Sistema di riferimento

- Storicamente divisione fra altimetria e planimetria (riferimento fisico – riferimento matematico)
- Oggi dati sempre più integrati
- Domani?
- Dato di fatto
 - L'acqua segue leggi fisiche
 - La superficie matematica è complicata

Geoide

- Geoide = superficie di riferimento per l'altimetria
- Superficie equipotenziale passante per il livello medio del mare
- Superficie di difficile determinazione matematica modello di geoide
- Si definisce la quota ortometrica sul livello medio del mare – (mareografi, esempio BBT)

Attenzione all'effetto curvatura terrestre nelle informazioni geografiche

Ellissoide

- Forma matematica ben corrispondente alla forma della terra
- Semplice espressione matematica
- Determinazione storica degli assi equatoriale e polare
- Problemi con la determinazione dell'ellissoide nella storia
- Italia Ellissoidi di Bessel, Hayford e WGS84

Coord di Po
$$X = N \cos \varphi \cos \lambda$$

 $Y = N \cos \varphi \sin \lambda$
 $Z = N (1-e^2) \sin \varphi$
Coord di P $X = (N+h) \cos \varphi \cos \lambda$
 $Y = (N+h) \cos \varphi \sin \lambda$
 $Z = [N (1-e^2) + h] \sin \lambda$

Parametri ellissoide

$$\frac{X^2 + Y^2}{a^2} + \frac{Z^2}{b^2} = 1$$

$$\alpha = \frac{a - b}{b}$$

Bessel 1941

Hayford 1909

WGS84

a = 6377397 m

a = 6378388 m

a= 6378137 m

 $\alpha = 1/299.152813$

 $\alpha = 1/297$

 $\alpha = 1/298.257223$

H = quota ellissoidica (GPS) h = quota ortometrica (geoidica) N = H-h ondulazione del geoide

N nelle nostre zone vale circa 30 – 40 metri, con grosse variazioni da zona a zona. E' necessario conoscere un modello di geoide raffinato per arrivare a precisioni di circa 5 – 10 cm.

Dislivelli misurati con livellazioni o con il filtro del modello geoidico

Osservazioni

- Differenze fra superficie fisica (buccia arancia), ellissoide e geoide
- Normale all'ellissoide verticale rispetto al geoide – deviazione della verticale
- Quota ellissoidica e quota ortometrica
- Modello di geoide Italgeo nel software Verto2 e grigliato di IGM

Sistemi di coordinate

- Geocentriche di difficile utilizzo ma di riferimento per il GPS – univoche nel mondo
- Geografiche Latitudine e longitudine Storicamente note ma di difficile determinazione – univoche nel mondo
- Sono note le relazioni per passare dalle une alle altre all'interno di un definito ellissoide
- Non si conoscono le trasformazioni fra un ellissoide e l'altro – reti geodetiche (frame)

Reti geodetiche

- Reti storiche IGM con metodologie classiche – errori di misura correlati agli strumenti – metodi di calcolo dell'epoca –
- Integrazione con reti europee stima
- Sistema GPS l'attendibilità delle misure cresce di almeno un ordine di grandezza –

DATUM

- Scegliere l'ellissoide
- Eseguirne una materializzazione
- Orientarlo in un punto (verticale corrispondente alla normale)

Problemi nel passaggio tra ellissoidi

- Non è possibile definire formule esatte per passare da un ellissoide all'altro
- Modello di trasformazione nazionale definito da IGM – Verto2 e grigliati di trasformazione
- Errori significativi nei parametri inseriti nei software GIS
- Differenze di trasformazione di metri

Mappamondo o cartografia

- Ellissoide = mappamondo non si introducono deformazioni
- Introduzione della "cartografia piana" si debbono introdurre deformazioni
- La scelta è così attuale?

 Google Heart
- I Gis prevedono di lavorare su di un piano (coordinate cartesiane) ma sino a quando?

Sembrerebbe un sistema piano

Cartografia

- Necessità di passare ad un supporto piano Piano cartografico
- Si debbono introdurre deformazioni
- Metodi di proiezione e di rappresentazione
- Necessità di definire formule analitiche per passare da (φ, λ) a (x, y) o (Est, Nord)

$$X = f(\varphi, \lambda)$$
$$Y = g(\varphi, \lambda)$$

- Fra le infinite soluzioni scelgo quella che mantiene più piccole possibili le deformazioni
- So che non potrò mai creare una carta non deformata

Torna la domanda iniziale:
MAPPAMONDO o CARTOGRAFIA PIANA

$$m = \frac{ds'}{ds}$$

modulo deformazione lineare (carta equidistante m=1)

$$\mu = \frac{d\sigma'}{d\sigma}$$

modulo deformazione areale (carta equivalente μ=1)

$$\delta = \beta' - \beta$$
 modulo deformazione angolare (carta conforme $\delta = 1$)

Attenzione: il fattore di scala è da utilizzare a parte; si può infatti immaginare di eseguire la proiezione e poi rimpicciolire la carta o di rimpicciolire l'ellissoide e poi eseguire la proiezione.

