```
1 import numpy as np
```



```
1 import matplotlib.pyplot as plt
2 import seaborn as sns
```

```
1 !wget "https://api.covid19india.org/states daily.json"
```

```
--2022-06-10 14:36:56-- <a href="https://api.covid19india.org/states_daily.jsc">https://api.covid19india.org/states_daily.jsc</a>
Resolving api.covid19india.org (api.covid19india.org)... 74.125.23.121
Connecting to api.covid19india.org (api.covid19india.org) | 74.125.23.12
HTTP request sent, awaiting response... 301 Moved Permanently
Location: <a href="http://data.covid19india.org/states_daily.json">http://data.covid19india.org/states_daily.json</a> [following]
--2022-06-10 14:36:57-- <a href="http://data.covid19india.org/states_daily.jsc">http://data.covid19india.org/states_daily.jsc</a>
Resolving data.covid19india.org (data.covid19india.org)... 185.199.108
Connecting to data.covid19india.org (data.covid19india.org) | 185.199.10
HTTP request sent, awaiting response... 301 Moved Permanently
Location: <a href="https://data.covid19india.org/states_daily.json">https://data.covid19india.org/states_daily.json</a> [following]
--2022-06-10 14:36:57-- https://data.covid19india.org/states daily.js
Connecting to data.covid19india.org (data.covid19india.org) | 185.199.10
HTTP request sent, awaiting response... 200 OK
Length: 1061528 (1.0M) [application/json]
Saving to: 'states_daily.json.1'
states_daily.json.1 100%[===========] 1.01M --.-KB/s
                                                                                   ir
2022-06-10 14:36:57 (17.8 MB/s) - 'states_daily.json.1' saved [1061528
```

Alternate way

```
1 import urllib.request

1 url = "https://api.covid19india.org/states_daily.json"
2 url
    'https://api.covid19india.org/states_daily.json'
```

```
1 urllib.request.urlretrieve(url,'data.json')
```

```
('data.json', <http.client.HTTPMessage at 0x7f4895082350>)
```

```
1 cd=pd.read_json('data.json')
2 cd
```

states_daily

```
0
             {'an': '0', 'ap': '1', 'ar': '0', 'as': '0', '...
  1
             {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '...
  2
             {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '...
             {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '...
  3
             {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '...
         {'an': '2', 'ap': '1835', 'ar': '255', 'as': '...
1558
1559
           {'an': '0', 'ap': '16', 'ar': '0', 'as': '10',...
1560
         {'an': '1', 'ap': '909', 'ar': '165', 'as': '7...
1561
         {'an': '0', 'ap': '1543', 'ar': '249', 'as': '...
1562
           {'an': '0', 'ap': '13', 'ar': '0', 'as': '10',...
```

1563 rows x 1 columns

Online csv file retreievel example

```
1 url ='https://www.stats.govt.nz/assets/Uploads/Annual-enterprise-survey
2 url
```

'https://www.stats.govt.nz/assets/Uploads/Annual-enterprise-survey/Annual-enterprise-survey-2020-financial-year-provisional/Download-data/annual-enterprise-survey-2020-financial-year-provisional-size-bands-c

```
1 urllib.request.urlretrieve(url,'sample.csv')
```

('sample.csv', <http.client.HTTPMessage at 0x7f489438bf90>)

```
1 scsv= pd.read_csv('sample.csv')
2 scsv.head()
```

```
year industry_code_ANZSIC industry_name_ANZSIC rme_size_grp
                                                                                  var
                                          Agriculture, Forestry and
                                    Α
       2011
                                                                            a_0
                                                                                 Activ
                                                         Fishing
                                         Agriculture, Forestry and
                                    Α
        2011
                                                                            a_0
                                                         Fishing
                                                                                  emp
                                                                                    S
                                         Agriculture, Forestry and
                                    Α
    2 2011
                                                                            a_0
                                                                                  and
                                                         Fishing
                                                                                 gove
                                         Agriculture, Forestry and
    3
       2011
                                    Α
                                                                            a_0
                                                                                    fι
                                                         Fishing
                                                                                  grar
                                                                                   su
1 import json
2 with open('data.json') as f :
      data= json.load(f)
4 data
       'kl': '0',
       'la': '0',
```

```
'ld': '0',
 'mh': '19',
 'ml': '0',
 'mn': '0'
 'mp': '4'
 'mz': '0',
 'nl':
       '0'
 'or': '0'
 'pb': '1',
 'py': '0'
 'rj': '7',
 'sk': '0',
 'status': 'Deceased',
 'tg': '0',
 'tn': '1',
 'tr': '0',
 'tt': '56',
 'un': '0',
 'up': '3',
 'ut': '0',
 'wb': '2'},
{'an': '0',
 'ap': '80',
 'ar': '0'.
```

```
'as': '0',
       'br': '69',
       'ch': '9',
       'ct': '0',
       'date': '27-Apr-20',
       'dateymd': '2020-04-27',
       'dd': '0',
       'dl': '190',
       'dn': '0',
       'ga': '0',
       'gj': '247',
       'hp': '0',
       'hr': '5',
       'ih': '21',
       'j̇́k': '23',
       'ka': '9',
       'kl': '13',
       'la': '0',
       'ld': '0',
       'mh': '522',
       'ml': '0',
       'mn': '0'
       'mp': '75',
       'mz': '0',
       'nl': '0',
       'or': '15',
       'pb': '8',
       'py': '0',
       'rj': '77',
       'sk': '0',
       'status': 'Confirmed',
       'tg': '2',
       'tn': '52',
       'tr': '0',
1 data = data['states_daily']
2 data
   [{'an': '0',
      'ap': '1',
     'ar': '0',
      'as': '0',
     'br': '0',
      'ch': '0',
      'ct': '0',
      'date': '14-Mar-20',
      'dateymd': '2020-03-14',
      'dd': '0',
      'dl': '7',
      'dn': '0',
      'ga': '0',
      'gj': '0',
```

```
πρ.
 'hr': '14',
 'jh': '0',
 'jk': '2',
 'ka': '6',
 'kl': '19',
 'la': '0',
 'ld': '0',
 'mh': '14',
 'ml': '0',
 'mn': '0',
 'mp': '0',
 'mz': '0',
 'nl': '0',
 'or': '0',
 'pb': '1',
 'py': '0',
 'rj': '3',
 'sk': '0',
'status': 'Confirmed',
 'tg': '1',
 'tn': '1',
 'tr': '0',
 'tt': '81',
 'un': '0',
 'up': '12',
 'ut': '0',
 'wb': '0'},
{'an': '0',
 'ap': '0',
 'ar': '0',
 'as': '0',
 'br': '0',
 'ch': '0'
 'ct': '0',
 'date': '14-Mar-20',
 'dateymd': '2020-03-14',
 'dd': '0',
 'dl': '1',
 'dn': '0',
 'ga': '0',
 'gj': '0',
 'hp': '0',
 'hr': '0',
 'jh': '0',
```

1 cd= pd.json_normalize(data)
2 cd

		an	ар	ar	as	br	ch	ct	date	dateymd	dd	• • •	sk	stat
	0	0	1	0	0	0	0	0	14- Mar- 20	2020-03- 14	0		0	Confirm
	1	0	0	0	0	0	0	0	14- Mar- 20	2020-03- 14	0		0	Recove
	2	0	0	0	0	0	0	0	14- Mar- 20	2020-03- 14	0		0	Deceas
	3	0	0	0	0	0	0	0	15- Mar- 20	2020-03- 15	0		0	Confirm
	4	0	0	0	0	0	0	0	15- Mar- 20	2020-03- 15	0		0	Recove
1 d	1558 f=cd	2	1835	255	857	38	1	114	15- Aug-	2021-08-	0		213	Recove
	1559	0	16	0	10	0	0	1	Aug- 21	2021-08- 15	0		0	Deceas
	1560	1	909	165	758	14	2	68	16- Aug- 21	2021-08- 16	0		20	Confirm
	1561	0	1543	249	1014	42	3	224	16- Aug- 21	2021-08- 16	0		147	Recove
	1562	0	13	0	10	0	0	1	16- Aug- 21	2021-08- 16	0		0	Deceas
	4500		40 1											

1563 rows × 42 columns

1 df.date=pd.to_datetime(df.date)
2 df

	an	ap	ar	as	br	ch	ct	date	dateymd	dd	•••	sk	stat
0	0	1	0	0	0	0	0	2020- 03-14	2020-03- 14	0		0	Confirn
1	0	0	0	0	0	0	0	2020- 03-14	2020-03- 14	0		0	Recove
2	0	0	0	0	0	0	0	2020- 03-14	2020-03- 14	0		0	Decea
3	0	0	0	0	0	0	0	2020- 03-15	2020-03- 15	0		0	Confirn
4	0	0	0	0	0	0	0	2020- 03-15	2020-03- 15	0		0	Recove
1558	2	1835	255	857	38	1	114	2021- 08-15	2021-08- 15	0		213	Recove
1559	0	16	0	10	0	0	1	2021- 08-15	2021-08- 15	0		0	Decea
1560	1	909	165	758	14			08-16	2021-08- 16	0		20	Confirn
1561	0	1543	249	1014	42	3	224	2021- 08-16	2021-08- 16	0		147	Recove
1562	0	13	0	10	0	0	1	2021- 08-16	2021-08- 16	0		0	Decea

