Trigonometric Substitution

January 9, 2007

• The problem: evaluate integrals of the form $\int \sqrt{a^2 - x^2} dx$.

- The problem: evaluate integrals of the form $\int \sqrt{a^2 x^2} dx$.
- The inverse substitution:

$$\int f(x)dx = \int f(g(t))g'(t)dt \quad \text{if } x = g(t)$$

- For $\sqrt{a^2-x^2}$ use the substitution $x=a\sin\theta$, $-\pi/2\leq\theta\leq\pi/2$ and the identity $1-\sin^2\theta=\cos^2\theta$.
- Example: $\int x^3 \sqrt{9-x^2} dx$.

Lecture 3

• For $\sqrt{a^2+x^2}$ use the substitution $x=a\tan\theta$, $-\pi/2<\theta<\pi/2$ and the identity $1+\tan^2\theta=\sec^2\theta$.

• Example:

$$\int \frac{\mathrm{d}x}{\sqrt{4+x^2}}.$$

$$\int_0^{3\sqrt{3}/2} \frac{x^3}{(4x^2+9)^{3/2}} \mathrm{d}x$$

Lecture 3

• For $\sqrt{x^2-a^2}$ use the substitution $x=a\sec\theta$, $0\leq\theta<\frac{\pi}{2}$ or $\pi\leq\theta<\frac{3\pi}{2}$ and the identity $\sec^2\theta-1=\tan^2\theta$.

• Example:

$$\int \frac{\mathrm{d}t}{\sqrt{t^2 - 6t + 5}}$$