

Fast Recovery Epitaxial Diode (FRED)

DSEI 60

 $I_{FAVM} = 52 A$ $V_{RRM} = 1200 V$

 $t_{rr} = 40 \text{ ns}$

V _{RSM}	V _{RRM}	Туре
1200	1200	DSEI 60-12A

A = Anode, C = Cathode

Symbol	Test Conditions	Maximum Ratings	
I _{FRMS} 1	$T_{VJ} = T_{VJM}$ $T_{C} = 60^{\circ}C$; rectangular, d = 0.5	100 52	A A
FRM	t_p < 10 μ s; rep. rating, pulse width limited by T_{VJM}	800	Α
I _{FSM}	$T_{yy} = 45^{\circ}C;$ t = 10 ms (50 Hz), sine	500	Α
	t = 8.3 ms (60 Hz), sine	540	Α
	$T_{\text{VI}} = 150^{\circ}\text{C}; t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	450	А
	t = 8.3 ms (60 Hz), sine	480	Α
l²t	$T_{yy} = 45^{\circ}C$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	1250	A ² s
	t = 8.3 ms (60 Hz), sine	1200	A^2s
	$T_{\text{VI}} = 150^{\circ}\text{C}; t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	1000	A ² s
	t = 8.3 ms (60 Hz), sine	950	A^2s
T _{VJ}		-40+150	°C
T _{VJM}		150	°C
T _{stg}		-40+150	°C
P _{tot}	T _c = 25°C	189	W
M _d	Mounting torque	0.81.2	Nm
Weight		6	g

Symbol	Test Conditions	Characteristic Values		
		typ.	max.	
I _R	$\begin{array}{lll} T_{_{VJ}} = 25^{\circ}C & V_{_{R}} = V_{_{RRM}} \\ T_{_{VJ}} = 25^{\circ}C & V_{_{R}} = 0.8 \bullet V_{_{RRM}} \\ T_{_{VJ}} = 125^{\circ}C & V_{_{R}} = 0.8 \bullet V_{_{RRM}} \end{array}$		2.2 0.5 14	mA mA mA
V _F	$I_F = 60 \text{ A};$ $T_{VJ} = 150^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$		2.0 2.55	V V
$\mathbf{V}_{_{T0}}$ $\mathbf{r}_{_{T}}$	For power-loss calculations only $\rm T_{\rm VJ} = \rm T_{\rm VJM}$		1.65 8.3	$\overset{V}{m\Omega}$
R _{thJC} R _{thCK} R _{thJA}		0.25	0.66 35	K/W K/W K/W
t _{rr}	$I_F = 1 \text{ A}$; -di/dt = 200 A/ μ s; $V_R = 30 \text{ V}$; $T_{VJ} = 25^{\circ}\text{C}$	40	60	ns
I _{RM}	$V_R = 540 \text{ V}; I_F = 60 \text{ A}; -di_F/dt = 480 \text{ A}/\mu\text{s}$ L $\leq 0.05 \mu\text{H}; T_{VJ} = 100^{\circ}\text{C}$	32	36	Α

Features

- International standard package JEDEC TO-247 AD
- · Planar passivated chips
- · Very short recovery time
- · Extremely low switching losses
- Low I_{RM}-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- · Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- · High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- Low losses
- Operating at lower temperature or space saving by reduced cooling

IXYS reserves the right to change limits, test conditions and dimensions

 $[\]oplus$ I $_{FAVM}$ rating includes reverse blocking losses at T $_{VJM},\ V_R=0.8\ V_{RRM},\ duty\ cycle\ d=0.5$ Data according to IEC 60747

Fig. 1 Forward current versus voltage drop.

Fig. 2 Recovery charge versus -di_F/dt.

Fig. 3 Peak reverse current versus $-di_{\rm c}/dt$.

Fig. 4 Dynamic parameters versus junction temperature.

Fig. 5 Recovery time versus -di_F/dt.

Fig. 6 Peak forward voltage versus di_F/dt.

Fig. 7 Transient thermal impedance junction to case.

G M N

Dimensions

Dim.	Millir	meter	Inches	
	Min.	Max.	Min. Max.	
A	19.81	20.32	0.780	0.800
B	20.80	21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G H	1.65	2.13 4.5	0.065	0.084 0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	2.2	2.54	0.087	0.102