Training a Minesweeper Solver

Sayan Dutta (20162097) Satrajit Datta (20162093) Swarnadeep Chatterjee(20162094) Harshveer Singh

International Institute Of Information Technology, Hyderabad

Table of contents

- 1. Introduction
- 2. Goal
- 3. Q-Learning
- 4. Deep Q-learning
- 5. Analysis
- 6. Conclusion

Introduction

WHAT IS MINESWEEPER ??

Minesweeper

- Minesweeeper, a puzzle game introduced in 1960's requires spatial awareness and ability to work with incomplete information. Utilizing different Machine Learning approaches, we implemented solvers that makes use of Reinforcement Learning.
- A modified Q-learning algorithm was enhanced by function approximation, which was able to effectively generalize learning of the state space.

Minesweeper

- Playing a game of Minesweeper involves uncovering tiles until the player uncovers a tile containing a mine or uncovers all of the tiles that don't contain mines.
- As the game progresses, the player is given limited information regarding the location of the mines on the board.
- Using this information the Minesweeper solver should determine which action to take at each stage of the game.

Goal

The solvers of **Minesweeper** are implemented using three algorithms:

- Simplified Q-learning
- · Modified Q-learning
- · Deep Q-learning

Q-learning Basics

- At each step s, choose the action a which maximizes the function Q(s, a)
- Q is the estimated utility function it tells us how good an action is given a certain state
- Q(s, a) = Immediate reward for making an action + best utility
 (Q) for the resulting state

Q-learning

- Here modified version of Q-learning is used to discover the best actions for each given board configuration.
- As we are more interested in the immediate reward rather than the end game result, we have not taken into consideration the final max optimized value.
- We estimate which tile is least likely to have a mine in a given board configuration by finding the tile with the highest Q value

FORMAL DEFINITION

Q-learning:

$$Q(s,a) = r(s,a) + \gamma max_{a'}(Q(s',a'))$$

$$\gamma = \textit{Relative value of delayed vs.immediate rewards} \ \ (0\text{to1})$$

$$r(s,a) = \text{Immediate Reward}$$

$$s' = \text{The new state after action a}$$

$$a \ , a' : \text{Actions}$$

$$s \ , s' : \text{States}$$

$$\text{Selected action:}$$

$$\pi(s) = argmax_a(Q(s,a))$$

MODIFIED ALGORITHM

The original **Bellman Equation** allows the algorithm to learn not just about the direct reward of the particular action but whether the particular action is more likely to lead to reward in the long-term.

But in **Minesweeper** we are interested in the immediate reward, whether a particular move will uncover a mine on a specific board configuration.

$$Q(s,a) = r(s,a) + Q(s,a)$$

Q-LEARNING

Q-Learning Algorithm

Begin probing by selecting a corner While not game over do

S <- current state of the board

Array <- all tiles on frontier

For tile in Array do

$$P(s,a) <- P(s,a)+1$$

End for

Probe random square in Array

End while

MODIFIED Q-LEARNING

Modified Q-Learning Algorithm

Begin probing by selecting a corner

While not game over do

S <- current state of the board

Array <- all tiles on frontier

For tile in Array do

$$P(s,a) <- P(s,a)+1$$

End for

Probe square in Array with the least probability of being a mine

End while

Deep Q-learning

DEEP Q-LEARNING

Deep Q-Learning

Begin probing by selecting a corner

While not game over do

S <- current state of the board

Array <- all tiles on frontier

Choose random tile t from frontier

Append (S,t) in experience buffer

If experience buffer is full do

Train Network on randomly chosen samples from buffer

End If

End while

Analysis

COMPARISONAL ANALYSIS

COMPARISONAL ANALYSIS

COMPARISONAL ANALYSIS

Conclusion

- While Q-learning is good for board sizes, it's performance decreases drastically for larger boards.
- To solve the above problem, Deep Q-learning has been implemented.
- The version of Deep Q-learning implemented is not giving satisfactory results.

Future Works

Considering a fixed state space for the Neural Network.

References

- Kaye, R (2000). Minesweeper in NP- complete The Mathematical Intelligencer, 22, 9-15.
- alisher Tortay, Oleg Yurchecnko. Solving Minesweeper using NN.
- Reinforcement Learning.
 http://reinforcementlearning.ai-depot.com/