

M1 – Pixel-based processing

Lecturer: Philippe Salembier, UPC

Outline

- Introduction:
 - Image model definition
- Generic operators:
 - Arithmetic/Logic operations
 - Range transform operations
- Histogram based operators:
 - Histogram definition
 - Histogram equalization
- Summary and Conclusions

Introduction (I)

Image Model Definition

- In the pixel-based image model, the image is understood as a collection of independent picture elements (pixels).
- Operations only take into account the values of the pixels (point-wise operators), but neither their position nor the values of their neighbor pixels.
 - Pixel-based image operators will process in the same manner all pixels with the same value.
- Pixel-based image operators can be defined:
 - In a generic way, without taking into account the specificity of the images they will be applied to.
 - In a specific way, adapting the operator to the image pixel statistics:
 - Pixels in an image are assumed to be realizations of a given random variable.

Introduction (II)

Pixel-based Image Processing Tools

- They are very fast operators since they only require accessing at the pixel value of the pixel being processed
 - They are **memory-less operations** since they do not require storing any neighbor pixel values.
 - Other image models require analyzing a neighborhood of the pixel being processed:
 - Space/Frequency image model: Impulse response (convolution mask)
 - Geometrical model: Structuring element
 - Region-based model: Neighborhood connectivity
- There are three main types of pixel-based image operators:
 - Arithmetic/Logic operators:
 - May combine various images
 - Range transform operators.
 - Histogram-based operators.

Outline

- Introduction:
 - Image model definition
- Generic operators:
 - Arithmetic/Logic operations
 - Range transform operations
- Histogram based operators:
 - Histogram definition
 - Histogram equalization
- Summary and Conclusions

Generic Operators (I)

Arithmetic operators

- Extension of the basic operators in a pixel by pixel basis
 - Addition, Subtraction,
 - Implementation issue: Possible representation problems due to the change of range of the output image

$$I_{AV}(i,j) = \frac{1}{N} \sum_{k=1,\dots,N} I_k(i,j)$$

$$N_{k}(i, j) = I_{AV}(i, j) - I_{k}(i, j)$$

Image Averaging
Noise reduction

Change Detection

Noise estimation

Generic Operators (II)

Logic operators

- Extension of the basic operators in a pixel by pixel basis
 - ADD, OR, MAX, MIN,
 - They are applied over binary images and require a binarization step.

Quality control on printed circuit board

Circuit board

Ideal Circuit board

Logical difference

Generic Operators (III)

Generic Operators (III)

Range transform operators

- Define a transformation or **mapping** (T(.)) on the range of values of the input image (r) onto the range of values of the output image (s)
 - In the examples, ranges are normalized [0, 1] but they may represent different real ranges.

Generic Operators (IV)

Range transform operators: Grey-level mapping

 Different segments of the input range are expanded or compressed depending on the transform characteristics

• The segments of r where the (magnitude of the) **derivative** of T(r) is greater than 1 are expanded and vice versa.

Generic Operators (V)

Range transform operators: Contrast mapping

• **Expands** (stretches) a range of the input image, mapping it into the whole output image range.

- Clipping: A set of values of r are mapped into a single value of s.
 - Typically, lowest and highest values of r are mapped to the minimum and maximum values of s, respectively.
- This is a non-reversible transform: It is not bijective.

Generic Operators (VI)

Range transform operators: Invertibility

Examples of non-bijective range transform

Generic Operators (VI)

Range transform operators: Negative mapping

 Inverts the range of values of the input image creating a negative version of it.

- Negative mappings do not change the contrast of the image:
 - The difference between two neighbor pixels remain the same.
- The magnitude of the derivative of T(r) is equal 1 in the whole range of the input image.

Generic Operators (VII)

Range transform operators: Binarization mapping

• **Binarizes** the image by clipping all values below a given threshold to 0 and all values above this threshold to 1.

- It is commonly known as thresholding.
- It is a non-reversible operation, since it is based on two clippings.

Generic Operators (VIII)

Range transform operators: Log & Power-law

Log transformation: mainly used to compress the dynamic range

$$s = c \log(r+1)$$

Log transform of 2D Fourier transform

R. Gonzalez & R. Woods, Digital Image Processing, Prentice Hall.

Outline

- Introduction:
 - Image model definition
- Generic operators:
 - Arithmetic/Logic operations
 - Range transform operations
- Histogram based operators:
 - Histogram definition
 - Histogram equalization
- Summary and Conclusions

Histogram-based Operators (I)

Histogram definition

• The histogram $h(r_k)$ of a grey-level image with range $[0 \dots L-1]$ is a discrete function that stores for each possible image value (r_k) the number of occurrences of that value in the image; that is, the number of pixels in the image with a given grey-level value.

$$h(r_k) = \# pixels \ with \ value \ r_k = n_k \ \forall r_k \in [0...L-1]$$

• The histogram information is related to the probability of occurrence of a given value in the image. The **normalized histogram** $p(r_k)$ is an estimation of the probability density function (pdf) of a random variable associated to the grey-level values of the image pixels.

