

Evaluation of a numerical air quality model

Data wrangling large NetCDF files with R

Kristen Foley

Office of Research and Development Computational Exposure Division August 12, 2019

The CMAQ Team:

- Office of Research and Development,

 NERL/Computational
 Exposure Division
 CEMM/Atmospheric & Environmental Systems
 Modeling Division
- Mix of atmospheric scientists, chemical and environmental engineers, meteorologists, computer scientists, one statistician

https://www.vortech.nl/en/fortran-is-alive/

MATLAB

ArcGIS

Using R to evaluate a numerical air quality model

Presentation outline

- What is CMAQ?
- What is a NetCDF formatted file?
- How do I visualize and evaluate 10s-100s of GB of model output?

CMAQ: Exploring Air Pollution from Global Scales to Local Impacts

Windblown dust generated in the Sahara Desert and transported to the Southeast US

Health impacts from Trends in Aerosol Cooling

Xing et al. (2016) doi: 10.1021/acs.est.6b00767

Ozone and 10-m wind vectors over Maryland at 12-km, 4-km, 1-km horizontal grid spacing

Air Quality Modeling: Complex Representation of Complex Atmospheric Processes

- The model uses numerical methods to solve ordinary and partial differential equations representing chemical transformation, diffusion, advection and removal processes over time
- Main Program: Fortran, > 1 million lines of code
- 1 year simulation over the continental US takes ~ 1 week w/ 256 cores

Air Quality Modeling: BIG data

- Requires 100s of GBs of input data, creates TB of output data
- Model output = 4D arrays of hourly output for \sim 200 chemical species e.g. 4D array = 460 x 300 horizontal grid (grid spacing = 12km) x 35 vertical layers x 24 hrs
- Output files: **NetCDF** formatted files with CMAQ-specific data structures
- Model simulations, post processing, and evaluation are done on the High-End Scientific Computing (HESC) Linux system at the National Computer Center (NCC)

Network Common Data Form

- Software libraries and data formats developed by Unidata
- Originally designed for sharing weather data
- Used for array-oriented scientific binary data

Why binary?

Save space

Save computational effort

Network Common Data Form

- Software libraries and data formats developed by Unidata
- Originally designed for sharing weather data
- Used for array-oriented scientific binary data

BIN 🗖		.CSV	.nc
10110	Size	14 GB	2.8 GB
10110 01001	Time to write	13 min	0.5 min

netCDF formats

- "Self-describing"
- File header includes dimensions of data arrays, metadata about each variable, global metadata


```
netcdf HR2DAY LST ACONC v521 mpi intel17.0 4CALIF1 Nodust 201005 {
dimensions:
       TSTEP = UNLIMITED ; // (17 currently)
       DATE-TIME = 2;
       LAY = 1;
       VAR = 1;
       ROW = 325;
       COL = 225;
variables:
       int TFLAG(TSTEP, VAR, DATE-TIME);
               TFLAG:units = "<YYYYDDD,HHMMSS>";
               TFLAG:long name = "TFLAG
               TFLAG:var desc = "Timestep-valid flags:
       float 03 MDA8(TSTEP, LAY, ROW, COL);
               03 MDA8:long name = "03 MDA8
               03 MDA8:units = "ppbV
               03 MDA8:var desc = "Max-8-hour
// global attributes:
               :IOAPI_VERSION = "$Id: @(#) ioapi library version 3
               :EXEC ID = "???????????????
               :FTYPE = 1 :
               :CDATE = 2018243 ;
               :CTIME = 132650 ;
               :WDATE = 2018243 ;
               :WTIME = 132650 ;
               :SDATE = 2010135 ;
               :STIME = 0;
               :TSTEP = 240000 ;
               :NTHIK = 1;
                                 Beginning of
               :NCOLS = 225 ;
               :NROWS = 325;
                                 header from a
               :NLAYS = 1;
               :NVARS = 9;
               :GDTYP = 2;
                                 CMAQ output file
               :P ALP = 33. ;
               :P BET = 45. ;
                                 with one variable
               :P GAM = -97.
               :XCENT = -97.;
               :YCENT = 40.;
               :XORIG = -24000000.;
               :YORIG = -732000.;
                                                        10
               :XCELL = 4000.;
```

:YCFLL = 4000.

SEPA When might you encounter netCDF data?

