```
import pandas as pd
```

data=pd.read_csv(r"/content/adult 3.csv")

data.head(10)

•	₹	_
-	7	7

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	na co
	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	40	;
	I 38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	ر :
;	2 28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40	ر :
;	3 44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	L ;
	1 18	?	103497	Some-	10	Never-	?	Own-child	White	Female	0	0	30	Ļ

data.tail(3)

→		age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week
	48839	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	0	40

data.shape

→ (48842, 15)

#null values

data.isna().sum() #mean mdeian mode arbitrary

workclass 0 fnlwgt 0 education 0 educational-num 0 marital-status occupation relationship gender capital-gain capital-loss hours-per-week 0 native-country 0 income dtype: int64

print(data.workclass.value_counts())

→ workclass Private 33906 Self-emp-not-inc 3862 Local-gov 3136 2799 1981 State-gov Self-emp-inc 1695 Federal-gov 1432 21 Without-pay Never-worked 10 Name: count, dtype: int64

data.workclass.replace({'?':'Others'},inplace=True) print(data['workclass'].value_counts())

workclass

Private 33906 Self-emp-not-inc

```
Local-gov
                          3136
     Others
                          2799
     State-gov
                          1981
     Self-emp-inc
                          1695
                          1432
     Federal-gov
     Without-pay
                           21
                            10
     Never-worked
     Name: count, dtype: int64
print(data['occupation'].value_counts())
→ occupation
     Prof-specialty
                          6172
     Craft-repair
                          6086
     Exec-managerial
     Adm-clerical
                          5611
                          5504
     Sales
     Other-service
                          4923
     Machine-op-inspct
                          3022
                          2809
     Transport-moving
                          2355
     Handlers-cleaners
                          2072
     Farming-fishing
                          1490
     Tech-support
                          1446
     Protective-serv
                           983
     Priv-house-serv
                           242
     Armed-Forces
                           15
     Name: count, dtype: int64
data.occupation.replace({'?':'Others'},inplace=True)
print(data['occupation'].value_counts())
→ occupation
     Prof-specialty
                          6172
     Craft-repair
                          6112
     Exec-managerial
                          6086
     Adm-clerical
                          5611
     Sales
                          5504
     Other-service
                          4923
     Machine-op-inspct
                          3022
     Others
                          2809
     Transport-moving
     Handlers-cleaners
                          2072
     Farming-fishing
                          1490
                          1446
     Tech-support
     Protective-serv
                           983
     Priv-house-serv
                           242
     Armed-Forces
                           15
     Name: count, dtype: int64
data=data[data['workclass']!='Without-pay']
data=data[data['workclass']!='Never-worked']
print(data['workclass'].value_counts())
→ workclass
     Private
                         33906
     Self-emp-not-inc
                          3862
     Local-gov
                          3136
                          2799
     Others
                          1981
     State-gov
     Self-emp-inc
                          1695
     Federal-gov
                          1432
     Name: count, dtype: int64
print(data.relationship.value_counts())
→ relationship
     Husband
                       19708
     Not-in-family
                       12582
     Own-child
                        7566
     Unmarried
                        5123
     Wife
                        2327
     Other-relative
                        1505
     Name: count, dtype: int64
print(data.gender.value_counts())
→ gender
     Male
               32629
     Female
               16182
     Name: count, dtype: int64
data.shape
```

https://colab.research.google.com/drive/1Nho1eIVDx1QWk6Qxa9SBXQoBYXtzgNxO#scrollTo=9e0850d8-ee98-4931-9784-b6a2ed85d692&print...

```
→ (48811, 15)
```

```
#outlier detection
import matplotlib.pyplot as plt  #visualization
plt.boxplot(data['age'])
plt.show()
```


data=data[(data['age']<=75)&(data['age']>=17)]

plt.boxplot(data['age'])
plt.show()

data.shape

→ (48438, 15)

plt.boxplot(data['capital-gain'])
plt.show()

plt.boxplot(data['capital-gain'])
plt.show()

plt.boxplot(data['educational-num'])
plt.show()

data=data[(data['educational-num']<=16)&(data['educational-num']>=5)]

```
plt.boxplot(data['educational-num'])
nlt.show()
```


plt.boxplot(data['hours-per-week'])
plt.show()

data.shape

→ (46720, 15)

