

Выпуклость множеств и функций

МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ

НЕДЕЛЯ 4

Даня Меркулов Пётр Остроухов

Выпуклые множества

Аффинные множества

Пусть x_1, x_2 два вектора в $\mathbb{R}^n.$ Тогда прямая, проходящая через них, определяется следующим образом:

$$x = \theta x_1 + (1 - \theta) x_2, \theta \in \mathbb{R}$$

Множество A называется **аффинным**, если для любых x_1, x_2 из A прямая, проходящая через них, также лежит в A, т.е.

$$\forall \theta \in \mathbb{R}, \forall x_1, x_2 \in A: \theta x_1 + (1-\theta)x_2 \in A$$

i Example

• \mathbb{R}^n - аффинное множество.

Рисунок 1. Иллюстрация прямой между двумя векторами x_1 и x_2

Аффинные множества

Пусть x_1, x_2 два вектора в $\mathbb{R}^n.$ Тогда прямая, проходящая через них, определяется следующим образом:

$$x = \theta x_1 + (1 - \theta) x_2, \theta \in \mathbb{R}$$

Множество A называется **аффинным**, если для любых x_1, x_2 из A прямая, проходящая через них, также лежит в A, т.е.

$$\forall \theta \in \mathbb{R}, \forall x_1, x_2 \in A: \theta x_1 + (1-\theta)x_2 \in A$$

- \mathbb{R}^n аффинное множество.
- Множество решений $\{x \mid \mathbf{A}x = \mathbf{b}\}$ также является аффинным множеством.

Рисунок 1. Иллюстрация прямой между двумя векторами x_1 и x_2

Конус

Множество S называется **конусом**, если:

$$\forall x \in S, \ \theta \ge 0 \ \rightarrow \ \theta x \in S$$

Если точка принадлежит конусу, то и весь луч, проходящий из начала координат через эту точку, также принадлежит этому конусу.

Рисунок 2. Иллюстрация конуса

Множество S называется выпуклым конусом, если:

$$\forall x_1, x_2 \in S, \; \theta_1, \theta_2 \geq 0 \quad \rightarrow \quad \theta_1 x_1 + \theta_2 x_2 \in S$$

Выпуклый конус это конус, который также является выпуклым множеством.

i Example

• \mathbb{R}^n

Множество S называется выпуклым конусом, если:

$$\forall x_1, x_2 \in S, \ \theta_1, \theta_2 \ge 0 \rightarrow \theta_1 x_1 + \theta_2 x_2 \in S$$

Выпуклый конус это конус, который также является выпуклым множеством.

- \mathbb{R}^n
- Аффинные множества, содержащие 0

Множество S называется выпуклым конусом, если:

$$\forall x_1, x_2 \in S, \ \theta_1, \theta_2 \ge 0 \rightarrow \theta_1 x_1 + \theta_2 x_2 \in S$$

Выпуклый конус это конус, который также является выпуклым множеством.

- \mathbb{R}^n
- Аффинные множества, содержащие 0
- Луч

Множество S называется **выпуклым конусом**, если:

$$\forall x_1, x_2 \in S, \; \theta_1, \theta_2 \geq 0 \quad \rightarrow \quad \theta_1 x_1 + \theta_2 x_2 \in S$$

Выпуклый конус это конус, который также является выпуклым множеством.

- \mathbb{R}^n
- Аффинные множества, содержащие 0
- Луч
- **S**ⁿ₊ множество симметричных положительно полуопределенных матриц

Множество S называется **выпуклым конусом**, если:

$$\forall x_1, x_2 \in S, \; \theta_1, \theta_2 \geq 0 \quad \rightarrow \quad \theta_1 x_1 + \theta_2 x_2 \in S$$

Выпуклый конус это конус, который также является выпуклым множеством.

- \mathbb{R}^n
- Аффинные множества, содержащие 0
- Луч
- **S**ⁿ₊ множество симметричных положительно полуопределенных матриц

Множество S называется выпуклым конусом, если:

$$\forall x_1, x_2 \in S, \; \theta_1, \theta_2 \geq 0 \quad \rightarrow \quad \theta_1 x_1 + \theta_2 x_2 \in S$$

Выпуклый конус это конус, который также является выпуклым множеством.

i Example

- \mathbb{R}^n
- Аффинные множества, содержащие 0
- Луч
- \mathbf{S}_{+}^{n} множество симметричных положительно полуопределенных матриц

Выпуклый конус является выпуклым множеством, содержащим все конические комбинации точек в множестве.

Рисунок 3. Иллюстрация выпуклого конуса

Отрезок

Пусть x_1, x_2 два вектора в \mathbb{R}^n . Тогда отрезок между ними определяется следующим образом:

$$x = \theta x_1 + (1 - \theta)x_2, \ \theta \in [0, 1]$$

Выпуклое множество содержит отрезок между любыми двумя точками в множестве.

Выпуклое множество

Множество S называется **выпуклым**, если для любых x_1,x_2 из S отрезок между ними также лежит в S, т.е.

$$\forall \theta \in [0,1], \ \forall x_1, x_2 \in S: \theta x_1 + (1-\theta)x_2 \in S$$

i Example

Пустое множество и множество из одного вектора являются выпуклыми по определению.

i Example

Любое аффинное множество, луч или отрезок являются выпуклыми множествами.

Выпуклая комбинация

Пусть $x_1,x_2,\ldots,x_k\in S$, тогда точка $\theta_1x_1+\theta_2x_2+\ldots+\theta_kx_k$ называется **выпуклой комбинацией** точек x_1,x_2,\ldots,x_k если $\sum\limits_{i=1}^k\theta_i=1,\;\theta_i\geq 0.$

Выпуклая оболочка

Множество всех выпуклых комбинаций точек из S называется выпуклой оболочкой множества S.

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1, \; \theta_i \geq 0 \right\}$$

• Множество conv(S) является наименьшим выпуклым множеством, содержащим S.

Рисунок 5. Верх: выпуклые оболочки выпуклых множеств. Низ: выпуклая оболочка невыпуклых множеств.

Выпуклая оболочка

Множество всех выпуклых комбинаций точек из S называется выпуклой оболочкой множества S.

