Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

Choice of k

One important question we decided to **ignore** earlier was: **how many** clusters should we pick in advance?

Especially for **complex** data, we **don't know** how many natural clusters there will be.

But our number of clusters matter: because it's a parameter determines **how** our learning algorithm runs (rather than being chosen *by* the algorithm), it's a **hyperparameter**:

Concept 1

Our number of clusters k is a hyperparameter.

And, choosing too high *or* too low can both be **problematic**:

- If we set k too high, then we have more clusters than actually exist.
 - This can cause us to **split** real clusters in half, or find **patterns** that don't exist.
 - In a way, this resembles a kind of overfitting: we try to closely match the data, but end up fitting too closely and not generalizing well: estimation error.
 - Example: The extreme case looks like the example we mentioned before: when labeling animals, we could make... a different species for every single instance of any animal we find.

That doesn't sound very helpful.

- If we set k too **low**, we don't have **enough** clusters to represent our data.
 - This means some clusters will be lumped together as a single thing: we lose some information.
 - In this case, it's impossible to cluster everything in the way that would make the most sense: we have structural error.
 - Example: Let's say we wanted to sort fish, birds, and mammals into two categories: we might just divide them into "flies" and "doesn't fly".

That's some information, but often not enough!

Concept 2

When choosing k (our **number of clusters**), we can cause **problems** by picking an inappropriate value:

- Too many clusters (large k) can cause overfitting and estimation error: we find patterns we don't want.
- Not enough clusters (small k) causes structural error: it prevents us from correctly separating data.

Subjectivity of k

Not only is it hard to choose a "good" value of k, what a good value of k is can really depend on your opinion, and what you know about reality.

For example, consider the following example:

Which of these two clusterings is more accurate?

Should the top left be **one** cluster, or **two**? It's hard to say!

Even if you're **sure**, you might **disagree** with others, or find that the best one depends on your **needs**.

So not only can k values be too high or too low, they can also be **debatably** better or worse!

Concept 3

The **best** choice of **clustering** is not entirely objective: it can depend on your **opinion**, or how you plan to **use** the clustering.

What do we mean by, what we're "**using**" the clustering for? We'll get into that later, but in short: we might use **clusters** to make sense of **information**, or to make better **decisions**.

Different clusterings might be good when you want a different kind of understanding.

Example: The understanding you get from high-level comparisons (plants vs animals vs bacteria) is different from low-level comparison (cats vs dogs).