Project Phase I

Ram Wireless, a Virginia-based company with numerous store locations, depends on regional offices to support services such as inventory management, payroll, hiring, local marketing, and merchandising. As the company has expanded geographically, inefficiencies have surfaced in the assignment of stores to regional offices. This has led to increased travel time for employees, impacting productivity, cost-efficiency, and overall employee satisfaction.

Part A - Problem

Vance and Melissa at Ram Wireless aim to assign each store to the nearest regional office based purely on mileage. This allocation disregards any cost constraints and focuses solely on distance. Once the stores are assigned, the goal is to calculate the total travel cost of the allocation and assess its feasibility.

<u>Part B – Problem</u>

Melissa Jones, the COO, and Vance Larson, a regional manager, are seeking a realignment of store assignments to the regional offices in Staunton, Richmond, Warrenton, and Tappahannock. The main goal is to minimize travel costs by balancing travel distances and workloads. They have engaged Verve Consulting to analyze and optimize these assignments, aiming to reduce travel time and expenses while adhering to each office's capacity constraints.

Data

Hours Available

	Inventory	Payroll	Hiring	Marketing	Merchandising
Richmond	3025	1225	1750	3675	5000
Tappahannock	5550	3250	1200	1600	3400
Warrenton	2500	3375	1325	850	825
Staunton	3450	9100	1700	1850	3550

Average Mileage Cost: \$0.585 per mile

Average Employee Hourly Wage: \$26 per hour

Let

```
C = Set of regional offices, C = \{Staunton, Richmond, Warrenton, Tappahannock\}
```

S = Set of stores, with each store represented as an element (e.g., Albemarle County).

```
A = Set of support areas (activities), A= {Inventory, Payroll, Hiring, Marketing, Merchandising}
```

Decision Variables

Let

 $x_{ij} = Is \ a \ binary \ variable \ indicating \ whether \ store_j \ is \ assigned \ to \ office_i, for \ j$ $\in S \ and \ i \in C$

$$x_{ij} \in \{0,1\}, j \in S \text{ and } i \in C$$

Parameters

Distance and Time:

 $mileage_{ij}: Distance in miles from store j to regional office i, for i \in C and j \in S.$ $time_{ij}: time in hours from the store j to regional office i, for i \in C and j \in S.$

Cost Rates:

- Mileage rate = 0.585: The cost per mile.
- Hourly rate = 26: Employee hourly wage.

• Hours and Requirements:

hours available $_{ih}=$ annual hours avaliable for activity h at regional office i, for h $\in A$ and $i \in C$

hours required_{jh} = annual hours required for activity h at store j, for $h \in A$ and j $\in C$

• Trips:

 $trips_{jh} = number\ of\ annual\ trips\ required\ for\ each\ activity\ h\ at\ store\ j\ for\ j\in C\ and\ h\in A$

Derived Costs

Mileage Cost:

$$mileage\ cost_{ij} = mileage_{ij} \times mileage\ rate$$

Salary Cost

$$salary cost_{ij} = time_{ij} \times hourly rate$$

Objective in Words

Part A:

Decide how to assign each store to the closest regional office based on mileage, so that the total mileage is minimized while satisfying the following constraints:

- Each store is assigned to exactly one regional office.
- Nonnegativity constraints.

Part B:

Decide the optimal assignment of each store to the nearest regional office to minimize the total travel distance, ensuring that:

- Each store is allocated to one and only one regional office.
- Total hours required for each activity at each regional office must not exceed the available hours for that activity at the office Resource Capacity constraint.
- All values remain non-negative.

Algebraic Formulation

Part A:

Optimization model

minimize
$$\sum_{i \in S} \sum_{j \in C} \sum_{h \in A} trips_{jh} * 2 * \left(mileage_{cost_{ij}} + salary_{cost_{ij}} \right) .* x_{ij}$$

s.t.
$$\sum_{i \in C} x_{ij} = 1$$
, $j \in S$ (assignment constriant)

$$x_{ji} \in \{0,1\}, j \in S \ and \ i \in C$$
 (Nonnegativity and binnary Constraint)

Total Travel Cost:

$$total \ travel \ cost = \sum_{j \in S} \sum_{i \in C} \sum_{h \in A} 2 * trips_{jh} . \left(mileage_{cost_{ij}} + salary_{cost_{ij}} \right) . x_{ij}$$

Part B:

Optimization model

minimize
$$\sum_{j \in S} \sum_{i \in C} \sum_{h \in A} trips_{jh} * 2 * \left(mileage_{cost_{ij}} + salary_{cost_{ij}} \right) * x_{ij}$$

s.t.
$$\sum_{i \in C} x_{ij} = 1$$
, $j \in S$ (assignment constriant)

$$x_{ji} \in \{0,1\}, j \in S \text{ and } i \in C$$
 (Nonnegativity and binnary Constraint)

$$\sum_{j \in S} hours_{required_{jh}}. \ x_{ij} + \sum_{j \in S} 2 * travel_{time_{jh}} * trips_{jh}. \ x_{ij} + \leq \sum_{j \in S} hours_{available_{ih}},$$
$$i \in C, \ j \in A \ and \ h \in A \ (Resource \ Capacity \ Constraint)$$

Total Travel Cost:

$$total\ travel\ cost = \sum_{i \in S} \sum_{i \in C} \sum_{k \in A} 2 * trips_{jk} . \left(mileage_{cost_{ij}} + salary_{cost_{ij}} \right) . x_{ij}$$

