形式语言与自动机理论

上下文无关文法

王春宇

计算机科学与技术学院 哈尔滨工业大学

上下文无关文法

- 上下文无关文法
 - 形式定义
 - 归约和派生
 - 最左派生和最右派生
 - 文法的语言
- 语法分析树
- 文法和语言的歧义性
- 文法的化简与范式

自然语言的文法

```
\langle sentence \rangle \rightarrow \langle noun-phrase \rangle \langle verb-phrase \rangle
\langle noun-phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle \mid \langle article \rangle \langle adjective \rangle \langle noun \rangle
 \langle \text{verb-phrase} \rangle \rightarrow \langle \text{verb} \rangle \mid \langle \text{verb} \rangle \langle \text{noun-phrase} \rangle
               \langle article \rangle \rightarrow a \mid the
                  \langle noun \rangle \rightarrow \text{boy} \mid \text{girl} \mid \text{cat}
        \langle adjective \rangle \rightarrow big \mid small \mid blue
                    \langle verb \rangle \rightarrow \text{sees} \mid \text{likes}
```

自然语言的文法

使用文法规则产生句子: $\langle sentence \rangle \Rightarrow \langle noun-phrase \rangle \langle verb-phrase \rangle$ $\Rightarrow \langle article \rangle \langle noun \rangle \langle verb-phrase \rangle$ 0+N V. ho $\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle \langle noun-phrase \rangle$ $\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle \langle article \rangle \langle adjective \rangle \langle noun \rangle$ at odt. N. \Rightarrow the $\langle noun \rangle \langle verb \rangle \langle article \rangle \langle adjective \rangle \langle noun \rangle$ \Rightarrow the girl $\langle verb \rangle \langle article \rangle \langle adjective \rangle \langle noun \rangle$ $\Rightarrow \cdots$ a+n.+ v + atodyn ⇒(the girl) sees to blue cat)

如果字符串 $w \in \Sigma^*$ 满足

 $w = w^R,$

则称字符串 w 为回文(palindrome).

定义

如果语言 L 中的字符串都是回文, 则称 L 为回文语言

$$L = \{ w \in \Sigma^* \mid w = w^R \}.$$

- ε , 010, 0000, radar, racecar, drawkward
- A man, a plan, a canal Panama
- 僧游云隐寺, 寺隐云游僧

例 1. 字母表 $\Sigma = \{0,1\}$ 上的回文语言

$$L_{\text{pal}} = \{ w \in \{0, 1\}^* \mid w = w^R \}.$$

- 很容易证明是 $L_{\rm pal}$ 是非正则的. 但如何表示呢? \land
 - 可使用递归的方式来定义:
 - \bullet 首先 ε . 0. 1 都是回文
 - ② 如果 w 是回文, 0w0 和 1w1 也是回文
 - 使用嵌套定义表示这种递归结构:

$$A \to \varepsilon \qquad A \to 0A0$$

$$A \to 0 \qquad A \to 1A1$$

$$A \to 1$$

上下文无关文法的形式定义

定义

上下文无关文法(CFG, Context-Free Grammar, 简称文法) G 是一个四元组 G = (V, T, P, S),

- V: 变元的有穷集, 变元也称为非终结符或语法范畴;
- ② T: 终结符的有穷集, 且 $V \cap T = \emptyset$;
- ③ P: 产生式的有穷集, 每个产生式包括:
 - 一个变元, 称为产生式的头或左部;
 - \oplus 一个产生式符号 \rightarrow , 读作定义为;
 - 一个 $(V \cup T)^*$ 中的符号串, 称为体或右部;
- ♠ S ∈ V: 初始符号, 文法开始的地方.

- 产生式 $A \rightarrow \alpha$. 读作 A 定义为 α
- 如果有多个 A 的产生式

 $A \to \alpha_1, A \to \alpha_2, \cdots, A \to \alpha_n$

可简写为

$$A
ightarrow lpha_1 \mid lpha_2 \mid \cdots \mid lpha_n$$

续例 1. 回文语言 $L_{\text{pal}} = \{w \in \{0,1\}^* \mid w = w^R\}$ 的文法可设计为

$$G = (\{A\}, \{0, 1\}, \{A \to \varepsilon \mid 0 \mid 1 \mid 0A0 \mid 1A1\}, A).$$

字符使用的一般约定

非终结符: S, A, B,...
 终结符或能终结符 ..., X, Y, Z

终结符或非终结符组成的串: $lpha,eta,\gamma,\dots$

例2 简化版的算数表达式:

• 运算只有"加"和"乘"(+,*), 参数仅为标识符: • 标识符: 以 $\{a,b\}$ 开头由 $\{a,b,0,1\}$ 组成的字符串.

