Билет 11

Функции комплексного переменного. Условия Коши-Римана. Геометрический смысл аргумента и модуля производной

Определение 1. Число z называется *комплексным числом*, если оно представимо в следующем виде

$$z = x + i \cdot y,\tag{1}$$

где i- мнимая единица ($i^2=-1$), x называется действительной частью числа z и обозначается Re(z), y называется мнимой частью числа z и обозначается Im(z). Два комплексных числа $z_1=x_1+i\cdot y_1$ и $z_2=x_2+i\cdot y_2$ являются равными тогда и только тогда, когда их дейсвтительные и мнимые части совпадают, т.е.

$$z_1 = z_2 \Leftrightarrow (x_1 = x_2) \land (y_1 = y_2). \tag{2}$$

Определение 2. Число \overline{z} называется *сопряженным* к числу $z=x+i\cdot y$, если оно представимо в виде

$$\bar{z} = x - i \cdot y. \tag{3}$$

Определение 3. Множество, состоящее из комплексных чисел $z = x + i \cdot y$, где $x \in \mathbb{R}$ и $y \in \mathbb{R}$, называется множеством комплексных чисел и обозначается через \mathbb{C} .

Определение 4. Пусть $D\subset\mathbb{C}$ и $G\subset\mathbb{C}$, тогда функцией комплексного переменного называется отображение

$$f: D \to G.$$
 (4)

Функцию комплексного переменного можно представить в виде

$$f(z) = u(z) + i \cdot v(z), \tag{5}$$

где $u: \mathbb{R}' \to \mathbb{R}''$ и $v: \mathbb{R}' \to \mathbb{R}''$, $\mathbb{R}' \subset \mathbb{R}$, $\mathbb{R}'' \subset \mathbb{R}$.

Так как в комплексном переменном участвуют переменные x и y, выражение (4) можно переписать в виде

$$f(z) = u(x, y) + i \cdot v(x, y). \tag{6}$$

Определение 5. Функция f(z) называется взаимно однозначной или однолистной, если она переводит любые две различные точки $z_1, z_2 \in D$, в различные. Иными словами из равенства $f(z_1) = f(z_2)$ следует равенство $z_1 = z_2$.

Определение 6. Пусть функция f определена в некоторой окрестности точки $z_0 \in D$, тогда говорят, что число $a \in G$ называется пределом этой функции при z, стремящемся к z_0 ,

$$\lim_{z \to z_0} f(z) = a,\tag{7}$$

если для любой окрестности U_a точки a найдется такая окрестность U_{z_0} , что для всех $z \in U_{z_0}$ значения f(z) принадлежат U_a .

$$\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 \forall z \in D : 0 < |z - z_0| < \delta \Rightarrow |f(z) - a| < \varepsilon. \tag{8}$$

Определение 7. Пусть функция f определена в некоторой окрестности точки $z_0 \in D$, тогда будем называть ее непрерывной в точке z_0 , если существует предел

$$\lim_{z \to z_0} f(z) = f(z_0). \tag{9}$$

Дифференциируемость. Пусть функция $f = u + i \cdot v$ определена и конечна в некоторой окрестности точки $z_0 = x_0 + i \cdot y_0 \in \mathbb{C}$.

Определение 8. Говорят, что функция f называется \mathbb{R} -дифференциируема в точке z_0 , если функции u(x,y) и v(x,y) дифференциируемы в точке (x_0,y_0) : дифференциалом f в точке z_0 нызывается выражение

$$df = du + i \cdot dv. (10)$$

Распишем (10)

$$df = du + i \cdot dv = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + i \cdot \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy\right) =$$

$$|dz = dx + i \cdot dy, d\overline{z} = dx - i \cdot dy|$$

$$= \left(\frac{1}{2} \cdot \left(\frac{\partial f}{\partial x} dx - i \cdot \frac{\partial f}{\partial y}\right) dz\right) + \left(\frac{1}{2} \cdot \left(\frac{\partial f}{\partial x} + i \cdot \frac{\partial f}{\partial y}\right) d\overline{z}\right) =$$

$$\frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z}.$$
(11)

Определение 9. Говорят, что функция f называется \mathbb{C} -дифференциируемой, если $f - \mathbb{R}$ -дифференциируема и $\frac{\partial f}{\partial \overline{z}} = 0$.

