ediction-using-arima-end-to-end

April 16, 2024

1 End to End Time Series forecasting using ARIMA

```
[25]: #Changing working directory
import os
print(os.getcwd())
import warnings
warnings.filterwarnings('ignore')

C:\Users\amanr\Documents\Time Series

[2]: from IPython.display import Image
Image(filename='Capture.png')
[2]:
```



```
[3]: #Data Import and cleaning

[26]: # Data and package Import

#Data Source - Kaggle - https://www.kaggle.com/rohanrao/

nifty50-stock-market-data

import pandas as pd

import matplotlib.pyplot as plt
```

```
from statsmodels.tsa.arima_model import ARMA
TempData = pd.read_csv('HCLTECH.csv')
TempData.head(30)

Date Symbol Series Prev Close Open High Low \
```

[26]:		Da	te	Symbo	ol Series	Prev Cl	ose	Open	High	Low	\
(0	2000-01-	11	HCLTE	CH EQ	580	.00	1550.00	1725.00	1492.00	
	1	2000-01-	12	HCLTE	CH EQ	1554	.45	1560.00	1678.85	1560.00	
:	2	2000-01-	13	HCLTE	CH EQ	1678	.85	1790.00	1813.20	1781.00	
;	3	2000-01-	14	HCLTE	CH EQ	1813	.20	1958.30	1958.30	1835.00	
•	4	2000-01-	17	HCLTE	CH EQ	1958	.30	2115.00	2115.00	1801.65	
	5	2000-01-	18	HCLTE	CH EQ	1801	.65	1730.55	1815.00	1657.55	
(6	2000-01-	19	HCLTE	CH EQ	1774	.50	1815.00	1889.00	1760.00	
•	7	2000-01-	20	HCLTE	CH EQ	1851	.15	1865.00	1865.00	1750.00	
;	8	2000-01-	21	HCLTE	CH EQ	1757	.85	1761.00	1815.00	1705.00	
!	9	2000-01-	24	HCLTE	CH EQ	1781	.35	1834.90	1923.90	1795.00	
	10	2000-01-	25	HCLTE	CH EQ	1923	.90	1990.00	2077.85	1990.00	
	11	2000-01-	27	HCLTE	CH EQ	2077	.85	2239.90	2239.90	1965.00	
	12	2000-01-	28	HCLTE	CH EQ	2080	.60	2100.00	2245.00	2020.20	
	13	2000-01-	31	HCLTE	CH EQ	2196	.95	2111.00	2200.00	2021.20	
	14	2000-02-	01	HCLTE	CH EQ	2030	.40	1981.20	2180.00	1981.20	
	15	2000-02-	02	HCLTE	CH EQ	2162	.25	2260.00	2260.00	2010.00	
	16	2000-02-	03	HCLTE	CH EQ	2024	.25	2075.00	2075.00	1915.20	
	17	2000-02-	04	HCLTE	CH EQ	1956	.50	1993.00	2064.00	1965.00	
	18	2000-02-	07	HCLTE	CH EQ	1986	.60	1985.00	2119.95	1960.05	
	19	2000-02-	80	HCLTE	CH EQ	2062	.95	2049.40	2060.00	1970.00	
	20	2000-02-	09	HCLTE	CH EQ	1999	.20	2100.00	2100.00	1975.00	
:	21	2000-02-	10	HCLTE	CH EQ	1999	.00	1976.65	2014.80	1965.00	
•	22	2000-02-	11	HCLTE	CH EQ	1996	.75	1998.00	2156.50	1992.00	
:	23	2000-02-	14	HCLTE	CH EQ	2156	.50	2199.00	2329.05	2199.00	
•	24	2000-02-	15	HCLTE	CH EQ	2324	.70	2350.00	2510.70	2210.00	
•	25	2000-02-	16	HCLTE	CH EQ	2508	.40	2560.00	2560.00	2307.75	
•	26	2000-02-	17	HCLTE	CH EQ	2423	.10	2445.00	2616.95	2380.00	
•	27	2000-02-	18	HCLTE	CH EQ	2614	.70	2800.00	2823.90	2760.50	
:	28	2000-02-	21	HCLTE	CH EQ	2775	.95	2823.00	2998.00	2725.00	
:	29	2000-02-	22	HCLTE	CH EQ	2819	.15	2800.00	2875.00	2652.00	
		Last		Close	VWAP	Volume		Turnover	Trades	\	
(0	1560.00	15	54.45	1582.72	1192200	1.8	886915e+14	NaN		
	1	1678.85	16	78.85	1657.05	344850	5.7	714349e+13	NaN		
:	2	1813.20	18	13.20	1804.69	53000	9.5	564880e+12	NaN		
;	3	1958.30	19	58.30	1939.90	270950	5.2	256169e+13	NaN		
	4	1801.65	18	01.65	1990.55	428800	8.5	535473e+13	NaN		
!	5	1775.00	17	74.50	1716.39	359900	6.1	177280e+13	NaN		
	6	1842.80	18	51.15	1842.81	316050	5.8	324204e+13	NaN		
	7	1753.50	17	57.85	1801.37	204700	3.6	687409e+13	NaN		
;	8	1786.00	17	81.35	1774.01	282150	5.0	005360e+13	NaN		
!	9	1923.90	19	23.90	1875.34	328650	6.1	163317e+13	NaN		