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1, \; \theta_i \geq 0 \right\}$$

- Множество conv(S) является наименьшим выпуклым множеством, содержащим S.
- Множество S является выпуклым тогда и только тогда, когда $S = \mathbf{conv}(S)$.

Рисунок 5. Верх: выпуклые оболочки выпуклых множеств. Низ: выпуклая оболочка невыпуклых множеств.

Сумма Минковского

Сумма Минковского двух множеств векторов S_1 и S_2 в евклидовом пространстве образуется путем сложения каждого вектора из S_1 с каждым вектором из S_2 .

$$S_1 + S_2 = \{ \mathbf{s_1} + \mathbf{s_2} \, | \, \mathbf{s_1} \in S_1, \, \mathbf{s_2} \in S_2 \}$$

Также можно определить линейную комбинацию множеств.

i Example

Рассмотрим пространство \mathbb{R}^2 . Определим:

$$S_1 := \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1 \}$$

Это единичная окружность, с центром в начале координат. И:

$$S_2:=\{x\in\mathbb{R}^2: -4\le x_1\le -1, -3\le x_2\le -1\}$$

Это прямоугольник. Сумма множеств S_1 и S_2 образуетувеличенный прямоугольник S_2 с закругленными углами. Полученное множество будет выпуклым.

Рисунок 6.
$$S=S_1+S_2$$

Проверка выпуклости

На практике очень важно понимать, является ли конкретное множество выпуклым или нет. Для этого используются два подхода в зависимости от контекста.

• По определению.

Проверка выпуклости

На практике очень важно понимать, является ли конкретное множество выпуклым или нет. Для этого используются два подхода в зависимости от контекста.

- По определению.
- \bullet Показать, что S получается из простых выпуклых множеств с помощью операций, сохраняющих выпуклость.

Проверка выпуклости по определению

$$x_1, x_2 \in S, \ 0 \le \theta \le 1 \ \to \ \theta x_1 + (1 - \theta)x_2 \in S$$

i Example

Доказать, что множество симметричных положительно определенных матриц $\mathbf{S}_{++}^n = \{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} = \mathbf{X}^\top, \ \mathbf{X} \succ 0\}$ является выпуклым.

Операции, сохраняющие выпуклость

Линейная комбинация выпуклых множеств является выпуклым множеством.

Пусть есть два выпуклых множества S_x, S_y , тогда множество

$$S = \left\{ s \mid s = c_1 x + c_2 y, \ x \in S_x, \ y \in S_y, \ c_1, c_2 \in \mathbb{R} \right\}$$

Возьмем два вектора из S: $s_1=c_1x_1+c_2y_1, s_2=c_1x_2+c_2y_2$ и докажем, что отрезок между ними $\theta s_1+(1-\theta)s_2, \theta \in [0,1]$ также принадлежит S

$$\begin{split} \theta s_1 + (1-\theta) s_2 \\ \theta (c_1 x_1 + c_2 y_1) + (1-\theta) (c_1 x_2 + c_2 y_2) \\ c_1 (\theta x_1 + (1-\theta) x_2) + c_2 (\theta y_1 + (1-\theta) y_2) \\ c_1 x + c_2 y \in S \end{split}$$

Если пересечение пустое или содержит одну точку, свойство доказывается по определению. В противном случае возьмем две точки и отрезок между ними. Эти точки должны лежать во всех пересекающихся множествах, и поскольку они все выпуклые, отрезок между ними лежит во всех множествах и, следовательно, в их пересечении.

$$S \subseteq \mathbb{R}^n$$
 выпукло $\to f(S) = \{f(x) \mid x \in S\}$ выпукло $(f(x) = \mathbf{A}x + \mathbf{b})$

Примеры аффинных множеств: расширение, проекция, транспонирование, множество решений линейного матричного неравенства $\{x \mid x_1A_1+...+x_mA_m \preceq B\}$. Здесь $A_i, B \in \mathbf{S}^p$ симметричные матрицы $p \times p$.

Также обратим внимание, что прообраз выпуклого множества при аффинном отображении также является выпуклым.

$$S\subseteq \mathbb{R}^m$$
 выпукло $\; o \; f^{-1}(S)=\{x\in \mathbb{R}^n\;|\; f(x)\in S\}$ выпукло $\;(f(x)=\mathbf{A}x+\mathbf{b})$

Пусть $x \in \mathbb{R}$ - случайная величина с заданным вероятностным распределением $\mathbb{P}(x=a_i)=p_i$, где $i=1,\dots,n$, и $a_1 < \dots < a_n$. Тогда вектор вероятностей $p \in \mathbb{R}^n$ принадлежит вероятностному симплексу, т.е.

$$P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\} = \{p \mid p_1 + \ldots + p_n = 1, p_i \geq 0\}.$$

•
$$\mathbb{P}(x > \alpha) \le \beta$$

Пусть $x \in \mathbb{R}$ - случайная величина с заданным вероятностным распределением $\mathbb{P}(x=a_i)=p_i$, где $i=1,\dots,n$, и $a_1 < \dots < a_n$. Тогда вектор вероятностей $p \in \mathbb{R}^n$ принадлежит вероятностному симплексу, т.е.

$$P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\} = \{p \mid p_1 + \ldots + p_n = 1, p_i \geq 0\}.$$

- $\mathbb{P}(x > \alpha) \le \beta$
- $\mathbb{E}|x^{201}| \le \alpha \mathbb{E}|x|$

Пусть $x \in \mathbb{R}$ - случайная величина с заданным вероятностным распределением $\mathbb{P}(x=a_i)=p_i$, где $i=1,\dots,n$, и $a_1 < \dots < a_n$. Тогда вектор вероятностей $p \in \mathbb{R}^n$ принадлежит вероятностному симплексу, т.е.

$$P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\} = \{p \mid p_1 + \ldots + p_n = 1, p_i \geq 0\}.$$

- $\mathbb{P}(x > \alpha) \le \beta$
- $\mathbb{E}|x^{201}| \le \alpha \mathbb{E}|x|$
- $\mathbb{E}|x^2| \ge \alpha$

Пусть $x \in \mathbb{R}$ - случайная величина с заданным вероятностным распределением $\mathbb{P}(x=a_i)=p_i$, где $i=1,\dots,n$, и $a_1 < \dots < a_n$. Тогда вектор вероятностей $p \in \mathbb{R}^n$ принадлежит вероятностному симплексу, т.е.

$$P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\} = \{p \mid p_1 + \ldots + p_n = 1, p_i \geq 0\}.$$

- $\mathbb{P}(x > \alpha) \le \beta$
- $\mathbb{E}|x^{201}| \le \alpha \mathbb{E}|x|$
- $\mathbb{E}|x^2| \ge \alpha$
- $\forall x \geq \alpha$

Выпуклые функции

 Ду

Функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, называется выпуклой на S, если:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

для любых $x_1, x_2 \in S$ и $0 \le \lambda \le 1$.

