Introduction machine learning on graphs

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr

Contents

- The overview of Machine Learning on Graphs
- Graph Terminology
- Graph Characterization
 - Centrality measurements
 - > Community
- Sample code

Networks are a general language for describing and modeling complex systems

Street network

Chemical network

Ecological network

Program flow

Social media

Web graph

- Universal language for describing complex data
 - Chemical compounds (Cheminformatics)
 - Protein structures, biological pathways/networks (Bioinformactics)
 - > Program control flow, traffic flow, and workflow analysis
- Data availability (+computational challenges)
 - Web/mobile, bio,health, and medical data
- Shared vocabulary between fields:
 - > Computer science, Social science, Physics, Statistics, Biology
- > Impact:
 - > Social networking, social media, Drug design

Machine learning tasks on graphs

- > Node classification
 - Predict a type of a given node

- Many possible ways to create node features:
 - Node degree, PageRank score, motifs

Machine learning tasks on graphs

- ➤ Link prediction
 - > Predict whether two nodes are linked

- > Community detection
 - > Identify densely linked clusters of nodes

➤ Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.

- ➤ Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.
- \triangleright Let z_u be the embedding of node u.
- > Goal is to find the encoder function f such that:

similarity(u, v)
$$\approx z_u^T z_u$$

- > Learning node embedding:
 - > Define an encoder.
 - > Define a node similarity function.
 - Optimize the parameters of the encoder so that:

similarity(u, v)
$$\approx z_u^T z_u$$

- > The goal is to map each node into a low-dimensional space
 - Distributed representation for nodes
 - > Similarity between nodes indicates link strength
 - > Encodes network information and generate node representation

- ➤ Graph data is so complex that it's created a lot of challenges for existing machine learning algorithms.
- ➤ Images with the same structure and size can be considered as fixed-size grid graphs.
- > Text and speech are sequences, so they can be considered as line graphs. (text and speech have linear 1D structure

- > Graphs have arbitrary size and complex topological structure.
- > In graphs, there is no fixed node ordering or reference point.
- > Graphs are often dynamic and have multimodal features.

- ➤ How can we develop neural networks that are much more broadly applicable?
- > Feature learning for networks:
 - "Linearizing" the graphs:
 - Create a "sentence" for each node using random walks (node2vec)
 - > Graph neural networks:
 - Propagate information between the nodes in graphs (message passing)

A graph is a pair: G = (V, E):

- A set of nodes, also known as nodes: $V = \{v_1, v_2, ..., v_n\}$
- \triangleright A set of edges E = {e₁,e₂,...,e_m}
 - Each edge e_i is a pair of nodes (v_i,v_k)
 - An edge "connects" the nodes

Graphs can be directed or undirected

$$V = \{ A, B, C \}$$

 $E = \{ (B, C), (A, C), (C, A) \}$

Adjacency Matrix

	Α	В	C	D
Α	0	1	0	0
В	1	0	0	0
C	0	1	0	1
D	0	0	0	0

Graph Components and Types

Adjacency List

- > Running time to:
 - > Get a vertex's out-edges: O(d) where d is out-degree of vertex
 - > Get a vertex's in-edges: O(|E|) (could keep a second adjacency list for this!)
 - \triangleright Decide if some edge exists: O(d) where d is out-degree of source
 - ➤ Insert an edge: O(1) (unless you need to check if it's already there)
 - > Delete an edge: O(d) where d is out-degree of source
- Space requirements: O(|V|+|E|)

➤ Best for sparse or dense graphs? sparse

- Knowing the network structure, we can calculate various useful quantities or measures that capture features of network topology
- Centrality measures represent the most important nodes in graphs:
 - > The most influential person in a social network.
 - > The most critical nodes in a infrastructure.
 - > The highest spreaders of disease.
- Several common measurements:
 - Degree centrality
 - Betweenness centrality
 - Closeness centrality
 - Eigenvector centrality
 - PageRank

