Devoir surveillé n°05

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Partie I – Etude de la suite (v_n)

- 1. La suite (v_n) vérifie la relation : $v_0 > 0$, $v_1 > 0$ et $\forall n \ge 0$, $\sqrt{v_n} \sqrt{v_{n+1}} v_{n+2} = 1$. Si elle converge vers une limite l finie ou infinie, alors $l \ge 0$ et par continuité de $x \mapsto \sqrt{x}$, on a $l^2 = 1$. La seule limite possible de (v_n) est 1.
- 2. a. La suite (w_n) vérifie la relation de récurrence $w_{n+2} = -\frac{w_{n+1} + w_n}{2}$
 - **b.** L'espace vectoriel F est de dimension 2. On le vérifie en montrant que $(w_n) \mapsto (w_0, w_1)$ est un isomorphisme de F dans \mathbb{R}^2 .

On cherche des éléments de F de la forme (r^n) avec $r \neq 0$, en reportant dans la relation de récurrence, on obtient $r^2 = -\frac{r+1}{2}$, soit $r = \frac{-1 \pm i\sqrt{7}}{4}$.

Donc
$$\left[\left(\left(\frac{-1+i\sqrt{7}}{4} \right)^n, \left(\frac{-1-i\sqrt{7}}{4} \right)^n \right) \right]$$
 est une base de F.

c.
$$\left| \frac{-1 + i\sqrt{7}}{4} \right| = \left| \frac{-1 - i\sqrt{7}}{4} \right| = \frac{\sqrt{2}}{2} < 1$$

$$\operatorname{donc \lim}_{n \to +\infty} \left(\frac{-1 + i\sqrt{7}}{4} \right)^n = \lim_{n \to +\infty} \left(\frac{-1 - i\sqrt{7}}{4} \right)^n = 0.$$

On en déduit que
$$si(x_n) \in F$$
, alors $x_n = \mathcal{O}\left(\frac{\sqrt{2}}{2}\right)^n$ et $\lim_{n \to +\infty} x_n = 0$.

3. $(w_n) \in \mathbb{F}$ donc, d'après la question **I.2.c**, $\lim_{n \to +\infty} w_n = 0$, or $v_n = e^{w_n}$ donc $\lim_{n \to +\infty} v_n = 1$ et $\sum v_n$ diverge

De plus
$$v_n - 1 \underset{n \to +\infty}{\sim} w_n \underset{n \to +\infty}{=} \mathcal{O}\left(\frac{\sqrt{2}}{2}\right)^n$$
 et $\sum \left(\frac{\sqrt{2}}{2}\right)^n$ converge absolument donc

$$\sum (v_n - 1)$$
 converge absolument

Partie II - Norme subordonnée

1. Remarquons que l'application $f_A: X \in \mathcal{M}_{n,1}(\mathbb{C}) \mapsto AX$ est linéaire et donc continue puisque $\mathcal{M}_{n,1}(\mathbb{C})$ est de dimension finie. De plus, $\mathcal{B} = \{X \in \mathcal{M}_{n,1}(\mathbb{C}), \|X\| \leq 1\}$ est compact toujours car $\mathcal{M}_{n,1}(\mathbb{C})$ est de dimension finie. Ainsi f_A est bornée sur \mathcal{B} . En notant N_{∞} la norme uniforme sur les applications bornées sur \mathcal{B} , on a donc $\|A\| = N_{\infty}(f_A)$. On vérifie alors aisément que $\|\|$ $\|$ est une norme sachant que N_{∞} en est une.

Homogénéité Soient $\lambda \in \mathbb{C}$ et $A \in \mathcal{M}_n(\mathbb{C})$. Il est clair que $f_{\lambda A} = \lambda f_A$ donc

$$\|\|\lambda A\|\| = N_{\infty}(f_{\lambda A}) = N_{\infty}(\lambda f_{A}) = |\lambda|N_{\infty}(f_{A}) = |\lambda|\|\|A\|\|$$

Inégalité triangulaire Soit (A, B) $\in \mathcal{M}_n(\mathbb{C})^2$. Il est clair que $f_{A+B} = f_A + f_B$. Alors

$$|||A + B||| = N_{\infty}(f_{A+B}) = N_{\infty}(f_A + f_B) \le N_{\infty}(f_A) + N_{\infty}(f_A) = |||A||| + |||B|||$$

Séparation Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que |||A||| = 0. Alors $N_{\infty}(f_A) = 0$ donc f_A est nulle sur \mathcal{B} . Soit $X \in \mathcal{M}_{n,1}(\mathbb{C})$. Si X = 0 alors $f_A(X) = 0$. Sinon $X/||X|| \in \mathcal{B}$ donc $f_A(X/||X||) = 0$ puis $f_A(X) = 0$. Ainsi f_A est nulle sur $\mathcal{M}_{n,1}(\mathbb{C})$ i.e. A = 0.

