

Numerical Solution of PDEs using the Finite Element Method

Triangulation, DoFHandler, FiniteElement

Luca Heltai < luca.heltai@sissa.it >

International School for Advanced Studies (www.sissa.it)
Mathematical Analysis, Modeling, and Applications (math.sissa.it)
Master in High Performance Computing (www.mhpc.it)
SISSA mathLab (mathlab.sissa.it)

Aims for this module

- Gain familiarity with three core classes
 - Triangulation
 - DoFHandler
 - FiniteElement
- Create and interrogate meshes
- Create and interrogate sparsity patterns

Reference material

- Main page https://dealii.org/current/doxygen/deal.II/index.html
- Tutorials
 - Step-1
 https://dealii.org/current/doxygen/deal.II/step_1.html
 - Step-49
 https://dealii.org/current/doxygen/deal.ll/step_49.html
 - Step-2 https://dealii.org/current/doxygen/deal.II/step_2.html

First and BIGGEST tip

- Program defensively
 - Program and test in debug mode
 - Additional compiler warnings
 - Add assertions
 - Perform studies in release mode

- Describes problem geometry
 - Support for lines, quad, hex elements
 - Conceptually even higher order!
 - Structured/unstructured meshes
 - Co-dimension 1 or 2 case
- Grid creation
 - Built-in basic grid generation and manipulation tools
 - Can read in grids

- Assign helper ID's
 - Materials
 - Boundaries
 - Manifolds

- Cells know about neighbour cells
 - Useful for DG methods

- Can enforce topologies
 - Manifolds on boundary
 - Internal manifolds
- Disadvantage
 - Cannot mix triangulation types
 - e.g. Volumetric body with extended manifold surface

- Demonstration: Step-1, step-49
 https://www.dealii.org/current/doxygen/deal.II/step_1.html
 http://www.math.colostate.edu/~bangerth/videos.676.6.html
 http://www.math.colostate.edu/~bangerth/videos.676.6.html
- Key points
 - deal.II headers
 - Creating a triangulation
 - Boundary topology
 - Traversing a triangulation
 - Querying geometric information
 - Manipulating a triangulation
 - Aspects of grid refinement
 - Visualising a triangulation

Assigning degrees-of-freedom: the FiniteElement classes

- Built in Finite Elements
 - Continuous
 - Piecewise Lagrange polynomials
 - Discontinuous
 - Monomials
 - Legendre polynomials
 - Vector-valued
 - Nedelec (H^{Curl}, C/Dc)
 - Raviart-Thomas (Hdiv, C/Dc)
- A few more...
- Can develop finite elements from scratch
 - Specialisation for FE's derived by polynomial expansions
 - Enhanced/bubble elements

Assigning degrees-of-freedom: the DoFHandler class

- DoFHandler assigns DoF's to grid
 - Important: separate from Triangulation!
- Unified way to access DoF's, regardless of FE used
 - e.g. Discontinuous elements: support points not necessarily at vertices
- Fast access and grid traversal
 - STL-type cell iterators

Assigning degrees-of-freedom: the DoFRenumbering namespace

- Renumbering schemes
 - Cuthill McKee
 - King
 - Downwind
- Reduce bandwidth
- Collect like-components
- Induce block-structure
- Directional (fluid flow)
- MPI subdomain

Assigning degrees-of-freedom: the FiniteElement and DoFHandler classes

- Demonstration: Step-2
 https://www.dealii.org/current/doxygen/deal.II/step_2.html

 http://www.math.colostate.edu/~bangerth/videos.676.9.html
- Key points
 - Choosing a Finite Element
 - Distributing degrees-of-freedom on a mesh
 - Renumbering degrees-of-freedom
 - Visualising sparsity patterns

