

$\sum_{\substack{i=1\\i\neq j=0}}^{2} \frac{\sum_{i=1}^{n} x_i y_j}{\sum_{i\neq j=1}^{n} x_i y_j \cos\left(\frac{n^{2n+1}}{2}\right)} \frac{\pi^{2n+1}}{2} \left(\sum_{\substack{i=1\\i\neq j=0}} x_i x_i y_j \cos\left(\frac{\pi^{2n+1}}{2}\right) \cos\left(\frac{\pi^{2n+1}}{2}\right)\right)$

An Overview on the Projects LEO-II, DIALOG, and PLATO/OMEGA

Christoph E. Benzmüller

Formal Mathematics Seminar University of Bonn, June 13, 2008

LEO-II – A Cooperative Automatic Higher-Order Theorem Prover

Higher-Order Logic (HOL)

Some people say that HOL is like this:

I don't!

- Semantics (extensionality)
- Proof theory
- ATPs LEO and LEO-II

PhD-99,JSL-04

IJCAR-06

CADE-98,IJCAR-08

Higher-Order Logic (HOL) - on one slide -

Property	FOL	HOL	Example
Quantification over - individuals - functions - predicates/sets/relations	✓ - -	\checkmark	$\forall x P(F(x))$ $\forall F P(F(x))$ $\forall P P(F(x))$
Unnamed - functions - predicates/sets/relations	<u>-</u>	√ √	$(\lambda x_{\mathbf{i}} x) \\ (\lambda x_{\mathbf{i}} x \neq 2)$
Statements about - functions - predicates/sets/relations	<u>-</u>	√ √	$continuous(\lambda x_{\bullet} x)$ reflexive(=)

$$A \cup B := \{x | x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\bullet} x \in A \lor x \in B)$$

$$\cup := \lambda A_{\bullet} \lambda B_{\bullet} (\lambda x_{\bullet} x \in A \lor x \in B)$$

symmetric :=
$$\lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

Theorem: $symmetric(\cup)$

ロト 4回 4 三 ト 4 三 ト の 0 0


```
:= \lambda x \lambda A A(x)
\in
0
                         = \lambda x_{-} \mid
                         := \lambda A \lambda B (\lambda x x \in A \land x \in B)
                         := \lambda A \lambda B (\lambda x x \in A \lor x \in B)
                         := \lambda A \lambda B (\lambda x x \in A \lor x \notin B)
                         := \lambda A \lambda B (\forall x x \in A \Rightarrow x \in B)
\mathcal{P}
                         := \lambda A (\lambda B B \subseteq A)
reflexive := \lambda R (\forall x R(x,x))
transitive := \lambda R_{\bullet}(\forall x, y, z_{\bullet}(R(x, y) \land R(y, z)) \Rightarrow R(x, z))
```


Types are Needed

Typed Sets and Relations in HOL

```
 \in := \lambda x_{\alpha^{\bullet}} \lambda A_{\alpha \to o^{\bullet}} A(x) 
 \emptyset := \lambda x_{\alpha^{\bullet}} \bot 
 \cap := \lambda A_{\alpha \to o^{\bullet}} \lambda B_{\alpha \to o^{\bullet}} (\lambda x_{\alpha^{\bullet}} x \in A \land x \in B) 
 \cup := \lambda A_{\alpha \to o^{\bullet}} \lambda B_{\alpha \to o^{\bullet}} (\lambda x_{\alpha^{\bullet}} x \in A \lor x \in B) 
 \setminus := \lambda A_{\alpha \to o^{\bullet}} \lambda B_{\alpha \to o^{\bullet}} (\lambda x_{\alpha^{\bullet}} x \in A \lor x \notin B)
```

. . .

Polymorphism is a Challenge for Automation

► Another source of indeterminism / blind guessing

TPHOLs-WP-07

Undecidable and Infinitary Unification

$$\exists F_{\iota \to \iota} F(g(x)) = g(F(x))$$

- (1) $F \leftarrow \lambda y_{i}$ y
- (2) $F \leftarrow \lambda y_i g(y)$
- (3) $F \leftarrow \lambda y_i g(g(y))$
- (4) . .

