Design and Analysis of Algorithms

Spring 2024 Practice Problems

Problem 1

Rank the following functions by order of growth; that is, find an arrangement $g_1, g_2, \dots g_{20}$ of the functions satisfying g_1 =O(g_2), g_2 = O(g_3), . . . , g_{19} = O(g_{20}). Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if f(n) = $\theta(g(n))$.

$\sqrt{2}^{lgn}$	n^2	n!	(lgn)!	$(3/2)^n$
n^3	$(lgn)^2$	$\lg(n!)$	2^{2^n}	lnln(n)
$n.2^n$	2^{lgn}	e^n	4^{lgn}	(n+1)!
n^n	2^{2}	nlgn	1	n

Solution

Solution			
2 ^{2ⁿ}			
n^n			
(n+1)!			
n!			
e^n			
$n. 2^n$			
$(3/2)^n$			
$ \begin{array}{c} (lgn)!\\ n^3\\ n^2 \end{array} $			
n^3			
n^2	4 ^{lgn} nlgn		
$\lg(n!)$	nlgn		
$\frac{\lg(n!)}{2^{\lg n}}$	n		
$ \frac{\sqrt{2}^{lgn}}{(lgn)^2} $			
$(lgn)^2$			
$\frac{lnln(n)}{2^2}$			
22	1		

Problem 2

Indicate, for each pair of expressions .(A,B) in the table below, whether A is O,Ω or θ of B. Assume that k >= 1, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box

A	В	0	Θ	Ω
log ^k (n)	n ^{1-€}	X		
n ^k	5c ⁿ	X		

2 ⁿ	2 ⁿ⁺¹	X	X	X
$2^{n/2}$	2 ⁿ	X		
n ^{lgc}	c ^{lgn}	X	X	X
$n^{1/2}$	lg(n ²)			X
lg(n!)	lg(n ⁿ)	X	X	X

Problem 3

Solve the following recurrences and compute the asymptotic upper bounds. Assume that T(n) is a constant for sufficiently small n. Make your bounds as tight as possible.

a.
$$T(n) = 2T\left(\frac{n}{2}\right) + n^4 = 2^k T\left(\frac{n}{2^k}\right) + n^4 \sum_{i=0}^{k-1} \left(\frac{1}{8}\right)^i = O(n^4)$$

b.
$$T(n) = T\left(\frac{7n}{10}\right) + n = T\left(\frac{n}{\left(\frac{10}{7}\right)^i}\right) + n\sum_{i=0}^{k-1} \left(\frac{7}{10}\right)^i = O(n)$$

c.
$$T(n) = 2T(n-1) + c = 2^k T(n-k) + c \sum_{i=0}^{k-1} (2)^i = O(2^n)$$