

Mining Data Streams

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

- What is stream data?
- Why Stream Data Systems?
- ☐ Stream data management systems: Issues and solutions
- Stream data cube and multidimensional OLAP analysis
- Stream frequent pattern analysis
- Stream classification
- Stream cluster analysis
- Research issues

□ Reference: Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann Series in Data Management Systems (Second Edition) Chapter 8, part 1

Data Streams

- Data Streams vs DBMS
 - Data streams continuous, ordered, changing, fast, huge amount
 - Traditional DBMS data stored in finite, persistent data sets
- Characteristics
 - Huge volumes of continuous data, possibly infinite
 - Fast changing and requires fast, real-time response
 - Data stream captures nicely our data processing needs of today
 - Random access is expensive single scan algorithm (can only have one look)
 - Store only the summary of the data seen thus far
 - Most stream data are at pretty low-level or multi-dimensional in nature, needs multi-level and multi-dimensional processing

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- ☐ Financial market: stock exchange
- Engineering & industrial processes: power supply & manufacturing
- Sensor, monitoring & surveillance: video streams, RFIDs
- Security monitoring
- Web logs and Web page click streams
- Massive data sets (even saved but random access is too expensive)

- □ Persistent relations
- □One-time queries
- ■Random access
- "Unbounded" disk store
- □Only current state matters
- ■No real-time services
- ■Relatively low update rate
- □Data at any granularity
- ■Assume precise data
- ■Access plan determined by query processor, physical DB design

- ■Transient streams
- □Continuous queries
- □ Sequential access
- ■Bounded main memory
- ☐ Historical data is important
- □Real-time requirements
- □Possibly multi-GB arrival rate
- □Data at fine granularity
- □Data stale/imprecise
- ■Unpredictable/variable data arrival and characteristics

Ack. From Motwani's PODS tutorial slides

What are Challenges of Stream Data Processing?

- Multiple, continuous, rapid, time-varying, ordered streams
- Main memory computations
- Queries are often continuous
 - Evaluated continuously as stream data arrives
 - Answer updated over time
- Queries are often complex
 - Beyond element-at-a-time processing
 - Beyond stream-at-a-time processing
 - Beyond relational queries (scientific, data mining, OLAP)
- Multi-level/multi-dimensional processing and data mining
 - Most stream data are at low-level or multi-dimensional in nature

- Query types
 - One-time query vs. continuous query (being evaluated continuously as stream continues to arrive)
 - Predefined query vs. ad-hoc query (issued on-line)
- Unbounded memory requirements
 - For real-time response, main memory algorithm should be used
 - Memory requirement is unbounded if one will join future tuples
- Approximate query answering
 - With bounded memory, it is not always possible to produce exact answers
 - High-quality approximate answers are desired
 - Data reduction and synopsis construction methods: Sketches, random sampling, histograms, wavelets, etc.

What the Methodologies for Stream Data Processing?

- Major challenges
 - Keep track of a large universe, e.g., pairs of IP address, not ages
- Methodology
 - Synopses (trade-off between accuracy and storage)
 - Use synopsis data structure, much smaller (O(log^k N) space) than their base data set (O(N) space)
 - Compute an approximate answer within a small error range (factor ε of the actual answer)
- Major methods
 - Random sampling
 - Histograms
 - Sliding windows
 - Multi-resolution model
 - Sketches
 - Radomized algorithms

- Random sampling (but without knowing the total length in advance)
 - ▶ Reservoir sampling: maintain a set of s candidates in the reservoir, which form a true random sample of the element seen so far in the stream. As the data stream flow, every new element has a certain probability (s/N) of replacing an old element in the reservoir.

Sliding windows

- Make decisions based only on recent data of sliding window size w
- An element arriving at time t expires at time t + w

Histograms

- Approximate the frequency distribution of element values in a stream
- Partition data into a set of contiguous buckets
- Equal-width (equal value range for buckets) vs. V-optimal (minimizing frequency variance within each bucket)

Multi-resolution models

Popular models: balanced binary trees, micro-clusters, and wavelets

- Sliding windows
 - Only over sliding windows of recent stream data
 - Approximation but often more desirable in applications
- Batched processing, sampling and synopses
 - Batched if update is fast but computing is slow
 - Compute periodically, not very timely
 - Sampling if update is slow but computing is fast
 - Compute using sample data, but not good for joins, etc.
 - Synopsis data structures
 - Maintain a small synopsis or sketch of data
 - Good for querying historical data
- Blocking operators, e.g., sorting, avg, min, etc.
 - Blocking if unable to produce the first output until seeing the entire input

