

Operadores morfológicos en escala de grises

Modelado y procesamiento de imágenes

5to Semestre

Universidad La Salle Bajío

Greys Alexa Almanza Vega

Contenido

Introducción	2
Desarrollo	
Descripción de las operaciones	
Elementos estructurantes (kernels)	
Imágenes utilizadas	
Conclusión:	

Introducción

Las operaciones morfológicas son herramientas fundamentales en el procesamiento digital de imágenes, especialmente útiles en tareas de análisis y segmentación. Tradicionalmente aplicadas a imágenes binarias, estas operaciones también pueden adaptarse a imágenes en escala de grises para preservar más información de intensidad.

Este trabajo tiene como objetivo implementar y evaluar las siguientes operaciones morfológicas básicas:

- Erosión
- Dilatación
- Apertura
- Cierre
- Top-Hat
- Black-Hat

Estas se aplican sobre imágenes en escala de grises mediante funciones personalizadas con NumPy, permitiendo así un control más directo del procesamiento.

Desarrollo

Descripción de las operaciones

- **Erosión**: Elimina detalles pequeños y reduce regiones brillantes. En grises, reemplaza el valor del píxel por el **mínimo** dentro de su vecindad definida por el kernel.
- Dilatación: Realza regiones brillantes y expande sus bordes. En grises, asigna al píxel el máximo de su vecindad.
- **Apertura**: Es una **erosión seguida de dilatación**. Sirve para eliminar pequeñas estructuras brillantes (ruido) sin afectar mucho el contorno de objetos grandes.
- Cierre: Es una dilatación seguida de erosión. Suele rellenar pequeños huecos oscuros y suaviza bordes oscuros.
- **Top-Hat**: Es la diferencia entre la imagen original y su apertura. Resalta objetos **más claros que su entorno**.
- Black-Hat: Es la diferencia entre el cierre y la imagen original. Resalta objetos más oscuros que su entorno.

Elementos estructurantes (kernels)

Se probaron dos tipos de kernels:

- **Kernel rectangular 5x5**: np.ones((5,5)). Más agresivo, genera cambios más notorios.
- Kernel en cruz 3x3:

Imágenes utilizadas

- cat.jpeg: Imagen de alta resolución con detalles y variaciones suaves en los niveles de gris.
- **sample2.jpg**: Imagen con formas más marcadas, útil para observar la acción morfológica en estructuras bien definidas.

Gato con kernels 5x5 con puros 1's:

Sample2 con kernels 3x3 en forma de cruz:

Sample2 con kernels 5x5 con puros 1's:

Conclusión:

Las operaciones morfológicas permiten modificar y analizar imágenes de manera estructurada. En escala de grises, conservan la información de intensidad, lo cual es clave para muchas aplicaciones como:

- Detección de bordes suaves
- Mejora de contraste local
- Eliminación de ruido (apertura)
- Relleno de huecos (cierre)
- Realce de detalles (Top-Hat / Black-Hat)

el elemento estructura y puede borrar o fusio		s denso afecta may	or parte
estas herramientas so adosamente según el co		ento de imágenes	y deben