- Design an analog bandpass filter to meet the following frequency-domain specification:
 - a -3.0103 dB lower and upper cutoff frequency of 50 Hz and 20 KHz.
 - a stopband attenuation of atleast 20 dB at 20 Hz and 45 KHz, and
 - a monotonic frequency response.

Solution:

The monotonic frequency response can be achieved by using Butterworth filter.

Step: 1: Specified magnitude frequency response of the bandpass Butterworth filter.

$$\Omega_1 = 2\pi \times 20 = 125.663 \ rad/sec$$

$$\Omega_2 = 2\pi \times 45 \times 10^3 = 2.827 \times 10^5 rad/sec$$

$$\Omega_u \text{=} 2\pi \times 20 \times 10^3 = 1.257 \times 10^5 \, rad/sec$$

$$\Omega_l$$
=2 $\pi \times 50 = 314.159 \, rad/sec$

 If the given filter is Bandpass then the backward design equation to find the stopband edge frequency

•
$$\Omega_s = Min\{|A|, |B|\}.$$

Where
$$A = \frac{-\Omega_1^2 + \Omega_l \Omega_u}{\Omega_1 (\Omega_u - \Omega_l)} = 2.51$$

$$B = \frac{\Omega_2^2 - \Omega_l \Omega_u}{\Omega_2 (\Omega_u - \Omega_l)} = 2.25$$

$$\Omega_s = Min\{|A|, |B|\} = 2.25$$

Step 2: Magnitude frequency response of the normalized lowpass filter

The pass band edge frequency $\Omega_{\rm P}$ of the normalized low pass filter is 1 rad/sec

Step 3: Find the order N of the filter using equation (14). Sub K_P =-3.0103 dB, K_S =-20 dB, Ω_P =1 rad/sec, Ω_S =2.25 rad/sec.

$$N = \frac{\log \left[\frac{-K_P}{10^{-10}} - 1 \right] / \left(\frac{-K_S}{10^{-10} - 1} \right)}{2\log \left(\frac{\Omega_P}{\Omega_S} \right)} = 2.83 = 3$$

Step 4: Now proceed to find the transfer function of the 3rd order normalized lowpass filter. Find the poles of the 3rd order normalized low pass filter using equation (5)

poles of H₃(-s)

Poles	σ+jΩ
s_0	-0.5+j0.866
s_1	-1
s_2	-0.5-j0.866
s_3	0.5-j0.866
s_4	1
<i>S</i> ₅	0.5+j0.866

Step 5:

Hence, the transfer function of the 3rd order normalized lowpass Butterworth filter is

$$H_{N(S)} = \frac{1}{\prod_{LHP}(s - s_k)}$$

•
$$H_3(s) = \frac{1}{(s-s_0)(s-s_1)(s-s_2)}$$

•
$$H_3(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}$$

• STEP 6: Applying the lowpass to bandpass transformation to $H_3(s)$

$$H_a(s) = H_3(s)|s \to \frac{s^2 + \Omega_u \Omega_l}{s(\Omega_{u} - \Omega_l)}$$

$$= H_3(s)|s \to \frac{s^2 + 3.949 \times 10^7}{s(1.2538 \times 10^5)}$$

$$H_a(s) = \frac{1.9695 \times 10^{15} s^3}{(s^6 + 2.51 \times 10^5 s^5 + 3.154 \times 10^{10} s^4 + 1.989 \times 10^{15} s^3 + 1.2453 \times 10^{18} s^2 + 3.907 \times 10^{20} s + 6.152 \times 10^{22})}$$

3) Design a monotonour filte for foll. Specification. (Panhend Attn = 2dB Konhand edge frej = 200 red/sec. Stophend Attn = 20 dB Stophend edge fry = coored/sec. rs rp=200 red/ser Sy=land 2 rod/ser.