Honors Multivariate Calculus

Math 221H Section 201

Twelfth Homework:

Due in recitation: Thursday 16 November 2023

- 1. A 50kg woman carries a 6kg can of paint up a helical staircase the encircles a silo with a radius of 6m and a height of 30m. How much work does she do against gravity in accomplishing this task?
- 2. Suppose now that the paint leaks out of the can at a constant rate (and that she trudges at a constant rate) so that 1 kg is left when she gets to the top. How much work does she do against gravity in accomplishing this task?
- 3. For each of the following vector fields **F**, determine whether or not it is conservative. If it is, find a potential function f such that $\mathbf{F} = \nabla f$.

(a) $\mathbf{F}(x,y) = (x^2 + y)\mathbf{i} + (y^2 + x)\mathbf{j}$

(b)
$$\mathbf{F}(x,y) = (\arctan(x) + y)\mathbf{i} + (\sin(xy) + x)\mathbf{j}$$

(c) $\mathbf{F}(x,y) = (ye^{xy} + 4x^3y)\mathbf{i} + (xe^{xy} + x^4)\mathbf{j}$

4. Suppose that $\mathbf{F}(x,y,z)$ is a vector function defined on $\mathbb{R}^3 \setminus \{(0,0,0)\}$ whose direction at a point is away from the origin and magnitude is proportional to the distance from the origin.

Show that **F** is conservative.

- 5. More generally, suppose that g(t) is a continuous function of a nonnegative variable t. Show that the vector field $\mathbf{F}(x, y, z) = g(x^2 + y^2 + z^2)(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$ is conservative.
- 6. Show that each of the following line integrals are independent of path, and then evaluate the integral, either by finding a propitious path or a potential function.

(a)
$$\int_{(0,0)}^{(1,\pi/2)} e^x \sin y \, dx + e^x \cos y \, dy$$
 (b) $\int_{(-1,1)}^{(4,2)} \left(y - \frac{1}{x^2}\right) dx + \left(x - \frac{1}{y^2}\right) dy$

(c)
$$\int_{(0,0,0)}^{(1,1,1)} (6xy^3 + 2z^2) dx + 9x^2y^2 dy + (4xy+1) dz$$

(Hint: try a piecewise linear path parallel to coordinate axes.)

7. Show that if the vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is conservative and P, Q, and R have continuous first-order partial derivatives, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, and $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$.

8. Let $\mathbf{F}(x,y) = \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}$. Show that $\partial P/\partial y = \partial Q/\partial x$.

Show that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is not independent of path, for example by computing it along the upper and lower halves of the unit circle, appropriately oriented.

1

- 9. Use Green's Theorem to evaluate the integral along the positively oriented curve.
 - (a) $\oint_C x^2 y dx + xy^5 dy$, where C is the square with vertices $(\pm 1, \pm 1)$.
 - (b) $\oint_C x^2 dx + y^2 dy$, where C is the curve $x^6 + y^6 = 1$.
 - (c) $\oint_C (x^3 y^3) dx + (x^3 + y^3) dy$, where C is the boundary of the annulus lying between the circles of radius 1 and 3 centered at the origin.

10. Let k > 2 be an integer. Find the area of the region bounded by the k-hypocycloid with vector equation $\mathbf{r}(t) = (a(k-1)\cos\theta + a\cos((k-1)\theta))\mathbf{i} + (a(k-1)\sin\theta - a\sin((k-1)\theta))\mathbf{j}$.

k = 3, deltoid

k = 4, astroid

k = 5, pentoid

k = 6, hexoid?

11. Let S be a region in the xy-plane with boundary C. Show that its moments M_x and M_y about the x- and y- axes are given by

$$M_x = -\frac{1}{2} \oint_C y^2 dx$$
 and $M_y = \frac{1}{2} \oint_C x^2 dy$,

where S has constant mass density.

- 12. Use the previous problem to find the centroid of a semicircular region of radius a.
- 13. (Area of a polygon) Let $v_0 = (x_0, y_0)$, $v_1 = (x_1, y_1)$, ..., $v_n = (x_n, y_n)$ with $v_0 = v_n$ be the vertices of a simple polygon P in the plane, labeled counterclockwise. Show each of the following.
 - (a) $\int_C x \, dy = \frac{1}{2}(x_1 + x_0)(y_1 + y_0)$, where C is the edge $v_0 v_1$.
 - (b) The area of P is $\sum_{i=1}^{n} \frac{1}{2}(x_i + x_{i-1})(y_i + y_{i-1})$.
 - (c) The area of a polygon whose coordinates are integers (a *lattice polygon*) is always a multiple of $\frac{1}{2}$.
 - (d) Check the formula for the polygon with vertices (2,0), (2,-2), (6,-2), (6,0), (10,4), and (-2,4).