Sparse Covariance Estimation with the Graphical Lasso

SHO INABA, COMPUTATIONAL SCIENCE PROGRAM (PHD).

UNIVERSITY OF MASSACHUSETTS BOSTON

Outline

1. Introduction

Graphical Models

2. Gaussian Graphical Models

Maximum Likelihood Estimator

3. Graphical LASSO

Block Coordinate Descent for Lasso

4. Simulation

Generate Graphical Models

Graphical Models

BAYES PROBABILITY AND INDEPENDENCY

What is Graphical Models?

Graphical representation of dependency between random variables

Ex) Given three random variables, a, b and c, having a relationship P(a,b,c) = P(a|c)P(b|c)P(c)

Two Major Graphical Models

BAYESIAN NETWORK

Directed Graphical Models (DGM)

MARKOV RANDOM FIELD

Undirected Graphical Models (UGM)

4 Basic Probability Rules

Sum Rule

$$p(x) = \sum_{y} p(x, y)$$

Product Rule

$$p(x, y) = p(x|y)P(y)$$

Bayes' Theorem

$$P(x|y) = \frac{P(y|x)P(x)}{\sum_{x} P(x,y)}$$

Independence Rule

 $x \perp \!\!\!\perp y$ if and only if P(x, y) = P(x)P(y)

Conditional Independence

Definition

$$x \perp \!\!\!\perp y \mid w$$
, iff $P(x, y \mid w) = P(x \mid w)P(y \mid w)$

: Unobserved Random Variable
Head-to-Tail model

P(x, w, y) = P(x)P(w|x)P(y|w)x, y are not independent.

P(x,y|w) = P(x|w)P(y|w)x, y are conditionally independent.

Benefits of Graphical Models

A complex distribution of random variables can be simplified.

 Blocked (Observed) random variable can decrease the number of necessary random variables needed to predict a set of targets.

The model can suggest algorithms for analyzing the structure of networks.

Visually understandable with human recognition.

Maximum Likelihood Estimator

GAUSSIAN LIKELIHOOD AND POSITIVE DEFINITE COMPLETION

Gaussian Graphical Models (GGM)

A Graphical Model with a constraint that random variables are normally distributed.

$$f_{\mu,\Sigma}(x) = (2\pi)^{-\frac{p}{2}} \left(\det \Sigma \right)^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}, x \in \mathbb{R}^p$$
With $x_i \perp \!\!\! \perp x_j$ if and only if $\Sigma_{ij} = 0$.

 \succ For the generated Graph G=(V,E), v_i and v_j are **disconnected** if $\Sigma_{ij}=0$.

Conditional Independence of GGM

Let $S \subseteq [p] \setminus \{i, j\}$ be indices of observed random variables.

Then, the following statements are equivalent:

- (a) $x_i \perp \!\!\! \perp x_j \mid x_S$;
- (b) $det(\Sigma_{iS,iS}) = 0$, where $iS = \{i\} \cup S$;
- (c) $\det(\Sigma_{iR,jR}^{-1}) = 0$, where $R = [p] \setminus (S \cup \{i,j\})$.
- \triangleright There is **no edge** connecting v_i and v_j if $\Sigma_{ij}^{-1}=0$.

Maximum Likelihood Estimator Θ

Remind:
$$f_{\mu,\Sigma}(x) = (2\pi)^{-\frac{p}{2}} (\det \Sigma)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

This follows the log-likelihood function $l(\mu, \Sigma | x)$ is:

$$l(\mu, \Sigma | x) = -\frac{p}{2} \ln 2\pi + \frac{1}{2} \ln \det \Sigma^{-1} - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)$$

$$l(\mu, \Sigma | D) \propto \ln \det \Sigma^{-1} - \operatorname{tr}(S\Sigma^{-1}) - (\bar{x} - \mu)^T \Sigma^{-1} (\bar{x} - \mu)$$

The optimal value for $\Sigma^{-1} = \Theta$ is driven by $\arg \max_{\Theta > 0} \ln \det \Theta - \operatorname{tr}(S\Theta)$

Generated Graphical Model of O

The generated model tends to be dense because of the random noises.

> We need a **regularization** for obtaining a **sparse** graphical model.

