#### LatticeHacks

Daniel J. Bernstein, Nadia Heninger, Tanja Lange

https://latticehacks.cr.yp.to

Military wants Holy Grail of secure encryption

NATALIE WOLCHOVER SCIENCE DO 10 15 7:00 A

# THE TRICKY ENCRYPTION THAT COULD STUMP QUANTUM COMPUTERS

COMPLETELY BROKEN —

Millions of high-security crypto keys crippled by newly discovered flaw

What do all these headlines have in common?

# Lattices.

We can do two important things with lattices in cryptography:

## We can break crypto.

- Knapsack cryptosystems
- DSA nonce biases
- Factoring RSA keys with bits known
- Small RSA private exponents
- Stereotyped messages with small RSA exponents

### We can make crypto.

- Post-quantum cryptography
- ► Fully homomorphic encryption





A lattice is a repeating grid of points in n-dimensional space.



#### What is a lettuce lattice?

A lattice of lettuces is a repeating grid of lettuces in *n*-dimensional space.

We can think of a lattice as being generated by integer multiples of some basis vectors.



A lattice can have many different bases.



We can represent a lattice as a matrix of basis vector coefficients:

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$





#### Now that you've mastered two dimensions, here is a lattice in three.



Do you really want us to keep going? Didn't think so.

#### The Shortest Vector Problem (SVP)

#### Shortest Vector Problem (SVP)

Given an arbitrary basis for L, find the shortest nonzero vector  $v_1$  in L.

- Slow algorithm to compute exact solution. (Exponential time!)
- ► Fast algorithm to compute approximate solution. (Polynomial time!)



#### The LLL Algorithm

(Lenstra, Lenstra, Lovasz)

**Input:** A lattice basis *B* in *n* dimensions.

Output: A pretty short vector in the lattice.

**Guarantee:** Length  $\leq 2^{n/2} |v_1|$ 



We wanted to give you working code examples. We're going to use Sage.

Sage is free open source mathematics software.

Download from http://www.sagemath.org/.

Sage is based on Python

sage: 2\*3

6

We wanted to give you working code examples. We're going to use Sage.

Sage is free open source mathematics software.

Download from http://www.sagemath.org/.

Sage is based on Python, but there are a few differences:

sage: 2<sup>3</sup> is exponentiation, not xor

8

We wanted to give you working code examples. We're going to use Sage.

Sage is free open source mathematics software.

Download from http://www.sagemath.org/.

Sage is based on Python, but there are a few differences:

It has lots of useful libraries:

```
sage: factor(x^2-9)
(x + 3)*(x - 3)
```

We wanted to give you working code examples. We're going to use Sage.

Sage is free open source mathematics software.

Download from http://www.sagemath.org/.

Sage is based on Python, but there are a few differences:

It has lots of useful libraries:

sage: factor(
$$x^2-9$$
) sage: ( $x^2-9$ ).roots()  
( $x + 3$ )\*( $x - 3$ ) [(-3, 1), (3, 1)]

(This is pre-quantum, non-lattice-based crypto!)

```
p = random_prime(2^512)
q = random_prime(2^512)
```

(This is pre-quantum, non-lattice-based crypto!)

```
p = random_prime(2^512)
q = random_prime(2^512)
```

#### **Public Key**

$$N = p*q$$
  
e = 3 or 65537 or 35...

(This is pre-quantum, non-lattice-based crypto!)

**Public Key** 

(This is pre-quantum, non-lattice-based crypto!)

**Public Key** 

**Warning:** Please don't ever implement RSA like this. Textbook RSA is insecure for many reasons.

# Factoring is hard. Let's go shopping!

# Factoring with Lattices

RSA is secure only if it is hard to factor. So how hard is factoring really?

#### How hard is factoring?



Already-factored modulus: Trivial.

#### How hard is factoring?



One factor known: Trivial. (Division)

#### How hard is factoring?



Neither factor known: Subexponential time. (Nobody has factored the RSA-1024 challenge in public yet.) See "FactHacks" (29C3) for more information.

#### Factoring with Partial Information



Trivial. (Division + fixing a few bits.)

#### Factoring with Partial Information



#### Factoring with Partial Information



Polynomial time. (With lattices!) [Coppersmith 96]

```
p = random_prime(2^512); q = random_prime(2^512)

N = p*q

a = p - (p % 2^86)
```

RSA key recovery from partial information.

```
p = random_prime(2^512); q = random_prime(2^512)
N = p*q
a = p - (p % 2^86)

X = 2^86
M = matrix([[X^2, 2*X*a, a^2], [0, X, a], [0, 0, N]])
B = M.LLL()
```

```
p = random_prime(2^512); q = random_prime(2^512)
N = p*q
a = p - (p \% 2^86)
X = 2^86
M = matrix([[X^2, 2*X*a, a^2], [0, X, a], [0, 0, N]])
B = M.I.I.I.()
Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]
sage: a+Q.roots(ring=ZZ)[0][0] == p
True
```

#### What is going on? Using lattices to factor.

Coppersmith/Howgrave-Graham

1. I wrote down a polynomial f(x) = a + x that has a pretty small root

$$f(r) \equiv 0 \bmod p$$

I don't even know p, I only know N!

2. I constructed a lattice basis from coefficients of polynomials that vanish mod p:

$$\begin{bmatrix} 1 & 2a & a^2 \\ 0 & 1 & a \\ 0 & 0 & N \end{bmatrix}$$

- 3. I called the LLL algorithm to find a short vector.
- 4. My solution r was a root of the corresponding "small" polynomial.

