5 Radon-Nikodym theorem

Assume (X, \mathcal{B}, μ) is a measure space. Are there other measures on (X, \mathcal{B}) ?

Example 5.1. Take a measurable function $f: X \to [0, +\infty]$ and define

$$\nu(A) = \int_A f d\mu$$
 for $A \in \mathcal{B}$.

This is a measure by the monotone convergence theorem. We write $d\nu = f d\mu$.

Proposition 5.2. Assume (X, \mathcal{B}) is a measurable space, μ and ν are σ -finite measures on (X, \mathcal{B}) . Then there exist $N \in \mathcal{B}$ and a measurable $f: X \to [0, +\infty)$ s.t. $\mu(N) = 0$ and

$$\nu(A) = \nu(A \cap N) + \int_A f d\mu \quad \forall A \in \mathscr{B}.$$

We can discard the term $\nu(A \cap N)$ as follows.

Definition 5.3. Given measures μ and ν on (X, \mathcal{B}) , we say that ν is <u>absolutely continuous</u> with respect to μ and write $\nu << \mu$, if $\nu(A) = 0$ whenever $A \in \mathcal{B}$ and $\mu(A) = 0$.

One can justify the name with the following lemma

Lemma 5.4. Assume μ and ν are measures on (X, \mathcal{B}) , $\nu(X) < \infty$. Then $\nu << \mu$ if and only if $\forall \epsilon > 0$ there exists $\delta > 0$ s.t. if $A \in \mathcal{B}$ and $\mu(A) < \delta$, then $\nu(A) < \epsilon$.

Remark. The result is not true for infinite ν .

Theorem 5.5. (Radon-Nikodym) Assume μ and ν are σ -finite measures on a measurable space (X, \mathcal{B}) , $\nu << \mu$. Then there is a measurable function $f: X \to [0, +\infty)$ s.t. $d\nu = f d\mu$. If \tilde{f} is another function with the same properties, then $f = \tilde{f} \mu$ -a.e.

The function f is called the Radon-Nikodym derivative of ν with regard to μ and is denoted by $\frac{d\nu}{d\mu}$.

Example 5.6. Consider a real-valued function $f \in C^1[a, b]$ s.t. $f'(t) > 0 \ \forall t \in [a, b]$, let c = f(a) and d = f(b). We know that for any Riemann integrable function g on [c, d] we have

$$\int_{c}^{d} g(t)dt = \int_{a}^{b} g(f(t))f'(t)dt.$$

Equivalently, for any Riemann integrable function g on [a, b], we have

$$\int_{c}^{d} g \circ f^{-1} dt = \int_{a}^{b} g f' dt.$$

Denote by $\lambda_{[a,b]}$, $\lambda_{[c,d]}$ the Lebesgue measure restricted to the Borel subsets of [a,b] and [c,d] respectively. Then the integral above implies that

$$d((f^{-1})_*\lambda_{[c,d]}) = f'd\lambda_{[a,b]},$$

since the integration of $\mathbb{1}_{[\alpha,\beta]}$ gives the same result for any interval $[\alpha,\beta] \subset [a,b]$ and since a finite Borel measure on [a,b] is determined by its value on such intervals. Thus $(f^{-1})_*\lambda_{[c,d]} << \lambda_{[a,b]}$ and

$$\frac{d((f^{-1})_*\lambda_{[c,d]})}{d\lambda_{[a,b]}} = f'.$$

6 Complex and signed measures

Assume (X, \mathcal{B}) is a measurable space.

Definition 6.1. A complex measure on (X, \mathcal{B}) is a map $\nu : \mathcal{B} \to \mathbb{C}$ s.t. $\nu(\emptyset) = 0$ and $\nu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \nu(A_n)$ for any disjoint $A_n \in \mathcal{B}$ where the series is assumed to bee absolutely convergent. If ν takes values in \mathbb{R} , then ν is called a finitely signed measure.

Remark. More generally, a signed measure is allowed to take values in $\mathbb{R} \cup \{+\infty\}$ or $\mathbb{R} \cup \{-\infty\}$. Given a complex measure ν on (X, \mathcal{B}) , its <u>total variation</u> is the map

$$|\nu|: \mathscr{B} \to [0, +\infty]$$

defined by

$$|\nu|(A) = \sup \left\{ \sum_{n=1}^{N} |\nu(A_n)| : A = \bigcup_{n=1}^{N} A_n, A_n \in \mathcal{B}, A_n \cap A_m = \emptyset \text{ for } n \neq m \right\}$$

Proposition 6.2. $|\nu|$ is a finite measure on (X, \mathcal{B}) .

Definition 6.3. If (X, \mathcal{B}, μ) is a measure space, ν is a complex measure on (X, \mathcal{B}) , then we say that ν is absolutely continuous with regards to μ and write $\nu << \mu$, if $\nu(A) = 0$ whenever $A \in \mathcal{B}$ and $\mu(A) = 0$. Equivalently $|\nu| << \mu$.

Theorem 6.4. Radon-Nikodym theorem for complex measures

Assume $(X, \overline{\mathcal{B}}, \mu)$ is a measurable space, ν is a complex measure on (X, \mathcal{B}) , $\nu << \mu$. Then there is a unique $f \in L^1(X, d\mu)$ s.t. $d\nu = f d\mu$.