*
Exercice 1

- Voir correction —

Écrire les nombres complexes suivants sous forme algébrique :

1) (3-2i)(i+1)

 $4) \ \frac{-5}{7+i}$

2) (4-2i)(4+2i)

5) $(1+i)^4$

 $3) \ \frac{1+2i}{5-3i}$

 $6) \left(\frac{i}{2} - \frac{\sqrt{3}}{2}\right)^3$

Exercice 2

Voir correction -

Résoudre dans \mathbb{C} les équations suivantes d'inconnue $z \in \mathbb{C}$ (donner le résultat sous forme algébrique) :

1) 4iz + 2 = 3 - 2i

4) $\overline{z+5i} = z(3-i)$

2) z(1+i) = 1 - zi

5) $z^2 + 2z + 2 = 0$

3) $\frac{1}{2iz} + 5 = 3i$

6) $\frac{13}{z} = 6 - z$

Exercice 3 -

- Voir correction -

Écrire les nombres complexes suivants sous forme trigonométrique

1) $z_1 = 5 + 5i$

4) $z_4 = \frac{1 + i\sqrt{3}}{\sqrt{3} - i}$

2) $z_2 = \sqrt{3} - i$

5) $z_5 = -7$

3) $z_3 = 12i - 4\sqrt{3}$

6) $z_6 = -5\left(\frac{\sqrt{3}}{2}i - \frac{1}{2}\right)$

* Exercice 4 -

- Voir correction -

Calculer en utilisant la forme exponentielle :

1) $z_1 = \frac{1+i}{1-i}$

3) $z_3 = (\sqrt{3} + 3i)^7 + (\sqrt{3} - 3i)^7$

2) $z_2 = (2+2i)^4$

4) $z_4 = \sum_{k=0}^{17} \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^k$

Exercice 5

- Voir correction —

On note $Z = \frac{i-z}{z+2}$. Déterminer l'ensemble des points M d'affixe z tels que

- 1) Z est un imaginaire pur
- 2) Z est un réel
- 3) Z a un module égal à 1

* * *
Exercice 6 ———— Voir correction —

(D'après Bac S Antilles Guyane Septembre 2017) On considère la suite de nombres complexes z_n définie par

$$\left\{ \begin{array}{ll} z_0 = 100 \\ z_{n+1} = \frac{i}{3} z_n & \text{pour tout entier naturel } n \end{array} \right.$$

On note M_n le point d'affixe z_n dans le plan complexe.

- 1) Démontrer que pour tout entier naturel n, les points O, M_n et M_{n+2} sont alignés.
- 2) Montrer que $\lim_{n \to +\infty} |z_n| = 0$.
- 3) En déduire qu'à partir d'un certain rang, tous les points M_n appartiennent à un disque de centre O et de rayon 0,01.

Exercice 7 — Voir correction —

(D'après Bac S Métropole - La Réunion 2017) Le plan complexe est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. À tout point M d'affixe z, on associe le point M' d'affixe

$$z' = -z^2 + 2z$$

Le point M' est appelé image du point M.

- 1) Déterminer les affixes des points dont l'image est le point d'affixe 2.
- 2) Soit M un point d'affixe z et soit M' son image d'affixe z'. On note N le point d'affixe $z_N = z^2$ Montrer que M est le milieu du segment [NM'].

— Exercice 8 — Voir correction —

(**D'après Bac S Polynésie 2015**) Le plan complexe est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. À tout point M d'affixe z du plan, on associe le point M' d'affixe z' définie par

$$z' = z^2 + 4z + 3$$

- 1) Un point M est dit invariant lorsqu'il est confondu avec le point M' associé. Démontrer qu'il existe deux points invariants. Donner l'affixe de chacun de ces points sous forme algébrique.
- 2) Soit A le point d'affixe $\frac{-3-i\sqrt{3}}{2}$ et B le point d'affixe $\frac{-3+i\sqrt{3}}{2}$ Montrer que OAB est un triangle équilatéral.
- 3) Déterminer l'ensemble \mathcal{E} des points M d'affixe z = x + iy où x et y sont réels, tels que le point M' associé soit sur l'axe des réels.
- 4) Dans le plan complexe, représenter les points A et B ainsi que l'ensemble \mathcal{E} .

Exercice 9 — Voir correction —

Soit $z \in \mathbb{C}$. Montrer que $\frac{1+\overline{z}}{1-z}$ est un réel si et seulement si z est un réel ou z est un imaginaire pur.

Exercice 10 — Voir correction —

Soit z un nombre complexe différent de 1. Montrer que |z| = 1 si et seulement si $\frac{1+z}{1-z}$ est imaginaire pur.

Exercice 11 — Voir correction —

Résoudre l'équation $e^z = 4\sqrt{3} + 6i$ d'inconnue $z \in \mathbb{C}$. (indication : poser z = a + ib avec a et b réels.

Exercice 12

─ Voir correction —

Soient a et b deux réels.

- 1) Exprimer de deux façons différentes les parties réelles et imaginaires de $e^{ia} \times e^{ib}$.
- 2) En déduire les expressions de $\cos(a+b)$ et $\sin(a+b)$ en fonction de $\cos a$, $\cos b$, $\sin a$ et $\sin b$.

Exercice 13

— Voir correction —

Soit θ un nombre réel.

- a) Exprimer de deux façons différentes les parties réelles et imaginaires de $(e^{i\theta})^2$.
 - b) En déduire que $\cos^2(\theta) = \frac{\cos(2\theta) + 1}{2}$
- 2) En considérant le nombre $(e^{i\theta})^3$, exprimer $\cos^3(\theta)$ en fonction de $\cos\theta$ et $\cos(3\theta)$.

Exercice 14 —

— Voir correction —

Soit $a \in]0, \pi[$. Écrire sous forme exponentielle le nombre complexe $z = \frac{1 - e^{ia}}{1 + e^{-ia}}$. (indication : factoriser au numérateur et au dénominateur par $e^{i\frac{a}{2}}$ et $e^{-i\frac{a}{2}}$

Exercice 15

— Voir correction —

Exprimer les sommes suivante en fonction de θ et de n:

$$1) S_1 = \sum_{k=0}^{n} \cos(k\theta)$$

$$2) S_2 = \sum_{k=0}^{n} \sin(k\theta)$$

3)
$$S_3 = \sum_{k=0}^{n} \cos^2(k\theta)$$

— Exercice 16 —

Voir correction —

- 1) Montrer que les solutions de l'équation $z^3 = 1$ sont $1, j, j^2$ où j est un nombre complexe de module 1.
- 2) Montrer que $1 + j + j^2 = 0$
- 3) Montrer que l'équation $z^n = 1$ admet n solutions de module 1, notées $z_0, z_1, ..., z_{n-1}$.
- 4) Montrer que $\sum_{k=0}^{n-1} z_k = 0$.

