1.5 PÔSOBENIE MAGNETICKÉHO POĽA NA ČASTICU S NÁBOJOM

1. Odvoďte vzorec pre polomer kružnicovej trajektórie častice s nábojom v homogénnom magnetickom poli.

Riešenie:
$$F_m = B \times I \times l \times \sin 90^\circ$$

$$F_m = B \times \frac{Q}{t} \times l \times 1$$

$$F_m = B \times Q \times v$$

$$F_m = F_{OD}$$

$$F_m = B \times Q \times v = \frac{m \times v^2}{r} /: v$$

$$F_m = B \times Q \times v$$

$$F_m = B \times Q \times v = \frac{m \times v}{r}$$

$$F_m = B \times Q \times v$$

$$F_m = B \times Q \times v = \frac{m \times v}{r}$$

2. Akou rýchlosťou sa pohyboval protón ($m_p = 1,673.10^{-27}$ kg, $Q_p = 1,602.10^{-19}$ C) v magnetickom poli (B = 1 T), ak jeho trajektória bola kružnica s polomerom r = 60 cm. S akou frekvenciou obiehal protón po kružnici?

3. Akú kinetickú energiu má protón ($m_p = 1,673.10^{-27}$ kg, $Q_p = 1,602.10^{-19}$ C), ktorý sa pohybuje po kružnici s priemerom 20cm v homogénnom magnetickom poli s B = 0,1 T, kolmo na indukčné čiary.

 $v = 9.58 \times 10^5 \, ms^{-1}$

Zápis: Riešenie:
$$m_{p} = 1,673.10^{-27} \text{kg}$$

$$Q_{p} = 1,602.10^{-19} \text{C}$$

$$d = 20 \text{ cm}$$

$$=> r = 10 \text{ cm} = 0,1 \text{ m}$$

$$B = 0,1 \text{ T}$$

$$E_{k} = ?$$

$$v = \frac{0,1 \times 1,602 \times 10^{-19} \times 0,1}{1,673 \times 10^{-27}}$$

$$E_{k} = \frac{1}{2} \times m \times v^{2}$$

$$E_{k} = \frac{1}{2} \times 1,673 \times 10^{-27} \times (9,58 \times 10^{5})^{2}$$

$$E_{k} = 76,77 \times 10^{-17} \text{ J}$$

4. Akú veľkosť musí mať magnetická indukcia homogénneho magnetického poľa, aby sa v ňom elektrón s hmotnosťou $9,1.10^{-31}$ kg a nábojom $1,602.10^{-19}$ C pohyboval po kružnici s polomerom r = 40 cm rýchlosťou v = $3,8.10^7$ m.s⁻¹. Aká bude kinetické energia elektrónu?

5. Elektrón ($m_e = 9,1.10^{-31}$ kg, $Q_e = 1,602.10^{-19}$ C) po urýchlení v elektrickom poli s U = 100 V vletí do homogénneho magnetického poľa s B = 10 mT kolmo na indukčné čiary. Po akej trajektórii sa bude elektrón pohybovať?

Zápis: Riešenie:
$$m_{e} = 9,1.10^{-31} \, \text{kg}$$

$$Q_{e} = 1,602.10^{-19} \, \text{C}$$

$$U = 100 \, \text{V}$$

$$B = 10 \, \text{mT} = 10^{-2} \, \text{T}$$

$$v^{2} = \frac{2 \times Q \times U}{m}$$

$$r = \frac{m \times v}{Q \times B}$$

$$r = \frac{m \times 5,93 \times 10^{6}}{1,602 \times 10^{-19} \times 10^{-2}}$$

$$r = 3,37 \times 10^{-3} \, m$$

$$r = 3,37 \, mm$$

$$v = 5,93 \times 10^{6} \, ms^{-1}$$

- 6. Vypočítajte polomer kružnice trajektórie elektrónu, ktorý vletel do homogénneho magnetického poľa s magnetickou indukciou 0,000 12 T, kolmo na indukčné čiary, rýchlosťou $3 \cdot 10^6 \, \text{ms}^{-1}$. [r = 0,14 m]
- 7. Elektrón s nábojom 1,6.10⁻¹⁹ C a hmotnosťou 9,11.10⁻³¹ kg vletí do homogénneho magnetického poľa kolmo na smer indukcie magnetického poľa. Rýchlosť elektrónu je 2.10⁶ ms⁻¹ a veľkosť magnetickej indukcie je 5.10⁻³ T. Urč, akou silou pôsobí magnetické pole na elektrón. Aký je polomer kruhového pohybu elektrónu? [F = 1,6×10⁻¹⁵ N; r = 2,28.10⁻³ m]
- 8. Akou rýchlosťou by sa musel pohybovať protón ($m_p = 1,673.10^{-27}$ kg, $Q_p = 1,602.10^{-19}$ C) v magnetickom poli Zeme ($B = 5.10^{-5}$ T tabuľky) kolmo na indukčné čiary, aby sa veľkosť magnetickej sily rovnala veľkosti sily, ktorou naň pôsobí tiažová sila? [$v = 2,1.10^{-3}$ ms⁻¹]

