Lasso Regression

Nipun Batra February 5, 2020

IIT Gandhinagar

Lasso Regression

• LASSO \longrightarrow Least absolute shrinkage and selection operator

Lasso Regression

- LASSO \longrightarrow Least absolute shrinkage and selection operator
- · Popular as it leads to a sparse solution.

Constructing the Objective Function

• Find a θ_{opt} such that

$$\theta_{opt} = \underset{\theta}{\arg\min} (\mathbf{Y} - \mathbf{X}\theta)^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\theta) : \|\theta\|_{1} < \mathsf{S}$$
 (1)

Constructing the Objective Function

• Find a θ_{opt} such that

$$\theta_{opt} = \underset{\theta}{\operatorname{arg \, min}} \left(\mathbf{Y} - \mathbf{X} \theta \right)^{\mathsf{T}} \left(\mathbf{Y} - \mathbf{X} \theta \right) : \ \|\theta\|_{1} < \mathsf{S}$$
 (1)

Using KKT conditions

$$\theta_{opt} = \underbrace{\arg\min_{\theta} (Y - X\theta)^{\mathsf{T}} (Y - X\theta) + \delta^{2} \|\theta\|_{1}}_{\text{convex function}} \tag{2}$$

Solving the Objective

· Since $|\theta|$ is not differentiable, we cannot solve,

$$\frac{\partial (\mathbf{Y} - \mathbf{X}\boldsymbol{\theta})^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\theta}) + \delta^{2} \|\boldsymbol{\theta}\|_{1}}{\partial \boldsymbol{\theta}} = 0$$
 (3)

Solving the Objective

· Since $|\theta|$ is not differentiable, we cannot solve,

$$\frac{\partial (Y - X\theta)^{\mathsf{T}} (Y - X\theta) + \delta^2 \|\theta\|_1}{\partial \theta} = 0$$
 (3)

How to Solve? Use Coordinate descent!

Sample Dataset

Figure 1: y = 4x + 7

Geometric Interpretation

Figure 2: Lasso regression

Figure 4: $\mu =$ 1.25 (on the Sample Dataset)

Figure 5: $\mu =$ 1.5 (on the Sample Dataset)

Figure 6: $\mu =$ 1.75 (on the Sample Dataset)

Figure 7: $\mu = 2.0$ (on the Sample Dataset)

LALLY LASSO GIVES SPARSITY

() GEOMETRIC INTERPRETATION

O C.D. RASED INTERPRETATION

LPNORM (04P<1)

PROS. OF JOTERSECTION AND DIFFICULTY OF SOLVING

$$y = |0|$$
 (FOR NOW ASSUME 0>0) $y = 6^2/2$

$$y = \{0\} \quad \text{(For Now Assume 0>0)} \quad y = 6^{2}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{($$

$$y = |D| \quad (FOR NOW Assume 0>0) \qquad y = 0^{2}$$

$$(5,25)$$

$$(4.5,4.5)$$

$$y = 1 \quad (Assume 0>0) \qquad \exists y = 20 = 0$$

$$Let \quad \forall = 0.5$$

$$y = |0|$$
 (FOR NOW ASSUME 0>0) $y = 0^2$ (5,25)
 $(45,45)$ $2y = 20 = 0$
 $(2.5,25)$
 $(45,45)$ $2y = 20 = 0$

$$\theta_0^1 = \theta_0^0 - 0.5 \times 1 = 4.5$$
 $\theta_0^2 = \theta_0^1 - 0.5 \times 1 = 4.0$

$$\theta_0^1 = \theta_0^0 - 0.5 * 5 = 2.5$$
 $\theta_0^2 = \theta_0^1 - 0.5 \times 2.5 = 1.25$

$$y = |\theta|$$
 (FOR NOW ASSUME 070) $y = \theta^2$ (5,25)
 $(4,6)$ (5,5)
 $(4,5)$ (4.5,4.5)
 $(4,5)$ (1.25,1.25 |2)
 $(1,25)$ (1.25) (1.25) (1.25) (1.25) (1.25) (1.25) (1.25)

$$\theta_0^1 = \theta_0^1 - 0.5 \times 1 = 4.5$$
 $\theta_0^2 = \theta_0^1 - 0.5 \times 1 = 4.0$

$$\theta_0' = \theta_0' - 0.5 * 5 = 2.5$$
 $\theta_0^2 = \theta_0' - 0.5 \times 2.5 = 1.25$

$$y = |0|$$
 (FOR NOW ASSUME 0>0) $y = 0^2$

$$(5,25)$$

$$(4,4) = (5,5)$$

$$(4,5) = (4.5,4.5)$$

$$y = 1$$

$$(Assume 0>0)$$

$$2y = 20 = 0$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1$$

$$\theta_{0}^{1} = \theta_{0}^{0} - 0.5 \times 1 = 4.5$$
 $\theta_{0}^{1} = \theta_{0}^{1} - 0.5 \times 1 = 4.0$
 $\theta_{0}^{1} = \theta_{0}^{1} - 0.5$

$$\theta_0^2 = \theta_0^1 - 0.5 \times 2.5 = 1.25$$

$$\theta_0^4 = \theta_0^{4-1} - 0.5 \theta_0^{4-1} = 0.5 \theta_0^{4-1}$$

Regularization path of lasso regression

Figure 8: Regularization path of θ_i

LASSO and feature selection

· LASSO inherently does feature selection!

