

10/541489 Rec'd PCT/PTO 07 JUL 2005

1/5

特許協力条約に基づく国際出願願書

原本(出願用)

0	受理官庁記入欄	
0-1	国際出願番号	
0-2	国際出願日	
0-3	(受付印)	() 6, 4, U4 ()
		XXX I
0-4	様式-PCT/RO/101 この特許協力条約に基づく国際出願願番 は、	
0-4-1	右記によって作成された。	PCT-SAFE [EASY mode] Version 3.50 (Build 0002.162)
0-5	申立て	
	出願人は、この国際出願が特許協力条約 に従って処理されることを請求する。	
0-6	出願人によって指定された受理官庁	日本国特許庁 (RO/JP)
0-7	出願人又は代理人の書類記号	204005
ī	発明の名称	加振式紙断裁装置
II	出願人	·
П-1	この欄に記載した者は	出願人である (applicant only)
11-2	右の指定国についての出願人である。	米国を除く全ての指定国 (all designated States except US)
li-4ja	名称	大同工業株式会社
II-4en	Name:	DAIDO KOGYO CO., LTD.
II-5ja	あて名	9220842
		日本国
		石川県加賀市熊坂町イ197番地
Il-5en	Address:	I-197, Kumasakamachi, Kaga-shi, Ishikawa
		9220842
II-6	国籍(国名)	Japan
		日本国 JP
11-7	住所(国名)	日本国 JP
II-8	電話番号	81-761-72-1234
11-9	ファクシミリ番号	81-761-73-1348
II-11	出願人登録番号	000207425

2/5

特許協力条約に基づく国際出願願書

原本(出願用)

III-1	その他の出願人又は発明者	
III-1-1	この欄に記載した者は	出願人及び発明者である (applicant and inventor)
III-1-2	右の指定国についての出願人である。	米国のみ (US only)
III-1-4ja	氏名(姓名)	西村 和夫
III-1-4en	Name (LAST, First):	NISHIMURA, Kazuo
III-1-5ja	あて名	9220842
		日本国
		石川県加賀市熊坂町イ197番地 大同工業株式会社内
III-1-5en	Address:	
		c/o DAIDO KOGYO CO., LTD., I-197, Kumasakamachi,
		Kaga-shi, Ishikawa
		9220842
		Japan
III-1-6	国籍(国名)	日本国 JP
III-1-7	住所(国名)	日本国 JP
III-2	その他の出願人又は発明者	
III-2-1	この欄に記載した者は	出願人及び発明者である (applicant and inventor)
III-2-2	右の指定国についての出願人である。	米国のみ (US only)
III-2-4ja	氏名(姓名)	間嶋 利幸
III-2-4en	Name (LAST, First):	MAJIMA, Toshiyuki
III-2-5ja	あて名	9220842
		日本国
		石川県加賀市熊坂町イ197番地 大同工業株式会社内
III-2-5en	Address:	c/o DAIDO KOGYO CO., LTD., I-197, Kumasakamachi,
		Kaga-shi, Ishikawa
		9220842
W 0 C		Japan
III-2-6	国籍(国名)	旧本国 JP
III-2-7	住所(国名)	日本国 JP
	•	

d(j)

特許協力条約に基づく国際出願願書

原本(出願用)

<u>IV−1</u>	代理人又は共通の代表者、通知のあて名					
10-1	下記の者は国際機関において右にのごとく出願人のために行動する。	代理人 (agent)				
[V-1-1ja	氏名(姓名)	佐々木 功				
IV-1-1en	Name (LAST, First):	SASAKI, Isao				
IV-1-2ja	あて名	1050001				
		日本国				
		東京都港区虎ノ門1丁目2番29号				
		虎ノ門産業ビル6階 佐々木内外国特許商標事務所				
IV-1-2en	Address:	SASAKI, KAWAMURA & ASSOCIATES, Toranomon Sangyo				
		Bldg. 6th Fl., 2-29, Toranomon 1-chome,				
		Minato-ku, Tokyo				
		1050001				
		Japan				
IV-1-3	電話番号	03-3591-0271				
	ファクシミリ番号	03-3508-0170				
IV-1-5	電子メール	sasakipat@office.email.ne.jp				
IV-1-6	代理人登録番号	100063174				
IV-2	その他の代理人	筆頭代理人と同じあて名を有する代理人				
		(additional agent(s) with the same address as				
	T 7	first named agent)				
IV-2-1ja		川村 恭子(100087099)				
	Name(s)	KAWAMURA, Kyoko(100087099)				
V V-1	国の指定					
V-1	この願書を用いてされた国際出願は、規則 4.9(a)に基づき、国際出願の時点で拘束さ					
	れる全てのPCT締約国を指定し、取得しうる あらゆる種類の保護を求め、及び該当する					
	場合には広域と国内特許の両方を求める国際出願となる。					
VI-1	先の国内出願に基づく優先権主張					
VI-1-1	出願日	2003年 04月 25日 (25.04.2003)				
VI-1-2	出願番号	2003-121136				
VI-1-3	国名	日本国 JP				
VI-2	先の国内出願に基づく優先権主張	144				
VI-2-1	出顧日	2003年 12月 24日 (24.12.2003)				
VI-2-2	出願番号	2003-426958				
VI-2-3	国名	日本国 JP				
VI-3	優先権証明春送付の請求					
	上記の先の出願のうち、右記の	VI-1. VI-2				
	番号のものについては、出願書 類の認証謄本を作成し国際事務	VI ⁻ I, VI ⁻ 2				
	局へ送付することを、受理官庁 に対して請求している。					
VII-1	特定された国際調査機関(ISA)	日本国特許庁 (ISA/JP)				

