Anteckningar TMV206 - Linjär Algebra

Max "Krysset" Hagman

February 12, 2022

Contents

1	Gec	ometriska vektorer	2	
		1.0.1 Räkneregler	3	
	1.1	Linjärkombinationer	4	
	1.2	Skalärprodukten	4	
	1.3		7	
2	Koo	ordinatsystem (Avs. 1.5)	8	
	2.1	Koordinatsystem i ett plan	8	
	2.2		9	
3	Linjer och plan (Avsnitt 1.6)			
		3.0.1 Linjer	11	
	3.1		12	
4	Plan i rummet		13	
	4.1	Avstånd från en punkt till en linje	14	
	4.2	Avstånd från en punkt till ett plan	14	
5	Ma	Matrisoperationer 1		
	5.1	Produkter av matriser	16	
6	Det	terminanter (Avs. 2.2)	18	
7	Ma	tris Invers Avs 2.3	21	
8	Geo	ometrisk och linjära avbildningar	23	
	8.1	Linjära avbildningar	23	
	8.2	Geometri hos linjära avbildningar (Avs 3.4)	24	
a	San	omansatta avhildningar (Avs 3 5)	27	

Geometriska vektorer

När man säger vektor menar man ofta en matris på formeln av en kolonnvektor,

$$\begin{pmatrix} 1\\2\\-3 \end{pmatrix}$$
 eller en radvektor, $\begin{pmatrix} 1 & 2 & -3 \end{pmatrix}$.

Så kommer det även vara för oss. Men vi börjar med att diskutera geometriska vektorer.

Definition: En geometrisk vektor är ett objekt som har både storlek och riktning. Storleken av vektorn $\overline{\mathbb{V}}$ betecknas $\|\mathbb{V}\|$ och kallas för vektorns längd. Det finns en vektor, nollvektorn $\mathbf{0}$, som har längd 0 men saknar riktining.

Vi tänker på en geometrisk vektor som en pil \longrightarrow

Men en pil har en start- och en slut-punkt. Det har inte vektorer. Vektorer vestäms av deras längd och riktning.

Definition: Vi säger att <u>två vektorer är lika</u> om de har samma längd och samma riktning.

 \mathbf{Ex} Vektorerna — och \to är inte lika för de har inte samma längd. De har dock samma riktning.

Vektorerna \to och \downarrow är inte lika. De har samma längd (kanske inte blir det i pdf:en) men inte samma riktning.

Vektorerna ≠ och ≠ är lika. De har samma längd och samma riktning. Start och slutpunkt spelar ingen roll!

Ex Hastighet är en vektor. I detta fall kallas storleken för fart (speed).

Givet två punkter A och B så betecknar \overrightarrow{AB} vektron från A till B. $A \longrightarrow B$ Vi vill kunna räkna med vektorer, dvs göra vektoralgebra.

Definition: Givet en vektor \boldsymbol{v} och ett tal $a \neq 0$ så är vektorn av den vektorn som uppfyller

- 1. $||a \cdot v|| = ||a|| \cdot ||v||$
- 2. om a > 0 då har $a\boldsymbol{v}$ och \boldsymbol{v} samma riktning
- 3. om a < 0 då har $a\boldsymbol{v}$ och \boldsymbol{v} motsatt riktning

Vi låter $0 \cdot \boldsymbol{v} = \boldsymbol{0}$.

Ex Om vektorn \boldsymbol{v} ges av \nearrow då är $2\boldsymbol{v}$, $\frac{1}{2}\boldsymbol{v}$ och $(-1)\boldsymbol{v}$ vektornerna \nearrow (dubbla längden) \nearrow (halva längden) \swarrow

Ex Om \boldsymbol{v} är en vektor med positiv längd, då är $\boldsymbol{w} = \frac{1}{\|\boldsymbol{v}\|}$ är en vektor med längd 1. Låt oss kolla detta: $\|\boldsymbol{w}\| = \|\frac{1}{\boldsymbol{v}}\boldsymbol{v} = |\frac{1}{\|\boldsymbol{v}\|}| \cdot \|\boldsymbol{v}\| = \frac{1}{\|\boldsymbol{v}\|}\|\boldsymbol{v}\| = 1$. En vektor med längd 1 kallas för en enhetsvektor.

Definition: Om $v = \overrightarrow{AB}$ och $w = \overrightarrow{BC}$ då definierar <u>summan av v och w</u> som $v + w = \overrightarrow{AC}$

Det är ingen inskränkning att anta att \boldsymbol{w} börjar där \boldsymbol{v} slutar eftersom vi får flytta vektorer.

1.0.1 Räkneregler

- 1. $a \cdot (b \cdot v) = (a \cdot b) \cdot v$
- 2. $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$
- $3. \ a(\boldsymbol{v} + \boldsymbol{w}) = a\boldsymbol{v} + a\boldsymbol{w}$
- 4. $\boldsymbol{v} + \boldsymbol{w} = \boldsymbol{w}\boldsymbol{v}$
- 5. u + (v + w) = (u + v) + w

Räkneregel 5 gör att vi kan skippa paranteser när vi adderar flera vektorer. Vi skriver $\boldsymbol{u} + \boldsymbol{v} + \boldsymbol{w}$

1.1 Linjärkombinationer

Definition Låt V vara en mängd vektorer och $v_1, ..., v_n \in V$. En vektor på formen $\mathbf{v} = c_1 v_1 + c_2 v_2 + ... + c_n v_n$ sägs vara en linjärkombination av $v_1, v_2, ..., v_n$. Mängden av alla linjärkombinationer av vektorer från V kallas spannet av V och betecknas span(V).

Ex Givet v och w så är t.ex 2v - 3w en linjärkombinationav v och w.

Ex Varje vektor \boldsymbol{v} är en linjärkombination av sig själv, ty $v = 1 \cdot \boldsymbol{v}$

Ex Nollvektorn **0** är en linjärkombination av varje mängd $v_1, v_2, ..., v_n$ vektorer, ty **0** = $0v_1 + 0v_2 + ... + 0v_n$.

