|               | Jait - Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9/4/21        | RSA algorithm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4)            | Find longe prime nois plq.  Calculate $n = pq$ Calculate $\phi(n) = (p-1)(q-1)$ Select e such that $\gcd(e, \phi(n)) = 1$ Calculate d, $d = e^{-1} \mod \phi(n)$ or $\gcd(e) \mod \phi(n)$ PV $\rightarrow \{e_1 n\}^2$ $g \in e^{-1} \mod \phi(n)$ PR $\rightarrow \{d_1 n\}^2$ $g \in e^{-1} \mod \phi(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | Examples:- $P = 3$ $Q = 5$ $M = 2$ $M$ |
| $\rightarrow$ | $   \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | d= 1+ KØ(n) -> Triol & error method  = 1+ KX8 (to get whole no.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | ot $K=1$ , $d = 1+8 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | ed = 1 mod g(n) (extended enclidean)  (- Me mod a mod  |
|               | $C = M^{e} \mod n = 2^{3} \mod 15 = 8$ $M = c^{d} \mod n = 8^{3} \mod 15 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



ed = 
$$1 \mod \phi(n)$$

3d =  $1 \mod 8$  of type  $0 = b \mod n$ 

2 8 3 2 0 1 -2

1 3 2 1 1 -2 3

2 2 1 0 -2 3 -8

1 0 3 -8

d =3

\* Computation Complexity/Aspects:-

Ex: 
$$88^{11}$$
 mod  $187 = (8^{5} \mod 187) (8^{5} \mod 187) (8^{1} \mod 187) (8^{$ 

for i=3,

$$c = 2Xc = 0$$

$$if b_3 == 1$$
 (True)  
 $c = c + 1 = 0 + 1 = 1$ 

$$c = 2 \times 1 = 2$$

$$c = 4 + 1 = 5$$

$$c = 4 + 1 = 5$$

$$f = (132 \times 88) \mod 187 = 22$$

$$c=5, f=22$$

Fretwon 143 -> Answer

Find volue et c gives volue et b in a 16 modes