ÓPTICA XEOMÉTRICA

ÓPTICA XEOMÉTRICA

Método e recomendacións

Espellos

- 1. Dado un espello esférico de 50 cm de radio e un obxecto de 5 cm de altura situado sobre o eixe óptico a unha distancia de 30 cm do espello, calcula analítica e graficamente a posición e tamaño da imaxe:
 - a) Se o espello é cóncavo.
 - b) Se o espello é convexo.

(P.A.U. Xuño 06)

Rta.: a)
$$\dot{s}_1 = -1.5 \text{ m}$$
; $\dot{v}_1 = -0.25 \text{ m}$; b) $\dot{s}_2 = 0.14 \text{ m}$; $\dot{v}_2 = 0.023 \text{ m}$

Datos (convenio de signos DIN)

Raio de curvatura do espello cóncavo Raio de curvatura do espello convexo Tamaño do obxecto

Posición do obxecto

Incógnitas

Posición das imaxes que dan ambos os espellos Tamaño das imaxes que dan ambos os espellos

Outros símbolos

Distancia focal do espello

Ecuacións

Relación entre a posición da imaxe e a do obxecto nos espellos

Aumento lateral nos espellos

Relación entre a distancia focal e o raio de curvatura

Cifras significativas: 3

R = -0,500 m

R = +0,500 m

y = 5,00 cm = 0,0500 m

s = -0.300 m

 \dot{s}_{1}, \dot{s}_{2} \dot{y}_{1}, \dot{y}_{2}

5 275

f

 $\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$

 $A_{\rm L} = \frac{y'}{y} = \frac{-s'}{s}$

f = R/2

Solución:

a)

Debúxase un esquema de espello cóncavo (un arco de circunferencia vertical cóncavo cara á esquerda), e sitúase o foco F á esquerda do espello, á metade da distancia entre o espello e o seu centro C. Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, horizontal cara ao espello, que se reflicte de maneira que o raio reflectido pasa polo foco F.
- Outro, cara ao espello, que se reflicte sen desviarse pasando polo centro C de curvatura do espello.

O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto.

Polo convenio de signos, os puntos situados á esquerda do espello teñen signo negativo. Calcúlase a distancia focal, que é a metade do raio do espello.

$$f = R / 2 = -0.500 [m] / 2 = -0.250 m$$

Substitúense os datos na ecuación dos espellos:

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f} \Rightarrow \frac{1}{s'_1} + \frac{1}{-0.300 \, [\text{m}]} = \frac{1}{-0.250 \, [\text{m}]}$$

Calcúlase a posición da imaxe despexando:

$$\frac{1}{s'_{1}} = \frac{1}{-0.250 \,[\text{m}]} - \frac{1}{-0.300 \,[\text{m}]} = -4.00 \,[\text{m}] + 3.33 \,[\text{m}] = -0.67 \,[\text{m}] \implies s'_{1} = -1.5 \,\text{m}$$

A imaxe fórmase a 1,5 m á esquerda do espello.

Substitúense os datos na ecuación do aumento lateral nos espellos, e calcúlase a altura da imaxe despexando:

$$A_{L} = \frac{y'}{y} = \frac{-s'}{s} = \frac{1,50 \text{ [m]}}{-0,300 \text{ [m]}} = -5,00$$

$$y' = A_{L} \cdot y = -5,00 \cdot 5,00 \text{ cm} = -25,0 \text{ cm} = -0,250 \text{ m}$$

A imaxe é real (s' < 0), invertida (A_L < 0) e maior ($|A_L|$ > 1).

b) Constrúese un novo debuxo aplicando as indicacións do apartado anterior, pero tendo en conta que como os raios non se cortan, prolónganse alén do espello ata que se corten. O punto de corte é o correspondente á punta da imaxe I.

A imaxe fórmase a 0,14 m á dereita do espello.

Substitúense os datos na ecuación do aumento lateral nos espellos, e calcúlase a altura da imaxe despexando:

$$A_{L} = \frac{y'}{y} = \frac{-s'}{s} = \frac{-0.136[m]}{-0.300[m]} = 0.455$$

$$y' = A_{L} \cdot y = 0.455 \cdot 5.0 \text{ cm} = 2.27 \text{ cm} = 0.0227 \text{ m}$$

A imaxe é virtual (s' > 0), dereita ($A_L > 0$) e menor ($|A_L| < 1$).

