COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

February 20, 2023

Lecture 13: Myhill-Nerode Theorem

Recap

Define a relation \equiv on the set of states:

Recap

Define a relation \equiv on the set of states:

$$p \equiv q \iff \forall x \in \Sigma^* (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

≡ is an equivalence relation.

$$[p] \coloneqq \{q \mid q \equiv p\}$$
 Equivalence classes

Every element $p \in Q$ is contained in exactly one equivalence class [p].

$$p \equiv q \iff [p] = [q]$$

An algorithm for DFA minimization

Let M be a DFA with no inaccessible states. We will mark (unordered) pairs of states $\{p,q\}$ if we discover a reason why they are not equivalent.

- f 0 Write down a table of pairs $\{p,q\}$, initially unmarked.
- **②** Mark $\{p,q\}$ if $p \in F$ and $q \notin F$, or vice-versa.
- Repeat until no change occurs: if there exists an unmarked pair $\{p,q\}$ such that $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$ then mark $\{p,q\}$.
- **4** When done, $p \equiv q$ iff $\{p, q\}$ is not marked.

Algorithm

Let $Q = \{q_1, \ldots, q_n\}$.

Algorithm

Let
$$Q = \{q_1, ..., q_n\}.$$

1. For each $1 \le i < j \le n$, initialize T(i, j) = --

Algorithm

Let
$$Q = \{q_1, ..., q_n\}.$$

- 1. For each $1 \le i < j \le n$, initialize T(i, j) = --
- 2. For each $1 \le i < j \le n$

Algorithm

```
Let Q = \{q_1, ..., q_n\}.
```

- 1. For each $1 \le i < j \le n$, initialize T(i, j) = --
- 2. For each $1 \le i < j \le n$ If $(q_i \in F \text{ AND } q_j \notin F) \text{ OR } (q_i \in F \text{ AND } q_j \notin F)$ $T(i,j) \leftarrow \checkmark$
- 3. Repeat

Algorithm

Let
$$Q = \{q_1, ..., q_n\}.$$

- 1. For each $1 \le i < j \le n$, initialize T(i,j) = --
- 2. For each $1 \le i < j \le n$ If $(q_i \in F \text{ AND } q_j \notin F) \text{ OR } (q_i \in F \text{ AND } q_j \notin F)$ $T(i,j) \leftarrow \checkmark$
- 3. Repeat

```
\{ \text{ For each } 1 \leq i < j \leq n
```

Algorithm

```
Let Q = \{q_1, \dots, q_n\}.

1. For each 1 \le i < j \le n, initialize T(i,j) = --

2. For each 1 \le i < j \le n

If (q_i \in F \text{ AND } q_j \notin F) \text{ OR } (q_i \in F \text{ AND } q_j \notin F)

T(i,j) \leftarrow \checkmark
```

3. Repeat

```
 \{ \text{ For each } 1 \leq i < j \leq n \\ \text{If } \exists a \in \Sigma, T(\delta(q_i, a), \delta(q_j, a)) = \checkmark \\ \text{then } T(i, j) \leftarrow \checkmark \\ \}
```

Untill T stays unchanged.

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \to 2^{\mathcal{Q}}$ defined as

$$\Delta(\{p,q\},a) := \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \to 2^{\mathcal{Q}}$ defined as

$$\Delta(\{p,q\},a) \coloneqq \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S} \coloneqq \{\{p,q\} \mid p \in F, q \notin F\}$$

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \big\{ \big\{ p,q \big\} \mid p,q \in Q, p \neq q \big\}$$

 $\Delta: \mathcal{Q} \to 2^{\mathcal{Q}}$ defined as

$$\Delta(\{p,q\},a) \coloneqq \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S} \coloneqq \{\{p,q\} \mid p \in F, q \notin F\}$$

▶ Step 2 marks elements of S.

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \to 2^{\mathcal{Q}}$ defined as

$$\Delta(\{p,q\},a) := \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S} \coloneqq \{ \{p, q\} \mid p \in F, q \notin F \}$$

- ▶ Step 2 marks elements of S.
- ▶ Step 3 marks pairs in $\Delta(\{p,q\},a)$ when $\{p,q\}$ is marked for some $a \in \Sigma$.