➤ Using Freeman's general formula for centralization (which ranges from 0 to 1):

$$C_D(G) = \frac{\sum_{i=1}^{n} \left[C_D(v^*) - C_D(v_i) \right]}{(n-1)(n-2)},$$

where:

 v^* : the node with the highest degree in G

$$C_D(G) = \frac{(2-1) + (2-0) + \dots + (2-1)}{(5-1)(5-2)} = 0.167$$

$$C_D(G) = \frac{(5-1) + \dots + (5-1)}{(6-1)(6-2)} = \frac{20}{20} = 1$$

- > The most intuitive notion of centrality focuses on degree:
 - > The actor with the most ties is the most important:

- > The most intuitive notion of centrality focuses on degree:
 - > The actor with the most ties is the most important:

- > The most intuitive notion of centrality focuses on degree:
 - > The actor with the most ties is the most important:

> Betweenness centrality of node v_i:

$$B(v_i) = \sum_{v_j, v_k \in G} \left| SPD_{v_j \to v_k}(v_i) \right|$$

The number of shortest paths between v_j and v_k that pass through the vertex v_i

Usually normalized by:

No. pairs of nodes excluding the node itself

$$\overline{B}(v_i) = B(v_i) / [(n-1)(n-2) / 2]$$

The closeness is defined so that if a vertex is close to every other vertex, then the value is larger than if the vertex is not close to everything else.

Normalized Closeness Centrality:

$$\overline{C}(v_i) = C(v_i) / (n-1)$$

 \triangleright Define the centrality x'_i of i recursively in terms of the centrality of its neighbors:

$$x_i' = \sum_{v_j \in N(v_i)} A_{ij} x_j$$
 with the initial node centrality $x_j = 1, \forall j$

That is equivalent to:

$$x_i(t) = \sum_{v_j \in N(v_i)} A_{ij} x_j(t-1) \quad \text{with the centrality at time } t=0 \text{ being } x_j(0) = 1, \forall j$$

The centrality of nodes x_i and x_j at time t and (t-1), respectively.

- ➤ Katz centrality computes the centrality for a node based on the centrality of its neighbours. It is a generalization of the eigenvector centrality.
- \triangleright The Katz centrality for node v_i is:

$$x_i = \alpha \sum_j A_{ij} x_j + \beta,$$

where:

 α is a constant called damping factor, and β is a bias constant, A is the adjacency matrix.

ightharpoonup When $\alpha = 1/\lambda_{max}$, $\beta = 0$, Katz centrality is the same as eigenvector centrality

PageRank is a numeric value that represents how important a page is on the web.

- Webpage importance
 - ➤ One page links to another page = A vote for the other page A link from page A to page B is a vote on A to B.
 - ➤ If page A is more important itself, then the vote of A to B should carry more weight.
 - More votes = More important the page must be
- ➤ How can we model this importance?

- Criteria vary depending on the tasks.
- ➤ Roughly, community detection methods can be divided into 4 categories (not exclusive):
- > 1. Node-Centric Community
 - > Each node in a group satisfies certain properties
- 2. Group-Centric Community
 - ➤ Consider the connections within a group as a whole. The group has to satisfy certain properties without zooming into node-level
- > 3. Network-Centric Community
 - Partition the whole network into several disjoint sets
- ➤ 4. Hierarchy-Centric Community
 - Construct a hierarchical structure of communities

Node-Centric Community Detection

- Nodes satisfy different properties
 - Complete Mutuality
 - > cliques
 - Reachability of members
 - > k-clique, k-clan, k-club
 - Nodal degrees
 - ➤ k-plex, k-core
 - Relative frequency of Within-Outside Ties
 - > LS sets, Lambda sets
- Commonly used in traditional social network analysis

We discuss some representative ones

Clique: a maximum complete subgraph in which all nodes are adjacent to each other

Nodes 5, 6, 7 and 8 form a clique

- > NP-hard to find the maximum clique in a network
- Straightforward implementation to find cliques is very expensive in time complexity

