Aprendizaje Automático y Minería de Datos Presentación de la asignatura

Cristina Tîrnăucă

Dept. Matesco, Universidad de Cantabria

Fac. Ciencias – Grado en Ing. Informática

Cuestiones Factuales

De índole práctica

Personal e infraestructura

 Clases a cargo de Cristina Tîrnăucă (cristina.tirnauca@unican.es).

Cuestiones Factuales

De índole práctica

Personal e infraestructura

- Clases a cargo de Cristina Tîrnăucă (cristina.tirnauca@unican.es).
- ► Horario:
 - desarollo teórico, ejemplos y ejercicios, en general los martes y jueves (11:45 - 12:45) en el Seminario de Informática,
 - ▶ laboratorio el lunes (11:45 13:45) en el LSC 2:
 - sesiones de prácticas puntuables en python hasta Semana Santa, aproximadamente, y
 - prácticas no puntuables en weka y knime hasta el final del cuatrimestre.

Cuestiones Factuales

De índole práctica

Personal e infraestructura

- Clases a cargo de Cristina Tîrnăucă (cristina.tirnauca@unican.es).
- Horario:
 - desarollo teórico, ejemplos y ejercicios, en general los martes y jueves (11:45 - 12:45) en el Seminario de Informática,
 - ▶ laboratorio el lunes (11:45 13:45) en el LSC 2:
 - sesiones de prácticas puntuables en python hasta Semana Santa, aproximadamente, y
 - prácticas no puntuables en weka y knime hasta el final del cuatrimestre.
- Información actualizada sobre el desarollo de la asignatura en: moodle.unican.es

A lo largo del curso se obtiene una nota de curso en [0,5].

▶ Prácticas en grupo de 2 o 3 personas (hasta 2 puntos): la calificación es la misma para todos los miembros del grupo.

- Prácticas en grupo de 2 o 3 personas (hasta 2 puntos): la calificación es la misma para todos los miembros del grupo. Se permiten retrasos en la entrega de prácticas de máximum dos semanas:
 - ▶ si el retraso no supera una semana, la nota baja en 1 punto sobre 10;
 - > para retrasos de más de una semana, la nota baja en 3 puntos sobre 10.

- Prácticas en grupo de 2 o 3 personas (hasta 2 puntos): la calificación es la misma para todos los miembros del grupo. Se permiten retrasos en la entrega de prácticas de máximum dos semanas:
 - ▶ si el retraso no supera una semana, la nota baja en 1 punto sobre 10;
 - para retrasos de más de una semana, la nota baja en 3 puntos sobre 10.
- ▶ Práctica individual (hasta 2 puntos): a partir de un "dataset" que acordemos, harás entrar en juego todo lo que hayas aprendido e intentarás completar un miniproyecto de Minería de Datos (el ingrediente básico es la iniciativa personal).

- Prácticas en grupo de 2 o 3 personas (hasta 2 puntos): la calificación es la misma para todos los miembros del grupo. Se permiten retrasos en la entrega de prácticas de máximum dos semanas:
 - ▶ si el retraso no supera una semana, la nota baja en 1 punto sobre 10;
 - para retrasos de más de una semana, la nota baja en 3 puntos sobre 10.
- ▶ Práctica individual (hasta 2 puntos): a partir de un "dataset" que acordemos, harás entrar en juego todo lo que hayas aprendido e intentarás completar un miniproyecto de Minería de Datos (el ingrediente básico es la iniciativa personal).
- ► Cuestiones y problemas puntuales en moodle (hasta 1 punto)

- Prácticas en grupo de 2 o 3 personas (hasta 2 puntos): la calificación es la misma para todos los miembros del grupo. Se permiten retrasos en la entrega de prácticas de máximum dos semanas:
 - si el retraso no supera una semana, la nota baja en 1 punto sobre 10;
 - para retrasos de más de una semana, la nota baja en 3 puntos sobre 10.
- Práctica individual (hasta 2 puntos): a partir de un "dataset" que acordemos, harás entrar en juego todo lo que hayas aprendido e intentarás completar un miniproyecto de Minería de Datos (el ingrediente básico es la iniciativa personal).
- ▶ Cuestiones y problemas puntuales en moodle (hasta 1 punto) La calificación obtenida en el examen final (de 0 a 10 puntos) se multiplica por 0.5 y se suma a la nota de curso sólo si es ≥ 4 .

- Prácticas en grupo de 2 o 3 personas (hasta 2 puntos): la calificación es la misma para todos los miembros del grupo. Se permiten retrasos en la entrega de prácticas de máximum dos semanas:
 - ▶ si el retraso no supera una semana, la nota baja en 1 punto sobre 10;
 - para retrasos de más de una semana, la nota baja en 3 puntos sobre 10.
- Práctica individual (hasta 2 puntos): a partir de un "dataset" que acordemos, harás entrar en juego todo lo que hayas aprendido e intentarás completar un miniproyecto de Minería de Datos (el ingrediente básico es la iniciativa personal).
- ► Cuestiones y problemas puntuales en moodle (hasta 1 punto)

 La calificación obtenida en el examen final (de 0 a 10 puntos) se multiplica por 0,5 y se suma a la nota de curso sólo si es ≥ 4.

