Plan du cours

Algèbre Relationnelle

Présentation

- ❖ L'algèbre relationnelle a été inventée par E. F. Codd en 1970 afin de formaliser les opérations sur les ensembles.
- Elle constitue une collection d'opérations formelles qui agissent sur des relations et produisent des relations.
- Les opérations sont regroupées selon leurs caractéristiques en plusieurs familles.

Algèbre Relationnelle

Opérations ensemblistes: Union

Définition

L'union est une opération sur deux relations de même schéma R1 et R2 qui sert à construire une troisième relation R3 de même schéma ayant comme tuples ceux appartenant à R1 et ceux appartenant à R2.

Les tuples qui apparaissent plusieurs fois dans le résultat ne sont représentés qu'une seule fois (pas de doublons)

Algèbre Relationnelle

Opérations ensemblistes: Union

Notations

R1 ∪ R2 UNION(R1,R2) APPEND(R1,R2)

Représentation Graphique

Algèbre Relationnelle

Opérations ensemblistes: Union

Exemple

u	

Num	Nom	Tel
1	ALI	0216578655
2	AHMED	0247687656

R2

Num	Nom	Tel
2	AHMED	0247687656
3	SALIM	0250934642

R1 ∪ **R2**

Num	Nom	Tel
1	ALI	0216578655
2	AHMED	0247687656
3	SALIM	0250934642

Algèbre Relationnelle

Opérations ensemblistes: Différence

Définition

La différence est une opération sur deux relations de même schéma R1 et R2 qui sert à construire une troisième relation R3 de même schéma ayant comme tuples ceux appartenant à R1 et n'appartenant pas à R2.

Algèbre Relationnelle

Opérations ensemblistes: Différence

Notations

R1-R2

DIFFERENCE(R1,R2)

REMOVE(R1,R2)

MINUS(R1,R2)

Représentation Graphique

Algèbre Relationnelle

Opérations ensemblistes: Différence

Exemple

R1

Num	Nom	Tel
1	ALI	0216578655
2	AHMED	0247687656

R2

Num	Nom	Tel
2	AHMED	0247687656

R1-R2

Num	Nom	Tel
1	ALI	0216578655

Algèbre Relationnelle

Opérations ensemblistes: Produit cartésien

Définition

Le produit cartésien de deux relations R1 et R2 de schéma quelconque est une relation R3 ayant pour attributs la concaténation des attributs de R1 et R2 et dont les tuples sont constitués de toutes les concaténations d'un tuple de R1 à un tuple de R2.

Algèbre Relationnelle

Opérations ensemblistes: Produit cartésien

Notations

 $R1 \times R2$ PRODUCT(R1,R2) TIMES(R1,R2)

Représentation Graphique

Algèbre Relationnelle

Opérations ensemblistes: Produit cartésien Exemple R1

Num	Nom	Tel
1	ALI	0216578655
2	AHMED	0247687656

Commande	Date
46	17/11/2019
50	25/12/2018

R1	X	R2

Num	Nom	Tel	Commande	Date
1	ALI	0216578655	46	25/12/2018
1	ALI	0216578655	50	17/11/2019
2	AHMED	0247687644	46	25/12/2018
2	AHMED	0247687644	50	17/11/2019

Algèbre Relationnelle

Opérations ensemblistes: Produit cartésien

Note

Dans le cas où les deux relations ont des attributs ayant les même noms, on représente au niveau du résultat ces attributs avec d'autres noms ou bien en spécifiant la relation à laquelle ils appartiennent: R1.A, R2.A.

Algèbre Relationnelle

Opérations spécifiques: Projection

Définition

La projection d'une relation R(A1,A2, ..., An) sur les attributs Ai,Ai+1, ..., Ap (avec p<n) est une relation R2 de schéma Ai,Ai+1, ..., Ap et dont les tuples sont obtenus par élimination des attributs de R n'appartenant pas à R2 et par suppression des doublons.

