Erythropoietin Therapy in HIV-Infected Individuals: A Critical Review

*Emmanuel Ifeanyi Obeagu¹, Arinze Favour Anyiam ² and Getrude Uzoma Obeagu³

School of Nursing Science, Kampala International University, Ishaka, Uganda.

E-mail: emmanuelobeagu@yahoo.com, obeagu.emmanuel@kiu.ac.ug, 0000-0002-4538-0161

Abstract

Erythropoietin (EPO) therapy has emerged as a promising avenue in addressing anemia associated with HIV infection, a prevalent and clinically significant complication. This critical review examines the current state of knowledge regarding EPO therapy in HIV-infected individuals, aiming to provide a nuanced understanding of its physiological mechanisms, prevalence and etiology of HIV-related anemia, and the impact of EPO administration on clinical outcomes. Delving into the intricate interplay between EPO and HIV, this review explores the physiological role of EPO, mechanisms underlying HIV-related anemia, and the potential risks and benefits associated with EPO therapy. The review also discusses optimal dosing strategies, clinical outcomes, and uncertainties surrounding the use of EPO in the context of HIV infection. By synthesizing existing literature, this critical review offers insights into the complexities of EPO therapy in HIV-infected individuals, providing a foundation for future research directions and guiding clinicians in optimizing anemia management for individuals living with HIV. Keywords: Erythropoietin, HIV, Anemia, EPO therapy, Mechanisms, Dosing strategies, Clinical outcomes, Risks, Benefits.

Keywords: Erythropoietin, HIV, Anemia, EPO therapy, Mechanisms, Dosing strategies, Clinical outcomes, Risks, Benefits.

Introduction

Anemia represents a prevalent and clinically significant complication in individuals living with HIV, contributing to a myriad of health challenges and impacting overall well-being. Erythropoietin (EPO) therapy has emerged as a potential therapeutic approach to address anemia in this population, leveraging the key role of EPO in stimulating red blood cell production. EPO, Citation: Obeagu EI, Anyiam AF, Obeagu GU. Erythropoietin Therapy in HIV-Infected Individuals: A Critical Review. Elite Journal of HIV, 2024; 2(1): 51-64

¹Department of Medical Laboratory Science, Kampala International University, Ishaka, Uganda.

²Department of Medical Laboratory Science, School of Basic Medical and Health Sciences, Igbinedion University, Okada, Edo State, Nigeria.

^{*}Corresponding authour: Emmanuel Ifeanyi Obeagu, Department of Medical Laboratory Science, Kampala International University, Uganda.

a glycoprotein hormone primarily produced by the kidneys, plays a pivotal role in regulating erythropoiesis – the process of red blood cell formation. In response to hypoxia or reduced oxygencarrying capacity, EPO is released, stimulating the proliferation, differentiation, and maturation of erythroid progenitor cells in the bone marrow.¹⁻¹⁶

The prevalence of anemia in individuals with HIV exceeds that of the general population, with multifactorial etiologies contributing to its development. Chronic inflammation, opportunistic infections, medication side effects, and direct viral effects on bone marrow function are among the complex factors implicated in the pathogenesis of anemia in this context. EPO therapy presents a rational intervention in the management of HIV-related anemia due to its ability to stimulate erythropoiesis. By addressing the underlying deficiency in red blood cell production, EPO holds promise in improving hemoglobin levels, alleviating symptoms of anemia, and potentially enhancing the overall quality of life for individuals living with HIV. 17-31

Physiological Role of Erythropoietin

Erythropoietin (EPO), a glycoprotein hormone primarily synthesized in the kidneys, plays a fundamental role in the regulation of erythropoiesis, the process by which red blood cells are produced. The physiological functions of EPO are intricately tied to maintaining adequate oxygen delivery to tissues and organs. EPO production is primarily regulated by oxygen levels in the blood. When the kidneys sense decreased oxygen availability, either due to reduced hemoglobin levels or hypoxia, they respond by increasing EPO synthesis and release. The hypoxia-inducible factor (HIF) pathway is central to this regulation, where low oxygen levels stabilize HIF, leading to the transcription and expression of EPO. Erythropoietin exerts its effects on target tissues, particularly the bone marrow, where hematopoietic stem cells and erythroid progenitor cells reside. EPO binds to its receptor (EPOR) on the surface of these cells, initiating a cascade of intracellular signaling events. This interaction is crucial for the survival, proliferation, and differentiation of erythroid progenitor cells.³²⁻³⁴

The primary role of EPO is to stimulate erythropoiesis, ensuring a continuous supply of mature red blood cells. EPO acts on hematopoietic stem cells and committed erythroid progenitors in the bone marrow, promoting their differentiation into mature red blood cells. This process involves the regulation of various genes controlling cell cycle progression, survival, and hemoglobin synthesis. EPO's responsiveness to hypoxia makes it a crucial component of the body's adaptive mechanisms to low oxygen conditions. In situations such as high altitudes, anemia, or respiratory disorders, the increased production of EPO enhances the generation of red blood cells, improving the oxygen-carrying capacity of the blood. EPO production is finely tuned to maintain homeostasis. As oxygen levels normalize, the stimulus for EPO production diminishes, leading to a reduction in EPO synthesis. This negative feedback loop ensures that erythropoiesis is appropriately adjusted based on the body's oxygen needs.³³

Prevalence and Etiology of Anemia in HIV

Anemia is a prevalent and multifaceted complication in individuals living with Human Immunodeficiency Virus (HIV), significantly impacting both the quality of life and disease progression. The prevalence of anemia in the HIV population surpasses that of the general population. Estimates suggest that up to 30% to 95% of individuals with HIV may experience anemia at some point during their disease course. This wide range reflects the complex interplay of various factors, including the stage of HIV infection, disease progression, and the presence of comorbidities. HIV infection directly affects the bone marrow, leading to impaired erythropoiesis. The virus can infect hematopoietic progenitor cells, disrupting the normal production of red blood cells. Additionally, inflammatory cytokines induced by HIV contribute to the inhibition of erythropoiesis. Opportunistic infections, common in individuals with advanced HIV disease and compromised immune systems, can directly or indirectly contribute to anemia. Pathogens such as Mycobacterium avium complex, cytomegalovirus (CMV), and Mycobacterium tuberculosis can impact erythropoiesis and exacerbate anemia. 34-51

