$$\alpha(x) = \begin{cases} x \\ \frac{1}{1 + e^{-kx}} \\ \frac{e^x - e^{-x}}{e^x + e^{-x}} \end{cases}$$

$$\langle x \rangle$$

$$\chi_{\rho}(ghg^{-1}) = \operatorname{Tr}(\rho_{ghg^{-1}}) = \operatorname{Tr}(\rho_g \circ \rho_h \circ \rho_g^{-1}) = \operatorname{Tr}(\rho_h) \stackrel{\operatorname{Tr}(AB) = \operatorname{Tr}(BA)}{=} \chi_{\rho}(h) \oplus_{x \in X}$$

$$\operatorname{Mat}(\rho_g) = (a_{ij}(g))_{\substack{1 \le i \le d \\ 1 \le j \le d}} \text{ et } \operatorname{Mat}(\rho_g') = (a_{ij}'(g))_{\substack{1 \le i' \le d' \\ 1 \le j' \le d'}}$$

$$\int_a^b \mathbb{R}^2 g(u, v) \, \mathrm{d}P_{XY}(u, v) = \iint g(u, v) f_{XY}(u, v) \, \mathrm{d}\lambda(u) \, \mathrm{d}\lambda(v)$$

$$\lim_{x \to \infty} f(x)$$

Typescettling (test $\sum_i^n \neq 60 \pm \infty \pi \triangle \neg \approx \sqrt{j} \int h \leq \ge 1$

$$\iiint_{V} \mu(t, u, v, w) dt du dv dw$$
$$\sum_{1}^{\infty} 2^{-n} = 1$$

Définition 1. Si X et Y sont 2 v.a. ou definit la COVARIANCE entre X et Y comme $Cov(X,Y) \stackrel{\text{def}}{=} \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

 $l^2(\mathbb{N}) = 12n$

Chapitre 1

cha

1.1 sec

Exemple 1. $l^2(\mathbb{N}) = \{n \in \mathbb{N} \mapsto f(n) \in \mathbb{C} \text{ t.q. } \sum_{n \geq 0} |f(n)|^2 < \infty\}$ $l^2(\mathbb{N})$ est \mathbb{C} espace. $\forall f, g \in l^2(\mathbb{N})$:

$$(f|g)_{l^2(\mathbb{N})} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \sum_{n>0} f(n)\overline{g(n)}.$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $l^2(\mathbb{N})$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > p \ge N : \quad ||f_n - f_p||_{l^2(\mathbb{N})} < \varepsilon.$$
 (*

Question.
$$\exists f \in l^2(\mathbb{N})$$
 telle que $\lim_{n \to \infty} f_n = f$?

$$(??) \Leftrightarrow \forall \varepsilon > 0 \; \exists N \; t.q. \; \forall n > p \geq N \; ||f_n - f_p||^2 = \sum_{j \geq 0} |f_n(j) - f_p(j)|^2 \leq \varepsilon^2$$

 $\Rightarrow |f_n(j) - f_p(j)| \le \varepsilon \ \forall j \in \mathbb{N}.$ $\Rightarrow \forall j \in \mathbb{N} \ (f_n(j))_{n \in \mathbb{N}} \text{ est de Cauchy dans } \mathbb{C} \text{ qui est complet, donc } \exists f(j) \in \mathbb{C} \text{ telle que}$ $\lim_{n\to\infty} |f_n(j) - f(j)| = 0.$

Il faut montrer que
$$f$$
 est la limite dans $l^2(\mathbb{N})$ de la suite f_n . $\forall \varepsilon > 0 \ \exists N \ \text{t.q.} \ \forall n > p \geq N \sum_{j \geq 0} |f_n(j) - f_p(j)|^2 \leq \varepsilon^2$

$$\Rightarrow \forall J \in \mathbb{N} \underbrace{\sum_{j=0}^{J} |f_n(j) - f_p(j)|^2}_{\text{somme partielle}} \leq \varepsilon^2, \text{ par passage à la limite sur } p : \sum_{j=0}^{J} |f_n(j) - f(j)|^2 \leq \varepsilon^2$$

Conclusion : $\forall \varepsilon > 0 \ \exists N \ \text{telle que} \ \forall n \geq N \ ||f_n - f|| < \varepsilon \Longrightarrow \lim_{n \to \infty} f_n = f.$

Mais $f \stackrel{?}{\in} l^2(\mathbb{N})$.

