Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Associated Decoder

Signatures

Security Proc

Conclusion

Wave: A new family of trapdoor preimage sampleable functions

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Information Security Group, Royal Holloway, University of London, UK

September 18, 2019 London-ish Lattice Meeting

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated Decoder

Reaching Uniform

Security Proo

Conclusion

Results

- The first code-based "hash-and-sign" that follows the GPV strategy (Trapdoor Preimage Sampleable functions);
- Security reduction to two problems (NP-complete) of coding theory:
 - Generic decoding of a linear code;
 - Distinguish between random codes and generalized (U, U + V)-codes.
- Key Size ≈ 3 MB, signature size ≈ 13 Kb, signing time ≈ 0.1 s (non-optimized);
- Nice feature: uniform signatures through an efficient rejection sampling, one rejection every ≈ 100 signatures.

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proof

Conclusio

1 Introduction

- **2** Hardness of Syndrome Decoding for Large Weight
- 3 Our Trapdoor and its Associated Decoder
- **4** Reaching Uniform Signatures
- **6** Security Proof
- **6** Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform

Security Proo

Conclusion

Digital signature scheme

Alice wants to ensure Bob that:

- \mathbf{m} has not been corrupted ($\mathbf{m} = \mathbf{m}'$).
- m comes from Alice

 \rightarrow Idea: add a signature to **m**

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Reaching Uniform Signature

Security Proo

Conclusion

Digital signature scheme

Alice first makes the following operations:

- Generation of (pk, sk).
- Send *pk* to *everyone*.

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform

Security Prod

Conclusion

Full Domain Hash Signature

• f be a trapdoor one-way function

- To sign **m** one computes $\mathbf{y} = \mathcal{H}(\mathbf{m})$ (hash) and $\sigma \in f^{-1}(\mathbf{y})$. \rightarrow It is required to invert f on all vectors (full domain).
- Verification $f(\sigma) = \mathcal{H}(\mathbf{m})$?

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform

Security Pro

Conclusion

... with Bijective Trapdoors OW?

- Let f be a bijective trapdoor one-way function
- To sign **m**, compute $\sigma = f^{-1}(\mathcal{H}(\mathbf{m}))$ (\mathcal{H} hash function)

 $\mathcal{H}(\mathbf{m})$ is uniform (ROM) $\Rightarrow \sigma$ is uniform too! (no leakage)

Signature schemes DSA, RSA meet this nice feature

Hard condition to meet in code/lattice-based cryptography...

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding fo Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Prod

Conclusion

Gentry-Peikert-Vaikuntanathan (GPV) Approach

It is based on trapdoor one-way preimage sampleable function!

A family of trapdoor one way-functions $(f_a)_a$ and a distribution $\mathcal D$ such that

- $f_a(x)$ is uniformly distributed when $x \leftarrow \mathcal{D}$,
- algorithm computing $x \leftarrow f_a^{-1}(y)$ with the trapdoor is distributed according to \mathcal{D}

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding fo Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Prod

Conclusion

Gentry-Peikert-Vaikuntanathan (GPV) Approach

It is based on trapdoor one-way preimage sampleable function!

A family of trapdoor one way-functions $(f_a)_a$ and a distribution $\mathcal D$ such that

- $f_a(x)$ is uniformly distributed when $x \stackrel{\$}{\leftarrow} \mathcal{D}$,
- algorithm computing $x \leftarrow f_a^{-1}(y)$ with the trapdoor is distributed according to \mathcal{D}

 $\mathcal{D} = \begin{cases} \text{uniform over words of fixed Hamming weight in our case} \\ \text{gaussian for lattices} \end{cases}$

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdo and its Associated Decoder

Reaching Uniform Signature

Security Proo

Conclusio

Trapdoor One-way of Wave

Our one-way will be ($|\cdot|$ Hamming weight)

$$f_{\mathsf{H}}: \{\mathbf{e} \in \mathbb{F}_q^n : |\mathbf{e}| = w\} \longrightarrow \mathbb{F}_q^{n-k}$$

 $\mathbf{e} \longmapsto \mathbf{H}\mathbf{e}^{\mathsf{T}}$

Inverting f_H amounts to solve the following problem:

Problem (Syndrome Decoding with fixed weight)

Given $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$, and an integer w, find $\mathbf{e} \in \mathbb{F}_q^n$ such that $\mathbf{H}\mathbf{e}^{\mathsf{T}} = \mathbf{s}^{\mathsf{T}}$ and $|\mathbf{e}| = w$.

