

FORENSIC ANALYSIS OF FAILED SURGE ARRESTORS

Mr. Y.V. Joshi SE (Engg)
Ms. Rashmi Chaudhary JE (Engg)
Mr. Bhavin Kariya JE (Engg)

Gujarat Energy Transmission Corporation Limited

28th April 2016

Presentation Flow:

Introduction

Concept Behind Analysis

GETCO Approach

Forensic Analysis of Failed SAs

Various Case Studies

Remedial Measures

Conclusion

Introduction:

"Important" Equipment of the Grid

- Protects electrical power systems from Lighting/Switching surges
- Main component of SA: Semiconductor ZnO discs
 - highly voltage sensible
 - Insulating at low voltage
 - Conducting at high voltage

"MUST" conditions for Surge Arrester:

- ✓ Conducts only during over voltages/surges
- ✓ Minimal surge clearing Time
- ✓ Low power loss under normal operating conditions
- ✓ High resistance to power current
- ✓ High energy handling capability.
- ✓ No system disturbance while operation.
- ✓ Economical, reliable and having long life

Concept behind Analysis:

➤ Any failure, if analyzed, is useful to improve upon design, quality and operational aspects.

> Forensic analysis:

- Allow to determine cause of end of life of arrestor, whether it is,
 - Normal or expected (i.e. while performing protecting function)
 - Or any other issue related to
 - Design
 - Manufacturing or
 - Maintenance
- ➤ This exercise is useful for continuous improvement to build up efficient, safe & uninterrupted power system.
- It is also important for OEM to become consistent in quality while design & manufacturing.

GETCO Approach:

闄		=1	
Z		AT	
	7	-	Ē
	M	(3
		()

Class	400 kV	220 kV	132 kV	66 kV	TOTAL
Population	313	2600	1491	16196	20600

- ➤ Increasing failure rates observed in recent years (Year: 2011-12, 2012-13, 2013-14).
- Monitoring of leakage current of each and every SA is already in place.
- ➤ Knowing the reason of failure, we can identify areas of improvement like design, manufacturing, quality or service conditions.
- > To identify the reason of failure, root cause analysis of each failure is essential.

Class	400 kV	220 kV	132 kV	66 kV	TOTAL
No. of failures	3	9	13	157	182
Rate of failure out of total population	1 %	0.35 %	0.9 %	1 %	0.9 %

Year wise Failure

Forensic Analysis of Failed Surge Arrestors:

Failure Analysis Strategy

Analysis of the failure report submitted by the field Standard check list of site verification Standard format for carrying out failure investigation Collection of system data and input from field related to situation Inspection of failed arrestor by dismantling actual arrestor & correlate with the above three

Preparation of forensic report and listing out potential root cause

1. Analysis of preliminary field reports

Preliminary field failure reports comprise of

- Name plate data
- Date of commissioning
- Application (Line, Transformer or Capacitor bank)
- System conditions at the time of failure
- Weather conditions at the time of failure
- Any other specific data

2. Standard Check list for site verification

Standard

The standard check list/format, describing post failure condition of SA, was prepared to maintain uniformity & precision in data collection during site visits.

:: CHECK LIST FOR LIGHTNING ARRESTER ::

