Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

TEST REPORT

FCC ID:2ACGIARG-TX900M

Applicant : Audio Resource Group, Inc.

Address : 405 Main Ave W, Suite 4G, West Fargo, ND58078, US

Equipment under Test (EUT):

Name

: UHF wireless transmitter

Model

: ARG-TX900M, ARG-TX900MINI

Standards

: FCC PART 15, SUBPART C: 2013 (Section 15.247)

Report No.

: CST-TCB140513021

Date of Test

: May 18, 2014 to May 20, 2014

Date of Issue

: May 20, 2014

Test Result : PASS *

Authorized Signature

(Mark Zhu) General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report.

If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Certification Technology Service Co., Ltd. Or test done by Shenzhen Certification Technology Service Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Certification Technology Service Co., Ltd. Approvals in writing.

FCC ID: 2ACGIARG-TX900M Page 1 of 33

^{*} In the configuration tested, the EUT complied with the standards specified above

TABLE OF CONTENT

Des	script	10N	Page
1 0	ener	al Information	
	1.1	Description of Device (EUT)	4
	1.2	Description of Test Facility	4
2 E	MC E	Equipment List	5
3 T	est P	rocedure	6
4	Sum	nmary of Measurement	7
	4.1	Summary of test result	7
	4.2	Test connection	
	4.3	Assistant equipment used for test	7
	4.4	Test mode	
5	Spu	rious Emission	
	5.1	Radiation Emission	8
	5.1.1	Radiation Emission Limits(15.209)	8
		Test Setup	
	5.1.3	Test Procedure	10
	5.1.4	Test Equipment Setting For emission test Result	10
		Test Condition	
	5.1.6	Test Result	10
6	Max	imum peak conducted output power	
	7.1	Test limit	
	7.2	Test Procedure	
	7.3	Test Setup	
	7.4	Test Results	
7	Peal	k Power Spectral Density	
	7.1	Test limit	
	7.2	Method of measurement	
	7.3	Test Setup	
	7.4	Test Results	
8	6dB	Bandwidth	
	8.1	Test limit	
	8.2	Method of measurement	
	8.3	Test Setup	
	8.4	Test Results	
9		d Edge Check	
	9.1	Test limit	
	9.2	Test Procedure	
	9.3	Test Setup	
	9.4	Test Result	
10	Ante	enna Requirement	
	10.1	Standard Requirement	
	10.2	Antenna Connected Construction	
	10.3	Result	
11	Pow	er Line Conducted Emissions	
	11.1	Block Diagram of Test Setup	
	11.2	Limit	
	11.3	Test Procedure	22

	11.4	Test Result	22
12	Phot	ographs of Test Setup	25
		Photo of Radiated Emission	
		Photo of conducted Emission	
13		ographs of EUT	-

FCC ID: 2ACGIARG-TX900M

1 General Information

1.1 Description of Device (EUT)

EUT : UHF wireless transmitter

Model No. : TX900M, ARG-TX900MINI

Trade Mark ARG

Difference : There's no difference between the models except the model

number and the surface of colors, so all the test were performed

on the model ARG-TX900M

Type of Antenna : External Antenna, Maximum Gain 1dBi

Operation Frequency

: 903MHz-927MHz

Channel number : 25

Channel Spacing : 1MHz

Modulation type : O-QPSK

Power Supply : DC 3.7V From Battery

Applicant : Audio Resource Group, Inc.

Address : 405 Main Ave W, Suite 4G, West Fargo, ND58078, US

Manufacturer : Shenzhen Alcors Technology Co., Ltd.

Address : South of 4th FL, BLDG 23, Phase 2, LianChuang Tech-Park,

Bulan RD, Buji Town, LongGang District, Shenzhen, China

1.2 Description of Test Facility

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

FCC Registered No.:197647

FCC ID: 2ACGIARG-TX900M Page 4 of 33

2 EMC Equipment List

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	Nov.16, 13	1Year
Spectrum analyzer	Agilent	E4407B	MY46185649	Oct. 30, 13	1Year
Receiver	R&S	ESCI	100492	Oct. 30, 13	1Year
Receiver	R&S	ESCI	101202	Oct. 30, 13	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	VULB9168-438	Mar.11, 14	1Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	Mar.11, 14	1Year
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170 D(1432)	Mar.11, 14	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	Mar.11, 14	1Year
Cable	Resenberger	N/A	No.1	Oct. 30, 13	1Year
Cable	SCHWARZBECK	N/A	No.2	Oct. 30, 13	1Year
Cable	SCHWARZBECK	N/A	No.3	Oct. 30, 13	1Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	Oct. 30, 13	1Year
Pre-amplifier	R&S	AFS33-180026 50-30-8P-44	SEL0080	Oct. 30, 13	1Year
Power Meter	Anritsu	ML2487A	6K00001491	Oct. 30, 13	1Year
Power sensor	Anritsu	ML2491A	32516	Oct. 30, 13	1Year