 ${\tt data=data.drop(columns=['education'])} \ {\tt \#redundant} \ {\tt features} \ {\tt removal}$

data

	age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native- country
0	25	Private	226802	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	40	United- States
1	38	Private	89814	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	United- States
2	28	Local-gov	336951	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40	United- States
3	44	Private	160323	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	United- States
4	18	Others	103497	10	Never- married	Others	Own-child	White	Female	0	0	30	United- States

data

}		age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native- country	i
	0	25	3	226802	7	4	6	3	2	1	0	0	40	39	
	1	38	3	89814	9	2	4	0	4	1	0	0	50	39	
	2	28	1	336951	12	2	11	0	4	1	0	0	40	39	
	3	44	3	160323	10	2	6	0	2	1	7688	0	40	39	
	4	18	2	103497	10	4	8	3	4	0	0	0	30	39	
	48837	27	3	257302	12	2	13	5	4	0	0	0	38	39	
	48838	40	3	154374	9	2	6	0	4	1	0	0	40	39	
	48839	58	3	151910	9	6	0	4	4	0	0	0	40	39	
	48840	22	3	201490	9	4	0	3	4	1	0	0	20	39	
	48841	52	4	287927	9	2	3	5	4	0	15024	0	40	39	

x=data.drop(columns=['income'])
y=data['income']

	age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native- country
0	25	3	226802	7	4	6	3	2	1	0	0	40	39
1	38	3	89814	9	2	4	0	4	1	0	0	50	39
2	28	1	336951	12	2	11	0	4	1	0	0	40	39
3	44	3	160323	10	2	6	0	2	1	7688	0	40	39
4	18	2	103497	10	4	8	3	4	0	0	0	30	39
4883	7 27	3	257302	12	2	13	5	4	0	0	0	38	39
4883	8 40	3	154374	9	2	6	0	4	1	0	0	40	39
4883	9 58	3	151910	9	6	0	4	4	0	0	0	40	39
4884	0 22	3	201490	9	4	0	3	4	1	0	0	20	39
4884	1 52	4	287927	9	2	3	5	4	0	15024	0	40	39

```
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from \ sklearn.metrics \ import \ accuracy\_score, \ classification\_report
from sklearn.linear_model import LogisticRegression
from \ sklearn. ensemble \ import \ Random Forest Classifier, \ Gradient Boosting Classifier
from \ sklearn.neighbors \ import \ KNeighbors Classifier
from sklearn.svm import SVC
from \ sklearn.preprocessing \ import \ Standard Scaler, \ One Hot Encoder
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
models = {
    "LogisticRegression": LogisticRegression(),
    "RandomForest": RandomForestClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC(),
    "Gradient Boosting": Gradient Boosting Classifier()\\
}
```

```
results = {}
for name, model in models.items():
   pipe = Pipeline([
        ('scaler', StandardScaler()),
        ('model', model)
    1)
   pipe.fit(X_train, y_train)
    y_pred = pipe.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
   results[name] = acc
    print(f"{name} Accuracy: {acc:.4f}")
    print(classification_report(y_test, y_pred))
→ LogisticRegression Accuracy: 0.8149
                   precision
                              recall f1-score
                                                   support
                                  0.93
                                                       7010
             >50K
                        0.69
                                  0.46
                                            0.55
                                                       2334
                                            0.81
                                                      9344
         accuracy
                                  0.70
                        0.77
        macro avg
                                            0.72
                                                       9344
     weighted avg
                        0.80
                                  0.81
                                            0.80
                                                      9344
     RandomForest Accuracy: 0.8508
                   precision
                                recall f1-score
                                                   support
            <=50K
                        0.88
                                  0.93
                                            0.90
                                                       7010
             >50K
                                  0.62
                                            0.67
                                                       2334
                                            0.85
                                                       9344
         accuracy
                        0.81
                                  0.77
        macro avg
                                            0.79
                                                       9344
     weighted avg
                        0.85
                                  0.85
                                            0.85
                                                      9344
     KNN Accuracy: 0.8245
                   precision
                                recall f1-score
                                                   support
            <=50K
                                  0.90
                                            0.88
                                                       7010
             >50K
                                  0.60
                                            0.63
                                                       2334
                        0.67
                                            0.82
                                                       9344
         accuracy
                        0.77
                                  0.75
                                            0.76
                                                      9344
        macro avg
     weighted avg
                        0.82
                                  0.82
                                            0.82
                                                      9344
     SVM Accuracy: 0.8396
                   precision
                                recall f1-score
                                                   support
            <=50K
                                  0.94
                                                       7010
                                  0.54
                                            0.63
                                                       2334
                                            0.84
                                                       9344
         accuracy
                                  0.74
                        0.80
                                            0.76
                                                      9344
        macro avg
     weighted avg
                        0.83
                                  0.84
                                            0.83
                                                      9344
     GradientBoosting Accuracy: 0.8571
                   precision
                               recall f1-score
                                                   support
            <=50K
                        0.88
                                  0.94
                                            0.91
                                                       7010
                                                       2334
             >50K
                        0.78
                                  0.60
                                            0.68
                                            0.86
                                                       9344
         accuracy
                                  0.77
                        0.83
        macro avg
                                            0.79
                                                       9344
                                                      9344
     weighted avg
                        0.85
                                  0.86
                                            0.85
import matplotlib.pyplot as plt
plt.bar(results.keys(), results.values(), color='skyblue')
plt.ylabel('Accuracy Score')
plt.title('Model Comparison')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```