Exercice 17

Voir correction —

(D'après oraux ENS 2017)

1) Montrer que pour tout $x \in \mathbb{R}$ on a

$$\sin(2x) = 2\sin(x)\cos(x)$$
 et $\cos(2x) = \cos(x)^2 - \sin(x)^2$

Indication : on pourra considérer le nombre complexe $z = \cos(x) + i\sin(x)$ et calculer z^2

2) Montrer que pour tout $x \in]0; \pi[$ on a

$$\frac{\sin(x)}{1 - \cos(x)} = \frac{1}{\tan\left(\frac{x}{2}\right)}$$

3) Pour un entier $n \geq 2$, on introduit

$$S_n = \sum_{k=0}^{n-1} \sin\left(\frac{k\pi}{n}\right)$$

Montrer que $S_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)}$

Indication: on pourra considérer le nombre complexe $z = \cos\left(\frac{\pi}{n}\right) + i\sin\left(\frac{\pi}{n}\right)$

4) Trouver la limite de $\frac{S_n}{n}$ lorsque $n \to \infty$

- Voir correction -

(D'après oraux ENS 2021) Soient x_0 et y_0 deux nombres réels. Soit h>0 un réel. On définit par récurrence, pour tout $n \in \mathbb{N}$,

$$x_{n+1} = x_n - hy_n \quad \text{et} \quad y_{n+1} = y_n + hx_n$$

- 1) On introduit le nombre complexe $z_n = x_n + iy_n$. Exprimer z_n en fonction de n et de z_0 .
- 2) Calculer la limite de $x_n^2 + y_n^2$ lorsque n tend vers $+\infty$
- 3) Soit N un nombre entier. On définit le réel h_N de telle sorte que $\arg(1+ih_N)=\frac{2\pi}{N}$.
 - a) Montrer que $\sqrt{1+h_N^2} = \frac{1}{\cos\left(\frac{2\pi}{N}\right)}$
 - b) En prenant $h = h_N$, on définit la suite (z_n) comme dans la première question (cette suite dépend donc de N). On note $w_N=z_N$ le N-ème terme de cette suite. Montrer que $w_N\to z_0$ lorsque N tend vers $+\infty$.

(D'après oraux ENS 2023)

1) On considère les ensembles suivants :

$$H = \{z \in \mathbb{C} \text{ tels que } \Im(z) > 0\}$$
 et $D = \{z \in \mathbb{C} \text{ tels que } |z| < 1\}$

où $\Im(z)$ désigne la partie imaginaire de z. Représenter graphiquement ces deux ensembles.

- 2) Montrer que pour tout $z \in H$, le nombre complexe $\frac{1+iz}{z+i}$ est bien défini et appartient à D
- 3) Montrer que la fonction définie sur H et à valeurs dans D donnée par la formule $\frac{1+iz}{z+i}$ est une bijection. Quelle est sa fonction réciproque?
- 4) On remplace les inégalités strictes par des inégalités larges dans les définitions de H et de D. La fonction est-elle encore bijective?

Voir correction —

(D'après oraux ENS 2018)

Soit $k \ge 2$ un entier et $\omega = e^{\frac{2i\pi}{k}}$.

- 1) Soit $j \geq 0$ un entier. Si j est un multiple de k, que vaut ω^{j} ?
- 2) Pour tout entier $0 \le \ell \le k-1$, montrer que $|1+\omega^{\ell}| = |\omega^{-\ell/2} + \omega^{\ell/2}| = 2 \left|\cos\left(\frac{\pi\ell}{k}\right)\right|$.
- 3) Soit $j \ge 0$ un entier. Calculer la quantité

$$\sum_{\ell=0}^{k-1} \omega^{\ell j}$$

suivant si i est un multiple de k ou non.

4) Montrer que

$$\sum_{\substack{j=0\\ i \text{ multiple de } k}}^{n} \binom{n}{j} = \frac{1}{k} 2^n + \frac{1}{k} \sum_{\ell=1}^{k-1} (1 + \omega^{\ell})^n$$

5) Soit X_n le nombre de piles obtenus dans une succession de n lancers indépendants d'une pièce équilibrée. Montrer que la probabilité que X_n soit un multiple de k converge lorsque $n \to +\infty$ et calculer la limite.

Correction des exercice

Correction de l'exercice 1 :

1)

$$(3-2i)(i+1) = 3i + 3 - 2i^2 - 2i$$
$$= 5+i$$

2)

$$(4-2i)(4+2i) = 4^2 + 2^2$$
$$= 20$$

3)

$$\frac{1+2i}{5-3i} = \frac{(1+2i)(5+3i)}{5^2+3^2}$$
$$= \frac{5+3i+10i-6}{34}$$
$$= \frac{-1}{34} + \frac{13}{34}i$$

4)

$$\begin{split} \frac{-5}{7+i} &= \frac{-5(7-i)}{7^2+1^2} \\ &= \frac{-35+5i}{50} \\ &= -\frac{35}{50} + \frac{5}{50}i \\ &= -\frac{7}{10} + \frac{1}{10}i \end{split}$$

5) On a

$$(1+i)^2 = 1^2 + 2i + i^2$$

= 2i

donc $(1+i)^4 = (2i)^2 = 4i^2 = -4$.

