

TYPES OF LEARNING

Ariana Villegas

Grades

What if	Then
x > 15	You're in good shape. Just remember to review the prerequisite material occasionally.
15 >= x > 10	Carefully review the prerequisite material to avoid potential difficulties in the class.
10 >= x	Please visit office hours so we can discuss your situation in more detail.

Prereq Quiz

1.

SUPERVISED LEARNING

UNSUPERVISED LEARNING

REINFORCEMENT LEARNING

Supervised Learning

Supervised Learning

task, T	performance measure, P	experience, E

Supervised Learning

task, T	performance measure, P	experience, E
Predict a value	Error	(Input, GT)
(boolean, numerical, categorical)	(MSE, MAE, Cross Entropy)	Input: Numerical, images, text, signals
How is the expected output?	How do we measure how close we are to the	Output: Expected value
	expected results?	What are we learning?

Unsupervised Learning

Similar != Different

Unsupervised Learning

task, T	performance measure, P	experience, E

Unsupervised Learning

task, T	performance measure, P	experience, E
Predict a representation (multidimensional vector) How is the expected output?	Error (Intrinsic measures, similar != different) How do we measure how close we are to the expected results?	Input: Numerical, images, text, signals What are we learning?

Reinforcement Learning

Reinforcement Learning

task, T	performance measure, P	experience, E

Reinforcement Learning

task, T	performance measure, P	experience, E
Predict a step	Error	(Input, GT)
(multidimensional vector)	(Regret of best reward)	Input: Description of the environment
How is the expected output?	How do we measure how close we are from the maximum reward?	Output: Action What are we learning?

2.

task, T	performance measure, P	experience, E

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$

based on attributes of the patient x_1, x_2, ..., x_M

	У	X_1	X ₂	X ₃	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Υ	N	N	N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$

based on attributes of the patient x_1, x_2, ..., x_M

	У	X_1	X ₂	X ₃	x_4
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Υ	N	N	N
2	· · · ·	N	Υ	N	N
3	+	Υ	Υ	N	N
4	-	Υ	N	Υ	Υ
5	+	N	Υ	Υ	N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$

based on attributes of the patient x_1, x_2, ..., x_M

	У	X_1	X ₂	x_3	x_4
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	y ⁽¹⁾ -	X ₁ ⁽¹⁾ Y	X ₂ ⁽¹⁾ N	X3 ⁽¹⁾ N	x ₄ ⁽¹⁾ N
2	y ⁽²⁾ -	X ₁ ⁽²⁾ N	X ₂ ⁽²⁾ Y	X ₃ ⁽²⁾ N	x ₄ ⁽²⁾ N
3	y(3) +	X ₁ (3) Y	X ₂ (3) Y	X ₃ (3) N	x ₄ (3) N
4	y ⁽⁴⁾ -	X ₁ ⁽⁴⁾ Y	x ₂ ⁽⁴⁾ N	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ Y
5	y ⁽⁵⁾ +	x ₁ (5) N	X ₂ (5) Y	X ₃ ⁽⁵⁾ Y	x ₄ ⁽⁵⁾ N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$

based on attributes of the patient x_1, x_2, ..., x_M

	У	X ₁	X ₂	x ₃	x_4	
i	allergic?	hives?	sneezing?	red eye?	has cat?	
1	y ⁽¹⁾ -	X ₁ ⁽¹⁾ Y	X ₂ ⁽¹⁾ N	X3 ⁽¹⁾ N	X4 ⁽¹⁾ N	X ⁽¹⁾
2	y ⁽²⁾ -	X ₁ ⁽²⁾ N	X ₂ ⁽²⁾ Y	X ₃ ⁽²⁾ N	x ₄ ⁽²⁾ N	X(2)
3	y(3) +	X ₁ (3) Y	х ₂ (3) Ү	x ₃ (3) N	x ₄ (3) N	X(3)
4	y ⁽⁴⁾ -	X ₁ ⁽⁴⁾ Y	x ₂ ⁽⁴⁾ N	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ Y	X(4)
5	y ⁽⁵⁾ +	x ₁ ⁽⁵⁾ N	x ₂ ⁽⁵⁾ Y	x ₃ ⁽⁵⁾ Y	x ₄ ⁽⁵⁾ N	X ⁽⁵⁾

