Categoria Condensada

Luiz Felipe Andrade Campos

14 de outubro de 2022

Resumo

Caveat Lector. Notas, em construção, sobre dois seminários apresentados, no segundo semestre de 2022, no seminário de Matemática Condensada da UFMG. As referências destas notas são:

- os trabalhos originais: [1] e [2];
- The Stacks Project [3];
- nlab [4].

Sumário

1	Revisão		
	1.1	Geometria Algébrica	2
		Sites e Topoi	
	1.3	Conjuntos Profinitos	5
2	O s	ite de conjuntos profinitos	6
	2.1	Site pro-étale de um esquema	ô
	2.2	$\mathbf{ProFinSet} \simeq \star_{\mathrm{pro\acute{e}t}} \ldots \ldots 10$	Э
3	Cat	egoria Condensada 11	1
	3.1	Primeira definição	1
	3.2	Problemas com tamanho	2
	3.3	Cardinais de limite forte	3
	3.4	Segunda definição	4

1 Revisão

1.1 Geometria Algébrica

Esquemas

Primeiramente, vamos introduzir o objeto central de estudo em Geometria Álgebrica moderna: Esquemas.

Definition 1.1 (Espaço (localmente) anelado).

- 1. Um **espaço anelado** (X, \mathcal{O}) é um espaço topológico X é um feixe de anéis \mathcal{O} em X.
- 2. Um **espaço (localmente) anelado** é um espaço anelado cujos stalks são aneis locais.

Definition 1.2 (Espectro). Dado um anel comutativo com unidade, o seu **espectro** é o espço topológico definido por

$$\operatorname{Spec}(R) := \{ \mathfrak{p} \subset R \mid \mathfrak{p} \text{ \'e primo} \}$$

munido da topologia de Zariski, i.e., os fechados são da forma

$$V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid I \subset \mathfrak{P} \}.$$

onde I é um ideal de R.

Example 1.1. Os pontos da curva $y^2 - x^3 = 0$ podem ser vistos como os ideais maximais do anel de coordenadas

$$k[X,Y]/(Y^2 - X^3).$$

Ou seja, a informação sobre a curva está contida no espectro deste anel. Para mais exemplos, veja as notas do André. $\hfill\Box$

Proposition 1.1 (Fatos de Geometria Alébrica).

1. Para cada $f \in R$,

$$(\operatorname{Spec}(R))_f := \{ p \in \operatorname{Spec}(R) \mid f \notin \mathfrak{p} \}$$

 \acute{e} um aberto de $\operatorname{Spec}(R)$.

2. $\{(\operatorname{Spec} R)_f\}_{f\in R}$ é uma base da topologia de Zariski.

- 3. Spec R é quasi-compacto, i.e., usualmente compacto, mas não necessariamente Hausdorff (aliás, raramente é Hausdorff).
- 4. Existe um feixe canônico $\mathcal{O}_{\operatorname{Spec} R}$ para um espectro, que é um subanel de $\Pi_{p\in U}R_p$, onde

$$R_p = \lim_{\substack{\to \\ f \in R-p}} R_f.$$

Ou seja, uma grande colagem de localizações. Explicitamente, ele é dado por

$$\mathcal{O}_{\mathrm{Spec}(R)}(U) = \{s: U \to \coprod_{p \in U} R_p \mid s(p) \in R_p \ \forall p \in U \ e \ s \ \'e \ localmente \ uma \ fração\}$$

A verificação de que isto é de fato um feixe é igual à prova de que a feixeficação de um pré-feixe é um feixe.

5. O feixe canônico em abertos básicos:

$$\mathcal{O}_{\operatorname{Spec} R}((\operatorname{Spec} R)_f) \simeq R_f \forall f \in R$$

6. O feixe globalmente:

$$\mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) \simeq R$$

7. O feixe localmente:

$$\mathcal{O}_{\operatorname{Spec} R,p} \simeq R_p, \forall p \in \operatorname{Spec} R.$$

Segue que (Spec R, $\mathcal{O}_{\operatorname{Spec} R}$) é um espaço localmente anelado.

Definition 1.3 (Esquemas).

1. Um **esquema afim** é um espaço localmente anelado da forma

$$(\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R}),$$

onde $\mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R)$ é o feixe canônico de $\operatorname{Spec}(R)$;

2. Um **esquema** é um espaço localmente anelado (X, \mathcal{O}) tal que para cada ponto $x \in X$ existe um aberto U contendo x tal que

$$(U,\mathcal{O}|_U))$$

é isomorfo a um esquema afim.

