Site_No	Samp_No	Location	CAS_NO	Analyte	otal_Or_Disolve
A8K9	A68_081115	A68	STL00171	Alkalinity	Т
А8К9	A68_081215	A68	STL00171	Alkalinity	Т
A8K9	A72_081115	A72	STL00171	Alkalinity	Т
А8К9	A72_081215	A72	STL00171	Alkalinity	Т
А8К9	GKMSW02_081115	Bakers Bridge	STL00171	Alkalinity	Т
A8K9	GKMSW02_081215	Bakers Bridge	STL00171	Alkalinity	Т
А8К9	GKMSW02_081315	Bakers Bridge	STL00171	Alkalinity	Т
A8K9	CC48_081115	CC48	STL00171	Alkalinity	Т
A8K9	CC48_081215	CC48	STL00171	Alkalinity	Т
А8К9	GKMSW01_081115	GKM01	STL00171	Alkalinity	Т
A8K9	GKMSW01_081215	GKM01	STL00171	Alkalinity	Т
А8К9	GKMSW01_081315	GKM01	STL00171	Alkalinity	Т
A8K9	GKMSW04_081115	GKM04	STL00171	Alkalinity	T
A8K9	GKMSW04_081215	GKM04	STL00171	Alkalinity	Т

A8K9	GKMSW04_081315	GKM04	STL00171	Alkalinity	T
A8K9	GKMSW05_081115	GKM05	STL00171	Alkalinity	Т
А8К9	GKMSW05_081215	GKM05	STL00171	Alkalinity	Т
A8K9	GKMSW05_081315	GKM05	STL00171	Alkalinity	Т
A8K9	GKMSW13_081115	GKM13	STL00171	Alkalinity	Т
A8K9	A68_081115	A68	7429-90-5	Aluminum	D
A8K9	A68_081115	A68	7429-90-5	Aluminum	D
A8K9	A68_081215	A68	7429-90-5	Aluminum	D
A8K9	A68_081215	A68	7429-90-5	Aluminum	D
A8K9	A72_081115	A72	7429-90-5	Aluminum	D
A8K9	A72_081115	A72	7429-90-5	Aluminum	D
A8K9	A72_081215	A72	7429-90-5	Aluminum	D
A8K9	A72_081215	A72	7429-90-5	Aluminum	D
A8K9	GKMSW02_081115	Bakers Bridge	7429-90-5	Aluminum	D
A8K9	GKMSW02_081115	Bakers Bridge	7429-90-5	Aluminum	D
A8K9	GKMSW02_081215	Bakers Bridge	7429-90-5	Aluminum	D
A8K9	GKMSW02_081215	Bakers Bridge	7429-90-5	Aluminum	D
A8K9	GKMSW02_081315	Bakers Bridge	7429-90-5	Aluminum	D
A8K9	GKMSW02_081315	Bakers Bridge	7429-90-5	Aluminum	D
A8K9	CC48_081115	CC48	7429-90-5	Aluminum	D

A8K9	CC48_081115	CC48	7429-90-5	Aluminum	D
A8K9	CC48_081215	CC48	7429-90-5	Aluminum	D
A8K9	CC48_081215	CC48	7429-90-5	Aluminum	D
A8K9	GKMSW01_081115	GKM01	7429-90-5	Aluminum	D
A8K9	GKMSW01_081115	GKM01	7429-90-5	Aluminum	D
A8K9	GKMSW01_081215	GKM01	7429-90-5	Aluminum	D
A8K9	GKMSW01_081215	GKM01	7429-90-5	Aluminum	D
A8K9	GKMSW01_081315	GKM01	7429-90-5	Aluminum	D
A8K9	GKMSW01_081315	GKM01	7429-90-5	Aluminum	D
A8K9	GKMSW04_081115	GKM04	7429-90-5	Aluminum	D
A8K9	GKMSW04_081115	GKM04	7429-90-5	Aluminum	D
A8K9	GKMSW04_081215	GKM04	7429-90-5	Aluminum	D
A8K9	GKMSW04_081215	GKM04	7429-90-5	Aluminum	D
A8K9	GKMSW04_081315	GKM04	7429-90-5	Aluminum	D
A8K9	GKMSW04_081315	GKM04	7429-90-5	Aluminum	D
A8K9	GKMSW05_081115	GKM05	7429-90-5	Aluminum	D
A8K9	GKMSW05_081115	GKM05	7429-90-5	Aluminum	D
A8K9	GKMSW05_081215	GKM05	7429-90-5	Aluminum	D
A8K9	GKMSW05_081215	GKM05	7429-90-5	Aluminum	D
A8K9	GKMSW05_081315	GKM05	7429-90-5	Aluminum	D
A8K9	GKMSW05_081315	GKM05	7429-90-5	Aluminum	D
A8K9	GKMSW13_081115	GKM13	7429-90-5	Aluminum	D

A8K9	GKMSW13_081115	GKM13	7429-90-5	Aluminum	D
A8K9	A68_081115	A68	7440-36-0	Antimony	D
A8K9	A68_081115	A68	7440-36-0	Antimony	D
A8K9	A68_081215	A68	7440-36-0	Antimony	D
A8K9	A68_081215	A68	7440-36-0	Antimony	D
A8K9	A72_081115	A72	7440-36-0	Antimony	D
A8K9	A72_081115	A72	7440-36-0	Antimony	D
A8K9	A72_081215	A72	7440-36-0	Antimony	D
A8K9	A72_081215	A72	7440-36-0	Antimony	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-36-0	Antimony	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-36-0	Antimony	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-36-0	Antimony	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-36-0	Antimony	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-36-0	Antimony	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-36-0	Antimony	D
A8K9	CC48_081115	CC48	7440-36-0	Antimony	D
A8K9	CC48_081115	CC48	7440-36-0	Antimony	D
A8K9	CC48_081215	CC48	7440-36-0	Antimony	D
A8K9	CC48_081215	CC48	7440-36-0	Antimony	D
A8K9	GKMSW01_081115	GKM01	7440-36-0	Antimony	D
A8K9	GKMSW01_081115	GKM01	7440-36-0	Antimony	D
A8K9	GKMSW01_081215	GKM01	7440-36-0	Antimony	D

					_
A8K9 GI	KMSW01_081215	GKM01	7440-36-0	Antimony	D
A8K9 GI	KMSW01_081315	GKM01	7440-36-0	Antimony	D
A8K9 GI	KMSW01_081315	GKM01	7440-36-0	Antimony	D
A8K9 G	KMSW04_081115	GKM04	7440-36-0	Antimony	D
A8K9 GI	KMSW04_081115	GKM04	7440-36-0	Antimony	D
A8K9 GI	KMSW04_081215	GKM04	7440-36-0	Antimony	D
A8K9 GI	KMSW04_081215	GKM04	7440-36-0	Antimony	D
A8K9 GI	KMSW04_081315	GKM04	7440-36-0	Antimony	D
A8K9 GI	KMSW04_081315	GKM04	7440-36-0	Antimony	D
A8K9 GI	KMSW05_081115	GKM05	7440-36-0	Antimony	D
A8K9 GI	KMSW05_081115	GKM05	7440-36-0	Antimony	D
A8K9 GI	KMSW05_081215	GKM05	7440-36-0	Antimony	D
A8K9 GI	KMSW05_081215	GKM05	7440-36-0	Antimony	D
A8K9 GI	KMSW05_081315	GKM05	7440-36-0	Antimony	D
A8K9 GI	KMSW05_081315	GKM05	7440-36-0	Antimony	D
A8K9 GI	KMSW13_081115	GKM13	7440-36-0	Antimony	D
A8K9 GI	KMSW13_081115	GKM13	7440-36-0	Antimony	D
A8K9 A6	68_081115	A68	7440-38-2	Arsenic	D
A8K9 A6	68_081115	A68	7440-38-2	Arsenic	D
A8K9 A6	68_081215	A68	7440-38-2	Arsenic	D
A8K9 A6	68_081215	A68	7440-38-2	Arsenic	D
A8K9 A	72_081115	A72	7440-38-2	Arsenic	D

A8K9	A72_081115	A72	7440-38-2	Arsenic	D
A8K9	A72_081215	A72	7440-38-2	Arsenic	D
A8K9	A72_081215	A72	7440-38-2	Arsenic	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-38-2	Arsenic	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-38-2	Arsenic	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-38-2	Arsenic	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-38-2	Arsenic	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-38-2	Arsenic	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-38-2	Arsenic	D
A8K9	CC48_081115	CC48	7440-38-2	Arsenic	D
A8K9	CC48_081115	CC48	7440-38-2	Arsenic	D
A8K9	CC48_081215	CC48	7440-38-2	Arsenic	D
A8K9	CC48_081215	CC48	7440-38-2	Arsenic	D
A8K9	GKMSW01_081115	GKM01	7440-38-2	Arsenic	D
A8K9	GKMSW01_081115	GKM01	7440-38-2	Arsenic	D
A8K9	GKMSW01_081215	GKM01	7440-38-2	Arsenic	D
A8K9	GKMSW01_081215	GKM01	7440-38-2	Arsenic	D
A8K9	GKMSW01_081315	GKM01	7440-38-2	Arsenic	D
A8K9	GKMSW01_081315	GKM01	7440-38-2	Arsenic	D
A8K9	GKMSW04_081115	GKM04	7440-38-2	Arsenic	D
A8K9	GKMSW04_081115	GKM04	7440-38-2	Arsenic	D
A8K9	GKMSW04_081215	GKM04	7440-38-2	Arsenic	D

A8K9	GKMSW04_081215	GKM04	7440-38-2	Arsenic	D
A8K9	GKMSW04_081315	GKM04	7440-38-2	Arsenic	D
A8K9	GKMSW04_081315	GKM04	7440-38-2	Arsenic	D
A8K9	GKMSW05_081115	GKM05	7440-38-2	Arsenic	D
A8K9	GKMSW05_081115	GKM05	7440-38-2	Arsenic	D
A8K9	GKMSW05_081215	GKM05	7440-38-2	Arsenic	D
A8K9	GKMSW05_081215	GKM05	7440-38-2	Arsenic	D
A8K9	GKMSW05_081315	GKM05	7440-38-2	Arsenic	D
A8K9	GKMSW05_081315	GKM05	7440-38-2	Arsenic	D
A8K9	GKMSW13_081115	GKM13	7440-38-2	Arsenic	D
A8K9	GKMSW13_081115	GKM13	7440-38-2	Arsenic	D
A8K9	A68_081115	A68	7440-39-3	Barium	D
A8K9	A68_081115	A68	7440-39-3	Barium	D
A8K9	A68_081215	A68	7440-39-3	Barium	D
A8K9	A68_081215	A68	7440-39-3	Barium	D
A8K9	A72_081115	A72	7440-39-3	Barium	D
A8K9	A72_081115	A72	7440-39-3	Barium	D
A8K9	A72_081215	A72	7440-39-3	Barium	D
A8K9	A72_081215	A72	7440-39-3	Barium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-39-3	Barium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-39-3	Barium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-39-3	Barium	D

A8K9	GKMSW02_081215	Bakers Bridge	7440-39-3	Barium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-39-3	Barium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-39-3	Barium	D
A8K9	CC48_081115	CC48	7440-39-3	Barium	D
A8K9	CC48_081115	CC48	7440-39-3	Barium	D
A8K9	CC48_081215	CC48	7440-39-3	Barium	D
A8K9	CC48_081215	CC48	7440-39-3	Barium	D
A8K9	GKMSW01_081115	GKM01	7440-39-3	Barium	D
A8K9	GKMSW01_081115	GKM01	7440-39-3	Barium	D
A8K9	GKMSW01_081215	GKM01	7440-39-3	Barium	D
A8K9	GKMSW01_081215	GKM01	7440-39-3	Barium	D
A8K9	GKMSW01_081315	GKM01	7440-39-3	Barium	D
A8K9	GKMSW01_081315	GKM01	7440-39-3	Barium	D
A8K9	GKMSW04_081115	GKM04	7440-39-3	Barium	D
A8K9	GKMSW04_081115	GKM04	7440-39-3	Barium	D
A8K9	GKMSW04_081215	GKM04	7440-39-3	Barium	D
A8K9	GKMSW04_081215	GKM04	7440-39-3	Barium	D
A8K9	GKMSW04_081315	GKM04	7440-39-3	Barium	D
A8K9	GKMSW04_081315	GKM04	7440-39-3	Barium	D
A8K9	GKMSW05_081115	GKM05	7440-39-3	Barium	D
A8K9	GKMSW05_081115	GKM05	7440-39-3	Barium	D
A8K9	GKMSW05_081215	GKM05	7440-39-3	Barium	D

A8K9	GKMSW05_081215	GKM05	7440-39-3	Barium	D
A8K9	GKMSW05_081315	GKM05	7440-39-3	Barium	D
A8K9	GKMSW05_081315	GKM05	7440-39-3	Barium	D
A8K9	GKMSW13_081115	GKM13	7440-39-3	Barium	D
A8K9	GKMSW13_081115	GKM13	7440-39-3	Barium	D
A8K9	A68_081115	A68	7440-41-7	Beryllium	D
A8K9	A68_081115	A68	7440-41-7	Beryllium	D
A8K9	A68_081215	A68	7440-41-7	Beryllium	D
A8K9	A68_081215	A68	7440-41-7	Beryllium	D
A8K9	A72_081115	A72	7440-41-7	Beryllium	D
A8K9	A72_081115	A72	7440-41-7	Beryllium	D
A8K9	A72_081215	A72	7440-41-7	Beryllium	D
A8K9	A72_081215	A72	7440-41-7	Beryllium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-41-7	Beryllium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-41-7	Beryllium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-41-7	Beryllium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-41-7	Beryllium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-41-7	Beryllium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-41-7	Beryllium	D
A8K9	CC48_081115	CC48	7440-41-7	Beryllium	D
A8K9	CC48_081115	CC48	7440-41-7	Beryllium	D
A8K9	CC48_081215	CC48	7440-41-7	Beryllium	D

A8K9	CC48_081215	CC48	7440-41-7	Beryllium	D
A8K9	GKMSW01_081115	GKM01	7440-41-7	Beryllium	D
A8K9	GKMSW01_081115	GKM01	7440-41-7	Beryllium	D
A8K9	GKMSW01_081215	GKM01	7440-41-7	Beryllium	D
A8K9	GKMSW01_081215	GKM01	7440-41-7	Beryllium	D
A8K9	GKMSW01_081315	GKM01	7440-41-7	Beryllium	D
A8K9	GKMSW01_081315	GKM01	7440-41-7	Beryllium	D
A8K9	GKMSW04_081115	GKM04	7440-41-7	Beryllium	D
A8K9	GKMSW04_081115	GKM04	7440-41-7	Beryllium	D
A8K9	GKMSW04_081215	GKM04	7440-41-7	Beryllium	D
A8K9	GKMSW04_081215	GKM04	7440-41-7	Beryllium	D
A8K9	GKMSW04_081315	GKM04	7440-41-7	Beryllium	D
A8K9	GKMSW04_081315	GKM04	7440-41-7	Beryllium	D
A8K9	GKMSW05_081115	GKM05	7440-41-7	Beryllium	D
A8K9	GKMSW05_081115	GKM05	7440-41-7	Beryllium	D
A8K9	GKMSW05_081215	GKM05	7440-41-7	Beryllium	D
A8K9	GKMSW05_081215	GKM05	7440-41-7	Beryllium	D
A8K9	GKMSW05_081315	GKM05	7440-41-7	Beryllium	D
A8K9	GKMSW05_081315	GKM05	7440-41-7	Beryllium	D
A8K9	GKMSW13_081115	GKM13	7440-41-7	Beryllium	D
A8K9	GKMSW13_081115	GKM13	7440-41-7	Beryllium	D
A8K9	A68_081115	A68	7440-43-9	Cadmium	D

A8K9	A68_081115	A68	7440-43-9	Cadmium	D
A8K9	A68_081215	A68	7440-43-9	Cadmium	D
A8K9	A68_081215	A68	7440-43-9	Cadmium	D
A8K9	A72_081115	A72	7440-43-9	Cadmium	D
A8K9	A72_081115	A72	7440-43-9	Cadmium	D
A8K9	A72_081215	A72	7440-43-9	Cadmium	D
A8K9	A72_081215	A72	7440-43-9	Cadmium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-43-9	Cadmium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-43-9	Cadmium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-43-9	Cadmium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-43-9	Cadmium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-43-9	Cadmium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-43-9	Cadmium	D
A8K9	CC48_081115	CC48	7440-43-9	Cadmium	D
A8K9	CC48_081115	CC48	7440-43-9	Cadmium	D
A8K9	CC48_081215	CC48	7440-43-9	Cadmium	D
A8K9	CC48_081215	CC48	7440-43-9	Cadmium	D
A8K9	GKMSW01_081115	GKM01	7440-43-9	Cadmium	D
A8K9	GKMSW01_081115	GKM01	7440-43-9	Cadmium	D
A8K9	GKMSW01_081215	GKM01	7440-43-9	Cadmium	D
A8K9	GKMSW01_081215	GKM01	7440-43-9	Cadmium	D
A8K9	GKMSW01_081315	GKM01	7440-43-9	Cadmium	D

A8K9	GKMSW01_081315	GKM01	7440-43-9	Cadmium	D
A8K9	GKMSW04_081115	GKM04	7440-43-9	Cadmium	D
A8K9	GKMSW04_081115	GKM04	7440-43-9	Cadmium	D
A8K9	GKMSW04_081215	GKM04	7440-43-9	Cadmium	D
A8K9	GKMSW04_081215	GKM04	7440-43-9	Cadmium	D
A8K9	GKMSW04_081315	GKM04	7440-43-9	Cadmium	D
A8K9	GKMSW04_081315	GKM04	7440-43-9	Cadmium	D
A8K9	GKMSW05_081115	GKM05	7440-43-9	Cadmium	D
A8K9	GKMSW05_081115	GKM05	7440-43-9	Cadmium	D
A8K9	GKMSW05_081215	GKM05	7440-43-9	Cadmium	D
A8K9	GKMSW05_081215	GKM05	7440-43-9	Cadmium	D
A8K9	GKMSW05_081315	GKM05	7440-43-9	Cadmium	D
A8K9	GKMSW05_081315	GKM05	7440-43-9	Cadmium	D
A8K9	GKMSW13_081115	GKM13	7440-43-9	Cadmium	D
A8K9	GKMSW13_081115	GKM13	7440-43-9	Cadmium	D
A8K9	A68_081115	A68	7440-70-2	Calcium	D
A8K9	A68_081115	A68	7440-70-2	Calcium	D
A8K9	A68_081215	A68	7440-70-2	Calcium	D
A8K9	A68_081215	A68	7440-70-2	Calcium	D
A8K9	A72_081115	A72	7440-70-2	Calcium	D
A8K9	A72_081115	A72	7440-70-2	Calcium	D
A8K9	A72_081215	A72	7440-70-2	Calcium	D

A8K9	A72_081215	A72	7440-70-2	Calcium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-70-2	Calcium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-70-2	Calcium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-70-2	Calcium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-70-2	Calcium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-70-2	Calcium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-70-2	Calcium	D
A8K9	CC48_081115	CC48	7440-70-2	Calcium	D
A8K9	CC48_081115	CC48	7440-70-2	Calcium	D
A8K9	CC48_081215	CC48	7440-70-2	Calcium	D
A8K9	CC48_081215	CC48	7440-70-2	Calcium	D
A8K9	GKMSW01_081115	GKM01	7440-70-2	Calcium	D
A8K9	GKMSW01_081115	GKM01	7440-70-2	Calcium	D
A8K9	GKMSW01_081215	GKM01	7440-70-2	Calcium	D
A8K9	GKMSW01_081215	GKM01	7440-70-2	Calcium	D
A8K9	GKMSW01_081315	GKM01	7440-70-2	Calcium	D
A8K9	GKMSW01_081315	GKM01	7440-70-2	Calcium	D
A8K9	GKMSW04_081115	GKM04	7440-70-2	Calcium	D
A8K9	GKMSW04_081115	GKM04	7440-70-2	Calcium	D
A8K9	GKMSW04_081215	GKM04	7440-70-2	Calcium	D
A8K9	GKMSW04_081215	GKM04	7440-70-2	Calcium	D
A8K9	GKMSW04_081315	GKM04	7440-70-2	Calcium	D

A8K9	GKMSW04_081315	GKM04	7440-70-2	Calcium	D
A8K9	GKMSW05_081115	GKM05	7440-70-2	Calcium	D
A8K9	GKMSW05_081115	GKM05	7440-70-2	Calcium	D
A8K9	GKMSW05_081215	GKM05	7440-70-2	Calcium	D
A8K9	GKMSW05_081215	GKM05	7440-70-2	Calcium	D
A8K9	GKMSW05_081315	GKM05	7440-70-2	Calcium	D
A8K9	GKMSW05_081315	GKM05	7440-70-2	Calcium	D
A8K9	GKMSW13_081115	GKM13	7440-70-2	Calcium	D
A8K9	GKMSW13_081115	GKM13	7440-70-2	Calcium	D
A8K9	A68_081115	A68	16887-00-6	Chloride	Т
A8K9	A68_081215	A68	16887-00-6	Chloride	Т
A8K9	A72_081115	A72	16887-00-6	Chloride	Т
A8K9	A72_081215	A72	16887-00-6	Chloride	Т
А8К9	GKMSW02_081115	Bakers Bridge	16887-00-6	Chloride	Т
А8К9	GKMSW02_081215	Bakers Bridge	16887-00-6	Chloride	Т

A8K9	GKMSW02_081315	Bakers Bridge	16887-00-6	Chloride	T
A8K9	CC48_081115	CC48	16887-00-6	Chloride	Т
A8K9	CC48_081215	CC48	16887-00-6	Chloride	Т
А8К9	GKMSW01_081115	GKM01	16887-00-6	Chloride	Т
A8K9	GKMSW01_081215	GKM01	16887-00-6	Chloride	T
A8K9	GKMSW01_081315	GKM01	16887-00-6	Chloride	Т
A8K9	GKMSW04_081115	GKM04	16887-00-6	Chloride	Т
A8K9	GKMSW04_081215	GKM04	16887-00-6	Chloride	Т
А8К9	GKMSW04_081315	GKM04	16887-00-6	Chloride	Т
A8K9	GKMSW05_081115	GKM05	16887-00-6	Chloride	Т
А8К9	GKMSW05_081215	GKM05	16887-00-6	Chloride	T

