

Première année Licence informatique, 2023 - 2024 Structure Machine 2

Dimanche 28/04/2024 - Durée: 1h30

Contrôle Continu

NB: Documents et calculatrices non autorisés

Exercice 1 (9 points):

1) Simplifiez par la table de Karnaugh la fonction logique f suivante (2 points) :

$$f(a, b, c, d) = \sum m (1,4,6,8,9,10,11,12,14)$$

cd ab	00	01	11	10
00				
01				
11				
10				

L'expression simplifiée est :

2) Réaliser la fonction f par un multiplexeur MUX 8:1. (2 points)

3) Soit la fonction S défini comme suit : $S(x,y,z) = \sum m(1,4,6,7)$ Réaliser la fonction S par un démultiplexeur DEMUX 1:8. (2 points)

4) Simplifiez par la table de Karnaugh la fonction logique g suivante (3 points) : $g(a,b,c,d) = \sum m(1,2,6,8,11,12,14) + d(7)$ ou d(7) représente un cas indifférent.

cd ab	00	01	11	10
00				
01				
11				
10				

L'expression simplifiée est :

Remarque : N'oubliez pas de dessiner les groupes et d'écrire les termes de produit minimisés pour chaque groupe et l'expression finale.

Exercice 02 (6 points):

- 1) Réaliser un demi-Additionneur (1 bit A avec 1 bit B) : (4 points)
- Ecrire la table de vérité :

A	В	
0	0	
0	1	
1	0	
1	1	

•	onner les expressions logiques simplifiées de sortie.
•••••	
•	essiner le circuit logique (les portes logiques disponibles : AND, OR, NOT
XOR)	

2. En comparant le circuit du demi-additionneur avec celui d'un demi-soustracteur, concevoir le circuit logique (les portes logiques disponibles : AND, OR, NOT, XOR) appelé demi-additionneur/soustracteur, qui à partir d'un signal de commande C et des entrées A et B, simule le demi-additionneur sur A et B lorsque la commande C est à 0, et le demi-soustracteur sur A et B lorsque la commande C est à 1. (2 points)