Diode Circuit Analysis Dr. Santosh K. Gupta 158

Diode Circuits

•Look at the simple diode circuit below. We can write two equations:

Examples from Text Book

Example: 4 For the series diode configuration shown in fig. determine V_D , V_R and I_D .

Solution:

Since the applied voltage establishes a current in the clockwise direction to match the arrow of the symbol and the diode is in the "on" state,

$$V_D = 0.7 \text{ V}$$

 $V_R = E - V_D = 8 \text{ V} - 0.7 \text{ V} = 7.3 \text{ V}$
 $I_D = I_R = \frac{V_R}{R} = \frac{7.3 \text{ V}}{2.2 \text{ k}\Omega} \cong 3.32 \text{ mA}$

9/9/2020

Dr. Santosh K. Gupta

Examples

Example: 5 Determine Vo and ID for the series circuit shown in fig.

Solution: First drawing equivalent ckt;

 $V_o = E - V_{K_1} - V_{K_2} = 12 \text{ V} - 2.5 \text{ V} = 9.5 \text{ V}$ $I_D = I_R = \frac{V_R}{R} = \frac{V_o}{R} = \frac{9.5 \text{ V}}{680 \Omega} = 13.97 \text{ mA}$

Dr. Santosh K. Gupta

162

Examples

Example: 6 Determine I_D , V_{D2} and V_o for the circuit shown in fig.

Solution: First drawing equivalent ckt and then analysing ckt;

$$V_o = I_R R = I_D R = (0 \text{ A})R = 0 \text{ V}$$

 $V_{D_2} = V_{\text{open circuit}} = E = 20 \text{ V}$

9/9/2020

and 9/9/2020

Dr. Santosh K. Gupta

Examples

Example: 7 Determine V_0 , I_1 , I_{D1} and I_{D2} for the parallel diode configuration shown in fig.

Solution:

The current

$$I_1 = \frac{V_R}{R} = \frac{E - V_D}{R} = \frac{10 \text{ V} - 0.7 \text{ V}}{0.33 \text{ k}\Omega} = 28.18 \text{ mA}$$

Assuming diodes of similar characteristics, we have

$$I_{D_1} = I_{D_2} = \frac{I_1}{2} = \frac{28.18 \text{ mA}}{2} = 14.09 \text{ mA}$$

9/9/2020

Dr. Santosh K. Gupta

164

Examples

Example: 8 Determine the current ID for the network.

Solution: Si diode is conducting and GaAs diode is non-conducting because barrier or knee voltage os Si is less than GaAs.

Therfore Current;

$$I_D = \frac{12 - 0.7}{4.7 \times 10^3} = 2.40425 \, mA$$

9/9/2020

Dr. Santosh K. Gupta

RECAP

- There are three types of Diode Equivalent Circuit:
 - 1. Piecewise linear equivalent circuits
 - 2. Simplified equivalent circuits
 - 3. Ideal equivalent circuits
- If diode is FB, then practically voltage drop across the Si & Ge diodes are 0.6-0.7 V & 0.2-0.3 V respectively and ideally it should be zero.
- If diode is RB, then voltage drop across the Si & Ge diodes are equal to applied external supply voltage.
- Use KVL or KCL carefully.

9/9/2020

Dr. Santosh K. Gupta

166

Diodes Rectifier Circuits:

- 1. Half wave rectifier
- 2. Full wave rectifier

Rectifiers convert AC voltage to pulsating DC voltage.

9/9/2020

Dr. Santosh K. Gupta

9/9/2020

$$V'_{de} = \frac{1}{2\pi} \left(\int_0^{\pi} I_m R_f \sin \alpha \, d\alpha + \int_{\pi}^{2\pi} V_m \sin \alpha \, d\alpha \right)$$
$$= \frac{1}{\pi} \left(I_m R_f - V_m \right) = \frac{1}{\pi} \left[I_m R_f - I_m (R_f + R_L) \right]$$
$$V'_{de} = -\frac{I_m R_L}{\pi}$$

9/9/2020

Dr. Santosh K. Gupta

172

$$I_{\rm rms} = \left(\frac{1}{2\pi} \int_0^{2\pi} i^2 \, d\alpha\right)^{\frac{1}{2}}$$

where
$$\alpha \equiv \omega t$$
 and
$$I_{\text{rms}} = \left(\frac{1}{2\pi} \int_0^{\pi} I_m^2 \sin^2 \alpha \, d\alpha\right)^{\frac{1}{2}} = \frac{I_m}{2} \qquad I_m \equiv \frac{V_m}{R_f + R_L}$$

$$I_m \equiv \frac{V_m}{R_f + R_L}$$

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}}$$

$$I_m = \frac{V_m}{R_f + R_L + R_s}$$

% regulation $\equiv \frac{V_{\text{no load}} - V_{\text{load}}}{V_{\text{load}}} \times 100\%$

$$I_{\rm dc} = \frac{I_m}{\pi} = \frac{V_m/\pi}{R_f + R_L}$$
 $V_{\rm dc} = \frac{V_m}{\pi} - I_{\rm dc}R_f$

$$V_{\rm dc} = \frac{V_m}{\pi} - I_{\rm dc} R_f$$

9/9/2020

Dr. Santosh K. Gupta

$$E_{L (RMS)} = I_{RMS} R_L = \frac{I_m}{2} R_L$$

$$E_{L (RMS)} = \frac{E_{sm}}{2 (R_f + R_L + R_s)} \times R_L = \frac{E_{sm}}{2 \left[1 + \frac{R_f + R_s}{R_L} \right]}$$
Now
$$R_L >> R_f + R_s \text{ hence } \frac{R_f + R_s}{R_L} << 1$$

