Linguagens e Expressões Regulares Linguagens Formais e Autómatos

Francisco Coelho fc@di.uevora.pt

Departamento de Informática Escola de Ciências e Tecnologia Universidade de Évora

Alfabetos, Palavras e Linguagens

Expressões Regulares

Um alfabeto (Σ, T) é um conjunto finito, a cujos elementos chamamos letras ou símbolos (representados por a, b, c, d, \ldots).

- $\blacktriangleright \{a, b, c, \dots, x, y, z\}$
- **▶** {0,1}
- ► {0,1,2,3,4,5,6,7,8,9}
- $\{0,1,\ldots,9\} \cup \{+,-,\times,\div,(,)\}$
- ▶ as palavras reservadas de uma linguagem de programação (while, if, etc)

Uma palavra sobre o alfabeto Σ é uma sequência finita de letras de Σ (representadas por p,q,u,v,w,x,y,z).

A palavra vazia tem zero símbolos e representa-se por λ (também por ϵ ou ε).

Formalmente, uma palavra w, de tamanho n, sobre o alfabeto Σ , é uma função de assinatura $w:\{1,\ldots,n\}\to\Sigma$:

Operações com palavras - comprimento

- ▶ comprimento: $|\lambda| = 0$ e, se $n \ge 1$, $|x_1 \cdots x_n| = n$.
- ▶ Se w é uma palavra sobre Σ e $a \in \Sigma$ então wa é uma palavra sobre Σ .
- A função comprimento de uma palavra também pode ser definida por

base
$$|\lambda|=0$$
 passo $|wa|=|w|+1$ (w é uma palavra sobre Σ e $a\in \Sigma$)

Conjunto de todas as palavras

O fecho do alfabeto Σ , representado por Σ^* , é o conjunto de **todas** as palavras sobre Σ e define-se por:

base
$$\lambda \in \Sigma^*$$
 passo se $w \in \Sigma^*$ e $a \in \Sigma$ então $wa \in \Sigma^*$ fecho $w \in \Sigma^*$ se e só se pode ser obtida por um número finito de aplicações do passo a partir de λ

O fecho garante, por exemplo, que em Σ^* não existem palavras infinitas nem palavras formadas por símbolos de outros alfabetos.

Excluindo λ obtemos

$$\Sigma^+ = \bigcup_{n>0} \Sigma^n = \Sigma \Sigma^*$$

Operações com palavras — concatenação e potêncio de evora

A concatenação (ou produto) de duas palavras $u,v\in\Sigma^*$, escrita $u\cdot v$ ou uv é uma operação binária em Σ^* definida por:

base Se
$$|v|=0$$
 então $(v=\lambda)$ e $u\cdot v=u$ passo Se $|v|=n>0$ então (existe uma palavra $w\in \Sigma^*$ com $|w|=n-1$ e uma letra $a\in \Sigma$ tais que) $v=wa$ e nesse caso $u\cdot v=(u\cdot w)\,a$

As potências de uma palavra $u \in \Sigma^*$ são

$$u^0 = \lambda$$
 $u^1 = u$
 $u^2 = uu$
 $u^3 = u^2u = uuu$
 \vdots
 $u^n = u^{n-1}u = u \cdots u$ concatenada n vezes

Operações com palavras - inversão

A inversa de $u \in \Sigma^*$, escrita u^R ou u^{-1} , é uma operação unária em Σ^* definida por:

base se
$$|u|=0$$
 então $u=\lambda$ e $u^R=\lambda$ passo se $|u|=n>0$ então $u=wa$ com $|w|=n-1$ e $u^R=aw^R$

Isto é, se $u=abc\cdots xyz$ então $u^R=zyx\cdots cba$

Subpalavra, prefixo e sufixo

Seja $x = uvw \in \Sigma^*$ uma palavra. Então:

- ightharpoonup u é um prefixo de x
- ightharpoonup v é uma subpalavra de x
- $\blacktriangleright w$ é um sufixo de x

Outra forma de enunciar estas relações é:

- ightharpoonup v é uma subpalavra de x se existem palavras u,w tais que x=uvw;
- lacktriangle nesse caso, se |u|=0 então v também é um prefixo e
- se |w| = 0 então v também é um sufixo

Inversão da concatenação

Teorema (Inversão da concatenação)

Para quaisquer palavras x, y

$$(xy)^R = y^R x^R$$

Demonstração.

