Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Agricultural Research Service

Beltsville, Agricultural Research Center Beltsville, Maryland

February 1989

National Potato Germplasm Evaluation and Enhancement Report, 1987

ster

Fifty-Eighth Annual Report by Cooperators

UNITED STATES
DEPARTMENT OF
AGRICULTURE

NATIONAL POTATO GERMPLASM EVALUATION AND ENHANCEMENT REPORT, 1987

Fifty-eighth Annual Report by Cooperators

Agricultural Research Service

Beltsville Agricultural Research Center

Beltsville, Maryland

February 1989

Compiled and Edited
by
Kathleen G. Haynes
Vegetable Laboratory
Beltsville Agricultural Research Center
Agricultural Research Service
U.S. Department of Agriculture
Beltsville, Maryland

This progress report includes tentative results of research not sufficiently complete to justify general release. Such findings, when adequately confirmed, will be released promptly through established channels. Therefore, this report is not intended for publication and should not be referred to in literature citations.

Disclaimer

Trade names are used in this publication only to provide specific information. Their use does not constitute a guarantee of the products named and does not signify that they are approved by the U.S. Department of Agriculture to the exclusion of others of suitable composition.

Precautions

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

<u>CAUTION</u>: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

TABLE OF CONTENTS

R. E. Webb, R. W. Goth, K. G. Haynes, and D. R. Wilson	1
INTERREGIONAL POTATO INTRODUCTION PROJECT (IR-1) J. B. Bamberg and R. E. Hanneman, Jr.	13
NORTH CENTRAL REGIONAL POTATO TRIALS	17
WESTERN REGIONAL POTATO VARIETY TRIAL	30
CALIFORNIA	38
COLORADO	47
MAINE G. A. Porter, J. D. Park, and M. F. Lamoreau	53
A. F. Reeves, R. B. Long, G. S. Grounds, and R. A. Henn	68
MICHIGAN	72
NEW YORK (LONG ISLAND)	95
NEW YORK STATE	100
D. E. Halseth and W. L. Hymes	103
W. M. Tingey	113
NORTH CAROLINA	114
NORTH DAKOTA	119
OHIO	130

TEXAS	145
VIRGINIA	152
WISCONSIN	160

UNITED STATES DEPARTMENT OF AGRICULTURE
BELTSVILLE AGRICULTURAL RESEARCH CENTER (BARC), BELTSVILLE,
MARYLAND, AND CHAPMAN, ECHO LAKE, AND AROOSTOOK FARMS,
PRESQUE ISLE, MAINE

R. E. Webb 1 , R. W. Goth, and K. G. Haynes 2 , BARC, and D. R. Wilson, Presque Isle, Maine

BARC

BREEDING: Emphasis in parental combinations centered around assembling the maximum number of genes for pest resistance, high quality and wide adaptability into seed progenies segregating for differing skin types (white, red, russet), flesh color (white, yellow), tuber shape (round, long), and maturity (early, medium, late) in the various eastern United States ecological test zones (south, mid-Atlantic, northeast). A high leptine diploid clone tolerant to the potato beetle developed by Dr. S. Sinden was included in the crossing program. Four hundred eleven crosses were successful among 109 virus-viroid tested parental clones and varieties. The growing season was above normal in intermittent cloud cover which resulted in reduced seed set. Approximately 200,000 true seed were produced. About 30,000 seedling tubers were produced from 137 parental combinations. Approximately 22,000 "A" seedling tubers were sent for planting on Chapman and 6,000 "B" seedling tubers on Aroostook Farm (late blight test), Presque Isle, Maine. Surplus seedling tubers were shared with several cooperating states.

EVALUATION: Selections from progenies segregating for resistance to potato viruses A (PVA), X (PVX), and Y (PVY) were screened by mechanical and graft means at BARC. Sixty nine percent of selections tested resistant to PVA, 54% were resistant to PVX, and 39% were resistant to PVY. Screening selected parental types for resistance to potato virus M (PVM) was initiated.

Clonal/Varietal Distribution: Seed tubers of promising clones and standard varieties were distributed for adaptability and processing trials to New Jersey, Virginia, North Carolina, and Georgia. Clonal and true seed stocks were sent for research purposes to several states and two foreign countries.

Presque Isle, Maine

CHAPMAN FARM: Approximately 22,000 seedling tubers from 137 parental combinations were planted on Chapman. Sixteen hundred selections were made for planting in 12-hill plots for selection and initial quality evaluations in 1988. One hundred seventy selections were retained from the 8-hill group. All additional materials planted on Chapman were done again in tuber units with 6 feet between rows and 5 feet between units to continue the virus-viroid indexing program.

Tretired 1/2/88

² joined program 10/11/87

Duplicate seed increase plantings of Chapman stocks indexed in 1986 were planted at regular row and hill spacing intervals on Chapman and Echo Lake for further evaluation and seed distribution to cooperators.

ECHO LAKE: Round white and russet yield trials (Tables 1, 2, 3, 4, 5, 6, 7, and 8) and cooperator clonal increases were the major plantings on Echo Lake Farm in 1987. Weather conditions prevailing on Aroostook Farm and Echo Lake (one mile south) were uniformly dry and warm during most of the 1987 growing season. Only about 10 inches of rainfall occurred during the growing season until just before vine kill time in September. Late season moisture materially improved yields but apparently did not significantly lower specific gravity nor negatively impact on processing quality during tuber storage. Richard Moore, Maine Department of Agriculture, noted very little disease during visual inspections of the program's various plantings in Maine as well as in the clonal stocks grown in the Florida winter test plantings. No new materials were submitted to Sangerville for inclusion in NE107 evaluations pending reduction in the number of the 15 plus clones sent in 1986 and earlier.

AROOSTOOK FARM: Maintenance of about 150 domestic and 15 foreign varieties and germplasm with specific characteristics used in breeding continued. These are grown in widely spaced tuber unit plantings and tested for virus infection.

Late Blight: Nineteen clones highly resistant in previous years' evaluations were included in the test plot in 1987. Approximately 6,000 seeding tubers from 24 diverse parental combinations, one parent of which had tested highly resistant in at least two previous trials, were planted for selection to broaden the germplasm base of resistance to late blight. Isolates of the pathogen collected from the 1986 test plot were used to blanket inoculate the plot including the susceptible check rows in the evening hours during the first week in July. Final disease assessments and selection among single hill entries were made September 23. Previously tested clones continued to largely resist infection. One hundred twenty six individual plant selections were made among the blight resistant single hill progeny based on apparent horticultural characteristics. These clones were gassed with dormancy breaking ethylene chlorohydrin and sent to BARC for foundation seed increase in the greenhouse and retest for blight resistance in 1988.

Verticillium Wilt-Pinkeye: One hundred forty three new selections and 28 clones previously testing resistant/ tolerant were included in the 1987 test trial. Final disease assessments were done October 2. Forty six new entries and 26 retested clones were as highly tolerant/resistant to plant infection/symptom development as check varieties Russette and Abnaki. Thirty five new clones and only 19 of the retested clones did not show symptoms of pinkeye infection.

Scab: One hundred twenty three new entries and 31 previously tested clones were included in the trial for 1987. Fifty seven new entries and 18 of the retested clones were as tolerant/resistant to scab as the check varieties Superior, Ontario, and Russet Burbank.

<u>Processing</u>: Samples stored at $40^{\circ}F$ and $50^{\circ}F$ were processed into chips and french fries after 4-4-1/2 months' storage. Out-of-grade items in the $40^{\circ}F$ storage samples were reconditioned at $70^{\circ}F$ for 3 weeks before processing.

Potato chips were made from each sample by taking 1/16-inch slices from cross- and-lengthwise sections of each tuber. Lengthwise chips were used to detect possible increase in reducing sugars, particularly near the stem end. Slices were rinsed in water and placed on paper towels to remove excess moisture. Chips were then fried at $340^{\circ}\mathrm{F}$ in Primex vegetable shortening until bubbling ceased.

Long tuber types were processed only into french fries. A 3/8-inch diameter plug was cut from the cross- and lengthwise sections of each tuber, washed, dried, and fried at 360° F for 5 minutes.

Each potato chip and french fry was classified after frying into color classes. Chip classes ranged from 1 = very light to 10 = very dark. French fry classes ranged from 1 = very light to 5 = very dark. Weighted averages were calculated by multiplying the number of chips or fries in each color class by the color class, totaled, and divided by the number of chips or french fries in each sample. Color ratings were made by using the PCII reference color chart 1206-U.

Processing results from storage/temperature evaluation periods are given in Tables 1, 2, 3, 4, 5, 6, 7, and 8. Storage period began October 28. Processing capabilities of a number of promising clones were improved over that of the 1986 trials in part due to the relatively low rainfall period during tuber enlargement in August and September prior to vine kill.

Summary

Progress toward broadening the multidisease-resistant germplasm base with increased numbers of promising clones with intense red skin and yellow flesh was evident among the approximately 1,600 first year selections made from segregating populations. More desirable leaf type, vine stature, maturities, and tuber and skin types among russet progenies was apparent among the 1987 seedling tuber planting.

Commercial assessment of both round, white clones (primarily for processing from low temperature storage and adaptation) and russet types (for productivity, adaptability, and french fry quality) continued. Among the most promising clones included B9792-2B, B9792-8B, B9792-61, B9792-157, B9792-158, B0172-15, B0174-16, B0178-34 (round whites), B9596-2, B9922-11, B0045-6, and B0220-14. B9596-2 was released as the variety Coastal Russet cooperatively with New York, Florida, Virginia, New Jersey, and Maine.

BARC Table 1. Yield, tuber size distribution, and quality characteristics of round whites harvested 119 days after planting at Echo Lake in 1987.

				Tuber si	size distr	distribution				Ch	Chip Color3	r 3
	Mkt	%		1-7/8-	2-1/4-	3-1/4		\mathtt{Tuber}^1	$Spec^2$			- ₀ 05
Pedigree	CWT/A	Mkt	<1-1/8"	2-1/4"	3-1/4"	-4"	>4"	Rating	Grav	$50^{\circ} \mathrm{F}^{4}$	40° F ⁵	70° Fe
				·								
B9792-2B	231	84			•		•	7	109	6.75	7.60	7.80
B9792-8B	285	98			•			7	100	04.9	6.65	6.75
B9792-157	296	88	10.8		39.8			5	660	6.20		7.20
B9792-158	303	98						9	860	7.40	7.20	7.55
B9933-25	252	88	12.3	54.4	32.1	1.1	0.0	7	088	6.10	6.55	6.50
B9935-10	273	93						5	260	6,45		7.15
B9955-10	232	81						5	106	09°9	7.65	7.70
B9955-33	310	94						4	104	6.55		7.55
B9955-46	250	94			62.6			4	094	09.9	7.20	8.10
Superior	210	93	6.7					5	094		7.95	7.05
B9988-7	322	93	•					5	100			7.55
B9988-14	350	96	4.3	33,5	61.5			5	095	6,35	7,40	7.20
B9988-23	304	94	6.4					9	097	6.80	7,35	6.95
B9988-24	285	92	8.2		38.3			5	094	06.9	7.20	6.75
B0034-10	238	87	•		32.1			2	106	6.45	7.60	
Monona	271	93	5.5				1.1	5	083	6.05	7.30	
Sunrise	277	89	10.8	33,7	48.1	6.7		5	087	7.05	8,45	
Atlantic	312	88	11.1		46.5	•	0.5	9	113	6.45		6.85
LSD 5%	55											

^{11 =} poor; 9 = outstanding 21.0 omitted 3Chips: 1-7 satisfactory 4Chipped on 1/7/88 5Chipped on 2/3/88 6Chipped on 3/7/88

Yield, tuber size distribution, and quality characteristics of round whites harvested BARC Table 2. Yield, tuber size distribution, 119 days after planting at Echo Lake in 1987.

			. '	Tuber size	11	distribution				Ch	Chip Color3	.r3
	Mkt	%		1-7/8-	2-1/4-	3-1/4		Tuber	${\sf Spec}^2$			- 04
Pedigree	CWT/A	Mkt	<1-7/8"	2-1/4"	3-1/4"	-4"	> 4"	Rating	Grav	50° F4	40° F ⁵	70° F6
B0032-40	201	80	19.7	52.4	27.9	0.0	0.0	9	077	7.05	8.85	8.00
B0033-23	254	85	15.3	6.74	34.9	1.9	0.0	5	920	7.75	9.35	8.40
B0172-15	337	97	2.8	17.2	65.1	14.9	0.0	4	960	6.20	7.05	7.35
B0174-16	232	89	10.9	43.9	44.0	1.2	0.0	4	109	6.70	09.9	7.10
B0174-19	258	87	12.7	39.4	43.8	4.1	0.0	5	108	6.45	7.25	7.20
B0175-2	273	94	3.8	14.9	60.1	19.5	1.7	4	101	6.30	7.90	7.10
B0175-21	261	96	3.9	32.6	55.9	7.6	0.0	4	101	04.9	7.20	7.30
B0176-24	295	91	8.7	39.6	48.4	3.4	0.0	7	109	6.50	7.70	7.25
B0177-20	244	83	16.7	52.1	30.7	9.0	0.0	9	105	6.85	7.65	7.15
B0178-14	234	77	23.5	57.4	18.6	9.0	0.0	5	114	6.45	7.50	7.25
B0178-16	258	89	11.3	38.3	47.0	3.4	0.0	5	109	6.50	6.55	7.00
B0178-30	279	94	6.5	35.8	52.1	5.6	0.0	4	103	6.40	7.60	7.25
B0178-34	3/27	94	4.4	25.5	56.9	11.8	1.4	7	106	6.15	6.95	08.9
B0178-35	277	89	11.5	34.2	49.5	6.4	0.0	3	113	6.50	7.60	7.60
B0178-39	224	80	19.7	2.09	19.5	0.0	0.0	5	114	6.25	7.50	7.10
Monona	247	92	5.7	22.4	49.1	20.3	2.5	5	081	6.25	06.90	7.05
Norchip	256	88	11.7	44.1	42.1	2.1	0.0	5	091	6.45	7.70	7.55
Atlantic	269	98	13.2	41.4	41.1	3.7	0.7	9	107	6.25	7,30	7.20
LSD 5%	43											

^{1,2,3} See footnotes Table 2. th Chipped on 1/8/88 5Chipped on 2/2/88 6Chipped on 3/7/88

BARC Table 3. Yield, tuber size distribution, and quality characteristics of round whites harvested 119 days after planting at Echo Lake in 1987.

			I	Tuber size		distribution				CI	Chip Color	or ³
	Mkt	%		7	2-1/4-	3-1/4		$Tuber^{l}$	$\rm Spec^2$			-007
Pedigree	CWT/A	Mkt	<1-7/8"	2-1/4"	3-1/4"	-4"	> 4"	Rating	Grav	50° F#	40° F ⁵	70° F
0170-10	320	70	7 (13 0	0 63	10 /	"	U	103	. 7	7	75
DOT/2-TO	070	†	•		0.40	†. O.	•)	TOT	0.10	OT.,	0110
B0180-36	324	90			43.9	2.7	9.0	2	103	04.9	6.95	6.95
B0183-25	320	91	0.6		43.2	5.1	0.0	Э	960	6.45	8.25	7.60
B0200-36	210	79		52.2	26.5	0.5	0.0	4	100	6.50	7.15	0.70
B0202-4	284	90	9.2		45.9	1.4	0.7	4	102	6.05	7.10	6.75
B0203-21	305	92	7.0	33.0	51.6	7.8	0.7	5	091	6.45	7.40	6.15
B0207-9	238	83		7.97	34.7	1.8	0.0	5	100	04.9	7.25	7.15
B0209-1	355	46		22.4	59.2	15.3	0.0	5	095	6.70	08.9	7.10
B0214-9	284	94	5.1	32.3	54.0	7.4		4	980	6.35	7.45	08.9
B0233-1	358	95		18.4	57.4	19.3	2.1	9	087	04.9	09.9	6.30
B0234-4	310	94		31.8	55.1	6.9	0.8	5	260	5.80	06.90	09°9
B0237-9	284	92	7.6	34.3	53.8	4.3	0.0	5	092	6.15	7.30	09.9
B0238-4	294	90	6.6	43.8	41.1	5.2		4	102	6.25	7.10	08.9
B0238-16	220	74		51.8	22.5	0.0	0.0	5	160	6.25	06.90	6.85
B0238-21	253	88	11.7	42.2	42.2	3.9		4	085	6.35	02.9	06.90
Atlantic	309	91	8.5	38.0	45.5	7.1	0.7	5	106	09.9	7.15	08.9
Superior	287	94	5.7	36.8	49.8	7.7	0.0	5	095	6.35	•	6.45
Kennebec	323	95	7.7	21.6	9°69	13.5	0.8	2	091	6,45	•	6.25
LSD 5%	42											

^{1,2,3} See footnotes Table 2.

that Chipped on 1/8/88
5 Chipped on 2/2/88
6 Chipped on 3/7/88

BARC Table 4. Yield, tuber size distribution, and quality characteristics of round whites harvested 119 days after planting at Echo Lake in 1987.

				Tuber si	ze di	stribution					Chip Color	r3
	Mkt	%		12	-1/	3-1/4		$\mathtt{Tuber}^{\mathtt{l}}$	Spec ²		i i	-005
Pedigree	CWT/A	Mkt	<1-7/8"	2-1/4"	3-1/4"	-4"	> 4"	Rating	Grav	50° F4	40° F5	70° F ⁶
B0238-31	280	91	7.8	2				7	094			
B0239-29	262	78		7				2	093			
B0241-8	333	88		3				2	760			
B0242-31	277	88	12.2	39.0	45.1	3.8	0.0	5	079	6.15	6.55	6.55
B0243-7	296	93		6.				4	060			
B0243-10	298	92		4.				5	095			
B0243-20	283	96		5.				2	091	•	•	•
B0244-6	247	80		7				m	160		•	
B0245-8	304	89		3,				9	100			
B0246-4	329	96		9				5	960			
B0246-6	335	95		7				5	087			
B0246-7	286	88		9				4	660		•	
B0246-8	290	87		2.				9	960		•	•
B0251-5	283	90		2.		•		5	106	6.75	•	•
B0255-5	308	87		4.				9	088	•		•
B0255-9	260	87	۰	2				5	100	•	•	•
Atlantic	308	88		1:	•	•		9	106	00.9	6.75	
Kennebec	301	93		•		17.1		9	080	5.80	•	•
ion 5%	٠ ٢											
אר עכיד	ر ر											

123See footnotes Table 2 Chipped on 1/11/88 Chipped on 2/1/88 Chipped on 3/8/88

BARC Table 5. Yield, tuber size distribution, and quality characteristics of round whites harvested 119 days after planting at Echo Lake in 1987.

				Tuber si	size distr	distribution				Ch	Chip Color3	1.3
	Mkt	%		1-7/8-	2-1/4-	3-1/4		$\mathtt{Tuber}^{\mathtt{l}}$	$Spec^2$			- 04
Pedigree	CWT/A	Mkt	< 1-7/8"	2-1/4"	3-1/4"	-4"	> 4"	Rating	Grav	500 时	40° F5	70° F6
										×		
B0256-1	271	94	4.1	23.4	61.8	8,5	2.2	9	112	09.9	7.75	7.25
B0256-15	186	87	13.4	42.3	42.5		0.0	9	094	6.10	7.05	7.00
B0257-3	203	98	14.4	52.9	32.2		0.0	5	111	6.40	06.9	6.85
B0257-8	182	88	12.5	47.3	39.0		0.0	5	109	6.10	7.15	7.25
B0257-9	238	95	4.6	25.3	65.7		0.0	5	101	5.90	0.79	7.00
B0257-12	228	89	11.2	39.1	48.8		0.0	9	106	6.15	6.95	6.85
B0172-12	227	90	9.8	34.0	54.1	2.2	0.0	5	860	6.30	08.9	6.95
B0174-11	236	95	5.3	26.6	65.3		0.0	9	106	6.20	06.9	7.15
Chipbelle	215	92	7.9	31.0	55.5		0.0	5	112	6.50	7.35	7.45
Monona	226	93	7.4	31.4	53.2		0.0	5	085	6.20	7.15	7.05
Norchip	223	88		53.7	34.1		0.0	5	860	08.9	7.85	7.30
Superior	238	94	0.9	31.7	58.4		0.0	5	093	06.9	8.00	6.85
Atlantic	257	90	9.5	47.1	40.2	3.1	0.0	9	112	6,35	7,35	09.9
Belchip	270	92	7.9	37.9	50.2		0.0	5	960	09.9	7.40	7.10
TSD 5%	37											

^{1,2,3} See footnotes Table 2 the Chipped on 1/11/88 5 Chipped on 2/1/88 6 Chipped on 3/8/88

BARC Table 6. Yield, tuber size distribution, and quality characteristics of round whites harvested 119 days after planting at Echo Lake in 1987.

				Tuber si	ze di	stribution				Ch	Chip Color3	r3
	Mkt	%		_	-1/	3-1/4		$Tuber^{1}$	$spec^2$			0
Pedigree	CWT/A	Mkt	<1-7/8"	2-1/4"	3-1/4"	-4"	> 4"	Rating	Grav	50° F4	40° F ⁵	70° F ⁶
8-000g	30%	0.5		C			7	IJ	701	07		
D0040-7	100	7	۰	,	9	•	0	\	007	0.40	۰	•
B0172-22	245	94					1.7	2	110	6.35		
B0174-7	204	89		5	6.04		0.0	5	101	6.15	7.30	
B0175-20	240	92		7		11.4	1.7	4	110	6.55	7.10	
B0179-6	228	98		0		0.8	0.0	5	106	09.9	7.30	
B0179-17	268	93		0		4.0	0.0	5	105	6.50	6.65	
B0237-6	236	92		9		2.8	0.0	9	095	5.50	09.9	•
B0238-11	198	83		2		0.7	0.0	2	860	6.45	7.05	
B0239-20	252	91		6		6.9	0.0	4	095	5.70	6.55	
B0240-11	245	89		4.		10.3	3.0	m	100	6.10	7.10	•
B0242-2	260	92		\dashv		5.6	0.0	9	980	6.20	6.95	
B0242-3	282	76		3,		12.5	1.7	4	960	5,95	06.9	
B0243-11	249	92		1.		14.5	1.5	5	092	6.35	7.05	
B0243-18	243	91		9		3.6	0.0	4	095	09.9	6.55	
B0245-15	255	94		0		17.7	2.2	4	660		6.85	
Monona	213	91	9.2	32.0	51.4	7.3	0.0	5	088	6,35	06.9	6.85
Atlantic	276	06		7		3,3	0.0	9	111		7.15	
Norchip	215	84				0.5	0.0	5	095	6.65	7.65	
-	,											
LSD 5%	38											

^{1,2,3} See footnotes Table 2 thipped on 1/13/88 5Chipped on 1/28/88 6Chipped on 3/8/88

BARC Table 7. Yield, tuber size distribution, and quality characteristics of russets harvested 119 days after planting at Echo Lake in 1987.

				Tuber si	ze distri	ribution				Fr	rench Fry	v ³
	Mkt	%				10-		$\mathtt{Tuber}^{\mathtt{l}}$	Spec ²	н		- 04
Pedigree	CWT/A	Mkt	<2 oz	2-6 oz	6-10 oz	16 oz	>16 oz	Rating	Grav	50° F#	40° F ⁵	70° F ⁶
		ļ	,									
B9569-2	205	79	21.2		9			2	084	0		
B9596-2	281	88			9			7	088			
B9922-11	324	94			φ.			5	102	2.00		2.20
- 1	250	88	2.		œ			5	960			
B9932-30	152	61	38.6	43.1	18,3	0.0	0.0	9	101	2.20	3.75	2,40
B9932-50	206	82	/		5.			5	103			
B0036-6	293	91			5.			5	260			
B0039-6	194	78			2.	1.4		4	083	- 0		
B0045-6	223	78	2.		5.	1.5		5	106			
B0180-18	300	96				11.0		5	082			
B0180-31	185	74			$\overset{\circ}{\infty}$	0.0		4	060			
B0180-39	305	96			$\overset{\circ}{\infty}$	14.4		5	084			
B0184-15	195	81	9		6.	9.0		5	960			
B0184-16	193	78			3,	9°0		5	092			
Russette	226	87	2.		$\overset{\circ}{\circ}$	1.1		5	960			
Norking	244	85	5.		-	3.9		9	091			
R. Burbank	209	72	8		4.	0.0		Н	084		3	
BelRus	186	78	2.		4.	0.0		9	960			
19h 5%	77											
	i i											

h2 See footnotes Table 2

French fry color 1-3=satisfactory
Fried on 1/14/88
Fried on 2/4/88
Fried on 3/8/88

BARC Table 8. Yield, tuber size distribution, and quality characteristics of russets harvested 119 days after planting at Echo Lake in 1987.

			<i>a</i> 1	Tuber si	ze distri	bution				Fr	rench Fry	y ³
	Mkt	%				10-		$Tuber^{1}$	${\sf Spec}^2$		l .	- ₀ 0+
Pedigree	CWT/A	Mkt	<2 oz	2-6 02	6-10 oz	16 oz	>16 oz	Rating	Grav	50° F4	40° F5	70° F6
B0184-18	205	79	9	0	9			9	091	0		6.
B0184-30	281	88	11,7	49.7	36.0	2.5	0.0	4	660	2.10	2.95	2.45
B0186-1	324	76	9	7	8			5	097	0	0	.5
B0186-3	250	88	0	,	∞	0	9	2	860	0	0	6.
B0186-11	152	19	∞	ω,	∞			2	093	0		. 2
B0186-16	2.06	82		3	5		0	2	095			0.
B0186-23	293	91	9.	2	5.			4	105			-
B0189-12	194	78		ŝ	2	0		2	102	9		
B0189-45	223	78	2.	0	5.			2	091			. 2
B0190-2	300	96	3	-	-			4	105	0		6.
B0190-9	185	74	0	9	8		0	4	104	0		9.
B0190-13	305	96	Š	6	$\overset{\circ}{\circ}$			4	088			
B0220-14	195	81	6	S.	9	0		9	960			
B0221-6	193	78	2 °	3	3			5	160			∞
Russette	226	87	2	$\stackrel{\circ}{\infty}$	$\overset{\circ}{\infty}$		0	5	660			
ND534-4	244	85		ô	÷			9	083	9		
Lemhi	209	72	8		4.			2	960			3
R. Burbank	186	78	2 .	3	4 .			2	980			0.
TCD 5%	7,1											
00 TOT												

1,23 See footnotes Table 8 4 Fried on 1/14/88 5 Fried on 2/3/88 6 Fried on 3/9/88

INTER-REGIONAL POTATO INTRODUCTION PROJECT (IR-1)

J.B. Bamberg and R.E. Hanneman, Jr.

Introduction of New Stocks A total of 104 new introductions were added to the collection, received as true seed accessions. One of these accessions was from the 1986 expedition to Bolivia and was sent by one of the participants, Dr. K.A. Okada, INTA, Balcarce, Argentina. The remaining accessions were collected during the 1987 expedition to Bolivia, headed by Dr. R.W. Hoopes. These included new accessions of rare or disappearing species, and several collections of new species.

Preservation and Increase of Stocks Over 90% of the introductions in the collection are maintained as true seed. Satisfactory seed increases of 306 species introductions and intraspecific hybrids were obtained under glass, fiberglass or screen. This is approximately 75% more than the average number of stocks increased per year during the previous 5-year period. This improvement is attributed to the addition of a Fall (September-January) seed increase, seed increases in screenhouses during the Summer and cultural innovations which enhanced seed increase efficiency. An experiment was performed in which the timing and amount of fertilizer application was modified for half of the plants of each of the seed increase families. "Treatment" plants yielded an average of over twice the seeds of the "control" plants. Tuber increases of approximately 1,452 clonal stocks were accomplished.

Twenty-four clones and six families (28 genotypes) were placed into sterile culture. IR-1 now has 453 clones in vitro. A total of 712 tests were performed on these and other IR-1 stocks to monitor the presence of viruses and PSTV (potato spindle-tuber viroid) in the collection. Twenty clones were subjected to virus-freeing treatments (156 meristems), resulting in six new virus-free lines. Eighty-one percent of in vitro stocks are presently virus-free. Experiments related to efficient in vitro maintenance of IR-1 stocks continue. These include evaluation of virus elimination methods, media components and field performance of stocks which have been freed of virus and maintained in vitro.

Germination percentages of 1,413 seedlots were determined. This includes 288 germination tests related to an experiment in which the efficacy of long term refrigeration was evaluated.

Classification

Taxonomic determinations were made on field plantings and herbarium specimens by Drs. J.G. Hawkes, R.W. Hoopes and C.M. Ochoa. Their determinations indicated that several accessions from the recent expedition to Bolivia represent previously undescribed species. Over 1,160 plots were observed and

taxonomic determinations were newly assigned, confirmed, corrected or revised. Paper and computerized records were updated accordingly. Dr. D.M. Spooner was hired as a USDA, ARS taxonomist associated with IR-1 and participated in these determinations. Over 400 herbarium sheets were made from these plantings by A. Salas, International Potato Center, and sent to the Smithsonian herbarium. IR-1 personnel made and mounted an additional 302 specimens. A total of well over 5,000 sheets, representing nearly 115 potato species, are now available in the IR-1 herbarium for taxonomic study.

Distribution of Stocks

Shipments of seed, tuber, and in vitro stocks were sent to potato workers in 28 states of the United States and to workers in 18 other countries in response to requests. The volume and types of stocks sent to various consignee catagories is summarized in the table below:

Volume and Types of Stocks Distributed

a .		m n		Order		0.51	m - h - 1
Catagory	S	TF	TC	IVS	RPS	Other	Total
5	6 040	1 200	0.20	1.00	601	44.0	0 000
Domestic	6,049	1,380	239	182	621	419	8,890
Foreign	1,164	142	47	91	18	34	1,496
Quarantine	103	0	0	0	0	0	103
Screening	1,530	49	0	0	0	0	1,579
IR-1 use ²	3,863	2	1,452	7	0	691	6,015
Total	12,709	1,573	1,738	280	639	1,144	18,083

1/ Types of stocks sent/(Number of seeds, tubers or plantlets per standard shipping unit): S=True Seeds/(50), TF=Tuber Families/(21), TC=Tuber Clones/(4), IVS=in vitro Stocks (1), RPS=USDA-WI Cooperative Research Program Stocks, Other=plants, herbarium specimens, pollen, demonstration/teaching materials, leaf samples.

2/ Includes chromosome counts, germination tests, ID and taxonomic check plantings, <u>in vitro</u> maintenance, seed increases, PSTV tests, research and miscellaneous plantings.

The tuber families orders listed above were requested from a listing of 158 accessions mailed to approximately 350 cooperators world-wide. Tuber families propagated for 1988 distribution were reduced from the usual 21 clones per accession to 10 clones per accession. This allowed the offering of a diverse sample of species and accessions while saving greenhouse space needed for seed increases.

Domestic Distributions by Region

	U	nits	Or	ders
Region	shipped	% of total	shipped	% of total
North Central	2,559	29	71	51
North Eastern	4,630	52	29	21
Southern	551	6	10	7
Western	1,150	13	30	21
TOTAL	8,890	100	140	100

About 400 copies of the updated "Inventory of Tuber-bearing Solanum species" were distributed to cooperators this year. An electronic version of this inventory was loaded into the Germplasm Resources Information Network (GRIN) federal germplasm computer system. Cooperators how have the advantages of electronic search and ranking capabilities to help them in selection of stocks most suited to their research.

Evaluation of Stocks

The somatic chromosome numbers of 340 accessions were determined in the laboratory.

Funds for contracts to state and federal laboratories were provided by USDA, ARS for screening for various economic traits. Distributions for screening purposes are summarized in the following table:

Contract Screening, 1987

Contract	Trait	Accessions	Units
K. Deahl	Glycoalkaloids	360	360
A. Kelman	Blackleg (<i>Erwinia</i>)	323	646
S. Slack	Ringrot (Corynebacterium)	237	474
D. Carling	Rhizoctonia	99	99
TOTAL		1,019	1,579

The collection is steadily being evaluated for characteristics of economic importance through the research efforts of state, federal, and foreign laboratories.

Usefulness of Findings

The major objective of the Inter-Regional Potato Introduction Project is to promote and facilitate the improvement of the commercial potato in the United States by providing a readily available reservoir of useful breeding stocks. Breeders are constantly searching for new sources of superior germplasm and for ways to incorporate desirable genes into adapted commercial varieties. Accomplishment of the major objective of this program must be measured largely by the success with which new improved varieties meet the needs of commercial production.

Of the 179 potato varieties developed and released in the United States since 1932, 174 are known to have two or omre foreign introductions in their pedigrees. These varieties represent about 65% of the annual seed potato production in the United States.

Basic research programs conducted in the United States and other countries continue to provide information concerning the potential value and necessity of more effective utilization of the IR-1 germplasm collection. During 1987, 55 papers, 35 abstracts, and 12 theses reported the use of *Solanum* introductions.

The Inter-Regional Potato Introduction Project's Inventory of Tuber-bearing Solanum species.

The Inter-Regional Potato Introduction Project (IR-1) is charged with the introduction, classification, maintenance, distribution and preliminary evaluation preliminary evaluation of accessions which become part of the IR-1 collection. Fulfillment of this responsibility includes periodic publication of an inventory containing the identities of these accessions and any associated descriptive information. This serves as a catalog of stocks which may be requested by potato scientists for use in their research. The latest edition of this document, the "Inventory of Tuber-bearing Solanum species", bulletin 533 of the College of Agriculture and Life Sciences, University of Wisconsin-Madison has now been published.

Each of the approximately 3,000 accessions listed has been identified by its species and subspecies names, Plant Introduction (PI) and collection number. The country of origin, form received, form available, chromosome number and crossability group have also been listed. Reactions to frost, heat/drought, viruses, fungi, bacteria, nematodes and insects are given if available. These designations are a summary of published and unpublished reports and contracted screening results. Data contained in this inventory have also been computerized to facilitate selection and ordering of accessions which meet a combination of criteria. This inventory may be obtained free of charge by contacting the Potato Introduction Station, Sturgeon Bay, WI 54235; Ph. (414)743-5406.

NORTH CENTRAL REGIONAL POTATO TRIALS

R. H. Johansen and Cooperators 1/

The year 1987 marked the 37th year that the North Central Regional Potato Variety Trials have been conducted. Many of the varieties grown today in the United States and Canada were at one time grown in this trial. Presently, 12 states and three Canadian provinces are conducting trials. Ontario became a new member of the trials in 1987. This past season Louisiana lost their trial due to flooding and poor growing conditions.

Cultivars Released in 1987:

Russet Norkotah

Progeny No. ND534-4Russ Released by: North Dakota

Parentage: ND9526-4Russ x ND9687-5Russ

Cooperating States and Provinces:

	Date	Date	Total Days
State or Province	Planted	Harvested	to Harvest
Alberta	5/15	9/25	134
Manitoba	5/7	9/8	125
Ontario	5/15	9/23	140
Indiana	4/7	7/29	145
Iowa	4/16	7/30	106
Kentucky	4/10	9/8	153
Michigan	5/5	9/16	135
Minnesota	4/9	8/18	132
Missouri	3/23	8/19	150
Nebraska	5/3	10/1	145
North Dakota	5/11	9/16	129
Ohio	5/14	9/21	131
South Dakota	4/24	8/4	103
Wisconsin	4/24	9/23	153

Environmental Conditions. Soil types ranged from clay loam to sand. However, most of the soil types ranged from silt to sandy loam. Irrigation was used at some locations.

Alberta, Mr. Clive Schaupmeyer; Manitoba, Mr. Brian Rex; Ontario, Dr. Robert Coffin; Indiana, Dr. Hommer Erickson; Iowa, Dr. Bill Summers, Kentucky, Dr. John Snyder; Louisiana, Dr. James Fontenot; Michigan, Dr. Richard Chase; Minnesota, Dr. Florian Lauer; Missouri, Dr. V. N. Lambeth; Nebraska, Dr. R.B. O'Keefe; Ohio, Dr. Mark A. Bennett; South Dakota, Dr. Paul Prashar; Wisconsin, Mr. Donald Kichefski, Dr. Stan Peloquin.

Cultural Practices. Fertilizer, fungicides, insecticides, vine killers, herbicides, etc. were all based on local conditions. Insecticides used were Thiodan (endosulfan), di-Syston, Monitor, Furadan, Imidan, Sevin, Marlate, Thimet, Diazinon, Pounce, Pydrin, Cygon, Malathion, Penncap, Asana and Guthion. Fungicides used were Dithane M22 (Maneb), defolatan (Captafol), Bravo, Dithane M-45, Mancozeb, Super Tin and Manzate 200. The herbicides used were Poast (Sethoxydim), Sencor (metribuzin), Lorox, Eptam and Dual + Lexone. Vines were killed mechanically or by Diquat, Reglone and Herbimax.

Weather Conditions. In the Northern states and provinces, temperatures were generally quite warm early in the spring. Iowa had 20 days of 100°F+ temperature during July and Missouri had severe water and heat stress throughout July. Above normal temperatures occurred in Indiana, Iowa, Missouri and South Dakota. However, in general, growing conditions were near normal for most locations.

Entries. Entries for the 1987 trial were received from Michigan, Wisconsin, Nebraska, North Dakota and Minnesota. The check varieties Red Pontiac, Norland, Norchip and Super Norgold Russet were supplied by North Dakota. Russet Burbank was dropped as a check variety in 1987.

Total and U.S. No. 1 Yield. Red Pontiac produced the highest total and U.S. No. 1 yield, however several other selections including NDT-9-1068-11R, MN12567, and MS700-70 also produced very good yields. This was the second year that NDT-9-1068-11R has been in trial and it again expressed very high yield potential. The Alberta trial produced the highest yield while Nebraska produced the lowest. Yield results are found in North Central Regional Tables 1 and 2.

Percent U.S. No. 1. Minnesota and Wisconsin produced the highest percent U.S. No. 1. When comparing entries, MN12331 produced the lowest percent U.S. No. 1 while Norland and W921 produced the highest (North Central Regional Table 3).

Maturity. Maturity is reported in North Central Regional Table 4. Norland and ND651-9 were the earliest maturing while MS700-70 was the latest. MN12945 appeared to be almost as early as ND651-9 and not much later than Norland.

Percent Total Solids. MS700-70 and MS716-15 had the highest percent total solids (both were over 20%). Other entries with high total solids were Norchip, W921 and W832. MN12945 produced the lowest percent total solids. When comparing locations, the trial at Alberta produced the highest percent total solids while Ohio produced the lowest (North Central Regional Table 5).

Scab Reaction. Nebraska again reported the most severe scab. Scab readings at some locations were not taken as instructed, or by the accurate or established method, therefore making it difficult to summarize data (North Central Regional Table 6).

Summary of Grade Defects. Grade defects again varied from location to location. Nebraska, Ontario and Indiana reported the most severe scab. Kentucky noted a high amount of second growth for several entries. Hollow heart was a problem in Ontario, Indiana and Kentucky. Grade defects are found in North Central Regional Table 7. Certain entries are starred (*) to point out a weakness of a selection.

Chip Color. Chip color, either Agtron or Color Chart, is found in North Central Regional Table 8. Iowa, Minnesota and South Dakota did not report any chip data. W921, W848, MN12331, MS716-15, MS700-83, MS700-70, NEA219.70-3, BN9803-1, W832 and ND651-9 all appeared to express good chip quality. Michigan reported that they used the new Agtron E10 ratio color model for which numbers of 60 and above indicate excellent chip color.

Early Blight Readings. This year, only six cooperators reported early blight readings (North Central Regional Table 9).

Overall Merit Ratings 1/. Merit ratings for 1987 are found in North Central Regional Table 10. Two Michigan, one Minnesota, one Wisconsin and one North Dakota entries had the highest overall merit ratings in the 1987 North Central Regional Potato Variety Trial. For comparison, the following table shows merit ratings for the years 1985-1986 and 1987.

		Total Points	
Selection	1985	1986	1987
MS716-15	23	0	34
NDT-9-1068-11R	0	24	22
MS700-83	10	23	20
MN1 2567	0	12	20
W848	0	0	20

Merit Ratings 1/

Rating	Points
1	5
2	4
3	3
4	2
5	1

North Central Regional Trial Table 1. Total Yield (Cwt/Acre) - 1987.

S WI Ave.		315 391 287 334 388 305 355 485 302 266 459 265 315 438 277		384 740 352 374 445 327 374 422 308 269 352 238 441 598 351 277 440 236 264 472 274 200 411 257 339 615 349 346 483 296 319 483 296 319 459 281 425 737 389 274 376 294 359 414 326	331 480 299
2		\$ 53 63 65 65 65 65 65 65 65 65 65 65 65 65 65		280 324 335 305 305 217 217 218 335 217 218 218 218 219 219 219 219 219 219 219 219 219 219	320
HO		269 212 202 155 205		276 264 269 209 202 202 202 203 217 177 219 219 210 311	222
R		60 47 52 53		100 100 100 100 100 100 100 100 100 100	9
WO		95 120 172 NS		55.55.86.88.88.45.86.86.88.88.88.88.88.88.88.88.88.88.88.	135
M		489 471 480 494		552 515 515 629 629 629 629 672 674 674 674 674	535
M		427 332 381 330 343		207 466 207 466 217 291 291 370 405 338 440	2, 17,
KY		144 199 179 179		196 148 182 196 107 157 207 158 145 145 145 145 140	1 7,7
TA		367 332 343 283 271		241 323 319 336 342 342 342 342 342 342 342 342 342 342	303
A		278 439 453 241 300		420 463 426 330 489 415 289 289 289 289 381 452	270
Ont.		360 377 371 323 330		393 365 346 185 185 276 308 408 467 290 376 453 407	2/18
Man		238 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18		85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	177
Alb.		396 548 355 477 253		436 4411 4314 485 508 383 490 218 490 218 474 474 358 597 465	ICI
Cultivar or Selection	Early to Medium Early	Norland ND651–9 W832 BN9803 NEA219,70–3	Medium to Late	MS700-70 MS700-83 MS716-15 MN12331 MN12567 MN12945 NEA71.72-1 ND79-1068-11R W848 W921 Red Pontiac Super Norgold Russet Norchip Russet Barbank	Areace

North Central Regional Trial Table 2. U.S. No. 1 Yield (Cwt/Acre) - 1987.