Antiretroviral therapy (ART) has revolutionized the management of HIV; however, certain medications, particularly zidovudine, used in some ART regimens, may cause bone marrow suppression and lead to anemia as a side effect. Persistent immune activation and chronic inflammation, hallmarks of HIV infection, contribute to the dysregulation of cytokines. Elevated levels of inflammatory cytokines, such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF- α), and interferon-gamma (IFN- γ), can suppress erythropoiesis and promote anemia. Malnutrition and deficiencies in essential nutrients, particularly iron, vitamin B12, and folate, can exacerbate anemia in individuals with HIV. These nutritional deficiencies may result from inadequate dietary intake, malabsorption, or altered metabolism associated with HIV infection. Anemia is not only a consequence of HIV infection but also a potential contributor to disease progression. Reduced oxygen-carrying capacity can exacerbate tissue hypoxia, impacting immune function and exacerbating existing comorbidities. Anemia has been associated with increased morbidity and mortality in individuals with HIV. $^{52-68}$

Mechanisms Underlying HIV-Related Anemia

HIV-related anemia is a complex hematological manifestation involving multiple interconnected mechanisms. The interplay between the virus, immune responses, and hematopoietic processes contributes to the development and progression of anemia in individuals living with HIV. Chronic HIV infection triggers the release of pro-inflammatory cytokines, such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF- α), and interferon-gamma (IFN- γ). Elevated levels of these cytokines disrupt the normal regulatory pathways of erythropoiesis in the bone marrow, leading to decreased red blood cell production. The bone marrow, crucial for red blood cell formation, becomes a target of HIV. Hematopoietic progenitor cells in the bone marrow can be directly infected by the virus, leading to their dysfunction and impaired ability to generate red blood cells. This direct impact on erythroid precursors contributes to bone marrow suppression. $^{69-74}$

HIV infection induces chronic immune activation, leading to the production of antibodies and cytotoxic T cells. These immune responses, while attempting to control the virus, can inadvertently target and destroy red blood cells, contributing to hemolysis and anemia. Opportunistic infections **Citation**: Obeagu EI, Anyiam AF, Obeagu GU. Erythropoietin Therapy in HIV-Infected Individuals: A Critical Review. Elite Journal of HIV, 2024; 2(1): 51-64

commonly seen in advanced HIV disease, such as cytomegalovirus (CMV), can directly infect red blood cells or induce immune-mediated hemolysis, further reducing the lifespan of circulating erythrocytes. Inflammatory cytokines, particularly IL-6, stimulate the release of hepcidin, a key regulator of iron metabolism. Elevated hepcidin levels lead to decreased iron absorption in the gastrointestinal tract and sequestration of iron in macrophages, resulting in functional iron deficiency and impaired erythropoiesis. Chronic inflammation and hemolysis associated with HIV-related anemia contribute to a shortened lifespan of red blood cells. The accelerated turnover of erythrocytes can outpace the ability of the reticuloendothelial system to recycle iron from senescent red blood cells, leading to a state of relative iron deficiency. Certain antiretroviral medications, particularly zidovudine, commonly used in HIV treatment regimens, can induce bone marrow suppression. The toxicity to hematopoietic progenitor cells may lead to a reduction in red blood cell production and exacerbate anemia. 75-84

Erythropoietin Therapy: Risks and Benefits

Erythropoietin (EPO) therapy has been considered a viable intervention for managing anemia in various clinical contexts, including HIV infection. However, like any medical intervention, EPO therapy is associated with both potential risks and benefits. EPO, as a hematopoietic growth factor, stimulates the production of red blood cells in the bone marrow. The primary and anticipated benefit of EPO therapy is the elevation of hemoglobin levels, addressing the anemia associated with HIV infection. Improved hemoglobin levels contribute to enhanced oxygen-carrying capacity and may alleviate symptoms of anemia. By mitigating anemia-related symptoms such as fatigue, weakness, and dyspnea, EPO therapy has the potential to improve the overall quality of life for individuals living with HIV. Symptomatic relief can enhance daily functioning, mobility, and the ability to engage in regular activities. EPO therapy is associated with an increased risk of thromboembolic events, including deep vein thrombosis and pulmonary embolism. The stimulation of erythropoiesis can lead to a higher viscosity of the blood, predisposing individuals to clot formation. 85-89

Elevated hemoglobin levels resulting from EPO therapy may contribute to increased blood viscosity and hypertension. Managing blood pressure becomes crucial in individuals receiving EPO to mitigate the risk of cardiovascular events. Although rare, the development of PRCA has been reported in individuals receiving EPO, particularly in those with chronic kidney disease. PRCA is characterized by a severe reduction in red blood cell production and may necessitate discontinuation of EPO therapy. EPO therapy can lead to increased iron utilization, and without proper iron supplementation and monitoring, individuals may be at risk of iron overload. Excess iron can contribute to oxidative stress and organ damage. Long-term EPO therapy may lead to the development of neutralizing antibodies, reducing the efficacy of EPO. This phenomenon can result in inadequate erythropoietic response and may necessitate dose adjustments or discontinuation of therapy. The risks and benefits of EPO therapy must be carefully weighed on an individual basis, considering factors such as the severity of anemia, underlying comorbidities, and the overall clinical status of the patient. Close monitoring and adherence to established guidelines are essential to minimize potential risks. 90

