4. CVIČENÍ K PŘEDMĚTU BI-LIN

KAM FIT ČVUT

27. dubna 2015

1 Permutace

Příklad 1.1. Určete počet inverzí v následujících permutacích:

- a) (2,3,5,4,1),
- b) (2,3,4,6,5,1),
- c) (1, 9, 6, 3, 2, 5, 4, 7, 8),
- d) $(n, n-1, n-2, \ldots, 2, 1),$
- e) $(1,3,5,\ldots,2n-1,2,4,6,\ldots,2n)$,
- f) $(2,4,6,\ldots,2n,1,3,5,\ldots,2n-1),$
- g) $(1,4,7,\ldots,3n-2,2,5,8,\ldots,3n-1,3,6,9,\ldots,3n),$
- h) $(2,5,8,\ldots,3n-1,3,6,9,\ldots,3n,1,4,7,\ldots,3n-2),$
- i) $(1, 2, \dots, j-1, k, j+1, \dots, k-1, j, k+1, \dots, n-1, n)$, je-li 1 < j < k < n (transpozice prvků j a k).

Výsledek. a) 5, b) 6, c) 13, d) n(n-1)/2, e) n(n-1)/2, f) n(n+1)/2, g) 3n(n-1)/2, h) n(3n+1)/2, i) 2(k-j)-1.

Příklad 1.2. Určete složenou permutaci $\pi \circ \sigma$, je-li

- a) $\pi = (5, 3, 2, 4, 1), \sigma = (2, 4, 5, 1, 3),$
- b) $\pi = (7, 3, 1, 2, 6, 4, 5), \sigma = (4, 7, 1, 3, 6, 5, 2),$
- c) $\pi = (2, 7, 1, 4, 8, 6, 3, 5), \sigma = (1, 3, 8, 7, 6, 2, 5, 4).$

 $V\acute{y}sledek.$ a) $\pi \circ \sigma = (3, 4, 1, 5, 2)$, b) $\pi \circ \sigma = (2, 5, 7, 1, 4, 6, 3)$, c) $\pi \circ \sigma = (2, 1, 5, 3, 6, 7, 8, 4)$.

Příklad 1.3. Určete inverzní permutaci k permutaci:

- a) (2, 6, 4, 3, 1, 5),
- b) (5, 8, 2, 1, 4, 7, 3, 6),
- c) (2, 3, 5, 9, 1, 8, 7, 4, 6).

 $V\acute{y}sledek.$ a), (5, 1, 4, 3, 6, 2), b) (4, 3, 7, 5, 1, 8, 6, 2), c) (5, 1, 2, 8, 3, 9, 7, 6, 4).

Příklad 1.4. Určete čísla i, k tak, aby permutace z S_9 byla lichá:

- a) (1, 2, 7, 4, i, 5, 6, k, 9),
- b) (1, i, 2, 5, k, 4, 8, 9, 7).

Výsledek. a) i = 3, k = 8, b) i = 3, k = 6.

Další úlohy k procvičování:

Příklad 1.5. Buďte $\pi_1 = (4, 2, 6, 3, 1, 5), \ \pi_2 = (2, 6, 1, 3, 4, 5)$ permutace množiny $\hat{6}$. Nalezněte permutaci $\sigma \in S_6$ vyhovující rovnici: a) $\pi_1 \circ \sigma = \pi_2$, b) $\sigma \circ \pi_1 = \pi_2$.

Výsledek. a) $\sigma = (2, 3, 5, 4, 1, 6)$, b) $\sigma = (4, 6, 3, 2, 5, 1)$.

Příklad 1.6. Kolik inverzí tvoří

- a) číslo 1 v permutaci $\pi \in S_n$ takové, že $\pi(k) = 1$,
- b) číslo n v permutaci $\pi \in S_n$ takové, že $\pi(k) = n$?

Výsledek. a) k - 1, b) n - k.

Příklad 1.7. Jaký největší počet inverzí může mít permutace z S_n ? Jaká je to permutace?

Výsledek. n(n-1)/2, (n, n-1, ..., 2, 1).

Příklad 1.8. * Nechť v permutaci $\pi \in S_n$ je k inverzí. Kolik inverzí je v permutaci $(\pi(n), \pi(n-1), \dots, \pi(1))$?

Výsledek. n(n-1)/2 - k.

Příklad 1.9. * Dokažte, že počet permutací z S_n , které mají k inverzí, je stejný jako počet permutací z S_n , které mají n(n-1)/2 - k inverzí.

