Gotta catch 'em all!

Root finding using matricies

Arun Suresh

Georgia State University

- The root finding problem
 - Issues with this
- A shift in perspective
 - ullet Finding the A matrix
 - Pros
- 3.5 different applications
 - Polynomial functions
 - Non-Algebraic roots
 - An actual physics application
 - An extreme case

may not be so extreme depending on the programming language and skill-set of the programmer

The root finding problem

- Used to obtain the roots of any given function
- Close to 8-10 different algorithms exist
 - Ranging from bisection to various interpolation schemes
- Motivation:
 - Find an interval where the given function changes sign
 - Choose two points such that function takes opposite signs at each of them
 - Approximate a root in the given interval
 - Change the end points to make the approximation better
 - Converge to the true root
- Generally fast convergence (Unless the given function is horrible)

Issues

- The issues with these methods are
 - Initially the user has to bracket a root for most algorithms to work. For example,
 - $x^4-102632x^3-115571937x^2-114853500x+692815788$ has four roots 103746,2,-3 and -1113
 - \bullet Initial interval must be in the order of 100000s in order to obtain a root
 - This only gets worse for non-polynomial function (because long division is not a thing)
- For a given interval, the algorithm converges to only one root per run.
 - Sometimes it can oscillate between two given the same initial interval in two different runs.
- Forces the user to have an intuitive idea about the approximate distribution of the roots
- complex roots are not a thing in these algorithms

A shift in perspective

- In the final week of classes we discussed Eigenvalue solvers
- The Eigenvalue problem
 - Let $A = n \times n$ matrix
 - Find all λ such that $A\mathbf{x} = \lambda \mathbf{x} \implies (A \lambda I)\mathbf{x} = \mathbf{0} \implies det(A \lambda I) = 0$
 - ullet This yields an n^{th} degree polynomial equation
- So any polynomial root finding can be implemented as an eigenvalue problem given we can obtain the corresponding A matrix.
- Assuming we do have such a matrix,
 - There are eigenvalue solvers such as
 - Householder QR transformations
 - Divide and Conquer iterations

that use matrix methods to solve for λ

Finding the A matrix

- Suppose we have a polynomial $f=x^n+c_{n-1}x^{n-1}+c_{n-2}x^{n-2}+\cdots+c_1x+c_0$
- ullet For ease of writing, we let LC = 1
- Find a matrix A such that det(A xI) = f
 - Quadratic polynomial:

$$x^{2} + 3x + 4 = x(x+3) + 4 = (0-x)(-3-x) - (-4)(1).$$

$$\bullet \ A_2 = \begin{bmatrix} 0 & -4 \\ 1 & -3 \end{bmatrix}$$

- Cubic polynomial: $x^3 + 3x^2 + 4x + 3 = x(x^2 + 3x + 4) (-3)(1)$
- A_2 for $x^2 + 3x + 4$ known! A_2 forms the first principal sub-matrix of A_3
- ullet new constant term \implies last principal sub-matrix has determinant 1

• This yields
$$A_3 = \begin{bmatrix} 0 & 0 & -3 \\ 1 & \mathbf{0} & -\mathbf{4} \\ 0 & \mathbf{1} & -\mathbf{3} \end{bmatrix}$$

Finding the A matrix

- This can be easily generalized now for n^{th} degree polynomials!
- It would simply be

$$A_n = \begin{bmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & \dots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{bmatrix}$$

• This matrix is often called a companion matrix

Benefits of this method

- Very robust. Since we use very sparse matrices, computationally not very costly
- identify all roots at the same time no matter how large!
- identify even the complex roots!
- computationally faster than root finding
 - Divide and Conquer: Quadratic convergence
 - QR algorithm: Cubic convergence

3.5 Different applications: Polynomial Functions

- Take $n \in \mathbb{Z}^+$
- ullet Generates a random n^{th} degree polynomial with integer coefficients.
- Create A_n
- ullet Solve for eigen-values of A_n using eigenvalue solver that comes built in with numpy (uses QR factorization for hessenberg matrices)

Results

• n = 4 and $f = x^4 + 8x^3 - 8x^2 - 6x + 4$

(a) Polynomial

• The output obtained was

```
[1, 8, -8, -6, 4]
[ 1.11505411 0.50838569 -0.79968166 -8.82375813]
```