Primitive Substitution

Example Theorem: $\exists S_{\bullet} reflexive(S)$ Negation and Expansion of Definitions:

$$\neg \exists S (\forall x_{\iota} S(x, x))$$

Clause Normalisation (a(S) Skolem term):

$$\neg S(a(S), a(S))$$

Guess some suitable instances for *S*

$$S \leftarrow \lambda y_{\bullet} \lambda z_{\bullet} \top$$

$$S \leftarrow \lambda y_{\bullet} \lambda z_{\bullet} V(y, z) = W(y, z)$$

$$\rightsquigarrow V(a(S), a(S)) \neq W(a(S), a(S))$$

$$S \leftarrow$$

Cut rule

$$\frac{A \Rightarrow B}{A \Rightarrow C} \xrightarrow{C} \Rightarrow B$$

considered as bad in ATP

Cut rule

$$\frac{A \Rightarrow B}{A \Rightarrow C \quad C \Rightarrow B}$$

considered as bad in ATP

IJCAR-06: Axioms that imply Cut

- Axiom of excluded middle
- Comprehension axioms
- Functional and Boolean extensionality
- Leibniz and other definitions of equality
- Axiom of induction
- Axiom of choice
- Axiom of description

Cut rule

$$A \Rightarrow B$$

 $A \Rightarrow C \quad C \Rightarrow B$

considered as bad in ATP

Calculi that avoid axioms

- Axiom of excluded middle
- Comprehension axioms
- ► Functional and Boolean extensionality √ [CADE-98,PhD-99]
- ► Leibniz and other definitions of equality √ [CADE-99,PhD-99]
- Axiom of induction
- Axiom of choice
- Axiom of description

$\sum_{i=0}^{\infty} s(x, y) \cos \left(\frac{\pi(2x+1)}{2x+1}\right)$

LEO-II employs FO-ATPs:

E, Spass, Vampire

Motivation for LEO-II

- ▶ TPS system of Peter Andrews et al.
- LEO hardwired to ΩMEGA(predecessor of LEO-II)
- $\begin{array}{ll} \bullet & \mathsf{Agent}\text{-}\mathsf{based} \ \mathsf{architecture} \ \Omega\text{-}\mathsf{ANTS} \\ \mathsf{(with V. Sorge)} & \quad \bullet \\ \bullet & \quad \bullet \\$
- Collaboration of LEO with FO-ATP via Ω -ANTS (with V. Sorge) KI-01,LPAR-05,JAL-07
- Progress in Higher-Order Termindexing (with F. Theiss and A. Fietzke)

IWIL-06

Architecture of LEO-II

Solving Lightweight Problems

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C \cdot (B \subseteq C \Leftrightarrow \forall x \cdot x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded

(time)

% Vampire---9.0

% Problem : SET171+3

% Result : Theorem 68.6s

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C (B \subseteq C \Leftrightarrow \forall x x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded
(time)

% Vampire---9.0

% Problem : SET171+3
% Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina!
Total Reasoning Time: 0.03s
LEO-II (Proof Found!)

Results

Results

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E
014+4	114.5	2.60	0.300
017 + 1	1.0	5.05	0.059
066 + 1	_	3.73	0.029
067 + 1	4.6	0.10	0.040
076 + 1	51.3	0.97	0.031
086 + 1	0.1	0.01	0.028
096 + 1	5.9	7.29	0.033
143+3	0.1	0.31	0.034
171 + 3	68.6	0.38	0.030
580 + 3	0.0	0.23	0.078
601 + 3	1.6	1.18	0.089
606 + 3	0.1	0.27	0.033
607 + 3	1.2	0.26	0.036
609 + 3	145.2	0.49	0.039
611 + 3	0.3	4.00	0.125
612 + 3	111.9	0.46	0.030
614 + 3	3.7	0.41	0.060
615 + 3	103.9	0.47	0.035
623 + 3	_	2.27	0.282
624 + 3	3.8	3.29	0.047
630 + 3	0.1	0.05	0.025
640 + 3	1.1	0.01	0.033
646 + 3	84.4	0.01	0.032
647+3	98.2	0.12	0.037

