Numpy vs. Sympyで学ぶ 高校数学ハンズオン(前編)

【関数のグラフ、微分編】

進行予定

7/7 前編「関数のグラフ、微分編」

- ・NumPyとSymPyの特徴
- 関数とは
- ・代表的な関数(三角関数、指数関数など)のグラフ
- ・微分を定義から理解する
- ・簡単な数値微分の方法
- ・応用:最小二乗法の考え方

講師自己紹介

• 氏名:大久保 亮介

• 現在, 薬学部4年(漢方薬専攻)

・担当講義:基礎統計→ML,高校数学など

・関数とは

関数とは?

xの値を定めるとyの値がただ1つ定まるとき、

関数のイメージ

関数の種類 (一例)

- 多項式関数
- 指数 対数関数
- 三角関数

多項式関数

一次関数
$$y = ax + b$$

二次関数
$$y = ax^2 + bx + c$$

三次関数
$$y = ax^3 + bx^2 + cx + d$$

n次関数
$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0$$

-次関数

$$y = ax + b$$

二次関数

$$y = ax^2 + bx + c$$

例: $f(x) = x^2$

三次関数,四次関数,…

例題

 $f(x) = x^2 + 3x + 2$ において、 f(0), f(4), f(x+h), f(f(x))を求めよ

• 代表的な関数のグラフ

指数とは?

$$a^n = a \times a \times \dots \times a$$

$$\text{n}$$

例:
$$2^3 = 2 \times 2 \times 2 = 8$$
, $10^4 = 10 \times 10 \times 10 \times 10 = 10000$

指数法則 1
$$a^m \times a^n = a^{m+n}$$

$$(a^m)^n = a^{mn}$$

指数法則の重要性

aをn回かけると考えず、指数法則から導出する

$$a^0=1$$
 1において、 $n=0$ とすると $a^m \times a^0=a^m$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

1において,
$$m = -n$$
 とすると $a^{-n} \times a^{n} =$ $a^{0} = 1$

2において,
$$m = 1/n$$
 とすると $(a^{1/n})^n =$ $a^1 = a$

指数関数

$$y = a^x$$

指数と対数

$$a^n = M \quad \longleftarrow \quad n = \log_a M$$

$$\log_a MN = \log_a M + \log_a N$$
$$\log_a M^k = k \log_a M$$
$$\log_a b = \frac{\log_a b}{\log_a a}$$

対数法則

対数関数

$$y = \log_a x$$

必ず(1,0)を通る

 $y = log_2 x$ 4 0 3 3 2 2 1 1 0 0 -1 -1 -2 -2 -3 -3 -4 3 4

三角比

	O°	30°	45°	60°	90°
sin θ	Ο	1/2	1/√2	√3/2	1
$\cos \theta$	1	√3/2	1/√2	1/2	0
tan θ	0	1/√3	1	√3	×

三角関数のグラフ

$$y = \sin x$$
$$y = \cos x$$

$$y = \tan x$$

三角比の拡張

 $P(\cos\theta, \sin\theta)$

 $Q(1, \tan \theta)$

例題

次の関数のグラフを描け。

$$(1)y = e^x$$

$$(2)y = \log_e x$$

- 微分を定義から理解する

微分とは?

要するに、曲線の接線の傾きである

なんで?

2015センター試験数 II Bの

悲劇

平均点27.7

関数 $f(x) = \frac{1}{2}x^2$ の x = a における微分係数 f'(a) を求めよう.

hが0でないとき、xがaからa+hまで変化するときのf(x)の

したがって、求める微分係数は

$$f'(a) = \lim_{h \to 0} \left(\boxed{\mathcal{T}} + \frac{h}{\boxed{\mathbf{1}}} \right) = \boxed{\mathbf{I}}$$

である.

(以降省略)

[2015 センター試験 数学Ⅱ・数学B 第2問]

定義の理解が重要

平均変化率

関数 y=f(x) において、x がAからBまで変化したとき 例: yの増加量/xの増加量を平均変化率という。

 $\Delta y/\Delta x$ と表す。 Δ は変化量のこと。

$$f(x) = x^2 c h v \tau,$$

平均変化率から微分係数へ

 Δx を限りなく0に近づけていくと, 曲線上のある1点の傾きが求まる。 \rightarrow 微分係数

微分係数

関数f(x)のx = aにおける微分係数f'(a)

導関数

f'(x) が求まれば、x=1,2,3,...に対し f'(1),f'(2),f'(3)と対応させられ、各点の微分係数が求められる。関数f(x)から新たに関数f'(x)を導く f'(x)を関数 f(x) の導関数という。

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

微分の公式

任意の実数でも成り立つ

$$(n = 自然数)y = x^n を微分すると、$$

$$y' = nx^{n-1}$$

例: $f(x) = x^2$ において, f'(x) = 2x

その他の公式: http://examist.jp/mathematics/math-3/derivation/bibunkousiki/

例題

 $f(x) = x^2$ の微分を以下の微分の定義式を用いて行え。また、公式を用いて確認せよ。

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

・ 簡単な数値微分の方法

平均変化率を求める

例:

 $f(x) = x^2$ において、xが1から4まで変化するときの 平均変化率

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

微分係数(?)を求める

例:

$$f(x) = x^2 O x = 1 における微分係数$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

hを限りなく Oに近づける ←h = Oではない!

h = 0のとき、計算できない

h	f'
1	3
0.1	2.1
0.01	2.01
0.001	2.001
•••	•••
0	?

どうしよう?

微分係数を近似的に求める

例:

$$f(x) = x^2 O x = 1 における微分係数$$

$$f'(a) \sim \frac{f(a+h) - f(a)}{h}$$

h	f'	
1	3	
0.1	2.1	
0.01	2.01	
0.001	2.001	
•••	•••	

接線をひく

$$f'(a) \sim \frac{f(a+h) - f(a)}{h}$$
 →接線の傾き

・ 最小二乗法の考え方

最小二乗法

最適化計算1

1. 最小2乗法を用いる、厳密解

$$E = \sum (y_i - \hat{w}x_i - \hat{b})^2$$

$$\frac{\partial E}{\partial w} = 0$$
 $\frac{\partial E}{\partial b} = 0$ となるw, bを求める

微分が0の意味

例題

 $f(x) = x^2 + 2x + 3$ が最小値をとる際のxと最小値を 導関数(微分)を用いて求めよ。

最適化計算2

2. 勾配降下法を用いる,近似解

$$E = \sum (y_i - \hat{w}x_i - \hat{b})^2$$

例題 勾配降下法と等比数列

 $f(x) = x^2$, f'(x) = 2x, $x_0 = 20$ 時、下記の勾配降下法の式を用いて、 x_1 , x_2 , x_n を求めよ。

$$x_{n+1} = x_n - \alpha f'(x_n)$$

ただし学習率αは0.25とする。

勾配降下法のイメージ

勾配降下法のイメージ

