

OF

ADA 075360

MICROCOPY RESOLUTION TEST CHART

AD A 0 7 5 3 6 0 DDC ACCESSION NUMBER

LEVEL

DATA PROCESSING SHEET

PHOTOGRAPH THIS SHEET

AEWES TR-6-553 VOL2

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISTRIBUTION STATEMENT

Accession For

NTIS GRAAI
DDC TAB
Unamnounced
Justification

FER LETTER

By

Distribution/

Availability Codes

Availability Codes

Dist. Special

PUSTRIBUTION STAMP

79 10 19 090

DATE RECEIVED IN DDC

PHOTOGRAPH THIS SHEET

AND RETURN TO DDA-2

W34

W34

NO 6-553

INVESTIGATION OF PERFORMANCE OF

V. 2

CONCRETE AND CONCRETING MATERIALS

EXPOSED TO MATURAL WELL-**EXPOSED TO NATURAL WEATHERING**

> Volume 2 COMPLETED INVESTIGATIONS

AP-A075360

TECHNICAL REPORT NO. 6-553 June 1961

U. S. Army Engineer Waterways Experiment Station **CORPS OF ENGINEERS** Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES

(Issued Jan 1973)

VOLUME 2

COMPLETED INVESTIGATIONS

Item	Part	Program	Supplement, Correction, or Revision
/ 33			Revised Contents (1 page)
34	III		Revised p 3
35	III	22	A new item including Key (1 page); text (2 pages); Tables 1-PF and 2-PF (1 page each)
36	III	23	A new item including Key, text, and Table 1-GLD (1 page each)

(Issued Sept 1968)

VOLUME 2
COMPLETED INVESTIGATIONS

Item	Part	Program	Supplement, Correction, or Revision						
√33			Revised Contents (one page)						
√34	III		Reprinted p 1; revised p 2						
35	III	17	A new item (including key; 3 pp of text; Table 1-PCA, 2 pp; Table 2-PCA, 2 pp; Appendix A, 4 pp)						
√36	III	18	A new item (including key; 3 pp of text; Table 1-VP, 2 pp; Table 2-VP, 1 p)						
√ 37	III	19	A new item (including key; 2 pp of text; Table 1-PK, 1 p)						
38	III	20	A new item (including key; 3 pp of text; Table 1-Z, 2 pp; Appendix A, 8 pp)						

(Issued Sept 1967)

VOLUME 2
COMPLETED INVESTIGATIONS

<u>Item</u>	Part	Section	Supplement, Correction, or Revision
42			Revised Contents (one page)
43	III		Reprinted p 1; new p 2
44	III	10	A new item (including key; 2 pp of text; and Table 1-NBS)
45	III	11	A new item (including key; 3 pp of text; and Tables 1-ADB and 2-ADB)
46	III	12	A new item (including key; 2 pp of text; and Table 1-SY)
47	III	13	A new item (including key; 3 pp of text; and Table 1-CRN)
48	III	14	A new item (including key; 4 pp of text; and Table 1-VR)
49	III	1 5	A new item (including key; 2 pp of text; and Tables 1-FLC and 2-FLC)
50	JII	16	A new item (including key; 1 pp of text; and Table 1-FL)

(Issued Aug 1963)

VOLUME 2

COMPLETED INVESTIGATIONS

Item	Inclosure
42	Contents, revised
43	Part III, revised p l
44	Part III, Program 8, a new item (including Key; 5 pp of text; and Tables 1-CJ; 2-CJ, 3-CJ (1 p); and 4-CJ)
45	Part III, Program 9, a new item (including Key, 2 pp of text, and Table 1-F)

(Revised Jan 1973)

CONTENTS

Volume 2

PART III: COMPLETED PROGRAMS OF INVESTIGATION

Program 1: High-Alkali Cement Study

Program 2: St. Lawrence Seaway Aggregate Study

Program 3: John Martin Dam Specimens

Program 4: Admixture N Study

Program 5: Stewart Field Spheres

Program 6: Upper Narrows Dam Specimens

Program 7: Curing Media Study

Program 8: Construction Joint Program

Program 9: Investigation of Finishes for Concrete Surfaces

Program 10: National Bureau of Standards Program

Program 11: Rome Air Depot Program

Program 12: Syracuse Air Base Beams

Program 13: Natural Sement Investigation

Program 14: Resin Air-Entraining Program

Program 15: Field and Laboratory Correlation Program

Program 16: Form Lining Investigation

Program 17: Long-Time Study, Portland Cement Association

Program 18: Vacuum Treatment Investigation

Program 19: Preplaced Aggregate Cores

Program 20: Cooperative Study of Air-Entrained Concrete

Program 21: Cement Durability Program

Program 22: Fine Flat Dam Aggregate Program

Program 23: Greenup Lock and Dam Specimens

ABSTRACT

Completed investigational programs are summarized in tabulation. The remainder of the report is devoted to a discussion of these programs and specific findings of each together with a presentation of the exposure records of the test specimens involved.

(Reprinted Sept 1968)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING MATERIALS EXPOSED TO NATURAL WEATHERING

PART III: COMPLETED PROGRAMS OF INVESTIGATION

15. The completed investigational programs are summarized in the following tabulation. The remainder of this part is devoted to a discussion of these programs and specific findings of each together with a presentation of the exposure records of the test specimens involved:

			Specim	ens	
	Program			Installed	
No.	Title	Size and Kind	No.	Location	Date
1	High-Alkali Cement Study	$6- \times 6- \times 48-in.$ columns	3	Treat Island	Oct 41
2	St. Lawrence Seaway Aggregate Study	$6- \times 6- \times 48$ -in. columns $6- \times 6- \times 48$ -in.	12	Treat Island	
		columns	12	New York	Oct 41
3	John Martin Dam Specimens	6- × 6- × 30-in. columns 8-indiam cores	24 42	Treat Island Treat Island	
4	Admixture N Study	$6- \times 6- \times 48-in.$ columns	12	Treat Island	Mar 42
5	Stewart Field Spheres	12-indiam spheres	93	Treat Island	Oct 43
6	Upper Narrows Dam Specimens	6-indiam cores	18	Treat Island	Jan 44
7	Curing Media Study	$3-1/2 \times 4-1/2 \times 20-$ in. prisms	300	Treat Island	Feb 43
8	Construction Joint	8-indiam cores	9	Treat Island	Oct 41
	Program	Insulated 8-indiam joint cores	10	Treat Island	Oct 42
		8-indiam cores	4	Treat Island	Mar 43
		Insulated 8-1/4-in diam cores	23	Treat Island	Dec 43
		12-indiam cores	40	Treat Island	Dec 43

(Revised Sept 1968)

			Speci	mens	
	Program			Installed	
No.	Title	Size and Kind	No.	Location	Date
9	Investigation of Finishes for Concrete Surfaces	$3-1/2 \times 16-1/2 - \times 30-$ in. panels	17	Treat Island	June 59
10	National Bureau of Standards Program	$6- \times 6- \times 48-in.$ columns	116	Treat Island	Oct 43
11	Rome Air Depot Program	$6- \times 6- \times 48-in.$ beams	15	Treat Island	Dec 41
		5-1/2- × 6- × 30- beams	3	Treat Island	Oct 43
12	Syracuse Air Base Beams	$6- \times 6- \times 48-in.$ beams	18	Treat Island	Oct 42
13	Natural Cement Investigation	$6- \times 6- \times 48-in.$ columns	94	Treat Island	Oct 42
14	Resin Air- Entraining Agent Program	$6- \times 6- \times 48-in.$ columns	182	Treat Island	Oct 43
15	Field and Labora- tory Correlation	$6- \times 6- \times 30-in.$ beams	150	Treat Island	Dec 48
	Program	$3-1/2- \times 4-1/2- \times 16-in.$ beams	150	Treat Island	Dec 48
16	Form Lining Inves- tigation	6-in. diam × 8-in. cores	68	Treat Island	June 46
17	Long-Time Study, Portland Cement	6- x 6- x 30-in. beams	66	Treat Island	Oct 41
	Association	$6- \times 6- \times 30-in.$ beams	58	Treat Island	May 54
18	Vacuum Treatment Investigation	8-in. diam × 9-1/2-in. long cores	10	Treat Island	Oct 49
		10-in. diam × (16- or 18-in.) long cores	36	Treat Island	Oct 49
19	Preplaced Aggregate Cores	10-in. diam × 16-in. long cores	9	Treat Island	Oct 49
20	Cooperative Study of Air-Entrained Concrete	$3- \times 4- \times 16-in.$ beams	48	Treat Island	Nov 51

(Revised Jan 1973)

		Specimens Installed						
	Program							
No.	Title	Size and Kind	No.	Location	Date			
21	Cement Durability Program	$6- \times 6- \times 48$ -in. columns	271	Treat Island	Oct 40			
		$6- \times 6- \times 48$ -in. columns	5	Treat Island	Jan 41			
		$6- \times 6- \times 48$ -in. columns	12	Treat Island	June 41			
		$6- \times 6- \times 48$ -in. columns	25	Treat Island	Oct 41			
		$6- \times 6- \times 48$ -in. columns	48	Treat Island	Oct 42			
		$6- \times 6- \times 48$ -in. columns	152	St. Augustine	Nov 40			
22	Pine Flat Dam Ag- gregate Program	2- × 2- × 2-ft cubes	6	Treat Island	Sept 47			
		10-in. diam \times 18-in. long cores	3	Treat Island	Fall 49			
23	Greenup Lock and Dam Specimens	2- × 2- × 2-ft cubes	4	Treat Island	Oct 57			
		$6- \times 6- \times 30$ -in. columns	10	Treat Island	Oct 57			

High-Alkali Cement Study

In October 1941, three concrete columns (6 by 6 by 48 in.), containing high- and low-alkali cements, were installed on the exposure rack at Treat Island. The purpose of this installation was to study the effect of high-alkali content in cement on the durability of concrete.

The sand-aggregate ratio of the concrete was 34%; the aggregates were natural sand and gravel. Cements, cement factors, water-cement ratios, and slumps were as follows:

No. of Specimens	Cement	Cement Factor bags per cu yd	Water-Cement Ratio gal per bag	Slump in.
1	Low alkali	5.25	6.0	5.5
1	High alkali	5.25	6.0	5.0
1	High alkali + resin	5.32	5.5	5.0

Table 1-HACP lists these specimens and gives their exposure record.

The specimen containing a high-alkali cement without resin was definitely unsound after 294 cycles of freezing-and-thawing. The specimen containing a low-alkali cement failed after two winters of exposure (353 cycles). The specimen containing a high-alkali cement treated with a resin showed a relative modulus of elasticity of 109 per cent after 353 cycles of freezing-and-thawing. However, this specimen suffered severe surface scaling after two winters on the rack. Despite this surface deterioration, it can be inferred that the influence of resin in causing air entrainment materially increased the durability of concrete made with a high-alkali cement.

Record of Testing of Concrete Columns for Effect of High-Alkali Content in Cement on Durability, Treat Island 1941-1943 (Installed October 1941)

Specimen			ycles, Oct 1941		ycles, Dec 1941		Cycles, Mar 1942	353	Cycles, Apr 1943
No.	Cement	<u>%E</u>	Condition	%E	Condition	%E	Condition	%E	Condition
DVE-14	Low alkali		Broken*		Slight deteri- oration		Raveling	F**	Disintegrated
DVE-37	High alkali	100	Sound	107	Slight deteri- oration	57	Raveling	F	Disintegrated
DVE-60	High alkali plus resin	100	Sound	108	Slight deteri- oration	113	Slight spall	109	Severe surface scaling - exposure dis- continued in Aug 1943

^{*} This specimen was broken at installation; both (2) segments were installed. Therefore sonic readings were not taken.
** F denotes failed.

St. Lawrence Seaway Aggregate Study*

The purpose of this investigation was to find an aggregate that would give the greatest assurance of durability of the concrete for the proposed construction of the St. Lawrence Seaway.

Concrete representing 12 test conditions was molded into 6- by 6- by 48-in. columns. One set of 12 columns was installed on the Treat Island rack in October 1941; the other set of 12 was exposed to moderate weathering out-of-doors at West Point, N. Y. The 12 conditions and characteristics of the concrete are given below:

Test Condition No.	Aggregate	Cement	Absorptive Form Lin- ing Used	Cement Factor bags per cu yd	Water-Cement Ratio gal per bag
1	Dolomite	Plain	No	5.50	6.00
2	Dolomite	Plain	Yes	5.50	6.00
3	Dolomite	Treated	No	5.50	5.75
4	Gravel G	Plain	No	4.75	6.00
5	Gravel G	Plain	Yes	4.75	6.00
6	Gravel G	Treated	No	4.75	5.60
7	Gravel P	Plain	No	4.75	6.00
8	Gravel P	Plain	Yes	4.75	6.00
9	Gravel P	Treated	No	4.75	5.60
10	Syenite	Plain	No	5.75	6.00
11	Syenite	Plain	Yes	5.75	6.00
12	Syenite	Treated	No	5.75	5.75

Note: Slump of all mixtures was 2-1/2 in.

Treat Island group

Table 1-STL lists these specimens and gives their exposure record. The exposure at Treat Island gave the following results:

- a. The concrete containing resin-treated cement and syenite aggregate (condition 12) possessed the highest degree of durability.
- b. The concrete containing untreated cement and syenite aggregate possessed the next highest durability (condition 11).
- c. The concrete containing untreated cement and gravel P possessed exceptionally poor durability (conditions 7 and 8).

^{*} See Central Concrete Laboratory, Corps of Engineers, Report of Concrete Investigations - St. Lawrence River Waterway - Series CR-STL (30 January 1942).

Program 2

- d. The lack of durability in the concrete containing unsound gravel indicates that the presence of entrained air resulting from the use of a resin-treated cement cannot be expected to protect concrete containing definitely unsound aggregate.
- e. The use of absorptive form lining was ineffective in protecting the inferior aggregate, but improved the durability of concrete containing sound aggregate as compared with that cast against forms not so lined.

New York group

The 12 specimens which had been exposed to moderate weathering at West Point, N. Y., were transferred to a similar exposure at Mount Vernon, N. Y., in 1942. The exposure record of these specimens is given in table 2-STL and may be compared with that of the Treat Island group. The specimens were discarded after the final inspection in April 1946.

Table 1-STL

Program 2

Record of Testing of Concrete Columns Containing Various Aggregates Proposed for Use in St. Lawrence Seaway Construction Treat Island, 1941-43 (Installed October 1941)

Specimen No.	Test Con- dition	Aggregate	Cement	Absorptive Form Lin- ing Used	O Cycles Oct 1941	37 Cycles Dec 1941	95 Cycles Jan 1942	166 Cycles Apr 1942	353 Cycles Apr 1943
STL-PC	7	Gravel P	Plain	No	100	100	Failed		
STL-PB	8	Gravel P	Plain	Yes	100	106	Failed		
STL-PBV	9	Gravel P	Treated	No	100	101	Failed		
STL-NC	1	Dolomite	Plain	No	100	134	Failed		
STL-NE	2	Dolomite	Plain	Yes	100	104	Failed		
STL-NBV	3	Dolomite	Treated	No	100	146	117	Failed	
STL-GC	4	Gravel G	Plain	No	100	98	Failed		
STL-GB	5	Gravel G	Plain	Yes	100	99	Failed		
STL-GBV	6	Gravel G	Treated	No	100	106	53	Failed	
STL-LC	10	Syenite	Plain	No	100	104	105	Failed	
STL-LB	11	Syenite	Plain	Yes	100	103	108	103	Failed
STL-LCV	12	Syenite	Treated	No	100	108	110	115	113*

Program 2 Table 2-STL

Record of Testing of Concrete Columns Containing Various Aggregates Proposed for Use in St. Lawrence Seaway Construction

New York, 1941-46 (Installed October 1941)

Specimen No.	Test Condition	Aggregate	Cement	Absorptive Form Lin- ing Used	0 Cycles 1941 %E	68 Cycles 1942 	330 Cycles 1944 <u>%</u> E	600 Cycles 1946 %E (Final)
STL-PD	7	Gravel P	Plain	No	100	103	107	118
STL-PE	8	Gravel P	Plain	Yes	100	104	Failed	
STL-PCV	9	Gravel P	Treated	No	100	106	111	133
STL-NB	1	Dolomite	Plain	No	100	108	112	Failed
STL-NE	2	Dolomite	Plain	Yes	100	106	109	66
STL-NCV	3	Dolomite	Treated	No	100	108	111	111
STL-GC	4	Gravel G	Plain	No	100	107	Failed	
STL-GD	5	Gravel G	Plain	Yes	100	114	Failed	
STL-GCV	6	Gravel G	Treated	No	100	111	119	126
STL-LD	10	Syenite	Plain	No	100	103	Failed	
STL-LE	11	Syenite	Plain	Yes	100	102	Failed	
STL-LBV	12	Syenite	Treated	No	100	102	114	86

John Martin Dam Specimens*

In October 1941, concrete columns cast from mixtures used in construction of John Martin Dam, Caddoa, Colo., and concrete cores extracted from the dam were installed on the Treat Island exposure rack. The purpose of these installations was to study the influence of form lining on the durability of mass concrete.

Columns

The 24 concrete columns (6 by 6 by 30 in.) were prepared from concrete wet-screened from the field mixtures used at John Martin Dam. The specimens were cast against three types of forms, one unlined and two lined.

Type of Form	No. of Specimens
Oiled wood	12
Form lining A (absorptive)	9
Form lining B (absorptive)	3

Three cement factors (3.0, 3.5, and 4.0) and three water-cement ratios (6.50, 7.18, and 7.61) were used. The cement was type II. The aggregate consisted of gravel principally containing granite, quartz, feld-spar, diorite, basalt, and sandstone (maximum size 1-1/2 in.; wet-screened from a 6-in. maximum size).

Table 1-JMDP lists these specimens and gives their exposure record along with other pertinent information.

All specimens had failed after two winters of exposure (352 cycles of freezing-and-thawing). The indicated results were:

- a. The use of the types of absorptive form lining tested will provide concrete surfaces of appreciably greater durability than that obtained by the use of oiled wood forms.
- b. The influence of cement content in the lower ranges and water-cement ratio in the higher ranges upon the durability of absorptive form-lined surfaces was not as marked as might have been anticipated.

Cores

The forty-two 8-in.-diameter cores were diamond-drilled from the

^{*} See Central Concrete Laboratory, Corps of Engineers, Final Report, John Martin Dam, Durability of Cores and Columns (July 1942).

Program 3

downstream face of John Martin Dam. They were drilled from concrete that had been cast against two types of forms, and also from concrete having a screeded surface:

Type of Form or Finish	No. of Specimens
Oiled wood	18
Form lining A (absorptive)	21
Screeded surface	3

The cores represented concrete having cement factors ranging from 3.0 to 4.0 bags per cu yd, and water-cement ratios ranging from 6.5 to about 9.0 gal per bag. Maximum size of aggregate in all concrete from which cores were extracted was 6 in.

On 11 December 1941, after having been exposed since October, the cores were placed in boxes (six in each of seven boxes) and surrounded by fine gravel to protect them from body disintegration, only the formed or finished surfaces being exposed to freezing-and-thawing.

Table 2-JMDP lists these specimens and gives their exposure record along with other pertinent information.

The wood-formed cores showed early deterioration which became severe in March 1942 after about 140 cycles of freezing-and-thawing.

The absorptive form-lined cores (form lining A) developed no significant evidence of deterioration after 164 cycles. None of these specimens appeared unsound in the center 5-in.-diameter area at the time of discontinuance of the test. The cores with screeded surfaces showed definite deterioration at about 140 cycles, and severe deterioration at 164 cycles. Therefore, the tests on the cores confirm the results of the tests on the column specimens described above.

Record of Testing of Columns Cast from John Martin Dam Concrete Against Three Types of Forms 1941-1943 (Installed October 1941)

Specimen No.	Water-Cement Ratio gal per bag	Cement Factor bags per cu yd	Type of Form	O Cycles 1941 %E	164 Cycles 1942 %E	282 Cycles Feb 1943	352 Cycles Aug 1943
10M-738-W-1	7.61	3.0	Oiled wood	100	108	105	Failed
10M-738-W-2				100	87	85	Failed
10M-738-W-3				100	103	85 96	Failed
OM-738-L-1	7.61	3.0	Form lining A	100	83	Failed	
LOM-738-L-2				100	103	100	Failed
10M-738-L-3				100	Failed		
2MF-745-W-1	6.50	4.0	Oiled wood	100	89	74	Failed
2MF-745-W-2				100	95	74	Failed
32MF-745-W-3				100	100	100	Failed
2MF-745-L-1	6.50	4.0	Form lining A	100	97	85	Failed
2MF-745-L-2				100	97	84	Failed
32MF-745-L-3				100	98	81	Failed
PM-760-W-1	7.18	3.5	Oiled wood	100	95	95	Failed
2BM-760-W-2				100	91	Failed	
2HM-760-W-3				100	87	Failed	
PM-760-L-1	7.18	3.5	Form lining A	100	100	74	Failed
2BM-760-L-2				112	112	Failed	
2BM-760-L-3				100	109	100	Failed
08-CF-2W-1	6.50	4.0	Oiled wood	100	Failed		
08-CF-2W-2				100	57	Failed	
108-CF-2W-3				100	Failed		
+08-CF-2L-1	6.50	4.0	Form lining B	100	112	Failed	
+08-CF-2L-2				100	103	Failed	
+08-CF-2L-3				100	103	Failed	

Table 2-JMDP

Record of Observations of Cores from John Martin Dam Concrete with Various Surface Finishes

1941-1942 (Installed October 1941)

Maximum size a	Water-Cement			0 Cycles	140 Cycles	164 Cycles
	Ratio	Cement Factor	Type of	1941	Mar 1942	Apr 1942
Specimen No.	gal per bag	bags per cu yd	Surface Finish	Condition	Condition	Condition
43-3780-TW	6.41	4.0	Oiled wood	Sound	Face disintegrated	Poor
43-3780-MW				Sound	Face disintegrated	Unsound
43-3780-LW				Sound	Face disintegrated	Very poor
43-3785-TW	7.11	3.8	Oiled wood	Sound	Face disintegrated	Very poor
43-3785-MW		5.0	01104 1101-	Sound	Face disintegrated	Poor
43-3785-LW				Sound	Face disintegrated	Very poor
43-3790-TW	7.87	3.6	Oiled wood	Sound	Face scaling and	Very poor
15 5150 21	1.01	3.0	Office work		edges raveling	icij poor
43-3790-MW				Sound	Face scaling and edges raveling	Very poor
43-3790-LW				Sound	Face scaling and	Very poor
45 5150 2				Down	edges raveling	very poor
43-3795-TW	7.56	3.4	Oiled wood	Sound	Surface badly	Unsound
			01204 101-		raveled	
43-3795-MW				Sound	Surface badly raveled	Unsound
43-3795-LW				Sound	Surface badly	Very poor
7.17					raveled	
43-3800-TW	8.05	3.2	Oiled wood	Sound	Face disintegrated	Unsound
43-3800-MW				Sound	Face disintegrated	Unsound
43-3800-LW				Sound	Face disintegrated	Unsound
43-3805-TW	9.18	3.0	Oiled wood	Sound	Face disintegrated	Unsound
43-3805-MW				Sound	Face disintegrated	Unsound
43-3805-LW				Sound	Face disintegrated	Unsound
43-3780-TL	6.41	4.0	Form lining A	Sound	Slight spalling	Sound
43-3780-ML				Sound	Moderate raveling	Sound
43-3780-LL				Sound	Minutely spalled	Sound
43-3785-TL	7.11	3.8	Form lining A	Sound	Slightly spalled	Sound
43-3785-ML				Sound	Slightly raveled	Sound
43-3785-LL				Sound	Moderately raveled	Sound
43-3790-TL	7.87	3.6	Form lining A	Sound	Some surface	Sound
43-3790-ML				Sound	cracking Raveling	Good
43-3790-LL				Sound	Face raveling	Good
43-3190-EE				Sound	badly	Good
43-3795-TL	7.56	3.4	Form lining A	Sound	Raveling badly	Fair
43-3795-ML	1.70	3.7	rorm rimine	Sound	Moderately spalled	Sound
43-3795-LL				Sound	Some raveling	Good
43-3800-TL	8.05	3.2	Form lining A	Sound	Face raveled badly	Poor
43-3800-ML	,			Sound	Some raveling	Sound
43-3800-LL				Sound	Some raveling	Sound
43-3805-TL	9.18	3.0	Form lining A	Sound	Some raveling	Good
43-3805-ML				Sound	Some raveling	Fair
43-3805-LL				Sound	Some raveling	Fair
13-3740-ST	6.97	4.0	Screeded	Sound	Map cracking	Very poor
13-3740-SM				Sound	Map cracking	Very poor
13-3740-SL				Sound	Map cracking	Very poor
13-3755-TL	6.87	4.0	Form lining A	Sound	Slight scaling	Sound
12-2755-MT				Sound	and spalling	Sound
13-3755-ML				Sound	Moderate spalling	
13-3755-LL				Sound	Moderate spalling	Sound

Admixture N Study*

In March 1942, six concrete columns containing admixture N and six without admixture N were installed on the exposure rack at Treat Island, Maine.

The purpose of this installation was to determine the durability of concrete containing admixture N as compared with that of concrete containing a resin.

The 12 concrete columns (6 by 6 by 48 in.) represented four test conditions: plain portland cement, resin-treated portland cement, plain portland cement with admixture N, and resin-treated portland cement with admixture N. The addition of admixture N was made at the rate of 1% by weight of cement. A cement factor of 5.5 bags per cu yd was used for all concrete mixtures. The aggregates were natural sand and 1-in. maximum size natural gravel; a sand-aggregate ratio of 40% was used for all specimens. Watercement ratios ranged from 5.7 to 6.25 gal per bag.

Table 1-PP lists these specimens and gives their exposure record along with other pertinent information.

This exposure was discontinued in 1943, with six of the twelve specimens being returned to the laboratory for examination. In the one winter of exposure 10 of the 12 specimens had failed. The findings of this investigation were:

- a. The concrete made with admixture N did not develop resistance to freezing-and-thawing to a materially greater degree than did the comparable concrete without the admixture.
- b. The use of admixture N with portland cement containing a resin did not materially affect the durability of the concrete.
- <u>c</u>. The aggregate used in the concrete of this series was preponderantly soft, showed evidence of cracks, and was definitely of poor quality.
- d. The inability of the concrete made with resin-treated cement to withstand a longer exposure on the Treat Island rack indicates that the presence of entrained air resulting from the use of the resin cannot necessarily be expected to protect concrete containing unsound aggregates.

^{*} See Central Concrete Laboratory, Corps of Engineers, <u>Preliminary Report</u>, <u>Series CR-PP</u> (17 April 1942) and <u>Addendum No. 1 to Preliminary Report</u>, <u>Series CR-PP</u> (9 March 1943).

Table 1-PP

Record of Testing of Concrete Columns With and Without Admixture N

1942-1943 (Installed March 1942)

Specimen No.	Cement and Admixture	O Cycles Mar 1942 %E	10 Cycles Apr 1942	198 Cycles 1943 % E
PP-12-1	Type II cement	100	105	Failed (at 172 cycles)
PP-12-2		100	104	Failed (at 114 cycles)
PP-12-3		100	104	Failed (at 152 cycles)
PP-13-2	Type II cement + resin	100	105	Failed (at 198 cycles)*
PP-13-3		100	103	Failed (at 198 cycles)*
PP-13-4		100	104	Failed (at 198 cycles)*
PP-15-1	Type II cement + admixture N	100	107	Failed (at 114 cycles)
PP-15-3		100	106	Failed (at 114 cycles)
PP-15-4		100	105	Failed (at 114 cycles)
PP-17-1	Type II cement + resin + admixture N	100	103	113*
PP-17-2		100	101	Failed (at 198 cycles)
PP-17-4		100	103	65*

Stewart Field Spheres*

In October 1943, 93 concrete spheres (12 in. in diameter) were installed on the Treat Island exposure rack. The purpose of this installation was to study the effect of different types of aggregates proposed for use at Stewart Field, Newburgh, N. Y., on the durability of concrete, and to investigate the use of spherical specimens in studies of concrete durability.

The aggregates consisted of natural sands, a manufactured sand, gravel, and crushed dolomite. Ten sand-aggregate combinations and three water-cement ratios (4.5, 5.0, and 5.5 gal per bag) were used in the mixes. Cement factors ranged from 4.9 to 7.6 bags per cu yd, and an airentraining cement was used for all specimens.

Attempts were made to test these specimens for fundamental frequency, but these attempts were unsuccessful. The inspection of the specimens was therefore limited to visual examination and tapping to locate "dead spots."

In May 1949, after approximately 600 cycles of freezing-and-thawing, all specimens appeared to be in excellent condition, except for very localized scaling and spalling. However, tapping revealed that some of the specimens had "dead spots," i.e., localized areas where the concrete was probably internally deteriorated.

In June 1949, due to the need for additional space on the exposure rack, exposure of this group was discontinued, and the specimens were removed from the half-tide elevation.

Table 1-SFP lists the spheres and gives their exposure record along with other pertinent information.

In order to differentiate the durabilities of the various mixtures, the specimens were rated by use of the numerical rating system shown below. The individual ratings are given in table 1-SFP.

^{*} See Central Concrete Laboratory, Corps of Engineers, Concrete Investigation, Stewart Field, Newburgh, N. Y.; First Interim Report (20 March 1943); Second Interim Report (21 April 1943); and Final Report (April 1944).

Program 5

Specimen Condition	Numerical Rating	Specimen Condition	Numerical Rating
Sound	100	One crack	85
Scaling	95	Several dead spots	70
One dead spot	90	Cracking	60
Spalling	85		
Spalling	05		

Note: Ratings other than those shown above resulted from combinations of these ratings.

To facilitate comparisons between mixtures, average ratings are given below:

Aggregate Combination	Water-Cement Ratio gal per bag	No. of Specimens	Average Final Numerical Rating
Natural sand A + natural gravel A	4.5	7	93
Natural sand A + natural gravel A	5.0	6	99
Natural sand A + natural gravel A	5.5	6	83
Crushed + natural gravel A	4.5	2	95
Crushed + natural gravel A	5.0	2	100
Crushed + natural gravel A	5.5	2	98
Natural sand B + natural gravel A	4.5	4	93
Natural sand B + natural gravel A	5.0	4	99
Natural sand B + natural gravel A	5.5	4	79
Blend D + natural gravel A	4.5	1	100
Blend D + natural gravel A	5.0	1	100
Blend D + natural gravel A	5.5	1	100
Blend C + natural gravel A	5.0	1	70
Blend B, + natural gravel A	4.5	1	100
Blend B + natural gravel A	5.0	1	100
Blend B + natural gravel A	5.5	1	90,
Blend A + natural gravel A	5.0	3	93
Blend A + natural gravel A	5.5	3	89
Natural sand A + rock C	4.5	3 2	97
Natural sand A + rock C	5.0		100
Natural sand A + rock C	5.5	2	93
Crushed + rock C	4.5	3 3	97
Crushed + rock C	5.0	3	77
Crushed + rock C	5.5	3	87
Natural sand B + rock C	4.5		94
Natural sand B + rock C	5.0	3	77
Natural sand B + rock C	5.5	3	85

(Continued)

Program 5

Aggregate Combination	Water-Cement Ratio gal per bag	No. of Specimens	Average Final Numerical Rating
Blend D + rock C	4.5	1	90
Blend D + rock C	5.0	1	90
Blend C + rock C	4.5	2	95
Blend C + rock C	5.0	2	95 80
Blend C + rock C	5.5	1	65
Blend A + rock C	4.5	3	87
Blend A + rock C	5.0	3	83
Blend A + rock C	5.5	3	93
	Total	92	
	Dummy	1 93	

Table 1-SFP Program 5

Effects of Exposure on Concrete Spheres Made with Various Aggregates Proposed for Use at Stewart Field, N. Y.

1943-1949 (Installed October 1943)

pec- men	Aggre Combin		WC Ratio		Factor cu yd	Slump	Unit	Weight	Air Content	O Cycles 1943	Approximately 600 Cycles	Fi
No.	Fine	Coarse	gal/bag	Theo*	Actual	in.	Theo*	Actual	%	Condition	1949, Final Condition	1
1-A	Natural	Natural	4.5	7.4	7.18	2-1/2	149.5	144.7	3.2	Sound	Scaling, small crack	
1-B	sand A	gravel		7.4	7.12	2-1/2	149.5	143.6	4.0	Sound	Sound	1
1-D		A		7.2	7.90	1-1/2	150.0	145.8	2.8	Sound	Scaling	
L-E				7.2	6.96	3	150.0	144.7	3.5	Sound	Sound	1
1-F				7.2	6.99	2-1/2	150.0	145.5	3.0	Sound	One dead spot	
1-G				7.2	7.00	2-1/4	150.0	145.7	2.9	Sound	Spalling	
I-H				7.2	6.99	2-3/4	150.0	145.5	3.0	Sound	Sound	1
-A	Natural	Natural	5.0	6.5	6.24	2-3/4	149.5	143.2	4.2	Sound	Sound	-
-B	sand A	gravel		6.5	6.24	2-3/4	149.5	143.1	4.3	Sound	Sound	
-D -E		A		6.3	6.16	3	149.5	146.0	2.3	Sound	Sound	
-F				6.3	6.18	1-3/4	149.5	145.8	2.5	Sound Sound	Sound Sound	
-G				6.3	6.15	2-1/4	149.5	145.8	2.5	Sound	Scaling	
-A	Natural	Natural	5.5	5.60	5.28	2-1/2	151.0	142.0	6.0	Sound	One dead spot	
-B	sand A	gravel	,.,	5.60	5.29	2-1/2	151.0	142.2	5.8	Sound	Several dead spots, scaling	
-D	Julia A	A		5.4	5.26	2-3/4	150.1	143.0	4.7	Sound	Sound	
-E				5.4	5.20	2-1/2	150.1	144.3	3.9	Sound	Several dead spots, scaling	
-F				5.4	5.19	3	150.1	144.0	4.0	Sound	Scaling, spalling	
-G				5.4	5.20	2-1/2	150.1	144.4	3.8	Sound	Sound	
-A	Crushed	Natural	4.5	7.6	7.28	2-3/4	151.5	144.7	4.5	Sound	One dead spot	
-B		gravel A		7.6	7.29	2-1/2	151.5	144.9	4.3	Sound	Sound	
-A -B	Crushed	Natural	5.0	6.75	6.44	2-3/4 2-1/2	150.8	143.5	4.8	Sound Sound	Sound Sound	
-Б		gravel A		0.15	0.44	2-1/2	150.0	143.7	4.1	Sound	Sound	
-A	Crushed	Natural	5.5	5.85	5.60	2-1/2	151.5	144.7	4.5	Sound	Scaling	
-B	or actica	gravel	,,,	5.85	5.59	2-1/2	151.5	144.5	4.6	Sound	Sound	
		A										
-A	Natural	Natural	4.5	7.0	6.69	2-1/2	151.0	144.0	4.6	Sound	Several dead spots	
-D	sand B	gravel		6.8	6.52	2-1/4	151.3	144.8	4.3	Sound	Sound	
-E -F		A		6.8	6.52	1-1/2	151.3	145.0	4.2	Sound Sound	Sound Sound	
	Waterna 7	W-41	5.0	6.2	5.84	2-1/4	150.8	141.5	6.2	Sound	Sound	
-A -D	Natural sand B	Natural gravel	5.0	6.0	6.02	2	151.2	146.7		Sound	Scaling	
-E	Saliu D	A		6.0	6.01	2-1/2	151.2	146.4	3.0 3.2	Sound	Sound	
-F		•		6.0	6.03	1-1/2	151.2	147.0	2.8	Sound	Sound	
-A	Natural	Natural	5.5	5.4	5.11	2-1/2	151.0	142.5	5.6	Sound	Scaling	
-D	sand B	gravel	,.,	5.2	4.96	2-1/2	151.3	144.4	4.8	Sound	Scaling	
-E	Juliu D	A		5.2	5.04	1-1/4	151.3	146.0	3.2	Sound	Scaling	
-F				5.2	5.03	1	151.3	146.1	3.4	Sound	Cracked, one dead spot,	
					, , ,		-,,				scaling, spalling	
-A	Blend D	Natural	4.5	7.45	7.25	2-1/2	150.1	145.2	2.7	Sound	Sound	
		gravel A										
-A	D11 D			6 10	6 00	0.1/0	151 0	11.2 0			C4	
-A	Blend D Blend C	Natural gravel	5.0	6.40	6.09	2-1/2	151.3	143.8	5.0	Sound Sound	Sound	
-v	prena c	A		6.20	5.88	2-1/2	153.8	145.4	5.5	Sound	Several dead spots	
-A	Blend D	Natural	5.5	5.6	5.38	2-1/2	150 2	144.3	4.0	Sound	Sound	
-/-	Diena D	gravel	,.,	,.0	7.30	2-1/2	1,0.5	144.3	4.0	Sound	Soulia	
		A										
-A	Blend B	Natural	4.5	7.25	6.99	2-1/2	150.0	144.3	3.8	Sound	Sound	
		gravel A										
-A	Blend B	Natural	5.0	6.3	6.04	2-1/2		143.4	4.4	Sound	Sound	
-D	Blend A	gravel		6.1	5.87	2-3/4	150.8	145.0	3.8	Sound	One dead spot, scaling	
-E -F	Blend A Blend A	A		6.1	5.81	1-3/4	150.8	145.9	3.2 4.5	Sound Sound	One dead spot Scaling	
			12.57									
-A	Blend B	Natural	5.5	5.50	5.23	2-1/2	150.1	142.5	5.1	Sound	One dead spot	
-	Blend A	gravel		5.3	5.08	3	150.8	144.2	4.4	Sound	One dead spot	
-D	D1					3	150.8	144.3	4.3	Sound	One dead spot, spalling	
-D -E -F	Blend A Blend A	A		5.3	5.08	1-3/4		145.9	3.2	Sound	Sound	

Table 1-SFP (Concluded)

Spec- imen	Aggre		WC Ratio		Factor cu yd	Slump		Weight	Air Content	O Cycles 1943	Approximately 600 Cycles	Final Rat-
No.	Fine	Coarse	gal/bag	Theo	Actual	in.	Theo	Actual	4	Condition	1949, Final Condition	ing
61-A	Natural	Rock C	4.5	7.7	7.48	2-1/4	154.7	149.1	3.0	Sound	Sound	100
61-D	sand A			7.5	7.36	2-1/2	155.3	152.4	1.9	Sound	Sound	100
61-E				7.5	7.34	2	155.3	152.1	2.1	Sound	One dead spot	90
62-A	Natural	Rock C	5.0	6.80	6.44	2-1/2	154.6	146.0	5.5	Sound	Sound	100
62-D	sand A			6.60	6.40	3	155.3	150.4	3.1	Sound	Sound	100
63-A	Natural	Rock C	5.5	5.90	5.66	2-1/2	154.9	148.2	4.3	Sound	One dead spot, scaling	85
63 - D	sand A			5.70	5.50	2-1/2	156.0	150.4	3.6	Sound	Sound	100
71-A	Crushed	Rock C	4.5	7.95	7.45	2-1/2	156.6	146.0	6.8	Sound	One dead spot	90
71-B				7.95	7.43	2-1/2	156.6	145.6	7.0	Sound	Sound	100
71-D				7.80	7.61	2-1/2	157.0	153.1	2.5	Sound	Sound	100
72-A	Crushed	Rock C	5.0	7.00	6.65	2-1/2	156.5	148.2	5.3	Sound	One dead spot, cracking	50
72-D				6.80	6.63	2-1/2	157.2	153.3	2.5	Sound	One dead spot	90
72-E				6.80	6.58	2	157.2	151.9	3.4	Sound	One dead spot	90
73-A	Crushed	Rock C	5.5	6.15	5.80	2-3/4	156.8	147.2	6.1	Sound	One dead spot	90
73-D				6.0	5.84	1-3/4	157.4	152.8	2.9	Sound	One dead spot, scaling	85
73-E				6.0	5.81	2-1/2	157.4	152.0	3.4	Sound	One dead spot, scaling	85
81-A	Natural	Rock C	4.5	7.35	7.01	2-1/4	156.5	148.8	4.9	Sound	Sound	100
81-D	sand B			7.10	6.86	1-3/4	157.1	151.4	3.6	Sound	One dead spot	90
81-E				7.10	6.83	2-1/2	157.1	151.0	3.9	Sound	Spalling	85
81-F				7.10	6.84	2-1/2	157.1	151.1	3.8	Sound	Sound	100
82-A	Natural	Rock C	5.0	6.5	6.10	2-3/4	156.4	146.8	6.5	Sound	One dead spot	90
82-D	sand B			6.2	5.97	1-3/4	157.8	151.7	3.9	Sound	One dead spot	90
82 - E				6.2	5.95	2-1/4	157.8	151.3	4.2	Sound	One dead spot, cracking	50
83-A	Natural	Rock C	5.5	5.75	5.34	2-1/2	156.6	144.5	7.7	Sound	Slight scaling	95
83-D	sand B			5.50	5.29	1-3/4	157.3	150.8	4.1	Sound	One dead spot	90
83-E				5.50	5.29	1-1/2	157.3	151.2	3.9	Sound	Several dead spots	70
91-A	Blend D	Rock C	4.5	7.8	7.58	2-1/2	155.2	150.7	2.9	Sound	One dead spot	90
91-D	Blend C			7.6	7.31	1-1/2	157.0	151.2	3.8	Sound	Sound	100
91 - E	Blend C			7.6	7.26	2-1/2	157.0	150.0	4.6	Sound	One dead spot	90
92-A	Blend D	Rock C	5.0	6.75	6.49	2-1/2	155.3	149.2	4.1	Sound	One dead spot	90
92-D	Blend C			6.55	6.31	2-1/2	157.1	152.5	3.9	Sound	Several dead spots	70
92 - E	Blend C			6.55	6.31	2-1/2	157.1	152.6	3.9	Sound	One dead spot	90
93 - D	Blend C	Rock C	5.5	5.90	5.76	2-1/4	157.1	153.3	2.5	Sound	Several dead spots, scaling	65
101-D	Blend A	Rock C	4.5	7.5	7.15	2-3/4	156.3	148.8	4.8	Sound	Several dead spots	70
101-E				7.5	7.35	2-1/4	156.3	153.0	2.1	Sound	Sound	100
101-F				7.5	7.36	1-3/4	156.3	153.3	1.9	Sound	One dead spot	90
102-D	Blend A	Rock C	5.0	6.40	6.10	1-3/4	156.8	148.9	5.0	Sound	One dead spot	90
102-E				6.40	6.03	3-3/4	156.8	147.2	6.1	Sound	One dead spot	90
102-F				6.40	6.17	2-1/2	156.8	150.8	3.8	Sound	Several dead spots	70
103-D	Blend A	Rock C	5.5	5.70	5.43	2-1/2	156.9	149.0	5.0	Sound	Slight spalling	85
103-E				5.70	5.46	3	156.9	149.8	4.5	Sound	Scaling	95
103 -F				5.70	5.47	3	156.9	150.2	4.3	Sound	Sound	100
	Dummy sp	ecimen								Sound	Sound	100

Upper Narrows Dam Specimens

In January 1944, nine (6 in. in diameter by 12 in. long) concrete cores from Upper Narrows Dam, near Smartville, California, were installed on the exposure rack at Treat Island. The purpose of this installation was to determine, by means of natural freezing-and-thawing, the durability of the Upper Narrows Dam concrete as affected by the aggregates.

The cores were drilled from the downstream face of the dam. One inch of each end of each core was embedded in a pad of concrete containing entrained air to prevent deterioration of the circumferential edge progressing into the body of each core, and also to facilitate installation.

For comparison purposes, nine shot-drilled cores were taken from Stewart Field and Rye Lake Airports, N. Y., and placed on the exposure rack on the same date (six cores from Stewart Field, three from Rye Lake). The air-entrained concrete from which the cores were drilled contained the following types of aggregate:

Project	Cores	Fine Aggregate	Coarse Aggregate
Stewart Field roads	3	Glacial sand	Crushed dolomite
Stewart Field runways	3	Siliceous sand	Crushed dolomite
Rye Lake Airport	3	Siliceous sand	Crushed granite gravel

Table 1-UNDP lists the Upper Narrows cores and gives their exposure record; all of the cores from the Upper Narrows Dam had failed after 535 cycles (five winters of exposure).

Failure of these cores was apparently due to differential expansion.

The nine cores installed for comparison (Stewart and Rye Lake) remained sound after 13 winters (1499 cycles) and were discarded in 1956.

Table 1-UNDP

Record of Testing of Concrete Cores from Upper Narrows Dam

1944-1948 (Installed January 1944)

Specimen No.	O Cycles 1944 Condition	181 Cycles 1945 Condition	286 Cycles 1946 Condition	535 Cycles 1948 Condition (Final)
1A	Sound	Sound	Failed	
10	Sound	Sound	Failed	
2B	Sound	Sound	Failed	
3A	Sound	Sound	Sound	Failed
4A	Sound	Sound	Failed	
4B	Sound	Sound	Failed	
5B	Sound	Sound	Failed	
5C	Sound	Sound	Failed	
6A	Sound	Failed		

Curing Media Study

The purpose of this program was to study the effect of curing media on the durability of concrete.

Specimens

In February 1943, 300 concrete specimens (3-1/2 by 4-1/2 by 20 in.) were installed on the exposure rack at Treat Island, Maine. These specimens had been sawed from 3-1/2- by 20- by 20-in. laboratory slabs at the expiration of the curing period. The following types of curing were employed:

- a. Ten different proprietary membrane curing compounds
- b. Water
- c. Air (alone)
- d. Special paper
- e. Admixture A + air

Six additional admixtures and cement containing a resin were also used to provide additional information. The characteristics of the concrete mixtures were as follows:

	Concrete	Admixture
Water-cement ratio, gal per bag	7.0	6.6
Cement factor, bags per cu yd	5.6	5.6
Slump, in.	2-1/2	1/2-6-1/2
Sand: Aggregate, % by volume	44	44
Mixture proportions	1:2.64:3.70	1:2.68:3.74

The specimens represented concrete placed in thin horizontal members cast on forms (floors or bridge decks), thin sections placed on damp earth (roads or runways), and thin vertically cast sections (walls or parapets). The thin slabs cast on moist earth were placed on compacted sandy loam 14 in. deep. Three types of form linings, designated A, B, and C, were used on the vertical specimens.

Exposure

Program 7

box) in such a manner that only the finished or formed 4-1/2- by 20-in. face of each specimen was exposed to weathering. One hundred twenty-four of the specimens were cast horizontally against the dry and moist soil bases, and one hundred seventy-four were cast vertically with surfaces formed against the three types of form linings. Two beams were dummy specimens used to complete a box of three and were not under test.

In May 1947, to accelerate the effects of the exposure and to permit differentiations in the durabilities of the various mixtures to be seen, the specimens were removed from the boxes and placed on the exposure rack so that they were exposed to weathering effects on all surfaces.

After the winter of 1957-1958, exposure of the remaining specimens was discontinued.

Table 1-CRMA gives the exposure record of all specimens exposed in this series, along with other pertinent information.

Summary of Findings

After 15 winters of exposure (1793 cycles of freezing-and-thawing), 169 specimens remained of the 298 exposed. This amounts to a percentage failure of 43%.

