Thermodynamic and Transport Properties of Fluids

SI Units

arranged by G. F. C. Rogers and Y. R. Mayhew

Fifth Edition

CONTENTS

Notation and Units	1
Saturated Water and Steam	2–5
Superheated and Supercritical Steam	6–9
Further Properties of Water and Steam	10-11
Mercury-Hg	12
Ammonia – NH ₃ (Refrigerant 717)	13
Dichlorodifluoromethane – CF ₂ Cl ₂ (Refrigerant 12)	14
Γetrafluoroethane – CH ₂ F-CF ₃ (Refrigerant 134a)	15
Dry Air at Low Pressure	16
Specific Heat Capacity $c_p/[kJ/kgK]$ of Some Gases and Vapours	17
Molar Properties of Some Gases and Vapours	18–20
Enthalpies of Reaction and Equilibrium Constants	21
A Selection of Chemical Thermodynamic Data	22
Miscellaneous Liquids, Vapours and Gases	23
International Standard Atmosphere	24
SI – British Conversion Factors	25
General Information	26
Principal Sources	27

NOTATION AND UNITS

a	m/s	velocity of sound
c_p, \tilde{c}_p	kJ/kg K, kJ/kmol K	-specific, molar heat capacity at constant p
c_v, \tilde{c}_v	kJ/kg K, kJ/kmol K	-specific, molar heat capacity at constant v
$g, ilde{g}$	kJ/kg, kJ/kmol	– specific, molar Gibbs function (h – Ts , \tilde{h} – $T\tilde{s}$)
$\Delta ilde{g}^{f e},\Delta g^{f e}_{ m f}$	kJ/kmol	-molar Gibbs function of reaction, of formation
	kJ/kg, kJ/kmol	-specific, molar enthalpy ($\mathbf{u} + pv$, $\tilde{u} + pi$?)
$\Delta ilde{h}^{ m e},~\Delta h^{ m e}_{ m f}$	kJ/kmol	- molar enthalpy of reaction, of formation
K^{Θ} , K_{f}^{Θ}	_	 equilibrium constant, of formation
k	kW/m K	- thermal conductivity
ñ	kg/kmol	– molar mass
p	bar	-absolute pressure
Pr	_	– Prandtl number $(c_p\mu/k)$
R, \tilde{R}	kJ/kg K, kJ/kmol K	- specific, molar (universal) gas constant
s, ŝ	kJ/kg K, kJ/kmol K	-specific, molar entropy
T	Kor°C	-absolute temperature (K) or Celsius temperature (°C)
ΔT	K	-temperature interval or difference
u, ũ	kJ/kg, kJ/kmol	- specific, molar internal energy
v , $ ilde{v}$	m ³ /kg, m ³ /kmol	-specific, molar volume $(1/\rho, 1/\tilde{\rho})$
z	m	-geometric altitude above sea level
γ		-ratio of specific heat capacities $(c_p/c_v = \tilde{c}_p/\tilde{c}_v)$
λ	m	-mean free path
μ	$kg/m s = N s/m^2$	-dynamic viscosity
ν	m^2/s	-kinematic viscosity (μ/ρ)
$ ho, ilde{ ho}$	kg/m ³ , kmol/m ³	- mass, molar density $(1/v, 1/\tilde{v})$

Subscripts

- c —refers to a property in the critical state
- f -refers to a property of the saturated liquid, or to a value of formation
- g -refers to a property of the saturated vapour
- fg -refers to a change of phase at constant p
- refers to a property of the saturated solid
- s -refers to a saturation temperature or pressure

Superscripts

- refers to a molar property (i.e. per unit amount-of-substance)
- -refers to a property at standard pressure $p^{\Theta} = 1$ bar (the superscript o is often used)

Saturated Water and Steam

	<u>p_s</u>		$h_{\rm f}$	[], I /l, ~]	h_{g}	<u>S</u> f	S _{fg}	SE
	[bar]	[m ³ /kg]	0.4	[kJ/kg]	2500.0		[kJ/kg K]	0.155
0.01	0.006112	206.1	0* 4.2 8.4 12.6 16.8	2500.8	2500.8	0†	9.155	9.155
1	0.006566	192.6		2498.3	2502.5	0.015	9.113	9.128
2	0.007054	179.9		2495.9	2504.3	0.031	9.071	9.102
3	0.007575	168.2		2493.6	2506.2	0.046	9.030	9.076
4	0.008129	157.3		2491.3	2508.1	0.061	8.989	9.050
5	0.008719	147.1	21.0	2488.9	2509.9	0.076	8.948	9.024
6	0.009346	137.8	25.2	2486.6	2511.8	0.091	8.908	8.999
7	0.01001	129.1	29.4	2484.3	2513.7	0.106	8.868	8.974
8	0.01072	121.0	33.6	2481.9	2515.5	0.121	8.828	8.949
9	0.01147	113.4	37.8	2479.6	2517.4	0.136	8.788	8.924
10	0.01227	106.4	42.0	2477.2	2519.2	0.151	8.749	8.900
11	0.01312	99.90	46.2	2474.9	2521.1	0.166	8.710	8.876
12	0.01401	93.83	50.4	2472.5	2522.9	0.180	8.671	8.851
13	0.01497	88.17	54.6	2470.2	2524.8	0.195	8.633	8.828
14	0.01597	82.89	58.8	2467.8	2526.6	0.210	8.594	8.804
15	0.01704	77.97	62.9	2465.5	2528.4	0.224	8.556	8.780
16	0.01817	73.38	67.1	2463.1	2530.2	0.239	8.518	8.757
17	0.01936	69.09	71.3	2460.8	2532.1	0.253	8.481	8.734
18	0.02063	65.08	75.5	2458.4	2533.9	0.268	8.444	8.712
19	0.02196	61.34	79.7	2456.0	2535.7	0.282	8.407	8.689
20	0.02337	57.84	83.9	2453.7	2537.6	0.296	8.370	8.666
21	0.02486	54.56	88.0	2451.4	2539.4	0.310	8.334	8.644
22	0.02642	51.49	92.2	2449.0	2541.2	0.325	8.297	8.622
23	0.02808	48.62	96.4	2446.6	2543.0	0.339	8.261	8.600
24	0.02982	45.92	100.6	2444.2	2544.8	0.353	8.226	8.579
25	0.03166	43.40	104.8	2441.8	2546.6	0.367	8.190	8.557
26	0.03360	41.03	108.9	2439.5	2548.4	0.381	8.155	8.536
27	0.03564	38.81	113.1	2437.2	2550.3	0.395	8.120	8.515
28	0.03778	36.73	117.3	2434.8	2552.1	0.409	8.085	8.494
29	0.04004	34.77	121.5	2432.4	2553.9	0.423	8.050	8.473
30	0.04242	32.93	125.7	2430.0	2555.7	0.436	8.016	8.452
32	0.04754	29.57	134.0	2425.3	2559.3	0.464	7.948	8.412
34	0.05318	26.60	142.4	2420.5	2562.9	0.491	7.881	8.372
36	0.05940	23.97	150.7	2415.8	2566.5	0.518	7.814	8.332
38	0.06624	21.63	159.1	2411.0	2570.1	0.545	7.749	8.294
40	0.07375	19.55	167.5	2406.2	2573.7	0.572	7.684	8.256
42	0.08198	17.69	175.8	2401.4	2577.2	0.599	7.620	8.219
44	0.09100	16.03	184.2	2396.6	2580.8	0.625	7.557	8.182
46	0.1009	14.56	192.5	2391.8	2584.3	0.651	7.494	8.145
48	0.1116	13.23	200.9	2387.0	2587.9	0.678	7.433	8.111
50	0.1233	12.04	209.3	2382.1	2591.4	0.704	7.371	8.075
55	0.1574	9.578	230.2	2370.1	2600.3	0.768	7.223	7.991
60	0.1992	7.678	251.1	2357.9	2609.0	0.831	7.078	7.909
65	0.2501	6.201	272.0	2345.7	2617.7	0.893	6.937	7.830
70	0.3116	5.045	293.0	2333.3	2626.3	0.955	6.800	7.755
75	0.3855	4.133	313.9	2320.8	2634.7	1.015	6.666	7.681
80	0.4736	3.408	334.9	2308.3	2643.2	1.075	6.536	7.611
85	0.5780	2.828	355.9	2295.6	2651.5	1.134	6.410	7.544
90	0.7011	2.361	376.9	2282.8	2659.7	1.192	6.286	7.478
95	0.8453	1.982	398.0	2269.8	2667.8	1.250	6.166	7.416
100	1.01325	1.673	419.1	2256.7	2675.8	1.307	6.048	7.355

 $[\]dagger u$ and s are chosen to be zero for saturated liquid at the triple point.

Note: values of $v_{\rm f}$ can be found on p. 10.

p [bar]	$\frac{T_s}{[^{\circ}C]}$	$\frac{v_{\rm g}}{[\rm m^3/kg]}$	$\frac{u_{\rm f}}{[{\rm kJ/kg}]}$	u _g	h _f	$\frac{h_{\rm fg}}{[{\rm kJ/kg}]}$	h_{g}	S _f	s _{fg} kJ/kg K]	S _g
0.006112	0.01	206.1		375	0*	2501	2501	0†	9.155	9.155
0.010 0.015 0.020 0.025	7.0 13.0 17.5 21.1	129.2 87.98 67.01 54.26	55 23 73 23	385 393 399 403	29 55 73 88	2485 2470 2460 2451	2514 2525 2533 2539	0.106 0.196 0.261 0.312	8.868 8.631 8.462 8.330	8.974 8.827 8.723 8.642
0.030 0.035 0.040 0.045 0.050	24.1 26.7 29.0 31.0 32.9	45.67 39.48 34.80 31.14 28.20	112 24 121 24 130 24	408 412 415 418 420	101 112 121 130 138	2444 2438 2433 2428 2423	2545 2550 2554 2558 2561	0.354 0.391 0.422 0.451 0.476	8.222 8.130 8.051 7.980 7.918	8.576 8.521 8.473 8.431 8.394
0.055 0.060 0.065 0.070 0.075	34.6 36.2 37.7 39.0 40.3	25.77 23.74 22.02 20.53 19.24	152 24 158 24 163 24	422 425 427 428 430	145 152 158 163 169	2419 2415 2412 2409 2405	2564 2567 2570 2572 2574	0.500 0.521 0.541 0.559 0.576	7.860 7.808 7.760 7.715 7.674	8.360 8.329 8.301 8.274 8.250
0.080 0.085 0.090 0.095 0.100	41.5 42.7 43.8 44.8 45.8	18.10 17.10 16.20 15.40 14.67	179 24 183 24 188 24	432 434 435 436 437	174 179 183 188 192	2402 2400 2397 2394 2392	2576 2579 2580 2582 2584	0.593 0.608 0.622 0.636 0.649	7.634 7.598 7.564 7.531 7.500	8.227 8.206 8.186 8.167 8.149
0.12 0.14 0.16 0.18 0.20	49.4 52.6 55.3 57.8 60.1	12.36 10.69 9.432 8.444 7.648	220 24 232 24 242 24	142 146 150 153 156	207 220 232 242 251	2383 2376 2369 2363 2358	2590 2596 2601 2605 2609	0.696 0.737 0.772 0.804 0.832	7.389 7.294 7.213 7.140 7.075	8.085 8.031 7.985 7.944 7.907
0.22 0.24 0.26 0.28 0.30	62.2 64.1 65.9 67.5 69.1	6.994 6.445 5.979 5.578 5.228	268 24 276 24 283 24	459 461 464 466 468	260 268 276 283 289	2353 2348 2343 2339 2336	2613 2616 2619 2622 2625	0.858 0.882 0.904 0.925 0.944	7.016 6.962 6.913 6.866 6.823	7.874 7.844 7.817 7.791 7.767
0.32 0.34 0.36 0.38 0.40	70.6 72.0 73.4 74.7 75.9	4.921 4.649 4.407 4.189 3.992	302 24 307 24 312 24	470 472 473 475 476	295 302 307 312 318	2332 2328 2325 2322 2318	2627 2630 2632 2634 2636	0.962 0.980 0.996 1.011 1.026	6.783 6.745 6.709 6.675 6.643	7.745 7.725 7.705 7.686 7.669
0.42 0.44 0.46 0.48 0.50	77.1 78.2 79.3 80.3 81.3	3.814 3.651 3.502 3.366 3.239	327 24 332 24 336 24	478 479 481 482 483	323 327 332 336 340	2315 2313 2310 2308 2305	2638 2640 2642 2644 2645	1.040 1.054 1.067 1.079 1.091	6.612 6.582 6.554 6.528 6.502	7.652 7.636 7.621 7.607 7.593
0.55 0.60 0.65 0.70 0.75	83.7 86.0 88.0 90.0 91.8	2.964 2.731 2.535 2.364 2.217	360 24 369 24 377 24	186 189 192 194 196	351 360 369 377 384	2298 2293 2288 2283 2278	2649 2653 2657 2660 2662	1.119 1.145 1.169 1.192 1.213	6.442 6.386 6.335 6.286 6.243	7.561 7.531 7.504 7.478 7.456
0.80 0.85 0.90 0.95 1.00	93.5 95.2 96.7 98.2 99.6	2.087 1.972 1.869 1.777 1.694	399 25 405 25 411 25	198 500 502 504 506	392 399 405 411 417	2273 2269 2266 2262 2258	2665 2668 2671 2673 2675	1.233 1.252 1.270 1.287 1.303	6.201 6.162 6.124 6.089 6.056	7.434 7.414 7.394 7.376 7.359

*
$$\frac{h_{\rm f}}{[{\rm kJ/kg}]} = \frac{pv_{\rm f}}{[{\rm kJ/kg}]} = \frac{p}{[{\rm bar}]} \times \frac{10^5[{\rm N}]}{[{\rm m}^2]} \times \frac{v_{\rm f}}{[{\rm m}^3/{\rm kg}]} \times \left[\frac{{\rm m}^3}{{\rm kg}}\right] \times \frac{[{\rm kJ}]}{10^3[{\rm N\,m}]} \times \frac{1}{[{\rm kJ/kg}]}$$
$$= \frac{p}{[{\rm bar}]} \times \frac{v_{\rm f}}{[{\rm m}^3/{\rm kg}]} \times 10^2 = 0.006112 \times 0.0010002 \times 10^2 = 0.0006112$$

