

WHAT IS CLAIMED IS:

1 1. A power-saving Liquid Crystal Display (LCD) driving
2 method, characterized in that after separating the display
3 and non-display zones on a LCD display panel, the external
4 power supply to the portion of the lamp lighting the non-
5 display zones is stopped and the LCD remains active.

1 2. The power-saving Liquid Crystal Display driving
2 method of Claim 1, wherein there is at least one display
3 zone.

1 3. The power-saving Liquid Crystal Display driving
2 method of Claim 1, wherein there is at least one non-
3 display zone.

1 4. The power-saving Liquid Crystal Display driving
2 method of Claim 1, wherein a regulator is used to adjust
3 power externally supplied to the lamp lighting the non-
4 display zone.

1 5. The power-saving Liquid Crystal Display driving
2 method of Claim 4, wherein the output of the regulator is a
3 control signal for determining if the lamp is active.

1 6. A power-saving Liquid Crystal Display driving
2 method, characterized in that after separating the display
3 and non-display zones on a LCD display panel, the external
4 signal supply to the portion of the LCD display matrix
5 circuit powering the non-display zones is stopped and the
6 LCD is active.

1 7. The power-saving Liquid Crystal Display driving
2 method of Claim 6, wherein there is at least one display
3 zone.

1 8. The power-saving Liquid Crystal Display driving
2 method of Claim 6, wherein there is at least one non-
3 display zone.

1 9. The power-saving Liquid Crystal Display driving
2 method of Claim 6, wherein a signal controller is used to
3 adjust the signal externally supplied to the LCD display
4 matrix circuit powering the non-display zone.

1 10. The power-saving Liquid Crystal Display driving
2 method of Claim 9, wherein the output of the signal
3 controller is a control signal for determining if the LCD
4 display matrix circuit is active.

1 11. A power-saving Liquid Crystal Display driving
2 method, characterized in that after separating the display
3 and non-display zones on a LCD display panel, the external
4 power and signal supply to the portion of the lamp and LCD
5 display matrix circuit are stopped, respectively, with
6 respect to the non-display zones, and the LCD is active.

1 12. The power-saving Liquid Crystal Display driving
2 method of Claim 11, wherein there is at least one display
3 zone.

1 13. The power-saving Liquid Crystal Display driving
2 method of Claim 11, wherein there is at least one non-
3 display zone.

1 14. The power-saving Liquid Crystal Display driving
2 method of Claim 11, wherein a signal controller is used to
3 control whether or not the external power is supplied to
4 the LCD display matrix circuit.

1 15. The power-saving Liquid Crystal Display driving
2 method of Claim 14, wherein the output of the signal
3 controller is a control signal for determining if the LCD
4 display matrix circuit is active.

1 16. The power-saving Liquid Crystal Display driving
2 method of Claim 11, wherein a regulator is used to adjust
3 power externally supplied to the lamp lighting the non-
4 display zone.

2025 RELEASE UNDER E.O. 14176