Se $x=\lambda$ o resultado é evidente $(xy=\lambda y=y)$. Se $x=x_1\cdots x_n$ e $y=y_1\cdots y_m$,

$$(xy)^{R} = (x_{1} \cdots x_{n} y_{1} \cdots y_{m})^{R}$$

$$= y_{m} \cdots y_{1} x_{n} \cdots x_{1}$$

$$= (y_{m} \cdots y_{1}) (x_{n} \cdots x_{1})$$

$$= y^{R} x^{R}$$

Propriedades do Fecho

Se Σ e Γ forem alfabetos:

- $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$
- $ightharpoonup \Sigma \subseteq \Sigma^*$;
- $\blacktriangleright \emptyset^* = \{\lambda\};$
- ▶ se $\Sigma \subset \Gamma$ então $\Sigma^* \subset \Gamma^*$:
- ▶ se $\Sigma \neq \emptyset$ então Σ^* é infinito;

Propriedades da Concatenação

Sejam $x, y, z \in \Sigma^*$.

- (associativa) x(yz) = (xy)z;
- (elemento neutro) $\lambda x = x\lambda = x$;
- (não comutativa) $xy \neq yx$, em geral;
- (aditiva) |xy| = |x| + |y|;
- (unicidade) cada palavra só pode ser escrita de uma *única* forma como concatenação de símbolos de Σ ;

Relações de ordem

Sejam a, b, u, v palavras de Σ^* .

- 1. subpalavra: a < b se existem $u, v \neq \lambda$ tais que b = uav;
- 2. prefixo: $a <_P b$ se existe $v \neq \lambda$ tal que b = av;
- 3. sufixo: $a <_S b$ se existe $u \neq \lambda$ tal que b = ua;
- 4. lexicográfica (supondo que $\Sigma = \{s_1 < s_2 < \cdots < s_n\}$): $a <_L b$ se $a <_P b$ ou, sendo $a = cs_i y$ e $b = cs_j z$, $s_i < s_j$;
- 5. mista: $a <_M b$ se |a| < |b| ou $a <_L b$;

Aqui $u,v \neq \lambda$ porque esta é a ordem estrita (<). Os casos $u,v=\lambda$ são considerados na ordem lata (\leq).

As relações anteriores com igualdade: $x \le y$ se x = y ou x < y e analogamente para $\le_P, \le_S, \le_L, \le_M$.

Seja $\Sigma = \{s_1 < s_2 < \cdots < s_n\}$ um alfabeto ordenado.

A função sucessor (em Σ^*), $\sigma: \Sigma^* \to \Sigma^*$, fica definida por:

- 1. $\sigma(\lambda) = s_1$;
- 2. $\sigma(xs_i) = xs_{i+1} \text{ se } i < n;$
- 3. $\sigma(xs_n) = \sigma(x) s_1$

Propriedades

O sucessor enumera Σ^* :

$$0 \quad 1 \quad 2 \quad \dots \quad n \quad n+1 \quad n+2 \quad \dots \\ \lambda \quad s_1 \quad s_2 \quad \dots \quad s_n \quad s_1s_1 \quad s_1s_2 \quad \dots$$

Fazendo 0 < 1, fica

Enumeração de palavras

Usando a ordem $<_M$ enumeramos as palavras.

Teorema (Enumeração)

Seja x_0, x_1, \ldots a enumeração de Σ^* e $x \in \Sigma^*$.

