

dsPIC30F4011/4012 数据手册

高性能 16 位数字信号控制器

请注意以下有关 Microchip 器件代码保护功能的要点:

- Microchip 的产品均达到 Microchip 数据手册中所述的技术指标。
- Microchip 确信:在正常使用的情况下, Microchip 系列产品是当今市场上同类产品中最安全的产品之一。
- 目前,仍存在着恶意、甚至是非法破坏代码保护功能的行为。就我们所知,所有这些行为都不是以 Microchip 数据手册中规定的操作规范来使用 Microchip 产品的。这样做的人极可能侵犯了知识产权。
- Microchip 愿与那些注重代码完整性的客户合作。
- Microchip 或任何其他半导体厂商均无法保证其代码的安全性。代码保护并不意味着我们保证产品是"牢不可破"的。

代码保护功能处于持续发展中。 Microchip 承诺将不断改进产品的代码保护功能。任何试图破坏 Microchip 代码保护功能的行为均可视为违反了 《数字器件千年版权法案 (Digital Millennium Copyright Act)》。如果这种行为导致他人在未经授权的情况下,能访问您的软件或其他受版权保护的成果,您有权依据该法案提起诉讼,从而制止这种行为。

提供本文档的中文版本仅为了便于理解。请勿忽视文档中包含的英文部分,因为其中提供了有关 Microchip 产品性能和使用情况的有用信息。Microchip Technology Inc. 及其分公司和相关公司、各级主管与员工及事务代理机构对译文中可能存在的任何差错不承担任何责任。建议参考 Microchip Technology Inc. 的英文原版文档。

本出版物中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。Microchip 对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。Microchip 对因这些信息及使用这些信息而引起的后果不承担任何责任。如果将Microchip 器件用于生命维持和/或生命安全应用,一切风险由买方自负。买方同意在由此引发任何一切伤害、索赔、诉讼或费用时,会维护和保障Microchip 免于承担法律责任,并加以赔偿。在Microchip 知识产权保护下,不得暗中或以其他方式转让任何许可证。

商标

Microchip 的名称和徽标组合、 Microchip 徽标、 dsPIC、 KEELOQ、 KEELOQ 徽标、 MPLAB、 PIC、 PICmicro、 PICSTART、 PIC³² 徽标、 rfPIC 和 UNI/O 均为 Microchip Technology Inc. 在美国和其他国家或地区的注册商标。

FilterLab、Hampshire、HI-TECH C、Linear Active Thermistor、MXDEV、MXLAB、SEEVAL 和 The Embedded Control Solutions Company 均为 Microchip Technology Inc. 在美国的注册商标。

Analog-for-the-Digital Age、Application Maestro、chipKIT、chipKIT 徽标、CodeGuard、dsPICDEM、dsPICDEM.net、dsPICworks、dsSPEAK、ECAN、ECONOMONITOR、FanSense、HI-TIDE、In-Circuit Serial Programming、ICSP、Mindi、MiWi、MPASM、MPLAB Certified 徽标、MPLIB、MPLINK、mTouch、Omniscient Code Generation、PICC、PICC-18、PICDEM、PICDEM.net、PICkit、PICtail、REAL ICE、rfLAB、Select Mode、Total Endurance、TSHARC、UniWinDriver、WiperLock 和ZENA均为 Microchip Technology Inc. 在美国和其他国家或地区的商标。

SQTP 是 Microchip Technology Inc. 在美国的服务标记。 在此提及的所有其他商标均为各持有公司所有。

© 2007-2011, Microchip Technology Inc. 版权所有。

ISBN: 978-1-61341-612-9

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002 ===

Microchip 位于美国亚利桑那州 Chandler 和 Tempe 与位于俄勒冈州 Gresham 的全球总部、设计和晶圆生产厂及位于美国加利福尼亚州和 印度的设计中心均通过了 ISO/TS-16949:2009 认证。 Microchip 的 PIC® MCU 与 dsPIC® DSC、KEELOQ® 跳码器件、串行 EEPROM、单片 机外设、非易失性存储器和模拟产品严格遵守公司的质量体系流程。此外, Microchip 在开发系统的设计和生产方面的质量体系也已通过了 ISO 9001:2000 认证。

高性能 16 位数字信号控制器

本数据手册总结了 dsPIC30F 系列器件的功能,但是不应把本手册当作无所不包的接收缓冲区参考手册来使用。有关CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC 程序员参考手册》

(DS70157E_CN)。

高性能改进型 RISC CPU:

• 改讲的哈佛架构

注:

- 具备灵活寻址模式的 C 编译器优化指令集架构
- 83 条基本指令
- 24 位宽指令, 16 位宽数据总线
- 48 KB 片上闪存程序空间 (16K 指令字)
- 2 KB 片上数据 RAM
- 1 KB 非易失性数据 EEPROM
- 最高 30 MIPS 的工作速度:
 - DC 至 40 MHz 外部时钟输入
 - 4 MHz 10 MHz 振荡器输入,带 PLL (4 倍 频、8 倍频和 16 倍频)
- 30 个中断源:
 - 3个外部中断源
 - 每一个中断源具有 8 个用户可选择的中断优 先级
 - 4 个处理器陷阱源
- 16 x 16 位工作寄存器阵列

DSP 引擎特性:

- 双数据取操作
- DSP 操作的累加器回写
- 模寻址和位反转寻址模式
- 两个 40 位宽的累加器,具备可选饱和逻辑
- 17 位 x 17 位单周期硬件小数 / 整数乘法器
- 所有 DSP 指令均为单周期指令
- 单周期 ±16 位移位

外设特性:

- 高灌 / 拉电流引脚 I/O: 25 mA/25 mA
- 带可编程预分频器的定时器模块:
 - 5 个 16 位定时器 / 计数器;可选择将 16 位定时器配对组成 32 位定时器模块
- 16 位输入捕捉功能
- 16 位比较 /PWM 输出功能
- 3 线 SPI 模块 (支持 4 种帧模式)
- I²C™模块支持多主器件/从模式,支持7位/10位寻址
- 2 个带 FIFO 缓冲区的 UART 模块
- 与 2.0B 标准兼容的 CAN 模块

电机控制 PWM 模块特性:

- 6 路 PWM 输出通道:
 - 互补或独立的输出模式
 - 边沿和中心对齐模式
- 3 个占空比发生器
- 专用时基
- 可编程输出极性
- 用于互补模式的死区控制
- 手动输出控制
- 用干 A/D 转换的触发器

正交编码器接口模块特性:

- A相、B相和索引脉冲输入
- 16 位递增 / 递减位置计数器
- 计数方向状态
- 位置测量 (x2 和 x4) 模式
- 输入端具有可编程数字噪声滤波器
- 备用 16 位定时器 / 计数器模式
- 位置计数器计满返回 / 下溢中断

模拟特性:

- 带 4 个采样 / 保持(S&H)输入的 10 位模数转换器 (Analog-to-Digital Converter, ADC):
 - 1 Msps 转换速率
 - 9路输入通道
 - 在休眠和空闲期间可以进行转换
- 可编程欠压复位

特殊数字信号控制器特性:

- 增强型闪存程序存储器:
 - 对于工业级温度范围,最少擦写次数1万次, 典型擦写次数10万次
- 数据 EEPROM 存储器:
 - 对于工业级温度范围,最少擦写次数 10 万次,典型擦写次数 100 万次
- 可在软件控制下自行再编程
- 上电复位(Power-on Reset, POR)、上电延时 定时器(Power-up Timer, PWRT)和振荡器起 振定时器(Oscillator Start-up Timer, OST)
- 灵活的看门狗定时器 (Watchdog Timer, WDT),带片上低功耗 RC 振荡器以便可靠地工作
- 故障保护时钟监视器操作可检测时钟故障,并切换 到片上低功耗 RC 振荡器
- 可编程代码保护
- 在线串行编程 (In-Circuit Serial Programming™, ICSP™)
- 可选择的功耗管理模式:
 - 休眠、空闲和备用时钟模式

CMOS 技术:

- 低功耗高速闪存技术
- 宽工作电压范围 (2.5V 至 5.5V)
- 工业级和扩展级温度范围
- 低功耗

dsPIC30F 电机控制和电源转换系列

器件	引脚数	程序存储器 字节数 / 指令数	SRAM 字节数	EEPROM 字节数	16 位 定时器	输入 捕捉	输出比较 / 控制 标准 PWM		10 位 A/D 1 Msps	正交 编码器	UART	SPI	I ² C TM	CAN
dsPIC30F4012	28	48K/16K	2048	1024	5	4	2	6 通道	6 通道	有	1	1	1	1
dsPIC30F4011	40/44	48K/16K	2048	1024	5	4	4	6 通道	9 通道	有	2	1	1	1

引脚示意图

引脚示意图 (续) 44 引脚 QFN⁽¹⁾ EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 PGD/EMUD/U1TX/SDO1/SCL/RF3 EMUC2/OC1/IC1/INT1/RD0 OC3/RD2 EMUD2/OC2/IC2/INT2/RD1 FLTA/INT0/RE8 Vss OC4/RD3 SCK1/RF6 444 42 441 33 33 34 34 34 33 OSC2/CLKO/RC15 PGC/EMUC/U1RX/SDI1/SDA/RF2 U2TX/CN18/RF5 32 OSC1/CLKI 3 31 Vss U2RX/CN17/RF4 30 C1TX/RF1 Vss 5 29 C1RX/RF0 VDD 6 dsPIC30F4011 28 VDD Vss 27 AN8/RB8 VDD 26 AN7/RB7 8 VDD PWM3H/RE5 25 AN6/OCFA/RB6 10 24 AN5/QEB/IC8/CN7/RB5 PWM3L/RE4 23 PWM2H/RE3 AN4/QEA/IC7/CN6/RB4 PWM1H/RE1 PWM1L/RE0 AVSS AVDD MCLR EMUD3/AN0/VREF+/CN2/RB0 PWM2L/RE2 EMUC3/AN1/VREF-/CN3/RB1 AN2/SS1/CN4/RB2 AN3/INDX/CN5/RB3

1: 器件底部的金属焊盘没有连接到任何引脚,建议将其外部连接至 Vss。

注

引脚示意图 (续)