 \mathbf{Ex} Låt v vara en noll-skild vektor. Då är $\mathrm{span}(v)$ (=span({v})) en linje.

Varje sådan vektor \boldsymbol{v} kallas för en riktningsvektor för linjen.

Ex Vi säger att två vektorer \boldsymbol{u} och \boldsymbol{v} är parallella om de har samma eller motsatt riktning. Låt \boldsymbol{u} och \boldsymbol{v} vara två nollskilda och icke-parallella vektorer. Då är span $(\{\boldsymbol{u},\boldsymbol{v}\})$ =span $(\boldsymbol{u},\boldsymbol{v})$ ett plan. Varför?

1.2 Skalärprodukten

Definition Låt \boldsymbol{u} och \boldsymbol{v} vara två vektorer och låt α vara den minsta vinkeln mellan \boldsymbol{u} och \boldsymbol{v} . Vi definierar skalärprodukten av \boldsymbol{u} och \boldsymbol{v} genom $\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\| |\cos(\alpha)$.

Observera att $\boldsymbol{u} \cdot \boldsymbol{v}$ är ett tal (en skalär).

$$\mathbf{E}\mathbf{x} \quad \boldsymbol{u} \cdot \boldsymbol{u} = ||\boldsymbol{u}||^2 cos(0) = ||\boldsymbol{u}||^2$$

Ex Vi har att (antag att \boldsymbol{u} och \boldsymbol{v} är nollskilda) $\boldsymbol{u} \cdot \boldsymbol{v} = 0 \Leftrightarrow \boldsymbol{u}$ och \boldsymbol{v} är ortogonala (vinkelräta)

Lösning $u \cdot v = 0 \Leftrightarrow ||u|| \cdot ||v|| cos(\alpha) = 0 \Leftrightarrow cos(\alpha) = 0 \Leftrightarrow \alpha = \frac{\pi}{2} \Leftrightarrow bmu, u \text{ ortogonala}$

Proposition 1.16 Låt u och v vara nollskilda vektorer och låt alpha vara vinkeln mellan dem. då gäller att

- $\boldsymbol{u} \cdot \boldsymbol{v} > 0 \Leftrightarrow \alpha \text{ spetsig}$
- $\boldsymbol{u} \cdot \boldsymbol{v} = 0 \Leftrightarrow \alpha \text{ rät}$
- $\boldsymbol{u} \cdot \boldsymbol{v} < 0 \Leftrightarrow \alpha \text{ trubbig}$

Bevis Eftersom $\boldsymbol{u}\cdot\boldsymbol{v}=\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|cos(\alpha)$ så har $\boldsymbol{u}\cdot\boldsymbol{v}$ samma tecken som $cos(\alpha)$. Så

- $\boldsymbol{u} \cdot \boldsymbol{v} > 0 \Leftrightarrow cos(\alpha) > 0$
- $\boldsymbol{u} \cdot \boldsymbol{v} = 0 \Leftrightarrow cos(\alpha) = 0$
- $\boldsymbol{u} \cdot \boldsymbol{v} < 0 \Leftrightarrow cos(\alpha) < 0$

Påståendet följer av egenskaper för cosinus. $cos(\alpha) > 0 \Leftrightarrow 0 < \alpha < \frac{\pi}{2}$

Proposition 1.18 Låt α och v vara vektorer och L en linje med riktningsvektor u. Då gäller att $u \cdot v = u \cdot v_L$

Bevis Låt α vara vinkeln mellan u och v. Antag att α är spetsig. Då $cos(\alpha) = \frac{||v_L||}{||v||}$.

Vi får $\boldsymbol{u} \cdot \boldsymbol{v} = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| cos(\alpha) = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| \cdot \frac{||\boldsymbol{v}_L||}{||\boldsymbol{v}||} = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}_L|| cos(0) = \boldsymbol{u} \cdot \boldsymbol{v}_L \text{ v.s.b}$

Proposition 1.19

- 1. $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$
- 2. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$
- 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

 Sats 1.20 Låt u vara en riktningsvektor för linjen L. Då gäller att $v_L = \frac{u \cdot v}{u \cdot u} u$ och $||v_L|| = \frac{|u \cdot v|}{||u||}$. Illustration:

 $\begin{array}{ll} \mathbf{Bevis} & \mathrm{Vi} \ \mathrm{vet} \ \mathrm{att} \ \boldsymbol{v}_L \ \mathrm{och} \ \boldsymbol{u} \ \mathrm{\ddot{a}r} \ \mathrm{parallella} \ \mathrm{och} \ \mathrm{d\ddot{a}rf\ddot{o}r} \ \boldsymbol{v}_L = t\boldsymbol{u} \ \mathrm{f\ddot{o}r} \ \mathrm{n\mathring{a}got} \ t \in \mathbb{R}. \\ \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u} \cdot \boldsymbol{v}_L = \boldsymbol{u} \cdot (t\boldsymbol{u}) \Rightarrow t = \frac{\boldsymbol{u} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}}. \\ \mathrm{Allts\mathring{a}} \ \boldsymbol{v}_L t\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{u} \cdot \boldsymbol{u}} \ \mathrm{och} \ \|\boldsymbol{v}_L\| = \|\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{u} \cdot \boldsymbol{u}}\boldsymbol{u}\| = \frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{\|\boldsymbol{u}\|^2} \|\boldsymbol{u}\| = \frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{\|\boldsymbol{u}\|} \end{aligned}$

Alltså
$$v_L t u = \frac{u \cdot v}{u \cdot u} u$$
 och $||v_L|| = ||\frac{u \cdot v}{u \cdot u} u|| = \frac{|u \cdot v|}{||u||u^2|} ||u|| = \frac{|u \cdot v|}{||u||}$

Definition

 \bullet En nollskild vektor \boldsymbol{n} är en
 normal till ett plan π om $\boldsymbol{n}\cdot\boldsymbol{v}=0$ för alla vektorer \boldsymbol{v} som ör parallella med planet.

 \bullet Givet en vektor \boldsymbol{v} så är den ortogonala projektionen av \boldsymbol{v} på $\pi,~\boldsymbol{v}_\pi,$ den vektor i planet så att $v - \overline{v_{\pi}}$ är en normal till π .

