

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta077

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea:$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

În sistemul cartezian de coordonate xOy se consideră punctele A(2,1), B(6,4) și C(5,-3)

- (4p) a) Să se calculeze lungimea segmentelor AB și AC.
- (4p) b) Să se calculeze $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- (4p) c) Să se calculeze $m(\hat{A})$.
- (4p) $| \mathbf{d})$ Să se determine coordonatele simetricului punctului C față de B.
- (2p) e) Folosind eventual formula $\sin(\alpha \beta) = \sin \alpha \cdot \cos \beta \sin \beta \cdot \cos \alpha$, să se arate că $\sin 15^\circ = \frac{\sqrt{6} \sqrt{2}}{4}$.
- (2p) f) Să se calculeze modulul numărului complex $z = \frac{3-4i}{-4+3i}$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze numărul 1g 1000.
- (3p) b) Şirul $a_1, a_2, 12, 17, a_5, a_6, ...$ este o progresie aritmetică. Să se determine termenul a_1 și rația progresiei.
- (3p) c) Să se demonstreze că $x^4 + x^2 + 1 = (x^2 x + 1)(x^2 + x + 1)$, pentru orice $x \in \mathbb{R}$.
- (3p) d) Să se determine coeficientul lui x^3 din dezvoltarea $(2+x)^4$.
- (3p) e) Se consideră propoziția P(n): $(n-1)(n^2-4)(n^2-9) = (n^2-1)(n^2-4)(n-3)$. Să se determine probabilitatea ca alegând un număr natural mai mic sau egal cu 5, propoziția P(n) să fie adevărată.
 - 2. Se consideră funcția $f:(0,\infty)\to \mathbf{R}$, $f(x)=x+\frac{1}{x}$.
- (3p) a) Să se calculeze $f'(x) + \frac{1}{x^2}$, pentru x > 0.
- (3p) b) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) c) Să se calculeze $\int_{1}^{2} f''(x) dx$.
- (3p) d) Să se determine $\alpha \in \mathbf{R}$ astfel încât punctul $A(2, \alpha)$ să aparțină graficului funcției.
- (3p) e) Să se arate că $f(x) = f\left(\frac{1}{x}\right), \forall x > 0.$

SUBIECTUL III (20p)

Se consideră numerele reale distincte a, b, c, d, funcțiile $f : \mathbf{R} \to \mathbf{R}$, $g : \mathbf{R} \to \mathbf{R}$

$$h: \mathbf{R} \to \mathbf{R}$$
, $f(x) = (x-a)(x-b)(x-c)(x-d)$, $g(x) = x^3 + 2x^2 + 3x + 4$, $h(x) = 2x + 1$

şi determinanţii
$$\Delta = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{vmatrix}$$
 şi $A = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ g(a) & g(b) & g(c) & g(d) \end{vmatrix}$.

(4p) a) Să se verifice că
$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (y-x)(z-x)(z-y), \ \forall x, y, z \in \mathbf{R}.$$

- (4p) | b) Să se arate că $\Delta = (b-a)(c-a)(d-a)(c-b)(d-b)(d-c)$.
- (4p) c) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (2p) d) Să se verifice că f'(a) = (a-b)(a-c)(a-d).
- (2p) e) Să se arate că $A = \Delta$.
- (2p) f) Dezvoltând determinantul A după ultima linie, să se arate că $\frac{g(a)}{f'(a)} + \frac{g(b)}{f'(b)} + \frac{g(c)}{f'(c)} + \frac{g(d)}{f'(d)} = 1.$
- (2p) g) Să se arate că $\frac{h(a)}{f'(a)} + \frac{h(b)}{f'(b)} + \frac{h(c)}{f'(c)} + \frac{h(d)}{f'(d)} = 0$.

SUBIECTUL IV (20p)

Se consideră funcțiile $f : \mathbf{R} \to \mathbf{R}$, $g : \mathbf{R} \to \mathbf{R}$, $f(x) = e^x - 1 - x - \frac{x^2}{2!} - \frac{x^3}{3!} - \frac{x^4}{4!}$, $g(x) = e^{-x^2}$.

- **(4p)** a) Să se calculeze $f'(x), f^{(2)}(x), f^{(3)}(x), f^{(4)}(x), x \in \mathbf{R}$.
- **(4p) b)** Să se calculeze $f'(0), f^{(2)}(0), f^{(3)}(0), f^{(4)}(0)$.
- (4p) c) Să se calculeze $\lim_{x\to 0} \frac{f(x)}{x^5}$.
- (2p) d) Să se determine ecuația asimptotei către $+\infty$ la graficul funcției g.
- (2p) e) Să se arate că $f'(x) \ge 0$, $\forall x \in \mathbb{R}$.
- (2p) f) Să se demonstreze inegalitatea f(x) < 0, $\forall x < 0$.
- (2p) g) Să se demonstreze că aria suprafeței cuprinsă între graficul funcției g, axa Ox și dreptele de ecuații x = 0 și x = 1 este un număr din intervalul (0,74;0,75).