Applications linéaires - Corrigé

Exercice 1 (Calcul d'image et de noyau)

• Soient $(x, y, z), (x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$:

$$f\Big((x,y,z) + \lambda(x',y',z')\Big) = f\Big((x+\lambda x',y+\lambda y',z+\lambda z')\Big) = \Big(x+\lambda x'+y+\lambda y',2(x+\lambda x')-(y+\lambda y')+z+\lambda z'\Big)$$
$$= \Big(x+y,2x-y+z\Big) + \lambda\Big(x'+y',2x'-y'-z'\Big) = f\Big((x,y,z)\Big) + \lambda f\Big((x',y,x',z')\Big).$$

Ainsi $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$. Déterminons une base de Im(f):

$$Im(f) = Vect(f(1,0,0), f(0,1,0), f(0,0,1)) = Vect((1,2), (1,-1), (0,1))$$

Cette famille est génératrice de Im(f), mais n'est pas libre : par exemple (1,2)=(1,-1)+3(0,1). Ainsi :

$$Im(f) = Vect((1,-1),(0,1)).$$

La famille ((1,-1),(0,1)) est libre, c'est donc une base de Im(f)! En fait, plus simplement, on peut voir que

$$Im(f) = Vect((1,-1),(0,1)) = Vect((1,0),(0,1)) = \mathbb{R}^2.$$

Ainsi $Im(f) = \mathbb{R}^2$ et une autre base en est la base canonique ((1,0),(0,1))...Cherchons maintenant une base de Ker(f):

$$Ker(f) = \{(x, y, z) \in \mathbb{R}^3 | x + y = 0 \text{ et } 2x - y + z = 0\}.$$

Après résolution de ce système de 2 équations, on obtient

$$Ker(f) = \{(x, -x, -3x), x \in \mathbb{R}\} = Vect((1, -1, -3)).$$

La famille (composée d'un seul vecteur) ((1,-1,-3)) est évidemment libre, c'est donc une base de Ker(f).

• Linéarité évidente (similaire à f) : $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$, c'est une forme linéaire sur \mathbb{R}^3 . Déterminons une base de Im(g) :

$$Im(g) = Vect(g(1,0,0), g(0,1,0), g(0,0,1)) = Vect(1,-3,1).$$

Il s'agit d'une famille de trois "vecteurs" de \mathbb{R} ! Evidemment elle est liée puisque $-3 = -3 \cdot 1$.

$$Im(g) = Vect(1, -3, 1) = Vect(1) = \mathbb{R}.$$

Ainsi $Im(g)=\mathbb{R}$ et une base de Im(g) est composée d'un seul "vecteur" de $\mathbb{R}:1.$ Passons au noyau :

$$Ker(g) = \left\{ (x,y,z) \in \mathbb{R}^3 \, | \, x - 3y + z = 0 \right\} = \left\{ (x,y,z) \in \mathbb{R}^3 \, | \, z = -x + 3y \right\} = \left\{ (x,y,-x+3y), \, y \in \mathbb{R}, z \in \mathbb{R} \right\} = \left\{ x(1,0,-1) + y(0,1,3), \, y \in \mathbb{R}, z \in \mathbb{R} \right\} = Vect\Big((1,0,-1), (0,1,3) \Big).$$

Cette famille de deux vecteurs est libre (car ils sont non-colinéaires) : ((1,0,-1),(0,1,3)) est une base de Ker(f).

• Pour tous $P, Q \in \mathbb{R}_3[X]$ et $\lambda \in \mathbb{R}$,

$$h(P + \lambda Q) = X(P + \lambda Q)' = X(P' + \lambda Q') = XP' + \lambda XQ' = h(P) + \lambda h(Q).$$

Ceci montre que $h \in \mathcal{L}(\mathbb{R}_3[X], \mathbb{R}[X])$. Déterminons l'image :

$$Im(h) = Vect\Big(h(1), h(X), h(X^2), h(X^3)\Big) = Vect\Big(0, X, 2X^2, 3X^3\Big) = Vect\Big(X, 2X^2, 3X^3\Big) = Vect\Big(X, X^2, X^3\Big).$$

La famille (X, X^2, X^3) est libre car constituée de polynôme de degrés échelonnés : c'est donc une base de Im(f). On passe au noyau :

$$Ker(h) = \left\{P \in \mathbb{R}_3[X] \mid XP' = 0\right\} = \left\{P \in \mathbb{R}_3[X] \mid P' = 0\right\} = \mathbb{R}_0[X] = Vect\Big(1\Big) \text{ (ensemble des polynômes constants)}.$$

Une base de Ker(h) est composée d'un seul vecteur : 1 (polynôme constant égal à 1).

