Mathematics of Machine Learning - Summer School

Lecture 5 Convex Loss Surrogates. Gradient Descent

June 30, 2021

Patrick Rebeschini
Department of Statistics, University of Oxford

Recall Results on Binary Classification

- $ightharpoonup Z_i = (X_i, Y_i) \in \mathbb{R}^d \times \{-1, 1\}$
- lacktriangle Admissible action set $\mathcal{A} \subseteq \mathcal{B} := \{a : \mathbb{R}^d \to \{-1,1\}\}$
- ▶ True loss function $\ell(a,(x,y)) = 1_{a(x)\neq y} = \varphi^*(a(x)y)$ with $\varphi^*(u) := 1_{u\leq 0}$

$$r(a) = \mathbf{P}(a(X) \neq Y)$$
 $a^* \in \underset{a \in \mathcal{A}}{\operatorname{argmin}} r(a)$ $a^{**} \in \underset{a \in \mathcal{B}}{\operatorname{argmin}} r(a)$
 $R(a) = \frac{1}{n} \sum_{i=1}^{n} 1_{a(X_i) \neq Y_i}$ $A^* \in \underset{a \in \mathcal{A}}{\operatorname{argmin}} R(a)$

So far we have proved:

$$\mathbf{P}\bigg(r(A^\star) - r(a^\star) \lesssim \sqrt{rac{ extsf{VC}(\mathcal{A})}{n}} + \sqrt{rac{\log(1/\delta)}{n}}\bigg) \geq 1 - \delta$$

Problem: In general, computing A^* is NP hard!

Idea: Define convex relaxation of the original problem

1/20

Convexity

Convex function (Definition 8.1)

A function $f:\mathbb{R}^d \to \mathbb{R}$ is *convex* if for every $x, \tilde{x} \in \mathbb{R}^d, \lambda \in [0,1]$ we have

$$f(\lambda x + (1 - \lambda)\tilde{x}) \le \lambda f(x) + (1 - \lambda)f(\tilde{x})$$

Convex set (Definition 8.2)

A set \mathcal{A} is *convex* if for every $a, \tilde{a} \in \mathcal{A}, \lambda \in [0,1]$ we have

$$\lambda a + (1 - \lambda)\tilde{a} \in \mathcal{A}$$

Convex Loss Surrogates

Convex loss surrogate (Definition 8.3)

A function $\varphi : \mathbb{R} \to \mathbb{R}_+$ is called a *convex loss surrogate* if:

• convex • non-increasing • $\varphi(0) = 1$

True loss:

$$\varphi^{\star}(u) = 1_{u \le 0}$$

Exponential loss:

$$\varphi(u) = e^{-u}$$

Hinge loss:

$$\varphi(u) = \max\{1 - u, 0\}$$

Logistic loss:

$$\varphi(u) = \log_2(1 + e^{-u})$$

Convex Soft Classifiers

- ▶ **Soft** classifiers $\mathcal{A}_{\mathsf{soft}} \subseteq \mathcal{B}_{\mathsf{soft}} := \{a : \mathbb{R}^d \to \mathbb{R}\}$
- ▶ If $a \in \mathcal{B}_{soft}$, corresponding **hard** classifier is given by sign(a)
- 1. Linear functions with convex parameter space:

$$\mathcal{A}_{\mathsf{soft}} = \{ a(x) = w^{\top} x + b : w \in \mathcal{C}_1 \subseteq \mathbb{R}^d, b \in \mathcal{C}_2 \subseteq \mathbb{R} \}$$

 $\mathcal{C}_1, \mathcal{C}_2$ are convex sets

2. Majority votes (Boosting):

$$\mathcal{A}_{soft} = \{a(x) = \sum_{i=1}^{m} w_j h_j(x) : w = (w_1, \dots, w_m) \in \Delta_m\}$$

 Δ_m is the m-dim. simplex and $h_1,\ldots,h_m:\mathbb{R}^d o\mathbb{R}$ are base classifiers