Optimal Dosing Strategies

Determining the optimal dosing strategies for erythropoietin (EPO) therapy in HIV-related anemia requires a nuanced approach, considering factors such as disease stage, severity of anemia, and individual patient characteristics. Begin with a thorough assessment of baseline hemoglobin levels. Individualized treatment goals should be established based on the severity of anemia, with consideration for factors such as the presence of symptoms and the impact on the patient's quality of life. Evaluate the patient's overall health status and consider the presence of comorbidities, such as renal dysfunction or cardiovascular disease, which may influence the choice of EPO dosing strategy and help tailor the treatment plan to individual needs. Initiate EPO therapy at a conservative dose and titrate gradually based on the patient's response. This approach helps minimize the risk of adverse effects, particularly regarding blood pressure and thromboembolic events. Implement a schedule for regular monitoring of hemoglobin levels and clinical symptoms. Adjust EPO dosage accordingly to achieve the desired hemoglobin target while avoiding excessive increases that may contribute to adverse events. 90

Evaluate the patient's ART regimen, as certain antiretroviral medications, such as zidovudine, may have hematologic side effects. Adjust EPO dosing in coordination with the management of other medications to optimize overall treatment outcomes. Assess the patient's iron status and consider supplementation if there is evidence of iron deficiency. Adequate iron levels are essential for optimizing the erythropoietic response to EPO therapy. Monitor the patient's erythropoietic response to EPO therapy. Adjust the dosage based on the rate of hemoglobin increase and the achievement of target levels. Individual variations in response may necessitate personalized dosing adjustments. Consider the patient's symptomatic response to EPO therapy, including improvements in fatigue, dyspnea, and overall well-being. Adjustments to dosing can be guided by the clinical impact of treatment. Establish hemoglobin targets within the recommended range to avoid excessive increases that may elevate the risk of adverse events, such as hypertension and thromboembolism. The goal is to achieve a balance between addressing anemia and minimizing potential risks. Exercise caution in populations with pre-existing cardiovascular conditions, as higher hemoglobin levels may pose an increased risk. Tailor dosing strategies to the individual's cardiovascular risk profile. Periodically reassess the patient's response to EPO therapy and adjust dosing as needed. Long-term planning should involve ongoing monitoring, with flexibility in dosing to accommodate changes in clinical status over time. In cases of suboptimal response or intolerance to EPO therapy, explore alternative approaches, including adjustments to the treatment regimen, investigation of potential contributing factors, or consideration of other therapeutic options.91

Clinical Outcomes of Erythropoietin Therapy in HIV

Erythropoietin (EPO) therapy has been explored as a potential intervention to manage anemia in individuals living with Human Immunodeficiency Virus (HIV). One of the primary clinical outcomes of EPO therapy in HIV-related anemia is the improvement in hemoglobin levels. Studies have demonstrated that EPO, by stimulating erythropoiesis, can effectively raise hemoglobin concentrations, addressing the underlying anemia and enhancing oxygen-carrying capacity. EPO Citation: Obeagu EI, Anyiam AF, Obeagu GU. Erythropoietin Therapy in HIV-Infected Individuals: A Critical Review. Elite Journal of HIV, 2024; 2(1): 51-64

therapy has shown efficacy in alleviating symptoms commonly associated with anemia, such as fatigue and weakness. Improved hemoglobin levels contribute to enhanced energy levels, potentially enhancing the overall quality of life for individuals living with HIV. The symptomatic relief afforded by EPO therapy may extend to improvements in dyspnea and exercise tolerance. By addressing the physiological consequences of anemia, individuals may experience enhanced respiratory function and increased capacity for physical activity. EPO therapy has been associated with a decreased need for blood transfusions in individuals with HIV-related anemia. By promoting endogenous red blood cell production, EPO may mitigate the reliance on exogenous blood products, reducing the associated risks and complications.⁹⁰

The potential impact of EPO therapy on the progression of HIV disease remains an area of active investigation. While some studies suggest a correlation between anemia and accelerated disease progression, further research is needed to establish a definitive link between EPO administration, improved hemoglobin levels, and long-term HIV outcomes. Vigilant monitoring for thromboembolic events is crucial during EPO therapy. Clinicians must assess and manage factors contributing to increased thrombotic risk, such as elevated hemoglobin levels and pre-existing cardiovascular conditions. The potential for EPO-induced hypertension necessitates close blood pressure monitoring and active management. Antihypertensive measures may be required to mitigate cardiovascular risks associated with elevated hemoglobin levels. Adequate iron supplementation and monitoring are essential to prevent or address iron deficiency or overload. Optimizing iron status supports the efficacy of EPO therapy and minimizes associated complications. Long-term studies exploring the sustained effects of EPO therapy in HIV-related anemia are essential. Understanding the durability of hematological improvements, potential adaptations or side effects over extended periods, and the overall impact on long-term health outcomes remains an ongoing focus of research. The clinical outcomes of EPO therapy in HIVrelated anemia vary among individuals. Considering the heterogeneity of patient populations, individualized treatment plans that account for factors such as comorbidities, medication regimens, and baseline health status are crucial for optimizing outcomes.⁹¹

Conclusion

Erythropoietin (EPO) therapy emerges as a multifaceted intervention with both potential benefits and associated risks in addressing anemia among individuals living with Human Immunodeficiency Virus (HIV). This critical review has explored the physiological role of EPO, the prevalence and etiology of HIV-related anemia, the mechanisms underlying its development, and the clinical outcomes associated with EPO therapy. The intricate interplay between inflammatory cytokines, bone marrow suppression, red blood cell destruction, and disturbances in iron metabolism underscores the complexity of HIV-related anemia. Identifying these mechanisms informs targeted therapeutic approaches.

References

1. Obeagu EI, Okoroiwu IL, Obeagu G. Molecular mechanism and systemic response of erythropoietin: A Review. Int. J. Adv. Res. Biol. Sci. 2015;2(7):58-62.

