# 1711.06025 - Learning to Compare: Relation Network for Few-Shot Learning

- Yunqiu Xu
- Related reading:
  - 1706.09529 Learning to Learn: Meta-Critic Networks for Sample Efficient Learning
  - o 1710.03463 Learning to Generalize: Meta-Learning for Domain Generalization
- Brief introduction:
  - Meta learning for few-shot classification
  - What to meta learn: embedding, as well as distance metric to measure similarity

## 1. Introduction

- Challenges for few-shot learning:
  - o Complex inference mechanisms
  - Complex RNN
  - Fine tuning the target problem :
    - 这里例子是 MAML 和 Larochelle 的 LSTM-based meta learner, 注意对比下
    - 说他们的缺点是fine-tuning可能不够快?
- Our method:
  - 。 Similar to train an metric: 区别是他们着重于训练transferrable embedding, 但 metric是固定的(e.g. 欧式距离), 而我们把metric也作为学习目标之一
  - Two-branch Relation Network:
    - Embedding module: generate representations (embedding) of the query and training images
    - Relation module: compare embedding pairs to check whether thay are from matching classes or not
    - 之前的工作固定了metric, 而且是linear comparator, 这里我们学习非线性的

## 2. Related Work

#### • Learning to Fine-Tune, 这里作者举了两个例子:

- MAML, LSTM-based learner: 这里说这份工作强于MAML, 因为不仅仅训练了初始化参数, 还训练了优化器 → 这样效率更低吧?
- 这两个工作的缺点: fine-tune on the target problem
- 。 我们的工作不需要model updates, 就直接feed forward就行

#### • RNN Memory based, 我之前看过ICML2017上的meta network:

- RNN: knowledge is accumulated in hidden activations/external memory to solve the problem
- Drawback: 需要保证memory存储了所有或至少是long term的历史信息而没有遗忘, 一方面不容易得到所有信息, 另一方面会占用很大空间
- 我们的工作使用feed forward CNN, 避免了RNN

#### • Embedding and Metric Learning

- Embedding: parameterise the weights of feed-forward classifier, 这里meta学得
  是参数化网络, 给定样本集合, 试图参数化一个分类器
- 。 Metric learning: learn distance evaluation metric, 这里meta学得是量度
- 相关工作: prototypical network, siamese network, 重点在学习embedding, 而分类 则直接用KNN或者线性分类器量度相似性
- 。 我们的工作不固定metric, 而是把metric也当成一个学习目标, 且不限制为线性, 试图学习非线性的分类器
  - 和siamese network相比, 为episodic training strategy
  - 和prototypical network相比, 避免了复杂的RNN embedding
- Zero-Shot Learning: 这里先略过

# 3. Methodology

## 3.1 Problem definition

- Goal: few-shot classification, recall C-way K-shot is C classes, and K samples for each class
- For each training iteration, sample C classes from train set with K samples for each

class ightarrow Sample set  $S = \{(x_i, y_i)\}_{i=1}^{K imes C}$ 

#### 3.2 Model

- 这里先只考虑one-shot, zero-shot 先略过
- Relation Network:
  - $\circ$  Embedding module  $f_{m{\psi}}$  : input images, output feature map
  - o Combine (concat) feature map of sample pair
  - $\circ$  Relation module  $g_{\phi}$ : input concated feature map, output similarity between these two samples
- ullet C-way 1-shot: 分辨当前样本  $x_j$  与每一类的样本  $x_i$  的相似度  $r_{i,j} = g_\phi(C(f_\psi(x_i),f_\psi(x_j))), i=1,2,\ldots,C$



Figure 1: Relation Network architecture with a 5-way 1-shot 1-query example.

## 3.3 Network Architecture

• Naive Network有点像VGG, Deeper有点像ResNet



Figure 2: Relation Network architecture for few-shot learning: (b) naive version, (d) deeper version. Relation Network architecture for (e) zero-shot learning. These are composed of elements including (a) convolutional block, and (b) bottleneck block.

