Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 Экспериментальное построение частотных характеристик типовых динамических звеньев Вариант - 9

Выполнила	Сорокина Т.	(подпись	
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись)
""	_ 20г.	Санкт-Петербург,	20г.
Работа выполнен	а с оценкой		
Дата защиты "	" 20	0 г.	

Цель работы: изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные

В данной работе требуется получить частотные характеристики: АЧХ, ФЧХ, АФЧХ, ЛАФЧХ, ЛАЧХ заданных звеньев. Исследовать реакцию звена на синусоидальное входное воздействие. Схема моделирования состоит из генератора синусоидального сигнала, исследуемого звена и устройств регистрации входного и выходного сигналов.

В таблице 1 представлены исходные динамические звенья.

Таблица 1 – Исходные динамические звенья

Тип звена	Передаточная функция
Колебательное	$W(s) = \frac{k}{T^2 s^2 + 2T s\varepsilon + 1}$
Идеальное интегрирующее	$W(s) = \frac{k}{s}$
Дифференцирующее с замедлением	$W(s) = \frac{ks}{1 + Ts}$

Параметры исследуемых звеньев: $k=10, T=2c, \varepsilon=0.25, \frac{1}{T}=0.5c^{-1}.$

1 Колебательное звено

На рисунке 1 представлена временная диаграмма колебательного звена.

Рисунок 1 – Временная диаграмма колебательного звена

В таблице 2 представлены данные, полученные в ходе моделирования колебательного звена.

Таблица 2 – Данные, полученные в ходе моделирования колебательного звена

w, рад/с	lg(w)	A(w)	L(w)	$\psi(\mathbf{w})$,град
0.05	-1.3	10.08	20.07	-2.89
0.06	-1.22	10.12	20.11	-3.48
0.07	-1.15	10.17	20.15	-4.08
0.1	-1	10.36	20.31	-5.95
0.4	-0.39	18.58	25.38	-48.01
0.7	-0.15	8.42	18.5	-143.9
1	0	3.16	10	-161.56
1.5	0.18	1.23	1.79	-169.38
2	0.3	0.66	-3.59	-172.4
3.5	0.54	0.2	-13.65	-175.83
4	0.6	0.16	-16	-176.37
4.5	0.65	0.12	-18.07	-176.78
5	0.69	0.1	-19.92	-177.11

На рисунках 2 - 5 представлены частотные характеристики колебательного звена.

Рисунок 2 – АЧХ

Рисунок 3 – ФЧХ

Рисунок 4 – ЛАЧХ и ЛФЧХ

Рисунок 5 – АФЧХ

Выполним построение асимптотической ЛАЧX колебательного звена, представленное на рисунке 6.

Рисунок 6 – Асимптотическая ЛАЧХ колебательного звена

2 Идеальное интегрирующее звено

На рисунке 7 представлена временная диаграмма идеального интегрирующего звена.

Рисунок 7 – Временная диаграмма идеального интегрирующего звена

В таблице 3 представлены данные, полученные в ходе моделирования идеального интегрирующего звена.

Таблица 3 — Данные, полученные в ходе моделирования идеального интегрирующего звена

w, рад/с	lg(w)	A(w)	L(w)	$\psi(\mathbf{w})$,град
0.05	-1.3	200	46.02	-90
0.06	-1.22	166.67	44.44	-90
0.07	-1.15	142.86	43.09	-90
0.1	-1	100	40	-90
0.4	-0.39	25	27.96	-90
0.7	-0.15	14.29	23.09	-90
1	0	10	20	-90
1.5	0.18	6.67	16.48	-90
2	0.3	5	13.98	-90
3.5	0.54	2.86	9.11	-90
4	0.6	2.5	7.96	-90
4.5	0.65	2.22	6.93	-90
5	0.69	2	6.02	-90

На рисунках 8 - 11 представлены частотные характеристики идеального интегрирующего звена.

Рисунок 8 – АЧХ

Рисунок 9 – ФЧХ

Рисунок 11 – АФЧХ

Выполним построение асимптотической ЛАЧХ идеального интегрирующего звена, представленное на рисунке 12.

Рисунок 12 – Асимптотическая ЛАЧХ идеального интегрирующего звена

3 Дифференцирующее звено с замедлением

На рисунке 13 представлена временная диаграмма дифференцирующего звена с замедлением.

Рисунок 13 – Временная диаграмма дифференцирующего звена с замедлением

В таблице 4 представлены данные, полученные в ходе моделирования дифференцирующего звена с замедлением.

Таблица 4 – Данные, полученные в ходе моделирования дифференцирующего звена с замедлением

w, рад/с	lg(w)	A(w)	L(w)	$\psi(\mathbf{w})$,град
0.05	-1.3	0.49	-6.02	286.48
0.06	-1.22	0.59	-4.43	238.73
0.07	-1.15	0.69	-3.09	204.63
0.1	-1	0.99	0	143.24
0.4	-0.39	3.88	11.78	35.8
0.7	-0.15	6.08	15.68	20.46
1	0	7.45	17.44	14.32
1.5	0.18	8.62	18.71	9.55
2	0.3	9.16	19.24	7.16
3.5	0.54	9.7	19.74	4.09
4	0.6	9.77	19.8	3.58
4.5	0.65	9.82	19.84	3.18
5	0.69	9.85	19.87	2.86

На рисунках 14 - 17 представлены частотные характеристики дифференцирующего звена с замедлением.

Рисунок 14 – АЧХ

Рисунок 15 – ФЧХ

Рисунок 16 – ЛАЧХ и ЛФЧХ

Выполним построение асимптотической ЛАЧХ дифференцирующего звена с замедлением, представленное на рисунке 18.

Рисунок 18 — Асимптотическая ЛАЧХ дифференцирующего звена с замедлением

Вывод

В данной лабораторной работе были изучены и построены частотные характеристики типовых динамических звеньев: колебательного, идеального интегрирующего и дифференцирующего с замедлением. При построении характеристик ЛАЧХ и асимптотической ЛАЧХ можно заметить, что асимптотическая ЛАЧХ сходится к построенной ЛАЧХ в ходе математического моделирования. При анализе полученных значений фаз выходного сигнала можно сделать вывод, что у идеального интегрирующего звена фазовый сдвиг равен -90° . Так же можно сделать вывод, что у дифференцирующего звена с замедлением и у колебательного звена, при построении асимптотической ЛАЧХ, график менял наклон при переходе через точку равную частоте среза.