

SÍLABO CIRCUITOS ELECTRÓNICOS II

ÁREA CURRICULAR: SISTEMAS ELÉCTRICOS Y ELECTRÓNICOS

CICLO VII SEMESTRE ACADÉMICO 2017-I

I. CÓDIGO DEL CURSO : 09011107040

II. CRÉDITOS : 04

III. REQUISITO : 09008206050 Circuitos Electrónicos I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA:

El curso es de naturaleza científico-aplicativo y permitirá al alumno interpretar, analizar y diseñar circuitos amplificadores multietapa para baja frecuencia y pequeña señal; amplificadores realimentados y amplificadores de potencia para audiofrecuencia.

El curso se desarrolla en cuatro unidades de aprendizaje: I. Amplificadores multietapa II. Respuesta en frecuencia de amplificadores III. Amplificadores realimentados. IV Amplificadores de potencia

VI. FUENTES DE CONSULTA:

Bibliográficas

- Boylestad R. (2010). Electrónica: Teoría de Circuitos y Dispositivos Electrónicos, 10^a edición, México: Editorial Prentice-Hall.
- Boylestad R (2010). Electronic Devices & Circuit Theory, 11^a edición, Mexico: Editorial Prentice Hall.
- Sedra, A. (2010). Microelectronics. 5a edición Oxford : Editorial University Press,
- Savant Jr. C.J. (2010). Diseño Electrónico, Circuitos y Sistemas 6ª edición, USA: Editorial Prentice Hall

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: AMPLIFICADORES MULTIETAPA

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos teóricos para analizar y verificar el funcionamiento de los circuitos amplificadores
- Realizar cálculos de circuitos típicos de amplificadores de varias etapas
- Implementar amplificadores multietapa con diferentes tipos de acoplamiento

PRIMERA SEMANA

Primera sesión:

Ganancia de amplificadores de una etapa. Amplificadores multietapa: Cálculos de ganancia y niveles de impedancia.

Segunda sesión:

Tipos de acoplamiento. Acoplamiento RC y por transformador. Cálculos de ganancia y niveles de impedancia.

SEGUNDA SEMANA

Primera sesión:

Acoplamiento directo. Condiciones de polarización y requisitos de señal. El par Darlington ordinario y complementario-Características.

Segunda sesión:

Amplificador Darlington. Condiciones de polarización. Circuito para la señal. Cálculos de ganancia é impedancias de entrada y salida

Tercera sesión:

Laboratorio Nº 01: Amplificadores con acoplamiento RC

TERCERA SEMANA

Primera sesión:

El amplificador diferencial ideal, Características. Modos de operación. Ganancia en el modo diferencial y ganancia en el modo común.

Segunda sesión:

Amplificadores diferenciales reales-Voltajes de entrada diferencial y común. Relación de rechazo al modo común (RRMC)-Composición del voltaje de salida

CUARTA SEMANA

Primera sesión:

Amplificador diferencial básico. Circuito de Polarización. La fuente de corriente constante. Circuito para la señal. Ganancia en el Modo Diferencial y en el Modo Común

Practica Calificada N°1

Segunda sesión:

Relación de rechazo al modo común (RRMC)-Cálculos de ganancia y niveles de señal de salida. Amplificadores diferenciales de C.I.

Tercera sesión:

Laboratorio Nº 2: Amplificadores con acoplamiento directo

UNIDAD II: RESPUESTA EN FRECUENCIA DE AMPLIFICADORES

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos teóricos para analizar y verificar la respuesta en frecuencia de amplificadores de pequeña señal
- Usar los instrumentos de medición y prueba para examinar el funcionamiento y formas de onda de los circuitos
- Realizar cálculos de circuitos típicos de amplificadores a diferentes frecuencias

QUINTA SEMANA

Primera sesión:

Respuesta en frecuencia de amplificadores-Frecuencias de corte y ancho de banda. Curva típica universal. Interpretación física y aplicaciones de la curva de respuesta en frecuencia.

Segunda sesión:

Respuesta en bajas frecuencias. Curvas de amplitud y de fase. Diagrama de Bode. Efecto de los condensadores de acoplamiento sobre la ganancia en bajas frecuencias.

SEXTA SEMANA

Primera sesión:

El BJT y el JFET en altas frecuencias. Capacidades parasitas. Modelos circuitales del BJT y FET's en alta frecuencia. Efecto Miller

Segunda sesión:

Respuesta en altas frecuencias. Curvas de amplitud y de fase. Diagrama de Bode. Efecto de las capacidades parasitas sobre la frecuencia de corte superior.

Tercera sesión:

Laboratorio Nº 03: Amplificadores diferenciales

SÉPTIMA SEMANA

Primera sesión:

Respuesta en frecuencia en amplificadores de varias etapas en cascada. Efecto sobre la ganancia y el ancho de banda. Factor de mérito "M" ganancia por ancho de banda.