Příklad 1.10. * Kolik inverzí je ve všech permutacích z S_n dohromady?

 $V \acute{y} sledek.$ $\frac{n(n-1)}{2} \frac{n!}{2}$.

Příklad 1.11. ** Prvky množiny $M = \{\pi \in S_n \mid (\forall k \in \hat{n})(\pi(k) \neq k)\}$ se nazývají permutace bez pevného bodu. Určete počet prvků množiny M.

Výsledek. $n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$.

2 Determinant matice

Příklad 2.1. Rozepište sumu z definice determinantu matice $\mathbb{A} = (a_{i,j}) \in T^{n,n}$, je-li a) n = 2, b) n = 3.

Výsledek. a) $a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$, b) $a_{1,1}a_{2,2}a_{3,3} - a_{1,1}a_{2,3}a_{3,2} + a_{1,2}a_{2,3}a_{3,1} - a_{1,2}a_{2,1}a_{3,3} + a_{1,3}a_{2,1}a_{3,2} - a_{1,3}a_{2,2}a_{3,1}$.

Příklad 2.2. Zjistěte, které z následujících součinů jsou členy determinantu matice $\mathbb{A} = (a_{i,j}) \in T^{6,6}$ a určete, jakým znaménkem jsou opatřeny:

- a) $a_{1,3}a_{2,2}a_{3,4}a_{4,1}a_{5,6}a_{6,5}$,
- b) $a_{1,6}a_{2,5}a_{3,1}a_{4,2}a_{5,5}a_{6,4}$,
- c) $a_{1,4}a_{2,2}a_{3,1}a_{4,3}a_{5,6}a_{6,5}$.
- d) Kolik sčítanců ještě zbývá k platným členům napsat, aby byl součet podle definice úplný?

Výsledek. a) Ano, -, b) ne, c) ano, -, d) 6! - 2 = 718.

Příklad 2.3. Vypište všechny členy determinantu matice $\mathbb{A} = (a_{i,j}) \in T^{5,5}$, které jsou tvaru $-a_{1,4}a_{2,3}a_{3,i}a_{4,j}a_{5,k}$.

Výsledek. $-a_{1,4}a_{2,3}(a_{3,1}a_{4,2}a_{5,5} + a_{3,2}a_{4,5}a_{5,1} + a_{3,5}a_{4,1}a_{5,2}).$

Příklad 2.4. Pouze na základě definice determinantu zdůvodněte, proč je funkce p(x) polynom nejvýše čtvrtého stupně a aniž byste determinant počítali, určete koeficient u nejvyšší mocniny polynomu p(x), je-li

a)
$$p(x) = \begin{vmatrix} 1 & 3x & 2 & x \\ 0 & 4 & 5x & 3 \\ 2 & 1 & 1 & 2x \\ 4x & 8 & 3x & 2x \end{vmatrix}$$
, b) $p(x) = \begin{vmatrix} 3 & 6x & 2x & 5x \\ 3 & 4 & 7 & 3x \\ 2 & x & 1 & 2 \\ 4x & 8 & 4 & 2 \end{vmatrix}$,

c)
$$p(x) = \begin{vmatrix} x & 6 & 2 & 3 \\ 3 & 4x & 7x & 3x \\ 2 & 9 & x & 2 \\ 3 & 2x & 4 & 2 \end{vmatrix}$$
, d) $p(x) = \begin{vmatrix} 2x & 1 & 2 & 5 \\ -3 & -1 & x & 2 \\ 1 & 2 & 2x & 3 \\ -1 & x & 3 & -x \end{vmatrix}$.

Výsledek. a) $\alpha_4 = -120$, b) $\alpha_4 = -24$, c) $\alpha_4 = -6$, d) $\alpha_3 = 6$.

Příklad 2.5. Spočítejte následující determinanty:

a)
$$\begin{vmatrix} \alpha & \alpha + 1 \\ \alpha - 1 & \alpha \end{vmatrix}$$
, b) $\begin{vmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{vmatrix}$, c) $\begin{vmatrix} 1 & \log_{\alpha} \beta \\ \log_{\beta} \alpha & 1 \end{vmatrix}$, d) $\begin{vmatrix} 8 & 1 & -1 \\ 3 & 2 & 5 \\ 7 & 4 & 1 \end{vmatrix}$,

e)
$$\begin{vmatrix} 1 & 1 & \alpha \\ 1 & 1 & \alpha^2 \\ \alpha^2 & \alpha & 1 \end{vmatrix}$$
, f) $\begin{vmatrix} \alpha^2 + 1 & \alpha\beta & \alpha\gamma \\ \alpha\beta & \beta^2 + 1 & \beta\gamma \\ \alpha\gamma & \beta\gamma & \gamma^2 + 1 \end{vmatrix}$, g) $\begin{vmatrix} \sin^2\alpha & \cos 2\alpha & \cos^2\alpha \\ \sin^2\beta & \cos 2\beta & \cos^2\beta \\ \sin^2\gamma & \cos 2\gamma & \cos^2\gamma \end{vmatrix}$.