Vérifions que $f \in l^2(\mathbb{N})$:

$$(\sum_{j\geq 0} |f(j)|^2)^{1/2} = (\sum_{j\geq 0} |f_n(j) - f(j) + f(j)|^2)^{\frac{1}{2}} = ||\underbrace{f - f_n}_{\in l2n} + \underbrace{f_n}_{\in l2n}|| \leq ||f - f_n|| + \underbrace{f_n}_{\in l2n}|| + \underbrace{f_n}_{\in l$$

$$||f_n|| < +\infty.$$

Theorem 1 (Projection orthogonale). Soit H un espace de Hilbert et C une partie convexe fermée et non vide de H. Alors $\forall x \in H \exists ! y_0 \in C \ t.q$.

- 1. $\operatorname{dist}(x,C) := \inf\{d(x,y), y \in C\} = \inf\{||x-y||_H, y \in C\} = ||x-y_0||_H$
- 2. $\forall y \in C \ \text{Re}(x y_0 | y y_0) \le 0$!?

 y_0 est la projection orthogonale de x sur C.

Remarque.

- 1. C est convexe $si \ \forall x, y \in C \ [x, y] = \{tx + (1 t)y, t \in [0, 1]\} \in C$
- 2. $H = \mathbb{R}^2 : [x, y] \in C$
- 3. $si \ x_0 \in C \ dans \ le \ cas \ y_0 = x_0 \ et \ dist(x_0, C) = 0 = ||x_0 x_0||_H$

Démonstration. Notons par d=d(x,C)>0 $(x\in H\setminus C)$. Soit $y,z\in C$ on pose $b=x-\frac{1}{2}(y+z),\ c=\frac{1}{2}(y-z)$: $||b||=||x-\frac{1}{2}\underbrace{(y+z)}||\geq d$. On a aussi b-c=x-y et

 $b+c = x-z \Rightarrow ||x-y||^2 + ||x-z||^2 = ||b-c||^2 + ||b+c||^2 = (b-c|b-c) + (b+c|b+c) = ||b||^2 + ||c||^2 - (b|c) - (c|b) + ||b||^2 + ||c||^2 + (b|c) + (c|b).$

 $||x-y||^2 + ||x-z||^2 = 2(||b||^2 + ||c||^2) \ge 2d^2 + 2\frac{1}{4}||y-z||^2 \Rightarrow ||y-z||^2 \le 2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2).$ Pour $n \in N$ $C_n = \{y \in C ||x-y||^2 \le d^2 + \frac{1}{n}\}$ est fermée dans H (boule fermée).

Puisque C est fermé, $C_n = \{y \in H | |x-y||^2 \le d^2 + \frac{1}{n}\} \cap C$ est fermé dans C. De plus : $\delta(n) := \sup\{||y-z||, (y,z) \in C_n \times C_n\} \le \sup\{[2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2)]^{\frac{1}{2}}, y, z \in C_n \Rightarrow \delta(n) \le \frac{2}{\frac{1}{n}} \to 0 \text{ quand } n \to +\infty.$

H est complet et $C \subset H_x$ c est fermé. C est un espace métrique complet. Il satisfait le critère de Cantor : $\bigcap C_n = \{y_0\}$.

 $|y_0 \in \bigcup_n C_n \ d^2 \le ||x - y_0||^2 \le d^2 + \frac{1}{n} \ \forall n \in \mathbb{N}^* = \mathbb{N}$

 $|Y| \Rightarrow ||X - y_0|| = d^2.$ Addff ii): $\forall t \in [0, 1], \ \forall \in H \ \phi(t) = ||\underbrace{y_0 + t(y - y_0)}_{CC} - x||^2 = ||y_0 - x||^2 + 2tRe(y_0 - y_0)|^2$

 $x|y-y_0| + t^2||y-y_0||^2. \ \phi(0) = d^2 \le \phi(t) \ \forall t \in (0,1] \Rightarrow \phi'(0) \ge 0. \ \phi'(t) = 2Re(y_0 - x|y - y_0) + 2t||y-y_0||^2. \ \phi'(0) \le 0 \Rightarrow 2Re(y_0 - x|y - y_0) \le 0 \Rightarrow (i).$

Theorem 2 (corollaire). Soit F un sous-espace FERMÉ de H alors : $H = F \bigoplus F^{\perp}$.

Démonstration. — F est convexe puisque $\forall \alpha, \beta \in \mathbb{C} \forall x, y \in F \ \alpha x + \beta y \in F \Rightarrow$ Celaeitvnai.. $\alpha = t, \ \beta = 1 - t \ t \in [0, 1]$.