Cultivar or Selection	Alb.	Man.	Ont.	A	ŢŸ	KY	豆	W	MO	Œ	픙	Q	₽ P	13	Ave.
Early to Medium Early															
Worland ND651-9	558	222	387	302 462	391	112	451 384	498 595	57	77	373	273 279	337	455 452	326 359
W832 EN9803 NEA210, 70, 2	538	157	403 373	492 294 295	314	8 8 4	412 375	18 18 18 18 18 18 18 18 18 18 18 18 18 1	226 NS	105 1	% % %	275	368 316	163 707	339
Medium to Late	760		3	5	6	2	3	3		-	523	2		2	2
MS700-70	627	214	844	438	255	206	603	559	192	Ţ	386	301	413	758	397
MS700-83	683	219	417	8617	364	178	538	539	8	139	365	351	421	161	386
MS716-15	630	221	390	453	342	212	434	549	192	55	329	286	408	7447	353
MN12331	287	232	264	9017	9/2	139	410	6917	117	7世	309	286	301	421	307
MN12567	099	217	312	556	368	220	536	ከ ከ /	138	89	359	334	拉上市	633	401
MN12945	261	142	358	202	248	119	321	586	52	와	27.1	298	300	7480	284
NEA71.72-1	619	202	335	368	358	206	354	501	NS	43	242	260	314	539	334
ND671-4	601	197	0917	326	283	133	333	523	76	54	291	335	912	12h	313
NDT9-1068-11R	645	268	533	944	454	216	548	642	204	93	317	369	410	645	414
W848	655	193	327	336	359	176	100 100	27.7	255	108	282	328	328	498	346
W921	099	194	419	336	258	180	141	177	192	8	242	204	343	198	333
Red Pontiac	779	252	521	552	332	78 78 78	638	1 69	297	168	421	351	1111	783	465
Super Norgold Russet	652	208	343	419	398	186	413	461	170	114	412	326	333	421	346
Norchip	554	246	426	7486	306	160	16h	539	278	76	924	329	7103	1413	373
Russet Burbank		15 15 15 15 15 15 15 15 15 15 15 15 15 1													R R
Average	630	211	397	6017	327	98	81118	246	178	35	330	291	363	520	351

NS - No seed was received

North Central Regional Trial Table 3. Average percent U.S. No. 1 (over 2" diameter) - 1987

Cultivar or Selection	Alb.	Man.	Ont.	N.	IA	KY	ᅜ	Æ	MO	᠑	ЮН	2	Ø	M	Ave
Early to Medium carly															
Norland ND651—9 WB32 EN9803 NEA219.70—3	71 66 66 83 36	88888	2002	88828	33 33 33 33 33 33	88668	95 92 94 94	88 64 88 88 84 88	77 76 76 NS NS	8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	72 66 66 54 70	16 88 88 88	88888	28 88 15 45	88883
Medium to Late															
MS700-70 MS700-83 MS716-15 MN12331 MN12567 MN12945 NNT2941-4 ND671-4 ND79-1068-11R W848 W921 Red Pontiac Super Norgold Russet Norchip Russet Burbank	888888888888888888888888888888888888888	18888842 188888 1	88 88 88 88 88 88 88 88 88 88 88 88 88	33 1 1 2 8 8 8 8 4 7 5 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3888838883888	88828888888888	888838382888	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	855878787878 8787878878878	72 68 68 70 70 78 78 79 81 81 52	75 75 88 87 45 88 87 45 15 15 15 15 15 15 15 15 15 15 15 15 15	88788788888	888884475888888	385828888558588	1388888888888 138888888888888
Average	20	83	88	8	91	₫	ಜ	25	75	29	29	68	8	35	83

North Central Regional Trial Table 4. Maturity Classification $^{1/}$ - 1987.

Cultivar or Selection	Alb.	Man.	Ont.	a	IA	M	¥	W	QW OW	旦	8	2	Ø	M	Ave.
Early to Medium Early															
Norland ND651-9 W832 EN9803 NEA219.70-3	2.0 3.0 0.4 0.4 0.4	3.0 3.0 3.0	2222	+ 0 + 0 + 0 & 0 + 0 + 0 0 0 0 0 0	1	+ 8 × 0 0 × 0 0 × 0 0 × 0	, w w w w w	22222	1.0 2.5 3.0 NS NS	0.0000	1.0 3.0 2.0 2.0	+ 0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0 L 9 4 0 0 0 0 0 0	+ 6 + 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Medium to Late															
MS700-70 MS700-83	5.0	3.0	22	æ æ ≠ €	3.0	80 mg	4 K.	22	20°5	0.0	4.0	4 5 5 6 7	3.0	3.5	# K. K.
MS716-15 MN12331	0° 2°	0 0 0 0	22	24 K 0 rv	2 ° °	± ← ∞ ∞.	9 0 0 0	9 9	0 0 m m	0 0 0 0 0	0 0 m N	0° 0°	% 0 0 0 0	ლ გ. დ. გ.	2.7
MN12567	4.0	3.0	2 9	4.0	3.0	رن در ه	ر ان د	2 9	3.0	2.0	3.0	3.0	0.4	w. c	m c
MEA71.72-1	2, 4 5, 5	0.4	2 2	ე ე	o 0 n m	- ° - %	0.4	2 2	C° SN	0°0 %	3.0	က လ က	0.4	3.2	3,50
ND671-4	3.0	2.0	2	3.2	3.0	3.0	0,0	2!	0.4	0,0	0,0	η°0 υ τ	0.1	3.6	0,0
ND19-1068-11R	4 v° c	0.4	2 2	က ၁ ။	5° €	3 ≠ ≠ O ≪	ນ = ບັດ	2 9	ე. ი	n «	n «	ა ყ ა ფ	ۍ ص د	ν, ς. 4. γ.	n «
W921	س 0 0	5.0	22	ှ ထ	o 0 n m	0.4	0.4	2	ຸກຸ	0.0 0.0	0.0	8.4	0.4	‡ . +	, ന
Red Pontiac	5.0	4.0	2	3.5	h.0	4.8	4.5	2	3.0	3.0	3.0	4.5	0.4	4.5	0° i7
Super Norgold Russet	3.0	2.0	2	2.0	3.0	2.5	3.5	2	3.5	2.0	1.0	2°8	2.0	2.3	2.5
Norchip	0° h	4.6	2	0°†	3.0	4.5	S S	2	0.0	0.0	3.0	က	0°4	3,5	က်မ
Russet Burbank		5.0													5.0
Average	9.0	3.1	2	3,3	3.0	2.9	3.4	2.6	2.9	2,3	2.4	3.5	2,8	3.2	3.6
 1/ 1. Very Early - Norland Maturity 2. Early - Irish Cobbler Maturity 3. Medium - Red Pontiac Maturity 4. Late - Katahdin Maturity 5. Very Late - Russet Burbank 	Norland Cobble Pontiac in Matu	Matur Patur Matur Prity	ity rity ity			SN SN	No data reported No seed was rece	repor	data reported seed was received						

North Central Regional Trial Table 5. Percent Total Solids - 1987.

Cultivar or Selection	Alb.	Alb. Man.	Ont.	A	IA	M	¥	Z	ω Q	H	F	2	Я	M	Ave.
Early to Medium Early															
Norland ND651-9	20.5	18.0	15.6	13.7	14.0	16.3 18.4	15.8	14.1	14.5 16.9	16.5	13.0	18.8 20.5	16.0	13.7	15.6
W832 BN9803	80 A	8.3	8.5 8.8	16.9	18.2	19.7	19.9 18.4	19.2	18.6 NS	20°1	14.2	22.0	20.02	18.0	19.6 19.4
NEA219.70-3	83	21.5	19.0	14.1	14.9	16.1	16.5	16.7	NS	19.2	6	20.7	17.7	16.0	17.5
Medium to Late															
MS700-70	22.5	83.	22.3	16.3	19.6	21.2	20.1	18.6	17.7	22.0	14.4	22.7	19.8	19.7	20.1
MS700-83	21.0	20.5	21.5	15.2	16.9	18.2	17.7	16.5	16.0	20.9	13.8	21.8	18.0	15.8	18.1
MS716-15	24.2	24,8	23.4	16.9	18.6	21.2	20.1	19.5	16.2	18.6	15.7	22.9	20.2	19.4	20.1
MN12331	25.0	21.3	18.7	15.5	14.9	16.5	16.0	14.8	15.2	18.2	11.6	22.0	16.7	15.0	17.2
MN12567	20.5	20.3	19.4	14.5	15.2	17.6	17.3	16.7	14.8	18。4	13.8	20.3	18.0	16.0	17.3
MN12945	18.0	16.5	15.6	13.7	ROI	15.0	12.2	14.8	14.3	17.5	10.4	17.5	15.4	13.7	15.0
NEA71.72-1	19.5	20.5	19.2	14.3	14.4	17.8	17.7	16.7	NS	19.2	13.0	20.7	17.8	15.6	17.4
ND671-4	23.0	20.02	19.2	15.0	14.8	18°4	16.5	16.5	15.0	18.6	11.8	19.9	16.7	14.3	17.1
NDT9-1068-11R	19.9	19.8	17.5	13.9	14.2	17.4	17.3	14.5	14.3	30° 00°	11.8	18.6	16.7	14.5	16.4
M848	21.5	22.8	21.7	15.8	18.1	19.4	18.2	17.3	16.7	83	12.6	20.7	18.2	17.3	Ω Ω
M921	22.5	83° 8°	21.7	16.0	17.4	19.7	19.7	19.5	17.1	19.4	14.4	22.2	18.4	17.5	19.2
Red Pontiac	20.8	19.0	17.0	13.9	13.9	15.7	15.8	15.2	14.3	16.2	10.2	18.6	16.0	14.8	15.8
Super Norgold Russet	83 80 80	20.3	17.3	14.1	14.5	16.9	17.5	15.8	14.3	19.0	11.4	20.7	17.3	14.8	17.0
Norchip	83 83	21.3	21.5	16.9	18.2	19.1	19.0	18.2	17.7	20.1	13.8	21.6	18.2	18.0	19.1
Russet Burbank		23.0													83
Average	22.0	21.1	19.6	15.2	16.2	18.1	17.5	17.0	15.9	19.0	12.8	20.8	17.8	16.2	17.7

NS - No seed was received

North Central Regional Trial Table 6. Scab Reaction Report. Most Representative Scab (Area-Type) 1/ - 1987.

Forly to	Alb.	Man.	Ont.	a	IA	KV	Ā	MN ² /	Q	刨	HO	2	sp3/	보
Medium Early														
Norland		-	2	3-2	E	-	0	3-M	H	-	0	Ţ	_	9
ND651-9	I		2	4-3	2	-	0	7	Î	2-3	0		<u>-</u>	5-4
		F	2	2-3	1-3	3-2		0	7	2-5	0	17	<u></u>	3-4
BN9803	F. B.	Ē	2	3-1			0	3-M	SN	Z ¹	0		<u></u>	9
NEA219.70-3		1	2	3-4	2	2=3	0	2-I	NS	EI	3-1	Ē	_	2-3
Medium to Late														
		Ē	2	4-2	2	Ė	E-1	3 - M	E	1-3	0	E	7	9
	E		2	4-2	T-2	H	H	M-M	-	7-1		1	2	9
MS716-15	Ē	Ē	2	2-2	9	Ę	1-3	W-17	Ę	7	0	<u>_</u>	_	90
MN12331		0	2	3-3	9		0	1-1	1		0	9		9
		E	2	2-2	9	1	0	<u>1</u> -L		-	0	1	_	9
	Ē	0	2	3-2	2	Ė	0	¥	1	5-4	0	Ţ	_	2-4
NEA71.72-1	E	Ē	2	7	9	Ė	0	H-17	NS	7	0			2-4
ND671-4		0	2	2	0-0	듸	0	1 <u>-</u>		T.	0	9-0	0	9
NDT9-1058-11R	T-1	H	2	2-3	9	H	0	¥		1-3	0	F		2-5
W848		0	2	3-2	T-3	-		0	1-2	1-3	0	1	ç	1-1
W921	E	E	2	2-3	2	드	0	0	Ē	1	0	F	ę	9
Red Pontiac		-	2	5	-	Ē	13	₹ 2	<u>-</u>	2-3	0	-	0	2
Super Norgold Russet	E	Ţ-	2	1-2	그	<u>I</u> -1	0	7	Ē	E	0	9		9
Norchip	Ę	T ₌	2	4-2	2			3 - H	T-1	2-3	0	1	0	2-5
Russet Burbank		0												

TYPE	1 = Small, superficial	2 = Larger, superficial	3 = Larger, rough pustules	4 = Larger pustules, shallow eyes	5 = Very large pustules, deep holes		
AREA	T = less than 1%	1-20%	2 = 21-40%	3 = 41-60%	4 = 51-80%	Dr. Florian Lauer's scab readings	Dr. Paul Prashar's scab readings

NS - No seed was received ND - No data reported.

3/2

Summary of Grade Defects - 1987. North Central Regional Trial Table 7.

				External	(a1			Internal	lal
Cultivar		Growth	Second	Sun	Total Free of 1/	Hollow	Internal	Vascular Discol-	tal e o
or Selection	Scab	Cracks	Growth	Green	Ext. Defects	Heart	Necrosis	oration	Int. Def.
Early to Medium Early									
Norland ND651-0	14.2	4°5	80	1.0		£ 0	900		91.3
W832	21.15%	2.6	. A.	0 0	74.6	11.5		# 2 m	, ,
BN9803-1	11.4	2.5				2.8			6
NEA219.70-3	18. 4年米	2.9				3.2			ô
Medium to Late									
MS700-70	9.6	2.2	1.5			4.3**			9
MS700-83	18.4**	4 . 8 # #	9.0			0.9	0		9
MS716-15	4.6	1.0	0.9						7
MN12331	8.6	2.4	6.2**	1.2	84.1	7.0	0.1	5.7	93.4
MN12567	10.3	1.9	5.4			0.1			~
MN12945	13.5	3.9	4.1			0.1			9
NEA71.72-1	13.2	2.0	2.5		4.67				\leftarrow
ND671-4Russ	5.4	2.9	2.3		89.1	2.0			0
NDT-9-1068-11R	6.7	4.5	2.4		85.1	0.6	1.7		$\overline{}$
W848	ထ	4.1	9.6			0.1		0	3
W921	5.1	2.8	2.4			0.5			9
Red Pontiac	14.9	3.5	190			.2			-
Super Norgold Russ.	ъ. 8. 4	2.9	7.0##	F .	80.3	3.9			3
Norchip	14.8	6.2	5.8			0.2			9

Percent normal tubers showing no defects (some individuals had more than one type of defect).

** Possible weakness of cultivar or clone.

North Central Regional Trial Table 8. Chip Quality - 1987.

Cultivar or Selection	Alb. 2/	Man. 2/		Ont. 2/ IN1/	T.	KY2/	MI ² /	W	M02/	NE1/	OH1/	MD2/	Я	WL 1/
Early to Medium Early														
Norland ND651-9 WB32 EN9803 NEA219.70-3	83525 9	22 22 62 62 62 62 62 62 62 62 62 62 62 6	63 66 66 66	12.00	22222	61 66 57 68 62	55 68 56 68	22222	47 78 70 NS NS		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 44 41 38	2222	0 + m m m m m m m m m m m m m m m m m m
Medium to Late														
MS700-70 MS700-83	88 83	57	68	0.0	22	62 63	62	22	62	2.0	2.0	35	22	4.7
MS716-15 MN12331	84	53	89 69	0.00	22	26	22	22	8 3 8	0 0 0	2.0	14 H	229	L. 4
MN12945 NN12945 NFA71, 72-1	8 to 8	53 41 42	5 2 G	ក ភូក ភូក	222	72 A	5 2 6	222	% 28 NS 28	0 0 0 n n n	0 0 0 N N N	5 K 3	222	0 0 N
ND671-4 ND79-1068-118	24 52	% 全	62 62	2.0	22	51	37	22	22 22	0.0	2.0	31	22	5.0 0.0
W848	3 = 6	5 G	1 69 1	0.0	2 2	23 2	525	2 2	に 記 り	0.0	200	3 52	22	ω. ω. τ
Red Pontiac	16	34.5	45	3°51	9 9	22.5	45	2	5 æ	0.4	0.4	3 8	2	0.6
Super Morgold Russet Norchip Russet Burbank	8 \$	22 22 38	04 02	4.0 	22	748 09	35	22	40	0 0	2.0	41	2 2	9.0 4.1
Average	35	50	759	2.1	2	59	58	2	56	3.1	2.3	37	2	5.3
 PCII Color Chart (1 = lightest; 10 = darkest) Agtron (Highest number lightest) NS - No seed was received ND - No data reported 	(1 = 1: umber] ived	ghtest Lightes	; 10 = (t)	darkest	3									

North Central Regional Trial Table 9. Early $Blight^{1/}$ - 1987

Cultivar or Selection	ALB.	MAN	ONT.	N	IA	KY	MI	MN	MO	NE	НО	g	SD	IM	AVE.
Early to															
Medium Early															
Norland	9	R	Q	R	R	2	3.5		R	0°h	N	R	R	2	
ND651-9	R	2	ND ND	2	9	2	ر ا	2.0	R	2	2	2	2	2	, 2 8
W832	2	2	2	2	2	2			2	4.0	2	2	2	2	
BN9803	Q	2	R	9	N	R			NS	2	2	R	2	2	
NEA219.70-3	R	2	R	2	R	2			NS	2	9	2	2	2	
Medium to Late															
MS700-70	2	8	R	R	8	R			R	3.0	R	R	2	2	
MS700-83	Ð	R	QN QN	N Q	2	R			R	3.0	R	R	Ð	R	
MS716-15	2	R	R	R	R	R	4.5	3.0	2	4.0	Ð	R	R	R	
MN12331	2	2	R	R	Ø	R			Ð	3.0	R	<u>N</u>	R	R	
MN12567	R	R	R	Q.	R	2			R	2.0	Ø	R	R	R	
MN12945	R	R	9	R	R	2			Ð	R	R	<u>N</u>	9	£	
NEA71.72-1	2	Ø	R	Ð	9	R			NS	٥٠ ل	R	8	Ð	2	
ND671-4	Ð	R	R	R	2	R			R	4.0	2	2	2	2	
NDT9-1068-11R	Ð	R	R	<u>N</u>	9	Ð			<u>R</u>	1.0	R	2	2	2	
W848	Ð	2	Ð	R	Ð	R			g	0.4	8	2	R	2	•
W921	R	R	R	2	R	Ð		9	Ø	4.0	Ð	R	R	R	
Red Pontiac	2	2	R	Ø	R	Ð		•	Ð	1.0	R	R	Ð	2	
Super Norgold Russet	2	2	R	<u>R</u>	2	R			R	2	R	R	Ð	R	
Norchip	2	R	R	Ð	QN Q	R	3.0		R	η°0	N N	N N	R	R	3.0
Russet Burbank	Ð	Q	2	Ð	Œ	R					N)	2	Q.	R	
Average	Ø	R	8	Ð	R	R	4.1	2.4	R	3.2	8	8	R	R	3.2

ND - No Data - Seed was sent; however cooperator did not report data.

1/ Early Blight: 1 = susceptible; 5 = highly resistant; 0 = no disease

North Central Regional Trial Table 10. Morit Ratings 1/ - 1987

Cultivar or Selection	Alb.	Man	Ont.	2	5	7	¥	Ž.	WO	Z	HO	2	8		Total
Barly to Medium Early															
Norland ND651-9	ବମ	ia									£				In =
W832 BN9803 NEAZ19.70-3	3				-	en:		CI.	Ø.		(A)			= 0	ano
Medium to Late															
MS700-70		-	C.			CE	ur		-	in a	w 4		= N	Car	# 0 0
MS716113	*	CI.	I IO	10	-	#	-					-	5 ;	ı.io.	# C
MN12567	42							10				ത്ത ര	In.		0
NEAT1.72-1	- 1					4	6	2							
ND671-4 NDF0-1068-11P	n		(Sa	a	W.	_	012	+ •			Q	4 16	(217	-	- 0
West	œ		1-4	1	e CCI			· (XI)	=	w-	e	è	D		
W921			-	Æ-					en.						
Red Pontiao		(a.)			(4			a (
Norgold Norgold		=		e	IAE				<u>u</u> a				4-		- (4
Bushall Bumbank		ir .		7].					2				-		

1/ Merit Ratings
Rating Points

J. J. Pavek, D. L. Corsini, and Cooperators $^{1/}$

Uniform Potato Yield Trial The 1987 trial was grown at ten locations for yield and two for disease data. It consisted of 12 entries, 8 experimental and four standard checks. Three locations grew all the entries for early harvest as well as late harvest. The trial locations, dates of planting, vine killing, and harvest, and days from planting to harvest were as follows.

		Planting	y Vine Kill	Harvest	Days to
State	Location	Date	Date	Date	Harvest
California	Kern Co.	2/16	_	6/16	120
**	Tulelake	5/19	9/8	9/28	132
Colorado	San Luis Vly	5/14	9/10	9/18	127
Idaho	Aberdeen	5/5	9/8	9/21	139
11	Kimberly-Early	4/28	7/29	7/31	94
**	Kimberly-Late	4/28	_	10/9	164
New Mexico	Farmington	4/24	9/17	10/1	160
Oregon	Hermiston-Earl	y 3/30	7/23	8/14	137
11	Hermiston-Late	4/10	9/8	9/21	164
11	Malheur	4/29	9/14	9/15	139
Texas	Olton	4/3	7/30	8/11	130
Washington	Othello-Early	4/7		8/3	118
11	Othello-Late	4/23	_	9/15	145
¥ #	Prosser (Disea	se Data	Only)		

Cultural practices and the use of fertilizer, herbicides, pesticides, and vine killing varied according to local conditions. Trial plots at all locations were irrigated on a regular schedule throughout the entire growing season according to plant needs. May and June temperatures were above normal in the northern part of the region while July and August were slightly below normal. The southern areas were mostly normal but Kern Co. was hot at midseason.

Data on vine and tuber characteristics, yield, internal quality, disease reactions, and merit scores are presented in Western Tables 1 through 7. The round red NDTX9-1068-11R had the top score for fresh market; AC80369-1 and C008014-1 scored best for processing with A79141-3 and Lemhi Russet scoring second; the four scored higher than Russet Burbank for processing potential. However, A79141-3 averaged 24% under 4 oz.

^{1/}California, R. Voss, K. Brittan; Colorado, D. Holm; Idaho, S. Love, G. Kleinschmidt; New Mexico, E.J. Gregory; Oregon, A. Mosley, D. Hane, C. Stanger, S. James; Texas, D. Smallwood, J. C. Miller; Washington, R. Thornton, W. Iritani, M. Martin.

1987 Seed source, stand, tuber and vine characteristics, and foliar diseases. $^{1/}$ Western Table 1.

		Seed	Stand	TUBERS	ERS	Vine		Vert	Vert Wilt	E. B.	light
	Entry	Source	(10 loc) Shape	Shape	Skin	Size	Maturity	01	WA	ID WA	WA
Full 8	Full Season										
	A76147-2	OR	85	0	NRus	MLrg	Med	MS	S	S	ı
	A7816-14	ID	91	\Box	Rus	Σ	ML	MR	S	MS	NS
	A7961-1	ID	76	OT	£	MSm	Med	S	NS	S	ı
	A79141-3	OR	88	IJ	£	MSm	Med	S	S	S	MS
	AC79100-1	OR	85	OL	-	Med	ML	MR	S	NS	MS
	AC80369-1	00	91	IJ	=	MSm	M	R	WS	MR	R
	Lemhi Russet	OR	89	07		Med	ML	S	ı	S	I
	Russet Burbank	nk OR	91	\Box	=	Med	ML	S	ı	S	ı
Early											
	C008014-1	OR	88	OL	11	MSm	ME	S	NS	S	ı
	NDTX9-1068-11R		82	RO	Red	Sm	ME	MS	NS	S	MS
	Red LaSoda	ID	95	X	Red	Med	ME	MS	ı	S	ı
	Norgold Russet	et OR	89	OL	Rus	Sm	뙤	NS	ı	NS	ı

1/ M, Med = medium, Lrg = large, Sm = small, ML = medium large; ML = medium late, ME = medium early, E = early; R = resistant, S = susceptible, MR = moderately resistant, MS = moderately susceptible, VS = very susceptible, O = oblong, L = long, R = round, OL = oblong=long; L-O = long-oblong; NRus = non-russet.

Batty	VA 1.4.4.11.11.4.4	11111	61.05		10400		N C		Uregon			lexas	WEST		Overal
	Krn	Tul	21/	Ab		Kim ²	F			E	011	Spr	0th		Mean
A76147-2	480	590	455	593	510	(280)	594	099	(496)	275	637	826	605	(510)	566
A7816-14	23.2	560	936	503	536	(264)	603		(382)	364	699	461	782	(370)	525
A7961-1		546		247	939	(240)	462	480	(365)	7/7	623		958	(262)	508
A79141=9	265	210	328	500	224	(303)		27	(398)	256	643	508	802	(541)	488
AC79100=1	340	485	427	4	767	(961)	587	694	(245)		287	484		(431)	474
AC80369-1		450	345	484	854	(161)	1 TO	667	(324)		425	709	686	(497)	493
Jemhi Russet	350	202	343	578	550	(245)	209	621	(382)	176	679	608	692	(502)	
Russet Burbank 3	345		988		448	(220)	593	530	(667)	767	867	619	608	((449)	504
0008014=1	375	550	378		184	(593)	6	587	(458)		289	590	800	(537)	564
NDTX9=1068=11R 3	310	325	686	124	8/4	(270)	478	721	(450)	894	797	455	610	(583)	684
Red LeSode 3		9699	383	282	586	(315)	919	011	(529)	361		803	908	(009)	592
Norgold Russet 3	310	077		410	272	(303)	450	372	(356)	Jan Jan	35	916	798	(482)	417

1/ Early harvest values are shown in parentheses (), not included in overall mean,

Western Table 3. 1987 U.S. No. 1's, percent of total yield for locations; overall mean, percent and cwt/acre, early harvest in parentheses, not included in entry mean.

	Calif	California Colo	1 ~		Idaho	1	NMex Oregon	-	Texas	as	Texas Wash	Σ.	Mean
Entry	Krn	Tul	SLV	Ab	Kim	Frm	Hrm	Mal	01t	Spr	0th	2	cwt/A
A76147-2	82	96	91	91	87 (86)	67	87 (84)	77	81	81	87 (87)	87	767
A7816-14	81	89	89	85	80 (86)	96	81 (78)	69	73	25	79 (72)	78	405
A7961-1	67	83	06	86	81 (71)	46	85 (84)	65	53	52	82 (82)	77	393
A79141-3	92	82	72	85	72 (61)	89	(99) 08	59	30	37	(69) 62	70	342
AC79100-1	74	82	91	95	85 (77)	92	84 (85)	62	37	53	81 (84)	78	371
AC80369-1]	06	06	06	84 (68)	1	87 (83)		54	58	(98) 69	92	377
Lemhi Russet	98	80	91	93	87 (68)	96	85 (88)	74	51	09	85 (85)	81	415
Russet Burbank	71	81	71	99	77 (53)	93	80 (79)	65	48	36	70 (65)	69	347
C008014-1	91	95	93	91	87 (73)	95	87 (88)	73	53	63	86 (85)	84	915
NDTX9-1068-11R	87	92	98	92	(69) 98	76	78 (83)	74	71	80	87 (93)	84	410
Red LaSoda	83	85	06	91	90 (78)	83	83 (90)	71	69	82	78 (88)	83	687
Norgold Russet	76	95	79	87	75 (73)	88	81 (85)	89	67	63	84 (81)	79	329
Location Means	85	88	98	88	83 (72)	76	83 (83)	69	58	59	81 (82)	79	399

Entry	Calif	California	Colo ^{2/}		Idaho		NMex 1/	Oregon	nı	Te	Texas	Wash	Σ	Mean
	Krn	Tul	SLV	Ab	Kim	m l	Frm	Hrm	Mal	01t	Spr	0th	%	cwt/A
A76147-2	∞	58	67	59	53	(22)	63	49 (52)	38	18	13	55 (45)	41	234
A7816-14	6	53	26	34	67	(8)	53	45 (25)	37	15	\mathfrak{C}	50 (23)	36	190
A7961-1	19	43	32	43	31	(4)	57	38 (40)	27	3	9	54 (41)	32	162
A79141-3	0	36	7	21	12	(2)	7	7 (10)	13	0	П	30 (7)	13	99
AC79100-1	3	87	33	67	07	(4)	45	29 (22)	23	2	2	52 (28)	33	158
AC80369-1		07	38	53	39	(4)		39 (21)		0	7	45 (35)	32	158
Lemhi Russet	7	43	35	37	31	(0)	42	46 (30)	19	П	9	35 (22)	29	148
Russet Burbank	0	19	6	10	∞	(3)	21	18 (30)	21	0	0	28 (6)	13	99
.C008014-1	11	97	36	20	24	(2)	42	33 (28)	36	0	8	37 (20)	29	143
NDTX9-1068-11R	10	62	26	30	28	(7)	59	44 (32)	34	∞	. 6	46 (38)	34	166
Red LaSoda	16	52	21	27	39	(8)	57	49 (42)	34	∞	12	49 (23)	33	198
Norgold Russet		42	∞	24	3	(3)	28	18 (31)	17		33	35 (18)	19	78
Location Means	7	45	27	34	32	(9)	43	36 (32)	28	9	9	43 (26)	29	146

1/ Graded by size: >3" 2/ Over 10 oz.

Specific gravity of tubers; early harvest in parentheses, not included in entry means. Western Table 5.

	Calif	California	Colo	Ic	Idaho	NMex,	Oregon	Texas	3.5	Wash	Overall
Entry	Krn	Tul	SLV	Ab	Kim	Frm1/	Hrm	01t	Spr	0th	Mean
A76147-2	1.079	1.079 1.078	1.092	1.081	1.080 (71)	1.083	1.074 (69)	1.073	1,060	1.070 (81)) 1.077
A7816-14	93	80	91	93	(89) 06	92	81 (73)	80	99	74 (87)) 84
A7961-1	85	98	06	83	88 (73)	06	77 (74)	92	65	74 (82)) 81
A79141-3	93	87	86	87	(80) 98	76	87 (81)	83	81	78 (92)) 87
AC79100-1		82	92	84	83 (65)	77	(69) 77	79	79	75 (78)) 78
AC80369-1	1	88	66	76	82 (67)	1	(89) 69	75	99	75 (85)) 81
Lemhi Russet	85	80	76	92	89 (74)	91	83 (79)	92	72	75 (88)	78 (
Russet Burbank	85	85	88	84	77 (68)	88	76 (70)	79	75	77 (83)) 81
C008014-1	79	78	06	86	83 (75)	85	80 (74)	72	99	73 (87)	62 (
NDTX9-1068-11R	89	70	78	69	70 (65)	92	57 (52)	61	65	57 (73)	(2)
Red LaSoda	29	71	83	79	78 (65)	77	63 (61)	79	99	65 (73)) 71
Norgold Russet	75	88	79	73	70 (74)	82	60 (61)	99	62	(98) (99)) 72
Location Means	1.081	1.081 1.081	1.090	1.084	1.084 1.081 (70) 1.085	1.085	1.074 (69) 1.072 1.067 1.072 (83) 1.079	1.072	1.067	1.072 (83) 1.079

The rest used air weight-water weight. Hydrometer used for specific gravity.

1987 External and internal defects, french fry color, sugar ends, glucose, vitamin C, protein and TGA contents. Western Table 6.

	U.S. No. 2	2									
Entry	& Culls >4 oz %1/	Common SCAB ² /(6 loc)	Shatter Bruise 3/	Hollow heart $\frac{24}{2}$	Black- spot 5/	French Fry Color ⁶ /	Sugar Ends %7/	Glucose YSI (DWB) ⁸ /	Vit. C Mg/100g Fresh	Pro- tein % DWB	TGA mg/100g
A76147-2	7	1.8	1.7	1.4	2.4	2.6	17	0.7	22	,	11
A7816-14	13	1.0	2.1	0.5	2.1	2.6	67	1.1	29	6.3	13
A7961-1	∞	1.0	1.0	1.9	2.1	2.2	41	9.0	19	4.3	3
A79141-3	9	1.0	2.2	2.1	2.2	1.5	20	0.3	12	5.0	11
AC79100-1	10	1.0	3.0	6.9	2.3	2.4	24	0.8	26	4.0	2
AC80369-1	11	1.0	1.8	1.5	3.1	1.5	35	0.3	23	0.4	6
Lemhi Russet	7	1.1	2.0	3.3	3,3	1.9	20	7.0	24	2.5	6
Russet Burbank	15	1.1	2.0	2.0	1.7	2.1	27	9.0	17	3.4	11
C008014-1	9	1.1	2.3	0.3	1.5	1.5	12	0.3	21	5.2	6
NDTX9-1068-11R	9	2.7	4.8	1.3	2.1	3.1	52	2.4	14	4.7	7
Red LaSoda	7	2.5	2.7	8.4	1.6	2.3	25	6.0	21	5.0	8
Norgold Russet	೮	1.0	2.1	8.1	2.0	2.8	19	1.1	26	6.1	7
Means	8	1.4	2.3	2.8	2.2	2.2	1	0.8	21	4.5	8

N.Mex omitted. 2/1/8/2//8/8/

1.0 = none, 9.0 = most severe.

3 loc (Ab, Kim, Hrm), 1.0 (none) to 9.0 (worst).
mean of 6 locations, >10/12 oz.
mean of 5 locations, 1.0 (lightest) to 5.0 (darkest).
Mean of 4 locations (SLV, Ab, Kim, Hrm), out of 453F storage, <1.0 (lightest) to 4.0 (darkest). Mean of 3 locations.

Aberdeen tubers only.

	The state of the s	2	Merit Score:		Fresh Market	<u> </u>		Merit	t Seore:	Processing	ng
	California	ornia	Colo	Idaho	Texas	10)		Oregon	Colo	Idaho	
Entry	Krn	Tn1	SILV	Xim	01 t	Spr	Means	0th	SLV	Kim	Meens
A76147-2	ger-if	£3	11	5.0	2.0	3,0	L1	(Ca))	4	2:3	
A7816-14	37.	4	47	2.8	2.7	4.3	3,6	(F)	m)	4.2	4
A7961-1	23	18	17	-	2,7	3.0	2.7	7	4	(L.D.)	
A79141-3	18	10	W)	4.4	3,0	4,3	7'7	2	7		7.7
AC79100-1	lili	38		3.9	4.0	(L)	<u></u>	11	4		4,0
AC80369-1	iš	186	5	1,0	E.J.	3.0	2.6	n - 1	u l i	0.1	1,0
Lemhi Russet	n	18	(11)	0,1	2.7	3.0	2.9	~ 1	(T)	1,0	2.0
Russet Burbank	d	20	4	2.2	4,0	4		7	(2,5	2.5
C008014-1	47	-	, , ,		E.J.	2.7	2,6	(R)	: pdl		
NDTX9-1068-11R	E)	İ	2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2,0	2.0	2.0	u/n	M. J.	5.0	5,0
Red LaSoda		English 18	2	9.0	6.2	2,3	2.6	W)		4.4	8,4
Norgold Russet	19	un	77	4.4	3.0	2.7	8	47	UL(T-ii)	4.4	4

1.0 = Best.

OBJECTIVES

- 1. Obtain or develop new and/or improved russet, long white, red, and chip processing varieties of higher quality and yield.
 - a. For hot interior valleys, fresh market russet criteria include early maturity, high percent of count-size tubers, heat tolerance, and air pollution resistance.
 - b. For northern mountain valleys, fresh market criteria include storageability; high percent No. 1's; and resistance to leafroll virus, net necrosis, or green peach aphid.
 - c. For chip processing, high solids and low sugar content are essential.
 - d. Red-skinned varieties with early maturity, no internal necrosis, and shallow eyes are desired in all production areas, including those not currently producing reds.
 - e. Long whites with high percent No. 1's, good transit and shelf-life quality.
- 2. Grow selected varieties, advanced selections and seedlings to determine if they possess desirable characteristics sought by growers and consumers.

SUMMARY OF RESULTS

Replicated yield trials were conducted at five locations. A total of 41 russets, 24 chippers, 5 long whites, and 7 reds were grown at one or more of these locations. Observational trials of varying size (27-hill, 12-hill, 5-hill, single hill) were grown near Tulelake and in Kern County. Increased emphasis was placed on red-skinned varieties for the future. Selections for further evaluation from the observational trials included 80 russets, 35 chippers, 6 long whites, and 25 reds.

Parents with the most progeny selected in the first year and observational plots included A74133-1, A76260-16, A7946-10, A68113-4, TND 329-1, Russet Norkotah, Ute, Chieftain, Red La Soda, A7816-14, ND1196-2R and Lemhi.

Additionally, Western Regional trials were conducted in Kern County and Tulelake. A national uniform trial of chipping selections, sponsored by the Snack Food Association, was conducted in Kern County. A cooperative trial was conducted with Anheuser Busch/Eagle Snacks.

Recently-released, newly-named varieties with increasing commercial interest include Russet Norkotah (ND534-4), Sierra (AD7377-1), Russet Nugget (TC582-1), Hilite (LC1), Coastal (B9596-1) and Krantz.

The most promising advanced selections that have been tested in California and with the best results in 1987 include:

Russets	Chippers	Long Whites	Reds
A7 4133-1 C008 014-1 A7 816-14 A7 411-2 CD8 013 2-1 ND5 34-4	NY81 AC80545-1 NY72 MS700-83	A76147-2 BC0038-1	NDTX9-1068-11 _R NDTX8-731-1 _R

Table 1 summarizes data from the five replicated yield trials. The Kern County trial included 23 russets, 17 chipping clones, 4 long whites and 4 reds; the Tulelake trial included 29 russets, 11 chipping clones, 2 long whites and 2 reds; the Santa Maria coastal trial included 12 russets and 2 reds; the Humboldt County north coast trial included 9 chipping clones, 2 russets and 3 reds; and the Riverside trial included 6 russets, 5 chipping clones and 3 long whites. Yields in Kern County were below normal (300 cwt/A average), but a few clones produced good yields and quality despite the poor conditions. Highest yields were produced by A80615-2, A7961-1, Lemhi, NY81, NY72, AD80481-5, Atlantic, AC80545-1, A76147-2, NDTX9-1068-11R and Red La Soda. Highest quality ratings were from ND534-4, A7961-1, AC80545-1, NY72, NY71, D195-11, MS700-83, BC0038-1, NDTX9-1068-11R, and NDTX8-731-1R.

Growing conditions at Tulelake were generally good, with yields ranging from 710 to 140 cwt/A (470 cwt/A average total yield). Highest yielding clones were A80570-4, C008014-1, A7816-14, AD79341-7, A7961-1, A7411-2, AC80545-1, NDD2007-1, Shepody, Rosa, A76147-2 and Red La Soda. Highest quality were clones Norgold Russet, Russet Burbank, CD80132-1, C008014-1, A74133-1, AC80545-1, Shepody, A76147-2, and NDTX9-1068-11R. Black spot susceptibility was evaluated; the most susceptible clones were Lemhi, NDD800-3, AC80369-1, Shepody, AD77187-7, Kennebec, NDD1784-5 and Red La Soda. Clones with low susceptibility to black spot were NDD2207-17, A74114-4, AD7430-1, AD81323-5, AD79491-1 and NDD2007-1. Storageability was also evaluated, and a combined rating based on sprouting, turgidity and disease were recorded. Clones with the best storageability were A74114-4, A74133-1, A7816-14, AD81323-5, ND534-4, NDD2207-17, Russet Burbank, AD79491-1, COA7919-4, and B15. The red selection NDTX9-1068-11R stored very poorly.

Yields at Santa Maria were good (455 cwt/A average), and quality varied. The highest yielding clone was Sierra, followed by A80570-4, A7411-2, A74133-1 and Chieftain. Sierra also had the highest quality rating, followed by A80570-4, AD7430-1, A74212-1 and Chieftain. Hollow heart conditions were prevalent, thus a good test for susceptibility was achieved.

Humboldt County growing conditions were also generally good (470 cwt/A average total yield), but scab infestation was severe. Thus a good test for scab susceptibility in this area was obtained. Highest yielding clones were Kennebec, as usual, followed by AD77187-7, Rosa, A79543-2R, Chieftain, Calgold and Sierra. The lightest color chips were produced from Rosa, AC80545-1 and COA7919-4; the highest specific gravity clones were COA7919-4, AD77187-12 and NDD1784-5. Nearly all of the chipping clones were highly infected by common scab, with Rosa, Kennebec and NDD1784-5 the most severe; AD77187-12 was the only one with slight infection. Neither Calgold nor Sierra were highly infected; similarly, Chieftain and New Norland were only slightly infected.

The Riverside County trial produced generally low yields (245 cwt/A average). The highest yielding clones were ND534-4, MS700-83, Kennebec and A76147-2. Highest quality ratings were produced by ND534-4, Sierra, MS700-83, Rosa, Kennebec and A76147-2.

Table 2 lists the selections made from the non-replicated, observational plots at Kern County and Tulelake. In the Kern County 27-hill trial, 14 russets, 8 chippers, 3 reds and 3 long whites were selected; at Tulelake, 15 russets, 3 chippers, 2 reds, 1 long white and 1 other white were selected. In the Kern County 12-hill trial, 10 russets, 1 chipper and 1 red were selected; at Tulelake, 15 russets, 3 chippers, 1 other white and 9 reds were selected. In the Kern County 5-hill trial, 17 russets, 3 reds and 4 whites were selected; at Tulelake, 7 russets, 1 red, and 4 whites were selected.

1987 Potato Variety Trials Summary of Yield, Quality and Characteristics of Standard and Potential Varieties CALIFORNIA TABLE 1.

			D-4	Yield, c	cwt/A					Č			
	7		No	1's		2 s &				Tuber 7/	Black ³ /	,	
Clone	Location Total	Total	Total	>10oz	4-10oz	Culls	B's	% 1's	S.G.	Rating	Spot	Storage ⁴ /	Notes 7/
RUSSETS													
A7411-2	K, T, SM	480	380	135	245	75	25	80	98	•		Good	
A74114-4	H	260	210	100	110	25	25	81	82		0.5	Exc	S1 HH
A74133-1	T, SM	480	400	140	260	40	40	83	80			Exc	SK
A74212-1	SM	370	295	160	135	30	40	80					S1 HH
A76260-16	₽	360	290	180	105	55	20	80	74		•	Good	нн ром
A7816-14	K, T	450	385	160	220	20	10	85	98		1.5	Exc	S1 HH
A7955-2	K	260	160	15	145	80	20	62	81	2.8			
A7961-1	K, T	420	380	145	35	35	15	89	98	•	1.8	Poor	S1 HH
A79108-3	T, SM	420	315	185	130	06	20	73	80			Good	Mod HH,
470171 3		C	C	ć			0	7	ć			•	
A/ 9141-3	Г, Т	066	330	90	740	20	70	ò	000	3.2	7.7	Fair	SI HH, GC
A79142-1	\bowtie	245	210	15	195	30	2	98	85				нн ром
A80570-4	T, SM	260	470	180	290	20	40	84	78		2.0	Poor	S1 HH
A80615-2	K	410	355	20	335	45	10	87	75	3.1			SC
AC79100-1	K, T	410	325	120	200	70	10	78	82		2.2	Poor	Mod HH.
AC79128-1	X	350	265	40	7	70	15	97					25
AC80369-1	H	450	400	180	225	25	20	89	88	3.4	4.0	Poor	S1 HH,
AD7430-1	T, SM	095	370	140	230	40	50	80	97			Fair	S1 HH
AD7818-5	K, T, SM, R	380	290	7.5	210	09	25	74	79		2.5	Fair	
AD79341-7	H	240	455	205	250	09	20	84	9/	3.2		Good	S1 HH
AD80472-1	X	305	240	35	205	55	10	79	87				SC
AD81323-2	H	345	295	170	125	30	20	83	84			Good	
AD81323-5	H	280	235	70	160	25	20	79	80		0.8	Exc.	S1 HH
AD81324-4	H	145	65	35	30	70	2	94	82			Good	Mod HH,
													Sev GC
CD80132-1	I	495	415	170	245	09	15	84	84		1.8	Fair	Rot
C08011-5	X	160	145	2	140	10	2	91	65	3,3			
C008014-1	K, T	410	385	140	240	20	20	92	78		2°8		S1 HH

CALIFORNIA TABLE 1, continued

	Notes 5/					Sev HH			Sev HH	GC	31 HH		31 HH	Sev SC	31 HH	S1 HH	S1 HH, KN				Mod SC, Sev GC, Mod HH		S1 HH			Mod HH,	Sev HH, Mod SC	
	Storage 4/			Exc		Fair	Good				Exc		01	01		Good	Exc	S1 HH			Fair		Fair			Exc	Good	Exc
6	Spot					3.2				1.2	0					1.5					ا ح.		2.2			0.7	2.5	1
16	Tuber Rating							2.9		0								3.4			3.5		0	2.8		•	ω°	3.9
	S.G.		79	72	78	83	74	89	78	78	7.0	89	7.0	74	82	88	88	88		85	84	85	06	98	79	92	82	88
	% 11s		94	06	85	97	98	87	80	89	81	94	83	92	82	91	74	91		86	84	89	78	85	94	94	92	92
	S S		5	15	10	45	15	10	25	20	15	10	20	5	15	10	35	30		5	10	15	15	5	10	10	10	10
- {	Culls		10	20	35	65	35	15	20	25	45	-0-	40	10	09	15	80	20		-0-	70	15	70	40	15	15	20	20
cwt/A	4-10oz		2	9	$^{\circ}$	4	5	135	4	9	\vdash	2	/	5	235	$^{\circ}$	9	295		205	 1	220	210	260	370	275	295	220 225
elds	>100z		5	90	25	110	140	30	30	30	150	-0-	130	15	115	160	75	09		-0-	155	100	85	2	10	130	130	140
	Total		225	285	260	350	290	165	175	95	265	150	305	165	350	290	335	355		205	465	320	295	265	380	410	430	365 225
	Total		240	320	305	460	340	190	220	140	325	160	365	180	430	320	450	400		210	550	345	380	310	405	430	460	390 235
	Location	ıed	K	K, T	K	H	H	×	K, T, SM, R	H	H	X	SM, H, R	K	K, T	K, T, R	K, T, SM	H, SM, R		M	K, T, H	K, T, H, R	K, T, H, R	K	K	EH	T, K	K, T
	Clone	RUSSETS, continued	ND435-12	ND534-4	NDA848-3	NDD800-3	NDD837-2	1	NDD1965-3	NDD2061-3	NDD2207-17	TC582-1	Calgold	Centennial	Lembi	Norgold Rus	Rus. Burbank	Sierra	CHIPPERS	AB1 (Michigold)	AC80545-1	AD77187-7	AD77187-12	AD79240-6	AD80481-5	AD79491-1	BR7093-24	COA7919-4 D195-11

CALIFORNIA TABLE 1, continued

				Yield, C	cwt/A					16	~		
Clone	Location 1 Total	Total	Total	1's >10oz	4-10oz	2's & Cu11s	B's	118	S.G.	Tuber "/ Rating	Black	Storage ⁴ /	Notes 5/
CHIPPERS, continued	nued												
MS700-83	K, H	400	350	06	255	30	20	89	80	3.00			Mod SC.
NDD1784-5	H H	0440	320	85	230	105	20	71	80	2.7	3.2	Poor	Sev HH, Sev SC,
NDD12007-1	E A	620	570	205	360	40	10	91	78	3.7	0.8	Fair	
NY72	4 M	405	385	15	370	15	ე ⊦ ೧	95	4 88	4.2			Mod SC
NY81	K	520	495	55	044	20	2	95	85	4.1			
NY82	K	260	245	15	230	2	10	94	78	3.5			
Atlantic	K	385	375	20	355	2	2	26	90	3,9			S1 HH
Kennebec	K, T, H, R	200	405	200	200	06	2	82	84	ന	3.2	Poor	Mod HH, Sev SC
Norchip	K	280	260	2	255	15	2	93	83	3.7			ı
Rosa	T, R, H	460	415	115	300	20	20	91	82	3.8	3.0	Poor	Mod HH, Sev SC
SH1 (Shepody)	H	740	650	445	205	80	2	87	78	4.0	3.5	Poor	
Shepody	エ	320	275	120	155	35	15	82	06	•			Mod HH,
LONG WHITES													
A76147-2	K, T, R	445	405	140	265	35	2	91	78	3,9	1.5		S1 HH _s
AD74548-5	R	285	230	-0-	230	25	30	80		3.1			
B15 BC0038-1	T	480	430	30	200	45	10	93	80	3.0	2.5	Exc	S1 HH S1 HH
White Rose	K, R	310	210	15	200	80	10	7.5	89	7.7			D Th

Clone									1 0	1		
	9		No. 1 s		2 8 &				Tuber 2/	Black3/		
SES	Location Total	al Total	>100	z 4-10oz	Culls	S	2 1 8	S.G.	Rating	Spot	Storage 4/	Notes 5/
A79543-2R	530	495	75	420	10	25	93	80	4.1			Mod SC
NDA1550-1R K, SM				185	10	20	06	70	3.4			S1 HH,
												S1 SC
NDTX8-731-1R K	165	155		150	-0-	10	94	75	4.2			S1 SC
NDTX9-1068-11R K, T	320		115	170	10	20	88	69	4.2	1.5	V Poor	S1 HH,
												S1 SC
H	740			240	40	30	84	84	3.8			NI POW
New Norland H	450	390	165	220	45	15	87	80	3.6			29
Red La Soda K,T	475			210	7.0	10	84	69	2.4	3.2	Poor	HH PoW

H = Humboldt County, K = Kern County, R = Riverside County, SM = Santa Maria, T = Tulelake Locations:

= high, 3 = minimum acceptable visual rating 2 = 10W3 Tuber Rating:

Black Spot: 0 = none, 5 = most severe susceptibility

3/

5/

subjective rating based on sprouting, turgidity, and rot Storage: 4/

growth cracks, HH = hollow heart, IN = internal necrosis, KN = knobs & second growths, SC = scab, S1 = slight, Mod = moderate, Sev = severe, V = very GC = growth cracks, HH = hollow heart, IN = internal SK = skinned Notes:

CALIFORNIA TABLE 2. 1987 Potato Variety Trials Selections from Non-Replicated Observational Flots

PUSSEIS

Clone	Location	Clone	Location
AS0445-5	T12	AD83071-1	F12, T12
A80570-4	K27	AD83210-1	K12
A82705-1	K27	AD83241-2	112
AC77225-10	K27. T27	AD83241-3	112
AC77513-1	¥:27	ADB407-1	15
AC77652-1	T27	AD8408-1	R5
AC7869-17	K27, T27	AD8409-1	K5
AC8024-5	T27	AD8410-1	15
AC8024-5K	T2 7	AD8412-3	K5
AC80369-1	K27, K12	AD8487-4	15
AC81198-11	K27	AD84146-1	T 5
AD81512-2	K27	AD84274-2	K5
AD81560-3	K12	AD84274-3	K 5
AD81681-14	T27	AD84275-4	K 5
AD81768-8	T27	AD84276-1	K5
AD81770-7	T27	AD84279-3	R5
AD82130-4	T27	AD84280-3	K 5
AD82275-1	K5	AD84496-1	75
AD82276-4	K5	AD84496-2	K 5
AD82276-6	K5	AD84496-5	K5, T5
AD82280-2	K5	AD84496-6	T 5
AD82283-2	K5	AND77230-1	T27
AD82286-1	15	BC0169-12	K27
AD82287-2	K 5	BC0224-13	T27
AD82287-3	K5	C07916-3	K27
AD82482-10	K5	C07918-15	K27, T27
AD82485-1	T5	C08190-1	K27, T27
AD82486-1	15	ND435-12	T27
AD83020-1	K12	NDD1099-3	T12
AD83022-1	K12	NDD1842-3	K27
AD83032-1	T12	NDD2346-3	T27
AD83032-4	K12	NDD2405-3	K12
AD83034-5	T12	NDD2563-7	T12
AD83040-6	T12	NDD2615-1	K12
AD83040-14	T12	NDD2667-1	K12
AD83052-3	K12	TND329-1	K27

CALIFORNIA TABLE 2, continued

CHIPPERS, WHITES

CloneLocationAC77513-1WK27AC80545-1K27

AD77187-7 K27 AD81738-12 T27 AD81739-9 T27 AD8487-1 T5 AD8492-5 T5 AD84103-3 T5 B15 K27

B47 K27 B141 K27 BC0038-1 K27 BR7093-24 K27 MS700-83 T27 NDA1411-4 T27

86 SD8-2 86 SD8-5 86 SD39-1 86 SD127-1

K5

T5

K5

K5

К5

85SD41-5

REDS

Clone	Location
A79543-2R	T27
A82745-1R	T12
A82583-2R	K27
A82583-3R	K27
A83303-13R A83357-7R A83359-5R A83359-7R A83364-7R A83365-2R AD83365-4R AD83365-4R AD83365-8R AD83365-8R AD83365-9R NDD2441-4R NDD2519-5R	T12 T12 T12 T12 T12 T12 T12 K5 T5 K5 T12 T12
NDD2566-7R	K12
UC142-1R	T27

COLORADO

D. G. Holm

Breeding Program

Characteristics being emphasized in the Colorado program are yield, specific gravity, russeting, and fresh market/processing qualities.

Thirty parental clones were intercrossed in 1987. Seeds from 155 combinations were obtained. Sixty seedling families were grown in the greenhouse, producing 6,088 tubers for initial selection in 1988. Surplus tubers were distributed to Idaho, Oregon and Texas.

Seedling tubers were obtained from Dr. J. J. Pavek, Aberdeen, Idaho, and Dr. J. Creighton Miller, Lubbock, Texas.

Selection Program

A total of 36,359 first-year seedlings were planted, with 357 being selected for further observation. Another 562 clones were in various stages of preliminary and intermediate testing. One hundred twenty-two of these clones were saved for further evaluation. Twenty-three advanced selections (18 russets, 4 chippers, and 1 long white) were saved and will be increased. Another 75 clones were maintained for breeding and other experimental purposes.

Advanced Yield Trial. Twenty-four clones (21 advanced selections and three cultivars) were evaluated in the advanced yield trial. Results for yield, grade, and other characteristics are summarized in Table 1.

Eight selections had greater total and US #1 yields than Russet Burbank. Of these, three are in final stages of seed increase prior to releasing to growers in 1989 for evaluation. These selections are: AC77101-1, BC0038-1, and C08011-5. BC0038-1 is a long white with processing potential. AC77101-1 and C08011-5 are both fresh market russets. These clones will be entered into the 1988 Western Regional Trials.

Chipping Studies. Twelve selections and two cultivars were evaluated for chipping potential at harvest and after various storage regimes. Specific gravity was determined at harvest. This data is presented in Table 2.

None of the selections produced acceptable chips after storage at 40° F or with reconditioning out of 40° F storage. Clones producing acceptable chips out of the field and after most other storage regimes were: A80503-1, A80559-2, AC80545-1, BR7093-24, C081103-1, NDA1725-1, W842, Atlantic and Norchip.

Borden, Inc. cooperated in testing many materials in our program for chipping potential. Results are summarized in Table 3.

Clones with color better than Northip were: A80559-2, AC80369-1, AC80545-1, BP7093-14, and W842. AC80369-1 has a russeted skin.

Grower Tests. AC79100-1 was tested by growers for the first time in 1987. It will be retested in 1988. TC582-1 was tested for the third year.

Data collected on the performance of AC79100-1 and TC582-1 is summarized in Table 4. Both of these selections have a greater total and US #1 yield potential than Centennial Russet. Percent US #1 yield and specific gravity gravities are greater than Centennial Russt and Russet Burbank.

Seed of three Sangre line selections (10, 11 and 14) were released to growers for planting in 1987. Grower response was very positive.

A chipper, AC80545-1, will be released for initial grower testing in 1988.

Cultivar Release. Based on grower response and overall performance, TC582-1 will be named in 1988. The name selected for TC582-1 is Russet Nugget because the tubers have a high solids content and the flesh is a light golden color with a high concentration of vitamin C and protein. Russet Nugget is a dual purpose potato because of its fresh market and processing qualities.

Yield, grade, stand, vine maturity, specific gravity, stem number per plant and tuber shape and skin type for advanced yield trial clones - 1987. Colorado Table 1.

		Ā	ield (Cw	Cwt/A)						
			US #1			8	Vine .	Specific	Stems/	
Clone	Total	Total	1 1	>10 oz	zo 4>	Stand	Maturity ¹	Gravity	Plant	& Skin Type
AC77101-1	428	379	00	101		96		.08		•
	268	243	0	85		88		9		L, R
	309	277	6	100		06		.06		•
	325	272	3	74		84		/		•
AC77652-1	298	240	0	39		93		\sim		Ob, R
	339	305	9	138		86		/		Ob, R
AC8024-5	527	077	3	128		66		1.085		•
AC81198-11	428	360	4 °	181		86	•	/		Ob, R
BC0038-1	411	327	6	86		97		1.085		L, W
BC0169-12	404	363	0	150		95		1.074		Ob, R
1	365	291	9	41		97		∞		L, R
2	375	330	$\overset{\cdot}{\infty}$	109		94	•	1.075		•
C08011-5	401	366	91.4	06	34	26	3.0	1.070	2.8	Ob, R
1	339	291	5	83		86		\sim		L, R
CO8182-1	308	272	о о	71		94		1.079		
CO8190-1	418	377	0	86		86		$\overline{}$		•
CO8195-4	333	286	6.	70		100	•	1.091		Ob, R
MN10874	380	328	6.	09		66				•
	374	328	~	136		100		1 1 1		Ob, R
TC582-1	328	270	-	57		96				•
WNC567-1	343	298	7	06		95	3.2	1.076		L, R
Centennial Russet	297	246	2	49		91				Ob, R
-Ω	375	269	-	52		98				I, R
8	667	410	82.3	157	70	66	2.2	1.083		
Mean	370	315	85.4	93	42	96	2.9	1.079	3.3	1
LSD (0.05)	43	43	5.7	38	15	7	0.5	1 1 1	9.0	

⁼ very early; 2 = early; 3 = medium; 4 = late; and ¹Vine Maturity is rated on the following basis: 5 = very late.

²Tuber shape: Ob = oblong; L = long Skin type: R = russet; W = white

Chip color and specific gravity of San Luis Valley chipping study entries - 1987. Colorado Table 2.

Clone	At Harvest	3 wks 70° F	10 wks 40°F	10 wks 50°F	Reconditione 10 wks/40°F	Reconditioned 3 wks/60° F 10 wks/40°F 10 wks/50°F	Specific Gravity
A80503-1	2.5	1.0	4.5	1.5	3.0	1.5	1.097
A80559-2	2.0	2.5	4.5	2.5	3.5	4.0	1.095
AC80545-1	2.0	2.0	5.0	3.0	4.0	2.5	1.073
AC81592-1	3.0	2.0	5.0	2.5	4.5	2.5	1.085
BR7093-24	1.0	1.0	5.0	3.0	4.5	2.0	1.082
C081103-1	2.5	2.5	5.0	2.0	3.0	3.0	1.087
C08286-1	3.0	2.0	5.0	3.5	4.0	2.5	1.087
MN12823	2.5	3.0	4.5	3.0	4.0	2.5	1.079
NDA1725-1	2.0	2.0	4.0	3.0	3.5	1.0	1.084
W842	1.0	1.5	4.5	1.5	3.0	1.0	1.098
WNC521-12	3.0	3.5	5.0	4.0	5.0	3.5	1.095
WNC672-2	3.5	3.0	5.0	2.5	4.0	2.5	1.088
Atlantic	2.0	2.5	5.0.	4.0	4.0	2.0	1.093
Norchip	2.5	1.5	5.0	2.0	4.5	1.5	1.082

¹Chip color was rated using the Potato Chip/Snack Food Association 1-5 scale. Ratings of 2.5 or less are acceptable.

Colorado Table 3. Chip color evaluations by Borden, Inc. 1 - 1987.

	Specific		Color ²	
Clone	Gravity	Sept. 7 ³	Jan. 28 ⁴	Apr. 19 ⁴
W842	1.097	2.0	1.5	1.0
AC80369-1	1.085	1.5	2.0	1.5
BR7093-24	1.084	1.5	2.5	1.5
A80559-2	1.097	2.5	2.0	1.5
AC80545-1	1.077	2.0	2.5	1.5
Norchip	1.079	2.5	2.5	2.0
NDA1725-1	1.085	2.0	3.0	6.0
AC81592-2	1.088	3.5	2.5	3.0
CO81103-1	1.088	2.0	4.0	4.5
AC83306-1	1.083	3.5	3.0	2.0
AC83305-2	1.074	3.0	3.5	3.5
A80503-1	1.098	3.0	4.0	3.5
CO8286-1	1.087	3.5	4.0	3.5
Atlantic	1.096	3.0	5. 5	4.0
CO83122-1	1.090	4.0	5.0	7.0
AC83250-1	1.072	4.5	5.0	5.0
MN12823	1.078	4.0	6.0	6.0
CO8398-1	1.093	5.0	7.0	6.0
CO8343-1	1.079	7.0		

 $^{^{1}\}mathrm{Data}$ collected by Mr. Larry Anderson.

 $^{^{2}}$ Color was rated using the PCII 1-10 scale. Ratings of 1-4 acceptable, 5 marginal.

 $^{^{3}}$ Potatoes were harvested September 1.

 $^{^4\}mathrm{Stored}$ at 60-70° F until October 1, then gradually cooled to 48-50° F by November 1.

Comparison of advanced numbered selections with Centennial Russet and Russet Burbank for yield, grade, specific gravity, maturity and grade defects. Colorado Table 4.

Clone	No. of Tests	Yield Total	(Cwt/A) US #1	% US #1	Specific Gravity	ic Vine I	xternal_Defects	Hollow3 Heart
AC79100-1	3	389	329	84.4	1.094	3.7	0.4	0.3
TC582-1	5	346	269	78.0	1.101	4.0	2.3	0.4
Centennial Russet	10	279	217	76.7	1.087	3.1	1.6	0.7
Russet Burbank	11	355	233	65.1	1.089	2.7	9.3	1.3

Vine maturity: 1 = Very Early; 2 = Early; 3 = Medium; 4 = Late; 5 = Very Late.

Includes defects such as growth crack, second growth, misshapen, and alligator hide.

3 Based on tubers greater than 10 ounces.

G.A. Porter, J.B. Park, and M.F. Lamoreau University of Maine: Orono

Introduction: Thirty-eight potato varieties and clones were tested at Aroostook Farm, Presque Isle, Maine during the 1987 growing season. This test was conducted as part of the NE107 Regional Project (Breeding and Evaluation of Potato Clones for the Northeast).

Methods: Single-row plots, 25 feet long were planted on May 10 using a rendomized complete block design and six replications. Flots were located on a Caribon gravelly loam soil of pH 5.0. The experimental site was cropped to cars underseeded with clover and timothy during 1985 and the clover/timothy mix was allowed to grow through the 1986 growing season prior to fell plowing. Fertilization for the 1987 potato crop consisted of 1000 lbs/A of 14-14-14, banded at planting. Cultural practices were similar to those used on commercial farms in the area and varieties were grouped so that separate tests could be vinckilled and harvested based on maturity classification. Specific gravity was determined at barvest using the weight in air, weight in water method. Hollow heart ratings indicate the number of hollow tubers observed ser 60 large tubers examined. Chip color evaluations were conducted during early December following storage at 50° F. Chips were fried at 350° F until bubbling stopped and evaluated based on Fotato Chip Institute color chart 1206-u.

Results: Foretoes experienced severe water stress at Aroostook Fern during the 1987 growing season. Only 2.8 and 1.8 inches of rain fell during the months of July and August, respectively. As result, external tuber defects were prevalent in several varieties and specific gravities were generally quite high. AF522-5, A72685-2, and NT76 exhibited moderate to severe leaf chlorosis following application of metribuzin for weed control. AF686-3, AF474-2, AF909-8, Shepody, NY81 and A7411-2 were slightly injured by this herbicide. Within the early test, CS7639-1 and CS7697-24 continue to look promising for early table use (Maine Table 1). NY79 may prove valuable as a dual purpose variety for tablestock and chipping. Yields of NY79 have been acceptable, tubers are generally large and attractive, and chip colors have been acceptable for the past two seasons (Maine Tables 1 and 2).

The most promising tablestock selections in our medium maturity trial were AF909-8 and Donna. Yield and tuber appearance of the former were particularly outstanding (Maine Tables 3 and 4). Donna has been very high yielding in three years of Presque Isle testing; however, scab susceptability, short dormancy, and occasional rough appearance have been drawbacks at other locations. AF875-16, B9340-13, B9792-61, and B9792-157 show promise as potential chipping varieties.

In the late maturity trial, CS7635-4, NY71, and NY72 continued to perform better than standard late table varieties, namely Katahdin and Ontario (Maine Tables 5 and 6). Despite very good yields and tuber appearance, small tuber size in NY76 remains a problem for tablestock use. Percent growth cracks were very high in Ontario. Chip colors were quite good for NY71 and NY76; however, the former is probably too late in maturity for consistent chip production under northern Maine conditions. AF522-1 was the highest yielding russeted selection in this trial; however, tuber appearance of this clone is generally not acceptable and very early sprouting has been a problem. AF465-2 and AF522-5 performed slightly better than BelRus in this trial; however, small tuber size has and continues to be a major problem in the former clone.

Uneven growing condition caused extensive second growth problems for Russet Burbank in our russet/long trial and as a result marketable yields of this standard variety were very low (Maine Tables 7 and 8). All test clones outperformed Russet Burbank in this test during 1987. Particularly outstanding were NemaRus and A72685-2. Very late maturity is a serious drawback for the latter.

Limited data on storage and processing characteristics were collected from 39 varieties and clones grown during the 1986 growing season (Maine Table 10). None of the clones produced acceptable potato chips from 38° F storage and none were successfully reconditioned from storage at this temperature. After cooking darkening scores were poorer than Katahdin for 22 selections and the following clones were rated particularly poor in this characteristic: Russet Burbank, Russet Norkotah, A7411-2, A72685-2, A76147-2, AF465-2, AF522-1, B9569-2, CS7635-4, NY72, and NY81. Washed appearance ratings were particularly outstanding for Katahdin, AF474-2, AF522-5, F70021, and NY76. Tuber dormancy was exceptionally short for Donna, AF522-1, CF7750-1, and F70021. Selections with the lowest storage weight loss were Russet Burbank, Kennebec, Shepody, A72685-2, A75188-3, AF522-5, NY72, and WF591-1R.

Maine Table 1. Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity for early varieties grown at Presque Isle, Maine - 1987.

	Total	Markets	Marketable Yield	Size	Size Distribution by Class	ibuti	on by	Cla	38 (%)		Size Distribution (%)	(%)
	Yield		percentage							1-7/8	2-1/2	Spec.
Variety	cwt/A	cwt/A	of std.	-	7	ന	4	2	9	to 4 in.	to 4 in.	Grav.
Early Test - 99 days	ıys											
Superior (std)	296	277	100	4	18	34	40	4	0	96	44	94
Norchip	274	223	80	11	35	27	25	7	0	89	27	89
AF686-3	272	228	82	13	43	28	15	-	0	87	16	83
B9569-2	248	240	87	47	94	9	-	0	1	7% over	8 oz.	88
CS7639-1	325	300	108	ന	2	17	52	14	2	95	99	82
CS7697-24	320	287	104	9	19	25	43	7	0	76	50	06
F70021	280	240	87	9	61	25	41	00		93	67	75
ND860-1	228	181	65	18	43	26	13	0	0	82	13	91
NY79	293	271	86	ന	14	22	53	∞	0	26	61	83
Waller Duncan												
LSD (K=100)	24	24										9

1Size classes for all varieties except B9569-2: 1 = 1-1/2 to $1-7/8^n$; 2=1-7/8 to $2-1/4^n$; 3=2-1/4 to $2-1/2^n$; 4=2-1/2 to $3-1/4^n$; 5=3-1/4 to 4^n ; 6=over 4^n . B9569-2: 1=0 to 4 oz.; 2=4 to 8 oz.; 3=8 to 12 oz.; 4=12 to 16 oz.; 5=over 16 oz.

Maine Table 2. Plant size, maturity at vinekili, tuber shape, tuber defects, hollow heart ratings, and other color for early varieties grown at Presque Tale, Maine - 1987. Maine Table 3.

		Plant Date!	Tuber	Datel		uher D) gapaje		Hollow	Chile
	7-20	Matur, at Vinekili	Shape	Appear	Total	Bun- burn	Sun- Mis- I burn shapen	Growth	Heart Rating	Color
Harly Test-99 days										R.
Superior (std)	9	(a)	cr:	un:	25.	0.3	2.3	0.2	0	(3)
Norchip		***	Col	1	8.4	C.I.	4,8	1.4	0	
AF686-3	·0	C	ে		cri cri	0.7	2.4	0.0	Ü	100
19569-2	657		(Marks	Ē.	S. S.	0.5	2.4	0.0	0	(8)
CS7639-1	Ô	T.	ক্ষে	0	- C	10	7.1	0.3	0	9
CS7697-24	a	10	- Office		4.6		0.2	0.7	0	
F70021	-	e a	4	ి	C3	1	en marie		0	400
ND860-2	Berr	67	ci		3	~! ~!	1.0	0.2	0	
6/XN	40	4		Proces	4.1	4.0	0.0	0.1	0	QB

1 See standard NE-107 rating system for key to codes.

Chip color: 1-7 acceptable, >7 unacceptable; Waller Duncan LSD (K=100)=0.4.

Maine Table 3. Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity for medium varieties grown at Presque Isle, Maine - 1987.

	Total	Marketab	le Yiel	Size	Distribution	butio	n by	Class	(%)	o r	Distribution (%)	c
Variety	cwt/A	P Cwt/A	percentage of std.	₩	7	3	4	2	9	1-//8 to 4 in.	2-1/2 to 4 in.	Spec. Grav.
Medium Test - 107 days	7 days											
Kennebec (std)	d) 310	261	100	2	00	14	48	25	3	95	. 73	87
Atlantic	298	266	102	9	24	27	35	∞	0	94	43	106
Donna	337	285	109	9	22	30	38	4	0	96	42	92
Superior	294	271	104	n	17	28	48	4	0	97	52	91
AF474-2	241	218	98	2	19	26	44	9	0	95	50	92
AF875-16	256	227	87	0	34	35	21		0	91	22	107
AF909-8	341	314	120	4	18	27	43	7	y	95	51	85
B9340-13	281	244	96	9	27	30	35	2	0	96	37	92
B9792-61	264	248	95	4	8	26	47	2	0	96	52	97
B9792-157	264	233	68	∞	28	30	31	3	0	92	34	102
Waller Duncan												
LSD (K=100)	30	29										7

Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and chip color for medium varieties grown at Presque Isle, Maine - 1987. Maine Table 4.

	PI	Plant Datal	Tuber Datal	Datal	I	uber D	Tuber Defects (%)	(%	Hollow	Chip,
Variety	Size 7-20	Size Matur. at 7-20 Vinekill	Shape	Appear- ance	Total	Sun- Total burn	Mis- shapen	Growth	Heart Rating	Color
Medium Test-107 Days	ıys									
Kennebec (std)	8	9	2	4	11.0	ი დ	5.3	1.9	0	6.8
Atlantic	7	2	← I	7	5.0	2.7	1.8	0.5	0	5.5
Donna	7	ന	2	2	9.5	4.1	4.5	0.9	0	8
Superior	7	2	2	9	3.9	0.0	2.6	0.4	0	6.9
AF474-2	7	2	n	9	5.1	0.7	3.1	1.3	0	8.0
AF875-16	9	2	pool	5	2.2	1.0	0.8	0.4	0	5.3
AF909-8	7	က	1	œ	3.8	1.1	0.7	2.0	0	7.0
B9340-13	9	2	y-ri	7	7.5	3.2	3.3	1.0	0	5.9
B9792-61	9	က	r- 4	9	2.2	1.1	0.9	0.2	-	5.3
B9792-157	v	4	-	7	3,6	1	10	0.1	C	5.7

 $^{1}\mathrm{See}$ standard NE-107 rating system for key to codes.

 2 Chip color: 1-7 acceptable, >7 unacceptable; Waller Duncan LSD (K=100)=0.6.

Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity for late varieties grown at Presque Isle, Maine - 1987. Maine Table 5.

	Total	Marketa	Marketable Yield	Size D	istri	Distribution	n by	Class	(%)	Size Dis	Size Distribution (%)	<u></u>
Variety	Yield cwt/A	Pocwt/A	percentage of std.	-	2	m	4	2	9	1-7/8 to 4 in	2-1/2 to 4 in.	Spec. Grav.
Late Test - 119 days	ays											
Katahdin (std)	311	268	100	ന	6	16	39	29	4	93	89	80
Be1Rus		194	72	39	47	11	2	—	ı	14%	over 8 oz.	99
Ontario	330	227	85	2	15	21	44	14	-	96	58	72
Shepody	314	207	77	10	32	30	14	14	ı	28%	over 8 oz.	85
A76147-2	407	248	92	13	36	31	12	00	1	51%	over 8 oz.	87
AF465-2	249	239	89	42	48	0	 	0	1	10%	over 8 oz.	90
AF522-1	360	310	116	27	51	19	ന	0	ı		over 8 oz.	89
AF522-5	280	237	88	33	47	15	2	0		20%	over 8 oz.	98
CS7635-4	306	276	103	2	10	19	53	15	_	97	89	82
NY71	324	298	111	7	10	17	20	19	2	96	69	84
NY72	384	322	120	ന	11	14	42	26	4	93	89	84
NY76	341	310	116	7	22	26	40	2	0	93	45	81
NY81	359	236	88	ന	7	14	49	25	2	95	74	85
Waller Duncan												
LSD (K=100)	42	50										4

Size classes for BelRus, Shepody, 2-1/4"; 3=2-1/4 to 2-1/2"; 4=2-1/2 to 3-1/4"; 5=3-1/4 to 4"; 6=over 4". Size classes for BelRus, Shepody, A76147-2, AF465-2, AF522-1 and AF522-5: 1=0 to 4 oz.; 2=4 to 8 oz.; 3=8 to 12 oz.; 4=12 to 16 oz.; 5=over SIZE CLASSES IOI NATARDIN, UNTAILO, US/035-4, NI/1, NI/2, NI/0, AND NIOI; 16 oz.

Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and Maine Table 6. Plant size, maturity at vinekill, tuber shape, tube chip color for late varieties grown at Presque Isle, Maine - 1987.

	P1	Plant Data ¹	Tuber	Tuber Data ¹		Tuber	Tuber Defects (%)	(%)	Hollow	Chip,
Variety	Size 7-20	Matur. at Vinekill	Shape	Appear- ance	Total	Sun- burn	Mis- shapen	Growth	Heart Rating	Color
Late Test-119 days										
Katahdin (std)	00	4	-	7	7.6	4.6	2.8	0.2	0	8.0
BelRus	4	2	7	7	7.5	1.0	5.9	9.0	0	8.9
Ontario	6	00	m	4	27.0	1.8	22.8	2.4	0	ω° 80
Shepody	7	4	00	4	23.9	6.5	15.9	1.5	0	7.4
A76147-2	0	9	9	2	34.4	3.2	3.7	27.5	0	8.3
AF465-2	9	2	9	7	3.3	0.1	2.4	0.8	0	7.3
AF522-1	7	5	9	2	13.7	1.7	11.5	0.5	0	80.8
AF522-5	9	ന	9	7	15.3	1.5	12.8	1.0	0	8.0
CS7635-4	9	7	-	2	7.0	0.2	1.4	5.4	0	7.8
NY71	2	2	1	2	4.0	1.6	0.3	2.1	0	5.6
NY72	00	9	-	9	10.1	6.1	2.6	1.4	0	7.3
NY76	00	2	-	7	2.5	1.0	1.2	0.3	0	5.6
NY81	7	2	2	7	31.6	2.2	0.7	28.7	1	

 $^1\mathrm{See}$ standard NE-107 rating system for key to codes.

Chip color: 1-7 acceptable, >7 unacceptable; Waller Duncan LSD (K=100)=0.5.

Maine Table 7. Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity for russeted varieties grown at Presque Isle, Maine - 1987.

A cwt/A of std. 1 2 100 100 36 37 266 266 22 41 236 236 17 34 291 291 19 36 283 283 14 38 216 216 226 28 53	Distribution by Class	(%) Siz	Size Distribution (%) Over Over	- 4	Spec.
100 100 36 37 266 266 22 41 236 236 17 34 291 291 19 36 283 283 14 38 216 216 28 53	2 3 4 5	8	oz. 12 oz	٠	Grav.
266 266 22 41 236 236 17 34 291 291 19 36 283 283 14 38 216 216 28 53					
266 266 22 41 236 236 17 34 291 291 19 36 283 283 14 38 216 216 28 53	7 22 2 3		27 5		85
236 236 17 34 291 291 19 36 283 283 14 38 216 216 28 53			37 14		81
291 291 19 36 283 283 14 38 216 216 28 53	32 13		49 17		88
283 283 14 38 216 216 28 53	22				89
216 216 28 53			48 16		9/
			19 2		98
33 33					2

*Size classes: 1=0 to 4 oz.; 2=4 to 8 oz.; 3=8 to 12 oz.; 4=12 to 16 oz.; 5=over 16 oz.

Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and chip color for russeted varieties grown at Presque Isle, Maine - 1987. Maine Table 8.

	P1	Plant Data ¹	Tuber	Datal		Tuber	Defects	(%)	Hollow	Chip,
Variety	Size 7-20	Matur. at Vinekill	Appea: Shape ance	Appear-Shape ance	Total	Sun- burn	Sun- Mis- Growth burn shapen cracks	Growth	Heart Rating	Co101
Russet Test-127 days	ß									
Russet Burbank (std)		7	∞	2	66.1	2.1	60.4	3.6	П	8.4
NemaRus	2	e	7	œ	11.9	5.0	6.4	0.5	0	7.6
A7411-2	2	4	6	7	21.5	1.6	15.0	4.9	0	8.4
A72685-2	7	5	5	9	9.6	9.0	7.8	1.2	0	9.1
A75188-3	5	4	7	9	10.8	0.7	8.0	1.2	0	7.6
B9596-2	4	2	7	9	8.7	0.5	7.9	0.3	0	8.6

 $^{\mathrm{1}}$ See standard NE-107 rating system for key to codes.

 $^2\mathrm{Chip}$ color: 1-7 acceptable, >7 unacceptable; Waller Duncan LSD (K=100)=0.8.

Maine Table 9. Chip color from 38° F storage, potential for reconditioning, after cooking darkening indices, washed appearance ratings, days to sprout formation (length of dormancy), and storage weight losses at 38 and 50° F for 39 potato varieties grown at Presque Isle, Maine during 1986 and stored during the 1986-1987 storage season.

Pr	ocessing	Processing from 38° F			Days to	Days to Indicated	Sto	Storage Wt.
Variety	Chip ₁ Color	Recond. ²	After Cooking Darkening ³	Washed Appearance Index	Sprout	Sprout Length pip 1/2 inch	Los 38 F	S (%) 50 F
Donna	10.0	6.6	7.4	70(5) PC, CS, RS, SS, DR, BH	53	88	6.1	12.9
Katahdin	10.0	4.6	7.4	76(6) PC, SB, SS, LE, B	26	119	7.4	14.8
Kennebec	6.6	6.9	7.0	69(5) PC, SB, GC, RS, SS, LE, B	88	151	5.5	9.4
NemaRus	10.0	ω° 8	7.2	61(5)SB,SS,NR,B	51	128	7.9	17.3
NorKing Russet	10.0	9.5	7.0	74(4)SS,GC,NR,B	84	147	9.9	13.7
Russet Burbank	9.8	8.6	9.9	54(3)SS,M,NR,B	135	170	9°4	6.2
Russet Norkotah	10.0	8.6	8.9	37(2)SS,BS	84	140	6.2	12.9
Russette	10.0	9.2	7.8	63(4)SZ,SB,GC,M,B	114	191	5.3	7.6
Shepody	10.0	9.7	7.5	62(3) M, PC, SB, RS, SS	70	119	5.4	9,3
Superior (early)	10.0	9.6	7.8	82(4) PC, SS, BS, LE	79	128	6.4	14.1
Superior(medium)	10.0	9.2	7.9	88(5)PC, SS, BS, PS	81	123	5.1	14.1
A7411-2	9.7	8.5	8.9	61(3)GC, SS, NR, B	51	135	5.7	14.3
A72685-2	6.6	9.5	8.9	32(2)SB,GC,SS,M,DR,NR,B	58	114	4.6	14.2
A75188-3	10.0	9.5	7.5	46(3)SB,GC,CS,M,NR,B	156	184	6.4	6.3
A76147-2	6.6	9.6	8.9	43(2)SB,SS	58	121	5.6	17.9
AF339-5	10.0	8.6	7.5	53(2)M, PC, GC, RS, DR, LE	7.2	128	12.3	11.0
AF465-2	10.0	9.2	6.7	74(5)GC, SZ, NR, PS	7.4	151	5.5	18.5
AF474-2	10.0	8.6	7.2	78(6) PC, SB, RS	29	130	6.1	20.5
AF522-1	10.0	6.6	8.9	74(3)BS,NR,B	49	86	7.0	20.7

Maine Table 9. - Continued.