- ightarrow Generic problem upon which all code-based cryptography relies
- \rightarrow Putting a trapdoor on f_H consists in putting a structure on H!

Public-Key:
$$\mathbf{H}_{pk}$$

Signature of $\mathcal{H}(\mathbf{m})$: \mathbf{e} of weight w with $\mathbf{H}_{pk}\mathbf{e}^T = \mathcal{H}(\mathbf{m})$.

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Associated Decoder

Signatures
Security Pro-

. . .

Codes: Basic Definition

A code $\mathcal C$ is a subspace of $\mathbb F_q^n$

When C is of dimension k it is defined by a parity-check matrix $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$ of full-rank as:

$$\mathcal{C} \stackrel{\triangle}{=} \{ \mathbf{c} \in \mathbb{F}_q^n : \mathbf{H} \mathbf{c}^\mathsf{T} = \mathbf{0} \}$$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proo

Conclusion

The Trapdoor(I)

 \mathbf{H}_{pk} parity-check matrix of a permuted generalized $(\mathit{U},\mathit{U}+\mathit{V})$ code:

- A permutation **P**,
- Two codes U and V of length n/2,
- Four vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ over $\mathbb{F}_q^{n/2}$ such that

$$a_id_i-b_ic_i\neq 0$$
 and $a_ic_i\neq 0$

$$(\mathbf{a} \odot U + \mathbf{b} \odot V, \mathbf{c} \odot U + \mathbf{d} \odot V) \mathbf{P} \stackrel{\triangle}{=} \{ (\mathbf{a} \odot \mathbf{u} + \mathbf{b} \odot \mathbf{v}, \mathbf{c} \odot \mathbf{u} + \mathbf{d} \odot \mathbf{v}) \mathbf{P} : \mathbf{u} \in U, \mathbf{v} \in V \}$$

with

$$\mathbf{x}\odot\mathbf{y}\stackrel{\triangle}{=}(x_1y_1,x_2y_2,\cdots,x_{n/2}y_{n/2})$$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated Decoder

Reaching Uniform Signature

Security Proof

Conclusio

The Trapdoor(II)

Example of generalized (U, U + V)-code:

- $(U, U + V) \stackrel{\triangle}{=} \{(\mathbf{u}, \mathbf{u} + \mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$
- $(U+V,U-V) \stackrel{\triangle}{=} \{(\mathbf{u}+\mathbf{v},\mathbf{u}-\mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$
- ..
- More generally, for all $\mathbf{u} = (u_1, \dots, u_{n/2}) \in U$ and $\mathbf{v} = (v_1, \dots, v_{n/2}) \in V$:

+n/2 symbols

$$(\underbrace{u_1, u_2 + v_2, \cdots, u_{n/2} + v_{n/2}; u_1 + v_1, u_2 - v_2, \cdots, v_{n/2} - u_{n/2}}_{n/2})$$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated Decoder

Reaching Uniform Signature

Security Proof

Conclusio

The Trapdoor(II)

Example of generalized (U, U + V)-code:

- $(U, U + V) \stackrel{\triangle}{=} \{(\mathbf{u}, \mathbf{u} + \mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$
- $(U+V, U-V) \stackrel{\triangle}{=} \{(\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$
- ..
- More generally, for all $\mathbf{u} = (u_1, \dots, u_{n/2}) \in U$ and $\mathbf{v} = (v_1, \dots, v_{n/2}) \in V$:

$$+n/2$$
 symbols

$$(u_1, u_2 + v_2, \dots, u_{n/2} + v_{n/2}; u_1 + v_1, u_2 - v_2, \dots, v_{n/2} - u_{n/2})$$

$$\longleftarrow n/2$$

Proposition

Decide if a code is a permuted generalized (U, U + V)-code or not is NP-complete.

