Physical Parameters for Image Learning in Pediatric

Examining PSF Blur and RGB Channel Weights for Learning Infant Poses Estimation

.....

Sebi Gutierrez

November 24th, 2020

- 1. Problem and Background
- 2. PoseNet and SOTA
- 3. Methods
- 4. Results
- 5. Future Work

Pediatric NeuroMSK/Cog Disorders

- Cerebral Palsy
 - 2.1 in 2000; \$1.5B lifetime
- Autism Spectrum Disorder

- General and Fidgety Mvt
 - weeks to 2 years

Pose Learning and Infants

- 20+ years in development
- **Images and Video**
- Detect anatomy landmark
 - pose estimation v tracking
- Limitations and assumptions

TABLE 1

The Typical Assumptions Made by Motion Capture Systems Listed in Ranked Order According to Frequency	
Assumptions related to movements	Assumptions related to appeara

- 1. The subject remains inside the workspace
- 2. None or constant camera motion
- 3. Only one person in the workspace at the time
- 4. The subject faces the camera at all time
- 5. Movements parallel to the camera-plane
- 6. No occlusion
- 7. Slow and continuous movements
- 8. Only move one or a few limbs
- 9. The motion pattern of the subject is known
- 10. Subject moves on a flat ground plane

ance

- Environment
- 1. Constant lighting
- 2. Static background
- 3. Uniform background
- 4. Known camera parameters
- 5. Special hardware

Subject

- 1. Known start pose
- 2. Known subject
- 3. Markers placed on the subject
- 4. Special coloured clothes
- 5. Tight-fitting clothes

[&]quot;Automated pose estimation ... from conventional videos" March et al. Acta Paediatrica. 2019;108(10):1817-1824

Expansion in Application

- Non clinical settings
 - non ideal conditions

Outpt MDs, daycare, home?

Fine-tuned Domain-adapted Infant Pose (FiDIP) + More

Results

Grayscale = 0.21 * R + 0.72 * G + 0.07 * B

	Accuracy (MSE)
Images	(Final Epoch, Avg)
As Is	0.939 (0.917)
Gray	0.733 (0.712)
RGB	0.747 (0.741)
Blur	0.846 (0.849)
Blur + RBG	0.819 (0.820)

Future Work

- Expanded dataset, currently limited size
- African American children?
 Underrepresentation in AI; in training set
 - ~5 in all the dataset
- Pose estimation -> tracking (video)
 - Apply similar physical layers
- Full automation GMA and quantifiable outcomes from poses

Questions? Thank you! @Dr.Horstmeyer, @Colin,@AugmentedCogLab

Physical Parameters for Image Learning in Pediatric Neurology

Examining PSF Blur and RGB Channel Weights for Learning Infant Poses Estimation

Sebi Gutierrez

November 24th, 2020