

احتمال و آمار مهندسی

سال ۱۴۰۱

استاد درس: استاد کلکین نما

اعضای گروه: آرش آذرپور (شماره دانشجویی: ۴۰۰۰۳۵۹۳) - علی طاهری (شماره دانشجویی: ۴۰۰۱۲۳۲۳)

ما در این پروژه قصد داریم روی داده های آماری مربوط به میزان زاد و ولد و مرگ و میر را در سطح جهان در سال ۲۰۲۰ در کشور ها و قاره های مختلف بررسی کنیم. برای این منظور ۱۰۱ کشور مختلف در جهان در نظر گرفته شده و برای هر کدام دو متغییر پیوسته، میزان زاد و ولد و میزان مرگ و میر، برای متغیرگسسته هم از تفاوت بین قاره ها استفاده می کنیم.

	Country	Birth in 2020	Death in 2020	Area	var5	var6	
1	Afghanistan	31.15	6.16	Asia			
2	Albania	11.45	8.26	Europe			
3	Algeria	22.78	4.72	Africa			
4	Angola	39.79	7.8	Africa			
5	Argentina	16.64	7.6	America	1.5		
6	Armenia	13.28	9.8	Asia			
7	Australia	11.5	6.3	Asia			
8	Austria	9.4	10.3	Europe			
9	Azerbaijan	12.5	7.5	Asia			
10	Bahamas	13.79	6.93	Asia			
11	Bahrain	13.27	2.44	Asia			
12	Bangladesh	17.55	5.52	Asia			
13	Barbados	10.6	9.13	America			
14	Belarus	9.3	13	Europe	i i		
15	Belgium	9.9	11	Europe			
16	Bolivia	21.19	6.76	America			
17	Bosnia & Herz.	7.78	11.05	Europe	-		
18	Botswana	23.65	5.72	Africa			
19	Brazil	13.46	6.61	America			

تصویر 1 قسمتی از دیتا های استفاده شده در بروژه

برای وارد کردن دیتاهای مورد نظر در برنامه به ترتیب از دستورهای (read.csv() و استفاده می کنیم.

```
#Imprting libaries:
library(epiDisplay)
library(modeest)

#Importing data from the dataset:
DataFrame <- read.csv("E:\\R\\DataBase.csv")
head(DataFrame)

fix(DataFrame)</pre>
```

تصویر 2 کد مربوطه برای وارد کردن دیتا ها

بخش اول (آمار توصيفي):

١ ـ داده هاى كيفى:

برای بدست آوردن جدول فراوانی برحسب فراوانی، درصد فراوانی و فراوانی تجمعی می توان از دستور ()tab1 که در پکیج epiDisplay قرار دارد، استفاده کرد.

	Frequency	Percent	Cum.	percent
Asia	54	36.0		36.0
Europe	38	25.3		61.3
Africa	34	22.7		84.0
America	24	16.0		100.0
Total	150	100.0		100.0

تصوير 4 جدول فراواني

```
tab1(DataFrame$Area, sort.group = "decreasing", cum.percent = T)
تصویر 3 کد مربوطه برای بدست آوردن جدول فراوانی
```

برای بدست آوردن نمودار میله ای برحسب درصد فراوانی نیز از دستور ()barplot که در کتابخانه epiDisplay قرار دارد استفاده می کنیم.

```
Area<-table(DataFrame$Area)

names(Area)<-c("Africa","America","Asia","Europe")

barplot(Area / length(DataFrame$Area),col = c("#d12828", "blue4", "#1fd762", "#e30cb8"))
```

تصویر 5 کد مربوطه برای بدست آوردن نمودار میله ای

تصویر 6 نمودار میله ای بر حسب در صد فر او انی

برای رسم نمودار دایره ای هم از دستور (pie() استفاده می کنیم.