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Associated Decoder

Security Prod

Security F100

Security Reduction

We reduce the security to two problems:

- Distinguishing between a permuted generalized (U, U + V) code and a random code;
- Hardness of finding **e** of weight w s.t: $He^T = s^T$ (Syndrome Decoding).

(both are NP-complete)

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform

Security Prod

Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Reaching Uniform Signature

Security Prod

Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Reaching Uniform

Security Prod

Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Reaching Uniform Signature

Security Prod

Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proof

Conclusio

- Introduction
- **2** Hardness of Syndrome Decoding for Large Weight
- 3 Our Trapdoor and its Associated Decoder
- A Reaching Uniform Signatures
- **6** Security Proof
- **6** Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching

Security Pro

Conclusion

Prange Step

Given: **H** random of size $(n-k) \times n$, rank n-k and $\mathbf{s} \in \mathbb{F}_q^{n-k}$;

Find: $\mathbf{e} \in \mathbb{F}_q^n$ such that $\mathbf{H}\mathbf{e}^\mathsf{T} = \mathbf{s}^\mathsf{T}$.

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proo

Conclusion

Prange Step

Given: **H** random of size $(n-k) \times n$, rank n-k and $\mathbf{s} \in \mathbb{F}_q^{n-k}$;

Find: $\mathbf{e} \in \mathbb{F}_q^n$ such that $\mathbf{H}\mathbf{e}^\mathsf{T} = \mathbf{s}^\mathsf{T}$.

Choose n - k columns and split **H** and **e** as :

$$\mathbf{H} = egin{pmatrix} \mathbf{A} & \mathbf{B} \end{pmatrix}$$
 and $\mathbf{e} = (\mathbf{e}', \mathbf{e}'')$

where $\mathbf{B} \in \mathbb{F}_q^{(n-k) \times (n-k)}$ is non-singular and $\mathbf{e}'' \in \mathbb{F}_q^{n-k}$

$$\begin{aligned} \textbf{H}\textbf{e}^{\intercal} &= \textbf{s}^{\intercal} \iff \textbf{A}\textbf{e'}^{\intercal} + \textbf{B}\textbf{e''}^{\intercal} = \textbf{s}^{\intercal} \\ \textbf{e}'' &= \textbf{B}^{-1} \left(\textbf{s}^{\intercal} - \textbf{A}\textbf{e'}^{\intercal} \right) \end{aligned}$$

- $\mathbf{e}' \in \mathbb{F}_q^k$ free to choose,
- $\mathbf{e}'' \in \mathbb{F}_a^{n-k}$ uniformly distributed as \mathbf{s} is uniform

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform

Security Pro

Conclusion

Prange Step

Given: **H** random of size $(n-k) \times n$, rank n-k and $\mathbf{s} \in \mathbb{F}_q^{n-k}$;

Find: $\mathbf{e} \in \mathbb{F}_q^n$ such that $\mathbf{H}\mathbf{e}^\mathsf{T} = \mathbf{s}^\mathsf{T}$.

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proof

Conclusion

Prange Step

Given: **H** random of size $(n-k) \times n$, rank n-k and $\mathbf{s} \in \mathbb{F}_q^{n-k}$;

Find: $\mathbf{e} \in \mathbb{F}_a^n$ such that $\mathbf{H}\mathbf{e}^\mathsf{T} = \mathbf{s}^\mathsf{T}$.

• \mathbf{e}'' follows a uniform law over \mathbb{F}_a^{n-k} , therefore $\forall \varepsilon > 0, \exists \alpha > 0$:

$$\mathbb{E}(|\mathbf{e}''|) = \frac{q-1}{q}(n-k) \quad ; \quad \mathbb{P}\left(\left||\mathbf{e}''| - \frac{q-1}{q}(n-k)\right| \ge \varepsilon n\right) = e^{-\alpha n}$$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform

Security Proof

Conclusion

Prange Step

Given: **H** random of size $(n-k) \times n$, rank n-k and $\mathbf{s} \in \mathbb{F}_q^{n-k}$;

Find: $\mathbf{e} \in \mathbb{F}_{a}^{n}$ such that $\mathbf{H}\mathbf{e}^{\mathsf{T}} = \mathbf{s}^{\mathsf{T}}$.

