1

SEQUENCE LISTING

<110> Brunkow, Mary E. Jeffery, Eric W. Hjerrild, Kathryn A. Ramsdell, Fred

<120> IDENTIFICATION OF THE GENE CAUSING THE
MOUSE SCURFY PHENOTYPE AND ITS HUMAN ORTHOLOG

<130> 240083.501D4

<140> US 09/697,340

<141> 2000-10-24

<160> 14

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2160

<212> DNA

<213> Mus musculus

<400> 1

<4002	> 1					
gctgatcccc	ctctagcagt	ccacttcacc	aaggtgagcg	agtigtccctg	ctctccccca	60
ccagacacag	ctctgctggc	gaaagtggca	gagaggtatt	gagggtgggt	gtcaggagcc	120
caccagtaca	gctggaaaca	cccagccact	ccagctcccg	gcaacttctc	ctgactctgc	180
		acagtcacat				240
		gcccaaccct				300
		agtcttgcca				360
		tgggggaccc				420
cacacctctt	cttccttgaa	cccctgcca	ccatcccagc	tgcagctgcc	tacagtgccc	480
ctagtcatgg	tggcaccgtc	tggggcccga	ctaggtccct	caccccacct	acaggccctt	540
		catgcatcag				600
cctgtgctcc	aagtgcgtcc	actggacaac	ccagccatga	tcagcctccc	accaccttct	660
gctgccactg	gggtcttctc	cctcaaggcc	cggcctggcc	tgccacctgg	gatcaatgtg	720
		cagggagcca				780
		ccttttggct				840
		tggttgtgag				900
		tctcctggat				960
		ggagcagcag				1020
atgcaggccc	acctggctgg	gaagatggcg	ctggccaagg	ctccatctgt	ggcctcaatg	1080
		cgtagccacc				1140
tetgetecte	gggaggctcc	agacggcggc	ctgtttgcag	tgcggaggca	cctctgggga	1200
		cccagagttc				1260
		ctatgccacc				1320
		tgaaatctac				1380
agaaaccacc	ccgccacctg	gaagaatgcc	atccgccaca	acctgagcct	gcacaagtgc	1440
tttgtgcgag	tggagagcga	gaagggagca	gtgtggaccg	tagatgaatt	tgagtttcgc	1500
aagaagagga	gccaacgccc	caacaagtgc	tccaatccct	gcccttgacc	tcaaaaccaa	1560
gaaaaggtgg	gcgggggagg	gggccaaaac	catgagactg	aggctgtggg	ggcaaggagg	1620
		ggaaaccggg				1680

		•			•
tccctatcta gcto	ccctcc tac	gatcatat	catctgcct	t acagetga	iga ggggtgccaa
toccagoota good					
tcacaaccag ctat					
tcctaatatt tact	caaccc aaa	accctaaa	acatgaaga	ig cctgcctt	gg tacattcgtg
aactttcaaa gtta					
agcactcacc caca					
ccttacacag caad aactgatcat acgo	agcact gga	adcutca	CaattaCat	a otcadada	ice acacayyear
aactgatcat acg	ageece aag	gcaacgcc	Caaqacaca	ia geciagaec	ica geeegeeaga
<210> 2					
<211> 429	•		•		
<212> PR7			,		•
<213> Mus	musculus				
<400× 0					
<400> 2 Met Pro Asn Pro	λra Pro I	Ala I.ve I	Pro Met Al	a Pro Ser	Ten Ala Len
1	5 5	HIG Dys I	10	u iio boi	15
Gly Pro Ser Pro	Gly Val I			s Thr Ala	
20 Ser Glu Leu Leu	. Clu Thr 7	-	25 Sar Gly Gl	v Pro Phe	30 Gln Gly Arg
35	OLY THE P	40	der dry dr	45	O111 O17 1119
Asp Leu Arg Sei	Glv Ala H		Ser Ser Se	er Leu Asn	Pro Leu Pro
50		55	· '	60	
Pro Ser Gln Le	ı Gln Leu I	Pro Thr V	Val Pro Le	eu Val Met	
65	70		75		80
Ser Gly Ala Arc	y Leu Gly I 85	Pro Ser I	Pro His Le 90	eu GIn Ala	Leu Leu GIn 95
Asp Arg Pro His		His Gln I		r Val Asp	
100			105		110
Gln Thr Pro Val	Leu Gln V	Val Arg H	Pro Leu As	sp Asn Pro	Ala Met Ile
115		120		125	_
Ser Leu Pro Pro			Thr Gly Va		Leu Lys Ala
130 Arg Pro Gly Leu		135	Nan Val Ni	140	Clu Tro Val
145	150	gry rie r	ASII VAI AI		160
Ser Arg Glu Pro		Leu Cvs T		_	
	165		170		175
Arg Lys Asp Sen	Asn Leu I	Leu Ala A	Ala Pro Gl	n Gly Ser	Tyr Pro Leu
180			185		190
Leu Ala Asn Gly	y Val Cys I		Pro GLy Cy		.val Phe Glu
195 Glu Pro Glu Glu	ı Phe Leii I	200 Luc His (Cve Gln Al	205 a Asp His	Leu Leu Asn
210		215	Cys Gin Ai	220	nea nea mpp
Glu Lys Gly Lys			Leu Gln Ar		Val Gln Ser
225	. 230		. 23	35	240
Leu Glu Gln Glr		Leu Glu I		s Leu Gly	Ala Met Gln
na	245	i Mariti 1913 - T	250	· · · · · · · · · · · · · · · · · · ·	255
Ala_His <u>Le</u> u_Ala			Leu Ala Ly 265	s Ala Pro	Ser val Ala 270
260	,		200	m1 0	210

