离散数学

命题逻辑 1.2 命题公式及分类

1.2 命题公式及分类

- ■命题变项与合式公式
- ■公式的赋值
- ■真值表
- ■命题的分类 重言式 更言式 矛盾式 可满足式
- 真值函数

命题变项与合式公式

- 命题常项(常值命题): 即是我们前面所说的命题。它是有 具体含义(真值)的。例如: "3是素数。"就是命题常项。
- 命题变项(命题变元): 真值不确定的陈述句。用单独一个 英文字母如P、Q等表示任何命题。称这些字母为命题变项。
- •对命题变项作指派(给命题变项一个解释):将一个命题常项赋予命题变元的过程,或者是直接赋给命题变元真值"T"或"F"的过程。
- 注意: 命题变项本身不是命题,只有给它一个解释,才变成命题。

合式公式

- 定义合式公式(命题公式,公式):
 - 1. 单个命题变元是个合式公式。
 - 2. 若A是合式公式,则(¬A)是合式公式。
 - 3. 若A和B是合式公式,则(A∧B), (A∨B), (A→B)和 (A→B)都是合式公式。
 - 4. 当且仅当有限次地应用(1),(2),(3)所得到的含有命题变元、联结词和括号的符号串是合式公式。
- •注意这个定义是递归的。1是递归的基础,由1开始,使用2、3规则,可以得到任意的合式公式。

合式公式--2

- 这里所谓的合式公式可以解释为合法的命题公式之意,在命题逻辑里又称之为命题公式,有时也简称公式。
- 下面的式子不是合式公式:
 - $P \wedge Q$, $P \rightarrow R$, $P \vee Q \wedge R$
- 下面的式子才是合式公式:(P∧Q), (¬P→R), ((P∨Q)∧R)
- •约定:为方便,最外层括号可以不写,上面的合式公式可以写成: $P \land Q$, $\neg P \rightarrow R$,($P \lor Q$) $\land R$

合式公式的层次

定义

- (1) 若公式A是单个的命题变项,则称A为0层公式.
- (2) 称A是n+1(n≥0)层公式是指下面情况之一:
 - (a) $A=\neg B$, B 是n 层公式;
 - (b) $A=B\land C$, 其中B,C分别为i层和j层公式,且 $n=\max(i,j)$;
 - (c) $A=B\lor C$, 其中B,C的层次及n同(b);
 - (d) $A=B\rightarrow C$, 其中B,C的层次及n同(b);
 - (e) $A=B\leftrightarrow C$, 其中B,C的层次及n同(b).

合式公式的层次 --2

例如 确定公式($(\neg p \land q) \rightarrow r) \leftrightarrow (\neg r \lor s)$ 的层次

\boldsymbol{p}	0层	
$\neg p$	1层	
$\neg p \wedge q$	2层	
$(\neg p \land q) \rightarrow r$	3层	
$((\neg p \land q) \rightarrow r) \leftrightarrow (\neg r \lor s)$	4层	

公式的赋值

- 定义 给公式A中的命题变项 p_1, p_2, \ldots, p_n 指定一组真值称为对A的一个赋值或解释
- 成真赋值: 使公式为真的赋值
- 成假赋值: 使公式为假的赋值
- 说明:
 - 赋值 $\alpha=\alpha_1\alpha_2...\alpha_n$ 之间不加标点符号, $\alpha_i=0$ 或1.
 - A 中仅出现 p_1 , p_2 , ..., p_n , 给A 赋值 $\alpha_1\alpha_2...\alpha_n$ 是指 $p_1=\alpha_1$, $p_2=\alpha_2$, ..., $p_n=\alpha_n$
 - A中仅出现 $p_1q, r, ...$,给A赋值 $\alpha_1\alpha_2\alpha_3...$ 是指 $p=\alpha_1, q=\alpha_2, r=\alpha_3...$
 - 含n个变项的公式有2n个赋值.