1563 rows × 42 columns

1 df=df[df['status']=='Confirmed']
2 df

	an	ap	ar	as	br	ch	ct	date	dateymd	dd	• • •	sk	status
0	0	1	0	0	0	0	0	2020- 03-14	2020-03- 14	0		0	Confirmed
3	0	0	0	0	0	0	0	2020- 03-15	2020-03- 15	0		0	Confirmed
6	0	0	0	0	0	0	0	2020- 03-16	2020-03- 16	0		0	Confirmed
9	0	0	0	0	0	0	0	2020- 03-17	2020-03- 17	0		0	Confirmed
12	0	0	0	0	0	0	0	2020- 03-18	2020-03- 18	0		0	Confirmed
1548	0	1859	180	935	43	12	98	2021- 08-12	2021-08- 12	0		100	Confirmed
1551	0	1746	166	763	47	15	77	2021- 08-13	2021-08- 13	0		150	Confirmed
1554	0	1535	161	755	39	4	83	2021-	2021-08-	0		129	Confirmed
f.drop f.head		atus'	,axi	s=1,i	.npla	ace :	= Tr	ue)					

/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: Sett A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas errors=errors,

	an	ap	ar	as	br	ch	ct	date	dateymd	dd	• • •	rj	sk	tg	tn	tr
0	0	1	0	0	0	0	0	2020- 03-14	2020-03- 14	0		3	0	1	1	0
3	0	0	0	0	0	0	0	2020- 03-15	2020-03- 15	0	•••	1	0	2	0	0
6	0	0	0	0	0	0	0	2020- 03-16	2020-03- 16	0	•••	0	0	1	0	0
9	0	0	0	0	0	0	0	2020- 03-17	2020-03- 17	0		0	0	1	0	0
10	0	0	0	0	0	0	0	2020-	2020-03-	0		0	0	0	4	0

```
1 df.drop('dateymd',axis=1,inplace = True)
```

/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: Sett A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas errors=errors,

1 df.head()

	an	ap	ar	as	br	ch	ct	date	dd	dl	• • •	rj	sk	tg	tn	tr	tt
0	0	1	0	0	0	0	0	2020- 03-14	0	7		3	0	1	1	0	81
3	0	0	0	0	0	0	0	2020- 03-15	0	0		1	0	2	0	0	27
6	0	0	0	0	0	0	0	2020- 03-16	0	0		0	0	1	0	0	15
9	0	0	0	0	0	0	0	2020- 03-17	0	1		0	0	1	0	0	11

1 df.columns

```
1 df.set_index('date',inplace=True)
```

```
1 df=df.apply(pd.to_numeric) #apply for every cols
```

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 521 entries, 2020-03-14 to 2021-08-16

Data columns (total 39 columns):

			tat 33 cotan	
#	Colu	mn Non	-Null Count	Dtype
0	an	 521	non-null	int64
1	ар		non-null	int64
2	ar		non-null	int64
3	as		non-null	
4	br	521	non-null	int64
5	ch	521	non-null	int64
6	ct	521	non-null	int64
7	dd	521	non-null	int64
8	dl	521	non-null	int64
9	dn	521	non-null	int64
10	ga	521	non-null	int64
11	gj	521	non-null	int64
12	hp	521	non-null	int64
13	hr	521	non-null	int64
14	jh	521	non-null	int64
15	jk	521	non-null	int64
16	ka	521	non-null	int64
17	kl	521	non-null	int64
18	la	521	non-null	int64
19	ld	521	non-null	int64
20	mh	521	non-null	int64
21	ml	521	non-null	int64
22	mn	521	non-null	int64
23	mp		non-null	int64
24	mz	521	non-null	int64
25	nl	521	non-null	int64
26	or	521	non-null	int64
27	pb	521	non-null	int64
28	ру		non-null	int64
29	rj		non-null	int64
30	sk	521	non-null	int64
31	tg	521	non-null	int64
32	tn	521	non-null	int64
33	tr	521	non-null	int64
34	tt	521	non-null	int64
35	un	521	non-null	int64
36	up	521	non-null	int64
37	ut	521	non-null	int64
38	wb	521		int64
dtvne	es: i	nt64(39)	

dtypes: int64(39)

memory usage: 162.8 KB

1 df2=df.tail(7)
2 df2

494 18	1893
494 18	1893
	.000
482 19	1964
453 19	1942
427 19	1933
420 19	1916
	482 453 427

2021_

	an	ap	ar	as	br	ch	ct	dd	dl	dn	ga	gj	hp	hr	jh
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

Data frame table styling

```
1 def color_red_negative(x) :
2    color = 'red' if x <0 else 'blue'
3    return 'color:' + color</pre>
```

1 df2.style.applymap(color_red_negative) #applymap for rows # for each cel

	an	ар	ar	as	br	cn	Ct	aa	αı	an	ga	93	np	nr	Jn
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

1 df2.style.highlight_max(color='red') #columnwise max

	an	ap	ar	as	br	ch	ct	dd	dl	dn	ga	gj	hp	hr	jh
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

1 df2.style.highlight_max(color='red',axis=1) #rowwise max , axis =1

	an	ар	ar	as	br	ch	ct	dd	dl	dn	ga	gj	hp	hr	jh
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

as br ch

an

00:00:00

ap

ar

ct dd dl dn

ga gj

hp hr

date 2021-08-00:00:00 2021-08-188 886 16 374 00:00:00 2021-08-17 354 1859 180 00:00:00 2021-08-1746 166 763 00:00:00 2021-08-161 755 00:00:00 2021-08-00:00:00 2021-08-276 22 165 758

```
1 df2.drop('tt',axis=1,inplace=True)
2 df2
```

/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: Sett A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas errors=errors,

		an	ap	ar	as	br	ch	ct	dd	dl	dn	• • •	ру	rj	sk	tg	
	date																
	2021- 08-10	2	1461	233	929	44	8	112	0	52	1		101	11	110	494	1
	2021- 08-11	0	1869	188	886	47	5	83	0	37	0		114	19	157	482	1
	2021- 08-12	0	1859	180	935	43	12	98	0	49	1		109	17	100	453	1
	2021- 08-13	0	1746	166	763	47	15	77	0	50	0		113	24	150	427	1
	2021- 08-14	0	1535	161	755	39	4	83	0	50	0		101	14	129	420	1
	2021-	0	1506	48	411	28	1	49	0	53	0		79	18	152	245	1
1 de 2 3		ax=(x_valı x==x.r ['font	nax())	bol	d' i	lf y	else	<u> </u>	for	y ir	ıism	ax]			

1 df2.style.apply(bold_max_value)

	an	ар	ar	as	br	ch	ct	dd	dl	dn	ga	gj	hp	hr	jh
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

1 df2.style.apply(bold_max_value).highlight_max(color='red') #statewise

as br ch

an

ar

ct dd dl dn ap ga gj hp hr jh date 2021-08-00:00:00 2021-08-188 886 16 374 00:00:00 2021-08-17 354 0 1859 180 00:00:00 2021-08-0 1746 166 763 23 333 00:00:00 2021-08-0 1535 161 755 00:00:00 2021-08-0 1506 48 411 16 182 22 00:00:00 2021-08-909 165 758 62 14 276 22 35 00:00:00

