Zusammenfassung Term Rewriting aAT

© Tim Baumann, http://timbaumann.info/uni-spicker

Dies ist eine übersetzte Zusammenfassung des Buches Term Rewriting and All That von Franz Baader und Tobias Nipkow.

Abstrakte Reduktionssysteme

Def. Ein abstraktes Reduktionssystem ist ein Tupel (A, \rightarrow) , wobei $\rightarrow \in A \times A$ eine Relation auf A ist.

```
 \begin{aligned} \mathbf{Def.} & \overset{0}{\to} \coloneqq \{(a,a) \mid a \in A\} & \text{Identität} \\ & \overset{i+1}{\to} \coloneqq \overset{i}{\to} \circ \to & (i+1)\text{-fache Komposition, } i \geq 0 \\ & \leftarrow \coloneqq \{(t,s) \mid (s,t) \in \to\} & \text{Inverse Relation} \\ & \overset{\Xi}{\to} \coloneqq (\to) \cup (\overset{0}{\to}) & \text{refl. Hülle} \\ & \overset{*}{\to} \coloneqq \cup_{i \geq 0} (\overset{i}{\to}) & \text{refl. trans. Hülle} \\ & \overset{+}{\to} \coloneqq \cup_{i \geq 1} (\overset{i}{\to}) & \text{refl. trans. Hülle} \\ & \leftrightarrow \coloneqq \to \cup \leftarrow & \text{symm. Hülle} \\ & \overset{*}{\leftrightarrow} \coloneqq (\leftrightarrow)^* & \text{refl. trans. symm. Hülle} \end{aligned}
```

Def. Sei $x \in A$ ein Term.

- Der Term x heißt **reduzibel**, falls ein $y \in A$ mit $x \to y$ existiert,
- irreduzibel (oder in Normalform) falls x nicht reduzibel ist.
- Ein Term $y \in A$ heißt **Normalform** von x, falls $x \xrightarrow{*} y$ und y irreduzibel ist.
- Eine Term y heißt direkter Nachfolger von x, falls $x \to y$.
- Eine Term y heißt Nachfolger von x, falls $x \xrightarrow{+} y$.
- x und y heißen joinable, notiert $x \downarrow y$, falls $\exists z : x \xrightarrow{*} z \xleftarrow{*} y$.

Def. Eine Reduktion \rightarrow heißt

```
\begin{array}{cccc} \textbf{Church-Rosser} & :\iff x \overset{*}{\leftrightarrow} y \implies x \downarrow y \\ & \textbf{konfluent} & :\iff y_1 \overset{*}{\leftarrow} y \overset{*}{\rightarrow} y_2 \implies y_1 \downarrow y_2 \\ \textbf{semi-konfluent} & :\iff y_1 \leftarrow y \overset{*}{\rightarrow} y_2 \implies y_1 \downarrow y_2 \\ \textbf{terminierend} & :\iff \text{es gibt keine unendlich absteigende Kette} \\ & x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots & (\text{auch: } noethersch) \\ \textbf{normalisierend} & :\iff \text{jeder Term besitzt eine Normalform} \\ & \textbf{konvergent} & :\iff \text{konfluent} \land \text{normalisierend} \end{array}
```

Lem. Für eine Reduktion \rightarrow sind äquivalent:

- \bullet \rightarrow ist Church-Rosser
- $\bullet \rightarrow ist konfluent$
- → ist semi-konfluent

Lem. Ist die Reduktion \to konfluent/terminierend/konvergent, so besitzt jeder Term höchstens/mindestens/genau eine Normalform.

Notation. Falls x eine NF y besitzt, so schreibe $x := \downarrow y$.

Thm. Ist
$$\rightarrow$$
 konvergent, so gilt $x \stackrel{*}{\leftrightarrow} y \iff x \downarrow = y \downarrow$.

Bem. Dies liefert einen einfachen Algorithmus, um $x \stackrel{*}{\Longrightarrow} y$ zu entscheiden: Reduziere die Terme x und y zu Normalformen $x \downarrow$ bzw. $y \downarrow$ und vergleiche diese.