• \mathbf{e}'' follows a uniform law over \mathbb{F}_q^{n-k} , therefore $\forall \varepsilon > 0, \exists \alpha > 0$:

$$\mathbb{E}(|\mathbf{e}''|) = \frac{q-1}{q}(n-k) \quad ; \quad \mathbb{P}\left(\left||\mathbf{e}''| - \frac{q-1}{q}(n-k)\right| \ge \varepsilon n\right) = e^{-\alpha n}$$

• We get an error $\mathbf{e} = (\mathbf{e}', \mathbf{e}'')$ such that for some $\beta > 0$:

$$\mathbb{E}(|\mathbf{e}|) = \mathbb{E}(|\mathbf{e}'|) + \frac{q-1}{q}(n-k)$$

$$\mathbb{P}\left(|\mathbf{e}| \ge (1+\varepsilon)\left(\mathbb{E}(|\mathbf{e}'|) + \frac{q-1}{q}(n-k)\right)\right) = e^{-\beta n}$$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdo and its Associated

Reaching

Security Prod

Conclusion

Prange Algorithm

To reach an error of weight w:

repeat Prange Step until getting an error of weight w.

- \mathbf{e}'' follows a uniform law over \mathbb{F}_q^{n-k}
- Choice over e'.

Figure: Complexity (number of calls) to reach some weight w

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform

Security Prod

Conclusion

Exponent of the Prange Algorithm for q = 2

Complexity: $2^{\alpha n}$ where α function of w/n.

Figure: Exponent vs Relative Weight

$$R = \frac{\text{dimension of the code}}{\text{length of the code}}$$

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proo

Conclusio

Exponent of the Prange Algorithm for q = 3

Complexity: $2^{\alpha n}$ where α function of w/n.

Figure: Exponent vs Relative Weight

$$R = \frac{\text{dimension of the code}}{\text{length of the code}}$$

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Associated Decoder

Uniform Signature

Security Proc

Conclusion

Generic Decoding Algorithms

Coding theory has never come up with a polynomial algorithm outside the range $\left[\frac{q-1}{q}(n-k),k+\frac{q-1}{q}(n-k)\right]$

Modern algorithms have decreased the exponent of Prange in the exponential areas of complexity

But not changed the range of polynomial complexity!

 \rightarrow Where is the worse case?

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoc and its Associated

Reaching Uniform

Security Proc

Conclusion

Worse Case for Generic Decoding Algorithm

When $w = \Theta(n)$, complexity is given by:

$$2^{c \cdot n(1+o(1))}$$

where c depends of k, w and q.

Key Size:

$$n \times R \times (1 - R)$$
 where $c \times n = 128$ and $R \stackrel{\triangle}{=} k/n$

$$\longrightarrow$$
 Goal: $\min_{k,w,q} \{ n \times R \times (1-R) : n = 128/c \}$

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Decoder Reaching

Socurity Dropp

Conclusion

Worse Case for Generic Decoding Algorithm

When $w = \Theta(n)$, complexity is given by:

$$2^{c \cdot n(1+o(1))}$$

where c depends of k, w and q.

Key Size:

$$n \times R \times (1 - R)$$
 where $c \times n = 128$ and $R \stackrel{\triangle}{=} k/n$

$$\longrightarrow$$
 Goal: $\min_{k,w,q} \{ n \times R \times (1-R) : n = 128/c \}$

- Usually: q = 2 and w equals to Gilbert-Varshamov bound (small weight),
 - Recent work [BCDL19]: choose q = 3 and large weight.

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoc and its Associated

Reaching Uniform Signature

Security Proo

Conclusion

Minimum input sizes (in kbits) for a time complexity of 2^{128}

Algorithm	q=2	q=3 and $w/n>1/2$
Prange	275	44
Dumer/Wagner	295	83
$BJMM/Our\ algorithm$	374	99

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoc and its Associated

Associated Decoder

C

Conclusion

Exponent of the Prange Algorithm for q = 3

Complexity: $2^{\alpha n}$ where α function of w/n.

Figure: Exponent vs Relative Weight

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoc and its Associated

Reaching Uniform

Security Proo

Conclusion

Exponent of the Prange Algorithm for q = 3

Complexity: $2^{\alpha n}$ where α function of w/n.