LASSO and feature selection

- · LASSO inherently does feature selection!
- Sets coefficients of "less important" features to zero.

LASSO and feature selection

- · LASSO inherently does feature selection!
- · Sets coefficients of "less important" features to zero.
- Sparse and memory efficient and often more interpretable models.

Subgradient

- Generalizes gradient to convex but non-differentiable problems
- Examples:
 - $\cdot f(x) = |x|$

Task at hand

• TASK: find derivative of f(x) at $x = x^0$

Solution

- Construct a differentiable g(x)
 - Intersecting f(x) at $x = x_0$
 - Below or on f(x) for all x

Solution

• Compute slope of g(x) at $x = x_0$

Another Example: f(x) = |x|

• Subgradient of f(x) belongs to [-1, 1]

· Another optimisation method (akin to gradient descent)

- · Another optimisation method (akin to gradient descent)
- Objective: $_{\mathsf{Min}_{\theta}}f(\theta)$

- · Another optimisation method (akin to gradient descent)
- · Objective: $_{\mathsf{Min}_{\theta}}f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates

- · Another optimisation method (akin to gradient descent)
- · Objective: $_{\mathsf{Min}_{\theta}}f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- · ..., but, easy for each coordinate

- · Another optimisation method (akin to gradient descent)
- · Objective: $_{\mathsf{Min}_{\theta}}f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- · ..., but, easy for each coordinate
- turns into a 1D optimisation problem

(DORDINATE DESCENT ALGORITHM

COORDINATE DESCENT ALGORITHM

GOAL: MIN f (B)

(DORDINATE DESCENT ALGORITHM

1) INIT \(\theta \)
2) WHILE NOT CONVERGED

2.1) PICK CORDINATE 'j'

(DORDINATE

2.1) PICK COORDINATE 'j'

2.2)
$$\hat{\Theta}_{i} = \min f(\theta_{0}, \Phi)$$

COORDINATE DESCENT ALGORITHM

2) WHILE NOT CONVERGED

(2.2)
$$\hat{\theta}_{j} = \min_{\phi} f(\theta_{0}, \phi)$$

COORDINATE DESCENT ALGORITHM

2) WHILE NOT CONVERGED

2.1) PICK COORDINATE "j"

2.2) $\hat{\theta}_{j} = \underset{\phi}{\text{min }} f(\theta_{\delta}, \phi)$

• Picking next coordinate:

• Picking next coordinate:

- · Picking next coordinate: random, round-robin
- No step-size to choose!

- · Picking next coordinate: random, round-robin
- · No step-size to choose!
- · Converges for Lasso objective

Learn $y = \theta_0 + \theta_1 x$ on following dataset, using coordinate descent where initially $(\theta_0, \theta_1) = (2, 3)$ for 2 iterations.

Х	у
1	1
2	2
3	3

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $\epsilon_i = y_i - \hat{y}_i$
 $\epsilon_1 = 1 - \theta_0 - \theta_1$
 $\epsilon_2 = 2 - \theta_0 - 2\theta_1$
 $\epsilon_3 = 3 - \theta_0 - 3\theta_1$

$$MSE = \frac{\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2}{3} = \frac{14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1}{3}$$

INIT:
$$\theta_0 = 2$$
 and $\theta_1 = 3$

$$\theta_1=$$
 3 optimize for θ_0

INIT:
$$\theta_0 = 2$$
 and $\theta_1 = 3$

$$\theta_1=$$
 3 optimize for θ_0

$$\frac{\partial MSE}{\partial \theta_0} = 6\theta_0 + 24 = 0$$

$$\theta_0 = -4$$

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

$$heta_0 = -4$$
 optimize for $heta_1$

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

$$heta_0 = -4$$
 optimize for $heta_1$

$$\theta_1 = 2.7$$

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 2.7$

$$\theta_1=$$
 2.7 optimize for θ_0

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 2.7$

$$\theta_1=$$
 2.7 optimize for θ_0

$$\theta_0 = -3.4$$

FAILURE OF COORDINATE

OF COORDINATE

WITH (XX) = (-2,72)

FAILURE OF COORDINATE

START WITH (X,Y) = (-2,-2)FIX Y = -2, OPTIMIZE

FAILURE OF COORDINATE

START WITH (x,y) = (-2,-2)FIX y = -2, OPTIMIZE ABOUT 2.

IN BOTH DIRECTIONS

amilar It we tix

GRADIENT DESCENT

-NEED SIMULTANEOUS
UPDATE IN BOTH
COORDINATES

