A Kepler-egyenlet megoldása

1. Feladat. Készítsünk egy **Kepler** nevű (Matlab) függvényt, ami kiszámítja egy tetszőlegesen rögzíthető $e \in [0,1)$ excentricitásra és $M \in [0,2\pi)$ középmozgásra az

$$E - e\sin E = M$$

Kepler-egyenlet megoldását, vagyis a megfelelő E excentrikus anomáliát ϵ hibakorláttal! **Bemenet:**

```
e - excentricit\'{as}\ e \in (0,1);
```

 ϵ — hibakorlát;

M — középanomália [radiánba].

Eredm'enyek:

E — excentrikus anomália $E \in [0, 2\pi)$ [radiánba];

ido — a számításokhoz szükséges idő.

Tesztpéldák:

M=0 és tetszőleges e esetén E=0;

 $M=\pi$ és tetszőleges e esetén $E=\pi,$ azaz tizenkét tizedesre kerekítve 3.141592653590;

Kepler(0.98,1E-14,3.5) = 3.323098922816507.