Výsledek. a) 1, b) 1, c) 0, d) -110, e) $\alpha^2(\alpha - 1)^2$, f) $\alpha^2 + \beta^2 + \gamma^2 + 1$, g) 0.

Příklad 2.6. Použitím řádkových a sloupcových úprav (GEM) a věty o rozvoji determinantu spočítejte:

a)
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}$$
, b) $\begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix}$, c) $\begin{vmatrix} \alpha+1 & 1 & 1 & 1 \\ 1 & \alpha+1 & 1 & 1 \\ 1 & 1 & \alpha+1 & 1 \\ 1 & 1 & 1 & \alpha+1 \end{vmatrix}$.

d)
$$\begin{vmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{vmatrix}$$
, e) $\begin{vmatrix} a_1 & 0 & b_1 & 0 \\ 0 & c_1 & 0 & d_1 \\ b_2 & 0 & a_2 & 0 \\ 0 & d_2 & 0 & c_2 \end{vmatrix}$, f) $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 6 & 0 & 4 & 1 \\ 2 & 4 & 1 & 3 & 5 \\ 1 & 3 & 5 & 2 & 4 \\ 0 & 5 & 0 & 3 & 2 \end{vmatrix}$.

Výsledek. a) -8, b) -3, c) $\alpha^3(\alpha+4)$, d) 5, e) $(a_1a_2-b_1b_2)(c_1c_2-d_1d_2)$, f) 195.

Příklad 2.7. Spočítejte následující determinanty:

$$\mathbf{d}) \begin{vmatrix} -1 & 1 & 1 & 1 & \dots & 1 \\ -1 & \alpha & 1 & 1 & \dots & 1 \\ -1 & -1 & \alpha & 1 & \dots & 1 \\ -1 & -1 & 1 & \alpha & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & 1 & 1 & \dots & \alpha \end{vmatrix}, \mathbf{e}) \begin{vmatrix} a_{1,1} & a_{1,2} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & 0 & \dots & 0 \\ a_{3,1} & a_{3,2} & 0 & \dots & 0 \\ a_{4,1} & a_{4,2} & a_{4,3} & \dots & a_{4,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,n} \end{vmatrix}.$$

Výsledek. a) αn , b) 1, c) $(2n-1)(n-1)^{n-1}$, d) $-(\alpha-1)^{n-1}$, e) 0.

Příklad 2.8. Použitím řádkových a sloupcových úprav (GEM) a věty o rozvoji determinantu spočítejte:

a)
$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & 1 & \dots & 1 & 1 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 1 & 0 \end{vmatrix}_{n \times n}, \text{ b)} \begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 2 & 1 & \dots & 1 & 1 \\ 1 & 1 & 3 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 1 & 0 \end{vmatrix}, \text{ c)} \begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_n \\ -1 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & 0 & 0 & \dots & 1 \end{vmatrix},$$

d)
$$\begin{vmatrix} \alpha & \beta & \beta & \dots & \beta \\ \beta & \alpha & \beta & \dots & \beta \\ \beta & \beta & \alpha & \dots & \beta \\ \vdots & \vdots & \vdots & & \vdots \\ \beta & \beta & \beta & \dots & \alpha \end{vmatrix}_{n \times n}$$
, e) $\begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ \alpha & 1 & 1 & \dots & 1 & 1 \\ 1 & \alpha & 1 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & \alpha & 1 \end{vmatrix}_{n \times n}$, f) $\begin{vmatrix} 1 & 2 & 3 & \dots & n \\ -1 & 0 & 3 & \dots & n \\ -1 & -2 & 0 & \dots & n \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & -2 & -3 & \dots & 0 \end{vmatrix}$,

g)
$$\begin{vmatrix} x + \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_n \\ \alpha_1 & x + \alpha_2 & \alpha_3 & \dots & \alpha_n \\ \alpha_1 & \alpha_2 & x + \alpha_3 & \dots & \alpha_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & x + \alpha_n \end{vmatrix}, h) \begin{vmatrix} x & \alpha_1 & \alpha_2 & \dots & \alpha_{n-1} & 1 \\ \alpha_1 & x & \alpha_2 & \dots & \alpha_{n-1} & 1 \\ \alpha_1 & \alpha_2 & x & \dots & \alpha_{n-1} & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & x & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_n & 1 \end{vmatrix}.$$