FCC ID: 2ACGIARG-TX900M Page 5 of 33

3 Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The test procedure used was ANSI Standard C63.4-2003 using a 50 u H LISN. Both Lines were observed. The bandwidth of the receiver was 10 kHz with an appropriate sweep speed. The ambient temperature of the EUT was 25 °C with a humidity of 58%.

RADIATION INTERFERENCE: The test procedure used was ANSI Standard C63.4-2003 using a ANRITSU spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a micro volt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz up to 1 GHz and 1 MHz with a video BW of 3MHz above 1 GHz. The ambient temperature of the EUT was 25°C with a humidity of 58%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer and cable loss. The antenna correction factors and cable loss are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading.

Freq (MHz) METER READING + ACF + CABLE = FS 33.20 dBuV + 10.36 dB + 0.9 dB = 44.46 dBuV/m @ 3m

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes. The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSI Standard C63.4-2003 10.1.7 with the EUT 40 cm from the vertical ground wall.

FCC ID: 2ACGIARG-TX900M Page 6 of 33

4 Summary of Measurement

4.1 Summary of test result

Test Item	Test Requirement	Standards Paragraph	Result
Spurious Emission	FCC PART 15 : 2013	Section 15.247&15.209	Compliance
Conduction Emission	FCC PART 15: 2013	Section 15.207	Compliance
6dB Bandwidth Test	FCC PART 15: 2013	Section 15.247	Compliance
Peak Power	FCC PART 15: 2013	Section 15.247	Compliance
Power Density	FCC PART 15: 2013	Section 15.247	Compliance
Band Edge	FCC PART 15: 2013	Section 15.247	Compliance
Antenna Requirement	FCC PART 15 : 2013	Section 15.203	Compliance

Note: The EUT has been tested as an independent unit. And continuous transmit at maximum power.

4.2 Test connection

4.3 Assistant equipment used for test

Description	:	Notebook
Manufacturer	:	Great Wall
Model No.	:	T80

4.4 Test mode

mode	Channel	Frequency (MHz)
TX mode	Lowest	903MHz
	Middle	915MHz
	Highest	927MHz

FCC ID: 2ACGIARG-TX900M Page 7 of 33

5 Spurious Emission

5.1 Radiation Emission

5.1.1 Radiation Emission Limits(15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(Uv/m)

5.1.2 Test Setup

See the next page

Below 30MHz Test Setup

FCC ID: 2ACGIARG-TX900M Page 8 of 33

Above 30MHz Test Setup

Above 1GHz Test Setup

5.1.3 Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a

- a) rotating 0.8 m high above ground, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m,Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured
- d) If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.

5.1.4 Test Equipment Setting For emission test Result

9 kHz ~150 kHz	RBW 200Hz	VBW1 kHz z
150 kHz ~30MHz	RBW 9 kHz	VBW 30 kHz
30MHZ~1GHz	RBW 120 kHz	VBW 300 kHz
Above 1GHz	RBW 1MHz	VBW 3MHz

5.1.5 Test Condition

Continual Transmitting at maximum power.

5.1.6 Test Result

We have scanned the 10th harmonic from 9 kHz to the EUT.

We also estimated location of the XYZ 3 axis, the Y axis is the worst mode.

Detailed information please see the following page.

