UMA COMPARAÇÃO ENTRE O GRÁFICO DE CONTROLE 3-D PARA \overline{X} -RM E \overline{X} -S, NA PRESENÇA DE ALTERAÇÕES NA MÉDIA DO PROCESSO: UMA ABORDAGEM PRÁTICA

Ana Cíntia Brandão dos Santos

Orientador: Prof. Dr. João Welliandre Carneiro Alexandre

anacintiabs@alu.ufc.br

Departamento de Estatística e Matemática Aplicada

Curso: Matemática Industrial Universidade Federal do Ceará

25 de julho de 2022

Contextualização

- Técnicas de controle estatístico de processos (CEP) são fundamentais para o monitoramento da qualidade.
- Os gráficos de controle permitem avaliar a estabilidade do processo sendo a representação de resultados de amostras selecionadas periodicamente do processo.
- Gráficos de controle foram introduzidos na década de 20 por Walter Shewart, com grande desenvolvimento a partir da década de 70.
- Esse método baseia-se em processos produtivos com único fluxo de produção.
- Em processos paralelos, onde um mesmo produto é fabricado ao mesmo tempo em vários canais, a utilização do modelo de Shewhart torna-se burocrática.
- Uma alternativa, nesses casos, é a construção do gráfico de controle 3-D, que consiste na elaboração de três gráficos: X̄, Rm e S.

Uma questão a ser investigada é estudar o desempenho do gráfico de \overline{X} quando se utiliza a amplitude móvel ou o desvio padrão para a determinação dos limites de controle para o gráfico da média.

Objetivos

Objetivo Geral

O objetivo geral do trabalho visa determinar a eficiência relativa dos gráficos de controle \bar{X} -Rm e \bar{X} -S para o gráfico de controle 3-D napresença de alterações na média do processo.

Objetivos Específicos

- Apresentar uma aplicação do gráfico de controle 3-D, utilizando os gráficos para a média X̄-Rm e X̄-S;
- determinar a estrutura probabilística dos gráficos de controle 3-D;
- determinar o desempenho do gráfico de controle \bar{X} -Rm e \bar{X} -S, para o gráfico de controle 3-D, na presença de alterações na média do processo

Referencial Teórico

- Os Gráficos de Controle foram desenvolvidos inicialmente por Shewhart no ano de 1931, com a finalidade de eliminar as variações dentro dos processos produtivos, diferenciando-as entre causas aceitáveis, ou seja, presentes de forma constante, e as inaceitáveis, cuja a presença afeta diretamente a qualidade do produto final, que por sua vez deve ser corrigida e eliminada, Shewhart (1925).
- Um processo é dito sob controle se as causas de variação são devidas somente a causas aleatórias (aceitáveis).
- Teoria geral para gerar gráficos de controle (Shewhart): **Linha Central LC-** $\mu_{\bar{X}}$ Valor médio da característica da qualidade.

Limite Inferior de Controle LIC - $\mu_{\bar{X}} - L\sigma_{\bar{X}}$ Limite Superior de Controle LSC - $\mu_{\bar{X}} + L\sigma_{\bar{X}}$

Os limites de controle estimam a quantidade de variação natural do processo.

Referencial Teórico

Figura 1: Exemplo de um gráfico de controle de Shewhart.

Fonte: SEMBUGS (2022)

Referencial Teórico

- Geralmente não se conhece os valores de $\mu_{\overline{X}}$ e $\sigma_{\overline{X}}$, fazendo-se necessário então estimar os parâmetros. Tem-se que os estimadores para $\mu_{\overline{X}}$ e $\sigma_{\overline{X}}$, são dados por:
- $\hat{\mu}_{\bar{X}} = \overline{\overline{X}}$
- $\hat{\sigma}_{\bar{X}} = \frac{\bar{R}}{d_2 \sqrt{n}} = \frac{\bar{S}}{c_4 \sqrt{n}}$

Os valores dos fatores d_2 e c_4 encontram-se tabulados em Ramos (2000).