#Pie graph:|
Area<-table(DataFrame\$Area)

pie(Area,clockwise = T ,
col = c("#28a1d1", "#8e2eb141" ,
"#25d71f5c" , "#848b00a2"))</pre>

تصویر 7 کد مربوطه برای رسم نمودار دایره ای

۲ - داده های پیوسته:

سرای بدست آور دن میانگین، میانه و مد به ترتیب از دستورات ()mean و ()metv() استفاده کنیم. (لازم به ذکر است برای استفاده از ()mfv() باید از کتابخانه modeest استفاده کنیم.

```
Avg of Birth in 2020 : 18.25147
Avg of Death in 2020 : 7.809133

Median of birth : 16.62

Median of death : 7.05

Mode of Birth : 8.9 9.2 9.4 9.9 10.9

Mode of Death : 4.71 5.14 5.48 5.98 6.26 6.29 6.3 6.35 7.05 7.3 7.5 10.3 10.4 11.9 12.6
```

تصویر 9 مقادیر میانگین، میانه و مد برای نرخ مرگ و میر و زاد و ولد

```
#Average, Median and Mode:

Avg_of_Birth <- mean(DataFrame$Birth_in_2020)

Avg_of_death <- mean(DataFrame$Death_in_2020)

Median_of_birth <- median(DataFrame$Birth_in_2020)

Median_of_death <- median(DataFrame$Death_in_2020)

Mode_of_birth <- mfv(DataFrame$Birth_in_2020)

Mode_of_death <- mfv(DataFrame$Death_in_2020)

Cat("\033[1;33m ",
    "Avg_of_Birth in_2020 : ",
    Avg_of_Birth,"\n Avg_of_Death_in_2020 : ",
    Avg_of_death, '\n',"Median_of_birth : ",
    Median_of_death, '\n',"Mode_of_Birth : ",
    Mode_of_birth, "\n Mode_of_Death : ",
    Mode_of_birth, "\n Mode_of_Death : ",
    Mode_of_death, '\n',"Mode_of_Death : ",
    Mode_of_death, "\n',"Mode_of_Death : ",
    Mode_of_death, "\n',"Mode_of_Death : ",
    Mode_of_death, "\n',"Mode_of_Death : ",
    Mode_of_death, "\033[0;0m")
```

تصویر 10 کد مربوطه برای مبانگین، مبانه و مد

Variable Value	Mean	Median	Mode
Birth Rate	18.25147	16.62	8.9, 9.2, 9.4, 9.9, 10.9
Death Rate	7.809133	7.05	4.71, 5.14, 5.48, 5.98, 6.26, 6.29, 6.3, 6.35, 7.05, 10.3, 10.4, 11.9, 12.6

جدول 1 مقادیر میانگین، میانه و مد برای دیتا های استفاده شده

برای بدست آوردن ماکسیمم، مینیمم، دامنه، انحراف معیار و واریانس به ترتیب از دستورات (min() و () sd() و () war()

تصویر 15کد مربوطه برای بدست آوردن واربانس و انحراف معیار

```
Maximum of Birth: 41.41
Maximum of Death: 18
Minimum of Birth: 5.3
Minimum of Death: 1.29

Variance of Birth: 86.14908
Variance of Death: 9.994702
Standard deviation of Birth: 9.281653
Tandard deviation Death: 3.16144

Birth in range 5.3 to 41.41
Death in range 1.29 to 18
```

تصویر 17 خروجی مربوط به ماکسیمم، مینیموم، انحراف معیار، و اربانس و دامنه

تصویر 13 کد مربوطه برای بدست آوردن دامنه

```
#Min and Max:
Minimum_of_Birth <- min(DataFrame$Birth_in_2020)
Minimum_of_Death <- min(DataFrame$Death_in_2020)
Maximum_of_Birth <- max(DataFrame$Birth_in_2020)
Maximum_of_Death <- max(DataFrame$Death_in_2020)

cat("\033[1;36m ",
    "\n Maximum of Birth : ", Maximum_of_Birth,
    "\n Maximum of Death : ", Maximum_of_Death,
    "\n Minimum of Birth : ", Minimum_of_Birth,
    "\n Minimum of Death : ",Minimum_of_Death ,
    "\033[0;0m")</pre>
```

