Cours TalENS 2023-2024

Détermination, Crayons, Angles Droits, Glissières

Matthieu Boyer

27 Janvier 2024

Introduction Historique

Plan

Formalisme!

Polynômes sur un Corps

Equations Polynômiales et Applications

Définition 2.1: Corps Un corps est un ensemble muni :

Définition 2.1: Corps

Un corps est un ensemble muni :

▶ D'une addition avec un neutre 0 notée

$$+:(x,y)\mapsto x+y$$

Définition 2.1: Corps

Un corps est un ensemble muni :

▶ D'une addition avec un neutre 0 notée

$$+:(x,y)\mapsto x+y$$

D'une multiplication avec un neutre 1 notée

$$\times : (x,y) \mapsto xy$$
 distributive sur l'addition

Définition 2.1: Corps

Un corps est un ensemble muni :

- ▶ D'une addition avec un neutre 0 notée
 - $+:(x,y)\mapsto x+y$
- D'une multiplication avec un neutre 1 notée

$$\times : (x,y) \mapsto xy$$
 distributive sur l'addition

Pour laquelle tout élément (sauf 0) est inversible pour la multiplication et la loi de produit nul est vérifiée.

Définition 2.1: Corps

Un corps est un ensemble muni :

- D'une addition avec un neutre 0 notée
 - $+:(x,y)\mapsto x+y$
- D'une multiplication avec un neutre 1 notée
 - $\times : (x,y) \mapsto xy$ distributive sur l'addition

Pour laquelle tout élément (sauf 0) est inversible pour la multiplication et la loi de produit nul est vérifiée.

On notera \mathbb{K} un tel ensemble. \mathbb{R} , \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ sont des corps.

Polynômes à une Indéterminée

Définition 2.2: Polynôme sur **K**

Un polynôme à coefficients dans \mathbb{K} est une suite finie d'éléments de \mathbb{K} .

Polynômes à une Indéterminée

Définition 2.2: Polynôme sur **K**

Un polynôme à coefficients dans $\mathbb K$ est une suite finie d'éléments de $\mathbb K.$

On les note sous la forme :

$$\sum_{i=0}^{d} a_i X^i$$

Polynômes à une Indéterminée

Définition 2.2: Polynôme sur **K**

Un polynôme à coefficients dans \mathbb{K} est une suite finie d'éléments de \mathbb{K} .

On appelle le symbole X l'indéterminée. Ce n'est pas un nombre. On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} . On appelle d le degré de P.

Proposition 2.1: Opérations

Si
$$P = \sum_{i=0}^{d_1} a_i X^i$$
 et $Q = \sum_{j=0}^{d_2} b_j X^j$ sont deux polynômes :

▶ $P + Q = \sum_{i=0}^{\max(d_1,d_2)} (a_i + b_i) X^i$ est un polynôme de degré $\leq \max(\deg P, \deg Q)$.

Proposition 2.1: Opérations

Si $P = \sum_{i=0}^{d_1} a_i X^i$ et $Q = \sum_{j=0}^{d_2} b_j X^j$ sont deux polynômes :

- ▶ $P + Q = \sum_{i=0}^{\max(d_1, d_2)} (a_i + b_i) X^i$ est un polynôme de degré $\leq \max(\deg P, \deg Q)$.
- $lacksquare X^k P = \sum_{i=0}^d a_i X^{i+k}$ est un polynôme.

Proposition 2.1: Opérations

Si $P = \sum_{i=0}^{d_1} a_i X^i$ et $Q = \sum_{j=0}^{d_2} b_j X^j$ sont deux polynômes :

- ▶ $P + Q = \sum_{i=0}^{\max(d_1, d_2)} (a_i + b_i) X^i$ est un polynôme de degré $\leq \max(\deg P, \deg Q)$.
- $lacksquare X^k P = \sum_{i=0}^d a_i X^{i+k}$ est un polynôme.
- ▶ En particulier, PQ est un polynôme de degré $\deg P + \deg Q$ et si $k \in \mathbb{N}$, P^k est un polynôme.

Définition 2.3: Composition

Pour $\alpha\in\mathbb{K}$, on note $P(\alpha)\in\mathbb{K}$ le nombre : $\sum_{i=0}^{d_1}a_i\alpha^i$. On note de plus $P\circ Q$ le polynôme

$$P \circ Q = \sum_{i=0}^{d_1} a_i Q(X)^i$$

On a $\deg P \circ Q = \deg P \times \deg Q$

Polynômes sur un Corps

Polynômes à Plusieurs Indéterminées

Définition 2.4: Polynômes à Plusieurs Indéterminées

Un polynôme à k+1 indéterminées est un polynôme à coefficients dans $\mathbb{K}[X_1,\ldots,X_k]$

Polynômes à Plusieurs Indéterminées

Définition 2.4: Polynômes à Plusieurs Indéterminées

Un polynôme à k+1 indéterminées est un polynôme à coefficients dans $\mathbb{K}[X_1,\dots,X_k]$

Remarque 2.1: Intégrité

En réalité, $\mathbb{K}[X]$ n'est pas un corps, mais seulement un anneau intègre.

Polynômes à Plusieurs Indéterminées

Définition 2.4: Polynômes à Plusieurs Indéterminées

Un polynôme à k+1 indéterminées est un polynôme à coefficients dans $\mathbb{K}[X_1,\dots,X_k]$

P se met sous la forme

Plan

Formalisme!

Polynômes sur un Corps

Equations Polynômiales et Applications

Définition 2.5: Equation Polynômiale

Une équation polynômiale est une équation de la forme

$$P(x) = \sum_{i=0}^{d} a_i x^i = b$$

Définition 2.5: Equation Polynômiale

Une équation polynômiale est une équation de la forme

$$P(x) = \sum_{i=0}^{d} a_i x^i = b$$

On peut se restreindre au cas b = 0 en enlevant b à P.

Définition 2.5: Equation Polynômiale

Une équation polynômiale est une équation de la forme

$$P(x) = \sum_{i=0}^{d} a_i x^i = b$$

On peut se restreindre au cas b=0 en enlevant b à P.

On appelle racines de l'équation les éléments de $\{\alpha \mid P(\alpha) = b\}$. On dit que $d = \deg P$ est le degré de l'équation.

Définition 2.5: Equation Polynômiale

Une équation polynômiale est une équation de la forme

$$P(x) = \sum_{i=0}^{d} a_i x^i = b$$

Pour k indéterminées, on remplace x par un couple x_1, \ldots, x_k

Solutions à une Équation Polynômiale

Proposition 2.1: Nombres de Solution

Une équation définie par P a au plus $\deg P$ solutions

Solutions à une Équation Polynômiale

Proposition 2.1: Nombres de Solution

Une équation définie par P a au plus $\deg P$ solutions

Théorème 2.1: D'Alembert Gauss

Une équation polynômiale définie par P a toujours exactement $\deg P$ solutions sur un corps algébriquement clos. $\mathbb C$ est algébriquement clos.

Applications I

Définition 2.6: Droite

Une droite est un ensemble de la forme $D(a,b)=\{ax+b\mid x\in\mathbb{R}\}$

Applications I

Définition 2.6: Droite

Une droite est un ensemble de la forme $D(a,b) = \{ax+b \mid x \in \mathbb{R}\}$

En particulier, si on a deux droites $D(a,b),D(a^{\prime},b^{\prime})$ leur intersection est définie par l'ensemble

$$\{ax + b = a'x + b'\} = \{(a - a')x + (b - b') = 0\}$$

Formalisme!

Equations Polynômiales et Applications

Applications II