CNN 및 딥러닝 기초

Natural Language Processing & Al Lab., Korea University

Machine Learning Overview

Neural Networks

- ☐ Transforms input to output
- NN is a "set of weights(parameters)"
- Need to change the weights(train) to make it do what we want

Neural Networks

☐ Very complex transformations (functions) can be approximated using NNs

How to Train a NN

■ With loss and gradient

Gradient Descent Algorithms

- \square 함수 F(x)의 local minimum을 찾는 알고리즘
- □ 흔히, 산을 내려갈 때 현재 지점에서 가장 경사가 가파른 방향으로 이동하는 것으로 비유
- 한 점 $a = (x_1, x_2, ..., x_n)$ 에서 시작하여 아래 과정을 일정 횟수 동안 혹은 F(a)의 변화가 threshold보다 작아질 때까지 반복
 - 그 각 x_k ($1 \le k \le n$)에 대하여 F(x)의 partial derivative $\frac{dF}{dx_k}$ (gradient) 계산

Backpropagation Step-by-Step

https://mattmazur.com/2015/03/17/a-step-bystep-backpropagation-example/

Key Components of NN

- ☐ Input and label: these forms a "dataset"
- Neural network model

Types of NN Model

Almost all neural network models can be classified into one of the followings

Things to Consider

- How to acquire the needed dataset All machine learning methods require data
 - □ Unsupervised ≠ no data (or label) needed
 - Unsupervised = label can be generated w/o human labor (much cheaper than supervised data)
 - Unsupervised training usually yields much lower performance, or is not possible
- What model to use
 - Many public models available
 - Usually less important than dataset garbage in, garbage out!

The Dataset

Fashion-MNIST

Fashion-MNIST

Like the famous MNIST, but with fashion images

Fashion-MNIST

- Same number of samples (60,000 train, 10,000 test) and classes (10), same resolution grayscale images
- □ Task: categorize each image into one of 10 classes T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot
- https://github.com/zalandoresearch/fashio n-mnist

Perceptrons

The most basic form of ANN

Neurons and Perceptrons

- Artificial Neural Networks(ANN) were inspired by the central nervous system of humans
- ANN's are built upon simple signal processing elements that are connected together into a large mesh

Perceptrons

□ Just like a biological neuron has dendrites to receive signals, a cell body to process them, and an axon to send signals out to other neurons, the artificial neuron has a number of input channels, a processing stage, and one output that can fan out to multiple other artificial neurons

Perceptrons

Input Layer Output Layer

$$y = x_1 \times w_1 + x_2 \times w_2 + w_0$$

$$output = \begin{cases} O & if \ y > threshold \\ X & otherwise \end{cases}$$

If threshold = 0, the decision boundary is

$$x_1 \times w_1 + x_2 \times w_2 + w_0 = 0$$

$$x_1 = -\frac{w_2}{w_1} x_2 - \frac{w_0}{w_1}$$

Linearly Separable

$$y = x_1 \times w_1 + x_2 \times w_2 + w_0$$

$$output = \begin{cases} O & if \ y > threshold \\ X & otherwise \end{cases}$$

If threshold = 0, the decision boundary is

$$x_1 \times w_1 + x_2 \times w_2 + w_0 = 0$$

$$x_1 \times w_1 + x_2 \times w_2 + w_0 = 0$$
$$x_1 = -\frac{w_2}{w_1} x_2 - \frac{w_0}{w_1}$$

Logic Gates with a Perceptron

Can we implement basic logic gates using perceptrons?

X1	X2	Y(AND)	Y(OR)	Y(XOR)
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Logic Gates with a Perceptron

Can we implement basic logic gates using perceptrons?

Logic Gates with a Perceptron

Can we implement basic logic gates using perceptrons?

XOR Problem

It is impossible to implement XOR gate with a perceptron

XOR Problem

- It is possible with two layers of perceptrons
- Using another perceptron that aggregates the outputs of AND, OR gates (also implemented with perceptrons)
- Multi-layer Perceptron(MLP)

Adding Layers to Network

- Adding more layers to neural networks has an effect of making the decision boundary more complex
- Mis-selecting number of layers can lead to under/over fitting