Algèbre Relationnelle

Opérations spécifiques: Projection

Notation

$$P_{A1, A2, ..., Ap}(R)$$

R[A1, A2, ..., Ap]

PROJECT(R, A1, A2, ..., Ap)

Représentation Graphique

Algèbre Relationnelle

Opérations spécifiques: Projection

Exemple

R

PROJECT(R,Nom)

Num	Nom	TEL	EMAIL
1	ALI	0216578655	ALI@GMAIL.COM
2	AHMED	0247687656	AHMED1@GMAIL.COM
3	SALIM	0314565789	SALIM@YAHOO.FR
4	ALI	0478654345	AHMED2@GMAIL.COM

Nom
ALI
AHMED
SALIM

Algèbre Relationnelle

Opérations spécifiques: Restriction (Sélection)

Définition

La restriction (ou sélection) de la relation R par une condition C est une relation R2 de même schéma dont les tuples sont ceux de R satisfaisant la condition C.

La condition est de la forme: <Attribut> Opérateur <Valeur>

Les opérateurs sont: {=, <, >, <=, >=, <>}

Algèbre Relationnelle

Opérations spécifiques: Restriction (Sélection) Représentation Graphique

Notation

 $S_{Condition}(R)$

R[Condition]

RESTRICT(R, Condition)

Algèbre Relationnelle

Opérations spécifiques: Restriction (Sélection)

Exemple

R

Num	Nom	TEL
1	ALI	0216578655
2	AHMED	0247687656
3	SALIM	0314565789
4	ALI	0478654345

RESTRICT(R, Nom="Ali")

Num	Nom	TEL
1	ALI	0216578655
4	ALI	0478654345

Algèbre Relationnelle

Opérations spécifiques: Thêta Jointure Définition

La thêta-jointure de deux relations R1 et R2 de schéma quelconque selon une condition C est une relation R3 dont le schéma est la concaténation des attributs des deux relations et les tuples sont ceux du produit cartésien de R1 et R2 respectant la condition C.

La condition est de la forme: Attribut>

Les opérateurs sont arithmétiques: {=, <, >, <=, >=, <>}

Algèbre Relationnelle

Opérations spécifiques: Thêta Jointure

Notation

JOIN(R1, R2, Condition)

R1 Condition R2

Représentation Graphique

Algèbre Relationnelle

Opérations spécifiques: Thêta Jointure Exemple R1

N	NOM	TEL
1	ALI	0216578655
2	AHMED	0247687656
3	ALI	0468977345

NUM	NOM	ADRESSE
0	ALI	ALGER
2	AHMED	BLIDA
5	SALIM	ORAN

N	NOM	TEL	NUM	NOM	ADRESSE
1	ALI	0216578655	0	ALI	ALGER
2	AHMED	0247687656	0	ALI	ALGER
3	ALI	0468977345	0	ALI	ALGER
3	ALI	0468977345	2	AHMED	BLIDA

Algèbre Relationnelle

Opérations spécifiques: Thêta Jointure

Note

Si l'opérateur est « = » Alors c'est une Equi-jointure Sinon c'est une Inéqui-jointure

Algèbre Relationnelle

Opérations spécifiques: Jointure Naturelle

Définition

La jointure naturelle de deux relations R1 et R2 de schéma quelconque donne une troisième relation R3 dont le schéma est obtenu avec concaténation des attributs des deux relations mais en ne prenants les attributs de même nom qu'une seule fois, et les tuples sont ceux du produit cartésien de R1 et R2 respectant la une equi-jointure entre les attributs de même nom.

Algèbre Relationnelle

Opérations spécifiques: Jointure Naturelle

Notation

JOIN(R1, R2)

R1 R2

Représentation Graphique

Algèbre Relationnelle

Opérations spécifiques: Jointure Naturelle Exemple R1

NUM	NOM	TEL
1	ALI	0216578655
2	AHMED	0247687656
3	ALI	0468977345

NUM	NOM	ADRESSE
0	ALI	ALGER
2	AHMED	BLIDA
5	SALIM	ORAN

NUM	NOM	TEL	ADRESSE
2	AHMED	0247687656	BLIDA

Algèbre Relationnelle

Opérations spécifiques: Jointure Naturelle

Note

Une jointure naturelle entre deux relations R1 et R2 n'ayant aucun attribut en commun (de même nom) est le produit cartésien de R1 et de R2.