Ser Met Asp Lys Ser Ser Cys Cys Ile Val Ala Thr Ser Thr Gln Gly 275 280 285

Ser Val Leu Pro Ala Trp Ser Ala Pro Arg Glu Ala Pro Asp Gly Gly

Leu Phe Ala Val Arg Arg His Leu Trp Gly Ser His Gly Asn Ser Ser

Phe Pro Glu Phe Phe His Asn Met Asp Tyr Phe Lys Tyr His Asn Met

```
Arg Pro Pro Phe Thr Tyr Ala Thr Leu Ile Arg Trp Ala Ile Leu Glu
                                 345
                                                      350
Ala Pro Glu Arg Gln Arg Thr Leu Asn Glu Ile Tyr His Trp Phe Thr
                             3.60
                                                 365
Arg Met Phe Ala Tyr Phe Arg Asn His Pro Ala Thr Trp Lys Asn Ala
                         375
                                             380
Ile Arg His Asn Leu Ser Leu His Lys Cys Phe Val Arg Val Glu Ser
385
                    390
                                         395
                                                              400
Glu Lys Gly Ala Val Trp Thr Val Asp Glu Phe Glu Phe Arg Lys Lys
                                                          415
                405
                                     410
Arg Ser Gln Arg Pro Asn Lys Cys Ser Asn Pro Cys Pro
                                 425
```

<210> 3 <211> 1869 <212> DNA <213> Homo sapien

<213> NOMO Sapre

<400> 3 60 qcacacactc atcqaaaaaa atttqqatta ttagaagaga gaggtctgcg gcttccacac 120 cgtacagcgt ggtttttctt ctcggtataa aagcaaagtt gtttttgata cgtgacagtt toccacaago caggotgato cttttctgtc agtocacttc accaagoctg coettggaca 180 240 aggacccgat geccaaccc aggeetggca agecetegge ceetteettg gecettggee 300 catccccagg agcctcgccc agctggaggg ctgcacccaa agcctcagac ctgctggggg 360 cccqqqqccc aqqqqqaacc ttccaqqqcc qaqatcttcq aqqcqgqgcc catgcctcct 420 cttcttcctt gaaccccatg ccaccatcgc agctgcagct gcccacactg cccctagtca 480 tggtggcacc ctccggggca cggctgggcc ccttgcccca cttacaggca ctcctccagg 540 acaggecaca tttcatgcac cagetetcaa eggtggatge ecaegecegg acceetgtge tgcaggtgca ccccctggag agcccagcca tgatcagcct cacaccaccc accaccgcca 600 660 ctggggtctt ctccctcaag gcccggcctg gcctcccacc tgggatcaac gtggccagcc 720 tggaatggt gtccagggag ccggcactgc tctgcacctt cccaaatccc agtgcaccca 780 qqaaqqacaq caccettteq qetqtqcccc agagetecta eccaetgetg gcaaatggtg 840 tctgcaagtg gcccggatgt gagaaggtct tcgaagagcc agaggacttc ctcaagcact 900 gccaqqcqqa ccatcttctq qatqaqaaqq qcaqqqcaca atqtctcctc caqaqaqaqa tggtacagtc tctggagcag cagctggtgc tggagaagga gaagctgagt gccatgcagg 960 1020 cccacctggc tgggaaaatg gcactgacca aggcttcatc tgtggcatca tccgacaagg 1080 getectgetg categraget getggeagee aaggeeetgt egteecagee tggtetggee 1140 cccgggaggc ccctgacagc ctgtttgctg tccggaggca cctgtggggt agccatggaa 1200 acaqcacatt cccaqaqttc ctccacaaca tqqactactt caaqttccac aacatgcgac 1260 cccctttcac ctacqccacq ctcatccqct qqqccatcct qqaqqctcca gagaagcagc 1320 ggacactcaa tgagatctac cactggttca cacgcatgtt tgccttcttc agaaaccatc 1380 ctgccacctg gaagaacgcc atccgccaca acctgagtct gcacaagtgc tttgtgcggg tggagagcga gaagggggct gtgtggaccg tggatgagct ggagttccgc aagaaacgga 1440 1500 gccagaggcc cagcaggtgt tccaacccta cacctggccc ctgacctcaa gatcaaggaa aggaggatgg acgaacaggg gccaaactgg tgggaggcag aggtggtggg ggcagggatg 1560 1620 ataggeeetg gatgtgeeca cagggaecaa gaagtgaggt ttecaetgte ttgeetgeea __168.0 --- gggcccctgt teeccegetg geagecacce esteececat catateettt geeccaagge tgctcagagg ggccccggtc_ctggccccag cccccactc-cgccccagac acaccccca 1740 1800 gtcgagcct gcagccaaac agagccttca caaccagcca cacagagcct gcctcagctg 1860 ctcgcacaga ttacttcagg gctggaaaag tcacacagac acacaaaatg tcacaatcct 1869 gtccctcac