2. Si B = 0, alors AB = 0 et donc |||AB||| = |||A||| |||B||| = 0. Supposons B \neq 0 de sorte que $|||B||| \neq 0$. Soit X $\in \mathcal{B}$. Alors $||BX|| \leq |||B|||$ ou encore BX/ $|||B||| \in \mathcal{B}$ donc $||ABX|| ||B||| || \leq |||A|||$ i.e. $||ABX|| \leq |||A||| |||B|||$. Ceci étant vrai pour tout X $\in \mathcal{B}$, $|||AB||| \leq |||A||| |||B|||$.

Partie III - Etude de normes matricielles

1. **a.**
$$\mathrm{DZ} = \begin{pmatrix} m_{1,1} z_1 \\ m_{2,2} z_2 \\ \vdots \\ m_{n,n} z_n \end{pmatrix} \mathrm{donc} \ \|\mathrm{DZ}\|_{\infty} = \max_{1 \leq i \leq n} |m_{i,i} z_i| \leq m \max_{1 \leq i \leq n} |z_i| = m \|\mathrm{Z}\|_{\infty}.$$
 $\|\mathrm{DZ}\|_{\infty} \leq m \|\mathrm{Z}\|_{\infty}.$

b. Si $\|Z\|_{\infty} \le 1$, alors on a $\|DZ\|_{\infty} \le m$ d'où $\|D\|_{\infty} = \sup_{X \in \mathbb{C}^n, \|X\|_{\infty} \le 1} \|DX\|_{\infty} \le m$. De plus, il existe un entier $j \in \{1, \dots, n\}$ tel que $m = |m_{j,j}|$. En prenant $z_j = 1$ et pour $k \ne j$, $z_k = 0$ et

$$Z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}, \text{ on a } \|DZ\|_{\infty} = m \text{ et } \|Z\|_{\infty} = 1 \text{ d'où } \|\|D\|\|_{\infty} \ge m.$$

Finalement $\left\| \|\mathbf{D}\| \right\|_{\infty} = m$

2. a. $N_P(X) = ||PX||_{\infty}$.

Si P n'est pas inversible, en prenant $X \in \ker P$ non nul, on a $N_P(X) = 0$ et $X \neq 0$ donc N_P n'est pas une norme. Si P est inversible, alors

- N_P est une application de \mathbb{C}^n dans \mathbb{R}^+
- $\bullet \ \, \forall \mathbf{X} \in \mathbb{C}^n, \forall \lambda \in \mathbb{C}, \, \mathbf{N_P}(\lambda \mathbf{X}) = \|\lambda \mathbf{P} \mathbf{X}\|_{\infty} = |\lambda| \|\mathbf{P} \mathbf{X}\|_{\infty} = |\lambda| \mathbf{N_P}(\mathbf{X}).$
- $\forall (X,Y) \in (\mathbb{C}^n)^2$, $N_P(X+Y) = \|P(X+Y)\|_{\infty} = \|PX+PY\|_{\infty} \le \|PX\|_{\infty} + \|PY\|_{\infty} = N_P(X) + N_P(Y)$.
- $\forall X \in \mathbb{C}^n$, $N_P(X) = 0 \implies \|PX\|_{\infty} = 0 \implies PX = 0 \implies X = 0$ (car $\|.\|_{\infty}$ est une norme et P est inversible).

donc N_P est une norme.

