XPRESSyourself: Automating and Democratizing High-Throughput Sequencing

Jordan A. Berg,¹ Jonathan R. Belyeu,² Alex J. Bott,¹ Jeffrey T. Morgan,¹ Yeyun Ouyang,¹ Jason Gertz,³ Michael T. Howard,² Aaron R. Quinlan,^{2,4,5} Jared P. Rutter^{1,6*}

¹Department of Biochemistry, University of Utah, Salt Lake City, UT, USA, 84112
²Department of Human Genetics, University of Utah, Salt Lake City, UT, USA, 84112
³Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA, 84112
⁴USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA, 84112
⁵Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA, 84112
⁶Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA, 84112

*To whom correspondence should be addressed; E-mail: rutter@biochem.utah.edu.

With the advent of high-throughput sequencing platforms, expression profiling is becoming common-place in medical research. However, for the general user, often someone who ends up outsourcing their bioinformatics, a computational overhead exists. The XPRESSyourself suite aims to remove these barriers and create a tools to help standardize and increase throughput of data processing and analysis. The XPRESSyourself suite is currently broken down into two software packages. The first, XPRESSpipe, automates the pre-processing, alignment, quantification, normalization, and quality control of single-end and paired-end RNAseq, as well as ribosome profiling sequence data. The second, XPRESStools, is a Python toolkit for expression data analysis, compatible with private or public microarray and RNAseq datasets. This software suite is designed where features can easily be modified, and additional packages can be included for processing of other data types in the future, such as CHIPseq or genome alignment. Currently, this package offers several new tools for ribosome profiling and general RNA-seq.

XPRESSyourself is freely available on GitHub: https://github.com/XPRESSyourself

${f 1}$ Introduction

High-throughput profiling of gene expression data has revolutionized biomedical, industrial and basic science research. Within the last two decades, RNA-seq as found itself the forerunner technology for highest quality expression profiling, as it can measure relative transcript abundance, differential splice variants, sequence polymorphisms, and more. This technology has also been adopted to create technologies such as single-cell RNA-seq, capable of assaying the transcriptional profile cell by cell; and ribosome profiling, which measures ribosome occupancy and translation efficiency.

While vast strides have been made to these technologies, various bottlenecks still exist. For example, while more and more researchers are becoming accustomed to these technologies, learning the bioinformatics portion of sequencing possesses its own learning curve and often efficiency is lacking in how sequencing reads are processed and analyzed. Also for these users, they may not be aware of which tools are accepted as the standard in the field

or which analyses they should be perform. They may also lack the experience to process their sequencing libraries rapidly or may not know all the in-between steps that are not always explicitly stated in protocols.

While several pipelines have emerged over the last several years that have been built to tackle various aspects of these bottlenecks, most are not widely used or usable by the average wet-bench researcher. Some are difficult to install or use, often they break easily or do not perform well. Rarely do these tools offer anything new to help overcome emerging challenges in the field.

In response to these issues surrounding the automation and democratization of sequencing technology, we created the XPRESSyourself bioinformatics suite for processing and analyzing high-throughput expression data. In creating this tool, we focused on five aspects in order to create an easy, reliable tool where large barriers-to-entry would be elimiated. These were create a tool that was useful, usable, reliable, efficient, and flexible.

- 1. We wanted the software we created to be useful for a broad audience, where the bulk of processing and analysis desired by a general user would be covered. We wanted to use pre-existing tools that were fast and accurate. We also wanted to provide additional, new tools that would be of use to the general RNA-seq community, which will be discussed in more detail later.
- 2. We wanted to create a software package that was easy to use. To do so, we made the tools installable by a single command in the command line interface (CLI) using the Conda and PyPi package managers. We also included thorough external documentation hosted on readthedocs that outlines use and considerations for each tool, as well as provides several examples of how to use each tool. Internally in the CLI-packages, summary documentation has been included by way of the help interface. Jupyter notebooks are also created and installed with the software that provide example analyses that can be easily modified and run.
- 3. To create a reliable pipeline and analysis package, we use the most current state-of-the-art software tools that have undergone robust benchmarking. We utilize a two-pass RNA-seq alignment process to provide the best coverage around splice sites. We also built the RNA-seq pipeline according to The Cancer Genome Atlas (TCGA) standards. While this technology will no doubt improve over the years, the software is structures in a way for easy modification for addition of tools or substitution of software.
- 4. In order to make the most efficient package possible, by default XPRESSyourself optimizes use of computing cores to ensure all available are utilized when possible. Additionally, for analysis tools processing large files, we utilize a data matrix chunking method, where a dataset is portioned off into a number equal to the number of cores available, and processes each parallely before rejoining the data chunks.
- 5. Flexibility is paramount in creating a tool that can be widely used and built upon. The general structure of the software was designed to make it easy to add or remove features. We envision as this suite of tools is more widely adopted by the RNAseq community, modules will be added to handle other sequencing platforms, such as genome sequencing, CHIPseq, and so on.

With XPRESStools, the user is provided with a complete suite of software to handle pre-processing, aligning, and quantifying reads, performing quality control via various meta-analyses of pre- and post-processed reads, and tools to perform the bulk of sequence analysis with enough flexibility to generate professional, figure-worthy images.

2 Materials and Methods

- 2.1 XPRESSpipe
- 2.1.1 Installation
- **2.1.2** Inputs
- 2.1.3 Reference Curation

Reference curation new tools minimal user input flexible enough to easily add features if user desires

2.1.4 Read Processing

pipeline run singly or all together normalization / batch effect

2.1.5 Outputs

output minimal but enough to get clear picture optional outputs

2.1.6 Quality Control

quality control read distribution meta-gene periodicity

2.1.7 Analyses

prober Deseq

- 2.2 XPRESStools
- 2.2.1 Getting Data
- 2.2.2 Normalizing and Formatting Data
- 2.2.3 Analyzing Data
- 2.3 Unit Testing and Code Coverage

New tools will require new tests to maintain code Coverage

2.4 Availability

Open source community GitHub Version Control Singularity

Results and Discussion

- 2.5 Benchmarking
- 2.6 Example Data Walkthrough
- 2.7 Cost Analysis
- 2.8 Summary

References

Acknowledgments

J.A.B. received support from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Interdisciplinary Training Grant T32 Program in Computational Approaches to Diabetes and Metabolism Research, 1T32DK11096601 to Wendy W. Chapman and Simon J. Fisher.

Contributions

Conceptualization	J.A.B.
Supervision	M.T.H., J.G., A.R.Q., J.P.R.
Project Administration	J.A.B.
Investigation	J.A.B.
Formal Analysis	J.A.B.
Software	J.A.B.
Methodology	J.A.B.
Validation	J.A.B., A.J.B. Y.O.
Data Curation	J.A.B.
Resources	J.A.B., J.P.R.
Funding Acquisition	J.A.B., J.P.R.
Writing - Original Draft	J.A.B.
Writing - Review & Editing	J.A.B., M.T.H., J.G., A.R.Q., J.P.R.
Visualization	J.A.B.