- 1. $x <_M \sigma(x)$;
- 2. se $x \neq \lambda$ então $x = \sigma(y)$ para algum y;
- 3. para qualquer $i \geq 0$, $\sigma(x_i) = x_{i+1}$;

Linguagens

Uma linguagem é um conjunto de palavras (sobre um certo alfabeto Σ). Isto é, A é uma linguagem (sobre Σ) se

$$A\subseteq \Sigma^*$$

Se A for uma linguagem, |A| é o número de palavras em A;

- $\blacktriangleright \{0,1\}, \{0^0,0^1,0^2,\ldots\};$
- as palavras do português;
- os programas de uma linguagem de programação;

Diagrama de uma linguagem

Podemos associar uma árvore a uma linguagem:

As palavras da linguagem

$$\{01,011,11,101\}$$

são assinaladas com um círculo duplo.

Cada vértice corresponde a uma palavra e cada aresta a uma letra.

Operações com linguagens

Sejam A, B linguagens sobre Σ .

- 1. uni\(\text{io}: \ A \cup B = \{ x : \ x \in A \cup x \in B \}; \)
- 2. intersecção: $A \cap B = \{x : x \in A \land x \in B\};$
- 3. subtracção: $A \setminus B = \{x : x \in A \land x \notin B\};$
- 4. complemento: $\overline{A} = \Sigma^* \setminus A$;
- 5. concatenação: $AB = \{ab : a \in A \land b \in B\};$
- 6. potência: $A^0 = \{\lambda\}; A^{n+1} = AA^n;$
- 7. fecho(s): $A^* = A^0 \cup A^1 \cup A^2 \cup \cdots$; $A^+ = AA^*$;
- 8. inversão: $A^R = \{a^R : a \in A\};$

Alfabetos, Palavras e Linguagens

Expressões Regulares

Linguagens Regulares

- Seja Σ um alfabeto. Uma linguagem regular sobre Σ define-se por:
 - base \emptyset , $\{\lambda\}$ e $\{s\}$, para cada $s \in \Sigma$, são linguagens regulares;
 - passo se A e B forem linguagens regulares, $A \cup B$, AB e A^* são linguagens regulares;
 - fecho X é uma linguagem regular se e só se pode ser construído através de um número finito de aplicações do passo a partir de conjuntos da base;
 - $\{001, 110\} = \{0\} \{0\} \{1\} \cup \{1\} \{1\} \{0\};$
 - qualquer conjunto finito é uma linguagem regular;

Expressões Regulares

Seja Σ um alfabeto.

Uma expressão regular sobre Σ define-se por:

base \emptyset , λ e s, para cada $s \in \Sigma$, são expressões regulares;

passo se a e b forem expressões regulares, $a \cup b$, ab e a^* são expressões regulares;

fecho x é uma expressão regular se e só se pode ser construído através de um número finito de aplicações do passo a partir das expressões da base;

Também usamos $x^+ = xx^*$.

A escrita completa de uma expressão regular pode ser confusa:

$$(0^* \cup (10(0^*))) 1(0^*) (((0(1^*)) \cup (1^*)))$$

Para simplificar a escrita usamos as regras seguintes:

- 1. * tem precedência sobre \cdot e \cup ;
- 2. · tem precedência sobre ∪;

A expresão anterior fica reduzida a

$$(0^* \cup 100^*) 10^* (01^* \cup 1^*)$$

Diagramas de Wirth: sintaxe de expressões regula viniversidade de évora

O diagrama da expressão regular x, $\mathcal{G}(x)$, é um digrafo definido por:

$x = a \in \Sigma, \lambda$	x = ab
$\longrightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc$	$\rightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc \stackrel{b}{\longrightarrow} \bigcirc$
$x = a \cup b$	$x = a^*$
$\rightarrow \bigcirc \stackrel{a}{\underset{b}{\bigcirc}} \bigcirc$	$\begin{array}{c} a \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Exemplo

Simplificação de diagramas

Teorema (Arestas λ)

A aresta $\alpha \xrightarrow{\lambda} \beta$ pode ser eliminada se

- ightharpoonup lpha não é final e não saem mais arestas de lpha ou
- \triangleright β não é inicial e não entram mais arestas em β ;

Dito de outra forma, estas arestas não podem ser eliminadas se

- $ightharpoonup \alpha$ é final ou saem mais arestas de α e
- ightharpoonup eta é inicial ou entram mais arestas em eta