Proposition 1.23 $(u+u)_{\pi} = u_{\pi} + v_{\pi}$ (Inget bevis den här gången)

1.3 Vektorprodukten

När vi studerar vektorprodukter är det viktigt att våra vektorer är i rummet.

Definition En vektortrippel (u, v, w) sägs vara höger-orienterad om vyn från w:s spets ger att den minsta vinkeln mellan u och v get att u vrids moturs mot v. Annars sägs trippeln vara <u>vänsterorienterad</u>.

Givet två vektorer \boldsymbol{u} och \boldsymbol{v} så spänner de ett plan. Vi kan även se det som att de spänner ett parallellogram

Arean av detta parallellogram är $||u|| \cdot ||v|| \sin(a)$.

DefinitionLåt \boldsymbol{u} och \boldsymbol{v} vara två vektorer. Vektorprodukten (kryssprodukten) av dem är vektorn $\boldsymbol{u}\times\boldsymbol{v}$ så att

- 1. $\boldsymbol{u} \times \boldsymbol{v} = 0$ om $\boldsymbol{u}, \boldsymbol{v}$ är parallella
- 2. $\|\boldsymbol{u} \times \boldsymbol{v}\| = \|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\| \sin(a)$
- 3. $\boldsymbol{u} \times \boldsymbol{v}$ är ortogonal mot \boldsymbol{u} och \boldsymbol{v}
- 4. $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{u} \times \boldsymbol{v})$ är högerorienterad.

Proposition 1.32

- 1. $\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v}$
- 2. $(c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v}) = c(\mathbf{u} \times \mathbf{v})$
- 3. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$

Koordinatsystem (Avs. 1.5)

2.1 Koordinatsystem i ett plan

Vi inför ett koordinatsystem i planet som följer:

- 1. Vi fixerar en punkt O, som vi kallar origo
- 2. Vi väljer två vektorer e_x och e_y som är ortogonala mot varann, dvs vinkeln mellan dem är $\frac{\pi}{2}$. Varje vektor v i planet kan skrivas $v = xe_x + ye_y$.
- 3. x och y kallas för \boldsymbol{v} :s koordinater med avseende på basen $\boldsymbol{e}_x,\,\boldsymbol{e}_y$

Givet en bas skriver vi $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$. Om $\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$ säger vi att punkten P har koordinatern x och y.

Den ortogonala projektionen av \boldsymbol{v} på x-axeln ges av $x\boldsymbol{e}_x = \begin{pmatrix} x \\ O \end{pmatrix}$.

2.2Koordinatsystem i ett rum

Vi inför ett koordinatsystem i rummet som följer.

- 1. Vi fixerar en punkt O, origo
- 2. Vi väljer tre enhetsvektorer e_x, e_y, e_z som är parvis ortogonala.

Vi skriver detta som
$$\boldsymbol{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

3. Vi kallar x,y,z för v:s koordinater med avseende på basen e_x , e_y , e_z .

En bas $\boldsymbol{e}_x,~\boldsymbol{e}_y,~\boldsymbol{e}_z$ av enhetsvektorer och där vektorerna är parvis ortogonala kallas för en ON-bas (Orto Normal bas).

Om
$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 så säger vi att punkten P har koordinaterna x,y,z,

alltså
$$\mathbf{v} = \mathbf{v}_x + \mathbf{v}_y + \mathbf{v}_z = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$$

Vi väljer (nästan alltid) en ON-Bas så att (e_x, e_y, e_z) är högerorienterad

Proposition 1.37 Följande regler gäller för koordinaterna av vektorer:

1.
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}$$

$$2. \ c \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} cx_1 \\ cy_1 \\ cz_1 \end{pmatrix}$$

Sats 1.38 Om
$$\boldsymbol{u} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
 och $\boldsymbol{v} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$ i en ON-bas då är
$$\boldsymbol{u} \cdot \boldsymbol{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$
$$\|\boldsymbol{u}\|^2 = x_1^2 + y_1^2 + z_1^2$$

Bevis

standard

dab

Låt
$$\boldsymbol{e}_x,\ \boldsymbol{e}_y,\ \boldsymbol{e}_z$$
 vara ON-basen.
Då är $||\boldsymbol{e}_x||=1=||\boldsymbol{e}_y||=||\boldsymbol{e}_z||$ och $\boldsymbol{e}_x\cdot\boldsymbol{e}_y=0=\boldsymbol{e}_x\cdot\boldsymbol{e}_z=\boldsymbol{e}_y\cdot\boldsymbol{e}_z$.
Vi har dessutom att $\boldsymbol{u}=x_1\boldsymbol{e}_x+y_1\boldsymbol{e}_y+z_1\boldsymbol{e}_y+z_1\boldsymbol{e}_z$

Vi har dessutom att
$$\mathbf{u} = x_1 \mathbf{e}_x + y_1 \mathbf{e}_y + z_1 \mathbf{e}_y + z_1 \mathbf{e}_z$$

$$\boldsymbol{v} = x_2 \boldsymbol{e}_x + y_2 \boldsymbol{e}_y + z_2 \boldsymbol{e}_y + z_2 \boldsymbol{e}_z$$

$$\mathbf{u} \cdot \mathbf{v} = (x_1 e_x + y_1 e_y + z_1 e_y + z_1 e_z) \cdot (x_2 e_x + y_2 e_y + z_2 e_y + z_2 e_z) =$$

$$= x_1 x_2 e_x \cdot e_x + y_1 y_2 e_y \cdot e_y + z_1 z_2 e_z \cdot e_z = x_1 x_2 ||\mathbf{e}_x||^2 + y_1 y_2 ||\mathbf{e}_y||^2 + z_1 z_2 ||\mathbf{e}_z||^2 =$$

$$= x_1 x_2 + y_1 y_2 + z_1 z_2 \text{ v.s.b}$$

Ex Beräkna vinkeln mellan
$$\boldsymbol{u} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 och $\boldsymbol{v} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$.

