A network-based penalized regression method with application to genomic data

Sunkyung Kim¹, Wei Pan¹, Xiaotong Shen²

¹Division of Biostatistics, School of Public Health

²School of Statistics

University of Minnesota

April 18, 2013

Outline

- Problem
- Review: Existing penalized methods
- New method
 Pan, Xie and Shen (2010, Biometrics);
 Luo, Pan and Shen (2012, Statistics in Biosciences);
 Kim, Pan and Shen (2013, Biometrics);
- Numerical Results: simulated and real data
- Discussion

Introduction

• Problem: linear model

$$Y = \sum_{i=1}^{p} X_i \beta_i + \epsilon, \quad E(\epsilon) = 0, \tag{1}$$

Feature: large p, small n.

- Q: variable selection; prediction
- Example 1: Li & Li (2008); Pan, Xie & Shen (2010) ...

Y: clinical outcome, e.g. survival time;

 X_i : expression level of gene i.

- Example 2: eQTL analysis, Lan et al (2003, 2006); Pan (2009) ...
- Typical approaches: ignore any relationships among X_i 's.
- In our applications: genes are related ...

e.g. as described a priori by 1) gene pathways/sets, e.g. KEGG, GO, etc (Ma et al 2007, 2010, ...; Wang et al 2009; Eng et al 2012; ...) 2) a gene network (here):

5

Figure 1:

- Various types of gene networks: regulatory; co-expression; protein-protein interaction; pathways ...
- Network assumption/prior 1: if two genes $i \sim j$ in a network, then $|\beta_i| \approx |\beta_j|$, or $|\beta_i|/w_i \approx |\beta_j|/w_j$. Cluster/pathway-based analysis: force/prefer a common β_i or $|\beta_i|$ in a group (Park et al 2007; Eng et al 2012)/(Ma et al 2007; ...).

Q: too strong?

- Network assumption/prior 2: if two genes $i \sim j$ in a network, then more likely to have $I(\beta_i \neq 0) = I(\beta_j \neq 0)$.
- Goal: utilize the network assumption/prior 2.
- How?

Review: Existing Methods

• Penalized methods: for "large p, small n"

$$\hat{\beta} = \arg\min_{\beta} L(\beta) + p_{\lambda}(\beta),$$

• Lasso (Tibshirani 1996):

$$p_{\lambda}(\beta) = \lambda \sum_{k=1}^{p} |\beta_k|.$$

Feature: variable selection; some $\hat{\beta}_k = 0$.

• Elastic net (Zou and Hastie 2005)

$$p_{\lambda}(\beta) = \lambda \sum_{k=1}^{p} |\beta_k| + \lambda_2 \sum_{k=1}^{p} \beta_k^2.$$

But ...

• A network-based penalty of Li and Li (2008): Grace

$$p_{\lambda}(\beta) = \lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{i \sim j} \left(\frac{\beta_i}{\sqrt{d_i}} - \frac{\beta_j}{\sqrt{d_j}} \right)^2, \qquad (2)$$

 d_i : degree of node i; two terms for diff purposes ...

Related: Huang et al (2011); Ma et al (2012);

Problem: if β_i and β_j have diff signs ...

• A modification by Li and Li (2010): aGrace

$$p_{\lambda}(\beta) = \lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{i \sim j} \left(\frac{\operatorname{sgn}(\tilde{\beta}_i)\beta_i}{\sqrt{d_i}} - \frac{\operatorname{sgn}(\tilde{\beta}_j)\beta_j}{\sqrt{d_j}} \right)^2, \quad (3)$$

 $\tilde{\beta}_j$: an initial estimate based on Enet; a 2-step procedure.

• L_{γ} -norm with $\gamma > 1$ (Pan, Xie and Shen 2010):

$$p_{\lambda}(\beta; \gamma, w) = \lambda 2^{1/\gamma'} \sum_{i \sim j} \left(\frac{|\beta_i|^{\gamma}}{w_i} + \frac{|\beta_j|^{\gamma}}{w_j} \right)^{1/\gamma} \tag{4}$$

- w_i : smooth what?
 - 1) $w_i = d_i^{(\gamma+1)/2}$: smooth $|\beta_i|/\sqrt{d_i}$, as in Li and Li;
 - 2) $w_i = d_i$: smooth $|\beta_i|$

Some theory under simplified cases.

