

ĆWICZENIE **57C**

BADANIE EFEKTU HALLA

Instrukcja wykonawcza

I. Wykaz przyrządów

- 1. Hallotron umieszczony w polu magnetycznym wytworzonym przez magnesy trwałe Magnesy zamocowane są tak, by możliwy był pomiar zmian orientacji pola magnetycznego względem płaszczyzny hallotronu
- 2. Zasilacz hallotronu
- 3. Miliamperomierz do pomiaru natężenia prądu sterującego $I_{\mathcal{S}}$
- 4. Woltomierz do pomiaru napięcia Halla U_H
- 5. Przewody elektryczne

II. Cel ćwiczenia

- 1. Zmierzenie charakterystyk statycznych hallotronu:
 - $U_H = f(\alpha)$ i $U_H = f(B_n)$ wersja podstawowa ćwiczenia.
 - $U_H = f(I_S)$ wersja dodatkowa ćwiczenia.
- 2. Wyznaczenie czułości polowej $\gamma_B = \Delta U_H/\Delta B$ i czułości prądowej $\gamma_I = \Delta U_H/\Delta I$ hallotronu.
- 3. Wyznaczenie koncentracji *n* swobodnych nośników ładunku.
- 4. Wyznaczenie maksymalnej czułości kątowej $\gamma_{\alpha} = \Delta U_H/\Delta \alpha$ hallotronu.

III. Schemat układu pomiarowego

Stanowisko pomiarowe:

Wersja podstawowa

CHARAKTERYSTYKA $U_H = f(\alpha)$ i $U_H = f(B_N)$

IV. Przebieg pomiarów

- 1. Połączyć układ według załączonego schematu. Ustalić z prowadzącym wartość natężenia (lub kilka wartości) prądu sterującego I_S z przedziału $5 \div 15$ mA. Zanotować zakres i klasę dokładności miliamperomierza (niezbędne przy obliczaniu niepewności pomiarowej).
- 2. Włączyć woltomierz oraz zasilacz hallotronu. Zanotować zakres i klasę dokładności woltomierza. Dane te wykorzystać do obliczania niepewności pomiarowych napięcia.
- 3. Obrócić magnesy w położenie, przy którym napięcie Halla $U_H=0$ V. Wtedy kierunek pola magnetycznego jest równoległy do powierzchni hallotronu. Zanotować to położenie jako α_o . Zanotować również dokładność skali kątowej $\Delta \alpha = \Delta \alpha_o$.
- 4. Wyznaczyć charakterystykę kątową $U_H = f(\alpha)$ przy $I_S = \text{const}$, czyli zależność napięcia Halla U_H od kąta α przy ustalonej wartości natężenia prądu płynącego przez hallotron. Pomiary napięcia Halla wykonać dla kątów α od 0° do 360° co 10°.
- 5. Po zakończeniu pomiarów zredukować wartość $I_{\rm S}$ do zera.

V. Opracowanie wyników

- 1. Sporządzić wykres charakterystyki kątowej hallotronu $U_H = f(\alpha)$, czyli zależności napięcia Halla od kąta odczytanego z podziałki hallotronu. Z wykresu odczytać wartość kąta α_o , przy którym $U_H = 0$, i porównać ją z wartość odnotowaną na początku (p.IV.3).
- 2. Z wykresu $U_H = f(\alpha)$ określić obszar najszybszych zmian napięcia U_H ze zmianą kąta α (tj. najdłuższy i niemal prostoliniowy fragment wykresu) i wyznaczyć na jego podstawie

