Todo list

Get a picture of EGRET to include	11
Short description of the history of TeV astronomy	12
What is the LAT effective area?	12
Make note of "Air force had early warning of pulsars" paper	13
First gamma-ray detection	14
When was the PSR, PWN connection made	14
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX
Get image of Synchrotron radiation (from R&L to include in discussion	18
Why no Bremsstrahlung radiation from PWN. Maybe a back-of-the-eveolope	
estimate	21
Describe the characteristic pi0 cutoff energy	21
Include discussion of modeling, if time permitting	21
Describe Catalog	22
Dig up HESS reference of HESS J1514-59	23
Where are sites of acceleratoin	30
Discuss pulsar evolution "The Evolution and Structure of Pulsar Wind Nebulae"	
– Bryan M. Gaensler and Patrick O. Slane	34
Describe Mattana's work on pulsar wind nebulae (PWNe): "On the evolution	
of the Gamma- and X-ray luminosities of Pulsar Wind Nebulae"	34
Describe SNR Reverse Shock	35
Include discussion of cooling in Matanna et al 2009 (equation 12	36
Look up scaling relationsips for IC and Sync radiation from Adam Van Etten's	
thesis	36

what section discusses energy dependent psf?	38
What are the benefits of maximum likelihood	39
Describe Wilk's Theorem and it's application to parameter error estimation .	39
WHAT SECTION DESCRIBES EXTENDED SOURCE PDFs	41
FINISH DISCUSSION	41
Discuss how diffuse background is more compleiated and requires a mapcube.	41
LINK TO arXiv:1206.1896 for MORE THOUROUGH DISCUSSION OF EF-	
FECTIVE AREA	42
DISCUSS HOW EFFECTIVE AREA IS A FUNCTION OF DIFFERENT	
THINGS	42
What is the range of the integrals	42
BETTER DISCUSSION OF PSF OF THE LAT, WHAT ITS SCALE IS	43
Why discard time dispersion	43
WRITE ENERGY DISPERSION AS A DELTA FUNCTION	43
FINISH	44
Figure out how the θ depedence of the IRFs factors into this calcualtion	44
Write Section or Perform simple MC Simulation to demonstrate signficance of	
$\det \operatorname{etection} \dots \dots$	45
WHAT SYSTEMATICS	127
WHERE ARE RESULTS PRESENTED	128
What would make good future work. Something about CTA population study,	
something about improved modeling liek HESS J1825, something about	
better PSF	132

OBSERVATIONS OF PWNE WITH THE FERMI GAMMA-RAY SPACE TELESCOPE

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Joshua Jeremy Lande April 2013

© Copyright by Joshua Jeremy Lande 2013 All Rights Reserved

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Stefan Funk) Principal Adviser
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Elliott Bloom)
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Roger Romani)
Approved for the University Committee on Graduate Studies

Contents

A	bstra	ıct		iv
\mathbf{A}	$oldsymbol{A}$ cknowledgement			
1	Ove	Overview		
2	Gar	nma-ra	ay Astrophysics	4
	2.1	Astroi	nomy and the Atmosphere	4
	2.2	The H	listory of Gamma-ray Astrophysics	5
	2.3	The F	Termi Gamma-ray Space Telescope	12
		2.3.1	The Tracker	12
		2.3.2	The Calorimiter	12
		2.3.3	Anti-Coincidence Detector	12
		2.3.4	Gamma-ray Burst Monitor	12
	2.4	Astrop	physical Sources of Gamma-rays	12
		2.4.1	Pulsars	12
		2.4.2	Pulsar Wind Nebulae	14
	2.5	Radia	tion Processes in Gamma-ray Astrophysics	17
		2.5.1	Synchrotron	18
		2.5.2	Inverse Compton	19
		2.5.3	Bremsstrahlung	20
		2.5.4	Pion Decay	21
	2.6	The G	Galactic Diffuse and Isotropic Gamma-ray Background	21
	2.7	Source	es Detected by the Fermi the Large Area Telescope	22

		2.7.1	The Second Fermi Catalog	22
		2.7.2	The Second Fermi Pulsar Catalog	23
		2.7.3	Pulsar Wind Nebulae Detected by The Large Area Telescope .	23
3	The	Pulsa	ar/Pulsar Wind Nebula System	25
	3.1	Neutr	on Star Formation	25
	3.2	Pulsar	r Evolution	26
	3.3	Pulsar	r Magnetosphere	30
	3.4	Pulsar	r Wind Nebulae Structure	31
	3.5	Pulsa	r Wind Nebula Emission	35
4	Max	ximum	n-likelihood analysis of LAT data	37
	4.1	Motiv	ations for Maximum-Likelihood Analysis of Gamma-ray Data .	38
	4.2	Descri	iption of Maximum-Likelihood Analaysis	39
	4.3	Defini	ng a Model of the Sources in the Sky	39
	4.4	The L	AT Instrument Response Functions	42
	4.5	Binne	d Maximum-Likelihood of LAT Data with the Science Tools	44
	4.6	The A	Alternate Maximum-Likelihood Package pointlike	46
5	Ana	alysis o	of Spatially Extended LAT Sources	47
	5.1	Introd	luction	47
	5.2	Analy	rsis Method	50
		5.2.1	Modeling Extended Sources in the pointlike Package	50
		5.2.2	Extension Fitting	52
		5.2.3	gtlike Analysis Validation	55
		5.2.4	Comparing Source Sizes	55
	5.3	Valida	ation of the TS Distribution	57
		5.3.1	Point-like Source Simulations Over a Uniform Background $$	57
		5.3.2	Point-like Source Simulations Over a Structured Background $.$	59
		5.3.3	Extended Source Simulations Over a Structured Background $. $	63
	5.4	Exten	ded Source Detection Threshold	68
	5.5	Testin	ng Against Source Confusion	70

	5.6	Test of 2LAC Sources	79
6	Sea	rch for Spatially-extended LAT Sources	83
	6.1	Analysis of Extended Sources Identified in the 2FGL Catalog	84
	6.2	Systematic Errors on Extension	85
	6.3	Extended Source Search Method	88
	6.4	New Extended Sources	94
		6.4.1 2FGL J0823.0-4246	97
		6.4.2 2FGL J0851.7-4635	99
		6.4.3 2FGL J1615.0-5051	99
		6.4.4 2FGL J1615.2-5138	103
		6.4.5 2FGL J1627.0-2425c	104
		6.4.6 2FGL J1632.4-4753c	105
		6.4.7 2FGL J1712.4-3941	108
		6.4.8 2FGL J1837.3-0700c	110
		6.4.9 2FGL J2021.5+4026	112
	6.5	Discussion	115
7	Sea	rch for PWNe associated with Gamma-loud Pulsars	121
	7.1	Off-peak Phase Selection	121
	7.2	Off-peak Analysis Method	121
	7.3	Off-peak Results	121
	7.4	Off-Peak Individual Source Discussion	121
8	Sea	rch for PWNe associated with TeV Pulsars	122
	8.1	Introduction	123
	8.2	List of TeV PWN Candidates	123
	8.3	Analysis Method	126
	8.4	Sources Detected	127
9	Pop	oulation Study of LATs-detected PWNe	130
	9.1	Summary of the PWNe detected by the LATs	131

10 Fut	ure Work (or Outlook))??								132
	Pulsars								•	131
9.2	The Evolution of γ -ray	Emitting	PWNe	with	the 1	Proper	ties	of their		

