Sun, Earth, Moon System Model

Quentin Adolphe, Christian Bignotti, Brandon Mickelson

Problem definition and Connection to E19

$$F = ma, \quad F_g = G \frac{m M}{r^2}$$

$$ma = G \frac{m M}{r^2}$$

$$\frac{d^2x}{dt^2} = G \frac{M}{r^2}$$

$$ODE!!!!!! :)$$

Initial Conditions: Elliptical Orbits

https://www.nasa.gov/sites/default/files/orbit-3.jpg

https://eclipse.gsfc.nasa.gov/SEhelp/image/Fig4-2a.png

Initial Conditions: Apogee and Perigee

```
Perigee
                                             Apogee
                                                         F-3d14h
    1 23:01 358036 km N- 19h
                                 Jan 14 9:29 405804 km
      7:10 362249 km
                       N-1d22h
                                 Feb 11 2:40 404896 km
                                                         F-5d14h
Jan 30
Feb 26 22:19 367785 km
                                 Mar 10 23:06 404267 km
                       N-3d19h
                                                         F-7d 8h
Mar 23 23:29 369762 km
                     F+5d16h
                                                        N+6d12h
                                 Apr
                                     7 19:12 404437 km
Apr 19 15:17 365142 km F+2d20h
                                 May
                                     5 12:47 405286 km
                                                        N+4d16h
May 17 15:24 360297 km F+1d11h
                                     2 1:15 406190 km -
                                                         N+2d13h
Jun 14 23:23 357433 km + F+ 11h
                                 Jun 29 6:10 406580 km -- N+ 3h
Jul 13 9:09 357263 km ++ F- 9h Jul 26 10:23 406274 km - N-2d 7h
Aug 10 17:16 359829 km F-1d 8h
                                 Aug 22 21:54 405418 km
                                                        N-4d10h
Sep 7 18:18 364490 km F-2d15h
                                Sep 19 14:46 404555 km
                                                        N-6d 7h
    4 17:02 369334 km F-5d 3h
                                 Oct 17 10:22 404329 km
                                                         F+7d13h
Oct 29 14:49 368287 km
                     N+4d 4h
                                Nov 14 6:42 404923 km
                                                         F+5d19h
Nov 26 1:32 362825 km
                       N+2d 2h
                                 Dec 12 0:31 405868 km
                                                         F+3d20h
Dec 24 8:34 358269 km
                       N+ 22h
```

Initial Conditions: Aphelion and Perihelion

Year	Date/Ti Perihe		Distance	Relative to Mean Per.	Date/Time of Aphelion	Distance	Relative to Mean Ap.	Perihelion Interval
2001	Jan 04	08:52	0.9832860 AU	-582 km	Jul 04 13:37	1.0166426 AU	-10122 km	367.15 days
2002	Jan 02	14:09	0.9832898 AU	-20 km	Jul 06 03:47	1.0166882 AU	-3304 km	363.22 days
2003	Jan 04	05:02	0.9833204 AU	4556 km	Jul 04 05:40	1.0167282 AU	2683 km	366.62 days
2004	Jan 04	17:42	0.9832648 AU	-3752 km	Jul 05 10:54	1.0166937 AU	-2485 km	365.53 days
2005	Jan 02	00:35	0.9832968 AU	1032 km	Jul 05 04:58	1.0167416 AU	4683 km	363.29 days
2006	Jan 04	15:30	0.9833270 AU	5543 km	Jul 03 23:10	1.0166973 AU	-1949 km	367.62 days
2007	Jan 03	19:43	0.9832602 AU	-4449 km	Jul 06 23:53	1.0167059 AU	-649 km	364.18 days
2008	Jan 02	23:51	0.9832801 AU	-1476 km	Jul 04 07:41	1.0167535 AU	6465 km	364.17 days
2009	Jan 04	15:30	0.9832730 AU	-2526 km	Jul 04 01:40	1.0166664 AU	-6563 km	367.65 days
2010	Jan 03	00:09	0.9832897 AU	-38 km	Jul 06 11:30	1.0167020 AU	-1246 km	363.36 days

Initial Conditions: Initial Position Jan 4 2022

Initial Conditions: Initial Velocity

$$v^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right)$$

Instantaneous velocity is tangent to orbit. Solve and convert to x-y coordinates.

Initial Conditions

X _E		1.467425829E11
Χ̈́E		-2083.5317978
y_{E}		1.0120227668E10
у̀Е		30211.0631877
X _M	=	1.4709119758E11
x _M		-2158.59593173
y_{M}		1.0221534081E10
у̀М		31291.26048

Finding our orbit

Computing our Acceleration

$$F = ma$$
, $F_g = G \frac{m M}{r^2}$
$$ma = G \frac{m M}{r^2}$$

$$a = G \frac{M}{r^2}$$

Our acceleration must have direction (unit vector)

$$\vec{d}$$
 (distance) = $\begin{bmatrix} x \\ y \end{bmatrix}$, $r = \|\vec{d}\|$

direction of
$$a = \frac{\vec{d}}{\|\vec{d}\|}$$

$$\vec{a} = \frac{\vec{d}}{\|\vec{d}\|} \cdot G \frac{M}{\|\vec{d}\|^2} = \vec{d} \cdot G \frac{M}{\|\vec{d}\|^3}$$

Using ODE solver

```
def F(q0):
   q=q0.copy()
   #new distances
   xe=q[0]
   ye=q[1]
   xm=q[2]
   ym=q[3]
   xs=q[4]
   ys=q[5]
    #distances
   des=np.array([xe-xs, ve-ys])
   dsm=np.array([xm-xs, ym-ys])
   dem=np.array([xm-xe, ym-ye])
    #acceleration
   Ae=-A(ms, des)+A(mm, dem)
   As=A(me, des)+A(mm, dsm)
   Am = -A(me, dem) - A(ms, dsm)
    #q dot
   q_2=np.array([q[6], q[7], q[8], q[9], q[10], q[11], \
                  Ae[0], Ae[1], Am[0], Am[1], As[0], As[1])
```

```
def integral(F, t, q, tmax, tstep):
   def runkut(F, t, q, tstep):
       k0 = tstep * F(q)
       k1 = tstep * F(q + k0/2.0)
       k2 = tstep * F(q + k1/2.0)
       k3 = tstep * F(q + k2)
        return (k0 + 2.0 * k1 + 2.0 * k2 + k3)/6.0
   T = []
   0 = 1
   T.append(t)
   0.append(q)
   while t < tmax:
       tstep = min(tstep, tmax - t)
       q = q + runkut(F, t, q, tstep)
       t = t + tstep
       T.append(t)
       Q.append(q)
    return np.array(T), np.array(Q)
 def A(m op, d):
      d1=d.copy()
      dmag=np.linalg.norm(d)
      return d1*((m op*G)/(dmag**3))
```

Sun, Earth and Moon system...

Zoom in on Earth and Moon:

Future Work

- Can scale up to multiple satellites
 - Predicting orbits of potentially dangerous objects
- Predicting eclipses

Acknowledgement

- Prof. Zucker
- https://www.khanacademy.org/computing/computer-programming/programming-natural-simulations/programming-forces/a/gravitational-attraction
- https://www.nasa.gov/sites/default/files/orbit-3.jpg
- https://eclipse.gsfc.nasa.gov/SEhelp/image/Fig4-2a.png
- https://solarsystem.nasa.gov/internal_resources/5121