1] LA Details:		
a) Make of Lightning arresters		
b) Rating of LA.		
c) MCOV of LA.		
d) SI. No. of LA.		
e) Year of manufacturing.		
f) No. of units per arrester.		
g) Rating of each unit.		
h) Date of Commissioning		
i) Date of Failure		
2] PHYSICAL VERIFICATION OF ARRESTER:-		
S. N. ITEM	YES /	REMARKS.
EXTERNAL VERIFICATION.		
 BUSHING, (SHORT CIRCUIT MARKS, FLASHOVER MARKS) 		
2. BUSHING BROKEN.		
3. FLASHOVER MARKS ON CASTINGS		
TOP		
BOTTOM		
4. FLASHOVER MARKS ON LINE TERMINAL CONNECTOR.		
5. FLASHOVER MARKS ON LINE TERMINALBRACKET.		
INTERNAL VERIFICATION AFTER OPEN	IIMG	
CONDITION OF END COVER PLATES	1	
• TOP		
BOTTOM		
2. CONDITION OF PRESSURE RELEASE DEVICE OPERATED		
TOP		
BOTTOM		
3. GASKET CONDITION		
• TOP		
BOTTOM MOISTURE INGRESS		
STACK POSITION, CARBON CONTAMINATION.		
5. NO. OF BLOCKS PER STACK / UNIT.	1	
BLOCK DETAILS IF ANY (PRINTED ON BLOCK)	1	
 NO. OF BLOCKS DAMAGED. 		
NO. OF FRP RODS PER UNIT/STACK.		
FLASHOVER MARK/DAMAGE OF FRP ROD.		
 MELTING OF STACK SEPARATERS. 		
11. FLASHOVER OF STACK SUPPORTERS. 12. SPRING CONDITION		
SURGE MONITOR.	1	
SERIAL NO. FLASH OVER.		
FLASH OVER. NO. OF IMPULSES COUNTED.	1	
IMPULSE MARKS ON SURGE MONITOR.	1	
31 Remarks if any:-	ı	

3. Standard format for carrying out failure investigation

Matrix of Root cause, Failure mechanism and Symptoms

Matrix

1. External Flasho	ver
Typical reasons	Lightning.
	Severe contamination with presence of moist atmosphere
	Caused by animals, like monkey, snake etc.
Failure	Due to electrocution of animal, external arc can be created over
mechanism	the external housing of LA.
	However, LA may not always get affected due to external
	flashover if the protection system is properly operated
Indicators	Marking of arcs on HV side of LA or on housing and base

2. Moisture Ingress

zi moistare mgi	
Typical reasons	Manufacturing defect
	Mishandling
	External flashover damaging seal
Failure	Due to entry of moisture, relative humidity reaches inside same as
mechanism	outside. With low temperature condensation occurred along
	electrically stressed, components leads to dry band arcing & dielectric
	tracking along wet surface and eventually results in a short circuit of
	unit.
Indicators	Brown rust on metal parts
	White rust on aluminum parts
	Increased watt loss at operating voltage
	Tracking along electrically stressed components
	Increased temperature in infrared image
	Green copper oxidation
	Hardened rubber seal left with lower compressive strength
	Old rust covered by carbon by-products of arcing which indicates rust
	was there prior to failure
	Tracking inside

3. Excessive Intern	nal Partial Discharge
Typical reasons	Excessive PD lead to degradation of ZnO discs as well as dielectric
	capability.
	Happened in significant internal air space.
	Manufacturing defects, moisture ingress, mishandling, excessive
	contamination & moisture on external surfaces.
Failure	Minor PD activity starts & then grows. After long exposure, the
mechanism	dielectric in this area of arrester degrades & leads to flashover of
	electrically stressed parts.
	PD can also reduce the oxygen content of the air around the discs
	and in some cases changes characteristics of disc.
Indicators	PD is indicated by high freq spikes near edges & corners,
	discoloration of components & contact points etc.
	Multi colored growths on rubber components
	Corroded internal parts, oxidization etc.

4.	Lig	htn	ing
----	-----	-----	-----

4. Lightning	
Typical reasons	Terminal overload occur due to lightning stroke above designed
	value.
	However, failure can occur later if the damage due to this is minimal.
	Excessive single current surge or a significant multi-stroke surge
	Improper lightning duty specified
	Successive strokes on same unit
	TOV followed by a surge due to fault on that circuit exceeding SA's
	capability
Failure	This minor damage triggers PD in turn leads to tracking and causes
mechanism	electrical failure. If capability is exceeded by LI stroke, the ZnO discs
	will initially take surge, heat up, may get cracked and then flashover.
	If minor damage is there, it may fail later on.
Indicators	ZnO discs get punctured
	Porcelain gets cracked or broken

