Contents

Animal Tissues	16
Tissue	16
Terms related to tissues	16
Histology	16
Term tissue	16
Father of modern histology	16
Father of histology	16
Histogenesis	16
Types of animal tissues	17
Epithelial Tissue	17
Structure of epithelial tissue	17
Development of epithelial tissue	17
Anatomy of epithelial tissues	18
Basement membrane in epithelial tissues	18
Functions of Epithelial Tissue	18
Types of Epithelial Tissues	19
Simple epithelial tissue	19
Anatomy of simple epithelial tissue	19
Types of Simple Epithelial Tissue	19
Simple Squamous epithelium	19
Structure of simple squamous epithelium	19
Location of simple squamous epithelium	20
Functions of simple squamous epithelium	20
Simple Cuboidal epithelium	21
Structure of simple cuboidal epithelium	21
Location of simple cuboidal epithelium	
Functions of simple cuboidal epithelium	
Simple Columnar Epithelium	22
Structure of simple columnar epithelium	
Location of simple columnar epithelium	

Functions of simple columnar epithelium	23
Pseudo stratified Epithelium	23
Structure of pseudo stratified epithelium	23
Location of pseudo stratified epithelium	
Functions of pseudo stratified epithelium	
Compound Epithelium	24
Structure of compound epithelium	. 24
Types of Compound epithelium	24
Stratified epithelium	24
Structure of stratified epithelium	24
Stratified Squamous epithelium	24
Structure of stratified squamous epithelium	. 24
Location of stratified squamous epithelium	25
Function of stratified squamous epithelium	25
Types of Stratified Squamous Epithelium based on Keratin	25
Keratinized Stratified Epithelium	25
Structure of keratinized stratified epithelium	25
Location of keratinized stratified squamous epithelium	26
Function of keratinized stratified squamous epithelium	
Non Keratinized Stratified Epithelium	26
Structure of non keratinized stratified epithelium	26
Location of non keratinized stratified epithelium	27
Function of non keratinized stratified epithelium	27
Stratified Cuboidal Epithelium	27
Structure of stratified cuboidal epithelium	
Location of stratified cuboidal epithelium	27
Function of stratified cuboidal epithelium	27
Stratified Columnar epithelium	27
Structure of stratified columnar epithelium	27
Location of stratified columnar epithelium	28
Function of stratified columnar epithelium	28
Transitional Epithelium	28
Structure of transitional epithelium	28

Location of transitional epithelium	
Specialized Epithelium Composition of specialized epithelium	
Ciliated epithelium Structure of ciliated epithelium	29
Sensory epithelium Structure of sensory epithelium Location of sensory epithelium Function of sensory epithelium	30
Germinal epithelium Structure of germinal epithelium	31
Glandular epithelium Structure of glandular epithelium Types of glands Number of cells Unicellular gland Examples of unicellular gland Multicellular gland Examples of multicellular glands Presence or absence of ducts Exocrine gland Examples of exocrine glands Endocrine gland Endocrine gland	31 31 31 31 31 32 32
Endocrine gland Examples of endocrine glands Heterocrine gland Examples of heterocrine glands Shape and complexity	32 32 33

Types of Simple Glands	3
Examples of Simple tubular glands	4
Examples of Simple coiled tubular glands	4
Examples of Simple branched tubular glands	4
Examples of Simple alveolar glands	4
Examples of Simple branched alveolar glands	4
Compound glands	4
Examples of Compound tubular glands	4
Examples of Compound Alveolar glands	4
Examples of Compound tubulo-alveolar glands	5
Mode of secretion	5
Nature of Merocrine gland	5
Examples of merocrine gland	5
Nature of Apocrine glands	5
Examples of apocrine gland	5
Nature of Holocrine glands	5
Examples of holocrine glands	6
Nature of secretion	6
Nature of Mucus glands	6
Examples of mucus glands	6
Nature of Serous glands	6
Examples of serous glands	6
Nature of mixed glands	6
Examples of mixed glands	7
Connective Tissue 3	
Characters of connective tissues	
Matrix	
Functions of connective tissues	
Types of connective tissues	8
Connective Tissue Proper 3	8
Loose Connective Tissue	
Areolar Tissue	
White Collagen fibres	
Yellow elastic fibres	
Reticular fibres	

Types of cells in areolar tissue	40
Fibroblasts	. 40
Macrophages	. 40
Plasma cell	. 40
Mast Cell	. 41
Heparin	. 41
Histamine	. 41
Serotonnin	. 41
Lymphocytes	. 41
Location of areolar tissues	. 41
Functions of areolar tissues	. 42
Adipose tissue	42
Types of adipocytes	. 42
White adipocytes	. 42
Brown adipocytes	. 43
Location of adipose tissues	. 43
Functions of adipose tissues	. 43
Facts on fats	. 43
Dense Connective Tissue	44
Types of dense connective tissues	. 44
White Fibrous Tissue	. 44
Location of white fibrous tissues	
Functions of white fibrous tissues	. 45
Yellow Elastic Tissue	. 45
Location of yellow elastic tissue	. 45
Functions of yellow elastic tissues	. 46
Structure of Reticular Tissue	46
Location of reticular tissues	. 46
Function of reticular tissues	. 46
Hard Connective Tissue	46
Cartilage	47
Terminologies related to cartilage	. 47
Chondrology	
Chondrogenesis	

Perichondrium	47
Chondrin	47
Chondroblast	47
Chondrocyte	47
Lacuna	48
Characteristics of Cartilage	48
Types of Cartilage	48
Nature of Calcified Cartilage	48
Examples of calcified cartilage	49
Nature of Hyaline Cartilage	
Location of Hyaline Cartilgae	49
Nature of Elastic Cartilage	
Location of elastic cartilage	50
Nature of White Fibrous Cartilage	50
Examples of white fibrous cartilage	5C
Introduction to Bone	50
Constitution of bone	
Features of bone	
Bone Factors	51
Hormones	
Vitamins	5.
Functions of bone	52
Bone Terminologies	52
Structure of $T.S.$ of a decalcified bone	56
Structure of trabeculae	57
Ossification	57
Types of ossification	57
Nature of Endochondral ossification	
Examples of Endochondral ossification	
Nature of Intramembranous ossification	
Examples of Intramembranous ossification	
Ossification in tendon	
Examples of ossification in tendon	

Fluid connective tissue 5	8
Contents of fluid connective tissue	8
Types of fluid connective tissue	8
Blood 5	9
Haemopoiesis	9
Chemical property of blood	9
Amount of blood	9
Functions of Blood	0
Composition of blood:	0
Blood Plasma	0
Amount of blood plasma	0
Contents of blood plasma	O
Water	O
Inorganic salts	31
Organic waste materials	31
Plasma proteins	31
Albumins	2
Globulins	2
Antibodies	2
Hormones and respiratory gases	2
Clotting factors	2
Functions of Plasma:	
Blood Corpuscles: 6	3
RBC	3
Structure of RBC	3
Contents of RBC	4
Quantity of RBC	4
Rate of production of RBC	4
Lifespan	4
Erythropoiesis	4
Formation of RBC	5
Destruction of RBC	5
Haemoglobin	5
Plasma membrane	
Disorders related to RBC	
Anaemia	

Polycythemia	66
Pernicious anaemia	66
Facts about RBC	66
Rouleaux formation	66
Haemolysis	67
Shrinking of RBC	67
Formation of RBCs	67
Facts about RBC	67
White Blood Cells	68
Amount of WBC	68
Average lifespan	68
Terms related to white blood cells	69
Diapedesis	69
Formation of WBC	69
Types of WBC	69
Granulocytes	69
Eosinophils	70
Basophils	70
Neutrophils	70
Agranulocytes	70
Monocytes	71
Lymphocytes	71
Disorders of WBC	71
Leukemia	71
Leucopenia	71
Platelets	72
Amount of platelets	
Dimensions of platelets	
Lifespan of platelets	
Formation of Thrombocytes	
Disorders of thrombocytes	
Thrombocytosis	72
Thrombocytopenia	
Contents of thrombocytes	
Blood coagulation	
Time for blood coagulation	73

Blood clotting	73
Release of enzymes	. 74
Formation of thrombin	. 74
Formation of fibrin	. 74
Blood clot	. 74
Terms related to blood clotting	75
Serum	. 75
Thrombosis	. 75
Thrombus	. 75
Minerals	. 75
Heparin	. 75
Storage of Blood	76
Temperature for storing blood	. 76
Lymph	76
Location of lymph	. 76
Opacity of lymph	
Colour of lymph	
Chemical nature of lymph on the basis of three classes	
Contents of lymph	. 77
Quantity of protein in lymph	
Lymphatic system	78
Division of lymphatic system	. 78
Formation of lymphatic vessels	. 78
System for production of lymph fluid	. 78
Lymph nodes	78
Function of lymph nodes	. 79
Structure having valve in lymphatic system	
Need for valve in lymphatic vessels	
Movement of lymph	79
Structural factors in movement of lymph	. 79
Process of movement of lymph in lymphatic system	
Major lymphatic ducts	80
Location of right lymphatic duct	. 80

Role of right lymphatic ducts	
Location of thoracic duct	
Role of thoracic duct	. 80
Direction of flow of lymph	. 80
Final destination of flow of lymph	. 81
Functions of lymph	81
Transportation	. 81
Phagocytotic nature of lymph	. 81
Balance of blood volume	. 82
Lacetals	82
Anatomy of lacteals	. 82
Location of lacteals	. 82
Function of lacteals	. 82
Substances absorbed by lacetals	. 82
Disorders of lymph	82
Location of oedema in disorders of lymph	. 83
Result of oedema in disorders of lymph	
Term for oedema in disorders of lymph	
Muscular tissue	83
Term for study of muscles	. 83
Strength of muscles	
Type of muscular tissues in terms of contraction	
Source of flesh in the body	
Nature of origin of muscles	. 84
Organs having muscles of mesodermal origin	. 84
Organs having muscles of ectodermal origin	. 84
Features of muscles	. 84
Functions of Muscles	84
Actions conducted by involuntary muscles	. 84
Types of muscles	85
Voluntary muscles:	85
Terms for voluntary muscles	. 85
Nature of voluntary muscles on the basis of control according to will	. 85

