

LOAN APPROVAL PREDICTION

MACHINE LEARNING PROJECT

PRESENTED BY
SHUBHANGI CHETAN SAPKALE.

*** INTRODUCTION.**

In today's fast-paced financial world, loan approval is a critical aspect of banking and lending institutions. Traditionally, loan approvals have been heavily dependent on manual assessments, where loan officers examine credit histories, income reports, and other personal factors to determine whether an applicant is eligible for a loan. While this approach has been effective in certain cases, it can be inefficient, prone to human error, and often results in inconsistent decision-making. This process can also be time-consuming for both the applicants and the institutions, leading to long waiting periods and sometimes missed opportunities.

With the advent of data analytics and machine learning, financial institutions have begun to explore automation for improving loan approval processes. Machine learning models can process vast amounts of data to make informed decisions, providing a more objective, faster, and consistent approach to loan approval. The integration of these advanced technologies is not only expected to streamline workflows but also to enhance the accuracy of predicting the likelihood of loan repayment.

A key challenge, however, lies in developing a predictive system that can balance the complexities of human financial behavior and existing data patterns. The objective of the Loan-Approval-Prediction system is to build such a solution—an automated, reliable, and scalable model that can predict the approval or rejection of loan applications based on several historical and real-time data points.

The ultimate aim of implementing such a system is to minimize the time spent on each loan decision while maintaining high accuracy, reducing biases, and making the process fairer for all applicants. In doing so, lending institutions can improve their operations, provide quicker responses to applicants, and increase overall customer satisfaction.

OBJECTIVE: To predict loan approval status using machine learning model.

Problem Statement:

Develop a machine learning model to predict **loan approval status** based on applicant features. The model will be trained on a dataset containing loan applications and their outcomes. It will help financial institutions automate and improve the accuracy of loan approval decisions.

*** Benefits:**

The benefits of this solution include:

- Lenders can make faster and more accurate loan approval decisions, reducing manual effort.
- Applicants will get quicker responses and fairer evaluations based on objective data.
- Financial institutions can minimize default risks by identifying high-risk applicants more effectively.

```
#Importing Required Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score, classification report,
confusion matrix, roc curve, roc auc score
# Load the Dataset
df = pd.read csv('loan approval dataset.csv')
df.head()
   loan id
           no of dependents
                                    education self employed
income annum
                                     Graduate
                                                          No
9600000
                                 Not Graduate
                                                          Yes
4100000
         3
                                     Graduate
                                                          No
```

9100000						
3	4		3	Graduate	No	
8200000 4	5		5 Not	Graduate	Yes	
9800000						
	_amount ial assets		cibil	_score		
	9900000	12		778		240000
1 1	2200000	8		417		2700000
2 2	9700000	20		506		7100000
3 3	0700000	8		467		18200000
4 2	4200000	20		382		12400000
	ercial_asse et value \	_	luxur	y_assets_value	е	
0	_	17600000		2270000	0	8000000
1		2200000		880000	0	3300000
2		4500000		3330000	0	12800000
3		3300000		2330000	0	7900000
4		8200000		2940000	0	5000000
	status proved					
	ejected ejected					
3 Re	ejected					
4 Re	ejected					
# Getting df.shape	g shape of	dataset				
(4269, 13	3)					
df.head())					
loan_:		_dependent	S	education sel	lf_employed	
0	1		2	Graduate	No	
9600000						

1 4100000	2		0	Not	Graduate		Yes	
2 9100000	3		3		Graduate		No	
3	4		3		Graduate		No	
8200000 4	5		5	Not	Graduate		Yes	
9800000								
	amount l ial assets		C	ibil	score			
	9900000	12			778			2400000
1 1	2200000	8			417			2700000
2 2	9700000	20			506			7100000
3 3	070000	8			467			18200000
4 2	4200000	20			382			12400000
bank asso	ercial_asse et value \	17600000	lı	uxury	_assets_val 227000	000		8000000
1		2200000			88000	000		3300000
2		4500000			333000	000		12800000
3		3300000			233000	000		7900000
4		8200000			294000	000		5000000
loan status Magnetic Approved Rejected Rejected Rejected Rejected Rejected								
<pre>print(df.info())</pre>								
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 4269 entries, 0 to 4268 Data columns (total 13 columns):</class></pre>								
# Col	umn				Null Count	Dtype		
1 no 2 ed	n_id _of_depende: ucation lf employed			4269 4269	non-null non-null non-null non-null	int64 int64 object object		
5 50				-20		32,000		

```
4 income_annum 4269 non-null int64
5 loan_amount 4269 non-null int64
6 loan_term 4269 non-null int64
7 cibil_score 4269 non-null int64
8 residential_assets_value 4269 non-null int64
9 commercial_assets_value 4269 non-null int64
10 luxury_assets_value 4269 non-null int64
11 bank_asset_value 4269 non-null int64
12 loan_status 4269 non-null object
```

dtypes: int64(10), object(3) memory usage: 433.7+ KB

None

Statistical summary of numerical columns

df.describe()