Finalement, N_P est une norme si et seulement si P est une matrice inversible

- $\begin{aligned} \textbf{b.} & & \|\|\mathbf{A}\|\|_{P} = \sup_{\mathbf{X} \in \mathbb{C}^{n}, \|\mathbf{X}\|_{P} \leq 1} \|\mathbf{A}\mathbf{X}\|_{P} = \sup_{\mathbf{X} \in \mathbb{C}^{n}, \|\mathbf{P}\mathbf{X}\|_{\infty} \leq 1} \|\mathbf{P}\mathbf{A}\mathbf{X}\|_{\infty} = \sup_{\mathbf{X} \in \mathbb{C}^{n}, \|\mathbf{P}\mathbf{X}\|_{\infty} \leq 1} \|\mathbf{P}\mathbf{A}\mathbf{P}^{-1}\mathbf{P}\mathbf{X}\|_{\infty} \\ & & \text{Or P est inversible, donc } \mathbf{X} \mapsto \mathbf{P}\mathbf{X} \text{ est une bijection de } \mathbb{C}^{n} \text{ sur } \mathbb{C}^{n} \text{ donc} \\ & & \sup_{\mathbf{X} \in \mathbb{C}^{n}, \|\mathbf{P}\mathbf{X}\|_{\infty} \leq 1} \|\mathbf{P}\mathbf{A}\mathbf{P}^{-1}\mathbf{P}\mathbf{X}\|_{\infty} = \sup_{\mathbf{X} \in \mathbb{C}^{n}, \|\mathbf{X}\|_{\infty} \leq 1} \|\mathbf{P}\mathbf{A}\mathbf{P}^{-1}\mathbf{X}\|_{\infty} = \|\|\mathbf{P}\mathbf{A}\mathbf{P}^{-1}\|_{\infty}, \\ & \text{On a donc bien } \boxed{\|\|\mathbf{A}\|\|_{\mathbf{P}} = \|\|\mathbf{P}\mathbf{A}\mathbf{P}^{-1}\|_{\infty}}. \end{aligned}$
- a. On sait que λ est une valeur propre de A associée au vecteur X si et seulement si λ est une valeur propre de PAP⁻¹ associée au vecteur PX.

A et PAP^{-1} ont donc le même spectre et donc $\rho(A) = \rho(PAP^{-1})$.

b. Il existe une valeur propre λ de A telle que $|\lambda| = \rho(A)$. Soit X un vecteur propre unitaire associé à λ . $\rho(A) = |\lambda| = |\lambda X|_{\infty} = |AX|_{\infty} \le ||A||_{\infty}$.

 $\text{En utilisant $III.2.b$, on en d\'eduit}: \rho(A) = \rho(PAP^{-1}) \leq \left\|\left\|PAP^{-1}\right\|\right\|_{\infty} = \left\|\left|A\right|\right\|_{P}, \text{ et donc } \boxed{\rho(A) \leq \left\|\left|A\right|\right\|_{P}}$

c. On suppose A diagonalisable. Il existe une matrice diagonale D et une matrice inversible P telles que D = PAP^{-1} . D'après **III.2.b**, $|||A|||_P = ||PAP^{-1}||_{\infty} = ||D||_{\infty}$, d'après **III.1.b**, $||D||_{\infty} = \rho(D)$ et comme A et D sont semblables, $\rho(D) = \rho(A)$.

Il existe donc $P \in GL_n(\mathbb{C})$ tel que $|||A|||_P = \rho(A)$

$$\mathbf{d.} \ \mathbf{A} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right).$$

 $P_A(X) = 1 - X^3$, les valeurs propres de A sont 1, j et j^2 donc $\rho(A) = 1$

Les vecteurs propres associés à 1, j et j^2 sont $\begin{pmatrix} 1 \\ 1 \\ \vdots \end{pmatrix}$ et $\begin{pmatrix} 1 \\ j \\ \vdots \end{pmatrix}$ et $\begin{pmatrix} 1 \\ j \\ \vdots \end{pmatrix}$.

Si
$$P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$, alors $D = PAP^{-1}$ et d'après **III.3.c** $|||A|||_P = \rho(A)$.

$$\mathbf{e.} \ \mathbf{A} = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \\ \vdots & \vdots & & \vdots \\ 1 & 2 & \cdots & n \end{pmatrix}.$$

A est de rang 1 et E_0 a pour équation $x_1 + 2x_2 + \cdots + nx_n = 0$.

Une base de E_0 est : $\begin{bmatrix} -1 \\ -1 \\ 0 \\ \vdots \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$, \cdots , $\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

D'autre part, $\begin{bmatrix} 1\\1\\\vdots\end{bmatrix}$ est un vecteur propre de A associé à la valeur propre $\frac{n(n+1)}{2}$.