Lösning Låt α vara vinkeln. Då är $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos(\alpha)$

Vi vet att
$$\boldsymbol{u} \cdot \boldsymbol{v} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} = 2 \cdot 3 + 1 \cdot 4 + 3 \cdot 1 = 6 + 4 + 3 = 13 \ \|\boldsymbol{u}\| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{4 + 1 + 9} = \sqrt{14} \ \|\boldsymbol{v}\| = \sqrt{3^2 + 4^2 + 1^2} = \sqrt{9 + 16 + 1} = \sqrt{26} \ \text{Alltså:} \ \cos(\alpha) = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} = \frac{13}{\sqrt{4}\sqrt{26}} = \frac{13\sqrt{13}}{\sqrt{2}\sqrt{7}\sqrt{2}\sqrt{13}\sqrt{13}} = \frac{\sqrt{13}}{2\sqrt{7}} \ \text{Därför är } \alpha = \arccos(\frac{\sqrt{13}}{2\sqrt{7}}).$$

Sats 1.42 Om
$$\boldsymbol{u}=\begin{pmatrix} x_1\\y_1\\z_1 \end{pmatrix}$$
 och $\boldsymbol{v}=\begin{pmatrix} x_2\\y_2\\z_2 \end{pmatrix}$ i en högerorienterad ON-bas då är
$$\boldsymbol{u}\times\boldsymbol{v}=\begin{pmatrix} y_1z_2-z_1y_2\\z_1x_2-x_1z_2\\x_1y_2-y_1x_2 \end{pmatrix}$$

Ex Bestäm en vektor som är ortogonal mot både
$$u = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$
 och $v = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$.

Lösning Vi vet att $u \times v$ är ortogonal mot u och v!

$$u \times v = \begin{pmatrix} 3 \cdot 5 - 4 \cdot 1 \\ 4 \cdot 2 - 2 \cdot 5 \\ 2 \cdot 1 - 3 \cdot 2 \end{pmatrix} = \begin{pmatrix} 15 - 4 \\ 9 - 16 \\ 2 - 6 \end{pmatrix} = \begin{pmatrix} 11 \\ -2 \\ -4 \end{pmatrix}$$

Linjer och plan (Avsnitt 1.6)

3.0.1 Linjer

Samtliga linjer i planet går att beskriva med en ekvation på Ax + By + C = 0. Om $B \neq 0$ så är det samma sak som $By = -C - Ax \Leftrightarrow y = \frac{C}{B} - \frac{A}{B}x$ så typ y = kx + m

Exempelvis, vad är x=3 för linje? Här är B=0!

Y-axeln beskrivs av ekvationen x=0.

Hur bestäms en linje? Jo, en linje bestäms av en punkt P_0 tillsammans med en riktningsvektor \boldsymbol{v} . Linjen ges då av alla x_1y så att $\begin{pmatrix} x \\ y \end{pmatrix} = P_0 + t\boldsymbol{v}$ Om vi har en linje given av Ax + By + C = 0, hur hittar vi en riktningsvektor?

Ex Bestäm en ekvation för den linje som går igenom $P = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ och $Q = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Lösning Vektorn
$$v = \overrightarrow{QP} = Q - P = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
Linjen ges av: $\begin{pmatrix} y \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 + t \\ 1 \\ -t \end{pmatrix}$

3.1 Linjer i planet

Vi har sett att linjer i planet går att beskriva med en ekvation Ax + By + C = 0. Detta sägs vara <u>linjens ekvation på normalform</u>. Vektorn $\begin{pmatrix} 0 \\ -C/B \end{pmatrix} - \begin{pmatrix} -C/A \\ 0 \end{pmatrix} = \begin{pmatrix} C/A \\ -C/B \end{pmatrix}$ är en riktningsvektor. Men då är även $\frac{AB}{C}\begin{pmatrix} C/A \\ -C/B \end{pmatrix} = \begin{pmatrix} B \\ -A \end{pmatrix}$ är en riktningsvektor! Men då är $\boldsymbol{n} = \begin{pmatrix} A \\ B \end{pmatrix}$ en normal! Varför? Jo, $\begin{pmatrix} B \\ -A \end{pmatrix} \cdot \begin{pmatrix} A \\ B \end{pmatrix} = BA + (-A)B = 0$ En linje beskriven av ekvationen Ax + By + C = 0 har $\boldsymbol{n} = \begin{pmatrix} A \\ B \end{pmatrix}$ som en normal. Vektorn $\begin{pmatrix} B \\ A \end{pmatrix}$ är en riktningsvektor.

Ex En linje ges av $\begin{cases} x = 1 + t \\ y = 3 + 2t \end{cases}$. Skriv linjen på normalform.

Lösning Vi vill bli av med t! $t = 1 - x \text{ och } 2t = y - 3 \Leftrightarrow t = \frac{y - 3}{2}$ Alltså: $1 - x = \frac{y - 3}{2} \Leftrightarrow x + \frac{y}{x} - \frac{3}{2} - 1 = 0 \Leftrightarrow \text{MISSADE LITE}$

Plan i rummet

Ett plan bestäms av en punkt och två icke-parallella vektorer som ligger i planet. Men ett plan bestäms också av en punkt samt en normalvektor. Vi kan exempelvis välja $\boldsymbol{u} \times \boldsymbol{v}$ som normal. Planets ekvation på parameterform:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + s \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} + t \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$

Här är s,t parametrar.

Antag att n = (A, B, C) är en normal till planet. Då är (x, y, z) en punkt planet

$$\Leftrightarrow \boldsymbol{n} \cdot \overrightarrow{P_0 P} = 0 \Leftrightarrow \begin{pmatrix} A \\ B \\ C \end{pmatrix} \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = 0 \Leftrightarrow Ax + By + Cz - (Ax_0 + By_0 + Cz_0) = 0$$

Alltså: Planet ges av Ax + By + Cz + D = 0 där n = (A, B, C) är en normal till planet!/? Detta är planets ekvation på normalform!

Ex Punkterna $P = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $Q = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$ och $R = \begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix}$ ligger på ett plan. Skriv ner planets ekvation på parameterform och på normalform.