目录

1.0	器件概还	9
2.0	CPU 架构概述	17
3.0	存储器构成	25
4.0	地址发生器单元	37
5.0	中断	43
6.0	闪存程序存储器	49
7.0	数据 EEPROM 存储器	55
8.0	VO 端口	61
9.0	Timer1 模块	67
10.0	Timer2/3 模块	71
11.0	Timer4/5 模块	77
12.0	输入捕捉模块	81
13.0	输出比较模块	85
	正交编码器接口 (QEI) 模块	
15.0	电机控制 PWM 模块	97
	SPI 模块	
	I ² C™ 模块	
18.0	通用异步收发器 (UART)模块	121
19.0	CAN 模块	129
20.0	10 位高速模数转换器 (ADC)模块	139
21.0	系统集成	151
22.0	指令集汇总	165
23.0	开发支持	173
24.0	电气特性	177
	封装信息	_
Micro	chip 网站	235
~~~	<b>通知客户服务</b>	
客户式	5持	235
读者反	5. 惯表	236
产品核	示识体系	237

# 致 客 户

我们旨在提供最佳文档供客户正确使用 Microchip 产品。为此,我们将不断改进出版物的内容和质量,使之更好地满足您的要求。出版物的质量将随新文档及更新版本的推出而得到提升。

如果您对本出版物有任何问题和建议,请通过电子邮件联系我公司 TRC 经理,电子邮件地址为 CTRC@microchip.com,或将本数据手册后附的 《读者反馈表》传真到 86-21-5407 5066。我们期待您的反馈。

#### 最新数据手册

欲获得本数据手册的最新版本,请查询我公司的网站:

#### http://www.microchip.com

查看数据手册中任意一页下边角处的文献编号即可确定其版本。 文献编号中数字串后的字母是版本号,例如: DS30000A是DS30000的 A 版本。

#### 勘误表

现有器件可能带有一份勘误表,描述了实际运行与数据手册中记载内容之间存在的细微差异以及建议的变通方法。一旦我们了解到器件/文档存在某些差异时,就会发布勘误表。勘误表上将注明其所适用的硅片版本和文件版本。

欲了解某一器件是否存在勘误表,请通过以下方式之一查询:

- Microchip 网站: http://www.microchip.com
- 当地 Microchip 销售办事处 (见最后一页)

在联络销售办事处时,请说明您所使用的器件型号、硅片版本和数据手册版本(包括文献编号)。

### 客户通知系统

欲及时获知 Microchip 产品的最新信息,请到我公司网站 www.microchip.com 上注册。

# 1.0 器件概述

注: 本数据手册总结了 dsPIC30F 系列器件的功能,但是不应把本手册当作无所不包的参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC程序员参考手册》(DS70157E_CN)。

本文档包含 dsPIC30F4011/4012 器件的特定信息。 dsPIC30F 器件在高性能 16 位单片机 (MCU)架构中融合了大量数字信号处理器(Digital Signal Processor, DSP)功能。图 1-1 和图 1-2 分别给出了 dsPIC30F4011和 dsPIC30F4012器件的框图。





表 1-1 对器件的引脚配置和端口引脚的复用功能进行了简要说明。端口引脚可具有多种功能。当发生复用时,外设模块的功能要求可强制改写端口引脚的数据方向。

表 1-1: dsPIC30F4011 引脚 I/O 说明

表 1-1: dsPIC30F4011 5			脚 I/O 况明
引脚名称	引脚 类型	缓冲器 类型	说明
AN0-AN8	I	Analog	模拟输入通道。 ANO 和 AN1 也分别用于器件编程数据和时钟输入。
AVDD	Р	Р	模拟模块的正电源。该引脚必须始终连接。
AVss	Р	Р	模拟模块的参考地。该引脚必须始终连接。
CLKI CLKO	I O	ST/CMOS	外部时钟源输入。总是与 OSC1 引脚功能相关联。 晶振输出。在晶振模式下,连接到晶体或谐振器。也可选择在 RC 和 EC 模式
CLKO		_	TEMPER CLKO。  「中国的一个专家的一个专家的一个专家的一个专家的一个专家的一个专家的一个专家的一个专家
CN0-CN7 CN17-CN18	I	ST	输入电平变化通知输入。可将所有输入软件编程为内部弱上拉。
C1RX	I	ST	CAN1 总线接收引脚。
C1TX	0	_	CAN1 总线发送引脚。
EMUD	I/O	ST	ICD 主通信通道数据输入 / 输出引脚。
EMUC	I/O	ST	ICD 主通信通道时钟输入 / 输出引脚。
EMUD1	I/O	ST	ICD 第二通信通道数据输入 / 输出引脚。
EMUC1	I/O	ST	ICD 第二通信通道时钟输入 / 输出引脚。
EMUD2	I/O	ST	ICD 第三通信通道数据输入 / 输出引脚。
EMUC2	I/O	ST	ICD 第三通信通道时钟输入 / 输出引脚。
EMUD3	I/O	ST	ICD 第四通信通道数据输入 / 输出引脚。
EMUC3	I/O	ST	ICD 第四通信通道时钟输入 / 输出引脚。
IC1,IC2, IC7, IC8	I	ST	捕捉输入 1、 2、 7 和 8。
INDX	I	ST	正交编码器索引脉冲输入。
QEA	I	ST	在 QEI 模式下为正交编码器 A 相输入。 在定时器模式下为辅助定时器外部时钟/门控输入。
QEB	I	ST	在 QEI 模式下为正交编码器 B 相输入。
			在定时器模式下为辅助定时器外部时钟/门控输入。
INT0	I	ST	外部中断 0。
INT1	l I	ST	外部中断 1。
INT2	I	ST	外部中断 2。
FLTA	I	ST	PWM 故障 A 输入。
PWM1L	0	_	PWM1 低端输出。
PWM1H	0	_	PWM1 高端输出。
PWM2L	0	_	PWM2 低端输出。
PWM2H	0	_	PWM2 高端输出。
PWM3L	0	_	PWM3 低端输出。
PWM3H	0	_	PWM3 高端输出。
MCLR	I/P	ST	主复位输入或编程电压输入。此引脚为低电平有效的器件复位输入端。
OCFA	I	ST	比较故障 A 输入 (对于比较通道 1、 2、 3 和 4 )。
OC1-OC4	0	_	比较输出 1 至 4。

图注: CMOS = CMOS 兼容输入或输出 Analog = 模拟输入

 ST = CMOS 电平的施密特触发器输入
 O = 输出

 I = 输入
 P = 电源

表 1-1: dsPIC30F4011 引脚 I/O 说明 (续)

40	<del> </del>	脚 I/O 优明 (续)
引脚 类型	缓冲器 类型	说明
I I/O	ST/CMOS	晶振输入。配置在 RC 模式时为 ST 缓冲器输入;否则为 CMOS 输入。 晶振输出。在晶振模式下,连接到晶体或谐振器。也可选择在 RC 和 EC 模式 下用作 CLKO。
I/O I	ST ST	在线串行编程数据输入/输出引脚。 在线串行编程时钟输入引脚。
I/O	ST	PORTB 是双向 I/O 端口。
I/O	ST	PORTC 是双向 I/O 端口。
I/O	ST	PORTD 是双向 I/O 端口。
I/O	ST	PORTE 是双向 I/O 端口。
I/O	ST	PORTF 是双向 I/O 端口。
I/O — O —	ST ST — ST	SPI1 的同步串行时钟输入 / 输出。 SPI1 数据输入。 SPI1 数据输出。 SPI1 同步从动模式。
I/O I/O	ST ST	I ² C™ 的同步串行时钟输入 / 输出。 I ² C 的同步串行数据输入 / 输出。
0	ST/CMOS	32 kHz 低功耗晶振输出。 32 kHz 低功耗晶振输入。配置为 RC 模式时为 ST 缓冲器输入;否则为 CMOS 输入。
l I	ST ST	Timer1 外部时钟输入。 Timer2 外部时钟输入。
- 0 - 0 - 0	ST — ST — ST —	UART1 接收。 UART1 发送。 UART1 备用接收。 UART1 备用发送。 UART2 接收。 UART2 按收。 UART2 发送。
Р		逻辑和引脚 I/O 的正电源。
Р	_	逻辑和引脚 I/O 的参考地。
I	Analog	模拟参考电压 (高电压)输入。
I	Analog	模拟参考电压(低电压)输入。
	別脚 	引脚

图注: CMOS = CMOS 兼容输入或输出 Analog = 模拟输入

 ST = CMOS 电平的施密特触发器输入
 O = 输出

 I = 输入
 P = 电源

表 1-2 对器件的引脚 I/O 配置和端口引脚的复用功能进行了简要说明。端口引脚可具有多种功能。当发生复用时,外设模块的功能要求可强制替代端口引脚的数据方向。

表 1-2: dsPIC30F4012 引脚 I/O 说明

表 1-2:	dsPIC	30F4012 5	脚 I/O 说明
引脚名称	引脚 类型	缓冲器 类型	说明
AN0-AN5	I	Analog	模拟输入通道。 AN0 和 AN1 也分别用于器件编程数据和时钟输入。
AVDD	Р	Р	模拟模块的正电源。该引脚必须始终连接。
AVss	Р	Р	模拟模块的参考地。该引脚必须始终连接。
CLKI	0	ST/CMOS	外部时钟源输入。总是与 OSC1 引脚功能相关联。 晶振输出。在晶振模式下,连接到晶体或谐振器。也可选择在 RC 和 EC 模式 下用作 CLKO。 总是与 OSC2 引脚功能相关联。
CN0-CN7	1	ST	输入电平变化通知输入。可将所有输入软件编程为内部弱上拉。
C1RX C1TX	I 0	ST —	CAN1 总线接收引脚。 CAN1 总线发送引脚。
EMUD EMUC EMUD1 EMUC1 EMUD2 EMUC2 EMUD3	I/O I/O I/O I/O I/O I/O	ST ST ST ST ST ST	ICD 主通信通道数据输入 / 输出引脚。 ICD 主通信通道时钟输入 / 输出引脚。 ICD 第二通信通道数据输入 / 输出引脚。 ICD 第二通信通道时钟输入 / 输出引脚。 ICD 第三通信通道数据输入 / 输出引脚。 ICD 第三通信通道时钟输入 / 输出引脚。 ICD 第三通信通道时钟输入 / 输出引脚。 ICD 第四通信通道数据输入 / 输出引脚。
EMUC3	I/O	ST	ICD 第四通信通道时钟输入 / 输出引脚。
IC1, IC2, IC7, IC8	I	ST	捕捉输入 1、 2、 7 和 8。
INDX	1	ST	正交编码器索引脉冲输入。
QEA QEB	I I	ST ST	在 QEI 模式下为正交编码器 A 相输入。 在定时器模式下为辅助定时器外部时钟 / 门控输入。 在 QEI 模式下为正交编码器 B 相输入。 在定时器模式下为辅助定时器外部时钟 / 门控输入。
INT0	1	ST	外部中断 0。
INT1	i	ST	外部中断 1。
INT2	i	ST	外部中断 2。
FLTA PWM1L	I O	ST —	PWM 故障 A 输入。 PWM1 低端输出。
PWM1H	0		PWM1 高端输出。
PWM2L	0		PWM2 低端输出。
PWM2H	Ö	_	PWM2 高端输出。
PWM3L	Ö	_	PWM3 低端输出。
PWM3H	Ö	_	PWM3 高端输出。
MCLR	I/P	ST	主复位输入或编程电压输入。此引脚为低电平有效的器件复位输入端。
OCFA	I	ST	比较故障 A 输入 (对于比较通道 1、2、3 和 4 )。
OC1, OC2	0	_	比较输出 1 和 2。

 图注:
 CMOS =
 CMOS 兼容输入或输出
 Analog =
 模拟输入

 ST =
 CMOS 电平的施密特触发器输入
 O =
 输出

 I =
 输入
 P =
 电源

表 1-2: dsPIC30F4012 引脚 I/O 说明 (续)

1X 1 Z . USI 10001 TO1Z .			
引脚名称	引脚 类型	缓冲器 类型	说明
OSC1	ı	ST/CMOS	晶振输入。配置在 RC 模式时为 ST 缓冲器输入;否则为 CMOS 输入。
OSC2	I/O	_	晶振输出。在晶振模式下,连接到晶体或谐振器。也可选择在 RC 和 EC 模式下用作 CLKO。
PGD	I/O	ST	在线串行编程数据输入/输出引脚。
PGC	I	ST	在线串行编程时钟输入引脚。
RB0-RB5	I/O	ST	PORTB 是双向 I/O 端口。
RC13-RC15	I/O	ST	PORTC 是双向 I/O 端口。
RD0-RD1	I/O	ST	PORTD 是双向 I/O 端口。
RE0-RE5, RE8	I/O	ST	PORTE 是双向 I/O 端口。
RF2-RF3	I/O	ST	PORTF 是双向 I/O 端口。
SCK1	I/O	ST	SPI1 的同步串行时钟输入 / 输出。
SDI1	I	ST	SPI1 数据输入。
SDO1	0	_	SPI1 数据输出。
SS1	I/O	ST	SPI1 同步从动模式。
SCL	I/O	ST	I ² C™ 的同步串行时钟输入 / 输出。
SDA	I/O	ST	I ² C 的同步串行数据输入 / 输出。
SOSCO	0	<del>-</del>	32 kHz 低功耗晶振输出。
SOSCI	I	ST/CMOS	32 kHz 低功耗晶振输入。配置为 RC 模式时为 ST 缓冲器输入;否则为 CMOS 输入。
T1CK	I	ST	Timer1 外部时钟输入。
T2CK	I	ST	Timer2 外部时钟输入。
U1RX	I	ST	UART1 接收。
U1TX	0	_	UART1 发送。
U1ARX		ST	UART1 备用接收。
U1ATX	0	_	UART1 备用发送。
VDD	Р	_	逻辑和引脚 I/O 的正电源。
Vss	Р	_	逻辑和引脚 I/O 的参考地。
VREF+	I	Analog	模拟参考电压(高电压)输入。
VREF-	I	Analog	模拟参考电压 (低电压)输入。

**图注:**CMOS = CMOS 兼容输入或输出Analog = 模拟输入ST = CMOS 电平的施密特触发器输入O = 输出

注:

# 2.0 CPU 架构概述

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参 见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》(DS70157E_CN)。

### 2.1 内核概述

内核的指令字长为 24 位。程序计数器(PC)为 23 位宽,其最低有效位(Least Significant bit,LSb)始终清零(见第 3.1 节 "程序地址空间"),最高有效位(Most Significant bit,MSb)在正常的程序执行期间被忽略,某些专用指令除外。因此,PC 能够寻址最大为4M 指令字的用户程序空间。使用指令预取机制来帮助维持吞吐量。使用 DO 和 REPEAT 指令,支持无循环计数管理开销的程序循环结构,并且这两条指令在任何时候都可被中断。

工作寄存器阵列由 16 个 16 位寄存器组成,每个工作寄存器均可作为数据、地址或偏移量寄存器。一个工作寄存器(W15)用作中断和调用时的软件堆栈指针。

数据空间为 64 KB(32K字),被分成两块,称为 X 和 Y 数据存储区。每个存储块有各自独立的地址发生单元(Address Generation Unit,AGU)。大多数指令只通过 X 存储空间 AGU 进行操作,这样对外界而言数据空间就是单独而统一的。乘-累加(Multiply-Accumulate,MAC)类双源操作数 DSP 指令,通过 X 和 Y 的 AGU 进行操作,这将数据地址空间分成两个部分(见**第 3.2 节 "数据地址空间"**)。X 和 Y 数据空间边界视具体器件而定,用户不能改变它们。每个数据字由 2 个字节组成,大多数指令按字或字节对数据进行寻址。

对于存储在程序存储器中的数据,有两种访问方法:

数据存储空间的高 32 KB 可以映射到程序空间的下半部分(用户空间),映射的边界可以是任何 16K 程序字边界,边界由 8 位程序空间可视性页(Program Space Visibility Page, PSVPAG)寄存器定义。这使得任何指令都能像访问数据空间那样访问程序空间,但访问需要一个额外的周期。此外,使用这个方法,只能访问每个指令字的低 16 位。

使用任何工作寄存器,通过表读和表写指令,也可以对程序空间内的32K字页进行线性间接访问。
 表读和表写指令能够用来访问一个指令字的全部24位。

X 和 Y 地址空间都支持无开销循环缓冲区 (模寻址)。 模寻址的主要目的是要消除 DSP 算法的循环开销。

X AGU 还支持对目标有效地址进行位反转寻址,对于基 2 FFT 算法,这极大地简化了输入或输出数据的重新排序。有关模寻址和位反转寻址的详细信息,请参见第4.0节"地址发生器单元"。

内核支持固有(无操作数)寻址、相对寻址、立即数寻址、存储器直接寻址、寄存器直接寻址、寄存器间接寻址、寄存器偏移量寻址和立即数偏移量寻址模式。指令与预定义的寻址模式相关联,这取决于其功能需求。

对于大多数指令,内核能够在每个指令周期内执行一次数据(或程序数据)存储器读取、一次工作寄存器(数据)读取、一次数据存储器写入以及一次程序(指令)存储器读取操作。因此,支持3操作数指令,允许在单个周期内执行 C = A + B 这样的操作。

内核包含 DSP 引擎,这极大地提高了内核的运算能力和吞吐量。它具有一个高速 17 位 x 17 位乘法器、一个 40 位 ALU、两个 40 位饱和累加器和一个 40 位双向桶形移位寄存器。累加器或任何工作寄存器中的数据可以在单个周期内右移 16 位或左移 16 位。 DSP 指令可以无缝地与所有其他指令一起操作,且设计为能获得最佳实时性能。MAC 类指令能够在从存储器取出两个数据操作数的同时,将两个 W 寄存器相乘。为了能够同时取两个数据操作数,对于 MAC 类指令,数据空间拆分为两块,对所有其他指令数据空间则是线性的。对于 MAC 类指令,这是通过将某些工作寄存器专用于每个地址空间,以透明而灵活的方式实现的。

内核不支持多级指令流水线。不过,为了最大限度地获得可用的执行时间,使用了单级指令预取机制,在指令执行的前一个周期取指令并部分译码指令。除了一些特例外,大部分指令都在单个周期内执行。

内核具有用于陷阱和中断的向量异常处理结构,具有62个独立的向量。异常包括最多8个陷阱(其中有4个是保留的)和54个中断。根据用户指定的1到7之间的优先级(1为最低优先级,7为最高优先级),以及预定义的"自然顺序",决定每个中断的优先级。陷阱的优先级是固定的,其范围从8到15。

### 2.2 编程模型

编程模型如图 2-1 所示,它包括 16 个 16 位工作寄存器(W0至W15)、2个40位累加器(ACCA和ACCB)、状态寄存器(SR)、数据表页寄存器(TBLPAG)、程序空间可视性页寄存器(PSVPAG)、DO和 REPEAT寄存器(DOSTART、DOEND、DCOUNT和RCOUNT)以及程序计数器(PC)。工作寄存器可作为数据、地址或偏移量寄存器。所有寄存器都是存储器映射的。W0用作进行文件寄存器寻址的W寄存器。

这些寄存器中,一些寄存器有与之相关的影子寄存器,如图 2-1 所示。影子寄存器用作临时保持寄存器,事件发生时可在影子寄存器和主寄存器之间传递内容。所有影子寄存器均不能直接访问。寄存器与其影子寄存器之间的数据传递遵循以下规则:

- PUSH.S 和 POP.S
   W0、W1、W2、W3 和 SR (仅限 DC、N、OV、Z 和 C 位)与对应的影子寄存器之间进行内容传递。
- DO 指令 循环开始时, DOSTART、 DOEND 和 DCOUNT 寄存器的内容压入影子寄存器,在循环结束时其内 容从各自的影子寄存器中弹出。

对工作寄存器进行字节操作时,只影响目标寄存器的低字节(Least Significant Byte, LSB)。不过,存储器映射工作寄存器的一个好处是,可以通过字节宽数据存储空间访问来操作低字节和高字节(Most Significant Byte, MSB)。

#### 2.2.1 软件堆栈指针/帧指针

dsPIC[®] 数字信号控制器具有一个软件堆栈。W15 是专用的软件堆栈指针(Stack Pointer, SP), 异常处理、子程序调用与返回时会自动修改 W15。但是,W15 可以被任何指令所引用,引用方式与引用所有其他W寄存器相同。这简化了堆栈指针的读、写和操作(例如,创建堆栈帧)。

注: 为了防止出现不对齐的堆栈访问, W15<0>始终清零。

复位时 W15 初始化为 0x0800。在初始化过程中,用户可以重新设定 SP,使它指向数据空间内的任何存储单元。

W14 是专用的堆栈帧指针,由 LNK 和 ULNK 指令定义。但是,W14 可以被任何指令所引用,引用方式与引用所有其他W寄存器相同。

#### 2.2.2 状态寄存器

dsPIC DSC 内核有一个 16 位状态寄存器 (SR), 其最低有效字节称为 SR 低字节 (SR Low Byte, SRL), 其最高有效字节称为 SR 高字节 (SR High Byte, SRH)。SR 寄存器组成见图 2-1。

SRL 包含所有的 DSP ALU 运算状态标志位(包括 Z 位),以及CPU中断优先级状态位IPL<2:0>和REPEAT 有效状态位 RA。在异常处理期间,SRL 与 PC 的 MSB 连接起来形成一个完整的字值,然后将该字值压入堆栈。

SR 寄存器的高字节包含 DSP 加法器 / 减法器状态位、 DO 循环有效位 (DA) 和半进位 (DC) 状态位。

#### 2.2.3 程序计数器

程序计数器为 23 位宽, bit 0 始终清零;因此, PC 能够寻址最多 4M 指令字。



### 2.3 除法支持

dsPIC DSC 具有这样的特性: 支持 16/16 位有符号小数除法运算,以及 32/16 位、16/16 位有符号和无符号整数除法运算,除法形式均为单指令迭代除法。支持以下指令和数据长度:

- 1. DIVF---16/16 有符号小数除法
- 2. DIV.sd-32/16 有符号除法
- 3. DIV. ud-32/16 无符号除法
- 4. DIV.s---16/16 有符号除法
- 5. DIV.u——16/16 无符号除法

除法指令必须在一个 REPEAT 循环内执行。任何其他执行方式(例如,一系列不连续的除法指令),将不会正常运行,因为指令流取决于 RCOUNT。除法指令不会自动设置 RCOUNT值,于是 RCOUNT必须显式地、正确地在 REPEAT指令中指定,如表 2-1 所示(REPEAT将执行目标指令{操作数的值+1}次)。 DIV/DIVF指令的 REPEAT循环计数必须设置为 18 次迭代。所以,完整的除法操作需要 19 个周期。

**注:** 除法流可以被中断。但是,用户需要恰当 地保存中断现场。

### 表 2-1: 除法指令

<u> </u>	
指令	功能
DIVF	有符号小数除法:Wm/Wn → W0 ; Rem → W1
DIV.sd	有符号除法:(Wm + 1:Wm)/Wn → W0 ; Rem → W1
DIV.s	有符号除法:Wm/Wn→W0; Rem→W1
DIV.ud	无符号除法:(Wm + 1:Wm)/Wn → W0 ; Rem → W1
DIV.u	无符号除法:Wm/Wn→W0; Rem→W1

### 2.4 DSP 引擎

DSP 引擎由一个高速 17 位 x 17 位乘法器、一个桶形移位寄存器和一个 40 位加法器 / 减法器 (两个目标累加器、舍入逻辑和饱和逻辑)组成。

dsPIC30F 器件采用单周期指令流,可以执行 DSP 指令或 MCU 指令。许多硬件资源可以被 DSP 和 MCU 指令共用。例如,指令集具有 DSP 和 MCU 乘法指令,它们使用相同的硬件乘法器。

DSP 引擎还能够执行固有的不需要其他数据的累加器 -累加器操作。这些指令是 ADD、 SUB 和 NEG。

通过 CPU 内核配置寄存器 (CORCON)中的各个位,可以选择 DSP 引擎的多种功能,功能如下:

- 1. 小数或整数 DSP 乘法 (IF)。
- 2. 有符号或无符号 DSP 乘法 (US)。
- 3. 常规或收敛舍入(RND)。
- 4. ACCA 自动饱和使能 / 禁止 (SATA)。
- 5. ACCB 自动饱和使能 / 禁止 (SATB)。
- 6. 对于写数据存储器,自动饱和使能/禁止(SATDW)。
- 7. 累加器饱和模式选择 (ACCSAT)。

注: CORCON 的组成见表 3-3。

DSP 引擎的框图如图 2-2 所示。

表 2-2: DSP 指令汇总

<u> </u>	- 14 < 12.0.
指令	代数运算
CLR	A = 0
ED	$A = (x - y)^2$
EDAC	$A = A + (x - y)^2$
MAC	A = A + (x * y)
MOVSAC	A 中内容将不发生改变
MPY	A = x * y
MPY.N	A = -x * y
MSC	A = A - x * y



#### 2.4.1 乘法器

17x17 位乘法器可以进行有符号或无符号的运算,其输出经过定标器进行换算后可支持 1.31 小数 (Q31)或 32 位整数结果。无符号操作数经过零扩展后,送入乘法器输入值的第 17 位。有符号操作数经过符号扩展,送入乘法器输入值的第 17 位。17x17 位乘法器 / 定标器的输出是 33 位值,它将被符号扩展为 40 位。整型数据的固有表示形式为有符号的二进制补码值,其中 MSb 定义为符号位。一般来说,N位二进制补码整数的范围为-2^{N-1} 到 2^{N-1} – 1。对于 16 位整数,数据范围为 -32768 (0x8000) 到 32767 (0x7FFF),包括 0 在内。对于 32 位整数,数据范围为-2,147,483,648 (0x8000 0000) 到 2,147,483,645 (0x7FFF FFFF)。

当乘法器配置为小数乘法时,数据表示为二进制补码小数,其中 MSb 定义为符号位,小数点暗含在符号位之后(QX格式)。暗含小数点的 N 位二进制补码小数的范围为 -1.0 到( $1-2^{1-N}$ )。对于 16 位小数,Q15 数据范围为 -1.0(0x8000)到 0.999969482(0x7FFF),包括 0 在内,其精度为  $3.01518x10^{-5}$ 。在小数模式下, 16x16 乘法运算将产生 1.31 乘积,其精度为  $4.65661x10^{-10}$ 。

同一个乘法器还用来支持 DSC 乘法指令,包括整数的16 位有符号、无符号和混合符号乘法。

MUL 指令可以使用字节或字长度的操作数。字节操作数 将产生 16 位结果,而字操作数将产生 32 位结果,结果 存放在W 寄存器阵列的指定寄存器中。

#### 2.4.2 数据累加器和加法器 / 减法器

数据累加器包含一个 40 位加法器 /减法器 , 它带有自动符号扩展逻辑。它可以选择两个累加器 (A或B)之一作为其累加前的源累加器和累加后的目标累加器。对于 ADD 和 LAC 指令 , 可选择通过桶形移位器在累加之前将要累加或装入的数据进行换算。

#### 2.4.2.1 加法器 / 减法器、溢出和饱和

加法器 / 减法器是一个 40 位加法器 , 一侧输入可以选择为零,而另一侧输入可以是原数据或求补后的数据。对于加法,进位 / 借位输入为高电平有效 , 另一侧输入是原数据 (没有求补的);对于减法,进位 / 借位输入为低电平有效 , 另一侧输入是求补后的数据。加法器 / 减法器产生溢出状态位 SA/SB 和 OA/OB , 这些状态位被锁存在状态寄存器中并在其中得到反映。

- 从 bit 39 溢出:这是灾难性溢出,会破坏累加器的符号位。
- 溢出到警戒位(bit 32 到 bit 39): 这是可恢复的溢出。每当警戒位彼此不完全一致时,就将把这个状态位置1。

加法器有一个额外的饱和模块,如果选取的话,饱和模块将控制累加器的数据饱和。饱和模块使用加法器的结果、上述的溢出状态位、SATA/B(CORCON<7:6>)和 ACCSAT(CORCON<4>)模式控制位,来确定何时饱和、达到何值为饱和。

状态寄存器中有6个支持饱和和溢出的位,它们是:

- 1. OA: ACCA 溢出到警戒位。
- 2. OB: ACCB 溢出到警戒位。
- SA: ACCA 已饱和 (bit 31 溢出并饱和)。
   或
   ACCA 溢出到警戒位并饱和 (bit 39 溢出并饱和)。
- SB: ACCB 已饱和 (bit 31 溢出并饱和)。
   或
   ACCB 溢出到警戒位并饱和 (bit 39 溢出并饱和)。
- 5. OAB: OA 和 OB 的逻辑或 (OR)。
- 6. SAB: SA和SB的逻辑或(OR)。

每次数据通过加法器/减法器,就会修改 OA 和 OB 位。置 1 时,它们表明最近的操作已溢出到累加器警戒位(bit 32 到bit 39)。如果 OA 和 OB 位置 1 而且 INTCON1寄存器中相应的溢出陷阱标志使能位(OVATE 和 OVBTE)置 1 的话,还可以选择用 OA 和 OB 位产生算术警告陷阱(见第5.0节"中断")。这使得用户能够立即采取措施,例如,校正系统增益。

每次数据通过加法器 / 减法器 , 就会修改 SA 和 SB 位 , 但用户只能对它们进行清零。置 1 时 , 它们表明累加器已溢出其最大范围 (对于 32 位饱和是 bit 31 , 而 40 位饱和是 bit 39 ) , 将发生饱和 (如果饱和使能的话 )。如果没有使能饱和 , SA 和 SB 置 1 默认为 bit 39 溢出 , 以此指示产生了灾难性溢出。如果 INTCON1 寄存器中的COVTE 位置 1 , 当饱和被禁止时 , SA 和 SB 位将产生算术警告陷阱。

在状态寄存器(SR)中,对于溢出和饱和状态位,可以将OA和OB的逻辑或形成OAB位,将SA和SB的逻辑或形成SAB位。这样,只需检查状态寄存器中的一个位,程序员就能判断是否有累加器溢出;检查状态寄存器中的另一个位,就可以判断是否有累加器饱和。对于通常要使用两个累加器的复数运算而言,这很有用。

#### 器件支持三种饱和和溢出模式:

- 1. bit 39 溢出和饱和:
  - 当发生 bit 39 溢出和饱和时,饱和逻辑将最大的正 9.31 值(0x7FFFFFFFFF)或最大的负 9.31 值(0x8000000000)装入目标累加器。SA或 B 位置 1 并保持直到被用户清零。这称为"超饱和",为错误数据或不可预期的算法问题(例如,增益计算)提供了保护机制。
- 2. bit 31 溢出和饱和:
  - 当发生 bit 31 溢出和饱和时,饱和逻辑将最大的正 1.31 值(0x007FFFFFFF)或最大的负 1.31 值(0x0080000000)装入目标累加器。SA或SB位置1并保持直到被用户清零。当这种饱和模式生效时,不使用警戒位(因此 OA、OB或 OAB位不会被置 1)。
- 3. bit 39 灾难性溢出

加法器的 bit 39 溢出状态位用来将 SA 或 SB 位置 1;这两位置 1后,将保持该状态直到被用户清零。不进行饱和操作,允许累加器溢出(破坏其符号位)。如果INTCON1寄存器中的COVTE位置 1,灾难性溢出会导致一个陷阱异常。

#### 2.4.2.2 累加器"回写"

MAC 类指令(MPY、MPY.N、ED 和 EDAC 除外)可以选择将累加器高位字(bit 16 到 bit 31)的舍入形式写入数据存储空间,前提是当前指令不对该累加器进行操作。通过 X 总线寻址组合的 X 和 Y 地址空间,执行回写操作。支持以下寻址模式:

- 1. W13,寄存器直接寻址: 非操作目标的累加器的舍入内容以 1.15 小数形 式写入 W13。
- 2. [W13]+=2,执行后递增的寄存器间接寻址: 非操作目标的累加器的舍入内容以1.15小数形式 写入 W13 指向的地址。然后 W13 递增 2 (对于 字写入)。

#### 2.4.2.3 含入逻辑

舍入逻辑是一个组合模块,在累加器写(存储)过程中执行常规的(有偏)或收敛的(无偏)舍入功能。舍入模式由 CORCON 寄存器中 RND 位的状态决定。它会产生一个 16 位的 1.15 数据值,该值被送到数据空间写饱和逻辑。如果指令不指明舍入,就会存储一个截取的1.15 数据值,简单地丢弃低位字。

常规舍入取累加器的 bit 15,对它进行零扩展并将扩展后的值加到 ACCxH 字(累加器的 bit 16 到 bit 31)。如果 ACCxL 字(累加器的 bit0 到 bit 15)在 0x8000 和 0xFFFF 之间(包括 0x8000),则 ACCxH 递增 1。如果 ACCxL 在 0x0000 和 0x7FFF 之间,则 ACCxH 不变。此算法的结果经过一系列随机舍入操作,值会稍稍偏大(正偏)。

除非 ACCxL 等于 0x8000, 否则收敛的(或无偏)舍入操作方式与常规舍入相同。ACCxL 等于 0x8000时,要对 ACCxH的 LSb(累加器的 bit 16)进行检测。如果它为 1, ACCxH 递增 1。如果它为 0, ACCxH 不变。假设 bit 16本身是随机的,这样的机制将消除任何可能累加的舍入偏差。

通过 X 总线 , SAC 和 SAC.R 指令将目标累加器内容的 截取 (SAC)或舍入 (SAC.R)形式存入数据存储空间 (这受数据饱和的影响,请参见第 2.4.2.4 节 "数据空间写饱和")。注意,对于 MAC 类指令,累加器回写操作将以同样的方式进行,通过 X 总线寻址组合的 DSC (X 和 Y)数据空间。对于此类指令,数据始终要进行舍入。

#### 2.4.2.4 数据空间写饱和

除了加法器/减法器饱和,对数据空间进行写操作也会饱和,但不会影响源累加器的内容。数据空间写饱和逻辑块接受来自舍入逻辑块的一个 16 位的 1.15 小数值作为输入,还接受来自源(累加器)和16 位舍入加法器的溢出状态。这些经过组合用来选择适当的1.15 小数值作为输出,写入数据存储空间中。

如果 CORCON 寄存器中的 SATDW 位置 1,将检测(经过舍入或截取后的)数据是否溢出,并进行相应的调整。如果输入数据大于 0x007FFF,则写入存储器中的数据被强制为最大的正 1.15 值,0x7FFF。如果输入数据小于 0xFF8000,则写入存储器中的数据被强制为最大的负 1.15 值,0x8000。源累加器的 MSb (bit 39)用来决定被检测的操作数的符号。

如果 CORCON 寄存器中的 SATDW 位没有置 1,则输入数据都将通过,在任何情况下都不会被修改。

#### 2.4.3 桶形移位寄存器

桶形移位寄存器在单个周期内可将数据算术或逻辑右移或左移最多 16 位。源操作数可以是两个 DSP 累加器中的任何一个或 X 总线(支持寄存器或存储器中数据的多位移位)。

移位寄存器需要一个有符号二进制值,用来确定移位操作的幅度(位数)和方向。正值将操作数右移。负值则将操作数左移。值为0则不改变操作数。

桶形移位寄存器为 40 位宽 , 于是 , 它为 DSP 移位操作提供了 40 位的结果 , 而为 MCU 移位操作提供 16 位的结果。来自 X 总线的数据在桶形移位寄存器中的存放方式是: 右移则数据存放在 bit 16 到 bit 31 , 左移则存放在 bit 0 到 bit 15。

# 3.0 存储器构成

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》(DS70157E_CN)。

### 3.1 程序地址空间

程序地址空间为 4M 指令字。它可通过 23 位 PC、表指令有效地址(Effective Address, EA)或数据空间 EA(当按照表 3-1 定义的那样,将程序空间映射到数据空间时)来寻址。注意,为了提供与数据空间寻址的兼容性,在两个连续的程序字之间,程序空间地址递增量为2。

除 TBLRD/TBLWT 指令外,对用户程序空间的所有访问限制在低4M指令字地址范围(0x000000至0x7FFFFE);TBLRD/TBLWT使用TBLPAG<7>来决定访问用户空间还是配置空间。在表3-1"读/写指令"中,bit23允许访问器件ID、用户ID和配置位;对于其他情形,bit23始终清零。

图 3-1: dsPIC30F4011/4012 的程序存储空间映射



表 3-1: 程序空间地址构成

24 (C) <del>24</del> TO	2+12=50	程序空间地址									
访问类型	访问空间	<23>	<22:16>	<15>	<14:1>	<0>					
指令访问	用户	0 PC<22:1>									
TBLRD/TBLWT	用户 (TBLPAG<7>=0)	TBL	.PAG<7:0>	数据 EA<15:0>							
TBLRD/TBLWT	配置 (TBLPAG<7>=1)	TBL	.PAG<7:0>	数据 EA<15:0>							
程序空间可视性	用户	0	PSVPAG<	数据 EA<14:0>							





#### 3.1.1 使用表指令访问程序存储器中的数据

本器件架构取指令时是取 24 位宽的程序存储器。因此,指令始终是对齐的。不过,由于器件架构是改进型哈佛架构,数据也可以出现在程序空间中。

有两种方法可以访问程序空间:通过特殊的表指令,或者通过把16K字程序空间页重新映射到数据空间的上半部分(见第3.1.2节"使用程序空间可视性访问程序存储器中的数据")。 TBLRDL 和 TBLWTL 指令提供了读或写程序空间内任何地址的低位字(lsw)的直接方法,无需通过数据空间。 TBLRDH 和 TBLWTH 指令是可以把一个程序空间字的高8位作为数据访问的惟一方法。

对于每个连续的 24 位程序字,PC 的递增量为 2。这使得程序存储器地址能够直接映射到数据空间地址。于是,程序存储器可以看作是两个 16 位字宽的地址空间,它们并排放置,具有相同的地址范围。 TBLRDL 和TBLWTL 访问存有数据低位字的空间,而 TBLRDH 和TBLWTH则访问存有数据最高字节的空间。

图 3-2 说明了如何为表操作和数据空间访问(PSV=1) 创建 EA。这里,P<23:0> 指的是程序空间字;而D<15:0> 指的是数据空间字。

器件提供了一组表指令,用来在程序空间和数据空间之间传送字节或字大小的数据(见图 3-3 和图 3-4)。

- 1. TBLRDL:表读低位字 字:读程序地址的低位字; P<15:0>映射到 D<15:0>。 字节:读程序地址的 LSB 中的一个字节; 当字节选择 = 0 时, P<7:0>映射到目标字节; 当字节选择 = 1 时, P<15:8>映射到目标字节。
- 2. **TBLWTL**:表写低位字(闪存编程的详细信息,请参见第6.0节"闪存程序存储器")。
- 3. TBLRDH:表读高位字 字:读程序地址的高位字; P<23:16>映射到 D<7:0>; D<15:8>始终=0。 字节:读程序地址的 MSB 中的一个字节; 当字节选择=0时,P<23:16>映射到目标字节; 当字节选择=1时,目标字节始终=0。
- 4. TBLWTH:表写高位字(闪存编程的详细信息,请参见第6.0节"闪存程序存储器")。





#### 3.1.2 使用程序空间可视性访问程序存储器 中的数据

可选择将数据空间的高 32 KB 映射到任何 16 K 字程序空间页。这提供了通过 X 数据空间对存储的常量数据的透明访问,而无需使用特殊指令(即 TBLRDL/H 和 TBLWTL/H 指令)。

如果数据空间 EA 的 MSb 置 1,并且程序空间可视性使能 (方法是在内核控制寄存器 CORCON 中把 PSV 位置 1)时,就能通过数据空间访问程序空间。CORCON 功能的讨论请参见第 2.4 节 "DSP 引擎"。

正在执行的指令,如果要对这个区域进行数据访问的话,就需要增加一个额外的指令周期,因为需要进行两次程序存储空间读取操作。

注意,可寻址数据空间的上半部分始终是 X 数据空间的一部分。于是,当 DSP 操作使用程序空间映射来访问这个存储区域时,Y 数据空间通常应该存放 DSP 操作的状态(可变)数据,而 X 数据空间通常应该存放系数(常量)数据。

尽管大于或等于 0x8000 的每个数据空间地址直接映射到对应的程序存储器地址(见图 3-5),但只使用 24 位程序字的低 16 位来存放数据。应该进行恰当的设置,使得对高 8 位进行访问的指令都成为非法指令,以维持器件的可靠性。关于指令编码的信息,请参见《16 位 MCU和 DSC 程序员参考手册》(DS70157E_CN)。

注意,对于每个程序存储字,PC 都将递增2,数据空间地址的低15位将直接映射到相应程序空间地址的低15位。剩下的位由程序空间可视性页寄存器(PSVPAG<7:0>)提供,如图3-5所示。

注: 在表读/写期间,暂时禁止 PSV 访问。

对于使用 PSV 而又在 REPEAT 循环之外执行的指令:

- 以下指令都需要在规定的执行时间之外额外增加一个指令周期:
  - 带数据操作数预取的 MAC 类指令
  - MOV 指令
  - MOV.D 指令
- 其他所有指令都需要在规定的指令执行时间之外额 外增加两个指令周期。

对于使用 PSV 而又在 REPEAT 循环之内执行的指令:

- 以下情况都需要在规定的指令执行时间之外额外增加两个指令周期:
  - 在第一次迭代中执行的指令
  - 在最后一次迭代中执行的指令
  - 由于中断而退出循环之前执行的指令
  - 中断得到处理后再次进入循环时执行的指令
- REPEAT 循环的所有其他各次迭代,都允许使用 PSV 访问数据的指令在一个周期内执行。



### 3.2 数据地址空间

内核具有两个数据空间。数据空间可以看作是独立的(对于某些 DSP 指令而言),或者看作是统一的线性地址范围(对于某些 MCU 指令而言)。使用两个地址发生单元(AGU)和独立的数据路径访问这两个数据空间。

### 3.2.1 数据存储空间映射

数据存储空间分为两块,X 和 Y 数据空间。这个架构的 关键之处在于,Y 空间是 X 空间的子集,Y 空间完全包含在 X 空间中。为了提供表面看似的线性寻址空间,X 和 Y 空间要有连续的地址。

在执行除 MAC 类指令之外的任何指令时,X 块由 64 KB 数据地址空间(包括全部 Y 地址)组成。在执行一条 MAC 类指令时,X 块由 64 KB 数据地址空间组成,但不包括 Y 地址块(只用来读数据)。换句话说,所有其他指令把整个数据存储空间当作一个复合的地址空间。 MAC 类指令把 Y 地址空间从数据空间中抽取出来,使用源自 W10 和 W11 的 EA 对其进行寻址。剩下的 X 数据空间则使用 W8 和 W9 来寻址。只有通过 MAC 类指令才能同时访问这两个地址空间。

数据存储空间映射如图 3-6 所示。

图 3-7 给出了对 MCU 和 DSP 指令如何访问 X 和 Y 数据空间的图形汇总。





#### 3.2.2 数据空间

X 数据空间可用于所有指令,并且支持所有寻址模式。 读数据总线和写数据总线是独立的。X 读数据总线是所 有指令的返回数据路径,它把数据空间视为组合的 X 和 Y 地址空间。对于双操作数读指令(MAC类),它还是 X 地址空间的数据路径。X 写数据总线是所有指令对数 据空间进行写操作的惟一路径。

X 数据空间还支持所有指令的模寻址,不过要受到寻址模式的限制。位反转寻址只是在写 X 数据空间时才支持。

MAC 类指令 ( CLR、ED、EDAC、MAC、MOVSAC、MPY、MPY.N和MSC )将Y数据空间与X数据空间配合使用,提供了两条并行的数据读取路径。不能通过 Y 总线进行任何写操作。 MAC 类指令使用两个专用的 W 寄存器指针W10 和 W11,它们始终寻址 Y 数据空间,与 X 数据空间独立;而 W8 和 W9 则始终寻址 X 数据空间。注意,在累加器回写期间,数据地址空间被视为 X 和 Y 数据空间的组合,从而写操作通过 X 总线进行。所以,可以写整个数据空间中的任何地址。

Y 数据空间仅用于与 MAC 类指令相关的数据预取操作。它也支持自动循环缓冲区的模寻址。当然,所有其他指令可以通过 X 数据路径把 Y 数据地址空间作为复合线性空间的一部分来进行访问。

图 3-6 给出了 X 和 Y 数据空间之间的边界定义,用户不能设定改变边界。如果 EA 指向其所在地址空间之外的数据,或者指向物理存储器之外的存储单元,将返回全零的字/字节。例如,尽管 Y 地址空间对于使用任何寻址模式的所有非 MAC 指令都是可见的,但如果一条 MAC 指令试图使用 W8 或 W9 (X 空间指针)从该空间取数据,则将返回 0x0000。

表 3-2: 非法存储器访问的后果

<u> </u>	- 3/11 / 17
试图进行的操作	返回数据
EA = 未实现的地址	0x0000
在 MAC 指令中使用 W8 或 W9 访问 Y 数据空间	0x0000
在 MAC 指令中使用 W10 或 W11 访问 X 数据空间	0x0000

所有有效地址(EA)均为 16 位宽,并且指向数据空间内的字节。所以,数据空间地址范围为64 KB或32K字。

#### 3.2.3 数据空间宽度

内核数据宽度为 16 位。所有内部寄存器均按 16 位宽的字来组织。数据存储空间以字节可寻址的 16 位宽的块来组织。

#### 3.2.4 数据对齐

为了维持与PIC[®]器件的向后兼容性,并提高数据存储空间的使用效率,dsPIC30F指令集既支持字操作,也支持字节操作。在数据存储器和寄存器中,数据按照字对齐,但是,所有数据空间 EA 都将解析为字节。数据字节读取将读取包含字节的整个字,使用任何EA的LSb来确定要选取的字节。选取的字节将存放到 X 数据路径的 LSB 中(不可能出现来自 Y 数据路径的字节访问,因为 MAC 类指令只能取整字)。这就是说,数据存储器和寄存器被组织为两个并行的字节宽的实体,它们共享(字)地址译码,但写入线独立。数据字节写操作只写阵列或寄存器中与字节地址匹配的那一侧。

这种字节可访问能力的结果是,所有的有效地址计算(包括那些由 DSP 操作产生的有效地址,它们只能是字长度的数据)在内部进行换算,以适应字对齐的存储空间。例如,内核将识别执行后修改寄存器间接寻址模式[Ws++]的结果,对于字节操作产生的值是 Ws + 1,而对于字操作产生的值是 Ws + 2。