6)

$$\left(\frac{i}{2} - \frac{\sqrt{3}}{2}\right)^3 = \left(\frac{i}{2} - \frac{\sqrt{3}}{2}\right) \left(\left(\frac{i}{2}\right)^2 - 2 \times \frac{i}{2} \times \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{3}}{2}\right)^2\right)$$

$$= \left(\frac{i}{2} - \frac{\sqrt{3}}{2}\right) \left(-\frac{1}{4} - \frac{i\sqrt{3}}{2} + \frac{3}{4}\right)$$

$$= \left(\frac{i}{2} - \frac{\sqrt{3}}{2}\right) \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)$$

$$= \frac{i}{4} + \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} + \frac{3}{4}i$$

$$= i$$

Correction de l'exercice 2 :

$$4iz + 2 = 3 - 2i \iff 4iz = 1 - 2i$$

$$\iff z = \frac{1 - 2i}{4i}$$

$$\iff z = \frac{i + 2}{4i^2}$$

$$\iff z = -\frac{1}{2} - \frac{1}{4}i$$

2)

$$z(1+i) = 1 - zi \iff z(1+i+i) = 1$$

$$\iff z = \frac{1}{1+2i}$$

$$\iff z = \frac{1-2i}{1^2+2^2}$$

$$\iff z = \frac{1}{5} - \frac{2}{5}i$$

3)

$$\frac{1}{2iz} + 5 = 3i \iff \frac{1}{2iz} + 5 - 3i = 0$$

$$\iff \frac{1 + 10iz - 6i^2z}{2iz} = 0$$

$$\iff \frac{1 + (10i + 6)z}{2iz} = 0$$

$$\iff 1 + (10i + 6)z = 0 \quad \text{et} \quad 2iz \neq 0$$

$$\iff z = -\frac{1}{10i + 6} \quad \text{et} \quad z \neq 0$$

$$\iff z = -\frac{6 - 10i}{10^2 + 6^2} \quad \text{et} \quad z \neq 0$$

$$\iff z = \frac{10i - 6}{136} \quad \text{et} \quad z \neq 0$$

donc $S = \{\frac{5}{68} - \frac{3}{68}i\}.$

4) On pose z = a + ib. Alors

$$\overline{z+5i} = z(3-i) \Longleftrightarrow \overline{a+ib+5} = (a+ib)(3-i)$$

$$\iff a-ib+5) = 3a-ai+3ib+b$$

$$\iff -2a-b+i-b-5+a-3b) = 0$$

$$\iff \begin{cases} -2a-b = 0\\ -4b-5+a = 0 \end{cases}$$

$$\iff \begin{cases} b = -2a\\ 9a-5 = 0 \end{cases}$$

$$\iff \begin{cases} b = -\frac{10}{9}\\ a = \frac{5}{9} \end{cases}$$

finalement $S = \{\frac{5}{9} - \frac{10}{9}i\}$

5) $\Delta = 2^2 - 4 \times 1 \times 2 = -4 < 0$ donc deux solutions :

$$z_1 = \frac{-2 - i\sqrt{4}}{2} = -1 - i$$
 et $z_2 = \frac{-2 + i\sqrt{4}}{2} = -1 + i$

6)

$$\frac{13}{z} = 6 - z \Longleftrightarrow \frac{13}{z} - 6 + z = 0$$

$$\iff \frac{13 - 6z + z^2}{z} = 0$$

$$\iff z^2 - 6z + 13 = 0 \text{ et } z \neq 0$$

on résout $z^2-6z+13=0$: $\Delta=6^2-4\times13=-16<0$ donc l'équation a deux solutions complexes :

$$z_1 = \frac{6 - i\sqrt{16}}{2} = 3 - 2i$$
 et $z_2 = \frac{6 + i\sqrt{16}}{2} = 3 + 2i$

Correction de l'exercice 3:

1) $|z_1| = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ Soit θ un argument de z_1 , alors

$$\begin{cases}
\cos \theta &=& \frac{\Re(z_1)}{|z_1|} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\
\sin \theta &=& \frac{\Im(z_1)}{|z_1|} = \frac{5}{5\sqrt{2}} = \frac{\sqrt{2}}{2}
\end{cases}$$

Ainsi $\theta \equiv \frac{\pi}{4} \ [2\pi]$

On en conclut que

$$z_1 = 5\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

2) $|z_2| = \sqrt{\sqrt{3}^2 + 1^2} = \sqrt{4} = 2$. Soit θ un argument de z_2 . Alors

$$\begin{cases}
\cos \theta &=& \frac{\sqrt{3}}{2} \\
\sin \theta &=& \frac{-1}{2}
\end{cases}$$

donc $\theta \equiv -\frac{\pi}{6}[2\pi].$

Ainsi, on en conclut que

$$z_2 = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$

3) $|z_3| = \sqrt{12^2 + (4\sqrt{3})^2} = \sqrt{144 + 16 \times 3} = \sqrt{192} = \sqrt{4 \times 48} = \sqrt{4 \times 3 \times 16} = 8\sqrt{3}$. Soit θ un argument de z_3 . Alors:

$$\begin{cases}
\cos \theta &= \frac{-4\sqrt{3}}{8\sqrt{3}} = -\frac{1}{2} \\
\sin \theta &= \frac{12}{8\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}
\end{cases}$$

donc $\theta \equiv \frac{2\pi}{3}[2\pi].$

Ainsi, on en conclut que

$$z_3 = 8\sqrt{3}\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$$

4)
$$z_4 = \frac{(1+i\sqrt{3})(\sqrt{3}+i)}{\sqrt{3}^2+1^2} = \frac{\sqrt{3}+i+3i-\sqrt{3}}{4} = \frac{4i}{4} = i$$

Ainsi, $z_4 = 1 \times \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$

5)
$$|z_5| = 7$$
 et $\arg(z_5) \equiv -\pi[2\pi]$, donc $z_5 = 7(\cos(-\pi) + i\sin(-\pi))$

6)
$$z_6 = -5\left(\frac{\sqrt{3}}{2}i - \frac{1}{2}\right) = 5\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$$

En posant $\theta = -\frac{\pi}{3}$, on a $z_6 = 5(\cos\theta + i\sin\theta)$ donc finalement

$$z_6 = 5\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$

Correction de l'exercice 4:

1)
$$1 + i = \sqrt{2} e^{i\frac{\pi}{4}}$$
 et $1 - i = \sqrt{2} e^{-i\frac{\pi}{4}}$ donc $z_1 = \frac{1+i}{1-i} = \frac{\sqrt{2} e^{i\frac{\pi}{4}}}{\sqrt{2} e^{-i\frac{\pi}{4}}} = e^{i\frac{\pi}{4} + \frac{\pi}{4}} = e^{i\frac{\pi}{2}} = i$

2)
$$2 + 2i = 2\sqrt{2}(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = 2\sqrt{2}e^{i\frac{\pi}{4}}.$$

