Laboratorium 6 — kołyszaca się maszyna Atwooda

Zadanie 1 (3 pkt)

Zbuduj model reprezentujący uproszczoną kołysząca się maszynę Atwooda na podstawie poniższego układu równań różniczkowych, oraz zbadaj wpływ parametrów na jego działanie.

Uwaga! Należy wykorzystać metodę wyznaczników do rozwiązania podanego układu równań.

$$\begin{cases} \left(m_1 + m_2 + \frac{1}{2}M\right)\ddot{r} - \left(m_1 + m_2 + \frac{1}{2}M\right)R\ddot{\theta} = m_1r\dot{\theta}^2 + g\left(m_1\cos\theta - m_2\right) \\ - \left(m_1 + m_2 + \frac{1}{2}M\right)R\ddot{r} + \left(\left(m_1 + m_2 + \frac{1}{2}M\right)R^2 + m_1r^2\right)\ddot{\theta} = \\ = gR\left(m_2 - m_1\cos\theta\right) - m_1r\left(2\dot{r}\dot{\theta} + g\sin\theta\right) \end{cases}$$

gdzie:

g – przyśpieszenie ziemskie,

 m_1 – masa wahadła,

 m_2 – masa ciężarka,

M - masa bloczków,

R – promień bloczków,

r(0) – początkowa długość linki wahadła

tj. od m_1 do M,

 $\theta(0)$ – początkowy kat [°].

Przyjmij:

Czas symulacji = 50,

Metoda: Ode45, maks. krok = 2^{-5} .

Uwaga! Dla uproszczenia przyjmujemy, że początkowa długość linki od m_2 do M wynosi r(0).

Zadanie 2 (2 pkt)

Utwórz wykresy przedstawiające:

- zmianę długości linki w czasie (Scope)
- zmiane kata w czasie (Scope)
- trajektorie wahadła (XY Graph)

Przetestuj model dla następującego zestawu parametrów:

• $g = 9.81, m_1 = 0.5, m_2 = 0.9, M = 1, R = 0.001, r(0) = 1, \theta(0) = 120^{\circ}.$

Zadanie 3 (2 pkt)

Rozbuduj model tak, aby w momencie gdy:

- wahadło m_1 dotknie bloczka M, tj. $r \leq 0$,
- bloczek m_2 dotknie bloczka M, tj. $r \ge 2 \cdot r(0)$,

symulacja została zatrzymana. Aby wykonać to zadanie posłuż się bloczkami "Compare To" oraz "Stop Simulation".

Przetestuj model dla 2 dodatkowych zestawów parametrów:

- $g = 9.81, m_1 = 1, m_2 = 2, M = 1, R = 0.002, r(0) = 0.5, \theta(0) = 90^{\circ},$
- $g = 9.81, m_1 = 2.2, m_2 = 2, M = 3, R = 0.002, r(0) = 2, \theta(0) = 45^{\circ}.$

Zadanie 4 (3 pkt)

Przy użyciu jednej z poznanych wcześniej metod utwórz wizualizację kołyszącej się maszyny Atwooda. Przyjmij początkową długość linki z ciężarkiem taką samą jak długość początkową linki z wahadłem.

W przypadku wizualizacji offline, rozpoczęcie symulacji oraz pobranie niezbędnych parametrów powinno odbyć się z poziomu kodu. Np.:

Listing 1: kAtwood_fun

```
sim('kAtwood') % uruchomienie modelu zapisanego jako kAtwood
g = str2num(get_param('kAtwood/Subsystem', 'g')); % pobranie wartosci g z
podsystemu
```