所有字访问必须按偶数地址对齐。不支持不对齐的字数据取,所以在混合字节和字操作时,或者从 8 位 MCU代码移植时,必须要小心。如果试图进行未对齐的读或写操作,将产生地址错误陷阱。如果在读操作时产生错误,正在执行的指令将完成;而如果在写操作时产生错误,指令仍将执行,但不会进行写入。无论是哪种情况,都会产生陷阱,从而系统和/或用户能够检查地址错误发生之前的机器状态。

图 3-8: 数据对齐

	P# 10171		
,	15 <b>MSB</b>	3 7 <b>LSB</b> 0	
0001	字节 1	字节 0	0000
0003	字节 3	字节 2	0002
0005	字节 5	字节 4	0004
			='

所有装入 W 寄存器的字节都将被装入相应的 LSB 中;相应的 MSB 不变。

提供了一条符号扩展 (SE) 指令,允许用户把 8 位有符号数据转换为 16 位有符号值。或者,对于 16 位无符号数据,用户可以通过在适当地址处执行一条零扩展(ZE)指令清零任何 W 寄存器的 MSB。

尽管大多数指令能够对字或字节大小的数据进行操作,但要注意的是,部分指令(包括 DSP 指令)只对字大小的数据进行操作。

#### 3.2.5 NEAR 数据空间

X 地址存储空间中,在 0x0000 和 0x1FFF 之间保留了一个 8 KB 的 "near"数据空间,在所有存储器直接寻址指令中,可以通过一个 13 位的绝对地址字段来直接访问这个数据空间。其余的 X 地址空间和所有 Y 地址空间都是间接寻址的。此外,使用 MOV 指令可以寻址整个 X 数据空间,这支持通过 16 位地址字段进行存储器直接寻址。

#### 3.2.6 软件堆栈

dsPIC DSC 具备一个软件堆栈。 W15 用作堆栈指针。

堆栈指针总是指向第一个可用的空字,并且从低地址向高地址方向增长。它在弹出堆栈之前递减,而在压入堆栈之后递增,如图 3-9 所示。注意,对于任何 CALL 指令时的 PC 压栈,在压入堆栈之前,PC 的 MSB 要进行零扩展,从而确保了 MSB 始终是清零的。

注: 在异常处理期间,在将 PC 压入堆栈之前, 要先将 PC 的 MSB 与 SRL 寄存器组合在 一起。 堆栈指针限制寄存器(SPLIM)与堆栈指针相关。复位时 SPLIM 不被初始化。与堆栈指针的情况一样,SPLIM<0>被强制为 0,因为所有的堆栈操作必须是字对齐的。每当使用 W15 作为源指针或目标指针产生有效地址(EA)时,将与 SPLIM 寄存器中的值进行比较。如果堆栈指针(W15)的内容与 SPLIM 寄存器的内容相等,则执行压栈操作时不产生堆栈错误陷阱。但在随后的压栈操作时将会产生堆栈错误陷阱。这样的话,当堆栈增长超过 RAM 中地址 0x2000 时,如果要想产生堆栈错误陷阱,用值 0x1FFE 来初始化 SPLIM 即可。

类似地,当堆栈指针地址小于 0x0800 时,就会产生堆栈指针下溢(堆栈错误)陷阱,从而避免了堆栈干扰特殊功能寄存器(Special Function Register,SFR)空间

在对 SPLIM 寄存器进行写操作之后,不应紧跟着使用W15 进行间接读操作的指令。

图 3-9: CALL 堆栈帧



表 3-3:	Þ	内核寄存器	器映射 ⁽¹⁾															
SFR 名称	地址 (首地 址)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
W0	0000								W0/WR	EG								0000 0000 0000 000
W1	0002								W1									0000 0000 0000 000
W2	0004								W2									0000 0000 0000 000
W3	0006								W3									0000 0000 0000 000
W4	8000		W4												0000 0000 0000 000			
W5	000A								W5									0000 0000 0000 000
W6	000C								W6									0000 0000 0000 000
W7	000E								W7									0000 0000 0000 000
W8	0010								W8									0000 0000 0000 000
W9	0012								W9									0000 0000 0000 000
W10	0014								W10									0000 0000 0000 000
W11	0016								W11									0000 0000 0000 000
W12	0018								W12									0000 0000 0000 0000
W13	001A								W13									0000 0000 0000 000
W14	001C								W14									0000 0000 0000 000
W15	001E								W15									0000 1000 0000 000
SPLIM	0020								SPLIN	Л								0000 0000 0000 000
ACCAL	0022								ACCA	L								0000 0000 0000 0000
ACCAH	0024								ACCA	Н								0000 0000 0000 0000
ACCAU	0026			符号	扩展(AC	CA<39>)	)						ACC	AU				0000 0000 0000 000
ACCBL	0028								ACCB	L								0000 0000 0000 000
ACCBH	002A								ACCB	Н								0000 0000 0000 000
ACCBU	002C			符号	扩展(AC	CB<39>)	)						ACC	BU				0000 0000 0000 000
PCL	002E								PCL									0000 0000 0000 000
PCH	0030	_	_	_	_	_	_	_	_	_				PCH				0000 0000 0000 000
TBLPAG	0032	_	_		_	_	_	_	_				TBLF	PAG				0000 0000 0000 0000
PSVPAG	0034	_		_		_		_	_				PSVI	PAG				0000 0000 0000 0000
RCOUNT	0036								RCOU	NT								uuuu uuuu uuuu uuu
DCOUNT	0038								DCOU	NT								սսսս սսսս սսսս սսսւ
DOSTARTL	003A		DOSTARTL 0										uuuu uuuu uuuu uuu					
DOSTARTH	003C	_	_	_	_	_	_	_		_			D	OSTARTH				0000 0000 0uuu uuu
DOENDL	003E		DOENDL 0										uuuu uuuu uuuu uuu					
DOENDH	0040	DOENDH										0000 0000 0uuu uuu						
SR	0042	OA	ОВ	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000 0000 0000 0000
CORCON	0044	_	_	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000 0000 0010 0000
MODCON	0046	XMODEN	YMODEN	_	_		BWM	<3:0>			YWI	M<3:0>			XWM	<3:0>		0000 0000 0000 0000
XMODSRT	0048							X	S<15:1>								0	uuuu uuuu uuuu uuu(

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

YMODEND

**XBREV** 

DISICNT

П	表 3-3:	Þ	核寄存	器映射 ⁽¹⁾	(续)	)										
	SFR 名称	地址 (首地 址)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2
	XMODEND	004A	XE<15:1>													
	YMODSRT	004C	YS<15:1>													

YE<15:1>

XB<14:0>

DISICNT<13:0>

图注: u = 未初始化位; — = 未实现位,读为 0

BREN

004E

0050

0052

1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

Bit 1

Bit 0

0

复位状态

uuuu uuuu uuuu uuu1

uuuu uuuu uuuu uuu0

uuuu uuuu uuuu uuu1

uuuu uuuu uuuu uuuu

0000 0000 0000 0000

注:

### 4.0 地址发生器单元

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》(DS70157E_CN)。

dsPIC DSC 内核包含两个独立的地址发生器单元:X AGU 和 Y AGU。Y AGU 仅支持 DSP MAC 类指令的字长度数据读取。 dsPIC 数字信号控制器 AGU 支持如下三种数据寻址类型:

- 线性寻址
- 模 (循环)寻址
- 位反转寻址

线性寻址和模数据寻址模式可应用于数据空间或程序空间。位反转寻址只能用于数据空间地址。

### 4.1 指令寻址模式

表 4-1 给出了基本的寻址模式,这些寻址模式经过优化可以支持各指令的具体功能。MAC 类指令中提供的寻址模式与其他指令类型中的寻址模式略有不同。

### 4.1.1 文件寄存器指令

大多数文件寄存器指令使用一个 13 位地址字段(f)来直接寻址数据存储器中的前 8192 字节(near 数据空间)。大多数文件寄存器指令使用工作寄存器 W0,W0在这些指令中表示为 WREG。目标寄存器通常是同一个文件寄存器或 WREG(MUL 指令除外),它把结果写入寄存器或寄存器对。使用 MOV 指令能够获得更大的灵活性,可以在文件寄存器操作期间访问整个数据空间。

### 4.1.2 MCU 指令

三操作数 MCU 指令的形式是:

操作数 3 = 操作数 1< 功能 > 操作数 2

其中,操作数1始终是工作寄存器(即,寻址模式只能是寄存器直接寻址),称为Wb。操作数2可以是一个W寄存器,取自数据存储器或一个5位立即数。结果可以存放在W寄存器或地址单元中。MCU指令支持以下寻址模式:

- 寄存器直接寻址
- 寄存器间接寻址
- 执行后修改的寄存器间接寻址
- 执行前修改的寄存器间接寻址
- 5 位或 10 位立即数寻址

注: 并非所有指令都支持上述所有的寻址模式。各条指令可能支持这些寻址模式中的某些模式。

### 表 4-1: 支持的基本寻址模式

寻址模式	说明
文件寄存器直接寻址	明确指定文件寄存器的地址。
寄存器直接寻址	直接访问寄存器的内容。
寄存器间接寻址	Wn 的内容形成 EA。
执行后修改的寄存器间接寻址	Wn 的内容形成 EA。然后用一个常量值来修改 Wn (递增或递减 )。
执行前修改的寄存器间接寻址	先用一个有符号常量值修改 Wn (递增或递减), 再由此时的 Wn 内容形成EA。
带寄存器偏移量的寄存器间接寻址	Wn 和 Wb 的和形成 EA。
带立即数偏移量的寄存器间接寻址	Wn 和立即数的和形成 EA。

### 4.1.3 传送指令和累加器类指令

与其他指令相比,传送指令和 DSP 累加器类指令提供了更为灵活的寻址模式。除了大多数 MCU 指令支持的寻址模式以外,传送和累加器指令还支持带寄存器偏移量的寄存器间接寻址模式,这也叫做寄存器变址寻址模式。

注: 对于 MOV 指令,指令中指定的寻址模式对于源寄存器和目标寄存器 EA,可以是不同的。然而,4位 Wb(寄存器偏移量)字段为源寄存器和目标寄存器所共用(但通常只由其中之一使用)。

概括地说,传送和累加器指令支持以下寻址模式:

- 寄存器直接寻址
- 寄存器间接寻址
- 执行后修改的寄存器间接寻址
- 执行前修改的寄存器间接寻址
- 带寄存器偏移量的寄存器间接寻址 (变址寻址)
- 带立即数偏移量的寄存器间接寻址
- 8 位立即数寻址
- 16 位立即数寻址

注: 并非所有指令都支持上述所有的寻址模式。各条指令可能支持这些寻址模式中的某些模式。

### 4.1.4 MAC 指令

双源操作数 DSP 指令(CLR、ED、EDAC、MAC、MPY、MPY、N、MOVSAC 和MSC),也叫做 MAC 指令,它们使用一组简化的寻址模式,允许用户通过寄存器间接寻址表有效地对数据指针进行操作。

双源操作数预取寄存器必须是集合 {W8, W9, W10, W11} 的成员。对于数据读取操作, W8 和 W9 始终用于 X RAGU, 而 W10 和 W11 始终用于 Y AGU。从而,产生的有效地址(EA)(无论是在修改之前还是之后),对于 W8 和 W9 必须是 X 数据空间中的有效地址,对于 W10 和 W11 则必须是 Y 数据空间中的有效地址。

注: 带寄存器偏移量的寄存器间接寻址仅可用于 W9 (在 X 数据空间中)和 W11 (在 Y 数据空间中)。

概括地说, MAC 类指令支持以下寻址模式:

- 寄存器间接寻址
- 执行后修改 (修改量为2)的寄存器间接寻址
- 执行后修改 (修改量为 4)的寄存器间接寻址
- 执行后修改 (修改量为 6)的寄存器间接寻址
- 带寄存器偏移量的寄存器间接寻址 (变址寻址)

### 4.1.5 其他指令

除了上述的各种寻址模式之外,一些指令使用各种长度的立即数。例如,BRA(转移)指令使用 16 位有符号立即数常量来直接指定转移的目标,而 DISI 指令则使用一个 14 位无符号立即数字段。在一些指令中,例如 ADD Acc,操作数的来源和运算结果已经暗含在操作码中。某些操作,例如 NOP,没有任何操作数。

### 4.2 模寻址

模寻址是一种使用硬件来自动支持循环数据缓冲区的方法。目的是在执行紧密循环代码时 (这在许多 DSP 算法中很典型) ,不需要用软件来执行数据地址边界检查。

可以在数据空间或程序空间中进行模寻址 (因为这两种空间的数据指针机制本质上是相同的)。每个 X (也提供指向程序空间的指针)和 Y 数据空间中都可支持一个循环缓冲区。模寻址可以对任何 W 寄存器指针进行操作。然而,最好不要将 W14 或 W15 用于模寻址,因为这两个寄存器分别用作堆栈帧指针和堆栈指针。

总的来说,任何特定的循环缓冲区只能配置为单向工作,因为根据缓冲区的方向,对缓冲区起始地址(对于递增缓冲区)或结束地址(对于递减缓冲区)有某些限制。

使用限制的惟一例外是那些长度为 2 的幂的缓冲区。这些缓冲区满足起始和结束地址判据,它们可以双向工作(即,在低地址边界和高地址边界上都将进行地址边界检查)。

### 4.2.1 起始地址和结束地址

模寻址机制要求指定起始和结束地址,并将它们装入 16 位模缓冲区地址寄存器中:XMODSRT、XMODEND、YMODSRT和YMODEND(见表 3-3)。

注: Y空间模寻址的EA计算使用字长度的数据 (每个EA的LSb始终清零)。

循环缓冲区的长度没有直接指定。它由相应的起始和结束地址之差决定。循环缓冲区最大长度为32K字(64KB)。

### 4.2.2 W 地址寄存器选择

模寻址和位反转寻址控制寄存器 MODCON<15:0> 包含 使能标志以及指定 W 地址寄存器的 W 寄存器字段。 XWM 和 YWM 字段选择对哪些寄存器进行模寻址。如果 XWM = 15,则禁止 X RAGU 和 X WAGU 模寻址。类似地,如果 YWM = 15,则禁止 Y AGU 模寻址。

要对其进行模寻址的X地址空间指针W寄存器(XWM)存储在 MODCON<3:0>中(见表 3-3)。当 XWM 被设置为除 15 之外的任何值且 XMODEN 位(MODCON<15>)置1时,X数据空间的模寻址被使能。

要进行模寻址的Y地址空间指针W寄存器(YWM)存储在MODCON<7:4>中。当YWM被设置为除15之外的任何值且YMODEN位(MODCON<14>)置1时,Y数据空间的模寻址被使能。



### 4.2.3 模寻址的应用

模寻址可以应用于任何与 W 寄存器相关的有效地址 (EA)计算中。重要的是要意识到,地址边界检查功能不仅会检查地址是否正好在地址边界上,而且会检查地址是否小于或大于上限 (对于递增缓冲区)、是否低于下限 (对于递减缓冲区)。因此,地址变化可能会越过边界,但仍然可以正确调整。

注: 只有在使用执行前修改或执行后修改寻址模式来计算有效地址时,模修正有效地址才被写回寄存器。如果使用了地址偏移量(例如,[W7+W2]),会进行模地址修正,但寄存器的内容保持不变。

### 4.3 位反转寻址

位反转寻址用来简化基 2 FFT 算法的数据重新排序。它为 X AGU 所支持,仅限于数据写入。

地址修改量可以是常数或寄存器的内容,可视为将其位顺序反转。源地址和目标地址仍然是正常的顺序。于是,惟一需要反转的操作数就是地址修改量。

### 4.3.1 位反转寻址的实现

当发生以下情况时,使能位反转寻址:

- 1. MODCON 寄存器中 BWM (W 寄存器选择)的 值是除 15 以外的任何值 (不能使用位反转寻址 访问堆栈),且
- 2. XBREV 寄存器中的 BREN 位置 1,且
- 3. 使用的寻址模式是预递增或后递增的寄存器间接 寻址模式。

如果位反转缓冲区的长度为  $M = 2^N$  字节,则数据缓冲区起始地址的最后" N" 位必须为零。

XB<14:0> 是位反转地址修改量或"中心点"(pivot point),通常是一个常数。对于 FFT 计算,其值等于 FFT 数据缓冲区长度的一半。

注: 所有位反转 EA 的计算都使用字长度数据 (每个 EA 的 LSb 始终清零)。为了产生兼 容(字节)地址,要相应地调整 XB 的值。

使能位反转寻址时,仅对预递增或后递增的寄存器间接寻址模式、且仅对字长度数据写入,才会进行位反转寻址。对于任何其他寻址模式或对于字节长度数据,不会进行位反转寻址,而是生成正常的地址。在进行位反转寻址时,W 地址指针的增量将始终加上地址修改量(XB),与寄存器间接寻址模式相关的偏移量将被忽略。此外,由于要求是字数据,EA的LSb被忽略(且始终清零)。

注: 不应同时使能模寻址和位反转寻址。如果用户试图这么做的话,对于 X WAGU,位反转寻址将优先, X WAGU 模寻址将被禁止。然而,在 X RAGU 中,模寻址继续起作用。

如果通过将 BREN 位(XBREV<15>)置 1 使能了位反转寻址,那么,在写 XBREV 寄存器之后,不应立即进行要使用被指定为位反转指针的 W 寄存器的间接读操作。

### 图 4-2: 位反转地址示例



表 4-2: 位反转地址序列 (16 项)

		IE	常地址		位反转地址								
А3	A2	<b>A</b> 1	Α0	十进制	А3	A2	<b>A</b> 1	A0	十进制				
0	0	0	0	0	0	0	0	0	0				
0	0	0	1	1	1	0	0	0	8				
0	0	1	0	2	0	1	0	0	4				
0	0	1	1	3	1	1	0	0	12				
0	1	0	0	4	0	0	1	0	2				
0	1	0	1	5	1	0	1	0	10				
0	1	1	0	6	0	1	1	0	6				
0	1	1	1	7	1	1	1	0	14				
1	0	0	0	8	0	0	0	1	1				
1	0	0	1	9	1	0	0	1	9				
1	0	1	0	10	0	1	0	1	5				
1	0	1	1	11	1	1	0	1	13				
1	1	0	0	12	0	0	1	1	3				
1	1	0	1	13	1	0	1	1	11				
1	1	1	0	14	0	1	1	1	7				
1	1	1	1	15	1	1	1	1	15				

表 4-3: XBREV 寄存器的位反转地址修改量

代 10: 八口に 10 間間 は 八下に 10 回り 1	
缓冲区大小 (字)	XB<14:0> 位反转地址修改量 ⁽¹⁾
32768	0x4000
16384	0x2000
8192	0x1000
4096	0x0800
2048	0x0400
1024	0x0200
512	0x0100
256	0x0080
128	0x0040
64	0x0020
32	0x0010
16	0x0008
8	0x0004
4	0x0002
2	0x0001

注 1: 缓冲区大小的修改量大于 1024 字将超出 dsPIC30F4011/4012 器件上的可用数据存储空间。

注:

### 5.0 中断

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》(DS70157E_CN)。

dsPIC30F4011/4012 有 30 个中断源和 4 个处理器异常 (陷阱),它们必须按照优先级机制来进行仲裁。

CPU 负责读取中断向量表 (Interrupt Vector Table, IVT),并把中断向量中的地址传送给程序计数器。中断向量从程序数据总线向程序计数器的传送,是经由程序计数器输入侧 24 位宽的多路开关来进行的。

中断向量表(IVT)和备用中断向量表(AIVT)的位置 靠近程序存储器的开始(0x000004)。 IVT 和 AIVT 如 图 5-1 所示。

在中断和处理器异常提交给处理器内核之前,中断控制器负责它们的预处理。使用集中式的特殊功能寄存器对外设中断和陷阱进行允许、优先级分配和控制:

- IFS0<15:0>、IFS1<15:0> 和 IFS2<15:0> 这三个寄存器中保存所有的中断请求标志。这些标 志由其对应的外设或外部信号置 1 , 标志的清除则 通过软件完成。
- IEC0<15:0>、IEC1<15:0> 和 IEC2<15:0> 这三个寄存器中保存所有的中断允许控制位。这些控制位用来单独允许来自外设或外部信号的中断。
- IPC0<15:0>...IPC11<7:0> 与这些中断中的每一个中断有关的用户可分配优先 级,集中存放在这 12 个寄存器中。
- IPL<3:0>
   当前 CPU 优先级显式地存放在 IPL 位中。 IPL<3>
   在 CORCON 寄存器中,而 IPL<2:0>则存放在处

理器内核的状态寄存器(SR)中。

• INTCON1<15:0> 和 INTCON2<15:0> 全局中断控制功能由这两个寄存器提供。 INTCON1 包含处理器异常的控制和状态标志。 INTCON2 寄存器控制外部中断请求信号的行为和 AIVT 的使用。

注: 当中断条件产生时,不管相应的中断允许 位状态如何,中断标志位都将置1。用户软 件应在允许一个中断前,先将相应的中断 标志位清零。

用户可以通过IPCx寄存器,为所有中断源分配7个优先级中的一个,优先级从1到7。每个中断源都与一个中断向量相关,如表5-1所示。优先级7和1分别代表最高和最低的可屏蔽优先级。

注: 中断源优先级指定为 0,等同于禁止该中断

如果 NSTDIS 位(INTCON1<15>)置 1,则禁止中断 嵌套。因此,如果正在处理一个中断,将禁止处理新的 中断,即使新中断的优先级比当前正在处理的中断优先 级高。

### 注: 一旦NSTDIS位置为1,IPL位就变为只读。

某些中断具有专门的控制位,用于控制诸如边沿或电平触发中断、电平变化中断这样的功能。这些功能的控制仍然由产生中断的外设模块负责。

对于某些指令,在其执行期间如果 DISI 位 (INTCON2<14>)保持置1的话,那么可以用 DISI 指令来禁止优先级为6或更低的中断的处理。

处理中断时,PC 中装入存放在程序存储器中相应中断向量存储单元中的地址。IVT 中有 63 个不同的向量(见图 5-2)。这些向量存放在程序存储器从 0x000004 到0x00000FE 的存储单元中(见图 5-2)。这些存储单元中存有 24 位地址,为了保持鲁棒性,如果在正常执行期间PC 试图取任何这些字的话,就会产生地址错误陷阱。这避免了执行随机数据;PC 递减时意外进入向量空间、意外地把数据空间地址映射到了向量空间,或者 PC 到达可用程序存储空间的末尾继而返回到0x000000,都将执行随机数据。执行 GOTO 指令跳转到向量空间,也将产生地址错误陷阱。

### 5.1 中断优先级

对于每个中断源,用户可分配中断优先级位 (IP<2:0>) 位于 IPCx 寄存器中每个半字节的最低 3 位中。每个半字节的 bit 3 未使用,读为 0。这些位定义了用户分配给特定中断的优先级。

注: 用户可分配的优先级为从0到7,0是最低优先级、7是最高优先级。

由于可能会有多个中断请求源被分配了同一个特定的用户分配优先级,所以提供了一种方法在给定优先级内指定优先级。这种方法称为"自然顺序优先级"。

自然顺序优先级由中断在向量表中的位置决定;只有在具有相同用户分配优先级的多个中断同时等待处理时,自然顺序优先级才会影响中断操作。

表 5-1 列出了 dsPIC DSC 的中断编号和中断源,以及相关的向量编号。

- 注 1: 自然顺序优先级机制以 0 为最高优先级 , 以 53 为最低优先级。
  - 2: 自然顺序优先级编号与 INT 编号相同。

用户可以为每个中断分配 7 个优先级之一,这意味着用户可以为具有较低自然顺序优先级的中断分配一个极高的总优先级。例如,可将 PLVD (低电压检测)的优先级分配为 7。INTO(外部中断 0)可以分配为优先级 1,这样,它的有效优先级将非常低。

表 5-1: 中断向量表

INT 编号	向量 编号	中断源
最高自然順	<b>顶序优先级</b>	
0	8	INT0 外部中断 0
1	9	IC1—— 输入捕捉 1
2	10	OC1—— 输出比较 1
3	11	T1——Timer1
4	12	IC2 输入捕捉 2
5	13	OC2—— 输出比较 2
6	14	T2——Timer2
7	15	T3——Timer3
8	16	SPI1
9	17	U1RX——UART1 接收器
10	18	U1TX——UART1 发送器
11	19	ADC——ADC 转换完成
12	20	NVM——NVM 写入完成
13	21	SI2C——I ² C™ 从中断
14	22	MI2C——I ² C 主中断
15	23	输入电平变化中断
16	24	INT1—— 外部中断 1
17	25	IC7—— 输入捕捉 7
18	26	IC8—— 输入捕捉 8
19	27	OC3—— 输出比较 3
20	28	OC4—— 输出比较 4
21	29	T4——Timer4
22	30	T5——Timer5
23	31	INT2—— 外部中断 2
24	32	U2RX——UART2 接收器
25	33	U2TX——UART2 发送器
26	34	保留
27	35	C1——CAN1 的组合 IRQ
28	36	保留
29	37	保留
30	38	保留
31	39	保留
32	40	保留
33	41	保留
34	42	保留
35	43	保留
36	44	保留
37	45	保留
38	46	保留
39	47	PWM——PWM 周期匹配
40	48	QEI——QEI 中断
41	49	保留
42	50	保留
43	51	FLTA——PWM 故障 A
44	52	保留
45-53	53-61	(保留)
	最值	低自然顺序优先级

### 5.2 复位过程

复位不是真正的异常,因为复位过程中并不涉及中断控制器。在响应强制清零 PC 的复位时,处理器初始化其寄存器。然后,处理器从单元 0x000000 开始执行程序。一条 GOTO 指令存放在第一个程序存储单元中,紧跟着的是 GOTO 指令的地址目标。处理器执行 GOTO,跳转到指定地址,然后开始指定目标(起始)地址处的操作。

### 5.2.1 复位的来源

有 5 种错误源会引起器件复位。

- 看门狗定时器超时: 看门狗定时器已超时,表明处理器不再执行正确的 代码流。
- 未初始化的 W 寄存器陷阱: 试图把未初始化的 W 寄存器用作地址指针将导致 复位。
- 非法指令陷阱: 试图执行任何未使用的操作码,将产生非法指令陷阱。注意,如果由于指令流改变而在非法指令执行之前就被从指令流中舍弃的话,取非法指令并不产生非法指令陷阱。
- 欠压复位(BOR):
   检测到可能导致器件故障的电源电压短暂降低。
- 陷阱锁定: 多个并发的陷阱条件将导致复位。

### 5.3 陷阱

注:

可以将陷阱看作不可屏蔽中断,表明出现软件或硬件错误,陷阱遵循预定义的优先级,如图 5-1 所示。陷阱旨在为用户提供一种方法,修正在调试和在应用中工作时的错误操作。

如果用户不想在出现陷阱错误条件时采取 纠正措施,则必须在这些向量中装入只包 含 RESET 指令的默认陷阱处理程序的地 址。否则,如果调用了包含非法地址的向 量,将产生地址错误陷阱。

注意,很多陷阱条件只有在发生的时候才能检测到。因此,在陷阱异常处理之前允许有问题的指令完成执行。如果用户选择从错误中恢复,可能不得不修正导致陷阱的错误操作的结果。

陷阱有 8 个固定的优先级, 优先级 8 到优先级 15, 这意味着在陷阱处理期间, IPL3 始终置 1。

如果用户当前不在执行陷阱处理,而将 IPL<3:0> 位设置为 0111 (优先级 7),这样就禁止了所有中断,但仍然能够处理陷阱。

### 5.3.1 陷阱的来源

下列陷阱的优先级依次递增。但是,由于所有陷阱都可以嵌套,优先级的作用很小。

### 5.3.1.1 数学错误陷阱

在以下四种情况下,产生数学错误陷阱:

- 如果试图进行以零作除数的除法操作,它将在周期边界处中止,并产生陷阱。
- 2. 如果使能的话,当对累加器 A 或 B 进行的算术操作导致 bit 31 溢出且没有使用累加器警戒位时,将产生数学错误陷阱。
- 3. 如果使能的话,当对累加器 A 或 B 进行的算术操作导致 bit 39 灾难性溢出且所有饱和被禁止时,将产生数学错误陷阱。
- 如果移位指令中指定的移位位数大于允许的最大 移位位数,将产生陷阱。

### 5.3.1.2 地址错误陷阱

当发生任何下列情形时,将产生陷阱:

- 1. 试图访问不对齐的数据字。
- 2. 试图从未实现的数据存储单元取数据。
- 3. 试图从未实现的程序存储单元取数据。
- 4. 试图从向量空间取指令。

注: 在 MAC 类指令中,数据空间被分为 X 数据空间和 Y 数据空间,未实现的 X 空间包括所有 Y 空间,而未实现的 Y 空间包括所有 X 空间。

- 5. 执行"BRA #literal"指令或"GOTO #literal"指令,其中literal是未实现的程序存储器地址。
- 6. 在将 PC 修改为指向未实现的程序存储器地址后 执行指令。通过将值装入堆栈并执行 RETURN 指 令可以修改 PC。

### 5.3.1.3 堆栈错误陷阱

该陷阱在以下条件下产生:

- 1. 在堆栈指针中装入了一个大于堆栈限制的值(堆 栈溢出);堆栈限制值用户可编程,存放在 SPLIM 寄存器中。
- 2. 堆栈指针装入了一个小于 0x0800 的值 (简单堆 栈下溢)。

#### 5.3.1.4 振荡器故障陷阱

如果外部振荡器出现故障,器件使用备用的内部 RC 振荡器工作,就会产生振荡器故障陷阱。

### 5.3.2 硬陷阱和软陷阱

在同一周期内可能会产生多个陷阱(例如,把不对齐的字写入堆栈中的溢出地址)。这时,图 5-2 所示的固定优先级就会起作用;为了完全纠正错误,这可能需要用户检查是否有其他等待处理的陷阱。

"软"陷阱包括优先级8到11的异常(含)。算术错误陷阱(优先级11)就属于这一类陷阱。

" 硬 " 陷阱包括优先级 12 到 15 的异常 (含)。地址错误 (优先级 12)、堆栈错误 (优先级 13)和振荡器错误 (优先级 14)陷阱就属于这一类。

每个硬陷阱产生时,在执行任何代码之前,必须先对它进行响应。在优先级较高的陷阱正在等待处理、被响应或正在处理过程中时,如果产生了优先级较低的硬陷阱,就会产生硬陷阱冲突。

器件在硬陷阱冲突时自动复位。复位发生时,把TRAPR状态位(RCON<15>)置1,从而可用软件检测到该条件。



### 5.4 中断过程

在每个指令周期的开始,IFSx 寄存器都会采样所有的中断事件标志。IFSx 寄存器中标志位等于 1 , 表明有等待处理的中断请求(IRQ)。如果中断允许(IECx)寄存器中相应的位置 1 , 则 IRQ 会导致中断产生。在余下的指令周期中,将评估所有待处理中断请求的优先级。

如果有待处理的 IRQ,它的优先级比 IPL 位中的当前处理器优先级高,则处理器将被中断。

随即,处理器将把当前程序计数器和处理器状态寄存器的低字节(SRL)压入堆栈,如图 5-2 所示。状态寄存器低字节包含中断周期开始之前的处理器优先级。然后,处理器把中断的优先级装入 STATUS 寄存器。这将禁止所有低优先级的中断,直到中断服务程序(Interrupt Service Routine,ISR)完成为止。

图 5-2: 中断堆栈帧



- 注 1:用户始终能通过把一个新值写入 SR 来降低优先级。在降低处理器中断优先级之前,为了避免重复中断,中断服务程序必须把 IFSx寄存器中的中断标志位清零。
  - 2:在处理中断时,IPL3位(CORCON<3>) 始终被清零。它仅在陷阱执行期间置 1。

RETFIE (从中断返回)指令将把程序计数器和状态寄存器内容弹出堆栈,使处理器返回到中断处理之前的状态。

### 5.5 备用中断向量表

在程序存储器中,中断向量表(IVT)之后是备用中断向量表(AIVT),如图 5-1 所示。INTCON2 寄存器中的 ALTIVT 位控制对备用中断向量表的访问。如果ALTIVT位置1,则所有的中断和异常处理都将使用备用向量,而不是默认向量。备用向量与默认向量的组织方式相同。AIVT提供了一种在应用和支持环境之间切换的方法,从而支持仿真和调试功能,而无需重新设定中断向量。这个特性也支持运行时在不同应用之间切换,以便评估各种软件算法。

如果不需要 AIVT,分配给 AIVT 的程序存储空间可以作其他用途。 AIVT 不是受保护的区域,用户可以对其自由编程。

### 5.6 快速现场保护

可以使用影子寄存器来保存现场。为 SR 中的 DC、N、OV、Z和C位,以及寄存器 W0 到 W3 提供了影子寄存器。影子寄存器深度仅为一级。只能使用 PUSH.S 和 POP.S 指令来访问影子寄存器。

当处理器转移到中断向量开始处理中断时,可以使用 PUSH.S 指令,把上述寄存器的当前值保存到它们对应 的影子寄存器中去。

如果某个优先级的 ISR 使用 PUSH.S 和 POP.S 指令来快速保存现场,那么优先级更高的 ISR 就不应再使用这两条指令。如果优先级较高的 ISR 使用了快速现场保护,那么在优先级较低的中断处理期间,用户必须保存关键寄存器。

### 5.7 外部中断请求

中断控制器支持 3 个外部中断请求信号,INTO-INT2。 这些输入是边沿敏感的;它们需要从低至高或从高至低 的跳变来产生中断请求。 INTCON2 寄存器的 3 个位 (INT0EP-INT2EP) 用于选择边沿检测电路的极性。

### 5.8 从休眠和空闲中唤醒

如果产生中断时器件处于休眠或空闲模式,中断控制器可以用来把处理器从休眠或空闲模式中唤醒。

如果中断控制器收到已允许的中断请求,且中断请求优先级足够高的话,则标准中断请求将提交给处理器。同时,处理器将从休眠或空闲中唤醒,开始执行处理中断请求所需的中断服务程序(ISR)。

中断控制器寄存器映射 (1) 表 5-2:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复	立状态
INTCON1	0080	NSTDIS	_	1		ı	OVATE	OVBTE	COVTE		1	-	MATHERR	ADDRERR	STKERR	OSCFAIL	1	0000 0000	0 0000 0000
INTCON2	0082	ALTIVT	DISI		_	-	_	_	_	_	I	1	-	_	INT2EP	INT1EP	INT0EP	0000 0000	0 0000 0000
IFS0	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INT0IF	0000 0000	0 0000 0000
IFS1	0086	_	_		_	C1IF	_	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	IC8IF	IC7IF	INT1IF	0000 0000	0 0000 0000
IFS2	0088	_	_		_	FLTAIF	_		QEIIF	PWMIF	-	_	_	_	_	_	-	0000 0000	0 0000 0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INT0IE	0000 0000	0 0000 0000
IEC1	008E	_	_	_	_	C1IE	_	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	IC8IE	IC7IE	INT1IE	0000 000	0 0000 0000
IEC2	0090	_	_	_	_	FLTAIE	_	_	QEIIE	PWMIE	_	_	_	_	_	_	_	0000 000	0 0000 0000
IPC0	0094	_	٦	Γ1IP<2:0>	,		C	OC1IP<2:0	>	_		IC1IP<	2:0>	_	1	NT0IP<2:0>	>	0100 010	0 0100 0100
IPC1	0096	_	Т	31P<2:0	>			T2IP<2:0>		_		OC2IP<	2:0>	_		IC2IP<2:0>		0100 010	0 0100 0100
IPC2	0098	_	P	ADIP<2:0>	>		U	1TXIP<2:0	)>	_		U1RXIP	<2:0>	_	5	SPI1IP<2:0>	>	0100 010	0 0100 0100
IPC3	009A	_	C	CNIP<2:0:	>		N	112CIP<2:0	>	_		SI2CIP<	:2:0>	_	١	NVMIP<2:0>	>	0100 010	0 0100 0100
IPC4	009C	_	0	C3IP<2:0	>		ı	C8IP<2:0>	•	_		IC7IP<	2:0>	_	1	NT1IP<2:0>	>	0100 010	0 0100 0100
IPC5	009E	_	IN	NT2IP<2:0	>			T5IP<2:0>		_		T4IP<2	2:0>	_	(	OC4IP<2:0>	•	0100 010	0 0100 0100
IPC6	00A0	_	(	C1IP<2:0>	>		_	_	_	_		U2TXIP	<2:0>	_	U	12RXIP<2:0	>	0100 000	0 0100 0100
IPC7	00A2	_	_		_		_	_	_	_	_	_	_	_	_	_	_	0000 0000	0 0000 0000
IPC8	00A4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000 000	0 0000 0000
IPC9	00A6	_	P۱	WMIP<2:0	)>		_	_		_	_	_		_	_	_		0100 000	0 0100 0100
IPC10	00A8	_	Fl	_TAIP<2:0	)>	_	_	_	_	_	-	-	_	_		QEIIP<2:0>		0100 000	0 0000 0100
IPC11	00AA	_	_		_				_		-	-		_	_	_	-	0000 000	0 0000 0000

图注:

: — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。

### 6.0 闪存程序存储器

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC 程序员参考手册》

dsPIC30F 系列器件包含用于执行用户代码的内部闪存程序存储器。用户可以使用以下两种方法对闪存程序存储器编程:

(DS70157E_CN)。

- 1. 在线串行编程 (ICSP™)
- 2. 运行时自编程 (RTSP)

### 6.1 在线串行编程 (ICSP)

dsPIC30F 器件可以在最终的应用电路中进行串行编程。只需要 5 根线即可完成这一操作,其中编程时钟线和编程数据线(名称分别为 PGC 和 PGD)各一根,其余 3 根分别是电源线(VDD)、接地线(VSS)和主复位线(MCLR)。这允许用户在生产电路板时使用未编程器件,仅在产品交付之前才对数字信号控制器进行编程,从而可以使用最新版本的固件或者定制固件进行编程。

### 6.2 运行时自编程 (RTSP)

使用 TBLRD (表读)和 TBLWT (表写)指令来实现 RTSP。

使用 RTSP,用户可以一次擦除 32 个指令字(96 字节)的程序存储单元,一次可写入 32 个指令字(96 字节)的程序存储数据。

### 6.3 表指令操作汇总

TBLRDL 和 TBLWTL 指令用来读或写程序存储器的 bit<15:0>。TBLRDL 和 TBLWTL 可以以字或字节模式访问程序存储器。

TBLRDH 和 TBLWTH 指令用来读或写程序存储器的 bit<23:16>。 TBLRDH 和 TBLWTH 可以以字或字节模式 访问程序存储器。

使用TBLPAG寄存器的bit<7:0>和来自表指令中指定的W寄存器的有效地址(EA),形成24位的程序存储器地址,如图6-1所示。





### 6.4 RTSP 操作

dsPIC30F 闪存程序存储器组织成行和板 (panel)。每行由 32 个指令字 (96 字节)组成。每个板由 128 行 (4K x 24 个指令字)组成。RTSP 允许用户每次擦除一行 (32 个指令字)、每次编程 32 条指令。

程序存储器的每个板都包含写锁存器,它能够保存32个指令字的编程数据。在实际编程操作前,等待写入的数据必须先装入板的写锁存器。要写入板的数据按顺序装入到写锁存器中:指令0,指令1,依此类推。装入的地址必须始终来自32个指令字的地址边界。

RTSP 编程的基本步骤是先建立一个表指针,然后执行一系列 TBLWT 指令,装入写锁存器。通过把 NVMCON 寄存器中的特定位置 1,进行编程。装入 32 条指令需要 32 条 TBLWTL 和 32 条 TBLWTL 指令。

由于只需要写表锁存器,所以所有表写操作都是单字写入(2个指令周期)。

写锁存器后,需要启动编程操作来烧写数据。

在整个 VDD 范围内,正常操作期间,闪存程序存储器都是可读写可擦除的。

### 6.5 RTSP 控制寄存器

4 个特殊功能寄存器用来读、写闪存程序存储器,它们 是:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

### 6.5.1 NVMCON 寄存器

NVMCON 寄存器控制要擦除的存储块、要编程的存储器类型以及编程周期的启动。

### 6.5.2 NVMADR 寄存器

NVMADR 寄存器用来存放有效地址的两个低字节。它 捕捉已执行的上一条表指令的 EA<15:0>,选择要写的 行。

### 6.5.3 NVMADRU 寄存器

NVMADRU寄存器用来存放有效地址的高字节。它捕捉已执行的上一条表指令的 EA<23:16>。

### 6.5.4 NVMKEY 寄存器

NVMKEY 是只写寄存器,用于写保护。要启动编程或擦除过程,用户必须把0x55和0xAA连续写入NVMKEY寄存器。更多详细信息,请参见第6.6节"编程操作"。

注: 用户也可直接写 NVMADR 和 NVMADRU 寄存器,以指定擦除或编程的程序存储器 地址。

### 6.6 编程操作

在 RTSP 模式下,对内部闪存进行编程或擦除需要完整的编程过程。编程操作持续时间的标称值为 2 ms,编程操作结束之前,处理器将暂停(等待)。将 WR 位(NVMCON<15>)置 1 开始编程操作,操作结束后 WR 位会自动清零。

### 6.6.1 闪存程序存储器的编程算法

用户一次可以擦除或编程闪存程序存储器的一行。一般 过程如下:

- 1. 读一行闪存程序存储器(32个指令字),把读出的数据作为数据"镜像"保存到数据RAM中。
- 2. 用期望的新数据更新数据镜像。
- 3. 擦除闪存程序存储器行。
  - a) 设置 NVMCON 寄存器以允许对闪存程序存储器进行多字擦除,并将 WREN 位置 1。
  - b) 把要擦除的行地址写入寄存器 NVMADRU/NVMADR。
  - c) 把 0x55 写入 NVMKEY。
  - d) 把 0xAA 写入 NVMKEY。
  - e) 将 WR 位置 1。这将开始擦除周期。
  - f) 在擦除周期中 CPU 将暂停。
  - g) 当擦除周期结束时 WR 位会被清零。

- 4. 从数据 RAM"镜像"中,把 32 个指令字的数据 写入闪存程序存储器写锁存器。
- 5. 将 32 个指令字写入闪存程序存储器。
  - a) 设置 NVMCON 寄存器以允许对闪存程序存储器进行多字编程,并将 WREN 位置 1。
  - b) 把 0x55 写入 NVMKEY。
  - c) 把 0xAA 写入 NVMKEY。
  - d) 将 WR 位置 1。这将开始编程周期。
  - e) 在编程周期中 CPU 将暂停。
  - f) 当编程周期结束时 WR 位会被硬件清零。
- 6. 根据需要,重复步骤1到5,对所需的闪存程序 存储器进行编程。

### 6.6.2 擦除程序存储器的一行

例 6-1 所示的代码序列可以用来擦除程序存储器的一行 (32 个指令字)。

### 例 6-1: 擦除程序存储器的一行

