

Optimisation d'un électrofiltre sec

HARRAK NAJWA

18683

Encadré par : Mohammed EL ABDALLAOUI

1

Plan de la présentation :

- Introduction à l'électrofiltre
- Etude du comportement de la particule dans l'électrofiltre
- Types d'écoulement du gaz dans l'électrofiltre et expressions du rendement de l'électrofiltre
- Méthode des opérateurs de Lagrange pour l'optimisation
- Paramètres influençant l'efficacité de l'électrofiltre
- Expérience
- Conclusion

Introduction l'électrofiltre

L'électrofiltre:

Etude du comportement de la particule dans l'électrofiltre

Processus de la charge d'une particule

ionisation

migration

collecte

Les forces que subit la particule

-La force	-L'expression
La poussée d'Archimède	$\overrightarrow{F_a} = -\rho_g. \frac{4.\pi. r_p^3}{3}.\overrightarrow{g}$
Le poids	$\overrightarrow{F_g} = m_p . \overrightarrow{g}$
La force de trainée	$\overrightarrow{F_d} = -3. \pi. \eta_g. d_p. \overrightarrow{w}$
La force électrostatique	$\overrightarrow{F_e} = q_s \overrightarrow{E}$

 \vec{w} : la vitesse de la particule (m/s),

η_g: viscosité dynamique du gaz (Pa/s),

m_p: masse de la particule (g).

ρ_g: masse volumique du gaz (kg/m³),

g: accélération (m/s²)

L'évolution de la charge d'une particule (description de WHITE)

$$\frac{dq_p}{dt} = \frac{\rho \cdot \mu \cdot q_p^s}{4 \cdot \varepsilon_0} \cdot \left(1 - \frac{q_p}{q_p^s}\right)^2 \quad pour \quad q_p < q_p^s$$

$$q_p^s = 3 \cdot \pi \cdot \varepsilon_0 \cdot \frac{\varepsilon_r}{\varepsilon_r + 2} \cdot E \cdot d_p^2$$

 ρ la densité d'ions μ est la mobilité ionique.

 ε_r la permittivité relative des particules.

$$\begin{cases} q_p(t) = q_p^s \cdot \left(\frac{t}{t + \tau_p}\right) \\ \tau_q = \frac{4 \cdot \varepsilon_0}{\rho \cdot \mu} \end{cases}$$

(a) Particule non chargée

(b) Particule partiellement chargée

(c) Particule avec charge de saturation

Le champ électrique totale dans l'éléctrofiltre :

$$\overrightarrow{E}_t = \overrightarrow{E} + E \frac{\varepsilon_r - 1}{\varepsilon_r + 2} \frac{a^3}{r^3} \left(2\cos\theta \, \overrightarrow{u}_r + \sin\theta \, \overrightarrow{u}_\theta \right) + \overrightarrow{E}_1$$

Schéma explicatif du mouvement d'une particule chargée entre deux plaques parallèles

Vitesse de migration des particules chargées

Le principe fondamental de la dynamie

$$\begin{split} m_p \cdot \frac{d \overrightarrow{w}}{dt} &= \overrightarrow{F_e} + \overrightarrow{F_f} \\ \\ \frac{d w_E}{dt} &+ \frac{3 \cdot \pi \cdot \eta_g \cdot d_p}{m_p \cdot cu} \cdot w_E - \frac{q_p}{m_p} \cdot E = 0 \end{split}$$

En considérant la condition initiale w(t = 0) = 0,

$$w_E(t) = w_{th} \left[1 - exp \left(-\frac{t}{\tau_p} \right) \right]$$

 w_{th} : la vitesse théorique de migration $w_{th} = \frac{q_s \cdot E}{3 \cdot \pi \cdot \eta_g \cdot d_p} \cdot Cu$

$$\tau_p$$
: Le temps de relaxation $\tau_p = \frac{m_p.Cu}{3.\pi.\eta_q.d_p} = \frac{\rho_p.d_p^2.Cu}{18.\eta_q}$

Types d'écoulement du gaz dans l'électrofiltre et expressions du rendement

L'écoulement laminaire

> Toutes les particules suivent la même trajectoire déterminée par le flux gazeux el le champ électrique