Saturated Water and Steam

p	$T_{\rm s}$	v_{g}	$u_{\rm f}$ $u_{\rm g}$	$h_{\rm f}$ $h_{\rm fg}$ $h_{\rm g}$	$S_{\mathbf{f}}$ $S_{\mathbf{fg}}$ $S_{\mathbf{g}}$
[bar]	[°C]	$[m^3/kg]$	[kJ/kg]	[kJ/kg]	[kJ/kg K]
1.0	99.6	1.694	417 2506	417 2258 2675	1.303 6.056 7.359
1.1 1.2 1.3 1.4 1.5	102.3 104.8 107.1 109.3 111.4	1.549 1.428 1.325 1.236 1.159	429 2510 439 2512 449 2515 458 2517 467 2519	429 2251 2680 439 2244 2683 449 2238 2687 458 2232 2690 467 2226 2693	1.333 5.994 7.327 1.361 5.937 7.298 1.387 5.884 7.271 1.411 5.835 7.246 1.434 5.789 7.223
1.6 1.7 1.8 1.9 2.0	113.3 115.2 116.9 118.6 120.2	1.091 1.031 0.9774 0.9292 0.8856	475 2521 483 2524 491 2526 498 2528 505 2530	475 2221 2696 483 2216 2699 491 2211 2702 498 2206 2704 505 2202 2707	1.455 5.747 7.202 1.475 5.707 7.182 1.494 5.669 7.163 1.513 5.632 7.145 1.530 5.597 7.127
2.1 2.2 2.3 2.4 2.5	121.8 123.3 124.7 126.1 127.4	0.8461 0.8100 0.7770 0.7466 0.7186	511 2531 518 2533 524 2534 530 2536 535 2537	511 2198 2709 518 2193 2711 524 2189 2713 530 2185 2715 535 2182 2717	1.547 5.564 7.111 1.563 5.533 7.096 1.578 5.503 7.081 1.593 5.474 7.067 1.607 5.446 7.053
2.6 2.7 2.8 2.9 3.0	128.7 130.0 131.2 132.4 133.5	0.6927 0.6686 0.6462 0.6253 0.6057	541 2539 546 2540 551 2541 556 2543 561 2544	541 2178 2719 546 2174 2720 551 2171 2722 556 2168 2724 561 2164 2725	1.621 5.419 7.040 1.634 5.393 7.027 1.647 5.368 7.015 1.660 5.344 7.004 1.672 5.321 6.993
3.5 4.0 4.5 5.0 5.5	138.9 143.6 147.9 151.8 155.5	0.5241 0.4623 0.4139 0.3748 0.3427	584 2549 605 2554 623 2558 639 2562 655 2565	584 2148 2732 605 2134 2739 623 2121 2744 640 2109 2749 656 2097 2753	1.727 5.214 6.941 1.776 5.121 6.897 1.820 5.037 6.857 1.860 4.962 6.822 1.897 4.893 6.790
6 7 8 9	158.8 165.0 170.4 175.4 179.9	0.3156 0.2728 0.2403 0.2149 0.1944	669 2568 696 2573 720 2577 742 2581 762 2584	670 2087 2757 697 2067 2764 721 2048 2769 743 2031 2774 763 2015 2778	1.931 4.830 6.761 1.992 4.717 6.709 2.046 4.617 6.663 2.094 4.529 6.623 2.138 4.448 6.586
11 12 13 14 15	184.1 188.0 191.6 195.0 198.3	0.1774 0.1632 0.1512 0.1408 0.1317	780 2586 797 2588 813 2590 828 2593 843 2595	781 2000 2781 798 1986 2784 815 1972 2787 830 1960 2790 845 1947 2792	2.179 4.375 6.554 2.216 4.307 6.523 2.251 4.244 6.495 2.284 4.185 6.469 2.315 4.130 6.445
16 17 18 19 20	201.4 204.3 207.1 209.8 212.4	0.1237 0.1167 0.1104 0.1047 0.09957	857 2596 870 2597 883 2598 895 2599 907 2600	859 1935 2794 872 1923 2795 885 1912 2797 897 1901 2798 909 1890 2799	2.344 4.078 6.422 2.372 4.028 6.400 2.398 3.981 6.379 2.423 3.936 6.359 2.447 3.893 6.340
22 24 26 28 30	217.2 221.8 226.0 230.0 233.8	0.09069 0.08323 0.07689 0.07142 0.06665	928 2601 949 2602 969 2603 988 2603 1004 2603	931 1870 2801 952 1850 2802 972 1831 2803 991 1812 2803 1008 1795 2803	2.492 3.813 6.305 2.534 3.738 6.272 2.574 3.668 6.242 2.611 3.602 6.213 2.645 3.541 6.186
32 34 36 38 40	237.4 240.9 244.2 247.3 250.3	0.06246 0.05875 0.05544 0.05246 0.04977	1021 2603 1038 2603 1054 2602 1068 2602 1082 2602	1025 1778 2803 1042 1761 2803 1058 1744 2802 1073 1729 2802 1087 1714 2801	2.679 3.482 6.161 2.710 3.426 6.136 2.740 3.373 6.113 2.769 3.322 6.091 2.797 3.273 6.070

Saturated Water and Steam

p	$T_{\rm s}$	v_{g}	u _f u _g	$h_{\rm f}$ $h_{\rm fg}$ $h_{\rm g}$	S _f S _{fg} S _g
[bar]	[°C]	$[m^3/kg]$	[kJ/kg]	[kJ/kg]	[kJ/kg K]
40	250.3	0.04977	1082 2602	1087 1714 2801	2.797 3.273 6.070
42 44 46 48 50	253.2 256.0 258.8 261.4 263.9	0.04732 0.04509 0.04305 0.04117 0.03944	1097 2601 1109 2600 1123 2599 1136 2598 1149 2597	1102 1698 2800 1115 1683 2798 1129 1668 2797 1142 1654 2796 1155 1639 2794	2.823 3.226 6.049 2.849 3.180 6.029 2.874 3.136 6.010 2.897 3.094 5.991 2.921 3.052 5.973
55 60 65 70 75	269.9 275.6 280.8 285.8 290.5	0.03563 0.03244 0.02972 0.02737 0.02532	1178 2594 1206 2590 1232 2586 1258 2581 1283 2576	1185 1605 2790 1214 1570 2784 1241 1538 2779 1267 1505 2772 1293 1473 2766	2.976 2.955 5.931 3.027 2.863 5.890 3.076 2.775 5.851 3.122 2.692 5.814 3.166 2.613 5.779
80 85 90 95 100	295.0 299.2 303.3 307.2 311.0	0.02352 0.02192 0.02048 0.01919 0.01802	1306 2570 1329 2565 1351 2559 1372 2552 1393 2545	1317 1441 2758 1341 1410 2751 1364 1379 2743 1386 1348 2734 1408 1317 2725	3.207 2.537 5.744 3.248 2.463 5.711 3.286 2.393 5.679 3.324 2.323 5.647 3.360 2.255 5.615
105 110 115 120 125	314.6 318.0 321.4 324.6 327.8	0.01696 0.01598 0.01508 0.01426 0.01349	1414 2537 1434 2529 1454 2522 1473 2514 1492 2505	1429 1286 2715 1450 1255 2705 1471 1224 2695 1491 1194 2685 1511 1163 2674	3.395 2.189 5.584 3.430 2.123 5.553 3.463 2.060 5.523 3.496 1.997 5.493 3.529 1.934 5.463
130 135 140 145 150	330.8 333.8 336.6 339.4 342.1	0.01278 0.01211 0.01149 0.01090 0.01035	1511 2496 1530 2487 1548 2477 1567 2467 1585 2456	1531 1131 2662 1551 1099 2650 1571 1067 2638 1591 1034 2625 1610 1001 2611	3.561 1.872 5.433 3.592 1.811 5.403 3.623 1.750 5.373 3.654 1.689 5.343 3.685 1.627 5.312
155 160 165 170 175	344.8 347.3 349.8 352.3 354.6	0.00982 0.00932 0.00884 0.00838 0.00794	1604 2445 1623 2433 1641 2420 1660 2406 1679 2391	1630 967 2597 1650 932 2582 1670 895 2565 1690 858 2548 1711 819 2530	3.715 1.565 5.280 3.746 1.502 5.248 3.777 1.437 5.214 3.808 1.373 5.181 3.839 1.305 5.144
180 185 190 195 200	357.0 359.2 361.4 363.6 365.7	0.00751 0.00709 0.00668 0.00627 0.00585	1699 2375 1719 2358 1740 2339 1762 2318 1786 2294	1732 778 2510 1754 735 2489 1777 689 2466 1801 639 2440 1827 584 2411	3.872 1.236 5.108 3.905 1.163 5.068 3.941 1.086 5.027 3.977 1.004 4.981 4.014 0.914 4.928
202 204 206 208 210	366.5 367.4 368.2 369.0 369.8	0.00569 0.00552 0.00534 0.00517 0.00498	1796 2283 1806 2271 1817 2259 1829 2245 1842 2231	1838 560 2398 1849 535 2384 1861 508 2369 1874 479 2353 1889 447 2336	4.031 0.875 4.906 4.049 0.835 4.884 4.067 0.792 4.859 4.087 0.745 4.832 4.108 0.695 4.803
212 214 216 218 220	370.6 371.4 372.1 372.9 373.7	0.00479 0.00458 0.00436 0.00409 0.00368	1856 2214 1871 2196 1888 2174 1911 2146 1949 2097	1904 412 2316 1921 373 2294 1940 328 2268 1965 270 2235 2008 170 2178	4.131 0.640 4.771 4.157 0.579 4.736 4.186 0.508 4.694 4.224 0.417 4.641 4.289 0.263 4.552
221.2	374.15	0.00317	2014 2014	2084 0 2084	4.406 0.000 4.406

Superheated Steam†

$p/[bar]$ $(T_s/[^{\circ}C])$		<u>T</u> [°C]	50	100	150	200	250	300	400	500
0	u = h - RT at $p = 0$	v u h s	2446 2595	2517 2689	2589 2784	2662 2880	2737 2978	2812 3077	2969 3280	3132 3489
0.006112 (0.01)	$\begin{array}{c cccc} v_{\rm g} & 206.1 \\ u_{\rm g} & 2375 \\ h_{\rm g} & 2501 \\ s_{\rm g} & 9.155 \end{array}$	v u h s	243.9 2446 2595 9.468	281.7 2517 2689 9.739	319.5 2589 2784 9.978	357.3 2662 2880 10.193	395.0 2737 2978 10.390	432.8 2812 3077 10.571	508.3 2969 3280 10.897	583.8 3132 3489 11.187
0.01 (7.0)	v _g 129.2 u _g 2385 h _g 2514 s _g 8.974	v u h s	149.1 2446 2595 9.241	172.2 2517 2689 9.512	195.3 2589 2784 9.751	218.4 2662 2880 9.966	241.4 2737 2978 10.163	264.5 2812 3077 10.344	310.7 2969 3280 10.670	356.8 3132 3489 10.960
0.05 (32.9)	$\begin{array}{c cccc} v_{\rm g} & 28.20 \\ u_{\rm g} & 2420 \\ h_{\rm g} & 2561 \\ s_{\rm g} & 8.394 \end{array}$	v u h s	29.78 2445 2594 8.496	34.42 2516 2688 8.768	39.04 2589 2784 9.008	43.66 2662 2880 9.223	48.28 2737 2978 9.420	52.90 2812 3077 9.601	62.13 2969 3280 9.927	71.36 3132 3489 10.217
0.1 (45.8)	v _g 14.67 u _g 2437 h _g 2584 s _g 8.149	t u h s	14.87 2443 2592 8.173	17.20 2516 2688 8.447	19.51 2588 2783 8.688	21.83 2662 2880 8.903	24.14 2736 2977 9.100	26.45 2812 3077 9.281	31.06 2969 3280 9.607	35.68 3132 3489 9.897
0.5 (81.3)	v _g 3.239 u _g 2483 h _g 2645 s _g 7.593	v u h s		3.420 2512 2683 7.694	3.890 2585 2780 7.940	4.356 2660 2878 8.158	4.821 2735 2976 8.355	5.284 2812 3076 8.537	6.209 2969 3279 8.864	7.134 3132 3489 9.154
0.75 (91.8)	v _g 2.217 u _g 2496 h _g 2662 s _g 7.456	v u h s		2.271 2510 2680 7.500	2.588 2585 2779 7.750	2.901 2659 2877 7.969	3.211 2734 2975 8.167	3.521 2811 3075 8.349	4.138 2969 3279 8.676	4.755 3132 3489 8.967
1 (99.6)	v _g 1.694 u _g 2506 h _g 2675 s _g 7.359	v u h s		1.696 2506 2676 7.360	1.937 2583 2777 7.614	2.173 2659 2876 7.834	2.406 2734 2975 8.033	2.639 2811 3075 8.215	3.103 2968 3278 8.543	3.565 3131 3488 8.834
1.01325 (100.0)	v _g 1.673 u _g 2506 h _g 2676 s _g 7.355	v u h s			1.912 2583 2777 7.608	2.145 2659 2876 7.828	2.375 2734 2975 8.027	2.604 2811 3075 8.209	3.062 2968 3278 8.537	3.519 3131 3488 8.828
1.5 (111.4)	v _g 1.159 u _g 2519 h _g 2693 s _g 7.223	v u h s			1.286 2580 2773 7.420	1.445 2656 2873 7.643	1.601 2733 2973 7.843	1.757 2809 3073 8.027	2.067 2967 3277 8.355	2.376 3131 3488 8.646
2 (120.2)	v _g 0.8856 u _g 2530 h _g 2707 s _g 7.127	v u h s			0.9602 2578 2770 7.280	1.081 2655 2871 7.507	1.199 2731 2971 7.708	1.316 2809 3072 7.892	1.549 2967 3277 8.221	1.781 3131 3487 8.513
3 (133.5)	v_{g} 0.6057 u_{g} 2544 h_{g} 2725 s_{g} 6.993	v и h s			0.6342 2572 2762 7.078	0.7166 2651 2866 7.312	0.7965 2729 2968 7.517	0.8754 2807 3070 7.702	1.031 2966 3275 8.032	1.187 3130 3486 8.324
4 (143.6)	v_{g} 0.4623 u_{g} 2554 h_{g} 2739 s_{g} 6.897	υ/[m³/ u/[kJ/k h/[kJ/k s/[kJ/k	(g] (g]		0.4710 2565 2753 6.929	0.5345 2648 2862 7.172	0.5953 2727 2965 7.379	0.6549 2805 3067 7.566	0.7725 2965 3274 7.898	0.8893 3129 3485 8.191

[†] The entries in all tables are regarded as pure numbers and therefore the symbols for the physical quantities should be divided by the appropriate units as shown for the entries at p/[bar] = 4. Because of lack of space, this has not been done consistently in the superheat and supercritical tables on pp. 6–9 and in the tables on pp. 11 and 23.

p/[bar] $(T_s/[^{\circ}C])$		$\frac{T}{[^{\circ}C]}$	200	250	300	350	400	450	500	600
5 (151.8)	$v_{\rm g}$ 0.3748 $u_{\rm g}$ 2562 $h_{\rm g}$ 2749 $s_{\rm g}$ 6.822	v u h s	0.4252 2644 2857 7.060	0.4745 2725 2962 7.271	0.5226 2804 3065 7.460	0.5701 2883 3168 7.633	0.6172 2963 3272 7.793	0.6641 3045 3377 7.944	0.7108 3129 3484 8.087	0.8040 3300 3702 8.351
6 (158.8)	$v_{\rm g}$ 0.3156 $u_{\rm g}$ 2568 $h_{\rm g}$ 2757 $s_{\rm g}$ 6.761	v u h s	0.3522 2640 2851 6.968	0.3940 2722 2958 7.182	0.4344 2801 3062 7.373	0.4743 2881 3166 7.546	0.5136 2962 3270 7.707	0.5528 3044 3376 7.858	0.5919 3128 3483 8.001	0.6697 3299 3701 8.267
7 (165.0)	$v_{\rm g}$ 0.2728 $u_{\rm g}$ 2573 $h_{\rm g}$ 2764 $s_{\rm g}$ 6.709	v u h s	0.3001 2636 2846 6.888	0.3364 2720 2955 7.106	0.3714 2800 3060 7.298	0.4058 2880 3164 7.473	0.4397 2961 3269 7.634	0.4734 3043 3374 7.786	0.5069 3127 3482 7.929	0.5737 3298 3700 8.195
8 (170.4)	$v_{\rm g}$ 0.2403 $u_{\rm g}$ 2577 $h_{\rm g}$ 2769 $s_{\rm g}$ 6.663	v u h s	0.2610 2631 2840 6.817	0.2933 2716 2951 7.040	0.3242 2798 3057 7.233	0.3544 2878 3162 7.409	0.3842 2960 3267 7.571	0.4138 3042 3373 7.723	0.4432 3126 3481 7.866	0.5018 3298 3699 8.132
9 (175.4)	$v_{\rm g}$ 0.2149 $u_{\rm g}$ 2581 $h_{\rm g}$ 2774 $s_{\rm g}$ 6.623	v u h s	0.2305 2628 2835 6.753	0.2597 2714 2948 6.980	0.2874 2796 3055 7.176	0.3144 2877 3160 7.352	0.3410 2959 3266 7.515	0.3674 3041 3372 7.667	0.3937 3126 3480 7.811	0.4458 3298 3699 8.077
10 (179.9)	$v_{\rm g}$ 0.1944 $u_{\rm g}$ 2584 $h_{\rm g}$ 2778 $s_{\rm g}$ 6.586	v u h s	0.2061 2623 2829 6.695	0.2328 2711 2944 6.926	0.2580 2794 3052 7.124	0.2825 2875 3158 7.301	0.3065 2957 3264 7.464	0.3303 3040 3370 7.617	0.3540 3124 3478 7.761	0.4010 3297 3698 8.028
15 (198.3)	v_{g} 0.1317 u_{g} 2595 h_{g} 2792 s_{g} 6.445	v u h s	0.1324 2597 2796 6.452	0.1520 2697 2925 6.711	0.1697 2784 3039 6.919	0.1865 2868 3148 7.102	0.2029 2952 3256 7.268	0.2191 3035 3364 7.423	0.2351 3120 3473 7.569	0.2667 3294 3694 7.838
20 (212.4)	$v_{\rm g}$ 0.0996 $u_{\rm g}$ 2600 $h_{\rm g}$ 2799 $s_{\rm g}$ 6.340	v u h s		0.1115 2681 2904 6.547	0.1255 2774 3025 6.768	0.1386 2861 3138 6.957	0.1511 2946 3248 7.126	0.1634 3030 3357 7.283	0.1756 3116 3467 7.431	0.1995 3291 3690 7.701
30 (233.8)	$v_{\rm g}$ 0.0666 $u_{\rm g}$ 2603 $h_{\rm g}$ 2803 $s_{\rm g}$ 6.186	v u h s		0.0706 2646 2858 6.289	0.0812 2751 2995 6.541	0.0905 2845 3117 6.744	0.0993 2933 3231 6.921	0.1078 3020 3343 7.082	0.1161 3108 3456 7.233	0.1324 3285 3682 7.507
40 (250.3)	$v_{\rm g}$ 0.0498 $u_{\rm g}$ 2602 $h_{\rm g}$ 2801 $s_{\rm g}$ 6.070	v u h s			0.0588 2728 2963 6.364	0.0664 2828 3094 6.584	0.0733 2921 3214 6.769	0.0800 3010 3330 6.935	0.0864 3099 3445 7.089	0.0988 3279 3674 7.368
50 (263.9)	$v_{\rm g}$ 0.0394 $u_{\rm g}$ 2597 $h_{\rm g}$ 2794 $s_{\rm g}$ 5.973	v u h s			0.0453 2700 2927 6.212	0.0519 2810 3070 6.451	0.0578 2907 3196 6.646	0.0632 3000 3316 6.818	0.0685 3090 3433 6.975	0.0786 3273 3666 7.258
60 (275.6)	$v_{\rm g}$ 0.0324 $u_{\rm g}$ 2590 $h_{\rm g}$ 2784 $s_{\rm g}$ 5.890	v u h s			0.0362 2670 2887 6.071	0.0422 2792 3045 6.336	0.0473 2893 3177 6.541	0.0521 2988 3301 6.719	0.0566 3081 3421 6.879	0.0652 3266 3657 7.166
70 (285.8)	$v_{\rm g} = 0.0274$ $u_{\rm g} = 2581$ $h_{\rm g} = 2772$ $s_{\rm g} = 5.814$	v/[m ³ u/[kJ h/[kJ s/[kJ/	/kg]		0.0295 2634 2841 5.934	0.0352 2772 3018 6.231	0.0399 2879 3158 6.448	0.0441 2978 3287 6.632	0.0481 3073 3410 6.796	0.0556 3260 3649 7.088

