Rhythms

Analyzing Rhythms (Part 1)

Instructor: Mark Kramer

Today

Practical notions
 Sampling frequency, Nyquist frequency, tapering

Data is <u>not</u> continuous

Consider a small snippet of data

Notation: x_n = Data at index n

Data is not continuous

Notation

 x_n = Data at index n

 t_n = Time at index n,

 $t_n = \Delta n$

where Δ = sampling interval

 f_j = Frequency at index j, $f_j = j/T$

where T = total time of observation

Previously
$$V[t] = \sum_{j} A_{j} \cos(2\pi f_{j}t) + B_{j} \sin(2\pi f_{j}t)$$

$$A_k = \frac{2}{T} \int_0^T V[t] \cos(2\pi f_k t) dt \qquad \text{and} \qquad B_k = \frac{2}{T} \int_0^T V[t] \sin(2\pi f_k t) dt$$

Compare data V[t] to cosine at frequency f_k , does it match?

Now replace
$$A_k$$
, B_k :
$$X_j = \sum_{n=1}^{N} x_n \exp(-2\pi i f_j t_n)$$
????

Fourier transform of the data x.

Euler's formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Fourier transform intuition:

Feynman: "the most remarkable formula in mathematics"

Data as a function of time index n

Data as a function of frequency index j

$$X_{j} = \sum_{n=1}^{N} x_{n} \exp(-2\pi i f_{j} t_{n})$$
Sinusoids at frequency f_{i}

Euler's formula:

$$\exp(-2\pi i f_j t_n) = \cos(-2\pi f_j t_n) + i \sin(-2\pi f_j t_n).$$

So, at each time (index n) multiply data x_n by sinusoids at frequency f_j . Then sum up over all time.

Fourier transform intuition:

Data as a function of frequency index j

Data as a function of time index n
$$X_j = \sum_{n=1}^{N} x_n \exp(-2\pi i f_j t_n).$$
Sinusoids at frequency f_i

<u>Idea</u>: compare our data x_n to sinusoids at frequency f_j and see how well they "match".

Good match: X_i = big Bad match: X_i = small

 X_j reveals the frequencies f_j that match our data.

Spectrum: idea

Fourier transform intuition:

"Compare" data to sinusoids at different frequencies

Match:

 X_i at frequency f_i is <u>large</u>

Mismatch:

 X_i at frequency f_i is small

Example:

"Data"
10 Hz cosine

4 Hz

Multiply (+,-,+,-,...) & add

... small value

4 Hz does not match data

Multiple (+,+,+,+,...) & add

10 Hz

... <u>large</u> value

10 Hz matches data

Sound familiar?
$$X_j = \sum_{n=1}^N x_n \exp(-2\pi i f_j t_n)$$
 Fourier transform of the data x .

replace with Euler's formula
$$\cos(-2\pi f_j t_n) + i \sin(-2\pi f_j t_n).$$

$$X_{j} = \left(\sum_{n=1}^{N} x_{n} \cos(-2\pi f_{j}t_{n})\right) + i\left(\sum_{n=1}^{N} x_{n} \sin(-2\pi f_{j}t_{n})\right)$$
Looks like
$$A_{k} = \frac{2}{T} \int_{0}^{T} V[t] \cos(2\pi f_{k}t) dt \quad B_{k} = \frac{2}{T} \int_{0}^{T} V[t] \sin(2\pi f_{k}t) dt$$

Same idea: compare data to sinusoids and see how well they match

Spectrum: definition

The power of data x at frequency index j

$$S_{xx,j} = \frac{2\Delta^2}{T} X_j X_j^*$$

(change sign of *i* everywhere)

Complex

conjugate

of FT of data

FT of

data

Previously $\frac{A_j^2 + B_j^2}{2}$ Same idea!

Constant that depends on sampling interval, duration of recording

Power at frequency f_i indicates how well sinusoids at f_i "match" our data.

Good match \rightarrow High power at frequency f_i

Spectrum

... reveals the dominant frequencies that "match" the data.

