This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: A61L 9/14, 9/22

(11) International Publication Number:

WO 00/01423

(43) International Publication Date:

13 January 2000 (13.01.00)

(21) International Application Number:

PCT/GB99/01979

(22) International Diling Date: 23 June 1999 (23:06:99)

[US/GB]; 23 Spring Crescent, Southampton SO17 2FZ

(74) Agent: ALLARD, Susan, Joyce; Boult Wade Tennant, 27 Furnival Street, London EC4A 1PQ (GB).

(30) Priority Data:

(71) Applicants (for all designated States except US): UNI-VERSITY OF SOUTHAMPTON [GB/GB]; Highfield, Southampton SO17 1BJ (GB). RECKITT & COLMAN PRODUCTS LIMITED [GB/GB]; One Burlington Lane, London W4 2RW (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HUGHES, John, Farrell [GB/GB]; 2 Shepherd's Close, Bartley, Southampton SO40 2JL (GB). FOX, Rodney, Thomas [GB/GB]; 30 South Street, Cottingham, Hull HU16 4AS (GB). HARRI-SON, Mark, Neale [GB/GB]; 27 Cromwell Close, Tutbury, Burton-on-Trent DE13 9HZ (GB). WHITMORE, Lindsey, Faye [GB/GB]; 60 Tees Farm Road, Colden Common, Winchester SO21 1UQ (GB). HARPER, Duncan, Roger [GB/GB]; Flat 2, 78 Boulevard, Hull HU3 2TA (GB). JER-RIM, Karen, Louise [GB/GB]; 53 Witt Road, Fair Oak, Eastleight, Hants SO50 7FN (GB). KNAPP, Jennifer, Jane (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: TREATMENT OF AIRBORNE MICROORGANISMS

A method of disinfecting or sanitising a space occupied by airborne/microorganisms/and/or viruses which method comprises directing into the space liquid droplets from a spray device containing a disinfecting or sanitising composition, a unipolar charge being imparted to the said liquid droplets by double layer charging during the spraying of the liquid droplets from the aerosol spray device, the unipolar charge being at a level such that the said droplets have a charge to mass ratio of at least +/- 1 x 10-4 C/kg.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		700	61-		V	SI	
AL	Albania	ES	Spain	LS	Lesotho		Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA.	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	υG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		4
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/01423 PCT/GB99/01979

TREATMENT OF AIRBORNE MICROORGANISMS

The present invention relates to the treatment of

Disinfectants and sanitising compositions based on essential oils are known, for example from US Patent No. 5403587. This Patent is concerned with antimicrobial compositions for use in sanitising, disinfecting and/or cleaning hard surfaces such as countertops, tiles, porcelain products such as sinks and toilets, floors, windows, eating utensils, glassware, dishes and dental and surgical instruments. The compositions comprise:-

- an <u>cantismicrobially</u> effective amount of an essential oil capable of being dissolved or. dispersed in a water carrier and exhibiting antimicrobial properties when incorporated in a water carrier;
- b) a solubilising or dispersing amount of a solubilising or dispersing agent sufficient. to form an aqueous solution or dispersion of the essential oil in a water carrier; and

sufficient water to make 100 wt percentage.

Essential oils stated to be of use in the invention as disclosed in US Patent No. 5403587 include oils obtained from thyme, lemon grass, lemons, oranges, anise, clove, roses, lavender, citronella, eucalyptus, peppermint, camphor, sandalwood and cedar.

The compositions of US Patent No. 5403587 are stated to be capable of being formulated with conventional propellants for dispensing as aerosols

15

5

10

20

25

WO 00/01423

5

10

15

20

25

30

from conventional pressurised containers. Propellants which can be used include isobutane, n-butane, propane, dimethyl ether and blends thereof, as well as chlorofluorohydrocarbons, fluorohydrocarbons and mixtures thereof.

It is known to be difficult to treat airborne microorganisms. In general, it is not easy to eliminate them completely from a particular space such as that defined by a room. Furthermore, any aggressive form of treatment, such as the use of a spray of a composition which is toxic to the microorganisms is likely to be a health hazard to human or animals within the space being treated.

