MATH2710 — Portfolio 7.3

Mike Medved

March 23rd, 2023

Existence/Uniqueness

Outline of Existence Proof

An existence proof uses any method to show that a solution exists such that $\exists x \in X, P(x)$.

Outline of Existence + Uniqueness Proof

In the case of an existence + uniqueness proof, you must first prove that $\exists x \in X, P(x)$ using any method, and then prove that x is a unique solution for the given statement.

Proof Examples

- 1. Prove that $\exists x \in \mathbb{R}, x^2 6x + 8 = 0$.
- 2. Prove that $\exists ! x \in \mathbb{R}, 5x 15 = 0$.
- 3. Prove that $\exists p \in \text{Primes}$, such that p + 8 is also a prime number.
- 4. Prove that $\exists f$ differentiable function on real interval I, such that f = f' on I.
- 5. Prove that if a function f is not one-to-one on the real internal I, then f is not strictly increasing.
- 6. Let $S = \{a\sqrt{7} + b; (a, b) \in \mathbb{Z}\}$, prove that $\forall x \in S$, there exists uniquely $(a, b) \in \mathbb{Z}$ such that $x = a\sqrt{7} + b$.

Example 1.

We can use the quadratic formula to solve for x in this case. The quadratic formula is $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, where $a=1,\,b=-6,$ and c=8. This gives us $x=\frac{6\pm\sqrt{6^2-4(1)(8)}}{2(1)}=\frac{6\pm\sqrt{36-32}}{2}=\frac{6\pm\sqrt{4}}{2}=\frac{6\pm2}{2}=4\pm1$. Since x is a real number, we can conclude that $\exists x\in\mathbb{R}, x^2-6x+8=0$.

Example 2.

Firstly, we must show that there exists an x such that 5x-15=0. In this case, we can algebraically solve the equation to find x=3. Now, we must show that x is a unique solution. In order to do this, we must show that 5x-15=0 is not true for any other x. In this case, we can show that 5x-15=0 is not true for any other x by showing supposing there are x_1, x_2 such that $5x_1-15=0$ and $5x_2-15=0$. Then, we can show that $x_1=x_2$ by dividing by 5 for each equation, and then isolating x_1 and x_2 on each side of the equation. This gives us $x_1=\frac{15}{5}=3$ and $x_2=\frac{15}{5}=3$, so $x_1=x_2$. Therefore, we can conclude that $\exists ! x \in \mathbb{R}, 5x-15=0$.

Example 3.

Let's use p=3, thus p+8=11. In this case, both p,p+8 are primes. Thus, $\exists p \in \text{ Primes}$, such that p+8 is also a prime number.

Example 4.

Consider $f(x) = ce^x$ for some $c \in \mathbb{R}$. We can differentiate f(x) to obtain $f'(x) = ce^x$. In this case f(x) = f'(x) when iff c = 1, thus we can conclude that $\exists f$ differentiable function on real interval I, such that f = f' on I.

Example 5.

Assume that f is one-to-one on the real interval I, we aim to prove that f is strictly increasing. That is, the following: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Let x_1, x_2 be $x_1 \neq x_2$, to prove: $f(x_1) \neq f(x_2)$. Without loss of generality, let's assume $x_1 < x_2$. As f is strictly increasing, we have $f(x_1) < f(x_2)$. Hence $f(x_1) \neq f(x_2)$.

Example 6.

Existence Proof:

Proof. As $x \in S$, by definition $\exists (a,b) \in \mathbb{Q}, x = a \cdot \sqrt{7} + b$.

Uniqueness Proof:

Proof. Assume absurdly that $\exists ((a_1,b_1),(a_2,b_2))$ couples of rational numbers, such that:

$$\begin{cases} x = a_1 \cdot \sqrt{7} + b_1 & (1) \\ x = a_2 \cdot \sqrt{7} + b_2 & (2) \\ (a_1, b_1) \neq (a_2, b_2) & (3) \end{cases}$$

By (1) and (2), we can see that:

$$a_1 \cdot \sqrt{7} + b_1 = a_2 \cdot \sqrt{7} + b_2$$
$$a_1 \cdot \sqrt{7} - a_2 \cdot \sqrt{7} = b_2 - b_1$$
$$(a_1 - a_2) \cdot \sqrt{7} = b_2 - b_1$$

Thus, we can now check for the two cases wherein $a_1 - a_2$ is equal to zero or not.