Figure: Exponent vs Relative Weight

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoor and its Associated Decoder

Reaching Uniform Signature

Security Proof

Conclusio

- Introduction
- **2** Hardness of Syndrome Decoding for Large Weight
- 3 Our Trapdoor and its Associated Decoder
- **4** Reaching Uniform Signatures
- **6** Security Proof
- **6** Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoor and its Associated Decoder

Reaching Uniform Signature

Security F100

Conclusion

Our trapdoor

Our trapdoor consists in generalized (U, U + V)-codes.

Example:

•
$$(U, U + V) \stackrel{\triangle}{=} \{(\mathbf{u}, \mathbf{u} + \mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$$

•
$$(U+V, U-V) \stackrel{\triangle}{=} \{(\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$$

• More generally, for all $\mathbf{u}=(u_1,\cdots,u_{n/2})\in U$ and $\mathbf{v}=(v_1,\cdots,v_{n/2})\in V$:

$$+n/2$$
 bits

$$(\underbrace{u_1, u_2 + v_2, \cdots, u_{n/2} + v_{n/2}; u_1 + v_1, u_2 - v_2, \cdots, v_{n/2} - u_{n/2}}_{n/2})$$

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoor and its Associated

Reaching Uniform Signature

Security Proof

Conclusio

Our trapdoor

Our trapdoor consists in generalized (U, U + V)-codes.

Example:

•
$$(U, U + V) \stackrel{\triangle}{=} \{(\mathbf{u}, \mathbf{u} + \mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$$

•
$$(U+V,U-V) \stackrel{\triangle}{=} \{(\mathbf{u}+\mathbf{v},\mathbf{u}-\mathbf{v}) : \mathbf{u} \in U, \mathbf{v} \in V\};$$

• More generally, for all $\mathbf{u} = (u_1, \dots, u_{n/2}) \in U$ and $\mathbf{v} = (v_1, \dots, v_{n/2}) \in V$:

$$+n/2$$
 bits

$$(\underbrace{u_1, u_2 + v_2, \cdots, u_{n/2} + v_{n/2}; u_1 + v_1, u_2 - v_2, \cdots, v_{n/2} - u_{n/2}}_{n/2})$$

We will restrict in this talk our study to the case of:

$$(U, U + V)$$
 - codes ; $q = 3$ with $\mathbb{F}_3 = \{-1, 0, 1\}$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoor and its Associated Decoder

Reaching Uniform

Security Proc

Conclusion

$$(U, U + V)$$
-decoder (I)

U (resp. V) random code of dimension k_U (resp. k_V) defined by \mathbf{H}_U (resp. \mathbf{H}_V).

 \rightarrow The (U, U + V)-code is defined by:

$$\mathbf{H} \stackrel{\triangle}{=} \begin{pmatrix} \mathbf{H}_U & \mathbf{0} \\ -\mathbf{H}_V & \mathbf{H}_V \end{pmatrix}$$

Let,

$$\mathbf{e} = (\mathbf{e}_U, \mathbf{e}_U + \mathbf{e}_V)$$
 ; $\mathbf{s} = (\mathbf{s}_U, \mathbf{s}_V)$

$$\mathbf{H}\mathbf{e}^{\mathsf{T}} = \mathbf{s}^{\mathsf{T}} \iff \left\{ egin{array}{l} \mathbf{H}_{U}\mathbf{e}_{U}^{\mathsf{T}} = \mathbf{s}_{U}^{\mathsf{T}} \\ \mathbf{H}_{V}\mathbf{e}_{V}^{\mathsf{T}} = \mathbf{s}_{V}^{\mathsf{T}} \end{array}
ight.$$

ightarrow No gain when decoding independently with the Prange algorithm...

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding fo Large Weigh

Our Trapdoor and its Associated Decoder

Reaching Uniform Signature

Security Prod

Conclusion

$$(U, U + V)$$
-decoder (II)

We look for $\mathbf{e} = (\mathbf{e}_U, \mathbf{e}_U + \mathbf{e}_V)$ such that:

$$\mathbf{H}_U \mathbf{e}_U^\mathsf{T} = \mathbf{s}_U^\mathsf{T}$$
 ; $\mathbf{H}_V \mathbf{e}_V^\mathsf{T} = \mathbf{s}_V^\mathsf{T}$

 \rightarrow We use the Prange algorithm!