特許協力条約に基づく国際出願願書

4/5

原本(出顧用)

VIII	申立て	申立て数	
VIII-1	発明者の特定に関する申立て	中立(数	
VIII-2	出願し及び特許を与えられる国際出 顕日における出願人の資格に関する 申立て	_	
VIII-3	先の出願の優先権を主張する国際出 願日における出願人の資格に関する 申立て		
VIII-4	発明者である旨の申立て(米国を指定国と する場合)		
VIII-5	不利にならない開示又は新規性喪失 の例外に関する申立て	_	
IX	照合欄	用紙の枚数	添付された電子データ
IX-1	願書(申立てを含む)	5	/
IX-2	明細審	17	_
IX-3	請求の範囲	2	_
IX-4 .	要約	1	V
IX-5	図面	8	_
IX-7	슴탉	33	
	添付春類	添付	添付された電子データ
IX-8	手数料計算用紙	· /	_
IX-17	PCT-SAFE 電子出願	_	✓ ·
IX-18	その他:	納付する手数料に関する 特許印紙を貼付した書面	
IX-18	その他:	国際事務局の口座への振 り込みを証明する書面	
IX-19	要約書とともに提示する図の番号	1	
IX-20	国際出願の使用言語名	日本語	
X-1	出願人、代理人又は代表者の記名押印		
X-1-1 X-1-2	、 氏名(姓名) 署名者の氏名	佐々木 功 (黒宮澤)	
X-1-3	権限		

受理官庁記入欄

10-1	国際出願として提出された書類 の実際の受理の日	
10-2	図面	
10-2-1	受理された	
10-2-2	不足図面がある	
10-3	国際出願として提出された替類 を補完する香類又は図面であっ てその後期間内に提出されたも のの実際の受理の日(訂正日)	
10-4	特許協力条約第11条(2)に基づ く必要な補完の期間内の受理の日	
10-5	出願人により特定された国際調査機関	ISA/JP
10-6	調査手数料未払いにつき、国際 調査機関に調査用写しを送付していない	

特許協力条約に基づく国際出願願書

5/5

原本(出願用)

国際事務局記入欄

11-1	記録原本の受理の日			
,			 	

明細書

加振式紙断裁装置

5 技術分野

á

本発明は重ね合せた複数枚の紙を切断する加振式紙断裁装置に関するものである。

背景技術

 積み重ねた複数枚の紙を切断するための断裁装置にも色々あるが、一般的には 大掛かりで大きな装置である。例えば1000枚以上重ねた紙を位置ズレしない ように紙押えを降下してクランプし、傾斜した刃先を有するカッター刃を上方か ら降下することによって切断するものがある。積み重ねた複数枚の紙を一気に切 断するため、大きな力を要し、そのため、紙押え及びカッター刃は油圧駆動方式
 と成っていて、数トンの力を発揮して紙を切断している。勿論、油圧駆動方式で はなくてモータを利用した断裁装置もあるが、一般には交流電源で数百~数千W のモータが用いられている。

更に、カッター刃を上方から降下させるため、紙押えとカッター刃とが、双方 共に上方に位置するために装置の嵩が大きなものとなっている。

- 20 又、従来の断裁装置では、カッター刃の傾斜した刃先が、重ね合せた紙の片側 からもう一方の片側まで到達することによって一気に切断するため、重ね合せる 紙の枚数が多くても少なくても同じストロークとなるために、枚数が少ない紙を 切断する場合にはカッター刃の動きに無駄が生じ、その分だけ切断作業の能率が 低下する。
- 25 又、傾斜した刃先を有するカッター刃によって、重ね合せた紙の片側から切り 始めてもう一方の片側へ向かって切断するため、切断時に紙屑がカールされ、切

り落とされた紙屑が多大な量となるため、これを除去しなくてはならない。すなわち、風を送ったり、ブラシで強制的に除去する方法が採られている。このような、紙屑除去の補助的な機能を備えることで断裁装置全体が大型化してしまう。

さらに、傾斜した刃先を有するカッター刃によって紙を切断する場合、傾斜した刃先が、重ね合せた紙の片側からもう一方の片側に到達するまで、切断された複数枚の紙屑が落下せずに、刃先面と擦れ合って静電気が発生し、刃先には紙屑の切断片が付着してしまうため、刃先をブラシで擦って強制的に除去する等の処理が必要となる。

又、カッター刃を上方から降下して紙を切断するため、小さな紙屑はテーブル 10 上に残ってしまい、自然落下することができないために、刃先面と擦れ合って静 電気の発生や、刃先への付着の原因となるため、これも、風を送ったり、ブラシ で擦って強制的に除去する方法によって除去しなくてはならない。

ところで一般的に刃物で被切断材を切断する場合、その刃物の切断性能を表現するのに「切れ味」という言葉で表現されることが多い。この切れ味は、切断時に刃物に加わる力の大小(切削抵抗)、その切断面に切断筋等が付いて損傷が付いているか否かの切断面の良否、刃物の耐久性などによって判断される。

