CompSci 260P

Fundamentals of Algorithms with Applications Fall 2017

- Lecture: Tu Th 3:30-4:50pm SH 174
 no lecture on Thursdays October 5, October 12
- Discussion: Tu 7:00-7:50pm SH 174
- Course Web Page
 http://www.ics.uci.edu/~dan/class/260P/
- Course Notes: (password protected)
 http://www.ics.uci.edu/~dan/class/260P/notes/
 - ▶ user name is your UCI ID (ALL CAPS)
 - password is your student number

Reading, Homework, etc.

Reading

- read the relevant book sections and handouts before my lecture
- ► I will lecture on only **some** of the material (there is not enough time for me to talk about every page in the book)
- ▶ you are responsible for all of the material

Reading, Homework, etc.

Reading

- ▶ read the relevant book sections and handouts **before** my lecture
- ► I will lecture on only **some** of the material (there is not enough time for me to talk about every page in the book)
- ▶ you are responsible for all of the material

Homework

- ► Submit using EEE dropbox (see https://eee.uci.edu/help/dropbox/students/)
- ▶ no late submissions will be accepted
- ▶ submissions graded on effort, not on correctness
- ▶ some (but not all) solutions will be discussed in class
- ▶ I may call on one of the students who has solved a problem to present the solution to the class

Reading, Homework, etc.

Reading

- read the relevant book sections and handouts before my lecture
- ► I will lecture on only **some** of the material (there is not enough time for me to talk about every page in the book)
- ▶ you are responsible for all of the material

Homework

- ► Submit using EEE dropbox (see https://eee.uci.edu/help/dropbox/students/)
- ▶ no late submissions will be accepted
- ▶ submissions graded on effort, not on correctness
- ▶ some (but not all) solutions will be discussed in class
- ▶ I may call on one of the students who has solved a problem to present the solution to the class

Solved problems in the textbook

- will not be assigned, but you are encouraged to solve them
- you will find these more useful if you solve them before reading the solutions

Textbooks / Recommended Reading

Textbook:

▶ Kleinberg and Tardos, *Algorithm Design*, Addison Wesley, 2006

Other books:

- ▶ Ahuja, Magnanti and Orlin, Network Flows, Prentice Hall, 1993
- ► Cormen, Leiserson, Rivest, and Stein,

 Introduction to Algorithms, MIT Press (third edition), 2009
- ▶ Garey and Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman and Company 1979
- ► Goodrich and Tamassia,

 *Algorithm Design and Applications, Wiley, 2014
- ▶ Papadimitriou, Computational Complexity, Addison-Wesley, 1994
- ▶ Dasgupta, Papadimitriou and Vazirani, Algorithms, McGraw-Hill, 2007

Course Topics

- An illustrative problem: stable matching
- Basics of algorithm analysis:
 data structures, asymptotic analysis
- Basic graph algorithms
- Greedy algorithms
- Divide and Conquer
- Dynamic Programming
- Network flow
- NP completeness

A First Problem: Stable Matching

[Gale and Shapley, 1962]

• Motivation. Design a self-enforcing hiring process:

For every employer E, and

for every applicant A who is not scheduled to work for E, either

- 1. E prefers all of its accepted applicants to A or
- 2. A prefers his/her present situation to working for employer E (If the process did not self-enforce these conditions, chaos could result)

A First Problem: Stable Matching

[Gale and Shapley, 1962]

• Motivation. Design a self-enforcing hiring process:

For every employer E, and

for every applicant A who is not scheduled to work for E, either

- 1. E prefers all of its accepted applicants to A or
- 2. A prefers his/her present situation to working for employer E (If the process did not self-enforce these conditions, chaos could result)

Simplifying assumptions:

- \blacktriangleright *n* employers, *n* applicants
- every applicant applies to every employer
- ▶ each employer accepts a single applicant

A First Problem: Stable Matching

[Gale and Shapley, 1962]

• Motivation. Design a self-enforcing hiring process:

For every employer E, and

for every applicant A who is not scheduled to work for E, either

- 1. E prefers all of its accepted applicants to A or
- 2. A prefers his/her present situation to working for employer E (If the process did not self-enforce these conditions, chaos could result)

Simplifying assumptions:

- \blacktriangleright *n* employers, *n* applicants
- every applicant applies to every employer
- each employer accepts a single applicant