#### At this point, we all kind of feel like this...



"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

# ROCA (Return of Coppersmith's Attack)

Nemec, Sys, Svenda, Klinec, and Matyas noticed that Infineon chips were generating RSA keys with primes of the form

$$p = kM + (g^a \bmod M)$$

where M, g are known and a is in a set small enough to brute force.

**Exactly the same** method as we just described works to factor these keys. (With slightly bigger lattices.)

Oops!

Their paper covers tradeoffs between lattice dimension and search space.



Michele Mosca, November 2015: "I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

Michele Mosca, November 2015: "I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

Dario Gil, November 2017: "We have successfully built a 20-qubit and a 50-qubit quantum processor that works ... We're going to look back in history and say that [2016–2021] is when quantum computing emerged as a technology."

Michele Mosca, November 2015: "I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

Dario Gil, November 2017: "We have successfully built a 20-qubit and a 50-qubit quantum processor that works ... We're going to look back in history and say that [2016–2021] is when quantum computing emerged as a technology."

Shor's algorithm will break RSA-2048 using  $\approx$ 4096 qubits (and maybe it's possible to use even fewer qubits).

Michele Mosca, November 2015: "I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

Dario Gil, November 2017: "We have successfully built a 20-qubit and a 50-qubit quantum processor that works ... We're going to look back in history and say that [2016–2021] is when quantum computing emerged as a technology."

Shor's algorithm will break RSA-2048 using  $\approx$ 4096 qubits (and maybe it's possible to use even fewer qubits).

Caveat: IBM has 50 **unreliable** qubits. Shor needs **reliable** qubits. Known error-correction methods use  $\approx \! 1000$  unreliable qubits (depending on error rate) to simulate one reliable qubit.

#### The NIST post-quantum competition

December 2016, after public feedback: NIST calls for submissions of post-quantum cryptosystems to standardize.

30 November 2017: NIST receives 82 submissions.

|               | Signatures | KEM/Encryption | Overall |
|---------------|------------|----------------|---------|
| Lattice-based | 4          | 24             | 28      |
| Code-based    | 5          | 19             | 24      |
| Multi-variate | 7          | 6              | 13      |
| Hash-based    | 4          |                | 4       |
| Other         | 3          | 10             | 13      |
|               |            |                |         |
| Total         | 23         | 59             | 82      |

### "Complete and proper" submissions

21 December 2017: NIST posts 69 submissions from 260 people.

BIG QUAKE, BIKE, CFPKM, Classic McEliece, Compact LWE, CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DMF DRS DualModeMS Edon-K EMBLEM and R.EMBLEM FALCON FrodoKEM. GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17. HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton, LIMA, Lizard, LOCKER, LOTUS, LUOV, McNie, Mersenne-756839. MQDSS. NewHope. NTRUEncrypt. paNTRUSign. NTRU-HRSS-KEM. NTRU Prime. NTS-KEM. Odd Manhattan. OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqRSA encryption. pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow. Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+. SRTPI. Three Bears. Titanium. WalnutDSA.

### "Complete and proper" submissions

21 December 2017: NIST posts 69 submissions from 260 people.

BIG QUAKE, BIKE, CFPKM, Classic McEliece, Compact LWE, CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DMF DRS DualModeMS Edon-K EMBLEM and R.EMBLEM FALCON FrodoKEM. GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17. HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton, LIMA, Lizard, LOCKER, LOTUS, LUOV, McNie, Mersenne-756839. MQDSS. NewHope. NTRUEncrypt. paNTRUSign. NTRU-HRSS-KEM. NTRU Prime. NTS-KEM. Odd Manhattan. OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pgRSA encryption. pgRSA signature. pgsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow. Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+. SRTPI. Three Bears. Titanium. WalnutDSA. Some attack scripts already posted.



# Breaking RSA more with lattices

Coppersmith small exponent attacks

# What's wrong with this RSA example?

```
message = Integer('squeamishossifrage',base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N
```

# What's wrong with this RSA example?

```
message = Integer('squeamishossifrage',base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N
sage: Integer(c^(1/3)).str(base=35)
'squeamishossifrage'
```

# What's wrong with this RSA example?

```
message = Integer('squeamishossifrage',base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N
sage: Integer(c^(1/3)).str(base=35)
'squeamishossifrage'
```

The message is small:  $message^3 < N$ , so the modular reduction does nothing.

```
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
```

```
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
sage: int(c^(1/3))==message
False
```

```
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
```

This is a stereotyped message. We might be able to guess the format.

```
\label{eq:normalized}  \mbox{$\mathbb{N}$ = $random\_prime(2^150)$} \\  \mbox{$message = Integer('thepasswordfortodayisswordfish',base=35)$} \\  \mbox{$c = message^3 \% N$}
```

a = Integer('thepasswordfortodayis00000000',base=35)

```
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
a = Integer('thepasswordfortodayis00000000',base=35)
X = Integer('xxxxxxxxxx',base=35)
M = matrix([[X^3, 3*X^2*a, 3*X*a^2, a^3-c],
            [0.N*X^2.0.0], [0.0.N*X.0], [0.0.0.N]])
```

```
N = random_prime(2^150) * random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
a = Integer('thepasswordfortodayis00000000',base=35)
X = Integer('xxxxxxxxxx',base=35)
M = matrix([[X^3, 3*X^2*a, 3*X*a^2, a^3-c],
            [0.N*X^2.0.0], [0.0.N*X.0], [0.0.0.N]])
B = M.LLL()
Q = B[0][0]*x^3/X^3+B[0][1]*x^2/X^2+B[0][2]*x/X+B[0][3]
```

```
N = random_prime(2^150) * random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
a = Integer('thepasswordfortodayis00000000',base=35)
X = Integer('xxxxxxxxxx',base=35)
M = matrix([[X^3, 3*X^2*a, 3*X*a^2, a^3-c],
            [0.N*X^2.0.0], [0.0.N*X.0], [0.0.0.N]])
B = M.LLL()
Q = B[0][0]*x^3/X^3+B[0][1]*x^2/X^2+B[0][2]*x/X+B[0][3]
sage: Q.roots(ring=ZZ)[0][0].str(base=35)
'swordfish'
```