Projects on DSMS (Data Stream Management System)

- Research projects and system prototypes
 - STREAM (Stanford): A general-purpose DSMS
 - Cougar (Cornell): sensors
 - Aurora (Brown/MIT): sensor monitoring, dataflow
 - ► Hancock (AT&T): telecom streams
 - ▶ Niagara (OGI/Wisconsin): Internet XML databases
 - ▶ OpenCQ (Georgia Tech): triggers, incr. view maintenance
 - Tapestry (Xerox): pub/sub content-based filtering
 - ▶ Telegraph (Berkeley): adaptive engine for sensors
 - ► Tradebot (<u>www.tradebot.com</u>): stock tickers & streams
 - Tribeca (Bellcore): network monitoring
 - MAIDS (UIUC/NCSA): Mining Alarming Incidents in Data Streams

- ☐ Stream mining—A more challenging task in many cases
 - It shares most of the difficulties with stream querying
 - But often requires less "precision", e.g., no join, grouping, sorting
 - Patterns are hidden and more general than querying
 - ▶ It may require exploratory analysis, not necessarily continuous queries
- Stream data mining tasks
 - Multi-dimensional on-line analysis of streams
 - Mining outliers and unusual patterns in stream data
 - Clustering data streams
 - Classification of stream data

Challenges for Mining Dynamics in Data Streams

- Most stream data are at pretty low-level or multidimensional in nature: needs ML/MD processing
- Analysis requirements
 - Multi-dimensional trends and unusual patterns
 - Capturing important changes at multi-dimensions/levels
 - Fast, real-time detection and response
 - Comparing with data cube: Similarity and differences
- ☐ Stream (data) cube or stream OLAP: Is this feasible?
 - Can we implement it efficiently?

Multi-Dimensional Stream Analysis: Examples

Analysis of Web click streams

- Raw data at low levels: seconds, web page addresses, user IP addresses, ...
- Analysts want: changes, trends, unusual patterns, at reasonable levels of details
- ▶ E.g., Average clicking traffic in North America on sports in the last 15 minutes is 40% higher than that in the last 24 hours."

Analysis of power consumption streams

- Raw data: power consumption flow for every household, every minute
- ▶ Patterns one may find: average hourly power consumption surges up 30% for manufacturing companies in Chicago in the last 2 hours today than that of the same day a week ago

Architectures

- A tilted time frame
 - ▶ Different time granularities: second, minute, quarter, hour, day, week, ...
- Critical layers
 - Minimum interest layer (m-layer)
 - Observation layer (o-layer)
 - User: watches at o-layer and occasionally needs to drilldown down to m-layer
- Partial materialization of stream cubes
 - Full materialization: too space and time consuming
 - ▶ No materialization: slow response at query time
 - Partial materialization: what do we mean "partial"?

- Natural tilted time frame:
 - Example: Minimal: quarter, then 4 quarters → 1 hour, 24 hours → day, ...

- Logarithmic tilted time frame:
 - ▶ Example: Minimal: 1 minute, then 1, 2, 4, 8, 16, 32, ...

Pyramidal tilted time frame

- Example: Suppose there are 5 frames and each takes maximal 3 snapshots
- ▶ Given a snapshot number N, if N mod 2d = 0, insert into the frame number d. If there are more than 3 snapshots, "kick out" the oldest one.

Frame no.	Snapshots (by clock time)
0	69 67 65
1	70 66 62
2	68 60 52
3	56 40 24
4	48 16
5	64 32

On-Line Partial Materialization vs. OLAP Processing

- On-line materialization
 - Materialization takes precious space and time
 - Only incremental materialization (with tilted time frame)
 - Only materialize "cuboids" of the critical layers?
 - Online computation may take too much time
 - Preferred solution:
 - popular-path approach: Materializing those along the popular drilling paths
 - H-tree structure: Such cuboids can be computed and stored efficiently using the H-tree structure
- Online aggregation vs. query-based computation
 - Online computing while streaming: aggregating stream cubes
 - Query-based computation: using computed cuboids

Stream Cube Structure: From m-layer to o-layer

An H-Tree Cubing Structure

- H-tree and H-cubing
 - Developed for computing data cubes and ice-berg cubes
 - Fast cubing, space preserving in cube computation
- Using H-tree for stream cubing
 - Space preserving: intermediate aggregates can be computed incrementally and saved in tree nodes
 - Facilitate computing other cells and multi-dimensional analysis
 - H-tree with computed cells can be viewed as stream cube