^{*} See footnote on p. 6.

$\textbf{Superheated Steam}^{\star}$

p/[bar] $(T_s/[°C])$		<i>T</i> [°C]	350	375	400	425	450	500	600	700
80 (295.0)	v, 0.02352 h, 2758 s, 5.744	v/10 ⁻² h s	2.994 2990 6.133	3.220 3067 6.255	3.428 3139 6.364	3.625 3207 6.463	3.812 3272 6.555	4.170 3398 6.723	4.839 3641 7.019	5.476 3881 7.279
90 (303.3)	v, 0.02048 h, 2743 s _g 5.679	v/10 ⁻² h s	2.578 2959 6.039	2.794 3042 6.171	2.991 3118 6.286	3.173 3189 6.390	3.346 3256 6.484	3.673 3385 6.657	4.279 3633 6.958	4.852 3874 7.220
100 (311.O)	v, 0.01802 h, 2725 s, 5.615	v/10 ⁻² h s	2.241 2926 5.947	2.453 3017 6.091	2.639 3097 6.213	2.812 3172 6.321	2.972 3241 6.419	3.275 3373 6.596	3.831 3624 6.902	4.353 3868 7.166
110 (318.0)	v, 0.01598 h, 2705 s _g 5.553	v/10 ⁻² h s	1.960 2889 5.856	2.169 2989 6.014	2.350 3075 6.143	2.514 3153 6.257	2.666 3225 6.358	2.949 3360 6.539	3.465 3616 6.850	3.945 3862 7.117
120 (324.6)	v, 0.01426 h, 2685 s _g 5.493	v/10 ⁻² h s	1.719 2849 5.762	1.931 2960 5.937	2.107 3052 6.076	2.265 3134 6.195	2.410 3209 6.301	2.677 3348 6.487	3.159 3607 6.802	3.605 3856 7.072
130 (330.8)	v _s 0.01278 h , 2662 s, 5.433	v/10 ⁻² h s	1.509 2804 5.664	1.726 2929 5.862	1.901 3028 6.011	2.053 3114 6.136	2.193 3192 6.246	2.447 3335 6.437	2.901 3599 6.758	3.318 3850 7.030
140 (336.6)	h_{g} 0.01149 h_{g} 2638 s_{g} 5.373	v/10 ⁻² h s	1.321 2753 5.559	1.548 2896 5.784	1.722 3003 5.946	1.872 3093 6.079	2.006 3175 6.193	2.250 3322 6.390	2.679 3590 6.716	3.071 3843 6.991
150 (342.1)	v, 0.01035 h, 2611 s _g 5.312	v/10 ⁻² h s	1.146 2693 5.443	1.391 2861 5.707	1.566 2977 5.883	1.714 3073 6.023	1.844 3157 6.142	2.078 3309 6.345	2.487 3581 6.677	2.857 3837 6.954
160 (347.3)	v _g 0.00932 h , 2582 s _g 5.248	v/10 ⁻² h s	0.976 2617 5.304	1.248 2821 5.626	1.427 2949 5.820	1.573 3051 5.968	1.702 3139 6.093	1.928 3295 6.301	2.319 3573 6.639	2.670 3831 6.919
170 (352.3)	v, 0.00838 h, 2548 s _g 5.181	v/10 ⁻² h s		1.117 2778 5.541	1.303 2920 5.756	1.449 3028 5.914	1.576 3121 6.044	1.796 3281 6.260	2.171 3564 6.603	2.506 3825 6.886
180 (357.0)	$v_{\rm g}$ 0.00751 $h_{\rm h}$ 2510 $s_{\rm g}$ 5.108	v/10 ⁻² h s		0.997 2729 5.449	1.191 2888 5.691	1.338 3004 5.861	1.463 3102 5.997	1.678 3268 6.219	2.039 3555 6.569	2.359 3818 6.855
190 (361.4)	v, 0.00668 h, 2466 s _g 5.027	v/10 ⁻² h s		0.882 2674 5.348	1.089 2855 5.625	1.238 2980 5.807	1.362 3082 5.950	1.572 3254 6.180	1.921 3546 6.536	2.228 3812 6.825
200 (365.7)	v, 0.00585 h, 2411 s _g 4.928	v/10 ⁻² [1 h/[kJ/kg s/[kJ/kg	<u>;</u>]	0.768 2605 5.228	0.995 2819 5.556	1.147 2955 5.753	1.270 3062 5.904	1.477 3239 6.142	1.815 3537 6.505	2.110 3806 6.796
210 (369.8)	v, 0.00498 h, 2336 s_g 4.803	v/10 ⁻² h s		0.650 2500 5.050	0.908 2781 5.484	1.064 2928 5.699	1.187 3041 5.859	1.390 3225 6.105	1.719 3528 6.474	2.003 3799 6.768
220 (373.7)	v, 0.00368 h, 2178 s _g 4.552	v/10 ⁻² h s		0.450 2300 4.725	0.825 2738 5.409	0.987 2900 5.645	1.111 3020 5.813	1.312 3210 6.068	1.632 3519 6.444	1.906 3793 6.742
221.2 (374.15)	v _c 0.00317 h _c 2084 s _c 4.406	v/10 ⁻² h s	0.163 1637 3.708	0.351 2139 4.490	0.816 2733 5.398	0.978 2896 5.638	1.103 3017 5.807	1.303 3208 6.064	1.622 3518 6.441	1.895 3792 6.739

^{*} See footnote on p. 6.

Note: linear interpolation is not accurate near the critical point.

<u>p</u> [bar]	$\frac{T}{[^{\circ}C]}$	350	375	400	425	450	500	600	700	800
225	v/10 ⁻² [m ³ /kg] h/[kJ/kg] s/[kJ/kg K]	0.163 1635 3.704	0.249 1980 4.470	0.786 2716 5.369	0.951 2885 5.616	1.076 3009 5.790	1.275 3203 6.050	1.591 3514 6.430	1.861 3790 6.729	2.109 4055 6.988
250	v/10 - 2 h s	0.160 1625 3.682	0.198 1850 4.026	0.601 2580 5.142	0.789 2807 5.474	0.917 2951 5.677	1.113 3165 5.962	1.412 3491 6.361	1.662 3774 6.667	1.890 4043 6.931
275	v/10 ² h s	0.158 1617 3.662	0.187 1814 3.985	0.419 2382 4.828	0.650 2718 5.320	0.786 2890 5.562	0.980 3125 5.878	1.265 3468; 6.296	1.500 3758 6.610	1.710 4032 6.878
300	r/10 * 2 h s	0.155 1610 3.645	0.180 1791 3.933	0.282 2157 4.482	0.530 2614 5.157	0.674 2823 5.444	0.868 3084 5.795	1.143 3445 6.234	1.364 3742 6.557	1.561 4020 6.829
350	r/10 - 2 h s	0.152 1599 3.614	0.171 1762 3.875	0.211 1992 4.219	0.343 2375 4.776	0.496 2673 5.197	0.693 2998 5.633	0.952 3397 6.120	1.152 3709 6.459	1.327 3997 6.741
400	v/10 ⁻² h s	0.149 1590 3.588	0.164 1743 3.832	0.191 1935 4.119	0.255 2203 4.510	0.369 2514 4.947	0.562 2906 5.474	0.809 3348 6.014	0.993 3677 6.371	1.152 3974 6.662
450	v/10 ⁻² h s	0.146 1583 3.565	0.160 1729 3.797	0.181 1901 4.056	0.219 2115 4.368	0.291 2380 4.740	0.463 2813 5.320	0.698 3299 5.914	0.870 3644 6.290	1.016 3951 6.590
500	v/10 ⁻² h s	0.144 1577 3.544	0.156 1717 3.768	0.173 1879 4.009	0.201 2064 4.279	0.249 2288 4.594	0.388 2722 5.176	0.611 3249 5.821	0.772 3612 6.214	0.908 3928 6.524
550	v/10 ⁻² h s	0.143 1572 3.525	0.153 1709 3.742	0.168 1862 3.971	0.190 2030 4.218	0.224 2227 4.494	0.334 2641 5.047	0.540 3200 5.731	0.693 3579 6.144	0.820 3905 6.462
600	v/10 ⁻² h s	0.141 1568 3.506	0.151 1702 3.718	0.164 1848 3.939	0.182 2005 4.168	0.209 2184 4.419	0.295 2571 4.937	0.483 3152 5.648	0.627 3548 6.077	0.747 3883 6.405
650	v/10 ⁻² h s	0.139 1565 3.489	0.148 1696 3.697	0.160 1837 3.910	0.176 1986 4.128	0.198 2151 4.360	0.267 2514 4.845	0.436 3106 5.568	0.572 3517 6.014	0.685 3860 6.352
700	v/10 ⁻² h s	0.138 1561 3.473	0.146 1691 3.678	0.157 1829 3.886	0.171 1971 4.093	0.189 2127 4.312	0.247 2468 4.769	0.397 3062 5.494	0.526 3486 5.955	0.633 3839 6.300
750	v/10 ⁻² h s	0.137 1559 3.459	0.145 1687 3.659	0.154 1821 3.863	0.167 1958 4.064	0.183 2107 4.272	0.231 2431 4.705	0.365 3021 5.425	0.486 3456 5.899	0.587 3817 6.252
800	v/10 ⁻² h s	0.136 1557 3.444	0.143 1684 3.642	0.152 1815 3.842	0.163 1948 4.037	0.178 2091 4.237	0.219 2400 4.651	0.338 2983 5.361	0.452 3428 5.845	0.548 3797 6.206
900	v/10 ⁻² h s	0.133 1554 3.418	0.140 1678 3.612	0.148 1805 3.805	0.158 1932 3.991	0.169 2066 4.179	0.202 2353 4.563	0.296 2916 5.248	0.396 3373 5.746	0.484 3756 6.120
1000	v/10 ⁻² h s	0.131 1552 3.394	0.138 1674 3.584	0.145 1798 3.773	0.153 1920 3.951	0.163 2048 4.131	0.189 2319 4.493	0.267 2860 5.153	0.354 3324 5.656	0.434 3718 6.042

^{*} See footnote on p. 6.

Further Properties of Water and Steam

	$\frac{p_{\rm s}}{[{\rm bar}]}$	$\frac{v_{\rm f}}{10^{-2}[\rm m^3/kg]}$	$\frac{c_{pf} - c_{pg}}{[kJ/kgK]}$	$\frac{\mu_{\rm f}}{10^{-6}[\rm kg/ms]}$	$\frac{k_{\rm f}}{10^{-6}[\rm kW/mK]}$	$(Pr)_{\rm f}$ $(Pr)_{\rm g}$
0.01	0.006112	0.10002	4.210 1.86	1752 8.49	569 16.3	12.96 0.97
5	0.008719	0.10001	4.204 1.86	1501 8.66	578 16.7	10.92 0.96
10	0.01227	0.10003	4.193 1.86	1300 8.83	587 17.1	9.29 0.96
15	0.01704	0.10010	4.186 1.87	1136 9.00	595 17.5	7.99 0.96
20	0.02337	0.10018	4.183 1.87	1002 9.18	603 17.9	6.95 0.96
25	0.03166	0.10030	4.181 1.88	890 9.35	611 18.3	6.09 0.96
30	0.04242	0.10044	4.179 1.88	797 9.52	618 18.7	5.39 0.96
35	0.05622	0.10060	4.178 1.88	718 9.70	625 19.1	4.80 0.96
40	0.07375	0.10079	4.179 1.89	651 9.87	632 19.5	4.30 0.96
45	0.09582	0.10099	4.181 1.89	594 10.0	638 19.9	3.89 0.95
50	0.1233	0.1012	4.182 1.90	544 10.2	643 20.4	3.54 0.95
55	0.1574	0.1015	4.183 1.90	501 10.4	648 20.8	3.23 0.95
60	0.1992	0.1017	4.185 1.91	463 10.6	653 21.2	2.97 0.95
65	0.2501	0.1020	4.188 1.92	430 10.7	658 21.6	2.74 0.95
70	0.3116	0.1023	4.191 1.93	400 10.9	662 22.0	2.53 0.96
75	0.3855	0.1026	4.194 1.94	374 11.1	666 22.5	2.36 0.96
80	0.4736	0.1029	4.198 1.95	351 11.3	670 22.9	2.20 0.96
85	0.5780	0.1032	4.203 1.96	330 11.4	673 23.3	2.06 0.96
90	0.7011	0.1036	4.208 1.97	311 11.6	676 23.8	1.94 0.96
95	0.8453	0.1040	4.213 1.99	294 11.8	678 24.3	1.83 0.97
100	1.01325	0.1044	4.219 2.01	279 12.0	681 24.8	1.73 0.97
105	1.208	0.1048	4.226 2.03	265 12.2	683 25.3	1.64 0.98
110	1.433	0.1052	4.233 2.05	252 12.4	684 25.8	1.56 0.99
115	1.691	0.1056	4.240 2.07	241 12.6	686 26.3	1.49 0.99
120	1.985	0.1060	4.248 2.09	230 12.8	687 26.8	1.42 1.00
125	2.321	0.1065	4.26 2.12	220 13.0	687 27.3	1.36 1.01
130	2.701	0.1070	4.27 2.15	211 13.2	688 27.8	1.31 1.02
135	3.131	0.1075	4.28 2.18	203 13.4	688 28.3	1.26 1.03
140	3.614	0.1080	4.29 2.21	195 13.5	688 28.8	1.22 1.04
145	4.155	0.1085	4.30 2.25	188 13.7	687 29.4	1.18 1.05
150	4.760	0.1091	4.32 2.29	181 13.9	687 30.0	1.14 1.07
160	6.181	0.1102	4.35 2.38	169 14.2	684 31.3	1.07 1.09
170	7.920	0.1114	4.38 2.49	159 14.6	681 32.6	1.02 1.12
180	10.03	0.1128	4.42 2.62	149 15.0	676 34.1	0.97 1.15
190	12.55	0.1142	4.46 2.76	141 15.3	671 35.7	0.94 1.18
200	15.55	0.1157	4.51 2.91	134 15.7	665 37.5	0.91 1.22
210	19.08	0.1173	4.56 3.07	127 16.0	657 39.4	0.88 1.25
220	23.20	0.1190	4.63 3.25	121 16.3	648 41.5	0.86 1.28
230	27.98	0.1209	4.70 3.45	116 16.7	639 43.9	0.85 1.31
240	33.48	0.1229	4.78 3.68	111 17.1	628 46.5	0.84 1.35
250	39.78	0.1251	4.87 3.94	107 17.5	616 49.5	0.85 1.39
260	46.94	0.1276	4.98 4.22	103 17.9	603 52.8	0.85 1.43
270	55.05	0.1302	5.10 4.55	99 18.3	589 56.6	0.86 1.47
280	64.19	0.1332	5.24 4.98	96 18.8	574 61.0	0.88 1.53
290	74.45	0.1366	5.42 5.46	93 19.3	558 66.0	0.90 1.60
300 320 340 360 370	85.92 112.9 146.1 186.7 210.5	0.1404 0.1499 0.1639 0.1894 0.2225	5.65 6.18	90 19.8	541 72.0	0.94 1.70
374.15	221.2	0.317				

The values for saturated water can be used with good accuracy above saturation pressure. The values for saturated steam can be used with only moderate accuracy below saturation pressure at temperatures greater than 200 °C.