Si
$$P^{-1} = \begin{pmatrix} 2 & 3 & \cdots & n & 1 \\ -1 & 0 & \cdots & 0 & 1 \\ 0 & -1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \ddots & 0 & -1 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 \\ 0 & \cdots & \cdots & 0 & \frac{n(n+1)}{2} \end{pmatrix}$,

alors D = PAP^{-1} et d'après **III.3.c** $|||A|||_T$

4. a. Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $Z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.

$$\begin{split} \|\mathbf{A}\mathbf{Z}\|_{\infty} &= \left\| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} az_1 + bz_2 \\ cz_1 + dz_2 \end{pmatrix} \right\|_{\infty} = \max(|az_1 + bz_2|, |cz_1 + dz_2|) \\ &\leq \max(|az_1| + |bz_2|, |cz_1| + |dz_2|) \leq \max(|a| + |b|, |c| + |d|) \max(|z_1|, |z_2|) = m\|\mathbf{Z}\|_{\infty}. \end{split}$$

On a donc $\|AZ\|_{\infty} \le m\|Z\|_{\infty}$

On en déduit $|||A|||_{\infty} \leq m$.

Si on suppose que m = |a| + |b|, alors on choisit z_1 et z_2 de module 1 tels que $|a| = az_1$ et $|b| = bz_2$. On a alors $||AZ||_{\infty} = \max(|az_1 + bz_2|, |cz_1 + dz_2|) = \max(m, |cz_1 + dz_2|) = m \text{ et } ||Z||_{\infty} = 1$.

De même si m = |c| + |d|.

On en déduit $||A||_{\infty} \geq m$.

On a donc $\|A\|_{\infty} = m$

i. $A \in M_2(\mathbb{C})$, non diagonalisable.

On travaille dans \mathbb{C} , donc $Sp(A) \neq \emptyset$.

Si Sp(A) possèdait deux éléments, alors le polynôme caractéristique de A serait scindé à racines simples et A serait diagonalisable, donc | Sp(A) ne contient qu'un élément

ii. On choisit une base $e = (e_1, e_2)$ de E, avec e_1 un vecteur propre de f associé à la valeur propre α . La matrice dans la base e de f est alors triangulaire supérieure, avec les valeurs propres sur la diagonale.

Elle est donc de la forme
$$mat_e(f) = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$$
.

iii. β est non nul car A n'est pas diagonalisable.

Posons $e'_1 = \frac{\beta}{\epsilon} e_1$ et $e'_2 = e_2$.

$$e' = (e'_1, e'_2)$$
 est une base de \mathbb{C}^2 , $f(e'_1) = e'_1$, $f(e'_2) = f(e_2) = \beta e_1 + \alpha e_2 = \varepsilon e'_1 + \alpha e'_2$.

On a donc $mat_{e'}(f) = \begin{pmatrix} \alpha & \epsilon \\ 0 & \alpha \end{pmatrix}$.

Il existe donc une base
$$e'$$
 de \mathbb{C}^2 telle que $mat_{e'}(f) = \begin{pmatrix} \alpha & \beta' \\ 0 & \alpha \end{pmatrix}$ où $|\beta'| \leq \varepsilon$.

iv. Notons $T = \begin{pmatrix} \alpha & \beta' \\ 0 & \alpha \end{pmatrix}$. Il existe une matrice $P \in GL_2(\mathbb{C})$ telle que $T = PAP^{-1}$.

$$\underline{\text{On a alors}} \ \| A \| \|_P = \left\| \left\| PAP^{-1} \right\| \right\|_{\infty} = \left\| \left| T \right| \right\|_{\infty} = \left| \alpha \right| + \left| \beta' \right| \leq \left| \alpha \right| + \varepsilon = \underline{\rho}(A) + \varepsilon.$$

Il existe donc une matrice $P \in GL_2(\mathbb{C})$ telle que $\|A\|_P \le \rho(A)$ +

c. D'après **III.4.b.iv**, $\forall \varepsilon > 0 \quad \exists P \in GL_2(\mathbb{C}) \quad |||A|||_P \leq \rho(A) + \varepsilon$.

On a donc $\inf_{P \in GL_2(\mathbb{C})} |||A|||_P \le \rho(A)$.

D'après III.3.b, si $P \in GL_2(\mathbb{C})$ alors $|||A|||_P \ge \rho(A)$.

