Table of Contents

Trapezoidal Rule	Numerical Integration for GTE
•	
Shipson's One Third Rate	•
Simpson's Three Eighth Rule	1

Numerical Integration for GTE

```
function fval = numericalIntegration(f, a, b, n, choice)
    switch choice
        case 1
            fval = trap(f, a, b, n);
        case 2
            fval = oneThird(f, a, b, n);
        case 3
            fval = threeEighth(f, a, b, n);
    end
end

Not enough input arguments.

Error in numericalIntegration (line 3)
    switch choice
```

Trapezoidal Rule

```
function fval = trap(f, a, b, n)
    h = (b - a)./n;
    fval = 0;
    for i = 1:n
        fval = fval + h.*(f(a + (i - 1).*h) + f(a + i.*h))./2;
    end
end
```

Simpson's One Third Rule

```
function fval = oneThird(f, a, b, n)
    h = (b - a)./(2.*n);
    fval = 0;
    for i = 1:2:2*n
        fval = fval + h.*(f(a + (i - 1).*h) + 4.*f(a + i.*h) + f(a + (i + 1).*h))./3;
    end
end
```

Simpson's Three Eighth Rule

```
function fval = threeEighth(f, a, b, n)
```

```
h = (b - a)./(3.*n);
fval = 0;
for i = 1:3:3*n
    fval = fval + 3.*h.*(f(a + (i - 1).*h) + 3.*f(a + i.*h) +
3.*f(a + (i + 1).*h) + f(a + (i + 2).*h))./8;
end
end
```

Table of Contents

Numerical Integration for LTE	1
Trapezoidal Rule	1
Simpson's One Third Rule	1
Simpson's Three Eighth Rule	1

Numerical Integration for LTE

```
function fval = numericalIntegrationSingle(f, a, b, choice)
    switch choice
    case 1
        fval = trap(f, a, b);
    case 2
        fval = oneThird(f, a, b);
    case 3
        fval = threeEighth(f, a, b);
    end
end

Not enough input arguments.

Error in numericalIntegrationSingle (line 3)
    switch choice
```

Trapezoidal Rule

```
function fval = trap(f, a, b)
    h = b - a;
    fval = h.*(f(a) + f(a + h))./2;
end
```

Simpson's One Third Rule

```
function fval = oneThird(f, a, b)
   h = (b - a)./2;
   fval = h.*(f(a) + 4.*f(a + h) + f(a + 2.*h))./3;
end
```

Simpson's Three Eighth Rule

```
function fval = threeEighth(f, a, b)
    h = (b - a)./3;
    fval = 3.*h.*(f(a) + 3.*f(a + h) + 3.*f(a + 2.*h) + f(a + 3.*h))./8;
end
```

Q1 - GTE

Table of Contents

Numerical integration of 2 - $x + ln(x)$	1
True Value of the integration of the function from b to a	1
Calculating the error using Trapezoid Rule	1
Calculating the error using Simpson's One Third Rule	
Calculating the error using Simpson's Three Eighth Rule	
Displaying the errors	
Plots	
Function that is to be integrated	2
Integrated Function	

Numerical integration of $2 - x + \ln(x)$

```
a = 1 and b = 2
clc;
clear;
close all;
```

True Value of the integration of the function from b to a

```
a = 1;
b = 2;
n = 100;
truVal = integratedf(b) - integratedf(a);
```

Calculating the error using Trapezoid Rule

```
trap = numericalIntegration(@f, a, b, n, 1);
errTrap = abs(trap - truVal);
```

Calculating the error using Simpson's One Third Rule

```
oneThird = numericalIntegration(@f, a, b, n, 2);
errOneThird = abs(oneThird - truVal);
```

```
threeEighth = numericalIntegration(@f, a, b, n, 3);
errThreeEighth = abs(threeEighth - truVal);
```