切断抵抗の要因として、幾何学的要因(刃物の形状)、力学的要因(切断の方法など)、材料学的要因(刃物の材質など)の3つがある。

力学的要因は、切断抵抗 Faを2つの要素抵抗で表現すると、

20 Fa=Fb+Fc となる。

5

15

Fb:被切断材の変形・破壊抵抗、

Fc:被切断材と刃物間の摩擦抵抗

また、多数枚を重ねた被切断材(シート東、積層紙、金属箔、薄金属板層)を切断する断裁装置の切断抵抗は、刃物による被切断材の変形量である圧縮弾性の変 動や、摩擦力の変動により、不規則に変動することが認められている。このような断裁装置を駆動モータなどで駆動するには、その駆動モータなどの駆動力は、

最大切断抵抗に基づいて設定すると共に、断裁装置自体の剛性も最大切断抵抗に 基づいて設定する必要がある。

従って、従来の紙断裁装置はサイズ並びに重量が大きく、そのために事務機の 付属装置として内蔵することはできない。

5 このように、従来の紙断裁装置には上記のごとき問題がある。本発明が解決しようとする課題はこの問題点であり、非常にコンパクト化すると共に消費電力の小さい小型モータで駆動することができ、又切断時間の短縮と省力化による効率化を図った加振式紙断裁装置を提供することを目的とする。

10 発明の開示

15

20

á

本発明に係る紙断裁装置は、複数枚の紙を重ね合せて載置するためのテーブルと、該テーブルの紙載置面に平行な刃先を上端に有するとともにテーブルの下側に配置したカッター刃と、上方から下方に向かって紙を押える上下動自在の紙押えと、該紙押えを垂直方向に上下摺動自在に挟持する垂直ガイドと、該紙押えを駆動するための第1モータと、該第1モータによって回転する第1スクリューと、該第1スクリューに螺合した第1ナットと、該第1ナットと該紙押えとを連結するリンクと、斜め方向に延びたガイド溝をそれぞれ有し、該ガイド溝内を摺動自在にカッター刃を挟持する一対のガイドと、該カッター刃からカッター刃の面に対して垂直に突出して該ガイド溝に係合するスライダーと、該スライダーに対してガイド溝に沿った方向の低周波振動を与える機構とを備え、該カッター刃がガイド溝に沿った方向の低周波振動を伴って上下動可能に構成した。

上記スライダーは、第2モータによって回転する第2スクリューに螺合した第 2ナットと一体に結合した移動駒に形成された縦溝に係合・連結して構成し得る。

上記低周波振動を与える機構は、第2スクリューの回転を変速するためのギア機構から構成し得る。また、この第2スクリューの回転を変速するためのギア機構は、対を成す偏心ギアを含むことで構成してもよい。かかる回転の変速によってカッター刃の上昇速度が変化して一種の低周波数の振動を与えることができる。

上記偏心ギアの角速度の変化 ω_2/ω_1 、速度の変化V、及び芯間距離 a_1+a_2 を以下の式で表わされるようにするのがカッター刃の寿命を長くし、安定した切断を得る上で好ましい。

10 角速度の変化: $\omega_2/\omega_1 = (1+\epsilon)/(1-\epsilon) \sim (1-\epsilon)/(1+\epsilon)$

速度変化: $V = 2 \pi f r (1 \pm 2 \delta / r)$

1

15

25

芯間距離: a 1 + a 2 = 2 r ~ 2 r + δ 2 / r

 $\exists \exists \tau \in 2 \delta / (a_1 + a_2) = \delta / r$

δ:偏心ギアの偏心量 f:偏心ギアの回転数

a ₁:偏心ギア23aの半径、a ₂:偏心ギア23bの半径

振動は数十ヘルツ(10~99Hz)の低周波数が好ましく、発振手段は電気 式でなく上述のような機械式振動手段を採用している。

また、上記カッター刃に面接触した状態でカッター刃の上下動に伴って上下動するカッター台を更に具備し、紙押えの両側には第1ストッパー片を取り付け、

20 カッター台の両側上端には第2ストッパー片を取着し、カッター刃が上昇して所 定の位置に達すると第1および第2ストッパー片が互いに当接するようにするこ とで、カッター刃に無理な加重を掛けることなくより安定した切断が可能となる。

さらに、上記第1および第2ストッパー片の一方側のストッパー片をそれぞれ ネジ機構とすることによって、両ストッパー片が当接する際のカッター刃の先端 位置を調整可能とすることができる。

図面の簡単な説明

第1図は、本発明の第1実施例に係る紙断裁装置の正面図、

第2(a)図は、第1図の2(a)-2(a)断面図、

第2(b)図は、第1図の2(b)-2(b)断面図、

5 第2(c)図は、第1図の2(c)-2(c)断面図、

第3図は、カッター刃を昇降動するためのスクリューを駆動する偏心ギア機構 の説明図、

第4図は、本発明の第2実施例に係る紙断裁装置の正面図、

第5図は、同上の紙断裁装置の側面図、

10 第6図は、第4図における6-6断面図、

第7図は、紙押えとカッター刃及び紙との配置関係を示す説明図、

第8図は、ストッパー片とカッター刃とカッター台との配置関係を側面から拡大して示す説明図、

第9図は、同上のストッパー片の要部を正面から示す拡大図である。

15

20

発明を実施するための最良の形態

以下、本発明に係る実施例を図面に基づいて詳細に説明する。

第1図は本発明の第1実施例に係る紙断裁装置を示す正面図であり、同図の符号1は重ね合せた複数枚の紙1を示し、符号2は該紙1が位置ズレしないように押える紙押え、符号3は該紙1を切断するためのカッター刃を夫々表わしている。重ね合された紙1は平坦なテーブル4の上に載置され、紙押え2は上方から降下して紙1が切断される際にズレないように紙押え2にて強固にクランプされる。

