Considerar una traslación: w=z+B.

Calcular B para que el punto $z_1=7j$ sea mapeado en $w_1=2-3j$

- B= -3j/2
- B= 2-3j
- B= -2+3j
- B= -2+10j

Respuesta correcta

La respuesta correcta es: B= 2-10j

Considerar el mapeo: w = Az.

Calcular A para que el punto z₁=1+j sea mapeado en w₁=3-2j

- O A= -3/7-j3/7
- A= 21/13+j14/13
- O A= 1/13+j5/13
- A= -5/13+j12/13

7) w=2+B	; culcular B para ton= 75 - Du	U=2-3j
B= W-Z	-> B = (2-35) - (75) = (2-10j)	
8) w = AZ;	alaula A para == 1+i -> w=	= 3-2 j
A = 74 -	$(3-2i)$ $-\frac{1}{2}$ $-\frac{5}{2}$ $-\frac{5}{2}$	

Considerar el mapeo reciproco: w=1/z

1. Se puede afirmar que: el mapeo reciproco transforma la curva

$$C = \{z = x + jy \mid a(x^2 + y^2) + bx + cy + d = 0\}$$

en la curva

$$C' = \{w = u + jv \mid d(u^2 + v^2) + bu - cv + a = 0\}$$

2. Se puede afirmar que: el mapeo reciproco transforma la curva

$$C = \{z = x + jy \mid x^2 + y^2 + y = 0\}$$

en la curva

$$C' = \{w = u + jv \mid u = 1\}$$

Considerar el mapeo reciproco: w = A/z.

Calcular A para que el punto $z_1=3-2j$ sea mapeado en $w_1=2-3j$.

- A = 5+j
- A= 21+j14
- A= 10/4
- A= -13/16

5) W=A calcular A tulque 2=3-2; -> W=2-3;	A=== (31-2j)(2-3j)=-13j	(a) (d)	10 0								
	A-2W-2A-(3)2:\(\frac{1}{2}-2\);\(\frac{1}{2}-2\)	21	老	cala	lar A	tul 9	ve t	=3-2)	7	= 2-3	
	A-2W-PA-(7)7:1(7-2:) 17:										-

Expresar la composición de mapeos dada como un mapeo lineal complejo, del tipo w=az+b.

- 1° Rotación de $\pi/4$
- 2° Traslación por 1+j
- 3° Ampliación por 2

$$w = 2e^{j\pi/4} z + 2\sqrt{2}e^{j\pi/2} \otimes 1$$

$$\bigcirc w = 2e^{j\pi/4}\,z + 2\sqrt{2}j$$

$$0 \quad w = 2e^{j\pi/4} \, z + (1+j)$$

$$\bigcirc \quad w = 2e^{j\pi/4}\,z + \sqrt{2}j$$

$$\bigcirc \ \ w = 2e^{j\pi/4}\,z + (2+2j)$$

Considerar el mapeo reciproco: w=1/z

1. Se puede afirmar que: el mapeo reciproco transforma la curva

$$C = \{z = x + jy \mid a(x^2 + y^2) + bx + cy + d = 0\}$$

en la curva

$$C' = \{w = u + jv \mid d(u^2 + v^2) + bu - cv + a = 0\}$$

Verdadero

◆

②

2. Se puede afirmar que: el mapeo reciproco transforma la curva

$$C = \{z = x + jy \mid x^2 + y^2 = 4\}$$

en la curva

$$C' = \{ w = u + jv \mid u^2 + v^2 = 4 \}$$

Verdadero

◆ (8)

Considerar el mapeo potencia: $w=z^n, \ { m con} \ n\geq 2$

1. Se puede afirmar que: "la potencia mapea circunferencias centradas en el origen en circunferencias"

2. Calcular $oldsymbol{n}$ para que la curva

$$C = \{z : |z| = 3/4\}$$

sea mapeada en la curva

$$C' = \{w : |w| = 81/256\}$$

$C = \frac{1}{2! z + \frac{3}{4}} = C = \frac{1}{2! w + \frac{31}{256}}$ $w = \frac{1}{4} \Rightarrow z = \frac{3}{4} \Rightarrow w = \frac{31}{256}$	$C_{1} = \frac{31}{2!} = \frac{31}{2!$	7		いまで									1		
W=29 -> 121=3 -> 141=81	W=29 -> 121=3 -> 121=81		Cu	lalar	- 1	Rura	que	14		PERSONAL PROPERTY.				1	
					6	12:121	===}	en	-	{ zu:	141	= 20	13	1	
					-	12 = 3	7	~ (=							

Expresar la composición de mapeos dada como un mapeo lineal complejo, del tipo w=az+b.

- 1° Traslación por 1+j
- 2° Ampliación por 2
- 3° Rotación de $\pi/4$

$$w=2e^{j\pi/4}z+2\sqrt{2}j$$

$$w = 2e^{j\pi/4}z + 2\sqrt{2}e^{j\pi/2}$$

$$w = 2e^{j\pi/4}z + (1+j)$$

$$w=2e^{j\pi/4}z+\sqrt{2}j$$

$$w = 2e^{j\pi/4}z + (2+2j)$$

