第三章 子空间、积空间、商空间

介绍三种从原有的拓扑空间或拓扑空间族构造新空间的经典方法,引入遗传性、可积性、可商性等概念,这些是研究拓扑性质的基本构架.

教学重点: 子空间与积空间; 教学难点: 子空间、(有限)积空间和商空间

3.1 子空间

对于空间 X 的子集族 A 及 $Y \subset X$, A 在 Y 上的限制 $A_{|Y} = \{A \cap Y \mid A \in A\}$.(定义 3.1.2)

引理 3.1.2 设Y 是空间(X, τ)的了集,则是Y 上的拓扑.

证 按拓扑的三个条件逐一验证. 如,设 $\tau_1 \subset \tau_{|Y|}, \forall A \in \tau_1, \exists B_A \in \tau$,使得 $A = B_A \cap Y$,于是 $\cup \tau_1 = \cup \{B_A \cap Y \mid A \in \tau_1\} = (\cup \{B_A \mid A \in \tau_1\}) \cap Y \in \tau_{|Y|}$

定义 **3.1.3** 对 $Y \subset X$, $(Y, \tau_{|Y})$ 称为 (X, τ) 的子空间, $\tau_{|Y}$ 称为相对拓扑.

"子空间"="子集"+"相对拓扑".

易验证, 若Z是Y的子空间, 且 Y是X的子空间, 则Z是X的子空间. (定理 3.1.4),

定理 3.1.5(3.1.7) 设 $Y \in X$ 的子空间, $y \in Y$, 则

- (1)若 τ , τ^* 分别为X,Y的拓扑,则 $\tau^* = \tau_{ly}$;
- (2)若 F, F*分别为X,Y的全体闭集族,则 F*=F| $_{\nabla}$;
- (3)若 U_y , U_y *分别为y在 X,Y 中的邻域系,则 U_y *= $U_{y/y}$;
- (4)若 B 是X的基,则 B_V 是Y的基.
- \mathbb{E} (2) $F^* \in \mathsf{F}^* \Leftrightarrow Y F^* \in \tau_y \Leftrightarrow Y F^* = U \cap Y$,

 $U \in \tau \Leftrightarrow F^* = (X - U) \cap Y, U \in \tau \Leftrightarrow F^* \in \tau_{|Y}.$

(4). U 开于Y, 存在X 的开集V,使得 $U = V \cap Y$, $\mathbf{B}_1 \subset \mathbf{B}$,满足 $V = \cup \mathbf{B}_1$,则 $U = \cup (\mathbf{B}_1 \cup \mathbf{B}_2)$.

在 R 的子空间 $(0,+\infty)$ 中(0.1]是闭集.

定理 3.1.6 设 $Y \in X$ 的子空间, $A \subset Y$, 则

 $(1)d_{Y}(A) = d_{X}(A) \cap Y; (2)c_{Y}(A) = c_{X}(A) \cap Y$

证 (1) $y \in d_x(A)$ 在X 中的邻域 $U, U \cap (A - \{y\}) \supset (U \cap Y) \cap (A - \{y\}) \neq \emptyset$,所以

 $y \in d_X(A) \cap Y$. 反之,设 $y \in d_X(A) \cap Y$, $y \in Y$ 中的邻域V, $\exists y \in X$ 中的邻域U 使 $V = U \cap Y$,于是 $V \cap (A - \{y\}) = (U \cap (A - \{y\})) \cap Y = U \cap (A - \{y\}) \neq \phi$,所以 $y \in d(A)$.

$$(2) c_Y(A) = A \cup d_Y(A) = A \cup (d_X(A) \cap Y) = (A \cup d_X(A)) \cap (A \cup Y) = c_X(A) \cap Y \cdot \mathbf{3.2}$$
有限积空间

就平面的球形邻域 $B_a(x,\varepsilon)$ 而言,我们知道球形邻域内含有方形邻域,方形邻域内含有球形邻域,从基的角度而言,形如 $B_1(x_1,\varepsilon_1)\times B_2(x_2,\varepsilon_2)$ 的集合就是平面拓扑的基了。对于两个拓扑空间 X,Y,在笛卡儿积集 $X\times Y$ 中可考虑形如 $U\times V$ 的集合之全体,其中 U,V 分别是 X,Y 的开集。对于有限个空间 X_1,X_2,\dots,X_n ,可考虑形如 $U_1\times U_2\times\dots\times U_n$ 的集合。

定理 3.2.2 设 (X_i, τ_i) 是 n 个拓扑空间,则 $X = X_1 \times X_2 \times ... \times X_n$ 有唯一的拓扑,以 X 的 了集族 $\mathbf{B} = \{U_1 \times U_2 \times ... \times U_n \mid U_i \in \tau_i, i \leq n$ 为它的一个基 .

