Introduction to syntax

LING 20: Introduction to Linguistic Analysis

UCLA · Winter, 2022

The big question

What do you know when you know a human language?

- 1. a finite set of idiosyncratic, memorized basic elements
- 2. **rules** for combining and manipulating these elements

Overview

· Phonetics:

How are sounds articulated?

· Phonology:

How are sounds organized and manipulated?

Morphology:

How are words built up from morphemes?

Syntax:

How are sentences formed from words?

Syntax

- Syntax studies the rules of sentence formation.
- Which arrangements of words make good sentences?
 - (1) a. The dog chased the cat.
 - b. *Dog cat the chased the.

Some core properties of syntax

- 1. Creativity
- **2.** Category dependence
- 3. Recursion

Some core properties of syntax

- 1. Creativity
- 2. Category dependence
- 3. Recursion

Creativity

Speakers can understand and produce sentences that they have never encountered before:

(2) Aardvarks from Eastern South Africa have a special, triangular pocket in their abdomens that they use to store rocks and sometimes small rodents.

Creativity

Speakers can understand and produce sentences that they have never encountered before:

- (2) Aardvarks from Eastern South Africa have a special, triangular pocket in their abdomens that they use to store rocks and sometimes small rodents.
- (3) In 18th century England, gambling dens employed someone whose job was to swallow the dice if there was a police raid.

Creativity

Not every string of words in a language is a sentence of that language:

- (4) a. A shrimp's heart is in its head.
 - b. *Head a heart its shrimp's in is.

Implication:

There are **rules** about these combinations!

Some core properties of syntax

- 1. Creativity
- 2. Category dependence
- 3. Recursion

Syntactic categories

- Words belong to classes, called GRAMMATICAL CATEGORIES (or parts of speech).
- Syntactic rules only care about these grammatical categories, not individual words.
- → Category dependence

A new word

"snerd":

a video game that can be completed in under 10 hours

- (5) a. This game is a real snerd.
 - b. Don't buy that snerd!
 - c. Snerds really annoy me.
 - d. *I snerd every weekend.
 - e. *I play very snerd.

The role of categories

- You figured out that snerd is a noun.
- Because your knowledge of syntax tells you where nouns can and cannot occur, you immediately knew where snerd can and cannot go.

N(ouns)

- Examples: dog, cat, chair, destruction, ...
- Rule-of-thumb test:
 can occur as X in "I heard about the X".
- In addition, we will assume that proper names (Alex, Taylor, Pat, ...) and pronouns (I, you, she, he, they, ...) are also nouns.

V(erbs)

- Examples: walk, talk, consider, know, say, ...
- Rule-of-thumb test:
 can have "can" appear directly before them

A(djectives)

- Examples: big, bad, long, happy, careful, ...
- Rule-of-thumb test: can appear between the very and a N

D(eterminers) + P(repositions)

- **Determiners:** the, that, a, some, every, ...
- Prepositions:
 to, from, on, after, behind, ...

Summary: Category dependence

- Words belong to different categories:
 - **N**(oun)
 - **V**(erb)
 - A(djective)
 - **D**(eterminer)
 - **P**(reposition)
 - ...
- Syntactic rules care only about categories.

Some core properties of syntax

- 1. Creativity
- 2. Category dependence
- 3. Recursion

Sentences are unbounded

Fun fact:

There is **no upper limit** on how long sentences can be.

(6) Rose ate a cheesecake.

- (6) Rose ate a cheesecake.
- (7) Blanche said that Rose ate a cheesecake.

- (6) Rose ate a cheesecake.
- (7) Blanche said that Rose ate a cheesecake.
- (8) Dorothy thought that Blanche said that Rose ate a cheesecake.

- (6) Rose ate a cheesecake.
- (7) Blanche said that Rose ate a cheesecake.
- (8) Dorothy thought that Blanche said that Rose ate a cheesecake.
- (9) Sophia said that Dorothy thought that Blanche said that Rose ate a cheesecake.

Recursion

· A sentence can itself contain another sentence.

→ Recursion

- Because of this property, sentences can be unboundedly long.
 - → There is no longest sentence of English.
 - → There is an infinite number of English sentences.

(10) Alex ate muffins and cookies.

- (10) Alex ate muffins and cookies.
- (11) Alex ate muffins and cookies **and cupcakes**.

- (10) Alex ate muffins and cookies.
- (11) Alex ate muffins and cookies **and cupcakes**.
- (12) Alex ate muffins and cookies and cupcakes **and pies**.

- (10) Alex ate muffins and cookies.
- (11) Alex ate muffins and cookies **and cupcakes**.
- (12) Alex ate muffins and cookies and cupcakes **and pies**.
- (13) Alex ate muffins and cookies and cupcakes and pies **and chips**.