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \to 2^{\mathcal{Q}}$ defined as

$$\Delta(\{p,q\},a) \coloneqq \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S} \coloneqq \{\{p,q\} \mid p \in F, q \notin F\}$$

- ▶ Step 2 marks elements of S.
- ▶ Step 3 marks pairs in $\Delta(\{p,q\},a)$ when $\{p,q\}$ is marked for some $a \in \Sigma$.
- ▶ Claim above says $p \not\equiv q \iff \{p,q\}$ is reachable from S.

Claim: The pair $\{p,q\}$ is not marked by the algorithm if and only if there exists $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$ or vice-versa, i.e., if and only if $p \not\equiv q$.

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \to 2^{\mathcal{Q}}$ defined as

$$\Delta(\{p,q\},a) := \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S} \coloneqq \{\{p,q\} \mid p \in F, q \notin F\}$$

- Step 2 marks elements of S.
- ▶ Step 3 marks pairs in $\Delta(\{p,q\},a)$ when $\{p,q\}$ is marked for some $a \in \Sigma$.
- ▶ Claim above says $p \not\equiv q \iff \{p,q\}$ is reachable from S.

Question: Is the resulting automaton minimal?

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

Suppose not. Assume there exists A' with fewer states and L(A') = L(A).

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

Suppose not. Assume there exists A' with fewer states and L(A') = L(A). Therefore, initial states q_0 and q'_0 of A and A' respectively are equivalent.

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

Suppose not. Assume there exists A' with fewer states and L(A') = L(A). Therefore, initial states q_0 and q_0' of A and A' respectively are equivalent. **Claim:** All states of A are equivalent to some state of A'.

• We know all states of A are reachable from its initial state(why?).

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

- We know all states of A are reachable from its initial state(why?).
- Let q be a state in A. Let word w take A to q.
- Let word w take A' to some state q'.

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

- We know all states of A are reachable from its initial state(why?).
- Let q be a state in A. Let word w take A to q.
- Let word w take A' to some state q'.
- q and q' must be equivalent. Otherwise, q_0 and q_0' are not equivalent.

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

- We know all states of A are reachable from its initial state(why?).
- Let q be a state in A. Let word w take A to q.
- Let word w take A' to some state q'.
- q and q' must be equivalent. Otherwise, q_0 and q_0' are not equivalent.
- ▶ By pigeonhole principle, there are states q_1 and q_2 of A such that they are equivalent to the same state of A'.

Lemma

The DFA A obtained by running the collapsing algorithm is the minimal DFA for L(A).

- We know all states of A are reachable from its initial state(why?).
- Let q be a state in A. Let word w take A to q.
- Let word w take A' to some state q'.
- q and q' must be equivalent. Otherwise, q_0 and q_0' are not equivalent.
- ▶ By pigeonhole principle, there are states q_1 and q_2 of A such that they are equivalent to the same state of A'.
- ▶ Therefore, q_1 and q_2 are equivalent. But A is minimized, and no two states of A are equivalent in a minimized DFA. Contradiction!

Let $R \subseteq \Sigma^*$ be a regular language and $M = (Q, \Sigma, \delta, s, F)$ be a DFA for R. Consider the relation \equiv_M :

$$x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$$

Let $R \subseteq \Sigma^*$ be a regular language and $M = (Q, \Sigma, \delta, s, F)$ be a DFA for R. Consider the relation \equiv_M :

$$x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$$

Exercise: \equiv_M is an equivalence relation. Note: This is different from last class! Relation \equiv on the set of states:

$$p \equiv q \iff \forall x \in \Sigma^* (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

Let $R\subseteq \Sigma^*$ be a regular language and $M=(Q,\Sigma,\delta,s,F)$ be a DFA for R. Consider the relation \equiv_M :

$$x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$$

Exercise: \equiv_M is an equivalence relation.

▶ **Right Congruence:** For any $x, y \in \Sigma^*$ and $a \in \Sigma$

$$x \equiv_M y \implies xa \equiv_M ya$$

Let $R\subseteq \Sigma^*$ be a regular language and $M=(Q,\Sigma,\delta,s,F)$ be a DFA for R. Consider the relation \equiv_M :

$$x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$$

Exercise: \equiv_M is an equivalence relation.

