İ.T.Ü. Elektrik-Elektronik Fakültesi Bilgisayar Mühendisliği Bölümü

MİKROBİLGİSAYAR LABORATUVARI DENEY RAPORU

Deney No: 7

Deney Adı: Asenkron Seri İletişim Arabirimi (ASİA)

Deney Tarihi: 05.12.2003

Grup: C-8

Deneyi Yapanlar: Kıvanç Ahat – 040000688

Oktay Selçuk – 040000654

Deneyi Yaptıran Öğretim Elemanı: Araş. Gör. Cüneyt Tantuğ

Asenkron Seri İletişim Arabirimi (ASİA)

Deney Amacı:

ASİA'nın koşullanması ve ASİA üzerinden veri gönderme/alma işlemlerinin deneysel olarak geçekleştirilmesi.

Temel ASİA Deneyi

ASİA'nın durum kütüğü ve komut kütüğü,

İletişim hızı : 1200bps Veri boyu : 8bit Dur biti : 2bit Eşlik : Çift eşlik

R6551'in istenen biçimde çalışabilmesi için, iç kütüklerinin sıfırlanması gerekmektedir. Buna göre şu şekilde koşullamalar yapılmalıdır:

Durum → %1001 1000 = \$98 Komut → %0100 0101 = \$45

Program:

PS	M. Dil	<u>i</u>	Simgesel	Dil		Açıklama
0000	BD 00	16	BASLA	JSR	KOSUL	
0003	86 EA			LDAA	#\$EA	
0005	B7 40	05		STAA	\$4005	
8000	B6 40	05		LDAA	\$4005	
000B	BD 00	24		JSR	GONDER	Gönderme işlemi
000E	4 F			CLRA		
000F	BD 00	2F		JSR	AL	Alma işlemi
0012	B7 40	06		STAA	\$4006	
0015	3F			SWI		
0016						
0016	7F 88	01	KOSUL	CLR	\$8801	KOSUL alt programı
0019	86 98			LDAA	#\$98	
001B	В7 88	03		STAA	\$8803	Denetim kütüğü koşullanıyor
001E	86 45			LDAA	#\$45	
0020	В7 88	02		STAA	\$8802	Komut kütüğü koşullanıyor
0023	39			RTS		
0024						
0024	F6 88	01	GONDER	LDAB	\$8801	GONDER alt programı
0027	C4 10			ANDB	#\$10	Verici boş mu?
0029	27 F9			BEQ	GONDER	Boş değil ise tekrar kontrol et
002B	В7 88	00		STAA	\$8800	Boş ise veriyi iskeleye yaz
002E	39			RTS		
002F						
002F	F6 88	01	AL	LDAB	\$8801	AL alt programı
0032	C4 08			ANDB	#\$08	Alıcı dolu mu?
0034	27 F9			BEQ	AL	Dolu değil ise tekrar kontrol et
0036	В6 88	00		LDAA	\$8800	Dolu ise veriyi iskeleden al
0039	39			RTS		

Program çalıştırılmadan önce R6551 kırmığının verici çıkışı (TxD), alıcı girişine (RxD); gönderme isteği çıkışı (RTS), gönderme için sil girişine (CTS) bağlanmıştır. Ayrıca DCD ve DSR girişleri toprağa bağlanmıştır. Bu bağlantıyı yapmanın amacı ASİA'nın gönderdiği veriyi tekrar kendisinin almasını sağlamaktır.

Program çalıştırılmadan önce \$4005 ve \$4006 sayılı bellek gözlerine \$00 yüklenmiş ve program çalıştırılmıştır. Bunun amacı bu bellek gözlerinde herhangi bir değişme olduğunda sağlıklı bir şekilde gözlemleyebilmektir. Program çalıştırıldıktan sonra \$4005 ve \$4006 bellek gözlerinde \$EA değerinin yazılı olduğu gözlenmiştir. Bu işlemi bir çok defa yinelediğimizde gene aynı sonuçlarla karşılaşılmıştır. Son olarak da programımızın sağlıklı bir şekilde çalışıp çalışmadığını kontrol etmek amacıyla ilk başta yapmış olduğumuz (TxD – RxD &&RTS–CTS&&DCD -- DSR) bağlantılarını sağlayan kablolar çıkartılmış ve program bu halde yeniden çalıştırılmıştır. Bu durumda ise \$4005 sayılı bellek gözüne \$EA değeri yazılıyorken \$4006 sayılı bellek gözünde ise herhangi bir değişme gözlenmemiştir.

