From pairwise to multiple alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

• Score: more conserved columns, better alignment

What is a multiple sequence alignment (MSA)

- A model
- Indicates relationship between residues of multiple sequences
- Reveals similarity/dissimilarity

- Central to many bioinformatics applications
 - Patterns (Motifs)
 - Structure prediction (RNA, protein)

Aligning three sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

sink

2D vs 3D alignment grid

3D grid

DP recursion (3 edges vs 7)

Pairwise: 3 possible paths (match/mismatch, insertion, and deletion)

In 3-D, 7 edges in each unit cube

Architecture of 3D alignment cell

Multiple alignment: dynamic programming

$$s_{i,j,k} = \max \left\{ \begin{array}{l} s_{i-1,j-1,k-1} + \delta(v_i,w_j,u_k) \\ s_{i-1,j-1,k} + \delta\left(v_i,w_j,_\right) \\ s_{i-1,j,k-1} + \delta(v_i,v_j,u_k) \\ s_{i,j-1,k-1} + \delta\left(_,w_j,u_k\right) \\ s_{i,j-1,k} + \delta\left(_,w_j,_\right) \\ s_{i,j-1,k} + \delta\left(_,w_j,_\right) \\ s_{i,j,k-1} + \delta\left(_,w_j,_\right) \\ s_{i,j,k-1} + \delta\left(_,v_j,_\right) \end{array} \right. \text{ edge diagonal: two indels}$$

 $\delta(x, y, z)$ is an entry in the 3D scoring matrix

MSA: runtime

- For 3 sequences of length n, the run time is $7n^3$; O(n^3)
- For k sequences, build a k-dimensional Manhattan, with run time $(2^k-1)(n^k)$; $O(2^kn^k)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences (simultaneous approach) but it is impractical due to exponential running time
- Computing exact MSA is computationally almost impossible, and in practice heuristics are used (progressive alignment)

Basic progressive alignment strategy

- Compute D, a matrix of distances between all pairs of sequences
- From D, construct a "guide tree" T
- Construct MSA by pairwise alignment of partial alignments ("profiles") guided by T
 - Improve alignment by iterations, etc.

Star Alignment Approach

Given: k sequences to be aligned

$$x^1, \cdots, x^k$$

- pick one sequence x^c as the "center"
- for each $x^i \neq x^c$ determine an optimal alignment between x^i and x^c
- Aggregate pairwise alignments
 - Shift entire columns when incorporating gaps

return: multiple alignment resulting from aggregate

Picking the center in star alignments

- Two possible approaches:
- 1. try each sequence as the center, return the best multiple alignment
- 2. compute all pairwise alignments and select the string $\sum \sin(x^i, x^c)$

Aligning to an existing partial alignment

- Need to treat each "partial alignment" as a single entity
 - Partial alignment should not be changed other than gap insertions
- Shift entire columns when incorporating gaps
 TGTTAAC

Star Alignment Example

Given:

ATTGCCATT

ATGGCCATT

ATCCAATTTT

ATCTTCTT

ATTGCCGATT

ATGGCCATT

ATTGCCATT

ATTGCCATT

ATC-CAATTTT ATTGCCATT--

ATCTTC-TT ATTGCCATT

ATTGCCGATT

ATTGCC-ATT

Star Alignment Example

Aggregate pairwise alignments

present pair alignment

ATGGCCATT

1. ATTGCCATT

2. ATC-CAATTTT
ATTGCCATT--

3. ATCTTC-TT
ATTGCCATT

Current multiple

ATTGCCATT

ATGGCCATT

ATTGCCATT--

ATGGCCATT--

ATC-CAATTTT

ATTGCCATT--

ATGGCCATT--

ATC-CAATTTT

ATCTTC-TT--

Star Alignment Example

present pair

4. ATTGCCGATT
ATTGCC-ATT

Current multiple alignment

shift entire columns when incorporating a gap

Comments about Star alignment

- Conceptually simple
- Dependent only upon pairwise alignments
- Does not consider any position-specific information of the partial multiple sequence alignment while aligning a new sequence to it

Sum of pairs score (SP score)

Seq	Column-A	- B
1	N	N
2	N	N
3	N	N
4	N	C
5	N	C

$$S(N,N) = 6$$

 $S(N,C) = -3$
 $S(C,C) = 9$

Score=
$$10 * S(N,N)$$

= $10 * 6 = 60$

Score=
$$3 * S(N,N) + 6 * S(N,C) + S(C,C)$$

= $3 * 6 + 6 * (-3) + 9 = 9$

Complexity of progressive alignment

- Distance matrix
 - Each pairwise alignment $O(n^2)$
 - Number of pairwise alignments $O(k^2)$
- Iterative construction of MSA
 - Number of merge steps O(k)
 - Each pairwise alignment $O(k^2n^2)$

• Entire method $O(k^2n^2)$

Summary: Progressive alignment heuristics

- Not guaranteed to give the optimal MSA
- Bad choice of gaps propagates (because we never remove a gap)
- Complexity
 - Progressive: $O(k^2n^2)$
 - DP: $O(n^k 2^k k^2)$
- Typically, merge the most closely related sequences first.
- https://en.wikipedia.org/wiki/List of sequence ali gnment software

Profile representation of multiple alignment

```
Т
              - C T
                      Α
             - C T
                      Α
            G - C T
                      Α
                         T C
              - C T
                      Α
                         Т
                                .6 .2
G
```