	Fatigueness of voluntary muscles	85
	Arrangement of muscles with skeleton in voluntary muscles	85
	Structure for attachment of muscles with skeleton in voluntary muscles	85
	Source of muscle fibre cells in voluntary muscles	85
	Nature of voluntary muscles in terms of division	86
	Location of voluntary muscles	86
	Functions of voluntary muscles	86
Structu	ure of voluntary muscles	86
	Branching of voluntary muscles	86
	Shape of muscles in voluntary muscles	86
	Structure of end of voluntary muscles	86
	Binding structure of muscle fibre in voluntary muscles	87
	Cytoplasm of muscle fibres of voluntary muscles	87
	Location of nucleus in muscle fibres of voluntary muscles	87
	Type of cells of muscle fibres of voluntary muscles in terms of number of nucleus	87
	Type of origin of cells of muscle fibres on the basis of arrangement of cells	87
	Source of formation of cells of muscle fibres of voluntary muscles	87
	Nature of syncytial origin	87
	Contents of sarcoplasm in voluntary muscles	87
	Term for cytoplasm in voluntary muscles	88
	Term for endoplasmic reticulum in sarcoplasm in voluntary muscles	88
	Contents of sarcoplasmic reticulum in sarcoplasm in voluntary muscles	88
	Function of myoglobin in voluntary muscles in voluntary muscles	88
	Function of presence of oxygen in myoglobin in voluntary muscles	88
	Colour of muscle fibre in voluntary muscles	88
	Cause of deep red coloration of muscle fibre in voluntary muscles	88
	Contents of myofibril in voluntary muscles	88
	Contents of Bands of myofibril in voluntary muscles	88
	Types of myofilaments in voluntary muscles	89
	Contents of myofilaments in voluntary muscles	89
	Cause of name of striated muscles in voluntary muscles	89
Terr	ns for Dark bands in voluntary muscles	89
	Contents of dark bands in voluntary muscles	89
	Protein present in dark bands of voluntary muscles	89
	Line of bisection for dark bands of voluntary muscles	89
	Term for hensen's line in voluntary muscles	89

	Terms for Light band in voluntary muscles	90
	Contents of light bands in voluntary muscles	90
	Protein present in light bands of voluntary muscles	90
	Line of bisection in light bands in voluntary muscles	90
	Term for Z line in light band of voluntary muscles	90
	Function of Z line in voluntary muscles	90
	Sacromere in voluntary muscles	90
	Location of sacromere in voluntary muscles	90
	Range of location of sacromere in voluntary muscles	91
	Length of sacromere in voluntary muscles	91
	Mechanism of contraction of voluntary muscles	91
	Approximation of length of sacromere during muscle contraction in voluntary	01
	muscles	
	Destination of Z lines in muscles contraction of voluntary muscles	
	Ions mediating the contraction of voluntary muscles	
	Proteins present at actin	
	Location of proteins present at actin	
	Function of troponin and tropomyosin	
	Function of calcium ions in muscle contraction of voluntary muscles	
	Consequence of binding of troponin in muscle contraction	92
Ac	tivities in myosin in contraction of voluntary muscles	92 92
Ac		92
Ac	tivities in myosin in contraction of voluntary muscles	92
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles	92 92 92 92
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP	92 92 92 92
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles	92 92 92 92 92
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles	92 92 92 92 92 92
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge	92 92 92 92 92 92
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles	92 92 92 92 92 92 93
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles Function of myosin in contraction of voluntary muscles	92 92 92 92 92 92 93 93
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles Function of myosin in contraction of voluntary muscles Contraction of muscle	92 92 92 92 92 93 93 93
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles Function of myosin in contraction of voluntary muscles Contraction of muscle Product in contraction of muscles in extrenous exercise	92 92 92 92 92 93 93 93 93
Ac	Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles Function of myosin in contraction of voluntary muscles Contraction of muscle Product in contraction of muscles in extrenous exercise Condition of formation of lactic acid in muscles	92 92 92 92 92 93 93 93 93
Ac	Etivities in myosin in contraction of voluntary muscles Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles Function of myosin in contraction of voluntary muscles Contraction of muscle Product in contraction of muscles in extrenous exercise Condition of formation of lactic acid in muscles Reactant in production of lactic acid in muscles	92 92 92 92 92 93 93 93 93 93
Ac	Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles Function of myosin in contraction of voluntary muscles Contraction of muscle Product in contraction of muscles in extrenous exercise Condition of formation of lactic acid in muscles Reactant in production of skeletal muscles at the condition of high energy deman	92 92 92 92 92 93 93 93 93 93
Ac	Breakdown of ATP Reactants in release of energy in contraction of voluntary muscles Products in release of energy in contraction of voluntary muscles Location of breakdown of ATP in muscle contraction Formation of bridge Structure between myosin and acting in contraction of voluntary muscles Function of myosin in contraction of voluntary muscles Contraction of muscle Product in contraction of muscles in extrenous exercise Condition of formation of lactic acid in muscles Reactant in production of skeletal muscles at the condition of high energy deman Products in production of lactic acid in muscles	92 92 92 92 92 93 93 93 93 93

	Consequence of muscle fatigue in muscles	94
Outer c	covering of voluntary muscles	94
	Epimysium in voluntary muscles	94
	Function of epimysium in voluntary muscles	94
	Fasicula in voluntary muscles	94
	Composition of fasicula in voluntary muscles	94
	Perimysium in voluntary muscles	94
	Function of perimysium in voluntary muscles	94
	Number of muscle fibres present in fasicula	94
	Endomysium in voluntary muscles	95
	Function of endomysium in voluntary muscle	95
	Location of sarcolemma in voluntary muscles	95
	Function of sarcolemma in voluntary muscles	95
Involun	ntary muscles	95
	Terms for involuntary muscles	95
	Nature of involuntary muscles in terms of control by will	95
	Involuntary muscles in terms of power of division	
	Structures influencing activities of involuntary muscles	95
	Nervous system involved in the functioning of involuntary muscles	96
Loca	ation of involuntary muscles	96
Structu	re of involuntary muscles	96
	Appromixation of length of involuntary muscles	96
	Shape of involuntary muscles	96
	Contents of involuntary muscles	96
	Arrangement of myofibrils in involuntary muscles	96
	Type of cells of involuntary muscles in terms of number of nucleus	96
	Structure absent in involuntary muscle but present in voluntary	97
	Function of plasma membrane in involuntary muscles	97
	Cause of name of unstriped muscles in involuntary muscles	97
	Contents of involuntary muscles	
	Proteins present at the involuntary muscles	97
	Pattern of arrangement of actin and myosin proteins in irregular muscles	
	Cause of name as ustriated muscles of smooth muscles	
	Muscle unit absent in involuntary muscles	
	Function of gap junctions in involuntary muscles	
	Connection of involuntary muscles with the skeleton	
	·	

Approximation of time of contraction of involuntary muscles	98
Approximation of rate of time of contraction of involuntary muscles	98
Fatigueness expressed in contraction of involuntary muscles	98
Cause of muscle contraction in involuntary muscles	98
Source of energy for the contraction of involuntary muscles	98
Calcium binding protein present in involuntary muscles	98
Function of calmodulin in involuntary muscles	99
Cardiac muscles	99
Location of cardiac muscles	99
Structure of cells of cardiac muscles	99
Approximation of length of cells of cardiac muscles	99
Shape of cells of cardiac muscles	99
Branching of cells of cardiac muscles	99
Type of cells of cardiac muscles in terms of quantity of nucleus	99
Structure of connection of cells of cardiac muscles	99
Shape of connection of bridge of cells of cardiac muscles	99
Thickness of filaments of cardiac muscles	OC
Type of protein in cardiac muscles	OC
Covering of cardiac muscles	00
Location of intercalated discs in cardiac muscles	00
Function of intercalated discs in cardiac muscles	OC
Consequence of action of intercalated discs in cardiac muscles	00
Location of nucleus at the cells of cardiac muscles	00
Contents of intercalated discs in cardiac muscles	OC
Function of gap junctions in cardiac muscles	.01
Consequence of connection of cytoplasm with adjacent columns in cardiac	
muscles	.01
Event of transmission of cations with adjacent columns in cardiac muscles 1	
Function of desmosomes in cardiac muscles	
Function of oblique bridge in cardiac muscles	.01
Nature of cardiac muscles in terms of interaction with nervous system 1	
Myogenic	
Shape of cardiac muscles	
Structure of end of cardiac muscles	
Proteins present at cardiac muscles	
Type of cardiac muscles in terms of movement by will	
	02

Approximation of amount of mitochondria in cardiac muscles		 	 10
Tiring of cardiac muscles		 	 10

Animal Tissues

Tissue

- Tissue is the group of cells.
- Tissues are
 - similar in origin
 - similar in structure
 - similar in function

Terms related to tissues

Histology

- The branch of science that deals with the study of tissues is histology.
- The term histology was coined by Mayer.
- · Mayer was a German histologist.

Term tissue

- The term 'Tissue' was coined by Bichat.
- · Bichat was an French Anatomist and Physiologist.

Father of modern histology

• The father of Modern Histology is Xavier Bichat

Father of histology

- The father of histology is Marcello Malpighi.
- · Marcello Malpighi was an Italian Biologist.

Histogenesis

• Histogenesis is the study of development and differentiation of tissues

Types of animal tissues

- · Animal tissues are classified on the basis of
 - structure
 - function
- $\boldsymbol{\cdot}$ The types of tissues on the basis of structure and function are
 - Epithelial tissue
 - Connective tissue
 - Muscular tissue
 - Nervous tissue

Epithelial Tissue

Structure of epithelial tissue

- Epithelial tissue is the covering tissue.
- · The cells in epithelial tissues are compactly arranged.
- The cells of epithelial tissue form a sheet.
- Epithelial tissue covers
 - the body
 - external hollow surfaces of organs
 - internal hollow surfaces of organs

Development of epithelial tissue

- Epithelial tissues develop from all three layers.
- · Epidermis of skin develops from
 - Ectoderm
- The Lining of coelom develops from
 - Mesoderm
- The Lining of alimentary canal develops from
 - Endoderm

Anatomy of epithelial tissues

- The cells of epithelial tissues are closely packed.
- The cells of epithelial tissue lack the intercellular spaces.
- The cells of epithelial tissue are connected together by a cementing substance.
- The cementing substance is made up of carbohydrate derivatives.
- The cementing substance of carbohydrate derivatives connecting the cells of epithelial tissue is called
 - desmosome
- The cells of epithelial tissue rest on the basement membrane.
- The basement membrane is also termed as basal lamina.
- · The basal lamina has the following properties
 - The basal lamina is non cellular.
 - The basal lamina is formed by
 - * collagenous substance
 - * glycoproteinous substance
- Epithelial tissue is avascular tissue.
- Epithelial tissue receives the nourishments through diffusion.
- The nourishment is received from underlying connective tissues.

