

Всероссийская олимпиада по физике имени Дж. К. Максвелла

Заключительный этап Теоретический тур

Комплект задач подготовлен Центральной предметно-методической комиссией по физике Всероссийской олимпиады школьников

Авторы задач

7 класс	8 класс
1. Евсеев А.	1. Евсеев А.
2. Евсеев А.	2. Евсеев А.
3. Евсеев А.	3. Слободянин В.
4. Кармазин С.	4. Уймин А.

Общая редакция — Слободянин В., Киреев А., Заяц А.

Иллюстрации — Клепиков М.

Вёрстка — Клепиков М., Васенин Е.

7 класс

Задача 7.1 Связанные препятствия

Между источником сигнала S и приёмником P перпендикулярно прямой, соединяющей их, движутся навстречу друг другу с постоянными скоростями две пары связанных тонкой нитью пластин. Если сигнал по пути от источника к приёмнику проходит через одну из пластин, приёмник зажигает на дисплее жёлтую лампочку, если через обе — красную. В момент прохождения пластин мимо источника сначала на $t_1=1$ с на дисплее зажглась красная лампочка, затем $t_2=2$ с горела жёлтая, а потом в течение $t_3=6$ с — опять красная. Ни до, ни после этого лампочки не загорались. Известно, что первые пластины и справа и слева имеют длину L=30 см, вторая пластина справа — длину 3L. Считайте, что сигнал от источника к приёмнику передаётся мгновенно.

- 1. Определите длину L_x второй пластины слева, а также длины соединяющих пластины нитей (l_1 левой и l_2 правой). Длины нитей отличны от нуля.
- 2. Найдите скорости движения левых (v_1) и правых (v_2) пластин.

Обратите внимание! На рисунке приведено схематичное изображение, которое может не соответствовать пропорциям из условия. Паузы между переключениями лампочек отсутствуют.

Задача 7.2 Секретный продукт

При производстве суперсекретного продукта в заводских условиях в тару непрерывно заливают три различных ингредиента: сначала «красный», затем «зелёный» и, наконец, «синий» (настоящие названия засекречены). Все ингредиенты заливаются с одинаковым постоянным объёмным расходом. Сотрудники предприятия построили график зависимости массы продукта от времени в процессе производства. Но в целях соблюдения секретности график был стёрт сотрудниками службы безопасности вместе с единицами измерений по осям. В то же

время на нём всё ещё можно увидеть 4 точки, одна из которых соответствует первому моменту полной готовности продукта. Из сведений, полученных по различным каналам, также известно, что плотности каких-то двух ингредиентов равны ρ и 2ρ .

- 1. Определите плотности «красного», «зелёного» и «синего» ингредиентов.
- 2. Восстановите утраченный график.
- 3. Найдите плотность готового продукта.
- 4. Какую долю от общего объёма составляют объёмы каждого из ингредиентов?

Примечание: объёмным расходом называется величина $\mu = \frac{\Delta V}{\Delta t}$, где ΔV – объём ингредиента, заливаемого в тару за время Δt . Объём готового продукта равен сумме объёмов ингредиентов.

Задача 7.3 Неодинаковые пружины

Длинную лёгкую пружину жёсткостью k разрезали на n частей (не обязательно одинаковых). Из получившихся пружин, лёгких нерастяжимых нитей, лёгких гладких блоков и лёгкой планки собрали конструкцию, изображённую на рисунке.

- 1. Найдите силу натяжения нити T, перекинутой через блоки, если к планке приложена сила F.
- 2. Определите, в каком диапазоне может меняться значение эффективной жёсткости $k_{\text{экв}}$ полученной конструкции на растяжение при заданном n.

При движении планка не вращается.

Примечание: эффективной жёсткостью называется величина $k_{\text{экв}} = \frac{F}{\Delta x}$, где F — сила, приложенная к планке, Δx — смещение планки относительного начального положения.

Задача 7.4 Пневматическая заглушка

Отверстие площадью S в дне стакана плотно закрыто цилиндрической шайбой (см. рис.). Площадь шайбы 5S/4, толщина h, плотность $\rho_{\rm m}$. В месте соприкосновения шайбы с дном воздух под неё не проникает. Сверху к шайбе прикреплён тонкостенный легкий шланг с площадью сечения S/2, соединённый с вакуумным насосом. Атмосферное давление p_0 .

1. При какой максимальной толщине шайбы она сможет оторваться от дна стакана при полном удалении воздуха из шланга?