5. Temporary Over	· Voltages (TOV)
Typical reasons	Terminal overload caused by PF voltage beyond design capability.
	A TOV overload can be immediate but, it can also occur a long term
	failure triggered by unrelated other issues.
	Excessive voltage rise in healthy (un-faulted) phase
	Misapplication of arrester
	Change in neutral configuration, loss of neutral on system
	Ferro resonance
	Ageing of ZnO discs
Failure	During TOV overload, the voltage across the arrester rises to a level
mechanism	where the disks conduct much more than during the steady state
	condition.
	Discs get heated up significantly in turn lowers its resistance and
	leads to more conduction and ultimately fails.
Indicators	Change in disc characteristics
	Cracking of few discs in stack
	Flashover of discs
	Opening of vent
SURGEP	ROTECH your link to ele

your link to electricity

6. Switching Surge Overload		
Typical reasons	It may occur due to surges generated from switching of capacitor	
	banks, long lines, exceeding design limits of arresters.	
	Re-strike or prestrike of breakers and/ or pre strike of capacitor	
	switches.	
Failure	Same as for lightning mechanisms.	
mechanism		
Indicators	Numerous small holes in the aluminum electrode of the discs	
	generally around circumference of disc electrode.	
	Polarization of disc at low levels	
Remarks	Damage due to fault current after the initial overload can disguise	
	the real cause.	

7. Ageing of Discs	
Typical reasons	Due to ageing, long term changes are observed in MOV arresters.
	More losses due to ageing occur.
	Improper manufacturing of disc.
Failure	At normal operating voltage, losses gradually increase leading to
mechanism	internal heating. When this heat exceeds arrester's ability to
	dissipate in to environment, this leads to dielectric failure and a fault
	on system.
	Thermal run away
Indicators	Hot arrester at normal operating temperature
	Excessive electrical losses at operating voltage

8. Other Causes

External	Lead to external flashover and excessive internal partial discharge
contamination	
Improper selection of	U _c value lower than steady state value of system voltage.
U _c or TOV rating	
Unbalance electric	Clearance between each phase and with ground, overheating of discs
field	due to voltage imbalance and inappropriate grading ring can cause
	this type of failure.
Misalignment of disc	Off centered column of discs along the length of housing, physical
column	damage to edges of disc, misalignment during transport & handling,
	improper spring pressure can lead to PD and ultimately failure.
Mechanical stress	Excessive mechanical stress due to jumper, failure of seals due to
	mechanical load on one side etc.
Burrs	Sharp points on conductive parts used inside lead to internal
	discharge. Design or manufacturing defects also can contribute to this.
Insufficient Dielectric	Any of the material used inside having inadequate dielectric strength
strength	to withstand steady or impulse states can track or flashover. And it
	will worsen with surge event.
Assembly	Improper verification of internal arrangement as per drawings.

4. Collection of system data and input from field related to situation

➤ Any additional information like brief history of equipment, last LCM readings, maintenance records etc. were asked from field and final database prepared.

5. Inspection of failed arrestor by dismantling actual arrestor

- During site visit each failed SA was dismantled.
- Photographs of various internal & external parts of SA were taken.
- ➤ The condition of various parts of SA is matched with the indicators or symptoms given in matrix.
- ➤ Some of the photographs of dismantled SAs, pointing out their root causes of failures are shown here.

Moisture Ingress

Excessive Internal PD

Broken edges & corners

Discoloration of internal parts

your link to **electricity**

Lightning

Cracked & broken porcelain Punctured ZnO discs

External Flashover

6. Preparation of forensic report and listing out potential root cause

After matching the conditions of failed SA with indicators or symptoms given in the matrix, the potential root causes of 20 nos. of Surge Arrestors are concluded as follows:

Analysis

Various Case Studies:

Case Study -1

60 kV Line SA at 66 kV Chhaya Substation, Year of Manu.-2010, Failed on 06.09.2013

(A)External Inspection

1) Condition of components:

- Bushing & casting found intake.
- No any flashover marks observed .
- Top end cover plate found open.
- Seal damaged

2)Indicators of failure:

Sealing at top flange found damaged which indicates possibility of moisture ingress inside surge arrester.