Если вышеуказанное неравенство выполняется строгим неравенством для $x_1 \neq x_2$ и $0 < \lambda < 1$, то функция называется строго выпуклой на S.

Рисунок 8. Разница между выпуклой и невыпуклой функцией

1 Theorem

Пусть f(x) выпуклая функция на выпуклом множестве $X\subseteq\mathbb{R}^n$ и пусть $x_i\in X, 1\leq i\leq m$, произвольные точки из X. Тогда

$$f\left(\sum_{i=1}^m \lambda_i x_i\right) \leq \sum_{i=1}^m \lambda_i f(x_i)$$

для любого $\lambda = [\lambda_1, \dots, \lambda_m] \in \Delta_m$ - вероятностного симплекса.

Доказательство

1. Во-первых, обратим внимание, что точка $\sum_{i=1}^m \lambda_i x_i$ как выпуклая комбинация точек из выпуклого множества X принадлежит X.

1 Theorem

Пусть f(x) выпуклая функция на выпуклом множестве $X\subseteq\mathbb{R}^n$ и пусть $x_i\in X, 1\leq i\leq m$, произвольные точки из X. Тогда

$$f\left(\sum_{i=1}^m \lambda_i x_i\right) \leq \sum_{i=1}^m \lambda_i f(x_i)$$

для любого $\lambda = [\lambda_1, \dots, \lambda_m] \in \Delta_m$ - вероятностного симплекса.

Доказательство

- 1. Во-первых, обратим внимание, что точка $\sum_{i=1}^m \lambda_i x_i$ как выпуклая комбинация точек из выпуклого множества X принадлежит X.
- 2. Мы докажем это индукцией. Для m=1, утверждение очевидно, и для m=2, оно следует из определения выпуклой функции.

3. Предположим, что оно верно для всех m до m=k, и мы докажем его для m=k+1. Пусть $\lambda\in\Delta_{k+1}$ и

$$x=\sum_{i=1}^{k+1}\lambda_ix_i=\sum_{i=1}^k\lambda_ix_i+\lambda_{k+1}x_{k+1}.$$

Предположим, что $0 < \lambda_{k+1} < 1$, иначе, оно сводится к рассмотренным ранее случаям, тогда мы имеем

$$x=\lambda_{k+1}x_{k+1}+(1-\lambda_{k+1})\bar{x},$$

где
$$\bar{x}=\sum_{i=1}^k \gamma_i x_i$$
 и $\gamma_i=\frac{\lambda_i}{1-\lambda_{k+1}}\geq 0, 1\leq i\leq k.$

3. Предположим, что оно верно для всех m до m=k, и мы докажем его для m=k+1. Пусть $\lambda\in\Delta_{k+1}$ и

$$x=\sum_{i=1}^{k+1}\lambda_ix_i=\sum_{i=1}^k\lambda_ix_i+\lambda_{k+1}x_{k+1}.$$

Предположим, что $0 < \lambda_{k+1} < 1$, иначе, оно сводится к рассмотренным ранее случаям, тогда мы имеем

$$x = \lambda_{k+1} x_{k+1} + (1 - \lambda_{k+1}) \bar{x},$$

где
$$\bar{x}=\sum_{i=1}^k \gamma_i x_i$$
 и $\gamma_i=\frac{\lambda_i}{1-\lambda_{k+1}}\geq 0, 1\leq i\leq k.$

4. Поскольку $\lambda\in\Delta_{k+1}$, то $\gamma=[\gamma_1,\dots,\gamma_k]\in\Delta_k$. Следовательно, $\bar x\in X$ и по выпуклости f(x) и гипотезе индукции:

$$f\left(\sum_{i=1}^{k+1}\lambda_i x_i\right) = f\left(\lambda_{k+1} x_{k+1} + (1-\lambda_{k+1})\bar{x}\right) \leq \lambda_{k+1} f(x_{k+1}) + (1-\lambda_{k+1}) f(\bar{x}) \leq \sum_{i=1}^{k+1}\lambda_i f(x_i)$$

Таким образом, исходное неравенство выполняется для m=k+1.

Примеры выпуклых функций

- $f(x) = x^p, p > 1, x \in \mathbb{R}_+$
- $f(x) = ||x||^p, \ p > 1, x \in \mathbb{R}^n$
- $f(x) = e^{cx}, c \in \mathbb{R}, x \in \mathbb{R}$
- $\bullet \ f(x) = -\ln x, \ x \in \mathbb{R}_{++}$
- $f(x) = x \ln x, \ x \in \mathbb{R}_{++}$
- Сумма k наибольших координат $f(x) = x_{(1)} + \ldots + x_{(k)}, \; x \in \mathbb{R}^n$
- $f(X) = \lambda_{max}(X), X = X^T$
- $\bullet \ f(X) = -\log \det X, \ X \in S^n_{++}$

Надграфик

Для функции f(x), определенной на $S\subseteq\mathbb{R}^n$, множество:

epi
$$f = \{[x,\mu] \in S \times \mathbb{R} : f(x) \le \mu\}$$

называется **надграфиком** функции f(x).

і Выпуклость надграфика = выпуклость функции

Для того чтобы функция f(x), определенная на выпуклом множестве X, была выпуклой на X, необходимо и достаточно, чтобы надграфик функции f был выпуклым множеством.

