GSERM - Oslo 2019 Parametric Survival Models

January 10, 2019 (morning session)

A General Parametric Model

$$f(t) = \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t)}{\Delta t}$$

$$S(t) = \Pr(T \ge t)$$

$$= 1 - \int_0^t f(t) dt$$

$$= 1 - F(t)$$

$$h(t) = \frac{f(t)}{S(t)}$$

$$= \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Likelihood

if Ci is 0, then the left term contributes, otherwise Ci=1 then the right term contributes

$$L = \prod_{i=1}^{N} [f(T_i)]^{C_i} [S(T_i)]^{1-C_i}$$

$$\ln L = \sum_{i=1}^{N} \left\{ C_{i} \ln \left[f(T_{i}) \right] + (1 - C_{i}) \ln \left[S(T_{i}) \right] \right\}$$

$$\ln L|\mathbf{X}, \boldsymbol{\beta} = \sum_{i=1}^{N} \left\{ C_{i} \ln \left[f(T_{i}|\mathbf{X}, \boldsymbol{\beta}) \right] + (1 - C_{i}) \ln \left[S(T_{i}|\mathbf{X}, \boldsymbol{\beta}) \right] \right\}$$

The Exponential Model

$$h(t) = \lambda$$

simple naive model makes hazard a constant

$$H(t) = \int_0^t h(t) dt$$
$$= \lambda t$$

$$S(t) = \exp[-H(t)]$$
$$= \exp(-\lambda t)$$

$$f(t) = h(t)S(t)$$

= $\lambda \exp(-\lambda t)$

The Exponential Model, Illustrated

Covariates

non-negative due to exp h still flat.

$$\lambda_i = \exp(\mathbf{X}_i \beta).$$

$$S_i(t) = \exp(-e^{\mathbf{X}_i\beta}t).$$

related to drawing a zero count in Poisson

Exponential (log-)Likelihood

product of survivor and hazard

$$\ln L = \sum_{i=1}^{N} \left\{ C_i \ln \left[\exp(\mathbf{X}_i \beta) \exp(-e^{\mathbf{X}_i \beta} t) \right] + \left(1 - C_i \right) \ln \left[\exp(-e^{\mathbf{X}_i \beta} t) \right] \right\}$$

$$= \sum_{i=1}^{N} \left\{ C_i \left[(\mathbf{X}_i \beta) (-e^{\mathbf{X}_i \beta} t) \right] + (1 - C_i) (-e^{\mathbf{X}_i \beta} t) \right\}$$

"hazard rate form"

Exponential: "AFT"

(accelerated failure time model, alternative way to get exponential form)

$$\ln T_i = \mathbf{X}_i \gamma + \epsilon_i$$

these covariates do not change the hazard rate, but scale the duration to event (which is mathematically equivalent to changing the hazard)

=> it is the same model.

$$T_i = \exp(\mathbf{X}_i \gamma) \times u_i$$

$$\epsilon_i = \ln T_i - \mathbf{X}_i \gamma$$

Interpretation: Hazard Ratios

identical observations except for one predictor X_k

$$\mathsf{HR}_k = \frac{h(t)|\widehat{X_k} = 1}{h(t)|\widehat{X_k} = 0}$$

$$h_i(t) = \exp(\beta_0)\exp(\mathbf{X}_i\beta)$$

$$\begin{split} \mathsf{HR}_k &= \frac{h(t)\widehat{|X_k = 1}}{h(t)\widehat{|X_k = 0}} \\ &= \frac{\exp(\hat{\beta}_0 + X_1\hat{\beta}_1 + \ldots + \hat{\beta}_k(1) + \ldots)}{\exp(\hat{\beta}_0 + X_1\hat{\beta}_1 + \ldots + \hat{\beta}_k(0) + \ldots)} \\ &= \frac{\exp(\hat{\beta}_k \times 1)}{\exp(\hat{\beta}_k \times 0)} \end{aligned}$$

we can get a hazard ratio (relative risk) for a marginal change in exactly one parameter using the exponential of the predictor

More Generally

$$HR_k = \frac{\hat{h}(t)|X_k + \delta}{\hat{h}(t)|X_k}$$
$$= \exp(\delta \, \hat{\beta}_k)$$

instead of X_k + 1,we introduce delta unit change

$$\mathsf{HR}_{\underline{i}} = \frac{\mathsf{exp}(\mathbf{X}_i \hat{eta})}{\mathsf{exp}(\mathbf{X}_j \hat{eta})}$$

multivariate ratio (more than one predictor changes)