# What is going on? Coppersmith's method.

1. I wrote down a polynomial  $f(x) = (a+x)^3 - c$  that has a pretty small root

$$f(swordfish) \equiv 0 \mod N$$

2. I construct a lattice of polynomials that vanish mod N:

$$\begin{bmatrix} 1 & 3a & 3a^2 & a^3 - c \\ 0 & N & 0 & 0 \\ 0 & 0 & N & 0 \\ 0 & 0 & 0 & N \end{bmatrix}$$

- 3. I called the LLL algorithm to find a short vector.
- 4. My solution swordfish was a root of the corresponding "small" polynomial.

# Countermeasures against Coppersmith padding attacks

- Don't use RSA.
- ▶ If you must use RSA, use a proper padding scheme.
- ▶ If you must use RSA, don't use e < 65537.

- Introduced by Hoffstein, Pipher, and Silverman in 1998.
- Presented as an alternative to RSA and ECC; higher speed but larger key size & ciphertext.
- ▶ Good amount of research into attacks during last 20 years.
  - ▶ NTRU signature scheme had a bit of a bumpy ride.

# Silverman, Jan 2015 (NTRU and Lattice-Based Crypto)

Lattice-Based Digital Signatures

27

#### A Signature Scheme Disaster

"Luckily the crypto community was pretty for giving about this mishap."  $\,$ 



- ▶ Introduced by Hoffstein, Pipher, and Silverman in 1998.
- Presented as an alternative to RSA and ECC; higher speed but larger key size & ciphertext.
- ▶ Good amount of research into attacks during last 20 years.
  - ▶ NTRU signature scheme had a bit of a bumpy ride.

- ▶ Introduced by Hoffstein, Pipher, and Silverman in 1998.
- Presented as an alternative to RSA and ECC; higher speed but larger key size & ciphertext.
- ▶ Good amount of research into attacks during last 20 years.
  - ▶ NTRU signature scheme had a bit of a bumpy ride.
  - NTRU encryption held up after first change of parameters.
- ▶ Far less research into efficient implementation and secure usage

- ▶ Introduced by Hoffstein, Pipher, and Silverman in 1998.
- Presented as an alternative to RSA and ECC; higher speed but larger key size & ciphertext.
- ▶ Good amount of research into attacks during last 20 years.
  - NTRU signature scheme had a bit of a bumpy ride.
  - NTRU encryption held up after first change of parameters.
- ► Far less research into efficient implementation and secure usage
  - why invest research effort into patented scheme...
- NTRU patent finally expired now.

#### NTRU operations

NTRU works with polynomials over the integers of degree less than some system parameter 250 < n < 2500.

$$R = \{a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} | a_i \in \mathbb{Z}\}.$$

We add component wise

$$(a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}) + (b_0 + b_1x + b_2x^2 + \dots + b_{n-1}x^{n-1}) =$$

$$(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_{n-1} + b_{n-1})x^{n-1}$$

We also define some form of multiplication

$$(a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}) * (b_0 + b_1x + b_2x^2 + \dots + b_{n-1}x^{n-1}) = (a_0b_0 + a_1b_{n-1} + a_2b_{n-2} + \dots + a_{n-1}b_1) + (a_0b_1 + a_1b_0 + a_2b_{n-1} + \dots + a_{n-1}b_2)x + \dots + (a_0b_{n-1} + a_1b_{n-2} + a_2b_{n-3} + \dots + a_{n-1}b_0)x^{n-1}$$

which stays within R. Operation \* called cyclic convolution.

# NTRU operations (same slide in math)

NTRU works with polynomials over the integers of degree less than some system parameter 250 < n < 2500.

$$R=\mathbb{Z}[x]/(x^n-1).$$

We add component wise

$$\sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} (a_i + b_i) x^i.$$

We also define some form of multiplication

$$\sum_{i=0}^{n-1} a_i x^i * \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} a_i x^i \cdot \sum_{i=0}^{n-1} b_i x^i \bmod (x^n - 1).$$

Regular multiplication in R.

sage: Zx.<x> = ZZ[]

sage:

sage: Zx.<x> = ZZ[]
sage: f = Zx([3,1,4])
sage:

```
sage: Zx.<x> = ZZ[]
sage: f = Zx([3,1,4])
sage: f
4*x^2 + x + 3
```