В стакан с закрытым отверстием наливают ртуть плотностью $\rho_{\rm p}$. Обозначим H_m максимальный уровень ртути, при котором её ещё можно слить из сосуда, полностью откачав воздух из шланга.

2. Нарисуйте качественный график зависимости H_m от h, обозначив на нём характерные значения физических величин.

8 класс

Задача 8.1 От частного к среднему

Дорога из пункта A в пункт B состоит из двух участков с разным качеством покрытия. Поэтому автомобиль, выехавший из A в B, на первом участке поддерживал одну постоянную скорость, а на втором — другую. Известно, что на первом участке автомобиль находился не менее 1/8 всего проведённого в пути времени, а по второму проехал не менее 1/8 всего пути. При этом средняя скорость автомобиля на первой половине всего пути составила 2v, а средняя скорость за вторую половину всего времени — v.

- 1. Какую **максимально** возможную скорость мог иметь автомобиль во время движения?
- 2. Какую **минимально** возможную скорость мог иметь автомобиль во время движения?
- 3. Какой могла быть средняя скорость автомобиля на всём пути от A до B?

Задача 8.2 Неодинаковые пружины

Длинную лёгкую пружину жёсткостью k разрезали на n частей (не обязательно одинаковых). Из получившихся пружин, лёгких нерастяжимых нитей, лёгких гладких блоков и лёгкой планки собрали конструкцию, изображённую на рисунке.

- 1. Найдите силу натяжения нити T, перекинутой через блоки, если к планке приложена сила F.
- 2. Определите, в каком диапазоне может меняться значение эффективной жёсткости $k_{\text{экв}}$ полученной конструкции на растяжение при заданном n.

При движении планка не вращается.

Примечание: эффективной жёсткостью называется величина $k_{\text{экв}} = \frac{F}{\Delta x}$, где F — сила, приложенная к планке, Δx — смещение планки относительного начального положения.

Задача 8.3 Симметрия есть, или нет?

Определите эквивалентное сопротивление R_{ED} между узлами E и D и сопротивление R_{BD} между узлами B и D электрической цепи, сопротивления отдельных ветвей которой, выраженные в омах, указаны на рисунке.

Задача 8.4 Сублимация

При определённых условиях может наблюдаться интересное явление: твёрдое вещество, минуя фазу плавления, испаряется. Данный процесс называется сублимацией.

Диоксид углерода или «сухой лёд» — вещество, сублимация которого при атмосферном давлении происходит при температуре $t_{\rm c}=-78\,^{\circ}{\rm C}$. В лаборатории на весах стоит стакан, имеющий форму прямоугольного параллелепипеда (см. рис. I) с длиной ребра $a=6\,$ см, толщиной стенок и дна $h=1\,$ мм и высотой $H=10\,$ см, заполненный сухим льдом. Стакан закрыт не проводящей

тепло крышкой (на рис. I закрашена темнее) с небольшим отверстием, через которое вытекает весь испарившийся диоксид. В установившемся режиме по-казания весов падают на $0.1~\mathrm{r}$ в секунду, а температура внешней поверхности сосуда $t_\mathrm{внеш}=22~\mathrm{^{\circ}C}$. Материал стенок и дна сосуда одинаковый.

- 1. Определите удельную теплоту $L_{\rm c}$ сублимации «сухого льда», если коэффициент теплопроводности стенок сосуда равен $\chi=2,1\cdot 10^{-2}~\frac{{\rm B_T}}{{\rm m}\cdot {\rm C}}$.
- 2. В некоторый момент времени отверстие в крышке стакана закрывают и обматывают стакан со всех сторон теплоизолирующим материалом, тепло-ёмкостью которого можно пренебречь. Какова масса Δm испарившегося «сухого льда» после теплоизоляции стакана? Удельная теплоёмкость материала стенок равна $c=2100~\rm Дж/(кr\cdot ^{\circ}C)$, а плотность $\rho=1000~\rm kr/m^3$. Теплоёмкостью крышки тоже можно пренебречь.

Примечание: Тепловая мощность, передаваемая через плоскую пластину площадью S и толщиной h при разности температур Δt между её сторонами (см. рис. II), равна

$$N = \chi \frac{S\Delta t}{h}.$$

7 класс. Возможные решения

Задача 7.1 Связанные препятствия

Предположим сначала, что $v_2 > v_1$. Первые пластины подходят к линии сигнала SP одновременно. Через время t_1 после зажигания красной лампочки первая правая пластина перестаёт пересекать эту линию, и далее в течение какого-то времени τ_1 сигнал перекрывает только первая левая пластина. В момент, когда она перестает это делать, на пути сигнала сразу же возникает вторая правая пластина. И какое-то время τ_2 прохождению сигнала препятствует только она. Потом к линии сигнала подходит вторая левая пластина, и зажигается красная лампочка. И спустя время t_3 после этого пластины одновременно покидают линию сигнала.

