Pitkä matematiikka 30.9.2005, ratkaisut:

1. a) $2(x-1) + 3(x+1) = -x \iff 6x = -1 \iff x = -\frac{1}{6}$.

b)
$$x + 2 = \frac{1}{x - 2} \iff x^2 - 4 = 1 \iff x = \pm \sqrt{5}.$$

c)
$$x^{16} = 256 = 2^8 \iff x^2 = 2 \iff x = \pm \sqrt{2}$$
.

Vastaus: **a)**
$$x = -\frac{1}{6}$$
, **b)** $x = \pm \sqrt{5}$, **c)** $x = \pm \sqrt{2}$.

- **2.** a) Jos hypotenuusan pituus on x, niin $x^2 = 6^2 + 4^2 = 52$, joten $x = 2\sqrt{13} \approx 7,2111$. b) Jos kolmion terävät kulmat ovat α ja β , niin tan $\alpha = \frac{4}{6} = \frac{2}{3}$, josta $\alpha \approx 33,6901^{\circ}$ ja $\beta = 90^{\circ} \alpha \approx 56,3099^{\circ}$.
 - c) Kolmion ala on $\frac{1}{2} \cdot 4 \cdot 6 = 12$.

Vastaus: a) $2\sqrt{13} \approx 7.21$, b) 33.69° ja 56.31° , c) 12.

3. Vektori $\overline{AB} = (7-3)\overline{i} + (3-1)\overline{j}) = 4\overline{i} + 2\overline{j}$ ja $\overline{CD} = (-3-1)\overline{i} + (-2-4)\overline{j}) = -4\overline{i} - 6\overline{j}$. Jos vektorien välinen kulma on α , on $\cos \alpha = \frac{\overline{AB} \cdot \overline{CD}}{|\overline{AB}| |\overline{CD}|} = -\frac{28}{\sqrt{20}\sqrt{52}} = -\frac{7}{\sqrt{65}} \approx -0.868243$, josta $\alpha \approx 150.25512^{\circ}$.

Vastaus: Kulma on 150,3°.

- **4.** Funktion kuvaaja on alaspäin aukeava paraabeli. Funktio saa siten vain negatiivisia arvoja, jos paraabelin huippu on x-akselin alapuolella. Koska f'(x) = -2x + a = 0, kun $x = \frac{1}{2}a$, on huipun x-koordinaatti $\frac{1}{2}a$. On siis oltava $f(\frac{1}{2}a) = \frac{1}{4}a^2 + a 3 < 0$. Koska $\frac{1}{4}a^2 + a 3 = 0$, kun a = -6 tai a = 2, on $f(\frac{1}{2}a) < 0$, kun -6 < a < 2. Vastaus: Arvoilla -6 < a < 2.
- **5.** Jos alussa puun korkeus on h_1 ja tyven halkaisija d_1 , on puun alkutilavuus $V_1 = \frac{1}{3}\pi(\frac{1}{2}d_1)^2h_1$. Kahdenkymmenen vuoden kuluttua puun korkeus $h_2 = \frac{7}{6}h_1$, tyven halkaisija $d_2 = \frac{4}{3}d_1$ ja tilavuus $V_2 = \frac{1}{3}\pi(\frac{2}{3}d_1)^2(\frac{7}{6}h_1) = \frac{56}{27}V_1$. Tilavuuden prosentuaalinen kasvu on $100(\frac{V_2}{V_1}-1)=100(\frac{56}{27}-1)=100\cdot\frac{29}{27}\approx 107,407$.

Vastaus: Tilavuus kasvaa 107,4 %.

6. Ympyrän ja suoran y=x-a leikkauspisteiden x-koordinaatit toteuttavat yhtälön $x^2+(x-a)^2=a^2$ eli 2x(x-a)=0, jonka ratkaisu on x=0 tai x=a. Leikkauspisteet ovat siis A=(0,-a) ja B=(a,0). Nämä ovat sen janan päätepisteet, jolla suora jakaa ympyrän kahteen osaan. Pienempi osa on kalotti, joka saadaan poistamalla neljännesympyrästä kolmio OAB (O on origo). Kalotti on 4. neljänneksessä, jos a>0 ja 2. neljänneksessä, jos a<0. Kalotin ala on $\frac{1}{4}\pi a^2-\frac{1}{2}a^2$ ja loppuympyrän $\frac{3}{4}\pi a^2+\frac{1}{2}a^2$. Alojen suhde on siten $\frac{\frac{1}{4}\pi a^2-\frac{1}{2}a^2}{\frac{3}{4}\pi a^2+\frac{1}{2}a^2}=\frac{\pi-2}{3\pi+2}\approx 0,099923$.

