Examen final Durée 215

DOCUMENTS, CALCULATRICES, ET TELEPHON ES PORTABLES INTERDITS

Exercice 1 (2,5 pts)

Soit $\sum u_*$ une série numérique.

1) Montrer que si $\sum_{n\geq 0} |u_n|$ converge alors $\sum_{n\geq 0} \frac{u_n^2}{1+u_n^2}$ converge. 2) Supposons que $\forall n, \ u_n > 0$ et $\lim_{n\to\infty} \frac{1}{n!} \log(u_n) = a \in \mathbb{R}^+$, étudier la nature de $\sum_{n\geq 0} u_n$.

Exercice 2 (6 pts)

Soit la série de fonctions $\sum_{n^{2-r}}$

1) Trouver le domaine D de convergence de cette série

2) Posons $F(v) = \sum_{n^{2-\sigma^{-1}}} 1 \le D$.

Etudier la continuité puis la dérivabilité de F sur D.

Exercice 3 (5 pts)

Soit la série entière
$$\sum_{n=0}^{\infty} \left(\frac{1}{(2n)!} + n(4^n) \right) x^n.$$

- 1) Déterminer son rayon de convergence ainsi que son domaine de convergence.
- 2) Calculer sa somme

Exercice 4 (6,5 pts)

Soit to function f definie sur \mathbb{R} par $f(x) = |\cos x|$.

- 1) Représenter / et vérifier qu'elle est « périodique.
- 1) Développer / en série de Fourier.

2) Déduire la valeur de la série numérique $S_1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{4n^2 - 1}$

3) Déduire la valeur de la série de fonctions $S_2(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \sin^2(nx)}{4n^2 - 1}$

Formules trigonométriques

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$ $\sin(a-b) = \sin a \cos b - \sin b \cos a$