Polar code strategy:

- (i) firstly to decode in V to get \mathbf{e}_V ;
- (ii) then to decode in U to get \mathbf{e}_U using the knowledge of \mathbf{e}_V

We have the freedom to choose:

- k_V (dimension of V) symbols of \mathbf{e}_V ;
- k_U (dimension of U) symbols of \mathbf{e}_U .

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoor and its Associated

Reaching Uniform Signature

Security Proo

Conclus

$$(U, U + V)$$
-decoder (III)

We get a final error $\mathbf{e} = (\mathbf{e}_U, \mathbf{e}_U + \mathbf{e}_V) \in \mathbb{F}_3^n$ of shape:

To reach an error of minimum weight:

• Put as many 0's as possible in $\mathbf{e}'_U(i)$ (they are doubled in \mathbf{e}).

To reach an error of maximum weight

• Choose
$$k_U$$
 symbols $\mathbf{e}_U(i)$ such that:
$$\left\{ \begin{array}{l} \mathbf{e}_U(i) \neq 0 \\ \mathbf{e}_U(i) + \mathbf{e}_V(i) \neq 0 \end{array} \right.$$

 \rightarrow Possible as q=3 and do not depend of $\mathbf{e}_V(i)!$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoor and its Associated Decoder

Reaching Uniform Signature

Security Proc

Conclusion

Relative Distances of Signature

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding fo Large Weigh

Our Trapdo and its Associated

Reaching Uniform Signatures

Security Proof

Conclusion

- Introduction
- 2 Hardness of Syndrome Decoding for Large Weight
- 3 Our Trapdoor and its Associated Decoder
- **4** Reaching Uniform Signatures
- **6** Security Proof
- **6** Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdo and its Associated Decoder

Reaching Uniform Signatures

Security Proo

Conclusio

Achieving the Uniform Distribution(I)

Let,

$$e^{\operatorname{sgn}} \stackrel{\triangle}{=} (\mathbf{e}_U, \mathbf{e}_U + \mathbf{e}_V)$$
 (resp. $e^{\operatorname{unif}} \stackrel{\triangle}{=} (\mathbf{e}_1, \mathbf{e}_2)$)

be a signature (resp. be a uniform word of weight w).

We would like,

$$e^{sgn} \sim e^{unif}$$

We remark,

$$\begin{cases} \mathbf{e}_{U} \sim \mathbf{e}_{1} \\ \mathbf{e}_{V} \sim \mathbf{e}_{2} - \mathbf{e}_{1} \end{cases}$$

But here.

$$\mathbf{e}_V = \mathsf{Prange}(\mathbf{H}_V, \mathbf{s}_V)$$

In a first approximation we would like:

$$\mathbb{E}\left(|\mathbf{e}_{V}|\right) = \mathbb{E}\left(|\mathbf{e}_{2} - \mathbf{e}_{1}|\right)$$

 \rightarrow How to adjust $\mathbb{E}(|\mathbf{e}_V|)$ with the Prange algorithm?

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated Decoder

Reaching Uniform Signatures

Security Proof

Conclusio

Achieving the Uniform Distribution(II)

• We look for $\mathbb{E}(|\mathbf{e}_V|) = \mathbb{E}(|\mathbf{e}_2 - \mathbf{e}_1|)$ where $\mathbf{e}^{\mathsf{unif}} \stackrel{\triangle}{=} (\mathbf{e}_1, \mathbf{e}_2)$

$$\mathbf{e}_V = \boxed{ \mathbf{e}_V' & \mathbf{e}_V'' \\ \longleftarrow & \longleftarrow \\ k_V \text{ bits} & n/2 - k_V \text{ bits} }$$

