Designing Examples

Design an 8086 based Maximum Mode system working at 6 MHz having the following: 32KB EPROM using 16KB chips, 128KB RAM using 32KB chips,

Two 16-bit input and two 16-bit output ports all interrupt driven

Note:

- ** Every designing problem has three components:
- 1) Mode of Operation of 8086 processor: Minimum mode or Maximum mode
- 2) Memory Interfacing: Using ROM and RAM chips (we will construct a Memory Map and interfacing diagram)
- 3) I/O Interfacing: Using 8255 ICs (we will construct an I/O Map and interfacing diagram)

Solution:

1) Mode of Operation:

Show 8086 max. mode configuration with a crystal of 18 MHz.

CRYSTAL FREQUENCY=3X =18MHz LOCAL BUSES B284 CLOCK MRDG MEMORY READ MWTC MEMORY WRITE ₹, 3, READY AMWC ADVANCED MW ŝ, ŝ, IORC VO READ RESET RDY owc DEN VO WRITE AJOWC ADVANCED VO W DY/R INTA INTERRUPT ACKNOWLEDGE LOCK STB ō€ ADo-AD15 A18-A10 (Z OR 3) BHE (2)

Note for variations:

- 1) If crystal frequency is specified, then show that value directly over crystal; but if operating frequency is specified then crystal frequency=3* operating frequency.
- 2) If mode of operation not specified then draw minimum mode configuration.
- 3) Important points in the diagram are: Crystal frequency and MN/MX* pin status.
- 4) Instead of minimum mode or maximum mode ,interfacing of any chip (IC-8259,IC-8253,IC-8257 can be asked)

2) Memory Calculations:

EPROM:

Required size = 32 KB, Available size = 16 KB

No. of chips required = Required size / Available size = 2 chips.

No. of sets required= No. of chips required/ No. of banks= 2/2=1

Set size= Available Chip size x no .of banks= 16 x 2= 32 KB=32 x 1KB= 2^5 x 2^{10} = 2^{15}

A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	Α9	A8	Α7	A6	A5	A4	A3	A2	A1	Α0
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0			7	7			F				F	-			F			

Ending Address=FFFFFH

Starting address of EPROM is calculated as:

=Ending Address - Set size

=F F F F F H- 7 F F H=F8000H

Sejal M Chopra

Chip	Address	Even Bank	Odd Bank
EPROM Set 1	Starting Address	F8000H	F8001H
	Ending Address	FFFFEH	FFFFFH

No. of address lines required for interfacing is dependent on size of a single available EPROM chip

= 16 KB

 $= 16 \times 1KB = 2^4 \times 2^{10}$

 $= 2^{14}$

= 14 address lines = (A 14 ... A1)...note A0 is reserved for banking....IMPORTANT during interfacing

RAM:

Required size = 128 KB, Available size = 32 KB

No. of chips required = Required size / Available size = 4 chips.

No. of sets required= No. of chips required/ No. of banks= 4/2=2

Set size= Available Chip size x no .of banks= 32 x 2= 64 KB=64 x 1KB= 2^6 x 2^{10} = 2^{16}

Α	19	A18	A17	A16	A15	A14	A13	A12	A11	A10	Α9	A8	Α7	A6	A5	A4	A3	A2	A1	A0
0		0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		()			F	•			F				F	-			F	•	

Starting address of RAM Set1=00000H

Ending address of RAM Set1 is calculated as:

=Starting Address + Set size

=00000 H +0 F F F F H

=OFFFFH

Starting address of RAM Set2= Ending address of RAM Set1+1=10000H

Ending address of RAM Set2 is calculated as:

=Starting Address + Set size

=10000 H +0 F F F F H

=1FFFFH

Chip	Address	Even Bank	Odd Bank
RAM Set 1	Starting Address	00000H	00001H
	Ending Address	0FFFEH	0FFFFH
RAM Set 2	Starting Address	10000H	10001H
	Ending Address	1FFFEH	1FFFFH

No. of address lines required for interfacing is dependent on size of a single available RAM chip

= 32 KB

 $= 32 \times 1 \text{ KB} = 2^5 \times 2^{10}$

 $= 2^{15}$

= 15 address lines

= (A15 ... A1).... note A0 is reserved for banking.... IMPORTANT during interfacing

MEMORY MAP

Let's construct first the memory map

Memory	1								Ac	dre	ss B	us									Memory
Chip	A19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	A0	Address
RAM 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00000Н
(LB)	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	OFFFEH
RAM 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	00001H
(HB)	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	OFFFFH
RAM 3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10000H
(LB)	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1FFFEH
RAM 4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	10001H
(HB)	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1FFFFH
	T	П	П				П		Т				Н		Т		Т		Т	\forall	
EPROM 1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F8000H
(LB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	FFFFEH
EPROM 2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	F8001H
(HB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	FFFFFH

Interpreting Memory Map for Memory Interfacing:

Memory Interfacing: Step1: Interfacing RAM set1

Step 2: Interfacing RAM set 2

Step 3: Interfacing EPROM set1

Note for variations:

- 1) If application memory is mentioned it means RAM chips and if monitor programming memory mentioned it means EPROM chips.
- 2)Generally we use absolute (full) decoding technique (especially block) for memory interfacing.
- 3) Instead of the required size sometimes you have IC numbers given ,we need to know their size.

