Functional Encryption

Ratna Dutta

Associate Professor

DEPARTMENT OF MATHEMATICS

Indian Institute of Technology, Kharagpur

ACM Summer School on Cryptology Research, ISI-Kolkata June 4-22, 2018

Public Key Encryption (PKE)

• A conventional public-key encryption scheme is comprised of two randomized algorithms **Keygen**, **Enc** and a deterministic algorithm **Dec**. Let \mathcal{M} and \mathcal{C} are the message and ciphertext space, respectively.

$$(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Keygen}(1^{\rho})$$

$$c \leftarrow \mathsf{Enc}(\mathsf{pk}, m), m \in \mathcal{M}$$

$$m \leftarrow \mathsf{Dec}(\mathsf{sk}, c)$$

• Correctness: $\forall \rho, \forall m \in \mathcal{M}$ $\Pr[(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Keygen}(1^{\rho}) : \mathsf{Dec}(\mathsf{sk}, \mathsf{Enc}(\mathsf{pk}, m)) = m] = 1$

Drawback:

• Decryption is "all" or "nothing" affair!

Homomorphic Encryption (HE)

- Let the message space (G, \circ) be a group and \mathcal{C} be ciphertext space.
- A homomorphic public-key encryption scheme consists of algorithms **Keygen**, **Enc**, **Dec** and **Eval**.

$$(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Keygen}(1^{
ho})$$
 $c \leftarrow \mathsf{Enc}(\mathsf{pk}, m), m \in G$ $m \leftarrow \mathsf{Dec}(\mathsf{sk}, c)$ $\psi \leftarrow \mathsf{Eval}(\mathsf{pk}, f, c_1, c_2, \dots, c_t), c_i = \mathsf{Enc}(\mathsf{pk}, m_i),$ $m_i \in G, 1 \leq i \leq t$

- Correctness: For any key pair $(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Keygen}(1^{\rho})$, if $f(m_1, m_2, \dots, m_t) = m_1 \circ m_2 \circ \dots \circ m_t$, $c_i = \mathsf{Enc}(\mathsf{pk}, m_i)$, $\forall m_i \in G \text{ and } \psi \leftarrow \mathsf{Eval}(\mathsf{pk}, f, c_1, c_2, \dots, c_t)$, then $\mathsf{Pr}[\mathsf{Dec}(\mathsf{sk}, \psi) \neq f(m_1, m_2, \dots, m_t) \text{ is negligible.}$
- i.e. $\psi = \mathsf{Enc}(\mathsf{pk}, f(m_1, m_2, \dots, m_t))$

- If G is an additive group, then the scheme is called additively homomorphic.
- \bullet If G is a multiplicative group, then the scheme is called multiplicatively homomorphic.

- f is + operator, $c_1 = \mathsf{Enc}(\mathsf{pk}, m_1)$ and $c_2 = \mathsf{Enc}(\mathsf{pk}, m_2)$ $\mathsf{Eval}(\mathsf{pk}, f, c_1, c_2) = \mathsf{Enc}(\mathsf{pk}, f(m_1, m_2)) =$ $\mathsf{Enc}(\mathsf{pk}, m_1 + m_2)$
- Homomorphic encryption allows untrusted remote servers to perform computation on encrypted data without the data being compromised.
- This in turn facilitates outsourcing computation to untrusted servers maintained by service providers such as Dropbox, Rackspace Inc., Amazon, VMware.

Partially homomorphic cryptosystems

- Goldwasser-Micali, Bresson-Catalano-Pointcheval, Camenisch-Shoup cryptosystems are additively homomorphic
- RSA, ElGamal, Boneh-Boyen-Shacham encryption schemes are multicatively homomorphic
- Paillier cryptosystem exhibits more homomorphic properties

Fully homomorphic encryption (FHE)

- Generally speaking, FHE makes it possible to compute an encryption of f(m) for some arbitrary function f, without knowing the private key.
- The result f(m) of the computation remains encrypted and can only be decrypted by the party holding the private key sk.
- Delegate PROCESSING of data without giving ACCESS of it.
- Supports arbitrary computation on ciphertexts.

- FHE is first realised from lattices by Gentry in 2009
- Many improved variants have appeared in the literature following this work, all based on lattices
- Examples: Brakerski-Vaikuntanathan (2014), Gentry-Sahai-Waters (2013), Smart-Vercauteren (2010)

- Lattice based cryptographic constructions are potential candidates for the post-quantum era as they offer
 - apparent resistance to quantum attacks
 - security under worst-case intractability assumptions
 - efficient parallel computations
 - homomorphic computations

Applications of HE

- Commitment schemes
- Multiparty computation
- Election schemes
- Oblivious transfer
- Lottery protocols
- Data aggregation in wireless sensor networks

Use of Homomorphic property in Cloud computing

- Alice stores her encrypted file on Bob's Server.
- She wants to do some computation on her file.
- Alice asks Bob to perform the computation on encrypted data.
- Bob gives her an encrypted answer of her query.
- Alice uses her secret key and decrypt the answer to recover the message.

