

Anämien

Themenblock Grundlagen der Diagnostik und Therapie

- 3. Studienjahr Humanmedizin (Bachelor)
- 4. November 2024

Prof. Dr. med. Alexandre Theocharides Medizinische Onkologie und Hämatologie

Mindmap

Clinical Reasoning

Labels, Stamps, Symbols

CR: Clininal Reasoning (Stamp für Titelfolie)

DIS: DiseaseInfoScript (Zusammenfassung v. Krankheiten/Krankheitsgruppen)

PIS: PatientInfoScript (Zusammenfassung v. Fallbeispiel-Patienteninfos)

DS/TS: Diagnost./Therapeut. Script oder Schema

DA/TA: Diagnost./Therapeut. Algorhitmus

MR/MS/MA: Management-Reasoning/Script/Algorhitmus (Diagnostics+Therapy= Management)

Lernziele

- Die Studierenden können ein rotes Blutbild interpretieren
- Die Studierenden kennen die Leitsymptome der Anämie
- Die Studierenden können die Anämien kategorisieren

Definition einer Anämie

Funktionell

Ungenügende Masse an Erythrozyten, um die Organe adäquat mit Sauerstoff zu versorgen

Praktisch

Verminderung der Hämoglobin-Konzentration, des Hämatokrites, der Erythrozytenzahl

Die Hämoglobin-Konzentration ist geschlechtsabhängig

Rotes Blutbild: Reifung

- während der Reifung vom Proerythroblasten zum reifen Erythrozyten kommt es zur:
 - a) Hämoglobinisierung (Zunahme des Hämoglobingehaltes)
 - b) Abnahme Kern- und Zellgrösse
 - c) Veränderung des Chromatinstruktur (feines => grobes Chromatin)
 - d) Zellkernausstossung

Rotes Blutbild

Die normale Grösse eines Erythrozyten ist 7 µm und entspricht in etwa dem Kern eines ruhenden Lymphozyten im peripheren Blutbild

Untersuchungen	Einheit	Referenzbereich	Erklärung		
Hämoglobin	g/l	134-170	Hämoglobingehalt		
Hämatokrit	Hämatokrit I/I 0.400-0.500		Volumenanteil der zellulären Blutbestandteile im Blut		
Erythrozyten	T/I	4.2-5.7	absolute Zahl der Erythrozyten		
MCV	fi	80-100	mittleres korpuskuläres Volumen der Erythrozyten		
MCH			mittleres korpuskuläre Hämoglobin einzelnen Erythrozyten		
MCHC			mittleres korpuskuläre Hämoglobin in den gesamten Erythrozyten		
RDW	%	11.0-14.8	Red cell distribution width		
Retikulozyten	%	0.4-2.5	relativer Anteil der Retikulozyten		
Retikulozyten	G/I	27.0-132.0	absolute Zahl der Retikulozyten		
RET-He	pg	30.5-35.5	Hämoglobingehalt der Retikulozyten		

Verordnung einer Blutbildanalyse

- die Auswahl der zu untersuchenden Parameter hängt von der Fragestellung ab
- meistens ist ein stufenweises Vorgehen zur Abklärung von Blutbildveränderungen möglich
 - Hämatogramm II: Hämoglobin, Hämatokrit, Erythrozyten, MCV, MCH, MCHC, Leukozyten, Thrombozyten
 - **2. Hämatogramm V:** Hämoglobin, Hämatokrit, Erythrozyten, MCV, MCH, MCHC, Leukozyten, Thrombozyten, maschinelle Differenzierung der Leukozyten
 - 3. Hämatogramm V plus Retikulozyten
 - 4. Hämatogramm V plus Mikroskopische Differenzierung +/- Retikulozyten

Retikulozyten

- entsprechen jungen Erythrozyten nach der Kernausstossung
- enthalten noch zytoplasmatische RNA
- Reifung: 3 Tage im Knochenmark und 1 Tag im Peripherblut (dann ist die RNA abgebaut)
- Retikulozytenzahl und -charakteristika (Grad der Reifung) erlauben Rückschluss auf die Erythropoiese im Knochenmark (gesteigert oder vermindert)
- die Bestimmung erfolgt mikroskopisch oder automatisch (heute der Standard)

Bei einer Anämie verschiebt sich die Verweildauer der Retikulozyten vom Knochenmark in das periphere Blut

Retikulozyten - Retikulozytenproduktionsindex

Retikulozytenproduktionsindex (RPI)

- relative Retikulozytenzahl (in %) korrigiert durch das Ausmaß der Anämie (aktueller Hämatokrit (Hk) im Verhältnis zum Ideal-Hamatokrit (0.45)) und der Verweildauer der Retikulozyten im Blut
- passt die Retikulozyten an das Ausmass der Anämie an