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E
648+3	98.2	0.12	0.037
649 + 3	117.5	0.25	0.037
651 + 3	117.5	0.09	0.029
657 + 3	146.6	0.01	0.028
669 + 3	83.1	0.20	0.041
670 + 3	_	0.14	0.067
671 + 3	214.9	0.47	0.038
672 + 3	_	0.23	0.034
673 + 3	217.1	0.47	0.042
680 + 3	146.3	2.38	0.035
683+3	0.3	0.27	0.053
684+3	_	3.39	0.039
716+4	_	0.40	0.033
724 + 4	_	1.91	0.032
741 + 4	_	3.70	0.042
747 + 4	_	1.18	0.028
752 + 4	_	516.00	0.086
753+4	_	1.64	0.037
764+4	0.1	0.01	0.032

Vamp. 9.0: 2.80GHz, 1GB memory, 600s time limit LEO+Vamp.: 2.40GHz, 4GB memory, 120s time limit LEO-II+E: 1.60GHz, 1GB memory, 60s time limit

Solving Less Lightweight Problems

Logic Systems Interrelationships

John Halleck (U Utah):

http://www.cc.utah.edu/~nahaj/

\$100 Modal Logic Challenge:

www.tptp.org

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah):

http://www.cc.utah.edu/~nahaj/

\$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems:

$$S4 \subseteq K$$
 (1)

$$(M \land 4) \Leftrightarrow (refl.(R) \land trans.(R))$$
 (2

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah):
http://www.cc.utah.edu/~nahaj/
\$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems:

$$S4 \quad \not\subseteq \quad K \tag{1}$$
$$(M \land 4) \quad \Leftrightarrow \quad (refl.(R) \land trans.(R)) \tag{2}$$

Experiments

FO-ATPs	LEO-II + E
[SutcliffeEtal-07]	[BePa-08]

Even simpler: Reasoning within Multimodal Logics

Problem	LEO-II + E
$\overline{\hspace{1cm}}$ valid($\square_r \top$)	0.025s
$\mathtt{valid}(\square_ra\!\Rightarrow\!\square_ra)$	0.026s
$\mathtt{valid}(\square_ra \Rightarrow \square_sa)$	_
$\mathtt{valid}(\square_s(\square_ra{\Rightarrow}\square_ra))$	0.026s
$\mathtt{valid}(\Box_r(a \land b) \Leftrightarrow (\Box_r a \land \Box_r b))$	0.044s
$\mathtt{valid}(\lozenge_r(a \Rightarrow b) \Rightarrow \square_r a \Rightarrow \lozenge_r b)$	0.030s
$valid(\neg \lozenge_r a \Rightarrow \Box_r (a \Rightarrow b))$	0.029s
$valid(\Box_rb \Rightarrow \Box_r(a \Rightarrow b))$	0.026s
$\mathtt{valid}((\lozenge_r a \Rightarrow \square_r b) \Rightarrow \square_r (a \Rightarrow b))$	0.027s
$valid((\lozenge_r a \Rightarrow \Box_r b) \Rightarrow (\Box_r a \Rightarrow \Box_r b))$	0.029s
$valid((\Diamond_r a \Rightarrow \Box_r b) \Rightarrow (\Diamond_r a \Rightarrow \Diamond_r b))$	0.030s