General Information for H₂O

Triple point: Thermodynamic temperature (by definition) = $\frac{272.16 \text{ K} \odot 0.01 \text{ M} \odot 0.01 \text{ M}}{2.000 \text{ M}} \odot \frac{22.018 \text{ M}}{2.0000 \text{ M}} \odot \frac{22.0$

273.16 K \cong 0.01 °C \cong 491.688 R \cong 32.018 °F (hence 0 °C \cong 273.15 K, 0 °F \cong 459.67 R, 32 °F \cong 491.67 R)

Gas constant: $R = \tilde{R}/\tilde{m} = 8.3145/18.015 = 0.4615 \text{ kJ/kg K}$

Compressed Water*

	T/[°C]	0.01	100	200	250	300	350	374.15
p/[bar] (T _s /[°C])	$\begin{array}{c} p_s \\ v_f/10^{-2} \\ h_f \\ s_f \end{array}$	0.006112 0.1000 0	1.01325 0.1044 419 1.307	15.55 0.1157 852 2.331	39.78 0.1251 1086 2.793	85.92 0.1404 1345 3.255	165.4 0.1741 1671 3.779	221.2 0.317 2084 4.430
100 (311.0)		-0.0005 +10 0.000	-0.0006 +7 -0.008	-0.0009 +4 -0.013	-0.0011 0 -0.014	-0.0007 -2 -0.007		
221.2 (374.15)		-0.0011 $+22$ $+0.001$	-0.0012 + 17 -0.017	-0.0020 + 9 -0.031	-0.0029 $+1$ -0.040	-0.0051 -12 -0.053	-0.0107 -34 -0.071	0 0 0
500		$-0.0023 + 49 \\ 0.000$	-0.0024 + 38 -0.037	-0.0042 + 23 - 0.068	-0.0064 + 8 -0.091	-0.0117 -21 -0.134	-0.0298 -94 -0.235	-0.161 -369 -0.670
1000		-0.0044 +96 -0.007	-0.0044 + 76 -0.070	-0.0075 + 51 - 0.124	-0.0111 + 28 -0.164	-0.0191 -17 -0.235	-0.0427 -119 -0.385	-0.180 -415 -0.853

^{*} See footnote on p. 6.

Saturated Ice and Steam

<u>T</u> [°C]	P _s [bar]	$\frac{v_{\rm i}}{10^{-2}[\rm m^3/kg]}$	$\frac{v_{\rm g}}{[\rm m^3/kg]}$	$\frac{u_{\rm i}}{[{\rm kJ}]}$	u _g /kg]	$\frac{h_{\rm i} \qquad h_{\rm g}}{[{\rm kJ/kg}]}$	$\frac{s_{i} \qquad s_{g}}{[kJ/kg K]}$
0.01	0.006112	0.1091	206.1	-333.5	2374.7	-333.5 2500.8	-1.221 9.155
-10	0.002598	0.1089	467.5	-354.2	2360.8	-354.2 2482.2	-1.298 9.481
-20	0.001038	0.1087	1125	-374.1	2346.8	-374.1 2463.6	-1.375 9.835
-30	0.0003809	0.1086	2946	-393.3	2332.9	-393.3 2445.1	-1.452 10.221
-40	0.0001288	0.1084	8354	-411.8	2319.0	-411.8 2426.6	-1.530 10.644

Isentropic Expansion of Steam—Approximate Relations

Wet equilibrium expansion:

puⁿ = constant, with $n \approx 1.035 + 0.1x_1$ for steam with an initial dryness fraction $0.7 < x_1 < 1.0$

Superheated and supersaturated expansion:

 $pv^n = \text{constant and } p/T^{n/(n-1)} = \text{constant, with } n \approx 1.3$

Enthalpy drop
$$\frac{(h_2 - h_1)}{\lceil kJ/kg \rceil} = \left(\frac{h_1}{\lceil kJ/kg \rceil} - 1943\right) \left\lceil \left(\frac{p_2}{p_1}\right)^{(n-1)/n} - 1 \right\rceil$$

Specific volume of supersaturated steam:

$$\frac{p}{[\text{bar}]} \times \frac{v}{[\text{m}^3/\text{kg}]} \times 10^2 = \frac{0.3}{1.3} \left(\frac{h}{[\text{kJ/kg}]} - 1943 \right)$$

Mercury-Hg

	$\frac{T_{\rm s}}{[^{\circ}{\rm C}]}$	$\frac{v_{\rm g}}{[{\rm m}^3/{\rm kg}]}$	$h_{\rm f}$	$\frac{h_{\rm fg}}{[{\rm kJ/kg}]}$	$h_{\rm g}$	s_{f}	$\frac{s_{fg}}{[kJ/kgK]}$	$S_{\mathbf{g}}$
0.0006	109.2	259.6	15.13	297.20	312.33	0.0466	0.7774	0.8240
0.0007	112.3	224.3	15.55	297.14	312.69	0.0477	0.7709	0.8186
0.0008	115.0	197.7	15.93	297.09	313.02	0.0487	0.7654	0.8141
0.0009	117.5	176.8	16.27	297.04	313.31	0.0496	0.7604	0.8100
0.0010	119.7	160.1	16.58	297.00	313.58	0.0503	0.7560	0.8063
0.002	134.9	83.18	18.67	296.71	315.38	0.0556	0.7271	0.7827
0.004	151.5	43.29	20.93	296.40	317.33	0.0610	0.6981	0.7591
0.006	161.8	29.57	22.33	296.21	318.54	0.0643	0.6811	0.7454
0.008	169.4	22.57	23.37	296.06	319.43	0.0666	0.6690	0.7356
0.010	175.5	18.31	24.21	295.95	320.16	0.0685	0.6596	0.7281
0.02	195.6	9.570	26.94	295.57	322.51	0.0744	0.6305	0.7049
0.04	217.7	5.013	29.92	295.15	325.07	0.0806	0.6013	0.6819
0.06	231.6	3.438	31.81	294.89	326.70	0.0843	0.5842	0.6685
0.08	242.0	2.632	33.21	294.70	327.91	0.0870	0.5721	0.6591
0.10	250.3	2.140	34.33	294.54	328.87	0.0892	0.5627	0.6519
0.2	278.1	1.128	38.05	294.02	332.07	0.0961	0.5334	0.6295
0.4	309.1	0.5942	42.21	293.43	335.64	0.1034	0.5039	0.6073
0.6	329.0	0.4113	44.85	293.06	337.91	0.1078	0.4869	0.5947
0.8	343.9	0.3163	46.84	292.78	339.62	0.1110	0.4745	0.5855
1	356.1	0.2581	48.45	292.55	341.00	0.1136	0.4649	0.5785
2	397.1	0.1377	53.87	291.77	345.64	0.1218	0.4353	0.5571
3	423.8	0.09551	57.38	291.27	348.65	0.1268	0.4179	0.5447
4	444.1	0.07378	60.03	290.89	350.92	0.1305	0.4056	0.5361
5	460.7	0.06044	62.20	290.58	352.78	0.1334	0.3960	0.5294
6	474.9	0.05137	64.06	290.31	354.37	0.1359	0.3881	0.5240
7	487.3	0.04479	65.66	290.08	355.74	0.1380	0.3815	0.5195
8	498.4	0.03978	67.11	289.87	356.98	0.1398	0.3757	0.5155
9	508.5	0.03584	68.42	289.68	358.10	0.1415	0.3706	0.5121
10	517.8	0.03266	69.61	289.50	359.11	0.1429	0.3660	0.5089
12	534.4	0.02781	71.75	289.19	360.94	0.1455	0.3581	0.5036
14	549.0	0.02429	73.63	288.92	362.55	0.1478	0.3514	0.4992
16	562.0	0.02161	75.37	288.67	364.04	0.1498	0.3456	0.4954
18	574.0	0.01949	76.83	288.45	365.28	0.1515	0.3405	0.4920
20	584.9	0.01778	78.23	288.24	366.47	0.1531	0.3359	0.4890
22	595.1	0.01637	79.54	288.05	367.59	0.1546	0.3318	0.4864
24	604.6	0.01518	80.75	287.87	368.62	0.1559	0.3280	0.4839
26	613.5	0.01416	81.89	287.70	369.59	0.1571	0.3245	0.4816
28	622.0	0.01329	82.96	287.54	370.50	0.1583	0.3212	0.4795
30	630.0	0.01252	83.97	287.39	371.36	0.1594	0.3182	0.4776
35	648.5	0.01096	86.33	287.04	373.37	0.1619	0.3115	0.4734
40	665.1	0.00978	88.43	286.73	375.16	0.1641	0.3056	0.4697
45	680.3	0.00885	90.35	286.44	376.79	0.1660	0.3004	0.4664
50	694.4	0.00809	92.11	286.18	378.29	0.1678	0.2958	0.4636
55	707.4	0.00746	93.76	285.93	379.69	0.1694	0.2916	0.4610
60	719.7	0.00693	95.30	285.70	381.00	0.1709	0.2878	0.4587
65	731.3	0.00648	96.75	285.48	382.23	0.1723	0.2842	0.4565
70	742.3	0.00609	98.12	285.28	383.40	0.1736	0.2809	0.4545
75	752.7	0.00575	99.42	285.08	384.50	0.1748	0.2779	0.4527

 $h_{\rm f}$ and $s_{\rm f}$ are zero at 0 "C. Molar mass $m=200.59\,{\rm kg/kmol}$; for superheated vapour $c_p=0.1036\,{\rm kJ/kg}$ K; further properties of the liquid are given on p. 23.

Ammonia – NH, (Refrigerant 717)

-	S - 4			Superhe	eat $(T-T_s)$
	Sat	uration Values		50 K	100 K
$ \begin{array}{c c} T & p_s \\ \hline [°C] & [bar] & \hline \end{array} $	$\frac{v_{\rm g}}{[{\rm m}^3/{\rm kg}]}$	$\frac{h_{\rm f}}{[{\rm kJ/kg}]}$	$\frac{s_{\rm f}}{[{\rm kJ/kgK}]}$	$\frac{h}{[kJ/kg]} \frac{s}{[kJ/kgK]}$	$\frac{h}{[kJ/kg]} \frac{s}{[kJ/kg K]}$
-45 0.5454 -40 0.7177 -35 0.9322	2.625 2.005 1.552 1.216 0.9633	-44.4 1373.3 -22.3 1381.6 0 1390.0 22.3 1397.9 44.7 1405.6	-0.194 6.159 -0.096 6.057 0 5.962 0.095 5.872 0.188 5.785	1479.8 6.592 1489.3 6.486 1498.6 6.387 1507.9 6.293 1517.0 6.203	1585.9 6.948 1596.1 6.839 1606.3 6.736 1616.3 6.639 1626.3 6.547
-26 1.447 -24 1.588 -22 1.740	0.8809 0.8058 0.7389 0.6783 0.6237	53.6 1408.5 62.6 1411.4 71.7 1414.3 80.8 1417.3 89.8 1420.0	0.224 5.751 0.261 5.718 0.297 5.686 0.333 5.655 0.368 5.623	1520.7 6.169 1524.3 6.135 1527.9 6.103 1531.4 6.071 1534.8 6.039	1630.3 6.512 1634.2 6.477 1638.2 6.444 1642.2 6.411 1646.0 6.379
-16 2.265 -14 2.465 -12 2.680	0.5743 0.5296 0.4890 0.4521 0.4185	98.8 1423.7 107.9 1425.3 117.0 1427.9 126.2 1430.5 135.4 1433.0	0.404 5.593 0.440 5.563 0.475 5.533 0.510 5.504 0.544 5.475	1538.2 6.008 1541.7 5.978 1545.1 5.948 1548.5 5.919 1551.7 5.891	1650.0 6.347 1653.8 6.316 1657.7 6.286 1661.5 6.256 1665.3 6.227
- 6 3.413 - 4 3.691 - 2 3.983	0.3879 0.3599 0.3344 0.3110 0.2895	144.5 1435.3 153.6 1437.6 162.8 1439.9 172.0 1442.2 181.2 1444.4	0.579 5.447 0.613 5.419 0.647 5.392 0.681 5.365 0.715 5.340	1554.9 5.863 1558.2 5.836 1561.4 5.808 1564.6 5.782 1567.8 5.756	1669.0 6.199 1672.8 6.171 1676.4 6.143 1680.1 6.116 1683.9 6.090
4 4.975 6 5.346 8 5.736	0.2699 0.2517 0.2351 0.2198 0.2056	190.4 1446.5 199.7 1448.5 209.1 1450.6 218.5 1452.5 227.8 1454.3	0.749 5.314 0.782 5.288 0.816 5.263 0.849 5.238 0.881 5.213	1570.9 5.731 1574.0 5.706 1577.0 5.682 1580.1 5.658 1583.1 5.634	1687.5 6.065 1691.2 6.040 1694.9 6.015 1698.4 5.991 1702.2 5.967
14 7.045 16 7.529 18 8.035	0.1926 0.1805 0.1693 0.1590 0.1494	237.2 1456.1 246.6 1457.8 256.0 1459.5 265.5 1461.1 275.1 1462.6	0.914 5.189 0.947 5.165 0.979 5.141 1.012 5.118 1.044 5.095	1586.0 5.611 1588.9 5.588 1591.7 5.565 1594.4 5.543 1597.2 5.521	1705.7 5.943 1709.1 5.920 1712.5 5.898 1715.9 5.876 1719.3 5.854
24 9.722 26 10.34 28 10.99	0.1405 0.1322 0.1245 0.1173 0.1106	284.6 1463.9 294.1 1465.2 303.7 1466.5 313.4 1467.8 323.1 1468.9	1.076 5.072 1.108 5.049 1.140 5.027 1.172 5.005 1.204 4.984	1600.0 5.499 1602.7 5.418 1605.3 5.458 1608.0 5.437 1610.5 5.417	1722.8 5.832 1726.3 5.811 1729.6 5.790 1732.7 5.770 1735.9 5.750
34 13.11	0.1044 0.0986 0.0931 0.0833 0.0880	332.8 1469.9 342.5 1470.8 352.3 1471.8 362.1 1472.6 371.9 1473.3	1.235 4.962 1.267 4.940 1.298 4.919 1.329 4.898 1.360 4.877	1613.0 5.397 1615.4 5.378 1617.8 5.358 1620.1 5.340 1622.4 5.321	1739.3 5.731 1742.6 5.711 1745.7 5.692 1748.7 5.674 1751.9 5.655
44 17.34 46 18.30 48 19.29	0.0788 0.0746 0.0706 0.0670 0.0635	381.8 1473.8 391.8 1474.2 401.8 1474.5 411.9 1474.7 421.9 1474.7	1.391 4.856 1.422 4.835 1.453 4.814 1.484 4.793 1.515 4.773	1624.6 5.302 1626.8 5.284 1629.0 5.266 1631.1 5.248 1633.1 5.230	1755.0 5.637 1758.0 5.619 1761.0 5.602 1764.0 5.584 1766.8 5.567

Critical point $T_{\epsilon} = 132.4$ °C, $p_{\epsilon} = 113.0$ bar. Molar mass $\tilde{m} = 17.030$ kg/kmol; further properties of the liquid are given on p. 23.