$$E_{L (RMS)} \approx \frac{E_{sm}}{2}$$

9/9/2020

Dr. Santosh K. Gupta

174

DC Power Output

$$P_{DC} = E_{DC} I_{DC} = I_{DC}^2 R_L$$
 D.C. Power output
$$= I_{DC}^2 R_L = \left[\frac{I_m}{\pi}\right]^2 R_L = \frac{{i_m}^2}{\pi^2} R_L$$

$$P_{DC} = \frac{I_m^2}{\pi^2} R_L$$
 where
$$I_m = \frac{E_{sm}}{R_f + R_L + R_s}$$

AC Power Input

$$P_{AC} = I_{RMS}^{2}[R_{L} + R_{f} + R_{s}]$$
but
$$I_{RMS} = \frac{I_{m}}{2} \quad \text{for half wave,}$$

$$P_{AC} = \frac{I_{m}^{2}}{4} [R_{L} + R_{f} + R_{s}]$$
9/9/2020
Dr. Santosh K. Gupta

$$\eta = \frac{D.C. \text{ output power}}{A.C. \text{ input power}} = \frac{P_{DC}}{P_{AC}}$$

$$\eta = \frac{\frac{I_{m}^{2}}{\pi^{2}}R_{L}}{\frac{I_{m}^{2}}{4}[R_{f} + R_{L} + R_{s}]} = \frac{(4/\pi^{2})R_{L}}{(R_{f} + R_{L} + R_{s})}$$

$$\eta = \frac{0.406}{1 + \left(\frac{\bar{R}_f + \bar{R}_s}{R_L}\right)}$$

$$\%\eta_{\text{max}} = 0.406 \times 100 = 40.6 \%$$

9/9/2020

Dr. Santosh K. Gupta

176

177

Ripple Factor

Ripple factor $\gamma = \frac{\text{R.M. S. value of a.c. component of output}}{\text{Average or d.c. component of output}}$

 I_{ac} = r.m.s. value of a. c. component present in output

I_{DC} = d.c. component present in output

I_{RMS} = R.M.S. value of total output current

$$I_{RMS} = \sqrt{I_{ac}^2 + I_{DC}^2}$$

$$I_{ac} = \sqrt{I_{RMS}^2 - I_{DC}^2}$$

$$I_{RMS} = \frac{I_m}{2}$$
 while $I_{DC} = \frac{I_m}{\pi}$

$$\gamma = \sqrt{\left[\left(\frac{l_{\rm m}}{2}\right)\right]^2 - 1} = \sqrt{\frac{\pi^2}{4} - 1} = \sqrt{1.4674}$$

γ = **1.211**9/9/2020

.. Half wave

Dr. Santosh K. Gupta

Ripple factor = $\frac{I_{ac}}{I_{DC}}$

$$\gamma = \frac{\sqrt{I_{RMS}^2 - I_{DC}^2}}{I_{DC}}$$

$$\gamma = \sqrt{\frac{I_{RMS}}{I_{DC}}}^2 - 1$$

Diodes - Rectifier Circuits

Peak Inverse Voltage (PIV) of HWR: PIV is the maximum voltage that appears across the diode when non-conducting or off state.

Using KVL;

$$-V_m + PIV = 0$$

$$PIV = V_m$$

9/9/2020

Dr. Santosh K. Gupta

178

Transformer Utilization Factor (TUF)

The T.U.F. is defined as the ratio of d.c. power delivered to the load to the a.c power rating of the transformer. While calculating the a.c. power rating, it is necessary to consider r.m.s. value of a.c. voltage and current.

A.C. power rating of transformer = E_{RMS} I_{RMS}

$$= \frac{E_{sm}}{\sqrt{2}} \cdot \frac{I_m}{2} = \frac{E_{sm} I_m}{2\sqrt{2}}$$

D.C. power delivered to the load = $I_{DC}^2 R_L$

$$= \left(\frac{I_{m}}{\pi}\right)^{2} R_{L}$$

T.U.F. =
$$\frac{\left(\frac{I_{m}}{\pi}\right)^{2} R_{L}}{\left(\frac{E_{sm}I_{m}}{2\sqrt{2}}\right)}$$

$$E_{sm} = I_m R_L$$

T.U.F =
$$\frac{I_m^2}{\pi^2} \cdot \frac{R_L \cdot 2\sqrt{2}}{I_m^2 R_L} = \frac{2\sqrt{2}}{\pi^2} = 0.287$$

9/9/2020

Dr. Santosh K. Gupta

$$Voltage\ Regulation$$

$$If\ (V_{dc})_{NL}\ =\ D.C.\ voltage\ on\ no\ load\ (V_{dc})_{FL}\ =\ D.C.\ voltage\ on\ full\ load\ then\ voltage\ regulation\ is\ defined\ as,$$

$$Voltage\ regulation\ = \frac{(V_{dc})_{NL}-(V_{dc})_{FL}}{(V_{dc})_{FL}}$$

$$(V_{dc})_{NL}\ =\ \frac{E_{sm}}{\pi}$$

$$While \quad (V_{dc})_{FL}\ =\ I_{DC}\ R_L\ = \frac{I_m}{\pi}\ R_L\ =\ \frac{E_{sm}}{\pi[R_f+R_s+R_L]}\times R_L$$

$$\therefore \qquad \%\ R\ =\ \frac{\frac{E_{sm}}{\pi}-\frac{E_{sm}}{\pi}}{\pi}\frac{R_L}{R_f+R_s+R_L}\times 100$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}}{R_L}\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

$$= \frac{1-\frac{R_L}{R_f+R_s+R_L}\times 100}{R_L\times 100\ =\ \frac{R_f+R_s}{R_L}\times 100}$$

Examples

Example: 9 (a) Sketch the output Vo and determine the dc level for the network.

