

1311/12502 Theory of Computation

Spring 2016

BLM2502 Theory of Computation

»	Course Outline	
»	Week	Content
»	1	Introduction to Course
»	2	Computability Theory, Complexity Theory, Automata Theory, Set Theory, Relations, Proofs, Pigeonhole Principle
»	3	Regular Expressions
»	4	Finite Automata
»	5	Deterministic and Nondeterministic Finite Automata
»	6	Epsilon Transition, Equivalence of Automata
»	7	Pumping Theorem
»	8	April 10 - 14 week is the first midterm week
»	9	Context Free Grammars
»	10	Parse Tree, Ambiguity,
»	11	Pumping Theorem
»	12	Turing Machines, Recognition and Computation, Church-Turing Hypothesis
»	13	Turing Machines, Recognition and Computation, Church-Turing Hypothesis
»	14	May 22 – 27 week is the second midterm week
»	15	Review
»	16	Final Exam date will be announced

The Pumping Lemma for CFL's

Pumping Lemma

- » Recall the pumping lemma for regular languages.
- » It told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.
- » For CFL's the situation is a little more complicated.
- » We can always find two pieces of any sufficiently long string to "pump" in tandem.
 - > That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Statement of the CFL Pumping Lemma

- » For every context-free language L There is an integer n, such that For every string z in L of length > n There exists z = uvwxy such that:
 - $1. \qquad |vwx| < n.$
 - 2. |vx| > 0.
 - 3. For all i > 0, $uv^i wx^i y$ is in L.

Proof of the Pumping Lemma

- » Start with a CNF grammar for L $\{\epsilon\}$.
- » Let the grammar have m variables.
 - > Pick $n = 2^m$.
 - > Let |z| > n.
- » We claim ("Lemma 1") that a parse tree with yield z must have a path of length m+2 or more.

Proof of Lemma 1

» If all paths in the parse tree of a CNF grammar are of length < m+1, then the longest yield has length 2^{m-1}, as in figure:

Proof of the Pumping Lemma

- » Now we know that the parse tree for z has a path with at least m+1 variables.
- » Consider some longest path.
- » There are only m different variables, so among the lowest m+1 we can find two nodes with the same label, say A.
- » The parse tree thus looks like:

Parse Tree in the Pumping-Lemma

Pumping

Pumping

Twice

Pumping

Thrice, ...

Using the Pumping Lemma

- » Non-CFL's typically involve trying to match two pairs of counts or match two strings.
- » Example: pumping lemma can be used to show that $L = \{ww \mid w \text{ in } (0+1)^*\}$ is not a CFL.
- » {0'10' | i >1} is a CFL.
 - > We can match one pair of counts.

Using the Pumping Lemma

» $L = \{0^{i}10^{i}10^{i} \mid i > 1\}$ is not a CFL

- > We can't match two pairs, or three counts as a group.
- > Proof using the pumping lemma.
- > Suppose L were a CFL.
- > Let n be L's pumping-lemma constant.
- > Consider $z = 0^{n}10^{n}10^{n}$.
- > We can write z = uvwxy, where |vwx| < n, and |vx| > 1.
- > Case 1: vx has no 0's.
- > Then at least one of them is a 1, and uwy has at most one 1, which no string in L does.

Using the Pumping Lemma

- » Still considering $z = 0^{n}10^{n}10^{n}$.
- » Case 2: vx has at least one 0.
- » vwx is too short (length < n) to extend to all three blocks of 0's in 0ⁿ10ⁿ10ⁿ.
- » Thus, uwy has at least one block of n 0's, and at least one block with fewer than n 0's.
- » Thus, uwy is not in L.

Simplifications of Context-Free Grammars

A Substitution Rule

$$S
ightarrow aB$$
 grammar $A
ightarrow aaA$ $A
ightarrow abBc$ Substitute $A
ightarrow abBc$ $A
ightarrow aaA$ $A
ightarrow aaA$ $A
ightarrow abBc \mid aaA$

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aR \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

In general: $A \rightarrow xBz$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

 ε – production :

$$X \to \varepsilon$$

Nullable Variable:

$$Y \Rightarrow \ldots \Rightarrow \varepsilon$$

Example:

$$S \rightarrow aMb$$

$$M \rightarrow aMb$$

$$M \to \varepsilon$$

$$\varepsilon$$
 – production

Removing ε – productions

$$S o aMb$$
 Substitute $S o aMb \mid ab$ $M o \epsilon$ $M o aMb \mid ab$ $M o \epsilon$

