Оглавление

0.1	Продолжаем репер Френе	1
	0.1.1 Формула Френе	1
0.2	Соприкасающаяся плоскость	

0.1 Продолжаем репер Френе

Обозначение. \dot{r} – производная по натуральному параметру

На чём мы остановились. $\overrightarrow{r}(s)$ – натуральная параметризация

$$v(t) := r'(s) \quad (:= \dot{r}(s)), \qquad |v| = 1$$

 $\dot{v} \perp v$ (по лемме)

$$\overrightarrow{n} \coloneqq rac{\dot{v}}{|\dot{v}|} \qquad \overrightarrow{n}(s)$$
 — вектор главной нормали

$$\overrightarrow{b} \overrightarrow{v} \times \overrightarrow{n}$$

Тем самым, (v, n, b) – правая тройка (называется репер Френе)

Замечание. Репер Френе существует только если $\dot{v} \neq \overrightarrow{0}$

Определение 1. Кривая называется бирегулярной, если $\dot{v} \neq \overrightarrow{0}$ ни при каких s (т. е. в любой точке существет репер Френе)

Примеры.

- 1. Прямая не бирегулярна
- 2. Если у кривой есть точка перегиба, то она **не** бирегулярна в этой точке (чуть позже будет объяснение)

Утверждение 1. Если \forall регулярной параметризации $r''(t) \not | r'(t)$, то кривая бирегулярна Обратное **верно**

Доказательство. Позже возникнет естественным образом

- \bullet $\langle v,n \rangle$ называется соприкасающейся плоскостью
- $\langle b,n \rangle$ называется нормальной плоскостью
- ullet $\langle v,b
 angle$ называется спрямляющей плоскостью

Замечание. Мы пока не умеем искать уравнения этих плоскостей (т. к. в начале нам нужна регулярная параметризация, к которой редко удаётся перейти)

0.1.1 Формула Френе

 $\overrightarrow{v} = k \cdot \overrightarrow{n}$ – первая формула Френе

Определение 2. k(s) называется кривизной кривой

Замечание. Первую формулу не надо доказывать. Она получается из определения

Пример. $x^2 + y^2 = R^2$

$$egin{cases} x = R\cos t \ y = R\sin t & -$$
 не натуральная параметризация $z = 0$

$$s = \int_0^t |r'(\tau)| d\tau = \int_0^t \sqrt{R^2 \sin^2 \tau + R^2 \cos^2 \tau} d\tau = R \int_0^t d\tau = Rt$$
$$t = \frac{s}{R}$$

Натуральная параметризация:

$$\begin{cases} x = R \cos \frac{s}{R} \\ y = R \sin \frac{s}{R} \\ z = 0 \end{cases}$$

Интуитивно, это параметризация, такая, что мы проходим окружность за $2\pi R$. Для этого мы "замедлили время" в R раз

$$\overrightarrow{v} = (\dot{x}, \dot{y}, \dot{z}) = \left(-\sin\frac{s}{R}, \cos\frac{s}{R}, 0\right)$$
$$\dot{v} = \left(-\frac{1}{R}\cos\frac{s}{R}, -\frac{1}{R}\sin\frac{s}{R}, 0\right)$$
$$|\dot{v}| = \frac{1}{R} = k$$
$$\overrightarrow{n} = \left(-\cos\frac{s}{R}, -\sin\frac{s}{R}, 0\right)$$
$$\overrightarrow{b} = (0, 0, 1)$$

$$|\dot{b}=-lpha n|$$
 – вторая формула Френе

Определение 3. ж называется кручением кривой

Теорема 1. $\overrightarrow{b} \parallel \overrightarrow{n}$

Доказательство. $\dot{b}\perp b$ по лемме

Докажем, что $\dot{b} \perp v$:

$$\dot{b} = (v \times n)^{\cdot} = \underbrace{\dot{v} \times n}_{=0} + \underbrace{v \times \dot{n}}_{\perp v} \perp v$$

Утверждение 2. Кривая плоская \iff $\mathbf{e} = 0$

Доказательство. Упражнение

$$\dot{n}=(b\times v)^{\cdot}=\dot{b}\times v+b\times\dot{v}=-\underbrace{\underbrace{n\times v}}_{=-b}+\underbrace{\underbrace{b\times kn}}_{=-kv}=\underbrace{\pm b-kv}$$

$$\boxed{\overrightarrow{n}=\underbrace{\overline{n}}_{}=\underbrace{\overline{b}}_{}-k\overrightarrow{v}}$$
– тертья формула Френе

