Multiple Modalities into a Computational Framework

Junyoung Jang junyoung.jang@mail.mcgill.ca McGill University

Joint work with Brigitte Pientka

next Modality

next Modality
Binding-time Analysis
Model Checking

 \square Modality

next Modality
Binding-time Analysis
Model Checking

☐ Modality
Staged programming

next Modality
Binding-time Analysis
Model Checking

☐ Modality
Staged programming

next Modality

Binding-time Analysis Model Checking \bigcirc Modality

☐ Modality
Staged programming

next Modality
Binding-time Analysis
Model Checking

ModalityInformation FlowReactive Programming

☐ Modality
Staged programming

next Modality
Binding-time Analysis
Model Checking

Modality
Information Flow
Reactive Programming

Uniform logic with two adjoint functors \uparrow (upshift)/ \downarrow (downshift) connecting different sublogics:

Uniform logic with two adjoint functors \uparrow (upshift)/ \downarrow (downshift) connecting different sublogics:

▶ To connect linear and intuitionistic logic [Benton, 1995]

Uniform logic with two adjoint functors \uparrow (upshift)/ \downarrow (downshift) connecting different sublogics:

- ▶ To connect linear and intuitionistic logic [Benton, 1995]
- ➤ To connect multiple logics in more general ways[Reed, 2009, Licata and Shulman, 2016]

Uniform logic with two adjoint functors \uparrow (upshift)/ \downarrow (downshift) connecting different sublogics:

- ▶ To connect linear and intuitionistic logic [Benton, 1995]
- ➤ To connect multiple logics in more general ways[Reed, 2009, Licata and Shulman, 2016]

Uniform logic with two adjoint functors \uparrow (upshift)/ \downarrow (downshift) connecting different sublogics:

- ▶ To connect linear and intuitionistic logic [Benton, 1995]
- ➤ To connect multiple logics in more general ways[Reed, 2009, Licata and Shulman, 2016]

However,

No decidable type checking

Uniform logic with two adjoint functors \uparrow (upshift)/ \downarrow (downshift) connecting different sublogics:

- ▶ To connect linear and intuitionistic logic [Benton, 1995]
- ➤ To connect multiple logics in more general ways[Reed, 2009, Licata and Shulman, 2016]

However,

- No decidable type checking
- ▶ No syntactic operational/reduction semantics

Uniform logic with two adjoint functors \uparrow (upshift)/ \downarrow (downshift) connecting different sublogics:

- ▶ To connect linear and intuitionistic logic [Benton, 1995]
- ➤ To connect multiple logics in more general ways[Reed, 2009, Licata and Shulman, 2016]

However,

- No decidable type checking
- ▶ No syntactic operational/reduction semantics
- ightharpoonup No computational interpretation for \uparrow/\downarrow

Practical and uniform foundation for proof/programming about modalities with

Decidable type checking

- Decidable type checking
- Operational/reduction semantics

- Decidable type checking
- Operational/reduction semantics
- lacksquare Computational interpretation for \uparrow/\downarrow

- Decidable type checking
- Operational/reduction semantics
- ightharpoonup Computational interpretation for \uparrow/\downarrow
- Safety properties

- Decidable type checking
- Operational/reduction semantics
- ightharpoonup Computational interpretation for \uparrow/\downarrow
- Safety properties
- ► Embedding □/next/○ modalities

- Decidable type checking
- Operational/reduction semantics
- ightharpoonup Computational interpretation for \uparrow/\downarrow
- Safety properties
- ightharpoonup Embedding $\square/\mathsf{next}/\bigcirc$ modalities

- Decidable type checking
- Operational/reduction semantics
- ightharpoonup Computational interpretation for \uparrow/\downarrow
- Safety properties
- ► Embedding □/next/○ modalities while preserving static and dynamic semantics

Practical and uniform foundation for proof/programming about modalities with

- Decidable type checking
- Operational/reduction semantics
- ▶ Computational interpretation for ↑/↓
- Safety properties
- ► Embedding □/next/○ modalities while preserving static and dynamic semantics

"ELEVATOR"

Practical and uniform foundation for proof/programming about modalities with

- Decidable type checking
- Operational/reduction semantics
- ▶ Computational interpretation for ↑/↓
- Safety properties
- ► Embedding □/next/○ modalities while preserving static and dynamic semantics