Рисунок 9. Надграфик функции

Выпуклость надграфика = выпуклость функции

1. **Необходимость**: Предположим, что f(x) выпукла на X. Возьмем любые две произвольные точки $[x_1,\mu_1]\in {\sf epi} f$ и $[x_2,\mu_2]\in {\sf epi} f$. Также возьмем $0\le\lambda\le 1$ и обозначим $x_\lambda=\lambda x_1+(1-\lambda)x_2, \mu_\lambda=\lambda \mu_1+(1-\lambda)\mu_2$. Тогда,

$$\lambda \begin{bmatrix} x_1 \\ \mu_1 \end{bmatrix} + (1-\lambda) \begin{bmatrix} x_2 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} x_\lambda \\ \mu_\lambda \end{bmatrix}.$$

Из выпуклости множества X следует, что $x_\lambda \in X$. Кроме того, поскольку f(x) выпуклая функция,

$$f(x_\lambda) \leq \lambda f(x_1) + (1-\lambda)f(x_2) \leq \lambda \mu_1 + (1-\lambda)\mu_2 = \mu_\lambda$$

Неравенство выше означает, что $\begin{bmatrix} x_{\lambda} \\ \mu_{\lambda} \end{bmatrix} \in \mathrm{epi}f$. Таким образом, надграфик функции f является выпуклым множеством.

Выпуклость надграфика = выпуклость функции

2. **Достаточность**: Предположим, что надграфик функции f, еріf, является выпуклым множеством. Тогда, из принадлежности точек $[x_1,\mu_1]$ и $[x_2,\mu_2]$ надграфику функции f, следует, что

$$\begin{bmatrix} x_\lambda \\ \mu_\lambda \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \mu_1 \end{bmatrix} + (1-\lambda) \begin{bmatrix} x_2 \\ \mu_2 \end{bmatrix} \in \operatorname{epi} f$$

для любого $0\leq\lambda\leq1$, т.е. $f(x_\lambda)\leq\mu_\lambda=\lambda\mu_1+(1-\lambda)\mu_2$. Но это верно для всех $\mu_1\geq f(x_1)$ и $\mu_2\geq f(x_2)$, в частности, когда $\mu_1=f(x_1)$ и $\mu_2=f(x_2)$. Следовательно, мы приходим к неравенству

$$f(x_\lambda) = f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

Поскольку точки $x_1 \in X$ и $x_2 \in X$ могут быть выбраны произвольно, f(x) является выпуклой функцией на X.

Пример: конус нормы

Пусть норма $\|\cdot\|$ определена в пространстве U. Рассмотрим множество:

$$K := \{(x, t) \in U \times \mathbb{R}^+ : ||x|| \le t\}$$

которое представляет собой надграфик функции $x\mapsto \|x\|$. Это множество называется конусом нормы. Согласно утверждению выше, множество K является выпуклым. \red{e} Код для рисунков

Рисунок 10. Конусы нормы для разных p - норм

Множество подуровня

Рисунок 11. Множество подуровня функции с уровнем eta

Для функции f(x), определенной на $S\subseteq \mathbb{R}^n$, следующее множество:

$$\mathcal{L}_{\beta} = \{ x \in S : f(x) \le \beta \}$$

называется **множеством подуровня** или множеством Лебега функции f(x).

Множество подуровня

Рисунок 11. Множество подуровня функции с уровнем eta

Для функции f(x), определенной на $S\subseteq \mathbb{R}^n$, следующее множество:

$$\mathcal{L}_{\beta} = \{ x \in S : f(x) \le \beta \}$$

называется **множеством подуровня** или множеством Лебега функции f(x).

Обратите внимание, что если функция f(x) выпукла, то ее множества подуровня выпуклы для любого $\beta\in\mathbb{R}.$

Однако **обратное неверно**. (Рассмотрим функцию $f(x) = \sqrt{|x|}$)

Сведение к прямой

 $f:S \to \mathbb{R}$ выпукла тогда и только тогда, когда S выпукло и функция g(t)=f(x+tv) определена на $\{t\mid x+tv\in S\}$ и выпукла для любого $x\in S,v\in \mathbb{R}^n$, что позволяет проверять выпуклость скалярной функции для установления выпуклости векторной функции.

Сведение к прямой

 $f:S \to \mathbb{R}$ выпукла тогда и только тогда, когда S выпукло и функция g(t)=f(x+tv) определена на $\{t\mid x+tv\in S\}$ и выпукла для любого $x\in S,v\in \mathbb{R}^n$, что позволяет проверять выпуклость скалярной функции для установления выпуклости векторной функции.

Если существует направление v для которого g(t) не выпукло, то f не выпукла.

• Поточечный максимум (супремум) любого числа функций: Если $f_1(x),\dots,f_m(x)$ выпуклы, то $f(x)=\max\{f_1(x),\dots,f_m(x)\}$ выпукла.

Рисунок 12. Поточечный максимум (супремум) выпуклых функций выпуклый

- Поточечный максимум (супремум) любого числа функций: Если $f_1(x),\dots,f_m(x)$ выпуклы, то $f(x)=\max\{f_1(x),\dots,f_m(x)\}$ выпукла.
- Неотрицательная сумма выпуклых функций: $\alpha f(x) + \beta g(x), (\alpha > 0, \beta > 0).$

Рисунок 12. Поточечный максимум (супремум) выпуклых функций выпуклый

- Поточечный максимум (супремум) любого числа функций: Если $f_1(x),\dots,f_m(x)$ выпуклы, то $f(x)=\max\{f_1(x),\dots,f_m(x)\}$ выпукла.
- Неотрицательная сумма выпуклых функций: $\alpha f(x) + \beta g(x), (\alpha \geq 0, \beta \geq 0).$
- Композиция с аффинной функцией f(Ax+b) выпукла, если f(x) выпукла.

Рисунок 12. Поточечный максимум (супремум) выпуклых функций выпуклый

- Поточечный максимум (супремум) любого числа функций: Если $f_1(x),\dots,f_m(x)$ выпуклы, то $f(x)=\max\{f_1(x),\dots,f_m(x)\}$ выпукла.
- Неотрицательная сумма выпуклых функций: $\alpha f(x) + \beta g(x), (\alpha \geq 0, \beta \geq 0).$
- Композиция с аффинной функцией f(Ax+b) выпукла, если f(x) выпукла.
- Если f(x,y) выпукла по x для любого $y \in Y$: $g(x) = \sup_{y \in Y} f(x,y)$ также выпукла.

