TFX: The TPTP Extended Typed First-order Form

Geoff Sutcliffe 1 and Evgenii Kotelnikov 2

University of Miami, USA
 Chalmers University of Technology, Sweden

Abstract

The TPTP world is a well established infrastructure that supports research, development, and deployment of Automated Theorem Proving (ATP) systems for classical logics. The TPTP language is one of the keys to the success of the TPTP world. Originally the TPTP world supported only first-order clause normal form (CNF). Over the years support for full first-order form (FOF), monomorphic typed first-order form (TF0), rank-1 polymorphic typed first-order form (TF1), monomorphic typed higher-order form (TH0), and rank-1 polymorphic typed higher-order form (TH1), have been added. TF0 and TF1 together form the TFF language family; TH0 and TH1 together form the THF language family. Since the inception of TFF there have been some features that have received little use, and hence little attention, such as tuples, conditional expressions, and let expressions. This paper introduces the eXtended Typed First-order form (TFX), which extends TFF to include these and other features.

1 Introduction

The TPTP world [12] is a well established infrastructure that supports research, development, and deployment of Automated Theorem Proving (ATP) systems for classical logics. The TPTP world includes the TPTP problem library, the TSTP solution library, standards for writing ATP problems and reporting ATP solutions, tools and services for processing ATP problems and solutions, and it supports the CADE ATP System Competition (CASC). Various parts of the TPTP world have been deployed in a range of applications, in both academia and industry. The web page http://www.tptp.org provides access to all components.

The TPTP language is one of the keys to the success of the TPTP world. The language is used for writing both TPTP problems and TSTP solutions, which enables convenient communication between different systems and researchers. Originally the TPTP world supported only first-order clause normal form (CNF) [15]. Over the years support for full first-order form (FOF) [11], monomorphic typed first-order form (TF0) [14], rank-1 polymorphic typed first-order form (TF1) [2], monomorphic typed higher-order form (TH0) [13], and rank-1 polymorphic typed higher-order form (TH1) [4], have been added. TF0 and TF1 together form the TFF language family; TH0 and TH1 together form the THF language family.

Since the inception of TFF there have been some features that have received little use, and hence little attention. In particular, tuples, conditional expressions (if-then-else), and let expressions (let-defn-in) were neglected, and the latter two were horribly formulated with variants to distinguish between their use as formulae and terms. Recently, conditional expressions and let expressions have become more important because of their use in software verification applications. In an independent development, Evgenii Kotelnikov et al. introduced FOOL [7], a variation of many-sorted first-order logic (FOL). FOOL extends FOL in that it (i) contains an interpreted boolean sort and allows formulae to be used as boolean terms, (ii) allows boolean variables to be used as formulae, (iii) contains conditional expressions, and (iv) contains let expressions with definitions of function symbols, predicate symbols, and tuples. FOOL can be extended with the theory of tuples [8] that defines first class tuple terms and first class

tuple types. Features of FOOL can be used to concisely express problems coming from program analysis [8] or translated from more expressive logics. The conditional expressions and let expressions of FOOL resemble those of the SMT-LIB language version 2 [1].

The TPTP's new eXtended Typed First-order form (TFX) language remedies the old weaknesses of TFF, and incorporates the features of FOOL. This has been achieved by conflating (with some exceptions) formulae and terms, simplifying tuples in plain TFF, including fully expressive tuples in TFX, removing the old conditional expressions and let expressions from TFF, and including new elegant forms of conditional expressions and let expressions as part of TFX. (These more elegant forms have been mirrored in THF, but that is not a topic of this paper.) TFX is a superset of the TFF language. This paper describes the extensions to the TFF language form that define the TFX language. The remainder of this paper is organized as follows: Section 2 reviews the TFF language, and describes FOOL. Section 3 provides technical and syntax details of the new features of TFX. Section 4 describes the evolving software support for TFX, and provides some examples that illustrate its use. Section 5 concludes.

2 The TFF Language and FOOL

The TPTP language is a human-readable, easily machine-parsable, flexible and extensible language, suitable for writing both ATP problems and solutions. The top level building blocks of the TPTP language are annotated formulae. An annotated formula has the form:

language(name, role, formula, [source, [useful_info]]).