Definition 1.4 (Morfismo de Esquemas). Um morfismo de esquemas

$$F:(X,\mathcal{O}_X)\to (Y.\mathcal{O}_Y)$$

é um um par (f, ϕ) onde f é uma função contínua e ϕ é um morfismo de feixes de anéis. \Box

1.2 Sites e Topoi

Topologia de Grothendieck

Definition 1.5 (Topologia de Grothendieck e Site). Seja C uma categoria.

- 1. Uma **topologia de Grothendieck** sobre **C** consiste de um conjunto Cov(X), para cada objeto $X \in Ob(\mathbf{C})$, cujos elementos são coleções de morfismos $\{X_i \to X\}_{i \in \mathcal{A}}^1$ satisfazendo
 - (a) (Isomorfismos) Se $U \to X$ é um isomorfismo, então $\{U \to X\} \in \text{Cov}(X)$;
 - (b) (Existência de pullbacks)
 - (c) (Estabilidade por pullbacks/mudança de base) Se $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$ e $Y \to X$ é qualquer morfismo em \mathbb{C} , então a coleção

$${X_i \times_X Y \to Y}_{i \in I} \in Cov(Y).$$

(d) (Estabilidade por refinamentos) Se $\{X_i \in X\}_{i \in I} \in \text{Cov}(X)$ e para cada $i \in I$ são dados $\{U_{ij} \to X_i\}_{j \in J_i} \in \text{Cov}(X_i)$, então

$${U_{ij} \to X_i \to X}_{i \in I, j \in J_i} \in Cov(X).$$

2. Uma categoria munida de uma topologia de Grothendieck é chamada de ${f site}.$

Topologia de Zariski

Definition 1.6. Seja T um esquma. Uma **cobertura de Zariski** de T é uma família de morfismos $\{f_i: T_i \to T\}_{i \in I}$ de esquemas tais que f_i é uma imersão aberta e tal que $T = \bigcup_i f_i(T_i)$.

 $^{^1\}text{Aqui},\,\mathcal{A}$ é um conjunto de índices que não é necessariamente o mesmo para todos os elementos de Cov(X).

Topologia fpqc

Definition 1.7. Um morfismo $f: X \to S$ de esquemas é flat se em cada ponto $x \in X$ o anel local $\mathcal{O}_{X,x}$ é flat sobre o anel local $\mathcal{O}_{S,f(x)}$. Lembre que um modulo M sobre um anel R é flat se o funtor $-\otimes_R M: Mod_R \to Mod_R$ é exato, i.e., leva sequências exatas em sequências exatas. Um morfismo de aneis $R \to A$ é flat se A é flat como R-modulo.

Definition 1.8. Uma cobertura fpqc é do tipo $\{\phi_i : T_i \to T\}$

- 1. cada ϕ_i é flat e $U_{i \in I} \phi_i(T_i) = T$
- 2. cada aberto afim do codominio é coberto pela imagem de finitos aberto afins do dominio.

1.3 Conjuntos Profinitos

Definition 1.9. Um **conjunto profinito** é um limite inverso, na categoria **HTOP**, de um sistema inverso de conjuntos finitos discretos. □

Vamos denotar por **ProFinSet** como sendo a categoria cujos objetos são conjuntos profinitos e morfismos mapas contínuos.

2 O site de conjuntos profinitos

2.1 Site pro-étale de um esquema

Motivação

Topologia pro-étale

Definition 2.1 (Morfismos fracamente étale). Um morfismo de esquemas $f: Y \to X$ é fracamente étale se

- f é plano;
- $\Delta_f: Y \to Y \times_X Y$ é plano.

Os morfismos considerados na topologia pro-étale serão precisamente os morfismos fracamente étale. A ideia é enfraquecer a condição de finitude nas fibras dos morfismos étale, tendo em vista que

morfismo étale \implies morfismo frac. étale \implies morfismos formalmente étale

Definition 2.2. Definimos a categoria $X_{\text{pro\acute{e}t}}$ de X-esquemas fracamente étale como sendo a categoria slice Sch/X , i.e.,

- os objetos de são morfimos $f:Y\to X$ fracamente étale, onde Y é um esquema;
- os morfismos $g: f \to f'$ são diagramas comutativos

Munimos essa categoria com a estrutura de site dada pela topologia fpqc. \Box

Para estudar a categoria de feixes $Shv(X_{pro\acute{e}t})$, precisamos de uma classe especial de morfismos fracamente étale que servem como geradores para a topologia pro-étale.