(Normal) Multimodal Logic in HOL

Simple, Straightforward Encoding of Multimodal Logic

- base type ι : set of possible worlds certain terms of type $\iota \to o$: multimodal logic formulas
- multimodal logic operators:

$$\neg_{(\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o^{\blacksquare}}(\lambda x_{\iota} \neg A(x))
\lor_{(\iota \to o) \to (\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o}, B_{\iota \to o^{\blacksquare}}(\lambda x_{\iota} \neg A(x) \lor B(x))
\square_{R(\iota \to \iota \to o) \to (\iota \to o) \to (\iota \to o)} = \lambda R_{\iota \to \iota \to o}, A_{\iota \to o^{\blacksquare}}
(\lambda x_{\iota} \neg A(x) \lor B(x))$$

Related Work

[Gallin-73], [Carpenter-98], [Merz-99], [Brown-05], [Hardt&Smolka-07], [Kaminski&Smolka-07]

(Normal) Multimodal Logic in HOL

Encoding of Validity

valid :=
$$\lambda A_{\iota \to o^{\bullet}}(\forall w_{\iota^{\bullet}} A(w))$$

Example Proof:

$$\mathsf{valid}(\square_s (\square_r \, a \Rightarrow \square_r \, a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\Box_s (\Box_r \ a \Rightarrow \Box_r \ a))$$

Example Proof:

$$\mathsf{valid}(\square_s (\square_r \, a \Rightarrow \square_r \, a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\Box_s (\Box_r \ a \Rightarrow \Box_r \ a))$$

Definition expansion

$$\neg(\forall x_{\iota^{\blacksquare}} \forall y_{\iota^{\blacksquare}} \neg s(x,y) \lor ((\neg(\forall u_{\iota^{\blacksquare}} \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota^{\blacksquare}} \neg r(y,v) \lor a(v)))$$

Example Proof:

$$\mathsf{valid}(\square_s (\square_r \, a \Rightarrow \square_r \, a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\Box_s (\Box_r \ a \Rightarrow \Box_r \ a))$$

Definition expansion

$$\neg(\forall x_{\iota} \exists \forall y_{\iota} \exists \neg s(x,y) \lor ((\neg(\forall u_{\iota} \exists \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \exists \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y) \qquad \neg a(u)$$

$$r(y, u)$$
 $a(V) \lor \neg r(y, V)$

Example Proof:

$$\mathsf{valid}(\Box_s (\Box_r a \Rightarrow \Box_r a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\square_s (\square_r \, a \Rightarrow \square_r \, a))$$

Definition expansion

$$\neg(\forall x_{\iota} \neg \forall y_{\iota} \neg \neg s(x,y) \lor ((\neg(\forall u_{\iota} \neg \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \neg \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) = (\Box_R (B \vee A))$$

initialisation, definition expansion and normalisation:

$$(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(aY)\lor(bY))$$

$$\neq$$

$$(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(bY)\lor(aY))$$

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) = (\Box_R (B \vee A))$$

functional and Boolean extensionality:

$$\neg((\forall Y_{\iota^{\bullet}}\neg((r w) Y) \lor (a Y) \lor (b Y))$$

$$\Leftrightarrow$$

$$(\forall Y_{\iota^{\bullet}}\neg((r w) Y) \lor (b Y) \lor (a Y)))$$

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) = (\Box_R (B \vee A))$$

normalisation:

```
40: (b V) \lor (a V) \lor \neg ((r w) V) \lor \neg ((r w) W) \lor (b W) \lor (a W)
```

$$41: ((r w) z) \vee ((r w) v)$$

$$42:\neg(az)\vee((rw)v)$$

$$43:\neg(bz)\vee((rw)v)$$

44:
$$((r w) z) \vee \neg (a v)$$

$$45: \neg(az) \lor \neg(av)$$

$$46: \neg(bz) \lor \neg(av)$$

$$47:((rw)z)\vee\neg(bv)$$

$$47:((rw)z)\vee\neg(bv)$$

$$48: \neg(az) \lor \neg(bv)$$

$$49:\neg(bz)\vee\neg(bv)$$

total proving time (notebook with 1.60GHz, 1GB): 0.071s

Architecture of LEO-II

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) \doteq (\Box_R (B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P \cdot (PX) \Rightarrow (PY)$

initialisation, definition expansion and normalisation:

$$(p(\lambda X_{\iota}.\forall Y_{\iota^{\blacksquare}}\neg((rX)Y)\vee(aY)\vee(bY)))$$
$$\neg(p(\lambda X_{\iota}.\forall Y_{\iota^{\blacksquare}}\neg((rX)Y)\vee(bY)\vee(aY)))$$