sage:

```
sage: Zx.<x> = ZZ[]
```

sage: 
$$f = Zx([3,1,4])$$

sage: f

$$4*x^2 + x + 3$$

sage: f\*x

$$4*x^3 + x^2 + 3*x$$

sage:

```
sage: Zx.<x> = ZZ[]
sage: f = Zx([3,1,4])
sage: f
4*x^2 + x + 3
sage: f*x
4*x^3 + x^2 + 3*x
sage: g = Zx([2,7,1])
sage: g
x^2 + 7*x + 2
sage:
```

```
sage: Zx.<x> = ZZ[]
sage: f = Zx([3,1,4])
sage: f
4*x^2 + x + 3
sage: f*x
4*x^3 + x^2 + 3*x
sage: g = Zx([2,7,1])
sage: g
x^2 + 7*x + 2
sage: f*g
4*x^4 + 29*x^3 + 18*x^2 + 23*x + 6
sage:
```

```
sage: def convolution(f,g):
....: return (f * g) % (x^n-1)
....:
sage: n = 3
sage:
```

```
sage: def convolution(f,g):
....:     return (f * g) % (x^n-1)
....:
sage: n = 3
sage: f
4*x^2 + x + 3
sage:
```

```
sage: def convolution(f,g):
....:          return (f * g) % (x^n-1)
....:
sage: n = 3
sage: f
4*x^2 + x + 3
sage: convolution(f,x)
x^2 + 3*x + 4
```

```
sage: def convolution(f,g):
....: return (f * g) % (x^n-1)
. . . . :
sage: n = 3
sage: f
4*x^2 + x + 3
sage: convolution(f,x)
x^2 + 3*x + 4
sage: convolution(f,x^2)
3*x^2 + 4*x + 1
```

```
sage: def convolution(f,g):
....: return (f * g) % (x^n-1)
. . . . :
sage: n = 3
sage: f
4*x^2 + x + 3
sage: convolution(f,x)
x^2 + 3*x + 4
sage: convolution(f,x^2)
3*x^2 + 4*x + 1
sage: f*g
4*x^4 + 29*x^3 + 18*x^2 + 23*x + 6
sage: convolution(f,g)
18*x^2 + 27*x + 35
sage:
```

Alternative: Use R = Zx.quotient(x^n-1) to create  $R = \mathbb{Z}[x]/(x^n-1)$ .

### More NTRU parameters

- ▶ NTRU specifies integer *n* (as above).
- ► Integer q, typically a power of 2. In any case, q must not be multiple of 3.
- ► Some computations reduce each polynomial coefficient modulo *q*. We use mod *q* on the polynomial.
- Same for modulo 3.

# More NTRU parameters

- ▶ NTRU specifies integer *n* (as above).
- ► Integer q, typically a power of 2.
  In any case, q must not be multiple of 3.
- Some computations reduce each polynomial coefficient modulo q. We use mod q on the polynomial.
- Same for modulo 3.
- ▶ Pick  $f, g \in R$  with coefficients in  $\{-1, 0, 1\}$ , almost all coefficients are zero (small fixed number are nonzero).
- ▶ Public key  $h \in R$  with  $h * f = 3g \mod q$ . If no such h exists, start over with new f.
- ▶ In math notation  $h = 3g/f \mod q$  in  $\mathbb{Z}[x]/(x^n 1)$ .
- ▶ Private key f and  $f_3$  with  $f * f_3 = 1 \mod 3$ .

# NTRU encryption (schoolbook version)

- ▶ Public key  $h \in R$  with  $h * f = 3g \mod q$ .
- ▶ Encryption of message  $m \in R$ , coefficients in  $\{-1, 0, 1\}$ :
  - ▶ Pick random  $r \in R$ , with coefficients in  $\{-1,0,1\}$ , almost all coefficients are zero (small fixed number are nonzero).
  - Compute

$$c = r * h + m \bmod q.$$

- Send ciphertext c.
- ▶ Decryption of  $c \in R_a$ :
  - Compute

$$a = f * c = f * (r * h + m) = r * 3g + f * m \mod q$$
  
using  $h * f = 3g \mod a$ .

- ▶ Move all coefficients of a to [-q/2, q/2].
- ▶ If everything is small enough then a equals r \* 3g + f \* m in R and

$$m = a * f_3 \mod 3$$
,

using  $f * f_3 = 1 \mod 3$ .

```
sage: n = 7
sage: d = 5
sage: q = 256
sage: f = randomdpoly()
sage: f
```

 $-x^4 + x^3 + x^2 - x + 1$ 

```
sage: n = 7
sage: d = 5
sage: q = 256
sage: f = randomdpoly()
sage: f
-x^4 + x^3 + x^2 - x + 1
sage: f3 = invertmodprime(f,3)
sage: f3
x^6 + 2*x^4 + x
sage:
```

```
sage: n = 7
sage: d = 5
sage: q = 256
sage: f = randomdpoly()
sage: f
-x^4 + x^3 + x^2 - x + 1
sage: f3 = invertmodprime(f,3)
sage: f3
x^6 + 2*x^4 + x
sage: convolution(f,f3)
3*x^6 - 3*x^5 + 3*x^4 + 1
sage:
```

```
sage: fq = invertmodpowerof2(f,q)
```

sage: convolution(f,fq)

 $-256*x^6 + 256*x^4 - 256*x^2 + 257$ 

sage: fq = invertmodpowerof2(f,q)

sage: convolution(f,fq)