Empirical φ -Risk Minimization

If arphi and $\mathcal{A}_{\mathsf{soft}}$ are convex, we are left with a convex problem

$$R_{\varphi}(a) = \frac{1}{n} \sum_{i=1}^{n} \varphi(a(X_i)Y_i)$$

$$A_{\varphi}^{\star} \in \operatorname*{argmin}_{a \in \mathcal{A}_{\mathsf{soft}}} R_{\varphi}(a)$$

Zhang's Lemma

$$r_{\varphi}(a) = \mathbf{E}\,\varphi(a(X)Y) \qquad \qquad a_{\varphi}^{\star\star} \in \underset{a \in \mathcal{B}_{\text{soft}}}{\operatorname{argmin}} r_{\varphi}(a)$$
$$r(a) = \mathbf{E}\,\varphi^{\star}(a(X)Y) = \mathbf{P}(a(X) \neq Y) \qquad \qquad a^{\star\star} \in \underset{a \in \mathcal{B}}{\operatorname{argmin}} r(a)$$

Zhang's Lemma (Lemma 8.5)

Let $\varphi:\mathbb{R}\to\mathbb{R}_+$ be a convex loss surrogate. For any $\tilde{\eta}\in[0,1]$, $\tilde{a}\in\mathbb{R}$, let

$$H_{\tilde{\eta}}(\tilde{a}) := \varphi(\tilde{a})\tilde{\eta} + \varphi(-\tilde{a})(1-\tilde{\eta}), \qquad \qquad \tau(\tilde{\eta}) := \inf_{\tilde{a} \in \mathbb{R}} H_{\tilde{\eta}}(\tilde{a}).$$

Assume that there exist c>0 and $u\in [0,1]$ such that

$$\left| \left| \tilde{\eta} - \frac{1}{2} \right| \le c (1 - \tau(\tilde{\eta}))^{\nu} \qquad \text{ for any } \tilde{\eta} \in [0, 1] \right|$$

Then, for any $a: \mathbb{R}^d \to \mathbb{R}$ we have

$$\underbrace{r(\mathrm{sign}(a)) - r(a^{\star\star})}_{\substack{\text{excess risk} \\ \text{hard classifier}}} \leq 2c\underbrace{(r_{\varphi}(a) - r_{\varphi}(a^{\star\star}_{\varphi}))^{\nu}}_{\substack{\text{excess } \varphi\text{-risk} \\ \text{soft classifier}}})^{\nu}$$

Zhang's Lemma: Examples

Exponential loss:

$$\tau(\tilde{\eta}) = 2\sqrt{\tilde{\eta}(1-\tilde{\eta})}$$

$$c = 1/\sqrt{2}$$

$$\nu = 1/2$$

► Hinge loss:

$$\tau(\tilde{\eta}) = 1 - |1 - 2\tilde{\eta}|$$

$$c = 1/2$$

$$\nu = 1$$

Logistic loss:

$$\begin{split} \tau(\tilde{\eta}) &= -\tilde{\eta} \log_2 \tilde{\eta} - (1-\tilde{\eta}) \log_2 (1-\tilde{\eta}) \\ c &= 1/\sqrt{2} \\ \nu &= 1/2 \end{split}$$

Zhang's Lemma shows that we can reliably focus on convex problems

Elements of Convex Theory

Subgradients (Definition 8.8)

Let $f: \mathcal{C} \subset \mathbb{R}^d \to \mathbb{R}$. A vector $g \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathcal{C}$ if

$$f(x) - f(y) \le g^T(x - y)$$
 for any $y \in C$

The set of subgradients of f at x is denoted $\partial f(x)$.

Subgradients yield **global** information (**uniform** lower bounds)

Convexity and subgradients (Theorem 8.9)

Let $f: \mathcal{C} \subseteq \mathbb{R}^d \to \mathbb{R}$ with \mathcal{C} convex:

$$f$$
 is convex \Longrightarrow for any $x \in \operatorname{int}(\mathcal{C}), \partial f(x) \neq \emptyset$

$$f$$
 is convex \iff for any $x \in \mathcal{C}, \partial f(x) \neq \emptyset$

If f is convex and differentiable at x, then $\nabla f(x) \in \partial f(x)$

Convex functions that are differentiable allow to infer **global** information (i.e., subgradients) from **local** information (i.e., gradients)

This is why convex problems are "typically" amenable to computations...

