

Multi Class Prediction of Obesity Risk



## **Project Overview**

 Developing a model which will accurately predict obesity risk among individuals based on varios lifestyle factors

#### Dataset

- id: A unique identifier for each individual in the dataset.
- **Gender**: The individual's gender, indicating whether they are male or female.
- Age: The age of the individual, representing their age in years.
- **Height**: The height of the individual, typically measured in meters.
- Weight: The weight of the individual, typically measured in kilograms.
- **family\_history\_with\_overweight**: Indicates whether there is a family history of overweight for the individual (yes/no).
- **FAVC**: Stands for "Frequency of consuming high caloric food," representing how often the individual consumes high-calorie foods (yes/no).
- **FCVC**: Stands for "Frequency of consuming vegetables," representing how often the individual consumes vegetables.
- NCP: Stands for "Number of main meals," indicating the number of main meals the individual consumes daily.
- **CAEC**: Stands for "Consumption of food between meals," representing the frequency of consuming food between meals.

- **SMOKE**: Indicates whether the individual smokes or not (yes/no).
- CH2O: Represents the amount of water consumption for the individual.
- **SCC**: Stands for "Calories consumption monitoring," indicating whether the individual monitors their calorie consumption (yes/no).
- **FAF**: Stands for "Physical activity frequency," representing the frequency of the individual's physical activities.
- **TUE**: Stands for "Time using technology devices," indicating the amount of time the individual spends using technology devices.
- CALC: Stands for "Consumption of alcohol," representing the frequency of alcohol consumption.
- MTRANS: Stands for "Mode of transportation," indicating the mode of transportation the individual uses.
- NObeyesdad: The target variable, representing the obesity risk category of the individual. It has multiple classes such as 'Overweight\_Level\_II', 'Normal\_Weight', 'Insufficient\_Weight', 'Obesity\_Type\_III', 'Obesity\_Type\_II', 'Overweight\_Level\_I', and 'Obesity\_Type\_I'.

# Pre-Processsing



Overviewing the Dataset



Missing Values and duplicates



Encoding all variables into numerical variables



Feature Engineering



### Correlation between numerical variables



# Missing Values and Duplicates

```
Gender
                         Height
family history with overweight
                           FCVC
                           CAEC
                           CH20
                            FAF
                           CALC
                     NObevesdad
```

```
Age
0
Weight
0
FAVC
0
NCP
0
SMOKE
0
SCC
0
TUE
0
MTRANS
0
```

```
# duplicates across train/ test
sum(
    duplicated(rbind(df_train[, -17],df_test))
    )

## [1] 0
```

# null values by column

colSums(is.na(df train))

# Adding BMI column adjusted by age and gender

```
calculate BMI <- function(weight, height, age, gender male) {
 bmi <- weight / (height ^ 2)
 # Adjust BMI for age and gender
 if (gender male == 1) {
 if (age < 18) {
   bmi <- bmi * 1.1
  else if (age >= 18 \& age <= 24) {
   bmi <- bmi * 1.05
 }else{
  if (age < 18) {
   bmi <- bmi * 1.15
  else if (age >= 18 \& age <= 24) {
   bmi <- bmi * 1.08
```

```
GenderFemale
                                  : num [1:20758] 0 1 1 1 0 0 0 0
                                  : num [1:20758] 1 0 0 0 1 1 1 1
GenderMale
                                   num [1:20758] 24.4 18 18 21 31
Age
Height
                                   num [1:20758] 1.7 1.56 1.71 1.
Weight
                                   num [1:20758] 81.7 57 50.2 131
family_history_with_overweightyes: num [1:20758] 1 1 1 1 1 1 1 1
FAVCyes
                                   num [1:20758] 1 1 1 1 1 1 1 1
FCVC
                                  : num [1:20758] 2 2 1.88 3 2.68
                                  : num [1:20758] 2.98 3 1.41 3 1
NCP
CAECFrequently
                                  : num [1:20758] 0 1 0 0 0 0 0 0
CAECNO
                                  : num [1:20758] 0 0 0 0 0 0 0 0
CAECSometimes
                                   num [1:20758] 1 0 1 1 1 1 1 1
                                   num [1:20758] 0 0 0 0 0 0 0 0
SMOKEyes
CH20
                                   num [1:20758] 2.76 2 1.91 1.67
                                   num [1:20758] 0 0 0 0 0 0 0 0
SCCyes
                                   num [1:20758] 0 1 0.866 1.468
FAF
                                   num [1:20758] 0.976 1 1.674 0.
TUE
                                   num [1:20758] 0 1 1 0 0 0 0 0
CALCIO
CALCSometimes
                                   num [1:20758] 1 0 0 1 1 1 1 1
MTRANSBike
                                   num [1:20758] 0 0 0 0 0 0 0 0
MTRANSMotorbike
                                   num [1:20758] 0 0 0 0 0 0 0 0
MTRANSPublic_Transportation
                                   num [1:20758] 1 0 1 1 1 1 0 0
MTRANSWalking
                                  : num [1:20758] 0 0 0 0 0 0 0 0
NObeyesdad
                                  : Factor w/ 7 levels "Insufficie
                                  : num [1:20758] 28.3 25.3 18.5 4
BMI
```