Hämatokrit	Reti-Verweildauer im Blut
45% bzw. 0,45 l/l	1.0 Tag
35% bzw. 0,35 l/l	1.5 Tag
25% bzw. 0,25 l/l	2.0 Tag
15% bzw. 0,15 l/l	2.5 Tag

RPI-Bewertung

Normalfall 1
Anämie mit adäquater Regeneration > 2-3
Anämie mit inadäquater Regeneration < 2

RPI =
$$\frac{20 \%}{1.5} \times \frac{0.35}{0.45} = 10.3$$

Anämie mit adäquater Regeneration

Aufgabe

Berechnen Sie den RPI und klassifizieren Sie die Anämie entsprechend dem RPI (Anämie mit adäquater bzw inadäquater Regeneration).

Untersuchung	Resultat	Einheit	Referenzbereich
Hämoglobin	76	g/l	117-153
Hämatokrit	0.271	I/I	0.350-0.460
Erythrozyten	4.00	T/I	3.9-5.2
MCV	70.3	fl	80-100
MCH	20.0	pg	26-34
MCHC	285	g/l	310-360
RDW	17.0	%	11.0-14.8
Retikulozyten	1.15	%	0.4-2.5
Retikulozyten	41	G/I	27.0-132.0
Thrombozyten	329	G/I	143-400
Leukozyten	5.36	G/I	3.0-9.6

Lösung

Untersuchung	Resultat	Einheit	Referenzbereich
Hämoglobin	76	g/l	117-153
Hämatokrit	0.271	1/1	0.350-0.460
Erythrozyten	4.00	T/I	3.9-5.2
MCV	70.3	fl	80-100
MCH	20.0	pg	26-34
MCHC	285	g/l	310-360
RDW	17.0	%	11.0-14.8
Retikulozyten	1.15	%	0.4-2.5
Retikulozyten	41 _	G/I	27.0-132.0
Thrombozyten	329	G/I	143-400
Leukozyten	5.36	G/I	3.0-9.6

RPI =
$$\frac{1.15 \%}{2.0} \times \frac{0.27}{0.45} = 0.45$$

sollte höher sein, oberer Teil des Referenzbereichs

Anämie mit inadäquater Regeneration der Erythropoiese (hyporegenerative Anämie)

Erythrozytenveränderungen

Bei der mikroskopischen Beurteilung eines Blutausstriches müssen bzgl. der Erythrozyten folgende Aspekte berücksichtigt werden:

- 1. Grösse der Erythrozyten
- 2. Form der Erythrozyten
- 3. Farbe der Erythrozyten (Chromasie; entspricht dem Hämoglobingehalt)
- 4. Intrazelluläre Einschlüsse

Die genaue Beurteilung dieser Aspekte ist für die genaue Diagnose einer Anämie essentiell.

Erythrozytenveränderungen

- für eine möglichst gute Erfassung der Veränderungen werden maschinelle und mikroskopische Methoden benötigt
- Grösse und Chromasie lassen sich besonders gut maschinell bestimmen
- Formveränderungen und intrazelluläre Einschlüsse sind besser mikroskopisch beurteilbar
- Veränderungen einzelner Erythrozyten werden bzgl. Grösse und Chromasie für das gesamte Blutbild erst ab einem bestimmten prozentualen Anteil der Veränderungen relevant
- Quantität der Veränderungen wird häufig unterteilt:
 - wenige (1+)
 - o moderate (2+)
 - o viele (3+)

04.11.2024 41

Beurteilung der Grösse - maschinell

Zur Beurteilung der Grösse der Erythrozyten können die Mikroskopie und auch Laborgeräte verwendet werden.

Automatische Messung

- 1. MCV = mittleres korpuskuläres Volumen
 - a. Normwerte (Normozytose): 80 100 fl
 - b. Mikrozytose = MCV < 80 fl
 - c. Makrozytose = MCV > 100 fl
 - d. das MCV kann direkt gemessen werden (Impedanz oder Flowzytometrie) oder wird automatisch berechnet:

$$MCV = \frac{\text{Hämatokrit (\%) x 10}}{\text{Erythrozyten in Mill./mcl}} [fl*]$$

Beurteilung der Chromasie - maschinell

1. MCH = mittlerer korpuskulärer Hämoglobingehalt in einem einzelnen Erythrozyten

- a. Normwerte (Normochromasie): 28 34 pg
- b. Hypochromasie = MCH < 28 pg
- c. Hyperchromasie = MCH > 34 pg