Define these two quantities.

 f_i = Frequency at index j, $f_i = j/T$ where T = total time of observation

$$f_{j} = \{0, \frac{1}{7}, \frac{2}{7}, \dots, \frac{1}{2\Delta}, -\frac{1}{2\Delta}, -\frac{1}{2\Delta},$$

Two important quantities

Largest frequency: Nyquist frequency
$$f_{
m NQ}=rac{1}{2\Delta}=rac{f_0}{2}$$
 half the sampling frequency $f_0=rac{1}{\Delta}$ sampling frequency

$$df = \frac{1}{7}$$

Frequency resolution $df = \frac{1}{T}$ reciprocal of total recording duration

Visualize f_i as a **vector**

Note: length (t_n) = N length (f_j) = N time and frequency vectors have the same length N

If we record N data points, then we have N frequencies to examine.

Note: Frequencies f_j include negative values.

Important fact: when data x_n is <u>real</u> (no imaginary component), then negative frequencies are <u>redundant</u>.

$$S_{xx,j}$$
 at $f_j = S_{xx,j}$ at $-f_j$

Q: Is x_n real?

A: Yes (in neuroscience) Only

Only inspect $f_j > 0$

$$f_{j} = \{0, \frac{1}{T}, \frac{2}{T}, \dots, \frac{1}{2\Delta}, \frac{1}{T}, \frac{1}{2\Delta}, -(\frac{1}{2\Delta}, \frac{1}{T}), -(\frac{1}{2\Delta}, \frac{2}{T}), \dots, \frac{2}{T}, \frac{1}{T}\}$$

Ignore negative frequencies (redundant)

Spectrum: df

• What is df?

$$df = \frac{1}{T}$$

frequency resolution

where T = Total duration of recordings.

<u>Ex</u>.

$$T = 2 s$$
 so $df = 0.5 Hz$

Q: How do we improve frequency resolution?

A: Increase T or record for longer time.

Spectrum: df

• Demand 0.2 Hz frequency resolution

$$df = 0.2 Hz = 1/T$$
, so $T = 5 s$

Spectrum: F_{NO}

• What is F_{NO} ?

$$F_{NQ} = f_0/2$$

Nyquist frequency

where f_0 = sampling frequency.

The **highest** frequency we can observe.

2 samples/cycle

Enough to reconstruct signal, but just barely.

High frequency (in data) mapped to low frequency

All hope lost! Indistinguishable from true low frequency signals.

Spectrum: df, F_{NQ}

Summary

$$d\!f = rac{\mathbf{I}}{T}$$
 — Duration of recording

$$f_{
m NQ}=rac{f_0}{2}$$
 — Sampling frequency

For finer frequency resolution:

record more data.

To observe higher frequencies:

increase sampling rate.

Spectrum: four (important) asides

- Units
- Scale
- Tapers
- Spectrogram

Spectrum: units

Q. What are the units of the spectrum?

$$S_{xx,j} = \frac{2\Delta^2}{T} X_j X_j^*$$

$$\frac{[s]^2}{[s]} [V][V]$$

$$[s] [V]^2$$

 $\frac{[V]^2}{[Hz]}$

"volts squared per Hertz"

Spectrum: scale

Doing nothing, we make an implicit taper choice . . .

What we're observing:

The rectangle taper impacts the power spectrum.

Pure sinusoid at 20 Hz

Sharp peak is "smeared out" . . .

Idea: smooth the sharp edges of rectangle taper.

Compute spectrum of tapered data.

Taper reduces the sidelobes.

Good: Reduced sidelobes reveals a new peak.

Bad: Broader peaks & lose data at edges.

"More lives have been lost looking at the [rectangular tapered spectrum] than by any other action involving time series." [Tukey 1980]

<u>Idea</u>: Divide data into smaller intervals, then compute the spectrum in each interval

[Shi et al, Epilepsy & Behav Reports, 2022]

```
Q. What happens to df?
   Original data 10s, df =
  Intervals 1s, df=
Q. What happens to fixe?
Q. When is this a good idea?
```

Spectrum: <u>summary</u>

$$S_{xx,j} = rac{2\Delta^2}{T} X_j X_j^*$$
 $X_j = \sum_{n=1}^{N} \sum_{\substack{n=1 \ \text{Sinusoids at frequency } f_j}}^{N \text{ Data as a function of time index n}} \sum_{n=1}^{N} \sum_{\substack{n=1 \ \text{Sinusoids at frequency } f_j}}^{N \text{ Data as a function of time index n}}$

$$df = \frac{1}{T}$$

Nyquist frequency

$$f_{\rm NQ} = \frac{f_0}{2}$$

Units, decibel scale, tapers, spectrograms, ...

Spectrum practicals

Python