EGB103 Assignment 2 Checklist

Everything should be included in a **single** Jupyter notebook.

The raw CSV data may require "cleaning" before it can be processed

We are only interested in looking at these quantities when the chiller is actually operating (kWE > 0).

Your first task is to conduct research to determine the formula for deriving the kWR (and COP).

Having **calculated** those quantities (kWE, kWR and COP), your job is to investigate how those quantities tend to **vary** over time:

hour of the day

day of the week

month of the year

Use appropriate **plots** to visualize all relationships.

Add **markdown** to summarize your observations/conclusions for each plot.

How does the **percentage** of time that chiller 1 is operating **vary** depending on the hour of the day, the day of the week etc?

Do a detailed **analysis** showing how the system performed over the 24 hours of your actual birthday. Did you detect any **atypical** behaviour?

Examine the relationship between COP and the cooling load (kWR) and identify the load that tends to produce the **best** COP.

Also identify any other statistical correlations between any of the above variables.

The Python code included should follow **best practices** as outline in the lectures, including Using well chosen identifier **names**

Writing **clear** simple code

Not repeating yourself.

All data processing should be done using the **Pandas** library and should make use of the following Pandas features:

Reading input data files.

Parsing dates.

Selecting appropriate column(s) of a Data Frame to act as the **index**.

Computing new columns.

Using Python functions to compute new columns.

Filtering rows by condition.

At least two different kinds of Matplotlib **plots**.

Group By to explore relationships between variables.

Error bars in plots to show variation (e.g., standard deviation).

All plots should be appropriately **titled**, and axis appropriately **labelled**.

User **friendly** axis labels, e.g., Mon, Tue, Wed or Jan, Feb, Mar.

Appropriately **sized** figures that are large enough to easy read.

Binning of continuous values so as to investigate relationships between continuous variables.

Using Python functions to compute aggregate information for groups of rows.

DO NOT use any other programming language, library or system (such as R, MATLAB or Excel).