$y w \sim N(Xw, \sigma_n^2 I)$ In	iducing points: We a vector of inducing
$ w v \sim N((X^TX + \lambda I)^{-1}X^Tv_*(X^TX + \lambda I)^{-1}\sigma_*^2)$ va	riables u
2 Kalman Filter f_A	$ _{u} \sim N(K_{Au}K_{u}u^{-1}u, K_{AA} - K_{Au}K_{u}u^{-1}K_{uA})$
$\begin{cases} Y_t = HX_t + \eta_t & \eta_t \sim N(0, \Sigma_n) X_1 \sim N(\mu_p, \Sigma_p) \\ Y_t = HX_t + \eta_t & \eta_t \sim N(0, \Sigma_n) \end{cases} X_1 \sim N(\mu_p, \Sigma_p) \mathbf{Su}$	$ _{u} \sim N(K_{*u}K_{u}u^{-1}u, K_{**} - K_{*u}K_{u}u^{-1}K_{u*})$ where of Regressors (SoR): $\blacksquare \rightarrow 0$
Then if X_0 is Gaussian then $X_t Y_{1:t} \sim N(\mu_t, \sigma_t)$:	ITC: ■ → its diagonal
$\mu_{t+1} = F \mu_t + K_{t+1} (y_{t+1} - HF \mu_t)$	Review of useful concepts and Introduction
$\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^T + \Sigma_x)$	1 Multivariate Gaussian
$K_{t+1} = (F\Sigma_t F^T + \Sigma_x) H^T (H(F\Sigma_t F^T + \Sigma_x) H^T + \Sigma_y)^{-1} $ f($(x) = \frac{1}{2\pi\sqrt{ \Sigma }} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$
3 Gaussian Processes S ₁₁	appose we have a Gaussian random vector
$f \sim GP(\mu, k) \Rightarrow \forall \{x_1, \dots, x_n\} \ \forall n < \infty$	$V_V \sim N(\mu_V, \Sigma_{VV})$.
$[f(x_1)f(x_n)] \sim N([\mu(x_1)\mu(x_n)],K)$	appose we take two disjoint subsets of V:
	$i=i_1,,i_k$ and $B=j_1,,j_m$.
D/	then, the conditional distribution: $(X_A X_B=x_B)=N(\mu_{A B},\Sigma_{A B})$ is Gaussian:
$J \sim Gr(\mu, \kappa)$ then: $J(y_{1:n}, x_{1:n} \sim Gr(\mu, \kappa))$	$A B = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B)$
$\tilde{\mu}(x) = \mu(x) + K_{A,x}^{T} (K_{AA} + \epsilon I_n)^{-1} (y_A - \mu_A)$	$A_{A B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} (X_B - \mu_B)$ $A_{B B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$
$ k \times k' = k \times k' + k$	$ \begin{array}{ccc} A_{AB} & - \Sigma_{AA} & \Sigma_{AB} \Sigma_{BB} \Sigma_{BA} \\ 2 & \mathbf{Convex} / \mathbf{Jensen's inequality} \end{array} $
	(x) is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0,1]: g''(x) > 0$
	$(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$
	$(E[X]) \le E[\varphi(X)]$
	3 Review Probability
k(x,y) is a kernel if it's symmetric semidefinite Pr	robability space (Ω, F, P) : Set of atomic
positive: ev $\forall \{x_1,, x_n\}$ then for the Gram Matrix (σ)	vents Ω . Set of all non-atomic events F -Algebra): $F \in 2^{\Omega}$. Probability measure:
	: $F \rightarrow [0,1]$
Some Kernels: (h is the bandwidth hyperp.) Ba	ayes' rule: $P(B A) = P(A,B)/P(A) =$
Caussian (rhf): $k(x,y) = \exp\left(-\ x-y\ ^2\right)$	$(A B)P(B)/P(A)$, where $P(A) = \sum_b P(A B)P(A)$
	nion: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
1	ules for joint distributions:
	um rule (Marginalization): $(X_{1:i-1}, X_{i+1:n}) = \sum_{x_i} P(X_{1:i-1}, X_i = x_i, X_{i+1:n})$
	roduct rule (Chain rule):
	$(X_{1:n}) = P(x_1)P(X_2 X_1)P(X_n X_{1:n-1})$
$v \sim N(0, K_n(\theta))$ where $K_n(\theta) = K_{AA}(\theta) + \sigma_n^2 I$	onditional Independence:
$\hat{\theta} = \arg\max_{x \in \mathbb{R}^n} \log n(x Y;\theta)$	$\perp Y Z \text{ iff } P(X,Y Z) = P(X Z)P(Y Z)$
$T_{K-1}(0) = 1 + T_{K-1}(0)$	$P(Y Z) > 0 \Rightarrow P(X Z,Y) = P(X Z)$
	roperties of Conditional Independence: $Y \perp Y \mid Z \Rightarrow Y \perp X \mid Z$
	ecomposition: $X \perp Y \mid Z \Rightarrow Y \perp X \mid Z$
	ontraction: $(X \perp Y \mid Z) \land (X \perp W \mid Y, Z) \Rightarrow$
3.4 Approximation Techniques X	$\perp Y, W \mid Z$
Local method: $k(x_1, x_2) = 0$ if $ x_1 - x_2 \gg 1$	Teak union: $X \perp Y, W \mid Z \Rightarrow X \perp Y \mid Z, W$ extersection: $(X \perp Y \mid W, Z) \land (X \perp W \mid Y, Z) \Rightarrow$
Kandom Fourier reatures: if $\kappa(x,y) = \kappa(x-y)$	$\perp Y, W \mid Z$
$p(w) = \mathcal{F} \{\kappa(\cdot), w\}$. Then $p(w)$ can be normall-	Bayesian Networks
zed to be a density. 5.	•
	Bayesian network (G, P) consists of:
$\kappa(x-y) = \mathbb{E}_{b \sim \mathcal{U}([0,2\pi]), w \sim p(w)} \left[z_{w,b}(x) z_{w,b}(y) \right] - A$	A BN structure <i>G</i> (directed, acyclic graph)

