Dạng 1. Tính tiêu cự, độ tụ của thấu kính theo chiết suất và hình dạng của thấu kính

1. Phương pháp

Áp dụng các công thức độ tụ tính các đại lượng liên quan đến yêu cầu bài toán

$$D = \frac{1}{f} = \left(\frac{n_{tk}}{n_{mt}} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

 \mathring{O} chân không hoặc không khí $n_{mt} = 1 \Rightarrow D = \frac{1}{f} = \left(n_{tk} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$

Trong đó:

- + Bán kính R > 0: mặt lồi; R < 0: mặt lõm; $R = \infty$: mặt phẳng; đơn vị là m
- + Tiêu cự f, đơn vị là m;
- + Độ tụ D, đơn vị là điốp dp

2. Ví dụ minh họa

Ví dụ 1: Cho một thấu kính có hai mặt lồi. Khi đặt trong không khí có độ tụ D_1 , khi đặt trong chất lỏng có chiết suất là n'= 1,68 thì thấu kính lại có độ tụ D_2 = - $(D_1/5)$. Hỏi chiết suất n của thấu kính là bao nhiều?

Hướng dẫn

$$D_{2} = \frac{D_{1}}{5} \Rightarrow \frac{D_{2}}{D_{1}} = -\frac{1}{5} = \frac{\left(\frac{n_{tk}}{n_{2}} - 1\right)\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)}{\left(\frac{n_{tk}}{n_{1}} - 1\right)\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)} = \frac{\left(\frac{n_{tk}}{n_{2}} - 1\right)}{\left(\frac{n_{tk}}{n_{1}} - 1\right)} = \frac{\left(\frac{n_{tk}}{1,68} - 1\right)}{\left(\frac{n_{tk}}{1} - 1\right)}$$

$$\Rightarrow$$
 $n_{tk} = 1,5$

Bài 2: Cho thủy tinh làm thấu kính có chiết suất n = 1,5.

TÍnh tiêu cự của các thấu kính khi đặt trong không khí. Nếu:

- a) Hai mặt lồi có bán kính 10cm và 30 cm
- b) Mặt lồi có bán kính 10cm và mặt lõm có bán kính 30cm.

Hướng dẫn

 \mathring{O} chân không hoặc không khí $n_{mt} = 1 \Rightarrow D = \frac{1}{f} = (n_{tk} - 1) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$

a)
$$\frac{1}{f} = (1,5-1)\left(\frac{1}{0,1} + \frac{1}{0,3}\right) \Rightarrow f = 0,15m = 15cm$$

b)
$$\frac{1}{f} = (1,5-1)\left(\frac{1}{0,1} - \frac{1}{0,3}\right) \Rightarrow f = 0,3m = 30cm$$