Displaying the errors

```
disp(['The error using Trapezoidal Rule is : ', num2str(errTrap)]);
disp(['The error using Simpson''s One Third Rule is : ',
    num2str(errOneThird)])
disp(['The error using Simpson''s Three Eighth Rule is : ',
    num2str(errThreeEighth)])

The error using Trapezoidal Rule is : 4.1666e-06
The error using Simpson's One Third Rule is : 6.0758e-12
The error using Simpson's Three Eighth Rule is : 2.7008e-12
```

Plots

```
semilogy(1, errTrap,'ro', 2, errOneThird, 'go', 3,
  errThreeEighth, 'bo')
legend('Trapezoidal Rule', 'Simpson''s One Third Rule', 'Simpson''s
  Three Eighth Rule')
title('LTE for numerical integration of 2 - x + ln(x)')
xlabel('Methods of Numerical Integration')
ylabel('Error')
```


Function that is to be integrated

function fval = f(x)

```
fval = 2 - x + log(x);end
```

```
function fx = integratedf(x)

fx = 2.*x - (x.^2)./2 + x.*log(x) - x;

end
```

Q1 - LTE

Table of Contents

Numerical integration of $2 - x + \ln(x)$	1
True Value of the integration of the function from b to a	
Calculating the error using Trapezoid Rule	1
Calculating the error using Simpson's One Third Rule	
Calculating the error using Simpson's Three Eighth Rule	1
Displaying the errors	2
Plots	
Function that is to be integrated	2
Integrated Function	
·· O ··· · · · · · · · · · · · · · · ·	

Numerical integration of $2 - x + \ln(x)$

```
a = 1 and b = 2
clc;
clear;
close all;
```

True Value of the integration of the function from b to a

```
a = 1;
b = 2;
truVal = integratedf(b) - integratedf(a);
```

Calculating the error using Trapezoid Rule

```
trap = numericalIntegrationSingle(@f, a, b, 1);
errTrap = abs(trap - truVal);
```

Calculating the error using Simpson's One Third Rule

```
oneThird = numericalIntegrationSingle(@f, a, b, 2);
errOneThird = abs(oneThird - truVal);
```

```
threeEighth = numericalIntegrationSingle(@f, a, b, 3);
```

```
errThreeEighth = abs(threeEighth - truVal);
```

Displaying the errors

```
disp(['The error using Trapezoidal Rule is : ', num2str(errTrap)]);
disp(['The error using Simpson''s One Third Rule is : ',
   num2str(errOneThird)])
disp(['The error using Simpson''s Three Eighth Rule is : ',
   num2str(errThreeEighth)])

The error using Trapezoidal Rule is : 0.039721
The error using Simpson's One Third Rule is : 0.00045976
The error using Simpson's Three Eighth Rule is : 0.00021058
```

Plots

```
semilogy(1, errTrap,'ro', 2, errOneThird, 'go', 3,
  errThreeEighth, 'bo')
legend('Trapezoidal Rule', 'Simpson''s One Third Rule', 'Simpson''s
  Three Eighth Rule')
title('LTE for numerical integration of 2 - x + ln(x)')
xlabel('Methods of Numerical Integration')
ylabel('Error')
```


Function that is to be integrated

```
function fval = f(x)
```

```
fval = 2 - x + log(x);end
```

```
function fx = integratedf(x)

fx = 2.*x - (x.^2)./2 + x.*log(x) - x;

end
```

Q2 - GTE

Table of Contents

Numerical integration of x^3 - 2x,	1
True Value of the integration of the function from b to a	
Calculating the error using Trapezoid Rule	1
Calculating the error using Simpson's One Third Rule	
Calculating the error using Simpson's Three Eighth Rule	
Displaying the errors	
Plots	
Function that is to be integrated	
Integrated Function	

Numerical integration of $x^3 - 2x$,

```
a = 0 and b = pi/2
clc;
clear;
close all;
```