Bacteria, viruses and fungal spores can be considered to be particulate in nature when they are airborne, particularly since they are often attached to or associated with dust particles. In the case of the use of an aerosol spray device, a liquid composition containing a disinfectant is sprayed in the form of tiny droplets in the space which is to be disinfected. However, a low collision rate between the liquid droplets and the microorganisms in the air results in an ineffective killing of the

microorganisms. The practical consequence of such inefficiency is that the disinfectant composition would need to be used in a high amount, thereby incurring a health risk. There are other possible side effects including, in the use of a perfumed composition, a resultant strong perfume smell because of the need to use a considerable amount of disinfectant composition and/or a limited fragrance

10

15

30

choice.

An aerosol spray type device would be of improved efficacy if the aerosol spray droplets had a higher collision rate with the microorganisms. We have now developed an improved method of disinfecting or spray spray.

According to the present invention there is provided a method of disinfecting or sanitising a space occupied by airborne microorganisms and/or viruses, which method comprises directing into the space liquid droplets from a spray device containing a disinfecting or sanitising composition, according to the charge being imparted to the said liquid droplets by adouble have charge mendurating the said liquid droplets by adouble have charge mendurating the said liquid droplets.

liquid droplets from the spray device the unipolar charge being at a level such that the said droplets have a charge to mass ratio of at least 10.

The disinfecting or sanitizing composition which
is sprayed in the method of the present invention
contains at least one anti-microbial agent. Examples
of such anti-microbial agents are essential oils such
as thyme, lemon grass, lemon, orange, grapefruit,
yeast, oregano, anise, clove, cinnamaldehyde,
cinnamon, carvacrol, rose, lavender, citronella,

cinnamon, carvacrol, rose, lavender, citronella, eucalyptus, peppermint, camphor, sandalwood, Siberian pine needle, pine sylvester, tea tree, juniper berry, litsea, rosewood, patchouli, vetyver, cedarwood and mixtures thereof. Other anti-microbial agents which may be used in the present invention include bactericides, for example quarternary ammonium

- 4 -

compounds such as alkyl dimethyl benzyl ammonium saccharinate and benzalkonium chloride, or fungicides such as clotrimazole, miconazole nitrate, organotin compounds, organic acids, halogenated phenols, quaternary ammonium compounds, 8-hydroxy quinoline, diamidines, organic mercury derivatives and the parabens.

5

10

15

20

25

30

It is preferred that the unipolar charge which is imparted to the liquid droplets is generated solely by the interaction between the liquid within the spray device and the spray device itself as the liquid is sprayed therefrom. In particular, it is preferred that the manner in which a unipolar charge is imparted to the liquid droplets does not rely even partly upon the connection of the device to any external charge inducing device, such as a source of relatively high voltage or any internal charge inducing device, such as a battery. With such an arrangement, the spray device is entirely self-contained making it suitable for use both in industrial, institutional and domestic environments.

Preferably, the spray device is a domestic pressure-spraying device devoid of any electrical circuitry but which is capable of being hand held. Typically such a device has a capacity in the range of from 10ml to 2000ml and can be actuated by hand, or by an automatic actuating mechanism. A particularly preferred domestic device is a hand-held aerosol can.

Preferably, therefore the droplet charge to mass ratio of at least $+/-1 \times 10^{-4}$ C/kg is imparted to the droplets as a result of the use of an aerosol spray

device with at least one of the features of the material of the actuator, the size and shape of the orifice of the actuator, the diameter of the dip tube, the characteristics of the valve and the formulation of the disinfecting or sanitising composition contained within the aerosol spray device being chosen in order to achieve the said droplet charge to mass ratio by double layer charging imparting the unipolar charge to the droplets during the actual spraying of the liquid droplets from the orifice of the aerosol spray device.

5

10

15

20

25

30

As a result of the method of the present invention, airborne microorganisms and/or viruses can be eliminated with considerable efficiency as compared to known spraying methods. In particular, much less disinfectant or sanitising agent is required than has previously been the case.