To summarize further:

	No. of Specimens Installed	No. of Specimens Remaining in 1958	% Failure
Specimens Cast Horiz	contally vs Specimen	s Cast Vertically	
Specimens cast horizontally	124	72	42
Specimens cast vertically	174	97	44
Plain Concrete	te vs Concrete with	Admixture 68	63
Concrete with admixture	112	101	10
So	il Base vs Dry Base		
Surface cast on soil base	63	46	27
Surface cast on dry base	61	26	57
	(Continued)		

	No. of Specimens Installed	No. of Specimens Remaining in 1958	% Failure		
Form Linings					
Surface cast against: Form lining A Form lining B Form lining C	58 58 58	31 34 32	47 41 45		
	Admixtures				
	15 15 11 15 15 15 11 15	15 13 11 15 15 15 11 6	0 13 0 0 0 0 0		
Cure: Water Air (alone) Special paper Proprietary membrane curing compounds	112 15 6	92 11 2 51	18 27 67		
Air + admixture A	15	13	13		
Proprietary Membrane Curing Compounds					
Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 Compound 6 Compound 7 Compound 8 Compound 9 Compound 10	15 15 15 15 15 15 15 15 15	10 5 2 4 1 6 6 11 3	33 67 87 73 93 60 60 27 80		

Conclusions

It was concluded from this investigation that:

a. Specimens cast vertically had a slightly higher percentage of failure than specimens cast horizontally (44% vs 42%).

Program 7

- b. Specimens made of concrete with admixtures had a considerably lower percentage of failure than those made with plain concrete (10% vs 63%).
- c. Specimens cast on a dry base had a considerably higher percentage of failure than those cast on moist soil base (57% vs 27%).
- d. Percentage of failure was approximately the same among formlined specimens with the order of durability being: form lining B (41%), form lining C (45%), and form lining A (47%).
- e. Specimens containing admixtures B, C, D, E, F, and resin had excellent durability, with no failures at all. Specimens containing admixture G had a very high percentage of failure (60%), and those containing admixture A had 13%.
- f. Specimens cured with water (18%) or air (alone) (27%) had considerably lower percentages of failure than specimens cured with proprietary membrane curing compounds (66%) or special paper (67%). Specimens cured with air plus admixture A had a percentage failure of only 13%.
- g. Of the specimens containing proprietary membrane curing compounds, compounds 1 (33%) and 8 (27%) showed the smallest percentages of failure, with No. 8 showing the best durability. The others were: compounds 6 and 7 (60%), compound 2 (67%), compound 4 (73%), compounds 9 and 10 (80%), compound 3 (87%), compound 5 (93%).

Table 1-CRMA

Record of Testing of Concrete Beams Cured by Various Media

1943-1958 (Installed February 1943)

Specimen No.	Surface Cast on or Against	Admixture	Curing Me	edium	O Cycles 1943 %E	210 Cycles 1944 %E	483 Cycles 1947 %E	614 Cycles 1948*	719 Cycles 1949	880 Cycles 1950 %E	969 Cycles 1951 %E
					Cast Spec:						
EAS-1B EBS-1B EAS-1C	Soil base	None	Compound	1	100 100 100	115 103 112	128 125 130	128 120 127	124 119 125	125 141 127	125 128 129
EAH-1B EAH-1C EBH-1B	Dry base	None	Compound	1	100 100 100	112 112 106	186 186 163	81 54 118	Failed Failed 121	125	124
EAS-2B EBS-2B EAS-2C	Soil base	None	Compound	2	100 100 100	107 105 112	102 122 130	54 103 125	Failed 105 125	108 124	110 120
EAH-2B EAH-2C EBH-2B	Dry base	None	Compound	2	100 100 100	112 108 103	141 126 130	146 64 125	141 Failed 122	141 126	143 126
EAS-3B EBS-3B EAS-3C	Soil base	None	Compound	3	100 100 100	103 108 108	126 130 130	123 117 123	122 119 125	123 116 123	125 119 121
EAH-3B EAH-3C EBH-3B	Dry base	None	Compound	3	100 100 100	121 112 106	131 129 126	56 80 122	Failed Failed 123	124	130
EAS-4B EBS-4B EAS-4C	Soil base	None	Compound	4	100 100 100	113 108 113	125 141 128	125 136 118	123 128 118	121 134 114	121 132 111
EAH-4B EAH-4C EBH-4B	Dry base	None	Compound	4	100 100 100	110 113 106	126 128 123	119 128 120	119 126 120	119 126 124	119 126 134
EAS-5B EBS-5B EAS-5C	Soil base	None	Compound	5	100 100 100	110 103 111	132 126 126	Failed 119 127	123 127	124 128	124 130
EAH-5B EAH-5C EBH-5B	Dry base	None	Compound	5	100 100 100	110 107 108	121 130 127	Failed 85 127	67 125	Failed Failed	
EAS-6B EBS-6B EAS-6C	Soil base	None	Compound	6	100 100 100	110 108 107	122 130 130	135 95 122	132 92 125	135 79 124	137 74 127
EAH-6B EAH-6C EBH-6B	Dry base	None	Compound	6	100 100 100	116 116 110	151 133 129	151 123 123	154 125 121	152 119 124	157 122 125
EAS-7B EBS-7B EAS-7C	Soil base	None	Compound	7	100 100 100	107 103 106	131 106 136	124 98 111	128 98 111	129 105 113	130 102 113
EAH-7B EAH-7C EBH-7B	Dry base	None	Compound	7	100 100 100	108 108 108	154 121 126	152 110 152	149 110 148	145 106 147	147 92 147
eas-8b ebs-8b eas-8c	Soil base	None	Compound	8	100 100 100	110 111 111	137 134 137	136 129 134	136 129 132	135 128 135	135 129 136
EAH-8B EAH-8C EBH-8B	Dry base	None	Compound	8	100 100 100	120 120 120	138 135 139	131 107 132	127 100 129	132 98 130	159 138 132
EAS-9B EBS-9B EAS-9C	Soil base	None	Compound	9	100 100 100	111 100 -	115 136 123	115 52 123	133 52 121	130 Failed 122	130 124
EAH-9B EAH-9C EBH-9B	Dry base	None	Compound	9	100 100 100	117 120 109	139 139 145	131 137 143	127 137 143	121 134 142	121 135 143
EAS-10B EBS-10B EAS-10C	Soil base	None	Compound	10	100 100 100	111 108 107	129 139 134	120 138 133	125 139 133	133 137 132	134 139 132
EAH-10B EAH-10C EBH-10B	Dry base	None	Compound	10	100 100 100	110 110 106	131 133 128	116 100 114	121 112 125	114 91 131	114 87 136
EAS-11B EBS-11B EAS-11C	Soil base	None	Water		100 100 100	110 111 114	137 134 140	134 126 100	134 129 139	133 136 138	132 140 140

^{*} Specimens were removed from boxes in winter of 1947-1948 and placed on exposure rack exposed to weathering effects on all surfaces. (1 of 9 sheets)

Table 1-CRMA (Continued)

pecimen No.	Surface Cast on or Against	Admixture	Curing Medium	O Cycles 1943 %E	210 Cycles 1944 %E	483 Cycles 1947 %E	614 Cycles 1948 %E	719 Cycles 1949	880 Cycles 1950 %E	969 Cycles 1951 %E
NO.	Agarnet	Admixoure	Horizontally Cast		(Continued		-			
AH-11B AH-11C BH-11B	Dry base	None	Water	100 100 100	116 116 106	134 136 125	62 143 119	80 120 124	Failed Failed 124	127
AS-12B BS-12B AS-12C	Soil base	None	Air	100 100 100	120 111 125	150 134 150	146 130 148	146 131 148	147 130 148	149 131 149
AH-12B AH-12C BH-12B	Dry base	None	Air	100 100 100	130 128 137	155 160 158	149 160 154	151 160 154	149 163 152	147 165 152
AS-13B BS-13B AS-13C	Soil base	В	Water	100 100 100	122 112 125	137 130 136	135 129 134	135 129 134	134 131 136	134 131 134
AH-13B AH-13C	Dry base	В	Water	100 100	116 120	135 136	133 136	133 135	133 134	133 134
AP-2B	Dummy specimen									
AS-14B BS-14B AS-14C	Soil base	C	Water	100 100 100	115 111 125	133 138 144	127 136 144	129 137 144	131 138 142	131 138 142
AH-14B AH-14C BH-14B	Dry base	C	Water	100 100 100	127 120 100	141 135 129	133 133 126	135 135 126	137 135 125	135 135 125
AS-15B BS-15B AS-15C	Soil base	D	Water	100 100 100	114 106 114	136 123, 152	132 121 144	132 123 146	131 126 144	131 127 147
AH-15B AH-15C BH-15B	Dry base	D	Water	100 100 100	117 116 110	134 136 131	130 132 126	132 132 128	135 134 128	135 134 129
AS-16B BS-16B AS-16C	Soil base	E	Water	100 100 100	121 111 122	138 134 137	136 128 131	136 129 133	134 127 132	135 127 134
AH-16B AH-16C BH-16B	Dry base	E	Water	100 100 100	126 126 109	136 138 125	132 136 119	132 136 121	131 133 119	131 133 120
AS-17B BS-17B AS-17C	Soil base	F	Water	100 100 100	120 117 121	140 133 142	138 126 138	136 130 140	140 130 140	140 131 140
AH-17B AH-17C	Dry base	F	Water	100 100	132 132	139 143	134 139	134 141	137 139	135 139
AR-2C	Dummy specimen									
AS-18B BS-18B AS-18C	Soil base	A	Air (Admixture A)	100 100 100	126 114 117	152 136 146	148 130 139	150 132 143	151 133 143	153 134 143
AH-18B AH-18C BH-18B	Dry base	Α	Air (Admixture A)	100 100 100	125 125 152	143 145 148	138 143 169	142 145 171	139 143 174	139 143 179
AS-19B BS-19B AS-19C	Soil base	Resin	Water	100 100 100	114 112 115	138 134 137	130 127 135	132 131 138	134 131 138	136 132 140
AH-19B AH-19C BH-19B	Dry base	Resin	Water	100 100 100	122 124 114	137 136 138	133 138 127	135 131 129	152 129 126	152 129 128
AS-20B AS-20B AS-20C	Soil base	G	Water	100 100 100	111 110 112	114 131 138	134 121 135	135 126 136	136 121 136	137 122 136
AH-20B AH-20C BH-20B	Dry base	G	Water	100 100 100	110 114 107	134 134 128	127 133 118	131 134 122	98 133 117	102 133 119
AS-21B BS-21B AS-21C	Soil base	None	Special paper	100 100 100	114 107 115	140 115 140	133 89 135	137 97 135	136 83 136	138 84 137
AH-21B AH-21C BH-21B	Dry base	None	Special paper	100 100 100	116 115 110	156 129 128	142 76 112	149 84 118	155 60 116	157 47 Fai 124
			Vertically	Cast Specia	mens					
AC-1B	Form lining A	None	Compound 1	100	131	145	143	137	132	132
AC-1C BC-1B				100	131	141	131	135	132 134 113	132 136 113

Specimen	Surface Cast on or Against	Admixture	Curing Medium	O Cycles 1943 %E	210 Cycles 1944 %E	483 Cycles 1947 %E	614 Cycles 1948 %E	719 Cycles 1949 %E	880 Cycles 1950 %E	969 Cycles 1951
			Vertically Cast		Continued					
EAR-1B EAR-1C EBR-1B	Form lining B	None	Compound 1	100 100 100	125 125 112	141 137 128	131 131 118	133 133 118	132 133 113	132 132 115
EAP-1B EAP-1C EBP-1B	Form lining C	None	Compound 1	100 100 100	131 125 127	139 141 137	133 129 129	137 131 129	134 131 131	135 114 133
EAC-2AB EAC-2AC EBC-2B	Form lining A	None	Compound 2	100 100 100	121 119 120	132 129 127	126 117 118	126 119 120	126 120 111	128 119 113
EAP-2AB EAP-2AC EBP-2B	Form lining C	None	Compound 2	100 100 100	120 120 130	136 138 147	129 127 138	131 129 140	129 127 140	133 131 142
EAR-2AB EAR-2AC EBR-2B	Form lining B	None	Compound 2	100 100 100	108 108 116	126 124 127	118 118 113	118 113 111	111 111 103	115 113 102
EAC-3B EAC-3C EBC-3B	Form lining A	None	Compound 3	100 100 100	120 115 118	139 128 140	129 123 123	125 121 125	106 100 105	99 107 97
EAR-3B EAR-3C EBR-3B	Form lining B	None	Compound 3	100 100 100	117 117 112	131 131 126	124 124 116	114 85 119	89 90 96	89 Failed 93
EAP-3B EAP-3C EBP-3B	Form lining C	None	Compound 3	100 100 100	127 127 120	140 142 133	133 129 127	127 131 131	108 113 125	103 129 123
EAC-4B EAC-4C EBC-4B	Form lining A	None	Compound 4	100 100 100	125 123 117	138 136 136	133 130 128	129 130 130	113 125 125	112 130 129
EAR-4B EAR-4C EBR-4B	Form lining B	None	Compound 4	100 100 100	124 120 116	134 134 123	126 129 118	119 125 120	100 91 113	94 85 113
EAP-4B EAP-4C EBP-4B	Form lining C	None	Compound 4	100 100 100	138 130 127	149 145 137	140 138 131	134 138 129	112 130 124	110 134 129
EAC-5B EAC-5C EBC-5B	Form lining A	None	Compound 5	100 100 100	120 121 118	134 132 142	134 126 128	116 128 104	109 126 Failed	108 126
EAR-5B EAR-5C EBR-5B	Form lining B	None	Compound 5	100 100 100	116 116 115	131 133 133	127 122 73	127 115 Failed	93 84	90 81
EAP-5B EAP-5C EBP-5B	Form lining C	None	Compound 5	100 100 100	125 120 116	137 131 127	137 124 80	141 118 Failed	126 83	124 70
EAC-6B EAC-6C EBC-6B	Form lining A	None	Compound 6	100 100 100	138 133 123	162 157 138	147 141 130	147 141 119	145 137 119	147 137 90
EAR-6B EAR-6C EBR-6B	Form lining B	None	Compound 6	100 100 100	129 135 120	143 143 133	139 139 129	139 139 131	132 132 128	136 132 127
EAP-6B EAP-6C EBP-6B	Form lining C	None	Compound 6	100 100 100	145 136 126	159 159 143	152 152 138	155 150 138	154 148 126	155 145 123
EAC-7B EAC-7C EBC-7B	Form lining A	None	Compound 7	100 100 100	120 116 123	133 133 132	129 126 126	131 128 128	130 126 115	130 127 111
EAR-7B EAR-7C EBR-7B	Form lining B	None	Compound 7	100 100 100	115 116 112	126 129 130	113 122 123	109 120 125	100 114 124	95 114 123
EAP-7B EAP-7C EBP-7B	Form lining C	None	Compound 7	100 100 100	126 121 124	130 137 141	108 121 131	Failed 125 135	103 113 134	99 113 134
EAC-8B EAC-8C EBC-8B	Form lining A	None	Compound 8	100 100 100	136 136 124	151 151 145	145 145 145	149 145 138	146 146 139	146 146 140
EAR-8B EAR-8C EBR-8B	Form lining B	None	Compound 8	100 100 100	143 130 124	159 149 143	152 140 136	152 143 138	154 142 129	151 142 131

Specimen No.	Surface Cast on or Against	Admixture	Curing Medium	O Cycles 1943 %E	210 Cycles 1944 %E	483 Cycles 1947 %E	614 Cycles 1948 %E	719 Cycles 1949 %E	880 Cycles 1950 _%E	969 Cycles 1951 %E
			Vertically Cast S	pecimens (Continued)					
EAP-8B EAP-8C EBP-8B	Form lining C	None	Compound 8	100 100 100	153 151 148	174 175 159	167 161 155	163 163 155	169 163 143	169 165 143
EAC-9B EAC-9C EBC-9B	Form lining A	None	Compound 9	100 100 100	116 116 123	129 129 79	121 125 Failed	123 125	113 123	114 125
EAR-9B EAR-9C EBR-9B	Form lining B	None	Compound 9	100 100 100	124 115 116	137 126 131	133 121 122	133 119 105	130 113 95	131 115 99
EAP-9B EAP-9C EBP-9B	Form lining C	None	Compound 9	100 100 100	133 151 131	143 168 146	137 156 142	139 154 144	125 147 136	102 147 139
EAC-10B EAC-10C EBC-10B	Form lining A	None	Compound 10	100 100 100	117 117 121	129 128 Failed	124 119	102 121	Failed 112	111
EAR-10B EAR-10C EBR-10B	Form lining B	None	Compound 10	100 100 100	111 117 117	126 130 121	117 121 100	68 123 105	Failed 119 90	121 71
EAP-10B EAP-10C EBP-10B	Form lining C	None	Compound 10	100 100 100	137 137 130	153 153 143	128 142 134	70 135 138	Failed 123 138	121 136
EAC-11B EAC-11C EBC-11B	Form lining A	None	Water	100 100 100	123 122 114	136 136 129	130 130 126	128 126 124	108 115 123	79 110 124
EAR-11B EAR-11C EBR-11B	Form lining B	None	Water	100 100 100	118 121 115	155 137 130	151 127 122	149 118 123	Failed 107 122	103 118
EAP-11B EAP-11C EBP-11B	Form lining C	None	Water	100 100 100	124 127 127	151 153 139	138 147 131	124 140 133	74 110 133	Failed 78 135
EAC-12B EAC-12C EBC-12B	Form lining A	None	Air	100 100 100	135 136 137	153 155 155	147 147 151	147 149 151	148 146 147	148 148 153
EAR-12B EAR-12C EBR-12B	Form lining B	None	Air	100 100 100	137 131 135	153 143 155	149 137 145	147 137 147	145 132 147	145 97 147
EAP-12B EAP-12C EBP-12B	Form lining C	None	Air	100 100 100	137 144 157	156 159 175	143 152 170	137 146 170	Failed 100 170	92 173
EAC-13B EAC-13C	Form lining A	В	Water	100	130 136	149 134	143 130	143 130	140 129	140 129
EAR-13B EAR-13C	Form lining B	В	Water	100	120 132	133 134	122 130	122 132	118 129	120 129
EAP-13B EAP-13C	Form lining C	В	Water	100 100	122 122	137 133	137 129	133 131	134 130	134 130
EAC-14B EAC-14C EBC-14B	Form lining A	C	Water	100 100 100	142 128 111	142 139 125	138 140 122	136 137 120	136 137 121	136 137 122
EAR-14B EAR-14C EBR-14B	Form lining B	C	Water	100 100 100	138 131 108	136 145 123	133 138 121	131 140 116	130 140 115	128 139 117
EAP-14B EAP-14C EBP-14B	Form lining C	C	Water	100 100 100	136 127 108	140 142 122	138 138 117	138 138 116	137 136 114	137 139 116
EAC-15B EAC-15C EBC-15B	Form lining A	D	Water	100 100 100	122 122 123	137 135 125	126 127 121	126 131 119	124 130 122	126 130 124
EAR-15B EAR-15C EBR-15B	Form lining B	D	Water	100 100 100	116 116 111	132 128 124	125 125 118	128 126 118	124 124 118	124 124 85
EAP-15B EAP-15C EBP-15B	Form lining C	D	Water	100 100 100	126 131 118	137 146 132	134 144 123	136 144 127	125 143 125	135 145 126
EAC-16B EAC-16C EBC-16B	Form lining A	E	Water	100 100 100	127 131 120	138 142 124	136 138 122	136 138 120	132 136 118	132 136 118

Specimen	Surface Cast on or			O Cycles 1943	Cycles 1944	483 Cycles 1947	Cycles 1948	719 Cycles 1949	880 Cycles 1950	969 Cycles 1951
No.	Against	Admixture	Curing Medium Vertically Cast S	Decimens (%E Continued	<u>%E</u>		<u>%E</u> _	<u>%E</u>	<u>%E</u>
EAR-16B EAR-16C	Form lining B	E	Water	100	127 131	138 133	133 133	131 133	130 134	131 134
EBR-16B EAP-16B EAP-16C	Form lining C	E	Water	100 100 100	124 134 133	135 144 139	124 141 137	126 141 142	125 141 134	133 141 134
EBP-16B	From Marian A	10	Motor	100	120	126	122	124 140	122	123
EAC-17B EAC-17C	Form lining A	F	Water	100	133 133	145 146	140 144	144	138 141	138 141
EAR-17B EAR-17C	Form lining B	F	Water	100 100	129 129	137 137	137 132	134 134	135 130	135 132
EAP-17B EAP-17C	Form lining C	F	Water	100	139 137	147 146	142 143	145 145	140 142	143 142
EAC-18B EAC-18C EBC-18B	Form lining A	A	Air (Admixture A)	100 100 100	126 131 126	142 146 141	140 142 137	138 142 137	134 135 112	136 137 120
EAR-18B EAR-18C EBR-18B	Form lining B	A	Air (Admixture A)	100 100 100	125 125 126	143 141 137	137 135 135	137 133 135	117 126 129	119 126 133
EAP-18B EAP-18C EBP-18B	Form lining C	A	Air (Admixture A)	100 100 100	138 136 135	156 151 152	151 147 148	151 149 143	147 147 144	149 148 148
EAC-19B EAC-19C EBC-19B	Form lining A	Resin	Water	100 100 100	127 142 120	138 144 126	131 142 124	133 138 122	130 139 124	130 139 124
EAR-19B EAR-19C EBR-19B	Form lining B	Resin	Water	100 100 100	121 136 118	138 138 127	130 136 119	130 132 118	129 133 117	131 134 119
EAP-19B EAP-19C EBP-19B	Form lining C	Resin	Water	100 100 100	132 135 124	148 148 137	143 143 132	143 141 133	140 137 133	142 140 136
EAC-20B EAC-20C EBC-20B	Form lining A	G	Water	100 100 100	121 121 110	136 136 126	133 132 121	115 128 114	130 Failed 104	Failed Failed
EAR-20B EAR-20C EBR-20B	Form lining B	G	Water	100 100 100	121 116 108	136 131 126	130 129 123	100 89 114	Failed Failed 97	101
EAP-20B EAP-20C EBP-20B	Form lining C	G	Water	100 100 100	131 131 119	147 145 124	141 145 128	139 141 102	129 135 Failed	129 139
				1070 Cycles 1952 %E	1155 Cycles 1953 %E	1266 Cycles 1954 %E	1411 Cycles 1955 %E	1578 Cycles 1956 %E	1722 Cycles 1957	1793 Cycles (Final) 1958
			Horizontally	Cast Spec	imens					
EAS-1B EBS-1B EAS-1C	Soil base	None	Compound 1	128 124 132	130 128 134	130 132 141	134 130 141	140 130 148	142 158 148	144 170 157
EBH-1B	Dry base	None	Compound 1	129	132	135	131	131	124	126
EBS-2B EAS-2C	Soil base	None	Compound 2	121 127	Failed 129	133	139	149	Failed	
EAH-2B EBH-2B	Dry base	None	Compound 2	145	146 Failed	150	156	159	159	163
EAS-3B EBS-3B	Soil base	None	Compound 3	133 130 121	132 Failed	135	141	145	147	148
EAS-3C EBH-3B	Dry base	None	Compound 3	125	127 Failed	131	135	139	148	152
EAS-4B EBS-4B EAS-4C	Soil base	None	Compound 4	126 137 114	125 140 Failed	138 143	144 153	147 163	148 165	150 158
EAH-4B EAH-4C EBH-4B	Dry base	None	Compound 4	121 129 130	119 132 Failed	Failed 136	139	142	146	151

1793 Cycles	1722	1578	1411	1266	1155	1070			Sumpras Cost	
(Final) 1958 %E	Cycles 1957 %E	Cycles 1956 %E	Cycles 1955 ÆE	Cycles 1954 %E	Cycles 1953 ÆE	Cycles 1952 %E	Curing Medium	Admixture	Surface Cast on or Against	Specimen No.
				1)	(Continued	Specimens (Horizontally Cast			
152	Failed 144	141 143	141 139	133 138	130 135	128 133	Compound 5	None	Soil base	EBS-5B EAS-5C
166	164 147	163	154	148	144 Failed	140 71	Compound 6	None	Soil base	EAS-6B EBS-6B EAS-6C
150 201	194	143 191	138 184	136 178	134 169	132 162	Compound 6	None	Dry base	EAH-6B
					Failed Failed	136 138				еан-6с евн-6в
147	134	129	129	127	Failed Failed 124	141 117 118	Compound 7	None	Soil base	EAS-7B EBS-7B EAS-7C
					Failed Failed Failed	157 69 149	Compound 7	None	Dry base	EAH-7B EAH-7C EBH-7B
172 169 177	169 166 174	165 154 169	155 154 158	149 151 147	144 143 143	140 138 140	Compound 8	None	Soil base	EAS-8B EBS-8B EAS-8C
	Failed	154	154	134	125	Failed Failed	Compound 8	None	Dry base	EAH-8B EAH-8C EBH-8B
157	154	153	154 150	141	135	132	Compound 9	None	Soil base	EAS-9B
	1.00				Failed	133				EAS-9C
111	129	138	138	139	Failed 140 Failed	134 140 149	Compound 9	None	Dry base	EAH-9B EAH-9C EBH-9B
174 169	171 163	170 156	157 150	153 146	Failed 147 142	140 147 141	Compound 10	None	Soil base	EAS-10B EBS-10B EAS-10C
	Failed	114	114	115 Failed	116 63 Failed	116 83 144	Compound 10	None	Dry base	EAH-10B EAH-10C EBH-10B
198	189	185	173	156	Failed Failed 154	138 148 131	Water	None	Soil base	EAS-11B EBS-11B EAS-11C
					Failed	137	Water	None	Dry base	EBH-11B
191 164 206	190 152 201	187 156 192	172 151 176	165 148 168	161 140 159	155 138 159	Air	None	Soil base	EAS-12B EBS-12B EAS-12C
125	141	166	163	159	157 Failed	153 175	Air	None	Dry base	EAH-12B EAH-12C
198 159	187 156	190 157	172 151	169 146	160 142	158 138	Water	В	Soil base	EBH-12B EAS-13B
149 163	146 163	148 160	143 152	139 147	136 143	134 141	water	В	SOII Dase	EBS-13B EAS-13C
145	145 145	145	141	140 141	138 140	136 138	Water	В	Dry base Dummy specimen	EAH-13B EAH-13C EAP-2B
157 177 171	153 172 167	152 166 167	146 157 161	141 152 155	138 147 151	134 143 145	Water	С	Soil base	EAS-14B EBS-14B EAS-14C
153 155 144	150 154	152 151	148 147	145 144	141 141	139 137	Water	C	Dry base	EAH-14B EAH-14C
168 145 199	162 142 186	156 148 184	145 142 174	141 137 168	139 131 160	135 131	Water	D	Soil base	EAS-15B EBS-15B
171 160 153	163 157 148	156 156 148	151 147 140	145 144	140 140	138 138	Water	D	Dry base	EAH-15B EAH-15C EBH-15B
171 153 175	106 150 169	159 149 168	152 140 160	145 137	141 132 149	139 131	Water	E	Soil base	EAS-16B EBS-16B EAS-16C
140 149	140 149	139 146	136 142	137 140	135 137	132 136	Water	E	Dry base	EAH-16B EAH-16C
137 170 151 170	165 150 162	162 149 163	153 142 154	151 139 151	147 135 147	143 89 143	Water	F .	Soil base	EAS-17B EBS-17B EAS-17C
	142 162 142 186 163 157 148 106 150 169 140 149 134 165 150	139 156 148 184 156 156 148 159 168 139 146 127 162 149	135 145 142 174 151 147 140 152 140 160 136 142 127 153 142	133 141 137 168 145 144 137 145 137 155 137 140 125	131 139 131 160 140 136 141 132 149 135 137 122 147	128 135 131 152 138 138 139 131 138 139 131 138 132 136 120	Water Water Water	D E	Dry base Soil base Dry base Soil base	EBH-14B EAS-15B EBS-15B EAS-15C EAH-15B EAH-15C EBH-15B EAS-16B EAS-16C EAH-16B EAH-16C EBH-16B EAH-16C EBH-17B EAS-17B

(7 of 9 sheets)

Specimen	Surface Cast on or	Admistuna	Ouning Medium	1070 Cycles 1952	1155 Cycles 1953	1266 Cycles 1954	1411 Cycles 1955	1578 Cycles 1956	1722 Cycles 1957	Cycles (Final) 1958
No.	Against	Admixture	Curing Medium Horizontally Cast S	%E Specimens	%E (Continue		%E_	%E		% E
EAH-17B EAH-17C	Dry base	F	Water	136 141	139 143	141 147	143 152	147 155	147	152 131
EAR-2C	Dummy specimen									
EAS-18B EBS-18B EAS-18C	Soil base	A	Air (Admixture A)	159 141 149	162 145 152	169 153 157	178 160 164	189 165 173	194 164 183	205 168 192
EAH-18B EAH-18C EBH-18B	Dry base	Α	Air (Admixture A)	145 149 184	151 153 188	159 159 Failed	171 169	183 183	186 191	192 201
EAS-19B EBS-19B EAS-19C	Soil base	Resin	Water	139 136 145	143 139 149	146 142 153	149 147 158	149 147 163	157 158 104	163 243 171
EAH-19B EAH-19C EBH-19B	Dry base	Resin	Water	154 131 130	156 134 131	158 136 133	183 137 136	183 144 141	128 146 112	172 148 114
EAS-20B	Soil base	G	Water	142	148	155	161	168	176	184
EBS-20B EAS-20C				165 139	Failed 145	149	153	153	101	182
EAH-20B EAH-20C EBH-20B	Dry base	G	Water	110 136 153	111 143 Failed	114 148	146 158	Failed 158	96	198
EAS-21B EBS-21B	Soil base	None	Special paper	147 77	150 Failed	152	162	175	172	190
EAS-21C EAH-21B EBH-21B	Dry base	None	Special paper	140 169 158	148 Failed Failed	151	158	171	131	131
EDN-215			Vertically (
EAC-1B EAC-1C EBC-1B	Form lining A	None	Compound 1	128 140 118	130 142 126	127 140 Failed	118 147	118 156	105 152	Failed
EAR-1B EAR-1C EBR-1B	Form lining B	None	Compound 1	133 135 113	136 138 115	131 140 112	133 143 108	136 156 110	130 151 93	125 152 138
EAP-1B EAP-1C EBP-1B	Form lining C	None	Compound 1	136 135 133	140 138 137	137 144 139	138 145 140	138 152 146	113 Failed 144	191 145
EAC-2AB EAC-2AC	Form lining A	None	Compound 2	132 135	137 Failed	145	146	153	159	159
EBC-2B EAP-2AB EAP-2AC	Form lining C	None	Compound 2	116 141 138	Failed	Failed	107	Failed	160	101.
EBP-2B EAR-2AB EAR-2AC EBR-2B	Form lining B	None	Compound 2	144 113 114 98	148 123 113 96	151 128 114 102	159 134 110 103	162 136 77 Failed	168 136 95	184 146 117
EAC-3B EAC-3C EBC-3B	Form lining A	None	Compound 3	96 105	Failed 98 Failed	98	87	Failed		
EAR-3B EBR-3B	Form lining B	None	Compound 3	173 78 84	Failed Failed					
EAP-3B EAP-3C EBP-3B	Form lining C	None	Compound 3	111 144 123	104 Failed 123	102 Failed	- 77	Failed		
EAC-4B EAC-4C EBC-4B	Form lining A	None	Compound 4	109 135 91	Failed 138 134	139 141	145 38 Fail.	Failed		
EAR-4B EAR-4C EBR-4B	Form lining B	None	Compound 4	84 84 88	77 79 118	71 79 120	52 73 160	Failed Failed Failed		
EAP-4B EAP-4C EBP-4B	Form lining C	None	Compound 4	103 136 133	Failed 136 133	130 141	117 157	117 Failed	117	129
EAC-5B EAC-5C	Form lining A	None	Compound 5	106 127	88 126	Failed 130	135	Failed		
EAR-5B EAR-5C	Form lining B	None	Compound 5	89 Failed	77	68	50 Fail.			

(Continued)

O

Table 1-CRMA (Continued)

Specimen No.	Surface Cast on or Against	Admixture	Curing Medium	1070 Cycles 1952	1155 Cycles 1953	1266 Cycles 1954 %E	1411 Cycles 1955 4E	1578 Cycles 1956 %E	1722 Cycles 1957	Cycles (Final) 1958
			Vertically Cast	Specimens (Continued	2				
EAP-5B EAP-5C	Form lining C	None	Compound 5	126 52	119 Failed	110	110	Failed		
EAC-6B EAC-6C EBC-6B	Form lining A	None	Compound 6	151 139 84	158 139 Failed	163 143	172 150	Failed 130	136	136
EAR-6B EAR-6C EBR-6B	Form lining B	None	Compound 6	140 138 130	140 138 132	143 138 135	149 132 140	Failed Failed 143	91	91
EAP-6B EAP-6C EBP-6B	Form lining C	None	Compound 6	159 152 125	159 152 Failed	161 Failed	158	158	158	163
EAC-7B EAC-7C EBC-7B	Form lining A	None	Compound 7	134 133 106	134 135 64	138 139 Failed	142 144	149 150	149 154	147 154
EAR-7B EAR-7C EBR-7B	Form lining B	None	Compound 7	71 116 126	Failed 116 126	116 131	157 138	104 138	104 102	104 102
EAP-7B EAP-7C EBP-7B	Form lining C	None	Compound 7	99 113 136	Failed 109 138	Failed	149	149	173	159
EAC-8B EAC-8C EBC-8B	Form lining A	None	Compound 8	152 150 146	152 152 147	154 152 151	190 159 169	169 170 166	169 168 169	169 173 166
ear-8b ear-8c ebr-8b	Form lining B	None	Compound 8	156 146 137	156 146 139	157 148 145	168 157 149	170 164 155	166 157 155	166 156 93
EAP-8B EAP-8C EBP-8B	Form lining C	None	Compound 8	174 170 150	177 173 152	179 180 156	186 187 163	189 Failed 171	194 171	186 173
EAC-9B EAC-9C	Form lining A	None	Compound 9	121 130	127 134	130 156	106 179	Failed Failed		
EAR-9B EAR-9C EBR-9B	Form lining B	None	Compound 9	134 120 99	138 120 74	138 Failed Failed	146	Failed		
EAP-9B EAP-9C EBP-9B	Form lining C	None	Compound 9	156 159 146	Failed Failed 148	152	165	118	118	118
EAC-1OC	Form lining A	None	Compound 10	119	Failed					
EAR-10C EBR-10B	Form lining B	None	Compound 10	136 296	Failed Failed					
EAP-10C EBP-10B	Form lining C	None	Compound 10	140 136	Failed 138	142	146	150	153	147
EAC-11B EAC-11C EBC-11B	Form lining A	None	Water	53 101 129	Failed 90 131	Failed	138	146	149	147
EAR-11C EBR-11B	Form lining B	None	Water	90 129	83 131	Failed 134	136	136	142	137
EAP-11C EBP-11B	Form lining C	None	Water	359 141	Failed 143	149	156	159	163	150
EAC-12B EAC-12C EBC-12B	Form lining A	None	Air	152 152 162	155 152 164	158 154 175	158 161 166	167 168 175	172 175 174	172 166 169
EAR-12B EAR-12C EBR-12B	Form lining B	None	Air	149 134 152	149 132 152	148 128 155	146 170 191	146 189 125	Failed 193 129	192
EAP-12C EBP-12B	Form lining C	None	Air	99 180	Failed 180	192	198	198	209	205
EAC-13B EAC-13C	Form lining A	В	Water	138 133	136 133	139 133	143 196	146 196	148 142	146
EAR-13B EAR-13C	Form lining B	В	Water	127 134	127 134	129 136	178 141	133 143	139	130 146
EAP-13B	Form lining C	В	Water	138 134	138 134	140	142	142	148 146	140
EAP-13C EAC-14B EAC-14C EBC-14B	Form lining A	C	Water	139 139 126	141 139 128	142 144 130	157 146 138	148 148 144	148 150 146	139 140 142 142

Specimen No.	Surface Cast on or Against	Admixture	Curing Medium	1070 Cycles 1952	1155 Cycles 1953	1266 Cycles 1954 %E	1411 Cycles 1955 %E	1578 Cycles 1956	1722 Cycles 1957	1793 Cycles (Final) 1958
			Vertically Cast S	pecimens (Continued					
EAR-14B EAR-14C EBR-14B	Form lining B	C	Water	132 142 121	132 142 123	136 145 125	142 210 131	143 152 137	143 154 138	145 156 137
EAP-14B EAP-14C EBP-14B	Form lining C	C	Water	141 141 121	1.41 143 122	144 146 125	148 153 147	150 159 135	153 159 140	144 152 138
EAC-15B EAC-15C EBC-15B	Form lining A	D	Water	130 136 129	132 136 129	134 140 134	140 143 140	143 150 151	147 153 151	142 146 155
EAR-15B EAR-15C EBR-15B	Form lining B	D	Water	128 127 125	130 128 125	132 131 129	138 138 132	143 138 95	144 140 95	134 140 95
EAP-15B EAP-15C EBP-15B	Form lining C	D	Water	139 152 128	141 152 130	144 157 132	151 162 139	157 170 142	158 170 146	160 168 148
EAC-16B EAC-16C EBC-16B	Form lining A	E	Water	136 141 122	136 141 122	138 143 124	140 147 128	140 147 130	147 151 134	149 142 134
EAR-16B EAR-16C EBR-16B	Form lining B	E	Water	136 138 128	136 138 130	137 140 130	141 146 137	141 146 137	149 136 140	147 138 139
EAP-16B EAP-16C EBP-16B	Form lining C	E	Water	143 139 126	145 141 128	145 141 130	150 144 137	150 144 142	152 144 154	151 142 152
EAC-17B EAC-17C	Form lining A	F	Water	142 147	142 147	143 147	148 149	151 155	154 157	154 152
EAR-17B EAR-17C	Form lining B	F	Water	139 139	139 137	139 137	142 139	157 142	162 141	161 131
EAP-17B EAP-17C	Form lining C	F	Water	146 144	147 144	148 148	149 153	145 154	151 157	149 148
EAC-18B EAC-18C EBC-18B	Form lining A	A	Air (Admixture A)	140 144 125	142 144 131	144 144 137	167 152 144	155 156 149	155 157 135	155 150 126
EAR-18B EAR-18C EBR-18B	Form lining B	A	Air (Admixture A)	126 130 137	128 134 141	132 135 143	151 140 151	144 144 159	145 147 155	144 137 157
EAP-18B EAP-18C EBP-18B	Form lining C	A	Air (Admixture A)	147 154 158	154 154 Failed	155 156	162 160	162 168	161 169	161 165
EAC-19B EAC-19C EBC-19B	Form lining A	Resin	Water	134 148 128	134 143 128	135 145 130	137 148 131	140 148 134	136 155 140	138 159 141
EAR-19B EAR-19C EBR-19B	Form lining B	Resin	Water	135 139 123	135 137 121	136 139 122	136 142 124	143 145 131	142 150 126	142 143 130
EAP-19B EAP-19C EBP-19B	Form lining C	Resin	Water	147 144 140	147 144 140	149 146 142	153 142 145	157 149 150	157 147 154	149 146 156
EBR-20B	Form lining B	G	Water	103	106	108	121	121	125	125
EAP-20B EAP-20C	Form lining C	G	Water	134 143	135 145	135 145	148 137	149 110	144 94	130 87

Construction Joint Program*

A general investigation of the durability of horizontal joints in mass concrete was initiated in October 1941 with the installation at Treat Island of core specimens drilled from John Martin Dam, Caddoa, Colo. The results of this initial investigation prompted the continuation of the study with three other series of concrete cores containing variously treated horizontal construction joints. The entire program involved tests of cores from the following projects:

Project	Location	No. of Cores
John Martin Dam	Caddoa, Colo.	19
Norfork Dam Dale Hollow Dam	Mountain Home, Ark. Celina, Tenn.	23
Bluestone Dam	Hinton, W. Va.	40
		Total 86

John Martin Dam

1941 installation

Nine 8-in.-diameter concrete cores drilled from the interior of the John Martin Dam and containing horizontal construction joints were installed at Treat Island in October 1941. All were exposed in the condition in which they were received, i.e. with uninsulated ends. The concrete contained type II cement, and natural sand and crushed gravel aggregates (maximum size, 6 in.). Three of the nine cores (cement factor, 3.0 bags per cu yd; water-cement ratio, 8.27 gal per bag; slump, 3/4 in.) contained horizontal construction joints cleaned with an air-water jet. Three cores (cement factor, 3.0 bags per cu yd; water-cement ratio, 8.0 gal per bag; slump, 1/2 in.) contained joints which had been subjected to no treatment. Three cores (cement factor, 3.0 bags per cu yd; water-cement ratio, 8.0 gal per bag; slump, 1/2 in.) contained joints the surfaces of which had

^{*} See: Corps of Engineers, Central Concrete Laboratory, John Martin Dam,

Durability of Concrete Cores and Columns, Final Report (July 1942).

, Durability of Horizontal Joints in Mass Concrete

(June 1944).

, Cores of Concrete, Dale Hollow Dam (August 1944).

, Concrete Cores, Dale Hollow Dam (July 1945).

been cleaned by sandblasting. All nine cores deteriorated rapidly and were withdrawn for laboratory study after 120 cycles of freezing-and-thawing. Since the concrete contiguous to the joint plane had disintegrated, the precise failures of the joint planes themselves were left in doubt.

1942 installation

Ten 8-in.-diameter joint cores from John Martin Dam, representing five types of joint treatment, were installed on the exposure rack in October 1942. The ends of these cores were protected with pads of concrete containing entrained air, which were cast around each core in such manner that only 1 in. of the core on each side of the joint was exposed to weathering. The jointing material for the ten cores was cement-sand grout, and the joint surfaces had been damp-cured. Two cores represented each of five different types of joint treatment as indicated below:

No. of Joint Cores	Type of Joint Surface Treatment
2	Air-water jet plus dry-sandblast, vibrated surface
2	Air-water jet, snowshoed surface
2	Air-water jet, vibrated surface
2	Wet-sandblast, vibrated surface
_2	Wet-sandblast, snowshoed surface
Total 10	

During the first winter of exposure, seven of the cores failed. One core failed after two winters, one after 19 winters, and the remaining core failed after 20 winters.

It is concluded from this exposure that:

- a. The greatest degree of durability was obtained by one airwater jet, vibrated joint core which lasted 20 winters. However, one wet-sandblast, snowshoed joint core lasted 19 winters.
- b. Air-water jet plus dry-sandblast, vibrated surfaces showed the poorest durability.
- c. In general, surfaces compacted by snowshoeing were superior to surfaces prepared by vibration.

Table 1-CJ lists these cores, their joint-surface treatment, mixture design data, and exposure record.

Norfork Dam

Eight 8-in.-diameter joint cores were drilled from Norfork Dam. Four of these cores were untreated and four were treated. All of the untreated cores failed before they could be exposed at Treat Island. The four treated joint cores were installed at Treat Island in March 1943. The treatment consisted of hand-tamping the joint surfaces and using an airwater jet just prior to the final set of the concrete. The cores were insulated prior to installation at Treat Island with pads of concrete containing entrained air in a manner similar to the 1942 group of cores from John Martin Dam.

The concrete in the joint cores contained low-heat low-alkali cement, natural sand and gravel, and crushed limestone aggregates (maximum size, 6 in.). The cement factors were 3 and 4 bags per cu yd and the water-cement ratios were 6.19 and 8.25 gal per bag; the jointing material was a 1/2-in. layer of cement-sand grout.

All four joint cores failed during the first winter of exposure with higher-water-cement ratio lower-cement-factor cores failing before the lower-water-cement ratio higher-cement-factor cores. No significance can be attached to the failure of the joints in these four cores since there were no companion specimens with different joint treatments installed for comparison. However, the joints treated by air-water jet were stronger than untreated joints, since the joints receiving no treatment failed before they could be exposed. Table 2-CJ lists these specimens and gives their exposure record along with other pertinent information.

Dale Hollow Dam

Twenty-three 8-1/4-in.-diameter concrete cores, drilled from Dale Hollow Dam, were installed on the exposure rack at Treat Island in

December 1943. This installation was made to determine the relation of joint-surface treatment of the concrete, method of cleaning the joint areas, and the soundness of the joints as indicated by their resistance to freezing-and-thawing at Treat Island. These 23 cores represented eight types of joint treatment. Core ends were insulated with pads of airentrained concrete in a manner similar to the 1942 group of cores from John Martin Dam. The coarse aggregate (maximum size, 6 in.) was predominantly a dark dense limestone with some oblitic limestone; a type II cement was used. Fifteen cores contained exterior concrete (cement factor, 4.5 bags per cu yd; water-cement ratio, 6.0 to 6.6 gal per bag; slump, 2-1/2 to 3 in.). Eight cores contained interior concrete (cement factor, 3.0 bags per cu yd; water-cement ratio, 8.0 gal per bag; slump, 3 in.).

All of these cores failed after being subjected to a maximum of 89 cycles of freezing-and-thawing (less than one full winter). Table 3-CJ lists these specimens and gives their exposure record along with other pertinent information.

From the standpoint of joint-surface treatment alone, the following shows the types of joint-surface treatment in order of <u>decreasing</u> durability:

- a. Surface tamped, cut with air-water jet, and covered with a thin broomed-in layer of grout.
- b. Surface tamped, cut with air-water jet, and 1/2-in. layer of grout then applied.
- Surface tamped and a layer of grout applied as thin as could be broomed and still cover the entire surface.
- d. Surface tamped and 1/2-in. layer of grout spread over the preceding lift immediately prior to placing concrete thereon.
- e. Surface tamped and surface laitance removed by air-water jet.
- f. Surface tamped.
- g. No tamping; surface laitance removed by air-water jet applied after initial and before final set.
- h. No tamping; 1/2-in. layer of grout applied after laitance removed by air-water jet.

Bluestone Dam

Forty 12-in.-diameter concrete cores, drilled from Bluestone Dam, were installed on the exposure rack at Treat Island in December 1943. Due to the difficulty encountered in locating the joints in many of the cores, they were installed with their ends uninsulated. All of the concrete from which the cores were drilled was made with type II cement containing a commercial material as a grinding aid. Twenty cores were drilled from interior concrete and twenty were drilled from exterior concrete. The interior concrete had a cement factor of 3.5 bags per cu yd and a water-cement ratio of 7.0 gal per bag. The exterior concrete had a cement factor of 4.5 bags per cu yd and a water-cement ratio of 5.5 gal per bag. The sand-aggregate ratio for both interior and exterior concrete was 32 percent. The fine aggregate was a blend of natural sand and crushed limestone; the coarse aggregate was a crushed, dark, dense limestone with some colitic limestone (maximum size, 6 in.). The aggregate grading was poor. The joints in the cores represented ten types of joint treatment, with four cores for each type. Two of each group of four cores were drilled from interior concrete and two from exterior concrete.

All of these joint cores failed after a maximum of five winters of exposure. Only one core (exterior concrete, snowshoed surface, sandblast cleanup, and water cured) lasted for more than four winters.

The exposure record of these specimens is given in table 4-CJ along with other pertinent information.

It appears from these results that the compaction and leveling of the lift surface has a greater influence on the durability of the joint than any other factor. The leveling of surfaces by vibration appears to have a detrimental effect on the concrete immediately beneath the surface that cleanup operations cannot rectify. No clear difference was developed between the wet sandblast and the air-water jet as effective surface scourers.

Joint Treatment, Mixture Data, and Observations of Concrete Cores, Construction Joint Program,

John Martin Dam, 1942-1962 (Installed October 1942)

	Joint Tre		Water- cement	Cement Factor	1942 Condi- tion		1943 C	ondition		Condi	tion	1958 Condi- tion
Core No.	Joint Cleanup	Consoli- dation	Ratio gal/bag	bags/ cu yd	0 Cycles	91 Cycles	110 Cycles	142 Cycles	188 Cycles	319 Cycles	330 Cycles	1973 Cycle
22A-3773.03	Air-water jet	Snowshoed surface	6.45-8.21	3.0-4.0	Sound	Sound	Sound	Sound	Failed			
24A-3786.20	Air-water jet	Snowshoed surface	6.45-8.21	3.0-4.0	Sound	Sound	Sound	Sound	Sound	Failed		
228-3776.59	Wet sandblast	Snowshoed	6.51-8.41	3.0-4.0	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
22A-3781.29	Wet sandblast	Snowshoed surface	6.51-8.41	3.0-4.0	Sound	Sound	Sound	Sound	Failed			
28A-3772.95 28B-3786.11	Air-water jet Air-water jet	Vibrated Vibrated	6.45-7.93 6.45-7.93	3.0-4.0 3.0-4.0	Sound Sound	Sound	Sound Failed	Sound	Sound	Sound	Sound	Sound
28A-3776.44 28A-3781.28	Wet sandblast Wet sandblast	Vibrated Vibrated	6.65-8.37 6.65-8.37	3.0-4.0 3.0-4.0	Sound Sound	Sound Sound	Failed Sound	Failed				
24A-3771.40	Air-water jet + dry sandblast	Vibrated	7.50-8.27	3.0	Sound	Failed						
228-3771.20	Air-water jet + dry sandblast	Vibrated	7.50-8.27	3.0	Sound	Failed						
					1959 Condi- tion	1960 Condi	- (1961 Condi- tion	1962 Condi- tion			
					2123 Cycles	2194 Cycle		2335 Cycles	2424 Cycles			
228-3776.59	Wet sandblast	Snowshoed surface	6.51-8.41	3.0-4.0	Sound	Slight		lled				
28A+3T72.95	Air-water jet	Vibrated	6.45-7.93	3.0-4.0	Sound	Sound	Mod	lerate spalling	Failed			

Table 2-CJ

Joint Treatment, Mixture Data, and Observations of Concrete Cores, Construction Joint Program, Morfork Dam, 1943-1944 (Installed March 1943)

		Joint Tree	stment		Water- cement	Cement	1943 Cor	ndition	1944 Co	ndition
Core No.	Joint Cleanup	Curing	Cover	Consoli- dation	Ratio gal/bag	bags/ cu yd	O Cycles	70 Cycles	75 Cycles	96 Cycles
12-394	Air-water jet	Cotton mats	1/2-in. layer sand-cement grout	Tamped	6.19	4.0	Sound	Sound	Pailed	
13-394	Air-water jet	Cotton mats	1/2-in. layer sand-cement grout	Tamped	6.19	4.0	Sound	Sound	Sound	Failed
12-389	Air-water jet	Cotton mats	1/2-in. layer sand-cement grout	Tamped	6.19-8.25	3.0-4.0	Sound	Failed		
12-384	Air-water jet	Cotton mats	1/2-in. layer sand-cement grout	Tamped	8.25	3.0	Sound	Failed		

Table 3-CJ

Joint Treatment, Mixture Data, and Observations of Concrete Cores, Construction Joint Program,

Dale Hollow Dam, 1943-1944 (Installed December 1943)

	Jo	int Treat	ment		Water- cement	Cement	194	3 Condition	on		944 ition
re o.	Joint Cleanup	Curing	Cover	Consolida- tion	Ratio gal/bag	Factor bags/cu yd	O Cycles	18 Cycles	Lycles Cycles	79 Cycles	Cycles
I-2	Air-water jet	Water	Grout	Tamped	6.0-6.2	4.5	Sound	Sound	Sound	Sound	Failed
-2					6.0-6.2	4.5	Sound	Sound	Sound	Sound	Failed
A-1					6.0-6.2	4.5	Sound	Sound	Sound	Sound	Failed
B-1					6.0-6.2	4.5	Sound	Sound	Sound	Failed	
D-1					6.0-6.2	4.5	Sound	Sound	Sound	Failed	
E-1					6.0-6.2	4.5	Sound	Sound	Sound	Failed	
-2					6.0-6.2	4.5	Sound	Sound	Sound	Sound	Failed
-2					6.0-6.2	4.5	Sound	Sound	Sound	Sound	Failed
B-2					6.2-8.0	3.0-4.5	Sound	Failed			
X-2					6.2-8.0	3.0-4.5	Sound	Sound	Failed		
I-1	None	Water	Grout	Tamped	6.0-6.8	4.5	Sound	Sound	Sound	Failed	
-1					6.0-6.8	4.5	Sound	Sound	Sound	Sound	Failed
-3	Air-water jet	Water	None	None	6.2-6.6	4.5	Sound	Sound	Failed		
D-4					8.0	3.0	Sound	Failed			
D-3	None	Water	None	Tamped	8.0	3.0	Sound	Failed			
E-3					8.0	3.0	Sound	Sound	Failed		
E-2	None	Water	Grout	Tamped	6.2-8.0	3.0-4.5	Sound	Failed			
-1					6.0-6.8	4.5	Sound	Sound	Sound	Failed	
-1					6.0-6.8	4.5	Sound	Sound	Sound	Failed	
-1	Air-water jet	Water	None	Tamped	6.0-6.8	4.5	Sound	Sound	Failed		
-1					6.0-6.8	4.5	Sound	Sound	Failed		
B-4	Air-water jet	Water	Grout	None	8.0	3.0	Sound	Failed			
X-4					8.0	3.0	Sound	Failed			

^{*} All of these specimens had failed after 89 cycles of freezing-and-thaving.

Joint Treatment, Mixture Data, and Observations of Concrete Cores, Construction Joint Program,

Bluestone Dam, 1943-1951 (Installed December 1943)

					Water-	Cement	1943 Condi-	1944 Cond1-	1945 Cond1-	1946 Cond1-	1947 Cond1-	1951 Condi-
	3	oint Treat	tment		cement	Factor	tion	tion	tion	tion	tion	tion
Core	Joint			Consoli-	Ratio	begs/	0	119	229	334	452	938
No.	Cleanup	Curing	Cover	dation	gal/bag	cu yd	Cycles	Cycles	Cycles	Cycles	Cycles	Cycles
1	Air-water jet	Water	Grout	Vibrated	5.5	4.5	Sound	Pailed				
2					5.5	4.5	Sound	Failed				
6					7.0	3.5	Sound	Pailed				
6					7.0	3.5	Sound	Pailed				
3	Air-water jet	Sand	Grout	Vibrated	5.5	4.5	Sound	Sound	Sound	Cracking	Failed	
					5.5	4.5	Sound	Sound	Sound#			
7 8					7.0	3.5	Sound	Pailed				
8					7.0	3.5	Sound	Failed				
9	Air-water jet	Water	Grout	Snovshoed	5.5	4.5	Sound	Sound	Sound	Cracking	Pailed	
10					5.5	4.5	Sound	Sound	Pailed			
13					7.0	3.5	Sound	Failed				
14					7.0	3.5	Sound	Pailed				
11	Air-water jet	Sand	Grout	Snovshoed	5.5	4.5	Sound	Failed				
12					5.5	4.5	Sound	Failed				
15					7.0	3.5	Sound	Pailed			1	
16					7.0	3.5	Sound	Failed			1	
17	Wet sandblast	Water	Grout	Vibrated	5.5	4.5	Sound	Pailed				
18					5.5	4.5	Sound	Pailed				
21					7.0	3.5	Sound	Pailed				
55					7.0	3.5	Sound	Failed				
19	Wet sandblast	Sand	Grout	Vibrated	5.5	4.5	Sound	Pailed				
20					5.5	4.5	Sound	Pailed				
23					7.0	3.5	Sound	Failed				
					7.0	3.5	Sound	Failed				
25 26	Wet sandblast	Water	Grout	Snowshoed	5.5	4.5	Sound	Pailed				
					5.5	4.5	Sound	Sound	Sound	Sound	Sound	Pailed
27					7.0	3.5	Sound Sound	Failed Failed				
					7.0	3.5	Sound	Falled				
31	Wet sandblast	Sand	Grout	Snovshoed	5.5	4.5	Sound	Sound	Sound	Cracking	Pailed	
32					5.5	4.5	Sound	Sound	Failed			
32 29 30					7.0	3.5	Sound	Failed				
30					7.0	3.5	Sound	Sound	Sound	Cracking	Pailed	
33	None	Water	Grout	None	5.5	4.5	Sound	Failed				
34					5.5	4.5	Sound	Sound	Sound	Cracking	Failed	
33 34 37 38					7.0	3.5	Sound	Failed				
38					7.0	3.5	Sound	Failed				
35 36 39	None	Sand	Grout	None	5.5	4.5	Sound	Failed				
36					5.5	4.5	Sound	Sound	Sound	Cracking	Pailed	
39					7.0	3.5	Sound	Sound	Cracking	Pailed		
40					7.0	3.5	Sound	Pailed				

[·] Returned to laboratory 1945.

Investigation of Finishes for Concrete Surfaces*

The purpose of this investigation was to evaluate various methods and procedures for removing unsightly surface defects from formed concrete surfaces and to establish a standard procedure for use by Corps of Engineers installations.

In June 1959, seventeen concrete panels (approximately 3-1/2 by 16-1/2 by 30 in.), with a finish mortar applied to one face of each, were installed on the Treat Island exposure rack. These panels were sawed from air-entrained concrete slabs which had the following concrete characteristics: air content, $10.0 \pm 0.5\%$; cement factor, 5.5 bags per cu yd; slump, 2.5 ± 0.5 in. The aggregates were a manufactured limestone sand and a crushed limestone coarse aggregate (3/4-in. maximum size). The air-entraining admixture was a resin soap.

Variables under study were finishing method, grading of sand used in finish mortar, curing of concrete, age of concrete before mortar was applied, etc.

Seventeen companion panels were installed out-of-doors at Jackson, Miss., for control purposes.

Table 1-F lists the Treat Island panels, and gives their exposure record along with other data pertinent to the finishing.

The exposure of these specimens was terminated in August 1962 after three winters and a final report* of this investigation was issued. The conclusions drawn from these exposures were:

- a. Effect of mortar sand grading: No appreciable differences were noted in the four test panels exposed at either exposure station.
- b. Effect of mortar sand-cement ratio: The Treat Island panels exhibited no appreciable differences. A comparison of the panels exposed to weathering at Jackson showed the panels finished with a mortar consisting of 1 part cement to 2 parts sand by volume, applied either by the Portland Cement Association or Bureau of Reclamation method, to be more durable than the panels finished with a mortar of 1 part cement to 1-1/2 parts sand.

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation of Methods of Finishing Formed Concrete Surfaces</u>, <u>Technical Report No. 6-559 (Vicksburg</u>, Miss., <u>December 1960)</u>.

Program 9

(Issued Aug 1963)

- c. Effect of mortar-application method: The Treat Island panels exhibited no appreciable differences. The panels exposed to weathering at Jackson appeared to indicate that sack rubbing provides a concrete finish that is tight, inconspicuous, and smoother than that provided by sponging.
- d. Effect of age of concrete at time of finish: No significant differences were apparent in the panels exposed at either location.
- e. Effect of curing after finishing: No significant differences were apparent in the panels exposed at either location.
- f. Effect of exposure conditions at time of finishing: No significant differences were apparent in the panels exposed at either location.

Observations of Mortar-finished Concrete Panels, Investigation of Finishes for Concrete Surfaces 1959-1962 (Installed June 1959)

	Curing		ncrete Finishing	Age at				Finis	h Morta	r				
anel	No. Days Water-	No. Days	Curing	Time of Finish- ing	Finish- ing	Finish Applied	Ceme sand by		Sieve Size Sand	Curing Method and		Condition 1959-		s
No.	cured	Dried	Location	days	Method	by	wt	vol	Used	Days	1959	1960	1961	1962
						ted for Eff								
								1 MOI CO						
1	7	21	Indoors	28	PCA*	Sack rubbing	1:1.5		-30	None	Sound	Spall- ing	Spall- ing	Spall ing
2		21	Indoors	28	PCA mod**	Sack rubbing	1:1.5		-16	None	Sound	Sound	Sound	Spall ing
3	2		Indoors	2	BRt	Sack rubbing		1:2	-16	Water- cured, 5	Sound	Sl sptt	Sl sp	Spall ing
4	2		Indoors	2	BR mod#	Sack rubbing		1:2	-30	Water- cured, 5	Sound	Sound	Sound	Sl sp
				Bein	g Tested	for Effect	s of M	ortar S	and-cem	ent Ratio				
5	7	21	Indoors	28	PCA mod	Sack	1:2		-30	None	Sound	Sound	S1 sp	Spalling
6	2		Indoors	2	BR mod	Sack rubbing		1:1.5	-16	Water- cured, 5	Sound	Sound	Sound	Spall-
				Beir	g Tested		ts of M	lortar-a	pplicat	ion Method				
7	7	21	Indoors	28	PCA mod	Sponging	1:1.5		-30	None	Sound	Sl sp	Sl sp	Spall
8	2		Indoors	2	BR mod	Sponging		1:2	-16	Water- cured, 5	Sound	Sl sp	Sl sp	ing Sl sp
				Being Te	sted for	Effects of	Age o	f Concr	ete at	Time of Fin	ish	3-		
9	1		Indoors	1	BR mod	Sack		1:2	-16	Water-	Sound	Sound	Sound	Sl sp
10	3		Indoors	3	BR mod	rubbing Sack		1:2	-16	cured, 5	Sound	Sl sp	Sl sp	Sl sp
11	7	83	Indoors	90	BR mod	rubbing Sack rubbing		1:2	-16	cured, 5 Water- cured, 5	Sound	Sound	Sound	Sl sp
12	2		Indoors	2	PCA mod		1:1.5		-30	None None	Sound	Sound	Sound	Spall-
13	7	83	Indoors	90	PCA mod	Sack rubbing	1:1.5		-30	None	Sound	Sound	Sound	Sl sp
				Bei	ng Tested	for Effec	ts of	Curing	After F	inishing				
14	7	21	Indoors	28	PCA mod		1:1.5		-30	Water-	Sound	Sound	Sound	Sl sp
15	2		Indoors	2	BR mod	rubbing Sack rubbing		1:2	-16	None	Sound	Sound	Sound	Sound
			Bei	ng Tested	for Effe	F	osure	Conditi	ons at	Time of Fin:	ishing			
16	7	21	Outdoors	28	PCA mod	Sack	1:1.5		-30	Water-	Sound	Sound	Sound	Spall
17	2		Outdoors	2	BR mod	rubbing Sack rubbing		1:2	-16	None	Sound	Hy sp##	Hy sp	ing Hy sp

^{**} Method used by Portland Cement Association.

** Method used by Portland Cement Association modified.

† Method used by Bureau of Reclamation.

† Sl sp denotes slight spalling.

† Method used by Bureau of Reclamation modified.

** My sp denotes heavy spalling.

National Bureau of Standards Program*

In October 1943, 116 concrete columns** (6 by 6 by 48 in.) were installed on the Treat Island exposure rack as a part of the National Bureau of Standards test program to determine the influence of admixture A on the durability of concrete.

The specimens (which were manufactured by the National Bureau of Standards) represented 13 cements, which were used in each of the following three types of concrete:

Mix No.	Admixture	Slump in.	Cement Factor bags/cu yd	Water-cement Ratio
1	None	3-1/2	5.95 <u>+</u> 0.10	0.537
2	Α	3-1/2	5.95 <u>+</u> 0.10	0.467
3	A	6	5.95 <u>+</u> 0.10	0.494

Admixture A was added to the cement in the amount of one pound per bag of cement. The aggregates used consisted of natural sand and siliceous gravel.

Table 1-NBS lists these specimens and gives their exposure record along with other pertinent information.

This exposure was discontinued in 1967 after 115 of the test specimens had failed. The one remaining specimen (M-6-1) had undergone 2926 cycles of freezing-and-thawing in 24 winters at Treat Island. Final determinations of %E were made on specimen M-6-1 in 1966 after 2770 cycles of freezing-and-thawing (23 winters).

Over 50 percent of the test columns (67 specimens) failed during the first four winters, with 26 of these failing the first winter, 20 the second winter, 17 the third winter, and only 4 the fourth winter.

The findings of this investigation were:

a. With cements B, C, J, L, M, and N the concrete columns made from mixture 3 had greater durability than the columns made from mixture 2.

Columns are molded with the long axis in a vertical position.

^{*} See National Bureau of Standards Interim Reports to the Office, Chief of Engineers (December 1943, July 1944).

(Issued Sept 1967)

Program 10

- b. With cements A, D, E, F, G, and H, mixtures 2 and 3 had essentially equal durability.
- c. With cement K, mixture 2 had greater durability than mixture 3.
- <u>d</u>. With all cements except cement H, columns made from mixture 3 exhibited greater durability than did the columns made from mixture 1.
- e. With all cements except cement H, columns made from mixture 2 had greater durability than columns made from mixture 1. As mixture 2 contained admixture A and mixture 1 did not, it appears that the use of admixture A increased the durability of the concrete with all cements except cement H, which was the only type III cement in this program. This indicates that the effectiveness of admixture A is dependent upon the brand of cement used with it and cannot be regarded as being effective with all cements.
- f. Column M-6-1, the only specimen remaining after 24 winters at Treat Island, was made from mixture 3 using a low-heat cement.

(Issued Sept 1967) Table 1-NBS

Program 10

Record of Observations and Testing of Concrete Columns Containing Admixture A,

National Bureau of Standards Program, 1943- (Installed October 1943)

	Ce	ment		Nomi-	0	143	252	357	1943 - 1952 475	Observation 606	711	872	961	1062
Spec No.	Typ	e and igna- on*	Admix- ture	nal Slump in.	Cycles 1943 %E	Cycles 1944 Æ	Cycles 1945 %E	Cycles 1946 Æ	Cycles 1947 %E	Cycles 1948 Æ	Cycles 1949 Æ	Cycles 1950 Æ	Cycles 1951 %E	Cycles 1952 %E
A-1 A-2 A-3	I,	A	None	3-1/2	100 100 100	111 99 110	112 Fail. Fail.	77	35 Fail.					
A-3-1 A-3-2 A-3-3	I,	A	A	3-1/2	100 100 100	106 106 106	114 111 114	114 119 120	117 123 108	66 95 90	57 84 72	Fail. 70 59	69 58	63 54
A-6-1 A-6-2 A-6-3	I,	A	A	6	100 100 100	107 108 108	117 117 116	119 121 119	117 125 125	94 114 113	50 Fail. 103 96	91 89	86 90	77 114
B-1 B-2 B-3	I,	В	None	3-1/2	100 100 100	Fail. Fail. Fail.								
B-3-1 B-3-2 B-3-3	I,	В	A	3-1/2	100 100 100	116 115 119	74 Fail. Fail.	50 Fail.						
B-6-1 B-6-2 B-6-3	I,	В	A	6	100 100 100	122 111 119	121 Fail. Fail.	124	33 Fail.					
C-1 C-2 C-3	II,	C	None	3-1/2	100 100 100	Fail. Fail. Fail.								
C-3-1 C-3-2 C-3-3	II,	C	Α	3-1/2	100 100 100	108 106 Fail.	Fail.							
C-6-1 C-6-2 C-6-3	II,	C	A	6	100 100 100	110 108 114	Fail. Fail. 123	83	73	69	50 Fail.			
D-1 D-2 D-3	II,	D	None	3-1/2	100 100 100	120 107 118	126 113 128	76 48 Fail. 84	50 Fail.					
D-3-1 D-3-2 D-3-3	II,	D	A	3-1/2	100 100 100	110 108 111	118 116 119	122 120 123	130 112 130	119 76 124	107 46 Fail. 118	70 106	78 104	50 Fa:
D-6-1 D-6-2 D-6-3	II,	D	A	6	100 100 100	112 106 113	123 116 123	128 110 126	132 89 131	125 34 Fail. 117	120 109	82 97	69 96	65 90
E-1 E-2 E-3	II,	E	None	3-1/2	100 100 100	Fail. Fail. 113	115	50 Fail.						
E-3-1 E-3-2 E-3-3	II,	Е	A	3-1/2	100 100 100	109 110 111	116 118 120	103 103 86	56 70 85	50 Fail. 55 75	50 Fail.			
E-6-1 E-6-2 E-6-3	II,	E	A	6	100 100 100	112 112 114	120 121 120	120 123 30 Fail.	90 110	68 72	50 Fail. 50 Fail.			
F-1 F-2 F-3	II,	F	None	3-1/2	100 100 100	Fail. Fail. Fail.								
F-3-1 F-3-2 F-3-3	II,	F	A	3-1/2	100 100 100	110 110 109	120 119 118	122 88 85	128 83 88	101 83 62	83 46 Fail. 50 Fail.	80	66	
F-6-1 F-6-2 F-6-3	II,	F	A	6	100 100 100	111 112 109	121 122 121	124 124 69	126 124 64	78 91 64	61 81 45 Fail.	59 93	Fail. 108	108
G-1 G-2 G-3	11,	G	None	3-1/2	100 100 100	Fail. Fail. Fail.		(Continued)					

^{*} The 13 cements used are designated A through H and J through N.

(Issued Sept 1967)
Table 1-NBS (Continued)

Program 10

Spec No.	Cement Type and Destina- tion	Admix- ture	Nomi- nal Slump in.	O Cycles 1943 %E	143 Cycles 1944 %E	252 Cycles 1945 %E	357 Cycles 1946 %E	1943-195 475 Cycles 1947 %E	2 Observati 606 Cycles 1948 Æ	711 Cycles 1949 %E	872 Cycles 1950 %E	961 Cycles 1951 %E	1062 Cycles 1952 %E
G-3-1 G-3-2 G-3-3	II, G	A	3-1/2	100 100 100	109 112 109	118 121 96	49 Fail. 49 Fail. 49 Fail.						
G-6-1 G-6-2 G-6-3	II, G	A	6	100 100 100	112 117 113	119 119 Fail.	49 Fail. 50 Fail.						
H-1 H-2 H-3	III, H	None	3-1/2	100 100 100	115 110 110	115 121 122	116 123 103	113 115 81	50 Fail. 80 81	45 Fail. 46 Fail.			
H-3-2 H-3-3	III, H	A	3-1/2	100	105 94	109 Fail.	41 Fail.						
H-6-1 H-6-2 H-6-3	III, H	A	6	100 100 100	108 107 107	119 118 118	43 Fail. 43 Fail. 43 Fail.						
I-1 I-2 I-3	I, J	None	3-1/2	100 100 100	81 Fail. 115	Fail.	49 Fail.						
I-3-1 I-3-2 I-3-3	I, J	A	3-1/2	100 100 100	108 110 109	117 115 114	116 116 78	119 121 82	100 50 Fail. 51	50 Fail.			
I-6-1 1-6-2 I-6-3	I, J	A	6	100 100 100	108 114 109	111 116 113	108 117 110	80 119 101	Fail. Fail. 88	83	79	76	78
J-1 J-2 J-3	II, K	None	3-1/2	100 100 100	Fail. 116 Fail.	120	35 Fail.						
J-3-1 J-3-2 J-3-3	II, K	A	3-1/2	100 100 100	107 110 109	120 121 120	123 123 123	129 125 130	120 112 121	117 106 118	110 103 117	114 109 119	114 110 121
J-6-1 J-6-2 J-6-3	II, K	A	6	100 100 100	114 112 111	124 126 123	127 126 125	133 132 129	123 123 118	117 120 115	108 118 109	110 120 113	113 121 117
K-1 K-2 K-3	I, L	None	3-1/2	100 100 100	Fail. 109 Fail.	Fail.							
K-3-1 K-3-2	I, L	A	3-1/2	100 100	110 110	122 Fail.	66	64	Fail.				
K-3-3				100	108	118	76	75	61	46 Fail.			
K-6-1 K-6-2 K-6-3	I, L	A	6	100 100 100	115 114 109	126 99 111	69 90	112	106 55 80	106 46 Fail. 81	103	62	112 53
L-1 L-2 L-3	II, M	None	3-1/2	100 100 100	Fail. Fail. Fail.								
L-3-1 L-3-2 L-3-3	II, M	A	3-1/2	100 100 100	116 112 109	Fail. Fail. 104	102	112	50 Fail.				
L-6-1 L-6-2 L-6-3	II, M	A	6	100 100 100	121 111 109	Fail. Fail.	108	110	126	98	102	107	Fail.
M-1 M-2 M-3	LH,** N	None	3-1/2	100 100 100	Fail. Fail.								
M-3-1 M-3-2 M-3-3	LH, N	A	6	100 100 100	118 115 112	Fail. 121 116	35 Fail. 109	144	140	142	144	146	50 Fail.
M-6-1 M-6-2 M-6-3	LH, N	A	6	100 100 100	121 123 115	129 129 125	133 49 Fail. 131	142	138 139	133 134	121 50 Fail.	123	126

^{**} LH denotes low heat.

									1953 - 195		ervat	ions						
Spec No.	Cement Type and Designa- tion	Admixture	Nominal Slump in.		7 Cycles 1953 Pulse Veloc fps	<u>%v²</u>	Cyc	258 les 254 %v ²	Cycle 1955 Condi- tion or %E	s	15 Cyc. 19 %E	les	Cyc	14 1es 57 %v ²	Cyc	185 1es 958 4v ²	Cyc 19	35 les 59
A-3-2 A-3-3	I, A	A	3-1/2	Failed Failed														
A-6-2 A-6-3	I, A	A	6	Failed Failed														
D-3-3	II, D	A	3-1/2	Failed														
D-6-1 D-6-3	II, D	A	6	Failed Failed														
F-3-1	II, F	A	3-1/2	Failed														
F-6-2	II, F	A	6	Failed														
1-6-3	I, J	A	6	74			69		Failed									
J-3-1 J-3-2 J-3-3	II, K	Α	3-1/2	124 115 128	14,925 14,495 14,705	100 100 100	121 114 133	98 99 100	120 115 133	100	123 121 140	99	120 123 137	=	123 149 137	=	117 133 131	=
J-6-1 J-6-2 J-6-3	II, K	A	6	115 128 129	14,925 14,870	100	122 127 134	96 99	120 125 139	100 99	123 129 137	99	113 119 140	96 95	107 122 143	97 93	104 116 140	=======================================
K-6-1 K-6-3	I, L	A	6	Failed Failed														
M-6-1	LH**, N	A	6	134	14,390	100	137	98	150	94	158		166		194		182	
									1960-196	C 01-		lana.						
				2006 Cycles 1960 %E %V	196	.es	223 Cycl 196	es	2342 Cycles 1963	Cy	2477 cles 964	Cyc	640 cles 965 %v ²	Cyc	770++ cles 266			
J-3-1 J-3-2 J-3-3	II, K	A	3-1/2	120 -	- 117 - 120 - 125	=======================================	Fail NRt 116	ed	Failed	80		Fai	iled					
J-6-1 J-6-2 J-6-3	II, K	A	6	Failed	- Faile	d 	Fail	ed										
M-6-1	LH**, N	A	6	182 -	- 190		186		182	174		170		186				

^{**} LH denotes low heat.

† NR denotes a satisfactory reading was not obtained.

†† Final reading.

Rome Air Depot Program*

The purpose of this investigation was to determine the durability of concrete used at Rome Air Depot, N. Y., by exposure of both cast and sawed concrete beams.

Cast Beams

In December 1941, 15 concrete beams (6 by 6 by 48 in.) were installed on the exposure rack at Treat Island. The beams were prepared at the project and represented job concrete made with the following cements:

- a. Plain portland cement (3 beams)
- b. Plain portland cement plus natural cement with interground tallow, ratio 6:1 (3 beams)
- c. Portland cement with interground resin (6 beams)
- d. Portland cement with interground resin plus natural cement with interground tallow, ratio 6:1 (3 beams)

The nominal cement factor was 6.0 bags per cu yd and the nominal water-cement ratio was 4.5 gal per bag.

Table 1-ADB lists these specimens and gives their exposure record.

This exposure was terminated in 1967 after 26 winters of exposure (3254 cycles of freezing-and-thawing) as the test specimens were no longer yielding useful data. Final determinations of %E and %V² were made in 1966 on the 10 remaining specimens after 3098 cycles of freezing and thawing (25 winters).

The ten specimens remaining at the time of termination of the

^{*} See: Central Concrete Laboratory, <u>Cement Durability Program</u>, First Interim Report (June 1942).

, <u>Concrete Research</u>, Second Interim Report, Part I,

[&]quot;Laboratory Studies of Concrete Containing Air-entraining Admixtures" (July 1945).

[,] Surface Scaling of Concrete Runways - Rome Air Depot (October 1943).

(Issued Sept 1967)

Program 11

program represented three of the four test conditions. The three beams made with plain portland cement (mix a, above), i.e. without an airentraining agent, failed after one winter of exposure. All six beams made with a portland cement containing interground resin (mix c) survived the 26 winters. The three beams made with plain portland cement plus natural cement with interground tallow (mix b) also survived the exposure. Only one of the three beams made with portland cement with interground resin plus natural cement with interground tallow (mix d) survived.

Sawed Beams

In October 1943, three concrete beams (5-1/2 by 6 by 30 in.) sawed from a slab extracted from the E-W runway were installed on the Treat Island exposure rack. They contained cement interground with resin (water-cement ratio, 5.0 gal per bag; cement factor, 6.0 bags per cu yd) and 6-in.-mesh, No. 6 wire reinforcement approximately 2 in. from the top surface of the concrete as cast. These specimens showed slight scaling at the time of their extraction. The purpose of this installation was to determine whether further scaling would develop as a result of severe weathering. However, these beams were lost overboard in a storm in March 1955.

The appearance of the beams when last inspected (15 March 1955) before they were lost was as follows:

No.	Appearance 15 March 1955
S-1-J	Moderate spalling
S-1-I	Slight scaling and spalling
S-1-H	Slight scaling and heavy spalling

Table 2-ADB lists the specimens and gives their exposure record.

Since this exposure was terminated prematurely because of loss of the specimens, meaningful conclusions cannot be drawn in regard to the sawed beams.

(Issued Sept 1967)

Program 11

Findings

Cast beams

The order of durability of the four concrete mixtures tested was as follows (most durable to least durable):

- (1) { Plain portland cement plus natural cement with interground tallow. Portland cement with interground resin.
- (2) Portland cement with interground resin plus natural cement with interground tallow.
- (3) Plain portland cement.

Record of Testing of Cast Concrete Beams, Rome Air Depot Program

1941-1966 (Installed December 1941)

						19	41-1952	Readings					74
Specimen	Cement	O Cycles 1941 %E	140 Cycles 1942 %E	328 Cycles 1943 %E	470 Cycles 1944 %E	580 Cycles 1945 %E	685 Cycles 1946 %E	803 Cycles 1947 %E	934 Cycles 1948 %E	1039 Cycles 1949 %E	1200 Cycles 1950	1289 Cycles 1951 %E	1390 Cycle 1952 %E
ADB-P-2 ADB-P-4 ADB-P-6	Plain portland	100 100 100	Failed Failed Failed										
ADB-N-2	Portland +	100	104	107	108	116	114	124	111	108	106	107	107
ADB-N-4	nat	100	103	106	108	116	115	123	100	96	96	98	97
ADB-N-6	w/tallow	100	105	105	107	116	117	122	111	108	109	107	108
ADB-V-2	Portland w/resin	100	102	106	107	114	118	123	113	111	112	115	114
ADB-V-4		100	102	106	109	116	119	125	115	112	114	116	117
ADB-V-6		100	102	107	109	116	118	124	112	110	110	112	112
ADB-VV-2	Portland w/resin	100	102	107	109	113	115	123	115	112	115	118	119
ADB-VV-4		100	103	107	109	116	119	125	115	112	114	116	118
ADB-VV-6		100	103	108	110	117	120	126	115	114	118	121	121
ADB-VN-2	Portland w/resin	100	103	103	104	112	114	122	107	105	106	107	108
ADB-VN-4	+ nat	100	102	103	104	111	113	121	105	103	102	100	
ADB-VN-6	w/tallow	100	100	103	105	113	114	122	106	102	102	101	

				ibi e i				1953	-1960	Read	ings				All I CANCEL			
		147	5 Cycles 1953			86 les		31 les	18 Cyc		20 Cyc	42 1es		13 les		63 les		34 :les
			Pulse Veloc		19	54	_ 19	55	19	56	19	57	19	58		59	_19	60_
		%E	fps	%v ²	%E	%v ²	<u>%</u> E	%v2	%E	%v2	%E	%v2	% E	%v ²	<u>%</u> E	%v2	<u>%</u> E	%V2
ADB-N-2 ADB-N-4 ADB-N-6	Portland + nat w/tallow	112 104 112	16,950 16,530 16,600	100 100 100	116 109 115	96 96 109	120 111 119	99 102 103	118 113 116	97 98 99	109 96 107	92 93 94	112 106 112	97 97 100	109 101 107	88 89 92	106 91 107	91 94 94
ADB-V-2 ADB-V-4 ADB-V-6	Portland w/resin	120 121 112	17,095 17,240 17,165	100 100 100	121 124 117	98 98 98	125 129 122	100 101 99	119 122 117	97 97 96	117 116 108	94 94 88	120 119 111	97 96 94	115 114 108	90 91 83	112 111 103	91 93 93
ADB-VV-2 ADB-VV-4 ADB-VV-6	Portland w/resin	123 122 126	17,545 17,240 17,545	100 100 100	127 126 129	101 102 97	132 131 130	102 103 98	127 126 130	97 97 94	112 112 118	95 93 92	122 122 126	102 100 95	117 117 121	91 93 88	117 117 118	94 94 91
ADB-VN-2 ADB-VN-4 ADB-VN-6	Portland w/resin + nat w/tallow	111 94 104	16,735 16,460 16,665	100 100 100	114 86 103	98 92 95	117 77 103	99 94 98	114 62 99	97 85 90	106 79 104	92 59 85	106 71 99	98 63 91	101 Fail 86	88 82	98 81	92 82

		_							1961-	1966	Readi	ngs		
		Cyc	75 eles 961	Cyc	64 les 62	Cyc	70 les 63	Cyc	105 1es 164	Cyc	68 les 65	Cyc	98 * 1es_	
		%E	16v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%V2	
ADB-N-ADB-N-ADB-N-A	4 nat	114 98 110	92 93 92	106 91 107	95 95 86	106 86 104	105 98 101	95 77 99	65 88 87	95 75 97	78 75	88 84 107	78 77	
ADB-V-	4	115 116 105	90 90 89	110 111 103	90 91 53	110 106 101	99 93 100	105 103 91	88 88 83	102 100 91		102 102 91	76 81 72	
ADB-VV ADB-VV	-4	117 117 121	95 93 89	112 114 116	98 91 92	112 110 113	98 100 90	110 108 110	90 90 86	105 106 110	74	103 106 105	90 83 81	
ADB-VN ADB-VN ADB-VN	-4 + nat	98 76	89 80	93 72	97 47	91 70	97 73	89 57	84 70	87 57	76 76	99 Fail	71 ed	

^{*} Final reading.

(Issued Sept 1967)

Program 11

Table 2-ADB

Record of Testing of Sawed Concrete Beams, Rome Air Depot Program

1943-1954 (Installed October 1943)

							194	3-1954 F	Readings					-		
	Cement	O Cycles 1943 %E	142 Cycles 1944 %E	252 Cycles 1945 %E	357 Cycles 1946 %E	475 Cycles 1947 %E	606 Cycles 1948 _%E	711 Cycles 1949 _%E	812 Cycles 1950	961 Cycles 1951 %E	1062 Cycles 1952 %E	1147 Cycles 1953			1258* Cycles	
Spec- imen												%E	Pulse Veloc fps	%v ²		1954
S-1-H	Portland w/resin	100	100	100	106		100	100	100	101	106	107	17,125	100	108	99
S-1-I	w/resin	100	100	101	101		99	99	98	99	98	99	17,125	100	100	93
S-1-J		100	100	101	106		100	100	99	100	102	104	17,005	100	105	96

Syracuse Air Base Beams

In October 1942, 18 concrete beams (6 by 6 by 48 in.) were installed on the exposure rack at Treat Island. The concrete used in these beams was extracted from regular field batches used in the runway pavement at the Syracuse Air Base, N. Y. The specimens were prepared at the project and were cured by the use of a black membrane curing compound. The purpose of this installation was to determine the durability of concrete containing a resin used at Syracuse Air Base.

Six of the 18 specimens were made from a mixture containing type I plain portland cement; six were made from a mixture containing type II portland cement with interground resin; and six were made from a mixture containing type I portland cement to which 0.02% resin soap had been added at the mixer.

Table 1-SY lists these specimens and gives their exposure record along with mixture data.

This exposure was terminated in 1967 after 25 winters of exposure (3114 cycles of freezing-and-thawing) as the test specimens were no longer yielding useful data. Final determinations of E were made in 1966 after 2958 cycles of freezing-and-thawing (24 winters).

Only four specimens* remained under exposure at the time of termination; all of these were made with a type II portland cement with interground resin. The six beams made with a plain type I portland cement all failed after one winter of exposure. Two beams made with the type I cement and resin soap also failed; the remaining four beams were removed from the exposure rack prior to 1966.

Findings

The order of durability of the three concrete mixtures tested was

^{*} Only one of the beams in this group failed during the exposure. Also one beam was discarded in 1943 to make room for other specimens.

Program 12

(Issued Sept 1967)

as follows (most durable to least durable):

- (1) Type II portland cement with interground resin.
- (2) Type I portland cement with resin soap.
- (3) Type I portland cement (plain).

Mixture Data and Record of Testing of Syracuse Air Base Beams

1942-1966 (Installed October 1942)

					- 200	222	-116		51 Readi		000	10/6	
Beam No.	Type Cement	Water Cement Ratio gal/bag	Cement Factor bags/cu yd	O Cycles 1942 %E	188 Cycles 1943 %E	330 Cycles 1944 %E	440 Cycle 1945 %E	545 s Cycle 1946 %E	663 s Cycle 1947 %E		899 Cycles 1949	1060 Cycles 1950 %E	1149 Cycles 1951 Æ
SYO-117A SYO-117B SYO-117C SYO-117D SYO-117E SYO-117F	II, A w/inter- ground resin	6.0	5.5	100 100 100 100 100	108 107 Sound, 106 106 105	108 114 discare 110 110 108	114 117 ded to 1 114 118 116	118 130 make roo 107 131 118	122 139 m for ad 112 141 122	115 128 ditional 111 120 109	113 130 specimen 105 136 115	112 132 s, Aug 19 105 134 115	114 133 943 107 137 117
YH-136A YH-136B YH-136C YH-136D YH-136E YH-136F	I, B plain	6.5	5.3	100 100 100 100 100	F F F F								
YH-137A YH-137B YH-137C YH-137D YH-137E YH-137F	I, B w/resin soap	6.0	5.3	100 100 100 100 100 100	105 Sound,	95 discar	102 ded to	103 make roo	106 m for ad	ditional 90 ditional ditional 108 107	95 specimen	92 s, Aug 1	92
									58 Readi				
				1250 Cycles 1952 %E	1335 C	Pulse Veloc fps	1953 &v ²	1446 Cycles 1954 %E %V	199	es Cyc	eles C	1902 ycles 1957 E %V ²	1973 Cycles 1958
5Y0-117A 5Y0-117B 5Y0-117D 5Y0-117E 5Y0-117F	II, A w/inter- ground resin	6.0	5.5	113 134 109 138 120	115 139 111 141 122	16,950 13,840 13,890 13,650 13,700	100 100 100 100 100	117 9 144 10 116 9 147 10 129 10	8 116 2 148	89 118 98 144 97 115 99 147 99 128	87 11 94 13 97 12 101 11 93 Br	99 92 90 90	134 89 146 99 114 98 125 96
YH-137B YH-137E YH-137F	I, B w/resin soap	6.0	5.3	91 115 94	92 115 95	14,135 11,835 13,745	100 100 100	114 -	89 - 103 7 90	88 87 103 90	7	87 72 90 B	93 - 63 - roken '5
				2123 Cycles 1959	196	les C	2335 ycles 1961	1959-19 24-24 Cycles 1962	66 Read: 25; Cyc.	30 20 Les Cyc	665 cles (2828 Cycles 1965	2958** Cycles 1966
				<u> %E</u> %1			E %v2	SE SV		16v ² 1/E		E 1/2	%E %V
YO-117A YO-117B YO-117D YO-117E	II, A w/inter- ground resin	6.0	5.5	124 8	79 108 39 117 38 96 90 125	83 10 91 11 89 9 91 12	7 86	110 3	1 80 4 100 - 80 8 102	82 90 89 88 75 81 90	8	80 3	103 109 102
SYH-137B SYH-137E	I, B w/resin soap	6.0	5.3	67 61	F*								

^{*} F denotes specimen has failed. ** Final reading.

Natural Cement Investigation*

The purpose of this investigation was to study the relative durability of concrete containing blends of natural with portland cement as compared to (a) similar concrete containing plain portland cement, and (b) concrete containing air purposefully entrained through the use of resin.

In October 1942, 94 concrete columns** (6 by 6 by 48 in.) were installed on the Treat Island exposure rack as a part of this program. The aggregates were a natural siliceous sand and crushed traprock of 3/4-in. maximum size. The cements used were: three plain portland cements, the same portland cements with a neutralized resin added to the mixing water, 15 blends of three plain portland cements with five natural cements; and 10 blends of one natural cement (interground with four different percentages of resin) with two portland cements. All of the natural cements contained some form of air-entraining agent except natural cement D. All blends were proportioned in the ratio of 1 bag of natural cement to 5 bags of portland cement (1:5.875 by weight) and a water-cement ratio of 6 gal per bag.

Table 1-CRN lists these specimens and gives their exposure record along with their cement factors.

This exposure was terminated in 1967 after 3114 cycles of freezing-and-thawing (25 winters) with 54 specimens remaining. The final determinations of Æ and W were made in 1966 after 24 winters of exposure (2958 cycles of freezing-and-thawing). A summary of the test variables and number of columns remaining per variable is shown in the following tabulation:

^{*} See Central Concrete Laboratory, <u>Tests of Blends of Portland and Natural Cements</u> (June 1944).

^{**} Columns are fabricated with their long axis in a vertical position.

Test Condi- tion	Cements Used	Portland Cement	Natural Cement	Neutral- ized or Inter- ground Resin	No. of Columns Installed	No. of Columns Remaining in 1967
1	Portland ce- ment only	Type II, A Type I, B Type II, C	None None	None None None	3 3 <u>3</u> 9	0 0* 0
2	Portland ce- ment and natural cement	Type II, A Type I, B Type I, B Type I, B Type I, B Type I, C Type II, C	A B C D E F A B C D E F	None None None None None None None None	3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 5 2 5 2	2 3 1 0 3 3 2 2* 3 3 1 1 0 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3	Portland ce- ment and neutral- ized resin	Type II, A Type I, B Type II, C	None None	Yes Yes Yes Total	3 3 3 9	3 3 <u>3</u> 9
4	Portland ce- ment and natural cement with in- terground resin	Type II, A Type II, C Type II, A Type II, C Type II, A Type II, C Type II, C Type II, C	D D D D D D	0.05% 0.05% 0.10% 0.10% 0.15% 0.15% 0.20% 0.20%	3 3 3 3 3 3 3 24	0 0 3 1 1 2 3 2

^{*} One specimen returned to laboratory in 1958. One specimen broken in handling in 1957.

Findings

- a. All of the columns made with plain portland cement alone failed during the exposure except for one column. This one column survived for 16 winters (1958) and then the exposure was discontinued and the specimen was returned to the laboratory.
- b. Over 60 percent (33) of the columns made with blends of plain portland cement and natural cement survived the 25 winters of exposure.
- c. All nine of the columns made with plain portland cement plus neutralized resin survived the 25 winters.
- d. Fifty percent (12 columns) of the specimens made with plain portland cement plus natural cement with interground resin survived the exposure.
- e. Fifty-four of the ninety-four columns remained after the exposure period. All of these columns contained some form of air-entraining agent. This reemphasizes the previously established fact that air-entraining is required for a severe outdoor exposure involving freezing-and-thawing.
- <u>f</u>. Columns made with natural cements F and E had the greatest durability for columns made with a blend of plain portland cement and natural cement.

(Issued Sept 1967) Table 1-CRN

Record of Testing of Concrete Columns, Natural Cement Investigation

1942-1966 (Installed October 1942)

								1942-	1952 Res	dings				
Spec- imen	Type Cement	Cement Factor bags/ cu yd	Air*	O Cycles 1942 Æ	187 Cycles 1943 %E	330 Cycles 1944 %E	440 Cycles 1945 Æ	545	663 Cycles 1947 %E	794	899 Cycles 1949 %E	1060 Cycles 1950 %E	1149 Cycles 1951	1250 Cycles 1952 %E
1A 1B 1C	II, A	7.00- 7.15	0.00	100 100 100	F** F 105	108	F							
2A 2B 2C	I, B	7.00- 7.15	0.00	100 100 100	115 106 110	121 112 Disca	123 111 ardedt	133 123	139 129	129 120	126 118	131 120	135 121	140 124
3A 3B 3C	II, C	7.00- 7.15	0.00	100 100 100	F 113 110	F F								
4A 4B 4C	II, A + nat	6.75- 7.00	1.35	100 100 100	113 110 119	117 117 127	120 119 129	126 128 135	133 134 141	123 124 131	123 122 128	122 124 128	118 102 128	122 127 130
5A 5B 5C	I, B + nat	6.75- 7.00	1.35	100 100 100	114 110 110	120 115 117	126 119 120	132 125 126	117 13 2 132	128 123 122	126 121 119	129 123 120	133 125 122	135 128 124
6A 6B 6C	II, C + nat	6.75- 7.00	1.34	100 100 100	115 112 114	123 118 123	126 117 125	134 129 131	F 136 131	50F 124	121	121	101	123
7A 7B 7C	II, A + nat	6.75- 7.00	3.99	100 100 100	114 119 116	121 126 124	123 126 125	132 134 133	139 141 135	127 130 126	126 129 125	129 130 126	132 132 126	133 133 129
8a 8b 8c	I, B + nat B	6.75- 7.00	4.13	100 100 100	110 115 113	117 123 119	120 126 123	126 133 128	132 139 132	123 129 125	122 128 118	124 129 121	126 131 123	129 134 124
9A 9B 9C	II, C + nat	6.75- 7.00	2.02	100 100 100	115 109 116	121 115 128	124 117 126	130 125 117	138 123 108	128 43F 50F	126	127	130	132
10A 10B 10C	II, A + nat	6.75- 7.00	1.75	100 100 100	107 112 111	118 118 116	43F 120 100	126 78	132 50 F	120	118	120	122	125
11A 11B 11C	I, B + nat	6.75- 7.00	0.94	100 100 100	107 111 114	112 116 121	116 118 124	122 127 129	127 130 131	118 123 120	115 120 117	118 121 119	123 124 119	128 127 119
12A 12B 12C	II, C + nat	6.75- 7.00	1.21	100 100 100	113 115 109	118 121 47F	116 122	128 133	121 137	45 F 127	130	128	127	133
13A 13B 13C	II, A + Nat	6.75- 7.00	0.00	100 100 100	F 97 97	F Discs	ırdedt							
14A 14B 14C	II, C + nat	6.75- 7.00	0.00	100 100 100	F 105 56	114 F	112	49F						
15A 15B 15C	II, A + nat D w/0.05% resin	6.65 - 6.75	0.27	100 100 100	113 111 116	123 116 Disca	F 115 ardedt	128	103	49F				
16A 16B 16C	II, C + nat D w/0.05% resin	6.65 - 6.75	1.21	100 100 100	95 112 110	F 119 122	117 121	130 117	48F 102	35 F				
17A 17B 17C	II, A + nat D w/0.10% resin	6.65- 6.75	1.05	100 100 100	114 118 108	121 122 113	121 121 112	133 133 124	138 138 127	127 127 118	126 125 115	128 125 112	130 127 113	133 129 113
18A 18B 18C	II, C + nat D w/0.10% resin	6.65- 6.75	1.62	100 100 100	111 115 108	117 Discs	119 irdedt 112	130	134	126 116	123 115	120 115	97 117	50F
							ontinued							

^{*} The percent air listed in this table is the amount of air purposefully entrained and is over and above the air entrapped during concreting operations. The percent air entrapped is estimated to be 2% for these specimens.