- 2. Obeagu EI, Okoroiwu II, Ezimah AC. Evaluation of serum erythropoietin levels in chronic kidney disease patients in Federal Medical centre, Umuahia, Nigeria. Int. J. Curr. Res. Biol. Med. 2016;1(4):15-21.
- 3. Obeagu EI. Erythropoeitin in Sickle Cell Anaemia: A Review. International Journal of Research Studies in Medical and Health Sciences. 2020;5(2):22-28.
- 4. Obeagu EI, Ezimah AC, Obeagu GU. Erythropoietin in the anaemias of pregnancy: a review. Int J Curr Res Chem Pharm Sci. 2016;3(3):10-18.
- 5. Obeagu EI, Ochei KC, Okeke EI, Anode AC. Assessment of the level of haemoglobin and erythropoietin in persons living with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2016;2(4):29-33.
- 6. Obeagu EI, Obeagu GU, Nchuma BO, Amazue PO. A Review on erythropoietin receptor (EpoR). Int. J. Adv. Res. Biol. Sci. 2015;2(8):80-84.
- 7. Obeagu EI, Okwuanaso CB, Edoho SH, Obeagu GU. Under-nutrition among HIV-exposed Uninfected Children: A Review of African Perspective. Madonna University journal of Medicine and Health Sciences. 2022;2(3):120-127.
- 8. Obeagu EI, Alum EU, Obeagu GU. Factors associated with prevalence of HIV among youths: A review of Africa perspective. Madonna University journal of Medicine and Health Sciences. 2023;3(1):13-18. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/93.
- 9. Obeagu EI. A Review of Challenges and Coping Strategies Faced by HIV/AIDS Discordant Couples. Madonna University journal of Medicine and Health Sciences. 2023;3(1):7-12. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/91.
- 10. Obeagu EI, Obeagu GU. An update on premalignant cervical lesions and cervical cancer screening services among HIV positive women. J Pub Health Nutri. 2023; 6 (2). 2023; 141:1-2. links/63e538ed64252375639dd0df/An-update-on-premalignant-cervical-lesions-and-cervical-cancer-screening-services-among-HIV-positive-women.pdf.
- 11. Ezeoru VC, Enweani IB, Ochiabuto O, Nwachukwu AC, Ogbonna US, Obeagu EI. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19.
- 12. Omo-Emmanuel UK, Chinedum OK, Obeagu EI. Evaluation of laboratory logistics management information system in HIV/AIDS comprehensive health facilities in Bayelsa State, Nigeria. Int J Curr Res Med Sci. 2017;3(1): 21-38.DOI: 10.22192/ijcrms.2017.03.01.004
- 13. Obeagu EI, Obeagu GU, Musiimenta E, Bot YS, Hassan AO. Factors contributing to low utilization of HIV counseling and testing services. Int. J. Curr. Res. Med. Sci. 2023;9(2): 1-5.DOI: 10.22192/ijcrms.2023.09.02.001
- 14. Obeagu EI, Obeagu GU. An update on survival of people living with HIV in Nigeria. J Pub Health Nutri. 2022; 5 (6). 2022;129. links/645b4bfcf3512f1cc5885784/An-update-on-survival-of-people-living-with-HIV-in-Nigeria.pdf.
- 15. Offie DC, Obeagu EI, Akueshi C, Njab JE, Ekanem EE, Dike PN, Oguh DN. Facilitators and barriers to retention in HIV care among HIV infected MSM attending Community Health Center Yaba, Lagos Nigeria. Journal of Pharmaceutical Research International. 2021;33(52B):10-19.

- 16. Obeagu EI, Ogbonna US, Nwachukwu AC, Ochiabuto O, Enweani IB, Ezeoru VC. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19.
- 17. Obeagu EI. Erythrocyte enumeration and serum erythropoietin in chronic kidney disease patients: A study in Federal Medical Centre, Umuahia, Nigeria. International Journal of Advanced Research in Biological Sciences. 2016;3(7):163-70.
- 18. Ifeanyi OE. A review on erythropoietin. Int J Adv Res Biol Sci. 2015;2(4):35-47.
- 19. Obeagu EI. Maximizing longevity: erythropoietin's impact on sickle cell anemia survival rates. Annals of Medicine and Surgery. 2024:10-97.
- 20. Ifeanyi OE, Uzoma OG. A review on erythropietin in pregnancy. J. Gynecol. Womens Health. 2018;8(3):1-4.
- 21. Obeagu EI, Okoroiwu IL, Obeagu GU. Relationship between Thrombopoietin and Interleukin 3: A Review. Int J Curr Res Chem Pharm. Sci. 2022;9(1):7-13.
- 22. Obeagu EI, Obeagu GU, Amilo GI. Haematological changes in patients of chronic kidney disease in Umuahia, Abia State, Nigeria. Curr Trends Biomed Eng Biosci. 2018; 11:34-7.
- 23. Obeagu EI, Okoroiwu IL, Azuonwu O. An update on hypoxic regulation of iron homeostasis and bone marrow environment. Int. J. Curr. Res. Med. Sci. 2018;4(10):42-8.
- 24. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng UE, Ikpeme M, Bassey JO, Paul AO. TB Infection Control in TB/HIV Settings in Cross River State, Nigeria: Policy Vs Practice. Journal of Pharmaceutical Research International. 2020;32(22):101-119.
- 25. Obeagu EI, Eze VU, Alaeboh EA, Ochei KC. Determination of haematocrit level and iron profile study among persons living with HIV in Umuahia, Abia State, Nigeria. J BioInnovation. 2016; 5:464-471. https://links/592bb4990f7e9b9979a975cf/DETERMINATION-OF-HAEMATOCRIT-LEVEL-AND-IRON-PROFILE-STUDY-AMONG-PERSONS-LIVING-WITH-HIV-IN-UMUAHIA-ABIA-STATE-NIGERIA.pdf.
- 26. Ifeanyi OE, Obeagu GU. The values of prothrombin time among HIV positive patients in FMC owerri. International Journal of Current Microbiology and Applied Sciences. 2015;4(4):911-916. https://www.academia.edu/download/38320140/Obeagu Emmanuel Ifeanyi and Obeagu Getrude Uzoma2.EMMA1.pdf.
- 27. Izuchukwu IF, Ozims SJ, Agu GC, Obeagu EI, Onu I, Amah H, Nwosu DC, Nwanjo HU, Edward A, Arunsi MO. Knowledge of preventive measures and management of HIV/AIDS victims among parents in Umuna Orlu community of Imo state Nigeria. Int. J. Adv. Res. Biol. Sci. 2016;3(10): 55-65.DOI; 10.22192/ijarbs.2016.03.10.009
- 28. Chinedu K, Takim AE, Obeagu EI, Chinazor UD, Eloghosa O, Ojong OE, Odunze U. HIV and TB co-infection among patients who used Directly Observed Treatment Short-course centres in Yenagoa, Nigeria. IOSR J Pharm Biol Sci. 2017;12(4):70-75. links/5988ab6d0f7e9b6c8539f73d/HIV-and-TB-co-infection-among-patients-who-used-Directly-Observed-Treatment-Short-course-centres-in-Yenagoa-Nigeria.pdf
- 29. Oloro OH, Oke TO, Obeagu EI. Evaluation of Coagulation Profile Patients with Pulmonary Tuberculosis and Human Immunodeficiency Virus in Owo, Ondo State, Nigeria. Madonna University journal of Medicine and Health Sciences. 2022;2(3):110-119.
- 30. Nwosu DC, Obeagu EI, Nkwocha BC, Nwanna CA, Nwanjo HU, Amadike JN, Elendu HN, Ofoedeme CN, Ozims SJ, Nwankpa P. Change in Lipid Peroxidation Marker (MDA)