紙押え2は角型断面の棒体であって紙の全幅にわたって当接し、該紙押え2は中立軸に対して等距離に設けているリンク5a、5bにて連結されている。該リンク5a、5bは、第1スクリュー7に嵌っているスリーブ32a、32bに上側リンク軸9a、9bを介して連結している。両スリーブ32a、32bは連結

10

15

20

具24で連結されて、常に一定の間隔が保たれるように保持され、そして連結具24の中央部に形成した凹部に嵌っている第1ナット8は第1スクリュー7と螺合している。そこで、第1スクリュー7が回転することによって、第1ナット8は第1スクリュー7に沿って移動し、その結果、連結具24及び該連結具24と連結している両スリーブ32a、32bが一定間隔を保って移動することでリンク5a、5b…の傾きは変化する。

第1図において、スリーブ32a、32bが右側へ移動する場合は、紙押え2は降下して紙1を押圧する。紙押え2の両サイドは垂直ガイド31によってガイドされているために、左右方向へ移動することはなく、スリーブ32a、32bの移動に伴って紙押え2は上下動する。第1スクリュー7は第1モータ10によって回転駆動され、間には複数の上部ギア11a、11b…が介在することで回転速度を落として第1スクリュー7をゆっくり回転することができる。

例えばDC24Vの電源で25W相当の第1モータ10を使用しても積み重ねた紙1を強力にクランプすることができる。また、スリーブ32a、32b又は連結具24の位置を検出することによってリンク5a、5b…の傾き θ が分かり、その結果、紙押え2にて押えられている積み重ねた紙1の厚さを知ることができる。

一方、カッター刃3は上記紙押え2の下側に装着され、両ガイド13a、13bの間に嵌ってスライドすることができる。しかも、カッター刃3のスライド方向は斜め上下方向であって、ガイド13a、13bには2本のガイド溝14a、14bは斜め方向に傾斜している。

カッター刃3の両面には内側スライダー15a、15bがそれぞれ水平に突出し、これら内側スライダー15a、15bはガイド溝14a、14bに遊嵌して いる。そして内側スライダー15a、15bがガイド溝14a、14bに沿って 移動するに伴って、カッター刃3は斜め方向へスライドすることができる。ここ

15

20

25

で、カッター刃3を担持する内側スライダー15a、15bが、互いに平行を成して形成しているガイド溝14a、14bに嵌った状態で移動するために、カッター刃3は常に水平に保たれている。傾斜したガイド溝14a、14bの左端に内側スライダー15a、15bがあるときカッター刃3は降下しているが、内側スライダー15a、15bがスライドして右方向へ移動することで該カッター刃3は上昇する。

そしてカッター刃3の下側には第2スクリュー16が水平に取り付けられ、該第2スクリュー16は第2モータ17によって複数の下部ギア18a、18b…を介して回転駆動され、第2スクリュー16に螺合している第2ナット19は該10 第2スクリュー16の回転と共に移動することができる。第2ナット19からは移動駒20が立ち上がり、上記内側スライダー15aと係合している。すなわち、移動駒20には縦溝25が形成され、縦溝25に外側スライダー30aが係合している。

移動駒20に設けている軸ピン22を介して内側スライダー15aと連結し、移動駒20は第2スクリュー16と平行に設けているガイド棒21に沿って移動することができる。第2スクリュー16は第2モータ17にて回転し、該第2スクリュー16の回転に伴って第2ナット19は移動し、第2ナット19を取着している移動駒20はガイド棒21に沿って移動する。そして、移動駒20はガイド棒21に沿って水平移動するが、軸ピン22は縦溝に沿って上下動すると共に内側スライダー15aをガイド溝14aに沿ってスライドさせ、その結果、カッター刃3が昇降動する。

従って、カッター刃3はガイド溝14a、14bに沿って斜め方向へ押上げられ、紙押え2によってクランプされている紙1を下側から1枚づつ切断することができる。紙1の切断屑は1枚づつ切断されることで刃先面と擦れ合い続けることなく落下し、そのために紙屑が刃先に付着することはない。ここで、紙1を切断する際に、上記カッター刃3が上昇すると同時に水平方向へも移動することに

よってクランプされている紙 1 が位置ズレしないように、リンク 5 a 、 5 b により強力にクランプされている。

ところで、カッター刃の切れ味は該カッター刃と紙の切断抵抗が小さい程良好である。切断にはカッター刃が刃先稜と直角方向に押し込まれる「押し切り」と、カッター刃が刃先稜と平行な移動を伴いながら押し込まれる「引き切り」とがある。本発明は後者の「引き切り」を重視した方法を採用しているが、ここでカッター刃の先端角(楔角) γ 、刃先稜に直角な方向に押し込まれる速度(押し込み速度)Vと、カッター刃が刃先稜と平行な移動をする速度(水平速度)Vにより、見かけのカッター刃先端角(有効楔角) β は次の式で表わされる。

10 $\tan \beta = V/(V^2 + v^2)^{1/2} \cdot \tan \gamma$

ð

5

15

20

この式から分かるように、切断抵抗は紙質とカッター刃の見掛けの先端角(有効楔角) β により変化し、紙質に応じた最適楔角 β が存在する。本発明の紙断裁装置は上記の式を考慮し、事務機等に装備されることによる実用上の寸法、切断時間等の制約条件に基づいて、最適な押し込み速度V及び水平速度Vを制御するガイド溝と該ガイド溝に嵌るスライダーを具備している。