(b) Repeat part (a) if the ideal diode is replaced by silicon (Si) diode.

Solution: (a)In this network diode will conduct during negative half cycle only and V_0 will appear as shown in the same figure (because we consider ideal diode in rectifier if diode material is not specified i.e. either Si or Ge)). For the full period, the dc level is

$$V_{\rm dc} = -0.318V_m = -0.318(20 \text{ V}) = -6.36 \text{ V}$$

The negative sign indicates that the polarity of the output is opposite to the defined polarity.

Examples

(b) For the silicon diode, dc level is

$$V_{\rm dc} \cong -0.318(V_{\rm m} - 0.7 \,\text{V}) = -0.318(19.3 \,\text{V}) \cong -6.14 \,\text{V}$$

The resulting drop in dc level is 0.22V or about 3.5% and the output waveform appearance is:

9/9/2020

Dr. Santosh K. Gupta

QUIZ

- The average load voltage of HWR is (V_m/π)

9/9/2020

r. Santosh K. Gupta

184

RECAP

- Rectifiers convert AC voltage to pulsating DC voltage.
- There are two types of rectifiers:
 - 1. Half Wave Rectifier (HWR)
 - 2. Full Wave Rectifier (FWR)
- FWR again divide into two parts
 - 1. Center-Tapped (CT) Full-Wave Rectifier
- 2. Full-Wave Bridge Rectifier
- HWR conducts only during positive half cycles of input ac supply.
- Peak Inverse Voltage (PIV) is the maximum voltage appears across the diode during non-conducting or off state.
- For HWR, PIV is Vm.
- For HWR, efficiency is 41%.
- Ripple Factor measures the percentage of ac component in the rectified output.
- For HWR, Ripple Factor (γ) 121%.

9/9/2020

Dr. Santosh K. Gupta

Diodes Rectifier Circuits:

- 1. Half wave rectifier
- 2. Full wave rectifier

9/9/2020

9/9/2020

Dr. Santosh K. Gupta

186

Full-Wave Rectifier Circuits

(a) Center-Tapped (CT) Full-Wave Rectifier (b) Full-Wave Bridge Rectifier

Fig. (b) Full-Wave Bridge Rectifier

Dr. Santosh K. Gupta

Average DC Load current

Consider one cycle of the load current i_L from 0 to π to obtain the average value which is d.c. value of load current.

$$\begin{split} i_L &= I_m \sin \omega t & 0 \le \omega t \le \pi \\ I_{av} &= I_{DC} = \frac{1}{\pi} \int_0^{\pi} i_L d(\omega t) = \frac{1}{\pi} \int_0^{\pi} I_m \sin \omega t d(\omega t) \\ &= \frac{I_m}{\pi} \left[(-\cos \omega t)_0^{\pi} \right] \\ &= \frac{I_m}{\pi} \left[-\cos \pi - (-\cos 0) \right] & \cos \pi = -1 \\ &= \frac{I_m}{\pi} \left(+1 - (-1) \right] \end{split}$$

$$I_{DC} = \frac{2I_m}{\pi}$$

9/9/2020

Dr. Santosh K. Gupta

190

Average DC Load Voltage

$$E_{DC} = I_{DC}R_{L} = \frac{2I_{m}R_{L}}{\pi}$$

$$E_{DC} = \frac{2E_{sm}R_{L}}{\pi \left[R_{f} + R_{s} + R_{L}\right]} = \frac{2E_{sm}}{\pi \left[1 + \frac{R_{f} + R_{s}}{R_{L}}\right]} \qquad \frac{R_{f} + R_{s}}{R_{L}} < 6$$

$$E_{DC} = \frac{2E_{sm}}{\pi}$$

9/9/2020

Dr. Santosh K. Gupta

RMS Load Current (I_{RMS}) & Load Voltage

$$I_{RMS} = \sqrt{\frac{1}{2\pi}} \int_{0}^{2\pi} i_{L}^{2} d(\omega t)$$

Since two half wave rectifiers are similar in operation, we can

$$\begin{split} I_{RMS} &= \sqrt{\frac{2}{2\pi}} \int\limits_0^\pi [I_m \sin \omega t]^2 d(\omega t) \\ &= I_m \sqrt{\frac{1}{\pi}} \int\limits_0^\pi \left[\frac{1-\cos 2\omega t}{2} \right] d(\omega t) \qquad \text{as } \sin^2 \omega t = \frac{1-\cos 2\omega t}{2} \\ I_{RMS} &= I_m \sqrt{\frac{1}{2\pi}} \left[[\omega t]_0^\pi - \left(\frac{\sin 2\omega t}{2} \right)_0^\pi \right] = I_m \sqrt{\frac{1}{2\pi}} [\pi - 0] \\ &= I_m \sqrt{\frac{1}{2\pi}} (\pi) \qquad \text{as } \sin (2\pi) = \sin (0) = 0 \end{split}$$

$$I_{RMS} = \frac{I_m}{\sqrt{2}}$$

Since the load is resistive, the r.m.s. value of the load voltage is given by:

$$E_{L \text{ (RMS)}} = I_{RMS} R_L = \frac{I_m}{\sqrt{2}} R_L$$

9/9/2020

192

DC Power Output (P_{DC})