On a donc $\inf_{P \in GL_2(\mathbb{C})} |||A|||_P \ge \rho(A)$.

$$\text{Finalement} \boxed{\inf_{P \in GL_2(\mathbb{C})} \left\| \! \left\| A \right\|_P = \rho(A)}$$

d.
$$A = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix}$$
.

$$\|\|\mathbf{A}\|\|_{\infty} = \max(|-3|+|8|,|-2|+|5|) = 11.$$

$$\begin{split} \|\|A\|\|_{\infty} &= max(|-3|+|8|,|-2|+|5|) = 11. \\ P_A(X) &= (X-1)^2 \text{ et } dim(E_1) = 1 \text{ donc } A \text{ est non diagonalisable et } Sp(A) = \{1\}. \end{split}$$

On a donc $\rho(A) = 1$ et d'après **III.4.b.iii**, A est semblable à une matrice de la forme $T = \begin{pmatrix} 1 & \beta' \\ 0 & 1 \end{pmatrix}$ avec $|\beta'| \leq 1$.

Il existe donc $P \in GL_2(\mathbb{C})$ telle que $T = PAP^{-1}$.

$$\|\|\mathbf{A}\|\|_{\mathbf{P}} = \|\|\mathbf{P}\mathbf{A}\mathbf{P}^{-1}\|\|_{\infty} = \|\mathbf{T}\|\|_{\infty} = 1 + |\beta'| \le 2.$$

Il existe donc une matrice $P \in GL_2(\mathbb{C})$ telle que $||A||_P \le 2$

e. On utilise la question **III.4.b.iv** avec $\varepsilon = \frac{1-\rho(A)}{2} > 0$.

On a alors
$$||A||_P \le \rho(A) + \varepsilon = \frac{1+\rho(A)}{2} < 1$$
.

On sait que la norme subordonnée est une norme d'algèbre, donc $||A^n||_p \le ||A||_p^n$ et donc $|\lim_{n\to+\infty} ||A^n||_p = 0$

Partie IV – Etude de la suite (u_n)

1.
$$\frac{\partial f}{\partial x}(x,y) = (0, -\frac{2}{(x+y)^2})$$
 et $\frac{\partial f}{\partial y}(x,y) = (1, -\frac{2}{(x+y)^2})$.

$$\frac{\partial f}{\partial x}$$
 et $\frac{\partial f}{\partial y}$ existent et sont continues sur $(\mathbb{R}_+^*)^2$, donc f est de classe C^1 sur $(\mathbb{R}_+^*)^2$

2. $(a,b) \in (\mathbb{R}_+^*)^2$ est un point fixe de f si et seulement si $(a,b) = (b,\frac{2}{a+b})$.

Le seul point fixe de
$$f$$
 dans $(\mathbb{R}_+^*)^2$ est $(1,1)$.

3.
$$\frac{\partial f}{\partial x}(1,1) = (0,-\frac{1}{2}) \text{ et } \frac{\partial f}{\partial y}(1,1) = (1,-\frac{1}{2}) \text{ donc}$$
 $J_{(1,1)} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$.

4. Le polynôme caractéristique de $J_{(1,1)}$ est $P_{J_{(1,1)}}(X) = X^2 + \frac{1}{2}X + \frac{1}{2}$. Ses valeurs propres sont $\frac{-1+i\sqrt{7}}{4}$ et $\frac{-1-i\sqrt{7}}{4}$ de module $\frac{\sqrt{2}}{2}$, donc $\rho(J_{(1,1)}) = \frac{\sqrt{2}}{2}$.

 $J_{(1,1)}$ est donc diagonalisable (2 valeurs propres distinctes) et d'après la question **III.3.c**,

il existe
$$P\in GL_2(\mathbb{C})$$
 tel que $\left\|\left|J_{(1,1)}\right|\right\|_P=\frac{\sqrt{2}}{2}$

5. **a.**
$$J_{(x,y)} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{(x+y)^2} & -\frac{1}{(x+y)^2} \end{pmatrix}$$
 et $(x,y) \mapsto \frac{1}{(x+y)^2}$ est continue sur $(\mathbb{R}_+^*)^2$.

 $(x,y)\mapsto \mathrm{J}_{(x,y)}$ est donc continue sur $(\mathbb{R}_+^*)^2$. On est en dimension finie, donc la continuité ne dépend pas du choix des normes.