A8K9	GKMSW05_081315	GKM05	16887-00-6	Chloride	Т
A8K9	GKMSW13_081115	GKM13	16887-00-6	Chloride	Т
A8K9	A68_081115	A68	7440-47-3	Chromium	D
A8K9	A68_081115	A68	7440-47-3	Chromium	D
A8K9	A68_081215	A68	7440-47-3	Chromium	D
A8K9	A68_081215	A68	7440-47-3	Chromium	D
A8K9	A72_081115	A72	7440-47-3	Chromium	D
A8K9	A72_081115	A72	7440-47-3	Chromium	D
A8K9	A72_081215	A72	7440-47-3	Chromium	D
A8K9	A72_081215	A72	7440-47-3	Chromium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-47-3	Chromium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-47-3	Chromium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-47-3	Chromium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-47-3	Chromium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-47-3	Chromium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-47-3	Chromium	D
A8K9	CC48_081115	CC48	7440-47-3	Chromium	D
A8K9	CC48_081115	CC48	7440-47-3	Chromium	D
A8K9	CC48_081215	CC48	7440-47-3	Chromium	D
A8K9	CC48_081215	CC48	7440-47-3	Chromium	D

A8K9	GKMSW01_081115	GKM01	7440-47-3	Chromium	D
A8K9	GKMSW01_081115	GKM01	7440-47-3	Chromium	D
A8K9	GKMSW01_081215	GKM01	7440-47-3	Chromium	D
A8K9	GKMSW01_081215		7440-47-3	Chromium	D
A8K9	GKMSW01_081315	GKM01	7440-47-3	Chromium	D
A8K9	GKMSW01_081315	GKM01	7440-47-3	Chromium	D
A8K9	GKMSW04_081115	GKM04	7440-47-3	Chromium	D
A8K9	GKMSW04_081115	GKM04	7440-47-3	Chromium	D
A8K9	GKMSW04_081215	GKM04	7440-47-3	Chromium	D
A8K9	GKMSW04_081215	GKM04	7440-47-3	Chromium	D
A8K9	GKMSW04_081315	GKM04	7440-47-3	Chromium	D
A8K9	GKMSW04_081315	GKM04	7440-47-3	Chromium	D
A8K9	GKMSW05_081115	GKM05	7440-47-3	Chromium	Т
A8K9	GKMSW05_081115	GKM05	7440-47-3	Chromium	Т
A8K9	GKMSW05_081215	GKM05	7440-47-3	Chromium	D
A8K9	GKMSW05_081215	GKM05	7440-47-3	Chromium	D
A8K9	GKMSW05_081315	GKM05	7440-47-3	Chromium	D
A8K9	GKMSW05_081315	GKM05	7440-47-3	Chromium	D
A8K9	GKMSW13_081115	GKM13	7440-47-3	Chromium	D
A8K9	GKMSW13_081115	GKM13	7440-47-3	Chromium	D
A8K9	A68_081115	A68	7440-48-4	Cobalt	D
A8K9	A68_081115	A68	7440-48-4	Cobalt	D

A8K9	A68_081215	A68	7440-48-4	Cobalt	D
A8K9	A68_081215	A68	7440-48-4	Cobalt	D
A8K9	A72_081115	A72	7440-48-4	Cobalt	D
A8K9	A72_081115	A72	7440-48-4	Cobalt	D
A8K9	A72_081215	A72	7440-48-4	Cobalt	D
A8K9	A72_081215	A72	7440-48-4	Cobalt	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-48-4	Cobalt	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-48-4	Cobalt	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-48-4	Cobalt	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-48-4	Cobalt	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-48-4	Cobalt	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-48-4	Cobalt	D
A8K9	CC48_081115	CC48	7440-48-4	Cobalt	D
A8K9	CC48_081115	CC48	7440-48-4	Cobalt	D
A8K9	CC48_081215	CC48	7440-48-4	Cobalt	D
A8K9	CC48_081215	CC48	7440-48-4	Cobalt	D
A8K9	GKMSW01_081115	GKM01	7440-48-4	Cobalt	D
A8K9	GKMSW01_081115	GKM01	7440-48-4	Cobalt	D
A8K9	GKMSW01_081215	GKM01	7440-48-4	Cobalt	D
A8K9	GKMSW01_081215	GKM01	7440-48-4	Cobalt	D
A8K9	GKMSW01_081315	GKM01	7440-48-4	Cobalt	D
A8K9	GKMSW01_081315	GKM01	7440-48-4	Cobalt	D

A8K9	GKMSW04_081115	GKM04	7440-48-4	Cobalt	D
A8K9	GKMSW04_081115	GKM04	7440-48-4	Cobalt	D
A8K9	GKMSW04_081215	GKM04	7440-48-4	Cobalt	D
A8K9	GKMSW04_081215	GKM04	7440-48-4	Cobalt	D
A8K9	GKMSW04_081315	GKM04	7440-48-4	Cobalt	D
A8K9	GKMSW04_081315	GKM04	7440-48-4	Cobalt	D
A8K9	GKMSW05_081115	GKM05	7440-48-4	Cobalt	D
A8K9	GKMSW05_081115	GKM05	7440-48-4	Cobalt	D
A8K9	GKMSW05_081215	GKM05	7440-48-4	Cobalt	D
A8K9	GKMSW05_081215	GKM05	7440-48-4	Cobalt	D
A8K9	GKMSW05_081315	GKM05	7440-48-4	Cobalt	D
A8K9	GKMSW05_081315	GKM05	7440-48-4	Cobalt	D
A8K9	GKMSW13_081115	GKM13	7440-48-4	Cobalt	D
A8K9	GKMSW13_081115	GKM13	7440-48-4	Cobalt	D
A8K9	A68_081115	A68	7440-50-8	Copper	D
A8K9	A68_081115	A68	7440-50-8	Copper	D
A8K9	A68_081215	A68	7440-50-8	Copper	D
A8K9	A68_081215	A68	7440-50-8	Copper	D
A8K9	A72_081115	A72	7440-50-8	Copper	D
A8K9	A72_081115	A72	7440-50-8	Copper	D
A8K9	A72_081215	A72	7440-50-8	Copper	D
A8K9	A72_081215	A72	7440-50-8	Copper	D

A8K9	GKMSW02_081115	Bakers Bridge	7440-50-8	Copper	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-50-8	Copper	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-50-8	Copper	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-50-8	Copper	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-50-8	Copper	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-50-8	Copper	D
A8K9	CC48_081115	CC48	7440-50-8	Copper	D
A8K9	CC48_081115	CC48	7440-50-8	Copper	D
A8K9	CC48_081215	CC48	7440-50-8	Copper	D
A8K9	CC48_081215	CC48	7440-50-8	Copper	D
A8K9	GKMSW01_081115	GKM01	7440-50-8	Copper	D
A8K9	GKMSW01_081115	GKM01	7440-50-8	Copper	D
A8K9	GKMSW01_081215	GKM01	7440-50-8	Copper	D
A8K9	GKMSW01_081215	GKM01	7440-50-8	Copper	D
A8K9	GKMSW01_081315	GKM01	7440-50-8	Copper	D
A8K9	GKMSW01_081315	GKM01	7440-50-8	Copper	D
A8K9	GKMSW04_081115	GKM04	7440-50-8	Copper	D
A8K9	GKMSW04_081115	GKM04	7440-50-8	Copper	D
A8K9	GKMSW04_081215	GKM04	7440-50-8	Copper	D
A8K9	GKMSW04_081215	GKM04	7440-50-8	Copper	D
A8K9	GKMSW04_081315	GKM04	7440-50-8	Copper	D
A8K9	GKMSW04_081315	GKM04	7440-50-8	Copper	D

A8K9	GKMSW05_081115	GKM05	7440-50-8	Copper	D
A8K9	GKMSW05_081115	GKM05	7440-50-8	Copper	D
A8K9	GKMSW05_081215	GKM05	7440-50-8	Copper	D
A8K9	GKMSW05_081215	GKM05	7440-50-8	Copper	D
A8K9	GKMSW05_081315	GKM05	7440-50-8	Copper	D
A8K9	GKMSW05_081315	GKM05	7440-50-8	Copper	D
A8K9	GKMSW13_081115	GKM13	7440-50-8	Copper	D
A8K9	GKMSW13_081115	GKM13	7440-50-8	Copper	D
A8K9	A68_081115	A68	16984-48-8	Fluoride	Т
A8K9	A68_081215	A68	16984-48-8	Fluoride	Т
A8K9	A72_081115	A72	16984-48-8	Fluoride	Т
A8K9	A72_081215	A72	16984-48-8	Fluoride	Т
A8K9	GKMSW02_081115	Bakers Bridge	16984-48-8	Fluoride	Т
A8K9	GKMSW02_081215	Bakers Bridge	16984-48-8	Fluoride	Т
A8K9	GKMSW02_081315	Bakers Bridge	16984-48-8	Fluoride	Т

A8K9	CC48_081115	CC48	16984-48-8	Fluoride	T
A8K9	CC48_081215	CC48	16984-48-8	Fluoride	Т
A8K9	GKMSW01_081115	GKM01	16984-48-8	Fluoride	Т
А8К9	GKMSW01_081215	GKM01	16984-48-8	Fluoride	Т
А8К9	GKMSW01_081315	GKM01	16984-48-8	Fluoride	Т
А8К9	GKMSW04_081115	GKM04	16984-48-8	Fluoride	Т
A8K9	GKMSW04_081215	GKM04	16984-48-8	Fluoride	Т
А8К9	GKMSW04_081315	GKM04	16984-48-8	Fluoride	Т
А8К9	GKMSW05_081115	GKM05	16984-48-8	Fluoride	Т
A8K9	GKMSW05_081215	GKM05	16984-48-8	Fluoride	Т
А8К9	GKMSW05_081315	GKM05	16984-48-8	Fluoride	Т

				T	
A8K9	GKMSW13_081115	GKM13	16984-48-8	Fluoride	Т
A8K9	A68_081115	A68	7439-89-6	Iron	D
A8K9	A68_081115	A68	7439-89-6	Iron	D
A8K9	A68_081215	A68	7439-89-6	Iron	D
A8K9	A68_081215	A68	7439-89-6	Iron	D
A8K9	A72_081115	A72	7439-89-6	Iron	D
A8K9	A72_081115	A72	7439-89-6	Iron	D
A8K9	A72_081215	A72	7439-89-6	Iron	D
A8K9	A72_081215	A72	7439-89-6	Iron	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-89-6	Iron	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-89-6	Iron	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-89-6	Iron	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-89-6	Iron	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-89-6	Iron	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-89-6	Iron	D
A8K9	CC48_081115	CC48	7439-89-6	Iron	D
A8K9	CC48_081115	CC48	7439-89-6	Iron	D
A8K9	CC48_081215	CC48	7439-89-6	Iron	D
A8K9	CC48_081215	CC48	7439-89-6	Iron	D
A8K9	GKMSW01_081115	GKM01	7439-89-6	Iron	D
A8K9	GKMSW01_081115	GKM01	7439-89-6	Iron	D

A8K9	GKMSW01_081215	GKM01	7439-89-6	Iron	D
A8K9	GKMSW01_081215	GKM01	7439-89-6	Iron	D
A8K9	GKMSW01_081315	GKM01	7439-89-6	Iron	D
A8K9	GKMSW01_081315	GKM01	7439-89-6	Iron	D
A8K9	GKMSW04_081115	GKM04	7439-89-6	Iron	D
A8K9	GKMSW04_081115	GKM04	7439-89-6	Iron	D
A8K9	GKMSW04_081215	GKM04	7439-89-6	Iron	D
A8K9	GKMSW04_081215	GKM04	7439-89-6	Iron	D
A8K9	GKMSW04_081315	GKM04	7439-89-6	Iron	D
A8K9	GKMSW04_081315	GKM04	7439-89-6	Iron	D
A8K9	GKMSW05_081115	GKM05	7439-89-6	Iron	D
A8K9	GKMSW05_081115	GKM05	7439-89-6	Iron	D
A8K9	GKMSW05_081215	GKM05	7439-89-6	Iron	D
A8K9	GKMSW05_081215	GKM05	7439-89-6	Iron	D
A8K9	GKMSW05_081315	GKM05	7439-89-6	Iron	D
A8K9	GKMSW05_081315	GKM05	7439-89-6	Iron	D
A8K9	GKMSW13_081115	GKM13	7439-89-6	Iron	D
A8K9	GKMSW13_081115	GKM13	7439-89-6	Iron	D
A8K9	A68_081115	A68	7439-92-1	Lead	D
A8K9	A68_081115	A68	7439-92-1	Lead	D
A8K9	A68_081215	A68	7439-92-1	Lead	D
A8K9	A68_081215	A68	7439-92-1	Lead	D

A8K9	A72_081115	A72	7439-92-1	Lead	D
A8K9	A72_081115	A72	7439-92-1	Lead	D
A8K9	A72_081215	A72	7439-92-1	Lead	D
A8K9	A72_081215	A72	7439-92-1	Lead	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-92-1	Lead	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-92-1	Lead	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-92-1	Lead	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-92-1	Lead	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-92-1	Lead	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-92-1	Lead	D
A8K9	CC48_081115	CC48	7439-92-1	Lead	D
A8K9	CC48_081115	CC48	7439-92-1	Lead	D
A8K9	CC48_081215	CC48	7439-92-1	Lead	D
A8K9	CC48_081215	CC48	7439-92-1	Lead	D
A8K9	GKMSW01_081115	GKM01	7439-92-1	Lead	D
A8K9	GKMSW01_081115	GKM01	7439-92-1	Lead	D
A8K9	GKMSW01_081215	GKM01	7439-92-1	Lead	D
A8K9	GKMSW01_081215	GKM01	7439-92-1	Lead	D
A8K9	GKMSW01_081315	GKM01	7439-92-1	Lead	D
A8K9	GKMSW01_081315	GKM01	7439-92-1	Lead	D
A8K9	GKMSW04_081115	GKM04	7439-92-1	Lead	D
A8K9	GKMSW04_081115	GKM04	7439-92-1	Lead	D

A8K9	GKMSW04_081215	GKM04	7439-92-1	Lead	D
A8K9	GKMSW04_081215	GKM04	7439-92-1	Lead	D
A8K9	GKMSW04_081315	GKM04	7439-92-1	Lead	D
A8K9	GKMSW04_081315	GKM04	7439-92-1	Lead	D
A8K9	GKMSW05_081115	GKM05	7439-92-1	Lead	D
A8K9	GKMSW05_081115	GKM05	7439-92-1	Lead	D
A8K9	GKMSW05_081215	GKM05	7439-92-1	Lead	D
A8K9	GKMSW05_081215	GKM05	7439-92-1	Lead	D
A8K9	GKMSW05_081315	GKM05	7439-92-1	Lead	D
A8K9	GKMSW05_081315	GKM05	7439-92-1	Lead	D
A8K9	GKMSW13_081115	GKM13	7439-92-1	Lead	D
A8K9	GKMSW13_081115	GKM13	7439-92-1	Lead	D
A8K9	A68_081115	A68	7439-95-4	Magnesium	D
A8K9	A68_081115	A68	7439-95-4	Magnesium	D
A8K9	A68_081215	A68	7439-95-4	Magnesium	D
A8K9	A68_081215	A68	7439-95-4	Magnesium	D
A8K9	A72_081115	A72	7439-95-4	Magnesium	D
A8K9	A72_081115	A72	7439-95-4	Magnesium	D
A8K9	A72_081215	A72	7439-95-4	Magnesium	D
A8K9	A72_081215	A72	7439-95-4	Magnesium	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-95-4	Magnesium	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-95-4	Magnesium	D

A8K9	GKMSW02_081215	Bakers Bridge	7439-95-4	Magnesium	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-95-4	Magnesium	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-95-4	Magnesium	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-95-4	Magnesium	D
A8K9	CC48_081115	CC48	7439-95-4	Magnesium	D
A8K9	CC48_081115	CC48	7439-95-4	Magnesium	D
A8K9	CC48_081215	CC48	7439-95-4	Magnesium	D
A8K9	CC48_081215	CC48	7439-95-4	Magnesium	D
A8K9	GKMSW01_081115	GKM01	7439-95-4	Magnesium	D
A8K9	GKMSW01_081115	GKM01	7439-95-4	Magnesium	D
A8K9	GKMSW01_081215	GKM01	7439-95-4	Magnesium	D
A8K9	GKMSW01_081215	GKM01	7439-95-4	Magnesium	D
A8K9	GKMSW01_081315	GKM01	7439-95-4	Magnesium	D
A8K9	GKMSW01_081315	GKM01	7439-95-4	Magnesium	D
A8K9	GKMSW04_081115	GKM04	7439-95-4	Magnesium	D
A8K9	GKMSW04_081115	GKM04	7439-95-4	Magnesium	D
A8K9	GKMSW04_081215	GKM04	7439-95-4	Magnesium	D
A8K9	GKMSW04_081215	GKM04	7439-95-4	Magnesium	D
A8K9	GKMSW04_081315	GKM04	7439-95-4	Magnesium	D
A8K9	GKMSW04_081315	GKM04	7439-95-4	Magnesium	D
A8K9	GKMSW05_081115	GKM05	7439-95-4	Magnesium	D
A8K9	GKMSW05_081115	GKM05	7439-95-4	Magnesium	D

A8K9	GKMSW05_081215	GKM05	7439-95-4	Magnesium	D
A8K9	GKMSW05_081215	GKM05	7439-95-4	Magnesium	D
A8K9	GKMSW05_081315	GKM05	7439-95-4	Magnesium	D
A8K9	GKMSW05_081315	GKM05	7439-95-4	Magnesium	D
A8K9	GKMSW13_081115	GKM13	7439-95-4	Magnesium	D
A8K9	GKMSW13_081115	GKM13	7439-95-4	Magnesium	D
A8K9	A68_081115	A68	7439-96-5	Manganese	D
A8K9	A68_081115	A68	7439-96-5	Manganese	D
A8K9	A68_081215	A68	7439-96-5	Manganese	D
A8K9	A68_081215	A68	7439-96-5	Manganese	D
A8K9	A72_081115	A72	7439-96-5	Manganese	D
A8K9	A72_081115	A72	7439-96-5	Manganese	D
A8K9	A72_081215	A72	7439-96-5	Manganese	D
A8K9	A72_081215	A72	7439-96-5	Manganese	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-96-5	Manganese	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-96-5	Manganese	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-96-5	Manganese	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-96-5	Manganese	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-96-5	Manganese	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-96-5	Manganese	D
A8K9	CC48_081115	CC48	7439-96-5	Manganese	D
A8K9	CC48_081115	CC48	7439-96-5	Manganese	D

A8K9	CC48_081215	CC48	7439-96-5	Manganese	D
A8K9	CC48_081215	CC48	7439-96-5	Manganese	D
A8K9	GKMSW01_081115	GKM01	7439-96-5	Manganese	D
A8K9	GKMSW01_081115	GKM01	7439-96-5	Manganese	D
A8K9	GKMSW01_081215	GKM01	7439-96-5	Manganese	D
A8K9	GKMSW01_081215	GKM01	7439-96-5	Manganese	D
A8K9	GKMSW01_081315	GKM01	7439-96-5	Manganese	D
A8K9	GKMSW01_081315	GKM01	7439-96-5	Manganese	D
A8K9	GKMSW04_081115	GKM04	7439-96-5	Manganese	D
A8K9	GKMSW04_081115	GKM04	7439-96-5	Manganese	D
A8K9	GKMSW04_081215	GKM04	7439-96-5	Manganese	D
A8K9	GKMSW04_081215	GKM04	7439-96-5	Manganese	D
A8K9	GKMSW04_081315	GKM04	7439-96-5	Manganese	D
A8K9	GKMSW04_081315	GKM04	7439-96-5	Manganese	D
A8K9	GKMSW05_081115	GKM05	7439-96-5	Manganese	D
A8K9	GKMSW05_081115	GKM05	7439-96-5	Manganese	D
A8K9	GKMSW05_081215	GKM05	7439-96-5	Manganese	D
A8K9	GKMSW05_081215	GKM05	7439-96-5	Manganese	D
A8K9	GKMSW05_081315	GKM05	7439-96-5	Manganese	D
A8K9	GKMSW05_081315	GKM05	7439-96-5	Manganese	D
A8K9	GKMSW13_081115	GKM13	7439-96-5	Manganese	D
A8K9	GKMSW13_081115	GKM13	7439-96-5	Manganese	D

A8K9	A68_081115	A68	7439-97-6	Mercury	Т
A8K9	A68_081115	A68	7439-97-6	Mercury	Т
A8K9	A68_081215	A68	7439-97-6	Mercury	Т
A8K9	A68_081215	A68	7439-97-6	Mercury	Т
A8K9	A72_081115	A72	7439-97-6	Mercury	Т
A8K9	A72_081115	A72	7439-97-6	Mercury	Т
A8K9	A72_081215	A72	7439-97-6	Mercury	Т
A8K9	A72_081215	A72	7439-97-6	Mercury	Т
A8K9	GKMSW02_081115	Bakers Bridge	7439-97-6	Mercury	Т
A8K9	GKMSW02_081115	Bakers Bridge	7439-97-6	Mercury	Т
A8K9	GKMSW02_081215	Bakers Bridge	7439-97-6	Mercury	Т
A8K9	GKMSW02_081215	Bakers Bridge	7439-97-6	Mercury	Т
A8K9	GKMSW02_081315	Bakers Bridge	7439-97-6	Mercury	Т
A8K9	GKMSW02_081315	Bakers Bridge	7439-97-6	Mercury	Т
A8K9	CC48_081115	CC48	7439-97-6	Mercury	Т
A8K9	CC48_081115	CC48	7439-97-6	Mercury	Т
A8K9	CC48_081215	CC48	7439-97-6	Mercury	Т
A8K9	CC48_081215	CC48	7439-97-6	Mercury	Т
A8K9	GKMSW01_081115	GKM01	7439-97-6	Mercury	Т
A8K9	GKMSW01_081115	GKM01	7439-97-6	Mercury	Т
A8K9	GKMSW01_081215	GKM01	7439-97-6	Mercury	Т
A8K9	GKMSW01_081215	GKM01	7439-97-6	Mercury	T

A8K9	GKMSW01_081315	GKM01	7439-97-6	Mercury	Т
A8K9	GKMSW01_081315	GKM01	7439-97-6	Mercury	Т
A8K9	GKMSW04_081115	GKM04	7439-97-6	Mercury	Т
A8K9	GKMSW04_081115	GKM04	7439-97-6	Mercury	Т
A8K9	GKMSW04_081215	GKM04	7439-97-6	Mercury	Τ
A8K9	GKMSW04_081215	GKM04	7439-97-6	Mercury	Т
A8K9	GKMSW04_081315	GKM04	7439-97-6	Mercury	Т
A8K9	GKMSW04_081315	GKM04	7439-97-6	Mercury	Т
A8K9	GKMSW05_081115	GKM05	7439-97-6	Mercury	Т
A8K9	GKMSW05_081115	GKM05	7439-97-6	Mercury	Т
A8K9	GKMSW05_081215	GKM05	7439-97-6	Mercury	Т
A8K9	GKMSW05_081215	GKM05	7439-97-6	Mercury	Т
A8K9	GKMSW05_081315	GKM05	7439-97-6	Mercury	Т
A8K9	GKMSW05_081315	GKM05	7439-97-6	Mercury	Γ
A8K9	GKMSW13_081115	GKM13	7439-97-6	Mercury	Т
A8K9	GKMSW13_081115	GKM13	7439-97-6	Mercury	Т
A8K9	A68_081115	A68	7439-98-7	Molybdenum	D
A8K9	A68_081115	A68	7439-98-7	Molybdenum	D
A8K9	A68_081215	A68	7439-98-7	Molybdenum	D
A8K9	A68_081215	A68	7439-98-7	Molybdenum	D
A8K9	A72_081115	A72	7439-98-7	Molybdenum	D
A8K9	A72_081115	A72	7439-98-7	Molybdenum	D

