Chronological time-period clustering for optimal capacity expansion planning with storage

PREMIOS FUNDACIÓN BBVA

SEIO 2022

Salvador Pineda and Juan Miguel Morales

OASYS group, University of Málaga (Spain)

June 10, 2022

Capacity expansion planning

Capacity expansion problem				
Horizon	1 year			
Obj	Min prod+inv cost			
Var	Generation capacities			
Vai	Line capacities			
	Generation = Demand			
Con	Unit technical limits			
	Line technical limits			

AIM

Reduce the computational burden of capacity planning problems with renewables and storage

Representative days for demand

 Electrical demand shows strong daily, weekly and annual patterns and therefore, using representative days works quite well

- Instead of 14 days (336 h), we use 2 representative days (48 h)
- 👈 Computational burden is reduced
- P Day-to-day chronology information is lost

Representative days for wind

Some renewables do not present a strong daily pattern

- Energy stored can be used several days later (seasonal storage)
- Crucial to overcome the "dark calm cold" periods in central Europe
- Seasonal storage cannot be modeled using representative days

Chronological clustering of time periods

- We propose a new clustering methodology to group consecutive hours and maintain chronology
- Wind is approximated more accurately

- Seasonal storage can be properly modeled
- Computational burden is reduced
- 👈 Day-to-day chronology information is kept

Case study: European electricity network

- Electric power system (28 countries) for 2030 (single target year)
- Investments in conventional and renewable generation, transmission lines and two storage technologies (intraday and interday)

Approach	Error	Time
F (8760)	0 %	$\sim 10 \text{ h}$
D-28 (672)	13.1 %	$\sim 100 \text{ s}$
W-4 (672)	48.1 %	$\sim 100 \text{ s}$
C-672 (672)	6.1 %	$\sim 100 \text{ s}$

Thanks for the attention!! Questions??

7162

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 6, NOVEMBER 2018

Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage

Salvador Pineda O, Member, IEEE, and Juan M. Morales O, Senior Member, IEEE

More info: oasys.uma.es

Email: spineda@uma.es