Similar applications:

assigning medical residents to hospitals, college admissions

• The problem is traditionally described in the context of n men and n women and is sometimes called the stable marriage problem

Given: A set $M = \{m_1, \dots, m_n\}$ of n men and a set $W = \{w_1, \dots, w_n\}$ of n women

- lacktriangle each man $m \in M$ ranks all the women in W
- lacktriangle we say m prefers w to w' if m ranks w higher than w'
- \blacktriangleright for each m, this ranking of the women is m's preference list
- lacktriangle similarly, each woman $w \in W$ ranks all the men in M

Goal: Find a stable perfect matching

Given: A set $M = \{m_1, \dots, m_n\}$ of n men and a set $W = \{w_1, \dots, w_n\}$ of n women

- ightharpoonup each man $m \in M$ ranks all the women in W
- \blacktriangleright we say m prefers w to w' if m ranks w higher than w'
- \blacktriangleright for each m, this ranking of the women is m's preference list
- lacktriangle similarly, each woman $w \in W$ ranks all the men in M

Goal: Find a stable perfect matching:

• A matching is a subset S of $M \times W$ such that each $m \in M$ and each $w \in W$ appear in at most one pair in S

Given: A set $M = \{m_1, \dots, m_n\}$ of n men and a set $W = \{w_1, \dots, w_n\}$ of n women

- ightharpoonup each man $m \in M$ ranks all the women in W
- \blacktriangleright we say m prefers w to w' if m ranks w higher than w'
- \blacktriangleright for each m, this ranking of the women is m's preference list
- ightharpoonup similarly, each woman $w \in W$ ranks all the men in M

Goal: Find a stable perfect matching:

- A matching is a subset S of $M \times W$ such that each $m \in M$ and each $w \in W$ appear in at most one pair in S
- A perfect matching is a matching S such that each $m \in M$ and each $w \in W$ appear in exactly one pair in S

Given: A set $M = \{m_1, \dots, m_n\}$ of n men and a set $W = \{w_1, \dots, w_n\}$ of n women

- ightharpoonup each man $m \in M$ ranks all the women in W
- lacktriangle we say m prefers w to w' if m ranks w higher than w'
- \blacktriangleright for each m, this ranking of the women is m's preference list
- ightharpoonup similarly, each woman $w \in W$ ranks all the men in M

Goal: Find a stable perfect matching:

- A matching is a subset S of $M \times W$ such that each $m \in M$ and each $w \in W$ appear in at most one pair in S
- A perfect matching is a matching S such that each $m \in M$ and each $w \in W$ appear in exactly one pair in S
- an instability in a matching S is a pair (m, w) **not** in S, but each of m, w prefers the other to their partner in S

Given: A set $M = \{m_1, \dots, m_n\}$ of n men and a set $W = \{w_1, \dots, w_n\}$ of n women

- lacktriangle each man $m \in M$ ranks all the women in W
- \blacktriangleright we say m prefers w to w' if m ranks w higher than w'
- \blacktriangleright for each m, this ranking of the women is m's preference list
- ightharpoonup similarly, each woman $w \in W$ ranks all the men in M

Goal: Find a stable perfect matching:

- A matching is a subset S of $M \times W$ such that each $m \in M$ and each $w \in W$ appear in at most one pair in S
- A perfect matching is a matching S such that each $m \in M$ and each $w \in W$ appear in exactly one pair in S
- an instability in a matching S is a pair (m, w) **not** in S, but each of m, w prefers the other to their partner in S
- A matching is stable if it contains no instabilities

Stable Marriage Problem: Simple Examples

• Example 1: n = 2. Preferences are:

Element	Preference List
m_1	w_1, w_2
m_2	w_1, w_2
w_1	m_1, m_2
w_2	m_1, m_2

• Example 2: n = 2. Preferences are:

Element	Preference List
m_1	w_1, w_2
m_2	$ w_2,w_1 $
$ w_1 $	m_2, m_1
$ w_2 $	$\mid m_1, m_2 \mid$

There may be more than one stable matching!

- Initially, everyone is unmarried
- ullet Suppose an unmarried man m chooses the woman w who is ranked highest on his preference list and proposes to her

What should w do? Accept? Reject?