N = 5 training examples

M = 4 attributes

Learning to diagnose heart disease as a (supervised) binary classification task

Learning to diagnose heart disease as a (supervised) binary classification task

Learning to diagnose heart disease as a (supervised) <u>classification</u> task

Learning to diagnose heart disease as a (supervised) regression task

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$

based on attributes of the patient x_1, x_2, ..., x_M

	У	X ₁	X ₂	x ₃	X_4	
i	allergic? _{C*}	hives?	sneezing?	red eye?	has cat?	
1	y ⁽¹⁾ - C*	X ₁ ⁽¹⁾ Y	X ₂ ⁽¹⁾ N	X3 ⁽¹⁾ N	x ₄ ⁽¹⁾ N	X ⁽¹⁾
2	y(2) - **	X ₁ ⁽²⁾ N	X ₂ ⁽²⁾ Y	x ₃ ⁽²⁾ N	x ₄ ⁽²⁾ N	X(2)
3	y(3) 4	X ₁ (3) Y	X ₂ (3) Y	x ₃ ⁽³⁾ N	x ₄ (3) N	X(3)
4	y(4) - **	X ₁ ⁽⁴⁾ Y	$X_2^{(4)}N$	x ₃ ⁽⁴⁾ Y	X ₄ ⁽⁴⁾ Y	X(4)
5	y(5) 4	X ₁ ⁽⁵⁾ N	X ₂ ⁽⁵⁾ Y	х ₃ ⁽⁵⁾ Ү	x ₄ ⁽⁵⁾ N	X ⁽⁵⁾

N = 5 training examples M = 4 attributes Example hypothesis function: $h(x) = \int + \text{ if sneezing} = Y$ - otherwise

Supervised Machine Learning

- Problem Setting
 - \rightarrow Set of possible inputs, $x \in X$ (all possible patients)
 - \rightarrow Set of possible outputs, $y \in Y$ (all possible diagnoses)
 - → Exists an unknown target function, c*: X → Y (the doctor's brain)
 - \rightarrow Set, \mathcal{H} , of candidate hypothesis functions, h: X \rightarrow Y (all possible algorithms)
- Learner is given N training examples $D = \{(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))\}$ where $y(i) = c^*(x(i))$ (history of patients and their diagnoses)
- Learner produces a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data

Error Rate

• Consider a hypothesis h its...

...error rate over all training data: error(h, D_train)

...error rate over all test data: error(h, D_test)

...true error over all data: error_true(h)

This is the quantity we care most about! But, in practice, **error_true(h)** is unknown.

Algorithms for Classification

Algorithm 1 majority vote: predict the most common label in the training dataset

	У	X_1	X_2	X_3	X ₄
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
H I	-	Υ	N	N	N
	2	N	Υ	N	N
-	+	Υ	Y	N	N
-	-	Υ	N	Υ	Y
- 1	+	N	Υ	Υ	N

Algorithms for Classification

Algorithm 2 memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict a random label

	у	X_1	X_2	x_3	x ₄
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
20	-	Υ	N	N	N
-	-	N	Υ	N	N
+	+	Υ	Υ	N	N
-	-	Υ	N	Υ	Υ
+	+	N	Υ	Υ	N

The memorizer always gets zero training error!

Algorithms for Classification

Algorithm 3 decision stump: based on a single feature, x_d, predict the most common label in the training dataset among all data points that have the same value for x_d

	у	X_1	X_2	x_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
2	_	Υ	N	N	N
+	-	N	Y	N	N
+	+	Υ	Υ	N	N
-	-	Υ	N	Υ	Υ
+	+	N	Υ	Υ	N

Example decision stump:
$$h(\mathbf{x}) = \begin{cases} + \text{ if sneezing} = Y \\ - \text{ otherwise} \end{cases}$$

Nonzero training error, but perhaps still better than the memorizer

Home Exercise

Function approximation: Implement a simple function which returns -sin(x).

A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- 2. You can call an existing implementation of sin(x) a few times to test your solution
- 3. You only need to evaluate it for x in [0, 2*pi]

Kahoot Time!