```
; Setup NVMCON for erase operation, multi word write
; program memory selected, and writes enabled
       MOV
               #0x4041,W0
       MOV
               W0 NVMCON
                                             ; Init NVMCON SFR
; Init pointer to row to be ERASED
       VOM
               #tblpage(PROG_ADDR),W0
                                            ; Initialize PM Page Boundary SFR
       MOV
               W0 NVMADRU
                                            ; Intialize in-page EA[15:0] pointer
       MOV
               #tbloffset(PROG_ADDR),W0
       MOV
               WO, NVMADR
                                             ; Intialize NVMADR SFR
                                             ; Block all interrupts with priority <7
       DISI
                                             ; for next 5 instructions
       MOM
               #0x55.W0
               WO NVMKEY
       MOV
                                             ; Write the 0x55 key
       MOV
               #0xAA,W1
               W1 NVMKEY
       MOV
                                             ; Write the OxAA key
       BSET
               NVMCON, #WR
                                             ; Start the erase sequence
       NOP
                                             ; Insert two NOPs after the erase
       NOP
                                             ; command is asserted
```

### 6.6.3 装入写锁存器

例 6-2 所示的指令序列可以用来装入 96 字节的写锁存器。装入由表指针选择的写锁存器,需要 32 条 TBLWTL 指令和 32 条 TBLWTH 指令。

### 例 6-2: 装入写锁存器

```
; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled
      MOV #0x0000,W0
            W0<sub>.</sub>TBLPAG
      MOV
                                               ; Initialize PM Page Boundary SFR
      MOV
             #0x6000,W0
                                               ; An example program memory address
; Perform the TBLWT instructions to write the latches
; 0th_program_word
      VOM
             #LOW_WORD_0,W2
      VOM
             #HIGH_BYTE_0,W3
      TBLWTL W2 [W0]
                                              ; Write PM low word into program latch
      TBLWTH W3 [W0++]
                                              ; Write PM high byte into program latch
; 1st_program_word
      MOV #LOW_WORD_1,W2
      MOV
             #HIGH_BYTE_1,W3
                                               ;
      TBLWTL W2 [W0]
                                               ; Write PM low word into program latch
      TBLWTH W3 [W0++]
                                               ; Write PM high byte into program latch
; 2nd_program_word
      MOV #LOW_WORD_2,W2
       MOV
             #HIGH_BYTE_2,W3
       TBLWTL W2 [W0]
                                              ; Write PM low word into program latch
       TBLWTH W3 [W0++]
                                               ; Write PM high byte into program latch
; 31st_program_word
      MOV #LOW_WORD_31,W2
      VOM
             #HIGH_BYTE_31,W3
       TBLWTL W2 [W0]
                                              ; Write PM low word into program latch
       TBLWTH W3 [W0++]
                                              ; Write PM high byte into program latch
注:在例 6-2 中, W3 高位字节的内容将不起作用。
```

### 6.6.4 启动编程序列

出于保护的目的,必须使用 NVMKEY 的写启动序列,以便允许进行任何擦除或编程操作。在执行编程命令后,用户必须等待一段编程时间,直至编程完成。启动编程序列开始后紧跟的两条指令应该为 NOP。

### 例 6-3: 启动编程过程

```
DISI
       #5
                                  ; Block all interrupts with priority <7
                                  ; for next 5 instructions
MOV
       #0x55.W0
MOV
       WO NVMKEY
                                 ; Write the 0x55 key
MOV
       #0xAA,W1
MOV
       W1 NVMKEY
                                 ; Write the 0xAA key
       NVMCON, #WR
BSET
                                 ; Start the erase sequence
NOP
                                 ; Insert two NOPs after the erase
NOP
                                  ; command is asserted
```

#### NVM 寄存器映射 ⁽¹⁾ 表 6-1:

寄存器名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		全部复位			
NVMCON	0760	WR	WREN	WRERR		I			TWRI	I			PI	ROGOP<	6:0>		0000 0000 0000 0000
NVMADR	0762								NVMAD	R<15:0>							uuuu uuuu uuuu uuuu
NVMADRU	0764		_		_	_	_	_	_	-			NV	MADR<2	2:16>		0000 0000 uuuu uuuu
NVMKEY	0766		_	_	_	_	_	_	1		KEY<7:0>		0000 0000 0000 0000				

dsPIC30F4011/4012

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

注:

### 7.0 数据 EEPROM 存储器

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参 见《dsPIC30F 系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC 程序员参考手册》

(DS70157E_CN)。

在整个 VDD 范围内的正常操作期间,数据 EEPROM存储器是可读写的。数据 EEPROM存储器直接映射到程序存储器地址空间。

用来读写闪存程序存储器的 4 个 SFR,也用来访问数据 EEPROM 存储器。如在**第 6.0 节 "闪存程序存储器"**中所述,这些寄存器是:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

EEPROM 数据存储器允许读写单个字和 16 字长的块。 针对数据存储器时,NVMADR 与 NVMADRU 寄存器配合使用,用来寻址要访问的 EEPROM 存储单元。 TBLRDL 和 TBLWTL 指令用来读写数据 EEPROM。 dsPIC30F4011/4012 器件有 1 KB (512 字)的数据 EEPROM,地址范围从 0x7FFC00 到 0x7FFFFE。

字写操作之前,应该先擦除相应的存储单元。写操作完成通常需要2ms,不过写操作所需时间将随电压和温度的变化而变化。

对数据 EEPROM 进行编程或擦除操作,不会停止指令流。在启动另一次数据 EEPROM 写/擦除操作之前,用户需要等待一段适当的时间。在编程或擦除操作进行过程中,尝试读数据 EEPROM 将返回不确定的数据。

控制位 WR 启动写操作,这与闪存程序存储器写类似。 用软件只能将该位置 1 而无法清零。写操作完成时,由 硬件将该位清零。由于无法用软件将 WR 位清零,可避 免意外或提早结束写操作。

当 WREN 位置 1 时,允许进行写操作。上电时,WREN 位被清零。当写操作被正常工作期间的 MCLR 复位或WDT 超时复位所中断时,WRERR 位置 1。在这些情况下,复位后用户可以检查WRERR 位并重写存储单元。地址寄存器 NVMADR 保持不变。

注: 在写操作完成时, IFSO 寄存器中的中断标志位 NVMIF 将置 1。它必须用软件清零。

### 7.1 读数据 EEPROM

TBLRD 指令读取位于当前程序字地址的字。下面的示例 使用W0作为指向数据EEPROM的指针。结果存放在寄存器 W4 中,如例 7-1 所示。

### 例 7-1: 读数据 EEPROM

MOV #LOW_ADDR_WORD,W0 ; Init Pointer

MOV #HIGH_ADDR_WORD,W1

MOV W1 TBLPAG

TBLRDL [ WO ], W4 ; read data EEPROM

### 7.2 擦除数据 EEPROM

### 7.2.1 擦除数据 EEPROM 的一块

为了擦除数据 EEPROM 的一块,首先 NVMADRU 和 NVMADR 寄存器必须指向要擦除的存储块。将 NVMCON 配置为擦除数据 EEPROM 块,并将 NVMCON寄存器中的 WR 位和 WREN 位置 1。将 WR 位置 1,启动擦除操作,如例 7-2 所示。

### 例 7-2: 擦除数据 EEPROM 的一块

```
; Select data EEPROM block, WR, WREN bits
   VOM
          #0×4045.W0
   MOV
           W0 NVMCON
                                         ; Initialize NVMCON SFR
; Start erase cycle by setting WR after writing key sequence
                                        ; Block all interrupts with priority <7
   DISI
                                         ; for next 5 instructions
   MOV
          #0x55,W0
   MOV
          WO NVMKEY
                                        ; Write the 0x55 key
   MOV
          #0xAA,W1
          W1 NVMKEY
                                        ; Write the 0xAA key
   VOM
   BSET NVMCON, #WR
                                        ; Initiate erase sequence
   NOP
   NOP
; Erase cycle will complete in 2mS.CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

### 7.2.2 擦除数据 EEPROM 的一个字

TBLPAG 和 NVMADR 寄存器必须指向存储块。在 NVMCON 寄存器中,选择擦除闪存数据块,将 WR 位和 WREN 位置 1。将 WR 位置 1,启动擦除操作,如例 7-3 所示。

### 例 7-3: 擦除数据 EEPROM 的一个字

```
; Select data EEPROM word, WR, WREN bits
   MOV
          #0x4044,W0
   MOV
           W0 NVMCON
; Start erase cycle by setting WR after writing key sequence
                                         ; Block all interrupts with priority <7
   DISI
                                         ; for next 5 instructions
          #0x55,W0
   MOV
   MOV
          WO NVMKEY
                                 ; Write the 0x55 key
   MOV
          #0xAA,W1
           W1 NVMKEY
                                 ; Write the 0xAA key
   MOV
   BSET
          NVMCON, #WR
                                 ; Initiate erase sequence
; Erase cycle will complete in 2mS.CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

### 7.3 写数据 EEPROM

要写 EEPROM 数据存储单元,必须按照下列顺序进行:

- 1. 擦除数据 EEPROM 的字。
  - a) 在 NVMCON 寄存器中,选择字擦除数据 EEPROM,并将 WREN 位置 1。
  - b) 把要擦除的字地址写入寄存器 NVMADRU/NVMADR。
  - c) 允许 NVM 中断 (可选)。
  - d) 把 0x55 写入 NVMKEY。
  - e) 把 0xAA 写入 NVMKEY。
  - f) 将 WR 位置 1。这将开始擦除周期。
  - g) 查询 NVMIF 位,或者等待 NVMIF 中断。
  - h) 当擦除周期结束时 WR 位会被清零。
- 2. 把数据字写入数据 EEPROM 的写锁存器中。
- 3. 把 1 个数据字编程到数据 EEPROM 中。
  - a) 在 NVMCON 寄存器中,选择字编程数据 EEPROM,并将 WREN 位置 1。
  - b) 允许 NVM 写完成中断 (可选)。
  - c) 把 0x55 写入 NVMKEY。
  - d) 把 0xAA 写入 NVMKEY。
  - e) 将 WR 位置 1。这将开始编程周期。
  - f) 查询 NVMIF 位,或者等待 NVM 中断。
  - g) 当写周期结束时 WR 位会被清零。

对于每个字,如果上述序列(把 0x55 写入 NVMKEY,把 0xAA 写入 NVMCON,然后将 WR 位置 1)没有严格遵守的话,写操作不会启动。强烈建议在这段代码执行期间禁止中断。

此外,必须将 NVMCON 中的 WREN 位置 1 来使能写操作。这种机制可防止由于意外执行代码导致误写数据 EEPROM。除非在更新 EEPROM 时,否则 WREN 位应始终保持清零。 WREN 位不能用硬件清零。

在写过程启动之后,清零 WREN 位将不会影响当前的 写周期。除非将 WREN 位置 1,否则将禁止 WR 位被置 1。WREN 位必须在前一条指令中被置 1。WR 和 WREN 不能在同一条指令中置 1。

写周期结束时,硬件清零 WR 位,非易失性存储器写完成中断标志位(NVMIF)置 1。用户可以允许此中断或查询此位。 NVMIF 必须用软件清零。

### 7.3.1 写数据 EEPROM 的一个字

一旦用户擦除了要编程的字,则表写指令用来写写锁存器,如例 7-4 所示。

### 例 7-4: 数据 EEPROM 字写入

```
; Point to data memory
                 #LOW_ADDR_WORD,W0
   MOV
                                                    ; Init pointer
   MOM
                  #HIGH_ADDR_WORD,W1
   MOV
                 W1 TBLPAG
   MOV
                  #LOW(WORD),W2
                                                    ; Get data
                  W2 [ W0]
                                                     ; Write data
   TBLWTL
; The NVMADR captures last table access address
; Select data EEPROM for 1 word op
   MOV
                  #0×4004.W0
   MOV
                  WO NVMCON
; Operate key to allow write operation
   DISI #5
                                         ; Block all interrupts with priority <7
                                         ; for next 5 instructions
   MOV
                  #0x55,W0
   MOV
                  WO NVMKEY
                                                    ; Write the 0x55 key
   MOV
                  #0xAA,W1
                  W1 NVMKEY
   MOV
                                                    ; Write the OxAA key
   BSET
                  NVMCON, #WR
                                                    ; Initiate program sequence
   NOP
   NOP
; Write cycle will complete in 2mS.CPU is not stalled for the Data Write Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete
```

### 7.3.2 写数据 EEPROM 的一个存储块

要写入数据 EEPROM 的一个存储块,应首先写入所有 16 个锁存器,然后设置 NVMCON 寄存器并对存储块进 行编程。

### 例 7-5: 数据 EEPROM 块写入

