# Uranus 姿态模块用户使用手册

适用型号: Hi219M, Hi209M(Uranus), Hi206L(Uranus Lite)



北京超核电子科技有限公司 www.beyondcore.net

# 目 录

| 产品概述       | 1  |
|------------|----|
| 支持设备       | 1  |
| 模块参数       | 3  |
| 模块尺寸及引脚定义  | 4  |
| 引脚定义       | 4  |
| 引脚描述       | 5  |
| 初次使用       | 6  |
| 数据协议       | 8  |
| 出厂默认数据输出协议 | 8  |
| AT 指令详解    | 9  |
| 自定义输出协议    | 10 |
| 校准模块       | 12 |
| 加速度及陀螺仪校准  | 12 |
| 地磁场校准      | 12 |
| 更新固件       | 14 |
| 恢复出厂设置     | 15 |
| 附录 A 参考代码  | 17 |
| 附录 B 术语表   | 18 |
| 附录 C 修订历史  | 19 |
|            |    |

## 产品概述

姿态模块 Uranus2 一款高性能的 9 轴运动组件,它拥有易用的数据输出接口,高精度的姿态角,收敛速度极快的绝对航向角,除此之外本模块内置了 NXP 低功耗微控制器,能够提供极好的用户体验。 它可以嵌入到很多产品中,为您带来无限的创意和灵感。本模块被广泛用于智能机器人、VR 设备、动作捕捉、无人机、智能穿戴设备等场合。

### VR设备

Uranus系列产品可以应用在游戏手柄、 手枪、刀、眼镜等多款VR设备上



### 智能机器人

Uranus系列产品在智能机器人领域也 有很好的应用比如扫地机器人



## 动作捕捉

动作捕捉设备也是Uranus系列产品重要应用领域



## 无人机

无人机一直是姿态传感器的重要应用 领域



### 智能硬件

在运动健康方面,姿态传感器也是大有 作为



### 重力感应游戏

重力感应游戏的重要传感部件



## 支持设备

理。

## 支持windows、ubuntu双系统

Uranus2支持windows、ubuntu双系统,用户可以自行开发上位机软件来获取姿态模块的数据。





Uranus2支持单片机、ardunio、树莓派等多款嵌入式处理器,可以更加方便地进行产品的研发。

更多平台期待您的应用

# 模块参数

| 指标   | 参数        | Uranus2                                                                             | Uranus Lite                                                                            | Hi219M                                                                                |
|------|-----------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 物理特性 | 尺寸        | 13.97mm x 17.27mm                                                                   | 12.7mm x 15.24mm                                                                       | 12 mm x 12mm                                                                          |
|      | 振动强度      | X 和 Y 轴:10~500Hz,<br>50m/s2<br>Z 轴:10~500Hz,<br>50m/s2                              | X和Y轴:10~500Hz,<br>50m/s2<br>Z轴:10~500Hz,<br>50m/s2                                     | 和Y轴:10~500Hz,<br>50m/s2<br>Z轴:10~500Hz,<br>50m/s2                                     |
|      | 冲击强度      | 峰值加速度 500m/s2,标<br>称脉冲持续时间 11ms,<br>速度变化量:半正弦波<br>3.4m/s,后峰锯齿波<br>2.7m/s,梯形波 4.9m/s | 峰值加速度 500m/s2,标<br>称脉冲持续时间 11ms,<br>速度变化量: 半正弦波<br>3.4m/s, 后峰锯齿波<br>2.7m/s, 梯形波 4.9m/s | 峰值加速度 500m/s2,标<br>称脉冲持续时间 9ms,<br>速度变化量: 半正弦波<br>3.4m/s, 后峰锯齿波<br>2.7m/s, 梯形波 4.4m/s |
|      | 工作温度湿度范围  | -20℃~80℃ 相对湿度<br>45%~96%                                                            | -20℃~80℃ 相对湿度<br>45%~96%                                                               | -20℃~80℃ 相对湿度<br>45%~96%                                                              |
|      | 加速度(Acc)  | 量程 ±8g, 数据输出分辨率: 0.000244G(G=重力加速度 每 LSB)                                           | 量程 ±8g, 数据输出分辨率: 0.000244G(G=重力加速度 每 LSB)                                              | 量程 ±16g, 数据输出<br>分辨率: 0.001G(千分之<br>一重力加速度, 每<br>LSB)                                 |
|      | 角速度(Gyro) | 量程 ±2000°/s 数据输<br>出分辨率: 0.1°/s(分每<br>秒, 每 LSB)                                     | 量程 ±2000°/s 数据输<br>出分辨率: 0.1°/s(分每<br>秒, 每 LSB)                                        | 量程 ±2000°/s 数据输<br>出分辨率: 0.1°/s(分每<br>秒, 每 LSB)                                       |
| 性能   | 地磁(Mag)   | 量程 ±4800uT 数据输出分辨率:mG(毫高斯,<br>每 LSB)                                                | 无                                                                                      | 量程 ±800mG 数据输<br>出分辨率:mG(毫高斯,<br>每 LSB)                                               |
|      | 大气压测量范围   | 300~1100Kpa 数据输<br>出单位:1Pa                                                          | 无                                                                                      | 无                                                                                     |
|      | 融合数据精度    | 横滚角±0.01°俯仰角<br>±0.01°航向角±<br>0.5°                                                  | 横滚角±0.01° 俯仰角<br>±0.01° 航向角±<br>0.5°                                                   | 横滚角±0.01° 俯仰角<br>±0.01° 航向角±<br>0.5°                                                  |
| 接口特性 | 输出接口      | 串口(9600 ~<br>921600bps 出厂默认<br>115200bps)                                           | 串口(9600 ~<br>921600bps 出厂默认<br>115200bps)                                              | 串口(9600 ~<br>921600bps 出厂默认<br>115200bps)                                             |
|      | 数据刷新率     | 0 - 500Hz                                                                           | 0 - 100Hz                                                                              | 0 - 1KHz                                                                              |
| 其他   | 供电        | DC 2.8~3.6V /20ma(最大)                                                               | DC 2.8~3.6V /20ma(最大)                                                                  | C 2.8~3.6V /20ma(最<br>大)                                                              |
|      | 温飘        | 0.81%                                                                               | 0.81%                                                                                  | 0.67%                                                                                 |

