13. Relations

Let A and B be sets. A (binary) relation from A to B is Q Subset of $A \times B$.

Let A be a set. A (binary) relation on a set A is a relation from A to itself.

i.e. a subset of $A \times A$

Example 13.1. Let $A = \{1, 2, 3\}$ and let $B = \{x, y\}$

$$\Re = \{(1,x),(1,y),(3,y)\}$$

RISAXB .. R, is a relation from A to B

$$\mathcal{R}_2 = \{(x,x),(y,x)\}$$

REBXB . R2 is a relation on B

$$\mathcal{R}_3 = \{(1,2),(2,1),(2,3),(3,2)\}$$

R3⊆AXA : R3 is a relation on A

$$R_4 = \{(x,1),(y,2)\}$$

RySBXA : Ry is a relation from B to A

Notation for Relations

- Since $(1,x) \in \mathcal{R}_1$ it means "I is related to x by \mathcal{R}_1 "
- Since $(2,x) \notin \mathcal{R}_1$, it means "2 is not related to x by \mathcal{R}_1 "

Special Relation Notation:

• for short, we will write IR, x for "lis related to x by R," and aR, x for "2 is not related to x by R,"

Representing Relations: a finite list of pairs of related elements VS. a rule to relate elements

For a small finite relation, we can simply write it as a list (set) of ordered related pairs of elements:

 \underline{ex} $\mathcal{R}_3 = \{(1,2),(2,1),(2,3),(3,2)\}$

Alternatively, some relations may be described by <u>a rule</u> that tells us exactly when/how two elements are related:

ex for all u, v ∈ A={1,2,3}, uR3V if and only if u+v is odd.

 $^{^{}st}$ These notes are solely for the personal subsection of the persona

EXAMPLES OF RELATIONS YOU'VE ALREADY ENCOUNTERED

Example 13.2. Friends and Family

Ex for all people A,B, ARB if and only if A and B share a common ancestor.

Exforall Facebook users X,Y, XRY if and only if X and Y are "friends"

Example 13.3. Graphs

The graph of a function $f:A \rightarrow B$ is is the set of coordinate pairs $\mathcal{G} = \{(a, f(a)) : a \in A\}$

9 ⊆ AxB : 9 is a relation from A to B.

rule for y: for all a eA, b eB, a yb if and only if f(a) = b

Ex the graph of the equation $X^2+y^2=1$ is a subset of \mathbb{R}^2 : it's a relation on \mathbb{R}

rule: for all xiy ER, X Ry if and only if x2+y2=1

= is a relation on \mathbb{R} , Example 13.4. Equality

Let & be the relation on the set of real numbers defined by the rule For all $x, y \in \mathbb{R}$, $x \notin y$ if and only if x = y

EX 181 because 1=1 so $(1,1) \in \mathcal{E}$ EX 18 π because $1\neq \pi$ so $(1,\pi) \notin \mathcal{E}$

Example 13.5. Inequality

≤ is a relation on R

< is a relation on R

Ex 2 is related to 2 because 2 \le 2 2 is related to 1000.1 because 2 ≤ 1000.1 2 is not related to 0 because 2\$0

Ex 2 is related to 21 because 2<21 2 is not related to 2 because 2<2 is false.

Example 13.6. Divides

("divides") is a relation on \mathbb{Z}_{+}

for all $m_1 n \in \mathbb{Z}$, $m \neq 0$, $m \mid n$ if and only if n = km for some integer k.

Ex 5 100 100/5 3 99 These are not fractions! Never forget:

"divides" is a relation on 29, not the arithmetic operation of division!

Example 13.7. Logical Equivalence

 \equiv is a relation on the set of all compound proposions

rule: for all propositions P,Q, $P \equiv Q$ if and only if $P \mapsto Q$ is a tautology

PROPERTIES OF RELATIONS ON A SET

[Reflexive] A relation \mathcal{R} on a set A is called **reflexive** if the implication $(\times \in A) \rightarrow (\times, \times) \in \mathcal{R}$ is true. Equivalently, $(\times \in A) \rightarrow (\times \mathcal{R} \times)$

[Symmetric] A relation \mathcal{R} on a set A is called symmetric if for all $X, y \in A$, the implication $((x,y)\in\mathcal{R}) \rightarrow ((y,x)\in\mathcal{R})$ is true. Equivalently, $(x\mathcal{R}y) \rightarrow (y\mathcal{R}x)$

[Antisymmetric] A relation \mathcal{R} on a set A is called antisymmetric if

for all $x,y \in A$, the implication $(x,y) \in \mathbb{R}$ and $(y,x) \in \mathbb{R}) \longrightarrow (x=y)$ is true.