L'expression du rendement:

$$\eta = \frac{wL}{\bigcup_{g} S}$$

L'écoulement turbulent

Le gaz soumis à :

- des perturbations
- des mouvements de conduction
- des tourbillons

L'expression du rendement:

Hypothèses du modèle de DEUTCH ANDERSEN:

- Grace au brassage turbulent du gaz, la densité volumique C ne dépend que de x.
- > Malgré les turbulences, on peut définir une vitesse moyenne d'écoulement.
- \triangleright Lorsque Q atteint Q_{\lim} , celle-ci reste maintenue .
- > Toutes les particules ont le même diamètre et donc elles ont la même vitesse théorique de migration.

schéma explicatif de la conservation de la matière dans un électrofiltre

La conservation de la matière:

$$2\left[C(x) - C(x + \Delta x)\right]h \ U_g S \ \Delta t = C\left(x + \frac{\Delta x}{2}\right)h 2\Delta x \ w \Delta t$$

$$\frac{\mathrm{d}C(x)}{\mathrm{d}x} = -\frac{w}{sU_g} C(x)$$

$$C(x) = C_0 e^{-\frac{xw}{sU_g}}$$

$$\eta = \frac{C_0 - C_L}{C_0} = \frac{L\omega}{1 - e^{-\frac{L\omega}{SUg}}}$$

Amélioration du modèle de DEUTCH:

$$\eta = 1 - exp\left(-\frac{A_c}{Q}\omega_{av}\right)$$

$$\eta_{ovr} = 1 - \frac{c_{outT}}{c_{inT}}$$

$$\eta_{ovr} = 1 - \frac{1}{C_{inT}} \sum_{i=1}^{i=m} C_{in}(d_i) \exp\left[-\frac{A_c}{Q} \omega_{av}(d_i)\right]$$

$$A_c = 2hL$$

$$Q = U_g sh$$

Modèle mathématique pour la prédiction du rendement

$$\eta_N = 1 - (1 - \eta_1)^N$$

 $\eta_1 = L$ 'efficacité de collecte pour 1 électrode $\eta_N = L$ 'efficacité de collecte pour N électrode

Méthode des opérateurs de Lagrange pour l'optimisation:

<u>La méthode de Lagrange :</u> <u>optimisation sous contrainte</u>

$$\begin{array}{lll} \textit{Max}\, F(X) & X = \{x_1, x_2, \dots x_n\} \\ \text{soumis à des contraintes d'égalité} \,\, g_k(X) = 0 & k = 1, 2, \dots m \\ \\ \begin{cases} \frac{\partial F(X)}{\partial x_1} - \sum_{k=1}^m \lambda_k \frac{\partial g_k(X)}{\partial x_1} & = & 0 \\ \vdots & & & \\ \frac{\partial F(X)}{\partial x_n} - \sum_{k=1}^m \lambda_k \frac{\partial g_k(X)}{\partial x_n} & = & 0 \\ g_1(X) & = & 0 \\ \vdots & & & \\ g_m(X) & = & 0 \\ \end{cases}$$

Paramètres influençant l'efficacité de l'électrofiltre:

Paramètres influençant l'efficacité de l'électrofiltre:

- La contre émission
- Le réentrainement
- Les effets électro-hydrodynamiques

Expérience

conclusion

Références des figures

Page 1: https://bemrecycling.com/la-pollution-industrielle-impacts-sur-lhomme-et-lenvironnement/

Page 4,12: Epreuve centrale psi physique -chimie 1 2017

Page 6: La faisabilité de l'électrofiltration d'une atmosphère chargée en poussières de bois: Etude expérimentale et numérique, Thèse, Brahim Benamar

Page 9,10,11,13: Optimisation électrique et géométrique d'un électrofiltre à barrière diélectrique en configuration fil-tube carré, Thèse, Rabah Gouri.

Page 16,18: Optimisation des performances d'un procédé industriel d'électrofiltration alimenté par hautes puissances pulsées, thèse, Sounia Souakri

Page 20: Performance calculations of electrostatic precipitators, these, Dejan M. Petković

Pages 29,30: prises par mon téléphone

Merci pour votre attention