전기화학

1 화학 전지 1.1 전지 1.2 전지 전위 2 전기 분해

1화학 전지

자발적인 산화·환원 반응에 의해 생기는 전자의 이동을 통해 전류를 얻는 장치

금속의 이온화 경향

금속 원자가 전자를 잃고 양이온이 되려는 경향

K > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > H > Cu > Hg > Ag > Pt > Au 이온화 경향이 클 수록 전자를 잃어 산화되기 쉽고 반응성이 크다.

수소보다 반응성이 큰 금속을 산 수용액에 넣으면 금속은 산화되어 용액 속으로 녹아 들 어가고, 수소 이온은 환원되어 수소 기체가 발생한다.

1.1 전지

볼타 전지

아연판과 구리판을 묽은 황산 용액에 담근 후 도선으로 연결한 전지 Zn이 산화되어 Zn^{2+} 를 형성하고, H^+ 가 환원되어 수소 기체를 형성한다. 분극현상 $\to H_2$ 가 발생함에 따라 H^+ 가 전극에 접근하기 어려워져 전압이 낮아진다. 산화제의 일종인 감극제를 첨가하여 H_2 를 H_2 O로 산화시켜 해결할 수 있다.

다니엘 전지

황산 구리, 황산 아연 수용액에 전극을 넣은 반쪽 전지를 염다리로 연결한 전지분극 현상을 해결하기 위해 고안되었다.

염다리

염다리 안의 이온이 이동하여 양쪽 반쪽 전지의 전해질 수용액에서 전지의 전하가 균형을 이루도록 한다.

1.2 전지 전위

두 반쪽 전지의 전위가 서로 다르기 때문에 전위차가 생긴다.

S.H.E를 기준으로 상대 전위값을 표준 환원 전위로 사용한다.

표준 수소 전극(S.H.E)

표준 환원 전위의 기준이 되며, 표준 수소 전극의 전위는 0V 로 정한다.

 $25^{\circ}\mathrm{C}, 1\mathrm{M}~\mathrm{H}^{+}$ 수용액과 Pt 전극을 꽂고 1atm의 H_{2} 기체를 접촉시켜 만든 전위이다.

표준 환원 전위(E°)

S.H.E를 기준으로 측정한 반쪽 전지의 전위를 환원 반응의 형태로 나타냈을 때의 전위 표준 환원 전위가 높을 수록 환원되기 쉽다.

표준 전지 전위

환원 전극에서 산화 전극의 표준 환원 전위를 빼서 구한다.

이온화 경향이 큰 금속은 표준 환원 전위가 작다(=산화되기 쉽다).

2 전기 분해

전기 분해는 다음과 같은 반응을 통해 이루어진다.

(-) \exists $2\mathrm{H}_2\mathrm{O} + 2\mathrm{e}^- \to \mathrm{H}_2 + 2\mathrm{OH}^-$

 $(+) = O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$

전기 분해의 결과로 생성되는 이온은 중화반응을 통해 물을 생성하므로 전체 이온 수는 변하지 않는다.

화학 전지, 전기 분해 모두 전지에서 전자가 나오는 곳이 (-)극이다.

- 화학 전지는 그 자체로 전지이므로 산화 전극이 (-)극이다.
- 전기 분해는 외부 전지를 사용하므로 전지의 (-)극과 연결된 환원 전극이 (-)극이다.