Lecture 11

- Calculating property changes from PVT EOS and ideal gas heat capacity
- Fugacity and fugacity coefficient
- Phase equilibrium
 - general consideration
 - Clapeyron equation; Clausius-Clapeyron equation

Objectives

- Calculate property changes from *ideal gas heat* capacity and EOS
- Understand fugacity and be able to calculate fugacity coefficient from EOS
- Understand and remember Clapeyron and Clausius-Clapeyron equations

Changes in U and H in Terms of T, V or T, P

Start from fundamental equation

$$dU = TdS - PdV$$

$$TdS = T\left(\frac{\partial S}{\partial T}\right)_{V} dT + T\left(\frac{\partial S}{\partial V}\right)_{T} dV = C_{V} dT + T\left(\frac{\partial P}{\partial T}\right)_{V} dV$$

$$dU = C_V dT + \left[T \left(\frac{\partial P}{\partial T} \right)_V - P \right] dV$$

similarly

$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP$$

Calculating Property Changes

Example

$$dS = \frac{C_V}{T}dT + \left(\frac{\partial P}{\partial T}\right)_V dV$$

or
$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP$$

- Separate into isothermal and isobaric (isocoric) steps
- Using EOS and pressure/density dependence of Cp and Cv

$$H(T_2, P_2) = H(T_1, P_1) + \int_{T_1}^{T_2} C_P \Big|_{P_1} dT + \int_{P_1}^{P_2} \Big[V - T \left(\frac{\partial V}{\partial T} \right)_P \Big] \Big|_{T_2} dP$$
isobaric isothermal

Calculating Property Changes

- Pressure/density dependence of Cp and Cv are not easily available
- Using EOS and *ideal-gas* Cp (or Cv), which only has temperature dependence

 T_2, P_1

 (T_2, V_1)

 T_2, P_2

 (T_2, V_2)

Isothermal segment done at zero pressure or infinite volume

All gases become ideal in the limit of zero pressure or density (infinite molar volume)

$$P = \rho RT[1 + B\rho + C\rho^2 + \cdots] = \rho RTZ$$

$$Z = 1 + B\rho + C\rho^2 + \cdots = 1 + B'P + C'P^2 + \cdots$$

$$\lim_{\rho \to 0} Z = 1$$

Pressure Explicit vs. Volume Explicit EOS

Pressure explicit (more common)

$$P = P(v, T)$$

more natural to use v as variable

Volume explicit

$$v = v(P, T)$$

more natural to use P as variable

Example

$$S(T_2, V_2) - S(T_1, V_1) = S(T_2, V_2) - S(T_2, \infty) + S(T_2, \infty) - S(T_1, \infty) + S(T_1, \infty) - S(T_1, V_1)$$
isothermal heating/cooling of isothermal expansion
$$R \ln \frac{V_2}{V_1} + \int_{T_1}^{T_2} \frac{C_V^{I.G.}}{T} dT + \int_{V_1}^{\infty} \left[\left(\frac{\partial P}{\partial T} \right)_{T=T_1} - \frac{R}{V} \right] dV - \int_{V_2}^{\infty} \left[\left(\frac{\partial P}{\partial T} \right)_{T=T_2} - \frac{R}{V} \right] dV$$

I.G. part

Correction due to nonideality

Fugacity and Fugacity Coefficient

Recall chemical potential of ideal gas

$$\mu^{I.G.}(P,T) = \mu^{\Theta}(T) + RT \ln \frac{P}{P^{\Theta}}$$

Nonideal gas – keep similar form

$$\mu(P,T) = \mu^{\Theta}(T) + RT \ln \frac{f}{P^{\Theta}}$$

Fugacity

$$f = \phi P$$

Fugacity coefficient

$$\phi = f/P$$

Fugacity and Fugacity Coefficient

Fundamental equation

$$d\mu = -sdT + vdP$$

At constant T

$$d\mu = vdP \tag{1}$$

For I.G.

$$d\mu^{I.G.} = v^{I.G.}dP = \frac{RT}{P}dP \tag{2}$$

(1)-(2), and integrate between 0 and P

$$\mu(T,P) - \mu^{I.G.}(T,P) = \mu(T,0) - \mu^{I.G.}(T,0) + \int_0^P \left(v - \frac{RT}{P}\right) dP$$

$$\mu(T,P) = \mu^{I.G.}(T,P) + \int_0^P \left(v - \frac{RT}{P}\right) dP = \mu^{\Theta}(T) + RT \ln \frac{P}{P^{\Theta}} + \int_0^P \left(v - \frac{RT}{P}\right) dP$$

Fugacity and Fugacity Coefficient

$$\mu(T,P) = \mu^{\Theta}(T) + RT \ln \frac{\phi P}{P^{\Theta}}$$

with
$$\phi = \exp\left[\frac{1}{RT} \int_{0}^{P} \left(\nu - \frac{RT}{P}\right) dP\right] = \exp\left[\int_{0}^{P} \frac{(Z-1)}{P} dP\right]$$

Note! $\mu^{\Theta}(T)$ chemical potential of the ideal gas at standard state pressure, even though gas is nonideal (used even for liquid)

All nonideality effects are contained in fugacity correction!