• Pour tous $X, Y \in \mathcal{M}_{3,1}(\mathbb{R})$ et $\lambda \in \mathbb{R}$,

$$\varphi(X + \lambda Y) = A(X + \lambda Y) = AX + \lambda AY = \varphi(X) + \lambda \varphi(Y).$$

Ceci montre que $\varphi \in \mathcal{L}(\mathcal{M}_{3,1}(\mathbb{R}))$. Déterminons l'image :

Cette famille est liée car par exemple $\begin{pmatrix} 1\\1\\2 \end{pmatrix} = 2 \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$. Ainsi : $Im(\varphi) = Vect \left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \right)$. Ces deux vecteurs forment une famille libre, donc une base de $Im(\varphi)$. Passons au noyau :

$$Ker(\varphi) = \left\{ X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = 0 \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \mid \begin{pmatrix} \frac{1}{0} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{0} & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$
$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \mid \begin{pmatrix} x+y+z \\ -y+z \\ x+2z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

On résout rapidement le système :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in Ker(\varphi) \Longleftrightarrow \begin{cases} x + y + z = 0 \\ -y + z = 0 \\ x + 2z = 0 \end{cases} \Longleftrightarrow \begin{cases} x = -2z \\ y = z \end{cases}$$

Ceci nous permet de ré-écrire $Ker(\varphi)$ sous forme "explicite" :

$$Ker(\varphi) = \left\{ \begin{pmatrix} -2z \\ z \end{pmatrix}, \ z \in \mathbb{R} \right\} = \left\{ z \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \ z \in \mathbb{R} \right\} = Vect\left(\begin{pmatrix} -2 \\ 1 \end{pmatrix} \right).$$

Ainsi, une base de $Ker(\varphi)$ est composée d'un seul vecteur : $\begin{pmatrix} -2\\1\\1 \end{pmatrix}$.

Exercice 2 (Endomorphisme de polynômes)

- D'abord, on a bien $f: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ car si $\deg(P) \leqslant n$, on a bien $\deg(2P' + P) \leqslant n$ également.
- Montrons que f est linéaire : pour tous $P,Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$,

$$f(P + \lambda Q) = 2(P + \lambda Q)' + P + \lambda Q = 2(P' + \lambda Q') + P + \lambda Q = 2P' + P + \lambda(2Q' + Q) = f(P) + \lambda f(Q).$$

Ainsi f est un endormorphisme de $\mathbb{R}_n[X]$.

• Montrons enfin que f est injectif en montrant que $Ker(f) = \{0\}$

Classiquement il suffit de montrer que $Ker(f) \subset \{0\}$: Soit $P \in \mathbb{R}_n[X]$ tel que f(P) = 0. Montrons que P = 0.

On a $f(P) = 0 \iff 2P' + P = 0 \iff P = -2P'$.

Si jamais $P \neq 0$, on sait que $\deg(P') < \deg(P)$, l'égalité P = -2P' est donc impossible! Ainsi on a bien P = 0.

Ceci montre que $Ker(f) = \{0\}$: f est un endomorphisme injectif.