1 df2.style.apply(bold_max_value).highlight_max(color='red',axis=1) #rowwi

	an	ap	ar	as	br	ch	ct	dd	dl	dn	ga	gj	hp	hr	jh
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

an ap ar as br ch ct dd dl dn ga gj hp hr jh

2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

1 df2.style.background_gradient(cmap='Reds',axis=1)

an

ap

		•									J	23	-		,
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

as br ch ct dd dl dn

ga gj hp hr jh

1 df2.style.background_gradient(cmap='Reds',subset=['kl','ka','ap','dl'])#

ct dd dl dn

ga gj

hp hr jh

an

ap

ar

as

br ch

date 2021-08-233 929 8 112 00:00:00 2021-08-188 886 16 374 00:00:00 2021-08-180 935 17 354 16 44 00:00:00 2021-08-166 763 00:00:00 2021-08-161 755 25 284 00:00:00 2021-08-16 182 22 48 411 00:00:00 2021-08-909 165 758 0 27 14 276 22 35 00:00:00

an

ap

ar

as br ch

date 2021-08-00:00:00 2021-08-188 886 16 374 00:00:00 2021-08-1859 180 935 17 354 00:00:00 2021-08-1746 166 763 00:00:00 2021-08-1535 161 755 00:00:00 2021-08-48 411 00:00:00 2021-08-00:00:00

ct dd dl dn

hp hr jh

ga gj

ap

ar

as br ch

an

00:00:00

date 2021-08-8 112 00:00:00 2021-08-16 374 00:00:00 2021-08-180 935 17 354 00:00:00 2021-08-1746 166 763 00:00:00 2021-08-00:00:00 2021-08-16 182 00:00:00 2021-08-165 758 14 276 22

ct dd dl dn

hp hr jh

ga gj

1 df2.style.bar(subset=['kl','ka','mh'])

	an	ар	ar	as	br	ch	ct	dd	dl	dn	ga	gj	hp	hr	jh
date															
2021-08- 10 00:00:00	2	1461	233	929	44	8	112	0	52	1	141	21	419	23	34
2021-08- 11 00:00:00	0	1869	188	886	47	5	83	0	37	0	103	16	374	16	14
2021-08- 12 00:00:00	0	1859	180	935	43	12	98	0	49	1	88	17	354	16	44
2021-08- 13 00:00:00	0	1746	166	763	47	15	77	0	50	0	67	23	333	26	32
2021-08- 14 00:00:00	0	1535	161	755	39	4	83	0	50	0	88	25	284	14	28
2021-08- 15 00:00:00	0	1506	48	411	28	1	49	0	53	0	75	16	182	22	27
2021-08- 16 00:00:00	1	909	165	758	14	2	68	0	27	2	62	14	276	22	35

1 df2[['kl','ka','mh']].style.bar()

		kl	ka	mh
	date			
	2021-08-10 00:00:00	21119	1338	5609
	2021-08-11 00:00:00	23500	1826	5560
	2021-08-12 00:00:00	21445	1857	6388
	2021-08-13 00:00:00	20452	1669	6686
	2021-08-14 იი:იი:იი	19451	1632	5787
1 d1	⁼ 2[['kl','ka','	mh']].style.bar(axi	s=1)	

	kl	ka	mh
date			
2021-08-10 00:00:00	21119	1338	5609
2021-08-11 00:00:00	23500	1826	5560
2021-08-12 00:00:00	21445	1857	6388
2021-08-13 00:00:00	20452	1669	6686
2021-08-14	19451	1632	5787

kl hr mh

date

- 1 x=np.random.normal(size=1000)
- 2 x

```
array([-1.38322217e+00, -2.46246099e-01, 1.24474920e+00, -2.24595390€
        1.30052342e-01, -8.03235432e-02,
                                          8.59395086e−01, −1.24348778€
       -2.50069691e-01, -8.10033648e-01, -2.97807590e-01, -6.99263630e
       -5.03685207e-01, -2.09559050e+00, -3.08714230e+00, 9.93640061\epsilon
       -5.32295272e-01, 5.58544707e-01, 2.64039843e+00, -1.009893286
       -4.97854388e-01, 1.89721976e+00, -6.17583492e-01, -9.798346946
        2.86391322e-01, 6.36834673e-01, -2.18321720e-01, -2.83539300e
       -1.26256355e+00, -1.21413881e+00, -6.09740415e-01,
                                                           1.58720521€
       -9.02242792e-01, -4.67485689e-01, 7.56694539e-02, 3.49724611\epsilon
       -8.50341897e-01, 1.34099377e+00, -1.14039221e+00,
                                                           5.28130924€
        2.49837423e-01, -2.14629036e+00, -1.52145782e+00,
                                                           2.86707275€
        7.91444374e-01, -8.36707708e-01, 1.04711198e+00, -8.57818209\epsilon
        1.11244269e+00, -2.11796980e+00, -6.61111292e-01,
                                                            5.17357032€
        1.42448544e-01, 1.87412007e-01, 8.80707392e-01, -1.13485277\epsilon
        1.51544955e+00, 3.93089423e-01, -5.63430786e-01, -8.01267501\epsilon
                         6.36941340e-01, -1.67385314e-01, 8.02423013e
       -4.08295533e-02,
        3.43793723e-01, -7.49781844e-01, -5.81676009e-01, 7.48587459\epsilon
        5.88625123e-01, 4.34775061e-01,
                                           2.25290347e+00, 8.51823326e
                         6.70560676e-01, -9.44672295e-02, 1.330565046
       -3.67542579e-01,
                                          1.58879831e+00,
                                                           1.31066727€
        5.84425545e-02,
                        5.39200082e-01,
        3.03346603e-01, -3.97646320e-01,
                                          8.21319157e-02.
                                                           5.83900171€
                                          3.71470857e−01, −8.91667836€
       -1.57362669e+00,
                         1.32761756e+00,
       -3.21728063e-01, -8.62704540e-01, -7.17238965e-01, -7.63628920\epsilon
       -2.31860635e-01, -2.09105854e-01,
                                          3.72500967e−01, −1.76212769€
       -3.16541828e-01, -1.02299711e+00, -2.32499886e+00, -1.16664159\epsilon
       -7.02919394e-01, -7.63447017e-01, 2.67976287e-02, 7.26530627\epsilon
                                          1.31465495e+00, −2.01441260€
       -4.02580858e-01, 6.53880633e-01,
       -7.18731884e-01, 2.79245162e-01, 6.94515454e-01, 6.70192613\epsilon
       -1.56043128e+00, 2.04565825e+00, -1.10809372e+00, -1.28910219e
```

```
-1.21534419e+00.
                   9.80842856e-02,
                                     1.03477400e+00,
                                                        6.60193399€
 5.15758633e-01.
                   1.13859674e+00.
                                     1.60267443e-01.
                                                        1.31719324€
                   5.48765523e-01,
                                     7.64093296e-01,
                                                        9.24973154€
-4.98674375e-01,
 8.22545336e-01, -1.92732700e-01,
                                    -1.29756203e+00,
                                                      -2.19086079\epsilon
-2.74651156e-01.
                   1.97568844e-01, -7.56313016e-01,
                                                        4.22033787€
 5.32942842e-01,
                   4.43730346e-01,
                                    -6.15907953e-01,
                                                        6.96485037€
-9.88428865e-01,
                   1.87830557e+00,
                                     4.39573737e-01,
                                                      -6.57048036€
 6.98227303e-01, -3.00298375e-01,
                                    -9.10082637e-01,
                                                        2.15419478€
-8.39125861e-02,
                   1.18068639e+00,
                                     3.78827106e-01,
                                                        1.63994800€
 1.83450534e+00, -7.58324307e-02,
                                     2.13438696e+00, -3.856040896
-5.55225625e-01, -8.72179058e-01,
                                     5.31266830e-01.
                                                        1.33387567€
                                     6.87213880e-01,
 6.35970901e-01, -1.86271390e+00,
                                                        2.02923805€
                                    -1.38184246e+00,
 9.23333534e-02, -3.54213198e-02,
                                                        3.11398280€
 1.86062622e-02.
                   1.65531099e+00.
                                     1.37756379e+00.
                                                      -1.54891625€
                                                        1.08677995€
 1.97689091e+00,
                   5.38525037e-01,
                                     2.52672992e-01,
 1.26511275e+00, -3.79059117e-01, -1.80495651e-01,
                                                        2.88502516€
 2.15941651e-01, -1.72774730e+00,
                                     6.47804562e-01,
                                                        1.18701888€
                                    -8.88974919e-01.
 1.87938683e+00.
                   5.74387616e-01,
                                                      -9.75103461\epsilon
                   2.95528019e-01,
                                     1.90424210e-01,
                                                        5.57764435€
-4.23343073e-01,
-1.09796661e+00, -6.87934189e-01,
                                    -2.53639626e+00,
                                                        1.05635667€
 4.70561072e-01,
                   3.07988066e+00,
                                     3.24592473e-02,
                                                        2.22908982€
-2.06186283e+00,
                   2.50715257e-01,
                                     3.07328780e-01,
                                                        7.24388647€
 6.59437723e-01, -1.33151726e-01,
                                    -7.25377144e-01.
                                                      -8.24386010€
-5.50999089e-01,
                   1.60475551e+00,
                                    -2.47934998e-01,
                                                        9.99705915€
 5.48585079e-01,
                   2.52641330e-01,
                                     1.34603820e+00.
                                                      -4.47396332€
 5.55362287e-01,
                   9.96127446e-01,
                                     8.35639373e-01, -3.40962549\epsilon
                                     3.73336107e-01, -1.76224071\epsilon
 7.43778156e-01.
                   4.11647290e-01,
                   4.58047940e-01,
                                     1.20104154e-01,
                                                        7.47813451€
 4.88802945e-01,
                                     5.01025643e-01, -3.77305850\epsilon
 1.54254044e+00, -5.49480026e-01,
 1.54489426e+00, -3.07825464e-01.
                                     3.72918187e-02.
                                                        1.05612427€
 0 16000010- 01
                   4 00071404<sub>0</sub> 01
                                     1 76000704~+00
                                                        1 11/156500
```