Drawback:

• Interaction with Bob!

Functional Encryption (FE)

(Delegates decryption capabilities)

Functional Encryption (FE)

ifEval $(SK_{SpamFilter}, c) = True$ then "Move to the Spam Folder"

Advantages

- Decryption does not require interaction with Bob!
- Fine-Grained Access Control of Decryption Capabilities!

FE: Credit Card Transaction Alert

• Credit Card Tranaction Alert (SK_{Alert})

$$if$$
Eval(SK_{Alert}, c) = True
 $then$ "Fire an Alarm"

Alert: Transactions over Rs. 1.0 Lakhs

FE: Credit Card Fraud Investigation

• Credit Card Fraud Investigation ($SK_{f_{Auditing}}$)

$$if$$
Eval $(SK_{f_{Auditing}}, c) = True$
 $then$ "Fire an Alarm"

 f_{Auditing} : Transactions over Rs. 1.0 Lakhs which took place in November and originated from Kolkata.

FE: Online dating

Bob has specific attributes and will receive a secret key that can only decrypt profiles for which the attributes match the dating preferences.

FE: Online dating

• profile m is encrypted under the dating preferences (access structure) W = [Age > 35 and Education = PhD or Height > 180)]

FE: Online dating - Collusion Resistance

- profile m is encrypted under the dating preferences (access structure) W = [Age > 35 and (Education = PhD or Height > 180)]
- primitive should withstand collusion attack

Current Lines of Work

- Efficient functional encryption for access control
- Functional encryption for all circuits
- Efficient constructions for expressive functionalities

FE: Definition

A Functional Encryption (FE) scheme for the functionality \mathcal{F} consists of the following algorithms:

$$(\mathsf{mpk}, \mathsf{msk}) \longleftarrow \mathsf{Setup}(1^{\lambda}, \mathcal{F})$$
 $\mathsf{SK}_f \longleftarrow \mathsf{KeyDer}(\mathsf{msk}, f)$
 $\mathsf{CT} \longleftarrow \mathsf{Enc}(\mathsf{mpk}, m)$
 $f(m) \longleftarrow \mathsf{Dec}(\mathsf{SK}_f, \mathsf{CT})$

Examples of Functionalities

- (Hierarchical) Identity-Based Encryption
- Fuzzy Identity-Based Encryption
- Attribute-Based Encryption
- Predicate Encryption etc.

Identity-Based Encryption (IBE)

Generalized Hierarchical IBE (HIBE)

Functional Encryption: Security (Intuition)

- Secret keys $\mathsf{SK}_{f_1}, \ldots, \mathsf{SK}_{f_l}$ should only reveal $f_1(m), \ldots, f_l(m)$ when given an encryption of m.
- Indistinguishibility-based security meaningless for certain class of functions
- Simulation-based security (strongest) impossible to achieve for certain class of functions

Indistinguishability-Based Security

- Adversary sends two challenge ciphertexts x_0, x_1 and receives back encryption of $x_\beta, \beta \in \{0, 1\}$
- Adversary wins the game if its final output β' matches with β , and for all f, $f(x_0) = f(x_1)$ hold.

The adversary wins if $\beta = \beta'$ and $\forall f, f(x_0) = f(x_1)$

Simulation-Based Security

(Real world)

- uses real/ideal world paradigm
- output α of the ideal world is computationally indistinguishable from the output α in the real world

Simulation-Based Security (Ideal world)

	Eval	uation	X
--	------	--------	---

	Test	Quiz	Project	
Oscar	74	95	100	(82.9
Recherd	100	85	50	(0)
Charlie	40	78	30	(95.35)

$$C_x = Enc(mpk, x)$$

IP-FE: Functionality

- $\bullet \mathcal{F}: Z_p^l \times Z_p^l \to Z_p$ $(y, x) \to \langle y, x \rangle$
- Secret key for $y \in Z_p^l$: $SK_y = KeyDer(msk, y)$
- Ciphertext for $x \in \mathbb{Z}_p^l$: $\mathsf{CT}_x = \mathsf{Enc}(\mathsf{mpk}, x)$
- Correctness: $Dec(SK_y, CT_x) = \langle y, x \rangle$

Functionality Properties

- Several applications
- Easy to compute only need additions if one vector is known
- Still non-trivial keyspace size is $\sim q^l$
- $\langle x, y \rangle$ leaks a lot of information about x
- l well chosen secret keys reveal everything