- and Non enzymatic Antioxidants (VIT C & E) in HIV Seropositive Children in an Urban Community of Abia State. Nigeria. J. Bio. Innov. 2016;5(1):24-30. INTOINIOXIDANTS-VIT-C-E-IN-HIV-SEROPOSITIVE-CHILDREN-IN-AN-URBAN-COMMUNITY-OF-ABIA-STATE-NIGERIA.pdf.
- 31. Igwe CM, Obeagu IE, Ogbuabor OA. Clinical characteristics of people living with HIV/AIDS on ART in 2014 at tertiary health institutions in Enugu, Nigeria. J Pub Health Nutri. 2022; 5 (6). 2022;130. Links/645a166f5762c95ac3817d32/Clinical-characteristics-of-people-living-with-HIV-AIDS-on-ART-in-2014-at-tertiary-health-institutions-in-Enugu.pdf.
- 32. Obeagu EI. Blood Transfusion: A Powerful Process of Saving Anaemic Patients. EC Emergency Medicine and Critical Care. 2020;4(7):33-40.
- 33. Obeagu EI, Obeagu GU. Platelet Distribution Width (PDW) as a Prognostic Marker for Anemia Severity in HIV Patients: A Comprehensive Review. Journal home page: http://www.journalijiar.com.;12(01).
- 34. Obeagu EI, Obeagu GU, Obiezu J, Ezeonwumelu C, Ogunnaya FU, Ngwoke AO, Emeka-Obi OR, Ugwu OP. Hematologic Support in HIV Patients: Blood Transfusion Strategies and Immunological Considerations. APPLIED SCIENCES (NIJBAS). 2023;3(3).
- 35. Ifeanyi OE, Obeagu GU, Ijeoma FO, Chioma UI. The values of activated partial thromboplastin time (APTT) among HIV positive patients in FMC Owerri. Int J Curr Res Aca Rev. 2015; 3:139-144. https://www.academia.edu/download/38320159/Obeagu Emmanuel Ifeanyi3 et al.IJC RAR.pdf.
- 36. Obiomah CF, Obeagu EI, Ochei KC, Swem CA, Amachukwu BO. Hematological indices o HIV seropositive subjects in Nnamdi Azikiwe University teaching hospital (NAUTH), Nnewi. Ann Clin Lab Res. 2018;6(1):1-4. links/5aa2bb17a6fdccd544b7526e/Haematological-Indices-of-HIV-Seropositive-Subjects-at-Nnamdi-Azikiwe.pdf
- 37. Omo-Emmanuel UK, Ochei KC, Osuala EO, Obeagu EI, Onwuasoanya UF. Impact of prevention of mother to child transmission (PMTCT) of HIV on positivity rate in Kafanchan, Nigeria. Int. J. Curr. Res. Med. Sci. 2017;3(2): 28-34.DOI: 10.22192/ijcrms.2017.03.02.005
- 38. Aizaz M, Abbas FA, Abbas A, Tabassum S, Obeagu EI. Alarming rise in HIV cases in Pakistan: Challenges and future recommendations at hand. Health Science Reports. 2023;6(8):e1450.
- 39. Obeagu EI, Amekpor F, Scott GY. An update of human immunodeficiency virus infection: Bleeding disorders. J Pub Health Nutri. 2023; 6 (1). 2023;139. links/645b4a6c2edb8e5f094d9bd9/An-update-of-human-immunodeficiency-virus-infection-Bleeding.pdf.
- 40. Obeagu EI, Scott GY, Amekpor F, Ofodile AC, Edoho SH, Ahamefula C. Prevention of New Cases of Human Immunodeficiency Virus: Pragmatic Approaches of Saving Life in Developing Countries. Madonna University journal of Medicine and Health Sciences.