A simple equation between modal logic formulas

$$\forall R . \forall A . \forall B . (\Box_R (A \vee B)) \doteq (\Box_R (B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

resolution:

$$(p(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(aY)\lor(bY)))$$

$$\neq$$

$$(p(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(bY)\lor(aY)))$$

A simple equation between modal logic formulas

$$\forall R . \forall A . \forall B . (\Box_R (A \vee B)) \doteq (\Box_R (B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

decomposition:

$$(\lambda X_{\iota}.\forall Y_{\iota^{\blacksquare}}\neg((rX)Y)\vee(aY)\vee(bY))$$

$$\neq$$

$$(\lambda X_{\iota}.\forall Y_{\iota^{\blacksquare}}\neg((rX)Y)\vee(bY)\vee(aY))$$

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) \doteq (\Box_R (B \vee A))$$

where
$$\doteq$$
 is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

functional and Boolean extensionality:

$$\neg((\forall Y_{\iota^{\bullet}} \neg((r w) Y) \lor (a Y) \lor (b Y))$$

$$\Leftrightarrow$$

$$(\forall Y_{\iota^{\bullet}} \neg((r w) Y) \lor (b Y) \lor (a Y)))$$

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) \doteq (\Box_R (B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

- normalisation: ... see previous example ...
- ▶ total proving time is 0.166*s*

Architecture of LEO-II

In modal logic \mathbf{K} , the axioms \mathcal{T} and 4 are equivalent to reflexivity and transitivity of the accessibility relation R

$$\forall R. (\forall A. valid(\square_R A \Rightarrow A) \land valid(\square_R A \Rightarrow \square_R \square_R A))$$

$$\Leftrightarrow (reflexive(R) \land transitive(R))$$

- processing in LEO-II analogous to previous example
- now 70 clauses are passed to E
- ▶ E generates 21769 clauses before finding the empty clause
- total proving time 2.4s
- this proof cannot be found in LEO-II alone

Architecture of LEO-II

 $S4 \not\subseteq K$: Axioms T and 4 are not valid in modal logic K

$$\neg \forall R_{\bullet} \forall A_{\bullet} \forall B_{\bullet} (\mathsf{valid}(\square_R A \Rightarrow A)) \land (\mathsf{valid}(\square_R B \Rightarrow \square_R \square_R B))$$

- ▶ LEO-II shows that axiom T is not valid
- \triangleright R is instantiated with \neq via primitive substitution
- total proving time 17.3s

$T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R \cdot \forall A \cdot (\text{valid}(\Box_R A \Rightarrow A))$$

initialisation, definition expansion and normalization generates:

$$((R W) s^{A,W,R}) \vee (A W)$$
$$\neg (A s^{A,W,R}) \vee (A W)$$

where $s^{A,W,R} = (((sA)W)R)$ is a new Skolem term

$T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R . \forall A . (valid(\Box_R A \Rightarrow A))$$

the refutation employs only the former clause

$$((R W) s^{A,W,R}) \vee (A W)$$

$T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R . \forall A . (valid(\Box_R A \Rightarrow A))$$

- $((R W) s^{A,W,R}) \vee (A W)$
- ▶ LEO-II 'guesses' the instantiations

$$R \leftarrow \lambda X, Y.((MX)Y) \neq ((NX)Y)$$
$$A \leftarrow \lambda X.(OX) \neq (PX)$$

with primitive substitution rule (M, N, O, P) are new free variables) . . .