ところで、本発明の紙断裁装置では上記カッター刃を上昇することでクランプされている紙を切断することができるが、この際に切断力を軽減すると共に消費電力を小さくするために低周波の振動をカッター刃3に与える構造と成っている。その手段は色々あるが、本発明では製作コストの削減と作動の安定を図るために機械式発振機構を採用する。第2(b)図に第1図の2(b)-2(b)断面図を示しているように、第2モータ17から第2スクリュー16を回転させるギア機構において、偏心ギア23a、23bを組み合せている。

偏心ギア23a、23bは第2スクリュー16の回転速度を変化させ、その結果、移動駒20は一定速度で移動せず、ガイド溝14a、14bをスライドする 25 内側スライダー15a、15bの移動速度に変化を与える。従って、カッター刃 3には振動が与えられた動きとなり、切断力及び消費エネルギーは低下する。該 実施例では2個の偏心ギア23a、23bを用い、第2モータ17の定速回転を変速回転として第2スクリュー16へ伝達することができる。

ここで、第3図に示すように偏心ギア23a、23bを円形ギアとする場合は、偏心ギア23a、23bの角速度の変化 ω_2/ω_1 、速度の変化V、及び芯間距離 a_1+a_2 は次の式で表わされる。

角速度の変化: $\omega_2/\omega_1 = (1+\epsilon)/(1-\epsilon) \sim (1-\epsilon)/(1+\epsilon)$

速度変化: $V = 2 \pi f r (1 \pm 2 \delta / r)$

5

15

芯間距離: $a_1 + a_2 = 2 r \sim 2 r + \delta^2 / r$

 $c = 2 \delta / (a_1 + a_2) = \delta / r$

10 δ:偏心ギアの偏心量 f:偏心ギアの回転数

a」:偏心ギア23aの半径、a。:偏心ギア23bの半径

そこで、上記偏心ギア23a、23bの芯間距離 $(a_1 + a_2)$ は基準芯間距離2 r より δ^2/r だけ大きくする必要がある。ただし、円形ギアでなく楕円ギアを使用する場合は、芯間距離の変化を考慮することなく使用できる。そして、該偏心ギア23a、23bに基づく速度変化Vにより、上記第2スクリュー16の回転速度が変化し、ひいてはカッターP3の上昇速度が変化して一種の低周波数の振動を与えることができる。

ところで、カッター刃はその移動停止位置がリミットスイッチにて検知されて、 紙の切残りが発生しないように制御されている。しかし、該リミットスイッチに よる電気的制御方法は作動誤差が避けられず、又リミットスイッチの取り付け誤 差、及び取り付け部品の製作誤差などの影響を受けることになり、切断すべき最 後の1枚が切り残されたり、逆に紙押えの受木面にカッター刃が必要以上に深く 食い込んでしまう。

その結果、カッター刃の寿命は短くなり、安定した切断を困難にしている。そ

25 して、電気制御が故障した際には、カッター刃が受木に食い込んで非常停止するが、断裁装置は損傷して大きなダメージを受ける危険性がある。

そこで、以下のように、本発明の第2実施例の断裁装置はカッター刃の位置決め機構を備えている。

第4図~第6図は本発明の第2実施例に係る紙断裁装置を示し、第4図は正面図、第5図は側面図、第6図は第4図の6-6断面図を表している。図中の符号1は重ね合せた複数枚の紙1を示し、符号2は該紙1が位置ズレしないように押える紙押え、符号3は該紙1を切断するためのカッター刃を夫々表わしている。重ね合された紙1は平坦なテーブル4の上に載置され、紙押え2は上方から降下し、紙1が切断される際にズレないように該紙押え2にて強固にクランプされる。

5

10

15

20

25

紙押え2はコ型断面の棒体であって紙の全幅にわたって当り、該紙押え2は中立軸に対して等距離に設けているリンク5a、5bにて連結されている。該リンク5a、5bは第1スクリュー7a、7bに螺合している第1ナット8a、8bに上側リンク軸9a、9bを介して連結している。両第1スクリュー7a、7bは駆動軸34の両端部に設けられ、駆動軸34が回転することによって、第1スクリュー7a、7bに螺合している第1ナット8a、8bの間隔は増減する。その結果、紙押え2と下側リンク軸6a、6b、上側リンク軸9a、9bを介して連結しているリンク5a、5b…の傾きは変化する。

第4図において、第1ナット8a、8bの間隔が縮小するに伴い、紙押え2は降下して積層されている紙1を押圧する。そして、紙押え2は垂直ガイド31によってガイドされているために、左右方向へ移動することはなく、駆動軸34の回転に伴う第1ナット8a、8bの移動によって紙押え2は上下動する。該駆動軸34は第1モータ10によって回転駆動され、間には複数の上部ギア11a、11b…が介在することで回転速度を落として駆動軸34をゆっくり回転することができる。そして、リンク5a、5bが起立することで紙押え2が降下する際、リンク5a、5bによって紙を押える力は、リンクの傾きが大きい後期の力に比べてリンクの傾きの小さい初期の力が弱いが、紙押え2にはコイルバネ26、26・にて下方へ押し下げるバネ力を付勢することによって、初期から後期にか

けて紙押え力は略均等とされている。

5

この第2実施例においても、第1実施例と同様に、ギア機構とリンク機構を組合せた紙押えであるために、例えばDC24Vの電源で25W相当の第1モータ10を使用しても紙1を強力にクランプすることができる。そして第1ナット8a、8bの位置を検出することによって、リンク5a、5b…の傾きθが分かり、その結果、紙押え2にて押えられている紙1の厚さを知ることができるために、カッター刃3の移動量を無駄なく制御することが可能と成る。

