Gestion Obligataire Courbe Zero-Coupon

Patrick Hénaff

February 21, 2023

└ Problem Definition

Problem Statement

How to compute the present value of an arbitrary cash flow stream when we only know the price of some bonds?

The cash flow:

The bonds:

A Generic Approach to Cash Flow Discounting

- ▶ Compute the present value of \in 1 paid in T years, let B_T be this value.
- ▶ The PV of any cash flow $\{F_1, \ldots, F_n\}$ is:

$$PV = \sum_{i=1}^{n} B_i F_i$$

 $ightharpoonup B_T$ is called the **discount factor** for maturity T.

Yield Curves of Euro AAA Gov't Bonds

Yield Curves of US Gov't Bonds

Observations about Term Structures

- Over time, we observe flat, upward-sloping and downward-sloping curves, upward-sloping curves are the most common.
- ▶ The short end of the curve is more volatile than the long end
- One can identify three types of shifts in the term structures:
 - parallel shifts
 - slope changes
 - convexity changes

Calculation of a ZC Curve

In practice, one imposes a functional form ("a shape") to the zero-coupon curve in order to smooth it.

This "shape" may be defined for:

- 1. The spot curve: z(t)
- 2. The discount factors B_t

$$z(t) = -\frac{1}{t} \ln \left(B_t \right)$$

Zero-Coupon Curve Computed by ECB

Figure: Source: European Central Bank (ecb.europa.eu)

How to get a smooth zero-coupon curve

Model of Nelson and Siegel: Spot rates:

$$z(t) = \beta_0 + \beta_1 \frac{1 - e^{-\frac{t}{\tau_1}}}{\frac{t}{\tau_1}} + \beta_2 \left(\frac{1 - e^{-\frac{t}{\tau_1}}}{\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_1}} \right)$$

How to get a smooth zero-coupon curve

Svensson's model:

Spot rates:

$$z(t) = \beta_0 + \beta_1 \frac{1 - e^{-\frac{t}{\tau_1}}}{\frac{t}{\tau_1}} + \beta_2 \left(\frac{1 - e^{-\frac{t}{\tau_1}}}{\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_1}} \right) + \beta_3 \left(\frac{1 - e^{-\frac{t}{\tau_2}}}{\frac{t}{\tau_2}} - e^{-\frac{t}{\tau_2}} \right)$$

Fitting Svensson's and Nelson-Siegel's Models

Figure: Actual vs. Fitted Treasury zero-coupon rates, with Svensson model and Nelson-Siegel model

Components of the Nelson-Siegel Model

Figure: Components of Fitted Treasury zero-coupon spot curves, with Nelson-Siegel model

Empirical Risk Factors in USD Libor market

Empirical Risk Factors in USD Libor market

Fraction of total risk explained by the factors

Bond Pricing with a Zero-Coupon Curve

The ZC curve does not price each bond exactly:

$$P_k = \sum_i F_{k,i} e^{-(z(t_i) + \alpha_k)t_i}$$

- P_k Price of bond k
- $F_{k,i}$ Cash flow schedule for bond k
- α_k zero-coupon spread specific to bond k: a measure of relative value
 - $\sim \alpha_k > 0$ the bond is cheap with respect to the curve
 - $\triangleright \alpha_k < 0$ the bond is dear

Bond Pricing with a Zero-Coupon Curve

Pricing with a term structure of credit spread, specific to a market segment:

$$P_k = \sum_i F_{k,i} e^{(z(t_i) + \alpha(t_i))t_i}$$

 $\alpha(t_i)$ term structure of spread, specific to the market segment of bond k.

We can compute the implied default risk from $\alpha(t)$.