Exercice 3 (Endomorphisme de $\mathbb{R}^{\mathbb{N}}$)

1. Vérifions que Φ est linéaire : soient $u, v \in \mathbb{R}^{\mathbb{N}}$ et $\lambda \in \mathbb{R}$. Notons $w = \Phi(u + \lambda v) \in \mathbb{R}^{N}$. Par définition, pour tout $n \in \mathbb{N}$,

$$w_n = (u + \lambda v)_{n+1} + 3(u + \lambda v)_n = u_{n+1} + \lambda v_{n+1} + 3u_n + 3\lambda v_n = (u_{n+1} + 3u_n) + \lambda (v_{n+1} + 3v_n).$$

On reconnait que $(u_{n+1} + 3u_n)$ est le terme d'indice n de la suite $\Phi(u)$ et $(v_{n+1} + 3v_n)$ est le terme d'indice n de la suite $\Phi(v)$. On a donc bien $w = \Phi(u) + \lambda \Phi(v)$, d'où la linéarité.

2. Par définition,

$$Ker(\Phi) = \left\{ u \in \mathbb{R}^N \mid \Phi(u) = 0 \right\} = \left\{ u \in \mathbb{R}^N \mid \forall n \in \mathbb{N}, \ u_{n+1} + 3u_n = 0 \right\} = \left\{ u \in \mathbb{R}^N \mid \forall n \in \mathbb{N}, \ u_{n+1} = -3u_n \right\}.$$

Il s'agit donc de l'ensemble des suites géométriques de raison (-3)!

On sait qu'une telle suite satisfait : $\forall n \in \mathbb{N}, u_0 \cdot (-3)^n$. Ainsi :

En notant la suite $w = ((-3)^n)_{n \in \mathbb{N}}$, on a donc : $u \in Ker(\Phi) \iff u = u_0 \cdot w$.

Ainsi, les suites géométriques de raison (-3) sont exactement les suites proportionnelles à w:

$$Ker(\Phi) = \{u_0 \cdot w, \ u_0 \in \mathbb{R}\} = \{\lambda w, \ \lambda \in \mathbb{R}\} = Vect(w).$$

Une base de $Ker(\Phi)$ est donc composée d'un seul vecteur : la suite w.

Exercice 4 (Image, noyau et composée)

Rappel: Pour montrer une inclusion $A \subset B$, il faut et il suffit de montrer que : $\forall x \in A, x \in B$.

1. • Soit $u \in Im(g \circ f)$. Montrons que $u \in Im(g)$.

Par définition, il existe $v \in E$ tel que $u = (g \circ f)(v)$. Ainsi $u = g(\underbrace{f(v)}_{\in F})$ donc, par définition, $u \in Im(g)$. Ceci montre que $Im(g \circ f) \subset Im(g)$.

• Soit $v \in Ker(f)$. Montrons que $v \in Ker(g \circ f)$.

Par définition, on a $f(v) = 0_F$ et donc $g(f(v)) = g(0_F) = 0_G$. Autrement dit, $(g \circ f)(v) = 0_G$: ainsi $v \in Ker(g \circ f)$. Ceci montre que $Ker(f) \subset Ker(f \circ g)$.

2. • Supposons $Im(f) \subset Ker(g)$. Montrons que $g \circ f = 0$, c'est à dire que : $\forall v \in E, g(f(v)) = 0_G$.

Soit $v \in E$. Par définition, $f(v) \in Im(f)$ et donc $f(v) \in Ker(g)$ car $Im(f) \subset Ker(g)$.

Ainsi, on a bien $g(f(v)) = 0_G$, d'où le résultat.

• Supposons $g \circ f = 0$. Montrons que $Im(f) \subset Ker(g)$.

Soit $u \in Im(f)$. Par définition, il existe $v \in E$ tel que u = f(v).

Par suite, $g(u) = g(f(v)) = (g \circ f)(v) = 0_G$ car $g \circ f = 0$. Ainsi, on a $u \in Ker(g)$.

Ceci montre que $Im(f) \subset Ker(g)$, d'où le résultat.

Exercice 5 (Image, noyau et puissance)

- 1. Même preuve que dans l'exercice 4 question 1. (c'est le cas particulier où g = f...)
- 2. Supposons $Ker(f) = Ker(f^2)$. Montrons que $Im(f) \cap Ker(f) = \{0_E\}$.

On a évidemment $\{0_E\} \subset Im(f) \cap Ker(f)$, il suffit donc de montrer que $Im(f) \cap Ker(f) \subset \{0_E\}$.

Soit $u \in Im(f) \subset Ker(f)$, montrons que $u = 0_E$.