"ELEVATOR"

Overview of ELEVATOR

Sublogic3	Sublogic4
Sublogic2	
Sublogic0	Sublogic1

Overview of ELEVATOR

There are multiple sublogics each of which resides in one "mode"

Overview of ELEVATOR

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

$$u - \{Wk, Co\}, \{\uparrow\}$$
 $I - \{\}$ $\{\downarrow, \multimap, Nat\}$

$$u - \{Wk, Co\}, \{\uparrow, \rightarrow, Nat\}$$

$$I - \{\} , \{\downarrow, \multimap, Nat\}$$

(where $u \geq l$)

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

$$\begin{array}{c|c} u-\{\text{Wk},\text{Co}\},\{\uparrow\} \\ \hline \textit{$I-\{\}$} &,\{\downarrow,\multimap,\text{Nat}\} \end{array} \qquad \begin{array}{c|c} u-\{\text{Wk},\text{Co}\},\{\uparrow,\to,\text{Nat}\} \\ \hline \textit{$I-\{\}$} &,\{\downarrow,\multimap,\text{Nat}\} \end{array}$$
 (where $u\geq \textit{I}$)

Dual intuitionistic linear logic (DILL) [Barber and Plotkin, 1996]

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

```
 \begin{array}{c|c} u-\{\text{Wk},\text{Co}\},\{\uparrow\} & u-\{\text{Wk},\text{Co}\},\{\uparrow,\to,\text{Nat}\} \\ \hline \textit{$I-\{\}$} & ,\{\downarrow,\multimap,\text{Nat}\} \\ \end{array}  (where u\geq \textit{I})  \begin{array}{c|c} u-\{\text{Wk},\text{Co}\},\{\uparrow,\to,\text{Nat}\} \\ \hline \textit{$I-\{\}$} & ,\{\downarrow,\multimap,\text{Nat}\} \\ \end{array}
```

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

$$u - \{Wk, Co\}, \{\uparrow\}$$
 $I - \{\}$ $, \{\downarrow, \multimap, Nat\}$

Higher, More global, More long-lasting

$$u - \{Wk, Co\}, \{\uparrow, \rightarrow, Nat\}$$

 $I - \{\}$ $, \{\downarrow, \neg, Nat\}$

(where $u \geq l$)

Lower, More local, More temporary

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

Weakening $\begin{array}{c} u - \{Wk, Co\}, \{\uparrow, \rightarrow, Nat\} \\ \\ I - \{\} \qquad , \{\downarrow, \neg, Nat\} \end{array}$

(where $u \geq l$)

Mode Specification

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

(where $u \geq l$)

Mode Specification

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

$$\begin{array}{c} u - \{Wk, Co\}, \{\uparrow\} \\ I - \{\} \qquad , \{\downarrow, \multimap, Nat\} \end{array}$$

Contraction $u - \{Wk, Co\}, \{\uparrow, \rightarrow, Nat\}$ $I - \{\}, \{\downarrow, \neg, Nat\}$

(where $u \geq l$)

Mode Specification

Modes are members of a preorder Each mode controls allowed structural rules and types in its sublogic.

For example,

$$u - \{Wk, Co\}, \{\uparrow\}$$

$$I - \{\} , \{\downarrow, \multimap, Nat\}$$

$$u - \{Wk, Co\}, \{\uparrow, \rightarrow, Nat\}$$

$$I - \{\} , \{\downarrow, \multimap, Nat\}$$

(where $u \geq l$)

Mode Dependency Principle

The behaviour of a sublogic of a higher mode cannot depend on the behaviour of a sublogic of a lower mode.