Функция f называется \mathbb{C} - $\partial u \phi \phi$ еренциируемой на множестве $D \subset \mathbb{C}$, если она \mathbb{C} -дифференциируема в каждой точке этого множества.

Теорема 1(Условия Коши-Римана). Функция f \mathbb{C} -дифференциируема тогда и только тогда, когда выполнены следующие условия

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \tag{12}$$

Доказательство. Необходимость. Пусть f \mathbb{C} -дифференциируема, тогда по определению 8 можно представить df в виде (11). Распишем условие $\frac{\partial f}{\partial \overline{z}} = 0$

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \cdot \frac{\partial f}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = 0. \tag{13}$$

(12) верно тогда и только тогда, когда его вещественная и мнимая часть равны 0, т.е. когда $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ и $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

Достаточность. Доказательство необходимости с обратным порядком выполнения операпий.

Определение 10. Функция f называется голоморфной или аналитической в точке z_0 , если она \mathbb{C} -дифференциируема в некоторой окрестности точки z_0 .

Будем говорить, что функция f голоморфна на множестве $D \subset \mathbb{C}$, если она голоморфна в каждой точке этого множества (для таких множеств понятия голоморфности и \mathbb{C} -дифференциируемости совпадают).

Примеры:

1.
$$w(z) = x + 2i \cdot y$$

Выделим функции u(x,y) и v(x,y)

$$u(x,y) = Re(w(z)) = x, v(x,y) = Im(w(z)) = 2y.$$

Проверим условия Коши-Римана

$$\frac{\partial u}{\partial x} = 1 \neq \frac{\partial v}{\partial y} = 2.$$

Отсюда следует то, что функция w(z) нигде не дифференциируема в \mathbb{C} .

2.
$$w(z) = x^2 - y^2 + 2i \cdot y$$

 $u(x,y) = x^2 - y^2, v(x,y) = 2x \cdot y$
I. $\frac{\partial u}{\partial x} = 2x = \frac{\partial v}{\partial y} = 2x$.
II. $\frac{\partial u}{\partial y} = -2y = -\frac{\partial v}{\partial y} = -2y$.

I. и II. выполняются одновременно для любых x и $y \in \mathbb{R}$, следовательно функция w(z) голоморфна на всем \mathbb{C} .

Определение 12. Отображение w=w(z), отображающее множество $D\subset \mathbb{C}$ в множество $G\subset \mathbb{C}$ называется конформным, если оно однозначно и голоморфно в области D за исключением, быть может, одной точки.

Геометрический смысл аргумента и модуля производной.

Если функция f \mathbb{R} -дифференциируема в точке z_0 , то ее приращение $\Delta f = f(z) - f(z_0)$ в этой точке можно представить в виде

$$\Delta f = \frac{\partial f}{\partial z} \Delta z + \frac{\partial f}{\partial \overline{z}} \Delta \overline{z} + o(\Delta z), \tag{14}$$

где $\Delta z = z - z_0, \Delta \bar{z} = \bar{z} - \bar{z}_0$, а $o(\Delta z)$ обозначает малую величину высшего порядка относительно Δz (т.е. величину, отношение которой к Δz стремится к 0 при $\Delta z \to 0$). Полагая $\Delta z = |\Delta z| e^{i\theta}$, получаем $\Delta \bar{z} = |\Delta z| e^{-i\theta}$ и из (14) находим

$$\frac{\Delta f}{\Delta z} = \frac{\partial f}{\partial z} + \frac{\partial f}{\partial \bar{z}} e^{-2i\theta} + \eta(\Delta z), \tag{15}$$

где $\eta(\Delta z) = \frac{o(\Delta z)}{\Delta z}$ стремится к нулю при $\Delta z \to 0$.

