Sécurité des systèmes d'exploitation

Démarrage sécurisé

Plan

- Processus de démarrage
 - Description
 - Menaces
- Approches pour un démarrage sécurisé
 - Measured Boot TCG
 - Secure Boot UEFI
- Implémentations OS

Processus de démarrage

Boot Process (Conventional BIOS)

Processus de démarrage

Processus de démarrage

Menaces :

- Déni de service
- Élévation de privilèges
 - Insertion de code dans la chaîne de démarrage afin d'insérer un rootkit dans le noyau de l'OS
 - Plusieurs points d'insertion initiaux :
 - Firmware (BIOS, UEFI, Option ROM, ...)
 - Chargeur de démarrage
 - Noyau (via le remplacement d'une partie ou l'ensemble)
 - Pilotes (pour ceux qui se chargent en espace noyau)

UEFI Secure Boot vs. TCG Trusted Boot

UEFI PI will measure OS

6/25

- UEFI Secure Boot
 - Vérification de la signature cryptographique des binaires UEFI (format Authenticode) avant de les charger.
 - Permet de contrôler quels binaires sont autorisés
 - Par extension, limiter le chargement de malwares

Source : Intel

- Hiérarchie des clés
 - Platform Key (PK)
 - détenue par le propriétaire de la plateforme
 - Signature du firmware
 - Key Exchange Key (KEK)
 - propre à un système d'exploitation
 - enregistrée dans le firmware
 - 2 bases de données contenant des certificats et des hashs
 - Authorized Signatures Database (DB)
 - Forbidden Signature Database (DBX)
 - DBX est prioritaire sur DB

Source: Intel

- Le Secure Boot UEFI vérifie uniquement le chargeur de démarrage
- Pour établir une chaîne de confiance, il faut que chaque composant vérifie le suivant :
 - Chargeur → noyau
 - Noyau → pilotes
 - Noyau → applications
- Qui vérifie le firmware UEFI?
 - La phase SEC (Security) du démarrage précède le chargement du firmware
 - Contient un bloc de code dédié qui joue le rôle de racine de confiance (core root of trust)

- Measured Boot du TCG (Trusted Computing Group)
 - Collection de hashs ou signatures cryptographiques associée à l'environnement de démarrage
 - Nécessite une racine de confiance de mesure :
 RTM (Root of Trust for Measurement)
 - Fournit une piste d'audit et une base pour l'attestation de l'intégrité de la plateforme
 - Protège par scellement les secrets basés sur l'intégrité de la plateforme
- Repose sur un TPM (Trusted Platform Module)

TPM

- Composant cryptographique à faible coût
- Développement commencé fin des années 90
 - Première version déployée : TPM 1.1b (2003).
- TPM 1.2
 - Spécifications : 2003 à 2011
 - ISO/IEC standard 11889:2009
- TPM 2.0
 - Spécifications : 2013 à 2016
 - ISO/IEC 11889:2015
 - Parmi les évolutions : support d'algorithmes cryptographiques additionnels (algorithm agility)

- Fournit des capacités
 - Identification
 - Attestation
 - Gestion de clés
 - Stockage
 - Calcul de hash
 - Mesure
 - Chiffrement
- Composant passif, doit être appelé par la chaîne de démarrage

TPM 1.2 par Guillaume Piolle

- Les mesures sont stockées dans les PCR
 - Au minimum 16 PCR dans un TPM 1.2
- Pas de modification directe, 2 opérations possibles :
 - Reset
 - Extension
 - PCRnew = hash(PCRold||hash(data))

14/25

Source: 3MDEB

- Convergence
 - Trusted Execution Environment TrEE (1.0)
 - Protocole EFI qui permet de :
 - Vérifier la capacité du firmware à interagir avec le TPM
 - Obtenir le journal du Measured Boot TCG
 - Ajouter des mesures au journal et étendre les PCR du TPM
 - Transmettre des commandes au TPM

- Convergence vue par Intel
 - Secure Boot + Measured Boot

- Windows (>= 8)
 - Prise en compte du Secure Boot UEFI et du Measured Boot du TCG
 - Trusted Boot : étapes de vérification qui suivent le Secure Boot UEFI
 - Les mesures peuvent être envoyées vers un serveur d'attestation

Source: Microsoft

18/25

19/25

- Support du Measured Boot TCG par les systèmes Linux
- Inventaire non-exhaustif
 - Tboot (Intel)
 - https://sourceforge.net/projects/tboot/
 - Support UEFI via GRUB2
 - Trusted Grub 2 (Rohde & Schwarz)
 - https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2
 - Pas de support UEFI

- Support du Secure Boot UEFI par les systèmes Linux
- Plusieurs approches
 - Créer les clés PK, KEK et les bases DB et DBX, puis signer la chaîne de démarrage
 - https://www.wzdftpd.net/blog/uefi-secureboot-debian.html
 - Utiliser un binaire (shim.efi) signé par Microsoft
 - KEK Microsoft présente par défaut dans la plupart des machines vendues
 - shim.efi vérifie Grub2, Grub2 vérifie le noyau
 - grubx64.efi et le noyau sont signés par une clé de distribution insérée dans shim.efi

- Dernière approche
 - Utiliser une autre version (shim.efi) signé par Suse
 - Fonctionne sur les machines où la KEK Suse a été signée par les constructeurs
 - Ajoute une autre base de clés (Machine Owner Key)
 - Grub2 et le noyau sont signés avec une clé MOK

- Travaux de convergence
 - Intégration de mesure TPM dans le chargeur SHIM
 - https://github.com/rhboot/shim
 - Measured and verified boot in UEFI Grub2 with TPM2 (Matthew Garrett)
 - http://lists.gnu.org/archive/html/grub-devel/2017-07/msg00003.html

Pour aller plus loin

- Advanced x86: Introduction to BIOS & SMM
 - http://opensecuritytraining.info/IntroBIOS.html
- Introduction To Trusted Computing
 - http://opensecuritytraining.info/IntroToTrustedComp uting.html
- Secured Boot and Measured Boot: Hardening Early Boot Components against Malware, Microsoft, 2012
- Firmware is the new Black –Analyzing Past 3 years of BIOS/UEFI Security Vulnerabilities, Monroe & al., Black Hat USA 2017

Questions?