Proiezioni pure

- Proietto direttamente sul piano da un punto
- E' sempre possibile scrivere le relazioni analitiche corrispondenti
- Posso scegliere il punto di proiezione e la posizione del piano di proiezione

Proiezione ufficiale

- Una proiezione pura è scelta come proiezione universale relativa alle calotte polari
- UPS Universale Polare Stereografica
- Vale sopra +82 e sotto -80 di latitudine
- Territori poco utilizzati (il coefficiente di deformazione lineare è alto)

Caratteristiche

- m=1 nel punto di contatto
- La carta è conforme regge l'ortogonalità fra meridiani e paralleli
- I paralleli sono cerchi concentrici con intervalli non regolari
- I meridiani sono rette a raggiera uscenti dal polo

Altri tipi di proiezioni

- Cilindriche (dirette, oblique o trasverse)
- Coniche (dirette, oblique o trasverse)
- Altre....

 Per ognuna sono sempre definibili delle equazioni di corrispondenza che mi permettono di passare dalle coordinate geografiche alle cartografiche

Approccio storico

- Nel tempo diverse scelte per i vari "Stati"
- Casi di Francia e Svizzera
- Per l'Italia la scelta della proiezione è stata mantenuta costante
- Sono però cambiati i DATUM
- Particolarità delle scelte del Catasto

Rappresentazione Conforme di Gauss

- Proiezione cilindrica trasversa in prima ipotesi cilindro tangente ad un meridiano
- Centro di proiezione il centro della terra
- E' conforme, non equidistante e non equivalente – equidistante lungo la linea in cui il cilindro tocca l'ellissoide

Rappresentazione Conforme di Gauss

- Forte deformazione lineare all'allontanarsi del meridiano di tangenza
- Nasce l'esigenza del contenimento del territorio
- 60 fusi di 6° con 30 cilindri ruotati di 6°

Caratteristiche

- Modulo di deformazione lineare fra 1 (meridiano di tangenza) e 1.0008 (bordo del fuso)
- Conforme (vedi intersezione fra meridiani e paralleli)
- I meridiani sono curvi verso il polo (a sinistra se si lavora a destra del meridiano di tangenza e viceversa)
- I paralleli sono concavi verso nord

Occorre ridurre m

- Cilindro secante
- 0.9996 < m < 1.0004
- Differenze fino a 40 cm al km, pari a 4/10000
- Valori inferiori al graficismo (pari a 0.4 mm alla scala della carta)

RAPPRESENTAZIONE PRATICAMENTE EQUIDISTANTE

Situazione finale

- Meridiano centrale del fuso (non di tangenza) - m = 0.9996
- Linee di secanza m = 1.0000
- Bordo del fuso -m = 1.0004

La deformazione massima è inferiore alla tolleranza grafica valutata su di 1 m di distanza sulla carta.

Valore di m

$$m = 0.9996*(1+0.123*10^{-7}*\Delta E^2)$$

- Varia al variare della distanza dal meridiano centrale del fuso (ΔE)
- Corrisponde a valori che si misurano durante i rilievi di campagna (40 cm per km)
- Raggiunge valori inaccettabili già a 300 km dal meridiano centrale

Approccio storico Sistema Gauss Boaga

- L'Italia è su 2 fusi: Ovest ed Est
- Ogni fuso è di 6°
- I fusi vanno da 6° a 12° (fuso Ovest) e da 12° a 18° (fuso est)
- Ogni fuso è ampliato ad est per generare una zona di sovrapposizione fra i due fusi e per contenere la penisola salentina

Convenzione

- Si utilizza la rete nazionale compensata (DATUM Roma 40)
- Il valore del meridiano centrale è pari a:
 - est = 1500 per il fuso Ovest
 - est = 2520 per il fuso Est
- Se un punto ha coordinate est = 1518 km sta nel fuso Ovest (1) e dista 18 km dal meridiano centrale del fuso verso est
- Riferimento per Nord è l'equatore

Approccio internazionale

- Il mondo è suddiviso in 60 fusi
- L'Italia ricade nei fusi 32, 33 e 34 (penisola salentina)
- DATUM europeo (ED50) o WGS84 (da pochi anni)
- Cilindro secante 0.9996
- Meridiano centrale del fuso Est = 500
- Coordinata Nord dall'equatore