<210> 4 <211> 431 <212> PRT

<213> Homo sapien

<400> 4 Met Pro Asn Pro Arg Pro Gly Lys Pro Ser Ala Pro Ser Leu Ala Leu Gly Pro Ser Pro Gly Ala Ser Pro Ser Trp Arg Ala Ala Pro Lys Ala Ser Asp Leu Leu Gly Ala Arg Gly Pro Gly Gly Thr Phe Gln Gly Arg Asp Leu Arg Gly Gly Ala His Ala Ser Ser Ser Leu Asn Pro Met Pro Pro Ser Gln Leu Gln Leu Pro Thr Leu Pro Leu Val Met Val Ala 75 Pro Ser Gly Ala Arg Leu Gly Pro Leu Pro His Leu Gln Ala Leu Leu 90 Gln Asp Arg Pro His Phe Met His Gln Leu Ser Thr Val Asp Ala His 105 Ala Arg Thr Pro Val Leu Gln Val His Pro Leu Glu Ser Pro Ala Met 120 125 Ile Ser Leu Thr Pro Pro Thr Thr Ala Thr Gly Val Phe Ser Leu Lys 135 Ala Arg Pro Gly Leu Pro Pro Gly Ile Asn Val Ala Ser Leu Glu Trp 1.55 150 Val Ser Arg Glu Pro Ala Leu Leu Cys Thr Phe Pro Asn Pro Ser Ala 170 Pro Arg Lys Asp Ser Thr Leu Ser Ala Val Pro Gln Ser Ser Tyr Pro 185 Leu Leu Ala Asn Gly Val Cys Lys Trp Pro Gly Cys Glu Lys Val Phe 200 Glu Glu Pro Glu Asp Phe Leu Lys His Cys Gln Ala Asp His Leu Leu 215 Asp Glu Lys Gly Arg Ala Gln Cys Leu Leu Gln Arg Glu Met Val Gln 230 235 Ser Leu Glu Gln Gln Leu Val Leu Glu Lys Glu Lys Leu Ser Ala Met 250 Gln Ala His Leu Ala Gly Lys Met Ala Leu Thr Lys Ala Ser Ser Val 265 Ala Ser Ser Asp Lys Gly Ser Cys Cys Ile Val Ala Ala Gly Ser Gln 280 Gly Pro Val Val Pro Ala Trp Ser Gly Pro Arg Glu Ala Pro Asp Ser 2.95 300 Leu Phe Ala Val Arg Arg His Leu Trp Gly Ser His Gly Asn Ser Thr 315 310 Phe Pro Glu Phe Leu His Asn Met Asp Tyr Phe Lys Phe His Asn Met 330 Arg Pro Pro Phe Thr Tyr Ala Thr Leu Ile Arg Trp Ala Ile Leu Glu 345 Ala Pro Glu Lys Gln Arg Thr Leu Asn Glu Ile Tyr His Trp Phe Thr 360 Arg Met Phe Ala Phe Phe Arg-Asn His Pro Ala Thr Trp Lys Asn Ala 375 Ile Arg His Asn Leu Ser Leu His Lys Cys Phe Val Arg Val Glu Ser 390 395 Glu Lys Gly Ala Val Trp Thr Val Asp Glu Leu Glu Phe Arg Lys Lys 410 Arg Ser Gln Arg Pro Ser Arg Cys Ser Asn Pro Thr Pro Gly Pro