This result is achieved because of the unipolar charge imparted to the liquid droplets of the aerosol. spray. This charge has two effects. The individual droplets are attracted to the microorganisms and/or viruses, including microorganisms attached to dust particles. Since all of the droplets carry the same polarity charge, they are repelled one from another. Accordingly, there is little or no coalescence of the droplets and, in contrast, they tend to spread out to a great extent as compared to uncharged droplets. In addition, if the repulsive forces from the charge within the droplets is greater than the surface tension force of the droplets, the charged droplets are caused to fragment into a plurality of smaller

charged droplets (exceeding the Rayleigh limit). This process continues until either the two opposing forces are equalised or the droplet has fully evaporated.

5

10

15

20

25

30

Airborne microorganisms, including those attached to dust particles, are normally electrically isolated from their surroundings and will typically be at a potential which is the same as that of their surroundings. In this situation, an isolated microorganism within a cloud of electrically charged liquid droplets thus is likely to cause a distortion in the configuration of the electrical field generated by the droplets so that the attraction of the droplets onto the microorganism will be improved. In effect, the microorganism is targeted by a liquid droplet. improvement in the interaction between the charged droplets and the microorganisms is due to the combined effect of the additional diffusion forces generated within the charged cloud of droplets by the electric field, leading to a modification of the trajectory of each droplet so that it is directed towards a microorganism.

In general, the liquid composition which is sprayed into the air using the aerosol spray device is preferably a water and hydrocarbon mixture, or emulsion, or a liquid which is converted into an emulsion by shaking the spraying device before use, or during the spraying process.

Whilst all liquid aerosols are known to carry a net negative or positive charge as a result of double layer charging, or the fragmentation of liquid droplets, the charge imparted to droplets of liquid

10

15

25

30

sprayed from standard devices is only of the order of $+/-1 \times 10^{-8}$ to 10^{-5} C/kg.

The invention relies on combining various characteristics of the design of an aerosol spray device so as to increase the charging of the liquid as it is sprayed from the aerosol spray device.

A typical aerosol spray device comprises:

- An aerosol can containing the composition to be sprayed from the device and a liquid or gaseous propellant;
- A dip tube extending into the can, the upper end of the dip tube being connected to a valve;
- 3. An actuator situated above the valve which is capable of being depressed in order to operate the valve; and
- 4. An insert provided in the actuator comprising an orifice from which the composition is sprayed.

A preferred aerosol spray device for use in the present invention is described in WO 97/12227.

It is possible to impart higher charges to the liquid droplets by choosing aspects of the aerosol device including the material, shape and dimensions of the actuator, the actuator insert, the valve and the dip tube and the characteristics of the liquid which is to be sprayed, so that the required level of charge is generated as the liquid is dispersed as droplets.

A number of characteristics of the aerosol system increase double layer charging and charge exchange between the liquid formulation and the surfaces of the

aerosol system. Such increase are brought about by factors which may increase the turbulence of the flow through the system, and increase the frequency and velocity of contact between the liquid and the internal surfaces of the container and valve and actuator system.

5

10

15

20

25

30

By way of example, characteristics of the actuator can be optimised to increase the charge levels on the liquid sprayed from the container. A small orifice in the actuator insert, of a size of 0.45mm or less, increases the charge levels of the liquid sprayed through the actuator. The choice of material for the actuator can also increase the charge levels on the liquid sprayed from the device with material such as nylon, polyester, acetal, PVC and polypropylene tending to increase the charge levels. The geometry of the orifice in the insert can be optimised to increase the charge levels on the liquid as it is sprayed through the actuator. Inserts which promote the mechanical break-up of the liquid give better charging.

The actuator insert of the spray device may be formed from a conducting, insulating semi-conducting or static-dissipative material.

The characteristics of the dip tube can be optimised to increase levels in the liquid sprayed from the container. A narrow dip tube, of for example about 1.27mm internal diameter, increases the charge levels on the liquid, and the dip tube material can also be changed to increase charge.

Valve characteristics can be selected which

increase the charge to mass ratio of the liquid product as it is sprayed from the container. A small tailpiece orifice in the housing, of about 0.65mm, increases product charge to mass ratio during spraying. A reduced number of holes in the stem, for example 2 x 0.50mm, also increases product charge during spray. The presence of a vapour phase tap helps to maximise the charge levels, a large orifice vapour phase tap of, for example, about 0.50mm to 1.0mm generally giving higher charge levels.

5

10

15

20

25

30

Changes in the product formulation can also affect charging levels. A formulation containing a mixture of hydrocarbon and water, or an emulsion of an immiscible hydrocarbon and water, will carry a higher charge to mass ratio when sprayed from the aerosol device than either a water alone or hydrocarbon alone formulation.

It is preferred that the microorganism treatment composition for use in the present invention comprises an oil phase, an aqueous phase, a surfactant, an antibacterial or anti-viral agent and a propellant.

Preferably the oil phase includes a C_9 - C_{12} hydrocarbon which is preferably present in the composition in the amount of from 2 to 10% w/w.

Preferably the surfactant is glyceryl oleate or a polyglycerol oleate, preferably present in the composition in an amount of from 0.1 to 1.0% w/w.

Preferably the propellant is liquified petroleum gas (LPG) which is preferably butane, optionally in admixture with propane. The propellant may be present in an amount of from 10 to 90% w/w depending upon

whether the composition is intended for spraying as a "wet" or as a "dry" composition. For a "wet" composition, the propellant is preferably present in an amount of from 20 to 50% w/w, more preferably in an amount of from 30 to 40% w/w.

5

10

25

30

The liquid droplets sprayed from the aerosol spray device will generally have diameters in the range of from 5 to 100 micrometres, with a peak of droplets of about 40 micrometres. The liquid which is sprayed from the aerosol spray device may contain a predetermined amount of a particulate material, for example, fumed silica, or a predetermined amount of a volatile sold material, such as menthol or naphthalene.

The method of the present invention, in addition to killing microorganisms, also accelerates the natural process of precipitation of airborne particles by indirect charging of the particles, thereby enabling the air quality to be improved quickly and conveniently.

A can for a typical aerosol spray device is formed of aluminium or lacquered or unlacquered tin plate or the like. The actuator insert may be formed of, for instance, acetal resin. The valve stem lateral opening may typically be in the form of two apertures of diameters 0.51mm.

The present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:-

Figure 1 is a diagrammatic cross section through an aerosol spraying apparatus in accordance with the

WO 00/01423 PCT/GB99/01979

invention;

5

10 .

15

20

25

30

Figure 2 is a diagrammatic cross section through the valve assembly of the apparatus of Figure 1;

Figure 3 is a cross section through the actuator insert of the assembly shown in Figure 2;

Figure 4 shows the configuration of the bore of the spraying head shown in Figure 3 when viewed in the direction A; and

Figure 5 shows the configuration of the swirl chamber of the spraying head shown in Figure 3 when viewed in the direction B.

Referring to Figures 1 and 2, an aerosol spray device in accordance with the invention is shown. comprises a can 1, formed of aluminium or lacquered or unlacquered tin plate or the like in conventional manner, defining a reservoir 2 for a liquid 3 having a conductivity such that droplets of the liquid can carry an appropriate electrostatic charge. Also located in the can is a gas under pressure which is capable of forcing the liquid 3 out of the can 1 via a conduit system comprising a dip tube 4 and a valve and actuator assembly 5. The dip tube 4 includes one end 6 which terminates at a bottom peripheral part of the can 1 and another end 7 which is connected to a tailpiece 8 of the valve assembly. The tailpiece 8 is secured by a mounting assembly 9 fitted in an opening in the top of the can and includes a lower portion 10 defining a tailpiece orifice 11 to which end 7 of the dip tube 4 is connected. The tailpiece includes a bore 12 of relatively narrow diameter at lower portion 11 and a relatively wider diameter at its upper

10

15

20

25

30

portion 13. The valve assembly also includes a stem pipe 14 mounted within the bore 12 of the tailpiece and arranged to be axially displaced within the bore 12 against the action of spring 15. The valve stem 14 includes an internal bore 16 having one or more lateral openings (stem holes) 17 (see Figure 2). The valve assembly includes an actuator 18 having a central bore 19 which accommodates the valve stem 14 such that the bore 16 of the stem pipe 14 is in communication with bore 19 of the actuator. A passage 20 in the actuator extending perpendicularly to the bore 19 links the bore 19 with a recess including a post 21 on which is mounted a spraying head in the form of an insert 22 including a bore 23 which is in communication with the passage 20.

A ring 24 of elastomeric material is provided between the outer surface of the valve stem 14 and, ordinarily, this sealing ring closes the lateral opening 17 in the valve stem 14. The construction of the valve assembly is such that when the actuator 18 is manually depressed, it urges the valve stem 14 downwards against the action of the spring 15 as shown in Figure 2 so that the sealing ring 24 no longer closes the lateral opening 17. In this position, a path is provided from the reservoir 2 to the bore 23 of the spraying head so that liquid can be forced, under the pressure of the gas in the can, to the spraying head via a conduit system comprising the dip tube 4, the tailpiece bore 12, the valve stem bore 16, the actuator bore 19 and the passage 20.

An orifice 27 (not shown in Figure 1) is provided

10

15

20

25

30

in the wall of the tailpiece 8 and constitutes a vapour phase tap whereby the gas pressure in the reservoir 2 can act directly on the liquid flowing through the valve assembly. This increases the turbulence of the liquid. It has been found that an increased charge is provided if the diameter of the orifice 27 is at least 0.76mm.

Preferably the lateral opening 17 linking the valve stem bore 16 to the tailpiece bore 12 is in the form of 2 orifices each having a diameter of not more than 0.51mm to enhance electrostatic charge generation. Further, the diameter of the dip tube 4 is preferably as small as possible, for example, 1.2mm, in order to increase the charge imparted to the liquid. Also, charge generation is enhanced if the diameter of the tailpiece orifice 11 is as small as possible eg not more than about 0.64mm.

Referring now to Figure 3, there is shown on an increased scale, a cross section through the actuator insert of the apparatus of Figures 1 and 2. For simplicity, the bore 23 is shown as a single cylindrical aperture in this Figure. However, the bore 23 preferably has the configuration, for instance, shown in Figure 4. The apertures of the bore 23 are denoted by reference numeral 31 and the aperture-defining portions of the bore are denoted by reference numeral 30. The total peripheral length of the aperture-defining portions at the bore outlet is denoted by L (in mm) and a is the total area of the aperture at the bore outlet (in mm²) and the values for L and a are as indicated in Figure 4. L/a exceeds

10

15

20

25

30

8 and this condition has been found to be particularly conductive to charge development because it signifies, an increased contact area between the actuator insert. and the liquid passing there through.

Many different configurations can be adopted in order to produce a high L/a ratio without the crosssectional area a being reduced to a value which would allow only low liquid flow rates. Thus, for example it is possible to use actuator insert bore configurations (i) wherein the bore outlet comprises a plurality of segment-like apertures (with or without a central aperture); (ii) wherein the outlet comprises a plurality of sector-like apertures; (iii) wherein the aperture together form an outlet in the form of a grill or grid; (iv) wherein the outlet is generally cruciform; (v) wherein the apertures together define an outlet in the form of concentric rings; and combinations of these configurations. Particularly preferred are actuator insert bore configurations wherein a tongue like portion protrudes into the liquid flow stream and can be vibrated thereby. This vibrational property may cause turbulent flow and enhanced electrostatic charge separation of the double layer, allowing more charge to move into the bulk of the liquid.

Referring now to Figure 5, there is shown a plan view of one possible configuration of swirl chamber 35 of the actuator insert 22. The swirl chamber includes 4 lateral channels 36 equally spaced and tangential to a central area 37 surrounding the bore 23. In use, the liquid driven from the reservoir 2 by the gas

. 10

20

under pressure travels along passage 20 and strikes the channels 36 normal to the longitudinal axis of the channels. The arrangement of the channels is such that the liquid tends to follow a circular motion prior to entering the central area 37 and thence the bore 23. As a consequence, the liquid is subjected to substantial turbulence which enhances the electrostatic charge in the liquid.

