Rappels CRYPTA

Ludovic Perret

Sorbonne Universités, UPMC Univ Paris 06, INRIA Paris LIP6, Polsys Project, Paris, France

2017 - 2018

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

RC4 [R. Rivest, 1987]

 Génération d'une suite chiffrante à partir d'un tableau S de 256 octets et d'une clef K.

Phase d'initialisation (RC4-KSA)

- Pour i, $0 \le i \le 255$ faire S[i] := i FinPour
- j := 0
- Pour $i, 0 \le i \le 255$ faire $j := (j + S[i] + K[i \mod len(K)]) \mod 2^8$ Échanger(S[i], S[j])
- FinPour

RC4 [R. Rivest, 1987]

Génération de la suite chiffrante (RC4-PRGA)

- i := 0 j := 0
- Pour k, 0 < k < no 1 faire

```
i := (i+1) \mod 2^8 j := (j+S[i]) \mod 2^8
Échanger(S[i], S[j])
```

$$t := (S[i] + S[j]) \bmod 2^8$$

- SuiteChiffrante[k] := S[t]
- FinPour
- Return SuiteChiffrante

Mode CTR

Source: https://fr.wikipedia.org/

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

Proposition

Soient $H: X \to Y, x_1, \dots, x_k$ des éléments distincts de X tirés aléatoirement, et $y_i = H(x_i)$, pour tout $i, 1 \le i \le k$.

$$Pr(\exists \text{ collision}) \approx 1 - e^{-\frac{k(k-1)}{2N}}, \text{ avec } N = |Y|.$$

Démonstration.

• On suppose que les y_i sont des éléments aléatoires de Y.

Démonstration.

- On suppose que les y_i sont des éléments aléatoires de Y.
- Nous avons N = |Y|. La probabilité que $y_{i+1} \notin \{y_1, \dots, y_i\}$ est $p_{i+1} = (1 i/N)$.

Démonstration.

- On suppose que les y_i sont des éléments aléatoires de Y.
- Nous avons N = |Y|. La probabilité que $y_{i+1} \notin \{y_1, \dots, y_i\}$ est $p_{i+1} = (1 i/N)$.
- La probabilité que les y₁,..., y_k tirés dans cet ordre soient distincts est

$$P = \prod_{i=0}^{k-1} p_{i+1} = \prod_{i=0}^{k-1} (1 - i/N).$$

Démonstration.

- On suppose que les y_i sont des éléments aléatoires de Y.
- Nous avons N = |Y|. La probabilité que $y_{i+1} \notin \{y_1, \dots, y_i\}$ est $p_{i+1} = (1 i/N)$.
- La probabilité que les y₁,..., y_k tirés dans cet ordre soient distincts est

$$P = \prod_{i=0}^{k-1} p_{i+1} = \prod_{i=0}^{k-1} (1 - i/N).$$

La probabilité de non-collision est donc P.

Démonstration.

- On suppose que les y_i sont des éléments aléatoires de Y.
- Nous avons N = |Y|. La probabilité que $y_{i+1} \notin \{y_1, \dots, y_i\}$ est $p_{i+1} = (1 i/N)$.
- La probabilité que les y₁,..., y_k tirés dans cet ordre soient distincts est

$$P = \prod_{i=0}^{k-1} p_{i+1} = \prod_{i=0}^{k-1} (1 - i/N).$$

- La probabilité de non-collision est donc P.
- En approchant 1 x par e^{-x} pour x proche de 0, on obtient : $P \simeq \prod_{i=0}^{k-1} e^{-\frac{i}{N}} = e^{-\frac{k(k-1)}{2N}}$.

Collision

Proposition

Soit $H: X \to Y$ une fonction de hachage, avec $|X| \ge |Y|$ et |Y| = N. Pour trouver une collision avec probabilité $\ge 1/2$, il "suffit" de hacher :

$$\mathcal{O}(\sqrt{N})$$
 éléments de X .

Autrement dit ...

Pour avoir une probabilité $\geq 1/2$ de trouver une collision, il suffit de hacher un peu plus de \sqrt{N} éléments de X.

Preuve

Démonstration.