** F = failed.

f Specimen was installed in two pieces (broken), and exposure was discontinued in 1943. (Sheet in the specimen was installed in two pieces (broken).

Program 13

(Issued Sept 1967)
Table 1-CRN (Continued)

		Cement		0	187	330	440	194: 545	2 - 1952		ings 794	899	_	1060	1149		1250
Spec- imen	Type Cement	Factor bags/ cu yd	Air*	Cycles 1942 %E		Cycles 1944 %E	Cycles 1945 %E	Cycle 1946		es (Cycles 1948 %E	Cycle 1949 %E	es C	ycles 1950	Cycle 1951 %E	s C	ycles 1952 Æ
19A 19B 19C	II, A + nat D w/0.15% resin	6.65- 6.75	0.94	100 100 100	118 116 109	121 121 121	124 122 112	131 129 123	13 13 12	34	129 49F 120	125		123 119	126		128 123
20A 20B 20C	II, C + nat D w/0.15% resin	6.65- 6.75	1.41	100 100 100	121 114 111	126 119 115	128 122 118	139 131 126	14 13 13	4	134 124 123	130 123 120	3	125 124 121	117 126 123		501 127 124
21A 21B 21C	II, A + nat D w/0.20% resin	6.65- 6.75	1.45	100 100 100	116 114 111	120 119 115	122 122 117	132 131 127	13 13 13	13	125 123 123	124 121 120		126 122 122	128 125 125		131 126 126
22A 22B 22C	II, C + nat D w/0.20% resin	6.65- 6.75	1.82	100 100 100	117 114 113	122 118 118	123 121 118	135 135 128	14 13 13	2	131 126 125	132 F 123		130 123	132		135 125
23A 23B 23C 23CA	II, A + nat	6.75- 7.00	1.89	100 100 100 100	121 117 114 100	125 121 121 Discard	127 123 121 ledt	137 132 132	14 13 13	16	132 127 124	131 124 121	+	132 124 123	134 127 123		136 127 123
24A 24B 24C	I, B + nat	6.75- 7.00	2.05	100 100 100	107 112 110	112 118 114	113 120 117	122 129 125	12 13 12	15	118 122 119	117 120 117		119 122 119	122 124 121		124 126 122
25A 25B 25C	II, C + nat	6.75 - 7.00	1.52	100 100 100	110 114 109	115 120 115	117 122 116	127 130 124	13 13 12	15	122 123 119	120 122 117	2	123 123 118	125 123 120		128 124 120
26A 26B 26C	II, A + nat	6.75 - 7.00	2.57	100 100 100	110 114 112	116 119 117	116 123 119	126 128 126	12 13 13	3	121 124 120	121		123 121 121	125 124 123		127 124 124
27A 27B 27C	I, B + nat	6.75 - 7.00	1.95	100 100 100	106 112 108	110 116 114	112 119 116	122 128 124	12 13 12	2	117 122 118	115 120 118)	118 122 117	119 125 119		121 125 120
28A 28B 28C	II, C + nat	6.75- 7.00	2.42	100 100 100	112 112 109	118 118 114	120 120 117	129 130 125	13 13 12	3	125 123 119	123 121 116		126 124 118	128 125 119		130 127 120
29A 29B 29C	II, A + neu- tralized resin	6.55	1.62	100 100 100	111 112 109	115 116 114	117 120 117	131 135 132	13 13 13	3	122 119 120	119 117 119	7	121 121 121	128 126 127		124 123 123
30A 30B 30C	I, B + neu- tralized resin	6.55	1.00	100 100 100	108 115 107	112 120 113	114 124 114	128 138 128	12 13 12	5	120 125 118	116	+	115 126 117	125 133 125		124 130 120
31A 31B 31C	II, C + neu- tralized resin	6.55	1.61	100 100 100	111 110 110	119 115 115	122 118 117	135 133 132	13 13 13	10	127 120 121	126 117 118	7	127 119 120	136 124 126		132 122 121
								19	3-1960	Read	dings						
				- 1: P	Cycles 953 wlse eloc fps %V ²	1446 Cycle 1954	S Cyc	591 cles 955 %v ²	1758 Cycles 1956		1902 Cycles 1957 Æ %V ²	Cyc 19	973 eles 958 %v ²		23 les 59	Cyc	194 cles 960
2A 2B	I, B	7.00-	0.00	50F	fps %V		99 137								ned to		
4A 4B	II, A + nat		1.35	123 1 131 1	5,210 100 5,810 100	130 136	99 132 95 139	102	34 10	0 13	31 99 38 96	131 138	100	128 138	96 103	128	99
4C 5A 5B	I, B + nat	6.75- 7.00	1.35	137 1 131 1	5,095 100 5,445 100 5,505 100	145 1 138	97 132 101 148 98 133	101	51 10	8 1; 0 1; 08 1;	51 99	131 151 141	100		95 96	151	97 99
50 60	II, C + nat		1.34	125 1	5,210 100 4,980 100	129	98 128 99 126	102	29 9	6 13		125		122	91		98
7A 7B 7C	II, A + nat		3.99	136 1	5,265 100 5,035 100 4,760 100	143	98 143 99 143 98 133	100	144 9	8 1	44 97	144 140 129	97	141 140 132	97 95 93	140	99 95 94

[†] Specimen was installed in two pieces (broken), and exposure was discontinued in 1943.

				- 32	25.0					19	53-19	60 Re	ading	s						_
		Cement			35 Cycle 1953	s		46 les		91 les		58 les		02 les		73 les		23 les		.94 :les
Spec- imen	Type Cement	Factor bags/ cu yd	Air %	%E	Pulse Veloc fps	%v2	19 %E	%v2		55		56		57 %v ²				59 %v ²		60 %v ²
8A 8B 8C	I, B + nat B		4.13	135 138		100 100	139 144 130	99 95 96	142 146	102 101 101	143 147 128	99 100 98	146 147 128	100 98	143 147 121	101 99 94	143 147 124	99 95 89	143 143 121	100
9A	II, C + nat	6.75- 7.00	2.02		15,625		141			101		98	142	97	142		142	94	139	101
10B	II, A + nat	6.75 - 7.00	1.75	127	15,210	100	131	96	133	102	134	97	131	91	131	88	134		131	
11A 11B 11C	I, B + nat	6.75 - 7.00	0.94	130	14,925 15,625 14,925	100		97 91 96	145 137 115	100 99	146 136 109	98 92	146 136 Brok		143 136 hand	99 ling	146 139	-	146 136	::
12B	II, C + nat	6.75- 7.00	1.21	134	15,565	100	142	97	145	101	144	98	140	95	140	100	143	95	140	96
17A 17B 17C	II, A + nat D w/0.10% resin	6.65- 6.75	1.05	133	15,210 15,325 15,565	100	135	99 98 97	143 137 120	102 102 103	143 134 118	98 100 98	136 128 116	93 96 93	133 128 116	99 99 99	140 135 116	95 93 91	140 132 113	95 97 96
18c	II, C + nat D w/0.10% resin	6.65- 6.75	1.62	117	15,750	100	123	98	124	99	123	98	118	94	121	98	121	91	118	93
19A 19C	II, A + nat D w/0.15% resin	6.65- 6.75	0.94		14,980 15,505					102			136 126		136 126	100	136 126		136 123	96 96
20C	II, C + nat D w/0.15% resin	6.65- 6.75	1.41	127 125	15,035 15,505	100	130 132	102	134 132	103 100	133 131	102 98	128 125	95 95	128 125	101 100	128 125	96 95	125 122	97
21A 21B 21C	II, A + nat D w/0.20% resin	6.65- 6.75	1.45	122	15,035 15,210 15,385	100	137 132 133		134	101 100 102	133	100 100 100	101 130 130	96 96 96	136 133 133	100 100 101	136 130 130	95 92 94	136 127 130	98 97 98
22A 22C	II, C + nat D w/0.20% resin	6.65- 6.75	1.82		15,565 15,150				146 131	100 99	147 131		143 125	96 91	146 125	100 95	136 128	94 87	143 125	98 71
23A 23B 23C	II, A + nat	6.75- 7.00	1.89		15,150 15,210 14,600	100	143 134 128	99 97 95	144 134 129	99 99 99	144 133 128	99 98 99	137 128 121	95 96 95	140 131 124	99 99 98	140 131 125	93 93 92	137 125 125	97 97 93
24A 24B 24C	I, B + nat E	6.75- 7.00	2.05	121	15,265 15,210 15,445	100	132 131 128	100 97 97	133 132 131		134 131 130	99 99 98	140 131 128	97 97 100	133 131 128	101 98 100	133 128 125	96 92 94	133 125 122	97 96 98
25A 25B 25C	II, C + nat	6.75- 7.00	1.52	127	15,505 14,980 15,150	100	135 130 124	96 95 96	138 132 126	101 100 99	138 131 122	98 99 99	137 125 120	98 98 100	137 128 120	96 97 96	137 125 117	95 94 93	134 122 114	100 98 97
26A 26B 26C	II, A + nat	6.75- 7.00	2.57	131 127 125	15,210 14,650 15,325	100	133 129 129	100 98 99	136 131 131	102 99 102	136 128 129	100 99 98	136 126 125		133 126 128	98 96 95	133 126 125	97 95 93	130 119 122	102 99 97
27A 27B 27C	I, B + nat F	6.75- 7.00		123	15,505 15,265 15,210	100	131	97	134	100 99 101	133	98		100 99 99		97	129 131 119		126 125 116	96
28A 28B 28C	II, C + nat	6.75- 7.00	2.42	130	15,385 14,925 15,505	100	132	99		102 101 99	133		139 133 120	99	142 133 120		139 130 117		139 127 114	98
29A 29B 29C	II, A + neu- tralized resin	6.55	1.62	123	15,385 15,325 15,265	100	129	96	133	102 101 101	129		131 126 126	99	131 126 129	98 95 97	128 120 123		125 120 123	96 95 96
30A 30B 30C	I, B + neu- tralized resin	6.55	1.00	131	15,565 14,980 15,685	100	137	100	143		140	99	132 139 129	99 100 100		97 96 97	132 139 126		129 136 123	95
31A 31B 31C	II, C + neu- tralized resin	6.55	1.61	122	15,565 15,505 15,505	100	128	100	133	101	128	99	142 124 126		142 127 126	98 97 95	139 124 123		139 121 120	97

(Issued Sept 1967)

Table 1-CRN (Concluded)

			10								_		1961-		Readings	Exposure Rack, Row 1 (W to
		Cement		23. Cyc.	les		24 les		30 les	Cyc	65 les	28	les		2958 Cycles	
pec- men	Type Cement	bags/ cu yd	Air %	196 %E	%v2	19 19	62 dy ²	_19	63	_ 19	64	19 %E	65 %v ²	1966	(Final)	
4A		6.75-	1.35	128	98	122	69	122	26V	116	5V	104	701	118	95V	
4B 4C	II, A + nat	7.00	1.37	131 118	95	125	99	125	111	125	94	125	81	134 F	83	
5A 5B 5C	I, B + nat	6.75- 7.00	1.35	151 141 113	97 97 95	147 138 107	97 98 94	151 138 98	82 82	147 141 87	Ξ	151 138 77	:	155 122 F	Ξ	
6c	II, C + nat	6.75- 7.00	1.34	116		110		107	-	104	-	98		98		
7A 7B 7C	II, A + nat	6.75- 7.00	3.99	141 140 129	96 95 93	134 133 122	99 98 94	137 136 122	100 99	134 129 119	98	131 126 116		144 123 100	86	
8A 8B 8C	I, B + nat B	6.75- 7.00	4.13	146 150 118	97 96 92		100 96	143 147 106	1.00	143 140 91	=	140 147 80	::	147 151 F	===	
9A	II, C + nat	6.75-	2.02	142		135	90	i35	84	132	93	129		145	85	
10B	II, A + nat	6.75- 7.00	1.75	131		128		125		125	-	122		113	-	
11A 11B	I, B + nat C	6.75 - 7.00	0.94	149 139	==	142 136	::	145 130	::	142 127	=	136 140		149 143	Ξ	
12B	II, C + nat	6.75-	1.21	143	95	136	97	136	98	133	94	130	81	143	84	
17A 17B 17C	II, A + nat D w/0.10% resin	6.65- 6.75	1.05	140 132 119	95 94 95	133 129 110	98 98 106	133 126 104	98 97 95	130 123 99	93	127 120 96		137 114 110	83	
18c	II, C + nat D w/0.10% resin	6.65- 6.75	1.62	118	93	112	93	112	95	109	88	106	74	100	78	
19A 19C	II, A + nat D w/0.15% resin	6.65- 6.75	0.94	136 123	96 95	129 117	99 98	126 117	105 98	116 114	97	129 108	80	F 114	86	
20B	II, C + nat D w/O.15% resin	6.65-	1.41	125 125	97 96	119 119	102 95	119 116	79 100	116 113	97 94	113 110		119 125	84 84	
21A 21B 21C	II, A + nat D w/0.20% resin	6.65- 6.75	1.45	136 127 130	96 95 96	129 121 124	98 99	129 124 124	101 88 93	126 121 121	91	120 115 118		137 121 106	 86	
22C	II, C + nat D w/0.20% resin	6.65 - 6.75	1.82		96 86	140 122		137 119	73	137 119	94	124	81	121 125	85	
23A 23B 23C	II, A + nat	6.75-	1.89	137 125 122	96 95 94	134 119 115	98 96 55	131 119 115	79 90 94	128 116 108	=	135 113 102		145 129 125	E	
24A 24B	I, B + nat	6.75- 7.00	2.05	133 125	96 93	130 119	99 93	130 119	100	130 116	=	130 107	::	140 119	:	
24C 25A 25B	II, C + nat	6.75-	1.52	125 137 122	95 95 96	119 131 123	91 71 95	119 131 123	91 98	116 131 120	98 96	101 128 117	83	95 134 111	83 84	
25C 26A	II, A + nat	6.75-	2.57		96 98	108	98	105 130 112	93	102	94	130	83	99	84	
26B 26C 27A	F I, B + nat F	7.00 6.75-	1.95	122 122 129	95 95 95	115 116 123	96 96	119	102	112	95 93	112 109	76 83	132 106	84 86	
27B 27C		7.00		128	93 94	110	56 96	122	92	107	94	116	83 81	132 125	82 82	
28a 28b 28c	II, C + nat	7.00	2.42	142 130 117	97	135 120 108	92	132 120 108	98	132 120 105	Ξ	132 117 102		152 136 119	Ξ	
29A 29B 29C	II, A + neu- tralized resin	6.55	1.62	128 123 123	94 94 96	122 117 117	96 91 93	122 117 117	101 93 106	113 114 111	96 90 97	110 111 111	76	132 133 117	82 79 85	
30A 30B 30C	I, B + neu- tralized resin	6.55	1.00	132 139 129	95 95 95	126 132 120		126 132 120	95 100 103	126 129 117	96 104 91	123 126 117	81	129 140 126	91 85	
31A 31B 31C	II, C + neu- tralized resin	6.55	1.61		95 95 94	135 118 114	91 105	135 118	101	125	96 91 94	125 112 100	78	125 127 127	82 84 88	

(Sheet 4)

Resin Air-entraining Agent Program*

In October 1943, 182 concrete columns** (6 by 6 by 48 in.) were installed on the exposure rack at Treat Island as a part of this program. The purpose of this exposure was to determine the influence of resin and various amounts of resin soap, when interground with five different portland cements in commercial quantities at the mill, on the durability of concrete made with two types of coarse aggregate.

The specimens were fabricated using a natural siliceous sand as the fine aggregate and two types of coarse aggregate: a rounded siliceous gravel and a crushed traprock. The following cements were represented:

- a. Five plain portland cements
- b. Five portland cements treated with 0.03% interground resin
- c. Five portland cements treated with 0.01% interground resin soap
- <u>d</u>. Five portland cements treated with 0.02% interground resin soap

Data on the five cements used and the average air content of the concrete made therewith follow:

Cement	Type	c ₃ A, %	Average Air Contents of Concrete, %
Α	206a	6.9	7.1
В	19 1 b	13.3	5.6
C	206a	6.0	5.1
D	206a	6.0	4.7
E	206a	6.3	4.5

With the exception of the concrete made with cements containing interground resin soap, half of the series was mixed under <u>normal</u> air pressure (760 mm) and the other half was mixed in an atmosphere reduced to a pressure of 60 mm of mercury <u>(vacuum)</u>.

^{*} See Central Concrete Laboratory, Concrete Research, Second Interim Report, Part I, "Laboratory Studies of Concrete Containing Airentraining Admixtures" (July 1945).

^{**} Columns are fabricated with their long axis in a vertical position.

This exposure was terminated in 1967 after 2918 cycles of freezing-and-thawing (24 winters) with 109 specimens remaining. The final determinations of %E and $\%V^2$ were made in 1966 after 23 winters of exposure (2762 cycles of freezing-and-thawing).

The tabulation below gives mixture data and exposure record for the 60 concrete mixtures used in this investigation. Table 1-VR lists the concrete specimens fabricated and exposed as a part of this program, and gives their individual exposure record.

						Mixture			4 1		
Mix No.	Се	ment Desig- nation	Addition	Coarse Aggregate	Pressure Mixed Under	Actual Cement Factor bags/cu yd	Water- cement Ratio gal/bag	Slump in.	Voids	No. of Speci- mens Originally Installed (1943)	No. of Specimens Remaining in 1967
1A 1B 1C 1D 1E	206a 206a 206a 206a 191b	D E A C B	None	Gravel	Normal	5.38 5.35 5.32 5.37 5.33	6.0 6.0 6.2 6.2	2.2 2.25 2.5 2.7 1.9	1.3 2.0 2.6 1.5 2.0	3 3 3 3 3 Total 15 for mix 1	0 0 1 0 0 Total 1 for mix 1
2A 2B 2C 2D 2E	206a 206a 206a 206a 191b	D E A C B	None	Gravel	Vacuum	5.38 5.35 5.32 5.37 5.33	6.0 6.0 6.0 6.2 6.2	2.0 2.0 2.1 2.3 2.0	1.1 0.9 1.3 0.8 1.4	3 3 3 3 3 Total 15 for mix 2	0 0 0 0 Total O for mix 2
3A 3B 3C 3D 3E	206a 206a 206a 206a 191b	D E A C B	None	Traprock	Normal	5.30 5.37 5.23 5.30 5.29	7.10 7.10 7.10 7.25 7.25	2. 25 2. 0 2. 8 2. 9 2. 3	2.7 2.1 4.1 2.7 2.8	3 3 3 3 3 Total 15 for mix 3	3 2 3 3 3 Total 14 for mix 3
14A 14B 14C 14D 14E	206a 206a 206a 206a 191b	D E A C B	None	Traprock	Vacuum	5.30 5.37 5.23 5.30 5.29	7.10 7.10 7.10 7.25 7.25	2.1 2.0 2.3 2.5 2.0	1.6 0.9 2.3 1.3 2.0	3 3 3 3 3 Total 15 for mix 4	0 0 3 0 0 Total 3 for mix 4
5A 5B 5C 5D 5E	206a 206a 206a 206a 191b	D E A C B	0.03% inter- ground resin	Gravel	Normal	5.23 5.18 4.95 5.22 5.17	5.60 5.50 5.35 5.75 5.70	2.3 2.2 2.9 3.1 2.7	4.3 5.1 10.0 4.3 5.5	3 3 3 3 3 Total 15 for mix 5	1 3 2 3 0 Total 9 for mix 5
6A 6B 6C 6D 6E	206a 206a 206a 206a 191b	D E A C B	Inter- ground resin	Gravel	Vacuum	5.23 5.18 4.95 5.22 5.17	5.60 5.50 5.35 5.75 5.70	1.7 1.4 1.6 1.9 1.3	1.8 2.9 3.7 1.6 2.3	3 3 3 3 3 Total 15 for mix 6	1 0 3 1 0 Total 5 for mix 6
7A 7B 7C 7D 7E	206a 206a 206a 206a 191b	D E A C B	Inter- ground resin	Traprock	Normal	5.13 5.20 4.78 5.20 5.12	6.55 6.45 6.0 6.60 6.50	3.2 2.6 3.7 2.75 2.9	6.3 4.7 14.1 4.8 6.3	3 3 3 3 3 Total 15 for mix 7	3 2 2 3 3 Total 14 for mix 7

V. W.						Mixture			XVA L. T.		
Mix No.	Ce Type	ment Desig- nation	Addition	Coarse Aggregate	Pressure Mixed Under	Actual Cement Factor bags/cu yd	Water- cement Ratio gal/bag	Slump in.	Voids	No. of Speci- mens Originally Installed (1943)	No. of Specimens Remaining in 196
8A 8B 8C 8D 8E	206a 206a 206a 206a 191b	D E A C B	Inter- ground resin	Traprock	Vacuum	5.13 5.20 4.78 5.20 5.12	6.55 6.45 6.0 6.60 6.50	2.2 1.75 2.0 1.6 1.5	2.3 2.0 5.9 1.3 2.7	3 3 3 3 3 Total 15 for mix 8	3 2 3 3 3 Total 14 for mix 8
9A 9B 9C 9D 9E	206a 206a 206a 206a 191b	D E A C B	0.01% resin soap	Gravel	Normal	5.27 5.25 5.21 5.20 5.20	5.60 5.60 5.47 5.70 5.67	2.4 2.0 1.9 2.9 2.1	3.6 4.0 4.7 4.9 4.9	3 3 3 3 3 Total 15 for mix 9	2 3 2 2 0 Total 9 for mix 9
OA OB OC OD OE	206a 206a 206a 206a 191b	D E A C B	0.01% resin soap	Traprock	Normal	5.18 5.19 5.15 5.20 5.12	6.48 6.52 5.97 6.40 6.37	3.0 3.0 1.75 3.0 2.7	5.1 4.8 5.7 4.9 6.4	3 3 3 3 Total 16 for mix 10	3 4 2 3 3 Total 15 for mix 10
1A 1B 1C 1D 1E	206a 206a 206a 206a 191b	D E A C B	0.02% resin soap	Gravel	Normal	5.13 5.16 5.11 5.07 5.10	5.44 5.52 5.27 5.45 5.42	2.9 2.25 1.9 2.8 2.0	6.4 5.6 6.5 7.5 7.0	3 3 3 3 3 Total 15 for mix 11	2 3 3 3 0 Total 11 for mix 11
.2A .2B .2C .2D .2E	206a 206a 206a 206a 191b	D E A C B	0.02% resin soap	Traprock	Normal	5.05 5.08 5.01 4.97 5.00	6.17 6.23 5.80 6.00 6.10	3.2 2.6 2.25 3.1 2.6	8.0 7.3 9.0 9.8 9.6	4 3 3 3 3 Total 16 for mix 12	4 2 3 3 2 Total 14 for mix 12
										Total 182 for all mixes	Total 109 for all mixes

Findings

- a. The columns containing concrete mixed under <u>normal</u> air pressure had greater durability than columns made under a pressure of 60 mm of mercury (vacuum).
- b. The concrete columns made with traprock as a coarse aggregate had greater durability than did columns made using gravel.
- c. Of the 12 mixtures used, the mixture (mix 7) containing traprock as a coarse aggregate, mixed under normal atmospheric conditions and containing 0.03% interground resin had the best exposure record. None of the 15 columns made with this mixture failed during the exposure; however, one column was broken accidentally in handling.
- d. The mixture (mix 2) using plain portland cement, containing

(Issued Sept 1967)

gravel, and mixed under a pressure of 60 mm of mercury (vacuum) had the worst exposure record. None of the 15 columns installed survived the exposure.

- e. Mixtures containing 0.03% interground resin had greater durability than did mixtures containing 0.01% resin soap or mixtures made with plain cement.
- <u>f</u>. The relative durability of 0.02% resin soap mixtures as compared with plain cement, 0.03% interground resin, and 0.01% resin soap mixtures was not clearly indicated by the exposure data.
- g. The order of durability with respect to mixture was as follows (most durable to least durable): Mixture Nos. 7, 10, 8 and 3, 12, 11, 5, 9, 6, 4, 1, and 2.
- h. The order of durability with respect to cement was as follows (most durable to least durable): Cement A, cement C, cement E, cement D, and cement B.

Record of Testing of Concrete Columns, Resin Air-entraining Agent Program 1943-1966 (Installed October 1943)

							1943-19	54 Readi	ngs				20.0			
Mix	Speci- men No.	O Cycles 1943 %E	142 Cycles 1944 %E	244 Cycles 1945 %E	349 Cycles 1946 %E	467 Cycles 1947 %E	598 Cycles 1948 %E	703 Cycles 1949 %E	864 Cycles 1950 %E	953 Cycles 1951 %E	1054 Cycles 1952 %E	11 %E	39 Cycle 1953 Pulse Veloc fps	%v ²	Cyc	250 cles 254 26v ²
1A	A-1-E B-1-E C-1-E	100 100 100	F* F 53	F												
2A	A-2-E B-2-E C-2-E	100 100 100	7 ¹ 4 F F	75	77	F										
3A	A-3-E B-3-E C-3-E	100 100 100	127 115 115	140 122 124	142 127 130	149 132 136	141 114 128	141 126 126	141 126 128	147 129 130	148 132 133	149 138 136	15,325 16,195 15,810	100 100 100	155 137 139	102 95 96
4A	A-4-E B-4-E C-4-E	100 100 100	115 118 99	129 124 110	135 132 93	142 140 106	157 132 F	135 132	134 133	140 139 ·	F F					
5A	A-5-E B-5-E C-5-E	100 100 100	117 112 116	122 118 123	130 126 131	138 134 135	126 126 132	135 128 130	132 127 128	137 130 135	139 135 137	141 140 141	15,625 15,810	100	145 145 145	96 95
6A	A-6-E B-6-E C-6-E	100 100 100	116 83 97	124 99 109	13 ⁴ 110 119	142 120 130	13 ¹ 4 111 123	137 117 111	133 122 104	137 126 141	140 F F	148	16,195	100	146	91
7A	A-7-E B-7-E C-7-E	100 100 100	126 119 123	139 130 137	145 134 142	158 138 147	142 130 139	143 136 143	144 139 147	146 133 142	150 136 146	153 139 149	15,210 15,445 15,505	100 100 100	157 142 155	94 91 95
8A	A-8-E B-8-E C-8-E	100 100 100	117 121 112	121 129 120	133 139 130	139 145 135	131 137 127	136 136 125	137 138 125	135 141 130	139 145 133		16,260 16,195 16,460	100 100 100	148 159 145	93 92 92
1B	A-9-E B-9-E C-9-E	100 100 100	,F F F													
2B	A-10-E B-10-E C-10-E	100 100 100	F F F													
3В	A-11-E B-11-E C-11-E	100 100 100	111 117 114	121 128 122	127 134 130	131 138 134	126 131 126	126 129 128	129 129 125	135 134 128	F 137 131	139 134	16,460 15,875		148 139	92
4B	A-12-E B-12-E C-12-E	100 100 100	109 F F	119	125	131	124	124	136	148	F					
5B	A-13-E B-13-E B-13-E	100 100 100	111 121 116	118 128 126	124 136 132	131 145 138	125 137 130	124 136 129	125 135 130	129 143 133	131 147 136	134 149 139	15,875 16,395 16,260	100 100 100	141 158 146	93 93 90
6в	A-14-E B-14-E C-14-E	100 100 100	98 91 F	109 105	79 121	89 126	F 117	115	129	129	F					
7B	A-15-E B-15-E C-15-E	100 100 100	123 121 121	126 133 134	142 139 139	146 143 144	139 136 135	138 134 134	139 136 136	142 139 139	146 142 143	146	16,395 16,000 15,935	100	156	91 92 92
8B	A-16-E B-16-E C-16-E	100 100 100	117 128 110	125 138 120	131 143 124	139 148 136	130 140 128	129 139 127	132 140 128	135 144 133	137 147 F	141	16,665 16,460	100	149	89 92
10	A-17-E B-17-E C-17-E	100 100 100	108 115 120	112 119 125	122 130 137	129 135 143	116 127 134	116 126 133	122 127 135	128 130 140	F 134 142	137 144	15,265 15,625	100	147 152	90 88
2C	A-18-E B-18-E C-18-E	100 100 100	F 112 F	122	126	131	121	121	116	120	F					

^{*} F denotes that the specimen failed either by the Æ dropping below 50 or by deteriorating to such an extent that testing was no longer practicable. (Sheet 1)

(Issued Sept 1967)

Table 1-VR (Continued)

							1943-195	4 Readin	gs				20.6			
Mix	Speci- men	O Cycles 1943	142 Cycles 1944	244 Cycles 1945	349 Cycles 1946	467 Cycles 1947	598 Cycles 1948	703 Cycles 1949	864 Cycles 1950	953 Cycles 1951	1054 Cycles 1952		1953 Pulse Veloc		Cyc	250 cles 254
No.	No.	%E	%E	%E	%E	%E	%E_	%E	%E	%E	%E	%E	fps	%v ²	%E	%v2
3C	A-19-E B-19-E C-19-E	100 100 100	132 125 123	142 134 132	146 138 136	151 142 140	142 134 132	141 134 131	141 134 132	144 137 135	148 139 139	152 143 144	15,040 14,925 15,325	100 100 100	159 151 149	90 94 93
4C	A-20-E B-20-E C-20-E	100 100 100	128 126 126	132 128 130	142 138 140	146 144 147	139 137 138	137 133 134	138 135 138	135 137 135	144 142 143	149 147 148	15,265 15,210 15,565	100 100 100	154 154 156	91 93 90
5C	A-21-E B-21-E C-21-E	100 100 100	131 126 134	141 140 141	146 147 150	151 138 156	143 142 148	142 139 146	141 143 146	146 145 149	150 150 154	155 153 159	15,095 14,815 14,760	100 100 100	163 159 124	88 93 90
6C	A-22-E B-22-E C-22-E	100 100 100	125 124 127	130 128 134	142 138 145	149 147 154	142 139 144	139 138 143	140 139 144	142 144 146	147 147 150	150 149 154	15,810 16,130 16,065	100 100 100	154 153 155	90 93 90
7C	A-23-E B-23-E C-23-E	100 100 100	129 137 144	141 143 Broken	147 152 in hand	151 161 ling Nov	142 154 ember 19	141 151 44	143 154	145 156	148 160	156 166	14,085 14,705		160 171	92 91
8c	A-24-E B-24-E C-24-E	100 100 100	129 131 137	142 144 153	147 150 150	152 154 163	142 146 155	141 144 153	142 146 154	145 148 157	150 152 162	153 160 167	15,505 15,875 15,685	100 100 100	159 164 173	93 94 94
1D	A-25-E B-25-E C-25-E	100 100 100	F 119 F	119	F											
2D	A-26-E B-26-E C-26-E	100 100 100	F F F													
3D	A-27-E B-27-E C-27-E	100 100 100	136 136 131	139 148 140	149 154 145	158 158 153	150 149 142	148 147 141	150 149 140	151 151 142	156 155 146	158 160 152	15,325 15,385 15,325	100 100 100	165 166 153	93 94 96
4D	A-28-E B-28-E C-28-E	100 100 100	112 120 119	116 132 130	102 129 136	109 138 145	F 140 135	F 136	132	133	F					
5D	A-29-E B-29-E C-29-E	100 100 100	119 117 132	131 130 144	134 135 149	141 140 156	133 131 148	133 131 146	133 131 147	135 132 148	141 136 154	143 139 156	15,875 15,625 15,875	100 100 100	145 144 162	94 95 95
6D	A-30-E B-30-E C-30-E	100 100 100	120 F F	132	138	144	136	134	135	137	141	144	16,065	100	153	95
7D	A-31-E B-31-E C-31-E	100 100 100	142 125 138	151 132 144	155 143 157	151 148 163	163 140 153	160 138 152	163 140 153	165 143 157	171 146 161	174 149 165	15,935 15,505 15,625	100 100 100	184 157 174	97 96 95
8D	A-32-E B-32-E B-32-E	100 100 100	133 124 130	140 129 138	151 138 146	158 146 156	149 137 147	147 136 145	149 137 147	152 141 151	156 143 154	160 146 158	15,625 16,000 16,260	100 100 100	169 153 164	99 95 93
1E	A-33-E B-33-E C-33-E	100 100 100	119 115 112	111 106 102	137 131 127	141 137 132	134 127 124	133 123 121	135 110 120	137 103 128	140 96 F	144 F	15,150	100	148	94
2E	A-34-E B-34-E C-34-E	100 100 100	114 113 111	127 124 119	133 131 126	137 135 132	130 128 115	128 F 98	123 F	129	F					
3E	A-35-E B-35-E C-35-E	100 100 100	125 120 118	133 128 126	138 132 130	143 137 134	134 128 117	132 126 126	134 128 127	137 131 129	141 135 132	138	14,870 15,150 15,150	100		101 98 96
4E	A-36-E B-36-E C-36-E	100 100 100	123 117 123	134 128 132	138 131 135	144 135 140	134 129 131	133 125 128	134 127 129	139 127 130	142 133 135	135	15,325 15,040 15,265	100		94 100 96
5E	A-37-E B-37-E C-37-E	100 100 100	121 123 120	132 135 131	137 140 137	142 145 142	134 138 134	132 135 131	132 135 132	1.35 135 132	138 140 134	140	14,650 15,445 15,445	100	146	93

(Sheet 3)

							1943-19	954 Readi	ngs			11	39 Cycle	s		
Mix No.	Speci- men No.	O Cycles 1943 %E	142 Cycles 1944 %E	244 Cycles 1945 Æ	349 Cycles 1946 Æ	467 Cycles 1947 %E	598 Cycles 1948 %E	703 Cycles 1949 %E	864 Cycles 1950 %E	953 Cycles 1951 Æ	1054 Cycles 1952 %E	%E	1953 Pulse Veloc fps	%v ²	Cyc 19	les
6E	A-38-E B-38-E C-38-E	100 100 100	121 118 128	133 128 142	140 134 148	146 140 154	136 132 145	134 130 142	136 139 146	140 139 150	F F F			-	_	
7E	A-39-E B-39-E C-39-E	100 100 100	137 126 137	147 134 146	152 138 151	158 144 163	148 134 147	147 133 148	149 134 145	153 138 146	155 140 150	159 144 153	15,210 15,565 14,980	100 100 100	169 153 160	999
8E	A-40-E B-40-E C-40-E	100 100 100	132 121 124	141 131 135	146 135 141	153 140 147	145 132 137	142 130 135	143 132 132	147 133 135	150 136 138	155 144 141	15,935 15,935 15,685	100 100 100	163 153 146	999
9A	A-41-E B-41-E C-41-E	100 100 100	114 117 119	115 129 131	117 135 138	125 142 144	124 133 138	124 131 138	126 131 132	125 135 136	123 135 137	133 141 141	16,130 16,260	100	138 150 146	8
AC	A-42-E B-42-E C-42-E	100 100 100	117 116 116	128 128 127	133 132 132	139 139 139	129 129 129	13 ¹ 4 127 127	129 129 128	132 132 132	135 135 134	138 138 137	15,750 16,325 16,460	100 100 100	142 144 144	9
LA	A-43-E B-43-E C-43-E	100 100 100	113 117 122	122 129 135	128 135 139	134 142 147	126 133 138	124 132 136	125 132 138	128 135 141	131 136 144	134 140 146	15,445 15,935 15,935	100 100 100	138 149 152	9,99
2A	A-44-E B-44-E C-44-E D-44-E	100 100 100 100	119 116 119 130	128 125 125 137	135 131 133 145	140 136 139 151	132 127 132 144	130 127 130 142	131 127 131 143	134 130 135 146	137 134 137 148	140 136 140 151	15,150 15,750 15,625 15,385	100 100 100 100	145 143 145 148	0,0,0
B	A-45-E B-45-E C-45-E	100 100 100	111 110 112	121 122 123	125 128 127	131 131 133	124 124 125	121 121 128	118 118 123	120 120 126	118 121 126	123 123 127	15,750 15,445 15,385	100 100 100	125 129 132	10
B	A-46-E B-46-E C-46-E D-46-E	100 100 100 100	119 112 112 118	132 123 123 129	137 127 127 123	143 132 131 138	135 124 123 131	134 126 126 129	135 124 128 130	138 127 129 133	141 129 125 135	144 131 134 137	15,875 16,000 15,445 15,750	100 100 100 100	148 137 140 144	0.00
В	A-47-E B-47-E C-47-E	100 100 100	116 113 111	127 124 124	132 127 125	137 133 129	130 126 128	129 124 126	131 125 121	131 128 122	137 127 124	139 133 132	15,505 15,935 15,505	100 100 100	146 140 129	0.00
B	A-48-E B-48-E C-48-E	100 100 100	116 113 114	129 114 126	132 115 129	137 122 134	130 117 125	132 117 123	130 119 124	128 119 122	135 121 129	139 127 133	15,445 15,385	100	145 128 137	10
C	A-49-E B-49-E C-49-E	100 100 100	109 111 110	122 125 119	124 125 124	127 130 129	121 122 121	121 120 120	121 120 121	124 123 122	126 125 123	129 131 125	15,445 15,210 15,325	100 100 100	135 132 126	10
C	A-50-E B-50-E	100 100	120 F	131	129	140	131	130	132	135	137	140	15,325	100	145	10
.c	C-50-E A-51-E B-51-E C-51-E	100 100 100 100	116 108 110 109	125 118 120 126	135 122 124 130	134 127 130 135	125 120 123 127	123 118 123 125	127 127 123 120	127 120 127 130	128 121 128 129	124 131	15,325 15,325 15,445 15,265	100 100 100	136 127 137 133	0.00
ec .	A-52-E B-52-E C-52-E	100 100 100	117 121 123	126 131 127	129 134 137	134 140 141	126 132 133	123 130 131	124 131 132	126 134 133	128 135 136	132			138	10
D	A-53-E B-53-E	100	112	124 118	129 126	134 131	126 121	125 F	127	129	131	134	15,265	100	138	5
D	C-53-E A-54-E	100	116	128	135	140	134	132	132	135	137		15,685	100	145	
	B-54-E C-54-E	100	116	126	130 133	134 138	126 129	123 128	124	126 125	127 132		15,210	100	134 143	9
.D	A-55-E B-55-E C-55-E	100 100 100	113 110 111	125 121 123	128 124 126	134 129 125	126 121 124	124 120 122	126 118 123	129 121 124	131 121 125	133 122 93	15,505 14,650 15,035	100 100 100	138 134 130	1
D	A-56-E B-56-E C-56-E	100 100 100	121 119 116	133 129 126	137 133 130	134 130 134	135 129 126	133 127 125	133 129 126	142 136 134	138 132 130	135	14,980 14,870 14,815			0.0.0

(Continued)

(Issued Sept 1967)
Table 1-VR (Continued)

				-	-		-				L943-	1954	Readin	ngs	-			11	30 0	22.50			
		0	14	2	244	31	49	467		598	70	3	864	9	53	1054		11	39 Cy 1953				250
Mix	Speci- men	Cycles 1943	Cyc 19	44	Cycle:	19	cles 946	Cycle 1947		Cycles 1948	Cyc 19	49	Cycle:	1	cles 951	Cycl. 195	2		Puls Velo	e	4.2	19	les 954
No.	No.	%E	_%		%E		Æ_	<u>%</u> E		%E			%E		%E	%E	-	<u>76E</u>	fps		<u>%v²</u> .	<u>%E</u>	%v2
9E	A-57-E B-57-E C-57-E	100 100 100	11 10 11	9	122 120 121	12	25 22 23	129 125 129		121 116 121	11 11 11	6	118 110 119	1	15 .07 .22	108 110 122		115 111 132	14,7	90	100	100 110 141	99
LOE	A-58-E B-58-E C-58-E	100 100 100	11 11 11	5	126 122 123	13	28 24 26	132 128 129		125 118 122	12 11 11	7	123 116 120	1	.26 .17 .28	127 118 124		130 119 132	14,8 14,7 15,0	05	100 100 100	135 125 144	100
.1E	A-59-E B-59-E C-59-E	100 100 100	10 10 10	6	119 115 117	1.	23 17 19	127 119 123		120 109 116	11 10 11	7	117 103 112		.19 99 .09	118 101 113		119 104 118	14,7 14,3 14,4	35	100 100 100	133 143 122	10:
L2E	A-60-E B-60-E C-60-E	100 100 100	11 11 11	2	120 118 124	1.	23 18 26	127 120 128		120 108 123	11 10 12	9	119 104 121	1	.20 .05 .22	121 100 124		124 115 128	14,4 13,7 14,4	95	100 100 100	133 112 136	10 11 10
											1955	-1965	Read	ings							-		
		139 Cyc: 199	les 55			17 Cyc. 19	les 57	17° Cyc: 19°	les 58	192 Cyc. 199	les 59	Cyc	998 eles 960			22 Cyc 19	les 62			Cyc	169 1es 164	Cyc	32 les 65
		<u>%</u> E	%v2	<u>%</u> E	%v ²	%E	%v2	%E	%v2	<u>%</u> E	%v ²	<u></u> %E	%v2	%E	%v2	%E	16v2	<u>%E</u>	%v ²	<u>%</u> E	%v ²	%E	%V
3A	A-3-E B-3-E C-3-E	160 145 146	94 92 94	166 151 151	97 94 98	166 151 147	96 93 96	174 158 157	98 94 97	148	94 88 91	158 148 144	96 92 94	162 148 147	95 91 95	154 148 144	96 88 95	158 148 141	98 94 95	154 148 138	89 93	154 141 132	9
5A	A-5-E B-5-E	152 155	92	157 163		114 F		114		149		146		153		150		153		150		F	
	C-5-E	150	93	154		154		163		152		149		152		145		145		138		135	-
6A	A-6-E	152	92	158	89	158	95	169	96	151	87	151	92	151	92	148	95	148	90	145	84	145	-
7A	A-7-E B-7-E C-7-E	164 148 158	94 91 95	168 151 163	91 91 93	174 154 157	94 94 95	178 162 172	96 94 95		91 89 90	162 147 156	95 91 93	166 151 160	94 92 94	162 144 156	93 91 95	162 144 156	94 93 95	162 144 156	93 86 91	158 144 152	9,0,0
8a	A-8-E B-8-E C-8-E	152 160 147	95 95 94	156 166 150	97 95 94	155 166 142	94 94	162 177 152	94 95	155 169 145	90 86	151 169 145	93 76	155 173 148	93 92	148 169 141	96 92	148 169 141	92	148 169 141	91	148 165 138	9
3B	B-11-E C-11-E	150 142	92 95	155 146	92 95	151 149	91 95	162 153	92 94		87 89	148 140	88 92	151 143	89 95	148 140	95	148 137	::	148 137	==	148 137	
5B	A-13-E B-13-E C-13-E	142 162 147	94 94 90	147 141 147	97 94 92	106 169 162	96 93 88	129 151 155	97 94 85	135 154 145	91 88 83	135 158 142	94 90 86	141 165 149	95 92 88	138 161 146	95 94 93	138 165 146	98	132 161 143	83	132 161 146	
7B	A-15-E B-15-E C-15-E	160 157 156	92 94 94	165 160 160	93 95 95	162 160 159	90 94 94	162 160 166	93 90 93	156	92 88 84	158 156 155	93 92 93	165 160 159	90 92 93	158 153 155	94 97 95	154 153 155	90 94 92	154 153 155	90	154 153 151	
8B	A-16-E B-16-E	152 160	91 93	157 170	92 93	154 165	91 93	161 169	90 90		87 88	151 154	88 90	154 158	90 91	147 154	92 89	150 150	91	143 150	75 	143 146	9
1C	B-17-E C-17-E	146 147	107 94	149 154	91 93	F 148	88	155	87	141		138		152		156		152		152		148	
3C	A-19-E B-19-E C-19-E	161 150 153	94 94 93	166 153 156	94 96 95	167 149 156	93	171 157 164	92	163 149 156		163 145 152	93	167 149 156	92	163 145 152	92 94		92	167 145 148	92	163 141 148	9
4C	A-20-E B-20-E C-20-E	157 156 157	94 94 95	160 159 163		157 151 157		165 166 168	94	157 158 160	91	153 154 156	92	157 154 160	93	153 150 156	97	154	89	149 154 156	=	145 150 156	
5C	A-21-E B-21-E C-21-E	163 162 136	93 96 92	166 168 151	99	160 157 134	93	164 169 149	93	148 153 130		144 149 F		144 153		144 149	90 94	140 149	95 102	129 145	87	125 141	
6C	A+22+E B-22+E C+22+E	155 155 154	93 95 90	161 162 161	92	152 156 152	93	167 170 163	89	149 152 136	86	142 149 133	89	149 152 136	89	142 149 129	96	142 156 122		132 153 125	85	132 150 122	
10	6+23+6 8+23+6	162 176	94 91	166 181		166 178		170 192		166 178		166 174		170 174	91 103	157 170		153 170	94 85	153 170	88 88	149 166	

(Continued)

(Sheet 4)