Все формулы Френе:

	v	n	b
\dot{v}	0	k	0
\dot{n}	-k	0	æ
\dot{b}	0	-æ	0

Таблица антисимметрична

0.2 Соприкасающаяся плоскость

Теорема 2. r(t) – произвольная регулярная параметризация бирегулярной кривой

$$\implies r''(t) \in \langle v, n \rangle$$

Доказательство. Пусть s – натуральный параметр

$$\frac{\mathrm{d}}{\mathrm{d}} \frac{r}{t} = \frac{\mathrm{d}}{\mathrm{d}} \frac{r}{s} \cdot \frac{\mathrm{d}}{\mathrm{d}} \frac{s}{t} = \dot{r} \cdot s'$$

$$r'' = \frac{\mathrm{d}}{\mathrm{d}} \frac{r}{t^2} = \frac{\mathrm{d}}{\mathrm{d}} \frac{\dot{r}}{t} s' + \dot{r} \cdot s'' = \ddot{r} \cdot (s')^2 + \dot{r} s'' = k \overrightarrow{n} \cdot (s')^2 + v s''$$

$$\boxed{r'' = k(s')^2 \cdot \overrightarrow{n} + s'' \overrightarrow{v}}$$

То есть, r'' раскладывается по векторам v и n Причём, если параметризация бирегулярна, то $k(s')^2 \neq 0$

Следствие. Соприкасающаяся плоскость = $\langle r'(t), r''(t) \rangle$

Задача. Вычислить v, n, b и плоскости для произвольной параметризации r(t)

$$\overrightarrow{v} = \frac{r'(t)}{|r'(t)|}$$

$$\overrightarrow{b} = \frac{r'' \times r'}{|r' \times r''|}$$

$$\overrightarrow{n} = \overrightarrow{b} \times \overrightarrow{n} = \frac{(r' \times r'') \times r'}{|r'| \cdot |r' \times r''|}$$

Пусть

$$r(t) = (x(t), y(t), z(t))$$

 $\overrightarrow{v} \parallel (x',y',z') = r'$ – вектор нормали для нормальной плоскости

Тогда нормальная плоскость пишется так:

$$x'\Big|_{t_0}(x-x_0) + y'\Big|_{t_0}(y-y_0) + z'\Big|_{t_0}(z-z_0) = 0$$

Найдём соприкасающуюся плоскость:

$$\begin{vmatrix} x' \Big|_{t_0} & y' \Big|_{t_0} & z' \Big|_{t_0} \\ x'' \Big|_{t_0} & y'' \Big|_{t_0} & z'' \Big|_{t_0} \\ x - x_0 & y - y_0 & z - z_0 \end{vmatrix} = 0$$

(это – смешанное произведение трёх векторов)

Спрямляющая плоскость – упражнение

$$A = r(t_0),$$
 $B = r(t_0)$
 $\delta := \operatorname{dist}(B, \operatorname{сопряж.})$

Теорема 3.

$$\lim_{t \to t_0} \frac{\delta}{AB^2} = 0$$

Доказательство. Введём подходящие координаты, такие, что:

- Соприкас. = OXY
- Кас. прямая = OX
- А начало координат
- $t_0 = 0$
- $y''(t) \neq 0$
- $x'(0) \neq 0$

Тогда $r(t) = \left(x(t), y(t), z(t)\right)$

$$x(0) = y(0) = z(0) = 0$$
, т. к. A – начало координат

$$y'(0) = z'(0) = 0$$
, т. к. касательная прямая – OX

$$z''(0) = 0$$
, т. к. соприкас. – OXY

$$\delta = z(t)$$

Нужно сосчитать предел

$$\lim_{t \to 0} \frac{z(t)}{x^2 + y^2 + z^2}$$

Разложим по Тейлору:

$$z(t) = o(t^2)$$

$$y(t) = \frac{y''(t)}{2}t^2 + o(t^2)$$

$$x(t) = x'(0)t + \frac{x''(0)}{2}t^2 + o(t^2)$$

$$\lim = \lim_{t \to 0} \frac{o(t^2)}{x'^2(0)t^2 + o(t^2)} = 0$$

Следствие. Соприкасающаяся плоскость – единственная, обладающая таким свойством