is faster $(X^TX \text{ vs } XX^T)$

Bayesian Regression

 $\sim N(0, \sigma_n^2 I), \ \epsilon \sim N(0, \sigma_n^2 I), \ y = Xw + \epsilon$

```
Theorem: d - sep(X_i; X_i | O)) \Rightarrow X \perp Y | Z
Converse does not hold in general!
6 Exact inference (tree-structured BN)
6.1 Variable elimination
- Given a BN and query P(X|E=e)
- Choose an ordering of X_1,...,X_n Eliminate va-
riables from the outside in!
- Set up initial factors: f_i = P(X_i | Pa_i)
- For i = 1 : n, X_i \notin X, E
   - Collect and multiply all factors f that in- clude X_i
   - Generate new factor by marginalizing out X_i: g_i = \max_{w=x_i} \prod_j f_j
X_i: g_{X_i} = \sum_{x_i} \prod_i f_i
   - Add g to set of factors
- Renormalize P(x,e) to get P(x|e)
Variable elimination for polytrees:
- Pick a root, (avoiding X and E)
- Orient edges towards root
- Eliminate variables according to topological
6.2 Avoiding recomputation: factor graphs
FG for a BN is a bipartite graph consisting of
variables (circles) and factors (rectangles). It is
not a unique representation.
6.2.1 Sum-product/Belief Propagation (BP)
        Algorithm:
- Initialize all messages as uniform distribution
- Until converged to:
   - Pick a root in the factor graph and reorient
the edges towards this root.
```

where $z_{w,b}(x) = \sqrt{2}cos(w^Tx + b)$. I can MC - A set of conditional probability distributions

 $P(X_1,...,X_n) = \prod_i P(X_i | Pa_{X_i})$

riables X, Y, Z on the path:

- indirect evidential effect:

 $X \rightarrow Y \rightarrow Z$ and Y unobserved

 $X \leftarrow Y \leftarrow Z$ and Y unobserved

 $X \leftarrow Y \rightarrow Z$ and Y unobserved.

- indirect causal effect:

- common cause:

common effect:

d-separated by O.

observed.

5.2 Active trails and d-separation

An undirected path in a BN structure G is called active trail for observed variables $O \in$

 $X_1,...,X_n$ of for every consecutive triple of va-

 $X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is

Any variables X_i and X_j for which there is

no active trail for observations O are called

BNs with 3 nodes:

extract features z. If # features is \ll n then this -(G,P) defines the joint distribution:

$P_{max}(X_v = x_v) \propto \prod_{u \in N(v)} \mu_{u \to v}(x_v)$ - Can retrieve MAP solution from these (must be careful when ties need to be broken). 7.2 Sampling based inference: compute marginals as expectations **Hoeffding's inequality:** Suppose *f* is bounded in [0, *C*]. Then: $P(|E_P[f(X)] - \frac{1}{N} \sum_{i=1}^{N} f(x_i)| \ge \epsilon) \le 2exp(\frac{-2N\epsilon^2}{C^2})$ Monte Carlo Sampling from a BN: - Sort variables in topological ordering X_1, X_n - For i = 1 to n, sample: $x_i \sim P(X_1 = x_1, ..., X_{i-1} = x_{i-1})$

- Update messages according to this ordering. Do passes from leaves to root and from

- If a leaf node is a variable node: $\mu_{x\to f}(x) = 1$ -

If a leaf node is a factor node: $\mu_{f \to x}(x) = f(x)$ -

 $\mu_{u \to v}(x_v) = \sum_{x_u \sim x_v} f_u(x_u) \prod_{v' \in N(u) \setminus \{v\}} \mu_{v' \to u(x'_v)}$