第7図は紙1、紙押え2、カッター刃3の関係を図案化したもので、

A:紙が入る最大間隔、 a:紙押えの移動距離、 b:カッター刃の移動距離、 10 を表している。

そこで、紙押え2が距離 a だけ降下して一定の力で紙1を押えると、第1モータ10には所定の負荷が作用し、この負荷を検出して該第1モータ10は瞬時に停止する。

次にカッター刃3が上昇して紙1を切断して第1ストッパー片12a、12b、 15 第2ストッパー片33a、33bが互いに当接する。そして紙1が切断された後 は紙押え2は上昇し、カッター刃3は降下する。

この場合、紙1の枚数が少なくて連続して何度も切断する場合には、紙押え2 は距離 a だけ戻らず、紙1の取替えに必要な距離だけ戻り、更に時間を短くする ように制御することができる。

- 20 一方、カッター刃3はカッター台27に面接された状態で上記紙押え2の下側に装着され、両ガイド13a、13bの間に挟持された状態でスライドさせることができる。しかも、カッター刃3のスライド方向は斜め上下方向であって、ガイド13a、13bには2本のガイド溝14a、14bが所定の距離をおいて夫々形成され、しかもガイド溝14a、14bは斜め方向に延在している。
- 25 第6図に示すように、カッター刃3及びカッター台27には軸ピン22が貫通 し、両側へ突出した軸ピン22には内側スライダー15a、15bが取り付けら

れ、更に軸ピン22の先端には外側スライダー30aが取り付けられている。そして上記内側スライダー15a、15bはガイド溝14a、14bに嵌り、外側スライダー30aは移動駒20に設けている縦溝25に嵌っている。

ところで、カッター刃3には丸穴が設けられて軸ピン22は該丸穴を貫通し、上記内側スライダー15a、15bがガイド溝14a、14bに沿って移動するにつれて、カッター刃3は斜め方向へスライドすることができる。ただし、カッター刃3は平行を成して形成している両ガイド溝14a、14bに内側スライダー15a、15bが嵌って移動することで常に水平に保たれて移動することができる。傾斜したガイド溝14a、14bの左端に内側スライダー15a、15bがあるときカッター刃3は降下しているが、内側スライダー15a、15bがスライドして右方向へ移動することで該カッター刃3は上昇する。

10

15

20

そしてカッター刃3の下側には第2スクリュー16が水平に取り付けられ、該第2スクリュー16は第2モータ17によって複数の下部ギア18a、18b…を介して回転駆動され、第2スクリュー16に螺合している第2ナット19は該第2スクリュー16の回転と共に移動することができる。第2ナット19からは移動駒20が立ち上がり、上記内側スライダー15aと連結している。すなわち、移動駒20には縦溝25が形成されて、該縦溝25には外側スライダー30aが係合し、角型をした外側スライダー30aと内側スライダー15aは軸ピン22にて連結し、しかもガイド溝14aと縦溝25の向きに規制されるように各スライダー15a、30aは回転可能と成っている。

移動駒20は第2スクリュー16と平行に設けているガイド棒21に沿って移動することができる。すなわち、第2スクリュー16は第2モータ17にて回転し、該第2スクリュー16の回転に伴って第2ナット19は移動し、第2ナット19を取着している移動駒20はガイド棒21に沿って移動する。そして、移動20はガイド棒21に沿って水平移動するが、軸ピン22は外側スライダー30aと共に縦溝25に沿って上下動すると共に、内側スライダー15aをガイド

溝14aに沿ってスライドさせ、その結果、カッター刃3は斜め方向に昇降動する。

従って、カッター刃3はガイド溝14a、14bに沿って斜め方向へ押上げられ、紙押え2によってクランプされている紙1を下側から1枚づつ切断することができる。紙1の切断屑は1枚づつ切断されることで刃先面と擦れ合い続けることなく落下し、そのために紙屑が刃先に付着することはない。ここで、紙1を切断するには上記カッター刃3が上昇すると同時に水平方向へも移動するために、クランプされている紙1が位置ズレしないようにリンク5a、5bを介して紙押え2により強力にクランプされている。

10 ところで、カッター刃の切れ味は該カッター刃と紙の切断抵抗が小さい程良好である。切断にはカッター刃が刃先稜と直角方向に押し込まれる「押し切り」と、カッター刃が刃先稜と平行な移動を伴いながら押し込まれる「引き切り」とがある。本発明は後者の「引き切り」を重視した方法を採用しているが、ここでカッター刃の先端角(楔角)γ、刃先稜に直角な方向に押し込まれる速度(押し込み速15 度) V と、カッター刃が刃先稜と平行な移動をする速度(水平速度) v により、見かけのカッター刃先端角(有効楔角)β は次の式で表わされる。

 $tan\beta = V/(V^2 + v^2)^{1/2} \cdot tan\gamma$

5

20

この式から分かるように、切断抵抗は紙質とカッター刃の見掛けの先端角(有効楔角) β により変化し、紙質に応じた最適楔角 β が存在する。本発明の紙断裁装置は上記の式を考慮し、事務機等に装備されることによる実用上の寸法、切断時間等の制約条件に基づいて、最適な押し込み速度 V 及び水平速度 V を制御するガイド溝と該ガイド溝に嵌るスライダーを具備している。