Análise: En ambos os casos, os resultados dos cálculos están en consonancia cos debuxos.

A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u>. As instrucións para o manexo desta folla de cálculo poden verse na ligazón <u>instrucións</u>. Para ir á folla onde resolver un problema de Espellos e lentes, pode elixir unha destas opcións:

- Prema sobre a icona ▶ do grupo | < < ▶ ▶ situado na parte inferior esquerda da folla de cálculo e prema sobre a lapela: i Optica.
- Ou, vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla Ctrl mentres preme sobre <u>Indice</u>. No índice, pulse a tecla Ctrl mentres preme sobre a cela <u>Espellos e lentes</u> do capítulo **Óptica xeométrica**.

Se ten borrado os datos, verá en DATOS:

	o ob datob, rer		
Lente		Unidades	cm
	Posición (cm)	Altura (cm)	
Foco			
Obxecto			
Imaxe			

Escriba os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. Para este problema debería ser:

Espello	cóncavo	Unidades	cm
	Posición (cm)	Altura (cm)	
Centro (raio)	-50		
Obxecto	-30	5	
Imaxe			

Os resultados son:

	Posición do foco		-25,0 (em
		Posición (cm)	Altura (cm)	
	Obxecto	-30,0	5,00 /	Aumento
a)	Imaxe	-150	-25,0	-5,00
	Imaxe	Real	Invertida	Maior

Para o apartado seguinte, chega con cambiar o signo da posición do centro.

Espello	convexo	Unidades	cm
	Posición (cm)	Altura (cm)	
Centro (radio)	50		
Obxecto	-30	5	

Os novos resultados son:

	Pos	sición do foco	25,0	cm
		Posición (cm)	Altura (cm)	
	Obxecto	-30,0	5,00	Aumento
b)	Imaxe	13,6	2,27	0,455
	Imaxe	Virtual	Dereita	Menor

- 2. Un obxecto de 3 cm está situado a 8 cm dun espello esférico cóncavo e produce unha imaxe a 10 cm á dereita do espello:
 - a) Calcula a distancia focal.
 - b) Debuxa a marcha dos raios e obtén o tamaño da imaxe.
 - c) En que posición do eixe hai que colocar o obxecto para que non se forme imaxe?

(P.A.U. Xuño 08)

Rta.: a) f = -0.40 m; b) y' = 3.8 cm

D .		1 .	TO TR TI
Datos	(convento	de signos	DIN)
20000	(00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	we orginee	~~,

Posición do obxecto Posición da imaxe Tamaño do obxecto

Incógnitas

Distancia focal do espello

Tamaño da imaxe

Ecuacións

Relación entre a posición da imaxe e a do obxecto nos espellos

Aumento lateral nos espellos

Relación entre a distancia focal e o raio de curvatura

Cifras significativas: 3

s = -8,00 cm = -0,0800 ms' = 10.0 cm = -0.100 m

y = 3,00 cm = 0,0300 m

 $\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$ $A_{L} = \frac{y'}{y} = \frac{-s'}{s}$ f = R/2

Solución:

a) Polo convenio de signos, os puntos situados á esquerda do espello teñen signo negativo. Substitúense os datos na ecuación dos espellos:

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f} \Rightarrow \frac{1}{0,100 \text{ [m]}} + \frac{1}{-0,080 \text{ 0[m]}} = \frac{1}{f}$$

Calcúlase a distancia focal despexando:

$$\frac{1}{f} = 10.0 \text{ [m]}^{-1} - 12.5 \text{ [m]}^{-1} = -2.50 \text{ [m]}^{-1} \Longrightarrow f = -0.400 \text{ m}$$

b)

Debúxase un esquema de espello cóncavo (un arco de circunferencia vertical cóncavo cara á esquerda), e sitúase o foco F á esquerda do espello, á metade da distancia entre o espello e o seu centro C.

Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, horizontal cara ao espello, que se reflicte de maneira que o raio reflectido pasa polo foco F.
- Outro, cara ao espello, que se reflicte sen desviarse pasando polo centro C de curvatura do espello.