С учётом этого получим:

$$au_1 + au_2 = t_2,$$

 $v_2 \cdot (au_2 + t_3) = 3L,$
 $v_2 \cdot t_1 = L.$

Откуда $\tau_2 = 3t_1 - t_3 < 0$, что говорит о невозможности реализации рассматриваемого случая.

Значит $v_1 > v_2$. Рассуждая аналогично первому случаю, получаем пять уравнений:

$$au_1 + au_2 = t_2,$$
 $v_2 \cdot t_3 = 3L, \qquad v_2 \cdot (au_1 + t_1) = L,$ $v_1 \cdot t_1 = L, \qquad v_1(au_2 + t_3) = L_x.$

Откуда сразу получаем:

$$v_1 = 30 \text{ cm/c}, \qquad v_2 = 15 \text{ cm/c}.$$

И затем:

$$au_1=rac{t_3-3t_1}{3}=1$$
 с,
$$au_2=t_2- au_1=1$$
 с.
$$au_x=rac{L(au_2+t_3)}{t_1}=7L=210$$
 см.

Определив v_1, v_2, L_x , найдём длины нитей:

$$l_1 = v_1(t_1 + t_2 + t_3) - L - L_x = 9L - 8L = L = 30 \text{ cm},$$

 $l_2 = v_2(t_1 + t_2 + t_3) - 4L = 4.5L - 4L = 0.5L = 15 \text{ cm}.$

Задача 7.2 Секретный продукт

Пронумеруем точки слева направо — 1, 2, 3, 4. Введём масштабы по осям: маленькая клеточка по оси времени — τ , а по оси массы — m_0 . Будем считать, что объём ингредиента, поступающего в тару за время τ , равен $V=\mu\tau$. Искомый график состоит из трёх участков, каждый из которых представляет собой часть прямой. Поскольку ингредиенты поступают в тару с постоянным объёмным расходом, то отношение массы ко времени, или угловой коэффициент наклона соответствующего участка графика, зависит только от плотности ингредиента и прямо пропорционально ей.

Готовому продукту может соответствовать только точка 4 (она самая правая). Точка 2 не может принадлежать ни первому, ни третьему участку, поскольку с одной стороны не лежит на прямой, проходящей через начало координат и точку 1, а с другой — не лежит на прямой, проходящей через точки 3 и 4. Значит точка 2 относится ко второму участку. Поскольку прямая 1-2 пересекается с прямой 3-4 за точкой 3, можно сделать однозначный вывод о том, что точка 1 принадлежит первому участку, а отрезок 2-3 принадлежит второму участку.

Теперь сделаем оценку плотностей. По коэффициенту наклона прямой, проходящей через начало координат и точку 1, находим плотность красного ингредиента $\rho_{\rm K}=\frac{m_0}{3\mu\tau}$. Аналогично, по коэффициенту наклона прямой, проходящей

через точки 2 и 3, находим плотность зелёного ингредиента $\rho_3=\frac{2m_0}{\mu\tau}$. Тогда $\frac{\rho_3}{\rho_{\rm K}}=6$.

Если же соединить точки 3 и 4, то по наклону прямой можно найти среднюю плотность для этого участка $\rho_{3-4}=\frac{3m_0}{7\mu\tau}$. С одной стороны, $\rho_{\kappa}/2<\rho_{3-4}<\rho_3/2$.

А с другой стороны, ρ_{3-4} — максимально возможное значение плотности синего ингредиента. Таким образом, условию задачи может соответствовать только соотношение $\frac{\rho_{\rm K}}{\rho_{\rm c}}=2$, значит $\rho_{\rm c}=\rho_{\rm K}/2=\frac{m_0}{6\mu\tau}$.

С учётом более ранних выкладок:

$$\rho_{\rm K} = \frac{m_0}{3\mu\tau} = 2\rho, \qquad \rho_{\rm c} = \frac{m_0}{6\mu\tau} = \rho, \qquad \rho_{\rm 3} = \frac{2m_0}{\mu\tau} = 12\rho.$$

Теперь можно полностью восстановить график, продлив прямую 0-1 до пересечения с прямой 2-3. А участок графика, соответствующий синему ингредиенту, можно построить с учётом полученного значения наклона графика.

