

# **Cloud Computing**

#### Introduction to virtualization

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Speing 2023



## Introduction (cont.)

- > Virtualization is often synonymous with hardware virtualization.
- ➤ Plays a fundamental role in efficiently delivering *Infrastructure-*as-a-Service (IaaS) solutions for cloud computing.



https://www.javatpoint.com/infrastructure-as-a-service



## Introduction (cont.)

Virtualization techs have a long trail in the history of computer science.

- ➤ In many flavors by providing Virtual Environments (VE) at the:
  - Operating system level
  - Programming language level
  - Application level

➤ Virtualization technologies provide a VE for not only **executing applications** but also for **storage**, **memory**, and **networking**.

### Major components of a virtualized environment

#### **≻** Guest

 The system component that interacts with the virtualization layer rather than with the host, as would normally happen.

#### **Host**

The original env. where the guest is supposed to be managed.

#### ➤ Virtualization layer

Recreate the same or a different env. where the guest will operate.

### Major components of a virtualized environment (cont.)



- ➤ Increased Security
- ➤ Managed Execution
  - Sharing
  - Aggregation
  - Emulation
  - Isolation
  - Performance tuning



https://www.geeksforgeeks.org/characteristics-of-virtualization/

- Virtual machine migration
- Portability



## Increased Security

The ability to control the execution of a guest in a *completely*transparent manner opens new possibilities for delivering a secure, controlled execution environment.



## Increased Security (cont.)

➤ All the operations of the guest are generally *performed against*the Virtual Machine (VM), which then translates and applies
them to the host.





## Increased Security (cont.)

This level of *indirection* allows the hypervisor (VM manager) to control and filter the activity of the guest, thus preventing some harmful operations from being performed.





## Increased Security (cont.)

➤ Resources exposed by the *host* can then be *hidden or simply* protected from the guest.





## Managed Execution: Sharing

➤ Virtualization allows the creation of a *separate computing* environments within the same host.





## Managed Execution: Sharing (cont.)

In this way it is possible to **fully exploit the capabilities** of a powerful host, which would otherwise be underutilized.





## Managed Execution: Aggregation

A *group* of *separate hosts* can be tied together and represented to guests as a single virtual host.





### Managed Execution: Emulation

- ➤ A completely different environment with respect to the host can be emulated.
- Allowing the execution of guest programs requiring specific characteristics that are not present in the physical host.





## Managed Execution: Isolation

➤ Virtualization allows providing guests—whether they are operating systems, applications, or other entities—with a completely separate environment, in which they are executed.





## Managed Execution: Performance tuning

It becomes easier to control the performance of the guest by finely *tuning* the properties of the *resources exposed* through the virtual environment.

This capability provides a means to effectively implement a quality-of-service (QoS) infrastructure that more easily fulfills the service-level agreement (SLA) established for the guest.

### Managed Execution: Virtual machine migration

Managed execution allows VM managers to stop the execution of a guest operating system, move its virtual image into another VM, and resume its execution in a completely transparent manner.



### Managed Execution: Virtual machine migration

Managed execution allows easy capturing of the state of the guest program, persisting it, and resuming its execution.

This allows VM managers to stop the execution of a guest operating system, move its virtual image into another VM, and resume its execution in a completely transparent manner.

➤ This is an important feature in virtualized data centers for optimizing their efficiency in serving application demands.

## Portability of a hardware virtualization solution

➤ Guest is packaged into a *virtual image* that, in most cases, can be safely moved and executed on top of different *virtual machines*.



http://www.opengroup.org/cloud/cloud\_iop/p4.htm



## Portability of programming-level virtualization

The binary code representing application components (jars or assemblies) can be run without any recompilation on any implementation of the corresponding virtual machine.



https://www.edu cba.com/javavirtual-machine/