- (10) Alex ate muffins and cookies.
- (11) Alex ate muffins and cookies **and cupcakes**.
- (12) Alex ate muffins and cookies and cupcakes **and pies**.
- (13) Alex ate muffins and cookies and cupcakes and pies **and chips**.
- (14) Alex ate muffins and cookies and cupcakes and pies and chips **and pickles**.

Recursion in general terms

- Recursion (informal definition): something contains a version of itself
- Consequence:
 Syntactic rules must be recursive.
- In other words, it must be possible for syntactic rules to apply to their own output.

Recursion beyond language

Recursion is not limited to linguistics: fractals, Droste effect, romanesco broccoli, sourdough bread, infinity mirrors

Phrase-structure rules

LING 20: Introduction to Linguistic Analysis

UCLA · Winter 2022

Reminder: Some core properties of syntax

- Creativity
- Category dependence
- Recursion

→ We will develop **phrase-structure rules** to capture these properties.

Our first phrase-structure rule

· Observation:

You can form a sentence in English by combining a noun and a verb.

- (1) a. Syntax rocks.
 - b. Durians stink.
 - c. Dorothy sleeps.

Phrase-structure rule:

 $S \rightarrow NV$

("a sentence can consist of a noun and a verb")

Syntactic trees

 $S \rightarrow N V$

Noun phrases

- The subject can be more complex than just a single word:
 - (2) a. This topic rocks.
 - b. This new topic rocks.
 - c. Every cat in the room sleeps.
- The bolded words form a syntactic unit.
- We call this unit a **Noun Phrase (NP)**.

New rules

- S → NP V
 ("a sentence can consist of a noun phrase and a verb")
- NP → (D) (A) N (P NP)
 ("a noun phrase consists of a noun and optionally a determiner, adjective, preposition and noun phrase")
- Elements in "()" are optional.

A new tree

Verb phrases

- A subject NP can combine with more than just a verb:
 - (3) a. Syntax excites the students.
 - b. The cat likes Blanche.
- We call this unit a VERB PHRASE (VP).

Some new rules

- S → NP VP
 ("a sentence consists of a noun phrase and a verb phrase")
- VP → V (NP)
 ("a verb phrase consists of a verb and optionally a noun phrase")

Another tree

Prepositional phrases

- In English, prepositions are usually followed by a NP:
 - (4) a. The students in the class rock.
 - b. Blanche walked into the porch.
- We call the unit that consists of the preposition and the NP that follows it a PREPOSITIONAL PHRASE (PP).

Rules for PPs

Internal structure of PPs:

 $PP \rightarrow P NP$ ("a prepositional phrase consists of a preposition and an NP")

· Placement of PPs:

$$NP \rightarrow (D) (A) N (PP)$$

 $VP \rightarrow V (NP) (PP)$

Our rules so far

$$S \rightarrow NP VP$$

 $NP \rightarrow (D) (A) N (PP)$
 $VP \rightarrow V (NP) (PP)$
 $PP \rightarrow P NP$

Auxiliaries

- · Sentences can contain more than one verb:
 - (5) a. The cat can sleep.
 - b. Blanche is eating cheesecake.
 - c. Dorothy **might** sing.
- These verbs are called AUXILIARY VERBS (AUX):
 can, be, have, do, should, will, ...
- A new rule:
 - S → NP Aux VP

Auxiliary example

Complementizer phrases

- Subjects and objects do not have to be NPs, they can be clauses too:
 - (6) a. That Dorothy sings annoys Sophia.
 - b. I think that syntax rocks.
- The bolded words form a unit.
- We call this unit a COMPLEMENTIZER PHRASE (CP) because they start with a complementizer.
- Complementizers: that, if, whether

Some new rules

- S → CP VP
 ("a sentence can consist of a CP and a VP")
- VP → V (NP) (PP) (CP)
 ("a VP consists of a verb and optionally an NP and/or a PP and/or a CP")
- CP → C S
 ("a CP consists of a complementizer and a sentence")

Tree: CP as subject

Tree: CP as object

More on complementizer phrases

- · CPs can also occur inside NPs:
 - (7) The rumor that Rose snores amuses Blanche.
- · A new rule:

$$NP \rightarrow (D) (A) N (PP) (CP)$$

Tree: CP inside NP

Taking stock

These are the rules that we have so far (these are **not** yet final, though):

```
S \rightarrow NP (Aux) VP

S \rightarrow CP (Aux) VP

NP \rightarrow (D) (A) N (PP) (CP)

VP \rightarrow V (NP) (PP) (CP)

PP \rightarrow P NP

CP \rightarrow C S
```

Reminder:

There is **no upper limit** on how long sentences can be.