2. MCHC = mittlere korpuskuläre Hämoglobinkonzentration in einem einzelnen Erythrozyten

- a. Normwerte (Normochromasie): 330 360 g/l
- b. Hypochromasie = MCHC < 330 g/l
- c. Hyperchromasie = MCHC > 360 g/l

3. Einige Blutanalysegeräte geben direkt den Anteil and hypochromen (%HYPO) oder hyperchromen (%HYPER) Erythrozyten

an

- a. hypochrome Erythrozyten > 2.5 %
- b. hyperchrome Erythrozyten > 2.5%

KLASSIFIKATION DER ANÄMIEN

- 1. Nach Erythrozyten-Morphologie und -Indices («Erythrogramm») und Retikulozytenzahl
- 2. Nach der Pathophysiologie

KLASSIFIKATION DER ANÄMIEN

Nach der Pathophysiologie

1. VERMINDERTE PRODUKTION

a) Hämoglobinbildung

Globin-Synthese: Thalassämien

Häm-Synthese: Eisenmangel-Anämie, Siderochrestische Anämie

b) (Kern)-Reifungsstörungen

Makro-/Megaloblastäre Anämien (Vit. B₁₂, Folsäure, Folsäure - bzw DNS-Antagonisten)

Myelodysplastische Syndrome (MDS), myeloische Leukämien

2. ERHÖHTER VERLUST

- 1. Blutung
- 2. Hämolyse
 - a. korpuskulär
 - b. extrakorpuskulär

Beispiel

ADVIA

Resultat	Referenz	Einheit
10.63 +	3.50 - 10.00	×10 ⁹ /I
3.13 -	4.20 - 6.30	x10 ¹² /1
5.0 -	12.0 - 18.0	g %
19.1 -	36.0 - 52.0	%
60.9 -	79.0 - 95.0	fl
16.0 -	27.0 - 31.0	pg
26.2 -	32.0 - 36.0	%
22.1 +	11.5 - 14.5	%
73.2		%
633 +	150 - 450	x10 ⁹ /l
	10.63 + 3.13 - 5.0 - 19.1 - 60.9 - 16.0 - 26.2 - 22.1 + 73.2	10.63 + 3.50 - 10.00 3.13 - 4.20 - 6.30 5.0 - 12.0 - 18.0 19.1 - 36.0 - 52.0 60.9 - 79.0 - 95.0 16.0 - 27.0 - 31.0 26.2 - 32.0 - 36.0 22.1 + 11.5 - 14.5 73.2

Retikulozyten 95 G/I (Norm: 40-140 G/I)

zu tiefer Wert

Hyporegeneratorische mikrozytäre hypochrome Anämie

Eisenstatus

Eisen	3.6	µmol/l	(11-28)
Ferritin	12	μg/l	(21-400)
Transferrin	18	µmol/l	(25-50)

Krankheit

Eisenmangelanämie

Verlauf unter Eisensubstitution

Abklärung Anämie

Retikulozyten: Antwort des Knochenmarks auf die Anämie

- Hoher Retikulozytenanteil: adäquate Antwort auf die Anämie
- Tiefer Anteil: Zeichen der Unterproduktion

Darum: Immer den Retikulozyten-Index berechnen

Retikulozyten-Index berechnen

RI= (Retikulozyten (%) x (Hämatokrit (%)/45) / KF

KF: Korrekturfaktor: abhängig vom Hämatokrit, je tiefer desto höher

z.B. MedCalc

Abklärung Anämie

(Adaptiert nach Greer et al., Wintrobe's Clinical Hematology. 12th Edition, Lippincott Williams & Wilkins, 2009)

Was sagt uns der Retikulozyten-Index?

RI >2-3% adäquate Reaktion bei Anämie

- Blutverlust akut oder stattgehabt
- Hämolyse
- Nach Eisensubstitution bei Eisenmangel
- Behandlung der megaloblastären Anämie

RI <2% trotz Anämie deutet auf eine hyporegenerative Anämie hin → Produktionsproblematik

- Ineffiziente Erythropoiese verschiedener Ursachen
- Alkoholismus
- Hypothyreose

Erhöhter Retikulozyten-Index

- Blutverlust→ Anamnese, Status, Endoskopie
- Keine Blutungsanamnese: Hämolyse suchen
 - → Direkter Coombs-Test = DAT (direkter Antiglobulin-Test oder Antihuman-Globulin Test)