D.C. Power output =
$$E_{DC}I_{DC} = I_{DC}^2 R_L$$

$$P_{DC} = I_{DC}^2 R_L = \left(\frac{2I_m}{\pi}\right)^2 R_L$$

$$P_{DC} = \frac{4}{\pi^2} I_m^2 R_L$$

$$P_{DC} = I_{DC}^{2} R_{L} = \left(\frac{2I_{m}}{\pi}\right)^{2} R_{L}$$

$$P_{DC} = \frac{4}{\pi^{2}} \frac{E_{sm}^{2}}{(R_{s} + R_{f} + R_{L})^{2}} \times R_{L}$$

AC Power Input (PAC)

$$P_{AC} = I_{RMS}^2 (R_f + R_s + R_L) = \left(\frac{I_m}{\sqrt{2}}\right)^2 (R_f + R_s + R_L)$$

$$P_{AC} = \frac{I_{m}^{2} (R_{f} + R_{s} + R_{L})}{2}$$

$$P_{AC} = \frac{E_{sm}^{2}}{(R_{f} + R_{s} + R_{L})^{2}} \times \frac{1}{2} \times (R_{f} + R_{s} + R_{L})$$

$$P_{AC} = \frac{E_{sm}^2}{2(R_f + R_s + R_L)}$$

9/9/2020

Dr. Santosh K. Gupta

Rectifier efficiency

$$\eta = \frac{P_{DC} \text{ output}}{P_{AC} \text{ input}}$$

$$\eta = \frac{\frac{4}{\pi^2} I_m^2 R_L}{\frac{I_m^2 (R_1 + R_s + R_L)}{2}}$$

$$n = \frac{8 R_L}{\pi}$$

But if $R_f + R_s \ll R_L$, neglecting it from denominator

$$\eta = \frac{8 R_L}{\pi^2 (R_L)} = \frac{8}{\pi^2}$$

 $\% \eta_{\text{max}} = \frac{8}{\pi^2} \times 100 = 81.2 \%$

9/9/2020

Dr. Santosh K. Gupta

194

Ripple factor

Ripple factor =
$$\sqrt{\left[\frac{I_{RMS}}{I_{DC}}\right]^2 - 1}$$

For full wave $I_{RMS} = I_m/\sqrt{2}$ and $I_{DC} = 2I_m/\pi$ so, substituting in the above equation,

Ripple factor =
$$\sqrt{\left[\frac{l_{\rm m}/\sqrt{2}}{2l_{\rm m}/\pi}\right]^2 - 1} = \sqrt{\frac{\pi^2}{8} - 1}$$

Ripple factor =
$$\gamma = 0.48$$

9/9/2020

Dr. Santosh K. Gupta

Load current (i,)

The Fourier series for the load current is obtained by taking the sum of the series for the individual rectifier current. The two diodes conduct in alternate half cycles, i.e. there is a phase difference of π radian between two diode currents

$$\begin{split} &i_{d_1} = I_m \bigg[\frac{1}{\pi} + \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{2}{15\pi} \cos 4\omega t ... \bigg] \\ &i_{d_2} = i_{d_1} \text{ with } \omega t \text{ replaced by } (\omega t + \pi) \\ &i_{d_2} = I_m \bigg[\frac{1}{\pi} + \frac{1}{2} \sin(\omega t + \pi) - \frac{2}{3\pi} \cos 2(\omega t + \pi) - \frac{2}{15\pi} \cos 4(\omega t + \pi) ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos (2\omega t + 2\pi) - \frac{2}{15\pi} \cos (4\omega t + 4\pi) ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos (2\omega t + 2\pi) - \frac{2}{15\pi} \cos (4\omega t + 4\pi) ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{2}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{2}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{2}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{2} \sin \omega t - \frac{2}{3\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{\pi} - \frac{1}{\pi} \cos 2\omega t - \frac{4}{15\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{\pi} \cos 2\omega t - \frac{1}{\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{\pi} \cos 2\omega t - \frac{1}{\pi} \cos 4\omega t ... \bigg] \\ &= I_m \bigg[\frac{1}{\pi} - \frac{1}{\pi} \cos 2\omega t - \frac{1}{\pi} \cos 4\omega t ... \bigg]$$

First term represents the average or DC value, while the remaining the ripple is 2f. Individual diode currents flow in the opposite directions through two halves secondary winding. Secondary current is difference of individual diode currents.

196

197

Peak Inverse Voltage (PIV)

Dr. Santosh K. Gupta

PIV of diode = 2 $E_{sm} = \pi E_{DC}|_{I_{DC}=0}$

PIV of diode = $2E_{sm} - 0.7$

When biased, point A is at -E_{sm} while point B is at ground, neglecting diode drop. The total peak voltage across D_2 is 2 E_{sm} .

