ECE2 - Mathématiques

DM₂

- * A rendre le jeudi 14 octobre au début de la séance de cours. Aucun délai supplémentaire ne sera accordé.
- * Le devoir doit être rédigé sur des copies doubles. Les résultats doivent être mis en valeur (encadrés ou soulignés par exemple).

Exercice 1

Dans $\mathcal{M}_3(\mathbb{R})$, on considère les matrices :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

On note E le sous-ensemble de $\mathcal{M}_3(\mathbb{R})$ défini par :

$$\mathbf{E} = \left\{ \begin{pmatrix} b & a & b \\ a & b & b \\ b & b & a \end{pmatrix} ; (a, b) \in \mathbb{R}^2 \right\}.$$

- 1. (a) Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et déterminer une famille génératrice de E.
 - (b) Déterminer une base de E et en déduire sa dimension.
 - (c) Soit $(a,b) \in \mathbb{R}^2$. Déterminer les coordonnées de $\begin{pmatrix} b & a & b \\ a & b & b \\ b & b & a \end{pmatrix}$ dans la base trouvée à la question précédente.
- 2. (a) Calculer A^2 .
 - (b) En déduire que A est une matrice inversible et donner A^{-1} en fonction de A.
- 3. On considère le sous-ensemble F de $\mathcal{M}_{3,1}(\mathbb{R})$ défini par

$$F = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid BX = 2X\}.$$

(a) Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. Montrer que:

$$X \in F \iff \begin{cases} x + y - 2z = 0 \\ x - z = 0 \\ - y + z = 0 \end{cases}.$$

- (b) En déduire que F est un sous-espace vectoriel de $\mathcal{M}_{3,1}(\mathbb{R})$ et déterminer une famille génératrice de F
- (c) Trouver une base de F et sa dimension.

Exercice 2

On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}}$, définie par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N} \ u_{n+1} = \frac{u_n^2 + 1}{2}$.

- 1. (a) Montrer que, pour tout entier naturel n, on a $0 \le u_n \le 1$.
 - (b) Étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Déduire des questions précédentes que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 2. Pour tout entier naturel n, on pose $v_n = 1 u_n$.
 - (a) Pour tout entier naturel k, exprimer $v_k v_{k+1}$ en fonction de v_k .
 - (b) Simplifier, pour tout entier naturel n non nul, la somme $\sum_{k=0}^{n-1} (\nu_k \nu_{k+1})$.
 - (c) Donner la nature de la série de terme général v_n^2 ainsi que sa somme (si elle converge).

Exercice 3

Un mobile se déplace sur les points à coordonnées entières d'un axe d'origine O. Au départ, le mobile est à l'origine. Le mobile se déplace selon la règle suivante : s'il est sur le point d'abscisse k à l'instant n, alors, à l'instant (n+1)

- il sera sur le point d'abscisse (k+1) avec la probabilité p (0
- il sera sur le point d'abscisse 0 avec la probabilité 1 p.

Pour tout n de \mathbb{N} , on note X_n l'abscisse de ce point à l'instant n et l'on a donc $X_0 = 0$.

On admet que, pour tout entier naturel n, X_n est définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

Par ailleurs, on note T l'instant auquel le mobile se trouve pour la première fois à l'origine (sans compter son positionnement au départ).

Par exemple, si les abscisses successives du mobile après son départ sont 0, 0, 1, 2, 0, 0, 1, alors on a T = 1. Si les abscisses successives sont : 1, 2, 3, 0, 0, 1, alors on a T = 4.

On admet que T est une variable aléatoire définie sur (Ω, \mathcal{A}, P)

- 1. (a) Pour tout k de \mathbb{N}^* , exprimer l'événement (T = k) en fonction d'événements mettant en jeu certaines des variables X_i .
 - (b) Donner la loi de X₁.
 - (c) En déduire P(T = k) pour tout k de \mathbb{N}^* , puis reconnaître la loi de T.
- 2. (a) Montrer par récurrence que, pour tout entier naturel n, $X_n(\Omega) = [0, n]$.
 - (b) Pour tout n de \mathbb{N}^* , utiliser le système complet d'événements $((X_{n-1} = k))_{0 \le k \le n-1}$ pour montrer que : $\mathbb{P}(X_n = 0) = 1 p$.
- 3. (a) Établir que : $\forall n \in \mathbb{N}, \forall k \in \{1, 2, ..., n+1\}, P(X_{n+1} = k) = p P(X_n = k-1).$
 - (b) En déduire que : $\forall n \in \mathbb{N}^*$, $\forall k \in \{0, 1, 2, ..., n-1\}$, $P(X_n = k) = p^k (1-p)$. En déduire également la valeur de $P(X_n = n)$. Donner une explication probabiliste de ce dernier résultat.
 - (c) Vérifier que $\sum_{k=0}^{n} P(X_n = k) = 1.$