Problem 1.66. A homomorphism is a function $f: \Sigma \longrightarrow \Gamma^*$ from one alphabet to strings over another alphabet. We can extend f to operate on strings by defining $f(w) = f(w_1)f(w_2)\cdots f(w_n)$, where $w = w_1w_2\cdots w_n$ and each $w_i \in \Sigma$. We further extend f to operate on languages by defining $f(A) = \{f(w) \mid w \in A\}$, for any language A. **Part a.** Show, by giving a formal construction, that the class of regular languages is closed under homomorphism. In other words, given a DFA M that recognizes B and a homomorphism f, construct a finite automaton M' that recognizes f(B). Consider the machine M' that you constructed. Is it a DFA in every case?

Proof. Solution Replace this text with the details of your proof or solution.

Proof. Solution Replace this text with the details of your proof or solution.