	Processing	from 38° F			Days to	Indicated	Storge	rage Wt.
Pi li			After	Washed	Q1.	Length	Los	80
Variety	Color Color	Recond.	Cooking 3 Darkening	Appearance Index	Q1Q	1/2 inch	χ Σ) ()
AF522-5	10.0	10.0		82(6)LE	81	151	4.2	12.5
B9340-13	10.0	6.9	0	50(4) PC, SB, SS, BS, LE, B	29	130	7.2	18.0
B9540-55	9.5	7.9		58(3) SB, DR, BS, NR	65	128	8.2	17.0
B9569-2	10.0	10.0	8.9	64(6)LE,M	79	142	6.8	12.7
B9596-2	10.0	9.5	8.0	67(3)GC,NR,B	58	177	5.9	10.1
CF7679-15	9	6.6	7.3	83(5) PC, SB, GC, RS, BS, LE	79	149	8.5	11.7
CF7750-1	10.0	10.0	6.9	71(4)LE,NR,M,B	53	109	5.3	17.7
CS7296-5	10.0	10.0	7.1	(4)	79	149	12.4	14.7
CS7635-4	10.0	8.6	6.8	78(5)PC,RS,LE,B	77	161		10.7
CS7639-1	10.0	10.0	8.5	85(5) PC, RS, SS, SR, LE.	79	142	7.6	14.8
CS7697-24	10.0	10.0	6.9	73(6)88	72	128	0.9	27.4
CS77120-8	10.0	6.6	7.7	68(4) PC, DR, BS, BH, B	81	158	8.9	19.6
F70021	10.0	10.0	7.2	87 (6) RS, SS, BH, ST, PS	58	100		23.7
NY71	6.6	9.2	7.2	67(5) PC, SB, CS, SS, RS	70	140	9°9	11.7
NY72	10.0	9.8	6.4	31(2) PC, RS, SB, SS, DR, B	96	168	5.9	8.5
NY76	9.8	0.6	7.2	91(7)PC,RS,LE	26	133	6.1	14.8
NY79	9.6	9.3	7.2	86(5) PC, SB, RS, SS, ST	72	184	9.5	13.3
NY81	10.0	0.6	6.8	52(4) PC, SB, GC, CS, RS, SS, B	70	161	8.6	9.8
W752	10.0	8.1	7.6	58(4) PC, SZ, B	29	116	7.2	21.9
WE591-IR	10.0	10.0	7.1	83(3) SS, GC, B	29	151	4.4	9.8

Maine Table 9. - Continued.

Chip colors: 1-7 acceptable, >7 unacceptable. from harvest. F, 85% R.H. Stored at 380

Chip1986. 2 Reconditioned samples were placed at 70 $^\circ$ F for a three wk period starting on January 22, color rating scale: 1-7 acceptable, >7 unacceptable. 3 Samples were stored at 45 $^\circ$ F, 85% R.H. from harvest until January 19, 1986 and were then warmed to 65 $^\circ$ F for 96 h. Diced tubers were blanched for five min., cooled to 120 $^\circ$ F, then rated after 30 min with 80 min 50 min 10 min Munsel Neutral Color Scale. Higher indices indicate lighter color.

SR=soft rot, BS=black scurf, LE=enlarged lenticels, B=bruises, BH=buttonhole, PS=pitted scab, SZ=small tuber Numbers in parentheses indicate subjective appearance of the sample using standard NE-107 appearance code. PC=poor color, SB=sunburn, GC=growth cracks, CS=common scab, SS=silver scurf, RS=russet scab, DR=dry rot, Superscripts indicate codes for major external defects as follows: M=misshapen, NR=nonuniform russeting, mid-January. Tubers were then washed and graded. First number indicates % U.S. #1 tubers in sample. ⁴Unreplicated samples weighing approximately 7500 grams were stored at 45° F and 85% R.H. until size, ST=stolons adhere to tubers.

 5 Tubers were stored at 45 $^{
m O}$ F, 85% R.H.

⁶Percentage sprout and weight loss following storage from harvest until April 8, 1987, at indicated temperature and 85% R.H.

French fry color and texture of selected potato clones and varieties under simulated processing conditions. All varieties were grown at Presque Isle, Maine during 1987. Maine Table 10.

Overall Texture		0	0	0	0	0	0	0	0	+	0	0	
Comments 5		U,GF	Ω	Ω			Ω	Ir		Ir	Ir	Ir	
Mealiness er Outer		8.4	4.7	4.9	4.7	4.6	4.7	4.4	4.8	4.7	4.8	4.9	NS
Mea		4.2	4.0	3.9	4.1	4.4	3.8	ຕໍຕ	3.6	4.8	4.3	9.0	0.8
Grayness 3		4.0	4.0	3.8	4.0	3.9	4.0	4.0	4.0	4.0	4.0	4.0	NS
Gray		4.0	3.8	4.0	4.0	3.6	4.0	4.0	4.0	4.0	4.0	4.0	0.3
Color Grade Inner Outer		00	00	00	00	00	0	yerd	00	0	0	0	
Color (Inner		00	00	00	00	00	0	-	00	0	0	0	=100)
Variety	,	BelRus	NemaRus	Russet Burbank (std)	Shepody	A7411-2	A72685-2	A75183-3	AF465-2	AF522-1	AF522-5	B9596-2	Waller Duncan LSD (k=100)

rinsed in cool water, blanched for 8 min at 170° F, par fried at 375° F for 80s, and quick frozen at -30° C in plastic bags. Four such replications were processed and held at -15° C until evaluation. Prior to evaluation, samples were finish fried at 360° F for 2-1/2 min., blotted dry with a paper towel, and cooled 6 min. All samples were processed and evaluated by the Department of Food Science (R. True ¹Four center and four adjacent raw tuber slices were cut from each of five tubers. The slices were and T. Work), University of Maine; Orono, ME. Processing was conducted on December 1. All tuber samples were stored at $50^{\rm O}$ F, 85% R.H. from harvest until processing.

Maine Table 10. Continued.

 2 Color Grades are from U.S.D.A. color standards chart #64 extstyle-1, third edition.

4=no graying; 3 Grayness indices represent weighted means derived from the following evaluation scale: 3=slight graying; 2=moderate graying.

4=mod. mealy, slightly moist; 3=slightly mealy, mod. moist; 2=soggy, not mealy; 1=very soggy, not mealy. ⁴Mealiness indices represent weighted means derived from the following evaluation scale: 5=dry, mealy;

Ir=french fries were irregular in color; dark blotches detracted from appearance of product. U=french fries were very uniform in color Gf=exceptionally good flavor 5 Comments:

+ texture rated significantly better than Russet Burbank. 6 Overall texture rating:

O texture rated not significantly different from Russet Burbank.

- texture rated significantly poorer than Russet Burbank.

MAINE -- 1987

Alvin F. Reeves, Robert B. Long, Garland S. Grounds, and R. Alan Henn.

Potato Breeding

Seed and seedling production. As in past years crosses were directed toward three goals: a long russet processing variety; a round white table variety; and a chipping variety. Scab resistance is emphasized in all crosses. A total of 36 parent plants were intercrossed in 65 different combinations to produce 162,125 seeds. An additional 585,100 seeds were obtained from field plantings of 22 russet selections. Greenhouse plantings of true seeds yielded 61,031 seedlings from which 53,935 tubers were harvested.

Seedling selection. A total of 363 (0.82%) new selections were saved from 44,091 single hills. From the 245 12-hill plots, 51 (20.8%) were saved for further testing. Eighteen 60-hill plots, and 24 advanced selections were maintained and tested.

Protoclonal selections. Field testing of 30 clones derived from Russet Burbank leaf cells included replicated yield tests of 19 of the advanced protoclones. None were equal to the standard Russet Burbank in yield, but three were equal in specific gravity.

Disease tests. In cooperation with Drs. Franklin Manzer, Richard Storch, Bill Brodie, Robert Goth, Gilbert Banville and Simeon Leach, a number of selections were tested for resistance to several diseases. All tests were inoculated either directly or on spreader rows within the plots. Results were as follows: 8 of 30 selections tested were resistant to late blight; 9/62 to acid scab; 36/94 to common scab; 78/94 to net necrosis; 2/24 to leafroll; 7/16 to verticillium; 4/24 to golden nematode; 4/15 to Fusarium roseum; 1/15 to Fusarium solani; and 0/2 to ring rot.

Physiological disorders. Additional tests for physiological disorders showed 5 of 17 resistant to hollow heart; 3/16 to blackspot bruising; and 2/16 to shatter bruising.

Yield tests. A total of 45 selections were grown in replicated yield tests in 1987. Eighteen yielded better than the control varieties and 16 had higher specific gravities. Ten selections were better than the controls for both qualities. Early maturing selections were given 120 pounds of nitrogen per acre and killed at 90 days from planting. Medium maturity selections were given 140 pounds of nitrogen and killed at 100 days; medium-late maturing selections were given 160 pounds of nitrogen and killed at 108 days; late maturing selections were given 160 pounds of nitrogen and killed at 116 days.

Chip tests. After processing in December, February and April from four different storage temperatures, five selections and Lenape had better chip color than Monona: AF236-1, AF874-8, AF875-16, AF897-21, and CS7232-4.

Processing tests. Ruth True and Terry Work (Food Sciences Department of the University of Maine in Orono) conducted french fry tests of seven selections. One (AF236-1) had better color than Russet Burbank, and one (AF465-2) had a lower mealiness rating than Russet Burbank.

Grower trials of advanced selections. Seven unnamed selections were grown on commercial farms in 1987: AF236-1, AF330-1, AF465-2, CS7635-4, CS7697-24, WF564-3 and WF591-1. Poor tuber shape was found in WF564-3, and AF330-1 had rot in the seed and harvested tubers. Both of them will be dropped. The other five had good results, and will be retested.

Russets: AF465-2 had the best tuber type; however, some blackleg was noted.

Chipping selections: AF236-1 had good chip color and high dry matter. It will be named Somerset. CS7232-4 and AF875-16 continue to show promise.

Round white table varieties: CS7697-24 and CS7635-4 give high yields at early and late harvest, respectively.

Table 1 summarizes the advanced selections in the Maine potato breeding program.

Y S Z Z Z Z K K $\Sigma \times S$ SMHHK Verticillium some advanced selections from the Maine potato breeding program. SSZ MMMMM N N N X SEE Common scab 2 FZSSS SKS K S H H S Acid scab Resistance to FESS 84 154 154 E E S SSHHH Early blight FFFSS E S S SSHFF Late blight X X X X X X 8 8 8 压跃民 X X X X X Net necrosis SKFFF Leafroll X zuriv FFFS SFIF 压货货 SSHFF Hollow Heart FFFF ET ET ET A A A MAHHH Bruising FEE मि मि मि GA 田内市市市 Storage qualities 되 되 되 되 TH TH TH IT IT IT Percent dry matter Z C Z W B C E B Chip color DDADM 2 2 2 MAM MPMCM box Cooked quality C C H H H A FI FI मि मि मि FFFGA count Characteristics of Mield り 百 日 日 日 日 日 日 BEC N E C $\Sigma \Sigma \Sigma \Delta \Delta$ for processing or Tuber type RO R R RO RO Round white tablestock Skin color W K K K K K K K K Early Maturing Full Season E E WE ML Mid Season M H M Maturity Table 1. Long russet CS7697-24 AF1094-19 AF1112-14 AF1115-3 AF1203-5 Pedigree AF1060-2 AF1206-2 CS7639-1 AF1161-1 CS7684-9 AF1166-4 CS7635-4 AF465-2 AF522-5 AF1165-1 AF828-5 Maine

SSEES

Golden nematode

M S S

FISE

8 8 8 8 8

	olden nematode		S		S	S	S	S	S	×	×	S	
	Verticillium		\boxtimes		S	S	S	\mathbb{Z}	K	S	\boxtimes	S	
	Соттол Ѕсар		Σ		S	S	S	R	S	R	S	\mathbb{M}	
5/	Acid seab		K		S	\boxtimes	S	\boxtimes	\mathbb{Z}	R	K	M	
e to	Early blight		S		R	\boxtimes	ഗ	S	S	S	ഗ	S	
Resistance to	Late blight		S		R	ഗ	S	S	S	K	S	S	
esis	Net necrosis		R		R	×	K	X	K	K	×	K	
M	Leafroll		S		S	S	S	S	S	S	S	S	
	X suriV		S		S	S	S	ഥ	S	S	S	S	
	Hollow Heart $\frac{4}{}$		\boxtimes		\boxtimes	G	G	ഥ	G	G	ഥ	口	
	/p/ gaisiusā		G		Α	А	ъì	Ŋ	5	M	ტ	禸	
	\frac{4}{\tau} seilities egerois		Ħ		A	ĽΨ	ĒΨ	ഥ	ĽΉ	ഥ	ĽΉ	G	
			뙤		IJ	口	IJ	띠	闰	禸	띠	G	
	Chip color 4/		А		ш	Ŋ	ഥ	G	山	G	9	ഥ	
	Cooked quality $\frac{4}{4}$	box	Į.		А	ĮΉ	ĮΉ	ĽΉ	ĽΉ	ĽΉ	ĽΉ	Ŋ	
	\ <u>u_bləi</u> Y	count	А		G	G	M	А	G	G	G	M	12+0
	Tuber type $\frac{3}{3}$	or	OF.		70	×	RO	ĸ	ĸ	×	×	М	
	Skin color <u>2</u> /	cessir	Μ		MC	В	Μ	S	M	M	Μ	MC	m:: : : : : : : : : : : : : : : : : : :
	Maturity <u>1</u> /	for processing	M	type	ME	M	\mathbb{Z}	ME	ML	M	Σ	ы	1
	Pedigree	Long white	CS7984-3	Chipping ty	AF236-1	AF845-11	AF874-8	AF875-15	AF875-16	AF875-17	AF879-3	CS7232-4	1 / 1 = 00%

1/ E = early, M = medium, L = late.

 $[\]frac{2}{N}$ W = white, C = cream, B = buff, R = russet, N = netted.

 $[\]frac{3}{4}$ R = round, 0 = oblong, L = long.

^{4/} Rated as U = unacceptable, M = marginal, A = acceptable. G = good, E = excellent, F = further testing needed.

^{5/} R = resistant, M = moderately resistant, S = susceptible,
 F = further testing needed.

MICHIGAN

R.W. Chase, G.H. Silva, R.B. Kitchen, R.H. Leep and R. Hammerschmidt

The potato variety evaluation and management program is designed to (a) identify improved cultivars better suited to Michigan's fresh market and the processing industry; (b) conduct intensive evaluations of selected cultivars to determine optimum production management inputs that improve potato market quality.

In all variety evaluations, special consideration was given to quality parameters. The focus was on tuber appearance, size distribution, external and internal defects, specific gravity (dry matter content), chip color, storability and culinary properties. Also of significant interest to Michigan is tolerance to common scab and bruising. Potential chipping varieties are stored in two storage environments (45 and 52° F) for subsequent quality evaluations.

DATES-OF-HARVEST TRIAL FOR ROUND VARIETIES

The 1987 dates-of-harvest trial was conducted at the Montcalm Research Farm. Fourteen selected varieties were tested for their marketable maturity and adaptability to Michigan. seven released varieties and seven advanced included performances of these selections. The varieties evaluated at three harvest dates, 98, 115 and 140 days after planting. Four replications of a randomized complete block design were harvested at each harvest date. Varieties were planted May 4 in plots 23 feet x 34 inches in size with an in-row spacing of 12 inches.

The previous crop was alfalfa. Fertilizers and Temik 15G were applied as described in the introduction. The hilling and herbicide application were all done just as the potatoes were emerging, which was May 18. Immediately after hilling, a tank mix of Dual at 2 lbs/A plus Lexone at ½ lb/A were applied for weed control and no further tillage was performed until harvest. During the growing season, the crop was irrigated 10 times according to the MSU irrigation scheduling program. The amount of water applied ranged from 0.8 to 1.0 inch per application. The minimum profile moisture content allowed was percent. Fungicides and insecticides were applied depending on need. Fungicides for early blight control were alternated and generally scheduled at weekly intervals. An early and late blight forecasting program from Wisconsin was used as a guide to commence spraying. Relative humidity and temperature at canopy levels were monitored for this purpose. All weather data was collected with a programmed Campbell's CR21 Micrologger.

For chip color determinations, 20 tubers were taken at random and a slice from each tuber used for the test. Agtron E-10 Colorimeter was used for color measurements. For aftercooking darkening, peeled halves of three tubers picked at random were cooked in steam and evaluated at 0, 1 and 24 hours. Susceptibility to blackspot bruising was evaluated in artificially bruised and check treatments. Artificial bruising was done by placing 20 potatoes inside a wooden drum and turning 10 revolutions at a moderate speed. In the check treatments, potatoes were tested without artificial bruising, so that any blackspot observed occurred during harvest. artificially bruised tubers were kept for 48 hours at room temperature prior to peeling. A Hobart peeler was used for peeling the tubers.

Results

The yield and quality parameters of potato varieties at the three harvest dates are presented in Tables 1, 2 and 3. In 1987, the weather conditions during the growing season was generally unfavorable for potatoes. Lack of sufficient rainfall combined with high day and night temperatures in June and July contributed to an overall reduction in tuber yield and specific gravity in all varieties. Owing to the dry conditions, early blight was minimal in the trials.

Among the early maturing varieties, \underline{Onaway} produced the highest U.S. #1 yield and was free of internal defects. $\underline{Conestoga}$ produced average yields with a good chip color but the gravity was low. $\underline{Eramosa}$ matured very early and produced smooth tubers. The seed of $\underline{Eramosa}$ used for this trial had severe pitted scab.

Saginaw Gold (MSU seedling 002-171) was maintained in Ontario, Canada and in their trials it has been a consistently, excellent chipper. Yields were greatest at 115 days with excellent chip color. However, the dry matter was lower than desired for processing. A joint release of this variety between MSU and Agriculture Canada is being considered for 1988.

Among the medium to medium-late maturing varieties, $\underline{MS700-83}$, $\underline{Michigold}$, $\underline{Atlantic}$, $\underline{MS716-15}$ and $\underline{MS702-80}$ performed well. $\underline{MS70083}$ produced very high U.S. #1 yields, and acceptable chip color but the gravity was lower than preferred by a chipper. $\underline{Michigold}$ yielded similar to $\underline{MS700-83}$ but with higher gravity. $\underline{Atlantic}$ had the highest gravity with average yields but was susceptible to internal defects. $\underline{MS716-15}$ produced above average yields with excellent quality, high gravity and excellent chip color. $\underline{MS702-80}$ produced above average yields with a high percent of U.S. #1 and the chip color was exceptionally good.

Among the late maturing varieties, $\underline{MS700-70}$ and $\underline{LA01-38}$ were the two highest yielding lines at the second and third harvests. Both had a high percent of U.S. #1 tubers, good gravity and chip color. Most varieties in the trial were free of internal defects.

In the culinary tests, undesirable levels of after-cooking darkening were found in MS700-83 and B9140-32 (Table 4). Some sloughing was observed in MS716-15 and Atlantic, which have high specific gravity. Susceptibility to blackspot was evaluated at the 115 and 140 harvest dates (Tables 5 and 6).

In artificially bruised treatments, the varieties highly resistant to blackspot were Conestoga and MS716-15. Moderate levels of resistance were found in MS700-70, MS702-80, Onaway, Eramosa and B9140-32. Varieties LA01-38, W832 and Atlantic were susceptible. In the check treatments, most varieties showed no blackspot. Blackspot at the 140-day harvest was slightly higher than the 115-day harvest.

Variety Characteristics

- MS700-83 Round white, mid-season maturity and above average yields with medium gravity. Has potential for chipping. In some years, after-cooking darkening has been a drawback. Possesses some scab resistance and growth crack has been noted in some trials.
- Michigold Round tubers with yellow flesh, mid-season maturity. Produces above average yields with high gravity. It sets heavy and produces a golden color chip when processed from field and short term storage.
- MS702-80 Round white, mid-season maturity with average yields. Has medium gravity but produces an excellent chip color. It has good scab tolerance, and no internal defects. Has a tendency to produce oversized tubers at a 12 inch spacing.
- MS716-15 Round white, medium late maturity with above average yields. It has high gravity, excellent chip color and no internal defects. Tubers are well shaped and a smooth general appearance.
- $\frac{\text{MS}700-70}{\text{Pound}}$ Round white, late season maturity with prolific yields. It has high gravity and the chip color is acceptable. Tubers are somewhat rough in appearance with deep eyes. Tends to produce oversized tubers at 12 inch spacing.
- LA01-38 Round white, late season maturity with prolific yields. It has a medium to high gravity with acceptable chip color. Tends to produce oversized tubers at 12 inch spacing.
- Saginaw Gold Round to oblong tubers with light yellow flesh and early to mid-season maturity. It has an excellent chip color but the dry matter content was lower than desired for processing.

- W832 Round white, mid-season maturity with below average yields. It has medium gravity and the chip color is acceptable.
- Conestoga Round to oblong white, early maturity with average yields, gravity and an excellent chip color. Early blight is a problem in some years.
- Eramosa Round-oblong white and very early maturity. The tubers have a smooth general appearance with no internal defects. Gravity is lower than Onaway. Has potential for the early fresh market.
- Sunrise Round-oblong and early to medium maturity. Has average yields with low gravity. Susceptible to growth cracks and scab in some years.
- Onaway Round to oblong and early maturity. Has above average yields with low gravity. Minimal internal defects. Has a tendency to produce oversized tubers and is susceptible to growth cracks and early blight.
- Atlantic Round white, mid to late season maturity. Above average yields with high gravity. Has excellent chip color and is the major chipping cultivar in Michigan. It is susceptible to internal brown spot (heat necrosis), hollow heart and scab.

DATES-OF-HARVEST TRIAL WITH COUNT PACK VARIETIES

Seventeen russet and long varieties were evaluated for the count-pack market and processing potential at two harvest dates, 100 and 140 days. The results are presented in Tables 7 and 8.

With few exceptions, most varieties were late maturing and did not perform well at the first harvest date. The varieties possessing good external quality at the second harvest were A78242-5, A76147-2, A79341-3, A79357-17, A74114-4 and HiLite Russet. Although Russet Norkotah had a good type, it had a high percent of undersize tubers.

The after-cooking darkening data is presented in Table 9. None of the potato varieties showed undesirable levels of darkening. Blackspot susceptibility data is presented in Table 10.

In artificially bruised treatments, the varieties that appeared to be highly resistant to blackspot were Russet Norkotah, A79341-3, HiLite Russet and A81556-1. Moderate levels of resistance were found in A74114-4, Shepody and Russet Burbank. Varieties Pak-136, A76147-2 and A69868-2 were susceptible.

In the check treatments, most varieties showed no significant blackspot.

HiLite Russet and Russet Norkotah had the best appearance after peeling.

Variety Characteristics

- A76147-2 Long, very light russet, late maturity with high yields and medium gravity. It has good external appearance and minimal internal defects. Has potential for count-pack market.
- $\frac{A78242-5}{}$ Good early growth and vigor. Russet, maturity is late with above average yields and gravity. Has good external appearance and a tendency to produce a high percent of oversized tubers.
- A79341-3 Very late maturing russet, with high solids. Good external appearance and quality.
- $\frac{\text{A79357-17}}{\text{average yields and medium gravity.}} \frac{\text{Good early growth and vigor.}}{\text{average yields and medium gravity.}} \cdot \frac{\text{Maturity is}}{\text{considered very late.}} \cdot \frac{\text{Russet with good external appearance and quality.}}$
- A79239-8 Has early emergence, good vine growth and early vigor. Maturity is considered late and similar to Russet Burbank.
- Pak-136 Mid to late season maturity with above average yields and gravity. Has a tendency to produce oversized tubers.
- A74114-4 Mid to late season maturity with above average yields and medium gravity. Russet, has good cooking qualities and resistance to blackspot. Has excellent external appearance and quality. Excellent potential for count-pack market.
- Bak-P140 Mid-season maturity with average yields but above average gravity.
- HiLite Russet A patented line, mid-season maturity with average yields and low gravity, somewhat similar to Russet Norkotah. Has good cooking qualities and resistance to blackspot. Has good external quality and appearance. Excellent potential for count-pack market.
- Shepody Long white, mid-late season maturity. Fared poorly in 1987 with below average yields and medium high solids. Maturity 2-3 weeks earlier than Russet Burbank normally. Some susceptibility to scab but has good external and internal qualities. Slow emergence and early establishment. Pre-cutting of seed is recommended.

Norgold Russet - Mid-season maturity with below average yields and gravity. Good external appearance and quality. Produced a high percent of undersized tubers.

<u>Krantz</u> - Oblong russet, mid to late season maturity with below average yields and gravity in 1987.

Sh-l - A mutant of Shepody introduced by Plant Genetics, Inc.

Plant stands were very poor due to the poor condition of the seed. It had a very low percent of U.S. #1 tubers because of the high proportion of pick outs.

A69868-2 - Fared poorly in 1987. Russet with below average yields and gravity. Produced a high proportion of undersized tubers.

Russet Norkotah - Oblong to long russet, early to mid-season maturity. Tubers have a very smooth external appearance with a gravity lower than Russet Burbank. Produced below average yields because of poor sizing. Because of the excellent appearance, it has potential in the count-pack market.

 $\frac{A81556-1}{}$ - Late season maturity with below average yields and gravity. It has excellent external appearance but the yields were too low in 1987 with a large proportion of pick outs.

UPPER PENINSULA TRIAL

Sixteen potato varieties were tested in a randomized completed block design with four replications in the Upper Peninsula. The results are presented in Table 11.

The tuber yield, size distribution and dry matter content of most varieties in this trial were excellent. The specific gravities were higher than at Montcalm trails.

ADVANCED
ADAPTATION TRIAL

Entries to this trial consisted of selections from the 1986 adaptation trial and new releases from other states and provinces. Included also were 14 new MSU seedlings from crosses made in 1984. In 1987, 25 selected lines were tested in a lattice design with two replications. The data from tuber yield, size distribution, specific gravity and chip color are summarized in Table 12. Culinary test results are presented in Table 13. Except in MS402-1 and MS402-2, after-cooking darkening was not a problem. Some varieties, with higher specific gravities, showed a tendency to slough after boiling.

Blackspot susceptibility data is presented in Table 14.

In artificially bruised treatments, the varieties that appeared to be highly resistant to blackspot were MS401-1, MS402-8, NYD195-11, Rose Gold, ND1719-5R and MS401-2. Moderate levels of resistance were found in Onaway, MS402-6, MS402-1, MS401-8, MS401-4, F72004 and MS402-4. Varieties F7411-4, ND1859-3, MS401-3, MS402-2, NYD164-9, MS402-7 and ND2109-7 were susceptible.

In the check treatments, most varieties showed no significant blackspot.

MS401-1, ND1859-3 and ND1719-5R had the best appearance after peeling.

ADAPTATION TRIAL

Fifty-one new seedling introductions from North Dakota and 30 from New York were tested in eight-hill unreplicated plots in a Federer's Augmented design. On the basis of external quality, U.S. #1 yield and scab resistance, 16 lines were selected in the field. The data on tuber yield, size distribution, specific gravity and chip color are summarized in Table 15. These 16 lines are being further evaluated for chip color, storability and internal defects. Only those that meet the industry requirements for fresh market and processing will be further tested in 1988 in larger plots.

SCAB VARIETY TRIAL

In 1987 samples of several varieties and seedlings were planted in a replicated trial to determine their scab tolerance. The site had a known history of a severe scab problem. The tubers were also cut and scored for the incidence of internal brown spot (Table 16).

Michigan Table 1. First date of harvest yield data — Round white varieties — August 10, 1987 (98 days).

	Yield	cwt/a ^{1/}	%_	Size	Distr	ibuti	on		. 2/		ntern Defec	
Variety	U.S. #1	Total	U.S. #1	<2	2-31/4	>3½	Pick Outs	Spec. Grav.	Agtron ² ' Chip Color	НН	Int. Nec.	Vas Dis.
MS700-83	455	511	89	10	80	9	1	1.071	72	0	0	2
LA01-38	423	454	93	5	75	18	2	1.077	69	0	0	0
Atlantic	408	458	88	10	80	8	2	1.083	72	0	2	1
Onaway	393	441	89	3	63	26	8	1.063	36	0	0	0
Michigold	371	428	87	12	81	6	1	1.079	70	0	0	0
MS716-15	368	397	93	5	82	11	2	1.081	73	0	0	0
MS702-80	363	390	92	5	72	20	3	1.071	74	0	0	0
MS700-70	343	376	91	6	75	16	3	1.079	71	0	0	0
Saginaw Gold	333	409	81	7	75	6	12	1.073	71	0	0	0
Conestoga	323	365	88	10	83	5	2	1.069	68	0	0	0
W832	307	319	96	4	87	9	0	1.079	61	0	0	5
Sunrise	295	331	89	9	79	10	2	1.069	66	0	0	4
Eramosa	281	331	85	12	81	4	3	1.059	51	0	0	0
B9140-32	234	277	84	16	84	0	0	1.076	69	2	0	0
Average	349	391						1.074	66			

 $^{^{1/}}$ Yield based on the average of four replications of a RCB design. CV=9.9%; s $_{\overline{\rm X}}$ =17.5 at 5% for Duncan's Multiple Range Test (DMRT); LSD=49 cwt/a.

 $^{^{2}/}_{\text{Agtron color:}}$ >60=excellent; 55-60=good; 50-55=fair; <50=not acceptable.

 $^{^{3/}20}$ tubers cut to determine internal defects.

Michigan Table 2. Second date of harvest yield data — Round white varieties — August 27, 1987 (115 days).

	Yield	cwt/a ^{1/}	%	Size	Distr	ibuti	on		. 2/		ntern Defec	
Variety	U.S. #1	Total	U.S. #1	<2	2-31/4	> 3½	Pick Outs	Spec. Grav.	Agtron ² / Chip Color	НН	Int. Nec.	Vas Dis.
LA01-38	557	572	97	3	61	36	0	1.076	71	0	1	2
MS 700-70	530	558	95	3	48	47	2	1.082	69	0	0	1.
MS700-83	501	563	89	9	72	17	2	1.074	65	0	1	2
Michigold	500	551	91	8	79	12	1	1.081	66	0	1	4
Onaway	479	523	91	5	63	28	4	1.062	39	0	0	1
Atlantic	478	521	91	7	72	19	2	1.085	73	1	2	3
MS702-80	446	478	93	4	60	33	3	1.072	74	0	0	3
MS716-15	429	459	93	6	75	18	1	1.082	72	0	0	2
Saginaw Gold	380	435	87	10	78	9	3	1.072	69	0	0	0
Conestoga	364	415	87	10	80	7	3	1.069	67	0	2	1
Sunrise	350	390	90	9	74	16	1	1.068	67	0	1	4
W832	341	362	94	4	81	13	2	1.078	65	0	0	4
B9140-32	324	355	91	9	87	4	0	1.077	64	0	0	3
Eramosa	319	368	86	9	78	8	5	1.058	45	0	0	1
Average	428	468						1.074	63			

 $^{^{1/}}$ Yield based on average of four replications of a RCB design. CV=12.7%; $\rm s_{\overline{x}}$ =27.2 at 5% level for DMRT; LSD=78 cwt/a.

 $^{^{2}/}_{\text{Agtron color:}}$ >60=excellent; 55-60=good; 50-55=fair; <50=not acceptable.

 $^{^{3/}}$ 20 tubers cut to determine internal defects.

Michigan Table 3. Third date of harvest yield data — Round white varieties — September 21, 1987 (140 days).

	Yield	cwt/a ^{1/}	%	Size	Distr	ibuti	.on		. 2/		nterna	
Variety	U.S. #1	Total	U.S. #1	<2	2-34	>3½	Pick Outs	Spec. Grav.	Agtron ² / Chip Color	НН	Int. Nec.	Vas Dis.
LA01-38	523	544	96	3	58	38	1	1.076	58	0	1	2
MS700-70	498	527	95	4	56	39	1	1.083	59	0	2	3
MS700-83	455	518	88	9	74	14	3	1.073	55	0	0	2
Michigold	452	497	91	8	75	16	1	1.081	60	0	0	2
Onaway	451	489	92	4	54	38	4	1.061	25	0	0	1
MS702-80	399	426	93	5	65	28	2	1.073	63	0	2	2
MS716-15	389	425	92	6	76	16	2	1.082	61	0	0	2
Atlantic	380	425	89	8	71	18	3	1.083	59	1	3	2
Conestoga	330	377	87	10	79	8	3	1.072	70	2	0	2
Saginaw Gold	329	426	77	6	67	10	16	1.073	65	0	0	1
Eramosa	320	359	89	6	83	6	5	1.056	30	0	0	0
Sunrise	285	328	87	10	78	9	3	1.071	60	0	3	4
W832	280	296	95	4	79	16	1	1.077	58	0	4	3
B9140-32	<u>261</u>	312	83	16	80	3	1	<u>1.076</u>	62	0	0	0
Average	382	425						1.077	56			

 $^{^{1/}}$ Yield based on the average of four replications of a RCB design. CV=12.8%; $s_{\overline{x}}$ =24.5 at 5% level for DMRT; LSD=78 cwt/a.

 $^{^{2}/}_{\text{Agtron color:}}$ >60=excellent; 55-60=good; 50-55=fair; <50=not acceptable.

 $^{^{3/}20}$ tubers cut to determine internal defects.

Michigan Table 4. After-cooking darkening $^{1/}$ of potato varieties in the 1987 dates-of-harvest trial with round varieties.

Variety	0 Hours	1 Hour	24 Hours	Comments
LA01-38	1.0	1.0	1.0	
MS700-70	1	1	1	
MS700-83	1	2	2	2 tubers darkened
Michigold	1	1	1	
Onaway	1	1	1	
MS702-80	1	1	1	
MS716-15	1	1	1	Some sloughing
Atlantic	1	1	1	Some sloughing
Conestoga	1	1	1	0 0
Saginaw Gold	1	1	1	
Eramosa	1	1	1	
Sunrise	1	1.5	1.5	l tuber slightly dark
W832	1	1.5	1.5	l tuber slightly dark
B9140-32	1	2	2	2 tubers darkened

 $^{^{1/}}$ Rating based on a scale of 1-5; 1 = no darkening, 5 = severe darkening (black) overall.

Michigan Table 5. Blackspot susceptibility at 115-day harvest — 1987.

	Artificiall	y Bruised	Chec	k
Variety	% Tubers with Blackspot	Severity ^{1/}	% Tubers with Blackspot	Severity ^{1/}
MS 700-70	15	0.15	5	0.05
MS716-15	5	0.05	5	0.05
MS702-80	15	0.15	_	_
MS700-83	15	0.15	5	0.05
Michigold	15	0.20	5	0.05
Saginaw Gold	_	_	0	0
Onaway	20	0.20	0	0
Sunrise	15	0.20	5	0.05
LA01-38	45	0.70	0	0
Atlantic	30	0.40	0	0
W832	40	0.50	0	0
Conestoga	0	0	0	0
Eramosa	10	0.10	0	0
B9140-32	<u>10</u>	0.10	<u>0</u>	0
Average	18		2	

 $^{^{1/}}$ Severity = Mean number of blackspot bruises per tuber.

Michigan Table 6. Blackspot susceptibility at 140-day harvest — 1987.

	Artificiall	y Bruised	Chec	k
Variety	% Tubers with Blackspot	Severity ^{1/}	% Tubers with Blackspot	Severity 1/
MS 700-70	15	0.15	0	0
MS716-15	10	0.10	0	0
MS702-80	10	0.15	10	0.10
MS 700-83	15	0.20	0	0
Michigold	15	0.20	5	0.05
Saginaw Gold	20	0.25	0	0
Onaway	10	0.15	0	0
Sunrise	15	0.20	15	0.15
LA01-38	60	1.00	15	0.15
Atlantic	30	0.35	5	0.05
W832	40	0.60	0	0
Conestoga	5	0.05	0	0
Eramosa	15	0.25	0	0
B9140-32	<u>15</u>	0.15	_5	0.05
Average	20		4	

^{1/}Severity = Mean number of blackspot bruises per tuber.

Michigan Table 7. First date of harvest yield data — Count pack varieties — August 12, 1987 (100 days).

	Yield cw	nt/a ^{1/}	% Size	Dist	ributio	n		
Variety	U.S. #1	Total	U.S. #1	<4	4-12	>12	Pick Outs	Specific Gravity
A76147-2	361	488	81	16	69	12	3	1.067
A78242-5	292	418	70	7	45	25	23	1.072
A79357-17	234	324	72	19	66	6	9	1.073
Bak P140	233	297	78	20	75	3	5	1.073
A74114-4	226	311	73	17	59	14	10	1.067
Norgold Russet	222	322	69	26	66	3	5	1.062
HiLite Russet	208	310	67	28	63	4	5	1.065
Russet Norkotah	203	308	66	32	63	3	2	1.068
A79341-3	200	274	72	24	62	10	4	1.077
A79239-8	198	285	70	20	66	4	10	1.072
Russet Burbank	186	365	51	29	51	0	20	1.073
Krantz	167	245	69	23	64	5	8	1.065
A69868-2	151	336	45	33	44	1	22	1.064
Pak-136	135	185	73	17	68	5	10	1.069
Shepody	104	214	48	46	46	2	6	1.075
Sh-1	76	164	46	38	45	1	16	1.063
A81556-1	66	147	45	48	43	2	7	1.064
Average	192	293						1.069

 $^{^{1/}}$ Yield based on the average of four replications of a RCB design. CV=21.8%; s_{\overline{X}}=24.2 at 5% for DMRT; LSD=70 cwt/a.

Michigan Table 8. Second date of harvest yield data — Count pack varieties — September 22, 1987 (140 days).

	Yield cw	rt/a ^{1/}	% Size	Dist	ributio	1		
Variety	U.S. #1	Total	U.S. #1	<4	4-12	>12	Pick Outs	Specific Gravity
A78242-5	405	521	78	6	40	38	16	1.072
A76147-2	364	545	70	15	53	17	15	1.074
A79341-3	322	405	80	10	54	26	10	1.079
A79357-17	293	374	79	16	69	10	5	1.072
A79239-8	281	397	71	18	57	14	11	1.081
Pak-136	279	316	88	9	65	23	3	1.075
A74114-4	278	349	79	18	60	19	3	1.073
Bak-P140	262	327	80	19	74	6	1	1.076
HiLite Russet	241	332	73	23	64	9	4	1.068
Shepody	210	374	56	28	52	4	16	1.080
Norgold Russet	206	327	63	32	52	11	5	1.066
Russet Burbank	198	441	44	27	41	3	29	1.077
Krantz	193	261	73	19	63	10	8	1.070
Sh-1	188	436	43	20	36	7	37	1.068
A69868-2	169	335	51	30	48	3	19	1.069
Russet Norkotah	169	290	59	39	55	4	2	1.070
A81556-1	154	298	52	23	51	1	25	1.068
Average	248	372						1.073

 $^{^{1/}}$ Yield based on the average of four replications of a RCB design. CV=18.3%; $s_{\overline{x}}$ =22.6 at 5% level for DMRT; LSD=64 cwt/a.

Michigan Table 9. After-cooking darkening $^{1/}$ of long-type potato varieties in the 1987 dates-of-harvest trial.

Variety	0 Hours	1 Hour	24 Hours	Comments
Russet Burbank	1.0	1.0	1.0	
A74114-4	1.0	1.0	1.0	
HiLite Russet	1	1	1	
Russet Norkotah	1	1	1	
A81556-1	1	1	1	
A79357-17	1	1	1	
A76147-2	1	1.5	1.5	
Norgold Russet	1	1.5	1.5	
Shepody	1	1	1	Some sloughing
A79239-8	1	1.5	1.5	
Bak P140	1	1.5	1.5	Some sloughing
A79341-3	1	1.5	1.5	
Sh-1	1	1	1	
A78242-5	1	1	1	
Krantz	1	1	1	
A69868-2	1	1	1	
Pak-136	1	1	1	

 $^{^{1/}}$ Rating based on a scale of 1-5; 1 = no darkening, 5 = severe darkening (black) overall.

Michigan Table 10. Blackspot susceptibility of count pack varieties — 1987 (140 days).

	Artificiall	y Bruised	Chec	k
Variety	% Tubers with Blackspot	Severity 1/	% Tubers with Blackspot	Severity ^{1/}
A78242-5	25	0.55	5	0.05
A76147-2	40	0.80	O	-
A79341-3	5	0.05	0	_
A79357-17	25	0.30	O	_
A79239-8	20	0.40	0	_
Pak-136	50	1.10	15	0.15
A74114-4	15	0.30	O	-
Bak P140	25	0.35	O	-
Hilite Russet	5	0.05	O	_
Shepody	10	0.10	O	_
Norgold Russet	25	0.30	O	_
Russet Burbank	10	0.10	O	_
Krantz	20	0.20	O	
Sh-1	25	0.35	5	0.05
A69868-2	35	0.50	G	0
Russet Norkotah	O	0	O	0
A81556-1	_5	0.05	_0	0
Average	20		2	

 $^{^{1/}}$ Severity = Mean number of blackspot bruises per tuber.

Michigan Table 11. Tuber yield, size distribution and specific gravity of potato varieties in the Upper Peninsula — 1987.

	Yield c	wt/A	%	Size	Distrib	ution		
Variety	U.S. #1	Total	U.S. #1	2"	2-31/4"	3½"	Pick Outs	Specific Gravity
A76147-2	634	661	96	4	34	62	0	1.080
700-70	426	465	92	8	52	39	1	1.086
A7411-2	413	449	92	7	61	31	1	1.089
Atlantic	406	447	90	10	62	28	0	1.090
716-15	383	432	88	12	62	26	0	1.086
700-83	357	405	88	12	59	28	1	1.079
Russet Burbank	351	475	74	26	62	12	0	1.087
Krantz	348	400	87	12	54	33	1	1.073
Russet Norkotah	314	373	84	16	68	16	0	1.070
Shepody	309	371	83	15	59	24	2	1.085
Michigold	304	382	79	20	59	21	0	1.088
702-80	291	345	83	17	58	25	0	1.075
Acadia Russet	268	337	80	20	67	13	0	1.080
Nooksack	252	283	89	11	62	27	0	1.089
HiLite Russet	249	301	83	17	65	18	0	1.069
Norgold Russet	212	299	70	30	56	14	0	1.070
Average	345	402						1.081

Michigan Table 12. Yield data of potato varieties in the advanced adaptation trial — Harvested September 14, 1987 (133 days).