10	2077.85	2077.85	2065.71	313500	6.476010e+13	NaN
11	2078.00	2080.60	2101.92	352400	7.407150e+13	NaN
12	2190.00	2196.95	2173.00	360800	7.840197e+13	NaN
13	2021.20	2030.40	2083.45	217650	4.534620e+13	NaN
14	2160.00	2162.25	2110.66	261000	5.508834e+13	NaN
15	2035.00	2024.25	2085.91	326550	6.811542e+13	NaN
16	1965.00	1956.50	1989.66	175800	3.497821e+13	NaN
17	1977.00	1986.60	2008.25	176500	3.544560e+13	NaN
18	2036.00	2062.95	2048.51	277850	5.691791e+13	NaN
19	2014.00	1999.20	2017.09	199100	4.016027e+13	NaN
20	1991.00	1999.00	2011.50	180500	3.630763e+13	NaN
21	1990.00	1996.75	1992.36	76850	1.531132e+13	NaN
22	2156.50	2156.50	2110.61	166150	3.506781e+13	NaN
23	2329.05	2324.70	2293.27	265150	6.080618e+13	NaN
24	2500.00	2508.40	2425.21	224500	5.444586e+13	NaN
25	2418.00	2423.10	2411.48	260850	6.290343e+13	NaN
26	2616.95	2614.70	2526.71	276550	6.987609e+13	NaN
27	2771.00	2775.95	2807.40	173400	4.868032e+13	NaN
28	2805.00	2819.15	2883.95	151800	4.377830e+13	NaN
29	2710.00	2700.30	2772.79	88250	2.446984e+13	NaN

	Deliverable	Volume	%Deliverble
0		NaN	NaN
1		NaN	NaN
2		NaN	NaN
3		NaN	NaN
4		NaN	NaN
5		NaN	NaN
6		NaN	NaN
7		NaN	NaN
8		NaN	NaN
9		NaN	NaN
10		NaN	NaN
11		NaN	NaN
12		NaN	NaN
13		NaN	NaN
14		NaN	NaN
15		NaN	NaN
16		NaN	NaN
17		NaN	NaN
18		NaN	NaN
19		NaN	NaN
20		NaN	NaN
21		NaN	NaN
22		NaN	NaN
23		NaN	NaN
24		NaN	NaN

```
25
                          {\tt NaN}
                                        {\tt NaN}
      26
                          {\tt NaN}
                                        NaN
      27
                          {\tt NaN}
                                        NaN
      28
                          NaN
                                        NaN
      29
                          NaN
                                        NaN
[27]: #Data Cleaning
      HCLTechStockData = TempData.dropna()
      HCLTechStockData.index = pd.to_datetime(HCLTechStockData.Date)
      HCLTechStockData = HCLTechStockData["Prev Close"]['2013-01-01':'2013-12-2']
      HCLTechStockData.describe()
[27]: count
                230.000000
      mean
                852.953478
      std
                156.484472
      min
                618.700000
      25%
                736.350000
      50%
                777.450000
      75%
               1023.962500
      max
               1161.150000
      Name: Prev Close, dtype: float64
[28]: #Data Exploration
      plt.figure(figsize=(16,7))
      fig = plt.figure(1)
      ax1 = fig.add_subplot(111)
      ax1.set_xlabel('Time Frame')
      ax1.set_ylabel('Stock Price for HCLTECH')
      ax1.plot(HCLTechStockData)
```

