Мета роботи

Реалізувати генетичний алгоритм пошуку максимального і мінімального значення цільової функції згідно варіанту.

Індивідуальне завдання

Реалізувати генетичний алгоритм пошуку максимального і мінімального значення цільової функції $f(x) = a + bx + cx^2 + dx^3$ на інтервалі x = [-10, 53].

В	_	7

23	-80	-64	5

Виконання індивідуального завдання

1. Максимальне і мінімальне значення цільової функції

Рис. 1. Графік функції на заданому інтервалі з позначеним максимумом і мунімумом

Табл. 1. Значення максимуму і мінімуму

Максимум (Х, Ү)	
53	35467
Мінімум (Х, Ү)	
26.91423653	-10007.2994

Протабульовану функцію, графіки і рішення можна знайти у відповідних теках у директорії з програмою у репозиторії:

- .../Labworks.ConsoleApp/bin/Debug/max[min]/func.xlsl

2. Проміжні результати

Розглянемо результати по першому поколінню з пошуком максимуму

Рис. 2. Хромосоми першого покоління

Рис. 3. Значення фітнес функції зростає з наближення до максимуму.

Особливості:

- пошук на всьому інтервалі, значні зміщення по осі X, рівномірний розподіл спроб, спостерігається більша зосередженість спроб у зоні максимуму, також ще не відкинули зону локального максимуму ліворуч
- результати можна знайти у файлі generation0.xlsl

XPOMOCOMA	X	Υ	FITNESS
1111010110011000001110	50.43931	25560.12	3.556012
0110111101001110100110	17.39197	-7176.33	0.282367
0011110111101010010011	5.236953	-1048.14	0.895186
1110111111000010110101	49.00371	20651.1	3.06511
101001011100010101011	30.79514	-9335.25	0.066475
0100100000101010010010	7.759399	-2086.34	0.791366
1111111001111000000110	52.62327	33914.02	4.391402
100000010001101110110	21.63636	-9019.34	0.098066
0010000101110001111101	-1.76936	-85.3775	0.991462
0010000111111111111001	-1.63292	-68.3523	0.993165

1000110010001100011000	24.58808	-9799.4	0.02006
0111111000000100100001	21.01216	-8793.58	0.120642
1010111000110000011100	32.86689	-8352.76	0.164724
0110110011100101110101	16.79907	-6873.48	0.312652
1111010001001101001001	50.12104	24432.85	3.443285
0001100011001011111111	-3.89766	-578.928	0.942107
1100100111101011010000	39.691	-1270.61	0.872939
0011011111001101000001	3.732242	-569.841	0.943016

...іншу частину покоління можна знайти у файлі репозиторія...

Елітна хромосома:

52.62327 33914.02 4.391402

Рис. 4. Хромосоми останнього покоління

Рис. 5. Значення фітнес функції зростає з наближення до максимуму.

XPOMOCOMA	X	Y	FITNESS
1111100111011111111100	51.49263	29452.75	3.945275
10110111100111111111110	35.18895	-6651.12	0.334888
110111011000110000010	44.52134	8081.556	1.808156
1111101000100011010111	51.55744	29700.5	3.97005
1010111000100011000111	32.85407	-8360.32	0.163968
1010111100000011110101	33.0701	-8230.16	0.176984
1101111100101000111100	44.91827	9034.994	1.903499
1111101110100111111100	51.93098	31147.19	4.114719
1111111111101011010000	52.98007	35383.99	4.538399
1111111001010100111011	52.58946	33776.28	4.377628
1111011111111011110100	51.02724	27701.95	3.770195
11100001011011111111111	45.4787	10432.08	2.043208
1100010111101101011101	38.70874	-2698.95	0.730105
1111110001101000111100	52.11652	31877.72	4.187772
1111101000100111011000	51.5613	29715.29	3.971529

...іншу частину покоління можна знайти у файлі репозиторія...

Елітна хромосома:

	1	1
53	35467	4.5467
-	00.07	1.0 .07

Особливості:

- пошук на зосереджений на зростаючому інтервалі, незначні зміщення по осі X, нерівномірний розподіл спроб, відкинули зону локального максимуму, що ліворуч
- результати можна знайти у файлі generation201.xlsl

Пошук мінімума дуже схожий на пошук максимума, я наведу лише графіка, побудовані на основі першого і останнього поколінь.

Рис. 6. Хромосоми першого покоління

Рис. 7. Значення фітнес функції зростає з наближення до мінімуму.

Рис. 8. Хромосоми останнього покоління

Рис. 9. Значення фітнес функції зростає з наближення до мінімуму.

Всі дані можна знайти у файлах репозиторія за шаблоном:

- .../Labworks.ConsoleApp/bin/Debug/max[min]/*.xlsl[txt] Реалізацію програм можна знайти у файлах репозиторія:
 - .../Labworks.ConsoleApp/*.cs
 - .../Labworks.ExcelAddin/*.cs
 - .../Labworks.Framework/*.cs

ConsoleApp містить в собі код для виводу резульатів роботи у текстові файли, **Framework** — бібліотека для оптимізації функцій і рішення TSP, **ExcelAddin** — додаток для Miscrosoft Excel, для автоматизації побудови графіків.

Висновки.

Виконавши лабораторну роботу я реалізував за допомогою С# програмне забезпечення для пошуку оптимумів функції в якому використав турнірний і пропорційний відбори, одноточкове схрещування і бінарну мутацію. Програма показує результати за короткий період часу з невеликою похибкою навіть при невеликій кількості поколінь (для максимуму — 200, для мінімуму — 10) і розміру популяції, при збільшенні цих параметрів похибка прямує до 0.