Soit
$$\epsilon = \alpha - \frac{\sqrt{2}}{2} > 0$$
. (car $\frac{\sqrt{2}}{2} < \alpha < 1$)

Ecrivons la continuité de J en (1,1) pour la norme $\|.\|_P$ au départ et la norme $\|.\|_P$ à l'arrivée :

$$\exists \eta > 0 \quad \forall (x_0, y_0) \in (\mathbb{R}_+^*)^2 \quad \Big(\|(1, 1) - (x_0, y_0)\|_P \le \eta \Longrightarrow \Big\| |J_{(x_0, y_0)} - J_{(1, 1)} \Big\|_P \le \varepsilon \Big).$$

De l'inégalité triangulaire on déduit :

$$\| \| J_{(x_0, y_0)} - J_{(1,1)} \|_P \le \varepsilon \Longrightarrow \| \| J_{(x_0, y_0)} \|_P \le \| \| J_{(1,1)} \|_P + \varepsilon = \frac{\sqrt{2}}{2} + \varepsilon = \alpha.$$

$$\text{D'où finalement,} \boxed{\exists \eta > 0 \quad \forall (x_0,y_0) \in (\mathbb{R}_+^*)^2 \quad \left(\|(1,1) - (x_0,y_0)\|_{\text{P}} \leq \eta \Longrightarrow \left\|\left|J_{(x_0,y_0)}\right|\right\|_{\text{P}} \leq \alpha\right)}$$

b. Posons $\psi(t) = (1,1) + t[(x_0, y_0) - (1,1)].$

f est C^1 sur D et ψ est C^1 de [0,1] dans D, par composition, φ est \mathcal{C}^1 sur [0,1].

Par composition, pour tout $t \in [0, 1]$

$$\varphi'(t) = df_{th(t)}(\psi'(t)) = df_{co(t)}((x_0, y_0) - (1, 1))$$

ou, quitte à confondre \mathbb{R}^2 et $\mathcal{M}_{2,1}(\mathbb{R})$

$$\varphi'(t) = J_{\psi(t)}((x_0, y_0) - (1, 1))$$

Majorons $\|\varphi'(t)\|_{P}$ pour appliquer l'inégalité des accroissements finis.

$$\|\varphi'(t)\|_{\mathbf{P}} \le \|\mathbf{J}_{\psi(t)}\|_{\mathbf{P}} \|(x_0, y_0) - (1, 1)\|_{\mathbf{P}}$$

Or
$$||(1,1) - \psi(t)||_P = t||(x_0, y_0) - (1,1)||_P \le \eta$$

donc d'après **IV.5.a**,
$$\left\| \mathbf{J}_{\psi(t)} \right\|_{\mathbf{P}} \leq \alpha$$
 et $\| \phi'(t) \|_{\mathbf{P}} \leq \alpha \| (x_0, y_0) - (1, 1) \|_{\mathbf{P}}$

 $\begin{aligned} & \phi \text{ est de classe } \mathbf{C}^1 \text{ de } [0,1] \text{ dans } \mathbb{R}^2, \forall t \in [0,1], \ \|\phi'(t)\|_{\mathbf{P}} \leq \alpha \|(x_0,y_0)-(1,1)\|_{\mathbf{P}}, \text{ d'après l'inégalité des accroissements finis, } \|\phi(0)-\phi(1)\|_{\mathbf{P}} \leq \alpha \|(x_0,y_0)-(1,1)\|_{\mathbf{P}} \text{ ou encore } \left[\|(1,1)-f(x_0,y_0)\| \leq \alpha \|(1,1)-(x_0,x_0)\|_{\mathbf{P}} \right]. \end{aligned}$

c. Montrons par récurrence sur n que $\forall n \geq n_0$, $(u_n, u_{n+1}) \in D$.

Par hypothèse, pour $n = n_0$, $(u_{n_0}, u_{n_0+1}) \in D$.

Supposons que pour un entier $n \ge n_0$ donné, $(u_n, u_{n+1}) \in D$.

On a alors : $\|(1,1) - (u_{n+1}, u_{n+2})\|_P = \|(1,1) - f(u_n, u_{n+1})\|_P$ et d'après la question précédente,

$$(u_n,u_{n+1}) \in \mathcal{D} \Longrightarrow \|(1,1) - f(u_n,u_{n+1})\|_{\mathcal{P}} \leq \alpha \|(1,1) - (u_n,u_{n+1})\|_{\mathcal{P}} \leq \|(1,1) - (u_n,u_{n+1})\|_{\mathcal{P}} \leq \eta.$$

Donc $||(1,1) - (u_{n+1}, u_{n+2})||_{P} \le \eta$ et $(u_n, u_{n+1}) \in D$.

Finalement, la propriété est vraie au rang n_0 et elle est héréditaire, elle est donc vraie pour tout entier $n \ge n_0$: $\forall n \ge n_0, \quad (u_n, u_{n+1}) \in D$.

d. Montrons par récurrence sur *n* que :

$$\forall n \ge n_0, \quad \|(1,1) - (u_n, u_{n+1})\|_{\mathcal{P}} \le \alpha^{n-n_0} \|(1,1) - (u_{n_0}, u_{n_0+1})\|_{\mathcal{P}}.$$

Pour $n = n_0$, la relation est évidente.