[28]: [<matplotlib.lines.Line2D at 0x13d6eee79a0>]


```
[7]: # Checking stationarity
[8]: # Method 1 - Rolling Statistics
# Method 2 - Duckey fuller

[29]: #Determing rolling statistics
rolLmean = HCLTechStockData.rolling(12).mean()
rolLstd = HCLTechStockData.rolling(12).std()

plt.figure(figsize=(16,7))
fig = plt.figure(1)

#Plot rolling statistics:
orig = plt.plot(HCLTechStockData, color='blue',label='Original')
mean = plt.plot(rolLmean, color='red', label='Rolling Mean')
std = plt.plot(rolLstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)
```


2 making Series Stationary

```
[30]: #Lets try transformation
   plt.figure(figsize=(16,7))
   fig = plt.figure(1)

import numpy as np
   ts_log = np.log(HCLTechStockData)
   plt.plot(ts_log)
```

[30]: [<matplotlib.lines.Line2D at 0x13d6ee15fa0>]


```
[31]: #Decomposition
      from statsmodels.tsa.seasonal import seasonal_decompose
      decomposition = seasonal_decompose(ts_log,freq=1,model = 'multiplicative')
      trend = decomposition.trend
      seasonal = decomposition.seasonal
      residual = decomposition.resid
      plt.figure(figsize=(16,7))
      fig = plt.figure(1)
      plt.subplot(411)
      plt.plot(ts_log, label='Original')
      plt.legend(loc='best')
      plt.subplot(412)
      plt.plot(trend, label='Trend')
      plt.legend(loc='best')
      plt.subplot(413)
      plt.plot(seasonal,label='Seasonality')
      plt.legend(loc='best')
      plt.subplot(414)
      plt.plot(residual, label='Residuals')
      plt.legend(loc='best')
```

[31]: <matplotlib.legend.Legend at 0x13d6f496d00>


```
[32]: #Lets try differencing
plt.figure(figsize=(16,7))
fig = plt.figure(1)
ts_log_diff = ts_log - ts_log.shift()
```

```
plt.plot(ts_log_diff)

#Determing rolling statistics
rolLmean = ts_log_diff.rolling(12).mean()
rolLstd = ts_log_diff.rolling(12).std()

#Plot rolling statistics:
orig = plt.plot(ts_log_diff, color='blue',label='Original')
mean = plt.plot(rolLmean, color='red', label='Rolling Mean')
std = plt.plot(rolLstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)
```



```
[13]: HCLTechStockData.sort_index(inplace= True)

[33]: from statsmodels.tsa.stattools import acf, pacf
    lag_acf = acf(ts_log_diff, nlags=20)
    lag_pacf = pacf(ts_log_diff, nlags=20)

[34]: import statsmodels.api as sm
    fig = plt.figure(figsize=(12,8))
    ax1 = fig.add_subplot(211)
    fig = sm.graphics.tsa.plot_acf(ts_log_diff.dropna(),lags=40,ax=ax1)
    ax2 = fig.add_subplot(212)
    fig = sm.graphics.tsa.plot_pacf(ts_log_diff.dropna(),lags=40,ax=ax2)
```



```
type(ts_log_diff)
[47]:
[47]: pandas.core.series.Series
[53]: #ts_log_diff.dropna()
      ts_log_diff = ts_log_diff[~ts_log_diff.isnull()]
[54]: plt.figure(figsize=(16,8))
      #ts_log_diff.dropna(inplace=True)
      model = ARIMA(ts_log_diff, order=(2,1,2))
      results_ARIMA = model.fit()
      plt.plot(ts_log_diff)
      plt.plot(results_ARIMA.fittedvalues, color='red')
      LinAlgError
                                                 Traceback (most recent call last)
       <ipython-input-54-7d3fb1504929> in <module>
             2 #ts_log_diff.dropna(inplace=True)
             3 model = ARIMA(ts_log_diff, order=(2,1,2))
       ----> 4 results_ARIMA = model.fit()
             5 plt.plot(ts_log_diff)
```

