

Lines and Angles Ex 8.3 Q8

Answer:

Rays AB and CD intersect at point O.

Therefore, $\angle AOC$ and $\angle BOC$ form a linear pair. Thus,

$$\angle AOC + \angle BOC = 180^{\circ}$$

$$2x + y = 180^{\circ}$$
(I)

(i)

On substituting $x = 60^{\circ}$:

$$2x + y = 180^{\circ}$$
$$2(60^{\circ}) + y = 180^{\circ}$$
$$120^{\circ} + y = 180^{\circ}$$
$$y = 180^{\circ} - 120^{\circ}$$

$$y = 60^{\circ}$$

(ii)

On substituting $y = 40^{\circ}$:

$$2x + y = 180^{\circ}$$

$$2x + 40^{\circ} = 180^{\circ}$$

$$2x = 180^{\circ} - 40^{\circ}$$

$$2x = 140^{\circ}$$

$$x = \frac{140^{\circ}}{2}$$

$$x = \boxed{70^{\circ}}$$

Lines and Angles Ex 8.3 Q9

Answer:

It is given that $\it AB$ and $\it CD$ intersect at a point $\it O$

Thus $\angle AOC$ and $\angle BOD$ are vertically opposite angles, therefore, these must be equal.

That is,

 $\angle AOC = \angle BOD$

 $\angle AOC = 35^{\circ}$

Similarly, EF and AB intersect at a point O .

Thus $\angle BOF$ and $\angle AOE$ are vertically opposite angles, therefore, these must be equal. That is,

 $\angle BOF = \angle AOE$

$$\angle BOF = 40^{\circ}$$

Similarly, EF and CD intersect at a point O

Thus $\angle COF$ and $\angle EOD$ are vertically opposite angles, therefore, these must be equal. That is.

$$\angle COF = \angle DOE$$
 (I)

Also, $\angle DOE$, $\angle BOD$ and $\angle AOE$ form a linear pair. Therefore, their sum must be equal to $_{180^{\circ}}$. $\angle DOE + \angle BOD + \angle AOE = 180^{\circ}$ $\angle DOE + 35^{\circ} + 40^{\circ} = 180^{\circ}$ $\angle DOE + 75^{\circ} = 180^{\circ}$ $\angle DOE = 180^{\circ} - 75^{\circ}$ $\angle DOE = \boxed{105^{\circ}}$

Putting $\angle DOE = 100^{\circ}$ in (I):

 $\angle COF = \boxed{105^{\circ}}$

******* END *******