

Informe 8 Laboratorio de Maquinas: ENSAYO DE UN VENTILADOR RADIAL

José Luis Riveros

Profesores: Tomás Herrera Muñoz

Cristóbal Galleguillos Ketterer

ICM557-2

2020

indice:

- 1. Introducción y objetivo
- 2. Trabajo de laboratorio
- 3. Tabla de valores medidos
- 4. Formulas
- 5. Tabla de valores calculados
- 6. Gráficos

1. Introducción y Objetivos

El informe presenta el ensayo realizado a un ventilador radial, analizaremos los datos obtenidos.

Objetivo:

Determinar el comportamiento de un ventilador radial.

2. Trabajo de laboratorio.

Hacer un reconocimiento del dispositivo de ensayo.

Poner en marcha la instalación, con la descarga totalmente abierta.

Luego de inspeccionar los instrumentos y su operación y esperar que se estabilice su funcionamiento, tome las siguientes mediciones:

- * Pe4 presión diferencial [mmH2O]
- * nx velocidad del ventilador [rpm]
- * ta temperatura ambiente [°C]
- * td temperatura de descarga [°C]
- * W1, W2 Potencia eléctrica, método 2 wat. [kW]

Finalizadas estas, estrangular la descarga colocando un disco con una abertura menor.

El procedimiento se repite hasta colocar el disco menor y luego tapar totalmente la descarga.

La presión atmosférica, [mmHg], se mide al inicio del ensayo.

3. Tabla de valores medidos.

VALORES MEDIDOS							
	nx	P _{e4}	ta	td	W ₁	W ₂	P _{atm}
	[rpm]	[mmca]	[°C]	[°C]	[kW]	[kW]	[mm _{Hg}]
1	1831	5	21	23	0,44	0,82	758,8
2	1845	30	22	23	0,34	0,7	758,8
3	1867	45	22	23	0,19	0,56	758,8
4	1867	48,5	21	23	0,14	0,52	758,8
5	1871	57	21,5	23	0,11	0,49	758,8

Tabla 1: valores medidos

4. Formulas

Caudal:

$$q_{vm} = \alpha * s_5 * (\frac{2*P_{e4}}{\rho_{05}})^{\frac{1}{2}} [\frac{m^3}{s}]$$

DATOS					
D_5	D_5/D_4	α			
[mm]	[-]	[-]			
00	00	0.600			
90	0.15	0.6025			
120	0.2	0.604			
180	0.3	0.611			
300	0.5	0.641			

 P_{e4} en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{{V_1}^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[\frac{m}{S} \right]$$

$$S_1 = 0.070686 [m2]$$

Potencia eléctrica.

$$N_{elec} = W_1 + W_2 [KW]$$

Potencia hidráulica:

$$N_h = q_{vm} * \Delta P [W]$$

Rendimiento global:

$$N_{gl} = \frac{N_h * 100}{N_{elec}} [\%]$$

5. Tabla de valores calculados

		diferencia					rend.
	qvm	de precion	velocidad	dens med	pot elec	Nh	Global
	m3/s	Pa	m/3	kg/m3	kW	kW	%
1	0,4094854	49,9141385	5,79301989	1,2	1,26	0,00567753	0,45059769
2	0,34421282	294,768423	4,86960383	1,2	1,04	0,02818419	2,71001788
3	0,18541081	442,413913	2,62302027	1,2	0,75	0,02278565	3,03808601
4	0,10785057	475,540766	1,5257699	1,2	0,66	0,01424648	2,15855822
5	0	57	0	1,2	0,6	0	0

Tabla 1

Valores corregidos con el factor de corrección

		diferencia		factor de
valores	qvm	de precion	pot elec	correcion
corregidos	m3/s	Pa	kW	(-)
1	0,41512114	50,6011054	1,27734134	1,01376297
2	0,34630235	296,557804	1,04631328	1,00607046
3	0,18433827	439,854689	0,74566149	0,99421532
4	0,10722669	472,789915	0,65618211	0,99421532
5	0	56,5491181	0,59525387	0,99208979

Tabla 2

6. Gráficos

Curva Δ P -qvm

¿Qué tipo de ventilador es? Descríbalo con detalle.

Es un ventilador radial con alabes curvadas hacia adelante. Ventilador de paletas curvadas hacia adelante con hélice o impulsor La dirección de flexión es la misma que la dirección de rotación. Estos ventiladores requieren poco espacio, son lentos y silenciosos. Úselos cuando la presión estática requerida sea de baja a moderada.

¿Las curvas tiene la forma esperada para ese tipo de ventilador?

Sí, porque a medida que aumenta el caudal baja la presión, esto es por la mecánica de fluidos y por las perdidas por roce que se producen en el fuido en movimiento

Curva de potencia eléctrica vs caudal

¿Cuál es la potencia máxima consumida?

La potencia máxima consumida es de 1,26 kW

¿Cuál es su posible potencia en el eje?

Considerando que el mejor rendimiento es de 10% y en ese punto la potencia eléctrica es de 0,75 kW que la potencia del eje es de 7,5 kW.

Curva de rendimiento vs caudal

¿Cuál es el punto de óptimo rendimiento?

El punto de mejor rendimiento es cuando el caudal esta entre 0,2 y 0,25 [m^3/s]