```
#LOW_ADDR_WORD,W0 ; Init pointer
MOV
MOV
           #HIGH_ADDR_WORD,W1
MOV
           W1 TBLPAG
MOV
           #data1,W2
                             ; Get 1st data
TBLWTL
           W2 [W0]++
                             ; write data
                             ; Get 2nd data
MOV
           #data2,W2
TBLWTL
           W2 [W0]++
                             ; write data
           #data3,W2
                             ; Get 3rd data
TBLWTL
          W2 [ W0]++
                             ; write data
MOV
          #data4,W2
                             ; Get 4th data
          W2 [W0]++
                             ; write data
TBLWTL
MOV
           #data5,W2
                             ; Get 5th data
TBLWTL
           W2 [ W0]++
                             ; write data
MOV
           #data6,W2
                             ; Get 6th data
TBLWTL
           W2 [W0]++
                             ; write data
          #data7,W2
                             ; Get 7th data
MOV
TBLWTL
          W2 [W0]++
                             ; write data
MOV
           #data8,W2
                            ; Get 8th data
TBLWTL
          W2 [ W0]++
                            ; write data
                            ; Get 9th data
           #data9,W2
MOV
TBLWTL
           W2 [W0]++
                             ; write data
MOV
           #data10,W2
                             ; Get 10th data
TBLWTL
           W2 [ W0]++
                             ; write data
MOV
           #data11,W2
                             ; Get 11th data
                             ; write data
TRI.WTI.
          W2 [W0]++
MOV
           #data12,W2
                             ; Get 12th data
TBLWTL
          W2 [W0]++
                             ; write data
MOV
           #data13,W2
                             ; Get 13th data
           W2,[W0]++
TBLWTL
                             ; write data
MOV
           #data14,W2
                             ; Get 14th data
TBLWTL
           W2 [W0]++
                             ; write data
           #data15,W2
MOV
                             ; Get 15th data
TBLWTL
           W2 [W0]++
                             ; write data
                             ; Get 16th data
MOV
           #data16,W2
                             ; write data. The NVMADR captures last table access address.
TBLWTL
           W2 [W0]++
           #0x400A,W0
MOV
                            ; Select data EEPROM for multi word op
MOV
           W0 NVMCON
                            ; Operate Key to allow program operation
DISI
           #5
                             ; Block all interrupts with priority <7
                             ; for next 5 instructions
MOV
           #0x55,W0
           WO NVMKEY
                             ; Write the 0x55 key
MOV
MOV
           #0xAA,W1
           W1 NVMKEY
                             ; Write the 0xAA key
VOM
BSET
           NVMCON, #WR
                             ; Start write cycle
NOP
NOP
```

### 7.4 写校验

根据具体应用,将写入存储器的值对照原始值进行校验 是一个很好的编程习惯。在应用中,如果某些位的写次 数接近规定极限值,就应该进行写校验。

### 7.5 防止误写操作的保护措施

有些情况下,器件不宜向数据 EEPROM 存储器写入数据。器件内置了各种机制来防止误写入 EEPROM。上电时,WREN 位清零;而且,上电延时定时器禁止 EEPROM 写操作。

在欠压、电源故障或软件故障期间,写操作的启动序列 以及 WREN 位可共同防止意外写操作的发生。

注:

### 8.0 I/O 端口

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参

见 《dsPIC30F 系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC 程序员参考手册》

(DS70157E_CN)。

所有的器件引脚(除 VDD、VSS、MCLR 和 OSC1/CLKI之外),均为外设与并行 I/O 端口所共用。

所有 I/O 输入端口都是施密特触发器输入,以便增强抗干扰性。

### 8.1 并行 I/O (PIO)端口

如果外设使能,并且外设正在使用相关引脚时,该引脚将不再作为通用引脚 I/O 使用。这时,可以读引脚 I/O,但是对应并行端口位的输出驱动器将被禁止。如果外设使能,但外设不在使用某引脚,则该引脚可以被端口驱动。

所有的端口引脚,都有三个与端口引脚的操作直接相关的寄存器。数据方向寄存器 (TRISx)决定引脚是输入还是输出。如果数据方向寄存器位是 1,则引脚是输入。复位后,所有端口引脚均定义为输入。读锁存器

(LATx),读的是锁存值;写锁存值,写的是锁存器(LATx)。读端口(PORTx),读的是端口引脚值;写端口引脚,写的是锁存器(LATx)。

对于特定器件无效的任何位及其相关的数据和控制寄存器都将被禁止。这意味着对应的 LATx 和 TRISx 寄存器以及端口引脚都将读为零。

当端口引脚与另一个外设共用或与只定义为输入的功能 共用时,它将被视为专用端口,因为没有任何其他竞争 的输出源。 INT4 引脚就是一个例子。

PORTx 的寄存器的格式,如表 8-1 所示。

TRISx (数据方向)寄存器控制引脚的方向。LATx 寄存器提供数据到输出,它是可读/可写的。读PORTx 寄存器得到输入引脚的状态,而写PORTx 寄存器修改LATx寄存器的内容。

与外设共用的引脚的并行 I/O (PIO)端口一般屈从于外设。外设的输出缓冲数据和控制信号提供给一对多路开关。多路开关选择外设还是相关的端口将拥有引脚 I/O 输出数据和控制信号的所有权。图 8-2 显示了端口是如何与其他外设共用,以及与外设连接的相关引脚 I/O单元。表 8-1 和表 8-2 给出了从 PORTB 到 PORTG 的共用端口的寄存器的格式。

专用端口结构框图 图 8-1: 专用端口模块 读 TRIS I/O 单元 TRIS 锁存器 D 数据总线 റ 写 TRIS CK ~L 数据锁存器 I/O 端子 D 写 I AT + CK 写端口 读 I AT 读端口



### 8.2 配置模拟端口引脚

使用 ADPCFG 和 TRIS 寄存器控制 A/D 端口引脚的操作。如果要将端口引脚用作模拟输入,则对应的 TRIS 位必须置 1 (输入)。如果将 TRIS 位清零(输出),则数字输出电平(VOH或 VOL)将被转换。

当读取端口寄存器时,所有配置为模拟输入通道的引脚均读为零(低电平)。

配置为数字输入的引脚,将不会对模拟输入进行转换。 对于任何定义为数字输入的引脚(包括 ANx 引脚),加 在引脚上的模拟电压可能导致输入缓冲器消耗的电流超 出器件规范。

### 8.2.1 I/O 端口写 / 读时序

端口方向改变或端口写操作与同一端口的读操作之间需要一个指令周期。通常该指令是 NOP。

### 例 8-1: 端口写/读示例

MOV 0xFF00, W0 ; Configure PORTB<15:8>
; as inputs

MOV W0, TRISBB ; and PORTB<7:0> as outputs

NOP ; Delay 1 cycle

BTSS PORTB, #13 ; Next Instruction

dsPIC30F4011 端口寄存器映射 ⁽¹⁾ 表 8-1:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
TRISB	02C6	_	_	_	_	_		_	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	0000 0001 1111 1111
PORTB	02C8	_	_	_	_		_	_	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	0000 0000 0000 0000
LATB	02CA	_	_	_	_		_	_	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000 0000 0000 0000
TRISC	02CC	TRISC15	TRISC14	TRISC13	_		_	_	_	_	_	_	_	_	_	_	_	1110 0000 0000 0000
PORTC	02CE	RC15	RC14	RC13	_		_	_	_	_	_	_	_	_	_	_	_	0000 0000 0000 0000
LATC	02D0	LATC15	LATC14	LATC13	_		_	_	_	_	_	_	_	_	_	_	_	0000 0000 0000 0000
TRISD	02D2	_	_	_	_		_	_	_	_	_	_	_	TRISD3	TRISD2	TRISD1	TRISD0	0000 0000 0000 1111
PORTD	02D4	_	_	_	_		_	_	_	_	_	_	_	RD3	RD2	RD1	RD0	0000 0000 0000 0000
LATD	02D6	_	_	_	_		_	_	_	_	_	_	_	LATD3	LATD2	LATD1	LATD0	0000 0000 0000 0000
TRISE	02D8	_	_	_	_		_	_	TRISE8	_	_	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	0000 0001 0011 1111
PORTE	02DA	_	_	_	_		_	_	RE8	_	_	RE5	RE4	RE3	RE2	RE1	RE0	0000 0000 0000 0000
LATE	02DC	_	_	_	_		_	_	LATE8	_	_	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	0000 0000 0000 0000
TRISF	02DE	_	_	_	_		_	_	_	_	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	0000 0000 0111 1111
PORTF	02E0	_	_	_	_	_	_	_	_	_	RF6	RF5	RF4	RF3	RF2	RF1	RF0	0000 0000 0000 0000
LATF	02E2	_	_	_	_	_	_	_	_	_	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	0000 0000 0000 0000

: — = 未实现位,读为 0 **1:** 有关寄存器各位的说明,请参见 《dsPIC30F 系列参考手册》( DS70046E_CN )。

dsPIC30F4012 端口寄存器映射 ⁽¹⁾ 表 8-2:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
TRISB	02C6		_	_	_	_	_	_	_	1	1	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	0000 0000 0011 1111
PORTB	02C8	_	_	_	_	_	_	_	_	_	_	RB5	RB4	RB3	RB2	RB1	RB0	0000 0000 0000 0000
LATB	02CB	_	_	_	_	_	-	_	_	_	_	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000 0000 0000 0000
TRISC	02CC	TRISC15	TRISC14	TRISC13	_	1	ı	_	_	-	-		1	1	1	-	_	1110 0000 0000 0000
PORTC	02CE	RC15	RC14	RC13	_	1	ı	_	_	-	-		1	1	1	-	_	0000 0000 0000 0000
LATC	02D0	LATC15	LATC14	LATC13	_	1	ı	_	_	-	-		1	1	1	-	_	0000 0000 0000 0000
TRISD	02D2	1	1	_	_	1	ı	_	_	-	-		1	1	1	TRISD1	TRISD0	0000 0000 0000 0011
PORTD	02D4	1	1	_	_	1	ı	_	_	-	-		1	1	1	RD1	RD0	0000 0000 0000 0000
LATD	02D6	_	_	_	_	_	-	_	_	_	_	_	_	_	_	LATD1	LATD0	0000 0000 0000 0000
TRISE	02D8	1	1	_	_	1	ı	_	TRISE8	-	-	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	0000 0001 0011 1111
PORTE	02DA	_	_	_	_	_	-	_	RE8	_	_	RE5	RE4	RE3	RE2	RE1	RE0	0000 0000 0000 0000
LATE	02DC	1	1	_	_	1	ı	_	LATE8	-	-	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	0000 0000 0000 0000
TRISF	02EE	1	1	_	_	1	ı	_	_	-	-		1	TRISF3	TRISF2	-	_	0000 0000 0000 1100
PORTF	02E0	_	_	_	_	_	-	_	_	_	_	_	_	RF3	RF2	_	_	0000 0000 0000 0000
LATF	02E2		_	_	_	_	_	_	_	_	_	_	_	LATF3	LATF2	_	_	0000 0000 0000 0000

— = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

### 8.3 输入电平变化通知模块

输入电平变化通知模块使 dsPIC30F 器件能够向处理器 发出中断请求,以响应所选输入引脚上的状态变化。即 使是在休眠模式下、时钟被禁止时,该模块也能检测输 入的状态变化。对于在状态变化时产生中断请求,可以 选择(使能)的外部信号有10个(CN0到CN7,CN17和CN18)。

CN 引脚的位置,请参见引脚图。

表 8-3: 输入电平变化通知寄存器映射 (BIT 7-0) (1)

SFR 名称	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
CNEN1	00C0	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000 0000 0000 0000
CNEN2	00C2	_	_	_	_	_	CN18IE ⁽²⁾	CN17IE ⁽²⁾	_	0000 0000 0000 0000
CNPU1	00C4	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000 0000 0000 0000
CNPU2	00C6	_	_	_	_	_	CN18PUE ⁽²⁾	CN17PUE ⁽²⁾	1	0000 0000 0000 0000

1: 有关寄存器各位的说明,请参见《dsPIC30F系列参考手册》(DS70046E_CN)。

2: 这些位在 dsPIC30F4012 上不可用。

注:

### 9.0 TIMER1 模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和

DSC 程序员参考手册》 ( DS70157E_CN )。

本章介绍了 16 位通用 Timer1 模块以及相关的工作模式。图 9-1 给出了 16 位 Timer1 模块的简化框图。

注: Timer1 是 " A 类 " 定时器。有关 A 类定时器的规范,请参见本文档中的第 24.0 节 " 电气特性 "。

对于定时器的工作模式,下面的各小节将详细说明其设置和控制寄存器以及相应的框图。

Timer1 模块是一个 16 位定时器,可作为实时时钟的时间计数器,或作为自由运行的时段定时器/计数器。16 位定时器有下列模式:

- 16 位定时器
- 16 位同步计数器
- 16 位异步计数器

此外,支持如下工作特性:

- 定时器门控操作
- 可选择的预分频比设置
- CPU 空闲和休眠模式下的定时器操作
- 在 16 位周期寄存器匹配时或外部门控信号的下降 沿产生中断

通过设定 16 位 SFR T1CON 中的相应位来决定这些工作模式。图 9-1 给出了 16 位定时器模块的框图。

**16 位定时器模式:**在 16 位定时器模式下,定时器在每个指令周期递增,直到与预先装入周期寄存器 PR1 中的值匹配,然后复位至 0,继续计数。

当 CPU 进入空闲模式时,定时器将停止递增,除非TSIDL (T1CON<13>)位=0。如果TSIDL=1,定时器模块逻辑将继续递增,直到CPU空闲模式终止。

16 位同步计数器模式:在 16 位同步计数器模式下,定时器将在外部时钟信号的上升沿递增,外部时钟信号与内部相位时钟同步。定时器计数,直到等于 PR1 中预先装入的值,然后复位至 0,继续计数。

当 CPU 进入空闲模式时,定时器将停止递增,除非相应的 TSIDL 位 = 0。如果 TSIDL = 1,定时器模块逻辑将继续递增,直到 CPU 空闲模式终止。

**16 位异步计数器模式:**在 16 位异步计数器模式下,定时器在外部时钟信号的上升沿递增。定时器计数,直到等于 PR1 中预先装入的值,然后复位至 0,继续计数。

当定时器配置为异步工作模式时, CPU 进入空闲模式, 如果 TSIDL = 1,则定时器将停止递增。



### 9.1 定时器门控操作

16位定时器可以置为门控时间累加模式。该模式使得当门控输入信号(T1CK引脚)为高电平时,内部 TcY 能够递增相应的定时器。要使能该模式,必须置 1 控制位 TGATE(T1CON<6>)。必须使能定时器(TON=1),且定时器时钟源设置为内部时钟源(TCS=0)。

当 CPU 进入空闲模式时,定时器将停止递增,除非TSIDL = 0。如果 TSIDL = 1,则定时器将在 CPU 空闲模式终止后继续递增。

### 9.2 定时器预分频器

16 位定时器的输入时钟(Fosc/4 或外部时钟),有1:1、1:8、1:64 或 1:256 的预分频比供选择;通过控制位TCKPS<1:0>(T1CON<5:4>)来选择预分频比。当出现下列事件之一时,预分频器计数器将清零:

- 对 TMR1 寄存器进行写操作
- 清零 TON 位 (T1CON<15>)
- 器件复位,如 POR 和 BOR

但是,如果定时器被禁止(TON = 0),由于预分频器的时钟停止了工作,定时器预分频器将不会被复位。

当写 T1CON 寄存器时, TMR1 寄存器不会被清零。当写 TMR1 寄存器时, TMR1 寄存器将被清零。

### 9.3 休眠模式下的定时器操作

在 CPU 休眠模式期间,定时器将继续工作,如果:

- 定时器模块被使能 (TON = 1), 且
- 定时器时钟源选用外部时钟(TCS=1),且
- TSYNC 位(T1CON<2>)为逻辑 0,这将外部时 钟源定义为异步的。

如果所有这三个条件都得到满足,定时器将继续计数, 直到等于周期寄存器中的值,然后复位至 0x0000。

当定时器与周期寄存器之间匹配时,如果相应的定时器中断允许位置1的话,将产生中断。

### 9.4 定时器中断

16 位定时器具有在周期匹配时产生中断的能力。当定时器计数与周期寄存器相匹配时, T1IF 位将置 1,如果允许中断的话将产生中断。T1IF 位必须用软件清零。定时器中断标志T1IF位于中断控制器的IFSO控制寄存器中。

当使能了门控时间累加模式时,还将在门控信号的下降沿(累加周期的末尾)产生中断。

通过相应的定时器中断允许位 T1IE 来允许中断。定时器中断允许位位于中断控制器的 IECO 控制寄存器中。

### 9.5 实时时钟

当 Timer1 工作在实时时钟(RTC)模式下时,提供了当天时间和事件时间标记的能力。RTC 的主要工作特性如下:

- 使用 32kHz LP 振荡器工作
- 8 位预分频器
- 低功耗
- 实时时钟中断

这些工作模式由 T1CON 控制寄存器中相应位的设置决定。

### 图 9-2: TIMER1 LP 振荡器实时时钟 (RTC)的推荐元件



### 9.5.1 RTC 振荡器操作

当 TON=1、TCS=1 且 TGATE=0 时,定时器在32 kHz LP振荡器输出信号的上升沿递增,直至递增到周期寄存器中指定的值,然后复位至0。

为确保正确工作, TSYNC 位必须置为逻辑 0 (异步模式)。

使能 LPOSCEN ( OSCCON<1> ) 将禁止正常的定时器和计数器模式,而使能定时器溢出唤醒事件。

当 CPU 进入休眠模式时,如果 32 kHz 外部晶体振荡器处于工作状态、且控制位没有改变的话,则 RTC 将继续工作。要使 RTC 在空闲模式下继续工作, TSIDL 位应当清零。

#### 9.5.2 RTC 中断

当中断事件发生时,相应的定时器中断标志 T1IF 将置1,如果允许中断的话就将产生中断。T1IF 位必须用软件清零。相应的定时器中断标志 T1IF 位于中断控制器的 IFSO 状态寄存器中。

通过相应的定时器中断允许位 T1IE 来允许中断。定时器中断允许位位于中断控制器的 IECO 控制寄存器中。

### TIMER1 寄存器映射 ⁽¹⁾ 表 9-1:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
TMR1	MR1 0100 Timer1 寄存器													uuuu uuuu uuuu uuuu				
PR1	0102								,	周期寄存器 :	1							1111 1111 1111 1111
T1CON	0104	TON	_	TSIDL	_	_	_	1	_	-	TGATE	TCKPS1	TCKPS0	-	TSYNC	TCS	-	0000 0000 0000 0000

dsPIC30F4011/4012

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见 《dsPIC30F 系列参考手册》( DS70046E_CN )。

### 10.0 TIMER2/3 模块

注: 本数据手册总结了 dsPIC30F 系列器件的功能,但是不应把本手册当作无所不包的参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和

DSC 程序员参考手册》 (DS70157E_CN)。

本章介绍了 32 位通用定时器模块(Timer2/3)以及相关的工作模式。图 10-1 给出了 32 位 Timer2/3 模块的简化框图。图 10-2 和图 10-3 分别为将 Timer2/3 配置成的两个独立 16 位定时器 Timer2 和 Timer3 的框图。

注: Timer2 为 " B 类 " 定时器 , Timer3 为 " C 类 " 定时器。有关相应的定时器类型 , 请 参见本文档中的第 24.0 节 " 电气特性 "。

Timer2/3 模块是 32 位定时器 (可配置为两个 16 位定时器),具有可选择的工作模式。这些定时器为其他外设模块所使用,例如:

- 输入捕捉
- 输出比较/简单PWM

对于定时器的工作模式,下面的各小节将详细说明其设置和控制寄存器以及相应的框图。

32 位定时器有下列模式:

- 两个独立的 16 位定时器 (Timer2 和 Timer3),支持所有 16 位工作模式 (异步计数器模式除外)
- 一个 32 位定时器
- 一个 32 位同步计数器

此外,支持如下工作特性:

- ADC 事件触发信号
- 定时器门控操作
- 可选择的预分频比设置
- 空闲和休眠模式下的定时器操作
- 在 32 位周期寄存器匹配时产生中断

通过设定 16 位 T2CON 和 T3CON SFR 中的相应位来决定这些工作模式。

对于 32 位定时器 / 计数器操作 ,Timer2 是 32 位定时器 的低位字 , 而 Timer3 是高位字。

对于 32 位定时器操作,T3CON 控制位将被忽略。设置和控制只使用 T2CON 控制位。对于 32 位定时器模块,使用的是Timer2 时钟和门控输入,但是,中断产生由 Timer3 中断标志位(T3IF)反映,且中断通过 Timer3 中断允许位(T3IE)来允许。

16 位模式:在 16 位模式下,Timer2 和 Timer3 可以配置为两个独立的 16 位定时器。每个定时器均可设置为 16 位定时器模式或 16 位同步计数器模式。这两种工作模式的详细信息,请参见第 9.0 节 "Timer1 模块"。

Timer2 和 Timer3 之间惟一的功能差异是, Timer2 提供了时钟预分频器输出同步。这对于高频外部时钟输入很有用。

32 位定时器模式:在 32 位定时器模式下,定时器在每个指令周期递增,一直递增到与预先装入组合 32 位周期寄存器 PR3/PR2 中的值匹配,然后复位至 0,继续计数

对于 Timer2/Timer3 对的同步 32 位读操作,读低位字(TMR2 寄存器)将导致 msw 被读取并锁存到一个 16位保持寄存器(称作 TMR3HLD)。

对于同步 32 位写操作,必须首先写入保持寄存器(TMR3HLD)。如果后续操作是写TMR2寄存器的话,则 TMR3HLD 的内容将被传送并锁存到 32 位定时器(TMR3)的 MSB中。

32 位同步计数器模式:在 32 位同步计数器模式下,定时器将在所施加外部时钟信号的上升沿递增,外部时钟信号与内部相位时钟同步。定时器计数,一直递增到与预先装入组合 32 位周期寄存器 PR3/PR2 中的值匹配,然后复位至 0,继续计数。

当定时器配置为同步计数器工作模式时,且 CPU 进入空闲模式的话,定时器将停止递增,除非 TSIDL (T2CON<13>)位=0。如果TSIDL=1,定时器模块逻辑将继续递增,直到CPU空闲模式终止。







# 10.1 定时器门控操作

32 位定时器可以置为门控时间累加模式。该模式使得当门控输入信号(T2CK 引脚)为高电平时,内部 TCY 能够递增相应的定时器。要使能该模式,必须置 1 控制位 TGATE(T2CON<6>)。在此模式下,Timer2 是发起时钟源。对于 Timer3, TGATE 设定被忽略。必须使能定时器(TON=1),且定时器时钟源设置为内部时钟源(TCS=0)。

外部信号的下降沿终止计数操作,但不会复位定时器。 要从零开始计数,用户必须复位定时器。

# 10.2 ADC 事件触发信号

当 32 位定时器(TMR3/TMR2)与 32 位组合周期寄存器(PR3/PR2)之间发生匹配时, Timer3 将产生特殊 ADC 触发事件信号。

#### 10.3 定时器预分频器

定时器的输入时钟(Fosc/4 或外部时钟),有 1:1、1:8、1:64 或 1:256 的预分频比选择;通过控制位TCKPS<1:0>(T2CON<5:4>和 T3CON<5:4>)来选择预分频比。对于 32 位定时器操作,发起时钟源是Timer2。在此模式下不能进行Timer3的预分频器操作。当出现下列事件之一时,预分频器计数器将清零:

- 写 TMR2/TMR3 寄存器
- 将 TON 位 (T2CON<15>或 T3CON<15>)设为 0
- 器件复位,如POR和BOR

但是,如果定时器被禁止(TON = 0),由于预分频器的时钟停止了工作,Timer2 预分频器将不会被复位。

当写 T2CON/T3CON 寄存器时 , TMR2/TMR3 寄存器 不会被清零。

#### 10.4 休眠模式下的定时器操作

在 CPU 休眠模式期间,由于禁止了内部时钟,所以定时器不工作。

#### 10.5 定时器中断

32 位定时器模块具有在周期匹配时,或者在外部门控信号下降沿产生中断的能力。当 32 位定时器计数与相应的 32 位周期寄存器相匹配时,或者检测到外部"门控"信号的下降沿时,T3IF位(IFSO<7>)将置1,如果允许中断的话则将产生中断。在此模式下,T3IF中断标志用作中断源。T3IF位必须用软件清零。

通过相应的定时器中断允许位 T3IE (IEC0<7>)来允许中断。

表 10-1:	TIMER2/3 寄存器映射 ⁽¹⁾
4X IU-I.	

- C . C				I J HH T	1700													
SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
TMR2	0106								Т	imer2 寄存器	P. Control							uuuu uuuu uuuu uuuu
TMR3HLD	0108		Timer3 保持寄存器 (仅适用于 32 位定时器操作)															uuuu uuuu uuuu uuuu
TMR3	010A		Timer3 寄存器															uuuu uuuu uuuu uuuu
PR2	010C								Ji	周期寄存器 2								1111 1111 1111 1111
PR3	010E								J	周期寄存器 3	}							1111 1111 1111 1111
T2CON	0110	TON	_	TSIDL		_	_		_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000 0000 0000 0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000 0000 0000 0000

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

注:

# 11.0 TIMER4/5 模块

注: 本数据手册总结了 dsPIC30F 系列器件的功能,但是不应把本手册当作无所不包的参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》 (DS70046E_CN)。有关器件指令集和编

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC程序员参考手册》 (DS70157E CN)。

本章介绍了另一个 32 位通用定时器模块 (Timer4/5) 以及相关的工作模式。图 11-1 给出了 32 位 Timer4/5 模块的简化框图。图 11-2 和图 11-3 分别为将 Timer4/5 配置成的两个独立 16 位定时器 Timer4 和 Timer5 的框图。

注: Timer4 为 " B 类 " 定时器 , Timer5 为 " C 类 " 定时器。有关相应的定时器类型 , 请 参见本文档中的第 24.0 节 " 电气特性 "。

Timer4/5 模块的工作与 Timer2/3 模块相似。但是,也存在如下区别:

- Timer4/5 模块不支持 ADC 事件触发功能
- Timer4/5 不能为诸如输入捕捉和输出比较的其他外 设模块所使用

通过设定 16 位 T4CON 和 T5CON SFR 中的相应位来 决定 Timer4/5 模块的工作模式。

对于 32 位定时器 / 计数器操作 ,Timer4 是 32 位定时器 的低位字 , 而 Timer5 是高位字。

注: 对于 32 位定时器操作,T5CON 控制位将被忽略。设置和控制只使用 T4CON 控制位。对于 32 位定时器模块,使用的是Timer4 时钟和门控输入,但是,中断产生由 Timer5 中断标志位(T5IF)反映,且中断通过 Timer5 中断允许位(T5IE)来允许。

图 11-1: 32 位 TIMER4/5 框图



注 1: T4CK 未实现,该线连接至 Vss。

2: 定时器配置位 T32( T2CON<3> )必须置 1 以实现 32 位定时器 / 计数器操作。所有控制位都与 T4CON 寄存器相对应。





表 11-1:	TIMER4/5 寄存器映射 ⁽¹⁾
1X	

SFR 名称	地址	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0												复位状态				
TMR4	0114								Т	imer4 寄存	器							uuuu uuuu uuuu uuuu
TMR5HLD	0116		Timer5 保持寄存器 (仅适用于 32 位定时器操作)															uuuu uuuu uuuu uuuu
TMR5	0118		Timer5 寄存器															uuuu uuuu uuuu uuuu
PR4	011A								F	<b>周期寄存器</b>	4							1111 1111 1111 1111
PR5	011C								J	周期寄存器	5							1111 1111 1111 1111
T4CON	011E	TON	_	TSIDL	_	_	_	ı		-	TGATE	TCKPS1	TCKPS0	T45	_	TCS	_	0000 0000 0000 0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000 0000 0000 0000

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

注:

# 12.0 输入捕捉模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和

DSC 程序员参考手册》 (DS70157E_CN)。

本章对输入捕捉模块和相关的工作模式进行了介绍。此模块提供的特性可用于需要进行频率 (周期)和脉冲测量的应用场合。图 12-1 给出了输入捕捉模块的框图。输入捕捉功能可用于以下模式:

- 频率/周期/脉冲测量
- 其他外部中断源

输入捕捉模块的主要工作特性是:

- 简单捕捉事件模式
- Timer2 和 Timer3 模式选择
- 输入捕捉事件发生时产生中断

通过在 ICxCON 寄存器 (其中 x = 1, 2, ...N) 中设置相应的位,选择上述工作模式。 dsPIC30F4011/4012 器件具有 4 路捕捉通道。

注: dsPIC30F4011/4012 器件具有 4 路捕捉输入: IC1、IC2、IC7 和 IC8。这 4 路捕捉通道的命名是有意图的,保持与其他 dsPIC 数字信号控制器的软件兼容性。



# 12.1 简单捕捉事件模式

dsPIC30F产品系列中的简单捕捉事件有:

- 在每个下降沿进行捕捉
- 在每个上升沿进行捕捉
- 在每第 4 个上升沿进行捕捉
- 在每第 16 个上升沿进行捕捉
- 在每个上升沿和下降沿进行捕捉

通过设置适当的位 ICM<2:0> (ICxCON<2:0>),选择上述简单输入捕捉模式。

### 12.1.1 捕捉预分频器

有 4 种输入捕捉预分频器设置,它们由 ICM<2:0>(ICxCON<2:0>)位指定。每当捕捉通道关闭时,预分频器计数器将清零。另外,任何复位都将清零预分频器计数器。

#### 12.1.2 捕捉缓冲区操作

每个捕捉通道都有一个关联的 FIFO 缓冲区,该缓冲区宽 16 位,深度为 4 字。有两个状态标志提供 FIFO 缓冲区的状态:

- ICBNE—— 输入捕捉缓冲区非空
- ICOV—— 输入捕捉溢出

ICBNE 位将在第一个输入捕捉事件发生时被置 1,并且一直保持置 1 状态,直到所有的捕捉事件都已从 FIFO中读出。每次从 FIFO 中读出一个字,余下的字将在缓冲区中前进一个位置。

如果 FIFO 已被 4 个捕捉事件填满,在读 FIFO 之前又发生第 5 个捕捉事件,则将产生溢出,且 ICOV 位将被设置为逻辑 1。第5个捕捉事件将丢失,不会存入FIFO。在将 4 个事件全部从缓冲区中读出之前,不会再捕捉任何事件。

如果 FIFO 已全部读完,且还没有收到新的捕捉事件, 这时读 FIFO 将产生不确定的结果。

#### 12.1.3 TIMER2 和 TIMER3 选择模式

每个捕捉通道均可选择两个定时器(Timer2或Timer3) 之一作为时基。

通过 SFR 位 ICTMR (ICxCON<7>) 来选择定时器资源。对于输入捕捉模块, Timer3 是默认的可用定时器资源。

#### 12.1.4 霍尔传感器模式

当输入捕捉模块设置为在每个边沿 (上升沿和下降沿, ICM<2:0> = 001)进行捕捉时,输入捕捉逻辑将执行以下操作:

- 输入捕捉中断标志在每个边沿 (上升沿和下降沿) 置 1。
- 由于每次捕捉都产生中断,捕捉时产生中断模式设置位 ICI<1:0>被忽略。
- 在此模式下,不产生捕捉溢出。

#### 12.2 休眠和空闲模式下的输入捕捉工作

当器件处于 CPU 空闲或休眠模式下时,输入捕捉事件将唤醒器件或产生中断(如果允许中断的话)。

如果 ICM<2:0> = 111 且中断允许位置 1,那么当发生捕捉事件时,输入捕捉模块将使 CPU 从休眠或空闲模式唤醒,这与使能的定时器无关。如果已满足处理中断的条件,上述唤醒还将产生中断。唤醒特性可以用来增加额外的外部引脚中断。

#### 12.2.1 CPU 休眠模式下的输入捕捉

CPU 休眠模式允许输入捕捉模块以功能受到限制的方式工作。在 CPU 休眠模式下,ICI<1:0> 位不适用,输入捕捉模块只能用作外部中断源。

当器件处于休眠模式下时,为了使用输入捕捉模块,必须将模块配置为仅在上升沿产生中断(ICM<2:0> = 111)。在此模式下, 4:1 或 16:1 的预分频比设置不适用。

#### 12.2.2 CPU 空闲模式下的输入捕捉

CPU 空闲模式允许输入捕捉模块以全功能方式工作。在 CPU 空闲模式下,可以通过 ICI<1:0> 位选择中断模式,还可以通过控制位 ICM<2:0> 选择 4:1 和 16:1 捕捉预分频比设置。此模式要求使能所选择的定时器。此外,还必须将 ICSIDL 位设置为逻辑 0。

在 CPU 空闲模式下,如果将输入捕捉模块定义为 ICM<2:0> = 111,则输入捕捉引脚仅用作外部中断引脚。

# 12.3 输入捕捉中断

输入捕捉通道具有根据所选择的捕捉事件数来产生中断的能力。所选择的捕捉事件数可以通过控制位 ICI<1:0>(ICxCON<6:5>)进行设置。

每个通道都有一个中断标志位(ICxIF)。各捕捉通道中断标志位于相应的IFSx寄存器中。

通过各捕捉通道中断允许位(ICxIE)来允许中断。捕捉中断允许位位于相应的 IECx 寄存器中。

输入捕捉寄存器映射 (1) 表 12-1:

<u> </u>		TOO VOID																			
SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		复位	<b>犬态</b>	
IC1BUF	0140 输入 1 捕捉寄存器														uuuu	uuuu	uuuu	uuuu			
IC1CON	0142	_		ICSIDL		_	_	_	ı	ICTMR	ICI<	1:0>	ICOV	ICBNE	IC	CM<2:0:	>	0000	0000	0000	0000
IC2BUF	0144							输	入 2 捕捉	寄存器								uuuu	uuuu	uuuu	uuuu
IC2CON	0146	_		ICSIDL		_	_	_	I	ICTMR	ICI<	1:0>	ICOV	ICBNE	IC	CM<2:0:	^	0000	0000	0000	0000
IC7BUF	0158							输	入 7 捕捉	寄存器								uuuu	uuuu	uuuu	uuuu
IC7CON	015A	_		ICSIDL		_	_	_	I	ICTMR	ICI<	1:0>	ICOV	ICBNE	IC	CM<2:0:	^	0000	0000	0000	0000
IC8BUF	015C		输入 8 捕捉寄存器											uuuu	uuuu	uuuu	uuuu				
IC8CON	015E	_	_	ICSIDL	_	_	_	_		ICTMR	ICI<	1:0>	ICOV	ICBNE	IC	CM<2:0	>	0000	0000	0000	0000

图注:

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。

# 13.0 输出比较模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》

本章对输出比较模块和相关工作模式进行了介绍。此模块提供的特性适用于需要以下工作模式的应用:

(DS70157E_CN)。

- 产生可变宽度输出脉冲
- 功率因数校正

图 13-1 给出了输出比较模块的框图。

输出比较模块的主要工作特性如下:

- Timer2 和 Timer3 选择模式
- 简单输出比较匹配模式
- 双输出比较匹配模式
- 简单 PWM 模式
- 休眠和空闲模式期间的输出比较
- 发生输出比较 /PWM 事件时产生中断

通过设置 16 位 OCxCON SFR (其中 x = 1, 2, ...N) 中的相应位来决定这些工作模式。 dsPIC30F4011/4012 器件分别具有 4/2 路捕捉通道。

图中的 OCxRS 和 OCxR 表示双比较寄存器。在双比较模式下,OCxR 寄存器用于第一次比较而 OCxRS 用于第二次比较。



#### 13.1 Timer2 和 Timer3 选择模式

每个输出比较通道均可选择两个 16 位定时器 (Timer2 或 Timer3)中的一个。

通过 OCTSEL 位 (OCxCON<3>) 来控制定时器的选择。 Timer2 是输出比较模块默认的定时器资源。

#### 13.2 简单输出比较匹配模式

当控制位 OCM<2:0> (OCxCON<2:0>) = 001、010 或011 时,所选输出比较通道被配置为以下三种简单输出比较匹配模式之一:

- 比较强制引脚 I/O 为低电平
- 比较强制引脚 I/O 为高电平
- 比较使引脚 I/O 状态翻转

上述模式中使用了 OCxR 寄存器。OCxR 寄存器将装入一个值,然后与所选的递增定时器的计数值作比较。进行比较时,将出现上述比较匹配模式之一。如果在达到 OCxR 中的值之前,计数器复位为零,则 OCx 引脚的状态保持不变。

# 13.3 双输出比较匹配模式

当控制位 OCM<2:0> (OCxCON<2:0>) = 100 或 101 时,所选输出比较通道被配置为以下两种双输出比较模式之一:

- 单输出脉冲模式
- 连续输出脉冲模式

### 13.3.1 单输出脉冲模式

用户将模块配置为生成单输出脉冲,需要执行以下步骤(假设定时器已关闭):

- 确定指令周期时间 TCY
- 根据 TCY 计算所需的脉冲宽度值
- 计算从定时器起始值 0x0000 到脉冲开始的时间
- 把脉冲宽度开始和停止时间分别写入 OCxR 和 OCxRS 比较寄存器 (x表示通道 1, 2, ...,N)
- 设置定时器周期寄存器的值,使之等于或大于 OCxRS 比较寄存器中的值
- 设置 OCM<2:0> = 100
- 使能定时器, TON 位 (TxCON<15>) = 1

要启动另一个单脉冲,进行另一次写操作设置 OCM<2:0> = 100即可。

#### 13.3.2 连续输出脉冲模式

用户将模块配置为生成连续输出脉冲,需要执行以下步骤:

- 确定指令周期时间 TCY
- 根据 TCY 计算所需的脉冲宽度值
- 计算从定时器起始值 0x0000 到脉冲开始的时间
- 把脉冲宽度开始和停止时间分别写入 OCxR 和 OCxRS 比较寄存器 (x表示通道 1, 2, ..., N)
- 设置定时器周期寄存器的值,使之等于或大于 OCxRS 比较寄存器中的值
- 设置 OCM<2:0> = 101
- 使能定时器, TON 位 (TxCON<15>) = 1

### 13.4 简单 PWM 模式

当控制位 OCM<2:0> (OCxCON<2:0>) = 110 或 111 时,所选输出比较通道配置为 PWM 工作模式。当配置为 PWM 工作模式时,OCxR 是主锁存器(只读),OCxRS 是辅助锁存器。这样能使 PWM 信号跳变时不会产生毛刺。

为将输出比较模块配置为 PWM 工作模式,用户必须执行以下步骤:

- 1. 通过写适当的周期寄存器,设置 PWM 周期。
- 2. 通过写 OCxRS 寄存器,设置 PWM 占空比。
- 3. 把输出比较模块配置为 PWM 工作模式。
- 4. 设置 TMRx 预分频比并使能定时器 , TON 位 (TxCON<15>) = 1。

#### 13.4.1 PWM 的输入引脚故障保护

当控制位 OCM<2:0>(OCxCON<2:0>)= 111 时,所选输出比较通道还是配置为 PWM 工作模式,但具有输入故障保护的附加功能。在此模式下,如果在 OCFA 引脚上检测到逻辑 0,则对应的 PWM 输出引脚将被置于高阻输入状态。 OCFLT 位(OCxCON<4>)表明是否产生故障条件。此状态将保持到以下事件都已发生:

- 外部故障条件已经消除
- 通过写适当的控制位,重新使能了 PWM 模式

#### 13.4.2 PWM 周期

通过写入 PRx寄存器可以指定 PWM 周期。可使用公式 13-1 计算 PWM 周期。

# 公式 13-1: PWM 周期

PWM 周期 = [(PRx) + 1] • 4 • TOSC • (TMRx 预分频值)

PWM 频率定义为 1/[PWM 周期]。

当所选 TMRx 等于其对应的周期寄存器 PRx 时,在下一个递增周期将发生以下4个事件:

- TMRx 清零
- OCx 引脚置 1
  - 例外 1:如果 PWM 占空比为 0x0000,则 OCx 引脚将保持为低电平。
  - 例外 2:如果占空比大于 PRx,则引脚将保持为高电平。
- 把 PWM 占空比从 OCxRS 锁存到 OCxR 中
- 相应的定时器中断标志置 1

关键 PWM 周期的比较,请参见图 13-1。为了清晰起见,图中引用的是 Timer3。



# 13.5 CPU 休眠模式期间的输出比较工作

当 CPU 进入休眠模式时,所有的内部时钟都将停止。从而,当 CPU 进入休眠状态时,输出比较通道将把引脚驱动为 CPU 进入休眠模式之前的有效状态。

例如,当 CPU 进入休眠状态时,如果引脚为高电平,则引脚将继续保持为高电平。类似地,当 CPU 进入休眠状态时,如果引脚为低电平,则它将继续保持为低电平。在这两种情况下,当器件唤醒时,输出比较模块都将恢复工作。

# 13.6 CPU 空闲模式期间的输出比较工作

当 CPU 进入空闲模式时,输出比较模块仍然能够以全功能工作。

如果 OCSIDL 位(OCxCON<13>)为逻辑 0,所选时基(Timer2 或 Timer3)使能且所选定时器的 TSIDL 位为逻辑 0,则输出比较通道将在 CPU 空闲模式期间工作。

# 13.7 输出比较中断

输出比较通道具有在比较匹配时产生中断的能力,而与 选择的匹配模式无关。

对于除PWM模式之外的所有模式,当比较事件发生时,相应的中断标志(OCxIF)置1,如果允许中断的话还将产生中断。OCxIF位位于相应的IFSx寄存器中,它必须用软件清零。通过相应的比较中断允许(OCxIE)位来允许中断;该位位于相应的IECx寄存器中。

对于 PWM 模式,当事件发生时,对应的定时器中断标志(T2IF 或 T3IF)置 1,如果允许中断的话还将产生中断。 TxIF 位位于 IFSO 寄存器中,必须用软件对它清零。通过相应的定时器中断允许位(T2IE 或 T3IE)来允许中断;定时器中断允许位位于 IECO 寄存器中。在PWM 工作模式下,输出比较中断标志始终不会置 1。

#### 输出比较寄存器映射 (1) 表 13-1:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
OC1RS	0180 输出比较 1 辅助寄存器															0000 0000 0000 0000		