Block Coordinate Descent for Lasso

REPEATED LINEAR OPTIMIZATIONS

Graphical Lasso

Add the Lasso (L_1) regularization term to the original problem:

$$\arg \max_{\Theta > 0} J(\Theta) = \arg \max_{\Theta > 0} \ln \det \Theta - \operatorname{tr}(S\Theta) - \rho \|\Theta\|_{1}$$

Where
$$\|\Theta\|_1 = \sum_{ij} |\theta_{ij}|$$
.

 $\succ L_1$ regularization provides **sparsity** into its Graphical Model.

Notations (Block Separations of Matrix)

$$\Sigma = \begin{pmatrix} \widetilde{\Sigma} & \widetilde{\sigma} \\ \widetilde{\sigma}^T & \sigma_p \end{pmatrix}, S = \begin{pmatrix} \widetilde{S} & \widetilde{S} \\ \widetilde{S}^T & S_p \end{pmatrix} \text{ and } \Theta = \begin{pmatrix} \widetilde{\Theta} & \widetilde{\theta} \\ \widetilde{\theta}^T & \theta_p \end{pmatrix}$$

 $\widetilde{\Sigma}$, \widetilde{S} , $\widetilde{\Theta}$: $p-1\times p-1$ submatrices of Σ , S, Θ .

 $\tilde{\sigma}$, \tilde{s} , $\tilde{\theta}$: p-1 dimensional column vectors.

 $\sigma_p, s_p, \theta_p: \Sigma_{pp}, S_{pp}, \Theta_{pp}$

Algorithm

1.
$$\Sigma$$
 <- S + 2 ρ

- 2. n <- $\pi(p)$ (Loop starts here)
- 3. Permute n_i th row and column with the last row and column of Σ and S.

4.
$$\beta_{n_i}$$
<- lasso($\tilde{\Sigma}, \tilde{s}, \rho$), $\tilde{\sigma} <$ - $\tilde{\Sigma}\beta_{n_i}$

- 5. Permute back the row and column.
- 6. Continue until convergence.

7. $\theta_i < -\frac{1}{\sigma_i - \widetilde{\sigma}^T \beta_i}$, $\tilde{\theta}_i < -\theta_i \beta_i$

(Loop ends here)

Gradient Descent for each element

$$\frac{\partial J(\Theta)}{\partial \Theta_{ij}} = \frac{1}{2} [\Sigma - S]_{ij} \pm \rho$$

This implies the algorithm of graphical lasso solve for an optimal covariance matrix Σ , not a precision matrix Θ .

 \succ Since the diagonal elements of positive definite matrix is positive, $\Sigma_{ii} = S_{ii} + 2\rho$

Block Coordinate Descent

Remind: we want to find an optimal $\Sigma = \begin{pmatrix} \Sigma & \widetilde{\sigma} \\ \widetilde{\sigma}^T & \sigma_p \end{pmatrix}$.

Fix the diagonal blocks $\tilde{\Sigma}$ and σ_p , then optimize $\tilde{\sigma}$.

Then, the optimization problem is equivalent to the duality:

$$\arg\min_{\beta} \tilde{J}(\beta) = \arg\min_{\beta} \frac{1}{4} \beta^T \tilde{\Sigma} \beta - \frac{1}{2} \tilde{s}^T \beta + \rho \|\beta\|_1$$

Where $\beta = \tilde{\Sigma}^{-1}\tilde{\sigma}$.

Simulations

HOW TO USE GRAPHICAL LASSO IN R

Methods

- 100 random variables
- 20 edges are randomly chosen to be connected
- Create random correlations between those dependent variables
- Compute its inverse and generate 200 random samples
- Compute a sample covariance
- Find optimal values of ρ with using KL distance
- Estimate a precision matrix and compare the intersections

Result (KL distance of two successive Θ)

Optimal ρ is about 0.1.

The generated graph would be partially connected when ρ is between 0.1 and 0.3.

Result (Generated Graphical Model)

Roughly 40 are connected.

The intersection of connections between true value and this model is 16/20.

Reference

 Caroline Uhler; Gaussian Graphical Models: An Algebraic and Geometric Perspective, ArXiv e-prints, July 2017, http://adsabs.harvard.edu/abs/2017arXiv170704345U

• Jerome Friedman, Trevor Hastie, Robert Tibshirani; Sparse inverse covariance estimation with the graphical lasso, *Biostatistics*, Volume 9, Issue 3, 1 July 2008, Pages 432–441, https://doi.org/10.1093/biostatistics/kxm045