- 2022;2(3):128-134.
- https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/86.
- 41. Walter O, Anaebo QB, Obeagu EI, Okoroiwu IL. Evaluation of Activated Partial Thromboplastin Time and Prothrombin Time in HIV and TB Patients in Owerri Metropolis. Journal of Pharmaceutical Research International. 2022:29-34.
- 42. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng EU, Ikpeme M, Bassey JO, Paul AO. Cascade variabilities in TB case finding among people living with HIV and the use of IPT: assessment in three levels of care in cross River State, Nigeria. Journal of Pharmaceutical Research International. 2020;32(24):9-18.
- 43. Jakheng SP, Obeagu EI. Seroprevalence of human immunodeficiency virus based on demographic and risk factors among pregnant women attending clinics in Zaria Metropolis, Nigeria. J Pub Health Nutri. 2022; 5 (8). 2022;137. links/6317a6b1acd814437f0ad268/Seroprevalence-of-human-immunodeficiency-virus-based-on-demographic-and-risk-factors-among-pregnant-women-attending-clinics-in-Zaria-Metropolis-Nigeria.pdf.
- 44. Obeagu EI, Obeagu GU. A Review of knowledge, attitudes and socio-demographic factors associated with non-adherence to antiretroviral therapy among people living with HIV/AIDS. Int. J. Adv. Res. Biol. Sci. 2023;10(9):135-142.DOI: 10.22192/ijarbs.2023.10.09.015 links/6516faa61e2386049de5e828/A-Review-of-knowledge-attitudes-and-socio-demographic-factors-associated-with-non-adherence-to-antiretroviral-therapy-among-people-living-with-HIV-AIDS.pdf
- 45. Obeagu EI, Onuoha EC. Tuberculosis among HIV Patients: A review of Prevalence and Associated Factors. Int. J. Adv. Res. Biol. Sci. 2023;10(9):128-134.DOI: 10.22192/ijarbs.2023.10.09.014 links/6516f938b0df2f20a2f8b0e0/Tuberculosis-among-HIV-Patients-A-review-of-Prevalence-and-Associated-Factors.pdf.
- 46. Obeagu EI, Ibeh NC, Nwobodo HA, Ochei KC, Iwegbulam CP. Haematological indices of malaria patients coinfected with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2017;3(5):100-104.DOI: 10.22192/ijcrms.2017.03.05.014 https://www.academia.edu/download/54317126/Haematological_indices_of_malaria_patients_coinfected_with_HIV.pdf
- 47. Jakheng SP, Obeagu EI, Abdullahi IO, Jakheng EW, Chukwueze CM, Eze GC, Essien UC, Madekwe CC, Madekwe CC, Vidya S, Kumar S. Distribution Rate of Chlamydial Infection According to Demographic Factors among Pregnant Women Attending Clinics in Zaria Metropolis, Kaduna State, Nigeria. South Asian Journal of Research in Microbiology. 2022;13(2):26-31.
- 48. Viola N, Kimono E, Nuruh N, Obeagu EI. Factors Hindering Elimination of Mother to Child Transmission of HIV Service Uptake among HIV Positive Women at Comboni Hospital Kyamuhunga Bushenyi District. Asian Journal of Dental and Health Sciences. 2023;3(2):7-14. http://ajdhs.com/index.php/journal/article/view/39.
- 49. Okorie HM, Obeagu Emmanuel I, Okpoli Henry CH, Chukwu Stella N. Comparative study of enzyme linked immunosorbent assay (Elisa) and rapid test screening methods on HIV, Hbsag, Hcv and Syphilis among voluntary donors in. Owerri, Nigeria. J Clin Commun Med. 2020;2(3):180-183.DOI: DOI: 10.32474/JCCM.2020.02.000137 links/5f344530458515b7291bd95f/Comparative-Study-of-Enzyme-Linked-

- Immunosorbent-Assay-ElISA-and-Rapid-Test-Screening-Methods-on-HIV-HBsAg-HCV-and-Syphilis-among-Voluntary-Donors-in-Owerri-Nigeria.pdf.
- 50. Ezugwu UM, Onyenekwe CC, Ukibe NR, Ahaneku JE, Onah CE, Obeagu EI, Emeje PI, Awalu JC, Igbokwe GE. Use of ATP, GTP, ADP and AMP as an Index of Energy Utilization and Storage in HIV Infected Individuals at NAUTH, Nigeria: A Longitudinal, Prospective, Case-Controlled Study. Journal of Pharmaceutical Research International. 2021;33(47A):78-84.
- 51. Emannuel G, Martin O, Peter OS, Obeagu EI, Daniel K. Factors Influencing Early Neonatal Adverse Outcomes among Women with HIV with Post Dated Pregnancies Delivering at Kampala International University Teaching Hospital, Uganda. Asian Journal of Pregnancy and Childbirth. 2023 Jul 29;6(1):203-211. http://research.sdpublishers.net/id/eprint/2819/.
- 52. Igwe MC, Obeagu EI, Ogbuabor AO, Eze GC, Ikpenwa JN, Eze-Steven PE. Socio-Demographic Variables of People Living with HIV/AIDS Initiated on ART in 2014 at Tertiary Health Institution in Enugu State. Asian Journal of Research in Infectious Diseases. 2022;10(4):1-7.
- 53. Vincent CC, Obeagu EI, Agu IS, Ukeagu NC, Onyekachi-Chigbu AC. Adherence to Antiretroviral Therapy among HIV/AIDS in Federal Medical Centre, Owerri. Journal of Pharmaceutical Research International. 2021;33(57A):360-368.
- 54. Igwe MC, Obeagu EI, Ogbuabor AO. ANALYSIS OF THE FACTORS AND PREDICTORS OF ADHERENCE TO HEALTHCARE OF PEOPLE LIVING WITH HIV/AIDS IN TERTIARY HEALTH INSTITUTIONS IN ENUGU STATE. Madonna University journal of Medicine and Health Sciences. 2022;2(3):42-57. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/75.
- 55. Madekwe CC, Madekwe CC, Obeagu EI. Inequality of monitoring in Human Immunodeficiency Virus, Tuberculosis and Malaria: A Review. Madonna University journal of Medicine and Health Sciences. 2022;2(3):6-15. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/69
- 56. Echendu GE, Vincent CC, Ibebuike J, Asodike M, Naze N, Chinedu EP, Ohale B, Obeagu EI. WEIGHTS OF INFANTS BORN TO HIV INFECTED MOTHERS: A PROSPECTIVE COHORT STUDY IN FEDERAL MEDICAL CENTRE, OWERRI, IMO STATE. European Journal of Pharmaceutical and Medical Research, 2023; 10(8): 564-568
- 57. Nwosu DC, Nwanjo HU, Okolie NJ, Ikeh K, Ajero CM, Dike J, Ojiegbe GC, Oze GO, Obeagu EI, Nnatunanya I, Azuonwu O. BIOCHEMICAL ALTERATIONS IN ADULT HIV PATIENTS ON ANTIRETRQVIRAL THERAPY. World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4(3): 153-160. links/5a4fd0500f7e9bbc10526b38/BIOCHEMICAL-ALTERATIONS-IN-ADULT-HIV-PATIENTS-ON-ANTIRETRQVIRAL-THERAPY.pdf.
- 58. Obeagu EI, Obeagu GU. Effect of CD4 Counts on Coagulation Parameters among HIV Positive Patients in Federal Medical Centre, Owerri, Nigeria. Int. J. Curr. Res. Biosci. Plant Biol. 2015;2(4):45-49.
- 59. Obeagu EI, Nwosu DC. Adverse drug reactions in HIV/AIDS patients on highly active antiretro viral therapy: a review of prevalence. Int. J. Curr. Res. Chem. Pharm. Sci. 2019;6(12):45-8.DOI: 10.22192/ijcrcps.2019.06.12.004