The languages supported are clause normal form (cnf), first-order form (fof), typed first-order form (tff), and typed higher-order form (thf). The role, e.g., axiom, lemma, conjecture, defines the use of the formula in an ATP system. In the formula, terms and atoms follow Prolog conventions, i.e., functions and predicates start with a lowercase letter or are 'single quoted', variables start with an uppercase letter, and all contain only alphanumeric characters and underscore. The TPTP language also supports interpreted symbols, which either start with a \$, or are composed of non-alphanumeric characters, e.g., the truth constants \$true and \$false, and integer/rational/real numbers such as 27, 43/92, -99.66. The basic logical connectives are !, ?, ~, |, &, =>, <=, <=>, and <~>, for \forall , \exists , \neg , \vee , \wedge , \Rightarrow , \Leftarrow , and \oplus respectively. Equality and inequality are expressed as the infix operators = and !=. An example annotated first-order formula, supplied from a file, is:

2.1 The Typed First-order Form TFF

TFF extends the basic FOF language with types and type declarations. The TF0 variant is monomorphic, and the TF1 variant is rank-1 polymorphic. Every function and predicate symbol is declared before its use, with a type signature that specifies the types of the symbol's arguments and result. TF0 types τ have the following forms:

• the predefined types i for ι (individuals) and i for o (booleans);

- the predefined arithmetic types \$int (integers), \$rat (rationals), and \$real (reals);
- user-defined types (constants).

User-defined types are declared (before their use) to be of the kind type, in annotated formulae with a type role – see Figure 1 for examples. TF0 type signatures ς have the following forms:

- individual types τ ;
- $(\tau_1 * \cdots * \tau_n) > \tilde{\tau}$ for n > 0, where τ_i are the argument types, and $\tilde{\tau}$ is the result type.

The type signatures of uninterpreted symbols are declared like types, in annotated formulae with a type role – see Figure 1 for examples. The type of = and != is ad hoc polymorphic over all types except \$o (this restriction is lifted in TFX), with both arguments having the same type and the result type being \$o. The types of arithmetic predicates and functions are ad hoc polymorphic over the arithmetic types; see [14] for details. Figure 1 illustrates some TF0 formulae, whose conjecture can be proved from the axioms (it is the TPTP problem PUZ130_1.p).

```
tff(animal_type,type, animal: $tType ).
tff(cat_type,type, cat: $tType ).
tff(dog_type,type, dog: $tType ).
tff(human_type,type, human: $tType).
tff(cat_to_animal_type,type, cat_to_animal: cat > animal ).
tff(dog_to_animal_type,type, dog_to_animal: dog > animal ).
tff(garfield_type,type, garfield: cat ).
tff(odie_type,type, odie: dog ).
tff(jon_type,type, jon: human ).
tff(owner_of_type,type, owner_of: animal > human ).
tff(chased_type,type, chased: ( dog * cat ) > $o ).
tff(hates_type,type, hates: ( human * human ) > $o ).
tff(human_owner,axiom, ! [A: animal] : ? [H: human] : H = owner_of(A) ).
tff(jon_owns_garfield,axiom, jon = owner_of(cat_to_animal(garfield)) ).
tff(jon_owns_odie,axiom, jon = owner_of(dog_to_animal(odie))).
tff(jon_owns_only,axiom,
    ! [A: animal] :
      ( jon = owner_of(A)
     => ( A = cat_to_animal(garfield) | A = dog_to_animal(odie) ) ).
tff(dog_chase_cat,axiom,
    ! [C: cat,D: dog] :
      (chased(D,C)
     => hates(owner_of(cat_to_animal(C)),owner_of(dog_to_animal(D))) ) ).
tff(odie_chased_garfield,axiom, chased(odie,garfield)).
tff(jon_hates_jon,conjecture, hates(jon,jon) ).
```

Figure 1: TF0 Formulae

The polymorphic TF1 extends TF0 with (user-defined) type constructors, type variables, polymorphic symbols, and one new binder. TF1 types τ have the following forms:

- the predefined types \$i and \$o;
- the predefined arithmetic types \$int, \$rat, and \$real;
- user-defined n-ary type constructors applied to n type arguments;
- type variables, which must be quantified by !> see the type signature forms below.