The following Examples illustrate the invention::-

EXAMPLE 1

An aerosol disinfectant composition was prepared from the following components:

	%w∕w
Ethanol	54
Silicone surfactant	0.1
Anti-bacterial agent chosen	0.8
from below	
Water	17.2
Liquified petroleum gas	28

25 The composition was introduced into a tinplate aerosol can having valve assemblies comprising a 3mm polyethylene dip tube 4, 0.64mm tailpiece orifice 11, 0.64mm vapour phase tap 27 and 4 x 0.61mm valve stem lateral openings 17. The actuator 18 was an Kosmos type fitted with a 0.51/0.66mm Aqua actuator insert 22

10

15

20

25

30

(both supplied by Precision Valve).

The anti-bacterial agent may be any suitable material. By way of example, an essential oil may be used, including one or more of the following:

Lemon grass, lemon, orange, yeast, clove, thyme, oregano, cinnamaldehye, cinnamon and/or carvacrol.

A preferred amount of the anti-bacterial agent in the composition is from 0.2 to 0.25% w/w.

The charge level on the droplets emitted from this can was artificially raised to a charge to mass ratio of approximately -1 x 10⁻⁴ C/kg by applying a -10 kv charge to the seam of the can from a high voltage power supply.

On depression of the actuator 18, a fine spray of liquid droplets having a charge/mass ratio of -1 x 10⁻¹ C/kg and a flow rate of approximately 1.2 g/sec was obtained. The droplets became rapidly dispersed in the air.

The above-described aerosol spray device was compared with a standard, known aerosol spray device loaded with the same aerosol formulation. The following protocol was used.

A suspension of micrococcus luteus containing approximately 10° cfu/ml in water is prepared. HEPA filtered air is supplied to an environmental test chamber with a volume of 28 cubic metres.

The bacterial suspension is applied to the test chamber with a nebuliser for 60 seconds and is distributed around the chamber for a further 60 seconds with a re-circulating fan.

A slit-to-agar sampler is activated for 2 hours

PCT/GB99/01979

obtaining samples after 1, 15, 30, 60 and 120 minutes. The slit-to-agar plates are collected. The plates are assayed, incubated and the colonies counted to provide the control results (which are the average of three experiments).

The above procedure is repeated 3 times, however before activating the slit-to-agar sampler the electrostatically charged test product is sprayed into the test chamber for 10 seconds. This is repeated again 3 times with the conventional non-charged test product.

The results obtained from the charged and non-charged spray products are compared (after taking the control results into account) and it is thereby shown that there is a significant increase in the aerial anti-bacterial performance with the electrostatic product.

EXAMPLE 2

20

25

30

5

10

15

The test organism Micrococcus lutens (ATCC NCTC 2665) obtained from culture was used as a final suspension containing about 10° cfu/ml in water. The test chamber was of volume 28m³, provided with HEPA filtered air supply and extracted air. Equipment in the chamber was remotely controlled from a control room. Bacteria were sprayed from a collison nebulizer for 60 seconds and mixed with the room air for a further 60 seconds by a fan. Five all glass impingers (AGI) were activated at the following times 1, 14, 29, 59 and 119 minutes after bacterial release. Each

impinger collected air from the test chamber for one minute. After the first impinger had finished sampling a test disinfectant spray was released into the chamber from an aerosol can. The test formulation was:-

10

5

Component	%w/w
Butane 40	35
Sorbitan Mono-oleate	1
Lemon Grass Oil	7
Sodium Nitrite	0.12
Triethyleneglycol	2.5
Soft Water	54.38

15

20

25

30

The spray was released for 10 seconds. The performance of an uncharged aerosol composition was compared with the same aerosol composition with charge applied artificially to the can. The voltage applied to the can was -3kV, this achieved an aerosol with a charge-to-mass ratio of -1.3 X 10⁻⁴ C/Kg. The effect of applying charge to the aerosol on the concentration of airborne microorganisms was recorded by the following AGI's. The number of bacteria collected in the AGI was assessed by removing 0.1ml of the liquid from the AGI and placing it on an agar plate, this was replicated once. The plates were then incubated at 30°C for 72 hours. The colonies were counted and the average of the 2 plates presented in the results given below:

Results

Table 1: Number of Micrococcus lutens collected in impinger.

Charge	AGI 1	AGI 2	AGI 3	AGI 4	AGI 5
applied to	1 minute	14 minute	29 minutes	applied to 1 minute 14 minute 29 minutes 59 minutes 119 minutes	119 minutes
aerosol					
No	3225	70	5	0.8	0.8
Yes	3533	20	0.8	0.8	0.8

CLAIMS:

- space occupied by airborne microorganisms and/or viruses, which method comprises directing into the space liquid droplets from a spray device containing a disinfecting or sanitising composition, a unipolar, charge being imparted to the said liquid droplets by double layer charging during the spraying of the unipolar charge being at a level such that the said droplets have a charge to mass ratio of at least +/- 1 x 10.4 C/kg.
- 2. A method as claimed in claim 1 wherein the spray device is an aerosol spray device.
 - 3. A method as claimed in chaim lor claim 27 wherein the disinfecting or sanitising composition is an emulsion.
 - 4. A method as claimed in any one of the preceding claims wherein the liquid droplets have a diameter in the range of from 5 to 100 micrometres.
 - 5. A method as claimed in any one of the preceding claims wherein the unipolar charge is imparted to the liquid droplets solely by the interaction between the liquid and the spray device, without any charge being imparted thereto from an internal or external charge inducing device.

25

30

10

15

- 6. A method as claimed in claim 5 wherein the droplet charge to mass ratio of at least +/- 1 x 10⁻⁴ C/kg is imparted to the droplets as a result of the use of an aerosol spray device with at least one of the features of the material of the actuator, the size and shape of the orifice of the actuator, the diameter of the dip tube, the characteristics of the valve and the formulation of the disinfecting or sanitising composition contained within the aerosol spray device being chosen in order to achieve the said droplet charge to mass ratio by double layer charging imparting the unipolar charge to the droplets during the actual spraying of the liquid droplets from the orifice of the aerosol spray device.
- 7. A method as claimed in any one of the preceding claims wherein the disinfecting for an anti-sing composition comprises an oil phase an aqueous phase as surfactant, an anti-bacterial agent, and a propellant.
- 8. A method as claimed in claim 7 wherein the anti-bacterial or anti-viral agent is an essential of selected from thyme, lemon grass, lemon, orange, grapefruit, yeast, oregano, anise, clove, cinnamaldehyde, cinnamon, carvacrol, rose, lavender, citronella, eucalyptus, peppermint, camphor, sandalwood, juniper berry, Siberian pine needle, pine sylvester, tea tree, litsea, rosewood, patchouli, vetyver, cedarwood and mixtures thereof.

- 9. A method as claimed in claim 7 wherein the
- 5 10. A method according to any one of claims 7 to 9 wherein the oil phase includes a C_9 C_{12} hydrocarbon.
- 11. A method as claimed in claim 10 wherein the C_9 C_{12} hydrocarbon is present in the composition in an amount of from 2 to 10% w/w.
- 12. A method as claimed in any one of claims 7 to 11 wherein the surfactant is glyceryl oleate or a polyglycerol oleate.
 - 13. A method as claimed in any one of claims 7 to 12 wherein the surfactant is present in the composition in an amount of from 0.1 to 1.0% w/w.
 - 14. A method as claimed in any one of claims 7 to 13 wherein the propellant is liquified petroleum gas.
- 25 15. A method as claimed in claim 14 wherein the propellant is present in the composition in an amount of from 20 to 50% w/w.