Puisque $u \in Im(f)$, il existe $v \in E$ tel que u = f(v).

Puisque $u \in Ker(f)$, on a $f(u) = 0_E$ c'est à dire $f(f(v)) = 0_E$ et donc $v \in Ker(f^2)$.

Or, par hypothèse, $Ker(f^2) = Ker(f)$, on a donc $v \in Ker(f)$ c'est à dire $f(v) = 0_F$.

Autrement dit, $u = f(v) = 0_E$, d'où le résultat.

• Supposons $Im(f) \cap Ker(f) = \{0_E\}$. Montrons que $Ker(f) \subset Ker(f^2)$.

D'après 1., on sait déjà que $Ker(f) \subset Ker(f^2)$, il suffit donc de montrer $Ker(f^2) \subset Ker(f)$.

Soit $v \in Ker(f^2)$, montrons que $v \in Ker(f)$.

Puisque $v \in Ker(f^2)$, on a $f(f(v)) = 0_E$, autrement dit $f(v) \in Ker(f)$.

De plus, par définition, $f(v) \in Im(f)$. On a donc $f(v) \in Im(f) \cap Ker(f)$.

Par hypothèse, $Im(f) \cap Ker(f) = \{0_E\}$, et donc $f(v) = 0_E$. Autrement dit, $v \in Ker(f)$, d'où le résultat.

Exercice 6 (Endomorphismes qui commutent)

• Soit $v \in Ker(f)$, montrons que $g(v) \in Ker(f)$, c'est à dire que $f(g(v)) = 0_E$.

On a $f(g(v)) = (f \circ g)(v) = (g \circ f)(v) = g(f(v))$.

Puisque $v \in Ker(f)$, on a $f(v) = 0_E$, donc $f(g(v)) = g(0_E) = 0_E$, d'où le résultat.

• Soit $u \in Im(f)$, montrons que $g(u) \in Im(f)$.

Par définition, il existe $v \in E$ tel que u = f(v).

Ainsi $g(u) = g(f(v)) = (g \circ f)(v) = (f \circ g)(v) = f(g(v))$. Ceci montre que $g(u) \in Im(f)$.

Exercice 7 (Espaces usuels isomorphes)

 $\mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ 1. L'application $f: \sum_{k=0}^n a_k X^k \to (a_0, a_1, \dots, a_n)$ est clairement linéaire et également bijective.

2. De même avec l'application $f: \mathcal{M}_{n,p}(\mathbb{R}) \to \mathbb{R}^{n \times p}$ $A = (a_{i,j})_{i \in \llbracket 1,n \rrbracket, j \in \llbracket 1,p \rrbracket} \to (a_{1,1},\ldots,a_{1,p},a_{2,1},\ldots,a_{2,p},\ldots,a_{n,1},a_{n,2},\ldots,a_{n,p}).$

Par exemple (pour clarifier), dans le cas n = p = 2, il s'agit de l'application $f: A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \mathbb{R}^4$ 3. De même avec l'application $f: \begin{pmatrix} \mathbb{R}^{\mathbb{N}} & \to \mathbb{R}^{\mathbb{N}^*} \\ (u_n)_{n \in \mathbb{N}} & \to (u_{n-1})_{n \in \mathbb{N}^*} \end{pmatrix}$ (de réciproque $f^{-1}: \begin{pmatrix} \mathbb{R}^{\mathbb{N}^*} & \to \mathbb{R}^{\mathbb{N}} \\ (v_n)_{n \in \mathbb{N}^*} & \to (v_{n+1})_{n \in \mathbb{N}} \end{pmatrix}$

Exercice 8 (Un espace vectoriel de suites)

1. • La suite nulle appartient bien sûr à E car si $\forall n \in \mathbb{N}, u_n = 0$, on a bien

$$\forall n \in \mathbb{N}, \ \underbrace{u_{n+2}}_{=0} = (n+2)\underbrace{u_{n+1}}_{=0} + \underbrace{u_n}_{=0}$$