$$p(r_k) = \frac{h(r_k)}{\sum_{k=0}^{L-1} h(r_k)} = \frac{n_k}{\sum_{k=0}^{L-1} n_k} = \frac{n_k}{n} \quad \forall r_k \in [0...L-1]$$

Histogram-based Operators

Histogram definition

• The histogram $h(r_k)$ of a grey-level image with range [0 ... L-1] is a discrete function that stores for each possible image value (r_k) the number of occurrences of that value in the image; that is, the number of pixels in the image with a given grey-level value.

$$h(r_k) = \# pixels \ with \ value \ r_k = n_k \ \forall r_k \in [0...L-1]$$

Histogram-based Operators

Histogram definition

• The histogram information is related to the probability of occurrence of a given value in the image. The **normalized histogram** $p(r_k)$ is an estimation of the probability density function (pdf) of a random variable associated to the grey-level values of the image pixels.

$$p(r_k) = \frac{h(r_k)}{\sum_{k=0}^{L-1} h(r_k)} = \frac{n_k}{\sum_{k=0}^{L-1} n_k} = \frac{n_k}{n} \quad \forall r_k \in [0...L-1]$$

Histogram-based Operators (II)

Histogram Definition: Grey-level examples

Dark Image: Grey level values concentrated in the lowest range

Bright Image: Grey level values concentrated in the highest range

Low contrast Image: Grey level values concentrated in a small range

High contrast Image: Grey level values concentrated in a large range

Histogram-based Operators (III)

Histogram Definition: Grey-level examples

Histogram-based Operators (IV)

Histogram Definition: Color image case

- The histogram of a color image can be defined in several ways:
 - 1. A separate histogram for each component
 - 2. A 3D histogram (joint histogram)
 - 3. A luminance 1D histogram + a joint chrominance 2D histogram
- 1. A separate 1D histogram for each component
 - It does not represent the joint probability

Histogram-based Operators

Histogram Definition: Color image case

- 2. A 3D histogram (joint histogram):
 - To count all the occurrences of every possible color (c_1, c_2, c_3)
 - A matrix of L³ elements is created; typically, 256x256x256 (=16.777.216)

Histogram-based Operators

Histogram Definition: Color image case

3. A luminance 1D histogram + a joint chrominance 2D histogram

Histogram-based Operators (VI)

Histogram Equalization: Continuous case

- Histogram equalization implements a pixel-based transform aiming at producing a flat histogram output image.
 - The transform depends on the input image histogram
- Consider the pdf mapping defined by:

$$s = T(r) = \int_0^r p_r(w) dw$$

$$p_{s}(s) = p_{r}(r) \left| \frac{dr}{ds} \right| = p_{r}(r) \left| \frac{1}{p_{r}(r)} \right| = 1$$

$$\frac{ds}{dr} = p_{r}(r)$$

A mapping using the curve of the accumulated probability of r produces an output image with a uniform pdf (use equally all gray levels).

Histogram-based Operators (VII)

Histogram Equalization: Discrete case

 The mapping for the continuous case has to be adapted to the discrete case:

$$s = T(r) = \int_0^r p_r(w) dw$$
 \iff $s_k = T(r_k) = \sum_{j=0}^k p(r_j) = \sum_{j=0}^k \frac{n_j}{n}$

• The resulting values (s_k) are defined on the range $[0 \dots 1]$. In order to have the values in the range $[0 \dots L-1]$, they should be scaled and rounded. One possible approach is

$$t_k = round((L-1) \cdot s_k)$$

• The final equalization maps all pixels with value r_k into the value t_k .

Histogram-based Operators

Discrete Histogram Equalization: Example

r _k	Initial level	Number of pixels	P(r _k)	Accumulated probability	S _k	s _k *7	Final level	t _k
r _o	0	790	0.19	s ₀ = 0.19=	0.19	1,33	1	to
r ₁	1	1023	0.25	s ₁ = 0.19+0.25=	0.44	3,08	3	t_1
r ₂	2	850	0.21	s ₂ =0.44+0.21=	0.65	4,55	5	t ₂
r ₃	3	656	0.16	s ₃ =0.65+0.16=	0.81	5,67	6	t_3
r ₄	4	329	0.08	s ₄ =0.81+0.08=	0.89	6,23	6	t ₄
r ₅	5	245	0.06	s ₅ =0.89+0.06=	0.95	6,65	7	t ₅
r ₆	6	122	0.03	s ₆ =0.95+0.03=	0.98	6,86	7	t ₆
r ₇	7	81	0.02	s ₇ =0.98+0.02=	1	7	7	t ₇

Histogram-based Operators (IX)

Histogram-based Operators (X)

Discrete Histogram Equalization: Example

Summary and Conclusions

- In the pixel-based image model, operations only take into account the values of the pixels (point-wise operators), but neither their position nor the values of their neighbor pixels.
- In range transform operations, a **mapping** (T(.)) is defined on the range of values of the input image (r) onto the range of values of the output image (s)
 - The mapping **expands/contracts** segments of the input range depending on the magnitude of the derivative of the transform.
 - If the mapping is not bijective, it cannot be inverted.
- The histogram information is related to the probability of occurrence of a given value in the image.
 - If the histogram of an image is known, specific transforms (such as the equalization transform) can be defined for that image.