Adjoint Modalities —Computational Interpretation

Adjoint modalities \uparrow and \downarrow connect two comparable modes:

Adjoint Modalities —Computational Interpretation

Adjoint modalities \uparrow and \downarrow connect two comparable modes:

 $ightharpoonup \uparrow_I^h S$ — A thunk at a mode h of a closed deferred expression of type S at a lower mode I

Adjoint Modalities —Computational Interpretation

Adjoint modalities \uparrow and \downarrow connect two comparable modes:

- $ightharpoonup \uparrow_I^h S$ A thunk at a mode h of a closed deferred expression of type S at a lower mode I
- $\downarrow h$ S A pointer at a mode I to a stored value of type S at a higher mode h

Computational Interpretation of $\uparrow_l^h S$

Computational Interpretation of $\uparrow_{l}^{h} S$

 $\uparrow_{I}^{h} S$ — A thunk at a mode h of a closed deferred expression of type S at a lower mode I

Computational Interpretation of $\uparrow_I^h S$

▶ thunk $_{I}^{h}(L)$: $\uparrow_{I}^{h}S$ — A thunk at a mode h of a closed deferred expression L of type S at a lower mode I

Computational Interpretation of $\uparrow_I^h S$

- ▶ thunk $_{I}^{h}(L)$: $\uparrow_{I}^{h}S$ A thunk at a mode h of a closed deferred expression L of type S at a lower mode I
- ▶ force $_{I}^{h}(L): S$ compose/execute the expression in the thunk $L: \uparrow_{I}^{h} S$

Computational Interpretation of $\downarrow_l^h S$

Computational Interpretation of $\downarrow_l^h S$

 $\downarrow_{I}^{h} S$ — A pointer at a mode I to a stored value of type S at a higher mode h

Computational Interpretation of $\downarrow_I^h S$

store^h_I $(L): \downarrow_I^h S$ — A pointer at a mode I to a stored value of L of type S at a higher mode h

Computational Interpretation of $\downarrow^h_l S$

- ▶ store $_{I}^{h}(L): \downarrow_{I}^{h} S$ A pointer at a mode I to a stored value of L of type S at a higher mode h
- ▶ load^h_I (x) = L in $M \frac{\text{load the value of type } S}{L : \downarrow_I^h S}$ into x and continue with M

λ^{\square} —A foundation for staged programming

- λ^{\square} [Davies and Pfenning, 2001]
 - $ightharpoonup \Box A$ describes a code fragment of type A

λ^\square —A foundation for staged programming

- λ^{\square} [Davies and Pfenning, 2001]
 - $ightharpoonup \Box A$ describes a code fragment of type A

```
c - {Wk,Co},{\uparrow}
p - {Wk,Co},{\downarrow,\rightarrow,Nat}
```

pow (suc n) =

 $load_{p}^{c} P = pow n in$

store (thunk (fun $x \rightarrow x * ((force_p^c P) x))$

pow (suc n) =

 $load_{p}^{c} P = pow n in$

store (thunk (fun $x \rightarrow x * ((force_p^c P) x))$

local memory	global memory	persistent storage

local memory	8	persistent storage

```
c - {Wk, Co}, {↑}
                                                                                 local
                                                                                            global
                                                                                                     persistent
                              Construct a thunk of type \uparrow_p^c(Nat \rightarrow Nat)
P = \{Wk, Co\}, \{\downarrow, \rightarrow, Nat\}
                                                                               memory
                                                                                           memory
                                                                                                      storage
                                        for fun x \to 1 (for x^0)
    pow 0
       store (thunk (fun x \rightarrow 1)
    pow (suc n) =
      load_{p}^{c} P = pow n in
       store (thunk (fun x \rightarrow x * ((force P) x))
```

```
Store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a pointer (ret) to it local memory of the power store it into t0 and return a power store
```


local memory	global memory	

```
c- {Wk,Co},\{\uparrow\}

P- {Wk,Co},\{\downarrow,\rightarrow,Nat\}
```

```
1 pow :<sup>p</sup> Nat \rightarrow \downarrow_{p}^{c} \uparrow_{p}^{c} (Nat \rightarrow Nat)

2 pow 0 = 

3 store<sub>p</sub><sup>c</sup> (thunk<sub>p</sub><sup>c</sup> (fun x \rightarrow 1))

4 pow (suc n) = 

5 load<sub>p</sub><sup>c</sup> P = pow n in 

6 store<sub>p</sub><sup>c</sup> (thunk<sub>p</sub><sup>c</sup> (fun x \rightarrow x * ((force<sub>p</sub><sup>c</sup> P) x))
```

local memory	0	persistent storage
n:Nat		

```
local
                 global
                              persistent
 memory
                memory
                               storage
                                 t0:
   n:Nat
                              ↑c(Nat→Nat)
   rec :
                                 t1:
15↑5(Nat→Nat
                              ↑ c(Nat → Nat)
                                 tn:
                              ↑%(Nat→Nat)
```