- 9. Do homogénneho magnetického poľa s B = 2.10^{-5} T vo vákuu vletel protón (m_p = $1,673.10^{-27}$ kg, Q_p = $1,602.10^{-19}$ C) v smere kolmom na indukčné čiary. Aká bude frekvencia jeho pohybu po kružnici? [f = 300 Hz]
- 10. Dva elektróny pohybujúce sa rovnakými rýchlosťami vlietli do dvoch homogénnych magnetických polí ($B_1 = 0.1 \text{ T}$, $B_2 = 0.2 \text{ T}$)a začali sa pohybovať po kružnicových trajektóriách. Určite pomer ich obežných dôb (periód) $T_1 : T_2 : [2:1, T_1=2.T_2]$
- 11. Elektrón sa začal pohybovať z pokoja a po prechode rozdielom potenciálov 220 V vlietol kolmo na indukčné čiary do homogénneho magnetického poľa magnetickej indukcie 5 mT. V magnetickom poli sa elektrón pohyboval po kruhovej trajektórii s polomerom 1 cm. Určite hmotnosť elektrónu. [m = 9,1.10⁻³¹ kg]
- 12. Protón sa pohybuje v homogénnom magnetickom poli. Veľkosť magnetickej indukcie poľa je 15 mT, hmotnosť protónu $m_p = 1,67.10^{-27}$ kg, jeho náboj $Q_p = 1,602.10^{-19}$ C. Určite polomer jeho kružnicovej dráhy r, ak rýchlosť protónu je 2.10^6 m.s⁻¹. [r = 1,4 m]
- 13. Častica ktorej náboj je Q = $1,602.10^{-19}$ C vletela do homogénneho magnetického poľa s magnetickou indukciou 10^{-2} T. V tomto magnetickom poli sa pohybuje po kružnici s polomerom r = $0,45.10^{-2}$ m. Určite veľkosť hybnosti častice. [p = $7,2.10^{-24}$ kg.m.s⁻¹]
- 14. Protón sa pohybuje rýchlosťou $1.10^6 \text{m.s}^{-1} \text{ v}$ homogénnom magnetickom poli s magnetickou indukciou 1 T. Aká sila pôsobí na protón ($m_p = 1,673.10^{-27} \text{kg}$, $Q_P = 1,602.10^{-19} \text{C}$)? Po akej trajektórii sa bude pohybovať protón? [$F = 1,602.10^{-13} \text{N}$, r = 1,044 cm]
- 15. Aké musí byť napätie medzi anódou a katódou v sklenenej trubici, aby svietiaca kružnicová stopa vyznačujúca trajektóriu elektrónov v trubici mala polomer $r = 5.10^{-2}$ m. Indukcia magnetického poľa v trubici je $B = 8,2.10^{-4}$ T. [U = 148 V]
- 16. Častica α sa pohybuje po kruhovej dráhe s polomerom r = 4,5 cm v homogénnom magnetickom poli s magnetickou indukciou B = 1,2 T. Vypočítajte jej rýchlosť a jej periódu pohybu. [v = 2,6.10⁶ m.s⁻¹; T = 10,86.10⁻⁸ s]
- 17. Zväzok protónov sa pohybuje vo vákuovej trubici tak , že ich rýchlosť je v = 0,1 c. Elektrostatická sila $F_e = 3.10^{-13}\,\text{N}$. Akú hodnotu má pomer E/B ak výsledná sila pôsobiaca na protón je nulová? Akú veľkosť má magnetická indukcia B? [v; B = 0,062 T]
- 18. Medzi anódou a katódou elektrónového dela vo vákuovanej katódovej trubici letia elektróny rýchlosťou v 9,19.10⁶ m.s⁻¹. Vzájomná vzdialenosť doštičiek je d = 1 cm s napätím U = 10 V. Vypočítajte veľkosť magnetickej indukcie B homogénneho magnetického poľa, pri ktorej sa elektróny nebudú odchyľovať od osi trubice. [B = 0,11 mT]
- 19. Protón a častica α (m_{He} = 4.m_p, Q_{He} = 2.Q_p) vleteli do homogénneho magnetického poľa kolmo na indukčné čiary. Porovnajte polomery kruhových trajektórií častíc, ak častice majú rovnakú rýchlosť. [r_{He} = 2.r_p]
- 20. Do homogénneho magnetického poľa s B = 10 mT vletel kolmo na indukčné čiary elektrón s kinetickou energiou E_k = 30 keV. Určite polomer kruhovej trajektórie elektrónu r. [r = 5,83 cm]