Processos Paralelos

- Principal característica deste tipo de processo é que um mesmo tipo de produto é fabricado simultaneamente em diferentes fluxos de produção, em que os fluxos são ajustados independentemente ou em que os fluxos são dependentes.
- cada vez mais comum nas indústrias manufatureiras. Alguns exemplos são: envase de bebidas, cosméticos e produtos farmacêuticos, fabricação de rolhas metálica, ALEXANDRE et al. (2009).
- Segundo Alexandre et al (2009) há necessidade de se controlar dois tipos de variação: longitudinal e transversal

Gráficos de Controle 3-D

- Uma combinação dos gráficos X-Rm, possibilitando o controle de mais de dois tipos de variação simultaneamente.
- Gráfico R, n < 10: $LSC_R = D_A \bar{R}$ $LIC_R = D_A \bar{R}$
- Gráfico S, n > 10:

$$LSC = B_4\bar{S}$$
 $LIC = B_3\bar{S}$

para n > 25,

$$B_3 = 1 - \frac{3}{c_4 \sqrt{2(n-1)}}$$

$$B_4 = 1 + \frac{3}{c_4 \sqrt{2(n-1)}}$$

em que o valor de c4 para grandes valores de n é dado pela fórmula:

$$C_4 \simeq \tfrac{4(n-1)}{4n-3}$$

Gráfico Rm:

$$LSC = D_4 \bar{R}m$$
 $LIC = D_3 \bar{R}m$

Introdução

Gráficos de Controle 3-D

Os gráficos Rm e S, em estudo neste trabalho, formarão a base para estabelecer a distância dos limites de controle à linha média, no gráfico \bar{X} . Logo:

$$LSC = \bar{\bar{X}} + \frac{3\bar{R}m}{d_2} \qquad LIC = \bar{\bar{X}} - \frac{3\bar{R}m}{d_2}$$

e,

$$LSC = \bar{\bar{X}} + rac{3\bar{S}}{c_4\sqrt{n}}$$
 $LIC = \bar{\bar{X}} - rac{3\bar{S}}{c_4\sqrt{n}}.$

Os valores de d_2 , D_3 e D_4 estão em função de n e tabelados , podendo ser encontrado em Montgomery (2000).

Estrutura probabilística para determinar o NMA do gráfico 3-D

- O NMA (Número Médio de Amostras) é uma medida estatística muito utilizada para avaliar o desempenho de um gráfico de controle. Sua definição é dada como o número de amostras, ou inspeções, analisadas até quando houver a indicação do processo estar fora de controle.
- A distribuição Geométrica, como pode ser vista em Morettin e Bussab (2010) é definida como X sendo a variável aleatória que contabiliza o número de ensaios até a ocorrência do primeiro evento.

$$Z \sim G(p)$$

e tem a seguinte distribuição de probabilidade

$$p(Z = z) = p(1 - p)^{z-1} I_{\{1,2,\ldots\}}(z)$$

com média e variância dadas por, respectivamente:

$$E(Z) = \frac{1}{p}, \qquad V(Z) = \frac{1-p}{p^2}$$

■
$$NMA_1 = \frac{1}{P_1}$$

Descrição dos dados

- Será abordado uma aplicação do modelo de gráfico 3-D, utilizando dois gráficos para a média X̄-Rm e X̄-S em que será utilizada a base de dados de uma indústria de transformação cearense, disponibilizada pelo professor orientador. A análise dos dados e os gráficos foram construídos utilizando o software livre R (R Core Team, 2022).
- Foi selecionada consecutivamente a cada duas horas, uma batida do processo e medidas as alturas das 27 rolhas originadas das 27 punções. Como para cada batida n = 27 (n > 10) foi determinado o desvio padrão de cada subgrupo para medir a variabilidade transversal. A amplitude média foi calculada a partir da média de cada subgrupo.
- Segundo Alexandre et al. (2009), a empresa especificou no projeto um intervalo de 5,85 a 6,15 milímetros para a altura das rolhas, alturas fora dessa especificação acarretam em problemas de encaixe nas garrafas.

Resultados

Figura 2: Matriz de dados para os cálculos dos limites de controle

Amostras	Menor Valor	Maior Valor	Média	Amplitude Móvel	Desvio Padrão
1	6,00	6,07	6,038	0,009	0,018
2	5,99	6,05	6,029	0,025	0,016
3	5,98	6,03	6,004	0,009	0,014
4	5,98	6,05	6,012	0	0,019
5	5,98	6,04	6,012	0,004	0,014
6	5,99	6,04	6,017	0,004	0,015
7	5,97	6,05	6,013	0,016	0,018
8	5,98	6,03	5,997	0,039	0,017
9	6,00	6,06	6,036	0,044	0,016
10	5,96	6,05	5,991	0,015	0,020
11	5,94	6,01	5,976	0,025	0,023
12	5,98	6,03	6,001	0,010	0,013
13	5,96	6,01	5,991	0,011	0,013
14	5,98	6,04	6,002	0,009	0,016
15	5,97	6,03	5,993	0,007	0,018
16	5,97	6,02	6,000	0,006	0,016
17	5,98	6,05	6,006	0	0,018
18	5,98	6,04	6,006	0,005	0,016
19	5,98	6,05	6,011	0,006	0,015
20	5.99	6,04	6,017	0,011	0,016
21	5.99	6,05	6,028	_	0.017

Fonte: Dados fornecidos pelo Orientador.

Figura 3: Exemplo de Rolha metálica

Fonte: ARO (2022)

Cálculo dos limites de controle:

Tabela 1: Valores para a linha central e limite superior e inferior Gráfico Limite Inferior Limite Central Limite Superior Média X-RM 5,9748 6,0086 6,0423 Média \bar{X} -S 6,0086 6,0182 5,9989 Amplitude 0,0127 0,0414 Desvio padrão 0,0096 0,0166 0,0235

Fonte: Dados fornecidos pelo Orientador

Gráfico para média

Figura 4: Gráfico de Controle 3-D para a Média utilizando \bar{X} -Rm

Gráfico para média

Figura 5: Gráfico de Controle 3-D para a Média utilizando \bar{X} -S

Aplicação e Resultados Aplicação e Resultados

Resultados

Figura 6: Gráfico de Controle 3-D para a Amplitude Móvel

Gráfico para S

Figura 7: Gráfico de Controle 3-D para o Desvio-padrão.

Gráfico para S

Figura 8: Gráfico de Controle 3-D para o Desvio-padrão

DESEMPENHO DO GRÁFICO DE CONTROLE NA PRESENÇA DE ALTERAÇÕES

Será considerado, sob ponto de vista teórico, que os dados seguem distribuição Normal com média μ e variância σ . Seja μ_1 a nova média do processo após a ocorrência de alguma alteração ou perturbação, ou seja

$$\bar{X}_i \sim \left\{ \begin{array}{l} N(\mu; \sigma_{\bar{X}}^2), \ i = 1, 2, 3, ..., I \\ N(\mu + \delta \sigma; \sigma_{\bar{X}}^2), \ i = I + 1, I + 2, I + 3, ... \end{array} \right.$$

com

 $\mu = \text{m\'edia do processo};$

 $\sigma =$ desvio padrão do processo;

 $\delta = \text{medida de perturbação e sendo } \delta \neq 0;$

 $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$

Alterações na média

Portanto, $\mu_1 = \mu + \delta \sigma$ e representa alteração na média do processo. Será analisado o desempenho quando há alteração na média do processo, monitorado no gráfico \bar{X} -Rm e no gráfico \bar{X} -S. Para cada análise será calculada a probabilidade de detecção da falha e o número de falhas até a ocorrência da primeira detecção NMA₂.