	``						
count mean std min 25% 50% 75% max	loan_id 4269.000000 2135.000000 1232.498479 1.000000 1068.000000 2135.000000 3202.000000 4269.000000	no_of_depended	0000 8712 5910 0000 0000 0000	income_annum 4.269000e+03 5.059124e+06 2.806840e+06 2.000000e+05 2.700000e+06 5.100000e+06 7.500000e+06 9.900000e+06	4.2690 1.5133 9.0433 3.0000 7.7000 1.4500 2.1500	amount 00e+03 45e+07 63e+06 00e+05 00e+06 00e+07 00e+07	\
count mean std min 25% 50% 75% max	loan term 4269.000000 10.900445 5.709187 2.000000 6.000000 10.000000 16.000000 20.000000	cibil score 4269.000000 599.936051 172.430401 300.000000 453.000000 600.000000 748.000000 900.000000	resi	7.4726 6.5036 -1.0000 2.2000 5.6000	00e+03 17e+06 37e+06 00e+05 00e+06 00e+06 00e+07		
		_assets_value	luxur	y_assets_value			
bank as	sset value	4.269000e+03		4.269000e+03			
4.2690	00e+03	4.2000000100		4.20700000103			
mean		4.973155e+06		1.512631e+07			
4.976692e+06 std		4.388966e+06	9.103754e+06				
3.250185e+06 min		0.000000e+00		3.000000e+05			
0.0000	00e+00			3 . 0000000			
25%		1.300000e+06		7.500000e+06			
2.300000e+06 50%		3.700000e+06		1.460000e+07			
4.6000	00e+06	J. /00000e+00		1.40000000			

```
75%
                   7.600000e+06
                                         2.170000e+07
7.100000e+06
                   1.940000e+07
                                         3.920000e+07
1.470000e+07
# Checking for Duplicate values
df.duplicated().sum()
np.int64(0)
# Dropping rows with null values
df.dropna(inplace=True)
#Removing Blank spaces from column names and values
df.columns = df.columns.str.strip()
df['loan status'] = df['loan status'].str.strip() # Remove spaces
df = df.apply(lambda x: x.str.strip() if x.dtype == 'object' else x)
# Data Transformation on Education, Self Employed Coloumns
df['education'] = df['education'].replace({'Not Graduate': 0,
'Graduate': 1})
df['self employed'] = df['self employed'].replace({'No': 0, 'Yes': 1})
df.head()
   loan id no of dependents education self employed
income annum \
  1
                                                      0
                                                              9600000
                                                              4100000
                                                              9100000
                                                              8200000
                                                              9800000
   loan amount
                loan term cibil score residential assets value \
      29900000
0
                       12
                                   778
                                                          2400000
1
      12200000
                        8
                                    417
                                                          2700000
2
      29700000
                       20
                                    506
                                                          7100000
3
      30700000
                        8
                                    467
                                                         18200000
      24200000
                       20
                                    382
                                                         12400000
   commercial assets value luxury assets value bank asset value
loan status
```

0 Approved	17600000		227	00000	80	00000
Approved 1	2200000		88	00000	33	300000
Rejected 2	4500000		333	00000	128	300000
Rejected 3	_		233	00000	79	900000
Rejected 4	8200000		294	00000	5(000000
Rejected						
# Data Transfo	rmation on Lo	an Sta	tus Colour	mns		
<pre>df['loan_status 0})</pre>	s'] = df['loa	ın_stat	cus'].map({'Approved	': 1, 'R	ejected':
df.head()						
_	of_dependents	s educ	ation sel:	f_employed		
income_annum \ 0 1		2	1		0	9600000
1 2		0	0		1	4100000
2 3		3	1		0	9100000
3 4		3	1		0	8200000
4 5		5	0		1	9800000
loan amount 0 29900000 1 12200000 2 29700000 3 30700000 4 24200000	loan_term	cibil	778 417 506 467 382	sidential	240 270 710 1820	ralue \ 00000 00000 00000 00000
	assets_value	luxur	y assets v	alue bank	asset v	alue
loan_status 0	17600000		227	00000	80	000000
1 1 0	2200000		88	00000	33	300000
2	4500000		333	00000	128	300000
3	3300000		233	00000	79	900000
0 4 0	8200000		294	00000	50	00000

Exploratory Data Analysis (EDA)

- Visualize relationships between features.
- Identify trends and patterns.

1. Univariate Analysis

It focuses on examining a single variable at a time. It helps in understanding the distribution of the data.