Type constructors are declared (before their use) to be of the kind ($tType * \cdots * tType$) > tType, in annotated formulae with a type role. TF1 type signatures ς have the following forms:

- individual types τ ;
- $(\tau_1 * \cdots * \tau_n) > \tilde{\tau}$ for n > 0, where τ_i are the argument types and $\tilde{\tau}$ is the result type (with the same caveats as for TF0);
- !>[α_1 : \$tType, ..., α_n : \$tType]: ς for n > 0, where $\alpha_1, \ldots, \alpha_n$ are distinct type variables and ς is a type signature.

The !> binder in the last form denotes universal quantification in the style of $\lambda\Pi$ calculi. It is used only at the top level in polymorphic type signatures. All type variables must be of type \$tType; more complex type variables are beyond rank-1 polymorphism. As in TF0, arithmetic symbols and equality are ad hoc polymorphic. An example of TF1 formulae can be found in [4].

2.2 FOOL

FOOL [7], standing for First-Order Logic (FOL) + bOoleans, is a variation of many-sorted first-order logic. FOOL extends ordinary FOL in that it (i) contains an interpreted boolean sort and allows formulae to be used as boolean terms, (ii) allows boolean variables to be used as formulae, (iii) contains conditional expressions, and (iv) contains let expressions with definitions of function symbols, predicate symbols, and tuples. FOOL can be straightforwardly extended with the polymorphic theory of tuples that defines first class tuples type and first class tuple terms [8]. In what follows we consider that extension, and first class tuple terms and tuple types are part of TFX. There is a model-preserving transformation of FOOL formulae to FOL formulae [7], so that an implementation of the transformation makes it possible to reason in FOOL using a regular first-order theorem prover. Formulae of FOOL can also be efficiently translated to a first-order clausal normal form [6]. The following describes these features of FOOL, illustrating them using examples taken from [5] and [8].

2.2.1 Boolean variables as formulae

FOOL contains a fixed two-element type *bool*, allows quantification over variables of the type *bool*, and considers terms of the type *bool* to be formulae. Formula 1 is a syntactically correct tautology in FOOL.

$$(\forall x : bool)(x \lor \neg x) \tag{1}$$

2.2.2 Formulae as boolean terms

The existence of *bool* terms means that a function or a predicate can take a formula as an argument, and formulae can be used as arguments to equality. For example, logical implication can be defined as a binary function impl of the type $bool \times bool \to bool$ using this axiom:

$$(\forall x : bool)(\forall y : bool)(impl(x, y) \Leftrightarrow \neg x \lor y). \tag{2}$$

Formula ?? can be equivalently expressed with = instead of \Leftrightarrow . Then it is possible to express that P is a graph of a (partial) function of the type $\sigma \to \tau$ as:

$$(\forall x : \sigma)(\forall y : \tau)(\forall z : \tau) imply(P(x, y) \land P(x, z), y = z)$$
(3)

2.2.3 Tuples

FOOL extended with the theory of tuples contains a type $(\sigma_1, \ldots, \sigma_n)$ of the *n*-ary tuple for all types $\sigma_1, \ldots, \sigma_n$, n > 0. Each type $(\sigma_1, \ldots, \sigma_n)$ is first class, that is, it can be used in the type of a function or predicate symbol and in a quantifier. An expression (t_1, \ldots, t_n) , where t_1, \ldots, t_n are terms of types $\sigma_1, \ldots, \sigma_n$, respectively, is a term of the type $(\sigma_1, \ldots, \sigma_n)$. Each tuple term is first class and can be used as an argument to a function symbol, a predicate symbol, or equality.

Tuples are ubiquitous in mathematics and programming languages. For example, one can use the tuple sort (\mathbb{R}, \mathbb{R}) as the sort of complex numbers. Thus the term (2,3) represents the complex number 2+3i. A function symbol *plus* that represents addition of complex numbers has the type $(\mathbb{R}, \mathbb{R}) \times (\mathbb{R}, \mathbb{R}) \to (\mathbb{R}, \mathbb{R})$.