9/9/2020 Dr. Santosh K. Gupta

Transformer Utilization Factor (TUF)

Secondary T.U.F =
$$\frac{D.C. \text{ power to the load}}{A.C. \text{ power rating of secondary}}$$

$$= \frac{I_{DC}^2 R_L}{E_{RMS} I_{rms}} = \frac{\left(\frac{2}{\pi} I_m\right)^2 R_L}{\frac{E_{sm}}{\sqrt{2}} \times \frac{I_m}{\sqrt{2}}}$$

Neglecting forward resistance R_f of diode, $E_{sm} = I_m R_L$. primary &

Secondary T.U.F. =
$$\frac{\frac{4}{\pi^2} \times I_m^2 R_L}{\frac{I_m^2 R_L}{2}} = \frac{8}{\pi^2} = 0.812$$

T.U.F. for primary winding = $2 \times \text{T.U.F.}$ of half wave circuit = $2 \times 0.287 = 0.574$.

Average T.U.F. for full wave rectifier circuit = T.U.F of primary + T.U.F of secondary common load.

 $= \frac{0.574 + 0.812}{2} = 0.693$

9/9/2020 Dr. Santosh K. Gupta

In Secondary of transformer, current flows through each half separately in every half cycle. While primary carries current continuously. TUF of primary & secondary calculated separately.

Primary is feeding two half wave rectifiers separately which seems to work independently but feed to a common load.

198

Voltage Regulation

$$(V_{de})_{NL} = \frac{2E_{sm}}{\pi}$$

$$(V_{dc})_{FL} = I_{DC} R_L$$

$$\% R = \frac{(V_{dc})_{NL} - (V_{dc})_{FL}}{(V_{dc})_{FL}} \times 100$$

$$\% R = \frac{\frac{2E_{sm}}{\pi} - I_{DC}R_{L}}{I_{DC}R_{L}} \times 100$$

$$I_{m} = \frac{E_{sm}}{R_{t} + R_{L} + R_{s}}$$

$$E_{sm} = I_m(R_f + R_L + R_s)$$

$$I_{DC} = \frac{2I_m}{\pi}$$

Neglecting winding resistance R_{s} , regulation is given by:

% R
$$\approx \frac{R_f}{R_L} \times 100$$

 $\% R = \frac{\frac{2I_{m}}{\pi} [R_{f} + R_{L} + R_{s}] - \frac{2I_{m}}{\pi} R_{L}}{\frac{2I_{m}}{\pi} R_{L}} \times 100$

$$= \frac{R_f + R_L + R_s - R_L}{R_L} \times 100$$

$$\% R = \frac{R_f + R_s}{R_L} \times 100$$

9/9/2020 Dr. Santosh K. Gupta

$$I_{DC} = \frac{2I_m}{\pi}$$
 and $I_{RMS} = \frac{I_m}{\sqrt{2}}$

$$I_{m} = \frac{E_{sm}}{R_{s} + 2R_{f} + R_{L}}$$

Inplace of $R_{f\prime}$ the term $2R_{f}$ appears in the denominator !

As current flows through the entire secondary of the transformer for all the time, TUF is 0.812!

9/9/2020

$$P_{AC} = I_{RMS}^2 (R_s + 2R_f + R_L) = \frac{I_m^2 (2R_f + R_s + R_L)}{2}$$

$$\eta = \frac{8R_L}{\pi^2 (R_s + 2R_f + R_L)}, \% \eta_{max} = 81.2\%$$

γ = 0.48

Dr. Santosh K. Gupta

202

Full-Wave Rectifier Circuits

PIV for Full wave Center-Tapped (CT) and Full wave Bridge rectifier:

Fig. 1.27 Determining the required PIV Rating for Full wave (a) CT rectifier (b) Bridge rectifier Using KVL;

$$PIV = V_{secondary} + V_{R}$$

$$-V_{\rm m} + PIV = 0$$

 $PIV = V_m + V_m = 2 V_m$

 $PIV = V_m$

9/9/2020

Dr. Santosh K. Gupta

What happens if Input and Output Terminals are Reversed?

If the input and output terminals in bridge rectifier are reversed without any change in the diodes, then it will not work. Since, for one cycle, supply will get shorted through the forward biased diodes across the supply while for other cycle the circuit will be open circuit. The output will be zero.

9/9/2020

Dr. Santosh K. Gupta

Comparison between HWR & FWR

S.No.	Parameters	Half Wave Rectifier	Full Wave	
			Center-Tapped Rectifier	Bridge Rectifier
1	Operation	Conducts during positive half cycles.	Conducts during both the half cycles	Conducts during both the half cycles
2	Number of diodes	1	2	4
3	The average (dc) load voltage	V_m/π .	$2V_m/\pi$.	$2V_m/\pi$.
4	RMS load current	I _m /2.	$I_{\rm m}/\sqrt{2}$.	$I_m/\sqrt{2}$.
5	Ripple Factor	1.21	0.48	0.48
6	Efficiency	41%.	81.2%.	81.2%.
7	PIV	V_{m}	2V _m	$V_{\mathbf{m}}$
8	TUF (Transformer Utilization Factor)	0.287	0.69	0.81

9/9/2020 Dr. Santosh K. Gupta

Quiz

• RMS load current of FWR is.....