Como os raios non se cortan, prolónganse alén do espello ata que as súas prolongacións se corten. O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto. Substitúense os datos na ecuación do aumento lateral nos espellos, e calcúlase a altura da imaxe despexan-

$$A_{\rm L} = \frac{y'}{y} = \frac{-s'}{s} = \frac{-0,100 [\,\mathrm{m}\,]}{-0,080 \,\,\mathrm{\phi m}\,]} = 1,25$$

$$y' = A_L \cdot y = 1,25 \cdot 3,00 \text{ cm} = 3,75 \text{ cm} = 0,0375 \text{ m}$$

A imaxe é virtual (s' > 0), dereita ($A_L > 0$) e maior ($|A_L| > 1$).

Análise: Os resultados dos cálculos están en consonancia co debuxo.

c) No foco. Os raios que saen dun obxecto situado no foco saen paralelos e non se cortan, polo que non se forma imaxe.

A maior parte das respostas pode calcularse coa folla de cálculo Fisica (gal).

As instrucións para o manexo desta folla de cálculo poden verse na ligazón instrucións.

Para ir á folla onde resolver un problema de Espellos e lentes, pode elixir unha destas opcións:

- Prema sobre a icona ▶| do grupo |◀ ◀ ▶ ▶| situado na parte inferior esquerda da folla de cálculo e prema sobre a lapela: 1 Optical.
- Ou, vaia ao índice, buscando a ligazón Indice na zona superior dereita e pulsando a tecla Ctrl mentres preme sobre Indice. No índice, pulse a tecla Ctrl mentres preme sobre a cela Espellos e lentes do capítulo **Óptica xeométrica**.

Escriba os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. Para este problema debería ser:

•	Espello	cóncavo	Unidades	cm
		Posición (cm)	Altura (cm)	
	Centro (raio)			
	Obxecto	-8	3	
	Imaxe	10		

Os resultados son:

- Posición do foco a) -40,0 cmPosición (cm) Altura (cm) **Obxecto** -8.003,00 Aumento b) **Imaxe** 10,0 3,75 1,25 Virtual Dereita Maior **Imaxe**
- 5 4 3 2 1 0 _1 -2 -3 -4 -5 -50-40-30-20-1010 20
- Un espello ten 1,5 de aumento lateral cando a cara dunha persoa está a 20 cm de ese espello.
 - a) Razoa se ese espello é plano, cóncavo ou convexo.
 - b) Debuxa o diagrama de raios.
 - c) Calcula a distancia focal do espello.

Rta.: c) f = -60 cm

(A.B.A.U. Set. 18)

Datos (convenio de signos DIN)

Posición do obxecto

Aumento lateral

Incógnitas

Distancia focal do espello

Ecuacións

Relación entre a posición da imaxe e a do obxecto nos espellos

Aumento lateral nos espellos

Relación entre a distancia focal e o radio de curvatura

Cifras significativas: 2

$$s = -20 \text{ cm} = -0.20 \text{ m}$$

$$A_{\rm L} = 1.5$$

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$$

$$v' - \frac{1}{s}$$

$$A_{L} = \frac{y}{y} = \frac{y}{s}$$

Solución:

c) Para determinar se o espello é plano, cóncavo ou convexo, calcúlase a distancia focal. Emprégase a ecuación do aumento lateral para establecer a relación entre a distancia obxecto s e a distancia imaxe s':

$$A_{\rm L} = \frac{y'}{y} = \frac{-s'}{s} = 1.5$$

Polo convenio de signos, os puntos situados á esquerda do espello teñen signo negativo.

$$s' = -1.5 \ s = -1.5 \cdot (-0.20 \ [m]) = 0.30 \ m$$

Substitúense os datos na ecuación dos espellos:

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f} \Rightarrow \frac{1}{0,30 \text{ [m]}} + \frac{1}{-0,20 \text{ [m]}} = \frac{1}{f}$$

A distancia focal calcúlase despexando:

$$\frac{1}{f} = \frac{1}{0.30 \,[\text{m}]} + \frac{1}{-0.20 \,[\text{m}]} = 3.3 \,[\text{m}]^{-1} - 5.0 \,[\text{m}]^{-1} = -1.7 \,[\text{m}]^{-1} \Rightarrow f = -0.60 \,\text{m}$$

a) O espello é cóncavo, posto que a distancia focal é negativa. O foco atópase á esquerda do espello.

