AMENDMENTS TO THE CLAIMS

1. (Original) A photovoltaic device comprising a n-type semiconductor with a band-gap of greater than 2.9 eV and a 1,3,5-tris-aminophenyl-benzene compound represented by formula (I):

$$R^{\frac{1}{2}}$$
 $R^{\frac{1}{2}}$
 $R^{\frac{1}{2}}$

wherein R^1 represents a -NR³R⁴ group, wherein R^3 and R^4 , same or different, represent an unsubstituted C_2 - C_{10} alkyl group, a substituted C_2 - C_{10} alkyl group, a benzyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted aryl group or a substituted aryl group, and R^2 represents hydrogen, an alkyl group including a substituted alkyl group or halogen; and said 1,3,5-tris-aminophenyl-benzene compound is in a cationic form.

2. (Original) Photovoltaic device according to claim 1, wherein said 1,3,5-trisaminophenyl-benzene compound represented by formula (I) is selected from the group consisting of the cations of:

$$\mathbf{H_5C_2}$$

and

3. (Original) Photovoltaic device according to claim 1, wherein said n-type semiconductor is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides, tungsten oxides and zinc oxides.

Application No. 10/657,894

- 4. (Original) Photovoltaic device according to claim 1, wherein said photovoltaic device further contains at least one spectral sensitizer.
- 5. (Original) Photovoltaic device according to claim 1, wherein said photovoltaic device further contains at least one spectral sensitizer selected from the group consisting of metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, organic dyes and metallo-organic dyes.
- 6. (Original) Photovoltaic device according to claim 1, wherein said photovoltaic device further contains at least one spectral sensitizer selected from the group consisting metal oxides, metal sulphides and metal selenides.
- 7. (Original) A process for preparing a photovoltaic device comprising a n-type semiconductor with a band-gap of greater than 2.9 eV and a 1,3,5-tris-aminophenyl-benzene compound represented by formula (I):

$$R^{\frac{1}{2}}$$
 $R^{\frac{1}{2}}$
 $R^{\frac{1}{2}}$

wherein R¹ represents a -NR³R⁴ group, wherein R³ and R⁴, same or different, represent an unsubstituted C₂-C₁₀ alkyl group, a substituted C₂-C₁₀ alkyl group, a benzyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted aryl group or a substituted aryl group, and R² represents hydrogen, an alkyl group including a substituted alkyl group or halogen, and said 1,3,5-tris-aminophenyl-benzene compound is in a cationic form, with at least one transparent electrode comprising the steps of: providing a support with a conductive layer as one electrode; coating said conductive layer on the support with a layer comprising said n-type semiconductor with a bandgap of greater than 2.9 eV; coating said n-type semiconductor-containing layer with a solution or dispersion comprising a cation of said 1,3,5-tris-aminophenyl-benzene compound to provide after drying a layer comprising said 1,3,5-tris-aminophenyl-benzene compound; and applying a conductive layer to said layer comprising said 1,3,5-tris-aminophenyl-benzene compound thereby providing a second electrode.

8. (Original) A photovoltaic device comprising a n-type semiconductor with a band-gap of greater than 2.9 eV and a 1,3,5-tris-aminophenyl-benzene compound represented by formula (I):

$$R^{\frac{1}{2}}$$
 $R^{\frac{1}{2}}$
 $R^{\frac{1}{2}}$

wherein R^1 represents a -NR 3 R 4 group, wherein R^3 and R^4 , same or different, represent an unsubstituted C_2 - C_{10} alkyl group, a substituted C_2 - C_{10} alkyl group, a benzyl group, an unsubstituted cycloalkyl group, an unsubstituted aryl group or a substituted aryl group, and R^2 represents hydrogen, an alkyl group including a substituted alkyl group or halogen; and said 1,3,5-tris-aminophenyl-benzene compound.

9. (Original) Photovoltaic device according to claim 8, wherein said 1,3,5-trisaminophenyl-benzene compound represented by formula (I) is selected from the group consisting of:

$$\mathbf{H_5C_2} \\ \mathbf{H_5C_2} \\ \mathbf{C_2H_5} \\ \mathbf{C_$$

and

10. (Original) Photovoltaic device according to claim 8, wherein said n-type semiconductor is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides, tungsten oxides and zinc oxides.

Application No. 10/657,894

- 11. (Original) Photovoltaic device according to claim 8, wherein said photovoltaic device further contains at least one spectral sensitizer.
- 12. (Original) Photovoltaic device according to claim 8, wherein said photovoltaic device further contains at least one spectral sensitizer selected from the group consisting of metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, organic dyes and metallo-organic dyes.
- 13. (Original) Photovoltaic device according to claim 8, wherein said photovoltaic device further contains at least one spectral sensitizer selected from the group consisting metal oxides, metal sulphides and metal selenides.
- 14. (Original) A process for preparing a photovoltaic device comprising a n-type semiconductor with a band-gap of greater than 2.9 eV and a 1,3,5-tris-aminophenyl-benzene compound represented by formula (I):

$$R^{\frac{1}{2}}$$
 $R^{\frac{1}{2}}$
 $R^{\frac{1}{2}}$

wherein R¹ represents a -NR³R⁴ group, wherein R³ and R⁴, same or different, represent an unsubstituted C₂-C₁₀ alkyl group, a substituted C₂-C₁₀ alkyl group, a benzyl group, an unsubstituted cycloalkyl group, an unsubstituted aryl group or a substituted aryl group, and R² represents hydrogen, an alkyl group including a substituted alkyl group or halogen with at least one transparent electrode comprising the steps of: providing a support with a conductive layer as one electrode; coating said conductive layer on the support with a layer comprising said n-type semiconductor with a bandgap of greater than 2.9 eV; coating said 1,3,5-tris-aminophenyl-benzene compound to provide after drying a layer comprising said 1,3,5-tris-aminophenyl-benzene compound; and applying a conductive layer to said layer comprising said 1,3,5-tris-aminophenyl-benzene compound thereby providing a second electrode.

This listing of claims replaces all prior versions, and listings, of claims in the application.