 $-256*x^6 + 256*x^4 - 256*x^2 + 257$ 

sage: g = randomdpoly()

```
sage: fq = invertmodpowerof2(f,q)
sage: convolution(f,fq)
-256*x^6 + 256*x^4 - 256*x^2 + 257
sage: g = randomdpoly()
sage: h = (3 * convolution(fq,g)) % q
sage: h
174*x^6 + 118*x^5 + 162*x^4 + 108*x^3 - 186*x^2 + 134*x + 5
sage:
```

```
sage: fq = invertmodpowerof2(f,q)
sage: convolution(f,fq)
-256*x^6 + 256*x^4 - 256*x^2 + 257
sage: g = randomdpoly()
sage: h = (3 * convolution(fq,g)) % q
sage: h
174*x^6 + 118*x^5 + 162*x^4 + 108*x^3 - 186*x^2 + 134*x + 5
sage: h = balancedmod(3 * convolution(fq,g),q)
sage: h
-82*x^6 + 118*x^5 - 94*x^4 + 108*x^3 + 70*x^2 - 122*x + 5
sage:
```

```
sage: fq = invertmodpowerof2(f,q)
sage: convolution(f,fq)
-256*x^6 + 256*x^4 - 256*x^2 + 257
sage: g = randomdpoly()
sage: h = (3 * convolution(fq,g)) % q
sage: h
174*x^6 + 118*x^5 + 162*x^4 + 108*x^3 - 186*x^2 + 134*x + 5
sage: h = balancedmod(3 * convolution(fq,g),q)
sage: h
-82*x^6 + 118*x^5 - 94*x^4 + 108*x^3 + 70*x^2 - 122*x + 5
sage: balancedmod(convolution(f,h),q)
-3*x^4 + 3*x^3 - 3*x^2 + 3*x + 3
sage: 3 * g
-3*x^4 + 3*x^3 - 3*x^2 + 3*x + 3
sage:
```

sage: m = randommessage()

sage: m

 $-x^6 - x^4 + x^2 + 1$ 

```
sage: m = randommessage()
sage: m
-x^6 - x^4 + x^2 + 1
sage: r = randomdpoly()
sage: c = balancedmod(convolution(h,r) + m,q)
sage: c
-66*x^6 + 37*x^5 + 115*x^4 - 15*x^3 - 6*x^2 - 89*x + 27
sage:
```

```
sage: m = randommessage()
sage: m
-x^6 - x^4 + x^2 + 1
sage: r = randomdpoly()
sage: c = balancedmod(convolution(h,r) + m,q)
sage: c
-66*x^6 + 37*x^5 + 115*x^4 - 15*x^3 - 6*x^2 - 89*x + 27
sage: a = balancedmod(convolution(f,c),q)
sage: a
3*x^6 - 10*x^5 + 8*x^4 - 5*x^3 + 7*x^2 - 4*x + 4
sage: 3*convolution(g,r) + convolution(f,m)
3*x^6 - 10*x^5 + 8*x^4 - 5*x^3 + 7*x^2 - 4*x + 4
sage:
```

```
sage: m = randommessage()
sage: m
-x^6 - x^4 + x^2 + 1
sage: r = randomdpoly()
sage: c = balancedmod(convolution(h,r) + m,q)
sage: c
-66*x^6 + 37*x^5 + 115*x^4 - 15*x^3 - 6*x^2 - 89*x + 27
sage: a = balancedmod(convolution(f,c),q)
sage: a
3*x^6 - 10*x^5 + 8*x^4 - 5*x^3 + 7*x^2 - 4*x + 4
sage: 3*convolution(g,r) + convolution(f,m)
3*x^6 - 10*x^5 + 8*x^4 - 5*x^3 + 7*x^2 - 4*x + 4
sage: balancedmod(convolution(a.f3).3)
-x^6 - x^4 + x^2 + 1
sage:
```

Didn't your mom tell you not to mix mod p and mod q?

# Decryption failures

#### Decryption of c wants that

$$a = f * c = r * 3g + f * m \mod q,$$

has the integer factor 3 in the first part, even after reduction modulo q.

This works if the computed a equals r \* 3g + f \* m in R, i.e., without reduction modulo q.

This works if everything is small enough compared to q.

For d non-zero coefficients in f and r the maximum coefficient of r \* 3g + f \* m is

$$3d + d$$
,

and typically much smaller.

Can choose q such that q/2 > 4d – or hope for the best and expect coefficients not to collude.

# Breaking NTRU with lattices

#### NTRU - translation to lattices

- ▶ Public key h with  $h * f = 3g \mod q$ .
- ► Can see this as lattice with basis matrix  $B = \begin{pmatrix} q I_n & 0 \\ H & I_n \end{pmatrix}$ , where H corresponds to multiplication \* by h/3 in R.
- So

$$((1,0,0,\ldots,0),(3,0,0,\ldots,0))\begin{pmatrix} q I_n & 0 \\ H & I_n \end{pmatrix}$$
  
=  $((q,0,0,\ldots,0)+(h_0,h_1,\ldots,h_{n-1}),(3,0,0,\ldots,0))).$ 

#### NTRU - translation to lattices

- ▶ Public key h with  $h * f = 3g \mod q$ .
- ► Can see this as lattice with basis matrix  $B = \begin{pmatrix} q I_n & 0 \\ H & I_n \end{pmatrix}$ , where H corresponds to multiplication \* by h/3 in R.
- So

$$((1,0,0,\ldots,0),(3,0,0,\ldots,0))\begin{pmatrix} q I_n & 0 \\ H & I_n \end{pmatrix}$$
  
=  $((q,0,0,\ldots,0)+(h_0,h_1,\ldots,h_{n-1}),(3,0,0,\ldots,0))).$ 

 $\triangleright$  (g, f) is a short vector in the lattice as result of

$$(k, f)B = (kq + f * h/3, f) = (g, f)$$

for some  $k \in R$  (from  $h * f = 3g \mod q$ , i.e., h \* f = 3g + 3kq).

sage: Integers(q)(1/3)

171

sage: Integers(q)(1/3)

171

sage: h3 = (171\*h)%q

sage: h3

 $58*x^6 + 210*x^5 + 54*x^4 + 36*x^3 + 194*x^2 + 130*x + 87$ 

sage: Integers(q)(1/3)

171

sage: h3 = (171\*h)%q

sage: h3

 $58*x^6 + 210*x^5 + 54*x^4 + 36*x^3 + 194*x^2 + 130*x + 87$ 

sage: convolution(h3,x)

