Statistics

Week 6: Inference for Two Samples (Chapter 8)

ESD, SUTD

Term 5, 2017

Established in collaboration with MIT

Information

Monday: comparing two variances; summary.

Tuesday: revision exercises. Combined slides will be available.

Homework 2 will be available.

- Show all working.
- Due 1pm, Tuesday 14 March. Submit a single file on eDimension.
- Take a look before the exam (and use it as practice).

Thursday: recitation (two samples) + project recitation.

Outline

Comparing two variances

2 Summary

Independent samples design, small sample size

Suppose x_1, x_2, \ldots, x_n come from an $N(\mu_1, \sigma^2)$ distribution, and y_1, y_2, \ldots, y_n come from an $N(\mu_2, \sigma^2)$ distribution; n is not necessarily large.

Note: we are assuming that the variances are the same.

Then the $(1-\alpha)$ two-sided confidence interval for $\mu_1 - \mu_2$ is:

$$\bar{x} - \bar{y} - t_{2n-2, 1-\alpha/2} \sqrt{\frac{s_1^2 + s_2^2}{n}} \le \mu_1 - \mu_2 \le \bar{x} - \bar{y} + t_{2n-2, 1-\alpha/2} \sqrt{\frac{s_1^2 + s_2^2}{n}}.$$

General rule for calculating the *degree of freedom*: total number of data points minus the number of contraints.

Comparing variances

Therefore it is useful to test whether two populations have the same variance.

Set up: assume that $x_1, x_2, \ldots, x_{n_1}$ come from an $N(\mu_1, \sigma_1^2)$ distribution, and $y_1, y_2, \ldots, y_{n_2}$ come from an $N(\mu_2, \sigma_2^2)$ distribution.

To test whether the variances are the same, we use the ratio σ_1^2/σ_2^2 , which is estimated using s_1^2/s_2^2 .

Terminology: when not all the random variables in a collection have the same variance, they are called *heteroscedastic*.

Snedecor's F distribution

Define the random variable

$$F_{u,v} = \frac{\chi_u^2/u}{\chi_v^2/v}.$$

This random variable has an F distribution with degrees of freedom u and v.

Its probability density function is

$$F_{u,v}(x) = \frac{\Gamma((u+v)/2)}{\Gamma(u/2)\Gamma(v/2)} \left(\frac{u}{v}\right)^{u/2} x^{u/2-1} \left(1 + \frac{u}{v}x\right)^{-(u+v)/2}.$$

Comparing variances – Cl

Recall that $\frac{(n_i-1)s_i^2}{\sigma_i^2}$ is a $\chi_{n_i-1}^2$ random variable.

Therefore $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is an $F_{n_1-1,\,n_2-1}$ random variable.

It follows that

$$P\left(f_{n_1-1, n_2-1, \alpha/2} \le \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \le f_{n_1-1, n_2-1, 1-\alpha/2}\right) = 1 - \alpha,$$

where $f_{n_1-1, n_2-1, x}$ is a critical point, given by F.INV(x, n_1-1 , n_2-1) in *Excel*.

Hence, a two-sided $(1-\alpha)$ CI for σ_1^2/σ_2^2 is

$$\left[\frac{1}{f_{n_1-1,\,n_2-1,\,1-\alpha/2}}\frac{s_1^2}{s_2^2},\;\frac{1}{f_{n_1-1,\,n_2-1,\,\alpha/2}}\frac{s_1^2}{s_2^2}\right].$$

Comparing variances - example

Suppose
$$s_1 = 1.1$$
, $s_2 = 0.9$, and $n_1 = n_2 = 50$.

How do we test $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_1: \sigma_1^2 \neq \sigma_2^2$, using $\alpha = 0.05$?

Outline

Comparing two variances

2 Summary

Non-comprehensive summary of what we covered

- Experiments and surveys: sensitive questions, sampling methods, placebo effect, control group, randomized block design, Latin square, Simpson's paradox.
 - Excel: Data Analysis \rightarrow Random Number Generation; Sampling (systematic; with replacement).
- Summary statistics: mean, median, standard deviation, IQR, outlier, covariance.
 - Excel: Data Analysis \rightarrow Descriptive Statistics.
- Graphical methods: bar chart, histogram, box plot, Q-Q plot, time series, EWMA.
 - Excel histogram: Data Analysis \rightarrow Histogram. EWMA: Exponential Smoothing (Damping factor = 1α).
- Unbiased estimators: s^2 , German tank problem.

• Distributions: normal, CLT, χ^2 , Student t, F.

Excel: norm.s.inv, norm.s.dist, etc.

- Confidence intervals, single sample: for mean with known and unknown σ ; for variance; one and two sided.
- Confidence intervals, two samples: for mean (independent samples, matched pair); for variance.

Excel: Data Analysis $\to z ext{-Test}$: Two Sample for Means, $t ext{-Test}$: Paired Two Sample for Means

• Hypothesis testing: H_0 vs H_1 ; reject/do not reject H_0 ; one and two sided; for μ and σ ; connection with CI; p-value; α and β ; power and sample size calculation.

After the break

- Hypothesis testing involving proportions.
- Chi-squared test: how to show quantitatively if your data fits a certain distribution?
- Regression (trend lines): linear, multiple, logistic.
- ANOVA: when there are more than two treatments, how can we know if one is significantly better than the others?
- Non-parametric tests: bootstrap, permutation test, sign test.
- Test for randomness: how can you tell if some data (e. g. sequence of coin tosses) is made up?
- Maximum likelihood.