

BIA 654 Experimental Design II

Design of Experiments:
Optimizing a Dice Profile for
maximization of responses
(Interview calls)

Members:

Vaibhav Desai Sai Rajendra Wuppalapati Mohamed Qadri Vamshi Vennamaneni

Overview

- Dice is a open web social recruiting platform which builds and analyzes profiles based on publicly available data from 130 social sites
- The site is used mainly by consultancies and recruiting companies for lead generation as it has a massive resume database of tech professionals actively looking for the next great opportunity.
- Anyone who is looking for a job can market themselves on Dice by creating a profile with their personal details, requirements and uploading their resume into it
- Getting on top of the search results of recruiting companies can be tricky as your profile is one among the several thousand similar profiles. In this project, we plan to determine the factors affecting the chance of a profile being shortlisted and contacted by a recruiter.

Dice - Tech Careers Platform

Dice Profiles

Factors in the Experiment

• We have selected four factors for our experiment with each having two levels (low and high)

Factor	Low	High
H1-B required (X1)	No	Yes
Profile Tag line (X2)	Data Scientist	Analytics Consultant
Work Years (X3)	3 Years	8 Years
Job type (X4)	Short term contract (< 1.5 years)	Long term contract (> 1.5 years)

Methodology

- Since we have 4 factors, a full factorial design would require $2^4 = 16$ runs. Instead we decided to go for a half factorial design requiring $2^{4-1} = 8$ runs.
- We are confounding a main effect with a three way interaction. $X_4 = X_1 X_2 X_3$. Our experiment has a resolution of IV.
- We have created total 8 profiles in Dice and the experiment is ran for a period of 17 days for each profile
- The two periods overlapped by design as we want to negate the effect of Thanksgiving week which is a rather dull week for job search.

Period 1	Nov 9 – Nov 25	First 4 profiles are active
Period 2	Nov 16 – Dec 2	Other 4 Profiles are active

Running experiments

				X4(=X1*X2*	Profile	Experiment
Runs	X1	X2	Х3	X3)	owner	period
1	-1	-1	-1	-1	Raj	Period 1
2	1	-1	-1	1	Vamshi	Period 1
3	-1	1	-1	1	Raj	Period 2
4	1	1	-1	-1	Arslan	Period 1
5	-1	-1	1	1	Vaibhav	Period 1
6	1	-1	1	-1	Vamshi	Period 2
7	-1	1	1	-1	Vaibhav	Period 2
8	1	1	1	1	Arslan	Period 2

Design table (Screening Design)

	Pattern	H1-B	Profile	Years	Job Type	Number of Responses
1	++++	Yes	Analytics Consultant	8	Long Contract	12
2	++	No	Data Scientist	8	Long Contract	15
3	+-+-	Yes	Data Scientist	8	Short Contract	10
4		No	Data Scientist	3	Short Contract	11
5	++	Yes	Analytics Consultant	3	Short Contract	8
6	-++-	No	Analytics Consultant	8	Short Contract	6
7	-+-+	No	Analytics Consultant	3	Long Contract	5
8	++	Yes	Data Scientist	3	Long Contract	7

Results

Δ	Parameter Estimates	9.25 onsultant] Estimate 9.25 0 -1.5	
	Term*	Estimate	S
	Intercept H1-B[No]	9.25	
	Profile[Analytics Consultant]	-1.5	
	Years[3]	-1.5 0.5	
	Job Type[Long Contract] H1-B[No]*Profile[Analytics Consultant] H1-B[No]*Years[3]	-2.25	
	H1-B[No]*Years[3]	0.25	
	H1-B[No]*Job Type[Long Contract]	0.25	

Normal plot shows only Years, Profile and interaction between H1-B and Profile are significant

Pareto Plot of Estimates

Term	Estimate
H1-B[No]*Profile[Analytics Consultant] Profile[Analytics Consultant]	-2.250000 -1.500000
Years[3]	-1.500000
Job Type[Long Contract] H1-B[No]*Years[3]	0.500000
H1-B[No]*Job Type[Long Contract]	0.250000
H1-B[No]	0.000000

Interaction between H1-B option and Profile option is significant.

Confounding Two way interactions:

- H1-B* profile = Years* JobType
- H1-B* Job Type=Years *
 Profile
- Profile * Job type = H1-B *Years

Conclusion

Equation: Response = 9.25 – 1.5 (Profile[Analytics Consultant]) -1.5 (Years [3]) -2.25 (H1-B[No] * Profile[Analytics Consultant])

Factor	Low	High
H1-B required (X1)	No	Yes
Profile Tag line (X2)	Data Scientist	Analytics Consultant
Work Years (X3)	3 Years	8 Years
Job type (X4)	Short term contract (< 1.5 years)	Long term contract (> 1.5 years)

Recommended Not recommended Doesn't matter