

FICHE DE COURS

Approfondissements Filtres

SIN CA-4

Filtres passe-bas

Filtre passe bas

Le symbole d'un filtre passe bas :

Objectif : le but du filtre passe-bas est de couper les fréquences hautes.

L'étude des filtres passe-bas s'étudie avec des tensions alternatives sinusoïdales.

Voici la courbe de réponse simplifiée d'un filtre passe-bas : Le comportement d'un filtre du premier ordre. " Passe bas " : les pulsations inférieures à ω_0 sont transmises avec un gain G_0 , alors que les pulsations supérieures sont affaiblies.

L'échelle en pulsation ω est logarithmique et le gain est en dB,

Gain $G=20 \log \left[\frac{V_s}{V_E}\right]$ log est le logarithme décimal.

Une octave correspond à doubler la pulsation et une décade correspond à multiplier par 10 la pulsation.

Pulsation et fréquence de coupure.

En régime sinusoïdale, la pulsation est reliée à la fréquence avec la formule $\omega = 2 \times \pi \times f$

Cas particulier

Pour le schéma de base, circuit RC passe bas : pulsation de coupure $\omega_0 = \frac{1}{RC}$

soit une fréquence de coupure $f_0 = \frac{1}{2 \times \pi \times R_2 \times C}$; Amplification $A = \left| \frac{VS}{VE} \right| = \sqrt{1 + \left(\frac{\omega}{\omega_0} \right)^2} = \sqrt{1 + \left(\frac{f}{f_0} \right)^2}$

Le gain pour ω=0 vaut G= 0 dB, et sinon $G=-10\times\log\left[1+\left(\frac{\omega}{\omega_0}\right)^2\right]=-10\times\log\left[1+\left(\frac{f}{f_0}\right)^2\right]$

Pour information $T = \frac{V_s}{V_E} = \frac{1}{1 + j \times R \times C \times \omega}$ gain en décibels : $G = -10 \times \log[1 + (RC\omega)^2]$

Exemple, pratique

$$R = 4.7k\Omega$$
, $C = 33 \text{ nF}$

$$\mathbf{e} \qquad \qquad \mathbf{v}_{0} = \frac{1}{RC} = \frac{1}{4,7 \times 10^{3} \times 33 \times 10 \times 10^{-9}} = \frac{1}{155,1 \times 10^{-6}} = 6,45 \times 10^{3} \, rad/s \qquad \mathbf{C}$$

 $f_0 = \frac{\omega_0}{2 \times \pi} = \frac{6,45 \times 10^3}{2 \times 3.14} = 1026 \,\text{Hz}$

Remplir le tableau ci -dessous

F	10,26 Hz (f ₀ /100)	102,6 Hz (f ₀ /10)	513Hz(f ₀ /2)	1026 Hz(f ₀)	2052Hz(2xf ₀)	10260Hz(10 x f ₀)	102600Hz(10 x f ₀)
ω							
V _S /V _E							
G							

Dessiner la courbe simplifiée puis la courbe réelle à partir des valeurs du tableau précédent, on prendra $\mathbf{f_0}$ =1000 Hz pour simplifier.