

AMENDMENT (2)**Claims**

1. (Amended) A compact self-ballasted electrodeless discharge lamp comprising:
 - 5 a bulb filled with discharge gas containing mercury enclosed in the bulb in the form of mercury element, not in the form of amalgam, and a rare gas;
 - an excitation coil installed near the bulb;
 - a ballast circuit which supplies high frequency power to the excitation coil; and
 - 10 a base that is electrically connected to the ballast circuit,
wherein: the bulb, the excitation coil, the ballast circuit and the base are formed into an integral part;
 - the bulb has a virtually spherical shape or a virtually ellipsoidal shape;
 - 15 a recessed portion to which the excitation coil is inserted is formed on the ballast circuit side of the bulb;
 - the recessed portion has an opening section on the ballast circuit side, and has a tube shape with a virtually round shape in the cross section thereof, with a portion positioned on the side opposite to the opening section of the recessed portion being provided with a function for suppressing the convection of the discharge gas;
 - 20 the largest diameter of the bulb is set in a range from not less than 60 mm to not more than 90 mm;
 - the bulb wall loading of the bulb during a stable lighting operation is set in a range from not less than 0.07 W/cm^2 to not more than 0.11 W/cm^2 ;
 - 25 the ratio (h/D) of the height (h) of the bulb based upon the end face of the opening section in the recessed portion to the largest diameter (D) of the bulb is set in a range from not less than 1.0 to not more than 1.3;

supposing that a distance between a top face of the recessed portion positioned on the side opposite to the opening section of the recessed portion and a top portion of the bulb facing the top face of the recessed portion is Δh , and that a diameter of a portion positioned on the side opposite to the opening section of the recessed portion is D_c , the following relationship is satisfied: $\Delta h \leq 1.15 \times D_c + 1.25$ [mm];

the excitation coil is constituted by a core and a coil wound around the core; and the center portion of the portion around which the coil is wound in the longitudinal direction of the core is positioned within a range that is apart from the plane on which the largest diameter of the bulb is located by a distance from not less than 8 mm to not more than 20 mm toward the ballast circuit side.

2. The compact self-ballasted electrodeless discharge lamp of claim 1, wherein the diameter D_c and the distance Δh satisfy the following relationship: $\Delta h \geq 1.16 \times D_c - 17.4$ [mm].

15

3. The compact self-ballasted electrodeless discharge lamp of claim 1 or 2, wherein the largest diameter of the bulb is set in a range from not less than 65 to not more than 80 mm.

20

4. (Deleted)

25

5. (Amended) A compact self-ballasted electrodeless discharge lamp comprising:
a bulb filled with discharge gas containing mercury enclosed in the bulb in the form of mercury element, not in the form of amalgam, and a rare gas;
an excitation coil installed near the bulb;

- a ballast circuit which supplies high frequency power to the excitation coil; and
a base that is electrically connected to the ballast circuit,
wherein: the bulb, the excitation coil, the ballast circuit and the base are formed
into an integral part;
- 5 the bulb has a virtually spherical shape or a virtually ellipsoidal shape;
 a recessed portion to which the excitation coil is inserted is formed on the ballast
circuit side of the bulb;
 the recessed portion has an opening section on the ballast circuit side, and has a
tube shape with a virtually round shape in the cross section thereof, with a portion
10 positioned on the side opposite to the opening section of the recessed portion being
provided with a function for suppressing the convection of the discharge gas;
 the largest diameter of the bulb is set in a range from not less than 55 mm to not
more than 75 mm;
 the bulb wall loading of the bulb during a stable lighting operation is set in a range
15 from not less than 0.05 W/cm^2 to less than 0.07 W/cm^2 ;
- the ratio (h/D) of the height (h) of the bulb based upon the end face of the opening
section in the recessed portion to the largest diameter (D) of the bulb is set in a range from
not less than 1.0 to not more than 1.3;
 supposing that a distance between a top face of the recessed portion positioned on
20 the side opposite to the opening section of the recessed portion and a top portion of the
bulb facing the top face of the recessed portion is Δh , and that a diameter of a portion
positioned on the side opposite to the opening section of the recessed portion is D_c , the
following relationship is satisfied: $\Delta h \leq 1.92 \times D_c - 22.4$ [mm];
 the excitation coil is constituted by a core and a coil wound around the core; and
25 the center portion of the portion around which the coil is wound in the

longitudinal direction of the core is virtually positioned on a plane within which the largest diameter of the bulb is located.

