

Базовая биоинформатика

Лекции 7 и 8 Обработка RNA-Seq

12/11/2020

В предыдущей серии...

Сегодня на лекции

Процессинг RNA-Seq

Оценить экспрессию гена можно по его покрытию

"Дорожная карта" анализа RNA-Seq

BostonGene

Контроль качества

Контроль качества

- Прочтения могут иметь "плохие концы" по краям и в целом быть засорены чем-то.
- Какие метрики качества можно использовать для того, чтобы понять, что перед нами адекватные прочтения?

FastQC

- FastQC программа, которая оценивает базовые метрики качества прочтений, а также делает легко интерпретируемый графический отчёт.
- Пример отчёта FastQC до тримминга:
 https://kodomo.fbb.msu.ru/~ann_karpukhina/files/chr11_fastqc.html
- Пример отчёта FastQC после тримминга:
 https://kodomo.fbb.msu.ru/~ann_karpukhina/files/chr11_trim_fastqc.html

Per base sequence content B RNA-Seq

Per base sequence content B RNA-Seq

Выравнивание

Выравнивание

 Выравнивать можно как на референсный геном, так и на референсный транскриптом

Выравнивание

 Выравнивать можно как на референсный геном, так и на референсный транскриптом

BIOINFORMATICS ORIGINAL PAPER

Vol. 29 no. 1 2013, pages 15-21 doi:10.1093/bioinformatics/bts635

Sequence analysis

Advance Access publication October 25, 2012

STAR: ultrafast universal RNA-seq aligner

Alexander Dobin^{1,*}, Carrie A. Davis¹, Felix Schlesinger¹, Jorg Drenkow¹, Chris Zaleski¹, Sonali Jha¹, Philippe Batut¹, Mark Chaisson² and Thomas R. Gingeras¹ ¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA and ²Pacific Biosciences, Menlo Park, CA, USA Associate Editor: Inanc Birol

- Около 15 000 цитирований за 8 лет. Рекомендован ENCODE.
- Хорошо работает даже с большими отличиями от референса. Прост в использовании.
- Требует очень большое количество RAM.

Другие программы для выравнивания

 В работах вы можете встретить и другие программы, которые используются для выравнивания прочтений RNA-Seq.

Name	Version	Mapping	Reference
Bowtie	2.2.6	Unspliced read aligner	[31]
BWA	0.7.12-r1039	Unspliced read aligner	[33]
TopHat	2.10	Spliced read aligner	[18]
STAR	2.5.3	Spliced read aligner	[34]
kallisto	0.43.1	pseudo-alignment	[35]
Salmon	0.8.2	pseudo-alignment	[36]

https://doi.org/10.1371/journal.pone.0190152.t001

Файл выравнивания: SAM/BAM


```
12345678901234 5678901234567890123456789012345
Coor
ref
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1
              TTAGATAAAGGATA*CTG
+r002
             aaaAGATAA*GGATA
+r003
           gcctaAGCTAA
+r004
                         ATAGCT.....TCAGC
-r003
                                ttagctTAGGC
-r001/2
                                             CAGCGGCAT
```

```
QHD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r001
r002
     0 ref 9 30 3S6M1P1I4M * 0
                                 O AAAAGATAAGGATA
     0 ref 9 30 5S6M
r003
                             * O GCCTAAGCTAA
                                                      * SA:Z:ref,29,-,6H5M,17,0;
       0 ref 16 30 6M14N5M
                            * O O ATAGCTTCAGC
r004
r003 2064 ref 29 17 6H5M
                                   O TAGGC
                                                      * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M
                            = 7 -39 CAGCGGCAT
                                                      * NM:i:1
```