1 d=sns.load_dataset('diamonds')
2 d

	carat	cut	color	clarity	depth	table	price	x	Y	;
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.4
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.3
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.3
3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.6
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.7
53935	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.5
53936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.6
53937	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.5
53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.7
53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.6

53940 rows × 10 columns

1 p=sns.load_dataset('penguins')
2 p

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm
0	Adelie	Torgersen	39.1	18.7	181.(
1	Adelie	Torgersen	39.5	17.4	186.(
2	Adelie	Torgersen	40.3	18.0	195.0
3	Adelie	Torgersen	NaN	NaN	Nan
4	Adelie	Torgersen	36.7	19.3	193.(
339	Gentoo	Biscoe	NaN	NaN	Nan
340	Gentoo	Biscoe	46.8	14.3	215.(
341	Gentoo	Biscoe	50.4	15.7	222.0
342	Gentoo	Biscoe	45.2	14.8	212.0
343	Gentoo	Biscoe	49.9	16.1	213.0

344 rows × 7 columns

```
1 tips=sns.load_dataset('tips')
2 tips
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

dist plot

1 sns.distplot(x)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
 warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893d56890>

1 sns.distplot(x,kde=False)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893cde2d0>

1 sns.distplot(x,rug=True) #observe rug below ,

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2103: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893b68c90>

1 sns.distplot(x,kde=False,rug=True)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2103: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893a461d0>

1 sns.distplot(x,kde=False,rug=True,bins=50) #bins

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
 warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2103: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f48939e7c50>


```
1 sns.distplot(d.x,kde=True )
2 sns.distplot(d.y,kde=True )
3 sns.distplot(d.z,kde=True )
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f489378ced0>

kde plot

1 sns.kdeplot(x) #one line plot , no shade

<matplotlib.axes. subplots.AxesSubplot at 0x7f489357a650>

1 sns.kdeplot(x,shade=True) # under curve

<matplotlib.axes. subplots.AxesSubplot at 0x7f48934e7390>


```
1 #super impose 2 plots together
2 y = np.random.uniform(size=1000)
3 y
```

```
array([0.00840268, 0.58176484, 0.10238233, 0.94945939, 0.32809189, 0.49596742, 0.67333034, 0.96931903, 0.78235968, 0.22133178, 0.36040894, 0.81099157, 0.93950458, 0.09039733, 0.74767172, 0.14096118, 0.15405408, 0.67436036, 0.02613345, 0.15962105, 0.64711397, 0.04259454, 0.8706145, 0.2148466, 0.10386919, 0.8800367, 0.43343868, 0.82882035, 0.48373386, 0.34746291, 0.02639855, 0.44540638, 0.42984157, 0.17994989, 0.06627569, 0.05402459, 0.70466553, 0.40864384, 0.68926721, 0.62455071, 0.69540137, 0.3480405, 0.24472847, 0.31754446, 0.77712553,
```

```
0.55965647, 0.94810329, 0.74658972, 0.183611 , 0.08733976,
0.29598083, 0.05665539, 0.14042813, 0.49993411, 0.25418364,
0.19821956. 0.01673812. 0.85032665. 0.03193886. 0.11381713.
0.54470616, 0.58067757, 0.22163509, 0.30184363, 0.81383319,
0.05255939, 0.98649265, 0.07256956, 0.61036155, 0.77449936,
0.30857029, 0.46970121, 0.89773675, 0.74708324, 0.16002394,
0.00312329, 0.73606517, 0.61164481, 0.01758414, 0.5518744,
0.18950027, 0.83892289, 0.75475088, 0.92763448, 0.65651529,
0.67673514, 0.16500265, 0.29078776, 0.78249804, 0.31326452,
0.8356492 , 0.17503118, 0.82045761, 0.40478116, 0.79484904,
0.42226557, 0.72135063, 0.13682856, 0.11819618, 0.98492059,
0.64287736, 0.62421466, 0.51272692, 0.680495 , 0.28829885,
0.16457608, 0.75164457, 0.20076538, 0.30782785, 0.44029025,
0.73364489, 0.03987217, 0.23150652, 0.97155785, 0.54212657,
0.51431937, 0.85437578, 0.54285335, 0.84610463, 0.59959768,
0.88380048, 0.4820623, 0.49715978, 0.47122263, 0.79140553,
0.65385141, 0.15426023, 0.72050225, 0.43682983, 0.64959324,
0.71353027, 0.77182205, 0.07543548, 0.65511965, 0.21119982,
0.95718803, 0.81404204, 0.84772028, 0.30720839, 0.92352039,
0.29659462, 0.22750668, 0.92072928, 0.89895241, 0.37007265,
0.70197895, 0.36413746, 0.59721617, 0.36393157, 0.51599688,
0.84566894, 0.3302247 , 0.25772485, 0.60033633, 0.30182308,
0.65757186, 0.98062622, 0.69513778, 0.58725485, 0.84644984,
0.42528613, 0.84707373, 0.46826153, 0.87007444, 0.38697482,
0.14165184, 0.23870348, 0.4491918, 0.8232365, 0.94812056,
0.19956528, 0.69105683, 0.93154212, 0.04206353, 0.97808592,
0.87545928, 0.90232337, 0.38672908, 0.21451255, 0.40120163,
0.11488226, 0.64694549, 0.00876433, 0.51647787, 0.63676198,
0.59622484, 0.79315921, 0.4341729 , 0.26744734, 0.10766125,
0.001581 , 0.4152475 , 0.17384458, 0.27132848, 0.2025346 ,
0.06457355, 0.3438178 , 0.57191671, 0.15304913, 0.96510576,
0.0109799 , 0.6134347 , 0.50656839, 0.69405747, 0.68757674,
0.78479068, 0.50133832, 0.85812864, 0.80857515, 0.47030241,
0.22720258, 0.75062122, 0.82998996, 0.21718729, 0.65446608,
0.36810834, 0.33582894, 0.01847862, 0.6761971 , 0.8111689 ,
0.00611769, 0.8797679 , 0.94904033, 0.5606339 , 0.334467
0.39596594, 0.60541563, 0.75220775, 0.04502316, 0.60663066,
0.88364851, 0.69402979, 0.5864431 , 0.46733218, 0.08731401,
0.88272379, 0.77565974, 0.93318822, 0.09025881, 0.6711778 ,
0.7395186 , 0.50224249, 0.77943095, 0.87021754, 0.88694286,
0.46397966, 0.6577817 , 0.47952794, 0.56985798, 0.00683388,
0.77012952, 0.43705059, 0.96043089, 0.24644083, 0.6046624 ,
0.28186547, 0.22827768, 0.59999344, 0.02067736, 0.51747215,
0.00758557, 0.93706007, 0.99650593, 0.48773824, 0.84304579,
0.48233798, 0.52976987, 0.8790901, 0.69408121, 0.79858549,
0.29525808, 0.33663569, 0.10156605, 0.32759253, 0.38626297,
0.57235459, 0.61007063, 0.4899008 , 0.73988976, 0.64325424,
0.14445631, 0.62981158, 0.2822574, 0.76504559, 0.44997154,
0.72456119, 0.41024194, 0.58957504, 0.50600518, 0.03635525,
0.87405152, 0.9495048, 0.12663276, 0.34890542, 0.64441668,
```

1 sns.kdeplot(y,shade=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f489347ef10>

1 sns.kdeplot(data=p,x='body_mass_g',shade=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893411e50>


```
1 sns.kdeplot(x,shade=True)
2 sns.kdeplot(y,shade=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893379ad0>


```
1 sns.kdeplot(p[p['species']=='Gentoo'].flipper_length_mm,shade=1)
2 sns.kdeplot(p[p['species']=='Adelie'].flipper_length_mm,shade=1)
3 sns.kdeplot(p[p['species']=='Chinstrap'].flipper_length_mm,shade=1)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893306290>


```
1 sns.kdeplot(p[p['species']=='Gentoo'].flipper_length_mm, shade=1)
2 sns.kdeplot(p[p['species']=='Adelie'].flipper_length_mm, shade=1)
3 sns.kdeplot(p[p['species']=='Chinstrap'].flipper_length_mm, shade=1)
4 plt.legend(title='Species', labels=['Gentoo', 'Adelie', 'Chinstrap'])
```

<matplotlib.legend.Legend at 0x7f48932d1b90>


```
1 sns.kdeplot(d.x) #blue
2 sns.kdeplot(d.y) #orange
3 sns.kdeplot(d.z) #green
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f489345ccd0>


```
1 x
```

```
array([-1.38322217e+00, -2.46246099e-01, 1.24474920e+00, -2.24595390e 1.30052342e-01, -8.03235432e-02, 8.59395086e-01, -1.24348778e -2.50069691e-01, -8.10033648e-01, -2.97807590e-01, -6.99263630e -5.03685207e-01, -2.09559050e+00, -3.08714230e+00, 9.93640061e
```