Basement membrane in epithelial tissues

- · Basement membrane is structure exhibiting
 - Basement membrane is thin.
 - The basement membrane is non cellular.
 - Basement membrane is devoid of blood vessels.

Functions of Epithelial Tissue

- Protection
- Secretion
- Filtration
- · Formation of gametes
 - The gametes are formed from germinal epithelium.

Types of Epithelial Tissues

- Epithelial tissue are divided into three types.
- · The division is done on the basis of
 - shape of the tissues
 - structure of the tissues
 - function of the tissues
- · The types of epithelial tissues on the basis of shape structure and function are
 - Simple epithelium
 - Compound epithelium
 - Specialized epithelium

Simple epithelial tissue

Anatomy of simple epithelial tissue

- Simple epithelial tissue is composed of a single layer of cells.
- The cells of simple epithelial tissue rest on the basement membrane.

Types of Simple Epithelial Tissue

- The types of simple epithelial tissues are
 - Simple Squamous epithelium
 - Simple Cuboidal epithelium
 - Simple Columnar epithelium
 - Pseudo-stratified epithelium

Simple Squamous epithelium

Structure of simple squamous epithelium

- · The cells of simple squamous epithelium are
 - Large
 - Flat

- Polygonal
- The cells of simple squamous epithelium rest on the basement membrane.
- The cells of simple squamous epithelium have large central nucleus.
- The intercellular spaces are absent in cells of simple squamous epithelium.
- The other term for simple squamous epithelium is pavement epithelium.
- · The term for simple squamous epithelium is pavement epithelium because
 - The cells are flat.
 - The cells are hexagonal.
 - The cells lack the intercellular space.
 - The cells appear like the tightly fitted mosaic tiles on the floor.

Location of simple squamous epithelium

The simple squamous epithelium is found in

- · The lining of the coelom
- · The lining of alimentary canal
- · The lining of nasal cavity
- · The endothelium of blood vessel
- · The endo cardium of heart
- The alveoli of lungs
- · The nephrons
- The lining of buccal cavity
- The Tympanic cavity

Functions of simple squamous epithelium

- Protection
- Exchange of gases
- Absorption
- Filtration

Simple Cuboidal epithelium

Structure of simple cuboidal epithelium

- · Simple cuboidal epithelium consists of cells that are of shape
 - cubical
- The cells of simple cuboidal epithelium rest on the basement membrane.
- The cells of simple cuboidal epithelium have no intercellular.
- There is the presence of a centrally located nucleus.
- · The cuboidal cells may have cilia.
- The cilia in simple cuboidal epithelium may be located at their free surface.
- The functions of cilia in simple cuboidal epithelium are
 - Cilia of simple cuboidal epithelium conduct the mucus.
 - Cilia of simple cuboidal epithelium conduct other substances.
- · The location of ciliated cuboidal epithelium is
 - ducts of nephrons.
- · The cuboidal cells may be brush bordered.
- · The brush bordered cuboidal cells may have microvilli.
- · The functions of microvilli in cuboidal cells is for
 - The microvilli of simple cuboidal epithelium reabsorb.
- · The location of simple cuboidal epithelium having microvilli is
 - Proximal Convoluted Tubules of nephrons

Location of simple cuboidal epithelium

The location of simple cuboidal epithelium are

- The thyroid gland
- · The lining of gonads
- The sweat gland
- The salivary glands
- The pancreatic glands
- · The female urethra
- The lining of convoluted tubules of nephrons

- The frontal surface of lens
- The back surface of pancreatic duct

Functions of simple cuboidal epithelium

- Secretion
- Excretion
- Absorption

Simple Columnar Epithelium

Structure of simple columnar epithelium

- The cells of columnar epithelium are tall
- The cells of columnar epithelium are pillar like.
- The cells of columnar epithelium are attached to the basement membrane.
- The intercellular space is absent in the cells of columnar epithelium.
- The nucleus are located at the basal regions in the cells of columnar epithelium.
- The free ends of columnar epithelium may have cilia.
- The free ends of columnar epithelium may be brush bordered.

Location of simple columnar epithelium

The location of simple columnar epithelium are

- The lining of the stomach
- · The lining of the intestine
- The gastric glands
- · The intestinal glands
- The gall bladder
- The ureter
- · The uterine wall

The location of ciliated columnar epithelium are

- The respiratory tracts
- The bronchioles
- The oviducts

The location of brush bordered columnar epithelium are

The intestinal mucosa.

Functions of simple columnar epithelium

- Secretion
- Absorption
- Protection

Pseudo stratified Epithelium

Structure of pseudo stratified epithelium

- Some of the cells of pseudo stratified epithelium are taller.
- The taller cells of pseudo stratified epithelium have cilia at their free ends
- Some of the cells of pseudo stratified epithelium are shorter.
- · The shorter cells of pseudo stratified epithelium have no cilia.
- The cells of pseudo stratified epithelium rest on the basement membrane.
- The basement membrane on which the pseudo stratified epithelium rest is the same.
- The cells of pseudo stratified epithelium have no intercellular spaces.

Location of pseudo stratified epithelium

The location of pseudo stratified epithelium are

- · The lining of trachea
- · The large bronchi
- · The ducts of some glands,
- The fallopian tubes

Functions of pseudo stratified epithelium

- The pseudo stratified epithelium propel of mucus in the lumen.
- The pseudo stratified epithelium propel the particles in the lumen.

Compound Epithelium

Structure of compound epithelium

- The cells in compound epithelium are arranged in multiple layers.
- · The lowermost cells form the germinative layer.
- The other term for germinative layer is stratum germinativum.
- The germinative layer rest on the basement membrane
- The cells of compound epithelium divide and redivide.
 - The division of cells at the germinating layer forms the upper cells.
- · The cells of compound epithelium are found in areas of
 - wear
 - tear

Types of Compound epithelium

- · Stratified epithelium
- · Stratified squamous epithelium
- Stratified cuboidal epithelium
- Stratified columnar epithelium
- Transitional epithelium

Stratified epithelium

Structure of stratified epithelium

- · Stratified epithelium has several layers of cells.
- The lowermost cells cells of stratified epithelium rest on the basement membrane.

Stratified Squamous epithelium

Structure of stratified squamous epithelium

• The upper layer of cells in stratified epithelium are

- flat
- polygonal
- squamous
- The lower layer of cells in stratified epithelium are
 - germinative
 - cuboidal or columnar
- The lower layer cells in stratified epithelium lie on the basement membrane.

Location of stratified squamous epithelium

- The skin
- The buccal cavity
- The tongue
- The vagina
- The uterus
- The urethra

Function of stratified squamous epithelium

- Stratified squamous epithelium protects areas exposed to friction
- Stratified squamous epithelium regenerates areas exposed to friction.

Types of Stratified Squamous Epithelium based on Keratin

- Keratinized squamous epithelium
- · Non Keratinized squamous epithelium

Keratinized Stratified Epithelium

Structure of keratinized stratified epithelium

- The other term for keratinized stratified epithelium is
 - water proof epithelium
- Keratinized stratified epithelium has keratin.

- The keratin in keratinized startified epithelium is present on the outer surface.
 - Keratin is a sclero protein.
- · The outer layer of cells in keratinized stratified epithelium become
 - flattened
 - horny
 - cornified
 - dead
- The transformation in the outer surface occurs by Keratinization.
- Keratinization is the process of formation of keratin

Location of keratinized stratified squamous epithelium

- · The upper layer of skin
- The hair
- The nails
- · The horns
- The hooves

Function of keratinized stratified squamous epithelium

- Keratinized squamous epithelium checks the loss of water.
- · Keratinized squamous epithelium protects from bacterial invasion.

Non Keratinized Stratified Epithelium

Structure of non keratinized stratified epithelium

- Non keratinized strtified epithelium lacks Keratin.
- · Non keratinized stratified epithelium is found in
 - soft part of the body
 - moist part of the body
- Non keratinized stratified epithelium has no power of checking the loss of water.

Location of non keratinized stratified epithelium

- The buccal cavity
- The pharynx
- The vagina
- The inner layer of rectum
- · The anus

Function of non keratinized stratified epithelium

- · Non keratinized stratified epithelium protects from wear and tear.
- · Non keratinized stratified epithelium protects from from drying.

Stratified Cuboidal Epithelium

Structure of stratified cuboidal epithelium

The upper layer of cells in stratified cuboidal epithelium are cuboidal. The basal cells in stratified cuboidal epithelium are columnar.

Location of stratified cuboidal epithelium

- The mammary glands
- The ducts of sweat glands
- · The urethra of female
- The conjunctiva

Function of stratified cuboidal epithelium

The stratified cuboidal epithelium protects.

Stratified Columnar epithelium

Structure of stratified columnar epithelium

• Stratified columnar epithelium has columnar cells at the upper layer.

• Stratified columnar epithelium has cuboidal cells at the lower layer.

Location of stratified columnar epithelium

- · The vasa deferentia
- The respiratory tracts

Function of stratified columnar epithelium

• Stratified columnar epithelium protects

Transitional Epithelium

Structure of transitional epithelium

- Transitional epithelium tissue is made up of 5 to 6 layers of cells.
- The cells of transitional epithelium have the ability of stretching.
- The basal cells of transitional epithelium are smaller.
- The middle cells of transitional epithelium are larger.
- · The middle cells are
 - pear shaped
 - club shaped and
- · The upper cells are
 - dome shaped
- The other term for transitional epithelium is water proof epithelium.

Location of transitional epithelium

- The urinary bladder
- The ureter
- The uterus

Function of transitional epithelium

- Transitional epithelium provides elasticity for the stretching of the organs.
- · Transitional epithelium is water proof.

Specialized Epithelium

Composition of specialized epithelium

- Specialized epithelium is composed of cuboidal cells
- · Specialized epithelium is composed of columnar cells
- The cells in specialized epithelium are modified to perform specialized functions.