Dichlorodifluoromethane-CF₂Cl₂ (Refrigerant 12)

			Superh	eat (<i>TT</i> ,)
S	nturation Values		15 K	30 K
$\frac{T}{[^{\circ}C]} \frac{p_{s}}{[bar]} \frac{v_{g}}{[m^{3}/kg]}$	$\frac{h_{\rm f} \qquad h_{\rm g}}{[kJ/kg]}$	$\frac{s_{\rm f}}{[{\rm kJ/kgK}]}$	$\frac{h}{[kJ/kg]} \frac{s}{[kJ/kg K]}$	$\frac{h}{[kJ/kg]} \frac{s}{[kJ/kgK]}$
-100 0.0118 10.100	-51.84 142.00	-0.2567 0.8628	148.89 0.9019	156.10 0.9428
- 95 0.0181 6.585	-47.56 144.22	-0.2323 0.8442	151.23 0.8830	158.55 0.9195
- 90 0.0284 4.416	-43.28 146.46	-0.2086 0.8274	153.59 0.8649	161.02 0.9010
- 85 0.0424 3.037	-39.00 148.73	-0.1856 0.8122	155.98 0.8493	163.52 0.8851
- 80 0.0617 2.138	-34.72 151.02	-0.1631 0.7985	158.39 0.8351	166.04 0.8706
- 75 0.0879 1.538	-30.43 153.32	-0.1412 0.7861	160.82 0.8226	168.57 0.8578
- 70 0.1227 1.127	-26.13 155.63	-0.1198 0.7749	163.26 0.8110	171.12 0.8459
- 65 0.1680 0.8412	-21.81 157.96	-0.0988 0.7649	165.70 0.8008	173.68 0.8355
- 60 0.2262 0.6379	-17.49 160.29	-0.0783 0.7558	168.15 0.7915	176.26 0.8259
- 55 0.2998 0.4910	-13.14 162.62	-0.0582 0.7475	170.60 0.7830	178.84 0.8172
- 50 0.3915 0.3831	- 8.78 164.95	-0.0384 0.7401	173.07 0.7753	181.43 0.8093
- 45 0.5044 0.3027	- 4.40 167.28	-0.0190 0.7335	175.54 0.7685	184.01 0.8023
- 40 0.6417 0.2419	0 169.60	0 0.7274	178.00 0.7623	186.60 0.7959
- 35 0.8071 0.1954	4.42 171.90	0.0187 0.7219	180.45 0.7568 182.90 0.7517 185.33 0.7473 187.75 0.7432 190.15 0.7397	189.18 0.7902
- 30 1.004 0.1594	8.86 174.20	0.0371 0.7170		191.76 0.7851
- 25 1.237 0.1312	13.33 176.48	0.0552 0.7127		194.33 0.7805
- 20 1.509 0.1088	17.82 178.73	0.0731 0.7087		196.89 0.7764
- 15 1.826 0.0910	22.33 180.97	0.0906 0.7051		199.44 0.7728
- 10 2.191 0.0766	26.87 183.19	0.1080 0.7020	192.53 0.7365	201.97 0.7695
- 5 2.610 0.0650	31.45 185.38	0.1251 0.6991	194.90 0.7336	204.49 0.7666
0 3.086 0.0554	36.05 187.53	0.1420 0.6966	197.25 0.7311	206.99 0.7641
5 3.626 0.0475	40.69 189.66	0.1587 0.6943	199.56 0.7289	209.47 0.7618
10 4.233 0.0409	45.37 191.74	0.1752 0.6921	201.85 0.7268	211.92 0.7598
15 4.914 0.0354	50.10 193.78	0.1915 0.6901	204.10 0.7251	214.35 0.7580
20 5.673 0.0308	54.87 195.78	0.2078 0.6885	206.32 0.7235	216.75 0.7565
25 6.516 0.0269	59.70 197.73	0.2239 0.6869	208.50 0.7220	219.11 0.7552
30 7.449 0.0235	64.59 199.62	0.2399 0.6853	210.63 0.7208	221.44 0.7540
35 8.477 0.0206	69.55 201.45	0.2559 0.6839	212.72 0.7196	223.73 0.7529
40 9.607 0.0182 45 10.84 0.0160 50 12.19 0.0142 55 13.66 0.0125 60 15.26 0.0111	74.59 203.20	0.2718 0.6825	214.76 0.7185	225.98 0.7519
	79.71 204.87	0.2877 0.6811	216.74 0.7175	228.18 0.7511
	84.94 206.45	0.3037 0.6797	218.64 0.7166	230.33 0.7503
	90.27 207.92	0.3197 0.6782	220.48 0.7156	232.42 0.7496
	95.74 209.26	0.3358 0.6765	222.23 0.7146	234.45 0.7490
65 16.99 0.00985 70 18.86 0.00873 75 20.88 0.00772 80 23.05 0.00682 85 25.38 0.00601	101.36 210.46	0.3521 0.6747	223.89 0.7136	236.42 0.7484
	107.15 211.48	0.3686 0.6726	225.45 0.7125	238.32 0.7477
	113.15 212.29	0.3854 0.6702	226.89 0.7113	240.13 0.7470
	119.39 212.83	0.4027 0.6673	228.21 0.7099	241.86 0.7463
	125.93 213.04	0.4204 0.6636	229.39 0.7084	243.50 0.7455
90 27.89 0.00526	132.84 212.80	0.4389 0.6591	230.43 0.7067	245.03 0.7445
95 30.57 0.00456	140.23 211.94	0.4583 0.6531	231.30 0.7047	246.47 0.7435
100 33.44 0.00390	148.32 210.12	0.4793 0.6449	231.93 0.7023	247.80 0.7424
105 36.51 0.00324	157.52 206.57	0.5028 0.6325	232.22 0.6994	248.97 0.7412
110 39.79 0.00246	169.55 197.99	0.5334 0.6076	232.47 0.6964	250.10 0.7399
112 41.15 0.00179	183.43 183.43	0.5690 0.5690	232.80 0.6958	250.58 0.7394

Molar mass $\tilde{m} = 120.91 \text{ kg/kmol}$; further properties of the liquid are given on p. 23.

Tetrafluoroethane – CH₂F-CF₃ (Refrigerant 134a)

		Saturation	n Values	······································	,			Superheat $(T - T_s)$			
<u> </u>							10	ΟK	20	0 K	
$\frac{T}{[GC]}$	$\frac{p_s}{r_1}$	$\frac{v_{\rm g}}{1 - 2 \cdot (1 - 1)}$	$\frac{h_{\mathrm{f}}}{h_{\mathrm{f}}}$	h _g	Sf	Sg	h	S	h	S	
[°C]	[bar]	$[m^3/kg]$	[kJ,	/kg]	[kJ/k	g K]	[kJ/kg]	[kJ/kg K]	[kJ/kg]	[kJ/kg K]	
-103.30	0.0041	34.032	77.69	335.24	0.4453	1.9616	341.16	1.9955	347.29	2.0287	
-100 - 90	0.0058	24.341	80.89	337.15	0.4640	1.9439	343.14	1.9776	349.35	2.0106	
- 90 - 80	0.0155 0.0370	9.5984 4.2333	90.97	343.05 349.09	0.5205 0.5770	1.8969 1.8584	349.27 355.55	1.9300 1.8910	355.70 362.20	1.9624	
- 70	0.0800	2.0522	112.70	355.25	0.6330	1.8270	361.95	1.8592	368.84	1.9229 1.8907	
- 60	0.1591	1.07785	124.23	361.48	0.6884	1.8015	368.44	1.8334	375.57	1.8646	
- 50	0.2944	0.60592	136.14	367.76	0.7430	1.7809	374.99	1.8126	382.38	1.8436	
- 40	0.5188	0.36089	148.37	374.03	0.7965	1.7644	381.56	1.7960	389.22	1.8269	
- 30	0.8435	0.22577	160.89	380.27	0.8490	1.7512	388.12	1.7828	396.07	1.8137	
- 25 - 20	1.0637	0.18146	167.25	383.37	0.8748	1.7457	391.38	1.7774	399.49	1.8082	
- 20 - 15	1.3272 1.6393	0.14725 0.12055	173.67 180.16	386.44 389.49	0.9003 0.9256	1.7408 1.7365	394.63	1.7726	402.90	1.8034	
- 10	2.0060	0.12033	186.71	392.51	0.9236	1.7303	397.86 401.07	1.7683 1.7647	406.29 409.67	1.7992 1.7956	
5	2.4335	0.08273	193.32	395.49	0.9754	1.7294	404.25	1.7614	413.02	1.7924	
0†	2.9281	0.06925	200.00†	398.43	1.0000†	1.7264	407.40	1.7587	416.35	1.7897	
5	3.4966	0.05834	206.75	401.33	1.0243	1.7238	410.50	1.7562	419.65	1.7874	
10	4.1459	0.04942	213.57	404.16	1.0484	1.7215	413.56	1.7542	422.90	1.7855	
15 20	4.8833 5.7162	0.04208 0.03599	220.46 227.45	406.93	1.0723	1.7194	416.57	1.7524	426.12	1.7838	
25	6.6525	0.03399	234.52	409.62 412.23	1.0961 1.1198	1.7176 1.7158	419.52 422.41	1.7508 1.7494	429.29 432.40	1.7825 1.7813	
30	7.7000	0.02665	241.69	414.74	1.1136	1.7142	425.21	1.7494	435.44	1.7813	
35	8.8672	0.02304	248.98	417.14	1.1669	1.7126	427.93	1.7470	438.42	1.7795	
40	10.163	0.01998	256.38	419.41	1.1903	1.7109	430.55	1.7460	441.32	1.7788	
45 50	11.595	0.01735	263.92	421.53	1.2138	1.7092	433.06	1.7449	444.13	1.7781	
	13.174	0.01510	271.61	423.47	1.2374	1.7073	435.44	1.7438	446.84	1.7775	
55 60	14.910 16.812	0.01315 0.01145	279.46 287.51	425.20 426.69	1.2610 1.2848	1.7051	437.69 439.77	1.7426	449.45	1.7769	
65	18.892	0.00997	295.77	420.09	1.2046	1.7026 1.6995	439.77 441.67	1.7412 1.7397	451.93 454.29	1.7762 1.7754	
70	21.161	0.00866	304.29	428.72	1.3332	1.6958	443.36	1.7378	456.50	1.7745	
75	23.633	0.00750	313.13	429.09	1.3580	1.6911	444.82	1.7356	458.54	1.7734	
80	26.323	0.00645	322.36	428.85	1.3835	1.6851	446.01	1.7330	460.42	1.7721	
85	29.249	0.00550	332.16	427.77	1.4101	1.6771	446.88	1.7298	462.09	1.7706	
90 95	32.433 35.906	0.00462 0.00375	342.79	425.40	1.4386	1.6661	447.40	1.7259	463.55	1.7687	
100	39.728	0.00373	355.05 373.53	420.64 406.93	1.4709 1.5193	1.6491 1.6088	447.49 447.04	1.7212 1.7153	464.76 465.65	1.7663 1.7633	
101.00		0.00196	389.67	389.67	1.5621	1.5621	446.84				
101.00	70.330	0.00170	309.07	307.07	1.3021	1.3021	440.84	1.7139	465.77	1.7626	

Molar mass $\tilde{m} = 102.03 \, \text{kg/kmol}$; further properties of the liquid are given on p. 23.

It must be remembered that datum states are quite arbitrary and do not affect calculations which involve changes of properties, such as Δh .

[†]The datum state for refrigerant properties used to be -40° C ($h_{\rm f} = 0$, $s_{\rm f} = 0$), a temperature at which -40° C = -40° F. This datum state is used here for the R717 and R12 tables. Nowadays the datum state chosen is 0° C ($h_{\rm f} = 200 \, {\rm kJ/kg}$, $s_{\rm f} = 1.000 \, {\rm kJ/kg}$ K), a choice which ensures that no negative values of $h_{\rm f}$ and $s_{\rm f}$ appear in common refrigerant tables. This datum state is chosen for the R134a table.

Dry Air at Low Pressure

					at	1 atm
$\frac{T}{[K]}$	$\frac{c_p}{[kJ/kgK]}$	$\frac{\mu}{10^{-5}[\mathrm{kg/ms}]}$	$\frac{k}{10^{-5}[kW/mK]}$	Pr	$\frac{\rho}{[kg/m^3]}$	$\frac{v}{10^{-5}[\text{m}^2/\text{s}]}$
175	1.0023 0.7152 1.401	1.182	1.593	0.744	2.017	0.586
200	1.0025 0.7154 1.401	1.329	1.809	0.736	1.765	0.753
225	1.0027 0.7156 1.401	1.467	2.020	0.728	1.569	0.935
250	1.0031 0.7160 1.401	1.599	2.227	0.720	1.412	1.132
275	1.0038 0.7167 1.401	1.725	2.428	0.713	1.284	1.343
300	1.0049 0.7178 1.400	1.846	2.624	0.707	1.177	1.568
325	1.0063 0.7192 1.400	1.962	2.816	0.701	1.086	1.807
350	1.0082 0.7211 1.398	2.075	3.003	0.697	1.009	2.056
375	1.0106 0.7235 1.397	2.181	3.186	0.692	0.9413	2.317
400	1.0135 0.7264 1.395	2.286	3.365	0.688	0.8824	2.591
450	1.0206 0.7335 1.391	2.485	3.710	0.684	0.7844	3.168
500	1.0295 0.7424 1.387	2.670	4.041	0.680	0.7060	3.782
550	1.0398 0.7527 1.381	2.849	4.357	0.680	0.6418	4.439
600	1.0511 0.7640 1.376	3.017	4.661	0.680	0.5883	5.128
650	1.0629 0.7758 1.370	3.178	4.954	0.682	0.5430	5.853
700	1.0750 0.7879 1.364	3.332	5.236	0.684	0.5043	6.607
750	1.0870 0.7999 1.359	3.482	5.509	0.687	0.4706	7.399
800	1.0987 0.8116 1.354	3.624	5.774	0.690	0.4412	8.214
850	1.1101 0.8230 1.349	3.763	6.030	0.693	0.4153	9.061
900	1.1209 0.8338 1.344	3.897	6.276	0.696	0.3922	9.936
950	1.1313 0.8442 1.340	4.026	6.520	0.699	0.3716	10.83
1000	1.1411 0.8540 1.336	4.153	6.754	0.702	0.3530	11.76
1050	1.1502 0.8631 1.333	4.276	6.985	0.704	0.3362	12.72
1100	1.1589 0.8718 1.329	4.396	7.209	0.707	0.3209	13.70
1150	1.1670 0.8799 1.326	4.511	7.427	0.709	0.3069	14.70
1200	1.1746 0.8875 1.323	4.626	7.640	0.711	0.2941	15.73
1250	1.1817 0.8946 1.321	4.736	7.849	0.713	0.2824	16.77
1300	1.1884 0.9013 1.319	4.846	8.054	0.715	0.2715	17.85
1350	1.1946 0.9075 1.316	4.952	8.253	0.717	0.2615	18.94
1400	1.2005 0.9134 1.314	5.057	8.450	0.719	0.2521	20.06
1500	1.2112 0.9241 1.311	5.264	8.831	0.722	0.2353	22.36
1600	1.2207 0.9336 1.308	5.457	9.199	0.724	0.2206	24.74
1700	1.2293 0.9422 1.305	5.646	9.554	0.726	0.2076	27.20
1800	1.2370 0.9499 1.302	5.829	9.899	0.728	0.1961	29.72
1900	1.2440 0.9569 1.300	6.008	10.233	0.730	0.1858	32.34
2000 2100 2200 2300 2400	1.2505 0.9634 1.298 1.2564 0.9693 1.296 1.2619 0.9748 1.295 1.2669 0.9798 1.293 1.2717 0.9846 1.292	- - - -	 - - -	 	0.1765 0.1681 0.1604 0.1535 0.1471	
2500 2600 2700 2800 2900	1.2762 0.9891 1.290 1.2803 0.9932 1.289 1.2843 0.9972 1.288 1.2881 1.0010 1.287 1.2916 1.0045 1.286	_ _ _ _ _		 	0.1412 0.1358 0.1307 0.1261 0.1217	— — — — —
3000	1.2949 1.0078 1.285	_			0.1177	

The values for air can also be used with reasonable accuracy for CO, N₂ and O,.

The values of the thermodynamic properties c_p and c_p on pp. 16 and 17 are those at zero pressure. The values for the gases are quite accurate over a wide range of pressure, but those for the vapours increase appreciably with pressure.

The transport properties μ and k for air are accurate over a wide range of pressure, except at such low pressures that the mean free path of the molecules is comparable to the distance between the solid surfaces containing the gas.

At high temperatures (> 1500 K for air) dissociation becomes appreciable and pressure is a significant variable for both gases and vapours: the values on pp. 16 and 17 apply only to undissociated states.

Specific Heat Capacity $c_p/[kJ/kg\,K]$ of Some Gases and Vapours

T/[K]	CO ₂	СО	H ₂	N ₂	O ₂	H ₂ O	CH ₄	C_2H_4	C_2H_6
175 200 225 250 275	0.709 0.735 0.763 0.791 0.819	1.039 1.039 1.039 1.039 1.040	13.12 13.53 13.83 14.05 14.20	1.039 1.039 1.039 1.039 1.039	0.910 0.910 0.911 0.913 0.915	1.850 1.851 1.852 1.855 1.859	2.083 2.087 2.121 2.156 2.191	1.241 1.260 1.316 1.380 1.453	1.535 1.651
300	0.846	1.040	14.31	1.040	0.918	1.864	2.226	1.535	1.766
325	0.871	1.041	14.38	1.040	0.923	1.871	2.293	1.621	1.878
350	0.895	1.043	14.43	1.041	0.928	1.880	2.365	1.709	1.987
375	0.918	1.045	14.46	1.042	0.934	1.890	2.442	1.799	2.095
400	0.939	1.048	14.48	1.044	0.941	1.901	2.525	1.891	2.199
450	0.978	1.054	14.50	1.049	0.956	1.926	2.703	2.063	2.402
500	1.014	1.064	14.51	1.056	0.972	1.954	2.889	2.227	2.596
550	1.046	1.075	14.53	1.065	0.988	1.984	3.074	2.378	2.782
600	1.075	1.087	14.55	1.075	1.003	2.015	3.256	2.519	2.958
650	1.102	1.100	14.57	1.086	1.017	2.047	3.432	2.649	3.126
700	1.126	1.113	14.60	1.098	1.031	2.080	3.602	2.770	3.286
750	1.148	1.126	14.65	1.110	1.043	2.113	3.766	2.883	3.438
800	1.168	1.139	14.71	1.122	1.054	2.147	3.923	2.989	3.581
850	1.187	1.151	14.77	1.134	1.065	2.182	4.072	3.088	3.717
900	1.204	1.163	14.83	1.146	1.074	2.217	4.214	3.180	3.846
950	1.220	1.174	14.90	1.157	1.082	2.252	4.348	3.266	
1000	1.234	1.185	14.98	1.167	1.090	2.288	4.475	3.347	
1050	1.247	1.194	15.06	1.177	1.097	2.323	4.595	3.423	
1100	1.259	1.203	15.15	1.187	1.103	2.358	4.708	3.494	
1150	1.270	1.212	15.25	1.196	1.109	2.392	4.814	3.561	
1200 1250 1300	1.280 1.290 1.298	1.220 1.227 1.234	15.34 15.44 15.54	1.204 1.212 1.219	1.115 1.120 1.125	2.425 2.458 2.490	T/[K]	C ₆ H ₆	C ₈ H ₁₈
1350 1350 1400	1.306 1.313	1.240 1.246	15.65 15.77	1.226 1.232	1.130 1.134	2.521 2.552	250 275	0.850 0.957	1.308 1.484
1500	1.326	1.257	16.02	1.244	1.143	2.609	300	1.060	1.656
1600	1.338	1.267	16.23	1.254	1.151	2.662	325	1.160	1.825
1700	1.348	1.275	16.44	1.263	1.158	2.711	350	1.255	1.979
1800	1.356	1.282	16.64	1.271	1.166	2.756	375	1.347	2.109
1900	1.364	1.288	16.83	1.278	1.173	2.798	400	1.435	2.218
2000	1.371	1.294	17.01	1.284	1.181	2.836	450	1.600	2.403
2100	1.377	1.299	17.18	1.290	1.188	2.872	500	1.752	2.608
2200	1.383	1.304	17.35	1.295	1.195	2.904	550	1.891	2.774
2300	1.388	1.308	17.50	1.300	1.202	2.934	600	2.018	2.924
2400	1.393	1.311	17.65	1.304	1.209	2.962	650	2.134	3.121
2500	1.397	1.315	17.80	1.307	1.216	2.987	700	2.239	3.232
2600	1.401	1.318	17.93	1.311	1.223	3.011	750	2.335	3.349
2700	1.404	1.321	18.06	1.314	1.230	3.033	800	2.422	3.465
2800	1.408	1.324	18.17	1.317	1.236	3.053	850	2.500	3.582
2900	1.411	1.326	18.28	1.320	1.243	3.072	900	2.571	3.673
3000 3500 4000 4500 5000	1.414 1.427 1.437 1.446 1.455	1.329 1.339 1.346 1.353 1.359	18.39 18.91 19.39 19.83 20.23	1.323 1.333 1.342 1.349 1.355	1.249 1.276 1.299 1.316 1.328	3.090 3.163 3.217 3.258 3.292			
5500 6000	1.465 1.476	1.365 1.370	20.61 20.96	1.362 1.369	1.337 1.344	3.322 3.350			

The specific heat capacities of atomic H, N and O are given with adequate accuracy by $c_p = 2.5 \ \tilde{R}/\tilde{m}$ where \tilde{m} is the molar mass of the *atomic* species.

Molar Properties of Some Gases and Vapours

By definition: $\tilde{h} = \tilde{u} + p\tilde{v}$ and $\tilde{g} = \tilde{h} - T\tilde{s}$

 \tilde{h} and \tilde{u} are virtually independent of pressure and in the following will be treated as such: hence

$$ii = \tilde{h} - \tilde{R}T$$

Sand \tilde{g} are tabulated for states at the standard pressure $p^e = 1$ bar and are denoted by 3" and \tilde{g}^e . At any other pressure p, \tilde{g} and \tilde{g} at a given temperature T can be found from

$$\tilde{s} - \tilde{s}^{\circ} = -\tilde{R} \ln (p/p^{\circ})$$

$$\tilde{a} - \tilde{a}^{\circ} = (\tilde{h} - \tilde{h}^{\circ}) - T(\tilde{s} - \tilde{s}^{\circ}) = +\tilde{R} T \ln (p/p^{\circ})$$

For individual gases and vapours, changes in Sand \tilde{g} between states (p_1, T_1) and (p_2, T_2) are given by

$$\begin{split} \tilde{s}_{2} - \tilde{s}_{1} &= (\tilde{s}_{2} - \tilde{s}_{2}^{\circ}) + (\tilde{s}_{2}^{\circ} - \tilde{s}_{1}^{\circ}) + (\tilde{s}_{1}^{\circ} - \tilde{s}_{1}) \\ &= (\tilde{s}_{2}^{\circ} - \tilde{s}_{1}^{\circ}) - \tilde{R} \ln (p_{2}/p_{1}) \\ \tilde{g}_{2} - \tilde{g}_{1} &= (\tilde{g}_{2} - \tilde{g}_{2}^{\circ}) + (\tilde{g}_{2}^{\circ} - \tilde{g}_{1}^{\circ}) + (\tilde{g}_{1}^{\circ} - \tilde{g}_{1}) \\ &= (\tilde{g}_{2}^{\circ} - \tilde{g}_{1}^{\circ}) + \tilde{R} T_{2} \ln (p_{2}/p^{\circ}) - \tilde{R} T_{1} \ln (p_{1}/p^{\circ}) \end{split}$$

For a constituent in a mixture, p_1 and p_2 must be regarded as the partial pressures in the respective states. When performing calculations involving non-reacting mixtures, the datum states at which \tilde{h} and 3 are arbitrarily put equal to zero are unimportant: in the following tables they are (1 bar, 298.15 K) for \tilde{h} and (1 bar, 0.0 K) for S. The datum states are important when chemical reactions are involved—see p. 20.

ñ	ũ	ŝ⇔	$ ilde{g}^{ \circ}$	T	ĥ	ũ	ŝ⇔	$ ilde{g}^{ \circ}$
[kJ/kmol]	[kJ/kmol]	$\overline{[kJ/kmol\ K\]}$	[kJ/kmol]	[K]	[kJ/kmol]	[kJ/kmol]	$\overline{[kJ/kmol\ K]}$	$\overline{[kJ/kmol]}$
Carbon Dioxide (CO ₂) $\tilde{m} = 44.010 \frac{\text{kg}}{\text{kmol}}$			Water V	apour (H ₂ O)	$\widetilde{m} =$	$18.015 \frac{kg}{kmol}$		
-9364 -6456 -3414	-9364 -7287 -5077 -2479	0 178.90 199.87 213.69	 9 364 24 346 43 387 63 710 	0 100 200 298.15	-9 904 -6 615 -3 280	-9904 -7446 -4943 -2479	0 152.28 175.38 188.72	 9904 21 843 38.356 56 268
67	-2427	213.92	- 64 108	300	63	-2 432	188.93	- 56 616
4 008	683	225.22	- 86 082	400	3 452	126	198.67	- 76 017
12 916	7927	243.20	- 133 000	600	10 498	5 509	212.93	- 117 260
22 815	16164	257.41	- 183 110	800	17 991	11 340	223.69	- 160 960
33 405	25091	269.22	- 235 810	1000	25 978	17 664	232.60	- 206 620
44 484	34 507	279.31	-290 680	1200	34 476	24 499	240.33	- 253 920
55 907	44 266	288.11	-347 440	1400	43 447	31 806	247.24	- 302 690
67 580	54 277	295.90	-405 860	1600	52 844	39 541	253.51	- 352 780
79 442	64 476	302.88	-465 750	1800	62 609	47 643	259.26	- 404 060
91 450	74 821	309.21	-526 970	2000	72 689	56 060	264.57	- 456 450
103 570	85 283	314.99	- 589 400	2200	83 036	64 744	269.50	- 509 860
115 790	95 833	320.30	- 652 940	2400	93 604	73 650	274.10	- 564 230
128 080	106 470	325.22	- 717 490	2600	104 370	82 752	278.41	- 619 490
140 440	117 160	329.80	- 782 990	2800	115 290	92 014	282.45	- 675 580
152 860	127 920	334.08	- 849 390	3000	126 360	101 420	286.27	- 732 460
165 330	138 720	338.11	-916 620	3200	137 550	110 950	289.88	- 790 080
177 850	149 580	341.90	-984 620	3400	148 850	120 590	293.31	- 848 390
190 410	160 470	345.49	-1 053 360	3600	160 250	130 320	296.57	- 907 390
203 000	171 400	348.90	-1 122 800	3800	171 720	140 130	299.67	- 967 010
215 630	182 370	352.13	-1 192 900	4000	183 280	150 020	302.63	- 1 027 250

$\overline{ ilde{h}}$	ũ	\tilde{s}°	$ ilde{g}^{ \circ}$	T	ĥ	ũ	ŝ⇔	$ ilde{ ilde{g}}^{\scriptscriptstyle{\ominus}}$
[kJ/kmol]	[kJ/kmol]	[kJ/kmol K]	[kJ/kmol]	[K]	[kJ/kmol]	[kJ/kmol]	[kJ/kmol K]	
Hydrogei	1 (H ₂)	$\tilde{m} =$	$2.016 \frac{\text{kg}}{\text{kmol}}$		Carbon Monoxide (CO)		$\tilde{m}=2$	$28.0105 \frac{\text{kg}}{\text{kmol}}$
$ \begin{array}{r} -8468 \\ -5293 \\ -2770 \\ 0 \end{array} $	-8468 -6124 -4433 -2479	0 102.04 119.33 130.57	 8 468 15 496 26 635 38 931 	0 100 200 298.15	-8699 -5770 -2858 0	-8669 -6601 -4521 -2479	0 165.74 185.92 197.54	- 8 669 - 22 344 - 40 041 - 58 898
54	-2 440	130.75	- 39 172	300	54	-2440	197.72	- 59 263
2 958	- 368	139.11	- 52 684	400	2975	- 351	206.12	- 79 475
8 812	3 823	150.97	- 81 769	600	8941	3953	218.20	- 121 980
14 703	8 051	159.44	- 112 850	800	15175	8524	227.16	- 166 550
20 686	12 371	166.11	- 145 430	1000	21686	13371	234.42	- 212 740
26 794	16 817	171.68	-179 220	1200	28 426	18 449	240.56	-260 250
33 062	21 422	176.51	-214 050	1400	35 338	23 698	245.89	-308 910
39 522	26 219	180.82	-249 790	1600	42 384	29 081	250.59	-358 560
46 150	31 184	184.72	-286 350	1800	49 522	34 556	254.80	-409 110
52 932	36 303	188.30	-323 660	2000	56 739	40 110	258.60	-460 460
59 860	41 569	191.60	-361 650	2200	64 019	45 728	262.06	-512 520
66 915	46 960	194.67	-400 290	2400	71 346	51 391	265.25	-565 260
74 090	52 473	197.54	-439 510	2600	78 714	57 096	268.20	-618 610
81 370	58 090	200.23	-479 280	2800	86 115	62 835	270.94	-672 530
88 743	63 799	202.78	-519 590	3000	93 542	68 598	273.51	-726 980
96 199	69 592	205.18	- 560 390	3200	101 000	74 391	275.91	-781 930
103 740	75 469	207.47	- 601 650	3400	108 480	80 210	278.18	-837 340
111 360	81 430	209.65	- 643 370	3600	115 980	86 044	280.32	-893 190
119 060	87 469	211.73	- 685 510	3800	123 490	91 900	282.36	-949 460
126 850	93 589	213.73	- 728 060	4000	131 030	97 769	284.29	-1 006 120
Oxygen (O ₂)	$\bar{m} = 31.999 \frac{\text{kg}}{\text{kmol}}$			Nitrogen	(N ₂)	$ ilde{m}=$	$28.013 \frac{\text{kg}}{\text{kmol}}$
$ \begin{array}{r} -8682 \\ -5778 \\ -2866 \\ 0 \end{array} $	-8682	0	- 8682	0	-8669	-8669	0	- 8 669
	-6610	173.20	- 23098	100	-5770	-6601	159.70	- 21 740
	-4529	193.38	- 41541	200	-2858	-4521	179.88	- 38 833
	-2479	205.03	- 61131	298.15	0	-2479	191.50	- 57 096
54	- 2440	205.21	- 61 509	300	54	-2440	191.68	- 57 450
3 029	- 297	213.76	- 82 477	400	2 971	- 355	200.07	- 77 058
9 247	4258	226.35	- 126 560	600	8 891	3 902	212.07	- 118 350
15 841	9189	235.81	- 172 810	800	15 046	8 394	220.91	- 161 680
22 707	14392	243.48	- 220 770	1000	21 460	13 145	228.06	- 206 600
29 765	19 788	249.91	-270 120	1200	28 108	18 131	234.12	-252 830
36 966	25 325	255.45	-320 670	1400	34 936	23 296	239.38	-300 190
44 279	30 976	260.34	-372 260	1600	41 903	28 600	244.03	-348 540
51 689	36 723	264.70	-424 770	1800	48 982	34 016	248.19	-397 770
59 199	42 571	268.65	-478 110	2000	56 141	39 512	251.97	-447 800
66 802	48 510	272.28	-532 210	2200	63 371	45 079	255.41	-498 540
74 492	54 537	275.63	-587 010	2400	70 651	50 696	258.58	-549 940
82 274	60 657	278.74	-642 440	2600	77 981	56 364	261.51	-601 950
90 144	66 864	281.65	-698 490	2800	85 345	62 065	264.24	-654 530
98 098	73 155	284.40	-755 100	3000	92 738	67 795	266.79	-707 640
106 130	79 521	286.99	-812 240	3200	100 160	73 555	269.19	-761 230
114 230	85 963	289.44	-869 880	3400	107 610	79 339	271.45	-815 310
122 400	92 467	291.78	-928 010	3600	115 080	85 149	273.58	-869 800
130 630	99 034	294.01	-986 590	3800	122 570	90 976	275.60	-924 730
138 910	105 660	296.13	-1 045 590	4000	130 080	96 819	277.53	-980 040

