BAYESIAN STATISTICS - LECTURE 6

LECTURE 6: CLASSIFICATION. POSTERIOR APPROX.

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

LECTURE OVERVIEW

- **■** Classification
- Naive Bayes
- Normal approximation of posterior
- Logistic regression demo in R

BAYESIAN CLASSIFICATION

- Classification: output is a discrete label.
 - · Binary (0-1). Spam/Ham.
 - Multi-class. (c = 1, 2, ..., C). Brand choice.
- **Bayesian classification**

$$\underset{c \in \mathcal{C}}{\operatorname{argmax}} \, p(c|\mathbf{x})$$

where $\mathbf{x} = (x_1, ..., x_p)$ is a covariate/feature vector.

- **Discriminative models** model $p(c|\mathbf{x})$ directly.
 - Examples: logistic regression, support vector machines.
- Generative models Use Bayes' theorem

$$p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$$

with class-conditional distribution $p(\mathbf{x}|c)$ and prior p(c).

• Examples: discriminant analysis, naive Bayes.

NAIVE BAYES

■ By Bayes' theorem

$$p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$$

- \blacksquare p(c) can be estimated by Multinomial-Dirichlet analysis.
- $\blacksquare p(\mathbf{x}|c)$ can be $N(\theta_c, \Sigma_c)$
- $\mathbf{p}(\mathbf{x}|c)$ can be very high-dimensional and hard to estimate.
- Even with binary features, the outcome space of $p(\mathbf{x}|c)$ can be huge.
- Naive Bayes: features are assumed independent

$$p(\mathbf{x}|c) = \prod_{j=1}^{n} p(x_j|c)$$

CLASSIFICATION WITH LOGISTIC REGRESSION

- Response is assumed to be **binary** (y = 0 or 1).
- Example: Spam/Ham. Covariates: \$-symbols, etc.
- Logistic regression

$$Pr(y_i = 1 \mid x_i) = \frac{\exp(x_i'\beta)}{1 + \exp(x_i'\beta)}.$$

■ Likelihood

$$p(\mathbf{y}|\mathbf{X},\beta) = \prod_{i=1}^{n} \frac{[\exp(x_i'\beta)]^{y_i}}{1 + \exp(x_i'\beta)}.$$

- Prior $\beta \sim N(0, \tau^2 I)$. Posterior is non-standard (demo later).
- Alternative: **Probit regression**

$$Pr(y_i = 1|x_i) = \Phi(x_i'\beta)$$

■ Multi-class (c = 1, 2, ..., C) logistic regression

$$\Pr(y_i = c \mid x_i) = \frac{\exp(x_i' \beta_c)}{\sum_{k=1}^{C} \exp(x_i' \beta_k)}$$

LARGE SAMPLE APPROXIMATE POSTERIOR

Taylor expansion of log-posterior around mode $\theta = \tilde{\theta}$:

$$\begin{split} \ln p(\boldsymbol{\theta}|\mathbf{y}) &= \ln p(\tilde{\boldsymbol{\theta}}|\mathbf{y}) + \frac{\partial \ln p(\boldsymbol{\theta}|\mathbf{y})}{\partial \boldsymbol{\theta}}|_{\boldsymbol{\theta} = \tilde{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}}) \\ &+ \frac{1}{2!} \frac{\partial^2 \ln p(\boldsymbol{\theta}|\mathbf{y})}{\partial \boldsymbol{\theta}^2}|_{\boldsymbol{\theta} = \tilde{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})^2 + \dots \end{split}$$

■ From the definition of the posterior mode:

$$\frac{\partial \ln p(\theta|\mathbf{y})}{\partial \theta}|_{\theta=\tilde{\theta}} = 0$$

■ So, in large samples (higher order terms negligible):

$$p(\theta|\mathbf{y}) \approx p(\tilde{\theta}|\mathbf{y}) \exp\left(-\frac{1}{2}J_{\mathbf{y}}(\tilde{\theta})(\theta-\tilde{\theta})^{2}\right)$$

where $J_{\mathbf{y}}(\tilde{\theta}) = -\frac{\partial^2 \ln p(\theta|\mathbf{y})}{\partial \theta^2}|_{\theta=\tilde{\theta}}$ is the **observed information**.