- Feature: each term is an L_{γ} norm, $\gamma \geq 1$ \Longrightarrow **group** variable selection!; Yuan and Lin 2006, Zhao et al 2007.
 - \implies tend to realize $\hat{\beta}_i = \hat{\beta}_j = 0$ if $i \sim j!$

Corollary 1 Assume that X'X = I. For any edge $i \sim j$, a sufficient condition for $\hat{\beta}_i = \hat{\beta}_j = 0$ is

$$\|(\tilde{\beta}_i, \tilde{\beta}_j)\|_{\gamma'}^{(1/w_i, 1/w_j)} \le \lambda 2^{1/\gamma'}, \tag{5}$$

and a necessary condition is

$$||(\tilde{\beta}_i, \tilde{\beta}_j)||_{\gamma'}^{(1/w_i, 1/w_j)} \le \lambda 2^{1/\gamma'} + d_i + d_j - 2,$$
 (6)

where $(\tilde{\beta}_i, \tilde{\beta}_j)$ are OLSEs.

- γ : a larger γ smoothes more;
- L_{∞} : related to OSCAR (Bondell & Reich 2008)

$$p_{\lambda} = \lambda \sum_{i \sim j} \max \left(\frac{|\beta_i|}{\sqrt{d_i}}, \frac{|\beta_j|}{\sqrt{d_j}} \right)$$

maximally forces $|\hat{\beta}_i|/\sqrt{d_i} = |\hat{\beta}_i|/\sqrt{d_i}$ if $i \sim j!$

- Other theoretical results (under simplified conditions): shrinkage effects, grouping effects ...
- Computational algorithm of Pan et al (2010): Generalized boosted lasso (GBL) (Zhao and Yu 2004); providing approximate solution paths.
- Use CV to choose tuning parameters, e.g. λ .
- Conclusion of Pan et al (2010): best for variable selection, but not necessarily in prediction (PMSE).

A surprise: $\gamma = \infty$ did not work well!

- Why?
- 1) Computational: convex programming of Luo et al (2012): Use Matlab CVX package; slower but better performance.
- 2) Bias due to group var selection: aL_{∞} : use a 2-step procedure as aGrace of Li and Li (2010).

New method

- Relax the smoothness assumption:

 New assumption: neighboring genes are more likely to participate or not participate at the same time; no assumption on the smoothness of regression coefficients.
- Prior: if $i \sim j$, more likely to have $I(\beta_i \neq 0) = I(\beta_j \neq 0)$ just for variable selection
- How to approximate the discontinuous $I(\beta_j \neq 0)$? Truncated Lasso Penalty (Shen, Pan & Zhu 2012, JASA):

$$J_{\tau}(\beta_j) = \min(1, |\beta_j|/\tau) \to I(\beta_j \neq 0)$$

as $\tau \to 0^+$; see Fig:

Figure 3:

• TLP: related to SCAD (Fan and Li 2001), MCP (Zhang 2010), SELO (Dicker et al 2012; Li, Wang & Lin 2012), ..., but ...

• Use a new penalty to approximate $\sum_{i \sim j} |I(\beta_i \neq 0) - I(\beta_j \neq 0)|$:

$$p_{\lambda}(\beta; \tau) = \lambda \sum_{i \sim j} |J_{\tau}(\beta_i) - J_{\tau}(\beta_j)|.$$

- But $p_{\lambda}(\beta; \tau)$ is not convex; use difference convex (DC) programming (Tao & An 1998)! related to MM (Hunter & Lange 2010).
- Two tricks:
 - 1) $J_{\tau}(z) = \frac{1}{\tau}(|z| \max(|z| \tau, 0));$
 - 2) $|u v| = 2\max(u, v) (u + v)$.
- $TTLP_I$:

$$p(\beta) = \lambda_1 \sum_{j=1}^{p} J_{\tau}(|\beta_j|) + \lambda_2 \sum_{j \sim j'} \left| J_{\tau} \left(\frac{|\beta_j|}{w_j} \right) - J_{\tau} \left(\frac{|\beta_{j'}|}{w_{j'}} \right) \right|, \quad (7)$$

