Kirchhoff's laws

Experiment no. <u>Date:</u>

Aim:

• To verify Kirchhoff's current law (KCL) and Kirchhoff's voltage law (KVL) **Objectives:**

- To calculate voltage and current in a DC circuit for each element analytically
- To measure voltage and current in a DC circuit for each element practically
- To compare analytical and practical values
- To verify KVL and KCL

Apparatus Required:

S.No.	Name of the	Range	Type	Quantity
	Components/Equipment			required
1	Resistor	100Ω , 560Ω ,	Wire	Each 1
		$270~\Omega$	wound	
2	DC power supply	(0-30) V	RPS	1
3	Voltmeter	(0-15) V	MC	1
4	Ammeter	(0-100) mA	MC	1
5	Wires	-	Single	As
			strand	required
6	Bread board	-	-	1

Circuit Diagram:

Formulae:

Voltage division rule

$$V_1 = V \, \frac{R_1}{R_1 + R_2}$$

$$V_2 = V \; \frac{R_2}{R_1 + R_2}$$

Current division rule

$$I_1 = I \; \frac{R_2}{R_1 + R_2}$$

$$I_2 = I \, \frac{R_1}{R_1 + R_2}$$

Theory:

KCL

The algebraic sum of currents in a node is zero (OR) At any node (junction) in an electrical circuit, the sum of the currents entering the node is equal to the sum of the currents leaving the node.

KVL

The sum of the electrical potential differences (voltage) around any closed path is zero. (OR)

The sum of the potential rises in any closed loop equal to the sum of the potential drops in that loop.

Analytical calculation:

KCL:

Find the current through each element by circuit simplification method

 R_2 and R_L are in parallel and the combination is in series with R_1

$$R_T = [560*270/(560+270)] \ + \ 100 \ = \ 151200/830 \ + \ 100 \ = \ 182.17 \ + \ 100 \ = \ 282.17 \ \Omega$$

$$I_T = 15/282.17 = 0.05316 = 53.16 \ mA$$

Current through R1 is 53.16 mA

Apply current division rule to find current through R₂

$$I_2 = I_T * R_L / (R_2 + R_L) = 53.16 * 270 / (270 + 560) = 17.29 \text{ mA}$$

Current through resistor R_L is $I_L = 53.16 \text{ mA} - 17.29 \text{ mA} = 35.87 \text{ mA}$

KVL:

Find the voltage across each element

$$\begin{split} V_1 &= I_T * R_1 = 53.16 \text{ mA} * 100 = 5316 \text{ mV} = 5.32 \text{ V} \\ V_2 &= R_2 * I_2 = 17.29 \text{ mA} * 560 = 9682.4 \text{ mV} = 9.68 \text{ V} \\ (OR) \ V_2 &= V_s - V_1 = 15 - 5.32 = 9.68 \text{ V} \\ V_2 &= V_L = 9.68 \text{ V} \end{split}$$

Practical Circuit Diagram:

KCL

KVL

Procedure

KCL

- Connections are given as per circuit diagram.
- Supply voltage is given using regulated power supply.
- The ammeter readings are noted and tabulated.

KVL

- Connections are given as per circuit diagram.
- Supply voltage is given using regulated power supply.
- The voltmeter readings are noted and tabulated.

Tabulation:

Kirchhoff's current law:

S. No	V _s (V)	I _T (mA)		I ₂ (mA)		I _L (mA)	
		Theo	Prac	Theo	Prac	Theo	Prac

Kirchhoff's voltage law:

S. No	V _s (V)	I _T (mA)		I ₂ (mA)		I _L (mA)	
		Theo	Prac	Theo	Prac	Theo	Prac

LTspice simulation

Procedure:

• open a new file

• Select DC voltage source from components list

- Track and paste it
- right click to feed voltage value
- Take resistor from the components list
- right click to feed resistor value and rename the components as per the components name in circuit diagram

- connect the components using connector
- save the file
- Edit simulate cmd

- choose DC op ppt
- run the file
- results will be displayed
- verify it with theoretical value

To see current and voltage waveform graphically

- Edit simulate cmd
- select transient
- specify the stop time
- click 'ok'

- run the file
- keep the cursor in source point to see the source voltage waveform and measure it

- right click in the plot and add plot pane to open another window
- keep the cursor in R₁ and R₂ junction point to see the voltage waveform across R₂ and measure it

- right click in the plot and add plot pane to open another window
- hold the cursor across R_1 t to see the voltage waveform across R_1 and measure it

- hold the cursor through R₂ t to see the current waveform and measure it
- similarly, add plot pane and measure current through each element
- compare theoretical and simulation results

Result:

- Voltage and current in a DC circuit for each element are calculated analytically
- Voltage and current in a DC circuit for each element are measured practically
- Analytical and practical values are compared
- KVL and KCL are verified

Inference: