

Data resources for climate variables

Peter Siegmund and Janette Bessembinder 28 November 2022

The IS-ENES3 project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824084

1

Content

- > Overview climate data sources
- ➤ Observations
- weather stations
- measurements at sea
- satellites and radar
- > What is a climate/weather model?
- ➤ Re-analysis
- > Seasonal to decadal predictions
- > Climate model projections
- > Advantages and disadvantages of the various climate data sources

Observations is-enes Global Observing System GEOSTATIONARY SATELLITE POLAR ORBITING SATELLITE SATELLITE IMAGES • provide information on AIRCRAFT the past and current climate traditional observation stations on land SATELLITE SOUNDINGS · many more direct or WEATHER SHIP indirect observation methods NMS

the number of stations is not evenly distributed over the earth (Source: EUSTACE (1))

Weather stations on land

- thousands of weather or meteorological stations measuring at or near the Earth's surface
- meteorological parameters such as atmospheric pressure, wind speed and direction, air temperature and relative humidity
- at one location, or "in situ"
- not evenly distributed over the
- World Meteorological Organisation (WMO) formulated standards (see: WMO Best practices)

5

s-enes 6 December 2000 Schip observations overview in 2000: blue indicates a higher number of observations (Source: EUSTACE (2))

Observations at sea

Over the oceans the Global Observing System (GOS) relies – in addition to satellites - on:

- ships
- moored and drifting buoys
- stationary platforms.

Ships: often same variables as at in situ stations, but provide information on trajectories

Satellites

Normally equipped with visible and infra-red imagers and sounders from which meteorological parameters can be derived. Geostationary satellites can be used to measure e.g. wind velocity in the tropics by tracking clouds and water vapour.

geostationary satellite: constantly observes the same part of the earth

polar orbiting satellite: passes over the north and south poles each round. Each pass monitors an area to the west of the previous pass, together these "strips" produce a picture of a larger area.

7

Radar and lidar

- Radar Detection And Ranging: RADAR
- · For rainfall detection
- method is based on sending out a radar pulse and measuring the return signal. Signal has to be translated into a precipitation rate with the help of in situ measurements
- Dual polarized or doppler radars can measure wind and rainfall. More accurate determination of precipitation types and sizes
- Light Detection And Ranging: LIDAR
- uses laser light
- used to study, among others, atmospheric gases, aerosols, clouds, wind and temperature

https://www.youtube.com/watch?v=ItuNNhY5WBw (3.35" minutes; National Weather Service Nevada)

What is a climate model?

Climate model: A numerical representation of the climate system based on

- physical
- chemical
- · biological

properties of its components, their interactions and feedback processes.

- To "run" a model, earth divided into 3dimensional grid
- calculate winds, heat transfer, radiation, relative humidity, and surface hydrology within each grid and evaluate interactions with neighboring points

https://www.youtube.com/watch?v=Pn3ZKB1XLiQ (1.33" minutes; UK Metoffice)

9

Weather and climate models

Both based on the basic laws of physics, fluid motion, and chemistry, but differ in some aspects

Weather model	Climate model
Initial value problem	Boundary value problem
When and where	Statistics
Predicts weather until about 2 weeks into future	Projects changes into far future

Re-analysis

Re-analysis = numerical description of the recent climate, produced by combining models with past observations (assimilation of observations in a climate model)

- Weather models: observations only in the starting conditions
- Reanalyses: assimilate observations during the whole period simulated.
- Re-analysis form various institutes. ERA5 now commonly used for Europe

11

What will happen in the near future, up to a decade or two ahead, is the combination of natural variability and human-induced climate change:

• The next few years may be relatively cold, although the long-term trend is increasing temperature. The next season maybe extremely dry in a region, although the long-term trend can be an increase in rainfall.

Global and regional climate models

Climate models used to make projections for future based on certain emission scenarios

- Representative Concentration Pathways (RCP)
- Shared Socio-economic Pathways (SSP)
- simulate climate for whole world (Global Climate/Circulation Model = GCM, Earth System Model = ESM)
- simulate climate only for part of world (Regional Climate Model = RCM)

13

is-enes **Ensembles and uncertainties** relative to 1986-2005 [K] **Ensemble** = combination of model runs: usually made to characterize uncertainties or variability · initial conditions slightl changed; same model run again (single-1980 2000 2020 2040 Year Temperature change World Jan-Dec wrt 1986-2005 AR5 CMIP5 subset model ensemble) 6 · Models with different ways of 5 describing various processes, or RCP8.5 different parameter values (multi-[Celsius] model or perturbed physics ensemble) **Different forcings** (emission

2081-2100 mear

scenarios)

Climate model bias

Models are simplifications of reality: never represent reality exactly.

Differences in statistics of the observations for the reference period and the climate model simulation for the same period we call **biases**.

Schematic presentation of climate model bias: the systematic difference between model output and observations.

https://www.youtube.com/watch?v=XGi2a0tNjOo (first 3 minutes of 14.50" minutes; University British Columbia)

19

Advantages + disadvantages in situ stations

from weather stations at land (in situ)

Advantages:

- long time series. Some starting in 1850, from 1950 many more stations
- direct measurements of essential climate variables (ECV's)

Disadvantages:

- no equal distribution over the earth
- time series often contain "inhomogeneities": apparent changes in climate due to e.g. the use of better instruments or changes in the environment

Advantages + disadvantages sea observations

Advantages:

- important for weather models, since they provide information for regions with a low density of observations
- direct measurements of essential climate variables (ECV's)

Disadvantages:

- · schips and drifting buoys do not have a fixed location
- no long time series at fixed locations

Schip measurements at sea (Source: Marine institute Ireland)

21

Advantages + disadvantages satellites

Advantages:

- high spatial coverage (also data for regions without ground stations) and high spatial resolution
- · data almost directly available

Disadvantages:

- no long time series yet (from about the end of the '90 on)
- satellite signal has to be translated into the desired climate variable. Introduces additional uncertainties and ground observations are needed to make this translation
- systematic disturbances in the signal due to the atmosphere

Advantages and disadvantages of radar and lidar are similar.

Advantages + disadvantages re-analysis

Advantages:

- estimates for climate variables where and when there were no observations
- area-average data, which can be used to determine the skill of climate model projections/simulations and S2D predictions

Disadvantages:

- rather coarse spatial resolution
- may contain some biases, especially where there are few observations that could be assimilated

23

Advantages + disadvantages S2D

From seasonal to seasonal to decadal predictions

Advantages:

- provide information for the near future (seasons to decade)
- can be used for characterising the natural variability more accurately than with observations only (use of ensembles)

Disadvantages:

- poor skill of S2D models in large part of Europe
- Can contain biases, especially when forecasting for a longer period ahead

Advantages + disadvantages climate models

From climate model simulations/projections

Advantages:

- provide data for past and far future
- can be used for characterizing the natural variability and to determine the probability of extremes more accurately than with observations only (use of ensembles)

Disadvantages:

- · presence of biases
- · often relatively low spatial resolution

25

To next presentation

Introduction to the course

Peter Siegmund and Janette Bessembinder 28 November 2022

The IS-ENES3 project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824084

27

Aim of this course and set-up

Introduction to climate data for impact studies: 28 – 29 November

- Introduction to climate model data sources and their advantages and disadvantages
- Introduction to finding, accessing and processing climate data and practical experience using some tools
- · Challenges in using climate data for impact studies

Case study: 29-30 November

 Challenges for working in inter/transdisciplinary projects, how to create understanding between different types of researchers, demonstrate the value of interaction

Your name and discipline?

Experience with working with climate data? What climate data?