

日本国特許庁 JAPAN PATENT OFFICE

16.06.03

REC'D 0 1 AUG 2003

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 7月17日

出 願 番 号 Application Number:

特願2002-208397

[ST. 10/C]:

[JP2002-208397]

出 願 人
Applicant(s):

松下電器産業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

•

2003年 7月18日

特許庁長官 Commissioner, Japan Patent Office 今井康

・【書類名】 特許願

【整理番号】 2016140206

【提出日】 平成14年 7月17日

【あて先】 特許庁長官殿

【国際特許分類】 H05B 3/20

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 石井 隆仁

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 寺門 誠之

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 安井 圭子

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 小原 和幸

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 米山 充

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】

100097445

【弁理士】

【氏名又は名称】

岩橋 文雄

【選任した代理人】

【識別番号】

100103355

【弁理士】

【氏名又は名称】 坂口 智康

【選任した代理人】

【識別番号】

100109667

【弁理士】

【氏名又は名称】 内藤 浩樹

【手数料の表示】

【予納台帳番号】 011305

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9809938

【書類名】 明細書

【発明の名称】 柔軟性PTC発熱体.

【特許請求の範囲】

【請求項1】 変形可能な開口部を有し、かつインク含浸性を有する柔軟性メッシュ基材と、前記柔軟性メッシュ基材に接合され、インク不通過性を有する柔軟性支持基材と、前記柔軟性メッシュ基材上に印刷により形成される櫛形電極と前記櫛形電極により給電されるPTC抵抗体と、前記櫛形電極と端部で電気的に接続されるとともに他端部でリード線と電気的にされる導電性薄材からなる端子部と、前記櫛形電極とPTC抵抗体と端子部を被覆する柔軟性被覆材とからなる柔軟性PTC発熱体。

【請求項2】 端子部を、櫛形電極に導電性接着材を介して導電性薄材の端部を接着するとともに、前記導電性薄材の他端部にハンダにてリード線を接続する構成としてなる請求項1記載の柔軟性PTC発熱体。

【請求項3】 導電性薄材を銅箔として、導電性接着材と接着する面を粗面化処理するとともに、反対面をニッケルメッキされた電解銅箔を用いた請求項2記載の柔軟性PTC発熱体。

【請求項4】 貫通孔を設けた導電性薄材を用いた請求項請求項2または3記載の柔軟性PTC発熱体。

【請求項5】 貫通孔を有する導電性薄材として、貫通孔を設けられた銅箔、 又は導電性エキスパンドメタルを用いた請求項4記載の柔軟性PTC発熱体。

【請求項6】 端子部を、柔軟性メッシュ基材上に予め貫通孔を有する導電性 薄材を固定して、その一端部に重なるように印刷にて櫛形電極を形成するととも に、前記導電性薄材の他端部にリード線をハンダにて接続して構成してなる請求 項1記載の柔軟性PTC発熱体。

【請求項7】 端子部を、櫛形電極の端部の位置に、櫛形電極表面から柔軟性メッシュ基材及び伸縮性を有する柔軟性支持基材を貫通する貫通孔を設けて、ハトメによるかしめにより導電性薄材を固定したのちに、前記導電性薄材の他端部にハンダにてリード線を接続して構成してなる請求項1記載の柔軟性PTC発熱体。

【請求項9】 端子部を、柔軟性メッシュ基材と柔軟性支持基材の間に導電性 薄材を固定したのちに、前記導電性薄材の端部に印刷により櫛形電極を作製する ともに、その後導電性薄材の他端部にハンダにてリード線を接続してなる請求項 1記載の柔軟性PTC発熱体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、カーシートヒータや、ハンドルヒータ等に用いて、柔軟性で任意の 曲面形状に装着可能でかつ自己温度調節機能を有する柔軟性PTC発熱体に関す るものである。

[0002]

【従来の技術】

この種のPTC発熱体は、図6に示したように、セラミックや絶縁処理された 金属板等の柔軟性のない固い基板20上に、導電性インキ組成物21を印刷ある いは塗布し、任意の厚さ及び形状の塗膜を形成することにより得られるものであ り、従来から、特殊な形状や小型の発熱体、過電流保護素子として使用されてい るものである。22は電極、23は被覆材である。端子部24は、金属片に直接 ハンダにてリード線を接続したり、あるいはリード線の端部に圧着端子を設けて ネジによる金属板と接続していた。

[0003]

このPTC発熱体に使用される導電性インキ組成物としては、結晶性高分子からなるベースポリマーと、カーボンブラック、金属粉末、グラファイトなどの導電性物質を溶媒に分散させてなるものなどが用いられ、特開昭56-13689号公報、特開平6-96843号公報、特開平8-120182号公報などが提案されている。

[0004]

導電性インキ組成物は、温度上昇によって急峻なPTC特性を示す塗膜を形成

[0005]

【発明が解決しようとする課題】

しかし、前記従来のPTC発熱体は、柔軟性のない固い基板上に形成されているために、カーシートヒータのような身体にフィットした用途や、ハンドルなどの曲面形状物に装着することができないと言う課題を有していた。

[0006]

もちろん、樹脂やエラストマーなどのフィルムを基材に用いれば一時的に柔軟性を有するPTC発熱体にすることはできるが、導電性インキ組成物と基材との化学変化によりPTC特性が低下したり、また、荷重繰り返しや通電(連続、間欠)試験により抵抗値が変化してしまうと言う課題を有していた。

[0007]

また、端子部についても直接負荷がかからない部位に配置する構成をとるものの、実装製品自体が人体に違和感を与えてはいけないので、ある程度の柔軟性が要求されるが、今日まで柔軟性を有し、繰り返し折り曲げの負荷のかかる実用環境下での使用に耐える柔軟性PTC発熱体は開発されておらず、また、端子部の構成についても実用的な提案がなされていない。

[0008]

【課題を解決するための手段】

本発明は、変形可能な開口部を有し、かつインク含浸性を有する柔軟性メッシュ基材と、前記柔軟性メッシュ基材に接合され、インク不通過性を有する柔軟性支持基材と、前記柔軟性メッシュ基材上に印刷により形成される櫛形電極と前記櫛形電極により給電されるPTC抵抗体と、前記櫛形電極と端部で電気的に接続されるとともに他端部でリード線と電気的にされる導電性薄材からなる端子部と、前記櫛形電極とPTC抵抗体と端子部を被覆する柔軟性被覆材とからなる。

[0009]

以上の構成として、櫛形電極やPTC抵抗体が柔軟性メッシュ基材内に含浸す

[0010]

【発明の実施の形態】

請求項1に記載した発明は、変形可能な開口部を有し、かつインク含浸性を有する柔軟性メッシュ基材と、前記柔軟性メッシュ基材に接合され、インク不通過性を有する柔軟性支持基材と、前記柔軟性メッシュ基材上に印刷により形成される櫛形電極と前記櫛形電極により給電されるPTC抵抗体と、前記櫛形電極と端部で電気的に接続されるとともに他端部でリード線と電気的にされる導電性薄材からなる端子部と、前記櫛形電極とPTC抵抗体と端子部を被覆する柔軟性被覆材とからなる。この構成により、櫛形電極とPTC抵抗体を柔軟性メッシュ基材のメッシュパターンに対応した部位にあわせて含浸保持できるとともに、メッシュ開口部のインクについては柔軟性支持基材で捕捉することができるため、柔軟性メッシュ基材では課題であったインク抜けを防止できる。また、メッシュ開口部の変形により櫛形電極やPTC抵抗体に応力を加えることなく伸びを実現できる。こうして、スクリーン印刷が可能で、柔軟で抵抗値安定性に優れた柔軟性PTC抵抗体を提供できる。また、端子部についても導電性薄材を介して櫛形電極とリード線とを接続する構成として、実用的な端子部とすることができる。

[0011]

請求項2に記載した発明は、端子部を、櫛形電極に導電性接着材を介して導電 性薄材の端部を接着するとともに、前記導電性薄材の他端部にハンダにてリード 線を接続する構成としてなる。この構成により、櫛形電極及びPTC抵抗体の作 製後に端子部を形成できる実用性の高い端子部構成とすることができる。

[0012]

請求項3に記載した発明は、導電性薄材を銅箔として、導電性接着材と接着する面を粗面化処理するとともに、反対面をニッケルメッキされた電解銅箔を用いてなる。この構成により、先ず粗面化することで導電性接着材との接着面積を増

[0013]

請求項4に記載した発明は、貫通孔を設けた導電性薄材を用いてなる。この構成により、貫通孔を設けたことで貫通孔内に導電性接着材を配置することができて、接着強度を増すことができる。