Molar Properties of Some Gases and Vapours

ñ	ũ	\tilde{s}°	$ ilde{g}^{\circ}$	T	ñ	ũ	\tilde{s}°	$ ilde{ ilde{g}}^{\scriptscriptstyle{\Theta}}$	
[kJ/kmol]	[kJ/kmol]	[kJ/kmol K]	[kJ/kmol]	[K]	[kJ/kmol]	[kJ/kmol]	[kJ/kmol K]	[k.J/kmol]	
Hydroxyl	l(OH)	$\tilde{m} = 17.0075 \frac{kg}{kmol}$			Nitric Oxide (NO)		A =	$\mathbf{A} = 30.006 \frac{\text{kg}}{\text{kmol}}$	
- 9171 - 6138 - 2975 0	 9 171 6 969 4 638 2 479 	0 149.48 171.48 183.60	 9171 21 086 37 271 54 740 	0 100 200 298.15	- 9192 - 6071 - 2950 0	 9 192 6 902 4 613 2 479 	0 176.92 198.64 210.65	 9 192 23 763 42 678 62 806 	
54 3 033 8 941 14 878 20 933	- 2440 - 292 3953 8227 12618	183.78 192.36 204.33 212.87 219.62	- 55 080 - 73 909 - 113 660 - 115 420 - 198 690	300 400 600 800 1000	54 3 042 9 146 15 548 22 230	- 2440 - 284 4158 8896 13915	210.84 219.43 231.78 240.98 248.43	- 63 198 - 84 729 - 129 920 - 177 240 - 226 200	
27 158 33 568 40 150 46 890 53 760	17 181 21 928 26 847 31 924 37 131	225.30 230.23 234.63 238.59 242.22	-243 200 -288 760 -335 250 -382 580 -430 670	1200 1400 1600 1800 2000	29 121 36 166 43 321 50 559 57 861	19 143 24 526 30 018 35 594 41 232	254.71 260.14 264.92 269.18 273.03	- 276 540 - 328 030 - 380 550 - 433 960 - 488 190	
60 752 67 839 75 015 82 266 89 584	42 460 47 885 53 397 58 985 64 640	245.55 248.63 251.50 254.19 256.71	-479 450 -528 870 -578 890 -629 460 -680 540	2200 2400 2600 2800 3000	65 216 72 609 80 036 87 492 94 977	46 924 52 655 58 418 64 211 70 034	276.53 279.75 282.72 285.48 288.06	- 543 150 - 598 780 - 655 030 - 711 860 - 769 220	
96 960 104 390 111 860 119 380 126 940	70 354 76 118 81 927 87 783 93 680	254.09 261.34 263.48 265.51 267.45	-732 130 -784 170 -836 670 -889 550 -942 860	3200 3400 3600 3800 4000	102 480 110 000 117 550 125 100 132 670	75 873 81 733 87 613 93 507 99 417	290.48 292.77 294.92 296.96 298.90	-827 070 -885 410 -944 170 -1 003 360 -1 062 950	
Methane	Vapour (CH	$,) \qquad \tilde{m} = 1$	$6.043 \frac{kg}{kmol}$		Ethylene `	Vapour (C ₂ H	\tilde{H}_4) $\tilde{m} =$	$28.054 \frac{\text{kg}}{\text{kmol}}$	
- 10025 - 6699 - 3368	- 10025 - 7530 - 5031 - 2479	0 149.39 172.47 186.15	 10025 21638 37863 55499 55843 	0 100 200 298.15	- 10519 - 7192 - 3803 0	- 10519 - 8024 - 5466 - 2479	0 180.44 303.85 219.22	10519252364457365362	
67 3 862 13 129 24 673 38 179	- 2427 536 8 141 18 022 29 865	186.37 197.25 215.88 232.41 247.45	- 75038 -116400 -161260 -209270	300 400 600 800 1000	79 4 883 17334 32849 50664	 2415 1557 12346 26197 42350 	219.49 233.24 258.24 280.47 300.30	- 65 767 - 88412 - 137610 - 191 520 - 249 640	
53 271 69 609 86910 104 960 123600	43 293 57 969 73 607 89 994 106970	261.18 273.76 285.31 295.93 305.75	-260 150 -313660 -369 590 -427 720 -487 900	1200 1400 1600 1800 2000	70 254 91 199 113 180 135970 159 390	60 276 79 558 99 878 121 010 142 760	318.13 334.27 348.94 362.36 374.69	-311510 -376780 -445120 -516270 -589990	

The molar enthalpies of reaction, $\Delta \tilde{h}^{\circ}$, on p. 21 are for a reference temperature of T = 298.15 K and are virtually independent of pressure. Corresponding values of Gibbs function of reaction, $\Delta \tilde{g}^{\circ}$, may be found from values of equilibrium constant K° using the relation

$$\Delta \tilde{g}^{\circ} (= \tilde{g}_{P}^{\circ} - \tilde{g}_{R}^{\circ}) = -\tilde{R}T \ln K^{\circ}$$
 . (Suffixes P and R refer to products and reactants) The standard or thermodynamic equilibrium constant is defined by

$$K^{\circ} = \prod_{i} (p_{i}/p^{\circ})^{v_{i}}$$
 or $\ln K^{\circ} = \sum_{i} \ln (p_{i}/p^{\circ})^{v_{i}}$

where v_i are the stoichiometric coefficients, those for the products and reactants being taken as positive and negative respectively. The constant so defined is dimensionless.

Enthalpies of Reaction and Equilibrium Constants

Reaction (kmol)—the values of $\Delta \tilde{h}^{\circ}$ relate to the corresponding chemical equation with amounts of substance in kilomoles	$\Delta \tilde{h}^{\circ}/[kJ/kmol]$ at T = 298.15 K (25°C)
${\text{C(sol)} + \text{O}_2 \rightarrow \text{CO}_2}$	- 393 520
$CO + \frac{1}{2}O_2 \rightarrow CO_2$	- 282 990
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O(vap)$	- 241 830
$CH_4(vap) + 20$, $\rightarrow CO_2 + 2H_2O(vap)$	-802 310
$C_2H_4(vap) + 3O_2 \rightarrow 2CO_2 + 2H_2O(vap)$	-1 323 170
$C_2H_6(vap) + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O(vap)$	- 1 427 860
$C_6H_6(vap) + 7\frac{1}{2}O_2 \rightarrow 6CO_2 + 3H_2O(vap)$	-3169540
$C_8H_{18}(vap) + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O(vap)$	-5116180
$CO_2 + H_2 \rightarrow CO + H_2O(vap)$	+41 160
$\frac{1}{2}H_2 + OH \rightarrow H_2O(vap)$	- 281 540
$\frac{1}{2}$ N ₂ $+\frac{1}{2}$ O ₂ \rightarrow NO	+90 290
$2H \rightarrow H_2$	-435 980
$20 \rightarrow O_2$	- 498 340
$2N \rightarrow N_2$	-945 300

At 298.15 K for H_2O for C_6H_6 for C_8H_{18} $\begin{array}{l} \tilde{h}_{\rm fg} = 43\,990\,{\rm kJ/kmol\,of\,H_2O} \\ \tilde{h}_{\rm fg} = 33\,800\,{\rm kJ/kmol\,of\,C_6H_6} \\ \tilde{h}_{\rm fg} = 41\,500\,{\rm kJ/kmol\,of\,C_8H_{1,9}} \end{array}$

				ln K°				
$\frac{T}{[K]}$	$\frac{(p_{\rm H_2O})(p^{\circ})^{\frac{1}{2}}}{(p_{\rm H_2})(p_{\rm O_2})^{\frac{1}{2}}}$	$\frac{(p_{\rm CO_2})(p^{\circ})^{\frac{1}{2}}}{(p_{\rm CO})(p_{\rm O_2})^{\frac{1}{2}}}$	$\frac{(p_{\rm H_2O})(p_{\rm CO})}{(p_{\rm H_2})(p_{\rm CO_2})}$	$\frac{(p_{\rm H_2O})(p^{\circ})^{\frac{1}{2}}}{(p_{\rm OH})(p_{\rm H_2})^{\frac{1}{2}}}$	$\frac{(p_{NO})}{(p_{O_2})^{\frac{1}{2}}(p_{N_2})^{\frac{1}{2}}}$	$\frac{(p_{\rm H_2})(p^{\rm e})}{(p_{\rm H})^2}$	$\frac{(p_{\rm O_2})(p^{\circ})}{(p_{\rm O})^2}$	$\frac{(p_{N_2})(p^{\circ})}{(p_{N})^2}$
298.15	92.207	103.762	-11.554	106.329	-34.933	164.005	186.961	367.479
300	91.604	103.057	-11.453	105.627	-34.707	162.922	185.723	365.126
400	67.321	74.669	- 7.348	77.360	-25.655	119.164	135.710	270.329
600	42.897	46.245	- 3.348	48.956	-16.602	75.226	85.519	175.356
800	30.592	32.036	- 1.444	34.670	-12.072	53.135	60.319	127.753
1000	23.162	23.528	- 0.366	26.063	- 9.353	39.808	45.145	99.128
1200	18.182	17.871	0.311	20.307	- 7.541	30.878	35.005	80.011
1400	14.608	13.841	0.767	16.181	- 6.245	24.468	27.742	66.329
1600	11.921	10.829	1.091	13.086	- 5.273	19.637	22.285	56.055
1800	9.825	8.497	1.329	10.673	- 4.518	15.865	18.030	48.051
2000	8.145	6.634	1.510	8.741	- 3.912	12.840	14.622	41.645
2200	6.768	5.119	1.649	7.161	- 3.417	10.358	11.827	36.391
2400	5.619	3.859	1.759	5.844	- 3.005	8.281	9.497	32.011
2600	4.647	2.800	1.847	4.730	- 2.657	6.517	7.521	28.304
2800	3.811	1.893	1.918	3.774	- 2.360	5.002	5.826	25.117
3000	3.086	1.110	1.976	2.945	- 2.102	3.689	4.357	22.359
3200	2.450	0.429	2.022	2.220	- 1.877	2.538	3.072	19.936
3400	1.891	- 0.170	2.061	1.582	- 1.679	1.516	1.935	17.800
3600	1.391	- 0.702	2.093	1.016	- 1.504	0.609	0.926	15.898
3800	0.944	- 1.176	2.121	0.507	- 1.347	-0.202	0.019	14.198
4000	0.541	- 1.600	2.141	0.051	- 1.207	-0.934	-0.796	12.660
4500	-0.313	-2.491	2.178	-0.914	- 0.914	-2.482	-2.514	9.414
5000	-0.997	-3.198	2.201	-1.683	- 0.682	-3.725	-3.895	6.807
5500	-1.561	-3.771	2.210	-2.314	- 0.493	-4.743	-5.024	4.666
6000	-2.033	-4.246	2.213	-2.839	- 0.338	-5.590	-5.963	2.865

$$p^{\circ} = 1 \text{ bar} = \frac{I}{1.01325} \text{atm}$$

$$(p^*)^{\frac{1}{2}} = 0.99344 \, \text{atm}^{\frac{1}{2}}$$

A Selection of Chemical Thermodynamic Data

		at $p^{\Theta} = 1$ bar and $T_0 = 298.15$ K						
	$\frac{ ilde{m}}{[ext{kg/kmol}]}$	$\frac{\Delta \tilde{h}_{00}^{\Theta}}{[\text{kJ/kmol}]}$	$\frac{\Delta \tilde{g}_{00}^{\Theta}}{[\text{kJ/kmol}]}$	ln K _{f0}	$\frac{\tilde{c}_{-\cdot}^{p0}}{[kJ/kmolK]}$	500 [kJ/kmol K]		
C (graphite) C (diamond) C (gas) CH ₄ (gas) CO ₂ (gas) CO ₂ (gas) H (gas) H (gas) H ₂ (gas) OH (gas) H ₂ O (liq) H ₂ O (vap) N (gas) N ₂ (gas) NO (gas) O (gas)	12.011 12.011 12.011 16.043 28.054 28.0105 44.010 1.008 2.016 17.005 18.0155 18.0155 14.0065 28:013 30.006 15.9995	0 1900 714990 -74870 52470 -110530 -393520 217990 0 39710 -285820 -241830 472650 0 90290 249170	0 2 870 669 570 -50810 68 350 -137 160 -394 390 203 290 0 35010 -237 150 -228 590 455 500 0 86 600 231 750	0 -1.157 -270.098 20.498 -27.573 55.331 159.093 -82.003 0 -14.122 95.660 92.207 -183.740 0 -34.933 -93.481	8.53 6.06 20.84 35.64 42.89 29.14 37.13 20.79 28.84 29.99 75.32 33.58 20.79 29.21 29.84 21.91	5.69 2.44 158.10 186.26 219.33 197.65 213.80 114.71 130.68 183.61 70.00 188.83 153.30 191.61 210.76 161.06		
O_2 (gas)	31.999	0	0	0	29.37	205.14		

Reproduced from Rogers, G. F. C., and Mayhew, Y. R., Engineering Thermydynamics, Work and Heat Transfer (Longman, 1992).

	T/[K]	250	300	400	500	600	800	1000
Ammonia (NH ₃) sat. liquid t.p. = 195.4 K a = 17.030 kg/kmol	$ \begin{array}{c c} c_p \\ \rho \\ \mu/10^{-6} \\ k/10^{-6} \end{array} $	4.52 669 245 592	4.75 600 141 477	6.91 346 38 207				
R-12 (CF_2Cl_2) sat. liquid t.p. = 115.3 K \tilde{m} = 120.91 kg/kmol	$ \begin{array}{c} c_p \\ P \\ \sim / 1 \\ k/10^{-6} \end{array} $	0.902 1468 - 336 86.8	0.980 1304 213 68.6	 	 	 	 	
R-134a (CH ₂ F-CF ₃) sat. liquid t.p. = 169.85 K \hat{m} = 102.03 kg/kmol	$\begin{array}{c} c_p \\ \rho \\ \mu/10^{-6} \\ k/10^{-6} \end{array}$	1.297 1367 369 104	1.426 1200 194 83.4	 	- - - -	 	 	— — —
Mercury (Hg) liquid m.p. = 234.3 K $\tilde{m} = 200.59 \text{ kg/kmol}$	$ \begin{array}{c} c_p \\ \rho \\ \mu/10^{-6} \\ k \end{array} $	0.141 13650 1880 0.0075	0.139 13530 1520 0.0081	0.137 13290 1190 0.0094	0.137 13050 1010 0.0107	0.137 12840 890 0.0128	0.138 12420 780 0.0137	
Potassium (K) liquid m.p. 336.8 K $\tilde{m} = 39.098 \text{kg/kmol}$	$c_p/[{ m kJ}~{ m kg}]$ $ ho/[{ m kg/m}^-]$ $ ho/[{ m km}]$ $ ho/[{ m k}]$	g/m s]	0.710 860 solid 0.099	0.805 812 417 0.0465	0.786 789 319 0.0454	0.772 766 258 0.0425	0.768 721 179 0.0337	0.775 675 133 0.0278
Sodium (Na) liquid m.p. 370.5 K $\tilde{m} = 22.990 \text{kg/kmol}$	$ \begin{array}{c} c_p \\ \rho \\ \mu/10^{-6} \\ k \end{array} $	1.179 977 solid 0.135	1.224 967 solid 0.135	1.369 921 610 0.086	1.315 897 420 0.080	1.277 872 320 0.074	1.273 823 230 0.063	1.277 774 180 0.059
Sodium-Potassium 22%-78% eutectic liquid m.p. 262 K	c _p P μ/10 ⁻⁶ k	solid	0.977 869 780 0.0222	0.929 845 467 0.0236	0.904 821 348 0.0249	0.886 797 277 0.0262	0.871 749 193 0.0287	0.882 700 146 0.0312
Argon (Ar) 1 atm \$\tilde{m} = 39.948 \text{ kg/kmol}\$	$ \begin{array}{c c} c_p \\ \rho \\ \mu/10^{-6} \\ k/10^{-6} \end{array} $	0.5203 1.947 19.74 15.15	0.5203 1.623 22.94 17.66	0.5203 1.217 28.67 22.27	0.5203 0.974 33.75 26.41	0.5203 0.811 38.38 30.16	0.5203 0.609 46.71 36.83	0.5203 0.487 54.21 42.66
Carbon dioxide (CO_2) 1 atm $\tilde{m} = 44.010 \text{ kg/kmol}$	$ \begin{array}{c} c_p \\ \rho \\ \mu/10^{-6} \\ k/10^{-6} \end{array} $	0.791 2.145 12.60 12.90	0.846 1.788 14.99 16.61	0.939 1.341 19.46 24.75	1.014 1.073 23.67 32.74	1.075 0.894 27.32 40.40	1.169 0.670 33.81 54.64	1.234 0.536 39.51 67.52
Helium (He) 1 atm $\tilde{m} = 4.003 \text{kg/kmol}$	$ \begin{array}{c c} c_p \\ P \\ \mu/10^{-6} \\ k/10^{-6} \end{array} $	5.193 0.1951 18.40 134.0	5.193 0.1626 20.80 149.8	5.193 0.1220 25.23 177.9	5.193 0.0976 29.30 202.6	5.193 0.0813 33.12 224.7	5.193 0.0610 40.19	5.193 0.0488 46.70
Hydrogen (H_2) 1 atm $\tilde{m} = 2.016 \text{ kg/kmol}$	$ \begin{array}{c c} c_p \\ \rho \\ \mu/10^{-6} \\ k/10^{-6} \end{array} $	14.05 0.0983 7.92 156.1	14.31 0.0819 8.96 181.7	14.48 0.0614 10.87 228.1	14.51 0.0491 12.64 271.8	14.55 0.0409 14.29 314.7	14.69 0.0307 17.34 402.2	14.98 0.0246 20.13
Steam (H_2O) low pressures $\tilde{m} = 18.015 \text{ kg/kmol}$	$c_p \mu/10^{-6} k/10^{-6}$	1.855	1.864 9.42 18.8	1.901 13.2 26.6	1.954 17.3 35.7	2.015 21.3 46.3	2.147 29.5 70.8	2.288 37.6 97.9

