Team 4 Assignment-1

Questions 1:

A. <u>Summarize the ToyotaCorolla Dataset:</u>

Number of columns in the dataset - 39 and Number of rows in the dataset - 1436. The Dataset has 28 Categorical variables and 10 continuous variables.

The Dataset has no null values and has data types which includes integers and objects.

# Colum	n Nor	-Null Count	Dtype	ToyotaCorolla_df.isn	a().sum()
0 Id		6 non-null	 int64	Id	0
1 Model	143	6 non-null	object	Model	0
2 Price	143	6 non-null	int64	Price	0
3 Age_0	3_04 143	6 non-null	int64	Age_08_04	0
4 Mfg_M	onth 143	6 non-null	int64	Mfg Month	0
5 Mfg_Y	ear 143	6 non-null	int64	Mfg Year	0
6 KM	143	6 non-null	int64	KM	0
7 Fuel_	Гуре 143	6 non-null	object	Fuel Type	0
8 HP	143	6 non-null	int64	HP	0
9 Met_C	olor 143	6 non-null	int64	Met_Color	0
10 Color	143	6 non-null	object	Color	0
11 Autom	atic 143	6 non-null	int64	Automatic	0
12 CC	143	6 non-null	int64	CC	0
13 Doors	143	6 non-null	int64	Doors	0
14 Cylin	ders 143	6 non-null	int64	Cylinders	0
15 Gears	143	6 non-null	int64	Gears	0
16 Quart	erly_Tax 143	6 non-null	int64	Quarterly_Tax	0
17 Weigh	143	6 non-null	int64	Weight	0
18 Mfr_G	uarantee 143	6 non-null	int64	Mfr_Guarantee	0
19 BOVAG	_Guarantee 143	6 non-null	int64	BOVAG_Guarantee	0
	ntee_Period 143	6 non-null	int64		0
21 ABS		6 non-null	int64	Guarantee_Period	
22 Airba	<u>_1</u> 143	6 non-null	int64	ABS	0
23 Airba	<u>]_</u> 2 143	6 non-null	int64	Airbag_1	0
24 Airco		6 non-null	int64	Airbag_2	0
25 Autom	atic_airco 143	6 non-null	int64	Airco	0
		6 non-null	int64	Automatic_airco	0
27 CD_Pl		6 non-null	int64	Boardcomputer	0
		6 non-null	int64	CD_Player	0
		6 non-null	int64	Central_Lock	0
	-	6 non-null	int64	Powered_Windows	0
31 Radio		6 non-null	int64	Power_Steering	0
32 Mistl		6 non-null	int64	Radio	0
		6 non-null	int64	Mistlamps	0
		6 non-null	int64	Sport_Model	0
	-	6 non-null	int64	Backseat_Divider	0
		6 non-null	int64	Metallic_Rim	0
		6 non-null	int64	Radio_cassette	0
38 Tow_B		6 non-null	int64	Parking_Assistant	0
	:64(36), object(3	1)		Tow_Bar	0
emory usa	je: 437.7+ KB			dtype: int64	

Summarizing the dataset:

	count	mean	std	min	25%	50%	75%	max
Price	1436.0	10730.824513	3626.964585	4350.0	8450.0	9900.0	11950.00	32500.0
Age_08_04	1436.0	55.947075	18.599988	1.0	44.0	61.0	70.00	80.0
КМ	1436.0	68533.259749	37506.448872	1.0	43000.0	63389.5	87020.75	243000.0
cc	1436.0	1576.855850	424.386770	1300.0	1400.0	1600.0	1600.00	16000.0
Quarterly_Tax	1436.0	87.122563	41.128611	19.0	69.0	85.0	85.00	283.0
Guarantee_Period	1436.0	3.815460	3.011025	3.0	3.0	3.0	3.00	36.0
Mfg_Year	1436.0	1999.625348	1.540722	1998.0	1998.0	1999.0	2001.00	2004.0
Mfg_Month	1436.0	5.548747	3.354085	1.0	3.0	5.0	8.00	12.0
НР	1436.0	101.502089	14.981080	69.0	90.0	110.0	110.00	192.0
Weight	1436.0	1072.459610	52.641120	1000.0	1040.0	1070.0	1085.00	1615.0

- 1. The dataset Toyota Corolla has 1436 entries based on the various features which impacts the price and performance in the market.
- 2. Price ranges from 4350 to 32500 with an average price of 10730. Median indicates that half of the vehicles are below 9900.
- 3. The variation in age from 1 month to 80 months old signifies that there are latest vehicles as well as old vehicles are included which is affecting the price of the vehicle. Similarly, the minimum age value of 1.0 means that these models are the latest ones.
- 4. The wide range(1- 243000) in Kms indicates the usage of the vehicles from the time they were manufactured and used. Similarly, Cars with higher kilometers suggest that they've been driven for a long time, which means that they might have been manufactured and sold early on. Mean (68533) and median (63389) indicate that the variable KM is skewed to the left.
- 5. For CC the mean is around 1500 but the maximum value is 16000 suggesting that it's an outlier, or it can be a data error or sampling error. This also indicates that the car might be a newer model because of the high CC.
 Cars can also be categorized based on their HP and Weight. For example, Cars with higher HP might be put into the sports car category, and more heavy Cars might be SUVs.
- 6. For Mfg- year, 75% of the cars were manufactured in 2001 or before.
- 7. The horsepower of cars has a mean of 101. 5 and std dev of 14, which indicates most of the vehicles have horsepower nearly around mean value, 86.5 and 116.5. Also, (min HP 69.5 has price of 4350 and max HP 192 has price of 32500), which indicates that with the increase in horsepower ranges the price of the vehicle increases.
 - Median and 3rd quartile have same hp values, which might indicate that the majority of the vehicles are close to or equal to 110 hp.
- 8. The mean price is higher than the median price, which suggests that there are some outliers (e.g. premium models).

B. Normalizing the Variable KM:

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler

# using sklearn:
scaler = StandardScaler()
ToyotaCorolla_df[['KM']] = pd.DataFrame(scaler.fit_transform(ToyotaCorolla_df[['KM']]))
```

Used standard scaler from sklearn to normalize the KM Variable.

Output:

```
ToyotaCorolla_df['KM'].head()

0   -0.574695
1   0.117454
2   -0.715386
3   -0.547650
4   -0.801028
Name: KM, dtype: float64
```

C. Create dummies for the variable Fuel Type:

Fuel_Type_CNG	False	False	False	False	False
Fuel_Type_Diesel	True	True	True	True	True
Fuel_Type_Petrol	False	False	False	False	False

D. Partition the data into three sets.

70% is training data and 30% is divided between validation and testing data with random state of 1. Out of the 30% of remaining data 10% of it is validation data and 20% is test.

```
# using sklearn
trainData, temp = train_test_split(ToyotaCorolla_df, test_size=0.3, random_state=1)
validData, testData = train_test_split(temp, test_size=0.2, random_state=1)
print('Training : ', trainData.shape)
print('Validation : ', validData.shape)
print('Test : ', testData.shape)
Training : (1005, 39)
```

Validation: (344, 39) Test: (87, 39)