2.2.4 Conditional expressions

FOOL contains expressions of the form if ψ then s else t, where ψ is a formula, and s and t are terms of the same type. The semantics of such expressions mirrors the semantics of conditional expressions in programming languages, and are therefore convenient for expressing formulae coming from program analysis. For example, consider the max function of the type $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ that returns the maximum of its arguments. Its definition can be expressed in FOOL as:

$$(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(\max(x, y) = \text{if } x \ge y \text{ then } x \text{ else } y). \tag{4}$$

FOOL allows if-then-else expressions to occur as formulae, as in the following valid property of max:

$$(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(\text{if } max(x, y) = x \text{ then } x \ge y \text{ else } y \ge x). \tag{5}$$

2.2.5 Let expressions

FOOL contains expressions of the form let $D_1; ...; D_k$ in t, where k > 0, t is either a term or a formula, and $D_1, ..., D_k$ are simultaneous non-recursive definitions. FOOL allows definitions of function symbols, predicate symbols, and tuples.

The definition of a function symbol $f: \sigma_1 \times \ldots \times \sigma_n \to \tau$ has the form $f(x_1: \sigma_1, \ldots, x_n: \sigma_n) = s$, where $n \geq 0$, and s is a term of the type τ . The following let expression denotes the maximum of three integer constants a, b, and c using a local definition of the function symbol max:

let
$$max(x: \mathbb{Z}, y: \mathbb{Z}) = \text{if } x \geq y \text{ then } x \text{ else } y$$
 in $max(max(a,b),c)$ (6)

The definition of a predicate symbol $p: \sigma_1 \times \ldots \times \sigma_n$ has the form $p(x_1: \sigma_1, \ldots, x_n: \sigma_n) = \phi$, where $n \geq 0$, and ϕ is a formula. The following let expression denotes equivalence of two boolean constants A and B using a local definition of the predicate symbol imply:

$$let imply(x:bool, y:bool) = \neg x \lor y$$
$$in imply(A, B) \land imply(B, A)$$
(7)

The definition of a tuple has the form $(c_1, \ldots, c_n) = s$, where $n > 1, c_1, \ldots, c_n$ are constant symbols of the types $\sigma_1, \ldots, \sigma_n$, respectively, and s is a term of the type $(\sigma_1, \ldots, \sigma_n)$. The following formula defines addition for complex numbers using two simultaneous local definition of tuples:

$$(\forall x : (\mathbb{R}, \mathbb{R}))(\forall y : (\mathbb{R}, \mathbb{R}))$$
$$(plus(x, y) = \text{let } (a, b) = x; (c, d) = y \text{ in } (a + c, b + d)).$$
 (8)

The main application of let expressions with tuple definitions is in problems coming from program analysis, namely modelling of assignments [8]. The lefthand side of Figure 2 shows an example of an imperative if statement containing assignments to integer variables, and an assert statement. This can be encoded in FOOL as shown on the righthand side, using let expressions with definitions of tuples that capture the assignments.

Figure 2: FOOL encoding of an if statement

The semantics of let expressions in FOOL mirrors the semantics of simultaneous non-recursive local definitions in programming languages. That is, neither of the definitions D_1, \ldots, D_n uses function or predicate symbols created by any other definition. In the following example, constants a and b are swapped by a let expression. The resulting formula is equivalent to P(b, a).

$$let a = b; b = a in P(a, b)$$
(9)

Formula 9 can be equivalently expressed using a let expression with a definition of a tuple as follows.

$$let (a,b) = (b,a) in P(a,b)$$

$$(10)$$

3 The TFX Syntax

The TPTP TFF syntax has been extended to provide the features of FOOL, and at the same time some of the previous weaknesses have been remedied. Formulae and terms have been conflated (with some exceptions). Tuples have been simplified in TFF, and fully expressive tuples included in TFX. The old conditional expressions and let expressions have been removed from TFF, and new elegant forms have been included as part of TFX. The grammar of THX is captured in version v7.1.0.2 of the TPTP syntax, available online at http://www.tptp.org/TPTP/SyntaxBNF.html. In the subsections below, the relevant excerpts of the BNF are provided, with examples and commentary.

