COMS 4771 Lecture 11

1. Large (and moderate) deviation theory

Large (and moderate)

DEVIATION THEORY

BINOMIAL DISTRIBUTION

Number of heads when a coin with heads bias $p \in [0,1]$ is tossed n times: **binomial distribution**

$$S \sim \text{Bin}(n, p)$$

BINOMIAL DISTRIBUTION

Number of heads when a coin with heads bias $p \in [0, 1]$ is tossed n times:

binomial distribution

$$S \sim Bin(n, p)$$

Basic combinatorics: for any $k \in \{0, 1, 2, \dots, n\}$,

$$\Pr[S=k] = \binom{n}{k} p^k (1-p)^{n-k}.$$

BINOMIAL = SUMS OF IID BERNOULLIS

Let X_1, X_2, \ldots, X_n be iid $\operatorname{Bern}(p)$ random variables, and let $S \sim \operatorname{Bin}(n, p)$. Then S has the same distribution as $X_1 + X_2 + \cdots + X_n$.

BINOMIAL = SUMS OF IID BERNOULLIS

Let X_1, X_2, \ldots, X_n be iid $\operatorname{Bern}(p)$ random variables, and let $S \sim \operatorname{Bin}(n, p)$. Then S has the same distribution as $X_1 + X_2 + \cdots + X_n$.

Mean: By linearity of expectation,

$$\mathbb{E}[S] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = np.$$

BINOMIAL = SUMS OF IID BERNOULLIS

Let X_1, X_2, \ldots, X_n be iid $\mathrm{Bern}(p)$ random variables, and let $S \sim \mathrm{Bin}(n,p)$. Then S has the same distribution as $X_1 + X_2 + \cdots + X_n$.

Mean: By linearity of expectation,

$$\mathbb{E}[S] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = np.$$

Variance: Since X_1, X_2, \ldots, X_n are independent,

$$var(S) = var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} var(X_i) = np(1-p).$$

DEVIATIONS FROM THE MEAN

DEVIATIONS FROM THE MEAN

0.01

Question: What are the "typical" values (i.e., non-tail event) of $S \sim \mathrm{Bin}(n,p)?$

How do we rigorously quantify the probability mass in the tails?

DEVIATIONS FROM THE MEAN

How do we rigorously quantify the probability mass in the tails? Differentiate between large and moderate deviations from the mean.

Let $S \sim Bin(n, p)$, and define

$$RE(a,b) := a \ln \frac{a}{b} + (1-a) \ln \frac{1-a}{1-b} \ge 0 \quad (= 0 \text{ iff } a = b)$$

(*relative entropy* between Bernoulli distributions with heads biases a and b).

Let $S \sim Bin(n, p)$, and define

$$RE(a,b) := a \ln \frac{a}{b} + (1-a) \ln \frac{1-a}{1-b} \ge 0 \quad (= 0 \text{ iff } a = b)$$

(*relative entropy* between Bernoulli distributions with heads biases a and b).

Upper tail bound: For any u > p,

$$\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p)).$$

Lower tail bound: For any $\ell < p$,

$$\Pr[S \le n \cdot \ell] \le \exp(-n \cdot \text{RE}(\ell, p)).$$

Let $S \sim Bin(n, p)$, and define

$$RE(a,b) := a \ln \frac{a}{b} + (1-a) \ln \frac{1-a}{1-b} \ge 0 \quad (= 0 \text{ iff } a = b)$$

(*relative entropy* between Bernoulli distributions with heads biases a and b).

Upper tail bound: For any u > p,

$$\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p)).$$

Lower tail bound: For any $\ell < p$,

$$\Pr[S \le n \cdot \ell] \le \exp(-n \cdot \text{RE}(\ell, p)).$$

Both exponentially small in n.

use the comparion!!!