Definition 2.3. Fixe um esquema X. Um objeto $U \in X_{\text{pro\acute{e}t}}$ é chamado **pro-étale afim** se pode ser escrito como

$$U = \lim_{\substack{i \\ \to}} U_i$$

para um diagram cofiltrado $i \mapsto U_i$ de esquemas afins em X_t . Neste caso, dizemos que a expressão $U = \lim_i U_i$ é uma **apresentação de** U. A subcategoria plena de $X_{\text{proét}}$ restrita a objetos pro-étale afins é denotada por X_{prot}^{aff} ;.

O motivo de considerarmos esquemas pro-étale afins é o seguinte lema.

Lemma 2.1. O topos $\operatorname{Shv}(X_{pro\acute{e}t})$ é gerado por $X_{pro\acute{e}t}^{aff}$, i.e., todo $Y \in X_{pro\acute{e}t}$ admite uma sobrejeção $\coprod_i U_i \to Y$ em $X_{pro\acute{e}t}$, com $U_i \in X_{pro\acute{e}t}^{aff}$.

Demonstração. Veja o Lema 4.2.4 em Scholze.

Um feixe na topologia pro-étale pode ser caracterizada da seguinte forma:

Proposition 2.1. Um pré-feixe F em $X_{pro\acute{e}t}$ é um feixe se e somente se

1. para qualquer sobrejeção $V \to U$ em $X_{pro\acute{e}t}^{a\!f\!f},$ a sequência

$$F(U) \to F(V) \Longrightarrow F(V \times_U V)$$

é exata;

2. o pré-feixe F é um feixe em relação ao site de Zariski.

Demonstração. A parte "somente se"é óbvia. Logo, a parte "se"é a única que merece atenção. Assuma que F é um pré-feixe satisfazendo as condições 1. e 2. e vejamos que é um feixe, i.e., que para todo objeto U de $X_{\text{proét}}$ e cobertura $\{U_i \to U\}_{i \in I}$ vale

$$F(U) \stackrel{\simeq}{\to} \operatorname{eq} (\Pi_i F(U_i) \rightrightarrows \Pi_{i,j} F(U_i \times_U U_j))$$

Vamos usar a seguinte propriedade importante de feixes de Zariski:

$$T$$
 é um feixe de Zariski $\implies T(\coprod_i U_i) = \prod_i T(U_i)$

Ainda não encontrei uma resposta ou referência para esse fato, mas acredito que tem haver com algum critério de representabilidade para feixes de Zariski.

- F é separado: Fixe uma cobertura pro-étale $V \to U$.
 - Caso U afim: pelo lemma 2.1, existe uma cobertura $W \to U$, com $U, W \in X_{\text{pro\acute{e}t}}^{\text{aff}}$ que refina $V \to U$. Pela condição 2., $F(U) \to F(W)$ é injetivo e, consequentemente, $F(U) \to F(V)$ é injetivo.
 - Caso geral: seja $V \to U$ uma cobertura pro-étale arbitrária. Seja $\{U_i\}$ uma cobertura afim de U e defina $V_i:=V\times_U U_i$. Temos que a composição

$$F(U) \to \Pi_i F(U_i) \to \Pi F(V_i) = \Pi_i V \times_U U_i = V \times_U \Pi_i U_i = F(V)$$

é injetiva, onde a penúltima igualdade acima decorre da topologia fpqc.

- F é um feixe: seja $f: V \to U$ uma cobertura pro-étale.
 - Caso U afim: novamente, existe um cobertura $W \to U$ com $W \in X_{\text{pro\acute{e}t}}^{\text{aff}}$ que refina $V \to U$. Considere o seguinte diagrama comutativo:

$$F(U) \longrightarrow F(V) \Longrightarrow F(V \times_U V)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F(U) \longrightarrow F(W) \Longrightarrow F(W \times_U V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(V) \longrightarrow F(V \times_U W)$$

Por hipótese, a linha do meio é um diagram de equalizador. Vejamos que a linha de cima também o é. Suponha $s \in F(V)$ é tal que suas duas imagens pelas projeções sõa iguais. Então o mesmo vale para $s|_W$. Pela condição 2., existe um único $t \in F(U)$ tal que $t|_W = S|_W$. Note que $F(V) \to F(V \times_U W)$ é injetivo. Temos que ambos $t|_V$ e s são mapeados ao mesmo elemento por este mapa e, portanto, $t|_V = s$. Segue que t é o único elemento com essa propriedade.