Notons $\epsilon = 1 - P$, la probabilité d'avoir au moins une collision. Exprimons k en fonction de ϵ et N:

$$\epsilon \simeq 1 - e^{-\frac{k(k-1)}{2N}} \Rightarrow -\frac{k(k-1)}{2N} \simeq \ln(1-\epsilon).$$

Ainsi, $k^2 - k \simeq 2N \ln(\frac{1}{1-\epsilon})$. En ignorant le terme -k, on obtient :

$$k \simeq \sqrt{2N \ln \left(\frac{1}{1-\epsilon}\right)}.$$

Pour $\epsilon = 1/2$, on trouve $k \simeq 1.18 \cdot \sqrt{N}$.

Illustration

- Supposons que X est un ensemble d'individus
- Y l'ensemble des 365 jours d'une année non bissextile
- H(x), le jour de l'anniversaire d'une personne de X (on suppose que X comporte plus de 365 personnes)
- On obtient $k \simeq 1.18 \cdot \sqrt{365} \simeq 1.18 \cdot 19.10 \simeq 22.5$

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

Fonction de compression

Problème

Comment gérer une donnée de taille variable?

Définition

fonction de compression : fonction qui transforme toute chaîne d'une taille fixée r + n en une chaîne de taille n.

$$f: \{0,1\}^{r+n} \mapsto \{0,1\}^n.$$

Construction de Merle-Damgård – (I)

La chaîne x (de longueur arbitraire) à hacher subit un prétraitement (padding) qui la transforme en t blocs de r bits x_1, \ldots, x_t .

- IV $\in \{0,1\}^n$ une valeur initiale (ou vecteur d'initialisation),
- $f: \{0,1\}^r \times \{0,1\}^n \mapsto \{0,1\}^n$ une fonction de compression.

On calcule:

$$H_0 = IV, H_i = f(H_{i-1}, x_i), 1 \le i \le t.$$

Merkle-Damgård

Source: https://fr.wikipedia.org/

Remarque

Fonction de hachage ← Fonction de compression

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

Davies-Meyer - (I)

Soit $E : \mathbb{F}_2^k \times \mathbb{F}_2^n \to \mathbb{F}_2^n$ un chiffrement par bloc.

• On découpe la donnée x à hacher en t blocs x_1, \ldots, x_t de taille n.

$$H_0 = IV, \ H_i = E(m_i, H_{i-1}) \oplus H_{i-1}, \ 1 \le i \le t.$$

Le haché est H_t .

Davies-Meyer – (I)

Soit $E : \mathbb{F}_2^k \times \mathbb{F}_2^n \to \mathbb{F}_2^n$ un chiffrement par bloc.

• On découpe la donnée x à hacher en t blocs x_1, \ldots, x_t de taille n.

$$H_0 = IV, \ H_i = E(m_i, H_{i-1}) \oplus H_{i-1}, \ 1 \le i \le t.$$

Le haché est H_t .

Point fixe

• H = E(m, H).

Matyas-Meyer-Oseas

Soient $E: \mathbb{F}_2^k \times \mathbb{F}_2^n \to \mathbb{F}_2^n$ un chiffrement par bloc et $g: \mathbb{F}_2^n \to \mathbb{F}_2^k$.

• On découpe la donnée x à hacher en t blocs x_1, \ldots, x_t de taille n.

$$H_0 = \mathrm{IV}, \ H_i = E(\underline{g(H_{i-1})}, m_i) \oplus \underline{m_i}, \ 1 \le i \le t.$$

La haché est H_t .

Miyaguchi-Preneel

Soient $E: \mathbb{F}_2^k \times \mathbb{F}_2^n \to \mathbb{F}_2^n$ un chiffrement par bloc et une fonction $g: \mathbb{F}_2^n \to \mathbb{F}_2^r$.

• On découpe la donnée x à hacher en t blocs x_1, \ldots, x_t de taille n.

$$H_0 = IV, \ H_i = E(g(H_{i-1}), x_i) \oplus x_i \oplus H_{i-1}, \ 1 \le i \le t.$$

La valeur hachée est H_t .