Let $S \sim Bin(n, p)$, and define

$$RE(a,b) := a \ln \frac{a}{b} + (1-a) \ln \frac{1-a}{1-b} \ge 0 \quad (= 0 \text{ iff } a = b)$$

(*relative entropy* between Bernoulli distributions with heads biases a and b).

Upper tail bound: For any u > p,

$$\Pr[S \ge n \cdot u] \le \exp(-n \operatorname{RE}(u, p)).$$

Lower tail bound: For any $\ell < p$,

$$\Pr[S \le n \cdot \ell] \le \exp(-n \cdot \text{RE}(\ell, p)).$$
 get p's!!!

Both exponentially small in n.

Large deviations from mean $p \cdot n$ (e.g., $(u-p) \cdot n$) are exponentially unlikely.

the n would not affect exp value

$$p = 1/3$$
, $u = 1/3 + 0.05$, $n = 200$
 $\exp(-\text{RE}(u, p)) \approx 0.995$

Illustration of large deviations

Illustration of large deviations

Illustration of large deviations

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \cdots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \dots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $u[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } u.$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \cdots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- u[x] := probability mass of outcome x when X_i has heads bias u.

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \cdots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $lackbox{} u[m{x}] := ext{probability mass of outcome } m{x} ext{ when } X_i ext{ has heads bias } u.$

$$\frac{p[\boldsymbol{x}]}{u[\boldsymbol{x}]}$$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \cdots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $lackbox{} u[oldsymbol{x}] := ext{probability mass of outcome } oldsymbol{x} ext{ when } X_i ext{ has heads bias } u.$

$$\frac{p[x]}{u[x]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}}$$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \cdots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $lackbox{} u[m{x}] := \text{probability mass of outcome } m{x} \text{ when } X_i \text{ has heads bias } u.$

$$\frac{p[\boldsymbol{x}]}{u[\boldsymbol{x}]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k}$$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \cdots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $lackbox{} u[oldsymbol{x}] := ext{probability mass of outcome } oldsymbol{x} ext{ when } X_i ext{ has heads bias } u.$

$$\frac{p[\boldsymbol{x}]}{u[\boldsymbol{x}]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \le \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.$$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \dots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $lackbox{} u[oldsymbol{x}] := ext{probability mass of outcome } oldsymbol{x} ext{ when } X_i ext{ has heads bias } u.$

$$\frac{p[\boldsymbol{x}]}{u[\boldsymbol{x}]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \le \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.$$

$$\Pr[S \ge n \cdot u] = \sum_{\boldsymbol{x} \in \mathcal{E}} p[\boldsymbol{x}]$$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \dots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $lackbox{} u[oldsymbol{x}] := ext{probability mass of outcome } oldsymbol{x} ext{ when } X_i ext{ has heads bias } u.$

$$\frac{p[\boldsymbol{x}]}{u[\boldsymbol{x}]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \le \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.$$

$$\Pr[S \ge n \cdot u] = \sum_{\boldsymbol{x} \in \mathcal{E}} p[\boldsymbol{x}] \le \sum_{\boldsymbol{x} \in \mathcal{E}} u[\boldsymbol{x}] \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}$$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

Consider n iid Bernoulli random variables: X_1, X_2, \dots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- u[x] := probability mass of outcome x when X_i has heads bias u.

$$\frac{p[\boldsymbol{x}]}{u[\boldsymbol{x}]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \le \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.$$

$$\Pr[S \ge n \cdot u] = \sum_{\boldsymbol{x} \in \mathcal{E}} p[\boldsymbol{x}] \le \sum_{\boldsymbol{x} \in \mathcal{E}} u[\boldsymbol{x}] \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}$$
$$\le \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}$$

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p))$ for u > p.

all outcomes meet S >= n * u

Consider n iid Bernoulli random variables: X_1, X_2, \cdots, X_n . Let $\mathcal{E} \subseteq \{0,1\}^n$ be all outcomes $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ where $\sum_{i=1}^n x_i \ge n \cdot u$.

