Divide and Conquer

Noella James

02/07/2017

1 Paradigm

- 1. Break problem into sub-problems on smaller input size.
- 2. Solve each sub-problem recursively.
- 3. Combine solutions to overall solution.

2 Example: Merge Sort

- 7 8 1 5 12 3 6 9
 - 1. Divide the array into two halves
 - 2. Sort each half
 - 3. Merge the two halves
 - 1 5 7 8 3 6 9 12
- 1 3 5 6 7 8 9 12

3 Recurrence

T(n)= run-time on n numbers. Recurrence: $T(n)=2\times T(\frac{n}{2})+\theta(n)$

3.1 How to solve recurrences?

Two methods for figuring out the solution.

One method for proving the solution once you already know it.

Example:

$$T(n) = 2T(\frac{n}{2}) + \theta(n)$$

$$T(1) = \theta(1)$$

First: Work with explicit constants

$$T(n) = 2T(\frac{n}{2}) + cn$$

$$T(1) = c$$

3.2 First Method:

Recursion Tree

$$T(n) \to cn$$

$$T(\tfrac{n}{2}) \qquad T(\tfrac{n}{2}) \qquad \to 2\,c\,\tfrac{n}{2} = c\,n$$

$$T(\textstyle{n\over 4}) \quad T(\textstyle{n\over 4}) \quad T(\textstyle{n\over 4}) \quad T(\textstyle{n\over 4}) \qquad \to 4\,c\,\textstyle{n\over 4} = c\,n$$

Overall depth of the tree = $\log n$

Note 3.1. every layer is cn

Note 3.2. Overall: $c n \log n = \theta(n \log n)$ where c is a constant.

Why is it so important to work with explicit constants?

Example

$$T(n) = 2T(n-1) + \theta(1)$$

$$T(1) = \theta(1)$$

$$T(n) \to \theta(1) \to c$$

$$T(n-1)$$
 $T(n-1) \rightarrow 2\theta(1) = \theta(1) \rightarrow 2c$

$$T(n-2)$$
 $T(n-2)$ $T(n-2)$ $T(n-2) \rightarrow 4\theta(1) = \theta(1) \rightarrow 4c$

Assuming the total is $n\theta(1) = \theta(n)$ is WRONG.

$$T(n) \ge 2^{(n-1)}.$$

we have this issue because we didn't use explicit constants!

3.3 **Iteration Method**

Unroll the recurrence

$$T(n) = 2T(n-1) + c$$

$$T(1) = c$$

$$T(n) = 2T(n-1) + c$$

$$= 2(2T(n-2)+c)+c$$

$$= 2(2(2T(n-3)+c)+c)+c$$

$$= 2(2(2...2(T(1+c)+c)+c)+...)+c$$

Suppose that
$$T(1) = c$$

 $\therefore T(n) = 2^{n-1} c + 2^{n-2} c + 2^{n-3} c + \ldots + c$

* this is very subtle and delicate. you must be very careful * $\therefore c(2^{n-1}+2^{n-2}+2^{n-3}+\ldots+1)=c(2^n-1)$

$$\therefore c(2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 1) = c(2^n - 1)$$

$$\therefore c(2^n - 1) = \theta(2^n)$$

Note 3.3. Geometric Sum:
$$a + a q + a q^2 + a q^2 + ... + a q^{n-1} = a \frac{q^n - 1}{q - 1}$$

3.3.1 Example

$$T(n) = 2T(\frac{n}{2}) + cn$$

$$T(1) = c$$

$$T(n) = 2T(\frac{n}{2}) + cn = 2(2T(\frac{n}{4}) + c\frac{n}{2}) + cn$$

$$= 2^{\log n}T(1) + 2^{\log n - 1}cn/2^{\log n - 1} + \dots + 2c\frac{n}{2} + cn$$

$$= n c (\log n + 1) = \theta(n \log n)$$

3.4 Substitution method: Proof by Induction

3.4.1 Example 1

$$T(n) = 2T(\frac{n}{2}) + cn$$

$$T(1) = c$$

Claim:
$$T(n) = c n (\log n + 1) \quad \forall n$$

Proof. By induction on n

Base:
$$n = 1$$
 $T(1) = c = c \cdot (\log 1 + 1) = c$

Hypothesis: True for n-1

Induction or Step n:

$$\begin{split} T(n) &= 2 \ T(\frac{n}{2}) + c \ n \\ &= 2 \ c \ \frac{n}{2} (\log \frac{n}{2}) + c \ n \\ &= c \ n \ (\log n - 1 + 1) + c \ n \\ &= c \ n \ \log n + c \ n \end{split}$$

Note 3.4.

$$\log \frac{a}{b} = \log a - \log b$$

$$\log 2 = 1$$

3.4.2 Example 2

$$T(n) = 2T(n-1) + 1$$

 $T(1) = 1$

Claim: $T(n) = 2^n - 1 \quad \forall n$

Proof. By induction on n

Base: n = 1 $T(1) = 1 = 2^1 - 1 = c$

Hypothesis: True for n-1

Induction or Step n:

$$T(n) = 2 T(n-1) + 1$$

$$= 2(2^{n-1} - 1) + 1$$

$$=2^{n}-2+1$$

$$= 2^n - 1$$

4 Master Theorem

$$T(1) = \theta(1)$$
 $T(n) = aT(\frac{n}{b}) + \theta(n^k)$
 $a \ge 1$ $b \ge 1$ a, b are constants. k is a non-negative constant

Then

1.
$$k < \log_b a \implies T(n) = \theta(n^{\log_b a})$$

2.
$$k = \log_b a \implies T(n) = \theta(n^{\log_b a} \log n)$$

3.
$$k > \log_b a \implies T(n) = \theta(n^k)$$

4.1 Example

$$T(n) = aT(\frac{n}{b}) + \theta(n)$$
 , $a < b$
 $T(n) = \theta(n)$