Terminierungsbeweise

Lem. \rightarrow ist terminierend \iff \rightarrow ist eine Wohlordnung

Def. Eine Relation \rightarrow heißt

- endlich verzweigend, falls jeder Term nur endlich viele direkte Nachfolger besitzt,
- global endlich, falls jeder Term nur endl. viele Nachfolger hat,
- azyklisch, falls kein Term a mit $a \xrightarrow{+} a$ existiert.

Lem. • Eine endlich verzweigende Relation ist global endlich, falls sie terminierend ist.

• Eine azykl. Relation ist terminierend, falls sie global endlich ist.

Lem. Sei (A, \rightarrow) ein Reduktionssystem und (B, >) eine wohlgeordnete Menge. Gibt es eine streng monotone Abbildung $\varphi: A \rightarrow B$, so ist A terminierend.

Lem. Ein endlich verzweigendes Reduktionssystem (A, \rightarrow) ist genau dann terminierend, falls es eine streng monotone Abbildung $\varphi: (A, \rightarrow) \rightarrow (\mathbb{N}, >)$ gibt.

Def. Seien $(A_i, >_i)_{i=1,...,n}$ geordnete Mengen. Die **lexikalische Ordnung** $>_{\text{lex}}$ auf $A_1 \times ... \times A_n$ ist definiert durch

$$(x_1, ..., x_n) >_{\text{lex}} (y_1, ..., y_n) :\iff \exists k \le n : (\forall i < k : x_i = y_i) \land x_k <_k y_k.$$

Lem. Ist > eine strikte (Wohl-) Ordnung, so auch $>_{lex}$.

Def. Eine Multimenge M über einer Menge A ist eine Abbildung $M:A\to\mathbb{N}$. Sie ist endlich, falls $\sum_{a\in A}M(a)<\infty$.

Notation.
$$\mathcal{M}(A) \coloneqq \{ \text{ Multimengen "uber } A \}$$

 $a \in M : \iff M(a) > 1$

Def. Die Differenz von Multimengen $M, N \in \mathcal{M}(A)$ ist $M - N \in \mathcal{M}(A)$ mit $(M - N)(a) := \max\{0, M(a) - N(a)\}.$

Def. Sei > eine strikte Ordung auf A. Die Multimengenordnung >_{mul} auf $\mathcal{M}(A)$ ist dann definiert durch

$$M >_{\text{mul}} N : \iff M \neq N \land \forall n \in N - M : \exists m \in M - N : m > n.$$

Lem. Ist > eine strikte (Wohl-) Ordnung, so auch $>_{mul}$.

Konfluenzbeweise

Def. Eine Relation \rightarrow

- heißt lokal konfluent, falls $y_1 \leftarrow y \rightarrow y_2 \implies y_1 \downarrow y_2$.
- heißt stark konfluent, falls $y_1 \leftarrow y \rightarrow y_2 \implies \exists z : y_1 \stackrel{*}{\rightarrow} z \stackrel{=}{\leftarrow} y_2$.
- besitzt die Diamant-Eigenschaft, falls

$$y_1 \leftarrow y \rightarrow y_2 \implies \exists z : y_1 \rightarrow z \leftarrow y_2.$$

Lem. Falls $\rightarrow_1 \leq \rightarrow_2 \leq \stackrel{*}{\rightarrow}_1$, so gilt $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$. Ist zusätzlich \rightarrow_2 (stark) konfluent, so auch \rightarrow_1 .

Lem. • Stark konfluente Relationen sind konfluent.

• Eine terminierende Rel. ist konfluent, falls sie lokal konfluent ist.

Def. Zwei Relationen \rightarrow_1 und \rightarrow_2 auf A

- **kommutieren**, falls $y_1 \stackrel{*}{\leftarrow}_1 x \stackrel{*}{\rightarrow}_2 y_2 \implies \exists z : y_1 \stackrel{*}{\rightarrow}_2 z \stackrel{*}{\leftarrow}_1 y_2$.
- kommutieren stark, falls

$$y_1 \leftarrow_1 x \rightarrow_2 y_2 \implies \exists z : y_1 \xrightarrow{=}_2 z \xleftarrow{*}_1 y_2.$$

• besitzen die Kommutierender-Diamant-Eigenschaft, falls

$$y_1 \leftarrow_1 x \rightarrow_2 y_2 \implies \exists z : y_1 \rightarrow_2 z \leftarrow_1 y_2.$$

Lem. Angenommen, \rightarrow_1 und \rightarrow_2 sind konfluent und kommutieren. Dann ist auch $\rightarrow_1 \cup \rightarrow_2$ konfluent.