IP-FE from ElGamal

• ElGamal Encryption:

$$\begin{aligned} \mathsf{pk} &= (G,g,h = g^s) \\ \mathsf{sk} &= s \\ \mathsf{Enc}(\mathsf{pk},x) &= c = (c_0 = g^r,c_1 = h^r g^x) \\ \mathsf{Dec}(\mathsf{sk},c) &= c_1/(c_0)^{\mathsf{sk}} = h^r g^x/g^{rs} = h^r g^x/h^r = g^x \end{aligned}$$

• Decisional Diffie-Hellman (DDH) Assumption:

$$(g, g^a, g^b, g^{ab} \sim_c (g, g^a, g^b, g^c)$$

IP-FE from ElGamal

• Setup(*l*):

$$\mathsf{mpk} = (G, g, h_1 = g^{s_1}, h_2 = g^{s_2}, \dots, h_l = g^{s_l})$$
 $\mathsf{msk} = (s_1, s_2, \dots, s_l)$

• Encrypt(mpk, $x = (x_1, x_2, \dots, x_l)$)

$$\mathsf{CT}_x = (C_0 = g^r, C_1 = h_1^r g^{x_1}, C_2 = h_2^r g^{x_2}, \dots, C_l = h_l^r g^{x_l})$$

• KeyDer(msk, $y = (y_1, y_2, ..., y_l)$):

$$\mathsf{SK}_y = \sum_{i \in [l]} s_i y_i$$

• Decrypt(SK_y , CT_x):

$$\prod_{i \in [l]} (C_i)^{y_i} = \prod_{i \in [l]} (h_i^r g^{x_i})^{y_i} = \prod_{i \in [l]} (g^{s_i})^{y_i r} g^{x_i y_i}
= g^{r(\sum_{i \in [l]} s_i y_i)} g^{(\sum_{i \in [l]} x_i y_i)}
= (C_0)^{\mathsf{SK}_y} g^{\langle x, y \rangle}$$

where

$$y = (y_1, y_2, \dots, y_l), \mathsf{SK}_y = \sum\limits_{i \in [l]} s_i y_i$$

$$\mathsf{CT}_x = (C_0 = g^r, C_1 = h_1^r g^{x_1}, C_2 = h_2^r g^{x_2}, \dots, C_l = h_l^r g^{x_l})$$

Multi-Input Functional Encryption (MI-FE)

- Extension to multi-input functions: $f(x_1, \ldots, x_n)$
- Several encryption slots: $\mathsf{Enc}(x_1), \ldots, \mathsf{Enc}(x_n)$
- Each slot can be encrypted independently
- SK_f enables to compute $f(x_1,\ldots,x_n)$
- Several feasibility results for general circuits

(MI-FE)

- $\bullet \ \mathcal{F} : (Z_p^l)^n \times (Z_p^l)^n \to Z_p$
- $((\vec{y}_1,\ldots,\vec{y}_n),(\vec{x}_1,\ldots,\vec{x}_n)) \to \Sigma_{j=1}^n \langle \vec{y}_j,\vec{x}_j \rangle$
- Secret key for $\vec{y} = (\vec{y}_1, \dots, \vec{y}_n) \in (Z_p^l)^n$: $\mathsf{SK}_{\vec{y}} = \mathsf{KeyDer}(\mathsf{msk}, \vec{y})$
- Ciphertext for $\vec{x} = (\vec{x}_1, \dots, \vec{x}_n) \in (Z_p^l)^n$: $\mathsf{CT}_{\vec{x}} = \mathsf{Enc}(\mathsf{mpk}, \vec{x})$
- Correctness: $\mathsf{Dec}(\mathsf{SK}_{\vec{y}},\mathsf{CT}_{\vec{x}}) = \Sigma_{i=1}^n \langle \vec{y}_i, \vec{x}_j \rangle$

Other Extensions

- Function-hiding IP-FE
- Fully secure IP-FE
- 2-input IP-FE from pairings
- Quadratic functions from pairings (in contrast to inner product which is linear function)
- *n*-degree functions from *n*-linear maps

Conclusion

- FE can be practical!
- Several extensions:
 - Functionalities: function hiding, multi-input, higher degrees
 - Assumptions: DDH, High residuosity, LWE
- Leakage should be considered more carefully

- FE has already proven useful in constructing
 - strong exponentially-efficient indistinguishibility obfuscation (SXIO)
 - randomized encoding for Turing machines
 - indistinguishibility obfuscation (IO) without multilinear maps and many more

Some open questions

- High degree polynomials from standard assumptions (e.g. LWE)
- Randomized functionalities from standard assumptions

Thank You.