1 Complex Inner Product

For the complex vector space \mathbb{C}^n , we can no longer use our conventional real dot product as a valid inner product for \mathbb{C}^n . This is because the real dot product is no longer positive-definite for complex vectors.

For example, let
$$\vec{v} = \begin{bmatrix} j \\ j \end{bmatrix}$$
. Then, $\vec{v} \cdot \vec{v} = j^2 + j^2 = -2 < 0$.

Therefore, for two vectors $\vec{u}, \vec{v} \in \mathbb{C}^n$, we define the complex inner product to be:

$$\langle \vec{u}, \vec{v} \rangle = \sum_{i=1}^{n} u_i \overline{v}_i = \vec{u}^T \overline{\vec{v}} = \vec{v}^* \vec{u}$$

where $\overline{\cdot}$ denotes the complex conjugate and $\dot{\cdot}^*$ denotes the complex conjugate transpose. Recall that the complex conjugate of a complex number $z = a + jb = re^{j\theta}$ is equal to

$$\overline{z} = a - jb = re^{-j\theta}$$
. The conjugate transpose of a vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is $\vec{v}^* = \begin{bmatrix} \overline{v}_1 & \overline{v}_2 & \cdots & \overline{v}_n \end{bmatrix}$.

Note that this inner product is no longer symmetric but conjugate-symmetric, i.e., $\langle \vec{u}, \vec{v} \rangle = \overline{\langle \vec{v}, \vec{u} \rangle}$.

2 Gram-Schmidt Process

Gram-Schmidt is an algorithm that takes a set of linearly independent vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ and generates an orthonormal set of vectors $\{\vec{u}_1, \ldots, \vec{u}_n\}$ that span the same vector space as the original set. Concretely, $\{\vec{u}_1, \ldots, \vec{u}_n\}$ satisfy the following:

- $\forall 0 < k \le n, \operatorname{span}(\{\vec{v}_1, \dots, \vec{v}_k\}) = \operatorname{span}(\{\vec{u}_1, \dots, \vec{u}_k\})$
- $\{\vec{u}_1, \dots, \vec{u}_n\}$ is an orthonormal set of vectors

Orthonormal Vectors

A set of vectors $\{\vec{v}_1, \dots, \vec{v}_n\}$ is **orthonormal** if all the vectors are mutually orthogonal to each other and all are of unit length. That is:

- Orthogonal: For all pairs of vectors \vec{v}_i , \vec{v}_j where $i \neq j$, $\langle \vec{v}_i, \vec{v}_j \rangle = 0$. For real vectors, this means $\vec{v}_i^T \vec{v}_j = 0$.
- Normalized: For all i, $||\vec{v}_i|| = 1$. (This implies that $||\vec{v}_i|| = \langle \vec{v}_i, \vec{v}_i \rangle = 1$.)

Projection of a Vector

The projection of a vector \vec{w} onto another vector v is denoted as $\text{proj}_{\vec{v}}(\vec{w})$

$$\operatorname{proj}_{\vec{v}}(\vec{w}) = \frac{\langle \vec{w}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v} = \frac{\langle \vec{w}, \vec{v} \rangle}{\|\vec{v}\|^2} \vec{v}$$
 (1)

If we project onto a vector \vec{v} that is normalized, $\|\vec{v}\| = 1$, then the projection will be

$$\operatorname{proj}_{\vec{v}}(\vec{w}) = \langle \vec{w}, \vec{v} \rangle \vec{v} \tag{2}$$

Gram-Schmidt Algorithm

The Gram-Schmidt algorithm works by first finding the unit vector \vec{u}_1 such that span($\{\vec{u}_1\}$) = span($\{\vec{v}_1\}$). Subsequently, the unit vector \vec{u}_2 is calculated such that $\langle \vec{u}_1, \vec{u}_2 \rangle = 0$ and $\operatorname{span}(\{\vec{u}_1,\vec{u}_2\}) = \operatorname{span}(\{\vec{v}_1,\vec{v}_2\})$. This is continued through *n* vectors, resulting in the orthonormal set of vectors $\{\vec{u}_1,\ldots,\vec{u}_n\}$ that span the same vector space as $\{\vec{v}_1,\ldots,\vec{v}_n\}$.