List of Tables

5.1	Monte Carlo Spectral Parameters	62
5.2	Extension Detection Threshold	71
6.1	Analysis of the twelve extended sources included in the 2FGL catalog	86
6.2	Nearby Residual-induced Sources	93
6.3	Extension fit for the nine additional extended sources	95
6.4	Dual localization, alternative PSF, and alternative approach to mod-	
	eling the diffuse emission	96
8.1	List of analyzed TeV sources	124
8.1	List of analyzed TeV sources	125
8.2	Spatial and spectral results for detected TeV sources	128

List of Figures

2.1	Transparency of the atmosphere of the earth to photons of varying	
	wavelenthts. This figure is from Carroll & Ostlie (2006)	5
2.2	The experimental design of Explorer XI. This figure is from Kraushaar	
	et al. (1965)	7
2.3	The position of all 621 cosmic γ -rays detected by the Third Orbit-	
	ing Solar Observatory (OSO-3). This figure is from Kraushaar et al.	
	$(1972). \qquad \dots $	8
2.4	A map of the sources observed by COS-B. The filled circles represent	
	brighter sources. The unshaded region corresponds to the parts of the	
	sky observed by COS-B. This figure is from Swanenburg et al. (1981).	10
2.5	The position of the Energetic Gamma Ray Experiment Telescope (EGRE	Γ)
	sources in the sky in galactic coordinates. The size of the source mark-	
	ers corresponds to the overall source intensity. This figure is from	
	(Hartman et al. 1999)	11
2.6	The Orion plate from Bevis' book <i>Uranographia Britannica</i> . The Crab	
	nebula can be found on the horn of Taurus the Bull on the top of the	
	figure and the source is marked by a cloudy symbol. This figure was	
	reproduced from Ashworth (1981)	15
3.1	The rotating dipole model of a puslar. This figure is taken from (Carroll	
	& Ostlie 2006)	27
3.2	The magnetosphere for a rotating pulsar. The pulsar is on the bottom	
	left of the plot. This figure is from Goldreich & Julian (1969)	30

3.3	The regions of emission in a pulsar/PWN system. This figure shows (top) the pulsar's magnetopshere, (middle), the unshocked pulsar wind and (bottom) the shocked pulsar wind which can be observed as the	
	·	
	PWN. "R", "O", "X", and " γ " describe sites of radio, optical, X-ray,	
	and γ -ray emission respectively. "CR", "Sy", and "IC" refer to regions	
	of curvature, inverse Compton, and synchrotron emission. Figure is	0.0
	taken from Aharonian & Bogovalov (2003)	33
5.1	Counts maps and TS profiles for the SNR IC 443. (a) TS vs. extension	
	of the source. (b) $\mathrm{TS}_{\mathrm{ext}}$ for individual energy bands. (c) observed radial	
	profile of counts in comparison to the expected profiles for a spatially	
	extended source (solid and colored red in the online version) and for a	
	point-like source (dashed and colored blue in the online version). (d)	
	smoothed counts map after subtraction of the diffuse emission com-	
	pared to the smoothed LAT PSF (inset). Both were smoothed by a	
	0°.1 2D Gaussian kernel. Plots (a), (c), and (d) use only photons with	
	energies between 1 GeV and 100 GeV. Plots (c) and (d) include only	
	photons which converted in the front part of the tracker and have an	
	improved angular resolution (Atwood et al. 2009)	54
5.2	A comparison of a 2D Gaussian and uniform disk spatial model of	
	extended sources before and after convolving with the PSF for two	
	energy ranges. The solid black line is the PSF that would be observed	
	for a power-law source of spectral index 2. The dashed line and the	
	dash-dotted lines are the brightness profile of a Gaussian with $r_{68}=$	
	0°.5 and the convolution of this profile with the LAT PSF respectively	
	(colored red in the online version). The dash-dot-dotted and the dot-	
	dotted lines are the brightness profile of a uniform disk with $\rm r_{68}$ =	
	0.5 and the convolution of this profile with the LAT PSF respectively	
	(colored blue in the online version)	56

5.3	Cumulative distribution of the TS for the extension test when fitting	
	simulated point-like sources in the 1 GeV to 100 GeV energy range.	
	The four plots represent simulated sources of different spectral indices	
	and the different lines (colored in the online version) represent point-	
	like sources with different 100 MeV to 100 GeV integral fluxes. The	
	dashed line (colored red) is the cumulative density function of Equa-	
	tion 5.11	60
5.4	The same plot as Figure 5.3 but fitting in the $10~\mathrm{GeV}$ to $100~\mathrm{GeV}$	
	energy range	61
5.5	Cumulative distribution of $TS_{\rm ext}$ for sources simulated on top of the	
	Galactic diffuse and isotropic background	64
5.6	The distribution of TS values when fitting 985 statistically independent	
	simulations of W44. (a) is the distribution of TS values when fitting	
	W44 as a point-like source and (b) is the distribution of $TS_{\rm ext}$ when	
	fitting the source with a uniform disk or a radially-symmetric Gaussian	
	spatial model. (c) is the distribution of the change in TS when fitting	
	the source with an elliptical disk spatial model compared to fitting it	
	with a radially-symmetric disk spatial model and (d) when fitting the	
	source with an elliptical ring spatial model compared to an elliptical	
	disk spatial model	66
5.7	The distribution of fit parameters for the Monte Carlo simulations of	
	W44. The plots show the distribution of best fit (a) flux (b) spec-	
	tral index and (c) 68% containment radius. The dashed vertical lines	
	represent the simulated values of the parameters	67

5.8	The detection threshold to resolve an extended source with a uniform	
	disk model for a two-year exposure. All sources have an assumed	
	power-law spectrum and the different line styles (colors in the elec-	
	tronic version) correspond to different simulated spectral indices. The	
	lines with no markers correspond to the detection threshold using pho-	
	tons with energies between $100~\mathrm{MeV}$ and $100~\mathrm{GeV}$, while the lines with	
	star-shaped markers correspond to the threshold using photons with	
	energies between 1 GeV and 100 GeV	69
5.9	The LAT detection threshold for four spectral indices and three back-	
	grounds $(1\times, 10\times, \text{ and } 100\times \text{ the Sreekumar-like isotropic background})$	
	for a two-year exposure. The left-hand plots are the detection threshold	
	when using photons with energies between 1 GeV and 100 GeV and the	
	right-hand plots are the detection threshold when using photons with	
	energies between $10~{\rm GeV}$ and $100~{\rm GeV}$. The flux is integrated only in	
	the selected energy range. Overlaid on this plot are the LAT-detected	
	extended sources placed by the magnitude of the nearby Galactic dif-	
	fuse emission and the energy range they were analyzed with. The star-	
	shaped markers (colored red in the electronic version) are sources with	
	a spectral index closer to 1.5, the triangular markers (colored blue) an	
	index closer to 2, and the circular markers (colored green) an index	
	closer to 2.5. The triangular marker in plot (d) below the sensitivity	
	line is MSH 15-52	72