```
5.58544707e-01,
                                     2.64039843e+00, −1.00989328€
-5.32295272e-01,
-4.97854388e-01,
                   1.89721976e+00, -6.17583492e-01, -9.79834694\epsilon
 2.86391322e-01,
                   6.36834673e−01, −2.18321720e−01, −2.83539300€
-1.26256355e+00, -1.21413881e+00, -6.09740415e-01,
                                                       1.58720521€
-9.02242792e-01, -4.67485689e-01,
                                     7.56694539e-02,
                                                       3.49724611€
                   1.34099377e+00, -1.14039221e+00,
-8.50341897e-01,
                                                       5.28130924€
 2.49837423e-01, -2.14629036e+00, -1.52145782e+00,
                                                       2.86707275€
 7.91444374e-01, -8.36707708e-01,
                                     1.04711198e+00,
                                                     -8.57818209€
 1.11244269e+00, -2.11796980e+00, -6.61111292e-01,
                                                       5.17357032e
 1.42448544e-01,
                   1.87412007e-01,
                                     8.80707392e-01,
                                                     -1.13485277€
                   3.93089423e-01, -5.63430786e-01, -8.01267501\epsilon
 1.51544955e+00,
-4.08295533e-02,
                   6.36941340e-01, -1.67385314e-01,
                                                       8.02423013€
 3.43793723e-01, -7.49781844e-01, -5.81676009e-01,
                                                       7. 48587459€
                                     2.25290347e+00,
                                                       8.51823326€
 5.88625123e-01,
                  4.34775061e-01,
-3.67542579e-01,
                   6.70560676e-01,
                                    -9.44672295e-02,
                                                       1.33056504€
 5.84425545e-02,
                   5.39200082e-01,
                                     1.58879831e+00,
                                                       1.31066727€
                                                       5.83900171€
 3.03346603e-01, -3.97646320e-01,
                                     8.21319157e-02,
                   1.32761756e+00,
                                     3.71470857e-01,
                                                     -8.91667836€
-1.57362669e+00,
-3.21728063e-01, -8.62704540e-01,
                                    -7.17238965e-01.
                                                     -7.63628920€
-2.31860635e-01, -2.09105854e-01,
                                     3.72500967e-01,
                                                     -1.76212769€
-3.16541828e-01, -1.02299711e+00,
                                    -2.32499886e+00,
                                                     -1.16664159€
-7.02919394e-01, -7.63447017e-01,
                                     2.67976287e-02,
                                                       7.26530627€
-4.02580858e-01,
                   6.53880633e-01,
                                     1.31465495e+00,
                                                     -2.01441260€
-7.18731884e-01,
                   2.79245162e-01,
                                     6.94515454e-01,
                                                       6.70192613€
-1.56043128e+00,
                   2.04565825e+00,
                                    -1.10809372e+00, -1.28910219\epsilon
-1.21534419e+00,
                   9.80842856e-02,
                                     1.03477400e+00,
                                                       6.60193399€
 5.15758633e-01,
                   1.13859674e+00,
                                     1.60267443e-01,
                                                       1.31719324€
                   5.48765523e-01,
                                     7.64093296e-01,
                                                       9.24973154€
-4.98674375e-01,
8.22545336e-01, -1.92732700e-01,
                                    -1.29756203e+00,
                                                     -2.19086079€
                                                       4.22033787€
-2.74651156e-01,
                   1.97568844e-01, -7.56313016e-01,
 5.32942842e-01,
                  4.43730346e-01,
                                    -6.15907953e-01,
                                                       6.96485037€
-9.88428865e-01,
                  1.87830557e+00,
                                     4.39573737e-01,
                                                     -6.57048036€
 6.98227303e-01, -3.00298375e-01,
                                    -9.10082637e-01,
                                                       2.15419478€
                   1.18068639e+00,
-8.39125861e-02,
                                     3.78827106e-01,
                                                       1.63994800€
                                     2.13438696e+00, -3.856040896
 1.83450534e+00, -7.58324307e-02,
-5.55225625e-01, -8.72179058e-01,
                                     5.31266830e-01,
                                                       1.33387567€
                                                       2.02923805€
 6.35970901e-01, -1.86271390e+00,
                                     6.87213880e-01,
9.23333534e-02, -3.54213198e-02,
                                    -1.38184246e+00,
                                                       3.11398280€
 1.86062622e-02,
                   1.65531099e+00,
                                     1.37756379e+00,
                                                     -1.54891625€
 1.97689091e+00,
                   5.38525037e-01,
                                     2.52672992e-01,
                                                       1.08677995€
 1.26511275e+00, -3.79059117e-01,
                                                       2.88502516€
                                   -1.80495651e-01,
                                                       1.18701888€
 2.15941651e-01, -1.72774730e+00,
                                     6.47804562e-01,
                                                     -9.75103461\epsilon
 1.87938683e+00,
                   5.74387616e-01,
                                    -8.88974919e-01,
                                                       5.57764435€
-4.23343073e-01,
                   2.95528019e-01,
                                     1.90424210e-01,
-1.09796661e+00, -6.87934189e-01,
                                    -2.53639626e+00,
                                                       1.05635667€
 4.70561072e-01,
                   3.07988066e+00,
                                     3.24592473e-02,
                                                       2.22908982€
                                                       7.24388647€
-2.06186283e+00,
                   2.50715257e-01,
                                     3.07328780e-01,
 6.59437723e-01, -1.33151726e-01,
                                    -7.25377144e-01,
                                                     -8.24386010€
-5.50999089e-01,
                   1.60475551e+00,
                                    -2.47934998e-01,
                                                       9.99705915€
                   2.52641330e-01,
                                     1.34603820e+00,
                                                     -4.47396332€
 5.48585079e-01,
 5.55362287e-01,
                   9.96127446e-01,
                                     8.35639373e−01, −3.40962549€
                                     3.73336107e-01, -1.76224071\epsilon
7.43778156e-01,
                   4.11647290e-01,
                   4.58047940e-01,
                                     1.20104154e-01,
                                                       7.47813451€
 4.88802945e-01,
```

```
1.542340446+00, -3.494600206-01, 3.010230436-01, -3.773030306
1.54489426e+00, -3.07825464e-01, 3.72918187e-02, 1.056124276
```

box plot

