

Speech Emotion Recogntion System

VOICE VIBES

Submitted by: Archit Gupta, Shivi Mehrotra

Submitted to: Dr Bhawna Saxena

Concept Ideas

A Speech Emotion Recognition (SER) extracts speech features, classifies emotions via ML, integrates with voice interfaces, and needs annotated data. It detects happiness, sadness, or anger in real-time for empathetic human-computer communication.

Solution Approach

- Dataset loading and preprocessing: Extract features from audio datasets.
- Data augmentation: Enhance dataset
- diversity with noise addition, stretching, shifting, and pitch changes. Model building: Construct a CNN-based model with Keras, incorporating residual blocks and a softmax layer for multi-class classification.
- Training: Utilize Adam optimizer, categorical cross-entropy loss, & callbacks for model optimization & saving.
- **Evaluation: Assess model accuracy** and performance on training, validation, and test sets.
- Backend: Create a Flask backend for audio data processing and emotion prediction.
- Integration: Connect frontend & backend to enable data exchange & emotion label display.

RESULTS

The SER system demonstrates high accuracy and performance in detecting and classifying emotions from speech signals. It shows robustness across different speech styles and accents, indicating its potential for real-world applications.

CONCLUSION

The real-time speech emotion recognition project utilized a CNN model integrated with a React frontend to accurately detect emotions from speech audio. Challenges included dataset diversity and model training. Project demonstrates feasibility for practical applications, suggesting future enhancements for broader impact and robustness.