b) De

Debúxase un esquema de espello cóncavo (un arco de circunferencia vertical cóncavo cara á esquerda), e sitúase o foco F á esquerda do espello, á metade da distancia entre o espello e o seu centro C. Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, horizontal cara ao espello, que se reflicte de maneira que o raio reflectido pasa polo foco F.
- Outro, cara ao espello, que se reflicte sen desviarse pasando polo centro C de curvatura do espello. Como os raios non se cortan, prolónganse alén do espello ata que as súas prolongacións se corten.

O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto.

A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u>. As instrucións para o manexo desta folla de cálculo poden verse na ligazón instrucións.

Para ir á folla onde resolver un problema de Espellos e lentes, pode elixir unha destas opcións:

- Ou, vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla Ctrl mentres preme sobre <u>Indice</u>. No índice, pulse a tecla Ctrl mentres preme sobre a cela <u>Espellos e lentes</u> do capítulo **Óptica xeométrica**.

Escriba os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. Para este problema debería ser:

Espello	cóncavo	Unidades	cm
	Posición (cm)	Altura (cm)	
Obxecto	-20		
Imaxe		1,5	
		† Aumento	

Os resultados son:

	Posi	ición do centro	-120 cr	n
c)	Po	osición do foco	-60,0 cr	n
		Posición (cm) A	ltura (cm)	
	Obxecto	-20,0	A	umento
	Imaxe	30,0		1,50
	Imaxe	Virtual	Dereita	Maior

Lentes

- 1. Un obxecto de 3 cm de altura colócase a 20 cm dunha lente delgada de 15 cm de focal. Calcula analítica e graficamente a posición e tamaño da imaxe:
 - a) Se a lente é converxente.
 - b) Se a lente é diverxente.

(P.A.U. Set. 06)

Rta.: a) s' = 0.60 m; y' = -9.0 cm; b) s' = -0.086 m; y' = 1.3 cm

Datos (convenio de signos DIN)

Tamaño do obxecto Posición do obxecto Distancia focal da lente

Incógnitas

Posición da imaxe en ambas as lentes Tamaño da imaxe en ambas as lentes

Ecuacións

Relación entre a posición da imaxe e a do obxecto nas lentes

Aumento lateral nas lentes

Cifras significativas: 2

$$y = 3.0 \text{ cm} = 0.030 \text{ m}$$

 $s = -20 \text{ cm} = -0.20 \text{ m}$
 $f = 15 \text{ cm} = 0.15 \text{ m}$

$$s_1', s_2' y_1', y_2'$$

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

$$A_{L} = \frac{y'}{y} = \frac{s'}{s}$$

Solución:

a) Polo convenio de signos, os puntos á esquerda da lente teñen un signo negativo.

Para a lente converxente, f = +0.15 m.

Substitúense os datos na ecuación das lentes:

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'} \Rightarrow \frac{1}{s'} - \frac{1}{-0.20 \, [\text{m}]} = \frac{1}{0.15 \, [\text{m}]}$$

Calcúlase a posición da imaxe despexando:

$$\frac{1}{s'} = \frac{1}{0.15 \, [\text{m}]} + \frac{1}{-0.20 \, [\text{m}]} = 6.7 \, [\text{m}]^{-1} - 5.0 \, [\text{m}]^{-1} = -1.7 \, [\text{m}]^{-1} \Rightarrow s' = 0.60 \, \text{m}$$

A imaxe fórmase a 0,60 m á dereita da lente.

Substitúense os datos na ecuación do aumento lateral nas lentes, e calcúlase a altura da imaxe despexando:

$$A_{\rm L} = \frac{y'}{y} = \frac{s'}{s} = \frac{0.60 [{\rm m}]}{-0.20 [{\rm m}]} = -3.0$$

 $y' = A_L \cdot y = -3.0 \cdot 0.030 \text{ m} = -0.090 \text{ m} = -9.0 \text{ cm}$

A imaxe é real (s´ > 0), invertida ($A_{\rm L}$ < 0) e maior (| $A_{\rm L}|$ > 1).

