

SFI GEC PALAKKAD

3-08-19 Thursday

Active and Parsive elements Active and Parsive elements

Active elements - supply

Teansistor

Parsive elements - Receive

Revistor, Inductor, Capaciton

stone and desipate

Resistore -> R NM Unit ohm or

Inductor -> L_00002 Henry H

Capacitor -> C - H Farad F

of Current Flow -> +ve to -ve Highen potential to lower

Voltage rise -> - ve to +ve

Voltage drop -> +ve to -ve

> Voltage drop

Resistors in socies

 $V-V_1-V_2-V_3=0$ $V-IR_1-IR_2-IR_3=0$ $V-I(R_1+R_2+R_3)=0$ la featal

$T = V \left[\frac{1}{R_1} + \frac{1}{R_2} \right]$	R, + R2 R, R2	R, R2 7	1 Determine the total menistance for the following network.	X -	X	4 5 1.053 D. = 2 1	15 Jawes (m.m.)	Kinchept's Voltage law states that for any closed kinchews reltage law states that for any closed	in petwork, the algebraic sun. B. R. R. R. R. R. R. R. T. R. L. IR. W. IR. L. L. R.	T- T VAI	- V3+E2- 1, + V2+V3 F, +E2= I(R,+R2+R3)
T= V[1 + 1 RE)	$I = V \left[\frac{R_1 + R_2}{R_1 R_2} \right]$	$V = \pm \begin{bmatrix} R_1 R_2 \\ R_1 + R_2 \end{bmatrix}$	1 Determine the total 1	222	1 = 1 + 1 + 1 R R, R2 R3	R= -1 = 1.05	4-08-1019 Mischoffes laws	Kinchobe's Voltage law (KVV) Kinchow's voltage la	path in a network, the River of the ANNING TRIPERTY.	+ 1 1	$E_1 - V_1 - V_2 - V_3 + E_3 - V_3$ $E_1 + E_2 = V_1 + V_2 + V_3$

. Kirchoff's Coverent Law (KCL)

Circuit elements the algebraic sum of all the evovents will be equal to zero.

Coverent law states that sum of coverents entering a junction is equal to sum of the coverent leaving the junction.

€g:

? For the following cincuit,

- i) detormine 1/2 Using KVL
- 2) Determine I
- 3) Find R, and R3

$$V_{3} = 15 \text{ V}$$
 $V_{3} = 15 \text{ V}$
 $V_{3} = 15 \text{ V}$
 $V_{4} = 18 \text{ V}$
 $V_{1} = 18 \text{ V}$

)
$$E_1 + E_2 = I(R_1 + R_2 + R_3)$$

E, 254V

$$SA = 18V + V_2 + 15V$$
 $SAV = 33V + V_2$
 $V_2 = 54 - 33 = 21V$
 $V_3 = 54 - 33 = 21V$
 $V_4 = 1R_7$
 $V_7 = 18V$
 $V_8 = 1R_9$
 $V_9 = 1R_9$

For the following circuit find the avorents in the geristors R, , R2 and R3.

$$\Delta_{1} = \begin{bmatrix}
10 & -4 & -3 \\
0 & 8 & -2 \\
0 & -2 & 9
\end{bmatrix}$$

$$\Delta_{1} = 10 \left(8x9 - \left(-2x - 2\right)\right) + 44 \left(0x9\right) - \left(0x - 2\right) - 3\left(0x - 2 - \left(0x8\right)\right)$$

$$= 10 \left(72 - 4\right) + 44 \left(0\right) - 3\left(0\right) = \frac{680}{3}$$

$$\Delta_{2} = \begin{bmatrix}
10 & 10 & -3 \\
-4 & 0 & -2 \\
-3 & 0 & 9
\end{bmatrix}$$

$$= 10 \left(0x9 - \left(0x - 2\right) - 10 \left(-4x9 - \left(-3x - 2\right)\right) + 3\left(-4x0 - \left(-3x0\right)\right)$$