Phases and Phase Transitions

- Phase: a thermodynamic state of matter having uniform properties
- Often identified by their differences
- Phase transition: transformation from one phase to another

There are new states of matter (phases) not included in the traditional 4 states, e.g., liquid crystals

https://en.wikipedia.org/wiki/Phase_transition#/media/File:Phase_change_-_en.svg

Thermodynamics of Phase Transition

intersection of two free energy surfaces

Clapeyron line

Slopes in the P-T plane:

$$\left(\frac{\partial \mu^a}{\partial P}\right) = \nu^a$$

$$\left(\frac{\partial \mu^a}{\partial T}\right) = -S^a$$

$$\left(\frac{\partial \mu^{\beta}}{\partial P}\right) = \nu^{\beta}$$

$$\left(\frac{\partial \mu^{\beta}}{\partial T}\right) = -S^{\beta}$$

Cross-sectional View

Ehrenfest Classification of Phase Transitions

First order transition:

Discontinuity in first derivatives of free energy

$$v^a \neq v^\beta$$
$$s^a \neq s^\beta$$

$$s^a \neq s^\beta$$

Second order transition:

Continuous first derivatives but discontinuous second derivatives Examples: critical point in L-V transition; spontaneous magnetization

Clapeyron Equation

T-P relationship along the coexistence line, i.e., how transition temperature changes with pressure or vice versa

On the coexistence line

$$\mu_{\alpha}(T,P) = \mu_{\beta}(T,P)$$

$$\mu_{\alpha}(T+dT,P+dP) = \mu_{\beta}(T+dT,P+dP)$$

$$\frac{dP}{dT} = \frac{s^a - s^\beta}{v^a - v^\beta} = \frac{\Delta h}{T\Delta v}$$

 Δh : latent heat of transition, usually defined as enthalpy of the Hi-T phase – enthalpy of the Lo-T phase

Clausius-Clapeyron Equation

If one phase is vapor, and approximating vapor as I.G.,

$$\Delta \nu = \nu^{\nu a p} = \frac{RT}{P}$$

$$\frac{d \ln P}{dT} = \frac{\Delta h}{RT^2}$$

LHS: determined by EOS

RHS: a thermal property

Further approximating Δh as constant,

$$P_2 = P_1 \exp\left[\frac{\Delta h}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$$

Questions to Think about

- What's motivation for introducing fugacity?
- Why the reference chemical potential for a real gas is taken to be that of the same gas at a hypothetical ideal gas state?
- Why do the chemical potential curves in the cross-sectional view have these qualitative shapes (in terms of slopes and curvature)?
- What happens to the melting temperature of ice when the pressure increases?

Lecture 12

- Phase equilibrium
 - determination of L-V phase equilibrium from EOS
 - Helmholtz free energy perspective
 - Maxwell construction, double-tangent construction
- Phase diagram stable, unstable and metastable states

Objectives

- Able to calculate vapor-liquid equilibrium from EOS
- Understand relationship between double tangent, equality of chemical potential and Maxwell construction
- Able to read and understand phase diagram

L-V Equilibrium from EOS

Given an equation of state for a fluid

$$P(T, \nu^{a}) = P(T, \nu^{\beta})$$
$$\mu(T, \nu^{a}) = \mu(T, \nu^{\beta})$$

Real Gases

Van der Waals

$$P = \frac{RT}{v - b} - \frac{a}{v^2}$$

Redlich-Kwong

$$P = \frac{RT}{\nu - b} - \frac{a}{T^{1/2}\nu(\nu + b)}$$

Peng-Robinson

$$P = \frac{RT}{\nu - b} - \frac{a}{\nu(\nu + b) + b(\nu - b)}$$

- Part of the EOS becomes unphysical due to mean-field approximations
- How do we determine the physical coexistence curve?