Ainsi, $z_2 = (2 + 2i)^4 = (2\sqrt{2}e^{i\frac{\pi}{4}} = (2\sqrt{2})^4e^{i\frac{\pi}{4}\times 4} = 64e^{-i\pi} = -64$

3)
$$\sqrt{3} + 3i = \sqrt{3}(1 + \sqrt{3}i) = \frac{\sqrt{3}}{2} \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = \frac{\sqrt{3}}{2} e^{i\frac{\pi}{3}}$$

$$\sqrt{3} - 3i = \sqrt{3} + 3i = \frac{\sqrt{3}}{2} e^{-i\frac{\pi}{3}}.$$

Ainsi,
$$z_3 = \left(\frac{\sqrt{3}}{2}\right)^7 \left((e^{i\frac{\pi}{3}})^7 + (e^{-i\frac{\pi}{3}})^7 \right)$$

$$z_3 = \frac{(\sqrt{3})^6 \sqrt{3}}{2^7} \left(e^{i\frac{7\pi}{3}} + e^{-i\frac{7\pi}{3}} \right) = \frac{27\sqrt{3}}{128} \times 2\cos\left(\frac{7\pi}{3}\right) = \frac{27\sqrt{3}}{256}$$

4)
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = e^{i\frac{\pi}{3}}$$
 donc

$$z_4 = \sum_{k=0}^{17} (e^{i\frac{\pi}{3}})^k$$
$$= \frac{1 - e^{i\frac{\pi}{3} \times 18}}{1 - e^{i\frac{\pi}{3}}}$$
$$= 0$$

Correction de l'exercice 5 :

1) Notons z = a + ib avec $a, b \in \mathbb{R}$. On a

$$Z = \frac{i - a - ib}{a + ib + 2}$$

$$= \frac{(-a + i1 - b))(a + 2 - ib)}{(a + 2)^2 + b^2}$$

$$= \frac{-a^2 - 2a + abi + ia - ab + 2 - 2b) + b - b^2}{a^2 + 2a + 4 + b^2}$$

Ainsi, $\Re(Z) = \frac{-a^2 - 2a + b - b^2}{a^2 + 2a + 4 + b^2}$ et $\Im(Z) = \frac{ab + a - ab + 2 - 2b}{a^2 + 2a + 4 + b^2} = \frac{a + 2 - 2b}{a^2 + 2a + 4 + b^2}$. ainsi, Z est un imaginaire pur si et seulement si $\Re(Z) = 0$, si et seulement si $-a^2 - 2a + b - b^2 = 0$. Or,

$$-a^{2} - 2a + b - b^{2} = 0 \iff a^{2} + 2a - b + b^{2} = 0$$
$$\iff (a+1)^{2} - 1 + \left(b - \frac{1}{2}\right)^{2} - \frac{1}{4} = 0$$

$$\iff (a+1)^2 + \left(b - \frac{1}{2}\right)^2 = \frac{5}{4}$$

l'ensemble des points de coordonnées (a,b) vérifiant cette équation est le cercle de centre $(-1,\frac{1}{2})$ et de rayon $R=\sqrt{5/4}=\frac{\sqrt{5}}{2}$.

- 2) Z est un réel si et seulement si $\Im(Z) = 0$, si et seulement si $a + 2 2b = 0 \iff b = \frac{1}{2}a + 1$. L'ensemble des points de coordonnées (a,b) vérifiant cette équation est la droite d'équation $y = \frac{1}{2}x + 1$.
- 3) $|Z| = \frac{|i-z|}{|z+2|}$ donc Z a pour module 1 si et seulement si |i-z| = |z+2|.

Soit A le point d'affixe i et B le point d'affixe -2.

Alors |i-z| = AM et |z+2| = BM. L'ensemble des points M tels que AM = BM est la médiatrice de [AB]. Ainsi, Z a pour module 1 si et seulement si M(z) est sur la médiatrice de [AB] avec A(i) et B(-2).

Correction de l'exercice 6 :

1) (z_n) est une suite géométrique de raison $\frac{i}{3}$, donc pour tout $n \in \mathbb{N}$, $z_n = \left(\frac{i}{3}\right)^n \times z_0 = 100 \times \left(\frac{i}{3}\right)^n$.

Soit n un entier naturel et soient M_n et M_{n+2} les points d'affixe z_n et z_{n+2} .

Alors M_n a pour affixe $100 \times \left(\frac{i}{3}\right)^n$ et M_{n+2} a pour affixe $100 \times \left(\frac{i}{3}\right)^{n+2} = 100 \times \left(\frac{i}{3}\right)^n \times \left(\frac{i}{2}\right)^2 = z_n \times \left(-\frac{1}{9}\right)$ Ainsi, le vecteur $\overrightarrow{OM_n}$ a pour affixe z_n et le vecteur $\overrightarrow{OM_{n+2}}$ a pour affixe $z_{n+2} = z_n \times \left(-\frac{1}{9}\right)$.

Ainsi, $\overrightarrow{OM_{n+2}} = -\frac{1}{9}\overrightarrow{OM_n}$ donc $\overrightarrow{OM_n}$ et $\overrightarrow{OM_{n+2}}$ son colinéaires. On en déduit que les points O, M et N sont alignés.

- 2) On a $|z_n| = 100 \times \left| \frac{i}{3} \right|^n$ et que $\left| \frac{i}{3} \right| = \frac{1}{3}$. Or $0 \le \frac{1}{3} < 1$ donc $\lim_{n \to +\infty} \left(\frac{1}{3} \right)^n = 0$, et donc $\lim_{n \to +\infty} |z_n|^n = 0$.
- 3) On en déduit qu'à partir d'un certain rang N, on a $|z_n| < 0,01$ pour tout $n \ge N$, donc M_n d'affixe z_n est contenu dans le disque de centre O et de rayon 0,01 pour tout $n \ge N$.

Correction de l'exercice 7:

1) On résout $-z^2+2z=2$. Cette équation est équivalente à $-z^2+2z-2=0$ $\Delta=2^2-4\times(-1)\times(-2)=-4$. Cette équation a donc deux solutions complexes :

$$z_1 = \frac{-2 - i\sqrt{4}}{-2} = 1 + i$$
 et $z_2 = \frac{-2 + i\sqrt{4}}{-2} = 1 - i$

Les affixes des points dans l'image est le point d'affixe 2 sont donc 1+i et 1-i.