Universelle Algebra

Def. Eine Signatur Σ ist eine Menge von Funktionssymbolen zusammen mit einer Aritätsabbildung arity : $\Sigma \to \mathbb{N}$.

Notation. $\Sigma^{(n)} := \operatorname{arity}^{-1}(n)$

Def. Sei Σ eine Signatur und X eine Menge von Variablen (d. h. es gilt $X \cap \Sigma = \emptyset$). Die Menge $T(\Sigma, X)$ der Σ -**Terme über** X ist induktiv definiert durch

- $X \subseteq T(\Sigma, X)$
- $\forall f \in \Sigma^{(n)}, t_1 \in T(\Sigma, X), ..., t_n \in T(\Sigma, X) : f(t_1, ..., t_n) \in T(\Sigma, X)$

Bem. Falls $X\subseteq Y,\,Y\cap\Sigma=\emptyset,$ so gilt $T(\Sigma,X)\subseteq T(\Sigma,Y).$

Def. Terme t ohne freie Variablen (d. h. $t \in T(\Sigma, \emptyset)$) heißen **Grundterme** oder **geschlossene Terme**.

Def. Die Menge der Positionen Pos(s) eines Terms $s \in T(\Sigma, X)$ ist folgende Menge von Listen von natürlichen Zahlen

- Falls $s = x \in X$: Pos $(s) := \{\epsilon\}$
- Falls $s = f(s_1, \ldots, s_n)$: $Pos(s) := \{\epsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in Pos(s_i)\}$

Def. Die Größe eines Terms $s \in T(\Sigma, X)$ ist |s| := |Pos(s)|.

Def. Der Subterm $s|_p$ an der Position $p \in Pos(s)$ eines Terms s ist

$$s|_{\epsilon} := s,$$
 $f(s_1, \dots, s_n)|_{iq} := s_i|_q.$

Die **Ersetzung** $s[t]_n$ von $s|_n$ durch einen Term $t \in T(\Sigma, X)$ ist

$$s[t]_{\epsilon} \coloneqq t, \qquad f(s_1, \dots, s_n)[t]_{iq} \coloneqq s_i[t]_q.$$

Def. Die Menge der Variablen in $s \in T(\Sigma, X)$ ist

$$Var(s) := \{x \in X \mid \exists p \in Pos(s) : s|_p = x\}.$$

Bem. Für jeden Term $t \in T(\Sigma, X)$ gilt $t \in T(\Sigma, Var(t))$.

Def. Sei Σ eine Signatur und V eine abzählbar unendliche Menge von Variablen. Eine $T(\Sigma, V)$ -**Ersetzung** ist eine Abbildung $\sigma: V \to T(\Sigma, V)$, für die gilt:

$$Dom(\sigma) := \{ v \in V \mid \sigma(v) \neq v \}$$

ist endlich. Die Menge der $T(\Sigma,V)$ -Ersetzungen ist $\mathrm{Sub}(T(\Sigma,V))$. Wir können σ ausdehnen zu einer Abb. $\hat{\sigma}:T(\Sigma,V)\to T(\Sigma,V)$ durch

$$\hat{\sigma}(v) \coloneqq \sigma(v), \qquad \hat{\sigma}(f(s_1, \dots, s_n)) \coloneqq f(\hat{\sigma}(s_1), \dots, \hat{\sigma}(s_n)).$$

Die Komposition zweier Ersetzungen σ und τ ist $\sigma \circ \tau := \hat{\sigma} \circ \tau$.

Def. Eine Σ -Identität ist ein Paar $(s,t) \in T(\Sigma,V) \times T(\Sigma,V)$, auch geschrieben $s \approx t$.