▶ **Right Congruence:** For any $x, y \in \Sigma^*$ and $a \in \Sigma$

$$x \equiv_M y \implies xa \equiv_M ya$$

Let $R\subseteq \Sigma^*$ be a regular language and $M=(Q,\Sigma,\delta,s,F)$ be a DFA for R. Consider the relation \equiv_M :

$$x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$$

Exercise: \equiv_M is an equivalence relation.

▶ **Right Congruence:** For any $x, y \in \Sigma^*$ and $a \in \Sigma$

$$x \equiv_M y \implies xa \equiv_M ya$$

Assume $x \equiv_M y$. Then

$$\begin{array}{rcl} \hat{\delta}(s,xa) & = & \delta(\hat{\delta}(s,x),a) \\ & = & \delta(\hat{\delta}(s,y),a) \\ & = & \hat{\delta}(s,ya) \end{array} \tag{by assumption}$$

A relation with some strange properties

Let $R \subseteq \Sigma^*$ be a regular language and $M = (Q, \Sigma, \delta, s, F)$ be a DFA for R. Consider the relation \equiv_M :

$$x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$$

Exercise: \equiv_M is an equivalence relation.

▶ **Right Congruence:** For any $x, y \in \Sigma^*$ and $a \in \Sigma$

$$x \equiv_M y \implies xa \equiv_M ya$$

▶ **Refines** R: For any $x, y \in \Sigma^*$,

$$x \equiv_M y \implies (x \in R \iff y \in R)$$

This is because $\hat{\delta}(s,x) = \hat{\delta}(s,y)$

A relation with some strange properties

Let $R \subseteq \Sigma^*$ be a regular language and $M = (Q, \Sigma, \delta, s, F)$ be a DFA for R. Consider the relation \equiv_M :

$$x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$$

Exercise: \equiv_M is an equivalence relation.

▶ **Right Congruence:** For any $x, y \in \Sigma^*$ and $a \in \Sigma$

$$x \equiv_M y \implies xa \equiv_M ya$$

• Refines R: For any $x, y \in \Sigma^*$,

$$x \equiv_M y \implies (x \in R \iff y \in R)$$

This is because $\hat{\delta}(s,x) = \hat{\delta}(s,y)$

▶ Finite index: There are only finitely many equivalence classes on Σ^* under \equiv_M (There is at exactly one equivalence corresponding to each state of M).

Definition

An equivalence relation on Σ^* is said to be a Myhill-Nerode relation for the language R, if it is a right congruence of finite index refining R.

Definition

An equivalence relation on Σ^* is said to be a Myhill-Nerode relation for the language R, if it is a right congruence of finite index refining R.

▶ Definition characterises exactly those relations on Σ^* that are \equiv_M for some automaton M.

Definition

An equivalence relation on Σ^* is said to be a Myhill-Nerode relation for the language R, if it is a right congruence of finite index refining R.

- ▶ Definition characterises exactly those relations on Σ^* that are \equiv_M for some automaton M.
- Given \equiv_M , one can reconstruct M just using the fact that it is Myhill-Nerode.

Definition

An equivalence relation on Σ^* is said to be a Myhill-Nerode relation for the language R, if it is a right congruence of finite index refining R.

- ▶ Definition characterises exactly those relations on Σ^* that are \equiv_M for some automaton M.
- Given \equiv_M , one can reconstruct M just using the fact that it is Myhill-Nerode. In fact,

$$M \to \equiv_M$$

$$\equiv_M \to M$$

are both inverses upto isomorphism of the automata.

Theorem (John Myhill, Anil Nerode (1958)

L is regular if and only if there exists a Myhill-Nerode relation for L.

Proof

▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .

Theorem (John Myhill, Anil Nerode (1958)

 ${\it L}$ is regular if and only if there exists a Myhill-Nerode relation for ${\it L}$.

- ▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .
- Let $[x] = \{y \in \Sigma^* \mid y \equiv x\}$.

Theorem (John Myhill, Anil Nerode (1958)

 ${\it L}$ is regular if and only if there exists a Myhill-Nerode relation for ${\it L}$.

- ▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .
- We will build $M_{\equiv} = (Q, \Sigma, q_0, \delta, F)$

Theorem (John Myhill, Anil Nerode (1958)

 ${\cal L}$ is regular if and only if there exists a Myhill-Nerode relation for ${\cal L}.$

- ▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .
- Let $[x] = \{y \in \Sigma^* \mid y \equiv x\}.$
- We will build $M_{\equiv} = (Q, \Sigma, q_0, \delta, F)$
 - $Q = \{ [x] \mid x \in \Sigma^* \}$

Theorem (John Myhill, Anil Nerode (1958)

 ${\cal L}$ is regular if and only if there exists a Myhill-Nerode relation for ${\cal L}.$

- ▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .
- We will build $M_{\equiv} = (Q, \Sigma, q_0, \delta, F)$
 - $Q = \{ [x] \mid x \in \Sigma^* \}$
 - $q_0 = [\epsilon]$

Theorem (John Myhill, Anil Nerode (1958)

L is regular if and only if there exists a Myhill-Nerode relation for L.

- ▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .
- We will build $M_{\equiv} = (Q, \Sigma, q_0, \delta, F)$
 - $Q = \{ [x] \mid x \in \Sigma^* \}$
 - $q_0 = [\epsilon]$

Theorem (John Myhill, Anil Nerode (1958)

L is regular if and only if there exists a Myhill-Nerode relation for L.

- ▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .
- Let $[x] = \{y \in \Sigma^* \mid y \equiv x\}.$
- We will build M_{\equiv} = $(Q, \Sigma, q_0, \delta, F)$
 - $Q = \{ [x] | x \in \Sigma^* \}$
 - $q_0 = [\epsilon]$
 - $\delta([x], a) = [xa].$
 - $F = \{ [x] \mid x \in L \}$

Theorem (John Myhill, Anil Nerode (1958)

 ${\it L}$ is regular if and only if there exists a Myhill-Nerode relation for ${\it L}$.

- ▶ Suppose \equiv is a Myhill-Nerode relation on Σ^* .
- Let $[x] = \{y \in \Sigma^* \mid y \equiv x\}.$
- We will build $M_{\equiv} = (Q, \Sigma, q_0, \delta, F)$
 - $Q = \{ [x] | x \in \Sigma^* \}$
 - $q_0 = [\epsilon]$
 - $b \delta([x], a) = [xa].$
 - $F = \{[x] \mid x \in L\}$
- Proof of correctness: By induction.

Consider

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

▶ Consider an equivalence relation \equiv on $\{a\}^*$.

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- lacktriangle Suppose it is a right congruence and it refines L.

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ightharpoonup Suppose it is a right congruence and it refines L.
- ▶ Then it cannot have finite index.

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $[a^p] = [a^q]$.

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $[a^p] = [a^q]$.
 - $[a^p][a^{q!-p}] = [a^q][a^{q!-p}]$

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $[a^p] = [a^q]$.
 - $[a^p][a^{q!-p}] = [a^q][a^{q!-p}]$

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $[a^p] = [a^q]$.
 - $[a^p][a^{q!-p}] = [a^q][a^{q!-p}]$
 - $[a^{q!}] = [a^q][a^{q!-p}]$
 - ▶ LHS \in L, RHS \notin L. (Why?)
 - ▶ Suffices to show q! p + q < (q + 1)!

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $[a^p] = [a^q]$.
 - $[a^p][a^{q!-p}] = [a^q][a^{q!-p}]$
 - $[a^{q!}] = [a^q][a^{q!-p}]$
 - ▶ LHS \in L, RHS \notin L. (Why?)
 - ▶ Suffices to show q! p + q < (q + 1)!

Consider

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $[a^p] = [a^q]$.
 - $[a^p][a^{q!-p}] = [a^q][a^{q!-p}]$
 - $[a^{q!}] = [a^q][a^{q!-p}]$
 - ▶ LHS \in L, RHS \notin L. (Why?)
 - ▶ Suffices to show q! p + q < (q + 1)!

What about $\{a^p \mid p \in \mathbb{N}, p \text{ prime}\}$?

Consider

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- Suppose it is a right congruence and it refines L.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $[a^p] = [a^q]$.
 - $[a^p][a^{q!-p}] = [a^q][a^{q!-p}]$
 - $[a^{q!}] = [a^q][a^{q!-p}]$
 - ▶ LHS $\in L$, RHS $\notin L$. (Why?)
 - ▶ Suffices to show q! p + q < (q + 1)!