2) z est l'affixe de $M,\,z'$ est l'affixe de M' et z^2 est l'affixe de N.

On a $z' = -z^2 + 2z$ donc $z = \frac{z' + z^2}{2}$ donc M est le milieu de [M'N].

Correction de l'exercice 8 :

1) M(z) est invariant si et seulement si $z = z^2 + 4z + 3$.

On résout l'équation $z = z^2 + 4z + 3$ équivalente à l'équation $z^2 + 3z + 3 = 0$.

 $\Delta = 3^2 - 4 \times 1 \times 3 = -3.$

 $\Delta < 0$ donc l'équation a 2 solutions complexes :

$$z_1 = \frac{-3 - i\sqrt{3}}{2}$$
 et $z_2 = \frac{-3 + i\sqrt{3}}{2}$

Il y a donc deux points invariants dont les affixes sont $-\frac{3}{2} = \frac{\sqrt{3}}{2}i$ et $-\frac{3}{2} + \frac{\sqrt{3}}{2}i$.

2) Calculons les longueurs OA, OB et AB:

$$OA = |z_A|$$

$$= \left| \frac{-3 - i\sqrt{3}}{2} \right|$$

$$= \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$= \sqrt{\frac{9}{4} + \frac{3}{4}}$$

$$= \sqrt{3}$$

$$OB = |z_B|$$

$$= \left| \frac{-3 + i\sqrt{3}}{2} \right|$$

$$= \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$= \sqrt{\frac{9}{4} + \frac{3}{4}}$$

$$= \sqrt{3}$$

 et

$$AB = |z_B - z_A|$$
$$= |i\sqrt{3}|$$
$$= \sqrt{3}$$

Ainsi OA = OB = AB donc OAB est un triangle équilatéral.

3) M'(z') est sur l'axe des réels si et seulement si $\Im(z') = 0$, ssi $\Im(z^2 + 4z + 3) = 0$.

$$\Im(z^2 + 4z + 3) = 0 \iff \Im((x + iy)^2 + 4(x + iy) + 3) = 0$$

$$\iff \Im(x^2 - y^2 + 4x + 3 + i2xy + 4y) = 0$$

$$\iff 2xy + 4y = 0$$

$$\iff 2y(x + 2y) = 0$$

$$\iff y = 0 \quad \text{ou} \quad x + 2y = 0$$

L'ensemble des points M d'affixe z tels que l'image M' d'affixe z' est situé sur l'axe réel est donc la réunion de la droite d'équation y=0 (l'axe des abscisses) et de la droite d'équation x+2y=0.

Correction de l'exercice 9 : Posons $Z = \frac{1+\overline{z}}{1-z}$. Z est un réel si et seulement si $\overline{Z} = Z$, si et seulement si $\frac{1+z}{1-\overline{z}} = \frac{1+\overline{z}}{1-z}$.

$$\frac{1+z}{1-\overline{z}} = \frac{1+\overline{z}}{1-z} \iff (1+z)(1-z) = (1+\overline{z})(1-\overline{z})$$

$$\iff 1-z^2 = 1-\overline{z}^2$$

$$\iff \overline{z}^2 - z^2 = 0$$

$$\iff (\overline{z}+z)(\overline{z}-z) = 0$$

$$\iff \overline{z} = -z \quad \text{ou} \quad \overline{z} = z$$

$$\iff z \in i\mathbb{R} \quad \text{ou} \quad z \in \mathbb{R}$$

Correction de l'exercice 10 : Posons $Z = \frac{1+z}{1-z}$.

$$Z \text{ est imaginaire pur} \iff \overline{Z} = -Z$$

$$\iff \frac{1+\overline{z}}{1-\overline{z}} = -\frac{1+z}{1-z}$$

$$\iff (1+\overline{z})(1-z) = -(1-\overline{z})(1+z)$$

$$\iff 1-z+\overline{z}-\overline{z}z = -1-z+\overline{z}+\overline{z}z$$

$$\iff 2|z|^2 = 2$$

$$\iff |z|^2 = 1$$

$$\iff |z| = 1$$

Remarque : on peut raisonner uniquement à partir de la forme algébrique. Si z = x + iy avec $x, y \in \mathbb{R}$, alors

$$\begin{split} \frac{1+z}{1-z} &= \frac{1+x+iy}{1-x-iy} \\ &= \frac{(1+x+iy)(1-x+iy)}{(1-x)^2+y^2} \\ &= \frac{1-x+iy+x-x^2+ixy+iy-ixy-y^2}{(1-x)^2+y^2} \end{split}$$

donc $\Re\left(\frac{1+z}{1-z}\right) = \frac{1-x^2-y^2}{(1-x)^2+y^2}$. $\frac{1+z}{1-z}$ est imaginaire pur si et seulement si sa partie réelle est nulle, si et seulement si $1-x^2-y^2=0$, si et seulement si $x^2+y^2=1$ c'est à dire $|z|^2=1$ donc |z|=1. Correction de l'exercice 11 : On pose z=a=ib. Alors $\mathrm{e}^z=\mathrm{e}^a\times\mathrm{e}^{ib}$ est un nombre complexe de module e^a et d'argument

Or,
$$|4\sqrt{3} + 6i| = \sqrt{(4\sqrt{3})^2 + 6^2} = \sqrt{84} = 2\sqrt{21}$$

Ainsi,
$$e^z = 4\sqrt{3} + 6 \iff e^a = 2\sqrt{21}$$
 et $\cos b = \frac{4\sqrt{3}}{2\sqrt{21}} = \frac{2\sqrt{7}}{7}$ et $\sin b = \frac{6}{2\sqrt{21}} = \frac{\sqrt{21}}{7}$

Soit $\theta \in [0, 2\pi]$ l'unique réel tel que $\cos \theta = \frac{2\sqrt{7}}{7}$ et $\sin \theta = \frac{\sqrt{21}}{7}$. Alors $b \equiv \theta[2\pi]$.

