Εισαγωγή στην Αριθμητική Ανάλυση

Σταμάτης Σταματιάδης stamatis@materials.uoc.gr

Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης

ΟΓΔΟΗ ΔΙΑΛΕΞΗ

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Βρείτε προσεγγιστική τιμή για τη συνάρτηση g(x,y) στο σημείο (\bar{x},\bar{y}) , αν είναι γνωστή στα σημεία (x_i,y_i) :

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Βρείτε προσεγγιστική τιμή για τη συνάρτηση g(x,y) στο σημείο (\bar{x},\bar{y}) , αν είναι γνωστή στα σημεία (x_i,y_i) :

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Βρείτε προσεγγιστική τιμή για τη συνάρτηση g(x,y) στο σημείο (\bar{x},\bar{y}) , αν είναι γνωστή στα σημεία (x_i,y_i) :

Προσέγγιση παραγώγων

Εισαγωγή (1/2)

Μαθηματικό Ποόβλημα

Για μια άγνωστη συνάρτηση f(x) ξέρουμε τις τιμές της, ..., f_{-1}, f_0, f_1, \ldots , στα σημεία ..., x_{-1}, x_0, x_1, \ldots Τα σημεία x_i έχουν αύξουσα σειρά. Επιθυμούμε να υπολογίσουμε παράγωγο κάποιας τάξης της f(x) σε σημείο \bar{x} στο διάστημα στο οποίο γνωρίζουμε την f(x).

Προσέγγιση παραγώγων Εισαγωγή (1/2)

Μαθηματικό Πρόβλημα

Για μια άγνωστη συνάςτηση f(x) ξέςουμε τις τιμές της, ..., f_{-1}, f_0, f_1, \ldots , στα σημεία ..., x_{-1}, x_0, x_1, \ldots Τα σημεία x_i έχουν αύξουσα σειςά. Επιθυμούμε να υπολογίσουμε παςάγωγο κάποιας τάξης της f(x) σε σημείο \bar{x} στο διάστημα στο οποίο γνωςίζουμε την f(x).

Α' Λύση

Προσεγγίζουμε τη συνάρτηση f(x) με άλλη συνάρτηση (π.χ. πολυώνυμο, λόγο πολυωνύμων, τμηματική συνάρτηση με ευθύγραμμα τμήματα ή πολυώνυμα όχι ελάχιστου βαθμού (spline) κλπ.). Κατόπιν, παραγωγίζουμε τη νέα συνάρτηση.

Προσέγγιση παραγώγων

Εισαγωγή (2/2)

Παράδειγμα Α' Λύσης

Το πολυώνυμο παρεμβολής με τον τύπο Lagrange είναι

$$p(x) = \sum_{i} f_i \, \ell_i(x) \; ,$$

όπου

$$\ell_i(x) = \prod_{j, j \neq i} \frac{x - x_j}{x_i - x_j} ,$$

και το άθροισμα και το γινόμενο είναι πάνω σε όλα τα σημεία. Επομένως, π.χ. η δεύτερη παράγωγος της f(x) στο \bar{x} είναι

$$f''(\bar{x}) \approx p''(\bar{x}) = \sum_i f_i \; \ell_i''(\bar{x}) \; .$$

Πολλές πράξεις!

Μπορώ να βρω αλλιώς (πιο γρήγορα) τους αριθμούς $\ell_i''(\bar{x})$;

Τύποι που παράγονται από τον ορισμό (1/3)

Ορισμός πρώτης παραγώγου

$$f'(\bar{x}) = \lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{x - \bar{x}} .$$

Εφαρμογή

Αν ξέρουμε ότι η f περνά από τα σημεία (x_i, f_i) με $i = \ldots, -1, 0, 1, \ldots$ τότε η παράγωγος στο x_0 είναι προσεγγιστικά

$$f'(x_0) \approx \frac{f_1 - f_0}{x_1 - x_0},$$

 $f'(x_0) \approx \frac{f_{-1} - f_0}{x_{-1} - x_0}.$

Τύποι που παράγονται από τον ορισμό (2/3)