- Break once all messages change by $\leq \epsilon$

Messages from node v to factor u:

- Messages from factor *u* to node *v*:

Hope: after convergence, we have:

 $P(\overrightarrow{X_u} = \overrightarrow{x_u}) = \frac{1}{Z} f_u(\overrightarrow{x_u}) \prod_{v \in N(u)} \mu_{v \to u}(x_v)$

If we have a polytree Bayesian network:

- Send messages from leaves to root and from

7 Approximate inference (loopy networks)

With loopy graphs, BP is often overconfi-

7.1 Variable elimination for MPE (most proba-

- Collect and multiply all factors f_i that in-

- Generate new factor by maximizing out

- For $i = n-1: 1, X_i \notin E: \hat{x}_i = \operatorname{argmax} g_i(x_i, \hat{x}_{i+1:n})$

Retrieving MAP from Max-Product (MAP =

- For tree factor graphs, max-product computes

 $P(X_v = x_v) = \frac{1}{7} \prod_{u \in N(v)} \mu_{u \to v}(x_v)$

- Choose one node as root

ble explanation):

- Given BN and evidence E=e

- Choose an ordering of $X_1,...x_n$

- Add *g* to set of factors

MPE for a subset of RVs):

Define max-marginals:

max-marginals:

 $P_{max}(X_v = x_v) := \max P(x)$

- Set up initial factors $f_i = P(X_i|Pa_i)$

root to leaves

dent/oscillates.

- For $i = 1 : n, X_i \notin E$:

 $\mu_{v \to u}(x_v) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v(x_v)}$

root to leaves.