Найдём плотность готового продукта:

$$\rho_{\rm rn} = \frac{7m_0}{10\mu\tau} = \frac{7\cdot6\rho}{10} = 4.2\rho.$$

Объём готового продукта $V=20\mu\tau$, объём красного ингредиента $V_{\rm k}=9\mu\tau$, зелёного ингредиента $V_{\rm s}=5\mu\tau$, синего ингредиента $V_{\rm c}=6\mu\tau$.

Определим долю каждого ингредиента в общем объёме:

$$\frac{V_{\text{K}}}{V} = \frac{9}{20}, \qquad \frac{V_{\text{3}}}{V} = \frac{5}{20} = \frac{1}{4}, \qquad \frac{V_{\text{c}}}{V} = \frac{6}{20} = \frac{3}{10}.$$

Задача 7.3 Неодинаковые пружины

Если планку тянуть строго вверх с силой F, нить, перекинутая через блоки, будет натягиваться, а блоки — смещаться по вертикали, причём нижние будут смещаться неодинаково. Обозначим силу натяжения нити T. Тогда 2T(n+1)=F, откуда

$$T = \frac{F}{2(n+1)}.$$

Получается, что каждую из маленьких пружин растягивают с силой F/(n+1). Поскольку все пружины вместе раньше составляли одну пружину жёсткостью k, сумма их удлинений

$$\Delta x = \frac{F}{k(n+1)},$$

она равна удлинению пружины жёсткостью k под действием силы F/(n+1).

Таким образом, нижние блоки суммарно высвобождают нить, длиной

$$2\Delta x = \frac{2F}{k(n+1)}.$$

Это позволяет планке подняться на

$$\Delta h = \frac{F}{k(n+1)^2}.$$

Тогда для эквивалентной жёсткости получаем:

$$k_{\text{экв}} = \frac{F}{\Delta h} = (n+1)^2 k.$$

Заметим, что при его расчёте мы не использовали длины конкретных пружин. Это означает, что от них полученный результат не зависит.

Задача 7.4 Пневматическая заглушка

Шайба оторвётся, если сила давления снизу превысит сумму силы тяжести и силы давления сверху.

$$mg + p_0 \left(\frac{5}{4}S - \frac{1}{2}S\right) < p_0 S,$$
 (1)

где $m = \rho_{\rm m} \frac{5}{4} Shg$ — масса шайбы. Из (1) получаем:

$$h < \frac{p_0}{5\rho_{\rm m}g}. (2)$$

Если толщина шайбы удовлетворяет условию (2), то максимальный уровень ртути в сосуде, при котором её можно слить, откачивая воздух в трубке, превышает толщину шайбы. В этом случае условие отрыва шайбы от дна имеет вид:

$$p_0 S \geqslant mg + (p_0 + \rho_p g(H - h)) \left(\frac{5}{4}S - \frac{1}{2}S\right),$$
 (3)

где H — уровень ртути в сосуде. После преобразований получаем условие для H:

$$H < H_m = \frac{p_0 - (5\rho_{\text{III}} - 3\rho_{\text{p}})gh}{3\rho_{\text{p}}g}.$$
 (4)

Из (4) видно, что при очень тонкой шайбе (h=0) максимально возможный уровень ртути $H_m=\frac{p_0}{3\rho_{\rm p}g}\approx 24,5$ см при нормальном атмосферном давлении. С ростом толщины шайбы максимально возможный уровень ртути возрастает, если $\rho_{\rm m}<\frac{3}{5}\rho_{\rm p}$, уменьшается, если $\rho_{\rm m}<\frac{3}{5}\rho_{\rm p}$ и остается неизменным, если $\rho_{\rm m}=\frac{3}{5}\rho_{\rm p}$.

С учётом приведённого анализа и условия (2) график зависимости H_m от h имеет вид (см. рисунок).

8 класс. Возможные решения

Задача 8.1 От частного к среднему

Средняя скорость в начале пути больше, чем в конце. Отсюда можно сделать вывод, что на первом участке скорость автомобиля была выше, следовательно, первую половину пути автомобиль проходит быстрее, чем вторую.