OC1R	0182		输出比较 1 主寄存器														0000 0000 0000 0000	
OC1CON	0184	OCSIDL OCFLT OCTSEL OCM<2:0>												0000 0000 0000 0000				
OC2RS	0186			-					输出比:	较 2 辅助署	存器		-					0000 0000 0000 0000
OC2R	0188								输出比	2 主寄	存器							0000 0000 0000 0000
OC2CON	018A	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSE		OCM<2:0>	•	0000 0000 0000 0000
OC3RS ⁽²⁾	018C			-		-	-		输出比:	较 3 辅助署	· 导存器		-		-			0000 0000 0000 0000
OC3R ⁽²⁾	018E								输出比	公较 3 主寄	存器							0000 0000 0000 0000
OC3CON ⁽²⁾	0190	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0	•	0000 0000 0000 0000
OC4RS ⁽²⁾	0192								输出比:	较 4 辅助署	存器							0000 0000 0000 0000
OC4R ⁽²⁾	0194		输出比较 4 主寄存器													•	0000 0000 0000 0000	
OC4CON ⁽²⁾	0196	_		OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>	•	0000 0000 0000 0000

图注:

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

2: 这些寄存器在 dsPIC30F4012 上不可用。

注:

# 14.0 正交编码器接口 (QEI) 模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参 见《dsPIC30F 系列参考手册》

( DS70046E_CN )。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》 ( DS70157B_CN )。

本章介绍了正交编码器接口(Quadrature Encoder Interface, QEI)模块和相关的工作模式。QEI模块提供了与用于获得机械位置数据的增量式编码器的接口。

QEI 的工作特性包括:

- 3 路输入通道,分别为两相信号和索引脉冲输入
- 16 位递增 / 递减位置计数器
- 计数方向状态
- 位置测量 (x2 和 x4) 模式
- 输入端上的可编程数字噪声滤波器
- 备用 16 位定时器 / 计数器模式
- 正交编码器接口中断

通过设置适当的位 QEIM<2:0> (QEICON<10:8>)来决定这些工作模式。图 14-1 给出了正交编码器接口的框图



# 14.1 正交编码器接口逻辑

典型的增量式编码器(也称为光电式编码器)具有3路输出:A相、B相和索引脉冲。在交流感应电机(ACIM)和开关磁阻电机(SR)的位置和速度控制中,这三个信号非常有用,且通常是必需的。

A 相 (QEA)和 B 相 (QEB)这两个通道具有特定的 关系。如果 A 相超前 B 相,那么认为电机正向旋转。如 果 A 相滞后于 B 相,那么认为电机反向旋转。

第三个通道称为索引脉冲,每转一圈产生一个脉冲,作为基准用来确定绝对位置。索引脉冲与 A 相和 B 相一致,皆为低电平。

## 14.2 16 位递增/递减位置计数器模式

16 位递增/递减计数器在每一个计数脉冲递增或递减计数,该脉冲信号由 A 相和 B 相输入信号的关系确定。计数器作为一个积分器,其计数值与位置成正比。计数方向由 UPDN 信号决定,该信号由正交编码器接口逻辑产生。

#### 14.2.1 位置计数器错误检查

QEI中提供了位置计数器错误检查功能,这由 CNTERR 位(QEICON<15>)指示。只有当位置计数器配置为通过索引脉冲复位模式(QEIM<2:0>=110或100)时,才能使用错误检查功能。在这些模式下,POSCNT寄存器的内容与相应值(0xFFFF或 MAXCNT+1,取决于转向)进行比较。如果检测到这些值,通过将 CNTERR位置1产生错误条件,并产生QEI计数错误中断。通过将 CEID 位(DFLTCON<8>)置1可以禁止QEI计数错误中断。通过将 CEID 位(DFLTCON<8>)置1可以禁止QEI计数错误中断。检测到错误后,位置计数器仍将继续对编码器设沿进行计数。POSCNT寄存器继续递增/递减计数,直到发生自然计满返回/下溢。发生自然计满返回/下溢事件时不产生中断。CNTERR 位是读/写位,由用户用软件复位。

#### 14.2.2 位置计数器复位

位置计数器复位使能位 POSRES (QEICON<2>)控制 当检测到索引脉冲时是否对位置计数器进行复位。只有当 QEIM<2:0> = 100 或 110 时,该位才适用。

如果 POSRES 位设置为 1,则位置计数器在检测到索引脉冲时将被复位。如果 POSRES 位设置为 0,则位置计数器在检测到索引脉冲时将不会被复位。位置计数器将继续进行递增或递减计数,且在发生计满返回或下溢时复位。

当选择使用 INDX 信号对位置计数器 (POSCNT)进行复位时,用户必须指定 QEA 和 QEB 输入引脚的状态。只有这些状态匹配时,复位才会发生。通过 IMV<1:0>位 (DFLTCON<10:9>)可选择这些状态。

当 POSCNT 寄存器将被复位时,索引匹配值位(IMV<1:0>)允许用户在索引脉冲期间指定 QEA 和QEB输入引脚的状态。

在 4x 正交计数模式下:

IMV1 = 索引脉冲匹配所要求的 B 相输入信号的状态 <math>IMV0 = 索引脉冲匹配所要求的 A 相输入信号的状态 在 <math>2x 正交计数模式下:

IMV1 = 为索引状态匹配选择的相输入信号 (0=A相, 1=B相)

IMV0 = 索引脉冲匹配要求的所选相输入信号的状态 当检测到索引脉冲但位置计数器未发生上溢 / 下溢时 , 仍将产生中断。

#### 14.2.3 计数方向状态

如前面章节所述,QEI逻辑将根据A相和B相之间的关系产生UPDN信号。除输出引脚外,还将此内部UPDN信号的状态传送给SFR的UPDN位(QEICON<11>),该位是只读位。

注: QEI 引脚与模拟输入复用。用户必须确保在ADPCFG寄存器中所有QEI相关引脚都被设置为数字输入。

# 14.3 位置测量模式

QEI 支持两种测量模式,分别称为 x2 和 x4 模式。通过 QEIM<2:0>(QEICON<10:8>)模式选择位可选择这些模式。

当控制位 QEIM<2:0>=100 或 101 时,将选择 x2 测量模式,此时 QEI 逻辑将只通过 A 相输入信号来确定位置计数器递增速率。 A 相信号的每个上升沿和下降沿都会导致位置计数器递增或递减。和在 x4 模式下一样, B 相信号仍用于计数器方向的确定。

在 x2 测量模式下,存在导致位置计数器复位的两种不同原因:

- 1. 通过检测到索引脉冲将位置计数器复位, QEIM<2:0>=100。
- 通过计数值与MAXCNT匹配将位置计数器复位, QEIM<2:0> = 101。

当控制位 QEIM<2:0> = 110 或 111 时,将选择 x4 测量模式,此时 QEI 逻辑将通过 A 相和 B 相输入信号的每个边沿来确定位置计数器递增速率。A 相和 B 相输入信号的每个边沿都会导致位置计数器递增或递减。

在 x4 测量模式下,存在导致位置计数器复位的两种不同原因:

- 1. 通过检测到索引脉冲将位置计数器复位, QEIM<2:0>=110。
- 通过计数值与MAXCNT匹配将位置计数器复位 , QEIM<2:0> = 111。

x4 测量模式为确定电机位置提供了更高精度的测量数据(更多的位置计数)。

### 14.4 可编程数字噪声滤波器

数字噪声滤波器部分负责抑制输入正交信号中的噪声。 施密特触发器输入和三时钟周期延时滤波器共同用来抑 制低电平噪声和短时的大噪声尖峰。这些噪声干扰经常 出现在易受噪声干扰的应用中,例如电机系统。

该滤波器可以确保在3个连续的时钟周期内都获得同一个稳定值之后,才允许经过滤波的输出信号发生变化。

对于 QEA、QEB 和 INDX 引脚,数字滤波器的时钟分频由 QECK<2:0>(DFLTCON<6:4>)位设定,该频率源自基本指令周期 TCY。

要使能通道 QEA、 QEB 和 INDX 的滤波器输出,必须将 QEOUT 位置 1。在 POR 和 BOR 时,所有通道的滤波器网络将被禁止。

#### 14.5 备用 16 位定时器 / 计数器

当 QEI 模块没有被配置为 QEI 模式,即 QEIM<2:0> = 001时,可以将模块配置为简单的16位定时器/计数器。辅助定时器的设置和控制通过 QEICON SFR 寄存器实现。此定时器功能与 Timer1 相同。 QEA 引脚被用作定时器时钟输入。

当配置为定时器时,POSCNT寄存器作为定时器计数寄存器,而 MAXCNT寄存器作为周期寄存器。当发生定时器/周期寄存器匹配时,QEI中断标志将被置1。

此定时器和通用定时器的惟一区别在于,此定时器增加了外部递增/递减输入选择功能。当 UPDN 引脚为高电平时,定时器将进行递增计数。当 UPDN 引脚为低电平时,定时器将进行递减计数。

注: 工作模式的改变 (即,从 QEI 改变到定时 器模式或反之)将不会影响定时器/位置计 数寄存器的内容。

UPDN 控制 / 状态位(QEICON<11>)可用来选择定时器寄存器的计数方向状态。当 UPDN = 1 时,定时器将进行递增计数。当 UPDN = 0 时,定时器将进行递减计数。

此外,控制位 UPDN_SRC (QEICON<0>)可确定定时器计数方向状态是基于写入 UPDN 控制/状态位(QEICON<11>)的逻辑状态还是 QEB 引脚的状态。当UPDN_SRC=1时,定时器计数方向由QEB引脚控制。同样,当UPDN_SRC=0时,定时器计数方向由UPDN位控制。

注: 此定时器不支持外部异步计数器工作模式。如果使用外部时钟源,时钟将自动与内部指令周期同步。

# 14.6 CPU 休眠模式下的 QEI 模块操作

14.6.1 CPU 休眠模式下的 QEI 操作在 CPU 休眠模式期间, QEI 模块将暂停工作。

14.6.2 CPU 休眠模式下的定时器操作在 CPU 休眠模式期间,由于禁止了内部时钟,所以定时器不工作。

### 14.7 CPU 空闲模式下的 QEI 模块操作

由于QEI模块可以用作正交编码器接口或16位定时器,以下各节介绍了这两种模式下的QEI模块操作。

#### 14.7.1 CPU 空闲模式下的 QEI 操作

当 CPU 处于空闲模式时,如果 QEISIDL 位 (QEICON<13>)= 0,则 QEI 模块将工作。在执行 POR 和 BOR 时,该位默认为逻辑 0。要在 CPU 空闲模式下暂停 QEI 模块,应将 QEISIDL 设置为 1。

#### 14.7.2 CPU 空闲模式下的定时器操作

当 CPU 处于空闲模式且 QEI 模块配置为 16 位定时器模式时,如果 QEISIDL 位(QEICON<13>)= 0,则 16 位定时器将工作。在执行 POR 和 BOR 时,该位默认为逻辑 0。要在 CPU 空闲模式下暂停定时器模块,应将QEISIDL 设置为 1。

如果 QEISIDL 位被清零 , 定时器将正常工作 , 就像 CPU 没有进入空闲模式一样。

# 14.8 正交编码器接口中断

正交编码器接口能够在发生以下事件时产生中断:

- 在16位递增/递减位置计数器发生计满返回/下溢时 产生中断
- 检测到合格的索引脉冲,或 CNTERR 位置 1 时
- 定时器周期匹配事件 (上溢/下溢)
- 门控累加事件

在发生以上任一事件时, QEI 中断标志位 QEIIF 将被置1。QEIIF 位必须用软件清零。QEIIF 位于 IFS2 寄存器中。

通过对应的中断允许位 QEIIE 可以允许中断。QEIIE 位位于 IEC2 寄存器中。

QEI 寄存器映射 ⁽¹⁾ 表 14-1:

			· · · · · · · · · · · · · · · · · · ·															
SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
QEICON	0122	CNTERR	1	QEISIDL	INDX	UPDN	QEIM2	QEIM1	QEIM0	SWPAB	-	TQGATE	TQCKPS1	TQCKPS0	POSRES	TQCS	UPDN_SRC	0000 0000 0000 0000
DFLTCON	0124	1	1			1	IMV1	IMV0	CEID	QEOUT	QECK2	QECK1	QECK0	_	1		ı	0000 0000 0000 0000
POSCNT	0126								位置	计数器 <1	5:0>							0000 0000 0000 0000
MAXCNT	0128								最为	、计数 <15	:0>							1111 1111 1111 1111
ADPCFG	02A8		_				1		PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000 0000 0000

图注:

— = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

注:

# 15.0 电机控制 PWM 模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》

(DS70157E_CN)。 此模块简化了产生多个同步脉宽调制(Pulse-Width Modulated,PWM)输出的任务。特别是 PWM 模块还

- 三相交流感应电机
- 开关磁阻 (Switched Reluctance, SR) 电机
- 直流无刷 (Brushless DC, BLDC) 电机

能支持以下电源和电机控制应用:

• 不间断电源(Uninterruptible Power Supply, UPS)

PWM 模块具有以下特性:

- 6 个具备 3 个占空比发生器的 PWM 引脚 I/O
- 最高 16 位分辨率
- "运行时" PWM 频率更改
- 边沿和中心对齐输出模式
- 单脉冲生成模式
- 在中心对齐模式下,为不对称更新提供了中断支持
- 为电子换相电机 ( Electrically Commutative Motor , ECM ) 操作提供了输出改写控制
- 用于调度其他外设事件的"特殊事件"比较器
- 故障引脚可选择将各 PWM 输出引脚驱动为定义的 状态

此模块包含 3 个占空比发生器,编号从 1 到 3。此模块 具有 6 个 PWM 输出引脚,编号从 PWM1H/PWM1L 到 PWM3H/PWM3L。6 个引脚 I/O 可组合为 3 个高 / 低端 引脚对,分别以下标 H 或 L 表示。对于互补的负载,低端 PWM 引脚的状态总是与高端引脚 I/O 的状态相反。

PWM 模块允许多种工作模式,有利于实现特定的功率控制应用。



# 15.1 PWM 时基

PWM 时基由带预分频器和后分频器的 15 位定时器提供。可通过 PTMR SFR 访问该时基。 PTMR<15> 为只读状态位 PTDIR,指示 PWM 时基当前的计数方向。如果 PTDIR 清零,则表示 PTMR 正进行递增计数。如果 PTDIR 置 1,则表示 PTMR 正进行递减计数。通过 PTCON SFR 对 PWM 时基进行配置。通过置 1/ 清零 PTCON SFR 中的 PTEN 位来使能 / 禁止时基。当用软件清零 PTEN 位时, PTMR 将不会被清零。

PTPER SFR 设置 PTMR 的计数周期。用户必须向 PTPER<14:0> 中写入一个 15 位的值。当 PTMR<14:0> 中的值与 PTPER<14:0> 中的值匹配时,时基将复位为 0,或者在下一个时钟周期反转计数方向。所采取的操作取决于时基的工作模式。

注: 如果将周期寄存器设置为 0x0000,则定时器将停止计数,且即使特殊事件值也是0x0000,也不会产生中断和特殊事件触发信号。如果周期寄存器已为 0x0000,则模块将不能更新周期寄存器;因此,用户必须禁止该模块以更新周期寄存器。

PWM 时基可配置为 4 种不同的工作模式:

- 自由运行模式
- 单事件模式
- 连续递增/递减计数模式
- 带双更新中断的连续递增/递减计数模式

通过 PTCON SFR 中的 PTMOD<1:0> 位可选择这 4 种模式。递增 / 递减计数模式支持产生中心对齐的 PWM。单事件模式使 PWM 模块可支持某些电子换相电机 (ECM)的脉冲控制。

PWM 时基产生的中断信号取决于 PTCON SFR 中的模式 选 择 位 (PTMOD<1:0>) 和 后 分 频 比 位 (PTOPS<3:0>)。

#### 15.1.1 自由运行模式

在自由运行模式下, PWM 时基进行递增计数直到与时基周期寄存器( PTPER ) 中的值发生匹配。 PTMR 寄存器在接下来的输入时钟边沿复位, 只要 PTEN 位保持置 1, 时基将继续进行递增计数。

当 PWM 时基处于自由运行模式(PTMOD<1:0> = 00)时,每当计数值与 PTPER 寄存器匹配时将产生中断事件,且 PTMR 寄存器将被复位为零。在此定时器模式下,可使用后分频比选择位来降低中断事件的频率。

#### 15.1.2 单事件模式

在单事件模式下,PWM 时基在 PTEN 位置 1 时将开始递增计数。当 PTMR 寄存器中的值与 PTPER 寄存器匹配时,PTMR 寄存器在接下来的输入时钟边沿复位,并且 PTEN 位将由硬件清零以暂停时基。

当 PWM 时基处于单事件模式 (PTMOD<1:0> = 01)时,在发生与 PTPER 寄存器匹配时将产生中断事件,PTMR 寄存器在接下来的输入时钟边沿被复位为零,并且 PTEN 位被清零。在该定时器模式下,后分频比选择位将不起作用。

#### 15.1.3 连续递增/递减计数模式

在连续递增/递减计数模式下,PWM时基将进行递增计数直到与PTPER寄存器中的值发生匹配。定时器将在接下来的输入时钟边沿开始递减计数。PTMRSFR中的PTDIR位是只读位,指示计数方向。当定时器进行递减计数时,PTDIR位将被置1。

在递增/递减计数模式(PTMOD<1:0> = 10)下,每当PTMR寄存器的值变为零时都会产生中断事件,这时PWM时基开始递增计数。在此定时器模式下,可使用后分频比选择位来降低中断事件的频率。

#### 15.1.4 双更新模式

在双更新模式 (PTMOD<1:0> = 11)下,每当 PTMR 寄存器等于零,以及每当发生周期匹配时都产生中断。 在此定时器模式下,后分频比选择位将不起作用。

双更新模式为用户提供了两种额外的功能。首先,由于 PWM 占空比在每个周期可更新两次,因此控制循环带 宽加倍。其次,可产生不对称的中心对齐 PWM 波形, 可在某些电机控制应用中用于减少输出波形畸变。

注: 将周期寄存器编程设置为0x0001可产生连续的中断脉冲,因此应避免这样操作。

# 15.1.5 PWM 时基预分频器

PTMR 的输入时钟(Fosc/4)具有以下预分频比选项: 1:1、1:4、1:16 或 1:64,通过 PTCON SFR 中的控制位 PTCKPS<1:0>选择。当出现下列事件之一时,预分频器计数器将清零:

- 对 PTMR 寄存器进行写操作
- 对 PTCON 寄存器进行写操作
- 任何器件复位

写 PTCON 时 PTMR 寄存器不会被清零。

#### 15.1.6 PWM 时基后分频器

用户可以选择通过一个 4 位后分频器 (分频比从 1:1 到 1:16)对 PTMR 的匹配输出进行后分频。

当出现以下事件之一时,后分频器计数器将清零:

- 对 PTMR 寄存器进行写操作
- 对 PTCON 寄存器进行写操作
- 任何器件复位

写 PTCON 寄存器时 PTMR 寄存器不会被清零。

# 15.2 PWM 周期

PTPER 是一个 15 位寄存器,用于设置PWM 时基的计数周期。PTPER 是一个双缓冲寄存器。PTPER 缓冲区的内容在发生以下情形时被装入 PTPER 寄存器:

- <u>自由运行和单事件模式</u>: 当 PTMR 寄存器在与 PTPER 寄存器匹配后复位为零时。
- 连续递增/递减计数模式: 当 PTMR 寄存器为零时。

当 PWM 时基被禁止(TEN = 0)时, PTPER 缓冲区中保存的值被自动装入 PTPER 寄存器。

PWM 周期可通过公式 15-1 确定:

### 公式 15-1: PWM 周期

TPWM = TCY • (PTPER + 1) • PTMR 预分频值

如果 PWM 时基配置为连续递增 / 递减计数模式之一 , 则 PWM 周期可通过公式 15-2 得出。

# 公式 15-2: PWM 周期 (中心对齐模式)

TPWM = TCY • 2 • (PTPER + 1) • PTMR 预分频值

给定器件振荡器的最大分辨率 (以位为单位)和 PWM 频率可通过公式 15-3 确定:

# 公式 15-3: PWM 分辨率

分辨率=  $\frac{\log (2 \bullet TPWM/TCY)}{\log (2)}$ 

# 15.3 边沿对齐的 PWM

当 PWM 时基处于自由运行或单事件模式时,模块将产生边沿对齐的 PWM 信号。对于边沿对齐的 PWM 输出,输出信号的周期由 PTPER 中的值指定,而占空比由相应的占空比寄存器指定(见图 15-2)。 PWM 输出在周期开始(PTMR = 0)时被驱动为有效状态;而当占空比寄存器中的值与 PTMR 发生匹配时, PWM 输出被驱动为无效状态。

如果特定占空比寄存器中的值为零,则相应 PWM 引脚上的输出在整个 PWM 周期内都将为无效状态。此外,如果占空比寄存器中的值大于 PRPER 寄存器中保存的值,则 PWM 引脚的输出在整个 PWM 周期内都将为有效状态。



#### 15.4 中心对齐的 PWM

当 PWM 时基配置为连续递增/递减计数模式时(见图 15-3),模块将产生中心对齐的 PWM 信号。

当占空比寄存器的值与 PTMR 的值匹配,并且 PWM 时基进行递减计数(PTDIR=1)时,PWM 比较输出将被驱动为有效状态。当 PWM 时基进行递增计数(PTDIR=0),并且 PTMR 寄存器中的值与占空比值匹配时,PWM 比较输出将被驱动为无效状态。

如果特定占空比寄存器中的值为零,则相应 PWM 引脚上的输出在整个 PWM 周期内都将为无效状态。此外,如果占空比寄存器中的值等于 PRPER 寄存器中保存的值,则 PWM 引脚上的输出在整个 PWM 周期内都将为有效状态。



# 15.5 PWM 占空比比较单元

有3个16位特殊功能寄存器(PDC1、PDC2和PDC3) 用于指定 PWM 模块的占空比值。

每个占空比寄存器中的值确定 PWM 输出处于有效状态的时间。占空比寄存器为 16 位宽。占空比寄存器的 LSb 确定是否在开始时出现 PWM 边沿。因此,PWM 实际上具有双倍分辨率。

#### 15.5.1 占空比寄存器缓冲区

3 个 PWM 占空比寄存器都是双缓冲的,以使 PWM输出 更新时不会产生毛刺。对于每个占空比,都有可由用户 访问的占空比寄存器和保存当前 PWM 周期中所使用的 实际比较值的占空比寄存器。

对于边沿对齐的 PWM 输出,当计数值与 PTPER 寄存器值匹配且PTMR被复位时,将更新占空比值。当PWM 时基被禁止(PTEN = 0)且 PWMCON2 中的 UDIS 位被清零时,占空比缓冲区的内容会被自动装入占空比寄存器。

如果PWM时基处于连续递增/递减计数模式,则当PTMR寄存器的值为零且PWM时基开始递增计数时,将采用新的占空比值。当PWM时基被禁止(PTEN=0)时,占空比缓冲区的内容会被自动装入占空比寄存器。

如果 PWM 时基处于带双更新功能的连续递增/递减计数模式,则当 PTMR 寄存器的值为零且 PTMR 寄存器的值与 PTPER 寄存器中的值匹配时,将采用新的占空比值。当 PWM 时基被禁止(PTEN = 0)时,占空比缓冲区的内容会被自动装入占空比寄存器。

### 15.6 互补 PWM 操作

在互补工作模式下,每对PWM输出都是互补的PWM信号。对于一段两个引脚的输出均为无效的短暂时间,可选择在器件开关过程中插入一个死区(见第15.7节"死区发生器")。

在互补模式下,占空比比较单元被分配给 PWM 输出使用,如下所示:

- PDC1 寄存器控制 PWM1H/PWM1L 输出
- PDC2 寄存器控制 PWM2H/PWM2L 输出
- PDC3 寄存器控制 PWM3H/PWM3L 输出

通过将 PWMCON1 SFR 中相应的 PTMODx 位清零,可使每个 PWM 引脚 I/O 对工作于互补模式。在器件复位时, PWM 引脚 I/O 默认设置为互补模式。

### 15.7 死区发生器

当任一 PWM 引脚 I/O 对工作于互补输出模式时,可以使用死区发生功能。 PWM 输出采用推挽驱动电路。由于功率输出器件的导通和关断都需要时间,因此在一对互补 PWM 输出中一个开关器件的关断和另一个开关器件的导通之间必须间隔一定的时间。

PWM 模块允许编程两个不同的死区。这两个死区可以 用以下两种方法之一来提高用户灵活性:

- 可以对 PWM 输出信号进行优化使一对互补晶体管中的高端和低端晶体管的关断时间不同。在互补对低端晶体管的关断事件和高端晶体管的导通事件之间插入第一个死区。在高端晶体管的关断事件和低端晶体管的导通事件之间插入第二个死区。
- 两个死区可以单独分配给一对 PWM 引脚 I/O。此工作模式使 PWM 模块可以对每一对互补的 PWM 引脚 I/O 驱动不同的晶体管 / 负载组合。

#### 15.7.1 死区发生器

PWM 模块的每一对互补输出都有一个 6 位的递减计数器,用于插入死区。如图 15-4 所示,每个死区单元都有与占空比比较输出相连的上升沿和下降沿检测器。

#### 15.7.2 死区范围

死区是由通过指定输入时钟预分频值和一个 6 位无符号值选择的死区单元提供的。

通过所提供的 4 个输入时钟预分频比选项,用户可以根据器件的工作频率选择适当的死区范围。死区时钟预分频值是使用 DTCON1 SFR 中的 DTAPS<1:0> 控制位选择的。死区值可使用 4 个时钟预分频比选项之一(TCY、2 TCY、4 TCY 或 8 TCY)。

选择预分频值后,通过向 DTCON1 SFR 中装入 6 位无符号值可对死区进行调整。

死区单元预分频器在发生以下事件时清零:

- 由于发生占空比比较边沿事件而装入递减定时器 时
- 对 DTCON1 寄存器进行写操作。
- 任何器件复位时。

注: 当 PWM 模块正在工作 (PTEN = 1)时, 用户不应修改 DTCON1 寄存器的值。因为 这样做可能造成意外结果。



# 15.8 独立的 PWM 输出

在驱动某些类型的负载时,需要采用独立的 PWM 输出模式。当 PWMCON1 寄存器中相应的 PTMODx 位置 1时,则相应的 PWM 输出对就处于独立输出模式。当模块工作于独立输出模式时,相邻 PWM 引脚 I/O 之间不存在死区控制,允许两个引脚 I/O 同时处于有效状态。

在独立输出模式下,每个占空比发生器同时连接到 PWM 输出对中的两个引脚 I/O。通过使用相关的占空比寄存器和 OVDCON 寄存器中的相应位,用户可以为工作于独立输出模式的每个 PWM 引脚 I/O 选择以下信号输出选项:

- 引脚 I/O 输出 PWM 信号
- 引脚 I/O 处于无效状态
- 引脚 I/O 处于有效状态

### 15.9 单脉冲 PWM 操作

当 PTCON 控制位 PTMOD<1:0> = 10 时, PWM 模块产生单脉冲输出。在单脉冲模式下,只能产生边沿对齐的输出。在单脉冲模式下,当 PTEN 位置 1 时, PWM 引脚 I/O 被驱动为有效状态。当计数值与占空比寄存器发生匹配时, PWM 引脚 I/O 被驱动为无效状态。当计数值与 PTPER 寄存器发生匹配时, PTMR 寄存器清零,所有的有效 PWM 引脚 I/O 被驱动为无效状态, PTEN 位清零并产生中断。

# 15.10 PWM 输出改写

PWM输出改写位可以让用户手动将PWM引脚I/O驱动为指定逻辑状态,而不受占空比比较单元的影响。

所有与 PWM 输出改写功能相关的控制位都包含在 OVDCON 寄存器中。OVDCON 寄存器的高字节包含 6 个位(POVDxH<3:1> 和 POVDxL<3:1>),这些位确定改写哪些 PWM 引脚 I/O。OVDCON 寄存器的低字节也包含 6 个位(POUTxH<3:1> 和 POUTxL<3:1>),当通过 POVD 位改写某个特定输出时,可以使用这些位确定 PWM 引脚 I/O 的状态。

#### 15.10.1 互补输出模式

当通过 OVDCON 寄存器将 PWMxL 引脚驱动为有效状态时,输出信号将被强制为与输出对中对应 PWMxH 引脚输出状态相反的状态。当手动改写 PWM 通道时,仍然执行死区插入。

#### 15.10.2 改写同步

如果 PWMCON2 寄存器中的 OSYNC 位置 1,则所有通过 OVDCON 寄存器执行的输出改写将与 PWM 时基同步。同步输出改写发生在以下时间:

- 若是边沿对齐模式,则当 PTMR 为零时。
- 若是中心对齐模式,则当 PTMR 为零时,以及当 PTMR 值与 PTPER 匹配时。

# 15.11 PWM 输出和极性控制

有 3 个与 PWM 模块相关的器件配置位用来提供 PWM 输出引脚控制:

- HPOL 配置位
- LPOL 配置位
- PWMPIN 配置位

FBORPOR 配置寄存器中的这 3 个位( 见**第 21.0 节" 系统集成"**)将与 6 个 PWM 使能位( PENxL 和 PENxH)配合工作。配置位和 PWM 使能位确保在发生器件复位后, PWM 引脚处于正确的状态。通过 PWMPIN 配置熔丝,可以选择在器件复位时使能 PWM 模块输出。如果 PWMPIN = 0, PWM 输出在复位时被驱动为无效状态。如果 PWMPIN = 1 ( 默认 ), PWM 输出将为三态。HPOL 位指定 PWMxH 输出的极性,而 LPOL 位指定 PWMxL 输出的极性。

### 15.11.1 输出引脚控制

PWMCON1 SFR 中的 PENxH<3:1> 和 PENxL<3:1> 控制位分别用于使能每个高端 PWM 输出引脚和每个低端 PWM 输出引脚。如果没有使能某个 PWM 输出引脚,则将其视为通用引脚 I/O。

#### 15.12 PWM 故障引脚

有一个与 PWM 模块相关的故障引脚 (FLTA)。当使能时,可选择通过该引脚将每个 PWM 引脚 I/O 驱动为定义的状态。

#### 15.12.1 故障引脚使能位

FLTACON SFR 具有 3 个控制位,用来决定特定 PWM 引脚 I/O 对是否由故障输入引脚控制。要使能某一 PWM 引脚 I/O 对的故障改写功能,需要将 FLTACON 寄存器中的相应位置 1。

如果 FLTACON 寄存器中所有的使能位都被清零,则相应的故障输入引脚对 PWM 模块没有影响,可以将引脚用作通用中断或引脚 I/O。

注: 故障引脚逻辑可以独立于 PWM 逻辑进行工作。如果将 FLTACON 寄存器中所有的使能位都清零,则可以将故障引脚用作通用中断引脚。故障引脚具有一个中断向量、中断标志位和与之相关的中断优先级位。

#### 15.12.2 故障状态

FLTACON 特殊功能寄存器具有 6 个位,用来决定各PWM 引脚 I/O 在被故障输入改写时的状态。当这些位清零时,PWM 引脚 I/O 被驱动为无效状态。当相应位置 1 时,PWM 引脚 I/O 被驱动为有效状态。有效和无效状态与各PWM 引脚 I/O 被定义的极性(通过 HPOL和 LPOL 极性控制位设置)相对应。

当 PWM 模块的一对 I/O 处于互补模式,并且两个引脚都编程为在产生故障条件时驱动为有效状态时,存在一种特殊情况。在互补模式下, PWMxH 引脚始终优先,因此两个引脚 I/O 不能同时被驱动为有效状态。

### 15.12.3 故障输入模式

故障输入引脚具有两种工作模式:

- 锁存模式:当故障引脚驱动为低电平时,PWM 输出将进入FLTACON 寄存器定义的状态。PWM 输出将保持在此状态,直到故障引脚被驱动为高电平并且相应的中断标志用软件清零。当这两个操作都发生后,PWM 输出将在下一个PWM 周期开始时或半周期边界返回到正常工作状态。如果中断标志在故障条件结束前清零,则PWM 模块将等到故障引脚不再有效时才恢复输出。
- 逐周期模式:当故障输入引脚被驱动为低电平时,只要故障引脚保持为低电平,PWM输出就会一直保持定义的故障状态。在故障引脚被驱动为高电平后,PWM输出将在下一个PWM周期开始时或半周期边界返回正常工作。

故障输入引脚的工作模式可通过 FLTACON 特殊功能寄存器中的 FLTAM 控制位进行选择。

可以用软件对故障引脚进行手动控制。

# 15.13 PWM 更新锁定

对于复杂 PWM 应用,用户可能需要在给定时间对最多 3 个占空比寄存器以及时基周期寄存器 PTPER 进行写操作。在某些应用中,在对模块装入新占空比和周期值之前写入所有的缓冲寄存器是很重要的。

通过将 PWMCON2 SFR 中的 UDIS 控制位置 1 可使能 PWM 更新锁定功能。UDIS 位会影响所有的占空比缓冲 寄存器和 PWM 时基周期缓冲区 TPER。当 UDIS = 1 时,占空比更改或周期值更改都不起作用。

# 15.14 PWM 特殊事件触发器

PWM 模块有一个特殊事件触发器,可以使 A/D 转换与 PWM 时基同步。可以将 A/D 采样和转换时间编程为在 PWM 周期内的任何时间发生。特殊事件触发器可以使 用户将采集 A/D 转换结果的时间与占空比值更新的时间 之间的延迟减到最小。

PWM 特殊事件触发器使用一个称为 SEVTVMP 的 SFR 和 5 个控制位对其操作进行控制。用于产生特殊事件触发信号的 PTMR 值装入 SEVTCMP 寄存器中。当 PWM 时基处于连续递增 / 递减计数模式时 , 还需要一个控制位指定特殊事件触发信号的计数方向。此计数方向通过 SEVTCMP SFR 中的 SEVTDIR 控制位进行选择。如果 SEVTDIR 位清零 ,则特殊事件触发信号将在 PWM 时基的递增计数周期产生。如果 SEVTDIR 位置 1 ,则特殊事件触发信号将在 PWM 时基的递减计数周期产生。如果 PWM 时基不配置为连续递增 / 递减计数模式 ,则 SEVTDIR 控制位不起作用。

#### 15.14.1 特殊事件触发器后分频器

PWM特殊事件触发器有一个允许后分频比为1:1到1:16 的后分频器。通过写 PWMCON2 SFR 中的 SEVOPS<3:0> 控制位可配置后分频器。

特殊事件输出后分频器在发生以下事件时清零:

- 对 SEVTCMP 寄存器的任何写操作
- 任何器件复位

# 15.15 CPU 休眠模式下的 PWM 操作

故障 A 输入引脚能够将 CPU 从休眠模式唤醒。在休眠模式下,如果故障引脚被驱动为低电平,则 PWM 模块将产生中断。

#### 15.16 CPU 空闲模式下的 PWM 操作

PTCON SFR 包含 PTSIDL 控制位。该位用于确定当器件进入空闲模式时 PWM 模块是继续工作还是停止工作。如果 PTSIDL = 0,则模块将继续工作。如果 PTSIDL = 1,只要 CPU 仍然处于空闲模式,模块将停止工作。

表 15-1:	6 输出 PWM 寄存器映射 ⁽¹⁾
4X 10-1.	

也址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
1C0	PTEN	_	PTSIDL	_	_	PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0> 000											0000 0000 0000 0000
1C2	PTDIR				,		,	PWM	定时器计	数值				,	-		0000 0000 0000 0000
1C4	_	PWM 时基周期寄存器 0														0111 1111 1111 1111	
1C6	SEVTDIR							PWM 特列	株事件比较	交寄存器							0000 0000 0000 0000
1C8	_	_	_	_		PTMOD3	PTMOD2	PTMOD1	_	PEN3H	PEN2H	PEN1H	I	PEN3L	PEN2L	PEN1L	0000 0000 1111 1111
1CA	_	_	_	_		SEVOP	S<3:0>	-	_			I	I	IUE	OSYNC	UDIS	0000 0000 0000 0000
1CC	_	_	_	_			1	_	DTAPS	S<1:0>			死区	A 值			0000 0000 0000 0000
1D0	_	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM			I	I	FAEN3	FAEN2	FAEN1	0000 0000 0000 0000
1D4	_	_	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	_		POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	1111 1111 0000 0000
1D6	-		-				P۱	MM 占空比	1寄存器	}						-	0000 0000 0000 0000
1D8						·	PV	MM 占空比	2 寄存器			·			·		0000 0000 0000 0000
1DA		PWM 占空比 3 寄存器														0000 0000 0000 0000	
1111111111	C0 C2 C4 C6 C8 CA CC D0 D4 D6 D8	C0 PTEN C2 PTDIR C4 — C6 SEVTDIR C8 — CA — CC — D0 — D4 — D6 D8	CO PTEN —  C2 PTDIR  C4 —  C6 SEVTDIR  C8 — —  CA — —  CC — —  D0 — —  D4 — —  D6  D8	CO PTEN — PTSIDL C2 PTDIR C4 — C6 SEVTDIR C8 — — — CA — — — CC — — — D0 — FAOV3H D4 — POVD3H D6 D8	CO PTEN — PTSIDL —  C2 PTDIR  C4 —  C6 SEVTDIR  C8 — — — — —  CA — — — —  CC — — — —  D0 — — FAOV3H FAOV3L  D4 — — POVD3H POVD3L  D6  D8	CO PTEN — PTSIDL — —  C2 PTDIR  C4 — —  C6 SEVTDIR  C8 — — — — — —  CC — — — — — —  D0 — — FAOV3H FAOV3L FAOV2H  D4 — — POVD3H POVD3L POVD2H  D6  D8	CO PTEN — PTSIDL — — — — — — — — — — — — — — — — — — —	CO PTEN — PTSIDL — — — — — — — — — — — — — — — — — — —	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN   PTSIDL   PTMOD     PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0>       C2 PTDIR   PVM 定时器计数值       PVM 定时器计数值   PVM 时基周期寄存器   PVM 特殊事件比较寄存器   PVM 特殊事件比较寄存器   PVM 特殊事件比较寄存器   PVM 特殊事件比较寄存器   PVM 特殊事件比较寄存器   PVM PEN2H PEN1H   PEN1H   PEN3H PEN2H PEN3H PEN2H PEN3H PEN2H PEN3H PEN2H PEN3H PEN2H PEN3H

— = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

注:

# 16.0 SPI 模块

**注:** 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的

功能,但是不应把本手册当作无所不包的参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC程序员参考手册》(DS70157E_CN)。

串行外设接口(Serial Peripheral Interface, SPI)模块是同步串行接口,可用于与其他外设(如 EEPROM、移位寄存器、显示驱动器和 A/D 转换器等)或者单片机进行通信。SPI模块与Motorola的SPI和SIOP接口兼容。

# 16.1 功能说明

SPI模块由一个用于将数据移入和移出的16位移位寄存器 SPI1SR 和一个缓冲区寄存器 SPI1BUF 组成。控制寄存器 SPI1CON 用来配置模块。此外,还有一个状态寄存器 SPI1STAT 用来表明各种状态条件。

串行接口由 4 个引脚组成:SDI1(串行数据输入)、SDO1(串行数据输出)、SCK1(移位时钟输入或输出)和SSI(低电平有效从选择)。

在主模式下工作时, SCK1 是时钟输出, 但在从模式下它是时钟输入。

一组 8 或 16 个时钟脉冲将数据位从 SPI1SR 移出到 SDO1 引脚,同时将 SDI1 引脚的数据位移入 SPI1SR。当传输完成后将产生中断,相应的中断标志位(SPI1IF)置1。通过中断允许位(SPI1IE)可以禁止该中断。

接收操作是双缓冲的。当接收完字节时,将字节从 SPI1SR 送到 SPI1BUF。

当从 SPI1SR 传输新数据到 SPI1BUF 时,如果接收缓冲区满,模块将置 1 SPIROV 位,表明产生溢出条件。从 SPI1SR 到 SPI1BUF 的数据传输将不会完成,新数据也将丢失。当 SPIROV 为 1 时,模块将不会对 SCK1 电平的跳变进行响应;实际上会禁止模块,直到用户软件读 SPI1BUF 为止。

发送写操作同样也是双缓冲的。用户写入 SPI1BUF。当主器件或从器件传输完成后,移位寄存器 (SPI1SR)的内容将被传送给接收缓冲区。如果已经向缓冲区寄存器写了任何发送数据,发送缓冲区的内容将被传送给SPI1SR。于是,接收到的数据存放在 SPI1BUF 中,而SPI1SR 中的发送数据已经准备就绪,可进行下一次传输。

注: 发送缓冲区(SPI1TXB)和接收缓冲区 (SPI1RXB)都映射到相同的寄存器地址 SPI1BUF。

在主模式下,通过对系统时钟进行预分频来产生时钟。 只要数据写入 SPI1BUF 就会被发送。在最后一个位传 输的过程中产生中断。

在从模式下,SCK1 上出现外部时钟脉冲时,进行数据的发送和接收。同样,当最后一个位被锁存时产生中断。如果使能了 SS1 控制,那么仅当 SS1 为低电平时使能发送和接收。在 SS1 模式下,当 SS1 为高电平时SDO1 输出将被禁止。

提供给模块的时钟的频率为 Fosc/4。而后,使用主预分频 因子(PPRE<1:0>)和辅助预分频因子(SPRE<2:0>),对这个时钟进行预分频。CKE位决定发送的时钟边沿,是在时钟从有效状态跳变到空闲状态进行发送,还是反之。CKP位选择时钟的空闲状态(高电平或低电平)。

# 16.1.1 字和字节通信

控制位 MODE16 (SPI1CON<10>) 允许模块在 8 位或 16 位模式下通信。16 位通信,除了发送的位数是 16 而 不是 8 以外,与 8 位通信相同。

在更改 MODE16 位之前,用户软件必须禁止模块。用户更改 MODE16 位时, SPI 模块被复位。

8 位和 16 位工作之间的基本区别是: 8 位工作模式下数据是从 SPI1SR 的 bit 7 开始发送的;而在 16 位工作模式下,则是从 SPI1SR 的 bit 15 开始发送。在两种模式下,数据都会移入 SPI1SR 的 bit 0。

### 16.1.2 SDO1 禁止

SPI1CON寄存器中的控制位DISSDO,用来禁止SDO1输出。这样可以允许SPI模块按仅输入配置进行连接。SDO1也可用作一般I/O。

# 16.2 帧 SPI 支持

当工作在主模式或从模式时,模块支持基本的帧 SPI 协议。控制位 FRMEN 使能帧 SPI 支持,并使 SS1 引脚用作帧同步脉冲(FSYNC)功能。控制位 SPIFSD 决

定 SS1 引脚是输入还是输出 (即,模块是接收还是产生帧同步脉冲)。帧脉冲在一个 SPI 时钟周期内是高电平有效脉冲。当帧同步使能时,仅在 SPI 时钟的下一个发送边沿开始发送数据。





# 16.3 从选择同步

SS1 引脚允许同步从模式。必须使用 SS1 引脚控<u>制使</u>能位(SSEN = 1)将 SPI 配置为 SPI 从模式。当 SS1 引脚为低电平时,使能发送和接收且驱动 SDO1 引脚。当 SS1 引脚变为高电平时,将不再驱动 SDO1 引脚。另外,可以重新同步 SPI 模块,所有的计数器 / 控制电路都被复位。于是,当 SS1 引脚再次为低电平时,发送 / 接收又将从 MSb 开始,即使 SS1 在发送 / 接收过程中变为高电平。

# 16.4 CPU 休眠模式期间的 SPI 工作

在休眠模式期间, SPI 模块关闭。如果 CPU 在 SPI 正在进行处理时进入休眠模式,则发送和接收将中止。

在休眠模式下,发送器和接收器将停止。但进入或退出 休眠模式不影响寄存器的内容。

# 16.5 CPU 空闲模式期间的 SPI 工作

当器件进入空闲模式时,所有的时钟源继续工作。 SPISIDL 位(SPI1STAT<13>)选择 SPI 模块在空闲模式下是停止工作还是继续工作。如果 SPISIDL = 0,则在 CPU 进入空闲模式时,模块将继续工作。如果 SPISIDL = 1,则在 CPU 进入空闲模式时,模块将停止工作。

### SPI1 寄存器映射 ⁽¹⁾ 表 16-1:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态	
SPI1STAT	0220	SPIEN	_	SPISIDL	_	_	_	_	_	_	SPIROV	_	_	_	_	SPITBF	SPIRBF	0000 0000 0000	0000
SPI1CON	0222	_	FRMEN	SPIFSD	_	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000 0000 0000	0000
SPI1BUF	0224		发送和接收缓冲区													0000 0000 0000	0000		

dsPIC30F4011/4012

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见 《dsPIC30F 系列参考手册》( DS70046E_CN )。

# 17.0 I²C™ 模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》(DS70157E_CN)。

 $I^2C^{TM}$  模块(16 位接口)为  $I^2C$  串行通信标准的从模式和多主器件模式提供完全的硬件支持。

# 此模块具有以下主要特性:

- I²C 接口支持主 / 从模式工作
- I²C 从模式支持 7 位和 10 位寻址
- I²C 主模式支持 7 位和 10 位寻址
- I²C 端口允许主器件和从器件之间的双向传输
- I²C 端口的串行时钟同步可以用作握手机制来暂停 和继续串行传输(SCLREL 控制)
- I²C 支持多主器件工作;检测总线冲突并相应地进行仲裁

# 17.1 功能说明

硬件完全实现了 I²C 标准模式和快速模式规范的所有主 从功能,以及 7 位和 10 位寻址。

从而,在  $I^2C$  总线上,  $I^2C$  模块既可作为主器件工作, 也可作为从器件工作。

# 17.1.1 各种 I²C™ 模式

支持 I²C 模块工作在以下模式:

- 带 7 位寻址的 I²C 从模式
- 带 10 位寻址的 I²C 从模式
- 带 7 位或 10 位寻址的 I²C 主模式

 $I^2C$  编程模型,请参见图 17-1。

# 17.1.2 I²C™ 模式下的引脚配置

 $I^2C$  有一个双引脚接口。SCL 引脚是时钟线,SDA 引脚是数据线。

# 17.1.3 I²C™ 寄存器

I2CCON和I2CSTAT分别是控制寄存器和状态寄存器。 I2CCON寄存器是可读写的。I2CSTAT的低6位是只读的,它的其余位是可读写的。

I2CRSR 是移位寄存器,用来对数据进行移位。I2CRCV 是缓冲寄存器,可写入、读出数据字节,如图 17-1 所示。I2CTRN 是发送寄存器,发送操作期间,字节将会写入 I2CTRN,如图 17-2 所示。

I2CADD 寄存器存放从地址。状态位 ADD10 表明是否为 10 位地址模式。 I2CBRG 用来保存波特率发生器的重载值。

在进行接收时,I2CRSR 和 I2CRCV 一起形成双缓冲接收器。当 I2CRSR 接收到一个完整的字节后,字节被送至 I2CRCV 并产生中断脉冲。在发送期间,I2CTRN 不是双缓冲的。

注: 在 10 位模式下,在重复启动条件之后,用户只需匹配前7位地址。





# 17.2 I²C™ 模块地址

I2CADD 寄存器包含从模式地址。这是一个 10 位寄存器。

如果 A10M 位(I2CCON<10>)为 0,则模块把地址解释为 7 位地址。当接收到地址时,将收到的地址与 I2CADD 寄存器中的低 7 位进行比较。

如果 A10M 位为 1 , 则将地址视为 10 位地址。当接收地址时 , 将收到的地址与二进制值 " 11110~ A9 A8 " (其中 A9 和 A8 是 I2CADD 的高 2 位 )进行比较。如果值匹配 , 下一个地址将与 I2CADD 的低 8 位进行比较 , 这是 I0 位寻址协议规定的。

dsPIC30F 支持的 7 位 I²C 从地址如表 17-1 所示。

表 17-1: 7 位 I²C™ 从地址

<del>2</del> 2	1 M 1 O 777-10-11
地址	说明
0x00	广播呼叫地址或启动字节
0x01-0x03	保留
0x04-0x07	HS 模式主机码
0x08-0x77	有效 7 位地址
0x78-0x7B	有效 10 位地址 (低 7 位)
0x7C-0x7F	保留

# 17.3 I²C™ 7 位从模式的工作

从模块一旦使能(I2CEN = 1),从模块将等待一个启动位出现(即,I²C 模块"空闲")。检测到启动位之后,8个位将移入I2CRSR,然后地址将与I2CADD 进行比较。在7位模式下(A10M = 0),I2CADD<6:0>位与I2CRSR<7:1>进行比较,而I2CRSR<0>是 R_W位。所有进入的位都是在 SCL 的上升沿采样的。