A8K9	A72_081215	A72	7439-98-7	Molybdenum	D
A8K9	A72_081215	A72	7439-98-7	Molybdenum	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-98-7	Molybdenum	D
A8K9	GKMSW02_081115	Bakers Bridge	7439-98-7	Molybdenum	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-98-7	Molybdenum	D
A8K9	GKMSW02_081215	Bakers Bridge	7439-98-7	Molybdenum	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-98-7	Molybdenum	D
A8K9	GKMSW02_081315	Bakers Bridge	7439-98-7	Molybdenum	D
A8K9	CC48_081115	CC48	7439-98-7	Molybdenum	D
A8K9	CC48_081115	CC48	7439-98-7	Molybdenum	D
A8K9	CC48_081215	CC48	7439-98-7	Molybdenum	D
A8K9	CC48_081215	CC48	7439-98-7	Molybdenum	D
A8K9	GKMSW01_081115	GKM01	7439-98-7	Molybdenum	D
A8K9	GKMSW01_081115	GKM01	7439-98-7	Molybdenum	D
A8K9	GKMSW01_081215	GKM01	7439-98-7	Molybdenum	D
A8K9	GKMSW01_081215	GKM01	7439-98-7	Molybdenum	D
A8K9	GKMSW01_081315	GKM01	7439-98-7	Molybdenum	D
A8K9	GKMSW01_081315	GKM01	7439-98-7	Molybdenum	D
A8K9	GKMSW04_081115	GKM04	7439-98-7	Molybdenum	D
A8K9	GKMSW04_081115	GKM04	7439-98-7	Molybdenum	D
A8K9	GKMSW04_081215	GKM04	7439-98-7	Molybdenum	D
A8K9	GKMSW04_081215	GKM04	7439-98-7	Molybdenum	D

A8K9	GKMSW04_081315	GKM04	7439-98-7	Molybdenum	Т
A8K9	GKMSW04_081315	GKM04	7439-98-7	Molybdenum	Т
A8K9	GKMSW05_081115	GKM05	7439-98-7	Molybdenum	D
A8K9	GKMSW05_081115	GKM05	7439-98-7	Molybdenum	D
A8K9	GKMSW05_081215	GKM05	7439-98-7	Molybdenum	Т
A8K9	GKMSW05_081215	GKM05	7439-98-7	Molybdenum	Т
A8K9	GKMSW05_081315	GKM05	7439-98-7	Molybdenum	D
A8K9	GKMSW05_081315	GKM05	7439-98-7	Molybdenum	D
A8K9	GKMSW13_081115	GKM13	7439-98-7	Molybdenum	D
A8K9	GKMSW13_081115	GKM13	7439-98-7	Molybdenum	D
A8K9	A68_081115	A68	7440-02-0	Nickel	D
A8K9	A68_081115	A68	7440-02-0	Nickel	D
A8K9	A68_081215	A68	7440-02-0	Nickel	D
A8K9	A68_081215	A68	7440-02-0	Nickel	D
A8K9	A72_081115	A72	7440-02-0	Nickel	D
A8K9	A72_081115	A72	7440-02-0	Nickel	D
A8K9	A72_081215	A72	7440-02-0	Nickel	D
A8K9	A72_081215	A72	7440-02-0	Nickel	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-02-0	Nickel	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-02-0	Nickel	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-02-0	Nickel	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-02-0	Nickel	D

A8K9	GKMSW02_081315	Bakers Bridge	7440-02-0	Nickel	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-02-0	Nickel	D
A8K9	CC48_081115	CC48	7440-02-0	Nickel	D
A8K9	CC48_081115	CC48	7440-02-0	Nickel	D
A8K9	CC48_081215	CC48	7440-02-0	Nickel	D
A8K9	CC48_081215	CC48	7440-02-0	Nickel	D
A8K9	GKMSW01_081115	GKM01	7440-02-0	Nickel	D
A8K9	GKMSW01_081115	GKM01	7440-02-0	Nickel	D
A8K9	GKMSW01_081215	GKM01	7440-02-0	Nickel	D
A8K9	GKMSW01_081215	GKM01	7440-02-0	Nickel	D
A8K9	GKMSW01_081315	GKM01	7440-02-0	Nickel	D
A8K9	GKMSW01_081315	GKM01	7440-02-0	Nickel	D
A8K9	GKMSW04_081115	GKM04	7440-02-0	Nickel	D
A8K9	GKMSW04_081115	GKM04	7440-02-0	Nickel	D
A8K9	GKMSW04_081215	GKM04	7440-02-0	Nickel	D
A8K9	GKMSW04_081215	GKM04	7440-02-0	Nickel	D
A8K9	GKMSW04_081315	GKM04	7440-02-0	Nickel	D
A8K9	GKMSW04_081315	GKM04	7440-02-0	Nickel	D
A8K9	GKMSW05_081115	GKM05	7440-02-0	Nickel	D
A8K9	GKMSW05_081115	GKM05	7440-02-0	Nickel	D
A8K9	GKMSW05_081215	GKM05	7440-02-0	Nickel	D
A8K9	GKMSW05_081215	GKM05	7440-02-0	Nickel	D

A8K9	GKMSW05_081315	GKM05	7440-02-0	Nickel	D
A8K9	GKMSW05_081315	GKM05	7440-02-0	Nickel	D
A8K9	GKMSW13_081115	GKM13	7440-02-0	Nickel	D
A8K9	GKMSW13_081115	GKM13	7440-02-0	Nickel	D
А8К9	A68_081115	A68	14797-55-8	Nitrate as N	Т
A8K9	A68_081215	A68	14797-55-8	Nitrate as N	Т
A8K9	A72_081115	A72	14797-55-8	Nitrate as N	Т
A8K9	A72_081215	A72	14797-55-8	Nitrate as N	Т
A8K9	GKMSW02_081115	Bakers Bridge	14797-55-8	Nitrate as N	Т
A8K9	GKMSW02_081215	Bakers Bridge	14797-55-8	Nitrate as N	Т
A8K9	GKMSW02_081315	Bakers Bridge	14797-55-8	Nitrate as N	Т
A8K9	CC48_081115	CC48	14797-55-8	Nitrate as N	Т
A8K9	CC48_081215	CC48	14797-55-8	Nitrate as N	Т

A8K9	GKMSW01_081115	GKM01	14797-55-8	Nitrate as N	Т
A8K9	GKMSW01_081215	GKM01	14797-55-8	Nitrate as N	Т
A8K9	GKMSW01_081315	GKM01	14797-55-8	Nitrate as N	T
A8K9	GKMSW04_081115	GKM04	14797-55-8	Nitrate as N	Т
A8K9	GKMSW04_081215	GKM04	14797-55-8	Nitrate as N	T
A8K9	GKMSW04_081315	GKM04	14797-55-8	Nitrate as N	T
A8K9	GKMSW05_081115	GKM05	14797-55-8	Nitrate as N	T
A8K9	GKMSW05_081215	GKM05	14797-55-8	Nitrate as N	T
A8K9	GKMSW05_081315	GKM05	14797-55-8	Nitrate as N	T
A8K9	GKMSW13_081115	GKM13	14797-55-8	Nitrate as N	T
A8K9	A68_081115	A68	STL00204	рН	Τ
A8K9	A68_081215	A68	STL00204	pН	T
A8K9	A72_081115	A72	STL00204	рН	T
A8K9	A72_081215	A72	STL00204	pН	<u> </u>
A8K9	GKMSW02_081115	Bakers Bridge	STL00204	pН	Γ

A8K9	GKMSW02_081215	Bakers Bridge	STL00204	рН	Γ
A8K9	GKMSW02_081315	Bakers Bridge	STL00204	рН	T
A8K9	CC48_081115	CC48	STL00204	рН	T
A8K9	CC48_081215	CC48	STL00204	рН	T
A8K9	GKMSW01_081115	GKM01	STL00204	рН	T
A8K9	GKMSW01_081215	GKM01	STL00204	рН	Γ
A8K9	GKMSW01_081315	GKM01	STL00204	рН	Т
A8K9	GKMSW04_081115	GKM04	STL00204	рН	Т
A8K9	GKMSW04_081215	GKM04	STL00204	рН	Т
A8K9	GKMSW04_081315	GKM04	STL00204	рН	T
A8K9	GKMSW05_081115	GKM05	STL00204	рН	Т
A8K9	GKMSW05_081215	GKM05	STL00204	рН	Т
A8K9	GKMSW05_081315	GKM05	STL00204	рН	Τ
A8K9	GKMSW13_081115	GKM13	STL00204	рН	Т
A8K9	A68_081115	A68	7440-09-7	Potassium	D
A8K9	A68_081115	A68	7440-09-7	Potassium	D
A8K9	A68_081215	A68	7440-09-7	Potassium	D
A8K9	A68_081215	A68	7440-09-7	Potassium	D
A8K9	A72_081115	A72	7440-09-7	Potassium	D
A8K9	A72_081115	A72	7440-09-7	Potassium	D
A8K9	A72_081215	A72	7440-09-7	Potassium	D
A8K9	A72_081215	A72	7440-09-7	Potassium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-09-7	Potassium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-09-7	Potassium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-09-7	Potassium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-09-7	Potassium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-09-7	Potassium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-09-7	Potassium	D
A8K9	CC48_081115	CC48	7440-09-7	Potassium	D

A8K9	CC48_081115	CC48	7440-09-7	Potassium	D
A8K9	CC48_081215	CC48	7440-09-7	Potassium	D
A8K9	CC48_081215	CC48	7440-09-7	Potassium	D
A8K9	GKMSW01_081115	GKM01	7440-09-7	Potassium	D
A8K9	GKMSW01_081115	GKM01	7440-09-7	Potassium	D
A8K9	GKMSW01_081215	GKM01	7440-09-7	Potassium	D
A8K9	GKMSW01_081215	GKM01	7440-09-7	Potassium	D
A8K9	GKMSW01_081315	GKM01	7440-09-7	Potassium	D
A8K9	GKMSW01_081315	GKM01	7440-09-7	Potassium	D
A8K9	GKMSW04_081115	GKM04	7440-09-7	Potassium	D
A8K9	GKMSW04_081115	GKM04	7440-09-7	Potassium	D
A8K9	GKMSW04_081215	GKM04	7440-09-7	Potassium	D
A8K9	GKMSW04_081215	GKM04	7440-09-7	Potassium	D
A8K9	GKMSW04_081315	GKM04	7440-09-7	Potassium	D
A8K9	GKMSW04_081315	GKM04	7440-09-7	Potassium	D
A8K9	GKMSW05_081115	GKM05	7440-09-7	Potassium	D
A8K9	GKMSW05_081115	GKM05	7440-09-7	Potassium	D
A8K9	GKMSW05_081215	GKM05	7440-09-7	Potassium	D
A8K9	GKMSW05_081215	GKM05	7440-09-7	Potassium	D
A8K9	GKMSW05_081315	GKM05	7440-09-7	Potassium	D
A8K9	GKMSW05_081315	GKM05	7440-09-7	Potassium	D
A8K9	GKMSW13_081115	GKM13	7440-09-7	Potassium	D

A8K9	GKMSW13_081115	GKM13	7440-09-7	Potassium	D
A8K9	A68_081115	A68	7782-49-2	Selenium	D
A8K9	A68_081115	A68	7782-49-2	Selenium	D
A8K9	A68_081215	A68	7782-49-2	Selenium	D
A8K9	A68_081215	A68	7782-49-2	Selenium	D
A8K9	A72_081115	A72	7782-49-2	Selenium	D
A8K9	A72_081115	A72	7782-49-2	Selenium	D
A8K9	A72_081215	A72	7782-49-2	Selenium	D
A8K9	A72_081215	A72	7782-49-2	Selenium	D
A8K9	GKMSW02_081115	Bakers Bridge	7782-49-2	Selenium	D
A8K9	GKMSW02_081115	Bakers Bridge	7782-49-2	Selenium	D
A8K9	GKMSW02_081215	Bakers Bridge	7782-49-2	Selenium	D
A8K9	GKMSW02_081215	Bakers Bridge	7782-49-2	Selenium	D
A8K9	GKMSW02_081315	Bakers Bridge	7782-49-2	Selenium	D
A8K9	GKMSW02_081315	Bakers Bridge	7782-49-2	Selenium	D
A8K9	CC48_081115	CC48	7782-49-2	Selenium	D
A8K9	CC48_081115	CC48	7782-49-2	Selenium	D
A8K9	CC48_081215	CC48	7782-49-2	Selenium	D
A8K9	CC48_081215	CC48	7782-49-2	Selenium	D
A8K9	GKMSW01_081115	GKM01	7782-49-2	Selenium	D
A8K9	GKMSW01_081115	GKM01	7782-49-2	Selenium	D
A8K9	GKMSW01_081215	GKM01	7782-49-2	Selenium	D

A8K9	GKMSW01_081215	GKM01	7782-49-2	Selenium	D
A8K9	GKMSW01_081315	GKM01	7782-49-2	Selenium	D
A8K9	GKMSW01_081315	GKM01	7782-49-2	Selenium	D
A8K9	GKMSW04_081115	GKM04	7782-49-2	Selenium	D
A8K9	GKMSW04_081115	GKM04	7782-49-2	Selenium	D
A8K9	GKMSW04_081215	GKM04	7782-49-2	Selenium	D
A8K9	GKMSW04_081215	GKM04	7782-49-2	Selenium	D
A8K9	GKMSW04_081315	GKM04	7782-49-2	Selenium	D
A8K9	GKMSW04_081315	GKM04	7782-49-2	Selenium	D
A8K9	GKMSW05_081115	GKM05	7782-49-2	Selenium	D
A8K9	GKMSW05_081115	GKM05	7782-49-2	Selenium	D
A8K9	GKMSW05_081215	GKM05	7782-49-2	Selenium	D
A8K9	GKMSW05_081215	GKM05	7782-49-2	Selenium	D
A8K9	GKMSW05_081315	GKM05	7782-49-2	Selenium	D
A8K9	GKMSW05_081315	GKM05	7782-49-2	Selenium	D
A8K9	GKMSW13_081115	GKM13	7782-49-2	Selenium	D
A8K9	GKMSW13_081115	GKM13	7782-49-2	Selenium	D
A8K9	A68_081115	A68	7440-22-4	Silver	D
A8K9	A68_081115	A68	7440-22-4	Silver	D
A8K9	A68_081215	A68	7440-22-4	Silver	D
A8K9	A68_081215	A68	7440-22-4	Silver	D
A8K9	A72_081115	A72	7440-22-4	Silver	D

A8K9	A72_081115	A72	7440-22-4	Silver	D
A8K9	A72_081215	A72	7440-22-4	Silver	D
A8K9	A72_081215	A72	7440-22-4	Silver	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-22-4	Silver	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-22-4	Silver	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-22-4	Silver	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-22-4	Silver	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-22-4	Silver	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-22-4	Silver	D
A8K9	CC48_081115	CC48	7440-22-4	Silver	D
A8K9	CC48_081115	CC48	7440-22-4	Silver	D
A8K9	CC48_081215	CC48	7440-22-4	Silver	D
A8K9	CC48_081215	CC48	7440-22-4	Silver	D
A8K9	GKMSW01_081115	GKM01	7440-22-4	Silver	D
A8K9	GKMSW01_081115	GKM01	7440-22-4	Silver	D
A8K9	GKMSW01_081215	GKM01	7440-22-4	Silver	D
A8K9	GKMSW01_081215	GKM01	7440-22-4	Silver	D
A8K9	GKMSW01_081315	GKM01	7440-22-4	Silver	D
A8K9	GKMSW01_081315	GKM01	7440-22-4	Silver	D
A8K9	GKMSW04_081115	GKM04	7440-22-4	Silver	D
A8K9	GKMSW04_081115	GKM04	7440-22-4	Silver	D
A8K9	GKMSW04_081215	GKM04	7440-22-4	Silver	D

A8K9	GKMSW04_081215	GKM04	7440-22-4	Silver	D
A8K9	GKMSW04_081315	GKM04	7440-22-4	Silver	D
A8K9	GKMSW04_081315	GKM04	7440-22-4	Silver	D
A8K9	GKMSW05_081115	GKM05	7440-22-4	Silver	D
A8K9	GKMSW05_081115	GKM05	7440-22-4	Silver	D
A8K9	GKMSW05_081215	GKM05	7440-22-4	Silver	D
A8K9	GKMSW05_081215	GKM05	7440-22-4	Silver	D
A8K9	GKMSW05_081315	GKM05	7440-22-4	Silver	D
A8K9	GKMSW05_081315	GKM05	7440-22-4	Silver	D
A8K9	GKMSW13_081115	GKM13	7440-22-4	Silver	D
A8K9	GKMSW13_081115	GKM13	7440-22-4	Silver	D
A8K9	A68_081115	A68	7440-23-5	Sodium	D
A8K9	A68_081115	A68	7440-23-5	Sodium	D
A8K9	A68_081215	A68	7440-23-5	Sodium	D
A8K9	A68_081215	A68	7440-23-5	Sodium	D
A8K9	A72_081115	A72	7440-23-5	Sodium	D
A8K9	A72_081115	A72	7440-23-5	Sodium	D
A8K9	A72_081215	A72	7440-23-5	Sodium	D
A8K9	A72_081215	A72	7440-23-5	Sodium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-23-5	Sodium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-23-5	Sodium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-23-5	Sodium	D

A8K9	GKMSW02_081215	Bakers Bridge	7440-23-5	Sodium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-23-5	Sodium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-23-5	Sodium	D
A8K9	CC48_081115	CC48	7440-23-5	Sodium	D
A8K9	CC48_081115	CC48	7440-23-5	Sodium	D
A8K9	CC48_081215	CC48	7440-23-5	Sodium	D
A8K9	CC48_081215	CC48	7440-23-5	Sodium	D
A8K9	GKMSW01_081115	GKM01	7440-23-5	Sodium	D
A8K9	GKMSW01_081115	GKM01	7440-23-5	Sodium	D
A8K9	GKMSW01_081215	GKM01	7440-23-5	Sodium	D
A8K9	GKMSW01_081215	GKM01	7440-23-5	Sodium	D
A8K9	GKMSW01_081315	GKM01	7440-23-5	Sodium	D
A8K9	GKMSW01_081315	GKM01	7440-23-5	Sodium	D
A8K9	GKMSW04_081115	GKM04	7440-23-5	Sodium	D
A8K9	GKMSW04_081115	GKM04	7440-23-5	Sodium	D
A8K9	GKMSW04_081215	GKM04	7440-23-5	Sodium	D
A8K9	GKMSW04_081215	GKM04	7440-23-5	Sodium	D
A8K9	GKMSW04_081315	GKM04	7440-23-5	Sodium	D
A8K9	GKMSW04_081315	GKM04	7440-23-5	Sodium	D
A8K9	GKMSW05_081115	GKM05	7440-23-5	Sodium	D
A8K9	GKMSW05_081115	GKM05	7440-23-5	Sodium	D
A8K9	GKMSW05_081215	GKM05	7440-23-5	Sodium	D

A8K9	GKMSW05_081215	GKM05	7440-23-5	Sodium	D
A8K9	GKMSW05_081315	GKM05	7440-23-5	Sodium	D
A8K9	GKMSW05_081315	GKM05	7440-23-5	Sodium	D
A8K9	GKMSW13_081115	GKM13	7440-23-5	Sodium	D
A8K9	GKMSW13_081115	GKM13	7440-23-5	Sodium	D
A8K9	A68_081115	A68	14808-79-8	Sulfate	Т
A8K9	A68_081215	A68	14808-79-8	Sulfate	Т
A8K9	A72_081115	A72	14808-79-8	Sulfate	T
A8K9	A72_081215	A72	14808-79-8	Sulfate	Т
A8K9	GKMSW02_081115	Bakers Bridge	14808-79-8	Sulfate	Т
A8K9	GKMSW02_081215	Bakers Bridge	14808-79-8	Sulfate	T
A8K9	GKMSW02_081315	Bakers Bridge	14808-79-8	Sulfate	T
А8К9	CC48_081115	CC48	14808-79-8	Sulfate	Т

A8K9	CC48_081215	CC48	14808-79-8	Sulfate	Т
A8K9	GKMSW01_081115	GKM01	14808-79-8	Sulfate	Т
A8K9	GKMSW01_081215	GKM01	14808-79-8	Sulfate	Т
A8K9	GKMSW01_081315	GKM01	14808-79-8	Sulfate	Т
A8K9	GKMSW04_081115	GKM04	14808-79-8	Sulfate	Т
A8K9	GKMSW04_081215	GKM04	14808-79-8	Sulfate	T
A8K9	GKMSW04_081315	GKM04	14808-79-8	Sulfate	T
A8K9	GKMSW05_081115	GKM05	14808-79-8	Sulfate	T
A8K9	GKMSW05_081215	GKM05	14808-79-8	Sulfate	Т
A8K9	GKMSW05_081315	GKM05	14808-79-8	Sulfate	Т
А8К9	GKMSW13_081115	GKM13	14808-79-8	Sulfate	T

A8K9	A68_081115	A68	7440-28-0	Thallium	D
A8K9	A68_081115	A68	7440-28-0	Thallium	D
A8K9	A68_081215	A68	7440-28-0	Thallium	D
A8K9	A68_081215	A68	7440-28-0	Thallium	D
A8K9	A72_081115	A72	7440-28-0	Thallium	D
A8K9	A72_081115	A72	7440-28-0	Thallium	D
A8K9	A72_081215	A72	7440-28-0	Thallium	D
A8K9	A72_081215	A72	7440-28-0	Thallium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-28-0	Thallium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-28-0	Thallium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-28-0	Thallium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-28-0	Thallium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-28-0	Thallium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-28-0	Thallium	D
A8K9	CC48_081115	CC48	7440-28-0	Thallium	D
A8K9	CC48_081115	CC48	7440-28-0	Thallium	D
A8K9	CC48_081215	CC48	7440-28-0	Thallium	D
A8K9	CC48_081215	CC48	7440-28-0	Thallium	D
A8K9	GKMSW01_081115	GKM01	7440-28-0	Thallium	D
A8K9	GKMSW01_081115	GKM01	7440-28-0	Thallium	D
A8K9	GKMSW01_081215	GKM01	7440-28-0	Thallium	D
A8K9	GKMSW01_081215	GKM01	7440-28-0	Thallium	D

A8K9	GKMSW01_081315	GKM01	7440-28-0	Thallium	D
A8K9	GKMSW01_081315	GKM01	7440-28-0	Thallium	D
A8K9	GKMSW04_081115	GKM04	7440-28-0	Thallium	D
A8K9	GKMSW04_081115	GKM04	7440-28-0	Thallium	D
A8K9	GKMSW04_081215	GKM04	7440-28-0	Thallium	D
A8K9	GKMSW04_081215	GKM04	7440-28-0	Thallium	D
A8K9	GKMSW04_081315	GKM04	7440-28-0	Thallium	D
A8K9	GKMSW04_081315	GKM04	7440-28-0	Thallium	D
A8K9	GKMSW05_081115	GKM05	7440-28-0	Thallium	Т
A8K9	GKMSW05_081115	GKM05	7440-28-0	Thallium	Т
A8K9	GKMSW05_081215	GKM05	7440-28-0	Thallium	D
A8K9	GKMSW05_081215	GKM05	7440-28-0	Thallium	D
A8K9	GKMSW05_081315	GKM05	7440-28-0	Thallium	D
A8K9	GKMSW05_081315	GKM05	7440-28-0	Thallium	D
A8K9	GKMSW13_081115	GKM13	7440-28-0	Thallium	D
A8K9	GKMSW13_081115	GKM13	7440-28-0	Thallium	D
A8K9	A68_081115	A68	STL00009	Total Hardness	Т
А8К9	A68_081215	A68	STL00009	Total Hardness	Т
А8К9	A72_081115	A72	STL00009	Total Hardness	Т

A8K9	A72_081215	A72	STL00009	Total Hardness	T
A8K9	GKMSW02_081115	Bakers Bridge	STL00009	Total Hardness	Т
A8K9	GKMSW02_081215	Bakers Bridge	STL00009	Total Hardness	Т
A8K9	GKMSW02_081315	Bakers Bridge	STL00009	Total Hardness	T
A8K9	CC48_081115	CC48	STL00009	Total Hardness	T
A8K9	CC48_081215	CC48	STL00009	Total Hardness	T
А8К9	GKMSW01_081115	GKM01	STL00009	Total Hardness	T
A8K9	GKMSW01_081215	GKM01	STL00009	Total Hardness	T
A8K9	GKMSW01_081315	GKM01	STL00009	Total Hardness	Т
A8K9	GKMSW04_081115	GKM04	STL00009	Total Hardness	Т
А8К9	GKMSW04_081215	GKM04	STL00009	Total Hardness	T

A8K9	GKMSW04_081315	GKM04	STL00009	Total Hardness	Т
A8K9	GKMSW05_081115	GKM05	STL00009	Total Hardness	Т
A8K9	GKMSW05_081215	GKM05	STL00009	Total Hardness	Т
A8K9	GKMSW05_081315	GKM05	STL00009	Total Hardness	Т
A8K9	GKMSW13_081115	GKM13	STL00009	Total Hardness	Т
A8K9	A68_081115	A68	7440-62-2	Vanadium	D
A8K9	A68_081115	A68	7440-62-2	Vanadium	D
A8K9	A68_081215	A68	7440-62-2	Vanadium	D
A8K9	A68_081215	A68	7440-62-2	Vanadium	D
A8K9	A72_081115	A72	7440-62-2	Vanadium	D
A8K9	A72_081115	A72	7440-62-2	Vanadium	D
A8K9	A72_081215	A72	7440-62-2	Vanadium	D
A8K9	A72_081215	A72	7440-62-2	Vanadium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-62-2	Vanadium	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-62-2	Vanadium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-62-2	Vanadium	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-62-2	Vanadium	D

A8K9	GKMSW02_081315	Bakers Bridge	7440-62-2	Vanadium	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-62-2	Vanadium	D
A8K9	CC48_081115	CC48	7440-62-2	Vanadium	D
A8K9	CC48_081115	CC48	7440-62-2	Vanadium	D
A8K9	CC48_081215	CC48	7440-62-2	Vanadium	D
A8K9	CC48_081215	CC48	7440-62-2	Vanadium	D
A8K9	GKMSW01_081115	GKM01	7440-62-2	Vanadium	D
A8K9	GKMSW01_081115	GKM01	7440-62-2	Vanadium	D
A8K9	GKMSW01_081215	GKM01	7440-62-2	Vanadium	D
A8K9	GKMSW01_081215	GKM01	7440-62-2	Vanadium	D
A8K9	GKMSW01_081315	GKM01	7440-62-2	Vanadium	D
A8K9	GKMSW01_081315	GKM01	7440-62-2	Vanadium	D
A8K9	GKMSW04_081115	GKM04	7440-62-2	Vanadium	D
A8K9	GKMSW04_081115	GKM04	7440-62-2	Vanadium	D
A8K9	GKMSW04_081215	GKM04	7440-62-2	Vanadium	D
A8K9	GKMSW04_081215	GKM04	7440-62-2	Vanadium	D
A8K9	GKMSW04_081315	GKM04	7440-62-2	Vanadium	D
A8K9	GKMSW04_081315	GKM04	7440-62-2	Vanadium	D
A8K9	GKMSW05_081115	GKM05	7440-62-2	Vanadium	D
A8K9	GKMSW05_081115	GKM05	7440-62-2	Vanadium	D
A8K9	GKMSW05_081215	GKM05	7440-62-2	Vanadium	D
A8K9	GKMSW05_081215	GKM05	7440-62-2	Vanadium	D

A8K9	GKMSW05_081315	GKM05	7440-62-2	Vanadium	D
A8K9	GKMSW05_081315	GKM05	7440-62-2	Vanadium	D
A8K9	GKMSW13_081115	GKM13	7440-62-2	Vanadium	D
A8K9	GKMSW13_081115	GKM13	7440-62-2	Vanadium	D
A8K9	A68_081115	A68	7440-66-6	Zinc	D
A8K9	A68_081115	A68	7440-66-6	Zinc	D
A8K9	A68_081215	A68	7440-66-6	Zinc	D
A8K9	A68_081215	A68	7440-66-6	Zinc	D
A8K9	A72_081115	A72	7440-66-6	Zinc	D
A8K9	A72_081115	A72	7440-66-6	Zinc	D
A8K9	A72_081215	A72	7440-66-6	Zinc	D
A8K9	A72_081215	A72	7440-66-6	Zinc	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-66-6	Zinc	D
A8K9	GKMSW02_081115	Bakers Bridge	7440-66-6	Zinc	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-66-6	Zinc	D
A8K9	GKMSW02_081215	Bakers Bridge	7440-66-6	Zinc	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-66-6	Zinc	D
A8K9	GKMSW02_081315	Bakers Bridge	7440-66-6	Zinc	D
A8K9	CC48_081115	CC48	7440-66-6	Zinc	D
A8K9	CC48_081115	CC48	7440-66-6	Zinc	D
A8K9	CC48_081215	CC48	7440-66-6	Zinc	D
A8K9	CC48_081215	CC48	7440-66-6	Zinc	D

A8K9	GKMSW01_081115	GKM01	7440-66-6	Zinc	D
A8K9	GKMSW01_081115	GKM01	7440-66-6	Zinc	D
A8K9	GKMSW01_081215	GKM01	7440-66-6	Zinc	D
A8K9	GKMSW01_081215	GKM01	7440-66-6	Zinc	D
A8K9	GKMSW01_081315	GKM01	7440-66-6	Zinc	D
A8K9	GKMSW01_081315	GKM01	7440-66-6	Zinc	D
A8K9	GKMSW04_081115	GKM04	7440-66-6	Zinc	D
A8K9	GKMSW04_081115	GKM04	7440-66-6	Zinc	D
A8K9	GKMSW04_081215	GKM04	7440-66-6	Zinc	D
A8K9	GKMSW04_081215	GKM04	7440-66-6	Zinc	D
A8K9	GKMSW04_081315	GKM04	7440-66-6	Zinc	Т
A8K9	GKMSW04_081315	GKM04	7440-66-6	Zinc	T
A8K9	GKMSW05_081115	GKM05	7440-66-6	Zinc	D
A8K9	GKMSW05_081115	GKM05	7440-66-6	Zinc	D
A8K9	GKMSW05_081215	GKM05	7440-66-6	Zinc	D
A8K9	GKMSW05_081215	GKM05	7440-66-6	Zinc	D
A8K9	GKMSW05_081315	GKM05	7440-66-6	Zinc	D
A8K9	GKMSW05_081315	GKM05	7440-66-6	Zinc	D
A8K9	GKMSW13_081115	GKM13	7440-66-6	Zinc	D
A8K9	GKMSW13_081115	GKM13	7440-66-6	Zinc	D

Result Result_Units	Detected	Result_Qualifier	SampleDate SampleTime
31mg/L	Y		11-Aug-15 17:10
31 mg/L	Y		12-Aug-15 15:45
7.6 mg/L	Y		11-Aug-15 17:35
8.3 mg/L	Y		12-Aug-15 16:25
33 mg/L	Y		11-Aug-15 14:32
34 mg/L	Y		12-Aug-15 10:50
31 mg/L	Y		13-Aug-15 10:55
5 mg/L	N	U	11-Aug-1516:55
5 mg/L	N	U	12-Aug-1515:30
87 mg/L	Y		11-Aug-1516:46
77 mg/L	Y		12-Aug-1512:25
76 mg/L	Y		13-Aug-1512:15
77 mg/L	Y		11-Aug-1515:25
76 mg/L	Y		12-Aug-1511:30

78	mg/L	Y		13-Aug-1512:45
78	mg/L	Y		11-Aug-1516:07
78	mg/L	Y		12-Aug-15 12:00
84	mg/L	Y		13-Aug-15 11:45
5	mg/L	N	U	11-Aug-1516:20
54	ug/L	Y	J	11-Aug-15 17:10
54	ug/L	Y	J	11-Aug-15 17:10
84	ug/L	Y	J	12-Aug-15 15:45
84	ug/L	Y	J	12-Aug-15 15:45
220	ug/L	Y		11-Aug-15 17:35
220	ug/L	Y		11-Aug-15 17:35
35	ug/L	Y	J	12-Aug-15 16:25
35	ug/L	*	J	12-Aug-15 16:25
60	ug/L	Y	J	11-Aug-15 14:32
60	ug/L	Y	J	11-Aug-15 14:32
64	ug/L	Y	J	12-Aug-15 10:50
64	ug/L	Y	J	12-Aug-15 10:50
72	ug/L	Y	J	13-Aug-15 10:55
72	ug/L	Y	J	13-Aug-15 10:55
8000	ug/L	Y		11-Aug-15 16:55

8000 ug/L	Y		11-Aug-15 16:55
7000 ug/L	Y		12-Aug-15 15:30
7000 ug/L	Y		12-Aug-15 15:30
66 ug/L	Y	J	11-Aug-15 16:46
66 ug/L	Y	J	11-Aug-15 16:46
58ug/L	Y	J	12-Aug-15 12:25
58ug/L	Y	J	12-Aug-15 12:25
66 ug/L	Y	J	13-Aug-15 12:15
66 ug/L	Y	J	13-Aug-15 12:15
24 ug/L	N	U	11-Aug-15 15:25
24 ug/L	N	U	11-Aug-15 15:25
24 ug/L	N	U	12-Aug-15 11:30
24 ug/L	N	U	12-Aug-15 11:30
34 ug/L	Y	J	13-Aug-15 12:45
34 ug/L	Y	J	13-Aug-15 12:45
45 ug/L	Y	J	11-Aug-15 16:07
45 ug/L	Y	J	11-Aug-15 16:07
47 ug/L	Y	J	12-Aug-15 12:00
47 ug/L	Y	J	12-Aug-15 12:00
46 ug/L	Y	J	13-Aug-15 11:45
46 ug/L	Y	J	13-Aug-15 11:45
8500 ug/L	Y		11-Aug-15 16:20

8500 ug/L	Υ		11-Aug-15 16:20
0.4 ug/L	N	U	11-Aug-15 17:10
0.4 ug/L	N	U	11-Aug-15 17:10
0.4 ug/L	N	U	12-Aug-15 15:45
0.4 ug/L	N	U	12-Aug-15 15:45
0.4 ug/L	N	U	11-Aug-15 17:35
0.4 ug/L	N	U	11-Aug-15 17:35
0.4 ug/L	N	U	12-Aug-15 16:25
0.4 ug/L	N	U	12-Aug-15 16:25
0.4 ug/L	N	U	11-Aug-15 14:32
0.4 ug/L	N	U	11-Aug-15 14:32
0.4 ug/L	N	U	12-Aug-15 10:50
0.4 ug/L	N	U	12-Aug-15 10:50
0.4 ug/L	N	U	13-Aug-15 10:55
0.4 ug/L	N	U	13-Aug-15 10:55
0.4 ug/L	N	U	11-Aug-15 16:55
0.4 ug/L	N	U	11-Aug-15 16:55
0.4 ug/L	N	U	12-Aug-15 15:30
0.4 ug/L	N	U	12-Aug-15 15:30
0.4 ug/L	N	U	11-Aug-15 16:46
0.4 ug/L	N	U	11-Aug-15 16:46
0.4ug/L	N	U	12-Aug-15 12:25

0.4 ug/L	N	U	12-Aug-15 12:25
0.4 ug/L	N	U	13-Aug-15 12:15
0.4ug/L	N	U	13-Aug-15 12:15
0.4ug/L	Ν	U	11-Aug-15 15:25
0.4ug/L	Ν	U	11-Aug-15 15:25
0.4 ug/L	N	U	12-Aug-15 11:30
0.4ug/L	Ν	U	12-Aug-15 11:30
0.4 ug/L	N	U	13-Aug-15 12:45
0.4 ug/L	N	U	13-Aug-15 12:45
0.4 ug/L	N	U	11-Aug-15 16:07
0.4ug/L	N	U	11-Aug-15 16:07
0.4 ug/L	Ν	U	12-Aug-15 12:00
0.4ug/L	Ν	U	12-Aug-15 12:00
0.4 ug/L	N	U	13-Aug-15 11:45
0.4ug/L	N	U	13-Aug-15 11:45
0.4 ug/L	N	U	11-Aug-15 16:20
0.4ug/L	N	U	11-Aug-15 16:20
0.37ug/L	N	U	11-Aug-1517:10
0.37ug/L	N	U	11-Aug-15 17:10
0.37 ug/L	N	U	12-Aug-15 15:45
0.37 ug/L	Ν	U	12-Aug-15 15:45
0.37 ug/L	N	U	11-Aug-15 17:35

0.37 ug/L	N	U	11-Aug-15 17:35
0.37ug/L	Y	U	12-Aug-15 16:25
0.37ug/L	N	U	12-Aug-15 16:25
0.37ug/L	N	U	11-Aug-15 14:32
0.37ug/L	Ν	U	11-Aug-15 14:32
0.37ug/L	N	U	12-Aug-15 10:50
0.37ug/L	N	U	12-Aug-15 10:50
0.4ug/L	Υ	J	13-Aug-15 10:55
0.4ug/L	Υ	J	13-Aug-15 10:55
0.37ug/L	N	U	11-Aug-15 16:55
0.37ug/L	N	U	11-Aug-15 16:55
0.37ug/L	Υ	U	12-Aug-15 15:30
0.37ug/L	N	U	12-Aug-15 15:30
0.37ug/L	N	U	11-Aug-15 16:46
0.37ug/L	N	U	11-Aug-15 16:46
0.4ug/L	Y	J	12-Aug-15 12:25
0.4ug/L	Y	J	12-Aug-15 12:25
0.37ug/L	N	U	13-Aug-15 12:15
0.37ug/L	N	U	13-Aug-15 12:15
0.37ug/L	N	U	11-Aug-15 15:25
0.37ug/L	N	U	11-Aug-15 15:25
0.37ug/L	N	U	12-Aug-15 11:30

0.37 ug/L	N	U	12-Aug-15 11:30
0.37 ug/L	N	U	13-Aug-1512:45
0.37 ug/L	Y	U	13-Aug-15 12:45
0.37 ug/L	N	U	11-Aug-15 16:07
0.37 ug/L	N	U	11-Aug-15 16:07
0.37 ug/L	N	U	12-Aug-15 12:00
0.37 ug/L	N	U	12-Aug-15 12:00
0.37 ug/L	N	U	13-Aug-15 11:45
0.37 ug/L	N	U	13-Aug-15 11:45
0.37 ug/L	N	U	11-Aug-15 16:20
0.37 ug/L	N	U	11-Aug-15 16:20
23 ug/L	Υ		11-Aug-15 17:10
23 ug/L	Υ		11-Aug-15 17:10
22 ug/L	Υ		12-Aug-15 15:45
22 ug/L	Y		12-Aug-15 15:45
23 ug/L	Y		11-Aug-15 17:35
23 ug/L	Υ		11-Aug-15 17:35
23 ug/L	Υ		12-Aug-15 16:25
23 ug/L	Υ		12-Aug-15 16:25
33 ug/L	Υ		11-Aug-15 14:32
33 ug/L	Υ		11-Aug-15 14:32
33 ug/L	Υ		12-Aug-15 10:50

33 ug/L	Υ	12-Aug-15 10:50
	Υ	
30 ug/L	Y	13-Aug-15 10:55
30 ug/L	Y	13-Aug-15 10:55
17 ug/L	Υ	11-Aug-15 16:55
17 ug/L	Υ	11-Aug-15 16:55
15 ug/L	Y	12-Aug-15 15:30
15 ug/L	Y	12-Aug-15 15:30
45 ug/L	Υ	11-Aug-15 16:46
45 ug/L	Υ	11-Aug-15 16:46
45 ug/L	Y	12-Aug-15 12:25
45 ug/L	Y	12-Aug-15 12:25
43 ug/L	Y	13-Aug-15 12:15
43 ug/L	Y	13-Aug-15 12:15
46 ug/L	Y	11-Aug-15 15:25
46 ug/L	Y	11-Aug-15 15:25
45 ug/L	Υ	12-Aug-15 11:30
45 ug/L	Υ	12-Aug-15 11:30
45 ug/L	Υ	13-Aug-15 12:45
45 ug/L	Υ	13-Aug-15 12:45
44 ug/L	Υ	11-Aug-15 16:07
44 ug/L	Υ	11-Aug-15 16:07
46 ug/L	Υ	12-Aug-15 12:00

46ug/L	Y		12-Aug-15 12:00
42 ug/L	Y		13-Aug-15 11:45
42 ug/L	Y		13-Aug-15 11:45
9.4 ug/L	Y		11-Aug-15 16:20
9.4 ug/L	Y		11-Aug-15 16:20
0.15 ug/L	N	U	11-Aug-15 17:10
0.15 ug/L	N	U	11-Aug-15 17:10
0.15 ug/L	N	U	12-Aug-15 15:45
0.15 ug/L	N	U	12-Aug-15 15:45
0.15 ug/L	N	U	11-Aug-15 17:35
0.15 ug/L	N	U	11-Aug-15 17:35
0.15 ug/L	Y	U	12-Aug-15 16:25
0.15 ug/L	N	U	12-Aug-15 16:25
0.15 ug/L	N	U	11-Aug-15 14:32
0.15 ug/L	N	U	11-Aug-15 14:32
0.15 ug/L	N	U	12-Aug-15 10:50
0.15 ug/L	N	U	12-Aug-15 10:50
0.15 ug/L	N	U	13-Aug-15 10:55
0.15 ug/L	N	U	13-Aug-15 10:55
1.7 ug/L	Υ		11-Aug-15 16:55
1.7 ug/L	Y		11-Aug-15 16:55
1.6 ug/L	Υ		12-Aug-15 15:30

1.6 ug/L	Y		12-Aug-1515:30
0.15 ug/L	N	U	11-Aug-15 16:46
0.15 ug/L	N	U	11-Aug-15 16:46
0.15 ug/L	N	U	12-Aug-15 12:25
0.15 ug/L	N	U	12-Aug-15 12:25
0.15 ug/L	N	U	13-Aug-15 12:15
0.15 ug/L	N	U	13-Aug-15 12:15
0.15 ug/L	N	U	11-Aug-15 15:25
0.15 ug/L	N	U	11-Aug-15 15:25
0.15 ug/L	N	U	12-Aug-15 11:30
0.15 ug/L	N	U	12-Aug-1511:30
0.15 ug/L	N	U	13-Aug-15 12:45
0.15 ug/L	N	U	13-Aug-15 12:45
0.15 ug/L	N	U	11-Aug-1516:07
0.15 ug/L	N	U	11-Aug-15 16:07
0.15 ug/L	N	U	12-Aug-15 12:00
0.15 ug/L	N	U	12-Aug-15 12:00
0.15 ug/L	N	U	13-Aug-15 11:45
0.15 ug/L	N	U	13-Aug-15 11:45
3.4 ug/L	Y		11-Aug-15 16:20
3.4 ug/L	Y		11-Aug-15 16:20
0.77 ug/L	Y		11-Aug-15 17:10

0.77 ug/L	Y		11-Aug-1517:10
0.72 ug/L	Y		12-Aug-15 15:45
0.72 ug/L	Y		12-Aug-15 15:45
1.7 ug/L	Y		11-Aug-15 17:35
1.7 ug/L	***		11-Aug-1517:35
1.6 ug/L	Y		12-Aug-15 16:25
1.6 ug/L	Y		12-Aug-15 16:25
0.4 ug/L	Y		11-Aug-1514:32
0.4 ug/L	Y		11-Aug-1514:32
0.48 ug/L	Y		12-Aug-15 10:50
0.48 ug/L	Y		12-Aug-15 10:50
0.53 ug/L	Y		13-Aug-15 10:55
0.53 ug/L	Y		13-Aug-15 10:55
9.4 ug/L	Y		11-Aug-15 16:55
9.4 ug/L	Y		11-Aug-15 16:55
9.7 ug/L	Y		12-Aug-15 15:30
9.7 ug/L	Y		12-Aug-15 15:30
0.043 ug/L	N	U	11-Aug-15 16:46
0.043 ug/L	N	U	11-Aug-15 16:46
0.043 ug/L	N	U	12-Aug-15 12:25
0.043 ug/L	N	U	12-Aug-15 12:25
0.054 ug/L	Y	J	13-Aug-15 12:15

0.054 ug/L	Y	J	13-Aug-15 12:15
0.12 ug/L	Υ		11-Aug-15 15:25
0.12 ug/L	Υ		11-Aug-15 15:25
0.12 ug/L	Υ		12-Aug-15 11:30
0.12 ug/L	Υ		12-Aug-15 11:30
0.19 ug/L	Υ		13-Aug-15 12:45
0.19 ug/L	Υ		13-Aug-15 12:45
0.061 ug/L	Υ	J	11-Aug-15 16:07
0.061 ug/L	Υ	J	11-Aug-15 16:07
0.1 ug/L	Υ		12-Aug-15 12:00
0.1 ug/L	Υ		12-Aug-15 12:00
0.11 ug/L	Υ		13-Aug-15 11:45
0.11 ug/L	γ		13-Aug-15 11:45
80 ug/L	Υ		11-Aug-15 16:20
80 ug/L	Υ		11-Aug-15 16:20
45000 ug/L	Υ		11-Aug-15 17:10
45000 ug/L	Υ		11-Aug-15 17:10
45000 ug/L	Υ		12-Aug-1515:45
45000 ug/L	Υ		12-Aug-15 15:45
63000 ug/L	Υ		11-Aug-15 17:35
63000 ug/L	Υ		11-Aug-15 17:35
61000 ug/L	Υ		12-Aug-15 16:25

