Novo Espaço – Matemática A, 11.º ano

Proposta de teste de avaliação [maio - 2023]

Nome:

Ano / Turma: _____

Data: ___ - ___ - __

1. Na figura está representado um pentágono regular [ABCDE].

Fixada uma unidade de comprimento, sabe-se que a medida do perímetro do pentágono é igual a 20.

O valor do produto escalar $\stackrel{\rightarrow}{AB} \cdot \stackrel{\rightarrow}{AE}$ é representado por um número que pertence ao intervalo:

- **(A)** $\frac{9}{2}, 5$ **(B)** $1, \frac{6}{5}$ **(C)** $-\frac{9}{2}, -4$ **(D)** $-5, -\frac{19}{4}$
- 2. Na figura está representado um prisma hexagonal reto. Em relação a um referencial o. n. Oxyz, os vértices A e B têm coordenadas (-1,2,1) e (1,0,3), respetivamente.
 - 2.1 Representa por uma equação, na forma reduzida, a superfície esférica em que [AB] é um diâmetro.

- **2.2** Seja α o plano que contém a base do prisma a que pertence o ponto B. Uma equação do plano α é:
 - (A) 2x y + z 2 = 0
- **(B)** x y + z = 4
- (C) x + y z = -2
- **(D)** x + 2y + z = 4
- 3. Considera a função f, de domínio IR \{-1} definida por $f(x) = \frac{2x}{x+1}$.

Seja g a função definida por $g(x) = -f(x-k), k \in \mathbb{R}$.

Sabe-se que a reta de equação x = 3 é assíntota vertical ao gráfico de g. Podes concluir que o valor de k é:

(A) 3

(B) -2

(C) 4

(D) 2

- **4.** Na figura está representada parte do gráfico de uma função g de domínio IR . Sabe-se que:
 - a reta definida por x = 2 é uma assíntota vertical ao gráfico de g;
 - as retas definidas por y = 0 e y = -1 são assíntotas horizontais ao gráfico de g.

Sejam (u_n) , (v_n) e (w_n) as sucessões de termos gerais:

$$u_n = 2 - \frac{1}{n}$$
, $v_n = \frac{n^2}{\frac{1}{2} - n}$ e $w_n = \frac{2n + 3}{n + 1}$

Estabelece a correspondência correta.

$$\lim g(u_n) = \bullet \qquad -\infty$$

$$\bullet \quad -2$$

$$\lim g(v_n) = \bullet \qquad -1$$

$$\bullet \quad 1$$

$$\lim g(w_n) = \bullet \qquad 3$$

$$\bullet \quad +\infty$$

5. Considera a função f, de domínio IR, definida por:

$$f(x) = \begin{cases} \frac{\sqrt{x+4}-2}{x^2+x} & \text{se } x > 0\\ \frac{3x+1}{4-x} & \text{se } x \le 0 \end{cases}$$

Estuda a função f quanto à continuidade em x = 0.

- **6.** Na figura está representada parte do gráfico de uma função f. Sabe-se que:
 - a reta t é tangente ao gráfico de f no ponto A de abcissa 1;
 - a reta t é definida pela equação y = 0.5x + 2.5.

- **6.1** Determina, na forma reduzida uma equação da reta s que passa em A e é perpendicular à reta t.
- **6.2** Indica o valor de $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$.
- 7. Considera a função f de domínio IR \{0} definida por $f(x) = 1 + \frac{2}{x}$.

A reta tangente ao gráfico de f no ponto de abcissa 2 interseta a assíntota horizontal ao gráfico de f no ponto P.

Determina as coordenadas de *P*.

8. Seja f a função de domínio IR_0^+ , definida por $f(x) = \sqrt{x}$.

O ponto P pertence ao gráfico de f e a reta r é tangente ao gráfico no ponto P.

Sabe-se que:

• a projeção ortogonal do ponto *P* sobre *Ox* é o ponto *A*;

Considera que as coordenadas do ponto P são (a, \sqrt{a}) .

Seja g a função que a cada valor positivo de a faz corresponder a área do trapézio [OAPB].

Mostra que
$$g(a) = \frac{3a\sqrt{a}}{4}$$
.

FIM

Cotações											Total
Questões	1.	2.1	2.2	3.	4.	5.	6.1	6.2	7.	8.	10001
Cotações	16	20	16	16	24	25	25	16	27	15	200