Introduction

Outline

- Personal introduction
- Introduction to the practical
- Hands-on practical

About me

Computer Science

Ph.D. at the University of Verona, Italy, with thesis on Simulation of Biological Systems

Research Fellow at Cranfield University - UK

Three years at Cranfield University working at proteomics projects (GAPP, MRMaid, X-Tracker...)

Module manager and lecturer in several courses of the MSc in Bioinformatics

Bioinformatician at IASMA - FEM

Currently bioinformatician in the Computational Biology Group at Istituto Agrario di San Michele all'Adige – Fondazione Edmund Mach, Trento, Italy

Collaborator uniTN - CiBio

I run the Scienitific Programming Lab A last year

Fondazione Edmund Mach

FEM – San Michele, Trento - Italy

Agricultural Institute

Research and Innovation Centre

Genomics, metabolomics wet labs on fruits (apple, grape, small fruits,...)

Bioinformatics and computational biology

Bioinformatics @FEM (UBC)

- Genomics
 - Assembly and annotation of complex genomes (plants, insects, etc.)
 - Development of SNP Chips for genetic screening
 - Resequencing of genomes / Variant discovery
- Metagenomics
 - > Targeted metagenomic data
 - > Feature selection algorithms
 - Algorithms for strain-level identification from un-targeted metagenomics
- Transcriptomics
 - > RNA-seq data analysis, gene and pathway enrichment
 - > Data integration and compilation of expression atlases
- Metabolomics
 - Data analysis pipelines for targeted and untargeted data
 - Methods for MS imaging
- Statistical data analysis
 - Integration of –omic data and analysis of correlation networks

Genome assembly

[from M. Baker, Nature Methods, 2014]

Genome assembly of DH of Pear and Apple

Input data:

Illumina: $^{\circ}60x - 100x$ PE information + (mate pairs for Apple)

Pacific Biosciences $^{\sim}$ 30x + 30x (35x only for Apple)

Bionano optical maps: ~ 600x (for both)

Genetic maps: integrated genetic map from 21 mapping populations (Apple only)

Output result (for Apple, Pear is in progress):

Chromosome scale assembly

Contigs: 2150 for a total of 625Mb

N50 Contigs (hybrid dbg2olc): ~ 620Kbps

280 Scaffolds, for an N50 5,6Mb

17 chromosomes + IgO unanchored sequences

[Daccord et al, Nature Genetics, 49, 2017]

SNP-Chips development for GWAS

20K SNP Illumina Infinium II Array (reseq of 16 Apple cultivars, Illumina 30x) 487K SNP Affymetrix Axiom Array (reseq of 63 Apple cultivars, Illumina 20-30x)

- 1. Reads alignment and filtering
- 2. SNP calling
- 3. Identification of most reliable SNPs
- 4. Selection of (20K) 487K target SNPs

Several Terabytes of data produced!!!!

Peach, pear and walnut done too!

genotypes

SNP-Chips development for GWAS

20K SNP Illumina Infinium II Array (reseq of 16 Apple cultivars, Illumina 30x) 487K SNP Affymetrix Axiom Array (reseq of 63 Apple cultivars, Illumina 20-30x)

RNAseq data analysis with Pathway Inspector

https://pathwayinspector.fmach.it

RNAseq data analysis with Pathway Inspector

Intersection pbs2salt-WTsalt WTtunimycin-WTyepd pbs2gal-WTgal WTgal-WTyepd

https://pathwayinspector.fmach.it

Gene	Comparison	P-value	Fold Change	FDR
YGR046W	pbs2sati-W7satt	0.0264808829029846	0.242031317732354	0.0481391746189205
	WTtunimysin-WTyepd	2.38460949315057e-07	0.524172136340184	4.4746733128663e-07
	pbs2gal-WTgal	0.000867890485304009	-0.301105531814201	0.00297830818509087
	WTgai-WTyepd	2.86768386434163e-15	0.832169633220768	7.19124682256014e-15
YIL140W	pbs2salt-WTsalt	3.66247940741723e-08	0.633599190606476	1.68546937903529e-07
	WTtunimytin-WTyapd	1.56617879717633e-24	1.0016409152993	5.92391639177541e-24
	pbs2gal-WTgal	1.67826251752703e-09	0.397640451182865	1.4996262012492±-08
	WTgal-WTyepd	0.00349129423675144	0.276549277440217	0.00482106276605931
YLR130G	piss2sati-WTsalt	0.0014810016155513	0.315821501380858	0.00356287774872549
	WTtunimyoin-WTyepd	3.0140342977802e-86	-1.96795769614264	3.8332156378879e-85
	pbs2gal-WTgal	2.76753316898143e-09	0.468214139134541	2.39953774291843e-08
	WTgsi-WTyepd	5.89372053985592e-18	-0.831121987730747	1.82245497938386e-17
YOR011W	pins2self-WTself	1.00574726111917e-16	0.721830531608741	8.28174673473501e-16
	WTtunimycin-WTyepd	0.0109923879355166	0.218418100231531	0.0147157873255527

 $Comparative\ analysis\ for\ Amino\ sugar\ and\ nucleotide\ sugar\ metabolism\ -\ Saccharomyces\ cerevisiae\ (budding\ yeast)$ 10.00obs2gsI-WTgs WTgel-WTyepd 6.00 **Cross-Comparison Results**

Opportunities @FEM

MSc External thesis

Are you interested in a bioinformatics project in NGS data analysis, RNA Seq, data integration?

Come and talk to me or email me at:

luca.bianco@fmach.it

Back to business now!

In this practical you will

- 1. Install Python 3.x (and pip)
- 2. Install Visual Studio Code
- 3. Get familiar with the Python console
- 4. Start using Visual Studio Code and advanced features (like debugging)
- 5. End the session with some exercises

Console VS. Integrated Development Environment (IDE)

```
biancol@bluhp:~$ python3
Python 3.5.2 (default, Aug 18 2017, 17:48:00)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

```
>>> print("Hi there")
Hi there
>>> print("{} + {} = {}".format(10,20, 10+20))
10 + 20 = 30
>>>
```


Resources

All material regarding practicals will be found here:

http://qcbsciprolab.readthedocs.io

Timetable

Tuesdays:

A221: 16,30 - 18,30

Fridays:

A223: 14,30 - 16,30

Most probably we will skip October 30th practical.

Please, fill the form at

https://tinyurl.com/spquest01

Deadline Sunday, September 30th

Scientific Programming 2018/19 *Campo obbligatorio Indirizzo email * Il tuo indirizzo email First name La tua risposta Family name (surname) * La tua risposta What operating system do you use on your PC? * GNU/Linux MacOS Windows 10

Any questions?

If not, go to:

https://qcbsciprolab.readthedocs.io/en/latest/introduction.html

