Arrests 2010 NTA analysis

```
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 497912 26.6 1079375 57.7 686460 36.7
## Vcells 928805 7.1 8388608 64.0 1877429 14.4
```

Preprocessing

Remove date and NTA variables, convert to factor location, month and KY CD.

```
## 'data.frame':
                    419383 obs. of 15 variables:
                : Factor w/ 70 levels "101", "102", "103", ...: 70 4 70 15 70 70 70 4 70 4 ...
   $ LAW_CAT_CD: Factor w/ 5 levels "","F","I","M",..: 1 2 4 2 4 2 4 2 4 2 ...
   \ AGE_GROUP : Factor \ w/\ 5 \ levels "<18","18-24",...: 3 2 3 1 4 4 3 2 2 3 ....
   $ PERP_SEX : Factor w/ 2 levels "F", "M": 2 2 2 2 2 2 2 2 2 2 ...
   $ PERP_RACE : Factor w/ 7 levels "AMERICAN INDIAN/ALASKAN NATIVE",..: 6 3 3 3 3 7 6 7 7 3 ...
   $ NTA2020
                : Factor w/ 251 levels "BK0101", "BK0102", ...: 91 28 126 6 68 231 46 140 155 217 ...
##
   $ MONTH
                : Factor w/ 12 levels "1","2","3","4",...: 1 11 3 12 12 12 11 11 10 9 ...
                : Factor w/ 251 levels "BK0101", "BK0102",...: 91 28 126 6 68 231 46 140 155 217 ...
##
   $ GeoID
   $ Pop1
                : num 43885 76961 21140 24605 39214 ...
##
   $ Male.P
                : num 44.4 44.7 49.3 48.2 46.8 48.9 45.1 48.8 49.5 47.2 ...
   $ MdAge
                      46.1 33.2 39.1 34.8 29.3 35.3 34.1 34.1 34.7 37.8 ...
##
                : num
   $ Hsp1P
                : num 17 12 8.2 17.8 69.1 30.6 20.1 52.2 28.2 18.6 ...
##
                : num 68 9.2 65.1 47.8 1.5 25.3 8 10.9 47.2 6.4 ...
##
   $ WNHP
   $ BNHP
                : num 7.5 74.3 4.5 20.7 27.5 35.3 66.1 32.2 4.6 48.3 ...
                : num 5.3 1.9 19.8 10.1 0.8 5.2 3.2 2.2 16.4 17.1 ...
   $ ANHP
```

Check for NA

##	KY_CD I	LAW_CAT_CD	AGE_GROUP	PERP_SEX	PERP_RACE	NTA2020	MONTH
##	0	0	0	0	0	0	0
##	GeoID	Pop1	Male.P	${\tt MdAge}$	Hsp1P	WNHP	BNHP
##	0	0	2491	2489	2702	3111	3281
##	ANHP						
##	4315						

A possibility is to get rid of all NAs rows, the portion of deleted rows would be relatively small (of course we're introducing some bias here).

[1] 0.9890935

Other possibilities would be to impute values for numerical variables (using median, mean or more sofisticated methods). For simplicity we just delete missing values rows.

Description

Ideally 2010 data are our training set and 2011 data are the test set. The goal of the analysis is to identify is some covariates are correlated with the arrests rate: more specifically if the response is well explained by some non spatial covariates alone, some spatial alone or interaction between the two.

A reasonable response variable would be the count of arrests divided by the local (space zone) population, also grouping by any other covariates value.

To get an idea of the dataset used on which models are tested a

```
'summarise()' has grouped output by 'KY_CD', 'LAW_CAT_CD', 'AGE_GROUP',
## 'PERP_SEX', 'PERP_RACE', 'NTA2020', 'GeoID', 'Pop1', 'Male.P', 'MdAge',
  'Hsp1P', 'WNHP', 'BNHP'. You can override using the '.groups' argument.
   [1] 81946
                16
                      "LAW_CAT_CD"
                                                               "PERP RACE"
        "KY_CD"
                                   "AGE GROUP"
                                                 "PERP SEX"
                                                              "MdAge"
    [6] "NTA2020"
                      "GeoID"
                                   "Pop1"
                                                 "Male.P"
   [11]
       "Hsp1P"
                      "WNHP"
                                   "BNHP"
                                                 "ANHP"
                                                               "count"
   [16] "y"
```

Still a huge number of observations compared to the number of variables, but what if we add interactions? Let's look at the distribution of the counts

Arrests counts grouped by covariates

We can see an inflation of ones. The ratios present a similar table.

Arrests ratio grouped by covariates

number of arrests / census tract population

Let's count the hipothetical number of interaction terms if ones considers only interactions between spatial zones and selected arrests covariates along with the obervations / number of parameter ratio (underestimate since there are other variables):

##	KY_CD LA	W_CAT_CD	AGE_GROUP	PERP_SEX	PERP_RACE	NTA2020	GeoID
##	70	5	5	2	7	209	209
##	Pop1	Male.P	${\tt MdAge}$	Hsp1P	WNHP	BNHP	ANHP
##	207	83	128	172	170	156	135
##	count	У					
##	248	5754					

Not including KY_CD:

NTA2020

3971

NTA2020 ## 20.63611

Including KY_CD

NTA2020 ## 18601 ## NTA2020 ## 4.405462

We decide to not employ the MONTH time variable as a covariate but use it for a model selection method.

Variables description

Original dataset selected variables:

Census stratification variables:

Explorative analysis

Arrests count vs month

Arrests count by month

Arrests counts vs NTA

Arrest counts vs other covariates

Models

Model selection method

Given the previously described constraints, in order to be able to apply a cross validation (CV) selection method we choose to ignore the time (MONTH) factor using MONTH as index to create the CV folds as

described below. Choose k: the number of validation sets (example k=4) each validation set is made by grouped observations of 12 / k (3) months and the months left are used to fit the model. To try to compensate and average for seasonal fluctuations the validation months are chosen as spaced as possible, for example, in the case k=4 the first validation set is (january, may, september), the second set is (february, june, october), the third is (march, july, november) and the forth is (april, august, december); in order to make each response comparable having used a different number of months a new response is defined as the arrests ratio divided by the number of months used in the grouping.

Define Month indexes

In order to simplify computations we remove the KY_CD variable (hoping LAW_CAT_CD will be sufficient to describe the crime tipe)

```
## 'summarise()' has grouped output by 'LAW_CAT_CD', 'AGE_GROUP', 'PERP_SEX',
## 'PERP_RACE', 'NTA2020', 'GeoID', 'Pop1', 'Male.P', 'MdAge', 'Hsp1P', 'WNHP',
## 'BNHP'. You can override using the '.groups' argument.
```

Error functions

Model matrices: omit KY CD variables due to computational issues. Make a list of fit and validation sets:

Note on quantitative covariates

The simplest assumption is to assume a linear (monotone) trend of the response as a function of quantitative covariates.

LASSO

```
## Loaded glmnet 4.1-8
```

LASSO CV error

Bets lambda is close to zero, so the best solution seems OLS classical solution.

Check beta: proportion of non zero beta among all betas

[1] 0.803839

So the solution is not sparse even thought many coefficients are close to zero.

Lasso lambda best coefficients

Elasticnet

Grouped LASSO

Scad MCP

Poisson LASSO

Poisson Elasticnet

Negative Binomial Lasso

Zero Inflated Lasso