CS 480: Introduction to Artificial Intelligence

Search Continued

Instructors: Zoran Duric

George Mason University

[These slides adapted from Dan Klein and Pieter Abbeel; ai.berkeley.edu]

Recap: Search

Search

Search problem:

- States (abstraction of the world)
- o Actions (and costs)
- o Successor function (world dynamics):
 - $\circ \{s' | s,a->s'\}$
- o Start state and goal test

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
 - o Return in finite time if not?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - o b is the branching factor
 - o m is the maximum depth
 - o solutions at various depths

o Number of nodes in entire tree?

$$0 1 + b + b^2 + \dots b^m = O(b^m)$$

Depth-First Search (DFS) Properties

- What nodes DFS expand?
 - o Some left prefix of the tree.
 - o Could process the whole tree!
 - o If m is finite, takes time O(b^m)
- O How much space does the fringe take?
 - o Only has siblings on path to root, so O(bm)
- o Is it complete?
 - o m could be infinite, so only if we prevent cycles (more later)
- o Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe

is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - o Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(b^s)
- How much space does the fringe take?
 - o Has roughly the last tier, so O(bs)
- o Is it complete?
 - o s must be finite if a solution exists, so yes! (if no solution, still need depth $!= \infty$)
- O Is it optimal?
 - o Only if costs are all 1 (more on costs later)

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - o Run a DFS with depth limit 1. If no solution...
 - o Run a DFS with depth limit 2. If no solution...
 - o Run a DFS with depth limit 3.

o Generally most work happens in the lowest level searched, so not so bad!

Cost-Sensitive Search

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

How?

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - o Processes all nodes with cost less than cheapest solution!
 - o If that solution costs C^* and arcs cost at least ε , then the "effective depth" is roughly C^*/ε
 - o Takes time $O(b^{C*/\epsilon})$ (exponential in effective depth)
- How much space does the fringe take?
 - o Has roughly the last tier, so $O(b^{C*/\epsilon})$
- o Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes! (if no solution, still need depth != ∞)
- o Is it optimal?
 - o Yes! (Proof via A*)

Uniform Cost Issues

 Remember: UCS explores increasing cost contours

The good: UCS is complete and optimal!

- o The bad:
 - Explores options in every "direction"
 - No information about goal location

• We'll fix that soon!

[Demo: empty grid UCS (L2D5)] [Demo: maze with deep/shallow water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Up next: Informed Search

- Uninformed Search
 - o DFS
 - o BFS
 - o UCS

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
 - Graph Search

Search Heuristics

A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Straight-line distance to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui Z	199
Zerind	374

Greedy Search

Greedy Search

Expand the node that seems closest...

o No. Resulting path to Bucharest is not the s......

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - o Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]

[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)

g = 0h=6 *g* = 9 *g* = 4 h=1 h=2*g* = 6 g = 10h=2g = 12h=0

• A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

o Examples:

0.0

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- o h is admissible

Claim:

A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
$$f(n) \le g(A)$$
$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

$$h = 0$$
 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze)

 $-A^*$

Comparison

Greedy

Uniform Cost

A*

A* Applications

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- O ...

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] [Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

Start State

Goal State

- Owhat are the states?
- o How many states?
- What are the actions?
- o How many successors from the start state?
- O What should the costs be?

Admissible heuristics?

8 Puzzle I

- Heuristic: Number of tiles misplacε
- Why is it admissible?
- h(start) =8
- This is a *relaxed-problem* heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance

$$oh(start) = 3 + 1 + 2 + ... = 18$$

Start S	State
---------	-------

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
TILES	13	39	227		
MANHATTAN	12	25	73		

8 Puzzle III

- How about using the actual cost as a heuristic?
 - o Would it be admissible?
 - o Would we save on nodes expanded?
 - o What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - o As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Graph Search

Tree Search: Extra Work!

o Failure to detect repeated states can cause exponentially more work.

Graph Search

 In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - o Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - o If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set:S B C A

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A \text{ to } C)$$

- Consequences of consistency:
 - o The f value along a path never decreases $h(A) \le cost(A \text{ to } C) + h(C)$
 - A* graph search is optimal

Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 - o See slides for details.
- With h=0, the same proof shows that UCS is optimal.

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - o A* is optimal if heuristic is admissible
 - o UCS is a special case (h = 0)
- Graph search:
 - o A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Search Gone Wrong?

A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure
    fringe ← Insert(make-node(initial-state[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← remove-front(fringe)
        if goal-test(problem, state[node]) then return node
        for child-node in expand(state[node], problem) do
            fringe ← insert(child-node, fringe)
        end
        end
end
```

Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-node(Initial-state[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE [node] is not in closed then
          add STATE[node] to closed
          for child-node in EXPAND(STATE[node], problem) do
              fringe \leftarrow INSERT(child-node, fringe)
          end
   end
```

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Search and Models

- Search operates over models of the world
 - The agent doesn't actually try all the plans out in the real world!
 - o Planning is all "in simulation"
 - o Your search is only as good as your models...

Search Gone Wrong?

