第四章 多元函数微分学

1987~2008本章考题考点分布统计表

考点	考频		考题分	布与分值	
基本概念及性质	1	2007,7 题 4 分			e e
求多元函数的偏导数及全微分	5	2004,4 题 4 分 2008,13 题 4 分	2004,21 题 10 分	2005,11 题 4 分	2007,15 题 4 分
多元函数的极值	3	2005,20 题 10 分	2006,12 题 4 分	2008,21 题 11 分	
反问题	1	2006,20 题 12 分	,		

本章导读

本章主要研究二元函数的偏导数、全微分等概念,要掌握计算它们的各种方法以及它们的应 用. 一元函数中的许多结论可以推广到二元函数中来,但有些结论是不成立的. 二元函数微分学要 -比一元函数微分学复杂得多,我们要掌握它们的共同规律,踏踏实实地做一些题目,一定会收到预 期的效果, 公众号, 旌胜老研

试题特点

每年试题一般是一个大题、一个小题,分数约占试卷的8%,主要考查复合函数求偏导数及多 元函数的极值,难度不是很大.一定要熟练掌握复合函数求偏导数的公式,特别要注意抽象函数求 高阶偏导数的题目,以及复合函数求偏导数的方法在隐函数求偏导中的应用.同时,多元函数微分 学在几何中的应用和求函数的极值、最值也是考研数学的一个重点.

真题分类练习

一一个题,相对容易,推荐先做 二阶题,较综合,可在第二轮复习时做

时间

真题真刷基础篇・考点分类详解版 (数学二)

一、基本概念及性质

- 1 (2007, 7 题, 4 分) 二元函数 f(x,y) 在点(0,0) 处可微的一个充分条件是
- (A) $\lim_{(x,y)\to(0,0)} [f(x,y) f(0,0)] = 0.$
 - (B) $\lim_{x \to 0} \frac{f(x,0) f(0,0)}{x} = 0$, $\lim_{y \to 0} \frac{f(0,y) f(0,0)}{y} = 0$.
- (C) $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0.$
- (D) $\lim_{x\to 0} [f'_x(x,0) f'_x(0,0)] = 0, \text{H} \lim_{y\to 0} [f'_y(0,y) f'_y(0,0)] = 0.$

答题区

二、求多元函数的偏导数及全微分

2 (2004,4 题,4 分) 设函数 z = z(x,y) 由方程 $z = e^{2x-3z} + 2y$ 确定,则 $3\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} =$ ___

答题区

3 (2004,21 题,10 分) 设 $z=f(x^2-y^2,e^{zy})$,其中 f 具有连续二阶偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x\partial y}$

答题区

艾宾浩斯抗战 忘复习计划

題号

再做时间

4 (2005,11 題,4 分) 设函数 $u(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t) dt$,其中函数 φ 具

有二阶导数, ϕ 具有一阶导数,则必有

(A) $\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$.

(B) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$.

(C) $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y^2}$.

(D) $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial x^2}$.

答题区

5 (2007,15 题,4 分) 设 f(u,v) 是二元可微函数, $z = f\left(\frac{y}{x}, \frac{x}{y}\right)$,则 $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} =$

答题区

6 (2008,13 题,4 分) 设 $z = \left(\frac{y}{x}\right)^{\frac{z}{y}}, 则 \frac{\partial z}{\partial x} \bigg|_{(1,2)}$ _____.

答题区

臻选 题号

再做 时间

一天 口四天 一七月

□七天 □一月 □考

三、多元函数的极值

\Box	7 (2005,20 题,10 分) 已知函数 $z = f(x,y)$ 的全微分	dz = 2xdx - 2ydy, 并且 $f(1,1) = 2$.
ل	求 $f(x,y)$ 在椭圆域 $D = \{(x,y) \mid x^2 + \frac{y^2}{4} \le 1\}$ 上的最	大值和最小值.
	答题区	

8 (2008,21 题,11 分) 求函数 $u = x^2 + y^2 + z^2$ 在约束条件 $z = x^2 + y^2$ 和 x + y + z = 4 下的最大和最小值.

答题区

艾宾浩斯抗遗 臻选 再做 再做 时间 一天 四天 一七天 一月 一考前

9 (2006,12 题,4 分) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数,且 $\varphi'_y(x,y) \neq 0$,已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y) = 0$ 下的一个极值点,下列选项正确的是

答题区

四、反问题

10 (2006,20 题,12 分) 设函数 f(u) 在(0,+ ∞) 内具有二阶导数,且 $z = f(\sqrt{x^2 + y^2})$ 满 足等式

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

(I)验证
$$f''(u) + \frac{f'(u)}{u} = 0$$
;

(II) 若 f(1) = 0, f'(1) = 1, 求函数 <math>f(u) 的表达式.

答题区