F/G. 2

INTERNATIONAL SEARCH DEPORT

International Application No PCT/GB 99/01979

	INTERNATIONAL SEARCH REP	ORI			
	FICATION OF SUBJECT MATTER				
A61L	9/14,A61L9/22				
	o International Patent Classification (IPC) or to both national cl	assification and IPC 7			
	SEARCHED	iestion embols)			
Minimum d	ocumentation searched (classification system followed by classif	ication symbols)			
A61L	•				
Documental	tion searched other than minimum documentation to the extent t	hat such documents are included in the fields so	arched		
Electronic d	lata base consulted during the international search (name of data	base and, where practical, search terms used)			
			•		
. DOCUM	IENTS CONSIDERED TO BE RELEVANT				
alegory *	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.		
	EP 0673656 A		1,7,9		
	(PERENTRON ENGINEERI	NG			
	LIMITED) 27 Septembe	r 1995,			
	claim 4.	·			
.	DATABASE WPI ON EPOQUE,		1,7,8		
,	week 9726, London: D	erwent	·		
	Publications Ltd.,	D00.			
	AN 97-287744, Class				
	& RU 2068706 A (UNIV TARTUS), abstract.				
	TARTUS), abscract.				
	US 5403587 A		1,7-13		
Α.	(MCCUE et al.) 04 Ap	oril 1995,			
	the whole document.				
	·				
	·				
· Furt	ther documents are listed in the continuation of box C.	Patent family members are liste	d in annex.		
Special ca	stegories of cited documents:	T later document published after the i	nternational filing date		
'A' docum	nent defining the general state of the art which is not	or priority date and not in conflict cited to understand the principle or			
consid	dered to be of particular relevance	invention			
"E" earlier document but published on or after the international filing date		annot be considered novel of CRN	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
'L' docum	tent which may throw doubts on priority claim(s) or t is cited to establish the publication date of another	involve an inventive step when the	he claimed invention		
citatio	on or other special reason:(as specified)	cannot be considered to involve an	more other such docu-		
	nent referring to an oral disclosure, use, exhibition or means	menu, such combination being ou	vious to a person skilled		
P' docum	nent published prior to the international filing date but than the priority date claimed	in the art. "&" document member of the same pat	ent family		
		Date of mailing of the international			
Daic of the	: actual-completion of the international search 24 September 1999				
	,,, oop come	2 9. 10. 1	333		
		Authorized officer			
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2				
	NL - 2280 HV Rijswijk	SCHNASS e.h.	•		
	Td. (+31-70) 340-2040, Tx. 31 651 cpo nl.				

ANHANG

zus internationalen Recherchen-bericht über die internationale Patentanseldung Mr.

ANNEX

ANNEXE

to the International Search Report to the International Patent Application No.

au rapport de recherche inter-national relatif à la demande de brevet international n°

PCT/GB 99/01979 SAE 238985

In diesem Anhang sind die Mitglieder der Patentfamilien der im oberge- members relating to the patent documents members died in the above-mentioned internanten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Diese Angaben diemen mur zur Unternichtung und erfolgen ohne Gemähr.

This Annex lists the patent family members de la familie de brevets cités in the above-mentioned international internation. La presente annexe indique les members de la familie de brevets cités dans le rapport de recherche international internation. La presente annexe indique les members de la familie de brevets cités dans le rapport de recherche international internation aux documents de brevets cités dans le rapport de recherche international internation aux documents de brevets cités dans le rapport de recherche international internation aux documents de brevets cités dans le rapport de recherche international search report. The Office is in the above-mentioned internation aux documents de brevets cités dans le rapport de recherche international search report. The Office is in the above-mentioned internation aux documents de brevets cités dans le rapport de recherche international search report. The Office is in the above-mentioned internation aux documents de brevets cités dans le rapport de recherche internation aux documents de brevets cités dans le rapport de recherche internation aux documents de brevets cités dans le rapport de recherche internation aux documents de brevets cités dans le rapport de recherche internation aux documents de brevets cités dans le rapport de recherche internation aux documents de brevets cités dans le rapport de recherche internation aux documents de brevets cités dans le rapport de recherche de la familie de brevets cités dans le rapport de recherche de la familie de brevets cités dans le rapport de recherche de la familie de brevets cités dans le rapport de recherche de la familie de brevets cités dans le rapport de recherche de la familie de brevets cités dans le rapport de

Patent do	rchenbericht Patentdokusent ocusient cited ch report e brevet cité ourt de recherche	Datum der Veröffentlichung Publication date Bate de publication	fitgliedler) der Patentfamilie Patent family member(s) Membre(s) de la familie de brevets	Datum der Veröffentlichung Publication date Date de publication
EP A1	673656	27-09-1 99 5	AT E 157013 DE EO 59500520 EP BI 673650	15-09-1997 25-09-1997 20-08-1997
RU CI	2068706	10-11-1996	keine – none – 1	ien
US A	5403587	04-04-1995	keine – name – i	160