Ademais neste trabalho o NMA2 será utilizado da seguinte forma:

- NMA₂₁: número médio de amostras até a detecção da primeira falha no processo quando há alteração na média para X̄-Rm;
- NMA₂₂: número médio de amostras até a detecção da primeira falha no processo quando há alteração na média para \bar{X} -S;

Alterações na média

A demonstração da probabilidade de detecção da perturbação para a média do processo é dada por

$$\begin{array}{l} \theta = P(\text{deteccao}) \\ = P[\bar{X} \in (\text{LIC}, LSC) \mid \mu_1] \\ = 1 - \{P[(\text{LIC}_{\bar{X}} < \bar{X} < LSC_{\bar{X}}) \mid \mu_1]\} \\ = 1 - \{P[((\mu_{\bar{X}} - 3\sigma_{\bar{X}}) - \mu_1)/\sigma_{\bar{X}} < Z < ((\mu_{\bar{X}} - 3\sigma_{\bar{X}}) + \mu_1)/\sigma_{\bar{X}} \mid \mu_1]\} \\ = 1 - \{P[(\mu_{\bar{X}} - 3\sigma_{\bar{X}} - (\mu + \delta\sigma))/\sigma_{\bar{X}} < Z < (\mu_{\bar{X}} + 3\sigma_{\bar{X}} - (\mu + \delta\sigma))/\sigma_{\bar{X}})]\} \\ = 1 - \{P[(-3\frac{\sigma}{\sqrt{n}} - \delta\sigma/\frac{\sigma}{\sqrt{n}}) < Z < (3\frac{\sigma}{\sqrt{n}} - \delta\sigma/\frac{\sigma}{\sqrt{n}})]\} \\ = 1 - \{P[-3 - \delta\sqrt{n} < Z < 3 - \delta\sqrt{n}]\} \\ = 1 - [F(3 - \delta\sqrt{n}) - F(-3 - \delta\sqrt{n})] \end{array}$$

Gráfico \bar{X} -Rm

Para encontrar a probabilidade de detecção e o número médio de amostras necessárias até se detectar alterações na média do processo, foram realizados testes estatísticos para alguns valores de δ variando em 0,25 até 3.

Tabela 2: Desempenho do gráfico \bar{X} -Rm com alteração na média do processo

δ	prob. detecção	NMA ₂₁
0,25	próx. de zero	Inf
0,50	9,992007e-16	1.0008e+15
0,75	1,736244e-11	57.595.575
1,00	5,406571e-08	18.496.010
1,25	3,167124e-05	31.574,39
1,50	0,003599455	277,8198
1,75	0,08456572	11,82512
2,00	0,4750823	2,104898
2,25	0,8943502	1,11813
2,50	0,9948039	1,005223
2,75	0,9999467	1,000053
3,00	0,9999999	1 2

Gráfico para \bar{X} -Rm

Figura 9: Prob. de detecção para \bar{X} -Rm

Gráfico para \bar{X} -Rm

Figura 10: NMA₂₁ para o gráfico \bar{X} -Rm

Gráfico \bar{X} -S

O mesmo processo foi realizado para a obtenção do desempenho do gráfico de controle 3-D utilizando \bar{X} -.S

Tabela 3: Desempenho do gráfico \bar{X} -S com alteração na média.

δ	prob. detecção	NMA ₂₂
0,25	0,04486727	22,28796
0,50	0,3503503	2,854286
0,75	0,8233286	1,214582
1,00	0,9874748	1,012684
1,25	0,9999994	1,00019
1,50	1	1,000001
1,75	1	1,000001
2,00	1	//\ ! /</td
2,25	1	41
2,50	1	17
2,75	1	1 1
3,00	1	1