^{*} See footnote on p. 6.

The properties c_p , μ and k (and ρ for liquids) do not vary much with pressure; see also footnote on p. 16.

International Standard Atmosphere

	p	T		ľ	<u> </u>	а	λ
[m]	[bar]	[K]	$ ho/ ho_0$	$\overline{10^{-5}[\mathrm{m}^2/\mathrm{s}]}$	$\overline{10^{-5}[kW/mK]}$	[m/s]	10 ⁸ [m]
-2500	1.3521	304.4	1.2631	1.207	2.661	349.8	5.251
-2000	1.2778	301.2	1.2067	1.253	2.636	347.9	5.497
-1500	1.2070	297.9	1.1522	1.301	2.611	346.0	5.757
-1000	1.1393	294.7	1.0996	1.352	2.585	344.1	6.032
-500	1.0748	291.4	1.0489	1.405	2.560	342.2	6.324
0	1.01325	288.15	1.0000	1.461	2.534	340.3	6.633
500	0.9546	284.9	0.9529	1.520	2.509	338.4	6.961
1 000	0.8988	281.7	0.9075	1.581	2.483	336.4	7.309
1 500	0.8456	278.4	0.8638	1.646	2.457	334.5	7.679
2 000	0.7950	275.2	0.8217	1.715	2.431	332.5	8.072
2 500	0.7469	271.9	0.7812	1.787	2.405	330.6	8.491
3 000	0.7012	268.7	0.7423	1.863	2.379	328.6	8.936
3 500	0.6578	265.4	0.7048	1.943	2.353	326.6	9.411
4 000	0.6166	262.2	0.6689	2.028	2.327	324.6	9.917
4 500	0.5775	258.9	0.6343	2.117	2.301	322.6	10.46
5 000	0.5405	255.7	0.6012	2.211	2.275	320.5	11.03
5 500	0.5054	252.4	0.5694	2.311	2.248	318.5	11.65
6 000	0.4722	249.2	0.5389	2.416	2.222	316.5	12.31
6 500	0.4408	245.9	0.5096	2.528	2.195	314.4	13.02
7 000	0.4111	242.7	0.4817	2.646	2.169	312.3	13.77
7 500	0.3830	239.5	0.4549	2.771	2.142	310.2	14.58
8 000	0.3565	236.2	0.4292	2.904	2.115	308.1	15.45
8 500	0.3315	233.0	0.4047	3.046	2.088	306.0	16.39
9 000	0.3080	229.7	0.3813	3.196	2.061	303.8	17.40
9 500	0.2858	226.5	0.3589	3.355	2.034	301.7	18.48
10 000	0.2650	223.3	0.3376	3.525	2.007	299.5	19.65
10 500	0.2454	220.0	0.3172	3.706	1.980	297.4	20.91
11 000	0.2270	216.8	0.2978	3.899	1.953	295.2	22.27
11 500	0.2098	216.7	0.2755	4.213	1.952	295.1	24.08
12 000	0.1940	216.7	0.2546	4.557	1.952	295.1	26.05
12 500	0.1793	216.7	0.2354	4.930	1.952	295.1	28.18
13 000	0.1658	216.7	0.2176	5.333	1.952	295.1	30.48
13 500	0.1533	216.7	0.2012	5.768	1.952	295.1	32.97
14 000	0.1417	216.7	0.1860	6.239	1.952	295.1	35.66
14 500	0.1310	216.7	0.1720	6.749	1.952	295.1	38.57
15 000	0.1211	216.7	0.1590	7.300	1.952	295.1	41.72
15 500	0.1120	216.7	0.1470	7.895	1.952	295.1	45.13
16 000	0.1035	216.7	0.1359	8.540	1.952	295.1	48.81
16 500	0.09572	216.7	0.1256	9.237	1.952	295.1	52.79
17 000	0.08850	216.7	0.1162	9.990	1.952	295.1	57.10
17 500	0.08182	216.7	0.1074	10.805	1.952	295.1	61.76
18 000	0.07565	216.7	0.09930	11.686	1.952	295.1	66.79
18 500	0.06995	216.7	0.09182	12.639	1.952	295.1	72.24
19 000	0.06467	216.7	0.08489	13.670	1.952	295.1	78.13
19 500	0.05980	216.7	0.07850	14.784	1.952	295.1	84.50
20 000	0.05529	216.7	0.07258	15.989	1.952	295.1	91.39
22 000	0.04047	218.6	0.05266	22.201	1.968	296.4	126.0
24 000	0.02972	220.6	0.03832	30.743	1.985	297.7	173.1
26 000	0.02188	222.5	0.02797	42.439	2.001	299.1	237.2
28 000	0.01616	224.5	0.02047	58.405	2.018	300.4	324.0
30 000	0.01197	226.5	0.01503	80.134	2.034	301.7	441.3
32 000	0.00889	228.5	0.01107	109.62	2.051	303.0	599.4

Density at sea level $\rho_0 = 1.2250 \,\mathrm{kg/m^3}$

SI - British Conversion Factors

The International System of Units (HMSO, 1986) may be consulted for the definitions of SI units, and British Standard 350 for comprehensive tables of conversion factors.

Exact values are printed in bold type.

Mass:
$$1 \text{ kg} = \frac{1}{0.45359237} \text{ lb} = 2.205 \text{ lb}$$

Length:
$$1 \text{ m} = \frac{1}{0.3048} \text{ ft} = 3.281 \text{ ft}$$

Volume:
$$1 \text{ m}^3 = 10^3 \text{ dm}^3$$
 (litre) = $35.31 \text{ ft}^3 = 220.0 \text{ UK gal} = 264.2 \text{ US gal}$

Time:
$$1 \text{ s} = \frac{1}{60} \text{min} = \frac{1}{3600} \text{ h}$$

Temperature unit: 1 K = 1.8 R (see p. 11 for definitions of units and scales)

Force: 1 N (or kg m/s²) =
$$10^5$$
 dyn = $\frac{1}{9.80665}$ kgf
= 7.233 pdl = $\frac{7.233}{32.174}$ or 0.2248 lbf

Pressure: p: 1 bar =
$$10^5 \text{ N/m}^2$$
 (or Pa) = $14.50 \text{ lbf/in}^2 = 750 \text{ mmHg} = 10.20 \text{ mH}_2\text{O}$

Specific volume v:
$$1 \text{ m}^3/\text{kg} = 16.02 \text{ft}^3/\text{lb}$$

Density **p**:
$$1 \text{ kg/m}^3 = 0.06243 \text{ lb/ft}^3$$

Energy:
$$1 \text{ kJ} = 10^3 \text{ N m} = \frac{1}{4.1868} \text{ kcal}, = 0.9478 \text{ Btu} = 737.6 \text{ ft lbf}$$

Power:
$$1 \text{ kW} = 1 \text{ kJ/s} = \frac{10^3}{9.80665} \text{kgf m/s} = \frac{10^3}{9.80665 \text{ x } 75} \text{ metric hp}$$

= $737.6 \text{ ft lbf/s} = \frac{737.6}{550} \text{ or } \frac{1}{0.7457} \text{ British hp} = 3412 \text{ Btu/h}$

Specific energy etc. (u,h):
$$1 \text{ kJ/kg} = \frac{1}{2 \cdot 326} \text{ Btu/lb} = 0.4299 \text{ Btu/lb}$$

Specific heat capacity etc. (c,R,s):
$$1 \text{ kJ/kg K} = \frac{1}{4.1868} \text{Btu/lb R} = 0.2388 \text{ Btu/lb R}$$

Thermal conductivity k: 1 kW/m K = 577.8 Btu/ft h R

Heat transfer coefficient: $1 \text{ kW/m}^2 \text{ K} = 176.1 \text{ Btu/ft}^2 \text{ h R}$

Dynamic viscosity
$$\mu$$
: 1 kg/m s = 1 N s/m² = 1 Pa s = 10 dyn s/cm² (or poise)
= 2419 lb/ft h = 18.67 x 10⁻⁵ pdl h/ft²

Kinematic viscosity v:
$$1 \text{ m}^2/\text{s} = 10^4 \text{ cm}^2/\text{s} \text{ (or stokes)} = 38750 \text{ ft}^2/\text{h}$$

General Information

Standard acceleration: $g_n = 9.80665 \,\text{m/s}^2 = 32.1740 \,\text{ft/s}^2$

Standard atmospheric pressure: 1 atm = 1.01325 bar

$$= 760 \, \text{mmHg} = 10.33 \, \text{mH}_2 \text{O} = 1.0332 \, \text{kgf/cm}^2$$

$$= 29.92 \text{ inHg} = 33.90 \text{ ftH}_2\text{O} = 14.696 \text{ lbf/in}^2$$

Molar (universal)gas constant: $\tilde{R} = 8.3145 \, \text{kJ/kmol K}$ t

 $= 1.986 \, \text{Btu/lb-mol R} = 1545 \, \text{ft lbf/lb-mol R}$

Molar volume: $\tilde{v} = 22.41 \text{ m}^3/\text{kmol}$ at 1 atm and 0°C

 $= 359.0 \,\mathrm{ft^3/lb\text{-}mol}$ at 1 atm and $32^{\circ}\mathrm{F}$

Composition of air:

	voi. anaiysis	grav. anaiysis
Nitrogen ($N_2 - 28.013 \text{ kg/kmol}$)	0.7809	0.7553
Oxygen $(O_2 - 31.999 \text{ kg/kmol})$	0.2095	0.2314
Argon (Ar – 39.948 kg/kmol)	0.0093	0.0128
Carbon dioxide (CO ₂ – 44.010 kg/kmol)	0.0003	0.0005

Molar mass
$$\tilde{m} = 28.96 \text{ kg/kmol}$$

Specific gas constant R = 0.2871 kJ/kg K
= 0.068 56 Btu/lb R = 53.35 ft lbf/lb R

See p. 16 for other properties

For approximate calculations with air:

	vol. analysis	grav. analysis
$N_2 - 28 \mathrm{kg/kmol}$	0.79	0.767
$O_2 - 32 \mathrm{kg/kmol}$	0.21	0.233
N_2/O_2	3.76	3.29
Molar mass $\tilde{m} = 29 \mathrm{kg/kmol}$		
Specific gas constant $R = 0.287 kJ/kg K$		
= 0.0685 Btu/lb R = 53.3 ft lbf/lb R		
$c_p = 1.005 \text{kJ/kg K} = 0.240 \text{Btu/lb R}$		
$c_v = 0.718 \mathrm{kJ/kg} \mathrm{K} = 0.1715 \mathrm{Btu/lb} \mathrm{R}$		
$c_{p}/c_{v} = \gamma = 1.40$		

The Stefan-Boltzmann constant:

$$a = 56.7 \times 10^{-12} \, \text{kW/m}^2 \, \text{K}^4 = 0.171 \times 10^{-8} \, \text{Btu/ft}^2 \, \text{h R}^4$$

[†] The kilomole (kmol) is the amount of substance of a system which contains as many elementary entities as there are atoms in 12 kg of carbon 12.

The elementary entities must be specified, but for problems involving mixtures of gases and combustion they will be molecules or atoms.

PRINCIPAL SOURCES

- National Engineering Laboratory, *Sream Tables* 1964 (Her Majesty's Stationery Office 1964) (reproduced by courtesy of the Controller of Her Majesty's Stationery Office).
- ASHRAE Thermodynamic Properties of Refrigerants and ASHRAE Thermophysical Properties of Refrigerants (ASHRAE, 1969 and 1976).
- Hilsenrath, J., Beckett, C. W., Benedict, W. S., Fano, L., Hoge, H. J., Masi, J. F., Nuttall, R. L., Touloukian, Y. S., and Woolley, H. W., *Tables of Thermal Properties of Gases* (US. N.B.S. Circular 564, 1955, available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.).
- Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe. I., Selected Values of Chemical Thermodynamic Properties (ibid. 500, 1952).
- Wagman, D. D., Selected Valued of Chemical Thermodynamic Properties (ibid., Tech. Note 270, 1965).
- Sheldon, L. A., *Thermodynamic Properties of Mercury Vapour*, Amer. **Soc**. Mech. Engrs. No. 49–A–30 (1949).
- Stull, D. R., and Prophet, H. (eds). *Janaf Thermochemical Tables*, The Dow Chemical Company, Midland, Michigan (U.S. G.P.O., 1971, Supplements 1974, 1975, 1978).
- Thermodynamic Properties of KLEA 134a (ICI private communication, 1994)

By the same authors

Engineering Thermodynamics, Work and Heat Transfer (Longmans, 4th ed.).

By H. Cohen, G. F. C. Rogers and H. I. H. Saravanamuttoo Gas Turbine Theory (Longmans, 4th ed.)

FOR USE WITH THESE TABLES

Enthalpy-Entropy Diagram for Steam Prepared by D. C. Hickson and F. R. Taylor

NOTES

© 1995 by Blackwell Publishing Ltd

BLACKWELL PUBLISHING
350 Main Street, Malden, MA 02148-5020, USA
108 Cowley Road, Oxford OX4 1JF, UK
550 Swanston Street, Carlton, Victoria 3053, Australia

All rights reserved. No part of this publication may, be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher.

First published 1964
Second edition 1967
Third edition 1980
Fourth edition 1988
Fifth edition 1995
Reprinted 1996 (twice), 1997, 1998, 1999,2000, 2001,2002,2003 (twice), 2004

Library of Congress Cataloging-in-PublicationData has been applied for

ISBN 0-631-19703-6 (pbk)

A catalogue record for this title is available from the British Library.

Set by Advanced Filmsetters (Glasgow) Ltd Printed and bound in the United Kingdom by Alden Press, Osney Mead, Oxford

The publisher's policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards.

For further information on Blackwell Publishing, visit our website: www.blackwellpublishing.com

Blackwell Publishing

4-E07P1-18703-6

