LOM3099 - Estática

Statics

Créditos-aula: 2 Créditos-trabalho: 0 Carga horária: 30 h

• Departamento: Engenharia de Materiais

Objetivos

Proporcionar ao aluno um conhecimento básico da mecânica dos corpos rígidos com ênfase na estática. Fornecer conhecimentos necessários para cálculo de reações de apoios e de esforços internos em estruturas isostáticas.

Docente(s) Responsável(eis)

- 471420 Carlos Antonio Reis Pereira Baptista
- 5840793 Sérgio Schneider
- 7797767 Viktor Pastoukhov

Programa resumido

Estática de Partículas. Estática de Corpos Rígidos. Análise de Estruturas.

Programa

Mecânica e suas áreas: Corpos rígidos e corpos deformáveis (sólidos). Terminologia e metodologia básica. Estática de Partículas: Vetores, resultante de várias forças concorrentes, equilíbrio de uma partícula. Estática de Corpos Rígidos: Conceito de corpo rígido. Momento de uma força com relação a um ponto, sistemas equivalentes de forças, momento e binário. Apoios e vínculos. Diagrama de corpo livre. Reações de apoios e conexões para uma estrutura 2D. Equilíbrio de um corpo rígido em 2D. Reações estaticamente indeterminadas e vínculos parciais. Equilíbrio de um corpo rígido em 3D. Análise de Estruturas: análise do equilíbrio de estruturas, ação de múltiplas forças, forças internas, terceira Lei de Newton. Treliças: método dos nós, método das seções. Estruturas e Máquinas: transmissão e modificação de forças. Esforços internos em pórticos, vigas, cabos e eixos de transmissão.

Avaliação

- Método: Para compor a Nota no Semestre (NS) serão feitas duas avaliações (P1 e P2).
- **Critério:** NS = NP1 + NP2. NP1: questões da P1 valendo até 4p. no total; NP2: questões da P2 valendo até 6p. no total. Serão considerados aprovados os alunos que obtiverem: NS maior ou igual a 5,0. Serão considerados reprovados os alunos que obtiverem: NS menor que 3,0. Para os alunos em que NS é maior ou igual a 3,0 e menor que 5,0 será dada uma prova de recuperação (R).
- Norma de recuperação: A prova de Recuperação (R) irá compor a nota final (NF) da seguinte forma: NF = (R + NS)/2. Serão considerados
 aprovados os alunos que obtiverem NF maior ou igual a 5,0.

Bibliografia

1. F.P. BEER, E.R. JOHNSTON, J.T. DeWOLF, D.MAZUREK. Estática e Mecânica dos Materiais. São Paulo: McGraw Hill, 2013, 728p. 2. F.P. BEER, E.R. JOHNSTON, E. RUSSEL. Mecânica vetorial para engenheiros: estática./ São Paulo: McGraw Hill. 9a Ed., 2012, 626p. 3. HIBBELER, R.C. Mecânica para engenharia vol.1: estática. São Paulo: Pearson Prentice Hall, 12a Ed., 2011.4. MERIAM, J.L. KRAIGE, L.G. Mecânica para engenharia — Estática. Grupo GEN Editora LTC, 6a Ed., 2009, 364p.5. RUIZ, C.C.de La P. Fundamentos de mecânica para engenharia — Estática. Grupo GEN Editora LTC, 2017, 306p.

Requisitos

• LOB1036: Geometria Analítica (Requisito fraco)

Ver no Jupiter Salvar em pdf Salvar em docx

© 2020 . Contact: <u>luizeleno@usp.br</u>. Powered by <u>Jekyll</u> and <u>Github pages</u>. <u>Original theme</u> under <u>Creative Commons Attribution</u>