Case 1. $a_1 - a_2 \neq 0$ $\sqrt{2} = \frac{b_2 - b_1}{a_1 - a_2} \Rightarrow \sqrt{2} \in \mathbb{Q}$. The fact that $\sqrt{2} \in \mathbb{Q}$ is a contradiction.

Case 2. $a_1 - a_2 = 0$

As $a_1 - a_2 = 0$, we have that $b_2 - b_1 = 0$, so $b_1 = b_2$ and since $a_1 - a_2 = 0$ the same logic applies. This is a contradiction with respect to statement (3).

Min-Max Theorem

If f is continuous on [a,b], then $\exists M,m\in[a,b]$ such that $f(M)\geq f(m)\forall x\in[a,b]$ and $f(m)\leq f(M)\forall x\in[a,b]$.

Figure 1: Visualization of The Min-Max Theorem

Example

An example of when the Min-Max Theorem fails to hold is when $f(x) = x^2$ on [-1, 1]. In this case, f(-1) = 1 and f(1) = 1, so $f(-1) \le f(x) \le f(1)$ for all $x \in [-1, 1]$, but f(x) = 0 has no solution in [-1, 1].

Figure 2: Visualization of The Min-Max Theorem Failing for $f(x) = x^2$

Rolle's Theorem

If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then $\exists c \in (a, b)$ such that f'(c) = 0.

Figure 3: Visualization of Rolle's Theorem

In order to accomplish this proof, there are several major theorems utilized. These are the Min-Max Theorem, Fermat's Theorem, One-To-One Property, and the Intermediate Value Theorem.

Components of Rolle's Theorem

The hypothesis of Rolle's Theorem is proved using an existence proof, and the conclusion is proved using a uniqueness proof. This is because the hypothesis is that $\exists c \in (a,b)$ such that f'(c) = 0, and the conclusion is that c is unique.

Cases

There are two cases that must be proved in order to prove Rolle's Theorem. The first case is when f is constant on [a, b], and the second case is when f is not constant on [a, b].

Figure 4: Constant Case

Figure 5: Non-Constant Case

Strictly Increasing Functions

If f is strictly increasing on the real interval I, then f must be one-to-one on I. This means that both:

- 1. Strictly Increasing: Let $x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) < f(x_2), \forall (x_i, x_j) \in I$.
- 2. One-to-One: Let $x_1, x_2 \in I, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2), \forall (x_i, x_j) \in I$.

A visual example of a strictly increasing function is $f(x) = x^2$, shown below:

Figure 6: Example of a Strictly Increasing Function

One-To-One Property

A function being one-to-mean means that no two x-values can have the same y-value. Let $x_1, x_2 \in I, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2), \forall (x_i, x_j) \in I$.

An example of a function that is *not* one-to-one, is $f(x) = (x-2)^2$. This is because $\forall x \in I, f(x)$ is not unique.

Figure 7: Example of a Function that is Not One-To-One

Proof of One-to-One Property

Theorem. We aim to show that f is one-to-one on the real interval I.

Proof. To be one-to-one means that $\forall (x_1, x_2), x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Let x_1, x_2 be $x_1 \neq x_2$, we aim to prove that $f(x_1) \neq f(x_2)$. Thus, without loss of generality, let $x_1 < x_2$. As f is strictly increasing in this case, we have that $f(x_1) < f(x_2)$, and thus $f(x_1) \neq f(x_2) \forall (x_1, x_2) \in I$. \square

Intermediate Value Property

Let f be a continuous function on [a,b], then $\forall \lambda \in (f(a),f(b)), \exists c \in (a,b)$ such that $f'(c)=\lambda$. This is shown below in the following figure.

Figure 8: Visualization of the Intermediate Value Theorem