Definizione non univoca

- Nel mondo ci sono 60 punti che hanno coordinate (500, 0)
- Per ritornare all'unicità occorre usare le coordinate geografiche o geocentriche
- Problemi nel passaggio fra fusi
- Le calotte polari in UPS per non continuare a cambiare fuso

Riassumendo

- Ogni punto ha diverse coordinate geocentriche in funzione del DATUM scelto
- Scelto un datum si possono ricavare le coordinate geografiche (corrispondenza 1 a 1 con le geocentriche)
- Ogni proiezione definisce a partire da un'unica coordinate geografica una coordinate cartografica

Reticolato cartografico

- Su tutte le cartografie è impostato un reticolato cartografico, parallelo a meridiano centrale del fuso ed equatore
- Esistono quindi 3 nord: geografico, cartografico e magnetico
- E' necessario passare da un sistema cartografico all'altro ma non sono noti i valori di passaggio fra differenti DATUM

Grigliati di IGM

DECLINAZIONE MAGNETICA, CONVERGEN-ZA E MODULO DI DEFORMAZIONE LINEARE (AL CENTRO DELLA SEZIONE 1:10 000)

NT N Nord Reticolato
N Nord Geografico
N Nord Magnetico
Declin. Magnetica
T Conver. Merid.
T Conver. Merid.
T Conver. Merid.
T Conver. Merid.
T La declinazione magnetica è al 1º Gennaio
1975 e varia annualmente di circa 3¹

SITUAZIONE 50 000 I.G.M.

048 Tramonti di Sotto	049 Gemona del Friuli	050 M. Canin	
065 Maniago	066 Udine	067 Cividale del Friuli	
086 S. Vito al Tagliamento	087 Palmanova	088 Gorizia	

COORDIN	IATE U.T.M.	DEI VERTICI	
VERTICE	E	м	
NO	361 449	5 104 038	
NE	364 671	5 103 966	
so	361 371	5 101 260	
SE	364.610	5 101 188	

COPERTURA DI FOTOGRAFIE AEREE

Ottobre 1971 - Zeiss RMK 15/23

Quota media relativa di volo: m. 2000

Restituzione e disegno: 1974

Aggiornamenti:

Taglio

- Cartografico o geografico particolarità
- Serve solo alle rappresentazioni
- Riciamo ai sistemi nazionali e alle cartografie nazionali

FOGLIO AL 100 000

SITUAZIONE	10 000 E 5	000 C.T.R.
06	07	08
10	4 1 —11 3 2	12
14	15	16

ESECUZIONE :S.I.L.T.A. Palazzolo di Stella (Udine) **ESECUZIONE**

COLLAUDO :Marussi-Giacchetti

Campostrini

FOGLIO 50 000 I.G.M.: № 066

SEZIONE: 066110 UDINE **ELEMENTO:** 066112 **UDINE**

COORDINATE DEI VERTICI

	GEOGRAFICHE		GAUSS-BOAGA	
	N	E	N	E
NO	42°24'00''	12° 30'00"	4 697 119	2 314 179
NE	42°24'00"	12"35"00"	4 696 921	2 321 038
so	42°21'00"	12"30"00"	4 691 567	2 314 015
SE	42°21'00"	12"35'00"	4 691 368	2 320 880

Le coordinate geografiche sono riferite all'ellissoide internazionale con orientamento medio europeo (E.D. 1950). Le coordinate piane sono nel sistema Gauss-Boaga.

Costanti di transito per passare dalle coordinate Gauss-Boaga nel sistema nazionale a quelle nel sistema U.T.M.;

COORDINATE DEI VERTICI

	GEOGRAFICHE		GAUSS-BOAGA			
	φ	λ	N FUSO	OVEST E	N FUSC	EST E
NO NE SO SE	42° 18'00'' 42° 18'00'' 42° 15'00'' 42° 15'00''	12° 15'00" 12° 20'00" 12° 15'00" 12° 20'00"	4 688 100 4 688 366 4 682 548 4 682 813	1 767 864 1 774 735 1 768 076 1 774 952	4 686 650 4 686 431 4 681 098 4 680 879	2 293 242 2 300 112 2 293 062 2 299 938

Le coordinate geografiche sono riferite all'ellissoide internazionale con orientamento medio europeo (E.D. 1950). Le coordinate piane sono nel sistema Gauss-Boaga.

Costanti di transito per passare dalle coordinate Gauss-Boaga nel sistema nazionale a quelle nel sistema U.T.M.:

$$\Delta E = -2.019.936 \text{ m}$$