Some shorthand notation:

- $ightharpoonup p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p.$
- $u[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } u.$

$$\frac{p[\boldsymbol{x}]}{u[\boldsymbol{x}]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \le \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.$$

$$\Pr[S \ge n \cdot u] = \sum_{\boldsymbol{x} \in \mathcal{E}} p[\boldsymbol{x}] \le \sum_{\boldsymbol{x} \in \mathcal{E}} u[\boldsymbol{x}] \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}$$
$$\le \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)} = \exp(-n \cdot \text{RE}(u, p)). \quad \Box$$

MODERATE DEVIATIONS

What about more moderate deviations of size o(n)?

What about more moderate deviations of size o(n)?

$$\text{``Fact''}\colon\thinspace S\sim \mathrm{Bin}(n,p)\ \text{``typically''}\ \text{in } \Big[np-2\sqrt{np(1-p)},np+2\sqrt{np(1-p)}\Big].$$

What about more moderate deviations of size o(n)?

 $np \approx 3.333, \ 2\sqrt{np(1-p)} \approx 2.9814$

MODERATE DEVIATIONS

What about more moderate deviations of size o(n)?

What about more moderate deviations of size o(n)?

To rigorously quantify moderate deviations, can again use Chernoff bound

$$\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p)),$$

but ask how small can u be before the bound exceeds some fixed $\delta \in (0,1)$?

To rigorously quantify moderate deviations, can again use Chernoff bound

$$\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p)),$$

but ask how small can u be before the bound exceeds some fixed $\delta \in (0,1)$?

By calculus, for u > p,

$$RE(u, p) \ge \frac{(u - p)^2}{2u}.$$

Therefore, for u > p,

$$\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p)) \le \exp\left(-n \cdot \frac{(u - p)^2}{2u}\right).$$

To rigorously quantify moderate deviations, can again use Chernoff bound

$$\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p)),$$

but ask how small can u be before the bound exceeds some fixed $\delta \in (0,1)$?

By calculus, for u > p,

$$RE(u, p) \ge \frac{(u - p)^2}{2u}.$$

Therefore, for u > p,

$$\Pr[S \ge n \cdot u] \le \exp(-n \cdot \text{RE}(u, p)) \le \exp\left(-n \cdot \frac{(u - p)^2}{2u}\right).$$

By algebra, the RHS is δ when

$$n \cdot u = n \cdot p + \sqrt{2np \ln(1/\delta)} + 2 \ln(1/\delta) = n \cdot p + O(\sqrt{n}).$$

MODERATE DEVIATIONS

Similar argument for lower tail.

Similar argument for lower tail.

By calculus, for $\ell ,$

$$RE(\ell, p) \ge \frac{(p-\ell)^2}{2p}.$$

Therefore, for $\ell ,$

$$\Pr[S \le n \cdot \ell] \le \exp(-n \cdot \text{RE}(\ell, p)) \le \exp\left(-n \cdot \frac{(p-\ell)^2}{2p}\right).$$

By algebra, the RHS is δ when

$$n \cdot \ell = n \cdot p - \sqrt{2np\ln(1/\delta)} = n \cdot p - O(\sqrt{n}).$$

Combining upper and lower tail bounds: for $p \le 1/2$,

$$\Pr\Bigl\{S \in \Bigl\lceil np - \sqrt{2np\ln(1/\delta)}, \, np + \sqrt{2np\ln(1/\delta)} + 2\ln(1/\delta) \Bigr\rceil \Bigr\} \geq 1 - 2\delta.$$

Union bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$

Combining upper and lower tail bounds: for $p \le 1/2$,

$$\Pr\Bigl\{S \in \Bigl\lceil np - \sqrt{2np\ln(1/\delta)}, \, np + \sqrt{2np\ln(1/\delta)} + 2\ln(1/\delta) \Bigr\rceil \Bigr\} \geq 1 - 2\delta.$$

Union bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$

Approximately recovers previous "fact" that S is "typically" in $\left[np-2\sqrt{np(1-p)},np+2\sqrt{np(1-p)}\right]$ (though a bit looser).

