Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК	ИУК «Информатика и управление»				
КАФЕЛРА	ИУК4	«Ппогпаммное	обеспечение	ЭВМ.	информационные	
<u>технологии»</u>		Просрышние	obcene tenne	J DIVI		

ЛАБОРАТОРНАЯ РАБОТА №1

«Статистическое моделирование случайных величин»

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУК4-72Б	(Подпись)	_ (<u>Карельский М.К.</u>)
Проверил:	(Подпись)	(Никитенко У.В.)
Дата сдачи (защиты):		
Результаты сдачи (защиты): - Балльна	я оценка:	
- Оценка:		

Цель: моделирование случайных величин с заданным законом распределения; сравнительный анализ теоретических и экспериментальных зависимостей.

Задачи: получить гистограмму для закона распределения, сравнить полученную гистограмму с соответствующим графиком плотности вероятности f(x) в соответствии с заданием, найти выборочные характеристики положения и рассеивания сравнить с генеральными.

Задание:

- 1. Выполнить статистическое моделирование случайной величины с заданным законом распределения путем генерации отсчетов $\alpha 1i, i = 1, ...,$ N случайных величин с равномерным распределением в интервале [0, 1] (или, при необходимости нескольких CB ($\alpha 1, \alpha 2, ..., \alpha k$); N=10000. Сформировать соответствующий script-файл в среде MATLAB.
- 2. Получить гистограмму для закона распределения в соответствии с вариантом задания. Гистограмма может быть получена в среде MATLAB с помощью оператора hist(X1,N), X1 анализируемая случайная величина, N число интервалов на гистограмме, которое должно составлять от 100 до 500. Сравнить полученную гистограмму с соответствующим графиком плотности вероятности f(x) в соответствии с заданием.
- 3. Вычислить:
 - выборочное среднее значение,
 - медиану,
 - нижний и верхний квартиль,
 - выборочную дисперсию и СКО,

смоделированной случайной величины и сравнить их с теоретическими значениями (мат. ожиданием и дисперсией, медианой, нижним и верхним квартилем).

4. Сделать выводы.

Вариант 11

- Закон распределения: Хи-квадрат
- Алгоритм: E2
- v=3
- $\sigma = 2$

Листинг:

```
import math, random, statistics
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import chi2
```

```
v = 3
sig = 2
G = math.pi / 2
sig**2))
N = 10000
s = [0] * N
for i in range(N):
   for j in range(v):
       x = random.normalvariate(0, sig)
       s[i] += x**2
print("----")
print(f"Выборочное среднее значение: {statistics.fmean(s):.3f}")
print(f"Медиана: {statistics.median(s):.3f}")
print(f"Верхний квартиль: {np.percentile(s, 75):.3f}")
print(f"Нижний квартиль: {np.percentile(s, 25):.3f}")
print(f"Выборочная дисперсия: {statistics.variance(s):.3f}")
print(f"CKO: {statistics.stdev(s):.3f}")
print("----")
print(f"Выборочное среднее значение: {chi2.mean(v):.3f}")
print(f"Медиана: {chi2.median(v):.3f}")
print(f"Верхний квартиль: {chi2.cdf(0.75, v):.3f}")
print(f"Нижний квартиль: {chi2.cdf(0.25, v):.3f}")
print(f"Выборочная дисперсия: {chi2.var(v):.3f}")
print(f"CKO: {chi2.std(v):.3f}")
X = np.linspace(0, 100, 101)
Y = [f(x) * 10000 for x in X]
plt.plot(X, Y)
plt.hist(s, bins=200)
plt.show()
```

Результат:

Рис. 1. Графики

Модель
Выборочное среднее значение: 3.041
Медиана: 2.430
Верхний квартиль: 0.103
Нижний квартиль: 0.031
Выборочная дисперсия: 5.947
CKO: 2.439
Теория
Выборочное среднее значение: 3.000
Медиана: 2.366
Верхний квартиль: 0.139
Нижний квартиль: 0.031
Выборочная дисперсия: 6.000
CKO: 2.449

Рис. 2. Вычисления

Вывод: в ходе выполнения лабораторной работы были получены практические навыки моделирования случайных величин с заданным законом распределения, сравнительного анализа теоретических и экспериментальных зависимостей.