ão Aplicação e Resultados Aplicação e Resulta

Gráfico \bar{X} -S

Figura 11: Prob. de detecção para \bar{X} -S

odução Aplicação e Resultados Aplicação e Res

Gráfico \bar{X} -S

Figura 12: NMA₂₂ para o gráfico \bar{X} -S

Eficiência Relativa

O estudo da eficiência relativa do gráfico 3-D para X̄-Rm com relação ao gráfico X̄-S quanto à detecção de alteração na média. O princípio básico para realizar esta análise é garantir que ambos os gráficos possuam a mesma taxa de alarme falso.

$$ER = rac{\textit{NMA}_{ar{X}-\textit{Rm}}}{\textit{NMA}_{ar{X}-\textit{S}}}$$

Se ER < 1 o gráfico \bar{X} -S tem melhor desempenho que o gráfico \bar{X} -Rm na detecção no processo para ER > 1 o gráfico \bar{X} -Rm é melhor e para ER = 1 os modelos são equivalentes em termos de desempenho.

Aplicação e Resultados Aplicação e Resultados

Eficiência Relativa

Tabela 4: Valores da ER com base no NMA.						
δ	NMA ₂₁	NMA ₂₂	ER			
0,25	Inf	22,2880	0,0000			
0,50	1.0008e+15	2,8543	próx. de zero			
0,75	57.595.575	1,2146	próx. de zero			
1,0	18.496.010	1,0127	próx. de zero			
1,25	31.574,39	1,0002	próx. de zero			
1,5	277,8198	1,0000	0,0036			
1,75	11,8251	1,0000	0,0846			
2,0	2,1049	1,0000	0,4751			
2,25	1,1181	1,0000	0,8944			
2,5	1,0052	1,0000	0,9948			
2,75	1,0001	1,0000	0,9999			
3,0	1,0000	1,0000	1,0000			

Eficiência Relativa

Figura 13: Eficiência relativa com alteração (Delta) na média

Considerações Finais

- Em geral, através dos resultados obtidos os dois gráficos para a média mostraram-se eficientes em analisar processos paralelos e detectar quando ocorre alarme falso.
- Através da análise da eficiência relativa demonstrou-se que para pequenas pertubações na média do processo o gráfico X-S necessita de um número menor de amotras até a detecção de alteração e, para perturbações acima de dois desvios a detecção ocorre de maneira efetiva chegando a probabilidade de 1 quando se tem alteração de 3 desvios padrão na média do processo, para ambos os gráficos.
- Como trabalhos futuros: investigar se as causam que levaram os pontos fora dos limites de controle estão relacionados a existência de autocorrelação dentro e entre as batidas de cada fluxo produtivo é de extrema relevância.

Referências I

- [1] SHEWHART, W. A. The application of statistics as an aid in maintaining quality of a manufactured product. [S.I.]: Journal of the American Statistical Association 1925. v. 20
- [2] SEMBUGS. Ferramentas da Qualidade: Grafico Controle. 2022. Urlhttp://sembugs.blogspot.com/2009/05/ferramenta-qualidade-grafico-controle.html
- [3] ARO. rolhas-metalicas. 2022. < https://www.aro.com.br/rolhas-metalicas>. Acesso em: 22, Abril de 2022
- [4] RAMOS, A. W. CEP para processos contínuos e em bateladas. [S.l.]: Editora Edgard blucher, 2000. v. 1.
- [5] ALEXANDRE, J. W. C.; ; FREITAS, S. M. d.; NETO, J. F. B. Gráficos de controle 3d aplicados a processos paralelos em uma indústria manufatureira do estado do ceará. In: XXIX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO. Salvador, Brasil: [s.n.], 2009. p. 1–13.

Referências II

- [6] MONTGOMERY, D. C. Introdução Ao Controle Estatístico Da Qualidade. [S.I.]: Grupo Gen-LTC, 2000.
- [7] MORETTIN, P. A.; BUSSAB, W. O. Estatística básica. [S.I.]: Saraiva Educação SA, 2017

Obrigada pela Atenção!

Contato:

anacintiabs@alu.ufc.br