```
1 sns.boxplot(x)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f48931e0990>


```
1 x=np.random.uniform(size=1000)
2 x
```

```
array([9.80668056e-01, 8.61888755e-01, 1.17160775e-01, 4.37125655e-01,
       8.00620243e-01, 3.04943621e-01, 7.04662125e-01, 1.99501193e-02,
       4.51544705e-01, 2.62909924e-01, 2.61713270e-02, 1.63902763e-01,
       2.31130989e-01, 9.10605587e-01, 4.58327054e-02, 4.85820503e-01,
       1.92725021e-02, 2.47979204e-01, 4.41756086e-01, 3.11357137e-01,
       3.48227629e-01, 5.66741345e-02, 5.33569478e-01, 9.29382408e-01,
       1.81261252e-02, 1.52158891e-02, 8.11125843e-03, 7.02058381e-01,
       6.49185729e-02, 2.90982923e-01, 9.87281867e-01, 7.29455691e-02,
       5.58081585e-01, 4.54787220e-01, 8.22631739e-02, 8.03154032e-01,
       1.24151770e-01, 9.12208093e-02, 3.89302623e-01, 1.09379256e-01,
       6.58372917e-01, 8.75570566e-01, 9.00952042e-01, 5.30778563e-01,
       5.76174311e-01, 5.06960383e-01, 5.04569855e-01, 2.13226097e-01,
       1.74375684e-01, 6.98105797e-01, 1.82155613e-01, 1.68838177e-01,
       9.88638428e-01, 1.95415965e-01, 7.97616028e-01, 2.55348593e-01,
       3.12033936e-01, 3.79720634e-01, 8.76681819e-01, 5.12404406e-01,
       2.53934668e-01, 6.50893537e-01, 2.73502105e-01, 9.36220485e-02,
       7.12205245e-01, 9.41063381e-01, 9.53909959e-01, 8.99620286e-01,
       6.21908911e-01, 8.30458654e-01, 3.19172310e-02, 8.23702912e-01,
       4.85967363e-01, 6.42310219e-01, 4.47347164e-01, 6.75438181e-01,
```

```
7.41680421e-01, 2.41313540e-01, 2.46471435e-01, 4.28758175e-01,
6.98601219e-02, 7.36374730e-01, 6.10655221e-01, 6.11143312e-01,
7.91413711e-01, 8.53918878e-01, 2.79666980e-01, 9.43745702e-01,
9.69807741e-01, 5.78407545e-01, 9.72812495e-01, 6.04319433e-01,
4.26540739e-01, 3.08097839e-01, 6.66614407e-01, 8.51412287e-02,
5.13485640e-01, 5.09106299e-01, 7.38277408e-01, 4.06763938e-01,
9.14029149e-02, 5.55121251e-01, 6.56834569e-01, 7.68004368e-01,
2.50354194e-01, 4.27663923e-01, 5.80538314e-01, 1.89043976e-01,
2.15788826e-01, 4.36510742e-01, 8.25333749e-01, 5.31394883e-01,
4.76335624e-01, 6.11428523e-01, 7.08438781e-01, 5.83126355e-01,
3.22220979e-01, 3.51450332e-01, 1.55033574e-01, 6.41830973e-01,
7.30458213e-01, 5.84930903e-01, 3.83848771e-02, 4.51520782e-01,
6.16264240e-01, 2.17978541e-01, 6.19354255e-01, 9.88622287e-01,
6.27007546e-03, 4.14814792e-01, 7.06205527e-01, 4.03256796e-01,
7.13499497e-01, 3.28590903e-02, 8.45227938e-02, 6.94455109e-02,
2.57906027e-01, 8.21334423e-02, 3.08419078e-01, 9.76624468e-01,
7.19197768e-01, 2.02824049e-01, 6.41376667e-01, 3.03731394e-01,
8.05274202e-01, 6.72962897e-01, 7.53496360e-01, 5.95357236e-01,
1.83990582e-01, 1.83104532e-01, 4.38473286e-01, 6.95598336e-01,
9.91438805e-01, 6.03211525e-01, 6.67594996e-01, 6.73659338e-01,
1.25102461e-01, 4.38358831e-01, 9.82466299e-01, 7.94490758e-01,
6.35056196e-01, 8.87588078e-01, 1.13771609e-01, 9.06142906e-01,
3.64397614e-02, 9.59997820e-01, 8.67641245e-01, 3.82222061e-01,
3.92420765e-01, 4.92798565e-01, 6.07304096e-01, 5.01874823e-01,
5.24696865e-01, 3.63584828e-01, 1.46186937e-03, 3.76972746e-02,
3.67333788e-01, 1.85262630e-01, 8.01993567e-02, 1.92163559e-01,
2.43552750e-01, 1.40690627e-01, 2.09833391e-01, 6.93344444e-01,
6.00136829e-01, 7.33924122e-01, 6.62556878e-01, 6.72930663e-01,
6.28451902e-01, 8.95357954e-01, 1.21724037e-01, 4.32718893e-01,
6.28071293e-02, 8.27037743e-01, 4.29907784e-01, 6.98335599e-01,
1.94332230e-01, 8.10821300e-01, 7.12681684e-01, 3.89694510e-01,
2.59537100e-01, 5.43302964e-01, 9.38805127e-04, 7.15894346e-01,
7.73674741e-01, 3.76273237e-01, 4.02391402e-01, 3.53330540e-01,
5.59433159e-02, 7.65115038e-01, 2.24585160e-01, 1.59368640e-01,
4.00689821e-01, 4.73671287e-01, 8.67609555e-01, 2.73176318e-01,
3.83521925e-02, 5.25877066e-01, 2.78484632e-01, 1.79735349e-01,
3.29011893e-02, 9.01976581e-01, 3.35577729e-01, 4.30164975e-01,
5.68868545e-01, 7.49271709e-01, 9.18561853e-01, 6.95461934e-02,
2.32521422e-01, 7.39268645e-01, 6.80103241e-01, 8.60852076e-01,
5.40665550e-01, 9.62332903e-01, 8.54896271e-01, 9.59305866e-01,
7 110/1577 01 / 00570227 01 1 06/22077 01 2 /7102220 01
```

```
1 sns.boxplot(x,whis=0.5,fliersize=1,orient='v')
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_core.py:1326: UserWarn warnings.warn(single_var_warning.format("Vertical", "x"))

<matplotlib.axes. subplots.AxesSubplot at 0x7f48931d9790>

1 sns.boxplot(data=p,x='body_mass_g')

<matplotlib.axes._subplots.AxesSubplot at 0x7f489316bf50>

→ Boxen Plot

1 sns.boxenplot(x)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4893256190>

1 sns.boxenplot(x = 'cut', y = 'price', data = d.sample(1000))

<matplotlib.axes._subplots.AxesSubplot at 0x7f489301af90>

→ Bar Plot

```
1 c=d.groupby('cut')['cut'].count()
2 c
```

cut
Ideal 21551
Premium 13791
Very Good 12082
Good 4906
Fair 1610
Name: cut, dtype: int64

1 sns.barplot(x=c.index,y=c.values)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892f292d0>

→ Joint Plot

```
1 x=np.random.normal(size=1000)
```

2 y=np.random.normal(size=1000)

```
1 df=pd.DataFrame({'x': x, 'y':y})
2 df.head()
```

	x	У
0	0.060027	0.414960
1	-0.383031	-0.242303
2	0.446028	-0.547799
3	0.664419	1.026018
4	1.153170	-0.680517

1 sns.jointplot(df.x,df.y)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f4893dba590>

1 sns.jointplot('x','y',data=df,kind='kde',shade=False)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: Futu FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f4892d62e90>

1 sns.jointplot('x','y',data=df,kind='kde',shade=True)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: Futu FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f4892c9e0d0>

→ Swarm Plot

1 sns.swarmplot(d.head(1000).carat)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892b15b50>

1 sns.swarmplot(data=d.sample(1000),x='cut',y='price')

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892a3d690>

1 sns.swarmplot(data=d.sample(1000),x='cut',y='price',hue='color')

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us
warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f48929b4cd0>

1 sns.swarmplot(data=p,x='island',y='flipper_length_mm',hue='species')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892951850>


```
1 sns.swarmplot(data=p,x='island',y='flipper_length_mm',hue='species',spli
```

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:3002: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: Us warnings.warn(msg, UserWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f48928bdb90>

Strip Plot

1 tips.head()

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

1 sns.stripplot(data=tips,x='day',y='total_bill')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892852210>

1 sns.stripplot(data=tips,x='day',y='total_bill',linewidth=0.3)

<matplotlib.axes._subplots.AxesSubplot at 0x7f489280c390>

1 sns.stripplot(data=tips,x='day',y='total_bill',hue='smoker',linewidth=0.

<matplotlib.axes._subplots.AxesSubplot at 0x7f48927b16d0>

1 sns.stripplot(data=tips,x='day',y='total_bill',hue='smoker',linewidth=0.

<matplotlib.axes._subplots.AxesSubplot at 0x7f489270cb90>

→ Violin Plot

1 sns.violinplot(x='body_mass_g',data=p)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892705790>

1 sns.violinplot(data=p,x='island',y='body_mass_g') #Can put data first

<matplotlib.axes._subplots.AxesSubplot at 0x7f48927a9890>

1 sns.violinplot(data=p,x='island',y='flipper_length_mm',hue='sex')

<matplotlib.axes._subplots.AxesSubplot at 0x7f48925e4110>

1 sns.violinplot(data=p,x='island',y='flipper_length_mm',hue='sex',split=1

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892515250>

1 sns.violinplot(data=p,x='island',y='flipper_length_mm',hue='sex',split=1

<matplotlib.axes._subplots.AxesSubplot at 0x7f4892430410>

1 p.head()

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm
0	Adelie	Torgersen	39.1	18.7	181.0
1	Adelie	Torgersen	39.5	17.4	186.0
2	Adelie	Torgersen	40.3	18.0	195.0
3	Adelie	Torgersen	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0

1 p['binary_species']=p.species.apply(lambda x : 'Gentoo' if x =='Gentoo' 2 p.head()

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm
0	Adelie	Torgersen	39.1	18.7	181.0
1	Adelie	Torgersen	39.5	17.4	186.0
2	Adelie	Torgersen	40.3	18.0	195.0
3	Adelie	Torgersen	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0

1 sns.violinplot(data=p,x='island',y='flipper_length_mm',hue='binary_speci

<matplotlib.axes._subplots.AxesSubplot at 0x7f489237a410>

→ Pair Plot

1 sns.pairplot(d.sample(1000))

1 sns.pairplot(d.sample(1000),hue='cut')

1 sns.pairplot(d.sample(1000),hue='cut',corner=True)

<seaborn.axisgrid.PairGrid at 0x7f488f883c10>