©2017 D. S. Hirschberg 1-16

- Initially, everyone is unmarried
- ullet Suppose an unmarried man m chooses the woman w who is ranked highest on his preference list and proposes to her

What should w do? Accept? Reject?

ightharpoonup she cannot accept the proposal immediately, because another man whom she prefers to m may propose to her later

- Initially, everyone is unmarried
- Suppose an unmarried man m chooses the woman w who is ranked highest on his preference list and proposes to her

What should w do? Accept? Reject?

- ightharpoonup she cannot accept the proposal immediately, because another man whom she prefers to m may propose to her later
- ightharpoonup she cannot reject the proposal immediately, because she may not receive a proposal from someone she ranks as highly as m

- Initially, everyone is unmarried
- Suppose an unmarried man m chooses the woman w who is ranked highest on his preference list and proposes to her

What should w do? Accept? Reject?

- ightharpoonup she cannot accept the proposal immediately, because another man whom she prefers to m may propose to her later
- ightharpoonup she cannot reject the proposal immediately, because she may not receive a proposal from someone she ranks as highly as m
- ▶ so they become engaged (the engagement may be broken later)

• Initially, everyone is free (*i.e.*, not engaged)

©2017 D. S. Hirschberg 1-20

- Initially, everyone is free (*i.e.*, not engaged)
- The following step is performed repeatedly
 - ightharpoonup some free man m chooses the highest-ranked woman w (on his preference list) to whom he has not yet proposed, and proposes to her
 - lacktriangleright if w is also free, then m and w become engaged

- Initially, everyone is free (*i.e.*, not engaged)
- The following step is performed repeatedly
 - ightharpoonup some free man m chooses the highest-ranked woman w (on his preference list) to whom he has not yet proposed, and proposes to her
 - lacktriangleright if w is also free, then m and w become engaged
 - \blacktriangleright if w is engaged to some other man m', then she determines whether m or m' ranks higher on her preference list
 - ▶ she becomes engaged to whoever ranks higher, and the other man becomes free

- Initially, everyone is free (*i.e.*, not engaged)
- The following step is performed repeatedly
 - ightharpoonup some free man m chooses the highest-ranked woman w (on his preference list) to whom he has not yet proposed, and proposes to her
 - lacktriangleright if w is also free, then m and w become engaged
 - \blacktriangleright if w is engaged to some other man m', then she determines whether m or m' ranks higher on her preference list
 - ▶ she becomes engaged to whoever ranks higher, and the other man becomes free
- When there are no free men,
 the algorithm terminates and all engagements are declared final

Stable Matching Problem: Pseudocode for the Gale-Shapley Algorithm

```
while there is a man who is free and has not proposed to every woman m \leftarrow \text{such a man} w \leftarrow \text{the highest ranking women in } m\text{'s preference list} to whom m has not yet proposed
```

endwhile return the set S of engaged pairs

Stable Matching Problem: Pseudocode for the Gale-Shapley Algorithm

```
while there is a man who is free and has not proposed to every woman
  m \leftarrow \text{such a man}
  w \leftarrow the highest ranking women in m's preference list
           to whom m has not yet proposed
   if w is free then (m, w) become engaged
   else // w is currently engaged to some other man, m'
     if w prefers m' to m then m remains free
     else // w prefers m to m'
        (m, w) become engaged
        m' becomes free
     endif
   endif
endwhile
return the set S of engaged pairs
```

• Correctness:

Does the algorithm compute a stable matching?

• Efficiency:

How efficient is the algorithm?

- A woman w
 - ▶ initially, not engaged
 - ▶ once she receives a proposal, she always remains engaged
 - ► the sequence of partners to whom she is engaged gets better (with respect to her preference list)

A woman w

- ▶ initially, not engaged
- once she receives a proposal, she always remains engaged
- ▶ the sequence of partners to whom she is engaged gets better (with respect to her preference list)

\bullet A man m

- ▶ initially, not engaged
- alternates between being free and engaged
- proposes to each woman at most once
- ▶ the sequence of partners to whom he proposes gets worse (with respect to his preference list)

- ullet A woman w
 - initially, not engaged
 - once she receives a proposal, she always remains engaged
 - ▶ the sequence of partners to whom she is engaged gets better (with respect to her preference list)
- ullet A man m
 - ▶ initially, not engaged
 - alternates between being free and engaged
 - proposes to each woman at most once
 - ▶ the sequence of partners to whom he proposes gets worse (with respect to his preference list)

Claim: The G-S algorithm terminates after at most n^2 iterations.