Vastaus: Suhde on $\frac{\pi - 2}{3\pi + 2} \approx 0{,}100.$

7. Funktion f derivaatta $f'(x) = \frac{2x(1-x^4)}{(x^4+x^2+1)^2}$. Kun x>1, on $2x(1-x^4)<0$ ja $(x^4+x^2+1)^2>0$ eli f'(x)<0. Näin ollen funktio on aidosti vähenevä, kun x>1. Koska 1< a< b, on oltava f(a)>f(b).

Vastaus: f(a) on suurempi.

8. Kuoria on yhteensä 16. Niistä voidaan valita kaksi $\binom{16}{2}=120$ eri tavalla. Valintoja, joissa tulee kaksi samanväristä on ruskean tapauksessa $\binom{2}{2}=1$, mustan $\binom{6}{2}=15$ ja sinisen $\binom{8}{2}=28$ eli yhteensä 1+15+28=44. Kuoret ovat siten samanväriset todennäköisyydellä $\frac{44}{120}=\frac{11}{30}\approx 0,3667$.

Vastaus: Todennäköisyydellä $\frac{11}{30}$.

- 9. Olkoon laskevan suoran yhtälö y-4=k(x-3). Suora leikkaa y-akselia pisteessä $y_0=4-3k$ ja x-akselia pisteessä $x_0=3-\frac{4}{k}$. Suoran ja koordinaattiakselien rajoittaman kolmion ala on $\frac{1}{2}x_0y_0$ eli k:n funktiona $f(k)=\frac{1}{2}(3-\frac{4}{k})(4-3k)=\frac{1}{2}(24-9k-\frac{16}{k})$. Derivaatta $f'(k)=\frac{1}{2}(-9+\frac{16}{k^2})=0$, kun $k^2=\frac{16}{9}$ eli $k=\pm\frac{4}{3}$. Koska suora on laskeva, on $k=-\frac{4}{3}$. Koska f'(k)<0, kun $k<-\frac{4}{3}$ ja f'(k)>0, kun $0>k>-\frac{4}{3}$, on kyseessä minimikohta. Vastaava funktion arvo on $f(-\frac{4}{3})=\frac{1}{2}(3+3)(4+4)=24$. Vastaus: Kulmakerroin on $-\frac{4}{3}$ ja vastaava pienin ala 24.
- **10.** Koska $a_1 = \frac{1+0\cdot 3}{1+1}$, $a_2 = \frac{1+1\cdot 3}{2+1}$, $a_3 = \frac{1+2\cdot 3}{3+1}$, $a_4 = \frac{1+3\cdot 3}{4+1}$, ja $a_5 = \frac{1+4\cdot 3}{5+1}$, on oltava $a_n = \frac{1+(n-1)\cdot 3}{n+1} = \frac{3n-2}{n+1}$. Kun $n \to \infty$, niin $a_n = \frac{3-\frac{2}{n}}{1+\frac{1}{n}} \to 3$. Koska $a_{n+1} a_n = \frac{5}{(n+1)(n+2)} > 0$, on jono nouseva. Näin ollen $|a_n 3| < 0{,}001$, kun $3 \frac{3n-2}{n+1} < 0{,}001 \Longleftrightarrow \frac{5}{n+1} < 0{,}001 \Longleftrightarrow n > 4999$ eli arvosta n = 5000 alkaen.
- 11. Yhtälö on määritelty, kun x>0. Merkitään $f(x)=x-2\ln x$. Derivaatta $f'(x)=1-\frac{2}{x}=0$, kun x=2. Kun 0< x<2, on f'(x)<0 ja kun x>2, on f'(x)>0, joten f saa pienimmän arvonsa kohdassa x=2. Edelleen $f(2)=2-2\ln 2>0,6>0$. Näin ollen $x-2\ln x>0$ kaikilla arvoilla x, joilla se on määritelty, joten yhtälöllä $x-2\ln x=0$ ei ole reaalijuuria.
- 12. Alueen ensimmäisessä ja kolmannessa koordinaattineljänneksessä olevat osat ovat symmetriset, joten riittää määrätä ensimmäisessä neljänneksessä olevan ala. Suorat y=2x ja $y=\frac{1}{2}x$ kulkevat origon O kautta ja leikkaavat hyperbeliä xy=1 pisteissä $A=\left(\frac{1}{\sqrt{2}},\sqrt{2}\right)$ ja $B=\left(\sqrt{2},\frac{1}{\sqrt{2}}\right)$. Tällöin 1. neljänneksessä oleva ala on $\int_0^{1/\sqrt{2}}\left(2x-\frac{1}{2}x\right)dx+\int_{1/\sqrt{2}}^{\sqrt{2}}\left(\frac{1}{x}-\frac{1}{2}x\right)dx=\int_0^{1/\sqrt{2}}\frac{3}{4}x^2+\int_{1/\sqrt{2}}^{\sqrt{2}}(\ln x-\frac{1}{4}x^2)=\frac{3}{8}+2\ln\sqrt{2}-\frac{3}{8}=\ln 2$. Näin ollen kysytty ala on $2\ln 2\approx 1,3863$. Vastaus: Ala on $2\ln 2$.
- **13. a)** Merkitään $x_n = \frac{\pi}{3} + 10^{-3n}$, n = 1, 2, 3, 4, 5. Eräs laskin antaa lausekkeelle arvot $L(x_1) = 4,006942$, $L(x_2) = 3,99998$, $L(x_3) = 3,98$, $L(x_4) = 0$, $L(x_5) = 0$.
 - b) Koska $\tan \frac{\pi}{3} = \sqrt{3}$, on $L(x) = \frac{\tan x \tan \frac{\pi}{3}}{x \frac{\pi}{3}}$ eli on funktion $f(x) = \tan x$ erotusosamäärä pisteessä $x = \frac{\pi}{3}$. Funktio f(x) on derivoituva tässä pisteessä, joten on olemassa $\lim_{x \to \frac{\pi}{3}} L(x) = f'(\frac{\pi}{3}) = (\cos \frac{\pi}{3})^{-2} = 4$. Edellä a-kohdassa muodostetun jonon pitäisi tämän perusteella samoin lähestyä arvoa neljä. Funktion L(x) lauseke sopii kuitenkin huonosti numeeriseen laskentaan, joten näin ei kuitenkaan tapahtunut käytetyn laskimen tarkkuudella lasketuille arvoille.

