Milky Way Formation History project

*Classification Part Report

AmirHosein Masoudnezhad

1. Introduction

In this part of project, I tried to build a classifier to classify variable stars, mainly LPVs. I used OGLE(III,IV) survey datasets here. These datasets include 9 different class of variable stars' light curves in LMC and SMC.

OGLE	- III	OGLE – IV			
LMC	SMC	LMC	SMC		
Anomalous Cepheids (ACEP)	Classical Cepheids	Anomalous Cepheids	Anomalous Cepheids		
Classical Cepheids (CEP)	Eclipsing and Ellipsoidal Binary Systems	Classical Cepheids	Classical Cepheids		
Double-Period Variables (DPV)	Long Period Variables	Eclipsing and Ellipsoidal Binary Systems	Eclipsing and Ellipsoidal Binary Systems		
Eclipsing and Ellipsoidal Binary Systems (ECL)	RR-Lyrae	RR-Lyrae	RR-Lyrae		
Long Period Variables (LPV)	Type-II Cepheids	Type-II Cepheids	Type-II Cepheids		
R-CrB (RCB)					
RR-Lyrae (RRLYR)					
Type-II Cepheids (T2CEP)					
δ-Scuti (<i>DSCT</i>)					

2. Data

I concatenated each class data in a dataframe of this format:

	Time*	value	id	kind	class
0	2088.91535	14.977	III-OGLE-SMC-LPV-00001	I	LPV
1	2090.87535	14.978	III-OGLE-SMC-LPV-00001	I	LPV
2	2103.92958	14.980	III-OGLE-SMC-LPV-00001	I	LPV
3	2104.94812	14.986	III-OGLE-SMC-LPV-00001	I	LPV
4	2106.84596	14.998	III-OGLE-SMC-LPV-00001	I	LPV

Columns' information

Column Name	unit	description			
Time	Days	Heliocentric Julian Day - 2450000			
Value	Mag	Magnitude			
ID	-	Star's OGLE Series - Name			
Kind	-	Observation Filter			
Class	-	Stars' Classes			

3. Feature extraction

I used *tsfresh* library to extract features from the data. It gives us about 1575 features per star. It would be a large number of data, which is too hard to work with. Accordingly, I decided to select optimum relevant features with small sample of data. Finally, the extracted features per star became about 50 features, which have significant effects on classifying all 9 classes.

4. Preprocessing

After all, I concatenate all collected data together and also encoded the output with *One-Hot Encoding* and *LabelEncoder*. Afterwards, I imputed missing data by *iterative_imputer* and shuffle them.

The main problem was different object classes were too imbalance to train a model.

Class	LPV	ECL	RRLYR	CEP	DSCT	T2CEP	ACEP	DPV	RCB
Number	111379	78343	74935	17582	2788	586	349	137	23

In order to deal with this problem, I defined 7 distinct problems to check the model performance on them. I used KNN-Classifier in this part.

Problem	Classification Classes	No. of Classes	Precision	Recall	F1_Score
1.1	All Classes: {ACEP, CEP, T2CEP, DPV, DSCT, ECL, LPV, RCB, RRLYR}	9	0.68	0.49	0.51
1.2	{CEP, DPV, DSCT, ECL, LPV, RCB, RRLYR}	7	0.70	0.62	0.64
2	Binary Clf. : $\begin{cases} 1 : LPV \\ 0 : O.W \end{cases}$	2	0.99	0.99	0.99
3.1	$\{LPV, ECL, RRLYR, CEP, Other\}$ $Other: \{DPV, RCB, DSCT\}$	5	0.87	0.81	0.83
3.2	{LPV, ECL, CEP, RRLYR, DSCT, Other} Other: {DPV, RCB}	6	0.80	0.69	0.72
4.1	{LPV, ECL, RRLYR, CEP}	4	0.91	0.90	0.90
4.2	{LPV, ECL, RRLYR, CEP, DSCT}	5	0.85	0.81	0.82

The best performance was on problem 2, which is a binary classification. On the other hand, I was inclined to classify the most number of classes with acceptable score. According to the table above, I decided to solve problem 3.1. It is a multi-class problem in which I put the *DPV*, *RCB* and *DSCT* classes in one class and entitled to 'Other' class.

5. Fitting models

Finally, I tried to solve the classification problem using KNN, Decision Tree Classifier and LDA, which their results are shown below.

Model Name	Tuned Hyper-parameters	Precision	Recall	F1_Score	Best Score
K-Nearest Neighbors (<i>KNN</i>)	algorithm : "kd_tree" weights : "distance"	0.87	0.81	0.83	92%
Decision Tree Classifier	criterion : "entropy" splitter : "best"	0.86	0.87	0.87	92%
Linear Discriminant Analysis (LDA)	shrinkage : "auto" solver : "lsqr"	0.72	0.67	0.68	83%

• Best Model: Decision Tree Classifier

6. Saving model and Classifier function

At the end, I saved the best model (Decision Tree Classifier) and built a classifier function which can be found on the <u>Github</u> repository as a separate file.