Simulated Geographical Co-location of Patients Admitted to an Inpatient Internal Medicine Teaching Unit

Potential Impacts on Efficiency and Physician-Nurse Collaboration

Blair L. Bilodeau¹, David A. Stanford¹, Mark Goldszmidt², Andrew Appleton²

¹Department of Statistical & Actuarial Sciences, Western University, London, Canada.

²Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Canada.

OVERVIEW

- 1. Introduction
- 2. Definition of Problem
- 3. Reference Simulation
- 4. New Metrics of Interest
- 5. Proposed Changes
- 6. Results

HOSPITAL UNIT

London Health Sciences Centre University Hospital Campus Internal Medicine Inpatient Teaching Unit

HOSPITAL UNIT

HOSPITAL UNIT

	Three Physician Teams	Nursing Staff	
Day Shift	1 attending physician	1 1: 1 -	
	1-2 senior residents	4 patients assigned to each nurse	
	2-4 junior residents		
Night Shift	1 attending physician	6 patients	
	1 senior resident	assigned to each nurse	

DEFINITION OF PROBLEM

Goal 1

Reduce the number of physician team members that a nurse must interact with when reporting on their patients.

DEFINITION OF PROBLEM

Goal 1

Reduce the number of physician team members that a nurse must interact with when reporting on their patients.

Goal 2

Reduce variance in the number of patients between the three teams at daily census times.

DEFINITION OF PROBLEM

Goal 1

Reduce the number of physician team members that a nurse must interact with when reporting on their patients.

Goal 2

Reduce variance in the number of patients between the three teams at daily census times.

Constraint

Avoid a significant impact on patients in the emergency department while maintaining current staffing levels.

PATIENT FLOW

MODELLING PATIENT FLOW

REFERENCE SIMULATION

Performance Averages

Metric	Observed Value	Reference 95% CI (Sim.)	
	value	Low	High
Floor Utilization	94.8%	94.4%	95.1%
Medicine Utilization	83.5%	82.2%	83.1%
Number of Admitted Patients Waiting	3.4	3.0	3.3
Waiting Time	6.4	6.7	7.4

Patients Per Nurse (PPN)

$$PPN = \frac{\text{# Patients assigned to team}}{\text{# Nurses assigned to those patients}}$$

- A measure of the number of nurses each physician team interacts with, normalized for the number of patients the team has.
- Optimally want to maximize this value for each team.

Patients Per Nurse (PPN)

Metric	Reference 95% CI (Sim.)		
	Low	High	
PPN Start Day	1.49	1.51	
PPN End Day	1.46	1.48	
PPN Start Night	1.80	1.82	
PPN End Night	1.84	1.87	

Team Census Variance

$$Variance = \frac{\sum_{Physician\ Teams} (Team_Census - Avg_Census)^2}{3}$$

- A measure of how equally the patients are distributed among the teams.
- Optimally want to minimize this value.

Team Census Variance

Metric	Observed Value	Reference 95% CI (Sim.)	
IVIEUIC		Low	High
Team Census Variance	7.36	6.02	6.71

PROPOSED CHANGES

Bed Assignment

- Each bed is assigned a team, and may only hold patients from that team.
- Once a patient is assigned a bed, they must remain there for the duration of their stay.

PROPOSED CHANGES

Bed Assignment

- Each bed is assigned a team, and may only hold patients from that team.
- Once a patient is assigned a bed, they must remain there for the duration of their stay.

Team Assignment

- Primarily, patients receive the first available bed.
- Secondarily, patients are assigned to the team with the least number of patients.

BED ASSIGNMENT

TEAM ASSIGNMENT

TEAM ASSIGNMENT

RESULTS

Performance Averages

Metric	Reference Value (Sim.)	GeoFlow 95% C (Sim.) Low High	
Floor Utilization	94.7%	94.3%	95.1%
Medicine Utilization	82.7%	82.2%	83.1%
Number of Admitted Patients Waiting	3.1	3.0	3.3
Waiting Time	7.1	6.8	7.4

RESULTS

Patients Per Nurse (PPN)

Version	Team	Start Day	End Day	Start Night	End Night
Reference (Sir		1.50	1.47	1.80	1.85
GeoFlow Value (Sim.)	Team A	3.14	2.97	4.33	4.58
	Team B	3.14	2.98	4.33	4.58
	Team C	3.21	3.05	3.78	3.98

Team Census Variance

Metric	Reference Value	GeoFlow 95% CI (Sim.)	
Metric	(Sim.)	Low	High
Team Census Variance	6.37	0.40	0.43

SUMMARY

Goal

 Maximize patients per nurse and minimize team census variance.

SUMMARY

Goal

 Maximize patients per nurse and minimize team census variance.

Solution

- Assign a team to each bed so that team nurses are geographically co-located.
- Assign patients to the team with the lowest census when possible.