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

SHA2 (SHA256, SHA384 et SHA512)

SHA = Secure Hash Algorithm

- Merkle-Damgård
- Fonction de compression ; taille des blocs ∈ {512, 1024} bit
- Emprunte ∈ {224, 256, 384, 512} bit

Fonction de Compression – SHA256

- Variables de chaînage de 256 bits (A, B, C, D, E, F, G, H)
- 64 étapes élémentaires (tours)
- Expansion du bloc de message
 16 mots (32 bits) vers 64 mots

SHA2 - Tour

Source:https://fr.wikipedia.org/

$$Ch(x, y, z) = (x \land y) \oplus (\neg x \land z)$$

$$Ma(x, y, z) = (x \land y) \oplus (x \land z) \oplus (y \land z)$$

$$\Sigma_0(x) = ROT^2(x) \oplus ROT^{13}(x) \oplus ROT^{22}(x)$$

$$\Sigma_1(x) = ROT^6(x) \oplus ROT^{11}(x) \oplus ROT^{25}(x)$$

SHA12 - (II)

Expansion de message : $W_i = m_i, \forall i, 0 \le i \le 15$, et

$$W_t = \sigma_0(W_{t-2}) + W_{t-7} + \sigma_0(W_{t-15}) + W_{t-16},$$

pour t, $16 \le i \le 63$.

$$\sigma_0(x) = ROT^7(x) \oplus ROT^{18}(x) \oplus SHR^3(x)$$

$$\sigma_1(x) = ROT^{17}(x) \oplus ROT^{19}(x) \oplus SHR^{10}(x)$$

- Chiffrement par flot RC4
- Chiffrement par bloc Mode opératoire
- Fonction de Hachage
 - Généralités
- Merkle-Damgård
 - Construction basées sur des chiffrement par blocs
 - SHA2
 - SHA3
 - Chiffrement à flot

Compétition SHA3

Xiaoyun Wang, Hongbo Yu.

How to Break MD5 and Other Hash Functions.

EUROCRYPT 2005.

Nouveau standard

- 64 soumissions (2008)
- 14 candidats en phase 2
- 5 candidats en phase 3 (2010)

SHA3, 2012

• Keccak (G. Bertoni, J. Daemen, M. Peeters, G. Van Assche)

Construction sponge

Source: https://keccak.team/sponge_duplex.html

- r, le taux (taille d'un bloc)
- c, la capacité
- f, permutation sur b = r + c bit

Niveau de sécurité

Keccak-f – Structure de donnée

Source: https://keccak.team

- 2 $^\ell$ tableaux de 5 \times 5 bit, avec $\ell \in \{1, 2, 5, 8, 16, 32, 64\}$
- $b = 25 \times 2^{\ell}$

Keccak-f – Fonction θ

Source: https://keccak.team

$$a[i][j][k] := a[i][j][k] \oplus \sum_{j'=0}^{4} a[i-1][j'][k] \oplus \sum_{j'=0}^{4} a[i+1][j'][k-1]$$

Keccak-f – Fonction ρ

Source: https://keccak.team

$$a[i][j][k] := a[i][j][k - (t+1)(t+2)/2],$$
 avec $t = -1$ si $i = j = 0$; sinon $t, 0 \le t \le 24$ et :
$$\binom{i}{j} \equiv \binom{0}{2} \cdot \binom{1}{3}^t \cdot \binom{0}{1} \mod 5.$$

Keccak-f – Fonction π

Source: https://keccak.team

$$a[i][j] := a[i'][j']$$
, avec

$$\begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} i' \\ j' \end{pmatrix}$$

Keccak-f – Fonction χ

Source: https://keccak.team

$$a[i] := a[i] + (a[i+1]+1)a[i+2].$$

Keccak-f

On répète $n_r = 12 + 2\ell$ fois :

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta.$$

avec ι :

$$a := a + RC[i_r].$$

Keccak-f

On répète $n_r = 12 + 2\ell$ fois :

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta.$$

avec ι :

$$a := a + RC[i_r].$$

SHA3

	sortie	r	С	Collision
SHA3-224	224	1152	448	112
SHA3-256	256	1088	512	128
SHA3-384	384	832	768	192