- (8) Rose ate a cheesecake.
- (9) Blanche said that Rose ate a cheesecake.
- (10) Dorothy thought that Blanche said that Rose ate a cheesecake.
- (11) Sophia said that Dorothy thought that Blanche said that Rose ate a cheesecake.

· Consequence:

A sentence can itself contain another sentence.

 Because of this, English sentences can be unboundedly long.

· Consequence:

A sentence can itself contain another sentence.

- Because of this, English sentences can be unboundedly long.
- Recursion: something contains a version of itself

Recursion in phrase-structure rules

· Some of our rules:

$$S \rightarrow NP VP$$

 $VP \rightarrow V (CP)$
 $CP \rightarrow C S$

 This set of rules is recursive because it produces a sentence within a sentence.

Key consequence:

English has a limited number of words and a limited number of syntactic rules, but thanks to recursion, we can form an infinite number of sentences.

- Our VP rule allows us to put exactly one PP into a VP.
- · But VPs can contain more than one PP:
 - (12) She walked [into the room] [past the table].

In fact, you can have as many PPs inside a VP as you want:

(13) She walked [into the room] [past the table] [behind the sofa] [over the rug] [through the curtain] [around the dog] [under the chandelier] [beside the settee].

· Question:

How do we allow our phrase structure rules to generate an unbounded number of PPs within a VP?

· Answer: Recursion!

A rule that introduces one PP but can apply to its own output.

· Question:

How do we allow our phrase structure rules to generate an unbounded number of PPs within a VP?

· Answer: Recursion!

A rule that introduces one PP but can apply to its own output.

Rule:

 $VP \rightarrow VP PP$

The new VP rule in action

Key characteristic:

- Each application of the VP rule introduces one PP.
- But because the VP rule can apply to its own output, it can apply over and over again.
- This allows for an unbounded number of PPs in a sentence.
- Rules that can apply to their own output are recursive.
- The rule "VP → VP PP" is recursive.

Types of recursion

 If a single rule can apply to its own output, the recursion is direct:

 If a sequence of rules can apply to its own output, the recursion is indirect:

$$S \rightarrow NP VP$$

 $VP \rightarrow V (CP)$
 $CP \rightarrow C S$

Adverbs

Adverbs look similar to adjectives, but often end in a -ly.
 They modify VPs.

• Examples: often, probably, beautifully, quietly, ...

- (14) a. Alex often played the guitar.
 - b. Alex played the guitar **beautifully**.
 - c. Alex often played the guitar beautifully.
 - d. *Alex played **often** the guitar.

Adverbs

Adverbs and PP:

- (15) a. Alex sang [to her parents] beautifully.
 - b. Alex sang beautifully [to her parents].

· Recursion:

(16) Alex **probably often** sang to her parents.

Adverb rules

Rules for adverbs:

 $VP \rightarrow VP Adv$

 $VP \rightarrow Adv VP$

Adverb rules

Rules for adverbs:

 $VP \rightarrow VP Adv$

 $VP \rightarrow Adv VP$

Adverb rules

Rules for adverbs:

 $VP \rightarrow VP Adv$

 $VP \rightarrow Adv VP$

More on NPs

- Thus far, we have a fairly simple picture of NPs: They consist of an N and possibly a determiner, an adjective, and a PP.
- Based on recursion, we will now see that this picture is a bit too simplistic. NPs are a tad more complex.

More on recursion: Adjectives

Just as there can be infinitely many PPs inside a VP, there can be infinitely many adjectives inside an NP:

(17) The [big] [fat] [lazy] [smelly] [orange] cat sleeps.

Adjective recursion

· A wrong idea:

$$NP \rightarrow (D) NP (PP) (CP)$$

 $NP \rightarrow A NP$

 $NP \rightarrow N$

• This would allow us to produce: the big orange cat

Adjective recursion

· A wrong idea:

$$NP \rightarrow (D) NP (PP) (CP)$$

 $NP \rightarrow A NP$

 $NP \rightarrow N$

· Problem:

These rules would also allow to produce many structures that are ungrammatical in English.

Adjective recursion

· Generalizations:

- Adjectives have to come between the noun and the determiner.
- There can be many adjectives but only a single determiner.
- → We want adjectives to come into the structure below the determiner but before the noun.
 - · Idea:

Phrases like 'The big orange cat' aren't really noun-phrases, but *Determiner* phrases, or **DP**

• DP \rightarrow (D) NP NP \rightarrow A NP NP \rightarrow N

More recursion in NPs

As it turns out, adjectives are not the only element that can occur multiple times within an NP. PPs can as well:

(18) The student [in the class] [with red hair] [from Finland] was sleeping.