Called an all and all and all and	$-1 (I_t X_t)$. Sensor model (what do I observe	
- Collect samples over all variables:	if target is at location X_t ?) $Y_t = HX_t + \eta_t$ where	
$\hat{P}(X_A = x + A X_B = x_B) = \frac{Count(x_A, x_B)}{Count(x_B)}$	$\eta_t \sim N(0, \Sigma_y)$	$(X,A,r,P(x' x,a),\gamma)$, where X are states, A
- Throw away samples that disagree with x_B	8.2 Inference tasks	are actions, $r(x,a)$ is a reward function and
- Count fraction of x_a on remaining samples		transition probabilities:
	Filtering: $P(X_t y_{1,,t})$ Is it raining today?	P(x' x, a) = Prob(Next state = x' Action a)
7.2.1 Directly sampling from the posterior: MCMC	Prediction : $P(X_{t+\tau} Y_{1:t})$ Rain 5 days from now?	Objective: find a stationary policy $\pi: S \to A$
	Example for one step: $P(X_{t+1} Y_{1:t}) =$	that maximizes the sum of cumulative rewards.
Markov Chain:: A (stationary) MC is a se-	$\sum_{x} P(X_{t+1}, X_t = x_t Y_{1:t}) = \sum_{x} P(X_{t+1} X_t = x_t Y_{1:t})$	Value of a state given a policy: sum of cumu-
quence of RVs $X_1,,X_N$, with prior $P(X_1)$	$(x_t)P(X_t Y_{1:t})$ (with KFs, you need integrals !)	lative rewards, given that the initial state is
and transition probabilities $P(X_{t+1} X_t)$ inde-	Smoothing : $P(X_{\tau} y_{1:t})$ with $\tau < t$ Did it rain	this state \rightarrow Bellman equation:
pendent of t.	last week? [Can use sum-product (aka forward-	$\mathbf{T}^{T}(x) = \mathbf{T} \left[\mathbf{\nabla} \otimes \mathbf{x} t_{x}(x, x, y, x) \right]$
Markov assumpt.: $X_{1:t-1} \perp X_{t+1:T} X_t, \forall t > 1$	backward).]	$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t), s_{t+1}) s_0 = s \right]$
Stationarity assumption:	MPE: $argmaxP(x_{1:T} y_{1:T})$ Can use max pro-	$= \sum_{s' \in S} P(s' s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$
$P(X_{t+1} = x X_t = x') = P(X_t = x X_{t-1} = x'), \forall t > 1$	$x_{1:T}$	
If ergodic (= there exists a finite t such that	duct (aka Viterbi algorithm).	$= r(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' s, \pi(s)) V^{\pi}(s')$
every state can be reached in exactly t steps),	Bayesian filtering: Start with $P(X_1)$:	Theorem (Bellman): a policy is optimal iff it
then: it has a unique and positive stationary	At time t, assume we have $P(X_t y_{1:t-1})$	is greedy w.r.t. its induced value function!
distribution $\pi(X) > 0$, such for all x :		$V^*(x) = max_a[r(x,a) + \gamma \sum_{x'} P(x' x,a)V^*(x')]$
$\lim_{N \to \infty} P(X_N = x) = \pi(x) \text{ and } \pi(X) \perp P(X_1).$	Conditioning: $P(X_t y_{1:t}) = \frac{P(X_t y_{1:t-1})P(y_t X_t)}{\sum_{x_t} P(X_t y_{1:t-1})P(y_t X_t)}$	Bellman equation mais geral:
$\stackrel{N\to\infty}{\text{If MC}}$ satisfies the detailed balance equation	Prediction ($O(n^2)$ <i>vs</i> $O(n)$ in conditioning):	$V^{*}(x) = \max_{a} \left[\sum_{x'} P(x' x, a) (r(a, x, x') + \gamma V^{*}(x')) \right]$
(for unnormalized distribution Q , for all x, x' :	$P(X_{t+1} y_{1:t}) = \sum_{x} P(X_{t+1} X_t) P(X_t y_{1:t})$	Optimal policy:
	Since HMM is a polytree, smoothing/MPE	$\pi^*(s) = argmax[r(x, a) + \gamma \sum_{x'} P(x' x, a) V^*(x')]$
Q(x)P(x' x) = Q(x')P(x x'), then the MC has	can be computed by VE/BP. Kalman filte-	$a \in A$
stationarity distribution $\pi(X) = 1/ZQ(X)$.	ring: Bayesian filtering for continuous pro-	9.2 Policy iteration (Cost $O(S^3 + SA\Delta)$)
Designing Markov Chains:	blems. RV corrupted by Gaussian distributions	Start with an arbitrary (e.g. random) policy π .
- Proposal distribution $R(X' X)$: given $X_t = x$,		Until converged, do:
sample "proposal" $x' \sim R(X' X=x)$	with zero mean. Bayesian filtering is basi-	- Compute value function $V^{\pi}(x)$
- Acceptance distribution	cally the same, except that sums turn to	
	internals Community in an analytic	- Compute greedy policy π_c wrt V^{π}
- Suppose $X_t = x$	integrals. General Kalman update	- Compute greedy policy π_G w.r.t. V^{π}
- Suppose $X_t = x$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$	- Set $\pi \leftarrow \pi_G$
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$ - Kalman update:	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-$
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial num-
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)!
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs samp-	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_t F^T + \Sigma_x)$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$)
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant):	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_t F^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_t F^T + \Sigma_t)$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_t F^T + \Sigma_x)$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ :
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_t F^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_t F^T + \Sigma_t)$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let:
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do:	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks: a BN at every	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let:
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,, n\} \setminus B$ / Set ordering, and then, for each	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks: a BN at every time step	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a Q_t(x, a)$
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,,n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B)	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks: a BN at every	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,, n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable.	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t .