Frequent patterns

- Frequent pattern mining is valuable in stream applications
 - e.g., network intrusion mining
- Mining precise freq. patterns in stream data: unrealistic
 - Even store them in a compressed form, such as FPtree
- How to mine frequent patterns with good approximation?
 - Approximate frequent patterns (Manku & Motwani VLDB'02)
 - Keep only current frequent patterns? No changes can be detected
- Mining evolution freq. patterns(C. Giannella, J. Han, X. Yan, P.S. Yu, 2003)
 - Use tilted time window frame
 - Mining evolution and dramatic changes of frequent patterns
- Space-saving computation of frequent and top-k elements (Metwally, Agrawal, and El Abbadi, ICDT'05)

- Mining precise freq. patterns in stream data: unrealistic
 - ▶ Even store them in a compressed form, such as FPtree
- Approximate answers are often sufficient (e.g., trend/pattern analysis)
- Example: a router is interested in all flows:
 - whose frequency is at least 1% (σ) of the entire traffic stream seen so far
 - ▶ and feels that 1/10 of σ ($\epsilon = 0.1\%$) error is comfortable
- How to mine frequent patterns with good approximation?
 - Lossy Counting Algorithm (Manku & Motwani, VLDB'02)
 - Major ideas: not tracing items until it becomes frequent
 - Adv: guaranteed error bound
 - Disadv: keep a large set of traces

Divide Stream into 'Buckets' (bucket size is $1/\epsilon = 1000$)

At bucket boundary, decrease all counters by 1

At bucket boundary, decrease all counters by 1

- Given
 - \triangleright (1) support threshold: σ ,
 - (2) error threshold: ε, and
 - (3) stream length N
- \Box Output: items with frequency counts exceeding (σ ε) N
- How much do we undercount?
 - If (stream length seen so far = N) and (bucket-size = 1/ε) then frequency count error ≤ #buckets = εN
- Approximation guarantee
 - No false negatives
 - ▶ False positives have true frequency count at least (σ-ε)N
 - Frequency count underestimated by at most εΝ
 - ▶ The space requirement is limited to $1/\epsilon \log(\epsilon N)$

Divide Stream into 'Buckets' as for frequent items

But fill as many buckets as possible in main memory one time

If we put 3 buckets of data into main memory one time, Then decrease each frequency count by 3

Itemset (■) is deleted.

That's why we choose a large number of buckets

– delete more

If we find itemset () is not frequent itemset, Then we needn't consider its superset

- Strength
 - ▶ A simple idea
 - Can be extended to frequent itemsets
- Weakness:
 - Space Bound is not good
 - ▶ For frequent itemsets, they do scan each record many times
 - ► The output is based on all previous data. But sometimes, we are only interested in recent data
- A space-saving method for stream frequent item mining
 - Metwally, Agrawal and El Abbadi, ICDT'05

Mining Evolution of Frequent Patterns for Stream Data

- Approximate frequent patterns (Manku & Motwani VLDB'02)
 - Keep only current frequent patterns: No changes can be detected
- Mining evolution and dramatic changes of frequent patterns (Giannella, Han, Yan, Yu, 2003)
 - Use tilted time window frame
 - Use compressed form to store significant (approximate)
 frequent patterns and their time-dependent traces
- Note: To mine precise counts, one has to trace/keep a fixed (and small) set of items

Two Structures for Mining Frequent Patterns with Tilted-Time Window (2)

■The second data structure:

- Observation: FP-Trees of different time units are similar
- Pattern-tree major: each node is associated with a tilted-time window

Classification

Classification in Data Streams What are the issues?

- It is impossible to store the whole data set, as traditional classification algorithms require
- It is usually not possible to perform multiple scans of the input data
- □ Data streams are time-varying! There is concept drift.

- Decision tree induction for stream data classification
 - ▶ VFDT (Very Fast Decision Tree)/CVFDT
- Is decision-tree good for modeling fast changing data, e.g., stock market analysis?
- Other stream classification methods
 - Instead of decision-trees, consider other models: Naïve Bayesian, Ensemble (Wang, Fan, Yu, Han. KDD'03) K-nearest neighbors (Aggarwal, Han, Wang, Yu. KDD'04)
 - ► Tilted time framework, incremental updating, dynamic maintenance, and model construction
 - Comparing of models to find changes