How is this done? Finding \vec{u}_1 is straightforward, since it is the first vector in our new set, and therefore we must only satisfy $\|\vec{u}_1\| = 1$ and $\text{span}(\{\vec{u}_1\}) = \text{span}(\{\vec{v}_1\})$. Since $\text{span}(\{\vec{v}_1\})$ is a one dimensional vector space, the unit vector that spans the same vector space would just be the unit vector in the same direction as \vec{v}_1 . We have

$$\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}. (3)$$

Calculating \vec{u}_2 requires that we satisfy:

- 1. Spanning the same vector space as original set: span($\{\vec{u}_1, \vec{u}_2\}$) = span($\{\vec{v}_1, \vec{v}_2\}$)
- 2. Orthogonal to previous vectors: $\langle \vec{u}_1, \vec{u}_2 \rangle = 0$
- 3. Normalized: $\|\vec{u}_2\| = 1$

Using the vector \vec{u}_1 that we calculated above, we notice that

$$span(\{\vec{u}_1, \vec{v}_2\}) = span(\{\vec{v}_1, \vec{v}_2\}),$$

satisfying the first condition. However, \vec{u}_1 and \vec{v}_2 are not necessarily orthogonal. Recall from 16A/54 that the following subspaces are equivalent for any pair of linearly independent vectors \vec{v}_1, \vec{v}_2 :

- span(\vec{v}_1 , \vec{v}_2)
- span $(\vec{v}_1, \vec{v}_1 + \vec{v}_2)$ span $(\vec{v}_1, \vec{v}_2 \alpha \vec{v}_1)$

- span($\vec{v}_1, \alpha \vec{v}_2$)
- span $(\vec{v}_1, \vec{v}_1 \vec{v}_2)$

Therefore, let us pick

$$\vec{q}_2 = \vec{v}_2 - \alpha \vec{u}_1,$$

so that span(\vec{u}_1, \vec{q}_2) will have the same span as $\{\vec{u}_1, \vec{v}_2\} = \text{span}(\vec{v}_1, \vec{v}_2)$.

What should α be if we would like \vec{u}_1 and $\vec{q}_2 = \vec{v}_2 - \alpha \vec{u}_1$ to be orthogonal to each other? We can recall from 16A, that subtracting the projection $\operatorname{proj}_{\vec{u}_1}(\vec{v}_2)$ will create a vector orthogonal to \vec{u}_1 , where

$$\operatorname{proj}_{\vec{u}_1}(\vec{v}_2) = \langle \vec{v}_2, \vec{u}_1 \rangle \vec{u}_1$$

is the projection of \vec{v}_2 onto \vec{u}_1 .

This makes sense because the projection of \vec{v}_2 onto \vec{u}_1 provides the component of \vec{v}_2 that is along \vec{u}_1 . Subtracting off this component from \vec{v}_2 will only leave components of \vec{v}_2 that are orthogonal to \vec{u}_1 .

Therefore, if we set

$$\alpha \vec{u}_1 = \operatorname{proj}_{\vec{u}_1}(\vec{v}_2),$$

the resulting

$$\vec{q}_2 = \vec{v}_2 - \text{proj}_{\vec{u}_1}(\vec{v}_2) = \vec{v}_2 - \langle \vec{v}_2, \vec{u}_1 \rangle \vec{u}_1$$

will be orthogonal to \vec{u}_1 .

Finally, we normalize \vec{q}_2 to complete the process of finding the \vec{u}_2 which satisfies all three conditions above:

$$\vec{u}_2 = \frac{\vec{q}_2}{\left\| \vec{q}_2 \right\|}$$

In the question below, you will work through how this methodology leads to the Gram-Schmidt algorithm for calculating the orthonormal set $\{\vec{u}_1,\ldots,\vec{u}_n\}$ from n linearly independent vectors $\{\vec{v}_1,\ldots,\vec{v}_n\}$. Note that the Gram-Schmidt process can be done for the real or complex inner product so we will leave all of our results in general inner product form.

3 Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a set of three linearly independent vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.

a) Find unit vector \vec{u}_1 such that span($\{\vec{u}_1\}$) = span($\{\vec{v}_1\}$).

Answer

Since span($\{\vec{v}_1\}$) is a one dimensional vector space, the unit vector that span the same vector space would just be the normalized vector point at the same direction as \vec{v}_1 . We have

$$\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}. (4)$$

b) Given \vec{u}_1 from the previous step, find \vec{u}_2 such that span($\{\vec{u}_1, \vec{u}_2\}$) = span($\{\vec{v}_1, \vec{v}_2\}$) and \vec{u}_2 is orthogonal to \vec{u}_1 .

Answer

We know that \vec{v}_2 – (the projection of \vec{v}_2 on \vec{u}_1) would be orthogonal to \vec{u}_1 as seen earlier. Hence, a vector \vec{q}_2 orthogonal to \vec{u}_1 where span($\{\vec{u}_1, \vec{q}_2\}$) = span($\{\vec{v}_1, \vec{v}_2\}$) is

$$\vec{q}_2 = \vec{v}_2 - \langle \vec{v}_2, \vec{u}_1 \rangle \vec{u}_1. \tag{5}$$

Normalizing, we have $\vec{u}_2 = \frac{\vec{q}_2}{\|\vec{q}_2\|}$.

c) Now given \vec{u}_1 and \vec{u}_2 in the previous steps, find \vec{u}_3 such that span($\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$) = span($\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$).

