Artificial Neural Network (ANN): Perceptron

Sourav Karmakar

souravkarmakar29@gmail.com

A BRIEF HISTORY

BIOLOGICAL NEURON

ARTIFICIAL NEURON

f(.) is called the activation function

For example the activation function could be sigmoid activation function

- b is called the bias
- w_i are called the **synaptic weights** or simply **weights**
- This is a very crude approximation of biological neuron. Actual biological neuron are even more complex.

PERCEPTRON

- This model of Artificial Neuron is also called
 McCulloch Pitts Model. [1943]
- Rosenblatt [1957] extended this idea and gave a learning rule to update the weight parameters from given dataset. This is called **Perceptron**.

■ Activation Function (f):

In this case the activation function is signum function (sgn)

Let, $v = \sum_i w_i x_i + b$, then output \hat{y} is calculated as:

$$\hat{y} = \begin{cases} +1, & if \ v \ge 0 \\ -1, & if \ v < 0 \end{cases}$$

This is also called hard limiter

PERCEPTRON LEARNING RULE

Assumptions:

- Binary classification problem. The dataset is X. There are two classes denoted by C_1 and C_2 respectively.
- Actual class label of datapoint \vec{x} is denoted by y. It is denoted as following:

$$y = \begin{cases} +1, & if \ \vec{x} \in C_1 \\ -1, & if \ \vec{x} \in C_2 \end{cases}$$

• The weights are denoted by vector \vec{w} , and the bias by scaler b. If we consider another input (x_0) of value +1 then bias can be represented by weight w_0 . In that case: $\sum_i w_i x_i + b = \vec{w}^T \vec{x}$

• Algorithm:

- Initialize: Initialize the weight vector $\vec{w}(0)$ with some small random numbers. Iteration count $t \leftarrow 1$
- Repeat
- for $\vec{x} \in X$, Compute $\hat{y} = \operatorname{sgn}(\vec{w}^T \vec{x})$, \hat{y} is the computed output / label.
- $\vec{w}(t+1) = \vec{w}(t) + \eta (y \hat{y}) \vec{x}$, y is the actual output / label. (from labelled training data)
- Until $||\vec{w}(t+1) \vec{w}(t)|| < \epsilon$, ϵ is the user defined tolerance [check of convergence]
- If not converged then $t \leftarrow t+1$ and repeat the whole process. η is called the learning rate.

PERCEPTRON DECISION BOUNDARY

• Perceptron decision boundary is the hyperplane defined by $\vec{w}^T \vec{x} = 0$ or $\sum_i w_i x_i + b = 0$

- Consider a binary classification problem. Dataset is shown in the figure beside.
- Random initialization of weight vector at the starting of the learning algorithm randomly fits a hyperplane (straight line in 2D) as shown beside.
- As we keep updating weights using the learning rule, the decision boundary keeps on changing.
- Till all the training datapoints fall correctly in the either side of the decision boundary.
- Thus perceptron acts as a linear classifier and can classify linearly separable data with high accuracy.

PERCEPTRON WITH SIGMOID ACTIVATION

This "neuron" is a computational unit that takes as input x_1, x_2, x_3 (and a +1 intercept term), and outputs $h_{W,b}(x) = f(\sum_{i=1}^3 W_i x_i + b) = f(W^T x + b)$, where $f: \Re \mapsto \Re$ is called the activation function. Here we will choose $f(\cdot)$ to be the sigmoid function:

$$f(z) = \frac{1}{1 + e^{-z}}$$

Thus, our single neuron corresponds exactly to the input-output mapping defined by logistic regression.

LIMITATIONS OF PERCEPTRON

XOR Problem:

Input 1	Input 2	Output
0	0	0
0	1	1
1	1	0
1	0	1

- Though perceptron works well for linearly separable dataset.
- It failed to solve XOR problem and other non-linearly separable datasets. Because there is no straight line that can form the decision boundary between the two classes.

Thank You