- Initially introduced to analyze click-streams
- With high probability, classifies tuples the same
- Only uses small sample
 - Based on Hoeffding Bound principle
- Hoeffding Bound (Additive Chernoff Bound)
 - r: random variable representing the attribute selection method
 - R: range of r
 - n: # independent observations
 - ▶ Mean of r is at least r_{avq} ϵ , with probability 1 δ

$$\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}$$

□ The algorithm uses the bound to determin, with high probability the smallest number N of examples needed at a node to select the splitting attribute

Hoeffding Tree Algorithm

- Hoeffding Tree Input
 - S: sequence of examples
 - X: attributes
 - ▶ G(): evaluation function
 - δ: desired accuracy

```
for each example in S  \begin{array}{lll} & \text{retrieve } G(X_a) & \text{and } G(X_b) & \text{//two highest } G(X_i) \\ & \text{if } (\ G(X_a) - G(X_b) \ > \epsilon \ ) \\ & \text{split on } X_a \\ & \text{recurse to next node} \\ & \text{break} \end{array}
```

 Complexity is O(ldvc) where I is the depth, d is the number of attributes, v is the maximum number of attributes, c is the number of classes

Decision-Tree Induction with Data Streams

Hoeffding Tree: Strengths and Weaknesses

Strengths

- Scales better than traditional methods
 - Sublinear with sampling
 - Very small memory utilization
- Incremental
 - Make class predictions in parallel
 - New examples are added as they come

Weaknesses

- Could spend a lot of time with ties
- Memory used with tree expansion
- Number of candidate attributes

- Modifications to Hoeffding Tree
 - Near-ties broken more aggressively
 - G computed every nmin
 - Deactivates certain leaves to save memory
 - Poor attributes dropped
 - Initialize with traditional learner (helps learning curve)
- Compare to Hoeffding Tree: Better time and memory
- Compare to traditional decision tree
 - Similar accuracy
 - Better runtime with 1.61 million examples
 - 21 minutes for VFDT
 - 24 hours for C4.5
- Still does not handle concept drift

- Concept Drift
 - Time-changing data streams
 - Incorporate new and eliminate old
- CVFDT
 - Increments count with new example
 - Decrement old example
 - Sliding window
 - Nodes assigned monotonically increasing IDs
 - Grows alternate subtrees
 - When alternate more accurate, then replace old
 - O(w) better runtime than VFDT-window

- ☐ H. Wang, W. Fan, P. S. Yu, and J. Han, "Mining Concept-Drifting Data Streams using Ensemble Classifiers", KDD'03.
- Method (derived from the ensemble idea in classification)

train K classifiers from K chunks
for each subsequent chunk
 train a new classifier
 test other classifiers against the chunk
 assign weight to each classifier
 select top K classifiers

Clustering

Clustering Evolving Data Streams What methodologies?

- Compute and store summaries of past data
- Apply a divide-and-conquer strategy
- Incremental clustering of incoming data streams
- Perform microclustering as well as macroclustering anlysis
- Explore multiple time granularity for the analysis of cluster evolution
- Divide stream clustering into on-line and off-line processes

- Base on the k-median method
 - Data stream points from metric space
 - ► Find k clusters in the stream s.t. the sum of distances from data points to their closest center is minimized
- ☐ Constant factor approximation algorithm In small space, a simple two step algorithm:
 - 1. For each set of M records, S_i , find O(k) centers in S_1 , ..., S_l Local clustering: Assign each point in S_i to its closest center
 - 2. Let S' be centers for S₁, ..., S_I with each center weighted by number of points assigned to it Cluster S' to find k centers

data points

- Method
 - Maintain at most m level-i medians
 - On seeing m of them, generate O(k) level-(i+1) medians of weight equal to the sum of the weights of the intermediate medians assigned to them
- Drawbacks
 - Low quality for evolving data streams (register only k centers)
 - ► Limited functionality in discovering and exploring clusters over different portions of the stream over time

- Network intrusion detection: one example
 - Detect bursts of activities or abrupt changes in real time by on-line clustering
- □ The methodology by C. Agarwal, J. Han, J. Wang, P.S. Yu, VLDB'03
 - Tilted time frame work: o.w. dynamic changes cannot be found
 - ▶ Micro-clustering: better quality than k-means/k-median
 - incremental, online processing and maintenance)
 - ▶ Two stages: micro-clustering and macro-clustering
 - With limited "overhead" to achieve high efficiency, scalability, quality of results and power of evolution/change detection

CluStream: A Framework for Clustering Evolving Data Streams

Design goal

- High quality for clustering evolving data streams with greater functionality
- While keep the stream mining requirement in mind
 - One-pass over the original stream data
 - Limited space usage and high efficiency

