- 2.1.1 可以利用 H 矩阵的稀疏性进行优化。
- 2.1.2 BA 中需要被参数化的地方包括:相机位姿、相机内参、三维特征点 P 以及投影后的像素坐标;

位姿:

欧拉角、四元数、旋转矩阵+平移;

欧拉角存在万向锁问题;

旋转矩阵直观,但自由度过多;

四元数参数简洁,不直观。

Point 参数化方式:

点的参数化表示包括三维坐标 XYZ 和逆深度表示方法。

2.1.3 3.4 节的 Intensity- based methods 就是 BA 在直接法中的应用。第 5 节 Network Structure 可以对应到 SLAM 中的图优化模型;H 的稀疏性可以实现 BA 实时,在 07 年的 PTAM 上实现。

2.2 程序运行如图

iteration= 0	chi2= 8894423.022949	time= 0.209875	cumTime= 0.209875	edges= 83718	schur= 1	lambda= 227.832660	levenbergIter= 1
iteration= 1	chi2= 1772145.050517	time= 0.191742	cumTime= 0.401616	edges= 83718	schur= 1	lambda= 75.944220	levenbergIter= 1
iteration= 2	chi2= 752585.293391	time= 0.19065	cumTime= 0.592267	edges= 83718	schur= 1	lambda= 25.314740	levenbergIter= 1
iteration= 3	chi2= 402814.243627	time= 0.192646	cumTime= 0.784913	edges= 83718	schur= 1	lambda= 8.438247	levenbergIter= 1
iteration= 4	chi2= 284879.378894	time= 0.194471	cumTime= 0.979384	edges= 83718	schur= 1	lambda= 2.812749	levenbergIter= 1
iteration= 5	chi2= 238356.214415	time= 0.191242	cumTime= 1.17063	edges= 83718	schur= 1	lambda= 0.937583	levenbergIter= 1
iteration= 6	chi2= 193550.755079	time= 0.190697	cumTime= 1.36132	edges= 83718	schur= 1	lambda= 0.312528	levenbergIter= 1
iteration= 7	chi2= 146859.909574	time= 0.189375	cumTime= 1.5507	edges= 83718	schur= 1	lambda= 0.104176	levenbergIter= 1
iteration= 8	chi2= 122887.700218	time= 0.189324	cumTime= 1.74002	edges= 83718	schur= 1	lambda= 0.069451	levenbergIter= 1
iteration= 9	chi2= 97810.139925	time= 0.193256	cumTime= 1.93328	edges= 83718	schur= 1	lambda= 0.046300	levenbergIter= 1
iteration= 10	chi2= 80329.940265	time= 0.189731	cumTime= 2.12301	edges= 83718	schur= 1	lambda= 0.030867	levenbergIter= 1
iteration= 11	chi2= 65663.994405	time= 0.194739	cumTime= 2.31775	edges= 83718	schur= 1	lambda= 0.020578	levenbergIter= 1
iteration= 12	chi2= 55960.726637	time= 0.195212	cumTime= 2.51296	edges= 83718	schur= 1	lambda= 0.013719	levenbergIter= 1
iteration= 13	chi2= 53275.547797	time= 0.215142	cumTime= 2.7281	edges= 83718	schur= 1	lambda= 0.009146	levenbergIter= 1
iteration= 14	chi2= 35983.312124	time= 0.245864	cumTime= 2.97396	edges= 83718	schur= 1	lambda= 0.006097	levenbergIter= 2
iteration= 15	chi2= 32091.891518	time= 0.283715	cumTime= 3.25768	edges= 83718	schur= 1	lambda= 0.016259	levenbergIter= 3
iteration= 16	chi2= 31156.262647	time= 0.239151	cumTime= 3.49683	edges= 83718	schur= 1	lambda= 0.021679	levenbergIter= 2

初始点云如图

优化后的点云如图

3.1.1
$$error = I(p_i) - I_j(\pi(KT_jp_i))$$

3.1.2 每个 error 关联两个优化变量,6 自由度的相机位姿和 3 自由度的空间点

3.1.3

$$\mathbf{J} = -\frac{\partial \mathbf{I}_2}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \delta \boldsymbol{\xi}}. \qquad \frac{\partial \mathbf{u}}{\partial \delta \boldsymbol{\xi}} = \begin{bmatrix} \frac{f_x}{Z} & 0 & -\frac{f_x X}{Z^2} & -\frac{f_x XY}{Z^2} & f_x + \frac{f_x X^2}{Z^2} & -\frac{f_x Y}{Z} \\ 0 & \frac{f_y}{Z} & -\frac{f_y Y}{Z^2} & -f_y - \frac{f_y Y^2}{Z^2} & \frac{f_y XY}{Z^2} & \frac{f_y XY}{Z^2} \end{bmatrix}$$

$$\frac{\partial e}{\partial \boldsymbol{\xi}} = \begin{bmatrix} \frac{f_x}{Z} & 0 & -\frac{f_x X}{Z^2} & -\frac{f_x XY}{Z^2} & f_x + \frac{f_x X^2}{Z^2} & -\frac{f_x Y}{Z} \\ 0 & \frac{f_y}{Z} & -\frac{f_y Y}{Z^2} & -f_y - \frac{f_y Y^2}{Z^2} & \frac{f_y XY}{Z^2} & \frac{f_y XY}{Z} \end{bmatrix}$$

- 3.2.1 可以, 还可以使用逆深度的方法来参数化路标点。
- 3.2.2 太小的 patch 不能反应真正的光度变化。固定场景的话可能更大一点好,但会增加运算量。
- 3.2.3 计算误差的方式不同,特征点法在 BA 阶段最小化特征点的重投影误差,直接法最小化的是像素点块的光度误差;因此其雅可比计算也不一样。
- 3.2.4 做多次测验,取误差最小的阈值作为 Huber 的阈值。

程序运行如下

优化前点云如下

优化后点云如下

