Exercício - Entrega para a próxima aula prática

Uma equipe de engenheiros determinou que um tipo de falha comumente encontrado em motores de indução trifásicos de uma indústria pode ser pré-identificado (antes que a mesma ocorra) mediante as análises de três grandezas físicas $\{x_1, x_2, x_3\}$. O esquema ilustrativo do processo é mostrado na figura abaixo. Desta forma, a partir de tais grandezas, a equipe pretende aplicar um *Perceptron* para classificar a operação do motor em duas classes, ou seja, "Operação Normal (Classe C_1)" ou "Iminência de Falha (Classe C_2)", tendo o intuito de se efetuar manutenção preventiva e minimizar o custo operacional da indústria.

A base de dados de treinamento do *Perceptron* foi levantada por meio de sucessivos ensaios experimentais, conforme descrito pela Tabela em Anexo. Portanto, o neurônio constituinte do *Perceptron* terá três entradas e uma saída conforme ilustrado na figura abaixo.

Considerando o modelo de neurônio artificial *Perceptron* com o algoritmo de aprendizagem de Hebb, desenvolva as seguintes atividades:

- 1) O algoritmo de treinamento é supervisionado? Justifique.
- 2) Qual função de ativação que deverá ser utilizada para o problema proposto?
- 3) Assumindo a taxa de aprendizagem de 0.01, implemente e execute 5 treinamentos da rede *Perceptron*, inicializando o vetor de pesos iniciais aleatoriamente de forma que este seja diferente a cada treinamento.

	θ	<i>W</i> ₁	W ₂	<i>W</i> ₃	θ	<i>W</i> ₁	W ₂	<i>W</i> ₃	
1° (T1)									
2° (T2)									
3° (T3)									
4° (T4)									
5° (T5)									

- 4) Registre os resultados dos treinamentos na tabela abaixo.
- 5) Após o treinamento do *Perceptron*, aplique o mesmo para efetuar a identificação de falhas com os seguintes dados coletados pelos sensores situados na planta industrial. Ressalta-se que os resultados das saídas são referentes aos treinamentos realizados no item anterior.

Amostra	<i>X</i> ₁	X ₂	X ₃	<i>y</i> (T1)	<i>y</i> (T2)	<i>y</i> (T3)	<i>y</i> (T4)	Y (T5)
1	4.0736	4.5290	4.2580					
2	0.6349	4.5669	2.4343					
3	3.1618	0.4877	1.8373					
4	1.3925	2.7344	2.0922					
5	4.7875	4.8244	4.6913					
6	0.7881	4.8530	2.9396					
7	4.7858	2.4269	3.7253					
8	4.0014	0.7094	2.3517					
9	2.1088	4.5787	3.3765					
10	3.9610	4.7975	4.3967					

- 6) Explique por que o número de épocas de treinamento varia a cada vez que se executa o treinamento do *Perceptron*.
- 7) Qual a principal limitação do Perceptron quando aplicado em problemas de classificação de padrões?
- 8) Execute um treinamento considerando a entrada do limiar +1 (+ θ), ao invés de -1 (- θ), e discuta o resultado.

OBSERVAÇÕES:

- 1. As folhas contendo os resultados dos exercícios devem ser entregue em sequência e grampeadas (não use clips).
- 2. Anexar o programa fonte referente à implementação.

Obs: Este exercício elaborado pelo Prof. Ivan Nunes da Silva.