2.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by

$$T\begin{bmatrix} x_1^{1} \\ x_2^{1} \end{bmatrix} = \begin{bmatrix} 5x_1 + 3x_2 \\ -6x_1 - 4x_2 \end{bmatrix};$$

 α the standard basis for \mathbb{R}^2 ; β the basis consisting

$$\alpha = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix};$$

$$v = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$$

a) Find
$$[T_{\alpha}^{\alpha}]$$

- b) Find the change of basis matrix from α to β .
- c) Find the change of basis matrix from β to α .
- d) Find $[T]^{\beta}_{\beta}$.
- e) Find $[v]_{\beta}$.
- f) Find $[T(v)]_{\beta}$.
- g) Use the result of part (f) to find T(v).

b)
$$I([\frac{7}{9}]) = [\frac{7}{9}]$$
. Prohange of boun from α to β then $P = [I]_{\beta}^{\alpha}$

$$\frac{I(\begin{bmatrix} 2 \\ 1 \end{bmatrix}) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} - 0 \quad C_1 = 2 \\
C_2 = 1 \\
C_3 = 1$$

$$\frac{I(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} - 0 \quad C_1 = 1 \\
C_2 = 1$$

$$I([]) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$P = [T]_{p}^{\alpha} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

S6,
$$\mathcal{P}^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$
.

$$C_1 = -C_2 - 0 - 2c_2 + c_2 = 1 - 0 - c_2 = 1 - 0 (z = -1)$$

then $C_1 = 1$

e)
$$(v)_{\beta} = (c_{1})_{c_{1}} = c_{1}$$
 where $[-4]_{c_{1}} = c_{1}$ $[-4]_{c_{1}} = c_{1}$

(2)
$$[w]_{\alpha} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$$
, $[w]_{\beta} = [IJ_{\alpha}^{\beta} [v]_{\alpha} = \mathcal{P}^{-1}[v]_{\alpha}$
 $[w]_{\beta} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \end{bmatrix} = \begin{bmatrix} 9 \\ -13 \end{bmatrix}$.

$$[T(w)]_{\beta} = [IJ_{\beta}^{\beta} [w]_{\beta}]$$

$$= \begin{bmatrix} 2 & 9 & 18 \\ -45 & -28 \end{bmatrix} \begin{bmatrix} 9 \\ -13 \end{bmatrix}$$

$$= \begin{bmatrix} 27 \\ -41 \end{bmatrix}$$

$$7(y) = (27) \begin{bmatrix} 2 \\ 1 \end{bmatrix} + (-4) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 13 \\ -14 \end{bmatrix}$$

9. Suppose that v_1, v_2, v_3 form a basis α for a vector space V and $T: V \to V$ is a linear transformation such that

$$T(v_1) = v_1 - v_2,$$
 $T(v_2) = v_2 - v_3,$ $T(v_3) = v_3 - v_1.$

- a) Find $[T]^{\alpha}_{\alpha}$.
- **b)** Find $[T(v)]_{\alpha}$ if $v = v_1 2v_2 + 3v_3$.
- c) Use the result of part (b) to find T(v) in terms of v_1, v_2, v_3 .

a)
$$T(v_1) = v_1 - v_2 + 0 v_3$$

 $C_1 \quad c_2 \quad c_3$
 $T(v_2) = 0 v_1 + v_2 - v_3$
 $C_1 \quad C_2 \quad c_3$
 $T(v_3) = -v_1 + 0 v_2 + v_3$
 $C_1 \quad C_2 \quad C_3$

$$\begin{bmatrix} -1 \end{bmatrix}_{\alpha}^{\alpha} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

b)
$$f(r)_{\alpha} = [\overline{1}]_{\alpha}^{\alpha} [\overline{\sigma}]_{\alpha}$$

$$[\overline{\sigma}]_{\alpha} = [\overline{1}]_{\alpha}^{\alpha} [\overline{\sigma}]_{\alpha}$$

c)
$$T(w) = C_1 w_1 + C_2 v_2 + C_3 v_3$$

= $-2v_1 - 3v_2 + 5v_3$