这样的表述式集合可用文法 G_{exp} 表示

$$G_{\text{exp}} = (\{E, I\}, \{a, b, 0, 1, +, *, (,)\}, P, E$$

 $G_{\text{exp}} = (\{E, I\}, \{a, b, 0, 1, +, *, (,)\}, P, E),$ 其中产生式集P中有 10条产生式

$$1.E \rightarrow I$$
 $2.E \rightarrow E + E$

 $3.E \rightarrow E * E$

 $4.E \rightarrow (E)$

$$5. I \rightarrow a \qquad 9. I \rightarrow I0$$

$$6. I \rightarrow b \qquad 10. I \rightarrow I1$$

$$b$$
 $10. I \rightarrow I1$

 $8.I \rightarrow Ib$

 $7.I \rightarrow Ia$

注意, 变元 I 所定义的标识符集合, 刚好是 $(a+b)(a+b+0+1)^*$.

归约和派生

非形式定义

从字符串到文<u>法变元</u>的分析过程, 称为递归推理或归约; 从文法变元到字符串的分析过程, 称为推导或派生.

- 归约: 自底向上, 由产生式的体向头的分析
- 派生: 自顶向下, 由产生式的头向体分析

续例 2. 用算数表达式文法 G_{\exp} , 将 a*(a+b00) 归约的过程.

1. $E \to I$		串归约到变元		应用产生式	重用结果
$2. E \rightarrow E + E$	$\overline{(1)}$	a	I	5. $I \rightarrow a$	_
$3. E \rightarrow E * E$	(2)	b	I	5. $I \rightarrow b$	_
$4. E \rightarrow (E)$	(3)	<i>b</i> 0	I	9. $I \rightarrow I0$	(2)
$5. I \rightarrow a$	(4)	<i>b</i> 00	I	9. $I \rightarrow I0$	(3)
	(5)	a	E	1. $E \to I$	(1)
$6. I \rightarrow b$	(6)	<i>b</i> 00	E	1. $E \to I$	(4)
$7. I \rightarrow Ia$	(7)	a + b00	E	$2. E \rightarrow E + E$	(5), (6)
8. $I \rightarrow Ib$	(8)	(a + b00)	E	$4. E \rightarrow (E)$	(7)
9. $I \rightarrow I0$	(9)	a*(a+b00)	E	$3. E \to E * E$	(5), (8)
10. $I \rightarrow I1$					

派生和归约的形式定义

定义

若 CFG $\underline{G} = (V, T, P, S)$, 设 $\alpha, \beta, \gamma \in (V \cup T)^*$, $A \in V$, $A \to \gamma \in P$, 那么称 在 G 中由 $\alpha A \beta$ 可派生出 $\alpha \gamma \beta$, 记为

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$
.

相应的, 称 $\alpha\gamma\beta$ 可归约为 $\alpha A\beta$.

- $\alpha A\beta \Rightarrow \alpha \gamma \beta$, 即用 $A \to \gamma$ 的右部 γ 替换串 $\alpha A\beta$ 中变元 A 得到串 $\alpha \gamma \beta$
- 如果语境中 G 是已知的, 可省略, 记为 $\alpha A\beta \Rightarrow \alpha \gamma \beta$

$$\alpha_i \underset{G}{\Longrightarrow} \alpha_{i+1}$$

成立、即 α_1 经过零步或多步派生可得到 α_m

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_{m-1} \Rightarrow \alpha_m$$

续例 2. 算数表达式 a*(a+b00) 在文法 G_{exp} 中的派生过程.

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow I * (E)$$

 $\Rightarrow I * (E + E) \Rightarrow I * (E + I) \Rightarrow I * (I + I)$

 $\Rightarrow I * (a + I) \Rightarrow a * (a + I) \Rightarrow a * (a + I0)$

 $\Rightarrow a * (a + I00) \Rightarrow a * (a + b00)$

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow I * (E)$$

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow I * (E)$$

最左派生和最右派生

定义

为限制派生的随意性,要求只替换符号串中最左边变元的派生过程,称为最 左派生,记为

$$ightharpoonup^*, \quad
ightharpoonup^*,$$

只替换最右的, 称为最右派生, 记为

$$\Rightarrow$$
, $\stackrel{*}{\rightleftharpoons}$.

• 任何派生都有等价的最左派生和最右派生

 $A \stackrel{*}{\Rightarrow} w$ 当且仅当 $A \stackrel{*}{\underset{\text{im}}{\mapsto}} w$ 当且仅当 $A \stackrel{*}{\underset{\text{rm}}{\mapsto}} w$.