本発明の紙断裁装置では上記カッター刃を上昇することでクランプされている 紙を切断することができるが、カッター刃3の刃先が紙押え2まで届かないこと で紙1の切残しが発生しないように、又逆にカッター刃3が紙押え2の受木面に 食い込み過ぎないようにストッパーが備わっている。 紙押え2の両側には第1ストッパー片12a、12bが取り付けられ、該第1ストッパー片12a、12bはネジ機構と成っているためにその先端位置は調整可能である。カッター刃3が面接しているカッター台27には第2ストッパー片33a、33bが取着されていて、カッター刃3が上昇し、所定の位置に達した時、第2ストッパー片33a、33bが、紙押え2に取着されている第1ストッパー片12a、12bに当接することによって、該カッター刃3の上昇が阻止される。カッター刃3は斜め方向へ上昇するが、カッター台27は垂直方向に上昇して第2ストッパー片33a、33bは第1ストッパー片12a、12bに当接することができる。

5

20

10 カッター刃3が上昇して一方の第2ストッパー片33a、33bが他方の第1 ストッパー片12a、12bに当接することで、該カッター刃3を上昇するため の第2モータ17には規定以上の負荷が作用する。この負荷が規定値以上に達し たところで第2モータ17の回転が停止するように制御され、紙1の切残しを発 生することなく、又カッター刃3の刃先が紙押えの受木面に食い込み過ぎること なく停止できる。

カッター刃3は斜め方向に上昇するが、この際、内側スライダー15a、15bが両ガイド溝14a、14bに遊嵌して移動するために該カッター刃3は常に平行移動する。そして理論上ではカッター刃3の刃先全長は紙押え2に同時に接することになるが、ガイド溝14a、14bに遊嵌する内側スライダー15a、15bとのクリアランスの影響や内側スライダー15a、15bの取り付け精度などの寸法誤差の影響にて、カッター刃3の刃先全長が紙押え2に同時に接することはない。

本発明はストッパーを取り付けて、第2ストッパー片33a、33bが第1ストッパー片12a、12bに当接する際には、ごく僅かに傾いているカッター刃 3の刃先を水平に正すことができる。従って、紙押え2の受木面にカッター刃3の片側刃先を食い込ますことなく全ての紙1を切断することができる。勿論、受

木面に平行と成るように第1ストッパー片12a、12bのネジを調整しなくてはならない。

第8図および第9図にストッパーの拡大図を示しているように、第1ストッパー片12a、12bは紙押え2の取着台28に螺合して取り付けられ、先端の突出長さを調整したところでロックナット29にて弛まないようにロックされる。下側のカッター台27に取着されている第2ストッパー片33a、33bはブロック体にて構成されている。そして、カッター刃3が上昇することで、第1ストッパー片12a、12bに第2ストッパー片33a、33bが当接して該カッター刃3の上死点が定まる。そこで、第1ストッパー片12a、12bおよび第2ストッパー片33a、33bとしては、互いに当接にて変形及び摩耗し難い材質が用いられる。

5

10

15

20

以上述べたように、本発明の紙断裁装置は、スクリューに螺合するナットと紙押えをリンクで連結した紙押え機構、そしてカッター刃はガイドに取り付け、ガイドには斜めに傾斜したガイド溝を形成すると共にカッター刃から突出したスライダーを嵌め、このスライダーはスクリューに螺合したナットと結合した移動駒に係合すると共に、カッター刃には低周波数の振動を付与したものであり、次のような効果を得ることができる。

- (1) 紙押えの押え機構はスクリューとリンクの組み合せからなるいわゆる倍力機構を構成しているために、小型のモータによって積層した紙を強力にクランプすることができ、クランプした紙のズレを防止できる。一方、カッター刃の上下動にもスクリューにナットを螺合した倍力機構を採用して、下方から紙を1枚づつ切断するようにしたので、小さな原動力で足り、小型のモータによって切断することが可能となる。
- (2) 本発明では低周波数振動をカッター刃に付与するので、カッター刃に作用 25 する切断抵抗が小さくなって切れ味を良くすることができる。従って、振動を与 えないで切断する場合に比較して消費エネルギーは少なくなり、小さなモータで

円滑に切断することを容易としている。又、振動を付与することで、切断された 紙屑がカッター刃の裁断面に付着することを防止する効果もある。また、この振 動機構は機械的構造であるため、動作が安定すると共に製作コストが安くなる。

(3) 紙押え機構がテーブルの上側に位置し、カッター刃及びその駆動機構がテーブルの下側に位置するので、従来の双方共に上方に位置する装置に比べ、装置の嵩を極めて小さくコンパクトにすることができる。

5

10

25

- (4) 紙面に平行な刃先を有するカッター刃を用いて下方から紙を1枚づつ切断するので、カッター刃の操作をテーブル上に置かれた積層紙の厚さに応じたストロークにすることによって、切断作業を効率化することができる。実際には、紙押えのリンクの傾き又はスクリューに螺合しているナットの位置を検出することで、重ね合されてテーブル上に置かれた積層紙の厚さが分かり、その結果、カッター刃をスライドさせる移動範囲が前以て分かるので、無駄な動きは不要となる。すなわち、必要最小限のスライドで済むので、切断作業の効率がよくなる。
- (5) 紙面に平行な刃先によって下方から紙を1枚づつ切断することができるたりに、従来の傾斜した刃先を用いた切断時に見られた紙屑のカールは起こらず、カールによって切り落とされた紙屑が多大な量となることはない。また、切断された紙屑の下側にはテーブルがなく、切断直後に紙屑が自然に落下することとなり、小さな紙屑がテーブル上に残ったり、カッター刃の付近に留まって刃先に付着し続けることにより刃先面と擦れ合って静電気が発生し、更に刃先に紙屑の切の断片が付着してしまう、といった従来装置における不都合が起こらない。
 - (6) カッター刃の停止機構が備わっているので、切り残しはなく、逆にカッター刃が紙押さえの受木面への食い込み過ぎが防止される。従って、安定した切断が行われると共に、カッター刃に無理がかかることなく、寿命が大きく向上する。そして、紙押え両側とカッター台の両側に取り付けられるストッパー片が互いに当接することで、スライダーとガイド溝間の遊びによってカッター刃先が僅かに傾斜状態になることがあっても、水平に戻されて紙押えの受木面に当たることと