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,, n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i - Sample x_i from $P(X_i v_i)$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and non-	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,, n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i - Sample x_i from $P(X_i v_i)$	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks: a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and non-linear Kalman filters): Particle filtering	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,,n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i - Sample x_i from $P(X_i v_i)$ 8 Dynamical models (include time) 8.1 Examples with one variable per time step	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks: a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and non-linear Kalman filters): Particle filtering	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t=1$ to ∞ : - For each (x,a) , let: $Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x' x,a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a Q_t(x,a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)!
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,,n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i - Sample x_i from $P(X_i v_i)$ 8 Dynamical models (include time) 8.1 Examples with one variable per time step $X_1,,X_T$ (unobserved) hidden states	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks: a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and non-linear Kalman filters): Particle filtering Suppose: $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i:t}}$, where δ is	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,,n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i - Sample x_i from $P(X_i v_i)$ 8 Dynamical models (include time) 8.1 Examples with one variable per time step	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks: a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and non-linear Kalman filters): Particle filtering Suppose: $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction: Propagate	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_{x} Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_{x} V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP States = beliefs over states for original POMDP
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,,n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i - Sample x_i from $P(X_i v_i)$ 8 Dynamical models (include time) 8.1 Examples with one variable per time step $X_1,,X_T$ (unobserved) hidden states	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and nonlinear Kalman filters): Particle filtering Suppose : $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction : Propagate each particle: $x_i' \sim P(X_{t+1} x_{i,t})$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_{x} Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_{x} V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP States = beliefs over states for original POMDP
- Suppose $X_t = x$ - With probability $\alpha = min\left\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\right\}$ set: $X_{t+1} = x'$ - With probability $1 - \alpha$, set $X_{t+1} = x$ MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): - Start with initial assignment x to all variables - Fix observed variables $X_B = x_B$ - For $t = 1$ to ∞ , do: - Pick a variable i uniformly at random from $\{1,, n\} \setminus B$ / Set ordering, and then, for each X_i (except those in B) - Set v_i = values of all x except x_i - Sample x_i from $P(X_i v_i)$ 8 Dynamical models (include time) 8.1 Examples with one variable per time step $X_1,, X_T$ (unobserved) hidden states $Y_1,, Y_T$ (noisy) observations HMMs (polytrees: can use belief propagati-	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and nonlinear Kalman filters): Particle filtering Suppose : $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction : Propagate each particle: $x_i' \sim P(X_{t+1} x_{i,t})$ Conditioning :	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x, a)$ For $t = 1$ to ∞ : - For each (x, a) , let: $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_{x} Q_t(x, a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_{x} V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP
 Suppose X_t = x With probability α = min {1, Q(x')R(x x') Q(x)R(x' x)} set: X_{t+1} = x' With probability 1 − α, set X_{t+1} = x MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): Start with initial assignment x to all variables Fix observed variables X_B = x_B For t = 1 to ∞, do: Pick a variable i uniformly at random from {1,,n} \ B / Set ordering, and then, for each X_i (except those in B) Set v_i = values of all x except x_i Sample x_i from P(X_i v_i) 8 Dynamical models (include time) 8.1 Examples with one variable per time step X₁,, X_T (unobserved) hidden states Y₁,, Y_T (noisy) observations HMMs (polytrees: can use belief propagation): X_i categorical, Y_i categorical (or arbitrary) 	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and nonlinear Kalman filters): Particle filtering Suppose : $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction : Propagate each particle: $x_i' \sim P(X_{t+1} x_{i,t})$ Conditioning : - weight particles $w_i = \frac{1}{Z}P(y_{t+1} x_i')$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_ar(x,a)$ For $t=1$ to ∞ : - For each (x,a) , let: $Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x' x,a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_{x} V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP States = beliefs over states for original POMDP $B = \Delta(1,, n) = \{b: 1,, n \rightarrow [0, 1], \sum_x b(x) = 1\}$ Actions: same as original MDP
 Suppose X_t = x With probability α = min {1, Q(x')R(x x') Q(x)R(x' x)} set: X_{t+1} = x' With probability 1 − α, set X_{t+1} = x MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): Start with initial assignment x to all variables Fix observed variables X_B = x_B For t = 1 to ∞, do: Pick a variable i uniformly at random from {1,,n} \ B / Set ordering, and then, for each X_i (except those in B) Set v_i = values of all x except x_i Sample x_i from P(X_i v_i) 8 Dynamical models (include time) 8.1 Examples with one variable per time step X₁,, X_T (unobserved) hidden states Y₁,, Y_T (noisy) observations HMMs (polytrees: can use belief propagation): X_i categorical, Y_i categorical (or arbitrary) Kalman filters: X_i, Y_i Gaussian distributions 	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and nonlinear Kalman filters): Particle filtering Suppose : $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction : Propagate each particle: $x_i' \sim P(X_{t+1} x_{i,t})$ Conditioning : - weight particles $w_i = \frac{1}{Z}P(y_{t+1} x_i')$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_ar(x,a)$ For $t=1$ to ∞ : - For each (x,a) , let: $Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x' x,a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_{x} V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP States = beliefs over states for original POMDP $B = \Delta(1,, n) = \{b: 1,, n \rightarrow [0, 1], \sum_x b(x) = 1\}$ Actions: same as original MDP