2. Bivariate Analysis

It helps in understanding the relationship between two variables, and allows us to know how they are related with each other negatively or postively.

```
for i, col in enumerate(numerical_columns, 1):
    plt.subplot(3, 3, i)
    sns.boxplot(data=df, x='loan_status', y=col)
    plt.title(f"{col} vs Loan Status")

plt.tight_layout()
plt.show()
```


3. Multivariate Analysis (Relation between multiple variables)

```
#MultiVariate Analysis

# Plot the heatmap of the correlation between each of the numerical features

plt.figure(figsize=(10, 8)) # Increase figure size sns.heatmap(df[numerical_columns].corr(), annot=True, cmap='Blues', linewidths=0.5)

plt.show()
```


Model Selection & Training:

```
#Adding all asset cols into one col.

df['total_assets'] = df['residential_assets_value'] +
    df['commercial_assets_value'] + df['luxury_assets_value'] +
    df['bank_asset_value']

#Dropping non required columns

df.drop(columns=['residential_assets_value',
    'commercial_assets_value', 'luxury_assets_value', 'bank_asset_value'],
    inplace=True)

df.head()
```

inc	loan_id no_of_d	ependents educ	cation self_e	employed			
0	1	2	1	0	9600000		
1	2	0	0	1	4100000		
2	3	3	1	0	9100000		
3	4	3	1	0	8200000		
4	5	5	0	1	9800000		
0 1 2 3 4	loan_amount lo 29900000 12200000 29700000 30700000 24200000	an_term cibil 12 8 20 8 20	_score loan_ 778 417 506 467 382	1 5 0 1 1 0 5 0 5 0 5 5 0	_assets 0700000 7000000 7700000 2700000 5000000		
<pre># Dropping the unwanted columns(Less Required Cols) df.drop(columns=['loan_id', 'no_of_dependents', 'education', 'self_employed'], inplace=True)</pre>							
<pre>#Removing Target Variable and creating the feature matrix `x`, which will be used for training the model. x = df.drop(columns=['loan_status'])</pre>							
<pre># Creating the Target matrix `y`, which contains target variable y = df['loan_status']</pre>							

Features (X) and Target (y) in Supervised Learning

- **Features (X):** Input variables used to predict the target. Examples:
 - CIBIL Score
 - Loan Amount
 - Total Assets
 - Loan Term
 - Income Annum
- Target (y): The output variable we want to predict, i.e., Loan Approval Status (Approved/Not Approved).

Why Split the Dataset?

• X (Features): Helps the model learn patterns influencing loan approval.

- **y (Target):** The value the model aims to predict.
- Separating features and target allows the model to understand relationships and make accurate predictions.

Split data into training and testing sets.

```
# Divide the dataset into training (80%) and testing (20%) subsets
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=0.2, random_state=42)

scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

Train the Regression Model

```
# Instantiate the Logistic Regression model
model = LogisticRegression()
# Fit the model using the training dataset
model.fit(x train, y train)
# Generate predictions on the test dataset
y pred = model.predict(x test)
# Display the first 10 predicted values
print('Predictions', y pred[:10])
Predictions [0 1 0 1 1 1 1 0 1 0]
#Getting Model Accuracy
print('Accuracy', accuracy score(y test, y pred))
print('Accuracy', classification report(y test, y pred))
Accuracy 0.9063231850117096
                        precision recall f1-score support
Accuracy
                                         0.87
           0
                    0.88
                              0.87
                                                    318
                    0.92
                              0.93
                                         0.93
                                                    536
                                         0.91
                                                    854
    accuracy
                    0.90
                              0.90
                                         0.90
                                                    854
   macro avg
weighted avg
                    0.91
                              0.91
                                         0.91
                                                    854
```

Model Evaluation

Evaluating Model Using

- **Confusion Matrix**: Displays the true positive, false positive, true negative, and false negative values to assess classification performance.
- ROC Curve & AUC (Area Under Curve): Shows the trade-off between true positive rate and false positive rate, with AUC values closer to 1 indicating better performance.
- **Feature Importance (Logistic Regression Coefficients)**: Highlights the most influential features in model predictions, helping in feature selection and interpretability.

```
#Confusion Matrix

cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=[0,1],
yticklabels=[0,1])
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
```



```
# ROC Curve & AUC (Area Under Curve)

y_pred_prob = model.predict_proba(x_test)[:,1] # Probabilities for
class 1

fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
auc_score = roc_auc_score(y_test, y_pred_prob)

plt.plot(fpr, tpr, label=f"AUC = {auc_score:.2f}")
plt.plot([0,1], [0,1], 'r--') # Random guess line
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.legend()
plt.show()
```



```
#Feature Importance (Logistic Regression Coefficients)

importance = pd.Series(model.coef_[0], index=x.columns) # Use
    original x DataFrame
importance.sort_values(ascending=False).plot(kind='bar')
plt.title("Feature Importance (Logistic Regression Coefficients)")
plt.show()
```


Model Evaluation Result

Confusion Matrix

- True Positives (498) and True Negatives (276) indicate good classification.
- False Positives (42) and False Negatives (38) should be analyzed for potential improvements.

ROC Curve (AUC = 0.97)

 A high AUC value suggests excellent model performance and strong discriminatory power.

Feature Importance

- CIBIL Score has the highest impact on predictions.
- Loan Amount also plays a significant role.
- **Income Annum** negatively influences predictions, indicating an inverse relationship.