ESTIMATING A COIN BIAS

Another interpretation: estimating heads bias $p \le 1/2$ from iid sample X_1, X_2, \ldots, X_n with

$$\hat{p} := \frac{X_1 + X_2 + \dots + X_n}{n}.$$

With probability at least $1-2\delta$,

$$p - \sqrt{\frac{2p\ln(1/\delta)}{n}} \ \leq \ \hat{p} \ \leq \ p + \sqrt{\frac{2p\ln(1/\delta)}{n}} + \frac{2\ln(1/\delta)}{n};$$

i.e., the estimate \hat{p} is usually reasonably close to the truth p.

ESTIMATING A COIN BIAS

Another interpretation: estimating heads bias $p \leq 1/2$ from iid sample X_1, X_2, \ldots, X_n with

$$\hat{p} := \frac{X_1 + X_2 + \dots + X_n}{n}.$$

With probability at least $1-2\delta$,

$$p - \sqrt{\frac{2p\ln(1/\delta)}{n}} \ \leq \ \hat{p} \ \leq \ p + \sqrt{\frac{2p\ln(1/\delta)}{n}} + \frac{2\ln(1/\delta)}{n};$$

i.e., the estimate \hat{p} is usually reasonably close to the truth p.

How close? Depends on:

- whether you're asking about how far above p or how far below p (upper and lower tails are somewhat asymmetric);
- ▶ the sample size *n*;
- ▶ the true heads bias p itself;
- ▶ the "confidence" parameter δ .

Let $\hat{f} \colon \mathcal{X} \to \mathcal{Y}$ be a classifier, and suppose you have iid test data T (that are independent of \hat{f}).

Let $\hat{f} \colon \mathcal{X} \to \mathcal{Y}$ be a classifier, and suppose you have iid test data T (that are independent of \hat{f}).

True error:

Test error:

$$\operatorname{err}(\hat{f}, T) = \frac{1}{|T|} \sum_{(x,y) \in T} \mathbb{1}\{\hat{f}(x) \neq y\}.$$

 $\operatorname{err}(\hat{f}) = \Pr[\hat{f}(X) \neq Y].$

Distribution of test error:

$$|T| \cdot \operatorname{err}(\hat{f}, T) \sim \operatorname{Bin}(|T|, \operatorname{err}(\hat{f})).$$

Let $\hat{f} \colon \mathcal{X} \to \mathcal{Y}$ be a classifier, and suppose you have iid test data T (that are independent of \hat{f}).

True error:

$$\operatorname{err}(\hat{f}) = \operatorname{Pr}[\hat{f}(X) \neq Y].$$

Test error:

$$\mathrm{err}(\hat{f},T) \ = \ \frac{1}{|T|} \sum_{(x,y) \in T} \mathbb{1}\{\hat{f}(x) \neq y\}.$$

Distribution of test error:

$$|T| \cdot \operatorname{err}(\hat{f}, T) \sim \operatorname{Bin}(|T|, \operatorname{err}(\hat{f})).$$

Applying Chernoff bounds: with prob. $\geq 1 - 2\delta$ (w.r.t. random draw of T),

$$\left|\operatorname{err}(\hat{f}) - \operatorname{err}(\hat{f}, T)\right| \le \sqrt{\frac{2\operatorname{err}(\hat{f})\ln(1/\delta)}{|T|} + \frac{2\ln(1/\delta)}{|T|}}.$$

don't use test result to adjust model

Let $\hat{f} \colon \mathcal{X} \to \mathcal{V}$ be a classifier and suppose you have iid test data T (that are independent of \hat{f}).

True error:

$$\operatorname{err}(\hat{f}) \ = \ \Pr[\hat{f}(X) \neq Y].$$

Test error:

$$\operatorname{err}(\hat{f},T) = \frac{1}{|T|} \sum_{(x,y) \in T} \mathbb{1}\{\hat{f}(x) \neq y\}$$
 between true error is

At the test size grow. the Gap between true error and test error is minimized!