	Yield c	wt/a ^{1/}	%	Size l	Distrib	ution			
Variety	U.S. #1	Total	U.S. #1	<2	2-31/4	> 3½	Pick Outs	Specific Gravity	Chip Color
MS401-5	591	647	91	4	61	30	4	1.086	58
Onaway	524	575	91	4	50	41	5	1.062	21
MS401-7	523	605	87	5	70	18	8	1.090	53
MS402-6	468	504	93	6	70	23	1	1.074	55
Atlantic	456	475	96	4	74	22	0	1.086	60
MS401-1	448	503	89	9	76	13	2	1.079	64
ND1859-3	447	495	90	7	75	1.5	3	1.077	57
Rose Gold	424	463	92	7	72	20	1	1.075	41
MS401-3	412	476	87	5	57	30	8	1.084	63
NYD164-9	394	438	90	9	73	17	1	1.079	67
MS402-7	372	416	89	2	54	35	9	1.073	52
MS402-1	371	422	90	7	73	17	3	1.075	45
F7411-4	368	474	78	10	51	27	12	1.091	60
ND2109-7	354	418	84	13	83	1	3	1.077	64
NYD195-11	349	355	98	2	71	27	0	1.067	61
MS401-8	349	401	87	5	62	25	8	1.080	62
MS402-2	348	404	86	13	80	6	1	1.069	53
MS401-4	342	387	87	13	87	0	0	1.077	_
F72004	337	359	94	6	78	16	0	1.068	36
ND1719-5R	330	374	88	11	70	18	1	1.063	32
MS401-2	327	425	77	5	56	21	18	1.081	58
MS401-6	307	340	91	5	58	33	4	1.077	61
MS402-4	250	257	70	28	69	1	2	1.064	39
Russet Burbank	247	442	56	20	46	10	24	1.075	47
MS402-8	246	253	97	3	56	41	0	1.068	64
Average	384	440						1.076	

 $^{^{1/}{\}rm Yield}$ data based on the average of two replications of a lattice design. CV=14.7%; LSD at 5%=112 cwt/a.

Michigan Table 13. After-cooking darkening $^{1/}$ of potato varieties in the 1987 advanced adaptation trial.

Variety	0 Hours	1 Hour	24 Hours	Comments
F7411-4	1.0	1.5	1.5	
ND1859-3	1	1.5	1.5	
F72004	1.5	1.5	1.5	
Rose Gold	1	1	1	Some sloughing
NYD164-9	1	1	1	Some sloughing
ND2109-7	1.5	1.5	1.5	Some sloughing
Onaway	1.5	1.5	1.5	
ND1719-5R	1	1	1	
NYD195-11	1	1.5	1.5	
MS401-1	1	1	1	
MS401-2	1	1	1	
MS401-3	1	1	1	
MS401-4	1	1	1	
MS401-5	1	1.5	1.5	Some sloughing
MS401-6	1	1	1	
MS401-7	1	1	1	Some sloughing
MS401-8	1	1	1	
MS402-1	1.5	2	2	
MS402-2	1.5	2.0	2.5	
MS402-4	1	1	1	
MS402-6	1	1	1	
MS402-7	1	1.5	1.5	
MS402-8	1	1.5	1.5	

 $^{^{1/}}$ Rating based on a scale of 1-5; 1 = no darkening, 5 = severe darkening (black) overall.

Michigan Table 14. Blackspot susceptibility of advanced adaptation trial varieties (133 days).

	Artificial1	y Bruised	Chec	k
Variety ^{1/}	% Tubers with Blackspot	Severity ^{2/}	% Tubers with Blackspot	Severity ^{2/}
MS401-5	20	0.45	5	0.05
Onaway	10	0.10	5	0.05
MS401-7	15	0.15	0	ree
MS402-6	10	0.15	5	0.05
MS401-1	0	_	0	_
ND1859-3	45	0.65	15	0.15
Rose Gold	5	0.05	5	0.05
MS401-3	40	0.90	5	0.05
NYD164-9	30	0.40	5	0.05
MS402-7	30	0.35	5	0.05
MS402-1	10	0.10	5	0.05
F7411-4	60	1.70	5	0.05
ND2109-7	30	0.45	0	_
NYD195-11	0	_	0	_
MS401-8	10	0.15	10	0.10
MS402-2	35	0.80	5	0.05
MS401-4	10	0.25	5	0.05
F72004	15	0.15	0	~
ND1719-5R	5	0.15	0	~
MS401-2	5	0.15	0	_
MS401-6	25	0.35	10	0.10
MS402-4	10	0.10	5	0.05
MS402-8	_0	-	_0	~
Average	20		2	

 $^{^{1/}\}mathrm{Varieties}$ are arranged according to their U.S. #1 yield in 1987.

 $^{^{2/}}$ Severity = Mean number of blackspot bruises per tuber.

Michigan Table 15. Yield data of potato varieties in the adaptation trial — Harvested September 30 (145 days).

	Yield cw	t/a ^{1/}	%	Size I)istribu	ıtion			4 ,,,
Entry No.	U.S. #1	Total	U.S. #1	<2	2-31/4	> 3½	Pick Outs	Specific Gravity	Chip Color
NYE11-45	538	633	85	12	61	24	3	1.072	56
NYE28-2	529	566	93	5	66	27	2	1.080	69
ND2224-5R	509	556	92	8	83	9	0	1.061	53
ND2284-2	489	566	86	12	76	10	2	1.059	64
ND791-5R	451	547	82	9	68	14	9	1.056	54
ND 2330-3	422	547	77	16	49	28	7	1.075	73
ND2130-11	365	422	86	12	72	14	2	1.071	77
NYE11-28	365	384	95	5	75	20	0	1.065	59
NYE57-13	345	432	80	20	64	16	0	1.074	72
ND2207-8RUSS	336	441	76	15	76	0	9	1.064	958a
ND2319-3RUSS	326	460	79	18	50	29	3	1.065	-
NYE55-41	259	267	96	4	78	18	0	1.068	71
NYE11-15	249	317	79	18	79	0	3	1.069	70
ND2047-12RUSS	211	267	79	21	79	0	0	1.061	-
ND1538-1RUSS	201	298	68	29	55	13	3	1.061	-
NYD195-25	192	211	91	9	91	0	0	1.074	63
Atlantic	480	528	91	7	76	15	2	1.083	62
Onaway	442	461	96	4	83	13	0	1.063	-
Russet Burbank	221	365	61	21	61	0	18	1.074	-

 $^{^{1/}{\}mbox{Yield}}$ based on 8-hill unreplicated plots in a Federer's augmented design. CV=14.7%; LSD at 5%=112 cwt/a.

Michigan Table 16. Evaluation of seedlings and varieties for scab and internal brown spot.

Variety	Percent of Tubers with No Scab	Percent of Tubers with Less than 5% Scab	Comments	% IBS
·				
Atlantic	47	80	Pitted	20
A74-114-4	44	63		0
A76147-2	46	77		10
B9140-32	3	30		0
Conestoga	33	51		10
Eramosa	65	98		20
HiLite Russet	61	97		ND
Krantz	62	90		0
LA01-38	0	33		0
Michigold	33	69		Ō
Norgold Russet	76	94		Ö
ND651-9	25	63	Pitted	Ö
Onaway	42	85	11000	0
Rosegold	21	45	Pitted	10
Russet Burbank	42	84	11000	20
Russet Norkotah	47	90		10
Saginaw Gold	22	66		0
Shepody	20	66	Pitted	0
Superior	64	92	- 100Cd	10
MS700-70	39	59		10
MS700-83	9	46		30
MS 702-80	56	92		0
MS716-15	33	75		0
MS401-1	17	23	Pitted	0
MS401-2	52	72	Some pits	20
MS401-3	43	61	Some pits	0
MS401-4	30	56	Pitted	80
MS401-5	0	39	Pitted	20
MS401-6	4	48	Some pits	60
MS401-7	46	80	Pitted	10
MS401-8	0	63	Some pits	20
MS402-1	39	64	Some pits	10
MS402-6	39	64	Dome birs	100
MS402-7	14	64		100
MS402-8	0	50		0

NEW YORK - LONG ISLAND

J.B. Sieczka, D. D. Moyer and R.C. Neese

Early White

In the early maturity class, Superior and F70021 produced yields that were not significantly different from each other (Table 1). The other entries, Norchip, Sunrise, and NY79 had yields that were significantly lower than Superior. Tubers of F70021 were oblong, have shallow eyes and have a smooth, white skin. This line had the best appearance rating in the test. Internal defects may be a problem.

Main Season White

The main season clones, Kennebec, A76147-2, C7635-4, NY72, and NY81 produced marketable yields that were significantly higher than the standard, Katahdin, at Riverhead, N.Y. (Tables 2 & 3). Of these only NY72 had appearance ratings equal to Katahdin. Hudson and Kennebec tubers had the worst appearance ratings. Kennebec tubers tended to be off-shape whereas Hudson and NY81 tubers had prominent lenticels and pinkeye disease. Internal necrosis was a problem in Atlantic and C7635-4. In the South Fork experiment with white-skinned clones, Katahdin, NY72 and NY81, produced yields that were significantly higher than the other entries tested (Table 4).

Red

Chieftain and the golden nematode resistant seedling, D191-2, produced yields that were not significantly different from each other (Table 5). The skin color of D191-2 was a deeper red than Chieftain. Both lines had a tendency to skin, but more skinning was noted on D191-2.

Russet

In the South Fork russet experiment BelRus, Coastal Russet, NemaRus and NorKing produced yields that were not significantly different from each other (Table 6). At the Long Island Horticultural Research Laboratory all the russet entries outyielded BelRus (Table 7). The highest yielding clone, A72685-2, had a tendency towards hollow heart as did NorKing. Coastal Russet produced a high yield of attractive tubers. Internal necrosis was observed in tubers of this line. Russet Burbank tubers tended to be off-shape. Russet Norkotah tubers had prominent lenticels and were irregular in shape. Internal disorders were a problem in AF522-5 tubers. The most promising USDA russet line is B9922-11 (Table 8). B9922-11 had a high yield of relatively attractive tubers. Hollow heart was a problem with this line NemaRus and B0184-26.

Nitrogen and Spacing

Nitrogen rate did not have an effect on yield, size distribution, specific gravity or internal defects of the five lines tested (Table 9). Within row spacing had a significant effect on the total and/or marketable yield of all the clones tested. Close spacing resulted in a significantly higher total yield of NY72, NY78, NY79 and NY81 and a greater marketable yield of Coastal Russet, NY72 and NY81. Specific gravity was not affected by spacing.

Seed Piece Size

Total and marketable yields of Hampton were increased with increasing seed piece size, but the differences were not statistically significant (Table 10). Number of tubers per foot of row increased significantly as seed piece size increased, however, mean tuber weight did not change proportionately. Vines produced from one ounce seed pieces were small early in the season but were the most vigorous at time of vine kill. Specific gravity was not affected by seed piece size.

Storage

After-cooking darkening and blackspot ratings for experiments conducted in 1986 are presented in Table 11. The only white-skinned clone that had after-cooking darkening ratings lower than Katahdin was B9792-136. BelRus was relatively free from after-cooking darkening. Russet-skinned entries that had ratings significantly lower than BelRus were: Coastal Russet, NemaRus, NorKing, A7411-2, A72685-2, AF522-1, and B9569-2.

Acknowledgements:

Seed was provided by Robert L. Plaisted, Cornell University; Raymon E. Webb, USDA; and Gregory A. Porter, University of Maine. Special thanks are extended to the Corwith Brothers for providing the land, and assistance in the establishment of the experiment on the South Fork. Thanks are also extended to Carlos Squires, Jr. and Ray Halsey for the use of harvesting equipment.

Long Island Table 1 . Results of Early White Potato Experiment, Riverhead, N Y-1987 Standard Variety: Superior

												-			-	-				-	-
	Yield	(cwt/A)	Jo %	%	of Tota	1 Yield						Interr	Internal Defects	fects							
	US	No 1	Std	2 -	2.5-	3.3-			Spec	Vine		-	1	Int Nec		-	Tub	Fuber Data			
Clone	Total	2-4"	2-4"	2.5	3.3	4	4	Def	Grav	Mat	田	8	SI	M	S	App	Color	Text	Shape I	Septh	Shape Depth Comments
Superior	456	350	100	30	46	1	0	14	8 9	3.3	-	0	0	0	0	5	W		O-R	S	R,Nice
Norchip	336	226	64	3.0	45	0	0	2	7.0	0.9	_	_	0	0	0	9	M	RS	R	₩ Q	MT, Irr
Sunrise	362	274	7.8	31	42	0	0	2	62	4.5	_	0	0	0	0	7	BU	SN	×	MS	R,Irr,DSE
F70021	419	338	16	3.5	36	0	0	4	59	5.3	2	_	10	0	0	00	M	SN	O-R	S	MT,Sl Irr
NY79	335	335 276 79 42 25 0	1 62	42	2.5	0	0	4	5 8	3.0	_	_	0	0	0	7	BU	SN	O-R	Д	Sl F,Irr
Waller-																					
Duncan(0.05) (55) (62)	5) (55	(62)							(2)												
			Ì																		

-Planted 4/10/87, roto beat 8/14/87, harvested 8/17/87. Within row spacing 9.3". Fertilizer applied at a rate of 1000 lb/A of 10-20-20 in bands at time of planting, 80 lbs of N sidedressed. Plot size 2 rows X 12', 4 replications.

G = growth cracks, L = prominent lenticels, M = misshapen, Defects - Total of all defects. Abbreviations for major defects listed in comments. Pe = pinkeye, Rh = Rhizoctonia, S = sunburn, Sc = scab.

-Specific gravity determined by hydrometer, 1.0 omitted.

-Vine maturity rated on 8/8/87 on a scale of 1 to 9, 1 = completely dead, 9 = green and vigorous.

-Number of tubers with hollow heart, brown center, or internal necrosis of 40 tubers cut (10 per replication), SI = slight, M = moderate, S = severe.

Texture - HR = heavy russet, MR = moderate russet, MS = moderately smooth, N = netted, PR = partially russetted, SN = slight net, S = smooth. Color - B = brown, C = cream, BR = bright red, Bu = buff, BW = bright white, MR = medium red, P = pink, Pu = purple, W = white, T = tan. Shape - C = cylindrical, O = oblong, L = long, R = round.

Appearance - rated on a scale of 1 to 9; 1 = extremely rough, unattractive, 9 = smooth, attractive. Depth - D = deep, I = intermediate, S = shallow, VD = very deep, VS = very shallow.

-Comment abbreviations. Att = attractive, CT = chain tubers, DAE = deep apical eyes, DSE = deep stem end, F = flat, HS = heat sprouts, Irr = irregular, JER = jelly end rot, Kn = knobs, MDAE = moderately deep apical eyes, =yellow.

Long Island Table 2 . Results of NE107 Main Season White Variety Experiment, Riverhead, NY-1987 Standard Variety: Katahdin

Yield (cwt/A)	Yield	Yield (cwt/A)	Jo %		% of	of Total Yield	Yield					Interr	Internal Defects	ects							
		US No1	Std	2 -	2.5-	3.3-			Spec Vine	Vine			Int	Int Nec				Tuber Data	Data		
Clone	Total	2-4"	2-4"	2.5	3.3	4	¥	Def	Grav	Mat	HIH	BC	SI	\mathbb{Z}	SA	pp Co	lor T	ext Sl	App Color Text Shape Depth	epth	Comments
Katahdin	455	337	100	20	47	00		11	64	5.3	0	0	2	1	9 0	6.5	A	S	R-0	-	MDAE
Atlantic	544	427	127	20	59	4	0	7	84	5.0	3	0	_	3	3 5	.3 E	BU	Z	R-0	MS	Irr
Hudson	199	390	116	00	32	1 8	7	30	72	5.0	1	_	_	0	0	.3	M	RS F	R-0	H	Irr,Pe
Kennebec	700	439	130	19	43	2	0	28	72	4.8	1	0	_	0	0 4	.3	W	S	0	Ι	Irr, Kn, Pe
A76147-2	839	593	176	27	43	-	0	17	72	5.8	1	0	0	0	0 5	0.	W	SN I	T-0	S	Irr, Kn
AF474-2	323	242	72	30	42	2	0	10	89	3.5	0	0	0	0	9 0	6.8	W	RS	0	Sh	SI Irr
AF909-8	521	393	117	2.1	50	5	0	14	61	2.0	П	0	0	0	0 5	.3 E	BU	SN)-R		Irr,DAE,CT
C7635-4	540	441	131	2 8	50	4	0	9	99	00	2	0	2	3	1 6	.3	M	RS	×	Sh	MT,L
FL657	429	353	105	1.5	57	11	0	00	62	5.5	-	-	-	0	0 4	8.4	×	RS (J-R	I-D	Irr, YFlesh
NY72	662	580	172	12	62	13	5.	5	7 8	7.0	1		0	0	0	6.5 I	BU	SN	~	9	SI Irr, MDAE
NY76	509	366	108	32	40	1	0	4	67	4.0	_	0	0	0	0	6.8	\mathbb{A}	S	×	Sh	Irr,
NY81	665	464	138	10	46	14	_	23	72	5.5	_	0	0	0	0 4	4.8 I	BU	S	\simeq	S	Pe,Rough, L
W752	485	339	100	34	35	\vdash	0	2	95	2.0	0	0	0	0	9 0	6.3 I	BU	SS	0	Sh	F, Irr
Waller-																					
Duncan(0.05) (90) (90)	(06)	(06)							(4)												

Long Island Table 3. Results of Advanced Golden Nematode Resistant Clones Experiment, Riverhead, NY -1987 Standard Variety: Katahdin

Standard Variety . Inatailulu	101	alaman																		
	Yield	(cwt/A)	Jo %		% of	of Total Yield	Yield				I	Internal Defects	1 Def	ects	1					
		US No 1	Std	2 -	2.5-	3.3-			Spec	Vine			Int	Int Nec			Ţ	Tuber Data		
Clone	Total	2-4"	2-4"	2.5	3.3	4	¥	Def (Grav	Mat		BC	SI	M	SAF	D Co	lor Te	xt Shap	e Depth	Comments
Kathdin	482	482 388 100	100	23	23 56	3	0	9	89	68 4.0 2	2	0		1	0 7.	7.0 V	S	×	Ι	7.0 W S R I Nice
Superior	505	411	106	37	44	0	0	3	7.0	1.5	3	0	0	0	0.9 0	0 B	U SN		Г	Sl Irr
NY72	716	643	166	13	67	6	\vdash	3	8 0	5.8	0	2	0	0	0 6.5	5 BU	U SN	I R	Ι	DAE
NY76	545	412	106	33	4 1	7	0	_	71	4.0	0	_	_	0	7	7.0 W	V RS		S	
NY78	460	381	86	29	50	4	0	3	61	4.0	0	0	0	0	0 7.5		W S		S	St,Sl Irr
NY79	369	319	8 2	2.1	47	2	0	4	59	2.5	2	_	0	0	1 7.0		W SN	I R	S	Sl Irr
NY81	626	429	110		42	17	П	2.5	72	5.5	11	2	0	0	0 5.0	0 BU	U SN	I R	Ι	S1 Irr
Waller-																				
Duncan(0.05) (35) (35)	(35)	(35)							(3)											

Planted 4/10/87; maturity rated 9/4/87; vine killed 9/10/87; harvested 9/24/87

4. Results of South Fork White Variety Experiment, Watermill, NY-1987 Table

Katahdin
Variety:
Standard

	Yield	(cwt/A)	Jo %	% of	of Total Yield	Yield			Interr	Internal defects	ects						
US No1 Std 2-		US No1	Std	2-			Vine				nt Nec			T	uber Da	ıta	
Clone	Total	2-4"	2-4"	4	¥	Def	Mat	H	BC	SI	BC SI M	S	App	Color	Text	Shape	Comments
Katahdin	428	392	100	91	0	2	7.0	0	0	0	0	0	7.0	O W S R	S	R	SF,(S)
Hudson	370	294	7.5	80	2	7	5.0	0	0	4	0	0	6.3	BU	RS	×	MT,(S,Rh)
	261	225	57	9 8	0	4	1.3	0	0	_	0	0	7.0	BU	Z	O-R	MT(S)
	387	331	8	98	_	3	6.7	0	0	_	0	0	7.0	BU	Z	×	R(S)
	352	263	67	7.5	0	2	2.7	0	0	-	0	0	7.3	W	RS	×	MT,Sm(S)
	312	272	69	8 7	0	2	2.0	0	0	_	0	0	6.7	BU	SN	N	R(S)
	475	410	105	86	2	3	7.0		0	0	0	0	6.3	BU	SN	×	MT(S)
Waller-																	
(ac) (ac)	(000)	(00)															

Duncan(.05) (ns) (ns)
Planted 5/1/87; maturity rated 8/24/87; harvested 10/20/87

Long Island Table 5. The performance of Chieftain and D191-2 on Long Island. Riverhead, NY-1987

Standard Variety: Chieftain

	Yield	i (cwt/A)	% of		0 %	of Total	Yield			6		Intern	internal defects	ots							
		US No1 Std	Std	2 -	2.5-	3.3-			Spec Vine	Vine		1	II	it Nec		-	Tu	Fuber Data	a		
Clone	Total		2-4"	2.5	3.3	4	X	Def	Grav	Mat	H	2	SI	Z	S	App	Color	Text	Shape	Depth	Color Text Shape Depth Comments
Chieftain	502		100	19	99	8	0	4	65	00 00	0	0	1	0	0	6.8	64	S	O-R	S	
D191-2	475		8.7	2 1	59	2	0	6	200	3.5	0	0	0	0	0	7.0	R-DR	S	O-R	S	Some SK
Waller-																					
(au) (50 0) (as)	(") (")	(100)																			

Planted 4/10/87; maturity rated 9/4/87; vine killed 9/10/87; harvested 10/15/87

Long Island Table 6. Results of South Fork Russet Experiment, Watermill, NY-1987

Standard Variety: BelRus

US No.1 Std 4- Total 4-16 4-16 16 >16 Def Mat HH 267 138 100 52 13 2 1.0 0 324 131 95 41 36 3 2.7 1 320 165 120 52 17 3 4.0 0 349 185 133 53 15 3 2.3 0		Yield (cwt/A)	(cwt/A)		% 01	Total	Yield			Interna	l Def	nternal Defects	Section of the least						
Total 4-16 4-16 16 >16 Def Mat HH BC S1 M S App Color Text< Shape			US No1	Std	4 -			Vine			In	t Nec)	Tub	er Data	CG!		
267 138 100 52 13 2 1.0 0 1 0 0 0 7.0 B HR L S 324 131 95 41 36 3 2.7 1 0 1 0 0 7.3 B HR O-L S 320 165 120 52 17 3 4.0 0 0 1 0 0 7.0 B MR L S 349 185 133 53 15 3 2.3 0 0 0 0 0 1.7 B LR L S		Total	4-16	4-16	16	>16)ef	Mat	- 1	BC	S1	Z	S A	PP C	olor	Text S	hape	Depth	9
324 131 95 41 36 3 2.7 1 0 1 0 0 7.3 B HR O-L S 320 165 120 52 17 3 4.0 0 0 1 0 0 7.0 B MR L S 349 185 133 53 15 3 2.3 0 0 0 0 0 7.7 B LR L S	8	267	138	100	52	13		1.0		1	0	0	0 7	0.	<u>m</u>	HR	L	S	
320 165 120 52 17 3 4.0 0 0 1 0 0 7.0 B MR L S 349 185 133 53 15 3 2.3 0 0 0 0 0 7.7 B LR L S		324	131	95	4 1	36	3	2.7	, (0		0	0 7	.3	Ø	HR	7-0	S	
349 185 133 53 15 3 2.3 0 0 0 0 0 0 7.7 B LR L S		320	165	120	52		3	4.0	0	0	1	0	0 7	0.	M	MR.	Γ	S	
		349	185	133	53	1.5	60	2.3	0	0	0	0	0 7	.7	B	LR	ᅴ	S	

Planted 5/1/87; maturity rated 8/24/87; harvested 10/20/87

Long Island Table 7. Results of NE107 Russet Experiment, Riverhead, NY-1987 Standard Variety . Rel Rus

	Yield	Yield (cwt/A) % of	Jo %		% of	% of Total Yield	rield			•		Inter	internal Defects	rects							
		US No1	Std	4 -	ر 00	12-			Spec	Vine			In	Int Nec			T	ıber Dat	3		
Clone	Total	Total 4-16		00	12	16	>16	Def	Grav	Mat	HH	8	SI	M	SA	pp C	olor	Text	Shape	Depth	Comments
BelRus	198	141	100	47	2.2	2	-	3	72	1.8	2	0	_	0	0	7.5	2	H-MR	Г	S	0 7.5 B H-MR L S SI F(M)
NemaRus	325	236	167	40	24	6	3	9	74	2.0	2	0	1	0	0	0.7	В	MR	7	S	(<u>R</u>
NorKing	324	231	163	43	2 1	9	1	7	77	2.5	12	0	2	1	0	6.3	В	MR	Γ	S	(F)
R Burbank	200	292	207	3.4	19	ν,	1	2 8	8.2	0.9	2	0	_	2	0	3.8	B-T	M-LR	L-C	P	Irr(Kn)
R Norkotah	373	245	174	3.1	23	11	9	2	7.0	1.8	9	0	0	0	0	6.3	Ø	MR	Г	S	Irr(L)
A72685-2	520	378	268	34	26	12	2	11	8 7	0.0	11	0	0	0	0	0.9	В	MR	L	S	SI Irr(M)
AF522-5	401	297	211	4 4	24	7	_	S	8 5	3.3	33	7	9	ν,	1	8.9	M	M-HR	T-0	6 2	Sl Irr(M)
B9596-2	417	334	236	46	25	6	2	4	99	2.8	0	0	4	9	0	8.3 E	B-T	L-MR	J	S	(<u>M</u>

Waller-Duncan(0.05) (47) (64) (4) Planted 4/10/87; maturity rated 9/4/87; vine killed 9/10/87; harvested 9/24/87

Long Island Table 8. Results of U.S.D.A. Russet Experiment, Riverhead, NY -1987

	% of % of Total Yield
: Belkus	Yield (cwt/A) %
Standard variety	

	Yiel	Yield (cwt/A) % of	% of		% of		Yield					Inte	internal defects	fects							
		US No1	Std	4-	8 - 12.	12-			Spec	Vine		ľ	In	Int Nec		1	T	Tuber Data	ata		
Je	Total		4-16	00	12	16	>16	Def	Grav		HH	8	S1	Σ	S	App (Color	Text	Shape	Depth	Text Shape Depth Comments
BelRus	233	175	100	55	1 8	2	4	_	72	2.8	1	0	0	0	0	7.0		田	Г	S	SF
ıaRus	407	325		36	33	12	3	00	73	2.5	22	0	0	1	0	8.9	В	MR	T-0	S	SI F
BOO42-16	284	186		46	19	1	0	11	7.0	2.0	0	0	_	0	0	7.3	В	Æ	L	S	
84-26	366	267	153	43	23	7	2	6	8 1	2.5	10	_	0	0	0	7.0	В	MR.	Γ	S	
90-2	559	370	212	30	24	12	2	2.5	8 0	7.5	0	0	4	0	0	4.0	Τ	LR	J	S	Irr
B9596-2	433	364	208	4 1	34	10	2	3	99	3.0	-	-	0	3	2	7.0	В	MR	7	S	SI F
B9922-11	516	369	211	27	3.0	15	11	3	8 4	7.8	19	0	0	0	0	7.0	В	MR.	T-0	S	SI Irr
Waller-																					
Duncan (0.05) (48)	(48)	(42)							(3)												

Planted 4/10/87; maturity rated 9/4/87; vine killed 9/10/87; harvested 10/15/87

Long Island Table 9. The effect of nitrogen rate and in-row spacing on yield and quality of NY72, NY78, NY79, NY81 and B9596-2, Riverhead, NY-1987 Standard Treatment: 160 lbs N/A-9"

Yield (cwt/A) Yield (cwt/A) Yield (cwt/A) Yield (cwt/A) Yield (cwt/A) US No 1 Spec US No 1 Spec US No 1 Spec US No 1 Spec Total 2-4" Grav Total 2-4"		Z	NY72			Z	NY78			NY79	79			NY81	81			B9596-2	
US No I Spec US No I Spec US No I Spec US No I Spec Total 2-4" Grav Total </th <th></th> <th>Yield</th> <th>(cwt/A)</th> <th></th> <th>- 0</th> <th></th> <th>_</th> <th></th> <th>i</th> <th>Yield (</th> <th>cwt/A)</th> <th></th> <th></th> <th>Yield (</th> <th>cwt/A)</th> <th></th> <th>X</th> <th>eld (cwt/</th> <th>7</th>		Yield	(cwt/A)		- 0		_		i	Yield (cwt/A)			Yield (cwt/A)		X	eld (cwt/	7
Total 2-4" Grav Total 2-4" Gra			US No 1	Spec			US No 1	Spec	h	1	JS No 1	Spec			US No 1	Spec		US No 1 Spec	Spec
469 410 80 542 459 67 388 315 62 555 491 75 495 424 81 534 462 67 396 307 61 546 479 75 496 434 79 548 469 67 408 306 63 586 519 74 9" 503 438 80 9" 559 476 67 6" 410 318 62 6" 595 523 75 9" 12" 471 408 79 12" 524 450 66 9" 368 301 62 9" 529 470 74 12" Level (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)	N Rate	Total	2-4"	Grav		Total		Grav		otal	2-4"	Grav	L	Total	2-4"	Grav	Tot	Total 4-1602 Grav	Grav
495 424 81 534 462 67 396 307 61 546 479 75 496 436 434 79 75 548 459. 67 408 306 63 586 519 74 588 503 438 80 9" 559 476 67 6" 410 318 62 6" 595 523 75 9" 12" 471 408 79 12" 524 450 66 9" 368 301 62 9" 529 470 74 12" Level Level (a)	160	469		8.0		542	459	67		388	315	62		555	491	7.5	40	3 334	62
496 434 79 548 469. 67 408 306 63 586 519 74 9" 503 438 80 9" 559 476 67 6" 410 318 62 6" 595 523 75 9" 12" 471 408 79 12" 524 450 66 9" 368 301 62 9" 529 470 74 12" Level (ns) (190	495	424	8 1		534	462	67		396	307	61	•	546	479	7.5	40		62
9" 503 438 80 9" 559 476 67 6" 410 318 62 6" 595 523 75 9" 12" 471 408 79 12" 524 450 66 9" 368 301 62 9" 529 470 74 12" Level (ns) (ns)<	220	496		19		548	469.	67	7	408	306	63	•	586	519	74	427	7 352	63
9" 563 438 80 9" 559 476 67 6" 410 318 62 6" 595 523 75 9" 12" 471 408 79 12" 524 450 66 9" 368 301 62 9" 529 470 74 12" Level Level (as) (as) (as) (as) (as) (as) (as) (as)	Spacing																		
Level Level (a)				80	6		476	67	, " 9	410	318	62	9	595	523	75	9" 421	1 349	63
Level (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)	1		408	19	12"	524	450	99		368	301	62		529	470	74	12" 40	4 326	62
(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)	Significance Lev	/el																	
(0.01) (0.05) (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns	N Rate	(us)				(su)	(su)	(su)	_	(us)	(us)	(su)	_			(us)			(ns)
	Spacing	(0.01)				(0.05)	(su)	(su)	9	0.05)	(su)	(su)	9			(su)		<u> </u>	
$(2-1)^{2}$	N x Spacing	(us)	(su)	(su)		(su)	(su)	(us)		(SU)	(ns)	(su))	(su)	(su)	(ns)	(ns)	(us) ((us)

The effect of seed piece size on yield and size distribution of Hampton potatoes, Riverhead NY-1987 Long Island Table 10.

	Yield	Yield (cwt/A) Mean	Mean	Tubers	60	0 %	% of Total Yield	ield						Internal Defects	Defects		
Seed		US No 1 Tuber	Tuber	Per	Per 2-	2.5-	3.3-			Spec	Vine			, med	Int Nec		
Size (oz) Total 2-4" Wt.(oz)	Total	2-4"	Wt.(0z)		2.5	Foot 2.5 3.3	4	>4 Def Grav	Def	Grav	Mat	HH BC	8	SL	M	S	S App
1.0	413	413 369	7.3	5.8 15	15	62	12	_	4	67	7.3	3	-	1	0	0	6.5
1.5	415	347	9.9	6.7	1 %	56	10	3	2	8 9	5.8	3	3	3	1	_	8.9
2.0	425	373	6.1	7.3	2 1	09	7	0	4	67	5.8	9	9	7	0	<u>~</u>	6.5
2.5	474	397	6.7	7.4	17	09	7		9	65	5.5	4	4	2	0	0	8.9
Waller-																	
Duncan(0.05) (ns) (ns) (ns)	(Su) (S	(su)		(1.4)													
Diggs 4/10/07: 0/4/07: 1:1104 0/10/97: harvacted 10/15/87	.107		A/O 6-40	107	1	1110d O/	10/07. h	OFFICE	11	7/15/97							

Planted 4/10/87; maturity rated 9/4/87; vine killed 9/10/87; harvested 10/15/8/

Long Island Table 11. After-cooking darkening and blackspot ratings of clones grown in 19861.

NE 107	White		Advan	ced GN		<u>NE107 R</u>	Russet	_	USDA I	Russet	
Clone	_Ratio		Clone	_Rati		Clone	Rati ACD		Clone		ting D BS
Katahdin	4.5	0.3	Katahdin	4.8	0.5	BelRus	5.0	0.5	BelRus	4.7	0.0
Hampton	4.8	0.0	Superior	4.9	0.8	NemaRus	3.8	2.0	NemaRus	3.9	1.5
Hudson	4.6	0.3	B9581-10	4.9	0.0	NorKing	4.5	0.5	B0042-15	4.3	0.0
Shepody	4.7	2.0	B9792-53	4.7	1.0	Shepody	4.6	0.8	B0045-12	4.7	1.8
AF236-1	4.8	0.0	B9792-136	4.5	0.0	Tolaas	4.6	0.0	B9391-2	4.1	2.3
AF474-2	4.4	0.0	NY 64	4.9	0.0	A7411-2	4.4	6.0	B9596-2	4.1	0.8
CF7679-15	4.5	0.0	NY 72	4.6	0.0	A72685-2	4.5	1.5			
CS7639-1	4.8	0.5	NY 77	4.7	1.3	A75188-3	5.0	0.3			
F74123	4.6	0.3	NY 78	4.8	0.5	AF522-1	4.3	0.3			
NY 71	4.3	0.0	NY 79	4.9	0.3	B9540-55	4.6	1.0			
NY 72	4.3	0.3	NY 80	4.6	0.0	B9569-2	4.3	1.3			
NY 76	4.8	0.3	NY 81	4.9	0.3	B9596-2	4.3	0.5			
NY 81	4.6	4.8				B9922-11	4.6	1.0			
						ND534-4	4.7	0.3			
						W752	5.0	1.0			
Waller- Duncan _{(0.05}	(ns)	(ns)		(0.3)	(ns)		(0.4)	(ns)		(0.4)	(ns)

For yield data see VC Report 347, 1986, Long Island Potato Variety Trial Results.

After-cooking darkening (ACD) Ratings based on a scale of 1 to 5; 5 = no darkening, 1 = severe after cooking darkening. Five tubers rated per replication; four replications in each experiment.

Blackspot (BS) determinations are based on five tubers per replication. Tubers were stored at 40° F and bruised on 3/24/87. Bruised areas were peeled and evaluated on 3/26/87. Each tuber received a blow in each of two locations about 1 to 2 cm from the stem end. The bruising was done by dropping a 100 gram weight a distance of 30 cm. The point of impact was marked by inking the base of the weight. Ratings are based on a scale of 0 to 5 with $5 = 10^{\circ}$ no discoloration and $0 = 10^{\circ}$ severe discoloration.

NEW YORK - UPSTATE

D. E. Halseth and W. L. Hymes

Program Scope

The Vegetable Crops Department, Cornell University, conducted fifteen replicated variety trials distributed across five counties in upstate New York in 1987 in which a total of twenty named varieties and sixty breeding lines were evaluated. Only data from the Thompson Vegetable Research Farm at Freeville, Tompkins County, is included in this report. Additional information on grower trials as well as storage and chipping research can be obtained from the authors.

Research Farm

All 75 entries mentioned above were evaluated in randomized complete block plots which were replicated four times. The variety trials were planted at 9" spacing on a 34" bed with 1200 lbs/acre of 13-13-13 granular fertilizer applied in bands at planting. The nitrogen rate study had four N-rates (100, 150, 200 and 250 lb/a) with P205 and K20 both held at 300 lb/a. Soil type was a Howard gravelly loam soil with a pH of 5.1 to 5.9 and organic levels of 3.0 to 3.5%. Weed control consisted of Lorox 4L at 1.5 qt/a sprayed preemergence on 5/14 and a postemergence application of Lexone 75 DF at 0.2 lb/a on 6/24. Vine killing utilized Evik 80WP at 3 lb/a (+2 qt/a Booster + E) alone or with Diquat 2S at 1 pt/a (+8 oz X-77/a). Specific gravity was determined by hydrometer.

Seasonal Observations Weather conditions were relatively dry for the planting season with only 2.23 inches of rainfall in May. Moisture levels were nearly normal for the rest of the growing season. Supplemental irrigation was applied when needed. No significant problems were observed in the trials except that control of the Colorado potato beetle is becoming much more difficult.

Promising Clones and Varieties

In the early maturity trial ND 860-2 again is the poorest yielder but with the best chip color. NY79 had good early yield, chip color and tuber appearance. F70021 had yield equal to Superior but fried very dark. Midseason entries had a broad range of yield responses, with Donna the only named variety that had a higher marketable yield than the standard Katahdin. The late maturity trial showed excellent yield potential, with six entries averaging 454 and 401 cwt/a for total and marketable yields. NY81 continues to demonstrate its high yield and gravity capability as well as good tuber size. Russet entries also displayed a wide yield spectrum, but none exceeded the total vield of Russet Burbank. However, B9596-2 had a higher marketable yield and appearance rating than the standard. Of the 23 GN resistant breeding lines tested from the Cornell breeding program, eight had marketable yields above Katahdin and 18 had marketable yields higher than Monona. The french fry variety trial had the highest overall total yield average at 470 cwt/a. AF236-1 and Shepody had the highest marketable yield. Lemhi, followed closely by A72685-2, had the highest amount of hollow heart of any entry. Results from the nitrogen fertilization study show significant differences only for total yield and vine maturity due to N-rate. No significant differences were found for marketable yield, tuber number, average tuber weight or specific gravity.

Table Headings Explanation

Sizes used for marketable yield of indicated potato types are: White: 1-7/8" to 4" in dia., Russet: 4 to 16 ounces.

Percent of total yield is the weight of a specific size category divided by total yield (including defects). The letter codes for the various sizes correspond to the following parameters:

White Clones: Russet Clones A = less than 1-7/8" in diameter A = less than 4 ounces B = 1-7/8" to 2-1/2" B = 4 to 8 ounces C = 2-1/2" to 3-1/4" C = 3-1/4" to 4" C = 12 to 16 ounces E = over 4" E = over 16 ounces

External defects (EXT DEF) is comprised of four classes of defects: G = green C = growth crack

K = excessively knobby, misshapen R = rot

If a class of external defect exceeds 5% of the total yield, the appropriate defect letter code is placed next to the external

Internal defects (INT DEF) represents the number of tubers examined out of 40 which when cut in half showed significant symptoms of the three following defects:

H = hollow heart
V = vascular discoloration
N = internal necrosis

defect percentage.

Specific gravity (SPEC GRAV), determined by hydrometer, is reported with the "1.0" digits omitted.

General external appearance (GEN APP) was subjectively evaluated using the following scale:

1 = extremely rough or otherwise unattractive

9 = very smooth and otherwise attractive

Vine maturity ratings (VINE MAT) were also subjectively evaluated. These ratings, which were made just a day or two prior to vine killing, were based on the scale:

1 = all plants completely dead (very early)
9 = all plants full green (very late)

UPSTATE NEW YORK TABLE 1. EARLY MATURITY VARIETY TRIAL, FREEVILLE, NEW YORK, 1987

VARIETY OR CLONE	YIELD(C	CWT/A)	% SUP YIELD MKT	PC A	D W	MKT T	DITAL	PCT OF TOTAL YIELD MKT EXT A B C D E DEF	ELD EXT DEF	TUBER NO/FT	AVG TUBER WT(0Z)	INT DEF H V		SPEC	TUBER APP.	VINE MAT.
B9988-7 NY79 NORCHIP	353 328 336	326 312 303	110 105 102	m m ∞	14 12 25	58 2 61 2 57	21 23 9	1 0	1 2 2	6.5	5.7 5.5 4.4	000	000	90 75 87	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 6 8 0 5 5
SUPERIOR F70021 B9955-46	325 326 297	296 294 276	100 99 93	3 0 21	18 24 15	67 55 60	6 12 18	121	3 1 3	7.0 7.3 5.7	4 4 5 5 4 6	000	0 0	80 74 84	4 4 °5 °5 °5 °5 °5 °5 °5 °5 °5 °5 °5 °5 °5	5 0 0 0
B9955-18 C-1-884 ND860-2	274 309 275	253 248 242	85 84 82	4 20 11	14 57 35	61 22 49	17 1 4	0 0 0	2 0 1	5.7 10.6 7.6	3 3 5 0 0 0 0 0 0	4 0 0 0 0 0	10	92 82 84	5.3 7.0 6.0	8 4 K L. & C.
WALLER-DUNCAN MSD (.05) C.V. (%)	24	18 (5)								0.82	0.56			2.8		

PLANT DATE - APRIL 30 VINE KILL DATE - AUGUST 13 (MOWED) HARVEST DATE - AUGUST 14

MEDIUM MATURITY VARIETY TRIAL, FREEVILLE, NEW YORK, 1987 UPSTATE NEW YORK TABLE 2.