OH-CO

(B)Internal Inspection:

1) Condition of components:

- ZnO discs found flashover.
- Carbon contamination observed at stack.
- FRP rod found damaged.
- Stack separators and supporters melt partially.
- Spring corroded slightly.
- Gasket found damaged.

2) Indicators of failure:

- Brown rust on metal parts, white rust on aluminium parts, corroded spring and damaged gasket denote entrance of moisture inside.
- Discoloration on some of the discs, multi colored growths on rubber components and colored internal parts were observed which points out possibility of Partial Discharge.

(C) Root Cause:

Rusting on metal parts and carbon contamination confirm presence of moisture inside surge arrestor. Due to this moisture, partial discharge activity accelerated and finally resulted in thermal runaway of surge arrestor.

60 KV Line SA at 220 kV Shivlakha Substation,

Year of Manu.-2007, Failed on 24.09.2013:

(A)External Inspection

1) Condition of components:

- Bushing completely broken in pieces
- Both end cover plates damaged

2) Indicators of failure:

Totally broken bushing and end cover plates designate heavy pressure produced inside the surge arrestor.

GHI-CO

(B) Internal Inspection:

1) Condition of components:

- Gaskets totally damaged
- Stack found displaced
- All discs damaged
- Presence of flashover marks on FRP rod
- Stack supporters and few of stack separators partially melted

(C) Root Cause:

There was no lightning stroke at the time of failure but the atmosphere was rainy and humid.

So it is certain that there was an exchange of moist air between atmosphere and surge arrestor which resulted in internal flashover with heavy pressure developed inside.

Due to this acute pressure, bushing was broken into pieces with blast.

120 KV Capacitor Bank SA at 220 kV Gondal Substation, Year of Manu.-1999, Failed on 02.04.2013:

1) Condition of components:

- Flashover marks on bushing
- Castings ,Terminal connectors and terminal bracket & Support insulators broken.
- Bottom portion of surge arrestor damaged completely.

2) Indicators of failure:

Marking of arcs on housing & base envisage possibility of external flashover.

Root Cause:

As per field report, the surge arrestor was having high leakage current (LCM reading- $444~\mu A$) which indicates degrading of property of ZnO discs at rated voltage.

Moreover, this surge arrestor was installed at 132 kV capacitor bank, so it is prone to frequent switching surges.

In view of this, it can be concluded that during any switching operation the surge arrestor might get failed while withstanding voltage swing and consequently flashed.

Remedial Measures:

Majority of the Surge Arrestors, in quantity, have failed in 66 kV class. So utilities have to focus on manufacturing, quality and system operation aspects, as the 66 kV Surge Arrestors are closed to distribution system.

The following remedial actions are planned by GETCO:

- 1) Condition monitoring data shall be recorded in a **live asset** management module and such in built analysis should bring out defective SAs for replacement.
- 2) Detailed engineering exercise to **select gasket as well as sealing arrangement** is required to be done to improve design.
- 3) GETCO will carry out this exercise in association with OEMs & material experts.
- 4) The approach will also be to compare 66 kV SA design with 400/220 kV SA designs, with respect to sealing arrangements, constructional features, gasket material etc.

6) GETCO is also looking forward to implement online leakage current monitoring (**Digital Surge Monitoring**) and to integrate the same with substation automation system.

Conclusion:

The high failure rate of Surge Arrestor has been a matter of concern for GETCO in spite of condition monitoring system in place.

This exercise is useful not only to utilities, but also important to OEM to improve upon design & manufacturing process and become consistent in quality.

Thank You!

