A Proportional Integral Controller-Enhanced Non-negative Latent Factor Analysis Model-Supplementary File

I. INTRODUCTION

This is the supplementary file for the paper entitled "A Proportional Integral Controller-Enhanced Non-negative Latent Factor Analysis Model". It mainly contains the tables and figures of experimental results.

II. SUPPLEMENTARY TABLES

TABLE S(I). The comparison results on total time cost (Secs), where o points out that PI-NLF is outperformed by its peer.

No.	Time	D1	D2	D3	D4	D5	D6	D 7	D8	OLoss/Win
PI-NLF	Time(RMSE)	$794.6_{\pm 8.2}$	484.4±4.3	$26.7_{\pm 0.4}$	$72.1_{\pm 2.3}$	$39.8_{\pm 0.3}$	$13.3_{\pm 0.3}$	$29.5_{\pm 0.2}$	$59.3_{\pm 1.2}$	_
	Time _(MAE)	712.1 _{±6.7}	442.3 _{±11.7}	24.2 _{±0.8}	64.7 _{±3.17}	54.4 _{±1.1}	14.5 _{±0.5}	22.2 _{±0.2}	53.6 _{±1.8}	
NLF	Time _(RMSE)	$1481.8_{\pm 75.3}$	$813.3_{\pm 37.4}$	$41.8_{\pm 1.1}$	$127.6_{\pm 5.6}$	$83.4_{\pm 1.7}$	$34.3_{\pm 1.1}$	$32.1_{\pm 0.3}$	$116.5_{\pm 2.1}$	0/16
	Time _(MAE)	1401.1±88.7	804.9 _{±66.8}	48.1 _{±1.5}	115.9 _{±3.7}	82.8 _{±0.9}	26.9 _{±0.4}	27.3 _{±0.2}	106.4 _{±0.9}	
PIDLF	$Time_{(RMSE)}$	$2531.7_{\pm 98.3}$	$1032.5_{\pm 107.6}$	$137.4_{\pm 2.5}$	$193.6_{\pm 4.2}$	$146.6_{\pm 2.3}$	$147.6_{\pm 1.7}$	$165.1_{\pm 5.6}$	$406.4_{\pm 5.5}$	0/16
	$Time_{(MAE)}$	$2337.6_{\pm 65.2}$	$1066.8_{\pm 97.8}$	$142.3_{\pm 3.1}$	$176.8_{\pm 5.6}$	$147.8_{\pm 1.4}$	$120.9_{\pm 2.1}$	$146.5_{\pm 3.2}$	$378.2_{\pm 6.2}$	
VAE	Time _(RMSE)	5722.2 _{±89.3}	632.0 _{±12.8}	$27.9_{\pm 0.9}$	632.2 _{±32.4}	61.4 _{±0.4}	28.2 _{±0.6}	33.2 _{±0.7}	127.3 _{±1.1}	0/16
	Time(MAE)	5831.7 _{±106.8}	$597.1_{\pm 21.5}$	$26.9_{\pm 0.5}$	597.1±28.6	$64.2_{\pm 0.8}$	$29.8_{\pm 1.1}$	$34.6_{\pm0.3}$	$126.7_{\pm 1.6}$	
SIF	Time _(RMSE)	8858.7 _{±99.4}	$56766.3_{\pm 325.1}$	$7582.3_{\pm 110.7}$	4594.2 _{±99.6}	$802.4_{\pm 12.1}$	$765.3_{\pm 11.2}$	1961.3 _{±33.9}	1487.5 _{±45.9}	0/16
	Time _(MAE)	8966.1 _{±125.7}	55128.1 _{±227.9}	$7471.8_{\pm 99.5}$	4722.5 _{±57.9}	794.2 _{±9.9}	$778.2_{\pm 15.1}$	1922.7 _{±48.9}	1422.8 _{±85.2}	
MetaMF	$Time_{(RMSE)}$	$8121.4_{\pm 229.2}$	$6511.5_{\pm 144.6}$	$236.5_{\pm 2.3}$	$529.4_{\pm 6.2}$	$375.1_{\pm 5.5}$	$224.9_{\pm 2.8}$	$446.4_{\pm 7.7}$	$785.8_{\pm 26.5}$	0/16