Types of specialized epithelium

- Ciliated epithelium
- · Sensory epithelium
- · Germinal epithelium
- · Glandular epithelium

Ciliated epithelium

Structure of ciliated epithelium

- Ciliated epithelium is composed of cuboidal or columnar cells
- · Ciliated epithelium has cilia at it's free ends.

Location of ciliated epithelium

- The lining of trachea
- · The bronchi
- The nephrons

Function of ciliated epithelium

- Ciliated epithelium conducts mucus in the lumen.
- · Ciliated epithelium conducts other substances in the lumen.

Sensory epithelium

Structure of sensory epithelium

- The sensory epithelium has modified columnar cells.
- The sensory epithelium has sensory hairs at the free surface.
- The sensory epithelium has nerve endings at the lower end.

Location of sensory epithelium

- · The tongue
- The nasal cavities
- · The retina of eyes
- · The cochlea of internal ear

Function of sensory epithelium

- · Sensory epithelium perceives external stimuli.
- · Sensory epithelium perceives internal stimuli.
- · Sensory epithelium conducts the impulses.

Germinal epithelium

Structure of germinal epithelium

- · Germinal epithelium are modified cubical epithelial cells.
- Germinal epithelium lines the gonads.
- Germinal epithelium has the power of gametogenesis.

Location of germinal epithelium

- The lining of seminiferous tubules
- The lining of ovary

Function of germinal epithelium

Germinal epithelium perform gametogenesis.

Glandular epithelium

Structure of glandular epithelium

- Glandular epithelium tissue may have modified cubical or columnar cells.
- · Glandular epithelium is secretary.

Types of glands

Number of cells

Unicellular gland

• Unicellular glands are one celled glands that secretes mucus

Examples of unicellular gland

· The Goblet cells

Multicellular gland

• Multicellular glands are formed of many cuboidal cells.

Examples of multicellular glands

- The sweat glands
- The gastric glands

Presence or absence of ducts

Exocrine gland

- Exocrine glands are ducted glands.
- · Exocrine glands secrete enzymes.

Examples of exocrine glands

- The Salivary glands
- · The Tear glands
- The lacrimal glands
- The gastric glands
- The intestinal glands

Endocrine gland

- Endocrine glands are ductless glands.
- · Endocrine glands secrete hormones.

Examples of endocrine glands

- The thyroid gland
- The pituitary gland
- · The adrenal gland

Heterocrine gland

- Heterocrine glands are both exocrine and endocrine in function.
- · Heterocrine glands secrete both
 - hormones
 - enzymes

Examples of heterocrine glands

- The Pancreas
- The enzymes secreted by pancreas are
 - TAL
 - Somatostatin
 - **-** PP
- The hormones secreted by pancreas are
 - Insulin
 - Glucagon,
- The enzymes secreted by testis are
 - Sperm lysin
- The hormones secreted by testis are
 - Testesterone
- · The enzymes secreted by ovaries are
 - Fertilizin
- The hormones secreted by ovaries are
 - Oestrogen
 - Progesterone

Shape and complexity

- There are two types of glands on the basis of shape and complexity.
- The type of glands on the basis of shape and complexity are
 - Simple glands
 - Compound glands

Types of Simple Glands

- Simple glands have single unbranched duct.
- Simple glands may be tubular or alveolar.
- Simple glands may be coiled or uncoiled.
- · Simple glands may branched or unbranched.

Examples of Simple tubular glands

• The Crypts of Lieberkuhn

Examples of Simple coiled tubular glands

The Sweat glands

Examples of Simple branched tubular glands

- The gastric glands
- The Brunner's glands

Examples of Simple alveolar glands

- The mucus gland in frog
- The seminal vesicles

Examples of Simple branched alveolar glands

- The sebaceous glands
- The oil glands

Compound glands

Examples of Compound tubular glands

- The liver
- The testes
- The kidneys

Examples of Compound Alveolar glands

- The mammary glands
- The pancreatic glands

Examples of Compound tubulo-alveolar glands

- The salivary glands
- · The Bartholin's gland
- The Cowper's gland

Mode of secretion

- · Merocrine gland
- · Apocrine gland
- · Holocrine gland

Nature of Merocrine gland

- The secretions in merocrine gland are released from the cell surface.
- The secretions are released by diffusion.
- The secretions are released without losing any of its cytoplasm

Examples of merocrine gland

- · The goblet cells
- The salivary glands
- The intestinal glands
- The sweat glands

Nature of Apocrine glands

- The secretions get collected in the apical part of the cells.
- The secretions are released by bursting along with some apical cytoplasm.

Examples of apocrine gland

• The mammary glands

Nature of Holocrine glands

The entire cell breaks down in order to release the secretions in holocrine glands.

Examples of holocrine glands

• The Sebaceous glands

Nature of secretion

Nature of Mucus glands

- Mucus glands secrete mucus
- Mucus is a
 - proteinous substance
 - slimy substances

Examples of mucus glands

· The goblet cells

Nature of Serous glands

• The serous glands secrete clear watery fluids.

Examples of serous glands

- The salivary glands
- The intestinal glands
- The sweat glands

Nature of mixed glands

- The mixed glands secrete
 - mucus substance
 - serous substance

Examples of mixed glands

- The gastric glands
- · The pancreatic glands

Connective Tissue

- · Connective tissue
 - connects other tissues
 - binds other tissues
 - holds other tissues
- · Connective tissue originates from the mesodermal layer.

Characters of connective tissues

- There is the presence of intercellular space in connective tissue.
- The connective tissue has non-living fibres.
- There connective tissues have no basement membrane.
- · The connective tissues may be + vascular + avascular

Matrix

- · Matrix is a intercellular substance.
- · Matrix is clear.
- · Matrix is jelly like.
- · The contents of matrix are
 - cells
 - fibres

Functions of connective tissues

- · Connective tissue binds other tissues and organs.
- · Connective tissues connects other tissues and organs.
- · Connective tissues hold other tissues and organs.

- Connective tissues make supporting framework for the body
- · Connective tissues store fat .
- · Connective tissues acts as shock absorber.
- · Connective tissues protects vital organs.
- · Connective tissues pack organs
- · Connective tissues transports substances across the body.
- · Connective tissues fight with foreign toxins.

Types of connective tissues

- · Connective tissues are divided on the basis of
 - type of matrix
- · The types of connective tissues are
 - Connective Tissue Proper
 - Loose Connective Tissue
 - Dense Connective Tissue
 - Hard Connective Tissue
 - Fluid Connective Tissue

Connective Tissue Proper

· Connective tissue proper has a soft matrix.

Loose Connective Tissue

Areolar Tissue

- Areolar tissue is a loose connective tissue.
- · Areolar tissue has a matrix chracterizing
 - soft
 - transparent
 - jelly like
- The other term for areolar tissue is packing tissue.

- · Areolar tissue has non living fibres.
- The fibres present in areolar tissue are loosely arranged.
- The fibres present in areolar tissue are arranged in random manners.
- · Areolae
 - The space between the fibres is called areolae.

White Collagen fibres

- · White collagen fibres are white fibres.
- · White collagen fibres are arranged in bundles
- · White collagen fibres are arranged in a wavy manner.
- · White collagen fibres are unbranched.
- · White collagen fibres are tough
- · White collagen fibres are inelastic.
- The protein in the white collagen fibres is collagen protein.

Yellow elastic fibres

- Yellow elastic fibres are long.
- · Yellow elastic fibres are branched.
- Yellow elastic fibres are present singly.
- · Yellow elastic fibres are flexible.
- · Yellow elastic fibres are elastic.
- The protein in the yellow elastic fibres is elastin protein.

Reticular fibres

- · Reticular fibres are delicate fibres.
- · Reticular fibres are short fibres.
- · Reticular fibres are fine fibres.
- · Reticular fibres are thread like fibres
- · Reticular fibres form networks.
- · Reticular fibres have reticulin protein.

Types of cells in areolar tissue

The cells in the areolar tissues are

- Fibroblasts
- Macrophages
- · Plasma Cell
- · Mast cell
- Lymphocytes

Fibroblasts

- Fibroblasts are fibre secreting cells
- · Fibroblasts are large in size
- Fibroblasts have elongated protoplasmic processes
- · Fibroblasts have oval nucleus.
- · Fibroblasts secrete proteins.
- · The proteins secreted by fibroblasts are
 - collagen
 - elastin
 - reticulin

Macrophages

- · The other term for macrophages is histocytes.
- · Histocytes are
 - large
 - irregular
 - amoeboid shape
- · Macrophages have kidney shaped nucleus.
- Macrophages are phagocytic.

Plasma cell

Small round cells having large cart wheel nucleus , hence called as â€~Cart wheel cell' They produce antibodies

Mast Cell

Large oval cells which have granular cytoplasm Mast cell secretes Heparin, Histamine and Serotonnin

Heparin

• Heparin is an anti coagulant.

Histamine

- · Histamine is a vasodilator.
- · Vasodilator decreases blood pressure.
- · Histamine is secreted in allergic conditions.

Serotonnin

- · Serotonin is a vasoconstrictor.
- · Vasoconstrictor increases blood pressure.

Lymphocytes

- · Lymphocytes are small cells.
- · Lymphocytes are amoeboid cells.
- · Lymphocytes act as scavangers
- · Lymphocytes by eat up the debris.
- · Lymphocytes eat up the foreign bodies

Location of areolar tissues

- · Beneath the dermis of skin
- Between and around muscles
- The blood vessels
- The nerve fibres
- The mesenteries in gastrointestinal tracts
- The Peritoneum

Functions of areolar tissues

- · Areolar tissues are supportive.
- · Areolar tissues are packing tissues.
- · Areolar tissues heal wounds.
- · Areolar tissues heal inflammations.
- · Heparin prevents blood clotting.
- · Areolar tissues bind and connect tissues.
- · Areolar tissues destroy microbes.
- · Areolar tissues engulf foreign bodies.