- Commonly used for earth science observations and modeling data:
 - Radar data
 - Satellite data
 - Numerical weather forecast data
 - Global climate modeling data
 - Ocean modeling data
 - CMAQ data!!
- Input/output format for many GIS applications
- Different datasets will have application-specific data structures and attributes

R Interface to netCDF format data files

- ncdf4 library: 17 functions for reading, modifying, writing netCDF data files
 - Good introduction to ncdf4 functions:

http://geog.uoregon.edu/bartlein/courses/geog490/week04-netCDF.html

- Other packages :
 - RNetCDF reading and modifying existing netCDF files
 - raster reading, writing netCDF files, mapping, etc.
 - ncdf4.helpers tools developed for climate model output
 - M3 developed by former CMAQ team member, Jenise Swall; specifically designed to handle CMAQ outputs

SEPA Sample R code for reading/mapping CMAQ data

 2002 -2014 Daily average CMAQ output for 13 species (including SO₂, NO₂, O₃, EC, OC, PM_{2.5}, SO₄²⁻, NO₃⁻, NH₄⁺) for 2002 -2014 available online:

https://dataverse.unc.edu/dataverse/cmascenter

Sample R code available

- Open .nc file
- Read in 3D array of daily average PM_{2.5}
- Create annual average PM_{2.5}
- Map with image.plot in Lambert projected coordinates
- Project to lon/lat raster object and map with Leaflet

Using R to evaluate the Community Multiscale Air Quality Model (CMAQ)

- New versions of CMAQ are released every 1.5-3 years
- Evaluation is an important part of preparing for a new release
- Need evaluation tools that will:
 - Compare model results across different model configurations or versions
 - Quickly QA model output against a standard set of observational data
 - Evaluate model performance across pollutants, spatial and temporal scales, parts of the distribution

Using R to evaluate CMAQ

Post processing 1 month of model output for the continental US

15

Using R to evaluate CMAQ

Aggregate and Transform

Input: CMAQ output

Output: netcdf

Software: Fortran

program

Visualize/QA

Input: CMAQ post-processed output

Output: graphics

files, html

Software: **R**, VERDI, Ncview

Match to Obs

Input: CMAQ postprocessed output+ observation data (text files)

Output: .csv

Software: Fortran

program

Evaluate

Input: .csv files

Output: MySQL database, graphics

files

Software: **R** based package **AMET**

Automate all steps with a combination of Linux shell scripts and R code

QA Code Changes with Batch R Plots

- Model-to-model comparisons (no observations)
- Loop over all species, look for largest differences by hour, vertical layer, spatial location

Atmospheric Model Evaluation Tool

- Open source software publicly available on GitHub and developed by Wyat Appel (air quality eval.), Rob Gilliam (meteorological eval.)
- Evaluation of air quality model output against routine networks, e.g. AQS, IMPROVE, CSN, CASTNET, NADP, SEARCH, AMON, FLUXNET

Atmospheric Model Evaluation Tool

- Select model simulation, air quality monitor network data, plotting options through drop-down menus and selection boxes
- Underlying MySQL database allows for easy subsetting by location/time
- Clicking "Run Program" will run a single R plotting script

Developed over a decade ago in PHP for internal use.

Web based interface available on EPA intranet

State	Site ID		
Include all states Isolate an evaluation dataset by state Regional Planning Organization (RPO) Regions None Isolate an evaluation dataset by a regional planning organization Priciple Component Analysis (PCA) Regions None Isolate an evaluation dataset by a regional planning organization	Go here to interactively choose a single observations station or manually enter id (e.g. WASH1). Interactive choosing currently does not work for AQ sites. Frotime sense plot, if Site ID is left blank, a stations for each network will be used. To load a custom site file, enter the location and nat the file above. The format should be the same as the example. You must also enter "Load_File" as the sit name in the top box.		
Date and	Time Criteria		
	End Date		

\$EPA

New Release: AMETv1.4

- Leveraging R's interactive plots for model evaluation
 - leaflet: maps
 - dygraph: time series
 - plotly: time series, bar charts, boxplots and scatter plots
- Next steps
 - New user interface for evaluation plots – R Shiny?
 - Other ideas from this week's workshop!

Contact and More Information

Contact

- Kristen Foley: <u>Foley.Kristen@epa.gov</u>
- Wyat Appel: <u>Appel.Wyat@epa.gov</u>

More Information

- CMAQ site: https://www.epa.gov/cmaq
- CMAQ GitHub Repository: https://github.com/USEPA/CMAQ
- AMET GitHub Repository: https://github.com/USEPA/AMET