	Time _(MAE)	8004.2 _{±167.3}	6633.7 _{±132.8}	234.2 _{±2.9}	522.1 _{±8.8}	370.8±6.1	227.5±3.6	455.2±4.4	771.2±38.2	
LightGCN	$Time_{(RMSE)}$	$5264.1_{\pm 96.1}$	$2940.2_{\pm 69.2}$	$173.4_{\pm 5.7}$	$118.9_{\pm 4.1}$	$409.8_{\pm 3.8}$	$149.1_{\pm 2.2}$	$173.2_{\pm 4.5}$	$636.1_{\pm 12.3}$	0/16
	Time _(MAE)	5100.7 _{±88.7}	2998.8 _{±77.1}	171.5 _{±4.9}	120.5 _{±4.2}	416.6 _{±6.3}	142.4 _{±3.6}	175.6 _{±6.2}	622.7 _{±9.9}	
DGCN-HN	Time(RMSE)	$197924.1 {\scriptstyle \pm 511.4}$	$67741.6_{\pm 385.2}$	$150.9_{\pm 5.2}$	$1677.9 \scriptstyle{\pm 131.8}$	$2773.4_{\pm 111.9}$	$5400.8_{\pm 309.2}$	$645.5_{\pm 35.1}$	$327.3_{\pm 12.1}$	0/16
	Time _(MAE)	192205.4 _{±496.5}	86776.4 _{±578.2}	151.1 _{±4.3}	1814.6 _{±142.9}	2612.7 _{±142.5}	2427.1 _{±279.5}	302.6 _{±8.9}	363.8 _{±15.5}	
HMLET	$Time_{(RMSE)}$	$146128.8_{\pm 211.9}$		$15935.2_{\pm 366.2}$	$5923.5_{\pm 205.3}$	$4150.4_{\pm 156.7}$	$2296.2_{\pm 172.3}$	$2982.6 {\scriptstyle \pm 177.2}$	$6939.9_{\pm 366.7}$	0/16
	Time _(MAE)	138659.2±389.2	55165.3±677.5	16262.5±412.8	5183.1±99.6	4205.7 _{±205.2}	1649.2 _{±134.6}	2544.8±98.5	8238.1 _{±415.6}	
SGL	$Time_{(RMSE)}$	$96874.1_{\pm 488.7}$	$13357.8_{\pm 177.5}$	$3765.8_{\pm 125.6}$	$3621.8_{\pm 144.5}$	$966.4_{\pm 14.2}$	$856.6_{\pm 37.4}$	$1080.9_{\pm 77.5}$	$1978.5_{\pm 85.3}$	0/16
	Time _(MAE)	95005.2 _{±439.5}	13728.3 _{±210.9}	$3960.7_{\pm 77.3}$	$3477.9_{\pm 132.2}$	1041.9 _{±22.9}	229.4 _{±9.5}	996.5 _{±62.3}	2223.1 _{±99.7}	
MGDCF	$Time_{(RMSE)}$	$48336.2_{\pm 2.4}$	$21712.1_{\pm 4.3}$	$35.1_{\pm 0.6}$	$179.1_{\pm.1.1}$	$66.0_{\pm 0.8}$	$167.5_{\pm 3.2}$	$42.1_{\pm 0.2}$	$2725.4_{\pm 5.4}$	0/16
	Time _(MAE)	48336.2 _{±8.6}	22355.5±4.2	49.3 _{±0.4}	213.0 _{±2.1}	62.7 _{±1.2}	144.8 _{±4.1}	21.2±0.6	2831.0 _{±6.4}	
PopGo	$Time_{(RMSE)}$	$1026.4_{\pm 4.6}$	$1522.1_{\pm 6.2}$	$63.4_{\pm 0.8}$	$328.5_{\pm 3.2}$	$76.2_{\pm 2.8}$	$70.4_{\pm 1.6}$	$116.2_{\pm 2.1}$	$682.6_{\pm 7.6}$	0/16
	Time _(MAE)	$1320.3_{\pm 5.3}$	$1836.1_{\pm 7.7}$	82.8 _{±1.6}	153.1 _{±4.3}	$98.5_{\pm 2.3}$	$114.4_{\pm 1.9}$	119.8 _{±.3.2}	$742.2_{\pm 5.4}$	

