Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Statistique : Intervalles de confiance et tests

Joseph Salmon

Septembre 2014

Plan du cours

Statistique : Intervalles de confiance et tests

Intervalles de confiance Théorèmes limites

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Tests d'hypothèses

2/14

Intervalle de confiance

Statistique : Intervalles de confiance et tests

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

► Contexte : on a une estimation $\hat{g}(y_1, \ldots, y_n)$ d'une grandeur $g(\theta)$. On veut un intervalle \hat{I} autour de \hat{g} qui contient g avec une grande probabilité.

On construit $\hat{I} = [A, B]$ à partir des observations (y_1, \dots, y_n) : l'intervalle est une variable aléatoire

$$\mathbb{P}(\hat{I} \text{ contient } g) = \mathbb{P}(A \leq g \text{ et } B \geq g) = 95\%$$

3/14

Intervalle de confiance de niveau α

Statistique : Intervalles de confiance et tests

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Intervalle de confiance

Un intervalle de confiance de niveau α pour la grandeur $g=g(\theta)$ est une fonction de l'échantillon

$$\hat{I}: (y_1, \dots, y_n) \mapsto \hat{I} = [A(y_1, \dots, y_n), B(y_1, \dots, y_n)]$$

telle que, quelle que soit le paramètre $\theta \in \Theta$,

$$\mathbb{P}\left[g(\theta)\in \hat{I}(y_1,\ldots,y_n)
ight]\geq 1-lpha$$
 lorsque $y_i\sim \mathbb{P}_{ heta}$

Rem: des choix classiques sont $\alpha = 5\%, 1\%, 0.1\%$, etc.

Intervalles de confiance

Tests d'hypothèses

Exemple: sondage

▶ Sondage d'une élection à deux candidats : A et B. Le choix du i-ème sondé suit une loi de Bernoulli de paramètre p, $y_i = 1$ s'il vote A, 0 sinon. Ainsi,

$$\Theta = [0,1]$$
 et $\theta = p$.

- but : estimer $g(\theta) = p$.
- \triangleright échantillon de taille n: un estimtateur raisonnable est alors

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}_n$$

intervalle de confiance pour p?

Sondage : intervalle de confiance

- Chercher un intervalle $\hat{I} = [\hat{p} \delta, \hat{p} + \delta]$ tel que $\mathbb{P}(p \in \hat{I}) > 0.95 \Leftrightarrow \text{chercher } \delta \text{ tel que}$ $\mathbb{P}\left[|\hat{p}-p| > \delta\right] < 0.05$
- ▶ Ingrédient : inégalité de **Tchebyschev** (si $\mathbb{E}(X^2) < +\infty$)

$$\forall \delta > 0, \quad \mathbb{P}(|X - \mathbb{E}(X)| > \delta) \le \frac{\operatorname{Var}(X)}{\delta^2}$$

Pour
$$X = \hat{p} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 on a $\mathbb{E}(\hat{p}) = p$ et $\operatorname{Var}(\hat{p}) = \frac{p(1-p)}{n}$:

$$\forall p \in (0,1), \forall \delta > 0, \quad \mathbb{P}(|\hat{p} - p| > \delta) \leq \frac{p(1-p)}{m\delta^2} \leq \frac{1}{4m\delta^2}$$

Application numérique : pour un intervalle de confiance à 95%, on peut choisir δ tel que $\frac{1}{4n\delta^2} = 0.05$, i.e., $\delta = \sqrt{\frac{1}{4\times0.05\times n}}$.

Si n=1000 et $\hat{p}=55\%$, on obtient

$$\delta = 0.07$$
; $\hat{I} = [0.48, 0.62]$

Statistique : Intervalles de confiance et tests

Intervalles de confiance

Tests d'hypothèses

Théorème central limite

- $\downarrow y_1, y_2, \ldots$, des variables aléatoires *i.i.d.* de carré intégrable.
- $\blacktriangleright \mu$ et σ leur espérance et écart-type théoriques.

Théorème central limite (TCL)

La loi de la moyenne empirique renormalisée

$$\sqrt{n} \left(\frac{\bar{y}_n - \mu}{\sigma} \right)$$

converge vers une loi normale centrée réduite $\mathcal{N}(0,1)$

▶ Reformulation : La moyenne empirique se comporte approximativement comme une loi normale $\mathcal{N}(\mu, \sigma^2/n)$

Statistique : Intervalles de confiance et tests

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Intervalles de confiance asymptotiques

- Exemple du sondage : $\hat{p} = 0.55$, n = 1000
- ▶ On suppose que *n* est suffisamment grand pour que

$$\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} y_n - p}{\sqrt{p(1-p)}} \sim \mathcal{N}(0,1) \qquad \text{rappel} : p(1-p) = \text{Var}(Y)$$

- On connaît les quantiles de la loi normale (numériquement)
- ▶ D'après le TCL, et l'approximation des quantiles gaussiens

$$\mathbb{P}\left[-1.96 < \sqrt{n} \ \frac{0.55 - p}{\sqrt{p(1-p)}} < 1.96\right] \approx 0.95$$

On résout en p (équations de degré deux) :

$$\mathbb{P}\left[0.52$$

nouvel intervalle de confiance : $\hat{I} = [0.52, 0.58]$: meilleur!

