



## **Computer Vision**

Exercise Session 7 – Structure from Motion



#### Structure from Motion

- Arc3D www.arc3d.be
  - http://www.youtube.com/watch?v=0tzW8dm71ec
- ■Acute3D (123D Catch www.123dapp.com/catch)
  - http://www.youtube.com/watch?v=UwBd1RbKljk
- ■2D3 boujou
  - http://www.youtube.com/watch?v=qrszsSbStoQ
- ■etc...



## **Exercise 7**

- ■5 Images of a house on a turn table
- Background is static = at infinity





## **Exercise 7**

- 4 Tasks:
  - Initialization with epipolar geometry
    - Do 8-point RANSAC and triangulate
  - Add more views
    - Do 6-point RANSAC and triangulate
  - Plot everything
  - Dense Reconstruction
    - Stereo matching and depth map plot



## Initialization

Compute essential matrix, decompose into R and t, compute projection matrices





## Adding more views

Feature matches define 3D-2D point correspondences





## **6-Point Algorithm**

■ The 6-point algorithm that was used for the camera calibration can be used to compute the projection matrix relative to the scene

Do RANSAC to filter out wrong matches

■ It does not work well on planar scenes – make sure you have 3D points distributed all around



## **Plotting**





#### Hand-in

- Report should include:
  - Images with visualized inlier and outlier matches
  - Epipolar geometry of the initialization images
  - Sparse reconstruction with inlier 3D-points and cameras
- Source code



## **Bonus: Dense Reconstruction**



#### Hand-in

# By 11:59pm on Thursday 22<sup>nd</sup> November 2018 On Moodle