Lösning

$$\begin{aligned} & \boldsymbol{u} = \overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \begin{pmatrix} 0 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} \\ & \boldsymbol{v} = \overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = \begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} \\ & \text{Planet på parameter form: } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x = 1 - s + 2t \\ y = 2 + 2s + t \\ z = 3 + 2d + 5t \end{pmatrix} \\ & \text{En normal ges ava } \boldsymbol{n} = \boldsymbol{u} \times \boldsymbol{v} = \begin{pmatrix} 2 \cdot 5 - 2 \cdot 1 \\ 2 \cdot 2 - (-1) \cdot 5 \\ (-1) \cdot 1 - 2 \cdot 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \\ 5 \end{pmatrix} \\ & \text{Planet ges av } 8x = 9y - 5z + D = 0. \text{ Punkten } \boldsymbol{p} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ liggger på planet!} \end{aligned}$$

 $8 \cdot 1 + 9 \cdot 2 - 5 \cdot 3 + D = 0 \Leftrightarrow 26 - 15 + D = 0 \Leftrightarrow D = 15 - 26 = -11$ Planets ekvation på normalform: 8x + 9y - 5z - 11 = 0

4.1 Avstånd från en punkt till en linje

Antag att vi har en linje L och en punkt P. Tag R på linjen och låt Q vara den punkt på L som är närmast P.

Då är
$$\overrightarrow{RQ} = \overrightarrow{RP_L}$$
. $d = ||\overrightarrow{RP} - \overrightarrow{RQ}|| = ||\overrightarrow{RP} - \overrightarrow{RP_L}||$

Ex Beräkna avståndet från $P = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ till linjen L som ges av $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

Lösning Låt
$$R = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
. $\overrightarrow{RP} = \overrightarrow{OP} - \overrightarrow{OR} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ En riktningsvek-

tor för linjen ör
$$\boldsymbol{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
 Då är $\overrightarrow{RP_L} = \frac{\overrightarrow{RP} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}} \boldsymbol{v} = \frac{\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \frac{1+2}{1+4} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \frac{3}{5} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

$$d = \|\overrightarrow{RP} - \overrightarrow{RP_L}\| = \|\begin{pmatrix} 0\\1\\1 \end{pmatrix} - \frac{3}{5} + \begin{pmatrix} 0\\1\\2 \end{pmatrix}\| = \|\begin{pmatrix} 0\\\frac{2}{5}\\-\frac{1}{5} \end{pmatrix}\| = \sqrt{0^2 + \frac{2}{5}^2 + (-\frac{1}{5})^2} = \frac{1}{5}\sqrt{4+1} = \frac{\sqrt{5}}{5}$$

4.2 Avstånd från en punkt till ett plan

Låt π vara ett plan givet av Ax+By+Cz+D=0 och $P=\begin{pmatrix} x\\y\\z \end{pmatrix}$ någon punkt.

Tag
$$P_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$
 i planet.

N är en linje som är normal till
$$\pi$$
. $d = ||\overrightarrow{P_0 P_N}|| = \frac{||\overrightarrow{P_0 P_N} \cdot \boldsymbol{n}||}{||\boldsymbol{n}||} = \frac{||\begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} \cdot \begin{pmatrix} A \\ B \\ C \end{pmatrix}||}{|\begin{pmatrix} A \\ B \\ C \end{pmatrix}||}$

Matrisoperationer

Definition En matris är ett tvådimensionellt fält av reella tal. Om matrisen har m
 rader och n kolumner sägs det vara en $(m \times n)$ -matris, eller en matris

av typ
$$m \times n$$
. $\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \vdots & \end{pmatrix}$ Matriser av samma typ adderas \dots

komponentvis. Exempelvis:

komponentvis. Exempelvis:
$$\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} 5 & 8 \\ 6 & 7 \end{pmatrix} = \begin{pmatrix} 1 + 5 & 2 + 8 \\ 4 + 6 & 3 + 7 \end{pmatrix} = \begin{pmatrix} 6 & 10 \\ 10 & 10 \end{pmatrix}$$
 Matriser av olika typ adderas inte! Vi har sett exempel på matriser i kolonnvektorer. En matris på formen $\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$ är en radvektor.

Produkten av en matris med ett reellt tal definieras också "komponentvis".

$$2 \cdot \begin{pmatrix} 2 & 6 \\ 4 & 8 \end{pmatrix} = \begin{pmatrix} 3 \cdot 2 & 3 \cdot 6 \\ 3 \cdot 4 & 3 \cdot 8 \end{pmatrix} = \begin{pmatrix} 6 & 18 \\ 12 & 24 \end{pmatrix}$$

Definition Givet en 3×3-matris
$$A = \begin{pmatrix} | & | & | \\ a_1 & a_2 & a_3 \\ | & | & | \end{pmatrix}$$
 och en (kolumn) vektor

$$\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
 definierar vi deras produkt som

Proposition 2.11

$$1. \ A + B = B + A$$

2.
$$A(u + v) =$$

3.
$$(A+B)\mathbf{v} = A\mathbf{v} + B\mathbf{v}$$

4.
$$A(c\mathbf{v}) = c(A\mathbf{v}) = (cA)\mathbf{v}$$

5.1 Produkter av matriser

Definition Låt A och B vara
$$3 \times 3$$
-matriser och $B = \begin{pmatrix} | & | & | & | \\ \boldsymbol{b_1} & \boldsymbol{b_2} & \boldsymbol{b_3} \\ | & | & | & | \end{pmatrix}$.

Vi definierar produkten av A och B genom $AB = A \begin{pmatrix} | & | & | & | \\ \boldsymbol{b_1} & \boldsymbol{b_2} & \boldsymbol{b_3} \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ A\boldsymbol{b_1} & A\boldsymbol{b_2} & A\boldsymbol{b_3} \\ | & | & | & | \end{pmatrix}$

Ex Låt
$$A = \begin{pmatrix} 0 & 2 \\ 4 & 6 \end{pmatrix}$$
 och $B = \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$. Beräkna AB och BA.