	Speci-	13 Cyc 19	les	Cyc	62 les	Cyc	06 les 57	17 Cyc 19	les	19 Cyc 19	27 les	19 Cyc	Read 98 les 60			Cyc	28 1es 62	Cyc	334 :les		69 1es 64	26 Cyc 19	les
Mix No.	No.	%E	%v ²	%E	%V2	%E	%v2	%E	%v2	%E	%v ²	%E	%v ²	%E	%v ²	%E	%v2	76E	%v ²	%E	%v2	%E	%v ²
8C	A-24-E B-24-E C-24-E	163 168 176	95 95 94	169 175 184	96 94 96	159 174 179	94 90 91	175 182 192	94 93 93	167 170 179	91 91 90	159 166 175	92 93 94	163 170 179	93 92 92	159 166 171	96 89 92	155 162 171	98 84 96	155 166 171	83 90 91	151 158 167	93 91 93
3D	A-27-E B-27-E C-27-E	168 166 159	95 94 9 7	161 171 165	95 92 98	182 171 159	92 89 94	182 184 171	93 92 94	169 167 159	91 88 91	169 163 155	92 91 94	173 176 163	93 92 96	165 168 151	95 96	169 172 155	::	169 172 155	=======================================	161 168 163	::
5D	A-29-E B-29-E C-29-E	144 142 161	94 95 93	146 150 169	94 97 95	144 149 159	90 89 91	147 153 178	91 93 92	137 146 163	85 88 87	134 143 159	88	140 146 163	=	137 143 156	=	137 143 160	::	128 136 149	::	128 133 145	::
6D	A-30-E	149	92	157	95	152	90	166	. 93	152	87	149	90	149		149		149		142		145	
7D	A-31-E B-31-E C-31-E	186 157 173	94 96 95	195 163 181	96 94 97	192 162 179	92 93 92	205 170 188	93 93 93	192 158 175	90 86 91	188 154 171	91 88 92	192 158 175	94	188 154 171	98 100	188 154 171	97 97	188 154 167	92 89	188 150 163	91
8D	A-32-E B-32-E C-32-E	169 152 166	98 95 93	177 151 177	100 96 95	175 147 173	95 90 91	179 150 181	95 93	175 143 173	90 86	171 140 169		175 147 173	96	167 144 169	103	171 151 165	81	167 141 165	95	163 141 161	91
1E	A-33-E	155		131		F																	
3E	A-35-E B-35-E C-35-E	154 147 144	98 98 94	162 144 153	98 99 96	156 142 157	93 91	172 163 157	92	172 170 157	=======================================	168 170 157	=======================================	180 189 165	=	176 189 165	::	184 205 169	::	188 222 216	::	192 244 190	
4E	A-36-E B-36-E C-36-E	158 140 146	89 96	171 145 144	99	173 142 148	95	193 149 162	97	201 145 155		232 145 103	=======================================	286 170 F	::	F 166		148		162		177	-
5E	A-37-E B-37-E C-37-E	157 136 127	87 89	143 134 134	 90	137 95 115	 80	143 136 106	77	131 130 115	=======================================	125 146 118	=======================================	140 195 F		137 Brok		128 hand	 ling	137		140	-
7E	A-39-E B-39-E C-39-E	167 150 159	93 87 94	175 156 167	97 87 97	125 109 165	93 90 85	176 154 173	95 90 95	176 154 165	93 86 91	168 147 161	95 92 94	172 154 165	96 91 95	168 147 157	97 93 96	168 147 161	97 93 96	164 147 157	93 88 89	164 143 157	98
8E	A-40-E B-40-E C-40-E	164 148 159	89 103 95	160 156 161	96 95	159 159 162	92 94	178 170 166	95	174 159 158	90	170 155 158	90	182 162 162	=======================================	186 162 158	=	194 166 129	=======================================	198 162 158		194 158 162	-
9A	A-41-E B-41-E C-41-E	138 158 150	88 90	F 163 153	90	163 153		171 156		164 142		168 135	==	179 132	=	175 126		175 114		175 111		175 105	:
10A	A-42-E B-42-E C-42-E	151 151 152	93 91 92	151 151 152	92 87 90	151 151 153	90 91	163 151 118	90 91	152 144 150	90 87 88	148 147 147	93 91 91		90 87 91	148 147 147	95 95 102	141 144 147	93 95 86	141 144 147	88 82	137 141 144	9
11A	A-43-E B-43-E C-43-E	147 152 155	93 92 92	147 155 161	89 86	143 154 156	92 88	150 137 142	98 93	117 147 149	87 87	120 140 146	90 90	130 150 153	90 92	127 143 149	94 89	114 140 149	95 91	105 130 F	86	109 130	9
12A	A-44-E B-44-E C-44-E D-44-E	152 147 153 164	96 94 94 95	154 150 154 166	92 91 91	157 150 141 163	95 92 93	165 161 162 175		153 147 151 159		149 144 147 155		153 147 154 163	92 93	146 144 147 155	98 96 95 91	146 144 144 151	95 95 95	146 141 144 151	92 93 94	146 138 141 147	999
9B	A-45-E B-45-E C-45-E	124 132 137	95 100 96	128 133 137	94	134 135 138	100	134 138 148	102	128 132 135	93	119 117 129	100	128 126 142		128 126 135	101	116 123 132	:	107 106 129	=	104 100 129	
10B	A-46-E B-46-E C-46-E D-46-E	165 145 144 152	95 95 98 98	162 144 143 151	90 90 94 94	161 140 141 153	93 94 97 95	172 153 151 164	97 98 99 96	161 136 137 139	95	157 136 134 146	95 93 96 95	164 142 137 150	97	157 132 130 143	97 95 99 98	157 132 130 143	78 97 99 95	157 132 127 140	92 95 94 94	153 129 124 137	9
11B	A-47-E B-47-E C-47-E	156 147 134	99 95 97	156 146 144	97 94 97	151 149 142	97 94	173 156 152	100	155 139 129	93 91	151 136 132	96 97	158 142 135		151 139 132	100	151 136 129	98 97	148 127 126	93 89	145 130 126	-
12B	A-48-E	155	97	155	96	147	96	169	100	151	95	151	99	162	98	151	101	147	101	147	99	144	9
	B-48-E C-48-E	132 144	95	F 146		144		155		141	97	141	104	144	96	137	98	137	98	137		134	
										(Con	tinue	d)										(Shee	t s

(Issued Sept 1967)
Table 1-VR (Continued)

	Speci	13 Cyc	95 les		62 les		706		77 les		1955 27 les	19	Read 198	21	39 les	22 Cyc	28 les		34 les		69 les		32 cles
Mix No.	Speci- men No.		55 %v ²	19 %E	56 6v ²	19 %E	%v ²		58 %v ²		59 6v ²	19	60 %v ²		61 %v ²	19 %E	62 %v ²		63 %v ²	19 % E	64 %v ²	19 %E	965 %v ²
9C	A-49-E B-49-E	140 129	99 98	141 135	96 99	184 140	94 95	149 118	99 97	133 106	90 91	130 F	95	136	96	130	96	130	93	124	87	118	
100	C-49-E A-50-E	128	95 98	136	95	127 153	92 96	140	93	124	89 95	124	92	130	93	121	97	124	98	121	97	115	100
	C-50-E	142	98	144	98	142	96	139	98	129	94	136	95	139	98	136	99	136	96	133		130	-
11C	A-51-E B-51-E C-51-E	130 140 137	98 97 95	134 144 144	99 96 97	135 139 140	94 94 93	145 152 150	101 98 98	129 136 139	94 92 92	123 133 134	95 95 95	126 139 141	95 96 96	123 133 138	100 98 98	120 133 135	91 98	117 127 129		120 124 126	94
12C	A-52-E B-52-E C-52-E	142 152 150	97 99 98	145 155 153	98 101 100	145 154 150	94 97 96	156 165 161	98 100 97	142 154 150	94 96 94	139 150 146	96 98 97	142 154 146	96 98 98	135 147 139	100 100 98	132 147 139	96 99 94	132 147 139	95	129 143 132	100 99 99
9D	A-53-E C-53-E	143 149	96 94	147 153	98 95	148 110	95 92	155 166	98 93	138 145	92 89	135 138	95 91	145 145	98 95	135 138	101 95	135 135	93	128 132	91	125 142	97
10D	A-54-E B-54-E C-54-E	149 139 143	95 99 96	154 142 147	97 101 98	157 140 145	92 97 92	172 147 145	97 99 95	153 133 138	92 95 90	149 130 135	95 98 93	149 133 135	95 98 96	145 126 132	98 55 83	145 129 129	88 102 95	141 126 126		138 123 120	94 102 100
110	A-55-E B-55-F C-55-E	142 129 134	95 98 97	146 131 136	94 98 96	145 125 133	91 96 93	152 119 143	94 99 97	138 125 130	89 93 91	135 122 127	90 96 94	138 122 133	91 97 95	138 119 127	93 100 95	131 116 124	93 97 97	125 107 124	89 85	119 107 118	91
12D	A-56-E B-56-E C-56-E	152 143 141	98 97 96	155 146 145	98 97 96	159 142 142	96 95 95	163 149 153	100 97 97	152 142 142	95 93 92	148 138 139	96 94 95	156 138 139	97 95 97	145 135 136	92 94 95	145 135 136	99 96 101	141 132 133	95	137 129 130	
9E	A-57-E B-57-E C-57-E	93 112 148	96	78 95 115	90	F F F																	
10E	A-58-E B-58-E C-58-E	137 125 133	98 99 97	143 116 138	98 99 92	142 130 152	95 97 95	145 120 163	100 97	142 126 152	96 94	139 120 152	97 95	142 123 135		139 117 152	59	139 117 156	=======================================	136 114 156	Ξ	133 114 152	
11E	A-59-E B-59-E C-59-E	121 134 116	98 98	124 144 109	94 97	115 115 105	93 91	121 141 113	92	Brok 122 85	en in	hand 111 71	lling	F F									
12E	A-60-E B-60-E	130 107	99 101	133 112	99 99	131 113	96	141 113	97	127 F	93	127	98	127	99	120	57	117		117		123	
	C-60-E	138		141		140		151		134		141		141		138		135		135		132	
		=	2762								1966	Read	lings				_				_	_	
			Cycles (Fir	S																			
3A	A-3-E B-3-E C-3-E	162 141 138		84 87																			
5A	C-5-E	132																					
6A	A-6-E	150																					
7A	A-7-E B-7-E C-7-E	170 151 152		89 79 86																			
8 A	A-8-E B-8-E C-8-E	145 176 145		85																			

-			
		276	
	Speci-	Cycl 1966 (F	es inal)
Mix No.	men No.	%E	%v2
		162	
3B	B-11-E C-11-E	162	==
ED.	A-13-E	138	
5B	B-13-E	172	
	C-13-E	153	
7B	A-15-E	165	
	B-15-E	160	
	C-15-E	137	
8B	A-16-E B-16-E	127 139	
1C	C-17-E	155	
3C	A-19-E	175	
	B-19-E C-19-E	152 155	87
1			
4C	A-20-E B-20-E	152 161	
	C-20-E	163	
5C	A-21-E	143	
	B-21-E	152	
6c	A-22-E	139	77
	B-22-E	168	
		139	
7C	A-23-E B-23-E	166 175	82
8c	A-24-E B-24-E	166 178	84
	C-24-E	175	84
3D	A-27-E	178	
32	B-27-E	181	
	C-27-E	163	
5D	A-29-E	141	
	B-29-E C-29-E	163	
6D	A-30-E	142	
7D	A-31-E B-31-E	188 143	84
	C-31-E	163	
8D	A-32-E	167	
	B-32-E	148	
	C-32-E	157	
3E	. A-35-Е В-35-Е	218	=
	C-35-E	212	
4E	в-36-е	Failed	
5E	A-37-E	Failed	
7E	A-39-E	177	84
	B-39-E C-39-E	139 161	85
8E	A-40-E	211	
ao	B-40-E	169	
	C-40-E	174	
9A	B-41-E	186	
	C-41-E	99	

(Issued Sept 1967)
Table 1-VR (Concluded)

1					19	66 Readings			71
		27	62 les						
x	Speci- men	1966 (Final)						
	No.	%E	%v2						
A	A-42-E B-42-E	151 144	85 78						
	C-42-E	137							
		105							
A	A-43-E B-43-E	127 143	81						
A	A-44-E B-44-E	157 141	81						
	C-44-E	128	84						
	D-44-E	162	87						
D	ALER	101							
В	A-45-E B-45-E	121	==						
	C-45-E	139							
В	A-46-E	160	83						
ь	B-46-E	135	88						
	C-46-E	137	89						
	D-46-E	140	86						
В	A-47-E	132							
	B-47-E	143							
	C-47-E	123	84						
В	A-48-E	130	89						
	C-48-E	148							
	A ho n	101							
C	A-49-E C-49-E	121	=						
C	A-50-E C-50-E	155	91						
	C-50-E	137							
C	A-51-E	126	86						
	B-51-E	136	84						
	C-51-E	120							
C	A-52-E	132	83						
	B-52-E	154	89 88						
	C-52-E	132	00						
D	A-53-E	131	86						
	C-53-E	149							
D	A-54-E	145	88						
	B-54-E	123	87						
	C-54-E	105	84						
D	A-55-E	128	79						
	B-55-E	113							
	C-55-E	127							
D	A-56-E	152							
	B-56-E	132							
	C-56-E	140	-						
E	A-58-E	140							
-	B-58-E	124	-						
	C-58-E	159							
E	A-60-E	117							
•	C-60-E	146							

Field and Laboratory Correlation Program*

Six coarse and eight fine aggregates were used in 48 combinations to make concrete specimens, all with the same water-cement ratio, air content, and slump, for comparative testing in accelerated freezing-and-thawing and exposure to natural weathering.

A total of 450 beams were fabricated, the characteristics of the concrete being: $2-1/2 \pm 1/2$ in. slump, air content of $4-1/2 \pm 1/2\%$, water-cement ratio of 5.5 gal per bag, and sand content from 36 to 42% depending on particle shape. The cement factors ranged from 4.56 to 6.66 bags per cu yd. Six 3-1/2- by 4-1/2- by 16-in. beams and three 6- by 6- by 30-in. beams were made for each of the 48 combinations; also, two combinations were repeated, bringing the total number of beams to 450. Half the small beams (150) were tested in the laboratory, and half the small (150) and all of the large beams (150) were installed on the exposure rack at Treat Island in December 1948.

Tables 1-FLC and 2-FLC list the concrete specimens and give their exposure record along with their aggregates.

In May 1952, 41 of the small beams (3-1/2 by 4-1/2 by 16 in.) exposed at Treat Island were returned to the laboratory for tests. Thirty of these specimens were still sound and eleven had failed. These laboratory tests are summarized in the referenced paper.* The findings were:

Comparison of laboratory and field results indicates that each aggregate combination behaves in an individual manner in each exposure, as influenced by differences in materials and in exposures. Prediction of behavior in one type of exposure from behavior in another cannot be made unless all the differences between the two can fully be evaluated, which is not yet possible.

The exposure of the small beams at Treat Island was concluded in

^{*} See Thomas B. Kennedy and Katharine Mather, "Correlation between laboratory accelerated freezing and thawing and weathering at Treat Island, Maine," <u>Journal</u>, Amer. Conc. Inst. <u>Proceedings</u>, vol 50 (October 1953).

(Issued Sept 1967)

Program 15

1957 after 1108 cycles of freezing-and-thawing (9 winters). The exposure of the large beams was discontinued in 1967 after 2320 cycles of freezing-and-thawing (19 winters). Final determinations of %E and %V² were made in 1966 after 18 winters (2164 cycles of freezing-and-thawing). In 1967 only five large beams remained; three of these beams were made using limestone as the fine aggregate and crushed chert as the coarse aggregate.

Findings

If the exposure record of both the small and the large beams are considered the findings are:

- <u>a.</u> The <u>most</u> durable aggregate combination was a mixture using crushed chert both as a fine and coarse aggregate.
- <u>b</u>. The <u>least</u> durable aggregate combinations was a mixture using a natural nonchert sand and quartzite.
- c. The order of durability of coarse aggregates, from most durable to least durable, was: Crushed chert gravel, limestone, granite, uncrushed chert gravel, nonchert gravel, and quartzite.
- <u>d</u>. The order of durability of fine aggregates, from <u>most</u> durable to least durable was:

Quartzite Crushed chert sand Granite

Natural siliceous sand, limestone, and river sand (essentially equal in durability)

Natural chert sand

Natural nonchert sand

(Issued Sept 1967) Table 1-FLC

Record of Testing of Small Concrete Beams, Field and Laboratory Correlation Program 1948-1957 (Installed December 1948)

			0	105	266	355	948 - 1957 1 456	Readings 541	652	797	964	1108
Beam No.	Fine Aggregate	Coarse Aggregate	Cycles 1948 %E	Cycles 1949	Cycles 1950 %E	Cycles 1951 %E	Cycles 1952	Cycles 1953	Cycles 1954 %E	Cycles 1955	Cycles 1956 %E	Cycles 1957 (Fin
2983 2984 2985	Limestone	Limestone	100 100 100	100 101 101	97 99 103	91 92 104	69* 73 64	66 50 F	50 F**			•
3443 3444 3445	Limestone (rerun)	Limestone	100 100 100	103 105 103	102 96 93	98 89 89	102* 84 61	52 81	50 F 77	66	61	37F
965 966 967	Granite	Limestone	100 100 100	101 101 100	102 101 102	102 98 101	102* 96 100	88 97	82 89	74 80	81 81	50F 29F
229 230 231	River sand	Limestone	100 100 100	101 99 98	91 92 90	80 79 81	63* 63 70	55 53	36F 37F			
3220 3221 3222	Nonchert sand	Limestone	100 100 100	103 97 100	89 83 94	82 74 91	64* 58 77	36F 72	48F			
2992 2993 2994	Natural siliceous	Limestone	100 100 100	100 102 99	103 99 98	102 97 93	98* 91 81	86 77	76 64	70 47 F	75	27 F
3202 3203 3204	Crushed chert	Limestone	100 100 100	100 94 99	97 96 98	92 97 96	86 * 85 90	87 87	78 84	87 92	87 82	50 F 50 F
977 978 979	Quartzite	Limestone	100 100 100	102 99 100	99 98 100	99 96 93	93 * 87 90	83 84	73 82	63 73	40F 80	37F
3211 3212 3213	Natural chert	Limestone	100 100 100	99 99 101	96 93 93	89 85 96	77* 74 73	64 60	51 41F	32F		
3028 3029 3030	Limestone	Granite	100 100 100	101 102 102	99 105 104	59 94 95	33F 40F 40F					
3001 3002 3003	Granite	Granite	100 100 100	102 103 104	110 113 111	115 117 114	119* 120 108	118 89	82 61	73 35 F	70 1	
3265 3266 3267	River sand	Granite	100 100 100	103 103 104	104 103 103	89 82 93	48F 45F 48F					
3256 3257 3258	Nonchert sand	Granite	100 100 100	103 102 103	108 104 107	105 90 107	72* 47F 78	50 F				
019 020 021	Natural siliceous	Granite	100 100 100	103 103 105	106 107 107	105 104 106	493° 74 64	39F 32F				
3238 3239 3240	Crushed chert	Granite	100 100 100	106 107 103	112 111 109	112 110 110	104* 95 86	80 71	53 43F	44F		
010 011 012	Quartzite	Granite	100 100 100	102 101 103	111 107 110	115 111 120	115* 107 122	100	98 107*	30F		
3247 3248 3249	Natural chert	Granite	100 100 100	102 101 103	106 104 107	104 102 108	56* 51 63	28F 28F				
3082 3083 3084	Limestone	Nonchert gravel	100 100 100	99 94 98	Disin	tegrated tegrated tegrated						

Note: None of these small beams remained under test after 1957.

* Returned to laboratory.

** F denotes specimen has failed.

† Broken in handling.

(Issued Sept 1967)
Table 1-FLC (Continued)

				105	266	355		7 Reading		707	001	1100
Beam No.	Fine Aggregate	Coarse Aggregate	O Cycles 1948 %E	Cycles 1949 %E	Cycles 1950 %E	355 Cycles 1951 <u>%E</u>	456 Cycles 1952 %E	541 Cycles 1953 %E	652 Cycles 1954 %E	797 Cycles 1955 %E	964 Cycles 1956 %E	1108 Cycles 1957 (Final)
3100 3101 3102	Granite	Nonchert gravel	100 100 100	103 102 103	93 98 97	76 82 76	46F 49F 46F					
3337 3338 3339	River sand	Nonchert gravel	100 100 100	98 98 98	96 87 76	85 46F 41F	45F					
3310 3311 3312	Nonchert sand	Nonchert gravel	100 100 100	96 99 96	82 91 86	30F 41F 41F						
3091 3092 3093	Natural siliceous	Nonchert gravel	100 100 100	103 102 101	91 88 83	71 60 41F	49F 49F					
3301 3302 3303	Crushed chert	Nonchert gravel	100 100 100	99 96 97	89 91 88	61 71 61	41F 47F 41F					
3073 3074 3075	Quartzite	Nonchert gravel	100 100 100	99 98 96	95 96 97	91 95 91	51* 44F 50F					
3328 3329 3330	Natural chert	Nonchert gravel	100 100 100	96 101 97	89 92 96	52 68 41F	35F 41F					
3139 3140 3141	Limestone	Uncrushed chert	100 100 100	102 101 103	71 97 92	42F 34F 50F						
3112 3113 3114	Granite	Uncrushed chert	100 100 100	100 101 101	99 102 103	85 101 102	58* 82 94	51 66	34F 44F			
3355 3356 3357	River sand	Uncrushed chert	100 100 100	97 97 98	93 88 96	87 62 92	65* 55 44F	50F				
3364 3365 3366	Nonchert sand	Uncrushed chert	100 100 100	98 99 97	94 97 98	77 90 86	65* 45F 48F					
3130 3131 3132	Natural siliceous	Uncrushed chert	100 100 100	99 102 101	99 99 101	103 101 105	57 * 70 58	34F 56	37 F			
3375 3376 3377	Crushed chert	Uncrushed chert	100 100 100	99 98 103	82 97 104	73 73 104	47F 62 76	59 81	24F 47F			
3121 3122 3123	Quartzite	Uncrushed chert	100 100 100	103 101 101	100 97 98	96 93 96	93* 92 94	62 64	41F 42F			
3346 3347 3348	Natural chert	Uncrushed chert	100 100 100	98 96 97	92 90 95	85 78 94	58* 59 49 F	27F				
3148 3149 3150	Limestone	Crushed chert	100 100 100	102 102 102	104 104 101	100 101 98	68 * 91 96	50F 82	90	50F		
3157 3158 3159	Granite ·	Crushed chert	100 100 100	105 104 104	106 103 104	107 105 103	105* 103 99	103 95	54 61	33F 43F		
3411 3412 3413	River sand	Crushed chert	100 100 100	105 102 106	106 105 106	105 105 108	103* 105 101	102	101	90 97	85 79	43F 44F
3402 3403 3404	Nonchert sand	Crushed chert	100 100 100	103 103 103	105 105 106	106 105 105	106* 105 100	98 102	95 100	60 71	42F 79	30F

(Continued)

(Issued Sept 1967)
Table 1-FLC (Concluded)

								Reading				
Beam No.	Fine Aggregate	Coarse Aggregate	O Cycles 1948 %E	105 Cycles 1949 %E	266 Cycles 1950 %E	355 Cycles 1951 %E	456 Cycles 1952 <u>%E</u>	541 Cycles 1953 %E	652 Cycles 1954 <u>%E</u>	797 Cycles 1955 %E	964 Cycles 1956 %E	1108 Cycles 1957 (Final)
3175 3176 3177	Natural siliceous	Crushed chert	100 100 100	101 101 100	102 102 101	103 102 102	101* 101 99	101 101	95 92	63 49 F	63	50F
3384 3385 3386	Crushed chert	Crushed chert	100 100 100	103 104 104	106 107 105	108 108 106	97* 108 Lost	108	106	97	85	50F
3166 3167 3168	Quartzite	Crushed chert	100 100 100	100 102 102	102 102 101	101 101 101	97 * 96 99	98 99	95 94	80 73	81 77	34F 50F
3393 3394 3395	Natural chert	Crushed chert	100 100 100	104 102 103	102 101 102	102 101 102	Lost 101* 96	102	101	87	77	29 F
3055 3056 3057	Limestone	Quartzite	100 100 100	100 99 103	85 42F 97	39F 44F						
3037 3038 3039	Granite	Quartzite	100 100 100	102 99 101	101 92 102	81 62 92	42F 39F 46F					
3292 3293 3294	River sand	Quartzite	100 100 100	101 100 99	72 85 78	42F 41F 38F						
3319 3320 3321	Nonchert sand	Quartzite	100 100 100	97 99 96	61 48F 66	49F 50F						
3046 3047 3048	Natural siliceous	Quartzite	100 100 100	100 100 99	75 94 84	46F 42F 41F						
3283 3284 3285	Crushed chert	Quartzite	100 100 100	99 102 97	100 102 86	97 91 67	60 49F 40F	50F				
3064 3065 3066	Quartzite	Quartzite	100 100 100	101 101 98	77 94 77	39F 80 42F	43F					
3428 3429 3430	Quartzite (rerun)	Quartzite	100 100 100	107 105 107	112 110 112	102 92 96	95 * 82 70	53 61	52 56	40F 50F		
3274 3275 3276	Natural chert	Quartzite	100 100 100	100 104 101	37F 38F 38F							

(Issued Sept 1967)

Table 2-FLC

Program 15 Record of Testing of Large Concrete Beams, Field and Laboratory Correlation Program

1948-1966 (Installed December 1948)

			0	105	266	355	1948 - 195	Shi .	Cycles, 1	953	652		79	
			Cycles	Cycles	Cycles	Cycles	Cycles	541	Pulse	973	Cycl 195		Cyc	
Beam No.	Fine Aggregate	Coarse Aggregate	1948 %E	1949 %E	1950 %E_	1951 %E	1952 %E	%E	Veloc fps	%v ²	%E	%v ²	19 %E	%v2
2971 2972 2973	Quartzite	Limestone	100 100 100	104 108 105	107 111 109	102 111 109	90 108 109	78 92 101	14,705 14,970 15,335	100 100 100	65 77 86	83 88 92	50F 47F 67	86
2986 2987 2988	Limestone	Limestone	100 100 100	102 99 107	106 108 111	106 107 111	100 106 111	83 84 115	14,795 14,705 14,620	100 100 100	62 71 108	76 87 101	50F 44F 100	99
2968 2969 2970	Granite	Limestone	100 100 100	102 105 104	105 109 108	106 109 106	106 103 105	101 99 77	15,245 15,060 14,975	100 100 100	84 78 71	85 86 84	69 65 59	76 81 75
3232 3233 3234	River sand	Limestone	100 100 100	104 96 102	101 91 101	83 66 88	83 53 70	56 17F 52	13,890	100	50F*			
3223 3224 3225	Nonchert sand	Limestone	100 100 100	101 98 104	102 9 9 98	96 87 100	80 78 80	66 65 68		==	50F 50F 49F			
2989 2990 2991	Natural siliceous	Limestone	100 100 100	104 102 98	106 103 96	80 91 99	64 66 63	46F 50F 53	13,515	100	50F			
3205 3206 3207	Crushed chert	Limestone	100 100 100	100 101 99	104 104 102	103 102 95	104 93 81	99 77 68	15,430 15,150 14,285	100 100 100	80 58 55	82 83 78	64 50F 50F	78
3214 3215 3216	Natural chert	Limestone	100 100 100	99 102 101	101 100 103	97 82 97	86 69 74	76 50 F 56	15,245 14,970	100	66 50 F	80	59	79
3004 3005 3006	Granite	Granite	100 100 100	106 103 104	115 112 112	118 116 116	122 118 118	121 116 122	15,060 15,060 15,150	100 100 100	124 98 115	100 98 98	115 72 94	99 95 94
3013 3014 3015	Quartzite	Granite	100 100 100	97 107 105	105 113 112	110 118 117	114 120 118	119 120 111	15,245 15,150 15,245	100 100 100	121 98 85	101 96 96	119 73 53	99 95 95
3031 3032 3033	Limestone	Granite	100 100 100	105 103 106	113 114 114	117 115 119	120 118 121	123 119 110	14,795 14,705 14,795	100 100 100	100 96 75	100 100 98	100 96 43F	102
3268 3269 3270	River sand	Granite	100 100 100	108 102 107	115 121 111	113 125 104	88 126 74	35F 98 B 33F	roken in	h an dli	ng			
3259 3260 3261	Nonchert sand	Granite	100 100 100	107 109 107	114 119 114	116 117 115	105 104 106	50F 51 45F			50F			
3022 3023 3024	Natural siliceous	Granite	100 100 100	108 108 109	115 114 116	119 114 117	121 58 91	110 50F 50F	14,970	100	60	95	50F	
3241 3242 3243	Crushed chert	Granite	100 100 100	103 102 107	111 112 117	112 114 120	115 119 125	100 121 128	15,530 16,130 15,825	100 100 100	56 108 123	81 88 91	50F 59 86	79
3250 3251 3252	Natural chert	Granite	100 100 100	107 108 105	112 114 113	113 110 113	100 70 73	44F 25F 50F						
3067 3068 3069	Quartzite	Quartzite	100 100 100	103 96 100	106 99 103	100 98 100	54 97 67	50F 90 27F	14,970	100	75	94	59	87
3431 3432 3433	Quartzite (rerun)	Quartzite	100 100 100	107 105 107	112 111 112	104 104 101	90 90 87	70 66 67	15,430 15,530 15,430	100 100 100	48F 46F 47F			

^{*} F denotes specimen has failed.

							1948-1955	Readin	gs		Z=0			27
			O Cycles	105 Cycles	266 Cycles	355 Cycles	456 Cycles	541	Cycles, 1 Pulse	953	652 Cycl	es	Cyc	eles
Beam No.	Fine Aggregate	Coarse Aggregate	1948 %E	1949 %E	1950 %E	1951 %E	1952 %E	%E	Veloc fps	%v2	195 %E	4 %v ²		955 %v ²
3058 3059 3060	Limestone	Quartzite	100 100 100	102 103 105	104 85 108	82 66 79	40F 33F 40F							
3040 3041 3042	Granite	Quartzite	100 100 100	100 102 101	98 102 101	74 101 93	42F 43F 52	30F						
3295 3296 3297	River sand	Quartzite	100 100 100	100 102 96	97 97 91	44F 44F 44F								
3322 3323 3324	Nonchert sand	Quartzite	100 100 100	101 100 102	48F 27F 25F									
3049 3050 3051	Natural siliceous	Quartzite	100 100 100	102 100 101	102 102 100	98 96 57	44F 44F 44F							
3286 3287 3288	Crushed chert	Quartzite	100 100 100	101 100 101	104 102 105	92 84 102	59 34 F 63	20F 19F						
3277 3278 3279	Natural chert	Quartzite	100 100 100	101 103 103	96 99 101	58 61 62	41F 47F 47F							
3115 3116 3117	Granite	Uncrushed chert	100 100 100	98 103 106	102 106 108	103 103 105	102 92 80	96 61 50F	14,535	100	83 40F	94	76	90
3142 3143 3144	Limestone	Uncrushed chert	100 100 100	103 98 98	104 98 101	97 86 100	48F 52 93	50F 76	14,370	100	69	88	57	93
3358 3359 3360	River sr.1	Uncrushed chert	100 100 100	101 102 103	105 105 104	104 101 92	104 79 53	81 40F 50F	15,245	100	41F			
3367 3368 3369	Nonchert sand	Uncrushed chert	100 100 100	104 102 102	108 106 104	103 102 87	74 93 42F	50F 43F						
3133 3134 3135	Natural siliceous	Uncrushed chert	100 100 100	95 100 99	96 99 95	96 88 69	61 50F 42F	50F						
3378 3379 3380	Crushed chert	Uncrushed chert	100 100 100	102 99 101	105 100 101	99 100 96	89 96 73	59 78 37F	14,535 14,970	100	37F 44F			
3124 3125 3126	Quartzite	Uncrushed chert	100 100 100	97 95 97	98 98 101	98 97 100	92 98 100	77 95 98	15,060 15,530 15,150	100 100 100	52 73 68	86 86 86	45F 49F 46F	
3349 3350 3351	Natural chert	Uncrushed chert	100 100 100	100 100 103	97 101 105	74 77 99	46F 43F 52	50F						
3151 3152 3153	Limestone	Crushed chert	100 100 100	101 102 98	106 107 106	105 106 107	108 109 110	110 109 111	15,060 14,975 14,450	100 100 100	108 109 114	89 92 93	102 107 110	91 94 98
3160 3161 3162	Granite	Crushed chert	100 100 100	104 102 98	109 106 104	96 107 104	112 110 106	112 111 107	15,060 15,060 15,060	100 100 100	114 112 101	92 93 91	108 110 92	92 93 88
3169 3170 3171	Quartzite	Crushed chert	100 100 100	100 100 100	10 ¹ 4 103 10 ¹ 4	104 103 104	107 106 107	109 106 110	15,150 15,430 15,335	100 100 100	109 108 109	93 90 90	108 103 103	95 90 92
3387 3388 3389	Crushed chert	Crushed chert	100 100 100	104 103 101	99 111 107	99 111 109	116 114 112	118 116 114	15,060 15,060 15,150	100 100 100	119 117 116	90 89 91	119 115 116	91 93 94
3396 3397 3398	Natural chert	Crushed chert	100 100 100	103 103 104	109 107 110	108 107 110	113 112 115	113 113 115	15,530 15,530 15,825	100 100 100	114 114 116	88 90 88	113 113 116	92 94 93 et 2)

			0	30	15	266	_	55	1.00		51.7 0	broles 1	052		52	79	7
			Cycles	10 Cyc	eles	Cycle		55 cles	456 Cycles		541 0	ycles, 1 Pulse	953	Су	cles	Cyc	eles
Beam No.	Fine Aggregate	Coarse Aggregate	1948 Æ	19)49 Æ	1950 ÆE	1	951 Æ	1952 Æ		%E	Veloc fps	%v2	%E	954 %v ²	%E	955 %v
3405 3406 3407	Nonchert sand	Crushed chert	100 100 100	11	05	121 112 114	1	19 12 14	119 117 118		104 117 120	15,335 15,530 Broken	100 100 in har	100 119 ndling	89 90	73 119	8
3414 3415 3416	River sand	Crushed chert	100 100 100	10)5	111 110 114	1	.11 .11 .14	115 123 119		111 123 114	15,150 15,430 15,430	100 100 100	115 118 119	91	109 123 119	9
3178 3179 3180	Natural siliceous	Crushed chert	100 100 100	10		104 103 99	1	.03 .03 .00	107 107 103		109 109 105	15,335 15,430 15,245	100 100 100	105 105 101	91	66 77 64	8
3085 3086 3087	Limestone	Nonchert gravel	100 100 100	10	00	80 85 97		50F 50F 50F									
3103 3104 3105	Granite	Nonchert gravel	100 100 100	10	03	103 105 109		63 93 .02	47F 49F 51		25F						
3340 3341 3342	River sand	Nonchert gravel	100 100 100	10	99 03 00	101 105 98		88 90 53	46 F 49 F 36 F								
3313 3314 3315	Nonchert sand	Nonchert gravel	100 100 100	9	01 96 00	91 89 94		34F 38F 41F									
3094 3095 3096	Natural siliceous	Nonchert gravel	100 100 100	10	02	104 102 105		84 65 .02	45F 41F 48F								
3304 3305 3306	Crushed chert	Nonchert gravel	100 100 100	10	03 02 04	105 102 112		93 90 99	56 50F 60		27F 32F						
3076 3077 3078	Quartzite	Nonchert gravel	100 100 100	10		106 104 101	1	.06 .03 .00	92 82 100		50F 50F 84	15,150	100	55	92	41F	
3331 3332 3333	Natural chert	Nonchert gravel	100 100 100	10		100 108 92		84 78 45F	50F 50F								
3446 3447 3448	Limestone (rerun)	Limestone	100 100 100		07 02 07	114 108 113	1	112	117 101 102		110 94 92	15,625 15,150 15,335	100 100 100	101 80 76	80	72	
									1956-1	1963	Readin	ngs					
			96 Cycl 195	es	110 Cyc: 199	les	117 Cycl 195	Les	1329 Cycle 1959	es	Cyc	+00 eles 960	1541 Cycle: 1961	s C	1630 ycles 1962 E %V	Cyc	736 cles 963
2973	Quartzite	Limestone	62	83	62	69	50F			6							
2988	Limestone	Limestone	101	98	89	94	86	98	76	87	F						
2968 2969 2970	Granite	Limestone	65 71 50F	61 73	42F 50F												
3205	Crushed chert	Limestone	54	68	50F												
3214	Natural chert	Limestone	59	86	41F												
3004 3005 3006	Granite	Granite	100 59 59	94 89 86	82 59 42 F	85	99 50F	88	54	49	F						
3013 3014	Quartzite	Granite	126 53	100	126 44F	99	126	105	122	95	80	93	82	91 7	4 9	3 70	

Table 2-FIC (Concluded)

											Reading							
Beam	Fine	Coarse	96 Cycl 195	.es	110 Cycl 195	es 7	117 Cycl _ 195	es	132 Cycl 195	es	140 Cycl 196	es	154 Cycl 196	es	163 Cycl 196	es	173 Cycl 196	les 3
No.	Aggregate	Aggregate	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2
3031 3032	Limestone	Granite	120 96	104	98 50F	98	91	105	94	98	125	103	120	99	114	106	119	106
3242 3243	Crushed chert	Granite	59 56	70 73	50F 50F													
3068	Quartzite	Quartzite	55	85	55	72	50F											
3115	Granite	Uncrushed chert	75	93	71	82	60	87	57	79	55	64	56	81	52	85	46F	82
3144	Limestone	Uncrushed chert	50F															
3151 3152 3153	Limestone	Crushed chert	110 107 112	90 90 97	110 107 112	88 90 91	85 92 96	92 94 97	84 92 96	83 90 92	89 90 99	87 92 93	84 86 92	83 85 90	80 82 86	91 91 93	76 80 92	87 90 98
3160 3161 3162	Granite	Crushed chert	107 110 92	90 91 88	103 110 89	83 86 84	74 93 74	88 93 89	62 86 66	66 81 73	57 83 65	71 83 80	55 78 62	68 72 72	50F 72 56	66 86 81	68 54	81
3169 3170 3171	Quartzite	Crushed chert	103 102 93	91 88 86	103 97 77	85 81 81	62 66 115	83 80 83	54 70 96	60 53 65	F F 96	64	Broke	n in	handli	ng		
3387 3388 3389	Crushed chert	Crushed chert	121 122 119	93 91 91	116 117 114	90 87 88	102 113 114	93 93 94	66 86 95	77 80 83	57 64 74	76 81 71	47F 58 68	71 80	41F 51	81	NR**	80
3396 3397 3398	Natural chert	Crushed chert	113 109 117	88 87 87	66 53 90	82 73 84	83 45 F 66	71 79	F F									
3405 3406	Nonchert sand	Crushed chert	69 122	78 85	50F 120	83	129	86	63	67	F							
3414 3415 3416	River sand	Crushed chert	111 125 122	89 86 87	106 116 117	88 86 88	101 114 117	88 89 94	81 79 74	76 73 79	65 62 62	80 77 81	54 45F 50F	74	39F	65		
3178 3179 3180	Natural siliceous	Crushed chert	66 77 64	74 71 69	50F 50F 50F													
3446 3447 3448	Limestone (rerun)	Limestone	95 50F 55	76 46	87 50F	65	92	72	82	57	78	70	70		F			

									1964-	Reading	S		
			187 Cycl 196	es	Сус	134 1es 165	21 Cyc 1966 (
			%E	96V2	<u>%</u> E	%v2	%E	%v2					
013	Quartzite	Granite	51		53		42F						
031	Limestone	Granite	113	94	106	110	118	94					
151 152 153	Limestone	Crushed chert	60 71 88	83 81 87	69 73 81	98 94 105	65 64 86	79 90					
61	Granite	Crushed chert	65 49 F	74	67	82	55	63					
389	Crushed chert	Crushed chert	45F										

^{**} NR denotes a satisfactory reading was not obtained.

Form Lining Investigation

In June 1946, 68 concrete specimens were installed on the Treat Island exposure rack. The purpose of this installation was to determine the influence of the use of absorptive form lining on the durability of mass concrete made with and without air-entraining admixtures. The specimens consisted of concrete cores (6 in. in diameter by 8 in.) encased in a 2-in. thickness of mortar on all but the formed surface. These cores were diamond-drilled from 10-cu-ft mass concrete blocks representing concrete of 3-1/2- and 4-bags-per-cu-yd cement factor with and without two air-entraining admixtures, with 4-in. traprock coarse aggregate, and with surfaces formed against either oiled wood forms or absorptive form lining.

Table 1-FL lists these specimens, and gives the degree or percentage of the formed surface deterioration along with other pertinent information.

The exposure was terminated in 1966 after 2413 cycles of freezingand-thawing (20 winters); only two specimens survived the exposure.

Findings

The findings in this program are:

- a. The order of durability of the 3-1/2-bag mixtures was as follows (most durable to least durable):
 - (1) Mixture containing resin soap.
 - (2) Mixture containing admixture X.
 - (3) Mixture with no air-entraining admixture.
- <u>b</u>. The order of durability of the 4-bag mixtures was as follows (most durable to <u>least</u> durable):
 - (1) Mixture containing admixture X.
 - (2) Mixture containing resin soap.
 - (3) Mixture containing no air-entraining admixture.
- c. The surfaces formed against absorptive form lining had greater durability than surfaces formed against oiled wood with all mixtures except the 4-bag mixture containing resin soap. With this mixture, the surfaces formed against the oiled wood had greater durability.

Table 1-FL

Record of Formed Surface Deterioration, Degree of Percent, Form Lining Investigation 1946-1966 (Installed June 1946)

		Air-	Cement						1958 Rea					
ore	Form Lining	entrain- ing Admixture	Factor bags/ cu yd	O Cycles 1946	249 Cycles 1948	515 Cycles 1950	604 Cycles 1951	705 Cycles 1952	790 Cycles 1953	901 Cycles 1954	1046 Cycles 1955	1213 Cycles 1956	1357 Cycles 1957	1428 Cycle 1958
25-1P 25-3P 25-1C 25-3C	Wood Wood Absorptive Absorptive	None	3.5	0 0 0	M* 0 0	40 8 0 0	40 5 0 1	60 10 0 10	60 10 10 25	70 12 80 90	70 15 80 90	80 25 80 90	100F** 25 80 90	30 80 100F
58-1P 58-2P 58-3P 58-1C 58-2C 58-3C	Wood Wood Absorptive Absorptive Absorptive	None	3.5	0 0 0 0 0 0	H* H O O	70 90 100F H 0	100F 100F 50 0	50 10 2	50 20 10	60 60 40	60 60 70	60 60 80	60 60 90	70 60 90
7-1P 7-2P 7-3P 7-1C 7-2C 7-3C	Wood Wood Wood Absorptive Absorptive	None	4.0	0 0 0 0 0 0	S* T M O O	s s 30 0	15 10 75 2 0	15 25 85 5 0	15 25 100F 5 0	15 25 15 20 1	30 90 75 20 5	50 100F 100F 30 10	80 100F 10	80
51-1P 51-2P 51-3P 51-1C 51-2C 51-3C	Wood Wood Wood Absorptive Absorptive	None	4.0	0 0 0 0 0 0 0	s s o o	20 M 20 S 0	80 40 40 5 5	90 40 90 20 5	95 40 90 20 5	100F 60 100F 40 10	70 60 10 70	100F 60 20 70	60 50 100F	70 50
28-1P 28-2P 28-3P 28-1C 28-2C 28-3C	Wood Wood Absorptive Absorptive Absorptive	Resin soap	4.0	0 0 0 0 0 0	0 8 8 9 0	20 30 M M M	40 40 40 20 30 30	40 60 40 20 30 30	40 75 75 20 30 50	50 85 75 30 50 90	50 100F 75 50 60 90	50 75 50 75 100F	50 75 100F 80	50 75 80
62-1P 62-2P 62-3P 62-1C 62-2C 62-3C	Wood Wood Absorptive Absorptive Absorptive	Resin soap	4.0	0 0 0 0 0 0	S S T O S	S S T O M	15 5 5 0 25 5	15 10 5 5 50 5	15 10 10 10 70 20	15 10 10 10 70 25	15 10 10 40 70 60	15 10 10 60 80 60	15 10 10 60 80 60	15 10 10 70 80 60
4-1P 4-3P 4-1C 4-2C 4-3C	Wood Wood Absorptive Absorptive	Resin soap	3.5	0 0 0 0	s M M O	M 20 20 T 0	40 50 20 3 5	40 50 30 10 5	40 50 40 10 20	50 80 70 30 30	50 100F 80 50 70	80 75 70	80 80 80 70	100F 100F 90 70
9-1P 9-2P 9-3P 9-1C 9-2C 9-3C	Wood Wood Absorptive Absorptive Absorptive	Resin soap	3.5	0 0 0 0 0 0 0	M M S S M T	50 20 S S M	95 60 s s 30 s	95 70 10 5 75	95 80 20 5 90	95 80 40 5 90	95 80 40 10 90 40	95 80 40 40 90 40	100F 90 70 70 90 60	90 70 70 90 80
2-1P 2-2P 2-3P 2-1C 2-2C 2-3C	Wood Wood Absorptive Absorptive	Admixture X	3.5	0 0 0 0 0	H S S O O	50 M M S O	50 30 30 10 0	60 30 40 20 10	60 30 40 20 10 20	60 40 40 30 10 30	60 50 40 100F 20 60	60 50 50 30 65	60 60 60 50 65	60 70 60 60 65
		Admixture X	3.5	0 0 0 0 0 0	M 0 S 0 0	50 90 8 0 0	100F 100F 10 2 3 35	50 2 15 35	75 2 20 35	100F 10 25 70	15 25 90	50 50 90	50 60 100F	50 60
33-3P 33-1C	Wood Wood Wood Absorptive	Admixture X	4.0	0 0 0	s s o s	S M S S	15 20 15 20 20	25 40 40 25 20	25 40 45 25 20	60 75 50 30 20	60 75 50 30 40	60 80 50 30 40	60 80 60 50 50	60 80 80 50 70

^{*} T = trace, S = slight, M = moderate, H = heavy; quantitative estimates of percentage of formed surface deterioration were not made on all specimens prior to 1952.

** Specimens with 100 percent of their formed surface deteriorated are considered to have failed, denoted by F.

(Issued Sept 1967)
Table 1-FL (Concluded)

		Air Entrain- ing Admixture	Cement Factor bags/ cu yd	1946-1958 Readings												
Core No.	Form Lining			O Cycles 1946	249 Cycles 1948	515 Cycles 1950	604 Cycles 1951	705 Cycles 1952	790 Cycles 1953	901 Cycles 1954	1046 Cycles 1955	1213 Cycles 1956	1357 Cycles 1957	1428 Cycles 1958		
63-1P	Wood	Admixture	4.0	0	М	100F										
63-2P	Wood	X		0	H	H	65	90	90	100F						
63-3P	Wood			0	M	100F										
63-1C	Absorptive			0	0	T	2	35	40	60	70	80	80	80		
63-2C	Absorptive			0	0	30	50	70	70	70	70	100F				
63-3C	Absorptive			0	M	M	20	30	30	30	40	60	60	60		

				1959-1966 Readings									
				3.550	1/10	1000	1000		2120		0.10		
				1578 Cycles	1649 Cycles	1790 Cycles	1879 Cycles	1985 Cvoles	Cycles	2283 Cycles	2413 Cycles		
				1959	1960	1961	1962	1963	1964	1965	1966 (Final)		
				-111				-/-5		-/-/	2)00 (121142)		
25-3P	Wood	None	3.5	30	30	40	100F						
25-1C	Absorptive			80	80	100F							
58-1C	Absorptive	None	3.5	70	70	70	70	100F					
58-2C	Absorptive		3.7	90	90	90	100F	2001					
58-3C	Absorptive			100F		,-							
27-1P	Wood	None	4.0	90	100F								
27-3C	Absorptive	None	4.0	100F	1001								
-1 50	Abborporve			1001									
61-1C	Absorptive	None	4.0	100F									
61-2C	Absorptive			70	70	100F							
28-1P	Wood	Resin	4.0	60	60	80	90	100F					
28-3P	Wood	soap		75	100F								
28-2C	Absorptive			100F									
62-1P	Wood	Resin	4.0	35	35	50	70	100F					
62-2P	Wood	SOAD	4.0	20	20	20	30	30	30	30	100F		
62-3P	Wood	soap		20	20	20	30	50	50	70	100F		
62-1C	Absorptive			70	70	70	70	100F	,0	10	1001		
62-2C	Absorptive			100F	10								
62-3C	Absorptive			90	90	100F							
						1000							
44-2C	Absorptive		3.5	90	90	100F	80	100F					
44-3C	Absorptive	soap		70	70	70	00	100F.					
59-2P	Wood	Resin	3.5	100F									
59-3P	Wood	soap		90	90	90	90	100F					
59-1C	Absorptive			70	70	70	100F						
59-2C	Absorptive			90	100F								
59-3C	Absorptive			80	80	80	80	100F					
32-1P	Wood	Admixture	3.5	70	70	70	100F						
32-2P	Wood	X	3.,	80	80	100F							
32-3P	Wood			75	90	90	100F						
32-2C	Absorptive			70	70	80	80	100F					
32-3C	Absorptive			65	70	70	100F	1175					
60-1C	Absorptive	Admixture	3.5	70	70	80	100F						
60-2C	Absorptive	X	3.7	60	70	100F	2001						
00-20	Absorptive												
33-1P	Wood	Admixture	4.0	60	60	60	80	100F					
33-2P	Wood	X		90	90	100F							
33-3P	Wood			90	90	90	90	100F	0.0				
33-1C	Absorptive			50 80	50	50	70 80	80	80 80	80 80	90 80		
33-3C	Absorptive			80	80	80	80	80	80	80	80		
63-1C	Absorptive	Admixture	4.0	80	80	100F							
63-3C	Absorptive	X		60	60	60	100F						

Long-Time Study, Portland Cement Association 1941 Installation

In October 1941, 66 concrete beams (6- by 6- by 30-in.) were installed on the Treat Island exposure rack as a part of the program sponsored by the Advisory Committee on the Long-Time Study of Cement Performance in Concrete.