 Importante: La nota de la evaluación continua (problemas, prácticas en grupo y práctica individual) se tiene en cuenta sólo para el examen del periodo ordinario. En el periodo de recuperación, el examen tiene un peso de 100%.

Construcción de modelos descriptivos o predictivos

Objetivo:

Una ventaja económica o (menos frecuentemente) humana.

La intención es lograrla mediante predicciones acertadas, al menos parcialmente.

Construcción de modelos descriptivos o predictivos

Objetivo:

- La intención es lograrla mediante predicciones acertadas, al menos parcialmente.
- Predecir al azar difícilmente proporciona ventajas: queremos hacerlo mejor que al azar.

Construcción de modelos descriptivos o predictivos

Objetivo:

- La intención es lograrla mediante predicciones acertadas, al menos parcialmente.
- Predecir al azar difícilmente proporciona ventajas: queremos hacerlo mejor que al azar.
 - Para ello, habremos de basarnos en algo.

Construcción de modelos descriptivos o predictivos

Objetivo:

- ► La intención es lograrla mediante predicciones acertadas, al menos parcialmente.
- Predecir al azar difícilmente proporciona ventajas: queremos hacerlo mejor que al azar.
 - Para ello, habremos de basarnos en algo.
 - ► Por ejemplo, en datos disponibles.

Construcción de modelos descriptivos o predictivos

Objetivo:

- La intención es lograrla mediante predicciones acertadas, al menos parcialmente.
- Predecir al azar difícilmente proporciona ventajas: queremos hacerlo mejor que al azar.
 - Para ello, habremos de basarnos en algo.
 - ► Por ejemplo, en datos disponibles.
 - Pero si tenemos todos los datos, no hay nada a predecir.

Construcción de modelos descriptivos o predictivos

Objetivo:

- La intención es lograrla mediante predicciones acertadas, al menos parcialmente.
- Predecir al azar difícilmente proporciona ventajas: queremos hacerlo mejor que al azar.
 - Para ello, habremos de basarnos en algo.
 - Por ejemplo, en datos disponibles.
 - Pero si tenemos todos los datos, no hay nada a predecir.
- Ingrediente imprescindible: la incertidumbre.

Construcción de modelos descriptivos o predictivos

Objetivo:

- La intención es lograrla mediante predicciones acertadas, al menos parcialmente.
- Predecir al azar difícilmente proporciona ventajas: queremos hacerlo mejor que al azar.
 - Para ello, habremos de basarnos en algo.
 - ► Por ejemplo, en datos disponibles.
 - Pero si tenemos todos los datos, no hay nada a predecir.
- Ingrediente imprescindible: la incertidumbre.
- ▶ De las muchas maneras de gestionar el conocimiento incierto, la más relevante en data mining (que no la única) es el enfoque estadístico, basado en la teoría de la probabilidad.

Minería de Datos

Interés en realidades existentes

El proceso de minería de datos incluirá fases de modelado a partir de observaciones (datos) sobre una realidad compleja y existente.

Taxonomía:

- Modelos descriptivos:
 - Segmentación
 - Asociación
- Modelos predictivos:
 - Regresión
 - Clasificación

► Modelos supervisados

Modelos no supervisados

(Nociones mutuamente no excluyentes.)

Minería de datos y el aprendizaje automático

Data Mining vs Machine Learning

Estos dos términos son muchas veces confundidos, ya que a menudo emplean los mismos métodos y se superponen de manera significativa.

- el aprendizaje automático se centra en la predicción, basándose en propiedades conocidas extraídas de los datos de entrenamiento,
- la minería de datos se centra en el descubrimiento de propiedades (antes) desconocidas en los datos.

Las dos áreas se superponen en muchos sentidos:

- la minería de datos utiliza muchos métodos de aprendizaje automático, pero a menudo con un objetivo ligeramente diferente en mente,
- el aprendizaje automático también cuenta con métodos de minería de datos como por ejemplo "el aprendizaje no supervisado" como un paso de procesamiento previo para mejorar la precisión del modelo.

Ejemplos

Regresión

Otras variables: número de habitaciones, número de baños, si tiene ascensor, calefacción, trastero, parking, si la comunidad tiene piscina, si el piso está situado en el centro, ...

Ejemplos Clasificación

Otras observaciones clínicas: la edad del paciente, el espesor del tumor, la homogeneidad del tamaño celular, la homogeneidad de la forma celular,...

Ejemplos Clasificación

Otras observaciones clínicas: la edad del paciente, el espesor del tumor, la homogeneidad del tamaño celular, la homogeneidad de la forma celular,...

Ejemplos

Segmentación

Ejemplos

Asociación

En un censo estadounidenses:

- ► Husband → Male, Married-civ-spouse
- ► Married-civ-spouse → Husband, Male
- ▶ Not-in-family \rightarrow ≤ 50K
- ▶ Black \rightarrow ≤ 50K, United-States
- ▶ Adm-clerical, Private $\rightarrow \leq 50K$
- ightharpoonup Self-emp-not-inc ightarrow Male
- ▶ $\leq 50K$, Sales \rightarrow Private
- ▶ hours-per-week: $50 \rightarrow Male$
- ▶ Female, Some-college $\rightarrow \leq 50K$
- ▶ Divorced \rightarrow ≤ 50K

Competencias específicas

Entender los conceptos y la terminología de las técnicas de minería de datos.