Correction de l'exercice 12:

 $e^{ia} \times e^{ib} = e^{ia+b} = \cos(a+b) + i\sin(a+b)$ d'une part. Donc $\Re(e^{ia} e^{ib}) = \cos(a+b)$ et $\Im(e^{ia} e^{ib}) = \sin(a+b)$. D'autre part,

$$e^{ia} \times e^{ib} = (\cos a + i \sin a) \times (\cos b + i \sin b)$$

$$= \cos a \cos b + i \cos a \sin b + i \sin a \cos b + i^2 \sin a \sin b$$

$$= \cos a \cos b - \sin a \sin b + i \cos a \sin b + \sin a \cos b)$$

donc $\Re(e^{ia} e^{ib}) = \cos a \cos b - \sin a \sin b$ et $\Im(e^{ia} e^{ib}) = \cos a \sin b + \sin a \cos b$. On en déduit les formules d'addition du sinus et du cosinus :

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

Correction de l'exercice 13:

- 1) D'une part on a $(e^{i\theta})^2 = (\cos\theta + i\sin\theta)^2 = \cos^2\theta + 2i\cos\theta\sin\theta + i^2\sin\theta = \cos^2\theta \sin^2\theta + 2i\cos\theta\sin\theta$. D'autre part, on a $(e^{i\theta})^2 = e^{2i\theta} = \cos(2\theta) + i\sin(2\theta)$.
- 2) En identifiant la partie réelle de ces deux expressions, on en déduit

$$\cos^2 \theta - \sin^2 \theta = \cos(2\theta)$$

ainsi

$$\cos^2\theta - (1 - \cos^2\theta) = \cos(2\theta)$$

d'où

$$2\cos^2\theta - 1 = \cos(2\theta)$$
$$\cos^2\theta = \frac{\cos(2\theta) + 1}{2}$$

3)

$$(e^{i\theta})^3 = (\cos\theta + i\sin\theta)^3$$
$$= \cos^3\theta + 3i\cos^2\theta\sin\theta + 3i^2\cos\theta\sin^2\theta + \sin^3\theta$$

$$\Re((e^{i\theta})^3) = \cos^3 \theta - 3\cos\theta \sin^2 \theta$$
$$= \cos^3 \theta - 3\cos\theta (1 - \cos^2 \theta)$$
$$= \cos^3 \theta - 3\cos\theta + 3\cos^3 \theta$$
$$= 4\cos^3 \theta - 3\cos\theta$$

D'autre part, on a $(\mathrm{e}^{i\theta})^3 = \mathrm{e}^{3i\theta} = \cos(3\theta) + i\sin(3\theta)$

Par identification des partis réelles, on a

$$4\cos^3\theta - 3\cos\theta = \cos(3\theta)$$
$$\cos(3\theta) + 3\cos\theta$$

$$\cos^3 \theta = \frac{\cos(3\theta) + 3\cos\theta}{4}$$

Correction de l'exercice 14 : On a

$$z = \frac{1 - e^{ia}}{1 + e^{-ia}}$$

$$= \frac{e^{i\frac{a}{2}} (e^{-i\frac{a}{2}} - e^{i\frac{a}{2}})}{e^{-i\frac{a}{2}} (e^{i\frac{a}{2}} + e^{-i\frac{a}{2}})}$$

$$= e^{ia} \frac{-2i\sin(\frac{a}{2})}{2\cos(\frac{a}{2})}$$

Or
$$a \in]0, \pi[$$
 donc $\frac{a}{2} \in]0, \frac{\pi}{2}[$, ainsi $\cos\left(\frac{a}{2}\right) > 0$ et $\sin\left(\frac{a}{2}\right) > 0$.
$$= \frac{\sin\left(\frac{a}{2}\right)}{\cos\left(\frac{a}{2}\right)} \times (-2i) \times e^{ia}$$

$$= \frac{\sin\left(\frac{a}{2}\right)}{\cos\left(\frac{a}{2}\right)} \times 2 e^{\frac{3i\pi}{2}} \times e^{ia}$$

$$= \frac{\sin\left(\frac{a}{2}\right)}{\cos\left(\frac{a}{2}\right)} \times e^{i(a+\frac{3\pi}{2})}$$

Correction de l'exercice 15:

1)

$$\begin{split} \sum_{k=0}^{n} \cos(k\theta) &= \sum_{k=0}^{n} \Re(e^{ik\theta}) \\ &= \Re\left(\sum_{k=0}^{n} (e^{i\theta})^{k}\right) \\ &= \Re\left(\frac{\left(e^{i\theta}\right)^{n+1} - 1}{e^{i\theta} - 1}\right) \\ &= \Re\left(\frac{e^{i\theta(n+1)} - 1}{e^{i\theta} - 1}\right) \\ &= \Re\left(\frac{e^{i\frac{\theta(n+1)}{2}} \left(e^{i\frac{\theta(n+1)}{2}} - e^{-i\frac{\theta(n+1)}{2}}\right)}{e^{i\frac{\theta}{2}} \left(e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}\right)}\right) \\ &= \Re\left(\frac{e^{i\frac{\theta(n+1)}{2}} \times 2i \times \sin\left(\frac{\theta(n+1)}{2}\right)}{e^{i\frac{\theta}{2}} \times 2i \times \sin\left(\frac{\theta}{2}\right)}\right) \\ &= \Re\left(e^{i\frac{\theta(n+1)}{2}} - i\frac{\theta}{2} \times \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}\right) \\ &= \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \times \Re\left(e^{i\frac{n\theta}{2}}\right) \\ &= \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \times \cos\left(\frac{n\theta}{2}\right) \\ &= \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \times \cos\left(\frac{n\theta}{2}\right) \end{split}$$

2) De même, on a

$$\sum_{k=0}^{n} \sin(k\theta) = \sum_{k=0}^{n} \Im\left(e^{ik\theta}\right)$$

$$= \Im\left(\sum_{k=0}^{n} e^{ik\theta}\right)$$

$$= \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \Im\left(e^{i\frac{\theta}{2}}\right)$$

$$= \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \times \sin\left(\frac{n\theta}{2}\right)$$

3) On sait que pour tout $n \in \mathbb{N}$ et pour tout $\theta \in \mathbb{R}$,

$$\cos^2(k\theta) = \frac{1 + \cos(2k\theta)}{2}$$

Ainsi, on a

$$\sum_{k=0}^{n} \cos^{2}(k\theta) = \frac{1}{2} \sum_{k=0}^{n} \left(1 + \cos\left(2k\theta\right)\right)$$

$$= \frac{1}{2} \left(n + 1 + \frac{\sin\left(\frac{2\theta(n+1)}{2}\right)}{\sin\left(\frac{2\theta}{2}\right)} \cos\left(\frac{2n\theta}{2}\right)\right)$$

$$= \frac{1}{2} \left(n + 1 + \frac{\sin\left((n+1)\theta\right)}{\sin\theta} \cos\left(n\theta\right)\right)$$

$$= \frac{(n+1)\sin\theta + \sin\left((n+1)\theta\right)\cos(n\theta)}{2\sin\theta}$$

Correction de l'exercice 16:

1) Soit z un nombre complexe tel que $z^3 = 1$.