• Soient $u, v \in E$ et $\lambda \in \mathbb{R}$. Vérifions que $w = u + \lambda v \in E$. Soit $n \in \mathbb{N}$. On sait que $u_{n+2} = (n+2)u_{n+1} + u_n$ et $v_{n+2} = (n+2)v_{n+1} + v_n$ et on doit montrer que $w_{n+2} = (n+2)w_{n+1} + w_n$.

$$w_{n+2} = u_{n+2} + \lambda v_{n+2} = ((n+2)u_{n+1} + u_n) + \lambda((n+2)v_{n+1} + v_n) = (n+2)(u_{n+1} + \lambda v_{n+1}) + u_n + \lambda v_n$$
$$= (n+2)w_{n+1} + w_n.$$

Ceci montre bien que $w \in E$.

Ainsi, E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

2. Véifions d'abord que φ est linéaire : pour $u, v \in E$ et $\lambda \in \mathbb{R}$,

$$\varphi(u+\lambda v) = \left((u+\lambda v)_0, (u+\lambda v)_1\right) = \left(u_0 + \lambda v_0, u_1 + \lambda v_1\right) = (u_0, u_1) + \lambda(v_0, v_1) = \varphi(u) + \lambda \varphi(v).$$

Montrons que φ est bijective. Soit $(a,b) \in \mathbb{R}^2$, montrons qu'il existe une unique $u \in E$ telle que $\varphi(u) = (a,b)$. (Définition d'une bijection : chaque $(a,b) \in \mathbb{R}^2$ admet un unique antécédent par $\varphi!$)

En fait c'est évident, puisque l'unique suite $u \in E$ telle que $\varphi(u) = (a, b)$ est celle définie par :

$$u_0 = a, u_1 = b$$
 et $\forall n \in \mathbb{N}, u_{n+2} = (n+2)u_{n+1} + u_n$.

Ainsi, φ est un isomorphisme entre E et \mathbb{R}^2 .

Exercice 9 (Isomorphisme de Lagrange)

1. Soient $P, Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$. On a :

$$f(P + \lambda Q) = \left((P + \lambda Q)(x_0), \dots, (P + \lambda Q)(x_n) \right) = \left(P(x_0) + \lambda Q(x_0), \dots, P(x_n) + \lambda Q(x_n) \right)$$
$$= \left(P(x_0), \dots, P(x_n) \right) + \lambda \left(Q(x_0), \dots, Q(x_n) \right) = f(P) + \lambda f(Q).$$

Ainsi $f \in \mathcal{L}(\mathbb{R}_n[X], \mathbb{R}^{n+1})$.

2. Montrons que f est injective en vérifiant que $Ker(f) = \{0_E\}$. Soit $P \in \mathbb{R}_n[X]$ tel que $f(P) = 0_{\mathbb{R}^{n+1}}$, montrons que P = 0. On sait que

$$f(P) = (P(x_0), P(x_1), \dots, P(x_n)) = (0, 0, \dots, 0).$$

Autrement dit, P admet les n+1 racines distinctes x_0, x_1, \ldots, x_n .

Or puisque $P \in \mathbb{R}_n[X]$, on a deg $(P) \leq n$: il en résulte que P est nécessairement le polynôme nul! Ceci montre que f est injective.

3. (a) Pour tout $i \in [0, n]$,

$$f(L_i) = \left(L_i(x_0), L_i(x_1), \dots, L_i(x_n)\right)$$

Or, il est facile de remarquer que $L_i(x_j) = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$. Ainsi :

$$f(L_i) = (0, 0, \dots, 0, 1, 0, \dots, 0)$$
 (1 en " $i + 1$ -ème position")

Par exemple: $f(L_0) = (1, 0, ..., 0), f(L_1) = (0, 1, 0, ..., 0), ..., f(L_n) = (0, 0, ..., 0, 1).$

(b) Puisque, pour tout $i \in [0, n]$, $f(L_i) \in Im(f)$, on sait que

$$\forall i \in [0, n], (0, 0, \dots, 0, \underbrace{1}_{i+1 \text{-ème position}}, 0, \dots, 0) \in Im(f).$$

Puisque Im(f) est un espace vectoriel, toute combinaison linéaire des ces vecteurs appartient toujours à Im(f), c'est à dire : $Vect ((1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,0,1)) \subset Im(f)$.

