УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

$\mathbf{Kypcobas}$ работа $\mathbf{\mathsf{\mathsf{Yactb}}}\ 1$

Вариант 99

Выполнил

Снагин Станислав Максимович P3115

Преподаватель

Поляков Владимир Иванович

Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $0 < |x_1x_2x_4 - x_3x_5| \le 2$ и неопределенное значение при $|x_1x_2x_4 - x_3x_5| = 4$

Таблица истинности

№	x_1	x_2	x_3	x_4	x_5	$x_1x_2x_4$	x_3x_5	$x_1 x_2 x_4$	x_3x_5	f
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0	1	1
2	0	0	0	1	0	1	0	1	0	1
3	0	0	0	1	1	1	1	1	1	0
4	0	0	1	0	0	0	2	0	2	1
5	0	0	1	0	1	0	3	0	3	0
6	0	0	1	1	0	1	2	1	2	1
7	0	0	1	1	1	1	3	1	3	1
8	0	1	0	0	0	2	0	2	0	1
9	0	1	0	0	1	2	1	2	1	1
10	0	1	0	1	0	3	0	3	0	0
11	0	1	0	1	1	3	1	3	1	1
12	0	1	1	0	0	2	2	2	2	0
13	0	1	1	0	1	2	3	2	3	1
14	0	1	1	1	0	3	2	3	2	1
15	0	1	1	1	1	3	3	3	3	0
16	1	0	0	0	0	4	0	4	0	d
17	1	0	0	0	1	4	1	4	1	0
18	1	0	0	1	0	5	0	5	0	0
19	1	0	0	1	1	5	1	5	1	d
20	1	0	1	0	0	4	2	4	2	1
21	1	0	1	0	1	4	3	4	3	1
22	1	0	1	1	0	5	2	5	2	0
23	1	0	1	1	1	5	3	5	3	1
24	1	1	0	0	0	6	0	6	0	0
25	1	1	0	0	1	6	1	6	1	0
26	1	1	0	1	0	7	0	7	0	0
27	1	1	0	1	1	7	1	7	1	0
28	1	1	1	0	0	6	2	6	2	d
29	1	1	1	0	1	6	3	6	3	0
30	1	1	1	1	0	7	2	7	2	0
31	1	1	1	1	1	7	3	7	3	d

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5}$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$ $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5)$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K^1	(f)	Z(f)
m_1	00001	√	m_4 - m_6	001X0	001X0
m_2	00010	\checkmark	m_2 - m_6	00X10	00X10
m_4	00100	\checkmark	m_8 - m_9	0100X	0100X
m_8	01000	\checkmark	m_1 - m_9	0X001	0X001
m_{16}	10000	\checkmark	m_{16} - m_{20}	10X00	10X00
m_6	00110	√	m_4 - m_{20}	X0100	X0100
m_9	01001	\checkmark	m_6 - m_7	0011X	0011X
m_{20}	10100	\checkmark	m_9 - m_{11}	010X1	010X1
m_7	00111	\checkmark	m_9 - m_{13}	01X01	01X01
m_{11}	01011	\checkmark	m_6 - m_{14}	0X110	0X110
m_{13}	01101	\checkmark	m_{20} - m_{21}	1010X	1010X
m_{14}	01110	\checkmark	m_{20} - m_{28}	1X100	1X100
m_{21}	10101	\checkmark	m_{21} - m_{23}	101X1	101X1
m_{19}	10011	\checkmark	m_{19} - m_{23}	10X11	10X11
m_{28}	11100	\checkmark	m_7 - m_{23}	X0111	X0111
m_{23}	10111	\checkmark	m_{23} - m_{31}	1X111	1X111
m_{31}	11111	√			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