- 14. Olkoon käyrän yhtälö y=y(x). Pisteeseen $(x_0,y(x_0))$ asetetun tangentin yhtälö on $y-y(x_0)=y'(x_0)(x-x_0)$. Jotta tehtävän ehto toteutuisi, on tangentin leikattava x-akselia pisteessä $(2x_0,0)$. On siis oltava $0-y(x_0)=y'(x_0)(2x_0-x_0)$ eli $y(x_0)=y'(x_0)\cdot x_0$. Tästä saadaan differentiaaliyhtälö $\frac{y'}{y}=-\frac{1}{x}$ eli $\frac{dy}{y}=-\frac{dx}{x}$. Siitä voidaan ratkaista y suoraan integroimalla. Saadaan $\ln|y(x)|=-\ln|x|+c'$ eli $y(x)=\frac{c}{x}$. Vastaus: Käyrien yhtälöt ovat muotoa $y=\frac{c}{x}$.
- **15.** a) Jos jakojäännös on r, on 2^{345} muotoa 5a+r eli $2^{345}=r$ mod 5. Edelleen, koska 4=-1 mod 5, on $2^{345}=2\cdot 2^{344}=2\cdot 4^{172}=2\cdot (-1)^{172}=2$ mod 5. Siis r=2.

 b) Jos jakojäännös on r, on 3^{4567} muotoa 6a+r eli 3^{4566} on muotoa $2a+\frac{1}{3}r$. Siis $3^{4566}=\frac{1}{3}r$ mod 2. Edelleen, koska 3=1 mod 2, on $3^{4566}=1^{4566}=1$ mod 2. Siis $\frac{1}{3}r=1$ eli r=3.

Vastaus: Jakojäännös on a-kohdassa 2 ja b-kohdassa 3.