Obliczenia naukowe

Lista nr 2 (laboratorium) ¹

(uwarunkowanie zadań i stabilność algorytmów)

- **zad. 1** Powtórz zadanie 5 z listy 1, ale usuń ostatnią 9 z x_4 i ostatnią 7 z x_5 . Jaki wpływ na wyniki mają niewielkie zmiany danych?
- zad. 2 Narysować wykres funkcji $f(x) = e^x \ln(1 + e^{-x})$ w co najmniej dwóch dowolnych programach do wizualizacji. Następnie policzyć granicę funkcji $\lim_{x\to\infty} f(x)$. Porównać wykres funkcji z policzoną granicą. Wyjaśnić zjawisko.
- zad. 3 Rozważmy zadanie rozwiązywania układu równań liniowych

Ax = b.

dla danej macierzy współczynników $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ i wektora prawych stron $\boldsymbol{b} \in \mathbb{R}^n$. Macierz \boldsymbol{A} generować w następujący sposób:

- (a) $\mathbf{A} = \mathbf{H}_n$, gdzie \mathbf{H}_n jest macierzą Hilberta stopnia n wygenerowaną za pomocą funkcji \mathbf{A} =hilb(n) (źródła w języku Julia na stronie domowej),
- (b) $\mathbf{A} = \mathbf{R}_n$, gdzie \mathbf{R}_n jest losową macierzą stopnia n z zadanym wskaźnikiem uwarunkowania c wygenerowaną za pomocą funkcji $\mathbf{A}=\mathsf{matcond}(\mathsf{n},\mathsf{c})$ (źródła w języku Julia na stronie domowej).

Wektor \boldsymbol{b} zadany jest następująco $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x}$, gdzie \boldsymbol{A} jest wygenerowaną macierzą, a $\boldsymbol{x} = (1, \dots, 1)^T$. Zatem wiemy jakie jest rozwiązanie dokładne $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ dla \boldsymbol{A} i \boldsymbol{b} .

Rozwiązać $\mathbf{A}\mathbf{x} = \mathbf{b}$ za pomocą dwóch algorytmów: eliminacji Gaussa (x=A\b) oraz $x = \mathbf{A}^{-1}\mathbf{b}$ (x=inv(A)*b). Eksperymenty wykonać dla macierzy Hilberta \mathbf{H}_n z rosnącym stopniem n > 1 oraz dla macierzy losowej \mathbf{R}_n , n = 5, 10, 20 z rosnącym wskaźnikiem uwarunkowania $c = 1, 10, 10^3, 10^7, 10^{12}, 10^{16}$. Porównać obliczony $\tilde{\mathbf{x}}$ z rozwiązaniem dokładnym $\mathbf{x} = (1, \dots, 1)^T$,tj. policzyć błędy względne.

W języku Julia za pomocą funkcji cond(A) można sprawdzić jaki jest wskaźnik uwarunkowania wygenerowanej macierzy. Natomiast za pomocą funkcji rank(A) można sprawdzić jaki jest rząd macierzy.

- zad. 4 ("złośliwy wielomian", Wilkinson) Zainstalować pakiet Polynomials.
 - (a) Użyć funkcji roots (z pakietu Polynomials) do obliczenia 20 zer wielomianu P w

¹Większość zadań pochodzi z książki: D. Kincaid, W. Cheney, Analiza numeryczna, WNT, 2005. Zadania 5 i 6 pochodzą z książki H.O. Peitgen, H. Jürgens, D. Saupe *Granice chaosu. Fraktale, część 1*, Wydawnictwo Naukowe PWN, Warszawa 1997, rozdziały 1.4 i 1.5.

