

Genes, Exons, Isoforms

2.ii)



## 2.iii)

Genes(#Gene\_id, Name, Location, Chromosome\_name, Start\_coordinate, Stop\_coordinate) Exons(#Exon\_id, Start\_coordinate, Stop\_coordinate, Gene\_id\*) Isoforms(#Isoform\_id, Isoform\_name, Gene\_id\*) Isoform\_exon\_connection(Exon\_id\*, Isoform\_id\*)

Chromosome, Gene, Synonyms, References

3.ii)



3.iii)

Gene(#Gene\_symbol, Official\_name, Start\_coordinate, End\_coordinate, #Chromosome\_name, Chromosome\_length)

Synonyms(#Synonym\_id, Synonym, Gene\_symbol\*)

References(#Reference\_id, Authors, Title, Journal, Year\_published)

References\_has\_Gene(Reference\_id\*, Gene\_symbol\*)

3.iv)

Chromosome(#Chromosome\_name, Length)

Gene(#Gene\_symbol, Official\_name, Start\_coordinate, End\_coordinate, Chromosome\_name\*)

Synonyms(#Synonym\_id, Synonym, Gene\_symbol\*)

References(#Reference\_id, Authors, Title, Journal, Year\_published)

References\_has\_Gene(Reference\_id\*, Gene\_symbol\*)



This solution is problematic because it is a breach of the second normal form; Registration\_year, Model and Maximum\_weight are all dependent on the Registration\_number.

5ii)

Registration\_number -> Registration\_year Registration\_number -> Model Model -> Maximum\_weight

5iii)

Registration\_number

5iv)

Container\_type (#Type\_id, Type\_name, Max\_weight, Cubic\_quantity, Nightly\_rate)

Container (#Container\_number, Type\_id\*)

Customer (#Telephone\_number, Address)

Assignment (#Assignment\_number, Telephone\_number\*, Container\_number\*, Start\_date, End\_date)

Truck (Registration\_number\*, Assignment\_number\*)

Truck\_registration(#Registration\_number, Registration\_year, Model\_name\*)

Model(#Model\_name, Maximum\_weight)