61000 ug/L	Y	12-Aug-15 16:25
43000 ug/L	Υ	11-Aug-15 14:32
43000 ug/L	Υ	11-Aug-15 14:32
43000 ug/L	Υ	12-Aug-15 10:50
43000 ug/L	Υ	12-Aug-15 10:50
43000 ug/L	Υ	13-Aug-15 10:55
43000 ug/L	Y	13-Aug-15 10:55
170000 ug/L	Υ	11-Aug-15 16:55
170000 ug/L	Y	11-Aug-15 16:55
160000 ug/L	Y	12-Aug-15 15:30
160000 ug/L	Υ	12-Aug-15 15:30
61000 ug/L	Υ	11-Aug-15 16:46
61000 ug/L	Y	11-Aug-15 16:46
62000 ug/L	Υ	12-Aug-15 12:25
62000 ug/L	Y	12-Aug-15 12:25
60000 ug/L	Y	13-Aug-15 12:15
60000 ug/L	Υ	13-Aug-15 12:15
61000 ug/L	Υ	11-Aug-15 15:25
61000 ug/L	Υ	11-Aug-15 15:25
63000 ug/L	Υ	12-Aug-15 11:30
63000 ug/L	Υ	12-Aug-15 11:30
64000 ug/L	Υ	13-Aug-15 12:45

64000 ug/L	Υ		13-Aug-15 12:45
61000 ug/L	Υ		11-Aug-15 16:07
61000 ug/L	Υ		11-Aug-15 16:07
63000 ug/L	Υ		12-Aug-15 12:00
63000 ug/L	Υ		12-Aug-15 12:00
60000 ug/L	Υ		13-Aug-15 11:45
60000 ug/L	Υ		13-Aug-15 11:45
340000 ug/L	Υ		11-Aug-15 16:20
340000 ug/L	Υ		11-Aug-15 16:20
0.46 mg/L	Y	J	11-Aug-15 17:10
0.47mg/L	Y	J	12-Aug-15 15:45
0.75 mg/L	Υ		11-Aug-15 17:35
0.73 mg/L	Y		12-Aug-15 16:25
1.1 mg/L	Υ		11-Aug-1514:32
1mg/L	Y		12-Aug-15 10:50

0.91 mg/L	Y		13-Aug-15 10:55
0.28 mg/L	Y	J	11-Aug-15 16:55
0.27 mg/L	Y	J	12-Aug-1515:30
11 mg/L	Y		11-Aug-15 16:46
11 mg/L	Y		12-Aug-15 12:25
11 mg/L	Y		13-Aug-15 12:15
11 mg/L	Y		11-Aug-15 15:25
11 mg/L	Y		12-Aug-1511:30
12 mg/L	Y		13-Aug-1512:45
11 mg/L	Y		11-Aug-15 16:07
11 mg/L	Y		12-Aug-15 12:00

11 mg/L	Y		13-Aug-15 11:45
0.9 mg/L	Y		11-Aug-15 16:20
1ug/L	N	U	11-Aug-15 17:10
1ug/L	N	U	11-Aug-15 17:10
1ug/L	N	U	12-Aug-15 15:45
1ug/L	N	U	12-Aug-15 15:45
1ug/L	N	U	11-Aug-15 17:35
1ug/L	N	U	11-Aug-15 17:35
1ug/L	N	U	12-Aug-15 16:25
1ug/L	N	U	12-Aug-15 16:25
1ug/L	N	U	11-Aug-15 14:32
1ug/L	N	U	11-Aug-15 14:32
1ug/L	N	U	12-Aug-15 10:50
1ug/L	N	U	12-Aug-15 10:50
1ug/L	N	U	13-Aug-15 10:55
1ug/L	N	U	13-Aug-15 10:55
1ug/L	N	U	11-Aug-15 16:55
1ug/L	N	U	11-Aug-15 16:55
1ug/L	N	U	12-Aug-1515:30
1ug/L	N	U	12-Aug-15 15:30

1ug	g/L	N	U	11-Aug-15 16:46
1ug	g/L	N	U	11-Aug-15 16:46
1ug	g/L	N	U	12-Aug-15 12:25
1ug	g/L	N	U	12-Aug-15 12:25
1ug	g/L	N	U	13-Aug-15 12:15
1ug	g/L	N	U	13-Aug-15 12:15
1ug	g/L	N	U	11-Aug-15 15:25
1ug	g/L	N	U	11-Aug-15 15:25
1ug	g/L	N	U	12-Aug-15 11:30
1ug	g/L	N	U	12-Aug-15 11:30
1ug	g/L	N	U	13-Aug-15 12:45
1ug	g/L	N	U	13-Aug-1512:45
1ug	g/L	N	U	11-Aug-15 16:07
1ug	;/ L	N	U	11-Aug-15 16:07
1ug	;/ L	N	U	12-Aug-15 12:00
1ug	;/ L	N	U	12-Aug-15 12:00
1ug	z/L	N	U	13-Aug-15 11:45
1ug	g/L	N	U	13-Aug-15 11:45
1ug	g/L	N	U	11-Aug-15 16:20
1ug	g/L	N	U	11-Aug-15 16:20
1.3 ug	g/L	Y		11-Aug-15 17:10
1.3 ug	g/L	Y		11-Aug-15 17:10

0.86 ug/L	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** **		12-Aug-1515:45
0.86 ug/L	Y		12-Aug-15 15:45
7.6 ug/L	Y		11-Aug-15 17:35
7.6 ug/L	Y		11-Aug-15 17:35
5.3 ug/L	Y		12-Aug-15 16:25
5.3 ug/L	Y		12-Aug-15 16:25
1.9 ug/L	Y		11-Aug-15 14:32
1.9 ug/L	Y		11-Aug-15 14:32
3.2 ug/L	Y		12-Aug-15 10:50
3.2 ug/L	Y		12-Aug-15 10:50
1.8 ug/L	Y consistency of the consistency		13-Aug-15 10:55
1.8 ug/L	Y		13-Aug-15 10:55
29 ug/L	Y		11-Aug-15 16:55
29 ug/L	**************************************		11-Aug-15 16:55
28ug/L	Y consistent		12-Aug-15 15:30
28ug/L	Y		12-Aug-15 15:30
1.5 ug/L	Y		11-Aug-15 16:46
1.5 ug/L	Y		11-Aug-15 16:46
2.1ug/L	Y		12-Aug-15 12:25
2.1ug/L	Y		12-Aug-15 12:25
0.2 ug/L	Y	J	13-Aug-15 12:15
0.2 ug/L	Y	J	13-Aug-15 12:15

0.69 ug/L	Y		11-Aug-15 15:25
0.69 ug/L	Y		11-Aug-15 15:25
2ug/L	Y		12-Aug-15 11:30
2ug/L	Y		12-Aug-15 11:30
0.41 ug/L	Y		13-Aug-15 12:45
0.41 ug/L	Y		13-Aug-15 12:45
0.57 ug/L	Y		11-Aug-15 16:07
0.57 ug/L	Y		11-Aug-15 16:07
0.93 ug/L	Y		12-Aug-15 12:00
0.93 ug/L	Y		12-Aug-15 12:00
0.37 ug/L	Y	J	13-Aug-15 11:45
0.37 ug/L	Y	J	13-Aug-15 11:45
100 ug/L	Y		11-Aug-15 16:20
100 ug/L	Y		11-Aug-15 16:20
2.7 ug/L	Y		11-Aug-15 17:10
2.7 ug/L	Y		11-Aug-15 17:10
2.7 ug/L	Y		12-Aug-15 15:45
2.7 ug/L	Y		12-Aug-15 15:45
14 ug/L	Y		11-Aug-15 17:35
14 ug/L	Y		11-Aug-15 17:35
12 ug/L	Y		12-Aug-15 16:25
12 ug/L	Y		12-Aug-15 16:25

3.4 ug/L	Y	11-Aug-15 14:32
3.4 ug/L	Y	11-Aug-15 14:32
2.5 ug/L	Y	12-Aug-15 10:50
2.5 ug/L	Y	12-Aug-15 10:50
3 ug/L	Y	13-Aug-15 10:55
3 ug/L	Y	13-Aug-15 10:55
440 ug/L	Y	11-Aug-15 16:55
440 ug/L	Y	11-Aug-15 16:55
380 ug/L	Υ	12-Aug-15 15:30
380 ug/L	Y	12-Aug-15 15:30
1.5 ug/L	Y	11-Aug-15 16:46
1.5 ug/L	Y	11-Aug-15 16:46
1.7 ug/L	Y	12-Aug-15 12:25
1.7 ug/L	Y	12-Aug-15 12:25
2.5 ug/L	Y	13-Aug-15 12:15
2.5 ug/L	Y	13-Aug-15 12:15
1.4 ug/L	Υ	11-Aug-15 15:25
1.4 ug/L	Υ	11-Aug-15 15:25
1.5 ug/L	Υ	12-Aug-15 11:30
1.5 ug/L	Υ	12-Aug-15 11:30
1.9 ug/L	Υ	13-Aug-15 12:45
1.9 ug/L	Υ	13-Aug-15 12:45

1.2 ug/L	Υ	11-Aug-15 16:07
1.2 ug/L	Y	11-Aug-1516:07
1.4 ug/L	Υ	12-Aug-15 12:00
1.4 ug/L	Υ	12-Aug-15 12:00
1.4 ug/L	Υ	13-Aug-15 11:45
1.4 ug/L	Y	13-Aug-15 11:45
2800 ug/L	Y	11-Aug-15 16:20
2800 ug/L	Υ	11-Aug-15 16:20
0.45 mg/L	Υ	11-Aug-1517:10
0.46 mg/L	Υ	12-Aug-15 15:45
0.51 mg/L	Y	11-Aug-15 17:35
0.51 mg/L	Y	12-Aug-15 16:25
0.34 mg/L	Y	11-Aug-15 14:32
0.33 mg/L	Y	12-Aug-15 10:50
0.35 mg/L	Υ	13-Aug-15 10:55

2.1 mg/L	Υ	11-Aug-1516:55
2 mg/L	Y	12-Aug-15 15:30
0.34 mg/L	Y	11-Aug-15 16:46
0.36 mg/L	Υ	12-Aug-15 12:25
0.35 mg/L	Υ	13-Aug-15 12:15
0.33 mg/L	Υ	11-Aug-15 15:25
0.33 mg/L	Y	12-Aug-15 11:30
0.35 mg/L	Υ	13-Aug-15 12:45
0.33 mg/L	Y	11-Aug-15 16:07
0.33 mg/L	Υ	12-Aug-15 12:00
0.36 mg/L	Y	13-Aug-15 11:45

7.2 mg/L	Y		11-Aug-15 16:20
17ug/L	N	U	11-Aug-15 17:10
17 ug/L	N	U	11-Aug-15 17:10
17 ug/L	Y	U	12-Aug-15 15:45
17ug/L	N	U	12-Aug-15 15:45
910 ug/L	Y		11-Aug-15 17:35
910 ug/L	Y		11-Aug-15 17:35
520ug/L	Y		12-Aug-15 16:25
520ug/L	Y		12-Aug-15 16:25
17 ug/L	N	U	11-Aug-15 14:32
17 ug/L	N	U	11-Aug-15 14:32
17 ug/L	Y	J	12-Aug-15 10:50
17ug/L	Y	J	12-Aug-15 10:50
17ug/L	Y	U	13-Aug-15 10:55
17ug/L	N	U	13-Aug-15 10:55
8900 ug/L	Y		11-Aug-15 16:55
8900 ug/L	Y		11-Aug-15 16:55
7000 ug/L	Y		12-Aug-15 15:30
7000 ug/L	Y		12-Aug-15 15:30
17ug/L	N	U	11-Aug-15 16:46
17ug/L	N	U	11-Aug-15 16:46

17 ug/L	N	U	12-Aug-15 12:25
17 ug/L	N	U	12-Aug-15 12:25
17 ug/L	Υ	U	13-Aug-15 12:15
17ug/L	N	U	13-Aug-15 12:15
17 ug/L	N	U	11-Aug-15 15:25
17 ug/L	N	U	11-Aug-15 15:25
17 ug/L	N	U	12-Aug-15 11:30
17 ug/L	N	U	12-Aug-15 11:30
17 ug/L	Y	U	13-Aug-15 12:45
17 ug/L	N	U	13-Aug-15 12:45
17 ug/L	N	U	11-Aug-15 16:07
17 ug/L	N	U	11-Aug-15 16:07
17 ug/L	N	U	12-Aug-15 12:00
17 ug/L	N	U	12-Aug-15 12:00
17ug/L	Υ	U	13-Aug-15 11:45
17ug/L	N	U	13-Aug-15 11:45
63000 ug/L	Y		11-Aug-15 16:20
63000 ug/L	Y		11-Aug-15 16:20
0.064 ug/L	Υ	J	11-Aug-15 17:10
0.064 ug/L	Υ	J	11-Aug-15 17:10
0.082 ug/L	Y	J	12-Aug-15 15:45
0.082 ug/L	Y	J	12-Aug-15 15:45

4.1 ug/L	**************************************		11-Aug-15 17:35
4.1 ug/L	Y		11-Aug-15 17:35
0.06 ug/L	N	U	12-Aug-15 16:25
0.06 ug/L	Y	U	12-Aug-15 16:25
0.06 ug/L	N	U	11-Aug-15 14:32
0.06 ug/L	N	U	11-Aug-15 14:32
0.13 ug/L	Y	J	12-Aug-15 10:50
0.13 ug/L	Y	J	12-Aug-15 10:50
0.16 ug/L	Y	J	13-Aug-15 10:55
0.16 ug/L	Y	J	13-Aug-15 10:55
41 ug/L	Y		11-Aug-15 16:55
41 ug/L	Y		11-Aug-15 16:55
33 ug/L	Y		12-Aug-15 15:30
33 ug/L	Y		12-Aug-15 15:30
0.06 ug/L	N	U	11-Aug-15 16:46
0.06 ug/L	N	U	11-Aug-15 16:46
0.06 ug/L	N	U	12-Aug-15 12:25
0.06 ug/L	N	U	12-Aug-15 12:25
0.32 ug/L	Y		13-Aug-15 12:15
0.32 ug/L	Y		13-Aug-15 12:15
0.06 ug/L	N	U	11-Aug-15 15:25
0.06 ug/L	N	U	11-Aug-15 15:25

0.06 ug/L	N	U	12-Aug-15 11:30
0.06 ug/L	N	U	12-Aug-15 11:30
0.38 ug/L	Y		13-Aug-15 12:45
0.38 ug/L	Υ		13-Aug-15 12:45
0.06ug/L	N	U	11-Aug-15 16:07
0.06 ug/L	N	U	11-Aug-15 16:07
0.06 ug/L	N	U	12-Aug-15 12:00
0.06 ug/L	N	U	12-Aug-15 12:00
0.083 ug/L	Y	J	13-Aug-15 11:45
0.083 ug/L	Y	J	13-Aug-15 11:45
2.6 ug/L	Y		11-Aug-15 16:20
2.6 ug/L	Y		11-Aug-15 16:20
2800 ug/L	Υ		11-Aug-15 17:10
2800 ug/L	Y		11-Aug-15 17:10
2800 ug/L	Y		12-Aug-15 15:45
2800 ug/L	Y		12-Aug-15 15:45
4400 ug/L	Y		11-Aug-15 17:35
4400 ug/L	Y		11-Aug-15 17:35
4200 ug/L	Y		12-Aug-15 16:25
4200 ug/L	Y		12-Aug-15 16:25
4900 ug/L	Y		11-Aug-15 14:32
4900 ug/L	Y		11-Aug-15 14:32

4000 //		40.4.4540.50
4800 ug/L	Y	12-Aug-15 10:50
4800 ug/L	Y	12-Aug-15 10:50
4500 ug/L	Y	13-Aug-15 10:55
4500 ug/L	Υ	13-Aug-15 10:55
10000 ug/L	Υ	11-Aug-15 16:55
10000 ug/L	Υ	11-Aug-15 16:55
9900 ug/L	Υ	12-Aug-15 15:30
9900 ug/L	Υ	12-Aug-15 15:30
8300 ug/L	Υ	11-Aug-15 16:46
8300 ug/L	Υ	11-Aug-15 16:46
8300 ug/L	Υ	12-Aug-15 12:25
8300 ug/L	Υ	12-Aug-15 12:25
7800 ug/L	Υ	13-Aug-15 12:15
7800 ug/L	Υ	13-Aug-15 12:15
7800 ug/L	Υ	11-Aug-15 15:25
7800 ug/L	Υ	11-Aug-15 15:25
8000 ug/L	Υ	12-Aug-15 11:30
8000 ug/L	Υ	12-Aug-15 11:30
7900 ug/L	Υ	13-Aug-15 12:45
7900 ug/L	Υ	13-Aug-15 12:45
7900 ug/L	Υ	11-Aug-15 16:07
7900 ug/L	Y	11-Aug-15 16:07

8000 ug/L	Υ	12-Aug-15 12:00
8000 ug/L	Y	12-Aug-1512:00
7500 ug/L	Υ	13-Aug-1511:45
7500 ug/L	Υ	13-Aug-1511:45
26000 ug/L	Υ	11-Aug-1516:20
26000 ug/L	Υ	11-Aug-15 16:20
810 ug/L	Υ	11-Aug-15 17:10
810 ug/L	Υ	11-Aug-15 17:10
810 ug/L	Υ	12-Aug-15 15:45
810 ug/L	Υ	12-Aug-15 15:45
1100 ug/L	Υ	11-Aug-15 17:35
1100 ug/L	Υ	11-Aug-15 17:35
1000 ug/L	Υ	12-Aug-15 16:25
1000 ug/L	Υ	12-Aug-15 16:25
390 ug/L	Υ	11-Aug-15 14:32
390 ug/L	Υ	11-Aug-15 14:32
410 ug/L	Υ	12-Aug-15 10:50
410 ug/L	Υ	12-Aug-15 10:50
420 ug/L	Υ	13-Aug-15 10:55
420 ug/L	Υ	13-Aug-15 10:55
5700 ug/L	Υ	11-Aug-15 16:55
5700 ug/L	Υ	11-Aug-15 16:55

5400 ug/L	Y	12-Aug-15 15:30
5400 ug/L	Y	12-Aug-15 15:30
71 ug/L	Y	11-Aug-15 16:46
71 ug/L	Y	11-Aug-15 16:46
59 ug/L	Y	12-Aug-15 12:25
59 ug/L	Y	12-Aug-15 12:25
61 ug/L	Y	13-Aug-15 12:15
61 ug/L	Y	13-Aug-15 12:15
130 ug/L	Y	11-Aug-15 15:25
130 ug/L	Y	11-Aug-15 15:25
130 ug/L	Y	12-Aug-15 11:30
130 ug/L	Y	12-Aug-15 11:30
130 ug/L	Y	13-Aug-15 12:45
130 ug/L	Y	13-Aug-15 12:45
100 ug/L	Y	11-Aug-15 16:07
100 ug/L	Y	11-Aug-15 16:07
100 ug/L	Y	12-Aug-15 12:00
100 ug/L	Y	12-Aug-15 12:00
97 ug/L	Y	13-Aug-15 11:45
97 ug/L	Y	13-Aug-15 11:45
30000 ug/L	Y	11-Aug-15 16:20
30000 ug/L	Υ	11-Aug-15 16:20

0.08 ug/L	N	U	11-Aug-15 17:10
0.08 ug/L	N	U	11-Aug-15 17:10
0.08 ug/L	N	U	12-Aug-15 15:45
0.08 ug/L	N	U	12-Aug-15 15:45
0.08 ug/L	N	U	11-Aug-15 17:35
0.08 ug/L	N	U	11-Aug-15 17:35
0.08 ug/L	N	U	12-Aug-15 16:25
0.08 ug/L	N	U	12-Aug-15 16:25
0.08 ug/L	N	U	11-Aug-15 14:32
0.08 ug/L	N	U	11-Aug-15 14:32
0.08 ug/L	N	U	12-Aug-15 10:50
0.08 ug/L	N	U	12-Aug-15 10:50
0.08 ug/L	N	U	13-Aug-15 10:55
0.08 ug/L	N	U	13-Aug-15 10:55
0.08 ug/L	N	U	11-Aug-15 16:55
0.08 ug/L	N	U	11-Aug-15 16:55
0.08 ug/L		U	12-Aug-15 15:30
0.08 ug/L	N	U	12-Aug-15 15:30
0.08 ug/L	N	U	11-Aug-15 16:46
0.08 ug/L	N	U	11-Aug-15 16:46
0.08 ug/L	N	U	12-Aug-15 12:25
0.08 ug/L	N	U	12-Aug-15 12:25

0.00/1	N. 1	11	12 4 1512.15
0.08 ug/L	N	U	13-Aug-15 12:15
0.08 ug/L	N	U	13-Aug-15 12:15
0.08 ug/L	N	U	11-Aug-15 15:25
0.08 ug/L	N	U	11-Aug-15 15:25
0.08 ug/L	N	U	12-Aug-15 11:30
0.08 ug/L	N	U	12-Aug-15 11:30
0.08 ug/L	N	U	13-Aug-15 12:45
0.08 ug/L	N	U	13-Aug-15 12:45
0.08 ug/L	N	U	11-Aug-15 16:07
0.08 ug/L	N	U	11-Aug-15 16:07
0.08 ug/L	N	U	12-Aug-15 12:00
0.08 ug/L	N	U	12-Aug-15 12:00
0.08 ug/L	N	U	13-Aug-15 11:45
0.08 ug/L	N	U	13-Aug-15 11:45
0.08 ug/L	N	U	11-Aug-15 16:20
0.08 ug/L	N	U	11-Aug-15 16:20
1.6 ug/L	Y		11-Aug-15 17:10
1.6 ug/L	Υ		11-Aug-15 17:10
1.6 ug/L	Υ		12-Aug-15 15:45
1.6 ug/L	Y		12-Aug-15 15:45
0.69 ug/L	Y	J	11-Aug-15 17:35
0.69 ug/L	Y	J	11-Aug-15 17:35