What about $\{a^p \mid p \in \mathbb{N}, p \text{ prime}\}$?

$$[a^p] = [a^q] \implies [a^p][a^{q-p}] = [a^q][a^{q-p}] = [a^{2q-p}] = [a^p][a^{2(q-p)}] \in L$$

Consider

$$L = \{a^{n!} \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a\}^*$.
- ▶ Suppose it is a right congruence and it refines *L*.
- ▶ Then it cannot have finite index.
 - ▶ Suppose $\{a, a^2, ..., \}$ has only finitely many equivalence classes.
 - ▶ Then there exists $1 \le p < q$ such that, $\lceil a^p \rceil = \lceil a^q \rceil$.
 - $[a^p][a^{q!-p}] = [a^q][a^{q!-p}]$
 - $[a^{q!}] = [a^q][a^{q!-p}]$
 - ▶ LHS $\in L$, RHS $\notin L$. (Why?)
 - ▶ Suffices to show q! p + q < (q + 1)!

What about $\{a^p \mid p \in \mathbb{N}, p \text{ prime}\}$?

$$[a^p] = [a^q] \implies [a^p][a^{q-p}] = [a^q][a^{q-p}] = [a^{2q-p}] = [a^p][a^{2(q-p)}] \in L$$

In general, $a^{p+i(q-p)} \in L$ for every i.

Consider

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

▶ Consider an equivalence relation \equiv on $\{a,b\}^*$.

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a,b\}^*$.
- lacktriangle Assume that it is a right congruence and refines L.

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a,b\}^*$.
- ightharpoonup Assume that it is a right congruence and refines L.
- Now we will show that it does not have finite index.

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a,b\}^*$.
- ▶ Assume that it is a right congruence and refines *L*.
- Now we will show that it does not have finite index.
 - For $n \neq m$, say $a^n \equiv a^m$.

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a,b\}^*$.
- lacktriangle Assume that it is a right congruence and refines L.
- Now we will show that it does not have finite index.
 - For $n \neq m$, say $a^n \equiv a^m$.
 - By right congruence $a^n \cdot b^n \equiv a^m \cdot b^n$.

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a,b\}^*$.
- ▶ Assume that it is a right congruence and refines *L*.
- Now we will show that it does not have finite index.
 - For $n \neq m$, say $a^n \equiv a^m$.
 - By right congruence $a^n \cdot b^n \equiv a^m \cdot b^n$.
 - ▶ But $a^nb^n \in L$ and $a^mb^n \notin L$.

Consider

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

- ▶ Consider an equivalence relation \equiv on $\{a,b\}^*$.
- ▶ Assume that it is a right congruence and refines *L*.
- Now we will show that it does not have finite index.
 - For $n \neq m$, say $a^n \equiv a^m$.
 - By right congruence $a^n \cdot b^n \equiv a^m \cdot b^n$.
 - ▶ But $a^nb^n \in L$ and $a^mb^n \notin L$.

Exercise: Work out the Myhill-Nerode proof for PAL.

More consequences of Myhill-Nerode

What are the properties of the automaton constructed from L?

More consequences of Myhill-Nerode

What are the properties of the automaton constructed from L?

▶ DFA representation of languages is not unique!

More consequences of Myhill-Nerode

What are the properties of the automaton constructed from L?

- ▶ DFA representation of languages is not unique!
- What does Myhill-Nerode construction give?

More consequences of Myhill-Nerode

What are the properties of the automaton constructed from L?

- ▶ DFA representation of languages is not unique!
- What does Myhill-Nerode construction give?

Theorem

Given L, the DFA constructed from L using the Myhill-Nerode consruction has the minimum number of states possible.

Membership testing

Given a regular language L over Σ and a string $w \in \Sigma^*$, check if $w \in L$

Membership testing

Given a regular language L over Σ and a string $w \in \Sigma^*$, check if $w \in L$

Emptiness checking

Given a regular language L over Σ , check if $L = \emptyset$

Membership testing

Given a regular language L over Σ and a string $w \in \Sigma^*$, check if $w \in L$

Emptiness checking

Given a regular language L over Σ , check if $L = \emptyset$

Language Equivalence

Given two regular languages L_1 and L_2 over Σ , check if L_1 = L_2 .