– Caso geral: seja $\{U_i \to U\}$ cobertura afim de $U, U_{ij} := U_i \cap U_j,$ $VV_i := V \times_U U_i$ e $V_{ij} := V \times_U U_{ij}$. Considere o seguinte diagrama comutativo:

Por hipótese, todos os pares de setas duplas, exceto no diagrama da linha de cima, são equalizadores. Vamos provar que o de cima também o é. Suponha $s \in F(V)$ tal que as duas imagens pelas projeções no diagrama de cima são iguais. Então o mesmo acontece $s|_{V_i} \in F(V_i)$ para todo i. Logo, existe um único $t_i \in F(U_i)$ tal que $t_i|_{V_i}s|_{V_i}$ para todo i. Note que o mapa

$$\Pi_{i,j}F(U_{ij}) \to \Pi_{i,j}F(V_{ij})$$

é injetivo. Logo, as duas imagens de t_i pelas setas duplas para baixo são iguais. Segue que existe um único $t \in F(U)$ tal que $T_{U_i} = t_i$. Agora, $t|_V$ e s mapeiam o mesmo elemento de $\Pi_i F(U_{ij})$ para $t|_V = s$.

Concluímos que F é um feixe em X_{pro-t} .

Proposition 2.2 (Exemplo que queremos ter em mente). Seja T um espaço topológico e X um esquema. Considere o pré-feixe

$$F_T: X_{pro\acute{e}t} \to \mathbf{Set}$$

$$U \mapsto \mathrm{Hom}_{\mathrm{Top}}(U, T).$$

Então F_T é um feixe pro-étale.

Demonstração. Veja o lema 4.2.12 de Scholze.

O examplo 3.3 que nos interesse em matemática condensada é um caso especial da proposição 2.2.

Produto Tensorial

A categoria $X_{\text{pro\acute{e}t}}$ pode ser tensorizada por conjuntos profinitos. Mais precisamente, dado um conjunto profinito S e $Y \in X_{\text{pro\acute{e}t}}$, vamos definir $Y \otimes S \in X_{\text{pro\acute{e}t}}$.

- Por definição, temos $S = \lim_{\leftarrow i} S_i$, onde S_i são conjuntos finitos;
- Para cada i, podemos considerar o X-esquema constante $\underline{S_i} \in X_{\text{\'et}} \subset X_{\text{pro\'et}}$ com valor S_i ;
- Defina

$$\underline{S} := \lim_{\leftarrow} \underline{S_i}$$

е

$$Y \otimes S := Y \times_X S$$
.

Se X é q
cqs, então para todo X-esquema U finitamente apresentado, tem-se

$$\operatorname{Hom}_X(Y \otimes S, U) = \operatorname{colim}_i \operatorname{Hom}_X(Y \otimes S_i, U) = \operatorname{colim}_i \Pi_{S_i} \operatorname{Hom}_X(Y, U).$$

Para uma prova deste fato, veja Definição 29.21.1 e Proposição 32.6.1 de [3].

2.2 ProFinSet $\simeq \star_{pro\acute{e}t}$

Se k é um corpo e \overline{k} é um fecho separável, considere o funtor $S \to \underline{S}$ como acima. Para provar que as categorias **ProFinSet** e $\star_{\text{pro\acute{e}t}}$ são equivalentes, temos que provar a existência de uma adjunção para um funtor $S \mapsto \underline{S}$. O artigo original não parece explicitar essa inversa no exemplo 4.1.10. Como tínhamos discutido no seminário, dado Y esquema, uma ideia natural para definir um conjunto profinito S_Y seria considerar o isomorfismo

$$\operatorname{Hom}(Y \otimes S, \operatorname{Spec}(\overline{k})) \simeq \operatorname{colim}_i \Pi_{S_i} \operatorname{Hom}_X(Y, \operatorname{Spec}(\overline{k}))$$

e usar o fato de que $\operatorname{Hom}_X(Y,\operatorname{Spec}(\overline{k}))$, pois $\operatorname{Spec}(\overline{k})$ é objeto terminal. Este argumento não está claro, pois o isomorfismo depende de um conjunto profinito S fixado, que é o que queremos definir.