The aggregates used were a natural sand and gravel. The variables under study were:

- <u>a. Cements</u>. Five nonair-entraining cements, two air-entraining cements containing 0.04 percent of air-entraining addition.
- b. Placing. Hand placing versus vibration.
- c. Form lining. Absorptive form lining versus wood lining (absorptive lining on one face only).
- d. Cement factors. 5.0 and 7.0 bags per cu yd.
- e. Slump. 2 and 8 in.

Table 1-PCA lists these specimens and gives their exposure record along with pertinent mixture information.

In 1943, the exposure of 18 beams in this series was discontinued; 17 of these beams were not reinstalled. The exposure of the remaining 48 beams was concluded in 1959: 46 of the beams had failed, one had been broken during handling and one had been lost overboard.

1954 Installation

In May 1954, 58 concrete beams (6- by 6- by 30-in.) were installed on the Treat Island exposure rack; all of these beams were made in 1941. Fifty-seven of these specimens had been stored indoors since 1941; the remaining beam (51-2A) had been previously exposed in the 1941 installation but had been stored indoors since August 1943. The aggregates and other mixture data used in the first installation apply to the beams in this installation.

(Issued Sept 1968)

Program 17

Table 2-PCA lists these specimens and gives their exposure record along with other pertinent mixture information.

In 1967, with only two beams remaining, the exposure was discontinued; all of the other 56 specimens had failed. The two remaining beams were shipped back to the laboratory for petrographic examination; the petrographic report is shown as Appendix A.

Findings

Findings are summarized below:

- a. Generally, concrete made with the air-entraining cements had greater durability than concrete made with the nonair-entraining cements.
- b. The 7-bag-per-cu-yd concrete mixtures had greater durability than did the 5-bag-per-cu-yd concrete mixtures.
- c. The vibrated concrete beams had generally better durability than did the hand-placed concrete beams. Since the 8-in.-slump concrete was always hand placed, it follows from the above that the 2-in.-slump concrete had generally better durability than the 8-in.-slump concrete.
- <u>d</u>. The effect of form lining (wood versus absorptive) is not apparent from these test data.
- e. For the vibrated 5-bag-per-cu-yd concrete mixture placed against wood lining the order of durability for the cements tested was as follows (most durable to least durable): cements 16T, 21T, 41, 11. Cement 12T was not tested in this mixture.
- f. For the vibrated 5-bag-per-cu-yd concrete mixture placed against absorptive form lining (one face only) the most durable cements were 12T, 42, and 25. Cements 15 and 18 were the least durable. Cements 16T and 21T were not tested in this mixture.
- g. For the <u>vibrated 7-bag-per-cu-yd</u> concrete mixture placed against <u>wood</u> lining the order of durability for the cements tested was as follows (<u>most</u> durable to <u>least</u> durable):

cements 21T, 42, 41 and 16T, 11. Cement 12T was not tested in this mixture.

- h. For the vibrated 7-bag-per-cu-yd concrete mixture placed against absorptive form lining (one face only) the most durable cements were 12T, 25, 23, 14, and 33. Cements 43A and 22 were the least durable. Cements 16T and 21T were not tested in this mixture.
- i. For the hand-placed 7-bag-per-cu-yd concrete mixture placed against wood lining the order of durability for the cements tested was as follows (most durable to least durable): Cements 21T, 16T, 11, 31. Cement 12T was not tested in this mixture.
- j. For the hand-placed 7-bag-per-cu-yd concrete mixture placed against absorptive form lining (one face only) the most durable cements were 12T, 16, 33, and 25. Cements 18, 21, 42, and 43 were the least durable. Cements 16T and 21T were not tested in this mixture.

Table 1-PCA

Mixture Data and Record of Testing of Concrete Beams, Long-Time Study, PCA 1941-1959 (Installed October 1941)

Beam No.	Type Cement*	Theo Cement Factor bags/cu yd	Method of Placing	Slump in.	Form Lining	O Cycles 1941 %E	155 Cycles 1942 %E	351 Cycles 1943 %E	494 Cycles 1944 %E	604 Cycles 1945 %E	709 Cycles 1946	821 Cycles 1947 %E	958 Cycles 1948 %E
11-1 11-2 11-3	1, (11)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	100 100 100	86 103 F	F† 102	F				
12-1 12-2 12-3	I, (12)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive*	100 100	93 97 86	F 103 92	F 92	83	F		
12T-1 12T-2 12T-3	I, air-entraining (12T)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 8	Absorp- tive	100 100 100	98 103 102	100 110 111	103 112 116	93 108 114	F 112 116	112 116	107 106
13-1 13-2 13-3	I, (13)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	86 102 100	F 97 103	F F				
14-1 14-2 14-3	1, (14)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	98 89 103	F 83 F	Removed	from	rack and	stored,	Aug 1943
15-1 15-2 15-3	1, (15)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	F 100 91	97 F	Removed	from	rack and	stored,	Aug 1943
16-1 16-2 16-3	1, (16)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	95 100 102	F 92 102	Removed	from	rack and	stored,	Aug 1943
16T-1 16T-2 16T-3	I, air-entraining (16T)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	100 100 100	97 105 103	105 97 106	108 100 108	108 64 113	105 F 111	105 111	84 164
18-1 18-2 18-3	I, (18)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	F 93 95	103 F	F				
21-1A 21-2 21-3A	11, (21)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	85 87 90	F F F					
21T-1 21T-2 21T-3	II, air-entraining (21T)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	100 100 100	81 75 83	89 107 110	94 110 112	82 109 113	68 107 112	68 107 112	50F 102 105
22-1 22-2 22-3	II, (22)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	91 83 97	44F 70 79			rack and		
23-1 23-2 23-3	II, (23)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	94 84 95	55 100 60	90	71	rack and F		
24-1 24-2 24-3	11, (24)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	95 88 87	F F 81	Removed	from	rack and	stored,	Aug 1943
25-1 25-2 25-3	II, (25)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	96 87 100	105 Lost o	87 verboard F	51	F		
31-1 31-2 31-3	III, (31)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp Absorp Wood	100 100 100	96 84 F	7 ¹ 4 89			rack and		
33-1 33-2 33-3	III, (33)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	92 98 100	F 98 104	95 104	F F			
41-1 41-2 41-3	IV, (41)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood Wood Absorp	100 100 100	81 89 98	64 62 F	Removed F	from	rack and	stored,	Aug 1943
42-1 42-2 42-3	IV, (42)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp Wood Absorp	100 100 100	72 81 86	F 72 F	714	94	104	104	70

^{*} Program cement number given in parentheses.

** Absorptive form lining one face only.

† F denotes specimen has failed.

(Issued Sept 1968)
Table 1-PCA (Concluded)

						1941-1948 Readings								
Beam No.	Type Cement	Theo Cement Factor bags/cu yd	Method of Placing	Slump in.	Form Lining	O Cycles 1941 Æ	155 Cycles 1942 #E	351 Cycles 1943 #E	Lycles Lycles 1944 EE	604 Cycle 1949	709 es Cycle 5 1946 Æ	1947 %E	1948 %E	
43-1 43-2 43-3	IV, (43)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	95 63 81	63 F F	Removed	from	rack and	stored,	Aug 1943	
43A-1 43A-2 43A-3	IV, (43A)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	81 79 89	72 64 93	Removed	from	rack and rack and rack and	stored,	Aug 1943	
51-1 51-2A 51-3	V, (51)	5.0 7.0 7.0	Vibrated Vibrated Hand		Absorp- tive	100 100 100	102 95 100	69 65 94	Removed	from	rack and rack and rack and	stored,	Aug 1943	
						10/0	200		1949-1954 Reading		Oycles.	1052	1610	
						1063 Cycles 1949	Cycles 1950	1313 Cycles 1951	Cycles 1952 LE	149)	Pulse Veloc fps		Cycles 1954 E V2	
12T-2 12T-3	I, air-entraining (12T)	7.0 7.0	Vibrated Hand	2 8	Absorp- tive	104 103	99 96	99 96	92 99	90 100	16,130 16,130		8 95 3 96	
16T-1 16T-3	I, air-entraining (16T)	5.0 7.0	Vibrated Hand	8	Wood	83 96	75 84	77 84	76 80		15,150 15,150		0 98	
21T-2 21T-3	II, air-entraining (21T)	7.0 7.0	Vibrated Hand	8	Wood	102 105	88 96	90 95	82 95	82 93	13,440 14,970		OF 100	
42-2	IA	7.0	Vibrated	2	Wood	F								
						1755 Cycles 1955	1922 Cycles 1956	195	213 es Cycl 7 195	es (2287 Cycles 1959			
12T-2 12T-3	I, air-entraining (12T)	7.0 7.0	Vibrated Hand	2 8	Absorp- tive	50F 94 90	Broker	in hand	iling 195	6				
16T-1 16T-3	I, air-entraining (16T)	5.0 7.0	Vibrated Hand	8	Wood	96 96 83 99		95 75 90 77	90 75 89 77	85 1 95 1				
217-3	11, air-entraining (21T)	7.0	Hand	8	Wood	96 99	5 89 9	93 .74	88 F					

Table 2-PCA

Mixture Data and Record of Testing of Concrete Beams, Long-Time Study, PCA 1954-1967 (Installed May 1954)

											4-195							
		Theo Cement	Method			00	ycles, 1	954	14 Cyc 19	5 les	31 Cyc 19	2 les	45 Cyc 19	les	52 Cyc 19	les	67 Cyc 19	les
Beam No.	Type Cement*	Factor bags/cu yd	of Placing	Slump in.	Form Lining	%E	Veloc fps	%v2	%E	16v2	%E	%v ²	%E	%v2	%E	%v2	%E	%v ²
11-1A 11-2A 11-3A	I, (11)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	100 100 100	16,130 16,445 15,625	100 100 100	80 98 69	88 104 75	88 100 F	103	F† 104	92	92	99	95	82
12-1A 12-2A 12-3A	1, (12)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive**	100 100 100	15,825 16,235 16,235	100 100 100	F 101 99	107	114	99 79	84 F	81	80	84	F	
12T-1A 12T-2A 12T-3A	I, air- entraining (12)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	15,725 16,235 16,025	100 100 100	111 100 101	105 107 107	91 110 108	89 95 99	79 90 81	77 78 84	65 74 78	78 75 80	F 56 66	42 66
13-1A 13-2A 13-3A	I, (13)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	16,130 16,340 15,625	100 100 100	48F 101 40F	107	101	91	90	68	74		F	
14-1A 14-2A 14-3A	1, (14)	5.0 7.0 - 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	15,825 16,130 15,625	100 100 100	87 121 58	87 110 69	87 122 F	100	F 121	87	103	80	99	
15-1A 15-2A 15-3A	I, (15)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	14,970 16,890 15,925	100 100 100	F 101 85	103 93	105	94	84 F	74	70	71	F	
16-1A 16-2A 16-3A	1, (16)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	15,825 16,025 15,925	100 100 100	123 63 113	46 53 104	F F 78	72	36F					
16T-1A 16T-2A 16T-3A	I, air- entraining (16T)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	100 100 100	15,725 15,925 15,150	100 100 100	101 99 102	107 110 110	93 101 102	96 110 109	82 101 96	79 99 92	70 88 76	82 107 100	63 86 61	68 93 72
18-2A 18-3A	I, (18)	7.0 7.0	Vibrated Hand	2 8	Absorp- tive	100	16,235 15,825	100 100	101 53	108 61	92 F	95	93	69	97		F	
21-1 21-2A	11, (21)	5.0 7.0	Vibrated Vibrated	2	Absorp- tive	100	15,335 16,340	100 100	F 101	104	114	95	69	57	54	38	F	
21T-1A 21T-2A 21T-3A	III, air- entraining (21)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	100 100 100	15,725 15,825 15,150	100 100 100	105 103 102	108 108 122	109 89 76	105 101 104	109 93 85	101 87 87	97 76 68	108 100 100	101 71 57	99 83 79
22-1A 22-2A 22-3A	11, (22)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	14,535 16,555 16,025	100 100 100	F 100 102	106 104	50F 102	61	F					
23-1A 23-2A 23-3A	11, (23)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	15,925 16,780 16,555	100 100 100	94 100 85	65 106 91	F 115 41F	99	83	68	79	82	56	
24-1A 24-2A 24-3A	II, (24)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	15,825 16,340 15,825	100 100 100	108 102 97	45 103 104	F 110 81	103 81	74 38F	49	71		69	
25-1A 25-2A 25-3A	II, (25)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	16,025 16,665 16,130	100 100 100	100 101 100	98 103 104	81 118 106	77 103 100	45F 68 75	72	78 73	96 81	62 F	71
31-1A 31-2A	111, (31)	5.0 7.0	Vibrated Vibrated	2	Absorp- tive	100	15,925 16,235	100	60 99	77 97	F 86	70	46F					
33 -1 A	III, (33)	5.0	Vibrated	2	Absorp- tive	100	15,335	100	58		F							
41-1A 41-2A 41-3A	IV, (41)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood Wood Absorp- tive	100	16,235 16,665 16,130	100	102	104		103 101 85	81 92 37F	102	96 93	96 100	71 94	64 91
42-1A	IV, (42)	5.0	Vibrated	2	Absorp- tive	100	16,025	100	100	110	101	110	77		72		56	56
42-2A	TH. (1-2)	7.0	Vibrated	2	Wood		16,025					110	90	102	92	109	81.	87
43-1A 43-2A	IV, (43)	7.0	Vibrated Vibrated	5	Absorp- tive (Co	100 100 ntinu	15,825 16,235 ed)	100	104	97 103	104	73 101	80	83	77	84	56	54

⁻⁻ End of specimen too rough to obtain satisfactory reading.

* Program cement number given in parentheses.

† F denotes specimen has failed.

** Absorptive form lining one face only.

(Issued Sept 1968)

Table 2-PCA (Concluded)

										-	1954-	1959		ings			-		
		Theo Cement	Method			0 0	Puls		4	145 Cycl 195	Les	312 Cycl 195	es	456 Cycle 195		527 Cycle 1958		67 Cyc. 19	les
No.	Type Cement	Factor bags/cu yd	of Placing	Slump in.	Form Lining	1E	fps	e 2	<u>v</u> ²		%v ²	%E	%v ²		6v ²	%E %	0	%E	%v2
43A-1A 43A-2A	IV, (43A)	5.0 7.0	Vibrated Vibrated	2 2	Absorp- tive	100 100	16,1 16,3		.00	60 80	85 91	35F 57	76	F					
51-1A 51-2A 51-3A	V, (51)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Absorp- tive	100 100 100	15,9 14,6 15,9	20 1	.00 .00 .00	68 90 89	101	F F 89		F					
						748	3	88	9		78	1	084	adings	219	13	82	1	512
						Cyc:		Cyc 19	les 61 %V ²		cles 962	Су	cles 963	Cy-	cles 964	Cyc. 19	les		rcles 1966 9v ²
11-2A	I, (11)	7.0	Vibrated	2	Wood	87		F											
12T-2A 12T-3A	I, air- entraining (12T)	7.0 7.0	Vibrated Hand	2 8	Absorp- tive	F 61	64	F											
14-2A	I, (14)	7.0	Vibrated	2	Absorp- tive	70		F											
16T-1A 16T-2A 16T-3A	I, air- entraining (16T)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	62 78 50F	94	100 69	89	89 60	83			- 54		F			
21T-1A 21T-2A 21T-3A	II, air- entraining (21T)	5.0 7.0 7.0	Vibrated Vibrated Hand	2 2 8	Wood	100 65 51	103 86 77	96 68 53	103 65 65	92 62 39	76	73		-	99	88	88	85	92
23-2A	11,(23)	7.0	Vibrated	2	Absorp- tive	74		F											
24-2A	11,(24)	7.0	Vibrated	2	Absorp- tive	F													
25-2A	II,(25)	7.0	Vibrated	2	Absorp- tive	69		69		55		F							
41-1A 41-2A	IV, (41)	5.0 7.0	Vibrated Vibrated	2 2	Wood	100 67	97	100	94	NR+ 82		****	94		79	51	73	58	
42-1A	IV, (42)	5.0	Vibrated	2	Absorp- tive	46F													
42-2A		7.0	Vibrated	2	Wood	82	92	76		60		F							
43-2A	IV, (43)	7.0	Vibrated	2	Absorp- tive	50F													
							166 Cycle)										
21T-1A	II, air- entraining (21T)	5.0	Vibrated	2	Wood	83		-	202										
41-2A	IV, (41)	7.0	Vibrated	2	Wood	35			-										

⁻⁻ End of specimen too rough to give satisfactory reading.

†† NR denotes a satisfactory reading was not obtained as specimen would not respond to flexural vibration.

Appendix A: Petrographic Report

Samples

1. In 1967 two 6- by 6- by 30-in. concrete beams were returned to the laboratory from the exposure station at Treat Island, Maine. They were two of 58 beams made at the Portland Cement Association in 1941 and placed on the outdoor exposure racks in 1954. These were the only two beams remaining in 1967 after 1668 cycles of freezing and thawing, and one of them had failed between the 1966 and 1967 readings. Some data on the two beams are shown below:

Beam No.	Cement Type	Cement Factor bags/cu yd	Slump in.	Remarks
21T-1A	II	5	2	Air-entrained concrete
41-2A	IV	7	2	Nonair-entrained concrete

Both beams contain natural sand and gravel from Plainfield, Illinois. The maximum size of aggregate appeared to be 3/4 in.

2. Some of the field test data are shown below:

Year	1954	1960	1961	1963	1964	1967
No. of freezing-and- thawing cycles	0	748	889	1084	1219	1668

Beam:			Relativ	e E, %		
21T-1A	100	100	96	92	90	83
41-2A	100	67	88	79	63	35 (failed)

3. The examination was made to determine why the durability of these two beams was appreciably better than that of the other 56 beams.

Test Procedure

4. Data on the air-void system of each concrete were obtained

by the micrometric method, CRD-C 42.*

5. Sawed surfaces and freshly broken surfaces of each beam were examined with a stereomicroscope.

Results

6. Data on the air-void system of the two specimens are shown below:

	Beam 21 T-1A	Beam 41-2A
Entrained air, %	3.62	1.25
Entrapped air, %	1.28	1.53
Total air, %	4.90	2.78
n, No. of voids per in.	5.5	1.3
L, void spacing factor, in.	0.01	0.03

- 7. Beam 41-2A failed between the 1966-1967 field readings, and one end fell off. Beam 21T-1A did not fail, and it was still intact when examined. However, there were numerous internal cracks in both beams. Some of these cracks passed through aggregate particles.
- 8. Most of the coarse-aggregate particles were carbonate rock. The fine aggregate was largely a mixture of quartz grains, chert, and carbonate-rock fragments.
- 9. Some voids in the two concretes contained some calcium sulfoaluminate deposits and some old cracks were partially coated with it.

 There may have been a few patches of alkali-silica gel, and some of the carbonate particles showed reaction rims. However, no deleterious chemical reactions were anticipated, and the extent of reaction recognized is not regarded as a factor affecting the performance of the concretes.
- 10. The reasons for the fluctuating E values for beam 41-2A between 1959-1963 is unknown, but it is assumed to be due to operators or equipment or differences in moisture content of the specimen rather than to real changes in the condition of concrete.

^{*} U. S. Army Engineer Waterways Experiment Station, CE, <u>Handbook for Concrete and Cement</u>, Aug 1949 (with quarterly supplements), Vicksburg, Miss. (identical to ASTM Designation: C 547-66T).

Discussion

- 11. It was not possible to determine why these two beams were so durable in the field exposure by direct comparison with the other less durable 56, since none of them were available for examination.
- 12. In spite of the lack of comparative data, examination of the micrometric air data and of the field data for all 58 beams leads to some conclusions that tend to verify known or anticipated results.
- 13. The internal cracking of beam 21T-1A is the effect of frost action; its decreasing E value in recent years is also due to frost action. One may conclude that a void-spacing factor of 0.01 in. is adequate to greatly improve the durability of concrete. Note, however, that the protection was only effective for about 15 years. Other workers have shown that, if concrete does not have an opportunity for drying, it needs a void spacing factor of 0.008 in. or less to be durable. All of these data serve to emphasize the importance of degree of saturation in the frost durability of concrete.
- 14. The other conclusion may be reached by examination of the field data for durability. These indicate that, if concrete is not protected by air-entrainment, then low permeability is probably the key to improved durability. In general, the best durability among the nonair-entrained concretes was enjoyed by those combining the highest cement factors with low slump, presumably related to low water-cement ratio and low permeability.

Summary

15. Two concrete beams, representing air-entrained and a nonair-entrained concrete, were examined after 13 years of exposure at Treat Island, Maine. The good durability of beam 21T-1A is due to its air-void system, which provided protection under these exposure conditions for about 15 years. It therefore follows that air-entrained concrete may be protected for a period of time with a void-spacing factor of 0.01 in. or larger if it has adequate drying between freezing cycles.

(Issued Sept 1968)

Program 17

16. It was also concluded that, in the absence of the protection afforded by air entrainment, low permeability is the next best protection and that low permeability was probably responsible for the good durability of beam 41-2A.

Vacuum Treatment Investigation*

The purpose of this installation was to determine the influence of a vacuum treatment on the durability of concrete. Vacuum treatment is a process whereby some of the "extra" water required in the concrete for workability, and which is in excess of that required for the hydration of the cement, is extracted from the concrete after it is placed and consolidated, but while it is in the plastic state. The process, as the name implies, utilizes the principle of application of vacuum through suitable chambers that are in contact with the concrete surface.

In October 1949, 46 concrete cores were installed on the Treat Island exposure rack as a part of this study of vacuum-treated air-entrained concrete. Thirty-six of these cores were 10 in. in diameter, either 16 or 18 in. long, and contained 6-in. maximum size aggregate. The remaining ten cores were 8 in. in diameter, 9-1/2 in. long, and contained 3-in. maximum size aggregate. All cores were diamond-drilled either from a 133-cu-yd test block or from one of seven horizontal slabs. The surfaces of the large test block and of six of the seven slabs were vacuum treated, which affected 28 cores. The aggregates used consisted of crushed limestone and manufactured limestone sand.

Tables 1-VP and 2-VP list the 10-in.- and 8-in.-diameter cores, respectively, and give their exposure records along with other pertinent information.

The exposure of these cores was terminated in 1966 after 2059 cycles of freezing-and-thawing (17 winters). Twenty-seven of the cores survived the exposure (six 8-in. diameter cores and 21 large cores).

Findings

Small cores (8-in. diameter)

The ten small cores (8 in. in diameter) were all made from the same concrete mixture; the only variable was the treatment after placement of the concrete. Two of the cores (HA-5 and HA-6) were drilled from concrete

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation</u> of Vacuum Treatment of Mass Concrete Surfaces, <u>Technical Memorandum No.</u> 6-353 (Vicksburg, Miss., February 1953).

(Issued Sept 1968)

Program 18

that was not vacuum treated; the other eight cores were from concrete that was vacuum treated as follows:

Core No.	Time of Vacuum Treatment
нв-5, нв-6	Immediately after screeding
HC-5, HC-6	Approx 3-1/2 hr after mixing
HD-5, HD-6	Approx 2 hr after mixing
нн-5, нн-6	Approx 2 hr after mixing

The cores that were not vacuum treated (HA-5 and HA-6) and the cores that were vacuum treated immediately after screeding (HB-5 and HB-6) did not survive the Treat Island exposure. The six cores that were vacuum treated either 2 or 3-1/2 hr after mixing survived the full exposure and had essentially equal resistance to the natural weathering. From this exposure it is concluded that: The vacuum treatment applied either 2 or 3-1/2 hr after mixing improved the durability of the small concrete cores to the Treat Island exposure.

Large cores (10-in. diameter)

Each of the 10-in.-diameter cores was drilled from concrete of one of the following four mixtures:

Mixture	No. of Cores Exposed	Vacuum Treated	Max Size Aggregate in.	Air, %	Cement Factor bags/cu yd	Water-Cement Ratio gal/bag
A	16	No	6	3.2	3.0	7.0
В	6	Yes	6	2.8	4.0	6.0
C	10	Yes	6	3.2	3.0	7.0
D	4	Yes	6	2.8	4.0	5.4

The order of durability for the four mixtures was as follows (most durable to least durable): mixture D; mixture C; mixture A; and mixture B.

Since mixture A and mixture C were identical except for the vacuum treatment and mixture C had better durability than mixture A it is concluded that the vacuum treatment improved the durability of the large concrete cores to the Treat Island exposure.

Thirty* of the 10-in.-diameter cores were drilled from the 133-cu-yd test block which was cast in three lifts. Fifteen cores were drilled from lift 1, eleven from lift 2, and four from lift 3. The order of durability by lift was as follows (most durable to least durable): Lift 2, lift 3, lift 1. It is believed that this order of durability can probably be explained by the fact that the cores from lift 2 contained no mixture B concrete (mixture B was the least durable mixture) and that quite a few of the cores from lift 1 were made of mixture B concrete.

*]	Location	of	these	cores	bv	lift	is	8.5	follows:
-----	----------	----	-------	-------	----	------	----	-----	----------

Lift 1 (15 cores)	Lift 2 (11 cores)	Lift 3 (4 cores)
VS-31, -30 VS-61, -60 VB-31, -30 VB-61, -60 VB-91, -90 VF-30 VF-61, -60 VF-91, -90	VB-12I, -120 VF-120 VB-15I, -150 VB-18I, -180 VF-15I, -150 VF-18I, -180	VB-21I, -210 VF-21I, -210

Mixture Data and Record of Testing of Large (10-in. Diameter) Concrete Cores, Vacuum Treatment Investigation

1949-1966 (Installed October 1949)

										1949-	1956	Read	ings		7	7.	2	- 0-	0
Vacuum- treated	Air	Cement Factor bags/cu yd	Water- cement Ratio gal/bag		s Cyc 19	les 50			351 Cycles 1952 %E	436 %E	Pul Vel	se .oc	1953 %v ²	Cyc	les	Cyc	les	Cyc	1es 56 %v ²
No Yes No Yes No	3.2 3.2 3.2 3.2 3.2	3.0 3.0 3.0 3.0 3.0	7.0 7.0 7.0 7.0 7.0	100 100 100 100 100	10 10 10	2 4 5	101 108 109 113 113		108 107 108 103 113	108 107 102 102 114	17, 15, 14,	175 285 945	100 100 100 100 100	102 111 104 101 116	93 106 88 116 96	99 102 100 109 122	100 106 110 115 100	99 96 112 110 122	89 90 103 113 98
Yes No Yes No Yes	2.8 3.2 2.8 3.2 2.8	4.0 3.0 4.0 3.0 4.0	6.0 7.0 6.0 7.0 6.0	100 100 100 100 100	10 10 10	6 7 7	112 110 112 110 102		113 107 114 113 97	111 114 115 118 89	15, 15, 16,	645 835 855	100 100 100 100 100	111 115 112 114 84	103 116 117 105 100	106 115 117 114 77	122 116 120 102 90	103 120 134 119 82	113 93 90 92 98
No Yes No Yes No	3.2 2.8 3.2 2.8 3.2	3.0 4.0 3.0 4.0 3.0	7.0 5.4 7.0 5.4 7.0	100 100 100 100 100	10 11 10	7 0 8	109 * 107 114 118		110 116 110 115 116	111 110 113 113 116	16, 16, 17,	625 130 645	100 100 100 100 100	116 108 117 118 113	108 106 104 89 103	112 108 115 117 116	105 100 109 89 91	119 114 115 122 115	94 93 100 89 96
Yes No Yes Yes No	3.2 3.2 3.2 2.8 3.2	3.0 3.0 3.0 4.0 3.0	7.0 7.0 7.0 6.0 7.0	100 100 100 100 100	11 10 10	8 5	103 112 110 110 100		106 116 113 109 103	107 116 114 113 98	16, 16, 17,	835 420 045	100 100 100 100 100	108 113 112 114 97	111 103 114 102 77	102 106 113 107 96	108 93 106 105 93	110 127 110 70 96	105 96 106 102 93
Yes No Yes Yes No	2.8 3.2 2.8 2.8 3.2	4.0 3.0 4.0 4.0 3.0	6.0 7.0 6.0 5.4 7.0	100 100 100 100 100	7 10 16	5 2	110 72 110 162 107		112 F** 112 149 112	111 115 163 115	17,	050 465	100 100 100 100	110 107 170 116	109 112 106 98	116 113 160 117	103 103 106 102	116 128 151 118	+ 102 96
Yes No Yes No Yes	2.8 3.2 3.2 3.2	4.0 3.0 3.0 3.0 3.0	5.4 7.0 7.0 7.0 7.0	100 100 100 100 100	10 10 10	6 5 1	108 108 107 95 109		107 108 107 94 104	112 116 110 90 104	15, 16, 15,	835 220 835	100 100 100 100 100	108 114 99 98 111	107 120 117 126 112	109 108 99 92 113	105 120 108 120 103	119 114 106 92 117	100 111 94 116 98
Yes Yes Yes No Yes No	3.2 3.2 3.2 3.2 3.2 3.2	3.0 3.0 3.0 3.0 3.0	7.0 7.0 7.0 7.0 7.0 7.0	100 100 100 100 100	10 10 11 11	6 6 2 2	111 106 114 114 90		116 114 107 112 114 50F	122 122 105 112 114	15, 16, 16,	955 855 485	100 100 100 100 100	119 121 90 106 103	109 114 102 109 105	118 118 94 102 108	102 104 100 90 102	121 122 88 92 107	96 100 88 84 100
				100	3	1071	4	122						15	25	16	31	17	766
				195	7	1958	8	199	59	1960	0 2	19	61	19	62	19	63	_ 19	les 964
No	3.2	3.0	7.0														1919	<u>%E</u>	%v2
Yes No Yes No	3.2 3.2 3.2 3.2	3.0 3.0 3.0 3.0	7.0 7.0 7.0 7.0	93 112 102	92 113 108 1	93 93 99	96 108 111 1	75 93 .00	99 103 92	74 96 97	82 101 99	75 102 94 131	75 105 113 96	86 85 95 123	96 103 85	F 69 91 123	110 118 106	67 95 129	89 105 108
Yes No Yes No Yes	2.8 3.2 2.8 3.2 2.8	4.0 3.0 4.0 3.0 4.0	6.0 7.0 6.0 7.0 6.0	115	103 1 97 1 105 1	17 1 25 1 23 1	107 1	.16	86	117	95 91	108	111	71 105 68 111	96 108 103 90	63 101 66 108	116 103 116 79	62 103 66 96	82 85 93 90
No Yes No Yes	3.2 2.8 3.2 2.8 3.2	3.0 4.0 3.4 4.0 3.0	7.0 5.4 7.0 5.4 7.0	108 113 120	105 1 107 1 102 1	00 1 15 1 20	100 1 102 1 95 1	.05	94 85 87	101 112 123	94 88 80	100 114 114			105 93 90 82 94	104 89 106 103 101	100 53 89	91 105 105	85 80 92 68 82
	Vacuum- treated No Yes Yes No Yes Yes No Yes	Vacuum- treated	Vacuum-treated Air feator feator feator yd Factor feator yd No 3.2 3.0 No 3.2 3.0 Yes 3.2 3.0 Yes 2.8 4.0 No 3.2 3.0 Yes 3.2 3.0 Yes 3.2 3.0 Yes <	Vacuum-treated Air factor feator Cement Factor bags/cu yd Water-cement Ratio gal/bag No 3.2 3.0 7.0 Yes 3.2 3.0 7.0 No 3.2 3.0 7.0 No 3.2 3.0 7.0 Yes 2.8 4.0 6.0 No 3.2 3.0 7.0 Yes 2.8 4.0 5.4 No 3.2 3.0 7.0 Yes 2.8 4.0 5.4 No 3.2 3.0 7.0 Yes 2.8 4.0 6.0 No 3.2 3.0 7.0 Yes <td>Vacuum-treated Air factor bags/cu yd Water-cement Ratio gal/bag gal/bag fix Cycle 1949 fix No 3.2 3.0 7.0 100 Yes 3.2 3.0 7.0 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 6.0 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 6.0 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 5.4 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 5.4 100 No 3.2 3.0 7.0 100</td> <td>Vacuum- trested</td> <td> Vacuum-treated Yactor Y</td> <td> Vacuum-treated Vac</td> <td> Vacuum-treated</td> <td> Vacuum-treated</td> <td> Vacuum</td> <td> Vacuum</td> <td>Vacuum- treated</td> <td> Vacuum</td> <td> Vacuum</td> <td> Vacuum</td> <td> Vacuum-treated</td> <td> Vacuum-treated</td> <td>Vacuum- Trestact Vacuum- Trestact September 1985 Vacuum- Trestact Va</td>	Vacuum-treated Air factor bags/cu yd Water-cement Ratio gal/bag gal/bag fix Cycle 1949 fix No 3.2 3.0 7.0 100 Yes 3.2 3.0 7.0 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 6.0 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 6.0 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 5.4 100 No 3.2 3.0 7.0 100 Yes 2.8 4.0 5.4 100 No 3.2 3.0 7.0 100	Vacuum- trested	Vacuum-treated Yactor Y	Vacuum-treated Vac	Vacuum-treated	Vacuum-treated	Vacuum	Vacuum	Vacuum- treated	Vacuum	Vacuum	Vacuum	Vacuum-treated	Vacuum-treated	Vacuum- Trestact Vacuum- Trestact September 1985 Vacuum- Trestact Va

(Continued)

End of specimen too rough to obtain satisfactory reading.
Satisfactory reading was not obtained as specimen would not respond to flexural vibration.
F denotes specimen has failed.
A spurious reading was obtained and was discarded.

											1957	-1964	Read	ings						
Core	Vacuum- treated	Air %	Cement Factor bags/cu yd	Water- cement Ratio gal/bag	Cyc	03 les 57 %v ²	10 Cyc 19	les	Cyc	24 les 59 %v ²	12 Cyc 19		14 Cyc 19	les	152 Cyc. 196	Les	Cyc 19		Cyc	66 les 64
	orcasea					Later a					100.00		-							
B-180	Yes	3.2	3.0	7.0	100	105	106	105	106	91	100	91 86	98 97	91 89	88	96	78	100	60	10
B-21I	No	3.2	3.0	7.0	111	105	123	102	117	88	118	86		89	95	91	97	98	95	-
B-210	Yes	3.2	3.0	7.0	109	109	115	109	111	90	108	94	114	98	95	91	91	103	76	9
F-30	Yes	2.8	4.0	6.0	70	.114	72	87	F											
F-61	No	3.2	3.0	7.0	77	95	85	97	74	80	68	76	75	85	48F	72				
F-60	Yes	2.8	4.0	6.0	116		116		116		F									
F-90	Yes	2.8	4.0	6.0	115	102	124	102	135	86	113	86	112	89	106	95	94	87	92	
F-120	Yes	2.8	4.0	5.4	153	113	159	106	166	98	157	106	156	96	148	98	144	130	147	
F-15I	No	3.2	3.0	7.0	116	98	123	100	118	87	118	89	116	96	111	94	109	98	112	
F-150	Yes	2.8	4.0	5.4	113	105	120	94	120	83	120	87	116	96	104	98	92	92	97	
F-18I	No	3.2	3.0	7.0	103	120	106	108	96	120	100	103	105	111	91		95	92	93	
F-180	Yes	3.2	3.0	7.0	106	101	106	112	95	94	103	92	105	98	96	93	78	98	77	- 1
F-21I	No	3.2	3.0	7.0	84	122	92	116	81		80		51		F					
F-210	Yes	3.2	3.0	7.0	114	112	114	103	86	89	85	91	83	93	F	98				
E-5	Yes	3.2	3.0	7.0	115	109	122	100	123	92	115	96	116	96	103	90	109	96	98	
E-6	Yes	3.2	3.0	7.0	118	102	120	102	114	90	110	94	107	94	94	92	93	96	111	
F-5T	Yes	3.2	3.0	7.0	88	79	103	77	116		F									
F-5B	No	3.2	3.0	7.0	92	71	92	78	92		F									
F-6T	Yes	3.2	3.0	7.0	98	105	87	100	86	81	85	90	94	88	68	71	F	100		

							66 Reading	
					Cyc	129 1es 165	20 Cyc 1966 (1	
					%E	%v2	%E	%v2
VS-61 VS-60 VB-31	No Yes No	3.2 3.2 3.2	3.0 3.0 3.0	7.0 7.0 7.0	60 96 136	88 124 111	60 92 131	73 90 91
VB-30 VB-61 VB-60 VB-91	Yes No Yes No	2.8 3.2 2.8 3.2	4.0 3.0 4.0 3.0	6.0 7.0 6.0 7.0	F 101 64 102	116 116 98	F 66 96	85 80 100
VB-12I VB-120 VB-15I VB-150 VB-18I	No Yes No Yes No	3.2 2.8 3.2 2.8 3.2	3.0 4.0 3.4 4.0 3.0	7.0 5.4 7.0 5.4 7.0	106 90 102 123 119	89 89 85 92	119 77 83 90 119	93 77 98 93
VB-180 VB-21I VB-210	Yes No Yes	3.2 3.2 3.2	3.0 3.0 3.0	7.0 7.0 7.0	64 97 70	96 91	84 97 69	87 81
VF-90 VF-120 VF-151 VF-150	Yes Yes No Yes	2.8 2.8 3.2 2.8	4.0 4.0 3.0 4.0	6.0 5.4 7.0 5.4	89 144 112 96	91 104 94	88 140 104 92	49 62 83
VF-18I VF-180 HE-5	No Yes Yes	3.2 3.2 3.2	3.0 3.0 3.0	7.0 7.0 7.0	94 85 98	111 106 88	86 79 98	83 81 76
HE-6	Yes	3.2	3.0	7.0	113	92	110	65

Mixture Data and Observations of Small (8-in. Diameter) Concrete Cores, Vacuum Treatment Investigation

1949-1966 (Installed October 1949)

Air content, 3.4% Cement factor, 4.0 bags per cu yd Maximum size aggregate, 3 in. Water-cement ratio, 6.5 gal per bag

					1949-1958 Readin	gs .			
Core No.	Vacuum- treated	0 Cycles 1949 Condition	547 Cycles 1954 Condition	692 Cycles 1955 Condition	859 Cycles 1956 Condition	1003 Cycles 1957 Condition	1074 Cycles 1958 Condition		
на-5	No	Sound	Sound	Sound	Sound	Sound	Sound		
на-6		Sound	Sound	Sound	Sound	Sound	Sound		
HB-5	Yes	Sound	Sound	S1* scaling	Scaling, spalling	Hy** scaling, spalling	Hy scaling, spalling		
HB-6		Sound	Sound	Sound	Sound	Sl spalling	Sl spalling		
HC-5	Yes	Sound	Sound	Sound	Sound	Sound	Sound		
HC-6		Sound	Sound	Sound	Sound	Sound	Sound		
HD-5	Yes	Sound	Sound	Sound	Sound	S1 scaling	S1 scaling		
HD-6		Sound	Sound	Sound	Sl spalling	Spalling	S1 scaling, spalling		
нн-5	Yes	Sound	Sound	S1 spalling	S1 scaling, spalling	S1 scaling, spalling	Sl scaling, spalling		
нн-6		Sound	Sound	S1 spalling	S1 spalling	S1 scaling, spalling	Sl scaling, spalling		

			1959-	1962 Readings	
		1224 Cycles 1959 Condition	1295 Cycles 1960 Condition	1436 Cycles 1961 Condition	1525 Cycles 1962 Condition
на-5 на-6	No	S1 spalling S1 spalling	Sl spalling Sl spalling	Moderate spalling Hy spalling, cracking	Moderate spalling Middle gone, Ft
нв-5 нв-6	Yes	Hy scaling, spalling Spalling	Hy scaling, hy spalling Spalling	Hy scaling, hy spalling, cracking Moderate spalling	End gone, F Moderate spalling
HC-5 HC-6	Yes	Sound Hy spalling, cracking	Sound Hy spalling, cracking	Sound Hy spalling, cracking	Sound Hy spalling, cracking
HD-5 HD-6	Yes	Sl scaling Sl scaling, hy spalling	Sl scaling Sl scaling, hy spalling	Sl scaling, sl spalling Sl scaling, hy spalling	S1 scaling, mod spalling S1 scaling, hy spalling
нн-5 нн-6	Yes		Sl scaling, hy spalling Sl scaling, hy spalling		Sl scaling, hy spalling Sl scaling, hy spalling

		1963-1966 Readings													
		1631 Cycles 1963 Condition	1766 Cycles 1964 Condition	1929 Cycles 1965 Condition	2059 Cycles 1966 Condition (Final)										
HA-5	No	Hy spalling	Hy spalling	Hy spalling, cracking, end gone, F											
нв-6	Yes	Moderate spalling	Moderate spalling	Hy spalling, end gone, F											
HC-5 HC-6	Yes	S1 spalling Hy spalling, cracking	Hy spalling Hy spalling, cracking	Hy spalling Hy spalling, cracking	Hy spalling Hy spalling, cracking										
HD-5	Yes	Sl scaling, moderate spalling	Sl scaling, moderate spalling	Sl scaling, moderate spalling	Sl scaling, moderate spalling										
HD-6		S1 scaling, hy spalling	Sl scaling, hy spalling	S1 scaling, hy spalling	Sl scaling, hy spalling										
нн-5 нн-6	Yes	Sl scaling, hy spalling Sl scaling, hy spalling													

^{*} S1 = slight. ** Hy = heavy. † F = failed.

Preplaced Aggregate Cores*

The purpose of this installation was to develop data on the durability of preplaced aggregate concrete. Preplaced aggregate concrete is made by packing forms with coarse aggregate and then pumping in a cement-base intrusion mixture (grout) to fill the voids.

In October 1949, nine concrete cores (10 in. in diameter by 16 in. long) were installed on the Treat Island exposure rack as a part of this investigation. These cores were diamond drilled vertically through the 10-ft thickness of a 72-cu-yd test block of preplaced aggregate concrete. The test block was analogous to a portion of a dam and was grouted in three stages. The cores were taken as follows:

	Depth from			Depth from	
Core No.	Top of Block	Stage of Grouting	Core No.	Top of Block	Stage of Grouting
4A	+0.2-2.1	Third	8a	+0.1-1.8	Third
4B	2.1-4.2	Third	8 B	1.8-3.7	Third
4D	6.0-8.2	Second	8c	3 .7- 5 . 8	Second-third
4E	8.2-9.9	First	8D	5.8-7.9	Second
			8E	7.9-10.0	First

The aggregates used consisted of granite coarse aggregate and manufactured limestone sand. The preplaced coarse aggregate was grouted with a mixture consisting of sand, type II portland cement (grout filler), an aid to intrusion, and water.

Table 1-PK lists these specimens and gives their exposure record together with other pertinent information.

The exposure of these cores was terminated in 1966 after 2059 cycles of freezing-and-thawing (17 winters). Only two of the cores survived the exposure; both of these were from the third grouting stage of hole No. 4 (core Nos. 4A and 4B).

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation</u> of the Suitability of Prepakt Concrete for Mass and Reinforced Concrete Structures, Technical Memorandum No. 6-330 (Vicksburg, Miss., October 1951).

(Issued Sept 1968)

Findings

- a. The cores taken from hole 4 (cores 4A, 4B, 4D, and 4E) had better durability than the corresponding cores from hole 8 (cores 8A, 8B, 8D, and 8E).
- b. Cores taken from the third grouting stage (cores 4A, 4B, 8A, and 8B) had better durability than cores taken from the first and second grouting stages.
- c. Cores taken from the first grouting stage (cores 4E and 8E) were slightly more durable than cores taken from the second grouting stage (cores 4D and 8D).
- d. In general, this exposure demonstrated that good durable concrete can be obtained from preplaced aggregate concrete that has been properly placed. Cores 4A and 4B were still integral in 1966 after 17 winters of exposure to severe weathering at Treat Island.

Table 1-PK

Record of Testing of Concrete Cores, Preplaced Aggregate Investigation 1949-1966 (Installed October 1949)

Air content, 3.2-4.6%
Water-cement and grout filler ratio, 0.60 (by wt)
Cement factor, 1.6-1.8 bags per cu yd
Maximum size awgregate 3 in.

							19	949-19	59 Rea	adings									
Core	O Cycles 1949	89 Cycles 1950	250 Cycles 1951	351 Cycles 1952	436	Cycles, Pulse Veloc	7	19	les 54	692 Cycl 195	es 5		les 56	Cyc	003 eles 057	Сус	1es 58	Cyc	224 21es 259
No.	%E_	%E	%E	%E	96E	fps	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	96V2	%E	%V2
4A 4B 4D 4E	100 100 100 100	110 106 113 112	113 113 113 115	117 121 112 116	124 113 120 128	15,645 15,285 15,115 15,645	100 100 100 100	120 116 123 124	113 113 110 113	123 118 123 125	116 105 102 103	130 131 132 135	98 96 96 96	128 123 113 131	84 110 113 108	134 128 124 131	108 111 112 108	139 133 131 131	103 102 88 93
8A 8B 8C 8D 8E	100 100 100 100 100	111 111 113 107 106	114 112 106 107 104	118 117 119 98 100	116 120 112 81 105	15,285 15,465 14,780 14,615 14,780	100 100 100 100 100	118 119 117 78 70	116 111 113 105	121 124 117 50 F 50 F	108 100 98	130 129 F*	103	125 126	119	130 131	109	126 130	94

											1960	-1966	Read	ings	
	Cyc	1295 1436 Cycles Cycles 1960 1961		Cycles Cycles		Cycles Cycles		1766 Cycles 1964		Cyc	1929 Cycles 1965		les Cycles		
	% E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	
	141	103	131	103	126	100	129	72	127	110	121	126	132	84	
,	143	100	133 F	100	128	110	124	94	132	100	123	105	137	93	
3	128	91	105	90	105		F								
A	130	96	123	100	111	110	118	84	88	77	70		F		
В	133	**	128	100	118	98	112	84	108	79	66		F		

⁻⁻ End of specimen too rough to obtain satisfactory reading.

* F denotes specimen has failed.

** End gone from specimen, this precluded satisfactory reading using original path. In 1961 readings were resumed using another path.

Cooperative Study of Air-Entrained Concrete

In November 1951, 48 concrete beams (3- by 4- by 16-in.) were installed on the Treat Island exposure rack as a part of a cooperative program, conducted in conjunction with the National Sand and Gravel Association and the Bureau of Public Roads, to study the effects of entrained air on the durability of concrete. Half of the beams were made of nonair-entrained concrete, the other half of air-entrained concrete. Four water-cement ratios and two slumps were used. The 48 beams were made from 16 concrete mixtures (three beams per mixture) as shown below:

Mixture No.	Type Concrete	Water-Cement Ratio gal/bag	Slump in.	Air, %
1P 1A 2P 2A	Nonair-entrained Air-entrained Nonair-entrained Air-entrained	4.5 4.5 6.0 6.0	2-1/2 2-1/2 2-1/2 2-1/2	3.6 6.8
3P 3A 4P 4A	Nonair-entrained Air-entrained Nonair-entrained Air-entrained	7.5 7.5 9.0 9.0	2-1/2 2-1/2 2-1/2 2-1/2	4.3 5.6
5P 5A 6P 6A	Nonair-entrained Air-entrained Nonair-entrained Air-entrained	4.5 4.5 6.0 6.0	6 6	3.7 5.0
7P 7A 8P 8A	Nonair-entrained Air-entrained Nonair-entrained Air-entrained	7.5 7.5 9.0 9.0	6 6 6	3.7 4.4

Table 1-Z identifies the test specimens and gives their exposure record through 1966, at which time the exposure was discontinued after 1809 cycles of freezing-and-thawing at Treat Island.