Membership testing

Given a regular language L over Σ and a string $w \in \Sigma^*$, check if $w \in L$

Emptiness checking

Given a regular language L over Σ , check if $L = \emptyset$

Language Equivalence

Given two regular languages L_1 and L_2 over Σ , check if L_1 = L_2 .

$$L_1 = L_2 \iff (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

Membership testing

Given a regular language L over Σ and a string $w \in \Sigma^*$, check if $w \in L$

Emptiness checking

Given a regular language L over Σ , check if $L = \emptyset$

Language Equivalence

Given two regular languages L_1 and L_2 over Σ , check if L_1 = L_2 .

$$L_1 = L_2 \iff (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

DFA

lacktriangle Run it on w and check if an accepting state is reached.

- lacktriangle Run it on w and check if an accepting state is reached.
- Cost of algorithm: O(|w|).

- DFA
 - lacktriangle Run it on w and check if an accepting state is reached.
 - Cost of algorithm: O(|w|).
- NFA

- DFA
 - Run it on w and check if an accepting state is reached.
 - Cost of algorithm: O(|w|).
- NFA
 - Compute reachable states on w.

DFA

- ▶ Run it on w and check if an accepting state is reached.
- Cost of algorithm: O(|w|).

NFA

- Compute reachable states on w.
- Cost of algorithm: $O(|w|n^2)$ where n is number of states.

- DFA
 - Run it on w and check if an accepting state is reached.
 - Cost of algorithm: O(|w|).
- NFA
 - ightharpoonup Compute reachable states on w.
 - Cost of algorithm: $O(|w|n^2)$ where n is number of states.
- RegEx

DFA

- ▶ Run it on w and check if an accepting state is reached.
- Cost of algorithm: O(|w|).

NFA

- Compute reachable states on w.
- Cost of algorithm: $O(|w|n^2)$ where n is number of states.

RegEx

Convert to a NFA and test membership.

DFA

- Run it on w and check if an accepting state is reached.
- Cost of algorithm: O(|w|).

NFA

- Compute reachable states on w.
- Cost of algorithm: $O(|w|n^2)$ where n is number of states.

▶ RegEx

- Convert to a NFA and test membership.
- Cost of algorithm: $O(|w|n^2)$?.

- DFA
 - Complementation is trivial

- Complementation is trivial
- ▶ Construct DFA for $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ and test if any any of the final states are reachable from the start state.

- Complementation is trivial
- ▶ Construct DFA for $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ and test if any any of the final states are reachable from the start state.
- Cost of algorithm: Exercise.

- Complementation is trivial
- ▶ Construct DFA for $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ and test if any any of the final states are reachable from the start state.
- ► Cost of algorithm: Exercise.
- NFA and Regex

DFA

- Complementation is trivial
- ▶ Construct DFA for $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ and test if any any of the final states are reachable from the start state.
- ► Cost of algorithm: Exercise.

NFA and Regex

Complementation is expensive!

DFA

- Complementation is trivial
- ▶ Construct DFA for $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ and test if any any of the final states are reachable from the start state.
- ► Cost of algorithm: Exercise.

NFA and Regex

- Complementation is expensive!
- ▶ Given NFA A with n states, NFA for $L(\overline{A})$ exists with 2^n states.

DFA

- Complementation is trivial
- ▶ Construct DFA for $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ and test if any any of the final states are reachable from the start state.
- Cost of algorithm: Exercise.

NFA and Regex

- Complementation is expensive!
- Given NFA A with n states, NFA for L(A) exists with 2^n states.
- **Exercise:** There exist NFA A with n states such that the smallest NFA for $\overline{L(A)}$ requires 2^n states

DFA

- Complementation is trivial
- ▶ Construct DFA for $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ and test if any any of the final states are reachable from the start state.
- ► Cost of algorithm: Exercise.

NFA and Regex

- Complementation is expensive!
- Given NFA A with n states, NFA for L(A) exists with 2^n states.
- **Exercise:** There exist NFA A with n states such that the smallest NFA for $\overline{L(A)}$ requires 2^n states