postaci naturalnej

$$P(x) = x^{20} - 210x^{19} + 20615x^{18} - 1256850x^{17} + 53327946x^{16}$$

$$-1672280820x^{15} + 40171771630x^{14} - 756111184500x^{13}$$

$$+11310276995381x^{12} - 135585182899530x^{11}$$

$$+1307535010540395x^{10} - 10142299865511450x^{9}$$

$$+63030812099294896x^{8} - 311333643161390640x^{7}$$

$$+1206647803780373360x^{6} - 3599979517947607200x^{5}$$

$$+8037811822645051776x^{4} - 12870931245150988800x^{3}$$

$$+13803759753640704000x^{2} - 8752948036761600000x$$

$$+2432902008176640000$$

(współczynniki wielomianu P umieszczone są na stronie domowej w pliku wielomian.txt). P jest postacią naturalną wielomianu Wilkinsona p

$$p(x) = (x-20)(x-19)(x-18)(x-17)(x-16)$$

$$(x-15)(x-14)(x-13)(x-12)(x-11)$$

$$(x-10)(x-9)(x-8)(x-7)(x-6)$$

$$(x-5)(x-4)(x-3)(x-2)(x-1)$$

Sprawdzić obliczone pierwiastki z_k , $1 \le k \le 20$, obliczając $|P(z_k)|$, $|p(z_k)|$ i $|z_k - k|$. Wyjaśnić rozbieżności.

Zapoznać się z funkcjami: Poly, poly, polyval (z pakietu Polynomials).

Wsk. Arytmetyka w Float64 w języku Julia ma od 15 do 17 cyfr znaczących w systemie dziesiętnym.

(b) Powtórzyć eksperyment Wilkinsona, tj. zmienić współczynnik -210 na -210-2⁻²³. Wyjaśnić zjawisko.

zad. 5 Rozważmy równanie rekurencyjne (model logistyczny, model wzrostu populacji)

$$p_{n+1} := p_n + rp_n(1 - p_n), \text{ dla } n = 0, 1, \dots,$$
 (1)

gdzie r jest pewną daną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiąca procent maksymalnej wielkości populacji dla danego stanu środowiska.

Przeprowadzić następujące eksperymenty:

- 1. Dla danych $p_0 = 0.01$ i r = 3 wykonać 40 iteracji wyrażenia (1), a następnie wykonać ponownie 40 iteracji wyrażenia (1) z niewielką modyfikacją tj. wykonać 10 iteracji, zatrzymać, zastosować obcięcie wyniku odrzucając cyfry po trzecim miejscu po przecinku (daje to liczbę 0.722) i kontynuować dalej obliczenia (do 40-stej iteracji) tak, jak gdyby był to ostatni wynik na wyjściu. Porównać otrzymane wyniki.
 - Obliczenia wykonać w arytmetyce Float32 (w języku Julia).
- 2. Dla danych $p_0 = 0.01$ i r = 3 wykonać 40 iteracji wyrażenia (1) w arytmetyce Float32 i Float64 (w języku Julia). Porównać otrzymane wyniki.

zad. 6 Rozważmy równanie rekurencyjne

$$x_{n+1} := x_n^2 + c \text{ dla } n = 0, 1, \dots,$$
 (2)

gdzie c jest pewną daną stałą.

Przeprowadzić następujące eksperymenty. Dla danych:

- 1. $c = -2 i x_0 = 1$
- 2. $c = -2 i x_0 = 2$
- 4. c = -1 i $x_0 = 1$
- 5. c = -1 i $x_0 = -1$
- 6. $c = -1 i x_0 = 0.75$
- 7. c = -1 i $x_0 = 0.25$

wykonać, w języku Julia w arytmetyce Float64, 40 iteracji wyrażenia (2). Zaobserwować zachowanie generowanych ciągów.

Wsk. Przeprowadzić iteracje graficzną $x_{n+1} := x_n^2 + c$.

Rozwiązania zadań przedstawić w sprawozdaniu, plik pdf + wydruk, które powinno zawierać:

- 1. krótki opis problem,
- 2. rozwiązanie,
- 3. wyniki oraz ich interpretację,
- 4. wnioski.

Do sprawozdania należy dołączyć pliki z kodem (*.jl). Pliki powinny być skomentowane: imię i nazwisko autora (anonimy nie będą sprawdzane), opisane parametry formalne funkcji, komentarze zmiennych. Spakowane pliki wraz ze sprawozdaniem (*.zip) należy przesłać e-mailem prowadzącemu. Natomiast wydruk sprawozdania należy oddać prowadzącemu na laboratorium.

UWAGA: Ostateczną wersję programów proszę przetestować pod linuksem.