

September 21, 2022

Yubo Cai

EXERCISE 1

1.1

We find that the function is single-valued and we want to testify whether it's able to apply with the *Dirichlet conditions*. On one period it has three discontinuities which is a finite number (for example on the period $[-\pi, \pi]$, we have discontinuities at $-\pi$, π , and 0. Also the function has a finite number of maximum and minimum values and the function is bounded, which implies that $\int_{-\pi}^{\pi} |f(x)| dx$ is finite. Therefore the conditions of applicability of the Fourier series are respected.

Figure 1: plot of the function f(x) in the period $[-\pi, \pi]$

1.2

We have $f(x) = \sum_{n=-\infty}^{+\infty} C_n e^{inx}$. We first compute C_0 , we have $C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \cdot \pi = \frac{1}{2}$. Then we try to compute C_n with the formula $c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} dx = \frac{1}{2\pi} \left[\frac{1}{-in} e^{-inx} \right]_{-\pi}^{0} = \frac{i}{2n\pi} (1 - (\cos(n\pi) + i \sin n\pi))$

Therefore, when n = 2m + 1, we have $\frac{i}{2n\pi}(1 - (\cos(n\pi) + i\sin n\pi)) = \frac{i}{2(2m+1)\pi}(1+1) = \frac{i}{(2m+1)\pi}$. when n = 2m, we have $\frac{i}{2n\pi}(1 - (\cos(n\pi) + i\sin n\pi)) = 0$

In conclusion, $C_0 = \frac{1}{2}$, $C_{2m(m\neq 0)} = 0$ and $C_{2m+1} = \frac{i}{(2m+1)\pi}$

1.3

We have
$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{i\frac{n\pi x}{L}} = \sum_{n=-\infty}^{+\infty} c_n = \frac{1}{2} + \sum_{m=0}^{\infty} \left(\frac{i}{(2m+1)\pi} + \frac{i}{(-2m-1)\pi}\right) = \frac{1}{2}$$

1.4

We directly apply the Parseval's theorem, we have $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{-\infty}^{+\infty} C_n^2 = \frac{1}{4} + 2 \sum_{m=0}^{+\infty} \frac{1}{((2m+1)\pi)^2} = \frac{1}{2}$, therefore we can solve that $\sum_{m=0}^{+\infty} \frac{1}{(2m+1)^2} = \frac{\pi^2}{8}$

EXERCISE 2

2.1

Since we have $\vec{F} = (z^2 \vec{e_\theta} + \vec{e_r})$ and $\vec{\nabla} \times \vec{A} = \vec{e_r} \left(\frac{\partial_{\theta} A_z}{r} - \partial_z A_{\theta} \right) + \vec{e_\theta} \left(\partial_z A_r - \partial_r A_z \right) + \vec{e_z} \left(\frac{1}{r} \partial_r \left(r A_{\theta} \right) - \frac{1}{r} \partial_{\theta} A_r \right)$ we can just plugin \vec{A} with \vec{F} we have

$$\vec{\nabla} \times \vec{F} = \vec{e_r} \left(0 - \partial_z z^2 \right) + \vec{e_\theta}(0) + \vec{e_z}(\frac{z^2}{r} - 0) = -2z\vec{e_r} + \frac{z^2}{r}\vec{e_z}$$

2.2

 $I = \iint_{\Sigma} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)} \sigma = \iint_{\Sigma} (-2z\vec{e_r} + \frac{z^2}{r}\vec{e_z}) \cdot \vec{n} d^{(2)} \sigma$. Since \vec{n} is the outwards-oriented, unit vector normal to the surface, we have $\vec{n} = \vec{e_r}$ and r = 1, then we have

$$I = \int_{\theta=0}^{2\pi} \int_{z=0}^{H} \left(-2z\vec{e_r} + \frac{z^2}{r}\vec{e_z} \right) \vec{e_r} d\theta dz = -2 \int_{\theta=0}^{2\pi} \int_{-\frac{H}{2}}^{\frac{H}{2}} (z) d\theta dz = -4\pi \int_{-\frac{H}{2}}^{\frac{H}{2}} z dz = 0$$

2.3

$$\iiint_V \operatorname{div} \mathbf{F} d^{(3)} \tau = \iint_A \mathbf{F} \cdot \mathbf{n} d^{(2)} \sigma$$

Here, $d^{(3)}\tau$ represent a small volume, say $d^{(3)}\tau = dxdydz$ in cartesian basis, **n** is a normal vector to a surface and $d^{(2)}\sigma$ is the element of area for each surface enclosing the volume V. This A is a closed surface for the column.

2.4

We first apply the divergence theorem in three dimensions that $\iiint_V \operatorname{div}(\vec{\nabla} \times \vec{F}) d^{(3)}\tau = \iint_A \mathbf{F} \cdot \mathbf{n} d^{(2)}\sigma = 0$ and since for $\iint_{\text{top disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)}\sigma$ we have $\vec{n} = \vec{e_z}$ and for $\iint_{\text{bottom disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)}\sigma$ we have $\vec{n} = -\vec{e_z}$. Therefore, we have

$$I + \iint_{\text{bottom disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)} \sigma + \iint_{\text{top disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)} \sigma = 0$$

2.5

We have $d^{(2)}\sigma = r dr d\theta$ Therefore $\iint_{\text{top disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)}\sigma = \int_{r=0}^{1} \int_{\theta=0}^{2\pi} (z^2) d\theta dr = \int_{r=0}^{1} \int_{\theta=0}^{2\pi} (\frac{H^2}{4}) d\theta dr = \frac{\pi H^2}{2}$

LAB151 - Vector and Fouier Analysis

similarly we can use the same method to compute $\iint_{\text{bottom disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)} \sigma$ we have

$$\iint_{\text{bottom disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)} \sigma = \int_{r=0}^{1} \int_{\theta=0}^{2\pi} (-z^2) d\theta dr = \int_{r=0}^{1} \int_{\theta=0}^{2\pi} (-\frac{H^2}{4}) d\theta dr = \frac{-\pi H^2}{2}$$

Since we have the result from 2.2 and 2.4 that I=0 and $I+\iint_{\text{bottom disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)} \sigma + \iint_{\text{top disk}} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d^{(2)} \sigma = 0$ therefore the result is verified.