Отчет по лабораторной работе \mathbb{N}^1

Определение коэффициента направленного действия рупорной антенны

Выполнили студенты 430 группы Виноградов И.Д., Шиков А.П.

Цель работы: Нахождение коэффициента направленного действия пирамидальной рупорной антенны с помощью так называемого зеркального метода (метод Парселла).

1. Теоритическая часть

Антенна — устройство, предназначенное для излучения или приема волн (в нашем случае — электромагнитных). Одна из важнейших функций антенны состоит в формировании излучения с определенными направленными свойствами. Основными характеристиками направленности антенны являются диаграмма направленности (ДН) по амплитуде или по мощности, коэффициент направленного действия (КНД) и коэффициент усиления (КУ). Напомним, как вводятся эти характеристики.

Диаграмма направленности по амплитуде есть угловое распределение амплитуды поля излучения, т.е. зависимость этой амплитуды от полярного θ и азимутального φ углов при фиксированном расстоянии r от антенны. Диаграмма направленности по мощноcmu есть угловое распределение мощности излучения в единицу телесного угла $P(\theta,\varphi) =$ $r^2S_r(r,\theta,\varphi)$, где S_r — радиальная компонента вектора Пойнтинга на достаточно большом расстоянии r от антенны. Представляется удобным использование (наряду с абсолютной) нормированной диаграммы направленности $F(\theta,\varphi) = P(\theta,\varphi)/P(\theta_m,\varphi_m)$, где $P(\theta_m,\varphi_m)$ мощность, излучаемая в единичный телесный угол в направлении главного максимума (θ_m, φ_m) диаграммы направленности. Диаграмму направленности изображают графически либо в виде «объемной», рельефной картины, где по каждому угловому направлению (θ, φ) откладывается величина, пропорциональная амплитуде поля излучения или излучаемой мощности (см. рис. 1а), либо с помощью плоской развертки отдельных, чаще всего двух ортогональных сечений, проходящих через направление главного максимума и векторы электрического Е и магнитного Н полей (см. рис.16). Поскольку основная часть мощности, излучаемой направленной антенной, сосредоточена, как правило, в главном лепестке, то весьма показательной представляется его угловая ширина, определяемая обычно по уровню половинной мощности ($\Delta \theta_{0.5}$), а иногда и по нулевому (или минимальному) значению $(\Delta \theta_0)$, как показано на рис. 1 б. Диаграмма направленности антенны, характерный размер l излучающей апертуры которой порядка или больше длины излучаемой волны λ , окончательно формируется в зоне Фраунгофера, определяемой соотношением

$$r >> \frac{l^2}{\lambda} \tag{1}$$

Коэффициент направленного действия D характеризует выигрыш по мощности в направлении максимального излучения вследствие направленности антенны. Он равен от-

ношению мощности, излучаемой в единицу телесного угла в направлении максимума диаграммы направленности $P(\theta_m, \varphi_m)$, к средней мощности $_{cp} = _{\text{изл}}/(4\pi)$, излучаемой антенной по всем направлениям, т.е. $D = 4\pi P\left(\theta_m, \varphi_m\right)/P_{\text{изл}}$, где $P_{\text{изл}}$ — полная излучаемая мощность:

$$P_{\text{\tiny H3J}} = \int_0^{2\pi} d\varphi \int_0^{\pi} P(\theta, \varphi) \sin \theta d\theta.$$

Таким образом, имеем:

$$D = \frac{4\pi P(\theta_m, \varphi_m)}{\int_0^\pi d\varphi \int P(\theta, \varphi) \sin\theta d\theta}$$
 (2)

 $Koэффициент усиления G определяется как произведение КНД на коэффициент полезного действия (КПД) антенны <math>\eta$ (или, точнее, всего антенного тракта):

$$G = D\eta \tag{3}$$

Этот последний коэффициент в свою очередь есть отношение полной мощности $P_{\text{изл}}$, излучаемой антенной, к полной мощности $P_{\text{подв}}$, подводимой к антенне, т.е.

$$\eta = \frac{P_{\text{\tiny H3Л}}}{P_{\text{\tiny подв}}} = \frac{\int_0^{2\pi} d\varphi \int_0^{\pi} P(\theta, \varphi) \sin \theta d\theta}{P_{\text{\tiny подв}}}$$
(4)

В силу принципа взаимности ДН и КНД антенны при ее работе в режиме передачи и в режиме приема совпадают.

Для адекватного описания npuemhoй ahmehhb вводятся некоторые дополнительные характеристики. Одна из основных таких характеристик — эффективная площадь приема антенны .

Эффективная площадь приема определяется как отношение полной принимаемой антенной мощности $P_{\text{пр}}$ к плотности потока падающего излучения S_n в месте расположения антенны:

$$A = \frac{P_{np}}{S_n} \tag{5}$$

Как показано в 1,2, величины A и D связаны соотношением

$$A = \frac{\lambda^2}{4\pi}D. (6)$$

Цель настоящей работы заключается в экспериментальном определении КНД пирамидальной рупорной антенны с помощью так называемого зеркального метода (метода Парселла) и сравнении измеренного значения с рассчитанным теоретически. Зеркальный метод опирается на использование идеально (зеркально) отражающей плоской поверхности, расположенной в зоне Фраунгофера и ориентированной параллельно излучающей апертуре (см. рис. 2).

Согласно методу изображений отыскание отраженного поля, поступающего в антенну, сводится к нахождению поля, принимаемого от аналогичной зеркальной относительно отражающей плоскости излучающей антенны (рис. 2). В результате последовательного пересчета имеем: мощность, излучаемая гипотетической зеркальной антенной в единицу телесного угла в направлении на реальную антенну, равна $P_n = D_{\text{изл}}/4\pi$, откуда плотность потока энергии в месте приема $S_n = P_n/4X^2 = DP_{\text{изл}}/(16\pi X^2)$, где X — расстояние между антенной и отражающей плоскостью; наконец, мощность, принимаемая антенной, равна $P_{np} = AS_n = ADP_{\text{изл}}/(16\pi X^2)$. С учетом 6 окончательно получаем

$$\frac{P_{np}}{P_{\text{\tiny H3JI}}} = \frac{D^2 \lambda^2}{64\pi^2 X^2} \tag{7}$$

отсюда интересующая нас величина D представляется в виде

$$D = \frac{8/piX}{\lambda} \sqrt{\frac{P_{np}}{P_{\text{\tiny W3JJ}}}} \tag{8}$$

2. Экспериментальная часть