Mass Transfer: Diffusion

Fundamental quantities in mass transfer

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Mass transfer – fundamentals of binary mixtures

Introduction:

- Enclosed volume
- Two different gases
- Constant pressure at temperature

Quantity definitions in binary mixtures

Fundamental terms:			
(filling) Mass		$m_1; m_2$	[kg]
Molar masses of the gases	Specific mass of one mol of substance	$M_1; M_2$	[kg/kmol]
Partial density	Density of one component	$\rho_1 = \frac{m_1}{V}; \rho_2 = \frac{m_2}{V}$	[kg/m ³]
Mixture density	Total density of all components	$\rho = \frac{m_1 + m_2}{V}$	[kg/m ³]
Molar quantity	Quantity of substance in moles	$n_1 = \frac{m_1}{M_1}; n_2 = \frac{m_2}{M_2}$	[kmol]
Molar concentration	Number of molecules in moles per volume	$C_1 = \frac{n_1}{V}; C_2 = \frac{n_2}{V}$	[kmol/m ³]
Molar concentration of the mixture	Number of all molecules in moles per volume	$C = \frac{n_1 + n_2}{V}$	[kmol/m ³]
Mole fraction	Proportion of a substance in the total number of all molecules	$\psi_1 = \frac{n_1}{n_1 + n_2} = \frac{C_1}{C}; \psi_2 = \frac{n_2}{n_1 + n_2} = \frac{C_2}{C}$	[-]
Mass fraction	Proportion of a substance in the total mass	$\xi_1 = \frac{\rho_1}{\rho} = \frac{m_1}{m_{\text{tot}}}; \xi_2 = \frac{\rho_2}{\rho} = \frac{m_2}{m_{\text{tot}}}$	[-]
Partial pressure	Pressure applied by a component	$p_1 = \frac{R_{\rm m}}{M_1} \rho_1 T = R_{\rm m} C_1 T; p_2 = \frac{R_{\rm m}}{M_2} \rho_2 T = R_{\rm m} C_2 T$	$[N/m^2]$

Quantity definitions in binary mixtures

Relationship between quantity/mass fractions and mean molar mass:

- ▶ Definition mole fraction ψ_1 : $\psi_1 = \frac{n_1}{n_1 + n_2} = \frac{n_1}{n} = \frac{c_1}{c}$
- ightharpoonup With definitions of molar quantity n_1 and mass m_1 : $n_1 = \frac{m_1}{M_1}$; $m_1 = \rho_1 \cdot V$
- Molar concentration C_1 and mass fraction ξ_1 : $C_1 = \frac{n_1}{V}$; $\xi_1 = \frac{m_1}{m} = \frac{\rho_1}{\rho}$
- lt follows for C_1 : $C_1 = \frac{1}{V} \cdot \frac{m_1}{M_1} = \frac{\rho_1}{M_1}$
- Finally, the mole fraction ψ_1 and the mean molar mass \overline{M} result in:

$$\psi_1 = \frac{\left(\frac{\rho_1}{M_1}\right) \cdot \frac{1}{\rho}}{\left(\frac{\rho_1}{M_1} + \frac{\rho_2}{M_2}\right) \cdot \frac{1}{\rho}} = \frac{\frac{\xi_1}{M_1}}{\frac{\xi_1}{M_1} + \frac{\xi_2}{M_2}}$$

$$\overline{M} = \frac{m_1 + m_2}{n_1 + n_2} = \frac{\frac{1}{V}(m_1 + m_2)}{\frac{1}{V}(n_1 + n_2)} = \frac{\rho}{C}$$

Ideal gas behavior of individual components and mixture

Dalton's law:

$$p = p_1 + p_2$$

- ▶ The total pressure corresponds to the sum of the partial pressures
- A transformation results in:

$$\frac{\frac{p_1}{p} + \frac{p_2}{p} = 1}$$

$$= \frac{\frac{C_1}{C} + \frac{C_2}{C} = \psi_1 + \psi_2$$

The Daltons are only seen together

For air: N₂, O₂, CO₂, rare gases

$$= p \\ p_1 + p_2$$

with:
$$\psi_1 = \frac{p_1}{p}$$
; $\psi_2 = \frac{p_2}{p}$

 ψ_1 : Mole Fraction