TABLE S(II). The comparison results on RMSE/MAE, where o points out that PI-NLF is outperformed by its peer.

No.	Case	D1	D2	D3	D4	D5	D6	D7	D8	OLoss/Win
PI-NLF	RMSE	0.7988 _{±1.3E-4}	0.8124 _{±2.4E-4}	1.0096 _{±1.4E-3}	0.7695 _{±5.6E-4}	$0.8589_{\pm 1.3E-4}$	0.1126 _{±2.4E-4}	0.1220 _{±4.3E-4}	0.2352 _{±2.3E-4}	
	MAE	0.6115 _{±2.1E-4}	$0.6237_{\pm 3.3E-4}$	0.7794 _{±2.2E-3}	0.5776 _{±4,2E-4}	0.6723 _{±2.5E-4}	$0.0739_{\pm 3.1E-4}$	$0.0807_{\pm 2.3E-4}$	0.1795 _{±1.3E-4}	
NLF	RMSE	$0.8037_{\pm 2.1E-4}$	$0.8146_{\pm 2.2E-4}$	$1.0114_{\pm 2.1E-3}$	$0.7716_{\pm 4.1E-4}$	$0.8612_{\pm 3.3E-4}$	$0.1127_{\pm 2.9E-4}$	$0.1221_{\pm 3.7E-4}$	$0.2376_{\pm 5.3E-4}$	2/14
	MAE	$0.6246_{\pm 2.1E-4}$	$0.6380_{\pm 5.6E4}$	$0.7960_{\pm 8.5E-4}$	$0.5980_{\pm 3.6E-4}$	$0.6827_{\pm 2.9E-4}$	©0.0738 _{±2.6E-4}	$0.0801_{\pm 2.6E-4}$	$0.1859_{\pm 4.3E-4}$	
PIDLF	RMSE	$0.8039_{\pm 4.5E-4}$	$0.8155_{\pm 3.2E-4}$	●1.0067 _{±2.4E-3}	$0.7742_{\pm 4.2E-4}$	$0.8595_{\pm 2.3E-4}$	$0.1193_{\pm 3.3E-4}$	$0.1296_{\pm 3.9E-4}$	$0.2699_{\pm 1.4E-4}$	1/15
	MAE	$0.6253_{\pm 1.3E-3}$	$0.6400_{\pm 5.1E-4}$	$0.7907_{\pm 6.3E\text{-}4}$	$0.5907_{\pm 2.9E-4}$	$0.6817_{\pm 4.5E-4}$	$0.0742_{\pm 3.9E-4}$	$0.0824_{\pm 5.2E-4}$	$0.2204_{\pm 2.4E-4}$	
VAE	RMSE	0.8755 _{±2.6E-3}	0.9386 _{±4.5E-3}	1.2419 _{±3.4E-4}	0.8223 _{±7.6E-4}	0.9352 _{±1.7E-4}	© 0.1121 _{±2.1E-4}	0.1256 _{±1.5E-4}	0.2357 _{±2.6E-4}	1/15
	MAE	$0.6821_{\pm 1.4E-3}$	$0.7671_{\pm 5.7E-4}$	$1.0299_{\pm 3.4E-4}$	$0.6261_{\pm 3.9E-4}$	$0.7388 \pm 1.4E-4$	$0.0741_{\pm 4.3E-4}$	$0.0858_{\pm 1.9E-4}$	$0.1899_{\pm 1.9E-4}$	
SIF	RMSE	0.8852 _{±1.4E-4}	0.8758±4.4E-4	1.1415 _{±1.2E-3}	0.8124 _{±5.1E-4}	0.9295 _{±6.2E-4}	0.1424±6.6E-4	0.1590 _{±1.1E-4}	0.2776±1.3E-3	0/16
	MAE	$0.6871_{\pm 2.6E-4}$	$0.6985_{\pm 5.1E-4}$	$0.9265_{\pm 4.8E4}$	$0.6177_{\pm 4.6E-4}$	$0.7361_{\pm 4.5E-4}$	$0.0941_{\pm 4.3E-4}$	$0.1098_{\pm 1.2E4}$	$0.2210_{\pm 1.1E-3}$	
MetaMF	RMSE	0.8373 _{±2.1E-4}	0.8513 _{±3,3E-4}	1.0336 _{±4.1E-4}	0.7988 _{±2.9E-4}	0.8964 _{±3,3E-4}	0.1461 _{±2.9E-4}		0.2372 _{±1.4E-4}	0/16
	MAE	$0.6595_{\pm 1.9E-4}$	$0.6618_{\pm 3.7E-4}$	$0.8026_{\pm 2.7E4}$	$0.6029_{\pm 4.2E-4}$	$0.7041_{\pm 1.1E-4}$	$0.0950_{\pm 2.2E-4}$	$0.1137_{\pm 1.9E-4}$	$0.1845_{\pm 2.1E-4}$	
LightGCN	RMSE	0.7999 _{±1.9E-4}	0.8141 _{±3.4E-4}	1.0136 _{±2.7E-4}	0.7714 _{±3.7E-4}		©0.1101 _{±2.6E-4}	0.1232 _{±2.1E-4}	0.2362 _{±1.4E-4}	3/13
	MAE	$0.6137_{\pm 2.1E-4}$	$0.6266_{\pm 1.8E-4}$	$0.7859_{\pm 4.1E-4}$	$0.5803_{\pm 2.6E-4}$	$0.6798_{\pm 1.5E-4}$	©0.0676±2.8E-4	© 0.0791 _{±3.3E-4}	$0.1813_{\pm 3.6E-4}$	
