

Course Methods Test 2 Year 12

Student name:	Teacher name:			
Task type:	Response			
Reading time for this test: 5 mins				
Working time allowed for this task: 40 mins				
Number of questions:	4			
Materials required:	Upto three calculators/classpads			
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters			
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper,			
Marks available:	42 marks			
Task weighting:	13%			
Formula sheet provided:	no but formulae listed on next page.			
Note: All part questions worth more than 2 marks require working to obtain full marks.				

Useful formulae

Q1 (2, 3, 3 & 2 = 10 marks)

Consider the functions $f(x) \otimes g(x)$ and the table of values below.

Determine the following showing full working.

a)
$$\frac{d}{dx}(f(x)g(x))$$
 , $x = 3$

C $\frac{d}{dx}(f(x)g(x)) = fg' + fg'$ = f(3)g'(3) + f'(3)g(3)=9(8) + 5(12)=132**Specific behaviours**

- ✓ uses product rule
- ✓ determines derivative at x=3

b)
$$\frac{d}{dx} \left(\frac{g(x)}{f(x)} \right)$$
, $x = 4$

C $=\frac{fg'-gf'}{f^2}=\frac{f(4)g'(4)-g(4)f'(4)}{(f(4))^2}$ $=\frac{13(-9)-18(-7)}{13^2}$ **Specific behaviours**

- ✓ uses quotient rule
- ✓ subs correct values for numerator
- \checkmark obtains derivative at x=4

c)
$$\frac{d}{dx} [f(g(x))], x = 5$$

C $\frac{d}{dx}[f(g(x))] = f'(g)g'$ = f'[g(5)]g'(5)= f'(3)(-2)=5(-2)- 10 **Specific behaviours** ✓ uses chain rule

- ✓ determines derivative of f at x=5
- ✓ states derivative at x=5

NOTE: max of 1 out of 3 if no chain rule used

$$\frac{d}{dx}f(3x) \quad , x = 1$$

C $\frac{d}{dx}f(3x) = f'(3x)3$ = f'(3)3=5(3)=15**Specific behaviours** ✓ uses chain rule ✓ states derivative NOTE: zero marks if no factor of 3 (chain rule) used!

Q2(1, 2, 3, 2 & 3 = 11 marks)

Consider a group of kangaroos living in an isolated habitat such that the number of kangaroos, N at time t years (t =0 at the start of 2012), is given by N =64000 $e^{^{0.12t}}$

a) Determine the number of kangaroos at the start of 2012.

64000 kangaroos		
	Specific behaviours	
✓ states number		

b) Determine the increase in kangaroos over the first 5 years.

c) Determine to the nearest month when the population first exceeds 100000.

Three years and nine months.	
	Specific behaviours
✓ sets up equation	
✓ solves for time in years	
✓ rounds to nearest month (do	ot accept 8 months nor days)

d) Determine the rate of growth at the start of 2024.

After 10 years the number of kangaroos starts to decline according the formula $N=Ae^{rt}$ where $A\otimes r$ are constants.

e) Determine A & r if after 3 years after the decline of the kangaroos, the population is back to 64000.

Q3 (2, 2, 2, 2 & 4 = 12 marks)

 $v = 3t^2 \sin\left(t - \frac{\pi}{4}\right), t \ge 0.$

An oscillating mass has a velocity, V given by

The velocity is measured in metres/second with the time, $\,^t$ in seconds. Find below a graph of the velocity.

a) Determine the first two exact times that the mass changes direction, t > 0.

	С			
$\frac{\pi}{4}, \frac{5\pi}{4}$				
Specific behaviours				
✓ first time, t>0 ✓ second time				

b) Shade on the diagram above the signed area that is represented by the integral

$$\int_{\frac{\pi}{6}}^{\frac{4\pi}{3}} 3t^2 \sin(t - \frac{\pi}{4}) dt$$

$$\frac{4\pi}{2}$$
 $\frac{7\pi}{2}$

Shades area between graph from 3 to 6

Specific behaviours

✓ shades positive signed area to intercept

$$\frac{7\pi}{}$$

 \checkmark shades negative signed area from intercept to $^{\,\,\,6}\,\,$.

c) What does the integral $\int_{-6}^{\frac{4\pi}{3}} 3t^2 \sin(t - \frac{\pi}{4}) dt$ represent for the mass?

C

$$\frac{4\pi}{2}$$
 $\frac{7\pi}{2}$

Change in displacement from $\frac{3}{6}$ to $\frac{6}{6}$

Specific behaviours

- ✓ discusses change in displacement (Do not accept distance)
- ✓ states start and finish times
- d) Determine the first time after $t = \pi$ that the acceleration is zero m/s^2 . (2 marks)

C

Time= 5.83 seconds

Specific behaviours

- ✓ shows derivative of velocity
- ✓ solves for first time after pi for zero acceleration WITH units

Note- full marks for answer only being a 2 mark question.

e) The displacement of the mass is given by

$$x = At^2 \cos(t - \frac{\pi}{4}) + Bt \sin(t - \frac{\pi}{4}) + C \cos(t - \frac{\pi}{4})$$
 metres, where $A, B \& C$ are constants. Determine the values of $A, B \& C$.

$$\frac{c}{x = At^{2} \cos(t - \frac{\pi}{4}) + Bt \sin(t - \frac{\pi}{4}) + C \cos(t - \frac{\pi}{4})}$$

$$v = 2At \cos(t - \frac{\pi}{4}) - At^{2} \sin(t - \frac{\pi}{4}) + Bt \cos(t - \frac{\pi}{4}) + B \sin(t - \frac{\pi}{4}) - C \sin(t - \frac{\pi}{4})$$

$$v = (2A + B)t \cos(t - \frac{\pi}{4}) - At^{2} \sin(t - \frac{\pi}{4}) + (B - C)\sin(t - \frac{\pi}{4})$$

$$= 3t^{2} \sin(t - \frac{\pi}{4})$$

$$A = -3$$

$$-6 + B = 0, B = 6$$

$$B = C = 6$$

Specific behaviours

- ✓ diffs x to obtain expression of v in terms of A,B&C
- ✓ sets up equations for constants
- ✓ Solves for B & C
- ✓ Solves for A

Q4 (2, 3 & 4 = 9 marks)

a) Determine the values of $X_1 & X_2$ to two decimal places.

b) Using calculus, determine the cross-sectional area of the trench to one decimal place.

$$\int_{.53}^{8.85} - 3 - (x - 7)^{2} + \sin(3x - 5) + 6 dx$$

$$\left[-3x - \frac{(x - 7)^{3}}{3} - \frac{1}{3}\cos(3x - 5) + 6x \right]_{5.53}^{8.85}$$

$$\left[-3(8.85) - \frac{(8.85 - 7)^{3}}{3} - \frac{1}{3}\cos(3(8.85) - 5) + 6(8.85) \right]$$

$$- \left[-3(5.53) - \frac{(5.53 - 7)^{3}}{3} - \frac{1}{3}\cos(3(5.53) - 5) + 6(5.53) \right]$$

$$= 7.2787$$
Area = 7.3 square Km

Specific behaviours

✓ sets up definite integral with correct limits

- ✓ states anti-derivative
- ✓ states area (no need to round nor units)
- c) Using calculus, determine the maximum distance of the trench below sea level.

Specific behaviours

- ✓ states derivative
- \checkmark equates derivative to zero and solves for three x values within domain in part a
- ✓ states second derivative for all three stationary points
- ✓ identifies correct stationary point and states depth as a positive number WITH units (no need to calculate both y values)

Note: max of -1 for no units in this entire question.