- maksymalną czułość kątową γ_{α} hallotronu jako $\Delta U_H/\Delta \alpha$, czyli przyrost wartości napięcia U_H do przyrostu wartości kąta α . Wynik zinterpretować i ocenić.
- 3. Na podstawie wzoru $B_n = B_o \sin(\alpha \alpha_o)$ obliczyć wartości składowej normalnej indukcji magnetycznej B_n oraz jej niepewności $u_c(B_n)$. **Uwaga**: w obliczeniach $u_c(B_n)$ wyrazić niepewności pomiarowe $u(\alpha)$ i $u(\alpha_o)$ w radianach. Przyjąć $B_o = (0,500 \pm 0,05)$ T.
- 4. Narysować punktowe wykresy (bez linii) zmierzonych zależności $U_H = f(B_n)$ przy ustalonych wartościach $I_S = \text{const.}$
- 5. Stosując metodę najmniejszych kwadratów (regresja liniowa), wyznaczyć wartości współczynników prostej (prostych) najlepszego dopasowania (linii trendu, prostej regresji) dla zmierzonych zależności $U_H = f(B_n)$. Wyznaczyć niepewności tych współczynników oraz współczynnik korelacji R_K . Skorzystać z gotowych programów komputerowych (patrz też: "dodatki" na stronie internetowej LPF). Wykorzystując otrzymane parametry prostej, narysować na wykresach punktowych zależności $U_H = f(B_n)$ odpowiadające im linie trendu y = ax + b, tworzące rodzinę charakterystyk polowych hallotronu. Wyniki graficzne omówić.
- 6. Dla trzech punktów nanieść prostokąty niepewności (pola niepewności) oraz omówić tendencję ich zmian. Wybrać punkty (po jednym z początkowego, środkowego i końcowego obszaru wykresu) najbardziej oddalone (odstające) od prostej regresji.
- 7. Dla jednego z tych punktów, o współrzędnych pomiarowych U_{Hi} i $B_{ni}(\alpha_i)$, obliczyć przykładową wartość γ_i na podstawie wzoru $U_H = \gamma I_S B_n$. Uwzględniając dokładności mierników, oszacować niepewność czułości polowej hallotronu oraz porównać i omówić udziały niepewności cząstkowych. Obliczenia wykonać po unormowaniu jednostek wszystkich wielkości występujących we wzorze.
- 8. Na podstawie wartości współczynników kierunkowych $(a = \gamma I_S)$ linii trendu oraz ich niepewności obliczyć ostateczną (finalną) wartość czułości polowej $\gamma_B \equiv \gamma$. Oszacować niepewność czułości polowej hallotronu.
- Obliczyć koncentrację n swobodnych nośników ładunku oraz jej niepewność.
 Skorzystać z wyrażenia:

$$n = \frac{1}{e\gamma d}$$
 gdzie: d – grubość płytki hallotronu (d = 2 µm, $u_r(d)$ = 5%) e – ładunek elementarny (e = 1,602 x 10⁻¹⁹ C)

10. Uzyskane wartości parametrów γ_B i n porównać z danymi literaturowymi oraz określić rodzaj materiału, z którego wykonany był badany hallotron.

Wersja dodatkowa

CHARAKTERYSTYKA $U_H = f(I_S)$

IV. Przebieg pomiarów

- 1. Połączyć układ według podanego schematu. Włączyć woltomierz oraz zasilacz hallotronu.
- 2. Ustawić magnesy pod kątem α wskazanym przez prowadzącego. Zanotować dokładność skali kątowej.
- 3. Wyznaczyć charakterystykę prądową $U_H(I_S)$, czyli zależność napięcia Halla U_H od natężenia prądu sterującego I_S , przy ustalonej wartości (jednej lub kilku) indukcji magnetycznej B_n . Pomiary napięcia U_H wykonać dla I_S w zakresie od 1 mA do 15 mA co 1 mA.
- 4. Zanotować klasy dokładności mierników elektrycznych oraz zakresy ich pracy. Dane te wykorzystać do obliczania niepewności pomiarowych napięcia U_H i natężenia I_S .
- 5. Po zakończeniu pomiarów zredukować wartość $I_{\rm S}$ do zera.

V. Opracowanie wyników

- 1. Sporządzić punktowe wykresy zmierzonych zależności $U_H = f(I_S)$ przy $B_n = \text{const.}$
- 2. Obliczyć wartości składowej normalnej indukcji magnetycznej $B_n = B_o \sin(\alpha \alpha_o)$ oraz jej niepewności, biorąc $B_o = (0,500 \pm 0,05)$ T. Wartość kąta α_o przyjąć na podstawie wyników z wersji podstawowej (pkt.V.1).

Uwaga: w obliczeniach wyrazić niepewności pomiaru kątów $u(\alpha)$ i $u(\alpha_0)$ w radianach.