(b) Coefficients + Zeroes

3.12.2019

• The following is the function plotted on desmos and output from Wolfram

(c) Desmos plot

Roots:	More digits
$x \approx -8.8238$	
$x \approx -0.79968$	
$x \approx 0.50839$	
<i>x</i> ≈ 1.1151	

- But you may ask what about non-polynomial function?
- Answer: TAYLOR SERIES!
- Take $f(x) = \cos(x)$ $x \in [-2\pi, 2\pi]$
- Consider the first twelve terms of its Taylor polynomial!

Output obtained

```
Zero (-4.686517663795762+0j)
Zero (-1.5707963331163652+0j)
Zero (1.5707963331163661+0j)
Zero (4.68651766379572+0j)
```

Error Analysis:

• From practice, we know that in this domain, $\pi = 3\pi \pi \pi 3\pi$

$$\cos(x) = 0 \iff x = -\frac{\pi}{2}, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}$$

- $\frac{\pi}{2} = 1.57079632679$ and $\frac{3\pi}{2} = 4.71238898038$
- So, absolute errors are:
 - $|1.57079632679 1.57079633311| = 6.32000008 \times 10^{-9}$
 - |4.71238898038 4.68651766379| = 0.02587131659
- So, absolute error is always less than 0.03 for $|x| < \frac{3\pi}{2}$
- For more accurate estimates: increase number of terms!

- But what are the explicit physics applications?
- Answer: Lots. Here's an example
- The quantum harmonic oscillator has solutions of the form

$$\Psi = \left(\frac{\alpha}{\pi}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(y) e^{-y^2/2}$$

- $H_n = \text{Hermtie polynomials}.$
- So, $\Psi = 0 \implies H_n = 0$
 - This now becomes a root-finding problem for polynomials!

• Plotted below is the fourth eigenstate solution to the QHO wavefunction

• Setting $H_4(y) = 0$ the output was

[-1.65068012 -0.52464762 0.52464762 1.65068012] (h)
$$\Psi_4$$
 zeroes

3.12.2019

•
$$H_4(y) = 16y^4 - 48y^2 + 12$$

$$ullet$$
 H_4 has very nice closed form roots $\psi_i = \pm \sqrt{rac{3}{2}} \pm \sqrt{rac{3}{2}}$

•
$$\sqrt{\frac{3}{2} + \sqrt{\frac{3}{2}}} = 1.65068012388578$$
 and $\sqrt{\frac{3}{2} - \sqrt{\frac{3}{2}}} = 0.524647623275290$

• So the absolute errors are:

- $|1.65068012388578 1.65068012000000| = 3.88 \times 10^{-9}$
- $|0.524647623275290 0.52464762000000| = 3.27 \times 10^{-9}$
- So, absolute error is always less than 3.88×10^{-9}

A final "pseudo-example"

- Suppose we do not have an analytic function to work with then this process gets a bit tedious.
- With only data points, one can
 - interpolate through the points
 - obtain a set of polynomials
 - \bullet $m\times n$ coefficients for m^{th} order interpolation with n data points
 - For each polynomial check if it changes sign in its respective domain
 - if it does, run the algorithm to find the root in that domain
 - if not, move to the next polynomial
- This is a painful process, and perhaps root-finding can do better here, if the function is well-behaved in the interested domain

- Presented below is a proof of concept that this would indeed work.
- Consider Ψ_4 again.

(i) Ψ_4 interpolation

- ullet The interpolated polynomial returned 0.524647
- With an absolute error of $|0.524647623275290-0.524647|=6.23\times 10^{-7}$ which is still a very good approximation!

Work Cited:

- Algorithms for reducing matrix to condensed form http://www.cs.utexas.edu/users/flame/pubs/flawn53.pdf
- Horn, Roger A.; Charles R. Johnson (1985). Matrix Analysis. Cambridge, UK: Cambridge University Press. pp. 146–147. ISBN 0-521-30586-1. Retrieved 2010-02-10

Thank you!

Note: This is the end of the presentation. I will leave you alone now.

Arun Suresh

Georgia State University