0.72 ug/L	Y	J	12-Aug-1516:25
0.72 ug/L	Y	J	12-Aug-15 16:25
0.61 ug/L	Y	J	11-Aug-15 14:32
0.61 ug/L	Y	J	11-Aug-15 14:32
0.6ug/L	Y	J	12-Aug-15 10:50
0.6 ug/L	Y	J	12-Aug-15 10:50
0.61 ug/L	Y	J	13-Aug-15 10:55
0.61 ug/L	Y	J	13-Aug-15 10:55
0.45 ug/L	N	U	11-Aug-15 16:55
0.45 ug/L	N	U	11-Aug-15 16:55
0.45 ug/L	N	U	12-Aug-15 15:30
0.45 ug/L	Y	U	12-Aug-15 15:30
0.88 ug/L	Y	J	11-Aug-15 16:46
0.88 ug/L	Y	J	11-Aug-15 16:46
0.88 ug/L	Y	J	12-Aug-15 12:25
0.88 ug/L	Y	J	12-Aug-15 12:25
0.94 ug/L	Y	J	13-Aug-15 12:15
0.94 ug/L	Y	J	13-Aug-15 12:15
0.84 ug/L	Υ	J	11-Aug-15 15:25
0.84 ug/L	Υ	J	11-Aug-15 15:25
0.8ug/L	Y	J	12-Aug-15 11:30
0.8ug/L	Υ	J	12-Aug-15 11:30

0.88 ug/L	Y	J	13-Aug-15 12:45
0.88 ug/L	Y	J	13-Aug-15 12:45
0.79 ug/L	Y	J	11-Aug-15 16:07
0.79 ug/L	Y	J	11-Aug-15 16:07
0.8ug/L	Y	J	12-Aug-15 12:00
0.8ug/L	Y	J	12-Aug-15 12:00
0.81 ug/L	Y	J	13-Aug-15 11:45
0.81 ug/L	Y	J	13-Aug-15 11:45
0.64 ug/L	Y	J	11-Aug-15 16:20
0.64 ug/L	Y	J	11-Aug-15 16:20
1.2 ug/L	Y		11-Aug-15 17:10
1.2 ug/L	Y		11-Aug-15 17:10
1.2 ug/L	Y		12-Aug-15 15:45
1.2 ug/L	Y		12-Aug-15 15:45
4.1 ug/L	Y		11-Aug-15 17:35
4.1 ug/L			11-Aug-15 17:35
3.9 ug/L	Y		12-Aug-15 16:25
3.9 ug/L	Y		12-Aug-15 16:25
2.3 ug/L	Y		11-Aug-15 14:32
2.3 ug/L	Y		11-Aug-1514:32
2.2 ug/L	Y		12-Aug-15 10:50
2.2 ug/L	Y		12-Aug-15 10:50

1.9 ug/L	Υ	13-Aug-15 10:55
1.9 ug/L	Υ	13-Aug-15 10:55
18ug/L	Υ	11-Aug-15 16:55
18 ug/L	Y	11-Aug-15 16:55
17 ug/L	Υ	12-Aug-15 15:30
17 ug/L	Υ	12-Aug-15 15:30
1.1ug/L	Υ	11-Aug-15 16:46
1.1ug/L	Υ	11-Aug-15 16:46
1.3 ug/L	Υ	12-Aug-15 12:25
1.3 ug/L	Y	12-Aug-15 12:25
1ug/L	Υ	13-Aug-15 12:15
1ug/L	Υ	13-Aug-15 12:15
1.3 ug/L	Υ	11-Aug-15 15:25
1.3 ug/L	Υ	11-Aug-15 15:25
1.3 ug/L	Υ	12-Aug-15 11:30
1.3 ug/L	Υ	12-Aug-15 11:30
1.4 ug/L	Υ	13-Aug-15 12:45
1.4 ug/L	Υ	13-Aug-15 12:45
1.1ug/L	Υ	11-Aug-15 16:07
1.1ug/L	Υ	11-Aug-15 16:07
1.4 ug/L	Υ	12-Aug-15 12:00
1.4 ug/L	Υ	12-Aug-15 12:00

1.3 ug/L	Υ		13-Aug-15 11:45
1.3 ug/L	Υ		13-Aug-15 11:45
58 ug/L	Υ		11-Aug-15 16:20
58 ug/L	Υ		11-Aug-1516:20
0.044 mg/L	Y	J-	11-Aug-15 17:10
0.045 mg/L	Y	J	12-Aug-1515:45
0.057 mg/L	Y		11-Aug-15 17:35
0.056 mg/L	Y		12-Aug-15 16:25
0.13 mg/L	Y	J	11-Aug-1514:32
0.062 mg/L	Y		12-Aug-15 10:50
0.063 mg/L	Υ		13-Aug-15 10:55
0.035 mg/L	Υ	J	11-Aug-15 16:55
0.038 mg/L	Y	J	12-Aug-15 15:30

0.024 mg/L	Y	J	11-Aug-15 16:46
0.023 mg/L	N	U	12-Aug-15 12:25
0.023 mg/L	N	U	13-Aug-1512:15
0.062 mg/L	Y		11-Aug-15 15:25
0.059 mg/L	Y		12-Aug-15 11:30
0.067 mg/L	Y		13-Aug-15 12:45
0.035 mg/L	Y	J	11-Aug-15 16:07
0.033 mg/L	Y	J	12-Aug-1512:00
0.033 mg/L	Y	J	13-Aug-1511:45
0.046 mg/L	N	U	11-Aug-1516:20
7.60011			11 A 151710
7.68 SU	Υ	J	11-Aug-15 17:10
7.82 SU	Υ	J	12-Aug-15 15:45
6.83 SU	Y	J	11-Aug-15 17:35
6.94SU	Y	J	12-Aug-15 16:25
7.77 SU	1		11-Aug-1514:32

7.77SU	Υ	j	12-Aug-15 10:50
7.83 SU	Υ	J	13-Aug-1510:55
3.32 SU	Y		11-Aug-15 16:55
3.41SU	Y		12-Aug-15 15:30
8.52SU	Y]	11-Aug-1516:46
8.58SU	Y	<u> </u>	12-Aug-15 12:25
8.53 SU	Y		13-Aug-15 12:15
7.87SU	Y		11-Aug-15 15:25
7.73 SU	Y	<u> </u>	12-Aug-15 11:30
7.94SU	Y	<u> </u>	13-Aug-1512:45
8.04SU	Υ	J	11-Aug-15 16:07
8SU	Υ	J	12-Aug-15 12:00
8.07SU	Y	<u> </u>	13-Aug-15 11:45
4.59SU	Y	J	11-Aug-1516:20
650 ug/L	Υ	J	11-Aug-15 17:10
650 ug/L	Υ	1	11-Aug-15 17:10
030ug/L	<u> </u>	J	11-Aug-1317.10
610ug/L	Y	ı	12-Aug-1515:45
010 48/ 5	•		12 / 10 10 10
610 ug/L	Υ	J	12-Aug-1515:45
	-		
820 ug/L	Y	J	11-Aug-1517:35
820 ug/L	Υ	J	11-Aug-1517:35
730 ug/L	Υ	J	12-Aug-15 16:25
730 ug/L	Y	J	12-Aug-1516:25
850 ug/L	Y	J	11-Aug-1514:32
850 ug/L	Υ	J	11-Aug-15 14:32
810 ug/L	Y	J	12-Aug-15 10:50
810 ug/L	Υ	J	12-Aug-15 10:50
		_	
770 ug/L	Y	J	13-Aug-15 10:55
7-0 /			42.4.45.55
770 ug/L	Y	j	13-Aug-15 10:55
1000/	V		11 Aug 1510.55
1800 ug/L	Y		11-Aug-15 16:55

1800 ug/L	Y	11-Aug-15 16:55
1700 ug/L	Y	12-Aug-15 15:30
1700 ug/L	Υ	12-Aug-15 15:30
2400 ug/L	Y	11-Aug-15 16:46
2400 ug/L	Υ	11-Aug-15 16:46
2300 ug/L	Υ	12-Aug-15 12:25
2300 ug/L	Υ	12-Aug-15 12:25
2100 ug/L	Υ	13-Aug-15 12:15
2100 ug/L	Υ	13-Aug-15 12:15
2200 ug/L	Y	11-Aug-15 15:25
2200 ug/L	Y	11-Aug-15 15:25
2300 ug/L	Y	12-Aug-15 11:30
2300 ug/L	Y	12-Aug-15 11:30
2200 ug/L	Υ	13-Aug-15 12:45
2200 ug/L	Υ	13-Aug-15 12:45
2200 ug/L	Y	11-Aug-15 16:07
2200 ug/L	Υ	11-Aug-15 16:07
2200 ug/L	Υ	12-Aug-15 12:00
2200 ug/L	Υ	12-Aug-15 12:00
2000 ug/L	Υ	13-Aug-15 11:45
2000 ug/L	Υ	13-Aug-15 11:45
2300 ug/L	Υ	11-Aug-15 16:20

2300 ug/L	Y		11-Aug-15 16:20
0.58 ug/L	N	U	11-Aug-15 17:10
0.58 ug/L	N	U	11-Aug-15 17:10
0.58 ug/L	N	U	12-Aug-15 15:45
0.58 ug/L	N	U	12-Aug-15 15:45
0.58 ug/L	N	U	11-Aug-15 17:35
0.58 ug/L	N	U	11-Aug-15 17:35
0.58 ug/L	N	U	12-Aug-15 16:25
0.58 ug/L	N	U	12-Aug-15 16:25
0.71 ug/L	Υ	U	11-Aug-15 14:32
0.71 ug/L	Υ	U	11-Aug-15 14:32
0.58 ug/L	N	U	12-Aug-15 10:50
0.58 ug/L	N	U	12-Aug-15 10:50
0.58 ug/L	N	U	13-Aug-15 10:55
0.58 ug/L	N	U	13-Aug-15 10:55
0.58 ug/L	N	U	11-Aug-15 16:55
0.58 ug/L	N	U	11-Aug-15 16:55
0.58 ug/L	N	U	12-Aug-15 15:30
0.58 ug/L	Υ	U	12-Aug-15 15:30
1.1 ug/L	Υ	U	11-Aug-15 16:46
1.1 ug/L	Υ	U	11-Aug-15 16:46
1.2 ug/L	Υ	U	12-Aug-15 12:25

1.2 ug/L	Y	U	12-Aug-15 12:25
0.58 ug/L	N	U	13-Aug-15 12:15
0.58 ug/L	N	U	13-Aug-15 12:15
0.58 ug/L	N	U	11-Aug-15 15:25
0.58 ug/L	N	U	11-Aug-15 15:25
0.86 ug/L	Y	U	12-Aug-15 11:30
0.86 ug/L	Y	U	12-Aug-15 11:30
0.58 ug/L	N	U	13-Aug-15 12:45
0.58 ug/L	N	U	13-Aug-15 12:45
0.91 ug/L	Y	U	11-Aug-15 16:07
0.91 ug/L	Y	U	11-Aug-15 16:07
0.9 ug/L	Y	J	12-Aug-15 12:00
0.9 ug/L	Y	J	12-Aug-15 12:00
0.58 ug/L	N	U	13-Aug-15 11:45
0.58 ug/L	N	U	13-Aug-15 11:45
0.58 ug/L	N	U	11-Aug-15 16:20
0.58 ug/L	N	U	11-Aug-15 16:20
0.1 ug/L	N	U	11-Aug-15 17:10
0.1 ug/L	N	U	11-Aug-15 17:10
0.1 ug/L	N	U	12-Aug-15 15:45
0.1 ug/L	N	U	12-Aug-15 15:45
0.1 ug/L	N	U	11-Aug-15 17:35

0.1 ug/L	N	U	11-Aug-15 17:35
0.1 ug/L	N	U	12-Aug-15 16:25
0.1 ug/L	N	U	12-Aug-15 16:25
0.1 ug/L	N	U	11-Aug-15 14:32
0.1 ug/L	N	U	11-Aug-1514:32
0.1ug/L	N	U	12-Aug-15 10:50
0.1 ug/L	N	U	12-Aug-15 10:50
0.1 ug/L	N	U	13-Aug-15 10:55
0.1 ug/L	N	U	13-Aug-15 10:55
0.1 ug/L	N	U	11-Aug-15 16:55
0.1 ug/L	N	U	11-Aug-15 16:55
0.1 ug/L	N	U	12-Aug-15 15:30
0.1 ug/L	N	U	12-Aug-15 15:30
0.1 ug/L	N	U	11-Aug-15 16:46
0.1 ug/L	N	U	11-Aug-15 16:46
0.1 ug/L	N	U	12-Aug-15 12:25
0.1 ug/L	N	U	12-Aug-15 12:25
0.1 ug/L	N	U	13-Aug-15 12:15
0.1 ug/L	N	U	13-Aug-15 12:15
0.1 ug/L	N	U	11-Aug-15 15:25
0.1 ug/L	N	U	11-Aug-15 15:25
0.1 ug/L	N	U	12-Aug-15 11:30

0.1 ug/L	N	U	12-Aug-15 11:30
0.1 ug/L	N	U	13-Aug-15 12:45
0.1 ug/L	N	U	13-Aug-15 12:45
0.1 ug/L	N	U	11-Aug-15 16:07
0.1 ug/L	N	U	11-Aug-15 16:07
0.1ug/L	N	U	12-Aug-15 12:00
0.1 ug/L	N	U	12-Aug-15 12:00
0.1ug/L	N	U	13-Aug-15 11:45
0.1 ug/L	N	U	13-Aug-15 11:45
0.1ug/L	N	U	11-Aug-15 16:20
0.1ug/L	N	U	11-Aug-15 16:20
2000 ug/L	Y		11-Aug-15 17:10
2000 ug/L	Y		11-Aug-15 17:10
1800 ug/L	Y		12-Aug-15 15:45
1800 ug/L	Y		12-Aug-15 15:45
2700 ug/L	Y		11-Aug-15 17:35
2700 ug/L	Y		11-Aug-15 17:35
2500 ug/L	Y		12-Aug-15 16:25
2500 ug/L	Y		12-Aug-15 16:25
2500 ug/L	Y		11-Aug-15 14:32
2500 ug/L	Y		11-Aug-15 14:32
2300 ug/L	Υ		12-Aug-15 10:50

2300 ug/L	Υ	12-Aug-15 10:50
2200 ug/L	Y	13-Aug-15 10:55
2200 ug/L	Υ	13-Aug-15 10:55
5100 ug/L	Y	11-Aug-15 16:55
5100 ug/L	Υ	11-Aug-15 16:55
6000 ug/L	Y	12-Aug-1515:30
6000 ug/L	Y	12-Aug-1515:30
13000 ug/L	Y	11-Aug-1516:46
13000 ug/L	Υ	11-Aug-15 16:46
13000 ug/L	Υ	12-Aug-1512:25
13000 ug/L	Υ	12-Aug-15 12:25
10000 ug/L	Υ	13-Aug-15 12:15
10000 ug/L	Υ	13-Aug-15 12:15
12000 ug/L	Υ	11-Aug-15 15:25
12000 ug/L	Υ	11-Aug-15 15:25
12000 ug/L	Υ	12-Aug-15 11:30
12000 ug/L	Υ	12-Aug-15 11:30
11000 ug/L	Υ	13-Aug-15 12:45
11000 ug/L	Υ	13-Aug-15 12:45
12000 ug/L	Υ	11-Aug-15 16:07
12000 ug/L	Υ	11-Aug-15 16:07
12000 ug/L	Υ	12-Aug-1512:00

12000 ug/L	Υ	12-Aug-15 12:00
10000 ug/L	Y	13-Aug-15 11:45
10000 ug/L	Υ	13-Aug-15 11:45
120000 ug/L	Y	11-Aug-15 16:20
120000 ug/L	Y	11-Aug-15 16:20
83 mg/L	Υ	11-Aug-15 17:10
85 mg/L	Υ	12-Aug-15 15:45
150 mg/L	Υ	11-Aug-15 17:35
150 mg/L	Υ	12-Aug-15 16:25
79 mg/L	Υ	11-Aug-15 14:32
84 mg/L	Υ	12-Aug-15 10:50
85 mg/L	Υ	13-Aug-15 10:55
540 mg/L	Υ	11-Aug-1516:55

520 mg/L	Y	12-Aug-1515:30
97 mg/L	Y	11-Aug-15 16:46
97 mg/L	Y	12-Aug-15 12:25
99 mg/L	Y	13-Aug-15 12:15
98 mg/L	Υ	11-Aug-15 15:25
100 mg/L	Υ	12-Aug-15 11:30
100 mg/L	Y	13-Aug-15 12:45
97 mg/L	Y	11-Aug-15 16:07
100 mg/L	Y	12-Aug-15 12:00
99 mg/L	Y	13-Aug-15 11:45
1400 mg/L	Y	11-Aug-15 16:20

0.1 ug/L	N	U	11-Aug-15 17:10
0.1 ug/L	N	U	11-Aug-15 17:10
0.1 ug/L	N	U	12-Aug-15 15:45
0.1 ug/L	N	U	12-Aug-15 15:45
0.1 ug/L	N	U	11-Aug-15 17:35
0.1 ug/L	N	U	11-Aug-15 17:35
0.1 ug/L	N	U	12-Aug-15 16:25
0.1 ug/L	N	U	12-Aug-15 16:25
0.1 ug/L	N	U	11-Aug-15 14:32
0.1 ug/L	N	U	11-Aug-15 14:32
0.1 ug/L	N	U	12-Aug-15 10:50
0.1 ug/L	N	U	12-Aug-15 10:50
0.1 ug/L	N	U	13-Aug-15 10:55
0.1 ug/L	N	U	13-Aug-15 10:55
0.19 ug/L	Y	J	11-Aug-15 16:55
0.19 ug/L	Y	J	11-Aug-15 16:55
0.19 ug/L	Y	J	12-Aug-15 15:30
0.19 ug/L	Υ	J	12-Aug-15 15:30
0.1 ug/L	N	U	11-Aug-15 16:46
0.1 ug/L	N	U	11-Aug-15 16:46
0.1 ug/L	N	U	12-Aug-15 12:25
0.1ug/L	N	U	12-Aug-15 12:25

0.1 ug/L	N	U	13-Aug-15 12:15
0.1 ug/L	N	U	13-Aug-15 12:15
0.1 ug/L	N	U	11-Aug-15 15:25
0.1 ug/L	N	U	11-Aug-15 15:25
0.1 ug/L	N	U	12-Aug-15 11:30
0.1 ug/L	N	U	12-Aug-15 11:30
0.1 ug/L	N	U	13-Aug-15 12:45
0.1 ug/L	N	U	13-Aug-15 12:45
0.1 ug/L	N	U	11-Aug-15 16:07
0.1 ug/L	N	U	11-Aug-15 16:07
0.1 ug/L	N	U	12-Aug-15 12:00
0.1 ug/L	N	U	12-Aug-15 12:00
0.1 ug/L	N	U	13-Aug-15 11:45
0.1 ug/L	N	U	13-Aug-15 11:45
0.25 ug/L	Y		11-Aug-15 16:20
0.25 ug/L	Υ		11-Aug-15 16:20
120 mg/L	Y		11-Aug-1517:10
120 mg/L	Y		12-Aug-15 15:45
180 mg/L	Y		11-Aug-15 17:35

160 mg/L	Υ	12-Aug-15 16:25
130 mg/L	Y	11-Aug-1514:32
130 mg/L	Y	12-Aug-15 10:50
130 mg/L	Y	13-Aug-15 10:55
460 mg/L	Y	11-Aug-15 16:55
450 mg/L	Y	12-Aug-15 15:30
190 mg/L	Y	11-Aug-15 16:46
190 mg/L	Y	12-Aug-1512:25
180 mg/L	Y	13-Aug-1512:15
190 mg/L	Y	11-Aug-1515:25
190 mg/L	Y	12-Aug-15 11:30

190 mg/L	Y		13-Aug-15 12:45
180 mg/L	Y		11-Aug-15 16:07
190 mg/L	Y		12-Aug-1512:00
190 mg/L	Υ		13-Aug-15 11:45
950 mg/L	Y		11-Aug-15 16:20
0.3 ug/L	N	U	11-Aug-15 17:10
0.3 ug/L	Ν	U	11-Aug-15 17:10
0.3 ug/L	N	U	12-Aug-15 15:45
0.3 ug/L	N	U	12-Aug-15 15:45
0.3ug/L	N	U	11-Aug-15 17:35
0.3 ug/L	N	U	11-Aug-15 17:35
0.3 ug/L	Y	U	12-Aug-15 16:25
0.3 ug/L	N	U	12-Aug-15 16:25
0.3 ug/L	N	U	11-Aug-15 14:32
0.3 ug/L	N	U	11-Aug-15 14:32
0.3 ug/L	N	U	12-Aug-15 10:50
0.3 ug/L	Ν	U	12-Aug-15 10:50

0.3 ug/L	N	U	13-Aug-15 10:55
0.3 ug/L	N	U	13-Aug-15 10:55
0.3 ug/L	N	U	11-Aug-15 16:55
0.3 ug/L	N	U	11-Aug-15 16:55
0.3 ug/L	N	U	12-Aug-15 15:30
0.3 ug/L	Y	U	12-Aug-15 15:30
0.3 ug/L	N	U	11-Aug-15 16:46
0.3 ug/L	N	U	11-Aug-15 16:46
0.3 ug/L	N	U	12-Aug-15 12:25
0.3 ug/L	N	U	12-Aug-15 12:25
0.3 ug/L	N	U	13-Aug-15 12:15
0.3 ug/L	Y	U	13-Aug-15 12:15
0.3 ug/L	N	U	11-Aug-15 15:25
0.3 ug/L	N	U	11-Aug-15 15:25
0.3 ug/L	N	U	12-Aug-15 11:30
0.3 ug/L	N	U	12-Aug-15 11:30
0.3 ug/L	N	U	13-Aug-15 12:45
0.3 ug/L	N	U	13-Aug-15 12:45
0.3 ug/L	N	U	11-Aug-15 16:07
0.3 ug/L	N	U	11-Aug-15 16:07
0.3 ug/L	N	U	12-Aug-15 12:00
0.3 ug/L	N	U	12-Aug-15 12:00

0.2//	N		12 1.45
0.3 ug/L	N	U	13-Aug-15 11:45
0.3 ug/L	N	U	13-Aug-15 11:45
0.3 ug/L	N	U	11-Aug-15 16:20
0.3 ug/L	N	U	11-Aug-15 16:20
200 ug/L	Y		11-Aug-15 17:10
200 ug/L	Υ		11-Aug-15 17:10
190ug/L	Υ		12-Aug-15 15:45
190 ug/L	Y		12-Aug-15 15:45
470 ug/L	Υ		11-Aug-15 17:35
470 ug/L	Y		11-Aug-15 17:35
420 ug/L	Y		12-Aug-15 16:25
420 ug/L	Υ		12-Aug-15 16:25
88 ug/L	Υ		11-Aug-15 14:32
88 ug/L	Υ		11-Aug-15 14:32
96 ug/L	Υ		12-Aug-15 10:50
96 ug/L	Υ		12-Aug-15 10:50
120ug/L	Υ		13-Aug-15 10:55
120ug/L	Υ		13-Aug-15 10:55
3100 ug/L	Υ		11-Aug-15 16:55
3100 ug/L	Υ		11-Aug-15 16:55
2800 ug/L	Υ		12-Aug-15 15:30
2800 ug/L	Υ		12-Aug-15 15:30