Рисунок 12. Поточечный максимум (супремум) выпуклых функций выпуклый

- Поточечный максимум (супремум) любого числа функций: Если $f_1(x),\dots,f_m(x)$ выпуклы, то $f(x)=\max\{f_1(x),\dots,f_m(x)\}$ выпукла.
- Неотрицательная сумма выпуклых функций: $\alpha f(x) + \beta g(x), (\alpha \geq 0, \beta \geq 0).$
- Композиция с аффинной функцией f(Ax+b) выпукла, если f(x) выпукла.
- Если f(x,y) выпукла по x для любого $y \in Y$: $g(x) = \sup_{y \in Y} f(x,y)$ также выпукла.
- Если f(x) выпукла на S, то g(x,t)=tf(x/t) выпукла с $x/t\in S, t>0.$

Рисунок 12. Поточечный максимум (супремум) выпуклых функций выпуклый

- Поточечный максимум (супремум) любого числа функций: Если $f_1(x),\dots,f_m(x)$ выпуклы, то $f(x)=\max\{f_1(x),\dots,f_m(x)\}$ выпукла.
- Неотрицательная сумма выпуклых функций: $\alpha f(x) + \beta g(x), (\alpha \geq 0, \beta \geq 0).$
- Композиция с аффинной функцией f(Ax+b) выпукла, если f(x) выпукла.
- Если f(x,y) выпукла по x для любого $y \in Y$: $g(x) = \sup_{y \in Y} f(x,y)$ также выпукла.
- Если f(x) выпукла на S, то g(x,t)=tf(x/t) выпукла с $x/t\in S, t>0.$
- Пусть $f_1:S_1 o\mathbb{R}$ и $f_2:S_2 o\mathbb{R}$, где $\mathrm{range}(f_1)\subseteq S_2$. Если f_1 и f_2 выпуклы, и f_2 возрастает, то $f_2\circ f_1$ выпукла на S_1 .

Рисунок 12. Поточечный максимум (супремум) выпуклых функций выпуклый

Функция максимального собственного значения матрицы является выпуклой

i Example

Покажите, что $f(A) = \lambda_{max}(A)$ - выпукла, если $A \in S^n.$

Критерии сильной выпуклости

Дифференциальный критерий выпуклости первого порядка

Дифференцируемая функция f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ выпукла тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \geq f(x) + \nabla f^T(x)(y-x)$$

Пусть $y = x + \Delta x$, тогда критерий запишется в виде:

$$f(x+\Delta x) \geq f(x) + \nabla f^T(x) \Delta x$$

Рисунок 13. Выпуклая функция больше или равна линейной аппроксимации Тейлора в любой точке

Дифференциальный критерий выпуклости второго порядка

Дважды дифференцируемая функция f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ выпукла тогда и только тогда, когда $\forall x\in \mathrm{int}(S)
eq\emptyset$:

$$\nabla^2 f(x) \succeq 0$$

Другими словами, $\forall y \in \mathbb{R}^n$:

$$\langle y, \nabla^2 f(x)y \rangle \geq 0$$

Сильная выпуклость

f(x), определенная на выпуклом множестве $S \subseteq \mathbb{R}^n$, называется μ -сильно выпуклой (сильно выпуклой) на S, если:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) - \frac{\mu}{2}\lambda(1-\lambda)\|x_1 - x_2\|^2$$

для любых $x_1, x_2 \in S$ и $0 \le \lambda \le 1$ для некоторого $\mu > 0$.

Рисунок 14. Сильно выпуклая функция не меньше некоторой параболы в любой точке

Дифференцируемая f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ является μ -сильно выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \geq f(x) + \nabla f^T(x)(y-x) + \frac{\mu}{2}\|y-x\|^2$$

Дифференциальный критерий сильной выпуклости первого порядка

Дифференцируемая f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ является μ -сильно выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \geq f(x) + \nabla f^T(x)(y-x) + \frac{\mu}{2}\|y-x\|^2$$

Пусть $y = x + \Delta x$, тогда критерий запишется в виде:

$$f(x + \Delta x) \ge f(x) + \nabla f^{T}(x) \Delta x + \frac{\mu}{2} \|\Delta x\|^{2}$$

Дифференциальный критерий сильной выпуклости первого порядка

Дифференцируемая f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ является μ -сильно выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \geq f(x) + \nabla f^T(x)(y-x) + \frac{\mu}{2}\|y-x\|^2$$

Пусть $y = x + \Delta x$, тогда критерий запишется в виде:

$$f(x+\Delta x) \geq f(x) + \nabla f^T(x) \Delta x + \frac{\mu}{2} \|\Delta x\|^2$$

1 Theorem

Пусть f(x) дифференцируемая функция на выпуклом множестве $X\subseteq \mathbb{R}^n$. Тогда f(x) сильно выпукла на X с константой $\mu>0$ тогда и только тогда, когда

$$f(x)-f(x_0) \geq \langle \nabla f(x_0), x-x_0 \rangle + \frac{\mu}{2} \|x-x_0\|^2$$

для всех $x, x_0 \in X$.

Пусть $0 < \lambda \le 1$. Согласно определению сильно выпуклой функции,

$$f(\lambda x + (1-\lambda)x_0) \leq \lambda f(x) + (1-\lambda)f(x_0) - \frac{\mu}{2}\lambda(1-\lambda)\|x - x_0\|^2$$

Пусть $0 < \lambda \le 1$. Согласно определению сильно выпуклой функции,

$$f(\lambda x + (1-\lambda)x_0) \leq \lambda f(x) + (1-\lambda)f(x_0) - \frac{\mu}{2}\lambda(1-\lambda)\|x - x_0\|^2$$

или эквивалентно,

$$f(x) - f(x_0) - \frac{\mu}{2}(1-\lambda)\|x - x_0\|^2 \geq \frac{1}{\lambda}[f(\lambda x + (1-\lambda)x_0) - f(x_0)] = \frac{1}{\lambda}[f(x) -$$

Пусть $0 < \lambda \le 1$. Согласно определению сильно выпуклой функции,

$$f(\lambda x + (1-\lambda)x_0) \leq \lambda f(x) + (1-\lambda)f(x_0) - \frac{\mu}{2}\lambda(1-\lambda)\|x - x_0\|^2$$