L-V Equilibrium Condition

Equality of pressure

$$P(T, v_l) = P(T, v_g)$$

$$\frac{RT}{\nu_l - b} - \frac{a}{\nu_l^2} = \frac{RT}{\nu_g - b} - \frac{a}{\nu_g^2}$$

L-V Equilibrium Condition

Equality of chemical potential

$$\mu(T, v_l) = \mu(T, v_g)$$

Fundamental equation

$$df = -Pdv$$

$$f(T,v) = f_0(T,v_0) - RT \ln \frac{v-b}{v_0} - \frac{a}{v} + \frac{a}{v_0}$$

$$f(T,v) = f^*(T,v_0) - RT \ln \frac{v-b}{b} - \frac{a}{v}$$

$$\mu = f + pv = f^*(T,v_0) + \frac{RTv}{v-b} - RT \ln \frac{v-b}{b} - \frac{2a}{v}$$

$$\mu = f + pv = \mu^*(T,v_0) + \frac{RTb}{v-b} - RT \ln \frac{v-b}{b} - \frac{2a}{v}$$

$$\frac{RTb}{v_l - b} - RT \ln \frac{v_l - b}{b} - \frac{2a}{v_l} = \frac{RTb}{v_g - b} - RT \ln \frac{v_g - b}{b} - \frac{2a}{v_g}$$

L-V Equilibrium Condition

Equality of pressure:

$$\frac{RT}{\nu_l - b} - \frac{a}{\nu_l^2} = \frac{RT}{\nu_g - b} - \frac{a}{\nu_g^2}$$

Equality of chem. potential:

$$\frac{RTb}{v_l - b} - RT \ln \frac{v_l - b}{b} - \frac{2a}{v_l} = \frac{RTb}{v_g - b} - RT \ln \frac{v_g - b}{b} - \frac{2a}{v_g}$$

2 equations for 2 unknowns v_1 and v_g

- Crossing gives coexistence pressure and chemical potential
- Slopes give v_1 and v_g

Helmholtz Free Energy Perspective

Van der Waals

$$f(T,v) = f^*(T,v_0) - RT \ln \frac{v-b}{b} - \frac{a}{v}$$
$$T_c = \frac{8}{27} \frac{a}{Rb}$$

Coexistence given by common tangent Equivalent to equality of pressure and chemical potential and to Maxwell equal area construction in P-v diagram

Maxwell (Equal-area) Construction

Draw a const. pressure line such that area above and area below are equal

$$\int_{v_{l}}^{v_{g}} (P - P_{co}) dv = 0$$

$$\int_{v_{l}}^{v_{g}} (P - P_{co}) dv = f(v_{l}) - f(v_{g}) - P_{co}v_{g} + P_{co}v_{l}$$

$$= \mu(v_{l}) - \mu(v_{g})$$

$$v_{l}$$

$$v \qquad v_{g}$$

Maxwell construction is equivalent to equality of pressure and equality of chemical potential

Gibbs Free Energy Perspective

Variational Gibbs free energy

$$g(T, P; v) = f^*(T, v_0) - RT \ln \frac{v - b}{b} - \frac{a}{v} + Pv$$

At given pressure, g is minimized over v, i.e., equilibrium state is one with a minimum g.

Phase Diagram for vdW

T-v and T-P Projections

Kinetic implications:

- <u>unstable</u>: system spontaneously phase separation via spinodal decomposition
- metastable: appearance of more stable phase via nucleation and growth

Lever Rule

fraction of molecules in liquid

 x_l

fraction of molecules in vapor

 χ_g

overall molar volume

 v_d

vap.

liq.

$$v_d n = v_g n_g + v_l n_l$$

$$v_d = v_g x_g + v_l x_l$$

$$v_d(x_g + x_l) = v_g x_g + v_l x_l$$

$$\frac{x_l}{x_g} = \frac{v_g - v_d}{v_d - v_l}$$

Supercritical Fluids (SCF)

Fluids are supercritical when $T > T_c, P > P_c$

- No distinction between liquid and gas
- Allows continuous change in density with pressure
- Low viscosity/high diffusivity compared with liquid at normal conditions
- Good solvent properties

Applications:

- Extraction
- Dry cleaning
- Impregnation/dyeing
- Pharmaceuticals

•

10000

$$T_c = 304.1K$$

$$P_c = 7.38 \, MPa$$

https://en.wikipedia.org/wiki/ Supercritical_fluid#

Questions to Think about

- Why the minima in f vs. v do not yield the coexistence condition?
- How would the variational Gibbs free energy curves look like for different temperatures at a given pressure?
- What information is needed to determine the reference chemical potential or Helmholtz free energy for the vdW fluid?