3.1 Boolean variables as formulae

Variables of type \$0 can be used as formulae. The following is the relevant BNF excerpt.

The type of the imply predicate in Formula ?? can be written in the TFX syntax as (\$o * \$o) > \$o, and its definition as:

```
tff(imply_type,type,imply: ($0 * $0) > $0 ).
tff(imply_defn,axiom, ! [X: $0,Y: $0]: (imply(X,Y) <=> (~X | Y)) ).
```

3.2 Formulae as boolean terms

Formulae can be used as boolean terms. The following is the relevant BNF excerpt.

Formula 3 can be written in TFX as:

```
tff(s,type,s: $tType).
tff(t,type,t: $tType).
tff(p,type,p: (s * t) > $o ).
tff(graph,axiom,
        ! [X: s,Y: t,Z: s] : imply(p(X,Y) & p(X,Z),Y = Z) ).
```

A consequence of allowing formulae as terms is that the default typing of functions and predicates supported in plain TFF (functions default to (\$i * ... * \$i) > \$i and predicates default to (\$i * ... * \$i) > \$o) is not supported in TFX.

Note that not all terms can be used as formulae. Tuples, numbers, and "distinct objects" cannot be used as formulae.

3.3 Tuples

Tuples in TFF are written in [] brackets, and can contain only non-boolean terms – tuples of formulae have been removed from TFF. Tuples in TFX are written in [] brackets, and can contain any type of term, including formulae and variables of type \$0. Signatures can contain tuple types. The following is the relevant BNF excerpt.

The tuple type (\mathbb{R}, \mathbb{R}) can be written in the TFX syntax as [\$real,\$real] and the type of the addition function for complex numbers $(\mathbb{R}, \mathbb{R}) \times (\mathbb{R}, \mathbb{R}) \to (\mathbb{R}, \mathbb{R})$ can be written as ([\$real,\$real] * [\$real,\$real]) > [\$real,\$real]. The tuple term (2,3) can be written as [2,3].

Tuples can occur only as terms (not as formulae, and not on the lefthand side of a type declaration), anywhere they are well-typed. For example:

```
tff(p_type,type,p: ([$int,$i,$o] * $o * $int) > $o ).
tff(q_type,type,q: ($int * $i) > $o ).
tff(me_type,type,me: $i ).
tff(tuples_1,axiom,! [X: $int] : p([33,me,$true],! [Y: $i] : q(X,Y),27) ).
   Tuples cannot be typed. Rather the elements must be typed separately. For example:
tff(a_type,type,a: $int).
tff(b_type,type,b: $int).
... cannot be abbreviated to ...
tff(ab_type,type,[a,b]: [$int,$int]).
```

3.4 Conditional expressions

Conditional expressions are polymorphic, taking a formula as the first argument, then two formulae or terms of the same type as the second and third arguments. The type of the conditional expression is the type of its second and third arguments. The following is the relevant BNF excerpt.

```
<tfx_conditional> ::= $ite(<tff_logic_formula>,<tff_term>,<tff_term>)
   Formulae 4 and 5 can be expressed in TFX as:

tff(max_type,type,max: ($int * $int) > $int).

tff(max_defn,axiom,
      ! [X: $int,Y: $int]: max(X,Y) = $ite($greatereq(X,Y),X,Y) ).

tff(max_property,conjecture,
      ! [X: $int,Y: $int]:
      $ite(max(X,Y) = X,$greatereq(X,Y),$greatereq(Y,X)) ).
```

The keyword \$ite is used for conditional expressions occurring both as terms and formulae, which is different from the old TFF syntax of if-then-else that contained two separate keywords \$ite_t and \$ite_f.

3.5 Let expressions

Each let expression in TFX consists of (i) the type signatures of the defined symbols; (ii) the definitions of the symbols; and (iii) the formula or term in which the definitions are applied. Type signatures in let expressions syntactically match those in annotated formulas with the type role. Definitions of symbols include one or more function symbols, predicate symbols, or tuples, defined simultaneously. The type signature must include all function symbols, predicate symbols, and elements of tuples, used in the definitions. The following is the relevant BNF excerpt.