Exemplo

Linguagem Representada

A linguagem representada por uma expressão regular é:

$$\mathcal{L}(\emptyset) = \emptyset$$

$$\mathcal{L}(\lambda) = \{\lambda\}$$

$$\mathcal{L}(s) = \{s\} \quad s \in \Sigma$$

$$\mathcal{L}(a \cup b) = \mathcal{L}(a) \cup \mathcal{L}(b)$$

$$\mathcal{L}(ab) = \mathcal{L}(a) \mathcal{L}(b)$$

$$\mathcal{L}(a^*) = \mathcal{L}(a)^*$$

Linguagem representada e expressões regulares

- 1. qualquer expressão regular representa uma linguagem regular;
- 2. qualquer linguagem regular é representada por uma expressão regular;

Inteiros em binário, sem sinal e sem 0 à esquerda:

$$\begin{cases}
0, 1, 10, 11, 100, 101, \ldots \} &= \{0\} \cup \{1\} \{\lambda, 0, 1, 00, 01, 000, \ldots \} \\
&= \{0\} \cup \{1\} \{0, 1\}^* \\
&= \mathcal{L} (0 \cup 1 (0 \cup 1)^*)
\end{cases}$$

Equivalência

Duas expressões regulares, x e y são equivalentes, $x \equiv y$, se representam a mesma linguagem:

$$\mathcal{L}\left(x\right) = \mathcal{L}\left(y\right)$$

$$0^*1 \cup \emptyset \equiv 0^*1$$

Usamos "x=y" em vez de " $x\equiv y$ " para indicar que as expressão regular x e y são equivalentes. Mas é preciso cautela: $0*1 \cup \emptyset$ e 0*1 são expressões regulares diferentes, embora equivalentes.

Propriedades da soma e produto de expressões reguliversidade

$$x \cup (y \cup z) = (x \cup y) \cup z \qquad \qquad x (yz) = (xy) z$$

$$x \cup \emptyset = \emptyset \cup x = x \qquad \qquad x\lambda = \lambda x = x$$

$$x\emptyset = \emptyset x = \emptyset$$

$$x \cup y = y \cup x$$

$$x \cup x = x$$

$$x (y \cup z) = xy \cup xz \qquad (x \cup y) z = xz \cup yz$$

Propriedades da iteração de expressões regulares UNIVERSIDADE DE ÉVORA

$$\emptyset^* = \lambda \qquad \lambda^* = \lambda$$

$$(x^*)^* = x^* \qquad x^* = \lambda \cup xx^*$$

$$x(yx)^* = (xy)^* x$$

$$(x \cup y)^* = (x^* \cup y)^*$$

$$= x^* (x \cup y)^*$$

$$= (x \cup yx^*)^*$$

$$= (x^*y^*)^*$$

 $= (x^*y)^* x^*$ $= x^* (yx^*)^*$

Exemplo – simplificação de expressões regulares

simplificar (tornar menos "profunda" e menos "comprida")

$$a^*(b \cup (a^*b^*)^*) a a^*(ba^*)^* b \stackrel{?}{=} (a \cup b)^* a (a \cup b)^* b$$

$$a^*(b \cup (a^*b^*)^*)aa^*(ba^*)^*b \qquad (x^*y^*)^* = (x \cup y)^*$$

$$= a^*(b \cup (a \cup b)^*)aa^*(ba^*)^*b \qquad y \cup (x \cup y)^* = (x \cup y)^* \text{(porquê?)}$$

$$= a^*(a \cup b)^*aa^*(ba^*)^*b \qquad x^*(yx^*)^* = (x \cup y)^*$$

$$= (a \cup b)^*aa^*(ba^*)^*b \qquad x^*(yx^*)^* = (x \cup y)^*$$

$$= (a \cup b)^*a(a \cup b)^*b \qquad \text{aceitável... continuando:}$$

$$\frac{?}{2}b^*a(b \cup a)^*b$$

Exemplo – simplificação de expressões regulares (Exemplo – simplificação de expressões regulares (

