

FET

Ve311 Electronic Circuits (Fall 2021)

Dr. Chang-Ching Tu

NMOS FET

- MOS = Metal-Oxide-Semiconductor
- FET = Field effect Transistor
- CMOS Technology keeps on reducing t_{ox} and L_{eff} (Moore's Law).
- Substrate (Body) of NMOS is generally connected to ground.
- See Chapter 17 for the introduction of CMOS fabrication technology.

Latest: TSMC 5 nm FinFET Technology

CMOS

- CMOS = Complementary MOS
- Substrate (Body) of NMOS is generally connected to ground.
- N-well (Body) of PMOS is generally connected to V_{DD}.

Layout

NMOS PMOS

p⁻ substrate

Threshold Voltage (V_{TH}) for NMOS

- V_G = 0 V
- No current flow

- As V_G increases from zero, holes in p-substrate are repelled, leaving negative ions (ionized boron dopants) behind to form a <u>depletion region</u>.
- Positive charges are mirrored at the gate.
- No charge carriers (electrons or holes) in the channel, so no current flow.

Threshold Voltage (V_{TH}) for NMOS

 Higher V_G further increases the width of the <u>depletion region</u>.

Interface as n-type as the substrate is p-type

- When V_G reaches a sufficiently positive value, a channel of electrons (<u>inversion</u> <u>layer</u>) is formed beneath the gate oxide.
- Electrons flow from "source" to "drain".

 Equivalently, current flows from "drain" to "source".
- The value of V_G at which the inversion layer forms is the **threshold voltage (V_{TH})**.
- If V_G rises further, the charges in the depletion region remain relatively constant, whereas the charges in the inversion layer increase rapidly.

I-V Characteristics for NMOS (Triode)

For
$$V_{GS} \ge V_{TH}$$

 $Q = -WL_{eff}C_{ox}(V_{GS} - V_{TH})$ (unit: coulomb)
 $Q_d = -WC_{ox}(V_{GS} - V_{TH})$ (unit: coulomb·m⁻¹)

```
C_{ox} (gate oxide capacitance per unit area)
= \epsilon_{silicon oxide} / t_{ox}
= [8.85 \times 10^{-12} (F/m) \times 3.9] / t_{ox}
```

I-V Characteristics for NMOS (Triode)

$$\begin{split} I_D &= Q_d \times v = Q_d \times (\mu_n E) = -WC_{ox}[V_{GS} - V_{TH} - V(x)] \times (\mu_n E) \\ &= WC_{ox}[V_{GS} - V_{TH} - V(x)] \times \mu_n \times \frac{dV(x)}{dx} \end{split}$$

$$\int_{x=0}^{x=L_{eff}} I_{D} \cdot dx = \int_{V(0)=0}^{V(L)=V_{DS}} \mu_{n} C_{ox} W[V_{GS} - V_{TH} - V(x)] \cdot dV(x)$$

I_D: constant along channel

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L_{off}} [(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^{2}]$$

I-V Characteristics for NMOS (Triode)

$$\begin{split} I_{D} &= \mu_{n} C_{ox} \frac{W}{L_{eff}} [(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^{2}] \\ I_{D,max} &= \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^{2} \quad \textit{V}_{DS} = \textit{V}_{GS} - \textit{V}_{TH} \end{split}$$

- For digital circuit, MOSFET, as a switch, usually operates in deep triode region.
- This is why reducing t_{ox} and L_{eff} can improve speed.

I-V Characteristics for NMOS (Saturation)

- In reality, for $V_{DS} > V_{GS} V_{TH}$, I_D becomes relatively constant.
- $V_{DS} = V_{GS} V_{TH}$ is the minimum value for the NMOS to operate in saturation region.

I-V Characteristics for NMOS (Saturation)

$$\int_{x=0}^{x=L'} I_{D} \cdot dx = \int_{V(0)=0}^{V(L')=V_{GS}-V_{TH}} \mu_{n} C_{ox} W[V_{GS} - V_{TH} - V(x)] \cdot dV(x)$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

I_D: constant along channel $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$ L': the point at which Q_d drops to zero $V_{GS} - V_{TH}$: the overdrive voltage

Electron velocity ($v = I_D / Q_d$) becomes tremendously high at the pinch off point $(Q_d \rightarrow 0)$, such that electrons shoot through the depletion region and arrive at the drain terminal.

NMOS vs PMOS

Channel-Length Modulation

$$I_{\rm D} = \frac{1}{2} \mu_{\rm n} C_{\rm ox} \frac{W}{L'} (V_{\rm GS} - V_{\rm TH})^2$$

$$L' = L_{eff} - \Delta L$$

$$\frac{1}{L'} = \frac{1}{L_{eff} - \Delta L} = \frac{1}{L_{eff}} \cdot \frac{1}{1 - \frac{\Delta L}{L_{eff}}} \approx \frac{1}{L_{eff}} \cdot \left(1 + \frac{\Delta L}{L_{eff}}\right)$$

$$\begin{split} I_D &= \frac{1}{2} \mu_\text{n} C_\text{ox} \frac{W}{L_\text{eff}} (V_\text{GS} - V_\text{TH})^2 \left(1 + \frac{\Delta L}{L_\text{eff}} \right) \\ &= \frac{1}{2} \mu_\text{n} C_\text{ox} \frac{W}{L_\text{eff}} (V_\text{GS} - V_\text{TH})^2 (1 + \lambda V_\text{DS}) \end{split}$$

