Examen Session 2

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. On rappelle le théorème de Cayley-Hamilton : Pour le polynôme caractéristique d'une matrice A, si on substitue λ par la matrice A, on obtient une expression matricielle ("un polynôme en A") qui est la matrice des zéros.

Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

- 1. Calculer le polynôme caractéristique $\lambda \mapsto P(\lambda)$ de A.
- 2. En déduire une expression de A^{-1} en fonction de A et I (matrice identité).
- **Exercice 2.** Diagonaliser la matrice $B = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$.
- **Exercice 3.** Soit $n = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$ un vecteur de \mathbb{R}^3 qui satisfait la condition

$$n^t n = 1, (1)$$

où $n^t = \begin{pmatrix} n_1 & n_2 & n_3 \end{pmatrix}$ est le vecteur ligne, transposé de n. On pose alors

$$R_n = \begin{pmatrix} 2n_1^2 - 1 & 2n_1n_2 & 2n_1n_3 \\ 2n_1n_2 & 2n_2^2 - 1 & 2n_2n_3 \\ 2n_1n_3 & 2n_2n_3 & 2n_3^2 - 1 \end{pmatrix}.$$

- 1. Que signifie la condition (1)?
- 2. Exprimer R_n en fonction de n, n^t et I (matrice identité)
- 3. Calculer alors $R_n R_n^t$ et en déduire R_n^{-1} . Indication : On peut utiliser la question 2 pour éviter les calculs.
- 4. Montrer que n est un vecteur propre de R_n dont on donnera la valeur propre associée. Indication : On peut utiliser la question 2 pour éviter les calculs.
- 5. Soit $q = \begin{pmatrix} n_2 \\ -n_1 \\ 0 \end{pmatrix} \frac{1}{\sqrt{n_1^2 + n_2^2}}$. Montrer que q est un vecteur propre de R_n dont on donnera la

valeur propre associée. Indication : On peut utiliser la question 2 pour éviter les calculs

- 6. Trouver un vecteur $p \in \mathbb{R}^3$ tel que la famille (n, q, p) forme une base orthonormal de \mathbb{R}^3 .
- 7. Montrer que p est un vecteur propre de R_n dont on donnera la valeur propre associée. Indication : On peut utiliser la question 2 pour éviter les calculs
- 8. De quelle transformation linéaire de \mathbb{R}^3 bien connue, R_n est-elle la matrice? Justifier.

Exercice 4. Soit A une matrice carrée à coefficients réels. Si A est inversible, est-ce que A^t est inversible? Si oui, quel est son inverse? Justifier.