Alors
$$|z|^3 = 1$$
 donc $|z| = 1$.

Soit θ un argument de z. Alors $z = e^{i\theta}$ donc $z^3 = e^{3i\theta}$.

$$e^{3i\theta} = 1 \iff 3i\theta \equiv 0 + 2k\pi, \quad k \in \mathbb{Z} \iff \theta = \frac{2k\pi}{3}, \quad k \in \mathbb{Z}.$$

Ainsi, $z = e^{2ik\pi/3}$ avec $k \in \mathbb{Z}$, donc $z \in \left\{1, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}\right\}$.

En posant $j = e^{i\frac{2\pi}{3}}$, les solutions sont bien 1, j et j^2 .

2) On a

$$\begin{split} 1+j+j^2 &= 1 + \mathrm{e}^{i\frac{2\pi}{3}} + \mathrm{e}^{i\frac{4\pi}{3}} \\ &= 1 + \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) + \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) \\ &= 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} - \frac{1}{2} - i\frac{\sqrt{3}}{2} \\ &= 0 \end{split}$$

3) Soit z tel que $z^n=1$. Alors $|z|^n=1$ donc |z|=1. Soit θ un argument de z. Alors $z=e^{i\theta}$. $z^n=1 \Longleftrightarrow e^{ni\theta}=1 \Longleftrightarrow e^{ni\theta}=e^{ni\theta}=0+2k\pi, \quad k\in\mathbb{Z}.$

Ainsi,
$$\theta = \frac{2k\pi}{n}$$
, $k \in \mathbb{Z}$.

On en déduit que $z \in \left\{1, e^{i\frac{2\pi}{n}}, e^{i\frac{4\pi}{n}}, \cdots, e^{i\frac{2(n-1)\pi}{n}}\right\}$. Réciproquement, ces nombres sont bien solutions de $z^n = 1$.

Les solutions sont donc $\{z_k = e^{i\frac{2k\pi}{n}} \mid k \in [0, n-1]\}$.

4) L'ensemble des solutions est $\{\omega^k \mid k \in [\![0,n-1]\!]\}$ avec $\omega=z_1=\mathrm{e}^{i\frac{2\pi}{n}}.$

Ainsi,
$$\sum_{k=0}^{n-1} z_k = \sum_{k=0}^{n-1} \omega^k = \frac{\omega^n - 1}{\omega - 1} = 0 \text{ car } \omega^n = 1.$$

Correction de l'exercice 17:

1) Posons $z = \cos x + i \sin x$. Alors $z^2 = \cos(2x) + i \sin(2x)$ d'après la formule de Moivre, et d'autre part $z^2 = (\cos^2 x + i^2 \sin^2 x + 2i \cos x \sin x)$ donc en identifiant les parties réelles et imaginaires de chaque expression :

$$cos(2x) = cos^2 x - sin^2 x$$
 et $sin(2x) = 2 sin x cos x$

2) En utilisant le fait que $x=2\frac{x}{2}$ et d'après les formules de la question 1 on a :

$$\frac{\sin x}{1 - \cos x} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{1 - \cos^2\frac{x}{2} + \sin^2\frac{x}{2}}$$
$$= \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^2\frac{x}{2}}$$
$$= \frac{\cos\frac{x}{2}}{\sin\frac{x}{2}}$$
$$= \frac{1}{\tan\frac{x}{2}}$$

3) On pose $z = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = e^{i\frac{\pi}{n}}$. Alors

$$S_n = \sum_{k=0}^{n-1} \Re(e^{ik\pi/n})$$

$$= \Re\left(\sum_{k=0}^{n-1} (e^{i\pi/n})^k\right)$$

$$= \Re\left(\frac{e^{i\pi} - 1}{e^{i\pi/n} - 1}\right)$$

$$= \Re\left(\frac{-2}{e^{i\pi/2n} (e^{i\pi/2n} - e^{-i\pi/2n})}\right)$$

$$= \Re\left(-2 e^{-i\pi/2n} \times \frac{2i}{\sin\left(\frac{\pi}{2n}\right)}\right)$$

$$= \frac{-4}{\sin\frac{\pi}{2n}} \Re\left(e^{-i\pi/2n} e^{i\pi/2}\right)$$

$$= \frac{-4}{\sin\frac{\pi}{2n}} \cos\left(\frac{\pi}{2n} - \frac{\pi}{2}\right)$$

$$= \frac{-4 \sin\frac{\pi}{2}}{\sin\frac{\pi}{2n}}$$

Correction de l'exercice 19:

1) H est le demi plan suivant :

et D est l'intérieur du disque suivant (sans le bord) :

2) Si $z \in H$, alors Im(z) > 0 donc $z \neq -i$. Ainsi $z + i \neq 0$ donc $\frac{1 + iz}{z + i}$ est bien défini. De plus, en posant z = x + iy avec $x, y \in \mathbb{R}$,

$$\left| \frac{1+iz}{z+i} \right| = \frac{|1+iz|}{|z+i|}$$

$$= \frac{|1+ix-y|}{|x+i(y+1)|}$$

$$= \frac{(1-y)^2 + x^2}{x^2 + (y+1)^2}$$

Le numérateur et le dénominateur sont positifs donc :

$$\frac{(1-y)^2 + x^2}{x^2 + (y+1)^2} < 1 \Longleftrightarrow (1-y)^2 + x^2 < x^2 + (y+1)^2$$

$$\iff (1-y)^2 < (y+1)^2$$

$$\iff 1 - 2y + y^2 < y^2 + 2y + 1$$

$$\iff 4y > 0$$

$$\iff y > 0$$

Or y > 0 car $z \in H$ donc finalement $\left| \frac{1+iz}{z+i} \right| < 1$.

