Wine classification based on their chemical analysis

Adrianna Janik

UCI Machine Learning repository:

http://archive.ics.uci.edu/ml/datasets/Wine

Number of instances: 178

Number of attributes: 13

Attributes:

- ► Alcohol
- ► Malic acid
- ► Ash
- ► Alcalinity of ash
- ► Magnesium
- ► Total phenols

- ► Flavanoids
- ► Nonflavanoid phenols
- ► Proanthocyanins
- ► Color intensity
- ► Hue
- ► OD280/OD315 of diluted wines
- ► Proline

Box plots

Histograms

Density charts

•000000

Normalization and data set division

$$X_{norm} = \frac{x-\mu}{x_{max}-x_{min}}$$

Class	Instances	%
1	59	33%
2	71	39%
3	48	27%

training data set: 142 validation data set: 36 cross-validation: 10-fold

000000

- ► Logistic regression
- ► LDA
- ► K-nearest neighbors
- ► Decision tree
- ► Naive Bayes
- ► SVM
- ► Multilayer perceptron
- ► Logistic regression One vs all

Linear discriminant analysis LDA

0000000

Multilayer perceptron MLP

Neural network structure

Tools

- ▶ Python 2.7.12
- ▶ libraries: numpy, matplotlib, scipy, scikit-learn

Methodology

000000

Results

Algorithm	result
MLP	100%
LDA	98%
LR	95%
NB	94%
SVM	94%
KNN	92%
CART	91%
LR One vs all	85%