→ Haptoglobin: tief, da gebunden nicht mehr messbar

→ LDH, Bilirubin: erhöht

Erhöhter Retikulozyten-Index

Coombs-positive Hämolyse → Autoimmunhämolyse

Coombs-negative Hämolyse

→ z.B. Malaria, Mikroangiopathien (HUS, TTP), Sichelzellkrise, andere

Abklärung Anämie

(Adaptiert nach Greer et al., Wintrobe's Clinical Hematology. 12th Edition, Lippincott Williams & Wilkins, 2009)

Differentialdiagnose Anämie

MCV tief

(mikrozytäre Anämie)

- Eisenmangel
- Thalassämien

MCV normal

(normozytäre Anämie)

- Chron. Erkrankung
 - Entzündung
 - Tumoren
- Aplastische Anämie
 - PRCA
- Niereninsuffizienz
- Hypothyreose
- Akute Blutung

MCV erhöht

(makrozytäre Anämie)

- Substratmangel
 - Vit B12, Folsäure
- Alkohol
- Hepatopathie
- MDS
- Medikamentös
- Retikulozytose

Gerät meint Retikulozyten sind Erys

Fall

61-jährige Frau mit Schwindel, gelber Haut und generalisierten Gliederschmerzen

Hämoglobin (g/l)	66	(117 - 153)	LDH	1974 U/I	
Hämatokrit (%)	21	(35 - 46)	Billirubin	72 µmol/l	
Erythrozytenzahl (T/I)	1.8	(3.9 - 5.2)			
MCV (fl)	115	(80 - 100)			
MCHC (g/l)	322	(310 - 360)			
MCH (pg)	37	(26 - 34)			
Retikulozyten (G/I)	609	(27 - 132)			
Tc (G/I)	271	(143 – 400)			
Leuk (G/I)	16	(3.0 - 9.6)			
Neutro (G/I)	12	(1.4 - 8.0)			
Mono (G/I)	0.2	(0.16 - 0.95)			
Baso (G/I)	0.5	(0.0 - 0.15)			
Eos (G/I)	1.0	(0.0 - 0.7)			
Lymph (G/I)	2.3	(1.5 - 4.0)			

61-jährige Frau mit Schwindel, gelber Haut und generalisierten Gliederschmerzen

	ulation
Tc (G/I) 271 (143 – 400) Regeneration 61j F	⁻rau
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PI S

USZ Universitäts Spital Zürich

TR Transfusion? Analgesie?

61-jährige Frau mit Schwindel, gelber Haut und generalisierten Gliederschmerzen

Hämoglobin (g/l)	66	(117 - 153)	LDH 1974	4 U/I
Hämatokrit (%)	21	(35 - 46)	Billirubin 72	µmol/l
Erythrozytenzahl (T/I)	1.8	(3.9 - 5.2)	Schwere	
MCV (fl)	115	(80 - 100)	makrozytäre	
MCHC (g/l)	322	(310 - 360)	normochrome	
MCH (pg)	37	(26 - 34)		
Retikulozyten (G/I)	609	(27 - 132)	Anämie mit	Population
			adäquater	61j Frau
Tc (G/I)	271	(143 - 400)	Regeneration	o ij i ida
1 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.0	(0.0.00)	Schwindel	akut
Leuk (G/I)	16	(3.0 - 9.6)	The state of the s	
Neutro (G/I)	12	(1.4 - 8.0)	Kljn.bild	Verlauf /
Mono (G/I)	0.2	(0.16 - 0.95)	lkterus	
Baso (G/I)	0.5	(0.0 - 0.15)	Glieder-	
Eos (G/I)	1.0	(0.0 - 0.7)		
Lymph (G/I)	2.3	(1.5 - 4.0)	schmerzen	(5)
A				04.11.2024

Wahrscheinlichste Ursache der Makrozytose?

1. Myelodysplastisches Syndrom

2. Hepatopathie

3. Hämolyse

4. Medikamente

Abklärung Anämie

Differentialdiagnose Anämie

MCV tief

(mikrozytäre Anämie)

- Eisenmangel
- Thalassämien

MCV normal

(normozytäre Anämie)

- Chron. Erkrankung
 - Entzündung
 - Tumoren
- Aplastische Anämie
 - PRCA
- Niereninsuffizienz
- Hypothyreose
- Akute Blutung

MCV erhöht

(makrozytäre Anämie)

- Substratmangel
 - Vit B12, Folsäure
- Alkohol
- Hepatopathie
- MDS
- Medikamentös
- Retikulozytose

Initiale Labor-Abklärung einer Anämie

- Mikroskopische und maschinelle Differenzierung des Blutbildes
- Retikulozyten maschinell
- Vitamin B12, Ec-Folsäure und Ferritin
- Coombs-Test (Direkter Anti-Globulin-Test, DAT)
- CRP, Transaminasen, LDH
- Kreatinin

