welcome

SQL Essentials

RDBMS DML Best
ER Model Operator Join data Practice

SQL Server Function Sub Query
DDL SQL Clause

What we will explore today?

Database

- What is RDBMS?
- What is DBMS?
- Database Schema
- Database Instance

Entity Relation Model

- What is ER Model?
- What is Entity?
- Cardinality?
- Relationships
- Convert ER model to schema

database is an organized collection of data, typically store & accessed electronically from a computer system or electronic device.

What kind of data is store in DB?

- UserName, Password, Email, Address,
 Salary ...
- Image, Videos...
- Almost everything "digital" can be storeage on database

- A database management system is software for managing databases
- Control access to the databases
- Create, modified, delete databases
- Manipulate data (storage, retrieve, report)

What is RDBMS?

- RDBMS store data in form of table, table contains many columns & rows.
- Use "Query" to comunicate with DBMS we can insert, delete, update data in DataBase.

Type of DBMS

- Relational database.
- Object oriented database.
- Hierarchical database.
- Network database.

S S

It's all about table

Relational database have many tables. Table containts many columns & rows

Database Schema

Singer(<u>ID</u>, Name, Address, Show)

<u>ID</u>	Name	Address	Price
1	Sơn Tùng	Thủ Đức	10,000\$
2	Binz	Quận 9	10,000\$
3	Mono	Quận 3	7,000\$
4	Mỹ Tâm	Quận 1	12,000\$

Schema is describe how the data should look like It's not hold any data

Database instance

<u>ID</u>	Name	Address	Price
1	Sơn Tùng	Thủ Đức	10,000\$
2	Binz	Quận 9	10,000\$
3	Mono	Quận 3	7,000\$
4	Mỹ Tâm	Quận 1	12,000\$

Relational database concept

<u>ID</u>	Name	Price	ShowID	PerformAt	SingerID
Singer1	Sơn Tùng	10,000\$	Show1	TP. HCM	Singer1
Singer2	Binz	10,000\$	Show2	TP. HN	Singer1
Singer3	Mono	7,000\$	Show3	TP. HCM	Singer3
Singer4	Mỹ Tâm	12,000\$	Show4	TP. Nha Trang	Singer4

Database Schema

<u>ID</u>	Name	Price
Singer1	Sơn Tùng	10,000\$
Singer2	Binz	10,000\$
Singer3	Mono	7,000\$
Singer4	Mỹ Tâm	12,000\$

ShowID	PerformAt	SingerID
Show1	TP. HCM	Singer1
Show2	TP. HN	Singer1
Show3	TP. HCM	Singer3
Show4	TP. Nha Trang	Singer4

Singer(ID, Name, Price)

Show(ShowID, PerformAt, SingerID)

Why don't we just use one table?

<u>ID</u>	Name	Price
Singer1	Sơn Tùng	10,000\$
Singer2	Binz	10,000\$
Singer3	Mono	7,000\$
Singer4	Mỹ Tâm	12,000\$

ShowID	PerformAt	SingerID
Show1	TP. HCM	Singer1
Show2	TP. HN	Singer1
Show3	TP. HCM	Singer3
Show4	TP. Nha Trang	Singer4

ShowID	PerformAt	SingerID	Name	Price
Show1	TP. HCM	Singer1	Sơn Tùng	10,000\$
Show2	TP. HN	Singer1	Sơn Tùng	10,000\$
Show3	TP. HCM	Singer3	Mono	7,000\$
Show4	TP. Nha Trang	Singer4	Mỹ Tâm	12,000\$

Some specific system use RDBMS

- MySQL
- PostgreSQL
- MariaDB
- Microsoft SQL Server
- Oracle Database
- etc...

What is **ER Model?**

ER model is a **conceptual design**design for the database.
representation of **crelationships between data**.

Why we Need it?

 ER Model visualize the design and form the overall view of the database

Strong entity vs week entity

Strong Entity

Has primary key

NOT depend on other entity

Strong Entity

Week entity

- Has partial discriminator key
- Depend on other entity

Week Entity

Entity Attribute

- It's describes the characteristics of an entity
- ex: Student: Name, Phone, Grate, ...

ER Notation

Student entity

Simple & Composite attribute

Single & Multiple value attribute

S\$

Key & Derived attribute

Practice draw entity & attribute

Draw entity Customer with requirement:

- Address(city, district, street)
- Many PhoneNumber
- FullName(FirstName, LastName)
- DateOfBirth
- Age

Cardinality

Cardinality describes a relationship between two entities

- one to one
- many to one
- one to many
- many to many

Cardinalities

One to One

Person have one ID Card

Person Has ID Card

Person have one Heart

Person Heart

Many-to-One or One-to-Many

 Person have 0 or many BankAccount, a BankAccount belong to one Person

 Class have 1 or many Student, Student must be in one Class

Many-to-Many

 Student study many Courese, Courses can learn by 0 or many Student

Practice 1

ex1: Customer can have one or many Address, One Address can belong to zero or many customer

Practice 2

ex2: User can sent zero or many message to Other User. User received zero or many message from other User

Entity relationships

 describes how many entities are participant & how they are related

Unary relationship

 There only one entity participant in the relationship

Binary relationship

 There 2 different entity participant in the relationship

Ternary relationship

 There 3 different entity participant in the relationship

N-nary relationship

 There N different entity participant in the relationship

design Shopee ER Model

- Customer have info(name, address, phone, email, dateOfBirth...etc)
- Customer can have many Order
- Order(total amount, delivery address, dateDelivery)
- Order have many Product(ProductName, with quantity, price, discount)
- Product can belong to many Order

Convert ER Model to database chema?

55

Simple attribute entity

<u>StudentID</u>	FullName	DateOfBirth
1	Snoop Dog	2/19/2000
2	The Rock	2/16/1999

Student(StudentID, FullName, DateOfBirth)

S

Multiple value attribute

Student(StudentID, FullName, DateOfBirth)

StudentEmail(StudentID, Email)

Student(<u>StudentID</u>, FullName, DateOfBirth)
StudentEmail(<u>StudentID</u>, <u>Email</u>)

<u>StudentID</u>	FullName	DateOfBirth
1	Snoop Dog	2/19/2000
2	The Rock	2/16/1999

<u>StudentID</u>	<u>Email</u>
1	snoop@high.com
1	snoop@low.com
2	power@man.com
2	supper@man.com
3	test@man.com

Unary one to one(optional)

49

Unary one to many

Employee(EmployeeID, Name, Address, ManagerID)

S

Binary one to one(optional)

Student(StudentID, Name)

Class(ClassID, ManagerID, Grade)

S\$

Binary one to many

Person(<u>ID</u>, Name)

BankAccount(Number, PersonID, ValidDate)

Person(ID, Name) BankAccount(Number, PersonID, ValidDate)

<u>ID</u>	Name	<u>Number</u>	Per	sonID
1	Huy	111111	1	
2	Dũng	222222	1	
3	Hùng	123456	2	

Binary many to many

📂 Unary many to many

SS

Make you ease to see

<u>ID</u>	Name
1	Nam
2	Dũng
3	Huy

FromEmployeeID	ToEmployeeID	Content	Date
1	2	Hello A, Khỏe ko a?	2/19/2023
2	1	Hello E, A vẫn khỏe! thế còn em?	2/19/2023
1	2	Có tiền Em vay ít?	2/19/2023
2	1	A cho chú số vợ anh nhé ;))	2/19/2023

Converting ER Model to relational schema

Shopee ER Model to database chema