Intervalles de confiance

Tests d'hypothèses

Tests d'hypothèses pour le "Pile ou face"

- \triangleright On veut tester une hypothèse sur le paramètre θ .
- \triangleright On l'appelle hypothèse nulle \mathcal{H}_0 **Exemple**: 'la pièce est non biaisée' : $\mathcal{H}_0 = \{p = 0.5\}$. **Exemple**: 'la pièce est peu biaisée', $\mathcal{H}_0 = \{0.45 \le p \le 0.55\}$
- \triangleright L'hypothèse alternative \mathcal{H}_1 est (souvent) le contraire de \mathcal{H}_0 . **Exemple**: $\mathcal{H}_1 = \{ p \neq 0.5 \}$

Exemple: $\mathcal{H}_1 = \{ p \notin [0.45, 0.55] \}$

 « Faire un test » : déterminer si les données permettent de rejeter l'hypothèse \mathcal{H}_0 . On cherche une region R pour laquelle si $(y_1,\ldots,y_n)\in R$ on rejette l'hypothèse \mathcal{H}_0 . R est la région de rejet.

Rejet ou acceptation?

Statistique : Intervalles de confiance et tests

Intervalles de confiance

Tests d'hypothèses

Présomption d'innocence en faveur de \mathcal{H}_0

Même si \mathcal{H}_0 n'est pas rejetée par le test, on ne peut en général pas conclure que \mathcal{H}_0 est vraie!

Rejeter \mathcal{H}_1 est souvent impossible car \mathcal{H}_1 est trop générale. e.g., $\{p \in [0, 0.5] \cup [0.5, 1]\}$ ne peut pas être rejetée!

- \blacktriangleright \mathcal{H}_0 s'écrit sous la forme $\{\theta \in \Theta_0\}$, avec $\Theta_0 \subset \Theta$
- ▶ \mathcal{H}_1 s'écrit sous la forme $\{\theta \in \Theta_1\}$, avec $\Theta_1 \subset \Theta$

Rem: $\{\theta \in \Theta_0\}$ et $\{\theta \in \Theta_1\}$ sont disjoints.

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Risques de première et de seconde espèce

	\mathcal{H}_0	\mathcal{H}_1
Non rejet de \mathcal{H}_0	Juste	Faux (acceptation à tort)
Rejet de \mathcal{H}_0	Faux (Rejet à tort)	Juste

► Risque de première espèce : probabilité de rejeter à tort

$$\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}((y_1, \dots, y_n) \in R)$$

► Risque de seconde espèce

$$\beta = \sup_{\theta \in \Omega} \mathbb{P}_{\theta} ((y_1, \dots, y_n) \notin R)$$

Niveau/Puissance

Statistique : Intervalles de confiance et tests

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Niveau du test

 $1 - \alpha = \text{probabilit\'e d'} \ll \text{accepter } \Rightarrow \text{ à raison (si } \mathcal{H}_0 \text{ est valide)}$

Puissance du test

 $1 - \beta = \text{probabilit\'e de rejeter } \mathcal{H}_0$ à raison (si \mathcal{H}_1 est valide)

En général, lorsqu'on parle de « test à 95% » on parle d'un test de niveau $1-\alpha > 95\%$.

Intervalles de confiance

Théorèmes limites

Tests d'hypothèses

Statistique de test et région de rejet

Objectif classique : construire un test de niveau $1-\alpha$

- ▶ On cherche une fonction des données $T_n(y_1, ..., y_n)$ dont on connaît la loi si \mathcal{H}_0 est vraie : T_n est appelée statistique de test.
- ▶ On définit une région de rejet ou région critique de niveau α , une région R telle que, sous \mathcal{H}_0 ,

$$\mathbb{P}(T_n(y_1,\ldots,y_n)\in R)\leq \alpha$$

lacksquare Régle de rejet de \mathcal{H}_0 : on rejette si $T_n(y_1,\ldots,y_n)\in R$

Intervalles de confiance

Tests d'hypothèses

Exemple gaussien : nullité de la moyenne

- $ightharpoonup Modèle: \Theta = \mathbb{R}, \ \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1).$
- Hypothèse nulle : \mathcal{H}_0 : $\{\theta = 0\}$
- Sous \mathcal{H}_0 , $T_n(y_1,\ldots,y_n)=\frac{1}{\sqrt{n}}\sum_i y_i \sim \mathcal{N}(0,1)$
- \triangleright Région critique pour T_n ? Quantiles gaussiens : sous H_0 ,

$$\mathbb{P}(T_n \in [-1.96, 1.96]) = 0.95$$

On prend
$$R = [-1.96, 1.96]^C =]-\infty, -1.96[\cup]1.96, +\infty[.$$

Exemple numerique: si $T_n = 1.5$, on ne rejette PAS \mathcal{H}_0 au niveau 95%

14/14