Real Number system

ENSIA 2023-2024

Outline

- Axiomatic definition of real numbers
- Absolute value
- Some fundamental properties of \mathbb{R} .
- Supremum and Infimum
- Properties of Supremum and Infimum
- Intervals
- Archimedean property
- Integer part of a real number
- Density of \mathbb{Q} and $\mathbb{R} \mathbb{Q}$ in \mathbb{R}
- Extented real number line
- Topology of the line $\mathbb R$

Axiomatic definition of real numbers

Definition

The set of real numbers, denoted \mathbb{R} , is a commutative field endowed with two operations: $(x,y) \mapsto x + y$ (addition), $(x,y) \mapsto xy$ (multiplication)

and an order relation denoted \leq satisfying the following axioms:

- 1) $\mathbb{Q} \subset \mathbb{R}$
- 2) (\mathbb{R}, \leq) is totally ordered
- 3) If $x \le y$ then $x + z \le y + z, \forall z \in \mathbb{R}$
- 4) If $0 \le x$ and $0 \le y$ then $0 \le xy$
- Supremum's axiom : Any nonempty upper bounded subset of $\mathbb R$ admits a supremum.

Axiomatic definition of real numbers

Remark: the conditions 3) and 4) mean that there is a compatibility between the order relation and the operations defined on \mathbb{R} .

Notations:

- The relation $x \le y$ and $x \ne y$ is denoted x < y.
- We write x < y or y > x.
- A real number is called positive if x > 0 and negative if x < 0.
- A real number is called nonnegative if $x \ge 0$ and nonpositive if $x \le 0$.
- x y = x + (-y)
- $\frac{a}{b} = ab^{-1}$

Absolute value

Definition:

The absolute value of a real number x, denoted |x|, is defined as follows:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x \le 0 \end{cases}$$

We have

- 1. $-|x| \le x \le |x|, \forall x \in \mathbb{R}$
- 2. $|x|=|-x|, \forall x \in \mathbb{R}$

Some fundamental properties

1) Inequalities:

```
• x + z \le y + z \Longrightarrow x \le y
```

In particular $x + z = y + z \Longrightarrow x = y$

•
$$x \le y \Leftrightarrow -x \ge -y \Leftrightarrow y - x \ge 0$$

•
$$|x| \le a \Leftrightarrow -a \le x \le a$$

$$\forall x, y: |x+y| \le |x| + |y|$$

$$\forall x, y : ||x| - |y|| \le |x - y|$$

• Let x < y. Then

$$xz < yz$$
 if $z > 0$

$$xz > yz$$
 if $z < 0$

$$\forall x, y : |xy| = |x||y|$$

• For all
$$a \ge 0$$
, then $a^2 \ge 0$.

Upper bound and lower bound

Let E be a noempty subset of \mathbb{R} .

Definition

We say that *E* is upper bounded if there exists *M* such that

$$\forall x \in E : x \leq M$$

M is called an upper bound of E.

Definition

We say that E is lower bounded if there exists m such that

$$\forall x \in E : m \leq x$$

m is called a lower bound of E.

Definition

E is said to be bounded if E is upper bounded and lower bounded.

Supremum and Infimum

Let E be a noempty subset of \mathbb{R} .

Definition (Supremum and infimum)

The least upper bound of E is called **supremum** of E. When it exists, it is unique and we denote it by $\sup E$.

The greatest lower bound of E is called **infimum** of E. When it exists, it is unique and we denote it by $\inf E$.

Supremum and infimum

Proposition (Caracterization of the supremum).

Let E be an upper bounded subset of \mathbb{R} .

$$SupE = M \Leftrightarrow$$

- 1) M is an upper bound of E
- 2) $\forall \varepsilon > 0, \exists x \in E \text{ such that } x + \varepsilon > M$

Supremum and infimum

Theorem The least upper bound theorem

Every set of real number $E \subset \mathbb{R}$ that is bounded above has a least upper bound, sup E.

Proof

Theorem The greatest lower bound theorem

Every set of real number $E \subset \mathbb{R}$ that is bounded below has a greatest lower bound, inf E.

<u>Proof</u>

Supremum and infimum

Proposition (Caracterisation of the infimum).