Σφάλματα

Ανάπτυγμα Taylor

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \cdots$$

Εφαρμογή

$$f(x_1) = f(x_0) + f'(x_0)(x_1 - x_0) + \frac{f''(x_0)}{2!}(x_1 - x_0)^2 + \frac{f'''(x_0)}{3!}(x_1 - x_0)^3 \dots \Rightarrow$$

$$f'(x_0) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} - \frac{x_1 - x_0}{2!}f''(x_0) - \frac{(x_1 - x_0)^2}{3!}f'''(x_0) - \dots$$

Άوα

$$f'(x_0) = \frac{f_1 - f_0}{x_1 - x_0} + \mathcal{O}(x_1 - x_0) ,$$

και αντίστοιχα

$$f'(x_0) = \frac{f_{-1} - f_0}{x_{-1} - x_0} + \mathcal{O}(x_{-1} - x_0) .$$

Τύποι που παράγονται από τον ορισμό (3/3)

Έστω ότι x_{-1} , x_0 , x_1 ισαπέχουν, δηλαδή έστω ότι $x_0-x_{-1}=x_1-x_0=h$. Τα αναπτύγματα Taylor της f στα x_1 , x_{-1} δίνουν για την $f'(x_0)$

$$f'(x_0) = \frac{f(x_1) - f(x_0)}{h} - \frac{h}{2!}f''(x_0) - \frac{h^2}{3!}f'''(x_0) - \cdots,$$

$$f'(x_0) = \frac{f(x_0) - f(x_{-1})}{h} + \frac{h}{2!}f''(x_0) - \frac{h^2}{3!}f'''(x_0) - \cdots.$$

Το ημιάθροισμά τους δίνει

$$f'(x_0) = \frac{f(x_1) - f(x_{-1})}{2h} - \frac{h^2}{3!}f'''(x_0) - \dots = \frac{f_1 - f_{-1}}{2h} + \mathcal{O}(h^2)$$
.

Το σφάλμα είναι ανάλογο του h^2 παρόλο που χρησιμοποιούμε πάλι μόνο δύο τιμές της f.

Τύποι που παράγονται από τον ορισμό (3/3)

Έστω ότι x_{-1} , x_0 , x_1 ισαπέχουν, δηλαδή έστω ότι $x_0-x_{-1}=x_1-x_0=h$. Τα αναπτύγματα Taylor της f στα x_1 , x_{-1} δίνουν για την $f'(x_0)$

$$f'(x_0) = \frac{f(x_1) - f(x_0)}{h} - \frac{h}{2!}f''(x_0) - \frac{h^2}{3!}f'''(x_0) - \cdots,$$

$$f'(x_0) = \frac{f(x_0) - f(x_{-1})}{h} + \frac{h}{2!}f''(x_0) - \frac{h^2}{3!}f'''(x_0) - \cdots.$$

Το ημιάθροισμά τους δίνει

$$f'(x_0) = \frac{f(x_1) - f(x_{-1})}{2h} - \frac{h^2}{3!}f'''(x_0) - \dots = \frac{f_1 - f_{-1}}{2h} + \mathcal{O}(h^2)$$
.

Το σφάλμα είναι ανάλογο του h^2 παρόλο που χρησιμοποιούμε πάλι μόνο δύο τιμές της f.

Παρατήρηση

Ο υπολογισμός της παραγώγου με τιμές σε σημεία που περικλείουν το σημείο υπολογισμού της είναι πιο ακριβής από τον υπολογισμό με τύπο που έχει το σημείο υπολογισμού σε άκρο του.

Συστηματική παραγωγή τύπων προσέγγισης παραγώγου Μέθοδος (1/2)

Η παράγωγος της f(x) οποιασδήποτε τάξης m (ακόμα και μηδενικής), σε κάποιο σημείο \bar{x} στο πεδίο ορισμού της συνάρτησης, μπορεί να γραφεί ως γραμμικός συνδυασμός γνωστών τιμών της συνάρτησης σε σημεία x_i , με $i=0,\ldots,n-1$ και n>m:

$$f^{(m)}(\bar{x}) \approx \sum_{i=0}^{n-1} w_i f(x_i) .$$

Οι άγνωστοι συντελεστές w_i εξαρτώνται από το \bar{x} και τα x_i .