证 验证 \mathbf{B} 满足定理 2. 6. 3 的条件(i), (ii). (1) $X = X_1 \times X_2 \times ... \times X_n \in \mathbf{B}$, $\cup \mathbf{B} = \mathbf{X}$; (2) 若 $U_1 \times U_2 \times ... \times U_n, V_1 \times V_2 \times ... \times V_n \in \mathbf{B}$, 则

 $(U_{\perp} \times U_{2} \times ... \times U_{n}) \cap (V_{\perp} \times V_{2} \times ... \times V_{n}) = (U_{\perp} \cap V_{\perp}) \times (U_{2} \cap V_{2}) \times ... \times (U_{n} \cap V_{n}) \in \mathsf{B}.$

定义 **3.2.2** 以定理 **3.2.2** 中 **B** 为基生成 $X = X_1 \times X_2 \times ... \times X_n$ 上的唯一拓扑,称为拓扑 $\tau_1, \tau_2, ... \tau_n$ 的积拓扑 (X, τ) 称为 $(X_1, \tau_1), (X_2, \tau_2), ... (X_n, \tau_n)$,的(有限)积空间.

定 理 3.2.4 设 $X=X_1\times X_2\times ...\times X_n$ 是 积 空 间 , Bi 是 X_i 的 基 , 则 $\textbf{B}=\{B_1\times B_2\times ...\times B_n\,|\, B_i\in \textbf{Bi}$, $i\leq n\}$ 是 积拓扑 $\mathcal T$ 的基.

证 利用 定理 2.6.2. 设 $x \in U \in \tau, \exists U_i \in \tau_i$ 使 $x \in U_1 \times U_2 \times ... \times U_n \subset U, \exists B_i \in \mathbf{B}_i$ 使 $x_i \in B_i \subset U_i$,那么 $x \in B_1 \times B_2 \times ... \times B_n \subset U_1 \times U_2 \times ... \times U_n \subset U$.

例 3.2.1 形如 $(a_1, b_1) \times (a_2, b_2) \times ... \times (a_n, b_n)$ 的集合构成R''的基.

设 $(X_1,\rho_1),(X_2,\rho_2)$ 是两个度量空间。令 $\rho(x,y)=\sqrt{\rho_1(x_1,y_1)^2+\rho_2(x_2,y_2)^2}$,则 ρ 是 $X_1\times X_2$ 上的度量,导出X上的度量拓扑 τ . 对于n个度量空间之积可类似地定义。(定义 3.2.1) 定理 3.2.1 度量空间的有限积。积拓扑与度量拓扑一致。

验证 n=2 的情形. 易验证 $B_1(x_1,\varepsilon/2)\times B_2(x_2,\varepsilon/2)\subset B(x,\varepsilon)\subset B_1(x_1,\varepsilon)\times B_2(x_2,\varepsilon)$ 于是每一 $B(x,\varepsilon)$ 是积拓扑的开集,且每一 $B_1(x_1,\varepsilon)\times B_2(x_2,\varepsilon)$ 是度量拓扑的开集,所以导出相同的拓扑。

定理 3. 2. 5 有限积空间 $X=X_1\times X_2\times ...\times X_n$ 以 $\mathbf{S}=\{p_i^{-1}(U_i)|U_i\in\tau_i,i\leq n\}$ 为了基,其中 τ_i 是 X_i 的拓扑, $p_i:X\to X_i$ 是投射.

仪证 n=2 的情形. $p_1^{-1}(U_1)=U_1\times X_2, p_2^{-1}(U_2)=X_1\times U_2$,所以 $p_1^{-1}(U_1)\cap p_2^{-1}(U_2)=U_1\times U_2\in \mathbf{B}.$

定义 3.2.3 $f: X \to Y$ 称为开(闭)映射, 若U 开(闭)于X, 则 f(U) 开(闭)于Y.

定理 3.2.6 $p_i: X \to X_i$ 是满、连续、开映射、未必是闭映射.

出 于 $p_i^{-1}(U_i)=X_1\times X_2\times ...\times U_i\times ...\times X_n$, 所 以 p_i 连 续 . 由 于 $p_i\left(U_1\times U_2\times ...\times U_i\times ...\times U_n\right)=U_i$,所以是 p_i 开的. 但是 $p_1:R^2\to R$ 不是闭的.

定理 3.2.7 设映射 $f:Y\to X$ 其中 X 是积空间 $X_1\times X_2\times ...\times X_n$. 则 f 连续 $\Leftrightarrow \forall i\leq n, p_i\circ f:Y\to X_i$ 连续.