On peut lu applieuer le Thm 1:

— On a tanga.. $F + F^{\perp} \subset H$ et $F + F^{\perp} = F \bigoplus F^{\perp}$ onu si $x \in F \cap F^{\perp} \Rightarrow (x|x) = 0 = ||x||^2 \Rightarrow x = 0_H$

Soit $x \in H$, et $y_0 \in F$ sa projection an Thegerale : $\forall d \in \mathbb{C}, y \in F, y_0 + dy \in F$ et donc $Re(x - y_0|y_0 + dy - y_0) \le 0 \Rightarrow Re(x - y_0|dy) \le 0$

 $d = (x - y_0|y) \Rightarrow (x - y_0) \dots$

Conclusion $Re(x - y_0|dy)$.. donc $H = F \bigoplus F^{\perp}$.

Définition 2. Dans ces condition, l'application $P: x \in H, x = x_1 + x_2, x_1 \in F, x_2 \in F^{\perp} \stackrel{P}{\mapsto} x_1 \in F$. est le Projection Orthogonal sur F.

Exemple 1.1.1. Montrer que P est linéaire continue et satisfait $P^2 = P$.

Définition 3. Une partie A de H est dite TOTALE si le plus petit sous espace fermé contenant A et H.

H est SÉPARABLE si H admet une famille totale dénombrable.

Exemple 2. $H = l^2(\mathbb{N}) : \mathcal{F} = \{e_0, e_1, ...\}$ avec $e_j(i) = \delta_{ij} \to (0, 0, ..., 0, 1, 0, ...0)$. \mathcal{F} est totale. Elle est dénombrable, l2n est séparable.

Theorem 3. Soit H un espace de Hilbert et $A \subset H$:

- 1. $\overline{vect(A)} = (A^{\perp})^{\perp}$
- 2. A est on sous-espace alors $(A^{\perp})^{\perp} = \bar{A}$
- 3. A est totale $\Leftrightarrow A^{\perp} = \{0_H\}$

1.2 Séries dans un espace vectoriel normé

Soit $(E, ||\cdot||_E)$ un espace vectoriel normé (e.v.n).

Définition 4. On appelle SÉRIE de terme général $u_n \in E$ la suite $(S_N)_{N \in \mathbb{N}}$ de E t.q. $S_N = \sum\limits_{n=0}^N u_n$. La série est Convergente dans $(E, ||\cdot||_E)$ si le suite $(S_N)_{N \in \mathbb{N}}$ admet une limite dans E: S— toute la somme de la somme la série.

Définition 5. Une série $\sum u_n$ est dite Absolument Convergente (AC) si la série $\sum ||u_n||_E$ est convergente dans \mathbb{R}^+ .

Theorem 4. Si E est complet (espace de Banach/Hilbert) Alors toute série AC est convergente et $||\sum_{n=0}^{\infty}|| \le \sum_{n=0}^{\infty}||u_n||$.!?

Démonstration. $J_n = \sum_{n=0}^{N} ||u_n||$ et convergente $\Leftrightarrow (J_n)_{N \in \mathbb{N}}$ est de Cauchy $\forall \varepsilon > 0 \; \exists K \; t.q. \; \forall N > 1 \; \forall N > 1$

 $\sum_{j=p+1}^{N} ||u_j|| \text{ Thegalite trianguler.}$ $\Rightarrow N > p \leq K \Rightarrow ||S_N - S_P|| \leq \varepsilon \Leftrightarrow (S_N)_{N \in \mathbb{N}} \text{ est de Cauchy dans } E \text{ et donc convergente.}$

D'au the peut $||S_n|| = ||\sum_{j=0}^n u_j|| \le \sum_{j=0}^n \le \sum_{j=0} ||u_j|| \Rightarrow ||\sum_{j=0} u_j|| \le \sum_{j=0} ||u_j||$. Cqfd.

Définition 6. Une suite $(x_n)_{n\in\mathbb{N}}$ de H est dite Orthogonal si $(x_i|x_j)=0$ $\forall i\neq j.$

Theorem 5. Soit $(a_n)_{n\in\mathbb{Z}}$ une suite orthogonal dans un espace de Hilbert H. Alors le série $\sum x_n$ est convergente $\iff \sum_{n>0} ||x_n||_H^2$ est convergente et

$$||\sum_{n\geq 0} x_n||_H^2 = \sum_{n\geq 0} ||x_n||_H^2.$$

Démonstration. $\forall l > p$ on a $||\sum_{n=l}^{p}||^2 = (\sum_n = e^p x_n | \sum_n = e^p x_n) = \sum_n, n' = l(x_n|x_n') = \sum_n = l^p ||x_n||^2$ Alors $(x_n)_{n \in \mathbb{N}}$ est de Cauchy $\Leftrightarrow (||x_n||^2)_{n \in \mathbb{N}}$ est de Couchy dans \mathbb{R} .