Example: King et al. (1990) Data

> summary(KABL)

```
id
                                      durat
                                                      ciep12
                    country
Min.
       : 1.00
                 Min. : 1.000
                                  Min. : 0.50
                                                  Min.
                                                         :0.0000
1st Qu.: 79.25
                 1st Qu.: 4.000
                                  1st Qu.: 6.00
                                                  1st Qu.:1.0000
Median :157.50
                 Median : 7.000
                                  Median :14.00
                                                  Median :1.0000
Mean
       :157.50
                 Mean
                        : 7.182
                                  Mean
                                         :18.44
                                                  Mean
                                                         :0.8631
3rd Qu.:235.75
                 3rd Qu.:10.000
                                  3rd Qu.:28.00
                                                  3rd Qu.:1.0000
Max.
       :314.00
                 Max.
                        :15.000
                                  Max.
                                         :59.00
                                                  Max.
                                                       :1.0000
   fract
                   polar
                                    format.
                                                    invest.
Min.
       :349.0
                Min.
                       : 0.00
                               Min.
                                       :1.000
                                                Min.
                                                       :0.0000
1st Qu.:677.0
                1st Qu.: 3.00
                               1st Qu.:1.000
                                                1st Qu.:0.0000
Median :719.0
                Median :14.50
                               Median :1.000
                                                Median :0.0000
Mean
       :718.8
               Mean
                       :15.29
                               Mean
                                       :1.904
                                              Mean
                                                       :0.4522
3rd Qu.:788.0
                3rd Qu.:25.00
                               3rd Qu.:2.000
                                                3rd Qu.:1.0000
Max.
       :868.0
                Max.
                       :43.00
                               Max.
                                       :8.000
                                                Max.
                                                       :1.0000
   numst2
                    eltime2
                                     caretk2
Min.
       :0.0000
                 Min.
                        :0.0000
                                  Min.
                                         :0.00000
1st Qu.:0.0000
                 1st Qu.:0.0000
                                  1st Qu.:0.00000
                                  Median :0.00000
Median :1.0000
                 Median :0.0000
       :0.6306
                        :0.4873
                                         :0.05414
Mean
                 Mean
                                  Mean
3rd Qu.:1.0000
                 3rd Qu.:1.0000
                                  3rd Qu.:0.00000
Max.
       :1.0000
                 Max.
                        :1.0000
                                  Max.
                                         :1.00000
```

Cabinet Durations: Kaplan-Meier

Exponential Model (AFT form)

```
> KABL.S<-Surv(KABL$durat.KABL$ciep12)</p>
> xvars<-c("fract","polar","format","invest","numst2","eltime2","caretk2")
> MODEL<-as.formula(paste(paste("KABL.S ~ ", paste(xvars,collapse="+"))))
> KABL.exp.AFT<-survreg(MODEL.data=KABL.dist="exponential")
> summary(KABL.exp.AFT)
Call:
survreg(formula = MODEL, data = KABL, dist = "exponential")
              Value Std. Error
(Intercept) 3.72460 0.630834 5.90 3.54e-09
fract
           -0.00116 0.000905 -1.29 1.98e-01
polar
          -0.01610 0.006097 -2.64 8.28e-03
                                                                it is an AFT model.
                                                                negative coefficient
format.
          -0.09097 0.045544 -2.00 4.58e-02
                                                                means decrease of
invest -0.36937 0.139398 -2.65 8.06e-03
                                                                duration to event
numst2 0.51464 0.129233 3.98 6.83e-05
eltime2 0.72316 0.134999 5.36 8.47e-08
           -1.30035 0.259566 -5.01 5.45e-07
caretk2
                         means it is an exponential model
Scale fixed at 1
Exponential distribution
Loglik(model) = -1025.6 Loglik(intercept only) = -1100.7
Chisq= 150.21 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
                                                        4 is nice and low number
n = 314
```

Exponential Model (hazard form)

just take the negatives to get hazard form.