Συστηματική παραγωγή τύπων προσέγγισης παραγώγου $\underset{\text{Mέθοδος (2/2)}}{\text{Mέθοδος (2/2)}}$

Απαιτούμε η σχέση

$$f^{(m)}(\bar{x}) \approx \sum_{i=0}^{n-1} w_i f(x_i) .$$

να είναι ακριβής όταν n f(x) είναι διαδοχικά οι συναρτήσεις $g_0(x)=1$, $g_1(x)=x$, $g_2(x)=x^2$, ..., $g_{n-1}(x)=x^{n-1}$. Παράγεται έτσι ένα γραμμικό σύστημα εξισώσεων με άγνωστους τους συντελεστές w_i , το οποίο έχει μοναδική λύση:

$$\begin{bmatrix} (1)^{(m)} \\ (\bar{\chi})^{(m)} \\ (\bar{\chi}^2)^{(m)} \\ \vdots \\ (\bar{\chi}^{n-1})^{(m)} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_0 & x_1 & x_2 & \cdots & x_{n-1} \\ x_0^2 & x_1^2 & x_2^2 & \cdots & x_{n-1}^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & x_2^{n-1} & \cdots & x_{n-1}^{n-1} \end{bmatrix} \cdot \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_{n-1} \end{bmatrix}.$$

Υπάρχει γρήγορος αλγόριθμος (Fornberg) για τη λύση του.

Συστηματική παραγωγή τύπων προσέγγισης παραγώγου $\substack{\Pi \text{αράδειγμα } (1/2)}$

Πρώτη παράγωγος της f στο \bar{x} από τις τιμές στα σημεία $x_0 - h, x_0, x_0 + h$:

$$f'(\bar{x}) \approx af(x_0 - h) + bf(x_0) + cf(x_0 + h)$$
.

Όταν η f(x) είναι διαδοχικά $1, x, x^2$ έχουμε

$$f(x) = 1 \implies 0 = a + b + c,$$

$$f(x) = x \implies 1 = a(x_0 - h) + bx_0 + c(x_0 + h),$$

$$f(x) = x^2 \implies 2\bar{x} = a(x_0 - h)^2 + bx_0^2 + c(x_0 + h)^2.$$

Η λύση του γραμμικού συστήματος δίνει

$$\begin{array}{rcl} a & = & \displaystyle -\frac{1}{2h} + \frac{\bar{x} - x_0}{h^2} \; , \\ b & = & \displaystyle -2\frac{\bar{x} - x_0}{h^2} \; , \\ c & = & \displaystyle \frac{1}{2h} + \frac{\bar{x} - x_0}{h^2} \; . \end{array}$$

Συστηματική παραγωγή τύπων προσέγγισης παραγώγου Παράδειγμα (2/2)

 $f'(x_0+h) \approx \frac{f(x_0-h)-4f(x_0)+3f(x_0+h)}{2h}$.

Αν
$$\bar{x}\equiv x_0$$
 έχουμε $a=-1/2h$, $b=0$, $c=1/2h$, δηλαδή
$$f'(x_0)\approx \frac{f(x_0+h)-f(x_0-h)}{2h}\;.$$
 Αν $\bar{x}\equiv x_0+h$ έχουμε $a=1/2h$, $b=-2/h$, $c=3/2h$. Επομένως

Προσέγγιση με Ελάχιστα Τετράγωνα (1/3)

Ποόβλημα

Πώς θα προσεγγίσουμε συνάρτηση f(x) για την οποία έχουμε ένα σύνολο σημείων (x_i, y_i) με $i = 1, \ldots, n$ αλλά $y_i \approx f(x_i)$ (και όχι $y_i = f(x_i)$);

Δεν έχει νόημα να την προσεγγίσουμε με συνάρτηση p(x) που περνά από τα (x_i, y_i) .

