Procedura

O procedura consta dintres mullime finita de instructions care pot fi executate mecanic, intr-un trip determinat, en o cantitate fixa de efort. Proc. poate avea 4 mr. instrari/ieiri.

Algoritue

Oposedura se episte pl o amunità intrare, de It (fruit) an dupa exemparea a tinstructioni elementare, fe ru mai emistà o alta instructione exemplata, fe instructione 'halt' a fost exemplata. Procedura care se operate pt toate intrarile -> algoritue.

Functu recursive

O procedura definerte o relatie un re instrari - iesori munità funche remissira partiala.

Dc. procedura -> algoritu -> famidie recursive totale.

mocedura sadefini un limbaj: pot un sir x, procedura decide de xe L (thirtag)

Omniblime def. pind n-o proc -> recursiv enumerabli

alg -> recursiva.

I un numer mare de notatie formale ud. pl. a desoire a procedure:

- 1) M. Twing (Twing, 1936-1937)
- 2) gramatice Chomsky & (Chomsky, 1959-1963)
- 3) Alg. Markov (Markov, 1951)
- 4) Calcul Laurfda (church, 1941)
- 5) Susteme Past
- 6)
- 7) Cele mai multe lun faje de programare

Iorannia Chourky

gramaticile pot fi clasificate in raport cu forma reguli los los: Fie G=(V, Z, R, B)

- 1) Réjulate (le dreapte)
 A -> 2B | 2 , 262x, A,BEV-Z
- (2) Independente de audext $A \Rightarrow \alpha$, $A \in (V - \overline{z})$, $\alpha \in V^*$
- 3 Apendute de constext dAB -> dSB |dAB| = |dSB| d,BEV*, AEV-Z
- 4) 0 granalice care sur are sectriclis le 1:3 => G. nerestrictionale

 V*(V-Z)V*XV*

Pt fiec dasa de grane din ierarlie Chamsky -> clasa de acuptoare care acc. acean clasa de linetaje:

ex: GBC; ? G of L(G)=3anfmcm/ n209.

9=) aBBC => aatCBC => aatBCC => aattcc

Masiua Twinig

M.T. coustà dintre un disposential si a fandé. Commiscarea dutre cele el componente este facusta printre un cap care paste citi/Inlocui sinche pe fandé.

Mecanissume de control actionne de mpais discresse; la fec. pas exembée 2 actions intro-un mod cever depuide de starrea curento is de suitable de per fanda indicat de capul citire souvre:

- 1) pune disp. de audrell intr-o nume stare
- 2) Re a) soire une simbert pe fancée in pox curentée, in bouindu-l'pr al sindent l) deplas cap a pox la solg/dr

Di. -> are capat stg, se un tuicle la du. indéfiniel DC. M.T. Incearcé sà mute capul peste l'nuite stg. a B.i. > inceteaté sà functionese Esusta o stare speciala-de halt - h => Inchierea explisor M.T. Conventie -> B.i. confine in ficare patrat -> '#! 1,R -> deplas capalin o positie la stg/dr.

OM. Twing este un tuple (K, Z, 8, s), unde: K-> multimea finite a staribe, & h Z - afabetul de instrare, =#, \$L,R AER > st. iniliala 8: KXZ -> (KU3 Ly) x (ZU34,Ry)

Dc. gek, a = Z, 8(g,a) = (p, 1)

0x: ? M.T. M= (K, Z, S, s) care in bouniesle toate such 'à cu' #' mergaind spru dr.

$$K = 320, 219$$

 $Z = 30, 49$
 $A = 20$

2_	7	$S(g,\nabla)$	# # #
20	a	(21,#)	# # # # ··· #
2.	#	(h,#)	75-,-
g_1	a	(2,a)	
2,	#	(20,R)	

ex: ? M.T. $M = (K, Z, \delta, A)$ care se deplas. la stg. panà la # st se equeste K = 3209 Z = 39, #9

Def.

Configuration wei M.T. M=(K, Z, 8, s) este un membre din:

Bef.

Fre M= (K, Z, S, s) i, fe (g1, w1, a1, 41), (g2, w2, az, u2) config. ale lui M.

Atunci:

$$(g_1, w_1, a_1, u_1) \vdash_{m} (g_2, w_2, a_2, u_2)$$

 $(=) f \in \mathbb{Z} \cup 3 L, R y$
 $S(g_1, a_1) = (g_2, f)$

0/10:

$$f=L$$
, $w_1=e=$) (g_1, w_1, a_1, u_1) nur duce la micio config. pol. ce $\# w_2 \in \Xi^*$, $a_2 \in \Xi$ as $w_1 \ge w_2 a_2$

$$=) M.T. Al agadic.$$

Calcul ou M. Turniq

- -> sirul de instrare este sois alimient la limite stg. a fentie en capel possitional pe '#' care delin. dr. simil
- a cerair, conventie pt por capului pt resultatul calculat.

Fie Zo, Z, \$#. Fie f: Zox → Zx. M. Twing M= (K, Z, S, s) calculea xà f, de Zo, Z, ez, twezo*, f(w)=u atueci (A, #w#) + (h, #u#)

Dc 4M =) f -> folie Tuning calculabila.

f(w)= w, weste resultatul tu bouirii a co f tu w.

$$M = (K, Z, 8, \Delta)$$

 $K = 290, 91, 929$

8:

2	∇	8(9,5)
2.	a	(21, L)
2.	1	(g_1, L)
2.	#	(21, 1)
\mathcal{Q}_1	a	(g_o, f)
2,	-f	(go, a)
2,	#	(g_2,R)
92	a	(g_z, R)
22	L	(g_z,R)
22	#	(-6,#)

Molimec de functie calculabile pe simi poate f extinse: $f: (\overline{z}^*)^K \rightarrow Z_1^K$, K>0 $M=(K,Z,S,\Delta)$, $Z_0,\overline{z}_1 \subseteq Z$. $M=(K,Z,S,\Delta)$, $Z_0,\overline{z}_1 \subseteq Z$. $M=(K,Z,S,\Delta)$, $M=(K,Z,S,\Delta)$, $M=(K,Z,S,\Delta)$, $M=(K,Z,S,\Delta)$.