 $I_{\rm m}/\sqrt{2}$

9/9/2020

Dr. Santosh K. Gupta

Filter Circuits

- Inductance acts as a short circuit for DC, but has a large impedance for AC. Inductance acts as short circuit for DC, it can not be placed in shunt arm across the load. Inductance used in filter circuits are called "choke".
- Capacitor acts as open circuit for DC and almost short for AC (if the capacitance is sufficiently large enough).
 Capacitance is open for DC, it blocks DC, hence it can not be connected in series with the load.

Two types of Filter circuits:

(i) Capacitor input filter and (ii) choke input filter

9/9/2020 Dr. Santosh K. Gupta 207

Approximate Analysis of CIF

$$V_r = \frac{E_{DC}}{2 f C R_L} = peak to peak ripple voltage$$

Ripple factor =
$$\frac{V_{rms}}{E_{DC}} = \frac{\frac{E_{DC}}{2 \text{ f CR}_L}}{2\sqrt{3}} \times \frac{1}{E_{DC}}$$
, Since $V_{rms} = \frac{V_r}{2\sqrt{3}}$

 CR_L is the time constant of the filter circuit.

Ripple factor =
$$\frac{1}{4\sqrt{3} \text{ f C R}_L}$$
 for full wave

Ripple factor =
$$\frac{1}{2\sqrt{3} \text{ f C R}_L}$$
 for half wave

9/9/2020

Dr. Santosh K. Gupta

RECAP

- In Full Wave Rectifier (FWR) circuit current flows through the load line in the same direction for both half cycles (full wave) of input ac voltage.
- There are two types of FWR:
 - 1. FWR with Centre Tapped Transformer
 - 2. Full Wave Bridge Rectifier
- In Centre Tapped FWR there are two diodes.
- In Full Wave Bridge Rectifier there are four diodes.
- PIV for Centre Tapped FWR is 2Vm.
- ullet PIV for Full Wave Bridge Rectifier is V_m .
- For FWR, Ripple Factor (γ) 48%.
- TUF for Centre Tapped FWR is 69%.
- TUF for Full Wave Bridge Rectifier is 81%.

9/9/2020

Dr. Santosh K. Gupta

218

219

Diodes -Zener diode as Voltage regulator

9/9/2020 Dr. Santosh K. Gupta

Zener-Diode Voltage-Regulator Circuits

Zener-Diode Voltage-Regulator Circuits Zener produces constant output voltage while operating from a variable supply voltage. Such circuits are called voltage regulator.

- The Zener diode has a breakdown voltage equal to the desired output voltage.
- The resistor limits the diode current to a safe value so that Zener diode does not overheat.

Fig. Zener Diode Voltage- Regulator Circuit

9/9/2020 Dr. Santosh K. Gupta 220

Examples

Example: 11 (a) For the Zener diode network, determine V_L , V_{R_s} I_{Z_s} and P_Z

(b) Repeat part (a) with $R_L = 3 \text{ k}\Omega$

Solution: (a) Note: First we check wheather Zener is ON or OFF. If $V \ge VZ$, then Zener is ON otherwise it is OFF. Now;

$$V = \frac{R_L V_i}{R + R_L} = \frac{1.2 \text{ k}\Omega(16 \text{ V})}{1 \text{ k}\Omega + 1.2 \text{ k}\Omega} = 8.73 \text{ V}$$

Here; $V < V_z$ i.e. 8.73 V < 10 V, So Zener is OFF means not conducting. Now we can redraw the given network as:

9/9/2020

Dr. Santosh K. Gupta

222

Examples

 $Hence; \ \mathbf{V_L} = \mathbf{V} = \mathbf{8.73} \ \mathbf{V}, \ \ \mathbf{V_R} = \mathbf{V_i} - \mathbf{V_L} = 16 - 8.73 = \mathbf{7.27} \ \mathbf{V}, \quad \ \ \mathbf{I_Z} = \mathbf{0} \ \mathbf{A}, \quad \mathbf{P_Z} = \mathbf{V_Z} \mathbf{I_Z} = 10 \ (0) = \mathbf{0} \ \mathbf{W}$

(b) Now; $R_L = 3 k\Omega$

Again here we check whether Zener is ON or OFF. For this we calculate V across Zener i.e.

$$V = \frac{R_L V_i}{R + R_L} = \frac{3 \text{ k}\Omega(16 \text{ V})}{1 \text{ k}\Omega + 3 \text{ k}\Omega} = 12 \text{ V}$$

Here; $V > V_z$ i.e. 12 V > 10 V, So Zener is ON means conducting.

9/9/2020

Dr. Santosh K. Gupta

Hence;

$$V_L = V_Z = 10 \text{ V},$$

$$V_R = V_i - V_L = 16 - 10 = 6 V$$
,

$$I_L = \frac{V_L}{R_L} = \frac{10 \text{ V}}{3 \text{ k}\Omega} = 3.33 \text{ mA}$$

$$I_R = \frac{V_R}{R} = \frac{6 \text{ V}}{1 \text{ k}\Omega} = 6 \text{ mA}$$

$$I_Z = I_R - I_L [\text{Eq. (2.18)}]$$

$$= 6 \text{ mA} - 3.33 \text{ mA}$$

$$= 2.67 \text{ mA}$$

The power dissipated is

$$P_Z = V_Z I_Z = (10 \text{ V})(2.67 \text{ mA}) = 26.7 \text{ mW}$$

which is less than the specified $P_{ZM} = 30$ mW.

9/9/2020

Example: 12 (a) For the network, determine the range of RL and Ithat will result in VRL being maintained at 10 V.

(b) Determine the maximum wattage rating of the diode.

