Lezione 19/10/2022

Correlazione lineare tra due caratteri (esercizio)

In 4 supermercati (che chiamo A, B, C e D) di una nota catena sono stati rilevati la superficie di esposizione, in migliaia di metri quadrati, e il fatturato settimanale, in migliaia di euro. Sono stati ottenuti i seguenti dati.

	A	В	C	D
x_i (superficie)	0.2	0.5	0.8	1
y_i (fatturato)	50	120	150	200

Studia la correlazione lineare tra i due caratteri.

Il primo metodo per capire se esiste una correlazione lineare tra i caratteri X = superficie e Y = fatturato è di disegnare lo scatter plot o diagramma di dispersione. Ogni supermercato viene rappresentato nel piano cartesiano da un punto le cui coordinate sono le modalità associate ad esso:

$$A:(0.2,0.5), B:(0.5,120), C:(0.8,150) \in D:(1,200).$$

I punti si rappresentano nel piano cartesiano e si osserva se essi si distribuiscono lungo una linea retta (vedi il grafico negli appunti). Una volta osservato che esiste una corrispondenza lineare si determina se è crescente (o diretta) oppure decrescente (inversa). Nel caso di questo esercizio, la corrispondenza è crescente.

Ci chiediamo: Quanto è forte la corrispondenza? Ad occhio (guardando il grafico) mi accorgo che la corrispondenza è forte, ma per quantificala matematicamente uso la covarianza oppure il coefficiente di correlazione lineare.

$$\sigma_{xy} = 16, 25.$$

Il fatto che σ_{xy} è un numero positivo, conferma che tra X e Y c'è una correlazione lineare crescente. Per sapere quanto la correlazione è forte devo sapere quanto σ_{xy} si avvicina al prodotto delle deviazioni standard σ_x e σ_y .

Calcolo $\sigma_x \cdot \sigma_y = 0.30 \cdot 54 = 16,29$. Dato che σ_{xy} è molto vicina a 16,29 allora posso dire che la correlazione lineare tra X e Y è molto forte.

Il coefficiente di correlazione lineare è un altro indice, alternativo alla covarianza, che consente di capire se esiste, quanto è forte e di che tipo è la correlazione lineare tra X e Y.

$$R = \frac{\sigma_{xy}}{\sigma_x \cdot \sigma_y} \sim 0.99$$

Il fatto che R è un numero positivo, conferma che tra X e Y c'è una correlazione lineare crescente. Dato che R è molto vicino a 1, la correlazione lineare è molto forte.

Dopo aver capito che tra X e Y esiste una correlazione lineare forte di tipo crescente, voglio calcolare la retta di regressione che è la retta che meglio si avvicina a tutti i punti A, B, C e D.

$$y = \frac{\sigma_{xy}}{\sigma_x^2}x + \bar{y} - \frac{\sigma_{xy}}{\sigma_x^2}\bar{x} = 176,87x + 19,46.$$

Osservazione: il segno del coefficiente angolare della retta di regressione $(\frac{\sigma_{xy}}{\sigma_x^2})$ è uguale al segno della covarianza $(\sigma_{x,y})$. Dalla geometria analitica, sappiamo inoltre che

- se il coefficiente angolare della retta è positivo allora la retta è crescente
- se il coefficiente angolare della retta è negativo allora la retta è decrescente.

Questo è coerente con il significato della covarianza (covarianza positiva=retta crescente e covarianza negativa=retta decrescente).

Variabili aleatorie

Definizione. Sia Ω lo spazio campionario di un esperimento casuale, una variabile aleatoria (o casuale) è una funzione $X:\Omega\to R$ che associa un numero reale a ogni possibile risultato dell'esperimento.

Esempio. Esperimento: lancio di due dadi. Considero la variabile aleatoria che associa a ogni risultato (x, y) la somma di x e y. Dunque, X((1, 1)) = 2, X((2, 1)) = 3, X((3, 4)) = 7, X((1, 6)) = 7, ...

Esempio. Esperimento: lancio due monete. Considero la variabile aleatoria che associa a ogni risultato (x, y) il numero di teste. Dunque, X((T, T)) = 2, X((T, C)) = 1, X((C, T)) = 1, X((C, C)) = 0.

Chiamiamo $X(\Omega)$ l'immagine di X.

Negli esempi precedenti $X(\Omega) = \{2, \dots, 12\}$ e $X(\Omega) = \{0, 1, 2\}$.

