IN MEMORIAM

JUAN CARLOS SALAZAR (?-2008)

EL PROBLEMA 456

Jean-Louis AYME

En el triangulo ABC, D es un punto interior tal que <BCD = 10° , <ACD = 70° , <BAD = 20° , <CAD = 40° . Probar que BD es perpendicular a AC. 1

Scolie : $\langle ADC = 70^{\circ}$; en conséquence, le triangle ADC est isocèle en A.

Contexte: ce triangle isocèle ayant un angle de 40° au sommet, nous suggère que ce

problème 456 correspond au thème "Adventitious Angles"² ou "Mahatma's Puzzle"³ ou

encore "Tantale"4.

Note historique : le premier nom a été donné en 1922 par Edward M. Langley⁵, le deuxième par par la revue *Mathematical Spectrum*⁶ en 1995 et le dernier par J. L. Heilbron⁷ en 1998.

Communiqué au site "Laboratorio virtual de triangulos con cabri" de Ricardo Barroso en 2004 ; http://www.personal.us.es/rbarrosocabri/html

L'énoncé a été reformulé par l'auteur.

En français, Aventure angulaire.

Titre donné en Inde à des personnalités spirituelles de premier plan.

Dans la Mythologie, Tantale était le roi de Phrygie qui, pour avoir offensé les dieux, fut précipité dans les Enfers et condamné à une faim et à une soif dévorantes.

Langley, Adventitious Angles Problem, *Mathematical Gazette*, 11 (1923) 321-323.

Mathematical Spectrum vol. 27 (1995-97) 7, 65-67.

Heilbron J. L., *Geometry civilised*, Clarendon Press, Oxford (1998) 292-295.

L'origine de ce thème remonte à l'année 1916 où le célèbre problème de Langley a été posé à "Entrance Examination for Peterhouse and Sidney Sussex Colleges" à Cambridge. Depuis de nombreuses variations sur ce thème ont été présentées⁸.

Technique choisie:

elle s'inspire de celle utilisée en 1951 par S. T. Thompson de Tacoma (Washington, États-unis) pour la résolution du problème de Langley⁹.

UN LEMME FÉDÉRATEUR

VISUALISATION

Figure:

Traits: 0 un cercle, A le centre de 0

et $A_1, A_2,..., A_{18}$ les sommets du 18-gone régulier inscrit dans 0.

Donné : (A_1A_8) , (A_3A_{14}) , (A_4A_{16}) , $(A_{18}A_6)$ concourent sur (AA_2) .

VISUALISATION

_

Rike T., An intriguing Geometry Problem, Berkeley Math Circle (2002);

Diamond R. A. & Georgiou G. R., Triangles and Quadrilaterals Revisted Part 2: The solution, *Mathematics in School* 30, 1 (November 2001) 11-13.

⁹ Langley E. M., A problem, *Mathematical Gazette*, 11 (1922) 173.

- Scolie: (AA_2) , (A_3A_{10}) , (A_5A_8) sont parallèles entre elles.
- Notons D le point d'intersection de (A_1A_8) et (A_3A_{14}) .
- D'après "L'équivalence d'Aubert-MacKensie" (Cf. Annexe 1),
 - (1) (AD) est la pascale de l'hexagone cyclique $A_1A_{10}AA_3A_{14}A_5A_8A_1$
 - (2) $(AD) // (A_5A_8)$ ou encore $(AD) // (AA_2)$.
- D'après le postulat d'Euclide, $(AD) = (AA_2)$.
- **Conclusion partielle :** A, D et A₂ sont alignés.

- Scolie: (AA_2) , (A_4A_9) , (A_6A_7) sont parallèles entre elles.
- Notons D' le point d'intersection de (A_4A_{16}) et (A_6A_{18}) .

- D'après "L'équivalence d'Aubert-MacKensie" (Cf. Annexe 1),
 - (1) (AD') est la pascale de l'hexagone cyclique $A_{18}A_9A_4A_{16}A_4A_6A_{18}$
 - (2) $(AD') // (A_4A_9)$.
- D'après le postulat d'Euclide,
- $(AD') = (AA_2).$
- Conclusion partielle:
- A, D' et A2 sont alignés.

- Scolies:
- (1) $(A_3A_{18}) // (A_6AA_{15})$
- (2) $(A_3A_6) // (A_9AA_{18})$
- (3) $(AA_{18}) = (AA_6).$
- Le quadrilatère $AA_{18}A_3A_6$ est un losange.
- Conclusion partielle : (A_6A_{18}) est la médiatrice de $[AA_3]$ ou encore $(A_6A_{18}) \perp (AA_3)$.