 Suppose X_t = x With probability α = min {1, Q(x')R(x x') Q(x)R(x' x)} set: X_{t+1} = x' With probability 1 − α, set X_{t+1} = x MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): Start with initial assignment x to all variables Fix observed variables X_B = x_B For t = 1 to ∞, do: Pick a variable i uniformly at random from {1,,n} \ B / Set ordering, and then, for each X_i (except those in B) Set v_i = values of all x except x_i Sample x_i from P(X_i v_i) 8 Dynamical models (include time) 8.1 Examples with one variable per time step X₁,, X_T (unobserved) hidden states Y₁,, Y_T (noisy) observations HMMs (polytrees: can use belief propagation): X_i categorical, Y_i categorical (or arbitrary) Kalman filters: X_i, Y_i Gaussian distributions P(X₁): prior belief about location at time i 	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and nonlinear Kalman filters): Particle filtering Suppose : $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction : Propagate each particle: $x_i' \sim P(X_{t+1} x_{i,t})$ Conditioning : - weight particles $w_i = \frac{1}{Z}P(y_{t+1} x_i')$ - resample N particles $x_{i,t+1} \sim \frac{1}{Z}\sum_{i=1}^{N} w_i\delta_{x_i'}$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_ar(x,a)$ For $t=1$ to ∞ : - For each (x,a) , let: $Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x' x,a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_x Q_t(x,a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP States = beliefs over states for original POMDP $B = \Delta(1,, n) = \{b: 1,, n \rightarrow [0, 1], \sum_x b(x) = 1\}$ Actions: same as original MDP Transition model: - Stochastic observation:
 Suppose X_t = x With probability α = min {1, Q(x')R(x x') Q(x)R(x' x)} set: X_{t+1} = x' With probability 1 − α, set X_{t+1} = x MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): Start with initial assignment x to all variables Fix observed variables X_B = x_B For t = 1 to ∞, do: Pick a variable i uniformly at random from {1,,n} \ B / Set ordering, and then, for each X_i (except those in B) Set v_i = values of all x except x_i Sample x_i from P(X_i v_i) 8 Dynamical models (include time) 8.1 Examples with one variable per time step X₁,, X_T (unobserved) hidden states Y₁,, Y_T (noisy) observations HMMs (polytrees: can use belief propagation): X_i categorical, Y_i categorical (or arbitrary) Kalman filters: X_i, Y_i Gaussian distributions P(X_{t+1} X_t): 'Motion model' (how do I ex- 	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and nonlinear Kalman filters): Particle filtering Suppose : $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction : Propagate each particle: $x_i' \sim P(X_{t+1} x_{i,t})$ Conditioning : - weight particles $w_i = \frac{1}{Z}P(y_{t+1} x_i')$ - resample N particles $x_{i,t+1} \sim \frac{1}{Z} \sum_{i=1}^{N} w_i \delta_{x_i'}$ Conclusion we came to: $Z = \sum_{i=1}^{N} w_i \delta_{x_i}$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_a r(x,a)$ For $t=1$ to ∞ : - For each (x,a) , let: $Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x' x,a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_a V_t(x,a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP States = beliefs over states for original POMDP $B = \Delta(1,, n) = \{b: 1,, n \rightarrow [0, 1], \sum_x b(x) = 1\}$ Actions: same as original MDP Transition model: - Stochastic observation: $P(Y_t b_t) = \sum_{x=1}^n P(Y_t X_t = x)b_t(x)$
 Suppose X_t = x With probability α = min {1, Q(x')R(x x') Q(x)R(x' x)} set: X_{t+1} = x' With probability 1 − α, set X_{t+1} = x MCMC for graphical models: Gibbs sampling (Random Vs Practical variant): Start with initial assignment x to all variables Fix observed variables X_B = x_B For t = 1 to ∞, do: Pick a variable i uniformly at random from {1,,n} \ B / Set ordering, and then, for each X_i (except those in B) Set v_i = values of all x except x_i Sample x_i from P(X_i v_i) 8 Dynamical models (include time) 8.1 Examples with one variable per time step X₁,, X_T (unobserved) hidden states Y₁,, Y_T (noisy) observations HMMs (polytrees: can use belief propagation): X_i categorical, Y_i categorical (or arbitrary) Kalman filters: X_i, Y_i Gaussian distributions P(X₁): prior belief about location at time i 	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1};Fx_t,\Sigma_x)$ - Sensor model: $P(y_t x_t) = N(y_t;Hx_t,\Sigma_y)$ - Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x)$ - Kalman gain: $K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 8.3 Examples with > 1 variable per time step Dynamic Bayesian Networks : a BN at every time step These models typically have many loops. Exact inference is usually intractable. 8.4 Approx. infer. for filtering (DBNs and nonlinear Kalman filters): Particle filtering Suppose : $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is the indicator function. Prediction : Propagate each particle: $x_i' \sim P(X_{t+1} x_{i,t})$ Conditioning : - weight particles $w_i = \frac{1}{Z}P(y_{t+1} x_i')$ - resample N particles $x_{i,t+1} \sim \frac{1}{Z}\sum_{i=1}^{N} w_i\delta_{x_i'}$	- Set $\pi \leftarrow \pi_G$ Guaranteed to monotonically improve and to converge to an optimal policy π^* in $O(n^2m/(1-\gamma))$ iterations (converges in polynomial number of iterations)! 9.3 Value iteration (Cost $O(SA\Delta)$) Initialize $V_0(x) = max_ar(x,a)$ For $t=1$ to ∞ : - For each (x,a) , let: $Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x' x,a) V_{t-1}(x')$ - For each x , let $V_t(x) = \max_x Q_t(x,a)$ - Break if $ V_t - V_{t-1} _{\infty} = \max_x V_t(x) - V_{t-1}(x) \le \epsilon$ Then choose greedy policy w.r.t V_t . Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial number of iterations)! 9.4 POMDP = Belief-state MDP States = beliefs over states for original POMDP $B = \Delta(1,, n) = \{b: 1,, n \rightarrow [0, 1], \sum_x b(x) = 1\}$ Actions: same as original MDP Transition model: - Stochastic observation:

Rejection Sampling:

```
(X,A,r,P(x'|x,a),\gamma), where X are states, A
                                                                       9.5 Example of approx. solution to POMDPs:
            are actions, r(x,a) is a reward function and
            transition probabilities:
                                                                      - Assume parameterized policy: \pi(b) = \pi(b; \theta)
           P(x'|x, a) = \text{Prob}(\text{Next state} = x'|\text{Action } a)
                                                                      - For each parameter \theta the policy induces a
           Objective: find a stationary policy \pi: S \to A
                                                                       Markov chain
           that maximizes the sum of cumulative rewards.
                                                                      - Can compute expected reward J(\theta) by samp-
           Value of a state given a policy: sum of cumu-
           lative rewards, given that the initial state is
                                                                      - Find optimal parameters through search (gra-
it rain this state \rightarrow Bellman equation:
                                                                       dient ascent): \theta^* = argmax \quad J(\theta)
           V^{\pi}(s) = \mathbb{E} \left[ \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, \pi(s_{t}), s_{t+1}) | s_{0} = s \right]
                                                                       10 Learning models from training data
          = \sum_{s' \in S} P(s'|s, \pi(s)) \left[ r(s, \pi(s), s') + \gamma V^{\pi}(s') \right]
                                                                       10.1 Learning from i.i.d data
           = r(s,\pi(s)) + \gamma \sum_{s' \in S} P(s'|s,\pi(s)) V^{\pi}(s')
                                                                       Algorithm for Bayes Net MLE:
           Theorem (Bellman): a policy is optimal iff it
                                                                       Given BN of structure G and dataset D of com-
            is greedy w.r.t. its induced value function!
                                                                       plete observations
           V^*(x) = max_a[r(x, a) + \gamma \sum_{x'} P(x'|x, a)V^*(x')]
                                                                       For each X_i estimate: \hat{\theta}_{X_i|Pa_i} = \frac{Count(X_i, Pa_i)}{Count(Pa_i)}
           Bellman equation mais geral:
                                                                       Pseudo-counts for lime and cherry flavor:
           V^*(x) = max_a[\sum_{x'} P(x'|x,a)(r(a,x,x') + \gamma V^*(x')])
                                                                       \theta_{F=c} \frac{Count(F=c) + \alpha_c}{N + \alpha_c + \alpha_l}
           Optimal policy:
           \pi^*(s) = argmax[r(x,a) + \gamma \sum_{x'} P(x'|x,a)V^*(x')]
                                                                       10.1.1 Score based structure learning
                                                                       Define scoring function S(G;D) and search
            9.2 Policy iteration (Cost O(S^3 + SA\Delta))
                                                                       over BN structure G: G^* = argmaxS(G; D)
           Start with an arbitrary (e.g. random) policy \pi.
           Until converged, do:
                                                                       Examples of scores:
          - Compute value function V^{\pi}(x)
                                                                       MLE Score:
           - Compute greedy policy \pi_G w.r.t. V^{\pi}
                                                                       log P(D|\theta_G, G) = N \sum_{i=1}^n \hat{I}(X_i; Pa_i) + const.
           - Set \pi \leftarrow \pi_G
                                                                       Where mutual information (I(X_i, X_i) \ge 0) is:
           Guaranteed to monotonically improve and to
                                                                      I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)}{P(x_i)P(x_j)}
            converge to an optimal policy \pi^* in O(n^2m/(1-
           \gamma)) iterations (converges in polynomial num-
                                                                       Empirical mutual information:
           ber of iterations)!
                                                                       \hat{P}(x_i, x_j) = \frac{Count(x_i, x_j)}{N}
           9.3 Value iteration (Cost O(SA\Delta))
                                                                       \hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i) \hat{P}(x_j)}
           Initialize V_0(x) = max_a r(x, a)
           For t = 1 to \infty:
                                                                       Regularizing a Bayes Net:
           - For each (x, a), let:
           Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x'|x, a) V_{t-1}(x')
                                                                       S_{BIC}(G) = \sum_{i=1}^{n} \hat{I}(X_i; Pa_i) - \frac{\log N}{2N} |G|
           - For each x, let V_t(x) = maxQ_t(x, a)
                                                                       where G is the number of parameters, n the
s. Exact - Break if ||V_t - V_{t-1}||_{\infty} = \max_{x} |V_t(x) - V_{t-1}(x)| \le \epsilon
                                                                       number of variables and \hat{N} the number of
                                                                       training examples.
           Then choose greedy policy w.r.t V_t.
                                                                       Chow-Liu algorithm:
           Guaranteed to converge to \epsilon-optimal policy
                                                                      - For each pair X_i, X_i of variables, compute:
            (finds approximate solution in polynomial
                                                                       \hat{P}(x_i, x_j) = \frac{Count(x_i, x_j)}{N}
           number of iterations)!
                                                                      - Compute mutual information
           9.4 POMDP = Belief-state MDP
                                                                      - Define complete graph with weight of edge
           States = beliefs over states for original POMDP
                                                                       (X_i, X_i) given by the mutual information
           B = \Delta(1,...,n) = \{b:1,...,n \to [0,1], \sum_{x} b(x) = 1\}
                                                                      - Find max spanning tree → undirected tree
           Actions: same as original MDP
                                                                      - Pick any variable as root and orient the edges
           Transition model:
                                                                       away using breadth-first search.
           - Stochastic observation: P(Y_t|b_t) = \sum_{x=1}^{n} P(Y_t|X_t = x)b_t(x)
```