 $210*x^6 + 54*x^5 + 36*x^4 + 194*x^3 + 130*x^2 + 87*x + 58$ 

```
sage: Integers(q)(1/3)
171
sage: h3 = (171*h)%q
sage: h3
58*x^6 + 210*x^5 + 54*x^4 + 36*x^3 + 194*x^2 + 130*x + 87
sage: convolution(h3.x)
210*x^6 + 54*x^5 + 36*x^4 + 194*x^3 + 130*x^2 + 87*x + 58
sage: convolution(h3,x^2)
54*x^6 + 36*x^5 + 194*x^4 + 130*x^3 + 87*x^2 + 58*x + 210
sage: convolution(h3,x^3)
36*x^6 + 194*x^5 + 130*x^4 + 87*x^3 + 58*x^2 + 210*x + 54
sage: convolution(h3,x^4)
194*x^6 + 130*x^5 + 87*x^4 + 58*x^3 + 210*x^2 + 54*x + 36
sage: convolution(h3,x^5)
130*x^6 + 87*x^5 + 58*x^4 + 210*x^3 + 54*x^2 + 36*x + 194
sage: convolution(h3,x^6)
87*x^6 + 58*x^5 + 210*x^4 + 54*x^3 + 36*x^2 + 194*x + 130
sage:
```

```
sage: M = matrix(2*n)
sage: for i in range(n): M[i,i] = q
sage: for i in range(n,2*n): M[i,i] = 1
sage: for i in range(n):
....: for j in range(n):
....: M[i+n,j] = convolution(h3,x^i)[j]
....:
sage:
```

| sage: M |     |     |     |     |     |     |     |   |   |   |   |   |   |    |
|---------|-----|-----|-----|-----|-----|-----|-----|---|---|---|---|---|---|----|
| [2      | 256 | 0   | 0   | 0   | 0   | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 0   | 256 | 0   | 0   | 0   | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 0   | 0   | 256 | 0   | 0   | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 0   | 0   | 0   | 256 | 0   | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 0   | 0   | 0   | 0   | 256 | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 0   | 0   | 0   | 0   | 0   | 256 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 0   | 0   | 0   | 0   | 0   | 0   | 256 | 0 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 87  | 130 | 194 | 36  | 54  | 210 | 58  | 1 | 0 | 0 | 0 | 0 | 0 | 0] |
| [       | 58  | 87  | 130 | 194 | 36  | 54  | 210 | 0 | 1 | 0 | 0 | 0 | 0 | 0] |
| [2      | 210 | 58  | 87  | 130 | 194 | 36  | 54  | 0 | 0 | 1 | 0 | 0 | 0 | 0] |
| [       | 54  | 210 | 58  | 87  | 130 | 194 | 36  | 0 | 0 | 0 | 1 | 0 | 0 | 0] |
| [       | 36  | 54  | 210 | 58  | 87  | 130 | 194 | 0 | 0 | 0 | 0 | 1 | 0 | 0] |
| [1      | 94  | 36  | 54  | 210 | 58  | 87  | 130 | 0 | 0 | 0 | 0 | 0 | 1 | 0] |
| [1      | .30 | 194 | 36  | 54  | 210 | 58  | 87  | 0 | 0 | 0 | 0 | 0 | 0 | 1] |
| sa      | ge: | :   |     |     |     |     |     |   |   |   |   |   |   |    |

```
sage: M.LLL()
                                                                01
Γ -1
                -1
                               0
                                  -1
                               0
                                                                07
   0
           -1
                    -1
                                    0
                                       -1
                                             1
                                                 -1
       -1
            1
                -1
                      0
                          0
                                   -1
                                         1
                                                 -1
                                                      0
                                                                17
  -1
                      0
                                                           1
                                                               -1]
           -1
                 0
                                            -1
                                                  0
                                                      0
                                                                17
            0
                              -1
                                       -1
                                             \cap
                                                  0
       -1
                                                          -1
                                                                17
                    -1
                              -1
                                    0
                                         0
                                                               -17
                                                 -1

√ 39 −28

           19
                12
                     11
                        -48
                              -4
                                  47
                                        6 -31 -20 -19
                                                          36 -187
  -5 -34 -14
                -3
                      9 - 39 - 43
                                  47
                                       54
                                            22
                                                    -17
                                                          19
           28 -19 -12 -11
                              48
                                  18 -47
                                            -6
                                                31
                                                     20
                                                          19 -367
   4 -39
     -40 -43
                -5 -32 -13
                              -1 -17
                                       20
                                             1
                                                 47
                                                     54
                                                          23
                                                                3]
                                                     47
  -1
          -40 -43
                    -5 -32 -13
                                    3 - 17
                                            20
                                                  1
                                                          54
                                                               23]
                                               -18
Γ 14
        3
           -9
                40
                    43
                          4
                              32
                                 -22
                                       -3
                                            17
                                                     -1
                                                         -48 -54
                    48
                                       31
                                                 19
[ 28 -19 -12 -11
                          4 -39
                                   -6
                                            20
                                                    -36
                                                          18 -47]
sage:
```

sage: M.LLL()[0][n:]
(-1, 1, -1, -1, 1, 0, 0)
sage:

```
sage: M.LLL()[0][n:]
(-1, 1, -1, -1, 1, 0, 0)
sage: Zx(list(_))
x^4 - x^3 - x^2 + x - 1
sage:
```

```
sage: M.LLL()[0][n:]
(-1, 1, -1, -1, 1, 0, 0)
sage: Zx(list(_))
x^4 - x^3 - x^2 + x - 1
sage: f
-x^4 + x^3 + x^2 - x + 1
sage:
```

Conclusion: This attack breaks NTRU with n = 7, d = 5, q = 256.

```
sage: M.LLL()[0][n:]
(-1, 1, -1, -1, 1, 0, 0)
sage: Zx(list(_))
x^4 - x^3 - x^2 + x - 1
sage: f
-x^4 + x^3 + x^2 - x + 1
sage:
```

Conclusion: This attack breaks NTRU with n = 7, d = 5, q = 256.