命题公式的真值表

• 一个命题公式不是复合命题,所以它没有真值,但是给其中的所有命题变元作指派以后它就有了真值。可以以表的形式反应它的真值情况

• 给出公式 $A = ((q \rightarrow p) \land q) \rightarrow p$ 的真值表

p q	$q \rightarrow p$	$(q \rightarrow p) \land q$	$((q \rightarrow p) \land q) \rightarrow p$
0 0	1	0	1
0 1	0	0	1
1 0	1	0	1
1 1	1	1	1

- 由于对每个命题变元可以有两个真值(T,F)被指派,所以有n个命题变元的命题公式元的命题公式A(P₁,P₂,...,P_n)的真值表有2ⁿ行。
- 为了有序地列出公式的 真值表,在对命题变元 做指派时,可以按照二 进制数的次序列表。

实例

例 $B = \neg (\neg p \lor q) \land q$ 的真值表

p	q	$\neg p$	$\neg p \lor q$	$\neg (\neg p \lor q)$	$\neg (\neg p \lor q) \land q$
0	0	1	1	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	1	0	1	0	0

例 $C=(p \lor q) \rightarrow \neg r$ 的真值表

p q r	$p \lor q$	¬r	$(p \lor q) \rightarrow \neg r$
0 0 0	0	1	1
0 0 1	0	0	1
0 1 0	1	1	1
0 1 1	1	0	0
1 0 0	1	1	1
1 0 1	1	0	0
1 1 0	1	1	1
1 1 1	1	0	0

公式的类型

- 定义 设A为一个命题公式
 - (1) 若A无成假赋值,则称A为重言式(也称永真式)
 - (2) 若A无成真赋值,则称A为矛盾式(也称永假式)
 - (3) 若A不是矛盾式,则称A为可满足式

注意: 重言式是可满足式,但反之不真. 上例中A为重言式,B为矛盾式,C为可满足式 $A=(q\rightarrow p)\land q\rightarrow p$, $B=\neg(\neg p\lor q)\land q$, $C=(p\lor q)\rightarrow \neg r$

重言式(永真式)与矛盾式(永假式)

• 例子:

P	$\neg P \lor P$	$\neg P \wedge P$
F	T	F
T	T	F

•可见不论P取什么真值¬PVP的真值总是为真,¬P^P的真值总是为假。故称¬PVP为重言式(永真式),称¬P^P为矛盾式(永假式)。

重言式(永真式)与矛盾式(永假式)--2

• 重言式的证明方法

方法1:列真值表。

方法2: 公式的等价变换, 化简成"T"。

方法3:用公式的主析取范式。

• 其中方法2 和方法3 我们在以后讨论。

重言式(永真式)与矛盾式(永假式)--2

• 列真值表。

例如,证明 $(P \land (P \rightarrow Q)) \rightarrow Q$ 为重言式。

P	Q	$P \rightarrow Q$	$P \wedge (P \rightarrow Q)$	$(P \land (P \rightarrow Q)) \rightarrow Q$
F	F	T	F	T
F	T	T	F	\mathbf{T}
T	F	F	F	T
T	T	Т	T	<u></u>

真值函数

- ·问题:含n个命题变项的所有公式共产生多少个互不相同的真值表?
- 定义 称定义域为 $\{00\cdots0, 00\cdots1, \cdots, 11\cdots1\}$,值域为 $\{0,1\}$ 的函数是n元真值函数,定义域中的元素是长为n的0,1串. 常用 $F: \{0,1\}^n \rightarrow \{0,1\}$ 表示F是n元真值函数.
- ·共有 2^{2^n} 个n元真值函数.
- 例如 $F: \{0,1\}^2 \rightarrow \{0,1\}$,且F(00) = F(01) = F(11) = 0 ,F(01) = 1 ,则 F为一个确定的2元真值函数.

命题公式与真值函数

- •对于任何一个含n个命题变项的命题公式A,都存在惟一的一个n元真值函数F为A的真值表.
- •等值的公式对应的真值函数相同.
- •下表给出所有2元真值函数对应的真值表,每一个含2个命题变项的公式的真值表都可以在下表中找到.
- 例如: $p \rightarrow q$, $\neg p \lor q$, $(\neg p \lor q) \lor (\neg (p \rightarrow q) \land q)$ 等都对应表中的 $F_{13}^{(2)}$

2元真值函数对应的真值表

p q	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$
0 0	0	0	0	0	0	0	0	0
0 1	0	0	0	0	1	1	1	1
0 1	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1
p q	$F_8^{(2)}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
p q 0 0	$F_8^{(2)}$ 1	$F_{9}^{(2)}$ 1	$F_{10}^{(2)}$ 1	$F_{11}^{(2)}$ 1		$F_{13}^{(2)}$		
					$F_{12}^{(2)}$		$F_{14}^{(2)}$	$F_{15}^{(2)}$
0 0	1	1	1	1	$F_{12}^{(2)}$ 1	1	$F_{14}^{(2)}$ 1	$F_{15}^{(2)}$ 1

作业

- P32
- 1.6(2)(4)

问题?