- Entender los conceptos y la terminología de las técnicas de minería de datos.
- Reconocer los beneficios del uso sistemático de técnicas de extracción de conocimiento para la obtención de modelos y patrones predictivos o descriptivos.

- Entender los conceptos y la terminología de las técnicas de minería de datos.
- Reconocer los beneficios del uso sistemático de técnicas de extracción de conocimiento para la obtención de modelos y patrones predictivos o descriptivos.
- Conocer las distintas técnicas de aprendizaje automático y estadísticas utilizadas en minería de datos, su potencial, su coste computacional y sus limitaciones.

- Entender los conceptos y la terminología de las técnicas de minería de datos.
- Reconocer los beneficios del uso sistemático de técnicas de extracción de conocimiento para la obtención de modelos y patrones predictivos o descriptivos.
- Conocer las distintas técnicas de aprendizaje automático y estadísticas utilizadas en minería de datos, su potencial, su coste computacional y sus limitaciones.
- Elegir, para un problema concreto, qué técnicas de minería de datos son más apropiadas.

- Entender los conceptos y la terminología de las técnicas de minería de datos.
- Reconocer los beneficios del uso sistemático de técnicas de extracción de conocimiento para la obtención de modelos y patrones predictivos o descriptivos.
- Conocer las distintas técnicas de aprendizaje automático y estadísticas utilizadas en minería de datos, su potencial, su coste computacional y sus limitaciones.
- Elegir, para un problema concreto, qué técnicas de minería de datos son más apropiadas.
- Generar los modelos y patrones elegidos utilizando una herramienta o paquete de minería de datos.

- Entender los conceptos y la terminología de las técnicas de minería de datos.
- Reconocer los beneficios del uso sistemático de técnicas de extracción de conocimiento para la obtención de modelos y patrones predictivos o descriptivos.
- Conocer las distintas técnicas de aprendizaje automático y estadísticas utilizadas en minería de datos, su potencial, su coste computacional y sus limitaciones.
- Elegir, para un problema concreto, qué técnicas de minería de datos son más apropiadas.
- Generar los modelos y patrones elegidos utilizando una herramienta o paquete de minería de datos.
- ► Evaluar la calidad de un modelo, utilizando técnicas sencillas de evaluación (validación cruzada).

- Entender los conceptos y la terminología de las técnicas de minería de datos.
- Reconocer los beneficios del uso sistemático de técnicas de extracción de conocimiento para la obtención de modelos y patrones predictivos o descriptivos.
- Conocer las distintas técnicas de aprendizaje automático y estadísticas utilizadas en minería de datos, su potencial, su coste computacional y sus limitaciones.
- Elegir, para un problema concreto, qué técnicas de minería de datos son más apropiadas.
- Generar los modelos y patrones elegidos utilizando una herramienta o paquete de minería de datos.
- ► Evaluar la calidad de un modelo, utilizando técnicas sencillas de evaluación (validación cruzada).
- Implementar un algoritmo de minería de datos específico.

Bibliografía, I

- 1. Jiawei Han, Micheline Kamber, Jian Pei:
 - Data Mining: Concepts and Techniques, Academic Press (2001), 2nd. Ed. Morgan Kaufmann Publishers (2006), 3rd. Ed. Elsevier (2012).
 Pretende una orientación práctica.
- 2. David Hand, Heikki Mannila, Padrhraic Smyth:
 - Principles of data mining, MIT Press (2001) Un "clásico". ftp://gamma.sbin.org/pub/doc/books/Principles_of_ Data_Mining.pdf
- Michael Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn:
 - Guide to Intelligent Data Analysis, Springer (2010).
 Basado en KNIME.
 http://www.2shared.com/document/lAKhLJ-4/Guide_to_
 Intelligent_Data_Anal.html

Bibliografía, II

- 4. Ian H. Witten, Eibe Frank, Mark A. Hall:
 - ▶ Data mining: Practical machine learning tools and techniques with Java implementations, Elsevier (2000), 2nd. Ed. (2005), 3rd. Ed. Elsevier (2011)
 Es el libro que acompaña a Weka.

b++n //bome o+f mg/grm/og/dmg

http://home.etf.rs/~vm/os/dmsw/Morgan.Kaufman. Publishers.Weka.2nd.Edition.2005.Elsevier.pdf

- 5. Trevor Hastie, Robert Tibshirani, Jerome Friedman:
 - The elements of statistical learning: data mining, inference, and prediction, 2nd. Ed. Springer (2009)
 La base más estadística de la minería de datos.
- 6. G. James, D. Witten, Trevor Hastie, Robert Tibshirani:
 - An Introduction to Statistical Learning with Applications in R, Springer (2013)
 Según los autores, es la versión más ligera del libro anterior http://www.stanford.edu/~hastie/pub.htm