تصویر 11 کد مربوطه برای بدست آوردن ماکسیمم و مینیمم

Variable Value	Min	Max	Standard deviation	Variance	Range
Birth Rate	5.3	41.41	9.281653	86.14908	5.3 to 41.41
Death Rate	1.29	18	3.16144	9.994702	1.29 to 18

جدول 2 مقادیر مربوط به ماکسیمم، مینیموم، انحراف معیار، واریانس و دامنه

برای رسم نمودار مستطیلی از دستور ()hist استفاده می کنیم.

```
# Histograms:
hist(DataFrame$Birth_in_2020,breaks = seq(0,50,1 = 10),
    xlim = c(0,50),ylim = c(0,42), col = c("#8ee71b", "#fa0000", "#156d5bb0", "#b23ab2"
    , "#8189109c","#fff700", "#24156dfc", "#b23ab2", "#00e5ff", "#11ff00"))
hist(DataFrame$Death_in_2020,breaks = seq(0,30,1 = 10),
    xlim = c(0,30),ylim = c(0,50), col = c("#8ee71b", "#fa0000", "#156d5bb0", "#b23ab2"
    , "#8189109c","#fff700", "#24156dfc", "#b23ab2", "#00e5ff", "#11ff00"))
```

تصویر 20 کد مربوطه برای رسم نمودار مستطیلی

تصویر 22 نمودار مستطیلی برای متغیر Birth rate

تصویر 21 نمودار مستطیلی برای متغیر Death rate

برای رسم نمودار جعبه ای نیز از دستور (boxplot() استفاده می کنیم.

#Box Plot:


```
تصویر 23 کد مربوط به رسم نمودار جعبه ای
```

boxplot(DataFrame\$Birth in 2020,

col = c("#ff0000"))

DataFrame\$Death_in_2020,
names = c("Birth", "Death"),

تصویر 24 نمودار جعبه ای برای متغیر های (سمت راست : Death) و (سمت چپ: Birth)

برای بدست آوردن کواریانس و ضریب همبستگی به ترتیب از دستورهای ()cov و ()cor استفاده می کنیم.

```
# Covariance and Correlation coefficient:
Covariance <- cov(DataFrame$Birth_in_2020,DataFrame$Death_in_2020)
cat(" Covariance is : ",Covariance)
CorrelationCoefficient <- cor(DataFrame$Birth_in_2020,DataFrame$Death_in_2020)
cat("\n CorrelationCoefficient is : ",CorrelationCoefficient)</pre>
```

تصویر 25 کد مربوطه به کواریانس و ضریب همبستگی

```
> Covariance is : -9.096461
> GrrelationCoefficient is : -0.3100004
```

تصویر 26 مقادیر کواریانس و ضریب همستگی

Covariance	Correlation Coefficient	
-9.096461	-0.3100004	

بخش دوم:

۱- فاصله اطمینان ۹۵ در صد برای میانگین برای متغیر Birth rate:

: مول فاصله اطمینان (1- α) برای میانگین بصورت کلی بصورت رو به رو می باشد $\mu \in (\bar{x}-t_{1-\alpha 2}(n-1)s\sqrt{n}), \bar{x}+t_{1-\alpha 2}(n-1)s\sqrt{n})$

دراین روش ما با استفاده از دستور هایی چون ()mean، ()sd و ... دقیقا فرمول را باز سازی می کنیم.

```
تصویر 27 کد مربوطه به بازه اطمینان ۹۵ در صد برای میانگین
```

```
> ] μ ∈ ( 16.75396 , 19.74898 )
```