Lösning
$$AB = \begin{pmatrix} 0 & 2 \\ 4 & 6 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 10 & 14 \\ 34 & 54 \end{pmatrix}$$

Proposition 2.14 Låt A och B vara $n \times n$ -matriser där A på position (i,j) har talet a_{ij} och B på position (i,j) har talet b_{ij} . Låt C = AB och låt c_{ij} vara talet för C på position (i,j). Då $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$.

Låt oss använda Prop 2.14 för att beräkna AB från exemplet ovan:

$$AB = \begin{pmatrix} 0 & 2 \\ 4 & 6 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 0.1 + 2.5 & 0.3 + 2.7 \\ 4.1 + 6.5 & 4.3 + 6.7 \end{pmatrix}$$

$$= \begin{pmatrix} 10 & 14 \\ 34 & 54 \end{pmatrix}$$

Propostion 2.16 Låt A, B, C vara $n \times n$ -matriser.

1.
$$A(cB) = c(AB) = (cA)B$$

$$2. \ A(B+C) = AB + AC$$

3.
$$(B+C)A = BA + CA$$

4.
$$A(B\mathbf{v}) = (AB)\mathbf{v}$$

5.
$$A(BC) = (AB)C$$

Kom ihåg att $AB \neq BA!$

Definition Givet en $m \times n$ -matris A så ges dess <u>transponat</u>, A^t , av den $n \times m$ -matris av att $a^t_{ij} = a_{ji}$.

Ex Om
$$a = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 6 & 9 \end{pmatrix} då A^t = \begin{pmatrix} 1 & 3 \\ 2 & 6 \\ 4 & 9 \end{pmatrix}$$

Definition En $n \times n$ -matris A sägs vara symmetrisk om $A^t = A$.

$$\mathbf{Ex} \quad \text{Matriserna} \begin{pmatrix} 1 & & 5 \\ 5 & & 3 \end{pmatrix} \text{ och } \begin{pmatrix} 1 & & 0 & & -1 \\ 0 & & 2 & & 10 \\ -1 & & 10 & & 8 \end{pmatrix} \ddot{\text{ar}} \text{ symmetriska}.$$

Proposition 2.21 Låt A,B vara $n \times n$ -matriser.

1.
$$(a^t)^t = A$$

2.
$$(A+B)^t = A^t + B^t$$

$$3. (cA)^t = cA^t$$

4.
$$(AB)^t = B^t A^t$$

Determinanter (Avs. 2.2)

Definition Givet en 2×2 -matris $a = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ låter vi dess <u>determinant</u> vara $det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$.

 $\mathbf{E}\mathbf{x} \quad \text{Om } A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \text{ då är } \det(A) = \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = 2 \cdot 1 - 0 \cdot 0 = 2. \text{ Om vi låter}$ $\mathbf{u} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ då är arean av parallellogramet som } \mathbf{u} \text{ och } \mathbf{v} \text{ spänner 2.}$

Sats 2.24 Låt $A = \begin{pmatrix} u & v \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ och låte D vara parallellogramet som spänns av \boldsymbol{u} och \boldsymbol{v} . Då är |det(A)| = area(D). Dessutom är det(A) > 0 om och endast om vinkeln mellan \boldsymbol{u} och \boldsymbol{v} , då \boldsymbol{u} vrids moturs till \boldsymbol{v} , är mellan 0 och π .

Bevis Vad är area(D)? Låt L vara en linje som är ortogonal mot $\boldsymbol{u} = \begin{pmatrix} a \\ c \end{pmatrix}$. Då är $\boldsymbol{r} = \begin{pmatrix} c \\ -a \end{pmatrix}$ en riktningsvektor för L ty $\boldsymbol{r} \cdot \boldsymbol{u} = 0$. $area(D) = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}_L|| = ||\boldsymbol{u}|| \cdot ||\frac{\boldsymbol{v} \cdot \boldsymbol{r}}{\boldsymbol{r} \cdot \boldsymbol{r}}|| = ||\boldsymbol{u}|| \cdot \frac{|\boldsymbol{v} \cdot \boldsymbol{r}|}{||\boldsymbol{r}^2||} \cdot ||\boldsymbol{r}|| = \frac{||\boldsymbol{u}||}{||\boldsymbol{r}||} |\boldsymbol{v} \cdot \boldsymbol{r} = \frac{\sqrt{a^2 + c^2}}{\sqrt{c^2 + (-a)^2}} |\begin{pmatrix} b \\ d \end{pmatrix} \cdot \begin{pmatrix} c \\ -a \end{pmatrix}| = bc - da| = |ad - bc| = |det(A)|$ Observera att Sats 2.24 speciellt ger att $det(A) = 0 \Leftrightarrow \boldsymbol{u}, \boldsymbol{v}$ parallella

Definition Låt $A = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$. Då ges dess determinant av $det(A) = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = x_1(y_2z_3 - z_2y_3) - x_2(y_1z_3 - z_1y_3) + x_3(y_1z_2 - z_1y_2)$$
En minnesregel för kryssprodukt:

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} i \ e_x, e_y, e_z. \ \text{Då ges } \mathbf{u} \times \mathbf{v} = \begin{vmatrix} e_x & e_y & e_z \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = e_x(u_2v_3 - v_2u_3) - e_y(u_1v_3 - v_1u_3) + e_z(u_1v_2 - v_1u_2)$$

Proposition 2.28 Låt u, v, w vara kolumnvektorer i rummet och låt $A = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$ Då är $det(A) = (\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}$.

Sats 2.29 Låt $A = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$ där u, v, w är kolumnvektorer i rummet och låt Vvara volymen av parallellepipeden som spänns av \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} . Då är $det(A) = \begin{cases} V \text{ om } \boldsymbol{u}, \, \boldsymbol{v}, \, \boldsymbol{w} \text{ h\"{o}gerorienterat} \\ -V \text{ om } \boldsymbol{u}, \, \boldsymbol{v}, \, \boldsymbol{w} \text{ v\"{a}nterorienterat} \end{cases}$

Ex Låt $u = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $v = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $w = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Avgör om (u, v, w) är högerorienterat.