- Scolies: (1) D est le point d'intersection de (AA_2) et (A_3A_{14})
 - (2) $\langle A_2 A A_3 = \langle A_{12} A_3 A_{14} \ (= 20^\circ).$
- Le triangle DA₃A est isocèle en D.
- $\begin{array}{ll} \bullet & \hbox{D'après le th\'eor\`eme de la m\'ediatrice,} \\ & \hbox{en cons\'equence,} \end{array} \quad \begin{array}{ll} \hbox{D est sur } (A_6A_{18}) \ ; \\ \hbox{D et d' sont confondus.} \end{array}$
- Conclusion: (A_1A_8) , (A_3A_{14}) , (A_4A_{16}) , $(A_{18}A_6)$ concourent sur (AA_2) .

Commentaire : ce lemme, dans son principe, fédère le thème "Adventitious angles".

LA PREUVE

- Immergeons notre figure dans celle du lemme précédent.
- Scolies: (1) C et A_3 sont confondus
 - (2) D et A_1 sont confondus
 - (3) B, A₂, C sont alignés.

- D'après le lemme, (A_8A_{15}) , $(A_{10}A_3)$, $(A_{11}A_5)$, (A_7A_{13}) concourent sur (AA_9) .
- Notons E ce point de concours.
- Scolie: A, B, E, A_9 , A_{18} sont alignés.

- Scolies:
- (1) A_1 , A, A_{10} sont alignés
- (2) A_2 , A, A_{11} sont alignés.
- D'après Pascal "Hexagramma mysticum" (Cf. Annexe 2),
 (AE) est la pascale de l'hexagone cyclique A₅A₁A₁₀A₃A₂A₁₁; en conséquence,
 (A₁A₅) passe par B.
- $\begin{array}{ll} \bullet \quad \text{Nous avons:} & (A_1A_5B) \quad /\!/ \quad (A_6A_{18}) \ ; \\ \text{d'après le lemme,} & (A_6A_{18}) \quad \bot \quad (AA_3) \ ; \\ \text{d'après l'axiome IVa des perpendiculaires,} & (A_1A_5B) \quad \bot \quad (AA_3) \quad \text{ou encore} \\ \end{array}$
- Conclusion: "BD es perpendicular a AC".

À

SON ÉPOUSE MILAGROS

C'est le 16 avril 2004, que Juan Carlos¹⁰ a pris contact avec moi, par mail, à partir de Puerto Ordaz (Venezuela).

Ce contact qui n'a jamais été rompu, nous a permis d'échanger nos travaux géométriques. Je sais qu'il a occupé avec talent les fonctions de coach de l'équipe vénézuelienne pour les I.M.O. et partager avec enthousiasme les dicussions ax seins des groupes *Hyacinthos* et *Mathlinks*.

Le dernier contact que j'ai eu avec lui, date du 9 septembre 2007 ; il m'écrivait :

Salazar J. C., Google: Applicaciones del Teorema de Desargues; Concurrencias y Colinealidades.

"I am in Maputo, Mozambique, and I am working in Isolux, Spain Electrical Company, as electrician engineer, my profession. I am retired from my sweet geometry...".

Il décède le dimanche 30 mars 2008 en Afrique du Sud et est enterré le lundi 7 avril au Venezuela dans la religion catholique.

Qu'il repose en paix. Jean-Louis

ANNEXE

1. L'équivalence d'Aubert-MacKensie

Traits: ABC un triangle,

0 le cercle circonscrit à ABC,

A', B', C' trois points de 0 tels que (AA'), (BB') et (CC') soient parallèles entre elles,

M un point,

et P, Q, R les point d'intersection de (MA') et (BC), (MB') et (CA), (MC') et (AB).

Donné : M est sur 0 si, et seulement si, (PQR) est une ménélienne de ABC, parallèle à (AA').

Scolie : la visualisation nécessaire est de Paul Aubert¹¹ et suffisante de M'Kensie¹².

2. Hexagramma mysticum¹³

Aubert P., Généralisation du problème de Pascal donnant neuf points en ligne droite, *Nouvelles Annales* (1899).

M'Kensie, *Journal de Mathématiques Spéciales* de Longchamps (1887) 201.

Pascal B. (1640)

-

Traits: 1 ABCDEF un cercle,

un hexagone tels que les points A, B, C, D, E soient sur *1*, les points d'intersection de (AB) et (DE), (BC) et (EF), (CD) et (FA). P, Q, R et

F est sur 1 Donné: si, et seulement si, les points P, Q et R sont alignés.