```
array([ 1.06104936e+00,
                          9.63700521e-02, -1.26151537e+00, -1.52840706\epsilon
       -1.19313926e+00, -3.41517046e-01, -1.68764617e+00, -3.66872608\epsilon
                                            2.12267595e+00, −5.33208610€
        2.11158367e-01,
                          1.04641208e+00,
                          1.06375111e-01,
                                            1.49661411e+00,
                                                              1.97663704€
       -6.43494681e-01,
       -6.28611001e-01,
                          2.20996620e-01, -1.07551303e-01,
                                                              1.36411652€
       -1.46353679e+00,
                          8.08858700e-01, -8.40231742e-01,
                                                              8.78917316€
                          1.23822558e-01,
                                            3.18398148e−01, −5.90985968€
        2.01058071e-01,
                          1.23366576e+00, -1.07726197e-01, -8.45323979\epsilon
       -8.81099808e-01,
                                           4.82909751e−01, −1.16780249€
        8.93734204e-01,
                          8.49985425e-01.
                          4.44762787e-01, -3.37430398e-01, -2.97397996€
       -6.54714731e-01,
                                            2.00193115e-01,
                          1.63609748e-01,
                                                              1.36596348€
        1.35445555e+00,
                          1.17453235e+00, -2.67265504e-01,
       -5.93995290e-01,
                                                              4.66939345€
       -4.35157549e-01, -1.05535120e+00,
                                            2.73841416e+00,
                                                              1.82617240€
        6.47354744e-01,
                          1.30566883e+00, -6.91124597e-01,
                                                              1.10788325€
        2.24543686e+00, -1.41936156e+00, 1.28966161e+00,
                                                              1.33977511€
       -5.78019914e-01,
                          6.48932736e-01, -7.53715755e-01, -1.47097267€
        3.77060377e-03, -1.42450018e+00, -9.53919182e-01, -9.39945954\epsilon
       -5.56561633e-01, -3.76622677e-01, -5.42837492e-01,
                                                              3.09568576€
        7.76685453e-01, -3.10741860e-02,
                                            9.17263852e−02, −8.29015413€
                          1.27513068e-04, -2.40756157e-03, -5.051966826
       -1.76063035e-01,
        9.12480389e-01, -1.62280926e+00, -1.23518460e+00,
                                                              8.99863788€
       -1.50099901e+00, -2.22096180e+00,
                                           1.52353423e+00, −6.90360921€
        1.08959734e+00, -9.05916911e-01, -2.01079372e+00, -8.86338086\epsilon
        2.02662857e+00, -2.32910008e-01, -1.03866023e+00, -1.35532094\epsilon
        1.08268527e+00,
                         4.51353236e-01,
                                            7.83980127e-01,
                                                              1.14767661€
                                            5.40916268e−01, −1.09521685€
       -8.00643698e-01,
                          1.36704695e+00,
       -1.67700460e-02, -3.73585136e-02, -4.63964319e-01,
                                                              1.64813783€
                          2.22567633e-01.
                                            1.58406408e+00.
                                                              2.05143693€
        3.98257530e-01,
       -1.08610525e+00,
                          3.38394764e-01, -4.29963696e-01,
                                                              1.04332606€
       -7.40147836e-01.
                          6.99655783e-01,
                                            1.09765220e−01, −8.85232171€
        1.87828137e-01, -1.76065613e+00,
                                            1.70202652e+00,
                                                              1.27099642€
       -1.02240197e+00.
                          3.46908319e-01, -2.78997864e-01, -2.64652890\epsilon
                                                              2.13643247€
       -3.20597791e-01, -1.83697695e+00,
                                            1.11799935e+00,
        1.74487249e-01,
                          8.81430944e-01,
                                            3.04910283e−01, −7.13133613€
                          1.53325736e-01,
       -2.88097049e-01,
                                            4.17162405e-01,
                                                              1.67086378€
        5.99857566e-01, -1.38001945e+00, -1.00102736e+00, -5.09439265\epsilon
        7.76061565e-02, -7.67223302e-01,
                                           -5.37009566e-01,
                                                              2.45696477€
                                                              4.15291302€
       -2.90461765e-01, -1.49686710e-01,
                                            3.33140822e-01,
       -9.44082625e-03, -9.77952359e-01,
                                            1.00908515e-01,
                                                              1.60322167€
        1.08086947e+00,
                         7.59985722e-01, -1.25227632e+00,
                                                              4.46362928€
        2.87701331e-01, -4.61648981e-01, -1.43211364e-01, -1.37188841\epsilon
       -5.54812343e-01, -9.09660427e-01, -2.16707465e-01, -1.63272576\epsilon
       -4.95108087e-01, -2.47528546e+00,
                                            9.77364396e-01,
                                                              1.46852099€
       -5.96852640e-01,
                         9.54972327e-01,
                                            3.36926225e-01, -7.56062157\epsilon
       -2.72143080e-01.
                          5.44074513e-01,
                                            2.82887603e+00, −1.40233483€
                          8.51782014e-01,
                                            1.81996718e+00, −1.47092190€
        1.05526887e+00,
       -3.60106243e-01, -7.92200669e-01,
                                            1.32974361e+00,
                                                              6.57084667€
       -1.36301809e+00, -7.16794542e-01,
                                            8.34980429e-01,
                                                              2.47811965€
                         1.05437139e-01.
                                            2.66559056e+00, −9.52474480€
        1.03671453e+00.
        2.09929637e-02, -6.79269257e-01,
                                            7.93190797e-01, -2.67170425\epsilon
        2.80231355e-01, -2.49535793e-01,
                                           -9.20589485e-01,
                                                              1.67840482€
```

```
8.16347099e-01, -4.15366800e-01, -1.27372843e-01,
                                                     1.83541275€
                 1.31379684e-01, -4.77003739e-01, -9.52875794e
-6.95136969e-02,
-1.82014403e-01,
                  7.58243810e-01, -4.93565190e-01,
                                                    7.48271281€
 1.10918331e-01, -5.49749685e-01,
                                   6.90829533e-01,
                                                     1.63292032€
-6.59856708e-01, 1.20015254e+00, -2.33665957e+00,
                                                    3.56477753€
                  7.66500441e-01, 9.07603725e-01,
                                                    9.65571234€
-6.56608997e-01,
-2.88753975e-01, 7.61185772e-01, 1.32311117e+00, 1.40224081\epsilon
                  1.19103647e+00, -4.58704276e-01, -1.06646011e
 4.29222796e-01,
 2 E0012E01 A 01
                  1 12/15/16/21/00
                                   1 00/20200 01
                                                    1 441052014
```

→ Pie Chart

```
1 d.groupby('cut')['cut'].count()
```

cut
Ideal 21551
Premium 13791
Very Good 12082
Good 4906
Fair 1610

Name: cut, dtype: int64

```
1 z_d = d.groupby('cut')['cut'].count()
2 plt.pie(z_d, labels = z_d.index, autopct = "%.2f%%")
3 plt.show()
```



```
1 plt.pie(z_d, labels = z_d.index, autopct = "%.2f%",explode=[0,0,1,0,0]) 2 plt.show()
```



```
1 cmap = plt.get_cmap('Set1')
2 cmap
```

<matplotlib.colors.ListedColormap at 0x7f48c3d6d950>

```
1 mycolor = cmap(np.arange(10))
2 mycolor
   array([[0.89411765, 0.10196078, 0.10980392, 1.
          [0.21568627, 0.49411765, 0.72156863, 1.
                                                          ],
          [0.30196078, 0.68627451, 0.29019608, 1.
          [0.59607843, 0.30588235, 0.63921569, 1.
                     , 0.49803922, 0.
          [1.
                                , 0.2
                     , 1.
          [1.
                                                1.
          [0.65098039, 0.3372549 , 0.15686275, 1.
                                                          ],
          [0.96862745, 0.50588235, 0.74901961, 1.
                                                          ],
          [0.6
                     , 0.6 , 0.6
          [0.6
                                 , 0.6
                                             , 1.
                     , 0.6
                                                          ]])
```

```
1 plt.pie(np.random.randint(0,10,5), wedgeprops = dict(width = 0.3), color 2 plt.show()
```


1 plt.pie(z_d, labels = z_d.index, autopct = "%.2f%", wedgeprops = dict(w
2 plt.show()

1 plt.pie(z_d, labels = z_d.index, autopct = "%.2f%", wedgeprops = dict(w
2 plt.show()

1 p1=pd.crosstab(p['species'],p['island'])
2 p1

	island	Biscoe	Dream	Torgersen
	species			
	Adelie	44	56	52
C	Chinstrap	0	68	0
	Gentoo	124	0	0

1 p2=p1.T 2 p2

species	Adelie	Chinstrap	Gentoo
island			
Biscoe	44	0	124
Dream	56	68	0
Torgersen	52	0	0

1 plt.pie(p2.sum(axis=1), labels=p2.index)

1 plt.pie(p2.sum(axis=1), labels=p2.index, wedgeprops=dict(width=0.3))

1 plt.pie(p2.sum(axis=1), labels=p2.index, wedgeprops=dict(width=0.3), radius

1 p2

species	Adelie	Chinstrap	Gentoo	
island				
Biscoe	44	0	124	
Dream	56	68	0	
Torgersen	52	0	0	

1 plt.pie(p2.sum(axis=1), labels=p2.index, wedgeprops=dict(width=0.3), radius
2 plt.pie(p2.values.flatten(), labels=['Adelie', 'Chinstrap', 'Gentoo', 'Adeli