Def. Die Reduktionsrelation \rightarrow_E zu einer Menge E von Σ -Identitäten ist

$$s \to_E t : \iff \exists (l \approx r) \in E, p \in \operatorname{Pos}(s), \sigma \in \operatorname{Sub}(T(\Sigma, V)) :$$

$$s|_p = \sigma(l) \land t = s[\sigma(r)]_p.$$

Def. Eine Relation \equiv auf $T(\Sigma, V)$ heißt

- abgeschlossen unter Ersetzungen, falls $s = t \implies \sigma(s) = \sigma(t)$
- abgeschlossen unter Σ -Operationen, falls

$$s_1 \equiv t_1, \dots, s_n \equiv t_n \implies f(s_1, \dots, s_n) \equiv f(t_1, \dots, t_n)$$

• kompatibel mit Σ -Operationen, falls

$$s \equiv t \implies f(s_1, \dots, s_{i-1}, s, s_{i+1}, s_n) \equiv f(s_1, \dots, s_{i-1}, t, s_{i+1}, s_n)$$

• kompatibel mit Σ -Kontexten, falls

$$s \equiv s' \implies t[s]_p \equiv t[s']_p$$

 Umschreibungsrelation, falls sie kompatibel mit Σ-Operationen und abgeschlossen unter Ersetzungen ist.

Lem. Es sind äquivalent:

- \equiv ist kompatibel mit Σ -Operationen
- \equiv ist kompatibel mit Σ -Kontexten

Ist ≡ reflexiv und transitiv, so ist außerdem äquivalent:

• \equiv ist abgeschlossen unter Σ -Operationen

Thm. Sei E eine Menge von Σ -Identitäten.

- $\bullet \to_E, \xrightarrow{+}_E \text{ und } \xrightarrow{*}_E \text{ sind Umschreibungsrelationen.}$
- Die Relation $\stackrel{*}{\longleftrightarrow}_E$ ist die kleinste Äquivalenzrelation, die E enthält und abg. ist unter Ersetzungen und Σ -Operationen.

Def. Eine Σ -Algebra \mathcal{A} besteht aus

- einer Trägermenge A und
- einer Abbildung $f^{\mathcal{A}}: A^n \to A$ für alle $f \in \Sigma^{(n)}$.

Bsp. $T(\Sigma, V)$ ist eine Σ -Algebra mit

$$f^{T(\Sigma,V)}: T(\Sigma,V)^n \to T(\Sigma,V), \quad (t_1,\ldots,t_n) \mapsto f(t_1,\ldots,t_n).$$

Def. • Eine Σ -Subalgebra von A ist eine Teilmenge $B \subset A$, sodass $f^{\mathcal{A}}(b_1, \ldots, b_n) \in B$ für alle $f \in \Sigma^{(n)}$ und $b_1, \ldots, b_n \in B$.

• Die von $X\subseteq A$ erzeugte Σ -Subalgebra ist die kleinste Σ -Subalgebra, die X enthält.

Def. Ein *Homomorphismus* ϕ zwischen Σ -Algebren \mathcal{A} und \mathcal{B} (mit Trägermengen A bzw. B) ist eine Abbildung $\phi: A \to B$, sodass

$$\phi(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(\phi(a_1),\ldots,\phi(a_n)).$$

Bem. Damit bilden Σ -Algebren eine Kategorie.

Def. Eine Äquivalenzrelation \equiv auf A heißt **Kongruenz** auf A, falls

$$a_1 \equiv b_1, \ldots, a_n \equiv b_n \implies f^{\mathcal{A}}(a_1, \ldots, a_n) \equiv f^{\mathcal{A}}(b_1, \ldots, b_n).$$

Lem/Def. Ist \equiv eine Äquivalenz, so wird A/\equiv mit

$$f^{\mathcal{A}/\equiv}([a_1],\ldots,[a_n]) \coloneqq [f^{\mathcal{A}}(a_1,\ldots,a_n)]$$

eine Σ -Algebra, die Quotientenalgebra \mathcal{A}/\equiv .

Lem. Die Kategorie der Σ -Algebren enthält kleine Limiten.

Def. Eine Σ -Algebra heißt **frei**, falls sie isomorph ist zu $F(X) := T(\Sigma, X)$ für eine Menge X von Variablen.