- \mathbf{e}_V'' follows a uniform law over $\mathbb{F}_3^{n/2-k}$: $\mathbb{E}(|\mathbf{e}_V''|) = \frac{2}{3}(n/2 k_V)$
- \mathbf{e}'_V such that: $\mathbb{E}(|\mathbf{e}'_V|) = (1-\alpha)k_V$ with a fixed α .
- \rightarrow Choose k_V such that: $(1-\alpha)k_V+\frac{2}{3}(n/2-k_V)=\mathbb{E}\left(|\mathbf{e}_2-\mathbf{e}_1|\right)$

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

to the state of the

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signatures

Security Pro

Conclusion

Prange vs Uniform Distribution for *V*

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Industrial continu

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signatures

Security Prod

Conclusion

Prange vs Uniform Distribution for V

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signatures

Security Proo

Conclusion

Achieving the Uniform Distribution(III)

- e" follows a uniform law: its variance is fixed
- Choose \mathbf{e}_V' such that: $\mathbb{E}(|\mathbf{e}_V'|) = (1-\alpha)k_V$ and high variance!

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signatures

Security Proo

Conclusion

Prange vs Uniform Distribution for *V*

Now we can sometimes reject some outputs of the Prange algorithm!

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Internalization

Hardness of Syndrome Decoding for Large Weight

Our Trapdoc and its Associated

Reaching Uniform Signatures

Security Prod

Conclusion

Prange vs Uniform Distribution for *V*

Now we can sometimes reject some outputs of the Prange algorithm!

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated Decoder

Reaching Uniform Signatures

Security Proof

Conclusion

Achieving the Uniform Distribution(IV)

By making a rejection sampling on $|\mathbf{e}_V|$:

"accept
$$|\mathbf{e}_V| = i$$
" with probability: $\frac{1}{M} \frac{\mathbb{P}(|\mathbf{e}_2 - \mathbf{e}_1| = i)}{\mathbb{P}(|\mathbf{e}_V| = i)}$

with

$$M \stackrel{\triangle}{=} \max_{j} \frac{\mathbb{P}(|\mathbf{e}_{2} - \mathbf{e}_{1}| = j)}{\mathbb{P}(|\mathbf{e}_{V}| = j)}$$

$$ightarrow$$
 This ensures $|\mathbf{e}_V| \sim |\mathbf{e}_1 - \mathbf{e}_2|$ (1)

Distribution of the Prange algorithm is only function of the weight:

$$\mathbb{P}(\mathsf{Prange}(\cdot) = \mathbf{e} \mid |\mathsf{Prange}(\cdot)| = |\mathbf{e}|) = \frac{1}{\#\{\mathbf{x} : |\mathbf{x}| = |\mathbf{e}|\}}$$

 \rightarrow Combined with (1) it gives: $\mathbf{e}_V \sim \mathbf{e}_2 - \mathbf{e}_1$

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding fo Large Weigh

Our Trapdoo and its Associated Decoder

Reaching Uniform Signatures

Security Pro

Conclusion

Achieving the Uniform Distribution(V)

To end, rejection sampling on $|\mathbf{e}_U|$ which gives:

Distribution of signatures = Uniform over words of weight w

ightarrow Impossible attack with the knowledge of signatures!

With our parameter:

 $\mathbb{P}(\text{a reject})\approx 0.01$

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introductio

Hardness of Syndrome Decoding for Large Weight

Our Trapdoo and its Associated

Reaching Uniform Signatures

Security Prod

Conclusion

Relative Distance with No Leakage

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proof

Conclusion

1 Introduction

2 Hardness of Syndrome Decoding for Large Weight

3 Our Trapdoor and its Associated Decoder

A Reaching Uniform Signatures

6 Security Proof

6 Conclusion

Thomas Debris-Alazard. Nicolas Sendrier and Jean-Pierre Tillich

and its

Security Proof

Security Model: a Strong One

Any adversary can have access to:

- q_{sign} signatures (\mathbf{m}, σ) of its choice;
- q_{hash} hash results H(m).
 - → His goal: produce one signature he did not request!