6

store (thunk (fun $x \rightarrow x * ((force P) x))$

```
local
                 global
                              persistent
 memory
                memory
                               storage
                                 tΘ:
              P:↑%(Nat→Nat)
   n:Nat
                              ↑c(Nat→Nat)
   rec :
                                 t1:
↓c↑c(Nat→Nat)
                              ↑ c(Nat → Nat)
                                 tn:
                              ↑5(Nat→Nat)
```

```
local
                  global
                               persistent
 memory
                 memory
                                storage
                                   tΘ:
              P:↑⊆(Nat→Nat)
   n:Nat
                               ↑ c (Nat → Nat)
   rec:
                                  t1:
⊥sts(Nat→Nat)
                               ↑ c(Nat → Nat)
                                   tn:
                               ↑ c(Nat → Nat)
```

local	global	persistent
memory	memory	storage
n:Nat	$P:\uparrow_p^c(Nat{ o}Nat)$	t0 : ↑ρ(Nat→Nat)
rec :		t1 :
$\downarrow_{p}^{c}\uparrow_{p}^{c}(Nat\rightarrow Nat)$		$\uparrow^c_{\rho}(\mathtt{Nat}{ o}\mathtt{Nat})$
		tn :
		↑¢(Nat→Nat)

```
Store it into tsn and get a pointer (ret) to it
c - {Wk, Co}, {↑}
                                                                                                                        local
                                                                                                                                        global
                                                                                                                                                      persistent
P = \{Wk, Co\}, \{\downarrow, \rightarrow, Nat\}
                                                                                                                      memory
                                                                                                                                       memory
                                                                                                                                                        storage
                                                                                                                                                          tΘ:
                                                                                                                                    P:↑⊆(Nat→Nat)
                                                                                                                        n:Nat
                                                                                                                                                      ↑c(Nat→Nat)
      pow : P Nat \rightarrow \downarrow c \uparrow c \land A (Nat \rightarrow A Nat)
                                                                                                                        rec:
                                                                                                                                                          t1:
       pow 0
                                                                                                                    \downarrow c \uparrow c \land (Nat \rightarrow Nat)
                                                                                                                                                      ↑ c(Nat → Nat)
           store_p^c (thunk<sub>p</sub> (fun x \rightarrow 1/))
       pow (suc n) =
                                                                                                                        ret :
         load_{p}^{c} P = pow n in
                                                                                                                    \downarrow c \uparrow c (Nat \rightarrow Nat)
           store (thunk (fun x \rightarrow x * ((force_p^c P) x))
                                                                                                                                                          tn:
                                                                                                                                                      ↑ c(Nat → Nat)
                                                                                                                                                         tsn :
                                                                                                                                                      ↑5(Nat→Nat)
```

Linear Calculus with!

```
u - {Wk,Co},{↑}

/- {}
,{↓,-∘,Nat}
```

Working with a Protocol

```
 \begin{array}{ccc} u - & \{Wk,Co\} &, \{\uparrow\} \\ \\ I - & \{\} &, \{\downarrow, \multimap, Nat\} \end{array}
```

Linear types can encode session types

Working with a Protocol

```
 \begin{array}{ccc} u - & \{Wk,Co\} &, \{\uparrow\} \\ \\ I - & \{\} &, \{\downarrow, \multimap, Nat\} \end{array}
```

- Linear types can encode session types
- Unrestricted types can encode functional program

Linear Calculus with □ and ! – Protocol with Remote Execution

$$u - \{Wk, Co\}, \{\uparrow\}$$
 $c - \{\}, \{\uparrow\}$ $I - \{\}, \{\downarrow, \multimap, Nat\}$

