Un raccourci récursif pour CEGAR

Application au problème de satisfiabilité en logique modale K

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, <u>Valentin Montmirail</u>

CRIL, Université d'Artois, Lens, France

Caen - 3 Juillet 2017

Introduction: Abstraction

Abstraction: Idea & Motivation

Comes from: Mathematical Modeling

- Works for theoretical problems
- But what about practice?

Introduction: Abstraction via SAT

SAT solver

SAT solver

- Extremely efficient software
- Based on CDCL approach [SS99, MMZ+01]
- ► One of the current best is: Glucose [ES03, AS09] ©
- ▶ Able to solve efficiently problems with $\approx 10^8$ clauses
- ► Able to give a "reason" why a formula is UNSAT [ES03]

SAT solver: One limitation

- What happen when the encoding of the problem is too big ?
- Could be solved 'easily' but will not because of memory...
- We need a SAT solver in a more complex procedure: CEGAR

CounterExample Guided Abstraction Refinement

CEGAR: CounterExample Guided Abstraction Refinement

To solve a problem, consider only a part of it [CGJ+03]

- ► To abstract problems: hoping it will be easier to solve
- Two variants of abstraction:
 - Under-abstraction: abstraction has more solutions
 - Over-abstraction: abstraction has less solutions
- CEGAR-over: CEGAR approach using over-abstractions
- CEGAR-under: CEGAR approach using under-abstractions

CEGAR using under-abstractions

Example

SAT problem, by increasing step by step, the number of clauses

CEGAR using over-abstractions

Example

Planification problem, by increasing step by step, the horizon

CounterExample Guided Abstraction Refinement

Advantages

- If problem mainly satisfiable: CEGAR-over
- ▶ If problem mainly unsatisfiable: CEGAR-under
- ► Everytime check improves, CEGAR improves
- Many applications already use CEGAR

Drawbacks

- ▶ Not efficient when 50/50 chances of being SAT/UNSAT
- Not efficient when we need many refinement steps

Recursive Explore and Check Abstraction Refinement

- Called RECAR [LLdLM17]
- Inspired by CEGAR [CGJ+03]
- Rely on 5 very important assumptions

RECAR Assumptions

- Function 'check' is sound, complete and terminates
- 2. $isSAT(\hat{\phi})$ implies $isSAT(\text{refine}(\hat{\phi}))$
- 3. $\exists n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$.
- 4. isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- 5. $\exists n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false.

 $\exists n \in \mathbb{N} \text{ s.t. } RC(under^n(\phi), under^{n+1}(\phi)) \text{ is false.}$

RC function

- 'true' if we can do a recursive call, 'false' otherwise
- ▶ It compares $under^{i}(\phi)$ and $under^{i+1}(\phi)$
- It checks if $under^{i+1}(\phi)$ will be "easier to solve" than $under^{i}(\phi)$

RECAR

- 2 levels of abstractions
 - One at the Oracle level (check(ψ))
 - One at the Domain level (recursive call)
- Efficient even when 50/50 chance of being SAT/UNSAT
- Everytime check improves, RECAR improves
- The return of the recursive call can reduce the number of refinement
- Totally generic, can change SAT solver → FO solver?

RECAR: Instanciation for Modal Logic K

RECAR for Modal Logic K

- Modal Logic K is PSPACE-complete [Lad77, Hal95]
- What is Modal Logic K?
- ▶ How we over-approximate a formula ϕ ?
- ▶ How we under-approximate a formula ϕ ?
- Is it competitive against a CEGAR approach?
- Is it competitive against the state-of-the-art approaches?

Preliminaries: Modal Logic

Modal Logic = Propositional Logic + □ and ♦

Modal Logic

- $\blacktriangleright \Box \phi$ means ϕ is necessarily true
- $\Diamond \phi$ means ϕ is possibly true

$$\Diamond \phi \leftrightarrow \neg \Box \neg \phi$$
$$\Box \phi \leftrightarrow \neg \Diamond \neg \phi$$

$$\Box \phi \leftrightarrow \neg \Diamond \neg \phi$$

Preliminaries: Kripke Structure

P finite non-empty set of propositional variables

Kripke Structure [Kri59]

 $M = \langle W, R, V \rangle$ with:

- W, a non-empty set of possible worlds
- R, a binary relation on W
- ▶ V, a function that associate to each $p \in \mathbb{P}$, the set of possible worlds where p is true

Pointed Kripke Structure: $\langle \mathcal{K}, w \rangle$

- K: Kripke Structure
- w: a possible world in W

Preliminaries: Satisfaction Relation

Definition (Satisfaction Relation)

