Aufgabe 1: Phasenverschiebung durch Gravitation (6 Punkte)

Ein Teilchen mit Energie $E=\hbar^2k^2/2m$ bewege sich im Gravitationspotential V(z)=mgz von einem Punkt A bei $x=0,\,z=0$ zu einem Punkt D bei x=l und z=h auf jeweils geraden Wegen entweder über den Punkt B mit $x=0,\,z=h$ oder über den Punkt C bei $x=l,\,z=0$.

- a) Berechnen Sie den Unterschied $\varphi_{BD} \varphi_{AC}$ in der Phasendifferenz φ_{BD} bzw. φ_{AC} der stationären Wellenfunktion $\psi(x) = |\psi| \exp i\varphi(x)$ bei der Bewegung entlang der Wege BD und AC als Funktion von m, g, l, h und dem Wellenvektor $k = 2\pi/\lambda$ in x-Richtung des bei A einfallenden Teilchens unter der Annahme, dass die Wellenfunktion jeweils eine ebene Welle ist und $E \gg mgh$ gilt.
 - Hinweis: Beachten Sie, dass der Wellenvektor bei fester Gesamtenergie E von z abhängt. Die Phasendifferenz φ_{BD} ist definiert durch $\varphi_{BD} = [\varphi(x=l) \varphi(x=0)]_{z=h}$ und analog für φ_{AC} bei z=0.
- b) Bestimmen Sie die Periodizität Δh in der Höhendifferenz h, nach der sich das am Punkt D ergebende Interferenzmuster proportional zu $\cos(\varphi_{ABD} \varphi_{ACD})$ wiederholt. Wie gross ist Δh für Neutronen mit Wellenlänge $\lambda = 1.4$ Å und l = 5 cm? (Verwenden Sie $(2\pi\hbar)/m_n \approx 4 \cdot 10^{-3}$ cm²/sec).

Hinweis: Da die Gesamtenergie E und das Potential auf den Abschnitten AB und CD identisch sind, fallen die Änderungen der Phase auf diesen Abschnitten in der gesamten Phasendifferenz φ_{ABD} – φ_{ACD} der beiden Wege heraus.

Bemerkung: Die Rechnung ist die Grundlage für das berühmte, sogenannte 'COW'-Experiment von Colella, Overhauser und Werner, Phys. Rev. Lett. **34**, 1472 (1975).

Aufgabe 2: GHZ-Zustände, reduzierte Dichtematrix (6 Punkte)

Ein einfaches Beispiel für einen maximal verschränkten Zustand von $N \geq 2$ Spins ist der sogenannte Greenberger-Horne-Zeilinger (GHZ)-Zustand

$$|\mathrm{GHZ}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle^{\otimes N} + |\downarrow\rangle^{\otimes N} \right) \quad \mathrm{mit} \quad |\uparrow\rangle^{\otimes N} = |\uparrow\uparrow\dots\uparrow\rangle$$

- a) Weisen Sie für den konkreten Fall N=2 explizit nach, dass $|GHZ\rangle$ ein Eigenzustand von $\vec{\sigma}_1 \cdot \vec{\sigma}_2$ ist. Folgern Sie daraus, dass der GHZ-Zustand auch ein Eigenzustand von \vec{S}_{tot}^2 des totalen Spins $\vec{S}_{tot} = \hbar \left(\vec{\sigma}_1 + \vec{\sigma}_2 \right) / 2$ mit Spin S = N/2 = 1 ist. Ist $|GHZ\rangle$ auch ein Eigenzustand von $S_{z,tot}$?
 - Hinweis: Verwenden Sie die Beziehungen $\sigma_x|\uparrow\rangle = |\downarrow\rangle$, $\sigma_x|\downarrow\rangle = |\uparrow\rangle$ sowie $\sigma_y|\uparrow\rangle = i|\downarrow\rangle$, $\sigma_y|\downarrow\rangle = -i|\uparrow\rangle$ und $\sigma_z|\uparrow\rangle = |\uparrow\rangle$, $\sigma_z|\downarrow\rangle = -|\downarrow\rangle$.
- b) Berechnen Sie die reduzierte Dichtematrix

$$\rho_1 = \operatorname{Sp}_1 |\operatorname{GHZ}\rangle\langle\operatorname{GHZ}|$$

bei der Bildung der Spur über einen der beiden Spins. Beschreibt ρ_1 einen reinen Zustand?

Aufgabe 3: Zweidimensionales Wasserstoffatom (8 Punkte)

Die Bindung zwischen einem Elektron und einem Loch ('Exziton') in einem Halbleiter 'quantum-well' kann man in guter Näherung durch die Relativbewegung zweier Teilchen mit Ladung $q_{1,2}=\pm e/\sqrt{\epsilon}$ (ϵ ist die statische Dielektrizitätskonstante des Trägermaterials) und üblicher Coulomb-Wechselwirkung $V(r)=q_1q_2/r$ beschreiben, wobei die Bewegung nun aber in einer Ebene stattfindet. Die reduzierte Masse μ definiert einen effektiven Bohr-Radius $a_B=\epsilon\hbar^2/\mu e^2$.

a) Wie lautet die stationäre Schrödingergleichung für die Wellenfunktion $\psi(r,\varphi)$ gebundener Zustände im Potential V(r) mit Energien $E=-E_b=-\hbar^2\kappa^2/2\mu$?

Hinweis: Verwenden Sie a_B und κ als Parameter und die Darstellung

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \varphi^2}$$

des Laplace-Operators in Polarkoordinaten r, φ .

- b) Welche Werte kann die Quantenzahl m im Separationsansatz $\psi(r,\varphi) = \psi(r) \cdot \exp(im\varphi)$ annehmen und was ist ihre physikalische Bedeutung?
- c) Machen Sie für die (nichtnormierte und φ -unabhängige) Wellenfunktion des Grundzustands den Ansatz $\psi_0(r) = \exp{-r/l}$ und verifizieren Sie, dass dies für ein geeignetes l tatsächlich eine Lösung ist.

Hinweis: Einsetzen in die Schrödingergleichung legt aus der Identität von rechter und linker Seite für alle r sowohl l als auch die Energie fest.

d) Wie gross ist die Bindungsenergie des Grundzustands in Einheiten der effektiven Rydberg-Energie Ry= $\hbar^2/2\mu a_B^2$?