续例 2. 表达式 a*(a+a) 在 G_{exp} 中的最左派生和最右派生分别为:

$$1. E \rightarrow I \qquad E \underset{\text{im}}{\Rightarrow} E * E \qquad E \underset{\text{rm}}{\Rightarrow} E * E$$

$$2. E \rightarrow E + E \qquad \underset{\text{im}}{\Rightarrow} I * E \qquad \underset{\text{rm}}{\Rightarrow} E * (E)$$

$$3. E \rightarrow E * E \qquad \underset{\text{im}}{\Rightarrow} a * E \qquad \underset{\text{rm}}{\Rightarrow} E * (E + E)$$

$$4. E \rightarrow (E) \qquad \underset{\text{im}}{\Rightarrow} a * (E) \qquad \underset{\text{rm}}{\Rightarrow} E * (E + I)$$

$$5. I \rightarrow a \qquad \underset{\text{im}}{\Rightarrow} a * (E + E) \qquad \underset{\text{rm}}{\Rightarrow} E * (E + a)$$

$$6. I \rightarrow b \qquad \underset{\text{im}}{\Rightarrow} a * (I + E) \qquad \underset{\text{rm}}{\Rightarrow} E * (I + a)$$

$$7. I \rightarrow Ia \qquad \underset{\text{im}}{\Rightarrow} a * (a + E) \qquad \underset{\text{rm}}{\Rightarrow} E * (a + a)$$

$$8. I \rightarrow Ib \qquad \underset{\text{im}}{\Rightarrow} a * (a + I) \qquad \underset{\text{rm}}{\Rightarrow} I * (a + a)$$

$$9. I \rightarrow I0 \qquad \underset{\text{im}}{\Rightarrow} a * (a + a) \qquad \underset{\text{rm}}{\Rightarrow} a * (a + a)$$

$$10. I \rightarrow I1$$

文法的语言

定义

$$CFG G = (V, T, P, S)$$
 的语言定义为

$$\mathbf{L}(G) = \{ w \mid w \in T^*, \ S \stackrel{*}{\Longrightarrow} w \}.$$

那么符号串 w 在 L(G) 中, 要满足:

- w 仅由终结符组成;
- ② 初始符号 S 能派生出 w.

上下文无关语言

CfL

定义

语言 L 是某个 CFG G 定义的语言, 即 $L = \mathbf{L}(G)$, 则称 L 为上下文无关语言 $(CFL, Context\text{-}Free\ Language)$.

• 上下文无关是指在文法派生的每一步

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$
,

符号串 γ 仅根据A的产生式派生,而无需依赖A的上下文 α 和 β .

文法的等价性

定义

如果有两个文法 $CFG G_1$ 和 $CFG G_2$, 满足

$$\mathbf{L}(G_1) = \mathbf{L}(G_2),$$

则称 G_1 和 G_2 是等价的.

句型

定义

若 CFGG = (V, T, P, S), 初始符号 S 派生出来的符号事, 称为 G 的 $\overline{0}$ 型, 即

$$\alpha \in (V \cup T)^* \ \mathbb{A} \ S \stackrel{*}{\Rightarrow} \alpha.$$

如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 称 α 为左句型. 如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 称 α 为右句型.

- 只含有终结符的句型, 也称为 G 的句子
- 而 L(G) 就是文法 G 全部的句子

例 3. 给出语言 $L = \{w \in \{0,1\}^* \mid w \text{ contains at least three 1s} \}$ 的文法.

例 4. 描述 CFG $G = (\{S\}, \{a, b\}, \{S \rightarrow aSb, S \rightarrow ab\}, S)$ 定义的语言? cu b

解: $\mathbf{L}(G) = \{a^n b^n \mid n > 1\}$, 因为 $S \Rightarrow aSb \Rightarrow \cdots \Rightarrow a^{n-1}Sb^{n-1} \Rightarrow a^n b^n$.

例 5. 请为语言
$$L = \{0^n 1^m \mid n \neq m\}$$
 设计文法.
 $A \cap M$ $O \cap M$ O

例 6. 设计 $L_{\text{eq}} = \{w \in \{0,1\}^* \mid w \neq 0 \text{ 和 1 个数相等}\}$ 的文法.

$$05 - 5 | 051 | 150$$

$$05 - 5 | 051 | 150 | 55$$

解 1: $S \to 0S1 \mid 1S0 \mid SS \mid \varepsilon$, 寻找递归结构, 用变量构造递归结构; 解 2: $S \to S0S1S \mid S1S0S \mid \varepsilon$, "目标串"这样构成, 由变量定义变量.

程序设计语言的文法定义

. . .

• C — ISO C 1999 definition
...
selection statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement
...