# **CiteSpace Report**

# Artificial Intelligence in Marketing: Topic Modeling, Scientometric Analysis, and Research Agenda

# **Abstract:**

Today, artificial intelligence (AI) is becoming increasingly important in both industry and academics. To investigate AI in marketing, the authors have used bibliometric study, social network analysis (SNA), main path analysis, and content analysis to examine the top authors, top most cited articles, and top milestone papers from the 965 records. Bibliometric study identified leading authors, documents, universities, countries, and sources of these articles. By using SNA, they spotted an academic social network of crucial publications. Moreover, they recognized 965 articles that constitute the main knowledge flow in AI marketing through main path analysis. Finally, they discussed future directions based on the findings. The study is one among a few studies that have used bibliometric analysis methods to analyze and visualize the citation network of the AI-marketing interface.

# 1: Introduction

Marketing is a complex decision-making discipline that involves not only the commonly known 4Ps (product, price, promotion, and place) but also strategic issues such as new product development (NPD), customer relationship management (CRM), selling strategies, market segmentation, positioning and targeting, international marketing, marketing research, etc. (Rutz & Watson, 2019). With the ever-increasing amount and importance of "big data," now scholars are interested in whether appropriate decision-making technologies can solve marketing problems. Artificial intelligence (AI), which refers to machines and software that exhibit human intelligence, can provide great opportunities to facilitate decision-making in marketing. The existence of AI could be traced back to 1955 when John McCarthy coined the term Artificial Intelligence. In his work, AI was defined as "making a machine behave in ways that would be called intelligent, if a human were so behaving" (McCarthy et al., 1955).

Recently, as an application of digital marketing tools, artificial intelligence (AI) has been actively catching people's attention. Generally, AI is relevant to any intellectual task. There are many applications in the business world (Balducci & Marinova, 2018, Thomaz et al., 2020).

Banks use artificial intelligence systems to organize operations, maintain investments in stocks, detect fraud, and manage properties (Fethi & Pasiouras, 2010). AI tools make individualized pricing easy to achieve through estimating individualized demand and supply curves (Marwala & Hurwitz, 2017). Using AI tools, marketers can now track customers' digital footprints to predict their general online behaviors and target them with personalized promotions and products (Hennig-Thurau et al., 2015, Matz et al., 2017). Recently, the applications of personality computing AI tools have been used to reduce the cost of advertising campaigns because it adds psychological targeting to traditional behavioral targeting (Celli et al., 2017). AI is still a relatively new research stream, and there is a limited number of publications presenting artificial intelligence applications in marketing.

# 2: Data and Methods

#### 2.1: Data Sources

The Web of Science (WOS) is published by Thomson Reuters and is an interdisciplinary database with records from several bibliographic databases, among them Science Citation Index Expanded (SCI-EXPANDED) and Social Sciences Citation Index (SSCI). SCI-EXPANDED includes records from most of the medical disciplines. SSCI coverage includes public health, psychology, and psychiatry. The Web of Science contains records of publications from 1900 to the present. The web of sciences is an information retrieval platform. WoS keeps a details record of all aspects of the publications of the paper. Many scholars and researchers used the WoS database as the data source bibliometric and analysis of the literature. Therefore, to ensure the accuracy and reliability of the data, this report used publications in the Web of sciences core collection database as the sample data source to analyze the field of Artificial Intelligence (AI) in Marketing. The retrieval the information strategy was follows: "AI" OR "artificial intelligence" OR "machine learning" OR "robot" OR "automation" OR "big data" OR "neural network" OR "text mining" OR "natural language processing" OR "data mining" OR "soft computing" OR "fuzzy logic" OR "biometrics" OR "geotagging" OR "wearable\*" OR "IoT" OR "internet of things" OR "algorithm" OR "deep learning" OR "intelligent automation" OR "ML" OR "intelligent agents" OR "LDA" OR "unsupervised learning" OR "topic model"AND"marketing" OR "service" OR "retailing" OR "consumer" OR "end user" OR "client" OR "customer"). A total of 1200 effective publications were retrieved and the retrieval

results were saved and output in text format, each document contained author, institution, keywords, abstract, date and other information.

| Artificial Intelligence in Marketing                               | WOS categories               |
|--------------------------------------------------------------------|------------------------------|
| "AI" OR "artificial intelligence" OR "machine learning" OR "robot" | • Computer                   |
| OR "automation" OR "big data" OR "neural network" OR "text         | Science,                     |
| mining" OR "natural language processing" OR "data mining" OR       | Information                  |
| "soft computing" OR "fuzzy logic" OR "biometrics" OR               | Systems                      |
| "geotagging" OR "wearable*" OR "IoT" OR "internet of things" OR    | <ul> <li>Computer</li> </ul> |
| "algorithm" OR "deep learning" OR "intelligent automation" OR      | Science, Artificial          |
| "ML" OR "intelligent agents" OR "LDA" OR "unsupervised             | Intelligence                 |
| learning" OR "topic model" AND "marketing" OR "service" OR         | _                            |
| "retailing" OR "consumer" OR "end user" OR "client" OR             |                              |
| "customer")                                                        |                              |
|                                                                    |                              |
| Abstract, Title, Keywords                                          | 1200 Articles Found          |

# 2.2: Analysis Tools

To achieve our objectives, we combined the traditional statistical method and scientific knowledge mapping tool CiteSpace to describe the research status (Figure 1). CiteSpace is a data visualization software developed by the team of Chen Chaomei, which is widely used in many fields such as science, information and bibliometric. It could visualize the location and size of nodes in the knowledge network. In this report, the software was used to analyze the knowledge base, research hotspots and development context by using the modules of country, institution, author, keyword and reference. The software was used to analyze the AI in Marketing research field visually and draw the corresponding knowledge map. The parameters were as follows: Node Type: Selection based on analysis; Time Period: 2000-2022; Time Slice Length = 1; Threshold Selection Criteria: Top 25 per slice; others were default settings. In the cluster graph, the silhouette value was used to measure the homogeneity of the network. The closer to 1, the higher homogeneity of the network was, and the value above 0.5 indicates that the cluster result was reasonable. Meanwhile, the color and size of each node represented different years and the number of citations, which were used to represent the citation history of the literature since its publication.



Research framework.

# Institute

# **Knowledge of Map:**

CiteSpace, v. 6.1.R6 (64-bit) Basic
Discember 25, 2022 at 2:19:30 PM PKT
Wols: CitUsers/ARNHAM JUTITDesktopl5th dataset(data
Timespan: 2000-2022 (Slice Length=1)
Selection Criteria: g-index (ke-25), LRF-a, 0, LN=10, LBY=5, e=1.0
Network: N=454, E=321 (Density=0.0031)
Largest OC: 121 (20%)
Pruning: None
Modularity Q=0.206
Weighted Mean Silhouette S=0.9538
Harmonic Mean(Q, S)=0.9417

Beijing Univ Posts & Telecommun





# **Summary:**

| Cluster ID | Size | Silhouette | mean(Year) | Top Terms (LSI)                        | Top Terms (log-likelihood ratio, p-le | Terms (mutual information)            |
|------------|------|------------|------------|----------------------------------------|---------------------------------------|---------------------------------------|
| 0          | 26   | 0.979      | 2015       | qos service composition; coevolutio    | qos service composition (28.97, 1.0   | cross-application cooperation (2.5    |
| 1          | 15   | 0.981      | 2015       | big data; predicting online consume    | using metaheuristic pso algorithm (   | qos-aware service composition m       |
| 2          | 15   | 0.921      | 2016       | edge computing; artificial intelligenc | edge computing (63.03, 1.0E-4); tru   | differential privacy (0.2); precise a |
| 3          | 15   | 0.977      | 2011       | soliciting customer requirement, pic   | government service provision (36.4    | based mobile group handoff archi      |
| 4          | 12   | 0.921      | 2012       | using clustering; machine learning;    | using clustering (34.74, 1.0E-4); ser | navigation behavior selection (0.1    |
| 5          | 12   | 0.933      | 2015       | qos-based web service compositio       | relaxable service selection algorith  | segmentation analysis (0.21); onl     |
| 6          | 9    | 0.978      | 2015       | gpu coprocessor; deep learning inf     | high energy physics (18.61, 1.0E-4);  | deep learning service (0.02); ibm     |
| 7          | 9    | 1          | 2021       | cryptonight mining algorithm; yac co   | using blockchain (29.7, 1.0E-4); yac  | customer view (0.06); qos-aware       |
| 8          | 8    | 0.988      | 2016       | big data recommendation; quantile      | big data recommendation (31.21, 1     | m2m communication (0.14); clou        |

| Count | Centrality | Year | Institutions                     |
|-------|------------|------|----------------------------------|
| 34    | 0.07       | 2008 | Beijing Univ Posts & Telecommun  |
| 13    | 0.06       | 2006 | Chinese Acad Sci                 |
| 4     | 0.05       | 2019 | Minist Educ                      |
| 4     | 0.04       | 2020 | Macquarie Univ                   |
| 9     | 0.03       | 2019 | Shanghai Univ                    |
| 9     | 0.03       | 2000 | Nanyang Technol Univ             |
| 6     | 0.03       | 2017 | Nanjing Univ Informat Sci & Tec  |
| 5     | 0.03       | 2016 | Beijing Jiaotong Univ            |
| 5     | 0.03       | 2020 | Peng Cheng Lab                   |
| 12    | 0.02       | 2019 | King Saud Univ                   |
| 9     | 0.02       | 2022 | Natl Chiao Tung Univ             |
| 7     | 0.02       | 2015 | Beijing Inst Technol             |
| 6     | 0.02       | 2017 | MIT                              |
| 5     | 0.02       | 2014 | Tianjin Univ                     |
| 4     | 0.02       | 2018 | Natl Taiwan Univ                 |
| 3     | 0.02       | 2015 | Ajou Univ                        |
| 3     | 0.02       | 2018 | Acad Sinica                      |
| 2     | 0.02       | 2019 | Natl Taipei Univ Technol         |
| 18    | 0.01       | 2011 | Islamic Azad Univ                |
| 10    | 0.01       | 2006 | Sejong Univ                      |
| 8     | 0.01       | 2004 | Nanjing Univ                     |
| 6     | 0.01       | 2007 | Korea Univ                       |
| 6     | 0.01       | 2018 | Univ Elect Sci & Technol China   |
| 5     | 0.01       | 2010 | Shandong Univ                    |
| 4     | 0.01       | 2006 | Natl Cheng Kung Univ             |
| 4     | 0.01       | 2018 | Dalian Univ Technol              |
| 4     | 0.01       | 2021 | Prince Sattam Bin Abdulaziz Univ |
| 4     | 0.01       | 2011 | Tunghai Univ                     |
| 4     | 0.01       | 2018 | Zhejiang Univ                    |
| 3     | 0.01       | 2009 | Seoul Natl Univ                  |
| 3     | 0.01       | 2010 | Natl Yunlin Univ Sci & Technol   |
| 2     | 0.01       | 2021 | Univ Calif San Diego             |

# **Brustness:**

**Top 3 Institutions with the Strongest Citation Bursts** 

| Institutions      | Year | Strength | Begin | End  | 2000 - 2022 |
|-------------------|------|----------|-------|------|-------------|
| Chinese Acad Sci  | 2006 | 3.38     | 2017  | 2019 |             |
| Islamic Azad Univ | 2011 | 3.38     | 2018  | 2022 |             |
| King Saud Univ    | 2019 | 3.54     | 2019  | 2022 |             |

The summary highlights major clusters first, including citing articles and cited references. The importance of nodes will be summarized in terms of citation-based metrics such as citation

counts and citation bursts, network-based metrics such as degree centrality and Betweenness centrality. Sigma is a combination of both types, i.e., burst and Betweenness centrality.

There are other features that are not included in the current summary, for example, structural variation analysis, analysis of uncertainties, concept trees, and dual-map overlays.

# **Major Clusters**

The network consists of **9** clusters. The largest **9** clusters are summarized as follows.



Figure. An overview of the network.

Table 1. Summary of the largest 9 clusters.

| ClusterID | Size | Silhouette | Label (LSI)                             | Label (LLR)                                                 | Label (MI)                                           | Average<br>Year |
|-----------|------|------------|-----------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------|
| 0         | 26   | 0.979      | qos service<br>composition              | qos service<br>composition (28.97,<br>1.0E-4)               | cross-application<br>cooperation (2.54)              | 2015            |
| 1         | 15   | 0.981      | big data                                | using metaheuristic<br>pso algorithm<br>(38.15, 1.0E-4)     | qos-aware service composition mechanism (0.77)       | 2015            |
| 2         | 15   | 0.921      | edge computing                          | edge computing (63.03, 1.0E-4)                              | differential privacy (0.2)                           | 2016            |
| 3         | 15   | 0.977      | soliciting customer requirement         | government service<br>provision (36.46,<br>1.0E-4)          | based mobile group<br>handoff<br>architecture (0.26) | 2011            |
| 4         | 12   | 0.921      | using clustering                        | using clustering (34.74, 1.0E-4)                            | navigation<br>behavior selection<br>(0.18)           | 2012            |
| 5         | 12   | 0.933      | qos-based web<br>service<br>composition | relaxable service<br>selection algorithm<br>(33.43, 1.0E-4) | segmentation<br>analysis (0.21)                      | 2015            |
| 6         | 9    | 0.978      | gpu coprocessor                         | high energy physics (18.61, 1.0E-4)                         | deep learning<br>service (0.02)                      | 2015            |
| 7         | 9    | 1          | cryptonight<br>mining algorithm         | using blockchain<br>(29.7, 1.0E-4)                          | customer view (0.06)                                 | 2021            |
| 8         | 8    | 0.988      | big data<br>recommendation              | big data<br>recommendation<br>(31.21, 1.0E-4)               | m2m<br>communication<br>(0.14)                       | 2016            |

# Cluster #0 Qos Service Composition

The largest cluster (#0) has 26 members and a silhouette value of 0.979. It is labeled as *qos service composition* by both LLR and LSI, and as *cross-application cooperation* (2.54) by MI.

The major citing article of the cluster is: Li, Y (2018.0) Research on qos service composition based on coevolutionary genetic algorithm. SOFT COMPUTING, V22, P10 DOI 10.1007/s00500-018-3510-5.

- 34 Beijing Univ Posts & Telecommun
- 13 Chinese Acad Sci
- 7 Beijing Inst Technol

# Cluster #1 Using Metaheuristic Pso Algorithm

The second largest cluster (#1) has 15 members and a silhouette value of 0.981. It is labeled as using metaheuristic pso algorithm by LLR, big data by LSI, and qos-aware service composition mechanism (0.77) by MI.

The major citing article of the cluster is: *Yu*, *J* (2021.0) **Service management mechanisms in the internet of things: an organized and thorough study**. *JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING DOI 10.1007/s12652-020-02885-0*.

#### The most cited members in this cluster are:

- 18 Islamic Azad Univ
- 9 Shanghai Univ
- 4 Shanghai Univ Finance & Econ

# Cluster #2 Edge Computing

The third largest cluster (#2) has 15 members and a silhouette value of 0.921. It is labeled as *edge computing* by both LLR and LSI, and as *differential privacy* (0.2) by MI.

The major citing article of the cluster is: Xu, X (2022.0) Artificial intelligence for edge service optimization in internet of vehicles: a survey. TSINGHUA SCIENCE AND TECHNOLOGY, V27, P18 DOI 10.26599/TST.2020.9010025.

#### The most cited members in this cluster are:

- 8 Nanjing Univ
- 6 Nanjing Univ Informat Sci & Technol
- 5 Peng Cheng Lab

#### Cluster #3 Government Service Provision

The 4th largest cluster (#3) has 15 members and a silhouette value of 0.977. It is labeled as government service provision by LLR, soliciting customer requirement by LSI, and based mobile group handoff architecture (0.26) by MI.

The major citing article of the cluster is: *Zheng, Y (2020.0) Addressing the challenges of government service provision with artificial intelligence. AI MAGAZINE, V41, P11.* 

- 9 Nanyang Technol Univ
- 5 Shandong Univ
- 5 Beijing Jiaotong Univ

## Cluster #4 Using Clustering

The 5th largest cluster (#4) has 12 members and a silhouette value of 0.921. It is labeled as *using clustering* by both LLR and LSI, and as *navigation behavior selection* (0.18) by MI.

The major citing article of the cluster is: *Benzaid, C* (2020.0) Ai-driven zero touch network and service management in 5g and beyond: challenges and research directions. *IEEE NETWORK DOI 10.1109/MNET.001.1900252*.

#### The most cited members in this cluster are:

- 10 Sejong Univ
- 6 Korea Univ
- 3 Carnegie Mellon Univ

# Cluster #5 Relaxable Service Selection Algorithm

The 6th largest cluster (#5) has 12 members and a silhouette value of 0.933. It is labeled as relaxable service selection algorithm by LLR, qos-based web service composition by LSI, and segmentation analysis (0.21) by MI.

The major citing article of the cluster is: Lin, C (2011.0) A relaxable service selection algorithm for qos-based web service composition. INFORMATION AND SOFTWARE TECHNOLOGY, V53, P12 DOI 10.1016/j.infsof.2011.06.010.

#### The most cited members in this cluster are:

- 9 Natl Chiao Tung Univ
- 4 Tunghai Univ
- 4 Dongguan Polytech

### Cluster #6 High Energy Physics

The 7th largest cluster (#6) has 9 members and a silhouette value of 0.978. It is labeled as *high* energy physics by LLR, gpu coprocessor by LSI, and deep learning service (0.02) by MI.

The major citing article of the cluster is: *Bhattacharjee*, *B* (2017.0) *Ibm deep learning service*. *IBM JOURNAL OF RESEARCH AND DEVELOPMENT DOI 10.1147/JRD.2017.2716578*.

- 6 MIT
- 2 Fermilab Natl Accelerator Lab
- 2 IBM Res

## Cluster #7 Using Blockchain

The 8th largest cluster (#7) has 9 members and a silhouette value of 1. It is labeled as *using blockchain* by LLR, *cryptonight mining algorithm* by LSI, and *customer view* (0.06) by MI.

The major citing article of the cluster is: *Hil, AM* (2022.0) *Cryptonight mining algorithm with yac consensus for social media marketing using blockchain. CMC-COMPUTERS MATERIALS & CONTINUA, V71, P16 DOI 10.32604/cmc.2022.022301.* 

#### The most cited members in this cluster are:

- 12 King Saud Univ
- 4 Taiz Univ
- 4 Prince Sattam Bin Abdulaziz Univ

# Cluster #8 Big Data Recommendation

The 9th largest cluster (#8) has 8 members and a silhouette value of 0.988. It is labeled as big data recommendation by both LLR and LSI, and as m2m communication (0.14) by MI.

The major citing article of the cluster is: Yang, Y (2020.0) Quantile context-aware social iot service big data recommendation with d2d communication. IEEE INTERNET OF THINGS JOURNAL DOI 10.1109/JIOT.2020.2980046.

#### The most cited members in this cluster are:

- 6 Huazhong Univ Sci & Technol
- 5 Tianjin Univ
- 4 Dalian Univ Technol

#### **Citation Counts**

The top ranked item by citation counts is Beijing Univ Posts & Telecommun (2008) in Cluster #0, with citation counts of **34**. The second one is Islamic Azad Univ (2011) in Cluster #1, with citation counts of **18**. The third is Chinese Acad Sci (2006) in Cluster #0, with citation counts of **13**. The 4th is King Saud Univ (2019) in Cluster #7, with citation counts of **12**. The 5th is Sejong Univ (2006) in Cluster #4, with citation counts of **10**. The 6th is Shanghai Univ (2019) in Cluster #1, with citation counts of **9**. The 7th is Natl Chiao Tung Univ (2005) in Cluster #5, with citation counts of **9**. The 8th is Nanyang Technol Univ (2000) in Cluster #3, with citation counts of **9**. The 9th is Nanjing Univ (2004) in Cluster #2, with citation counts of **8**. The 10th is Beijing Inst Technol (2015) in Cluster #0, with citation counts of **7**.

| <b>Citation Counts</b> | References                                              | DOI | <b>Cluster ID</b> |
|------------------------|---------------------------------------------------------|-----|-------------------|
| 34                     | Beijing Univ Posts & Telecommun, 2008, null, null, null |     | 0                 |
| 18                     | Islamic Azad Univ, 2011, null, null, null               |     | 1                 |
| 13                     | Chinese Acad Sci, 2006, null, null, null                |     | 0                 |
| 12                     | King Saud Univ, 2019, null, null, null                  |     | 7                 |
| 10                     | Sejong Univ, 2006, null, null, null                     |     | 4                 |
| 9                      | Shanghai Univ, 2019, null, null, null                   |     | 1                 |
| 9                      | Natl Chiao Tung Univ, 2005, null, null, null            |     | 5                 |
| 9                      | Nanyang Technol Univ, 2000, null, null, null            |     | 3                 |
| 8                      | Nanjing Univ, 2004, null, null, null                    |     | 2                 |
| 7                      | Beijing Inst Technol, 2015, null, null, null            |     | 0                 |

