

Chapter 2 Sinusoids

COMPLEX NUMBERS

- To solve: $z^2 = -1$
 - z = j
 - Math and physics use z = i.
- Complex number: z = x + jy

Cartesian coordinate system

COMPLEX ADDITION = VECTOR Addition

POLAR FORM

- Vector Form
 - Length =1
 - Angle = θ
- Common Values
 - has an angle of 0.5π .
 - -1 has an angle of π .
 - -j has an angle of 1.5 π .
 - Also, an angle of j could be $-0.5\pi = 1.5\pi 2\pi$ because the PHASE is **AMBIGUOUS**.

POLAR <-> RECTANGULAR

• Relate (x,y) to (r,θ) .

$$r^{2} = x^{2} + y^{2}$$

$$\theta = \operatorname{Tan}^{-1}\left(\frac{y}{x}\right)$$

$$y = r \sin \theta$$

sinθ

 $\cos\theta$

Euler's FORMULA

Complex Exponential

- The real part is cosine.
- The imaginary part is sine.
- The magnitude is one.

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

Using Euler's formula,

$$z = x + jy = re^{j\theta} = r\angle\theta$$

- The magnitude of z (|z|): r
- The argument of z (arg z): θ

Euler's FORMULA

Formula

$$e^{it} = \cos t + i \sin t$$

- Proof
 - Using Taylor Series,

$$\exp(x) = 1 + x + x^{2}/2! + x^{3}/3! + x^{4}/4! + x^{5}/5! + \dots \langle 1 \rangle$$

$$\sin(x) = x - x^{3}/3! + x^{5}/5! - \dots$$

$$\cos(x) = 1 - x^{2}/2! + x^{4}/4! - \dots$$

• Replacing x with jx in Eq. <1>,

$$\exp(jx) = 1 + jx - x^2/2! - jx^3/3! + x^4/4! + jx^5/5! + \dots$$

$$= (1 - x^2/2! + x^4/4! + \dots) + j(x - x^3/3! + x^5/5! - \dots)$$

$$= (\cos x) + j(\sin x)$$

COMPLEX EXPONENTIAL

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector.
 - $\theta = \omega t$
 - Angle changes vs. time
 - ex: $\omega=20\pi$ rad/s
 - Rotates 0.2π in 0.01 secs

Rotating Phac

z(t)

 $=e^{j(t-\pi/4)^{t}}$ at $t=1.5\pi_{2}$

-0.5

Complex Plane

GENT INFORMATION PROCESSING LAB.

COMPLEX AMPLITUDE

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi) = \Re e \left\{ Ae^{j\varphi}e^{j\omega t} \right\}$$

Complex AMPLITUDE = X -> PHASOR

$$z(t) = Xe^{j\omega t} \qquad X = Ae^{j\varphi}$$

- Complex exponential signal -> rotating phasor
- Then, any Sinusoid = REAL PART of Xe^{jωt}

$$x(t) = \Re e \left\{ X e^{j\omega t} \right\} = \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$

Example: Complex Amplitude

Find the COMPLEX AMPLITUDE for:

$$x(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

Use EULER's FORMULA:

$$x(t) = \Re e \left\{ \sqrt{3} e^{j(77\pi t + 0.5\pi)} \right\}$$
$$= \Re e \left\{ \sqrt{3} e^{j0.5\pi} e^{j77\pi t} \right\}$$

$$X = \sqrt{3}e^{j0.5\pi}$$

Why Complex Exponential?

- Avoid trigonometry
- Algebra, even complex, is EASIER!!!
- Can you recall $cos(\theta_1 + \theta_2)$?
- Use: real part of $e^{j(\theta_1 + \theta_2)} = \cos(\theta_1 + \theta_2)$

$$e^{j(\theta_1 + \theta_2)} = e^{j\theta_1} e^{j\theta_2}$$

$$= (\cos \theta_1 + j \sin \theta_1)(\cos \theta_2 + j \sin \theta_2)$$

$$= (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + j(...)$$

ADDITION of SINUSOIDS

- ALL SINUSOIDS have the SAME FREQUENCY.
- HOW to GET {Amp,Phase} of the RESULT?

$$x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

$$x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$$

$$x_3(t) = x_1(t) + x_2(t)$$

$$-1.532\cos(2\pi(10)t + 141.79\pi/3)$$

 $= 1.532\cos(2\pi(10)t + 141.79\pi/180)$

The summed Sinusoid has the SAME frequency.

PHASOR ADDITION RULE

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k)$$

$$=A\cos(\omega_0t+\phi)$$

Get the new complex amplitude by complex addition.

$$\sum_{k=1}^{N} A_k e^{j\phi_k} = A e^{j\phi}$$

Phasor Addition Proof

$$\sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k) = \sum_{k=1}^{N} \Re e \left\{ A_k e^{j(\omega_0 t + \phi_k)} \right\}$$

$$= \Re e \left\{ \sum_{k=1}^{N} A_k e^{j\phi_k} e^{j\omega_0 t} \right\}$$

$$= \Re e \left\{ \left(\sum_{k=1}^{N} A_k e^{j\phi_k} \right) e^{j\omega_0 t} \right\}$$

$$= \Re e \left\{ \left(A e^{j\phi} \right) e^{j\omega_0 t} \right\} = A \cos(\omega_0 t + \phi)$$

Example 1: Addition of Sinusoids

ADD 2 SINUSOIDS:

$$x_1(t) = \cos(77\pi t)$$
$$x_2(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

COMPLEX ADDITION:

CONVERT back to cosine form:

$$x_3(t) = 2\cos(77\pi t + \frac{\pi}{3})$$

Example 2: Addition of Sinusoids

Example revisited

$$x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

$$x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$$

$$x_3(t) = x_1(t) + x_2(t)$$

= 1.532 cos(2\pi(10)t + 141.79\pi/180)

time (sec)

0.1

Phasor Addition

- Convert Polar to Cartesian.
 - $X_1 = 1.7e^{j70\pi/180} = 0.581 + j1.597$
 - $X_2 = 1.9e^{j200\pi/180} = -1.785 j0.650$
 - $X_3 = X_1 + X_2 = -1.204 + j0.947$
- Convert back to Polar.
 - $X_3 = 1.532$ at an angle of $141.79\pi/180$

VECTOR (PHASOR) ADD

Thank you

- Homework
 - P-2.16, 17, 18, 19, 21(a,b,c)
- Reading assignment
 - ~ Section 3-1