- <u>links/650aba1582f01628f0335795/Adverse-drug-reactions-in-HIV-AIDS-patients-on-highly-active-antiretro-viral-therapy-a-review-of-prevalence.pdf.</u>
- 60. Obeagu EI, Scott GY, Amekpor F, Obeagu GU. Implications of CD4/CD8 ratios in Human Immunodeficiency Virus infections. Int. J. Curr. Res. Med. Sci. 2023;9(2):6-13.DOI: 10.22192/ijcrms.2023.09.02.002 links/645a4a462edb8e5f094ad37c/Implications-of-CD4-CD8-ratios-in-Human-Immunodeficiency-Virus-infections.pdf.
- 61. Obeagu EI, Ochei KC, Okeke EI, Anode AC. Assessment of the level of haemoglobin and erythropoietin in persons living with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2016;2(4):29-33. links/5711c47508aeebe07c02496b/Assessment-of-the-level-of-haemoglobin-and-erythropoietin-in-persons-living-with-HIV-in-Umuahia.pdf.
- 62. Ifeanyi OE, Obeagu GU. The Values of CD4 Count, among HIV Positive Patients in FMC Owerri. Int. J. Curr. Microbiol. App. Sci. 2015;4(4):906-910. https://www.academia.edu/download/38320134/Obeagu Emmanuel Ifeanyi and Obeagu Getrude Uzoma.EMMA2.pdf.
- 63. Obeagu EI, Okeke EI, Anonde Andrew C. Evaluation of haemoglobin and iron profile study among persons living with HIV in Umuahia, Abia state, Nigeria. Int. J. Curr. Res. Biol. Med. 2016;1(2):1-5.
- 64. Alum EU, Ugwu OP, Obeagu EI, Okon MB. Curtailing HIV/AIDS Spread: Impact of Religious Leaders. Newport International Journal of Research in Medical Sciences (NIJRMS). 2023;3(2):28-31.
- 65. Obeagu EI, Obeagu GU, Paul-Chima UO. Stigma Associated With HIV. AIDS: A Review. Newport International Journal of Public Health and Pharmacy (NIJPP). 2023;3(2):64-67.
- 66. Alum EU, Obeagu EI, Ugwu OP, Aja PM, Okon MB. HIV Infection and Cardiovascular diseases: The obnoxious Duos. Newport International Journal of Research in Medical Sciences (NIJRMS). 2023;3(2):95-99.
- 67. Ibebuike JE, Nwokike GI, Nwosu DC, Obeagu EI. A Retrospective Study on Human Immune Deficiency Virus among Pregnant Women Attending Antenatal Clinic in Imo State University Teaching Hospital. *International Journal of Medical Science and Dental Research*, 2018; 1 (2):08-14. https://www.ijmsdr.org/published%20paper/li1i2/A%20Retrospective%20Study%20on%20Human%20Immune%20Deficiency%20Virus%20among%20Pregnant%20Women%20Attending%20Antenatal%20Clinic%20in%20Imo%20State%20University%20Teaching%20Hospital.pdf.
- 68. Obeagu EI, Obarezi TN, Omeh YN, Okoro NK, Eze OB. Assessment of some haematological and biochemical parametrs in HIV patients before receiving treatment in Aba, Abia State, Nigeria. Res J Pharma Biol Chem Sci. 2014; 5:825-830.
- 69. Obeagu EI, Obarezi TN, Ogbuabor BN, Anaebo QB, Eze GC. Pattern of total white blood cell and differential count values in HIV positive patients receiving treatment in Federal Teaching Hospital Abakaliki, Ebonyi State, Nigeria. International Journal of Life Science, Biotechnology and Pharama Research. 2014; 391:186-189.
- 70. Obeagu EI. A Review of Challenges and Coping Strategies Faced by HIV/AIDS Discordant Couples. Madonna University journal of Medicine and Health Sciences. 2023; 3 (1): 7-12.

