Задача 1.12. Равновесная ионизация одноатомного газа для разных веществ и давлений

1 Задача

Проведем расчет ионизационного равновесия одноатомного газа с помощью уравнения Саха для равновесной ионизации:

$$\frac{\alpha^2}{1-\alpha^2} = \frac{g_e g_i}{g_a} \left(\frac{m}{2\pi\hbar^2}\right)^{\frac{3}{2}} \frac{T^{\frac{5}{2}}}{p} \exp\left(-\frac{I}{T}\right),$$

где $\alpha:=\frac{n_e}{n_a+n_e}$ - степень ионизации (относительная доля распавшихся атомов). Эту величину будем строить в зависимости от температуры.

2 Степень ионизации для разных веществ

Рассмотрим зависимость степени ионизации от температуры для следующих веществ:

при постоянном давлении, равном атмосферному, в зависимости от температуры.

Рис. 1: Кривые степени ионизации для разных веществ при атмосферном давлении

Отсюда видно, что чем больше потенциал ионизации вещества газа, тем правее точка T_* перегиба графика, причем $T_* \sim \frac{I}{10}$.

График повторяет следующий результат, приведенный на сайте

https://studfile.net/preview/4175787/page:18

Рис. 2.17. S-образные кривые степени ионизации различных элементов в зависимости от температуры при атмосферном давлении

Рис. 2: S-образные кривые степени ионизации различных элементов в зависимости от температуры — for the reference

3 Степень ионизации для калия при разных давлениях

С повышением давления ионизация уменьшается, что следует из зависимости правой части формулы Саха от давления (давление находится в знаменателе), и поскольку функция $f(x) = \sqrt{x/(x+1)}$ возрастающая.

Рис. 3: Кривые степени ионизации для калия при разных давлениях

Periodic Table of the Elements First Ionization Potential

		Group																
Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	<u>H</u> 13.598																	<u>He</u> 24.587
1117		<u>Be</u> 9.322											<u>B</u> 8.298	<u>C</u> 11.26	<u>N</u> 14.534	<u>O</u> 13.618	<u>F</u> 17.422	<u>Ne</u> 21.564
113 1		<u>Mg</u> 7.646												<u>Si</u> 8.151	<u>P</u> 10.486	<u>S</u> 10.36	<u>Cl</u> 12.967	<u>Ar</u> 15.759
						<u>Cr</u> 6.766				<u>Ni</u> 7.635		<u>Zn</u> 9.394		<u>Ge</u> 7.899	<u>As</u> 9.81	<u>Se</u> 9.752	<u>Br</u> 11.814	<u>Kr</u> 13.999
115		<u>Sr</u> 5.695	<u>Y</u> 6.38			<u>Mo</u> 7.099		<u>Ru</u> 7.37		<u>Pd</u> 8.34	<u>Ag</u> 7.576			<u>Sn</u> 7.344	<u>Sb</u> 8.641	<u>Te</u> 9.009	<u>I</u> 10.451	<u>Xe</u> 12.13
	<u>Cs</u> 3.894	<u>Ba</u> 5.212				<u>W</u> 7.98	<u>Re</u> 7.88	Os 8.7	<u>Ir</u> 9.1	<u>Pt</u> 9	<u>Au</u> 9.225	<u>Hg</u> 10.437	<u>Tl</u> 6.108	<u>Pb</u> 7.416	<u>Bi</u> 7.289	<u>Po</u> 8.42	<u>At</u>	<u>Rn</u> 10.748
		<u>Ra</u> 5.279	<u>Ac</u> 5.17	<u>Rf</u>	<u>Db</u>	<u>Sg</u>	<u>Bh</u>	<u>Hs</u>	<u>Mt</u>	<u>Uun</u>	<u>Uuu</u>	<u>Uub</u>						
	Lanthanides				<u>Ce</u> 5.47		<u>Nd</u> 5.49	<u>Pm</u> 5.55	<u>Sm</u> 5.63	<u>Eu</u> 5.67	<u>Gd</u> 6.15	<u>Tb</u> 5.86	<u>Dy</u> 5.93	<u>Ho</u> 6.02	<u>Er</u> 6.101	<u>Tm</u> 6.184	<u>Yb</u> 6.254	<u>Lu</u> 5.43
	Actinides					<u>Pa</u> 5.88	<u>U</u> 6.05	<u>Np</u> 6.19				<u>Bk</u> 6.23	<u>Cf</u> 6.3		<u>Fm</u> 6.5	<u>Md</u> 6.58	<u>No</u> 6.65	Lr

Рис. 4: Таблица потенциалов ионизации для разных веществ