VARIETY OR CLONE	YIELD(CWT/A TOTAL MKT	CWT/A)	% KAT YIELD MKT	PCT A	1 1001	MK T C	OF TOTAL MKT C D	111	YIELD EXT DEF	TUBER NO/FT	AVG TUBER WT(0Z)	I O H	INT DEF V N	SPEC	TUBER APP.	VINE
B0241-8 D0NNA B0238-4	428 418 391	401 354 352	123 109 108	4 6	15 20 17	62 47 58	17 18 15	~ ω ·	1 4 5	\$ 0 8 \$ 1.0	5.1 4.8	3 0 0 1 0	0 0 111	85 75 82	6.0 5.0	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
BO257-3 KATAHDIN ATLANTIC	372 363 353	329 326 324	101 100 100	000	25 12 20	57 58 56	7 20 16	0 8 -	242	10.1 6.6 7.9	3.8	0 0 2 0 0 4	2 0 0	96 74 94	6.0 6.0 8.0	6.8 8.0 7.0
B0244-6 KENNEBEC B0237-9	361 398 302	322 316 279	99 86	10 2 7	27 12 29	52 49 60	10 18 14	0 8 0	1000	9.6 6.4 8.4	3.9	0 0	0 2 0 0 0	85 77 75	4.8	66.8
MONONA B0243-11 A474-2	304 298 228	277 273 194	85 84 60	∞ \sim \sim	24 9 18	56 64 50	10 19 17	0 4 5	2 12	6.8 6.5 6.5	4.7 5.7 5.3	0 -1 0	0 0 0	72 79 77	4 2 4	6.5
WALLER-DUNCAN MSD (.05) C.V. (%)	37 (8)	32 (8)								0.82	0.58			1.9		

PLANT DATE - APRIL 30 VINE KILL DATE - AUGUST 20 HARVEST DATE - SEPTEMBER 1

LATE MATURITY VARIETY TRIAL, FREEVILLE, NEW YORK, 1987 UPSTATE NEW YORK TABLE 3.

VARIETY OR CLONE	YIELD(C	MKT MKT	% KAT YIELD MKT	PCT A B	MKT B C		OF TOTAL YIELD MKT EXT	X X		TUBER NO/FT	AVG TUBER WT(0Z)	IN DE	INT DEF V N	SPEC	TUBER APP.	VINE MAT.
NY81 CS7635-4 MS700-70	531 468 471	459 427 423	121	200	7 8 8	40 4 43 4 51	40 40 31	045	284	7.26.9	7.8	0 0 0	0 0 0 0 0 2	81 76 84	೧. ೧. ೩	7.3
B9792-157 NY76 NY72	429 440 455	404 403 387	106 106 102	4 0 W	13 61	52 55 40	29 18 34	0 1 7	LO	7.8	5.7 4.9 6.8	107	000	82 71 81	0 22 22	6.3 4.0 7.0
KATAHDIN ELBA NY71	427 455 402	381 364 347	100 96 91	004	10 8	52 34 42	27 38 1 33	12 4	0 2 0	7.0 6.1 6.9	6.4 7.7 6.1	0 1 1	000	73 77 75	446	80.0
WALLER-DUNCAN MSD (.05) C.V. (%)	54 (8)	56								1.04	0.84			3.1		

PLANT DATE - MAY 1 VINE KILL DATES - SEPTEMBER 1 AND 9 HARVEST DATE - SEPTEMBER 15

RUSSET VARIETY TRIAL, FREEVILLE, NEW YORK, 1987 UPSTATE NEW YORK TABLE 4.

VARIETY	YIELD(CWT/A)	%RB YIELD	0	CT OF		TOTAL	X		SER.	AVG TUBER	C	N N L	Ω.	TUBER	VINE
CLONE	TOTAL	209	X X	<	m	0		LLI	DEF		MT(0Z)	工	Z >	GRAV	APP.	MAT
89596-2 30045-6 RUS BURBANK	423	346 336 324	107	14 20 21	3000	5000	0000	2-15	000 ×	7.1	5.00	0 7 4	000	75 82 86	3 6 5	6.0
AF522-1 B0036-6 B9922-11	414 399 358	304 299 274	94 92 84	20 15	40 41 37	22 28 28	8 12 12 1	2 7 0	984	7.8	5.5	0001	000	83 74 87	രവ സ്വ്യ	7 4 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
A75188-3 NEMARUS B9569-2	433 329 301	265 259 223	82 80 69	17 18 24	27 31 48	29 39 22	2004	122	17 G,K 2 2	7.6 5.8 6.1	0.0.1. 0.0.1.	000	000	78 74 78	33,0	3 2 2 2
AF522~5 AF465-2 BELRUS	263 289 255	175	54 51 43	31 42	420	111	2 63 2	0 0 1	0 1 3	6.3	4 % % % % % % % % % % % % % % % % % % %	2 7 0	900	88 80 81	5.5	4 3 8 9 0
WALLER-DUNCAN MSD (.05) C.V. (%)	46	41 (12)								0.97	0.53			3.3		

PLANT DATE - MAY 1 VINE KILL DATES - SEPTEMBER 1 AND 9 HARVEST DATE - SEPTEMBER 15

UPSTATE NEW YORK TABLE 5. CORNELL ADVANCED CLONES TRIAL, FREEVILLE, NEW YORK, 1987

1,1 01					
VINE MAT.	ບ 4 ດີ ຜູ້ດີ.	7.07.8	3.77.0	8.0 7.3 3.5	0.00 0.00
TUBER APP.	ဃ 4 ဃ ထိ ထိ ဝပိ	ი 4 ი ი ი ი	5.2	6.0 4.0 5.0	5 5 7 8 8
SPEC	68 71 74	74 84 87	80 91 80	74 88 73	85 97 76
INT DEF H V N	0 0 0	0 0 0 0 0 0 0 0	8 0 0 1 0 0 9 0 0	0 1 1 2 1 0 1 0 0	2 3 0 0 1 0 0 1 1
AVG TUBER WT(0Z)	7.3 6.1 7.4	6.5 7.5 5.6	7 27 5 0 20 0	6.4 7.9 4.7	50.0
TUBER #/FT	8887	7.7	7.7	6.7 6.6 8.7	8 · 1 / · 5 / · 3
EXT DEF	e e e	9 8 8	8 G 7 G 13 G	8 G 17 G 4	9 9 7 G
PCT OF TOTAL YIELD MKT A B C D E DEF	9 2 11	~ 6 c	6 13	13	m 4 4
OTA D	34 31 39	24 34 28	27 27 32	28 35 18	19 22 28
OF T	42 49 35	53 41 47	46 45 37	52 30 47	53 47 44
D Z B	7 10 6	8 6 15	10 15 3	6 5 24	14 14 12
PC A	222	224	848	2112	വനവ
% KAT YIELD MKT	134 126 125	114 114 106	103 101 100	99 98 97	96 95 92
ELD(CWT/A) TAL MKT	478 450 446	407 406 380	369 360 357	354 350 348	342 340 328
YIELD(570 499 556	474 503 423	441 411 491	411 500 393	395 409 391
CLASS	RED WHI WHI	WHI WHI WHI			WHI WHI WHI
VARIETY OR CLONE	D191-2 E57-22 D146-11	E11-45 NY81 E55-27	E57-13 E55-35 KATAHDIN	NY78 NY72 E11-18	D164-9 D195-24 D147-9

(Continued, next page)

UPSTATE NEW YORK TABLE 5. (Continued) CORNELL ADVANCED CLONES TRIAL, FREEVILLE, NEW YORK, 1987

ăU		VIEI D/C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X KAI	3	⊃ ∑	MKT	OLAI		UF IUIAL YIELD MKT FXT	THRER	AVG	_ N C	SPEC	THRER	VINF
CLONE	CLASS TOT	TOTAL	TAL MKT	MKT	X	8			ш	DEF	#/FT	WT(0Z)	기고	GRAV	APP.	MAT.
E28-2	WHI	426	317	80 80 80 80	20	7	32	36 1	13	11 6	50°0	7.5	5 0 0	87	4.9	30 m
E57-9	MHI		312	87					10	- 2		• •	0	80	• •	• •
NY71	MHI	-	306	98	\leftarrow		32	5	19	9			2			
NONA	MHI	355	299	84	2	11	51	23	0	4	5.5	8,9	0 0 0	72	3°3	5.0
F143-1	RUS	0	596	83		0	31		4	8	•	•	0			•
NY79	MHI	∞	596	83	2		28	2	14				0	70		
D183-2	MHI	2	291	81	2		44	6	7	9 6			\vdash	75		
E40-10	MHI	356	280	78	2	9	39	34]	10	9 6	5.2	7.1	0 0 0	89	5.8	5.0
555-44	MHI		569	75			51	9	∞	m	•		0	98	•	•
WALLER-DUNCAN	JNCAN															
MSD (05)	45	44								0.83	0.65		2.7	_	
C.V. (%)		(8)	(6)								(10)	(8)		(3)		

PLANT DATE - MAY 8 VINE KILL DATE - SEPTEMBER 10 HARVEST DATE - OCTOBER 13-14

VARIETY OR CLONE	CLASS T	H! 01	ELD(CWT/A) MKT TAL 4-1602	%RB YIELD MKT	PCT	OF M	TOTAL KT C D		YIELD* EXT DEF	TUBER NO/FT	AVG TUBER WT(0Z)	INT DEF H V N	SPEC	VINE MAT.
LA01-38 PENN71 LEMHI B7592-1	WHI WHI RUS WHI	548 524 563 506	456 424 399 384	122 113 106 102	8 3 111 3 20 3 9 3	7 33 9 32 6 22 5 26	3 13 10 13 14	7 4 6	N 4 4 4	8.2 7.6 9.7 7.1	7.0 7.3 6.1 7.5	2 0 0 15 0 0 18 0 1 1 0 0	79 69 85 75	7.57
AF236-1 SHEPODY RUS BURBANK A72685-2	WHI WHI RUS RUS	552 497 515 526	377 376 375 368	100 100 100 98	9 2 9 3 20 4 14 3	8 22 2 28 2 20 3 25	2 18 3 16 3 11 5 12	13 12 13 11	10 G 4 4 5	7.1 7.4 10.2 8.4	8.2 7.0 5.3 6.5	2 0 4 5 0 1 1 0 0 17 0 0	79 82 81 85	7.5 7.3 8.5 9.0
NORKING RUS RUS NORKOTAH KENNEBEC FL657	RUS RUS WHI WHI	451 473 498 349	354 334 325 296	94 89 87 79	17 4 14 3 8 2 14 5	0 25 4 22 3 24 6 20	14 15 11 119 0	5 12 19	0 4 0 0	7.9 7.2 5.8 6.7	6 6 5 5 5	7 0 2 1 0 0 2 0 1 0 0 2	80 70 73 66	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
NOOKSACK A7411-2 YANKEE CHIP ISLANDER	RUS RUS WHI	369 322 341 299	279 215 184 183	74 57 49 49	12 3 9 2 42 4 23 3	5 26 8 25 2 9 3 21	15 14 17 18	22 0 2	4 2 4 13 G,R	6.0 8.5 9.9 9.9	6.4 7.5 4.0 5.4	3 0 0 5 0 1 0 0 0 16 0 0	84 84 81 71	
WALLER-DUNCAN MSD (.05) C.V. (%)		(6)	44 (10)							1.18	0.97		2.5	

*PERCENT EXTERNAL DEFECTS DOES NOT INCLUDE KNOBS OR GROWTH CRACKS. THIS TRIAL WAS NOT CULLED FOR THOSE CLASSES OF DEFECT.

PLANT DATE - MAY 1 VINE KILL DATES - SEPTEMBER 1 AND 9 HARVEST DATE - SEPTEMBER 25

NITROGEN FERTILIZATION FRENCH FRY PROCESSING TRIAL, UPSTATE NEW YORK TABLE 7. FREEVILLE, NEW YORK 1987

	NITROGEN RATE		YIELD(CWT/A)	P	PCT OF MKT	OF T MKT	TOTAL	- 1	YIELD EXT	TUBER	AVG TUBER	INT		VINE
VARIETY	(LB/A)	TOTAL	4-160z	A	8	ပ		ш	DEF	NO/FT		N > H	GRAV	MAT.
B7592-1	100	453	332	20	45	21	7	3	4		•	0	74	•
B7592-1	150	480	340	15	39	21	11	2	9 6	6.9	7.5	0 0 0	74	8.9
B7592-1	200	467	337	17	36	56	10	9	9			0	74	
87592-1	250	494	355	13	35	25	12	7			•	0	73	•
NORKING RUS	100	319	224	27	50	18	2	_	2			0	73	
	150	337	241	25	47	18	9	\leftarrow	2			0	75	
NORKING RUS	200	325	221	27	39	23	9	2	က	6 • 7	5.1	5 0 1	9/	4.5
NORKING RUS	250	366	260	19	39	21	11	4	9			0	75	
SHEPODY	100	358	246	21	42	21	9	2				0	80	
SHEPODY	150	390	257	17	38	20	7	4	13 G	0.9	7.1	3 0 0	78	5.3
SHEPODY	200	471	302	0	30	22	12	10				0	78	
SHEPODY	250	463	295	6	28	24	12	œ				0	17	
YANKEE CHIP	100	346	162	50	42	5	_	0	2			0	77	
	150	374	191	44	42	∞	٦	0	2			0	81	
YANKEE CHIP	200	411	193	45	38	7	2	\leftarrow	7 G	10.1	4.3	0 0 0	81	5,3
YANKEE CHIP	250	385	214	39	45	∞	3	0	2			0	85	

WALLER-DUNCAN MSD (.05) IS GIVEN FOR THE MAIN EFFECTS OF NITROGEN RATE AND VARIETY. SIGNIFICANCE LEVELS FOR THE NITROGEN RATE X VARIETY INTERACTION ARE: * = 5%, NS = NOT SIGNIFICANT AT THE 5% LEVEL.

	VINE	MAT	1.4	0.55	NS	(35)	(16)
	SPEC	GRAV	NS	_	*	(5)	(3)
AVG	TUBER	MT(0Z)	NS	9.0	NS	(27)	(16)
	TUBER	NO/FT	NS	9.0	NS	(14)	(12)
	MKT	YIELD	NS	19	NS	(19)	(11)
	TOTAL	YIELD	43	21	*	(12)	(8)
S = NOT SIGNIFICANT AT THE 5%		SOURCE OF VARIATION	NITROGEN RATE	VARIETY	NIT. RATE X VARIETY	C.V. (%) - NIT. RATE	C.V. (%) - VARIETY

HARVEST DATE - OCTOBER 2 VINE KILL DATES - SEPTEMBER 1,9 PLANT DATES - MAY 5-6

R.L. Plaisted, H.D. Thurston, B.B. Brodie, and W.M. Tingey

Crossing and Seedling Production: Twenty-one crosses with chip potential were produced. The greatest volume of seed was NY81 x a bulk of (neotbr x tbr) hybrids. Twelve russet crosses and one red cross were made. Twenty-seven crosses were made with resistance to Globodera pallida using clones identified at CIP with resistance to P4A and P5A. In the trichome population, 146 crosses were made. Most of these were backcrosses to tuberosum clones. The multiple disease resistant population had 22 crosses of the disease resistant clones and a bulk of 14 heat tolerant neotuberosum hybrids. Thirty-one test crosses of Hudson selfed clones were made to identify triplex and quadriplex clones. Eighty-one thousand seedlings were transplanted and about 55,000 tubers harvested. Only the russetted tubers were saved in the russet crosses and the red tubers in the red crosses. Seventy-three thousand seedling hills were produced. Of these, 16,000 were for russet selections, 38,000 for chipping selections, and 18,000 were neotuberosum hybrids.

Early Generation Selections: The single hill selections from 1986 were tested for chip color from 50° storage using test tape. Five hundred ninety eight selections were saved from 3,640 that were tested. Nine hundred two single hill selections were tested for golden nematode and 674 saved. In the next two generations, there were 49 and 27 clones.

Advanced Generations: There were 15 clones in advanced yield trials. The clones selected for continued trial were NY71, NY72, NY78, NY79, NY81, NY83, and 6 "D" clones. Most have chipping potential. One is red. NY78, NY79, NY81, and D191-2 were produced under contract with a certified seed grower.

F. L. Haynes

Breeding Program The tetraploid breeding program, including seedling population production, clonal maintenance, selection and increase, was moved to the Mountain Horticultural Crops Research Station, Fletcher. No summer hybridization program was conducted at Fletcher because of severe weather stress, both heat and drouth.

Advance trials of selections from North Carolina, USDA and other states were conducted at four coastal locations. Results of three of these are presented in North Carolina Tables 1, 2, and 3. All coastal trials were subjected to severe heat and drouth stress, but the Pasquotank trial (Table 1) was most affected. The results of the severe weather are reflected in the higher-than-normal coefficients of variation and the generally low tuber specific gravity readings at all coastal locations. Among the early to medium early clones, ND860-2, B9792-157 and B9792-158 continued to be superior in performance. NY71 and NY81 were good at one location but not at all trial locations as had been the case in previous years. 73C26-1 was disappointing at all locations. The cultivar Sunrise continued to produce good yields at all locations.

A trial was conducted at one mountain location. The results are presented in North Carolina Table 4. NY71 and NY81 continued to perform well at this location.

Adaptation and Diploid Breeding

Evaluation and maintenance of the adapted diploid PHU-STN population was continued at the Fletcher Station. Clones representing selections for high dry matter, early blight resistance, soft rot resistance, and heat tolerance were maintained.

The study was continued to evaluate recurrent selection for maintaining a population and improving tuber dry matter and tuber type. A segregating seedling trial representing the second cycle of selection for tuber dry matter and tuber yield was conducted. The trial consisted of 72 families, 100 segregates per family (25 seedlings x 4 replications). Selection was first on the basis of tuber yield (size and number) and secondly on evaluation for specific gravity. This trial was successful because it was grown under irrigation. A trial of the 72 parental clones was destroyed on June 2 by a 5-inch rain and overflowing creek.

The studies of resistance to early blight at both the diploid and tetraploid levels were continued. 4x hybrids with high levels of resistance combined with good tuber type and fertility are being increased for germplasm release.

Diploid clones with high levels of resistance to tuber soft rot and blackleg have been used in the hybridization program to produce resistant 4x progeny. These fertile 4x progeny are being increased for germplasm release.

Variety	US:	# 1A %	Appearance ¹	Chip Color ²	Specific Gravity	Maturity
LA01-38	199.5	91.4	7.0	63.4	1.050	Midseason
NYD147-9	194.0	86.4	7.0	72.0	1.068	Midseason
Atlantic	184.5	86.9	7.0	69.3	1.082	Medium early
Sunrise	174.3	85.8	7.0	66.5	1.078	Medium early
Neb. AB-1	169.5	81.5	7.0	63.8	1.062	Medium early
ND860-2	163.4	84.4	7.7	67.8	1.071	Medium early
NY81	159.3	87.9	7.5	66.5	1.064	Medium early
BO243-18	155.2	86.1	8.0	72.5	1.060	Medium early
MS700-83	150.4	84.1	7.7	68.8	1.072	Early
BO242-2	147.7	81.7	7.2	66.8	1.072	Medium early
NY71	147.0	88.6	7.0	71.3	1.077	Medium early
Superior	140.9	84.2	7.7	68.6	1.072	Early
ND651-9	139.6	77.4	7.5	68.6	1.074	Medium early
NYD195-11	139.6	88.3	7.5	72.2	1.074	Medium early
73 C 26-1	138.2	82.9	7.0	63.9	1.061	Medium early
NYD164-9	134.8	77.2	7.0	70.7	1.081	Midseason
Wauseon	127.3	87.0	7.0	66.5	1.068	Medium early
B0172-15	122.5	88.5	7.0	69.1	1.067	Medium early
BO257-8	118.5	76.7	7.5	64.5	1.063	Medium early
NYD195-16	100.8	82.0	7.2	69.6	1.074	Medium early
Norchip	99.4	78.3	6.5	68.1	1.077	Medium early
BO190-9	95.3	77.5	6.7	71.2	1.071	Medium early
BO240-11	90.5	72.3	7.0	70.9	1.074	Midseason
Nemarus	89.9	71.5	6.5	72.9	1.066	Medium early
LSD (.05)	37.4	8.0	.5			
CV (%)	18.8	6.9	5.4			

¹Appearance: 1 = Very Poor, 3 = Poor, 5 = Fair, 7 = Good, 9 = Excellent.

 $^{^{2}\}mathrm{Agtron}$ reading of chip color provided by Anheuser-Busch Co.

Variety	US;	½ 1A %	Appearance	Chip Color ²	Specific Gravity	Maturity
Sunrise	252.2	91.2	7.7	•	•	Medium early
B9792-157	236.4	91.5	7.7	•	•	Medium early
ND860-2	220.7	86.1	8.0	68.9	1.062	Medium early
B9792-158	215.7	82.5	7.0	•	•	Midseason
Atlantic	204.2	88.6	7.2	64.2	1.063	Midseason
Norchip	202.8	83.6	7.0	•	•	Medium early
B0045-6	202.1	89.5	7.7	•	•	Medium early
MS700-83	201.3	84.6	8.5	64.9	1.064	Medium early
NY81	187.7	92.3	8.5	•	•	Medium early
NY71	186.3	92.8	7.7	•	•	Midseason
NYD195-11	184.1	89.7	7.5	65.5	1.058	Medium late
73C26-1	182.7	86.9	7.5		•	Medium early
Superior	181.3	85.9	7.7		•	Medium early
76C29-7	178.4	87.7	7.0		•	Medium early
LA01-38	177.7	93.0	7.0	61.4	1.054	Medium early
B9792-8B	176.3	82.4	8.0	•	•	Medium early
NYD195-25	174.1	83.3	8.0	69.4	1.058	Midseason
ND651-9	172.0	83.5	7.5	•	•	Medium early
30220-14	159.8	86.4	8.2	•	•	Medium early
Neb. AB-1	156.2	79.7	7.5	66.0	1.063	Medium early
Vauseon	154.0	90.3	7.7		•	Medium earl
Vemarus	121.1	74.2	7.5	•	•	Medium earl
39922-11	110.3	77.8	7.5	•	•	Medium earl
LSD (.05)	40.1	4.9	.6			
CV (%)	15.4	4.0	5.8			

¹Appearance: 1 = Very Poor, 3 = Poor, 5 = Fair, 7 = Good, 9 = Excellent.

 $^{^{2}\}mathrm{Agtron}$ reading of chip color provided by Anheuser-Busch Co.

Variety	US:	# 1A %	Appearance ^l	Chip Color ²	Specific Gravity	Maturity
ND860-2	286.6	92.0	8.0	66.6	1.056	Medium early
76C29-7	284.5	89.6	6.5	72.0	1.048	Midseason
B9792-157	282.3	88.1	7.2	68.3	1.054	Midseason
Sunrise	268.0	88.5	7.5	70.5	1.054	Medium early
Superior	264.4	93.1	7.7	67.4	1.056	Medium early
NY71	249.3	93.0	7.0	66.8	1.054	Medium
B9792-158	244.3	84.9	7.7	71.2	1.052	Medium early
81C1-10	239.3	88.4	7.0	66.0	1.064	Medium early
66CP3(75)-1	236.4	89.8	7.2	71.6	1.045	Midseason
82C25-18	236.4	86.7	7.7	69.4	1.067	Medium early
NY81	235.0	89.9	8.0	65.2	1.058	Medium early
Norchip	225.0	91.6	6.7	68.4	1.055	Medium early
B0220-14	225.0	85.1	7.0	67.5	1.053	Medium early
ND651-9	219.2	82.0	6.7	60.1	1.059	Medium early
82C21-1	215.7	88.2	7.0	62.7	1.052	Midseason
Atlantic	215.0	88.7	7.0	69.5	1.061	Midseason
73C26-1	215.0	86.5	7.7	68.2	1.060	Medium early
B0045-6	200.6	78.7	8.0	66.2	1.057	Midseason
B9922-11	166.9	86.1	7.5	68.2	1.059	Medium early
NYD195-16	166.2	80.2	6.7	63.2	1.059	Medium late
Wauseon	164.1	87.5	7.0	67.8	1.041	Midseason
Nemarus	159.8	81.8	6.5	•	•	Midseason
82C26-2	156.9	85.2	6.0	70.2	1.060	Midseason
B9792-8B	147.6	86.9	6.5	64.6	1.063	Midseason
LSD (.05)	63.7	6.6	• 5			
CV (%)	20.4	5.4	5.4			

¹Appearance: 1 = Very Poor, 3 = Poor, 5 = Fair, 7 = Good, 9 = Excellent.

 $^{^2\}mathrm{Agtron}$ reading of chip color provided by Anheuser-Busch Co.

	US	# 1A		
Variety	CWT/A	%	Appearance	Maturity
NY81	344.2	91.3	8.0	Medium early
LA01-38	322.8	91.6	7.0	Midseason
NY71	287.8	93.3	7.0	Medium early
Atlantic	271.6	89.7	7.7	Medium early
Neb. AB-l	256.0	81.5	7.2	Medium early
Norchip	252.8	83.0	6.7	Early
NYD195-25	246.3	85.0	7.2	Medium early
NYD147-9	243.1	91.8	7.7	Early
NY72	239.8	86.7	7.0	Midseason
ND651-9	237.9	77.1	7.7	Medium early
MS700-83	220.4	75.0	7.0	Medium early
73C26-1	218.4	82.8	7.5	Early
NYD195-11	215.9	81.8	6.5	Medium early
Sunrise	214.6	90.2	7.0	Medium early
Superior	203.5	81.0	6.5	Early
ND860-2	177.6	84.0	7.5	Medium early
Wauseon	169.2	78.1	7.0	Medium early
Nemarus	166.6	83.2	8.0	Medium early
LSD (.05)	88.7	7.3	.7	
CV (%)	26.2	6.1	6.5	

¹Appearance: 1 = Very Poor, 3 = Poor, 5 = Fair, 7 = Good, 9 = Excellent.

NORTH DAKOTA

R.H. Johansen, S.H. Jansky, B. Farnsworth, and A. Thompson

Potato Breeding Program

Crossing and Seedling Production. In the greenhouse 313 potato crosses were made during the spring of 1987 and during the summer approximately 45,000 seedling tubers were produced. At the Langdon Experiment Station, approximately 55,000 seedling tubers were planted in 1987 and approximately 1500 were saved at harvest for further evaluation and increase. The Langdon plot was planted on April 27th and 28th and harvested September 8th and 9th. Several thousand seedling tubers from Texas and Idaho were also planted at Grand Forks with only a few being selected at harvest.

Advanced Selections. At Grand Forks and Absaraka, 868 second year selections were planted and 205 were saved at harvest for further increase. This planting is done with the cooperation of the Plant Pathology Department. Of the advanced selections, 300 were planted at Grand Forks and Casselton and 167 were retained at harvest. Several selections and cultivars from other potato breeding programs throughout the U.S. and Canada were also planted at Grand Forks for evaluation and increase. The plots were planted at Grand Forks on May 11th and 12th and harvested on August 31st and September 1st. A test plot of a few promising selections was also planted at Barnesville, Minnesota.

Promising Selections. On March 1, 1987, ND534-4Russ was named Russet Norkotah. From all reports, this could be one of the most outstanding cultivars released by the Horticulture Department. In 1987 there were approximately 2700 acres of certified seed grown in North Dakota. Colorado, Minnesota, Wisconsin and Oregon also reported a fairly large acreage. The total certified seed of Russet Norkotah in the U.S. during 1987 was well over 5,000 acres. ND860-2, a cold chipping selection, also was grown and tested in fairly large acreages in 1987. Over 600 acres of ND860-2 certified seed was grown in North Dakota this past season. It is anticipated that a fairly large acreage of ND860-2 will be planted by chip growers in 1988.

Several other selections also looked good and are being increased by foundation seed growers. The most outstanding are NDT-9-1068-11R, ND651-9 and ND671-4Russ. A small certified seed acreage of these three selections was planted in North Dakota this past summer and a larger increase is expected next season.

NDT-9-1068-11R is a high yielding, smooth red selection that could be a replacement for Red Pontiac. ND651-9 is another good yielding chip selection that may be a long-term storage chip variety. ND671-4Russ is a russet selection adapted for

french fry use and the russet count carton trade. ND671-4Russ might have some verticillum wilt resistance. Other selections that show promise in the breeding program are ND2008-2, ND1215-1, ND1215-16, ND1538-1Russ and ND2224-5R.

Cultivar and Selection Trials. Trials were planted at Grand Forks, Park River, Minot and Williston. Twenty-five entries were planted at Park River while Grand Forks had twenty-seven entries. Eleven entries were planted at Minot and Williston. Roger Hanson was in charge of general maintenance of the Grand Forks trial while Wayne Grinde was in charge of the Park River trial. Personnel from the Minot and Williston Agriculture Branch Experiment Stations conducted their trials. The North Central Regional trial was again planted at Grand Forks. Planting and harvest dates of all trials are found in Table 1.

Weather and growing conditions were fairly ideal for potato production in 1987. Grand Forks had 14.4 inches of precipitation from May until harvest and Park River, although somewhat drier, had fair moisture during the season. The 1987 spring was probably one of the earliest springs on record. Minot was extremely dry until mid-July and temperatures were above average in April, May and June and slightly below or near normal the rest of the season. Williston had weather comparable to Minot during most of the season—excellent growing conditions early in the season and then a dry, hot spell in June.

In the Red River Valley trials, Red Pontiac, with an average of 282 cwt/A was the highest yielding entry in trial (Table 2). The next highest yielding entry was NDT-9-1068-11R with an average of 269 cwt/A. Yield for both of these entries was quite comparable at Grand Forks. Other high yielding entries were Super Norgold, Russet Norkotah, and ND2224-5R. There was little yield difference between the chip entries, Norchip, ND2008-2 and ND1215-1. ND860-2 and Russet Burbank were the lowest yielding entries.

In 1987, the Grand Forks trial outyielded the Park River trial by an average of 28 cwt/A. The drier season at Park River during a critical period may have accounted for this.

Some of the promising entries in trial were four reds, NDT-9-1068-11R, ND2224-5R, ND1562-4R and ND1196-2R, and two russets, ND671-4Russ and ND1538-1Russ. The red entries all had good color and yield, while the russets had good shape and appearance. The most promising white chippers were ND651-9, ND860-2, ND2008-2, ND1215-1, ND1215-16 and ND2109-7. HiLite Russet and Shepody were planted only at Grand Forks. HiLite Russet yielded similar to Russet Norkotah, but did not have as good russeting or tuber type.

Red Pontiac was the highest yielding entry at both Minot and Williston. The Minot trial outyielded the Williston trial by an average of 68 cwt/A (Table 3).

Several selections produced good yield in the advanced selection and cultivar trial (Table 4). Some of these selections not only had good yield but had good appearance and several will move up to the state-wide trial in 1988.

Because of their small size and off-type, SH-1 and Shepody had a low U.S. No. 1 yield. The low yield of these two entries may also be attributed to the fact they are late and the vines were killed early in September.

In the Red River Valley trials, several selections including ND2109-7 and ND1215-16 had total solids higher than Norchip. The total solids at Grand Forks and Park River were similar (Table 2). In the advanced selection and cultivar trial, ND986-9 with total solids of 22 percent was the highest entry.

Processing Tests - Chipping. Agtron readings and percent chip yield are found in Table 5. These data were obtained from the 1986 statewide potato variety trial. After harvest and grading, the samples were stored at 38°F for 2 1/2 months and then chipped immediately out of storage. The samples were then chipped every two weeks out of 65°F storage. Outstanding chippers were ND860-2, TND22-2, ND398-1, ND651-9, ND1215-1 and ND1215-16. ND860-2 and ND651-9 had the best chip color when chipped out of 38°F.

One hundred and one second year selections were tested for chip quality by the Potato Research Laboratory, East Grand Forks, MN. Samples were chipped out of 65° storage on February 23, 1987. Thirteen selections had Agtron readings of 44 which is considered to be fairly light color. Twenty-six third year selections were chipped out of 43°F and then reconditioned at 65°F for 1 month. Several selections that had ND860-2 in their breeding chipped out of 43°F storage and had excellent chip color after reconditioning. One hundred and twenty-six fourth year and older selections were also chipped in the same manner. These selections were from the North Dakota breeding program, from other states, and named cultivars. Several showed outstanding chipping characteristics.

Processing Tests - French Fries and Flakes. Twenty-two selections and cultivars and the check cultivar Russet Burbank were tested for french fry color, texture and flavor by the Food and Nutrition Department of the College of Home Economics at NDSU (Table 6). The frozen french fries and the flakes were prepared by the Potato Research Laboratory at East Grand Forks, MN. Several advanced selections were as good as or better than Russet Burbank in french fry quality. Russet Norkotah and NorKing Russet were very similar to

Russet Burbank in french fry quality. Limpness in french fries was done by the Munson and Nylund limpness method. French fry length determinations were also made. This test is significant because processors of frozen french fries desire a long french fry. In the flake test Norchip scored the highest in overall quality when six selections and Norchip were tested for flakes (Table 6).

Culinary Tests. Advanced selections and check cultivars grown in the 1986 statewide trials were tested for both boiling and baking quality. Table 7 contains the average scores from trials at Grand Forks and Park River. Russet Norkotah, NorKing Russet and ND671-4Russ were excellent bakers. In the boiling test selections or cultivars high in total solids generally sloughed excessively after boiling. No selection or cultivar showed serious after-cooking darkening.

Spacing, fertilizer, soil type, planting and harvest dates of the 1987 trials. Harvest Date 9/17 10/1 8/6 9/2 Planting Date 4/30 4/29 4/27 5/11 Bearden clay loam Glyndon silt loam Williams loam Soil Types Loam $25 \# / A + 86 \# / A + P_2 0_5$ 22-22-12 @ 400#/A 57-21-0 @ 200#/A Fertilizer None Plant ---inches---16-18 Spacing 12 12 7 Row North Dakota Table 1. 36 38 36 38 Grand Forks Park River Williston Location Minot

U.S. No. 1 yield, percent U.S. No. 1 and percent total solids of potato cultivars and selections grown in the Red River Valley, 1987. North Dakota Table 2.

		Grand Forks	KS.		Park River	S.		Average	
	Cwt/A	₽€	88	Cwt/A	₽€	₽€	Cwt/A	₽€	₽€
Cultivar or	_	ns	Total	US No. 1	US	Total	US No. 1	ns	Total
Selection	Yield	No. 1	Solids	Yield	No. 1	Solids	Yield	No. 1	Solids
Red Pontiac	272	87		6	88		∞	87	17.9
- 1	265	98		· [-	06	. φ	9	88	17.9
Super Norgold	240	82	19.4	273	98	20.1	257	84	
	261	87		3	95	6	7	91	19.6
0	286	79		9	87		=	83	
ND1562-4R	255	18		0	90		α	87	
ND1196-2R	286	85		<u></u>	95		$^{\circ}$	90	ထိ
ND2008-2	220	84	6	$^{\circ}$	87	0	S	98	20.0
Norchip	241	92		$\overline{}$	98	-	α	81	<u>.</u>
ND1215-1	263	88	$\overset{\circ}{\circ}$	∞	91	$\overset{\circ}{\omega}$	S	90	$\overset{\circ}{\infty}$
ND671-4Russ	224	88		α	88	9	α	89	6
ND 791-5R	239	79	ċ	0	89	ċ	\sim	84	ċ
Kennebec	205	74	9	ω	42	-	$\overline{}$	77	ထံ
ND 651-9	242	75	6	∞	89	0	$\overline{}$	82	0
ND1215-16	204	81	<u>.</u>	α	82	<u>.</u>	$\overline{}$	82	•
Redsen	252	79	18.6	7	88		$\overline{}$	84	18.8
NorKing Russet	225	83	6	σ	90	ö	0	87	ö
ND1538-1Russ	247	63	6	165	98	9	0	75	6
ND1483-16R	251	79	6	152	89	ထိ	0	84	6
ND2109-7	240	81	0	153	88	å	9	85	Š
ND1892-2R	231	78	5	161	83	ထံ	9	81	ċ
ND1871-3R	207	74		171	88	•	189	81	ထံ
Red Norland	159	98		199	74	•	179	80	ċ
ND 860-2	144	74		116	85		130	80	•
Russet Burbank	92	53		156	54	ထံ	$^{\circ}$	54	•
Hi-lite	244	90		ı	1	l l	244	90	6
Shepody	137	62	•	l l	1	1	\sim	62	•
Δνονοσο	727	70	19.0	199	86	10.11	213	82	19.2
uver ese	1		•	`)	•	-)	•

North Dakota Table 3. Advanced Selections and Cultivar Trial Grown at Grand Forks, ND - 1987

	U.S. No. 1	Total	%	
Selection or	Yield	Yield	U.S.	Total
Cultivar	Cwt/A	Cwt/A	No.1	Solids
ND1618-13R	275	292	94	17.7
ND1408-8R	256	279	92	19.2
ND1382-6R	244	284	86	18.8
ND2354-20R	235	257	91	18.0
Norchip	226	270	84	21.4
ND1725-4	220	250	88	20.3
ND2050-1R	214	225	95	18.8
ND2225-1R	209	234	89	18.4
ND 986-9	208	247	84	22.0
ND2165-8	199	234	85	19.2
Redsen	198	250	79	18.4
ND2055-3	198	218	91	20.5
ND2157-4	195	225	87	20.9
ND1384-7	194	246	79	19.9
ND2270-1R	192	176	93	17.3
Red Norland	190	222	86	17.0
NDT2-1947-5Russ	181	229	79	20.5
Super Norgold	176	212	83	18.6
ND2141=4Russ	173	212	82	17.5
ND2107-1	170	200	85	21.8
ND2158-10	170	241	70	19.0
ND1850-5Russ	162	188	86	19.9
ND2222 - 7	152	204	74	21.4
ND2207-8Russ	146	206	83	18.6
ND1682-2	143	188	76	20.7
ND1859-3	142	161	88	20.7
SH-1	119	196	60	17.3
Shepody	116	191	61	18.8
Average	189	226	83	19.4

North Dakota Table 4. Yield Data and Total Solids of Potato Cultivars and Selections Grown at Williston and Minot, 1987.

WILLISTON

Cultivar or Selection	Yield U.S. No. 1 Cwt/A	% U.S. No. 1	% Total Solids
77	400	06	02.2
Kennebec	182	96	23.3
Norchip	169	88	23.5
NorKing Russet	176	95	22.9
Red Norland	179	96	20.7
Red Pontiac	198	96	22.2
Redsen	137	89	20.5
Russet Burbank	160	86	23.1
Russet Norkotah	169	94	22.0
ND551-9	167	91	22.4
ND671-4Russ	141	89	23.1
NDT-9-1068-11R	153	92	23.1
Average	166	92	22.4

MINOT

	Yield		
Cultivar or	U.S. No. 1	% U.S.	% Total
Selection	Cwt/A	No. 1	Solids
Kennebec	191	96	22.4
Norchip	232	97	24.4
Norgold Russet	216	94	20.3
NorKing Russet	262	98	22.4
Red Norland	266	95	18.4
Red Pontiac	327	97	19.0
Redsen	175	96	19.9
Russet Norkotah	238	98	21.6
ND651-9	253	95	21.8
ND671-4Russ	234	95	21.4
NDT-9-1068-11R	183	93	21.4
Average	234	96	21.2

1987 Chip Tests (Agtron) of Cultivars and Selections Grown at Park River and and Grand Forks in 1986. North Dakota Table 5.

	0 weeks	s 38 ⁰ F	2 weeks	s 65°F	4 weeks 65°F	65°F	Percen	Percent yield verage 3 tests
Cultivar or	Grand		Grand	Park	124	Park	Grand	1
Selection	Forks	River	Forks	River	Forks	River	Forks	River
Kennebec	13	13		24	29	† †	31.3	31.2
Norchip	12	16	28	26	8 7	617	33.0	33.3
Norgold Russet	17	∞	16	20	27	29	32.5	31.9
NorKing Russet	13	13	22	26	32	30	32.1	
Super Norgold Russet	6	11	16	19	23	27	31.4	33.0
Russet Burbank	12	14	23	25	29	38	₹.	
TND22-2	19	16	22	56	917	747	μ.	33.6
ND398-1	17	14	50	917	53	58	ις.	
ND534-4Russ	12	14	22	20	29	33	32.8	32.5
ND651-9	20	19	34	41	45	57	Ś	
ND671-4Russ	14	16	22	24	29	34	Š	
ND 860-2	29		52	45	57	617	33.8	
ND1113-10Russ	14	10	22	29	30	38	33.0	32.0
ND1215-1	13		25	33	38	617	33.0	33.2
ND1215-16	18	16	35	24	35	37	34.1	31.7
ND1859-3	11	15	23	21	35	33	32.3	32.1
Average	15.2	14.41	26.4	28.1	36.6	40.8	33.0	32.4

North Dakota Table 6. Average Scores for Franch Fry and Flake Tests $^{1/}$.

