Laplacian

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} \tag{1}$$

Report 1.12

U は連結とする。関数 u は U 上で C^2 -級、 \overline{U} 上で C^1 -級であり、次を満たしているとする。

$$\Delta u = 0 \text{ (in } U), \ u = g \text{ (on } \partial U, \ g \ge 0)$$
 (2)

g が ∂U 上のどこかで正であるなら u は U 内で常に正であることを示せ。

.....

 \overline{U} 上で C^1 -級であるので、u は連続である。この為、ある点 $x_0 \in \overline{U}$ が存在し、 $u(x_0)$ は最小となる。つまり、 $u(x_0) \leq u(x)$ ($\forall x \in \overline{U}$) である。

もし、 $x_0 \in \partial U$ であれば、 $u(x_0) = g(x_0) \ge 0$ であり、 $0 \le u(x_0) \le u(x)$ となる。

もし、 $x_0 \in U$ であれば、u は U で定数関数となる。 ∂U にて $g \leq 0$ なる点があるので $u \geq 0$ である。

Report 1.13

$$\tilde{u} = \int_{\mathbb{D}_n} \Phi(x - y) f(y) dy \tag{3}$$

n=2 のとき、 \tilde{u} は有界ではないことを示せ。

.....

調和関数 $\Phi(x)$ は n=2 において $\Phi(x)=-rac{1}{2\pi}\log|x|$ である。

|x| がそれぞれ 0 と ∞ に飛ばした場合、 $\Phi(x)\to\infty$ $(|x|\to0)$ と $\Phi(x)\to-\infty$ $(|x|\to\infty)$ であるので、 $|\Phi(x)|\to\infty$ である。

$$\tilde{u} = \int_{\mathbb{R}^2} \Phi(x - y) f(y) dy = \int_{\mathbb{R}^2} \Phi(y) f(x - y) dy \tag{4}$$

Report 1.14

n=2, N=3のとき、次の式を示せ。

$$u(x) - \sum_{k=0}^{N-1} \sum_{|\alpha|=k} \frac{D^{\alpha} u(x_0)(x - x_0)^{\alpha}}{\alpha!} = \sum_{|\alpha|=N} \frac{D^{\alpha} u(x_0 + t(x - x_0))(x - x_0)^{\alpha}}{\alpha!}$$
(5)

.....