Oriented Matroids from Triangulations of $\triangle_{d-1} \times \triangle_{n-1}$

Chi Ho Yuen

Brown University

Joint Work with Marcel Celaya (ETH) and Georg Loho (Kassel)

CAAC 2021

January 23, 2021

A Crash Course in Oriented Matroids

Oriented Matroid: An abstraction of linear (in)dependence over \mathbb{R} .

$$\begin{pmatrix}
a & b & c & d \\
3 & 1 & 0 & 2 \\
-1 & 1 & 2 & -1
\end{pmatrix}$$

$$\chi(a,b) = \operatorname{sign} \det \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} = +, \chi(a,d) = -, \chi(c,b) = -.$$

A Crash Course in Oriented Matroids

Oriented Matroid: An abstraction of linear (in)dependence over \mathbb{R} .

$$\chi(a,b) = \operatorname{sign} \det \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} = +, \chi(a,d) = -, \chi(c,b) = -.$$

Definition

A *chirotope* is a (non-zero) map $\chi: E^d o \{+,-,0\}$ that is

- alternating;
- Grassmann–Plücker: $\forall |X| = d-1, |Y| = d+1,$ $(-1)^k \chi(X, y_k) \chi(Y \setminus y_k)$'s either contain both a +ve and a -ve term, or are all zeros.

Follows from "usual" GP: $\sum_{k=1}^{d+1} (-1)^k \det(A|_{X,y_k}) \det(A|_{Y\setminus y_k}) = 0$.

Pseudosphere Arrangements

Theorem (Folkman-Lawrence 1978)

Oriented Matroids \Leftrightarrow Pseudosphere Arrangements \approx Real Hyperplane Arrangements.

 $\textit{Covectors} \Leftrightarrow \mathsf{Sign}$ patterns of the regions $\approx \mathsf{Sign}$ patterns of the row span.

Oriented Matroids in Mathematics

- Graph Theory: directed graphs, flow networks
- Convex Geometry: real hyperplane arrangements, polytopes
- Optimization: linear programming (simplex method) and beyond
- Algebraic Geometry: strata of real Grassmannians (Mnëv's universality theorem)
- Topology: real vector bundles and their characteristic classes

Matching Fields

What if instead of $\det(A|_{\sigma})$'s, we only compute one term per $\det(A|_{\sigma})$?

$$sign det \begin{pmatrix} +\mathbf{e^{18}} & -e^6 & -e^9 \\ -e^{12} & -e^{16} & +\mathbf{e^{22}} \\ +e^{20} & -\mathbf{e^{14}} & +e^2 \end{pmatrix} = + = (-1)(1 \cdot -1 \cdot 1)$$

Matching Fields

What if instead of $\det(A|_{\sigma})$'s, we only compute one term per $\det(A|_{\sigma})$?

$$sign det \begin{pmatrix} +\mathbf{e^{18}} & -e^{6} & -e^{9} \\ -e^{12} & -e^{16} & +\mathbf{e^{22}} \\ +e^{20} & -\mathbf{e^{14}} & +e^{2} \end{pmatrix} = + = (-1)(1 \cdot -1 \cdot 1)$$

Notation: Entries of $A \Leftrightarrow \text{Edges of } K_{R,E}$, with |R| = d, |E| = n.

Definition

Matching Field: A collection of perfect matchings, one M_{σ} between R and σ for every $\sigma \subset E$ of size d.

Matching Fields

What if instead of $\det(A|_{\sigma})$'s, we only compute one term per $\det(A|_{\sigma})$?

$$sign det \begin{pmatrix} +\mathbf{e^{18}} & -e^6 & -e^9 \\ -e^{12} & -e^{16} & +\mathbf{e^{22}} \\ +e^{20} & -\mathbf{e^{14}} & +e^2 \end{pmatrix} = + = (-1)(1 \cdot -1 \cdot 1)$$

Notation: Entries of $A \Leftrightarrow \text{Edges of } K_{R,E}$, with |R| = d, |E| = n.