证 充分性. 对X的子基 $\mathbf{S} = \{p_i^{-1}(U_i)|U_i \in \tau_i, i \leq n\}, f^{-1}(p_i^{-1}(U_i)) = (p_i \circ f)^{-1}(U_i)$ 开于Y.

多元函数连续当且仅当它的每一分量连续.

定理 3.2.8 积拓扑是使每一投射都连续的最小拓扑 . 即设 τ 是积空间 $X=X_1\times X_2\times ...\times X_n$ 的积拓扑,若集合 X 的拓扑 τ^* 满足:每一投射 $p_i:(X,\tau^*)\to X_i$ 连续,则 $\tau\subset\tau^*$.

证 由于 $\{p_i^{-1}(U_i)|U_i\in\tau_i,i\leq n\}\subseteq\tau^*$,所以 $\tau\subset\tau^*$.

3.3 商空间

回忆,商集X/R,及自然投射 $p:X\to X/R$ 定义为 $p(x)=[x]_R$. 问题:设X 是拓扑空间,要在X/R上定义拓扑,使p 连续的最大的拓扑.

讨论更一般的情形,设 (X,τ) 是拓扑空间且 $f:X\to Y$ 是满射. 赋予集合Y什么拓扑,使f

连续的最大的拓扑. 若 f 连续,且U 是 Y 的开集,则 $f^{-1}(U)$ 是 X 的开集. 让 $\tau_1 = \{U \subset Y \mid f^{-1}(U) \cup \tau\}$,易验 证 τ_1 是 Y 上的拓扑.

定义 **3.3.1(3.3.2)** 称 τ_1 是 Y 的相对于 f 满射而言的商拓扑, $f:(X,\tau) \to (Y,\tau_1)$ 称为商映射. 这时,U 在 Y 中开 $\Leftrightarrow f^{-1}(U)$ 在 X 中开;F 在 Y 中闭 $\Leftrightarrow f^{-1}(F)$ 在 X 中闭.

定理 3.3.1 商拓扑是使f连续的最大拓扑.

证 设 $f:(X,\tau) \to (Y,\tau_1)$ 是商映射. 显然,f 是连续的. 如果 τ_2 是 Y 的拓扑使 $f:(X,\tau) \to (Y,\tau_1)$ 连续,则 $\forall U \in \tau_2, f^{-1}(U) \in \tau$,于是 $U \in \tau_1$,即 $\tau_2 \subset \tau_1$,,所以 τ_1 是使 f 连续的最大拓扑.

定理 3.3.2 设 $f:X\to Y$ 是商映射. 对于空间 Z ,映射 $g:Y\to Z$ 连续 \Leftrightarrow 映射 $g\circ f:X\to Z$ 连续.

证 设 $g \circ f : X \to Z$ 连续, $\forall W$ 开于Z, $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ 开于X, 由于f 是商映射,所以 $g^{-1}(W)$ 开于Y,故g 连续.

定理 3.3.3 连续, 满开(闭)映射⇒商映射.

证 设 $f:(X,\tau_X) \to (Y,\tau_Y)$ 是连续的满开(闭)映射, τ_1 是 Y 的相对于 f 而言的商拓扑,要证 $\tau_1 = \tau_Y$. 由定 理 3.3.1, $\tau_1 \supset \tau_Y$. 反之, $\forall V \in \tau_1, f^{-1}(V) \in \tau_X$. 对于开映射的情形 $V = f(f^{-1}(V)) \in \tau_Y$,对于闭映射的情形, $V = Y - f(X - f^{-1}(V)) \in \tau_Y$,所以总有 $\tau_1 \subset \tau_Y$.

定义 3.3.3 设R 是空间 (X,τ) 的等价关系,由自然投射 $p_i:X\to X/R$ 确定了 X/R 的商拓扑,称 $(X/R,\tau_R)$ 为商空间,这时 $p_i:X\to X/R$ 是商映射.

例 3.3.1 在 R 中定义等价关系~: $\forall x, y \in R, x \sim y \Leftrightarrow$ 或者 $x, y \in Q$,或者 $x, y \notin Q$ 商室间 R/~是由两点组成的平庸空间。由于 Q 在 R 中既是开集,也不是闭集,所以单点集[Q]在 R/~中既不是开集,也不是闭集。习惯上,把 R/~说成是在 R 中将所有有理点和所有无理点分别粘合为一点所得到的商空间。

例 3.3.2 在 [0,1] 上 定 义 等 价 关 系 \sim : $\forall x,y \in [0,1], x \sim y \Leftrightarrow$ 或 者 x=y , 或 者 $\{x,y\} = \{0,1\}, [0,1]/\sim$ 是 在 [0,1] 中粘合 0,1 两点所得到的商空间,这商空间同胚于单位圆周