Autrement dit, $\mathbb{R}^{n+1} \subset Im(f)$. Puisque par définition $Im(f) \subset \mathbb{R}^{n+1}$, on a $Im(f) = \mathbb{R}^{n+1}$. Ceci montre que f est surjective!

Exercice 10 (Isomorphisme de Taylor)

f est clairement une application linéaire.

1. Soit $P \in \mathbb{R}_n[X]$ tel que $f(P) = 0_{\mathbb{R}^{n+1}}$. Montrons que P = 0. On sait que

$$f(P) = (P(\alpha), P'(\alpha), \dots, P^{(n)}(\alpha)) = (0, 0, \dots, 0).$$

Ainsi $P(\alpha) = P'(\alpha) = \ldots = P^{(n)}(\alpha) = 0$. Autrement dit, α est une racine de P de multiplicité n+1. Or puisque $P \in \mathbb{R}_n[X]$, on a $\deg(P) \leq n$: il en résulte que P est le polynôme nul. Ceci montre que $Ker(f) = \{0\}$ et donc f est injective.

2. (a) Soit $k \in [0, n]$. Et notant $P = (X - \alpha)^k$, on a :

- $P^{(0)} = P = (X \alpha)^k \text{ donc } P^{(0)}(\alpha) = 0.$
- $P^{(1)} = k(X \alpha)^{k-1} \text{ donc } P^{(1)}(\alpha) = 0.$
- $P^{(2)} = k(k-1)(X-\alpha)^{k-2}$ donc $P^{(2)}(\alpha) = 0$.

:

- $P^{(k-1)} = k(k-1) \dots 2(X-\alpha) \text{ donc } P^{(k-1)}(\alpha) = 0.$
- $P^{(k)} = k(k-1) \dots 1(X-\alpha)^0 = k! \text{ donc } P^{(k)}(\alpha) = k!.$
- Pour tout $i > k, P^{(i)} = 0$ et donc $P^{(i)}(\alpha) = 0$.

Ainsi: $f((X - \alpha)^k) = (0, 0, \dots, 0, k!, 0, \dots, 0)$ (k! en k + 1-ème position)

(b) Même raisonnement qu'en 3.(b) de l'Exercice 9. On sait que pour tout $k \in [0, n]$,

$$(0,0,\ldots,0,k!,0,\ldots,0) = f((X-\alpha)^k) \in Im(f)$$

et donc

$$\frac{1}{k!}(0,0,\ldots,0,k!,0,\ldots,0) = (0,0,\ldots,0,1,0,\ldots,0) \in Im(f).$$

Ainsi $Vect((1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,0,1)) \subset Im(f).$

Ceci montre que $\mathbb{R}^{n+1} \subset Im(f)$, c'est à dire $Im(f) = \mathbb{R}^{n+1}$. Ainsi f est surjective.

3. (a) On a déjà vu que pour tout $k \in \llbracket 0, n \rrbracket$, $f((X - \alpha)^k) = (0, 0, \dots, 0, k!, 0, \dots 0) = k! \cdot e_k$.

Ainsi :
$$f\left(\frac{1}{k!}(X-\alpha)^k\right) = \frac{1}{k!}f\left((X-\alpha)^k\right) = e_k$$
.

Autrement dit, l'unique antécédent de e_k par f^{-1} est $\frac{1}{k!}(X-\alpha)^k$.

Ceci montre que $\forall k \in [0, n], \ f^{-1}(e_k) = \frac{1}{k!} (X - \alpha)^k$.

(b) Soit $(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1}$. On a la décomposition naturelle dans la base canonique :

$$(x_0, x_1, \dots, x_n) = x_0 \cdot e_0 + x_1 \cdot e_1 + \dots + x_n \cdot e_n = \sum_{k=0}^{n} x_k \cdot e_k.$$

Puisque f^{-1} est également une application linéaire, on a :

$$f^{-1}((x_0, x_1, \dots, x_n)) = f\left(\sum_{k=0}^n x_k \cdot e_k\right) = \sum_{k=0}^n x_k f^{-1}(e_k) = \sum_{k=0}^n \frac{x_k}{k!} (X - \alpha)^k.$$

On vient donc de déterminer explicitement l'application réciproque f^{-1} !