3) Soit $z' \in D$. On a :

$$z' = \frac{1+iz}{z+i} \iff z'z+iz' = 1+iz$$
$$\iff z(z'-i) = 1-iz'$$
$$\iff z = \frac{1-iz'}{z'-i}$$

Montrons que $\frac{1-iz'}{z'-i}$ est un élément de H. Soient $x',y'\in\mathbb{R}$ tels que z'=x'+iy' :

$$\frac{1 - iz'}{z' - i} = \frac{1 - ix' + y'}{x' + i(y' - 1)}$$

$$= \frac{(1 - ix' + y')(x' - i(y' - 1))}{x'^2 + (y' - 1)^2}$$

$$= \frac{x' - i(y' - 1) - ix'^2 - x'y' + x' + x'y' - iy'^2 + iy'}{x'^2 + (y' - 1)^2}$$

$$= \frac{2x' + i(1 - x'^2 - y'^2)}{x'^2 + (y' - 1)^2}$$

donc $\Im\left(\frac{1-iz'}{z'-i}\right) = \frac{1-x'^2-y'^2}{x'^2+(y'-1)^2}$ et puisque $z' \in D$ on a $|z'|^2 < 1$ donc $x'^2+y'^2 < 1$ d'où $\Im\left(\frac{1-iz'}{z'-i}\right) > 0$, ce qui prouve que tout élément z' de D admet un unique antécédent dans H par l'application qui à z associe $\frac{1+iz}{z+i}$. Cette

prouve que tout élément z' de D admet un unique antécédent dans H par l'application qui à z associe $\frac{z+iz}{z+i}$. Cette application est donc une bijection de H vers D.

4) Si on remplace les inégalités strictes par des inégalités larges dans les définitions de H et D, alors $i \in D$ mais n'a pas d'antécédent par l'application précédente. En effet :

$$\frac{1+iz}{z+i} = i \Longleftrightarrow 1+iz = iz-1$$

$$\iff 2 = 0$$

cette application n'est donc plus surjective.

Correction de l'exercice 20:

1) Si j est un multiple de k alors il existe un entier m tel que j = mk. On a donc:

$$\omega^{j} = \left(e^{\frac{2i\pi}{k}}\right)^{mk}$$
$$= e^{2i\pi m}$$
$$= 1$$

car $2i\pi m$ est un multiple de $2i\pi$.

2) Soit ℓ un entier tel que $0 \le \ell \le k-1$. Alors :

$$\begin{aligned} |1 + \omega^{\ell}| &= |\omega^{\ell/2} (\omega^{-\ell/2} + \omega^{\ell/2})| \\ &= |\omega|^{\ell/2} \times |\operatorname{e}^{-i\pi\ell/k} + \operatorname{e}^{i\pi\ell/k}| \\ &= |2\cos\left(\pi\ell/k\right)|| \\ &= 2|\cos\left(\pi\ell/k\right)| \end{aligned}$$

3) Si $j \ge 0$ n'est pas un multiple de k, alors $\omega^j \ne 1$ donc :

$$\sum_{j=0}^{k-1} \omega^{\ell j} = \sum_{j=0}^{k-1} (\omega^j)^{\ell}$$
$$= \frac{1 - \omega^{kj}}{1 - \omega^j}$$

$$\operatorname{car} kj$$
 est un multiple de k donc $\omega^{kj}=1$

Si j est un multiple de k alors pour tout entier $\ell \geq 0$ on a $\omega^{j\ell} = 1$ donc :

$$\sum_{j=0}^{k-1} \omega^{\ell j} = k$$

4) Posons pour tout entier $j \ge 0$: $m_j = \begin{cases} k & \text{si } j \text{ est un multiple de } k \\ 0 & \text{sinon} \end{cases}$.

Alors on a:

=0

$$\frac{1}{k}2^{n} + \frac{1}{k}\sum_{\ell=1}^{k-1}(1+\omega^{\ell})^{n} = \frac{1}{k}\sum_{\ell=0}^{k-1}(1+\omega^{\ell})^{n}$$

$$= \frac{1}{k}\sum_{\ell=0}^{k-1}\sum_{j=0}^{n}\binom{n}{j}\omega^{\ell j}1^{n-j}$$

$$= \frac{1}{k}\sum_{j=0}^{n}\binom{n}{j}\sum_{\ell=0}^{k-1}\omega^{\ell j}$$

$$= \frac{1}{k}\sum_{j=0}^{n}\binom{n}{j} \times m_{j}$$

$$= \sum_{j=0}^{n}\binom{n}{j} \times m_{j}$$

$$= \sum_{j=0}^{n}\binom{n}{j}$$

5) X_n suit la loi binomiale de paramètres n et $\frac{1}{2}$ donc :

$$\mathbb{P}(X_n \text{ est un multiple de } k) = \sum_{\substack{j=0\\j \text{ multiple de } k}}^n \binom{n}{j} \times \frac{1}{2^j} \times \frac{1}{2^{n-j}}$$

$$= \frac{1}{2^n} \sum_{\substack{j=0\\j \text{ multiple de } k}}^n \binom{n}{j}$$

$$= \frac{1}{k} + \frac{1}{2^n k} \sum_{\ell=1}^{k-1} (1 + \omega^\ell)^n$$

Intéressons-nous au deuxième terme :

$$\left|\frac{1}{2^n k} \sum_{\ell=1}^{k-1} (1+\omega^\ell)^n \right| \leq \frac{1}{2^n k} \sum_{\ell=1}^{k-1} |1+\omega^\ell|^n$$
 par inégalité triangulaire
$$\leq \frac{1}{2^n k} \sum_{\ell=1}^{k-1} 2^n |\cos^n\left(\pi\ell/k\right)$$

$$\leq \frac{1}{k} \sum_{\ell=1}^{k-1} \cos^n\left(\pi\ell/k\right)$$

Or pour tout $\ell \in \{1, ..., k-1\}$ on a $0 < \frac{\pi \ell}{k} < \pi$ donc $-1 < \cos\left(\frac{\pi \ell}{k}\right) < 1$. On en déduit que $\lim_{n \to +\infty} \cos^n\left(\pi \ell/k\right) = 0$ donc par somme $\lim_{n \to +\infty} \frac{1}{k} \sum_{\ell=1}^{k-1} \cos^n\left(\pi \ell/k\right) = 0$. Finalement on en conclut que :

$$\lim_{n \to +\infty} \mathbb{P}(X_n \text{ est un multiple de } k) = \frac{1}{k}$$