5.10	The projected detection threshold of the LAT to extension after 10	
	years for a power-law source of spectral index 2 against 10 times the	
	isotropic background in the energy range from 1 GeV to 100 GeV	
	(solid line colored red in the electronic version) and $10~\mathrm{GeV}$ to $100~\mathrm{eV}$	
	GeV (dashed line colored blue). The shaded gray regions represent	
	the detection threshold assuming the sensitivity improves from 2 to 10	
	years by the square root of the exposure (top edge) and linearly with	
	exposure (bottom edge). The lower plot shows the factor increase in	
	sensitivity. For small extended sources, the detection threshold of the	
	LAT to the extension of a source will improve by a factor larger than	
	the square root of the exposure.	73
5.11	(a) and (b) are the distribution of $TS_{\rm ext}$ and of $TS_{\rm 2pts}$ when fitting sim-	
	ulated spatially extended sources of varying sizes as both an extended	
	source and as two point-like sources. (c) and (d) are the distribution	
	of $TS_{\rm ext} - TS_{\rm 2pts}$ for the same simulated sources. (a) and (c) represent	
	sources fit in the 1 GeV to 100 GeV energy range and (b) and (d) rep-	
	resent sources fit in the 10 GeV to 100 GeV energy range. In (c) and $$	
	(d), the plus-shaped markers (colored red in the electronic version) are	
	fits where $TS_{ext} \ge 16$	76
5.12	The distribution of $TS_{ext} - TS_{2pts}$ when fitting two simulated point-	
	like sources of varying separations as both an extended source and as	
	two point-like sources. (a), and (b) represent simulations of two point-	
	like sources with the same spectral index and (c) and (d) represent	
	simulations of two point-like sources with different spectral indices.	
	(a) and (c) fit the simulated sources in the 1 GeV to 100 GeV energy	
	range and (b) and (d) fit in the 10 GeV to 100 GeV energy range.	
	The plus-shaped markers (colored red in the electronic version) are fits	
	where $TS_{ext} \ge 16$	77

5.13	The cumulative density of $TS_{\rm ext}$ for the 733 clean AGN in 2LAC that	
	were significant above 1 GeV calculated with pointlike (dashed line	
	colored blue in the electronic version) and with gtlike (solid line col-	
	ored black). AGN are too far and too small to be resolved by the LAT.	
	Therefore, the cumulative density of TS_{ext} is expected to follow a $\chi_1^2/2$	
	distribution (Equation 5.11, the dash-dotted line colored red)	81
6.1	A TS map generated for the region around the SNR IC 443 using	
	photons with energies between 1 GeV and 100 GeV. (a) TS map after	
	subtracting IC 443 modeled as a point-like source. (b) same as (a),	
	but IC 443 modeled as an extended source. The cross represents the	
	best fit position of IC 443.	90
6.2	A diffuse-emission-subtracted 1 GeV to 100 GeV counts map of the	
	region around 2FGL J1856.2+0450c smoothed by a 0°.1 2D Gaussian	
	kernel. The plus-shaped marker and circle (colored red in the online	
	version) represent the center and size of the source fit with a radially-	
	symmetric uniform disk spatial model. The black crosses represent	
	the positions of other 2FGL sources. The extension is statistically	
	significant, but the extension encompasses many 2FGL sources and the	
	emission does not look to be uniform. Although the fit is statistically	
	significant, it likely corresponds to residual features of inaccurately	
	modeled diffuse emission picked up by the fit	92

- 6.3 A diffuse-emission-subtracted 1 GeV to 100 GeV counts map of 2FGL J0823.0-4246 smoothed by a 0°.1 2D Gaussian kernel. The triangular marker (colored red in the online version) represents the 2FGL position of this source. The plus-shaped marker and the circle (colored red) represent the best fit position and extension of this source assuming a radially-symmetric uniform disk model. The two star-shaped markers (colored green) represent 2FGL sources that were removed from the background model. From left to right, these sources are 2FGL J0823.4-4305 and 2FGL J0821.0-4254. The lower right inset is the model predicted emission from a point-like source with the same spectrum as 2FGL J0823.4-4305 smoothed by the same kernel. This source is spatially coincident with the Puppis A SNR. The light blue contours correspond to the X-ray image of Puppis A observed by ROSAT (Petre et al. 1996). 98
- A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2FGL J0851.7-4635 6.4smoothed by a 0°25 2D Gaussian kernel. The triangular marker (colored red in the electronic version) represents the 2FGL position of this source. The plus-shaped marker and the circle (colored red) are the best fit position and extension of this source assuming a radiallysymmetric uniform disk model. The three black crosses represent background 2FGL sources. The three star-shaped markers (colored green) represent other 2FGL sources that were removed from the background model. They are (from left to right) 2FGL J0853.5-4711, 2FGL J0855.4-4625, and 2FGL J0848.5-4535. The circular and squareshaped marker (colored blue) represents the 2FGL and relocalized position of another 2FGL source. This extended source is spatially coincident with the Vela Jr. SNR. The contours (colored light blue) correspond to the TeV image of Vela Jr. (Aharonian et al. 2007a). 100

6.5	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2 FGL J1 $$	615.0 - 5051
	(upper left) and 2FGL J1615.2 -5138 (lower right) smoothed by a 0°.1	
	2D Gaussian kernel. The triangular markers (colored red in the elec-	
	tronic version) represent the 2FGL positions of these sources. The	
	cross-shaped markers and the circles (colored red) represent the best fit	
	positions and extensions of these sources assuming a radially symmet-	
	ric uniform disk model. The two black crosses represent background	
	2FGL sources and the star-shaped marker (colored green) represents	
	2FGL J1614.9-5212, another 2FGL source that was removed from the	
	background model. The contours (colored light blue) correspond to	
	the TeV image of HESS J1616-508 (left) and HESS J1614-518 (right)	
	(Aharonian et al. 2006d)	101
6.6	A diffuse-emission-subtracted 1 GeV to 100 GeV counts map of (a)	
	the region around 2FGL J1627.0 -2425 smoothed by a 0°.1 2D Gaussian	
	kernel and (b) with the emission from $2FGL\ J1625.7-2526$ subtracted.	
	The triangular marker (colored red in the online version) represents the	
	2FGL position of this source. The plus-shaped marker and the circle	
	(colored red) represent the best fit position and extension of this source	
	assuming a radially-symmetric uniform disk model and the black cross	
	represents a background 2FGL source. The contours in (a) correspond	
	to the 100 μm image observed by IRAS (Young et al. 1986). The	
	contours in (b) correspond to CO $(J=1\rightarrow 0)$ emission integrated	
	from -8 km s^{-1} to 20 km s^{-1} . They are from de Geus et al. (1990),	
	were cleaned using the moment-masking technique (Dame 2011), and	
	have been smoothed by a 0°25 2D Gaussian kernel	104

6.7	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2 FGL $\rm J_{\odot}$	1632.4-4753c
	(a) smoothed by a 0°.1 2D Gaussian kernel and (b) with the emission	
	from the background sources subtracted. The triangular marker (col-	
	ored red in the electronic version) represents the 2FGL position of	
	this source. The plus-shaped marker and the circle (colored red) are	
	the best fit position and extension of 2FGL J1632.4-4753c assuming	
	a radially-symmetric uniform disk model. The four black crosses rep-	
	resent background 2FGL sources subtracted in (b). The circular and	
	square-shaped markers (colored blue) represent the 2FGL and relocal-	
	ized positions respectively of two additional background 2FGL sources	
	subtracted in (b). The star-shaped marker (colored green) represents	
	2 FGL J 1634.4 - 4743c, another $2 FGL source$ that was removed from	
	the background model. The contours (colored light blue) correspond	
	to the TeV image of HESS J1632 -478 (Aharonian et al. 2006d)	106
6.8	The spectral energy distribution of four extended sources associated	
	with unidentified extended TeV sources. The black points with cir-	
	cular markers are obtained by the LAT. The points with plus-shaped	
	markers (colored red in the electronic version) are for the associated	
	${ m H.E.S.S}$ sources. (a) the LAT SED of ${ m 2FGLJ1615.0-5051}$ together	
	with the H.E.S.S. SED of HESS J1616 -508 . (b) 2FGL J1615.2 -5138	
	and HESS J1614 -518 . (c) 2FGL J1632.4 -4753 c and HESS J1632 -478 .	
	(d) 2FGL J1837.3 $-0700c$ and HESS J1837 -069 . The H.E.S.S. data	
	points are from (Aharonian et al. 2006d). Both LAT and H.E.S.S.	
	spectral errors are statistical only	107