4. Soit $P \in \mathbb{R}_n[X]$ l'égalité $P = f^{-1}(f(P))$ s'écrit :

$$P = f^{-1}((P(\alpha), P'(\alpha), \dots, P^{(n)}(\alpha))) = \sum_{k=0}^{n} \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^{k}.$$

(formule précédente avec $(x_0, x_1, \ldots, x_n) = (P(\alpha), P'(\alpha), \ldots, P^{(n)}(\alpha))$, c'est à dire $x_k = P^{(k)}(\alpha)$) En fait, cette formule est **la formule de Taylor à l'ordre** n **en** α (cf. chapitre "Polynômes").

Exercice 11 (Image d'une base 1)

Traduisons les hypothèses :

$$f((1,0,0)) = (1,-2), \quad f((0,1,0)) = (3,0), \quad f((0,0,1)) = (2,1).$$

1. On sait que ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 .

On regarde la famille (f((1,0,0)), f((0,1,0)), f((0,0,1))) c'est à dire : ((1,-2), (3,0), (2,1)).

- Ce n'est pas une famille libre (car par exemple : $(1,-2) = -2(2,1) + \frac{5}{3}(3,0)$). On en déduit que f n'est pas injective.
- C'est une famille génératrice de \mathbb{R}^2 , en effet :

$$Vect\Big((1,-2),(3,0),(2,1)\Big) = Vect\Big((3,0),(2,1)\Big) = Vect\Big((1,0),(2,1)\Big) = Vect\Big((1,0),(0,1)\Big) = \mathbb{R}^2.$$

On en déduit que f est surjective.

2. Pour tout $(x, y, z) \in \mathbb{R}^3$,

$$f((x,y,z)) = f(x(1,0,0) + y(0,1,0) + z(0,0,1)) = xf((1,0,0)) + yf((0,1,0)) + zf((0,0,1))$$
$$= x(1,-2) + y(3,0) + z(2,1) = (x+3y+2z,-2x+z).$$

Exercice 12 (Image d'une base 2)

1. Il suffit de vérifier que ((1,0,1),(1,2,2),(0,1,0)) est une base de \mathbb{R}^3 . (on sait ensuite que donner l'image des vecteurs d'une base définit une application linéaire de manière unique) Soit $(x,y,z) \in \mathbb{R}^3$ quelconque. Montrons qu'il existe un unique $(\lambda_1,\lambda_2,\lambda_3) \in \mathbb{R}^3$ tel que

$$(x, y, z) = \lambda_1(1, 0, 1) + \lambda_2(1, 2, 2) + \lambda_3(0, 1, 0).$$

Cette égalité équivaut à :

$$\begin{cases} \lambda_1 + \lambda_2 &= x \\ 2\lambda_2 + \lambda_3 &= y \\ \lambda_1 + 2\lambda_2 &= z \end{cases} \iff \begin{cases} \lambda_1 + \lambda_2 &= x \\ 2\lambda_2 + \lambda_3 &= y \\ \lambda_2 &= z - x \end{cases} \iff \begin{cases} \lambda_1 &= x - (z - x) \\ \lambda_3 &= y - 2(z - x) \\ \lambda_2 &= z - x \end{cases} \iff \begin{cases} \lambda_1 &= 2x - z \\ \lambda_2 &= -x + z \\ \lambda_3 &= 2x + y - 2z \end{cases}$$

On a bien une unique solution, d'où le résultat.