Auflösung

Normoregeneratorische makrozytäre normochrome Anämie

- Hb 66 g/l, MCV 115 fl, MCHC 322 g/l, Reti 609 G/l
- LDH 1973 U/I
- Bilirubin total 72 μl, direkt 18 μl
- Direkter Coombs-Test (IgG und C3d): 4+
 - Monospezifisch: IgG 4+, C3d 4+, andere negativ
 - Eluat: unspezifisch reaktiv

Diagnose

Autoimmunhämolytische Anämie vom Wärme-Typ

Auflösung

1. Myelodysplastisches Syndrom

2. Hepatopathie

3. Hämolyse

4. Medikamente

Autoimmunhämolytische Anämie (AIHA)

- Inzidenz: 1:100'000 pro Jahr
- Wärmetyp: 50-70% der AIHA
 - Aetiologie
 - Idiopathisch, Lymphome, Autoimmunkrankheiten
 - Therapie
 - Immunsuppression (Kortikosteroide, Rituximab, andere),
 Therapie der Grunderkrankung

Kältetyp

- Aetiologie:
 - Idiopathisch, EBV, Mykoplasmen, Lymphome
- Therapie
 - Kälteschutz!, Therapie der Grunderkrankung, Kortikosteroide unwirksam, Rituximab, Komplementblockade

Autoimmunhämolytische Anämie (AIHA) - DiseaseInfoScript

Krankheit

Diagnostik

Blutbild inkl. MCV& RPI Hämolysemarker LDH, Bili

Haptoglobin

Coombs

Behandlung

Steroide, Rituximab Therapie Grundkr. Kälteschutz/Komplementblock/Keine Steroide b.

Kälte-AK

Wärme- vs Kältetyp: Autoimmun-AK (IgG

vs. lg**M**) induzierte Hämolyse mit

normoregenerativer

makrozytärer normochromer

Anämie

Müdigkeit, Schwäche, Schwindel, Dyspnoe

Ikterus, Symptome der Grundkrankheit

Idiopatisch

Lymphome (Malignom)

Autoimmunkrankheiten

Mycoplasmen, EBV-

Mononukleose og le

Inzidenz 1:100'000/Jahr

akut-subakut

Verlauf

Prävention &Screening

Ev. Lymphomsuche

Prognose

Abhängig von Grundkrankheit

04.11.2

Zusammenfassung / Wiederholung

Krankheitsgruppe Anämie - DiseaseInfoScript

Diagnostik

Blutbild inkl. MCV& RPI

Ev. <u>Hämolysemarker</u>: LDH,
Bili, Haptoglobin, Coombs

Ev. <u>Substrate</u>: B12, Fols.,

Ferritin

Unterliegende Kr.: CRP,

Transaminasen, Kreatinin

Behandlung

Je nach Ursache/Grundkr. Ev. EC-Transfusion bei symptomatischer Anämie, niederschwelliger bei kardiovaskulärer Krankheit

Def: Hb/Hk/Ery tief
Produktions- vs.
Verluststörung
hypo-/normoregenerativ
mikro/normo/makrozytär
Bi-/Panzytopenie
vs isoliert (KM-Störung?)

Schwindel, Dyspnoe

Krankheitsbild

Symptome der

Grundkrankheit

Müdigkeit, Schwäche,

Prämenopausal Chron./Tumorkrankheit Diäten/Alkoholismus GI-Probleme/Zöliakie Epidemiologie

Gewisse Medikamente

perakut (traumat./Varizenblutung) akut (Blutung, AIHA) subukat (KM-Infiltration) chronisch (Substratmangel, C2 Niereninsuffinzienz, b. chron.

Enz./Tumor, Thalassämie)

Prävention &Screening

Ernährung (Substrate) Altersentspr. Tumorscr.

Prognose

Abhängig von Grundkrankheit

04.11.2024

Standardisierte Anämie-Abklärung

Wichtig

Anämie

Wichtig

(Adaptiert nach Greer et al., Wintrobe's Clinical Hematology. 12th Edition, Lippincott Williams & Wilkins, 2009)

Differentialdiagnose Anämie

MCV tief

- Eisenmangel
- Thalassämien

MCV normal

- Akute Blutung
- Entzündung
- Chronische Erkrankung
- Tumoren
- Aplastische Anämie
- PRCA
- Niereninsuffizienz
- Hypothyreose

MCV erhöht

- Alkohol
- Substratmangel
- MDS
- Retikulozytose
- Medikamentös
- Hepatopathie

KLASSIFIKATION DER ANÄMIEN

Nach Erythrozyten-Morphologie und -Indices («Erythrogramm») und Retikulozytenzahl