Definimos uma topologia de Grothendieck em **ProfiniteSet** da seguinte forma: se X é um conjunto profinito, então Cov(X) são as famílias finitas de morfismos com codomínio X conjuntamente sobrejetivas², i.e.,

$$Cov(X) := \{ \{ X_i \stackrel{\alpha_i}{\to} X \}_{i \in I} \mid |I| < \infty \text{ e } \coprod_{i \in I} \alpha_i(X_i) = X \}.$$

Vamos estudar esse site e essa topologia em detalhes semana que vem.

 $^{^2\}mathrm{Aqui},$ fiz uma tradução literal de $jointly\ surjective.$

3 Categoria Condensada

3.1 Primeira definição

Definition 3.1. Um conjunto/anel/grupo/... condensado é um feixe

$$T: \mathbf{ProFinSet}^{op} \to \mathbf{Set}$$

 $S \mapsto T(S).$

Dado um conjunto condensado T, nos referimos a $T(\star)$ como o seu **conjunto** subjacente.

Aqui temos que a condição de feixe é equivalente às seguintes condições:

- 1. $T(\emptyset) = \star$;
- 2. para quaisquer conjuntos profinitos S_1, S_2 , o mapa natural

$$T(S_1 \sqcup S_2) \to T(S_1) \times T(S_2)$$

é uma bijeção;

3. para qualquer sobrejeção $S' \to S$ de conjuntos profinitos com produto fibrado $S' \times_S S'$ e suas duas projeções p_1, p_2 em S, o mapa

$$T(S) \to \{x \in T(S') \mid p_1^*(x) = p_2^*(x) \in T(S' \times_S S')\}$$

é uma bijeção.

A condição 1. apenas diz que o funtor T mapeia objeto inicial em objeto terminal. Ela segue da condição 2. se considerar objetos inicial/terminal como colomite/limite de um diagrama vazio.

Lembre a condição de feixe: para todo objeto U e cobertura $\{U_i \to U\}_{i \in I}$,

$$TU \to \Pi_i TU_i \stackrel{pr_1^*}{\underset{pr_2^*}{\Longrightarrow}} \Pi_{i,j} T(U_i \times_U U_j)$$

é um equalizador. As condições 2. e 3. são equivalentes à condição de T ser um feixe pela proposição 2.1.

3.2 Problemas com tamanho

A definição apresentada acima é problemática do ponto de vista da teoria de conjuntos, uma vez que a categoria de conjuntos profinitos é *grande*. Mais precisamente, a coleção de conjuntos profinitos **não** é um conjunto. Vejamos a seguir algumas propriedades de pre-feixes sobre sites que dependem da categoria domínio ser pequena:

- Existência de feixeficação: não é tão problemática pois estamos definimos a categoria condensada como uma categoria de feixes.
- Existência de colimites na categoria de feixes:
- Categoria de Feixes ser cartesiana fechada: ainda mais, a bijeção entre hom-sets

$$hom(X \times Y, Z) \simeq hom(X, Z^Y)$$

só faz sentido para categorias localmente pequenas.

• Categoria de feixes ser um topos:

3.3 Cardinais de limite forte

Uma forma de resolver o problema de tamanho da definição 3.1 é primeiro considerar uma versão truncada dela, nos restringindo a conjuntos profinitos de cardinalidade limitada. Vamos antes revisar alguns conceitos sobre cardinais.

Definition 3.2.

1. Um cardinal κ é um cardinal de limite forte se

$$\lambda < \kappa \implies 2^{\lambda} < k$$

Em palavras, a cardinalidade κ não pode ser alcançada por tomadas sucessivas de potências de conjuntos.

Barwick e Heine usam cardinais inacessíveis. Um cardinal κ é inacessível se é um cardinais de limite forte é não pode ser obtido por somas de uma quantidade menor que κ cardinais menores que κ . Eles chamam a construção de Pyknotic sets.

Example 3.1. O primeiro cardinal infinito \aleph_0 , aleph-zero, é um cardinal de limite forte.

Example 3.2. Defina \beth_{α} indutivamente para todos os ordinais α por

- $\beth_0 = \aleph_0$,
- $\beth_{\alpha^+} = 2^{\beth_{\alpha}}$ para um ordinal sucessor.
- união de todos os \beth_{α} 's menores, para um ordinal limite.

3.4 Segunda definição

Se κ é um cardinal denotaremos por κ -**ProFinSet** a categoria de conjuntos profinitos de cardinalidade menor que κ .