• $LTLP_I$:

$$p(\beta) = \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j \sim j'} \left| J_{\tau} \left(\frac{|\beta_j|}{w_j} \right) - J_{\tau} \left(\frac{|\beta_{j'}|}{w_{j'}} \right) \right|, \quad (8)$$

• $LTLP_I$:

$$p(\beta) = p_1(\beta) - p_2(\beta),$$

$$p_1(\beta) = \frac{1}{\tau} \left(\lambda_1 \sum_{j=1}^p |\beta_j| + \lambda_2 \sum_{j' \sim j} 2\max(u_j, v_j) \right),$$

$$p_2(\beta) = \frac{1}{\tau} \left(\lambda_2 \sum_{j' \sim j} (u_j + v_j) \right),$$

$$u_j = \frac{|\beta_j|}{w_j} + \max(\frac{|\beta_{j'}|}{w_{j'}} - \tau, 0) \text{ and } v_j = \frac{|\beta_{j'}|}{w_{j'}} + \max(\frac{|\beta_j|}{w_j} - \tau, 0).$$

• Linearizing p_2 at a current estimate $\hat{\beta}^{(m-1)}$ and ignoring terms

independent of β , we obtain a convex approximation of $S(\beta)$:

$$S^{(m)}(\beta) = \frac{1}{2} \|Y - X\beta\|^2 + \frac{\lambda_1}{\tau} \sum_{j=1}^{p} |\beta_j| + \frac{\lambda_2}{\tau} \sum_{j \sim j'} 2\max(u_j, v_j)$$
$$-\frac{\lambda_2}{\tau} \sum_{j \sim j'} \left(\frac{\beta_j}{w_j} \operatorname{Sgn}(\hat{\beta_j}^{(m-1)}) [1 + I(\frac{|\hat{\beta_j}^{(m-1)}|}{w_j} > \tau)] + \frac{\beta_{j'}}{w_{j'}} \operatorname{Sgn}(\hat{\beta_{j'}}^{(m-1)}) [1 + I(\frac{|\hat{\beta_{j'}}^{(m-1)}|}{w_{j'}} > \tau)] \right),$$

which is minimized to obtain an updated estimate $\hat{\beta}^{(m)}$.

- Since $S^{(m)}(\beta)$ is convex, we use Matlab package CVX.
- **Theorem**: the above DC algorithm monotonically converges to a local minimum in finite steps.
- Use grid search and CV to determine the choice of $(\tau, \lambda_1, \lambda_2)$.

• Simulation set-ups:

network: 10 subnetworks, each with one TF connects to ist 10 targets (Li and Li 2008);

$$n = 50, p = p_1 + p_0 = 44 + 66;$$

• True β : for $j \sim j'$,

Set-up 1:
$$\beta_j/\sqrt{d_j} = \beta_{j'}/\sqrt{d_{j'}}$$
;

Set-up 2:
$$|\beta_j|/\sqrt{d_j} = |\beta_{j'}|/\sqrt{d_{j'}};$$

Set-up 3:
$$|\beta_j|/\sqrt{d_j} \neq |\beta_{j'}|/\sqrt{d_{j'}}$$
 but $I(\beta_j \neq 0) = I(\beta_{j'} \neq 0)$.

- Use $w_j = \sqrt{d_j}$ (and $w_j = 1$, not shown).
- $ME = (\beta \hat{\beta})'E(X'X)(\beta \hat{\beta});$

PE: prediction mean squared error for Y; PE=ME+c;

$$TP = |\{j : \beta_i \neq 0, \hat{\beta}_i \neq 0\}|; \text{ (max TP=22)}$$

$$FP = |\{j : \beta_j = 0, \hat{\beta}_j \neq 0\}|;$$

Set-up 1: mean[median](sd)