## 模块尺寸及引脚定义

## 引脚定义



GND

NC

NC



TXD

RXD

NC

NC



GND

NC

RST



TXD

RXD

NC

NC

### 功能表 物理编号

3.3V

GPI01 2

RXD 3

TXD 4

GPIO2 5



### 物理编号 功能表

10 GND

9 GPI05

8 GPI04

7 GPI03

6 RESET

## 引脚描述

| 引脚定义  | 功能说明                         |
|-------|------------------------------|
| TX    | 模块串口输出                       |
| RX    | 模块串口输入                       |
| VCC   | 电源正极, 2.8V~3.3V              |
| GND   | 地                            |
| NC    | 不接                           |
| RST   | 复位, 低脉冲(>10us) 模块复位, 一般情况下不接 |
| GPIOx | 保留,一般情况下不接                   |

## 初次使用

将模块的电源接好,Uranus2模块正面蓝色指示灯会闪烁,说明模块工作已经正常。模块出厂时,默认为6轴模式,波特率为115200/N/8/N/1。本产品内含地磁场传感器,如果使用9轴模式应远离磁铁、手机、电机等磁性物品,具体操作参考以下步骤:

#### 1连接模块:

#### (1) 模块与 PC 机连接

本模块可通过 USB 转串口模块(比如 CH340)与电脑进行通信,只需要将 TX, RX, GND 连接即可(注意 TX 和 RX 要交叉连接),也可以使用超核电子的测试底板进行测试。

#### (2) 模块与 MCU 连接

将模块供电,并且与单片机的 TX, RX, GND 连接即可(逻辑电平为 3.3V)。默认串口格式为 115200,N8N1, 即 波特率 115200 无校验位, 1 位停止位。本手册最后给出了 C 语言的帧数据接收参考代码。

#### 2 上位机测试:

以超核测试底板为例,首先安装 CH340 USB 转串口驱动,安装完成后,在任务管理器中会显示出一个串口设备,如下图所示:



然后打开上位机调试软件, 开启串口即可:

| Oscilloscope                      | 2015/9/1 19:55  | 文件夹           |          |
|-----------------------------------|-----------------|---------------|----------|
| ▶ 参考例程                            | 2015/8/10 23:03 | 文件夹           |          |
| ▶ 参考设计                            | 2015/7/13 18:11 | 文件夹           |          |
| AvionicsInstrumentControlDemo.dll | 2015/9/1 19:55  | 应用程序扩展        | 2,834 KB |
| 型 超核姿态模块(Uranus2).pdf             | 2015/8/10 23:08 | Adobe Acrobat | 334 KB   |
| 超核姿态上位机,exe                       | 2015/9/1 19:44  | 应用程序          | 3,626 KB |
| ₩ 模块参考设计驱动程序-CH340G.exe           | 2015/6/2 23:38  | 应用程序          | 228 KB   |
| ◇ 姿态开源程序.exe                      | 2015/8/10 22:57 | 应用程序          | 120 KB   |

