

Department of Electronics and Communication

NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR MAJOR EXAMINATION

Course: Digital Electronics and Logic Design

Semester: 4th (CSE)

Date: 11/06/19

Time: 3 hours

Max Marks: 60

Code: ECE-403

Note: Attempt any 4 questions and draw diagrams wherever necessary.

	Q1.	Q1. (a) What are the ways to represent signed numbers? Explain with examples.	
		(b) Apart from Hamming codes how is parity used for error detection and correction?	[5]
		Explain with an example.	[5]
		(c) How do we convert binary codes to gray codes? What are the properties of gray codes). [5]
	•	Give its application.	[5]
		1 1 77 11 12 12 12 12 12 12 12 12 12 12 12 12	[5]
	Q2.	(a) Explain working of a multiplexer. Give its applications. How are they cascaded?	[5]
		(b) Implement the following function using:	[5]
		$F(A,B,C,D) = \Sigma_m(2,3,6,7,8,12,14,15)$	
		1. 8:1 MUX	
		2. 4:1 MUX	re1
		(e) Explain ring counter along with its logic diagram, truth table and timing diagram.	[5]
		1 177	
	Q3.	(a) Design a 3-bit asynchronous up-down counter using positive edge triggered JK-	[<i>7 5</i>]
	1	flipflops. Explain its working.	[7.5]
	·	(b) Design a 4-bit synchronous odd counter using negative edge triggered D-flipflops.	[7.5]
		Explain its working as well.	[7.5]
			[15]
	Q4.	Implement 4 bit binary to gray code convertor using:	[15]
		a) PROM	9
		b) PLA	
		c) PAL	
		Explain the distinction between them.	
			Γ 7 51
	Q5.	Design a sequence detector that detects 10010 using moore model.	[7.5] [7.5]
Po i		(b) Explain the working of Successive Approximation type ADC in detail.	[/]