تصویر 28 مقدار بازه اطمینان ۹۵ در صدیرای میانگین

 $\mu \in (16.75396, 19.74898)$ پس از اجرا مشاهده می کنیم:

۲- فاصله اطمینان ۹۵در صد برای واریانس برای متغیر Birth rate:

فرمول فاصله اطمینان $(1-\alpha)$ $(1-\alpha)$ برای واریانس بصورت کلی بصورت زیر می باشد:

ورا با دستور هایی $\sigma^2 \in \frac{(n-1)s^2}{x_{1-\frac{\alpha}{2}}^2(n-1)}$, $\frac{(n-1)s^2}{x_{\frac{\alpha}{2}}^2(n-1)}$, $\frac{(n-1)s^2}{x_{\frac{\alpha}{2}}^2(n-1)}$

مانند ()var و ... بازسازی می کنیم.

```
Alpha <- 0.05

Counter <- length(DataFrame$Birth_in_2020)

degrees.freedom <- Counter - 1

Variance <- var(DataFrame$Birth_in_2020)

Lower_value <- qchisq(1-(Alpha/2), degrees.freedom ,lower.tail = TRUE)

Upper_value <- qchisq(Alpha/2, degrees.freedom ,lower.tail = TRUE)

cat("\to^2 \in (", (degrees.freedom Variance)/Lower_value, ",", (degrees.freedom Variance)/Upper_value, ")")
```

تصویر 29 کد مربوطه به محاسبه فاصله اطمینان ۹۵ در صد برای واریانس

> | 0^2 ∈ (69.50255 , 109.6194)

تصوير 30 فاصله اطمينان ٩٥ در صد براي واريانس

۳- آزمون فرض میانگین جامعه برای متغیر Death rate:

ما در این قسمت می خواهیم آزمون $H_0: \mu = \mu_0$ را در سطح معنی داری ۰٫۰۵ انجام دهیم. برای $H_1: \mu > \mu_0$ این کار از فرمول اصلی آزمون فرض که در کتاب هم در جدولی در فصل هشتم به آن اشاره شده است استفاده خواهیم کرد و با استفاده از دستور هایی مانند (mean() ،mean() و ... عین فرمول را بازسازی می کنیم.

تصویر 31 فرمول مربوط به آزمون فرض برای میانگین جامعه

```
# H0 : u=u0
# H1 : u>u0

Alpha = 0.5

Average <- mean(DataFrame$Death_in_2020)

mu0 <- Average+10

Number <- length(DataFrame$Death_in_2020)

SD <- sd(DataFrame$Death_in_2020)

SE <- SD / sqrt(Number)

t_stat <- (Average - mu0) / SE

degree_of_freedom <- Number - 1

t_score <- qt(p=1-(Alpha), df=degree_of_freedom, lower.tail=TRUE)

if(t_stat >= t_score)
    cat("\033[1;32m", "t_stat >= t_score : reject H0", "\033[0;0m"))

if(t_stat < t_score)
    cat("\033[1;32m","t_stat < t_score : confirm H0", "\033[0;0m"))
```


تصویر 32 کد مربوط به آزمون فرض برای میانگین جامعه

در کد مربوطه t_stat همان مقدار T_e و t_stat همان مقدار توزیع t_stat با درجه آزادی t_stat در فرمول صفحه قبل است. با توجه به خروجی چون t_stat کوچکتر از t_stat است پس فرض t_stat در سطح معنی داری t_stat تایید می شود.

نکاتی درمورد پروژه:

https://www.theglobaleconomy.com/rankings/Death_rate/ و سایت <u>https://www.theglobaleconomy.com/rankings/Death_rate/</u> و birth rate و death rate می باشند. درمورد مقادیر <u>https://www.theglobaleconomy.com/rankings/birth_rate/</u> می باشند. درمورد مقادیر با تعداد مرگ و میر یا تعداد زاد و ولد به ازای هر ۱۰۰۰ نفر است.