6.9	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2FGL J1 $$	712.4-3941
	(a) smoothed by a 0°.15 2D Gaussian kernel and (b) with the emission	
	from the background sources subtracted. This source is spatially coin-	
	cident with RX J1713.7 -3946 and was recently studied in Abdo et al.	
	(2011). The triangular marker (colored red in the online version) rep-	
	resents the 2FGL position of this source. The plus-shaped marker and	
	the circle (colored red) are the best fit position and extension of this	
	source assuming a radially symmetric uniform disk model. The two	
	black crosses represent background 2FGL sources subtracted in (b).	
	The contours (colored light blue) correspond to the TeV image (Aha-	
	ronian et al. 2007b)	109
6.10	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of the	
	region around 2FGL J1837.3 $-0700\mathrm{c}$ (a) smoothed by a 0°.15 2D Gaussian	
	sian kernel and (b) with the emission from the background sources	
	subtracted. The triangular marker (colored red in the online version)	
	represents the 2FGL position of this source. The plus-shaped marker	
	and the circle (colored red) represent the best fit position and extension	
	of $2 \text{FGL} J1837.3 - 0700 \text{c}$ assuming a radially-symmetric uniform disk	
	model. The circular and square-shaped markers (colored blue) repre-	
	sent the 2FGL and the relocalized positions respectively of two back-	
	ground 2FGL sources subtracted in (b). The star-shaped marker (col-	
	ored green) represents $2FGL\ J1835.5-0649$, another $2FGL\ source$ that	
	was removed from the background model. The contours (colored light	
	blue) correspond to the TeV image of HESS J1837 -069 (Aharonian	
	et al. 2006d). The diamond-shaped marker (colored orange) represents	
	the position of PSR J1838 -0655 and the hexagonal-shaped marker	
	(colored purple) represents the position AX J1837.3 -0652 (Gotthelf	
	& Halpern 2008)	111

6.11	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of the
	region around 2FGL J2021.5+4026 smoothed by a 0° 1 2D Gaussian
	kernel. The triangular marker (colored red in the online version) rep-
	resents the 2FGL position of this source. The plus-shaped marker and
	the circle (colored red) represent the best fit position and extension
	of $2FGL J2021.5+4026$ assuming a radially-symmetric uniform disk
	model. The star-shaped marker (colored green) represents $2 \text{FGL J} 2019.1 + 4040$,
	a 2FGL source that was removed from the background model. 2FGL J2021.5+4026 $$
	is spatially coincident with the γ -Cygni SNR. The contours (colored
	light blue) correspond to the 408MHz image of γ -Cygni observed by
	the Canadian Galactic Plane Survey (Taylor et al. 2003) 113
6.12	The spectral energy distribution of the extended sources Puppis A
	(2FGL J0823.0-4246) and γ -Cygni (2FGL J2021.5+4026). The lines
	(colored red in the online version) are the best fit power-law spectral
	models of these sources. Puppis A has a spectral index of 2.21 \pm
	0.09 and γ -Cygni has an index of 2.42 \pm 0.19. The spectral errors are
	statistical only. The upper limit is at the 95% confidence level 114
6.13	The 21 spatially extended sources detected by the LAT at GeV en-
	ergies with 2 years of data. The twelve extended sources included in
	2FGL are represented by the circular markers (colored red in the on-
	line version). The nine new extended sources are represented by the
	triangular markers (colored orange). The source positions are overlaid
	on a 100 MeV to 100 GeV Aitoff projection sky map of the LAT data
	in Galactic coordinates

6.14	A comparison of the sizes of extended sources detected at both GeV and	
	TeV energies. The TeV sizes of W30, 2FGL J1837.3 $-0700c$, 2FGL J1632.4	4 - 4753c,
	$2\mathrm{FGL}J1615.0-5051,$ and $2\mathrm{FGL}J1615.2-5138$ are from Aharonian et al.	
	(2006d). The TeV sizes of MSH 15 -52 , HESS J1825 -137 , Vela X,	
	Vela Jr., RX J1713.7 -3946 and W28 are from Aharonian et al. (2005,	
	2006b,c, 2007 a,b, 2008). The TeV size of IC 443 is from Acciari et al.	
	(2009) and W51C is from Krause et al. (2011). The TeV sizes of	
	MSH15-52,HESSJ1614-518,HESSJ1632-478,andHESSJ1837-069	
	have only been reported with an elliptical 2D Gaussian fit and so the	
	plotted sizes are the geometric mean of the semi-major and semi-minor	
	axis. The LAT extension of Vela X is from Abdo et al. (2010). The TeV	
	sources were fit assuming a 2D Gaussian surface brightness profile so	
	the plotted GeV and TeV extensions were first converted to $\rm r_{68}$ (see Sec-	
	tion 5.2.4). Because of their large sizes, the shape of RX J1713.7 -3946	
	and Vela Jr. were not directly fit at TeV energies and so are not in-	
	cluded in this comparison. On the other hand, dedicated publications	
	by the LAT collaboration on these sources showed that their mor-	
	phologies are consistent (Abdo et al. 2011; Tanaka et al. 2011). The	
	LAT extension errors are the statistical and systematic errors added in	
	quadrature	117
6.15	The distributions of the sizes of 18 extended LAT sources at ${\rm GeV}$	
	energies (colored blue in the electronic version) and the sizes of the 40	
	extended H.E.S.S. sources at TeV energies (colored red). The H.E.S.S.	
	sources were fit with a 2D Gaussian surface brightness profile so the	
	LAT and H.E.S.S. sizes were first converted to $\rm r_{68}. \ \ The \ GeV$ size of	
	Vela X is taken from Abdo et al. (2010). Because of their large sizes,	
	the shape of RX J1713.7 -3946 and Vela Jr. were not directly fit at	
	TeV energies and are not included in this comparison. Centaurus A is	
	not included because of its large size.	118

6.16 The distribution of spectral indices of the 1873 2FGL sources (colored red in the electronic version) and the 21 spatially extended sources (colored blue). The index of Centaurus A is taken from Nolan et al. (2012) and the index of Vela X is taken from Abdo et al. (2010). . . 120

List of Acronyms

1FHL the first *Fermi* hard-source list. 127

2CG the second COS-B catalog. 9

2FGL the second *Fermi* catalog. 22, 38, 122

2PC the second *Fermi* pulsar catalog. 23

3EG the Third EGRET Catalog. 11

ACD Anti-Coincidence Detector. vii, 12

arcsec second of arc. 32

BPL broken-power law. 40

CGRO the Compton Gamma Ray Observatory. 10

CGS the Centimetre-Gram-Second System of Units. 40, 41

ECPL exponentially-cutoff power law. 40, 41

EGRET the Energetic Gamma Ray Experiment Telescope. xii, 9–11

ESA the European Space Agency. 9

FWHM full width at half maximum. 8

GBM Gamma-ray Burst Monitor. vii, 12

List of Acronyms 2

IACT Imaging air Cherenkov detector. 48, 119, 123, 126

IC inverse Compoton. 6, 19, 20, 31, 32, 35, 126

LAT the Large Area Telescope. iv, v, vii, viii, 12, 22, 23, 122, 125, 126, 128, 130

MIT the Massachusetts Institute of Technology. 6, 13

MSC massive star cluster. 125

MSP millisecond pulsar. 27

NASA the National Aeronautics and Space Administration. 9, 10

NRL the Naval Research Laboratory. 13

NS neutron star. 13, 25, 26, 30

OSO-3 the Third Orbiting Solar Observatory. xii, 8, 9, 22

PL power law. 40, 41

PSF point spread function. 126

PWN pulsar wind nebula. iv, v, xiii, 1, 6, 14, 25, 29, 31–35, 122, 123, 125, 126, 128, 130

SA solid angle. 42, 43

SAS-2 the second Small Astronomy Satellite. 9, 10

SNR supernova remnant. 29, 32, 41

UNID unidentified source. 125

Chapter 8

Search for PWNe associated with TeV Pulsars

This chapter is based the first part of the paper "Constraints on the Galactic Population of TeV Pulsar Wind Nebulae using Fermi Large Area Telescope Observations" by Acero et al which is currently in prep.