The secrets were too small for security anyway.

Scale up: NTRU with n = 150, d = 101,  $q = 2^{32}$ . Now  $>2^{200}$  choices of f.

```
sage: M.LLL()[0][n:]
(-1, 1, -1, -1, 1, 0, 0)
sage: Zx(list(_))
x^4 - x^3 - x^2 + x - 1
sage: f
-x^4 + x^3 + x^2 - x + 1
sage:
```

Conclusion: This attack breaks NTRU with n = 7, d = 5, q = 256.

The secrets were too small for security anyway.

Scale up: NTRU with n = 150, d = 101,  $q = 2^{32}$ . Now  $>2^{200}$  choices of f.

Try running same lattice attack against a random public key. Instead of *f*, attacker finds the following polynomial . . .

```
v^108 + v^103 - 2*v^102 - 2*v^101 - v^100 - v^99 - 2*v^98 - 3*v^97 +
4*x^96 - x^95 - 5*x^94 - 3*x^93 + 8*x^92 + 5*x^91 + 10*x^90 - 2*x^89 +
5*x^88 - 7*x^87 - x^86 + 6*x^85 - 11*x^84 + 4*x^83 + 14*x^82 - 13*x^81 + 14*x^85 + 1
2*x^80 + 3*x^79 - x^78 + 3*x^77 - 5*x^76 + 7*x^74 - 8*x^73 - 23*x^72 -
 15*x^71 - 23*x^70 + 33*x^69 - 11*x^68 - 22*x^67 - 20*x^66 + 17*x^65 -
24*x^64 - 9*x^63 - 21*x^62 + 27*x^61 - 22*x^59 - 15*x^58 - 2*x^57 - x^56
+ x^55 + x^54 + 6*x^53 + 3*x^52 - 8*x^51 + x^50 - 12*x^49 + 15*x^48 -
5*x^45 + 13*x^44 - 12*x^43 + 9*x^42 + 23*x^41 - 45*x^40 + 25*x^39 -
 17*x^38 + 18*x^37 + 2*x^36 - 15*x^35 + 5*x^34 + 9*x^33 - 31*x^32 +
 10*x^31 + 16*x^30 - 38*x^29 + 36*x^28 + 5*x^27 + 3*x^26 - 15*x^25 +
 18*x^{9}4 + 17*x^{9}3 - 6*x^{9} + 18*x^{9}1 - 9*x^{9}0 + 5*x^{1}9 - 14*x^{1}8 +
 17*x^17 - 17*x^16 + 20*x^15 + 26*x^14 - 16*x^13 - x^12 + 21*x^11 +
25*x^10 - 21*x^9 + 8*x^8 + 23*x^7 + 8*x^6 - 38*x^5 + 14*x^4 - 11*x^3 + 25*x^10 - 21*x^9 + 8*x^10 - 21*x^9 + 8*x^10 - 21*x^9 + 8*x^10 - 21*x^10 + 8*x^10 
 10*x^2 - 10*x + 4
```

This isn't f, but it is small enough to successfully decrypt messages.

```
x^108 + x^103 - 2*x^102 - 2*x^101 - x^100 - x^99 - 2*x^98 - 3*x^97 +
4*x^96 - x^95 - 5*x^94 - 3*x^93 + 8*x^92 + 5*x^91 + 10*x^90 - 2*x^89 +
5*x^88 - 7*x^87 - x^86 + 6*x^85 - 11*x^84 + 4*x^83 + 14*x^82 - 13*x^81 + 14*x^85 + 1
2*x^80 + 3*x^79 - x^78 + 3*x^77 - 5*x^76 + 7*x^74 - 8*x^73 - 23*x^72 -
 15*x^71 - 23*x^70 + 33*x^69 - 11*x^68 - 22*x^67 - 20*x^66 + 17*x^65 -
24*x^64 - 9*x^63 - 21*x^62 + 27*x^61 - 22*x^59 - 15*x^58 - 2*x^57 - x^56
+ x^55 + x^54 + 6*x^53 + 3*x^52 - 8*x^51 + x^50 - 12*x^49 + 15*x^48 -
5*x^45 + 13*x^44 - 12*x^43 + 9*x^42 + 23*x^41 - 45*x^40 + 25*x^39 -
 17*x^38 + 18*x^37 + 2*x^36 - 15*x^35 + 5*x^34 + 9*x^33 - 31*x^32 +
 10*x^31 + 16*x^30 - 38*x^29 + 36*x^28 + 5*x^27 + 3*x^26 - 15*x^25 +
 18*x^{9}4 + 17*x^{9}3 - 6*x^{9} + 18*x^{9}1 - 9*x^{9}0 + 5*x^{1}9 - 14*x^{1}8 +
 17*x^17 - 17*x^16 + 20*x^15 + 26*x^14 - 16*x^13 - x^12 + 21*x^11 +
25*x^10 - 21*x^9 + 8*x^8 + 23*x^7 + 8*x^6 - 38*x^5 + 14*x^4 - 11*x^3 + 25*x^10 - 21*x^9 + 8*x^10 - 21*x^9 + 8*x^10 - 21*x^9 + 8*x^10 - 21*x^10 + 8*x^10 
 10*x^2 - 10*x + 4
```

This isn't f, but it is small enough to successfully decrypt messages. For better security, decrease q, and increase n.