Výsledek. a) $(-1)^{n+1}$, b) (n-1)!, c) $\sum_{i=1}^{n} \alpha_i$, d) $(\alpha + (n-1)\beta)(\alpha - \beta)^{n-1}$, e) $(1-\alpha)^{n-1}$, f) n!, g) $x^n + x^{n-1} \sum_{k=1}^{n} \alpha_k$, h) $\prod_{k=1}^{n} (x - \alpha_k)$.

Další úlohy k procvičování:

Příklad 2.9. Rozložte polynom p(x) na kořenové činitele, aniž byste determinant počítali (použitím vlastností determinantu matice):

a)
$$p(x) = \begin{vmatrix} 1-x & 0 & 0 & 0 \\ 6 & 4-x & 0 & 0 \\ 2 & 1 & 2-x & 0 \\ 4 & 8 & 3 & 3-x \end{vmatrix}$$
, b) $p(x) = \begin{vmatrix} 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 5-x \\ 6-x & 2 & 2 & 2 & 2 \\ 2 & 2-x & 2 & 2 & 2 \\ 2 & 2 & 3-x & 2 & 2 \end{vmatrix}$,

c)
$$p(x) = \begin{vmatrix} a & a & a & a & a \\ a & a - x & a & a & a \\ a & a & 2a - x & a & a \\ a & a & a & 3a - x & a \\ 2a & 2a & 2a & 2a & 8a - 2x \end{vmatrix}$$
, kde $a \in \mathbb{R}$ je parametr,

Výsledek. a) p(x) = (x-1)(x-2)(x-3)(x-4), b) p(x) = 2x(x-1)(x-3)(x-4), c) p = 0 pro a = 0, p(x) = 2ax(x-a)(x-2a)(x-3a) pro $a \neq 0$, d) $p(x) = (-1)^{n+1}n(x-1)(x-2)\dots(x-n+1)$, e) $p(x) = (-1)^n x(x-1)\dots(x-n+1)$,

Příklad 2.10. Pouze na základě vlastností determinantu spočítejte

$$\left| \begin{array}{ccc} a+b & c & 1 \\ b+c & a & 1 \\ c+a & b & 1 \end{array} \right|.$$

Výsledek. 0.

Příklad 2.11. Čísla 1189, 2665, 6437, 4961 jsou dělitelná 41. Dokažte, že

$$\begin{vmatrix}
1 & 1 & 8 & 9 \\
2 & 6 & 6 & 5 \\
6 & 4 & 3 & 7 \\
4 & 9 & 6 & 1
\end{vmatrix}$$

je rovněž dělitelný 41, aniž spočítáte jeho hodnotu.

Příklad 2.12. Nechť $\mathbb{A} \in T^{n,n}$ je regulární. Nalezněte všechna čísla $\alpha \in T$ taková, že $\det(\alpha \mathbb{A}) = \det \mathbb{A}$, je-li a) $T = \mathbb{R}$, b) $T = \mathbb{C}$.

 $\textbf{\textit{Výsledek.}}$ a) $\alpha = 1$, je-li n liché, $\alpha = \pm 1$, je-li n sudé. b) $\alpha \in \{e^{2ik\pi/n} \mid k \in \hat{n}\}.$

Příklad 2.13. Využijte linearitu determinantu jako funkci sloupců, resp. řádků a spočítejte determinant

$$\begin{vmatrix} \alpha_1 + \beta_1 & \alpha_1 + \beta_2 & \alpha_1 + \beta_3 & \dots & \alpha_1 + \beta_n \\ \alpha_2 + \beta_1 & \alpha_2 + \beta_2 & \alpha_2 + \beta_3 & \dots & \alpha_2 + \beta_n \\ \alpha_3 + \beta_1 & \alpha_3 + \beta_2 & \alpha_3 + \beta_3 & \dots & \alpha_3 + \beta_n \\ \vdots & \vdots & \vdots & & \vdots \\ \alpha_n + \beta_1 & \alpha_n + \beta_2 & \alpha_n + \beta_3 & \dots & \alpha_n + \beta_n \end{vmatrix}.$$

Výsledek. 0 pro n > 2, $(\alpha_1 - \alpha_2)(\beta_2 - \beta_1)$ pro n = 2, $\alpha_1 + \beta_1$ pro n = 1.