На рисунке точка C — середина пути, а точка D — место, в котором автомобиль находился, проведя в дороге половину времени. Точка E (плавающая) — это точка перехода с первого на второй участок. Обратим внимание на то, что точка D всегда находится правее точки C. Благодаря такому их взаимному расположению, при любом положении точки E однозначно определяется скорость хотя бы на одном из участков:

- \bullet если точка E находится между A и C, скорость автомобиля на втором участке равна v;
- ullet если E находится между D и B, скорость автомобиля на первом участке равна 2v;
- если E находится между C и D, обе скорости определяются однозначно: на первом 2v, на втором v.

Минимально возможная скорость на первом участке равна 2v. А максимальной эта скорость станет, когда точка E будет находиться ближе всего к точке A (точка E_1 на рисунке). Это произойдёт, когда по участку AE автомобиль будет двигаться меньшую часть времени. Заметим, что в этом случае вторую половину пути автомобиль пройдёт со скоростью v. То есть, потратит на неё в 2 раза больше времени, чем на первую. Пусть t — время необходимое автомобилю в этом случае на преодоление первой половины пути. Тогда для определения максимальной скорости получим уравнение:

$$v_{ ext{makc}} \cdot \frac{3}{8}t + v \cdot \left(t - \frac{3}{8}t\right) = 2v \cdot t.$$

Откуда:
$$v_{\text{макс}} = \frac{11}{3}v$$
.

Аналогично, максимально возможная скорость на втором участке равна v. А минимальной эта скорость станет, когда точка E будет находиться максимально близко к точке B (точка E_2 на рисунке). Это произойдёт, когда участок EB

будет иметь наименьшую протяженность. Заметим, что в этом случае первую половину времени автомобиль пройдет со скоростью 2v. То есть, пройдёт за неё в 2 раза больший путь, чем за вторую. Пусть S — путь, который автомобиль проходит в этом случае за вторую половину времени. Тогда для определения минимальной скорости получим уравнение:

$$\frac{\left(S - \frac{3S}{8}\right)}{2v} + \frac{\frac{3S}{8}}{v_{\text{MMH}}} = \frac{S}{v}.$$

Откуда: $v_{\text{мин}} = \frac{6}{11}v$.

Если точка E находится между A и C, средняя скорость за весь путь будет одинакова для любого её положения:

$$v_{\text{cp. MuH}} = rac{S_{AB}}{rac{S_{AB}}{2 \cdot 2v} + rac{S_{AB}}{2 \cdot v}} = rac{4}{3}v.$$

Если точка E находится между D и B, средняя скорость за весь путь будет также одинакова для любого её положения:

$$v_{\text{cp. Makc}} = \frac{2v \cdot \frac{t_{AB}}{2} + v \cdot \frac{t_{AB}}{2}}{t_{AB}} = \frac{3}{2}v.$$

При нахождении E между C и D значение средней скорости будет расти по мере удаления E от C, так как часть пути, пройденная со скоростью 2v, будет увеличиваться, а часть пути, пройденная со скоростью v — уменьшаться. Таким образом:

$$\frac{4}{3}v \leqslant v_{\rm cp} \leqslant \frac{3}{2}v.$$

Задача 8.2 Неодинаковые пружины

Если планку тянуть строго вверх с силой F, нить, перекинутая через блоки, будет натягиваться, а блоки — смещаться по вертикали, причём нижние будут смещаться неодинаково. Обозначим силу натяжения нити T. Тогда 2Tn=F, откуда T=F/(2n).

Получается, что каждую из маленьких пружин, подсоединённых к блокам, растягивают с силой F/n, а оставшуюся одну — с силой F/(2n).

При этом левая пружина, растягиваясь на Δx , позволяет подняться планке на $\Delta h = \Delta x/(2n)$. Если же на Δx растянется пружина под блоком, то она позволит подняться планке на $\Delta h = \Delta x/n$, поскольку, поднимаясь, блок освобождает в 2 раза больше нити.

Максимальный подъём планки будет обеспечен, если максимально (в сумме) растянутся пружины под блоками. И наоборот, если пружины под блоками растянутся минимально, то и смещение планки будет минимально возможным.

