\delta(\xi)$, est-il optimal dans la classe \mathcal{K}_{α} en un sens quelconque? Si la réponse est «oui», préciser dans quel sens ce test est optimal.
- 5. On suppose que les hypothèses simples \mathcal{H}_1 et \mathcal{H}_2 sont des événements aléatoires : $\mathbb{P}(\mathcal{H}_1) = p$, $\mathbb{P}(\mathcal{H}_2) = q$ et p+q=1. Déterminer un test $\delta_Q(\xi)$ (Q=(p,q)) qui minimise le coût de Bayes $J_Q = p\alpha_1 + q\alpha_2$, où $\alpha_j = \mathbb{P}_j(\delta_Q \neq \mathcal{H}_j)$.
- 6. Déterminer le minimum du coût de Bayes $J_Q(p)$ en fonction de p. Pour ce test de Bayes, dessiner (approximativement) les courbes $p \mapsto \alpha_1(p)$, $p \mapsto \alpha_2(p)$ et $p \mapsto J_Q(p)$.

Bonus $+[\simeq 3]$ points : En utilisant la proposition 2.1.2 de la sous-section 2.1.5 «Test minimax (approche mono-critère)», trouver la valeur du seuil h qui minimise le maximum des risques $\overline{J}(\delta) = \max\{\alpha_1, \alpha_2\}$. A l'aide de la courbe $p \mapsto J_Q(p)$, expliquer géométriquement ce résultat.

Réponses :

- 1) Le rapport de vraisemblance est $\Lambda(\xi) = 2\xi$ pour $\xi \in [0,1]$.
- 2) Les risques α_1 et α_2 en fonction du seuil $0 \le h \le 2$ sont définis par

$$\alpha_1(h) = \mathbb{P}_1(\delta = \mathcal{H}_2) = \mathbb{P}_1\left(\Lambda(\xi) \ge h\right) = \mathbb{P}_1\left(\xi \ge \frac{h}{2}\right) = \int_{\frac{h}{2}}^1 dx = 1 - \frac{h}{2},$$

$$\alpha_2(h) = \mathbb{P}_2(\delta = \mathcal{H}_1) = \mathbb{P}_2\left(\Lambda(\xi) < h\right) = \mathbb{P}_2\left(\xi < \frac{h}{2}\right) = \int_0^{\frac{h}{2}} 2x dx = \frac{h^2}{4}.$$

La fonction $c \mapsto R(c) = \mathbb{P}_1(\Lambda(\xi) \ge c) = 1 - c/2$, est continue sur l'interval $0 \le c \le 2$.

3) Le risque α_2 en fonction de α_1 est défini par $\alpha_2=(1-\alpha_1)^2$. La fonction $\alpha_2=(1-\alpha_1)^2$ est

Fig. 3 – a) La fonction $\alpha_2 = (1 - \alpha_1)^2$. b) Les courbes $p \mapsto \alpha_1(p), p \mapsto \alpha_2(p)$ et $p \mapsto J_Q(p)$. représentée sur la figure 3 a).

4) Le test

$$\delta(\xi) = \begin{cases} \mathcal{H}_1 & \text{si } 2\xi < h(\alpha) \\ \mathcal{H}_2 & \text{si } 2\xi \ge h(\alpha) \end{cases}$$

est le plus puissant dans la classe \mathcal{K}_{α} , où $h(\alpha) = 2(1 - \alpha)$, car toutes les conditions du lemme de Neyman - Pearson sont satisfaites.

5) Le test $\delta_Q(\xi)$ (Q=(p,q)) qui minimise le coût de Bayes $J_Q=p\alpha_1+q\alpha_2$ est défini par

$$\delta_Q(\xi) = \begin{cases} \mathcal{H}_1 & \text{si } 2\xi < \frac{p}{q} \\ \mathcal{H}_2 & \text{si } 2\xi \ge \frac{p}{q} \end{cases}$$

6) Le minimum du coût de Bayes $J_Q(p)$ en fonction de p est

$$J_Q(p) = p\alpha_1(p) + (1-p)\alpha_2(p), \ \ 0 \le p \le 1$$

οù

$$\alpha_1(p) = \begin{cases} 1 - \frac{p}{2(1-p)} & \text{si } 0 \leq p \leq \frac{2}{3} \\ 0 & \text{si } \frac{2}{3}$$

D'où

$$J_Q(p) = \begin{cases} \frac{4p - 5p^2}{4(1-p)} & \text{si } 0 \le p \le \frac{2}{3} \\ 1 - p & \text{si } \frac{2}{3}$$

Les courbes $p \mapsto \alpha_1(p), p \mapsto \alpha_2(p)$ et $p \mapsto J_Q(p)$ sont représentées sur la figure 3 b).

