Дискретный анализ Жадные алгоритмы, 2 семестр, 2017/2018

Задача А. Обмен монет

standard input Имя входного файла: standard cutput Имя выходного файла: 1 секунда Ограничение по времени: 512 мебибайт

Требуется разработать и реализовать элементарный жадный алгоритм, который используют Ограничение по намяти:

Найдите минимальное количество монет, необходимое для размена заданного значения т монекассиры по всему миру. тами достоинством 1, 5 и 10.

Формат входных данных

В первой строке ввода задано единственное число $m~(1\leqslant m\leqslant 10^3)$ — сумма, которую веобходимо разменять.

Формат выходных данных

 ${\bf B}$ единственной строке выведите одно число — ответ на задачу.

Примеры

римеры	standard output
standard input	Boarder
2	2
28	6

Пояснения к примерам

В первом примере 2 = 1 + 1.

Во-втором примере 28 = 10 + 10 + 5 + 1 + 1 + 1.

Задача В. Взломщик и добыча

 Имя входного файла:
 standard input

 Имя выходного файла:
 standard output

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 512 мебибайт

Взломщик обнаружил в доме гораздо больше добычи, чем может вместить его мешок. Помогите ему выбрать самую ценную комбинацию предметов, с учетом того, что он может делить предметы на части.

Формат входных данных

В первой строке задано два числа n $(1\leqslant n\leqslant 10^3)$ — число предметов и W $(0\leqslant W\leqslant 2\cdot 10^6)$ — размер мешка. В следующих n строках описываются предметы, строка под номером i содержит два целых числа v_i $(0\leqslant v_i\leqslant 2\cdot 10^6)$ — ценность предмета и w_i $(0\leqslant w_i\leqslant 2\cdot 10^6)$ — вес предмета.

Формат выходных данных

В единственной строке выведите одно число—максимальную ценность предметов, которые взломщик сможет унести в мешке.

Абсолютное значение развины между ответом вашей программы и оптимальным значением должно быть не более 10^{-3} . Для этого, выведите свой ответ по крайней мере с четырымя цифрами после десятичной точки.

Примеры

standard input	standard cutput
3 50	180.0000
60 20	
100 50	
120 30	
1 10	166.6667
500 30	

Пояснения к примерам

В первом примере следует положить в мешок первый и третий предметы. Во-втором примере следует взять одну треть единственного доступного предмета.

Задача С. Реклама в Интернете

standard input Имя входного файла: standard output Имя выходного файла: Ограничение по времени: 1 секунда 512 мебибайт Ограничение по памяти:

Дано в рекламных баниеров, которые необходимо разместить на Интернет-странице. Для каждого баннера известно, сколько денег готов заплатить рекламодатель за один клик в баннер. Вы подготенили в мест на странице и оценили количество кликов в баннер для каждого из этих мест. Ваша задача — разместить рекламные баннеры на странице таким образом, чтобы максимизировать прибыль.

Формат входных данных

Даны две последовательности чисел a_1,a_2,\dots,a_n $(a_i$ — прибыль за клик в баниер i) и b_1,b_2,\dots,b_n $(b_{j}$ — среднее количество кликов в баниер, если он размещен на странице в месте j). Требуется разделить их на n пар (a_i,b_j) таким образом, чтобы максимизировать сумму их произведений, $1 \leqslant n \leqslant 10^3, -10^5 \leqslant a_i, b_i \leqslant 10^5,$ and been $1 \leqslant i \leqslant n$.

Формат выходных данных

Выведите единственное число — максимальное значение $\sum_{i=1}^n a_i c_i$, где c_1, c_2, \ldots, c_n — перестановка b_1, b_2, \ldots, b_n

Примеры

вtandard input	standard output	
	897	
1		
23		
39	23	
3		
1 3 -5 -2 4 1		

Пояснения к примерам

В первом примере $897 = 23 \cdot 39$. Во-втором примере $23 = 3 \cdot 4 + 1 \cdot 1 + (-5) \cdot (-2)$.

Задача D. Сбор подписей

Mass выходного фийла: standard input Mass выходного фийла: standard output Ограничение по времени: 1 секунда Ограничение по памяти: 512 мебибайт

Вы ответственный за сбор подписей воех жильцов в здании. Для каждого жильца извество время, когда он бывает дома. Вы хотите собрать все подписи посетив здание как можно меньшее

Формат входных данных

В первой строке содержится число n $(1\leqslant n\leqslant 100)$ — количество жильцов в здании. В следующих в строках обдержится по два числа a_i и b_i — отрезок времени когда бывает дома жилец i $(0\leqslant a_i,b_i\leqslant 10^p)$, для воек $0\leqslant i\leqslant n$.

Формат выходных данных

В первой строке выведите число п: — минимальное число раз, которое необходимо посетить завчения — значения времени, в которые нужно посетить здание. Вы можете выведить значения в любом порядке. Если существует несколько оптимальных наборов значений, вы можете вывести любой из них.

Примеры

standard input	standard output
8 1 9 2 6 8 6	1 3
6 6 7 1 3 2 5 5 6	2 3 6

Пояснения к примерам

В первои примере три отрезка времени, каждый из которых содержит значение 3.

Во-втором примере первый и третий отрежи содержат значение 3, в то время, как первый и четвертый отрежи освержат значение 6. Все четыре отрезка времени не могут быть посещены за один визит, так как отрезки [1,3] и [5,6] не пересекаются.

Задача О

Автор: не указан

Страница 4 из б

Задача Е. Детское соревнование

Имя входного файла: standard input Имя выходного файла: standard output Ограничение по времени: 1 секунда Ограничение по намяти: 512 мебибайт

Вы организуете соревнование для дстей. В качестве призового фонда мэрии выделила вам n конфет. Вы хотите использовать эти конфеты для k первых мест соревнования, с естественным ограничением — ребенок на меньшем месте (то место, что выше) получает большее число конфет. Ребенок счастлив — если получает хотя бы одну конфету. Вы хотите осчастливить как можно больше детей, поэтому хотите найти максимально возможное k.

Формат входных данных

В первой строке содержится число n ($1\leqslant n\leqslant 10^9$) — количество конфет, которые выделила мэрия.

Формат выходных данных

В первой строке выведите число k — число первых мест в соревновании, которые получат ковфеты. Во-второй строке выведите k различных целых чисел — сумма которых равна n — число конфет, которое получит ребенок на месте $i,\ 1\leqslant i\leqslant n$. Если существует несколько возможных ответов — выведите любой из них.

Примеры

standard input	standard output
6	3 3 2 1
8	3 5 2 1
2	1 2

Задача Е Автор: не указан

Страница 5 из б

Дискретный анализ Жадные алгоритмы, 2 семестр, 2017/2018

Задача F. Хитрая зарплата

Имя входного файла: standard input standard output Имя выходного файла: Ограничение по времени: 1 секунда 512 мебибайт

Ограничение по памяти: На последнем шаге собеседования ваш будущий руководитель дал вам несколько кусочков бумаги с числами и попросил составить максимальное число из этих кусочков. Число, которое получится в результате будет вашей зарплатой, поэтому вы очень заинтересованы в правильном решении.

Формат входных данных

В первой строке содержится число $n\ (1\leqslant n\leqslant 100)$ — количество кусочков бумаги с числами. В следующей строка содержит числа, записанные на кусочках бумаги $a_1, a_2, \dots, a_n,$ $(1 \le a_i \le 10^3).$

Формат выходных данных

Выведите наибольшее число, которое можно получить из a_1, a_2, \dots, a_n .

меры standard input	standard output
2	221
21 2	99641
9 4 6 1 9 3 23 39 92	923923