Explication du chef d'œuvre

Illustration de Segment Tree dans les requêtes d'intervalles

Réalisé par : Rania Laffet

Année universitaire: 2024 - 2025

Introduction

Ce programme Python génère une visualisation animée d'un **arbre de segments**, une structure de données utilisée pour répondre efficacement à des **requêtes sur des intervalles**, comme le calcul de **sommes** ou de **minimums**. L'animation met en évidence la construction progressive de l'arbre et illustre son utilisation pour calculer des sommes sur des intervalles spécifiés.

Techniques informatiques employées

• Langage: Python a été choisi pour sa simplicité, sa richesse en bibliothèques et son support pour la manipulation graphique et mathématique.

• Bibliothèques:

- Pygame: Utilisée pour créer une interface graphique interactive, dessiner les nœuds, les liens et afficher des informations textuelles.
- Colormath : Permet de manipuler et convertir les couleurs dans différents espaces colorimétriques.
- Math: Fournit les outils nécessaires pour calculer les logarithmes et gérer les puissances de deux.
- o **OrderedDict :** Utilisé pour stocker les nœuds de l'arbre dans un ordre précis.
- **Structure de données :** L'arbre de segments est implémenté comme un dictionnaire Python. Chaque clé représente l'indice d'un nœud dans l'arbre, et la valeur contient les informations sur ses coordonnées et sa valeur.

Techniques propres au multimédia et à l'animation

Visualisation interactive :

 Chaque nœud de l'arbre est représenté par un rectangle, et les connexions parent-enfant sont indiquées par des lignes.

- Les valeurs des nœuds et leurs indices sont affichés à l'écran pour faciliter la compréhension.
- Animation progressive: L'arbre est construit visuellement étape par étape. Le nombre de nœuds affichés augmente à chaque frame, simulant une progression naturelle.
- **Mise en page graphique :** L'espacement des nœuds est calculé dynamiquement pour optimiser la lisibilité, en tenant compte de la taille de la fenêtre.
- **Couleurs significatives :** Les nœuds parents et enfants sont différenciés visuellement à l'aide de couleurs distinctes.
- Sauvegarde d'image : L'image finale de l'arbre de segments est sauvegardée au format PNG à l'aide de la bibliothèque Pillow.

Limitations et gestion des entrées

- Entrées utilisateur :
 - Le programme demande à l'utilisateur de fournir :
 - 1. La taille du tableau (nombre d'éléments).
 - 2. Les valeurs des éléments du tableau.

- 3. Les indices de début et de fin de l'intervalle pour lequel la somme est calculée.
- 4. Le nom du fichier dans lequel l'image sera sauvegardée.

Limitations:

- La visualisation est limitée à un nombre raisonnable de nœuds pour garantir des performances fluides.
- Le programme ne prend pas en charge les modifications dynamiques du tableau, comme des insertions ou suppressions.

Processus de création

- 1. Initialisation: Les bibliothèques nécessaires sont importées.
- 2. **Lecture des entrées utilisateur :** Les données (taille, valeurs du tableau, indices de l'intervalle) sont récupérées et validées.
- 3. **Construction de l'arbre :** L'arbre est construit en calculant récursivement la somme des enfants pour chaque nœud interne.
- 4. **Animation graphique :** L'arbre est dessiné progressivement à l'écran, en mettant à jour le rendu à chaque frame.
- 5. **Calcul de la somme :** Une requête est exécutée pour calculer la somme des valeurs dans un intervalle donné.
- 6. Affichage des résultats : La somme calculée est affichée à l'écran.
- 7. **Finalisation :** Une capture d'écran de l'arbre est sauvegardée pour un usage ultérieur.

Conclusion: Ce programme constitue un outil efficace pour aider les gens à explorer et à comprendre les structures de données, comme l'arbre de segments, tout en renforçant leurs compétences en algorithmique grâce à une approche visuelle engageante.