- State update (Bayesian filtering!), given 11 Reinforcement Learning

 b_t, y_t, a_t : $b_{t+1}(x') = \frac{1}{Z} \sum_x b_t(x) P(y_t|x) P(X_{t+1} = 11.1 \text{ Model-based RL}$

 $x'|X_t = x, a_t$

Reward function: $r(b_t, a_t) = \sum_{x} b_t(x) r(x, a_t)$

Policy gradients

- $P(Y_t|X_t)$: 'Sensor model' (what do I observe 9.1 Markov Decision Processes

11.1.1 ϵ greedy

With probability ϵ , pick random action. With prob $(1-\epsilon)$, pick best action. If sequence ϵ satisfies Robbins Monro criteria \rightarrow convergence to optimal policy with prob 1.

11.1.2 R_{max} algorithm

Initially: add fairy tale state x^* to MDP - Set $r(x, a) = R_{max}$ for all states x and actions a

- Set $P(x^*|x, a) = 1$ for all states x and actions a - Choose the optimal policy for r and P

Input: starting x_0 , discount factor γ .

Repeat: 1. Execute policy π and, for each visited state/action pair, update r(x, a)

2. Estimate transition probabilities P(x'|x,a)3. If observed 'enough' transitions/rewards a

3. If observed 'enough' transitions/rewards, recompute policy π , according to current model P and r.

Ënough"? See Hoeffding's inequality. To reduce error ϵ , need more samples N.

Theorem: With probability $1 - \delta$, R_{max} will reach an ϵ -optimal policy in a number of steps that is polynomial in |X|, |A|, |T|, |T| and |T| |T| |T| Memory |T| |T|

11.2 Model-free RL: estimate V*(x) directly

11.2.1 Q-learning

 $Q(x,a) \leftarrow (1-\alpha_t)Q(x,a) + \alpha_t(r+\gamma \max_{a'} Q(x',a'))$

Theorem: If learning rate α_t satisfies: $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$ (Robbins-Monro), and actions are chosen at random, then Q learning converges to optimal Q^* with probability 1.

Optimistic Q learning:

Initialize: $Q(x,a) = \frac{R_{max}}{1-\gamma} \prod_{t=1}^{T_{init}} (1-\alpha_t)^{-1}$

Same convergence time as with R_{max} . Memory O(|X||A|). Comp: O(|A|).

Parametric Q-function approximation: $Q(x,a;\theta) = \theta^T \phi(x,a)$ to scale to large state spaces. (You can use Deep NN here!)

SGD for ANNs: initialize weights. For t = 1,2..., pick a data point (x,y) uniformly at random. Take step in negative gradient direction. (In practise, mini-batches).

 $Q(x,a;\theta)$)² **Double DQN:** current network for evaluating argmax (too optimistic, and you remove θ^{old} and put θ).

11.3 Gaussian processes

A GP is an (infinite) set of random variables (RV), indexed by some set X, i.e., for each x in X, there is a RV Y_x where there exists functions $\mu: X \to \mathbb{R}$ and $K: X \times X \to \mathbb{R}$ such that for all: $A \in X$, $A = x_1, ... x_k$, it holds that

 $Y_A = [Y_{x_1}, ..., Y_{x_k}] \sim N(\mu_a, \Sigma_{AA})$, where: $\Sigma_{AA} =$ matrix with all combinations of $K(x_i, x_j)$. K is called kernel (covariance) function (must be symmetric and pd) and μ is called mean function. **Making prediction with GPs:** Suppose $P(f) = GP(f; \mu, K)$ and we observe $y_i = f(\overrightarrow{x_i}) + \epsilon_i$, $A = \{\overrightarrow{x_1} : \overrightarrow{x_k}\}$ $P(f(x)|\overrightarrow{x_1} : \overrightarrow{x_k}, y_{1:k}) = GP(f; \mu', K')$. In particular, $P(f(x)|\overrightarrow{x_1} : \overrightarrow{x_k}, y_{1:k}) = N()f(x); \mu_{x|A}, \sigma_{x|a}^2$, where $\mu_{x|a} = \mu(\overrightarrow{x}) + \Sigma_{x,A}(\Sigma_{AA} + \sigma^2 I)^{-1}\Sigma_{x,A}^T(\overrightarrow{y_A} - \mu_A)$ and $\sigma_{x|a}^2 = K(\overrightarrow{x}, \overrightarrow{x}) - \Sigma_{x,A}(\Sigma_{AA} + \sigma^2 I)^{-1}\Sigma_{x,A}^T$.

Closed form formulas for prediction!