■ Approximate normal posterior in large samples.

$$\theta | \mathbf{y} \overset{approx}{\sim} N \left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta}) \right]$$

EXAMPLE: GAMMA POSTERIOR

■ Poisson model: $\theta|y_1, ..., y_n \sim Gamma(\alpha + \sum_{i=1}^n y_i, \beta + n)$ $\log p(\theta|y_1, ..., y_n) \propto (\alpha + \sum_{i=1}^n y_i - 1) \log \theta - \theta(\beta + n)$

■ First derivative of log density

$$\frac{\partial \ln p(\theta|\mathbf{y})}{\partial \theta} = \frac{\alpha + \sum_{i=1}^{n} y_i - 1}{\theta} - (\beta + n)$$
$$\tilde{\theta} = \frac{\alpha + \sum_{i=1}^{n} y_i - 1}{\beta + n}$$

 \blacksquare Second derivative at mode $\tilde{\theta}$

$$\frac{\partial^2 \ln p(\theta|\mathbf{y})}{\partial \theta^2}|_{\theta=\tilde{\theta}} = -\frac{\alpha + \sum_{i=1}^n y_i - 1}{\left(\frac{\alpha + \sum_{i=1}^n y_i - 1}{\beta + n}\right)^2} = -\frac{(\beta + n)^2}{\alpha + \sum_{i=1}^n y_i - 1}$$

Normal approximation

$$N\left[\frac{\alpha+\sum_{i=1}^{n}y_{i}-1}{\beta+n},\frac{\alpha+\sum_{i=1}^{n}y_{i}-1}{(\beta+n)^{2}}\right]$$

EXAMPLE: GAMMA POSTERIOR

NORMAL APPROXIMATION OF POSTERIOR

- $\theta | \mathbf{y} \overset{approx}{\sim} N \left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta}) \right]$ works also when θ is a vector.
- How to compute $\tilde{\theta}$ and $J_{\mathbf{y}}(\tilde{\theta})$?
- Standard **optimization routines** may be used. (optim.r).
 - **Input**: expression proportional to $\log p(\theta|\mathbf{y})$. Initial values.
 - Output: $\log p(\tilde{\theta}|\mathbf{y})$, $\tilde{\theta}$ and Hessian matrix $(-J_{\mathbf{y}}(\tilde{\theta}))$.
- Re-parametrization may improve normal approximation. [Don't forget the Jacobian!]
 - If $\theta \ge 0$ use $\phi = \log(\theta)$.
 - If $0 \le \theta \le 1$, use $\phi = \ln[\theta/(1-\theta)]$.
- Heavy tailed approximation: $\theta | \mathbf{y} \stackrel{approx}{\sim} t_v \left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta}) \right]$ for suitable degrees of freedom v.

REPARAMETRIZATION - GAMMA POSTERIOR

- Poisson model. Reparameterize to $\phi = \log(\theta)$.
- Change-of-variables formula from a basic probability course $\log p(\phi|y_1,...,y_n) \propto (\alpha + \sum_{i=1}^n y_i 1)\phi \exp(\phi)(\beta + n) + \phi$
- \blacksquare Taking first and second derivatives and evaluating at $\tilde{\phi}$ gives

$$\tilde{\phi} = \log\left(\frac{\alpha + \sum_{i=1}^{n} y_i}{\beta + n}\right) \text{ and } \frac{\partial^2 \ln p(\phi|y)}{\partial \phi^2}|_{\phi = \tilde{\phi}} = \alpha + \sum_{i=1}^{n} y_i$$

■ So, the normal approximation for $p(\phi|y_1,...y_n)$ is

$$\phi = \log(\theta) \sim N \left[\log \left(\frac{\alpha + \sum_{i=1}^{n} y_i}{\beta + n} \right), \frac{1}{\alpha + \sum_{i=1}^{n} y_i} \right]$$

which means that $p(\theta|y_1,...y_n)$ is log-normal:

$$heta|\mathbf{y} \sim LN\left[\log\left(rac{lpha+\sum_{i=1}^{n}y_{i}}{eta+n}
ight), rac{1}{lpha+\sum_{i=1}^{n}y_{i}}
ight]$$

REPARAMETRIZATION - GAMMA POSTERIOR

NORMAL APPROXIMATION OF POSTERIOR

- Even if the posterior of θ is approx normal, **interesting** functions of $g(\theta)$ may not be (e.g. predictions).
- But approximate posterior of $g(\theta)$ can be obtained by simulating from $N\left[\tilde{\theta}, J_{\mathbf{V}}^{-1}(\tilde{\theta})\right]$.
- Posterior of Gini coefficient
 - Model: $x_1, ..., x_n | \mu, \sigma^2 \sim LN(\mu, \sigma^2)$.
 - Let $\phi = \log(\sigma^2)$. And $\theta = (\mu, \phi)$.
 - Joint posterior $p(\mu, \phi)$ may be approximately normal: $\theta | \mathbf{y} \overset{approx}{\sim} N\left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta})\right].$
 - Simulate $\theta^{(1)}, ..., \theta^{(N)}$ from $N[\tilde{\theta}, J_{\mathbf{V}}^{-1}(\tilde{\theta})]$. Compute $\sigma^{(1)}, ..., \sigma^{(N)}$.
 - Compute $G^{(i)} = 2\Phi\left(\sigma^{(i)}/\sqrt{2}\right)$ for i = 1, ..., N.