Bem. Diese Setzung definiert einen Funktor $F: \mathbf{Set} \to \Sigma - \mathbf{Alg}$.

Lem. $F \dashv U$, wobei $U : \mathbf{Set} \to \Sigma - \mathbf{Alg}$ der Vergissfunktor ist.

Kor. $F(\emptyset) = T(\Sigma, \emptyset)$ ist das initiale Objekt in Σ -Alg.

Def. • Eine Σ-Identität $s \approx t$ gilt in einer Σ-Algebra \mathcal{A} , falls für alle Homomorphismen $\phi: T(\Sigma, V) \to \mathcal{A}$ gilt: $\phi(s) = \phi(t)$.

- A ist ein Modell einer Menge E von Σ-Algebren (notiert A |= E), falls jede Identität aus E in A gilt.
- Die Subkategorie von Σ-Alg der Modelle von E heißt durch E definierte Σ-Varietät V(E).

Def. • Die Identität $s \approx t$ ist eine semantische Konsequenz von E (notiert $E \models s \approx t$), falls $s \approx t$ in allen $A \in \mathcal{V}(E)$ gilt.

• $\approx_E := \{(s,t) \mid E \models s \approx t\}$ heißt von E induzierte Theorie.

Def. Eine Relation \equiv auf $T(\Sigma, V)$ heißt **voll invariant**, falls $s \equiv t \implies \phi(s) \equiv \phi(t)$ für alle Mor. $\phi: T(\Sigma, V) \to T(\Sigma, V)$.

Lem. \approx_E ist eine voll invariante Kongruenz.

Lem/Def. Es sind äquivalent:

- E heißt trivial
- $\approx_E = T(\Sigma, V) \times T(\Sigma, V)$
- $x \approx_E y$ gilt für Variablen $x, y \in V, x \neq y$
- $\mathcal{V}(E)$ besteht aus Algebren der Kardinalität ≤ 1 .

Thm. Sei V eine abzählbar unendliche Menge von Variablen.

- $T(\Sigma, V)/\approx_E$ ist eine freie Algebra in $\mathcal{V}(E)$ mit erz. Menge V/\approx_E . Falls E nicht trivial ist, so ist V/\approx_E abzählbar unendlich.
- $T(\Sigma, V)/\approx_E \models s \approx t \iff s \approx_E t$

Def. Die durch E induzierte induktive Theorie ist

$$\approx_E^I := \{(s,t) \,|\, T(\Sigma,\emptyset) \models s \approx t\} \subseteq T(\Sigma,V) \times T(\Sigma,V).$$

Bem. $\approx_E \subseteq \approx_E^I$

Umformulierung. Die Relation $\stackrel{*}{\leadsto}_E$ ist die kleinste voll invariante Kongruenz auf $T(\Sigma,V),$ die E enthält.

Lem. Für eine voll invariante Kongruenz \equiv auf $T(\Sigma, V)$ gilt:

$$E \subseteq \Longrightarrow \approx_E \subseteq \equiv$$
.

Kor (Birkhoffs Lemma). $\stackrel{*}{\leftrightarrow}_E = \approx_E$

Thm. Für eine Klasse K von Σ -Algebren sind äquivalent:

- \mathcal{K} ist eine Varietät, d. h. $\mathcal{K} = \mathcal{V}(E)$ für eine Menge E von Identitäten.
- K ist abgeschlossen unter dem Bilden von Unteralgebren, Bildalgebren und direkten Produkten.

Gleichheitsprobleme

Def. Sei E eine Menge von Identitäten. Eine Gleichheit $s\approx t$ heißt

- gültig in E, falls $s \approx_E t$,
- erfüllbar in E, falls es eine Ersetzung σ mit $\sigma(s) \approx_E \sigma(t)$ gibt.

Problem (matching problem). Gegeben Terme s und l, gibt es eine Ersetzung σ , sodass $\sigma(s) = l$?

Thm. Ist E endlich und \rightarrow_E konvergent, so ist \approx_E entscheidbar.

Algorithmus. Seien x und y gegeben. Wegen der Endlichkeit von E sind $x \downarrow$ und $y \downarrow$ berechenbar. Es gilt $x \approx_E y \iff x \downarrow = y \downarrow$.

