The Processor: Datapath and Control

[Single Cycle Processor]

Book of David A. Patterson

Chapter 4 (Section 4.1, 4.2,4.3 and 4.4)

Instruction Format

0	rs	rt	rd	shamt	find
31:26	25:21	20:16	15:11	10:6	5:0
struction			a sour vents		
35 or 43	rs	rt	alitin Jd	address	
31:26	25:21	20:16		15:0	
tore instr	uction				
4	rs	rt	anta a	address	of heat
31:26	25:21	20:16	ang Lak	15:0	
	35 or 43 31:26 tore instr	31:26 25:21 struction 35 or 43 rs 31:26 25:21 tore instruction	31:26 25:21 20:16 struction 35 or 43 rs rt 31:26 25:21 20:16 tore instruction 4 rs rt	31:26 25:21 20:16 15:11 35 or 43 rs rt 31:26 25:21 20:16 tore instruction 4 rs rt	31:26 25:21 20:16 15:11 10:6 struction 35 or 43 rs rt address 31:26 25:21 20:16 15:0 tore instruction 4 rs rt address 15:0

Observations

- ✓ The **opcode** is always contained in bits 31:26.
- ✓ Two registers to be read always specified by the rs[25:21] and rt [20:16]. This is true for R-type, branch equal and store instruction.
- ✓ The base register for load and store instruction is always in rs[25:21].
- ✓ The 16-bits offset for branch equal, load and store is always in position 15:0.
- ✓ The destination register for load is **rt**[20:16] and for R-type instruction it is **rd**[15:11].

Single Cycle Processor with Necessary Control Signal

Effects of Control Signals

Signal name	Effect when deasserted	Effect when asserted				
RegDst	The register destination number for the Write register comes from the rt field (bits 20:16).	The register destination number for the register comes from the rd field this second				
RegWrite	None.	The register on the Write register incur is written with the value on the Write data				
ALUSrc '	The second ALU operand comes from the second register file output (Read data 2).	The second ALU operand is the signed lower 16 bits of the instruction.				
PCSrc	The PC is replaced by the output of the adder that computes the value of PC + 4.	The PC is replaced by the output of the acceptance that computes the branch target.				
MemRead	None.	Data memory contents designated by the address input are put on the Read data automotion				
MemWrite	None.	Data memory contents designated by the address input are replaced by the value of the Write data input.				
MemtoReg	The value fed to the register Write data input comes from the ALU.	The value fed to the register Write data made comes from the data memory.				

Single Cycle Processor with the Control Unit

The ALU Control

- ✓ The main control unit reads instruction opcode and generates the necessary control signal.
- ✓ ALU Control is a small control unit separate from the main control unit.
- ✓ It takes 2-bit control signal ALUOp from the main control unit and the instruction function field [5:0] and generates the necessary control signal for the ALU.
- **✓** Multi-level Decoding:
- ✓ It reduces the size of main control unit.
- ✓ Increases the speed of control unit.

The ALU Control

✓ The ALU Control Signal:

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

✓ ALUOp is (00) to perform add for load and store instruction.

ALUOp is (01) to perform subtract for beq.

ALUOp is (10) for arithmetic-logical instruction.

Truth Table

Instruction opcode	ALUOp	Instruction operation	Funct field	Desired ALU action	ALU control input	
LW	00	load word	XXXXXX	add	0010	
SW	00	store word	XXXXXXX	add	0010	
Branch equal	01	branch equal	XXXXXX	subtract	0110	
	10	add	100000	add	0010	
R-type	10	subtract	100010	subtract	0110	
R-type	10	AND	100100	and	0000	
R-type	10	OR .	100101	or	0001	
R-type R-type	10	set on less than	101010	set on less than	0111	

Al									
ALUOp1	ALUOp0	F5	F4	F3	F2	F1	FO	Operation	
STATE OF THE PARTY	0	X	X	X	X	X	X	0010	
) 380	1	X	X	X	X	X	X	0110	
(X	X	X	0	0	0	0	0010	
en James April	x	X	X	0	0	1	0	0110	
a dilla	X	X	X	0	1	0	0	0000	
1 Supposit S		X	X	0	1	0	1	0001	
1 4 4	X	X	X	1	0	1	0	0111	

The Setting of the Control Signals according to the Opcode of the Instruction

Instruction	RegDst	ALUSTC	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALUOp1	ALU0p0
R-format	1	0	0	1	0	0	0	1	0
lw .	0	1	1	1	1	0	0	0	0
SW	X	1	X	, 0	0	1	0	0	0
beq	X	0	Х	0	0	0	1	0	1

The Datapath in Operation for add \$t1,\$t2,\$t3

RegDst=1 ALUSrc=0 MemtoReg=0 RegWrite=1

MemWrite=0 MemRead=0 Branch=0 ALUOp=10

The Datapath in Operation for lw \$t1, offset (\$t2)

RegDst=0 ALUSrc=1 MemtoReg=1 RegWrite=1 MemWrite=0 MemRead=1 Branch=0 ALUOp=00

Truth Table for the Main Control Unit

Input or output	Signal name	R-format	lw lw	SW	beq
Inputs	Op5	0	1	1	0
	Op4	0	0	0.	0
	Op3	0	0	1	0
41136	Op2	0	0	0	1
	Op1	0	1	1	0
	.Op0	0	1	1-	0
Outputs	RegDst	1	0	χ	X
	ALUSrc	0	1	1	0
1/3	MemtoReg	0	1	χ	Х
T unl	RegWrite	1	1	0	0
Talleto I	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch ,	0	0	0	1
	ALUOp1	1	0	0	0
HICKORY TO B	ALUOpO •	0	0	0	1