Una variabile aleatoria si puà rappresentare con una tabella.

Esempio. Esperimento: lancio due monete. Considero la variabile aleatoria che associa a ogni risultato (x, y) il numero di teste.

Ω	(T,T)	(T,C)	(C,T)	(C,C)
X	2	1	1	0

Le variabili aleatorie possono essere continue o discrete. Una

Definizione. variabile aleatoria che può assumere solo un numero finito di valori o un'infinità numerabile di valori è detta variabile aleatoria discreta, mentre una variabile aleatoria che assume un'infinità non numerabile di valori è detta continua.

In parole semplici, se X(A) dove $A \subseteq \Omega$ è sempre un numero naturale o 0 allora X è discreta, se X(A) può essere un qualsiasi numero reale (-1, 1,2, $\sqrt{3}, \ldots$) allora X è una variabile continua.

Esempi di variabili aleatorie discrete:

- X = Numero di teste nel lancio di due monete;
- X= somma dei risultati dei lanci di due dadi;
- X = voto di uno studente estratto a caso in una classe;
- \bullet X= numero di palline rosse estratte da un'urna in 8 estrazioni con rimpiazzo;
- X= numero di lanci di una moneta da effettuare affinchè esca per la prima volta testa.

Esempi di variabili aleatorie continue:

- $X = \text{altezza di uno studente estratto a caso in una classe } (X \in [140cm, 200cm]);$
- $X = \text{temperatura misurata a Varese in un momento a caso } (X \in [8 \ gradi, 30 \ gradi]);$
- X=peso di un pacco di biscotti prodotto da una fabbrica ($X \in [500g, 1000g]$).

In generale, se X è una variabile aleatoria, si usano notazioni del tipo seguente

Evento "X assume il valore a": X = a;

Evento "X assume valori compresi nell'intervallo (a, b)": a < X < b;

Evento "X assume valori minori o uguali a c": $X \leq c$.

Variabili aleatorie discrete

D'ora in poi ci occupiamo di variabili aleatorie discrete.

Definizione. Sia $X: \Omega \to R$ una variabile aleatoria, si chiama distribuzione di probabilità di X la funzione $p: R \to [0, +\infty[$ tale che

$$p(k) = P(X = k)$$

per ogni $k \in R$.

Esempio. Se considero la variabile aleatoria X che conta il numero di teste nel lancio di due monete, allora $p(0) = p(2) = \frac{1}{4}$, $p(1) = \frac{1}{2}$ e p(k) = 0 per ogni $k \notin \{0, 1, 2\}$.

La distribuzione di probabilità di una variabile aleatoria discreta si può rappresentare mediante una tabella, un diagramma a barre o a un istogramma.

Esempio. Consideriamo la variabile aleatoria che esprime il numero di teste nel lancio di due monete.

La tabella riporta nella prima riga i valori di $X(\Omega)$ e nella seconda riga le rispettive probabilità.

k	0	1	2
(1)	1	1	1
p(k)	$\frac{-}{4}$	$\frac{-}{2}$	$\frac{-}{4}$

Il diagramma a barre e l'istogramma riportano sull'asse orizzontale i valori di $X(\Omega)$ a cui corrisponde un rettangolo. Nel caso del diagramma a barre l'altezza del rettangolo associato a k è uguale alla probabilità P(X=k). Nel caso dell'istogramma l'area del rettangolo di k è uguale a P(X=k). Se inoltre supponiamo che le basi dei rettangoli dell'istogramma misurino 1 allora P(X=k) è anche l'atezza dei rettangoli.

Proprietà delle variabili aleatorie discrete

1.
$$P(X = k) = 0$$
 se $k \notin X(\Omega)$;

2. Se
$$X(\Omega) = \{k_1, \dots, k_n\}$$
, allora $P(X = k_1) + \dots + P(X = k_n) = 1$.

Esempio. Consideriamo la variabile aleatoria X che esprime il numero di teste nel lancio di due monete, allora $X(\Omega) = \{0, 1, 2\}$.

P(X = -3) = P(X = 1, 2) = 0 e P(X = k) = 0 per ogni k diverso da 0, 1 e 2.

Inlotre,
$$P(X = 0) + P(X = 1) + P(X = 2) = \frac{1}{4} + \frac{1}{2} + \frac{1}{4}$$
.