Файл выравнивания: SAM/BAM


```
QHD VN:1.5 SO:coordinate
                                                                                                             Header
                                                                                                             section
@SQ SN:ref LN:45
r001
                  7 30 8M2I4M1D3M = 37
                                              39 TTAGATAAAGGATACTG *
        99 ref
r002
                  9 30 3S6M1P1I4M *
                                                O AAAAGATAAGGATA
          0 ref
                  9 30 5S6M
                                                O GCCTAAGCTAA
r003
          0 ref
                                                                         * SA:Z:ref,29,-,6H5M,17,0;
                                                                                                             Alignment
                                                                                                             section
r004
          0 ref 16 30 6M14N5M
                                                O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                                O TAGGC
                                                                         * SA:Z:ref,9,+,5S6M,30,1;
r001
       147 ref 37 30 9M
                                          7 -39 CAGCGGCAT
                                                                         * NM:i:1
                                                                              Optional fields in the format of TAG:TYPE:VALUE
                                                                        QUAL: read quality; * meaning such information is not available
                                                        SEQ: read sequence
                                              TLEN: the number of bases covered by the reads from the same fragment. Plus/minus
                                              means the current read is the leftmost/rightmost read. E.g. compare first and last lines.
                                           PNEXT: Position of the primary alignment of the NEXT read in the template. Set as 0 when the
                                           information is unavailable. It corresponds to POS column.
                                      RNEXT: reference sequence name of the primary alignment of the NEXT read. For paired-end
                                      sequencing, NEXT read is the paired read, corresponding to the RNAME column.
                            CIGAR: summary of alignment, e.g. insertion, deletion
                   MAPQ: mapping quality
                 POS: 1-based position
            RNAME: reference sequence name, e.g. chromosome/transcript id
      FLAG: indicates alignment information about the read, e.g. paired, aligned, etc.
```

QNAME: query template name, aka. read ID

Подсчёт числа ридов на ген

Подсчёт числа ридов на ген

• B STAR по умолчанию "вшит" **HTSeq**, который подсчитывает число прочтений на ген.

Подсчёт числа ридов на транскрипт

Подсчёт числа ридов на транскрипт

BostonGene

- Чаще всего подсчёт представленности различных изоформ реализуется при помощи ML/EM (рисунок сверху).
- Дифференциальная
 экспрессия, посчитанная на
 уровне транскриптов, более
 точна, чем посчитанная на
 уровне генов (рисунок
 снизу).

Псевдовыравнивания

Псевдовыравнивания

Published: 04 April 2016

Near-optimal probabilistic RNA-seq quantification

Nicolas L Bray, Harold Pimentel, Páll Melsted & Lior Pachter ⊠

Nature Biotechnology **34**, 525–527(2016) | Cite this article **23k** Accesses | **1793** Citations | **167** Altmetric | Metrics

- **Kallisto** имеет около двух тысяч цитирований.
- Работает очень быстро и в последнее время широко используется.
- Не выдаёт выравнивание.

Выравнивания или псевдовыравнивания?

- В целом методы достаточно хорошо скоррелированы.
- В зависимости от задач используют разные подходы, в BostonGene в основном используют kallisto (в ТССА тоже).

Table 1: Pearson Correlations on Transcript Counts (log(counts+1)), Sim

	kallisto	Salmon	HISAT2	STAR	ground truth
kallisto	1	0.998	0.986	0.977	0.951
Salmon	0.998	1	0.987	0.977	0.951
HISAT2	0.986	0.987	1	0.977	0.949
STAR	0.977	0.977	0.977	1	0.941
ground truth	0.951	0.951	0.949	0.941	1

Table 5: Pearson correlation on Transcript Counts (log(counts+1)), Zika

	kallisto	$Salmon_0.8.2$	$Salmon_0.11.2$	HISAT2	STAR
kallisto	1	0.998	0.966	0.936	0.934
Salmon_0.8.2	0.998	1	0.966	0.936	0.934
Salmon_0.11.2	0.966	0.966	1	0.970	0.966
HISAT2	0.936	0.936	0.970	1	0.976
STAR	0.934	0.934	0.966	0.976	1

Нормализация

Нормализация

Как сравнить уровни экспрессии этих генов?

Каунты

Каунты — это число ридов, откартированных на ген или транскрипт. Число каунтов зависит от:

- 1. экспрессии гена,
- 2. размера библиотеки,
- 3. длины и
- 4. GC-состава гена.