Простые импликанты		0-кубы											
		ф	0	0	0	0	0	0	0	0	1	1	1
		ф	0	0	0	1	1	1	1	1	0	0	0
		φ	1	1	1		0	0	1	1	1	1	1
	0	1	0	1	1		0	1	0	1	0	0	1
	1	0	0	0	1		1	1	1		0	1	1
	1	2	4	6	7	8	9	11	13	14	20	21	23
A 001X0			X	X									
00X10		X		X									
0100X						X	X						
0X001	X						X						
B 10X00											X		
C X0100			X								X		
D 0011X				X	X								
010X1							Х	X					
01X01							Х		Х				
0X110				X						Х			
E 1010X											X	X	
F 1X100											X		
G 101X1												X	X
H 10X11													X
I X0111					X								X
J 1X111													X

Ядро покрытия:

$$T = \begin{cases} 0X001\\ 00X10\\ 0X110\\ 0100X\\ 010X1\\ 01X01 \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

Простые импликанты			0-кубы							
			0	1	1	1				
			0	0	0	0				
			1	1	1	1				
-		0	1	0	0	1				
		0	1	0	1	1				
				20	21	23				
A	001X0	X								
В	10X00			X						
С	X0100	X		X						
D	0011X		X							
Е	1010X			X	X					
F	1X100			X						
G	101X1				X	X				
Н	10X11					X				
Ι	X0111		X			X				
J	1X111					X				

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \lor C) \ (D \lor I) \ (B \lor C \lor E \lor F) \ (E \lor G) \ (G \lor H \lor I \lor J)$$

Приведем выражение в ДНФ:

 $Y = A \, E \, I \, \lor \, C \, D \, G \, \lor \, C \, E \, I \, \lor \, C \, G \, I \, \lor \, A \, B \, D \, G \, \lor \, A \, B \, G \, I \, \lor \, A \, D \, E \, G \, \lor \, A \, D \, E \, H \, \lor \, A \, D \, E \, J \, \lor \, A \, D \, F \, G \, \lor \, A \, F \, G \, I \, \lor \, C \, D \, E \, H \, \lor \, C \, D \, E \, J$

Возможны следующие покрытия:

$$C_{1} = \begin{cases} T \\ A \\ E \\ I \end{cases} = \begin{cases} 0X001 \\ 00X10 \\ 0100X \\ 0100X \\ 0100X \\ 0100X \\ 0101X0 \\ 1010X \\ X0111 \end{cases} \qquad C_{2} = \begin{cases} T \\ C \\ D \\ G \end{cases} = \begin{cases} 0X001 \\ 00X10 \\ 0100X \\ 0100X \\ 010X1 \\ 0100X \\ 1010X \\ 1011X1 \end{cases} \qquad C_{3} = \begin{cases} T \\ C \\ E \\ I \end{cases} = \begin{cases} 0X001 \\ 00X10 \\ 0X110 \\ 0100X \\ 0100X \\ 0101X \\ 101X01 \\ X0100 \\ 1010X \\ X0111 \end{cases}$$

$$S_{1}^{a} = 36 \qquad S_{2}^{a} = 36 \qquad S_{3}^{a} = 36 \\ S_{1}^{b} = 45 \qquad S_{3}^{a} = 45$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0X001\\ 0X110\\ 0X110\\ 0100X\\ 010X1\\ 01X01\\ 001X0\\ 1010X\\ X0111 \end{cases}$$

$$S^{a} = 36$$

$$S^{b} = 45$$

Этому покрытию соответствует следующая МДНФ:

 $f = \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \vee \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_2} \,$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \vee \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_2} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_2} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4}$

Определение МКНФ

$$f = (x_2 \lor x_3 \lor x_4 \lor x_5) \ (x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) \ (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \ (\overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) \ (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$$
$$(\overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_3}) \ (\overline{x_1} \lor \overline{x_4} \lor x_5) \ (\overline{x_1} \lor \overline{x_2})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee \overline{x_2} \, x_3 \, x_4 \vee \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \vee \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5} \vee \overline{x_1} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_4} \vee \overline{x_4} \vee \overline{x_5} \vee$$