[0014]

請求項5に記載した発明は、貫通孔を有する導電性薄材として、貫通孔を設けられた銅箔、又は導電性エキスパンドメタルを用いてなる。この構成より、実用的な導電性薄材とすることができる。

[0015]

請求項6に記載した発明は、端子部を、柔軟性メッシュ基材上に予め貫通孔を 有する導電性薄材を固定して、その一端部に重なるように印刷にて櫛形電極を作 製するとともに、前記導電性薄材の他端部にリード線をハンダにて接続して構成 してなる。この構成により、導電性接着材を用いることなく、櫛形電極と導電性 薄材との電気的接続を取ることができる。

[0016]

請求項7に記載した発明は、端子部を、櫛形電極の端部の位置に、櫛形電極表面から柔軟性メッシュ基材、及び伸縮性を有する柔軟性支持基材を貫通する貫通孔を設けて、ハトメによるかしめにより導電性薄材を固定したのちに、前記導電性薄材の他端部にハンダにてリード線を接続して構成してなる。この構成により、伸縮性を有する柔軟性支持基材により常に櫛形電極と導電性薄材とハトメとは圧接された状態を保持され、櫛形電極と導電性薄材との電気的接続を確実に行うことができる。

[0017]

請求項8に記載した発明は、導電性薄材を接着性不織布で固定した後に柔軟性 被覆材で被覆してなる。この構成により、端子部作製時には導電性薄材を固定す ることで作業性を向上させることができるとともに、柔軟性被覆材としてコーティング材を用いる場合には均質なコーティング膜を作製することができる。

請求項9に記載した発明は、端子部を、柔軟性メッシュ基材と柔軟性支持基材の間に導電性薄材を固定したのちに、前記導電性薄材の端部に印刷により櫛形電極を作製するともに、その後導電性薄材の他端部にハンダにてリード線を接続してなる。この構成により、端子部作製時に導電性薄材の固定が柔軟性メッシュ基材と柔軟性支持基材の接合時に完了できるとともに、柔軟性メッシュ基材の開口部を通して櫛形電極と導電性薄材とは確実な電気的接続とすることができる。

[0019]

【実施例】

(実施例1)

以下、本発明の実施例1について説明する。図1 (a) (b) は本実施例の柔 軟性PTC発熱体を示す平面図(a)と端子部の断面図(b)である。1は変形 可能な開口部を有し、かつインク含浸性を有する、コットンやポリエステル、等 の材質からなるメッシュ状の柔軟性メッシュ基材である。 2 は柔軟性メッシュ基 材1に熱融着や接着手段により接合され、インク不通過性を有する柔軟性支持基 材であり、目付量が小さくインクが含浸しても面状に固着するのではなく、繊維 の絡まりに沿ってインクを含浸保持する構成をとるスパンレース(不織布)や、 スパンレースにゴム状のラテックスを含浸後絞って乾燥して形成されるストレッ チ素材(スパンレースが一般的)、あるいは発泡ポリウレタンのような発泡体に 、例えば、樹脂ラテックス等を含浸して形成されるインク不通過処理を施したも のである。3は銀やカーボンブラック等の導電性粒子を樹脂溶液中に分散してな る導電性ペーストをスクリーン印刷して乾燥して得た櫛形電極、4はPTC抵抗 体インクをスクリーン印刷して乾燥してなるPTC抵抗体、5はガスバリアー性 と防水性を有し、櫛形電極3とPTC抵抗体4を外界から保護する、例えば、樹 脂ラテックス等の乾燥皮膜からなる柔軟性被覆材である。なお、櫛形電極用イン ク及びPTC抵抗体インクはいずれも柔軟性のある樹脂系バインダーを含んでい るので、乾燥後形成される印刷物はある程度の柔軟性を保持している。 6 は端子 部であり、櫛形電極3の端部に銅箔などの導電性薄材7を導電性接着剤8で接着 して電気的接続をとる構成としている。また、導電性薄材7の他端部ではハンダ

[0020]

この構成により、櫛形電極3やPTC抵抗体4が印刷される柔軟性メッシュ基材1の下部に柔軟性支持基材2が配置されているため、柔軟性メッシュ基材1単独では生ずるインク抜けを防止してスクリーン印刷性を改善することができる。また、主たるPTC特性は柔軟性メッシュ基材1に含浸保持されたPTC抵抗体4により生じさせることができる。