D'aute peut $S_N = \sum_{n\geq 0}^N x_n \Rightarrow ||S_N||^2 = \sum_{n\geq 0}^N ||x_n||^2$. Alors $S = \lim S_N = \sum x_n ||S||^2 = ||\lim NS_N||^2 = \lim ||S_N||^2$ par continite de la $||\cdot||$ et donc $||S||^2 = \lim |\sum_n \geq 0^N ||x_n||^2 = \sum_{n\geq 0} ||x_n||^2$

1.3 Bases Hilbertiennes

Définition 7. On appelle BASE HILBERTIENNE, une suite de vecteur $(x_n)_{n\in\mathbb{N}}$ telle que

- 1. $\forall n, m(x_n|x_m) = \delta_{nm}$,
- 2. $\operatorname{vect}\{(x_n)_n \in \mathbb{N}\} = H \Leftrightarrow \operatorname{vect}(x_n)_{n \in \mathbb{N}}^{\perp} = \{0_H\} \Leftrightarrow (x_n)_{n \in \mathbb{N}} \text{ est totale.}$

Theorem 6 (Inégalité de Bessel). Soit (x_n) une suite orthonormale $(\forall n, m(x_n|x_m) = \delta_{nm})$ dans H. Alors $\forall x \in H \sum_{n\geq 0} |(x|x_n)|^2$ est convergente et $\sum_{n\geq 0} |(x|x_n)|^2 \leq ||x||^2$.

Exemple: $H = l^2(\mathbb{N})$. $(e_n|e_m) = \sum_{k\geq 0} e_n(k) \overline{e_m(k)} = \sum_{k\geq 0} \delta_{nk} \delta_{mk} = \delta_{nm}$. En fait on montre que $\sum_{n\geq 0} |(e_n|x)|^2 = ||x||^2$ c'est une base Hilbertienne.

Démonstration. Sait
$$x \in H$$
 on pose $y_i = (x|e_i)e_i$ et $Y_N = \sum_1^N y_i, Z_N = X - Y_N$. Alors: $(Z_N|y_i) = (X - Y_N|y_i) = (X|y_i) - (Y_N|y_i).$ $(x|y) = (x|(x|e_i)e_i) = \overline{(x|e_i)}(x|e_i) = |(x|e_j)|^2$. $(Y_N|y_i) = \sum_{j=1}^N (y_j|y_j)$ mais $y_j \perp y_i \Rightarrow (Y_N|y_i) = ||y_i||^2$ si $N \geq i$. (autrement =0)

Dans ces conditions puisque $||y_i||^2 = |(x|e_i)|^2$. Alors $(Z_n|y_i) = 0 \Rightarrow (Z_N|Y_N) = 0$ cas $Y_n = \sum_{i=0}^N y_i \Rightarrow ||x||^2 = ||Z_n||^2 + ||Z_N||^2$ $(x = Z_n + Y_n et Z_n \perp Y_n) \Rightarrow ||y_n||^2 = \sum_{i=0}^N ||y_i||^2 \le ||x||^2$

La seuie $\sum_{n\geq 0}^N ||y_n||^2$ est positive, majerée donc convergente et par passage à la limite : $\sum_{n\geq 0} ||y_n||^2 = \sum |(x|e_n)|^2 \le ||x||^2$. QED

Theorem 7 (Egalité de Parseval). Soit (e_n) une base Hilbertienne de H alors

1. La série $\sum_{n\geq 0} |(x|e_n)|^2$ est convergente et $||X||^2 = \sum_{n\geq 0} |(x|e_n)|^2$,

2. Ls série $\sum_{n\geq 0} (x|e_i)e_i$ est convergente dans H et $\sum_{i\geq 0} (x|e_i)e_i = x$.

Démonstration. En utilisant le théorème précédent alors $\sum |(x|e_i)|^2$ est convergent on utilise l'identité de la médiane : $\sum (x|e_i)e_i$ et convergente dans $H(||(x|e_i)e_i||^2 = |(x|e_i)|^2)$. On pose $y = \sum_{i \geq 0} (x|e_i)e_i$ alors $||y||^2 = \sum_{i \geq 0} |(x|e_i)|^2$ mais $(y|e_j) = (\sum (x|e_i)e_i)e_i$ = $\sum (x|e_i)(e_i|e_j) = \overline{(x|e_i)}(e_i|e_j) = \overline{(x|e_i)}(e_i|e_j) = \overline{(x|e_i)}(e_i|e_j) = \overline{(x|e_i)}(e_i|e_j) = \overline{(x|e_i)}(e_i|e_j) = 0 \Rightarrow x - y \in \text{vect}((e_n)_{n \in \mathbb{N}})^{\perp} \Rightarrow x - y = 0_H \Leftrightarrow x = y = \sum (x|e_i)e_i||x||^2 = \sum_{i \geq 0} |(x|e_i)|^2$