или эквивалентно,

$$\begin{split} f(x) - f(x_0) - \frac{\mu}{2} (1 - \lambda) \|x - x_0\|^2 &\geq \frac{1}{\lambda} [f(\lambda x + (1 - \lambda) x_0) - f(x_0)] = \\ &= \frac{1}{\lambda} [f(x_0 + \lambda (x - x_0)) - f(x_0)] = \frac{1}{\lambda} [\lambda \langle \nabla f(x_0), x - x_0 \rangle + o(\lambda)] = \end{split}$$

Пусть $0 < \lambda \le 1$. Согласно определению сильно выпуклой функции,

$$f(\lambda x + (1-\lambda)x_0) \leq \lambda f(x) + (1-\lambda)f(x_0) - \frac{\mu}{2}\lambda(1-\lambda)\|x - x_0\|^2$$

или эквивалентно,

$$\begin{split} f(x)-f(x_0)-\frac{\mu}{2}(1-\lambda)\|x-x_0\|^2 &\geq \frac{1}{\lambda}[f(\lambda x+(1-\lambda)x_0)-f(x_0)] = \\ &= \frac{1}{\lambda}[f(x_0+\lambda(x-x_0))-f(x_0)] = \frac{1}{\lambda}[\lambda\langle\nabla f(x_0),x-x_0\rangle+o(\lambda)] = \\ &= \langle\nabla f(x_0),x-x_0\rangle+\frac{o(\lambda)}{\lambda}. \end{split}$$

Таким образом, переходя к пределу при $\lambda \downarrow 0$, мы приходим к исходному утверждению.

Предположим, что неравенство в теореме выполняется для всех $x,x_0\in X$. Возьмем $x_0=\lambda x_1+(1-\lambda)x_2$, где $x_1,x_2\in X$, $0\le\lambda\le 1$. Согласно неравенству, следующие неравенства выполняются:

Предположим, что неравенство в теореме выполняется для всех $x,x_0\in X$. Возьмем $x_0=\lambda x_1+(1-\lambda)x_2$, где $x_1,x_2\in X$, $0\le\lambda\le 1$. Согласно неравенству, следующие неравенства выполняются:

$$\begin{split} f(x_1) - f(x_0) & \geq \langle \nabla f(x_0), x_1 - x_0 \rangle + \frac{\mu}{2} \|x_1 - x_0\|^2, \\ f(x_2) - f(x_0) & \geq \langle \nabla f(x_0), x_2 - x_0 \rangle + \frac{\mu}{2} \|x_2 - x_0\|^2. \end{split}$$

Предположим, что неравенство в теореме выполняется для всех $x,x_0\in X$. Возьмем $x_0=\lambda x_1+(1-\lambda)x_2$, где $x_1,x_2\in X$, $0\le\lambda\le 1$. Согласно неравенству, следующие неравенства выполняются:

$$\begin{split} f(x_1) - f(x_0) &\geq \langle \nabla f(x_0), x_1 - x_0 \rangle + \frac{\mu}{2} \|x_1 - x_0\|^2, \\ f(x_2) - f(x_0) &\geq \langle \nabla f(x_0), x_2 - x_0 \rangle + \frac{\mu}{2} \|x_2 - x_0\|^2. \end{split}$$

Умножая первое неравенство на λ и второе на $1-\lambda$ и складывая их, учитывая, что

$$x_1-x_0=(1-\lambda)(x_1-x_2), \quad x_2-x_0=\lambda(x_2-x_1),$$

Предположим, что неравенство в теореме выполняется для всех $x,x_0\in X$. Возьмем $x_0=\lambda x_1+(1-\lambda)x_2$, где $x_1,x_2\in X$, $0\le\lambda\le 1$. Согласно неравенству, следующие неравенства выполняются:

$$\begin{split} f(x_1) - f(x_0) & \geq \langle \nabla f(x_0), x_1 - x_0 \rangle + \frac{\mu}{2} \|x_1 - x_0\|^2, \\ f(x_2) - f(x_0) & \geq \langle \nabla f(x_0), x_2 - x_0 \rangle + \frac{\mu}{2} \|x_2 - x_0\|^2. \end{split}$$

Умножая первое неравенство на λ и второе на $1-\lambda$ и складывая их, учитывая, что

$$x_1-x_0=(1-\lambda)(x_1-x_2), \quad x_2-x_0=\lambda(x_2-x_1),$$

и $\lambda(1-\lambda)^2+\lambda^2(1-\lambda)=\lambda(1-\lambda)$, мы получаем

$$\begin{split} \lambda f(x_1) + (1-\lambda)f(x_2) - f(x_0) - \frac{\mu}{2}\lambda(1-\lambda)\|x_1 - x_2\|^2 \geq \\ \langle \nabla f(x_0), \lambda x_1 + (1-\lambda)x_2 - x_0 \rangle = 0. \end{split}$$

Таким образом, неравенство из определения сильно выпуклой функции выполняется. Важно отметить, что $\mu=0$ соответствует случаю выпуклой функции и соответствующему дифференциальному критерию.

Дважды дифференцируемая функция f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ называется μ -сильно выпуклой тогда и только тогда, когда $\forall x\in \mathrm{int}(S)\neq\emptyset$:

$$\nabla^2 f(x) \succeq \mu I$$

Другими словами:

$$\langle y, \nabla^2 f(x)y \rangle \geq \mu \|y\|^2$$

Дважды дифференцируемая функция f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ называется μ -сильно выпуклой тогда и только тогда, когда $\forall x\in \mathrm{int}(S)\neq\emptyset$:

$$\nabla^2 f(x) \succeq \mu I$$

Другими словами:

$$\langle y, \nabla^2 f(x)y \rangle \geq \mu \|y\|^2$$

1 Theorem

Пусть $X\subseteq\mathbb{R}^n$ выпуклое множество, с $\operatorname{int} X\neq\emptyset$. Кроме того, пусть f(x) дважды непрерывно дифференцируемая функция на X. Тогда f(x) сильно выпукла на X с константой $\mu>0$ тогда и только тогда, когда

$$\langle y, \nabla^2 f(x)y \rangle \geq \mu \|y\|^2$$

для всех $x \in X$ и $y \in \mathbb{R}^n$.

