МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

з дисципліни

«Дискретна математика»

Виконав:

студент групи КН-113

Коваленко Антон

Викладач:

Мельникова Н.І.

Тема: Моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істиностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Додаток 1

Варіант № 13

- 1. Формалізувати речення. Якщо вчитель і учень присутні на уроці то вони закріплять матеріал нової теми.
- 2. Побудувати таблицю істинності для висловлювань:

$$(x \Leftrightarrow y) \Rightarrow (((y \Leftrightarrow z) \Rightarrow (z \Leftrightarrow x)) \Rightarrow (x \Leftrightarrow z));$$

- 3. Побудовою таблиць істинності вияснити, чи висловлювання ϵ тавтологією або протиріччям: $\overline{\left(\overline{(p \wedge q)} \leftrightarrow (q \vee r)\right)} \wedge (\bar{p} \vee r)$.
- 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання: $((p \to q) \land (p \to q)) \to q$.
- 5. Довести, що формули еквівалентні: $(p \to q) \land (p \to r)$ та $(r \land q) \lor (q \to r)$.

1) а: вчитель присутній

b: учень присутній

с: вчитель і учень закріплять результат

$$(a \land b) = > c$$

2)

Α	В	С	D	E	F	G	Н	I
X	У	Z	<u>x</u> <=> <u>y</u>	<u>y<=>z</u>	<u>z<=>x</u>	$(\underline{v} < = >\underline{z}) = > (\underline{z} < = >\underline{x})$	$((\underline{y} <=>\underline{z}) => (\underline{z} <=>\underline{x})) => (\underline{x} <=>\underline{z})$	$(\underline{x} <=>\underline{y}) => ((\underline{y} <=>\underline{z}) => (\underline{z} <=>\underline{x})) => (\underline{x} <=>\underline{z})$
0	0	0	1	. 1	. 1	1	1	1
1	0	0	0	1	. 0	0	1	1
0	1	. 0	0	0	1	1	1	1
0	0	1	1	. 0	0	1	0	0
1	1	0	1	0	0	1	0	0
1	0	1	0	0	1	1	1	1
0	1	. 1	0	1	. 0	0	1	1
1	1	. 1	1	1	. 1	1	1	1

Α	В	C	D	E	F	G	Н	I
X	у	Z	<u>x</u> <=>y	<u>y<=>z</u>	<u>z</u> <=> <u>x</u>	$(\underline{y} < =>\underline{z}) => (\underline{z} < =>\underline{x})$	$((\underline{V} < = >\underline{z}) = > (\underline{z} < = >\underline{x})) = > (\underline{x} < = >\underline{z})$	$(\underline{x} <=>\underline{y}) => ((\underline{y} <=>\underline{z}) => (\underline{z} <=>\underline{x})) => (\underline{x} <=>\underline{z})$
C) (0 0	1	1	1	1	1	1
1	. (0 0	0	1	0	0	1	1
C) :	1 0	0	0	1	1	1	1
C) (0 1	. 1	0	0	1	0	0
1	. :	1 0	1	0	0	1	0	0
1	. (0 1	. 0	0	1	1	1	1
C) :	1 1	. 0	1	. 0	0	1	1
1		1 1	. 1	1	1	1	1	1

Даний вираз не є тавтологією і протиріччям. Тому він нейтральний.

4) Для доведення використовуємо метод "від протилежного".

Тоді q=F;

$$p = > q = T i (\neg p) = > q = T;$$

Це не є можливим тому і q≠F і вираз можна вважати тавтологією.

5)

1 спосіб. У першому виразі присутні 3 змінні, а в другому 2 змінні. Тому без побудови таблиць істиності можна побачити, що вирази не еквівалентні.

2 спосіб. За допомогою формули:

 $P \le Q = Q = P \land P = Q$ отримуємо, що наші вирази не еквівалентні.

Додаток 2 до лабораторної роботи з розділу 1

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступних формул:

$$(x \le y) = > (((y \le z) = > (z \le x)) = > (x \le z))$$

Код програми.

1) Підключаємо необхідну бібліотеку та оголошуємо головну функцію

```
#include <stdio.h>
int main()
```

2)Оголошуємо змінні і вводимо їх значення.

Виводимо значення згідно таблиці істиності

та перевіряємо правильність значень. Виводимо значення Т або F.

```
1
     int x, y, z;
    printf("x=");
    scanf ("%d", &x);
    printf("y=");
    scanf ("%d", &y);
    printf("z=");
    scanf ("%d", &z);
    if (x==0 && y==0 && z==0) {printf("T");}
    else if (x==0 && y==0 && z==1) {printf("F");}
    else if(x==0 && y==1 && z==0) {printf("T");}
    else if (x==1 && y==0 && z==0) {printf("T");}
    else if (x==0 && y==1 && z==1) {printf("T");}
    else if(x==1 && y==0 && z==1) {printf("T");}
    else if (x==1 && y==1 && z==0) {printf("F");}
    else if(x==1 && y==1 && z==1) {printf("T");}
    else if(x<0||x>1||y<0||y>1||z<0||z>1) {printf("UNCORRECT");}
    return 0:
```

Результат виконання програми:

```
x=1
y=0
z=1
T
Process returned 0 (0x0) execution time : 5.650 s
Press any key to continue.
-
```

Висновок до лабораторної роботи №1

При виконанні цієї лабораторної роботи я ознайомився з основними поняттями математичної логіки, навчився будувати складні висловлювання, освоїв методи доведень і написав програмну реалізацію визначення значень таблиці істиності логічних висловлювань при різних інтерпритаціях.