Channel-Length Modulation

$$\mathbf{r_o} = \frac{\partial V_{DS}}{\partial I_D} = 1 / \frac{\partial I_D}{\partial V_{DS}}$$

$$= \frac{1}{\frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \cdot \lambda}$$

$$\approx \frac{1}{I_D \cdot \lambda}$$

Transconductance

• For the NMOS operating in the saturation region $(V_{DS} \ge V_{GS} - V_{TH})$:

$$V_{G} + V_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

• ΔV_{GS} results in $\Delta I_D = gm \times \Delta V_{GS}$.

$$gm = \frac{\partial I_D}{\partial V_{GS}} = \mu_n C_{ox} \frac{W}{L^{'}} (V_{GS} - V_{TH})$$

$$= \sqrt{2\mu_n C_{ox} \frac{W}{L^{'}} I_D} = \frac{2I_D}{V_{GS} - V_{TH}}$$

Transconductance

- For a given NMOS, gm changes according to the DC biasing condition.
- If a small signal is applied to a NMOS with defined biasing values, we assume the signal amplitude is small enough that the variation in gm is negligible.

Body Effect

$$V_{TH} = V_{TH0} + \gamma(\sqrt{|2\Phi_F + V_{SB}|} - \sqrt{|2\Phi_F|})$$

$$V_{TH} = V_{TH0} + \gamma (\sqrt{|2\Phi_F + V_{SB}|} - \sqrt{|2\Phi_F|})$$

$$\Phi_F = \frac{kT}{q} \ln \frac{N_{sub}}{n_i} \qquad \gamma = \frac{\sqrt{2q\epsilon_{Si}N_{sub}}}{C_{ox}}$$

$$J_{\rm D} = \frac{1}{2} \mu_{\rm n} C_{\rm ox} \frac{W}{L'} (V_{\rm GS} - V_{\rm TH})^2$$

Body Effect

$$\begin{aligned} \mathbf{gmb} &= \frac{\partial I_{D}}{\partial V_{SB}} = \frac{\partial I_{D}}{\partial V_{TH}} \cdot \frac{\partial V_{TH}}{\partial V_{SB}} \\ &= -\mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH}) \cdot \frac{\partial V_{TH}}{\partial V_{SB}} \\ &= -\mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH}) \cdot \frac{\gamma}{2} \frac{1}{\sqrt{|2\Phi_{F} + V_{SB}|}} \\ &= -\mathbf{gm} \cdot \mathbf{\eta} \end{aligned}$$

$$V_{G} \rightarrow V_{D} \qquad \Delta I_{D} = \Delta V_{GS} \times gm \qquad \Delta I_{D} = \Delta V_{SB} \times gmb$$

- V_{GS} increases, I_D increases.
- V_{SB} increases, V_{TH} increases and thus I_D decreases.

Small-Signal Model for NMOS

$$V_{d} = V_{D} + V_{d}$$

$$V_{g} = V_{G} + V_{g$$

Small-Signal Model for PMOS

$$V_{s} = V_{s} + v_{s}$$

$$V_{g} = V_{G} + v_{g} + v_{g} + v_{d}$$

$$V_{d} = V_{D} + v_{d}$$

$$V_{d} = V_{D} + v_{d}$$

Example

Sketch I_D as a function of V_X increasing from $-\infty$ to 0. Assume V_{TH} = 0.6 V, γ = 0.4

 $V^{1/2}$ and $2\Phi_F = 0.7 \text{ V}$.

Solution:

$$1.2 = 0.6 + 0.4(\sqrt{0.7 - V_X} - \sqrt{0.7}), V_X = -4.76 \text{ V}.$$

Layout

NMOS PMOS

- W/L is chosen to determine gm. Minimum L is dictated by the process.
- Design rules: (1) Poly-Si extends beyond the channel area by some amount.
 (2) Enough n⁺, p⁺ or poly-Si area surrounding each via. (3) Enough distance between two vias. (4) Many others.

SPICE Model

NMOS Model

PMOS Model

LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
NSUB = 5e+14	LD = 0.09e-6	UO = 100	LAMBDA = 0.2
TOX = 9e-9	PB = 0.9	CJ = 0.94e - 3	CJSW = 0.32e-11
MJ = 0.5	MJSW = 0.3	CGDO = 0.3e-9	JS = 0.5e-8

- Simulators such as SPICE and Cadence need accurate models for each device.
- Above is the simplest MOS SPICE model, known as "Level 1," and provide typical values for each parameter corresponding to 0.5-μm technology.

NMOS vs PMOS in Performance

- PMOS devices are quite inferior to NMOS in most CMOS technology.
- Lower mobility of holes $(\mu_p C_{ox} \approx 0.5 \mu_n C_{ox})$ yield lower current drive and conductance.
- NMOS exhibit higher output resistance, providing more ideal current sources and higher voltage gain.
- It is preferable to use NMOS rather than PMOS wherever possible.