To prove algorithms converge we need additional local-to-global properties

Are Convex Problems Easy to Solve?

- ► Convex hull: $\operatorname{conv}(\mathcal{T}) := \left\{ \sum_{j=1}^m w_j t_j : w \in \Delta_m, t_1, \dots, t_m \in \mathcal{T}, m \in \mathbb{N} \right\}$
- ▶ Epigraph: $epi(f) := \{(x,t) \in \mathcal{D} \times \mathbb{R} : f(x) \leq t\}.$

Proposition 8.6

$$\min_{t \in \mathcal{T}} c^{\mathsf{T}} t = \min_{t \in \text{conv}(\mathcal{T})} c^{\mathsf{T}} t, \qquad \max_{t \in \mathcal{T}} c^{\mathsf{T}} t = \max_{t \in \text{conv}(\mathcal{T})} c^{\mathsf{T}} t.$$

Proof: As $\mathcal{T} \subseteq \text{conv}(\mathcal{T})$, we have $\min_{t \in \mathcal{T}} c^{\top} t \ge \min_{t \in \text{conv}(\mathcal{T})} c^{\top} t$. Other direction:

$$\begin{split} \min_{t \in \operatorname{conv}(\mathcal{T})} c^\top t &= \min_{m \in \mathbb{N}} \min_{t_1, \dots, t_m \in \mathcal{T}} \min_{(w_1, \dots, w_m) \in \Delta_m} c^\top \bigg(\sum_{j=1}^m w_j t_j \bigg) \\ &= \min_{m \in \mathbb{N}} \min_{t_1, \dots, t_m \in \mathcal{T}} \min_{(w_1, \dots, w_m) \in \Delta_m} \sum_{j=1}^m w_j c^\top t_j \geq \min_{t \in \mathcal{T}} c^\top t. \end{split}$$

Proposition 8.7

For any $f:\mathcal{D}\subseteq\mathbb{R}^d\to\mathbb{R}$, $\min_{x\in\mathcal{D}}f(x)=\min_{(x,t)\in\mathcal{C}}t$ with $\mathcal{C}=\mathrm{conv}(\mathrm{epi}(f)).$

Any minimization problem can be written in a convex form!

Local-to-Global Properties

- ► Convex: $f(y) \ge f(x) + \nabla f(x)^T (y x) \quad \forall x, y \in \mathbb{R}^d$
- ightharpoonup α -Strongly Convex:

$$\exists \alpha > 0 \text{ such that } f(y) \geq f(x) + \nabla f(x)^T (y-x) + \frac{\alpha}{2} \|y-x\|_2^2 \quad \forall x,y \in \mathbb{R}^d$$

 \triangleright β -Smooth:

$$\left| \exists \beta > 0 \text{ such that } f(y) \leq f(x) + \nabla f(x)^T (y-x) + \frac{\beta}{2} \|y-x\|_2^2 \quad \forall x,y \in \mathbb{R}^d \right|$$

 $ightharpoonup \gamma$ -Lipschitz:

$$\exists \gamma > 0 \text{ such that } f(x) - \gamma \|y - x\|_2 \leq f(y) \leq f(x) + \gamma \|y - x\|_2 \ \forall x, y \in \mathbb{R}^d$$

	Strongly convex?	Smooth?	Lipschitz?
Exponential loss (in R)	NO	NO	NO
Hinge loss (in ℝ)	NO	NO	YES
Logistic loss (in ℝ)	NO	YES	YES

