

COMPUTER ORGANIZATION LAB (PCC- CS 392)

EXPT NO. : 2

AIM:

To design and construct half adder, full adder circuits and verify the truth table using logic gates.

APPARATUS REQUIRED:

Sl. No.	COMPONENT	SPECIFICATION	QTY.
1.	AND GATE	IC 7408	1
2.	X-OR GATE	IC 7486	1
3.	OR GATE	IC 7432	1
4.	BREAD BOARD	-	1
5.	PATCH CORDS	-	-
6.	POWER SUPPLY WITH LOGIC PROBE	-	1

HALF ADDER:

A half adder has two inputs for the two bits to be added and two outputs one from the sum 'S' and other from the carry 'C' into the higher adder position. Above circuit is called as a carry signal from the addition of the less significant bits sum from the X-OR Gate the carry out from the AND gate.

LOGIC DIAGRAM:

HALF ADDER

TRUTH TABLE:

Dept. of CSE Page 15

COMPUTER ORGANIZATION LAB (PCC- CS 392)

Α	В	CARRY	SUM
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

K-Map for SUM:

K-Map for CARRY:

SUM = A'B + AB'

CARRY = AB

FULL ADDER:

A full adder is a combinational circuit that forms the arithmetic sum of input; it consists of three inputs and two outputs. A full adder is useful to add three bits at a time but a half adder cannot do so. In full adder sum output will be taken from X-OR Gate, carry output will be taken from OR Gate.

LOGIC DIAGRAM:

FULL ADDER USING TWO HALF ADDERS:

Dept. of CSE Page 16

COMPUTER ORGANIZATION LAB (PCC- CS 392)

TRUTH TABLE:

Α	В	С	CARRY	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

PROCEDURE:

- (i) Connections are given as per circuit diagram.
- (ii) Logical inputs are given as per circuit diagram.
- (iii) Observe the output and verify the truth table.

OBSERVATION TABLE:

SI. No.	CIRCUIT	INPUT			ОИТРИТ	
		Α	В	С	SUM	CARRY
1.	HALF ADDER					
2.	FULL ADDER					

Dept. of CSE Page 17