Problem 7.1: A Boolean function φ is defined using the following sum of minterms:

a) Calculate the prime implicants of $\boldsymbol{\phi}.$

	intonia Dattonia Ilaad		n a: .			n 41 1	.	
Minterm	Pattern	Used	Minterm	Pattern	Used	Minterm	Pattern	Used
m_0	00000	✓	$m_{0,2}$	000-0	✓	$m_{0,2,4,6}$	000	
			$m_{0,4}$	00-00	\checkmark	-,-,-,-		
			$m_{0,16}$	-0000				
m_2	00010	✓	$m_{2,6}$	00-10	✓	$m_{2,6,10,14}$	010	
m_4	00100	\checkmark	$m_{2,10}$	0-010	\checkmark			
m_{16}	10000	\checkmark	$m_{4,6}$	001-0	\checkmark			
			$m_{16,17}$	1000-				
m_6	00110	✓	$m_{6,14}$	0-110	\checkmark			
m_9	01001	✓	$m_{9,13}$	01-01				
m_{10}	01010	√	$m_{10,26}$	-1010	✓	$m_{10,26,14,30}$	-1-10	
m_{17}	10001	\checkmark	$m_{10,14}$	01-10	\checkmark			
			$m_{17,21}$	10-01				
m_{13}	01101	✓	$m_{13,15}$	011-1				
m_{14}	01110	√	$m_{14,15}$	0111-	\checkmark	$m_{14,15,30,31}$	-111-	
m_{21}	10101	√	$m_{14,30}$	-1110	✓			
m_{26}	11010	√	$m_{26,30}$	11-10	\checkmark			
m_{28}	11100	√	$m_{28,30}$	111-0				
m_{15}	01111	✓	$m_{15,31}$	-1111	✓			
m_{30}	11110	✓	$m_{30,31}$	1111-	✓			
m_{31}	11111	✓						
1								

This gives us the prime implicants:

$$\begin{array}{ll} m_{0,2,4,6} \ = (\neg A \ \land \neg B \land \neg E) \\ m_{0,16} \ = \ (\neg B \ \land \neg C \land \neg D \land \neg E) \\ m_{2,6,10,14} \ = (\neg A \land D \land \neg E) \\ m_{16,17} \ = (A \land \neg B \land \neg C \land \neg D) \\ m_{9,13} \ = (\neg A \land B \land \neg D \land E) \\ m_{10,26,14,30} \ = (B \land D \land \neg E) \\ m_{17,21} \ = (A \land \neg B \land \neg D \land E) \\ m_{13,15} \ = (\neg A \land B \land C \land E) \\ m_{14,15,30,31} \ = (B \land C \land D) \\ m_{28,30} \ = (A \land B \land C \land \neg E) \end{array}$$

b) Construct the prime implicant chart and identify the essential prime implicants.

	m_0	m_2	m_4	m_6	m_9	m_{10}	m_{13}	m_{14}	m_{15}	m_{16}	m_{17}	m_{21}	m_{26}	m_{28}	m_{30}	m_{31}
$m_{0,2,4,6}$	✓	✓	✓	✓												
$m_{0,16}$	✓									✓						
$m_{2,6,10,14}$		✓		✓		✓		✓								
$m_{16,17}$										✓	✓					
$m_{9,13}$					✓		✓									
$m_{10,26,14,30}$						✓		✓					✓		✓	
$m_{17,21}$											✓	✓				
$m_{13,15}$							✓		✓							
$m_{14,15,30,31}$								✓	✓						✓	✓
$m_{28,30}$														✓	✓	

Essential prime implicants:

$$\begin{split} m_{0,2,4,6} &= (\neg A \ \land \neg B \land \neg E) \\ m_{16,17} &= (A \ \land \neg B \land \neg C \land \neg D) \\ m_{9,13} &= (\neg A \land B \land \neg D \land E) \\ m_{10,26,14,30} &= (B \land D \land \neg E) \\ m_{17,21} &= (A \land \neg B \land \neg D \land E) \\ m_{14,15,30,31} &= (B \land C \land D) \\ m_{28,30} &= (A \land B \land C \land \neg E) \end{split}$$

c) Write out the minimal boolean expressions defining $\boldsymbol{\varphi}.$

$$\phi(A, B, C, D, E) = (\neg A \land \neg B \land \neg E) \lor (A \land \neg B \land \neg C \land \neg D) \lor (\neg A \land B \land \neg D \land E) \lor (B \land D \land \neg E) \lor (A \land \neg B \land \neg D \land E) \lor (B \land C \land D) \lor (A \land B \land C \land \neg E)$$