[0021]

また、柔軟性メッシュ基材1上にそのメッシュパターンに対応して櫛形電極3やPT C抵抗体4が主に印刷され、柔軟性メッシュ基材1内に櫛形電極3やPT C抵抗体4が3次元的に適度に含浸保持された状態とすることができるために、柔軟性を発揮できるとともに、柔軟性メッシュ基材1に伸びが加わった状態でも、開口部の変形により抵抗値変化を最小限に抑制することができる。平面状に櫛形電極3やPTC抵抗体4が印刷されたものでは、柔軟性を発揮できないばかりでなく、例えば、5%伸び変形時に初期の一桁抵抗値が上昇するのに対して、30%以内に抵抗値変化を抑制することができた。

[0022]

ここで、柔軟性メッシュ基材1の変形可能な開口部の意味について説明する。 見かけ上は格子状のメッシュであってもそのメッシュを構成する繊維に弛みを持たせたものや、又は3次元的な接合点を有するものがある。櫛形電極3やPTC 抵抗体4のインクは弛みのある繊維の周囲や接合点に絡まった状態で付着していると考えられる。一般に、柔軟性メッシュ基材1を含む不織布・織布等においてはロール捲きの状態で市場に出ているが、ロール巻き方向は伸びが少なく、ロール巻き方向と直交する方向は伸びを持たせたものが多い。車用のシートの場合においてもシートの幅方向は伸びが要求されるのに対して奥行き方向は伸びが要求されない。これは、シートの表皮材である皮革や織物自体がそのような特性を有しており、シートヒータとして装着する場合にはそれよりも柔軟性を持たないと着座時のつっぱりなどの違和感を生じてしまう。本発明の柔軟性PTC発熱体も

[0023]

コットンやコットンとポリエステルの混紡からなるスパンレース型不織布から 構成された柔軟性メッシュ基材1では繊維間に隙間と弛みがあり、そこに印刷さ れた配置された櫛形電極3やPTC抵抗体4も膜状ではなく隙間や弛みを持った 状態で印刷物が形成される。よって、伸び変形が加わった状態でもメッシュ構成 とともに櫛形電極やPTC抵抗体自身が伸びるのではなく、その変形により伸び を可能とするのである。

[0024]

また、インクは柔軟性メッシュ基材 1 内に含浸した状態で配置される。我々は、鋭意研究の結果、含浸の程度が多いほど加振耐久性(荷重繰り返し安定性)が良いことを見出した。加振耐久性とは、カーシートヒータとしての信頼性評価の一つであり、人間の膝頭を想定して直径 1 6 5 mmの半円球をカーシート座面より50 mm押し下ることを繰り返すもので、実用上100万回以上の加振回数でも抵抗値変化がないことが要求されている。本実施例におけるインク含浸性を有する柔軟性基材 1 と液含浸性のないポリエステルフィルムとを比較した。その結果、ポリエステルフィルムが30万回で櫛形電極断線による抵抗値上昇を生じたのに対して、本実施例の柔軟性基材 1 は、目標仕様(加振回数 100万回で抵抗値変化0.1以下)をクリアーする130万回であった。また、さらに含浸保持性をさらに高めた短繊維からなる基材では300万回のものも確認されている。これらの結果より、加振耐久性は導電性ペースト及びPTCインクを含浸する基材ほど優れていることがわかる。このことは、基材内でこれらの3次元的な非直線的なネットワークが形成されることによると推定された。

[0025]

さらに、端子部6については、例えば、銀ペーストを乾燥して形成される櫛形電極3に直接リード線をハンダ付けすることができないので、一旦導電性薄材を 導電性接着により櫛形電極3の端部と接着したのちに、導電性薄材とリード線を ハンダ付けすることで、櫛形電極3とリード線との電気的接続をとっている。その際、櫛形電極3は、柔軟性メッシュ基材1を用いていることで、柔軟性メッシュ基材1内に含浸するとともに、その開口部に導電性接着材が侵入した構成とすることができる。また、導電性接着材と導電性薄材とは面接着とすることができるので強固な電気的接続を実現できる。また、端子部6の作製が、櫛形電極3、及びPTC抵抗体4を作成後に行うことができるため、印刷の不具合があった場合には端子部を作製する必要が無く、実用的な端子部構成とすることができる。また、櫛形電極3、PTC抵抗体4、及び端子部6は、その全周をガスバリアー性と防水性を有する柔軟性被覆材5により被覆されているため、劣化因子である酸素や、水蒸気、水分等の外気との接触を確実に防止して信頼性の高いPTC発熱体を提供できる。