- > KABL.exp.PH<-(-KABL.exp.AFT\$coefficients)
- > KABL.exp.PH

```
(Intercept) fract polar format invest -3.724598700 0.001163784 0.016098468 0.090965318 0.369367997
```

numst2 eltime2 caretk2 -0.514643548 -0.723161401 1.300349770

Exponential: Hazard Ratios

```
> KABL.exp.HRs<-exp(-KABL.exp.AFT$coefficients)
```

> KABL.exp.HRs

```
(Intercept) fract polar format invest numst2 0.02412278 1.00116446 1.01622875 1.09523102 1.44681993 0.59771361
```

eltime2 caretk2 0.48521587 3.67058030

Hazard Ratios: Interpretation

hazard can be increased by arbitrayr positive number

- On average, an investiture requirement *increases* the *hazard* of cabinet failure by $100 \times (1.447 1) = 44.7$ percent.
- On average, an investiture requirement *decreases* the predicted *survival* time by

$$100 \times [1 - \exp(-0.369)] = 100 \times (1 - 0.691)$$

= 30.1 percent.

survival time can only be decreased by at max. 100%

Comparing Predicted Survival

survival function predicted not empirical -- thus continuous, not discrete

Can use predict, or...

Comparing Predicted Survival

The Weibull Model, I

most basic model is constant h, next step, monotic increase/decrease model.

p=1 reverts to the basic exponential model

$$h(t) = \lambda p(\lambda t)^{p-1}$$

$$S(t) = \exp \left[-\int_0^t \lambda p(\lambda t)^{p-1} dt \right]$$
$$= \exp(-\lambda t)^p$$

$$f(t) = \lambda p(\lambda t)^{p-1} \times \exp(-\lambda t)^{p}$$

The Importance of p

- $p=1 o ext{exponential model}$
- p>1 o rising hazards
- 0 declining hazards

Weibull Hazards Illustrated

Weibull Survival

Covariates

covariate proportionally shift the hazard function

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

Weibull: AFT

error is not exponential, it is scaled

$$T_i = \exp(\mathbf{X}_i \gamma) \times \sigma u_i$$

Means:

$$p=1/\sigma$$

$$\beta = -\gamma/\sigma$$

Weibull Example (AFT)

```
> KABL.weib.AFT<-survreg(MODEL,data=KABL,dist="weibull")
> summary(KABL.weib.AFT)
Call:
survreg(formula = MODEL, data = KABL, dist = "weibull")
             Value Std. Error
                                         р
(Intercept) 3.69641 0.491590 7.52 5.51e-14
fract
           -0.00106 0.000705 -1.50 1.33e-01
          -0.01508 0.004677 -3.22 1.26e-03
polar
format
        -0.08675 0.035133 -2.47 1.35e-02
      -0.33019 0.106991 -3.09 2.03e-03
invest
numst2
      0.46352 0.100367 4.62 3.87e-06
eltime2 0.66381 0.104265 6.37 1.93e-10
caretk2
         -1.31758 0.201065 -6.55 5.64e-11
Log(scale) -0.26079 0.049971 -5.22 1.80e-07
```

Scale= 0.77 compared to previous slide, scale := sigma, if scale<1, then p>1 and the other way round.

```
Weibull distribution
Loglik(model) = -1013.5 Loglik(intercept only) = -1100.6
Chisq= 174.23 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n= 314
```

scale can be substantively interesting as well, e.g p=1 constant, or not constant hazard rate??

Weibull Example (hazard)

```
> KABL.weib.PH<-(-KABL.weib.AFT$coefficients)/(KABL.weib.AFT$scale)
> KABL.weib.PH

(Intercept) fract polar format invest
-4.797770943 0.001374065 0.019573990 0.112598478 0.428574214
```

caretk2

numst2

eltime2

-0.601628072 -0.861597589 1.710156135

Weibull Hazard Ratios

```
> KABL.weib.HRs<-exp(KABL.weib.PH)

> KABL.weib.HRs

(Intercept) fract polar format invest numst2
0.008248112 1.001375009 1.019766817 1.119182466 1.535067285 0.547918858
eltime2 caretk2
0.422486583 5.529824807
```

Interpretation:

• On average, an investiture requirement *increases* the *hazard* of cabinte failure by $100 \times (1.535 - 1) = 53.5$ percent. typical example for a paper.

