Cryptography (5830)

Overview of reduction argument for CTR[E] Block cipher history
Feistel and DES
Differential cryptanalysis
AES high level

Block ciphers

Family of permutations, one permutation for each key

$$E: \{0,1\}^k \times \{0,1\}^n \longrightarrow \{0,1\}^n$$

Use notation $E(K,X) = E_K(X) = Y$ Define inverse $D(K,Y) = D_K(Y) = X$ such that $D_K(E_K(X)) = X$ E,D must be efficiently computable

Key generation: pick K uniformly at random from $\{0,1\}^k$

Nowadays $k \ge 128$

CTR[E] encryption

Output IV || C

CTR-mode SE scheme

CTR[E] (counter-mode using block cipher E) is the following scheme:

Kg():

 $K < -\$ \{0,1\}^k$

Pick a random key

Enc(K,M):

```
L <- |M|; m <= ceil(L/n)

IV <-$ \{0,1\}^n

P <- trunc<sub>L</sub>(E_K(IV \oplus 1) \parallel \cdots \parallel E_K(IV \oplus m))

Return (IV, P \oplus M)
```

trunc_L() outputs first L bits of input

Dec(K,(IV,C)):

$$\begin{split} &L <- |C| \; ; \; m <= ceil(L/n) \\ &P <- E_K(IV \oplus 1) \parallel \cdots \parallel trunc(E_K(IV \oplus m)) \\ &Return \; (IV, P \oplus C \;) \end{split}$$

Assume ciphertext can be parsed into IV and remaining ciphertext bits

CTR mode using stream cipher abstraction

CTR[E] (counter-mode using block cipher E) is the following scheme:

Kg():

 $K < -\$ \{0,1\}^k$

Pick a random key

Enc(K,M):

L <- | M |

 $IV < -\$ \{0,1\}^n$

P <- G(K,IV,L)

Return (IV, $P \oplus M$)

Dec(K,(IV,C)):

L <- |C|

P <- G(K,IV,L)

Return (IV, $P \oplus C$)

Assume ciphertext can be parsed into IV and remaining ciphertext bits

Reduction-based security analysis

Goal: show that if stream cipher is secure, then encryption is secure

Reduces security analysis task to analyzing block cipher

Confidence in block cipher security gives confidence in scheme's security

Two-step proof game plan

Goal: show break against CTR[E] implies break against E

 (t'', q, ϵ'') -pseudorandom function security of E

Breaking CTR[E] Breaking G

IND(SE, A): $(st,M_0,M_1) < -\$ A_1$ $K < -\$ Kg ; b < -\$ \{0,1\}$ $C <-\$ Enc(K,M_b)$ b' <-\$ A_2 (st, C) Return (b = b')

$$Pr[IND(SE, A) = 1] = 1/2 + \epsilon$$

$\mathcal{B}(IV,P)$: $(st,M_0,M_1) <-\$ A_1$ b <-\$ {0,1} b' <-\$ \mathcal{A}_2 (st, IV, $M_h \oplus P$) If (b = b') then Return 1 Return 0

 \mathcal{B} runs in time that of ${\cal A}$ plus small overhead

PRG1(G,L, \mathcal{B}): K <-\$ Kg $IV < -\$ \{0,1\}^n$

P <- G(K,IV,L)

 $d < -\$ \mathcal{B} (IV,P)$

Return d

PRG0(G,L,
$$\mathcal{B}$$
):

K <-\$ Kg

 $IV < -\$ \{0,1\}^n$

 $P < -\$ \{0,1\}^{L}$

 $d <- $\mathcal{B}(IV,P)$

Return d

$$\epsilon'$$
 = | Pr[PRG1(G,L, \mathcal{B}) = 1] - Pr[PRG0(G,L, \mathcal{B}) = 1] |

$$\begin{aligned} & \text{Pr}[\text{PRG1}(\text{G},\text{L},\mathcal{B}) = 1] = \text{Pr}[\text{IND}(\text{SE},\mathcal{A}) = 1] \\ & \text{Pr}[\text{PRG0}(\text{G},\text{L},\mathcal{B}) = 1] = \text{Pr}[\text{b} = \text{b}'] = 1/2 \end{aligned}$$

$$\epsilon' = \Pr[IND(SE, A) = 1] - 1/2$$

= $\epsilon + 1/2 - 1/2$
= ϵ

If A can learn anything about message encrypted, then G's output is not random-looking

Breaking G Breaking E

PRG1(G,L, \mathcal{B}):

$$IV < -\$ \{0,1\}^n$$

$$d < -\$ \mathcal{B} (IV,P)$$

Return d

PRG0(G,L, \mathcal{B}):

$$IV < -\$ \{0,1\}^n$$

$$P < -\$ \{0,1\}^{L}$$

$$d < -\$ \mathcal{B} (IV,P)$$

Return d

PRF1(E, C):

$$K < -\$ \{0,1\}^k$$

$$b' < -$ C^{E_K}()$$

Return b'