Προσέγγιση με Ελάχιστα Τετράγωνα (1/3)

Ποόβλημα

Πώς θα προσεγγίσουμε συνάρτηση f(x) για την οποία έχουμε ένα σύνολο σημείων (x_i, y_i) με $i = 1, \ldots, n$ αλλά $y_i \approx f(x_i)$ (και όχι $y_i = f(x_i)$);

Παράδειγμα: πειραματικές μετρήσεις, με σφάλματα δηλαδή, για τις τιμές $f(x_i)$.

Δεν έχει νόημα να την προσεγγίσουμε με συνάρτηση p(x) που περνά από τα (x_i,y_i) .

Ποόβλημα

Πώς θα απλοποιήσουμε πολύπλοκη συνάςτηση f(x), γνωστή σε κάποια σημεία, χρησιμοποιώντας απλούστερη συνάςτηση p(x) με λιγότερες ελεύθερες παραμέτρους απ' ό,τι σημεία;

Το (γενικά μη γραμμικό) σύστημα $p(x_i) = f(x_i)$ έχει περισσότερες εξισώσεις απ' ό,τι αγνώστους. Να απορρίψω σημεία;

Προσέγγιση με Ελάχιστα Τετράγωνα (2/3)

Λύση

Με τη μέθοδο ελάχιστων τετραγώνων προσαρμόζουμε στα δεδομένα μας μια συνάρτηση g(x) προκαθορισμένης μορφής, με παραμέτρους, ώστε το άθροισμα των τετραγώνων των αποκλίσεων από τα y_i ,

$$\sum_{i=1}^{n} (g(x_i) - y_i)^2 ,$$

να γίνεται ελάχιστο ως προς αυτές τις παραμέτρους.

Προσέγγιση με Ελάχιστα Τετράγωνα (3/3)

Παρατήρηση

Επιλέγουμε να ελαχιστοποιήσουμε το άθροισμα των τετραγώνων αντί για τις απόλυτες τιμές των αποκλίσεων καθώς θέλουμε να σχηματίσουμε μια συνεχή και παραγωγίσιμη συνάρτηση: προσέξτε ότι π.χ. η παράγωγος του |x| δεν ορίζεται στο 0, ενώ, αντίθετα, η x^2 έχει παραγώγους σε όλο το πεδίο ορισμού της.

Ευθεία ελάχιστων τετραγώνων (1/4)

Έστω ότι γνωρίζουμε από τη θεωρία ότι η συνάρτηση f(x) που έδωσε τις μετρήσεις (x_i, y_i) είναι γραμμική.

Σχηματίζουμε τη συνάςτηση $g(x)=\alpha x+\beta$ με άγνωστους συντελεστές α , β . Αυτοί θα προκύψουν από την απαίτηση να ελαχιστοποιείται το άθροισμα

$$E(\alpha,\beta) = \sum_{i=1}^{n} (\alpha x_i + \beta - y_i)^2.$$

Η συνά
ρτηση $E(\alpha,\beta)$ γίνεται ακρότατη όταν $\partial E/\partial\alpha=0,\ \partial E/\partial\beta=0.$ Οι εξισώσεις γίνονται

$$2\sum_{i=1}^{n} (\alpha x_{i} + \beta - y_{i})x_{i} = 0 \quad \Rightarrow \quad \alpha \sum_{i=1}^{n} x_{i}^{2} + \beta \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i}y_{i}$$
$$2\sum_{i=1}^{n} (\alpha x_{i} + \beta - y_{i}) = 0 \quad \Rightarrow \quad \alpha \sum_{i=1}^{n} x_{i} + \beta \sum_{i=1}^{n} 1 = \sum_{i=1}^{n} y_{i}$$

Ευθεία ελάχιστων τετραγώνων (2/4)

Η λύση του συστήματος είναι

$$\alpha = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\overline{x} \overline{y} - \overline{x} \overline{y}}{\overline{x^{2}} - \overline{x}^{2}},$$

$$\beta = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \overline{y} - \alpha \overline{x},$$

όπου

$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_i ,$$

η μέση τιμή ενός μεγέθους w.

Ο παρονομαστής στα κλάσματα δείχνεται εύκολα ότι είναι θετικός.