True Value of the integration of the function from b to a

```
a = 0;
b = pi./2;
n = 100;
truVal = integratedf(b) - integratedf(a);
```

Calculating the error using Trapezoid Rule

```
trap = numericalIntegration(@f, a, b, n, 1);
errTrap = abs(trap - truVal);
```

Calculating the error using Simpson's One Third Rule

```
oneThird = numericalIntegration(@f, a, b, n, 2);
errOneThird = abs(oneThird - truVal);
```

```
threeEighth = numericalIntegration(@f, a, b, n, 3);
```

errThreeEighth = abs(threeEighth - truVal);

Displaying the errors

```
disp(['The error using Trapezoidal Rule is : ', num2str(errTrap)]);
disp(['The error using Simpson''s One Third Rule is : ',
    num2str(errOneThird)])
disp(['The error using Simpson''s Three Eighth Rule is : ',
    num2str(errThreeEighth)])

The error using Trapezoidal Rule is : 0.0001522
The error using Simpson's One Third Rule is : 1.1102e-16
The error using Simpson's Three Eighth Rule is : 1.1102e-16
```

Plots

```
semilogy(1, errTrap,'ro', 2, errOneThird, 'go', 3,
  errThreeEighth, 'bo')
legend('Trapezoidal Rule', 'Simpson''s One Third Rule', 'Simpson''s
  Three Eighth Rule')
title('LTE for numerical integration of x^3 - 2x')
xlabel('Methods of Numerical Integration')
ylabel('Error')
```


Function that is to be integrated

function fval = f(x)

```
fval = x.^3 - 2.*x; end
```

```
function fx = integratedf(x)

fx = (x.^4)./4 - x.^2;

end
```

Q2 - LTE

Table of Contents

Numerical integration of x^3 - 2x,	1
Frue Value of the integration of the function from b to a	1
Calculating the error using Trapezoid Rule	1
Calculating the error using Simpson's One Third Rule	
Calculating the error using Simpson's Three Eighth Rule	1
Displaying the errors	2
Plots	
Function that is to be integrated	2
Integrated Function	

Numerical integration of $x^3 - 2x$,

```
a = 0 and b = pi/2
clc;
clear;
close all;
```

True Value of the integration of the function from b to a

```
a = 0;
b = pi./2;
truVal = integratedf(b) - integratedf(a);
```

Calculating the error using Trapezoid Rule

```
trap = numericalIntegrationSingle(@f, a, b, 1);
errTrap = abs(trap - truVal);
```

Calculating the error using Simpson's One Third Rule

```
oneThird = numericalIntegrationSingle(@f, a, b, 2);
errOneThird = abs(oneThird - truVal);
```

```
threeEighth = numericalIntegrationSingle(@f, a, b, 3);
```

```
errThreeEighth = abs(threeEighth - truVal);
```

Displaying the errors

```
disp(['The error using Trapezoidal Rule is : ', num2str(errTrap)]);
disp(['The error using Simpson''s One Third Rule is : ',
    num2str(errOneThird)])
disp(['The error using Simpson''s Three Eighth Rule is : ',
    num2str(errThreeEighth)])

The error using Trapezoidal Rule is : 1.522
The error using Simpson's One Third Rule is : 1.1102e-16
The error using Simpson's Three Eighth Rule is : 0
```

Plots

```
semilogy(1, errTrap,'ro', 2, errOneThird, 'go', 3,
  errThreeEighth, 'bo')
legend('Trapezoidal Rule', 'Simpson''s One Third Rule', 'Simpson''s
  Three Eighth Rule')
title('LTE for numerical integration of x^3 - 2x')
xlabel('Methods of Numerical Integration')
ylabel('Error')
```


Function that is to be integrated

```
function fval = f(x)
```

```
fval = x.^3 - 2.*x; end
```

```
function fx = integratedf(x)

fx = (x.^4)./4 - x.^2;

end
```