

Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription

Ping Li^{1,6}, Yuhao Zhao^{1,6}, Xiaoyan Wu^{2,6}, Minjie Xia¹, Mingming Fang^{1,4}, Yasumasa Iwasaki⁵, Jiahao Sha¹, Qi Chen¹, Yong Xu^{1,*} and Aiguo Shen^{3,*}

¹State Key Laboratory of Reproductive Medicine and Department of Pathophysiology, Key Laboratory of Cardiovascular Disease, ²Laboratory Center for Basic Medical Sciences, ³Institute of Gerontology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China, ⁴Jiangsu Jiankang Vocational Institute, Nanjing, China and ⁵Health Care Center, Kochi University, Kochi, Japan

Existe um modelo? Uma hipótese?

- IFN-gamma influencia o metabolismo de glicose.
- Type 2 Diabetes é um desbalanço no nível de glicose.
- Akkermansia muciniphila é associada à T2D.
- Inflamação é associada à T2D.
- "Chronic inflammation impairs metabolic homeostasis and is intimately correlated with the pathogenesis of type 2 diabetes. The pro-inflammatory
- cytokine IFN-gamma is an integral part of the metabolic
- inflammation circuit and contributes significantly
- to metabolic dysfunction. The underlying mechanism,
- however, remains largely unknown."

Existe um modelo? Uma hipótese?

>>>

- IFN-gamma influencia o metabolismo de glicose.
- Type 2 Diabetes é um desbalanço no nível de glicose.
- Akkermansia muciniphila é associada à T2D.
- Inflamação é associada à T2D.

"Chronic inflammation impairs metabolic homeostasis and is intimately correlated with the pathogenesis of type 2 diabetes. The pro-inflammatory cytokine IFN-gamma is an integral part of the metabolic inflammation circuit and contributes significantly to metabolic dysfunction. The underlying mechanism, however, remains largely unknown."

Published online 7 November 2011

Nucleic Acids Research, 2012, Vol. 40, No. 4 1609-1620 doi:10.1093/nar/gkr984

Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription

Ping Li^{1,6}, Yuhao Zhao^{1,6}, Xiaoyan Wu^{2,6}, Minjie Xia¹, Mingming Fang^{1,4}, Yasumasa Iwasaki⁵, Jiahao Sha¹, Qi Chen¹, Yong Xu^{1,*} and Aiguo Shen^{3,*}

¹State Key Laboratory of Reproductive Medicine and Department of Pathophysiology, Key Laboratory of Cardiovascular Disease, ²Laboratory Center for Basic Medical Sciences, ³Institute of Gerontology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China, ⁴Jiangsu Jiankang Vocational Institute, Nanjing, China and ⁵Health Care Center, Kochi University, Kochi, Japan

Testa-se uma hipótese

ARTICLE

Received 14 Apr 2016 | Accepted 23 Sep 2016 | Published 14 Nov 2016

DOI: 10.1038/ncomms13329

OPEN

Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism

Renee L. Greer^{1,*}, Xiaoxi Dong^{2,*}, Ana Carolina F. Moraes³, Ryszard A. Zielke², Gabriel R. Fernandes⁴, Ekaterina Peremyslova², Stephany Vasquez-Perez¹, Alexi A. Schoenborn⁵, Everton P. Gomes⁶, Alexandre C. Pereira⁶, Sandra R.G. Ferreira³, Michael Yao⁷, Ivan J. Fuss⁷, Warren Strober⁷, Aleksandra E. Sikora², Gregory A. Taylor⁸, Ajay S. Gulati⁵, Andrey Morgun^{2,**} & Natalia Shulzhenko^{1,**}