Comparing Predicted Survival Curves

The Gompertz Model (hazard)

gamma = 0, constant gamma < 0, increase gamma > 0, decrease

$$h(t) = \exp(\lambda) \exp(\gamma t)$$

$$S(t) = \exp\left[-rac{e^{\lambda}}{\gamma}(e^{\gamma t}-1)
ight]$$

with

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

 γ is for "Gompertz"

- $\gamma = 0 \rightarrow {\sf constant\ hazard}$
- $\gamma > 0 \rightarrow \text{rising hazard}$
- $\gamma <$ 0 \rightarrow declining hazard

Gompertz Hazards

Gompertz Estimates

```
> library(flexsurv)
```

> KABL.Gomp

Call:

flexsurvreg(formula = MODEL, data = KABL, dist = "gompertz")

Estimates:

	data mean	est	L95%	U95%	exp(est)	L95%	U95%
shape	NA	0.02320	0.01150	0.03490	NA	NA	NA
rate	NA	0.01520	0.00407	0.05680	NA	NA	NA
fract	719.00000	0.00140	-0.00039	0.00319	1.00000	1.00000	1.00000
polar	15.30000	0.01890	0.00666	0.03120	1.02000	1.01000	1.03000
format	1.90000	0.10700	0.01590	0.19800	1.11000	1.02000	1.22000
invest	0.45200	0.41200	0.13700	0.68600	1.51000	1.15000	1.99000
numst2	0.63100	-0.60800	-0.86800	-0.34900	0.54400	0.42000	0.70500
eltime2	0.48700	-0.87300	-1.15000	-0.59400	0.41800	0.31600	0.55200
caretk2	0.05410	1.46000	0.94500	1.98000	4.32000	2.57000	7.24000

N = 314, Events: 271, Censored: 43 Total time at risk: 5789.5

Log-likelihood = -1018.317, df = 9

AIC = 2054.634

> KABL.Gomp<-flexsurvreg(MODEL,data=KABL,dist="gompertz")

The Log-Logistic Model

non-monotonic.

$$\ln(T_i) = \mathbf{X}_i \beta + \sigma \epsilon_i$$

$$S(t) = \frac{1}{1 + (\lambda t)^p}$$

$$h(t) = \frac{\lambda p(\lambda t)^{p-1}}{1 + (\lambda t)^p}$$

$$f(t) = \frac{\lambda p(\lambda t)^{p-1}}{1 + (\lambda t)^p} \times \frac{1}{1 + (\lambda t)^p}$$

$$= \frac{\lambda p(\lambda t)^{p-1}}{[1 + (\lambda t)^p]^2}$$

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

Log-Logistics Illustrated

Example: Log-Logistic

```
> KABL.loglog<-survreg(MODEL,data=KABL,dist="loglogistic")
> summary(KABL.loglog)
Call:
survreg(formula = MODEL, data = KABL, dist = "loglogistic")
               Value Std. Error
                                   z
                                           р
(Intercept) 3.333841
                       0.54735 6.09 1.12e-09
fract
           -0.000913 0.00079 -1.15 2.48e-01
polar
         -0.019092
                      0.00588 -3.24 1.18e-03
        -0.096975 0.04315 -2.25 2.46e-02
format
       -0.357403 0.12876 -2.78 5.51e-03
invest
numst2 0.479507 0.12104 3.96 7.45e-05
eltime2 0.627837 0.12405 5.06 4.16e-07
caretk2
         -1.252349
                      0.23151 -5.41 6.32e-08
Log(scale) -0.568276
                      0.05116 -11.11 1.14e-28
Scale = 0.567
Log logistic distribution
Loglik(model) = -1024 Loglik(intercept only) = -1099
Chisq= 150.05 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n = 314
```

you cannot turn it into a hazard model, because it is not proportional.

purely AFT model

Other Parametric Survival Models

- Log-Normal
- Rayleigh (Weibull w/p = 2)
- Logistic
- t
- Generalized Gamma

3 parameter model

lambda, baseline hazard p, shape) 3rd parameter, based on gamma distribution

(if 3rd parameter=1, you get a weibull model, which again can reduce to exponential model)

Software

R:

- survreg (in survival)
- rms package
- flexsurv package
- eha package
- SurvRegCensCov package (Weibull models)

Software

Notes on parametric models with time-varying covariate data:

- · Stata handles time-varying data with aplomb.
- · R does not.
 - · survreg (in the survival package) will not estimate models with time-varying data (it will not take a survival object of the form Surv(start, stop, censor)).
 - · psm (in the rms package) will also not accept time-varying data.
 - aftreg and phreg (part of the eha package) will accept time-varying data. phreg accepts survival objects of the form Surv(start,stop,censor). aftreg does as well, and notes in its documentation that "(1)f there are [sic] more than one spell per individual, it is essential to keep spells together by the id argument. This allows for time-varying covariates." In practice, this functions somewhat inconsistently.
- Recommendations: If you want to use R to fit parametric survival models with time-varying covariate data, stick with proportional hazards formulations, and use phreg. Also, Weibull models tend to be easier to fit than exponentials in this framework.