Lambda Calculus with — Dead Code Analysis

$$p - \{Wk, Co\}, \{\uparrow, \rightarrow, Nat\}$$
 $s - \{Wk, Co\}, \{\downarrow\}$

$$\bigcirc A = \uparrow_s^p \downarrow_s^p A$$

Lambda Calculus with next — Binding Time Analysis

$$t_0$$
 - {Wk, Co} , { $ightarrow$, Nat} t_1 - {Wk, Co} , { \downarrow , $ightarrow$, Nat} \cdots

$$next A = \downarrow_{t_{n+1}}^{t_n} A$$

Typing Judgement

 $\Gamma \vdash^{m} L : S$

Typing Judgement

Current mode of type checking

$$\Gamma \vdash^{m} L : S$$

Typing Judgement

Typing Rules for Adjoint Modalities

$$\frac{\Gamma \vdash^{l} L : S}{\Gamma \vdash^{m} \mathsf{thunk}_{l}^{m}(L) : \uparrow_{l}^{m} S} \qquad \frac{\Gamma \vdash^{h} L : \uparrow_{m}^{h} S}{\Gamma \vdash^{m} \mathsf{force}_{m}^{h}(L) : S}$$

$$\frac{\Gamma \vdash^{h} \vdash^{h} L : S}{\Gamma \vdash^{m} \mathsf{store}_{m}^{h}(L) : \downarrow_{m}^{h} S}$$

$$\frac{m \geq^{\mathcal{M}} n \qquad \Gamma' \vdash^{m} L : \downarrow_{m}^{h} T \qquad \Gamma'', x :^{h} T \vdash^{n} M : S}{\Gamma'; \Gamma'' \vdash^{n} \mathsf{load}_{m}^{h}(x) = L \mathsf{in} M : S} \mathsf{E} \downarrow$$

Typing Rules for Adjoint Modalities

 $\Gamma|^h = \Gamma'$ cuts all entries in Γ not higher than h

$$\frac{\Gamma \vdash^{l} L : S}{\Gamma \vdash^{m} \mathsf{thunk}_{l}^{m} (L) : \uparrow_{l}^{m} S} \qquad \frac{\Gamma \mid^{h} \vdash^{h} L : \uparrow_{m}^{h} S}{\Gamma \vdash^{m} \mathsf{force}_{m}^{h} (L) : S}$$

$$\frac{\Gamma \mid^{h} \vdash^{h} L : S}{\Gamma \vdash^{m} \mathsf{store}_{m}^{h} (L) : \downarrow_{m}^{h} S}$$

$$\frac{m \geq^{\mathcal{M}} n \qquad \Gamma' \vdash^{m} L : \downarrow_{m}^{h} T \qquad \Gamma'', x :^{h} T \vdash^{n} M : S}{\Gamma'; \Gamma'' \vdash^{n} \mathsf{load}_{m}^{h} (x) = L \mathsf{in} M : S} \mathsf{E} \downarrow$$

Typing Rules for Adjoint Modalities

 Γ' ; $\Gamma'' = \Gamma$ splits Γ into two contexts

$$\frac{\Gamma \vdash^{l} L : S}{\Gamma \vdash^{m} \mathsf{thunk}_{l}^{m}(L) : \uparrow_{l}^{m} S} \qquad \frac{\Gamma \vdash^{h} L : \uparrow_{m}^{h} S}{\Gamma \vdash^{m} \mathsf{force}_{m}^{h}(L) : S}$$

$$\frac{\Gamma \vdash^{h} \vdash^{h} L : S}{\Gamma \vdash^{m} \mathsf{store}_{m}^{h}(L) : \downarrow_{m}^{h} S}$$

$$\frac{m \geq^{\mathcal{M}} n \qquad \Gamma' \vdash^{m} L : \downarrow_{m}^{h} T \qquad \Gamma'', x :^{h} T \vdash^{n} M : S}{\Gamma'; \Gamma'' \vdash^{n} \mathsf{load}_{m}^{h}(x) = L \mathsf{in} M : S} \mathsf{E} \downarrow$$

Operational Semantics

$$L \longrightarrow L'$$

$$L \longrightarrow^{m \leq} L'$$

Operational Semantics

$$L \longrightarrow L'$$
 — reduction of redex $L \longrightarrow^{m \le L'}$

Operational Semantics

$$L \longrightarrow L'$$
 — reduction of redex

 $L \longrightarrow^{m \le L'}$ — reduction of redex at mode $\ge m$ in deferred expression

Type Safety

Theorem (Type Preservation)