Definition

Matching Field: A collection of perfect matchings, one M_{σ} between R and σ for every $\sigma \subset E$ of size d.

EXAMPLE: Take the max. perfect matchings w.r.t. generic weights. Motivation: Tropical geometry & Gröbner theory of maximal minors [Sturmfels–Zelevinsky 93].

Triangulations of $\triangle_{d-1} \times \triangle_{n-1}$

Notation: Vertices of $\triangle_{d-1} \times \triangle_{n-1} \Leftrightarrow \text{Edges of } K_{R,E}$.

Proposition

The vertices of any full-dim simplex in $\triangle_{d-1} \times \triangle_{n-1}$ form a spanning tree.

Polyhedral Matching Fields

Fix a triangulation. Take all perfect matchings that are subgraphs of some trees. This gives a *polyhedral matching field*.

Why Triangulations of $\triangle_{d-1} \times \triangle_{n-1}$?

Reason I: They appear in many places as "tropical matrices".

- Algebraic Geometry: toric Hilbert schemes, Schubert calculus
- Tropical Geometry: tropical convexity, Stiefel tropical linear spaces
- Optimization: tropical linear programming, mean payoff game
- Tropical pseudohyperplane arrangements, tropical oriented matroids, trianguloids, etc

Why Triangulations of $\triangle_{d-1} \times \triangle_{n-1}$?

Reason I: They appear in many places as "tropical matrices".

- Algebraic Geometry: toric Hilbert schemes, Schubert calculus
- Tropical Geometry: tropical convexity, Stiefel tropical linear spaces
- Optimization: tropical linear programming, mean payoff game
- Tropical pseudohyperplane arrangements, tropical oriented matroids, trianguloids, etc

Reason II: Correct direction in view of [Sturmfels–Zelevinsky] Coherent \subsetneq Polyhedral \subsetneq Linkage

Main Theorems

Theorem (Celaya-Loho-Y. 2020+)

Polyhedral matching fields induce uniform oriented matroids.

Proof Strategy: Divide-and-conquer with matroid subdivisions.

Main Theorems

Theorem (Celaya-Loho-Y. 2020+)

Polyhedral matching fields induce uniform oriented matroids.

Proof Strategy: Divide-and-conquer with matroid subdivisions.

Theorem (Celaya-Loho-Y. 2020+)

Topological representation directly from the triangulation.

Selected Topics

- Proof of the Main Theorem
- Topologicial Representation poto
- Extension to Matroids over Hyperfields Properties

Proof Sketch: Divide

Divide: The triangulation induces a *matroid subdivision* of the hypersimplex by *transversal matroid polytopes* (of the trees).

Definition

Matroid polytope: $conv{e_B : B \in \mathcal{B}(M)}$.

Matroid subdivision: Subdivision of a MP by MPs.

Transversal matroid: $\sigma \subset E$ is a basis iff $\exists R \equiv \sigma$ perfect matching in T.

Proof Sketch: Conquer and Merge

Conquer: Each restriction is a chirotope (realizable by *A* restricted to the edges of the tree).

Proof Sketch: Conquer and Merge

Conquer: Each restriction is a chirotope (realizable by *A* restricted to the edges of the tree).

Merge:

Lemma (Celaya-Loho-Y.)

Let $\chi : \mathcal{B}(M) \to \{+, -\}$ and M_1, \dots, M_k be a matroid subdivision of M. If every χ_{M_i} is a chirotope, then χ is also a chirotope.

Proof Sketch: Conquer and Merge

Conquer: Each restriction is a chirotope (realizable by *A* restricted to the edges of the tree).

Merge:

Lemma (Celaya-Loho-Y.)

Let $\chi : \mathcal{B}(M) \to \{+, -\}$ and M_1, \dots, M_k be a matroid subdivision of M. If every χ_{M_i} is a chirotope, then χ is also a chirotope.