6. The compact self-ballasted electrodeless discharge lamp of claim 5, wherein the
5 diameter Dc and the distance Δh satisfy the following relationship: $\Delta h \geq 1.16 \times Dc - 17.4$
[mm].

7. The compact self-ballasted electrodeless discharge lamp of claim 5 or 6,
wherein the largest diameter of the bulb is set in a range from not less than 60 mm to not
10 more than 70 mm.

8. (Deleted)

9.

15

10. (Amended) The compact self-ballasted electrodeless discharge lamp of any
one of claims 1 to 3 and 5 to 7, wherein the filling pressure of the rare gas is set in a range
from not less than 60 Pa to not more than 300 Pa.

20

11. (Amended) The compact self-ballasted electrodeless discharge lamp of any
one of claims 1 to 3, 5 to 7, and 10, wherein a phosphor layer is formed on an inner surface
of the bulb.

25

12. (Amended) The compact self-ballasted electrodeless discharge lamp of any
one of claims 1 to 3, 5 to 7, and 10 or 11, wherein the diameter Dc of a portion positioned

on the side opposite to the opening section of the recessed portion is greater than the diameter of a portion corresponding to virtually the center portion of the recessed portion in the longitudinal direction of the excitation coil.

- 5 13. (Amended) An electrodeless-discharge-lamp lighting device comprising:
- a bulb which is filled with discharge gas containing mercury enclosed in the bulb in the form of mercury element, not in the form of amalgam, and a rare gas, and which has a recessed portion;
- an excitation coil inserted in the recessed portion; and
- 10 a ballast circuit which supplies high frequency power to the excitation coil,
- wherein: the bulb has a virtually spherical shape or a virtually ellipsoidal shape;
- the recessed portion has an opening section on the ballast circuit side, and has a tube shape with a virtually round shape in the cross section thereof;
- the largest diameter of the bulb is set in a range from not less than 60 mm to not
- 15 more than 90 mm;
- the bulb wall loading of the bulb during a stable lighting operation is set in a range from not less than 0.07 W/cm^2 to not more than 0.11 W/cm^2 ;
- the ratio (h/D) of the height (h) of the bulb based upon the end face of the opening section in the recessed portion to the largest diameter (D) of the bulb is set in a range from
- 20 not less than 1.0 to not more than 1.3;
- supposing that a distance between a top face of the recessed portion positioned on the side opposite to the opening section of the recessed portion and a top portion of the bulb facing the top face of the recessed portion is Δh , and that a diameter of a portion positioned on the side opposite to the opening section of the recessed portion is D_c , the
- 25 following relationship is satisfied: $\Delta h \leq 1.15 \times D_c + 1.25 \text{ [mm]}$; and

the diameter Dc of a portion positioned on the side opposite to the opening section of the recessed portion is greater than the diameter of a portion corresponding to virtually the center portion of the recessed portion in the longitudinal direction of the excitation coil.

- 5 14. (Amended) An electrodeless-discharge-lamp lighting device comprising:
- a bulb which is filled with discharge gas containing mercury enclosed in the bulb in the form of mercury element, not in the form of amalgam, and a rare gas, and which has a recessed portion;
- an excitation coil inserted in the recessed portion; and
- 10 a ballast circuit which supplies high frequency power to the excitation coil,
- wherein: the bulb has a virtually spherical shape or a virtually ellipsoidal shape;
- the recessed portion has an opening section on the ballast circuit side, and has a virtually cylinder shape with a virtually round tube shape in the cross section thereof;
- the largest diameter of the bulb is set in a range from not less than 55 mm to not
- 15 more than 75 mm;
- the bulb wall loading of the bulb during a stable lighting operation is set in a range from not less than 0.05 W/cm² to less than 0.07 W/cm²;
- the ratio (h/D) of the height (h) of the bulb based upon the end face of the opening section in the recessed portion to the largest diameter (D) of the bulb is set in a range from
- 20 not less than 1.0 to not more than 1.3;
- supposing that a distance between a top face of the recessed portion positioned on the side opposite to the opening section of the recessed portion and a top portion of the bulb facing the top face of the recessed portion is Δh, and that a diameter of a portion positioned on the side opposite to the opening section of the recessed portion is Dc, the
- 25 following relationship is satisfied: $\Delta h \leq 1.92 \times Dc - 22.4$ [mm]; and

the diameter D_c of a portion positioned on the side opposite to the opening section of the recessed portion is greater than the diameter of a portion corresponding to virtually the center portion of the recessed portion in the longitudinal direction of the excitation coil.

5

15. (Deleted)