Since the test beams had considerable loss in dimensions during the exposure, the %E values obtained since 1955 are not considered to be a reliable indication of beam condition. Therefore, to assess the results of

this exposure it is necessary to adopt a uniform criteria by which all specimens can be judged.

If a beam is considered as failed when it loses an end, disintegrates, or when the Æ drops below 50%, the relative durability of the 16 mixtures can be compared as shown in the following tabulation.

Mixture No.	Beam No.	Average No. of Years of Survival
1P	27066, 27069, 27072	9
1A	27152, 27155, 27158	12+
2P	27075, 27078, 27081	3+
2A	27188, 27191, 27194	9
3P	27085, 27088, 27091	3-
3A	27143, 27146, 27149	9+
4P	27094, 27097, 27104	2
4A	27197, 27200, 27203	6
5P	27107, 27110, 27113	6
5A	27206, 27209, 27212	12
6P	27116, 27119, 27122	2
6A	27170, 27173, 27176	12
7P	27125, 27128, 27131	1
7A	27161, 27164, 27167	9
8P	27134, 27137, 27140	1
8A	27179, 27182, 27185	5+

Findings

The findings of this study are summarized below:

- a. Each air-entrained mixture survived from 3 to 10 years longer at Treat Island than its companion nonair-entrained mixture (1A vs 1P, 2A vs 2P, etc.). This demonstrates the beneficial effect of air entrainment in concretes that are subjected to freezing-and-thawing while wet.
- b. The order of durability of the air-entrained mixtures, from most durable to least durable, was:

(Issued Sept 1968)

Program 20

The order of durability of the nonair-entrained mixtures, from most durable to least durable, was:

<u>d.</u> The order of durability of all mixtures, from <u>most</u> durable to least durable, was:

e. The order of durability with respect to water-cement ratio (gal/bag), from most to least durable, was:

- f. The order of durability with respect to slump (in.), from most durable to least durable, was: 2-1/2, 6.
- g. If both water-cement ratio and slump (gal/bag and in.) are considered, the order of durability, from most durable to least durable, was:

4.5 and 2-1/2, 4.5 and 6, 6.0 and 6, 6.0 and 2-1/2, 7.5 and 2-1/2, 7.5 and 6, 9.0 and 2-1/2, 9.0 and 6

The results of this exposure were included in a discussion of the results of the overall cooperative program by Mr. D. L. Bloem, National Sand and Gravel Association, in January 1968. This discussion is given in its entirety as Appendix A.

Mixture Data and Record of Testing of Concrete Beams, Cooperative Study of Air-Entrained Concrete

1951-1966 (Installed November 1951)

1951-1962 Readings											1107	1000			
Beam No.	Air %	Water- Cement Ratio gal/bag	Slump in.	O Cycles 1951 %E	101 Cycles 1952 %E	186 Cycles 1953 %E	297 Cycles 1954 %E	442 Cycles 1955 %E	609 Cycles 1956 %E	753 Cycles 1957 %E	824 Cycles 1958 %E	974 Cycles 1959 %E	1045 Cycles 1960 %E	1186 Cycles 1961 %E	1275 Cycles 1962 %E
						Non	air-entr	ained Co	ncrete						
27066 27069 27072	None	4.5	2-1/2	100 100 100	107 108 109	116 118 118	110 120 122	104 126 126	102 125 124	105* 127 123	1.11* 130 126	110* 134 125	131* 142* 129	164* 170* 127	227* 171* 132
27075 27078 27081	None	6.0	2-1/2	100 100 100	106 107 107	107 117 116	39F** 43F 97	38F							
27085 27088 27091	None	7.5	2-1/2	100 100 100	93 108 111	† 62 68	D++ D								
27094 27097 27104	None	9.0	2-1/2	100 100 100	104 81 74	†									
27107 27110 27113	None	4.5	6	100 100 100	109 105 106	117 115 115	99 117 113	94 115 108	94 123 116	* 118* 112*	* 125* 156*	* * *	:	† † †	
27116 27119 27122	None	6.0	6	100 100 100	74 67 70	† † 31F									
27125 27128 27131	None	7.5	6	100 100 100	† † †										
2713 ⁴ 27137 27140	None	9.0	6	100 100 100	† † †										
						A	ir-entra	ined Cor	ncrete						
27143 27146 27149	4.3	7.5	2-1/2	100 100 100	110 111 110	111 114 112	114 118 116	117 119 119	123 123 124	133 129 131	132* 129 139	138* 136 145	138* 130 156*	144* 133 172*	152* 136 187*
27152 27155 27158	3.6	4.5	2-1/2	100 100 100	116 110 108	119 113 111	124 114 98	135 131 119	136 129 124	135 131 125	136 133 139	139 133 124	139 133 122	135 128 118	134 132 109
27161 27164 27167	3.7	7.5	6	100 100 100	112 111 112	114 113 115	118 118 117	118 121 119	122 126 124	129 131 127	139 138 135	145 144 149	148* 144* 154*	182* 141* 152*	165* 152* 178*
27170 27173 27176	5.0	6.0	6	100 100 100	111 112 111	112 117 116	120 115 120	117 124 123	121 127 128	122 132 131	122 139 135	127 139 135	122 139 135	113 133 136	103 143 132
27179 27182 27185	4.4	9.0	6	100 100 100	109 110 111	111 112 113	115 114 112	120 120 112	129 128* 116*	146* 146* 117*	153* 145* 93*	:	:	:	
27188 27191 27194	6.8	6.0	2-1/2	100 100 100	109 111 109	113 114 112	116 115 116	117 118 119	121 121 123	124* 137 126	126* 122 127	129* 125 131	126* 125 *	126* 125	132* 122
27197 27200 27203	5.6	9.0	2-1/2	100 100 100	110 111 111	112 113 115	114 116 123	118 120 127	123 125 133	131* 129* 142*	142* 129* 159*	143* 137* 168*	* 142*	† † 147*	150*
27206 27209 27212	3.7	4.5	6	100 100 100	111 109 110	115 113 115	118 115 119	121 119 122	126 126 129	126 124 129	129 127 131	132 130 132	124 129 133	127 129 133	124 132 130

^{*} End gone.

** Specimens marked F failed, and have been discarded.

† Ends gone, discarded.

† Specimens marked D disintegrated.

Table 1-Z (Concluded)

TO THE	-						1963-	1966 Readings	
Beam No.	Air 95	Water- Cement Ratio gal/bag	Slump in.	1381 Cycles 1963 Æ	1516 Cycles 1964 %E	Cycles C	1809 ycles 1966 (Final) %E		
						Nonair-ent	rained Concre	<u>te</u>	
27066 27069 27072	None	4.5	2-1/2	‡ ‡ 135*	•	Disintegrated 243‡ Disintegrated	310#		
						Air-entr	ained Concrete	<u>e</u>	
27143 27146 27149	4.3	7.5	2-1/2	165 ‡ 130 ‡ 205 ‡	165‡ 90‡ 212‡	189‡ Disintegrated 156‡	261‡ 156‡		
27152 27155 27158	3.6	4.5	2-1/2	133* 128* 115	136 ‡ 115 * 104 *	139 ‡ 119 ‡ 151‡	139# 119# 143#		
27161 27164 27167	3.7	7.5	6	‡ 141‡ 217‡	Gone 105‡ 230‡	Disintegrated Disintegrated			
27170 27173 27176	5.0	6.0	6	81 ‡ 144 ‡ 147 ‡	‡ 141‡ 144‡	Disintegrated 165‡ 138‡	188 * 142 *		
27188 27191	6.8	6.0	2-1/2	138* 122‡	141 ‡ 128 ‡	144 + 145 +	159 # 145 #		
27203	5.6	9.0	2-1/2	155‡	160#	156‡	156‡		
27206 27209 27212	3.7	4.5	6	123* 132* 131*	126* 121 ‡ 124 ‡	122* 130* 118*	119# 131# 118#		

^{*} End gone. t Ends gone, specimen retained.

Appendix A

Discussion by D. L. Bloem*

on

Significance of Accelerated Durability Tests for Concrete**

This report describes a cooperative program of the Waterways Experiment Station (WES), the Bureau of Public Roads (BPR), and the Joint Research Laboratory (JRL) of the National Sand and Gravel Association (NSGA) and National Ready Mixed Concrete Association. Concrete performance comparisons were made of two laboratory freezing and thawing test methods with a severe field exposure in tidewater. Variables in the concrete were four water-cement ratios at high and low slump, with and without air-entrainment. The same aggregates, consisting of good quality crushed limestone and natural siliceous sand, were used throughout.

A single batch of concrete was made for each of the 16 conditions. Nine 3- by 4- by 16-inch beams were molded from each batch for exposure in triplicate to each of the three freezing and thawing environments. The specimens were fog-cured for 35 days and air-dried for 8 days. After the air-drying period, those for laboratory freezing and thawing were fog-cured for an additional 28 days before test. Those for field exposure were shipped to Treat Island, Maine, and placed in the WES tidewater exposure racks.

The JRL test exposure consisted of alternate freezing in air at 0 F and thawing in water at 40 F in accordance with ASTM Method C 291. At the BPR laboratory, the cycle consisted of freezing to 0 F in water (ice) and thawing to 72 F in water at a rate of one cycle per day. The field exposure at Treat Island is described in a paper by Kennedy and K. Mather² as follows:

^{*} Director of Engineering, National Sand and Gravel Association and National Ready Mixed Concrete Association, Silver Spring, Maryland, U.S.A.

^{**} For presentation at Wednesday Morning Session, January 24, 1968, of U.S. - Japan Joint Seminar on Research on Basic Properties of Various Concretes.

The experimental exposure station at Cobscook Bay, Treat Island, consists of a timber rack at mean-tide elevation attached to a wharf. There are approximately 1500 specimens on the rack. The rack is roofed [roof was removed from rack in September 1963 and will not be replaced] over to insure that all specimens received a similar exposure by eliminating differences due to sunlight and wind. Specimens placed on the rack are exposed to twice-daily reversals of an average 18-ft tide. At times during the winter months alternate exposure to freezing air and submergence in sea water at approximately 34 F produces frequent and severe cycles of freezing and thawing in the concrete. The temperature of the water is always low, ranging annually from 42 to 30 F, and tends to reduce chemical reactions between concrete and the salts in sea water.

The number of cycles of freezing and thawing as well as intensity of the cycles varies with severity of the winter. Over the past twelve winters [prior to 1953] the average number of cycles of freezing and thawing has been 136 with a high of 242...and low of 89....

Disintegration in the laboratory tests was measured in terms of changes in dynamic modulus of elasticity determined in accordance with ASTM Method C 215.³ The general criterion of failure was a 50 percent reduction, although exposure for air-entrained concretes in many cases had to be terminated before that level was reached. Failure of the specimens at Treat Island manifested itself by cracking and surface spalling of such magnitude that meaningful measurements of fundamental frequency became impossible.

The data are summarized in table 1. Response to the different freezing and thawing exposures is shown graphically in fig. 1, and relationships among the exposures are indicated in figs. 2 and 3.

Figure 1 shows that, for all exposures, resistance to freezing and thawing decreased as the water-cement ratio increased. The effect was much more pronounced for nonair-entrained than for air-entrained concrete. In the laboratory exposures, air-entrainment produced very large improvements

in resistance. In the field, air-entrainment had a much smaller effect ranging from almost none for the lowest water-cement ratio to substantial for the higher water-cement ratios.

There was a slight trend toward lower durability for the high-slump concretes in comparison with their low-slump counterparts but, with one exception (nonair-entrained concretes in the field exposure), the difference was not large nor consistent.

It is evident from fig. 1 that the two laboratory cycles differ in severity and that their ability to predict endurance in the field is different for air-entrained than for nonair-entrained concrete. On a cyclefor-cycle basis, both laboratory test methods were much more destructive to nonair-entrained concrete than field exposure. For the air-entrained concrete, however, the JRL laboratory cycle was much less severe than the field exposure while the BPR laboratory cycle was somewhat more severe.

Approximate relations of field endurance to the laboratory test cycles are shown in figs. 2 and 3. For nonair-entrained concretes, the number of freezing and thawing cycles in tidewater which the specimens withstood can be expressed fairly well as a multiple of the number of laboratory cycles survived, thus: For the JRL cycle,

$$F = 10L_A$$

and, for the BPR cycle,

$$F = 23L_B$$

where

F = number of cycles of tidewater freezing and thawing survived,

 L_{A} = number of JRL laboratory cycles survived,

 L_{B} = number of BPR laboratory cycles survived.

Even more roughly, exponential functions can be fitted to the data for air-entrained concrete, as follows: Program 20

(Issued Sept 1968)

 $F = 10L_A^{0.57}$ for the JRL cycle,

and

$$F = 10L_B^{0.8}$$
 for the BPR cycle.

In summary, the tests showed that laboratory freezing and thawing did provide a relative measure of the ability of various concretes to withstand a particular, highly severe outdoor exposure. The relation of field endurance to laboratory test results was different for air-entrained than for nonair-entrained concrete. The benefits of air-entrainment were not as impressive in the field exposure as was indicated by the laboratory tests.

The BPR cycle, where freezing and thawing both were in water, perhaps correlated slightly better with field performance than the JRL rapid cycle of freezing in air and thawing in water. It is quite possible that this advantage would not exist for correlations with other field environments where the concrete is not continuously saturated. The BPR test produced failure in fewer cycles but required about 10 times as long to generate the same number of cycles as the JRL method.

(Issued Sept 1968)

Program 20

References

- 1. American Society for Testing and Materials, "Standard Method of Test for Resistance of Concrete Specimens to Rapid Freezing in Air and Thawing in Water," Designation: C 291-67, 1967 Book of ASTM Standards, Part 10, 1967, Philadelphia, Pa.
- 2. Kennedy, T. B. and Mather, K., "Correlation Between Laboratory Accelerated Freezing and Thawing and Weathering at Treat Island, Maine,"

 Proceedings, American Concrete Institute, Vol 50, Oct 1953, pp 141-172.
- 3. American Society for Testing and Materials, "Standard Method of Test for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens," Designation: C 215-60, 1967 Book of ASTM Standards, Part 10, 1967, Philadelphia, Pa.

Table 1. Comparison Between Laboratory and Field Exposures of Concretes With Varied Properties

Each test represents average for three 3- by 4- by 16-in. beams molded from a single batch of concrete for the given condition.

								val in
	Water-	Cement,	Sand,	Air		oratory		Exposure
	Cement	lb. per	percent	Content,		& T.		Treat
Mix	Ratio	cubic	total	per-		to 50% E	_	land
No.	by wt.	yard	agg.	cent	NSGA(1)		Years	Cycles
					, 2-1/2-	inch slump		
1	0.40	780	44	(3)	89	45	9	1045
2	0.53	600	46	(3)	38	11	3+	330
2 3 4	0.67	470	47	(3)	15	7	3-	260
4	0.80	415	49	(3)	8	7	2	186
				(0)				
		Non	air-entra	ined concr	ete, 6-i	nch slump		
5	0.40	830	43	(3)	73	45	6	753
6	0.53	680	44	(3)	40	15	2	186
7	0.67	545	45	(3)	11	4	1	101
7 8	0.80	490	47	(3)	6	4	1	101
				(3)				
		Air-	entrained	concrete,	2-1/2-i	nch slump		
9	0.40	815	41	3.6	3690	415*	12+	1410
10	0.53	535	43	6.8	(4)	415*	9	1045
11	0.67	460	44	4.3	4500*	240*	9+	1080
12	0.80	375	46	5.6	3800*	255*	6	753
		317			3			175
		Air	-entraine	d concrete	, 6-inch	slump		
13	0.40	865	41	3.7	(4)	555*	12	1381
14	0.53	590	43	5.0	(4)	455*	12	1381
15	0.67	490	44	3.7	3220	230*	9	1045
16	0.80	405	46	4.4	1600	200	5+	645

⁽¹⁾ Freezing in air at O F and thawing in water at 40 F per ASTM Method C 291, Test for Resistance to Rapid Freezing in Air and Thawing in Water.

⁽²⁾ Freezing in water to O F and thawing in water at 72 F at rate of one cycle per day.

⁽³⁾ Air not measured; estimated at 1 to 1.5 percent.

^{*} Values extrapolated; test terminated at smaller number of cycles.

⁽⁴⁾ Specimens essentially undamaged after 4000 cycles when test was terminated.

Fig. 1. Effect of water-cement ratio on resistance of concrete to freezing and thawing in the laboratory or in the field

(Issued Sept 1968)

Fig. 2. Prediction of field endurance by JRL laboratory test

Fig. 3. Prediction of field endurance by BPR laboratory test

Cement Durability Program*

The cement durability program was begun in 1939 to develop data for use in preparing an acceptance specification for portland cement that would provide greater assurance of durability in concrete exposed to severe weathering. A total of 52 samples of portland cement and clinker were collected from 47 mills widely distributed throughout the United States. The determination of field durability was conducted at several exposure stations, with specimens exposed at various times.

Treat Island Installations

First installation

The first installation on the Treat Island exposure rack consisted of 276 concrete columns** (6 by 6 by 48 in.), which were installed on the following dates:

Date	No. of Specimens
October 1940	271
January 1941	5

Four to six specimens represented each of the 52 cements. All of these specimens were made from concrete of the same basic mixture: water-cement ratio, 6.0 gal per bag; cement factor, 5.1 bags per cu yd. The aggregates consisted of siliceous sand and gravel.

Six of the 52 cements were "treated" cements; i.e., they contained a material such as resin, tallow, or oil as an addition to the cement. In the fall of 1943, after exposure to 511 cycles of freezing-and-thawing, six (treated cement) specimens were returned to the laboratory for compression and flexure tests. The results are given on the following page.

^{*} See: Corps of Engineers, Central Concrete Laboratory, Cement Durability Program, First Interim Report (June 1942).

, Concrete Research, Second Interim Report, Part I,
"Laboratory studies of concrete containing air-entraining admixtures" (July 1945).

^{**} Columns are molded with their long axis in a vertical position; beams are molded with their long axis in a horizontal position.

Program 21

(Issued Sept 1970)

	Ce	ement			
Column	Desig-	(Trees	Age		Strength*
No.	nation	Туре	days	Flexural	Compressive
E-3-G	C	I w/tallow	1278	81	112
E-12-G	M	II w/oil	1248	103	100
E-32-G	EE	I w/tallow	1201	85	127
E-39-G	KK	II + resin	1189	86	119
E-60-G	ZZ	Resin	1156	73	140
E-61-G	AZ	Special	1154	87	117

^{*} In percent of 28-day strength.

The specimens containing the different cements reacted differently in the laboratory strength tests, but in general, there is evidence of mild retrogression in flexural strength and equality or gain in compressive strength.

Table 1-CRE lists the specimens in this installation, and gives their exposure record along with the cements used in each. This exposure was terminated in 1969 after 3776 cycles of freezing-and-thawing. The average durability of the specimens made from each of the 52 cements can be compared as shown in the following tabulation.

Specimens Containing Cement	Average No. of Years of Survival (Approximate)
M	26
C	20
ZZ	16
EE	15
KK	13
AZ	6
The 40 other cements	<2

Test specimens made with the treated cements (M, C, ZZ, EE, KK, and AZ) had an average survival of from 6 to 26 years whereas test specimens made with the 40 untreated cements had an average survival of less than 2 years.

Second installation

The second installation consisted of 37 concrete columns (6 by 6 by

48 in.), which were installed on the Treat Island exposure rack on the following dates:

Date	No. of Specimens
June 1941	12
October 1941	25

These columns represented 37 (one specimen per cement) of the original 52 cements. The specimens were made at the same time and from the same basic mix as those in the first installation, and had been exposed out-of-doors at West Point, New York, in the interim. Table 1-CRE also lists these specimens, the cements in each, and gives their exposure record through 1969 when the exposure was terminated.

Four of the 37 cements represented in this installation were treated cements used in the first installation, and the other 33 were untreated cements used in the first installation.

The average durabilities obtained on this group of specimens are given below:

Specimens Containing Cement	Average No. of Years of Survival (Approximate)
C	28
M	27
KK	>22
EE	>7
The 33 other cements	<2

Test specimens made with the 33 untreated cements had an average survival of less than 2 years, whereas those made with the treated cements had an average survival of from 7+ to 28 years.

Third installation

The third installation consisted of 48 concrete columns (6 by 6 by 48 in.), which were installed on the Treat Island exposure rack in October 1942. These specimens represented 12 of the original 52 cements, and the cements used came from the original samples. The purpose of this

installation was to study the effect on the durability of concrete of using four different types of aggregate with some of the original cements. The four types of aggregate used were: limestone, dolomite, round gravel, and traprock.

The concrete containing limestone, dolomite, or traprock had a water-cement ratio of 6.0 gal per bag and a cement factor of 6.75 bags per cu yd; the concrete containing round gravel aggregate had the same water-cement ratio, but a cement factor of 6.25 bags per cu yd. Table 2-CRE lists these specimens, their cements and aggregates, and gives their exposure record through 1969, at which time the exposure was terminated.

Three of the 12 cements represented in this installation were "treated" cements and the other nine were untreated cements. Specimens made with five of the untreated cements (0, GG, JJ, TT, and XX) demonstrated practically no resistance to the weathering; their average survival was only 1 year or less. Average survivals of specimens made with cements R, W, NN, and WW (all untreated) were 6+, 13, 17, and 7 years, respectively. Specimens made with cements EE, KK, and ZZ (the treated cements) had average survivals of 27, 13, and 27 years, respectively. The following tabulation gives the relative durabilities with respect to the four aggregates used.

	No.	of Years of Surv	vival (Approximat	e)
Cement	Limestone	Dolomite	Round Gravel	Traprock
0	1	0		1
R	1	1		18
W		15	10	14
EE (treated)	4-	22		27
GG	1	1	1	0
JJ	0	0	1	0
KK (treated)	4	13	22	>
NN	6	22	16	25
TT	0	0		0
WW	4	10 (avg of 2)	<u></u>	
XX	0	0	0	0
ZZ (treated)		1988 on 20 10 on 1980		27

The most durable mixture appears to be a treated cement (either EE or ZZ) with a traprock aggregate. Limestone aggregate concrete has the poorest durability in this exposure, with the durability of specimens containing dolomite being a little greater than those containing round gravel. Traprock is apparently the most durable aggregate.

St. Augustine Installation

In order that the influence of sea water on concrete might be determined without the added effects of freezing-and-thawing, and in particular its possible influence on the durability of the specimens located at Treat Island, 152 concrete columns (6 by 6 by 48 in.) were installed on the mild-weathering exposure rack at St. Augustine, Florida, in November 1940. These specimens were similar to those installed at Treat Island in 1940, i.e. same basic mixture and same aggregates. Fifty-one of the original 52 cements were represented in this installation (two or three specimens per cement). Table 3-CRE lists these specimens, their cements, and gives their exposure record through 1970, at which time the exposure was terminated.

In the summer of 1956, three columns were returned to the laboratory for petrographic examination. These three columns, E-6-H, E-9-H, and E-32-H, had broken during the exposure and it was desired to determine the reason for their breakage. The findings of the laboratory examination were:

- a. Columns E-6-H and E-9-H showed no evidence of deteriorative processes so the breakage of these specimens might have been due to damage incurred during handling.
- b. Column E-32-H, made with a high-alkali, high C3A cement (cement EE, Type I with tallow) was determined to have failed due to alkali-aggregate reaction and concurrent deterioration due to sulfate attack. This was one of the first examples of alkaliaggregate reaction involving natural aggregate A.

After 30 years of exposure at St. Augustine, only nine columns have failed. A list of these columns is given on the following page.

(Issued Sept 1970)

Program 21

Column No.	Cement	Approximate C ₃ A Content of Cement, %
E-3-E E-3-K	C (Type I with tallow)	13.3 13.3
E-24-H	Y (Type I)	7.1
E-32-E E-32-H E-32-K	EE (Type I with tallow)	13.7 13.7 13.7
E-58-E E-58-H E-58-K	YY (high C ₃ A)	17.4 17.4 17.4

Eight of the nine columns that failed were made with cements having a C₃A content of more than 13 percent, and these cements (C, EE, and YY) were the only cements used in this installation which had C₃A contents greater than 13 percent. This suggests that the failures were due to the high C₃A content; this conclusion is borne out by the findings of the 1956 laboratory examination of column E-32-H.

Column E-24-H was made with a cement whose C₃A content was only about 7 percent; although this column is listed as failed, it could have been broken in handling during cleaning operations. Therefore, not much significance is attached to the "failure" of this column.

Other Installations

An additional 208 specimens representing the 52 cements were fabricated and installed in 1940 in groups of three at the moderate weathering exposure station (West Point, New York, and later at Mt. Vernon, New York), and singly at the nonweathering exposure station (West Point, New York, and later at Mt. Vernon, New York). These specimens were tested periodically. Except for slight localized surface crazing, the specimens remained sound and all but one had relative moduli of elasticity above 100 percent of the initial moduli after 6 years exposure; the other specimen had a relative modulus in excess of 90 percent. Since no differences had been noted between specimens representing different cements, and since the laboratory

was being moved to the Waterways Experiment Station, these exposure stations were discontinued and the specimens were discarded in 1946.

Findings

The findings of this investigation were:

- a. Concrete specimens made with untreated cements exhibited low resistance to the tidal freezing-and-thawing at Treat Island. Forty-six of the 52 cements tested were untreated cements.
- b. Concrete specimens made with treated cements exhibited good to extraordinary durability in the Treat Island exposure. The six treated cements which were used were (in order, maximum to minimum durability): Cements M, C, ZZ, KK, EE, AZ. Each of these cements contained a saponifiable material such as resin, tallow, or oil, and because of this treatment could be classified as an air-entraining cement, which accounts for the remarkable durability.
- c. The durability of concrete specimens at Treat Island with respect to aggregates is in the following order, maximum to minimum durability: Traprock, dolomite, round gravel, limestone.
- d. Concrete specimens made with the three cements containing more than 13 percent C3A exhibited poor durability at St. Augustine. These three cements were (in order, maximum to minimum durability): C, EE, YY.
- e. One concrete specimen made with cement Y was broken in the St. Augustine exposure; this breakage is believed to be due to handling rather than to deteriorative processes.
- f. Concrete specimens made with the remaining cements have exhibited good durability in the St. Augustine exposure.

(Revised Sept 1970)

Table 1-CRE

Program 21

Record of Testing of Columns, Containing 52 Cements, for Durability at Treat Island

1940-1970 (Installed 1940 and 1941)

		0		-			19:0-	1952 Res	ullis.					
Spec No.	Type and Designa- tion*	Cycles Oct 1940	157 Cycles 1941 	323 Cycles 1942	511 Cycles 1943 4E	653 Cycles 1944	763 Cycles 1945	868 Cycles 1946 \$E	936 Cycles 1947 %E	1117 Cycles 1948 E	1222 Cycles 1949 \$E	1383 Cycles 1950 	1472 Cycles 1951 	1573 Cycle 1952 #E
					First I	nstallat	ion (Oct	19/10)						
E-1-C E-1-D E-1-G E-1-J E-1-M	II, A	100 100 100 100	Failed Failed Failed Failed Failed											
E-2-D E-2-G E-2-J E-2-M E-2-O	II, B	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-3-D E-3-C E-3-J E-3-0	I w/tallow, C	100 100 100 100	117 113 118 116	114 114 118 115	116 115-Re 119 116	119 turned t 122 118	126 to labora 129 124	128 story in 130 127	132 Oct 1943 135 132	123 127 122	123 126 124	125 128 125	129 131 128	130 133 130
E-4-D E-4-G E-4-J E-4-M E-4-0	II, D	100 100 100 100	Failed Failed Failed Failed Failed											
E-5-D E-5-G E-5-J E-5-M E-5-O	II, E	100 100 100 100 100	95 Failed 79 112 127	Failed Failed Failed										
E-6-D E-6-G E-6-J E-6-M E-6-O	II, P	100 100 100 100	89 Failed 89 89 89	Failed Failed Failed										
E-7-D B-7-G E-7-J E-7-M E-7-O	II, G	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-8-D E-8-G E-8-J E-8-M E-8-O	II, H	100 100 100 100	Failed Failed Failed Failed Failed											
E-9-D E-9-G E-9-J E-9-M E-9-0	II modi- fied, J	100 100 100 100	63 65 96 94	Failed Failed Failed Failed Failed										
	Low C3A,	100 100 100 100	Failed Failed Failed Failed											
E-11-D E-11-G E-11-J E-11-M E-11-0	II, L	100 100 100 100	Failed Failed Failed Failed Failed											
E-12-D E-12-G E-12-J E-12-M E-12-O	II v/o11,	100 100 100 100	118 120 125 120 119	120 116 126 118 116	120 117-Ro 125 120 120	120 turned t 126 123 122	124 to latore 129 127 124	130 story Oct 138 134 136	134 1943 145 142 143	132 138 133 135	133 137 133 136	131 138 135 137	135 141 139 143	141 143 141 149

The 52 executs used are designated A through H, J through U, W through Z, AA through HH, JJ through UU, WJ through EZ, and AZ, NY, CX, DM.

(Revised Sept 1970)

Table 1-CRE (Continued)

		-0						1952 Rec						
Spec No.	Cement Type and Designa- tion	Cycles Oct 1940	157 Cycles 1941 E	323 Cycles 1942 E	511 Cycles 1943 #E	653 Cycles 1944 KE	763 Cycles 19:5	868 Cycles 1946	986 Cycles 1947	11 Cyc 19	les Cyc.	les Cycle 19 1950	s Cycles	1573 Cycles 1952 E
				Fire	t Instal	lation	(Oct 1940) (Conti	nued)					
E-13-D E-13-G E-13-J E-13-M E-13-O	II, N	100 100 100 100 100	58 Failed 87 104 105	Failed Failed 54 55	Failed Failed			Maria.						
E-14-D E-14-G E-14-J E-14-M E-14-O	II, o	100 100 100 100 100	Failed Failed Failed Failed Failed											
I-15-D I-15-G I-15-J I-15-L I-15-M	II approx,	100 100 100 100 100	Failed Failed Failed Failed Failed											
1-16-D 1-16-G 1-16-J 1-16-M 1-16-0	II, Q	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-17-D E-17-G E-17-J E-17-M E-17-0	II, R	100 100 100 100 100	53 Failed Failed 64 89	Failed Failed 71	Failed									
1-18-D 1-18-G 1-18-J 1-18-M 1-18-0	Similar to II, S	100 100 100 100	Failed Failed Failed Failed Failed											
1-19-D 1-19-G 1-19-J 1-19-M 1-19-0	II, T	100 100 100 100	Pailed Failed Failed Failed Failed											
8-20-D 8-20-G 8-20-J 8-20-M	II modi- fied, U	100 100 100 100	Pailed Failed Failed Failed Failed											
E-22-D E-22-G E-22-H E-22-H	I, W	100 100 100 100	118 Pailed 106 114 117	Failed Failed 70 78	Failed Failed									
E-23-D E-23-G E-23-J E-23-M E-23-0	п, х	100 100 100 100	Failed Failed Failed 67 Failed	Pailed										
1-24-D 1-24-G 1-24-J 1-24-M	I, Y	100 100 100 100	Failed Failed Failed Failed Failed											
1-25-D 1-25-G 1-25-J 1-25-M 1-25-O	П, 2	100 100 100 100	Pailed Pailed Pailed Pailed Pailed											
	II, AA	100 100 100 100	100 Failed 99 100 106	Failed Failed Failed Failed										

							1940-1	952 Read	ings					
Spec	Cement Type and Designa- tion	O Cycles Oct 1940	157 Cycles 1941 _%E	323 Cycles 1942 Æ	511 Cycles 1943	653 Cycles 1944 <u>%E</u>	763 Cycles 1945 _%E	868 Cycles 1946	986 Cycles 1947 %E	1117 Cycles 1948 %E	1222 Cycles 1949 %E	1383 Cycles 1950 %E	1472 Cycles 1951 %E	1573 Cycles 1952 %E
					Fi	rst Inst	allation	(Oct 19	40) (con	tinued)				
E-27-D E-27-G E-27-J E-27-M E-27-O	II, BB	100 100 100 100 100	107 Failed 108 109 110	Failed Failed 74										
E-28-D E-28-G E-28-J E-28-M E-28-O	II, CC	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-31-D E-31-G E-31-J E-31-M E-31-O	II approx,	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-32-D E-32-G E-32-J E-32-M E-32-O	I w/tallow, EE	100 100 100 100 100	137 141 146 133 133	131 136 143 132 129	138 139-Re 145 136 133	139 turned t 146 135 135	143 to labora 152 141 141	150 tory Oct 159 143 143	156 : 1943 164 150 147	147 155 150 139	146 154 Broke 137	148 155 n in har 139	151 159 ndling 160	153 161 Failed
E-33-D E-33-G E-33-J E-33-M E-33-O	I, FF	100 100 100 100 100	Failed Failed Failed Failed											
E-36-D E-36-G E-36-J E-36-M E-36-O	II approx,	100 100 100 100	Failed Failed Failed Failed											
E-37-D E-37-G E-37-J E-37-M E-37-0	II, HH	100 100 100 100	Failed Failed Failed Failed Failed											
E-38-D E-38-F E-38-G E-38-J E-38-M E-38-O	II approx,	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-39-D E-39-F E-39-G E-39-J E-39-M E-39-O	II approx + resin, KK	100 100 100 100 100 100	105 106 112 105 103 104	108 109 112 108 109 107	109 111 115-Re 109 113 108	112 112 turned t 113 114 101	115 118 to labora 118 120 105	116 120 tory oct 120 123 106	121 123 1943 124 128 105	114 114 107 119 102	110 108 113 117 94	97 99 112 **	107 97 100 112 88	105 84 97 110 87
E-40-D E-40-F E-40-G E-40-J E-40-M E-40-O	II approx,	100 100 100 100 100 100	Failed Failed 90	Failed Failed Failed										
E-41-F E-41-G E-41-J E-41-M E-41-O	I approx,	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-42-D E-42-F E-42-G E-42-J E-42-M E-42-O	II, NN	100 100 100 100 100 100	111 Failed 112 111 110 115	89 73 62 70 82	Failed Failed Failed Failed Failed	(Contin	4							

^{**} Spurious sonic readings were obtained on these specimens in 1950.

(Revised Sept 1970)

Program 21

Table 1-CRE (Continued)

		0					1940-	1952 Rea	aings					
Spec No.	Cement Type and Designation	Cycles Oct 1940 <u>%E</u>	157 Cycles 1941 ÆE	323 Cycles 1942 #E	511 Cycles 1943 %E	653 Cycles 1944 %E	763 Cycles 1945 %E	868 Cycles 1946 %E	986 Cycles 1947	1117 Cycles 1948 	1222 Cycles 1949 %E	1383 Cycles 1950 	1472 Cycles 1951 %E	1573 Cycles 1952 %E
					<u>F</u>	irst Ins	tallatio	on (Oct 1	940) (C	ontinued)				
E-43-D E-43-F E-43-G E-43-J E-43-M E-43-O	II, 00	100 100 100 100 100 100	106 Failed 110 111 113 109	Failed Failed Failed Failed										
E-44-D E-44-F E-44-G E-44-J E-44-M E-44-O	II, PP	100 100 100 100 100 100	Failed Failed Failed Failed Failed											
E-45-D E-45-F E-45-G E-45-J E-45-M E-45-O	II, QQ	100 100 100 100 100	Failed 78 Failed 88 76 96	Failed Failed Failed										
E-46-D E-46-F E-46-G E-46-J E-46-M E-46-O	II, RR	100 100 100 100 100	109 Failed 95 109 111 112	Failed Failed Failed 68 68	Failed Failed									
E-47-D E-47-F E-47-G E-47-J E-47-M E-47-O	II, SS	100 100 100 100 100 100	51 84 Failed Failed Failed Failed	Failed Failed										
E-51-D E-51-F E-51-G E-51-J E-51-M E-51-O	II, TT	100 100 100 100 100 100	Failed Failed Failed Failed Failed											
E-53-D E-53-F E-53-G E-53-J E-53-M E-53-O	II, W	100 100 100 100 100 100	116 121 119 118 114 Failed	Failed Failed Failed Failed Failed										
E-56-D E-56-F E-56-G E-56-J E-56-M E-56-O	II, WW	100 100 100 100 100	59 81 Failed 84 Failed Failed	Failed Failed Failed										
E-57-D E-57-F E-57-G E-57-J E-57-M E-57-O	II, XX	100 100 100 100 100	Failed Failed Failed Failed Failed											
E-58-D E-58-F E-58-G E-58-J E-58-M E-58-O	High C ₃ A,	100 100 100 100 100 100	104 116 Failed 115 Failed Failed	Failed Failed Failed										
E-60-D E-60-F E-60-G E-60-J E-60-M	Resin, ZZ	100 100 100 100	114 112 114 127 111	116 111 116 127 113	127	128	135	126 125 ratory 0c 137 122	140	120 122 128 111 118	119 121 127 111 118	117 122- 124 106 113	115 Broken in 123 110 116	115 handlin 123 108 114
E-60-0		100	114	115	117	121	126	126	128	110	110	113	(8	11

		-0							19	940-	1952 Res	adings	3							
Spec	Cement Type and Designa- tion	Cycl Oc 194	es 157 t Cycl 0 194	es (323 Cycles 1942 %E		les 43	653 Cycles 1944 %E	76; Cycl 194	les 5	868 Cycles 1946 %E	986 Cycl 194	les (1117 Cycles 1948 %E	122 Cycl 194 %E	es (1383 Cycles 1950 %E	147 Cycl 195 %E	es Cy	573 cle 952 %E
					Firs	t Ins	talla	tion (Oct 19	40)	(Contin	nued)								
E-61-D E-61-F E-61-G E-61-J E-61-M E-61-O	Special, AZ	100 100 100 100 100	117 113 119 121 119 118		117 111 117 121 120 121	11 11 12 11 11	3 7-Ret 0 8	115 111 urned 119 117 113	116 118 to lak 121 120 111	orat L	116 119 tory Oct 123 124 116	115 125 131 131	5 5 F	109 130 Pailed Pailed						
E-62-F E-62-G E-62-J E-62-M E-62-O	II, BY	100 100 100 100 100	Fail 110 113 117 113	I I	Failed Failed Failed Failed															
E-63-D E-63-F E-63-G E-63-J E-63-M E-63-O	I, CX	100 100 100 100 100	Fail Fail Fail	.ed .ed .ed																
		_							10	953-	1961 Res	adings	5							
		16	58 Cycle 1953 Pulse	s	17 Cyc 19	les		14 :les	201 Cyc:	31 les	22: Cyc: 19:	25 les	Cyc	296 cles 958	Cyc	146 cles 1959	251 Cycl 196	es	Cyc	558 cles 61
		<u>≸E</u>	Veloc fps	%v2		%v ²	%E	%v ²		%v ²		%v ²		%v ²		%v ²	%E	%v ²		%v
						Fi	rst I	nstall	ation	(0c	t 1940)									
E-3-D E-3-J E-3-0	I w/tallow, C	137	15,095 14,600 14,545	100	146	95	148 146 144	90 94 96	148 151 148	89 101 100	156	93 93	216 164 159	93 94	220 152 148	88 90	156	92	Fail. 156	-
E-12-D E-12-J E-12-M E-12-0	II w/oil,		15,875 15,810 	100	151	95 89	154 156 177 187	94 86	160 164 155 149	98	125 171	93	101 128 187 130	94	128 95 185 90	=======================================	95 193 92	=======================================	122 100 190 92	
E-32-D E-32-J	I w/tallow, EE	151 159	14,705 14,545		160 172	94 96	153 166	89 97	147 172	91		90	133 151	=	Fail 200		Fail.			
E-39-D E-39-F E-39-J E-39-M E-39-0	II approx + resin, KK	105 Fail. Fail. 113 Fail.			105		105 94		Fail. 98		79		Fail							
E-60-D	Resin,	115	13,935	100	112	95	98	89 86	98	83		75	Fail							
E-60-J E-60-M E-60-0	ZZ	100	13,515 13,560 13,890	100 100 100	105	93 97 96	100 83 89	86 90 87	92 75 82	92	75	66	69 54	=	Fail.					
					- 1						Expo	sure	Rack,	Row 2	2 (W t	0 E)				
		27 Cyc 19	les	2853 Cycle 1963	es	298 Cycl 196	8 es	962-19 3151 Cycle 1965	s (3281 yele 1966	es Cy	3437 rcles 1967	C	3622 rcles	Cyc	69				
		<u>196</u> E	15v2 1	E_	<u>%v²</u>	≸E :	%v ²	<u> 16E</u> 1	v ² 9	<u>6E</u> 9	sv ² si	5 %V	<u>1</u>	%v2	% E	%v2				
E-3-0	I/4-11	156	1	.60		Brok	en	Instal	lation	(00	et 1940)	2								
	w/tallow,					in handl	ing													
E-12-D E-12-J E-12-M E-12-0	II w/oil,	122 105 190 88	: 1	19 97 90		114 108 162				103 180 203	10; 17; 20	3	- Fa	11						

⁻⁻ Dashed lines in "Pulse Veloc" or "%v2" columns indicate that a pulse velocity reading was not taken because of the roughness of the ends of the specimens. (Sheet 5)

(Revised Sept 1970)

Table 1-CRE (Continued)

							1941-	1952 Rea	dings					
Spec	Cement Type and Designa- tion	O Cycles Jan 1941 %E	85 Cycles Oct 1941 %E	251 Cycles 1942 4E	438 Cycles 1943 %E	581 Cycles 1944 %E	691 Cycles 1945 %E	796 Cycles 1946 %E	914 Cycles 1947 %E	1045 Cycles 1948 %E	Cycles 1949 %E	Cycles 1950	Cycles 1951 %E	Cycles 1952 %E
					First	Installa	tion (Ja	n 1941)						
E-64-C E-64-D E-64-F E-64-G E-64-J	II, DW	100 100 100 100 100	88 121 107 Failed 149	Failed Failed 107 Failed	84	Failed								
							1941	-1952 Rea	dings					
		Cycles June 1941 %E	O Cycles Oct 1941 %E	166 Cycles 1942 %E	353 Cycles 1943 %E	496 Cycles 1944 %E	606 Cycles 1945 %E	711 Cycles 1946 %E	829 Cycles 1947 % E	960 Cycles 1948 %E	1065 Cycles 1949 %E	1226 Cycles 1950 %E	1315 Cycles 1951 %E	1416 Cycles 1952 %E
				Second	Installa	ation (Ju	ne 1941	and Oct	1941)					
E-1-A E-2-A E-3-A	II, A II, B I w/tallow,	100	109 109 100	Failed Failed 108	115	118	124	128	134	125	125	127	132	132
E-4-A E-5-A	II, D II, E	100 100	119 112	Failed 91	Failed									
E-6-A E-7-A E-8-A E-9-A	II, F II, G II, H II modi- fied, J	100 100 100	109 107 107 100	Failed Failed 78 Failed	Failed									
E-10-A	Low C3A, K		100	Failed										
E-11A E-12-A	II, L II w/oil,	100	117 100	Failed 112	116	119	128	132	138	131	130	133	138	139
E-13-A E-14-A E-15-C	II, N		100 100 100	Failed Failed Failed										
E-16-C E-18-A	II, Q Similar to II, S		100 100	Failed Failed										
E-19-C E-20-C E-22-A	II modi- fied, U		100 100	Failed Failed										
E-24-C E-25-C E-27-A E-28-C	I, Y	100	100 100 116 100 100	Failed Failed 69 Failed Failed	Failed									
E-32-A	I w/tallow,		100	94	101	102	111	113	117	118	Broken	in hand	Ling	
E-33-A E-36-A	I, FF II approx,	100	100 127	Failed Failed										
	GG II, HH II approx, JJ		100 100	Failed Failed										
E-39-A	II approx + resin,		100	106	110	120	118	122	126	120	120	122	125	127
	I approx,		100	Failed										
E-43-C	II, NN II, OO II, PP	100	122 100 100	77 Failed Failed	Failed									
E-46-A	II, RR II, SS	100	137	Failed Failed										

									195	3-196	1 Read	lings			Expos	ure I	Rack,	Row 1	(W t	0 E)
Spec	Cement Type and Designa-	15	1953 Pulse Veloc	-	Cyc	154	Cyc	55	19 Cyc	124 1es 156	Cyc	068 eles	21 Cyc 19	les 58	Cyc	59	Cyc	60 les 60	Cyc	001 les 061
No.	tion	%E	fps	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v ²	%E	%v2	<u>%</u> E	%v2	% E	%v2	%E	%v2
				Secon	d Insta	llatio	n (Ju	ne 191	and	Oct	1941)	(Conti	nued)							
E-3-A	I w/tallow,	137	15,265	100	145	91	145	90	151	93	154	90	158	91	154	85	150	86	154	
E-12-A	II w/oil,	140	15,565	100	149	99	154	96	160	101	131	94	203	98	129	91	126	93	123	90
E-39-A	II approx + resin, KK	128	14,650	100	145	96	139	94	145	90	137	92	144	92	130		127		111	
									106	2-106	9 Read	lings			Expos	ure F	ack,	Row 2	(W t	0 E)
		Cyc 19	90 eles 62	2696 Cycle 196	es C	2831 ycles 1964	C	2994 ycles 1965	0	3124 ycles 1966	Cy	3280 rcles 1967	34 Cyc 19	les 68	361 Cycl 196	es 9				_
		<u>%</u> E	%V2	'	6v2 1		<u></u>						<u>%E</u>	%V°	<u>%E</u>	%V_				
					Second	Insta	Hatio	on (Ju	ne 19	41 an	a Oct	1941)								
E-3-A	I w/tallow,	154	-	158	14	7	15	1	16	2	162		162		133					
E-12-A	II w/oil,	123		120 -	10	3	10	0	10	5	100		97		Fail.					
E-39-A	II approx + resin, KK	111		102 .		roken in ndling														

⁻⁻ Dashed lines in "%v2" column indicate that end of specimen was too rough to obtain satisfactory pulse velocity reading.