PROOF: Reduce to 3-term GP and analyze the subdivision on 3-dim faces.

Definition

3-term GP relation: $\forall a, b, c, d \in E$,

 $\chi(a,b,_)\chi(c,d,_), -\chi(a,c,_)\chi(b,d,_), \chi(a,d,_)\chi(b,c,_),$

either contain both a +ve and a -ve term, or are all zeros.

Viro's Patchworking

A method developed by Viro to construct real hypersurfaces of prescribed topology from signed *regular* triangulation of $n\triangle_{d-1}$.

Theorem (Viro 1980's)

The locus is isotopic to some real algebraic hypersurface.

Patchworking Oriented Matroids

Using Cayley trick, convert a triangulations of $\triangle_{d-1} \times \triangle_{n-1}$ into a fine mixed subdivisions of $n\triangle_{d-1}$.

Theorem (Celaya-Loho-Y. 2020+)

The locus is a pseudosphere arrangement representing χ .

Some Proof Ingredients

Combinatorics: The face poset is the *covector lattice*.

- Faces ⇒ Signed Forests ⇒ Covectors: Restrict to individual cells.
- Surjectivity: Borsuk–Ulam + Topological Representation Theorem.

Some Proof Ingredients

Combinatorics: The face poset is the *covector lattice*.

- Faces \Rightarrow Signed Forests \Rightarrow Covectors: Restrict to individual cells.
- Surjectivity: Borsuk–Ulam + Topological Representation Theorem.

Topology: The CW complex is regular.

- View patchworking as a stepwise cell merging.
- Show that every step preserves regularity.

Tropical Linear Programming

$$(+, \times) \mapsto (\min, +)$$

$$(\text{Optional}) \text{Maximize } \min(x+1, y-5, z-1) \text{ subject to}$$

$$x+0 \leq \min(y+0, z+0)$$

$$\min(x+0, z+2) \leq y+1$$

$$z+6 \leq \min(x+0, y+3)$$

Tropical Linear Programming

$$(+, \times) \mapsto (\min, +)$$

$$(\text{Optional}) \text{Maximize } \min(x+1, y-5, z-1) \text{ subject to}$$

$$x+0 \leq \min(y+0, z+0)$$

$$\min(x+0, z+2) \leq y+1$$

$$z+6 \leq \min(x+0, y+3)$$

- Equivalent to *mean payoff game*: In a weighted (bipartite) digraph with a starting v_0 , A and B take turns and moves to a new vertex $v_i \xrightarrow{w_i} v_{i+1}$. Can B guarantee $\sum w_i$ is bounded from above?
- Applications: Scheduling problems, analysis of resource-constrained systems, string matching etc

Tropical Linear Programming

$$(+, \times) \mapsto (\min, +)$$
 (Optional)Maximize $\min(x+1, y-5, z-1)$ subject to $x+0 \leq \min(y+0, z+0)$ $\min(x+0, z+2) \leq y+1$ $z+6 \leq \min(x+0, y+3)$

- Equivalent to *mean payoff game*: In a weighted (bipartite) digraph with a starting v_0 , A and B take turns and moves to a new vertex $v_i \xrightarrow{w_i} v_{i+1}$. Can B guarantee $\sum w_i$ is bounded from above?
- Applications: Scheduling problems, analysis of resource-constrained systems, string matching etc
- Signed triangulations of $\triangle_{d-1} \times \triangle_{n-1}$ are the correct framework, matchings are the bases in pivot rules of tropical simplex method.

Algorithms and Complexity

• Tropical LP: In NP \cap co-NP, but not known if it is in P.

Algorithms and Complexity

- Tropical LP: In NP ∩ co-NP, but not known if it is in P.
- Every tropical LP can be converted into a LP by the $c \mapsto T^c$ trick, but with exponential bit size.
- This leads to another (in)famous open problem of finding strongly polynomial time algorithm for LP.

