PHSX815_Project3: How to determine the weight of a coin

Kenny Couberly

April 2023

1 Introduction

We often assume a coin flip gives a fair 50% chance of heads or tails, but this assumption may not be correct. What if the coin instead gave a 60% chance of heads; how would we go about figuring this out? We need to test the coin, generating a data set by flipping it some number of times. How many times do we need to flip the coin to be satisfied with our data? If we want to test a number of coins, it would be best not to flip each coin more than necessary to avoid wasting time. To do this we will simulate coin tosses of a weighted coin and determine the weight and uncertainty through analysis of the data.

Sec. 2 provides a description of the code that simulates the coin toss experiments and predicts a weight of the coin based on the data. Sec. 3 performs an analysis on the simulated data, comparing the uncertainties for various numbers of flips. Sec. 4 provides a conclusion on how many flps are necessary to provide a desired uncertainty.

2 Code and Experimental Simulation

To create the simulated data, we take a Bernoulli distribution for a given weight parameter p. The coin toss is simulated by assigning a value of 1 whenever a random number between 0 and 1 is less than p and a value of 0 otherwise. This process is repeated p times to simulate a number of flips.

The process was performed for 50 different evenly distributed p values between 0 and 1 to create a near continuous distribution of true p values to compare to measured values. The measured values are obtained my minimizing a likelyhood function to the data from each simulated experiment. The experiment is run 1000 times at each true p value to create a Neyman construction. To compare the effect of changing the number of flips on the uncertainty of the measurement, we simulate 10, 100, and 1000 flips per experiment.

Figure 1 below plots a function of the parameter p proportional to likelyhood for a given simulated experiment with a true p=0.6. In the plot of the left, there were 7 heads and 3 tails. In the plot on the right there were 59 heads and 41 tails. The function is generated using the simulated data set through the equation

$$f(p) = p^{n_H} \times (1 - p)^{n_T} \tag{1}$$

where n_H is the number of heads and n_T is the number of tails in the data.

Figure 2 below shows the Neyman constructions at 10, 100, and 1000 flips per experiment. The p meas value is the maximum value of the functions shown in figure 1.

Figure 1: Relative likelyhood as a function of Bernoulli parameter for a coin with true p=0.6. (Left) Likelyhood function for a data set of 10 coin tosses. (Right) Likelyhood function for a data set of 100 coin tosses. The likelyhood function tightens its peak for a higher number of flips.

Figure 2: Neyman constructions plotting the measured p values as a function of true p value used to simulate experiments 50 p values used with 1000 experiments per p value at 10 flips (Left), 100 flips (Right), and 1000 flips (Bottom) per experiment

3 Analysis

The uncertainty for a given number of flips can be calculated using the p measured values for a given p true shown in Figure 2. Since the run time is too slow running a minimizer function on a large number of experiments, we calculate the maximum of equation (1) analytically by taking the derivative

$$\frac{\partial f}{\partial p} = n_H(p^{n_H - 1})(1 - p)^{n_T} + n_T(p^{n_H})(1 - p)^{n_T - 1} = 0$$
 (2)

which gives

$$p = \frac{n_H}{n_T + n_H} \tag{3}$$

when solving for p. Equation (3) is then used as the maximum p measured for each simulated experiment.

With 10 flips per experiment, a true value of 0.491 gave an average measurement of 0.501 with a standard deviation of 0.157 over the course of 1000 experiments. Taking two standard deviations as the 95% confidence interval, this leads to \pm 0.314 as the uncertainty. 100 flips at the same 0.491 true value gives 0.492 \pm 0.049 average measurement. 1000 flips gives 0.491 \pm 0.016 average measurement.

4 Conclusion

Depending on the precision needed, determining the weight of a coin by flipping it over and over could be quite difficult. To 95% confidence, 10 flips is quite unreliable, leading to a measured value that could be off by as much as 30%. The uncertainty improves with more flips, but if one wanted to know the chance of flipping heads within 1%, this would take more than 1000 flips per coin. Perhaps accepting an uncertainty of 5% chance of heads is more reasonable, in which case testing 100 flips per coin .