Лабораторная работа № 2.5.1 Измерение коэффициента поверхностного натяжения жидкости.

Никита Москвитин, Б04-204

2023

1 Аннотация

В данной работе исследовалась зависимость коэффицента поверхностного натяжения воды от температуры. Был определен температурный коэффицент для воды.

2 Введение

Внутри пузырька с воздухом создается избыточное давление определяемое по формуле Лапласа:

 $\Delta P = \frac{\sigma}{2r} \tag{1}$

где σ — коэффициент поверхностного натяжения, ΔP — разница давлений внутри и снаружи пузырька, r — радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости.

3 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) **В** (Рис. 1). Тестовая жидкость (этиловый спирт) наливается в сосуд **Е**. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла **С**. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора **A**. Кран **K2** разделяет две полости аспиратора. Верхняя полость при закрытом кране **K2** заполняется водой. Затем кран **K2** открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана **K1**, когда вода вытекает из неё по каплям. В колбах **B** и **C**, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Рис. 1: Схема установки

4 Измерения

Все полученные значения приведенны в Таблице 1, также там привиденны табличные значения коэффицентов.

Также радиусы иглы полученные с помощью спирта и микроскопа: $r_s=0,58\pm0,02$ мм, $r_m=0,55\pm0,01$ мм. Как видим с помощью спирта мы довольно точно определили радиус иглы.

Посчитаем еще вклад давления сверху иглы с помощью линейки и манометра: $p_l = 118 \pm 4~\Pi a,~p_m = 120 \pm 2~\Pi a.$ Как видим, что конечно манометр выдает более точное значение, но линейка дает очень близкий результат.

Таблица 1: Экспериментальные и табличные значения коэффицента поверхностного натяжения для воды

T, K	$\sigma, \frac{MH}{M}$	$\Delta \sigma, \frac{MH}{M}$	$\sigma_{ ext{табл}}, rac{ ext{мH}}{ ext{м}}$
294	65,3	0,4	72,75
299	64,2	0,4	71,99
304	63,6	0,4	71,2
309	63,1	0,4	70,41
314	62,6	0,4	69,6
319	61,5	0,4	68,78
324	61	0,4	67,94
329	60,4	0,4	67,1
334	59,9	0,4	66,24

5 Обработка результатов

По данным из Таблицы 1 посторим график $\sigma(T)$, он привидени на Рис. 2. Из него получается температурны коэффицент $\frac{d\sigma}{dT} = -0,133 \pm 0,010 \frac{\text{мH}}{\text{m*K}}$.

Рис. 2: График зависимости коэффицента поверхностного натяжения воды от температуры.

6 Вывод

Эксперементальные данные показали, что коэффицент поверхностного натяжения воды линейно зависит от температуры. С ее увелечением коэффицент уменьшается, данные привиденны в Таблице 1(источник: https://mipt.ru). Был получен температурный коэффициент поверхностного натяжения для воды $\frac{d\sigma}{dT}=-0,133\pm0,010\frac{\mathrm{MH}}{\mathrm{M*K}}$, табличное значение $\frac{d\sigma}{dT}=-0,1541\frac{\mathrm{MH}}{\mathrm{M*K}}$ (источник: https://studme.org).