The relation \models between Kripke Structures and formulae is recursively defined as follows:

$$\begin{split} \langle \mathcal{K}, w \rangle &\models p & \text{iff} & w \in V(p) \\ \langle \mathcal{K}, w \rangle &\models \neg \phi & \text{iff} & \langle \mathcal{K}, w \rangle \not\models \phi \\ \langle \mathcal{K}, w \rangle &\models \phi_1 \land \phi_2 & \text{iff} & \langle \mathcal{K}, w \rangle \models \phi_1 \text{ and } \langle \mathcal{K}, w \rangle \models \phi_2 \\ \langle \mathcal{K}, w \rangle &\models \phi_1 \lor \phi_2 & \text{iff} & \langle \mathcal{K}, w \rangle \models \phi_1 \text{ or } \langle \mathcal{K}, w \rangle \models \phi_2 \\ \langle \mathcal{K}, w \rangle &\models \Box \phi & \text{iff} & (w, w') \in R \text{ implies } \langle \mathcal{K}, w' \rangle \models \phi \\ \langle \mathcal{K}, w \rangle &\models \Diamond \phi & \text{iff} & (w, w') \in R \text{ and } \langle \mathcal{K}, w' \rangle \models \phi \end{split}$$

 \mathcal{K} that satisfied a formula ϕ will be called "Kripke model of ϕ "

MoSaiC

MoSaiC

- Open-Source Modal Logic K solver
- Uses Glucose as internal SAT solver
- Uses a RECAR approach

RECAR Assumptions: Reminder

- 1 Function 'check' is sound, complete and terminates
- 2 $isSAT(\hat{\phi})$ implies $isSAT(refine(\hat{\phi}))$
- 3 $\exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
- 4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- **5** ∃ $n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

MoSaiC: Over-Approximation

 ϕ always in NNF and over(ϕ , i) in CNF thanks to Tseitin

$$\begin{aligned} &\operatorname{over}(\phi,n) = \operatorname{over}'(\phi,0,n) \\ &\operatorname{over}'(p_k,i,n) = p_{k,i} \\ &\operatorname{over}'(\neg p_k,i,n) = \neg p_{k,i} \\ &\operatorname{over}'(\Box \phi,i,n) = \bigwedge_{j=0}^n (r_{i,j} \to \operatorname{over}'(\phi,j,n)) \\ &\operatorname{over}'(\diamondsuit \phi,i,n) = \bigvee_{j=0}^n (r_{i,j} \land \operatorname{over}'(\phi,j,n)) \end{aligned}$$

- \triangleright $p_{k,i}$ means p_k is true in the world w_i
- $ightharpoonup r_{i,j}$ means that there is a relation between worlds w_i and w_i

MoSaiC

RECAR Assumptions: Reminder

- 1 Function 'check' is sound, complete and terminates
- 2 $isSAT(\hat{\phi})$ implies $isSAT(refine(\hat{\phi}))$
- 3 $\exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
- 4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- 5 ∃ $n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

MoSaiC: Under-Approximation

Let's take an example, with χ huge but satisfiable...

Worst case for CEGAR using our 'over' function

MoSaiC: Under-Approximation

Modern SAT solvers returns 'the reason' why a formula with *n* worlds is unsatisfiable ($core = \{s_1, s_2\}$)

MoSaiC: Under-Approximation

We want to cut what is not part of the 'unsatisfiability' ($s_i \notin core$)

We just create $\check{\phi}$ smaller than ϕ and easier to solve. The function RC from RECAR just says here: did we cut something ?

MoSaiC

RECAR Assumptions: Reminder

- 1 Function 'check' is sound, complete and terminates
- 2 $isSAT(\hat{\phi})$ implies $isSAT(refine(\hat{\phi}))$
- 3 $\exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
- 4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- 5 ∃ $n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

MoSaiC: RECAR for Modal Logic K

MoSaiC: RECAR for Modal Logic K

MoSaiC: RECAR for Modal Logic K

Conclusion

Perspective: Other modal logics

NP
K5
K45
KB45
KD5
KD45
KT5

PSPACE
K
KT
KT4
KB
KD4
KD
K4
KDB
KBT

Un raccourci récursif pour CEGAR

Application au problème de satisfiabilité en logique modale K

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, <u>Valentin Montmirail</u>

CRIL, Université d'Artois, Lens, France

Caen - 3 Juillet 2017

Bibliographie I

Gilles Audemard and Laurent Simon.

Predicting learnt clauses quality in modern SAT solvers.

In *Proc. of IJCAI'09*, pages 399–404, 2009.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking.

Journal of the ACM, 50(5):752–794, 2003.

Niklas Eén and Niklas Sörensson.

An extensible sat-solver.

In *Proc. of SAT'03*, pages 502–518, 2003.

Bibliographie II

The Effect of Bounding the Number of Primitive Propositions and the Depth of Nesting on the Complexity of Modal Logic. *Artificial Intelligence*, 75(2):361–372, 1995.

Saul Kripke.

A completeness theorem in modal logic.

J. Symb. Log., 24(1):1-14, 1959.

Richard E. Ladner.

The Computational Complexity of Provability in Systems of Modal Propositional Logic.

SIAM J. Comput., 6(3):467-480, 1977.

Bibliographie III

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail.

A Recursive Shortcut for CEGAR: Application To The Modal Logic K Satisfiability Problem.

In Proc. of IJCAI'17, 2017.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. In *Proc. of DAC'01*, pages 530–535, 2001.

João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

