2021年春季学期 调和分析 期末考试 授课教师: 高强 博士后

- 考试时间: 2021.6.29 下午 4:00-6:00。
- 分值: 第 1 题 30 分, 第 2 .3 题各 10 分, 第 4, 5 题各 15 分, 第 6 题 20 分。

1, 判断题

- (1) 若 $f \in L^1$ 且 $\hat{f} \in L^1$,则 f 连续。
- (2) 若 $f \in L^2$, 则 $\hat{f} \in L^2$ 。
- $(3) ~~ \wr \hspace{-0.5em} \wr f \in C^{\infty}(\mathbb{R}^n) ~~ ! ! ~ |f(x)| \leq e^{-|x|^2}, ~~ ! \hspace{-0.5em} ! \hspace$
- (4) 对于任意 $g \in S$, 存在 $f \in S$ 使得 $g = \hat{f}$ 。
- (5) 设 $f \in C^{\infty}(\mathbb{R}^n)$ 且存在多项式 P(x) 使得 $|f(x)| \leq |P(x)|$,则 $f \in \mathcal{S}'$ 。
- (6) 若 μ 是广义函数,且 $\operatorname{supp}(\mu)$ 是紧的,则 $u \in \mathcal{S}'$ 。
- (7) 若 $Mf \in L^1$,则 $f \equiv 0$ 。
- (8) 设 T_1, T_2 是 Calderón-Zygmund 算子,且它们有相同的核函数,则 $T_1 = T_2$ 。
- (9) 若 $f \in H^1(\mathbb{R}^n)$,则 $\int_{\mathbb{R}^n} f dx = 0$ 。
- (10) 若 $|f| \in BMO$,则 $f \in BMO$ 。
- **2**, 设 μ 是 \mathbb{R}^n 上满足双倍条件的 Radon 测度。双倍条件,是指存在常数 A,使得对于任意 $x \in \mathbb{R}^n$ 及 r > 0,有

$$\mu(B(x,2r)) \le A\mu(B(x,r))_{\circ}$$

设 $f \in L^1_{loc}(\mu)$ 。 定义非中心极大函数 (non-centered maximal function)

$$M_{\mu}f(x) = \sup_{B\ni x} \frac{1}{\mu(B)} \int_{B} |f(y)| d\mu(y)$$
 ,

证明: 存在常数 C 使得对于任意 $f \in L^1(\mu)$ 及 $\lambda > 0$, 有不等式

$$\mu(\{M_\mu f>\lambda\})\leq \frac{C}{\lambda}||f||_{L^1(\mu)}$$

- 3,证明下述命题。
 - 设 δ 是零点处的 Dirac 函数。 计算 (∂^αδ)[∨]。
 - (2) 设 $u \in S'$ 且 $\Delta u = 0$ 。证明: u 是多项式。
 - (3) 若 u(x) 是 R" 上的调和函数, 且满足:

- (a) 存在 老项式 P(x) 使得 $|u(x)| \le |P(x)|$ 。
- (b) 存在常数 C 使得 $u(x) \geq C$ 。

证明: u(x) 是常数。

- (4) 证明代数基本定理:每个多项式在 C 上至少有一个根。
- 4, 设 $\Omega(x,\theta)$ 是定义在 $\mathbb{R}^n \times \mathbb{S}^{n-1}$ 上的函数, 且满足
 - (1) $\Omega(x, -\theta) = -\Omega(x, \theta)$
 - (2) $\sup_{x} |\Omega(x,\theta)| \in L^1(\mathbb{S}^{n-1})_{\circ}$

定义

$$T_{\Omega}f(x) = \lim_{\epsilon \to 0} \int_{|y| > \epsilon} \frac{\Omega(x, y/|y|)}{|y|^n} f(x - y) dy$$

证明:对于任意 $p \in (1, +\infty)$, T_{Ω} 是 $L^{p}(\mathbb{R}^{n})$ 上的有界算子。

- 5,证明下述命题。
 - (1) 设 $p \in [1, +\infty)$ 。证明: $\underline{\mathcal{Z}}_1 w \in A_p$,则 $\log w \in \mathrm{BMO}$ 。
 - (2) 若 p > 1,证明:BMO = $\{\lambda \log w : \lambda > 0, w \in A_p\}$ 。
- 6, 设 K 是缓增广函,且在 $\mathbb{R}^n \{0\}$ 上, $K \in C^1(\mathbb{R}^n \{0\})$ 。对于任意 $f \in \mathcal{S}$,定义算子 Tf = K * f。假设 K 及算子 T 满足:
 - (1) 存在 $p_0 \in (1, +\infty)$ 使得算子 T 在 L^{p_0} 上有界,即, $||T||_{L^{p_0} \to L^{p_0}} \le A$ 。
 - (2) 在 $\mathbb{R}^n \{0\}$ 上, $|DK(x)| \le \frac{B}{|x|^{n+1}}$ 。

证明:

- (1) $|\{x \in \mathbb{R}^n : |Tf| > \lambda\}| \le \frac{C_1}{\lambda} ||f||_1$,且 C_1 满足: $C_1 \le C_n (A+B)$ 。其中, C_n 是只依赖于维数 n 的常数。
- (2) 对于任意 $p \in (1, +\infty)$, 存在常数 C_p 使得 $||Tf||_p \leq C_p ||f||_p$, 且 C_p 满足: $C_p \leq C_n' \max(p, \frac{1}{p-1})(A+B)$ 。其中, C_n' 是只依赖于维数 n 的常数。
- (3) 若条件(1)中 $p_0 = 1$ 或 $p_0 = +\infty$,是否依然能得到算子 T 的强 (p,p) 连续性 $(p \in (1, +\infty))$?(不用证明)