PRF0(E, C):

$$b' < -$ CF ()$$

Return b'

$$\epsilon'$$
 = | Pr[PRG1(G,L, \mathcal{B}) = 1] - Pr[PRG0(G,L, \mathcal{B}) = 1] |

$$\epsilon'' = | Pr[PRF1(E,C) = 1] - Pr[PRF0(E,C) = 1] |$$

C o:

$$IV < -\$ \{0,1\}^n$$

$$P = trunc_{L}(O(IV \oplus 1) \parallel \cdots \parallel O(IV \oplus m))$$

$$b' <- \$ \mathcal{B}(IV, P)$$

Return b'

$$Pr[PRF1(G,L,C) = 1] = Pr[PRG1(SE,\mathcal{B}) = 1]$$

 $Pr[PRF0(G,L,C) = 1] = Pr[PRG0(SE,\mathcal{B}) = 1]$

$$\epsilon'' = \epsilon'$$

C runs in time that of $\mathcal B$ plus small overhead C makes m queries to O

If G's output is not random-looking, then blockcipher's output not random-looking

Two-step proof game plan

Goal: show break against CTR[E] implies break against E

Reduces security analysis task to analyzing block cipher

Confidence in block cipher security gives confidence in scheme's security

Two-step proof game plan

Goal: show break against CTR[E] implies break against E

 (t'', q, ϵ'') -pseudorandom function security of E

Reduces security analysis task to analyzing block cipher

Confidence in block cipher security gives confidence in scheme's security

Blockcipher History

- DES (under name Lucifer) designed by IBM in 1970s
- NIST standardized it
 - NSA evaluated it and made suggested changes to shorten key length to 56 bits and other slight changes
 - Many public criticisms of these changes, though some changes actually strengthened DES against differential cryptanalysis
- AES competition run by NIST (1997-2000)
 - Many good submissions (15 total submissions)
 - Rijndael (Rijmen & Daemon) chosen as winner

Data encryption standard (DES)

Originally called Lucifer

- team at IBM
- input from NSA
- standardized by NIST in 1976

n = 64

Number of keys:

k = 56

72,057,594,037,927,936

Split 64-bit input into L0,R0 of 32 bits each Repeat Feistel round 16 times

Each round applies function F using separate round key

Round functions in DES

Attacking DES with brute-force

Attacker given $C = DES_K(M)$ for some known M

How can attacker recover K?

BruteForceAttack(M,C):

For i = 1 to 2^{56} do

 $C \leftarrow DES_{K[i]}(M)$

If C = M then Return K[i]

Small chance that we get "false positive": $K[i] \neq K \text{ s.t. DES}_{K[i]}(M) = C$

Low probability event.

Can reduce probability further if given multiple input-output examples

Lesson: Security of block cipher never better than # of possible keys 2^k

Cryptanalysis tries to give attacks much faster than 2k

Differential cryptanalysis

Idea: find non-uniform behavior of S-boxes under two different inputs

Specific input pairs X1,X2 s.t. $X1 \oplus X2 = X^*$

$$S(X1) = Y1$$
 $S(X2) = Y2$

What values $Y^* = Y1 \oplus Y2$ can arise?

Input X1	Input X2	Y* = Y1 ⊕ Y2	
000000	001010	1101	
001010	110101	1101	$2^6 = 64$
			rows
101001	100111	0000	

For real S-boxes, we find repeat Y* in table Say 1101 only appears in first two rows

Specific input pairs X1,X2 s.t.

$$X1 \oplus X2 = X^*$$

$$S(X1) = Y1$$
 $S(X2) = Y2$

What values $Y^* = Y1 \oplus Y2$ can arise?

Input X1	Input X2	Y* = Y1 ⊕ Y2	
000000	001010	1101	$2^6 = 64$
001010	110101	1101	
			rows
101001	100111	0000	

For real S-boxes, we find repeat Y* in table Say 1101 only appears in first two rows

Differential cryptanalysis

Can extend analysis of individual S-box to round function, then to multiple rounds

"Differential trails" track probability of seeing differences at intermediate values

Query many input-output differential pairs to narrow down probable keys

Breaks many weaker ciphers. For DES it is only a theoretical attack, requring 2⁴⁷ pairs

Best attacks against DES

Attack	Attack type	Complexity	Year
Biham, Shamir	Chosen plaintexts, recovers key	2 ⁴⁷ plaintext, ciphertext pairs	1992
DESCHALL	Brute-force attack	2 ^{56/4} DES computations 41 days	1997
EFF Deepcrack	Brute-force attack	~4.5 days	1998
Deepcrack + DESCHALL	Brute-force attack	22 hours	1999

- DES is still used in some places
- 3DES (use DES 3 times in a row with more keys) expands keyspace and still used widely in practice

Advanced Encryption Standard (AES)

Rijndael (Rijmen and Daemen)

n = 128

k = 128, 192, 256

Number of keys for k=128: 340,282,366,920,938,463,463,374,607,431,768,211,456

Substitution-permutation design. For k=128 uses 10 rounds of:

1) Permute:

SubBytes (non-linear S-boxes)
ShiftRows + MixCols (invertible linear transform)

2) XOR in a round key derived from K

(Actually last round skips MixCols)

Best attacks against AES

Brute-force attack (try all keys): worst case time about 2¹²⁸

Attack	Attack type	Complexity	Year
Bogdanov, Khovratovich, Rechberger	chosen ciphertext, recovers key	2 ^{126.1} time + some data overheads	2011

No direct attacks of practical interest known

Effective side-channel attacks do exist, need to implement very carefully

OpenSSL (underlying cryptography.io) does pretty good job

Recap

- Can formally reduce CTR mode security to block cipher security
- Block ciphers
 - DES is based on Feistel network
 - AES based on substitution-permutation network
 - Confidence in blockcipher security via cryptanalysis
 - Differential cryptanalysis widely used tool
 - Modern ciphers (including AES) designed to withstand differential cryptanalysis