Class - X Session 2022-23 Subject - Mathematics (Basic) Sample Question Paper

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D, and E.
- 2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
- 3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
- 4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (4 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take π =22/7 wherever required if not stated.

		Section A				
	S	Section A consists of 20 questions of 1 mark each.				
SN					Ma rks	
1	If two positive integers p and q can be expressed as $p = ab^2$ and $q = a^3b$; a, b being prime numbers, then LCM (p, q) is			1		
	(a) ab	(b) a ² b ²	(c) a ³ b ²	(d) a ³ b ³		
2	What is the greatest possible speed at which a man can walk 52 km and 91 km in an exact number of hours?			1		
	(a) 17 km/hours		(b) 7 km/hours			
	(c) 13 km/hours		(d) 26 km/hour	S		
3	If one zero of the qu	adratic polynomial x	² + 3x + k is 2, then th	ne value of k is	1	
	(a) 10	(b) -10	(c) 5	(d) -5		
4	Graphically, the pair 6x - 3y + 10 = 0 2x - y + 9 = 0 represents two lines	of equations given be which are	py		1	
	(a) intersecting at e	exactly one point.	(b) parallel.			
	(c) coincident.		(d) intersecting	at exactly two points.		

_	If the guadratic equation	on v^2 . Ay . v . O has	roal and agual roats. th	00	1	
5		on $x^2 + 4x + k = 0$ has r	·		1	
	(a) k < 4	(b) k > 4	(c) k = 4	(d) k ≥ 4		
6	The perimeter of a tria	ingle with vertices (0, 4), (0, 0) and (3, 0) is		1	
	(a) 5 units	(b) 12 units	(c) 11 units	(d) $(7 + \sqrt{5})$ units		
7	If in triangles ABC and	$\frac{AB}{DE} = \frac{BC}{FD}$, then	they will be similar, wh	hen	1	
	(a) ∠B = ∠E	(b) ∠A = ∠D	(c) ∠B = ∠D	(d) ∠A = ∠F		
8	In which ratio the y-ax	is divides the line segn	nent joining the points ((5, - 6) and (-1, -4)?.	1	
	(a) 1:5	(b) 5:1	(c) 1:1	(d) 1:2		
9	9	id PB are tangents to the lat ∠APB = 50°, then ∠		A o	1	
	(a) 25°	(b) 30°	(c) 40°	(d) 50°		
10	If $\sin A = \frac{1}{2}$, then the value of $\sec A$ is :					
	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{1}{\sqrt{3}}$	(c) √3	(d) 1		
11	$\sqrt{3} \cos^2 A + \sqrt{3} \sin^2 A$ is	s equal to			1	
	(a) 1	(b) $\frac{1}{\sqrt{3}}$	(c) √3	(d) 0		
12	The value of cos1° co	s2° cos3° cos4°	cos90° is		1	
	(a) 1	(b) 0	(c) – 1	(d) 2		
13	If the perimeter of a ci	rcle is equal to that of a	a square, then the ratio	of their areas is	1	
	(a) 22 : 7	(b) 14:11	(c) 7 : 22	(d) 11: 14		
14	If the radii of two circles are in the ratio of 4:3, then their areas are in the ratio of:					
	(a) 4:3	(b) 8:3	(c) 16:9	(d) 9 : 16		
15	The total surface area	of a solid hemisphere	of radius 7 cm is :		1	
	(a) 447π cm²	(b) 239π cm ²	(c) 174π cm ²	(d) 147π cm ²		

