Funcții derivabile

Fie $f: D \to R$ o functie si $x_0 \in D \cap D'$; atunci urmatoarele afirmatii sunt echivalente:

1)
$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in R$$

2)
$$\forall (x_n)_n \subset D \setminus \{x_0\}$$
, $\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = f'(x_0)$

Daca $f'(x_0) \in R$ spunem ca functia f este derivabila in x_0 si $f'(x_0)$ este derivata sa in x_0 .

Daca functia $f: I \to R$ este derivabila in $x_0 \in I$, atunci f este continua in x_0 .

Derivate laterale

O functie $f:D\to R$ are derivate la stanga in x_0 , punct de acumulare al multimii $(-\infty,x_0)$ daca

exista
$$\lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} = f'_s(x_0) \in \overline{R}.$$

O functie $f: D \to R$ are derivate la dreapta in x_0 , punct de acumulare al multimii $(-\infty, x_0)$ daca

exista
$$\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} = f_d'(x_0) \in \overline{R} .$$

Fie $I \subset R$ un interval, o functie $f: I \to R$ si $x_0 \in I$ un punct interior allui I. Atunci f are derivata in x_0 daca si numai daca are derivate laterale egale in x_0 . In acest caz,

$$f'(x_0) = f'_s(x_0) = f'_d(x_0)$$
.

Operatii cu functii derivabile

Fie functiile $f,g:D\to R$ derivabile in $x_0\in D\cap D'$.

- Functia f + g este derivabila in x_0 si $(f + g)'(x_0) = f'(x_0) + g'(x_0)$.
- Functia $c \times f$ este derivabila in x_0 si $(c \times f)'(x_0) = c \times f'(x_0)$.
- Functia $f \times g : D \to R$ este derivabila in x_0 si $(f \times g)'(x_0) = f'(x_0) \times g(x_0) + f(x_0) \times g'(x_0)$.
- Daca $g(x_0) \neq 0$, functia $\frac{f}{g}$ este derivabila in x_0 si

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \times g(x_0) - f(x_0) \times g'(x_0)}{g^2(x_0)}.$$

• Se considera functiile $f: D \to R, g: E \to R, x_0 \in D \cap D', y_0 = f(x_0) \in E \cap E'$. Daca f este derivabila in x_0 si g este derivabila in y_0 atunci functia $g \circ f: D \to R$ este derivabila in x_0 si $(g \circ f)'(x_0) = g'(f(x_0)) \times f'(x_0)$.

Consecinte. Daca f si g sunt derivabile pe D si $c \in R$, atunci:

• f + g este derivabila pe D si (f + g)' = f' + g':

- $c \times f$ este derivabila pe D si $(c \times f)' = c \times f'$;
- $f \times g$ este derivabila pe D si $(f \times g)' = f' \times g + f \times g'$;
- Daca $g(x) \neq 0, \forall x \in D, \frac{f}{g}$ este derivabila pe D si $\left(\frac{f}{g}\right)' = \frac{f' \times g f \times g'}{g^2}$
- Daca $f: D \to E$ si $g: E \to R$ sunt derivabile ,atunci functia compusa $g \circ f: D \to R$ este derivabila si $(g \circ f)'(x) = g'(f(x)) \times f'(x), \forall x \in D$.