Algèbre Relationnelle

Opérations Dérivées: Intersection

Définition

L'intersection de deux relations R1 et R2 de même schéma est une relation R3 de même schéma dont les tuples sont ceux appartenant à la fois à R1 et à R2.

Algèbre Relationnelle

Opérations Dérivées: Intersection

Notation

R1 Ç R2

INTERSECT(R1, R2)

AND(R1,R2)

Représentation Graphique

Algèbre Relationnelle

Opérations Dérivées: Intersection Exemple R1

NUM	NOM	TEL
1	ALI	0216578655
2	AHMED	0247687656
3	KARIM	0468977345

NUM	NOM	TEL
0	ALI	0357687765
2	AHMED	0247687656
5	SALIM	0315467895

R1 ∩ **R2**

NUM	NOM	TEL
2	AHMED	0247687656

Algèbre Relationnelle

Opérations Dérivées: Division (Quotient)

Définition

La division de la relation R(A1, A2, ..., An) par la sous-relation R2(Ap+1, ..., An) est la relation R3(A1, A2, ..., Ap) formée de tous les tuples qui concaténés à chaque tuple de R2 donnent toujours un tuple de R1.

Algèbre Relationnelle

Opérations Dérivées: Division (Quotient)

Notation

R1 / R2

DIVISION(R1, R2)

Représentation Graphique

Algèbre Relationnelle

Opérations Dérivées: Division (Quotient) Exemple R1

NOM	AGE	VILLE
ALI	30	Alger
ALI	23	Oran
KARIM	18	ALGER
KARIM	28	ALGER
SALIM	40	ALGER

AGE	VILLE
18	ALGER
28	ALGER

R1 ÷ **R2**

NOM KARIM

Algèbre Relationnelle

Opérations Dérivées: Division (Quotient)

Note

- Les attributs du résultat d'une division R1/R2 sont ceux faisant partie de R1 et ne sont pas dans R2 pour que le produit cartésien R2×R3 donne des attributs de R1.
- Pour effectuer une division entre R1 et R2 il faut que tous les attributs de R2 font partie de R1 et que R1 possède au moins un attribut en plus que R2.

Le Langage Algébrique

Présentation

- ☐ C'est un langage d'interrogation de bases de données qui est à la base du langage SQL.
- ☐ Les opérations de base de l'Algèbre Relationnelle constituent un langage complet.

Le Langage Algébrique

Exemple 1: Soit le schéma relationnel suivant:

Pilote(NumPilote, NomPilote, Ville, Salaire)

Avion(NumAvion, NomAvion, Capacité)

Vol(NumVol, VilleDépart, VilleArrivée, NumPilote#, NumAvion#)

Exprimer en algèbre relationnelle la requête suivante:

 Donner les noms des avions dont la capacité est supérieure à 350 passagers.

R2=Projection(R,Nomavion)

R=restrict (avion capacite>350)

Le Langage Algébrique

Exemple 2: Soit le schéma relationnel suivant:

Pilote(NumPilote, NomPilote, Ville, Salaire)

Avion(NumAvion, NomAvion, Capacité)

Vol(NumVol, VilleDépart, VilleArrivée, NumPilote#, NumAvion#)

Exprimer en algèbre relationnelle la requête suivante:

Donner les noms des pilotes de la compagnie.

R= Project (pilot, NomPilot)

Le Langage Algébrique

Exemple 3: Soit le schéma relationnel suivant:

Pilote(NumPilote, NomPilote, Ville, Salaire)

Avion(NumAvion, NomAvion, Capacité)

Vol(NumVol, VilleDépart, VilleArrivée, NumPilote#, NumAvion#)

Exprimer en algèbre relationnelle la requête suivante:

 Donner les noms des pilotes domiciliés à Alger dont le salaire dépasse 5000.