16	For the following dis	stribution	:					1
	Class	0 - 5	5 - 10	10 - 15	15 - 20	20 - 25		
	Frequency	10	15	12	20	9		
	the upper limit of the	e modal o	class is					
	(a) 10	(b) 1	5	(c) 20		(d) 25	
17	If the mean of the fo	ollowing o	distributio	n is 2.6, th	nen the va	lue of y is		1
	Variable (x)	1	2	3	4	5		
	Frequency	4	5	у	1	2		
	(a) 3	(b) 8		(c) 13		(d) 24	
18	A card is selected a being a red face car		from a w	ell shuffle	ed deck of	52 cards.	The probability of its	1
	(a) $\frac{3}{26}$	(b) $\frac{3}{1}$	3	(c) $\frac{2}{13}$		(d) $\frac{1}{2}$	
	Direction for ques Assertion (A) is follo			•				
19	Assertion: If HCF of 510 and 92 is 2, then the LCM of 510 & 92 is 32460					1		
	Reason: as HCF(a	,b) x LCM	1(a,b) = a	x b				
	(a) Both Assertion (of Assertion (A).	A) and R	eason (R) are true	and Reas	on (R) is t	he correct explanation	
	(b) Both Assertion (explanation of Asse	,	•) are true	but Reaso	on (R) is n	ot the correct	
	(c) Assertion (A) is	true but F	Reason (F	R) is false.				
	(d) Assertion (A) is	false but	Reason (R) is true.				
20	Assertion (A): The divided by x axis is		vhich the	line segm	ent joining	g (2, -3) ar	nd (5, 6) internally	1
	Reason (R): as form	mula for t	he interna	al division	is $\left(\frac{mx_2 + mx_2}{m + mx_2}\right)$	$\frac{nx_1}{n}$, $\frac{my_2}{m}$	$\frac{+ny_1}{+n}$	
	(a) Both Assertion (of Assertion (A).	A) and R	eason (R) are true	and Reas	on (R) is t	he correct explanation	
	(b) Both Assertion (explanation of Asse	,	•) are true	but Reaso	on (R) is n	ot the correct	
	(c) Assertion (A) is t	true but F	Reason (F	R) is false.				
	(d) Assertion (A) is	false but	Reason (R) is true.				
				Sectio	n B			
	S	ection B	consists	s of 5 que	estions of	2 marks	each.	

21	For what values of k will the following pair of linear equations have infinitely many solutions?	2
	kx + 3y - (k - 3) = 0	
	12x + ky - k = 0	
22	In the figure, altitudes AD and CE of Δ ABC intersect each other at the point P. Show that: (i) Δ ABD ~ Δ CBE (ii) Δ PDC ~ Δ BEC	2
	[OR]	
	In the figure, DE AC and DF AE. Prove that $\frac{BF}{FE} = \frac{BE}{EC}$	
23	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.	2
24	If $\cot \theta = \frac{7}{8}$, evaluate $\frac{(1+\sin \theta) \ (1-\sin \theta)}{(1+\cos \theta) \ (1-\cos \theta)}$	2
25	Find the perimeter of a quadrant of a circle of radius 14 cm.	
	[OR]	2
	Find the diameter of a circle whose area is equal to the sum of the areas of the two circles of radii 24 cm and 7 cm.	
	Section C	
	Section C consists of 6 questions of 3 marks each.	
26	Prove that $\sqrt{5}$ is an irrational number.	3
27	Find the zeroes of the quadratic polynomial $6x^2 - 3 - 7x$ and verify the relationship between the zeroes and the coefficients.	3
28	A shopkeeper gives books on rent for reading. She takes a fixed charge for the first two days, and an additional charge for each day thereafter. Latika paid Rs 22 for a book kept for six days, while Anand paid Rs 16 for the book kept for four days. Find the fixed charges and the charge for each extra day.	3
	[OR]	
	Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5	

	hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?	
29	In the figure, PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the length TP.	3
30	Prove that	3
	$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$	
	[OR]	
	If $\sin \theta + \cos \theta = \sqrt{3}$, then prove that $\tan \theta + \cot \theta = 1$	
31	Two dice are thrown at the same time. What is the probability that the sum of the two numbers appearing on the top of the dice is (i) 8? (ii) 13? (iii) less than or equal to 12?	3
	Section D	
	Section D consists of 4 questions of 5 marks each.	
32	An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11km/h more than that of the passenger train, find the average speed of the two trains. [OR]	5
	A motor boat whose speed is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.	
33	Prove that If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. In the figure, find EC if $\frac{AD}{DB} = \frac{AE}{EC}$ Using the above theorem.	5

5

5

[OR]

Ramesh made a bird-bath for his garden in the shape of a cylinder with a hemispherical depression at one end. The height of the cylinder is 1.45 m and its radius is 30 cm. Find the total surface area of the bird-bath.