Bonus: D'après la proposition 2.1.2 (voir la sous-section 2.1.5 «Test minimax (approche monocritère)»), la valeur \overline{h} du seuil h qui minimise le maximum des risques $\overline{J}(\delta) = \max\{\alpha_1, \alpha_2\}$ est choisi de la condition $\alpha_1 = \alpha_2$. Donc,

$$1 - \frac{\overline{h}}{2} = \frac{\overline{h}^2}{4} \implies \overline{h}^2 + 2\overline{h} - 4 = 0, \implies \overline{h} = -1 + \sqrt{5} \simeq 1.236$$

D'où la distribution «la plus défavorable» \overline{Q} est définie par $\overline{p}/\overline{q} = \overline{h}$ ou $\overline{p} = 1 - \sqrt{5}/5 \simeq 0.553$. Pour expliquer ce résultat, premièrement, on peut remarquer que

$$J_Q = p\alpha_1 + q\alpha_2 = p\alpha_1 + (1-p)\alpha_2 \le \max\{\alpha_1, \alpha_2\} = \overline{J}(\delta)$$

Ensuite, on trouve la valeur de p qui réalise le maximum de la fonction $p\mapsto J_Q(p)$, c'est-à-dire $\arg\max J_Q(p)$:

$$\frac{dJ_Q(p)}{dp} = \frac{4(4-10p)(1-p) + 4(4p-5p^2)}{16(1-p)^2} = 0 \implies 5p^2 - 10p + 4 = 0$$

D'où arg $\max J_Q(p) = 1 - \sqrt{5}/5 = \overline{p}$. La droite $\overline{J}_{\overline{Q}}(\delta) = (3 - \sqrt{5})/2 \simeq 0.382$ est la tangente horizontale à la courbe représentative de la fonction $p \mapsto J_Q(p)$ (voir la figure 3 b)). Cette tangente horizontale représente le test minimax $\delta_{\overline{Q}}$ qui réalise l'égalité exacte dans l'expression $\max_p J_Q(p) \leq \overline{J}(\delta)$.

Sujet 3: $[\simeq 4 \text{ points}]$

Soient ξ et η deux variables aléatoires. On considère le vecteur aléatoire $\zeta = \begin{pmatrix} \xi \\ \eta \end{pmatrix} \sim \mathcal{N}(0, R)$.

1. Soit $(\zeta_1, \ldots, \zeta_n)$ un échantillon de taille n de $\mathcal{N}(0, R)$. Déterminer la statistique $\Lambda(\zeta_1, \ldots, \zeta_n)$ du test δ du rapport de vraisemblance pour choisir entre

$$\mathcal{H}_1 = \{\zeta \sim \mathcal{N}(0, I_2)\}\ \text{ et } \mathcal{H}_2 = \{\zeta \sim \mathcal{N}(0, R)\},\ \text{avec } R = \begin{pmatrix} 1 & \sigma \\ \sigma & 1 \end{pmatrix},\ 0 < |\sigma| < 1$$

où σ est un coefficient connu.

Indication: Rappel 3.4.2

Réponses:

1) D'après le rappel 3.4.2 (voir les polycopiés), le rapport de vraisemblance est donné par

$$\Lambda(\zeta_1, \dots, \zeta_n) = \prod_{i=1}^n \frac{f_{\sigma}(\zeta_i)}{f_0(\zeta_i)} = \prod_{i=1}^n \frac{f_{\sigma}(\xi_i, \eta_i)}{f_0(\xi_i, \eta_i)}$$

οù

$$f_{\sigma}(x,y) = \frac{1}{2\pi\sqrt{(1-\sigma^2)}} \exp\left\{-\frac{1}{2(1-\sigma^2)} \left[x^2 - 2\sigma xy + y^2\right]\right\}$$

et

$$f_0(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2} \left[x^2 + y^2\right]\right\}$$

D'où le rapport de vraisemblance logarithmique est

$$\log \Lambda(\zeta_1, \dots, \zeta_n) = n \log \frac{1}{\sqrt{1 - \sigma^2}} + \frac{\sigma^2}{1 - \sigma^2} \sum_{i=1}^n \left(\frac{\xi_i \eta_i}{\sigma} - \frac{\xi_i^2 + \eta_i^2}{2} \right).$$