#### **Bursts**

The top ranked item by bursts is King Saud Univ (2019) in Cluster #7, with bursts of **3.54**. The second one is Islamic Azad Univ (2011) in Cluster #1, with bursts of **3.38**. The third is Chinese Acad Sci (2006) in Cluster #0, with bursts of **3.38**. The 4th is Beijing Univ Posts & Telecommun (2008) in Cluster #0, with bursts of **0.00**. The 5th is Sejong Univ (2006) in Cluster #4, with bursts of **0.00**. The 6th is Shanghai Univ (2019) in Cluster #1, with bursts of **0.00**. The 7th is Natl Chiao Tung Univ (2005) in Cluster #5, with bursts of **0.00**. The 8th is Nanyang Technol Univ (2000) in Cluster #3, with bursts of **0.00**. The 9th is Nanjing Univ (2004) in Cluster #2, with bursts of **0.00**. The 10th is Beijing Inst Technol (2015) in Cluster #0, with bursts of **0.00**.

| Bursts | References                                              | DOI | Cluster ID |
|--------|---------------------------------------------------------|-----|------------|
| 3.54   | King Saud Univ, 2019, null, null, null                  |     | 7          |
| 3.38   | Islamic Azad Univ, 2011, null, null, null               |     | 1          |
| 3.38   | Chinese Acad Sci, 2006, null, null, null                |     | 0          |
| 0.00   | Beijing Univ Posts & Telecommun, 2008, null, null, null |     | 0          |
| 0.00   | Sejong Univ, 2006, null, null, null                     |     | 4          |
| 0.00   | Shanghai Univ, 2019, null, null, null                   |     | 1          |
| 0.00   | Natl Chiao Tung Univ, 2005, null, null, null            |     | 5          |
| 0.00   | Nanyang Technol Univ, 2000, null, null, null            |     | 3          |
| 0.00   | Nanjing Univ, 2004, null, null, null                    |     | 2          |
| 0.00   | Beijing Inst Technol, 2015, null, null, null            |     | 0          |

## **Degree**

The top ranked item by degree is Beijing Univ Posts & Telecommun (2008) in Cluster #0, with degree of **18**. The second one is Nanjing Univ (2004) in Cluster #2, with degree of **9**. The third is Nanjing Univ Informat Sci & Technol (2017) in Cluster #2, with degree of **9**. The 4th is Chinese Acad Sci (2006) in Cluster #0, with degree of **8**. The 5th is MIT (2017) in Cluster #6, with degree of **8**. The 6th is King Saud Univ (2019) in Cluster #7, with degree of **7**. The 7th is Shanghai Univ (2019) in Cluster #1, with degree of **6**. The 8th is Natl Chiao Tung Univ (2005) in Cluster #5, with degree of **6**. The 9th is Nanyang Technol Univ (2000) in Cluster #3, with degree of **6**. The 10th is Beijing Inst Technol (2015) in Cluster #0, with degree of **6**.

| Degree | References                                                  | DOI | Cluster ID |
|--------|-------------------------------------------------------------|-----|------------|
| 18     | Beijing Univ Posts & Telecommun, 2008, null, null, null     |     | 0          |
| 9      | Nanjing Univ, 2004, null, null, null                        |     | 2          |
| 9      | Nanjing Univ Informat Sci & Technol, 2017, null, null, null |     | 2          |
| 8      | Chinese Acad Sci, 2006, null, null, null                    |     | 0          |
| 8      | MIT, 2017, null, null                                       |     | 6          |
| 7      | King Saud Univ, 2019, null, null, null                      |     | 7          |
| 6      | Shanghai Univ, 2019, null, null, null                       |     | 1          |
| 6      | Natl Chiao Tung Univ, 2005, null, null, null                |     | 5          |
| 6      | Nanyang Technol Univ, 2000, null, null, null                |     | 3          |
| 6      | Beijing Inst Technol, 2015, null, null, null                |     | 0          |

# **Centrality**

The top ranked item by centrality is Beijing Univ Posts & Telecommun (2008) in Cluster #0, with centrality of **0.07**. The second one is Chinese Acad Sci (2006) in Cluster #0, with centrality of **0.06**. The third is Minist Educ (2019) in Cluster #2, with centrality of **0.05**. The 4th is Macquarie Univ (2020) in Cluster #2, with centrality of **0.04**. The 5th is Nanjing Univ Informat Sci & Technol (2017) in Cluster #2, with centrality of **0.03**. The 6th is Shanghai Univ (2019) in Cluster #1, with centrality of **0.03**. The 7th is Nanyang Technol Univ (2000) in Cluster #3, with centrality of **0.03**. The 8th is Peng Cheng Lab (2020) in Cluster #2, with centrality of **0.03**. The 9th is Beijing Jiaotong Univ (2016) in Cluster #3, with centrality of **0.03**. The 10th is MIT (2017) in Cluster #6, with centrality of **0.02**.

| Centrality | References                                                  | DOI | Cluster ID |
|------------|-------------------------------------------------------------|-----|------------|
| 0.07       | Beijing Univ Posts & Telecommun, 2008, null, null, null     |     | 0          |
| 0.06       | Chinese Acad Sci, 2006, null, null, null                    |     | 0          |
| 0.05       | Minist Educ, 2019, null, null, null                         |     | 2          |
| 0.04       | Macquarie Univ, 2020, null, null, null                      |     | 2          |
| 0.03       | Nanjing Univ Informat Sci & Technol, 2017, null, null, null |     | 2          |
| 0.03       | Shanghai Univ, 2019, null, null, null                       |     | 1          |
| 0.03       | Nanyang Technol Univ, 2000, null, null, null                |     | 3          |
| 0.03       | Peng Cheng Lab, 2020, null, null, null                      |     | 2          |
| 0.03       | Beijing Jiaotong Univ, 2016, null, null, null               |     | 3          |
| 0.02       | MIT, 2017, null, null                                       |     | 6          |

# Sigma

The top ranked item by sigma is Chinese Acad Sci (2006) in Cluster #0, with sigma of **1.22**. The second one is King Saud Univ (2019) in Cluster #7, with sigma of **1.06**. The third is Islamic Azad Univ (2011) in Cluster #1, with sigma of **1.04**. The 4th is Beijing Univ Posts & Telecommun (2008) in Cluster #0, with sigma of **1.00**. The 5th is Minist Educ (2019) in Cluster #2, with sigma of **1.00**. The 6th is Macquarie Univ (2020) in Cluster #2, with sigma of **1.00**. The 7th is Nanjing Univ Informat Sci & Technol (2017) in Cluster #2, with sigma of **1.00**. The 8th is Shanghai Univ (2019) in Cluster #1, with sigma of **1.00**. The 9th is Nanyang Technol Univ (2000) in Cluster #3, with sigma of **1.00**. The 10th is Peng Cheng Lab (2020) in Cluster #2, with sigma of **1.00**.

| Sigma | References                                                  | DOI | Cluster ID |
|-------|-------------------------------------------------------------|-----|------------|
| 1.22  | Chinese Acad Sci, 2006, null, null, null                    |     | 0          |
| 1.06  | King Saud Univ, 2019, null, null, null                      |     | 7          |
| 1.04  | Islamic Azad Univ, 2011, null, null, null                   |     | 1          |
| 1.00  | Beijing Univ Posts & Telecommun, 2008, null, null, null     |     | 0          |
| 1.00  | Minist Educ, 2019, null, null, null                         |     | 2          |
| 1.00  | Macquarie Univ, 2020, null, null, null                      |     | 2          |
| 1.00  | Nanjing Univ Informat Sci & Technol, 2017, null, null, null |     | 2          |
| 1.00  | Shanghai Univ, 2019, null, null, null                       |     | 1          |
| 1.00  | Nanyang Technol Univ, 2000, null, null, null                |     | 3          |
| 1.00  | Peng Cheng Lab, 2020, null, null, null                      |     | 2          |

# **Country:**

# **Knowledge of Map:**



# **Summary:**

|        |            |      |            | - ,        |                                         |                                       |                                        |
|--------|------------|------|------------|------------|-----------------------------------------|---------------------------------------|----------------------------------------|
| Select | Cluster ID | Size | Silhouette | mean(Year) | Top Terms (LSI)                         | Top Terms (log-likelihood ratio, p-le | Terms (mutual information)             |
|        | 0          | 16   | 0.78       | 2013       | interoperable internet; things testbe   | things testbed (200.15, 1.0E-4); ser  | applying data mining technique (0.3    |
|        | 1          | 15   | 0.71       | 2008       | machine learning; big data; artificial  | service provider (214.44, 1.0E-4); h  | disabled care (3.75); customer sati.   |
|        | 2          | 13   | 0.778      | 2013       | service-centric internet; holitrust-a h | holitrust-a holistic cross-domain tru | general service robot (0.19); disabl.  |
|        | 3          | 11   | 0.374      | 2013       | data mining; big data; service robot;   | cloud computing (177.35, 1.0E-4); s   | web service (3.56); disabled care (3   |
|        | 4          | 10   | 0.777      | 2012       | big data; machine learning; telecom     | telecommunication sector (155.91,     | radial basis function (0.36); univers. |
|        | 5          | 5    | 0.708      | 2017       | customer view; using blockchain; cr     | customer view (108.22, 1.0E-4); usi   | customer satisfaction (0.02); smart    |
|        | 6          | 3    | 0.97       | 2016       | case study on human-robot interacti     | disabled care (17.91, 1.0E-4); remo   | machine learning (0.02); big data (0   |
|        |            |      |            |            |                                         |                                       |                                        |
|        |            |      |            |            |                                         |                                       |                                        |
|        |            |      |            |            |                                         |                                       |                                        |

#### **Brustness:**

**Top 4 Countries with the Strongest Citation Bursts** 

| Countries   | Year S | trength | Begin | End  | 2000 - 2022 |
|-------------|--------|---------|-------|------|-------------|
| USA         | 2000   | 3.75    | 2000  | 2005 |             |
| TAIWAN      | 2005   | 6.14    | 2006  | 2013 |             |
| SPAIN       | 2009   | 4.11    | 2009  | 2014 |             |
| SOUTH KOREA | 2002   | 5.36    | 2014  | 2015 |             |

The summary highlights major clusters first, including citing articles and cited references. The importance of nodes will be summarized in terms of citation-based metrics such as citation counts and citation bursts, network-based metrics such as degree centrality and betweenness centrality. Sigma is a combination of both types, i.e., burst and betweenness centrality.