- 3. Stosując metodę regresji liniowej, wyznaczyć współczynniki prostej (prostych) najlepszego dopasowani (linii trendu, prostej regresji) dla zmierzonych zależność $U_H = f(I_S)$, ich niepewności oraz współczynnik korelacji R_K . Skorzystać z gotowych programów komputerowych (patrz też: "dodatki" na stronie internetowej LPF). Wykorzystując wartości współczynników regresji, narysować na wykresach punktowych linie trendu y = ax + b, tworzące rodzinę charakterystyk prądowych hallotronu. Wynik graficzny omówić.
- 4. Dla trzech punktów nanieść prostokąty niepewności (pola niepewności) oraz omówić tendencję ich zmian. Wybrać punkty (po jednym z początkowego, środkowego i końcowego obszaru wykresu) najbardziej oddalone (odstające) od prostej regresji.
- 5. Dla jednego z tych punktów, o współrzędnych pomiarowych U_{Hi} i I_{Si} , obliczyć przykładową wartość γ_i na podstawie wzoru $U_H = \gamma I_S B_n$. Uwzględniając dokładności mierników, oszacować niepewność czułości hallotronu. Porównać i omówić udziały niepewności cząstkowych. Obliczenia wykonać po unormowaniu jednostek wszystkich wielkości występujących we wzorze.
- 6. Znając wartości współczynników kierunkowych ($a = \gamma B_n$) linii trendu oraz ich niepewności, obliczyć ostateczną (finalną) wartość czułości prądowej $\gamma_I \equiv \gamma$, a następnie oszacować niepewność tego parametru hallotronu.
- 7. Obliczyć koncentrację *n* swobodnych nośników ładunku oraz wyznaczyć jej niepewność. Skorzystać z wyrażenia:

$$n = \frac{1}{e\gamma d}$$
 gdzie: d – grubość płytki hallotronu (d = 2 μ m, $u_r(d)$ = 5%) e – ładunek elementarny (e = 1,602 x 10 $^{-19}$ C)

8. Uzyskane wartości parametrów γ_1 i n porównać z danymi literaturowymi oraz określić rodzaj materiału, z którego wykonany był badany hallotron. Wyniki obliczeń otrzymane w punkcie 6 i 7 porównać z analogicznymi z wersji podstawowej i na ich podstawie ocenić metody pomiarowe.

Proponowane tabele (do zatwierdzenia przez prowadzącego)

1. Wersja podstawowa: $U_H = f(\alpha)$ przy $I_S = \text{const}$

B _n	$u_c(B_n)$	Is	u(I _s)	U _H	u(U _H)	α	u(α)	γα	$u_c(\gamma_\alpha)$
[T]	[T]	[A]	[A]	[V]	[V]	[°]	[°]	$\left[\frac{V}{A \cdot T}\right]$	$\left[\frac{V}{A \cdot T}\right]$
			•••		•••				

2. Wersja podstawowa: $U_H = f(B_n)$ przy $I_S = const$

Bn	$u_c(B_n)$	Is	u(Is)	U _H	u(U _H)	α	u(α)	γв	$u_c(\gamma_B)$	n	u _c (n)
[T]	[T]	[A]	[A]	[V]	[V]	[°]	[°]	$\left[\frac{V}{A \cdot T}\right]$	$\left[\frac{V}{A \cdot T}\right]$	$\left[\frac{1}{m^3}\right]$	$\left[\frac{1}{m^3}\right]$
				•••	•••						

3. Wersja dodatkowa: $U_H = f(I_S)$ przy $B_n = const$

Is	u(I _S)	α	$u_c(\alpha)$	U _H	u(U _H)	B _n	$u_c(B_n)$	γι	$u_c(\gamma_l)$	n	$u_c(n)$
[A]	[A]	[°]	[°]	[V]	[V]	[T]	[T]	$\left[\frac{V}{A{\cdot}T}\right]$	$\left[\frac{V}{A{\cdot}T}\right]$	$\left[\frac{1}{m^3}\right]$	$\left[\frac{1}{m^3}\right]$
		•••		•••		•••					