```
([<matplotlib.patches.Wedge at 0x7f488e57cf90>,
 <matplotlib.patches.Wedge at 0x7f488e478450>,
 <matplotlib.patches.Wedge at 0x7f488e478790>,
 <matplotlib.patches.Wedge at 0x7f488e478750>,
 <matplotlib.patches.Wedge at 0x7f488e487250>,
 <matplotlib.patches.Wedge at 0x7f488e478110>,
 <matplotlib.patches.Wedge at 0x7f488e4783d0>,
 <matplotlib.patches.Wedge at 0x7f488e4e3c90>,
 <matplotlib.patches.Wedge at 0x7f488e493250>),
 [Text(0.7086665600368222, 0.30115063786347374, 'Adelie'),
 Text(0.5344371254920076, 0.5543256794483187, 'Chinstrap'),
 Text(-0.2750677757511998, 0.719192407317602, 'Gentoo'),
 Text(-0.697195151053494, -0.3268316406768105, 'Adelie'),
 Text(-1.414467053015193e-16, -0.77, 'Chinstrap'),
 Text(0.4480313745243962, -0.6262330935376861, 'Gentoo'),
 Text(0.6847934573226385, -0.35207658372591005, 'Adelie'),
 Text(0.77, -1.885956070686924e-16, 'Chinstrap'),
 Text(0.77, -1.885956070686924e-16, 'Gentoo')])
```



```
1 plt.pie(p2.sum(axis=1), labels=p2.index, wedgeprops=dict(width=0.3), radius
2 plt.pie(p2.values.flatten(), labels=['A','C','G','A','C','G','A','C','G']
```

```
([<matplotlib.patches.Wedge at 0x7f488e4278d0>,
 <matplotlib.patches.Wedge at 0x7f488e3ec510>,
 <matplotlib.patches.Wedge at 0x7f488e3ec850>,
 <matplotlib.patches.Wedge at 0x7f488e3ec810>,
 <matplotlib.patches.Wedge at 0x7f488e3f8310>,
 <matplotlib.patches.Wedge at 0x7f488e3ec1d0>,
 <matplotlib.patches.Wedge at 0x7f488e3ec490>,
 <matplotlib.patches.Wedge at 0x7f488e455d90>,
 <matplotlib.patches.Wedge at 0x7f488e405310>),
 [Text(0.7086665600368222, 0.30115063786347374, 'A'),
 Text(0.5344371254920076, 0.5543256794483187, 'C'),
 Text(-0.2750677757511998, 0.719192407317602, 'G'),
 Text(-0.697195151053494, -0.3268316406768105, 'A'),
 Text(-1.414467053015193e-16, -0.77, 'C'),
 Text(0.4480313745243962, -0.6262330935376861, 'G'),
 Text(0.6847934573226385, -0.35207658372591005, 'A'),
 Text(0.77, -1.885956070686924e-16, 'C'),
 Text(0.77, -1.885956070686924e-16, 'G')])
```


1 p2

species Adelie Chinstrap Gentoo island

Biscoe	44	0	124
Dream	56	68	0
Torgersen	52	0	0

```
1 plt.pie(p2.sum(axis=1), labels=p2.index, wedgeprops=dict(width=0.3), radius
2 plt.pie(p2.values.flatten(), labels=['A','','G','A','C','','A','',''], wed
```

```
([<matplotlib.patches.Wedge at 0x7f488e51d050>,
 <matplotlib.patches.Wedge at 0x7f488e3df9d0>,
 <matplotlib.patches.Wedge at 0x7f488e3dfd10>,
 <matplotlib.patches.Wedge at 0x7f488e36c290>,
 <matplotlib.patches.Wedge at 0x7f488e36c2d0>,
 <matplotlib.patches.Wedge at 0x7f488e3df350>,
 <matplotlib.patches.Wedge at 0x7f488e36cd90>,
 <matplotlib.patches.Wedge at 0x7f488e3d6150>,
 <matplotlib.patches.Wedge at 0x7f488e3787d0>],
 [Text(0.7086665600368222, 0.30115063786347374, 'A'),
 Text(0.5344371254920076, 0.5543256794483187, ''),
 Text(-0.2750677757511998, 0.719192407317602, 'G'),
 Text(-0.697195151053494, -0.3268316406768105, 'A'),
 Text(-1.414467053015193e-16, -0.77, 'C'),
 Text(0.4480313745243962, -0.6262330935376861, ''),
 Text(0.6847934573226385, -0.35207658372591005, 'A'),
 Text(0.77, -1.885956070686924e-16, ''),
 Text(0.77, -1.885956070686924e-16, '')])
```



```
1 plt.pie(p2.sum(axis=1), labels=p2.index, wedgeprops=dict(width=0.3), radius
2 plt.pie(p2.values.flatten(), labels=['A','','G','A','C','','A','',''], wed
```

```
([<matplotlib.patches.Wedge at 0x7f488e384ed0>,
 <matplotlib.patches.Wedge at 0x7f488e353cd0>,
 <matplotlib.patches.Wedge at 0x7f488e35f050>,
 <matplotlib.patches.Wedge at 0x7f488e35f590>,
 <matplotlib.patches.Wedge at 0x7f488e35f5d0>,
 <matplotlib.patches.Wedge at 0x7f488e3536d0>,
 <matplotlib.patches.Wedge at 0x7f488e35f1d0>,
 <matplotlib.patches.Wedge at 0x7f488e348590>,
 <matplotlib.patches.Wedge at 0x7f488e2ecad0>),
 [Text(0.4509696291143413, 0.1916413150040287, 'A'),
 Text(0.34009635258582294, 0.3527527051034755, ''),
 Text(-0.17504313002349073, 0.4576678955657467, 'G'),
 Text(-0.4436696415794961, -0.20798377133978846, 'A'),
 Text(-9.001153973733045e-17, -0.4899999999999999, 'C'),
 Text(0.285110874697343, -0.3985119686148911, ''),
 Text(0.4357776546598608, -0.22404873509830636, 'A'),
 Text(0.4899999999999994, -1.200153863164406e-16, ''),
 Text(0.4899999999999994, -1.200153863164406e-16, '')])
```


Plotting 4 different plots in a figure

```
1 sns.kdeplot(data=p,x='body_mass_g',shade=1)
2 sns.boxplot(data=p,x='body_mass_g')
3 sns.swarmplot(data=p,x='body_mass_g')
4 sns.violinplot(data=p,x='body_mass_g')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f488e309350>


```
1 fig,axs = plt.subplots(nrows=4)
2 fig.set_size_inches(10,10)
3 sns.kdeplot(data=p,x='body_mass_g',shade=1)
4 sns.boxplot(data=p,x='body_mass_g')
5 sns.swarmplot(data=p,x='body_mass_g')
6 sns.violinplot(data=p,x='body_mass_g')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f488e1bee90>


```
1 fig,axs = plt.subplots(nrows=4)
2 fig.set_size_inches(10,10)
3 sns.kdeplot(data=p,x='body_mass_g',shade=1,ax=axs[0])
4 sns.boxplot(data=p,x='body_mass_g',ax=axs[1])
5 sns.swarmplot(data=p,x='body_mass_g',ax=axs[2])
6 sns.violinplot(data=p,x='body_mass_g',ax=axs[3])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f488e04a710>


```
1 fig,axs = plt.subplots(nrows=2,ncols=2)
2 fig.set_size_inches(20,10)
3 sns.kdeplot(data=p,x='body_mass_g',shade=1,ax=axs[0][0])
4 sns.boxplot(data=p,x='body_mass_g',ax=axs[0][1])
5 sns.swarmplot(data=p,x='body_mass_g',ax=axs[1][0])
6 sns.violinplot(data=p,x='body_mass_g',ax=axs[1][1])
```



```
1 fig,axs=plt.subplots(nrows=3)
2 fig.set_size_inches(10,10)
3 sns.boxplot(p[p['species']=='Gentoo'].flipper_length_mm,ax=axs[0])
4 sns.boxplot(p[p['species']=='Adelie'].flipper_length_mm,ax=axs[1])
5 sns.boxplot(p[p['species']=='Chinstrap'].flipper_length_mm,ax=axs[2])
6 plt.tight_layout()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: Futu FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: Futu FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: Futu FutureWarning

<matplotlib.legend.Legend at 0x7f48925cd0d0>

180

185

190

195

flipper_length_mm

200

205

210

```
1 g=sns.FacetGrid(p,row='species')
2 g.map(sns.kdeplot,'flipper_length_mm')
```

<seaborn.axisgrid.FacetGrid at 0x7f488e2faad0>


```
1 g=sns.FacetGrid(p,row='sex',col='island')
2 g.map(sns.violinplot,'flipper_length_mm')
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:670: UserWa warnings.warn(warning)

<seaborn.axisgrid.FacetGrid at 0x7f488db921d0>

Miscellaneous