Solution: (a) In these type of Zener numericals Zener is always in ON condition.
$$V = \frac{R_L}{R_L + R} \times V_i; OR \ V = V_Z = \frac{R_L \ (\min)}{R_L \ (\min) + R} \times V_i$$

$$R_{L_{\min}} = \frac{RV_Z}{V_I - V_Z} = \frac{(1 \text{ k}\Omega)(10 \text{ V})}{50 \text{ V} - 10 \text{ V}} = \frac{10 \text{ k}\Omega}{40} = 250 \Omega$$

The voltage across the resistor R is then determined by $V_R = V_i - V_Z = 50 \text{ V} - 10 \text{ V} = 40 \text{ V}$

the magnitude of I_R :

$$I_R = \frac{V_R}{R} = \frac{40 \text{ V}}{1 \text{ k}\Omega} = 40 \text{ mA}$$

9/9/2020

Dr. Santosh K. Gupta

The minimum level of
$$I_L$$
 is then determined by $I_{L_{\min}} = I_R - I_{ZM} = 40 \text{ mA} - 32 \text{ mA} = 8 \text{ mA}$ the maximum value of R_L

$$R_{L_{\text{max}}} = \frac{V_Z}{I_{L_{\text{min}}}} = \frac{10 \text{ V}}{8 \text{ mA}} = 1.25 \text{ k}\Omega$$

(b)
$$P_{ZMAX} = V_Z * I_{ZM} = (10 \text{ V}) (32\text{mA}) = 320 \text{ mW}$$

Example: 13 Determine the range of values of Vi that will maintain the Zener diode in the ON state.

Examples

Solution: In these type of Zener numericals Zener is always in ON condition.

$$V = \frac{R_L}{R_L + R} \times V_i;$$
 OR $V = V_Z = \frac{R_L}{R_L + R} \times V_i \text{(min)}$

$$V_{i_{\min}} = \frac{(R_L + R)V_Z}{R_L} = \frac{(1200 \ \Omega + 220 \ \Omega)(20 \ V)}{1200 \ \Omega} = 23.67 \ V$$

$$I_L = \frac{V_L}{R_L} = \frac{V_Z}{R_L} = \frac{20 \text{ V}}{1.2 \text{ k}\Omega} = 16.67 \text{ mA}$$

$$I_{R_{\text{max}}} = I_{ZM} + I_L = 60 \text{ mA} + 16.67 \text{ mA}$$

= 76.67 mA

$$V_{I_{\text{max}}} = I_{R_{\text{max}}}R + V_Z$$

$$= (76.67 \text{ mA})(0.22 \text{ k}\Omega) + 20 \text{ V}$$

$$= 16.87 V + 20 V$$

$$= 36.87 V$$

9/9/2020

9/9/2020

Dr. Santosh K. Gupta

227

Diodes – Wave-Shaping Circuits Clippers

9/9/2020

Dr. Santosh K. Gupta

228

Diodes - Wave-Shaping Circuits

Clipper Circuits: Clipper or Limiter circuit is used to cut off or eliminate an unwanted section of a waveform.

Note: Clipper circuits are the combination of DR or RD or RDR; where D and R stand for DIODE and RESISTANCE respectively.

• There are two types of clippers:

9/9/2020

Dr. Santosh K. Gupta

Diodes - Wave-Shaping Circuits

- Combination clipper circuit is the combination of two clipper circuits.
- \bullet In this clipper circuits diode D_1 conducts during (+)ve half cycle, only when applied voltage is greater than or equal to V_1 .
- ullet When D_1 is forward biased then it maintains voltage V_1 across it which appears at the output as shown in figure.
- \bullet Similarly, diode D_2 conducts during (-)ve half cycle, only when applied voltage is greater than or equal to V_2 .
- \bullet When D_2 is forward biased then it maintains voltage V_2 across it which appears at the output as shown in figure.

Solution: The diode will be in the ON state for positive half cycle. Here diode is forward biased by V = 5 V.

So for v_i = + 20 V output waveform should be start from +5 V to +25 V and ; for v_i = - 20 V output waveform should be start from +5 V to 0 V.

Example: 16 Repeat examples 15 for the square wave input.

Solution: For $v_i = 20V$ (0 to T/2) the diode is in short circuit (ON) state and $v_o = 20 + 5 = 25$ V.

For $v_i = -10V$ the diode is in open circuit (OFF) state and $v_o = i_R R = (0) R = 0 V$.

Note: In example no.15 that the clipper not only clipped off 5 V from the total swing but raised the dc level of the signal by 5 V.

9/9/2020

Dr. Santosh K. Gupta

236

Examples

Example: 17 Determine v_0 for the network (consider diode is ideal).

Solution: The polarity of the dc supply and direction of the diode strongly suggest that the diode will be in the ON state for a good portion of the negative region of the input signal.

For this region (For (-)ve cycle) the network will appear as shown in figure, where the defined terminals for $v_0 = V = 4 \text{ V}$.

•For (+)ve cycle, when the input voltage greater than 4 V the diode will be in OFF state. But for any input voltage less than 4 V will result in a short circuited diode (ON state).

Examples

Example: 18 Repeat example 17 for $V_T = 0.7 \text{ V}$ (means for Si diode).

Solution: Here; when the input voltage greater than 3.3 V the diode will be in OFF state. But for any input voltage less than 3.3 V will result in a short circuited diode (ON state).