Distribution of test error:

$$|T| \cdot \operatorname{err}(\hat{f}, T) \sim \operatorname{Bin}(|T|, \operatorname{err}(\hat{f})).$$

even the same X, could lead to many value Applying Chernoff bounds: with prob. $\geq 1 - 2\delta$ (w.r.t. random draw of T),

$$\left|\operatorname{err}(\hat{f}) - \operatorname{err}(\hat{f}, T)\right| \leq \sqrt{\frac{2\operatorname{err}(\hat{f})\ln(1/\delta)}{|T|} + \frac{2\ln(1/\delta)}{|T|}}.$$

Suggests (very) **rough idea** of the resolution at which you can distinguish classifiers' test errors, based on size of test set.

(Estimate of heads bias with $\hat{p}=(X_1+\cdots+X_n)/n$.) With probability at least $1-2\delta$,

$$p \in \left[\hat{p} - \sqrt{\frac{2p\ln(1/\delta)}{n}} - \frac{2\ln(1/\delta)}{n}, \, \hat{p} + \sqrt{\frac{2p\ln(1/\delta)}{n}} \right].$$

(Estimate of heads bias with $\hat{p} = (X_1 + \cdots + X_n)/n$.) With probability at least $1 - 2\delta$,

$$p \in \left[\hat{p} - \sqrt{\frac{2p\ln(1/\delta)}{n}} - \frac{2\ln(1/\delta)}{n}, \, \hat{p} + \sqrt{\frac{2p\ln(1/\delta)}{n}} \right].$$

Unfortunately interval also depends on p.

(Estimate of heads bias with $\hat{p}=(X_1+\cdots+X_n)/n$.) With probability at least $1-2\delta$,

$$p \in \left[\hat{p} - \sqrt{\frac{2p\ln(1/\delta)}{n}} - \frac{2\ln(1/\delta)}{n}, \, \hat{p} + \sqrt{\frac{2p\ln(1/\delta)}{n}} \right].$$

Unfortunately interval also depends on p.

Fix: can "solve" for the largest value of $q \in [0,1]$ such that

$$q \leq \hat{p} + \sqrt{\frac{2q\ln(1/\delta)}{n}}$$

→ Upper limit of confidence interval. (Can similarly get lower limit.)

(Estimate of heads bias with $\hat{p}=(X_1+\cdots+X_n)/n$.) With probability at least $1-2\delta$,

$$p \in \left[\hat{p} - \sqrt{\frac{2p\ln(1/\delta)}{n}} - \frac{2\ln(1/\delta)}{n}, \, \hat{p} + \sqrt{\frac{2p\ln(1/\delta)}{n}} \right].$$

Unfortunately interval also depends on p.

Fix: can "solve" for the largest value of $q \in [0,1]$ such that

$$q \leq \hat{p} + \sqrt{\frac{2q\ln(1/\delta)}{n}}$$

→ Upper limit of confidence interval. (Can similarly get lower limit.)

After some more algebra, get confidence intervals in terms of \hat{p} :

$$p \in \left[\hat{p} - \sqrt{\frac{2\hat{p}\ln(1/\delta)}{n}} - \frac{2\ln(1/\delta)}{n},\, \hat{p} + \sqrt{\frac{2\hat{p}\ln(1/\delta)}{n}} + \frac{2\ln(1/\delta)}{n}\right].$$

SUMMARY AND FINAL REMARKS

- Sums of iid Bernoulli random variables:
 - Large deviations from mean of size $\Omega(n)$ are exponentially unlikely.
 - ▶ Bulk of probability mass is within moderate deviations of size $O(\sqrt{n})$.
 - Applies in many other cases besides sums of iid Bernoulli.
- ► Tool: Chernoff bound
 - Reason about test error.
 - Construct confidence intervals.