Debúxase un esquema de lente converxente (unha liña vertical rematada por dúas puntas de frechas) e sitúase o foco F' á dereita da lente.

Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, cara ao centro da lente. Atravésaa sen desviarse.
- Outro, horizontal cara á lente, que a atravesa e se refracta. Debúxase de forma que o raio refractado pase polo foco da dereita F'.

O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto.

b) Para a lente diverxente, f = -0.15 m.

Substitúense os datos na ecuación das lentes:

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'} \Rightarrow \frac{1}{s'} - \frac{1}{-0.20 \,[\,\mathrm{m}\,]} = \frac{1}{-0.15 \,[\,\mathrm{m}\,]}$$

Calcúlase a posición da imaxe despexando:

$$\frac{1}{s'} = \frac{1}{-0.15 \,[\mathrm{m}]} + \frac{1}{-0.20 \,[\mathrm{m}]} = -6.7 \,[\mathrm{m}]^{-1} - 5.0 \,[\mathrm{m}]^{-1} = -11.7 \,[\mathrm{m}]^{-1} \Rightarrow s' = -0.086 \,\mathrm{m}$$

A imaxe fórmase a 0,086 m á esquerda da lente.

Substitúense os datos na ecuación do aumento lateral nas lentes, e calcúlase a altura da imaxe despexando:

$$A_{\rm L} = \frac{y'}{y} = \frac{s'}{s} = \frac{-0,086 \text{ [m]}}{-0,20 \text{ [m]}} = 0,43$$

$$\dot{y} = A_{\rm L} \cdot y = 0.43 \cdot 0.030 \text{ m} = 0.013 \text{ m} = 1.3 \text{ cm}$$

A imaxe é virtual (s' < 0), dereita ($A_L > 0$) e menor ($|A_L| < 1$).

Debúxase un esquema de lente diverxente (unha liña vertical rematada por dous «ángulos» ou puntas de frechas investidas), e sitúase o foco F á esquerda da lente. Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, cara ao centro da lente. Atravésaa sen desviarse.
- Outro, horizontal cara á lente, que a atravesa e se refracta.
 Debúxase de forma que a súa prolongación pase polo foco da esquerda, F, un punto simétrico ao foco F'.

Os raios non se cortan. Córtase o raio dirixido ao centro da lente coa prolongación do raio refractado.

O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto.

Análise: En ambos os casos, os resultados dos cálculos están en consonancia cos debuxos.

As instrucións para o manexo desta folla de cálculo poden verse na ligazón instrucións.

Para ir á folla onde resolver un problema de Espellos e lentes, pode elixir unha destas opcións:

- Ou, vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla Ctrl mentres preme sobre <u>Indice</u>. No índice, pulse a tecla Ctrl mentres preme sobre a cela <u>Espellos e lentes</u> do capítulo **Óptica xeométrica**.

Escriba os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. Para este problema debería ser:

3 Obxecto -20

Os resultados son:

Para a lente diverxente, cámbiase o signo da distancia focal.

rarrera ro.	Juli		
Lente	diverxente	Unidades	cm
	Posición (cm)	Altura (cm)	
Foco	-15		
Obxecto	-20	3	

Os novos resultados son:

- Unha lente converxente proxecta sobre unha pantalla a imaxe dun obxecto. O aumento é de 10 e a distancia do obxecto á pantalla é de 2,7 m.
 - a) Determina as posicións da imaxe e do obxecto.
 - b) Debuxa a marcha dos raios.
 - c) Calcula a potencia da lente.

Rta.: a) s = -0.245 m; s' = 2.45 m; c) P = 4.49 dioptrías

(P.A.U. set. 12)

Datos (convenio de signos DIN)

Aumento da lente Distancia entre o obxecto e a súa imaxe

Incógnitas

Posición do obxecto e da imaxe

Potencial da lente

Outros símbolos

Distancia focal da lente

Ecuacións

Relación entre a posición da imaxe e a do obxecto nas lentes

Aumento lateral nas lentes

Cifras significativas: 3

 $A_{\rm L} = 10,0$ d = 2,70 m

s, s' P

 $\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$ $A_{L} = \frac{y'}{y} = \frac{s'}{s}$