	<211>	23 .						
	<212>					•		
		Artificial	Sequence				ė	
	1210		0040000					
	<220>	•						
		- ·			ml-b	NT 70	•	
	<223>	Primer for	generation	or mouse	rkn cr	INA		
	<400>	5						
gcaga	tataa 1	tgactctgcc t	ttc					23
99-		- 9					•	
	<210>	6				,		
	<211>				-			
	<212>							
	<213>	Artificial	Sequence					
		•						
	<220>							
		Primer for	generation	of mouse	Fkh c	ANC		
	\2237	TITMET TOT	generation	OI MOUSE	1 /111 01	J		
	- 4 0 0 .						• •	
	<400>							
gcaga	tctga (caagctgtgt (ctg					23
		•			*			
	<210>	7						
	<211>					•	•	
	<212>		_					
	<213>	Artificial	Sequence					
						* * * * * * * * * * * * * * * * * * * *	•	
	<220>							*
	<223>	Primer for	generation	of human	Fkh cl	ONA	•	
			9					
	<400>	7				•	•	
			_			•		21
agcct	gccct .	tggacaagga (С					21
		•						
	<210>	8	•					
	<211>	21						
	<212>	DNA						
		Artificial	Seguence					
	\Z1J/	ALCITICIAL	bequence		•	•	• .	
	-000							
	<220>							
	<223>	Primer for	generation	of human	Fkh cl	ONA		
					-		•	
	<400>	8			*			
acaaa		ggaaacctca (C					21
gouug	acage	ggaaaccca	•					
	<210×							
	<210>							
	<211>			•				
	<212>	DNA	•				i	
	<213>	Artificial	Sequence					
	<220>				*		* .	
		Duiman fam	DOD amplif	iastian s	F movice	- Ekh aDNA	•	
	<223>	Primer for	PCK ampili	ication of	r mouse	E KII CDNA	•	
			•					
	<400>	9		-				
ctacc	cactg	ctggcaaatg			•			20
	-							
	<210>	10					•	
	<211>				•			
	<212>	DNA		•				

```
<213> Artificial Sequence
      <220>
      <223> Primer for PCR amplification of mouse Fkh cDNA
      <400> 10
                                                                          23
gaaggaacta ttgccatggc ttc
      <210> 11
      <211> 28
      <212> DNA
      <213> Artificial Sequence
      <223> Oligonucleotide for hybridization reaction
      <400> 11
                                                                           28
atgcagcaag agctcttgtc cattgagg
      <210> 12
      <211> 28
      <212> DNA
      <213> Artificial Sequence
      <223> Oligonucleotide for hybridization reaction
      <400> 12
                                                                           28
gcagcaagag ctcttttgtc cattgagg
      <210> 13
      <211> 18
      <212> DNA
      <213> Artificial Sequence
      <223> Primer for amplification of Fkh cDNA
      <220>
      <221> misc feature
      <222> 3
      \langle 223 \rangle n = T or C
      <220>
      <221> modified base
      <222> 6
      \langle 223 \rangle n = inosine
      <220>
      <221> misc_feature
      <222> 9
      <223> n = G or A
      <220>
      <221> misc_feature
      <222> 12
      <223> n = C or T
```

```
<220>
      <221> misc_feature
      <222> 15
      \langle 223 \rangle n = G or \langle A \rangle
      <400> 13
canggngant gnaantgg
      <210> 14
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer for amplification of Fkh cDNA
      <220>
      <221> misc_feature
      <222> 1
      <223> n = G or A
      <220>
      <221> misc_feature
      <222> 7
      <223> n = G or A
      <220>
      <221> misc_feature
      <222> 10
      <223> n = A or G
      <220>
      <221> misc_feature
      <222> 13
     <223> n = A, G or T
     <220>
     <221> misc_feature
     <222> 16
     \langle 223 \rangle n = C or T
```

<400> 14 naaccanttn tanatntcnt t

<222> 19

<221> misc_feature

<223> n = G or A

<220>

21

18