Aufgabe 2

Betrachten Sie die Sprache $L_1 = L_a \cup L_b$.

- $L_a = \{ a^n b c^n \mid n \in \mathbb{N} \}$
- $-L_b = \{ab^m c^m \mid m \in \mathbb{N}\}\$
- (a) Geben Sie für L_1 eine kontextfreie Grammatik an.

```
P = \{
S \to S_a \mid S_b
S_a \to aS_ac \mid b
S_b \to a \mid aB_b
B_b \to bB_bc \mid bc
\}
```

(b) Ist Ihre Grammatik aus a) eindeutig? Begründen Sie Ihre Antwort.

Nein. Die Sprache ist nicht eindeutig. Für das Wort abc gibt es zwei Ableitungen, nämlich $S \vdash S_a \vdash aS_ac \vdash abc$ und $S \vdash S_b \vdash aB_b \vdash abc$.

(c) Betrachten Sie die Sprache $L_2=\{a^{2^n}\mid n\in\mathbb{N}\}$. Zeigen Sie, dass L_2 nicht kontextfrei ist.

Annahme: L_2 ist kontextfrei ightarrow Pumping-Lemma gilt für L_2 \rightarrow $j \in \mathbb{N}$ als Pumping-Zahl $\omega \in L_2$: $|\omega| \ge j$ Konsequenz: $\omega = uvwxy$ $-|vx| \geq 1$ $-|vwx| \leq j$ - $uv^iwx^iy\in L_2$ für alle $i\in\mathbb{N}_0$ Wir wählen: $\omega = a^{2^i}$: $|\omega| \ge j$ **p** *a* . . . *a* **r** a...a **s** a . . . a **t** a . . . a **q** a . . . a $q + r + s + t + q = 2^j$ $\Rightarrow r + t \ge 1$

$$r + s + t \le j$$

1. Fall

$$r+t=2^{j-1}$$

$$2^{j-1} + 2^{j-1} = 2 \cdot 2^{j-1} = 2^1 \cdot 2^{j-1} = 2^{1+j-1} = 2^j$$

$$\omega' = uv^2wx^2y$$

$$p + 2 \cdot r + s + 2 \cdot t + q$$

$$p + s + q + 2 \cdot (r + t)$$

$$2^{j-1} + 2 \cdot 2^{j-1} = 3 \cdot 2^{j-1} = 2^{j-1} + 2^i \le 2^{j+1}$$

keine Zweierpotenz

$$\Rightarrow \omega \notin L_2$$

- \Rightarrow Widerspruch zur Annahme
- $\Rightarrow L_2$ nicht kontextfrei

2. Fall

$$r+t \neq 2^{j-1}$$

$$\omega' = uv^0wx^0y$$

$$\Rightarrow p + s + q = 2^{j} - (r + t)$$

$$(r+t) \neq 2^{j-i}$$

ist keine Zweierpotenz

$$\Rightarrow \omega \notin L_2$$

 $\Rightarrow L_2$ nicht kontextfrei