			/	
Method	ME(sd)	PE(sd)	TP	FP
Lasso	44.2(13.2)	66.2(13.1)	13.5[14](3.2)	16.8[13](19.2)
Enet	34.2(13.1)	65.0(13.5)	16.5[17](3.7)	22.2[18](16.6)
Grace	4.7(3.6)	39.7(5.8)	22.0[22](0.1)	59.5[63](21.2)
aGrace	23.9(16.4)	55.6(14.4)	17.6[18](4.1)	29.4[23.5](22.3)
L_{∞}	14.2(8.0)	50.4(11.2)	22.0[22](0.0)	9.7[8](6.8)
$\mathrm{a}L_{\infty}$	4.3(4.1)	38.8(6.0)	22.0[22](0.0)	4.1[2](5.4)
$TTLP_I$	12.4(12.0)	45.4(9.1)	21.5[22](2.7)	20.2[1](28.3)
$LTLP_I$	9.6(8.5)	43.4(8.5)	21.7[22](1.4)	23.4[22](17.0)

Set-up 2: mean[median](sd)

			= , ,	
Method	ME(sd)	PE(sd)	TP	FP
Lasso	34.6(8.8)	67.9(11.4)	10.2[9.5](3.0)	13.4[9.0](15.4)
Enet	34.8(8.5)	68.2(11.4)	13.2[13.0](4.3)	24.4[18](22.1)
Grace	27.1(5.7)	59.8(9.0)	18.5[19](3.4)	45.1[43.5](25.1)
aGrace	25.3(10.9)	58.4(11.6)	17.5[19](5.0)	41.9[39.5](24.1)
L_{∞}	34.5(10.2)	65.1(12.2)	20.9[22](2.6)	15.2[13](11.0)
$\mathrm{a}L_{\infty}$	20.7(9.9)	53.5(11.6)	20.7[22](3.1)	8.3[5](10.7)
$TTLP_I$	28.5(11.0)	59.5(11.3)	21.0[22](3.3)	26.7[15](28.6)
$LTLP_I$	23.2(8.1)	55.3(9.3)	21.4[22](2.2)	37.2[33](21.4)

Set-up 3: mean[median](sd)

			- ` '	
Method	ME(sd)	PE(sd)	TP	FP
Lasso	36.2(9.4)	67.0(11.3)	10.0[10](3.3)	13.6[10](16.3)
Enet	34.9(7.9)	65.8(10.3)	12.7[12](3.8)	22.7[17](19.2)
Grace	34.9(7.8)	65.4(10.6)	13.6[14](4.2)	24.8[19](19.3)
aGrace	36.2(8.4)	63.1(9.0)	15.2[15](5.6)	32.0[24](24.3)
L_{∞}	33.9(8.1)	65.1(10.3)	15.3[15](4.6)	13.8[11](11.5)
$\mathrm{a}L_{\infty}$	37.6(9.2)	66.0(12.1)	15.0[15](4.7)	9.7[7.5](11.0)
$TTLP_I$	34.2(10.1)	63.9(10.9)	19.1[22](5.2)	20.1[13](22.7)
$LTLP_I$	31.3(7.4)	61.1(9.6)	20.5[22](3.7)	39.2[44](21.9)

Example

- n = 286 breast cancer patients (Wang et al 2005); (time to) metastasis within a 5-year follow-up after surgery; 106 events;
- n = 295 breast cancer patients (van de Vijver et al 2002); (time to) metastasis within a 5-year follow-up after surgery; 78 events;
- Consider three tumor suppressor genes, BRCA1, BRCA2, TP53, and their direct neighbors in a PPI network (Chuang et al 2007);
- Fit a linear model Y: binary; X: expression levels of p = 294 genes;
- Goal: variable selection Q: which genes' expression levels predict the survival time?

- Among p = 294 genes, 18 cancer (CA) genes.
- Split the sample into $n=95,\,95,\,96$ for training, tuning, testing; repeat 20 times.