Remarque. Si $(e_n)_{n\in\mathbb{N}}$ est une suite orthonormal telle que $\forall x\in Hx=\sum_{i\geq 0}(x|e_i)e_i$: $x=\lim_N\sum_{i\geq 0}^N a_ie_i$ où $a_i=(x|e_i)\in\mathbb{C}$

 $\in \text{vect}\{(e_n)_n \in \mathbb{N}\}; a_i = (x|e_i) \Rightarrow \text{vect}\{(e_n)_n \in \mathbb{N}\} = H. \ (e_n)_n \in \mathbb{N} \text{ est une base } Hilbertienne. ii) " (e_n)_n \in \mathbb{N} \text{ est base } Hilbertienne \text{ de } H \Leftrightarrow \forall x \in H: \sum (x|e_i)e_i = x \sum (x|e_i)e_i = x \sum |(x|e_i)|^2 = ||x||^2 i >> (e_n) \text{ est une base } Hilbertienne \text{ de } H \Leftrightarrow \sum |(x|e_i)|^2 = ||x||^2 \forall x \in H$

Exemple (suite): $\overline{H} = l^2(\mathbb{N})$. $(e_n)_{n \in \mathbb{N}} t.q.e_n(k) = \delta_{nk}$. $u \in H \Leftrightarrow \sum_{n \geq 0} |u(n)|^2 = ||u||^2$ mais $u(n) = (u|e_n) = \sum u(k)e_n(k) \Leftrightarrow \sum_n \geq 0 |(u|e_n)|^2 = ||u||^2$, \Rightarrow c'est une base Hilbertienne.!?

1.4 Dual d'un espace de Hilbert

On rappelle que si S est un e.v.n. une FORME LINIÈRE sur X — une application linière de X dans \mathbb{C} soit $l: X \to \mathbb{C}: \forall d \in \mathbb{C} \ \forall x, y \in X l(x+dy) = l(x) + dl(y)$. L'ensemble des formes linéaires de X: est un espace vectoriel X^* . On considère X' dual topologique: c'est l'espace vectoriel des formes linéaires continues sur X: $\{l: (X, ||\cdot||_X) \to (\mathbb{C}, |\cdot|)\}$.

Exercice 1. l est continue \Leftrightarrow

$$\exists C > 0 \ x \forall x \in X, |l(x)| \le C||x|| \tag{*}$$

On définit $l \in X'$, $||l|| = \inf\{C > 0 \text{ t.q. (??) est satisfait}\} = \sup\{|l(x)| \mid ||x|| = 1\}$. $(X', ||\cdot||)$ est un espace de Banach (un e.v.n. complet)

Theorem 8 (Théorème de représentation de Riez). . Soit H est un espace de Hilbert H' son dual topologique. On définit $I: H \to H$ par $\forall x \in HI(x) = (\cdot|x)$. Alors I set un isomorphisme isométrique de $H \to H'$.

Remarque. $H = \mathbb{C}^n$, une forme linéaire sur \mathbb{C}^n : l. $l(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$, $a_i \in \mathbb{C}$ $|l(x)| = |\sum_{i=1}^n a_i x_i| \le \sup\{a_i|\} \cdot ||x||_{\mathbb{R}^n}$. Ici $X^* = X'$!?

$$l(x) = (a_1, a_2, \dots, a_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 $=(\bar{a}|x)\forall x\in\mathbb{C}^n\ \forall l\in X',\ \exists a\in\mathbb{C}:\ l(x)=(x|\bar{a})\ G\'{e}n\'{e}ralisation\ \grave{a}\ la\ dimension$ quelconque c'est le th\'{e}or\`{e}me de Riez: $\forall l\in H'\ \exists a\in H\ \forall x\in H:\ l(x)=(x|a)|$

Démonstration. Soit $l \in H'$ $l \neq 0'_h \Leftrightarrow$

Remarque. Si l est anti-linéaire : $\forall d \in \mathbb{C} \ \forall x, y \in H \ l(x+dy) = l(x) + \bar{d}l(y)$ et $\exists u \ t.q.$ $\forall x \in H : \ l(x) = (u|x)$