软件运行主界面



除此之外软件还有数据保存功能,方便用户后期的处理,Uranus 系列上位机也提供了所有常用的模块配置及评估功能,用户可以根据需要改变模块的输出速率、安装方式、工作模式等方面内容。

## 数据协议

## 出厂默认数据输出协议

上电后,模块默认按 60Hz (出厂默认输出速率) 输出数据包,数据包格式如下:

#### 5A+A5+LEN+CRC+90+ID+A0+ACC+B0+GYO+C0+MAG+D0+AltE+F0+PRS

| 字段      | 长度(字节) | 解释                                                                                                               |
|---------|--------|------------------------------------------------------------------------------------------------------------------|
| 5A      | 1      | 帧头识别                                                                                                             |
| A5      | 1      | 帧类别, 固定为 0xA5                                                                                                    |
| LEN     | 2      | 整个帧长度 2 字节表示,低字节在前                                                                                               |
| CRC     | 2      | 除 CRC 本身外其余所有帧数据的 16 位 CRC 校验和。低字节在前。 附带例程中提供 CRC 校验函数实现                                                         |
| 90 + ID | 2      | ID 数据包, ID 值可使用 AT 指令设置, 90 为 ID 数据包标识                                                                           |
| A0+ACC  | 7      | 加速度数据包,格式为 int16, 共三个轴,每个轴占2个字节,X、Y、Z三轴共6个字节,低字节在前。 A0 为数据包标识                                                    |
| B0+GYO  | 7      | 角速度数据包,格式为 int16, 共三个轴,每个轴占2个字节,X、Y、Z三轴共6个字节,低字节在前。B0 为数据包标识                                                     |
| C0+MAG  | 7      | 地磁数据包,格式为 int16, 共三个轴,每个轴占2个字节,X、Y、Z 三轴共6个字节,低字节在前。C0 为数据包标识                                                     |
| D0+AltE | 7      | 姿态角数据包,格式为 int16,共三个轴,每个轴占2个字节,低字节在前。Roll,Pitch为实际值乘以100后得到的数值,Yaw为乘以10得到的数值。D0为数据包标识.(关于Roll,Pitch Yaw 的定义参见附录) |
| F0+PRS  | 5      | 大气压力数据包,格式为 int32, 低字节在前, 单位为 Pa. F0 为数据包标识                                                                      |

#### 输出协议示例:

使用串口调试助手捕捉到某帧数据如下所示: 仅作欧拉角数据包分析



得到姿态数据包数据序列(16 进制): D0 26 02 0E FF 08 07, 其中:

D0: 为欧拉角数据包标识符, 俯仰角原始数据: 0x26 0x02, 横滚角原始数据: 0x0E 0xFF, 航向角原始数据:0x08 0x07 解算过程如下:

俯仰角: 0x26 0x02 = (0x26+0x02\*256)/100 = 5.50°

横滚角 0x0E 0xFF = -(0xF2 + 0x00\*256)/100 = -2.42° (最高位为 1,负数 补码形式存放,除符号位外取反+1)

航向角 0x08 0x07 = (0x08+0x07\*256)/10 = 180.0°

### AT 指令详解

本模块采用 AT 指令集配置/查看参数。AT 指令总以 ASCII 码 "AT" 开头,后面跟控制字符,最后以回车换行 "\r\n" 结束。可使用串口调试助手进行测试:



所有用户可用 AT 指令集描述如下:

| 指令      | 掉电<br>保存 | 默认/出厂值 | 说明                                                                                                                  | 示例                               |
|---------|----------|--------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|
| AT+INFO | N        | N/A    | 列出模块当前版本信息及所有状态信息                                                                                                   | 输出模块信息:<br>AT+INFO               |
| AT+ODR  | Y        | 60     | 设置模块输出帧频率                                                                                                           | 设置输出速率为 60Hz:<br>AT+ODR=60       |
| AT+BAUD | Y        | 115200 | 设置模块输出波特率<br>注意:波特率参数设置好后会立即生效,因此<br>上位机的波特率也要做相应修改。升级固件时,<br>需要切换回 115200 波特率                                      | 设置波特率为 115200:<br>AT+BAUD=115200 |
| AT+MODE | Y        | 0      | 设置模块工作模式:<br>AT+MODE=0 6 轴模式<br>AT+MODE=1 9 轴模式                                                                     | 设置为 6 轴模式:<br>AT+MODE=0          |
| AT+EOUT | N        | 1      | 设置数据输出开关:<br>AT+EOUT=0 关闭数据输出<br>AT+EOUT=1 开启数据输出                                                                   | 关闭输出输出:<br>AT+EOUT=0             |
| AT+RST  | N        | N/A    | 复位                                                                                                                  | 复位:<br>AT+RST                    |
| AT+ID   | Y        | 255    | 设置模块用户 ID: 每个模块可以设置一个用户<br>可编程 ID,<br>AT+ID 读取 ID 值<br>AT+ID=x 设置 ID 值 x = 0-255                                    | 设置 ID 为 100<br>AT+ID=100         |
| AT+DIR  | Y        | 0      | 设置初始水平方向<br>AT+DIR=0 航向角与重力方向垂直(默认出厂设置,适用于一般情况)<br>AT+DIR=1 航向角与重力方向平行(适用于垂直安装的情况)<br>注意:修改初始方向后需要复位模块并且重新校准各个传感器的值 | 设置为垂直模式:<br>AT+DIR=1             |
| AT+TRG  | N        | N/A    | 触发模块输出一帧数据,可以配合 AT+ODR=0<br>来实现单次触发输出。                                                                              | AT+TRG                           |