QUIZ

• The clipper circuit are used for...... some portion of input signal.

(Clip-off)

- A positive clipper clips offportion of the input waveform. (Positive)
- In a series clipper, for a clipping region, the diode must be incondition.

(Reverse biased)

9/9/2020

Dr. Santosh K. Gupta

240

Home Work (no submission)

1. Sketch i_R and V_0 of Fig. 1 for the input shown and draw the V_0 waveform for the Fig. 2 circuit.

Fig. 1

9/9/2020

Fig. 2

Dr. Santosh K. Gupta

RECAP

- Clipper or Limiter circuit is used to cut off or eliminate an unwanted section of a waveform.
- There are two types of clipper circuits:
 - 1. Series Clipper
 - 2. Shunt or Parallel Clipper
- In Series clipper diode is connected in series with load.
- In Shunt or parallel clipper diode is connected in parallel with load.
- If the diode is biased then clipper circuits are known as biased clipper otherwise it is known as unbiased clipper circuits.

9/9/2020 Dr. Santosh K. Gupta 242

Diodes – Wave-Shaping Circuits Clampers

9/9/2020 Dr. Santosh K. Gupta 243

Diodes - Wave-Shaping Circuits

Clamper Circuits: Clamper circuits are used to add a dc level to an ac input waveform. Note: Clamper circuits are the combination of CDR; where C, D and R stand for CAPACITANCE, DIODE and RESISTANCE respectively.

- 1n numerical, if diode material is not specified then consider it as ideal diode always.
- On the basis of dc shift (positive or negative) clampers circuits of two types:
- Positive Clamper Circuit (DIODE in upward direction)
- Negative Clamper Circuit (DIODE in downward direction)
- If the diode is biased then clamper circuits are known as biased clamper otherwise it is known as simple clamper circuits (Unbiased).

Diodes - Wave-Shaping Circuits

Steps for analysis of a clamper circuit:

- First charge the capacitor by choosing appropriate input cycle so that diode is conducting.
- Now calculate the output voltage as $\mathbf{v_o} = \mathbf{v_i} + \mathbf{V_c}$ (for positive clamper) and $\mathbf{v_o} = \mathbf{v_i} \mathbf{V_c}$ (for negative clamper)
- \bullet Check output swing is equal to input swing i.e. $2V_m$ OR 2V.

Working of Clamper Circuits

2. Negative Clamper Circuit

9/9/2020 Dr. Santosh K. Gupta

Example: 19 Determine v_0 for the network and sketch the waveform.

Solution: This is biased positive clamper circuit.

For capacitor charging we have to take negative half cycle of period t₁ to

Also we can observe that diode is forward biased by 5 V battery so total voltage across the capacitor is appear as $V_C = 20 + 5 = 25 \text{ V}$.

Since frequency is 1000 Hz the time period will be 1 mS.

Now the output voltage for positive clamper is given as $v_0 = v_1 + V_C$

For positive cycle $v_0 = 10 + 25 = 35 \text{ V}$ For negative cycle $v_0 = -20 + 25 = 5 \text{ V}_{\text{Dr. Santosh K. Gupta}}$

Example: 20 Repeat examples 19 if diode is not ideal.

Solution: This is biased positive clamper circuit. But in this numerical diode is not ideal. So we consider it as practical (Si) diode with barrier potential 0.7 V.

Now, for capacitor charging we have to take negative half cycle of period t₁ to t₂.

Also we can observe that diode is forward biased by 5 V - 0.7 V = 4.3 V battery so total voltage across the capacitor is appear as $V_C = 20 + 5 - 0.7 = 24.3 \text{ V}$.

Since frequency is 1000 Hz the time period will be 1 mS.

Now the output voltage for positive clamper is given as $v_0 = v_i + V_C$

For positive cycle $v_o = 10 + 24.3 = 34.3 \text{ V}$ For negative cycle $v_o = -20 + 24.3 = 4.3 \text{ V}$

Hence final waveform is as follows:

QUIZ

• Clamper circuit are used for.....level of the input signal.

(Shift DC)

• In a clamper, the analysis must start considering that part of the input which......

(Forward biases the diode)

• In aclamper, the capacitor gets charged during first quarter of the negative cycle of the input.

(Positive)

9/9/2020

Dr. Santosh K. Gupta

252

DECAD

- Clamper circuits are used to add a dc level to an ac input waveform.
- On the basis of dc shift (positive or negative) clampers circuits of two types:
 - 1. Positive Clamper Circuit
 - 2. Negative Clamper Circuit
- If the diode is biased then clamper circuits are known as biased clamper otherwise it is known as simple clamper circuits.

9/9/2020

Dr. Santosh K. Gupta

Diodes -Voltage Multipliers Circuits

9/9/2020

Dr. Santosh K. Gupta

254

Diodes - Wave-Shaping Circuits

Voltage Multiplier Circuits and its type

- Voltage multiplier circuits produce a dc output voltage that is some multiple of the peak ac input voltage to this circuit.
- On the basis of multiplying factor, voltage multiplier circuit can be classified as:

1. Half wave Voltage Doubler Circuit

QUIZ

• In a voltage, the output is twice the peak value of the input voltage.

(Doubler)

• In Voltage multipliers, the diode and capacitors get connected infashion.

(Ladder)

• In a Voltage tripler there arediodes and capacitors.
(3)

9/9/2020

Dr. Santosh K. Gupta