For $\Gamma \vdash^n L : S$,

- **1** If $L \longrightarrow L'$, then $\Gamma \vdash^n L' : S$
- **2** For any mode m, if $L \longrightarrow^{m \le L'}$, then $\Gamma \vdash^n L' : S$

Type Safety

Theorem (Type Preservation)

For $\Gamma \vdash^n L : S$,

- **1** If $L \longrightarrow L'$, then $\Gamma \vdash^n L' : S$
- **2** For any mode m, if $L \longrightarrow^{m \le L'}$, then $\Gamma \vdash^n L' : S$

Theorem (Progress)

For $\Gamma \vdash^n L : S$,

- **1** Either L is a weak normal form or there exists L' such that $L \longrightarrow L'$
- 2 For any mode m, either L is a canonical form or there exists L' such that $L \longrightarrow^{m \le L'}$

Dynamic Behaviour of Calculi

Theorem (Complete and Sound Translation)

There is an Elevator instance that keeps the well-typedness of the λ^\square or DILL

Theorem (Bisimulation)

There is an Elevator instance that keeps the same dynamic semantics of the λ^\square or DILL

Dynamic Behaviour of Calculi

Theorem (Complete and Sound Translation)

There is an Elevator instance that keeps the well-typedness of the λ^\square or DILL

Theorem (Bisimulation)

There is an Elevator instance that keeps the same dynamic semantics of the λ^\square or DILL

In other words, $\operatorname{ELEVATOR}$ can be used as a compilation target from those systems.

Related Work

► Fukuda and Yoshimizu [2019] describe a linear calculus with ! and □ modality, but does not support other substructural calculi nor ○ modality.

Related Work

- Fukuda and Yoshimizu [2019] describe a linear calculus with ! and □ modality, but does not support other substructural calculi nor modality.
- ▶ Atkey [2018], Orchard et al. [2019], and Choudhury et al. [2021] present substructural calculi but cannot describe □ modality or modality.

Related Work

- ► Fukuda and Yoshimizu [2019] describe a linear calculus with ! and □ modality, but does not support other substructural calculi nor modality.
- ▶ Atkey [2018], Orchard et al. [2019], and Choudhury et al. [2021] present substructural calculi but cannot describe □ modality or modality.
- ▶ Abel and Bernardy [2020] provide a substructural calculus with modalities, but cannot describe □ modality with a deferred expression, which is required for staged metaprogramming, nor some combinations of multiple modalities.

➤ Static and dynamic semantics for ELEVATOR

- ▶ Static and dynamic semantics for ELEVATOR
- ► Type safety of ELEVATOR

- ► Static and dynamic semantics for ELEVATOR
- ► Type safety of ELEVATOR
- ▶ Mode safety of ELEVATOR, a new concept of safety in a multi-mode system (which corresponds to non-interference for an information flow system)

- ► Static and dynamic semantics for ELEVATOR
- ► Type safety of ELEVATOR
- ▶ Mode safety of ELEVATOR, a new concept of safety in a multi-mode system (which corresponds to non-interference for an information flow system)
- ▶ Preserving static/dynamic semantics of notable modal calculi (λ^{\square} and DILL)

- ► Static and dynamic semantics for ELEVATOR
- ► Type safety of ELEVATOR
- ▶ Mode safety of ELEVATOR, a new concept of safety in a multi-mode system (which corresponds to non-interference for an information flow system)
- ▶ Preserving static/dynamic semantics of notable modal calculi (λ^{\square} and DILL)
- ► Algorithmic typing of ELEVATOR

- ► Static and dynamic semantics for ELEVATOR
- ► Type safety of ELEVATOR
- ▶ Mode safety of ELEVATOR, a new concept of safety in a multi-mode system (which corresponds to non-interference for an information flow system)
- ▶ Preserving static/dynamic semantics of notable modal calculi (λ^{\square} and DILL)
- Algorithmic typing of ELEVATOR
- ▶ Implementation of type checker and interpreter for ELEVATOR

- ► Static and dynamic semantics for ELEVATOR
- ► Type safety of ELEVATOR
- ▶ Mode safety of ELEVATOR, a new concept of safety in a multi-mode system (which corresponds to non-interference for an information flow system)
- ▶ Preserving static/dynamic semantics of notable modal calculi (λ^{\square} and DILL)
- ► Algorithmic typing of Elevator
- ▶ Implementation of type checker and interpreter for ELEVATOR
- Mechanization of proofs in Agda