# 4. Experiment

### • 还是经典的Omniglot和MiniImageNet

| Model                           | Fine Tune | 5-way Acc.                         |                                    | 20-way Acc.                        |                  |
|---------------------------------|-----------|------------------------------------|------------------------------------|------------------------------------|------------------|
|                                 |           | 1-shot                             | 5-shot                             | 1-shot                             | 5-shot           |
| Mann [31]                       | N         | 82.8%                              | 94.9%                              | -                                  | -                |
| CONVOLUTIONAL SIAMESE NETS [18] | N         | 96.7%                              | 98.4%                              | 88.0%                              | 96.5%            |
| CONVOLUTIONAL SIAMESE NETS [18] | Y         | 97.3%                              | 98.4%                              | 88.1%                              | 97.0%            |
| MATCHING NETS [38]              | N         | 98.1%                              | 98.9%                              | 93.8%                              | 98.5%            |
| MATCHING NETS [38]              | Y         | 97.9%                              | 98.7%                              | 93.5%                              | 98.7%            |
| SIAMESE NETS WITH MEMORY [16]   | N         | 98.4%                              | 99.6%                              | 95.0%                              | 98.6%            |
| NEURAL STATISTICIAN [8]         | N         | 98.1%                              | 99.5%                              | 93.2%                              | 98.1%            |
| META NETS [26]                  | N         | 99.0%                              | -                                  | 97.0%                              | -                |
| PROTOTYPICAL NETS [35]          | N         | 98.8%                              | 99.7%                              | 96.0%                              | 98.9%            |
| MAML [10]                       | Y         | $98.7\pm0.4\%$                     | $\textbf{99.9} \pm \textbf{0.1}\%$ | $95.8\pm0.3\%$                     | $98.9 \pm 0.2\%$ |
| RELATION NET                    | N         | $\textbf{99.6} \pm \textbf{0.2}\%$ | 99.8± 0.1%                         | $\textbf{97.6} \pm \textbf{0.2}\%$ | 99.1± 0.1%       |

Table 1: Omniglot few-shot classification. Results are accuracies averaged over 1000 test episodes and with 95% confidence intervals where reported. The best-performing method is highlighted, along with others whose confidence intervals overlap. '-': not reported.

| Model                  | FT | 5-way Acc.                           |                    |  |
|------------------------|----|--------------------------------------|--------------------|--|
|                        |    | 1-shot                               | 5-shot             |  |
| MATCHING NETS [38]     | N  | $43.56 \pm 0.84\%$                   | $55.31 \pm 0.73\%$ |  |
| META NETS [26]         | N  | $49.21 \pm 0.96\%$                   | -                  |  |
| META-LEARN LSTM [28]   | N  | $43.44 \pm 0.77\%$                   | $60.60 \pm 0.71\%$ |  |
| MAML [10]              | Y  | $48.70 \pm 1.84\%$                   | $63.11 \pm 0.92\%$ |  |
| PROTOTYPICAL NETS [35] | N  | $49.42 \pm 0.78\%$                   | $68.20 \pm 0.66\%$ |  |
| RELATION NET (NAIVE)   | N  | $51.38 \pm 0.82\%$                   | $67.07 \pm 0.69\%$ |  |
| TCML [25]              | N  | $55.71 \pm 0.99\%$                   | $68.88 \pm 0.92\%$ |  |
| RELATION NET (DEEPER)  | N  | $\textbf{57.02} \pm \textbf{0.92}\%$ | $71.07 \pm 0.69\%$ |  |

Table 2: Few-shot classification accuracies on *mini*Imagenet. All accuracy results are averaged over 600 test episodes and are reported with 95% confidence intervals, same as [35]. For each task, the best-performing method is highlighted, along with any others whose confidence intervals overlap. '-': not reported.

# 5. Why does it work?

- 前人的工作:
  - o pre-specified metric(e.g. 基于欧式距离), 学习feature embedding, 而metric是固定的
  - 。 Conventional metric learning: 学习简单的曼哈顿metric, 固定feature representation
- 我们的工作: 同时学习embedding, non-linear metric (相似度方程)
- 为什么我们的工作重要:
  - 。 我们自己学习选择合适的metric而不是手动指定
  - 。 前人工作固定metric, 需要假定特征可以被element-wise比较, 且假定在embedding后是线性可分的. 因此就非常依赖学到的embedding network, 如果这个网络生成的embedding不足以表达特征, 就傻逼了

。 而我们的工作同时学习非线性的相似度度量以及embedding, 可以更好地区分匹配/不 匹配样本对

# 6. Summary

- 对比前人的工作, 本工作把metric也作为学习的目标, 相当于让模型根据任务选择相似度度 量咯
- 感觉创新性一般, 不过可以看下其思路, 现在网上也有相关实现可以学习下