ASİA Üzerinden Bir Küme Veri Gönderme ve Alma Deneyi

Program:

PS	M. Dili	Simgesel	Dil		Açıklama
0000	BD 00 2A	BASLA	JSR	KOSUL	ASİA'nın koşullanması
0003	CE 44 00		LDX	#\$4400	Sayı kümesinin başlangıç adresi
0006	FF 40 00		STX	\$4000	
0009	CE 45 00		LDX	#\$4500	Yazmaya başlanacak bellek gözü
000C	FF 40 02	GERI	STX	\$4002	
000F	FE 40 00		LDX	\$4000	
0012	A6 00		LDAA	0,X	
0014	BD 00 38		JSR	GONDER	Bir veri gönder
0017	08		INX		
0018	FF 40 00		STX	\$4000	SK'yı sakla
001B	FE 40 02		LDX	\$4002	Yazılacak yerin bellek adresini al
001E	BD 00 43		JSR	AL	Gönderilen veriyi al
0021	A7 00		STAA	0,X	Sıradaki bellek adresine yaz
0023	08		INX		
0024	8C 45 10		CPX	#\$4510	Sona geldik mi?
0027	26 E3		BNE	GERI	Gelmediysek devam et
0029	3F		SWI		
002A					
002A	7F 88 01	KOSUL	CLR	\$8801	KOSUL alt programı
002D	86 98		LDAA	#\$98	
002F	B7 88 03		STAA	\$8803	
0032	86 45		LDAA	#\$45	
0034	B7 88 02		STAA	\$8802	
0037	39		RTS		
0038					
0038	F6 88 01	GONDER	LDAB	\$8801	GONDER alt programı
003B	C4 10		ANDB	#\$10	
003D	27 F9		BEQ	GONDER	
003F	В7 88 00		STAA	\$8800	

0042	39		RTS		
0043					
0043	F6 88 0	01 AL	LDAB	\$8801	AL alt programı
0046	C4 08		ANDB	#\$08	
0048	27 F9		BEQ	AL	
004A	В6 88 0	00	LDAA	\$8800	
004D	39		RTS		

ASİA'yı Temel ASİA Deneyindeki belirtilen ayarlara uygun olacak şekilde tekrar koşulladık. İlk deneydeki gerçeklenen bağlantıları aynen koruduk.

Durum → %1001 1000 = \$98

Komut → %0100 0101 = \$45

Program çalıştırılmadan önce bellekte \$4400 sayılı bellek gözünden başlamak üzere 16 değişik değer yazdık. Değerler;

\$00, \$01, \$02, \$03, \$04, \$05, \$06, \$07, \$08, \$09, \$0A, \$0B, \$0C, \$0D, \$0E, \$0F \$4400 sayılı bellek gözünden başlayan bu verileri ASİA vericisi üzerinden asenkron seri olarak bilgisayar dışına gönderecek verici ve \$4500 sayılı bellek gözüne bu verileri okuyup yazacak alıcı program olan yukarıdaki programımızı \$0000 sayılı bellek gözünden başlayarak yazdık ve çalıştırdık. Sonuçta \$4400 sayılı bellek gözünden başlayarak yazmış olduğumuz veriler sırasıyla \$4500 sayılı bellek gözüne yazılmış olarak gözlemledik.

RS-232-C Arayüzü ve Standardı

Bilgisayar ve modem arasında fiziksel bağlantı için oluşturulan ilk evrensel standart RS232C olarak bilinir. RS232 genel olarak modem ve sayısal donanımda bulunan yuvaları, iletim yollarını ve modemi yönlendiren kontrol işaretini belirler.

Bu standarda göre modem, veri iletişimi donanımı(Data Comminactions Equipment - DCE) olarak, modeme bağlı sayısal donanım ise veri terminal donanımı(Data Terminal Equipment - DTE) olarak ifade edilir. DCE ve DTE arasındaki bağlantı şekilde görülebilir.

RS232, bu bağlantıyı sağlamak üzere birçok fonksiyona sahiptir. Bir DCE – DTE bağlantısını sağlayan RS232 standardının tanımladığı fonksiyonlardan bazıları şunlardır:

Request to Send (RTS): Bu işaret DTE'den DCE'ye gönderilir ve DTE'nin bir veri gönderiminde bulunmak istediğini belirtir.

Clear to Send (CTS): Bu işaret DCE'den DTE'ye gönderilir ve DCE'nin veri almak için hazır olduğunu belirtir.

Data Set Ready (DSR): Bu işaret DCE'den DTE'ye gönderilir ve DCE'nin hazır olma durumunu belirtir. DSR işareti DCE'nin (genellikle modem) açık olup olmadığını ve durumunu belirtir.

Data Terminal Ready (DTR): Bu işaret DTE'den DCE'ye gönderilir ve DCE'den veri almaya hazır olup olmadığını belirtir. DCE'nin bir modem olduğu sistemlerde bağlantı sağlanır ve yol açık tutulur. Eğer DTR işareti bir şekilde reddedilirse bağlantı kopar.