Def. • Wortproblem: Gegeben $x, y \in T(\Sigma, V)$, gilt $x \approx_E y$?

• Grundwortproblem: Gegeben $x, y \in T(\Sigma, \emptyset)$, gilt $x \approx_E y$?

Bem. Das Wortproblem ist im Allgemeinen unentscheidbar, denn:

- Man kann den turingvollständigen SKI-Kalkül als Reduktionssystem durch Angabe einer Menge von Gleichheiten spezifizieren.
- Gleichheit von Programmen ist unentscheidbar.

Def. • Eine Umschreibungsregel ist eine Identität $l \approx r$ bei der s keine Variable ist und $Var(l) \supset Var(r)$.

 Ein Termumschreibungssystem ist eine Menge von Umschreibungsregeln.

Bem. Die zwei Bedingungen für Umschreibungsregeln sind notwendig (aber nicht hinreichend) dafür, dass Termumschreibungssysteme terminierend sind.

Die kongruente Hülle

Def. Die kongruente Hülle CC(E) von $E \subseteq T(\Sigma, V) \times T(\Sigma, V)$ ist die kleinste Kongruenzrelation, die \equiv enthält.

Bem. $(s,t) \in CC(E)$ gilt genau dann, wenn die Aussage aus folgenden Inferenzregeln herleitbar ist:

$$\frac{(t,s) \in \operatorname{CC}(E)}{(t,t) \in \operatorname{CC}(E)} \quad \frac{(t,s) \in \operatorname{CC}(E)}{(s,t) \in \operatorname{CC}(E)} \quad \frac{(r,s) \in \operatorname{CC}(E)}{(r,t) \in \operatorname{CC}(E)}$$

$$\frac{(s,t) \in E}{(s,t) \in \operatorname{CC}(E)} \quad \frac{f \in \Sigma^{(n)} \quad (s_1,t_1) \in \operatorname{CC}(E), \dots, (s_n,t_n) \in \operatorname{CC}(E)}{(f(s_1,\dots,s_n),f(t_1,\dots,t_n)) \in \operatorname{CC}(E)}$$

Def. Eine Id. $l \approx r$ heißt **Grundidentität**, falls $Var(l) = Var(r) = \emptyset$.

Notation. Sei G im Folgenden eine Menge von Grundidentitäten.

Lem.
$$CC(G) = \approx_G$$

Def. Die Menge der Unterterme ist

Subterms
$$(t) := \{t|_p \mid p \in Pos(t)\}$$
 für $t \in T(\Sigma, V)$ bzw.
Subterms $(G) := \bigcup_{l \approx r} Subterms(l) \cup Subterms(r)$.

Thm. Fixiere zwei Terme $s, t \in T(\Sigma, V)$. Setze

$$S := \operatorname{Subterms}(s) \cup \operatorname{Subterms}(t) \cup \operatorname{Subterms}(G)$$

Es gilt $G\subseteq S\times S$. Es sei $\mathrm{CC}_S(G)$ die kongruente Hülle von G innerhalb von $S\times S$. Dann gilt:

$$CC_S(G) = \approx_G \cap (S \times S).$$

 ${\bf Kor.}\,$ Das Wortproblem ist für endliche Mengen G von Grundidentitäten entscheidbar.

Beweisidee. Seien s und t gegeben. Berechne die endliche Menge $CC_S(G)$. Es gilt dann: $s \approx_G t \iff (s,t) \in CC_S(G)$.

Bem. Dies liefert einen Entscheidungsalgorithmus mit polynomieller Laufzeit in G, s und t.