Equivalently, $(xRy \text{ and } yRx) \rightarrow (x=y)$ This should remind you of $(x \le y \text{ and } y \le x) \rightarrow (x=y)$

contrapositive form: $(x \neq y) \rightarrow ((x,y) \notin \mathcal{R} \text{ or } (y,x) \notin \mathcal{R})$

[**Transitive**] A relation \mathcal{R} on a set A is called **transitive** if

for all $x,y,z \in A$,

the implication $((x,y)\in \mathcal{R} \text{ and } (y,z)\in \mathcal{R}) \longrightarrow ((x,z)\in \mathcal{R})$ is true.

Equivalently, $(xRy \text{ and } yRz) \longrightarrow (xRz)$

(this should remind you of $(x \le y \text{ and } y \le z) \longrightarrow (x \le z)$

EQUIVALENCE RELATIONS

A relation \mathcal{R} on a set A is called **an equivalence relation** if

R is reflexive, symmetric, and transitive.

EXAMPLES OF RELATIONS ON A SET AND THEIR PROPERTIES

```
Example 13.8. Let \mathcal{R}_2 be a relation on \mathbb{Z} defined by the rule for all a, b \in \mathbb{Z}, (a, b) \in \mathcal{R}_2 if and only if a + b is even
```

Examples
$$(0,0) \in \mathbb{R}_2$$
 because $0+0=0$ is even $(2,-23) \notin \mathbb{R}_2$ because $2+(-23)=-21$ is not even $5 \times \mathbb{R}_2 - 55$ (meaning $(5,-55) \in \mathbb{R}_2$) because $5+(-55)=-50$ is even $2 \times 2 = 3$ (meaning $(2,3) \notin \mathbb{R}_2$) because $2+3=5$ is not even

PROPERTIES

[Symmetric] To prove R_2 is symmetric, we must prove $aR_2b \rightarrow bRa$. Let $a_1b \in \mathbb{Z}$ be arbitrary elements of the set \mathbb{Z} . Assume aR_2b . (goal is to prove bR_2a .) Then a+b is even (by the rule for R_2) $\Rightarrow b+a$ is even (since a+b=b+a) $\Rightarrow bR_2a$ (by the rule for R_2) R_2 is symmetric

[antisymmetric] To prove R_2 is antisymmetric, we must prove $\lceil (aR_2b) \land (bR_2a) \rceil \rightarrow \lceil a=b \rceil \text{ for all } a,b\in \mathbb{Z}.$ Wait! This is not true for all $a_1b\in \mathbb{Z}$. Here is a counterexample:

3,7 ∈ Z

3+7 is even and 7+3 is even

 \Rightarrow both (3,7) $\in \mathbb{R}_2$ and (7,3) $\in \mathbb{R}_2$, but $3 \neq 7$. So \mathbb{R}_2 is <u>not</u> antisymmetric

[transitive]

To prove R_2 is transitive, we must prove $[(aR_2b)\Lambda(bR_2c)] \rightarrow [aR_2c]$ Let $a_1b_1c \in \mathbb{Z}$ be arbitrary elements of the set \mathbb{Z} .

Assume a R2b and b R2c. (goal is to prove a R2c)

Then a+bis even and b+c is even. (by R2's rule)

$$\Rightarrow$$
 a+b=2k for some $k \in \mathbb{Z}$
and b+c=2l for some $l \in \mathbb{Z}$

(by def. of even).

$$\Rightarrow$$
 a = 2k-b and c=2l-b

Thus,
$$a+c = (2k-b) + (2l-b)$$

= $2k + 2l - 2b$
= $2(k+l-b)$
= $2j$ where $j=k+l-b$ so $j \in \mathbb{Z}$

atc is even.

% R2 is transitive

[equivalence relation]

To prove R_2 is an equivalence relation on Z, we must prove that R_2 is reflexive, symmetric, and transitive \longrightarrow we did prove these

. Rzis an equivalence relation on Z.

STUDY GUIDE

Important terms and concepts:

 \square relation from A to B $\mathcal{R} \subseteq A \times B$ \square relation on A $\mathcal{R} \subseteq A \times A$ x is related to y by \mathcal{R} $(x,y) \in \mathcal{R}$ $x \mathcal{R} y$

important relations on $\ensuremath{\mathbb{Z}}$

properties of relations:

reflexive symmetric antisymmetric transitive

Exercises

Sup.Ex. §6 # 1, 2, 3, 4, 5, 6, 7, 9

his document is available free of charge on