Proof: count proposals

Claim: If a man m is free,

there is some woman to whom he has not yet proposed.

Proof: by contradiction

©2017 D. S. Hirschberg 1-30

Claim: If a man m is free,

there is some woman to whom he has not yet proposed.

Proof: by contradiction

- \blacktriangleright suppose m is free and has proposed to all women
- ▶ then all women are engaged
- ▶ but since |M| = |W|, this means all men are engaged, a contradiction

Claim: If a man m is free,

there is some woman to whom he has not yet proposed.

Proof: by contradiction

- \blacktriangleright suppose m is free and has proposed to all women
- ▶ then all women are engaged
- ▶ but since |M| = |W|, this means all men are engaged, a contradiction

Claim: The matching computed by the G-S algorithm is a perfect matching.

Proof by contradiction

Claim: If a man m is free,

there is some woman to whom he has not yet proposed.

Proof: by contradiction

- \blacktriangleright suppose m is free and has proposed to all women
- ▶ then all women are engaged
- ▶ but since |M| = |W|, this means all men are engaged, a contradiction

Claim: The matching computed by the G-S algorithm is a perfect matching.

Proof by contradiction

- \blacktriangleright suppose there is a free man m when the algorithm terminates
- \blacktriangleright by the code, m must have proposed to every woman
- ▶ by the previous fact, this is impossible

Claim: The matching computed by the G-S algorithm is a stable matching.

Proof by contradiction

©2017 D. S. Hirschberg 1-34

Claim: The matching computed by the G-S algorithm is a stable matching.

Proof by contradiction

- ightharpoonup Suppose that there is an instability (m,w')
- This means that the matching contains two pairs (m, w) and (m', w') such that m prefers w' to w, and w' prefers m to m'

©2017 D. S. Hirschberg 1-35

Claim: The matching computed by the G-S algorithm is a stable matching.

Proof by contradiction

- ightharpoonup Suppose that there is an instability (m,w')
- ▶ This means that the matching contains two pairs (m, w) and (m', w') such that m prefers w' to w, and w' prefers m to m'
- ▶ The last time m proposed, it was to w. Did m propose to w' at some earlier time?
- ▶ If No: then m does not prefer w' to w, a contradiction

Stable Matching Problem: Analysis of G-S Algorithm (continued)

Claim: The matching computed by the G-S algorithm is a stable matching.

Proof by contradiction

- ightharpoonup Suppose that there is an instability (m,w')
- This means that the matching contains two pairs (m, w) and (m', w') such that m prefers w' to w, and w' prefers m to m'
- ▶ The last time m proposed, it was to w. Did m propose to w' at some earlier time?
- ▶ If No: then m does not prefer w' to w, a contradiction
- ▶ If Yes: w' rejected m for some other man m''. Since every woman's engagement partners improve, this means that w' prefers her final partner (i.e., m') to m, a contradiction.

• The G-S algorithm is non-deterministic Why? What does that mean?

- The G-S algorithm is non-deterministic
- Nevertheless, it always computes the same stable matching on any particular input (deterministic result)
 - \blacktriangleright w is a valid partner of m if (m, w) is in some stable matching

- The G-S algorithm is non-deterministic
- Nevertheless, it always computes the same stable matching on any particular input (deterministic result)
 - \blacktriangleright w is a valid partner of m if (m, w) is in some stable matching
 - \blacktriangleright w is the best valid partner of m if
 - 1) w is a valid partner of m, and
 - 2) no woman who m ranks higher than w is a valid partner of m

- The G-S algorithm is non-deterministic
- Nevertheless, it always computes the same stable matching on any particular input (deterministic result)
 - \blacktriangleright w is a valid partner of m if (m,w) is in some stable matching
 - \blacktriangleright w is the best valid partner of m if
 - 1) w is a valid partner of m, and
 - 2) no woman who m ranks higher than w is a valid partner of m
 - ▶ the G-S algorithm always pairs each man with his best valid partner (proof: see text)
 - ▶ the G-S algorithm always pairs each woman with her worst valid partner (proof: see text)

Analysis of G-S Algorithm

- What we have not yet discussed:
 - ▶ how much time does the G-S algorithm require?
 - ▶ how does the time required by the G-S algorithm scale up with the size of the problem?