# Models used to compute output

- Decision tree
- Logistic regression
- Random forest

#### **Decision Tree for Obesity Prediction**



## Decision tree

Confusion Matrix and Statistics

| • |  |
|---|--|

| • |                     | Reference           |               |                |                 |                  |                    |                     |
|---|---------------------|---------------------|---------------|----------------|-----------------|------------------|--------------------|---------------------|
| • | Prediction          | Insufficient_Weight | Normal_Weight | Obesity_Type_I | Obesity_Type_II | Obesity_Type_III | Overweight_Level_I | Overweight_Level_II |
| • | Insufficient_Weight | 673                 | 75            | 0              | 0               | 0                | 6                  | 0                   |
| • | Normal_Weight       | 77                  | 753           | 3              | 0               | 0                | 87                 | 16                  |
| • | Obesity_Type_I      | 0                   | 1             | 643            | 52              | 0                | 21                 | 117                 |
| • | Obesity_Type_II     | 0                   | 0             | 92             | 920             | 0                | 0                  | 7                   |
| • | Obesity_Type_III    | 0                   | 0             | 10             | 1               | 1211             | 0                  | 1                   |
| • | Overweight_Level_I  | 5                   | 92            | 29             | 0               | 1                | 563                | 144                 |
| • | Overweight Level II | 1                   | 3             | 96             | 1               | 1                | 51                 | 471                 |

Overall Statistics Accuracy: 0.8409

95% CI : (0.8316, 0.8499) No Information Rate : 0.1949 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.8134

Mcnemar's Test P-Value: NA

# Logistic Regression

| Prediction              | Insufficient_Weigh<br>t | Normal_Weight | Obesity_Type_I | Obesity_Type_II | Obesity_Type_III | Overweight_Level_<br>I | Overweight_Level_<br>II |
|-------------------------|-------------------------|---------------|----------------|-----------------|------------------|------------------------|-------------------------|
| Insufficient_Weig<br>ht | 693                     | 97            | 0              | 0               | 0                | 8                      | 0                       |
| Normal_Weight           | 59                      | 757           | 2              | 0               | 0                | 74                     | 16                      |
| Obesity_Type_I          | 0                       | 0             | 714            | 37              | 1                | 13                     | 79                      |
| Obesity_Type_II         | 0                       | 0             | 47             | 928             | 1                | 0                      | 6                       |
| Obesity_Type_III        | 0                       | 0             | 6              | 0               | 1210             | 0                      | 1                       |
| Overweight_Level<br>_I  | 2                       | 62            | 27             | 0               | 1                | 513                    | 103                     |
| Overweight_Level<br>_II | 2                       | 8             | 77             | 9               | 0                | 120                    | 551                     |

Overall Statistics Accuracy: 0.8621

95% CI: (0.8533, 0.8706) No Information Rate: 0.1949 P-Value [Acc > NIR]: < 2.2e-16

Kappa: 0.8383

Mcnemar's Test P-Value: NA

## Random Forest

| Prediction              | Insufficient_Weigh<br>t | Normal_Weight | Obesity_Type_I | Obesity_Type_II | Obesity_Type_III | Overweight_Level_<br>I | Overweight_Level_<br>II |
|-------------------------|-------------------------|---------------|----------------|-----------------|------------------|------------------------|-------------------------|
| Insufficient_Weig<br>ht | 697                     | 41            | 0              | 0               | 0                | 6                      | 0                       |
| Normal_Weight           | 53                      | 825           | 4              | 0               | 1                | 85                     | 17                      |
| Obesity_Type_I          | 0                       | 1             | 774            | 14              | 1                | 18                     | 48                      |
| Obesity_Type_II         | 0                       | 0             | 30             | 951             | 0                | 0                      | 7                       |
| Obesity_Type_III        | 0                       | 0             | 4              | 1               | 1211             | 0                      | 0                       |
| Overweight_Level<br>_I  | 5                       | 44            | 11             | 0               | 0                | 530                    | 50                      |
| Overweight_Level<br>_II | 1                       | 13            | 50             | 8               | 0                | 89                     | 634                     |

**Overall Statistics** 

Accuracy: 0.9026

95% CI: (0.8965, 0.9113)

No Information Rate : 0.1949 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.8875

Mcnemar's Test P-Value: NA

#### Random Forest: Error per number of trees



#### **Feature Importances from Random Forest Model**

**Feature** 



## Improving the random forest model

Deleting features with low importance and high correlation

#### **Confusion Matrix**



