

Introduction to examination project

Examination project

Project 2 was designed as exercise for the examination project

- R Examination project
 - 4 credits

Files (on SP)

Namn
Huvudmapp
PK data PK files for examination project
SNP_data SNP files for examination project
final project key.pdf File containing project assignment no.
Instructions for examination project.pdf
Introduction to examination project.pdf
project_examination_template.Rmd R-markdown template for examination project

Files (on SP)

- Document "final_project_key.pdf"
 - You have been given a number
 - Find the two files (on SP) with your number:
 - stuxx.csv
 - Big_pharma_BPI1889_data_200mg_xx.csv

Name	Data
Chowdhury, Sidratul Jannat	21
Christina Autoshi, Baidya	26
Cobar, Flordelyn	5
Janani, Marjaneh	15

Files

Data in

- 1. stuxx.csv is the expected output from your Python examination projects, i.e. wide format of SNP information
- Big_pharma_BPI1889_data_200mg_xx.csv is long format with drug concentrations of study assessed in project 2
- Use both files to assess impact of genetic variation on PK using R

Time lines

- Thursd 29th Tuesday 4th
 - Work on the project minimal tutoring
- Tuesday 4th at 17:00
 - Deadline
- Friday 7th
 - Feedback on project
- Friday 14th at 17:00
 - Deadline for revision

The story

- Modelling scientist at Big Pharma Inc.
- Received clinical trial data from phase 1
- PK and genetic information collected

Tasks

- Identify which individuals have functional SNP's and classify individuals as wildtype, heterozygote variant or homozygote variant.
- 2. Arrange genetic info in suitable format to merge with PK data

Using Python

Tasks

- 3. Perform graphical exploration
 - PK of BPI1889
 - Demographics (covariates)
- 4. Assess relationship between genetic variation and elimination and investigate clinical impact
 - Classify relationship between genetic variation and elimination as additive, recessive or dominant
- 5. Create report
 - Include all calculations and graphics to support you conclusion

Using R

Tips from pharmacokineticist

• Elimination:

CL = Dose / AUC requires calculation of AUC (trapeziodal rule – google)

Clinical impact:

average concentration of 200 mg, 400 mg and 800 mg Cav = Dose * F / (CL * tau) where F = 0.9 and tau = 24 h