			French Fries	S.				Flakes		
Cultivar or				Ave.					Ave.	
Selection	Color	Texture	Flavor	Score	Ranking	Color	Texture	Flavor	Score	Ranking
Vanchoo	1 7	6	7 1	7.2	v					
Name of the second	r (1 .	- (- 1) C	1	0		1	•
Norchip	χ, Υ	0°)	o Y	Ŋ.	× co	7.	్ద	ָל ס	0.)	_
Russet Norkotah	5.9	6. 8	6.5	ħ°9	16					
NorKing Russet	9.9	9.9	6.3	6.5	17					
Viking	5.2	5.6	5 8	5.5	22					
Russet Burbank	ф. 9	6.9	6.3	6.5	13	7.5	t°9	6.1	6.7	7
Russet Burbank ref.*	7.5	7.0	5.6	ተ •	77					
Shepody	5.6	6. 4	0.9	0.9	19					
TND22-2	8 7.	7.5	5.7	7.2	7	7.7	† °9	6.3	6.8	7
ND398-1	8.1	7.8	ф°9	ተ • /	2	7.4	6.1	h.9	9.9	5
ND651-9	8.5	6.3	6.5	7.1	6					
ND860-2	8.0	8,2	5.9	7.4	m	5.5	6.1	6.7	6.1	9
ND1113-10	8.9	2.9	6.8	6.8	1					
ND1215-1	7.0	6.3	6.8	6.7	12	6.7	6•9	6.5	6.7	m
ND1378-4	7.0	7.4	7.4	7.3	5					
ND1520-3	5.2	5.5	5.5	5.4	7₹					
ND1538-1	5.2	5.5	5.7	5.5	ম					
ND1719-5	6.3	5.6	5.7	5.9	21					
ND1850-5	5.7	6.8	6.3	6.3	17					
ND1859-3	6.3	6.1	5.4	5.9	8	4.1	9.9	4.7	5.1	7
ND2031-8	8.2	7.5	7.1	1.6	_					
ND2019-1	2.9	ղ• /	ф°9	6.8	10					
ND2051-1	5.8	6.7	6.9	6.5	15					
ND2141-4	4.1	7.4	5.0	4.6	KI					
ND2208-7	6.2	5.7	6.3	6.1	18					

*Commercial package

Rating Guide

7-9 — Good 5-6 — Fair, but acceptable 1-4 — Poor, not acceptable

1/ All french fries and flakes were tested three times, except Russet Burbank and Russet Burbank reference which were tested 13 times

North Dakota Table 7. 1987 Cocking Tests of Cultivars and Selections Grown at Grand Forks and Park River, North Dakota - 1986 $^{1/}$

			Boiling					
			80.00	Color				
			Color	4 Hours			Ç	
Cultivar or Selection	Ing Stough	meall- ness3/	Arter Cocking ⁴ /	Arter Cocking ⁵ /	Flavor ⁶ /	Mealiness	Color	Flavor
								-
ND1871-3R	8.5	5.1	8.1	8.0	7.2	5.8	8.6	9.9
ND1562-4R	8.2	5.5	7.3	8.0	h*9	5.1	8.5	6.3
ND651-9	5.0	6.9	9.6	7.0	6.8	6.8	10.0	7.2
Norchip	8.0	8.0	8.0	7.0	7.5	6.5	10.0	7.5
ND671—4Russ	5.2	8 °4	7.6	0.9	7.9	8.7	8.3	8.1
ND1892-2R	6.5	6.3	7.6	8.3	6.8	5.4	7.5	₽°9
Red Norland	0.6	0.9	8.0	8.0	7.0	4.5	0.6	7.0
ND1215-16	8.8	6.9	8.2	7.0	7.5	6.8	7.8	7.5
ND1215-1	7.2	7.8	7.4	8.0	7.3	7.8	8.0	7.6
TND22-2	3.5	7.6	7.0	10.0	7.7	7.0	8.0	6.5
ND860-2	6.7	7.1	ħ*8	5,3	6.7	7.5	8°3	7.0
NDT9-1068-11R	8.8	5.4	0.6	8.5	7.5	5.6	9.8	6.5
Red Pontiac	10.0	5.0	8.0	0.6	6.7	6.5	8.0	0°9
ND1113-10Russ	8.5	5.7	0.6	10.0	8.0	7.5	10.0	8.5
NorKing Russet	8.0	6.7	7.5	8.0	7.0	6.5	0.6	3.5
Redsen	8.0	h.7	5.0	7.0	0.9	5.5	8.0	7.0
Russet Burbank	7.5	8.7	7.0	0.6	0.6	8.0	8.0	7.0
ND534-4Russ	7.0	8.5	7.0	0.9	8.5	8.0	8.0	7.0
Norgold Russet	8.5	9,3	7.0	0.6	8,3	6.5	0.6	7.5
Kennebec	8.5	7.0	8.5	8.0	7.7	7.0	7.0	8.0
ND1859-3	7.0	8.0	2.0	5.0	7.7	7.4	2.0	7.1
ND791-5R	ħ•6	4.7	8.5	8.5	0°9	5.0	0.6	6.7
ND1196-2R	8.9	4.9	9.5	9.5	7.2	7°4	9.3	6.9
ND398-1	0°ħ	9,3	6.5	7.0	8.0	7.0	7.0	0.9
Super Norgold Russet 8.0	set 8.0	7.3	10.0	8.0	8.3	7.0	0.6	7.5

Average of two locations (Grand Forks and Park River) Severe Sloughing - 1; No Sloughing - 10 Not Mealy - 1; Very Dry and Mealy - 10 Dark - 1; Very White - 10 Dark - 1; Very White - 10 のグボダベル

Poor Flavor - 1; Excellent Flavor - 10

THE OHIO STATE UNIVERSITY, OHIO AGRICULTURAL RESEARCH AND DEVELOPMENT CENTER, WOOSTER, OHIO M.A. Bennett, A.D. Bisges, R.L. Hassell, D.M. Kelly, F.I. Lower, L.R. Nelms, R.C. Rowe, K.L. Wiese, and E.C. Wittmeyer

Introduction

Eight cultivars were planted in each of five farms. These farms were selected in order to give different soil and climate conditions. The cultivars were selected either because they looked promising in previous over-the-state trials or looked promising in the observation trials on two cooperating farms or were selected from the cultivar plots at the Ohio Agricultural Research and Development Center (OARDC), Wooster. The Katahdin and Norchip cultivars were included as standard varieties.

In addition, the main cultivars were planted at the Campbell Institute for Research and Technology (Napoleon, Ohio), the Muck Crops Branch (Willard, Ohio) and the OARDC. The data from these locations will be included in this report.

Farm Locations

The five farms referred to in the introduction are as follows:

- <u>Farm 1 (M)</u> Michael Farms, Urbana, Ohio, Champaign County -- main plots plus russet plots.
- Farm 2 (TH) Thompson Farms, Hanoverton, Ohio, Columbiana County -- main plots plus observation plots.
- <u>Farm 3 (Mel)</u> Mellinger Farms (Crystal Springs Farm), Leetonia, Ohio, Columbiana County -- main plots plus observation plots.
- Farm 4 (L) Logan Farms, Mt. Gilead, Ohio, Morrow County -- main plots plus Monona seed source plots.
- Farm 5 (C) Chase Farms, Defiance, Ohio, Defiance County -- main plots plus russet plots. Harvest was delayed due to wet weather.

See table 2 for summary of cultural practices followed on these cooperating farms -- planting dates, harvest dates, rainfall and related information.

Procedures

Eight cultivars were planted in four replicates in most cases on each of the five farms. In addition, 13 additional cultivars were planted for observation in smaller triplicated plots on Farms 2 and 3. Also, ten russet cultivars were likewise planted on Farms 1 and 5, and six different sources of Monona were similarly planted on Farm 4.

Farms 1 and 4 were planted May 1 to 14, but planting at Farm 5 was delayed by rain until June 17. The growers' planters were used by driving very slowly. The potatoes

were harvested with old flat bed diggers, then picked up and weighed. A representative 50 lb sample was then graded with ten tubers cut for internal defects. A sample of each cultivar was then taken to O.S.U. for chip test.

Katahdin and Norchip were used for comparison in the main trials, Superior, Atlantic, and Kennebec in the observation trials and Belrus and Russet Burbank in the Russet trials. During the growing season, stand counts were made and plant disease and stress were recorded as well as maturing season.

Weather and Growing Conditions

The winter of 1986-87 was unusually warm and dry. This was followed by a warm and dry spring in 1987, in which a few days were hot. June and July were extremely hot and humid, and July was generally quite dry. Farm 4 lies in an area of Ohio later designated a distress area due to excessive rain and flooding early in the season. It was followed by the July and early August dry period. The rainfall condition at Farm 5 is explained later under the tuber defects. Farm 1 was partially irrigated throughout the season, but was not throughly irrigated due to location of the test plots for the July 30 Ohio Potato and Vegetable Field Day.

On Farm 2, Lorox + Dual was applied, but the second and final cultivation was missed due to rains until the plants were too large. As a result, a heavy growth of weeds, mostly ragweed, between the hilled rows apparently absorbed the limited moisture resulting in unusual and extremely low yields of some of the replicates. Most of the replicate samples were discarded as not indicative of the yielding ability of those cultivars. These extremely low yields were in the area where the weed growth was greatest. Also, as explained later under plant stress, heat and air pollution may have caused considerable injury. Farm 3, with the highest yields of the five farms, had adequate rainfall in June (4.3" on July 1 and 2, and 1" on July 29) to offset the dry July and August period.

Yields

Gross yields as well as U.S. No. 1 yields are shown in the attached tables for the main trials as well as other data. The percent of U.S. No. 1 tubers and the CWT per acre and shown in the other tables. The yields varied greatly from farm to farm. They averaged lower than in some years.

<u>Stands</u>

Stands were good in 1987. Favorable conditions existed, with May and early June being unusually warm and receiving sufficient rainfall. No stand count was made on Farm No. 5 because of very late planting in relation to the other four farms.

The average percentage of a perfect stand on the other four farms for the main trials was 92.5%. With quite similar spring conditions in 1986, the average was 95%, the highest on record. The average for the preceding 11 years was 87%, of which the highest was in 1984 at 91%.

The 1987 average for the observation trials on two farms was 88%, for the Russet trials on Farm 1, 88%, and for the Monona trials on Farm 4, 95%.

Because of the uniformity and excellence of stand, no stand data pertaining to the various entries is being included in this report.

Plant Disease, Stress, and Injury

Early blight was severe on Farm 2 on Norchip, Chippewa, Russet Norkotah, ND860-2, and Conestoga in the main trials and in ND1113-10, W848, Sunrise, Yukon Gold, and Norland in the observation trials. It was noted moderate to severe on LA01-38, Katahdin, Atlantic, and NemaRus. It was moderate on Superior and W779. It was only slight on the others, MS700-70, B7592-1, Campbell 14, Kennebec, W855, and Elba.

Severe stress injury occurred on many cultivars on Farm 2 in late July from air pollution and the excessive heat and lack of moisture. Almost none was found on Farm 3, 13 miles away from Farm 2. The difference might be explained by 4.3" of rainfall on Farm 3 on July 1 and 2, and only 2.1" on Farm 2 on the same dates plus weed problems on the latter. Neither farm had any appreciable rainfall for four weeks after July 1-2. Farm 2 lies in a valley, while Farm 3 is on level land. The records were taken on both farms on July 28. It had been excessively hot and humid for the preceeding week. On July 29, Farm 4 showed similar injury, particularly in the replicates on the lower side of a small slope in the plot area.

The injury was severe on Norland, ND860-2, Sunrise, and Conestoga. It was moderate on Yukon Gold, Chippewa, Norchip, Russet Norkatah, and B7592-1. None was seen on Katahdin, Superior, MS700-70, and Elba. All of the other entries showed slight injury. At Farm 4, the most severly injured were replicates of ND860-2, Russet Norkotah, Norchip, and Conestoga, and of course, Norland. The same cultivars showed very slight injury at Farm 3.

Tuber Defects

The attached tables briefly list the external defects. Very little scab was found in 1987. The other defects were mostly misshapen, growth cracks, and second growth.

Internal defects were generally minor and much less than in many years, except on Farm 5. Ten tubers from each replicate were cut. Only defects exceeding 5% of all tubers cut of any cultivar were listed herein.

On Farm 1, LA01-38 and Norchip each showed 10% stem end discoloration. On Farm 2, LA01-38 showed 7% stem end discoloration, Atlantic had 13% internal discoloration, and NemaRus and Elba each had 10% of the latter. On Farm 3,

internal discoloration was 10% in Norchip, 30% in Atlantic, and 13% in Elba. Stem end discoloration was found in Katahdin at 12.5% and in Elba at 10%. No defects over 5% were seen on Farm 4.

At Farm 5, an unusual season gave unusual results. As already stated, rains in May delayed planting until June 17. Three inches more rain then fell until the plants would have fully emerged. Then, when moisture was badly needed for plant growth and tuber formation, only 1.4" of rain fell for over four weeks. Beginning August 22, over 4" of rain fell in nine days, with adequate rains through September. This resulted in very late and very rapid growth resulting in every entry except MS700-70 showing some degree of hollow heart (H.H), some of it very severe.

In the main trials, the cultivars showing above 5% H.H. were Russet Norkotah 505, LA01-38 30%, Norchip 10%, and Katahdin 22.5%. All of the russets were over 5% and the percentages are listed below.

A7652-1	77	Belrus	37	A72685-2	17
NemaRus	17	A75188-3	10	AC77513-1	77.5
ND671-4	37	Rus, Burbank	13	ND534-4	20

These with a high percentage might be considered to be very susceptible to hollow heart.

TABLE 1. Soil Analysis, 1987, Statewide Trials *Cooperating Farms

	1 - M	2 - TH	3 - MEL	4 - L	5 - C
рН	5.9	5.6	6.2	5.7	6.2
P (lbs/A)	250+	250+	250+	128	106
K (lbs/A)	619	563	412	315	160
Ca (lbs/A)	2450	1280	3020	2310	2150
Mg (lbs/A)	533	334	157	234	133
C.E.C. MEQ	13	10	11	12	6
Ca % B.S.	48	32	68	48	88
Mg % B.S.	17	14	6	8	9
к % B.S.	6.2	7.1	4.7	3.4	3.3
Mn (lbs/A)	104	88	81	70	44
Zn (lbs/A)	19.9	18.9	16.6	8.6	7.2
B (lbs/A)	. 9	1.2	1.6	.6	. 8
O.M %	2.5	2.1	2.7	2.6	1.4

^{* 1 -} Michael Farms, Urbana

Soil analyses made by REAL Laboratory, Ohio Agricultural Research and Development Center, Wooster, Ohio.

^{2 -} Thompson Farms, Hanoverton

^{3 -} Mellinger Farms, Leetonia

^{4 -} Logan Farms, Mt. Gilead

^{5 -} Chase Farms, Defiance

TABLE 2. Total Yield, Marketable Yield, and Percent U.S. No. 1 for Main Trial Cultivars; Statewide Trials, 1987.

	Farm	T 1 (Fa	rs 2 (T)	(F	Fa	2 2	e])	است	318 4		u.	arm 5 ((()	Total	(Farms	1-5
	Total	U.S.	U.S.	Total	U.S.	U.S.	Total	U.S.	U.S.	Total	Ü.S.	S.S.	Total	U.S.	U.S.	Total	E.S.	U.S.
	Yield	No.1	No.1	Yield	No.1	No.1	Yield	No.1	No.1	Yield	No.1	No.1	Yield	No.1	No.1	Yield	No.1	No.1
	CW1/A	cwt/A	эp	CWT/A CWT/A %	cwt/A	дP	CWt/A	cwt/A cwt/A %	эÞ	CWt/A	cwt/A	æ	CW1/A	cwt/A	<i>30</i>	CWT/A	CMt/A %	90
d and d	2,4,5	978	27	141	147	10	279	417	00	34.9	300	ox ox	109	344	85	062	289	ox ox
1000+000	224	000	. 0	7 7 7	123	1 0	272	722	2 6	3 1) i	2 1	2 1	F 1	3 (776	305	9 0
comes coga Katahdin	24.50	207	, o a	118	101	> °	110	0.00 4.10	7.	350	120	-0	378	110	00	202	916	9 6
LA01-38	360	343	95	149	132	89	477	435	91	423	409	16	391	331	85	360	330	92
MS 700-70	1591	148	93	216	189	88	455	422	93	394	371	\$6	337	274	81	313	281	9.0
Norchip	248	198	80	177	141	80	484	399	82	342	266	 	418	180	5.5	334	236	11
10860-2	262	227	87	145	126	87	401	361	9.0	265	240	91	290	251	87	273	241	00 00
Russet Norkotah	341	289	85	159	132	83	446	390	87	298	264	89	381	284	75	325	272	40
Hean	249	231	93	161	138	98	444	397	68	347	311	06	371	289	78	314	273	87

I Some replicates damaged by irrigation wheel.

TABLE 3. Summary of the Main Trials - Average of five farms by entry, 1987

	Total		Percent		U.S. No.1	Major Defects
	Yields			U.S.	Yields	External
Entry	cwt/A	B's	Culls	No.1	cwt/A	Average % Culls
LA01-38	360	2.7	6.5	90.8	330	
Chippewa	329	4.1	7.9	87.9	298	7.8 Sh. 2nd.
MS700-70	313	3.6	7.6	88.8	281	6.2 Sh. 2nd. Cr.
Katahdin	307	3.8	6.7	89.6	276	6.2 Sh. 2nd.
Average	314	5.0	9.2	85.9	273	
Russet Norkotah	325	6.3	10.4	83.4	272	10.4 Sh. 2nd.
ND860-2	273	8.4	3.7	88.0	241	
Norchip	329	7.0	20.3	72.7	236	20.3 Sh. 2nd. Cr
Conestoga	256	4.3	9.4	85.8	225	6.7 Sh. Cr.

Sh - shape; EB - early blight; Int. Dis. - internal discoloration; 2nd - second growth; Cr - growth cracks

TABLE 4. Average Yields and Grades of Observation Trials. Cultivars, by farm and average, of U.S. No. 1 tubers. 1987. (Percent U.S. No. 1 and cwt/A)

Farm No.	2 -	TH	Farm No.	3 - !	4EL	Avera	age	
Entry	%	cwt	Entry	%	cwt	Entry	%_	cwt
441 -41	0.7	1.00	W	7.5	100	17	7.0	000 5
Atlantic	87	169	Kennebec	75	430	Kennebec	78	282.5
NemaRus	83	154	Elba	89	407	Atlantic	88	280
Campbell 14	95	143	W855	83	399	Elba	87	270.5
Kennebec	81	135	Atlantic	89	391	W855	91	267
W855	90	135	Sunrise	91	390	Campbell	91	257.5
Elba	86	134	B7592-1	90	390	W848	83	251
Yukon Gold	95	128	W848	83	380	Sunrise	89	248
W848	81	122	Superior	92	375	B7592-1	79	246.5
B7592-1	72	121	Campbell 14	92	372	Superior	89	243
Superior	87	111	Yukon Gold	87	363	NemaRus	85	228.5
Sunrise	88	106	W779	74	311	Yukon Gold	91	220
W779	67	82	NemaRus	87	303	W779	70	196.5
Average	84	128	Average	87	372	Average	85	250

V. Early- Sunrise. Early- Yukon Gold. Med. Early- ND1113-10. Midseason- NemaRus, W779, Atlantic, W848, Kennebec, B7592-1, Superior. Late- Campbell 14, W855. Very Late- Elba.

TABLE 5. Average Yield and Grades of Russet Trials. Cultivars, by farm and average of U.S. No. 1 tubers, 1987. (percent U.S. No. 1 and cwt/A)

Farm No.	1 -	M	Farm No.	5 -	C	Avera	ge	
Entry	%	cwt	Entry	%	cwt	Entry	%	cwt
NemaRus	85	217	(1)ND534-4	87	362	ND671-4	82	268
ND671-4	80	205	A75188-3	90	340	ND534-4	7.4	263
(1)ND534-4	62	165	ND67104	84	331	NemaRus	84	243
Belrus	60	119	A72685-2	85	305	A72685-2	79	207
A72685-2	72	109	AC7652-1	80	298	A75188-3	80	195
AC77652-1	70	85	NemaRus	82	268	AC7652-1	75	192
AC77513-1	70	64	AC77513-1	71	268	AC77513-1	71	166
A75188-3	70	50	Belrus	64	191	Belrus	62	155
Rus Burbank	23	44	Rus Burbank	48	173	Rus Burbank	36	109
Average	66	118	Average	77	282	Average	71	200
W752	90	313						
Norland	86	2 72						
Norland	82	236						
Average-12 Av. omitting	71	157						
Rus Burbank		167						

(1) Russet Norkotah

Some Known	Characteristics
ND534-4	(see Main Trials)
NemaRus	For table use. H.H. problem.
Belrus	Low yields, V. Susc. to EB, etc.
A72685-2	For table use. Long, good yields.

Burbank High Sp. Gr. Not adapted to Ohio.

TABLE 6. Source of Seed Trials - Monona - 1987. Total weight, average percent U.S. No. 1 and cwt/A.

STATE	TOTAL	% U.S. No. 1	CWT/A
Maine	124.5	89.5	343
New York (Mehl.)	109.3	92.3	311
	109.2	90.2	296
Nebraska	94.3	90.1	261
New York (Kent)	102.5	88.8	261
Wisconsin	84.3	88.3	231
Average	103.2	. 88.8	284

POTATO VARIETY TRIAL 1987

MUCK CROPS BRANCH O.A.R.D.C. - O.S.U.

Variety	Marketable cwt/A	Large Tubers cwt/A	Culls cwt/A	Ct/8 lbs	Specific Gravity
Donna	249	27	85	18	1.063
Norchip	223	32	34	27	1.069
Red Norland	206	38	39	26	$1.060 \\ 1.078$
Atlantic	205	28	6	25	
NY 81	191	27	17	19	1.065
Conestoga	186	43	23	31	1.065
8N 9803-1	185	40	21	27	1.075
MS 700-83	183	31	2	26	1.068
ND 860-2 Monona NY 79 Chippewa	183 181 173 165	32 17 34 19	20 53 13 32	30 22 32	1.066 1.060 1.062
NY 76	164	42	20	35	1.060
W848	163	17	24	17	1.062
Katahdin	148	20	24	21	1.060
MS 700-70	139	27	16	29	1.068
ND 1113-10	130	37	40	24	1.060
ND 671-4 Russ	120	34	22	21	1.065
AF 235-1	112	20	14	19	1.068
Russet Burbank	108	40	49	31	1.062
LA 01-38	102	20	11	20	<1.060
Russet Norkotal	h 94	26	24	18	<1.060
NemaRus	92	17	10	25	1.063
A 72685-2	58	18	11	36	1.060

Seeded: May 28, 1987

Harvested: September 9, 1987 Plot size: 2 row, 32" apart, 20' long

3 replications/variety

OBSERVATION POTATO VARIETY TRIAL RESULTS CAMPBELL INST. OF RESEARCH AND TECHNOLOGY NAPOLEON, OH 1987

Variety	Total	Usable	Percei		gnt	Internal	
			<1 7/8"	>1 7/8"		Browning	
	0.77.1	0.4.77	5 0	0.0 4	1 0	10	
Atlantic	371	347	5.6	93.4	1.0	10	
NY 81	306	266	12.1	86.9	1.0	10	
MS 716-15	305	271	10.9	88.9	0.3	0	
Denali	296	138	16.9	80.5	2.6	40	
MN 12567	293	231	21.0	79.0	0	60	
MS 702-80	277	261	4.7	94.4	0.8	20	
WIS 779	275	239	12.0	86.9	1.1	50	
ND 651-9	268	240	9.5	89.4	1.1	0	
W 752	268	222	16.4	83.0	0.6	0	
NDT 9-1068-11R-5	264	235	9.9	88.9	1.2	20	
NY 79	251	221	7.7	88.3	4.0	10	
F 70021	250	228	6.2	91.1	2.8	0	
Sunrise	245	207	15.4	84.6	0	20	
NY 76	241	175	27.4	72.6	9	10	
Norgold (Super)	225	157	29.4	69.6	1.0	30	
A219.70-3	219	188	13.7	85.6	0.7	10	
WIS 879	214	158	13.3	73.7	13.0	60	
NY 71	195	150	19.0	77.1	4.0	0	
MN 12331	181	108	40.4	59.6	0	0	
AF 236-1	175	135	22.0	77.1	0.9	50	
WIS 848	174	139	19.9	80.1	0	10	
Kennebec	168	128	22.8	75.8	1.4	6 0	
Superior	165	148	9.8	89.7	0.5	0	
WISC 80-26.86	145	68	52.9	47.1	0.5	30	
NY 78	144	89	36.9	62.0	1.1	20	
NI /O	144	09	30.9	02.0	1 • 1	20	
WIS 921	139	81	39.2	58.0	2.8	10	
NEA 71.72-1	119	92	21.9	76.8	1.3	50	
BN 9803-1	116	62	29.8	53.6	16.6	60	
ND 671-4	84	52	34.9	62.4	2.8	10	
MN 12945	46	21	55.0	45.0	0	10	

Planted: May 22, 1987

Harvested: September 8, 1987 Plot size: single row, 34" x 20'

No replications

REPLICATED POTATO VARIETY RESULTS CAMPBELL INST. OF RESEARCH AND TECHNOLOGY NAPOLEON, OH 1987

	_Yield	cwt	Percen	ht	Percent Internal	
Variety	Total	Usable	<1 7/8"	>1 7/8"	Rot	Browning
Conoctors	275	252	9 6	01.4	0 1	0
Conestoga	264	253	8.6	91.4	0.1	8
LA01-38		232	12.3	87.6	0.1	18
MS 700-83	262	227	9.8	86.1	4.1	10
Norchip	262	218	17.4	82.4	0.2	8
ND 860-2	257	224	13.1	86.7	0.2	8
Chippewa	239	204	14.3	85.3	0.4	52
WIS 832	227	196	10.4	87.0	2.6	8
MS 700-70	195	166	14.9	84.9	0.2	2
Monona	189	162	13.9	85.2	0.9	52
Russet Norkotah						
ND534-4	169	112	33.2	65.9	0.9	25
Katahdin	166	134	18.3	80.1	1.5	45
NemaRus	69	18	76.5	22.3	1.3	12
Waller LSD 0.05	51	49	7.8	8.5	3.3	22
C.V.	17.7	20.3	29.9	8.3	166.9	75.3
Mean	215	179	20.2	1.0	2.1	

Planted: May 22, 1987

Harvested: September 8, 1987 Plot size: single row, 34" x 20'

4 replications

CHIP TRIALS TABLE 1. Yield, Marketable Yield, Percentage of Yield by Grade Distribution and Specific Gravity for Cultivars Grown at Wooster, Ohio - 1987.

	Total	U.S.				
	Yield	No. 1	U.S. No. 1	B size	Culls	Specific
Cultivar	cwt/A	cwt/A	%	%%	%%	Gravity
Atlantic	261	191	73	7	20	1.095
MS 700-70	231	150	65	13	22	1.084
MS 702-80	237	161	68	11	21	1.086
MS 700-83	332	236	71	14	15	1.084
Denali	279	193	69	14	17	1.092
Monona	202	119	59	17	24	1.072
BN 9803-1	272	174	64	15	21	1.081
W779	276	193	70	10	20	1.085
W848	308	228	74	9	17	1.082
LA01-38	283	226	80	10	10	1.080
Norchip	309	204	66	13	21	1.078
ND860-2	244	159	65	14	21	1.087
W832	273	199	73	9	18	1.087
NY 81	274	186	68	13	19	1.090
W879	192	-	-	_	-	1.088
Chippewa	354	241	68	8	24	1.068

CHIP TRIALS TABLE 2. Tuber Data and Internal Disorder Ratings for Cultivars Grown at Wooster, Ohio - 1987.

			Tuber D	ataz			Internal	Disorders	у
	Tuber	Skin	Tuber	Eye	Overall	Hollow	Internal	Stem End	Vasc.
	Color	Text.	Shape	Depth	Appear.	Heart	Necrosis	Discolor	Discolor
Atlantic	5	5	3	5	6	0	4	3	0
MS 700-70) -	_		_	-	1	2	0	0
MS 702-80	7	6	2	4	5	0	0	0	0
MS 700-83	3 6	6	3	6	7	0	1	0	0
Denali	6	6	5	4	3	1	2	2	0
Monona	7	7	3	4	4	0	0	0	0
BN 9803-1	6	7	3	7	7	0	1	0	1
W779	4	3	5	5	5	0	0	0	0
W848	7	6	6	7	5	0	0	2	0
LA01-38	7	6	3	6	6	0	0	0	0
Norchip	7	7	5	6	4	0	0	0	0
ND860-2	7	7	2	5	8	0	0	0	0
W832	7	6	4	6	6	0	0	0	0
NY 81	7	6	3	5	5	1	0	0	0
W879	7	6	3	5	2	0	0	0	0
Chippewa	7	7	3	4	3	0	0	0	0

Z Tuber Data Rating System

Tuber Color				
1. Purple	4.	Dark brown	7.	Buff
2. Red	5.	Brown	8.	White
3. Pink	6.	Tan	9.	Cream
Skin Texture				
1. Part. russet	4.	Light russet	7.	Mod. smooth
2. Heavy russet	5.	Netted	8.	Smooth
3. Mod. russet	6.	Slight net.	9.	Very smooth
Tuber Shape				
1. Round	4.	Mostly obl.	7.	Mostly long
2. Mostly round	5.	Oblong	8.	Long
3. Rd. to obl.	6.	Obl. to long	9.	Cylindrical
Eye Depth				
1. VD	4.		7.	S
2	5.	Intermediate	8.	
3. D	6.	~ _	9.	VS
Appearance				
1. Very poor	4.		7.	Good
2	5.	Fair	8.	
3. Poor	6.	HOME HOME	9.	Excellent

 $^{^{\}rm y}$ Hollow Heart, internal necrosis ratings and discoloration ratings indicate the number of affected tubers found per 30 large tubers sampled.

CHIP TRIALS TABLE 3. Percentage Plant Stand, Vines Dead 112 DAP, and Blister; Chip Color, Agtron (E5F-90), and External Tuber Defects Ratings for Cultivars Grown at Wooster, Ohio - 1987.

	Plant	% Vines	Exte	rnal Tub	er Defe	cts			
	Stand	Dead	Growth	Second	Sun		%	Chip	Agtron
	%	112 DAP	Cracks	Growth	Green	Total	Blister	Color	E5F-90
Atlantic	91	82	0.0	0.0	8.0	8.0	60z	1 y	59.3
MS 700-70	91	. 65	0.0	5.0	2.7	7.7	40	1	56.0
MS 702-80	97	97	0.0	1.3	0.0	1.3	0	1	61.0
MS 700-83	71	93	8.0	0.0	2.7	10.7	10	1	63.0
Denali	80	73	4.0	4.0	5.0	13.0	20	1	59.0
Monona	79	88	6.7	0.0	1.3	8.0	40	1	61.0
BN 9803-1	98	99	0.0	0.0	12.0	12.0	0	1	57.0
W779	87	83	2.7	6.7	0.0	9.4	10	1.5	55.9
W848	94	73	0.0	0.0	2.7	2.7	30	1.5	64.0
LA01-38	91	78	0.0	0.0	0.0	0.0	20	1.5	55.0
Norchip	96	85	4.0	4.0	18.7	26.7	30	1	52.0
ND860-2	83	97	0.0	0.0	6.7	6.7	20	1	59.2
W832	97	92	1.3	0.0	14.7	16.0	0	1.5	57.0
NY 81	70	72	0.0	0.0	4.0	4.0	0	1.5	57.6
W879	84	75	0.0	0.0	1.3	1.3	60	1	64.4
Chippewa	88	83	0.0	2.7	21.3	24.0	20	1	61.0

 $^{^{\}rm z}$ Percentage of chips which develop blisters greater than 20 mm in diameter during the frying process.

y PC/SFA designation

OBSERVATION TRIALS TABLE 1. Yield, Marketable Yield, Percent of Yield by Grade Distribution and Specific Gravity for Cultivars Grown at Wooster, Ohio 1987.

Cultivar	Total Yield cwt/A	U.S. No.1 cwt/A	Percent U.S. No.1	B Size	Culls %	Specific Gravity
Cartivar	011 07 11	0110/11	0.01 110.1			Glavioy
WNC 672-2	257	-	_	_	-	1.065
Campbell 14	290	220	76	9	15	1.081
MS 702-91	230	-	_	_	_	1.060
MN 10874	249	-	-	***	_	1.064
WIS 80-26.86	133	-	-	-	_	1.081
WIS 81-38.26	198	-	_	_	_	1.082
WIS 1005	305	198	65	15	20	1.065
WIS 979	269	-		_	-	1.073
ND 1113-10 Rus	303	_	_		_	1.085
ND 1215-1	295	204	69	10	21	1.072
NDT 9-1068-11R	213	_	_	_	_	1.067
NY 71	228	_	-	_	-	1.074
WIS 855	264	214	81	10	9	1.082
WIS 971	278	_	_	_	_	1.065
D 191-2	247	192	78	10	12	1.070
D 195-11	109	_	_	_	_	1.075
NY 78	139	_	_	_	_	1.071
AF 465-2	213	_	_	_	_	1.074
CF 7523-1	407	265	65	10	25	1.079
AF 522-5	232	-	-	-	-	1.078
AF 7411-2	232	_	_	_	_	1.068
CS 7635-4	288	191	67	7	26	1.078
F 72090	327	_		_	_	1.078
AC 80545-1	257	_	-	_		1.071
BC 0038-1	165	-	-	-	-	1.068
AC 77101-1	211	_	_	_	-	1.060
AC 77226-13	131	-	_	_	_	1.073
AC 77226-10	118	_	_	_	_	1.077
CD 8011-5	213	_	_	_	_	1.076
Chippewa	303	230	76	8	16	1.065
A 75188-3	267	_	_	_	_	1.064
A 76147-2	208	_		_	_	1.066
NY 72	344	_	_	_	_	1.068
Kennebec	318	230	72	10	18	1.074

OBSERVATION TRIALS TABLE 2. Tuber Data and Internal Disorder Ratings for Cultivars
Grown at Wooster, Ohio - 1987

			Tuber D				Internal	Disordersy	
	Tuber	Skin	Tuber		Overall	Hollow	Internal	Stem End	Vasc.
	Color	Text.	Shape	Depth	Appear.	Heart	Necrosis	Discolor	Discolor
WNC 672-2	4	5	2	6	6	1	5	0	0
Campbell 14	6	7	3	6	6	0	0	0	0
MS 702-91	7	5	3	6	7	0	4	1	0
MN 10874	5	4	6	7	5	0	0	0	0
WIS 80-26.86	7	5	6	7	2	0	0	0	0
WIS 81-38.26	5	3	5	6	5	0	0	0	0
WIS 1005	5	4	8	6	5	0	0	0	0
WIS 979	7	6	4	5	6	0	0	0	0
ND 1113-10 Ru	s 5	3	6	5	7	0	0	0	0
ND 1215-1	7	5	3	6	5	0	3	0	0
NDT 9-1068-11	R 2	6	5	5	3	1	0	0	0
NY 71	6	5	3	6	6	0	0	0	0
WIS 855	7	4	2	4	5	0	0	2	0
WIS 971	6	5	4	5	6	0	0	1	0
D 191-2	2	6	2	6	7	0	0	0	0
D 195-11	6	7	2	5	2	0	0	0	0
NY 78	6	6	3	5	5	0	0	0	0
AF 465-2	4	5	3	5	3	0	0	0	0
CF 7523-1	7	6	4	3	3	0	0	0	0
AF 522-5	4	2	6	6	4	0	0	0	0
AF 7411-2	5	2	7	5	2	0	0	0	0
CS 7635-4	7	6	3	4	3	0	0	0	0
F 72090	6	7	2	5	5	0	0	0	0
AC 80545-1	5	5	5	. 5	2	0	0	0	0
BC 0038-1	7	7	5	5	6	0	0	0	0
AC 77101-1	5	4	4	5	6	0	0	0	0
AC 77226-13	5	3	5	7	5	0	0	0	0
AC 77226-10	_	_	_	_	_	0	0	0	0
CD 8011-5	5	3	4	5	5	0	0	0	0
Chippewa	8	7	3	4	3	0	0	0	0
A 75188-3	6	6	3	5	2	0	0	0	0
A 76147-2	4	2	7	5	2	0	0	0	0
NY 72	6	4	3	1	3	0	0	0	0
Kennebec	7	7	5	5	4	0	0	0	0

^z Tuber Data Rating System

Tuber Color - 1-Purple 2-Red 3-Pink 4-Dark brown 5-Brown 6-Tan 7-Buff 8-White 9-Cream Skin Texture - 1-Part. russet 2-Heavy russet 3-Mod. russet 4-Light russet 5-Netted 6-Slight net. 7-Mod. smooth 8-Smooth 9-Very smooth

Tuber Shape - 1-Round 2-Mostly round 3-Rd. to obl. 4-Mostly obl. 5-Oblong 6-Obl. to long 7-Mostly long 8-Long 9-Cylindrical

Eye Depth - 1- VD 2--- 3-D 4--- 5-Intermediate 6--- 7-S 8--- 9-VS

Appearance - 1-Very poor 2--- 3-Poor 4--- 5-Fair 6--- 7-Good 8--- 9. Excellent y Hollow Heart, internal necrosis ratings and discoloration ratings indicate the number of affected tubers found per 30 large tubers sampled.

OBSERVATION TRIALS TABLE 3. External Defects and Chipping Characteristics for Cultivars Grown at Wooster, Ohio - 1987.

	Plant	% Vines		ernal Tu		ects %			
	Stand	Dead	Growth	Second	Sun	m-+-1	%	Chip	Agtror
	%	112 DAP	Cracks	Growth	Green	Total	Blister	Color	E5F-90
WNC 672-2	87	50	0	12	0	12	0	1	58.0
Campbell 14	93	65	4	0	8	12	0	1	57.0
MS 702-91	83	97	0	0	8	8	10	1	59.0
MN 10874	100	65	0	0	4	4	20	3	47.3
WIS 80-26.86	97	20	20	28	0	48	0	1	58.0
WIS 81-38.26	97	60	12	12	12	36	30	1	60.5
WIS 1005	97	45	0	4	16	20	70	1	61.1
WIS 979	90	85	0	8	12	20	20	1	62.7
ND 1113-10 Rus		97	0	4	0	4	-	_	-
ND 1215-1	87	50	4	12	8	24	50	3	52.7
NDT 9-1068-11F		75	0	0	4	4	40	2	61.3
NY 71	97	80	8	0	4	12	30	2	60.8
WIS 855	87	65	0	0	4	4	30	2	61.7
WIS 971	93	80	0	0	0	0	10	2	57.7
D 191-2	97	80	0	0	0	0	50	2	60.0
D 195-11	63	85	25	0	16	41	10	2	59.4
NY 78	80	70	0	0	8	8	20	2	56.3
AF 465-2	08	85	16	8	12	36	40	1	65.0
CF 7523-1	90	70	8	0	12	20	30	2	60.2
AF 522-5	83	100	16	8	4	28	0	3	44.6
AF 7411-2	80	60	12	8	0	20	40	1	65.2
CS 7635-4	93	60	4	4	12	20	20	2	57.3
F 72090	77	100	0	0	8	8	_	-	-
AC 80545-1	87	30	0	16	20	36	0	2	46.0
BC 0038-1	97	100	0	0	12	12	0	1	62.0
AC 77101-1	73	80	8	16	0	24	20	2	49.4
AC 77226-13	53	60	7	0	0	7	0	1	55.0
AC 77226-10	63	70			-	_	0	1	57.5
CO 8011-5	83	85	24	16	4	44	_	-	45.0
Chippewa	93	75	16	0	12	28	10	3	45.0
A 75188-3	-	-	8	16	12	36	0	1	56.0
A 76147-2	-	-	0	52	12	64	30	2	44.0
NY 72	_	-	0	8	12	20	0	1	60.0
Kennebec	88	40	0	28	12	40	20	2	59.3

Texas

J. Creighton Miller, Jr. and Douglas G. Smallwood

Variety
Development and
Testing

Seedling Program. Approximately 38,000 first-year seedlings, representing 305 families were grown for selection near Springlake in 1987, and 388 original selections were made from this material. The 1987 first-year seedlings from Texas resulted from crosses made at the Texas Agricultural Experiment Station near Lubbock during the winter of 1985-86. The remainder were obtained from Joe Pavek in Idaho (12,640), Bob Johansen in North Dakota (10,189) and Dave Holm in Colorado (1,396). The Texas program also supplied the North Dakota, Idaho, and Colorado programs with second, third, and fourth sized seedling tubers for selection.

Adaptation Trials. The 1987 season was marked by seasonal temperatures and minimal rainfall. However, a rapid moving cold front in late March brought record low temperatures of 11 and 14 degrees for two consecutive days. Although this occurred only two days after the Springlake trial was planted, there appeared to be no significant damage. trials at Springlake were far superior to those at Olton, while vine growth was exceptionally good at both locations. The variety and advanced selection trials at Springlake were planted on March 27 and harvested on August 18. In general, yields were very good. The outstanding russet entries based on total yield and general rating were A 74212-1, Lemhi, Russet Nugget, AC 77101-1 and Norgold "M" (Table 1). Russet Norkotah produced tubers of very uniform shape and size; however, total yield was lower than most of the previously This variety has been a consistent mentioned entries. performer for several years, but additional information is needed regarding cultural practices specific to Texas. The newly released variety Russet Nugget continues to perform quite well. It is very late maturing and has the potential to produce high yields if allowed to grow to maturity. The outstanding white entry (Table 3) was A 7914-3. selection produces a very vigorous vine which will stay green It produces a larger proportion of late in the season. tubers in the 4-10 ounce range than any of the other entries; however, the specific gravity is quite low. Other white entries deserving mention include: Mn 12567, AC 80545-1 and LA 0138. The outstanding red entry, based on total yield and general rating, was Red LaSoda produced from North Dakota seed. The selection NDTX 9-1068-11 R performed quite well again this year. There was no difference in the performance of Sangre and the Sangre line selections (strains), Sangre #10 and Sangre #14; however, the performance of Sangre #11 was poor. A number of Norgold Russet strains, as well as Norgold Russet were tested at Springlake (Table 3). outstanding entries based on total yield and general rating were: Norgold "M", Norgold #11, Norgold #19 and Norgold #35.