Algorithms and Complexity

- Tropical LP: In NP \cap co-NP, but not known if it is in P.
- Every tropical LP can be converted into a LP by the $c \mapsto T^c$ trick, but with exponential bit size.
- This leads to another (in)famous open problem of finding strongly polynomial time algorithm for LP.
- Candidate: Simplex method with combinatorial pivot rules, e.g., those that can be described using the underlying oriented matroid.
- The construction presented here systematically relates the combinatorics of classical and tropical LP, hence (potentially) relates the two open problems.

Matroids over Hyperfields

A hyperfield is "a field with a multi-valued addition".

Example (Sign hyperfield): $\mathbb{S} = \{+, -, 0\}$, $+ \boxplus - = \{+, -, 0\}$.

Matroids over Hyperfields

A hyperfield is "a field with a multi-valued addition".

Example (Sign hyperfield): $\mathbb{S} = \{+, -, 0\}$, $+ \boxplus - = \{+, -, 0\}$.

Definition (Baker-Bowler 2017)

A **strong** matroid over $\mathbb H$ is an alternating $\mathcal X: E^d o \mathbb H$ such that

$$0 \in \bigoplus_{k=1}^{d+1} (-1)^k \chi(X, y_k) \otimes \chi(Y \setminus y_k).$$

A **weak** matroid only requires the 3-term GP as long as $\underline{\chi}$ is a matroid.

Matroids over Hyperfields

A hyperfield is "a field with a multi-valued addition".

Example (Sign hyperfield): $\mathbb{S} = \{+, -, 0\}$, $+ \boxplus - = \{+, -, 0\}$.

Definition (Baker-Bowler 2017)

A **strong** matroid over $\mathbb H$ is an alternating $\chi: E^d \to \mathbb H$ such that

$$0 \in \bigoplus_{k=1}^{d+1} (-1)^k \chi(X, y_k) \otimes \chi(Y \setminus y_k).$$

A **weak** matroid only requires the 3-term GP as long as $\underline{\chi}$ is a matroid.

EXAMPLE: Oriented matroids = Matroids over S.

Also linear subspaces, matroids, valuated matroids, phase matroids...

Caution: In general, $\{Strong matroids\} \subseteq \{Weak matroids\}.$

Our Theorem for Matroids over Hyperfields

Definition (Anderson–Eppolito; Massouros)

Inflation property: $1 \boxplus (-1) = \mathbb{H}$.

Our Theorem for Matroids over Hyperfields

Definition (Anderson–Eppolito; Massouros)

Inflation property: $1 \boxplus (-1) = \mathbb{H}$.

Theorem (Celaya-Loho-Y. 2020+)

Suppose $\mathbb H$ has the IP. Then given a polyhedral $\{M_{\sigma}\}$ and a nowhere zero $\mathbb H$ -matrix A, $\chi(\sigma) := \mathrm{sign}(M_{\sigma}) \bigotimes_{e \in M_{\sigma}} A_e$ is a **weak** matroid over $\mathbb H$.

Our Theorem for Matroids over Hyperfields

Definition (Anderson–Eppolito; Massouros)

Inflation property: $1 \boxplus (-1) = \mathbb{H}$.

Theorem (Celaya–Loho–Y. 2020+)

Suppose $\mathbb H$ has the IP. Then given a polyhedral $\{M_{\sigma}\}$ and a nowhere zero $\mathbb H$ -matrix A, $\chi(\sigma) := \mathrm{sign}(M_{\sigma}) \bigotimes_{e \in M_{\sigma}} A_e$ is a **weak** matroid over $\mathbb H$.

Question

Is the same statement true for strong matroids?

≫ goto E

Thank you!

Marcel Celaya, Georg Loho, Chi Ho Yuen. *Oriented Matroids from Triangulations of Products of Simplices.* arXiv:2005.01787.

. Patchworking Oriented Matroids. arXiv:2010.12018.