A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.

Age (in years)	Number of policy holders
Below 20	2
20-25	4
25-30	18
30-35	21
35-40	33
40-45	11
45-50	3
50-55	6
55-60	2

Section E

Case study based questions are compulsory.

36 | Case Study - 1

In the month of April to June 2022, the exports of passenger cars from India increased by 26% in the corresponding quarter of 2021–22, as per a report. A car manufacturing company planned to produce 1800 cars in 4th year and 2600 cars in 8th year. Assuming that the production increases uniformly by a fixed number every year.

Based on the above information answer the following questions.

I.	Find the production in the 1st year.	1
II.	Find the production in the 12 th year.	1
III.	Find the total production in first 10 years.	2
	[OR]	
	In which year the total production will reach to 15000 cars?	

37 **Case Study – 2**

In a GPS, The lines that run east-west are known as lines of latitude, and the lines running north-south are known as lines of longitude. The latitude and the longitude of a place are its coordinates and the distance formula is used to find the distance between two places. The distance between two parallel lines is approximately 150 km. A family from Uttar Pradesh planned a round trip from Lucknow (L) to Puri (P) via Bhuj (B) and Nashik (N) as shown in the given figure below.

Based on the above information answer the following questions using the coordinate geometry.

I.	Find the distance between Lucknow (L) to Bhuj(B).	1
II.	If Kota (K), internally divide the line segment joining Lucknow (L) to Bhuj (B) into 3:2 then find the coordinate of Kota (K).	1
III.	Name the type of triangle formed by the places Lucknow (L), Nashik (N) and	2
	Puri (P)	
	[OR]	
	Find a place (point) on the longitude (y-axis) which is equidistant from the points Lucknow (L) and Puri (P).	

38 | Case Study - 3

Lakshaman Jhula is located 5 kilometers north-east of the city of Rishikesh in the Indian state of Uttarakhand. The bridge connects the villages of Tapovan to Jonk. Tapovan is in Tehri Garhwal district, on the west bank of the river, while Jonk is in Pauri Garhwal district, on the east bank. Lakshman Jhula is a pedestrian bridge also used by motorbikes. It is a landmark of Rishikesh.

A group of Class X students visited Rishikesh in Uttarakhand on a trip. They observed from a point (P) on a river bridge that the angles of depression of opposite banks of the river are 60° and 30° respectively. The height of the bridge is about 18 meters from the river.

Based on the above information answer the following questions.

I.	Find the distance PA.	1
II.	Find the distance PB	1
III.	. Find the width AB of the river.	
	[OR]	
	Find the height BQ if the angle of the elevation from P to Q be 30°.	

Class- X Mathematics Basic (241) Marking Scheme SQP-2022-23

Time Allowed: 3 Hours Maximum Marks: 80

	Section A	
1	(c) a ³ b ²	1
2	(c) 13 km/hours	1
3	(b) -10	1
4	(b) Parallel.	1
5	(c) $k = 4$	1
6	(b) 12	1
7	(c) ∠B = ∠D	1
8	(b) 5:1	1
9	(a) 25°	1
10	(a) $\frac{\sqrt{3}}{2}$	1
11	(c) $\sqrt{3}$	1
12	(b) 0	1
13	(b) 14:11	1
14	(c) 16:9	1
15	(d) 147π cm ²	1
16	(c) 20	1
17	(b) 8	1
18	(a) $\frac{3}{26}$	1
19	(d) Assertion (A) is false but Reason (R) is true.	1

20	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1	
	Section B		
21	For a pair of linear equations to have infinitely many solutions : $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies \frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$	1/2	
	$\frac{k}{12} = \frac{3}{k} \Rightarrow k^2 = 36 \Rightarrow k = \pm 6$		
	Also, $\frac{3}{k} = \frac{k-3}{k} \Rightarrow k^2 - 6k = 0 \Rightarrow k = 0$, 6. Therefore, the value of k , that satisfies both the conditions, is $k = 6$.	1/ ₂ 1/ ₂	
22	(i) In $\triangle ABD$ and $\triangle CBE$ $\angle ADB = \angle CEB = 90^{\circ}$	1/2	
	\triangle ABD = ∠CBE (Common angle) ⇒ ΔABD ~ ΔCBE (AA criterion)	1/2	
	(ii) In ΔPDC and ΔBEC $\angle PDC = \angle BEC = 90^{\circ}$ $\angle PCD = \angle BCE$ (Common angle)	1/2	
	$\Rightarrow \triangle PDC \sim \triangle BEC$ (AA criterion)	1/2	
	[OR]		
	In ΔABC, DE AC BD/AD = BE/EC(i) (Using BPT)	1/2	
	In ΔABE, DF AE BD/AD = BF/FE(ii) (Using BPT) From (i) and (ii)	1/2	
	$B \longrightarrow F \longrightarrow C$ BD/AD = BE/EC = BF/FE	1/2	
	Thus, $\frac{BF}{FE} = \frac{BE}{EC}$	1/2	
23	Let O be the centre of the concentric circle of radii 5 cm and 3 cm respectively. Let AB be a chord of the larger circle touching the smaller circle at P		
	Then AP = PB and OP⊥AB Applying Pythagoras theorem in △OPA, we have	1/2	
	$OA^{2}=OP^{2}+AP^{2} \Rightarrow 25 = 9 + AP^{2}$ $\Rightarrow AP^{2} = 16 \Rightarrow AP = 4 \text{ cm}$	1/ ₂ 1/ ₂	
	$\therefore AB = 2AP = 8 \text{ cm}$	1/2	
24	Now, $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$	1/2	
	$= \frac{\cos^2\theta}{\sin^2\theta} = \left(\frac{\cos\theta}{\sin\theta}\right)^2$		
	$\sin^2\theta \langle \sin\theta \rangle$ $= \cot^2\theta$		
	$= \left(\frac{7}{8}\right)^2 = \frac{49}{64}$	1/2	

25	Perimeter of quadrant = $2r + \frac{1}{4} \times 2 \pi r$	1/2
	$\Rightarrow \text{Perimeter} = 2 \times 14 + \frac{1}{2} \times \frac{22}{7} \times 14$	1/2
	⇒ Perimeter = 28 + 22 =28+22 = 50 cm	1
	[OR]	'
	Area of the circle = Area of first circle + Area of second circle	
	$\Rightarrow \pi R^2 = \pi (r_1)^2 + \pi (r_1)^2$	1/2
	$\Rightarrow \pi R^2 = \pi (24)^2 + \pi (7)^2 \Rightarrow \pi R^2 = 576\pi + 49\pi$	1/2
	$\Rightarrow \pi R^2 = 625\pi \Rightarrow R^2 = 625 \Rightarrow R = 25$ Thus, diameter of the circle = $2R = 50$ cm.	1
	Section C	
26	Let us assume to the contrary, that $\sqrt{5}$ is rational. Then we can find a and b (\neq 0) such	
20	that $\sqrt{5} = \frac{a}{b}$ (assuming that a and b are co-primes).	
	So, $a = \sqrt{5}b \Rightarrow a^2 = 5b^2$	1
	Here 5 is a prime number that divides a ² then 5 divides a also (Using the theorem, if a is a prime number and if a divides p ² , then a divides p, where a is a positive integer) Thus 5 is a factor of a	1/2
	Since 5 is a factor of a, we can write $a = 5c$ (where c is a constant). Substituting $a = 5c$ We get $(5c)^2 = 5b^2 \Rightarrow 5c^2 = b^2$	1/2
	This means 5 divides b ² so 5 divides b also (Using the theorem, if a is a prime number and if a divides p ² , then a divides p, where a is a positive integer). Hence a and b have at least 5 as a common factor. But this contradicts the fact that a and b are coprime. This is the contradiction to our	1/2
	assumption that p and q are co-primes. So, $\sqrt{5}$ is not a rational number. Therefore, the $\sqrt{5}$ is irrational.	1/2
27	$6x^{2} - 7x - 3 = 0 \Rightarrow 6x^{2} - 9x + 2x - 3 = 0$ \Rightarrow 3x(2x - 3) + 1(2x - 3) = 0 \Rightarrow (2x - 3)(3x + 1) = 0	1/2
	$\Rightarrow 2x - 3 = 0 & 3x + 1 = 0$	/2
	x = 3/2 & x = -1/3 Hence, the zeros of the quadratic polynomials are 3/2 and -1/3.	1/2
	For verification	
	Sum of zeros = $\frac{-\text{ coefficient of x}}{\text{coefficient of x}^2}$ \Rightarrow 3/2 + (-1/3) = - (-7) / 6 \Rightarrow 7/6 = 7/6	1
	Product of roots = $\frac{\text{constant}}{\text{coefficient of } x^2}$ \Rightarrow 3/2 x (-1/3) = (-3) / 6 \Rightarrow -1/2 = -1/2	1
	Therefore, the relationship between zeros and their coefficients is verified.	
28	Let the fixed charge by Rs x and additional charge by Rs y per day Number of days for Latika = 6 = 2 + 4	
	Hence, Charge x + 4y = 22 x = 22 - 4y(1)	1/
	Number of days for Anand = 4 = 2 + 2	1/2
	Hence, Charge $x + 2y = 16$	
	$x = 16 - 2y \dots (2)$ On comparing equation (1) and (2), we get,	1/2

	$22 - 4y = 16 - 2y \Rightarrow 2y = 6 \Rightarrow y = 3$	1
	Substituting $y = 3$ in equation (1), we get,	
	$x = 22 - 4(3) \Rightarrow x = 22 - 12 \Rightarrow x = 10$	
	Therefore, fixed charge = Rs 10 and additional charge = Rs 3 per day	1
	[OR]	
	[OK]	
	< 0 >>	
	A Q B P	
	100 km	
	AB = 100 km. We know that, Distance = Speed × Time.	
	$AP - BP = 100 \Rightarrow 5x - 5y = 100 \Rightarrow x - y = 20(i)$	1/2
	$AQ + BQ = 100 \Rightarrow x + y = 100(ii)$	1/2
	Adding equations (i) and (ii), we get,	
	$x - y + x + y = 20 + 100 \Rightarrow 2x = 120 \Rightarrow x = 60$	1
	x y : x : y = 20 : 100 / 2x 120 / x 00	
	Substituting $x = 60$ in equation (ii), we get, $60 + y = 100 \Rightarrow y = 40$	
		1
	Therefore, the speed of the first car is 60 km/hr and the speed of the second car	
	is 40 km/hr.	
29	Since OT is perpendicular bisector of PQ.	
	Therefore, PR=RQ=4 cm	1/2
	5 cm Now, OR = $\sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3$ cm	1/2
	Now, $\angle A = A = A = A = A = A = A = A = A = A $, -
	$R = \frac{1000}{R} \times \frac{1100}{R} \times$	
	So, $\angle RPO = \angle PTR$	1/2
	So, \triangle TRP $\sim \triangle$ PR0 [By A-A Rule of similar triangles]	1/2
	So, $\frac{TP}{PO} = \frac{RP}{RG}$	1/2
	$\Rightarrow \frac{TP}{F} = \frac{4}{3} \Rightarrow TP = \frac{20}{3} \text{ cm}$	1/2
	5 5 5	
30	LHS = $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta}$	1/2
	$LHS - \frac{1}{1 - \cot \theta} + \frac{1}{1 - \tan \theta} = \frac{1}{1 - \frac{1}{\tan \theta}} + \frac{1}{1 - \tan \theta}$	
	$= \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}$	
	$\tan \theta - 1$ $\tan \theta (1 - \tan \theta)$	1/2
	$tan^3\theta$ –1	/2
	$=\frac{\tan\theta}{\tan\theta(\tan\theta-1)}$	
	$=\frac{(\tan\theta - 1)(\tan^3\theta + \tan\theta + 1)}{\tan\theta(\tan\theta - 1)}$	
	$\tan \theta (\tan \theta - 1)$	1/2
	$(\tan^3 \theta + \tan \theta + 1)$	
	$=\frac{(\tan^3\theta + \tan\theta + 1)}{\tan\theta}$	
	เสมช	
	$= \tan\theta + 1 + \sec = 1 + \tan\theta + \sec\theta$	4,
	sin A cos A	1/2
	$= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$	
	$= 1 + \frac{\sin^2\theta + \cos^2\theta}{\sin\theta \cos\theta}$	1/2
	$\sin \theta \cos \theta$	
		1

	1	
	$= 1 + \frac{1}{\sin \theta \cos \theta} = 1 + \sec \theta \csc \theta$	1/
	[OR]	1/2
	$\sin \theta + \cos \theta = \sqrt{3} \Rightarrow (\sin \theta + \cos \theta)^2 = 3$	1/
	$\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$	1/2
	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \Rightarrow 1\sin\theta\cos\theta = 1$	1/2
	Now $\tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	1/2
	$= \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$	1/2
		1/2
	$= \frac{1}{\sin\theta\cos\theta} = \frac{1}{1} = 1$	1/2
31	(i) $P(8) = \frac{5}{36}$	1
	(ii) $P(13) = \frac{0}{36} = 0$	1
	(iii) P(less than or equal to 12) = 1	1
	Section D	
32	Let the average speed of passenger train = $x \text{ km/h}$.	
	and the average speed of express train = $(x + 11)$ km/h	1/2
	As per given data, time taken by the express train to cover 132 km is 1 hour less than the passenger train to cover the same distance. Therefore,	
	$\frac{132}{x} - \frac{132}{x+11} = 1$	1
	$\Rightarrow \frac{132(x+11-x)}{x(x+11)} = 1 \Rightarrow \frac{132 \times 11}{x(x+11)} = 1$	1/2
	$\Rightarrow 132 \times 11 = x(x+11) \Rightarrow x^2 + 11x - 1452 = 0$	
	$\Rightarrow x^2 + 44x - 33x - 1452 = 0$	1
	$\Rightarrow x(x+44) -33(x+44) = 0 \Rightarrow (x+44)(x-33) = 0$	1
	$\Rightarrow x = -44, 33$	1/2
	As the speed cannot be negative, the speed of the passenger train will be 33 km/h and the speed of the express train will be $33 + 11 = 44 \text{ km/h}$.	1/2
	[OR]	
	Let the speed of the stream be x km/hr So, the speed of the boat in upstream = (18 - x) km/hr	1/2
	& the speed of the boat in downstream = (18 + x) km/hr	1/2
	ATQ, $\frac{1}{\text{upstream speed}} - \frac{1}{\text{downstream speed}} = 1$	
	$\Rightarrow \frac{24}{18-x} - \frac{24}{18+x} = 1$	1

	Г 1	1] [10]	(10 %)]	
		$\frac{1}{18+x} = 1 \Rightarrow 24 \left[\frac{18+x}{(18-x)^2} \right]$		1
	$\Rightarrow 24 \left[\frac{2x}{(18-x)(18-x)} \right]$	$\left(\frac{2}{8+x}\right) = 1 \Rightarrow 24 \left[\frac{2}{(18-x)}\right]$	$\left[\frac{x}{(18+x)}\right]=1$	
	` ' '	$x^2 \Rightarrow x^2 + 48x - 324 = 0$		1
	$\Rightarrow (x + 54)(x - 6)$	$= 0 \Rightarrow x = -54 \text{ or } 6$		1/2
		eam can never be negativ	e, the speed of the stream is 6 km/hr.	1/2
33	Figure	constructions		1½ 1½
	Given, To prove Proof	, constructions		2
	Application			1
34		Volume	of one conical depression = $\frac{1}{3} \times \pi r^2 h$	1/2
			$= \frac{1}{3} \times \frac{22}{7} \times 0.5^{2} \times 1.4 \text{ cm}^{3} = 0.366 \text{ cm}^{3}$	11/2
		Volume	of 4 conical depression = $4 \times 0.366 \text{ cm}^3$	
			$= 1.464 \text{ cm}^3$	1/2
		Volume	of cuboidal box = $L \times B \times H$	1/2
		· · · ·	$= 15 \times 10 \times 3.5 \text{ cm}^3 = 525 \text{ cm}^3$	1½
			ing volume of box = Volume of cuboidal box	-
		volume	of 4 conical depressions	1/2
			$= 525 \text{ cm}^3 - 1.464 \text{ cm}^3 = 523.5 \text{ cm}^3$	1
			[OR]	
	30 ₁ cm		ght of the cylinder, and r the common radius	of
	\uparrow		and hemisphere. tal surface area = CSA of cylinder + CSA of	1/2
		hemisphere		
	1.		$r^2 = 2\pi r (h + r)$	2
	·············	,	$0 (145 + 30) \text{ cm}^2$	1
		$= 2 \times \frac{22}{7} \times 30$	0 x 175 cm ²	1/2
	71 17	$= 33000 \text{ cm}^2$		1
35	Class Interval	Number of policy holders	s (f) Cumulative Frequency (cf)	
	Below 20	2	2	
	20-25	4	6	
	25-30	18	24	
	30-35	21	45	
	35-40	33	78	
	40-45	11	89	
	45-50	3	92	
	50-55	6	98	
	55-60	2	100	1

	Class frequ ⇒Med ⇒Med	$00 \Rightarrow n/2 = 50$, Therefore, median class = $35 - 40$, size, h = 5, Lower limit of median class, I = 35 , ency f = 33 , cumulative frequency cf = 45 dian = I + $\left[\frac{\frac{n}{2} - cf}{f}\right] \times h$ dian = $35 + \left[\frac{50 - 45}{33}\right] \times 5$ + $\frac{25}{33} = 35 + 0.76$ Therefore, median age is 35.76 years		½ 1½ 1
	_ 33.1	Section E		
		Gection E		
36	2	Since the production increases uniformly by a fixed number every year, the number of Cars manufactured in 1st, 2nd, 3rd,, years will form an AP. So, $a + 3d = 1800 \& a + 7d = 2600$ So $d = 200 \& a = 1200$ $t_{12} = a + 11d \Rightarrow t_{30} = 1200 + 11 \times 200$	1/2 1/2 1/2	, 2
		$\Rightarrow t_{12} = 3400$	1/2	
	3	$S_n = \frac{n}{2} [2a + (n-1)d] \Rightarrow S_{10} = \frac{10}{2} [2 \times 1200 + (10-1) \times 200]$	1/2	
		$\Rightarrow S_{10} = \frac{13}{2} [2 \times 1200 + 9 \times 200]$	1/3	2
		\Rightarrow S ₁₀ = 5 x [2400 + 1800]	1/3	2
		\Rightarrow S ₁₀ = 5 x 4200= 21000	1/3	2
		[OR]		
		Let in n years the production will reach to 31200		
		$S_n = \frac{n}{2} [2a + (n-1)d] = 31200 \Rightarrow \frac{n}{2} [2x 1200 + (n-1)200] = 31200$	1/:	2
		$\Rightarrow \frac{n}{2} [2 \times 1200 + (n-1)200] = 31200 \Rightarrow n [12 + (n-1)] = 312$ $\Rightarrow n^2 + 11n - 312 = 0$	1/:	2
		$ \Rightarrow + $	1/2	,
		$\Rightarrow (n + 24)(n - 13) = 0$	/:	2
		\Rightarrow n = 13 or – 24. As n can't be negative. So n = 13	1/2	,
37	Case	Study – 2	I	1

1	$LB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \Rightarrow LB = \sqrt{(0 - 5)^2 + (7 - 10)^2}$	1/2
	$LB = \sqrt{(5)^2 + (3)^2} \Rightarrow LB = \sqrt{25 + 9} \ LB = \sqrt{34}$	
	Hence the distance is 150 $\sqrt{34}$ km	1/2
2	Coordinate of Kota (K) is $\left(\frac{3 \times 5 + 2 \times 0}{3 + 2}, \frac{3 \times 7 + 2 \times 10}{3 + 2}\right)$	1/2
	$= \left(\frac{15+0}{5}, \frac{21+20}{5}\right) = \left(3, \frac{41}{5}\right)$	1/2
3	L(5, 10), N(2,6), P(8,6)	1/2
	$LN = \sqrt{(2-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} = \sqrt{9+16} = \sqrt{25} = 5$	1/2
	NP = $\sqrt{(8-2)^2 + (6-6)^2} = \sqrt{(4)^2 + (0)^2} = 4$	1/2
	$PL = \sqrt{(8-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} \Rightarrow LB = \sqrt{9+16} = \sqrt{25} = 5$	
	as LN = PL \neq NP, so \triangle LNP is an isosceles triangle.	1/2
	[OR]	

Let A (0, b) be a point on the y – axis then AL = AP		
$\Rightarrow \sqrt{(5-0)^2 + (10-b)^2} = \sqrt{(8-0)^2 + (6-b)^2}$	1/2	
$\Rightarrow (5)^2 + (10 - b)^2 = (8)^2 + (6 - b)^2$	1/2	
$\Rightarrow 25 + 100 - 20b + b^2 = 64 + 36 - 12b + b^2 \Rightarrow 8b = 25 \Rightarrow b = \frac{25}{8}$	1/2	
So, the coordinate on y axis is $\left(0, \frac{25}{8}\right)$	1/2	

Case Study – 3

38

		1
1	$\sin 60^{\circ} = \frac{PC}{PA}$	1/2
	$\Rightarrow \frac{\sqrt{3}}{2} = \frac{18}{PA} \Rightarrow PA = 12\sqrt{3} \text{ m}$	1/2
2	$\sin 30^{\circ} = \frac{PC}{PB}$	1/2
	$\Rightarrow \frac{1}{2} = \frac{18}{PB} \Rightarrow PB = 36 \text{ m}$	1/2
3	$\tan 60^\circ = \frac{PC}{AC} \Rightarrow \sqrt{3} = \frac{18}{AC} \Rightarrow AC = 6\sqrt{3} \text{ m}$	1
	$\tan 30^\circ = \frac{PC}{CB} \Rightarrow \frac{1}{\sqrt{3}} = \frac{18}{CB} \Rightarrow CB = 18\sqrt{3} \text{ m}$	1/2
	Width AB = AC + CB = $6\sqrt{3} + 18\sqrt{3} = 24\sqrt{3} \text{ m}$	1/2
	[OR]	
	RB = PC = 18 m & PR = CB = 18 $\sqrt{3}$ m	1/2
	$\tan 30^\circ = \frac{QR}{PR} \Rightarrow \frac{1}{\sqrt{3}} = \frac{QR}{18\sqrt{3}} \Rightarrow QR = 18 \text{ m}$	1
	QB = QR + RB = 18 + 18 = 36m. Hence height BQ is 36m	1/2