Definition 3.3. Seja κ um cadinal de limite forte não enumerável. Um κ -conjunto/anel/grupo/... condensado é um feixe

$$T: \kappa - \mathbf{ProFinSet}^{op} \to \mathbf{Set}$$

 $S \mapsto T(S)$

Agora, é preciso uma definição que independa da escolha de um cardinal auxiliar κ . O primeiro passo

Proposition 3.1. Sejam k' > k cardinal de limite forte não enumeráveis. Então existe um funtor natural

$$\{K\text{-}conjuntos\ condensados}\} \rightarrow \{K'\text{-}conjuntos\ condensados}\}$$

 $T \mapsto T_{k'},$

onde

$$T_{k'} := \left(\tilde{S} \mapsto \lim_{\substack{\to \ \tilde{S} \to S}} T(S)\right)^{sh}$$

Este funtor é fully faithful.

Ideia da Prova:

1. Primeiro, precisamos de uma caracterização dos κ -conjuntos condensados como sendo feixes

 $T: \{\kappa\text{-conjuntos extremamente desconexos}\}^{op} \to \mathbf{Set}.$

Um espaço é extremamente desconexo se o fecho de um conjunto aberto é aberto. Para entender isso bem, precisaríamos saber antes sobre a compactificação de Stone-Cech. Essa equivalência ainda será abordada em outros seminários, pois é usada pra provar que a categoria de κ -conjuntos condensados é uma categoria abeliana.

2. Agora, o funtor $T \mapsto T_{\kappa'}$ corresponde à extensão de Kan à esquerda ao longo da inclusão plena da categoria de κ -conjuntos extremamente

desconexos em κ' -conjuntos extremamente desconexos e, consequentemente, é a adjunta à esquerda do funtor de esquecimento da categoria de κ' -conjuntos extremamente desconexos para κ -conjuntos extremamente desconexos.

- 3. Conclui-se que of funtor $T \mapsto T_{\kappa'}$ é fully faithful e comuta com todos os colimites.
- 4. O fato anterior é um argumento comum e não exclusivo para esse caso. Se $\alpha: C_2 \to C_1$ é qualquer funtor entre categorias pequenas, então $\alpha_*: \hat{C}_1 \to \hat{C}_2$ tem uma adjunta à esquerda α^* . Isso é consequência direta do

Teorema de Freyd para Funtor Adjunto: Dada uma categoria pequena e completa A, um funtor $G:A\to X$ tem adjunta à esquerda se e somente se preserva limites pequenos e satisfaz Solution Set Condition: for cada objeto $x\in X$ existe um conjunto pequeno I e uma família I-indexada de morfimos $f_i:x\to Ga_i$ tal quer qualquer mapa $h:x\to Ga$ pode ser escrito como uma composição $h=Gt\circ f_i$ para algum indice i e algum $t:a_i\to a$.

Neste caso, explicitamente, a adjunta à esquerda mapeia o pre-feixe $G \in \hat{C}_2$ à extensão de Kan à esquerda $G: C_2^{op} \to Set$ ao longo de α^{op} , i.e.

$$\alpha^*(G)(x) = colim_{x \to a(y)}G(y)$$

Definition 3.4. A categoria condensada é dado pelo limite direto na categoria de κ -conjuntos condensados ao longo o poset de cardinais de limite forte κ .

O exemplo a seguir é consequência da proposição 2.2 para o caso do site $\star_{\text{pro\acute{e}t}}$. Porém, neste caso, podemos verificar diretamente a condição de feixe sem usar todas as ferramentas necessárias para esquemas gerais. Ainda assim, precisamos usar a equivalência não trivial estabelecida pela propsição 2.1.

Example 3.3. Seja T um espaço topológico. Existe um conjunto condensado \underline{T} associado que mapeia qualquer conjunto profinito S con conjunto de mapas contínuos C(S,T). Isso satisfaz as condições de feixe

• 2. (novamente, a propriedade de feixes de Zariski);

• 3., pois qualquer sobrejeção $S' \to S$ de espaços de Hausdorff compactos é um mapa quociente, de forma que qualquer mapa $S \to T$, tal que a composição $S' \to S \to T$ é contínua, é contínuo.

Referências

- [1] Scholze. P.; Clausen, D. Lectures on Condensed Mathematics.
- [2] Bhatt, B.; Scholze, P. The pro-étale topology for schemes. ar-Xiv:1309.1198v2
- [3] The Stacks Project. Website: stacks.math.columbia.edu
- [4] nlab. Website: ncatlab.org