There are other features that are not included in the current summary, for example, structural variation analysis, analysis of uncertainties, concept trees, and dual-map overlays.

# **Major Clusters**

The network consists of 7 clusters. The largest 7 clusters are summarized as follows.



Figure. An overview of the network.

Table 1. Summary of the largest 7 clusters.

| ClusterID | Size | Silhouette | Label (LSI)                                                                                                                | Label (LLR)                       | Label (MI)                                     | Average<br>Year |
|-----------|------|------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|-----------------|
| 0         | 16   | 0.78       | interoperable internet                                                                                                     | 1.0E-4)                           | applying data<br>mining<br>technique<br>(0.37) | 2013            |
| 1         | 15   | 0.71       | machine learning                                                                                                           | service provider (214.44, 1.0E-4) | disabled care (3.75)                           | 2008            |
| 2         | 13   | 0.778      | service-centric<br>internet                                                                                                |                                   | general<br>service robot<br>(0.19)             | 2013            |
| 3         | 11   | 0.374      | data mining                                                                                                                | cloud computing (177.35, 1.0E-4)  | web service (3.56)                             | 2013            |
| 4         | 10   | 0.777      | big data                                                                                                                   | sector (155.91, 1.0E-4)           | radial basis<br>function<br>(0.36)             | 2012            |
| 5         | 5    | 0.708      | customer view                                                                                                              | 1.0E-4)                           | customer<br>satisfaction<br>(0.02)             | 2017            |
| 6         | 3    | 0.97       | case study on human-<br>robot interaction of<br>the remote-controlled<br>service robot for<br>elderly and disabled<br>care | 1.0E-4)                           | machine<br>learning<br>(0.02)                  | 2016            |

# Cluster #0 Things Testbed

The largest cluster (#0) has 16 members and a silhouette value of 0.78. It is labeled as *things* testbed by LLR, interoperable internet by LSI, and applying data mining technique (0.37) by MI.

The major citing article of the cluster is: Zincir-heywood, N (2020.0) Guest editorial: special section on data analytics and machine learning for network and service management-part i. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT DOI 10.1109/TNSM.2020.3038736.

#### The most cited members in this cluster are:

- 45 ENGLAND
- 41 SPAIN
- 30 GERMANY

#### Cluster #1 Service Provider

The second largest cluster (#1) has 15 members and a silhouette value of 0.71. It is labeled as *service provider* by LLR, *machine learning* by LSI, and *disabled care* (3.75) by MI.

The major citing article of the cluster is: *Javadpour*, A (2021.0) Enhancement in quality of routing service using metaheuristic pso algorithm in vanet networks. SOFT COMPUTING DOI 10.1007/s00500-021-06188-0.

- 128 USA
- 103 SOUTH KOREA
- 77 TAIWAN

# Cluster #2 Holitrust-A Holistic Cross-Domain Trust Management Mechanism

The third largest cluster (#2) has 13 members and a silhouette value of 0.778. It is labeled as *holitrust-a holistic cross-domain trust management mechanism* by LLR, *service-centric internet* by LSI, and *general service robot* (0.19) by MI.

The major citing article of the cluster is: Sodhro, AH (2019.0) Quality of service optimization in an iot-driven intelligent transportation system. IEEE WIRELESS COMMUNICATIONS DOI 10.1109/MWC.001.1900085.

#### The most cited members in this cluster are:

- 31 ITALY
- 20 PAKISTAN
- 11 BELGIUM

# Cluster #3 Cloud Computing

The 4th largest cluster (#3) has 11 members and a silhouette value of 0.374. It is labeled as *cloud computing* by LLR, *data mining* by LSI, and *web service* (3.56) by MI.

The major citing article of the cluster is: Adekiigbe, A (2017.0) An efficient cluster head election algorithm for client mesh network using fuzzy logic control. JOURNAL OF INTERNET TECHNOLOGY, V18, P11 DOI 10.6138/JIT.2017.18.5.20130627.

#### The most cited members in this cluster are:

- 353 PEOPLES R CHINA
- 15 MALAYSIA
- 5 SWITZERLAND

# Cluster #4 Telecommunication Sector

The 5th largest cluster (#4) has 10 members and a silhouette value of 0.777. It is labeled as *telecommunication sector* by LLR, *big data* by LSI, and *radial basis function* (0.36) by MI.

The major citing article of the cluster is: *Pustokhina, IV* (2021.0) *Multi-objective rain* optimization algorithm with welm model for customer churn prediction in telecommunication sector. COMPLEX & INTELLIGENT SYSTEMS DOI 10.1007/s40747-021-00353-6.

- 60 INDIA
- 37 IRAN
- 12 U ARAB EMIRATES

#### Cluster #5 Customer View

The 6th largest cluster (#5) has 5 members and a silhouette value of 0.708. It is labeled as *customer view* by both LLR and LSI, and as *customer satisfaction* (0.02) by MI.

The major citing article of the cluster is: *Hossain, MS* (2016.0) Big data-driven service composition using parallel clustered particle swarm optimization in mobile environment. IEEE TRANSACTIONS ON SERVICES COMPUTING DOI 10.1109/TSC.2016.2598335.

#### The most cited members in this cluster are:

- 37 SAUDI ARABIA
- 5 YEMEN
- 4 BANGLADESH

#### Cluster #6 Disabled Care

The 7th largest cluster (#6) has 3 members and a silhouette value of 0.97. It is labeled as disabled care by LLR, case study on human-robot interaction of the remote-controlled service robot for elderly and disabled care by LSI, and machine learning (0.02) by MI.

The major citing article of the cluster is: *Chivarov*, N (2019.0) Case study on human-robot interaction of the remote-controlled service robot for elderly and disabled care. COMPUTING AND INFORMATICS, V38, P27 DOI 10.31577/cai\_2019\_5\_1210.

#### The most cited members in this cluster are:

- 2 SLOVAKIA
- 2 BULGARIA
- 2 AUSTRIA

#### **Citation Counts**

The top ranked item by citation counts is PEOPLES R CHINA (2002) in Cluster #3, with citation counts of **353**. The second one is USA (2000) in Cluster #1, with citation counts of **128**. The third is SOUTH KOREA (2002) in Cluster #1, with citation counts of **103**. The 4th is TAIWAN (2005) in Cluster #1, with citation counts of **77**. The 5th is INDIA (2006) in Cluster #4, with citation counts of **60**. The 6th is ENGLAND (2005) in Cluster #0, with citation counts of **45**. The 7th is SPAIN (2009) in Cluster #0, with citation counts of **41**. The 8th is SAUDI ARABIA (2016) in Cluster #5, with citation counts of **37**. The 9th is IRAN (2007) in Cluster #4, with citation counts of **37**. The 10th is AUSTRALIA (2006) in Cluster #1, with citation counts of **35**.

| <b>Citation Counts</b> | References                              | DOI | Cluster ID |
|------------------------|-----------------------------------------|-----|------------|
| 353                    | PEOPLES R CHINA, 2002, null, null, null |     | 3          |
| 128                    | USA, 2000, null, null, null             |     | 1          |
| 103                    | SOUTH KOREA, 2002, null, null, null     |     | 1          |
| 77                     | TAIWAN, 2005, null, null, null          |     | 1          |
| 60                     | INDIA, 2006, null, null, null           |     | 4          |
| 45                     | ENGLAND, 2005, null, null, null         |     | 0          |
| 41                     | SPAIN, 2009, null, null, null           |     | 0          |
| 37                     | SAUDI ARABIA, 2016, null, null, null    |     | 5          |
| 37                     | IRAN, 2007, null, null, null            |     | 4          |
| 35                     | AUSTRALIA, 2006, null, null, null       |     | 1          |

# **Bursts**

The top ranked item by bursts is TAIWAN (2005) in Cluster #1, with bursts of **6.14**. The second one is SOUTH KOREA (2002) in Cluster #1, with bursts of **5.36**. The third is SPAIN (2009) in Cluster #0, with bursts of **4.11**. The 4th is USA (2000) in Cluster #1, with bursts of **3.75**. The 5th is PEOPLES R CHINA (2002) in Cluster #3, with bursts of **0.00**. The 6th is INDIA (2006) in Cluster #4, with bursts of **0.00**. The 7th is ENGLAND (2005) in Cluster #0, with bursts of **0.00**. The 8th is SAUDI ARABIA (2016) in Cluster #5, with bursts of **0.00**. The 9th is IRAN (2007) in Cluster #4, with bursts of **0.00**. The 10th is AUSTRALIA (2006) in Cluster #1, with bursts of **0.00**.

| Bursts | References                              | DOI | Cluster ID |
|--------|-----------------------------------------|-----|------------|
| 6.14   | TAIWAN, 2005, null, null, null          |     | 1          |
| 5.36   | SOUTH KOREA, 2002, null, null, null     |     | 1          |
| 4.11   | SPAIN, 2009, null, null, null           |     | 0          |
| 3.75   | USA, 2000, null, null, null             |     | 1          |
| 0.00   | PEOPLES R CHINA, 2002, null, null, null |     | 3          |
| 0.00   | INDIA, 2006, null, null, null           |     | 4          |
| 0.00   | ENGLAND, 2005, null, null, null         |     | 0          |
| 0.00   | SAUDI ARABIA, 2016, null, null, null    |     | 5          |
| 0.00   | IRAN, 2007, null, null, null            |     | 4          |
| 0.00   | AUSTRALIA, 2006, null, null, null       |     | 1          |

## **Degree**

The top ranked item by degree is PEOPLES R CHINA (2002) in Cluster #3, with degree of 37. The second one is USA (2000) in Cluster #1, with degree of 32. The third is ITALY (2006) in Cluster #2, with degree of 26. The 4th is ENGLAND (2005) in Cluster #0, with degree of 23. The 5th is FRANCE (2002) in Cluster #0, with degree of 23. The 6th is INDIA (2006) in Cluster #4, with degree of 21. The 7th is PAKISTAN (2016) in Cluster #2, with degree of 20. The 8th is SOUTH KOREA (2002) in Cluster #1, with degree of 19. The 9th is AUSTRALIA (2006) in Cluster #1, with degree of 18. The 10th is SAUDI ARABIA (2016) in Cluster #5, with degree of 17.