Целевое неравенство тривиально, когда $y=\mathbf{0}_n$, поэтому мы предполагаем $y\neq\mathbf{0}_n$.

Предположим, что x является внутренней точкой множества X. Тогда $x+\alpha y\in X$ для всех $y\in \mathbb{R}^n$ и достаточно малых α . Поскольку f(x) дважды дифференцируема,

$$f(x+\alpha y) = f(x) + \alpha \langle \nabla f(x), y \rangle + \frac{\alpha^2}{2} \langle y, \nabla^2 f(x) y \rangle + o(\alpha^2).$$

Целевое неравенство тривиально, когда $y=\mathbf{0}_n$, поэтому мы предполагаем $y \neq \mathbf{0}_n$.

Предположим, что x является внутренней точкой множества X. Тогда $x+\alpha y\in X$ для всех $y\in \mathbb{R}^n$ и достаточно малых α . Поскольку f(x) дважды дифференцируема,

$$f(x+\alpha y) = f(x) + \alpha \langle \nabla f(x), y \rangle + \frac{\alpha^2}{2} \langle y, \nabla^2 f(x) y \rangle + o(\alpha^2).$$

На основании первого дифференциального критерия сильной выпуклости:

$$\frac{\alpha^2}{2}\langle y, \nabla^2 f(x)y\rangle + o(\alpha^2) = f(x+\alpha y) - f(x) - \alpha \langle \nabla f(x), y\rangle \geq \frac{\mu}{2}\alpha^2\|y\|^2.$$

Это неравенство сводится к целевому неравенству после деления обеих сторон на $lpha^2$ и перехода к пределу при $lpha\downarrow 0$.

Если $x\in X$ но $x\notin \mathrm{int}X$, рассмотрим последовательность $\{x_k\}$ такую, что $x_k\in \mathrm{int}X$ и $x_k\to x$ при $k\to\infty$. Тогда, мы приходим к целевому неравенству после перехода к пределу.

Используя формулу Тейлора с остаточным членом Лагранжа и целевое неравенство, мы получаем для $x+y\in X$:

$$f(x+y) - f(x) - \langle \nabla f(x), y \rangle = \frac{1}{2} \langle y, \nabla^2 f(x+\alpha y) y \rangle \geq \frac{\mu}{2} \|y\|^2,$$

где $0 \leq \alpha \leq 1$. Следовательно,

Используя формулу Тейлора с остаточным членом Лагранжа и целевое неравенство, мы получаем для $x+y\in X$:

$$f(x+y) - f(x) - \langle \nabla f(x), y \rangle = \frac{1}{2} \langle y, \nabla^2 f(x+\alpha y) y \rangle \geq \frac{\mu}{2} \|y\|^2,$$

где $0 \le \alpha \le 1$. Следовательно,

$$f(x+y) - f(x) \ge \langle \nabla f(x), y \rangle + \frac{\mu}{2} ||y||^2.$$

Следовательно, согласно первому дифференциальному критерию сильной выпуклости, функция f(x) сильно выпукла с константой μ . Важно отметить, что $\mu=0$ соответствует случаю выпуклой функции и соответствующему дифференциальному критерию.

Выпуклая и вогнутая функция

i Example

Покажите, что $f(x) = c^{\top}x + b$ выпукла и вогнута.

Простейшая сильно выпуклая функция

i Example

Покажите, что $f(x) = x^{\top}Ax$, где $A \succeq 0$ - выпукла на \mathbb{R}^n . Является ли она сильно выпуклой?

Выпуклость и непрерывность

Пусть f(x) - выпуклая функция на выпуклом множестве $S\subseteq\mathbb{R}^n.$ Тогда f(x) непрерывна $\forall x\in {\bf ri}(S).$

🕯 Собственная выпуклая функция

Функция $f:\mathbb{R}^n \to \mathbb{R}$ называется **собственной** выпуклой функцией, если она никогда не принимает значения $-\infty$ и не равна ∞ тождественно.

і Индикаторная функция

$$\delta_S(x) = \begin{cases} \infty, & x \in S, \\ 0, & x \notin S, \end{cases}$$

является собственной выпуклой функцией.

Выпуклость и непрерывность

Пусть f(x) - выпуклая функция на выпуклом множестве $S\subseteq\mathbb{R}^n.$ Тогда f(x) непрерывна $\forall x\in {\bf ri}(S).$

🕯 Собственная выпуклая функция

Функция $f:\mathbb{R}^n \to \mathbb{R}$ называется собственной выпуклой функцией, если она никогда не принимает значения $-\infty$ и не равна ∞ тождественно.

Индикаторная функция

$$\delta_S(x) = \begin{cases} \infty, & x \in S, \\ 0, & x \notin S, \end{cases}$$

является собственной выпуклой функцией.

🕯 Замкнутая функция

Функция $f:\mathbb{R}^n o\mathbb{R}$ называется **замкнутой**, если для каждого $lpha\in\mathbb{R}$, множество подуровня замкнуто.

Эквивалентно, если надграфик замкнут, то функция f замкнута.

Рисунок 15. Выпуклые функции могут иметь разрывы на границе своей области определения.

Факты о выпуклости

- f(x) называется (строго, сильно) вогнутой, если функция -f(x) (строго, сильно) выпукла.
- Неравенство Йенсена для выпуклых функций:

$$f\left(\sum_{i=1}^n \alpha_i x_i\right) \leq \sum_{i=1}^n \alpha_i f(x_i)$$

для $\alpha_i \geq 0; \quad \sum\limits_{i=1}^n \alpha_i = 1$ (вероятностный симплекс)

Для непрерывного случая:

$$f\left(\int\limits_{S}xp(x)dx\right)\leq\int\limits_{S}f(x)p(x)dx$$

Если интегралы существуют и $p(x) \geq 0, \quad \int\limits_S p(x) dx = 1.$

• Если функция f(x) и множество S выпуклы, то любой локальный минимум $x^* = \arg\min_{x \in S} f(x)$ будет глобальным. Сильная выпуклость гарантирует единственность решения.