However, we typically only need the domain to be a compact set of ${\mathbb R}$

Recap

- ▶ Training data: $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathcal{X} \times \{-1, 1\}$, with $\mathcal{X} \subseteq \mathbb{R}^d$
- **L**oss function: $\varphi : \mathbb{R} \to \mathbb{R}_+$ (**convex**: reasonable by Zhang's lemma)
- Predictors $\mathcal{A} = \{x \in \mathbb{R}^d \to a_w(x) : w \in \mathcal{W}\}$ (\mathcal{W} convex in many cases) NB. There are many settings where \mathcal{A} is **not** convex (e.g., neural networks)

Risk minimization:

$$\min_{w} \inf_{w} r(w) = \mathbf{E} \varphi(a_{w}(X)Y) \\ \text{subject to} \quad w \in \mathcal{W} \\ \Longrightarrow \qquad \text{Let } w^{\star} \text{ be a minimizer}$$

Empirical risk minimization:

$$r(W) - r(w^\star) \leq \underbrace{R(W) - R(W^\star)}_{\text{Optimization}} + \underbrace{\sup_{w \in \mathcal{W}} \{r(w) - R(w)\} + \sup_{w \in \mathcal{W}} \{R(w) - r(w)\}}_{\text{Statistics}}$$

Projected Subgradient Method

Goal:

 $\min_{x \in \mathcal{C}} f(x) \, \Big| \, \text{with} \, \, f \, \, \text{convex,} \, \, \mathcal{C} \, \, \text{convex and compact}$

Projected Subgradient Method

$$\begin{vmatrix} \tilde{x}_{t+1} = x_t - \eta_t g_t, \text{ where } g_t \in \partial f(x_t) \\ x_{t+1} = \Pi_{\mathcal{C}}(\tilde{x}_{t+1}) \end{vmatrix}$$

with the projection operator $\Pi_{\mathcal{C}}(y) = \operatorname{argmin}_{x \in \mathcal{C}} \|x - y\|_2$.

Non-Expansivity of Projections

Non-expansivity (Proposition 9.2)

Let $x \in \mathcal{C}$ and $y \in \mathbb{R}^d$. Then,

$$(\Pi_{\mathcal{C}}(y) - x)^{\top} (\Pi_{\mathcal{C}}(y) - y) \le 0$$

which implies $\|\Pi_{\mathcal{C}}(y)-x\|_2^2+\|y-\Pi_{\mathcal{C}}(y)\|_2^2\leq \|y-x\|_2^2$ and, in particular,

$$\|\Pi_{\mathcal{C}}(y) - x\|_2 \le \|y - x\|_2$$

First Order Optimality Condition

First Order Optimality Condition (Proposition 8.10)

Let f be convex, and $\mathcal C$ be a closed set on which f is differentiable. Then,

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{C}} f(x) \quad \Longleftrightarrow \quad \nabla f(x^{\star})^{\top} (x^{\star} - x) \leq 0 \quad \text{for any } x \in \mathcal{C}$$

Proof of Proposition 9.2. This is a direct consequence of Proposition 8.10 since $\Pi_{\mathcal{C}}(y)$ is a minimizer of the function $z \to f_y(z) = \|y-z\|_2$, and $\nabla f_y(z) = (z-y)/\|z-y\|_2$.

Results for Lipschitz Functions

A function f is γ -**Lipschitz on** \mathcal{C} if there exists $\gamma > 0$ such that (equivalent)

- For every $x,y\in\mathcal{C}$, $f(x)-\gamma\|x-y\|_2\leq f(y)\leq f(x)+\gamma\|x-y\|_2$
- For every $x, y \in \mathcal{C}$, $|f(y) f(x)| \le \gamma ||x y||_2$
- ▶ For every $x \in \mathcal{C}$, any subgradient $g \in \partial f(x)$ satisfies $||g||_2 \leq \gamma$

Projected Subgradient Method—Lipschitz (Theorem 9.3)

- ▶ Function f is γ -Lipschitz
- ► Assume $||x_1 x^*||_2 \le b$

Then, the projected subgradient method with $\eta_s \equiv \eta = \frac{b}{\gamma \sqrt{t}}$ satisfies

$$f\left(\frac{1}{t}\sum_{s=1}^{t} x_s\right) - f(x^*) \le \frac{\gamma b}{\sqrt{t}}$$