$$= 10 \left(0\right) - 10 \left(-36 - 6\right) + 30$$

$$= 10 \left(2x0 - \left(-2x0\right)\right) + 44 \left(-4x0 - \left(-3x0\right) + 10 \left(-4x - 2 - \left(-3x8\right)\right)$$

$$= 10 \left(0\right) + 0 + 10 \left(8 + 24\right) = \frac{320}{320}$$

$$= 10 \left(0\right) + 0 + 10 \left(8 + 24\right) = \frac{320}{416}$$

$$= \frac{1}{3} = \frac{4}{3} = \frac{4}{3} = \frac{100}{416}$$

$$= \frac{1}{3} = \frac{4}{3} = \frac{100}{416}$$

$$= \frac{1}{3} = \frac{100}{416}$$

$$= \frac{1}{3} = \frac{100}{416}$$

$$= \frac{1}{3} = \frac{100}{416}$$

$I_{1} = \Delta I = 991 = 1.64 A$ $I_{2} = \Delta I = 991 = 1.49 A$ $I_{3} = \Delta I = 874 = 1.49 A$ $I_{3} = \Delta I = 874 = 1.49 A$ $I_{3} = \Delta I = 874 = 1.49 A$ $I_{3} = \Delta I = 874 = 1.49 A$ $I_{3} = \Delta I = 874 = 1.49 A$ $I_{4} = \Delta I = \Delta I$	Loop 1 -10+8 = -10-200(I; I20) +8-50 I; =0 -2-200 I; +200 I2 - 50 I; =0 -2-250 I; +200 I2 - 0 -1= 125 I; -100 I2 -2=250 I; -200 I2 - 0 -1= 125 I; -100 I2 -2=250 I; -200 I2 - 0 -100 I2 =0 50-200 I2 + 200 I; =0 50-200 I2 + 200 I; =0 50-300 I2 + 200 I; =0 50-300 I2 - 200 I; - (2) 1=6 I2 - 1I; 50-300 I2 - 200 I; - (2) 1=6 I2 - 1I;
Ta= D Ta= D Jobbarniy	10 - 10 + 10 - 25 - 25 - 50 - 50 - 50 - 50 - 50 - 5

I.V=A	A PHA = 4F8 = P-II-R	125 036 750	trajecuta James pro	GU	puniston = I2R	W $L punishor= I,^2 R$ $L = 11.56 W$	2 peristar= (Iz-I)-R	20 = 300 IS - 500 I - OI - HI
last, -100 I2 =-1	-4I +6I2=1	-SOOT, + 400 L2 = 4 -SOOT, + 750 L2 = 125	Ta=-121 = 0.34 A	-4I, +6x0·34=1 -4I, + 2·04=1	I, = +1.04 = 0.26 A 7 4 = 0.26 A power duripated in 50 D. Per	= (0.26) x 50 = 3.38 W Power olumipated in 100 a punisher I, 2 = (0.34) 2 x 180 = 5.78 24 = 11.56 W	power dunipated in 200s penistor= (Iz-I,) R = 1.28 W	6 1= PIS - HI

$$\Delta_{2} = \begin{bmatrix} \frac{1}{8} + \frac{1}{8} + \frac{1}{4} \\ \frac{3}{2} \end{bmatrix}$$

$$= 0 - \left(\frac{3}{2} \times \frac{1}{4} \right)$$

$$= -\left(\frac{-3}{8} \right) = \frac{3}{8} = 0.345$$

$$= -\left(\frac{-3}{8} \right) = \frac{3}{8} = 0.345$$

$$V = \Delta_{1} = 0.325$$

$$V = \Delta_{2} = 0.345$$

$$V = \Delta_{2} = 0.345$$

$$= 1.76 V$$

$$\Delta_{2} = V_{2}$$

$$\Delta_{3} = V_{2}$$

$$\Delta_{4} = 0.352$$

$$\Delta_{5} = 0.352$$

$$\Delta_{6} = 0.352$$

$$\Delta_{10} = V_{1} \times V_{2}$$

$$\Delta_{10} = V_{2} \times V_{2}$$

$$\Delta_{10$$