Algorithmus. Effiziente Realisierung:

- Repräsentiere die Termmenge S als gerichteter Graph, wobei jeder Knoten v mit einem Symbol $f \in \Sigma$ beschriftet ist und dessen Auskanten mit $i = 1, \ldots, \operatorname{arity}(f)$ nummeriert sind.
- Wir repräsentieren Identifikationen von Knoten im Graph über Zeiger wie in der Union-Find-Datenstruktur. Wir definieren u ~ v : ← FIND(u) = FIND(v) für Knoten u und v.

```
1: function MERGE(u, v)
        if u \not\sim v then
            P := PRED(u), Q := PRED(v)
 3:
 4:
            UNION(u, v)
            for (p,q) \in P \times Q do
 5:
                if p \not\sim q \land \text{CONGRUENT}(p,q) then
 6:
 7:
                    MERGE(p,q)
 8: function CONGRUENT(p = f(p_1, \dots, p_n), q = g(q_1, \dots, q_m))
        if f \neq q \in \Sigma then return false
 9:
10:
        for i = 1, \ldots, n do
        if p_i \not\sim q_i then return false return true
11:
```

- Rufe zu Beginn des Algorithmus MERGE(l,r) für alle Grundidentitäten $(l \approx r) \in G$ auf.
- Das Ergebnis ist nun $s \sim t$.

Syntaktische Unifikation

Def. Eine Substitution σ heißt **allgemeiner** (notiert $\sigma \lesssim \sigma'$) als σ' , falls eine Substitution δ mit $\sigma' = \delta \sigma$ existiert.

Lem. \leq ist eine Quasiordnung

Def. Eine **Umbenennung** ist eine Ersetzung ρ mit im $(\rho) \subseteq V$ $(\implies \text{im}(\rho) = V)$.

Lem.
$$\sigma \lesssim \sigma' \wedge \sigma' \lesssim \sigma \iff \exists$$
 Umbenennung $\rho : \sigma = \rho \sigma'$

Def. Ein **Unifikationsproblem** ist gegeben durch eine endliche Menge von Gleichungen

$$S = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}.$$

Eine Lösung von S ist eine Ersetzung σ mit $\hat{\sigma}(s_i) = \hat{\sigma}(t_i)$ für $i = 1, \ldots, n$. Notation: $\mathcal{U}(S) := \{$ Lösungen von S $\}$

Gesucht. Eine allgemeinste Lösung von S, das ist ein bezüglich \leq kleinstes Element in $\mathcal{U}(S)$.

Thm. Hat ein Unifikationsproblem eine Lösung, so hat es auch eine idempotente, allgemeinste Lösung.

Def. Ein Unifikationsproblem $S = \{x_1 \stackrel{?}{=} t_1, \dots, x_n \stackrel{?}{=} t_n\}$ ist in **gelöster Form**, falls x_1, \dots, x_n paarweise verschieden Variablen sind, die nicht in den Termen t_1, \dots, t_n auftreten. In diesem Fall ist

$$\vec{S} \coloneqq \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}.$$

Lem. Sei S in gelöster Form. Dann gilt:

•
$$\forall \sigma \in \mathcal{U}(S) : \sigma = \sigma \vec{S}$$

• \vec{S} ist eine idempotente, allgemeinste Lösung von S.

Algorithmus (UNIFY(S)). Wende wiederholt folgende Transformationsregeln (in beliebiger Reihenfolge) auf S an:

Wenn keine Tranformationsregel mehr angewandt werden kann, so

- gib \vec{T} zurück, falls die nach Anwendung aller Transformationen erhaltene Gleichungsmenge T in gelöster Form ist,
- ansonsten gib ⊥ zur

 ück.

Lem. Falls
$$S \rightsquigarrow T$$
, so gilt $\mathcal{U}(S) = \mathcal{U}(T)$.

Thm. UNIFY(S) ist korrekt:

- Der Algorithmus terminiert für alle Eingaben.
- Die Ausgabe ist eine idempotente, allgemeinste Lösung von S oder ⊥, falls S keine Lösung besitzt.

Bem. Folgende Regeln bewirken einen frühen Abbruch:

Clash
$$\{f(\vec{s}) \stackrel{?}{=} g(\vec{t})\} \sqcup S \quad \rightsquigarrow \quad \bot \quad \text{falls } f \neq g$$
 Occurs-Check
$$\{x \stackrel{?}{=} t\} \sqcup S \quad \rightsquigarrow \quad \bot \quad \text{falls } x \in \text{Var}(t)$$
 und $x \neq t$

Bem. Naive Implementierungen von Unifikation benötigen exponentielle Zeit. Es gibt einen Algorithmus auf Termgraphen, der nur (fast) lineare Zeit benötigt.