## 自定义输出协议

用户可在上位机配置界面下自定义模块的数据包种类输出,添加或删除任意几组数据包:



所有自定义数据包格式列表如下:

| 名称     | 包头   | 长度(字节) | 解释                                                                                                                                       |
|--------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| 自定义 ID | 0x90 | 2      | ID 数据包, ID 值可使用 AT 指令设置 90+ID                                                                                                            |
| 加速度    | 0xA0 | 7      | 加速度数据包,格式为 int16, 共三个轴,每个轴占2个字节, X、Y、Z 三轴共6个字节, 低字节在前                                                                                    |
| 角速度    | 0xB0 | 7      | 角速度数据包,格式为 int16, 共三个轴,每个轴占2个字节, X、Y、Z 三轴共6个字节,低字节在前                                                                                     |
| 地磁场    | 0xC0 | 7      | 地磁数据包,格式为 int16, 共三个轴, 每个轴占 2 个字节, X、Y、Z 三轴共 6 个字节, 低字节在前                                                                                |
| 欧拉角    | 0xD0 | 7      | 姿态角数据包,格式为 int16, 共三个轴,每个轴占2个字节,低字节在前。Roll, Pitch 为实际值乘以100后得到的数值,Yaw 为乘以10得到的数值。                                                        |
| 四元数    | 0xD1 | 17     | 单位四元数数据包,格式为 float 型, 共 4 个 float 型数据,每个数据占 4 字节,范围为 0.000 - ±1.000, 小端格式(与 C# windows 端格式相同,可直接用 BitConverter.ToSingle 转换),为别为 w,x,y,z. |
| 气压     | 0xF0 | 5      | 大气压力数据包,格式为 int32, 低字节在前,单位为 Pa.                                                                                                         |

## 校准模块

### 加速度及陀螺仪校准

姿态模块内置 CH\_DynamicSens® (专利保护) 动态校准技术,加速度和陀螺仪会根据使用情况自动校准,并将数据存储到模块中(掉电保存),用户无需干预。需要注意的是,首次使用时需要较长的时间(~60s) 来让自动校准系统获得比较理想的校准值。

### 地磁场校准

由于使用模块时周围环境磁场复杂,对航向角的准确性有一定的影响,所以在使用前,需要对模块进行磁场校准,避免周围环境对模块的影响。在9轴模式下,需要用户自行校准地磁场后,9轴模式才可以使用。校准时请不要放置磁性大的物体在模块周围。校准步骤如下:

- (1) 打开上位机软件,连接模块,确保模块已经可以正常工作
- (2) 打开 IMU 界面,切换到配置模块选项,选择 9 轴模式,点击开始校准



(3) 手持模块,远离磁场等电子设备,分别绕三个轴各转 360 度或者 8 字校准,直到下面的绘图区显示出一个相对饱满的圆为止,校准完成后,点击"停止校准"按钮,到此校准结束。校准示意图如下图所示:



## 更新固件

本产品支持在线升级固件,固件升级方法:

获得最新的固件程序,扩展名为.hex。 固件程序可以登陆官网 www.beyondcore.net 获得打开上位机,切换到固件升级配置模块,打开串口,连接好模块,点击连接按钮(波特率必须是 115200)如果出现 BOOT 连接信息(协议版本,程序版本等),则说明升级系统准备就绪,点击文件选择器(…),选择 hex 或 bin 镜像,起始地址设置为 0x00001000, 点击开始编程。