We now have a practical and uniform foundation to integrate substructural calculi and a wide-range of modalities

- ▶ We now have a practical and uniform foundation to integrate substructural calculi and a wide-range of modalities
- Extending ELEVATOR to System F
 - it can be a core calculus for a real-world programming languages

- ▶ We now have a practical and uniform foundation to integrate substructural calculi and a wide-range of modalities
- Extending ELEVATOR to System F
 - it can be a core calculus for a real-world programming languages
- Extending ELEVATOR to dependent types
 - it can be a core theory for a proof assistant with tactics/effect

- ▶ We now have a practical and uniform foundation to integrate substructural calculi and a wide-range of modalities
- Extending ELEVATOR to System F
 - it can be a core calculus for a real-world programming languages
- Extending ELEVATOR to dependent types
 - it can be a core theory for a proof assistant with tactics/effect
- ► Extending ELEVATOR to different (e.g. imperative) base languages
 - it can be a core calculus for cross-language interactions

Algorithmic Typing Judgement

$$\Gamma \vdash^m L : S/\Gamma'$$

Algorithmic Typing Judgement

$$\Gamma \vdash^m L : S/\Gamma'$$

Algorithmic Typing Rules for Adjoint Modalities

$$\frac{\Gamma \vdash^{l} L : S/\Gamma'}{\Gamma \vdash^{m} \mathsf{thunk}_{l}^{m} (L) : \uparrow_{l}^{m} S/\Gamma'} \qquad \frac{\Gamma \mid^{h} \vdash^{h} L : \uparrow_{m}^{h} S/\Gamma''}{\Gamma \vdash^{m} \mathsf{force}_{m}^{h} (L) : S/\Gamma''}$$

$$\frac{\Gamma \mid^{h} \vdash^{h} L : S/\Gamma''}{\Gamma \vdash^{m} \mathsf{store}_{m}^{h} (L) : \downarrow_{m}^{h} S/\Gamma''}$$

$$\frac{m \geq^{\mathcal{M}} n \qquad \Gamma \vdash^{m} L : \downarrow_{m}^{h} T/\Gamma'_{1} \qquad \Gamma, x :^{h} T \vdash^{n} M : S/\Gamma'_{2}}{\Gamma \vdash^{n} \mathsf{load}_{m}^{h} (x) = L \mathsf{in} M : S/(\Gamma'_{1}; (\Gamma'_{2} \backslash x :^{h} T))} \mathsf{E} \downarrow$$

Algorithmic Typing Rules for Adjoint Modalities

$$\frac{\Gamma \vdash^{l} L : S/\Gamma'}{\Gamma \vdash^{m} \mathsf{thunk}_{l}^{m}(L) : \uparrow_{l}^{m} S/\Gamma'} \qquad \frac{\Gamma \mid^{h} \vdash^{h} L : \uparrow_{m}^{h} S/\Gamma''}{\Gamma \vdash^{m} \mathsf{force}_{m}^{h}(L) : S/\Gamma''}$$

$$\frac{\Gamma \mid^{h} \vdash^{h} L : S/\Gamma''}{\Gamma \vdash^{m} \mathsf{store}_{m}^{h}(L) : \downarrow_{m}^{h} S/\Gamma''}$$

$$\frac{m \geq^{\mathcal{M}} n \qquad \Gamma \vdash^{m} L : \downarrow_{m}^{h} T/\Gamma'_{1} \qquad \Gamma, x :^{h} T \vdash^{n} M : S/\Gamma'_{2}}{\Gamma \vdash^{n} \mathsf{load}_{m}^{h}(x) = L \mathsf{ in } M : S/(\Gamma'_{1}; (\Gamma'_{2} \backslash x :^{h} T))} \; \mathsf{E} \downarrow$$

Equivalence between Two Typings

Theorem (Equivalence between two typings)

There exists Γ' such that $\Gamma \vdash^m L : S/\Gamma'$ and for any $x:^n T \in \Gamma$, $\Gamma' \setminus x:^n T\Gamma''$ is true for some Γ'' if and only if $\Gamma \vdash^m L : S$.