[0026]

なお、好ましくは、導電性薄材として用いた銅箔の片面を粗面化処理するとともに、他面をニッケルメッキしてなる電解銅箔を用いて、先ず、粗面化面を介して導電性接着材と導電性薄材との接着をより強固にできるとともに、ニッケルメッキをすることで導電性薄材の耐食性を向上させることができる。

[0027]

(実施例2)

次に、本発明の実施例2について図2を用いて述べる。11は貫通孔12を有する導電性薄材として、銅やニッケルメッキされた銅からなる導電性エキスパンドメタルである。機械的に貫通孔を設けた銅箔を用いても同様でることは言うまでもない。その他は、前記実施例と同様の構成を示す。この構成により、貫通孔12内に導電性接着材8を介在させて導電性接着材8と導電性エキスパンドメタル11とを一体構成とすることができて、より接触面積を大きくして、電気的接続と機械的強度を増すことができる。

[0028]

(実施例3)

次に、本発明の実施例3について、図3を用いて説明する。予め導電性薄材7 を柔軟性メッシュ基材1上に接着や縫い付けなどの接合手段により固定しておき 、導電性薄材7の端部に重なるように櫛形電極を印刷して、櫛形電極と導電性薄材との電気的接続を図るものである。この構成により、導電性接着材を用いることなく、櫛形電極と導電性薄材との電気的接続を図ることができるので、低コストで端子部を作製することができる。なお、導電性薄材7を開口部を有する接着性不織布で熱により融着して固定しておき、リード線の取り付けは接着性不織布を突き破り、かつ融解させてハンダ接続することができる。また、導電性薄材として貫通孔を有するものを用いても良いことは言うまでもない。

[0029]

(実施例4)

次に、本発明の実施例4について図4(a)、(b)を用いて述べる。図4(a)は平面図、図4(b)は断面図である。ここでは、櫛形電極表面から柔軟性メッシュ基材、ストレッチ素材からなる伸縮性を有する柔軟性支持基材13を貫通する貫通孔を設けてハトメ14によるかしめで櫛形電極と導電性薄材との電気的接続を図っている。この構成により、柔軟性支持基材13が伸縮性を有しているため、つねに櫛形電極3と導電性薄材7とは圧接された状態を維持できるので、安定した電気的接続とすることができる。なお、図を省略しているが、ハトメを含む櫛形電極やPTC抵抗体の全周は柔軟性被覆材で被覆されることは言うまでもない。

[0030]

(実施例5)

次に、本発明の実施例 5 について断面図である図 5 を用いて説明する。柔軟性メッシュ基材 1 と柔軟性支持基材 2 の間に、かつ櫛形電極 3 の端部が印刷される位置に導電性薄材 7 を、柔軟性メッシュ基材 1 と柔軟性支持基材 2 の接合時に予め介在させて固定しておくものである。柔軟性メッシュ基材 1 の開口部をとうして櫛形電極 3 のインクは導電性薄材 7 に接着して櫛形電極 3 は作製される。また、リード線 1 0 は柔軟性メッシュ基材 1 を突き破り、融解させてハンダで取り付ける。より強固で実用的な端子部を提供できる。なお、導電性薄材 7 として、銅箔はもとより、貫通孔を有する銅箔や導電性エキスパンドメタルを用いても良いことは言うまでもない。それらに多少の厚みがあっても柔軟性支持基材 2 で吸収

[0031]

【発明の効果】

以上述べたように、本発明により以下のような効果を有する。

[0032]

請求項1に記載した発明は、前記櫛形電極と端部で電気的に接続されるとともに他端部でリード線と電気的にされる導電性薄材からなる端子部として、導電性 薄材を介して櫛形電極とリード線とを接続できるので、実用的な端子部を有する 柔軟性発熱体を提供できる。

[0033]

請求項2に記載した発明は、端子部を、櫛形電極に導電性接着材を介して導電 性薄材の端部を接着するので、櫛形電極及びPTC抵抗体の作製後に端子部を形 成できる実用性の高い端子部構成とすることができる。

[0034]