Potencia dunha lente

$$P = \frac{1}{f}$$

Solución:

a) Do aumento lateral podemos establecer a relación matemática entre as distancias s do obxecto á lente e s´ da imaxe á lente.

$$A_{\rm L} = \frac{s'}{s} \Longrightarrow s' = 10.0 \text{ s}$$

A distancia do obxecto á pantalla (onde se forma a imaxe) é a suma desas dúas distancias (sen ter en conta os signos):

$$|s| + |s'| = 2,70 \text{ m}$$

Tendo en conta que, polo criterio de signos, a distancia do obxecto á lente é negativa, s < 0, pero a distancia da imaxe, cando é real, á lente é positiva s' > 0, queda:

$$-s + s' = 2,70 \text{ m}$$

Aínda que nos din que o aumento é 10, o signo correcto é −10, polo que, a relación co signo adecuado entre as dúas distancias é:

$$s' = -10.0 \ s$$

Substituíndo s' e despexando s, obtéñense os valores da distancia do obxecto e a distancia da imaxe:

$$-s - 10,0 \ s = 2,70 \ \mathrm{m}$$

$$s = \frac{2,70 \text{ [m]}}{-11,0} = -0,245 \text{ m}$$

$$s' = -10,0 \ s = 2,45 \ m$$

O obxecto atópase á 0,245 m á esquerda da lente e a imaxe fórb)

Debúxase un esquema de lente converxente (unha liña vertical rematada por dúas puntas de frechas) e sitúase o foco F' á dereita da lente.

Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, cara ao centro da lente. Atravésaa sen desviarse.
- Outro, horizontal cara á lente, que a atravesa e se refracta.

Debúxase de forma que o raio refractado pase polo foco da dereita F'.

O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto.

$$\frac{1}{2,45 \text{ [m]}} - \frac{1}{-0,245 \text{ [m]}} = \frac{1}{f} = P$$

$$P = 0,408 \text{ [m }^{-1}\text{]} + 4,08 \text{ [m }^{-1}\text{]} = 4,49 \text{ dioptrias}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u>. As instrucións para o manexo desta folla de cálculo poden verse na ligazón <u>instrucións</u>. Para ir á folla onde resolver un problema de Espellos e lentes, pode elixir unha destas opcións:

- Ou, vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla Ctrl mentres preme sobre <u>Indice</u>. No índice, pulse a tecla Ctrl mentres preme sobre a cela <u>Espellos e lentes</u> do capítulo **Óptica xeométrica**.

Escriba os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. Para este problema debería ser:

Os resultados son:

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 25/09/24

Sumario

•	
OPTICA	XEOMETRICA

Espe	llos 1
1.	Dado un espello esférico de 50 cm de radio e un obxecto de 5 cm de altura situado sobre o eixe óptico a unha distancia de 30 cm do espello, calcula analítica e graficamente a posición e tamaño da
	imaxe:1
	a) Se o espello é cóncavo
	b) Se o espello é convexo
2.	Un obxecto de 3 cm está situado a 8 cm dun espello esférico cóncavo e produce unha imaxe a 10 cm á dereita do espello:
	a) Calcula a distancia focal
	b) Debuxa a marcha dos raios e obtén o tamaño da imaxe
	c) En que posición do eixe hai que colocar o obxecto para que non se forme imaxe?
3.	Un espello ten 1,5 de aumento lateral cando a cara dunha persoa está a 20 cm de ese espello5
	a) Razoa se ese espello é plano, cóncavo ou convexo
	b) Debuxa o diagrama de raios
, ,	c) Calcula a distancia focal do espello
	es
1.	Un obxecto de 3 cm de altura colócase a 20 cm dunha lente delgada de 15 cm de focal. Calcula ana-
	lítica e graficamente a posición e tamaño da imaxe:
	a) Se a lente é converxente
	b) Se a lente é diverxente
2.	Unha lente converxente proxecta sobre unha pantalla a imaxe dun obxecto. O aumento é de 10 e a
	distancia do obxecto á pantalla é de 2,7 m9
	a) Determina as posicións da imaxe e do obxecto
	b) Debuxa a marcha dos raios
	c) Calcula a potencia da lente

Método e recomendacións