Lösning

$$det(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) = \begin{vmatrix} 1 & 2 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & 1 \end{vmatrix} = 1 \cdot (3 \cdot 1 - 1 \cdot 1) - 2(0 \cdot 1 - 2 \cdot 1) + 2(0 \cdot 1 - 2 \cdot 3) = 2 + 4 - 12 = -6$$

Determinanten är negativ, alltså är (u, v, w) vänsterorienterat.

Proposition 2.31 Låt u, v, w, w_1, w_2 vara vektorer i rummet.

1.
$$\begin{vmatrix} | & | & | \\ e_x & e_y & e_z \\ | & | & | \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1$$
2.
$$|c\mathbf{u} \quad \mathbf{v} \quad \mathbf{w}| = c |\mathbf{u} \quad \mathbf{v} \quad \mathbf{w}|$$

- 3. |u v w| = -|v u w| = -|w v u|
- 4. $|u v w_1 + w_2| = |u v w_1| + |u v w_2|$
- 5. $|\boldsymbol{u} \quad \boldsymbol{v}| = 0$
- 6. $det(A^t) = det(A)$

Matris Invers Avs 2.3

Definition En $n \times n$ -matris I kallas för en matrisidentitet om AI = A = IA för alla $n \times n$ -matriser A. En $n \times n$ -matris B sägs vara en invers till A om AB = I = BA.

För tal är 1 identiteten och inversen av $a \neq 0$ är $\frac{1}{a}$.

För
$$2 \times 2$$
-matriser är $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
För 3×3 -matriser är $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Dessa är de enda identiteterna.

Om en matris A har en invers då är den unik. Vi betecknar den A^{-1} .

Sats 2.36 En 2×2 -matris $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ har en invers om och endast om $det(A) \neq 0$. Om A har en invers då är den $A^{-1} = \frac{1}{det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Bevis Antag att $det(A) \neq 0$. Då är

$$A\left(\frac{1}{\det(A)}\right) \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} ad - bc & a(-b) + ba \\ cd + d(-c) & c(-b) + da \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Att
$$(\frac{1}{\det(A)}\begin{pmatrix} a & -b \\ -c & a \end{pmatrix})A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 visas på samma sätt.
Då är alltså $\frac{1}{\det(A)}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ inversen till A. Antag att $\det(A) = 0$.

Eftersom determinanten är arean som spänns av kolumnvektorerna så är kolumnvektorerna i detta fall parallella.

$$A = \begin{pmatrix} \boldsymbol{u} & k\boldsymbol{u} \end{pmatrix} \text{ Då är } BA \Rightarrow \begin{pmatrix} \begin{pmatrix} | & | \\ \boldsymbol{u} & k\boldsymbol{u} \\ | & | \end{pmatrix} = \begin{pmatrix} \boldsymbol{v}^t \cdot \boldsymbol{u} & k\boldsymbol{v}^t \cdot \boldsymbol{u} \\ \boldsymbol{w}^t \cdot \boldsymbol{u} & k\boldsymbol{w}^t \cdot \boldsymbol{u} \end{pmatrix} \text{ men också}$$

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 Speciellt är $\boldsymbol{w}^t \cdot \boldsymbol{u} = 0 \text{ men } k\boldsymbol{w}^t \cdot \boldsymbol{u} = 1 \Leftrightarrow \boldsymbol{w}^t \cdot \boldsymbol{u} = \frac{1}{k} \text{ vilket är omöjligt! Därför finns det ingen invers!}$

Geometrisk och linjära avbildningar

8.1 Linjära avbildningar

Definition Låt V och W vara mängder av vektorer. En funktion $f: V \to W$ sägs vara en linjär avbildning om

$$f(\mathbf{v}_1 + \mathbf{v}_2) = \overline{f(\mathbf{v}_1) + f(\mathbf{v}_2)}, \forall \mathbf{v}_1, \mathbf{v}_2 \in V$$

$$f(c\mathbf{v}) = c \cdot f(\mathbf{v}), \forall \mathbf{v} \in V, c \in \mathbb{R}$$

Ex Låt V vara någon mängd av vektorer (en linje, ett plan eller ett rum) och låt $a \in \mathbb{R}$. Vi definierar en funktion $f: V \to V$ genom f(v) = av. Då är f linjär! Varför? Jo:

$$f(v_1 + v_2) = a(v_1 + v_2) = av_1 + av_2 = f(v_1) + f(v_2)$$

 $f(cv) = a(cv) = (ac)v = c(av) = c(av) - c \cdot f(v)$

Ex Låt $V = \mathbb{R}$ och $f(x) = x^2$. Då är f inte linjär! Varför? Jo:

$$f(cx) = (cx)^2 = c^2x^2 \neq cx^2 = c \cdot f(x)$$
 så länge $c \neq 0$ och $c \neq 1$

Alltså $f(cx) \neq cf(x)$ och därför är f inte linjär.

Ex Låt V vara planet ener rummer system så att vektorer kan skrivas som $v = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$. Låt A vvara en matris. Då är varför? Jo: $\mathbf{E}\mathbf{x}$ Låt V vara planet eller rummet och säg att vi har fixerat ett koordinat-

funktionen $f:V \to V$ given av $f(\boldsymbol{v}) = A\boldsymbol{v}$ av en linjär avbildning. Varför? Jo:

$$f(v_1 + v_2) = A(v_1 + v_2) = Av_1 + Av_2 = f(v_1) + f(v_2)$$

 $f(cv) = A(cv) = cAv = c \cdot f(v)$

Ex Om $f: V \to W$ är linjär då är f(O) = 0.

Lösning Vi har att $f(c\mathbf{v}) = c \cdot f(\mathbf{v}), \forall c \in \mathbb{R}$. Låt c = 0 så får $f(0 \cdot \mathbf{v}) = 0$

Sats 3.11 (Bassatsen) Låt V vara planet eller rummet. Om $f: V \to V$ är en linjär avbildning då är $f = f_A$, där $A = \begin{pmatrix} & & & & & & & \\ & & & & & & & \\ f(e_x) & & f(e_y) & & f(e_z) \end{pmatrix}$.