CluStream: A framework for clustering evolving data streams

- Divide the clustering process into online and offline components
- Online component: periodically stores summary statistics about the stream data
- ▶ Offline component: answers various user questions based on the stored summary statistics

■ Micro-cluster

- Statistical information about data locality
- Temporal extension of the cluster-feature vector
 - Multi-dimensional points $X_1 ... X_k ...$ with time stamps $T_1 ... T_k ...$
 - Each point contains d dimensions, i.e., $X = (x^1 \dots x^d)$
 - A micro-cluster for n points is defined as a (2.d + 3) tuple

$$(\overline{CF2^x}, \overline{CF1^x}, CF2^t, CF1^t, n)$$

Pyramidal time frame

Decide at what moments the snapshots of the statistical information are stored away on disk

- Snapshots of a set of micro-clusters are stored following the pyramidal pattern
- They are stored at differing levels of granularity depending on the recency
- Snapshots are classified into different orders varying from 1 to log(T)
 - ▶ The i-th order snapshots occur at intervals of a^i where $a \ge 1$
 - Only the last (a + 1) snapshots are stored

- Online micro-cluster maintenance
 - Initial creation of q micro-clusters
 - q is usually significantly larger than the number of natural clusters
 - Online incremental update of micro-clusters
 - If new point is within max-boundary, insert into the micro-cluster
 - O.w., create a new cluster
 - May delete obsolete micro-cluster or merge two closest ones
- Query-based macro-clustering
 - Based on a user-specified time-horizon h and the number of macro-clusters K, compute macroclusters using the k-means algorithm

Stream Data Mining: What are the Research Issues?

- Mining sequential patterns in data streams
- Mining partial periodicity in data streams
- Mining notable gradients in data streams
- Mining outliers and unusual patterns in data streams
- Stream clustering
 - Multi-dimensional clustering analysis? Cluster not confined to 2-D metric space, how to incorporate other features, especially non-numerical properties
 - Stream clustering with other clustering approaches?
 - Constraint-based cluster analysis with data streams?

Summary

- Stream Data Mining is a rich and on-going research field
- Current research focus in database community:
 - DSMS system architecture
 - Continuous query processing
 - Supporting mechanisms
- Stream data mining and stream OLAP analysis
 - Powerful tools for finding general and unusual patterns
 - Effectiveness, efficiency and scalability: lots of open problems
- Philosophy on stream data analysis and mining
 - ► A multi-dimensional stream analysis framework
 - ▶ Time is a special dimension: Tilted time frame
 - What to compute and what to save?—Critical layers
 - Partial materialization and precomputation
 - Mining dynamics of stream data

- C. Aggarwal, J. Han, J. Wang, P. S. Yu. A Framework for Clustering Data Streams, VLDB'03
- C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. On-Demand Classification of Evolving Data Streams, KDD'04
- C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for Projected Clustering of High Dimensional Data Streams, VLDB'04
- S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD Record, Sept. 2001
- B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. Models and Issues in Data Stream Systems", PODS'02. (Conference tutorial)
- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. "Multi-Dimensional Regression Analysis of Time-Series Data Streams, VLDB'02
- ☐ P. Domingos and G. Hulten, "Mining high-speed data streams", KDD'00
- A. Dobra, M. N. Garofalakis, J. Gehrke, R. Rastogi. Processing Complex Aggregate Queries over Data Streams, SIGMOD'02
- J. Gehrke, F. Korn, D. Srivastava. On computing correlated aggregates over continuous data streams. SIGMOD'01
- □ C. Giannella, J. Han, J. Pei, X. Yan and P.S. Yu. Mining frequent patterns in data streams at multiple time granularities, Kargupta, et al. (eds.), Next Generation Data Mining'04

- □ S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering Data Streams, FOCS'00
- □ G. Hulten, L. Spencer and P. Domingos: Mining time-changing data streams. KDD 2001
- S. Madden, M. Shah, J. Hellerstein, V. Raman, Continuously Adaptive Continuous Queries over Streams, SIGMOD02
- □ G. Manku, R. Motwani. Approximate Frequency Counts over Data Streams, VLDB'02
- A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of Frequent and Top-k Elements in Data Streams. ICDT'05
- S. Muthukrishnan, Data streams: algorithms and applications, Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, 2003
- R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press, 1995
- S. Viglas and J. Naughton, Rate-Based Query Optimization for Streaming Information Sources, SIGMOD'02
- Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time, VLDB'02
- □ H. Wang, W. Fan, P. S. Yu, and J. Han, Mining Concept-Drifting Data Streams using Ensemble Classifiers, KDD'03