Analysis of G-S Algorithm

- What we have not yet discussed:
 - ▶ how much time does the G-S algorithm require?
 - ▶ how does the time required by the G-S algorithm scale up with the size of the problem?
- We will come back to this
- First, we need a computational model and a metric for measuring the time requirement of algorithms

Random Access Machine (RAM)

- Primitive operations on "words" include:
 - assigning a value to a variable
 - ▶ performing an arithmetic or Boolean operation

Random Access Machine (RAM)

- Primitive operations on "words" include:
 - assigning a value to a variable
 - ▶ performing an arithmetic or Boolean operation
 - comparing two numbers
 - ▶ indexing into an array

Random Access Machine (RAM)

- Primitive operations on "words" include:
 - assigning a value to a variable
 - performing an arithmetic or Boolean operation
 - comparing two numbers
 - ▶ indexing into an array
 - ▶ following an object reference / dereferencing a pointer
 - calling or returning from a function/method
 - branching

Random Access Machine (RAM)

- Primitive operations on "words" include:
 - assigning a value to a variable
 - performing an arithmetic or Boolean operation
 - comparing two numbers
 - ▶ indexing into an array
 - ▶ following an object reference / dereferencing a pointer
 - calling or returning from a function/method
 - ▶ branching
- To measure running time: count operations this is sometimes called Unit-Cost RAM

Example: Sequential Search in an Array

Input: An array A[n], where $n \ge 1$; an item x

Output: Index where x occurs in A, or -1

```
for i ← 0 to n-1 do
   if A[i] = x then return(i)
return(-1)
```

which is actually implemented as

```
i \leftarrow 0 1

label:

if A[i] = x then return(i) 2 or 3

i \leftarrow i + 1 2

if (i < n) goto label 2 or 1

return(-1) 1
```

Time is between 4 and 6n + 1 units. Too much detail?

Sequential Search, continued

In the previous example, all we really need to know for most practical purposes is:

The running time of sequential search on an input of size n is, in the worst case, proportional to n.

Sequential Search, continued

In the previous example, all we really need to know for most practical purposes is:

The running time of sequential search on an input of size n is, in the worst case, proportional to n.

A shorthand way of saying this is:

Sequential search runs in O(n) time.

We will give a formal definition of this "big oh" notation later.

Similarly, we can talk about algorithms that run in

- $O(n^2)$ time
- $O(\log n)$ time
- O(1) time (constant time)
- . . .

• What if there are more men than women, or if marriages are not 1-1. For example, assigning residents to hospitals. How should the algorithm be modified to handle this case?

- What if there are more men than women, or if marriages are not 1-1. For example, assigning residents to hospitals. How should the algorithm be modified to handle this case?
- What about indifference (ties) in the rankings? How to define stability? Is there still always a stable matching?

- What if there are more men than women, or if marriages are not 1-1. For example, assigning residents to hospitals. How should the algorithm be modified to handle this case?
- What about indifference (ties) in the rankings? How to define stability? Is there still always a stable matching?
- Is there ever a situation where a man (or woman) could benefit by pretending that his/her ranking is different than it actually is?

- What if there are more men than women, or if marriages are not 1-1. For example, assigning residents to hospitals. How should the algorithm be modified to handle this case?
- What about indifference (ties) in the rankings? How to define stability? Is there still always a stable matching?
- Is there ever a situation where a man (or woman) could benefit by pretending that his/her ranking is different than it actually is?
- Applications of stable matching

Problem reduction: Reduce P_2 to P_1

Suppose we have an algorithm for problem P_1 and want to adapt it to solve problem P_2 .

Problem reduction: Reduce P_2 to P_1

- Practical advantages of reducing P_2 to P_1 (rather than modifying the source code of P_1 to obtain new source code for P_2):
 - "Software/component reuse"
 - "Modular design"
 - ► "Don't reinvent the wheel"

Problem reduction: Reduce P_2 to P_1

- Practical advantages of reducing P_2 to P_1 (rather than modifying the source code of P_1 to obtain new source code for P_2):
 - "Software/component reuse"
 - "Modular design"
 - "Don't reinvent the wheel"
- Reduction is useful for analysis of algorithms
 If the two I/O transformation boxes are "efficient" then we can conclude:
 - 1. \exists an efficient algorithm for $P_1 \Rightarrow \exists$ an efficient algorithm for P_2
 - 2. $\not\exists$ an efficient algorithm for $P_2 \Rightarrow \not\exists$ an efficient algorithm for P_1