下载完成后会提示编程完成,此时关闭串口,重新上电,模块升级完成。

注意,升级模块固件后,用户配置数据和校准数据会丢失,需要用户重新设置或校准。

固件升级成功示意图如下所示:



## 恢复出厂设置

当模块被设置成错误的波特率时,会导致输出波特率不正确造成不能再接受新的 AT 指令(波特率不能与上位机匹配导致)。这时如果忘记了模块的波特率的话,可以通过以下方法来强制恢复模块所有配置参数为为出厂默认参数(出厂默认波特率:115200)。恢复出厂设置会清除所有用户配置数据。

1. 将模块断电,并且短接与 RXD 相邻的 NC 引脚,如下图: (只有 Hi209 有此功能)



2. 重新上电模块,然后断开此引脚与 GND 的连接,此时参数会被恢复为出厂值。

# 附录 A 参考代码

见资料包附件

# 附录 B 术语表

| 项目                                   | 说明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 9 轴(nine axis)                       | 指加速度(acc)在空间三个方向的分量 + 角速度(gyro)在三个空间<br>方向的分量 + 地磁场(mag)在三个空间方向上的分量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 加速度(acc/a)/角速度(gyo/g)/地磁<br>场(mag/m) | 指9轴传感器输出的原始数据,每个物理量有3个空间方向,加在<br>一起共9个数据                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 姿态角(pitch/roll/yaw)                  | 也称 p/r/y 或欧拉角 指俯仰角(Pitch)横滚角(Roll)和航向角(Yaw),他们通过 9 轴原始数据融合,解算得出,是描述物体空间旋转状态的重要参数。由四元数转换而来。<br>本模块输出的欧拉角的定义为:                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 乗芯州(phtch/toh/yaw)                   | Pitch(θ,theta): 绕 Y 轴旋转, 范围[-90, 90]° Roll(φ, phi): 绕 X 轴旋转, 范围[-180, 180]° Yaw(ψ,psi): 绕 Z 轴旋转, 范围[0-360]° 其中 XYZ 轴即为模块上丝印标注的 XYZ 轴                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                      | 四个浮点数表示一个空间姿态:<br>记做: q0, q1, q2, q3 或 w, x, y, z<br>四元数转欧拉角公式:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                      | $egin{bmatrix} \phi \ 	heta \ 	heta \ 	heta \ 	heta \end{bmatrix} = egin{bmatrix} 	atan2(2(q_0q_1+q_2q_3),1-2(q_1^2+q_2^2)) \ 	atan2(2(q_0q_2-q_3q_1)) \ 	atan2(2(q_0q_3+q_1q_2),1-2(q_2^2+q_3^2)) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                      | 欧拉角转四元数: (以欧拉 321 转动次序为例(先转 Z,然后 Y,然后 X))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 四元数                                  | $\begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} c(\frac{\varphi}{2})c(\frac{\theta}{2})c(\frac{\psi}{2}) + s(\frac{\varphi}{2})s(\frac{\theta}{2})s(\frac{\psi}{2}) \\ s(\frac{\varphi}{2})c(\frac{\theta}{2})c(\frac{\psi}{2}) - c(\frac{\varphi}{2})s(\frac{\theta}{2})s(\frac{\psi}{2}) \\ c(\frac{\varphi}{2})s(\frac{\theta}{2})c(\frac{\psi}{2}) + s(\frac{\varphi}{2})c(\frac{\theta}{2})s(\frac{\psi}{2}) \\ c(\frac{\varphi}{2})c(\frac{\theta}{2})s(\frac{\psi}{2}) - s(\frac{\varphi}{2})s(\frac{\theta}{2})c(\frac{\psi}{2}) \end{bmatrix}$ |  |  |
|                                      | 其中 c = cos, s = sin<br>参考:<br>https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_E<br>uler_angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 航向角零飘                                | 指在六轴融合中由于没有地磁场数据的校正时,由于陀螺仪(角速度计)积分误差,算出的航向角缓慢漂移的现象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| LVT33 和 LVC25                        | 可以和 3.3V/2.5V 单片机直连                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

# 附录 ℃ 修订历史

| 版本    | 日期         | 原因                              |
|-------|------------|---------------------------------|
| V1.00 | 2015/06/01 | 首次发布                            |
| V2.0  | 2016/06/15 | 文档改版,增加数据刷新率                    |
| V2.1  | 2016/08/05 | 文档改版,修改协议描述                     |
| V2.2  | 2016/09/19 | 增加恢复出厂设置章节,增加 Pitch Row, Yaw 说明 |
| V2.3  | 2016/11/25 | 增加四元数数据包解释                      |
| V2.4  | 2017/2/12  | 增加 Hi219M 说明                    |