- 71. Oloro OH, Obeagu EI. A Systematic Review on Some Coagulation Profile in HIV Infection. International Journal of Innovative and Applied Research. 2022;10(5):1-11.
- 72. Nwosu DC, Obeagu EI, Nkwuocha BC, Nwanna CA, Nwanjo HU, Amadike JN, Ezemma MC, Okpomeshine EA, Ozims SJ, Agu GC. Alterations in superoxide dismutiase, vitamins C and E in HIV infected children in Umuahia, Abia state. International Journal of Advanced Research in Biological Sciences. 2015;2(11):268-271.
- 73. Obeagu EI, Malot S, Obeagu GU, Ugwu OP. HIV resistance in patients with Sickle Cell Anaemia. Newport International Journal of Scientific and Experimental Sciences (NIJSES). 2023;3(2):56-59.
- 74. Ifeanyi OE, Uzoma OG, Stella EI, Chinedum OK, Abum SC. Vitamin D and insulin resistance in HIV sero positive individuals in Umudike. Int. J. Curr. Res. Med. Sci. 2018;4(2):104-108.
- 75. Ifeanyi OE, Leticia OI, Nwosu D, Chinedum OK. A Review on blood borne viral infections: universal precautions. Int. J. Adv. Res. Biol. Sci. 2018;5(6):60-66.
- 76. Nwovu AI, Ifeanyi OE, Uzoma OG, Nwebonyi NS. Occurrence of Some Blood Borne Viral Infection and Adherence to Universal Precautions among Laboratory Staff in Federal Teaching Hospital Abakaliki Ebonyi State. Arch Blood Transfus Disord. 2018;1(2).
- 77. Chinedu K, Takim AE, Obeagu EI, Chinazor UD, Eloghosa O, Ojong OE, Odunze U. HIV and TB co-infection among patients who used Directly Observed Treatment Short-course centres in Yenagoa, Nigeria. IOSR J Pharm Biol Sci. 2017;12(4):70-75.
- 78. Offie DC, Obeagu EI, Akueshi C, Njab JE, Ekanem EE, Dike PN, Oguh DN. Facilitators and barriers to retention in HIV care among HIV infected MSM attending Community Health Center Yaba, Lagos Nigeria. Journal of Pharmaceutical Research International. 2021;33(52B):10-19.
- 79. Obeagu EI, Obeagu GU, Ede MO, Odo EO, Buhari HA. Translation of HIV/AIDS knowledge into behavior change among secondary school adolescents in Uganda: A review. Medicine (Baltimore). 2023;102(49): e36599. doi: 10.1097/MD.000000000036599. PMID: 38065920; PMCID: PMC10713174.
- 80. Anyiam AF, Arinze-Anyiam OC, Irondi EA, Obeagu EI. Distribution of ABO and rhesus blood grouping with HIV infection among blood donors in Ekiti State Nigeria. Medicine (Baltimore). 2023;102(47): e36342. doi: 10.1097/MD.0000000000036342. PMID: 38013335; PMCID: PMC10681551.
- 81. Echefu SN, Udosen JE, Akwiwu EC, Akpotuzor JO, Obeagu EI. Effect of Dolutegravir regimen against other regimens on some hematological parameters, CD4 count and viral load of people living with HIV infection in South Eastern Nigeria. Medicine (Baltimore). 2023;102(47): e35910. doi: 10.1097/MD.0000000000035910. PMID: 38013350; PMCID: PMC10681510.
- 82. Opeyemi AA, Obeagu EI. Regulations of malaria in children with human immunodeficiency virus infection: A review. Medicine (Baltimore). 2023;102(46): e36166. doi: 10.1097/MD.0000000000036166. PMID: 37986340; PMCID: PMC10659731.
- 83. Alum EU, Obeagu EI, Ugwu OPC, Samson AO, Adepoju AO, Amusa MO. Inclusion of nutritional counseling and mental health services in HIV/AIDS management: A paradigm

- shift. Medicine (Baltimore). 2023;102(41): e35673. doi: 10.1097/MD.0000000000035673. PMID: 37832059; PMCID: PMC10578718.
- 84. Aizaz M, Abbas FA, Abbas A, Tabassum S, Obeagu EI. Alarming rise in HIV cases in Pakistan: Challenges and future recommendations at hand. Health Sci Rep. 2023;6(8): e1450. doi: 10.1002/hsr2.1450. PMID: 37520460; PMCID: PMC10375546.
- 85. Obeagu EI, Obeagu GU, Obiezu J, Ezeonwumelu C, Ogunnaya FU, Ngwoke AO, Emeka-Obi OR, Ugwu OP. Hematologic Support in HIV Patients: Blood Transfusion Strategies and Immunological Considerations. APPLIED SCIENCES (NIJBAS). 2023;3(3).
- 86. Obeagu EI, Ubosi NI, Uzoma G. Storms and Struggles: Managing HIV Amid Natural Disasters. Int. J. Curr. Res. Chem. Pharm. Sci. 2023;10(11):14-25.
- 87. Obeagu EI, Obeagu GU. Human Immunodeficiency Virus and tuberculosis infection: A review of prevalence of associated factors. Int. J. Adv. Multidiscip. Res. 2023;10(10):56-62.
- 88. Obeagu EI, Malot S, Obeagu GU, Ugwu OP. HIV resistance in patients with Sickle Cell Anaemia. Newport International Journal of Scientific and Experimental Sciences (NIJSES). 2023;3(2):56-9.
- 89. Alum EU, Ugwu OP, Obeagu EI, Aja PM, Okon MB, Uti DE. Reducing HIV Infection Rate in Women: A Catalyst to reducing HIV Infection pervasiveness in Africa. International Journal of Innovative and Applied Research. 2023;11(10):01-6.
- 90. Brar SK, Perveen S, Chaudhry MR, AlBabtain S, Amreen S, Khan S. Erythropoietin-induced hypertension: a review of pathogenesis, treatment, and role of blood viscosity. Cureus. 2021;13(1).
- 91. Rogers J, Gallaher EJ, Dingli D. Personalized ESA doses for anemia management in hemodialysis patients with end-stage renal disease. System Dynamics Review. 2018;34(1-2):121-153.