

COVID-19 Diagnosis: Edge Impulse-Driven CNN Architecture for High-Accuracy Classification of Lung X-ray Images

Christopher Lima e Gabriel Pivoto

Conteúdo

01

Introdução

04

Resultados

Conclusão

Trabalhos

02

05

Relacionados

Metodologia

Introdução

• Diagnóstico Crítico na Pandemia

Papel da IA e ML na Revolução Diagnóstica

Trabalhos Relacionados

100

Machine Learning for medical imaging-based COVID-19 detection and diagnosis

- Uso de Aprendizado de Máquina (ML) na detecção da COVID-19.
- Ênfase na importância do diagnóstico preciso para conter a propagação da doença.
- Exploração do potencial das imagens médicas (CTs, raios-X, ultrassonografias) na identificação do vírus.
- Desafio da escassez de dados rotulados para aprimorar os modelos de detecção.
- Necessidade de integrar informações clínicas e de imagem para melhorar os modelos de detecção por ML.

Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A machine learning based approach

- Sistemas de diagnóstico por computador para detecção e monitoramento da COVID-19.
- Comparação de diferentes frameworks de aprendizado profundo para classificar a COVID-19
- Destaque para a precisão da DenseNet121 (99,00%) na classificação de raios-X e CT, sugerindo melhorias nos modelos.

A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods

- Importância das ferramentas tecnológicas na rápida detecção de COVID-19 em imagens médicas.
- Estudo sobre o uso de aprendizado de máquina para identificar COVID-19 em imagens de raios-X e CT.
- Utilização de três conjuntos de dados diferentes, evidenciando a eficácia do método proposto.
- Destaque para a detecção de COVID-19 em menos de um minuto com altas taxas de sucesso utilizando métodos de aprendizado clássico, como k-NN e SVM, com precisões de até 99.02%.

Metodologia

Datasets:

- Utilização de dois datasets para realizar o treinamento do modelo.
- Covid19-Image-Dataset: Viral Pneumonia (90), Normal (90) e Covid (90).
- Covid-Cxr-Image-Dataset-Research: Virus (619), Normal (668) e Covid (536).

Covid Virus Normal

Metodologia

Edge Impulse:

- Criado um bloco de imagem em grayscale.
- Criado um bloco de classificador com os parâmetros ao lado.

Docker Container:

- Modelo treinado com container local (gerado pelo Edge Impulse)
- Código python para testar o modelo.

Resultados

- Cada dataset foi utilizado para treino individualmente.
- Variações de épocas de treinamento e learning rate.
- Junção dos dois datasets e variação dos parâmetros.
- Docker container exportado do Edge Impulse.

Last training performance (validation set)

% ACCURACY 92.2%

Confusion matrix (validation set)

	COVID	NORMAL	VIRUS
COVID	93.3%	0%	6.7%
NORMAL	0.8%	92.9%	6.3%
VIRUS	3.2%	6.4%	90.4%
F1 SCORE	0.94	0.94	0.88

Resultados

- Realizado o deploy do modelo em um smartphone.
- Modelo foi utilizado para testar imagens rotuladas disponibilizadas na internet.

Resultados

Modelo testado localmente em container.

```
Epoch 54/55

39/39 - 4s - loss: 0.0329 - accuracy: 0.9911 - val_loss: 0.2983 - val_accuracy: 0.9288 - 4s/epoch - 97ms/step

Epoch 55/55

39/39 - 4s - loss: 0.0393 - accuracy: 0.9870 - val_loss: 0.3531 - val_accuracy: 0.9126 - 4s/epoch - 99ms/step

Finished training
```

```
input_shape = input_details[0]['shape']
image_path = "./Covid/0100.jpeg"
input_data = preprocess_image(image_path, input_shape)

0.0s
```

Conclusão

Evolução do Modelo de IA

Utilização do Edge Impulse para treinar um modelo de IA que atingiu 92,2% de precisão após 55 épocas de treinamento.

Fusão do Edge Impulse com IA representa um avanço na área médica, permitindo diagnósticos mais ágeis em ambientes com recursos limitados.

Blocos Cruciais no Desenvolvimento do Modelo

Incorporação de blocos de imagem e classificação para capturar complexidades dos dados, usando rede neural convolucional (CNN).

Contribuição dos Resultados e trabalhos futuros

Oferta de soluções práticas e acessíveis para diagnósticos rápidos e precisos da COVID-19 pela aplicação sinérgica de IA e Edge Impulse. Comparações com a mesma CNN em outros frameworks.

COVID-19 Diagnosis: Edge Impulse-Driven CNN Architecture for High-Accuracy Classification of Lung X-ray Images

Christopher Lima e Gabriel Pivoto

https://github.com/chrislima/tp557-covid-classifier

