

Generative Information Retrieval

SIGIR 2024 tutorial – Section 1

Yubao Tang^a, Ruqing Zhang^a, **Zhaochun Ren**^b, Jiafeng Guo^a and **Maarten de Rijke**^c https://generative-ir.github.io/

July 14, 2024

 $^{^{\}it a}$ Institute of Computing Technology, Chinese Academy of Sciences & UCAS

^b Leiden University

^c University of Amsterdam

About presenters

Yubao Tang PhD student @ICT, CAS

Ruqing Zhang Faculty @ICT, CAS

Zhaochun Ren Faculty @LEI

Jiafeng Guo Faculty @ICT, CAS

Maarten de Rijke Faculty @UvA

Information retrieval

Information retrieval (IR) is the activity of obtaining information system resources that are relevant to an information need from a collection of those resources.

Given: User query (keywords, question, image, ...)

Rank: Information objects (passages, documents, images, products, ...)

Ordered by: Relevance scores

Complex architecture design behind search engines

Complex architecture design behind search engines

Advantages:

- Pipelined paradigm has withstood the test of time
- Advanced machine learning and deep learning approaches applied to many components of modern systems

Core pipelined paradigm: Index-Retrieval-Ranking

- Index: Build an index for each document in the entire corpus
- Retriever: Find an initial set of candidate documents for a query
- Re-ranker: Determine the relevance degree of each candidate

Index-Retrieval-Ranking: Disadvantages

 Effectiveness: Heterogeneous ranking components are usually difficult to be optimized in an end-to-end way towards the global objective

Slow inference speed

GTR (Dense retrieval)
Online latency 1.97s

• Efficiency: A large document index is needed to search over the corpus, leading to significant memory consumption and computational overhead

What if we replaced the pipelined architecture with a single consolidated model that efficiently and effectively encodes all of the information contained in the corpus?

Opinion paper: A single model for IR

Generative language models

- Closed-book: The language model is the **only source** of knowledge leveraged during generation, e.g.,
 - Capturing document ids in the language models
 - Language models as retrieval agents via prompting
- Open-book: The language model can draw on external memory prior to, during, and after generation, e.g.,
 - Retrieval augmented generation of answers
 - Tool-augmented generation of answers

Two families of generative retrieval

- Closed-book: The language model is the only source of knowledge leveraged during generation, e.g.,
 - Capturing document ids in the language models
 - Language models as retrieval agents via prompting
- Open-book: The language model can draw on external memory prior to, during, and after generation, e.g.,
 - Retrieval augmented generation of answers
 - Tool-augmented generation of answers

Closed-book generative retrieval

The IR task can be formulated as a sequence-to-sequence (Seq2Seq) generation problem

Closed-book generative retrieval

The IR task can be formulated as a sequence-to-sequence (Seq2Seq) generation problem

- Input: A sequence of query words
- Output: A sequence of document identifiers

Neural IR models: Discriminative vs. Generative

$$p(R = 1|q, d) \approx \dots \approx argmax \ s(\vec{q}, \vec{d})$$
(probabilistic ranking principle)

$$p(q|d) \approx p(docID|q) = argmax p((I_1, ..., I_k)|q)$$
(query likelihood)

Why generative retrieval?

• Effectiveness: Knowledge of all documents in corpus is encoded into model parameters, which can be optimized directly in an end-to-end manner

Why generative retrieval?

- **Efficiency**: Main memory computation of GR is the storage of document identifiers and model parameters
- Heavy retrieval process is replaced with a light generative process over the vocabulary of identifiers

Statistics of related publications

The data statistics cover up to July 10, 2024.

Goals of the tutorial

- We will cover key developments on generative information retrieval (mostly 2021–2024)
 - **■** Problem definitions
 - Docid design
 - **■** Training approaches
 - Inference strategies
 - Applications

Goals of the tutorial

- We will cover key developments on generative information retrieval (mostly 2021–2024)
 - **■** Problem definitions
 - Docid design
 - Training approaches
 - Inference strategies
 - Applications
- We are still far from understanding how to best develop generative IR architecture compared to traditional pipelined IR architecture:
 - Taxonomies of existing research and key insights
 - Our perspectives on the current challenges & future directions

Schedule

Time	Section	Presenter
09:00 - 09:25	Section 1: Introduction	Maarten de Rijke
09:25 - 09:55	Section 2: Definitions & Preliminaries	Zhaochun Ren
09:55 - 10:30	Section 3: Docid design	Yubao Tang

30min coffee break

11:00 - 11:30	Section 4: Training approaches	Zhaochun Ren
11:30 - 11:50	Section 5: Inference strategies	Yubao Tang
11:50 - 12:00	Section 6: Applications	Yubao Tang
12:00 - 12:15	Section 7: Challenges & Opportunities	Maarten de Rijke
12:15 - 12:30	Q & A	All

References i

- D. Metzler, Y. Tay, D. Bahri, and M. Najork. Rethinking search: Making domain experts out of dilettantes. *SIGIR Forum*, 55(1):1–27, 2021.
- M. Najork. Generative information retrieval (slides), 2023. URL https: //docs.google.com/presentation/d/191AeVzPkh20Ly855tKDkz1uv-1pHV_9GxfntiTJPUug/.
- W. Sun, L. Yan, Z. Chen, S. Wang, H. Zhu, P. Ren, Z. Chen, D. Yin, M. de Rijke, and Z. Ren. Learning to tokenize for generative retrieval. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023.