Let E be a lower bounded subset of \mathbb{R} .

$$infE = m \Leftrightarrow$$

- 1) m is a lower bound of E
- 2) $\forall \varepsilon > 0, \exists x \in E \text{ such that } x \varepsilon < m$

Properties of supremum and infimum

Proposition

Let A and B be two bounded subsets of \mathbb{R} . Suppose $A \cap B \neq \emptyset$. Denote by

$$-A = \{-x, x \in A\}; A + B = \{x + y, x \in A \text{ et } x \in B\}.$$

Then $A \cup B$, $A \cap B$, -A and A + B are bounded and we have

- 1) $A \subset B \implies supA \leq supB \text{ and } infA \geq infB$
- 2) $sup(A \cup B) = max(supA, supB)$ and $inf(A \cup B) = min(infA, infB)$
- 3) $sup(A \cap B) \leq min(supA, supB)$ and $inf(A \cap B) \geq max(infA, infB)$
- 4) sup(-A) = -infA and inf(-A) = -supA
- 5) sup(A + B) = supA + supB and inf(A + B) = infA + infB

Archimedean property

Archimedean property:

 $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} - \{0\}, \text{ such that } n > x.$

 $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}_+ - \{0\}, \exists n \in \mathbb{N} - \{0\}, \text{ such that } ny > x.$

In other words, the set $\mathbb N$ is not upper bounded. In this case, we say that $\mathbb R$ is Archimedean.

Corollary $\forall \varepsilon > 0, \exists n \in \mathbb{N} - \{0\}$, such that $0 < \frac{1}{n} < \varepsilon$

Remark This property allows us to define the integer part of a real number.

Proposition

Let $x \in \mathbb{R}$. Then there exist a unique integer denoted by $\lfloor x \rfloor$ suth that

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

The integer [x] is called integer part of a real number x.

Integer part of a real number

Properties

- 1) $\forall m \in \mathbb{Z}, [m] = m$
- 2) $\forall x \in \mathbb{R}, \forall m \in \mathbb{Z}, [x+m] = [x] + m$
- 3) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [x] + [y] \le [x + y] \le [x] + [y] + 1$
- 4) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \leq y \Longrightarrow \lfloor x \rfloor \leq \lfloor y \rfloor$

Definition

The function denoted $\{x\}$ defined on \mathbb{R} by $\{x\} = x - \lfloor x \rfloor$ is called the fractional part of x.

Examples

Examples:

Let

$$E = \left\{ \frac{1}{n}, n \in \mathbb{N}^* \right\},$$

$$F = \left\{ \frac{n+2}{n-1}, n \in \mathbb{N} , n \ge 2 \right\},$$

$$G = \left\{ \frac{pq}{p^2 + q^2}, (p,q) \in \mathbb{N}^* \times \mathbb{N}^* \right\}.$$

Determine $\inf E$, $\sup E$, $\max E$, $\min E$.

In mathematics, a (real) interval is a set that contains all real numbers lying between any two numbers, more precisely

Definition Let a and b be two real numbers such that b > a.

The set $\{x : a < x < b\}$ is called open interval and it is denoted by]a, b[.

The set $[a, b] = \{x : a \le x \le b\}$ is called closed interval (compact interval).

The sets $[a, b[= \{x : a \le x < b\},]a, b] = \{x : a < x \le b\}$, are called (respectively right and left) half-open intervals.

For all intervals, the points a and b are called endpoints. If a = b, we set by definition $[a, a] = \{a\}$ (degenerate closed interval) and $[a, a] = \emptyset$.

Definition

The length of the interval (a, b) (closed, open, or half-open) is given by the real number b - a.

Definition

The midpoint of an inteval [a, b] (or]a, b[) is a point $c \in [a, b]$ (or]a, b[) such that

$$c = \frac{a+b}{2}$$
.

Definition

```
The set \{x: x \leq a\} is a left unbounded closed interval, noted ]-\infty, a].
```

The set $\{x: x < a\}$ is a left unbounded open interval, noted $]-\infty$, a[.

The set $\{x: x \ge a\}$ is a right unbounded closed interval, noted $[a, +\infty[$.

The set $\{x: x > a\}$ is a right unbounded open interval, noted $]a, +\infty[$.

The set \mathbb{R} is also denoted $]-\infty,+\infty[$. $-\infty$ and $+\infty$ represent infinity numbers.

