Heinrich-Heine-Universität

Prof. Dr. Marcus Zibrowius Jan Hennig

21.06.2024

Homologische Algebra Blatt 11

1 | Stehgreiffragen: Kettenkomplexe

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wahr oder falsch: $0 \to C_*$ ist genau dann ein Quasiisomorphismus, wenn C_* exakt ist.
- (b) Wahr oder falsch: Homologie vertauscht mit direkten Summen, d.h. $\bigoplus_{i \in I} H_n(A_i) \cong H_n(\bigoplus_{i \in I} A_i)$.
- (c) Wahr oder falsch: Homologie vertauscht mit direkten Produkten, d.h. $\Pi_{i \in I} H_n(A_i) \cong H_n(\Pi_{i \in I} A_i)$.
- (d) Was ist die Homologie von ... $\rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z}/8\mathbb{Z} \xrightarrow{\cdot 4} \mathbb{Z}/8\mathbb{Z} \xrightarrow{\cdot 4} \mathbb{Z}/8\mathbb{Z} \xrightarrow{\cdot 4} \dots$?
- (e) Was ist die Homologie von ... $\rightarrow 0 \rightarrow \mathbb{Z} \rightarrow \cdots \rightarrow \mathbb{Z} \stackrel{\cdot 2}{\rightarrow} \mathbb{Z} \stackrel{0}{\rightarrow} \mathbb{Z} \stackrel{\cdot 2}{\rightarrow} \mathbb{Z} \stackrel{0}{\rightarrow} \mathbb{Z} \rightarrow 0 \rightarrow \ldots$? (f) Wahr oder falsch: Für einen Kettenkomplex C_* ist $0 \rightarrow C_* \stackrel{\cdot n}{\rightarrow} C_* \rightarrow C_*/nC_* \rightarrow 0$ immer exakt.

2 | Kerne und Kokerne können gradweise berechnet werden

Sei $f: A_* \to B_*$ ein Kettenkomplexmorphismus. Definiere die Kettenkomplexe $\ker(f)_n = \ker(f_n)$ und $\operatorname{coker}(f)_n = \operatorname{coker}(f_n)$.

- (a) Zeigen Sie, dass $\ker(f)_*$ mit dem durch d_*^A induziertem Differential einen Kettenkomplex definiert.
- (b) Zeigen Sie, dass $\ker(f)_*$ ein Kern von f in der Kategorie der Kettenkomplexe ist.
- (c) Zeigen Sie die analogen Aussagen für den Kokern $\operatorname{coker}(f)_*$.
- (d) Folgern Sie, dass die Abbildung f genau dann ein Monomorphismus in der Kategorie der Kettenkomplexe ist, wenn $f_n \colon A_n \to B_n$ für alle $n \in \mathbb{Z}$ ein Monomorphismus ist (und die gleiche Aussage für Epimorphismen).

3 | Quasiisomorphismen über Kerne und Kokerne bestimmen

Sei $f: A_* \to B_*$ ein Kettenkomplexmorphismus.

- (a) Zeigen Sie, dass wenn $\ker(f)_*$ und $\operatorname{coker}(f)_*$ exakt sind, f ein Quasiisomorphismus ist.
- (b) Finden Sie ein Gegenbeispiel für die Umkehrung, d.h. einen Quasiisomorphismus f aber $\ker(f)_*$, $\operatorname{coker}(f)_*$ sind nicht exakt.

(Hinweis: wählen Sie A_* und B_* exakt)

4 | Spaltend exakte Kettenkomplexe

Ein Kettenkomplex C_* heißt spaltend, wenn es Morphismen $s_n: C_n \to C_{n+1}$ mit $d_n = d_n \circ s_{n-1} \circ d_n$ für alle n gibt und spaltend exakt, wenn der Komplex zusätzlich exakt ist.

- (a) Zeigen Sie, dass $\ldots \to \mathbb{Z}/4\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z}/4\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z}/4\mathbb{Z} \to \ldots$ exakt ist, aber nicht spaltet.
- (b) Zeigen Sie, dass C_* genau dann spaltet, wenn es eine Zerlegung von R-Moduln der Form $C_n \cong Z_n \oplus B'_n$ und $Z_n = B_n \oplus H'_n$ gibt, wobei Z_n die Zykel von C_n sind und B_n die Ränder.
- (c) Zeigen Sie, dass ein spaltender Kettenkomplex C_* genau dann exakt ist, wenn $H'_n = 0$.
- (d) Zeigen Sie, dass C_* genau dann spaltend exakt ist, wenn die Identität id $C_*: C_* \to C_*$ nullhomotop

Betrachte den Kettenkomplex $H_*(C)$ mit $(H_*(C))_n = H_n(C)$ und trivialen Differentialen.

(e) Zeigen Sie, dass C_* und $H_*(C)$ genau dann kettenhomotopieäquivalent sind, wenn C_* spaltet.

5 | Homologie von Graphen ★

Sei $\Gamma=(V,E)$ ein endlicher ungerichteter Graph. Fixiere eine Orientierung für jede Kante. Definiere den Kettenkomplex C_* durch die freien R-Moduln $C_0=R[V], C_1=R[E]$ und $C_n=0$ für $n\neq 0,1$. Das Differential $d_1\colon C_1\to C_0$ ist gegeben durch die Inzidenzmatrix, d.h. diese $|V|\times |E|$ Matrix hat an Stelle (i,j) den Eintrag +1, falls die Kante e_j in v_i startet, den Eintrag -1, falls die Kante e_j in v_i endet, und 0 sonst.

(a) Zeigen Sie für Γ zusammenhängend, dass $H_0(C)$ und $H_1(C)$ freie R-Moduln sind und es gilt:

$$\operatorname{rk}_{R}(H_{0}(C)) = 1, \quad \operatorname{rk}_{R}(H_{1}(C)) = |V| - |E| + 1$$

(Was passiert für Γ nicht-zusammenhängend?)