2. Dans la questions précédente, on a vu que tout $(x,y,z)\in\mathbb{R}^3$ se décompose :

$$(x, y, z) = (2x - z) \cdot (1, 0, 1) + (-x + z) \cdot (1, 2, 2) + (2x + y - 2z) \cdot (0, 1, 0).$$

Par linéarité:

$$f((x,y,z)) = (2x-z) \cdot f((1,0,1)) + (-x+z) \cdot f((1,2,2)) + (2x+y-2z) \cdot f((0,1,0))$$
$$= (2x-z) \cdot 3 + (-x+z) \cdot (-1) + (2x+y-2z) \cdot 0$$
$$= 7x - 4z.$$

Exercice 13 (Calcul de puissances d'un endomorphisme)

1. D'abord, on a bien $\Delta: E \to E$. Vérifions que Δ est linéaire. Pour tous $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$,

$$\begin{split} \Delta(P + \lambda Q) &= (P + \lambda Q)(X + 1) - (P + \lambda Q)(X) \\ &= P(X + 1) + \lambda Q(X + 1) - P(X) - \lambda Q(X) \\ &= P(X + 1) - P(X) + \lambda (Q(X + 1) - Q(X)) \\ &= \Delta(P) + \lambda \Delta(Q). \end{split}$$

Ceci montre que $\Delta \in \mathcal{L}(E)$.

2. $Ker(\Delta) = \{ P \in \mathbb{R}[X] \mid P(X+1) - P(X) = 0 \}.$

Montrons qu'en fait $Ker(\Delta) = \mathbb{R}_0[X]$ (ensemble des polynômes constants).

- D'abord, si P est un polynôme constant, on a évidemment P(X+1) = P(X).
- Inversement, montrons que les seuls polynômes satisfaisant P(X+1) P(X) = 0 sont les polynômes constants. (c'est un exercice assez classique)

Supposons que $n = \deg(P) \geqslant 1$, de sorte que l'on peut écrire $P(X) = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$. On a alors :

$$P(X+1) - P(X) = \sum_{k=0}^{n} a_k (X+1)^k - \sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{n} a_k \left((X+1)^k - X^k \right)$$

$$= \sum_{k=0}^{n} a_k \left(\sum_{i=0}^{k} \binom{k}{i} X^i - X^k \right) \text{ (en développant } (X+1)^k \text{ avec le binôme de Newton)}$$

$$= \sum_{k=0}^{n} a_k \left(\sum_{i=0}^{k-1} \binom{k}{i} X^i \right).$$

En observant les puissance mises en jeu dans ce polynôme, on voit que le terme de plus haut degré qui y apparaît est $a_n \binom{n}{n-1} X^{n-1}$: c'est donc un polynôme de degré n-1.

Ainsi, si $\deg(P) = n \ge 1$, alors $\deg(P(X+1) - P(X)) = n - 1$. Il est alors impossible que P(X+1) - P(X) = 0. Ainsi pour que P(X+1) - P(X) = 0, il faut que $\deg(P) \le 0$, c'est à dire que P soit constant, CQFD.

3. (a) Pour tout $P \in \mathbb{R}[X]$:

$$\Delta(P) = P(X+1) - P(X) = S(P) - P = S(P) - Id_E(P).$$

Autrement dit, $\Delta = S - Id_E$.

- (b) Pour tout $P \in \mathbb{R}[X]$,
- $S^0(P) = Id_E(P) = P$
- $S^1(P) = S(P) = P(X+1)$
- $S^2(P) = S(S(P)) = S(P(X+1))$. En notant Q(X) = P(X+1), on note que S(Q) = Q(X+1) = P(X+2). Ainsi $S^2(P) = P(X+2)$.
- Etc...

Par récurrence immédiate, on montrerait que : $\forall k \in \mathbb{N}, \ \forall P \in \mathbb{R}[X], \ S^k(P) = P(X+k).$

(c) Les endomorphismes S et $-Id_E$ commutent évidemment (puisque Id_E commute avec n'importe quel endomorphisme) donc on peut appliquer la formule du binôme : pour tout $n \in \mathbb{N}$,

$$\Delta^{n} = (S - Id_{E})^{n} = \sum_{k=0}^{n} \binom{n}{k} S^{k} \circ (-Id_{E})^{n-k} = \sum_{k=0}^{n} \binom{n}{k} S^{k} \circ (-1)^{n-k} Id_{E}^{n-k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} S^{k} \circ Id_{E} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} S^{k}.$$

Ainsi, pour tout $P \in \mathbb{R}[X]$,

$$\Delta^{n}(P) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} S^{k}(P) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} P(X+k).$$