| Degree | References                              | DOI | Cluster ID |
|--------|-----------------------------------------|-----|------------|
| 37     | PEOPLES R CHINA, 2002, null, null, null |     | 3          |
| 32     | USA, 2000, null, null, null             |     | 1          |
| 26     | ITALY, 2006, null, null, null           |     | 2          |
| 23     | ENGLAND, 2005, null, null, null         |     | 0          |
| 23     | FRANCE, 2002, null, null, null          |     | 0          |
| 21     | INDIA, 2006, null, null, null           |     | 4          |
| 20     | PAKISTAN, 2016, null, null, null        |     | 2          |
| 19     | SOUTH KOREA, 2002, null, null, null     |     | 1          |
| 18     | AUSTRALIA, 2006, null, null, null       |     | 1          |
| 17     | SAUDI ARABIA, 2016, null, null, null    |     | 5          |

# **Centrality**

The top ranked item by centrality is PEOPLES R CHINA (2002) in Cluster #3, with centrality of **0.38**. The second one is USA (2000) in Cluster #1, with centrality of **0.28**. The third is ITALY (2006) in Cluster #2, with centrality of **0.15**. The 4th is SOUTH KOREA (2002) in Cluster #1, with centrality of **0.15**. The 5th is SAUDI ARABIA (2016) in Cluster #5, with centrality of **0.15**. The 6th is FRANCE (2002) in Cluster #0, with centrality of **0.14**. The 7th is SPAIN (2009) in Cluster #0, with centrality of **0.13**. The 8th is INDIA (2006) in Cluster #4, with centrality of **0.12**. The 9th is NIGERIA (2017) in Cluster #3, with centrality of **0.09**. The 10th is PAKISTAN (2016) in Cluster #2, with centrality of **0.08**.

| Centrality | References                              | DOI | Cluster ID |
|------------|-----------------------------------------|-----|------------|
| 0.38       | PEOPLES R CHINA, 2002, null, null, null |     | 3          |
| 0.28       | USA, 2000, null, null, null             |     | 1          |
| 0.15       | ITALY, 2006, null, null, null           |     | 2          |
| 0.15       | SOUTH KOREA, 2002, null, null, null     |     | 1          |
| 0.15       | SAUDI ARABIA, 2016, null, null, null    |     | 5          |
| 0.14       | FRANCE, 2002, null, null, null          |     | 0          |
| 0.13       | SPAIN, 2009, null, null, null           |     | 0          |
| 0.12       | INDIA, 2006, null, null, null           |     | 4          |
| 0.09       | NIGERIA, 2017, null, null, null         |     | 3          |
| 0.08       | PAKISTAN, 2016, null, null, null        |     | 2          |

# Sigma

The top ranked item by sigma is USA (2000) in Cluster #1, with sigma of **2.53**. The second one is SOUTH KOREA (2002) in Cluster #1, with sigma of **2.15**. The third is SPAIN (2009) in Cluster #0, with sigma of **1.63**. The 4th is TAIWAN (2005) in Cluster #1, with sigma of **1.08**. The 5th is PEOPLES R CHINA (2002) in Cluster #3, with sigma of **1.00**. The 6th is ITALY (2006) in Cluster #2, with sigma of **1.00**. The 7th is SAUDI ARABIA (2016) in Cluster #5, with sigma of **1.00**. The 8th is FRANCE (2002) in Cluster #0, with sigma of **1.00**. The 9th is INDIA (2006) in Cluster #4, with sigma of **1.00**. The 10th is NIGERIA (2017) in Cluster #3, with sigma of **1.00**.

| Sigma | References                              | DOI | Cluster ID |
|-------|-----------------------------------------|-----|------------|
| 2.53  | USA, 2000, null, null, null             |     | 1          |
| 2.15  | SOUTH KOREA, 2002, null, null, null     |     | 1          |
| 1.63  | SPAIN, 2009, null, null, null           |     | 0          |
| 1.08  | TAIWAN, 2005, null, null, null          |     | 1          |
| 1.00  | PEOPLES R CHINA, 2002, null, null, null |     | 3          |
| 1.00  | ITALY, 2006, null, null, null           |     | 2          |
| 1.00  | SAUDI ARABIA, 2016, null, null, null    |     | 5          |
| 1.00  | FRANCE, 2002, null, null, null          |     | 0          |
| 1.00  | INDIA, 2006, null, null, null           |     | 4          |
| 1.00  | NIGERIA, 2017, null, null, null         |     | 3          |

# Author

# **Knowledge of Map:**



# **Summary:**

| Select | Cluster ID | Size | Silhouette | mean(Year) | Top Terms (LSI)                    | Top Terms (log-likelihood ratio, p-le | Terms (mutual information)         |
|--------|------------|------|------------|------------|------------------------------------|---------------------------------------|------------------------------------|
|        | 1          | 8    | 1          | 2002       | development of a residential gatew | home automation (NaN, 1.0); senic     | home automation (1.39); service se |

# **Brustness:**



The summary highlights major clusters first, including citing articles and cited references. The importance of nodes will be summarized in terms of citation-based metrics such as citation counts and citation bursts, network-based metrics such as degree centrality and betweenness centrality. Sigma is a combination of both types, i.e., burst and betweenness centrality.

There are other features that are not included in the current summary, for example, structural variation analysis, analysis of uncertainties, concept trees, and dual-map overlays.

# **Major Clusters**

The network consists of 1 clusters. The largest 1 clusters are summarized as follows.



Figure. An overview of the network.

Table 1. Summary of the largest 1 clusters.

| ClusterID | Size | Silhouette | Label (LSI)                  | Label (LLR) | Label (MI) | Average<br>Year |
|-----------|------|------------|------------------------------|-------------|------------|-----------------|
| 0         | 8    | 1          | development of a residential | home        | home       | 2002            |
|           |      |            | gateway and a service server | automation  | automation |                 |
|           |      |            | for home automation          | (NaN, 1.0)  | (1.39)     |                 |

#### Cluster #0 Home Automation

The largest cluster (#0) has 8 members and a silhouette value of 1. It is labeled as home automation by LLR, development of a residential gateway and a service server for home automation by LSI, and home automation (1.39) by MI.

The major citing article of the cluster is: *Park, J (2002.0) Development of a residential gateway and a service server for home automation. ADVANCED INTERNET SERVICES AND APPPLICATIONS, PROCEEDINGS LECTURE NOTES IN COMPUTER SCIENCE, V2402, P13.* 

- 2 Ahn, S
- 1 Kwon, J
- 1 Park, J

#### **Citation Counts**

The top ranked item by citation counts is Guo, Shaoyong (2019) in Cluster #23, with citation counts of **4**. The second one is Cheng, Bo (2016) in Cluster #10, with citation counts of **3**. The third is Zhao, Shuai (2016) in Cluster #10, with citation counts of **3**. The 4th is Li, Xi (2021) in Cluster #19, with citation counts of **3**. The 5th is Asad, Muhammad (2020) in Cluster #14, with citation counts of **3**. The 6th is Qiu, Xuesong (2020) in Cluster #23, with citation counts of **3**. The 7th is Xu, Siya (2020) in Cluster #23, with citation counts of **3**. The 8th is Kim, Byung-Gyu (2015) in Cluster #43, with citation counts of **3**. The 9th is Dahan, Fadl (2021) in Cluster #64, with citation counts of **3**. The 10th is Misra, Sudip (2021) in Cluster #96, with citation counts of **3**.

| <b>Citation Counts</b> | References                             | DOI | Cluster ID |
|------------------------|----------------------------------------|-----|------------|
| 4                      | Guo, Shaoyong, 2019, null, null, null  |     | 23         |
| 3                      | Cheng, Bo, 2016, null, null, null      |     | 10         |
| 3                      | Zhao, Shuai, 2016, null, null, null    |     | 10         |
| 3                      | Li, Xi, 2021, null, null, null         |     | 19         |
| 3                      | Asad, Muhammad, 2020, null, null, null |     | 14         |
| 3                      | Qiu, Xuesong, 2020, null, null, null   |     | 23         |
| 3                      | Xu, Siya, 2020, null, null, null       |     | 23         |
| 3                      | Kim, Byung-Gyu, 2015, null, null, null |     | 43         |
| 3                      | Dahan, Fadl, 2021, null, null, null    |     | 64         |
| 3                      | Misra, Sudip, 2021, null, null, null   |     | 96         |

#### **Bursts**

The top ranked item by bursts is Guo, Shaoyong (2019) in Cluster #23, with bursts of **0.00**. The second one is Cheng, Bo (2016) in Cluster #10, with bursts of **0.00**. The third is Zhao, Shuai (2016) in Cluster #10, with bursts of **0.00**. The 4th is Li, Xi (2021) in Cluster #19, with bursts of **0.00**. The 5th is Asad, Muhammad (2020) in Cluster #14, with bursts of **0.00**. The 6th is Qiu, Xuesong (2020) in Cluster #23, with bursts of **0.00**. The 7th is Xu, Siya (2020) in Cluster #23, with bursts of **0.00**. The 8th is Kim, Byung-Gyu (2015) in Cluster #43, with bursts of **0.00**. The 9th is Dahan, Fadl (2021) in Cluster #64, with bursts of **0.00**. The 10th is Misra, Sudip (2021) in Cluster #96, with bursts of **0.00**.

| Bursts | References                             | DOI | Cluster ID |
|--------|----------------------------------------|-----|------------|
| 0.00   | Guo, Shaoyong, 2019, null, null, null  |     | 23         |
| 0.00   | Cheng, Bo, 2016, null, null, null      |     | 10         |
| 0.00   | Zhao, Shuai, 2016, null, null, null    |     | 10         |
| 0.00   | Li, Xi, 2021, null, null, null         |     | 19         |
| 0.00   | Asad, Muhammad, 2020, null, null, null |     | 14         |
| 0.00   | Qiu, Xuesong, 2020, null, null, null   |     | 23         |
| 0.00   | Xu, Siya, 2020, null, null, null       |     | 23         |
| 0.00   | Kim, Byung-Gyu, 2015, null, null, null |     | 43         |
| 0.00   | Dahan, Fadl, 2021, null, null, null    |     | 64         |
| 0.00   | Misra, Sudip, 2021, null, null, null   |     | 96         |

# **Degree**

The top ranked item by degree is Ahn, S (2002) in Cluster #0, with degree of **7**. The second one is Han, I (2002) in Cluster #0, with degree of **6**. The third is Hwang, J (2002) in Cluster #0, with degree of **6**. The 4th is Chang, W (2002) in Cluster #0, with degree of **6**. The 5th is Kim, H (2002) in Cluster #0, with degree of **6**. The 6th is Park, J (2002) in Cluster #0, with degree of **6**. The 7th is Kwon, J (2002) in Cluster #0, with degree of **6**. The 8th is Krupa, Jeffrey (2021) in Cluster #1, with degree of **5**. The 9th is Harris, Philip (2021) in Cluster #1, with degree of **5**. The 10th is Holzman, Burt (2021) in Cluster #1, with degree of **5**.