	Wild-type		Mutant	
	Sample 1	Sample 2	Sample 3	Sample 4
Gene 1	24	31	76	59
Gene 2	0	3	7	2
Gene 3	1988	1125	3052	2450
Gene 4	5	0	0	1
• • •	• • •			
Total	22341961	20739175	15669423	23711320

$$heta_i = P(ext{read from transcript } i) = Z^{-1} au_i \ell_i'$$

$$Z = \sum au_i \ell_i' \qquad \text{expression level} \qquad \text{length}$$

Reads Per Kilobase per Million mapped

 Для того, чтобы учесть длину гена и глубину секвенирования, придумали метрику **RPKM**.

$$RPKM = 10^9 \times \frac{C}{N^*L}$$

- C is the number of mappable reads mapped onto the gene's exons.
- N is the total number of mappable reads in the experiment.
- L is the total length of the exons in base pairs.
- Fragments Per Kilobase of exon per Million fragments mapped (FPKM),

RPKM

Gene Name	Rep1 Counts	Rep2 Counts	Rep3 Counts
A (2kb)	10	12	30
B (4kb)	20	25	60
C (1kb)	5	8	15
D (10kb)	0	0	1

Total reads: 35 45 106

Tens of reads: 3.5 4.5 10.6

Gene Name	Rep1 RPM	Rep2 RPM	Rep3 RPM
A (2kb)	2.86	2.67	2.83
B (4kb)	5.71	5.56	5.66
C (1kb)	1.43	1.78	1.43
D (10kb)	0	0	0.09

Gene Name	Rep1 RPKM	Rep2 RPKM	Rep3 RPKM
A (2kb)	1.43	1.33	1.42
B (4kb)	1.43	1.39	1.42
C (1kb)	1.43	1.78	1.42
D (10kb)	0	0	0.009

Transcripts Per Million

• Существует и другая метрика — ТРМ.

$$TPM_{i} = \frac{X_{i}}{\widetilde{l}_{i}} \cdot \left(\frac{1}{\sum_{j} \frac{X_{j}}{\widetilde{l}_{j}}}\right) \cdot 10^{6}$$

• В чём её смысл?

TPM

Gene Name	Rep1 Counts	Rep2 Counts	Rep3 Counts
A (2kb)	10	12	30
B (4kb)	20	25	60
C (1kb)	5	8	15
D (10kb)	0	0	1

Gene Name	Rep1 RPK	Rep2 RPK	Rep3 RPK
A (2kb)	5	6	15
B (4kb)	5	6.25	15
C (1kb)	5	8	15
D (10kb)	0	0	0.1

Total RPK:	15	20.25	45.1

Gene Name	Rep1 TPM	Rep2 TPM	Rep3 TPM
A (2kb)	3.33	2.96	3.326
B (4kb)	3.33	3.09	3.326
C (1kb)	3.33	3.95	3.326
D (10kb)	0	0	0.02

TPM vs. RPKM

- Для того, чтобы сравнить экспрессию какого-то гена между образцами, лучше использовать ТРМ.
- Домашнее задание на дополнительный балл: написать программу, которая переводит каунты из RPKM в TPM (для данного транскриптома).

RPKM

Gene Name	Rep1 RPKM	Rep2 RPKM	Rep3 RPKM
A (2kb)	1.43	1.33	1.42
B (4kb)	1.43	1.39	1.42
C (1kb)	1.43	1.78	1.42
D (10kb)	0	0	0.009

Total:

Total: 4.29

4.5

4.25

TPM

Gene Name	Rep1 TPM	Rep2 TPM	Rep3 TPM
A (2kb)	3.33	2.96	3.326
B (4kb)	3.33	3.09	3.326
C (1kb)	3.33	3.95	3.326
D (10kb)	0	0	0.02
Total:	10	10	10

Проблемы RPKM и TPM

• Есть две среды с разными условиями (**A** и **B**). В средах группы **A** клетки начинают экспрессировать ген **3**, экспрессия остальных не меняется. При нормализации при помощи TPM/RPKM мы увидим "уменьшение" экспрессии других генов.

Эффективный размер библиотеки

• Предположение: основное количество генов не дифференциально экспрессированы. Можно оценить их разницу, и так мы узнаем эффективный размер изучаемой библиотеки.

