$$x_i^{(k+1)} = \omega b_i + (1 - \omega a_{ii}) x_i^{(k)} - \sum_{\substack{j=1\\j \neq i}}^n \omega a_{ij} x_j^{(k)}$$

- a) Hallar el esquema de iteración de forma matricial y verificar que si el sistema iterativo converge, entonces lo hace a una solución del sistema Ax = b.
- b) Demostrar que el esquema iterativo planteado converge para cualquier $x^{(0)}$ inicial si y solo si $\omega < 2/\lambda_n$.

 (Sugerencia: usar que si λ es autovalor de A y α $\beta \in \mathbb{R}$ entonces los autovalores de $\alpha I + \beta A$

(Sugerencia: usar que si λ es autovalor de A y $\alpha, \beta \in \mathbb{R}$, entonces los autovalores de $\alpha I + \beta A$ son $\alpha + \beta \lambda$).

$$x_{i}^{(K+1)} = wb_{i} + (1-wa_{i}) \times_{i}^{(K)} - \sum_{j=1}^{n} j \neq i} wa_{ij} \times_{j}^{(K)}$$

$$\iff \times_{i}^{(K+1)} = wb_{i} + \times_{i}^{(K)} - wa_{ii} \times_{i}^{(K)} - \sum_{j=1}^{n} \sum_{j\neq i}^{i} wa_{ij} \times_{j}^{(K)}$$

$$\langle = \rangle \times_{i}^{(K+1)} = \omega b_{i} + \chi_{i}^{(K)} - \omega \sum_{j=1}^{n} \alpha_{ij} \times_{j}^{(K)} \forall i = 1...n$$

$$\langle = \rangle \times_{i}^{(K+1)} = \omega b_{i} + \chi_{i}^{(K)} - \omega \sum_{j=1}^{n} \alpha_{ij} \times_{j}^{(K)} \forall i = 1...n$$

$$(k+1) = wb + x^{(k)} - wAx^{(k)}$$
 Forma matricial

$$(\Rightarrow)$$
 $X^{(K+1)} = (I - \omega A) X^{(K)} + \omega b$

a)

Si el sistema iterativo converge:
$$X^{(K)} \rightarrow X^*$$
 cuando $K \rightarrow \infty$

$$x^* = (I - \omega A)x^* + \omega b$$

$$f(x) = (I - \omega A)x + \omega b$$

$$\langle \Rightarrow \rangle \times^* - \times^* + \omega \wedge \times^* = \omega \wedge \rangle \times \rightarrow \times^* \Rightarrow F(x) \rightarrow F(x^*)$$

b)	
Sea R = I-WA la matriz de iteración. So	abemos que el sistema
converge sii P(R) < 1.	
Primero probemos la sugerencia.	
QVQ \(\text{autovalor} \text{ de A \(\infty \) 1-w\(\text{autoval} \)	lor de Tarus
	101 de 1 - WA
Sea v autovector asociado a).	
$(I-\omega A)V = V - \omega AV = V - \omega \lambda V = (1-\omega \lambda)$ $AV = \lambda V$) V
Sabemos entonces que si la la son lo	
de A entonces 1-wx, ··· 1-wxn son los a	utovalores de R=I-wA.
2	
$QVQP(R)<1<=>W<\frac{2}{\lambda_0}$	
$P(R) = \max \{ \lambda : \lambda \text{ autovalor de } R \} = \max \{ \lambda : \lambda \}$	$\times \{11-\omega\lambda_1 \cdots 1-\omega\lambda_n \}$
$P(R) < 1 \iff 1 - \omega \lambda_i < 1$	∀i = 1n
<=> -1 < 1 - ωλί < 1	Vi=1n
\Leftrightarrow $-2 < -\omega \lambda_{i} < 0$	∀i = 1n
\Leftrightarrow 2 > $\omega \lambda_{i}$ > 0	Vi=1
$\iff \frac{2}{\lambda_{i}} > \omega > 0$	Yi=1n
Por hipótesis w	>0
Basta ver que w < 2 \ \ti = 1n \ \ \ \	$\frac{2}{\lambda}$
Por hipótesis: $1 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n \iff z$	2 2 2 2 2 2 2
Luego se comple que:	
2 2	2 . (2 2 2 2
$\omega < \frac{z}{\lambda_i} \forall i=1n \iff \omega < \frac{z}{\lambda_n} \forall a \neq 0$	$e^{\frac{z}{\lambda_n}} = \min \{z, \frac{z}{\lambda_1}, \dots, \frac{z}{\lambda_n}\}$