PP-recursion structure

 $DP \rightarrow (D) NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $PP \rightarrow P DP$

Calling phrases like 'the big orange cat' DP instead of NP means that it's a **DP** that's the subject of a sentence, and not an NP:

 $S \rightarrow DP VP$

 $S \rightarrow DP Aux VP$

All of these are DP's:

The big cat swam.

She swam.

Cats don't swim.

Big orange cats don't swim.

Pronoun DP's are special:

She swam.

Cats don't swim.

Big orange cats don't swim.

*Big orange she swam.

Pronouns are Determiners, not nouns!

 $DP \rightarrow D$

 $DP \rightarrow D$

We cannot use the following rule anymore:

$$NP \rightarrow (D)(A) N (PP) (CP)$$

So, what rule derives sentences like:

The rumor that Rose snores amuses Blanche.

We cannot use the following rule anymore:

$$NP \rightarrow (D)(A) N (PP) (CP)$$

So, what rule derives sentences like:

The rumor that Rose snores amuses Blanche.

$$NP \rightarrow NP CP$$

49

English allows coordinating elements with and:

English allows coordinating elements with and:

[the cats] and [the dogs]

DP

English allows coordinating elements with and:

[the cats] and [the dogs] DP

the [cats] and [dogs] N

English allows coordinating elements with and:

[the cats] and [the dogs] DP

the [cats] and [dogs] N

the [orange cats] and [brown dogs] NP

English allows coordinating elements with and:

[the cats] and [the dogs] DP

the [cats] and [dogs] N

the [orange cats] and [brown dogs] NP

the [orange] and [brown] cats

English allows coordinating elements with and:

[the cats] and [the dogs] DP
the [cats] and [dogs] N

the [orange cats] and [brown dogs] NP

the [orange] and [brown] cats

He [eats toast] and [drinks coffee].

English allows coordinating elements with and:

[the cats] and [the dogs] DP

the [cats] and [dogs] N

the [orange cats] and [brown dogs] NP

the [orange] and [brown] cats

He [eats toast] and [drinks coffee].

He sings [gently] and [quietly]. Adv

English allows coordinating elements with and:

[the cats] and [the dogs]	DP
the [cats] and [dogs]	N
the [orange cats] and [brown dogs]	NP
the [orange] and [brown] cats	A
He [eats toast] and [drinks coffee].	VP
He sings [gently] and [quietly].	Adv
[He sang] and [they danced].	S

English allows coordinating elements with and:

[the cats] and [the dogs]	DP
the [cats] and [dogs]	N
the [orange cats] and [brown dogs]	NP
the [orange] and [brown] cats	A
He [eats toast] and [drinks coffee].	VP
He sings [gently] and [quietly].	Adv
[He sang] and [they danced].	S
He ate [in a rush] and [with a fork].	PP

· Conclusion:

Coordination can combine any elements that are of the same type.

Coordination rule:

 $\alpha \to \alpha$ and α , where " α " can be any category, but has to be the same in all three places (e.g. NP \to NP and NP; S \to S and S, ...)

Overview: Our phrase structure rules

$S \rightarrow$	DP	(Aux)	VP
-----------------	----	-------	----

 $S \rightarrow CP (Aux) VP$

 $DP \rightarrow (D) NP$

 $DP \rightarrow D$

 $NP \rightarrow A NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow NP CP$

 $NP \rightarrow N$

 $PP \rightarrow P DP$

 $CP \rightarrow CS$

 $VP \rightarrow V (DP) (CP)$

 $VP \rightarrow VP PP$

 $VP \rightarrow VP Adv$

 $VP \rightarrow Adv VP$

 $\alpha \rightarrow \alpha$ and α

"Rewrite" rules

Phrase structure rules are also called 'rewrite' rules

The idea: To say an **S**, you can use either a DP VP sequence, or a CP VP sequence

To say a **DP** you can use a D NP sequence, a D, or an NP ...and so on

$$S \rightarrow DP (Aux) VP$$

$$S \rightarrow CP (Aux) VP$$

$$DP \rightarrow (D) NP$$

$$DP \rightarrow D$$

$$NP \rightarrow A NP$$

$$NP \rightarrow NP PP$$

$$NP \rightarrow NP CP$$

$$NP \rightarrow N$$

$$PP \rightarrow PDP$$

$$CP \rightarrow CS$$

$$VP \rightarrow V (DP) (CP)$$

$$VP \rightarrow VP PP$$

$$VP \rightarrow VP Adv$$

$$VP \rightarrow Adv VP$$

$$\alpha \rightarrow \alpha$$
 and α