

Computer Networks

CMSC 417: Spring 2024

Topic: Internetworking: ICMP

Transport Layer Protocols (UDP, TCP) (Textbook chapter 5)

Nirupam Roy

Tu-Th 2:00-3:15pm CSI 2117

March 5th, 2024

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP)

- Defines a collection of error messages that are sent back to the source host.
- E.g., ICMP messages are sent whenever a router or host is unable to process an IP datagram successfully
 - Destination host unreachable due to link /node failure
 - Reassembly process failed
 - TTL had reached 0 (so datagrams don't cycle forever)
 - IP header checksum failed
- ICMP-Redirect
 - From router to a source host
 - With a better route information

ICMP message types

ICMP Type	Code	Description
0	0	echo reply (to ping)
3	0	destination network unreachable
3	1	destination host unreachable
3	2	destination protocol unreachable
3	3	destination port unreachable
3	6	destination network unknown
3	7	destination host unknown
4	0	source quench (congestion control)
8	0	echo request
9	0	router advertisement
10	0	router discovery
11	0	TTL expired
12	0	IP header bad
-		

Ping example

```
C:\WINDOWS\system32\cmd.exe
C:\WINDOWS\system32>ping 10.0.0.1
Pinging 10.0.0.1 with 32 bytes of data:
Reply from 10.0.0.1: bytes=32 time=2ms TTL=64
Reply from 10.0.0.1: bytes=32 time=1ms TTL=64
Reply from 10.0.0.1: bytes=32 time=1ms TTL=64
Reply from 10.0.0.1: bytes=32 time=1ms TTL=64
Ping statistics for 10.0.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 2ms, Average = 1ms
C:\WINDOWS\system32>
```

Traceroute: An unintuitive application using ICMP

Traceroute example

```
- 0 ×
Command Prompt
C:\>tracert mediacollege.com
Tracing route to mediacollege.com [66.246.3.197]
over a maximum of 30 hops:
1234567890
      <10 ms
               <10 ms
                         <10 ms
                                 192.168.1.1
      240 ms
               421 ms
                          70 ms
                                 219-88-164-1.jetstream.xtra.co.nz [219.88.164.1]
                30 ms
       20 ms
                          30 ms
                                 210.55.205.123
                                 Request timed out.
       30 ms
                          40 ms
                                 202.50.245.197
                30 ms
                                 g2-0-3.tkbr3.global-gateway.net.nz [202.37.245.140]
       30 ms
                40 ms
                         40 ms
       30 ms
                                 so-1-2-1-0.akbr3.global-gateway.net.nz [202.50.116.161]
                30 ms
                          40 ms
      160 ms
               161 ms
                         160 ms
                                 p1-3.sjbr1.global-gateway.net.nz [202.50.116.178]
      160 ms
               171 ms
                         160 ms
                                 so-1-3-0-0.pabr3.global-gateway.net.nz [202.37.245.230]
      160 ms
               161 ms
                                 pao1-br1-g2-1-101.gnaps.net [198.32.176.165]
                         170 ms
11
      180 ms
                         180 ms
                                 lax1-br1-p2-1.gnaps.net [199.232.44.5]
               181 ms
\overline{12}
      170 ms
               170 ms
                         171 ms
                                 lax1-br1-ge-0-1-0.gnaps.net [199.232.44.50]
13
14
15
16
                         240 ms
      240 ms
               241 ms
                                 nyc-m20-ge2-2-0.gnaps.net [199.232.44.21]
                         250 ms
               251 ms
      240 ms
                                 ash-m20-ge1-0-0.gnaps.net [199.232.131.36]
                        250 ms
250 ms
                                 0503.ge-0-0-0.gbr1.ash.nac.net [207.99.39.157]
      241 ms
               240 ms
                                 0.so-2-2-0.gbr2.nwr.nac.net [209.123.11.29]
      251 ms
               260 ms
17
18
                                 0.so-0-3-0.gbr1.oct.nac.net [209.123.11.233]
      250 ms
                         261 ms
               260 ms
      250 ms
                        261 ms
                                 209.123.182.243
               260 ms
19
      250 ms
               260 ms
                         261 ms
                                 sol.yourhost.co.nz [66.246.3.197]
Trace complete.
C:V>
```

Traceroute: An unintuitive application 192.168.1.1 192.168.3.1 TTL Exceeded 192.168.1.1 192.168.3.1 192.168.1.1 192.168.3.1 192.168.1.1 192.168.3.1 ICMP Reply 192.168.1.1 192.168.3.1

Virtual Networks and Tunnels

Why do we need virtual networks or tunnels?

- 1. Security
- 2. Special capabilities between routers (e.g., multicast)
- 3. Supporting heterogeneity

Why do we need virtual networks or tunnels?

- 1. Security
- 2. Special capabilities between routers (e.g., multicast)
- 3. Supporting heterogeneity

Disadvantages:

- 1. Increases packet length
 - a) Wastage of bandwidth
 - b) More processing
 - c) Fragmentation
- 2. Increases management cost

IPv6

- 1) Address and packet format
- 2) Unicast, Multicast, Anycast addressing
- 3) IPV4 and IPV6 coexistence

IPv6: Address and packet format

Basic IPv6 header

IPv6: Address and packet format

Q 1. Why is there no header checksum?

Q 2. Why is there no fragmenting related option?

Q 3. Is 128-bit IP address big enough?

IP: Anycast example

IPv4 and IPv6 Co-existence

IPv4 and IPv6 Co-existence

Logical view

Physical view

Computer Networks

CMSC 417 : Spring 2023

Topic:

Transport Layer Protocols (UDP, TCP) (Textbook chapter 5)

Nirupam Roy

Tu-Th 2:00-3:15pm CSI 2117

March 5th, 2024

Transport layer: From the lens of two perspectives

- (1) Abstraction of clients. (machines/networks/processes)
- (2) Abstraction of services.

(1) Abstraction of clients

Network layer abstraction

Network layer abstraction

Network layer abstraction

Transport layer abstraction

Transport layer abstraction

Connection between processes

Transport Protocols

- Logical communication between processes
 - Sender divides a message into segments
 - Receiver reassembles segments into message
- Transport services
 - (De)multiplexing packets– Detecting corrupted data

 - -Optionally: reliable delivery, flow control, ...

Two Basic Transport Features

Demultiplexing: port numbers

Error detection: checksums

Multiplexing/demultiplexing

<u>Demultiplexing at rcv host:</u>

delivering received segments to correct socket

= socket = process

Multiplexing at send host:

Data headers helps flows from multiple sockets to use common the network channel, Info in header later helps Demultiplexing.

How demultiplexing works

1) host receives IP datagrams

- each datagram has source IP address, destination IP address
- each datagram carries 1
 transport-layer segment
- each segment has source,
 destination port number
- 2) host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

host 1

host 2

host 1

host 2

