Calculo I -ags. 4 2020/21 2º teste - turma TP4A-6 Resolução

 $(30pts) 1.(a) \int \ln(x^{2}+1) dx = x \ln(n^{2}+1) - \int x \frac{2n}{x^{2}+1} dx$ $= x \ln(x^{2}+1) - \int (2 - \frac{2}{x^{2}+1}) dx$ $= x \ln(x^{2}+1) - 2x + 2 \arctan x + c, c \in \mathbb{R}$ $= 2 - \frac{3}{3}$ $(30pts.) \int \frac{n-4}{x^{2}+n-2} dx$

 $= \int_{n+2}^{2} - \int_{n-1}^{\infty} dn$

 $=2\ln|x+2|-\ln|x-1|+c$

C constante en intervalos.

(c) $\int \frac{n^2}{\sqrt{4-x^2}} dn$ (40 pts.) $= \int (28nt)^2 \cdot 2007t dt$ 2 cost

= 5 4 sm2+dt

 $= \int 2(1-\cos 2t)dt$

=2t-sn2f=2t-25nt.cost+c

= $2ar(8in\frac{\pi}{2} - n.\sqrt{4-n^2} + c$, $C \in \mathbb{R}$.

 $C,A,: \frac{2\pi^2}{x^2+1} = \frac{2\pi^2+2-2}{x^2+1}$ $= 2 - \frac{2}{x^2+1}$

 $\frac{\chi - 4}{(\pi + 2)(n-1)} = \frac{A}{n+2} + \frac{B}{n-1} = 2$ $\frac{\chi - 4}{(\pi + 2)(n-1)} = \frac{A}{n+2} + \frac{B}{n-1} = 2$ $\chi - 4 = A(n-1) + B(n+2) = 2$ $\chi - 4 = A\pi - A + B\pi + 2B = 2$ $\chi - 4 = A\pi - A + B\pi + 2B = 2$ $\chi - 4 = A + B = 2$

C.A. $n = 2 \sin t, t \in J - 1/2, 1/2$ $\sqrt{4 - x^2} = \sqrt{4 - 4 \sin^2 t} = \sqrt{4 \cos^2 t}$ $= 2|\cos t| = 2 \cos t, \quad dn = 2 \cos t dt$ $t = a \sin \frac{\pi}{2}$

2.
$$ft = l(n,y) \in \mathbb{R}^2$$
; $y \ge 0$, $y \le 2n$, $y \le \frac{2}{\sqrt{n}}$, os $ex \le 4y$ [2 $de \ge 2$]

(10 pts.) $y = 2n$ (1) $y = 2$ (2) $y = 2$ (2) $y = 2$ (2) $y = 2$ (2) $y = 2$ (30 pts.) $y = 2n$ $y = 2(n)$ $y = 2$

(b)
$$1 \stackrel{\wedge}{=} \underbrace{\text{Metodo}}_{\cdot}$$
. Segam $P_n = \underbrace{\text{doch}}_{\cdot} \stackrel{\wedge}{=} \stackrel{\wedge}{=}$