Assignment 1 **Feature Extraction Part**

Ouestion 1

Describe the following terms:

- 1- Pattern
- 2- pattern recognition
- 3- Feature Vector
- 4- Texture

Question 2

Objective:

To represent and describe information embedded in a pattern in other forms that are more suitable. Benefits:

- Easier to understand
- Require fewer memory, faster to be processed
- More "ready to be used" for classification process.

is among the most widely used techniques for boundary shape description. The boundary curve is approximated via a sequence of connected straight line segments of preselected direction and length. Every line segment is coded with a specific coding number depending on its direction

- 1. Why is invariance to geometrical transformations useful for pattern recognition?
- 2. How to make LBP scale invariance? Explain your answer by example.
- 3. What are the objectives of pattern description process? and what are the benefits?
- 4. What does the Chain code mean?

5. Mention some topological features that give a global description of a region.

6. what do the texture features mean gions of interest and to classify those regions. Texture gives

us information

Chain code:

about the spatial arrangement of the colors or intensities in an image.

1. You are given the 8-directional chain code and the object below, where black is the object pixels.

- a. Represent the boundary of the object with an eight-directional chain code clockwise from the upper left pixel.
- b. Which technique will make the code invariant to the choice of start point? Demonstrate this by starting at the lower right pixel of the object.
- c. Which technique will make the code rotation invariant? Demonstrate this by rotating the object $\pi/2$ counterclockwise and starting at one of the same object points as above.
- 2. Figure-1 below shows the resampling result of a particular shape and 4- and 8directional chain codes.

Assignment_1 Feature Extraction Part

- a. Starting from point A, in the clockwise direction, show the chain codes based on 4 and 8-connectivities.
- b. Show the starting point invariant code based on 8-connectivity and explain why it has this invariance.

Figure-1

GLCM:

1. Compute the grey-level co-occurrence matrix (GLCM) for the image given in Fig-2 with the relative distance d=2 and relative orientation/rotational angles as $\theta=90$ between the pixel pairs. After that, compute energy, entropy, contrast, and homogeneity.

1	0	2	0	3	1
2	0	2	1	1	0
2	1	3	1	1	1
2 2 2	3	1	3	3	3
0	1	3	1	2	0
1	1	2	4	3	2

Fig-2

2. Compute the grey-level co-occurrence matrix (GLCM) for the image given in Fig-3 with the relative distance d=1 and relative orientation/rotational angles as $\theta=0$ between the pixel pairs. After that, compute energy, entropy, contrast, and homogeneity.

Assignment_1 Feature Extraction Part

4	5	6	3	5	4
4	5	4	8	5	3
4	7	7	7	2	7
3	7	5	5	3	2

Fig.3

LBP:

1. Compute LBP of the following region of the image? Is this uniform LBP or not? Explain your answer.

2. Compute LBP image of the following block $(9 \times 9 \text{ pixels})$? After that, compute LBP histogram to show the feature vector.

160	56	200	98	78	150	215	96	150
115	160	201	78	59	178	207	58	125
201	190	210	56	63	150	255	125	164
64	35	84	65	87	145	255	48	167
96	35	79	195	155	55	255	79	120
78	150	64	184	148	89	45	56	211
12	45	32	78	49	62	28	35	45
150	78	32	45	168	44	26	56	65
14	89	32	98	184	58	78	150	23

Assignment_1 **Feature Extraction Part**

Regional Features:

1. Compute the Area, Perimeter, and Compactness of the following objects:

e

Best wishes Dr. Sondos Fadl