After we remove all the ϵ - productions all the nullable variables disappear (except for the start variable)

Unit-Productions

Unit Production:

$$X \rightarrow Y$$

(a single variable in both sides)

Example:

$$S \rightarrow aA$$

$$A \rightarrow a$$

$$A \rightarrow B$$

$$B \to A$$

$$B \rightarrow bb$$

Unit Productions

Removal of unit productions:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $S \rightarrow aA$
 S

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A \mid B$
 $B \rightarrow bb$

Unit productions of form $X \to X$ can be removed immediately

$$S o aA \mid aB$$
 $S o aA \mid aB$ $A o a$ Remove $A o a$ $B o A$ $B o bb$ $B o bb$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A$$

$$B \to bb$$

 $\begin{array}{c|c} S \rightarrow aA \mid aB \mid aA \\ \hline Substitute \\ B \rightarrow A \end{array} \qquad \begin{array}{c} A \rightarrow a \\ B \rightarrow bb \end{array}$

Remove repeated productions

$$S \to aA \mid aB \mid aA$$

$$A \to a$$

$$B \to bb$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Useless Productions

$$S oup aSb$$

$$S oup \lambda$$

$$S oup A$$

$$A oup aA$$
 Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa ... aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from 5

In general:

If there is a derivation

$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w \in L(G)$$

consists of terminals

Then variable A is useful

Otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S oup aSb$$
 $S oup \varepsilon$ Productions Variables $S oup A$ useless useless $A oup aA$ useless useless $B oup C$ useless useless $C oup D$ useless

Removing Useless Variables and Productions

Example Grammar: $S \rightarrow aS |A|C$

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

First: find all variables that can produce strings with only terminals or \mathcal{E} (possible useful variables)

$$S \to aS |A| C$$

 $A \rightarrow a$

 $B \rightarrow aa$

 $C \rightarrow aCb$

Round 1: $\{A,B\}$

(the right hand side of production that has only terminals)

Round 2: $\{A,B,S\}$

(the right hand side of a production has terminals and variables of previous round)

This process can be generalized

Then, remove productions that use variables other than $\{A,B,S\}$

$$S \to aS \mid A \mid \mathcal{E}$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Second: Find all variables reachable from S

Use a Dependency Graph where nodes are variables

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

unreachable

Keep only the variables reachable from S

$$S \to aS \mid A$$
$$A \to a$$

Final Grammar

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

Contains only useful variables

Removing All

» Step 1: Remove Nullable Variables

» Step 2: Remove Unit-Productions

» Step 3: Remove Useless Variables

This sequence guarantees that unwanted variables and productions are removed

Normal Forms for

Context-free Grammars

Chomsky Normal Form

Each productions has form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

We will convert it to Chomsky Normal Form

Introduce new variables for the terminals:

$$T_a, T_b, T_c$$

Introduce new intermediate variable V_1 to break first production:

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V_2

 $T_c \rightarrow c$

 $V_2 \rightarrow T_a T_b$ $B \to AT_c$ $T_a \rightarrow a$ $T_b \rightarrow b$ $T_c \rightarrow c$

Final grammar in Chomsky Normal Form:

$$S o AV_1$$
 $V_1 o BT_a$
 $A o T_aV_2$
 $V_2 o T_aT_b$
 $S o ABa$
 $A o aab$
 $B o AC$
 $T_a o a$
 $T_a o a$
 $T_b o b$

In general:

From any context-free grammar (which doesn't produce ϵ) not in Chomsky Normal Form

we can obtain:

an equivalent grammar

in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

(Useless variables optional)

Then, for every symbol a:

New variable: T_a

Add production $T_a \rightarrow a$

In productions with length at least 2 replace a with T_a

Productions of form $A \rightarrow a$ do not need to change!

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A oup C_1 V_1$$

$$V_1 oup C_2 V_2$$

$$\cdots$$

$$V_{n-2} oup C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Observations

 Chomsky normal forms are good for parsing and proving theorems

 It is easy to find the Chomsky normal form for any context-free grammar

Greinbach Normal Form

All productions have form:

Examples:

$$S \rightarrow cAB$$

 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$

$$S \to abSb$$
$$S \to aa$$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

$$S o abSb$$
 $S o aa$ $S o aT_bST_b$ $S o aT_a$ $T_a o a$ $T_b o b$ $S o aa$

Observations

· Greinbach normal forms are very good for parsing strings (better than Chomsky Normal Forms)

 However, it is difficult to find the Greinbach normal of a grammar

BLM2502 Theory of Computation