Adipose tissue

- · Adipose tissue is a modified areolar tissue.
- Adipose tissue is also termed as a fat storing tissue.
- · Adipose tissue consists of large number of fat storing cells.
- The fat storing cells of adipose tissue are called adipocytes.
- The other term for adipocytes is lipocytes.
- · Adipocytes are modified fibrocytes.
- · Adipocytes are
 - large
 - oval
 - spherical
 - fat

Types of adipocytes

- · White adipocytes
- · Brown adipocytes

White adipocytes

- · White adipocytes contain single large fat droplet.
- · White adipocytes contain
 - peripheral cytoplasm
 - peripheral nucleus

Brown adipocytes

- Brown adipocytes contain several small fat droplets.
- Brown adipocytes contain
 - peripheral nucleus
 - peripheral cytoplasm
- Brown adipocytes contain fat from from excess food.

Location of adipose tissues

- · Beneath the skin as subcutaneous fat
- · Around kidneys and eyeballs
- · On the surface of heart
- Mesenteries
- · Soles of feet
- Buttocks
- Hump of camel
- · Blubber of whales

Functions of adipose tissues

- · Adipose tissue is a reservoir of fat.
- · Adipose tissue gives mechanical protection.
- · Adipose tissue acts as shock absorber around
 - kidneys
 - heart
 - soles of the feet
 - buttocks
- · Adipose tissue prevents heat loss.
- · Adipose tissue acts as cushion
 - in eye socket

Facts on fats

· The fat is yellow in colour due to

- lipochrome pigment
- · The brown fat is brown in colour due to
 - iron rich mitochondria
 - containing cytochrome pigment
- · The adipose tissue are not found in
 - lungs
 - eyelids
 - ear penis
 - and dorsum of hand
- Brown fat can yield 20 times more energy than white fats.

Dense Connective Tissue

· Dense connective tissue has compactly arranged fibres.

Types of dense connective tissues

- · White fibrous tissue
- · Yellow Elastic Tissue
- Reticular Tissue

White Fibrous Tissue

- White fibrous tissue is made up of the white collagen fibres.
- · White collagen fibres are tough.
- · White collagen fibres are inelastic.
- · White fibrous tissue forms tendon.
- · Tendon connects the muscles with bones.

Location of white fibrous tissues

- The Sclera of the eyeball
- · The Cornea of eyeball

- · The perichondrium of Cartilage
- The periosteum of bone
- · Between the skull bones
- · Duramater of the brain
- · The spinal cord
- The pericardium of heart
- · The kidney capsule
- · The dermis of skin
- · The lymph nodes

Functions of white fibrous tissues

- · Tendon connects the muscles to bones
- · White fibrous tissue provides mechanical protection.
- · White fibrous tissue protects vital organs like
 - brain
 - spinal cord
 - heart
 - kidney

Yellow Elastic Tissue

- · Yellow elastic tissue is made up of yellow elastic fibres
- · Yellow elastic fibres are elastic.
- Yellow elastic tissue forms ligaments.

Location of yellow elastic tissue

- · The pinna
- · The alveoli
- The arterial wall
- · The epiglottis
- · The dermis of skin

Functions of yellow elastic tissues

- Yellow elastic tissue stretches the body organs.
- · Ligament connects bone to bone
- · Ligament connects cartilage to cartilage

Structure of Reticular Tissue

- · Reticular tissue is a modified areolar tissue.
- · Reticular tissue is made up of reticular fibres.

Location of reticular tissues

- · Around the muscle fibres
 - The term for reticular tissues around the muscle fibres is Sarcolemma.
- · Around nerve fibres
 - The term for reticular fibres around the muscle fibres is Neurilemma.
- · The lymph glands
- Tonsils
- Liver
- Kidney

Function of reticular tissues

· Reticular tissue act as delicate supporting network

Hard Connective Tissue

- · Hard connective tissue has a hard matrix.
- The other term for hard connective tissue is skeletal tissue.
- The types of hard connective tissue are
 - cartilage
 - bones

Cartilage

· Cartilage is a hard connective tissue .

Terminologies related to cartilage

Chondrology

• Chondrology is the study of cartilages.

Chondrogenesis

· Chondrogenesis is the process of formation of cartilage.

Perichondrium

- The perichondrium is the outer covering of the cartilage.
- The perichondrium is made up of white fibrous tissue.

Chondrin

- · Chondrin is a protein.
- Chondrin is present in the matrix of cartilage.

Chondroblast

• Chondroblast cells form the cartilage.

Chondrocyte

- Chondrocytes are inactive and mature cells.
- · Chondrocytes form the cartilages.
- Chondrocytes are enclosed in the lacuna.

Lacuna

- · Lacuna is a fluid filled cavity.
- The number of chondrocytes in the lacuna is:
 - **-** 2-6

Characteristics of Cartilage

- · Cartilage has cheese like matrix.
- The cells of the cartilage are scattered in the matrix.
- The cartilage has
 - collagen fibres in the matrix
 - the elastin fibres in the matrix.
- The cartilage is surrounded by a sheath of white fibrous tissue.
- The cartilage is avascular.
- The nutrients in the cartilage are obtained in the cells by diffusion.
- · The blood vessels do not grow into cartilage
 - The chondrocytes in the cartilages produce a chemical anti-angiogenesis factor.
- The direction of growth in cartilage is uni directional.

Types of Cartilage

- The types of cartilages are divided on the proportion of fibres present in the matrix.
- The types of cartilages are divided on kinds of fibres present.
- The types of cartilages are:
 - Calcified cartilage
 - Hyaline cartilage
 - Elastin cartilage
 - White fibrous cartilage

Nature of Calcified Cartilage

· Calcified cartilage is formed by the calcification of hyaline cartilage.

- The calcified cartilage is
 - hard
 - inelastic
- The calcified cartilage is hard and inelastic because
 - The calcium in calcified cartilage deposits in the matrix.

Examples of calcified cartilage

- · The head of humerus of frog
- The head of femur of frog

Nature of Hyaline Cartilage

- Hyaline cartilage is termed as transparent tissue.
 - The hyaline cartilage is termed as transparent tissue because it has glass like matrix.
- · Hyaline cartilage has no fibres in it.
- Hyaline cartilage is the most common type of cartilage.

Location of Hyaline Cartilgae

- The vertebrate embryos
- The cartilageneous fishes
- The ends of long bones,
- The nasal bones
- · The ribs
- The larynx
- The trachea
- The knee cap

Nature of Elastic Cartilage

- · Elastic cartilage has elastic fibres.
- Elastic cartilage is elastic in nature.

Location of elastic cartilage

- Ear Pinna
- Epiglottis
- Eustachian tube

Nature of White Fibrous Cartilage

- White fibrous cartilage lacks perichondrium.
- White fibrous cartilage has collagen fibres.
- White fibrous cartilage is the most strongest cartilage.

Examples of white fibrous cartilage

- The pubic symphysis
- The intervertebral discs
- The acetabulum
- The glenoid cavity

Introduction to Bone

- Bone is a hard connective tissue.
- Bone has hard matrix .

Constitution of bone

- The **constituting** components of bone are
 - Inorganic Salts
 - * Calcium Magnesium and Phosphate
 - * Calcium Hydrooxypatite
 - · This causes **hardness** of *bone* .
 - Collagen Fibers 33%
 - * This **provides tensile strength** to the *bone* .

- Cells

- * Osteocytes
- * Osteoblasts
- * Osteoclasts
- Protein
 - * Bone contains protein called **ossein** .

Features of bone

- Bone shows bidirectional growth.
- Bone grows brittle with increasing age .
 - This occurs due to decrease of protein in the matrix.

Bone Factors

Hormones

- · Parathormone
 - This is secreted by *parathyroid* gland.
 - This **increases** blood *calcium*.
 - Calcium is drawn from bone to plasma .
- · Calcitonin
 - This is secreted by thyroid gland.
 - This decreases blood calcium.
 - Calcium is drawn from blood to bone.

Vitamins

- · Vitamin D
 - This vitamin is also known as Calciferol .

- This vitamin is needed for **normal** growth and **development** of *bone* .
- This vitamin has a role in **calcium phosphate** metabolism.
- Diffecieny of this vitamin causes rickets.

Functions of bone

- The **functions** of *bone* are *illustrated* below
 - Support
 - Framework
 - Movement of body
 - Protection
 - Calcium resorvior
 - Blood Formation
 - Fat storage

Bone Terminologies

- · Osteology
 - Osteology is the *study* of *bones* .
- Ossification
 - Ossification is also termed as Osteogenesis.
 - Ossification is the process of formation of bone.
- · Periosteum
 - **Periosteum** is the outer **covering** of the bone.
 - Histological Structure
 - * **Periosteum** is made up of **white fibrous tissue**.
 - Contents Periosteum contains
 - * Osteogenic cells

* Osteoclast cells

· Lamellae

- Lamellae is the matrix of bone.
- Location Between Periosteum and Endosteum
- Arrangement Concentric rings

· Ossein

- Ossein is protein .
- Location Matrix of the bone.

· Osteoblast cells

- Type Osteoblast cells are active .
- Location Osteoblasts are located below periosteum
- Function Osteoblast cells form bones .

· Osteocyte cells

- Type Inactive
- Age Mature
- Location Lacuna
- Function Osteocyte cells form bones.

· Osteoclast cells

- Size Osteoclast cells are large.
- Type of nucleus Multinucleated
- Cell type Phagocytotic Location Osteoclast cells are located in the periosteum.
 Function

*

- * **Osteoclast** cells **reabsorb** *matrix* of the bone.
- * Osteoclast cells remould bone.
- * **Osteoclast** cells produce *enzymes* .
 - Enzymes of osteoclast cells demineralize the matrix .

· Lacuna

- Anatomical structure Lacuna is a cavity.
- Contents
 - * Lacuna contains Single osteocyte cell
 - * Osteocyte cells have cytoplasmic processes.
 - * The **cytoplasmic** processes of **osteocytes** are *fingerlike* .

