Adversarial Bandit Linear Optimization

Chen-Yu Wei

Review: Online Linear Optimization

Given: Convex feasible set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Learner chooses a point $w_t \in \Omega$

Environment reveals a reward vector $r_t \in \mathbb{R}^d$

Regret =
$$\max_{w \in \Omega} \sum_{t=1}^{T} \langle w, r_t \rangle - \sum_{t=1}^{T} \langle w_t, r_t \rangle$$

Projected Gradient Descent

Arbitrary $w_1 \in \Omega$

$$w_{t+1} = \Pi_{\Omega}(w_t + \eta r_t)$$

Review: Online Linear Optimization

Theorem. Projected Online Gradient Descent ensures

$$\text{Regret} = \max_{w^{\star} \in \Omega} \sum_{t=1}^{T} \langle w^{\star} - w_t, r_t \rangle \leq \frac{\max_{w \in \Omega} \|w\|_2^2}{\eta} + \eta \sum_{t=1}^{T} \|r_t\|_2^2$$

Bandit Linear Optimization

Given: Convex feasible set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Environment decides the reward vector $r_t \in \mathbb{R}^d$

Learner chooses a point $w_t \in \Omega$

Environment reveals $\langle w_t, r_t \rangle + \epsilon_t$, where ϵ_t is a zero-mean noise

Regret =
$$\max_{w \in \Omega} \sum_{t=1}^{T} \langle w, r_t \rangle - \sum_{t=1}^{T} \langle w_t, r_t \rangle$$

Unbiased Gradient Estimator

Goal: construct a $\hat{r}_t \in \mathbb{R}^d$ with $\mathbb{E}[\hat{r}_t] = r_t$ (using only the feedback $\langle w_t, r_t \rangle + \epsilon_t$)

Unbiased Gradient Estimator (1/3)

$$e_i = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in i$$
-thentry

Uniformly randomly choose a direction $i_t \in \{1, 2, ..., d\}$

Uniformly randomly choose $\alpha_t \in \{1, -1\}$

Sample $\widetilde{w}_t = w_t + \delta \alpha_t e_{i_t}$

Observe $y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t$

Define $\hat{r}_t = \frac{dy_t}{\delta} \alpha_t e_{i_t}$

Unbiased Gradient Estimator (1/3)

Unbiased Gradient Estimator (2/3)

Uniformly randomly choose s_t from the unit sphere $\mathbb{S}_d = \{s \in \mathbb{R}^d : ||s||_2 = 1\}$

Sample
$$\widetilde{w}_t = w_t + \delta s_t$$

Observe
$$y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t$$

Define
$$\hat{r}_t = \frac{dy_t}{\delta} s_t$$

Property 1: $\mathbb{E}[\hat{r}_t] = r_t$

Property 2: $\mathbb{E}[\widetilde{w}_t] = w_t$

Unbiased Gradient Estimator (3/3)

Uniformly randomly choose $s_t \sim \mathcal{D}$ with $\mathbb{E}_{s \sim \mathcal{D}}[s] = 0$

Sample
$$\widetilde{w}_t = w_t + s_t$$

Observe
$$y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t$$

Define
$$\hat{r}_t = y_t H_t^{-1} s_t$$

Define
$$\hat{r}_t = y_t H_t^{-1} s_t$$
 where $H_t := \mathbb{E}_{s \sim \mathcal{D}}[ss^{\mathsf{T}}]$

Property 1: $\mathbb{E}[\hat{r}_t] = r_t$

Property 2: $\mathbb{E}[\widetilde{w}_t] = w_t$

Projected Gradient Descent for Bandit Linear Optimization

Assume the feasible set Ω contains a ball of radius δ

Define $\Omega' = \{ w \in \Omega : \ \mathcal{B}(w, \delta) \subset \Omega \}$

Arbitrarily pick $\widetilde{w}_1 \in \Omega'$

For t = 1, 2, ..., T:

Let $\widetilde{w}_t = w_t + \delta s_t$ where $s_t \in \mathbb{R}^d$ is uniformly sampled from unit sphere

Receive $y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t$

Define

$$\hat{r}_t = \frac{dy_t}{\delta} s_t$$

Update policy:

$$w_{t+1} = \Pi_{\Omega'} \left(w_t + \eta \hat{r}_t \right)$$

Regret Bound for Bandit Linear Optimization

Theorem. Suppose $\max_{w \in \Omega} ||w|| \le D$, $\max_{t} ||r_{t}|| \le G$. Then the BLO algorithm ensures

$$\operatorname{Regret} = \max_{w^{\star} \in \Omega} \mathbb{E} \left[\sum_{t=1}^{T} \langle w^{\star} - w_t, r_t \rangle \right] \leq O \left(\frac{D^2}{\eta} + \eta \frac{d^2 D^2 G^2}{\delta^2} T + \delta G T \right) = O \left(DG \sqrt{d} T^{3/4} \right)$$

Bandit Optimization / Zeroth-Order Optimization

For time t = 1, 2, ..., T:

Learner chooses a point w_t

Environment reveals $R_t(w_t) + \epsilon_t$, where ϵ_t is a zero-mean noise