Шешукова Марина

16 ноября 2021



## Уменьшение размерности

#### Определение

Уменьшение размерности - это процесс уменьшения количества признаков, описывающих некоторые данные.



## Уменьшение размерности

#### Определение

Уменьшение размерности - это процесс уменьшения количества признаков, описывающих некоторые данные.

Основная цель метода уменьшения размерности - найти лучшую пару кодировщик/ декодировщик среди заданного семейства.

$$(e*, d*) = arg \min_{e \in F, d \in D} I(x, d(e(x)))$$

I(x,y)– мера ошибки между входными и декодированными данными



2/17

## Уменьшение размерности





3 / 17

## Метод главных компонент

Метод главных компонент ищет наилучшее линейное подпространство исходного пространства таким образом, чтобы ошибка аппроксимации данных их проекциями на это подпространство была как можно меньше.



## Метод главных компонент

Метод главных компонент ищет наилучшее линейное подпространство исходного пространства таким образом, чтобы ошибка аппроксимации данных их проекциями на это подпространство была как можно меньше.



| Point | Initial        | Encoded | Decoded        |
|-------|----------------|---------|----------------|
| Α     | (-0.50, -0.40) | -0.63   | (-0.54, -0.33) |
| В     | (-0.40, -0.10) | -0.39   | (-0.34, -0.20) |
| C     | (0.10, 0.00)   | 0.09    | (0.07 0.04)    |
| D     | (0.30, 0.30)   | 0.41    | (0.35, 0.21)   |
| E     | (0.50, 0.20)   | 0.53    | (0.46, 0.27)   |
|       |                |         |                |





## Метод главных компонент

Мы ищем кодировщик в семействе матриц размера  $e \times d$ , причем его строки ортонормированные. Декодировщик ищется соответственно в семействе матриц  $d \times e$ .



## <u>Авт</u>оэнкодеры

В терминах метода уменьшения размерности, мы имеем E- архитектура нейросети кодировщика, D - архитектура нейросети декодировщика. В качестве функции потерь используют среднеквадратичную ошибку, а обучают обычно градиентным спуском.



loss = 
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$





## Автоэнкодер

Предположим, что кодировщик и декодировщик состоят только из одного линейного слоя. Тогда, как и в методе главных компонент автоэнкодер ищет лучшее линейное подпространство для проецирования данных с минимальной потерей информации при этом.



Рис.: Автоэнкодер и метод главных компонент получают разный базис в латентном пространстве

## Автоэнкодер

Предположим, что и кодировщик и декодировщик являются глубокими нейросетями. Интуитивно, кодировщик теоретически мог бы взять наши N изначальных точек данных и кодировать их как целое число m на действительной оси, а соответствующий декодировщик может выполнить обратное преобразование без потери информации во время процесса.



## Ограниченность автоэнкодеров в генерации новых данных

Проблема: латентное пространство может быть не непрерывным.



Рис.: Обучение автоэнкодера на датасете MNIST.



• Теперь мы кодируем ввод не как одну точку, а как распределение по латентному пространству.



- Теперь мы кодируем ввод не как одну точку, а как распределение по латентному пространству.
- После этого мы выбираем точку из получившегося распределения, считаем что эта точка из латентного пространства.



- Теперь мы кодируем ввод не как одну точку, а как распределение по латентному пространству.
- После этого мы выбираем точку из получившегося распределения, считаем что эта точка из латентного пространства.
- Точка из латентного пространства декодируется и считается функция потерь.



- Теперь мы кодируем ввод не как одну точку, а как распределение по латентному пространству.
- После этого мы выбираем точку из получившегося распределения, считаем что эта точка из латентного пространства.
- Точка из латентного пространства декодируется и считается функция потерь.

$$loss = ||x - d(z)||2 + \mathit{KL}(\mathcal{N}(\mu_x, \sigma_x), \mathcal{N}(0, I))|$$





Чтобы генерировать новые данные нам нужно, чтобы латентное пространство обладало следующими свойствами:



Чтобы генерировать новые данные нам нужно, чтобы латентное пространство обладало следующими свойствами:

• Непрерывность, то есть две близкие точки в латентном пространстве не должны давать два совершенно разных результата после декодирования.



Чтобы генерировать новые данные нам нужно, чтобы латентное пространство обладало следующими свойствами:

- Непрерывность, то есть две близкие точки в латентном пространстве не должны давать два совершенно разных результата после декодирования.
- Полнота, то есть точка, полученная из латентного распределения, после декодирования должна нести значимое содержание.