Рассмотрим сначала ситуацию, в которой левая пружина имеет настолько малую длину по сравнению с изначальной пружиной, что её растяжением можно пренебречь. Тогда суммарное удлинение оставшихся пружин $\Delta x = F/(kn)$ (ровно такое растяжение было бы у изначальной пружины, если бы её растягивали с силой F/n). Нижние блоки суммарно высвободят нить длиной $2\Delta x = 2F/(kn)$. Это позволит планке подняться на

$$\Delta h_{\text{\tiny MAKC}} = \frac{F}{kn^2}.$$

Для эквивалентной жёсткости получим:

$$k_{\text{экв мин}} = \frac{F}{h_{\text{макс}}} = n^2 k.$$

Теперь предположим, что все пружины под блоками имеют минимально возможную длину (и, соответственно, бесконечную жёсткость). Тогда смещениями нижних блоков можно пренебречь. Левая же пружина в этом случае почти такая же как исходная, то есть имеет коэффициент жёсткости k. Она растянется на $\Delta x = F/2kn$. Часть нити такой же длины высвободится. Это позволит планке подняться на:

$$\Delta h_{\text{\tiny MMH}} = \frac{F}{4kn^2}.$$

Для максимальной эквивалентной жёсткости получим:

$$k_{\text{\tiny 9KB MAKC}} = \frac{F}{h_{\text{\tiny MMH}}} = 4n^2k.$$

Мы рассмотрели крайние случаи, и все остальные возможные значения эквивалентной жёсткости лежат между ними. Таким образом:

$$n^2 k \leqslant k_{\scriptscriptstyle \text{9KB}} \leqslant 4n^2 k$$
.

Можно было бы записать строгое неравенство, поскольку предельные значения недостижимы.

Задача 8.3 Звезда

При подключении схемы к источнику в точках D и E ток по проводникам AB и BC не идёт, поэтому сопротивление схемы определяется тремя параллельно соединёнными сопротивлениями: 5 Om + 5 Om = 10 Om, 3 Om, и 3 Om + 3 Om = 6 Om. Полное сопротивление цепи в этом случае равно $\frac{20}{12} \text{ Om} = \frac{5}{3} \text{ Om} = 1,7 \text{ Om}$.

Для нахождения сопротивления между узлами B и D воспользуемся частным случаем преобразования «звезда-треугольник» для одинаковых резисторов. Заменим треугольник из резисторов, сопротивления которых равны 3 Ом, на звезду с сопротивлениями резисторов в лучах по 1 Ом и нарисуем эквивалентную схему (см. рисунок).

Получилась сбалансированная мостовая схема с отношением сопротивлений плеч моста 1 к 5. По диагонали моста AEF (сопротивлением 6 Ом) ток не идёт. Поэтому эквивалентное сопротивление всей схемы между узлами B и D равно $R=\frac{30\cdot 6}{30+6}$ Ом = 5 Ом.

Задача может быть решена и с помощью законов Кирхгофа.

Задача 8.4 Сублимация льда

Из уравнения теплового баланса получим:

$$L_{\rm c}\mu = \frac{(4aH + a^2)\chi \cdot (t_{\rm внеш} - t_{\rm c})}{h},$$

где $\mu=0.1$ г/с — скорость, с которой уменьшается масса сухого льда в установившемся режиме. Откуда удельная теплота сублимации равна:

$$L_{\rm c} = \frac{(4aH + a^2)\chi \cdot (t_{\rm внеш} - t_{\rm c})}{\mu h} = 579,\!6~{\rm кДж/кг} \approx 580~{\rm кДж/кг}.$$

После установления равновесия температура стенок сосуда, теплоизолированного от помещения, по всему их объёму равна $t_{\rm c}$.

До установления равновесия тепловая мощность, передаваемая через любое сечение стенки, параллельное её граням, постоянна. Выделим слой толщины x, где x — расстояние от внутренней поверхности стенки до рассматриваемого сечения. Так как передаваемая тепловая мощность постоянна, разность температур $t(x)-t_{\rm c}$ прямо пропорциональна x. Отсюда следует, что температура внутри стенок сосуда менялась линейно по закону:

$$t(x) = t_{\rm c} + \frac{(t_{\rm внеш} - t_{\rm c})}{h} x.$$

Количество теплоты, отданное слоем стенки толщины Δx равно:

$$\Delta Q = c \cdot \rho (4aH + a^2) \cdot \Delta x \cdot (t(x) - t_c).$$

Полное количество теплоты найдём через площадь под графиком $(t-t_{\rm c})(x)$:

$$Q = \frac{1}{2} \cdot c \cdot \rho (4aH + a^2) \cdot h \cdot (t_{\text{внеш}} - t_{\text{c}}).$$

Тогда для испарившейся массы «сухого льда» находим:

$$\Delta m = \frac{Q}{L_c} = \frac{c\rho h^2 \mu}{2\chi} = 5$$
 г.