(1) (15 points) For	this problem,	you do not need	to show your wor	k. Just	answer	True or	False.
-------	----------------	---------------	-----------------	------------------	---------	--------	---------	--------

 χ (a) Consider the linear differential equation $x'=2x+t^2e^t$ and assume that the function φ is a solution. Then, any other solution to the equation is of the form $C\varphi$ where C is a real constant.

True False

 $\int \bigcirc$ Suppose y_P is a particular solution to the equation $y' = t^4y + e^{\cos t}(*)$. Then every solution to the equation (*) is the sum of a solution to the equation $y' = t^4y$ plus y_P .

rue Fals

 χ (c) A differential form dF = P(x,y)dx + Q(x,y)dy is exact in a rectangle if $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$

rue False

 \times \checkmark d Let f be continuous on the entire plane and x' = f(t, x) be a differential equation. Then given any solution its interval of existence is $(-\infty, \infty)$.

True False

 $\sqrt{(e)}$ Let x' = f(x) be a differential equation. x_0 is an equilibrium point if $f(x_0) = 0$

True False

 \int (f) 0 is an asymptotically stable equilibrium point of $x' = -\frac{1}{5}\sin(e^x - 1)$.

True False

 \int (g) Assume that φ is a solution of an autonomous differential equation defined in \mathbb{R} . Then, ψ such that $\psi(t) = \varphi(t+C)$, $t \in \mathbb{R}$, is a solution of the same equation.

True False

(h) Consider the following differential equation: $x'' + 2cx' + \omega_0^2 x = 0$, with c > 0 and $\omega_0 > 0$. Then $x(t) \to 0$ as $t \to +\infty$.

True False

X (i) Let f(t) and g(t), $t \in \mathbb{R}$, be two differentiable functions. Suppose there is $t_0 \in \mathbb{R}$ such that the Wronskian of f and g is 0, then it is 0 for all $t \in \mathbb{R}$.

True False

 χ (j) Let y be a piecewise differentiable function of exponential order. Then for large enough values of s, the Laplace transform of y' satisfies $\mathcal{L}(y') = s\mathcal{L}(y)$.

True False

(2) (5 points)

(a) Find the general solution of $y' = y + 2xe^x$.

(b) Find the solution to the initial value problem

$$y' = y + 2xe^x$$
, $y(0) = 3$.

- (3) (5 points) Consider the differential equation 5ydx + 4xdy = 0.
 - (a) Determine conditions on a and b so that $\mu(x,y) = x^a y^b$ is an integrating factor.
 - (b) Find a particular integrating factor and use it to solve (implicitly) the differential equation.
- (4) (5 points) Consider the autonomous equation $y' = 6 + y y^2$.
 - (a) Sketch the graph of the right-hand side of the equation.
 - (b) Sketch the phase line. Classify each equilibrium point as either unstable or asymptotically stable.
 - (c) Sketch the equilibrium solutions in the ty-plane. These equilibrium solutions divide the ty-plane into regions. Sketch at least one solution trajectory in each of these regions.
- (5) (5 points) Consider the second order differential equation $x'' + x = \frac{1}{\cos t}$
 - (a) Find the general solution to the equation x'' + x = 0.
 - (b) Find the solution to the initial value problem

$$x'' + x = \frac{1}{\cos t}$$
 with $x(0) = 1$ and $x'(0) = 2$.