Чтобы генерировать новые данные нам нужно, чтобы латентное пространство обладало следующими свойствами:

- Непрерывность, то есть две близкие точки в латентном пространстве не должны давать два совершенно разных результата после декодирования.
- Полнота, то есть точка, полученная из латентного распределения, после декодирования должна нести значимое содержание.







## Регуляризация,

**Идея**: нужно регуляризовать как вектор средних значений так и ковариационную матрицу в латентном пространстве.

**Реализация на практике:** делаем распределения в латентном пространстве близкими к стандартному гауссовскому распределению. Так, среднее значение будет близко к 0, что предотвращает большое расстояние между закодированными распределениями, а ковариационные матрицы будут близки к единичной, что предотвращает точечные распределения.







#### А теперь немного математики

#### Некоторые предположения:

- Пусть x переменная, которая представляет наши данные.
- Предполагаем, что x генерируется из условного распределения p(x|z), при условии латентной переменной z, которая имеет априорное распределение p(z).





#### Еще немного математики

#### Некоторые предположения:

- ullet Декодировщик определен распределением p(x|z) которое описывает распределение декодированной переменной по закодированной.
- ullet Кодировщик определен распределением p(z|x) которое описывает распределение закодированной переменной по декодированной.

#### Утверждение

Вспомним формулу Байеса, которое связывает априорное распределение p(z), апостериорное p(z|x) u p(x|z).

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)} = \frac{p(x|z)p(z)}{\int p(x|u)p(u)du}$$



### И еще математики

Предполагаем, что  $p(x) \sim \mathcal{N}(0, I)$  и  $p(x|z) \sim \mathcal{N}(f(z), cI)$ 

#### Замечание

Если f(z)=z, то p(z|x) тоже гауссовское. Поэтому мы пытаемся аппроксимировать p(z|x) гауссовским распределением  $p_x(z)\equiv \mathcal{N}(g(x),h(x))$ 



### И еще математики

Предполагаем, что  $p(x) \sim \mathcal{N}(0, I)$  и  $p(x|z) \sim \mathcal{N}(f(z), cI)$ 

#### Замечание

Если f(z)=z, то p(z|x) тоже гауссовское. Поэтому мы пытаемся аппроксимировать p(z|x) гауссовским распределением  $p_x(z)\equiv \mathcal{N}(g(x),h(x))$ 

$$\begin{split} (g^*,h^*) &= \underset{(g,h) \in G \times H}{\min} KL(q_x(z),p(z|x)) \\ &= \underset{(g,h) \in G \times H}{\min} \left( \mathbb{E}_{z \sim q_x}(\log q_x(z)) - \mathbb{E}_{z \sim q_x} \left( \log \frac{p(x|z)p(z)}{p(x)} \right) \right) \\ &= \underset{(g,h) \in G \times H}{\arg\min} \left( \mathbb{E}_{z \sim q_x}(\log q_x(z)) - \mathbb{E}_{z \sim q_x}(\log p(z)) - \mathbb{E}_{z \sim q_x}(\log p(x|z)) + \mathbb{E}_{z \sim q_x}(\log p(x)) \right) \\ &= \underset{(g,h) \in G \times H}{\arg\max} \left( \mathbb{E}_{z \sim q_x}(\log p(x|z)) - KL(q_x(z),p(z)) \right) \\ &= \underset{(g,h) \in G \times H}{\arg\max} \left( \mathbb{E}_{z \sim q_x} \left( -\frac{||x - f(z)||^2}{2c} \right) - KL(q_x(z),p(z)) \right) \end{split}$$





## Итоговая схема работы вариационного автоэнкодера

#### Итоговая формула

$$(f^*, g^*, h^*) = \argmax_{(f, g, h) \in F \times G \times H} \left( \mathbb{E}_{z \sim q_x} \left( -\frac{||x - f(z)||^2}{2c} \right) - KL(q_x(z), p(z)) \right)$$



$$\mu_{x} = g(x) = g_{2}(g_{1}(x))$$
 $\sigma_{y} = h(x) = h_{2}(h_{1}(x))$ 



$$\hat{\mathbf{x}} = \mathbf{f}(\mathbf{z})$$





## Список литературы.



https://towards datascience.com/understanding-variational-autoencoders-vaes-f70510919f73



https://neurohive.io/ru/osnovy-data-science/variacionnyj-avtojenkoder-vae/

