Логическое программирование

Исторически логика занимается изучением способов рассуждений, которые позволяли бы из истинных суждений-посылок получать истинные суждения-заключения. Систематизировать правила вывода, как мы уже знаем, начал Аристотель в книге «Первая аналитика». В дальнейшем к ним добавлялись новые базовые высказывания и модусы (схемы вывода). В средние века студенты даже учили стихи для запоминания основных в то время 19 форм силлогизмов.

В 1930 году в докторской диссертации Жака Эрбана для доказательства теорем в формальных системах первого порядка было предложено **Правило резолюций**. Окончательно это правило сформулировал Джон Алан Робинсон в 1965г.

Алгоритмы доказательства выводимости теорем на основе этого метода, применяются во многих системах искусственного интеллекта, а также являются фундаментом, на котором построен язык логического программирования Пролог.

Предположим, имеются формулы-посылки P_1, P_2, \dots, P_m и заключение D. Требуется доказать, что из формул P_1, P_2, \dots, P_m можно вывести формулу D, т.е. если посылки P_1, P_2, \dots, P_m общезначимы, то и заключение D общезначимо. Следовательно, мы хотим доказать общезначимость формулы «конъюнкция посылок влечет заключение»

$$(P_1 \& P_2 \& \dots \& P_m) \supset D.$$

Рассмотрим правило резолюций в логике высказываний.

Пусть C_1 и C_2 — два предложения в логике высказываний, и пусть $C_1 = P \vee C_1'$, а $C_2 = \neg P \vee C_2'$, где P — пропозициональная переменная, а C_1' и C_2' — любые предложения (в частности, может быть, пустые).

Правило вывода

$$\frac{C_1, C_2}{C_1' \vee C_2'}$$

называется Правилом резолюций.

Предложения C_1 и C_2 называются *резольвируемыми* (или *родительскими*), предложение $C_1' \vee C_2'$ — *резольвентой*, а формулы P и $\neg P$ — контрарными литералами.

В общем в правиле резолюции берутся два выражения и вырабатывается новое выражение, содержащее все литералы двух первоначальных выражений, за исключением двух взаимно обратных литералов.

Рассмотрим следующий пример.

Пример 4. Проверить правильность рассуждения и истинность заключения, если посылки истинны, т.е. проверить выводимость заключения из посылок.

Таня хорошо воспитана и умна. Если Таня хорошо воспитана с ней хочется дружить. С Таней хочется дружить.

Проверим формулу $(P_1\&P_2)\supset D$ на тождественную истинность, как обычно, доказательством от противного.

Элементарные высказывания:

X — Таня хорошо воспитана;

Y — Таня умна;

Z — с Таней хочется дружить.

Выпишем посылки и заключение.

 $P_1: X \& Y$ $P_2: X \supset Z$ D: Z

Составим формулу $(P_1 \& P_2) \supset D$.

Формула тождественно-истинная. Рассуждение правильное и заключение истинно, если посылки истинны.

Для доказательства того, что формула D является логическим следствием множества формул P_1, P_2, \ldots, P_m , метод резолюций применяется следующим образом. Сначала составляется множество формул $\{P_1, P_2, \ldots, P_m, \neg D\}$. Затем каждая из этих формул приводится к КНФ и в полученных формулах зачеркиваются знаки конъюнкции. Получается множество дизьюнктов S. И, наконец, ищется вывод пустого дизьюнкта из S. Если пустой дизьюнкт # выводим из S, то формула D является логическим следствием формул P_1, P_2, \ldots, P_m . Если из S нельзя вывести #, то D не является логическим следствием формул P_1, P_2, \ldots, P_m . Такой метод доказательства теорем называется M

Пример 5. Рассмотрим пример 4 и выведем заключение, используя правило резолюций.

Сначала составляем множество формул: посылки и отрицание доказываемого высказывания (заключения) получаем:

$$\{(X\&Y), (X\supset Z), \neg Z\}.$$

Теперь приводим все формулы к конъюнктивной нормальной форме и зачеркиваем конъюнкции. Получаем следующее множество дизъюнктов:

$$\{X, Y, (\neg X \lor Z), \neg Z\}.$$

Далее ищем вывод пустого дизъюнкта. Применяем к первому и третьему дизъюнктам правило резолюции A и $\neg A$ \lor B выводим B. В множество дизъюнктов добавляем Z и записываем его последним, пятым:

$$\{X, Y, (\neg X \lor Z), \neg Z, Z\}.$$

Применяем к четвёртому и пятому дизъюнктам правило резолюции и получаем пустой дизъюнкт ($\neg Z\&Z=\mathcal{I}$):

$${X, Y, (\neg X \lor Z), \neg Z, Z, \#}.$$

Таким образом пустой дизъюнкт выведен, следовательно выражение с отрицанием высказывания опровергнуто, следовательно само высказывание-заключение D доказано.

Правило резолюций в логике предикатов

Аналогичное правило резолюций существует и в логике предикатов. В этом методе предварительно все посылки приводятся к специальной, сколемовской конъюнктивной нормальной форме, основанной на приведении всех посылок и заключения к ПНФ.

Рассмотрим следующий пример.

Пример 6. Проверить правильность рассуждения и общезначимость заключения, если посылки истинны.

Пусть брадобреи бреют всех людей, которые не бреются сами и не бреют тех, кто бреется сам. Тогда брадобреи не существуют.

Выберем предикаты:

$$Q_1(x) \Rightarrow x$$
 — брадобрей.

$$Q_2(x, y) \Rightarrow x$$
 бреет y .

Выпишем посылки.

$$P_1 \colon (\forall x) \left(Q_1(x) \supset (\forall y) \big(\neg Q_2(y,y) \supset Q_2(x,y) \big) \right)$$

$$P_2 \colon (\forall x) \left(Q_1(x) \supset (\forall y) \left(Q_2(y,y) \supset \neg Q_2(x,y) \right) \right)$$

$$D: \neg(\exists x)Q_1(x)$$

Проверим формулу $(P_1 \& P_2) \supset D$ на общезначимость, как обычно, доказательством от противного.

Предположим, что существует интерпретация $I = \langle M, f \rangle$, в которой формула принимает значение Л. Тогда посылки истинны, а заключение ложь.

Выпишем систему

$$\begin{cases} (\forall x) \left(Q_1(x) \supset (\forall y) \big(\neg Q_2(y, y) \supset Q_2(x, y) \big) \right) = \mathsf{M} \\ (\forall x) \left(Q_1(x) \supset (\forall y) \big(Q_2(y, y) \supset \neg Q_2(x, y) \big) \right) = \mathsf{M} \\ \neg (\exists x) Q_1(x) = \mathsf{M} \end{cases}$$

Возьмем отрицание от третьего предложения, получим

$$\begin{cases} (\forall x) \left(Q_1(x) \supset (\forall y) \big(\neg Q_2(y, y) \supset Q_2(x, y) \big) \right) = \mathsf{M} \\ (\forall x) \left(Q_1(x) \supset (\forall y) \big(Q_2(y, y) \supset \neg Q_2(x, y) \big) \right) = \mathsf{M} \\ (\exists x) Q_1(x) = \mathsf{M} \end{cases}$$

Тогда из третьего предложения следует, что $\exists s_0 \in M: Q_1(s_0) = \mathsf{И}$. Первые две формулы системы истинны для $\forall x$, т.е. для любого элемента множества M, а значит и для $s_0 \in M$. Справедлива система

$$\begin{cases} Q_1(s_0) \supset (\forall y) \big(\neg Q_2(y,y) \supset Q_2(s_0,y) \big) = \mathsf{M} \\ Q_1(s_0) \supset (\forall y) \big(Q_2(y,y) \supset \neg Q_2(s_0,y) \big) = \mathsf{M} . \\ Q_1(s_0) = \mathsf{M} \end{cases}$$

Учитывая третье предложение и таблицу для импликации, получим

$$\begin{cases} (\forall y) \big(\neg Q_2(y, y) \supset Q_2(s_0, y) \big) = \mathbf{H} \\ (\forall y) \big(Q_2(y, y) \supset \neg Q_2(s_0, y) \big) = \mathbf{H}. \\ Q_1(s_0) = \mathbf{H} \end{cases}$$

Первые две формулы системы истинны для $\forall y$, а значит и для $s_0 \in M$ справедлива система

$$\begin{cases} \neg Q_2(s_0, s_0) \supset Q_2(s_0, s_0) = \mathbb{M} \\ Q_2(s_0, s_0) \supset \neg Q_2(s_0, s_0) = \mathbb{M} \Longrightarrow \begin{cases} Q_2(s_0, s_0) \vee Q_2(s_0, s_0) = \mathbb{M} \\ \neg Q_2(s_0, s_0) \vee \neg Q_2(s_0, s_0) = \mathbb{M} \end{cases} \Longrightarrow \begin{cases} Q_2(s_0, s_0) = \mathbb{M} \\ \neg Q_2(s_0, s_0) = \mathbb{M} \end{cases} \Longrightarrow \begin{cases} Q_2(s_0, s_0) = \mathbb{M} \\ \neg Q_2(s_0, s_0) = \mathbb{M} \end{cases}$$

Получаем противоречие: $Q_2(s_0, s_0) = И$ и $\neg Q_2(s_0, s_0) = И$ одновременно.

Следовательно, формула $(P_1 \& P_2) \supset D$ общезначима, рассуждение правильное и заключение истинно, если посылки истинны.

Для машинной реализации такого вывода, как уже говорилось, используется **метод резолюций**.

В методе резолюций предварительно все посылки приводятся к специальной, сколемовской конъюнктивной нормальной форме, в которой заменяется импликация, делается замена переменных и по определенным правилам отбрасываются кванторы.

Затем по специальным правилам выводятся дизьюнкты, до тех пор, пока не будет получен пустой дизьюнкт. Это и означает, что заключение D выводимо из посылок P_1, P_2, \dots, P_m .

Не углубляясь в подробности сложного метода резолюций для логики предикатов, который возможно вы будете изучать вместе с Прологом на языковой (по программированию) кафедре 806, покажем на простом примере, как выглядит решение задачи из предыдущего примера этим методом.

Пример 7.

Пусть брадобреи бреют всех людей, которые не бреются сами и не бреют тех, кто бреется сам. Тогда брадобреи не существуют.

$$Q_1(x) \Longrightarrow x$$
 — брадобрей.

$$Q_2(x, y) \Rightarrow x$$
 бреет y .

Преобразуем посылки, выписанные в примере 6, к ПНФ.

$$P_{1}: (\forall x) \left(Q_{1}(x) \supset (\forall y) \big(\neg Q_{2}(y, y) \supset Q_{2}(x, y) \big) \right) \equiv$$

$$\equiv (\forall x) \left(\neg Q_{1}(x) \lor (\forall y) \big(Q_{2}(y, y) \lor Q_{2}(x, y) \big) \right) \equiv$$

$$\equiv (\forall x) (\forall y) \big(\neg Q_{1}(x) \lor Q_{2}(y, y) \lor Q_{2}(x, y) \big)$$

$$P_{2}: (\forall x) \left(Q_{1}(x) \supset (\forall y) \big(Q_{2}(y, y) \supset \neg Q_{2}(x, y) \big) \right) \equiv$$

$$\equiv (\forall x) \left(\neg Q_{1}(x) \lor (\forall y) \big(\neg Q_{2}(y, y) \lor \neg Q_{2}(x, y) \big) \right) \equiv$$

$$\equiv (\forall x) (\forall y) \big(\neg Q_{1}(x) \lor \neg Q_{2}(y, y) \lor \neg Q_{2}(x, y) \big)$$

$$D: \neg (\exists x) Q_{1}(x)$$

Мы предполагаем, что истинно отрицание заключения: $(\exists x)Q_1(x) = \emptyset$. Следовательно, существует значение x = a: $Q_1(a) = \emptyset$

Формулы P_1 и P_2 общезначимы (из истинных посылок выводим истинное заключение), следовательно, отбросив кванторы $(\forall x)(\forall y)$, получим истинные формулы.

$$\neg Q_1(x) \lor Q_2(y,y) \lor Q_2(x,y)$$
$$\neg Q_1(x) \lor \neg Q_2(y,y) \lor \neg Q_2(x,y)$$

Так как формулы истинны для всех значений переменных, заменим в этих дизьюнктах переменные: y=x=a, затем применим закон идемпотентности. Получим дизьюнкты:

$$\neg Q_1(a) \lor Q_2(a,a)$$
$$\neg Q_1(a) \lor \neg Q_2(a,a).$$

Окончательно множество дизъюнктов:

$$\{\neg Q_1(a) \lor Q_2(a,a), \neg Q_1(a) \lor \neg Q_2(a,a), Q_1(a)\}.$$

Далее ищем вывод пустого дизъюнкта. Применяем к первому и третьему дизъюнктам правило резолюций, получаем $Q_2(a,a)$:

$$\{\neg Q_1(a) \lor Q_2(a,a), \neg Q_1(a) \lor \neg Q_2(a,a), Q_1(a), Q_2(a,a)\}.$$

Применяем ко второму и третьему дизъюнктам правило резолюции, получаем $\neg Q_2(a,a)$:

$$\{\neg Q_1(a) \lor Q_2(a,a), \neg Q_1(a) \lor \neg Q_2(a,a), Q_1(a), Q_2(a,a), \neg Q_2(a,a)\}$$

Применяем к четвертому и пятому дизъюнктам правило резолюции, получаем пустой дизъюнкт:

$$\{\neg Q_1(a) \lor Q_2(a,a), \neg Q_1(a) \lor \neg Q_2(a,a), Q_1(a), Q_2(a,a), \neg Q_2(a,a), \#\}$$

Таким образом пустой дизъюнкт выведен, следовательно выражение с отрицанием высказывания D опровергнуто, следовательно, само высказывание D доказано.