

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0095612 A1

Glas et al.

(43) Pub. Date:

May 22, 2003

(54) SYSTEM AND METHOD FOR AN IF-SAMPLING TRANSCEIVER

(76) Inventors: Jack P. Glas, Basking Ridge, NJ (US); Vladimir I. Prodanov, New Providence, NJ (US)

> Correspondence Address: GARDNER GROFF, P.C. PAPER MILL VILLAGE, BUILDING 23 **600 VILLAGE TRACE SUITE 300** MARIETTA, GA 30067 (US)

(21) Appl. No.:

09/989,605

(22) Filed:

Nov. 20, 2001

Publication Classification

(51) Int. Cl.⁷ H04L 27/22; H04L 7/00; H03D 3/22 (52) U.S. Cl. 375/329; 375/355

(57)**ABSTRACT**

The present invention is directed toward a radio, and method for receiving radio frequency signals. The radio comprises an input signal at a first intermediate frequency, an intermediate sampling architecture, a quantizer and a baseband converter. The intermediate frequency sampling architecture comprises receiving the input signal, passing the first intermediate frequency signal through a first filter characterized by steep selectivity and narrow bandpass, converting the filtered signal to a second intermediate frequency and passing the second intermediate frequency signal through a second filter having a bandpass characteristic, but without the steep selectivity characterizing the first filter. The radio further comprises a third filter following the baseband conversion which filters out adjacent channel harmonics to obtain a wanted data signal.