Feasibility check:

$$\sum_{j \in S} hours_required_{jk}. \ x_{ij} \leq hours_avaiable_{ik}, i \in C \ and \ h \in A$$

RESULT

Part A

The optimal solution based on the minimum distance allocation; each store is assigned to the nearest regional office as follows:

County	ALLOCATION OF RO - Part A		
Albemarle	Staunton		
Amherst	Staunton		
Augusta	Staunton		
Buckingham	Staunton		
Caroline	Tappahannock		
Charles City	Richmond		
Chesterfield	Richmond		
City of Fredericksburg	Warrenton		
City of Richmond	Richmond		
Culpeper	Warrenton		
Cumberland	Richmond		
Dinwiddie	Richmond		
Essex	Tappahannock		
Fauquier	Warrenton		
Fluvanna	Staunton		
Goochland	Richmond		
Greene	Warrenton		
Hanover	Richmond		
Henrico	Richmond		
Hopewell	Richmond		
James City	Richmond		
King and Queen	Tappahannock		
King George	Tappahannock		
King William Louisa	Tappahannock Richmond		
	1110111110110		
Madison	Warrenton		
Mathews	Tappahannock		
Nelson	Staunton Richmond		
New Kent			
Orange	Warrenton		
Page	Warrenton		
Powhatan	Richmond		
Prince George	Richmond		
Prince William	Warrenton		
Rappahannock	Warrenton		
Rockbridge	Staunton		
Rockingham	Staunton		
Shenandoah	Warrenton		
Spotsylvania	Warrenton		
Stafford	Warrenton		
Warren	Warrenton		
Westmoreland	Tappahannock		
York	Tappahannock		

resulting in an optimal total cost of \$192040.16.

Part B

The optimal solution for Office Realignment Project is to assign:

County	ALLOCATION OF RO - Part B		
Albemarle	Staunton		
Amherst	Staunton		
Augusta	Staunton		
Buckingham	Staunton		
Caroline	Tappahannock		
Charles City	Richmond		
Chesterfield	Richmond		
City of Fredericksburg	Tappahannock		
City of Richmond	Richmond		
Culpeper	Warrenton		
Cumberland	Richmond		
Dinwiddie	Richmond		
Essex	Tappahannock		
Fauquier	Warrenton		
Fluvanna	Richmond		
Goochland	Richmond		
Greene	Staunton		
Hanover	Richmond		
Henrico	Richmond		
Hopewell	Richmond		
James City	Richmond		
King and Queen	Tappahannock		
King George	Tappahannock		
King William	Tappahannock		
Louisa	Richmond		
Madison	Staunton		
Mathews	Tappahannock		
Nelson	Staunton		
New Kent	Richmond		
Orange	Warrenton		
Page	Warrenton		
Powhatan	Richmond		
Prince George	Richmond		
Prince William	Warrenton		
Rappahannock	Warrenton		
Rockbridge	Staunton		
Rockingham	Staunton		
Shenandoah	Warrenton		
Spotsylvania			
Stafford	Tappahannock Richmond		
	Warrenton		
Warren			
Westmoreland	Tappahannock		
York	Tappahannock		

an optimal total cost of \$ 195479.31.

SUMMARY OF STEPS TO ACHIEVE THE OPTIMIZED SOLUTION – PROJECT PHASE 1

Calculation of Costs

- Mileage and Salary Costs: Excel formulas were used to calculate the mileage cost for each store-to-regional-office route at \$0.585 per mile and salary costs based on travel time and an hourly rate of \$26. The formulas were:
 - o Mileage Cost: = Mileage * Mileage Rate
 - Salary Cost: = Travel Time (hrs) * Hourly Rate
 These were combined to determine the total transportation cost for each store-to-office assignment.
- **Total Cost Computation**: The total transportation cost was calculated by summing mileage and salary costs for each store-to-regional-office pairing:
 - Total Cost: = Mileage Cost + Salary Cost
 This data was then organized for optimization.

Initial Assignment Decision

• **Binary Decision Variables**: A column was added to Excel for binary decision variables (1 for assignment, 0 for no assignment). These variables were crucial for the optimization process, determining the store-to-office assignments.

Optimization with Excel Solver

- **Solver Setup**: Excel Solver was configured to minimize total transportation costs while ensuring each store was assigned to exactly one regional office and all resource constraints were met.
- **Objective Function**: The objective was to minimize the sum of total costs weighted by the binary decision variables:
 - Objective: Minimize SUM(Product of Total Costs and Decision Variables)
 Solver aimed to find the optimal store-to-office assignments with the lowest cost.
- **Constraints**: Constraints were applied to ensure:
 - Each store was assigned to one regional office (sum of binary variables = 1).
 - o Total service hours at each office did not exceed available hours.
- **Solver Execution**: Solver adjusted the decision variables to find the optimal assignments, minimizing costs while adhering to constraints.

Regional Office Allocation Comparison

- **Consistency**: Most counties maintained the same regional office assignment in both Part A and Part B (e.g., Staunton for Albemarle, Amherst, and Augusta). Some counties, like the City of Fredericksburg and Spotsylvania, had different assignments between the two parts.
- **Geographic Shifts**: Some counties shifted regional offices in Part B, with trends toward Richmond or Tappahannock (e.g., Fluvanna moves from Staunton to Richmond). These shifts suggest a reevaluation of proximity or other factors.
- Overall Trends: Richmond is the most frequently assigned regional office, followed by Staunton and Warrenton, with some variations in Part B, particularly for counties in the eastern and southern regions.