F 4 //			11 A 1516.46
5.4 ug/L	Υ	J	11-Aug-15 16:46
5.4 ug/L	Υ	J	11-Aug-15 16:46
6.9 ug/L	Υ	J	12-Aug-1512:25
6.9 ug/L	Υ	J	12-Aug-1512:25
9.7 ug/L	Y	J	13-Aug-15 12:15
9.7 ug/L	Y	J	13-Aug-15 12:15
51 ug/L	Y		11-Aug-15 15:25
51 ug/L	Y		11-Aug-15 15:25
50 ug/L	Y		12-Aug-1511:30
50 ug/L	Y		12-Aug-15 11:30
73 ug/L	Y		13-Aug-15 12:45
73 ug/L	Y		13-Aug-15 12:45
21 ug/L	Y		11-Aug-15 16:07
21 ug/L	Y		11-Aug-15 16:07
23 ug/L	Y		12-Aug-15 12:00
23 ug/L	Υ		12-Aug-1512:00
31 ug/L	Υ		13-Aug-15 11:45
31 ug/L	Υ		13-Aug-15 11:45
22000 ug/L	Υ		11-Aug-15 16:20
22000 ug/L	Υ		11-Aug-15 16:20

MDL MDL_Units	Reporting_Limit	porting_Lir	nit_Uı Matrix	QA_Comment
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val
5 mg/L	5	mg/L	Surface Water	L2 Val

5 mg/L	5 mg/L	Surface Water	L2 Val
5 mg/L	5 mg/L	Surface Water	L2 Val
5 mg/L	5 mg/L	Surface Water	L2 Val
5 mg/L	5 mg/L	Surface Water	L2 Val
5 mg/L	5 mg/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24 ug/L	200 ug/L	Surface Water	L2 Val
24ug/L	200 ug/L	Surface Water	L2 Val

24ug/L	200 ug/L	Surface Water L	2 Val
24 ug/L	200 ug/L	Surface Water L	2 Val
24 ug/L	200 ug/L	Surface Water L	2 Val
24 ug/L	200 ug/L	Surface Water L	2 Val
24 ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water Li	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24 ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water Li	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val
24ug/L	200 ug/L	Surface Water L	2 Val

24	ug/L 200	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val
0.4	ug/L 1	ug/L	Surface Water	L2 Val

0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val

0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37ug/L	1 ug/L	Surface Water	L2 Val
0.37ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1ug/L	Surface Water	L2 Val

0.37ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.37 ug/L	1 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val

0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val
0.14 ug/L	2 ug/L	Surface Water	L2 Val

0.14	ug/L	2 ug/L	Surface Water	L2 Val
0.14	ug/L	2 ug/L	Surface Water	L2 Val
0.14	ug/L	2 ug/L	Surface Water	L2 Val
0.14	ug/L	2 ug/L	Surface Water	L2 Val
0.14	ug/L	2 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val
0.15	ug/L	0.4 ug/L	Surface Water	L2 Val

0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.15 ug/L	0.4 ug/L	Surface Water	L2 Val
0.043 ug/L	0.1 ug/L	Surface Water	L2 Val

0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val

0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
0.043	ug/L	0.1 ug/L	Surface Water	L2 Val
25	ug/L 5	500ug/L	Surface Water	L2 Val
25	ug/L 5	500ug/L	Surface Water	L2 Val
25	ug/L 5	500ug/L	Surface Water	L2 Val
25	ug/L 5	500ug/L	Surface Water	L2 Val
25	ug/L 5	500 ug/L	Surface Water	L2 Val
25	ug/L 5	500 ug/L	Surface Water	L2 Val
25	ug/L 5	500ug/L	Surface Water	L2 Val

25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val
25 ug/L	500 ug/L	Surface Water	L2 Val

25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
25 ug/L	500	ug/L	Surface Water	L2 Val
0.2 mg/L	0.5	mg/L	Surface Water	L2 Val
0.2 mg/L	0.5	mg/L	Surface Water	L2 Val
0.2 mg/L	0.5	mg/L	Surface Water	L2 Val
0.2 mg/L	0.5	mg/L	Surface Water	L2 Val
0.2 mg/L	0.5	mg/L	Surface Water	L2 Val
0.2 mg/L	0.5	mg/L	Surface Water	L2 Val

0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val
0.2 mg/L	0.5 mg/L	Surface Water	L2 Val

0.2	mg/L 0.5	mg/L	Surface Water	L2 Val
0.2	mg/L 0.5	mg/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val
1	ug/L 2	ug/L	Surface Water	L2 Val

1 ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
1ug/L	2 ug/L	Surface Water	L2 Val
1 ug/L	2 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val

0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val
0.12	ug/L	0.4 ug/L	Surface Water	L2 Val

0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.12 ug/L	0.4 ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val
0.5 ug/L	1ug/L	Surface Water	L2 Val

0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val
0.5 ug/L	1 ug/L	Surface Water	L2 Val

0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.5 ug/L	1	ug/L	Surface Water	L2 Val
0.04 mg/L	0.1	mg/L	Surface Water	L2 Val
0.04 mg/L	0.1	mg/L	Surface Water	L2 Val
0.04 mg/L	0.1	mg/L	Surface Water	L2 Val
0.04 mg/L	0.1	mg/L	Surface Water	L2 Val
0.04 mg/L	0.1	mg/L	Surface Water	L2 Val
0.04 mg/L	0.1	mg/L	Surface Water	L2 Val
0.04 mg/L	0.1	mg/L	Surface Water	L2 Val

0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val
0.04 mg/L	0.1 mg/L	Surface Water	L2 Val

0.04	mg/L 0.	1 mg/L	Surface Water	L2 Val
17	ug/L 5	Dug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val
17	ug/L 5	Oug/L	Surface Water	L2 Val

17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17ug/L	50 ug/L	Surface Water	L2 Val
17 ug/L	50 ug/L	Surface Water	L2 Val
17ug/L	50 ug/L	Surface Water	L2 Val
0.06ug/L	0.3 ug/L	Surface Water	L2 Val
0.06ug/L	0.3 ug/L	Surface Water	L2 Val
0.06ug/L	0.3 ug/L	Surface Water	L2 Val
0.06ug/L	0.3 ug/L	Surface Water	L2 Val

0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val

0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
0.06 ug/L	0.3 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val

· · · · · · · · · · · · · · · · · · ·			
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val

33 ug/L	500 ug/L	Surface Water	I 2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
33 ug/L	500 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val

1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val
1.2 ug/L	2.5 ug/L	Surface Water	L2 Val

0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val
0.08 ug/L	0.2 ug/L	Surface Water	L2 Val

0.08	ug/L ().2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (D.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.08	ug/L (0.2 ug/L	Surface Water	L2 Val
0.45	ug/L	1ug/L	Surface Water	L2 Val
0.45	ug/L	1ug/L	Surface Water	L2 Val
0.45	ug/L	1ug/L	Surface Water	L2 Val
0.45	ug/L	1ug/L	Surface Water	L2 Val
0.45	ug/L	1ug/L	Surface Water	L2 Val
0.45	ug/L	1ug/L	Surface Water	L2 Val

0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val
0.45	ug/L 1	ug/L	Surface Water	L2 Val

	}			
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.45 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val

0.4ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val
0.4 ug/L	1 ug/L	Surface Water	L2 Val

0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.4 ug/L	1	ug/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val

0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.023 mg/L	0.05	mg/L	Surface Water	L2 Val
0.046 mg/L	0.1	mg/L	Surface Water	L2 Val
SU		SU	Surface Water	L2 Val
SU		SU	Surface Water	L2 Val
SU		SU		L2 Val
SU		SU		L2 Val
SU		SU	Surface Water	L2 Val

	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	Surface Water	L2 Val
	SU		SU	-j	L2 Val
	SU		SU		L2 Val
	SU		SU		L2 Val
	SU		SU		L2 Val
	SU		SU	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val
17	ug/L	1000	ug/L	Surface Water	L2 Val

17ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17ug/L	1000 ug/L	Surface Water	L2 Val
17ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17 ug/L	1000 ug/L	Surface Water	L2 Val
17ug/L	1000 ug/L	Surface Water	L2 Val

17 ug/L	1000 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u _l	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val
0.58 ug/L	2 u	g/L	Surface Water	L2 Val

0.58 ug/L	2 ug/L	Surface Water	L2 Val
0.58 ug/L	2 ug/L	Surface Water	L2 Val
0.58 ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58 ug/L	2 ug/L	Surface Water	L2 Val
0.58 ug/L	2 ug/L	Surface Water	L2 Val
0.58 ug/L	2 ug/L	Surface Water	L2 Val
0.58 ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.58ug/L	2 ug/L	Surface Water	L2 Val
0.1ug/L	1 ug/L	Surface Water	L2 Val
0.1ug/L	1 ug/L	Surface Water	L2 Val
0.1ug/L	1 ug/L	Surface Water	L2 Val
0.1ug/L	1 ug/L	Surface Water	L2 Val
0.1ug/L	1 ug/L	Surface Water	L2 Val

	T T			
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	Lug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	lug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	lug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val
0.1	ug/L	l ug/L	Surface Water	L2 Val

0.1 ug/L	1 ug	g/L Surface Water	L2 Val
0.1ug/L	1 ug	g/L Surface Water	L2 Val
0.1 ug/L	1 ug	g/L Surface Water	L2 Val
0.1ug/L	1 ug	g/L Surface Water	L2 Val
0.1ug/L	1 ug	g/L Surface Water	L2 Val
0.1ug/L	1ug	g/L Surface Water	L2 Val
0.1ug/L	1ug	g/L Surface Water	L2 Val
0.1ug/L	1ug	g/L Surface Water	L2 Val
0.1 ug/L	1 ug	g/L Surface Water	L2 Val
0.1 ug/L	1 ug	g/L Surface Water	L2 Val
0.1 ug/L	1 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val
480 ug/L	1000 ug	g/L Surface Water	L2 Val

480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val
480	ug/L	1000 ug/L	Surface Water	L2 Val

480 ug/L	1000	ug/L	Surface Water	L2 Val
480 ug/L	1000	ug/L	Surface Water	L2 Val
480 ug/L	1000	ug/L	Surface Water	L2 Val
480 ug/L	1000	ug/L	Surface Water	L2 Val
480 ug/L	1000	ug/L	Surface Water	L2 Val
1.6 mg/L	4	mg/L	Surface Water	L2 Val
1.6 mg/L	4	mg/L	Surface Water	L2 Val
1.6 mg/L	4	mg/L	Surface Water	L2 Val
1.6 mg/L	4	mg/L	Surface Water	L2 Val
1.6 mg/L	4	mg/L	Surface Water	L2 Val
1.6 mg/L	4	mg/L	Surface Water	L2 Val
1.6 mg/L	4	mg/L	Surface Water	L2 Val
10 mg/L	25	mg/L	Surface Water	L2 Val

10 mg/L	25 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
1.6 mg/L	4 mg/L	Surface Water	L2 Val
20 mg/L	50 mg/L	Surface Water	L2 Val

0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val

0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1ug/L	0.2 ug/L	Surface Water	L2 Val
0.1ug/L	0.2 ug/L	Surface Water	L2 Val
0.1ug/L	0.2 ug/L	Surface Water	L2 Val
0.1ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
0.1ug/L	0.2 ug/L	Surface Water	L2 Val
0.1ug/L	0.2 ug/L	Surface Water	L2 Val
0.1 ug/L	0.2 ug/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val

3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val

3.3 mg/L			
	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
3.3 mg/L	3.3 mg/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1ug/L	Surface Water	L2 Val
0.3 ug/L	1ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1ug/L	Surface Water	L2 Val
0.3 ug/L	1ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1ug/L	Surface Water	L2 Val

0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1 ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val
0.3	ug/L	1ug/L	Surface Water	L2 Val

0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
0.3 ug/L	1 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val
2.8 ug/L	20 ug/L	Surface Water	L2 Val

2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val
2.8 ug/L	20	ug/L	Surface Water	L2 Val

Latitude	Longitude	Analysis
37.81120	-107 65917	2320B Alkalinity, Total
37.81120	-111/6591/	2320B Alkalinity, Total
37.79027	-107.66758	2320B Alkalinity, Total
37.79027	-107.66758	2320B Alkalinity, Total
37.45413	-107 80160	2320B Alkalinity, Total
37.45413	-107 20160	2320B Alkalinity, Total
37.45413	-107 80160	2320B Alkalinity, Total
37.81998	-107.66328	2320B Alkalinity, Total
37.81998	-107 66328	2320B Alkalinity, Total
37.22154	-107.85946	2320B Alkalinity, Total
37.22154	-107.85946	2320B Alkalinity, Total
37.22154	-107.85946	2320B Alkalinity, Total
37.29480	-107.87003	2320B Alkalinity, Total
37.29480	-107.87003	2320B Alkalinity, Total

		,
37.29480	-107.87003	2320B Alkalinity, Total
37.26870	-107.88586	2320B Alkalinity, Total
37.26870	-107.88586	2320B Alkalinity, Total
37.26870	-107 88586	2320B Alkalinity, Total
0	0	2320B Alkalinity, Total
37.81120	-107.65917	200.7 Metals (ICP)
37.79027	-107.66758	200.7 Metals (ICP)
37.45413	-107.80160	200.7 Metals (ICP)
37.81998	-107.66328	200.7 Metals (ICP)

37.81998	-107.66328 (ICP)
37.81998	-107.66328 200.7 Metals (ICP)
37.81998	-107.66328 200.7 Metals (ICP)
37.22154	-107.85946 (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.22154	-107.85946 (ICP)
37.29480	-107.87003 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
0	0 200.7 Metals (ICP)

0	0 ^{200.7} Metals
	(ICP)
37.81120	-107.65917 (ICP/MS)
37.79027	-107.66758 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 (ICP/MS)

37.22154	-107 85946	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-10787003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 8 7003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	_107 00506	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-111/ 88586	200.8 Metals (ICP/MS)
0	1)	200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
37.81120	-111/6541/	200.8 Metals (ICP/MS)
37.81120	_10 / 6501 /	200.8 Metals (ICP/MS)
37.81120	-10765917	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)

37.79027	-107.66758 200.8 Metals (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.79027	-107.66758 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 (ICP/MS)

37.29480	10707000	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	_10 / 99596	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.81120	-107 65917	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.81120	-111/6541/	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)
37.79027	-107 66 758	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)
37.79027	-107 66 758	200.8 Metals (ICP/MS)
37.45413	-111/XI1160	200.8 Metals (ICP/MS)
37.45413	10 / 90160	200.8 Metals (ICP/MS)
37.45413	-107.80160	200.8 Metals (ICP/MS)

37.45413	-107 80160	8 Metals [/] MS)
37.45413	-107 80160	8 Metals /MS)
37.45413	-107 80160	8 Metals /MS)
37.81998	-107 66378	8 Metals /MS)
37.81998	-107 66328	8 Metals /MS)
37.81998	-107 66328	8 Metals /MS)
37.81998	-107 66378	8 Metals /MS)
37.22154	-107 250//6	8 Metals /MS)
37.22154	-10/85946	8 Metals /MS)
37.22154	-107 85946	8 Metals /MS)
37.22154	-10/859/6	8 Metals /MS)
37.22154	-107 859/6	8 Metals /MS)
37.22154	-10 / 859/16	8 Metals /MS)
37.29480	-107 87003	8 Metals /MS)
37.29480	_111/X/11113	8 Metals /MS)
37.29480	-107 X /OO3	8 Metals /MS)
37.29480	-107 X /003	8 Metals /MS)
37.29480	-107 X /003	8 Metals [/] MS)
37.29480	-107 X /003	8 Metals /MS)
37.26870	-107 88586	8 Metals /MS)
37.26870	-10 / 88586	8 Metals [/] MS)
37.26870	-107 88586	8 Metals /MS)

37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
37.81120	-107 65017	200.8 Metals (ICP/MS)
37.81120	-10765917	200.8 Metals (ICP/MS)
37.81120	-107 65917	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.79027	-10 / 66 /58	200.8 Metals (ICP/MS)
37.79027	-111/66/58	200.8 Metals (ICP/MS)
37.79027	-10 / 66 /58	200.8 Metals (ICP/MS)
37.79027	-111 / 66 /58	200.8 Metals (ICP/MS)
37.45413	-10 / 20160	200.8 Metals (ICP/MS)
37.45413	1117 2111611	200.8 Metals (ICP/MS)
37.45413	-107 20160	200.8 Metals (ICP/MS)
37.45413	-107 80160	200.8 Metals (ICP/MS)
37.45413	-107.80160	200.8 Metals (ICP/MS)
37.45413	-107 80160	200.8 Metals (ICP/MS)
37.81998	-107.66328	200.8 Metals (ICP/MS)
37.81998	-10766378	200.8 Metals (ICP/MS)
37.81998	-107.66328	200.8 Metals (ICP/MS)

37.81998	-107 66378	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.22154	-10/85946	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.22154	-10/85946	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.22154	-10/85946	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 8 7003	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)
37.29480	-107 8 7003	200.8 Metals (ICP/MS)
37.29480	-10 / 8 /003	200.8 Metals (ICP/MS)
37.29480	-107 8 7003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-111/ 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-10 / 88586	200.8 Metals (ICP/MS)
37.26870	-111/ 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
37.81120	-111/6541/	200.8 Metals (ICP/MS)

37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.22154	-107.85946 200.8 Metals (ICP/MS)
37.22154	-107.85946 200.8 Metals (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 200.8 Metals (ICP/MS)
37.22154	-107.85946 200.8 Metals (ICP/MS)

37.22154	-111/ 859/16	200.8 Metals (ICP/MS)
37.29480	_107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-10787003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-10 / 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
37.81120	-107 65917	200.7 Metals (ICP)
37.81120	_10 / 6501 /	200.7 Metals (ICP)
37.81120	_10 / 6501 /	200.7 Metals (ICP)
37.81120	-111/6591/	200.7 Metals (ICP)
37.79027	-107.66758	200.7 Metals (ICP)
37.79027	-107 bb /5X	200.7 Metals (ICP)
37.79027	-107.66758	200.7 Metals (ICP)

37.79027	-107.66758 (ICP)
37.45413	-107.80160 200.7 Metals (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (ICP)
37.22154	-107.85946 (ICP)
37.29480	-107.87003 (ICP)

37.29480	-107.87003 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 (ICP)
37.26870	-107.88586 (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
0	0 200.7 Metals (ICP)
0	0 200.7 Metals (ICP)
37.81120	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.81120	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.79027	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.79027	300_ORGFM_28 D Anions, Ion Chromatograph y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph Y

37.45413	-107.80160	300_ORGFM_28 D Anions, Ion Chromatograph y
37.81998	-107.66328	300_ORGFM_28 D Anions, Ion Chromatograph y
37.81998	-107.66328	300_ORGFM_28 D Anions, Ion Chromatograph y
37.22154	-107.85946	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.22154	-107.85946	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.22154	-107.85946	300_ORGFM_28 D Anions, Ion Chromatograph y
37.29480	-107.87003	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.29480	-107.87003	300_ORGFM_28 D Anions, Ion Chromatograph y
37.29480	-107.87003	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.26870	-107.88586	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.26870	-107.88586	300_ORGFM_28 D Anions, Ion Chromatograph Y

	300_ORGFM_28
37.26870	-107.88586 Chromatograph
0	300_ORGFM_28 D Anions, Ion Chromatograph y
37.81120	-107.65917 (ICP/MS)
37.79027	-107.66758 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.81998	-107.66328 (ICP/MS)

37.22154	-111/ 859/16	200.8 Metals (ICP/MS)
37.22154	-107 859/6	200.8 Metals (ICP/MS)
37.22154	-10 / 85946	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.22154	-10 / 85946	200.8 Metals (ICP/MS)
37.22154	-10 / 85946	200.8 Metals (ICP/MS)
37.29480	-10 / 8 /003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-10 / 8 /003	200.8 Metals (ICP/MS)
37.29480	-10 / 8 /003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-111/ XX5Xh	200.8 Metals (ICP/MS)
37.26870	-107.88586	200.8 Metals (ICP/MS)
37.26870	-111/ 88586	200.8 Metals (ICP/MS)
37.26870	-107.88586	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.81120	-10/6591/	200.8 Metals (ICP/MS)

37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.22154	-107.85946 200.8 Metals (ICP/MS)
37.22154	-107.85946 (ICP/MS)

37.29480	-107.87003 (ICP/MS)
37.29480	-107.87003 (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 (ICP/MS)
37.29480	-107.87003 (ICP/MS)
37.26870	-107.88586 (ICP/MS)
0	0 200.8 Metals (ICP/MS)
0	0 200.8 Metals (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.79027	-107.66758 (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)

37.45413	-107 20160	200.8 Metals (ICP/MS)
37.45413	-107 80160	200.8 Metals (ICP/MS)
37.45413	-107 80160	200.8 Metals (ICP/MS)
37.45413	-107 80160:	200.8 Metals (ICP/MS)
37.45413	-107 80160	200.8 Metals (ICP/MS)
37.45413	-107 80160	200.8 Metals (ICP/MS)
37.81998	-107 66270	200.8 Metals (ICP/MS)
37.81998	-107 66328	200.8 Metals (ICP/MS)
37.81998	-107 66279	200.8 Metals (ICP/MS)
37.81998	-107 66328	200.8 Metals (ICP/MS)
37.22154	-10 / 25946	200.8 Metals (ICP/MS)
37.22154	-10/859/6	200.8 Metals (ICP/MS)
37.22154	-107.859/6	200.8 Metals (ICP/MS)
37.22154	-10 / 25946	200.8 Metals (ICP/MS)
37.22154	-111/ X5U/Ih	200.8 Metals (ICP/MS)
37.22154	_111/254/16	200.8 Metals (ICP/MS)
37.29480	-107 X /003:	200.8 Metals (ICP/MS)
37.29480	-101/ X /OO3	200.8 Metals (ICP/MS)
37.29480	-111/X/IIIX	200.8 Metals (ICP/MS)
37.29480	-111/X/UU3:	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)

37.26870	-107.88586 200.8 Metals (ICP/MS)
37.26870	-107.88586 200.8 Metals (ICP/MS)
0	0 200.8 Metals (ICP/MS)
0	0 200.8 Metals (ICP/MS)
37.81120	300_ORGFM_28 D Anions, Ion Chromatograph y
37.81120	300_ORGFM_28 D Anions, Ion Chromatograph y
37.79027	300_ORGFM_28 D Anions, Ion Chromatograph y
37.79027	300_ORGFM_28 D Anions, Ion Chromatograph y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph y

