Количество и сумма делителей

Через d(n) принято обозначать количество всех натуральных делителей числа n (иногда используют обозначение $\tau(n)$); а через $\sigma(n)$ принято обозначать сумму всех этих натуральных делителей числа n.

- 1. Докажите, что количество натуральных делителей числа нечётно тогда и только тогда, когда это число полный квадрат.
- 2. Сколько и каких слагаемых получится, если раскрыть все скобки в произведении $(1+p_1+\ldots+p_1^{a_1})(1+p_2+\ldots+p_2^{a_2})\ldots(1+p_k+\ldots+p_k^{a_k})$?
- 3. Докажите, что натуральное число с ровно 2017 делителями не кратно 2018.
- 4. Докажите неравенство $d(ab) \ge d(a) + d(b) 1$ для любых натуральных a и b.
- 5. Найдите все числа $n \in \mathbb{N}$ такие, что у числа n^2 ровно в три раза больше делителей, чем у n.
- 6. Докажите, что $\sqrt{n} \leqslant \frac{\sigma(n)}{d(n)} \leqslant \frac{n+1}{2}$ для любого натурального n.
- 7. Найдите наибольшее значение постоянной C такое, что $C\sqrt{n}\leqslant \frac{\sigma(n)}{d(n)}$ при всех натуральных n>1.
- 8. Натуральные числа a и b удовлетворяют равенству $a+d(a)=b^2+2$. Докажите, то число a+b чётно.
- 9. Найдите все натуральные числа k для которых найдутся натуральные числа a и b такие, что k = d(a) = d(b) = d(2a + 3b).
- 10. Через d(n,k) обозначим количество делителей числа n, не меньших k. Вычислите сумму $d(2019,1)+d(2020,2)+\ldots+d(4036,2018)$.
- 11. В каждом из пунктов выясните:
 - (a) Существует ли натуральное число n такое, что d(2022n) = n?
 - (b) Существует ли натуральное число n такое, что d(2023n) = n?
 - (c) Существует ли натуральное число a такое, что уравнение d(an) = n имеет бесконечно много решений в натуральных n?
- 12. Для произвольного натурального числа n через $\mathfrak{p}(n)$ обозначим количество всех его простых делителей.
 - (а) Докажите, что для любого натурального числа n найдутся натуральные числа k и m такие, что k-m=n и $\mathfrak{p}(k)-\mathfrak{p}(m)=1$.
 - (b) Конечно или бесконечно число таких пар натуральных чисел (a,b), что $a \neq b$ и $\mathfrak{p}(a+b) = \mathfrak{p}(a) + \mathfrak{p}(b)$?
 - (c) Изменится ли ответ на предыдущий вопрос, если дополнительно потребовать $\mathfrak{p}(a+b)>2025$?
- 13. Число $n \in \mathbb{N}$ называется совершенным, если $\sigma(n) = 2n$. Докажите, что чётное число совершенно тогда и только тогда, когда оно представимо в виде $2^{p-1}(2^p-1)$, где числа p и 2^p-1 просты.