Факторизация и декомпозиция МКНФ

$$f = (x_2 \vee x_3 \vee x_4 \vee x_5) (x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) (x_1 \vee x_2 \vee \overline{x_3} \vee x_4 \vee \overline{x_5}) (\overline{x_2} \vee x_3 \vee \overline{x_4} \vee x_5)$$

$$(\overline{x_2} \vee \overline{x_3} \vee x_4 \vee x_5) (\overline{x_2} \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5}) (\overline{x_1} \vee x_3) (\overline{x_1} \vee \overline{x_4} \vee x_5) (\overline{x_1} \vee \overline{x_2})$$

$$F = (\overline{x_1} \vee \overline{x_2} x_3) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3))$$

$$(x_1 \vee x_2 \vee \overline{x_3} \vee x_4 \vee \overline{x_5})$$

$$F = (\overline{x_1} \vee \varphi) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3)) (\overline{\varphi} \vee x_1 \vee x_4 \vee \overline{x_5})$$

$$F = (\overline{x_1} \vee \varphi) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3)) (\overline{\varphi} \vee x_1 \vee x_4 \vee \overline{x_5})$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3))$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3))$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3))$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3))$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5}))$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5}))$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) ((x_2 \vee \overline{x_3}) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee \overline{x_5}))$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) (\overline{x_2} \vee \overline{x_3}) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee \overline{x_5})$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) (\overline{x_2} \vee \overline{x_3}) (\overline{x_2} \vee \overline{x_3}) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee \overline{x_5})$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) (\overline{x_2} \vee \overline{x_3})$$

$$F = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) (\overline{x_2} \vee \overline{$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_1} \ (x_2 \ x_5 \ (\overline{x_3} \lor \overline{x_4}) \lor x_4 \ \overline{x_5} \ (\overline{x_2} \lor x_3) \lor \overline{x_3} \ \overline{x_4} \ (x_2 \lor x_5)) \lor \overline{x_2} \ x_3 \ (\overline{x_1} \ \overline{x_5} \lor x_1 \ \overline{x_4} \lor x_4 \ x_5) \quad (S_Q = 34, \tau = 5)$$

Схема по упрощенной МКНФ:

$$f = (\overline{x_1} \vee \overline{x_2} x_3) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3)) (x_2 \vee \overline{x_3}) \vee (x_4 \vee \overline{x_5}) (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1}} \overline{\overline{\varphi} \overline{x_4} \overline{x_5}} \overline{x_4} \overline{x_5} \overline{\varphi} \overline{\overline{x_4} x_5} \overline{\overline{x_2} x_3} \overline{\overline{x_2} x_3} \overline{\overline{x_1} \overline{x_5}} \overline{x_1} \overline{x_4} \overline{x_4} \overline{x_5}$$

$$(S_Q = 47, \tau = 10)$$

$$\varphi = x_2 \overline{x_3}$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1} \overline{\overline{x_2} x_3 \overline{x_4} \overline{x_5}} \overline{\overline{x_2} \overline{x_3}} \overline{\overline{x_2} x_3} \overline{\overline{x_4} \overline{x_5}} \overline{x_4 \overline{x_5}} \overline{x_4 \overline{x_5}} \overline{x_2} \overline{x_3} x_4 \overline{x_5} \overline{x_1} \overline{x_2} x_3 \overline{x_4} x_5 \quad (S_Q = 46, \tau = 7)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_1} \overline{x_2} \overline{x_5} \overline{x_3} \overline{x_4} \overline{x_4} \overline{x_5} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_2} \overline{x_5} \overline{x_2} \overline{x_5} \overline{x_2} \overline{x_5} \overline{x_1} \overline{x_5} \overline{x_1} \overline{x_4} \overline{x_4} \overline{x_5}$$

$$(S_Q = 52, \tau = 9)$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \frac{\overline{\overline{x_1}} \overline{x_2} \overline{x_3} \overline{\overline{x_2}} \overline{x_3} \overline{\overline{x_2}} \overline{x_3} \overline{\overline{x_4}} \overline{x_5} \overline{\overline{x_4}} \overline{x_5} \overline{\overline{x_4}} \overline{x_5} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_4}} \overline{x_5}}{\overline{x_1} \overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_4}} \overline{x_5}$$
 $(S_Q = 54, \tau = 9)$