From 9 kHz to 30MHz: Conclusion: PASS

FCC ID: 2ACGIARG-TX900M Page 10 of 33

Test data: Below 1GHz

Fre.	Plority H/V	Read Level (dBuV)	Antenna Factor (dB/m)	Preamp Factor (dB)	Cable Loss (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin dB	Remark
39.30	Н	29.64	14.07	25.81	0.17	18.07	40	-21.93	QP
134.56	Н	27.87	13.08	26.89	0.46	14.52	43.5	-28.98	QP
344.39	Н	43.74	13.74	24.26	0.82	34.04	46	-11.96	QP
42.30	V	30.25	13.93	25.81	0.14	18.51	40	-21.49	QP
60.49	V	29.03	12.75	27.87	0.24	14.15	40	-25.85	QP
132.69	V	27.93	12.93	26.89	0.53	14.5	43.5	-29.00	QP

Above 1GHz

EUT	UHF wireless	Model Name	ARG-TX900M
	transmitter		
Temperature	24.2°C	Relative Humidity	50%
Pressure	960hPa	Test voltage	DC 3.7V
Test Mode	TX Lowest		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL	Actu	ual Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	CF (dB	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Keniai k
1806	V	52.50		-6.37	46.13		74.00	54.00	-7.87	Peak
2709	V	50.31		-2.91	47.40		74.00	54.00	-6.60	Peak
3612	V	42.61		-1.14	41.47		74.00	54.00	-12.53	Peak
1806	Н	54.77		-6.37	48.40	-	74.00	54.00	-5.60	Peak
2709	Н	52.63		-2.91	49.72		74.00	54.00	-4.28	Peak
3612	Н	49.54		-1.14	48.40		74.00	54.00	-5.60	Peak

Notes: Emissions attenuated more than 20 dB below the permissible value are not reported.

FCC ID: 2ACGIARG-TX900M Page 11 of 33

EUT	UHF wireless transmitter	Model Name	ARG-TX900M
Temperature	24.2°C	Relative Humidity	50%
Pressure	960hPa	Test voltage	DC 3.7V
Test Mode	TX Middle		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak	AV	` ′	(dBuV/m)		Killalk
					(dBuV/m)	(dBuV/m)				
1830	V	54.25		-6.29	47.96		74.00	54.00	-6.04	Peak
2749	V	52.25		-2.87	49.38		74.00	54.00	-4.62	Peak
3660	V	48.29		-1.06	47.23		74.00	54.00	-6.77	Peak
1830	Н	53.64		-6.29	47.35		74.00	54.00	-6.65	Peak
2749	Н	51.46		-2.87	48.59		74.00	54.00	-5.41	Peak
3660	Н	47.63		-1.06	46.57		74.00	54.00	-7.43	Peak

Notes: Emissions attenuated more than 20 dB below the permissible value are not reported.

EUT	UHF wireless transmitter	Model Name	ARG-TX900M
Temperature	24.2°C	Relative Humidity	50%
Pressure	960hPa	Test voltage	DC 3.7V
Test Mode	TX Highest		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)		Kentark
1854	V	53.21		-6.20	47.01		74.00	54.00	-6.99	Peak
2781	V	52.98		-2.83	50.15		74.00	54.00	-3.85	Peak
3708	V	49.37		-0.94	48.43		74.00	54.00	-5.57	Peak
1854	Н	54.62		-6.20	48.42		74.00	54.00	-5.58	Peak
2781	Н	52.41		-2.83	49.58		74.00	54.00	-4.42	Peak
3708	Н	48.66		-0.94	47.72		74.00	54.00	-6.28	Peak

Notes: Emissions attenuated more than 20 dB below the permissible value are not reported.

6 Maximum peak conducted output power

7.1 Test limit

Please refer section 15.247.

Regulation 15.247(b) The limit of Maximum Peak Output Power Measurement is 1W(30dBm)

7.2 Test Procedure

Place the EUT on the table and set it in transmitting mode.

Connected the EUT's antenna port to peak power meter by 20dB attenuator.

Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset. Details see the KDB558074 DTS Meas Guidance V03

7.3 Test Setup

7.4 Test Results

PASS

Detailed information please see the following page.

EUT: UHF wireless	transmitter	M/N: ARG-TX900M			
Test date: 2014-05-	19 Test site	e: RF site T	ested by: Joe		
Mode	Frequency (MHz)	MAX PK Output Power (dBm)	Limit (dBm)	Conclusion	
	Lowest	16.18	30		
TX mode	Middle	16.16	30	PASS	
	Highest	15.68	30		

FCC ID: 2ACGIARG-TX900M

7 Peak Power Spectral Density

7.1 Test limit

Please refer section 15.247.

For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

7.2 Method of measurement

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3 Test Setup

7.4 Test Results

PASS.

Detailed information please see the following page.

Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm)	Result
Lowest	903	-3.16	8	
Middle	915	-4.92	8	PASS
Highest	927	-3.95	8	

FCC ID: 2ACGIARG-TX900M

Test Plots:

CH Lowest:

CH Middle:

CH Highest

8 6dB Bandwidth

8.1 Test limit

Please refer section 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

8.2 Method of measurement

Details see the KDB558074 V03 Meas Guidance

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

8.3 Test Setup

8.4 Test Results

PASS.

Detailed information please see the following page.

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
Lowest	903	0.923	0.5	PASS
Middle	915	0.919	0.5	PASS
Highest	927	0.938	0.5	PASS

FCC ID: 2ACGIARG-TX900M

Test Plots:

Middle CH

Highest CH

9 Band Edge Check

9.1 Test limit

Please refer section 15.247

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

9.2 Test Procedure

Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission Check the spurious emissions out of band.

RBW, VBW Setting: RBW=120 kHz, VBW=300 kHz

9.3 Test Setup

Same as 5.2.2.

9.4 Test Result

PASS.

Note: We also estimated location of the XYZ 3 axis, the Y axis is the worse case.

Test data

Fre.	Plority	Reading dBuV	Antenna Factor	Cable Loss	Amplifier Gain	Correct Factor	Measure Result	Limit dBuV/m	Margin dB
MHz	H/V		dB	dB	dB	dB	dBuV/m		
902.00	Н	45.72(PK)	21.69	1.46	25.65	-2.50	43.22	46	-2.78
928.00	Н	46.73(PK)	22.00	1.28	25.63	-2.35	44.38	46	-1.62
902.00	V	45.29(PK)	21.69	1.46	25.65	-2.50	42.79	46	-3.21
928.00	V	47.43(PK)	22.00	1.28	25.63	-2.35	45.08	46	-0.92

FCC ID: 2ACGIARG-TX900M Page 20 of 33

10 Antenna Requirement

10.1 Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of antenna used for transmitting is 1 dBi, and the antenna is de-signed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

10.3 Result

The EUT antenna is external Antenna, maximum gain is 1dBi, and the antenna is de-signed with permanent attachment and no consideration of replacement. It complies with the standard requirement.

FCC ID: 2ACGIARG-TX900M Page 21 of 33

11 Power Line Conducted Emissions

11.1 Block Diagram of Test Setup

11.2 Limit

	Maximum R	F Line Voltage
Frequency	Quasi-Peak Level	Average Level
	dB(µV)	dB(μV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

11.3 Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2003 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10 kHz.
- (5) The frequency range from 150 kHz to 30MHz is checked.

11.4 Test Result

PASS. (See below detailed test data)

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 Fax: +86-755-26736857 Website: http://www.cessz.com Email:Service@cessz.com

EUT

Model No : charging+TX mode : AC 120V/60Hz Test Mode

Test Engineer: Joe Remark

Item	Freq	Read	LISN	Preamp	Cable	Level	Limit	Margin	Remark
	MHz	dBuV		Factor dB	Lose	dBuV	dBuV	dBuV	
	Mnz	abuv	dB	ab .	QD.	abuv	abuv	abuv	
1	0.156	39.79	0.03	-9.72	0.10	49.64	65.65	-16.01	QP
2	0.204	36.31	0.03	-9.72	0.10	46.16	63.45	-17.29	QP
3	0.259	30.52	0.03	-9.72	0.10	40.37	61.47	-21.10	QP
4	0.435	27.55	0.03	-9.72	0.10	37.40	57.15	-19.75	QP
5	0.552	26.44	0.03	-9.72	0.10	36.29	56.00	-19.71	QP
6	0.727	25.35	0.04	-9.72	0.10	35.21	56.00	-20.79	QP

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 Fax: +86-755-26736857 Website: http://www.cessz.com Email:Service@cessz.com

Model No

: charging+TX mode : AC 120V/60Hz Test Mode

Test Engineer: Joe Remark

Item	Freq	Read	LISN Factor	Carlotte State of the State of		Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.156	39.27	0.03	-9.72	0.10	49.12	65.65	-16.53	QP
2	0.178	37.61	0.03	-9.72	0.10	47.46	64.59	-17.13	QP
3	0.183	37.47	0.03	-9.72	0.10	47.32	64.33	-17.01	QP
4	0.208	35.01	0.03	-9.72	0.10	44.86	63.27	-18.41	QP
5	0.234	32.73	0.03	-9.72	0.10	42.58	62.30	-19.72	QP
6	0.440	28.09	0.03	-9.72	0.10	37.94	57.07	-19.13	OP

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss