0368-3168: Complexity

Fall 2023

Assignment 2

Lecturer: Amnon Ta-Shma and Ron Zadicario

Submission Deadline: 1/12/22

Remark. Exercises marked with (Know) are not for submission, but make sure you know how to solve them.

Problem 1 (Quantifying non-uniformity).

Definition 1 (Turing machine with advice). Let $T, a : \mathbb{N} \to \mathbb{N}$ be integer functions. A language L is in the class DTIME(T(n))/a(n) if there exists a sequence of "advice" strings $\{\alpha_n\}_{n\in\mathbb{N}}$ such that $|\alpha_n| \leq a(n)$, and a TM M that on input x runs for at most O(T(|x|)) steps, such that:

$$x \in L \iff M(x, \alpha_{|x|}) = 1.$$

Note that M uses the same advice α_n on all inputs of the same length, n.

We further define:

Definition 2 (Polynomial time with advice).

$$P/a(n) := \bigcup_{k \in \mathbb{N}} DTIME(n^k)/a(n)$$

- 1. Show there exists an undecidable language in P/1.
- 2. Define P/poly = $\bigcup_{\ell \in \mathbb{N}} P/n^{\ell}$. Show that P/poly = Size(poly).
- 3. Show that if for some constant k we have $SAT \in P/|k \cdot \log(n)|$, then $SAT \in P$.

Problem 2 (Linear Programming is P-Complete). Consider the language

$$LIN - PROG = \{ (A, b) \mid \exists x \in \mathbb{R}^n \quad Ax \le b \}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $Ax \leq b$ means point-wise inequality: $\forall i. (Ax)_i \leq b_i$.

Prove that LIN – PROG is P-Hard with respect to log-space reductions. Remark: It is known that LIN – PROG \in P hence it is P-Complete.

Problem 3 (0/1 Integer Programming is NP-Complete). Consider the language

$$INT - PROG = \{(A, b) \mid \exists x \in \{0, 1\}^n \ Ax \le b\}$$

where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $Ax \leq b$ means point-wise inequality: $\forall i. (Ax)_i \leq b_i$.

Prove that INT – PROG is NP-Complete with respect to log-space reductions.

Problem 4 (QUAD is NP-Complete). A quadratic equation over n variables x_1, \ldots, x_n is an equation of the form

$$\sum_{i,j\in[n]} a_{ij} x_i \cdot x_j = b$$

Where $a_{ij}, b \in \{0, 1\}$, and the summation is mod 2. We say a quadratic equation is 0/1-satisfiable if there exists a Boolean assignment to the variables which satisfies it. We say a finite set of quadratic equations is 0/1-satisfiable if there exists a Boolean assignment which simultaneously satisfies all of the equations. Let QUAD be the language of all 0/1-satisfiable finite sets of quadratic equations. Prove that QUAD is NP-Complete.

Problem 5. (Know) We proved in class that STCON is NL-Complete with respect to Log-space reductions. We also proved that STCON \in AC¹. Explain why this implies that NL \subseteq AC¹ (No need to write a complete proof).

Problem 6 (SUC – BoolMatPower **is PSPACE-Complete**). We say a circuit C represents an $n \times n$ Boolean matrix A, if $C(i,j) = A_{ij}$. Let $\langle C \rangle$ denote the encoding of a circuit C, and let [C] denote the matrix C represents. Let SUC – BoolMatPower be the language of all tuples $(\langle C \rangle, n, t, i, j)$ such that C represents an $n \times n$ Boolean matrix and $([C]^t)_{ij} = 1$, where the product used is Boolean matrix product. Prove that SUC – BoolMatPower is PSPACE-Complete.

Problem 7.

Definition 3. A formula $F(x_1, ..., x_n)$ is a circuit such that every gate has out-degree (fan-out) 1 except the output gate with out-degree (fan-out) 0. Remark: We allow multiple variable nodes.

Prove that the language

$$FVAL = \{(F, x) \mid F(x) = 1 \text{ and } F \text{ is a formula}\}\$$

is in L = DSPACE($O(\log n)$). For a bonus, prove that $U_L - NC^1 \subseteq L$ (where U_L denotes logspace-uniform).