Bevis Låt $\boldsymbol{v} \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = v_x e_x + v_y e_y + v_z e_z$. Eftersom f är linjär så får vi

$$f(\boldsymbol{v}) = f(v_x e_x + v_y e_y + v_z e_z) = v_x f(e_x) + v_y f(e_y) + v_z + f(e_z) =$$

$$\left(f(e_x) \qquad f(e_y) \qquad f(e_z)\right) \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = A \boldsymbol{v} \blacksquare$$

Sats 3.12 Varje linjär avbildning är en matrisavbildning och varje matrisavbildning är en linjär avbildning.

8.2 Geometri hos linjära avbildningar (Avs 3.4)

Proposition 3.14 Låt $f: V \to V$ vara en linjär avbildning och låt $L \subseteq V$ vara en linje. Då är f(L) en linje eller en punkt.

Bevis Skriv linjen på formen $x_0 + tv$. Då ges f(L) av alla punkter (vektorer) av $f(x_0 + tv) = f(x_0) + tf(v)$ vilket beskriver en linje om $f(v \neq 0)$. Om f(v) = 0 då är $f(L) = f(x_0)$

Proposition 3.16 Ortogonal projektion på en linje är en linjär avbildning.

Bevis Låt r vara en riktningsvektor för linjen. För en allmän vektor v ges den ortogonala projektionen på L av $f(v) = \frac{v \cdot r}{r \cdot r} r$. Visa nu att f(u + v) = f(u) + f(v) och f(cv) > cf(v)

Ex Låt L vara en linje med riktningsvektor $\boldsymbol{r} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Bestäm matrisen för ortogonal projektion på L.

Lösning Matrisen ges av $A = (f(e_x) f(e_y))$ där f är den otro. proj.p på L.

$$f(e_x) = \frac{e_x \cdot r}{r \cdot r} r = \frac{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}}{\begin{pmatrix} 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \frac{2}{13} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$f(e_y) = \frac{e_y \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}} \mathbf{r} = \frac{\begin{pmatrix} 0\\1 \end{pmatrix} \cdot \begin{pmatrix} 2\\3 \end{pmatrix}}{\begin{pmatrix} 2\\3 \end{pmatrix} \cdot \begin{pmatrix} 2\\3 \end{pmatrix}} \begin{pmatrix} 2\\3 \end{pmatrix} = \frac{3}{13} \begin{pmatrix} 2\\3 \end{pmatrix}$$

Alltså är
$$A = \begin{pmatrix} | & | \\ f(e_x) & f(e_y) \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 2 \cdot 2 & 3 \cdot 2 \\ 2 \cdot 3 & 3 \cdot 3 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}$$

Ex Beskriv geometriskt vad $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ är för linjär avbildning.

Lösning Låt f vara den linjära avbildningen. Då är $f(e_x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_x$ och $f(e_y) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \mathbf{0}$. Detta är ortogonal projektion på x-axeln.

På sätt är $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ ortogonal projektion på y-axeln och $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ är ortogonal projektion på z-axeln (i rummet).

Ex Beskriv vilken linjär avbildning $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ bestämmer.

Lösning Om f är den linjära avbildningen så $f(e_x) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = e_y$ och $f(e_y) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_x$. Så f byter plats på basvektorerna.

Ex (Spegling) Låt L vara en linje med riktningsvektor r och genom origo. [h] v_s är speglingen av v i linjen L. $v_s = v_L + v_L - v = 2v_L - v = 2\frac{v \cdot r}{r \cdot r}r - v$. Låt $r = \binom{2}{3}$. Då är

$$(e_x)_s = 2\frac{e_x \cdot r}{r \cdot r}r - e_x = 2\frac{4}{13} \begin{pmatrix} 2\\3 \end{pmatrix} - \begin{pmatrix} 1\\0 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 8\\12 \end{pmatrix} - \begin{pmatrix} 13\\0 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} -5\\12 \end{pmatrix}$$

$$(e_y) = 2\frac{e_y \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}} \mathbf{r} - e_y = 2\frac{3}{13} \begin{pmatrix} 2\\3 \end{pmatrix} - \begin{pmatrix} 0\\1 \end{pmatrix} = \frac{1}{13} (\begin{pmatrix} 12\\18 \end{pmatrix} - \begin{pmatrix} 0\\13 \end{pmatrix}) = \frac{1}{13} \begin{pmatrix} 12\\5 \end{pmatrix}$$

Matrisen för speglingen är $A_s = \frac{1}{13} \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}$

Proposition 3.18 Rotation β radianer moturs runt origo är en linjär avbildning vars matris ges av $A = \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix}$

Beviset använder additionsformlerna för de trigonometriska funktionerna.

 $\mathbf{E}\mathbf{x}~$ Låt f vara rotation $\frac{\pi}{4}$ moturs runt origo. Beräkna matrisen till f.

Lösning Matrisen ges av $\begin{pmatrix} cos(\frac{\pi}{4}) & -sin(\frac{\pi}{4}) \\ sin(\frac{\pi}{4}) & cos(\frac{\pi}{4}) \end{pmatrix}$

Sammansatta avbildningar (Avs 3.5)

Proposition 3.22 Låt $f: V \to W$ och $g: W \to V$ vara linjära avbildningar som ges A respektive B. Då är $fog: W \to W$ och $gof: V \to V$ linjära avbildningar med matriser AB respektive BA.

Eftersom vi vet att i allmänhet så är $AB \neq BA$ och därför är $fog \neq gof$.

Till exempel är resultatet inte samma om vi roterar och sen projicerar som om vi projicerar och sedan roterar.

Proposition 3.26 Låt $f: V \to V$ vara en linjär avbildning med matris A. Då är f inverterbar om och endast om A är inverterbar. Om f är inverterbar då är f^{-1} linjär och dess matris är A^{-1} .

Ex Rotation är en inverterbar linjär avbildning.

Bevis Rotation β radianer moturs ges av $A = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$.

$$det(A) = \cos^2\beta + \sin^2\beta = 1 \neq 0$$

Därför är A inverterbar och alltså är rotation inverterbar

$$a^{1} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} = \begin{pmatrix} \cos(-\beta) & -\sin(-\beta) \\ \sin(-\beta) & \cos(-\beta) \end{pmatrix}$$