(Sheet 7)

(Revised Sept 1970)

Table 2-CRE

Record of Testing of Concrete Columns, Containing 12 Cements and 4 Aggregates, for Durability at Treat Island

				1942-19	70 (Third	Install	ation, O	ct 1942)					
							1942-1	952 Rend	ings		ong Arm,	Row 1 (E to W
Spec	Cement Type and Designa-	Туре	Cycles 1942	187 Cycles 1943	330 Cycles 1944	Cycles 1945	545	663 Cycles 1947	791	899 Cycles 1949	1060 Cycles 1950	1149 Cycles 1951	1250 Cycles 1952
No.	tion	Aggregate	\$E	≸E_	\$E	₹E_	\$E	\$E	\$E	\$E	≸E	\$E	\$E
B-14-W	11, 0	Limestone Dolomite	100	79 Failed	Failed								
B-14-Y B-14-Z		Round gravel Traprock	Broken 100	at inst	Failed								
8-17-W	II, R	Linestone	100	98	Failed								
B-17-X		Dolomite	100	95	Failed								
3-17-Y		Round gravel	100000000000000000000000000000000000000		allation								
B-17-Z		Traprock	100	106	109	112	118	125	115	115	84	117	118
3-22-W	I, W	Limestone			allation								
2-55-X		Dolomite	100	104	111	105	111	125	109	104	95	104	91
E-22-Y		Round gravel	100	105	109	110	115	122	105	105	105	76	62
B-22-Z		Traprock	100	107	112	113	121	128	117	117	116	114	108
B-32-W	1	Limestone		at inst	allation								
B-32-X	v/tallov,		100	111	115	121	122	125	114	111	109	110	108
8-32-Y	E	Round gravel			allation								
B-32-Z		Traprock	100	111	115	123	124	127	121	109	119	121	121
8-36-W	II approx,	Limestone	100	113	Failed								
B-36-X	GG	Dolomite	100	109	Failed								
36-Y		Round gravel	100	100	Failed								
8-36-Z		Traprock	100	Failed									
8-38-W	II approx,	Limestone	100	Failed									
E-38-X	JJ	Dolomite	100	Failed									
8-38-Y		Round gravel	100	61	Failed								
E-38-Z		Traprock	100	Failed									
8-39-W	II approx	Limestone	100	103	107	96	96	Failed					
B-39-X	+ resin,	Dolomite	100	108	113	115	114	115	113	112	112	112	114
8-39-Y	KK .	Round gravel	100	109	116	122	124	125	118	115	112	110	110
8-42-W	II, NN	Limestone	100	102	110	113	115	128	120	Failed			
B-42-X		Dolomite	100	104	111	115	118	122	108	107	106	106	108
8-42-Y		Round gravel	100	105	111	118	119	122	108	112	108	109	106
8-42-Z		Traprock	100	102	107	115	115	128	114	112	112	113	115
B-51-W	II, TT	Limestone	100	Failed									
8-51-X		Dolomite	100	Failed									
B-51-Y		Round gravel	Broken	at inst	allation								
B-51-E		Traprock	100	Failed									
8-56-W	II, W	Limestone	100	87	96	99	90	Failed					
8-56-XL		Dolomite	100	108	112	99 116	119	122	111	109	108	107	111
8-56-X2		Dolomite	100	101	Failed								
8-56-Y		Round gravel	Broken	at inst	allation								
B-56-Z		Traprock	Broken	at inst	allation								
B-57-W	11, XX	Limestone	100	Pailed									
B-57-X		Dolomite	100	Failed									
B-57-Y		Round gravel	100	Failed									
B-57-Z		Traprock	100	Pailed									
2-60-W	Resin,	Limestone	Broken	at inst	tallation								
8-60-X	22	Dolomite			allation								
8-60-Y		Round gravel			tallation								
E-60-Z		Traprock	100	107	110	116	119	124	116	114	114	115	116

Program 21

Table 2-CRE (Concluded)

			C Valentino							9 Read				NISI			
	Cement Type and		1335	Pulse		- Cyc 19	les	15 Cyc 19	les	Cyc	58 les 156	Cyc	02 les 057	Cyc	73 :les :58		les
Spec No.	Designa- tion	Type Aggregate	%E	Velo-			%v ²	%E	%v ²	%E	%v2	%E	%v2	%E	%v ²	%E	96V
-17-Z	II, R	Traprock	121	15,8	75 100	128	98	132		136		136		138		101	
-22-X -22-Y -22-Z	I, W	Dolomite Round gravel Traprock	77 Fail. 105	16,6			85	80 74		72 58	87	72 Fail.	-	Fail.			
-32-X -32-Z	I w/tallow, EE	Dolomite Traprock	109 125	14,98 14,60	30 100 00 100		94 94	110 129	92 95	113 130	96 94	109 126	95	115 133	94	103 126	9
-39-X -39-Y	II approx + resin, KK	Dolomite Round gravel	116 111	14,1	35 100	117	98	118 109	95	Fail.	97	108	92	114	92	101	8
-42-X -42-Y -42-Z	II, NN	Dolomite Round gravel Traprock	109 106 117	15, 20 15, 41 16, 60	+5 100	100	103 92 94	112 88 120	93 81 95	117 88 122	97 65	105 68 122	 89	105 68 129	92	105 Fail. 114	8
-56-X1	II, WW	Dolomite	111	16,80		117	94	116	94	120	94	110		113		94	
-60-Z	Resin,	Traprock	119	15,20	65 100	124	96	124	94	127	95	124	94	130	95	114	9
												Ex	posur	e Rack	. Row	2 (W	to E
			1						960-1	967 Re	ading		1000				
			- 61	AT.	8844							-0-0					
			21 Cyc: 19	Les	2335 Cycles 1961	Су	424 cles 962	25 Cyc 19		266 Cycl 196	es	2828 Cycles 1965	s	2958 Cycles 1966		3114 Cycles 1967	
			Cyc	Les	Cycles	Cy 1	cles 962	Cyc	les	Cycl 196	es	Cycles 1965	s v ²	Cycles	2 -	Cycles	2
3-17-Z	II, R	Traprock	Cyc:	Les 50 160 ²	Cycles 1961	Cy 1	cles 962	Cyc 19	les 63	Cycl 196	es 4	Cycles 1965	-	Cycles 1966	2 -	Cycles 1967	2
:-17-Z :-32-X :-32-Z	II, R I w/tallow, EE	Traprock Dolomite Traprock	Cyc. 19	Les 50 160 ²	Cycles 1961 %E % Fail.	Cy 1	cles 962 %V ²	Cyc 19	les 63	Cycl 196	es 4 %v ²	Cycle: 1965 %E %	<u>v</u> 2	Cycles 1966	2 -	Cycles 1967	
-32-X	I w/tallow,	Dolomite	Cyc. 199 %E 101	les 60 402 1	Cycles 1961 %E % Fail.	Cy 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	%v ²	Cyc 19 %E	les 63 ½v ²	Cycl 196 %E	es li gv ²	Cycle: 1965 %E %	<u>v</u> 2	Cycles 1966 %E %	2 -	Cycles 1967 E %	
-32-X -32-Z	<pre>I w/tallow, EE II approx + resin,</pre>	Dolomite Traprock	Cyc. 196 6E 101 97 123	les 60 402 1	Cycles 1961 **E	Cy 1: - 91 - 116	(cles 962 962 902	66 116	les 63 ½V ²	57 116	es 4 gv ² ten ing	Cycle: 1965 %E %	<u>v</u> ²	Cycles 1966 %E %	- 1	Cycles 1967 E %	5
-32-X -32-Z -39-Y	w/tallow, EE II approx + resin, KK	Dolomite Traprock Round gravel	cyc. 190 %E 101 97 123 98	4v ² 1	Cycles 1961 **E	Cy 1: 4E	cles 962 4v ²	Cyc 19 5E 66 116 98	les 63 ½V ²	Cycl 196 %E 57 116 Broke handl	es 4 gv ² ten ing	Cycles 1965 E 5 Failed 116	<u>v</u> ²	Cycles 1966 LE L	- 1	Cycles 1967 <u>KE XV</u>	5
-32-X -32-Z -39-Y	I w/tallow, EE II approx + resin, KK II, NN	Dolomite Traprock Round gravel Dolomite Traprock	98 105 114	93	Cycles 1961 5E 5 Fail. 94 123 101 105 114 89	Cy 1: 2	cles 962 4v ²	Cyc 19 5E 66 116 98	les 63 ½V ²	Cycl 196 %E 57 116 Broke handl	es 4 gv ² ten ing	Cycles 1965 E E Failed 116	<u>v</u> ² _	Cycles 1966 LE 10 10 -	- 1	Eycles 1967 LE EV	
-32-X -32-Z -39-Y -42-X -42-Z	I w/tallow, EE II approx + resin, KK II, NN II, WW Resin,	Dolomite Traprock Round gravel Dolomite Traprock Dolomite	Cyc. 199 5E 101 97 123 98 105 114 89	1	Cycles 1961 5E 5 Fail. 94 123 101 105 114 89	Cy 1: 4E 4E 116 116 116 116 116 116 116 116 116 11	cles 962 4v ²	Cyce 19	les 63 %v ² 91	57 116 Brok in handl	es 44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cycles 1965 Failed 116 Failed 82 108 Exp	1	Cycles 1966 LE 10 10 -	- 1	Eycles 1967 LE EV	
:-32-X :-32-Z :-39-Y :-42-X :-42-Z :-56-X1	I w/tallow, EE II approx + resin, KK II, NN II, WW Resin,	Dolomite Traprock Round gravel Dolomite Traprock Dolomite	Cyci 199 %E 101 97 123 98 105 114 89 117	es 50	Cycles 1961 5E 5 Fail. 94 123 101 105 114 89 117 3453 Cycles 1969	Cy 1: 2	cles 962 4v ²	Cyce 19	les 63 %v ² 91	57 116 Broke in handl 60 89	es 44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cycles 1965 Failed 116 Failed 82 108 Exp	1	Cycles 1966 LE 10 10 -	- 1	Cycles 1967 LO	
:-32-X :-32-Z :-39-Y :-42-X :-42-Z :-56-X1	I w/tallow, EE II approx + resin, KK II, NN II, WW Resin, ZZ	Dolomite Traprock Round gravel Dolomite Traprock Dolomite	Cyc. 199 %E 101 97 123 98 105 114 89 117	93 93 93 93 93 93 93 93 93 93 94 95	Cycles 1961 5E 5 7a11. 94 123 101 105 114 89 117 3453 Cycles	Cy 1: 2	cles 962 4v ²	Cyce 19	les 63 %v ² 91	57 116 Broke in handl 60 89	es 44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cycles 1965 Failed 116 Failed 82 108 Exp	1	Cycles 1966 LE 10 10 -	- 1	Cycles 1967 LO	
:-32-X :-32-Z :-39-Y :-42-X :-42-Z :-56-X1 :-60-Z	I w/tallow, EE II approx + resin, KK II, NN II, ww Resin, ZZ	Dolomite Traprock Round gravel Dolomite Traprock Dolomite Traprock	Cyci 199 %E 101 97 123 98 105 114 89 117	93 93 93 93 93 93 93 93 93 93 94 95	Cycles 1961 5E 5 Fail. 94 123 101 105 114 89 117 Cycles 1969 5E 56	Cy 1: 2	cles 962 4v ²	Cyce 19	les 63 %v ² 91	57 116 Broke in handl 60 89	es 44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cycles 1965 Failed 116 Failed 82 108 Exp	1	Cycles 1966 LE 10 10 -	- 1	Cycles 1967 LO	

Record of Testing of Columns Containing 51 Cements at St. Augustine 1940-1970 (Installed November 1940)

								1940-1	960 Re	adings							_
	Cement Type and			2011				1050	-	1954 Pulse		1956	6	199	58	196	50
Spec No.	Designa- tion	1940 %E	1942 %E	1944 %E	1946 %E	1948 %E	1950 %E	1952 %E	%E	Veloc fps_	%v ²	%E	%v2	%E	%v ²	%E	%v ²
E-1-E	II, A	100	114	119	120	118	118	112	110	16,530	100	113	85	108	92	111	91
E-1-H		100	113	119	122	116	117	105	110	16,325	100	108	85	108	90	111	95
E-1-K		100	112	120	126	118	118	112	112	16,325	100	109	85	106	91	106	94
E-2-E	II, B	100	112	121	120	123	123	114	117	16,460	100	117	87	112	90	117	92
E-2-H		100	111	119	121	119	117	114	111	16,530	100	112	87	102	90	109	93
E-2-K		100	111	119	123	118	118	115	111	16,460	100	113	97	110	90	113	92
E-3-E E-3-H E-3-K	I w/tallow, C	100 100 100	115 113 115	120 119 120	Fail. 118 115	109 89	129 Fail.	103	103	14,600	100	106	86	98	94	101	73
E-4-E	II, D	100	112	115	118	112	110	112	104	16,195	100	105	88	107	94	105	95
E-4-H		100	115	117	119	116	115	110	110	16,260	100	108	90	110	93	110	95
E-4-K		100	108	110	112	111	118	107	107	16,600	100	107	87	105	92	105	91
E-5-E	II, E	100	114	120	124	121	122	118	118	16,460	100	120	86	115	89	115	92
E-5-H		100	119	124	125	121	122	123	120	16,395	100	123	85	118	89	118	91
E-5-K		100	115	120	124	121	121	117	114	16,325	100	120	86	115	91	112	92
E-6-E E-6-H E-6-K	II, F	100 100 100	114 115 112	120 122 116	119 122 126	120 111 123	121 Broker 120	115 - Ret	118 urned 114	16,325 to labora 16,460	100 atory 100	116 in 1956 120	87 84	113	90 89	110 114	93 90
E-7-E E-7-H E-7-K	II, G	100 100 100	117 112 113	125 120 123	132 126 Broken	129 117 in ha		125 in ha	120 indline	16,735	100	125	86	122	91	114	93
E-8-E	II, H	100	115	124	129	124	121	121	115	16,665	100	120	86	117	89	112	93
E-8-H		100	111	120	127	117	120	114	118	16,805	100	115	87	110	91	113	92
E-8-K		100	115	119	121	122	125	116	111	16,600	100	111	89	114	91	109	94
E-9-E E-9-H E-9-K	II modi- fied, J	100 100 100	114 117 113	117 124 120	122 131 121	Broke 105 127	n in har Broken		urned 114	to labors 16,880	atory	in 1956 112	90	112	88	109	91
E-10-E	Low C ₃ A,	100	119	131	138	126	126	133	127	16,880	100	127	92	124	88	121	91
E-10-H		100	117	126	131	136	122	124	121	16,325	100	133	90	130	94	124	96
E-10-K		100	122	134	139	125	134	134	134	16,000	100	136	93	130	97	124	101
E-11-E E-11-H E-11-K	II, L	100 100 100	115 117 116	120 124 121	127 127 123		n in har n in har 123		116	16,395	100	116	89	124	91	113	94
E-12-E	II w/oil,	100	115	122	123	123	122	112	114	15,565	100	111	87	122	93	111	93
E-12-H		100	125	128	133	126	127	120	123	15,325	100	120	89	129	93	117	95
E-12-K		100	120	123	126	126	121	118	117	15,445	100	117	90	128	93	114	94
E-13-E E-13-H E-13-K	II, N	100 100 100	113 112 108	123 121 118	121 Broken 122	122 in ha 124	116 ndling 121	117 116	117 116	16,130 16,395	100	114 116	89 87	125	92 92	114	95 97
E-14-E	II, 0	100	111	117	118	117	118	113	103	16,325	100	99	87	119	94	109	97
E-14-H		100	124	128	130	135	130	124	121	16,130	100	117	87	144	92	120	97
E-14-K		100	118	124	126	136	125	127	128	16,460	100	122	90	142	91	125	96
E-15-E	II approx,	100	125	132	138	136	133	130	127	16,195	100	124	87	148	90	124	96
E-15-H		100	125	132	137	133	133	129	130	16,130	100	130	90	148	92	130	97
E-15-K		100	117	122	127	127	124	118	118	16,195	100	121	90	141	90	116	95
E-16-E	II, Q	100	119	127	132	132	132	124	123	16,530	100	126	87	149	89	123	94
E-16-H		100	122	130	132	132	130	124	121	16,195	100	124	90	147	93	121	95
E-16-K		100	115	124	125	137	122	120	118	16,260	100	118	89	137	92	113	96
E-17-E	II, R	100	116	122	125	124	121	115	116	16,195	100	116	88	136	92	111	95
E-17-H		100	114	121	127	120	119	112	114	16,065	100	112	90	134	92	115	99
E-17-K		100	117	123	130	130	123	126	126	15,875	100	120	91	140	95	117	99
E-18-E	Similar to	100	131	143	153	151	147	141	144	16,065	100	141	96	168	94	141	99
E-18-H		100	126	133	143	141	140	130	135	16,325	100	135	90	160	92	130	96
E-18-K		100	124	132	139	138	135	131	132	16,195	100	132	91	160	94	130	97

(Revised Sept 1970)

Table 3-CRE (Continued)

							e 3-cite			eadings					-		
	Cement Type and									1954 Pulse		346					
Spec No.	Designa- tion	1940 %E	1942 %E	1944 %E	1946 %E	1948 %E	1950 %E	1952 %E	%E	Veloc fps	%v ²	19 %E	56 %v ²	195 %E	%v ²	196 %E	%v ²
E-19-E	II, T	100	119	123	129	125	123	123	118	15,810	100	118	89	151	94	121	97
E-19-H		100	119	124	124	125	125	120	123	15,935	100	123	90	150	94	123	98
E-19-K		100	117	122	121	125	124	116	113	15,875	100	122	90	149	95	119	98
E-20-E E-20-H E-20-K	II modi- fied, U	100 100 100	110 118 123	116 126 131	128 136 136	122 131 144	121 129 140	119 125 131	112 119 131	16,195 16,130 16,000	100 100 100	118 122 136	91 90 99	143 151 158	92 92 94	121 122 130	97 97 98
E-22-E	I, W	100	111	114	119	117	118	111	116	16,600	100	119	84	114	90	106	93
E-22-H		100	119	123	124	129	120	117	120	16,735	100	120	84	115	90	115	92
E-22-K		100	114	117	123	122	123	119	116	16,805	100	119	83	114	89	111	91
23-Е	II, X	100	123	134	136	135	133	130	128	17,020	100	129	83	123	89	120	90
2-23-Н		100	130	140	141	141	135	135	133	17,020	100	137	81	131	90	128	90
2-23-К		100	130	142	145	141	133	133	124	17,240	100	127	79	121	88	124	88
24-E 2-24-H 2-24-K	I, Y	100 100 100	119 123	121 Fail.	119	112	108	113	116	16,325	100	113	82	116	92	113	92
1-25-E 1-25-H 1-25-K	II, Z	100 100 100	112 127 123 122	114 131 133 131	110 138 142 Broke	104 137 145 en in ha	105 135 135 andling	105 132 139	104 128 134	16,195 16,530 16,600	100 100 100	107 128 131	82 83 85	102 125 128	90 91 91	102 125 128	91 91 90
E-26-E	II, AA	100	115	118	119	122	117	113	108	16,735	100	111	81	103	91	103	91
E-26-H		100	115	118	116	116	115	108	107	16,665	100	110	83	102	90	104	91
E-26-K		100	114	117	118	121	120	113	114	16,805	100	117	81	107	90	105	90
-27-E	II, BB	100	119	124	128	125	126	121	120	16,950	100	118	83	115	92	112	91
-27-H		100	122	128	131	134	132	126	122	17,095	100	122	81	119	90	122	88
-27-K		100	116	122	125	126	121	117	113	16,735	100	115	85	110	90	110	92
-28-E	II, CC	100	118	123	127	126	119	120	113	16,665	100	118	84	110	90	110	91
-28-H		100	113	118	120	121	119	112	106	16,735	100	106	85	101	91	103	91
-28-K		100	114	118	119	120	113	110	110	16,530	100	110	85	103	91	108	91
-31-E	II approx,	100	116	118	123	125	117	112	111	16,665	100	117	83	107	89	110	89
-31-H		100	117	121	124	131	120	117	114	16,600	100	117	85	114	91	119	89
-31-K		100	114	118	118	120	112	112	109	16,260	100	112	86	102	93	107	93
-32-E -32-H -32-K	I w/tallow, EE	100 100 100	124 127 127	126 128 128	125 126 128	Fail. Fail. Fail.	- Retur	ned to	labor	atory in	1956						
33-Е	I, FF	100	119	122	124	121	126	124	123	16,325	100	126	86	120	93	131	92
33-Н		100	119	121	123	118	123	115	112	16,460	100	117	83	109	92	120	92
33-К		100	116	119	120	114	114	109	109	16,395	100	114	83	106	91	119	91
-36-E -36-H -36-K	II approx,	100 100 100	125 118 113	132 126 121	Broke 130 120		andling en in ha 106	andling 109	111	16,195	100	111	86	124	92	108	93
-37-E	II, HH	100	133	140	145	148	146	138	141	16,065	100	141	88	161	90	138	94
-37-H		100	124	129	132	139	134	124	118	16,130	100	122	84	131	89	Brkn	in hd
-37-K		100	125	130	133	128	131	117	114	16,000	100	118	87	148	90	126	92
-38-Е -38-Н	II approx,	100 100 100	115 115 112	120 121 118	117 119 116	120 110 112	121 112 111	109 103 107	106 100 107	16,395 16,325 16,130	100 100 100	106 112 102	86 85 84	124 131 120	90 91 92	103 107 102	94 94 91
-39-Е	II approx	100	116	121	120	117	113	104	102	14,495	100	94	84	108	89	89	92
-39-Н	+ resin,	100	116	121	119	121	109	104	102	14,495	100	102	82	116	89	93	90
-39-К	KK	100	117	121	120	114	115	106	103	14,815	100	103	84	114	90	95	89
-40-E	II approx,	100	112	117	127	116	114	112	109	16,195	100	110	85	135	90	108	91
-40-H		100	112	115	125	117	118	113	115	16,325	100	112	83	131	89	109	90
-40-K		100	111	114	125	114	119	115	109	16,260	100	111	84	135	89	106	92
-41-E	I approx,	100	116	119	120	119	117	112	105	16,325	100	105	83	123	87	107	90
-41-H		100	114	117	115	118	118	113	106	16,195	100	112	83	131	88	107	89
-41-K		100	110	114	111	114	112	109	106	16,130	100	105	84	126	88	103	90
-42-E -42-H -42-K	II, NN	100 100 100	121 121 121	125 126 127	128 134 134	125 133 130	116 126 128	113 120 125	110 118 115	16,395 16,325 16,395	100 100 100	88 118 118	80 85 85	Broke 138 144	en in 1 89 86	handlin 115 112	91 90
-43-E -43-H -43-K	II, 00	100 100 100	113 113 115	117 116 118	119 Broke 118	121 en in he 117	114 andling 108 (Conti	106	en in	handling 16,325	100	102	77	125	89	102	92 et 2)

	Cement							1940-19	60 Rea	dings 1954							
Spec	Type and Designa-	1940	1942	1944	1946	1948	1950	1952		Pulse Veloc	. 2	_ 19		_19		-	1960
No.	tion	<u>%E</u>	%E_	<u>%E</u>	<u>%E</u>	%E	%E	%E	%E	fps	%v ²	%E	%v ²	%E	%v2	<u>%</u> E	<u>%v²</u>
E-44-E E-44-K	II, PP	100 100 100	114 112 109	118 117 112	116 115 Broke	118 116 en in ha	110 110 andling	106 109	105	16,130 16,065	100	105	84 85	129	93 93	105	92 92
E-45-E E-45-H E-45-K	II, QQ	100 100 100	114 112 114	120 118 121	109 119 122	115 120 127	110 114 121	109 118 116	101 113 112	16,000 16,195 16,065	100 100 100	104 115 118	88 87 89	128 143 146	95 90 91	109 112 115	92 91 92
E-46-E E-46-H E-46-K	II, RR	100 100 100	112 114 114	116 121 121	125 126 120	121 124 122	121 121 120	116 115 113	112 115 114	16,665 16,395 16,325	100 100 100	113 115 114	85 86 85	108 110 109	94 94 93	121 123 119	93 94 94
E-47-E E-47-H E-47-K	II, SS	100 100 100	120 120 117	125 127 123	131 136 121	126 120 122	125 119 114	118 113 116	118 114 114	16,600 16,460 16,665	100 100 100	115 115 112	83 82 83	112 110 112	91 89 90	120 121 125	92 92 91
E-51-E E-51-H E-51-K	II, TT	100 100 100	127 131 128	132 133 131	133 134 131	127 124 121	124 130 121	120 124 118	126 124 118	15,875 16,130 15,875	100 100 100	123 121 121	85 82 83	123 121 121	85 82 83	132 133 130	93 92 95
E-53-E E-53-H E-53-K	II, UU	100 100 100	122 122 122	127 126 127	126 126 127	128 132 128	124 131 125	122 124 121	119 120 123	16,460 16,600 16,395	100 100 100	122 123 123	82 81 83	122 123 123	82 81 83	129 132 132	92 91 91
E-56-E E-56-H E-56-K	II, WW	100 100 100	120 125 120	126 133 130	124 129 126	Broke 134 128	en in ha 131 128	andling 127 125	125 118	16,805 16,600	100	125 118	83 83	125 118	83 83	136 135	92 93
E-57-E E-57-H E-57-K	II, XX	100 100 100	125 132 137	132 140 143	132 143 138	133 147 138	135 142 143	124 140 126	126 138 127	16,325 16,530 16,130	100 100 100	126 138 130	85 84 82	118 129 127	92 89 91	135 135 130	92 90 92
E-58-E E-58-H E-58-K	High C ₃ A,	100 100 100	118 117 121	80 * 97	Fail Fail Fail												
E-60-E E-60-H E-60-K	Resin, ZZ	100 100 100	124 124 125	128 128 130	122 122 129	123 126 123	118 107 118	112 107 109	102 120 97	13,890 13,795 13,700	100 100 100	10 ¹ 4 101 100	82 83 83	101 101 97	90 89 92	101 89 Bkn i	89 89 n hdlg
E-61-E E-61-H E-61-K	Special,	100 This 100	164 specime 169	125 n was 124	128 broken 1		en in ha instal		100	13,605	100	100	82	91	85	91	95
E-62-E E-62-H E-62-K	II, BY	100 100 100	120 122 119	127 130 121	Broke 134 130	en in ha 133 128	andling 127 120	122 117	119 111	16,735 16,530	100	121 114	82 83	118 109	87 88	121	91 91
E-63-E E-63-H E-63-K	I, CX	100 100 100	121 123 126	127 127 130	130 134 135	135 133 136	141 132 135	123 121 122	118 113 119	16,950 16,805 17,020	100 100 100	121 116 119	83 81 81	118 121 116	86 86 86	121 118 124	91 91 91
E-64	II, DW	No s	pecimens	made	with th	is cemen	nt were	install	ed at	this sta	tion						
			_					1962-1	970 Re	adings							
		196 Æ	2 1 %v ² %E	.964 %v ²	1966		%v ²	1970 %E %v ²					118				
E-1-E E-1-H E-1-K	II, A	101 101 96	95 111 94 109 94 103	85 86	108 9	7 108 08 109	90 1 92 1	05 87									
E-2-E E-2-H E-2-K	II, B	102 109 100	94 117 94 109 94 107	89 88	112 10 107 10 107 10	1 112	91 1 90 1 90 1										
Е-3-Н	I w/tallow,	93	94 101			8 101	89 1	15 90									
E-4-E E-4-H E-4-K	II, D	105 100 93	98 113 97 110 95 107	91	113 10 110 10 107 9	01 118 01 110 09 107	93 1 95 1 91 1	07 92									

^{*} This specimen would not respond to flexural vibration.

(Revised Sept 1970)

Program 21

Table 3-CRE (Continued)

	Cement	_			101					196	2-197	Rea	dings				
Spec No.	Type and Designa- tion		62 %v ²	19 %E	64 %2	19 %E	66 1v ²	19	968 %v ²	19 %E	70 %v ²						
E-5-E E-5-H E-5-K	II, E	102 105 102	93 92 93	117 121 115	87 86 88	114 121 112	97 95 97	117 118 115	89 88 91	120 113 118	91 88 89						
E-6-E E-6-K	II, F	105 103	96 94	115	89 87	112	94 100	109 113	92 88	112 113	90 88						
E-7-E	II, G	111	97	119	86	119	100	122	90	122	89						
E-8-E E-8-H E-8-K	п, н	107 101 102	96 95 98	117 121 117	88 88 89	114 116 114	97 97 98	111 111 111	93 91 92	111 114 114	89 89 93						
E-9-K	II modi- fied, J	102	93	115	85	112	91	112	89	112	86						
E-10-E E-10-H E-10-K	Low C ₃ A,	113 113 113	94 97 102	133 133 133	84 90 96	130 130 130	95 101 106	130 133 136	90 95 100	130 136 142	90 94 98						
E-11-K	II, L	103	100	116	92	116	101	111	92	111	95						
E-12-E E-12-H E-12-K	II w/oil,	101 106 106	98 99 102	114 123 122	92 93 93	111 117 116	104 103 103	108 117 113	92 93 96	108 117 110	94 95 95						
E-13-E E-13-K	II, N	104	99 99	117	92 93	114	104	109 109	93 94	109 94	91 85						
-14-E -14-H -14-K	II, 0	99 114 111	100 99 100	109 128 119	92 92 93	112 128 116	104 106 102		95 94 94	109 122 113	96 98 94						
-15-E -15-H -15-K	II approx,	113 113 103	98 99 98	133 130 121	90 91 91	133 130 118	101 104 102	124	94 94 93	130 124 108	95 94 91						
-16-E -16-H -16-K	II, Q	107 108 103	97 101 100	129 127 121	89 92 91	126 113 116	99 105 103	115 116 111	92 94 94	110 116 106	90 93 92						
:-17-Е :-17-Н :-17-К	II, R	106 102 106	101 102 102	117 120 122	91 93 93	117 117 117	102 107 105	114	94 95 97	111 111 112	92 93 97						
-18-E -18-H -18-K	Similar to	125 116 116	104 101 102	141 133 133	95 93 94	141 130 130	105 102 105	133	96 93 96	129 133 124	94 93 93						
-10-E -19-H -19-K	п, т	110 112 111	102 102 103	127 129 125	93 93 94	127 126 125	105 103 104	120	97 95 95	121 120 119	97 94 96						
-20-E -20-H	II modi- fied, U	105 111 116	101 102 101	121 125 133	91 92 93	121 125 130	103 104 104	128	94 93 94	111 128 130	93 94 95						
-22-E -22-H	I, W	99 112 106	95 94 91	117 126 119	89 88 85	112 120 119	96	109 109 119	90 89 86	112 109 119	87 90 89						
-23-E -23-H -23-K	п, х	109 116 118	94 93 91	128 133 132	87	120 130 129	94	115 124 129	88 89 85	115 127 132	88 87 84						
E-24-E	Ι, Υ	110 97	95 95	121 110		115		115	91 87	115	94 89						
E-25-E	II, Z	116 119	96 95	136 140	89 87	130 134	104	118 128	89 88	118 128	90 89						
E-26-E E-26-H E-26-K	II, AA	98 99 100	93 94 95	110 111 113		105 106 110		104	89 90 88	105 109 102	87 88 85						

Table 3-CRE (Continued)

	Cement Type and										62-197	
Spec No.	Designa- tion		62 6v ²		64 %v ²		66 %V ²		968 %v ²	19 %E	%v ²	
-27-Е -27-Н -27-К	II, BB	104 111 100	94 92 94	119 127 112	89 88 89	116 124 107	104 101 106	116 113 105		119 116 110	87 86 88	
-28-E -28-H -28-K	II, cc	103 96 96	94 93 94	116 108 111	89 88 89	113 106 108	106 108 110	113 99 103	89 89 88	113 99 105	89 87 86	
-31-E -31-H -31-K	II approx,	105 108 100	94 93 99	121 121 113	88 89 92	116 116 108	109 110 109	119 116 113		122 119 113	89 89 89	
-33-E -33-H -33-K	I, FF	114 107 101	96 94 94	131 120 117	92 90 90	128 117 114	109 107 108	120 112 119	92 90 90	120 112 116	90 90 88	
E-36-К	II approx,	105	99	110	89	107	102	105	94	105	90	
E-37-E E-37-K	II, HH	145 123	98 97	145 129	91 87	142 129	104 101	142 126		139 120	91 89	
E-38-E E-38-H E-38-K	II approx, JJ	105 107 102	100 100 98	105 107 104	88 89 88	103 110 102	103 106 103	108 113 102		108 113 102	90 88 88	
E-39-E E-39-H E-39-K	II approx + resin, KK	92 96 95	97 94 98	106 99 98	85 84 87	98 96 101	54 53 96	109 88 106	90 91 89	98 69 112	86 87 86	
-40-E -40-H -40-K	II approx,	111 109 111	100 97 98	114 117 111	88 86 87	117 112 108	104 99 100	120 122 108		123 122 106	90 89 89	
-41-E -41-H -41-K	I approx,	102 104 103	94 95 97	109	in hd 85 88	lg 109 105	99 98	106 105		106 105	88 88	
-42-H -42-K	II, NN	120 115	96 95	120 118	86 84	120 115	101	123 121	89 89	123 115	87 85	
E-43-K	п,∞	102	95	102	86	102	100	100	89	95	83	
E-44-E E-44-H	II, PP	108	98 97	111	86 88	108	105	105 104	93 94	105 99	91 87	
E-45-E E-45-H E-45-K	II, QQ	104 115 115	99 97 99	104 115 120	88	107 118 117	102 101 101	112 118 117	94 93 92	97 118 112	84 90 86	
E-46-Е E-46-Н E-46-К	II, RR	111 112 114	94 97 95	116 117 117		116 112 114	110 108 114	111 107 109		111 107 106	90 92 91	
E-47-E E-47-H E-47-K	II, SS	112 110 112	94 94 94	117 113 112	89 88 87	117 110 112	109 112 107	109 107 107	89 88 88	106 102 107	88 88 88	
E-51-E E-51-H E-51-K	II, TT	123 121 115		123 124 121	90 88 91	123 127 115	98 97 100	120 121 127	100	117 121 121	94 90 93	
E-53-E E-53-H E-53-K	II, UU	121 118 118	94 94 93	124 123 115	87 87 87	121 123 115	95 104 98	124 Bkn Bkn	90 in hd in hd		88	
E-56-н E-56-к	II, WW	119 118	96 95	127 118	87 89	121 118	96 99	124	89 89	121 121	87 89	
E-57-E E-57-H E-57-K	II, XX	118 126 121	93 93 93	129 132 133	87 87 72	126 129 130		126 138 130	89 85 86	126 138 133	89 88 93	
E-60-E E-60-H	Resin, ZZ	95 95	91 90	107	85 84	95 104	93 90	89 113	85 84	89 113	86 86	
E-61-K	Special,	88	87	100	78	91	89	88	82	80	77	

(Revised Sept 1970)

Table 3-CRE (Concluded)

	Cement	7								1962-	1970	Readings				=
Spec No.	Type and Designa- tion	19 Æ	62 %v ²	19 %E	64 %v ²	19 %E	66 %v ²		968 %v ²	19 %E	70 %v ²					
E-62-H E-62-K	II, BY	116 Bkn i		124 g	86	118	95	118	88	113	86					
E-63-E E-63-H E-63-K	I, CX	118 113 116	91 93 93	118 118 119	87 87 86	115 115 119	96 95 94	123 120 Bkn	87 86 in hdlg	120 117	83 85					

Pine Flat Dam Aggregate Program*

The purpose of this program was to determine the durability of lean mass concrete made with aggregates that were proposed for use in Pine Flat Dam, Kings River, California.

1947 Installation

In September 1947, six 8-cu-ft concrete cubes were installed at Treat Island. The aggregates used in the concrete were pit-run sand and gravel. The particles were predominantly hard, dense, igneous rock types. The characteristics of the six cubes were:

Cube	Type Cement	Cement Factor bags/cu yd	Air Content	Slump in.†	Unit Theo Wt lb/cu ft
1	II	2.0	2.7-3.0	1-1/2 to 2	166.2
2	IV	2.0	2.7-3.0	1-1/2 to 2	166.2
3	II	3.0	2.7-3.0	1-1/2 to 2	166.0
4	IV	3.0	2.7-3.0	1-1/2 to 2	166.0
5	II	4.0	2.7-3.0	1-1/2 to 2	165.8
6	IV	4.0	2.7-3.0	1-1/2 to 2	165.8

t Wet-screened over 1-1/2-in. sieve.

Table 1-PF lists these specimens and gives their exposure record.

1949 Installation

In the fall of 1949, three concrete cores (10 in. in diameter by 18 in. long) were installed on the Treat Island exposure rack. These cores were taken from three 8-cu-ft cubes that were cast from air-entrained concrete containing type IV cement. The aggregates consisted of pit-run sand and gravel from the source from which aggregates were furnished for use in the project. The three cores had the following characteristics:

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation</u> of <u>Aggregates for Mass Concrete--Pine Flat Dam</u>, Interim Report (Vicksburg, Miss., December 1948).

(Issued Jan 1973)

Core No.	Type Cement	Cement Factor bags/cu yd	Air Content,* %	Slump in.**
1A	IV	2.0	Approx 6.0	1-1/2 to 2
2A	IV	2.5	Approx 6.0	1-1/2 to 2
3A	IV	4.0	Approx 6.0	1-1/2 to 2

^{*} Air content of that portion of the concrete containing aggregate smaller than 1-1/2 in. in size.

** Wet-screened over 1-1/2-in. sieve.

Table 2-PF lists these specimens and gives their exposure record.

Findings

The findings of the investigation were:

- a. The cubes made from concrete with a 2-bag-per-cu-yd cement factor were the least durable and failed after approximately 15 winters. The %V² never went above 100 (appreciably) and showed a steady decline after the first winter. The type IV cement specimen performed slightly better than the type II specimen.
- <u>b</u>. The 3-bag-per-cu-yd cubes showed considerably more durability, but again, the %V² did not get appreciably above 100 and showed a general decline. The specimens lasted approximately 23 winters with the type IV specimen showing up slightly better than the type II.
- c. The specimens containing 4 bags per cu yd of cement were only slightly more durable, if any, than the 3-bag-per-cu-yd specimens. Although the initial velocities were generally about the same as the other specimens, the %V² went well above 100 and remained much higher than the others until failure occurred. There was no appreciable difference in the type II and type IV cement specimens with regard to durability.
- d. The performances of the 2.0-, 2.5-, and 4.0-bag-per-cu-yd cores were essentially the same for about 16 winters. Failure of the 2.0-bag-per-cu-yd core occurred after about 18 or 19 winters. The 2.5- and 4.0-bag-per-cu-yd cores failed after about 21 or 22 winters.

Record of Observation and Testing of Cubes Made with Pine Flat Dam Aggregates,

1947 Installation, 1947- (Installed September 1947)

							10	47; 1951	-1959	Reading	g			Beac	h Row
Cube	Cement Factor bags/ cu yd	Type Cement	0 Cycl 1947 Condi- tion		ycles 51 tion		ycles	672 Cy 195 Pulse Veloc fps	rcles	783 Cycles 1954 \$v ²	928 Cycles 1955 \$v ²	1095 Cycles 1956 \$v ²	1239 Cycles 1957 %v ²	1318 Cycles 1958 %V ²	146 Cycl 195
1	2.0	II	Sound		scaling palling	Scaling heavy ing	and spall-	15,960	100	97	86	95	82	76	
2	2.0	IV	Sound	Slight	scaling	Scaling		15,750	100	107	97	91	98	92	-
3	3.0	II	Sound	Sound			scaling	16,530	100	98	107	91	88	89	1
4	3.0	IV	Sound	Sound		Slight	palling	17,095	100	95	103	93	84	83	1
5	4.0	II	Sound	Slight	scaling	Slight	palling scaling	15,625	100	114	107	120	110	112	
6	4.0	IA	Sound	Sound		Slight	palling scaling palling	16,530	100	115	97	102	102	105	1
								1960-19							_
			1531 Cycles 1960 %V ²	1672 Cycles 1961 %v ²	1761 Cycles 1962 %V ²	1867 Cycles 1963 %V ²	2002 Cycles 1964 %V ²	2165 Cycles 1965	229 Cycle 1966	es Cycl	es Cycle	s Cycle	s Cycle		s
1	2.0	II	53	Failed	(Comple	tely dis	integrat	ed)							
2	2.0	IV	101	98	Failed										
3	3.0	II	90	92	91	95	75	89	*	7	5 61	*	Faile	i	
4	3.0	IV	88	88	91	88	85	82		8.	1 88	73	72	Faile	d
5	4.0	II	109	112	111	105	95	93		10	8 103	80	72	Faile	d
6	4.0	IV	113	102	89	115	88	95		10	3 102	79	74	Faile	d
															-

^{*} Satisfactory pulse velocity readings were not obtained.

Record of Testing of Cores Made with Pine Flat Dam Aggregates,

1949 Installation, 1949- (Installed October 1949)

									1			-1959	Read	ings	-			197		· 10		(W t	
Core	Cement Factor bags/	0 Cycles 1949	Су	61 cles	250 Cycl 195	es C	351 ycles 1952		436 (19 Pul Vel	953 Lse	8	Cyc 19		Cyc 19		8 Cyc 19		10 Cyc 19	les	Cyc	74 les 58	Cyc	24 :les
No.	cu yd	%E		%E	%E		%E	%E			%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%V
1A	2.0	100	1	02	110		123	128	15,	790	100	128	100	149	107	148	90	145	100	150	100	142	92
2A	2.5	100	1	12	119		126	127	15,	790	100	142	94	129	98	137	88	132	83	134	95	156	88
3A	4.0	100	1	23	129		131	127	15,	955	100	129	98	138	109	146	104	144	94	144	100	158	90
		_	1295 1436		36							-1969											_
		1295 Cycle 1960	es	Cyc	36 les 61	15 Cyc 19		Cyc	1631 Cycles 1963		766 cles 964	1929 Cycles 1965		2059 Cycles 1966		Cycles 1967			2400 Cycles 1968		255 Cycl 196		
		<u>≸E</u> 9	€v ²	%E	%v2	%E	%v2	%E	%v2	% E	%v2	%E	%v2	%E	%v2	%E	%V	2	%E	%v2	%F		%v2
1A	2.0	148	94	139	94	133	85	136	100	121	87	105	83	119	*	NR*	* -	- Fa	iled				
2A	2.5	158	88	125	90	124	83	123	90	141	85	125	85	125	76	10	9 8	2	97	82	95		63
3A	4.0	157	104	148	104	142	107	129	109	116	96	103	85	95	74	8	5 6	7	70	74	+		++
			_								1970	-1971	Read	ings									_
		Cycl 197	les		28 Cyc. 19	les																	
		%E	%	<u>v</u> ²	%E	%V	_																
2A	2.5	Failed	i																				
3A	4.0	+		40	Faile	ı -																	

Dashed lines in "N²" column indicate that a pulse velocity reading was not taken because of the deteriorated condition of the ends of the core. Satisfactory pulse velocity readings were not obtained in 1966 due to malfunction of testing equipment. No reading taken in 1967 due to bad condition of specimen. Unable to obtain satisfactory reading. Pulse velocity reading was not taken.

Greenup Lock and Dam Specimens

In text:

Limestone aggregates: Blue Rock, Inc., Greenfield, Ohio

Portland cement: Type II, manufacturer unknown

Portland blast-furnace slag cement: Green Bag Cement Division, Pittsburgh Coke and Chemical

Co., Pittsburgh, Pa.

Natural cement: Louisville Cement Co., Speed, Ind.

Air-entraining agent: Unknown

Greenup Lock and Dam Specimens

In October 1957, 14 concrete specimens were installed at Treat Island to develop information as to the durability of the aggregates used in the construction of Greenup Lock and Dam, Greenup, Kentucky.

The aggregates used were natural sand, natural gravel, and limestone. All specimens were made of air-entrained concrete with a water-cement ratio of 0.50 (by weight). The cementing medium was a blend of portland, natural, and portland blast-furnace slag cements in the following percentages:

	% by Wt Total Cementing Medium
Portland cement	38.4
Portland blast-furnace slag cement	38.4
Natural cement	23.2

Ten of the 14 specimens installed were concrete beams (6 by 6 by 30 in.); four were mass concrete cubes (2 by 2 by 2 ft).

Table 1-GLD gives mixture data and exposure record for these specimens.

Findings

- a. The 2-ft cubes containing 3-in. maximum size coarse aggregate and 6.2 percent air were more durable than the cubes containing 6-in. maximum size coarse aggregate and 5.4 percent air.
- <u>b.</u> Eight of the ten 6- × 6- × 30-in. beams had failed after six winters, regardless of size of aggregate or air content. There is no apparent reason for the fact that two of the beams containg 3/4-in. aggregate and 4.4 percent air lasted approximately two or three winters longer than the other beams.

Table 1-GLD

Mixture Data and Record of Testing of Beams and Cubes Containing

Aggregates Used in Concrete of Greenup Lock and Dam, Ky.

1957- (Installed October 1957)

	Max											Readi				78/5				
Speci-	Size Coarse		Entrained	100	les, 195 Pulse	7	Cyc	les 58	22 Cyc 19	les	29 Cyc 19		43 Cyc			es 1es 62		18 1es 163		63 :les :64
men No.	Aggr in.	Slump in.	Air %	%E Initial	Veloc fps	%v2	%E	%v2	%E	%v ²	%E	%v ²	%E	%v2	%E	%v ²	%E	%v ²		%v°
				3	e-ft Cube	s on	Beach	Row	2, Ea	st to	West									
G - 1	3	3	6.2	100	15,385	100		108		92		98		103		106		100		99
g - 2	3	3	6.2	100	15,505	100		106		93		95		102		102		111		99
G-3	6	2-1/2	5.4	100	16,000	100		103		92		92		100		92		103		88
G-4	6	2-1/2	5.4	100	16,000	100		114		95		98		102		94		104		78
			6-	by 6- by	30-in. E	Beams	on Ex	posur	e Rac	k, Ro	w 2,	West	to Ea	st						
G-5	1-1/2	3	6.2	100	14,045	100	117	115	122	101	121	106	99	92	72		Fai	led		
g- 6	1-1/2	3	6.2	100	14,535	100	113	110	116	101	109	103	90	92	Fai	led				
G-7	1-1/2	3	6.2	100	14,450	100	116	110	120	100	118	101	95	83	64		Fai	led		
G- 8	1-1/2	3	6.2	100	14,450	100	114	113	119	98	117	97	112	86	120		Fai	led		
G-9	1-1/2	3	6.2	100	14,450	100	116	109	118	102	118	101	95	84	127		Fai	led		
G-10	3/4	3	4.4	100	13,585	100	119	109	124	106	128	108	124	111	119	114	116	116	114	106
G-11	3/4	3	4.4	100	13,735	100	121	112	126	105	130	109	126	109	121	115	100	102	168	
3-12	3/4	3	4.4	100	13,515	100	119	99	124	107	129	107	121	110	90	106	Fai	led		
3-13	3/4	3	4.4	100	13,515	100	120	98	126	107	126	107	124	106	76	73	Fai	led		
3-14	3/4	3	4.4	100	13,735	100	119	109	124	102	123	104	121	91	Fai	led				

				- 1						1965-1	.971 Rea	dings					
				926 Cycles 1965		1056 Cycles 1966		Су	212 cles 967	Cyc	397 cles 968	1551 Cycles 1969		1704 Cycles 1970		1873 Cycles 1971	
				%E	%v2	%E	15V2	%E	%v ²	%E	%v2	%E	%v ²	%E	%v2	%E	%v2
					2	-ft C	ubes o	n Beac	h Row 2,	East to	West						
-1	3	3	6.2		*	N.	95		98		97		89		NR		Failed
-2	3	3	6.2		94		98		94		94		Failed				
-3	6	2-1/2	5.4		92		**		Failed								
-4	6	2-1/2	5.4		Fail	ed											
			6.	- by 6	- by	30-ir	. Bear	ns on E	xposure F	ack, Ro	w 2, We	st to	East				
-10	3/4	3	4.4	107	87	124		Failed									
-11	3/4	3	4.4	Faile	h												

⁻⁻ Dashed lines in "%E" column for 2-ft cubes indicate that fundamental transverse readings were not made on 2-ft-cube specimens. Dashed lines in "%V²" column for 6- by 6- by 30-in. beams indicate that the ends of the beam specimen were too rough to obtain satisfactory pulse velocity reading.

* Pulse velocity reading was not obtained on this cube in 1965; records do not indicate why this reading was omitted.

** Satisfactory pulse velocity reading was not obtained on this cube in 1966 because of the deteriorated condition of the faces of the cube at the soniscope reading stations.

NR No reading was taken on this cube due to oversight.

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

U. S. Waterways Experiment Station, Vicksburg, Miss.
Investigation of performance of concrete and concreting
materials exposed to natural weathering. Vicksburg, 196062.

2 v. illus. 27 cm. (U. S. Waterways Experiment Station. Technical report 6-553)

Contents.-v.1. Active investigations.-v.2. Completed investigations.

Supplement. 1-Vicksburg, 1962nos. illus.

MO

1. Concrete durability. 2. Weathering (concrete). (Series)
TA7.W34 no.6-553