It is not a descent method: the value function can increase in one time step

Proof of Theorem 9.3)

► Convexity yields:

$$f\left(\frac{1}{t}\sum_{s=1}^{t} x_{s}\right) - f(x^{\star}) \le \frac{1}{t}\sum_{s=1}^{t} f(x_{s}) - f(x^{\star}) \le \frac{1}{t}\sum_{s=1}^{t} g_{s}^{\top}(x_{s} - x^{\star})$$

▶ Using $2a^{\top}b = ||a||_2^2 + ||b||_2^2 - ||a - b||_2^2$ and $g_s = \frac{1}{n}(x_s - \tilde{x}_{s+1})$:

$$g_s^{\top}(x_s - x^*) = \frac{1}{\eta}(x_s - \tilde{x}_{s+1})^{\top}(x_s - x^*)$$

$$= \frac{1}{2\eta} (\|x_s - x^*\|_2^2 + \|x_s - \tilde{x}_{s+1}\|_2^2 - \|\tilde{x}_{s+1} - x^*\|_2^2)$$

$$= \frac{1}{2\eta} (\|x_s - x^*\|_2^2 - \|\tilde{x}_{s+1} - x^*\|_2^2) + \frac{\eta}{2} \|g_s\|_2^2$$

$$\leq \frac{1}{2\eta} (\|x_s - x^*\|_2^2 - \|x_{s+1} - x^*\|_2^2) + \frac{\eta}{2} \|g_s\|_2^2$$

where we used that $\|\tilde{x}_{s+1} - x^{\star}\|_2 \ge \|x_{s+1} - x^{\star}\|_2$ by Proposition 9.2.

▶ Summing from s = 1 to t:

$$f\left(\frac{1}{t}\sum_{s=1}^{t}x_{s}\right) - f(x^{\star}) \leq \frac{1}{2\eta t} \left(\|x_{1} - x^{\star}\|_{2}^{2} - \|x_{t+1} - x^{\star}\|_{2}^{2}\right) + \frac{\eta\gamma^{2}}{2} \leq \frac{b^{2}}{2\eta t} + \frac{\eta\gamma^{2}}{2}$$

Minimizing the right-hand side we have $\eta = \frac{b}{2\sqrt{t}}$ which yields the result.

Results for Smooth Functions

A function f is β -smooth on C if there exists $\beta > 0$ such that (equivalent)

- For every $x,y\in\mathcal{C}$, $f(y)\leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{\beta}{2}\|y-x\|_2^2$
- ► For every $x, y \in \mathcal{C}$, $|\nabla f(y) \nabla f(x)| \le \beta ||x y||_2$ (gradient is β -Lipschitz)
- ► For every $x \in \mathcal{C}$, $\nabla^2 f(x) \leq \beta I$ (if f is twice-differentiable)

Projected Gradient Descent—Smooth (Theorem 9.4)

- ▶ Function f is β -smooth
- Assume $||x_1 x^*||_2 \le b$

Then, projected gradient descent with $\eta_s \equiv \eta = 1/\beta$ satisfies

$$f(x_t) - f(x^*) \le \frac{3\beta b^2 + f(x_1) - f(x^*)}{t}$$

In the case of smooth functions, gradient descent is a natural algorithm...

Interpretation for Smooth Functions

... it is the algorithm that at each time step moves to the point in $\mathcal C$ that maximizes the guaranteed local decrease given by the quadratic function that uniformly upper-bounds the function f at the current location

$$\begin{aligned} \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ f(x) + \nabla f(x)^{\top} (y - x) + \frac{\beta}{2} \|y - x\|_2^2 \right\} &= \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ \left\| \left(x - \frac{1}{\beta} \nabla f(x) \right) - y \right\|_2^2 \right\} \\ &\equiv \Pi_{\mathcal{C}} \left(x - \frac{1}{\beta} \nabla f(x) \right) \end{aligned}$$

