ALGORITMI GENETICI

1. CREAZIONE _----2. SELEZIONE ----3. RIPRODUZIONE POPOLAZIONE

Genero casualmente una popolazione iniziale

Seleziono gli induvidui più adatti a risolvere il problema

Produco una nuova generazione mediamente più adatta

1. CREAZIONE _ - - - - 2. SELEZIONE - - - 3. RIPRODUZIONE POPOLAZIONE

Genero casualmente una popolazione iniziale

Seleziono gli induvidui più adatti a risolvere il problema

Produco una nuova generazione mediamente più adatta

1. CREAZIONE _----2. SELEZIONE ----3. RIPRODUZIONE POPOLAZIONE

Genero casualmente una popolazione iniziale

Seleziono gli induvidui più adatti a risolvere il problema

Produco una nuova generazione mediamente più adatta

UN ESEMPIO PRATICO:

RICERCA DEI MASSIMI DI UNA FUNZIONE

La funzione da massimizzare

 $f(x) = x^2$

nell'intervallo [0,31]

Dove cerco i massimi

Ciò che caratterizza un individuo

- [1] Scelgo un alfabeto [2] Scelgo una dimensione
- [3] Associo il valore

$$V = \{0, 1\}$$

01001

Conversione in binario

Ciò che caratterizza un individuo

[1] Scelgo un alfabeto

[2] Scelgo una dimensione

[3] Associo il valore

$$V = \{0, 1\}$$

01001

Conversione in binario

Ciò che caratterizza un individuo

[1] Scelgo un alfabeto

[2] Scelgo una dimensione

[3] Associo il valore

$$V = \{0, 1\}$$

01001

Conversione in binario

GENERAZIONE CASUALE

Ogni gene è il risultato di un lancio di moneta

k	Stringa	Valore x
1	01101	13
2	11000	24
3	01000	8
4	10011	19

COME SCELGO GLI INDIVIDUI MIGLIORI?

COME SCELGO GLI INDIVIDUI MIGLIORI?

QUANTO È BUONO UN CERTO DNA?

Definisco la Funzione di fitness

Tanto il fitness è maggiore, tanto il DNA è adatto

Definisco la Funzione di fitness

Tanto il fitness è maggiore, tanto il DNA è adatto

Nel nostro esempio, scelgo come funzione di fitness f(x)

k	Stringa	Valore x	fitness
1	01101	13	169
2	11000	24	576
3	01000	8	64
4	10011	19	361
totale			1170

COSTRUISCO UNA NUOVA GENERAZIONE

k	Stringa	Valore x	fitness	p_k
1	01101	13	169	0.14
2	11000	24	576	0.49
3	01000	8	64	0.05
4	10011	19	361	0.31

LA RUOTA DELLE PROBABILITÀ

k	Stringa	Valore x	fitness	p_k	numero di individui nella nuova generazione
1	01101	13	169	0.14	1
2	11000	24	576	0.49	2
3	01000	8	64	0.05	0
4	10011	19	361	0.31	1

_

LA NUOVA GENERAZIONE È DAVVERO MIGLIORATA?

$$Np_k = N \frac{f(i_k)}{\sum_j f(i_j)} = \frac{f(i_k)}{\overline{f}}$$

VARIABILITÀ GENETICA

Gli individui non devono essere uguali

CROSSOVER

Ovvero come gli individui si scambiano informazioni

Nuovi individui compaiono nella popolazione

MUTAZIONI