Příklad 2.14. Spočítejte det \mathbb{A} , je-li $\mathbb{A} = (a_{i,j}) \in T^{n,n}$,

a)
$$a_{i,j} = \min(i, j)$$
, b) $a_{i,j} = \max(i, j)$, c) $a_{i,j} = |i - j|$.

Výsledek. a) 1, b) $(-1)^{n+1}n$, c) $(-1)^{n+1}(n-1)2^{n-2}$.

Příklad 2.15. ** Rozkladem na součin dvou determinantů vypočtěte:

a)
$$\begin{vmatrix} \sin 2\alpha_1 & \sin(\alpha_1 + \alpha_2) & \dots & \sin(\alpha_1 + \alpha_n) \\ \sin(\alpha_2 + \alpha_1) & \sin 2\alpha_2 & \dots & \sin(\alpha_2 + \alpha_n) \\ \vdots & \vdots & & \vdots \\ \sin(\alpha_n + \alpha_1) & \sin(\alpha_n + \alpha_2) & \dots & \sin 2\alpha_n \end{vmatrix},$$

b)
$$\begin{vmatrix} 1^{n-1} & 2^{n-1} & 3^{n-1} & \dots & n^{n-1} \\ 2^{n-1} & 3^{n-1} & 4^{n-1} & \dots & (n+1)^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n^{n-1} & (n+1)^{n-1} & (n+2)^{n-1} & \dots & (2n-1)^{n-1} \end{vmatrix},$$

Výsledek. a) 0 pro n > 2, $-\sin^2(\alpha_1 - \alpha_2)$ pro n = 2, $\sin 2\alpha_1$ pro n = 1, b) $(-1)^{n(n-1)/2}[(n-1)!]^n$.

Příklad 2.16. * Nechť $\{D_n\}_{n=1}^{\infty}$ je číselná posloupnost vyhovující rekurentní rovnici

$$D_n = pD_{n-1} + qD_{n-2}, \ n \ge 3,$$

kde p,q jsou konstanty (nezávislé na n), z nichž alespoň jedna je různá od nuly. Potom platí:

- 1. Je-li q = 0, je $D_n = p^{n-2}D_2$ pro $n \ge 2$.
- 2. Je-li $q \neq 0$ a označíme-li λ_1, λ_2 kořeny rovnice $\lambda^2 p\lambda q = 0$, je

$$D_n = C_1 \lambda_1^n + C_2 \lambda_2^n$$
, pokud $\lambda_1 \neq \lambda_2$,

nebo

$$D_n = (C_1 + C_2 n) \lambda_1^n$$
, pokud $\lambda_1 = \lambda_2$.

Čísla C_1, C_2 jsou jednozna
ěne určené hodnotami D_1, D_2 . Dokažte. (Uvidíte v BIZDM.)

Příklad 2.17. * Odvozením rekurentního vztahu a použitím výsledku Příkladu 2.16 vypočtěte:

a)
$$\begin{vmatrix} 2 & 1 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & \dots & 0 & 0 \\ 0 & 1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 2 \end{vmatrix}_{n \times n}, b) \begin{vmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ -1 & 0 & 1 & \dots & 0 & 0 \\ 0 & -1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 0 \end{vmatrix}_{n \times n},$$

c)
$$\begin{vmatrix} \alpha + \beta & \alpha\beta & 0 & 0 & \dots & 0 \\ 2 & \alpha + \beta & \alpha\beta & 0 & \dots & 0 \\ 0 & 1 & \alpha + \beta & \alpha\beta & \dots & 0 \\ 0 & 0 & 1 & \alpha + \beta & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & \alpha + \beta \end{vmatrix}_{n \times n},$$

$$d) \begin{vmatrix} 1 + x^2 & x & 0 & \dots & 0 \\ x & 1 + x^2 & x & \dots & 0 \\ 0 & x & 1 + x^2 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 + x^2 \end{vmatrix}_{n \times n}.$$

Výsledek. a) n + 1, b) $\frac{1}{2} (1 + (-1)^n)$, c) $\alpha^n + \beta^n$, d) $\sum_{k=0}^n x^{2k}$.

Příklad 2.18. ** Spočítejte Vandermondův determinant:

$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix}.$$

Výsledek.

$$V(x_1, x_2, \dots, x_n) = \prod_{j,k \in \hat{n}, j < k} (x_k - x_j).$$