R1=Restrict(pilot,salaire>5000, ville=« alger »)

R2= Project(R1, NomPilot)

Le Langage Algébrique

Exemple 4: Soit le schéma relationnel suivant:

Pilote(NumPilote, NomPilote, Ville, Salaire)

Avion(NumAvion, NomAvion, Capacité)

Vol(NumVol, VilleDépart, VilleArrivée, NumPilote#, NumAvion#)

Exprimer en algèbre relationnelle la requête suivante:

 Donner les numéros des vols effectués au départ d'Oran par des pilotes domiciliés à Alger.

```
R1=Restrict (pilot, ville=« alger »)
```

R2=Join(R1,Vol)

R3=Restrict(R2, villeDépart=« oran »)

R4=Project(R3,NumVol)

Le Langage Algébrique

Exemple 5: Soit le schéma relationnel suivant:

Pilote(NumPilote, NomPilote, Ville, Salaire)

Avion(NumAvion, NomAvion, Capacité)

Vol(NumVol, VilleDépart, VilleArrivée, NumPilote#, NumAvion#)

Exprimer en algèbre relationnelle la requête suivante:

 Donner les noms des avions que le pilote nommé Mohamed Ali a déjà pilotés.

```
R1=Restrict(pilot,Nomp=« mohamed ali »)
```

R2=Join(R1,vol)

R3=Join(R2,Avion)

R4=Project (R3,NomAvion)

Le Langage Algébrique

Construction d'une requête algébrique

- 1. Identifier les relations utiles pour exprimer la requête
- 2. Recopier le schéma de ces relations, et indiquer sur ces schémas:
 - > Les attributs qui font partie du résultat de la requête
 - > Les conditions portant sur les attributs
 - Les liens entre les relations
- 3. Traduire cette figure en expression algébrique
 - > Faire les restrictions selon les conditions portant sur les attributs
 - > Faire les jointures selon les liens entre les relations
 - Projeter sur les attributs qui font partie du résultat

Le Langage Algébrique

Exemple 5: Donner les **noms des avions** que le **pilote nommé Mohamed Ali** a déjà **pilotés**.

Piloto (Num Piloto Nom Piloto Villo Salairo)

R1= RESTRICT (Pilote, Nom Pilote="Mohamed Ali")

R2= JOIN(R1, Vol)

R3= JOIN(R2, Avion)

Résultat= PROJECT(R3, Nom Avion)

Vol(NumVol, VilleDépart, VilleArrivée, NumPilote#, NumAvion#)

Le Langage Algébrique

Arbre algébrique

Arbre dont les **nœuds** représentent les **opérations algébriques** et les **arcs** les **relations** représentant des flots de données entre opérations.

Chapitre 2: Le Langage Algébrique Le Langage Algébrique Résultat Arbre algébrique **Exemple 5: NomAvion** R1= RESTRICT(Pilote, NomPilote="Mohamed Ali") R2= JOIN(R1, Vol) R3= JOIN(R2, Avion) Résultat= PROJECT(R3, NomAvion) **Avion** NomPilote="Mohamed Ali" Vol **Pilote**

Le Langage Algébrique

Fonctions et agrégats

Fonction de calcul

Il est possible de remplacer, dans les conditions des opérations, un attribut utilisé en tant qu'argument par une composition de fonctions arithmétiques appliquées sur des attributs de la relation ou des constantes.

Exemple:

Résultat = RESTRICT(Commande, (PrixUnitaire × Quantité)>5000)

Le Langage Algébrique

Fonctions et agrégats

Les agrégats

Les agrégats sont utilisés pour effectuer des opérations de calcul sur des colonnes.

Le Langage Algébrique

Exemple 4: Soit le schéma relationnel suivant:

```
Pilote(<u>NumPilote</u>, NomPilote, Ville, Salaire)
Avion(<u>NumAvion</u>, NomAvion, Capacité)
Vol(<u>NumVol</u>, VilleDépart, VilleArrivée, NumPilote#, NumAvion#)
```

```
Résultat = Agrégat (Pilote, AVG(Salaire))
```

Résultat = Agrégat (Avion, Count(NumAvion))

Résultat = Agrégat (Pilote, Max(Salaire))

Résultat = Agrégat (Vol, VilleDépart, Count(NumVol))

Le Langage Algébrique

Fonctions et agrégats

Les agrégats

Fonctions	Valeur de retour
AVG([DISTINCT] x)	Moyenne de toutes les valeurs de x
SUM([DISTINCT] x)	Somme de toutes les valeurs de x
MAX(x)	Valeur max de x
MIN(x)	Valeur min de x
COUNT(*)	Nombre de lignes
COUNT([DISTINCT] x)	Nombre de valeurs distinctes de x