[16]: from statsmodels.tsa.arima_model import ARIMA

```
6 plt.plot(results_ARIMA.fittedvalues, color='red')
~\anaconda3\lib\site-packages\statsmodels\tsa\arima_model.py in fit(self,_
 start_params, trend, method, transparams, solver, maxiter, full_output, disp,
 ⇔callback, start ar lags, **kwargs)
   1195
               r, order = 'F')
               11 11 11
   1196
-> 1197
               mlefit = super(ARIMA, self).fit(start_params, trend,
   1198
                                                method, transparams, solver,
   1199
                                                maxiter, full_output, disp,
~\anaconda3\lib\site-packages\statsmodels\tsa\arima_model.py in fit(self,_
 start_params, trend, method, transparams, solver, maxiter, full_output, disp,
 kwargs.setdefault('m', 12)
    995
                   kwargs.setdefault('approx_grad', True)
               mlefit = super(ARMA, self).fit(start params, method=solver,
--> 996
    997
                                              maxiter=maxiter,
    998
                                              full_output=full_output,_
 ⇔disp=disp,
~\anaconda3\lib\site-packages\statsmodels\base\model.py in fit(self,_
 start_params, method, maxiter, full_output, disp, fargs, callback, retall,
 ⇔skip_hessian, **kwargs)
               warn_convergence = kwargs.pop('warn_convergence', True)
    516
               optimizer = Optimizer()
    517
--> 518
               xopt, retvals, optim_settings = optimizer._fit(f, score,_
 ⇔start_params,
    519
                                                               fargs, kwargs,
   520
                                                               hessian=hess,
~\anaconda3\lib\site-packages\statsmodels\base\optimizer.py in _fit(self,_
 objective, gradient, start_params, fargs, kwargs, hessian, method, maxiter, u
 →full_output, disp, callback, retall)
    213
               func = fit funcs[method]
    214
--> 215
               xopt, retvals = func(objective, gradient, start_params, fargs, ____
 ⇔kwargs,
    216
                                   disp=disp, maxiter=maxiter,
 ⇔callback=callback,
    217
                                   retall=retall, full output=full output,
~\anaconda3\lib\site-packages\statsmodels\base\optimizer.py in _fit_lbfgs(f,__
 score, start params, fargs, kwargs, disp, maxiter, callback, retall,

→full output, hess)
   435
               func = f
    436
```

```
--> 437
            retvals = optimize.fmin_l_bfgs_b(func, start_params, maxiter=maxite;
    438
                                              callback=callback, args=fargs,
    439
                                              bounds=bounds, disp=disp,
~\anaconda3\lib\site-packages\scipy\optimize\lbfgsb.py in fmin_l_bfgs_b(func,_
 →x0, fprime, args, approx_grad, bounds, m, factr, pgtol, epsilon, iprint, u
 →maxfun, maxiter, disp, callback, maxls)
                    'maxls': maxls}
    195
    196
            res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
--> 197
    198
                                    **opts)
            d = {'grad': res['jac'],
    199
~\anaconda3\lib\site-packages\scipy\optimize\lbfgsb.py in _minimize_lbfgsb(fun,
 x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint
 ⇔callback, maxls, finite diff rel step, **unknown options)
                    # until the completion of the current minimization iteration.
    359
                    # Overwrite f and g:
--> 360
                    f, g = func_and_grad(x)
                elif task_str.startswith(b'NEW_X'):
    361
    362
                    # new iteration
~\anaconda3\lib\site-packages\scipy\optimize\_differentiable_functions.py in__
 ⇔fun_and_grad(self, x)
    198
                if not np.array_equal(x, self.x):
    199
                    self._update_x_impl(x)
--> 200
                self. update fun()
