

HCC/HCF4085B

DUAL 2-WIDE 2-INPUT AND-OR-INVERTER GATE

- MEDIUM-SPEED OPERATION t_{PHL} = 90ns; t_{PLH} = 125ns (TYP.) AT 10V
- INDIVIDUAL ÎNHIBIT CONTROLS
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

PIN CONNECTIONS V_{DD} A1 14 13 D1 E1=INH1+A1B1+ CI 12 E2 = [NH2+A2B2 11 INHIBIT 2 10 ∏INHIBIT 1 AZ 9 D2 B2 C2 вΓ **V**SS S-2205

DESCRIPTION

The **HCC4085B** (extended temperature range) and **HCF4085B** (intermediate temperature range) are monolithic integrated circuit, available in 14-lead dual in-line plastic or ceramic package and plastic micropackage.

The **HCC/HCF4085B** contains a pair of AND-OR-INVERT gates, each consisting of two 2-input AND gates driving a 3-input NOR gate. Individual inhibit controls are provided for both A-O-I gates.

September 1988

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types	- 0.5 to + 20	٧
	HCF Types	– 0.5 to + 18	V
V_{i}	Input Voltage	-0.5 to $V_{DD} + 0.5$	V
I _I	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for T _{op} = Full Package-temperature Range	100	mW
T _{op}	Operating Temperature: HCC Types	– 55 to + 125	°C
·	HCF Types	- 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions aboves those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

* All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V_{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	္ခိ

SCHEMATIC DIAGRAM

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			-	Test Con	ditions	<u> </u>				Value				
Symbol	Parame	ter	Vı	Vo	I _O	V _{DD}	TL	ow*		25°C		T _{Hi}	gh*	Unit
				(V)	(μA)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		1		0.02	1		30	
	Current	нсс	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
			0/ 5			5		4		0.02	4		30	
		HCF Types	0/10			10		8		0.02	8		60	
		Types	0/15			15		16		0.02	16		120	
V _{OH}	Output High)	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	,	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	нсс	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		ША
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current Types	1 9 0 0	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4		5	0.52		0.44	1		0.36		IIIA
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		. , , , ,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types		0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15	,	"	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	F
Cı	Input Capad	citance		Any In	put					5	7.5			pF

 $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is :1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all $V_{DD} = 0.3\%/^{\circ}C$ values, all input rise and fall time = 20ns)

Cumbal	Devemeter	Test Conditions			11		
Symbol	Parameter —	V _D	_{DD} (V)	Min.	Тур.	Max.	Unit
t _{PHL}	Propagation Delay Time (data)		5		225	450	
			10		90	180	
			15		65	130	
t _{PLH}	Propagation Delay Time (data)		5		310	620	ns
			10		125	250	
			15		90	180	
t _{PHL}	Propagation Delay Time (inhibit)		5		150	300	
			10		60	120	
		,	15		40	80	
t _{PLH}	Propagation Delay Time (inhibit)		5		250	500	ns
		,	10		100	200	
		,	15		70	140	
t _{TLH} , t _{THL}	Transition Time		5		100	200	
			10		50	100	ns
		•	15		40	80	

Typical Voltage and Current Transfer Characteristics with Test Circuit.

Minimum and Maximum Voltage Transfer Characteristics with Test Circuit.

Typical Output Low (sink) Current Characteristics.

Typical Ouput High (source) Current Characteristics.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical Data High-to-low Level Propagation Delay Time vs. Load Capacitance.

Typical Data Propagation Delay Time vs. Supply Voltage.

Typical Power Dissipation vs. Frequency.

Typical Data Low-to-high Level Propagation Delay Time vs. Load Capacitance.

Typical Transition Time vs. Load Capacitance.

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Current.

Plastic DIP14 MECHANICAL DATA

DIM.		mm		inch			
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm			inch	
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7.0			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		15.24			0.600	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	1.52		2.54	0.060		0.100
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO14 MECHANICAL DATA

DIM.		mm			inch			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	8.55		8.75	0.336		0.344		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.