```
from sklearn.linear_model import LogisticRegression
from \ sklearn. ensemble \ import \ Random Forest Classifier, \ Gradient Boosting Classifier
from \ sklearn.neighbors \ import \ KNeighbors Classifier
from sklearn.svm import SVC
from \ sklearn.model\_selection \ import \ train\_test\_split
from sklearn.metrics import accuracy_score
import joblib
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Define models
models = {
    "LogisticRegression": LogisticRegression(max_iter=1000),
    "RandomForest": RandomForestClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC(),
    "GradientBoosting": GradientBoostingClassifier()
}
results = {}
# Train and evaluate
for name, model in models.items():
    model.fit(X_train, y_train)
    preds = model.predict(X_test)
    acc = accuracy_score(y_test, preds)
    results[name] = acc
    print(f"{name}: {acc:.4f}")
# Get best model
best_model_name = max(results, key=results.get)
best_model = models[best_model_name]
print(f"\n ✓ Best model: {best_model_name} with accuracy {results[best_model_name]:.4f}")
# Save the best model
joblib.dump(best_model, "best_model.pkl")
print(" Saved best model as best_model.pkl")
    LogisticRegression: 0.7932
\overline{\mathbf{x}}
     RandomForest: 0.8525
     KNN: 0.7704
     SVM: 0.7884
     GradientBoosting: 0.8571
     Best model: GradientBoosting with accuracy 0.8571
     ☑ Saved best model as best_model.pkl
%%writefile app.py
import streamlit as st
import pandas as pd
import joblib
```

```
# Load the trained model
model = joblib.load("best_model.pkl")
st.set_page_config(page_title="Employee Salary Classification", page_icon="employee", layout="centered")
st.title(" Employee Salary Classification App")
st.markdown("Predict whether an employee earns >50K or ≤50K based on input features.")
# Sidebar inputs (these must match your training feature columns)
st.sidebar.header("Input Employee Details")
# 🛠 Replace these fields with your dataset's actual input columns
age = st.sidebar.slider("Age", 18, 65, 30)
education = st.sidebar.selectbox("Education Level", [
    "Bachelors", "Masters", "PhD", "HS-grad", "Assoc", "Some-college"
1)
occupation = st.sidebar.selectbox("Job Role", [
    "Tech-support", "Craft-repair", "Other-service", "Sales",
    "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv",
    "Protective-serv", "Armed-Forces"
1)
hours_per_week = st.sidebar.slider("Hours per week", 1, 80, 40)
experience = st.sidebar.slider("Years of Experience", 0, 40, 5)
# Build input DataFrame ( must match preprocessing of your training data)
input df = pd.DataFrame({
    'age': [age],
    'education': [education],
    'occupation': [occupation],
    'hours-per-week': [hours_per_week],
     'experience': [experience]
})
st.write("### 🔑 Input Data")
st.write(input_df)
# Predict button
if st.button("Predict Salary Class"):
    prediction = model.predict(input_df)
    st.success(f" ✓ Prediction: {prediction[0]}")
# Batch prediction
st.markdown("---")
st.markdown("#### | Batch Prediction")
uploaded_file = st.file_uploader("Upload a CSV file for batch prediction", type="csv")
if uploaded_file is not None:
    batch_data = pd.read_csv(uploaded_file)
    st.write("Uploaded data preview:", batch_data.head())
    batch_preds = model.predict(batch_data)
    batch_data['PredictedClass'] = batch_preds
    st.write(" Predictions:")
    st.write(batch_data.head())
    csv = batch_data.to_csv(index=False).encode('utf-8')
    st.download_button("Download Predictions CSV", csv, file_name='predicted_classes.csv', mime='text/csv')
```

→ Writing app.py