Analisis Hasil Dataset KlasifikasiUTS dengan Model TensorFlow

A. MLP Regression Model

- 1. Tujuan: Memodelkan variabel Class (0/1) sebagai target regresi kontinu (murni untuk keperluan eksplorasi regresi).
- 2. Arsitektur & Teknik
 - Model memiliki 3 hidden layers dengan ReLU, ditambahkan Batch Normalization, Dropout, dan L2 regularization.
 - Optimizer: Adam dengan learning rate scheduler.
 - Evaluasi: MSE, MAE, dan R².
- 3. Hasil Evaluasi
 - MSE: 0.0009MAE: 0.0018
 - R^2: 0.4840

4. Analisis

- Meskipun model mampu memberikan nilai prediksi yang cukup dekat dengan 0 atau 1, pendekatan ini tidak cocok karena targetnya sebenarnya bukan variabel kontinu.
- Tidak ideal digunakan untuk klasifikasi karena tidak memberikan decision boundary yang jelas.

B. MLP Classification Model

- 1. Tujuan: Klasifikasi biner antara transaksi fraud (1) dan non-fraud (0) menggunakan multilayer perceptron.
- 2. Arsitektur & Teknik
 - 3 Hidden Layers dengan kombinasi Dropout, BatchNorm, Adam Optimizer, dan early stopping.
 - Penyesuaian learning rate dan weight decay untuk meningkatkan generalisasi.
- 3. Hasil Evaluasi
 - Accuracy: 0.9993Precision: 0.8816
 - Recall: 0.7053
 - F1-Score: 0.7836
 - AUC: 0.9796

4. Analisis

- F1-score yang tinggi menunjukkan keseimbangan presisi dan recall, sementara AUC yang mendekati 1 menandakan kemampuan prediksi sangat baik bahkan di data imbalanced.

C. CNN Classification Model

1. Tujuan: Mengevaluasi performa CNN dalam mempelajari fitur spasial (setelah reshaping data tabular menjadi semacam image/patch 2D).

2. Arsitektur & Teknik

- 1D-CNN sederhana dengan 2 convolutional layers, batch norm, dropout, flatten + dense.
- Digunakan untuk tabular data yang diubah bentuk menjadi "spasial" (reshaped sebagai 2D)

3. Hasil Evaluasi

Accuracy: 0.9993
Precision: 0.8649
Recall: 0.6737
F1-Score: 0.7574
AUC: 0.9267

4. Analisis

- CNN ternyata dapat mengenali pola kompleks dalam representasi spasial tabular data
- Performa sedikit lebih unggul dibanding MLP, terutama pada recall dan AUC.
- Model ini menunjukkan kemampuan deteksi fraud yang lebih tinggi, meskipun secara komputasi lebih berat dan waktu training lebih lama.

D. Kesimpulan

Model	F1-Score	AUC	Recall	Kesimpulan
				Singkat
MLP	-	-	-	Tidak cocok
Regression				untuk
				klasifikasi
MLP	0.7836	0.9796	0.7053	Performa
Classification				terbaik,
				generalisasi
				tinggi
CNN	0.7574	0.9267	0.6737	Cepat, ringan,
Classification				hasil baik

Model terbaik secara keseluruhan adalah MLP Classification TensorFlow karena memberikan keseimbangan terbaik antara Recall, AUC, dan F1-Score. Namun jika ingin

model lebih ringan dan cepat, maka CNN Classification tetap layak ddigunakan dengan performa yang nyaris sama.