TODO:

- Strip out sources not classified as PWN/PSR
- Remove the fit without the LAT PSR included in the background model.

In Chapter 6, we searched for spatially-extended sources in the 2FGL catalog. This search showed that the spatial analysis of Fermi sources is important in identifying γ -ray emitting pulsar wind nebulae (PWNe). In this work, we analyzed the γ -ray emitting PWNs HESS J1825–137 and MSH 15–52 which had previously been detected in the second Fermi catalog (2FGL). In addition, this analysis discovered that there were three additional spatially-extended Fermi soruces coincident with PWNs candidates (HESS J1616–508, HESS J1632–478, HESS J1837–069). In Chapter ??, we then searched for γ -ray emitting PWNs by looking in the off-peak emission of the Large Area Telescope (LAT)-detected pulsars. In this analysis, we detected four γ -ray emitting PWNs candidates (Vela–X, the Crab Nebula, MSH 15–52, and 3C 58).

In this chapter, we continue our search for γ -ray emitting PWNs by searching for PWNs which had previously been detected at TeV energies by Imaging air Cherenkov detectors (IACTs). We note that the work presented here is a very condensed version of the results presented in the accompanying work (Acero et al. in prep.). We refer to that publication for a more detailed discussion of the analysis.

8.1 Introduction

In this analysis, we took all sources detected at TeV energies and potentially associated with PWNs and performed a search at GeV energies for γ -ray emission. As was seen in previous sections, many sources such as the Crab Nebula and Vela-X had been observed at both GeV and TeV energies. In addition, there are several PWN which have been detected at TeV energies which do not have an associated γ -ray pulsar (such as HESS J1825-137 and HESS J1837-069). We therefore suspect that a thorough search of all TeV PWNs candidates might discover new γ -ray emitting PWNs not previously discovered either in the off-peak search discussed in Chapter ?? or in other dedicated analyses.

8.2 List of TeV PWN Candidates

Table 8.1. List of analyzed TeV sources

Name	Class	l	b	LAT PSR	Reference
		$(\deg.)$	$(\deg.)$		
VER J0006+727	PWN	119.58	10.20	PSR J0007+7303	?
MGRO J0631+105	PWN	201.30	0.51	PSR J0631+1036	?
MGRO J0632+17	PWN	195.34	3.78	PSR J0633+1746	?
HESS J1018-589	UNID	284.23	-1.72	PSR J1016-5857	?
HESS J1023-575	MSC	284.22	-0.40	PSR J1023-5746	?
HESS J1026-582	PWN	284.80	-0.52	PSR J1028-5819	?
HESS J1119-614	PWN	292.10	-0.49	PSR J1119-6127	Presentation ^a
HESS J1303-631	PWN	304.24	-0.36		?
HESS J1356-645	PWN	309.81	-2.49	PSR J1357-6429	?
HESS J1418-609	PWN	313.25	0.15	PSR J1418-6058	?
HESS J1420-607	PWN	313.56	0.27	PSR J1420-6048	?
HESS J1427-608	UNID	314.41	-0.14		?
HESS J1458-608	PWN	317.75	-1.70	PSR J1459-6053	?
HESS J1503-582	UNID	319.62	0.29		?
HESS J1507-622	UNID	317.95	-3.49		?
HESS J1514-591	PWN	320.33	-1.19	PSR J1513-5908	?
HESS J1554-550	PWN	327.16	-1.07		?
HESS J1616-508	PWN	332.39	-0.14		?
HESS J1626-490	UNID	334.77	0.05		?
HESS J1632-478	PWN	336.38	0.19		?
HESS J1634-472	UNID	337.11	0.22		?
HESS J1640-465	PWN	338.32	-0.02		?
${ m HESS~J1702-420}$	UNID	344.30	-0.18	PSR J1702-4128	?
HESS J1708-443	PWN	343.06	-2.38	PSR J1709-4429	?
HESS J1718-385	PWN	348.83	-0.49	PSR J1718-3825	?
HESS J1729-345	UNID	353.44	-0.13		?
HESS J1804-216	UNID	8.40	-0.03	PSR J1803-2149	?
HESS J1809-193	PWN	11.18	-0.09		?
HESS J1813-178	PWN	12.81	-0.03		?
HESS J1818-154	PWN	15.41	0.17		?
HESS J1825-137	PWN	17.71	-0.70		?
HESS J1831-098	PWN	21.85	-0.11		?
HESS J1833-105	PWN	21.51	-0.88	PSR J1833-1034	?
HESS J1834-087	UNID	23.24	-0.31		?
HESS J1837-069	UNID	25.18	-0.12		?
HESS J1841-055	UNID	26.80	-0.20	PSR J1838-0537	?
HESS J1843-033	UNID	29.30	0.51		?
MGRO J1844-035	UNID	28.91	-0.02		?

Table 8.1 (cont'd)

Name	Class	l	b	LAT PSR	Reference
		$(\deg.)$	$(\deg.)$		
HESS J1846-029	PWN	29.70	-0.24	• • •	?
HESS J1848-018	UNID	31.00	-0.16		?
HESS J1849-000	PWN	32.64	0.53		?
HESS J1857+026	UNID	35.96	-0.06		?
HESS J1858+020	UNID	35.58	-0.58		?
MGRO J1900+039	UNID	37.42	-0.11		?
MGRO J1908+06	UNID	40.39	-0.79	PSR J1907+0602	?
HESS J1912+101	PWN	44.39	-0.07		?
VER J1930+188	PWN	54.10	0.26		?
MGRO J1958+2848	PWN	65.85	-0.23	PSR J1958+2846	?
VER J1959+208	PSR	59.20	-4.70	PSR J1959+2048	?
VER J2016+372	UNID	74.94	1.15		?
MGRO J2019+37	PWN	75.00	0.39	PSR J2021+3651	?
MGRO J2031+41A	UNID	79.53	0.64		?
MGRO J2031+41B	UNID	80.25	1.07	PSR J2032+4127	?
$\scriptstyle\rm MGRO~J2228+61$	PWN	106.57	2.91	PSR J2229+6114	?

^aThis source was presented at the "Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era", 2009. See http://cxc.harvard.edu/cdo/snr09/pres/DjannatiAtai_Arache_v2.pdf.

Note. — The TeV sources that we searched for using LAT observations. The classifications come form TeVCat and are PWN for pulsar wind nebula, unidentified source (UNID) for unidentified source, and MSC for massive star cluster. We include HESS J1023-575 because it is potentially a PWN. For sources with an associated LAT-detected pulsar, column 4 includes the pulsar's name.

We used TeVCat to define the list of TeV sources to saerch for GeV PWNs. TeVCat is a catalog of sources detected at TeV energies by IACTs¹. We selected all sources from this catalog where the emission was classified as being due to a PWN. In addition, we included all sources with an UNID classification (unidientifed emission) within 5° of the galactic plane, since they could potentially be due to a PWN. Finally, we included HESS J1023–575 which, although classified as a massive star cluster in the TeVCat, was suggested to be a PWN in de Naurois & H.E.S.S. Collaboration (2013). The list of all sources included in our analysis as well as their classification in TeVCat can be found in Table 8.1.