Method	PE	# CA	# Genes
Lasso	0.235(0.004)	0.30[0.00](0.13)	8.80[8.00](1.91)
Final	-	1	30
Enet	0.227(0.003)	0.20[0.00](0.09)	9.90[1.00](2.60)
Final	-	2	51
Grace	0.227(0.003)	0.70[1.00](0.16)	9.50[2.50](2.38)
Final	-	2	49
aGrace	0.229(0.003)	1.30[1.00](0.25)	10.20[6.00](2.10)
Final	-	2	52
L_{inf}	0.236(0.005)	0.10[0.00](0.07)	10.35[7.50](1.97)
Final	-	0	3
aL_{inf}	0.239(0.005)	0.10[0.00](0.07)	10.20[7.50](2.43)
Final	-	0	3
TTLP	0.282(0.015)	2.90[3.00](0.34)	12.00[8.00](2.68)
Final	-	4	30
LTLP	0.256(0.009)	1.35[1.50](0.28)	11.10[8.00](2.07)
Final	-	4	30

	# Freq of selecting BRCA1, BRCA2 and TP53
Lasso	$\underline{BRCA1}$ (1), $\underline{BRCA2}$ (0), $\underline{TP53}$ (1)
Enet	$\underline{\mathrm{BRCA1}}$ (0), $\underline{\mathrm{BRCA2}}$ (0), $\underline{\mathrm{TP53}}$ (0)
Grace	$\underline{\mathrm{BRCA1}}$ (7), $\underline{\mathrm{BRCA2}}$ (2), $\underline{\mathrm{TP53}}$ (2)
aGrace	$\underline{BRCA1}$ (10), $\underline{BRCA2}$ (4), $\underline{TP53}$ (9)
L_{∞}	$\underline{\mathrm{BRCA1}}$ (0), $\underline{\mathrm{BRCA2}}$ (0), $\underline{\mathrm{TP53}}$ (0)
aL_{∞}	$\underline{\mathrm{BRCA1}}$ (0), $\underline{\mathrm{BRCA2}}$ (0), $\underline{\mathrm{TP53}}$ (0)
$TTLP_I$	$\underline{BRCA1}$ (20), $\underline{BRCA2}$ (10), $\underline{TP53}$ (20)
$LTLP_I$	$\underline{BRCA1}$ (9), $\underline{BRCA2}$ (5), $\underline{TP53}$ (9)

Figure 4: The final models by $TTLP_I$. 5 genes in hexagons: in both models; triangles/big circles: in only one; 5 red ones: BC genes.

Discussion

- Bayesian approaches (Moni and Li 2009; Li and Zhang 2009; Tai, Pan & Shen 2010): prior prob's $Pr(\beta_i \neq 0)$ modeled by a network-induced MRF.
- A new penalty (Zhu, Shen & Pan 2013, JASA):

$$p_{\lambda}(\beta;\tau) = \lambda \sum_{i \sim j} \left[J_{\tau}(\beta_i + \beta_j) + J_{\tau}(\beta_i - \beta_j) \right],$$

aiming for

$$\sum_{i \sim j} ||\beta_i| - |\beta_j||.$$

• Another application: eQTL mapping (Pan 2009)

$$Y_g = X\beta_g + \epsilon_g, \quad E(\epsilon_g) = 0, \tag{9}$$

for g = 1, ..., G.

X: DNA markers; obs $(Y_1,...,Y_G,X)$.

Q: which markers are associated with Y_g ? \Longrightarrow variable selection or ...

- Typical approaches: Gene-by-gene, separately, with possible var selection (Broman and Speed 2002; Wang et al 2011; ...)
- BUT, genes are related...
 e.g. as described by pathways or clusters (Lan et al 2003; Chun and Keles 2009; Zhang et al 2010; ...)
 or by a co-expression network (Pan 2009). $\implies Y_g's \text{ are correlated, and more likey to be co-regulated!}$
- Network assumption/prior: if two genes $g \sim h$ in a network, then $|\beta_g| \approx |\beta_h|$, or, $I(\beta_g \neq 0) = I(\beta_h \neq 0)$.
- Goal: utilize the above assumption/prior.
- How?

• Reformulate the original multiple regressions to a single regression:

$$Y_c = (Y'_1, ..., Y'_G)',$$

 $X_c = diag(X, ..., X),$
 $\beta = (\beta'_1, ..., \beta'_G)',$
 $Y = X\beta + \epsilon, \quad E(\epsilon) = 0,$ (10)

Acknowledgement: This research was supported by NIH.

You can download our papers from http://sph.umn.edu/ex/biostatistics/techreports.php?

Thank you!