RATTRAPAGE

14 juin 2018

[durée : 3 heures]

⚠ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Géométrie du plan complexe et barycentres)

On considère trois points A_1 , A_2 et A_3 du plan complexe dont les affixes z_1 , z_2 et z_3 sont les racines complexes du polynôme $P(Z) = Z^3 + 2Z + \sqrt{3}$, fixées arbitrairement une fois pour toutes.

- a) Déterminer l'affixe de l'isobarycentre des trois points A_1 , A_2 et A_3 . $Indication: Rappeler\ comment\ s$ 'expriment les coefficients de P en fonction de ses racines.
- b) Montrer que pour A_1 , A_2 et A_3 fixés, le vecteur $\overrightarrow{v} = \overrightarrow{MA_1} 2\overrightarrow{MA_2} + \overrightarrow{MA_3}$ ne dépend pas du choix du point M.
- c) Déterminer l'affixe de \vec{v} en fonction de z_1, z_2 et z_3 , puis montrer que $\vec{v} \neq 0$.

Exercice 2 (Espaces affines et transformations affines)

Soit \mathcal{E} un espace affine réel et $T:\mathcal{E}\to\mathcal{E}$ une application affine. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $T^n = Id_{\mathcal{E}}$. Montrer que T a au moins un point fixe, c'est-à-dire qu'il existe $p \in \mathcal{E}$ vérifiant T(p) = p.

Indication: On pourra construire un tel p en partant de $v \in \mathcal{E}$ quelconque et en regardant la suite $(v, T(v), T^2(v), \dots, T^{n-1}(v))$.

Exercice 3 (Espaces euclidiens et isométries)

On considère l'espace affine \mathbb{R}^3 muni de sa structure euclidienne standard. Soit l'application $\phi: \mathbb{R}^3 \to \mathbb{R}^3$, dont l'expression dans la base canonique est

$$\phi(x,y,z) = \frac{1}{9}(7x - 4y - 4z + 9, -4x + y - 8z + 27, -4x - 8y + z + 9).$$

- a) Montrer que ϕ est une application affine.
- b) Donner la matrice $M_{\overrightarrow{\phi}}$ de la partie linéaire de ϕ dans la base canonique.
- c) Montrer que ϕ est une isométrie.
- d) Déterminer la nature et les paramètres de la partie linéaire $\overrightarrow{\phi}$.
- e) Déterminer la nature et les paramètres de ϕ .

Exercice 4 (Coniques)

Soient deux droites orthogonales \mathcal{D}_1 et \mathcal{D}_2 qui se coupent en un point O, et deux cercles \mathcal{C}_1 et \mathcal{C}_2 de centre O et de rayons respectifs r et R avec 0 < r < R.

Pour tout point Q sur \mathcal{C}_2 , soit $P = \mathcal{C}_1 \cap [O, Q]$. Soient \mathcal{D}'_1 et \mathcal{D}'_2 les deux droites parallèles à \mathcal{D}_1 et \mathcal{D}_2 et passant par P et Q respectivement.

On considère le point d'intersection de ces deux droites $M=\mathcal{D}_1'\cap\mathcal{D}_2'.$

Montrer que quand Q parcourt C_2 le point M parcourt une ellipse.