8.3 Analysis Method

In this search, our analysis method was very similar to the analysis in Chapter ??. We used the same hybrid pointlike/gtlike approach for studying the spatial and spectral character of each source and modeled the region using the same standard background models.

The major difference was that this analysis was performed only for $E > 10 \,\mathrm{GeV}$. As can be seen in Chapter ??, for energies much lower than $10 \,\mathrm{GeV}$, source analysis becomes strongly influenced by Galactic-diffuse emission and systematic errors associated with incorrectly modeling the emission. On the other hand, the γ -ray emission from PWN is expected to be the rising component of an inverse Compoton (IC) peak which falls at TeV energies. Therefore, the emission observed by the LAT is expected to be hard and most significant at higher energies. Therefore, we expect that starting the analysis at $10 \,\mathrm{GeV}$ will significantly reduce systematics associated with this analysis while preserving most of the space for discovery.

Because the analysis was performed only in this high energy range where the point spread function (PSF) of the LAT is much improved, we were able to use a smaller region of interest (a radius of 5° in pointlike and a square of size $7^{\circ} \times 7^{\circ}$ in gtlike).

Another differences it that we used an event class with less background contamination (Pass 7 Clean instead of Pass 7 Source) and modeled nearby background sources

¹TeVCat can be found at http://tevcat.uchicago.edu.

using the first Fermi hard-source list (1FHL) Ackermann et al. (in prep).

For our analysis, we assume the GeV emission to have a power law spectral model and to have whatever was the best-fit spatial model observed at TeV energies. We define TS_{TeV} as the likelihood-ratio test for the significance of the source assuming it to have the power-law spectral model and TeV spatial model. We consider a source to be detected when $TS_{TeV} > 16$. Our significance test has only two degrees of freedom: the flux and spectral index. Therefore, following Wilk's Theorem (see Section 5.3.1), this corresponds to a 3.6σ detection threshold. When the source is significantly-detected, we quote the best-fit spectral parameters and otherwise we derive a upper limit on the flux of any potential emission.

We note that Acero et al. (in prep.) performs a more detailed morphological analysis which fits the positions of the sources assuming the emissions to be point-like and spatially-extended. The work uses the TS_{ext} test defined in Section 5.2.2 to test if the emission is spatially-extended and otherwise computes an upper limit on any potential spatial extension. This additional analysis is relevant for comparing the spatial overlap between the GeV and TeV emission. But for brevity, we omit the details and refer to that publication.

TODO, discuss issue about soruces with a nearby LAT-detcted pulsar. Which soruces have a LAT-detcted pulsar, what does Acero et al. (in prep.) do about this?

In addition Acero et al. (in prep.) performs a careful study of the systematics associated with this analysi.

WHAT SYSTEMATICS

.

8.4 Sources Detected

We detect 22 sources which are statistically significant. We present the spatial and spectarl results for these sources in Table ??.

We classify these sources into four categories. The first category is "PWN" which is when there is

The second category is "PWNc"...

Table 8.2. Spatial and spectral results for detected TeV sources

Name	ID	$\mathrm{TS}_{\mathrm{TeV}}$	$ \begin{array}{c} F_{10\mathrm{GeV}}^{316\mathrm{GeV}} \\ (10^{-10}\mathrm{ph}\mathrm{cm}^{-2}\mathrm{s}^{-1}) \end{array} $	Γ
HESS J1018-589	O	25	$1.5 \pm 0.5 \pm 0.7$	$2.31 \pm 0.50 \pm 0.49$
HESS J1023-575	PWNc	52	$4.6 \pm 0.9 \pm 1.2$	$1.99 \pm 0.24 \pm 0.32$
HESS J1119-614	PWNc	16	$2.0 \pm 0.6 \pm 0.8$	$1.83 \pm 0.41 \pm 0.36$
HESS J1303-631	PWNc	37	$3.6 \pm 0.9 \pm 2.1$	$1.53 \pm 0.23 \pm 0.37$
$HESS\ J1356-645$	PWN	24	$1.1 \pm 0.4 \pm 0.5$	$0.94 \pm 0.40 \pm 0.40$
HESS J1420-607	PWNc	36	$3.4 \pm 0.9 \pm 1.1$	$1.81 \pm 0.29 \pm 0.31$
$HESS\ J1507-622$	O	21	$1.5 \pm 0.5 \pm 0.5$	$2.33 \pm 0.48 \pm 0.48$
HESS J1514-591	PWN	156	$6.2 \pm 0.9 \pm 1.3$	$1.72 \pm 0.16 \pm 0.17$
HESS J1616-508	PWNc	75	$9.3 \pm 1.4 \pm 2.3$	$2.18 \pm 0.19 \pm 0.20$
$HESS\ J1632-478$	PWNc	137	$11.8 \pm 1.5 \pm 5.3$	$1.82 \pm 0.14 \pm 0.19$
HESS J1634-472	O	33	$5.6 \pm 1.3 \pm 2.5$	$1.96 \pm 0.25 \pm 0.29$
${ m HESS~J1640-465}$	PWNc	47	$5.0 \pm 1.0 \pm 1.7$	$1.95 \pm 0.23 \pm 0.20$
HESS J1708-443	PSR	33	$5.5 \pm 1.3 \pm 3.5$	$2.13 \pm 0.31 \pm 0.33$
$HESS\ J1804-216$	O	124	$13.4 \pm 1.6 \pm 3.1$	$2.04 \pm 0.16 \pm 0.24$
${ m HESS~J1825-137}$	PWN	56	$5.6 \pm 1.2 \pm 9.0$	$1.32 \pm 0.20 \pm 0.39$
HESS J1834-087	O	27	$5.5 \pm 1.2 \pm 2.5$	$2.24 \pm 0.34 \pm 0.42$
HESS J1837-069	PWNc	73	$7.5 \pm 1.3 \pm 4.2$	$1.47 \pm 0.18 \pm 0.30$
$HESS\ J1841-055$	PWNc	64	$10.9 \pm 0.8 \pm 4.1$	$1.60 \pm 0.27 \pm 0.33$
${ m HESS~J1848-018}$	PWNc	19	$7.4 \pm 1.9 \pm 2.7$	$2.46 \pm 0.50 \pm 0.51$
$HESS\ J1857+026$	PWNc	53	$4.2 \pm 0.3 \pm 1.3$	$1.01 \pm 0.24 \pm 0.25$
VER J2016+372	O	31	$1.8 \pm 0.5 \pm 0.8$	$2.45 \pm 0.44 \pm 0.49$

Note. — The results of our analysis search using LAT data for TeV PWNs. Column 2 says the classification of the LAT emission (See Section 8.4). Column 3 is TS_{TeV} , and columns 4 and 5 are the flux and spectral index computed assuming a power-law spectral model (See Section 8.3 for a discussion of systematic errors).

The third category is "PSR"...

The final category is "O"...

TODO, mention how modeling pulsar in background could be somewant biased.

WHERE ARE RESULTS PRESENTED

. We don't quote upper limits, for some reason....

