Ayudantía 4 - Filtros Pasivos Electrónica y Electrotecnia

Pedro Morales Nadal

Edicson Solar Salinas

pedro.morales1@mail.udp.cl

edicson.solar@mail.udp.cl

© +56 9 30915977

© +56 9 92763279

Ingeniería Civil en Informática y Telecomunicaciones

30 de septiembre de 2025

¿Qué veremos?

- Reactancias e Impedancia
- Filtros
 - ▶ Tipos
 - Gráficos
 - Cálculos

Recuerdo

Resistencia (R)

$$Z_R=R$$
 (no depende de ω)

Inductor (L)

$$Z_L = j\omega L$$
$$X_L = \omega L$$

Impedancia total:

$$Z = R + jX = R + j(X_L - X_C)$$

Condensador (C)

$$Z_C = \frac{1}{j\omega C}$$
$$X_C = \frac{1}{\omega C}$$

Recuerdo

Resistencia (R)

$$Z_R = R$$

(no depende de $2\pi f$)

Inductor (L)

$$Z_L = j2\pi fL$$

$$X_L = 2\pi f L$$

Impedancia total:

$$Z = R + jX = R + j(X_L - X_C)$$

$$\omega = 2\pi f$$

Condensador (C)

$$Z_C = \frac{1}{j2\pi fC}$$
$$X_C = \frac{1}{2\pi fC}$$

$$X_C = \frac{1}{2\pi fC}$$

Filtro RC Pasa Baja

- Baja frecuencia: el condensador actúa como abierto $\rightarrow V_{out} \approx V_{in}$
- Alta frecuencia: el condensador actúa como corto $o V_{out} pprox 0$
- Frecuencia de corte:

$$f_c = \frac{1}{2\pi RC}$$

Comparación Pasa Baja RC vs RLC

$$f_c = \frac{1}{2\pi RC}$$

$$f_c = \frac{1}{2\pi\sqrt{LC}}$$

Filtro RC Pasa Alta

- Baja frecuencia: el condensador bloquea $\rightarrow V_{out} \approx 0$
- Alta frecuencia: el condensador conduce $\rightarrow V_{out} \approx V_{in}$
- Frecuencia de corte:

$$f_c = \frac{1}{2\pi RC}$$

Comparación Pasa Alta RC vs RLC

$$f_c = \frac{1}{2\pi RC}$$

$$f_c = \frac{1}{2\pi\sqrt{LC}}$$

Filtro Pasa Banda

- Pasa Alta (R₁-C₁) atenúa frecuencias bajas.
- Pasa Baja (R₂ C₂) atenúa frecuencias altas.
- El sistema deja pasar solo las frecuencias intermedias.
- Frecuencias de corte:

$$f_1 = \frac{1}{2\pi R_1 C_1}, \quad f_2 = \frac{1}{2\pi R_2 C_2}$$

• Frecuencia central:

$$f_0 = \sqrt{f_1 \cdot f_2}$$

Filtro Elimina Banda (Notch, RLC)

- Rechaza una banda.
- En f_0 : $V_{out} \approx 0$
- Útil para cancelar señales específicas.

Filtro Elimina Banda (Notch, RLC)

Pasa Banda (Serie)

Pasa Banda (Paralelo)

Rechaza Banda (Serie)

Rechaza Banda (Paralelo)

Ejercicio

En el siguiente circuito se tiene un interruptor S que admite dos posiciones (1 y 2). Además considere los siguientes datos y conteste:

- $V_{in} = 12 \cdot \sin(100\pi t)$ [V]
- $R_1 = R_2 = 1 k\Omega$
- C = 100 nF
- a) ¿Qué tipo de filtro representa en 1?

- b) ¿Cuál(es) es(son) la(s) frecuencia(s) de corte?
- c) ¿Cómo se comporta el circuito si se aplica una señal de 5 kHz?

¿DUDAS?

CHAO GENTE