Term structure of credit spread

- $\Phi(t)$ Cumulative default probability from now until time t
 - q_i Unconditional probability of default between cash flow dates $[t_{i-1}, t_i]$.

$$\Phi(t_n) = \sum_{i=1}^n q_i$$

Pricing a Risky Zero-Coupon Bond

- P Price of zero-coupon of maturity T
- $oldsymbol{eta}$ Recovery in case of default
- $\Phi(T)$ Cumulative default probability from now until maturity
- $\alpha(T)$ credit spread, function of maturity

$$P = (1 - \Phi(T))e^{-r_T T} + \Phi(T)\beta e^{-r_T T}$$

= $e^{-r_T T} (1 - \Phi(T)(1 - \beta))$
= $e^{-(r_T + \alpha(T))T}$

Pricing a Risky Zero-Coupon Bond

$$e^{-\alpha(T)T} = 1 - \Phi(T)(1 - \beta)$$

$$-\alpha(T)T = \ln(1 - \Phi(T)(1 - \beta))$$

$$-\alpha(T)T \approx -\Phi(T)(1 - \beta)$$

$$\alpha(T) \approx \frac{1}{T}\Phi(T)(1 - \beta)$$

Example: Implied Default Probability

Example $\beta = 50\%$, $\alpha(T)$ typical of a A3 bond:

	1Y	2Y	3Y	5Y
$\alpha(T)$ (BP)	50	54	57	72
$\Phi(T)$ (%)	1.00	2.16	3.42	7.20
q _i (%)	1.00	1.16	1.26	3.78

A 5Yr zero-coupon spread of 72 bp implies a cumulative probability of default of 7.2% within 5 years. The probability of default in the 5th year is 3.78%.

Measuring Zero-Coupon Interest Rate Risk

Recall: PV01 is the change in bond price for a 1 b.p. decrease in bond YTM.

How to adapt the concept when discounting is done with a zero-coupon curve?

PV01 with zero-coupon bond pricing

Define PV01 as the change in bond price for a 1 b.p. shift of the entire zero-coupon yield curve.

1. Price the bond with the zero-coupon yield curve

$$P = F_1 e^{-z_1 t_1} + F_2 e^{-z_2 t_2} + \ldots + F_n e^{-z_n t_n}$$

2. Subtract 1 b.p. to the zero-coupon curve and re-price the bond:

$$P^* = F_1 e^{-(z_1 - \mathbf{1b} \cdot \mathbf{p} \cdot)t_1} + F_2 e^{-(z_2 - \mathbf{1b} \cdot \mathbf{p} \cdot)t_2} + \ldots + F_n e^{-(z_n - \mathbf{1b} \cdot \mathbf{p} \cdot)t_n}$$

3. the PV01 is the change in price:

$$PV01 = P^* - P$$

Bucket Hedging

- ▶ Divide maturities into time buckets
- ► Hedge separately each time bucket
- Report exposure by time bucket

Cash Flow Projection onto Maturity Pillars

Given a cash flow F(t), and two maturities $T_1 < t \le T_2$, find the quantities q_1 and q_2 of zero-coupon bonds maturing at T_1 and T_2 , such that cash flow F(t) is "equivalent" to the portfolio of two zero-coupon bonds.

Cash Flow Projection onto Maturity Pillars

Instrument	Maturity	Price	PV01
Cash Flow	t	P_t	$PV01_t$
ZC-1	T_1	P_1	$PV01_1$
ZC-2	T_2	P_2	$PV01_2$

Cash Flow Projection onto Maturity Pillars

Solve for q_1 and q_2 :

$$P_t = q_1 P_1 + q_2 P_2$$

 $PV01_t = q_1 PV01_1 + q_2 PV01_2$

- ▶ Do this for each cash flow in the portfolio to get a *shadow* portfolio.
- ► Hedge with instruments that are "close" to the pillars

Factor Hedging

A statistical approach to hedging.

- ► Identify independent risk factors
- ▶ hedge exposure to each risk factor

Risk Factors

A risk factor: a type of yield curve shift.

- Defined a-priori
 - parallel shift
 - twist of the 2-10 Yrs maturity, rotating around a 3 Yr pivot
- ▶ Identified by a statistical analysis of actual curve movements

Risk Factors

$$\Delta z(t) = \alpha_1 F_1(t) + \alpha_2 F_2(t) + \alpha_3 F_3(t)$$

with:

 $\Delta z(t)$ Change in zero-coupon maturity t

 α_1 Movement along the first risk factor

 $F_1(t)$ Exposure of z(t) to the first risk factor

Exposure of Bond to Risk Factors

$$\Delta P = \alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3$$

with:

 $\triangle P$ Change in bond price

 $lpha_1$ Movement along the first risk factor

 P_1 Exposure of bond to the first risk factor

 P_1 is PV01 if the 1st factor is a parallel shift.