In the following example an integer constant c is defined in a let expression.

```
tff(p_type,type,p: ($int * $int) > $0 ).
tff(let_1,axiom,$let(c: $int,c:= $sum(2,3),p(c,c)) ).
```

If variables are used in the lefthand side of a definition, their values are supplied in the defined symbol's use. Such variables do not need to be declared (they are implicitly declared to be of the type defined by the symbol declaration), but must be top-level arguments of the defined symbol and be pairwise distinct. Thus Formula 6 can be written in TFX syntax as:

imply(X,Y) := ~X | Y,

imply(a,b) & imply(b,a))).

The keyword \$1et is used for let expressions defining both function and predicate symbols, regardless of whether the let expression occurs as a term or a formula. This is different from the old TFF syntax of let expressions that contained four separate keywords \$let_tt, \$let_tf, \$let_ft, and \$let_ff.

Sequential let expressions (let*) can be implemented by nesting. In the following example ff and gg are defined in sequence:

Let expressions can use simultaneous local definitions (Lisp-like programming languages would have called them let and not let*). Both the type declarations and the definitions are given in []es. Thus Formula 9 can be written in the TFX syntax as:

```
tff(a,type,a: $i).
tff(b,type,b: $i).
tff(p,type,p: ($i * $i) > $o).
tff(pba,axiom,
    $let([a: $i,b: $i],
         [a:=b, b:=a],
         p(a,b))).
  In the following example two function symbols are defined simultaneously:
tff(i_type,type,i: $int).
tff(f_type,type,f: (\$int * \$int * \$int * \$int) > \$int).
tff(p_type,type,p: $int > $0 ).
tff(let_tuple_2,axiom,
    $let([ff: ($int * $int) > $int, gg: $int > $int],
         [ff(X,Y):=f(X,X,Y,Y), gg(Z):=f(Z,Z,Z,Z)],
         p(ff(i,gg(i))))).
This is equivalent to:
tff(let_tuple_2, axiom, p(f(i,i,f(i,i,i,i),f(i,i,i,i)))).
   Let expression can use definitions of tuples. Formula 8 can be written in TFX as follows.
Notice that the type declaration contains the elements of both tuples in the simultaneous
definition.
tff(plus,type,plus: ([$real,$real] * [$real,$real]) > [$real,$real]).
tff(plus_def,axiom,
    ! [X: [$real,$real],Y: [$real$,$real]] :
      (plus(X,Y))
      = $let([a: $real,b: $real,c: $real,d: $real],
              [[a,b]:=X, [c,d]:=Y],
              [$sum(a,c),$sum(b,d)]) ).
  Formula 10 can be written in TFX syntax as:
tff(a,type,a: $i).
```

The defined symbols have scope over the formula/term in which the definitions are applied, shadowing any definition outside the let expression. The righhand side of a definition can have symbols with the same name as the defined symbol, but refer to symbols defined outside the let expression. In the following example the local definition of the array function symbols shadow the global declaration.

```
tff(array_type,type,array: $int > $real).
tff(p_type,type,p: $real > $0).
```

tff(b,type,b: \$i).

tff(pba,axiom,

tff(p,type,p: (\$i * \$i) > \$o).

\$let([a: \$i,b: \$i],
 [a,b]:= [b,a],
 p(a,b))).

The occurrence of array in the lefthand side of the definition array(I):=, and the occurrences in the formula in which the let expression is applied p(\$sum(array(2),array(3))), are the defined symbol. The occurrence in the righthand side of the definition \$ite(I = 3,5,array(I)) is the globally defined symbol.

4 Software Support and Examples

4.1 Software for TFX

The BNF provides the automatically generated lex/yacc parsers for TPTP files. At the time of writing this paper, the TPTP4X utility is being upgraded to support TFX.

The Vampire theorem prover [9] supports all features of FOOL. Vampire transforms FOOL formulae into a set of first-order clauses using the VCNF algorithm [6], and then reasons with these clauses using its usual resolution calculi for first-order logic. At the time of writing this paper the latest released version of Vampire, 4.2.2, uses a syntax for FOOL that slightly differs from TFX. Full support for the TFX syntax has been implemented in a recent revision of the Vampire source code¹, and will be available in the next release of Vampire.

