www.rgpvonline.com

www.rgpvonline.com

The altitude of two proposed station A and B, 80km apart are respectively 225m and 550m. The intervening obstructions situated at c, 40km from A has an elevation of 285m. Ascertain, if A and B are intervisible, and if necessary find by how much B should be raised so that the line of sight must nowhere be less than 3m above the surface of ground.

- a) Write the principle of remote sensing.
- b) Explain the scale of a vertical photograph.
- c) Explain the term "Crab and Drift".
- d) Describe the methods of soundings.

OR

A section line AB appears to be 10.10cm on a photograph for which the focal length is 16cm. The corresponding line measures 2.54cm on a map which is to a scale 1/50,000. The terrain has an average elevation of 210m above mean sea level. Calculate the flying altitude of the aircraft, above mean sea level, when the photograph was taken.

CE-403 B.E. IV Semester

Examination, June 2016 Surveying

Time: Three Hours

Maximum Marks: 70

- **Note:** i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
- 1. a) Define the closing error in closed traverse
 - b) State the rules used to balance the traverse.
 - c) Explain the working of EDM.
 - d) The following observations were made for a closed traverse round an obstacle. Due to obstructions, length of line DE and EA could not be measured. Find out the missing length.

_	•	
Line	Length(m)	Bearing
AB	550	98°30'
BC	600	30°15′
CD	450	298°15'
DE	?	230°00'
EA	?	150°10'
	OP	

OR

-403

CE-403

www.rgpvonline.com

www.rgpvonline.com

PTO

www.rgpvonline.com

CE-403

www.rgpvonline.com

The following observations were made on a hill top Q to ascertain its elevation. The height of the target, P was 6m.

Instrument station	Staff Reading on BM (m)	Vertical angle on target, P at hill top	RL of BM (m)
A 2.500 B 1.650		18°10'	340.550
		27°30'	340.550

The instrument station were 60m apart and were in line with P.

- Define the tacheometric constants.
- Explain the difference between fixed hair and movable hair method.
- Describe the tangential system of tacheometry.
- Determine the gradient from point P to a point Q and the distance PQ. The observations were made with tacheometer and the staff was held vertical at each of the station. The instrument was fitted with an anallactic lense.

	Station: The moderation was an arranged to the state of t							
	Instrument	Staff	Bearing	Vertical	Staff Readings			
l	station	station		angle				
İ		P	134°	+10°32'	1.365, 1.920			
o					2.475			
	U	Q	224°	+5°6'	1.065; 1.885			
l		`			2.705			
4		ı						

OR

Write the short notes on following:

- Direct Reading Tacheometer
- ii) Contouring by Tacheometer
- Define transition curve and write the intrinsic equation of ideal curve.
 - Explain the different types of vertical curves.

- Describe the elements of compound curves in brief.
- Two tangents intersect at a chainage of 1322.5m, the deflection angle being 26°. Calculate the following for setting out a curve of radius 270m.
 - Tangent length
 - Length of long chord
 - iii) Length of curve
 - Chainage of point of commencement and tangency
 - Apex distance
 - Versed sine of curve

OR

A transition curve is required for a circular curve of radius 220m, the gauge being 1.5m and maximum super elevation restricted to 15cm. The transition curve is to be designed for a velocity such that no lateral pressure is imposed on the rails and the rate of gain of radial acceleration is 30cm/sec³. Calculate the required length of the transition curve and design speed.

- Define the term "triangulation figure".
 - Explain the importance of well conditioned triangle in triangulation survey.
 - Discuss the points to be kept in mind, while selecting the triangulation station.
 - Describe the method of base line measurement in triangulation.

OR

www.rgpvonline.com

www.rgpvonline.com

www.rgpvonline.com

Contd...

PTO