如果地址匹配的话,将发送一个应答,并且在第9个位(ACK)的下降沿将从事件中断标志(SI2CIF)置 1。地址匹配不会影响 I2CRCV 缓冲区的内容或 RBF 位。

### 17.3.1 从模式发送

如果接收到的 R_W 位为  $\frac{1}{1}$  ,串行端口将进入发送模式。模块将在第 9 个位发送 ACK ,并使 SCL 保持为 0 ,直到 CPU 写 I2CTRN 进行响应为止。通过将 SCLREL 位置 1 释放 SCL ,而后数据的 8 个位被移出。数据位在 SCL 的下降沿移出,因此 SCL 为高电平时 SDA 有效(见时序图)。将在第 9 个时钟脉冲的下降沿发出中断脉冲,与从主器件接收到的 ACK 状态无关。

# 17.3.2 从模式接收

如果地址匹配时接收到的 R_W 位为 0,就将启动接收模式。在 SCL 上升沿采样进入的位。接收到 8 个位之后,如果 I2CRCV 未满或 I2COV 没有置 1,I2CRSR 中的数据将被送至 I2CRCV。在第 9 个时钟发送 ACK。

如果 RBF 标志置 1 ,表明 I2CRCV <u>仍然</u>存有前一次接收到的数据(RBF = 1),则不发送 ACK;但是,仍将产生中断脉冲。如果发生溢出,I2CRSR 中的内容不会被装入 I2CRCV 中。

如果 I2COV 位为 1 且 RBF 标志为 0,将 装入 I2CRCV。在这种情况下,要对 I2CRCV 进行读操作,但在下一次接收操 作发生之前<u>,用户</u>不会清零 I2COV 位。不 发送应答(ACK = 1),但 I2CRCV 会被 更新。

# 17.4 I²C™ 10 位从模式的工作

在 10 位模式下,基本的接收和发送操作与 7 位模式相同。不过,地址匹配的判据更加复杂。

 $I^2C$  规范要求,对于写操作,必须在一个启动位后跟两个地址字节来寻址从器件。

A10M 控制位置 1 表明 I2CADD 中的地址是 10 位地址,而不是 7 位地址。报文地址首字节的地址检测协议对于 7 位和 10 位报文而言,是完全相同的,但首字节各位进行比较的机制不同。

I2CADD 存放完整的 10 位地址。在接收到启动位后的地址时,I2CRSR<7:3> 与立即数 11110 (默认 10 位地址 )进行比较,而 I2CRSR<2:1> 与 I2CADD<9:8> 进行比较。如果发生匹配且  $R_W=0$ ,则发出中断脉冲。ADD10 位被清零,表明地址部分匹配。如果匹配失败或  $R_W=1$ ,则 ADD10 位被清零,模块返回到空闲状态。

然后,接收地址的低字节,并与 I2CADD<7:0> 进行比较。如果发生地址匹配,则产生中断脉冲并将 ADD10位置 1,表明 10位地址完全匹配。如果地址不匹配,ADD10位清零,模块返回到空闲状态。

### 17.4.1 10 位从模式发送

一旦以上述方式使用完整的10位地址寻址到从器件(我们把这个状态叫做"PRIOR_ADDR_MATCH"), 主器件就可以开始发送数据字节, 从器件接收。

### 17.4.2 10 位从模式接收

一旦寻址到从器件,主器件就可以产生重复的启动位,复位地址的高字节,并将 R_W 位置 1,但不产生停止位,从而开始进行从器件发送操作。

# 17.5 自动时钟延长

在从模式下,模块可以通过时钟延长同步读缓冲区和写主器件。

### 17.5.1 发送时钟延长

在 10 位和 7 位发送模式下,如果 TBF 位清零(表明缓冲区为空),则在第 9 个时钟的下降沿后将 SCLREL 位清零,就实现了时钟延长。

在从发送模式下,始终进行时钟延长,与 STREN 位无关。

在发送序列的第9个时钟之后,发生时钟同步。如果器件在第9个时钟的下降沿采样到ACK,并且TBF位仍然清零的话,则SCLREL位自动清零。SCLREL的清零将使SCL线置为低电平。在允许继续发送之前,用户中断服务程序必须将SCLREL位置1。通过使SCL线保持为低电平,在主器件启动另一个发送序列之前,用户就有时间执行中断服务程序并装入I2CTRN的内容。

- 注 1:如果用户装入 I2CTRN 的内容,在第9个时钟下降沿之前将 TBF 位置 1,则 SCLREL 位将不会被清零,也不会发生时钟延长。
  - 2:不管TBF位的状态如何,SCLREL位都可以用软件置1。

# 17.5.2 接收时钟延长

在从接收模式下,I2CCON 寄存器中的 STREN 位可用来使能时钟延长。当 STREN 位置 1 时,SCL 引脚将在每个数据接收序列结束时保持为低电平。

17.5.3 7 位寻址时的时钟延长 (STREN = 1) 在从接收模式下,当 STREN 位置 1, SCL 线在缓冲寄存器已满时保持为低电平。对于 7 位和 10 位寻址模式,延长 SCL 输出的方法相同。

时钟延长将在接收序列的第9个时钟后进行。在ACK序列末尾的第9个时钟的下降沿,如果RBF位置1,SCLREL位将自动清零,这将强制SCL输出保持为低电平。在允许继续接收之前,用户中断服务程序必须将SCLREL位置1。通过保持SCL线为低电平,用户可以在主器件启动另一个接收序列之前,有时间执行中断服务程序并读出I2CRCV的内容。这可以防止缓冲区溢出。

- 注 1:如果用户读 I2CRCV 的内容,在第9个时钟下降沿之前将RBF位清零,则 SCLREL位将不会被清零,也不会发生时钟延长。
  - 2: 不管 RBF 位的状态如何 , SCLREL 位都可以用软件置 1。为避免溢出 , 在下一个接收序列开始之前 , 用户要注意在中断服务程序中清零 RBF 位。

17.5.4 10 位寻址时的时钟延长(STREN = 1)在寻址过程中会自动进行时钟延长。由于模块有一个寄存器用于存放完整的地址,协议不必等待地址更新。寻址过程完成后,每个数据接收或发送序列都要进行时钟延长,如前所述。

# 17.6 软件控制的时钟延长 (STREN = 1)

当 STREN 位为 1 时,可以用软件清零 SCLREL 位,从而实现对时钟延长的软件控制。逻辑将对 SCLREL 位的写操作与 SCL 时钟进行同步。清零 SCLREL 位不会使 SCL 输出保持为低电平,直到模块检测到 SCL 输出的下降沿且采样到 SCL 为低电平。在 SCL 线采样为低电平时,如果用户清零 SCLREL 位,则 SCL 输出将保持为低电平。SCL 输出将保持为低电平,直到 SCLREL 位置 1,并且  $I^2$ C 总线上所有其他器件都已释放了 SCL。这确保了对 SCLREL 位的写操作不会违反 SCL 的最小高电平时间要求。

如果 STREN 位为 0, 软件对 SCLREL 位的写操作将被 忽略,不会对 SCLREL 位产生影响。

# 17.7 中断

 $I^2C$  模块产生两个中断标志 : MI2CIF( $I^2C$  主中断标志)和 SI2CIF( $I^2C$  从中断标志)。在主器件报文事件完成时, MI2CIF 中断标志被激活。在检测到发往从器件的报文时, SI2CIF 中断标志被激活。

# 17.8 斜率控制

对于快速模式(400 kHz), I²C 标准要求对 SDA 和 SCL 信号进行斜率控制。如果需要的话,用户可通过控制位 DISSLW 来禁止斜率控制。对于 1 MHz 模式,必须禁止斜率控制。

# 17.9 IPMI 支持

控制位 IPMIEN 允许模块支持智能外设管理接口 (Intelligent Peripheral Management Interface, IPMI)。当此位置 1 时,模块将接受并对所有地址执行操作。

# 17.10 广播呼叫地址支持

广播呼叫地址能寻址所有器件。当使用此地址时,理论 上所有器件都应该以应答信号作出响应。

广播呼叫地址是  $I^2C$  协议为特定目的保留的 8 个地址之一。它由全 0 地址位组成,且  $R_W = 0$ 。

当广播呼叫使能位(GCEN)置 1(I2CCON<7> = 1)时,将识别广播呼叫地址。在检测到启动位后,将 8 位移入 I2CRSR,并将地址与 I2CADD 进行比较,同时也与固化在硬件中的广播呼叫地址进行比较。

如果广播呼叫地址匹配, I2CRSR 在第8个时钟之后被送至 I2CRCV, RBF 标志在第9位(ACK位)的下降沿置1,主事件中断标志(MI2CIF)置1。

在响应中断时,通过读 I2CRCV 的内容可以检测到中断的来源,从而确定地址是特定于器件的还是广播呼叫地址。

# 17.11 I²C™ 主模式支持

用作主器件时,支持以下6种操作。

- 在 SDA 和 SCL 上产生启动条件。
- 在 SDA 和 SCL 上产生重复启动条件。
- 写入 I2CTRN 寄存器,启动数据/地址的发送。
- 在 SDA 和 SCL 上产生停止条件。
- 配置 I²C 端口以接收数据。
- 在数据字节接收完成后产生 ACK 条件。

# 17.12 I²C™ 主模式的工作

主器件产生所有的串行时钟脉冲、启动和停止条件。出现停止条件或重复启动条件时,传输结束。因为重复启动条件也是下一次串行传输的开始,此时不会释放 I²C 总线。

在主发送模式下,串行数据通过 SDA 输出,而 SCL 输出串行时钟。发送的第一个字节包含接收器件的从地址 (7位)和数据方向位。此时,数据方向位(R_W)为逻辑 0。一次发送 8位串行数据。在每个字节发送完之后,接收到一个 ACK 位。输出启动和停止条件,以表明串行传输的开始和结束。

在主接收模式下,发送的第一个字节包含发送器件的从地址 (7位) 和数据方向位。此时,数据方向位  $(R_W)$  为逻辑 1。这样,发送的第一个字节是一个 7位 从地址,后跟一个表明接收的 1。通过 SDA 接收串行数据,而 SCL 输出串行时钟。一次接收 8 位串行数据。在每个字节接收之后,发送一个 ACK 位。启动和停止条件分别表明发送的开始和结束。

# 17.12.1 I²C™ 主发送

只需将值写入 I2CTRN 寄存器,便可以进行数据字节、7位地址或 10 位地址后半部分的发送。当模块处于等待状态时,用户应该只写 I2CTRN。此操作将使缓冲区满标志(TBF)置 1,允许波特率发生器开始计数,并开始下一次发送。在 SCL 的下降沿后,地址/数据的每一个位都将被移出至 SDA 引脚上。发送状态标志 TRSTAT(I2CSTAT<14>)用来表明主器件是否正在进行发送。

# 17.12.2 I²C™ 主接收

通过设置接收使能位 RCEN (I2CCON<3>) 使能主控模式接收。在 RCEN 位置 1 之前, I²C 模块必须处于空闲状态, 否则将忽略 RCEN 位。波特率发生器开始计数,每次计满返回时,在每个时钟的上升沿 SCL 引脚翻转的状态和数据被移入 I2CRSR 中。

# 17.12.3 波特率发生器 (BRG)

在  $I^2C$  主模式下, BRG 的重载值位于 I2CBRG 寄存器中。 BRG 装入该值后, BRG 将递减计数到 0 并停止, 直到发生再次装入。如果发生时钟仲裁,例如 SCL 引脚采样为高电平时,将重载 BRG。

根据 I 2 C 标准, FSCK 可以是 100 kHz 或 400 kHz。然 而,用户可以指定任何波特率,最高到 1 MHz。I2CBRG 的值不能是 0 或 1。

# 公式 17-1: I2CBRG 值

$$I2CBRG = \left(\frac{FCY}{FSCL} - \frac{FCY}{1,111,111}\right) - 1$$

# 17.12.4 时钟仲裁

在任何接收、发送或重复启动 / 停止条件期间,当主器件释放了 SCL 引脚(允许 SCL 悬空为高电平)时,就会发生时钟仲裁。当允许 SCL 引脚悬空为高电平时,波特率发生器(BRG)暂停计数,直到 SCL 引脚被实际采样到高电平为止。当 SCL 引脚被采样到高电平时,波特率发生器重新装入 I2CBRG 的内容并开始计数。当外部器件使时钟保持为低电平时,这可以始终保证 SCL 高电平时间至少为一个 BRG 计满返回计数周期。

# 17.12.5 多主器件通信、总线冲突和总线仲裁

通过总线仲裁实现了对多主器件工作的支持。当主器件在 SDA 引脚上输出地址/数据位时,第一个主器件使 SDA 悬空为高电平从而输出一个 1,而另一个主器件要输出 0,就会发生仲裁。如果 SDA 上预期数据是 1,但从 SDA 引脚采样到的数据是 0,那么就发生了总线冲突。主器件将 MI2CIF 脉冲置 1,并且将 I²C 端口的主器件部分复位到空闲状态。

如果正在进行发送时产生总线冲突,将停止发送,清零 TBF 标志,释放 SDA 和 SCL 线,而后可将值写入 I2CTRN。当用户执行  $I^2C$  主事件中断服务程序时,如果  $I^2C$  总线空闲(即 P 位置 1),用户可以通过产生一个启动条件继续通信。

当总线冲突发生在启动、重复启动、停止或应答条件期间,将中止这些条件,释放 SDA 和 SCL 线,清零 I2CCON 寄存器中对应的控制位。当用户执行总线冲突中断服务程序时,如果 I²C 总线空闲,用户可以通过产生一个启动条件继续通信。

主器件将继续监视 SDA 和 SCL 引脚,如果停止条件出现,将 MI2CIF 位置 1。

写 I2CTRN 将从第一个数据位开始数据的发送,无论发生总线冲突时发送器停在何处。

在多主器件环境中,在检测到启动和停止条件时产生中断,可以确定总线何时空闲。当 I2CSTAT 寄存器中的 P位置 1 时,器件可以控制  $I^2$ C 总线;否则,总线空闲,且 S 和 P 位清零。

# 17.13 CPU 休眠和空闲模式期间 I²C™ 模块的工作

# 17.13.1 CPU 休眠模式期间 I²C™ 的工作

当器件进入休眠模式时,模块的所有时钟源都将关闭并保持在逻辑 0。如果休眠发生在发送过程中,且时钟停止时状态机部分进入发送,则发送将中止。类似地,如果休眠出现在接收过程中,则接收也将中止。

# 17.13.2 CPU 空闲模式期间 I²C™ 的工作

对于  $I^2C$  , I2CSIDL 位用来选择空闲时模块是停止还是继续工作。如果 I2CSIDL=0 ,则在空闲模式下模块将继续工作。如果 I2CSIDL=1 ,则在空闲模式下模块将停止工作。

I²C™ 寄存器映射 ⁽¹⁾ 表 17-2:

C = 1																		
SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Bit 0	复位状态
I2CRCV	0200	_	_	_	_	_		_	_		接收寄存器							0000 0000 0000 0000
I2CTRN	0202	ı	1	I	_	_	I	_					发送寄	存器				0000 0000 1111 1111
I2CBRG	0204	ı	1	I	_	_	I	_			波特率发生器							0000 0000 0000 0000
I2CCON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0001 0000 0000 0000
12CSTAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000 0000 0000 0000
I2CADD	020A	_	_	_	_	_	1	地址寄存器									-	0000 0000 0000 0000

图注:

— = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

注:

# 18.0 通用异步收发器 (UART) 模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存 器说明和一般器件功能的更多信息,请参 见《dsPIC30F 系列参考手册》

( DS70046E_CN )。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和 DSC 程序员参考手册》 ( DS70157E_CN )。

本章介绍了通用异步接收器 / 发送器通信模块。

# 18.1 UART 模块概述

UART 模块的主要特性是:

- 全双工8位或9位数据通信
- 偶校验、奇校验或无奇偶校验选项 (对于 8 位数据)
- 一个或两个停止位
- 完全集成的波特率发生器,具有16位预分频器
- 在 30 MHz 指令速率时,波特率范围为 38 bps 到 1.875 Mbps
- 4字深度发送数据缓冲区
- 4字深度接收数据缓冲区
- 奇偶校验错误、帧错误和缓冲区溢出错误检测
- 支持仅在地址检测 (第9位=1)时产生中断
- 独立的发送和接收中断
- 用于诊断支持的环回模式





# 18.2 使能和设置 UART

# 18.2.1 使能 UART

通过将UxMODE寄存器(其中x=1或2)中的UARTEN位置 1,可以使能 UART 模块。一旦使能,UxTX和UxRX引脚被分别配置为输出和输入,这改写了相应 I/O端口引脚的TRIS和LATCH寄存器位的设置。在没有传输发生时,UxTX引脚状态为逻辑 1。

### 18.2.2 禁止 UART

通过清零UxMODE 寄存器中的 UARTEN 位,可以禁止 UART 模块。这是任何复位后的默认状态。如果 UART 被禁止,那么所有的引脚 I/O 均用作端口引脚,受相应端口引脚的锁存器和 TRIS 位的控制。

禁止 UART 模块会将缓冲区复位为空状态。缓冲区中的 所有数字字符都将丢失,同时波特率计数器也将复位。

当 UART 模块被禁止时,所有与之相关的错误和状态标志 都 将 复 位。 URXDA、OERR、FERR、PERR、UTXEN、UTXBRK 和 UTXBF 位被清零,而 RIDLE 和 TRMT 被置 1。其他控制位,包括 ADDEN、URXISEL<1:0>和 UTXISEL,以及 UxMODE 和 UxBRG 寄存器则不受影响。

当 UART 处于工作状态时,对 UARTEN 位清零将中止所有等待的发送和接收,同时还将象上面定义的那样复位模块。再次使能 UART 将使用同样的配置重新启动UART。

## 18.2.3 备用 I/O

备用 I/O 功能通过将 ALTIO 位(UxMODE<10>)置 1 来使能。如果 ALTIO = 1 ,UART 模块使用 UxATX 和 UxARX 引脚(分别为备用发送和备用接收引脚)代替 UxTX 和 UxRX 引脚。如果 ALTIO = 0 ,UART 模块使用 UxTX 和 UxRX 引脚。

# 18.2.4 设置数据、奇偶校验和停止位选择

UxMODE 寄存器中的控制位 PDSEL<1:0> 用来选择发送时使用的数据长度和奇偶校验。数据长度可以是 8位,具有偶校验位或奇校验位或没有奇偶校验位,数据长度也可以是没有奇偶校验位的 9 位。

STSEL位决定在数据发送期间,是使用一个还是两个停止位。

UART 的默认 (上电)设置是8位、无奇偶校验位以及1个停止位 (通常表示为8,N,1)。

# 18.3 发送数据

# 18.3.1 8 位数据模式下的发送

为了发送8位数据,必须执行以下步骤:

### 1. 设置 UART:

首先,必须选择数据长度、奇偶校验和停止位的位数。然后,在 UxMODE 和 UxSTA 寄存器中设置发送和接收中断允许位以及优先级位。另外,必须向 UxBRG 寄存器中写入适当的波特率值。

- 2. 通过将 UARTEN (UxMODE<15>)位置 1,使能 UART。
- 3. 将 UTXEN 位 (UxSTA<10>) 置 1, 从而使能发送。
- 4. 将要发送的字节写入 UxTXREG 的低字节。此值将被立即传输到发送移位寄存器(UxTSR),在波特率时钟的下一个上升沿期间,串行位流将开始移出移位寄存器。或者,可以在 UTXEN = 0 时写入数据字节,而后用户可以将 UTXEN 置 1。这将使串行位流立即开始,因为波特率时钟将从清零状态启动。
- 5. 将产生发送中断,这取决于中断控制位UTXISEL (UxSTA<15>)的值。

### 18.3.2 9 位数据模式下的发送

9 位数据发送涉及的步骤与 8 位数据发送类似,但是必须将一个 16 位数据字(其中高 7 位始终为零)写入UxTXREG 寄存器。

# 18.3.3 发送缓冲区 (UxTXB)

发送缓冲区为9位宽,4字符深度。加上发送移位寄存器(UxTSR),用户实际上有一个5级深度的FIFO(先进先出)缓冲区。UTXBF状态位(UxSTA<9>)表明发送缓冲区是否已满。

如果用户试图写已满的缓冲区,则 FIFO 不会接收新数据,缓冲区内也不会发生数据移位。这确保了能够从缓冲区溢出条件中恢复。

FIFO 在任何器件复位时复位,但当器件进入省电模式或从省电模式唤醒时,FIFO 不受影响。

### 18.3.4 发送中断

发送中断标志 (U1TXIF 或 U2TXIF) 位于相应的中断标志寄存器中。

发送器通过产生一个边沿将 UxTXIF 位置 1。产生中断的条件取决于 UTXISEL 控制位:

- a) 如果 UTXISEL = 0,当从发送缓冲区向发送移位 寄存器(UxTSR)传输一个字时,将产生中断。 这意味着发送缓冲区中至少有一个空字。
- b) 如果 UTXISEL = 1,当从发送缓冲区向发送移位 寄存器(UxTSR)传输一个字并且发送缓冲区为 空时,将产生中断。

工作期间可以在这两种中断模式之间切换,有时这提供了更大的灵活性。

# 18.3.5 发送间隔字符

将 UTXBRK 位(UxSTA<11>)置 1 将使 UxTX 线被驱动为逻辑 0。 UTXBRK 位改写了所有的发送活动。从而,通常用户应该在将 UTXBRK 置 1 之前等待发送器空闲。

要发送间隔字符,必须用软件将 UTXBRK 位置 1,并且保持该位置 1 至少 13 个波特率时钟周期。然后用软件将 UTXBRK 位清零,产生停止位。在重新装入 UxTXB或开始其他发送活动之前,用户必须等待至少一或两个波特率时钟周期,以确保产生有效的停止位。发送间隔字符不会产生发送中断。

# 18.4 接收数据

18.4.1 8 位或 9 位数据模式下的接收

在接收8位或9位数据时,必须执行以下步骤:

- 1. 设置 UART (见**第 18.3.1 节 " 8 位数据模式下** 的发送 ")。
- 2. 使能 UART (见第 18.3.1 节 " 8 位数据模式下 的发送 " )。
- 3. 当接收到一个或多个数据字时,将产生接收中断,这取决于由 URXISEL 位(UxSTA<7:6>) 指定的接收中断设置。
- 4. 读 OERR 位 , 确定是否发生了溢出错误。OERR 位必须用软件复位。
- 5. 从 UxRXREG 读取接收到的数据。读 UxRXREG 会将下一个字移动到接收 FIFO 的顶端,并且将 更新 PERR 和 FERR 值。

# 18.4.2 接收缓冲区(UxRXB)

接收缓冲区为 4 字深度。加上接收移位寄存器(UxRSR),用户实际上有一个5字深度的FIFO缓冲区。

URXDA(UxSTA<0>)=1 表明接收缓冲区中还有数据。URXDA=0意味着缓冲区为空。如果用户试图读空缓冲区,读取的值是缓冲区中的原有值,在 FIFO 中不会发生数据移位。

任何器件复位时, FIFO 都将复位。当器件进入省电模式或从省电模式唤醒时, FIFO 不受影响。

# 18.4.3 接收中断

可以从相应的中断标志寄存器中读取接收中断标志 (U1RXIF或U2RXIF)。中断标志由接收器产生的边沿 置 1。将接收中断标志置 1 的条件,取决于 由URXISEL<1:0>(UxSTA<7:6>)控制位指定的设置。

- a) 如果 URXISEL<1:0> = 00 或 01,每当从接收移 位寄存器(UxRSR)向接收缓冲区传输一个字 时,就会产生中断。接收缓冲区可以有一个或多 个字符。
- b) 如果 URXISEL<1:0>=10,当从接收移位寄存器 (UxRSR)向接收缓冲区传输一个字,使得接收 缓冲区中有3个字符时,就会产生中断。
- c) 如果 URXISEL<1:0>=11,当从接收移位寄存器 (UxRSR)向接收缓冲区传输一个字,使得接收 缓冲区中有4个字符(即缓冲区满)时,就会产 生中断。

工作期间可以在这两种中断模式之间切换,尽管正常工作期间这样做并不可取。

# 18.5 接收错误处理

18.5.1 接收缓冲区溢出错误(OERR 位) 如果满足以下所有条件,OERR 位(UxSTA<1>)将置 1:

- a) 接收缓冲区满。
- b) 接收移位寄存器满,但不能把字符送到接收缓冲区。
- c) 检测到 UxRSR 中字符的停止位,这表明 UxRSR 需要把字符送到缓冲区。

一旦 OERR 置 1,就不会有数据移入 UxRSR (除非用软件清零 OERR 位或发生复位)。存放在 UxRSR 和UxRXREG 中的数据继续有效。

# 18.5.2 帧错误 (FERR)

如果检测到 0 而不是停止位 ,则 FERR 位 (UxSTA<2>) 置 1。如果选用两个停止位 ,则两个停止位都必须为 1 , 否则 FERR 也将置 1。 FERR 位是只读的 , 它将和接收到的数据一起被送入缓冲区;它在发生任何复位时被清零。

# 18.5.3 奇偶校验错误(PERR)

如果接收到的字奇偶校验错误的话,PERR 位(UxSTA<3>)将置 1。此错误位仅在选取了奇偶校验模式(奇校验或偶校验)时适用。PERR 位是只读的,它将和接收到的数据字节一起被送入缓冲区;它在发生任何复位时被清零。

# 18.5.4 空闲状态

当接收器处于活动状态(即,在最初检测到启动位与停止位完成之间)时,RIDLE 位(UxSTA<4>)为 0。在停止位完成与检测到下一个启动位之间时,RIDLE 位为1,表明 UART 空闲。

### 18.5.5 接收间隔字符

接收器会根据在 PDSEL<1:0> (UxMODE<2:1>)和 STSEL (UxMODE<0>)位中设置的值,计数并等待一定的位时间数。

如果间隔超过 13 个位时间,则在 PDSEL 和 STSEL 指定的位时间数之后,认为接收完成。 URXDA 位置 1,FERR 置 1,接收 FIFO 中装入零,同时产生中断(如果允许中断的话),并且 RIDLE 位置 1。

当模块接收到长间隔信号,同时接收器检测到启动位、数据位和无效的停止位(这将把 FERR 置 1),那么接收器在找寻下一个启动位之前,必须等待有效停止位出现。接收器不能将线上的间隔条件看作是下一个启动位。

间隔字符被视为一个全 0 的字符,且 FERR 位置 1。间隔字符被装入缓冲区中。只有在接收到停止位之后,才会继续进行接收。注意,当还没有接收到停止位时,RIDLE 将变为高电平。

# 18.6 地址检测模式

通过将 ADDEN 位(UxSTA<5>)置 1 可以使能此特殊模式,在此模式下,如果第 9 位(URX8)值为 1,则表明接收到的字是一个地址而不是数据。此模式仅适用于 9 位数据通信。在此模式下,URXISELx 控制位对中断产生没有任何影响,因为中断(如果允许的话)仅在接收到的字的第 9 位置 1 时产生。

# 18.7 环回模式

通过将 LPBACK 位置 1 可以使能此特殊模式,在该模式下, UxTX 引脚在内部连接到 UxRX 引脚。当配置为环回模式时, UxRX 引脚与内部 UART 接收逻辑断开。但是, UxTX 引脚仍然正常工作。

### 要选择该模式:

- a) 将 UART 配置为所需的工作模式。
- b) 设置 LPBACK = 1, 使能环回模式。
- c) 使能发送,如同**第 18.3 节 "发送数据"**中定义的那样。

# 18.8 波特率发生器

UART 有一个 16 位波特率发生器,以便在波特率发生时获得最大的灵活性。波特率发生器寄存器(UxBRG)是可读写的。波特率的计算如下:

BRG = UxBRG 寄存器中的 16 位值 (0 到 65535)

FCY = 指令时钟速度 (1/Tcy)

波特率由公式 18-1 给出。

# 公式 18-1: 波特率

波特率 = FCY/(16 * (BRG + 1))

从而,可能的最大波特率是:

FCY/16 (如果 BRG = 0),

可能的最小波特率是:

Fcy/(16 * 65536)_a

对于在 30 MIPS 下工作的 16 位波特率发生器,能够达到的最小波特率是 28.5 bps。

# 18.9 自动波特率支持

为了让系统确定接收到字符的波特率,可选择将输入连接到所选择的捕捉输入(UART1连接到IC1,UART2连接到IC2)。要使能该模式,用户必须通过对输入捕捉模块进行设置,以检测启动位的上升沿和下降沿。

# 18.10 UART 在 CPU 休眠和空闲模式下的工作

# 18.10.1 UART 在 CPU 休眠模式下的工作

当器件进入休眠模式时,模块的所有时钟源都将关闭并保持在逻辑 0。如果在发送进行期间进入休眠模式的话,则发送将中止。 UxTX 引脚被驱动为逻辑 1。类似地,如果在接收进行期间进入休眠模式,则接收将中止。休眠模式不影响 UxSTA、UxMODE、UxBRG、发送和接收寄存器以及缓冲区。

在器件进入休眠模式前,如果 WAKE 位(UxMODE<7>) 置 1,则 UxRX 引脚上的下降沿将产生接收中断。接收中断选择模式位(URXISEL)对该功能没有影响。如果允许接收中断,那么这会将器件从休眠中唤醒。为了产生唤醒中断,必须将UARTEN 位置 1。

### 18.10.2 UART 在 CPU 空闲模式下的工作

对于 UART, USIDL 位选择当器件进入空闲模式时,模块是停止工作还是继续工作。如果 USIDL = 0,则模块将在空闲模式下继续工作。如果 USIDL = 1,则模块将在空闲模式下停止工作。

#### UART1 寄存器映射 ⁽¹⁾ 表 18-1:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		复位状态	
U1MODE	020C	UARTEN	_	USIDL	_	_	ALTIO	_		WAKE	LPBACK	ABAUD	_	_	PDSEL1	PDSEL0	STSEL	0000 0	000 000	0 0000
U1STA	020E	UTXISEL	_	-	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0000 0	001 000	1 0000
U1TXREG	0210		_	I	_	_	_		UTX8		-	0000 0	00u uuu	u uuuu						
U1RXREG	0212	_	-     -     -     -     URX8     接收寄存器											0000 0	000 000	0 0000				
U1BRG	0214		波特率发生器预分频器														0000 0	000 000	0 0000	

u = 未初始化位; — = 未实现位,读为 0 **1:** 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

#### UART2 寄存器映射 (在 dsPIC30F4012 上不可用 ) ⁽¹⁾ 表 18-2:

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
U2MODE	0216	UARTEN	_	USIDL	_	_	_	_	_	WAKE	LPBACK	ABAUD	_	ı	PDSEL1	PDSEL0	STSEL	0000 0000 0000 0000
U2STA	0218	UTXISEL	_	_	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0000 0001 0001 0000
U2TXREG	021A	_	_	_	_	_	_	_	UTX8				0000 000u uuuu uuuu					
U2RXREG	021C	_	_	_	_	_	_	_	URX8				0000 0000 0000 0000					
U2BRG	021E		—															0000 0000 0000 0000

dsPIC30F4011/4012

u = 未初始化位; — = 未实现位,读为 0

1: 有关寄存器各位的说明,请参见《dsPIC30F系列参考手册》(DS70046E_CN)。

注:

# 19.0 CAN 模块

注:

本数据手册总结了 dsPIC30F 系列器件的功能,但是不应把本手册当作无所不包的参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC程序员参考手册》

(DS70157E_CN)。

# 19.1 概述

控制器局域网(Controller Area Network, CAN)模块是一个串行接口,用来与其他 CAN 模块或数字信号控制器进行通信。此接口/协议设计为允许在噪声环境下进行通信。dsPIC30F4011/4012 器件具有1个CAN模块。

CAN 模块是一个通信控制器,实现了 BOSCH 规范中定义的 CAN 2.0 A/B 协议。模块支持协议的 CAN 1.2、CAN 2.0A、CAN 2.0B Passive 以及 CAN2.0B Active版本。模块实现的是完整的 CAN 系统。本数据手册不讨论 CAN 规范。更多详细信息,读者可参见 BOSCH CAN 规范。

# 模块具有以下特性:

- 实现了CAN协议CAN 1.2、CAN 2.0A和CAN 2.0B
- 标准和扩展数据帧
- 0-8 字节数据长度
- 可编程比特率,最高为 1 Mbps
- 支持远程帧
- 双缓冲接收器,带两个区分优先级的接收报文存储 缓冲区(每个缓冲区可存放最多8字节的数据)
- 6 个完全(标准/扩展标识符)接收过滤器,其中2 个与高优先级接收缓冲区相关联,4 个与低优先级 接收缓冲区相关联
- 2 个完全接收过滤屏蔽寄存器,分别与高优先级接收缓冲区和低优先级接收缓冲区相关联
- 3个发送缓冲区,能够由应用指定优先级,并具有中止能力(每个缓冲区可存放最多8字节的数据)
- 可编程唤醒功能,集成了低通滤波器
- 可编程环回模式,支持自检操作
- 通过中断功能,为所有 CAN 接收器和发送器的错误状态发送信号
- 可编程时钟源

- 到输入捕捉模块(对于 CAN1 和 CAN2 为 IC2)的 可编程链接,可进行时间标记和网络同步
- 低功耗休眠和空闲模式

CAN总线模块由协议引擎与报文缓冲/控制组成。CAN协议引擎处理CAN总线上报文接收和发送的所有功能。发送报文时,首先将报文装入恰当的数据寄存器。通过读取恰当的寄存器,可以检查状态和错误。在 CAN 总线检测到任何报文时,首先检查是否有错,然后与过滤器进行匹配,决定是否接收报文并把它存放到两个接收寄存器之一。

# 19.2 帧类型

CAN 模块发送各种类型的帧,包括用户发起的数据报文或远程发送请求,以及用于控制目的而自动生成的帧。 支持以下帧类型:

# 19.2.1 标准数据帧

当节点希望发送数据时,就将生成标准数据帧。它包括一个 11 位标准标识符 (SID),但不包括 18 位扩展标识符 (EID)。

# 19.2.2 扩展数据帧

扩展数据帧与标准数据帧类似,但多了扩展标识符。

### 19.2.3 远程帧

目标节点向源节点请求发送数据是可能的。要做到这一点,目标节点需要发送一个远程帧,其标识符与所需数据帧的标识符相匹配。随后,相应的数据源节点会发送一个数据帧,作为对远程请求的响应。

### 19.2.4 错误帧

节点检测到总线错误,就会生成错误帧。一个错误帧由 2个字段构成:错误标志字段和错误界定符字段。

### 19.2.5 过载帧

如果出现两种情况之一,节点将生成过载帧。第一种情形,节点检测到帧间间隔期间出现显性位,而这是非法状态。第二种情形,由于内部状态,节点还不能开始接收下一条报文。节点可生成最多2个连续的过载帧,以便延迟接收下一条报文。

### 19.2.6 帧间间隔

帧间间隔将当前帧 (无论何种类型)与其后的数据帧或 远程帧分隔开来。



# 19.3 工作模式

用户可以选择CAN模块工作在以下几种工作模式之一。 这些模式包括:

- 初始化模式
- 禁止模式
- 正常工作模式
- 监听模式
- 环回模式
- 错误识别模式

通过设置 REQOP<2:0> 位(C1CTRL<10:8>) 可选择所需模式。通过监视 OPMODE<2:0> 位(C1CTRL<7:5>) 可以确认进入的模式。除非模式改变是可接受的,通常是在由至少11个连续隐性位确定的总线空闲时间内,否则模块不会改变模式和 OPMODE 位。

### 19.3.1 初始化模式

在初始化模式下,模块不进行发送或接收。错误计数器清零,中断标志保持不变。编程器能够访问配置寄存器,而这在其他模式下是受到限制的。模块会防止用户因为编程错误而意外违反 CAN 协议。当模块在线时,不能修改所有控制模块配置的寄存器。如果正在发送,不允许 CAN 模块进入配置模式。配置模式就像是一把锁,保护着下列寄存器。

- 所有模块控制寄存器
- 波特率和中断配置寄存器
- 总线时序寄存器
- 标识符接收过滤寄存器
- 标识符接收屏蔽寄存器

# 19.3.2 禁止模式

在禁止模式下,模块不会进行发送或接收。由于总线活动,模块能够置 1 WAKIF 位,但是,等待处理的中断将继续等待,且错误计数器的值也将保持不变。

如果 REQOP<2:0> 位(C1CTRL<10:8>)= 001,模块将进入禁止模式。如果该模块处于活动状态,它将等候 CAN 总线上的 11 位隐性位,检测到总线空闲状态,然后接受禁止命令。当 OPMODE<2:0> 位(C1CTRL<7:5>)= 001 时,这表明模块成功进入了禁止模式。当模块在禁止模式下时,引脚 I/O 将恢复为普通 I/O 功能。

当模块或 CPU 处于休眠模式时,可以设置模块,在 C1RX 输入线上应用低通滤波器功能。由 WAKFIL 位(C1CFG2<14>)使能或禁止滤波器。

通常,如果允许 CAN 模块在某种工作模式下发送,并且在 CAN 模块进入该模式后立即被要求发送,则模块将在开始发送前等待总线上出现11个连续隐性位。如果用户在此11位期间切换到禁止模式,那么发送会被中止,同时相应的TXABT位置1,TXREQ位清零。

# 19.3.3 正常工作模式

当 REQOP<2:0> = 000 时,选择正常工作模式。在此模式下,模块被激活,引脚 I/O 用作 CAN 总线功能。模块将通过 C1TX 和 C1RX 引脚,发送和接收 CAN 总线报文。

### 19.3.4 监听模式

如果激活监听模式,则 CAN 总线上的模块是被动的。发送器缓冲器恢复为端口I/O功能。接收引脚仍然为输入。对于接收器,不发出错误标志或应答信号。该状态下,错误计数器失效。监听模式可用来检测 CAN 总线上的波特率。要使用监听模式,必须有至少2个可以互相通信的节点。

# 19.3.5 错误识别模式

可以设置模块,使它忽略所有的错误并接收任何报文。 在此模式下,报文组合缓冲区中一直到错误发生前的数据,将被复制到接收缓冲区中,可通过 CPU 接口读取。

### 19.3.6 环回模式

如果环回模式被激活,模块将在模块边界,把内部发送信号连接到内部接收信号。发送和接收引脚将转换到其I/O端口功能。

# 19.4 报文接收

# 19.4.1 接收缓冲区

CAN 总线模块有 3 个接收缓冲区。但是,其中一个缓冲区总是用于监视总线是否有进入的报文。这个缓冲区叫做报文组合缓冲区(Message Assembly Buffer, MAB)。因此只有 2 个可见的接收缓冲区(RXB0和RXB1),基本上可以即时接收来自协议引擎的完整报文。

MAB将组合所有接收到的报文,这些报文只有在满足接收过滤器判据时才被传送到RXBn缓冲区。当接收到报文时,RXxIF标志(C1INTF<0>或C1INIF<1>)将置1。此位仅在接收到报文时才能被模块置1。该位在CPU处理完缓冲区中的报文后由CPU清零。如果RXxIE位(C1INTE<0>或C1INTE<1>)置1,当接收到报文时将会产生一个中断。

RXF0 和 RXF1 过滤器,以及 RXM0 屏蔽器与 RXB0 相关联。过滤器 RXF2、RXF3、RXF4 和 RXF5,以及屏蔽器 RXM1 与 RXB1 关联。

# 19.4.2 报文接收过滤器

报文接收过滤器和屏蔽寄存器用于决定报文组合缓冲区中的一条报文是否应该被装入接收缓冲区中的一个。一旦一条有效报文被接收进入报文组合缓冲区(MAB),就会将该报文的标识符字段与过滤值进行比较。如果匹配的话,该报文就会被装入相应的接收缓冲区。

接收过滤器检查进入的报文,根据 RXIDE 位 (CiRXnSID<0>)决定如何比较标识符。如果 RXIDE 位 清零,报文是标准帧,只与 EXIDE 位 (C1RXFxSID<0>)清零的过滤器比较。如果 RXIDE 位置1,报文是扩展帧,只与EXIDE位置1的过滤器比较。

### 19.4.3 报文接收过滤屏蔽

屏蔽位基本上决定了哪些位应进行过滤。如果某屏蔽位设置为零,则该位将被自动接收,而与过滤位无关。有2个可编程接收过滤屏蔽器与接收缓冲区关联,每个缓冲区有一个过滤屏蔽器与其关联。

### 19.4.4 接收溢出

当报文组合缓冲区(MAB)组合了一个有效的接收报文后,该报文通过接收过滤器接收,而此时与该过滤器关联的接收缓冲区还未指定将前一次接收的报文清除时,就会发生溢出。

溢出错误标志 RXxOVR (C1INTF<15> 或 C1INTF<14>)和 ERRIF 位 (C1INTF<5>)将置 1, MAB 中的报文会被丢弃。

如果 DBEN 位清零 ,则 RXB1 和 RXB0 独立工作。在这种情况下 ,如果 RXB0 中有未读的报文 ,而且 RX0OVR 位置 1 的话 ,则要存入 RXB0 的报文将不会被转存到 RXB1。

如果 DBEN 位置 1,处理 RXB0 溢出的方法就不同了。如果接收到一条将要存入 RXB0 的有效报文,且 RXFUL = 1 (RXB0 满)、 RXFUL = 0 (RXB1 空), RXB0 的报文将装入 RXB1。此时不会为 RXB0 产生溢出错误。如果接收到一条将要存入 RXB0 的有效报文,且 RXFUL = 1 (表明 RXB0 和 RXB1 都为满),这样报文将被丢弃并产生 RXB1 溢出。

# 19.4.5 接收错误

CAN 模块将会检测到以下接收错误:

- 循环冗余校验 (Cyclic Redundancy Check , CRC) 错误
- 位填充错误
- 无效报文接收错误

当发生上述错误之一时,接收错误计数器会递增 1。置 1 RXWAR 位 (C1INTF<9>),表明接收错误计数器已 经达到 CPU 警告上限值 96,接着产生中断。

### 19.4.6 接收中断

接收中断可划分为三大类,每类包括各种产生中断的条件:

### 19.4.6.1 接收中断

报文已被成功接收并被装入一个接收缓冲区中。接收到帧结束(End-of-Frame, EOF)字段后,中断立即被激活。读 RXxIF 标志位可知哪个接收缓冲区引起了中断。

### 19.4.6.2 唤醒中断

CAN模块已经从禁止模式中唤醒,或者器件已经从休眠模式中唤醒。

### 19.4.6.3 接收错误中断

接收错误中断由 ERRIF 位表明。该位表明产生了错误条件。通过检查 CAN 中断状态寄存器中的位 C1INTF,可以决定错误的来源。

- 无效的报文接收。
- 如果在最后一条报文的接收过程中,产生了任何类型的错误,IVRIF 位将表明出现错误。
- 接收器溢出。
- RXxOVR 位表明是否出现溢出。
- 接收器警告。
- RXWAR 位表明,是否接收错误计数器 (RERRCNT<7:0>)已经到达96的警告上限。
- 接收器错误被动状态。
- RXEP 位表明,是否接收错误计数器已经超过了 127 的错误被动上限,模块已经进入错误被动状态。

# 19.5 报文发送

### 19.5.1 发送缓冲区

CAN 模块有 3 个发送缓冲区。每个缓冲区可容纳 14 字节的数据。其中 8 个字节用于存放发送的报文(最大 8 个字节)。另外 5 个字节用来存放标准或扩展标识符和其他报文仲裁信息。

### 19.5.2 发送报文优先级

发送优先级指在各个节点内待发送报文的优先级。发送优先级有 4 级。如果某个报文缓冲区的 TXPRI<1:0> (C1TXxCON<1:0> , 其中 n=0、 1 或 2 , 代表具体的发送缓冲区) 置为 11 , 则该缓冲区具有最高优先级。如果某个报文缓冲区的 TXPRI<1:0> 被置为 10 或 01 , 则该缓冲区具有中等优先级。如果某个报文缓冲区的 TXPRI<1:0> 是 00 , 则该缓冲区优先级最低。

### 19.5.3 发送过程

必须把 TXREQ 位(C1TXxCON<3>)置 1 来开始发送 报文。CAN 总线模块解决了由 TXREQ 位设定与帧起始 (Start-of-Frame, SOF)之间的任何时序冲突,确保在 优先级改变时,能在发送 SOF 之前正确解决时序冲突。 当 TXREQ 置 1 时,TXABT (C1TXxCON<6>)、 TXLARB (C1TXxCON<5>)和 TXERR (C1TXxCON<4>)标志位将自动清零。 置 1 TXREQ 位,仅仅表示报文缓冲区正在排队以等待 发送。当模块检测到总线可用时,就开始发送具有最高 优先级的报文。

如果发送首次尝试就成功完成,TXREQ位将自动清零,如果TXxIE位置1的话还将产生中断。

如果报文发送失败,一个错误状态标志位将置 1, TXREQ 位将保持置1,表示该报文仍然等待发送。如果 在报文尝试发送期间遇到出错情况,TXERR 位将置1, 出错情况可能会引起中断。如果报文尝试发送期间仲裁 失败,TXLARB 位将置1。没有中断产生表明仲裁失败。

### 19.5.4 中止报文发送

通过清零与各个报文缓冲区关联的 TXREQ 位,系统能中止报文发送。置 1 ABAT 位(C1CTRL<12>)将请求中止所有待发送的报文。如果报文还未开始发送,或者报文已开始发送但由于仲裁失败或错误而被中断,那么将被中止。当模块置 1 TXABT 位时,表明发生了中止,TXXIF 标志不会被自动置 1。

# 19.5.5 发送错误

CAN 模块将会检测到以下发送错误:

- 应答错误
- 格式错误
- 位错误

这些发送错误不一定会产生中断,但是发送错误计数器将会计数以表示有错误发生。每个错误将引起错误计数器的值递增 1。一旦错误计数器的值超过 96 , ERRIF (C1INTF<5>)和 TXWAR 位 (C1INTF<10>)将置 1。一旦错误计数器的值超过 96 ,将产生中断 ,错误标志寄存器中的 TXWAR 位将置 1。

### 19.5.6 发送中断

发送中断可划分为两大类,每类包括各种产生中断的条件:

### • 发送中断

三个发送缓冲区中至少有一个为空 (未预定),并且可以装入预定发送的报文。读 TXxIF 标志位可知哪一个发送缓冲区可用并引起了中断。

### • 发送错误中断

发送错误中断由 ERRIF 标志位表明。该标志位表明产生了错误条件。通过检查 CAN 中断状态寄存器 C1INTF 中的错误标志,可以决定错误的来源。该寄存器中的标志位与接收和发送错误有关。

- 发送器警告中断。
- TXWAR 位表明,是否发送错误计数器已经到达 CPU 警告的上限值 96。
- 发送器错误被动状态。
- TXEP 位 (C1INTF<12>)表明,是否发送错误计数器已经超过了127的错误被动上限,模块已经进入了错误被动状态。
- 总线关断。
- TXBO 位 (C1INTF<13>)表明,是否发送错误计数器(TERRCNT<7:0>)已经超过了255,模块已经进入了总线关断状态。

# 19.6 波特率设置

任意特定 CAN 总线上的所有节点必须有相同的标称比特率。为了设置波特率,必须初始化下列参数:

- 同步跳转宽度位
- 波特率预分频器位
- 相位段位
- 相位段 2 的长度决定位
- 采样点位
- 传播段位

### 19.6.1 位时序

CAN 总线上的所有控制器都必须有相同的波特率和位长度。然而,不同的控制器并不要求使用相同的主振荡器时钟。如果各控制器的时钟频率不同,就不得不通过调节每个段的时间份额数来调节波特率。

可以认为,标称位时间划分成几个互不重叠的时间段。 这些段如图 19-2 所示。

- 同步段 (Sync Seg)
- 传播时间段 (Prop Seg)
- 相位缓冲段 1 (Phase1 Seg)
- 相位缓冲段 2 (Phase 2 Seg)

时间段以及标称位时间由整数个时间单元组成,这些单元称作时间份额或 TQ。根据定义,标称位时间最小由 8 个 TQ 组成,最大由 25 TQ 组成。同样根据定义,最小标称位时间是 1  $\mu s$ ,对应最大 1 MHz 的比特率。



# 19.6.2 预分频器设置

有一个可编程预分频器,除了固定的二分频用于时钟发生以外,其整数预分频比范围为1至64。时间份额(TQ)是从振荡器周期得出的固定时间单元,由公式 19-1 给出,其中 FCAN 为 FCY(如果 CANCKS 位置 1)或 4 FCY(如果 CANCKS 位清零)。

注: FCAN 不能超出 30 MHz。如果 CANCKS = 0 , 那么 FCY 不能超出 7.5 MHz。

# 公式 19-1: 时钟发生的时间份额

TQ = 2 (BRP < 5:0 > + 1)/FCAN

### 19.6.3 传播段

这部分的位时间用来补偿网络内的物理延时。这些延时包括总线线路上的信号传播时间以及节点的内部延时。通过设置 PRSEG<2:0> 位(C1CFG2<2:0>),可以设置传播段为 1 TQ 到 8 TQ。

# 19.6.4 相位段

相位段用于在发送位时间内定位最佳的接收位采样。采样点在相位缓冲段 1 与相位缓冲段 2 之间。这两个段可以通过重新同步加长或缩短。相位缓冲段 1 的末尾决定在一个位周期内的采样点。该段可以编程为 1 TQ 到 8 TQ。相位缓冲段 2 为下一个发送数据跳变提供一个延时。该段可以编程为 1 TQ 到 8 TQ,也可将其定义为相位缓冲段 1 的时间份额与信息处理时间(2 TQ)两者中的较大者。通过设置 SEG1PH<2:0>(C1CFG2<5:3>)位初始化相位缓冲段 1,通过设置 SEG2PH<2:0>(C1CFG2<10:8>)位初始化相位缓冲段 2。

在设置相位缓冲段的长度时,必须满足下面的要求:

传播段 + 相位缓冲段 1> = 相位缓冲段 2

### 19.6.5 采样点

采样点是个时间点,在此时间点将读取总线电平并将其解释为对应位的值。它的位置在相位缓冲段 1 的末尾。若位时序较慢而且包含很多 Tq ,可以在同一个采样点指定总线线路的多个采样。由 CAN 总线决定的电平将对应于三值择多决策的结果。择多采样在采样点进行,且前两次采样相隔 Tq/2。CAN 模块允许用户选择在同一点采样 3 次或 1 次。这可以通过置 1 或清零 SAM 位(C1CFG2<6>)实现。

通常,位采样应该发生在位时间的 60-70% 处,取决于系统参数。

# 19.6.6 同步

为了补偿不同总线站振荡器频率的相移,每个 CAN 控制器必须要能够与进入信号的相关信号沿同步。当检测到发送数据中的一个沿时,逻辑会将该沿的位置与预期时间(同步段)比较。然后电路将调节相位缓冲段 1 和相位缓冲段 2 的值。有两种机制用来同步。

# 19.6.6.1 硬同步

硬同步仅当总线空闲期间,有一个从"隐性"转变到"显性"的边沿时(表明报文开始),才会进行。硬同步后,位时间计数器从同步段重新开始计数。硬同步把引起硬同步的沿强制地置于重新开始的位时间同步段之内。如果完成一个硬同步,在该位时间内将不会再有重新同步。

### 19.6.6.2 重新同步

重新同步可能使相位缓冲段1加长或相位缓冲段2缩短。相位缓冲段加长或缩短的量有一个上限值,称作同步跳转宽度,由SJW<1:0>位(C1CFG1<7:6>)指定。同步跳转宽度的值将被加到相位缓冲段1或从相位缓冲段2减去。重新同步跳转宽度可以设置为1TQ到4TQ。

在设置 SJW<1:0> 位时,必须满足下面的要求:

相位缓冲段 2 > 同步跳转宽度

表 <u>19-1:</u>