Vanishing Gradient Problem

Problem

- 주로 sigmoid function과 hyperbolic tangent function을 activation function으로 사용
 - Sigmoid function: $f(x) = \frac{1}{1+e^{-x}}$, $\frac{df}{dx} = \frac{e^x}{(e^x+1)^2} \Rightarrow 0 < \frac{df}{dx} \le 0.25$
 - Hyperbolic tangent function: $f(x) = \tanh(x)$, $\frac{df}{dx} = \mathrm{sech}^2(x) \Rightarrow 0 < \frac{df}{dx} \leq 1$
- Chain Rule을 사용하여 gradient를 계산하는 과정에서 0과 1 사이의 수를 반복하여 곱하게 됨
- Deep structure의 경우 저층 layer의 gradient가 너무 작아져서 parameter update가 매우 느려짐

Solution

- NN의 각 layer를 독립적으로 Restricted Boltzmann Machine, Denoising Auto Encoder와 같은 unsupervised method를 사용하여 pre-training한 후, 전체 NN을 supervised method를 사용하여 훈련 (e.g. Deep Belief Network (Hinton et al., 2006))
- Vanishing/exploding gradient effect를 최소화할 수 있는 값으로 각 layer를 초기화 (e.g. Xavier initialization (Glorot et al., 2010))
- 더 빠른 하드웨어를 사용하여 NN을 많은 epoch동안 훈련
- f'(x)가 1인 구간이 있는 activation function 사용

\$

Rectified Linear Units

- Rectified Linear Unit(ReLU) (Nair et al., 2010)
 - $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases} \quad \stackrel{\bar{\underline{\neg}}}{=} f(x) = \max(0, x)$
 - $x \ge 0$ 인 경우 f'(x) = 1이므로 deep NN의 저층 layer의 gradient를 계산할 때 gradient가 소실되거나 증폭되는 문제가 완화됨
- ReLU의 단점
 - x < 0인 경우 x의 값과 상관 없이 f(x) = 0이므로 x의 값이 무시됨
 - x < 0인 경우 f'(x) = 0이므로 전체 gradient가 모두 0이 됨

ReLU의 변형

- Leaky ReLU (Maas et al., 2013)
 - $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ 0.01x & \text{if } x < 0 \end{cases} \stackrel{\text{\(\bar{z})}}{=} f(x) = \max(0, x) + 0.01 \min(0, x)$
 - ReLU에서 f(x) = 0인 부분에서 문제가 발생하므로 x < 0인 부분에 작은 경사를 둠
- Parametric ReLU (He at al., 2015)
 - $f(x_i) = \begin{cases} x_i & \text{if } x \ge 0 \\ a_i x_i & \text{if } x < 0 \end{cases} \stackrel{\text{\tiny $\underline{\beta}$}}{=} f(x_i) = \max(0, x_i) + a_i \min(0, x_i)$
 - x < 0인 부분의 경사를 trainable parameter로 설정하여 training data에 맞게 activation function의 형태가 변하도록 함
 - Channel-wise: layer의 각 node별로 독립적인 a_i 값 사용
 - Channel-shared: 동일한 layer 내의 모든 node가 공통의 a_i 값 사용

Convolutional Neural Network Model

Convolution

1	0	1
0	1	0
1	0	1

Kernel (3x3)

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature reacure

- Mainly used for image processing
- Filter matrix value multiplied by the pixel value of the image.

Convolution

Sharpen

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

Blur

-	-	-	-	+
	0	1	0	
	1	-4	1	
	0	1	0	Į
	_			

Edge detect

Depending on the value of the filter, the image can have various effects.

Pooling

- Reduce the size of the feature
- The most commonly used max pooling preserves only the maximum value of the values in the filter.

Convolutional Neural Network(CNN)

- Extract features through convolution and pooling
- Generally hundreds to thousands of filters (kernels) are used
- It has mainly been applied to image processing, but it is also applied to NLP task recently.

Convolutional Neural Network(CNN)

Deep neural networks learn hierarchical feature representations

More Techniques

Early Stopping, Dropout, Training with Momentum

Under/Over Fitting and Model Complexity

- Underfitting model is too simple for the dataset
- Overfitting model is too complex for the dataset

Under/Over Fitting and Model Complexity

- Underfitting model is too simple for the dataset
- Overfitting model is too complex for the dataset

Under/Over Fitting and Training Iterations

- Underfitting model can improve from more training iterations
- Overfitting model is "memorizing" the dataset, instead of generalizing to it

Early Stopping

 Monitor the test/validation error, and stop training when test/validation error starts to increase

Dropout

- A Simple Way to Prevent Neural Networks from Overfitting
- Randomly dropout (i.e. set to zero) nodes of a network
 - Reduces the model complexity
 - Ensemble of possible models

Standard Neural Net

After applying dropout.

Training with Momentum

- Vanilla gradient descent is slow and can settle in saddle points
- Solution gradient descent with momentum

THANKS!

Any questions?