Другие формы выпуклости

- Логарифмическая выпуклость: $\log f$ выпукла; Логарифмическая выпуклость влечет выпуклость.
- Логарифмическая вогнутость: $\log f$ вогнута; **не** замкнута относительно сложения!
- Экспоненциальная выпуклость: $[f(x_i+x_j)]\succeq 0$, для x_1,\ldots,x_n
- Операторная выпуклость: $f(\lambda X + (1 \check{\lambda})Y)$
- Квазивыпуклость: $f(\lambda x + (1-\lambda)y) \leq \max\{f(x), f(y)\}$
- Псевдовыпуклость: $\langle \nabla f(y), x-y \rangle \geq 0 \longrightarrow f(x) \geq f(y)$
- Дискретная выпуклость: $f:\mathbb{Z}^n o \mathbb{Z}$; "выпуклость + теория матроидов."

Условие Поляка-Лоясиевича. Линейная сходимость градиентного спуска без выпуклости

Неравенство PL выполняется, если выполняется следующее условие для некоторого $\mu>0$,

$$\|\nabla f(x)\|^2 \geq 2\mu (f(x) - f^*) \forall x$$

При выполнении условия PL алгоритм градиентного спуска имеет линейную сходимость.

Следующие функции удовлетворяют условию PL, но не являются выпуклыми. 🗣 Ссылка на код

$$f(x) = x^2 + 3\sin^2(x)$$

Условие Поляка-Лоясиевича. Линейная сходимость градиентного спуска без выпуклости

Неравенство PL выполняется, если выполняется следующее условие для некоторого $\mu > 0$,

$$\|\nabla f(x)\|^2 \geq 2\mu (f(x) - f^*) \forall x$$

При выполнении условия PL алгоритм градиентного спуска имеет линейную сходимость.

Следующие функции удовлетворяют условию PL, но не являются выпуклыми. Ссылка на код

$$f(x) = x^2 + 3\sin^2(x)$$

Function, that satisfies
Polyak- Lojasiewicz condition

8

6 $(x) = x^2 + 3sin^2(x)$ 2

0 $(x) = x^2 + 3sin^2(x)$ $(x) = x^2 + 3sin^2(x)$

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Non-convex PL function

Выпуклость в машинном обучении

Метод наименьших квадратов aka линейная регрессия

Рисунок 18. Иллюстрация

В задаче линейной регрессии у нас есть измерения $X\in\mathbb{R}^{m\times n}$ и $y\in\mathbb{R}^m$ и мы ищем вектор $\theta\in\mathbb{R}^n$ такой, что $X\theta$ близок к y. Близость определяется как сумма квадратов разностей:

$$\sum_{i=1}^m (x_i^\top \theta - y_i)^2 = \|X\theta - y\|_2^2 \to \min_{\theta \in \mathbb{R}^n}$$

Например, рассмотрим набор данных, содержащий m пользователей, каждый из которых представлен n признаками. Каждая строка x_i^{\top} матрицы признаков X соответствует признакам пользователя i, а соответствующий элемент y_i вектора откликов y представляет собой измеряемую величину, которую мы хотим предсказать на основе x_i^{\top} , например, расходы на рекламу. Предсказание значения осуществляется по формуле $x_i^{\top}\theta$.

Метод наименьших квадратов aka линейная регрессия ¹

1. Является ли эта задача выпуклой? Сильно выпуклой?

Метод наименьших квадратов aka линейная регрессия ¹

- 1. Является ли эта задача выпуклой? Сильно выпуклой?
- 2. Что вы думаете о сходимости градиентного спуска для этой задачи?

l_2 -регуляризованный метод наименьших квадратов

В случае недоопределенной задачи может возникнуть желание восстановить сильную выпуклость целевой функции, добавив l_2 -штраф, также известный как регуляризация Тихонова, l_2 -регуляризация или демпфирование весов.

$$\|X\theta-y\|_2^2+\frac{\mu}{2}\|\theta\|_2^2\to \min_{\theta\in\mathbb{R}^n}$$

Примечание: С этой модификацией целевая функция снова становится μ -сильно выпуклой.

Посмотрите на 🗣 код

Наиболее важная разница между выпуклостью и сильной выпуклостью

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \frac{\mu}{2} \|x\|_2^2 \rightarrow \min_{x \in \mathbb{R}^n}, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Convex least squares regression. m=50. n=100. mu=0.

Наиболее важная разница между выпуклостью и сильной выпуклостью

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \frac{\mu}{2} \|x\|_2^2 \rightarrow \min_{x \in \mathbb{R}^n}, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Strongly convex least squares regression. m=50. n=100. mu=0.1.

Наиболее важная разница между выпуклостью и сильной выпуклостью

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \frac{\mu}{2} \|x\|_2^2 \to \min_{x \in \mathbb{R}^n}, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Strongly convex least squares regression. m=100. n=50. mu=0.

Для сходимости к решению с высокой точностью необходима сильная выпуклость (или выполнение условия Поляка-Лоясиевича).

Рисунок 22. Лишь небольшая точность может быть достигнута с сублинейной сходимостью

Для сходимости к решению с высокой точностью необходима сильная выпуклость (или выполнение условия Поляка-Лоясиевича).

Рисунок 23. Сильная выпуклость обеспечивает линейную сходимость

Любой локальный минимум является глобальным минимумом для глубоких линейных сетей 2

Рассмотрим следующую задачу оптимизации:

$$\min_{W_1,\dots,W_L} L(W_1,\dots,W_L) = \frac{1}{2} \|W_L W_{L-1} \cdots W_1 X - Y\|_F^2,$$

где

 $X \in \mathbb{R}^{d_x imes n}$ - матрица данных/входных данных,

 $Y \in \mathbb{R}^{d_y imes n}$ - матрица меток/выходных данных.

i Theorem

Пусть $k = \min(d_x, d_y)$ - "ширина" сети, и определим

$$V = \{(W_1, \ldots, W_L) \mid \mathrm{rank}(\Pi_i W_i) = k\}.$$

Тогда каждая критическая точка L(W) в V является глобальным минимумом, в то время как каждая критическая точка в дополнении V^c является седловой точкой.

²Глобальные условия оптимальности для глубоких нейронных сетей