Finding the Maximum Clique

- ➤ In a clique of size k, each node maintains degree >= k-1
- ➤ Nodes with degree < k-1 will not be included in the maximum clique
- Recursively apply the following pruning procedure:
 - Sample a sub-network from the given network, and find a clique in the subnetwork, say, by a greedy approach
 - ➤ Suppose the clique above is size k, in order to find out a larger clique, all nodes with degree <= k-1 should be removed.
- > Repeat until the network is small enough
- Many nodes will be pruned as social media networks follow a power law distribution for node degrees

- ➤ Suppose we sample a sub-network with nodes {1-5} and find a clique {1, 2, 3} of size 3
- \triangleright In order to find a clique >3, remove all nodes with degree <= 3 1 = 2
 - > Remove nodes 2 and 9
 - > Remove nodes 1 and 3
 - > Remove node 4

Clique Percolation Method (CPM)

- Clique is a very strict definition, unstable
- Normally use cliques as a core or a seed to find larger communities
- > CPM is such a method to find overlapping communities
- > Input
 - A parameter k, and a network
- > Procedure
 - > Find out all cliques of size k in a given network
 - > Construct a clique graph. Two cliques are adjacent if they share k-1 nodes
 - > Each connected components in the clique graph form a community

- Degree of nodes
- Clustering Coefficient
 - Measures how connected neighboring nodes are
 - > E.g., The number of edges among neighboring nodes

- > Frequent subgraphs
 - ➤ A (sub)graph is frequent if its support (occurrence frequency) in a given dataset is no less than a minimum support threshold
 - Suppose t = 2, the frequent subgraphs are (only edge labels)
 - > a, b, c
 - > a-a, a-c, b-c, c-c
 - > a-c-a ...

Support	1	3	3
Subgraph			

- > Graph kernels based on bags of patterns:
 - > Extraction of a set of patterns from graphs
 - Comparison between patterns
 - Comparison between bags of patterns

$$\phi()) = \phi()$$

$$\phi()) = \cot() \Rightarrow \cot($$

- > Graphlet Kernel (B., Petri, et al., MLG 2007)
- > Count subgraphs of limited size 3:

The Weisfeiler-Lehman Isomorphism Test

➤ Weisfeiler-Lehman Isomorphism Testing:


```
End of the 1st iteration Feature vector representations of G and G' \varphi_{WLsubtree}^{(1)}(G) = (\textbf{2}, \textbf{1}, \textbf{1}, \textbf{1}, \textbf{2}, \textbf{0}, \textbf{1}, \textbf{0}, \textbf{1}, \textbf{1}, \textbf{0}, \textbf{1}) \varphi_{WLsubtree}^{(1)}(G') = (\textbf{1}, \textbf{2}, \textbf{1}, \textbf{1}, \textbf{1}, \textbf{1}, \textbf{1}, \textbf{0}, \textbf{1}, \textbf{1}, \textbf{0}, \textbf{1}, \textbf{1}, \textbf{0}, \textbf{1}, \textbf{1}) Counts of Counts of original compressed node labels node labels k_{WLsubtree}^{(1)}(G, G') = \langle \varphi_{WLsubtree}^{(1)}(G), \varphi_{WLsubtree}^{(1)}(G') \rangle = 11. e
```

Algorithm 1: WL-1 algorithm (Weisfeiler & Lehmann, 1968)

```
Input: Initial node coloring (h_1^{(0)}, h_2^{(0)}, ..., h_N^{(0)})

Output: Final node coloring (h_1^{(T)}, h_2^{(T)}, ..., h_N^{(T)})

t \leftarrow 0;

repeat

for v_i \in \mathcal{V} do

h_i^{(t+1)} \leftarrow \text{hash}\left(\sum_{j \in \mathcal{N}_i} h_j^{(t)}\right);

t \leftarrow t+1;

until stable node coloring is reached;
```


- > (Supervised) Machine Learning Lifecycle
- ➤ This feature, that feature. Every single time!

Graph neural networks (GNNs)

- > The idea is to generate node embeddings based on local neighborhoods
- ➤ The intuition is nodes aggregate information from their neighbors using neural networks.

> Network neighborhood defines a computation graph