#### Attacks on NTRU

#### Mathematical attacks

- ► LLL works if q is too large compared to n and d; accept some decryption failures to avoid LLL?
- ▶ More powerful lattice-basis reduction (see next part), choose large enough *n* to avoid.
- ▶ Meet-in-the-middle attack.
- ▶ Hybrid attack, combining both.
- ▶ Attacks using the structure of *R*, incl. quantum attacks.

Crypto attacks (certainly don't use schoolbook version; best use some KEM)

- Evaluation-at-1 attack;
- Chosen-ciphertext attacks;
- Decryption-failure attacks;
- Complicated padding systems.

### LLL is just the beginning

#### Many more attacks

- Block Korkine-Zolotarev (BKZ)
  - ▶ Assumes we can solve SVP exactly in small dimension *m*.
  - Projects m vectors to smaller space, solves SVP there, lifts back.
  - Chains these in a way and interleaves with LLL to obtain short basis.
  - Quality depends heavily on m.
- Enumeration algorithms
  - Search for absolutely shortest, with some smart ideas.
  - Finds shortest vector.
  - Can balance time and quality of basis by stopping early/pruning.
- Sieving algorithms
  - ► Asymptotically faster than enumeration; better than BKZ.
  - Needs more space.
  - ▶ No guarantee that short vector found is shortest.
  - Balances time and quality of basis.



▶ Pick one direction, here  $b_1$ .



- ▶ Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.



- ▶ Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.



- ightharpoonup Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.
- Make a grid parallel to b₁ spaced by the length of B<sub>2</sub>\*.
- ▶ Consider points within the sphere of radius  $||b_1||$ .



- $\triangleright$  Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.
- Make a grid parallel to b₁ spaced by the length of B₂\*.
- ► Consider points within the sphere of radius ||b<sub>1</sub>||.
- ► For each multiple of ||b<sub>2</sub>\*|| find all lattice points on that line.

- $\triangleright$  Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.
- Make a grid parallel to b₁ spaced by the length of B<sub>2</sub>\*.
- ► Consider points within the sphere of radius ||b<sub>1</sub>||.
- ► For each multiple of ||b<sub>2</sub>\*|| find all lattice points on that line.

- $\triangleright$  Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.
- Make a grid parallel to b₁ spaced by the length of B<sub>2</sub>\*.
- ► Consider points within the sphere of radius ||b<sub>1</sub>||.
- ► For each multiple of ||b<sub>2</sub>\*|| find all lattice points on that line.



- $\triangleright$  Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.
- Make a grid parallel to b₁ spaced by the length of B<sub>2</sub>\*.
- ► Consider points within the sphere of radius ||b<sub>1</sub>||.
- ► For each multiple of ||b<sub>2</sub>\*|| find all lattice points on that line.



- ightharpoonup Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.
- Make a grid parallel to b₁ spaced by the length of B<sub>2</sub>\*.
- ► Consider points within the sphere of radius ||b<sub>1</sub>||.
- ► For each multiple of ||b<sub>2</sub>\*|| find all lattice points on that line.
- ► Output the shortest vector in the sphere.



- ▶ Pick one direction, here  $b_1$ .
- Consider directions orthogonal to it.
- Project the other vector(s) on this orthogonal part.
- Make a grid parallel to b₁ spaced by the length of B<sub>2</sub>\*.
- ► Consider points within the sphere of radius  $||b_1||$ .
- ► For each multiple of ||b<sub>2</sub>\*|| find all lattice points on that line.
- ► Output the shortest vector in the sphere.



▶ Follow the steps for enumeration.



- ▶ Follow the steps for enumeration.
- ▶ Restrict the multiples of  $b_2^*$ .



- ▶ Follow the steps for enumeration.
- ▶ Restrict the multiples of  $b_2^*$ .
- ► Continue as in enumeration



- ▶ Follow the steps for enumeration.
- ▶ Restrict the multiples of  $b_2^*$ .
- ► Continue as in enumeration



- ▶ Follow the steps for enumeration.
- ▶ Restrict the multiples of  $b_2^*$ .
- ► Continue as in enumeration



- ▶ Follow the steps for enumeration.
- ▶ Restrict the multiples of  $b_2^*$ .
- ► Continue as in enumeration



- ▶ Follow the steps for enumeration.
- ▶ Restrict the multiples of  $b_2^*$ .
- ► Continue as in enumeration
- Output the shortest vector in the sphere.



- ▶ Follow the steps for enumeration.
- ▶ Restrict the multiples of  $b_2^*$ .
- ► Continue as in enumeration
- Output the shortest vector in the sphere.
- Benefit is that search space gets smaller; usually shortest vector is in pruned space.



#### You can try this at home!

- Every NIST submission has a reference implementation.
  - https://csrc.nist.gov/projects/post-quantum-cryptography/ round-1-submissions
  - ▶ (More than 90% of them have survived a week of cryptanalysis!)
- Contribute to the Open Quantum Safe project:
  - https://github.com/open-quantum-safe/
  - ► Caveat: Schemes might become obsolete due to cryptanalytic advances.
- ► Break stuff! Analyze proposals new and old, check the implementations. This needs more eyes, hands, computer power, . . .
- ▶ If you feel like turning on post quantum cryptography in your own projects, we would recommend a hybrid approach with ECC. (Like what Google did with CECPQ1.)