DGCN-HN	RMSE	0.8195 _{±1.2E-4}	0.8180 _{±1.5E-4}	1.0379 _{±3.1E-4}	0.8090 _{±2.2E-4}	0.8592 _{±1.3E-4}	⊙ 0.1124 _{±1.5E-4}	0.1229 _{±3.3E-4}	0.2416 _{±1.3E-4}	2/14
	MAE	$0.6291_{\pm 1.3E-4}$	$0.6341_{\pm 2.3E-4}$	$0.8118_{\pm 3.1E-4}$	$0.6041_{\pm 2.9E-4}$	$0.6726_{\pm 1.5E-4}$	●0.0735 _{±1.1E-4}	$0.0809_{\pm 3.2E-4}$	$0.1870_{\pm 1.2E-4}$	
HMLET	RMSE	0.8357 _{±0.7E-4}	0.8395 _{±1.5E-4}	1.0137 _{±1.6E-4}	0.8271 _{±2.6E-4}	0.8818 _{±2.7E-4}	0.1141 _{±1.9E-4}	0.1245 _{±2.9E-4}	0.2484 _{±2.3E-4}	0/16
	MAE	$0.6399_{\pm 1.5E-4}$	$0.6466{\scriptstyle \pm 1.8E\text{-}4}$	$0.7895 {\scriptstyle \pm 1.8E\text{-}4}$	$0.6211_{\pm 2.2E-4}$	$0.6912 \pm 2.2E-4$	$0.0741_{\pm 1.6E-4}$	$0.0844_{\pm 3.5E-4}$	$0.1905_{\pm 2.5E-4}$	
SGL	RMSE	0.8177 _{±1.7E-4}	0.8141 _{±2.5E-4}	1.0223±2.3E-4	0.7832 _{±1.4E-4}	0.8607 _{±1.2E-4}	0.1351±2.9E-4	0.1442 _{±.0.6E-4}	0.2505±3.3E-4	0/16
	MAE	$0.6274_{\pm 1.4E-4}$	$0.6259_{\pm 3.1E-4}$	$0.7958_{\pm 2.9E-4}$	$0.5891_{\pm 2.2E-4}$	$0.6744_{\pm 1.1E-4}$	$0.0974_{\pm 4.1E-4}$	$0.1042_{\pm 0.7E-4}$	$0.1942_{\pm 2.1E-4}$	
MGDCF	RMSE	0.8538 _{±3.2E-4}	0.8248 _{±5.1E-4}	1.0646 _{±4.1E-4}	0.7973 _{±6.2E-4}	0.8664 _{±5.1E-4}	0.1149 _{±6.2E-4}	0.1338 _{±4.9E-4}	0.2392 _{±5.7E-4}	0/16
	MAE	$0.6548_{\pm 7.2E-4}$	$0.6370_{\pm 2.1E-4}$	$0.8161_{\pm 4.2E-4}$	$0.5951_{\pm 5.2E-4}$	$0.6785_{\pm 5.2E-4}$	$0.0778_{\pm 2.1E-4}$	$0.0921_{\pm 4.5E-4}$	$0.1831_{\pm 6.2E-4}$	
PopGo	RMSE	0.8462 _{±7.6E-4}	0.8469 _{±6.2E-4}	1.0941 _{±3.7E-4}	0.8390 _{±2.9E-4}	0.8647 _{±4.8E-4}	0.1198 _{±2.2E-4}	0.1350 _{±5.1E-4}	0.2454 _{±3.6E-4}	0/16
	MAE	$0.6497_{\pm 4.4E-4}$	$0.6629_{\pm 5.7E-4}$	$0.8811_{\pm 2.2E-4}$	$0.6484_{\pm 4.8E-4}$	$0.7215_{\pm 3.5E-4}$	$0.0830_{\pm 2.9E4}$	$0.0901_{\pm 3.5E-4}$	$0.1864_{\pm 4.8E-4}$	

III. SUPPLEMENTARY FIGURES

Fig. S1. Convergence curves in RMSE; all panels' legends are the same with panel (a)'s.

Fig. S2. Convergence curves in MAE; all panels' legends are the same with panel (a)'s.

Fig. S3. Total time cost of compared models; all panels' legends are the same with panel (a)'s.

Fig. S4. Lowest RMSE/MAE of compared models; all panels' legends are the same with panel (a)'s.

Fig. S5. PI-NLF's estimation error as f varies; all panels' legends are the same with panel (a)'s.

Fig. S6. PI-NLF's iterations as f varies; all panels' legends are the same with panel (a)'s.

Fig. S7. PI-NLF's estimation error as λ varies; all panels' legends are the same with panel (a)'s.

Fig. S8. PI-NLF's iterations as λ varies; all panels' legends are the same with panel (a)'s.