· Canliculi

- Anatomical Structure Canaliculi is a canal.
- Function
 - * **Passes** *fingerlike* processes of *osteocyte cells* .
 - · Fingerlike processes drive nutrients.
 - Nutrients are derived from neighbouring cells /

· Endosteum

- Location Endosteum lines the *layer* of marrow cavity.
- Contents
 - * **Endosteum** is made up of *layer* of *osteoblast cells* .
- · Haversian canal
 - Location
 - * **Haversian** canal is present in *mammalian compact* **bone** .
 - Anatomical Structure Haversian canal is a canal.
 - Shape
 - * Haversian canal is longitudinal .
 - * Haversian canal is cylindrical .
 - Contents
 - * Blood Vessels
 - * Lymph vessels
 - * Nerves

- · Compact Bone
 - Location
 - * **Compact Bone** is located at the **shaft** of *long* bones.
 - Contents
 - * **Compact bone** has *yellow* bone marrow.
 - · Yellow bone marrow produces WBC's.
 - · Yellow bone marrow stores fat.
 - Feature Compact bone is
 - * Hard
 - * Compact
 - * Strongy
- · Spongy Bone
 - Spongy Bone is also called Cancellous bone .
 - Shape
 - * **Spongy Bone** has the appearance of a **honey comb**.
 - Location Spongy bones is found at end of
 - * Long bones
 - * Flat bones
 - Contents
 - * **Spongy bone** contains *red bone marrow.*
 - · Red bone marrow produces
 - 1. **Red** blood *cells*
 - 2. White blood cells
 - Feature Spongy bone is
 - * Hard
 - * Spongy
- · Haversian System

- · Haversian system is also called osteon .
 - Anatomical Structure
 - * Center Haversian system has central haversian canal.
 - * Peripheriry Haversian system has peripheral lamella .
- · Volkman's canal
 - Anatomical structure Volkman's canal is a canal.
 - Arrangement in plane Volkman's canal is a horizontal canal. Function
 - * **Volkman's canal** connects two **haversian** canals.
- · Bone Marrow
 - Material nature
 - * **Bone** marrow is a substance which is
 - Soft
 - · Pulpy
 - Location
 - * Bone marrow is located at the marrow cavity.
 - Types The types of bone marrow are
 - * **Red** bone marrow
 - * Yellow bone marrow
- Decalcification
 - **Decalcification** is the *removal* of *hardness* of bone.
 - * **Decalcification** is done by treating with HCl.
- · Decalcified bone
 - **Decalcified** bone is a *bone* without hardness.

Structure of T.S. of a decalcified bone

• The structure if T.S. of a decalcified bone is

- Periosteum
- Outer layer of osteoblast cells
- Lamella
- Marrow Cavity

Structure of trabeculae

- The spongy bone is formed up of
 - The networks of trabeculae
- · The trabeculae is
 - cluster of structures
- The trabeculae is surrounded by the marrow cavity.

Ossification

· Ossification is the process of formation of bone.

Types of ossification

The types of ossification are

- · Endochondral ossification
- · Intramembranous ossification

Nature of Endochondral ossification

- Endochondral ossification is the transformation of a cartilage into a bone.
- The cartilage transforming to a bone is called replacing bone.

Examples of Endochondral ossification

- · The long bones
- The ribs
- · The vertebra

Nature of Intramembranous ossification

• Intramembranous ossification is the ossification in the connective tissue.

Examples of Intramembranous ossification

- The facial bones
- The skull bones
- The clavicle

Ossification in tendon

• Sesamoid bone is formed by ossification in tendon.

Examples of ossification in tendon

Patella

Fluid connective tissue

- · Fluid connective tissue circulates within the vessels.
- The other term for fluid connective tissue is circulating tissue.

Contents of fluid connective tissue

- Fluid matrix
- Scattered cells
- · No visible fibers
 - Fibres are only seen when blood clots.

Types of fluid connective tissue

- Blood
- · Lymph

Blood

- The other term for blood is pseudo connective tissue
 - Blood lacks fibres
 - The matrix of the blood is formed by liver.
 - The cells of blood are formed by
 - * Yolk sac
 - * Liver
 - * Spleen
 - * Red bone marrow

Haemopoiesis

- The other term for haemopoiesis isi haematopoiesis.
- · Haematopoiesis is the process of formation of blood cells.

Chemical property of blood

- Blood is slightly alkaline.
- · The pH value of blood is
 - **-** 7.4
- The pH of blood is maintained by balancing the ratio of
 - sodium bicarbonate
 - carbonic acid

Amount of blood

- · An adult human has
 - 5 to 5.5 litres of blood.
- Blood constitutes about
 - 8% of total body weight.

Functions of Blood

- Blood transports
 - nutrients
 - oxygen
 - carbon dioxide
 - hormones
 - unwanted waste products
- · Blood protects.
- Blood conducts thermo regulation

Composition of blood:

Blood Plasma

- · Blood plasma are
 - straw colored
 - fluid
- Blood cells are suspended in the plasma.

Amount of blood plasma

- Blood plasma occupies a blood volume of
 - **-** 55

Contents of blood plasma

Water

- The amount of water present in blood plasma is
 - **-** 90 92

Inorganic salts

- Sodium chloride
 - Sodium chloride is the primary salt of blood.
 - Amount of sodium chloride present is
 - * 0.9
- · Sodium bicarbonate
- Potassium
- Magnesium
- Phosphorus
- Iron
- Calcium
- Copper
- Chlorine
- lodine

Organic waste materials

- Organic waste materials are also non protein nitrogenous substances
- The organic waste materials in blood are;
 - uric acid
 - creatinine
 - hippuric acids

Plasma proteins

- The quantity of plasma proteins present in blood is
 - **-** 7
- · The types of plasma proteins in blood are
 - Albumin
 - Globulin
 - Fibrinogen

Albumins

- · Albumins are the most abundant plasma proteins
- · Albumins are responsible for
 - Collidal Osmotic Pressure
- · Albumins are the only protein reserve of body
- · Albumins are hydrophilic in nature

Globulins

- · Globulins are of three types.
- The types of globulin are
 - alpha
 - * Alpha globulin is synthesized in liver.
 - beta
 - * Beta globulin is synthesized in liver.
 - gamma
 - * Gamma globulins are formed by the plasma cells.

Antibodies

- · Antibodies in plasma are immune-globulins.
- The antibodies are produced by
 - lymph nodes
 - spleen

Hormones and respiratory gases

Clotting factors

- Fibrinogen
 - Fibrinogen is formed in liver.
- Prothrombin
 - Prothrombin is formed in liver.

Functions of Plasma:

- Plasma transports
 - nutrients
 - respiratory gases
 - excretory wastes
 - hormones
- · Immuno globulins in plasma provide immunity.
- · Plasma conducts thermoregulation.
- · Plasma maintains osmotic pressure.
 - Albumin maintains osmotic pressure holding waters
- · Plasma maintains blood pH
 - Plasma proteins neutralize
 - * strong acids
 - * strong bases

Blood Corpuscles:

RBC

• The other term for RBC is Erythrocytes.

Structure of RBC

- · RBCs are
 - circular
 - biconcave
 - non nucleated
 - * The absence of nucleus increase the surface area.
 - * The increased surface area is beneficial for oxygen transportation.
 - * The increased surface area can accommodate maximum number of Haemoglobin.
- · The diameter of RBC is
 - 7.5 micrometers

Contents of RBC

- RBC contains Haemoglobin pigment
 - The amount of space consumed by haemoglobin is
 - * 33
 - The amount of haemoglobin molecules present per RBC molecules is
 - * 280 millions
 - Iron is present in Haemoglobin
 - The amount of RBC in 100 ml of blood is
 - * 15 gms of Hb.

Quantity of RBC

- The number of RBC per cubic mm of blood in female is
 - 4.5 to 5 millions per cubic mm blood
- The number of RBC per cubic mm of blood in male is
 - 5 to 5.5 millions per cubic mm blood

Rate of production of RBC

- The rate of production of RBC is
 - 2 millions per second

Lifespan

- · The average lifespan of RBC is
 - 120 days

Erythropoiesis

- Erythropoietin is a hormone.
- Erythropoietin is secreted by liver in foetus.
- Erythropoietin is secreted by kidney in adults.
- · Erythropoietin begins erythropoiesis.

Formation of RBC

- · RBCs are formed in Red Bone marrow.
- The RBCs are formed from haemopoietic tissue.
- The RBCs are formed at early foetal life.
- The RBCs are formed in the yolk sac in foetal life.
- The RBCs are formed later in liver.
- · The major site of haemopoietic activity from third to seventh months is
 - spleen
- The major site of haemopoiesis from birth to whole life is
 - red bone marrow

Destruction of RBC

- · Haemolysis is the process of destruction of RBC.
- · Haemolysis occurs in liver.
- · RBC in broken into
 - plasma membrane
 - haemoglobin

Haemoglobin

Haemoglobin is broken into

- iron
 - Iron is retained by liver.
- protein + Incomplete metabolism of protein forms + bilirubin + bilivirdin + stercobilin + urochrome
 - + Bilirubin and bilivirdin are bile pigments.
 - + Strcobilin give color to feaces.
 - + Urochrome gives color to urine.

Plasma membrane

- · Plasma membrane of RBC is destroyed in
 - spleen.
- · Spleen is the graveyard of RBC.

Disorders related to RBC

Anaemia

· Anaemia is the lack of abundant RBCs in blood .

Polycythemia

- · Polycythemia is the presence of
 - abnormally large number of RBCs in blood
- · Polycythemia increases the blood viscosity.
- · Polycythemia increases the risk of intravascular clotting

Pernicious anaemia

- Pernicious anaemia is the development of immature RBC.
- · Pernicious anaemia occurs due to the deficiency of
 - Vitamin B12

Facts about RBC

Rouleaux formation

- · Rouleaux formation occurs when blood is mixed with anti coagulant.
- RBCs join together by their concave surfaces.
- The appearance is like the piles of coins.

Haemolysis

- · Haemolysis is the bursting of RBC.
- · Haemolysis occurs when blood is mixed with distilled water.
- Distilled water is also called as hypnotic solution.

Shrinking of RBC

- · RBCs shrink when blood is kept in NaCl solution.
- NaCl solution is also called as hypertonic solution.
- · The amount of NaCl for RBCs to shrink is
 - 8%

Formation of RBCs

- · RBCs are followed after the formation of reticulocytes.
- · Vitamin B12 is essential for maturation of reticulocytes into RBC.
- · Reticulocytes
 - are nucleated.
 - posses cell organelles.
- · RBC lacks mitochondria.
- · RBC undergoes anaerobic respiration.
- · Anaerobic respiration releases lactic acid.
- Release of Lactic acid is the cause of fatigue.