なり、一方側だけの食い込みを防止できる。

産業上の利用可能性

以上のように、本発明にかかる紙断裁装置は、積み重ねた複数枚の紙を切断するものとして有用であり、特にサイズを非常にコンパクトなものとできるので、 事務機の付属装置として用いるのに適している。

請求の範囲

1. 複数枚の紙を重ね合せて載置するためのテーブルと、

該テーブルの紙載置面に平行な刃先を上端に有するとともにテーブルの下側

5 に配置したカッター刃と、

上方から下方に向かって紙を押える上下動自在の紙押えと、

該紙押えを垂直方向に上下摺動自在に挟持する垂直ガイドと、

該紙押えを駆動するための第1モータと、

該第1モータによって回転する第1スクリューと、

10 該第1スクリューに螺合した第1ナットと、

該第1ナットと該紙押えとを連結するリンクと、

斜め方向に延びたガイド溝をそれぞれ有し、該ガイド溝内を摺動自在にカッタ 一刃を挟持する一対のガイドと、

該カッター刃からカッター刃の面に対して垂直に突出して該ガイド溝に係合す 15 るスライダーと、

該スライダーに対してガイド溝に沿った方向の低周波振動を与える機構と、 を備え、

該カッター刃がガイド溝に沿った方向の低周波振動を伴って上下動可能としたことを特徴とする加振式紙断裁装置。

20

- 2. 上記スライダーは、第2モータによって回転する第2スクリューに螺合した 第2ナットと一体に結合した移動駒に形成された縦溝に係合・連結してなる請求 の範囲第1項に記載の加振式紙断裁装置。
- 25 3. 上記低周波振動を与える機構は、第2スクリューの回転を変速するためのギア機構からなる請求の範囲第2項に記載の加振式紙断裁装置。

- 4. 上記第2スクリューの回転を変速するためのギア機構は、対を成す偏心ギアを含んでいる請求の範囲第3項に記載の加振式紙断裁装置。
- 5 5. 上記偏心ギアの角速度の変化 ω_2/ω_1 、速度の変化V、及び芯間距離 a_1+a_2 が次の式で表わされるようにした請求の範囲第4項に記載の加振式紙断裁装置。

角速度の変化: $\omega_2/\omega_1 = (1+\epsilon)/(1-\epsilon) \sim (1-\epsilon)/(1+\epsilon)$

速度変化: $V = 2\pi f r(1 \pm 2\delta/r)$

10 芯間距離:a₁+a₂=2r~2r+δ²/r

20

 $z = 2 \delta / (a_1 + a_2) = \delta / r$

δ:偏心ギアの偏心量 f:偏心ギアの回転数

a」: 偏心ギア23aの半径、a2: 偏心ギア23bの半径

15 6. 上記カッター刃に面接触した状態でカッター刃の上下動に伴って上下動するカッター台を更に具備し、紙押えの両側には第1ストッパー片を取り付け、カッター台の両側上端には第2ストッパー片を取着し、カッター刃が上昇して所定の位置に達すると第1および第2ストッパー片が互いに当接するようにしてなる請求の範囲第1項に記載の加振式紙断裁装置。

7. 上記第1および第2ストッパー片の一方側のストッパー片をそれぞれネジ機構とすることによって、両ストッパー片が当接する際のカッター刃の先端位置を

調整可能としてなる請求の範囲第6項に記載の加振式紙断裁装置。

要 約 書

テーブル(4)上に複数枚重ね合せて載置した紙を切断する紙断裁装置であって、 垂直ガイドに沿って上方から降下する紙押え(2)と、テーブル(4)下方から上昇 するカッター刃(3)と、紙押え(2)の紙押え機構として、第1モータ(10)にて 5 回転するスクリュー7に第1ナット(8)を螺合し、この第1ナット(8)と紙押え (2)はリンク(5)を介して連結し、カッター刃(3)は傾斜したガイド溝(14)を形 成したガイド(13)に取り付けられ、カッター刃(3)から突出した内側スライダ 一(15)はガイド溝(14)に嵌ると共に、内側スライダー(15)は第2モータ(1 7)によって回転する第2スクリュー(16)に螺合した第2ナット(19)と結合し 10 た移動駒(20)に形成された縦溝(25)に係合・連結し、さらに上記第2スクリ ュー(16)の回転を変速するための偏心ギア(23a、23b)を取り付けること によって、非常にコンパクト化すると共に消費電力の小さな小型モータで駆動す ることができ、切断時間の短縮と省力化による効率化を可能とし、更にカッター 刃の停止機構を備えることによって切残しを防止し、カッタ一刃の寿命を大きく 15 向上させている。

第 3 図

第 5 図

第 6 図

第 7 図