Supposons que pour un entier $n \ge n_0$ donné,

$$\|(1,1)-(u_n,u_{n+1})\|_{\mathbb{P}}\leq \alpha^{n-n_0}\|(1,1)-(u_{n_0},u_{n_0+1})\|_{\mathbb{P}}.$$

Alors, $\|(1,1) - (u_{n+1}, u_{n+2})\|_{P} = \|(1,1) - f(u_n, u_{n+1})\|_{P}$

et comme $(u_n, u_{n+1}) \in D$, d'après la question **IV.5.b**,

 $\|(1,1) - f(u_n, u_{n+1})\|_{P} \le \alpha \|(1,1) - (u_n, u_{n+1})\|_{P}$

On a donc $\|(1,1) - (u_{n+1}, u_{n+2})\|_{P} \le \alpha^{n+1-n_0} \|(1,1) - (u_{n_0}, u_{n_0+1})\|_{P}$.

Finalement, la propriété est vraie au rang n_0 et elle est héréditaire, elle est donc vraie pour tout entier $n \ge n_0$: $\forall n \geq n_0, \quad \|(1,1) - (u_n,u_{n+1})\|_{\mathbf{P}} \leq \alpha^{n-n_0} \|(1,1) - (u_{n_0},u_{n_0+1})\|_{\mathbf{P}}$

- **e.** Les normes $\|.\|_P$ et $\|.\|_\infty$ sont équivalentes (dimension finie), il existe donc un réel c > 0 tel que $\|.\|_\infty \le c\|.\|_P$. On a alors, $\forall n \geq n_0, \ |1-u_n| \leq \|(1,1)-(u_n,u_{n+1})\|_{\infty} \leq c\|(1,1)-(u_n,u_{n+1})\|_{\mathbb{P}} \leq c\alpha^{n-n_0}\|(1,1)-(u_n,u_{n+1})\|_{\mathbb{P}}$ $(u_{n_0}, u_{n_0+1})|_{P}$, et donc $|u_n = 1 + O(\alpha^n)|$
- **f.** $u_n = 1 + O(\alpha^n)$ et $\frac{\sqrt{2}}{2} < \alpha < 1$.

Donc $\left[\lim_{n\to+\infty}u_n=1\right]$, $\left[\sum u_n \text{ diverge}\right]$ et $\left[\sum (u_n-1) \text{ converge absolument}\right]$

Partie V – Suite de l'étude

a. La suite (x_n) ne converge pas vers $\lambda : \exists \tau > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ |x_n - \lambda| > \tau$.

En utilisant cette relation, on construit une suite $(x_{\varphi(n)})$ extraite de (x_n) telle que pour tout $n \in \mathbb{N}$, $|x_{\varphi(n)} - \lambda| > 1$ τ.

La suite $(x_{\varphi(n)})$ est bornée (extraite de (x_n)), on peut donc en extraire une sous-suite qui converge vers une limite λ' . Nécessairement, $|\lambda' - \lambda| \ge \tau > 0$ donc $\lambda' \ne \lambda$.

Donc la suite (x_n) admet une valeur d'adhérence $\lambda' \neq \lambda$

b. Toute suite bornée possède au moins une valeur d'adhérence. D'après la question précédente, si une suite est bornée et non convergente, alors elle possède au moins deux valeurs d'adhérences.

Donc | toute suite bornée ayant une unique valeur d'adhérence est convergente

c. (x_n) est une suite bornée.

Si $\ell_- = \ell_+$, alors (x_n) est bornée et possède une unique valeur d'adhérence, donc d'après la question précédente, elle est convergente.

Si (x_n) est convergente, alors elle possède une unique valeur d'adhérence donc $\ell_- = \ell_+$.

Finalement $|(x_n)|$ est convergente si et seulement si $\ell_- = \ell_+$

a. Montrons que $\forall n \in \mathbb{N}$ $\alpha \leq u_n \leq \frac{1}{\alpha}$ par récurrence double sur n.

Par hypothèse, pour n = 0 et n = 1, la relation est vraie.

Supposons que pour un entier $n \ge n_0$ donné, $\alpha \le u_n \le \frac{1}{\alpha}$ et $\alpha \le u_{n+1} \le \frac{1}{\alpha}$.

