ARBEITSBLATT ZUR RELATIONENALGEBRA

Als Ausgangsbasis dienen die folgenden drei Tabellen:

Schüler

Schüler-Nr	Name	Vorname	Tutor	Geschlecht	
123	Alberti	Hans	Müller	m	
034	Glücklich	Gesine	Abel	w	
321	Müser	Angelika	Abel	w	
111	Weber	Wolfgang	Zange	m	

Kurs

Kurs-Nr	Тур	Fach	Thema	Jahrgangsstufe
13	GK	Mathematik	Analysis 2	12/I
11	GK	Physik	Mechanik 1	11/I
03	GK	Informatik	Datenbanken	12/II
25	LK	Englisch	Short Stories	12/I
89	GK	Informatik	Compilerbau	13/II

Besucht

Schüler-Nr	<u>Kurs-Nr</u>	Fehlstunden	Punkte
123	03	00	12
123	25	03	07
321	89	00	14
111	03	21	03

Aufgabe 1: Ergänzen Sie das Entity-Relationship-Diagramm!

- **Aufgabe 2:** Welche Tabelle liefert $\pi_{Kurs-Nr}(\sigma_{Fach=Informatik}(Kurs))$? Wir nennen diese neue Tabelle ab jetzt *Informatikkurse*
- **Aufgabe 3:** Die Tabelle *Informatikschüler* wird durch den Join *Informatikkurse* ⊳⊲ *Besucht* erzeugt. Wie sieht diese aus?

Aufgabe 4: Bestimmen und begründen sie die notwendigen Relationen-Operatoren, um von der Tabelle *Informatikschüler* (hier noch ohne Schülernamen) auf die Tabelle *InformatikschülerPunkteNamen* zu gelangen.

Informatikschüler-PunkteNamen

Schüler-Nr	Punkte	Name	Vorname	Tutor	Geschlecht
123	12	Alberti	Hans	Müller	m
111	03	Weber	Wolfgang	Zange	m
321	14	Müser	Angelika	Abel	W

Aufgabe 5: Geben Sie den Relationen-Operator an, um von der Tabelle *InformatikschülerPunkteNamen* auf eine Tabelle zu gelangen, welche nur die Namen und Punkte der männlichen Informatikschüler enthält, die mindestens eine "zwei" (10-15 Punkte) in Informatik haben.

ARBEITSBLATT ZU RELATIONEN-OPERATOREN

Sie haben in einem früheren Arbeitsblatt das Entity-Relationship-Diagramm zu einer Datenbank für das Miles&More-Projekt entwickelt. Die Lösung hatte folgendes Aussehen:

Lösen Sie dazu die folgenden Aufgaben:

- **Aufgabe 1:** Ermitteln Sie die Relationen-Operatoren, um alle Passagier-Vornamen zu erhalten, deren Nachname Meyer ist.
- **Aufgabe 2:** Geben Sie den Relationen-Operator an, mit dem alle Kontonummern der Frequent-Flyers ermittelt werden können.
- **Aufgabe 3:** Welche Relationen-Operatoren müssen angewendet werden, um alle Passagier-Nachnamen zu erhalten, die von London nach New York fliegen?
- Aufgabe 4: Beschreiben Sie mit Worten, welches Ziel mit der folgenden Anfrage verfolgt wird:
 π_{Flugnr}(Flugstrecke ⊳⊲ Passagier ⊳⊲ Frequent-Flyers)
- **Aufgabe 5:** Analysieren Sie in gleicher Weise die folgende Anfrage: $\pi_{\text{Kennzeichen}}(\sigma_{\text{Name="Schmitz"}}(\sigma_{\text{Start="Berlin"}}(\text{Flugstrecke} \bowtie \neg \Gamma \text{lugzeug}) \bowtie \neg \Gamma \text{Passagier}))$
- Aufgabe 6: Gibt es Passagiere mit dem Namen Müller, welche gleichzeitig mit Passagieren in einem Flugzeug sitzen, die Schmitz heißen? Formulieren Sie eine entsprechende Anfrage mit Hilfe der Relationen-Operatoren.