PK 1

РТ5-61Б Слкуни Герман

Задание 3, датасет 3

Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака.

Импортирование нужных библиотек

```
In [33]: import pandas as pd
from sklearn.preprocessing import MinMaxScaler, LabelEncoder, OneHotEncoder
```

Загрузка данных

```
In [34]: data = pd.read_csv('toy_dataset.csv')
    data.head()
```

Out[34]:		Number	City	Gender	Age	Income	Illness
	0	1	Dallas	Male	41	40367.0	No
	1	2	Dallas	Male	54	45084.0	No
	2	3	Dallas	Male	42	52483.0	No
	3	4	Dallas	Male	40	40941.0	No
	4	5	Dallas	Male	46	50289.0	No

Масштабирование признака Аде

```
In [35]: column = 'Age'
    scaler = MinMaxScaler()
    scaled_column = scaler.fit_transform(data[[column]])
    data[f'{column}_scaled'] = scaled_column
    data.head()
```

Out[35]:		Number	City	Gender	Age	Income	Illness	Age_scaled
	0	1	Dallas	Male	41	40367.0	No	0.400
	1	2	Dallas	Male	54	45084.0	No	0.725
	2	3	Dallas	Male	42	52483.0	No	0.425
	3	4	Dallas	Male	40	40941.0	No	0.375
	4	5	Dallas	Male	46	50289.0	No	0.525

Преобразование категориального признака City в количественый

```
In [36]: category_column = 'City'
print(f'Уникальных значений категориального признака {category_column}: {ler
```

Уникальных значений категориального признака City: 8

Label Encoding

```
In [37]: label_encoder = LabelEncoder()
  encoded_data = label_encoder.fit_transform(data[category_column])
  data[f'{category_column}_label_encoded'] = encoded_data
  data.head()
```

Out[37]:		Number	City	Gender	Age	Income	Illness	Age_scaled	City_label_encod
	0	1	Dallas	Male	41	40367.0	No	0.400	
	1	2	Dallas	Male	54	45084.0	No	0.725	
	2	3	Dallas	Male	42	52483.0	No	0.425	
	3	4	Dallas	Male	40	40941.0	No	0.375	
	4	5	Dallas	Male	46	50289.0	No	0.525	

One Hot Encoding

```
In [38]: onehot_encoder = OneHotEncoder(sparse_output=False, drop='first')
    encoded_data = onehot_encoder.fit_transform(data[[category_column]])
    onehot_columns = [f'{category_column}_{cat}' for cat in onehot_encoder.categorehot_df = pd.DataFrame(encoded_data, columns=onehot_columns, index=data.ir data = pd.concat([data, onehot_df], axis=1)
    data.head()
```

Out[38]:		Number	City	Gender	Age	Income	Illness	Age_scaled	City_label_encod
	0	1	Dallas	Male	41	40367.0	No	0.400	
	1	2	Dallas	Male	54	45084.0	No	0.725	
	2	3	Dallas	Male	42	52483.0	No	0.425	
	3	4	Dallas	Male	40	40941.0	No	0.375	
	4	5	Dallas	Male	46	50289.0	No	0.525	

This notebook was converted with convert.ploomber.io