請求項3に記載した発明は、導電性薄材を銅箔として、導電性接着材と接着する面を粗面化処理するとともに、反対面をニッケルメッキされた電解銅箔を用いて、粗面化することで導電性接着材との接着面積を増して接着強度を増すことができるとともに、ニッケルメッキすることで耐食性の強い端子部とすることができる。

[0035]

請求項4に記載した発明は、貫通孔を設けた導電性薄材を用いて、貫通孔を設けたことで貫通孔内に導電性接着材を配置することができて、接着強度の強い端子部を提供できる。

[0036]

請求項5に記載した発明は、貫通孔を有する導電性薄材として、貫通孔を設けられた銅箔、又は導電性エキスパンドメタルを用いて、実用的な導電性薄材とすることができる。

[0037]

請求項6に記載した発明は、端子部を、柔軟性メッシュ基材上に予め貫通孔を

[0038]

請求項7に記載した発明は、端子部を、櫛形電極の端部の位置に、櫛形電極表面から柔軟性メッシュ基材、及び伸縮性を有する柔軟性支持基材を貫通する貫通孔を設けて、ハトメによるかしめにより導電性薄材を固定するもので、伸縮性を有する柔軟性支持基材により常に櫛形電極と導電性薄材とハトメとは圧接された状態を保持され、櫛形電極と導電性薄材との電気的接続を確実に行うことができる。

[0039]

請求項8に記載した発明は、導電性薄材を接着性不織布で固定するもので、端 子部作製時には導電性薄材を固定することで作業性を向上させることができると ともに、柔軟性被覆材としてコーティング材を用いる場合には均質なコーティン グ膜を作製することができる。

[0040]

請求項9に記載した発明は、端子部を、柔軟性メッシュ基材と柔軟性支持基材の間に導電性薄材を固定したのちに、前記導電性薄材の端部に印刷により櫛形電極を作製するもので、端子部作製時に導電性薄材の固定が柔軟性メッシュ基材と柔軟性支持基材の接合時に完了できるとともに、柔軟性メッシュ基材の開口部を通して櫛形電極と導電性薄材とは確実な電気的接続とすることができる。

【図面の簡単な説明】

【図1】

- (a) 本発明の実施例1における柔軟性PTC発熱体の平面図
- (b) 同発熱体の断面図

【図2】

本発明の実施例2における柔軟性PTC発熱体の導電性エキスパンドメタルの 平面図

【図3】

【図4】

- (a) 本発明の実施例4における柔軟性PTC発熱体の平面図
- (b) 同発熱体の断面図

【図5】

本発明の実施例5における柔軟性PTC発熱体の断面図

【図6】

従来のPTC面状発熱体の構成を示す断面図

【符号の説明】

- 1 柔軟性メッシュ基材
- 2 柔軟性支持基材
- 3 櫛形電極
- 4 PTC抵抗体
- 5 柔軟性被覆材
- 6 端子部
- 7 導電性薄材
- 8 導電性接着材
- 11 導電性エキスパンドメタル
- 12 貫通孔
- 13 伸縮性を有する柔軟性支持基材
- 14 ハトメ

柔軟性メッシュ基材 柔軟性支持基材 3 PTC抵抗体 3 柔軟性被覆材 5 6 導電性薄材 7 導電性接着材 2 (a) 6 2 (b) 3 5

【図2】

11 導電性薄材 (エキスパンドメタル)

12 貫通孔

【図3】

7 導電性薄材

7

- 1 季蚊性メッシュ基材
- 2 季軟性支持基材
- 3 櫛形電極
- 7 導電性薄材

【図6】

【要約】

【課題】 柔軟性に富み、抵抗値安定性が高く、かつ実用的な端子部を有する 柔軟性PTC発熱体を提供すること。

【解決手段】 柔軟性メッシュ基材 1上にそのメッシュパターンに対応して櫛 形電極 3 や P T C 抵抗体 4 が主に印刷され、柔軟性メッシュ基材 1 内に櫛形電極 3 や P T C 抵抗体 4 が 3 次元的に適度に含浸保持された状態となるように形成し ている。これによって、柔軟性を発揮できるとともに、柔軟性メッシュ基材 1 に 伸びが加わった状態でも、開口部の変形により抵抗値変化を最小限に抑制するこ とができる。

【選択図】 図1

特願2002-208397

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府門真市大字門真1006番地

氏 名

松下電器産業株式会社