• We detected 4 new PWNe candidates (HESS J1119-614, HESS J1303-631, HESS J1420-607, and HESS J1841-055) and 1 new PWN (HESS J1356-645)

•

HESS J1023-575 HESS J1119-614 HESS J1303-631 HESS J1356-645 HESS J1420-607 HESS J1514-591 HESS J1616-508 HESS J1632-478 HESS J1640-465 HESS J1825-137 HESS J1837-069 (UNID) HESS J1841-055 (UNID) HESS J1848-018 (UNID) HESS J1857+026 (UNID)

Bibliography

Abdo, A., Ackermann, M., Ajello, M., et al. 2010, Astrophys.J., 722, 1303

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009a, ApJ, 706, L1

—. 2009b, ApJS, 183, 46

Abdo, A. A., Allen, B. T., Aune, T., et al. 2009c, ApJ, 700, L127

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009d, Astroparticle Physics, 32, 193

—. 2010a, ApJ, 714, 927

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010b, A&A, 523, A46

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010c, Science, 328, 725

- —. 2010d, ApJS, 188, 405
- —. 2010e, ApJ, 708, 1254
- —. 2010f, ApJ, 718, 348

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, The Astrophysical Journal, 713, 146

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010a, Science, 327, 1103

—. 2010b, ApJ, 712, 459

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010c, A&A, 512, A7

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010d, Physical Review Letters, 104, 101101

- —. 2010e, ApJS, 187, 460
- —. 2011, ApJ, 734, 28

Acciari, V. A., Aliu, E., Arlen, T., et al. 2009, ApJ, 698, L133

—. 2011, ApJ, 738, 3

Acero, F., Ackermann, M., Ajello, M., & et al. in prep., ApJ

Ackermann, M., Ajello, M., Allafort, A., et al. in prep, ApJ

—. 2011, ApJ, 743, 171

Ackermann, M., Ajello, M., Albert, A., et al. 2012, ApJS, 203, 4

Aharonian, F., Akhperjanian, A. G., Aye, K.-M., et al. 2005, A&A, 435, L17

Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006a, A&A, 460, 743

- —. 2006b, A&A, 460, 365
- —. 2006c, A&A, 448, L43
- —. 2006d, ApJ, 636, 777
- —. 2007a, ApJ, 661, 236
- —. 2007b, A&A, 464, 235
- —. 2008, A&A, 481, 401

Aharonian, F. A., & Bogovalov, S. V. 2003, New A, 8, 85

Aharonian, F. A., Coppi, P. S., & Voelk, H. J. 1994, ApJ, 423, L5

Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2007c, A&A, 469, L1

Ajello, M., Allafort, A., Baldini, L., et al. 2012, ApJ, 744, 80

Akaike, H. 1974, IEEE Transactions on Automatic Control, 19, 716

Albert, J., Aliu, E., Anderhub, H., et al. 2006, Science, 312, 1771

Arnold, J. R., Metzger, A. E., Anderson, E. C., & van Dilla, M. A. 1962, J. Geophys. Res., 67, 4878

Arons, J. 1996, Space Sci. Rev., 75, 235

Ashworth, William B., J. 1981, Proceedings of the American Philosophical Society, 125, pp. 52

Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071

Balbo, M., Saouter, P., Walter, R., et al. 2010, A&A, 520, A111

Baltz, E. A., Berenji, B., Bertone, G., et al. 2008, J. Cosmology Astropart. Phys., 7, 13

Bamba, A., Ueno, M., Koyama, K., & Yamauchi, S. 2003, The Astrophysical Journal, 589, 253

Baum, W. A., Johnson, F. S., Oberly, J. J., et al. 1946, Phys. Rev., 70, 781

Bertsch, D. L., Brazier, K. T. S., Fichtel, C. E., et al. 1992, Nature, 357, 306

Bignami, G. F., Boella, G., Burger, J. J., et al. 1975, Space Science Instrumentation, 1, 245

Blandford, R. D., & Romani, R. W. 1988, MNRAS, 234, 57P

Blumenthal, G. R., & Gould, R. J. 1970, Rev. Mod. Phys., 42, 237

Bogovalov, S. V., & Aharonian, F. A. 2000, MNRAS, 313, 504

Bradt, H., Rappaport, S., & Mayer, W. 1969, Nature, 222, 728

Browning, R., Ramsden, D., & Wright, P. J. 1971, Nature Physical Science, 232, 99

Burnham, K. P., & Anderson, D. R. 2002, Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. (Springer)

Burnight, T. 1949, Phys. Rev, 76, 19

Caballero, I., & Wilms, J. 2012, Mem. Soc. Astron. Italiana, 83, 230

Carroll, B. W., & Ostlie, D. A. 2006, An Introduction to Modern Astrophysics, 2nd edn. (Benjamin Cummings)

Cash, W. 1979, ApJ, 228, 939

Castelletti, G., Dubner, G., Golap, K., & Goss, W. M. 2006, A&A, 459, 535

Chandrasekhar, S. 1931, ApJ, 74, 81

Chen, A. W., Piano, G., Tavani, M., et al. 2011, A&A, 525, A33

Cocke, W. J., Disney, M. J., & Taylor, D. J. 1969, Nature, 221, 525

Critchfield, C. L., Ney, E. P., & Oleksa, S. 1952, Physical Review, 85, 461

Dame, T. M. 2011, ArXiv e-prints

de Geus, E. J., Bronfman, L., & Thaddeus, P. 1990, A&A, 231, 137

de Naurois, M., & H.E.S.S. Collaboration. 2013, Advances in Space Research, 51, 258

Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081

Eadie, W. T., Drijard, D., & James, F. E. 1971, Statistical methods in experimental physics (North-Holland Pub. Co.)

Espinoza, C. M., Lyne, A. G., Kramer, M., Manchester, R. N., & Kaspi, V. M. 2011, ApJ, 741, L13

Esposito, J. A., Bertsch, D. L., Chen, A. W., et al. 1999, ApJS, 123, 203

Falanga, M., Kuiper, L., Poutanen, J., et al. 2005, A&A, 444, 15

Feenberg, E., & Primakoff, H. 1948, Phys. Rev., 73, 449

Fichtel, C. E., Hartman, R. C., Kniffen, D. A., et al. 1975, ApJ, 198, 163

Fisher, R. A. 1925, Statistical Methods for Research Workers (Edinburgh: Oliver and Boyd)

Fritz, G., Henry, R. C., Meekins, J. F., Chubb, T. A., & Friedman, H. 1969, Science, 164, 709

Funk, S., Hinton, J. A., Pühlhofer, G., et al. 2007, ApJ, 662, 517

Gaensler, B. M., Schulz, N. S., Kaspi, V. M., Pivovaroff, M. J., & Becker, W. E. 2003, ApJ, 588, 441

Gaensler, B. M., & Slane, P. O. 2006, ARA&A, 44, 17

Gaisser, T. K., Protheroe, R. J., & Staney, T. 1998, ApJ, 492, 219

Gelfand, J. D., Slane, P. O., & Zhang, W. 2009, ApJ, 703, 2051

Giordano, F., & Fermi LAT Collaboration. 2011, in High-Energy Emission from Pulsars and their Systems, ed. D. F. Torres & N. Rea, 69

Gold, T. 1968, Nature, 218, 731

Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869

Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759

Gotthelf, E. V., & Halpern, J. P. 2008, ApJ, 681, 515

Grenier, I. A., Casandjian, J.-M., & Terrier, R. 2005, Science, 307, 1292

Grondin, M.-H., Funk, S., Lemoine-Goumard, M., et al. 2011, ApJ, 738, 42

Gunn, J. E., & Ostriker, J. P. 1969, Nature, 221, 454

Hartman, R. C., Bertsch, D. L., Bloom, S. D., et al. 1999, ApJS, 123, 79

Haug, E. 1975, Zeitschrift Naturforschung Teil A, 30, 1099

Hayakawa, S. 1952, Progress of Theoretical Physics, 8, 571

Herschel, W. 1800, Philosophical Transactions of the Royal Society of London, 90, pp. 284

