

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) Jan 2014		2. REPORT TYPE Briefing Charts		3. DATES COVERED (From - To) Jan 2014- Mar 2014	
4. TITLE AND SUBTITLE BIO-BASED CYANATE ESTER RESINS: IMPROVED PERFORMANCE THROUGH NETWORK STRUCTURE ENHANCEMENT					
5a. CONTRACT NUMBER In-House					
5b. GRANT NUMBER					
5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S) Andrew J. Guenthner, Josiah T. Reams, Gregory R. Yandek, Christopher M. Sahagun, Kevin R. Lamison, Benjamin G. Harvey, Matthew C. Davis, William Lai, Lee R. Cambrea, Thomas J. Groshens, and Joseph M. Mabrys					
5d. PROJECT NUMBER					
5e. TASK NUMBER					
5f. WORK UNIT NUMBER Q0BG					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB CA 93524-7680			8. PERFORMING ORGANIZATION REPORT NO.		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB CA 93524-7048			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-VG-2014-047		
12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for Public Release; Distribution Unlimited					
13. SUPPLEMENTARY NOTES Briefing Charts presented at ACS National Meeting and Expo, Dallas, TX., March 16, 2014. PA#14119					
14. ABSTRACT Briefing Charts					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 24	19a. NAME OF RESPONSIBLE PERSON Joseph Mabry
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified			19b. TELEPHONE NO (include area code) 661-275-5857

BIO-BASED CYANATE ESTER RESINS: IMPROVED PERFORMANCE THROUGH NETWORK STRUCTURE ENHANCEMENT

17 March 2014

Andrew J. Guenthner,¹ Josiah T. Reams,² Gregory R. Yandek,¹ Christopher M. Sahagun,³ Kevin R. Lamison,² Benjamin G. Harvey,⁴ Matthew C. Davis,⁴ William Lai,⁴ Lee R. Cambrea,⁴ Thomas J. Groshens,⁴ and Joseph M. Mabry¹

¹Aerospace Systems Directorate, Air Force Research Laboratory
Edwards AFB, CA 93524

²ERC Incorporated, Air Force Research Laboratory
Edwards AFB, CA 93524

³National Research Council / Air Force Research Laboratory
Edwards AFB, CA 93524

⁴Naval Air Warfare Center, Weapons Division
China Lake, CA 93555

AFRL Mission

***Leading the discovery, development, and integration
of affordable warfighting technologies for our air,
space, and cyberspace force.***

Cyanate Esters for Next-Generation Aerospace Systems

Glass Transition Temperature
200 – 400 °C (dry)
150 – 300 °C (wet)

Resin Viscosity
Suitable for
Filament
Winding / RTM

Compatible with
Thermoplastic
Tougheners and
Nanoscale
Reinforcements

High T_g

Ease of Processing

Resistance to Harsh Environments

Onset of Weight Loss:
> 400 °C with High Char Yield

Good Flame,
Smoke, &
Toxicity
Characteristics

Low Water Uptake
with Near Zero
Coefficient of
Hygroscopic Expansion

Cyanate Esters Around the Solar System

Our Solar System

- On Earth, cyanate ester / epoxy blends have been qualified for use in the toroidal field magnet casings for the ITER thermonuclear fusion reactor

Images: courtesy NASA (public release)

Why Bio-Based Cyanate Esters

- Materials qualification efforts are costly; developing bio-based materials that deliver both improved performance and decreased dependence on petroleum enables a higher and more robust return on investment
- Cyanate esters are generally easy to process; they do not require stoichiometric balance and form co-networks readily, hence they tolerate variation in monomer chemistry relatively well
- The superior flame, smoke, and toxicity characteristics of cyanate esters, the excellent adhesion and durability characteristics of the networks, and the very high selectivity of the reaction (which makes de-polymerization easier), all confer benefits from a sustainability perspective
- Bio-based feedstocks for cyanate esters are interesting because of the combinations of physical properties provided by structure of the molecules themselves, not just because of the cost or environmental impacts

Anethole as a Monomer Source

Photograph of fruits of star anise ("*Illicium verum*"), taken 17th October 2006 by Brian Arthur and released under the GNU Free Documentation License. All remaining rights reserved

- Trans-anethole is widely available as an essential oil extracted from star anise (*Illicium verum*), an evergreen tree native to southwest China (Yunnan and Guangxi provinces) and northern Vietnam
- Current production is ~ 400 tons / yr, with significant use in the flavor and fragrance industry
- Simple steam distillation of the star anise fruit yields ~90% trans-anethole
- The sizes of the global markets for trans-anethole and cyanate esters are similar

Anethole-Based Cyanate Esters: Route 1

Reagents & conditions: a) H_2SO_4 , H_2O , reflux; b) H_2 , Pd/C, THF; c) pyridineHCl; reflux;
d) BrCN , TEA, acetone, -20°C .

Anethole-Based Cyanate Esters: Range of Segment Flexibility

CE-1

CE-2

CE-3

- CE-1 will form networks with a high level of segment flexibility; multiple stereoisomers should inhibit the formation of crystals
- CE-2 will form networks with a moderate amount of segment rigidity
- CE-3 will form highly rigid networks

Trianethole-Based Cyanate Esters and Related Compounds

- Compound 10 is an isomer of compound 9 (1,3,5 vs. 1,2,4 substitution); all compounds were prepared by Dr. Matthew Davis at NAWCWD.