Эффективный размер библиотеки

- Предположение: основное количество генов не дифференциально экспрессированы. Можно оценить их разницу, и так мы узнаем эффективный размер изучаемой библиотеки.
- В явном виде мы не считаем скорректированные значения экспрессий, однако это предположение "вшито" в многие библиотеки для определения дифференциальной экспрессии.

Дифф. экспрессия

Дифференциальная экспрессия

Дифференциальная экспрессия

Статистические методы поиска дифференциально экспрессированных генов

Параметрические (GLM, LM): DESeq2, edgeR, limma+voom

Представляют экспрессию как линейную комбинацию предикторов (с некоторыми добавками)

Непараметрические:

NOIseq, SAMseq

Используют непараметрические тесты для сравнения двух или более групп

Аппроксимирующее распределение

Это нормальное распределение?

Непараметрические тесты

Аппроксимирующие распределения:

Распределение Пуассона

Poisson distribution

$$p(k) \equiv \mathbb{P}(Y=k) = rac{\lambda^k}{k!}\,e^{-\lambda}$$
 ,

где

- λ математическое ожидание случайной величины (среднее количество событий за фиксированный промежуток времени),
- ullet k! обозначает факториал числа k,
- $e=2,718281828\dots$ основание натурального логарифма.

Аппроксимирующие распределения:

Распределение Пуассона

Технические вариации

Биологические вариации

Аппроксимирующие распределения:

Отрицательное биномиальное распределение

Отрицательное биномиальное распределение определяется как количество произошедших **неудач** в последовательности **испытаний Бернулли** с вероятностью успеха р, проводимой **до r-го успеха**.

$$NB(K = k) = \binom{k+r-1}{r-1} p^r (1-p)^k$$

Математическое	$\frac{rq}{}$
ожидание	p
Дисперсия	rq
	p^2

Параметрические модели

- Параметрические модели используются в различных программах для определения дифференциальной экспрессии (DESeq2, edgeR) — в основном это обратное биномиальное распределение.
- Они используют простейшие методы машинного обучения (генерализованные линейные модели) для определения факторов, влияющих на длину гена.
- В них "вшита" оценка эффективного размера библиотеки, а также искажений, связанных с длиной гена.

Проблема множественного сравнения

Letters in winning word of Scripps National Spelling Bee

correlates with

Number of people killed by venomous spiders

Помни о мёртвом лососе!

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction

Craig M. Bennett¹, Abigail A. Baird², Michael B. Miller¹, and George L. Wolford³

¹ Psychology Department, University of California Santa Barbara, Santa Barbara, CA; ² Department of Psychology, Vassar College, Poughkeepsie, NY;

³ Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH

Дальнейший анализ

Дальнейший анализ

Анализ профилей экспрессии

Z-скорирование

Z-скорирование

Анализ корреляций

 Для улучшения кластеризации в качестве метрики можно использовать корреляцию между образцами

GO u ssGSEA

Деконволюция

Деконволюция bulk RNA-Seq проб — это процесс определения того, в каких долях какие клеточные типы содержатся в пробе.

Основанная на маркерных генах

(BisqueRNA)

gene	cluster	avg_logFC
Gene 1	Neurons	0.82
Gene 2	Neurons	0.59
Gene 3	Astrocytes	0.68
Gene 4	Oligodendrocytes	0.66
Gene 5	Microglia	0.71
Gene 6	Endothelial Cells	0.62

Основанная на референсе

(SCDC, BisqueRNA).

Контакты

Обратная связь

Оля — вопросы по биоинформатике & Feedback по курсу:

olga.kudryashova@bostongene.com

Серёжа — вопросы насчёт блока по транскриптомике:

sergei.isaev@bostongene.com

Телеграмм-группа курса иммунологии и биоинформатики от BostonGene:

https://t.me/joinchat/B1VA6B1Qe1zGiBeZuTC2vQ

Катя Титова (HR) — вопросы о стажировке в BostonGene летом 2021:

vk.com/titovakate

ekaterina.titova@bostongene.com