| Degree | References                             | DOI | Cluster ID |
|--------|----------------------------------------|-----|------------|
| 7      | Ahn, S, 2002, null, null, null         |     | 0          |
| 6      | Han, I, 2002, null, null, null         |     | 0          |
| 6      | Hwang, J, 2002, null, null, null       |     | 0          |
| 6      | Chang, W, 2002, null, null, null       |     | 0          |
| 6      | Kim, H, 2002, null, null, null         |     | 0          |
| 6      | Park, J, 2002, null, null, null        |     | 0          |
| 6      | Kwon, J, 2002, null, null, null        |     | 0          |
| 5      | Krupa, Jeffrey, 2021, null, null, null |     | 1          |
| 5      | Harris, Philip, 2021, null, null, null |     | 1          |
| 5      | Holzman, Burt, 2021, null, null, null  |     | 1          |

# **Centrality**

The top ranked item by centrality is Ahn, S (2002) in Cluster #0, with centrality of **0.00**. The second one is Han, I (2002) in Cluster #0, with centrality of **0.00**. The third is Hwang, J (2002) in Cluster #0, with centrality of **0.00**. The 4th is Chang, W (2002) in Cluster #0, with centrality of **0.00**. The 5th is Kim, H (2002) in Cluster #0, with centrality of **0.00**. The 6th is Park, J (2002) in Cluster #0, with centrality of **0.00**. The 7th is Kwon, J (2002) in Cluster #0, with centrality of **0.00**. The 8th is Krupa, Jeffrey (2021) in Cluster #1, with centrality of **0.00**. The 9th is Harris, Philip (2021) in Cluster #1, with centrality of **0.00**. The 10th is Holzman, Burt (2021) in Cluster #1, with centrality of **0.00**.

| Centrality | References                             | DOI | Cluster ID |
|------------|----------------------------------------|-----|------------|
| 0.00       | Ahn, S, 2002, null, null, null         |     | 0          |
| 0.00       | Han, I, 2002, null, null, null         |     | 0          |
| 0.00       | Hwang, J, 2002, null, null, null       |     | 0          |
| 0.00       | Chang, W, 2002, null, null, null       |     | 0          |
| 0.00       | Kim, H, 2002, null, null, null         |     | 0          |
| 0.00       | Park, J, 2002, null, null, null        |     | 0          |
| 0.00       | Kwon, J, 2002, null, null, null        |     | 0          |
| 0.00       | Krupa, Jeffrey, 2021, null, null, null |     | 1          |
| 0.00       | Harris, Philip, 2021, null, null, null |     | 1          |
| 0.00       | Holzman, Burt, 2021, null, null, null  |     | 1          |

# Sigma

The top ranked item by sigma is Ahn, S (2002) in Cluster #0, with sigma of **1.00**. The second one is Han, I (2002) in Cluster #0, with sigma of **1.00**. The third is Hwang, J (2002) in Cluster #0, with sigma of **1.00**. The 4th is Chang, W (2002) in Cluster #0, with sigma of **1.00**. The 5th is Kim, H (2002) in Cluster #0, with sigma of **1.00**. The 6th is Park, J (2002) in Cluster #0, with sigma of **1.00**. The 7th is Kwon, J (2002) in Cluster #0, with sigma of **1.00**. The 8th is Krupa, Jeffrey (2021) in Cluster #1, with sigma of **1.00**. The 9th is Harris, Philip (2021) in Cluster #1, with sigma of **1.00**. The 10th is Holzman, Burt (2021) in Cluster #1, with sigma of **1.00**.

| Sigma | References                             | DOI | Cluster ID |
|-------|----------------------------------------|-----|------------|
| 1.00  | Ahn, S, 2002, null, null, null         |     | 0          |
| 1.00  | Han, I, 2002, null, null, null         |     | 0          |
| 1.00  | Hwang, J, 2002, null, null, null       |     | 0          |
| 1.00  | Chang, W, 2002, null, null, null       |     | 0          |
| 1.00  | Kim, H, 2002, null, null, null         |     | 0          |
| 1.00  | Park, J, 2002, null, null, null        |     | 0          |
| 1.00  | Kwon, J, 2002, null, null, null        |     | 0          |
| 1.00  | Krupa, Jeffrey, 2021, null, null, null |     | 1          |
| 1.00  | Harris, Philip, 2021, null, null, null |     | 1          |
| 1.00  | Holzman, Burt, 2021, null, null, null  |     | 1          |

Reference

# **Knowledge of Map:**



# **Summary**

| Cluster ID | Size | Silhouette | mean(Year) | Top Terms (LSI)                      | Top Terms (log-likelihood ratio, p-le | Terms (mutual information)             |
|------------|------|------------|------------|--------------------------------------|---------------------------------------|----------------------------------------|
| 0          | 70   | 0.95       | 2016       | edge computing; service discovery;   | iot network (66.84, 1.0E-4); edge co  | cuckoo-inspired algorithm (4.98); sl   |
| 1          | 43   | 0.98       | 2017       | iot network; resilient service embed | iot network (125.11, 1.0E-4); resilie | slow denial (0.27); cuckoo-inspired    |
| 2          | 28   | 0.907      | 2015       | qos service composition; coevolutio  | qos service composition (41.46, 1.0   | cuckoo-inspired algorithm (0.1); mu    |
| 3          | 23   | 0.996      | 2010       | qos-oriented web service compositi   | multi-population genetic algorithm (  | monitoring elderly people (0.07); se   |
| 4          | 22   | 0.947      | 2013       | large-scale dynamic service compo    | large-scale dynamic service compo     | historical record (0.05); things servi |
| 5          | 19   | 0.995      | 2018       | qos-aware cloud service compositi    | qos-aware cloud service compositi     | edge computing (0.03); qos-aware       |
| 7          | 17   | 0.958      | 2018       | edge-cloud environment; energy-aw    | energy-aware service function chain   | stackelberg game (0.21); service d     |
| 8          | 14   | 0.936      | 2007       | qos-based web service selection pr   | applying gravitational search algorit | edge computing (0.05); service disc    |
| 9          | 13   | 1          | 2014       | holistic approach; big data-enabled  | holistic approach (30.76, 1.0E-4); bi | edge computing (0.04); holistic app    |
| 29         | 6    | 0.981      | 2017       | mec-enabled 5g network; scaling;     | learning-driven service function chai | edge computing (0.04); trust-orient    |
|            |      |            |            |                                      |                                       |                                        |

#### **Brustness:**

Top 3 References with the Strongest Citation Bursts

| References                                                                                                          | Year | Strength | Begin | End  | 2000 - 2022 |
|---------------------------------------------------------------------------------------------------------------------|------|----------|-------|------|-------------|
| Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010, DOI                                      | 2010 | 4.96     | 2011  | 2015 |             |
| $Miorandi \ D, \ 2012, \ AD \ HOC \ NETW, \ V10, \ P1497, \ DOI \ 10.1016/j. adhoc. 2012.02.016, \ \underline{DOI}$ | 2012 | 3.85     | 2014  | 2016 |             |
| Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095, DOI                            | 2015 | 5.64     | 2018  | 2020 |             |

The summary highlights major clusters first, including citing articles and cited references. The importance of nodes will be summarized in terms of citation-based metrics such as citation counts and citation bursts, network-based metrics such as degree centrality and betweenness centrality. Sigma is a combination of both types, i.e., burst and betweenness centrality.

There are other features that are not included in the current summary, for example, structural variation analysis, analysis of uncertainties, concept trees, and dual-map overlays.

# **Major Clusters**

The network consists of 10 clusters. The largest 10 clusters are summarized as follows.



Figure. An overview of the network.

Table 1. Summary of the largest 10 clusters.

| ClusterID | Size | Silhouette | Label (LSI)                                         | Label (LLR)                                                               | Label (MI)                                 | Average<br>Year |
|-----------|------|------------|-----------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|-----------------|
| 0         | 70   | 0.95       | edge computing                                      | iot network (66.84,<br>1.0E-4)                                            | cuckoo-<br>inspired<br>algorithm<br>(4.98) | 2016            |
| 1         | 43   | 0.98       | iot network                                         | iot network (125.11, 1.0E-4)                                              | slow denial (0.27)                         | 2017            |
| 2         | 28   | 0.907      | qos service<br>composition                          | qos service<br>composition (41.46,<br>1.0E-4)                             | cuckoo-<br>inspired<br>algorithm (0.1)     | 2015            |
| 3         | 23   | 0.996      | qos-oriented web<br>service composition<br>approach | multi-population<br>genetic algorithm<br>(37.81, 1.0E-4)                  | monitoring elderly people (0.07)           | 2010            |
| 4         | 22   | 0.947      |                                                     | large-scale dynamic<br>service composition<br>(40.24, 1.0E-4)             | historical<br>record (0.05)                | 2013            |
| 5         | 19   | 0.995      |                                                     | qos-aware cloud<br>service composition<br>(38.25, 1.0E-4)                 | edge computing (0.03)                      | 2018            |
| 7         | 17   | 0.958      | edge-cloud<br>environment                           | energy-aware service<br>function chain<br>embedding (40.22,<br>1.0E-4)    | stackelberg<br>game (0.21)                 | 2018            |
| 8         | 14   | 0.936      | qos-based web<br>service selection<br>problem       | applying gravitational<br>search algorithm<br>(22.64, 1.0E-4)             | edge computing (0.05)                      | 2007            |
| 9         | 13   | 1          | holistic approach                                   | holistic approach (30.76, 1.0E-4)                                         | edge<br>computing<br>(0.04)                | 2014            |
| 29        | 6    |            | mec-enabled 5g<br>network                           | learning-driven service<br>function chain<br>placement (19.84,<br>1.0E-4) | edge<br>computing<br>(0.04)                | 2017            |

# Cluster #0 Iot Network

The largest cluster (#0) has 70 members and a silhouette value of 0.95. It is labeled as *iot network* by LLR, *edge computing* by LSI, and *cuckoo-inspired algorithm* (4.98) by MI.

The major citing article of the cluster is: Awan, KA (2019.0) Holitrust-a holistic cross-domain trust management mechanism for service-centric internet of things. IEEE ACCESS DOI 10.1109/ACCESS.2019.2912469.

#### The most cited members in this cluster are:

- 15 Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095
- 11 Chen IR, 2016, IEEE T SERV COMPUT, V9, P482, DOI 10.1109/TSC.2014.2365797
- 9 Lin J, 2017, IEEE INTERNET THINGS, V4, P1125, DOI 10.1109/JIOT.2017.2683200

#### Cluster #1 IOT NETWORK

The second largest cluster (#1) has 43 members and a silhouette value of 0.98. It is labeled as *iot network* by both LLR and LSI, and as *slow denial* (0.27) by MI.

