1. The following table gives the estimates of the means and the common dispersion matrix of 3 characters X_1 , X_2 and X_3 for each of two groups of individuals on 20 and 72 observations from these groups respectively.

Means

Dispersion Matrix

Variables	Gr. 1	Gr. 2	X_1	X_2	X_3
X_1	25.80	28.35	4.7350	0.5622	1.4685
X_2	7.81	7.41		0.1413	0.2174
X ₃	10.77	10.75			0.5702

Examine whether the mean vectors of the two groups are significantly different.

Solution:

Theoretical Understanding:

Hotelling T^2 statistic is a multivariate generalization of student's t distribution.

Result: If
$$X \sim N_p(\mu, \Sigma)$$
, then $(X - \mu_0)'\Sigma^{-1}(X - \mu_0) \sim \chi_{p,\theta}^2$, where $\theta = (\mu - \mu_0)'\Sigma^{-1}(\mu - \mu_0)$.

Proof:
$$X \sim N_p(\mu, \Sigma) \Rightarrow X - \mu_0 \sim N_p(\mu - \mu_0, \Sigma)$$
.

Since Σ is p.d., \exists a non-singular matrix B \ni

B ΣB' =
$$I_p$$

 \Rightarrow Σ = $(B'B)^{-1}$, i.e., $\Sigma^{-1} = B'B$.

Put
$$Y = B(X - \mu_0)$$
. Then, $Y \sim N_p(B(\mu - \mu_0), B\Sigma B' = I_p)$.

Hence, the components of Y, say $Y_1, Y_2, ..., Y_p$ are independently distributed with $Y_i \sim N(\gamma_i, 1)$, for i = 1(1)p, where $\gamma_i = i$ -th component of $\gamma = B(\mu - \mu_0)$.

Consider a random sample $X_1, X_2, ..., X_N$ be a random sample from $N_p(\mu, \Sigma)$. Suppose we want to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. Case 1: Σ is known.

In this case, $\overline{X} \sim N_p(\mu, \Sigma/N)$. Then,

$$\chi^{2} = (\overline{X} - \mu_{0})'(\frac{\Sigma}{N})^{-1} (\overline{X} - \mu_{0}) = N(\overline{X} - \mu_{0})'\Sigma^{-1} (\overline{X} - \mu_{0})$$
$$\sim \chi^{2}_{p,\theta},$$

$$\sim \chi_{p,\theta}^2,$$
 where $\theta = (\mu - \mu_0)'(\frac{\Sigma}{N})^{-1} (\mu - \mu_0) = N(\mu - \mu_0)'\Sigma^{-1} (\mu - \mu_0).$

$$\lambda = 0 \Leftrightarrow \mu = \mu_0$$
, that is, H₀ holds.

Under H_0 , $\chi^2 \sim \text{central } \chi_p^2$.

So, we may take the test criterion to be χ^2 , and the critical region is $W = \{(x_1, x_2, ..., x_N): \text{ obs. } \chi^2 > \chi_p^2(\alpha)\}.$

Case 2: Σ is unknown.

Here it will be natural to replace Σ in the test criterion by its sample unbiased estimator $\frac{A}{n}$, where n = N - 1 and $A = \sum_{i=1}^{N} (X_i - \overline{X})(X_i - \overline{X})'$.

Then the test criterion is

 $T^2 = Nn(\overline{X} - \mu_0)'A^{-1}(\overline{X} - \mu_0)$. This test criterion is known as Hotelling T^2 statistic. For p = 1, it reduces to t^2 , where t is Student's t statistic.

R code:

#load mvtnorm package

Output:

Test stat: 5789.4 Numerator df: 3 Denominator df: 1 P-value: 0.02897

Interpretation:

The p-value is less than 0.05, which means that we reject the null hypothesis of equal mean vectors. This indicates that there is a significant difference between the mean vectors of the two groups. Therefore, we can conclude that at least one of the variables (X1, X2, X3) has a significantly different mean in Group 1 compared to Group 2.