TFX has been used by two program verification tools BLT [3] and Voogie [8]. Both BLT and Voogie read programs written in a subset of the Boogie intermediate verification language and generate their partial correctness properties written in the TFX syntax. BLT and Voogie generate formulae differently, but both rely on features of FOOL, namely conditional expressions, let expressions, and tuples.

4.2 Examples

Figure 3 shows how tuples can be used usefully in conditional expressions.

```
tff(p_type,type,p: [$int,$int] > $0).
tff(d_type,type,d: [$int,$int]).
tff(ite_3,axiom,
    ! [X:$int,Y:$int] : p($ite($greater(X,Y),[X,Y],[Y,X])) ).
tff(ite_4,axiom,
    ! [X:$int,Y:$int] : d = $ite($greater(X,Y),[X,Y],[Y,X]) ).
```

Figure 3: Tuples in conditional expressions

Figure 4 shows how tuples, conditional expressions, and let expressions can be mixed in useful ways, here to place two integer values in descending order as arguments in an atom.

Figure 5 shows the TFX encoding of the FOOL formula in Figure 2, which expresses a partial correctness property of an imperative program with an if statement.

Figure 6 shows an example that uses formulae as terms, in the second arguments of the says predicate. The problem is to find a model, from which it is possible to determine which of a, b, or c is the only truthteller on this Smullyanesque island [10].

¹https://github.com/vprover/vampire

```
Y______
tff(v1_type,type,v1: $int).
tff(v2_type,type,v2: $int).
tff(ordered_p,axiom,
   $let([large: $int,small: $int],
        [large,small]:= $ite($greater(v1,v2),[v1,v2],[v2,v1]),
        p(large,small)) ).
                 Figure 4: Mixing tuples, conditional and let expressions
tff(x,type,x:$int).
tff(y,type,y:$int).
tff(t,type,t:$int).
tff(x_leq_y,conjecture,
   $let([x:$int,y:$int,t:$int],
        [x,y,t] := \text{site}(\text{sgreater}(x,y),
                        \text{slet}(t:\text{sint}, t := x,
                        \text{$let(x:\$int, x := y,)}
                        \beta(y:\beta(y:\beta(y)) = t,
```

[x,y,t]))),

[x,y,t]),

Figure 5: A TFX encoding of the program analysis problem in Figure 2.

More TFX examples from are available from the TPTP web site http://www.tptp.org/TPTP/Proposals/TFXExamples.tgz.

5 Conclusion

seq(x,y).

This paper has introduced the eXtended Typed First-order form (TFX) of the TPTP's TFF language. TFX includes formulae as terms, use of variables of the boolean type as formulae, tuple terms and tuple types, conditional expressions, and let expressions. TFX is useful for (at least) concisely expressing problems coming from program analysis, and translated from more expressive logics.

Now that the syntax is settled, ATP system developers will be able to implement the new language features. It is already apparent from the SMT community that these are useful features, and systems that can already parse and reason using the SMT version 2 syntax need only new parsers (for TFX syntax) to implement the features. In parallel, version v8.0.0 of the TPTP will include problems that use TFX, and the automated reasoning community is invited to submit problems for inclusion in the TPTP.

```
tff(a_type,type, a: $i ).
tff(b_type,type, b: $i ).
tff(c_type,type, c: $i ).
tff(exactly_one_truthteller_type,type, exactly_one_truthteller: $0 ).
tff(says,type, says: ( i * so ) > so ).
\mbox{\%-----Each person} is either a truthteller or a liar
tff(island,axiom,
    ! [P: $i] :
     ( says(P: $i,$true) <~> says(P: $i,$false) ) ).
tff(exactly_one_truthteller,axiom,
    ( exactly_one_truthteller
 <=> ( ? [P: $i] : says(P,$true)
     & ! [P1: $i,P2: $i] :
         ( ( says(P1, $true) & says(P2, $true) )
        => P1 = P2 ) ))).
%----B said that A said that there is exactly one truthteller on the island
tff(b_says,hypothesis, says(b,says(a,exactly_one_truthteller)) ).
%----C said that what B said is false
tff(c_says,hypothesis, says(c,says(b,$false)) ).
%-----
```

Figure 6: Who is the truthteller?

