FAKULTA MECHATRONIKY, INFORMATIKY A MEZIOBOROVÝCH STUDIÍ <u>TUL</u>

Numerický výpočet integrálu

SEM2 - LS 2023/2024

Pavel Exner, Petr Rálek NTI, FM TUL

pavel.exner@tul.cz, petr.ralek@tul.cz

it: 17. dubna 2024]

Numerický výpočet určitého integrálu l

Budeme se zabývat způsoby, jak lze spočítat určitý integrál

$$I(f) = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Numerický výpočet použijeme pokud

- · nelze spočítat analyticky,
- analytický výpočet integrálu je velmi obtížný,
- funkce není zadána předpisem (ale např. tabulkou hodnot).

Numerický výpočet určitého integrálu II

Principem numerických metod pro výpočet integrálu je nahrazení integrované funkce f vhodnou aproximací φ .

$$I(f) \approx I(\varphi) = \int_a^b \varphi(x) \, dx.$$

- funkce φ je volena tak, aby se velmi snadno integrovala (např. polynom)
- integrál $I(\varphi)$ je dán analytickým předpisem, tzv. kvadraturní formulí

$$I(\varphi) = \sum_{i=0}^{N} w_i f_i,$$

kde $w_i \ge 0$ nazýváme kvadraturní váhy, $f_i := f(x_i)$ a x_i jsou kvadraturní body

Numerický výpočet určitého integrálu III

• předpokládáme, že body x_i jsou uspořádány vzestupně a platí

$$a = x_0 < x_1 < \ldots < x_N = b.$$

- kvadratury (konkrétní hodnoty w_i, x_i) jsou konstruovány tak, aby vždy integrovaly zcela přesně určité třídy funkcí (např. polynomy do určitého řádu)
- konkrétní hodnoty w_i, x_i hledáme tak, že funkci f nahradíme nějakou její interpolantou

Riemmanův integrál I

Jako motivaci připomeňme definici Riemmanova integrálu.

horní součet

$$S = \sum_{i=1}^{N} \sup_{x \in [x_{i-1} x_i]} \left[f(x)(x_i - x_{i-1}) \right]$$

dolní součet

$$S = \sum_{i=1}^{N} \sup_{x \in [x_{i-1} x_i]} \left[f(x)(x_i - x_{i-1}) \right]$$

Pokud existují takové dělení intervalu D(a,b), že platí $\sup_D s(D) = \inf_D S(D)$, potom jsou tyto rovny integrálu I(f).

Tip: https://www.geogebra.org/m/T5cPPUs5

Riemmanův integrál II

- vhodně zvolené dělení intervalu D může být první jednoduchou kvadraturní formuli, kde funkci f nahrazujeme konstantou
- funkční hodnoty můžeme brát v začátku/středu/konci jednotlivých intervalů $[x_{i-1},x_i]$
- váhy $w_i = x_i x_{i-1}$ pak odpovídají jejich délce
- získáme tak tzv. levou/střední/pravou Riemannovu sumu

Obrázek: Levá Riemannova suma

FAKULTA MECHATRONIKY, INFORMATIKY A MEZIOBOROVÝCH STUDIÍ TUL

Obrázek: Levá Riemannova suma

Obrázek: Pravá Riemannova suma

Obrázek: Střední Riemannova suma

Kvadraturní vzorce I

Uveďme nyní několik základních kvadraturních vzorců

$$I(f) \approx I(\varphi) = Q = \sum_{i=0}^{N} w_i f_i$$

založených na interpolaci polynomy, tedy $\varphi \in P_k(a,b)$.

Pro numerickou kvadraturu definujeme chybu

$$E(f) = \left| I(f) - \sum_{i=0}^{N} w_i f(x_i) \right|.$$

Zřejmě platí, že kvadratura je přesná, pokud E=0. Řekneme, že kvadratura má **řád přesnosti** k, jestliže je přesná pro každý polynom stupně nejvýše k.

Kvadraturní vzorce II

Kvadraturní vzorce dělíme na:

- uzavřené: $w_0 > 0$, $w_N > 0$
- otevřené: $w_0 = w_N = 0$

Zmíníme zde 2 typy kvadratur:

1 Newton-Cotesovy vzorce používají rovnoměrné dělení intervalu:

$$x_i = a + ih,$$
 $h = (a - b)/N,$

případně body
$$x_{i+\frac{1}{2}} := x_i + \frac{h}{2}$$
.

Q Gaussovy kvadratury při daném počtu kvadraturních bodů dávají přesný výsledek pro polynomy nejvyššího možného stupně

Kvadraturní vzorce III

Kvadratury lze kombinovat a skládat, tedy nejprve rozdělit interval [a,b] na menší intervaly, na nichž použijeme kvadraturu a výsledky sečteme \rightarrow **složené** kvadraturní vzorce.

Newton-Cotesovy vzorce I

Předpokládejme spojité funkce f, pro odhad chyby také spojitost f'.

