

CONTINGENT EXTENSION REQUEST

If this communication is filed after the shortened statutory time period had elapsed and no separate Petition is enclosed, the Commissioner of Patents and Trademarks is petitioned, under 37 C.F.R. § 1.136(a), to extend the time for filing a response to the outstanding Office Action by the number of months which will avoid abandonment under 37 C.F.R. § 1.135. The fee under 37 C.F.R. § 1.17 should be charged to our Deposit Account No. 50-2215.

AMENDMENTS:

In the Claims:

Please amend claims 1 and 3 pursuant to 37 C.F.R. § 1.121(c)(1)(i) as set forth in the "clean" version set forth below. Entry is respectfully requested. A version with markings to show the changes made pursuant to 37 C.F.R. § 1.121(c)(1)(ii) is attached hereto as Appendix A.

-
- B1
1. (Amended) A piezoelectric element comprising:
a plurality of piezoelectric layers comprising a piezoelectric material which is a bismuth-based ceramic comprising Sr, Bi, Ti, and O;
at least three vibration electrodes opposing each other, each disposed among the piezoelectric layers, and
an energy-confining region formed in a region in which the vibration electrodes overlap and exciting an n-order longitudinal thickness vibration;
wherein the maximum length L of a secant between two intersections on the periphery of the energy-confining region and the distance t between the topmost vibration electrode and the bottommost vibration electrode satisfy the ratio $nL/t < 10$, wherein n is greater than 1.

B2

3. (Amended) A piezoelectric element comprising:

a plurality of piezoelectric layers comprising a piezoelectric material which is a bismuth-based ceramic comprising Ca, Bi, Ti, and O;

at least three vibration electrodes opposing each other, each disposed among the piezoelectric layers; and

an energy-confining region formed in a region in which the vibration electrodes overlap and exciting an n-th order longitudinal thickness vibration;

wherein the maximum length L of a secant between two intersections on the periphery of the energy-confining region and the distance t between the topmost vibration electrode and the bottommost vibration electrode satisfy the ratio $nL/t < 9$, wherein n is an integer greater than 1.