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217, 709

Hewitt, J., Grondin, M.-H., Lemoine-Goumard, M., et al. 2012

Houck, J. C., & Allen, G. E. 2006, ApJS, 167, 26

Hulsizer, R. I., & Rossi, B. 1948, Phys. Rev., 73, 1402

Hutchinson, G. 1952, Philosophical Magazine Series 7, 43, 847

Hwang, U., Petre, R., & Flanagan, K. A. 2008, ApJ, 676, 378

James, F., & Roos, M. 1975, Computer Physics Communications, 10, 343

Jansky, K. 1933, Proceedings of the Institute of Radio Engineers, 21, 1387

Kargaltsev, O., Pavlov, G. G., & Wong, J. A. 2008, ArXiv e-prints

Kaspi, V. M., & Helfand, D. J. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 271, Neutron Stars in Supernova Remnants, ed. P. O. Slane & B. M. Gaensler, 3

Katagiri, H., Tibaldo, L., Ballet, J., et al. 2011, ApJ, 741, 44

Katsuta, J., Uchiyama, Y., Tanaka, T., et al. 2012

Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 710

Kerr, M. 2010, PhD thesis, University of Washington

King, I. 1962, AJ, 67, 471

Klein, O., & Nishina, T. 1929, Zeitschrift für Physik, 52, 853

Kniffen, D. A., & Fichtel, C. E. 1970, ApJ, 161, L157

Krause, J., Carmona, E., Reichardt, I., & for the MAGIC Collaboration. 2011, ArXiv e-prints

Kraushaar, W., Clark, G. W., Garmire, G., et al. 1965, ApJ, 141, 845

Kraushaar, W. L., Clark, G. W., Garmire, G. P., et al. 1972, ApJ, 177, 341

Landi, R., de Rosa, A., Dean, A. J., et al. 2007a, MNRAS, 380, 926

Landi, R., Masetti, N., Bassani, L., et al. 2007b, The Astronomer's Telegram, 1047,

Large, M. I., Vaughan, A. E., & Mills, B. Y. 1968, Nature, 220, 340

Li, T.-P., & Ma, Y.-Q. 1983, ApJ, 272, 317

Longair, M. S. 2011, High Energy Astrophysics, 3rd edn. (The Edinburgh Building, Cambridge CB2 8RU, UK: Cambridge University Press)

Markwardt, C. B., & Ogelman, H. 1995, Nature, 375, 40

Matsumoto, H., Ueno, M., Bamba, A., et al. 2007, PASJ, 59, 199

Matsumoto, H., Uchiyama, H., Sawada, M., et al. 2008, PASJ, 60, 163

Mattox, J. R., Bertsch, D. L., Fichtel, C. E., et al. 1992, ApJ, 401, L23

Mattox, J. R., Bertsch, D. L., Chiang, J., et al. 1996, ApJ, 461, 396

Mayer-Hasselwander, H. A., Kanbach, G., Bennett, K., et al. 1982, A&A, 105, 164

McK Mahille, J., Schild, R., Wendorf, F., & Brenmer, R. 2007, African Skies, 11, 2

Mizukami, T., Kubo, H., Yoshida, T., et al. 2011, ApJ, 740, 78

Morrison, P. 1958, Il Nuovo Cimento, 7, 858

Murphy, T., Mauch, T., Green, A., et al. 2007, MNRAS, 382, 382

Neronov, A., Semikoz, D. V., Tinyakov, P. G., & Tkachev, I. I. 2011, A&A, 526, A90

Nolan, P. L., Arzoumanian, Z., Bertsch, D. L., et al. 1993, ApJ, 409, 697

Nolan, P. L., Fierro, J. M., Lin, Y. C., et al. 1996, A&AS, 120, C61

Nolan, P. L., Abdo, A. A., Ackermann, M., et al. 2012, ApJS, 199, 31

Pacini, F. 1967, Nature, 216, 567

—. 1968, Nature, 219, 145

Pacini, F., & Salvati, M. 1973, ApJ, 186, 249

Paron, S., Dubner, G., Reynoso, E., & Rubio, M. 2008, A&A, 480, 439

Petre, R., Becker, C. M., & Winkler, P. F. 1996, The Astrophysical Journal Letters, 465, L43

Pollock, A. M. T. 1985, A&A, 150, 339

Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. 2002, ApJ, 571, 545

Rea, N., & Esposito, P. 2011, in High-Energy Emission from Pulsars and their Systems, ed. D. F. Torres & N. Rea, 247

Rees, M. J., & Gunn, J. E. 1974, MNRAS, 167, 1

Reynoso, E. M., Dubner, G. M., Goss, W. M., & Arnal, E. M. 1995, AJ, 110, 318

Reynoso, E. M., Green, A. J., Johnston, S., et al. 2003, MNRAS, 345, 671

Richards, D. W., & Comella, J. M. 1969, Nature, 222, 551

Rodriguez, J., Tomsick, J. A., Foschini, L., et al. 2003, A&A, 407, L41

Rousseau, R., Grondin, M.-H., Van Etten, A., et al. 2012, A&A, 544, A3

Rowell, G., Horns, D., Fukui, Y., & Moriguchi, Y. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 241–244

Rybicki, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics (New York: John Wiley & Sons Ltd)

Schwarz, G. 1978, The Annals of Statistics, 6, pp. 461

Slane, P., Castro, D., Funk, S., et al. 2010, The Astrophysical Journal, 720, 266

Sreekumar, P., Bertsch, D. L., Hartman, R. C., Nolan, P. L., & Thompson, D. J. 1999, Astroparticle Physics, 11, 221

Sreekumar, P., Bertsch, D. L., Dingus, B. L., et al. 1992, ApJ, 400, L67

Sreekumar, P., Bertsch, D. L., Dingus, B. L., et al. 1998, The Astrophysical Journal, 494, 523

Staelin, D. H., & Reifenstein, III, E. C. 1968, Science, 162, 1481

Strong, A. W., & Moskalenko, I. V. 1998, ApJ, 509, 212

Sugizaki, M., Mitsuda, K., Kaneda, H., et al. 2001, ApJS, 134, 77

Swanenburg, B. N., Hermsen, W., Bennett, K., et al. 1978, Nature, 275, 298

Swanenburg, B. N., Bennett, K., Bignami, G. F., et al. 1981, ApJ, 243, L69

Tanaka, T., Allafort, A., Ballet, J., et al. 2011, ApJ, 740, L51

Taylor, A. R., Gibson, S. J., Peracaula, M., et al. 2003, AJ, 125, 3145

Thompson, D. J. 2008, Reports on Progress in Physics, 71, 116901

Thompson, D. J., Fichtel, C. E., Hartman, R. C., Kniffen, D. A., & Lamb, R. C. 1977a, ApJ, 213, 252

Thompson, D. J., Fichtel, C. E., Kniffen, D. A., & Ogelman, H. B. 1977b, ApJ, 214, L17

Thompson, D. J., Bertsch, D. L., Fichtel, C. E., et al. 1993, ApJS, 86, 629

Tomsick, J. A., Lingenfelter, R., Walter, R., et al. 2003, IAU Circ., 8076, 1

Torii, K., Kinugasa, K., Toneri, T., et al. 1998, ApJ, 494, L207

van der Swaluw, E., & Wu, Y. 2001, ApJ, 555, L49

Vladimirov, A. E., Digel, S. W., Jóhannesson, G., et al. 2011, Computer Physics Communications, 182, 1156

Weekes, T. C., Cawley, M. F., Fegan, D. J., et al. 1989, ApJ, 342, 379

Weinstein, A., & for the VERITAS Collaboration. 2009, ArXiv e-prints

Young, E. T., Lada, C. J., & Wilking, B. A. 1986, ApJ, 304, L45