Obdélníkové pravidlo (Midpoint rule) je nejjednodušší kvadratura, která nahrazuje funkci f její konstantní interpolantou: N=1, $w_0=0$, $w_{1/2}=h$, $w_1=0$. Tedy

$$Q_M \approx h f_{\frac{1}{2}}$$
.

Z Taylorova rozvoje lze odvodit odhad chyby:

$$E_{Q_M} \le \frac{h^3}{24} \max_{x \in [a,b]} |f'(x)| =: O(h^3 f').$$

Protože každý polynom stupně 1 splňuje $f''\equiv 0$, má obdélníkové pravidlo řád přesnosti 1.

Newton-Cotesovy vzorce II

Složené obdélníkové pravidlo (Composed midpoint rule)

vznikne opakovaným použitím předchozího pravidla na intervalech (x_0,x_1) , (x_1,x_2) , ..., (x_{N-1},x_N) . Dostaneme:

$$Q_{CM} \approx h \left(f_{1/2} + f_{3/2} + \dots + f_{N-3/2} + f_{N-1/2} \right),$$

$$E_{Q_{CM}} \le \frac{Nh^3}{24} \max_{x \in [a,b]} |f''(x)| = O(h^2 f').$$

Odpovídá již zmíněné střední Riemmanově sumě.

Newton-Cotesovy vzorce III

Obrázek: Složené obdélníkové pravidlo

Newton-Cotesovy vzorce IV

Lichoběžníkové pravidlo (Trapezoidal rule) spočívá v nahrazení funkce f lineární interpolantou určenou hodnotami v krajních bodech intervalu: N=1, $w_0=w_1=\frac{h}{2}$,

$$Q_T \approx \frac{h}{2}(f_0 + f_1).$$

Stejně jako u obdélníkového pravidla dostaneme odhad chyby

$$E_{Q_T} \le \frac{h^3}{12} \max_{x \in [a,b]} |f'(x)| =: O(h^3 f')$$

a pravidlo má řád přesnosti 1.

Newton-Cotesovy vzorce V

Složené lichoběžníkové pravidlo má tvar

$$Q_{CT} \approx h(\frac{1}{2}f_0 + f_1 + f_2 + \dots + f_{N-2} + f_{N-1} + \frac{1}{2}f_N), \quad E_{Q_{CT}} = O(h^2f').$$

Newton-Cotesovy vzorce VI

Adaptivní lichoběžníkové pravidlo postupně zjemňuje dělení intervalu [a, b], přičemž již spočtené hodnoty se využijí v dalším výpočtu. Vychází z rekurentního vzorce:

$$I_k = \frac{1}{2}I_{k-1} + \frac{b-a}{2^k}\Sigma_k,$$

kde I_k je intergrál spočtený složeným lichoběžníkovým pravidlem s $N=2^k$ a

$$\Sigma_k := f_1 + f_3 + \dots + f_{2^k - 1}.$$

Newton-Cotesovy vzorce VII

Simpsonovo pravidlo nahrazuje funkci f kvadratickou interpolantou, N=2,

$$w_0 = w_2 = \frac{h}{3}$$
, $w_1 = \frac{4}{3}h$:

$$Q_S \approx \frac{h}{3}(f_0 + 4f_1 + f_2),$$

$$E_{Q_S} = O(h^5 f^{(4)}),$$

jedná se tedy o pravidlo 3. řádu přesnosti.

Newton-Cotesovy vzorce VIII

Obrázek: Simpsonovo pravidlo

Gaussova kvadratura I

Gaussovy kvadraturní vzorce jsou navrženy tak, aby pro daný počet dělících bodů dosahovaly co nejvyššího řádu přesnosti. Platí, že při použití n kvadraturních bodů je řád Gaussovy kvadratury roven 2n-1.

- $oldsymbol{0}$ nejjednodušší Gaussova kvadratura (n=1) je obdélníkové pravidlo.
- **2** pro n=2 má Gaussova kvadratura následující tvar:

$$x_0 = \frac{b-a}{2}\sqrt{3} + \frac{a+b}{2}, \quad x_1 = \frac{a-b}{2}\sqrt{3} + \frac{a+b}{2}, \quad w_0 = w_1 = \frac{b-a}{2}$$

$$Q_2 \approx w_0 f(x_0) + w_1 f(x_1).$$

3 pravidla vyšších řádů se dají nalézt v literatuře (tabulka x_i, w_i na referenčním intervalu [-1, 1] např. zde: https://en.wikipedia.org/wiki/Gaussian_quadrature)

Gaussova kvadratura II

body Gaussovy kvadratury řádu 1-9 na intervalu [-1,1]

Gaussova kvadratura III

body Gaussovy kvadratury řádu 1-9 na intervalu [-1,1]

Pozn: součet vah je konstantní: $\sum_{i=1} w_i = b - a = 2$