

Erik Knudsen, DTU Physics

Sources and Monitors

2021 HighNESS McStas school

Sources: In general

- A source component generates Monte Carlo neutrons.
 In McStas terms this means:
 - Set the neutron state to something representative of the source we are trying to model.
 - i.e.: insert values in the neutron state vector: {x,y,z, vx,vy,vz, t, sx,sy,sz, p} drawn from appropriate distributions.
 - EXAMPLE:
 Neutrons from a uniform wavelength distribution emerging from a circular aperture.

Access the docs

IMPORTANT:

All (and more) of this information can be found in the online pdf component documentation, e.g.

https://github.com/McStasMcXtrace/McCode/raw/master/docpkg/manuals/mcstas/Component_manual.pdf

or

http://mcstas.org/download/components/doc/manuals/mcstas-components.pdf

- also distributed with your McStas installation - mcdoc -c

The component documentation along with the command:

"mcdoc <component_you_are_searching_for>" are your best friends when using McStas

Sources: Example 1

Neutron spatial coordinates are picked from a uniform distribution on a circle with radius R.

Sources: Example 1

Length of the velocity vector encodes the wavelength

Neutron velocity vector is picked to point at a ROI.

In McStas: this is defined by the parameters: focus_xw, focus_yh, and

dist

Sources: Example 1

TRACE

```
COMPONENT origin = Progress_bar()
AT(0,0,0) ABSOLUTE

COMPONENT src = Source_simple(
        radius=0.05, lambda0=2.5, dlambda=1.5,
        focus_xw=0.1, focus_yh=0.1, dist=5)

AT(0,0,0) RELATIVE origin
```


Monitors: in general

REALITY:

Monitors:

- Intensity probe of the beam
- ➤ Transparent to neutrons → Efficiency <1%</p>

Detectors:

Should detect all neutrons → Efficiency as high as possible

SIMULATIONS (McStas):

In McStas:

- We can program monitors and detectors to behave any way we like. We refer to both of those indistinguishably as 'monitors'.
- E.g. monitor with Efficiency =100% and Transparency=100%
- (With exception of PSD_Detector that models a "physical" He³ detector)

8

Monitors: Example PSD_monitor

2021
HighNESS
Virtual
McStas
School

Monitors: Example PSD_monitor

When the simulation has been completed, the detected intensity in pixel (i,j) is:

$$I(i,j) = \sum_{x_k, y_k \in pixel(i,j)} p_k; k = raynumber.$$

... during simulation, the pixels are maintained as running sums.

. . .

TRACE

Monitors:

Example PSD_monitor and L_monitor

HighNess

McStas


```
COMPONENT origin = Progress bar()
AT(0,0,0) ABSOLUTE
COMPONENT src = Source simple(
        radius=0.05, lambda0=2.5, dlambda=1.5,
        focus xw=0.1, focus yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
COMPONENT psd = PSD monitor(
        xwidth=0.2, yheight=0.2, filename="psd.dat")
AT (0,0,5) RELATIVE src
COMPONENT lm = L monitor(
        xwidth=0.2, yheight=0.2, filename="lm.dat",
        Lmin=0, Lmax=8)
AT (0,0,5+0.01) RELATIVE src
```


Sources: Mathematical sources

Source_simple:

- Square or circular surface emitting neutrons from either uniform or Gaussian wavelength (or energy) distribution.
- Neutrons are directed towards a square target.
- **>**Source_div:
- ➤Square surface emitting neutrons from either uniform or Gaussian wavelength (or energy) distribution.
- Neutrons have a divergence defined by either uniform or Gaussian distribution.

2021 HighNESS McStas school

Source_simple docs

Try "mcdoc Source_simple"

or

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source_simple

Source_simple docs

Try "mcdoc Source simple"

or

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source simple

This component replaces Source flat, Source flat lambda,

The flux unit is specified in n/cm2/s/st/energy unit (meV or Angs).

Source flux and Source flux lambda.

Source_simple docs

Try "mcdoc Source_simple"

Monitors: Example PSD_monitor and L_monitor

Let's do a very simple exercise on this:

Head on over to:

Exercise 1 - Sources and Monitors on github

https://github.com/McStasMcXtrace/Schools/tree/master/ISIS_April_2021/ Tuesday April 13th/2 Component Basics/Exercise/

16

2021 HighNESS McStas school