Chips	IC Number	Memory Size(Available Size)
EPROM	2716	2K x 8
	2732	4K x 8
	2764	8K x 8
	27128	16K x 8
	27 256	32K x 8
	27512	64K x 8
RAM	61 16	2K x 8
	62 64	8K x 8
	62 256	32K x 8

Sejal M Chopra

- 4) Depending on the address lines used, sometimes we need to use either 2:4 decoder(IC-
- 74139) or 3:8 decoder(IC 74138) or 4:16 decoder(74154)
- 5) Specifications of these decoders are as follows:
- 2:4 decoder (IC-74139): It has 2 inputs and 4 active low outputs. It has one active low G pin.
- 3:8 decoder (IC 74138): It has 3 inputs and 8 active low outputs. It has one active high G_1 pin and two active low G_{2A} and G_{2B} pin.
- 4:16 decoder (74154): It has 4 inputs and 16 active low outputs. It has two active low G_1 and G_2 pin.

Complete Interfacing Diagram (You need to draw this final diagram)

IMPORTANT POINTS TO REMEMBER FOR I/O DESIGNING

- Normally I/O devices are mapped using I/O mapped I/O which means I/O devices are given I/O addresses
- Here I/O addresses can be either 8-bit or 16 bit.
- If the question says direct addressing mode or fixed port addressing, then use an 8-bit address like 80H (A7-A0).
- If the question says **indirect addressing or variable port addressing**, then use 16-bit address like 0080H (A15-A0).
- If nothing is mentioned, use indirect addressing or variable port addressing.
- If memory mapped I/O is asked (Very rare), then remember the following changes
 - 1. Give the I/O device a 20-bit unused memory address like 80000H (A19-A0)
 - 2. Connect MEMR* and MEMW* signals to the I/O device instead of the usual IOR* and IOW* signals

I/O Map:

1/0			00 0	. 73			Ad	dre	ss B	US:							1/0
Port	A1	14	13	12	11	10	9	8	7	6	5	4	3	2	1	A0	Addres
8255 LB												П				П	
Port A	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0060H
Port B	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0062H
Port C	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0064H
C Word	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0066H
8255 HB	П				П											Н	
Port A	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0061H
Port B	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0063H
PortC	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	0065H
C Word	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	0067H
8255 LB	П	П		П	Г									П		П	
Port A	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0080H
Port B	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0082H
PortC	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0084H
C Word	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0086H
8255 HB	П				П											Н	
Port A	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0081H
Port B	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0083H
PortC	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0085H
C Word	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0087H

Complete Interfacing Diagram (You need to draw this final diagram)

Possible Variations in I/O mapping:

1 0331bite Valiations in 1/O mapping.									
Port Size, quantity and configuration									
Two 16-bit input and two 16-bit output ports (Number of 8255 IC's required =4)									
One 16-bit input and one 16-bit output port(Number of 8255 IC's required =2)									
Two 8-bit input and two 8-bit output ports(Number of 8255 IC's required =2)									
One 8-bit input and One 8-bit output port(Number of 8255 IC's required =1)									

Sejal M Chopra

Practise Question:

Design an 8086 based system working at 7 MHz having the following:

128KB EPROM using 32KB chips,

32KB RAM using 8KB chips,

Two 8-bit input and two 8-bit output ports all interrupt driven

Solution:

Memory Calculations:

EPROM:

Required size = 128 KB, Available size = 32 KB

No. of chips required = Required size / Available size = 4 chips.

No. of sets required= No. of chips required/ No. of banks= 4/2=2

Set size= Available Chip size x no .of banks= 32 x 2= 64 KB=64 x 1KB= 2^6 x 2^{10} = 2^{16}

A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	Α9	A8	Α7	A6	A5	A4	A3	A2	A1	AO
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	()				F			F				F	•			F		

Ending Address of EPROM set1=FFFFFH

Starting address of EPROM set1 is calculated as:

=Ending Address - Set size

=FFFFFH-FFFFH=F0000H

Ending Address of EPROM set2= Starting address of EPROM set1 -1=F0000H-1=EFFFFH

Starting address of EPROM set2 is calculated as:

=Ending Address - Set size

=EFFFFH-FFFFH=E0000H

Chip	Address	Even Bank	Odd Bank
EPROM Set 1	Starting Address	F0000H	F0001H
	Ending Address	FFFFEH	FFFFFH
EPROM Set 2	Starting Address	E0000H	E0001H
	Ending Address	EFFFEH	EFFFFH

No. of address lines required for interfacing is dependent on size of a single available EPROM chip

= 32 KB

 $= 32 \times 1KB = 2^5 \times 2^{10}$

 $= 2^{15}$

= 15 address lines= (A 15 ... A1)...note A0 is reserved for banking....IMPORTANT during interfacing

RAM:

Required size = 32 KB, Available size = 8 KB

No. of chips required = Required size / Available size = 4 chips.

No. of sets required= No. of chips required/ No. of banks= 4/2=2

Set size= Available Chip size x no .of banks= $8 \times 2 = 16 \times 16 \times 16 \times 10^{-214} = 2^{10} = 2^{14}$

	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	Α9	A8	Α7	A6	A5	A4	A3	A2	A1	A0		
	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Г	0					3	3			F				F	=			F	F			

Starting address of RAM Set1=00000H

Ending address of RAM Set1 is calculated as:

=Starting Address + Set size

=00000 H +0 3 F F F H

=03FFFH

Sejal M Chopra

Ending address of RAM Set2 is calculated as:

=Starting Address + Set size

=04000 H +0 3 F F F H

=07FFFH

Chip	Address	Even Bank	Odd Bank
RAM Set 1	Starting Address	00000Н	00001H
	Ending Address	03FFEH	03FFFH
RAM Set 2	Starting Address	04000H	04001H
	Ending Address	07FFEH	07FFFH

No. of address lines required for interfacing is dependent on size of a single available RAM chip

= $8 \times 1 \text{ KB} = 2^3 \times 2^{10}$ = 2^{13}

= 13 address lines

= (A13 ... A1).... note A0 is reserved for banking....IMPORTANT during interfacing

Draw the memory map further for this question and also interfacing diagram.