Reagents & conditions: a) 1. Br₂, THF, 0 °C; 2. KOtBu, THF, 0 °C to reflux;
b) TMSCl, 5% Pd/C, dioxane, reflux; c) pyridine, POCl₃, H₂O, reflux; d) BrCN,
TEA, acetone, -20 °C; e) BuLi, Et₂O, hexanes, rt; f) Col₂, ZnBr₂, Zn, MeCN;
g) pyridineHCl, reflux.

DSC of Anethole-Based Cyanate Esters

CE-3

- The various coupling routes produce cyanate esters with a wide range of network segment rigidities
- CE-3 (high rigidity) is very difficult to process
- CE-2 has moderate rigidity and is similar in processability to BADCy
- CE-1 is of low (relative) rigidity, making it the easiest to process

Thermochemical Stability of Anethole-Based Cyanate Esters

CE-1

CE-2

Network Composition:
Excludes Hydrogen Atoms

	Wt % Aromatic	Wt % Aliphatic	Wt % OCN
CE-1	50	25	25
CE-2	50	25	25
LECy	60	10	30
BADCy	57	14	29

LECy

BADCy

Samples cured at 150 °C
for 1hr then 210 °C for 24
hrs under dry nitrogen

Physical Properties of Anethole-Based Cyanate Esters

Com-pound	Density (g/cc)	Cyanurate Density at Full Cure (mmol/cc)	As-Cured Dry T _g by TMA (°C)	T _g After Post-Cure to 350 °C in TMA (°C)	“Wet” T _g After 96 h Immersion in 85 °C H ₂ O (°C)	Water Uptake
CE-1	1.154	2.42	213	223	190	1.14%
CE-2	1.176	2.45	279	313	223	1.66%
LECy	1.231	3.11	291	295	239	1.75%
BADCy	1.208	2.89	275	323	240	1.34%

- In CE-1, water uptake is traded for glass transition temperature (as in RTX-366, which has an even lower water uptake and glass transition temperature)
- CE-2 not only processes like BADCy, but appears to give similar physical properties (though with a slight loss in wet properties)
- Note that the water uptake of LECy and BADCy without catalyst was significantly lower than expected

LECy (cat)	1.220	3.08	275	290	193	2.34%
BADCy (cat)	1.201	2.86	267	304	186	2.10%

Samples cured at 150 °C for 1hr then 210 °C for 24 hrs under dry nitrogen

DSC of Trianethole Tricyanate (9)

10 °C / min.

• 1,2,4 Isomer

DSC of 1,3,5 Isomer (10)

10 °C / min.

• 1,3,5 Isomer

Comparative DSC Data

Comparison of DSC data for monomers **5**, **9**, **10** and BADCy

Compound	T _m (°C)	Cure Onset (°C)	Exotherm Max (°C)	ΔH _{cure} (J/g)	ΔH _{cure} (kJ/cyanate ester)
5	165	170	215	600	54
9	85	225	280	620	97
10	101	230	280	780	123
BADCy	82	270	330	810	108

Post-cure T_G values were not observed for 5 and 9, and were 324 °C for 10 and 305 °C for BADCy

Comparative TGA of Tricyanate Esters

- 1,2,4 Isomer (9)

- 1,3,5 Isomer (10)

Comparative TGA Table for Tricyanate Esters

Comparison of TGA data for cured 9, 10 and BADCy

Compound	T @ 5% weight loss (°C)	Char Yield 600 °C (%)	% incremental weight loss @ T (°C)							
			N ₂			Air				
	N ₂	Air	N ₂	Air	450	550	600	450	550	600
9	419	415	69	70	13	15	3	12	11	7
10	449	443	77	75	5	12	6	7	13	5
BADCy	402	400	47	25	35	15	3	37	13	25

- Higher initial weight loss in both nitrogen and air for compound 9 (the 1,2,4 isomer) probably due to less complete cure; larger losses in BADCy are known to be the result of the instability of the quaternary carbon from studies of analogous polymers (e.g. polycarbonate)

DSC Scan of “As Cured” 1,2,4 Isomer

10 °C / min.

“Wet” TMA of 1,2,4 Isomer (80% Conversion Prior to Immersion)

“Wet” TMA of 1,3,5 Isomer (95% Conversion Prior to Immersion)

20 °C / min.

FT-IR Data on Wet 1,2,4 Isomer (87% Conversion Prior to Immersion)

- Careful sample prep + high # of scans = quantifiable results!
- Residual –OCN to carbamate conversion, and destruction of carbamate clearly seen

Summary / Future Work

- Oxidative coupling of anethole can be used to form cyanate ester monomers that impart a broad range of segment flexibility to cured networks
 - Tricyanates, when not overly rigid, offer a very high glass transition temperature along with thermo-oxidative stability similar to PT-30, but require higher temperatures for full cure
 - Moderately rigid system shows processing characteristics and physical properties similar to BADCy
 - Most flexible system is a liquid at room temperature and provides final properties that are intermediate between the commercial products RTX-366 and LECy, with very low water uptake (~1% after 96 hours at 85 °C)
- Areas for future work
 - Since cyanate ester blends often result in networks with synergistic improvements in properties, blending the products may produce highly desirable combinations of water uptake, thermo-oxidative stability, processing characteristics, and glass transition temperature
 - Fabrication of composite panels and structures incorporating these resins is underway

Propulsion - the technology that enables the warfighter to reach out and touch anyone, anywhere in the world -- and beyond.
The Air Force Research Laboratory's Propulsion Directorate - the nation's premier organization to create and transition
technology for military propulsion and power systems since the dawn of powered flight.