Facts about RBC

- · The maximum number of RBC count per unit volume of blood is in
 - aves
- The largest RBCs are present in
 - Amphibians
 - The size of RBC in amphibians is
 - * 80 micro meters
- · The smallest RBCs are present in

- Musk deer
- · Animals having nucleated RBCs are
 - Camel
 - Llamas

White Blood Cells

- The other term for white blood cells is leucocytes.
- WBCs are the largest blood corpuscles.
- · The diameter of WBCs is
 - 8 to 15 micrometers
- WBCs are nucleated.
- · WBCs are amoeboid.
- · WBCs may posses shape of
 - round
 - irregular
- WBCs are non pigmented.
- WBCs have the power of amoeboid movement

Amount of WBC

- The amount of RBC per cubic mm of blood is
 - 8,000 10,000 per cubic mm of blood

Average lifespan

- The average lifespan of WBCs is
 - 10 to 13 days

Terms related to white blood cells

Diapedesis

Diapedesis is the movement of WBC across the blood vessels.

Formation of WBC

- · WBCs are formed in
 - bone marrows
 - lymph glands

Types of WBC

- · There are two types of WBC.
- The WBC are characterized on
 - presence of granules
 - type of nucleus
- The types of WBC are
 - Agranulocytes
 - Granulocytes

Granulocytes

- Granulocytes have cytoplasmic granules
- Granulocytes have multilobed nucleus. .
- · The types of granulocytes are
 - neutrophils
 - eosinophils
 - basophils
- Granulocytes respond to the dyes in laboratory.

Eosinophils

- The dye taken by eosinophils is
 - red acidic dye
 - The other term for red acidic dye is eosin.
 - Eosinophils take red acidic dye due to
 - * detoxification

Basophils

- The dye taken by basophils is
 - alkaline methylene blue
 - Basophils take alkaline methylene blue due to
 - * heparin
 - * histamine
 - * serotonin

Neutrophils

- · The dye taken by neutrophils are
 - purple
 - * red acidic eosin
 - * alkaline methylene blue
- Neutrophils are phagocytic
- Neutrophils are the most abundant WBC.
- · The amount of WBC formed form neutrophils is
 - **-** 60-70 %

Agranulocytes

- Agranulocytes lack granules.
- · Agranulocytes donot have
 - multi lobulated nucleus.

- The types of agranulocytes are
 - lymphocyte
 - monocyte

Monocytes

- · Monocytes are the largest WBC.
- The size of monocytes is
 - 20 micrometers
- Monocytes are phagocytotic.

Lymphocytes

- Lymphocytes are the smallest WBCs.
- The size of lymphocytes is
 - **-** 7 micrometers
- · Lymphocytes are phagocytic.

Disorders of WBC

Leukemia

- · Leukemia is also called blood cancer.
- · Leukemia occurs due to
 - excessive formation of WBC

Leucopenia

- · Leucopenia is the condition of
 - abnormally low number of WBC

Platelets

- The other term for platelets is thrombrocytes.
- The role of platelets is
 - to clot blood

Amount of platelets

- The number of platelets per cubic mm of blood is
 - 2 to 4 lakhs per cubic mm.

Dimensions of platelets

- The diameter of platelets is
 - **-** 2 3 micrometers
- Platelets are the smallest blood corpuscles

Lifespan of platelets

- The lifespan of platelets is
 - about a week.

Formation of Thrombocytes

- The process of formation of thrombocytes is
 - Thrombopoiesis

Disorders of thrombocytes

Thrombocytosis

- The increase in the number of platelets is Thrombocytosis .
- Thrombocytosis causes intravascular clots.

Thrombocytopenia

- The decrease in the number of platelets is Thrombocytopenia.
- · Thrombocytopenia causes internal bleeding.

Contents of thrombocytes

- Thrombocytes contain
 - clotting factors
- The clotting factors of thrombocytes promote blood clotting.
- · The clotting factors are
 - Thromboplastin
 - * The other term for thromboplastin is thrombokinase.
 - Prothrombin
 - Fibrinogen
 - Calcium ions

Blood coagulation

- Blood coagulation is the mechanism of prevention of blood loss.
- · Blood coagulation occurs when
 - a blood vessel is ruptured
- Blood clotting stops haemorrhage.

Time for blood coagulation

- The time required for blood clot is from
 - 2 minutes
 - 8 minutes

Blood clotting

The process of clotting of blood is

- release of enzymes
- formation of thrombin
- formation of fibrin
- clotting of blood

Release of enzymes

- The damaged platelets releases enzymes.
- · The enzymes released by damaged platelets are
 - Thromboplastin
 - Thrombokinase.

Formation of thrombin

- · Prothombrin is converted into thrombin.
- · The conversion of prothrombin into thrombin takes place in the presence of
 - thrombokinase
 - calcium ions

Formation of fibrin

- Fibrinogen is converted into fibrin.
 - Fibrin is a fibrous material
 - Fibrin is converted as an insoluble networks.
- · The conversion is done by
 - thrombin

Blood clot

- · Fibrin traps the blood cells.
- · Fibrin forms a red solid mass of blood cells.
- · The red solid mass of blood cells is called blood clot.
- · The blood clot acts like a seal in
 - the ruptured blood vessel

Terms related to blood clotting

Serum

- Serum is the blood plasma minus clot.
- Serum is a pale yellow fluid.

Thrombosis

Thrombosis is the clotting of blood in an unbroken blood vessel.

Thrombus

Thrombus is the clot lodged in a vessel.

Minerals

- The mineral necessary for coagulation of blood is
 - Calcium
- The vitamin necessary for synthesis of clotting factors is
 - Vitamin K

Heparin

- · Coagulation of blood in vessels is prevented during the normal circulation by
 - heparin
- · Heparin inhibits conversion of
 - prothrombin into thrombin
- This is done by activating
 - antithrombin in blood

Storage of Blood

- · Blood clotting is prevented in by adding
 - oxalate
 - citrate
- · Oxalate or citrate react with
 - calcium
- · The reaction of oxalate or citrate with calcium forms
 - insoluble compound
- The free calcium ions for clotting of blood are absent.

Temperature for storing blood

- · Blood is stored at
 - 4 degrees Celsius.

Lymph

Location of lymph

Lymph is located at interstitial spaces

Opacity of lymph

Lymph is transparent

Colour of lymph

The colour of lymph may be

- Colourless
- Faint Yellow

Chemical nature of lymph on the basis of three classes

Lymph is

· Slightly alkaline

Contents of lymph

The contents of lymph are

- Matrix
- Cells
- Gases
- Substances
- Protein

Matrix of the lymph The matrix of the lymph is

• Plasma

Cells of the lymph The cells present in lymph are

Lymphocytes

Gases in lymph The gases present in the lymph are

- Oxygen
- · Carbon dioxide

Substances present in lymph The substances present in the lymph are

- Urea
- Glucose
- Vitamins
- Salts

Quantity of protein in lymph

The quantity of protein in lymph is

Very less

Lymphatic system

Division of lymphatic system

The division of lymphatic system are

- Lymphatic ducts
- Lymphatic vessels
- · Lymph nodes
- · Lymphatic capillaries

Formation of lymphatic vessels

The formation of lymphatic vessels occurs by

• Union of lymphatic capillaries

System for production of lymph fluid

The system producing the contents of lymph and lymph fluid is

Lymphatic system

Lymph nodes

Shape of lymph nodes The shape of lymph nodes is

- Oval shaped
- · Bean shaped
- Kidney shaped

Location of lymph nodes The location of lymph nodes in lymphatic system is

Lymphatic vessels

Function of lymph nodes

The functions of lymph nodes are

- · Lymph nodes filter.
- · Lymph nodes produce lymphocytes.

Cells produced by lymph nodes The cells produced by the lymph nodes are

Lymphocytes

Structure having valve in lymphatic system

The structure having valve in lymphatic system are

Lymphatic vessels

Need for valve in lymphatic vessels

The need for valve in lymphatic vessels is

Prevention of backward flow of lymph

Movement of lymph

Structural factors in movement of lymph

The structural factors in movement of lymph are

Skeletal muscles

Process of movement of lymph in lymphatic system

The process of movement of lymph in lymphatic system is

Squezzing of surrounding muscles

Major lymphatic ducts

The major lymphatic ducts are

- Right Lymphatic duct
- Thoracic duct

Location of right lymphatic duct

The location of right lymphatic duct is

Right sub clavian vein

Role of right lymphatic ducts

The role of right lymphatic ducts is to

Collect lymph from right portion of the body

Location of thoracic duct

The location of left thoracic duct is

· Left sub clavian vein

Role of thoracic duct

The role of thoracic duct is

Collect lymph from left portion of the body

Direction of flow of lymph

The direction of flow of lymph is

Unidirectional

Final destination of flow of lymph

The final destination of flow of lymph is

Venous blood system

Functions of lymph

The functions of lymph are

- Transportation
- Phagocytosis
- Blood volume

Transportation

The materials transported by lymph are

- Gases
- Substances

Gases Lymph transports

Respiratory gases

Substances transported by lymph The substance transported by lymph are

- Food materials
- Hormones

Phagocytotic nature of lymph

The phagocytotic nature of lymph is

- Lymph destroys pathogens
- Lymph destroys foreign particles

Structure for phagocytosis in lymph The structure of phagocytosis in lymph are

· Lymph nodes

Balance of blood volume

Condition of transfer of blood from lymphatic system to blood vascular system The condition of transfer of blood from lymphatic system to blood vascular system is

• Decrement of volume of blood in blood vascular system

Lacetals

Anatomy of lacteals

Lymph Capillaries

Location of lacteals

Intestinal villi

Function of lacteals

Absorption

Substances absorbed by lacetals

The components absorbed by lacetals are

- Fat soluble vitamins
- Fats

Disorders of lymph

The disorder of lymph is called

· Oedema

Location of oedema in disorders of lymph

The location of action of oedema in disorders of lymph is

Around the cells

Result of oedema in disorders of lymph

The result of oedema in disorders of lymph is

Swelling

Term for oedema in disorders of lymph

The other term for oedema in disorders of lymph is

Ordropsy

Muscular tissue

Term for study of muscles

Myology

Strength of muscles

Strong

Type of muscular tissues in terms of contraction

Contractile tissues

Source of flesh in the body

Muscles

Nature of origin of muscles

- Mesodermal
- Ectodermal

Organs having muscles of mesodermal origin

Almost muscles of all organs

Organs having muscles of ectodermal origin

- · Mammary gland
- Sweat gland

Features of muscles

- Excitability
- Contractility
- Extensibility
- Elasticity

Functions of Muscles

- Shape
- Locomotion
- Facial Expression
- Mastication
- Heart Beat

Actions conducted by involuntary muscles

- Respiration
- Peristalsis
- Propulsion of urine

Types of muscles

- Voluntary
- Involuntary
- Cardiac

Voluntary muscles:

Terms for voluntary muscles

- Skeletal
- Striped
- Striated

Nature of voluntary muscles on the basis of control according to will

Controllable

Fatigueness of voluntary muscles

Get easily tired

Arrangement of muscles with skeleton in voluntary muscles

· Attached with skeleton

Structure for attachment of muscles with skeleton in voluntary muscles

Tendon

Source of muscle fibre cells in voluntary muscles

Myoblast

Nature of voluntary muscles in terms of division

· Cannot divide on their own

Location of voluntary muscles

- Limb muscles
- Facial muscles
- Tongue
- Facial muscles
- Eye Muscles
- Abdominal Muscles

Functions of voluntary muscles

- Movement
- Chewing
- Facial expression
- Posture

Structure of voluntary muscles

Branching of voluntary muscles

Unbranched

Shape of muscles in voluntary muscles

Cylindrical

Structure of end of voluntary muscles

Blunt

Binding structure of muscle fibre in voluntary muscles Sarcolemma Cytoplasm of muscle fibres of voluntary muscles Sarcoplasm Location of nucleus in muscle fibres of voluntary muscles Periphery Type of cells of muscle fibres of voluntary muscles in terms of number of nucleus Multinucleated Type of origin of cells of muscle fibres on the basis of arrangement of cells Syncytial Source of formation of cells of muscle fibres of voluntary muscles Myoblasts Nature of syncytial origin Fusion of multiple cells Contents of sarcoplasm in voluntary muscles

Syncytial nucleus

Muscle glycogen

Myoglobin

Sarcoplasmic Reticulum

Term for cytoplasm in voluntary muscles

Sarcoplasm

Term for endoplasmic reticulum in sarcoplasm in voluntary muscles

Sarcoplasmic reticulum

Contents of sarcoplasmic reticulum in sarcoplasm in voluntary muscles

Calcium

Function of myoglobin in voluntary muscles in voluntary muscles

Store oxygen

Function of presence of oxygen in myoglobin in voluntary muscles

Production of ATP

Colour of muscle fibre in voluntary muscles

Deep red

Cause of deep red coloration of muscle fibre in voluntary muscles

Myoglobin pigment

Contents of myofibril in voluntary muscles

- Light bands
- Dark bands

Contents of Bands of myofibril in voluntary muscles

Myofilaments

Types	of my	vofilame	ents in	voluntary	/ muscles
IYPCS	OI 111	yontani	,,,c3 ,,,	votaritar y	IIIuscics

H line

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Thick filamentThin filament
Contents of myofilaments in voluntary muscles
Protein
Cause of name of striated muscles in voluntary muscles
Light and Dark Bands
Terms for Dark bands in voluntary muscles
Anisotropic bandA band
Contents of dark bands in voluntary muscles
Thick filament
Protein present in dark bands of voluntary muscles
Myosin
Line of bisection for dark bands of voluntary muscles
Hensen's line
Term for hensen's line in voluntary muscles

Terms for Light band in voluntary muscles

Myofibril

Isotropic band
• I band
Contents of light bands in voluntary muscles
Thin filaments
Protein present in light bands of voluntary muscles
Actin
Line of bisection in light bands in voluntary muscles
Z line
Term for Z line in light band of voluntary muscles
Krause's membrane
Function of Z line in voluntary muscles
. Divide myfbril
Divide myfibril
Sacromere in voluntary muscles
Sacromere in voluntary muscles
Functional unit of skeletal muscles
Location of sacromere in voluntary muscles

Range of location of sacromere in voluntary muscles

• Between Z lines

Length of sacromere in voluntary muscles

2.5 micrometer

Mechanism of contraction of voluntary muscles

Slide actin over myosin

Approximation of length of sacromere during muscle contraction in voluntary muscles

Short

Destination of Z lines in muscles contraction of voluntary muscles

A band

lons mediating the contraction of voluntary muscles

Calcium

Proteins present at actin

- Troponin
- Tropomyosin

Location of proteins present at actin

Surface

Function of troponin and tropomyosin

Block actin and myosin binding

Function of calcium ions in muscle contraction of voluntary muscles

Bind Troponin

Consequence of binding of troponin in muscle contraction

· Change configuration of tropomyosin

Activities in myosin in contraction of voluntary muscles

- · Breakdown of ATP
- · Formation of Bridge
- Contraction of muscles

Breakdown of ATP

Reactants in release of energy in contraction of voluntary muscles

ATP

Products in release of energy in contraction of voluntary muscles

- ADP
- Phosphate

Location of breakdown of ATP in muscle contraction

Myosin

Formation of bridge

Structure between myosin and acting in contraction of voluntary muscles

· Cross bridge

Function of myosin in contraction of voluntary muscles
• Pull actin
Contraction of muscle
Shorten fibre
Product in contraction of muscles in extrenous exercise
Lactic acid
Condition of formation of lactic acid in muscles
High energy demand
Reactant in production of lactic acid in muscles
Pyruvic acid
Nature of respiration of skeletal muscles at the condition of high energy deman
Anaerobic
Products in production of lactic acid in muscles
Lactic acidATP
Number of ATP molecules released in the reaction for product of lactic acid in muscles
2
Consequence of accumulation of lactic acid in muscles

Fatigue

Consequence of muscle fatigue in muscles

Decrease force of contraction of muscles

Outer covering of voluntary muscles

Epimysium in voluntary muscles

Sheath of connective tissue

Function of epimysium in voluntary muscles

· Cover muscle

Fasicula in voluntary muscles

Bundle of muscle fibres

Composition of fasicula in voluntary muscles

Myofibrils

Perimysium in voluntary muscles

Sheath of connective tissue

Function of perimysium in voluntary muscles

Cover fasicula

Number of muscle fibres present in fasicula

100 - 1000

Endomysium in voluntary muscles

Covering of muscle fibre

Function of endomysium in voluntary muscle

Insulate muscle fibre

Location of sarcolemma in voluntary muscles

Beneath endomysium

Function of sarcolemma in voluntary muscles

Line sarcoplasm

Involuntary muscles

Terms for involuntary muscles

- Smooth
- Unstriated
- Unstriped

Nature of involuntary muscles in terms of control by will

Uncontrollable

Involuntary muscles in terms of power of division

· Can divide

Structures influencing activities of involuntary muscles

- Hormones
- Nervous System

Nervous system involved in the functioning of involuntary muscles

Autonomic nervous system

Location of involuntary muscles

- · Wall of hollow organs
- Alimentay canal
- Blood vessels
- Respiratory passage
- Urinary bladder
- Ureter
- Genital tract

Structure of involuntary muscles

Appromixation of length of involuntary muscles

Elongated

Shape of involuntary muscles

Spindle

Contents of involuntary muscles

Myofibrils

Arrangement of myofibrils in involuntary muscles

Longitudinal

Type of cells of involuntary muscles in terms of number of nucleus

Uninucleated

Structure absent in involuntary muscle but present in voluntary
Sarcolemma
Function of plasma membrane in involuntary muscles
Cover involuntary muscles
Cause of name of unstriped muscles in involuntary muscles
Absence of dark and light bands
Contents of involuntary muscles
Thick filamentsThin filaments
Proteins present at the involuntary muscles
• Actin
• Myosin
Pattern of arrangement of actin and myosin proteins in irregular muscles
Irregular
Cause of name as ustriated muscles of smooth muscles
Irregular pattern of arrangement
Muscle unit absent in involuntary muscles
Myofibrils

Function of gap junctions in involuntary muscles
Connect smooth muscles
Connection of involuntary muscles with the skeleton
No connection
Approximation of time of contraction of involuntary muscles
Prolonged
Approximation of rate of time of contraction of involuntary muscles
Slow
Fatigueness expressed in contraction of involuntary muscles
Not fatigued
Cause of muscle contraction in involuntary muscles
Slide actin and myosin filament
(a sliding filament mechanism) over each other.
Source of energy for the contraction of involuntary muscles
ATP
Calcium binding protein present in involuntary muscles
Calmodulin

Function of calmodulin in involuntary muscles
Bind with calcium during contraction
Cardiac muscles
Location of cardiac muscles
Heart Wall
Structure of cells of cardiac muscles
Approximation of length of cells of cardiac muscles
Long
Shape of cells of cardiac muscles
Cylindrical
Branching of cells of cardiac muscles
Branched
Type of cells of cardiac muscles in terms of quantity of nucleus
Uninucleated
Structure of connection of cells of cardiac muscles
Bridge
Shape of connection of bridge of cells of cardiac muscles
Oblique

Thickness of filaments of cardiac muscles

- Thick filaments
- Thin filaments

Type of protein in cardiac muscles

Troponin

Covering of cardiac muscles

Sarcolemma

Location of intercalated discs in cardiac muscles

Cardiac muscles fibres

Function of intercalated discs in cardiac muscles

- Connect muscle fibres
- Interlock fibres

Consequence of action of intercalated discs in cardiac muscles

Strength

Location of nucleus at the cells of cardiac muscles

Centre

Contents of intercalated discs in cardiac muscles

- Gap junctions
- Desmosomes

Function of gap junctions in cardiac muscles
Connect cytoplasm of muscle columns
Consequence of connection of cytoplasm with adjacent columns in cardiac muscles
Transfer cations
for the transmission of cations for muscle contractions
Event of transmission of cations with adjacent columns in cardiac muscles
Muscle Contraction
Function of desmosomes in cardiac muscles
Connect cells
Function of oblique bridge in cardiac muscles
Connect muscle fibres
Nature of cardiac muscles in terms of interaction with nervous system
Myogenic
Myogenic
Contractions generated within the muscles are not initiated by the nervous sytem
Shape of cardiac muscles
Cylindrical

Structure of end of cardiac muscles

Blunt

Proteins present at cardiac muscles

- Actin
- Myosin

Type of cardiac muscles in terms of movement by will

Involuntary

Nerves supplying the heart

- Vagus Nerve
- · Autonomic nervous system

Approximation of amount of mitochondria in cardiac muscles

Abundant

Tiring of cardiac muscles

Dont get fatigued