Results for Smooth and Strongly Convex Functions

A function f is α -strongly convex on \mathcal{C} if there is $\alpha > 0$ such that (equivalent)

- ► For every $x, y \in \mathcal{C}$, $f(y) \ge f(x) + \nabla f(x)^{\top} (y x) + \frac{\alpha}{2} ||y x||_2^2$
- ► For every $x \in \mathcal{C}$, $\nabla^2 f(x) \succcurlyeq \alpha I$ (if f is twice-differentiable)

Gradient Descent—Smooth and Strongly Convex (Theorem 9.5)

- Assume $\mathcal{C} = \mathbb{R}^d$ (same type of result holds for projected gradient descent)
- Function f is α-strongly convex and β-smooth

Then, gradient descent with $\eta_s \equiv \eta = 1/\beta$ satisfies

$$f(x_t) - f(x^*) \le \left(1 - \frac{\alpha}{\beta}\right)^{t-1} (f(x_1) - f(x^*))$$

Proof: (see illustration on the previous slide)

- Guaranteed progress in one step: $f(x_{s+1}) \leq f(x_s) \frac{1}{2\beta} \|\nabla f(x_s)\|_2^2$
- ▶ Lower bound on objective function: $f(x^*) \ge f(x_s) \frac{1}{2\alpha} \|\nabla f(x_s)\|_2^2$

Oracle Complexity, Lower Bounds, Accelerated Methods

▶ Convergence rates:

	<i>L</i> -Lipschitz	β -smooth
Convex	$O(\gamma b/\sqrt{t})$	$O((\beta b^2 + c)/t)$
α -strongly convex	$O(\gamma^2/(\alpha t))$	$O(e^{-t\alpha/\beta}c)$

where
$$||x_1 - x^\star||_2 \le b$$
 and $f(x_1) - f(x^\star) \le c$

▶ Oracle complexities:

	<i>L</i> -Lipschitz	eta-smooth
Convex	$O(\gamma^2 b^2/\varepsilon^2)$	$O((\beta b^2 + c)/\varepsilon)$
α -strongly convex	$O(\gamma^2/(\alpha\varepsilon))$	$O((\beta/\alpha)\log(c/\varepsilon))$

► Optimal rates (lower bounds)

	<i>L</i> -Lipschitz	β -smooth
Convex	$\Omega(\gamma a/(1+\sqrt{t}))$	$\Omega(\tilde{b}^2\beta/(t+1)^2)$
α -strongly convex	$\Omega(\gamma^2/(\alpha t))$	$\Omega(\alpha \tilde{b}^2 e^{-t\sqrt{\alpha/\beta}})$

where $a:=\max_{x\in\mathcal{C}}\|x\|_2$ and $\tilde{b}:=\max_{x,y\in\mathcal{C}}\|x-y\|_2$

Apart from Lipschitz, optimal rates are achieved only by **accelerated** algorithms **NB**. Quantities α, β, γ and a, b, c, \tilde{b} depend implicitly on dimension d

Back to Learning: Linear Predictors with ℓ_2 Ball

Risk minimization:

Empirical risk minimization:

$$\boxed{r(\overline{W}_t) - r(w^\star) \leq \underbrace{R(\overline{W}_t) - R(W^\star)}_{\text{Optimization}} + \underbrace{\sup_{w \in \mathcal{W}} \{r(w) - R(w)\} + \sup_{w \in \mathcal{W}} \{R(w) - r(w)\}}_{\text{Statistics}}}$$

E Statistics
$$\leq \frac{4c_2^{\mathcal{X}}c_2^{\mathcal{W}}\gamma_{\varphi}}{\sqrt{n}}$$

 $\boxed{ \texttt{Optimization} \leq \frac{2c_2^{\mathcal{X}}c_2^{\mathcal{W}}\gamma_{\varphi}}{\sqrt{t}} }$

Principled approach: Enough to run algorithm for $t \sim n$ time steps (ONLY BASED ON UPPER BOUNDS!)