The major citing article of the cluster is: *Al-shammari, HQ (2020.0) Resilient service embedding in iot networks. IEEE ACCESS DOI 10.1109/ACCESS.2020.3005936.* 

# The most cited members in this cluster are:

- 5 Mijumbi R, 2016, IEEE COMMUN SURV TUT, V18, P236, DOI 10.1109/COMST.2015.2477041
- 4 Novo O, 2018, IEEE INTERNET THINGS, V5, P1184, DOI 10.1109/JIOT.2018.2812239
- 3 Tajiki MM, 2019, IEEE T NETW SERV MAN, V16, P374, DOI 10.1109/TNSM.2018.2873225

#### Cluster #2 Qos Service Compositions

The third largest cluster (#2) has 28 members and a silhouette value of 0.907. It is labeled as **qos** service composition by both LLR and LSI, and as cuckoo-inspired algorithm (0.1) by MI.

The major citing article of the cluster is: *Li*, *Y* (2018.0) Research on qos service composition based on coevolutionary genetic algorithm. SOFT COMPUTING, V22, P10 DOI 10.1007/s00500-018-3510-5.

#### The most cited members in this cluster are:

- 5 Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010
- 3 Huo Y, 2015, APPL INTELL, V42, P661, DOI 10.1007/s10489-014-0617-y
- 3 Tao F, 2014, IEEE T IND INFORM, V10, P1547, DOI 10.1109/TII.2014.2306397

# Cluster #3 Multi- Populations Genetic Algorithm

The 4th largest cluster (#3) has 23 members and a silhouette value of 0.996. It is labeled as *multi- population genetic algorithm* by LLR, *qos-oriented web service composition approach* by LSI, and *monitoring elderly people* (0.07) by MI.

The major citing article of the cluster is: *Zhao*, *X* (2014.0) *Qos-aware web service selection with negative selection algorithm. KNOWLEDGE AND INFORMATION SYSTEMS*, V40, P25 DOI 10.1007/s10115-013-0642-x.

#### The most cited members in this cluster are:

- 9 Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010
- 7 Miorandi D, 2012, AD HOC NETW, V10, P1497, DOI 10.1016/j.adhoc.2012.02.016
- 2 Ai LF, 2011, FUTURE GENER COMP SY, V27, P157, DOI 10.1016/j.future.2010.08.003

#### Cluster #4 Large-Scale Dynamic Service Compositions

The 5th largest cluster (#4) has 22 members and a silhouette value of 0.947. It is labeled as *large-scale dynamic service composition* by both LLR and LSI, and as *historical record* (0.05) by MI.

The major citing article of the cluster is: *Zhang, Y (2015.0) Mr-idpso: a novel algorithm for large-scale dynamic service composition. TSINGHUA SCIENCE AND TECHNOLOGY, V20, P11 DOI 10.1109/TST.2015.7349932*.

# The most cited members in this cluster are:

- 5 Jula A, 2014, EXPERT SYST APPL, V41, P3809, DOI 10.1016/j.eswa.2013.12.017
- 5 Alrifai M, 2012, ACM T WEB, V6, P0, DOI 10.1145/2180861.2180864
- 4 Wang SG, 2013, MOBILE NETW APPL, V18, P116, DOI 10.1007/s11036-012-0373-3

#### Cluster #5 Qos-Aware Cloud Service Compositions

The 6th largest cluster (#5) has 19 members and a silhouette value of 0.995. It is labeled as *qosaware cloud service composition* by both LLR and LSI, and as *edge computing* (0.03) by MI.

The major citing article of the cluster is: *Dahan, F* (2021.0) *An efficient hybrid metaheuristic algorithm for qos-aware cloud service composition problem. IEEE ACCESS DOI* 10.1109/ACCESS.2021.3092288.

#### The most cited members in this cluster are:

- 6 Zhou JJ, 2017, INT J ADV MANUF TECH, V88, P3371, DOI 10.1007/s00170-016-9034-1
- 5 Dahan F, 2017, COMPUTING, V99, P507, DOI 10.1007/s00607-017-0547-8
- 4 Naseri A, 2019, J AMB INTEL HUM COMP, V10, P1851, DOI 10.1007/s12652-018-0773-8

# Cluster #7 Energy-Aware Service Function Chain Embedding

The 7th largest cluster (#7) has 17 members and a silhouette value of 0.958. It is labeled as energy-aware service function chain embedding by LLR, edge-cloud environment by LSI, and stackelberg game (0.21) by MI.

The major citing article of the cluster is: *Thanh, NH* (2021.0) Energy-aware service function chain embedding in edge-cloud environments for iot applications. *IEEE INTERNET OF THINGS JOURNAL DOI 10.1109/JIOT.2021.3064986*.

#### The most cited members in this cluster are:

- 5 Baker T, 2017, J NETW COMPUT APPL, V89, P96, DOI 10.1016/j.jnca.2017.03.008
- 5 Asghari P, 2018, J NETW COMPUT APPL, V120, P61, DOI 10.1016/j.jnca.2018.07.013
- 4 Vinayakumar R, 2020, IEEE T IND APPL, V56, P4436, DOI 10.1109/TIA.2020.2971952

# Cluster #8 Applying Gravitational Search Algorithm

The 8th largest cluster (#8) has 14 members and a silhouette value of 0.936. It is labeled as applying gravitational search algorithm by LLR, qos-based web service selection problem by LSI, and edge computing (0.05) by MI.

The major citing article of the cluster is: Zibanezhad, B (2011.0) Applying gravitational search algorithm in the qos-based web service selection problem. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, V12, P13 DOI 10.1631/jzus.C1000305.

- 3 Alrifai M., 2009, P 18 INT C WORLD WID, V0, P881
- 3 Canfora G, 2008, J SYST SOFTWARE, V81, P1754, DOI 10.1016/j.jss.2007.12.792

 2 Ardagna D, 2007, IEEE T SOFTWARE ENG, V33, P369, DOI 10.1109/TSE.2007.1011

# Cluster #9 Holistic Approach

The 9th largest cluster (#9) has 13 members and a silhouette value of 1. It is labeled as *holistic approach* by both LLR and LSI, and as *edge computing* (0.04) by MI.

The major citing article of the cluster is: *Zerbino*, *P* (2018.0) *Big data-enabled customer relationship management: a holistic approach. INFORMATION PROCESSING & MANAGEMENT*, V54, P29 DOI 10.1016/j.ipm.2017.10.005.

#### The most cited members in this cluster are:

- 3 Hashem IAT, 2015, INFORM SYST, V47, P98, DOI 10.1016/j.is.2014.07.006
- 3 Wu XD, 2014, IEEE T KNOWL DATA EN, V26, P97, DOI 10.1109/TKDE.2013.109
- 2 Chen DQ, 2015, J MANAGE INFORM SYST, V32, P4, DOI 10.1080/07421222.2015.1138364

#### Cluster #29 Learning-Driven Service Function Chain Placements

The 10th largest cluster (#29) has 6 members and a silhouette value of 0.981. It is labeled as *learning-driven service function chain placement* by LLR, *mec-enabled 5g network* by LSI, and *edge computing* (0.04) by MI.

The major citing article of the cluster is: Subramanya, T (2020.0) Machine learning-driven service function chain placement and scaling in mec-enabled 5g networks. COMPUTER NETWORKS DOI 10.1016/j.comnet.2019.106980.

#### The most cited members in this cluster are:

- 2 Boutaba R, 2018, J INTERNET SERV APPL, V9, P0, DOI 10.1186/s13174-018-0087-
- 2 Farris I, 2018, T EMERG TELECOMMUN T, V29, P0, DOI 10.1002/ett.3169
- 2 Bhamare D, 2016, J NETW COMPUT APPL, V75, P138, DOI 10.1016/j.jnca.2016.09.001

#### **Citation Counts**

The top ranked item by citation counts is Al-Fuqaha A (2015) in Cluster #0, with citation counts of **15**. The second one is Chen IR (2016) in Cluster #0, with citation counts of **11**. The third is Lin J (2017) in Cluster #0, with citation counts of **9**. The 4th is Atzori L (2010) in Cluster #3, with citation counts of **9**. The 5th is Shi WS (2016) in Cluster #0, with citation counts of **8**. The 6th is Botta A (2016) in Cluster #0, with citation counts of **8**. The 7th is Miorandi D (2012) in

Cluster #3, with citation counts of **7**. The 8th is Guo J (2017) in Cluster #0, with citation counts of **7**. The 9th is Cirani S (2014) in Cluster #0, with citation counts of **7**. The 10th is Chen IR (2016) in Cluster #0, with citation counts of **7**.

| Citation<br>Counts | References                                             | DOI                          | Cluster<br>ID |
|--------------------|--------------------------------------------------------|------------------------------|---------------|
| 15                 | Al-Fuqaha A, 2015, IEEE COMMUN<br>SURV TUT, V17, P2347 | 10.1109/COMST.2015.2444095   | 0             |
| 11                 | Chen IR, 2016, IEEE T SERV<br>COMPUT, V9, P482         | 10.1109/TSC.2014.2365797     | 0             |
| 9                  | Lin J, 2017, IEEE INTERNET<br>THINGS, V4, P1125        | 10.1109/JIOT.2017.2683200    | 0             |
| 9                  | Atzori L, 2010, COMPUT NETW,<br>V54, P2787             | 10.1016/j.comnet.2010.05.010 | 3             |
| 8                  | Shi WS, 2016, IEEE INTERNET<br>THINGS, V3, P637        | 10.1109/JIOT.2016.2579198    | 0             |
| 8                  | Botta A, 2016, FUTURE GENER<br>COMP SY, V56, P684      | 10.1016/j.future.2015.09.021 | 0             |
| 7                  | Miorandi D, 2012, AD HOC NETW,<br>V10, P1497           | 10.1016/j.adhoc.2012.02.016  | 3             |
| 7                  | Guo J, 2017, COMPUT COMMUN,<br>V97, P1                 | 10.1016/j.comcom.2016.10.012 | 0             |
| 7                  | Cirani S, 2014, IEEE INTERNET<br>THINGS, V1, P508      | 10.1109/JIOT.2014.2358296    | 0             |
| 7                  | Chen IR, 2016, IEEE T DEPEND<br>SECURE, V13, P684      | 10.1109/TDSC.2015.2420552    | 0             |