Answer

We know that the projection of \vec{v}_3 onto the subspace spanned by \vec{u}_1, \vec{u}_2 is

$$\langle \vec{v}_3, \vec{u}_2 \rangle \vec{u}_2 + \langle \vec{v}_3, \vec{u}_1 \rangle \vec{u}_1. \tag{6}$$

We know that

$$\vec{q}_3 = \vec{v}_3 - \langle \vec{v}_3, \vec{u}_2 \rangle \vec{u}_2 - \langle \vec{v}_3, \vec{u}_1 \rangle \vec{u}_1 \tag{7}$$

is orthogonal to \vec{u}_1 and \vec{u}_2 . Normalizing, we have $\vec{u}_3 = \frac{\vec{q}_3}{\|\vec{q}_3\|}$.

d) Let's extend this algorithm to n linearly independent vectors. That is, given an input $\{\vec{v}_1,\ldots,\vec{v}_n\}$, write the algorithm to calculate the orthonormal set of vectors $\{\vec{u}_1,\ldots,\vec{u}_n\}$, where span($\{\vec{v}_1,\ldots,\vec{v}_n\}$) = span($\{\vec{u}_1,\ldots,\vec{u}_n\}$). Hint: How would you calculate the i^{th} vector, \vec{q}_i ?

Answer

Inputs

• A set of linearly independent vectors $\{\vec{v}_1, \dots, \vec{v}_n\}$.

Outputs

• An orthonormal set of vectors $\{\vec{u}_1, \dots, \vec{u}_n\}$, where span $(\{\vec{v}_1, \dots, \vec{v}_n\}) = \text{span}(\{\vec{u}_1, \dots, \vec{u}_n\})$.

Gram Schmidt Procedure

- compute $\vec{q}_1 : \vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$
- for (i = 2 ... n):
 - a) Compute the vector \vec{q}_i , such that $\operatorname{span}(\{\vec{u}_1,\ldots,\vec{q}_i\}) = \operatorname{span}(\{\vec{v}_1,\ldots,\vec{v}_i\})$: $\vec{q}_i = \vec{v}_i \sum_{j=1}^{i-1} \langle \vec{v}_i,\vec{u}_j \rangle \vec{u}_j$
 - b) Normalize to compute $\vec{q}_i : \vec{u}_i = \frac{\vec{q}_i}{\|\vec{q}_i\|}$

4 The Order of Gram-Schmidt

a) If we are performing the Gram-Schmidt method on a set of vectors, does the order in which we take the vectors matter? Consider the set of vectors

$$\left\{\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3\right\} = \left\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}1\\1\\0\end{bmatrix}, \begin{bmatrix}1\\1\\1\end{bmatrix}\right\} \tag{8}$$

Perform Gram-Schmidt on these vectors first in the order \vec{v}_1 , \vec{v}_2 , \vec{v}_3 .

Answer

If we start with \vec{v}_1 we get the basis

$$\left\{ \vec{q}_1 = \vec{v}_1, \ \vec{q}_2 = \vec{v}_2 - \frac{\langle \vec{v}_2, \vec{q}_1 \rangle}{||\vec{q}_1||^2} \vec{q}_1, \ \vec{v}_3 - \frac{\langle \vec{v}_3, \vec{q}_1 \rangle}{||\vec{q}_1||^2} \vec{q}_1 - \frac{\langle \vec{v}_3, \vec{q}_2 \rangle}{||\vec{q}_2||^2} \vec{q}_2 \right\}$$
(9)

$$\left\{ \vec{q}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \vec{q}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \vec{q}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \tag{10}$$

Since all of these vectors are normalized, we can say that $\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}$ is an orthonormal basis

b) Now perform Gram-Schmidt on these vectors in the order \vec{v}_3 , \vec{v}_2 , \vec{v}_1 . Do you get the same result?

Answer

If we write the basis starting with \vec{v}_3 .

$$\left\{ \vec{q}_1 = \vec{v}_3, \ \vec{q}_2 = \vec{v}_2 - \frac{\langle \vec{v}_2, \vec{q}_1 \rangle}{||\vec{q}_1||^2} \vec{q}_1, \ \vec{v}_1 - \frac{\langle \vec{v}_1, \vec{q}_1 \rangle}{||\vec{q}_1||^2} \vec{q}_1 - \frac{\langle \vec{v}_1, \vec{q}_2 \rangle}{||\vec{q}_2||^2} \vec{q}_2 \right\} \tag{11}$$

$$\left\{ \vec{q}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{q}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ -2/3 \end{bmatrix}, \ \vec{q}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1/3 \\ 1/3 \\ -2/3 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -1/2 \\ 0 \end{bmatrix} \right\} \tag{13}$$

Normalized this is

$$\left\{ \vec{u}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \vec{u}_2 = \sqrt{\frac{3}{2}} \begin{bmatrix} 1/3\\1/3\\-2/3 \end{bmatrix}, \ \vec{u}_3 = \sqrt{2} \begin{bmatrix} 1/2\\-1/2\\0 \end{bmatrix} \right\} \tag{14}$$