

CSC 462: Machine Learning

5.4 Underfitting and Overfitting

5.5 Regularization

Dr. Sultan Alfarhood

Underfitting and Overfitting

Underfitting

 Underfitting is the inability of the model to predict well the labels of the data it was trained on.

Underfitting

- There could be several reasons for underfitting, the most important of which are:
 - The model is too simple for the data
 - For example, a linear model can often underfit
 - The features you engineered are not informative enough
- The solution of underfitting is to try a more complex model or to engineer features with higher predictive power.

Overfitting

- The model that overfits predicts very well the training data but poorly the data from at least one of the two hold-out sets.
- Also referred to as the problem of high variance.

Overfitting

- Several reasons can lead to overfitting, the most important of which are:
 - The model is too complex for the data
 - For example, a very tall decision tree or a very deep or wide neural network often overfit
 - Too many features but with a small number of training examples

Overfitting

- Several solutions to the problem of overfitting are possible:
 - 1. Try a simpler model
 - Linear instead of polynomial regression
 - SVM with a linear kernel instead of RBF
 - A neural network with fewer layers/units
 - 2. Reduce the dimensionality of examples in the dataset
 - For example, by using one of the dimensionality reduction techniques discussed in Chapter 9
 - 3. Add more training data, if possible
 - 4. Regularize the model

Bias

- Bias is the difference between the average prediction of our model and the correct value which we are trying to predict
 - If the model makes many mistakes on the training data, we say that the model has a **high bias** or that the model **underfits**
 - A model has a **low bias** if it predicts well the labels of the training data.

Variance

- The **variance** is an error of the model due to its sensitivity to small fluctuations in the training set
 - Variance describes how much a model changes when trained using different portions of a data set.

Bias & Variance

Regularization

- Regularization is a general term that includes methods that force the learning algorithm to build a less complex model
 - A penalty is imposed on models, which are very complex
- In practice, that often leads to slightly higher bias but significantly reduces the variance.
 - This problem is known in the literature as the bias-variance tradeoff

Bias-variance Tradeoff (Animated)

- Bias is the difference between the average prediction of our model and the correct value which we are trying to predict
- Variance is an error of the model due to its sensitivity to small fluctuations in the training set

Bias-variance Tradeoff

- Bias is the difference between the average prediction of our model and the correct value which we are trying to predict
- Variance is an error of the model due to its sensitivity to small fluctuations in the training set

Regularization

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{w,b}(x_i))^2$$

- Regularization is the most widely used approach
 to prevent overfitting
- The two most widely used types of regularization are
 - L1 regularization (Lasso Regression)
 - L2 regularization (Ridge Regression)

L1 objective =
$$\left(\frac{1}{N} \sum_{i=1}^{N} (y_i - f_{w,b}(x_i))^2\right) + \left(\lambda \sum_{j=1}^{D} |w^j|\right)$$

L2 objective =
$$\left(\frac{1}{N}\sum_{i=1}^{N} (y_i - f_{w,b}(x_i))^2\right) + \left(\lambda \sum_{j=1}^{D} (w^j)^2\right)$$

λ is the regularization coefficient which determines how much regularization we want.

L1 & L2 Regularization

- To create a regularized model, we modify the objective function by adding a penalizing term whose value is higher when the model is more complex.
- The key difference between these techniques is that L1 shrinks the less important feature's coefficient to zero thus, removing some feature altogether
 - So, this works well for feature selection in case we have a huge number of features

L1 regularization (Lasso Regression):

L1 objective =
$$\left(\frac{1}{N}\sum_{i=1}^{N} (y_i - f_{w,b}(x_i))^2\right) + \left(\lambda \sum_{j=1}^{D} |w^j|\right)$$

L2 regularization (Ridge Regression):

L2 objective =
$$\left(\frac{1}{N}\sum_{i=1}^{N} (y_i - f_{w,b}(x_i))^2\right) + \left(\lambda \sum_{j=1}^{D} (w^j)^2\right)$$

 λ is the regularization coefficient which determines how much regularization we want.

L1 & L2 Regularization

- In practice, L1 regularization produces a sparse model
 - A model that has most of its parameters equal to zero (provided the hyperparameter λ is large enough).
- L1 makes feature selection by deciding which features are essential for prediction and which are not.
 - That can be useful in case you want to increase model explainability
- However, if your only goal is to maximize the performance of the model on the hold-out data, then L2 usually gives better results.

L1 & L2 Regularization

Comparison of L1 and L2 regularization	
L1 regularization	L2 regularization
Sum of absolute value of weights	Sum of square of weights
Sparse solution	Non-sparse solution
Multiple solutions	One solution
Built-in feature selection	No feature selection
Robust to outliers	Not robust to outliers (due to the square term)

Regularization