Thomas

Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduct

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Reaching Uniform Signature

Security Proof

Conclusion

The Decoding Problem

Problem (DOOM – Decoding One Out of Many)

Instance : \mathbf{H} ; $\mathbf{s}_1, \dots, \mathbf{s}_N$; w

Output: (\mathbf{e}, i) with $|\mathbf{e}| = w$ such that $\mathbf{H}\mathbf{e}^{\mathsf{T}} = \mathbf{s}_{i}^{\mathsf{T}}$

Computational success in time *t* of breaking DOOM:

$$Succ_{DOOM}^{N}(t) = \max_{|\mathcal{A}| \leq t} \left\{ Succ_{DOOM}^{N}(\mathcal{A}) \right\}$$

where $Succ_{DOOM}^{N}(A)$ is the probability for A to break DOOM.

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introductio

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoc and its Associated

Reaching Uniform Signature

Security Proof

Conclusion

Security Reduction

- $\rho(\mathcal{D}_0, \mathcal{D}_1)$: statistical distance between \mathcal{D}_0 and \mathcal{D}_1 ;
- $\rho_c\left(\mathcal{D}_0, \mathcal{D}_1\right)(t) = \max_{|\mathcal{A}| \le t} \left\{ \mathbb{P}\left(\mathcal{A}(\mathcal{D}_0) = 0\right) \mathbb{P}\left(\mathcal{A}(\mathcal{D}_1) = 0\right) \right\}$

Theorem (Security Reduction)

When \mathcal{H} is a random function, we have for all time t:

$$\begin{split} & \mathsf{Security}^{\mathsf{Wave}}(t,q_{\mathsf{hash}},q_{\mathsf{sign}}) \leq 2 \mathit{Succ}_{\mathsf{DOOM}}^{q_{\mathsf{hash}}}(t_c) \\ & + \rho_c \left(\mathsf{Random \ Code}, \mathsf{Permuted \ Gen.} \right. \left(U,U+V \right) \text{-} \mathsf{code} \right) (t_c) \\ & + q_{\mathsf{sign}} \rho \left(\mathsf{Signature}, \mathsf{Uniform}_w \right) + \frac{1}{2} q_{\mathsf{hash}} \sqrt{\rho \left(\mathsf{H}_{\mathsf{pk}} \mathsf{e}_w^\mathsf{T}, \mathsf{s}_{\mathsf{unif}}^\mathsf{T} \right)} \end{split}$$

where
$$t_c = t + O(q_{\mathsf{hash}} \cdot n^2)$$
.

- $\sqrt{\rho \left(\mathbf{H}_{pk}\mathbf{e}_{w}^{\mathsf{T}}, \mathbf{s}_{unif}^{\mathsf{T}}\right)} = \text{negligible}()$ (left-over hash lemma)
- ρ (Signature, Uniform_w) = 0 (rejection sampling)

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding for Large Weigh

Our Trapdoo and its Associated

Reaching Uniform Signature

Security Proof

Conclusion

Introduction

2 Hardness of Syndrome Decoding for Large Weight

3 Our Trapdoor and its Associated Decoder

4 Reaching Uniform Signatures

6 Security Proof

6 Conclusion

Thomas Debris-Alazard, Nicolas Sendrier and Jean-Pierre Tillich

Introduction

Hardness of Syndrome Decoding fo Large Weigh

Our Trapdoc and its Associated

Reaching Uniform Signature

Security Proo

Conclusion

Conclusion

 The first code-based "hash-and-sign" based on NP-complete problems that strictly follows the GPV strategy;

Ongoing Work:

- We generalized decoding algorithms in \mathbb{F}_3 for high weights;
- Best algorithms to distinguish (U, U + V)-codes and random codes: decoding algorithms;
- Hope to remove the rejection sampling
 - → Many degrees of freedom in the Prange algorithm!

Thomas
Debris-Alazard,
Nicolas Sendrier
and Jean-Pierre
Tillich

Introduction

Hardness of Syndrome Decoding fo Large Weigh

Our Trapdoc and its Associated

Reaching Uniform

Security Proo

Conclusion

Conclusion

 The first code-based "hash-and-sign" based on NP-complete problems that strictly follows the GPV strategy;

Ongoing Work:

- We generalized decoding algorithms in \mathbb{F}_3 for high weights;
- Best algorithms to distinguish (U, U + V)-codes and random codes: decoding algorithms;
- Hope to remove the rejection sampling
 - → Many degrees of freedom in the Prange algorithm!

Thank You!