Segunda sesión:

Amplificaciones de banda angosta y de banda ancha. Concepto de frecuencia central y su relación con las frecuencias de corte. Ancho de banda en transmisiones de audio y video.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Distorsión de una señal. Tipos de distorsión. Distorsión no lineal en amplificadores. Efectos sobre la señal, la polarización y el rendimiento. Análisis de la distorsión no lineal.

Segunda sesión:

Evaluación del grado de distorsión harmónica total (THD). Determinación grafica del THD-El THD en generadores de señal sinusoidal. Medidores de THD.

Tercera sesión:

Laboratorio Nº 04: Respuesta en frecuencia de amplificadores

UNIDAD III: AMPLIFICADORES REALIMENTADOS

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos teóricos para diseñar y analizar circuitos realimentados
- Realizar cálculos de circuitos típicos de circuitos realimentados en C.C.
- Aplicar los diferentes tipos de realimentación a circuitos amplificadores.

DÉCIMA SEMANA

Primera sesión:

Concepto de Realimentación. Organización de un sistema realimentado. Realimentación en circuitos de CC. La realimentación en amplificadores.

Segunda sesión:

Ecuación fundamental. El factor de realimentación "β". Ganancia a lazo abierto. Interpretación circuital y matemática. Ejercicios de aplicación

UNDÉCIMA SEMANA

Primera sesión:

Realimentación positiva y negativa. La realimentación negativa en amplificadores. Propiedades generales. Formas de tomar y aplicar la señal de realimentación.

Practica Calificada N° 2

Segunda sesión:

Realimentación de voltaje serie y corriente serie. Propiedades generales. Circuitos típicos. Cálculos de ganancia y niveles de impedancia. Aplicaciones.

Tercera sesión:

Laboratorio Nº 05: Distorsión no lineal en amplificadores

DUODÉCIMA SEMANA

Primera sesión:

Realimentación de voltaje paralelo y corriente paralelo. Propiedades. Circuitos típicos. Aplicaciones más comunes. Ejercicios y problemas.

Segunda sesión:

El amplificador operacional (OPAM). Ecuación fundamental. Propiedades. Amplificadores operacionales de circuito integrado. Características y especificaciones técnicas

UNIDAD IV: AMPLIFICADORES DE POTENCIA PARA AUDIOFRECUENCIA

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos teóricos para analizar y verificar el funcionamiento de los circuitos amplificadores de potencia
- Realizar cálculos de circuitos típicos de amplificadores de potencia A.F.
- Implementar diferentes tipos de amplificadores de potencia A.F.

DECIMOTERCERA SEMANA

Primera sesión:

Voz y audio. Fundamentos de estereofonía y alta fidelidad Hi-FI. Circuitos de filtro (cross over) para audio. Parlantes y bocinas. Bafles y recintos acústicos.

Segunda sesión:

Transistores y FET's de potencia. Especificaciones técnicas. Forma de instalación. Disipadores de potencia. Cálculos.

Tercera sesión:

Laboratorio Nº 06: Amplificadores realimentados

DECIMOCUARTA SEMANA

Primera sesión:

Amplificadores de potencia para audiofrecuencias. Parámetros, especificaciones técnicas. Transistores y FETs de potencia

Segunda sesión:

Amplificadores de potencia en clase "B" de simetría complementaria. Máxima potencia de salida. Máximo rendimiento teórico. Distorsión por cruce

DECIMOQUINTA SEMANA

Primera sesión:

Amplificadores de simetría complementaria en clase "AB". Circuitos de polarización-Consideraciones de máxima potencia y máximo rendimiento teórico

Segunda sesión:

Etapas de salida cuasi-complementaría. Amplificadores de potencia de C.I. monoaurales y estéreo. Características y especificaciones técnicas.

Tercera sesión:

Laboratorio Nº 07: Amplificadores de potencia para audiofrecuencia

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- **Método de Demostración ejecución**. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

Equipos: Proyector multimedia, computadora, ecran,

Materiales: Texto base, separatas, diapositivas, software aplicativo, guías de laboratorio, cuestionarios de preguntas y problemas, direcciones electrónicas, pizarras, tizas, plumones, motas etc.

XI. EVALUACIÓN

El promedio final (**PF**) se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4

PE = ((P1+P2)/2 + W1 + PL)/3

PL= (Lb1+Lb2+Lb3+Lb4+Lb5-MN) / 4

Dónde:

EP = Examen parcial escrito

EF = Examen final escrito

PE = Promedio de evaluaciones

P1 y P2: Práctica calificada escrita

W1 = Proyecto final de laboratorio

PL = Promedio laboratorio,

Lb1....Lb5 = nota de laboratorio calificado

Mn = Menor nota.

XII. APORTES AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Electrónica, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d).). Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	e) Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen la soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
2	2	2

b) **Sesiones por semana:** tres sesiones.

c) Duración: 6 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Ing. Jorge López Villalobos

XV. FECHA

La Molina, marzo del 2017.