Ευθεία ελάχιστων τετραγώνων (3/4)

Το ακρότατο της $E(\alpha,\beta)$ στις παραπάνω τιμές των α,β είναι ελάχιστο καθώς ο εσσιανός πίνακας

$$\begin{bmatrix} \frac{\partial^2 E}{\partial \alpha^2} & \frac{\partial^2 E}{\partial \alpha \partial \beta} \\ \frac{\partial^2 E}{\partial \beta \partial \alpha} & \frac{\partial^2 E}{\partial \beta^2} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n x_i^2 & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & n \end{bmatrix}$$

είναι συμμετοικός θετικά ορισμένος (δείτε τις σημειώσεις για την απόδειξη).

Ευθεία ελάχιστων τετραγώνων (4/4)

Συντελεστής συσχέτισης

Ο συντελεστής συσχέτισης, r^2 , που προσδιορίζει την ποιότητα της προσέγγισης, είναι

$$r^{2} \equiv \frac{\left(n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}\right)^{2}}{\left(n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right) \left(n \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}\right)} = \alpha^{2} \frac{\overline{x^{2}} - \overline{x}^{2}}{\overline{y^{2}} - \overline{y}^{2}}.$$

Ισχύει πάντα ότι $0 \le r^2 \le 1$. Το $r^2 = 1$ υποδηλώνει τέλεια προσαρμογή (η ευθεία περνά από όλα τα σημεία), ενώ η τιμή γίνεται τόσο μικρότερη από 1 όσο πιο διασκορπισμένα είναι τα σημεία γύρω από την ευθεία.

Πολυώνυμο ελάχιστων τετραγώνων (1/3)

Έστω ότι γνωρίζουμε από τη θεωρία ότι η συνάρτηση f(x) που έδωσε τις μετρήσεις (x_i,y_i) είναι πολυωνυμική βαθμού m ως προς x. Σχηματίζουμε τη συνάρτηση

$$p(x) = \sum_{i=0}^{m} \alpha_i x^i$$

με άγνωστους συντελεστές τα α_i . Αυτοί θα προκύψουν από την απαίτηση να ελαχιστοποιείται το άθροισμα

$$E(\alpha_0,\alpha_1,\ldots,\alpha_m)=\sum_{i=1}^n(p(x_i)-y_i)^2,$$

δηλαδή,

$$\frac{\partial E}{\partial \alpha_k} = 0$$
 , yia $k = 0, 1, \dots, m$.

Πολυώνυμο ελάχιστων τετραγώνων (2/3)

Οι εξισώσεις γίνονται

$$\frac{\partial E}{\partial \alpha_k} = 2 \sum_{i=1}^n x_i^k \left(\sum_{j=0}^m \alpha_j x_i^j - y_i \right) = 0 \Rightarrow \sum_{j=0}^m \alpha_j \sum_{i=1}^n x_i^{k+j} = \sum_{i=1}^n x_i^k y_i.$$

Στο γραμμικό σύστημα για τα α_j , ο πίνακας των συντελεστών A, με διαστάσεις $(m+1)\times(m+1)$, έχει στοιχεία

$$A_{kj} = \sum_{i=1}^{n} x_i^{k+j}$$
 µE $k = 0, 1, \dots, m$, $j = 0, 1, \dots, m$.

Οι σταθεροί όροι είναι

$$b_k = \sum_{i=1}^n x_i^k y_i .$$

Το σύστημα αυτό έχει μοναδική λύση αν m < n. Αν n = m + 1, η λύση αντιστοιχεί στο πολυώνυμο παρεμβολής m βαθμού.