$T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R \forall A (\mathsf{valid}(\Box_R A \Rightarrow A))$$

...and applies them

$$((M(RW)) s^{A,W,R}) \neq ((N(RW)) s^{A,W,R})$$

$$\vee$$

$$(OW) \neq (PW)$$

- such flex-flex unification constraints are always solvable!
- total proving time 9.0s

Architecture of LEO-II

LEO-II cannot prove the following example:

Modal logic K4 (which adds only axiom 4 to K) is not entailed in K:

$$\neg \forall R \cdot \forall B \cdot (\mathsf{valid}(\square_R B \Rightarrow \square_R \square_R B))$$

LEO-II also cannot prove this related example:

 $\neg \forall R$ trans(R)

LEO-II also cannot prove this related example:

$$\neg \forall R$$
 trans (R)

reason: not a theorem; domain of possible worlds may well just consist of a single world w.

LEO-II also cannot prove this related example:

$$\neg \forall R$$
 trans (R)

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- ▶ LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X \cdot \forall Y \cdot X = Y$$

Representation (and the right System Architecture) Matters!

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- ► Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- ► Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- ► Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- ► Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL, ...

Term Graph for:

 $\neg \forall R. \forall A. (valid(\square_R A \Rightarrow A))$

Term graph videos: http://www.ags.uni-sb.de/~chris/leo/art

DIALOG - Tutorial Natural Language Dialog on Proofs

The DIALOG Project

Tutorial NL Dialog for Mathematical Proofs.

- Natural language analysis
- Mathematical domain reasoning (using proof assistant OMEGA)
- Dialog management
- Output generation and verbalization

Assume that $a \in X$. If $X \cap Y = \emptyset$, then $a \notin Y$.

The DIALOG Project in the SFB 378

Progressive Refinement

Empirical Investigations

Let R, S and T be relations in an arbitrary set M. It holds: $(R \cup S) \circ T = (R \circ T) \cup (S \circ T)$. Do the proof interactively with the system!

Let $(x, y) \in (R \cup S) \circ T$

Correct! Good start!

Then $\exists z$ such that (x,z) in $(R \cup S)$ and (z,y) in T

Correct!

Empirical Investigations (Wizard-of-Oz)

Let R, S and T be relations in an arbitrary set M. It holds: $(R \cup S) \circ T = (R \circ T) \cup (S \circ T)$. Do the proof interactively with the system!

Let $(x, y) \in (R \cup S) \circ T$

Correct! Good start!

Then $\exists z$ such that (x,z) in $(R \cup S)$ and (z,y) in T

Correct!

Wizard Room

- 1 Audio Recording
- 2 Video Recording
- 3 Experimenter
- 4 Overall Control
- 5 Wizard
- 6 Wizard GUI

Dialog Excerpt I (VM group)

S33: Nach Aufgabe W ist $(S \circ (S \cup R)^{-1})^{-1} = ((S \cup R)^{-1})^{-1} \circ S^{-1}$

T34: Das ist richtig!

S34: Dies ist nach Theorem 1 gleich $(S \cup R) \circ S^{-1}$

T35: Das ist auch richtig!

S35: Ein Element (a,b) ist genau dann in dieser Menge, wenn es ein $z \in M$ gibt

mit $(a,z) \in S \cup R$ und $(z,b) \in S^{-1}$

T36: Das ist korrekt!

S36: Also $(b,z) \in S$.

T37: Auch das ist korrekt! S37: DAmit [sic] kann aber nicht die geforderte

Gleichheit bewiesen werden. T38: Das haben Sie gut erkannt! Was fehlt Ihnen

dazu?

Dialog Excerpt I (FM group)

S25: $(R \cup S) \circ S = \{(x,y) \mid \exists \ z(z \in M \land ((x,z) \in R \lor (x,z) \in S) \land (z,y) \in S\}$

T28: Diese Beziehung hat Relevanz fuer die Aufgabe. Sie muessen sich also etwas dabei gedacht haben, als Sie diese vermuteten. Koennen Sie begruenden, wie sie mit der Aufgabe zusammenhaengt?

T29: Ihre Formel ist richtig.

T30: Koennen Sie die Behauptung unter zusaetzlichen Voraussetzungen beweisen?