Infimum and supremum of intervals

From the definition of the supremum and infimum, we deduce that an interval of the form (a, b) is bounded and admits a supremum and an infimum. We have

- \rightarrow inf a, b = a and sup a, b = b
- \rightarrow inf[a,b] = min[a,b] = a and sup[a,b] = max[a,b] = b
- \rightarrow inf[a,b] = a and sup[a,b] = max[a,b] = b
- \rightarrow inf[a,b[=min[a,b[=a and sup[a,b[=b]

An interval of the form $(a, +\infty[$ is lower bounded but not upper bounded, it admits an infimum but not a supremum

$$\inf(]a, +\infty[) = a$$

$$\inf([a, +\infty[) = \min([a, +\infty, [) = a$$

An interval of the form $]-\infty,b)$ is upper bounded but not lower bounded, it admits a supremum but not an infimum

$$\sup(]-\infty,b[)=b$$

$$\sup(]-\infty,b])=\max(]-\infty,b])=b$$

Density of \mathbb{Q} and $\mathbb{R} - \mathbb{Q}$ in \mathbb{R}

Theorem

For every $x, y \in \mathbb{R}$ such that x < y, there exists a rational r such that x < r < y.

We say that \mathbb{Q} is dense in \mathbb{R} .

Theorem

For every $x, y \in \mathbb{R}$ such that x < y, there exists a rational number ir such that x < ir < y.

We say that $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R} .

Extended real number line

Definition

The extended real number line is obtained from the real number line \mathbb{R} by adding two infinity elements $+\infty$ and $-\infty$, endowed by the totally order relation extended from that of \mathbb{R} to $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, where $\overline{\mathbb{R}}$ denotes the extended real number line.

Operations on $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ are defined by

$$x + (+ \infty) = + \infty + x = + \infty, \forall x \in \mathbb{R}$$

$$x + (-\infty) = -\infty + x = -\infty, \forall x \in \mathbb{R}$$

Extended real number line

$$x (\pm \infty) = (\pm \infty) x = \begin{cases} \pm \infty & \text{if } x > 0 \\ \mp \infty & \text{if } x < 0 \end{cases}$$

- $(+ \infty) + (+ \infty) = + \infty,$
- $(-\infty) + (-\infty) = -\infty,$
- $\blacktriangleright \quad (\pm \, \infty) \, (\pm \, \infty) = \, + \, \infty,$
- $\blacktriangleright \quad (\pm \infty) \ (\mp \infty) = \infty.$
- As the sum $(+\infty) + (-\infty)$ and the product $0 \ (\pm \infty)$ are not well defined, so \mathbb{R} does not have any algebraic structure.

Topology of the line \mathbb{R}

Definition

A subset A of \mathbb{R} is said to be open if it is empty or if for every $x \in A$ there exists an open interval containing x and contained in A.

Definition

An interval centered at a is of the form]a - h, a + h[, h > 0.

Definition (neighbourhood)

Let $a \in \mathbb{R}$. Any subset of \mathbb{R} containing an interval centered at a is called a neighbourhood of a.

Example The interval $]-\varepsilon,+\varepsilon[$ ($\varepsilon>0$) is a neighbourhood of 0. The interval $]-\frac{1}{n},+\frac{1}{n}[$, (n>0) is a neighbourhood of 0.

Topology of the line \mathbb{R}

Definition (Adherent point)

Let A be a subset of \mathbb{R} . A point a of \mathbb{R} is said to be an adherent point to A if

$$\forall h > 0, A \cap]a - h, a + h \neq \emptyset$$
. We write $a \in \underline{A}$.

All elements of A are adherent to A.

Example

$$A =]0,1[$$

$$a = 0 \in \underline{A} \text{ since } \forall h > 0, A \cap] - h, h \neq \emptyset$$

$$a = 1 \in \underline{A} \text{ since } \forall h > 0, A \cap]1 - h, 1 + h[\neq \emptyset]$$

Topology of the line \mathbb{R}

Definition (Accumulation point)

Let A be a subset of \mathbb{R} . A point a of \mathbb{R} is said to be an accumulation point of A if $\forall h > 0, A \cap (]a - h, a + h[\setminus \{a\}) \neq \emptyset$.

Example

$$A =]0,1[$$

a=0 is an accumulation point of A since $\forall h>0, A\cap]-h, h[\neq\emptyset]$

a=1 is an accumulation point of A since $\forall h>0, A\cap]1-h, 1+h[\neq\emptyset]$