37.81998	300_ORGFM_28 -107.66328 D Anions, Ion Chromatograph y
37.81998	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.22154	300_ORGFM_28 -107.85946 D Anions, Ion Chromatograph y
37.22154	300_ORGFM_28 -107.85946 D Anions, Ion Chromatograph y
37.22154	300_ORGFM_28 -107.85946 D Anions, Ion Chromatograph y
37.29480	300_ORGFM_28 -107.87003 D Anions, Ion Chromatograph y
37.29480	300_ORGFM_28 -107.87003 D Anions, Ion Chromatograph y
37.29480	300_ORGFM_28 -107.87003 D Anions, Ion Chromatograph y
37.26870	300_ORGFM_28 -107.88586 D Anions, Ion Chromatograph y
37.26870	300_ORGFM_28 -107.88586 D Anions, Ion Chromatograph y
37.26870	300_ORGFM_28 -107.88586 D Anions, Ion Chromatograph y

	200 ODCEM 20
	300_ORGFM_28 D Anions, Ion
0	0 Chromatograph
	У
	200.7 Metals
37.81120	-107.65917 (ICP)
37.81120	-107.65917 200.7 Metals
37.81120	-107.03917 (ICP)
37.81120	-107.65917 200.7 Metals
	(ICP)
37.81120	-107.65917 200.7 Metals
	(ICP)
37.79027	-107.66758 (ICP)
	200.7 Metals
37.79027	-107.66758 (ICP)
27.70027	107 cc750 200.7 Metals
37.79027	-107.66758 (ICP)
37.79027	-107.66758
37.73027	(ICP)
37.45413	-107.80160 (1992)
	(ICP)
37.45413	-107.80160 (ICP)
	200 7 Metals
37.45413	-107.80160 (ICP)
27 45412	107 001 co 200.7 Metals
37.45413	-107.80160 (ICP)
37.45413	-107.80160 (100)
37.43413	(ICP)
37.45413	-107.80160 200.7 Metals
	(ICP)
37.81998	-107.66328 (ICP)
	200.7 Metals
37.81998	-107.66328 (ICP)
27.04000	200.7 Metals
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (100)
37.01330	(ICP)
37.22154	-107.85946 (198)
	(ICP)
37.22154	-107.85946 (ICP)
	(ICF)

37.22154	-107 85946	200.7 Metals (ICP)
37.22154	-107 85946	200.7 Metals (ICP)
37.22154	-107 85946	200.7 Metals (ICP)
37.22154	-107 25946	200.7 Metals (ICP)
37.29480	-107.87003	200.7 Metals (ICP)
37.29480	-10 / 8 /003	200.7 Metals (ICP)
37.29480	-107.87003	200.7 Metals (ICP)
37.29480	-10 / 2 /003	200.7 Metals (ICP)
37.29480	-111/8/11113	200.7 Metals (ICP)
37.29480	= 111/ X /11113:	200.7 Metals (ICP)
37.26870	-107 88586	200.7 Metals (ICP)
37.26870	-107 88586	200.7 Metals (ICP)
37.26870	-107 88586	200.7 Metals (ICP)
37.26870	-107 88586	200.7 Metals (ICP)
37.26870	-10/XX5Xh	200.7 Metals (ICP)
37.26870	-107 88586	200.7 Metals (ICP)
0	11:	200.7 Metals (ICP)
0	() (200.7 Metals (ICP)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.81120	-111/6591/	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.81120	-111/6541/	200.8 Metals (ICP/MS)

37.79027	-111/ 66/58	200.8 Metals (ICP/MS)
37.79027	-107 66758	200.8 Metals (ICP/MS)
37.79027	-107 66 758	200.8 Metals (ICP/MS)
37.79027	-107 66758	200.8 Metals (ICP/MS)
37.45413	-107 20160	200.8 Metals (ICP/MS)
37.45413	-107 20160	200.8 Metals (ICP/MS)
37.45413	-107 20160	200.8 Metals (ICP/MS)
37.45413	-107 20160	200.8 Metals (ICP/MS)
37.45413	-10 / 20160	200.8 Metals (ICP/MS)
37.45413	-107 20160	200.8 Metals (ICP/MS)
37.81998	-111/66378	200.8 Metals (ICP/MS)
37.81998	-10766378	200.8 Metals (ICP/MS)
37.81998	-111/66378	200.8 Metals (ICP/MS)
37.81998	-10766378	200.8 Metals (ICP/MS)
37.22154	- III/ X594h	200.8 Metals (ICP/MS)
37.22154	-107.85946	200.8 Metals (ICP/MS)
37.22154	-111/ 859/16	200.8 Metals (ICP/MS)
37.22154	-107.85946	200.8 Metals (ICP/MS)
37.22154	-10 / 254/6	200.8 Metals (ICP/MS)
37.22154	-107.85946	200.8 Metals (ICP/MS)
37.29480	-111/X/IIIX	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)

37.29480	-107.87003 (ICP/MS)
37.29480	-107.87003 (ICP/MS)
37.29480	-107.87003 (ICP/MS)
37.29480	-107.87003 (ICP/MS)
37.26870	-107.88586 200.8 Metals (ICP/MS)
37.26870	-107.88586 200.8 Metals (ICP/MS)
37.26870	-107.88586 200.8 Metals (ICP/MS)
0	0 200.8 Metals (ICP/MS)
0	0 200.8 Metals (ICP/MS)
37.81120	-107.65917 200.7 Metals (ICP)
37.81120	-107.65917 200.7 Metals (ICP)
37.81120	-107.65917 200.7 Metals (ICP)
37.81120	-107.65917 (ICP)
37.79027	-107.66758 (ICP)
37.45413	-107.80160 (ICP)
37.45413 37.45413	-10780160

37.45413	-107.80160 200.7 Metals (ICP)
37.45413	-107.80160 200.7 Metals (ICP)
37.45413	-107.80160 200.7 Metals (ICP)
37.45413	-107.80160 200.7 Metals (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.29480	-107.87003 200.7 Metals (ICP)
37.29480	-107.87003 200.7 Metals (ICP)
37.29480	-107.87003 200.7 Metals (ICP)
37.29480	-107.87003 (ICP)
37.29480	-107.87003 (ICP)
37.29480	-107.87003 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 (ICP)

37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
0	0 200.7 Metals (ICP)
0	0 200.7 Metals (ICP)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 (ICP/MS)

-107 66378	200.8 Metals (ICP/MS)
-107 66378	200.8 Metals (ICP/MS)
-107 85946	200.8 Metals (ICP/MS)
-107 85946	200.8 Metals (ICP/MS)
-10/85946	200.8 Metals (ICP/MS)
-107 85946	200.8 Metals (ICP/MS)
-107 85946	200.8 Metals (ICP/MS)
-107 85946	200.8 Metals (ICP/MS)
-10787003	200.8 Metals (ICP/MS)
-107 8 7003	200.8 Metals (ICP/MS)
-107 87003	200.8 Metals (ICP/MS)
-111/ 88586	200.8 Metals (ICP/MS)
-107 88586	200.8 Metals (ICP/MS)
-10 / 88586	200.8 Metals (ICP/MS)
-107 88586	200.8 Metals (ICP/MS)
-107 88586	200.8 Metals (ICP/MS)
-107 88586	200.8 Metals (ICP/MS)
	200.8 Metals (ICP/MS)
0	200.8 Metals (ICP/MS)
	-107.66328 -107.66328 -107.85946 -107.85946 -107.85946 -107.85946 -107.85946 -107.87003 -107.87003 -107.87003 -107.87003 -107.87003 -107.88586 -107.88586 -107.88586 -107.88586 -107.88586

37.81120	-107.65917 245.1 Mercury (CVAA)
37.81120	-107.65917 245.1 Mercury (CVAA)
37.81120	-107.65917 245.1 Mercury (CVAA)
37.81120	-107.65917 245.1 Mercury (CVAA)
37.79027	-107.66758 245.1 Mercury (CVAA)
37.45413	-107.80160 245.1 Mercury (CVAA)
37.81998	-107.66328 245.1 Mercury (CVAA)
37.22154	-107.85946 245.1 Mercury (CVAA)

37.22154	-107.85946	245.1 Mercury (CVAA)
37.22154	-111/254/16	245.1 Mercury (CVAA)
37.29480	- (1) / X /(I)(3	245.1 Mercury (CVAA)
37.29480	-107/8/003	245.1 Mercury (CVAA)
37.29480	- 111/ 2/11/12	245.1 Mercury (CVAA)
37.29480	-107 X 7003	245.1 Mercury (CVAA)
37.29480	_111/ 2/11/12:	245.1 Mercury (CVAA)
37.29480	-107 X 7003	245.1 Mercury (CVAA)
37.26870	-111/ XX5Xh	245.1 Mercury (CVAA)
37.26870	-111/ XX5Xh	245.1 Mercury (CVAA)
37.26870	-111/ XX5Xh	245.1 Mercury (CVAA)
37.26870	- III/ XX \Xh	245.1 Mercury (CVAA)
37.26870	-111/ XX5Xh	245.1 Mercury (CVAA)
37.26870		245.1 Mercury (CVAA)
0	{ }	245.1 Mercury (CVAA)
0	0	245.1 Mercury (CVAA)
37.81120	-10765017	200.8 Metals (ICP/MS)
37.81120	-107 65917	200.8 Metals (ICP/MS)
37.81120	-111/6541/	200.8 Metals (ICP/MS)
37.81120	-111/6591/	200.8 Metals (ICP/MS)
37.79027	-107 66 758	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)

37.79027	-107.66758 (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.29480	-107.87003 (ICP/MS)

37.29480	-10787003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
37.81120	-111/6591/	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.81120	-111/6591/	200.8 Metals (ICP/MS)
37.81120	-107.65917	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)
37.79027	-111 / 66 /58	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)
37.45413	-10 / 20160	200.8 Metals (ICP/MS)
37.45413	_10 / 20160	200.8 Metals (ICP/MS)
37.45413	-107 80160	200.8 Metals (ICP/MS)
37.45413	-107.80160	200.8 Metals (ICP/MS)

37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.29480	-107.87003 (ICP/MS)
37.26870	-107.88586 (ICP/MS)

37.26870	-111/ 22526	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
37.81120	-107.65917	300_ORGFMS Anions, Ion Chromatograph Y
37.81120	-107.65917	300_ORGFMS Anions, Ion Chromatograph Y
37.79027	-107.66758	300_ORGFMS Anions, Ion Chromatograph Y
37.79027	-107.66758	300_ORGFMS Anions, Ion Chromatograph Y
37.45413	-107.80160	300_ORGFMS Anions, Ion Chromatograph Y
37.45413	-107.80160	300_ORGFMS Anions, Ion Chromatograph Y
37.45413	-107.80160	300_ORGFMS Anions, Ion Chromatograph Y
37.81998	-107.66328	300_ORGFMS Anions, Ion Chromatograph Y
37.81998	-107.66328	300_ORGFMS Anions, Ion Chromatograph Y

37.22154	-107.85946	300_ORGFMS Anions, Ion Chromatograph Y
37.22154	-107.85946	300_ORGFMS Anions, Ion Chromatograph y
37.22154	-107.85946	300_ORGFMS Anions, Ion Chromatograph y
37.29480	-107.87003	300_ORGFMS Anions, Ion Chromatograph y
37.29480	-107.87003	300_ORGFMS Anions, Ion Chromatograph y
37.29480	-107.87003	300_ORGFMS Anions, Ion Chromatograph y
37.26870	-107.88586	300_ORGFMS Anions, Ion Chromatograph y
37.26870	-107.88386	300_ORGFMS Anions, Ion Chromatograph y
37.26870	-107.88586	300_ORGFMS Anions, Ion Chromatograph y
0	0	300_ORGFMS Anions, Ion Chromatograph y
37.81120	-107.65917	SM4500_H+ pH
37.81120		SM4500_H+ pH
37.79027		SM4500_H+ pH
37.79027		 SM4500_H+ pH
37.45413	-107.80160	SM4500_H+ pH

37.45413	-107.80160 SM4500_H+ pl	*/***
37.45413	-107.80160 SM4500_H+ pl	
37.81998	-107.66328 SM4500_H+ pl	
37.81998	-107.66328 SM4500_H+ pl	
37.22154	-107.85946 SM4500_H+ pl	Н
37.22154	-107.85946 SM4500_H+ pl	Н
37.22154	-107.85946 SM4500_H+ pl	Н
37.29480	-107.87003 SM4500_H+ pl	Н
37.29480	-107.87003 SM4500_H+ pl	H
37.29480	-107.87003 SM4500_H+ pl	
37.26870	-107.88586 SM4500_H+ pl	Н
37.26870	-107.88586 SM4500_H+ pl	Н
37.26870	-107.88586 SM4500_H+ pl	Н
0	0 SM4500_H+ pl	Н
37.81120	-107.65917 200.7 Metals (ICP)	
37.79027	-107.66758 200.7 Metals (ICP)	
37.45413	-107.80160 200.7 Metals (ICP)	
37.81998	-107.66328 200.7 Metals (ICP)	

-107.66328 (ICP)
-107.66328 200.7 Metals (ICP)
-107.66328 200.7 Metals (ICP)
-107.85946 (ICP)
-107.85946 (ICP)
-107.87003 200.7 Metals (ICP)
-107.87003 200.7 Metals (ICP)
-107.87003 200.7 Metals (ICP)
-107.87003 200.7 Metals (ICP)
-107.87003 200.7 Metals (ICP)
-107.87003 200.7 Metals (ICP)
-107.88586 200.7 Metals (ICP)
-107.88586 200.7 Metals (ICP)
-107.88586 200.7 Metals (ICP)
-107.88586 200.7 Metals (ICP)
-107.88586 200.7 Metals (ICP)
-107.88586 200.7 Metals (ICP)
0 (ICP)

0	0 (ICP)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.79027	-107.66758 (ICP/MS)
37.45413	-107.80160 (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 (ICP/MS)

37.22154	-111/X594h	200.8 Metals (ICP/MS)
37.22154	-107 250/6	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-10 / 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-111/ 88586	200.8 Metals (ICP/MS)
37.26870	-111/ 88586	200.8 Metals (ICP/MS)
37.26870	-111/ XX5Xh	200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
0		200.8 Metals (ICP/MS)
37.81120	-107 65917	200.8 Metals (ICP/MS)
37.81120	-10 / 6591 /	200.8 Metals (ICP/MS)
37.81120	-111/6591/	200.8 Metals (ICP/MS)
37.81120	-10/6591/	200.8 Metals (ICP/MS)
37.79027	-107.66758	200.8 Metals (ICP/MS)

37.79027 -107.66758 (ICP/MS) 37.79027 -107.66758 (ICP/MS) 37.79027 -107.66758 (ICP/MS) 37.45413 -107.80160 (ICP/MS) 37.81998 -107.66328 (ICP/MS) 37.81998 -107.85946 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS)		
37.79027 -107.66758 (ICP/MS) 37.79027 -107.66758 (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.81998 -107.66328 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.79027	- III / hh /5X
37.45413 -107.80160 200.8 Metals (ICP/MS) 37.81998 -107.80160 200.8 Metals (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.79027	-10766758
37.45413 -107.80160 (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.22154 -107.85946 200.8 Metals (ICP/MS) 37.22154 -107.85946 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.79027	-10 / 66 /58
37.45413 -107.80160 (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS)	37.45413	-107 20160
37.45413 -107.80160 (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.81998 -107.66328 (ICP/MS) 37.81998 -107.66328 (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS)	37.45413	-10780160
37.45413 -107.80160 (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.45413 -107.80160 200.8 Metals (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.81998 -107.66328 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS)	37.45413	-107 80160
37.45413 -107.80160 (ICP/MS) 37.45413 -107.80160 (ICP/MS) 37.81998 -107.66328 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS)	37.45413	-10780160
37.45413 -107.80160 (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.45413	-107 80160
37.81998 -107.66328 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 200.8 Metals (ICP/MS)	37.45413	-107 QO160
37.81998 -107.66328 (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.81998 -107.66328 200.8 Metals (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.81998	-107 66328
37.81998 -107.66328 (ICP/MS) 37.81998 -107.66328 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.81998	-10766378
37.81998 -107.66328 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.81998	-10766328
37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.81998	-10766378
37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.22154	-107 859//6
37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.22154	_111/ X5U/Ib:
37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.22154	-111/ 85926
37.22154 -107.85946 (ICP/MS) 37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals (ICP/MS)	37.22154	-10/859/6
37.22154 -107.85946 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals	37.22154	-111/X594h
37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals	37.22154	-107 Q5Q/A
37.29480 -107.87003 (ICP/MS) 37.29480 -107.87003 200.8 Metals	37.29480	-1()/×/()()3
3 / JU/XII = III / X /III 3	37.29480	-10 / 8 /003
	37.29480	-111/X/IIII

37.29480	- 111/ 2/11/12	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	_107 99596	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
0	1)	200.8 Metals (ICP/MS)
37.81120	-10765917	200.7 Metals (ICP)
37.81120	-107 65917	200.7 Metals (ICP)
37.81120	-107 65917	200.7 Metals (ICP)
37.81120	-111/6591/	200.7 Metals (ICP)
37.79027	-111/ 66/58	200.7 Metals (ICP)
37.79027	-107 66758	200.7 Metals (ICP)
37.79027	-107 66 758	200.7 Metals (ICP)
37.79027	-107 66 758	200.7 Metals (ICP)
37.45413	-107 80160	200.7 Metals (ICP)
37.45413	-107 20160	200.7 Metals (ICP)
37.45413	-107.80160	200.7 Metals (ICP)

37.45413	-107.80160 200.7 Metals (ICP)
37.45413	-107.80160 200.7 Metals (ICP)
37.45413	-107.80160 200.7 Metals (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 (ICP)
37.81998	-107.66328 200.7 Metals (ICP)
37.81998	-107.66328 200.7 Metals (ICP)
37.22154	-107.85946 200.7 Metals (ICP)
37.29480	-107.87003 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 200.7 Metals (ICP)
37.26870	-107.88586 (ICP)

	200 7 Matala
37.26870	-107.88586 (ICP)
37.26870	-107.88586 (ICP)
37.26870	-107.88586 (ICP)
0	$0\frac{200.7 \text{ Metals}}{(\text{ICP})}$
0	0 (ICP)
37.81120	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.81120	300_ORGFM_28 D Anions, Ion Chromatograph y
37.79027	300_ORGFM_28 D Anions, Ion Chromatograph y
37.79027	300_ORGFM_28 D Anions, Ion Chromatograph y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.45413	300_ORGFM_28 D Anions, Ion Chromatograph y
37.81998	300_ORGFM_28 D Anions, Ion Chromatograph y

37.81998	-107.66328	300_ORGFM_28 D Anions, Ion Chromatograph y
37.22154	-107.85946	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.22154	-107.85946	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.22154	-107.85946	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.29480	-107.87003	300_ORGFM_28 D Anions, Ion Chromatograph y
37.29480	-107.87003	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.29480	-107.87003	300_ORGFM_28 D Anions, Ion Chromatograph y
37.26870	-107.88586	300_ORGFM_28 D Anions, Ion Chromatograph y
37.26870	-107.88586	300_ORGFM_28 D Anions, Ion Chromatograph Y
37.26870	-107.88586	300_ORGFM_28 D Anions, Ion Chromatograph y
0	0	300_ORGFM_28 D Anions, Ion Chromatograph Y

37.81120	-107.65917 (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.22154	-107.85946 (ICP/MS)

37.22154	-107.85946	200.8 Metals (ICP/MS)
37.22154	-107.85946	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)
37.26870	-107.88586	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
37.81120	-107.65917	SM2340B Total Hardness (as CaCO3) by calculation
37.81120	-107.65917	SM2340B Total Hardness (as CaCO3) by calculation
37.79027	-107.66758	SM2340B Total Hardness (as CaCO3) by calculation

37.79027	SM2340B Total Hardness (as CaCO3) by calculation
37.45413	SM2340B Total Hardness (as CaCO3) by calculation
37.45413	SM2340B Total Hardness (as CaCO3) by calculation
37.45413	SM2340B Total Hardness (as CaCO3) by calculation
37.81998	SM2340B Total Hardness (as CaCO3) by calculation
37.81998	SM2340B Total Hardness (as CaCO3) by calculation
37.22154	SM2340B Total Hardness (as CaCO3) by calculation
37.22154	SM2340B Total Hardness (as CaCO3) by calculation
37.22154	SM2340B Total Hardness (as CaCO3) by calculation
37.29480	SM2340B Total Hardness (as CaCO3) by calculation
37.29480	SM2340B Total Hardness (as CaCO3) by calculation

SM2340B Total Hardness (as CaCO3) by calculation
SM2340B Total Hardness (as CaCO3) by calculation
SM2340B Total Hardness (as CaCO3) by calculation
SM2340B Total Hardness (as CaCO3) by calculation
SM2340B Total OHardness (as CaCO3) by calculation
-107.65917 200.8 Metals (ICP/MS)
-107.66758 200.8 Metals (ICP/MS)
-107.80160 200.8 Metals (ICP/MS)
-107.80160 200.8 Metals (ICP/MS)
-107.80160 200.8 Metals (ICP/MS)
200.8 Metals

37.45413	-107.80160 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 200.8 Metals (ICP/MS)
37.22154	-107.85946 200.8 Metals (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.22154	-107.85946 (ICP/MS)
37.29480	-107.87003 ^{200.8} Metals (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.29480	-107.87003 200.8 Metals (ICP/MS)
37.26870	-107.88586 (ICP/MS)

37.26870	-107.88586 (ICP/MS)
37.26870	-107.88586 200.8 Metals (ICP/MS)
0	0 ^{200.8} Metals (ICP/MS)
0	0 200.8 Metals (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 200.8 Metals (ICP/MS)
37.81120	-107.65917 (ICP/MS)
37.79027	-107.66758 200.8 Metals (ICP/MS)
37.45413	-107.80160 200.8 Metals (ICP/MS)
37.81998	-107.66328 200.8 Metals (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 (ICP/MS)
37.81998	-107.66328 (ICP/MS)

37.22154	-107.85946	200.8 Metals (ICP/MS)
37.22154	-107 250/6	200.8 Metals (ICP/MS)
37.22154	-107 85946	200.8 Metals (ICP/MS)
37.22154	-107 250/6	200.8 Metals (ICP/MS)
37.22154	-10/85946	200.8 Metals (ICP/MS)
37.22154	-10 / 25946	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)
37.29480	-10787003	200.8 Metals (ICP/MS)
37.29480	-10 / 8 /003	200.8 Metals (ICP/MS)
37.29480	-107.87003	200.8 Metals (ICP/MS)
37.29480	-107 87003	200.8 Metals (ICP/MS)
37.26870	-10 / 88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-111/ 88586	200.8 Metals (ICP/MS)
37.26870	-107.88586	200.8 Metals (ICP/MS)
37.26870	-107 88586	200.8 Metals (ICP/MS)
37.26870	-107.88586	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)
0	0	200.8 Metals (ICP/MS)