Отсюда видно, что для существования предела отношения $\frac{\Delta f}{\Delta z}$ при $\Delta z \to 0$ нужно потребовать, чтобы при стремлении Δz к нулю величина $\theta = arg\Delta z$ стремилась к некоторому пределу ϑ . Предел $\frac{\Delta f}{\Delta z}$ при таком стремлении Δz к 0 называется npouseodhoù no направлению

 ϑ функции f в точке z_0 . Из формулы (15) видно, что эта производная по направлению

$$\frac{\partial f}{\partial z_{\vartheta}} = \frac{\partial f}{\partial z} + \frac{\partial f}{\partial \overline{z}} e^{-2i\vartheta}.$$
 (16)

Определение 11. Производной функции f в точке z_0 называется

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = f'(z_0),\tag{17}$$

если этот предел существует.

Теорема 2. Для того чтобы функция f, определенная в некоторой окрестности точки $z_0 \in \mathbb{C}$, имела в этой точке производную, необходима и достаточна \mathbb{C} -дифференциируемость f в точке z_0 .

Доказательство. Необходимость. Пусть f \mathbb{C} -дифференциируема в точке z_0 , тогда она \mathbb{R} -дифференциируема в точке z_0 и $\frac{\partial f}{\partial \overline{z}} = 0$ в этой точке. Из формулы (15) имеем

$$\frac{\Delta f}{\Delta z} = \frac{\partial f}{\partial z} + \eta(\Delta z),$$

где $\eta \to 0$ при $\Delta z \to 0$. Отсюда видно, что существует $f'(z_0) = \frac{\partial f}{\partial z}$.

Достаточность. Пусть f имеет в точке z_0 производную $f'(z_0)$, тогда для достаточно малых Δz имеем

$$\frac{\Delta f}{\Delta z} = f'(z_0) + \eta(\Delta z),$$

где $\eta \to 0$ при $\Delta z \to 0$. Таким образом, $\Delta f = f'(z_0)\Delta z + o(\Delta z)$, откуда видно, что $f \mathbb{R}$ -дифференциируема в точке z_0 и что $df = f'(z_0)dz$, а это означает \mathbb{C} -дифференциируемость в точке z_0 .

Геометрический смысл модуля производной. Пусть функция f \mathbb{C} -дифференциируема в точке z_0 , тогда

$$df = \frac{\partial f}{\partial z}dz \sim f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

$$f(z_0) - \frac{f(z) - f(z_0)}{z - z_0} = \alpha(z, z_0), \lim_{z \to z_0} \alpha(z, z_0) = 0$$

$$f(z) - f(z_0) = f'(z_0)(z - z_0) - \alpha(z, z_0)(z - z_0)$$
(18)

Выражение (18) называется *касательной* к f в точке z_0 .

Пусть
$$f'(z_0) \neq 0 \Rightarrow (18) \sim f'(z_0)(z-z_0)$$
, т.к. $\alpha(z,z_0)(z-z_0) = o(\alpha)$.

Рассмотрим модуль разности функции в точках z и z_0

$$f(z) - f(z_0)| = |f'(z_0)| \cdot |z - z_0|, \tag{19}$$

т.к. производная f в точке z_0 принимает конкретное значение $(19) = C \cdot |z - z_0|$. Пусть $w = f(z), w_0 = f(z_0)$ и $|z - z_0| = r$, тогда

$$f: \{z: |z-z_0| = r\} \to \{w: |w-w_0| = C \cdot r\},\$$

т.е. отображение f переводит окружность с радиусом r в окружность с радиусом $C \cdot r$. Таким образом, $|f'(z_0)|$ является коэффициентом растяжения длин в точке z_0 при отображении f.

Если не пренебрегать $\alpha(z, z_0)(z-z_0)$, то получится фигура, близкая к окружности $|w-w_0|=C\cdot r$.

Геометрический смысл аргумента. Предположим, что $f'(z_0) \neq 0$, будем считать, что $f' \neq 0$ в некоторой окрестности точки z_0 .

Рассмотрим $arg(w-w_0)$ по (19) его можно представить в следующем виде

$$arg(w - w_0) = arg(f'(z_0) \cdot (z - z_0)) = arg(f'(z_0)) + arg(z - z_0).$$
(20)

По (20) видно, что $arg(f'(z_0))$ означает yгол noворота векторов, соответствующих точкам w и w_0 , а также z и z_0 относительно оси OX. Иными словами угол между векторами w и w_0 будет таким же, как и угол между векторами z и z_0 , а изменится лишь их углы относительно оси OX на величину $arg(f'(z_0))$.