Norgold #40 produced high yield, but tubers were very rough. In general, the strains continue to outperform regular Norgold Russet.

The strip trial at Olton (Table 4) consisted of 13 of the most promising varieties or advanced selections for which sufficient seed were available for strip planting of 300 foot Strip trials more closely approximate grower conditions and represent a more advanced phase of testing than the normal replicated variety trials. In late August, four randomly selected plots were harvested for each entry. Vines of three entries, Russet Nugget, Denali #19 and A 74212-1, were still green at harvest. The outstanding entry based on total yield was A 74212-1. This selection has performed guite well for a number of years; however, it is a light russet and tubers tend to be rough. outstanding red entries in this trial were Red La Soda, Sangre and NDTX 9-1068-11 R. Although not as high in total yield, NDTX 9-1068-11 R produced a higher percentage of marketable tubers by weight than did either Red LaSoda or Sangre. Both Sangre and NDTX 9-1068-11 R retained a darker red color than Red LaSoda. Other russet entries which performed quite well were Norgold #40, Russet Nugget and Norgold "M". Norgold #40 produced more tubers in the 4-10 ounce range; however, they were very rough. The entries Russet Norkotah and HiLite did not live up to expectations. The performance of the white entries, New Superior and Denali #19 was also disappointing.

Summarizing results of all trials at both Springlake and Olton, the most promising entries were NDTX 9-1068-11 R, Russet Nugget, A 74212-1 and A 7914-3. The selection A 74212-1 is from the Idaho program and has shown promise for release in the western states. In Texas, it produces high yields; however, its tubers tend to be rough with a very light netting. Selection A 7914-3 produces a very vigorous vine with exceptional yields; however, the specific gravity is somewhat low. The selection NDTX 9-1068-11 R continues to show promise and release as new variety is anticipated. Norgold "M" continues to be the most consistent performer of the Norgold Russet strains and is still the standard russet variety for the industry.

average weight per tuber in ounces, specific gravity, tuber type, skin type and general rating of 24 Russet potato varieties or selections grown at Springlake, Texas - 1987. Total yield, percent by weight over 4 ounces, average tuber weight of 10 ounces plus grade, Texas Table 1.

		%	Averade	Averade			
Variety	Total	By Wt.	Tuber Wt.	Weight/			General
or Selection	Yield CWT/A	over 4 oz.	of 10 0z. + Grade	Tuber in oz.	Specific Tuber Gravity Type	Skin Tvne	Rating 1/
7000	1)	5		1	227	/ -
AC 77513-1	89.	Ω			90.	Russet	
12-	78.	2			.070 Lon	Russet	
Lemhi	65.	9	•		.063 Lon	Russet	
ىد	64.	\leftarrow	$\vec{\vdash}$.070 Lon	Russet	
77101-	49.	∞	•		.062 obl	Russet	
orgold Ru	349.4	51.4	6.6	4.3	1.059 Oblong	Russet	2.7
9-65	34.	9	0		.063	Se	4
Norgold "M"	23.	\sim	$\vec{\vdash}$.062 Obl	Se	
NDTX 9-1069-4 Ru	21.	2	$\stackrel{\cdot}{\vdash}$.060 obl	SO	
Russet Norkotah	03.	\leftarrow	3.		.057	S	
AC 77266-10	01.	\sim	÷		090.	S	
TX 9-652-10 Ru	98.				.062 Obl	S	
CO 8011-5	84.	Ω	0		.057	Russet	
MN 10874	78.	2	$\overset{\circ}{\vdash}$.061	Russet	
Krantz (CO)	75.	\leftarrow	•		090.	Russet	
TXA 867-1	73.	~			.065	Russet	
MN 12331	64.	0			.061	Russet	
AC 77226-13	55.	0	•		.065	Russet	
ND 1520-3 Ru	55.		0		.062	Russet	
ND 2141-4 Ru	28.	0			.057 Lon	Russet	
Krantz (ND)	18.	\circ	$\overset{\bullet}{\vdash}$		90.	Russet	
ND 2207-8 Ru	80.	$^{\circ}$.057 Lon	O.	
ND 1850-5 Ru	.99	φ	0		.05	O)	
ND 1538-1 Ru	44.	0	0		.053 Lon	Russet	
Average	287.6	61.9	10.9	5.1	1.061		3.0
LSD (.05)	72.3	7.9	2.4	0.2			
				The second secon			

' 1 = very poor to 5 = excellent

Total yield, percent by weight over 4 ounces, average tuber weight of 10 ounces plus grade, average weight per tuber in ounces, specific gravity, tuber type, skin type and general rating of 38 Red and White potato varieties or selections grown at Springlake, Texas - 1987. Texas Table 2.

Variety	Total	% By Wt.	Average Tuber Wt.	Average Weight/			General
or	iel	Ve	0	Tuber	Specific Tuber	Skin	ing
Selection	CWT/A.	4 02.	Grade	in oz.	Gravity Type	Type	1/
Red LaSoda	86.	77.3	\leftarrow	5.7	90.	Red	
14 - 3	~	0	10.4		061 Long		3.0
Mn 12567	38.	58.8	0	4.9	.066 obl	White	
Red LaSoda (NEB)	19.		$\stackrel{\circ}{\vdash}$.061 Oblon	Red	
Mn 13415	9		0		.060 Oblon	White	
Red LaSoda #10	76.	9	0		.060 Oblon	Red	
angr	75.		$\overset{\cdot}{\sim}$.062 Oblon	Red	
AC 80545-1	.69		$\vec{\vdash}$.066 Oblon	White	
Sangre #10	65.		$\overset{\bullet}{\vdash}$	•	.057 Oblon	Red	
ngre #1	62.		3.		.058 Oblon	Red	
LA 0138	55.		$\stackrel{\cdot}{\vdash}$	•	.063 Oblon	White	
Mn 13056	337.2		0	4.5	.056	White	
New Superior	23.		+		.069 Oblon	White	
NDTX 9-1068-11R (ND)	322.	4	•	•	.062 Oblon	Red	
New Norchip	17.		0		90.	White	
aS	16.		$\vec{\vdash}$.062 Oblon	Red	-
Mn 12823	08.		$\vec{\vdash}$.064 Oblon	White	
133	07.		$\ \ \ \ \ \ \\$.060 Oblon	Red	
BN 9803-1	07.			•	.063 Round	White	
Mn 13035	00.				.052 C	Red	
-10	289.		ري.		.05	Red	
	9		•		.077 0	White	
Sangre #11	77.		÷	4.7	.05	Red	

Continued

Texas Table 2. Continued.

		%	Average	Average			
Variety	Total	By Wt.	Tuber Wt.	Weight/			General
Or	Yield	over	of 10 0z. +	Tuber	Specific Tuber	Skin	Rating
Selection	CWT/A.	4 02.	Grade	in oz.	Gravity Type	Type	1/
Mn 12820	75.	9.	3.2	3.3	.061	White	
Mn 13054	65.	$\stackrel{\bullet}{\vdash}$	10.7			White	P
Mn 13294	255.3	21.8	4	3.4	.083	White	
Mn 11705	43.	26.8	12.8		.06	White	
Red Sport Viking	34	67.7	11.4		.061	Red .	
12966	32	5	10.1		.062	Red	
Mn 12945	26	32.6	0.0		.056	Red	
ND 2050-1 R	23	<u>_</u>	9.4	3.9	.058	Red	
Viking	220.7	80.7	10.5	5.7	62	Red	2.7
ND 2224-5 R	17	0	0.0		.057	Red	
ND 2008-2	13	39.8	12.8	3.7	.058	White	
Mn 12828	03	41.2			.066	White	
Mn 13332	97.	43.6	0.0		0.	White	1.3
BC 0038-1	26.	20.0	0.0	2.9	.071	White	
Mn 13420	\vdash	63.8	7.9	3.8	1.060 Long	Red	1.0
Average	299.2	54.2	11.0	4.4	1.062		2.7
LSD (.05)	57.5	7.6	1.4	1.0			

1/ 1 = very poor to 5 = excellent

Total yield, percent by weight over 4 ounces, average tuber weight of 10 ounces plus grade, average weight per tuber in ounces, specific gravity, tuber type, skin type and general rating of 6 Norgold Russet strains, as well as Norgold Russet, grown at Springlake, Texas - 1987. Texas Table 3.

Variety	Total	By Wt.		Average Weight/	E	: 	General
Selection	rieia CWT/A.	over 4 oz.	Grade	luber in oz.	Specific luber Gravity Type	Type	rating 1/
Norgold #35	409.5	68.7	10.0	4.7	1.060 Oblong	Russet	3.0
	398.7	73.8	13.2	5.1	1.066 Oblong	Russet	2.3
Norgold #19	384.2	74.7	12.2	5.4	1.054 Oblong	Russet	3,3
Norgold "M"	332.5	66.4	11.3	4.7	1.064 Oblong	Russet	3.7
Norgold #11		75.5	11.8	5.4	1.065 Oblong	Russet	4.0
Norgold Russet	313.3	59.9	13.4	4.0	1.062 Oblong	Russet	3.0
Norgold #12	260.8	70.3	12.2	5.5	1.061 Long	Russet	3.0
Average	346.4	6.69	12.0	5.0	1.062		3.2
LSD (.05)	119.2	12.5	m • •	1.4			

1/1 = very poor to 5 = excellent

Total yield, percent by weight over 4 ounces, average tuber weight of 10 ounces plus grade, average weight per tuber in ounces, specific gravity, tuber type, skin type and general rating of 13 potato varieties or selections grown in a strip trial at Olton, Texas - 1987. Texas Table 4.

		%	Average	Average			
Variety	Total	By Wt.	Tuber Wt.	Weight/			General
or	Yield	over	of 10 0z. +	Tuber	Specific Tuber	Skin	Rating
Selection	CWT/A.	4 02.	Grade	in oz.	Gravity Type	Type	1/
A 74212-1	392.5	54.9	8.0	3.6	1.075 Long	Russet	2.0
Norgold #40	304.0	٠	10.4	4.4	1.065 Long	Russet	4.0
Russet Nugget	299.5	24.7	0.0	2.9	1.078 Long .	Russet	3.0
Red LaSoda	286.2	29.5	0.0	4.1	1.064 Oblong	Red	3.0
Sangre	281.0		0.1	3.2	1.064 Oblong	Red	3.0
Norgold "w"	280.7	37.8	14.0	3.5	1.063 Long	Russet	4.0
NDTX 9-1068-11 R	266.4	51.0	12.0	4.3	1.064 Oblong	Russet	4.0
New Superior	266.2	47.7	10.1	3.6	1.077 Oblong	White	4.0
Denali #19	259.2	48.4	10.4	3,3	1.080 Oblong	White	2.0
Krantz	245.9	58.1	10.0	4.6	1.065 Oblong	Russet	3.0
Viking	238.1	53.9	9.6	4.0	1.062 Oblong	Red	2.0
Russet Norkotah	191.0	41.5	12.8	3.2	1.062 Long	Russet	2.5
HiLite	136.6	22.9	12.8	2.2	1.061 Oblong	Russet	2.0
				e de la composiçõe de l		and the second s	
Average	265.2	42.9	11.0	3.6	1.068		3.0
LSD (.05)	42.3	12.2	জ ব্ৰে	0.3			
							:

1/1 = very poor to 5 = excellent

VIRGINIA

S. B. Sterrett, C. P. Savage, Jr., and W. R. Groton, Jr.

Objective:

Replicated yield trials included a total of 53 round white and 18 russet cultivars or advanced numbered clones. The observational trials included an additional 17 entries. Evaluations included yield, size distribution, vine and tuber characteristics, and susceptibility to internal and external defects. Chipping quality of selected round white entries was also determined.

Method:

Trials were planted on March 25, 1987. The experimental design was a randomized complete block with four replications. Single row plots were 25 ft in length with 36 inch between-row and 12 inch within-row spacing. A total of 150 lbs N, 100 lbs P_2O_5 , and 100 lbs K_2O were applied in bands on a State sandy loam soil. Linuron (0.44 lbs ai/A) was applied preemergence on April 21, 1988. A total of 1.75 inches of irrigation was applied in June.

Russets were hand sized by weight. Specific gravity was determined by weight-in-air, weight-in-water method. Ratings for internal defects were made on 20 tubers in the 2-1/2 to 3-1/4 inch (12-16 oz) size range. Marketable yield is based on tubers greater than 1-7/8 inches (round white) or 4 oz (Russets).

Seasonal Observations: Cool temperatures and wet soils in March delayed planting, thereby shortening the growing season to 103 days. Foliar symptoms of air pollution injury were minimal. As with commercial fields in this area, both excessive skinning and strong attachment of tubers to the vines were noted at harvest. Plots were gleaned after being mechanically harvested and the glean weight recorded before grading. Percent glean yield reflects the percentage of total yield that would be lost during harvest. Heat necrosis was more severe than in 1986, both in terms of number of tubers affected and in severity (rating). Heat sprouts, sunburn, and second growth accounted for most external defects; few growth cracks were observed.

Promising Clones:

Several round white selections show potential for both fresh market and chip stock, combining high yield, specific gravity, attractive tuber confirmation, and acceptable chip color. These include B9955-46, B0209-1, and B0257-9. Susceptibility to internal heat necrosis may be a problem with B0257-9. The selection B9792-157 also has potential for chips, but is slightly more irregular, with deeper abscal eyes. While B9792-157 is less susceptible to learnal heat masses than Atlantic, the specific

gravity of B9792-157 is also lower than Atlantic. High yields and acceptable tuber confirmation for fresh market were noted for both B0203-21 and NY 81. However, their mid-to-late season maturity may limit demand on the Eastern Shore where earliness is needed to satisfy the fresh market window. Marketable yield of the russet selections B0045-6 and B0220-14 was more than double the yield of the standard, BelRus. However, inadequate yield in the count box sizes (greater than 8 oz) remains a persistent problem.

Acknowledgements:

We gratefully acknowledge the assistance of Steve Molnar, Wise Foods, Inc., Benwick, PA, and David Dickerson, Anheuser-Busch Co., Inc., St. Louis, MO with chip color evaluations. Seed was provided by Raymon E. Webb, USDA-Beltsville, Robert L. Plaisted, Cornell University, and Alvin F. Reeves, University of Maine.

Yield and size distribution of advanced round white clones - 1987. Virginia Table 1.

4 25 45 5 1,068 2 2 12 14 3 1,056 2 0 14 4 0 1,056 2 7 24 44 6 1,059 4 6 23 11 1 1,069 5 6 23 11 1 1,064 3 6 24 45 1 1,063 - 5 15 28 2 1,068 2 6 24 45 1 1,068 2 6 24 45 1 1,068 2 6 31 23 0 1,068 2 6 32 1 1,068 2 7 11 58 23 1,068 2 8 2 1 0 1,068 3 9 23 54 2 1,068 5 9 23 54 2 1,066 5 9 </th <th>Total Yield cwt/A</th> <th>Markets cwt/A</th> <th>ble Yield % of Standard</th> <th>% GLEAN</th> <th>8%</th> <th>of Tota</th> <th>al Yiel</th> <th>2 / p</th> <th>Specific Gravity</th> <th>Ch Days</th> <th>Chip Color s after Ha 3</th> <th>or Harvest</th>	Total Yield cwt/A	Markets cwt/A	ble Yield % of Standard	% GLEAN	8%	of Tota	al Yiel	2 / p	Specific Gravity	Ch Days	Chip Color s after Ha 3	or Harvest
62 12 14 3 1.056 2 - 80 14 4 0 1.056 2 - - 80 14 6 1.056 2 - </th <th>178</th> <th>, </th> <th>(I ~1</th> <th>9</th> <th>7,0</th> <th>25</th> <th>45</th> <th>. در</th> <th></th> <th></th> <th></th> <th>-</th>	178	,	(I ~1	9	7,0	25	45	. در				-
80 14 4 0 1.054	20	ı	13	51	62	12	14	n (C)	.05	2 1) I) I
27 24 44 6 1.059 4 5 29 25 25 2 1.060 5 8 46 23 11 1 1.063 - - 26 24 45 1 1.063 - - 26 24 45 1 1.063 - - 35 15 28 2 1.068 2 4 46 31 23 7 1.068 2 4 46 31 23 7 1.065 3 6 8 40 21 13 0 1.065 3 6 8 9 20 22 50 7 1.064 8 9 9 21 25 51 2 1.068 2 3 3 21 25 51 2 1.068 2 3 40 31 29 0 1.066 3 3 47 34 18	71 13		00	35	80	14	4	0	.05	l	ı	ı
29 25 25 2 1.060 5 8 46 23 11 1 1.043 - - - 23 25 46 2 1.064 3 5 26 24 45 1 1.063 - - 26 24 45 1 1.063 - - 19 20 53 7 1.068 2 4 46 31 23 0 1.065 3 6 8 40 21 13 0 1.064 8 9 20 22 50 7 1.064 8 9 21 25 50 7 1.068 2 3 21 25 51 2 1.068 2 3 40 31 29 0 1.066 5 7 47 34 18 0 1.069 5 7 47 34 18 0 1.069 5 <td>193</td> <td>13</td> <td>24</td> <td>m</td> <td>27</td> <td>24</td> <td>44</td> <td>9</td> <td></td> <td>4</td> <td>5</td> <td>7</td>	193	13	24	m	27	24	44	9		4	5	7
46 23 11 1.043 - - 23 25 46 2 1.064 3 5 26 24 45 1 1.063 - - 26 24 45 1 1.063 - - 35 15 28 2 1.068 2 4 46 31 23 0 1.065 3 6 40 21 13 0 1.064 8 9 40 21 13 0 1.064 8 9 20 22 50 7 1.064 8 9 21 25 50 7 1.068 2 3 21 25 51 2 1.068 2 3 40 31 29 0 1.066 5 7 47 34 18 0 1.059 3 4 47 34 18 0 1.059 3 4	98	5	2	œ	29	25	25	2		S	∞	∞
23 25 46 2 1,064 3 5 26 24 45 1 1,063 - - - 35 15 28 2 1,055 6 8 46 31 23 7 1,068 2 4 40 21 13 0 1,054 5 7 34 28 32 1 1,064 8 9 20 22 50 7 1,064 8 9 20 22 50 7 1,064 8 9 21 25 50 7 1,068 2 3 21 25 51 2 1,068 2 3 40 31 29 0 1,065 3 3 47 34 18 0 1,059 3 4 47 34 18 0 1,059 3 4	7.8	50	_	24	94	23	11	-		ı	ı	ı
26 24 45 1 1.063 - - 35 15 28 2 1.055 6 8 46 31 23 0 1.065 3 6 40 21 13 0 1.054 5 7 34 28 32 1 1.064 8 9 20 22 50 7 1.064 8 9 20 22 50 7 1.064 8 9 21 25 50 7 1.068 2 3 40 31 25 2 1.068 2 3 40 31 29 0 1.065 3 3 47 34 18 0 1.059 3 4 33 26 36 3 1.059 6 8	214 156 100	100		0	23	25	94	7		\mathcal{C}	ιΩ	7
35 15 28 2 1.055 6 8 19 20 53 7 1.068 2 4 46 31 23 0 1.065 3 6 40 21 13 0 1.064 8 9 20 22 50 7 1.064 8 9 20 22 50 7 1.068 2 3 21 25 51 2 1.068 2 3 40 31 29 0 1.065 3 3 47 34 18 0 1.059 3 4 33 26 36 3 1.059 3 4	186	119		14	26	24	45		•	ı	ı	ı
19 20 53 7 1.068 2 4 46 31 23 0 1.065 3 6 40 21 13 0 1.065 3 6 34 28 32 1 1.064 8 9 20 22 50 7 1.061 4 6 7 11 58 23 1.068 2 3 21 25 51 2 1.058 2 3 40 31 29 0 1.065 3 3 47 34 18 0 1.059 3 4 33 26 36 3 1.059 6 8	100	9		26	35	15	28	7		9	∞	∞
46 31 23 0 1.065 3 6 40 21 13 0 1.054 5 7 34 28 32 1 1.064 8 9 20 22 50 7 1.064 8 9 7 11 58 23 1.068 2 3 21 25 51 2 1.058 2 3 19 23 54 2 1.065 3 3 40 31 29 0 1.066 5 7 47 34 18 0 1.059 3 4 33 26 36 3 1.059 6 8	186	119		т	19	20	53	7		2	4	7
40 21 13 0 1,054 5 7 34 28 32 1 1,064 8 9 20 22 50 7 1,064 8 9 7 11 58 23 1,068 2 3 21 25 51 2 1,058 2 3 19 23 54 2 1,065 3 3 40 31 29 0 1,066 5 7 47 34 18 0 1,059 3 4 33 26 36 3 1,059 6 8	84	54		0	94	31	23	0		m	9	7
34 28 32 1 1,064 8 9 20 22 50 7 1,061 4 6 7 11 58 23 1,068 2 3 21 25 51 2 1,068 2 3 19 23 54 2 1,065 3 3 40 31 29 0 1,066 5 7 47 34 18 0 1,059 3 4 33 26 36 3 1,059 6 8	232 78 50	50		22	40	21	13	0		5	7	00
20 22 50 7 1.061 4 6 7 11 58 23 1.068 2 3 21 25 51 2 1.068 2 3 19 23 54 2 1.065 3 3 40 31 29 0 1.066 5 7 47 34 18 0 1.059 3 4 33 26 36 3 1.059 6 8	121	78		14	34	28	32	1	•	00	0	6
7 11 58 23 1.068 2 3 21 25 51 2 1.058 2 3 19 23 54 2 1.065 3 3 40 31 29 0 1.066 5 7 47 34 18 0 1.059 3 4 33 26 36 3 1.059 6 8	213	137		⊣	20	22	50	7		4	9	7
21 25 51 2 1.058 2 3 19 23 54 2 1.065 3 3 40 31 29 0 1.066 5 7 47 34 18 0 1.059 3 4 33 26 36 3 1.059 6 8	239 222 142	142		9	7	11	58	23		2	n	5
19 23 54 2 1,065 3 3 40 31 29 0 1,066 5 7 47 34 18 0 1,059 3 4 33 26 36 3 1,059 6 8	167	107		0	21	25	51	7		2	m	7
40 31 29 0 1,066 5 7 47 34 18 0 1,059 3 4 33 26 36 3 1,059 6 8	203	130		0	19	23	54	2		m	m	9
47 34 18 0 1,059 3 4 33 26 36 3 1,059 6 8	155	96	6	1	40	31	29	0		5	7	∞
33 26 36 3 1,059 6 8	83	50	9		47	34	18	0		m	4	9
	214 140 90	06			33	26	36	m		9	∞	0

 $^{1\prime}$ Planted March 25, harvested 103 days after planting.

2/8 Size distribution: 1 = 1 - 1/2" to 1 - 7/8", 2 = > 1 - 7/8" to 2 - 1/2", 3 = > 2 - 1/2" to 3 - 1/4", 4 = > 3 - 1/4".

 $^{3/}$ Unreplicated samples, 1-4 = acceptable, 5 = marginal, 6 or above = unacceptable.

Yield and size distribution of clone with chip potential - 1987. Virginia Table 2.

	Total	Marketa	able Yield					/ (บี	Chip Color	3/ or
1 /	Yield		1	%	8%	of Total	al Yield	1	Specific	Days	after Ha	arvest
Clone	cwt/A	cwt/A	Standard	GLEAN	1	2	3	4	Gravity	1	3	7
		,	(ι	,	,	Č	1	((ı
Atlantic (S	(Std) 243	191	100	٠	2.1	19	53	\	1.065	7	4	_
Norchip	228	120	63	13	35	23	29	0	1.063	5	ന	5
Superior	230	179	94	0		21	52	2	1.060	ന	2	9
AF875-9	226	146	97	m	34	29	35	0	1.070	5	4	5
AF875-15	267	177	93	n	32	31	35	0	1.067	4	4	9
AF875-17	241	159	83	_	34	34	32	П	1.069	2	9	9
AF879-21	217	133	70	0	37	37	25	0	1.067	—	ന	4
AF879-23	236	158	83	1	33	35	32	0	1.072	2	ന	9
AF1022-1	181	118	62	-	34	32	33	Н	1.075	2	9	2
B9792-157	284	229	120	9	19	18	55	∞	1.060	2	∞	9
B9792-158	287	211	110	∞	25	26	44	æ	1.062	4	2	7
B0180-24	276	136	71	6	42	21	28	0	1.066	n	7	7
B0233-1	230	177	93	4	က	20	21	53	1.060	4	9	7
B0243-10	184	125	65	18	30	56	40	က	1.057	5	9	9
D195-11	203	140	73	0	30	25	40	က	1.060	2	m	2
FL657	237	213	112	4	6	11	62	16	1.051	3	2	4
LA01-38	256	220	115	7	13	18	63	4	1.059	2	5	7
MS700-83	208	140	73	—	32	56	38	က	1.063	-	7	9
MS704-10	190	88	94	6	51	24	21	1	1.070	9	7	∞
NC73C26-1	250	116	61	4	20	28	18	0	1,064	4	9	∞
NY71	204	140	73	10	30	36	31	1	1.057	n	4	9
NY72	106	71	37	23	29	20	43	2	1.056	4	9	9
NY81	242	203	106	ന	15	20	55	6	1.057	e	7	7

 $^{1\prime}$ Planted March 25, harvested 103 days after planting.

2/ Size distribution: 1 = 1 - 1/2" to 1 - 7/8", 2 = > 1 - 7/8" to 2 - 1/2", 3 = > 2 - 1/2" to 3 - 1/4", 4 = > 3 - 1/4".

3/ Unreplicated samples, 1-4 = acceptable, 5 = marginal, 6 or above = unacceptable.

Yield and size distribution of observational round white clones - 1987. Virginia Table 3.

	Total	Marketal	Marketable Yield					(Ch	Chip Color	3/ or
, ,	Yield		% of	%	%	of Tot	of Total Yield	/ 7 P	Specific	Days a	after Ha	Harvest
Clone 1/	cwt/A	(cwt/A)	Standard	GLEAN		2	3	4	Gravity	1	3	_
Atlantic	215	162	109	m	23	20	46	6	1.071	9	7	7
Superior ((Std) 192	149	100	2	13	23	54	2	1,061	5	7	00
B9955-28	180	141	95	2	18	23	54	\vdash	1.057	5	9	∞
B0176-24	156	87	58	_∞	04	24	31	0	1.065	1	1	I
B0179-1	130	83	56	0	34	33	31	0	1.077	i	ŧ	į
B0237-9	196	116	7.8	2	39	32	26	\leftarrow	1.059	1	ı	ŧ
B0240-11	148	116	7.8	25	21	19	54	2	1.051	9	9	7
B0243-11	193	145	6	2	21	20	51	4	1.059	4	9	∞
B0243-18	203	124	83	m	36	24	37	0	1.066	ı	ı	i

/ Planted March 25, harvested 103 days after planting.

Size distribution: 1 = 1 - 1/2" to 1 - 7/8", 2 = > 1 - 7/8" to 2 - 1/2", 3 = > 2 - 1/2" to 3 - 1/4", 4 = > 3 - 1/4". 2/

 $^{3/}$ Unreplicated samples, 1-4 = acceptable, 5 = marginal, 6 or above = unacceptable.

Yield and size distribution of russet clones - 1987. Virginia Table 4.

	Total Vield	Marketable	ble Yield 2 of	<i>%</i>	84	of Total	7; 7; 91		S. 00.0
Clone	cwt/A	cwt/A	<u> </u>	GLEAN	1 1	101	3	4	Gravity
				Advanced	Tri	a ₁			
BelRus (Std)	179	85	100	2	41	94	H	0	1.064
NemaRus	227	148	174	2	27	57	7	0	1.058
Norgold R	206	76	68	m	48	36	0	0	1.052
B9922-11	166	101	119	9	33	51	1	0	1,061
B0045-6	294	184	216		36	55	7	0	1.065
B0180-18	237	81	95		30	32	2	0	1.053
B0180-31	214	89	80	2	42	31	0	0	1.058
B0180-39	245	90	106	7	26	33	m	0	1.053
B0189-45	256	149	17.5	4	36	48	10		1.058
B0220-14	235	182	214	2	17	99	11	Н	1,063
			0	Observational		Tria1			
BelRus (Std)	132	52	100	-	64	39	0	0	
R Burbank	80	0	0	94	28		0	0	
B0042-7	92	7	13	1	90	∞	0	0	
B0186-1	196	96	185	4	23	39	6	2	1.059
B0189-12	126	85	163	2	24	62	5	0	
B0190-13	∞	06	173	1	44	43	5	0	
B0312-10	3	42	81	m	29	32	0	0	
B0328-12	95	2	10	2	85	2	0	0	

2 = 4-8 oz., 3 = 8-12 oz., and 4 = 12-16 oz.1/Size distribution: 1 = tubers < 4 oz.,

Virginia Table 5. Tuber characteristics and defects - 1987.

		Tuber	Rating 1/			De	fects ²	/	
				Skin		Sun	2nd	Heat	Nec.
Clone	Shape	Size	Appear.	Mat.	Sprouts	burn	Gr.	#	Rate
				Chip	Trial				
Atlantic	2	7	7	6	9	9	9	4	6
Norchip	3	4	5	6	9	9	3	1	8
Superior	4	6	7	7	9	9	5	0	9
AF875-9	3	5	6	7	9	9	8	0	9
AF875-15	3	6	5	5	9	9	7	1	4
AF875-17	2	4	6	6	9	9	9	0	9
AF879-21	4	4	5	7	9	9	8	0	9
AF879-23	3	5	6	6	9	9	9	0	9
AF1022-1	2	4	5	6	9	9	9	0	9
B9792-157	2	7		7	9	8	8	_	
			6					1	8
B9792-158	2	6	6	6	9	9	9	0	9
B0180-24	2	5	5	6	9	9	7	3	6
B0233-1	4	6	5	5	9	9	9	5	5
B0243-10	3	4	5	5	9	9	9	11	5
D195-11	3	6	7	5	9	9	9	4	6
FL657	2	8	5	5	9	9	9	1	7
LA01-38	4	7	6	5	9	9	9	0	9
MS700-83	3	5	5	7	9	9	9	0	9
MS704-10	2	4	6	6	9	9	9	0	9
NC73C26-1	3	4	6	7	9	9	9	0	9
NY71	2	5	7	6	9	9	9	0	9
NY72	3	5	5	5	9	9	7	0	9
NY81	2	7	7	6	9	9	9	1	4
			A	dvanced	Round Whi	te			
Atlantic	2	6	7	6	9	9	9	13	6
Delta Gold	2	1	2	4	6	9	2	0	9
Desiree	3	1	2	7	6	9	5	0	9
LaChipper	3	6	6	6	9	9	9	0	9
Pungo	3	5	5	6	2	9	3	0	9
R Pontiac	2	5	6	5	9	9	5	0	9
Superior	4	5	6	7	9	9	5	0	9
Yukon Gold	3	6	6	4	6	7	6	7	7
AF1101-7	2	4	2	7	2	9	3	Ó	9
B9955-46	3	6	6	6	6	7	6	1	8
	2	5	7				9	0	
B0032-17				8	9	9			9
B0183-25	3	5	6	5	9	8	2	2	8
B0191-5	3	5	5	5	9	9	5	0	9
B0203-21	3	6	6	6	9	9	9	1	8
B0209-1	3	8	7	5	9	9	9	1	8
B0214-9	2	4	6	6	9	9	9	0	9
B0257-9	3	5	7	6	9	8	9	2	8
B0257-12	3	4	7	6	9	9	9	0	9
CS78162-12	2	4	6	7	9	9	8	0	9
F70021	2	5	6	6	7	7	7	3	6

Virginia Table 5. Continued.

	Tuber		Defects 2/						
			Skin		Sun	2nd	Heat	Nec.	
Shape	Size	Appear.	Mat.	Sprouts	burn	Gr.	#	Rate	
		Oha	omintio	nol Dound	White				
			ervatio	mai kound	wiiire —				
2	7	7	6	9	9	7	4	7	
4	6	6	7	9	9	5	0	9	
2	7	7	6	9	5	6	0	9	
2	5	7	5	9	9	8	6	5	
2	4	6	5	9	9	9	0	9	
3	5	6	7	9	9	6	0	9	
2	6	7	6	9	9	9	3	7	
3	6	7	7	9	8	7	3	5	
3	5	6	5	9	9	9	2	8	
			Adva	inced Russe	t				
7	5	5	5	9	6	8	2	6	
							1	8	
							_	9	
				-	_		1	8	
•	6			-	8		0	9	
•	_			•	_	•	0	9	
-	_			-	_	•	_	8	
				_	-	•	_	5	
			-	-	-			9	
7	7	6	5	8	8	9	0	9	
Observational Russet									
7	4	5	4	9	9	8	4	8	
			-	_			•	9	
				•	-		•	7	
				-	-		_	9	
						•	•	9	
			_	-	-	-	•	6	
-			_	-	_	_	_	9	
5	2	3	6	9	9	6	0	9	
	2 4 2 2 2 3 3 3 7 6 5 7 7 7 7 7 7 7	Shape Size 2	7 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 6 6 4 6 6 7 5 6 6 6 7 6 6 7 6 6 7 7 6 6 7 7 7 7	Skin Skin Skin Skin Mat.	Shape Size Appear. Mat. Sprouts	Shape Size Appear. Skin Sun Shape Size Appear. Mat. Sprouts burn	Shape Size Appear. Skin Sun 2nd burn Gr.	Tuber Rating Skin Sun 2nd Heat	

^{1/} Shape: 1 = round, 5 = oblong, 9 = very long (cylindrical). Size: 1 = very
small, 9 = very large. Appearance: 1 = very poor, 9 = excellent. Skin
maturity: 1 = totally peeled during harvest and grading, 9 = skin intact.

 $^{^{2/}}$ Defects: 1 = severe, 9 = none. Ratings of heat necrosis made on 20 tubers in the size range 1-1/2" to 3-1/4".

WISCONSIN

R.E. Hanneman, Jr.

Enhanced Production of Botanical Seed via Supplemental Macronutrient Fertilizer Applications Genetics and Cytogenetics of the Tuber-bearing Solanum
Species (Cooperative USDA, ARS and Wisconsin Agricultural
Experiment Station)

The Inter-Regional Potato Introduction Project (IR-1) is charged with the maintenance of the United States potato germplasm collection. Fulfillment of this responsibility includes performing yearly seed increases to replenish accessions depleted by distribution, declining germination, etc. This experiment was undertaken to determine the usefulness of supplemental macronutrient fertilizer treatments for enhancing seed production resulting from such increases.

Twenty plants of each of 130 accessions were grown in 15 cm clay pots in the greenhouse in a sterilized medium consisting of 1/3 organic soil: 2/3 top soil. One-half teaspoon of the slow release fertilizer "Osmocote" (19-6-12) per pot was mixed into the medium. One-half of the plants were also treated with a supplemental liquid fertilizer by applying one cup of "Rapid-Gro" (23-19-17) at the recommended one tablespoon per gallon concentration. One application was made at about one month after potting and a second application was made about three weeks later.

Most plants treated with supplemental fertilizer were notably larger, greener, produced more flowers and senesced later than the untreated plants of the same accession. Treated plants produced an average of 867 additional seeds per plant pollinated (±290 at 99 percent confidence), an average increase of over 80 percent. The average number of seeds per fruit was unchanged.

It is concluded that application of supplemental macronutrient fertilizer promotes a significant increase in seed production per plant compared to plants treated with slow release fertilizer alone.

Crossability of 1EBN Wild Potato Species with Group Tuberosum Haploids

Several diploid, wild species categorized as 1EBN have many desirable characteristics which would be useful in a potato breeding program. Unfortunately, interspecific crosses between these 1EBN species and cultivated *S. tuberosum* have been largely unsuccessful.

Utilizing the Endosperm Balance Number (EBN) hypothesis, a crossing scheme involving female Group Tuberosum haploids x 1EBN 2n pollen producers and colchine-doubled 1EBN clones was initiated. The purpose being to synthesize sexual hybrids which would allow for genetic exchange between the genomes of

S. tuberosum and the 1EBN species. Subsequently, the hybrids could then be utilized as a vehicle for the eventual transfer of desirable traits to the tetraploid cultivated potato.

During the winter of 1987, species categorized as being 1EBN types were screened for 2n pollen. The species were S. bulbocastanum (blb), S. brevidens (brd), S. brachistotrichum (bst), S. chancayense (chn), S. commersonii (cmm), S. cardiophyllum (cph), S. etuberosum (etb), S. fernandezianum (frn), S. jamesii (jam), S. mochicense(mcc), S. pinnatisectum (pnt), and S. trifidum (trf). Pollen diameters varied between and within species, but in general 2n pollen was in the range of 1.20-1.32X the diameter of 1n pollen. Several 2n pollen producers were identified within the species screened, but only those clones with greater than three percent 2n pollen were actually utilized in crosses.

Preliminary crosses were performed under greenhouse conditions in the spring of 1987. Pollinations were randomly performed upon pot-grown plants of eight different haploid clones of Group Tuberosum. In the majority of cases, pollen no more than a week old was used. The results of these crossings were not encouraging but at that time it was thought that the few seed expected per pollination were not a strong enough stimulus in relation to the sink effect of developing tubers. The consequence of this sink competition was thought to be reflected in the poor fruit retention observed.

A larger-scale crossing program was undertaken in the summer of 1987. Six thousand and seventy-two pollinations were randomly performed utilizing fifteen different Group Tuberosum haploids as females. The cut-stem technique was utilized in all crosses. Fruit retention, as is generally the case with the cut-stem technique, was good. Parthenocarpic fruit were expected, but seed extraction during the fall revealed that the majority of fruit were parthenocarpic. Two Chippewa-derived haploids used as females also appeared predisposed to parthenocarpy, with the majority of fruit being derived from these two clones.

Currently, thirteen tbr-cmm hybrids have been obtained as well as nine tbr-chn hybrids. Eight of the nine tbr-chn hybrids have been verified as being triploid, which was the ploidy level predicted by the EBN theory. Unfortunately, these eight hybrids have poor male fertility. Doubling of these clones is currently being undertaken through the use of colchicine-axillary bud treatment as well as by rachis and petiole culture. Verification of the ploidy level of the tbr-cmm hybrids is currently being conducted.

The poor seed set obtained from the crossings was puzzling. The majority of seed that was obtained (90%) was from the use of chn 2n pollen producers as well as a colchicine-doubled cmm clone. Many male parents from other species had higher amounts of 2n pollen production or were also colchicine-doubled clones, yet no seed at all was obtained. Future research will involve stylar-pollen tube growth analyses from among the crosses conducted this past year. Such a study will be done to ascertain whether interspecific incompatibility may be another barrier to the successful utilization of these 1EBN species.

Estimation of Genetic Parameters in Autotetraploids The schemes proposed by G.C.C. Tai for the estimation of genetic parameters in autotetraploids require the production of tetraploid progenies with a known genotypic frequency. The means generated from these families can then be used in a weighted least square procedure for estimating genetic parameters according to the additive-dominant model of Mather and Jinks (1982) and Killick (1971).

Several models have been proposed by Tai, the last one is based on a mating scheme which involves only 2x x 2x crosses. That scheme requires homozygous diploid parents producing 2n eggs and 2n pollen.

The scheme that is going to be used in the present research is a modification of those already proposed by Tai and involves $4x \times 4x$ and $4x \times 2x$ crosses. The still unclarified genetic mechanism of 2n egg production is excluded from the scheme.

The six means produced by the mating scheme and the means of the three tetraploid progenitors can be evaluated in an experiment to estimate seven parameters m, d, h3, h2, h1, α , and β , with two degrees of freedom. There is also the possibility of including in the scheme the backcrosses AA x Aa and aa x Aa as families in another four matings.

With the formulation of this scheme the project has gone through the following steps:

1.-Parent Selection. The screen for 2n pollen and 2n egg producers was made among the selfed clones and families of S. chacoense. At least one 2n pollen grain was present in almost all the plants analyzed and the presence of large pollen was always accompanied by a reduction in the percentage of viable pollen, especially in the So generation of selfing. Generations of selfing of So to So differed considerably in this characteristic. The correlation between pollen size and presence of 2n male gametes as deduced by the microscopic observation and the obtainment of seeds from 4x x 2x crosses was not complete. The presence of four micropores was a general and exclusive characteristic of the large pollen. The small pollen usually had three and sometimes two micropores. Nine parents were selected based on the presence of large pollen and on seed production in 4x x 2x crosses.

- 2.- F_1 Production. Nine selected parents were intercrossed to produce the F_1 s or Aa genotypes. Some were unable to produce seed when used as females especially between the group of the S_5 selfing generation. A total of 33 families were produced. All the F_1 's within the S_5 generation, except one, exhibited a complete restoration of fertility or an increase in the percentage of viable pollen, and in general large pollen was eliminated.
- 3.-Production of Homozygous Tetraploid Parents. The duplex, quadruplex and nulliplex genotypes are being produced using colchicine treatment on the AA, aa and Aa diploid parents.

 116 new plants were recovered from the first five selected parents. The selection of doubled plant is being conducted by counting the number of chromosomes in buds (L2) and the number of chloroplasts in epidermal tissue (L1). There have been identified doubled plants for two progenitors. The colchicine treatment that is producing the largest number of doubled tissues is 0.25 g/l, applied for 24 hours on plants grafted on tomato. In general there are variable characteristics being expressed in the plants generated.
- 4.-Production of First Backcross. Fifteen F_1 's (Aa) are being crossed with the parents AA or aa. At the present, fruits from almost all the crosses are developing.

	•		