                self._update_grad()
    201
    202
                return self.f, self.g
~\anaconda3\lib\site-packages\scipy\optimize\ differentiable functions.py in__

    update fun(self)

    164
            def update fun(self):
    165
                if not self.f_updated:
                    self._update_fun_impl()
--> 166
                    self.f_updated = True
    167
    168
~\anaconda3\lib\site-packages\scipy\optimize\_differentiable_functions.py in__
 →update fun()
     71
     72
                def update fun():
---> 73
                    self.f = fun_wrapped(self.x)
     74
     75
                self. update fun impl = update fun
```

```
~\anaconda3\lib\site-packages\scipy\optimize\_differentiable_functions.py in__
 →fun_wrapped(x)
                def fun_wrapped(x):
     68
                    self.nfev += 1
     69
                    return fun(x, *args)
---> 70
     71
    72
                def update fun():
~\anaconda3\lib\site-packages\statsmodels\base\model.py in f(params, *args)
    498
    499
                def f(params, *args):
--> 500
                    return -self.loglike(params, *args) / nobs
    501
    502
                if method == 'newton':
~\anaconda3\lib\site-packages\statsmodels\tsa\arima_model.py in loglike(self,_
 →params, set_sigma2)
    808
                method = self.method
    809
                if method in ['mle', 'css-mle']:
--> 810
                    return self.loglike_kalman(params, set_sigma2)
                elif method == 'css':
    811
                    return self.loglike_css(params, set_sigma2)
    812
~\anaconda3\lib\site-packages\statsmodels\tsa\arima_model.py in_
 →loglike_kalman(self, params, set_sigma2)
    818
                Compute exact loglikelihood for ARMA(p,q) model by the Kalman
 ⇔Filter.
    819
--> 820
                return KalmanFilter.loglike(params, self, set_sigma2)
    821
    822
            def loglike_css(self, params, set_sigma2=True):
~\anaconda3\lib\site-packages\statsmodels\tsa\kalmanf\kalmanfilter.py in_
 →loglike(cls, params, arma_model, set_sigma2)
    216
                 paramsdtype) = cls. init kalman state(params, arma model)
                if np.issubdtype(paramsdtype, np.float64):
    217
                    loglike, sigma2 = kalman loglike.kalman loglike double(
--> 218
                        y, k, k_ar, k_ma, k_lags, int(nobs),
    219
                        Z mat, R mat, T mat)
    220
statsmodels\tsa\kalmanf\kalman_loglike.pyx in statsmodels.tsa.kalmanf.
 →kalman_loglike.kalman_loglike_double()
statsmodels\tsa\kalmanf\kalman_loglike.pyx in statsmodels.tsa.kalmanf.
 →kalman loglike.kalman filter double()
<__array_function__ internals> in pinv(*args, **kwargs)
```

```
~\anaconda3\lib\site-packages\numpy\linalg\linalg.py in pinv(a, rcond, hermitia)
                return wrap(res)
   1959
   1960
            a = a.conjugate()
            u, s, vt = svd(a, full matrices=False, hermitian=hermitian)
-> 1961
   1962
   1963
            # discard small singular values
<__array_function__ internals> in svd(*args, **kwargs)
~\anaconda3\lib\site-packages\numpy\linalg\linalg.py in svd(a, full_matrices,_
 ⇔compute_uv, hermitian)
   1624
   1625
                signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
-> 1626
                u, s, vh = gufunc(a, signature=signature, extobj=extobj)
   1627
                u = u.astype(result_t, copy=False)
   1628
                s = s.astype(_realType(result_t), copy=False)
~\anaconda3\lib\site-packages\numpy\linalg\linalg.py in_
 → raise linalgerror svd nonconvergence(err, flag)
    104
    105 def raise linalgerror svd nonconvergence (err, flag):
            raise LinAlgError("SVD did not converge")
--> 106
    107
    108 def _raise_linalgerror_lstsq(err, flag):
LinAlgError: SVD did not converge
```