Alors,
$$u_{n+2} = \frac{2}{u_{n+1} + u_n} \le \frac{2}{\frac{1}{\alpha} + \frac{1}{\alpha}} = \alpha$$

et
$$u_{n+2} = \frac{2}{u_{n+1} + u_n} \ge \frac{2}{\alpha + \alpha} = \frac{1}{\alpha}$$

donc $\alpha \leq u_{n+2} \leq \frac{1}{\alpha}$

Finalement, la propriété est vraie au rang 0 et 1 et elle est héréditaire, elle est donc vraie pour tout entier $n \in \mathbb{N}$:

$$\forall n \in \mathbb{N} \quad \alpha \leq u_n \leq \frac{1}{\alpha}$$

b. ℓ_{-} est la plus petite valeur d'adhérence de la suite (u_n) . C'est donc la limite d'une suite extraite que l'on notera

la suite $u_{\psi(n)-2}$ est alors bornée, elle possède une sous-suite $u_{\psi\circ\chi(n)-2}$ qui converge vers une limite a. En posant $\varphi: n \mapsto \psi \circ \chi(n) - 2$, on a alors:

 $u_{\varphi(n)+2} \xrightarrow[n \to +\infty]{} \ell_- \text{ et } u_{\varphi(n)} \xrightarrow[n \to +\infty]{} a, \text{ or } u_{\varphi(n)+1} = \frac{2}{u_{\varphi(n)+2}} - u_{\varphi(n)} \text{ donc } (u_{\varphi(n)+1}) \text{ converge. On note } b \text{ sa limite.}$

Par passage à la limite dans $u_{\varphi(n)+2} = \frac{2}{u_{\varphi(n)+1} + u_{\varphi(n)}}$, on obtient $\ell_- = \frac{2}{a+b}$. De plus $a \le \ell_+$ et $b \le \ell_+$ donc $\ell_- \ge \frac{2}{\ell_+ + \ell_+} = \frac{1}{\ell_+}$. On en déduit $\ell_- \ell_+ \ge 1$.

c. On procède de même en considérant une sous-suite $u_{\psi(n)}$ qui converge vers ℓ_+ et on obtient $\ell_-\ell_+ \le 1$ d'où $\ell_-\ell_+=1$

d. De même qu'en (b), on contruit successivement :

$$(u_{\psi(n)})$$
 qui converge vers ℓ_{-}

$$(u_{\psi \circ \chi(n)-3})$$
 qui converge vers une limite a .

$$(u_{\psi \circ \chi \circ \omega(n)-2})$$
 qui converge vers une limite b .

En posant
$$\varphi$$
: $n \mapsto \psi \circ \chi \circ \omega(n) - 3$, on a alors:

$$u_{\varphi(n)+3} \underset{n \to +\infty}{\longrightarrow} \ell_-, u_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} a \text{ et } u_{\varphi(n)+1} \underset{n \to +\infty}{\longrightarrow} b.$$

Or
$$u_{\varphi(n)+2} = \frac{2}{u_{\varphi(n)+3}} - u_{\varphi(n)+1}$$
 donc $(u_{\varphi(n)+2})$ converge. On note c sa limite.

Par passage à la limite dans
$$u_{\varphi(n)+2}=\frac{2}{u_{\varphi(n)+1}+u_{\varphi(n)}}$$
 et dans $u_{\varphi(n)+3}=\frac{2}{u_{\varphi(n)+2}+u_{\varphi(n)+1}}$

on obtient
$$c = \frac{2}{a+b}$$
 et $\ell_- = \frac{2}{b+c}$.

On a donc
$$b+c=\frac{2}{\ell_-}=2\ell_+$$
 et $b\leq \ell_+$ et $c\leq \ell_+$, donc $b=c=\ell_+$.

De même
$$\ell_+ = c = \frac{2}{a+b}$$
 donc $a = b = \ell_-$.

On a alors
$$b=\ell_+$$
 et $b=\ell_-$ d'où $\ell_+=\ell_-$

$$\ell_+ = \ell_-, \ell_-\ell_+ \ge 1$$
 et (u_n) est une suite de réels positifs donc $\ell_+ = \ell_- = 1$ et donc La suite (u_n) converge vers 1

e. La suite $((u_n, u_{n+1})$ converge vers (1, 1) donc

il existe bien un entier
$$n_0$$
 tel que $((u_{n_0}, u_{n_0+1}) \in D$.