Acknowledgements. Thanks to our friends in the TPTP World, who have provided feedback on TFX features, starting from the TPTP Tea Party at CADE-22 in 2009!

References

- [1] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In A. Gupta and D. Kroening, editors, *Proceedings of the 8th International Workshop on Satisfiability Modulo Theories*, 2010.
- [2] J. Blanchette and A. Paskevich. TFF1: The TPTP Typed First-order Form with Rank-1 Polymorphism. In M.P. Bonacina, editor, Proceedings of the 24th International Conference on Automated Deduction, number 7898 in Lecture Notes in Artificial Intelligence, pages 414–420. Springer-Verlag, 2013.
- [3] Y. Chen and C. Furia. Triggerless Happy Intermediate Verification with a First-Order Prover. In N. Polikarpova and S. Schneider, editors, *Proceedings of the 13th International Conference on Integrated Formal Methods*, number 10510 in Lecture Notes in Computer Science, pages 295–311. Springer-Verlag, 2017.
- [4] C. Kaliszyk, G. Sutcliffe, and F. Rabe. TH1: The TPTP Typed Higher-Order Form with Rank-1 Polymorphism. In P. Fontaine, S. Schulz, and J. Urban, editors, *Proceedings of the 5th Workshop on the Practical Aspects of Automated Reasoning*, number 1635 in CEUR Workshop Proceedings, pages 41–55, 2016.
- [5] E. Kotelnikov, L. Kovacs, G. Reger, and A. Voronkov. The Vampire and the FOOL. In J. Avigad and A. Chlipala, editors, *Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs* and Proofs, pages 37–48. ACM, 2016.

[6] E. Kotelnikov, L. Kovacs, M. Suda, and A. Voronkov. A Clausal Normal Form Translation for FOOL. In C. Benzmüller, G. Sutcliffe, and R. Rojas, editors, *Proceedings of the 2nd Global Conference on Artificial Intelligence*, number 41 in EPiC Series in Computing, pages 53–71, 2016.

- [7] E. Kotelnikov, L. Kovacs, and A. Voronkov. A First Class Boolean Sort in First-Order Theorem Proving and TPTP. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Proceedings of the International Conference on Intelligent Computer Mathematics, number 9150 in Lecture Notes in Computer Science, pages 71–86. Springer-Verlag, 2015.
- [8] E. Kotelnikov, L. Kovacs, and A. Voronkov. A FOOLish Encoding of the Next State Relations of Imperative Programs. In D. Galmiche, S. Schulz, and R. Sebastiani, editors, *Proceedings of the 9th International Joint Conference on Automated Reasoning*, page Submitted, 2018.
- [9] L. Kovacs and A. Voronkov. First-Order Theorem Proving and Vampire. In N. Sharygina and H. Veith, editors, *Proceedings of the 25th International Conference on Computer Aided Verification*, number 8044 in Lecture Notes in Artificial Intelligence, pages 1–35. Springer-Verlag, 2013.
- [10] R.M. Smullyan. What is the Name of This Book? The Riddle of Dracula and Other Logical Puzzles. Prentice-Hall, 1978.
- [11] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. The FOF and CNF Parts, v3.5.0. *Journal of Automated Reasoning*, 43(4):337–362, 2009.
- [12] G. Sutcliffe. The TPTP World Infrastructure for Automated Reasoning. In E. Clarke and A. Voronkov, editors, *Proceedings of the 16th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning*, number 6355 in Lecture Notes in Artificial Intelligence, pages 1–12. Springer-Verlag, 2010.
- [13] G. Sutcliffe and C. Benzmüller. Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure. *Journal of Formalized Reasoning*, 3(1):1–27, 2010.
- [14] G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP Typed First-order Form with Arithmetic. In N. Bjørner and A. Voronkov, editors, *Proceedings of the 18th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning*, number 7180 in Lecture Notes in Artificial Intelligence, pages 406–419. Springer-Verlag, 2012.
- [15] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.