S26: $\{(x,y) \mid \exists \ z(z \in M \land ((x,z) \in R \lor (x,z) \in S) \land (z,y) \in S\} = \{(x,y) \mid \exists \ z(z \in M \land (y,z) \in S \land ((x,z) \in R \lor (x,z) \in S))\} \Leftrightarrow ((y,z) \in S \land (z,y) \in S)\}$

T31: Auf der rechten Seite ist z nicht spezifiziert. Meinten Sie vielleicht ⇔ oder etwas Aehnliches statt ∧?

Corpora and more

http://www.ags.uni-sb.de/~dialog

Correctness, Granularity and Relevance

student: $(x, y) \in (R \circ S)^{-1}$

tutor: Now try to draw inferences from that!

student: $(x, y) \in S^{-1} \circ R^{-1}$

tutor: One cannot directly deduce that.

You need some intermediate steps!

correct too coarse-grained relevant

student: $(x, y) \in (R \circ S)^{-1}$ if according to the inverse

relation it holds that $(y, x) \in (R \circ S)$

That is correct, but try to use

 $(x,y) \in (R \circ S)^{-1}$ as a precondition.

correct | appropriate | limited relevance

Research Challenges

Perspective of Mathematical Domain Reasoning (MDR):

- Support for resolution of Ambiguities and Underspecification
- Proof Step Evaluation
 - Soundness: proof step verifiable by formal system?
 - Granularity: size/argumentative complexity of proof step?
 - Relevance: proof step needed/useful in achieving the goal?

Perspective of NL Analysis:

Perspective of Dialog Management:

Perspective of Tutoring Proofs:

 $[\dots$ not in this talk $\dots]$

[... not in this talk ...]

[... not in this talk ...]

Research Challenges

Perspective of Mathematical Domain Prior sing (MDR): Support for resolution of Am Dimensional Underspecification Proof Step Evaluation Tutorial Soundness: privile verifiable by formal system? Granulari osical argumentative complexity of proof step?

- and Underspecification
- - Relevance goof step needed/useful in achieving the goal?

Perspective of NL Analysis:

Perspective of Dialog Management:

Perspective of Tutoring Proofs:

[... not in this talk ...]

[... not in this talk ...]

[... not in this talk ...]

Proof Step Evaluation

.

(G)

Given: (DM-1) $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$ (DM-2) $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$

Task:

Please show $\overline{(A \cup B) \cap (C \cup D)} = (\overline{A} \cap \overline{B}) \cup (\overline{C} \cap \overline{D})$

New:

By deMorgan $\overline{(A \cup B) \cap (C \cup D)} = \overline{(A \cup B)} \cup \overline{(C \cup D)}$.

Proof Step Evaluation

Given: (DM-1)
$$\overline{X \cup Y} = \overline{X} \cap \overline{Y}$$

(DM-2) $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$

Task: Please show $\overline{(A \cup B) \cap (C \cup D)} = (\overline{A} \cap \overline{B}) \cup (\overline{C} \cap \overline{D})$

New: By deMorgan $\overline{(A \cup B) \cap (C \cup D)} = \overline{(A \cup B)} \cup \overline{(C \cup D)}$.

Soundness: yes

Granularity: 1x(DM-2)

Christoph E. Benzmüller yes

Soundness: yes

Granularity: 2x(DM-1)

Relevance: yes

Saarland University

New:

PSE:

- (1) $A \wedge B$

- We show *E*.

- Soundness
 - ▶ $(G') \vdash^{?} (G)$
 - any proof

Granularity

Relevance

New:

PSE:

Discourse:

- (1) *A* ∧ *B*
- (2) A =
- (3) $C \Rightarrow D$
- $(3) C \rightarrow B$ $(4) F \rightarrow B$
- $(4) F \Rightarrow E$

?

(G) $D \vee E$

- We show E.
 - (1) ...
 - (2) ...
 - (4) ...
 - (01) =
 - (G') E
 - (G) ..