Πολυώνυμο ελάχιστων τετραγώνων (3/3)

Έστω ότι τα σημεία (x_i, y_i) είναι $\{(0.0, 1.0), (0.25, 1.284), (0.5, 1.6487), (0.75, 2.117), (1.0, 2.7183)\}$, $i=1,\ldots,5$. Το δευτεροβάθμιο πολυώνυμο που εξάγεται από τη μέθοδο ελάχιστων τετραγώνων προκύπτει ως λύση της

$$\begin{bmatrix} 5.0 & 2.5 & 1.8750 \\ 2.5 & 1.875 & 1.5625 \\ 1.875 & 1.5625 & 1.3828 \end{bmatrix} \cdot \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 8.768 \\ 5.4514 \\ 4.4015 \end{bmatrix} \Rightarrow \begin{cases} \alpha_0 = 1.0052 \\ \alpha_1 = 0.8641 \\ \alpha_2 = 0.8437 \end{cases}$$

Επομένως,

$$p(x) = 1.0052 + 0.8641x + 0.8437x^2.$$

Η ευθεία ελάχιστων τετραγώνων είναι η p(x)=0.89968+1.70784x. Όπως παρατηρούμε, οι συντελεστές της δεν έχουν σχέση με τους δυο πρώτους συντελεστές του δευτεροβάθμιου πολυωνύμου.

Καμπύλη ελάχιστων τετραγώνων $h(y) = \alpha g(x) + \beta$ (1/2)

Πρόβλημα

Έστω ότι έχουμε πειραματικά σημεία με θεωρητική σχέση της μορφής $h(y)=\alpha g(x)+\beta$, όπου h(y) και g(x) κάποιες συναρτήσεις. Ποια είναι η καμπύλη ελάχιστων τετραγώνων;

Καμπύλη ελάχιστων τετραγώνων $h(y) = \alpha g(x) + \beta$ (1/2)

Πρόβλημα

Έστω ότι έχουμε πειραματικά σημεία με θεωρητική σχέση της μορφής $h(y)=\alpha g(x)+\beta$, όπου h(y) και g(x) κάποιες συναρτήσεις. Ποια είναι η καμπύλη ελάχιστων τετραγώνων;

Λύση

Ορίζουμε τα σημεία $(\tilde{x}_i, \tilde{y}_i)$ με $\tilde{x}_i = g(x_i)$ και $\tilde{y}_i = h(y_i)$, και εφαρμόζουμε για αυτά τις σχέσεις για τα α , β της ευθείας ελάχιστων τετραγώνων καθώς η σχέση των \tilde{x} , \tilde{y} είναι γραμμική.

• Έστω ότι η θεωρητική σχέση είναι $y = a + be^x$. Ορίζουμε

$$\tilde{y} = y$$
, $\tilde{x} = e^x$, $\tilde{\alpha} = b$, $\tilde{\beta} = a$.

Η εξίσωση γίνεται $\tilde{y}=\tilde{\beta}+\tilde{\alpha}\tilde{x}$. Η εφαρμογή των τύπων για τα α , β της ευθείας ελάχιστων τετραγώνων υπολογίζει τα $\tilde{\alpha}$, $\tilde{\beta}$ άρα και τα a, b.

• Έστω ότι η θεωρητική σχέση είναι $y = a + be^x$. Ορίζουμε

$$\tilde{y} = y$$
, $\tilde{x} = e^x$, $\tilde{\alpha} = b$, $\tilde{\beta} = a$.

Η εξίσωση γίνεται $\tilde{y}=\tilde{\beta}+\tilde{\alpha}\tilde{x}$. Η εφαφμογή των τύπων για τα α , β της ευθείας ελάχιστων τετραγώνων υπολογίζει τα $\tilde{\alpha}$, $\tilde{\beta}$ άρα και τα a, b.

• Έστω ότι η θεωρητική σχέση είναι $y = ax^b$. Η εξίσωση μπορεί να γραφεί στη μορφή $\ln y = \ln a + b \ln x$. Ορίζουμε

$$\tilde{y} = \ln y$$
, $\tilde{x} = \ln x$, $\tilde{\alpha} = b$, $\tilde{\beta} = \ln a$.

Η εξίσωση γίνεται $\tilde{y}=\tilde{\beta}+\tilde{\alpha}\tilde{x}$. Η εφαρμογή των τύπων για τα α , β της ευθείας ελάχιστων τετραγώνων υπολογίζει τα $\tilde{\alpha}$, $\tilde{\beta}$ άρα και τα a, b.