# **Bursts**

The top ranked item by bursts is Al-Fuqaha A (2015) in Cluster #0, with bursts of **5.64**. The second one is Atzori L (2010) in Cluster #3, with bursts of **4.96**. The third is Miorandi D (2012) in Cluster #3, with bursts of **3.85**. The 4th is Chen IR (2016) in Cluster #0, with bursts of **0.00**. The 5th is Lin J (2017) in Cluster #0, with bursts of **0.00**. The 6th is Shi WS (2016) in Cluster #0, with bursts of **0.00**. The 7th is Botta A (2016) in Cluster #0, with bursts of **0.00**. The 8th is Guo J (2017) in Cluster #0, with bursts of **0.00**. The 9th is Cirani S (2014) in Cluster #0, with bursts of **0.00**. The 10th is Chen IR (2016) in Cluster #0, with bursts of **0.00**.

| Bursts | References                                             | DOI                          | Cluster<br>ID |
|--------|--------------------------------------------------------|------------------------------|---------------|
| 5.64   | Al-Fuqaha A, 2015, IEEE COMMUN<br>SURV TUT, V17, P2347 | 10.1109/COMST.2015.2444095   | 0             |
| 4.96   | Atzori L, 2010, COMPUT NETW, V54, P2787                | 10.1016/j.comnet.2010.05.010 | 3             |
| 3.85   | Miorandi D, 2012, AD HOC NETW, V10,<br>P1497           | 10.1016/j.adhoc.2012.02.016  | 3             |
| 0.00   | Chen IR, 2016, IEEE T SERV COMPUT,<br>V9, P482         | 10.1109/TSC.2014.2365797     | 0             |
| 0.00   | Lin J, 2017, IEEE INTERNET THINGS,<br>V4, P1125        | 10.1109/JIOT.2017.2683200    | 0             |
| 0.00   | Shi WS, 2016, IEEE INTERNET THINGS, V3, P637           | 10.1109/JIOT.2016.2579198    | 0             |
| 0.00   | Botta A, 2016, FUTURE GENER COMP<br>SY, V56, P684      | 10.1016/j.future.2015.09.021 | 0             |
| 0.00   | Guo J, 2017, COMPUT COMMUN, V97,<br>P1                 | 10.1016/j.comcom.2016.10.012 | 0             |
| 0.00   | Cirani S, 2014, IEEE INTERNET THINGS, V1, P508         | 10.1109/JIOT.2014.2358296    | 0             |
| 0.00   | Chen IR, 2016, IEEE T DEPEND SECURE, V13, P684         | 10.1109/TDSC.2015.2420552    | 0             |

# **Degree**

The top ranked item by degree is Al-Fuqaha A (2015) in Cluster #0, with degree of **31**. The second one is Zhou JJ (2017) in Cluster #5, with degree of **29**. The third is Jula A (2014) in Cluster #4, with degree of **22**. The 4th is Chen IR (2016) in Cluster #0, with degree of **21**. The 5th is Dahan F (2017) in Cluster #5, with degree of **18**. The 6th is Alanazi S (2015) in Cluster #1, with degree of **17**. The 7th is Yang YF (2020) in Cluster #5, with degree of **16**. The 8th is Jatoth C (2019) in Cluster #5, with degree of **16**. The 9th is Naseri A (2019) in Cluster #5, with degree of **16**. The 10th is Dahan F (2019) in Cluster #5, with degree of **16**.

| Degree | References                                                                                 | DOI                            | Cluster<br>ID |
|--------|--------------------------------------------------------------------------------------------|--------------------------------|---------------|
| 31     | Al-Fuqaha A, 2015, IEEE COMMUN<br>SURV TUT, V17, P2347                                     | 10.1109/COMST.2015.2444095     | 0             |
| 29     | Zhou JJ, 2017, INT J ADV MANUF<br>TECH, V88, P3371                                         | 10.1007/s00170-016-9034-1      | 5             |
| 22     | Jula A, 2014, EXPERT SYST APPL, V41, P3809                                                 | 10.1016/j.eswa.2013.12.017     | 4             |
| 21     | Chen IR, 2016, IEEE T SERV COMPUT, V9, P482                                                | 10.1109/TSC.2014.2365797       | 0             |
| 18     | Dahan F, 2017, COMPUTING, V99, P507                                                        | 10.1007/s00607-017-0547-8      | 5             |
| 17     | Alanazi S, 2015, 2015 17TH<br>INTERNATIONAL CONFERENCE ON<br>E-HEALTH NETWORKING, V0, P205 | 10.1109/HealthCom.2015.7454499 | 1             |
| 16     | Yang YF, 2020, APPL SOFT COMPUT,<br>V87, P0                                                | 10.1016/j.asoc.2019.106003     | 5             |
| 16     | Jatoth C, 2019, FUTURE GENER COMP<br>SY, V94, P185                                         | 10.1016/j.future.2018.11.022   | 5             |
| 16     | Naseri A, 2019, J AMB INTEL HUM<br>COMP, V10, P1851                                        | 10.1007/s12652-018-0773-8      | 5             |
| 16     | Dahan F, 2019, IEEE ACCESS, V7,<br>P21787                                                  | 10.1109/ACCESS.2019.2894683    | 5             |

# **Centrality**

The top ranked item by centrality is Al-Fuqaha A (2015) in Cluster #0, with centrality of **0.11**. The second one is Jula A (2014) in Cluster #4, with centrality of **0.05**. The third is Zhou JJ (2017) in Cluster #5, with centrality of **0.04**. The 4th is Alrifai M (2012) in Cluster #4, with centrality of **0.03**. The 5th is Miorandi D (2012) in Cluster #3, with centrality of **0.03**. The 6th is Huang BQ (2014) in Cluster #2, with centrality of **0.03**. The 7th is Gubbi J (2013) in Cluster #2, with centrality of **0.03**. The 8th is Shi WS (2016) in Cluster #0, with centrality of **0.02**. The 9th is Qiu C (2019) in Cluster #1, with centrality of **0.02**. The 10th is Barcelo M (2016) in Cluster #2, with centrality of **0.02**.

| Centrality | References                                             | DOI                          | Cluster<br>ID |
|------------|--------------------------------------------------------|------------------------------|---------------|
| 0.11       | Al-Fuqaha A, 2015, IEEE COMMUN<br>SURV TUT, V17, P2347 | 10.1109/COMST.2015.2444095   | 0             |
| 0.05       | Jula A, 2014, EXPERT SYST APPL,<br>V41, P3809          | 10.1016/j.eswa.2013.12.017   | 4             |
| 0.04       | Zhou JJ, 2017, INT J ADV MANUF<br>TECH, V88, P3371     | 10.1007/s00170-016-9034-1    | 5             |
| 0.03       | Alrifai M, 2012, ACM T WEB, V6, P0                     | 10.1145/2180861.2180864      | 4             |
| 0.03       | Miorandi D, 2012, AD HOC NETW,<br>V10, P1497           | 10.1016/j.adhoc.2012.02.016  | 3             |
| 0.03       | Huang BQ, 2014, ENTERP INF SYST-UK, V8, P445           | 10.1080/17517575.2013.792396 | 2             |
| 0.03       | Gubbi J, 2013, FUTURE GENER<br>COMP SY, V29, P1645     | 10.1016/j.future.2013.01.010 | 2             |
| 0.02       | Shi WS, 2016, IEEE INTERNET<br>THINGS, V3, P637        | 10.1109/JIOT.2016.2579198    | 0             |
| 0.02       | Qiu C, 2019, IEEE INTERNET<br>THINGS, V6, P4627        | 10.1109/JIOT.2018.2871394    | 1             |
| 0.02       | Barcelo M, 2016, IEEE J SEL AREA<br>COMM, V34, P4077   | 10.1109/JSAC.2016.2621398    | 2             |

# Sigma

The top ranked item by sigma is Al-Fuqaha A (2015) in Cluster #0, with sigma of **1.83**. The second one is Miorandi D (2012) in Cluster #3, with sigma of **1.14**. The third is Atzori L (2010) in Cluster #3, with sigma of **1.05**. The 4th is Jula A (2014) in Cluster #4, with sigma of **1.00**. The 5th is Zhou JJ (2017) in Cluster #5, with sigma of **1.00**. The 6th is Alrifai M (2012) in Cluster #4, with sigma of **1.00**. The 7th is Huang BQ (2014) in Cluster #2, with sigma of **1.00**. The 8th is Gubbi J (2013) in Cluster #2, with sigma of **1.00**. The 9th is Shi WS (2016) in Cluster #0, with sigma of **1.00**. The 10th is Qiu C (2019) in Cluster #1, with sigma of **1.00**.

| Sigma | References                                             | DOI                          | Cluster<br>ID |
|-------|--------------------------------------------------------|------------------------------|---------------|
| 1.83  | Al-Fuqaha A, 2015, IEEE COMMUN<br>SURV TUT, V17, P2347 | 10.1109/COMST.2015.2444095   | 0             |
| 1.14  | Miorandi D, 2012, AD HOC NETW, V10,<br>P1497           | 10.1016/j.adhoc.2012.02.016  | 3             |
| 1.05  | Atzori L, 2010, COMPUT NETW, V54, P2787                | 10.1016/j.comnet.2010.05.010 | 3             |
| 1.00  | Jula A, 2014, EXPERT SYST APPL, V41,<br>P3809          | 10.1016/j.eswa.2013.12.017   | 4             |
| 1.00  | Zhou JJ, 2017, INT J ADV MANUF TECH,<br>V88, P3371     | 10.1007/s00170-016-9034-1    | 5             |
| 1.00  | Alrifai M, 2012, ACM T WEB, V6, P0                     | 10.1145/2180861.2180864      | 4             |
| 1.00  | Huang BQ, 2014, ENTERP INF SYST-UK, V8, P445           | 10.1080/17517575.2013.792396 | 2             |
| 1.00  | Gubbi J, 2013, FUTURE GENER COMP<br>SY, V29, P1645     | 10.1016/j.future.2013.01.010 | 2             |
| 1.00  | Shi WS, 2016, IEEE INTERNET THINGS, V3, P637           | 10.1109/JIOT.2016.2579198    | 0             |
| 1.00  | Qiu C, 2019, IEEE INTERNET THINGS,<br>V6, P4627        | 10.1109/JIOT.2018.2871394    | 1             |

# **3: Conclusion**

The summary highlights major clusters first, including citing articles and cited references. The importance of nodes will be summarized in terms of citation-based metrics such as citation counts and citation bursts, network-based metrics such as degree centrality and betweenness centrality. Sigma is a combination of both types, i.e., burst and betweenness centrality.

There are other features that are not included in the current summary, for example, structural variation analysis, analysis of uncertainties, concept trees, and dual-map overlays.