Soundness

- \triangleright $(G') \vdash^? (G)$
- any proof

${\sf Granularity}$

- ightharpoonup size-of((G') \vdash ? (G))
- cognitively adequate proofs

Relevance

New:

PSE:

Discourse:

- (1) *A* ∧ *B*
 - $(2) A \Rightarrow$
- $(3) C \Rightarrow D$
- (4) $F \Rightarrow E$

?

(G) $D \vee E$

- We show E.
 - (1) ...
 - (3) ...
 - (4) ...
 - (G') E
 - (G) .

- Soundness
 - $ightharpoonup (G') \vdash^? (G)$
 - any proof

Granularity

- ▶ size-of((G') \vdash ? (G))
- cognitively adequate proofs

Relevance

- \blacktriangleright (1), (2), (3), (4) \vdash ? (G')
- detours?, shorter proofs?

Example: Assertion Level Proof Reconstruction

1. Tutor: Show $(r \circ s)^{-1} = s^{-1} \circ r^{-1}!$

Exercise: $\vdash (r \circ s)^{-1} = s^{-1} \circ r^{-1}$

Example: Assertion Level Proof Reconstruction

- 1. Tutor: Show $(r \circ s)^{-1} = s^{-1} \circ r^{-1}$!
- 2. Student: Let $(x, y) \in (r \circ s)^{-1}$.

$$\frac{s_1: \quad (x,y) \in (r \circ s)^{-1} \vdash (x,y) \in s^{-1} \circ r^{-1}}{\vdash (r \circ s)^{-1} \subseteq s^{-1} \circ r^{-1}} \frac{\mathsf{Def}}{\vdash s^{-1} \circ r^{-1} \subseteq (r \circ s)^{-1}} \mathsf{Def}. = \\
\underline{\mathsf{Exercise:} \quad \vdash (r \circ s)^{-1} = s^{-1} \circ r^{-1}}$$

Example: Assertion Level Proof Reconstruction

- 1. Tutor: Show $(r \circ s)^{-1} = s^{-1} \circ r^{-1}!$
- 2. Student: Let $(x, y) \in (r \circ s)^{-1}$.
- 3. Student: Hence $(y, x) \in (r \circ s)$.

Example: Assertion Level Proof Reconstruction

- 1. Tutor: Show $(r \circ s)^{-1} = s^{-1} \circ r^{-1}!$
- 2. Student: Let $(x, y) \in (r \circ s)^{-1}$.
- 3. Student: Hence $(y, x) \in (r \circ s)$.
- 4. Student: Hence $(y, z) \in r \land (z, x) \in s$.

Example: Assertion Level Proof Reconstruction

- 1. Tutor: Show $(r \circ s)^{-1} = s^{-1} \circ r^{-1}$!
- 2. Student: Let $(x, y) \in (r \circ s)^{-1}$.
- 3. Student: Hence $(y, x) \in (r \circ s)$.
- 4. Student: Hence $(y, z) \in r \land (z, x) \in s$.
- 5. Student: Hence $(z, y) \in r^{-1} \land (x, z) \in s^{-1}$.

Judgment Module

Trainer Module

Integration with ActiveMath

ActiveMath

Exercise

Prove the following statement: PI(\forall typeRelationR PI(\forall typeRelationS (R°S) $^{-1}$ = (S $^{-1}$ °R $^{-1}$)))

Do the proof interactively with the system. Please indicate the status of each step!

⑥ Let... ○ Then... ○ It holds... ○ It's to be shown that...

Pair(A,B)∈(R°S)⁻¹

Tutor: Correct, but this is not so obvious. Think about each step!

CLet... CThen... CIt holds... CIt's to be shown that...

Activate Input Editor
Evaluate Hint Give Up

Conclusion

VS

Reasoning about human-constructed proof(step)s

Novel criteria:
granularity & relevance

Novel TP challenges:
qualitative aspects of proofs,
enumeration of proofs

PLATO – Mediator between Texteditors and Proof Assistants