<Figure size 1152x576 with 0 Axes>

3 Taking results back to original scale

```
[40]: ARIMA_diff_predictions = pd.Series(results_ARIMA.fittedvalues, copy=True)
      print(ARIMA_diff_predictions.head())
     Date
     2013-01-02
                   0.002432
     2013-01-03
                   0.002471
     2013-01-04
                   0.002117
     2013-01-07
                   0.001981
     2013-01-08
                   0.002377
     dtype: float64
[41]: ARIMA_diff_predictions_cumsum = ARIMA_diff_predictions.cumsum()
      print(ARIMA_diff_predictions_cumsum.head())
```

Date

```
2013-01-02
                   0.002432
     2013-01-03
                   0.004903
     2013-01-04
                   0.007021
     2013-01-07
                   0.009002
     2013-01-08
                   0.011379
     dtype: float64
[21]: ARIMA_log_prediction = pd.Series(ts_log.iloc[0], index=ts_log.index)
      ARIMA_log_prediction = ARIMA_log_prediction.
       →add(ARIMA_diff_predictions_cumsum,fill_value=0)
      ARIMA_log_prediction.head()
[21]: Date
      2013-01-01
                   6.427621
      2013-01-02
                   6.430053
      2013-01-03
                   6.432524
      2013-01-04
                   6.434641
      2013-01-07
                   6.436622
      dtype: float64
[42]: plt.figure(figsize=(12,8))
      predictions_ARIMA = np.exp(ARIMA_log_prediction)
      plt.plot(HCLTechStockData)
      plt.plot(predictions_ARIMA)
      plt.title('RMSE: %.4f'% np.sqrt(sum((predictions_ARIMA-HCLTechStockData)**2)/
       →len(HCLTechStockData)))
[42]: Text(0.5, 1.0, 'RMSE: 76.7109')
```



```
[43]: results_ARIMA.predict(10,20)
[43]: Date
      2013-01-15
                    0.001398
      2013-01-16
                    0.001704
      2013-01-17
                   -0.002997
      2013-01-18
                    0.001599
                   -0.000306
      2013-01-21
      2013-01-22
                   -0.004052
      2013-01-23
                   -0.001140
      2013-01-24
                   -0.001885
      2013-01-25
                    0.002912
      2013-01-28
                    0.005861
      2013-01-29
                    0.006330
      dtype: float64
[24]: import pmdarima as pm
      def arimamodel(timeseries):
          automodel = pm.auto_arima(timeseries,
                                     start_p=3,
                                     start_q=3,
                                     \max_{p=5},
                                     \max_{q=5},
```

```
test="adf",
                                   seasonal=True,
                                   trace=True)
         return automodel
[53]: arimamodel(ts_log)
     Performing stepwise search to minimize aic
      ARIMA(3,1,3)(0,0,0)[0] intercept
                                        : AIC=-1158.020, Time=0.38 sec
      ARIMA(0,1,0)(0,0,0)[0] intercept
                                        : AIC=-1167.424, Time=0.03 sec
      ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=-1165.456, Time=0.03 sec
      ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=-1165.465, Time=0.07 sec
      ARIMA(0,1,0)(0,0,0)[0]
                                         : AIC=-1165.525, Time=0.02 sec
                                        : AIC=-1163.485, Time=0.09 sec
      ARIMA(1,1,1)(0,0,0)[0] intercept
     Best model: ARIMA(0,1,0)(0,0,0)[0] intercept
     Total fit time: 0.629 seconds
[53]: ARIMA(order=(0, 1, 0), scoring_args={}, suppress_warnings=True)
 []:
```