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
C1RXF0SID	0300	_	_	_					接收过滤器	器 0 标准标识	符 <10:0>	>				_	EXIDE	000u uuuu uuuu uu0u
C1RXF0EIDH	0302	_	_	_	_					接收过滤	器0扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXF0EIDL	0304		接收过	过滤器 0 扩展	₹标识符 <5	:0>		1	_	I	_	I		_	_	_	_	uuuu uu00 0000 0000
C1RXF1SID	0308	_	_	1					接收过滤器	肾1标准标识	符 <10:0>	>				_	EXIDE	000u uuuu uuuu uu0u
C1RXF1EIDH	030A	_	_		_					接收过滤	器 1 扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXF1EIDL	030C		接收过	滤器 1 扩展	<b>表标识符 &lt;5</b>	:0>		_	_	_	_	_	_	_	_	_	_	uuuu uu00 0000 0000
C1RXF2SID	0310	_	_	_					接收过滤器	器 2 标准标识	符 <10:0>	>				_	EXIDE	000u uuuu uuuu uu0u
C1RXF2EIDH	0312	_	_	_	_					接收过滤	器2扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXF2EIDL	0314		接收过	滤器 2 扩展	₹标识符 <5	:0>		_	_	_	_	_	_	_	_	_	_	uuuu uu00 0000 0000
C1RXF3SID	0318	_	_	_					接收过滤器	器3标准标识	符 <10:0>	>				_	EXIDE	000u uuuu uuuu uu0u
C1RXF3EIDH	031A	_	_	_	_					接收过滤	器3扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXF3EIDL	031C		接收过	滤器 3 扩展	₹标识符 <5	:0>		_	_	_	_	_	_	_	_	_	_	uuuu uu00 0000 0000
C1RXF4SID	0320	_	_	_					接收过滤器	器 4 标准标识	符 <10:0>	>				_	EXIDE	000u uuuu uuuu uu0u
C1RXF4EIDH	0322	_	_	_	_					接收过滤	器4扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXF4EIDL	0324		接收过	滤器 4 扩展	₹标识符 <5	:0>		_	_	_	_	_	_	_	_	_	_	uuuu uu00 0000 0000
C1RXF5SID	0328	_	_	_					接收过滤器	器 5 标准标识	符 <10:0>	>				_	EXIDE	000u uuuu uuuu uu0u
C1RXF5EIDH	032A	_	_	_	_					接收过滤	器 5 扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXF5EIDL	032C		接收过	滤器 5 扩展	₹标识符 <5	:0>		_	_	_	_	_	_	_	_	_	_	uuuu uu00 0000 0000
C1RXM0SID	0330	_	_	_					接收屏蔽器	器 0 标准标识	符 <10:0>	>				_	MIDE	000u uuuu uuuu uu0u
C1RXM0EIDH	0332	_	_	_	_					接收屏蔽	器0扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXM0EIDL	0334		接收屏	<b>薬 蔽器 0 扩展</b>	<b>标识符 &lt;5</b>	:0>		_	_	_	_	_	_	_	_	_	_	uuuu uu00 0000 0000
C1RXM1SID	0338	_	_	_					接收屏蔽器	肾1标准标识	符 <10:0>	>				_	MIDE	000u uuuu uuuu uu0u
C1RXM1EIDH	033A	_	_	_	_					接收屏蔽	器 1 扩展	标识符 <1	7:6>					0000 uuuu uuuu uuuu
C1RXM1EIDL	033C		接收屏	<b>解器 1 扩展</b>	<b>琴标识符 &lt;5</b>	:0>		_	_	_	_	_	_	_	_	_	_	uuuu uu00 0000 0000
C1TX2SID	0340		发送缓冲区	2 标准标识	符 <10:6>		_	_	_		发送缓	冲区 2 标》	<b>佳标识符。</b>	<5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C1TX2EID	0342	发送约	缓冲区 2 扩展	展标识符 <17	7:14>			_	_			发送缓冲	区2扩展	标识符 <13:	6>			uuuu 0000 uuuu uuuu
C1TX2DLC	0344		发送绿	餐冲区 2 扩展	₹标识符 <5	:0>		TXRTR	TXRB1	TXRB0		DLO	C<3:0>		_	_	_	uuuu uuuu uuuu u000
C1TX2B1	0346			发	送缓冲区 2	字节 1						发	送缓冲区	2 字节 0				uuuu uuuu uuuu uuuu
C1TX2B2	0348			发	送缓冲区 2	字节3						发	送缓冲区	2 字节 2				uuuu uuuu uuuu uuuu
C1TX2B3	034A						发	送缓冲区	2 字节 4				uuuu uuuu uuuu uuuu					
C1TX2B4	034C			发	送缓冲区 2	字节 7						发	送缓冲区	2 字节 6				uuuu uuuu uuuu uuuu
C1TX2CON	034E	_	_	-	_	-	_	-	_	_	TXABT	TXLARB	TXERR	TXREQ	_	TXPF	RI<1:0>	0000 0000 0000 0000
C1TX1SID	0350		发送缓冲区	1 标准标识	符 <10:6>		_	_	_		发送缓	冲区 1 标》	<b>佳标识符</b> 。	<5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C1TX1EID	0352	发送约	缓冲区 1 扩展	展标识符 <17	7:14>	_	_		_			发送缓冲	区1扩展	标识符 <13:	6>			uuuu 0000 uuuu uuuu
C1TX1DLC	0354		发送线	慢冲区 1 扩展	<b>表标识符 &lt;5</b>	:0>		TXRTR	TXRB1	TXRB0		DLO	C<3:0>		_	_	_	uuuu uuuu uuuu u000
C1TX1B1	0356			发	送缓冲区 1	字节 1						发	送缓冲区	1字节0				uuuu uuuu uuuu uuuu

dsPIC30F4011/4012

图注: u = 未初始化位; — = 未实现位,读为0

_CAN1 寄存器映射 ⁽¹⁾

主 1: 有关寄存器各位的说明,请参见《dsPIC30F系列参考手册》(DS70046E_CN)。

(0B4	038C			接	收缓冲区 0	字节 7						接	收缓冲区	0 字节 6				uuuu	uuuu	uuuu	uuuu
(OCON	038E	-	_	_	ı		_	_	_	RXFUL	1	_	1	RXRTRRO	DBEN	JTOFF	FILHIT0	0000	0000	0000	0000
RL	0390	CANCAP	_	CSIDL	ABAT	CANCKS	R	EQOP<2:	:0>	OPM	IODE<2:0	0>	1	ICO	DE<2:0>	>	_	0000	0100	1000	0000
G1	0392	-	_	_	ı		_	_	_	SJW<1	N<1:0> BRP<5:0>						0000	0000	0000	0000	
G2	0394	-	WAKFIL	_	ı		SE	EG2PH<2	:0>	SEG2PHTS	SAM	S	EG1PH<	2:0>	Р	RSEG<2	2:0>	0u00	0uuu	uuuu	uuuu
ΓF	0396	RX00VR	RX10VR	TXBO	TXEP	RXEP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	TX2IF	TX1IF	TX0IF	RX1IF	RX0IF	0000	0000	0000	0000
ΓΕ	0398	-	_	_	-	_	_	_	_	IVRIE	WAKIE	ERRIE	TX2IE	TX1IE	TX0IE	RX1IE	RX0IE	0000	0000	0000	0000
;	039A			-	TERRCNT-	<7:0>						F	RERRCN	T<7:0>				0000	0000	0000	0000
	u=未初始化位; —=未实现位,读为 0																				

<u>表 19-1:</u>		CAN1	<u>寄存器映</u>	射 ⁽¹⁾ (	续)															
SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		复位状态	i
C1TX1B2	0358			发	送缓冲区 1	字节3						发	送缓冲区	1 字节 2				uuuu ı	ıuuu uuu	ıu uuuu
C1TX1B3	035A			发	送缓冲区 1	字节 5						发	送缓冲区	1 字节 4				uuuu ı	ıuuu uuu	ıu uuuu
C1TX1B4	035C			发	送缓冲区 1	字节7						发	送缓冲区	1 字节 6				uuuu ı	ıuuu uuu	ıu uuuu
C1TX1CON	035E	1	_	I	_	_	_	_	_	1	TXABT	TXLARB	TXERR	TXREQ	_	TXPF	RI<1:0>	0000	000 000	0 0000
C1TX0SID	0360		发送缓冲区	0 标准标识	符 <10:6>		_	_	_		发送缓	冲区 0 标》	佳标识符 <	<5:0>		SRR	TXIDE	uuuu ı	1000 uuu	ıu uuuu
C1TX0EID	0362	发送	缓冲区 0 扩展	展标识符 <17	7:14>	_	_	_	_			发送缓冲	区 0 扩展	标识符 <13:	6>			uuuu (	0000 uuu	ıu uuuu
C1TX0DLC	0364		发送组	€冲区 0 扩展	<b>髹标识符 &lt;5</b>	:0>		TXRTR	TXRB1	TXRB0		DLO	C<3:0>		_	_	_	uuuu ı	ıuuu uuu	ıu u000
C1TX0B1	0366			发	送缓冲区 (	字节 1						发	送缓冲区	0 字节 0				uuuu ı	ıuuu uuu	ıu uuuu
C1TX0B2	0368			发	送缓冲区 (	字节 3						发	送缓冲区	0 字节 2				uuuu ı	ıuuu uuu	ıu uuuu
C1TX0B3	036A			发	送缓冲区 (	字节 5						发	送缓冲区	0 字节 4				uuuu ı	ıuuu uuu	ıu uuuu
C1TX0B4	036C		发送缓冲区 0 字节 7									发	送缓冲区	0 字节 6				uuuu ı	ıuuu uuu	ıu uuuu
C1TX0CON	036E	1	_	I	_	_	_	_	_	1	TXABT	TXLARB	TXERR	TXREQ	_	TXPF	RI<1:0>	0000	000 000	0 0000
C1RX1SID	0370	<u>ー</u> ー – 接							接收缓冲回	☑ 1 标准标识	符 <10:0>	•				SRR	RXIDE	000u ı	ıuuu uuu	ıu uuuu
C1RX1EID	0372	1									中区 1 扩展	标识符 <1	7:6>					0000 ι	ıuuu uuu	ıu uuuu
C1RX1DLC	0374		接收线	爰冲区 1 扩展	<b>展标识符 &lt;5</b>	:0>		RXRTR	RXRB1	1	_	I	RXRB0		DLC<	3:0>		uuuu ı	uuu 000	u uuuu
C1RX1B1	0376			接	收缓冲区 1	字节 1						接	收缓冲区	1 字节 0				uuuu ı	ıuuu uuu	ıu uuuu
C1RX1B2	0378			接	收缓冲区 1	字节3						接	收缓冲区	1 字节 2				uuuu ı	ıuuu uuu	ıu uuuu
C1RX1B3	037A			接	收缓冲区 1	字节5						接	收缓冲区	1 字节 4				uuuu ı	ıuuu uuu	ıu uuuu
C1RX1B4	037C			接	收缓冲区 1	字节 7						接	收缓冲区	1 字节 6				uuuu ı	ıuuu uuu	ıu uuuu
C1RX1CON	037E	1	_	I	_	_	_	_	_	RXFUL	_	I	_	RXRTRRO	F	ILHIT<2	:0>	0000	000 000	0 0000
C1RX0SID	0380	1	_	I					接收缓冲区	図 标准标识	符 <10:0>	•				SRR	RXIDE	000u ı	ıuuu uuu	ıu uuuu
C1RX0EID	0382	1	_	I	_					接收缓冲	Þ区 0 扩展	标识符 <1	7:6>					0000 ι	ıuuu uuu	ıu uuuu
C1RX0DLC	0384		接收组	爰冲区 0 扩展	<b>基标识符 &lt;5</b>	:0>		RXRTR	RXRB1	_	_		RXRB0		DLC<	3:0>		uuuu ı	ւսսս 000	u uuuu
C1RX0B1	0386			接	收缓冲区 C	字节 1						接	收缓冲区	0 字节 0				uuuu ı	ıuuu uuu	ıu uuuu
C1RX0B2	0388			接	收缓冲区 C	字节3						接	收缓冲区	0 字节 2				uuuu ı	ıuuu uuu	ıu uuuu
C1RX0B3	038A			接	收缓冲区 C	字节 5						接	收缓冲区	0 字节 4				uuuu ı	ıuuu uuu	ıu uuuu
C1RX0B4	038C			接	收缓冲区 C	字节 7						接	收缓冲区	0 字节 6				uuuu ı	ıuuu uuu	ıu uuuu
C1RX0CON	038E	_	_	_	_	_	_	_	_	RXFUL	_	_	_	RXRTRRO	DBEN	JTOFF	FILHIT0	0000	000 000	0 0000
C1CTRL	0390	CANCAP	_	CSIDL	ABAT	CANCKS	CANCKS REQOP<2:0>				/ODE<2:0	)>	_	ICO	DE<2:0>	>	_	0000	0100 100	0 0000
C1CFG1	0392	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP<5:	0>			0000	000 000	0 0000
C1CFG2	0394	_	WAKFIL	-	_	_	SI	EG2PH<2	2:0>	SEG2PHTS	SAM	S	EG1PH<2	2:0>	Р	RSEG<2	2:0>	0u00 (	)uuu uuu	ıu uuuu
C1INTF	0396	RX00VR	RX10VR	TXBO	TXEP	RXEP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	TX2IF	TX1IF	TX0IF	RX1IF	RX0IF	0000	000 000	0 0000
C1INTE	0398	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	TX2IE	TX1IE	TX0IE	RX1IE	RX0IE	0000	000 000	0 0000
C1EC	039A							RERRCN	T<7:0>				0000	000 000	0000					

图注:

注:

# 20.0 10 位高速模数转换器 (ADC)模块

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参

见《dsPIC30F系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC 程序员参考手册》

(DS70157E_CN)。

10 位高速模数转换器(ADC)可将模拟输入信号转换为 10 位数字值。该模块基于逐次逼近寄存器(Successive Approximation Register,SAR)结构,可实现最大 1 Msps 的采样速率。 ADC 模块具有 16 路模拟输入通道,经过多路开关连接到 4 个采样/保持放大器。采样/保持电路的输出输入到转换器,经转换器转换后得到数字结果。可通过软件选择模拟参考电压为器件供电电压(AVDD/AVSs)或(VREF+/VREF-)引脚上的电压。ADC 模块具有一个独特的功能: 当器件处于休眠模式时,ADC 仍能工作。

ADC 模块具有 6 个 16 位寄存器:

- A/D 控制寄存器 1 (ADCON1)
- A/D 控制寄存器 2 (ADCON2)
- A/D 控制寄存器 3 (ADCON3)
- A/D 输入选择寄存器 (ADCHS)
- A/D 端口配置寄存器 (ADPCFG)
- A/D 输入扫描选择寄存器 (ADCSSL)

ADCON1、ADCON2 和 ADCON3 寄存器控制 ADC 模块的工作。 ADCHS 寄存器选择要转换的输入通道。 ADPCFG 寄存器用于将端口引脚配置为模拟输入或数字 I/O。 ADCSSL 寄存器用于选择要扫描的输入通道。

注: 当 ADON = 1 时,不应对 SSRC<2:0>、 ASAM、SIMSAM、SMPI<3:0>、BUFM 和 ALTS位以及 ADCON3和 ADCSSL寄存器 进行写入操作,否则将导致不确定的结

图 20-1 给出了 ADC 模块的框图。



# 20.1 A/D 结果缓冲器

模块包含一个称为 ADCBUFO...ADCBUFF 的 16 字双端口只读缓冲器,对 A/D 结果进行缓冲。RAM 为 10 位宽,但读入不同格式的 16 位字。用户软件不能对 16 个 A/D转换结果缓冲寄存器(ADCBUFO 到 ADCBUFF)的内容进行写入操作。

# 20.2 转换操作

当 ADC 模块配置完毕后,把 SAMP 位置 1 就将启动采样操作。可编程位、定时器超时和外部事件等触发源将终止采集并启动转换。当 A/D 转换完成时,结果将被装入 ADCBUF0 至 ADCBUFF,且在 SMPI<3:0> 位指定的采样数之后 DONE 位和 A/D 中断标志位 ADIF 将被置 1。

进行 A/D 转换时,应遵循以下步骤:

- 1. 配置 ADC 模块:
  - 配置模拟引脚、参考电压和数字 I/O
  - 选择 A/D 输入通道
  - 选择 A/D 转换时钟
  - 选择 A/D 转换触发源
  - 开启 ADC 模块
- 2. 配置 A/D 中断 (如需要):
  - 清零 ADIF 位
  - 选择 A/D 中断优先级
- 3. 启动采样。
- 4. 等待所需的采集时间。
- 5. 触发采集结束,启动转换。
- 6. 等待 A/D 转换完成,可通过以下方式实现:
  - 等待 A/D 中断
  - 等待 DONE 位被置 1
- 7. 读 A/D 结果缓冲器,需要的话清零 ADIF。

# 20.3 选择转换顺序

几组控制位可用来对A/D将输入连接到采样/保持通道、 转换通道、写入缓冲存储区和产生中断的过程进行选择 控制。该过程将由采样时钟进行控制。

SIMSAM 位控制多个通道的采样/转换序列。如果SIMSAM 位为 0,将用两个或四个采样时钟对两个或四个选定通道采样并按顺序转换。如果 SIMSAM 位为 1,将用一个采样时钟对两个或四个选定通道同时采样。随后将按顺序转换通道。很明显,如果只选中了 1 个通道,SIMSAM 位不适用。

CHPS<1:0> 位选择采样的通道数。选择范围为 1、2 或 4 通道。如果 CHPS 位选择 1 个通道,将在采样时钟周 期内采样并转换 CH0 通道。结果存储在缓冲器中。如果 CHPS 位选择 2 个通道,将采样并转换 CH0 和 CH1 通道。如果 CHPS 位选择 4 个通道,将采样并转换 CH0、CH1、CH2 和 CH3通道。

SMPI<3:0> 位用于选择在中断发生前进行采集 / 转换的次数。该数值可为每次中断进行采样 1 到 16 次。

用户不能设定这样的 CHPS 和 SMPI 位组合: 其指定的 每个中断转换次数超过 16 或 8 (取决于 BUFM 位)。 当置 1 时, BUFM 位将 16 字结果缓冲器(ADCBUFO至 ADCBUFF)分为两个 8 字缓冲器。每个中断事件将交替写入这两个 8 字缓冲器。BUFM 位的使用,取决于中断之后有多少时间可用于将数据移出缓冲器,这取决于应用程序。

如果处理器可在对一个通道进行采集和转换的时间内快速卸空一个满的缓冲器,则 BUFM 位可为 0 且每次中断可进行最多 16 次转换。处理器在一次采样和转换的时间内移出 16 个转换结果。

如果在采集和转换时间内处理器不能卸空缓冲器,BUFM 位应为 1。例如,如果 SMPI<3:0>(ADCON2<5:2>)=0111,则先将8个转换结果装入其中一个8字缓冲器,此后将产生中断。再将另外的8个转换结果装入另一个8字缓冲器。处理器将利用相邻两次中断之间的全部时间来移出8个转换结果。

ALTS 位用来在采样过程中轮换选择的输入。输入多路开关具有两组采样输入:MUX A 和 MUX B。如果ALTS 位为 0,只选择 MUX A 输入进行采样。如果 ALTS 位为 1 且 SMPI<3:0>=0000,在第一个采样/转换过程将选择 MUX A 输入通道,而在下一个采样/转换过程将选择 MUX B 输入通道。

CSCNA位(ADCON2<10>)允许CH0通道输入对MUXA组的选定数量的模拟输入进行顺序扫描。ADCSSL寄存器选择要扫描的输入。如果ADCSSL寄存器中的某个位为1,则将选择相应的输入。将在每次中断之后,始终按照输入编号从低到高的顺序对输入进行扫描。如果选择的输入数目大于每次中断进行的采样数,则编号高于采样数的输入将不会被使用。

# 20.4 转换触发的编程设定

转换触发将终止采集并开始进行要求的转换。

SSRC<2:0> 位用于选择转换触发源。

SSRC 位提供了多达 5 个备用的转换触发源。

当 SSRC<2:0> = 000 时,转换触发由软件进行控制。 清零 SAMP 位将导致触发转换。

当 SSRC<2:0> = 111 (自动启动模式)时,转换触发由 A/D 时钟进行控制。SAMC 位用于选择采集开始到转换开始之间的 A/D 时钟数。这将提供最快的多通道转换速率。 SAMC 必须至少为 1 个时钟周期。

其他触发源可能来自定时器模块、电机控制 PWM 模块或外部中断。

注:

要让 ADC 在最大指定转换速度下工作,应选择"自动转换触发器"选项(SSRC = 111),自动采样时间位应设置为 1 TAD (SAMC = 00001)。该配置将提供13 TAD 的总转换周期(采样+转换)。

使用任何其他转换触发器都将导致更多的 TAD 周期,以便将外部事件与ADC 同步。

# 20.5 中止转换

转换期间清零 ADON 位,将中止当前转换,并停止采样序列。不会用部分完成的 A/D 转换采样来更新ADCBUFx。即,ADCBUFx将继续保留上一次转换完成后的值(或上一次写入ADCBUFx寄存器的值)。

如果 ADON 位的清零与自动开始同时发生,清零有更高的优先级。

中止 A/D转换后需要 2 TAD的等待时间,才能置1 SAMP位开始下次采样。

如果指定顺序采样, A/D 将在收到响应下个被转换通道的采样脉冲时继续。如果指定同步采样, A/D 将以下个多通道组转换序列继续。

# 20.6 选择 A/D 转换时钟

A/D 转换需要 12 个 TAD。通过软件方式使用 6 位计数器 可选择 A/D 转换的时钟源。TAD 存在 64 种可能的选择。

# 公式 20-1: A/D 转换时钟

$$TAD = TCY * (0.5 * (ADCS < 5:0 > + 1))$$
  
 $ADCS < 5:0 > = 2 \frac{TAD}{TCY} - 1$ 

通过将 ADRC 位置 1 可选择内部 RC 振荡器。

为使 A/D 转换正确,必须选择合适的 A/D 转换时钟(TAD)以确保最小83.33 ns(当 VDD = 5V 时)的 TAD时间。其他工作条件下的最小 TAD,请参见第 24.0 节"电气特性"。

例 20-1 给出了 ADCS<5:0> 位的计算示例,假设器件工作速度为 30 MIPS。

# 例 20-1: A/D 转换时钟计算

$$TAD = 154 \text{ ns}$$

$$TCY = 33 \text{ ns } (30 \text{ MIPS})$$

$$ADCS<5:0> = 2 \frac{TAD}{TCY} - 1$$
$$= 2 \cdot \frac{154 \text{ ns}}{33 \text{ ns}} - 1$$
$$= 8.33$$

$$\cancel{\cancel{Z}} \sqrt{n} TAD = \frac{TCY}{2} (ADCS < 5:0 > + 1)$$

$$= \frac{33 \text{ ns}}{2} (9+1)$$

$$= 165 \text{ ns}$$

# 20.7 A/D 转换速度

dsPIC30F 10位ADC规范允许最大采样速率为1 Msps。 表 20-1 汇总了 dsPIC30F 10 位 ADC 的转换速度及要求 的工作条件。

表 20-1: 10 位 A/D 扩展转换速率

			dsPIC	30F 10 1	位 A/D 转换器转换i	東率
A/D 速度	TAD 最小值	采样时间 最小值	Rs 最大值	VDD	温度	A/D 通道配置
最大 1 Msps ⁽¹⁾	83.33 ns	12 TAD	500Ω	4.5V 至 5.5V	-40°C 至 +85°C	VREF- VREF+  ANX  CH1、2或3  S/H  ADC
最大 750 ksps ⁽¹⁾	95.24 ns	2 TAD	500Ω	4.5V 至 5.5V	-40°C 至 +85°C	ANX CHX ADC
最大 600 ksps ⁽¹⁾	138.89 ns	12 TAD	500Ω	3.0V 至 5.5V	-40°C 至 +125°C	VREF- VREF+
最大 500 ksps	153.85 ns	1 TAD	5.0 kΩ	4.5V 至 5.5V	-40°C 至 +125°C	VREF- VREF+ AVSS AVDD ANX 文 VREF-
最大 300 ksps	256.41 ns	1 TAD	5.0 kΩ	3.0V 至 5.5V	-40°C 至 +125°C	VREF- VREF+ AVSS AVDD ANx 或 VREF-

注 1: 为确保正常工作,必须使用外部 VREF-和 VREF+引脚。推荐电路请参见图 20-2。

配置指南给出了超过 500 ksps 的转换速率所需的设置值,因为它们需要使用外部 VREF 引脚,配置步骤也有差别。对转换速度来说不太重要的配置细节已省略。

图 20-2 给出了转换速率高于 500 ksps 时的推荐电路。

图 20-2: A/D 转换器参考电压原理图



# 20.7.1 1 Msps 配置指南

1 Msps 操作的配置取决于是对单个输入引脚进行采样,还是对多个引脚进行采样。

# 20.7.1.1 单个模拟输入

对单个模拟输入的 1 Msps 转换,必须使能至少两个采样和保持通道。必须配置模拟输入多路开关,使同一输入引脚连接到两个采样和保持通道。A/D 转换一个 S&H 通道上保持的值,同时第二个 S&H 通道采集新的输入。

# 20.7.1.2 多个模拟输入

ADC也可用于通过多个采样和保持通道对多个模拟输入采样。在这种情况下,总共1 Msps 的转换速率在不同输入信号间分配。例如,四个输入可按每个信号 250 ksps 的速率采样,或者两个输入按每个信号 500 ksps 的速率采样。此配置中必须使用顺序采样,保证每个输入都有足够的采样时间。

### 20.7.1.3 1 Msps 配置项目

为获得 1 Msps 的转换速率,需要进行如下配置。

- 符合表 20-2 中提供的条件
- 按照图 20-2 所示的推荐电路,连接外部 VREF+ 和 VREF- 引脚
- 设置 ADCON1 寄存器中的 SSRC<2:0> = 111,使
   能自动转换选项
- 把 ADCON1 寄存器中的 ASAM 控制位置 1, 使能自动采样
- 把 ADCON1 寄存器中的 SIMSAM 位清零, 使能顺序采样
- 写 ADCON2 寄存器中的 CHPS<1:0> 控制位, 使能至少两个采样和保持通道
- 写 ADCON2 寄存器中的 SMPI<3:0> 控制位,设置 两次中断之间所需的转换次数。至少设置 SMPI<3:0> = 0001,因为至少应使能两个采样和 保持通道
- 通过写 ADCON3 寄存器中的 ADCS<5:0> 控制位, 将 A/D 时钟周期配置为:

$$\frac{1}{12 \times 1,000,000} = 83.33 \text{ ns}$$

- 通过写 SAMC<4:0> = 00010,将采样时间配置为 2 TAD
- 写 ADCHS 寄存器,为每个模拟输入引脚选择至少两个通道

#### 20.7.2 750 ksps 时的配置指南

为获得 750 ksps 的转换速率 ,需要进行如下配置。此配置假设对单个模拟输入采样。

- 符合表 20-2 中提供的条件
- 按照图 20-2 所示的推荐电路,连接外部 VREF+ 和 VREF- 引脚
- 设置 ADCON1 寄存器中的 SSRC<2:0> = 111,使 能自动转换选项
- 把 ADCON1 寄存器中的 ASAM 控制位置 1, 使能自动采样
- 设置 ADCON2 寄存器中的 CHPS<1:0> = 00, 使能一个采样和保持通道
- 写 ADCON2 寄存器中的 SMPI<3:0> 控制位,设置 两次中断之间所需的转换次数
- 通过写 ADCON3 寄存器中的 ADCS<5:0> 控制位 , 将 A/D 时钟周期配置为 :

$$\frac{1}{(12+2) \times 750,000} = 95.24 \text{ ns}$$

 通过写 SAMC<4:0> = 00010,将采样时间配置为 2 TAD

#### 20.7.3 600 ksps 时的配置指南

600 ksps 操作的配置取决于是对单个输入引脚进行采样,还是对多个引脚进行采样。

#### 20.7.3.1 单个模拟输入

对单个模拟输入的 600 ksps 转换,必须使能至少两个采样和保持通道。必须配置模拟输入多路开关,使同一输入引脚连接到两个采样和保持通道。ADC 转换一个 S/H 通道上保持的值,同时第二个 S/H 通道采集新的输入。

### 20.7.3.2 多个模拟输入

ADC 也可用于通过多个采样和保持通道对多个模拟输入 采样。在这种情况下,总共600 ksps 的转换速率在不同 输入信号间分配。例如,四个输入可按每个信号150 ksps 的速率采样,或者两个输入按每个信号300 ksps 的速率 采样。此配置中必须使用顺序采样,保证每个输入都有 足够的采样时间。

#### 20.7.3.3 600 ksps 配置项目

为获得 600 ksps 的转换速率,需要进行如下配置。

- 符合表 20-2 中提供的条件
- 按照图 20-2 所示的推荐电路,连接外部 VREF+ 和 VREF- 引脚
- 设置 ADCON1 寄存器中的 SSRC<2:0> = 111, 使 能自动转换选项
- 把 ADCON1 寄存器中的 ASAM 控制位置 1, 使能自动采样
- 把 ADCON1 寄存器中的 SIMSAM 位清零, 使能顺 序采样
- 写 ADCON2 寄存器中的 CHPS<1:0> 控制位,使能至少两个采样和保持通道
- 写 ADCON2 寄存器中的 SMPI<3:0> 控制位,设置 两次中断之间所需的转换次数至少设置 SMPI<3:0> = 0001,因为至少应使能两个采样和 保持通道
- 通过写 ADCON3 寄存器中的 ADCS<5:0> 控制位, 将 A/D 时钟周期配置为:

$$\frac{1}{12 \times 600,000} = 138.89 \, \text{ns}$$

• 通过写 SAMC<4:0> = 00010,将采样时间配置为2 TAD

写 ADCHS 寄存器,为每个模拟输入引脚选择至少两个通道。

## 20.8 A/D 采集要求

图 20-3 给出了 10 位 ADC 的模拟输入模型。ADC 的总采样时间是内部放大器稳定时间、器件 VDD 和保持电容充电时间的函数。

为了使 ADC 达到规定的精度,必须让充电保持电容 (CHOLD)充分充电至模拟输入引脚上的电平。信号源阻抗 (RS)、片内走线等效电阻 (RIC)和内部采样开关阻抗 (RSS)共同地直接影响电容 CHOLD 充电所需的时间。所以模拟信号源的总阻抗应足够小,以便在选择的采样时间内对保持电容充分充电。为了将引脚泄漏电流对ADC 精度的影响降到最低,建议使用的最大信号源阻抗 RS为  $5~k\Omega$ 。选择(改变)了模拟输入通道后,采样工作必须在启动转换前完成。在每次采样操作前,内部保持电容将处于放电状态。

用户必须允许转换之间有至少1 TAD的采样时间TSAMP,保证每个样本都被采集。该采样时间可通过置 1/清零SAMP位在软件中手动控制,也可以由 ADC 自动控制。在自动配置中,用户必须允许转换触发之间有足够的时间,以满足最小采样时间的要求。 TAD 和采样时间的要求请参见第 24.0 节"电气特性"。





## 20.9 模块掉电模式

模块具有3种内部功耗模式。当ADON位为1时,模块处于工作模式;模块处于完全供电和工作状态。当ADON为0时,模块处于关闭模式。电路的数字和模拟部分将被禁止以最大程度地省电。为了从关闭模式返回到工作模式,用户必须等待ADC电路进入稳定状态。

# 20.10 CPU 休眠和空闲模式期间的 A/D 工作

20.10.1 CPU 休眠模式期间的 A/D 工作

当器件进入休眠模式时,模块的所有时钟源被关闭并保持为逻辑 0。

如果在转换过程中进入休眠状态,转换将中止。从休眠模式退出时,转换器将不会继续进行部分完成的转换。

器件进入或退出休眠模式将不会影响寄存器的内容。

如果将 A/D 时钟源设置为 RC(ADRC = 1),则 ADC 模块可以在休眠模式下工作。当选择 RC 时钟源时,ADC 模块在启动转换之前要先等待一个指令周期。其间可执行 SLEEP 指令,这将消除转换过程中所有的数字开关噪声。当转换完成后,DONE 位将置 1 且转换结果将被装入 ADCBUFx 寄存器。

如果允许 A/D 中断,则器件将从休眠状态唤醒。如果未允许 A/D 中断,尽管 ADON 位保持置 1, ADC 模块也将被关闭。

#### 20.10.2 CPU 空闲模式期间的 A/D 工作

ADSIDL 位选择 ADC 模块在空闲模式下是停止还是继续工作。如果 ADSIDL = 0 ,则模块将在空闲模式时继续工作。如果 ADSIDL = 1 ,则模块将在空闲模式下停止工作。

### 20.11 复位的影响

器件复位将强制所有寄存器为复位状态。这将迫使 ADC 模块关闭并中止任何正在进行的转换和采集过程。ADCBUFx 寄存器中的值不会被修改。上电复位后,A/D 结果寄存器将包含未知数据。

#### 20.12 输出格式

A/D 结果为 10 位宽。数据缓冲器 RAM 也是 10 位宽。 10 位数据可以用以下四种格式之一读取。 FORM<1:0> 位用于选择格式。每一种输出格式将数据转换为数据总 线上的 16 位结果。

写数据总是右对齐的 (整数)格式。

A/D 输出	出数据	格式	1													
							d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
1.15)	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
1.15)	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
						1	1									
号整数	d09	d09	d09	d09	d09	d09	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
	<u> </u>															
整数	0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
	1.15) 1.15) 号整数	1.15) d09 1.15) d09 号整数 d09	1.15) d09 d08 1.15) d09 d08 号整数 d09 d09	1.15) d09 d08 d07 号整数 d09 d09 d09	1.15)     d09     d08     d07     d06       1.15)     d09     d08     d07     d06       号整数     d09     d09     d09     d09     d09	1.15)     d09     d08     d07     d06     d05       1.15)     d09     d08     d07     d06     d05       号整数     d09     d09     d09     d09     d09     d09	1.15)     dog	1.15)     d09       d09     d08     d07     d06     d05     d04     d03       1.15)     d09     d08     d07     d06     d05     d04     d03       号整数     d09     d09     d09     d09     d09     d09     d09     d09     d09	d09     d08       1.15)     d09     d08     d07     d06     d05     d04     d03     d02       1.15)     d09     d08     d07     d06     d05     d04     d03     d02       号整数     d09     d08	1.15)     d09     d08     d07     d06     d05     d04     d03     d02     d01       1.15)     d09     d08     d07     d06     d05     d04     d03     d02     d01       号整数     d09     d09 </td <td>1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00         号整数       d09 d09 d09 d09 d09 d09 d09 d09 d09 d08 d07 d06</td> <td>1.15)     d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0       1.15)     d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0       1.15)     d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0       号整数     d09 d09 d09 d09 d09 d09 d09 d09 d09 d08 d07 d06 d05</td> <td>1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0         09 d09 d09 d09 d09 d09 d09 d09 d09 d09 d</td> <td>1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0         09 d09 d09 d09 d09 d09 d09 d09 d09 d09 d</td> <td>1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0         09 d09 d09 d09 d09 d09 d09 d09 d09 d09 d</td> <td>1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0 0         d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0 0</td>	1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00         号整数       d09 d09 d09 d09 d09 d09 d09 d09 d09 d08 d07 d06	1.15)     d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0       1.15)     d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0       1.15)     d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0       号整数     d09 d09 d09 d09 d09 d09 d09 d09 d09 d08 d07 d06 d05	1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0         09 d09 d09 d09 d09 d09 d09 d09 d09 d09 d	1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0         09 d09 d09 d09 d09 d09 d09 d09 d09 d09 d	1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0         09 d09 d09 d09 d09 d09 d09 d09 d09 d09 d	1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0         1.15)       d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0 0         d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 0 0 0 0 0 0

# 20.13 配置模拟端口引脚

使用 ADPCFG 和 TRIS 寄存器控制 ADC 端口引脚的操作。如果要将端口引脚用作模拟输入,则对应的 TRIS 位必须置1(输入)。如果将 TRIS 位清零(输出),则数字输出电平(VOH或 VOL)将被转换。

A/D 操作与 CH0SA<3:0>/CH0SB<3:0> 位和 TRIS 位的 状态无关。

在读取端口寄存器时,所有配置为模拟输入通道的引脚均读为零。

配置为数字输入的引脚,将不会对模拟输入进行转换。 对于任何定义为数字输入的引脚(包括 ANx 引脚),加 在引脚上的模拟电压可能导致输入缓冲器消耗的电流超 出器件规范。

## 20.14 连接注意事项

模拟输入在 VDD 和 VSS 之间连接有二极管进行 ESD 保护。这就要求模拟输入电压必须介于 VDD 和 VSS 之间。如果输入电压超出此范围 0.3V 以上(任一方向上),就会有一个二极管正向偏置,而且如果超过输入电流规范可能会损坏器件。

有时可外接 RC 滤波器来对输入信号进行抗混叠滤波。 R 元件的选择要确保满足采样时间要求。任何通过高阻 抗连接到模拟输入引脚上的外部元件(如电容和齐纳二 极管等)在引脚上的泄漏电流都应极小。

DS70135G_CN 第 149 页

ADC 寄存器映射 (1) 表 20-2:

1X ZU-Z .		700		P/201																
SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态		
ADCBUF0	0280	_	_	_	_	_	_					ADC 数据约	缓冲器 0					0000 00uu uuuu uuuu		
ADCBUF1	0282		_	_	_	_	_					ADC 数据约	爰冲器 1					0000 00uu uuuu uuuu		
ADCBUF2	0284		_	_	_	_	_					ADC 数据约	爰冲器 2					0000 00uu uuuu uuuu		
ADCBUF3	0286		_	_	_	_	_					ADC 数据约	爰冲器 3					0000 00uu uuuu uuuu		
ADCBUF4	0288		_	_	_	_	_					ADC 数据约	爰冲器 4					0000 00uu uuuu uuuu		
ADCBUF5	028A			_	_	_						ADC 数据约	爰冲器 5					0000 00uu uuuu uuuu		
ADCBUF6	028C		1	-		1	1					ADC 数据约	爰冲器 6					0000 00uu uuuu uuuu		
ADCBUF7	028E			_	_	_						ADC 数据约	爰冲器 7					0000 00uu uuuu uuuu		
ADCBUF8	0290		_	_	_	_	_					ADC 数据约	爰冲器 8					0000 00uu uuuu uuuu		
ADCBUF9	0292		_	_	_	_	_					ADC 数据约	爰冲器 9					0000 00uu uuuu uuuu		
ADCBUFA	0294		_	_	_	_	_					ADC 数据绿	受冲器 10					0000 00uu uuuu uuuu		
ADCBUFB	0296		_	_	_	_	_					ADC 数据组	受冲器 11					0000 00uu uuuu uuuu		
ADCBUFC	0298		_	_	_	_	_					ADC 数据绿	受冲器 12					0000 00uu uuuu uuuu		
ADCBUFD	029A		1	-		1	1					ADC 数据绿	震冲器 13					0000 00uu uuuu uuuu		
ADCBUFE	029C		1	-		1	1					ADC 数据绿	震冲器 14					0000 00uu uuuu uuuu		
ADCBUFF	029E		_	_	_	_	_					ADC 数据绿	受冲器 15					0000 00uu uuuu uuuu		
ADCON1	02A0	ADON	_	ADSIDL	_	_	_	FOR	M<1:0>		SSRC<2:0:	>	_	SIMSAM	ASAM	SAMP	DONE	0000 0000 0000 0000		
ADCON2	02A2	,	VCFG<2:	0>	_	_	CSCNA	CHPS         1:0>         BUFS         —         SMPI         3:0>         BUFM         ALTS         0					0000 0000 0000 0000							
ADCON3	02A4	_	_	_		S	AMC<4:0	0> ADRC — ADCS<5:0> (						0000 0000 0000 0000						
ADCHS	02A6	CH123N	IB<1:0>	CH123SB	CH0NB		CH0S	OSB<3:0> CH123NA<1:0> CH123SA CH0NA CH0SA<3:0>				0000 0000 0000 0000								
ADPCFG	02A8	_		_	_	_		_	PCFG8 ⁽²⁾	PCFG7 ⁽²⁾	PCFG6 ⁽²⁾	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000 0000 0000		
ADCSSL	02AA	_	-	_	_	_		_	CSSL8 ⁽²⁾	CSSL7 ⁽²⁾	CSSL6 ⁽²⁾	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000 0000 0000 0000		

图注:

u = 未初始化位; — = 未实现位,读为 0 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》( DS70046E_CN )。

2: 这些位在 dsPIC30F4012 上不可用。

注:

## 21.0 系统集成

注: 本数据手册总结了 dsPIC30F 系列器件的 功能,但是不应把本手册当作无所不包的 参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参 见《dsPIC30F 系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC程序员参考手册》

(DS70157E_CN)。

本系列器件的下列功能,旨在最大限度地提高系统可靠性,通过减少外部元件的使用来降低成本,提供省电工作模式以及提供代码保护:

- 振荡器选择
- 复位
  - 上电复位 (POR)
  - 上电延时定时器 (PWRT)
  - 振荡器起振定时器 (OST)
  - 可编程欠压复位 (BOR)
- 看门狗定时器 (WDT)
- 省电模式 (休眠和空闲)
- 代码保护
- 器件 ID 存储单元
- 在线串行编程 (ICSP)

dsPIC30F器件具备一个看门狗定时器,它可以通过配置位永久使能,或用软件进行控制。它依靠自身的 RC 振荡器运行,以便提升可靠性。两个定时器提供了上电时必需的延时。一个是振荡器起振定时器(OST),用来使芯片保持复位,直到晶体振荡器稳定为止。另一个是上电延时定时器(PWRT),仅在上电时提供延时,用来在电源稳定过程中使器件保持在复位状态。有了这两个片上定时器,大多数应用不再需要外部复位电路。

休眠模式旨在提供极低电流的掉电模式。通过外部复位、看门狗定时器唤醒或中断,用户可将器件从休眠状态唤醒。一些振荡器功能仍然可用,从而器件能够适用于范围宽广的各种应用。在空闲模式下,时钟源仍然处于工作状态,但 CPU 停止工作。RC 振荡器可降低系统成本,而 LP 晶振功能可降低功耗。

### 21.1 振荡器系统概述

dsPIC30F 振荡器系统包含以下模块和功能:

- 可选择多种外部和内部振荡器作为时钟源
- 片上 PLL 可提高内部工作频率
- 在各种时钟源之间进行切换的时钟切换机制
- 可编程时钟后分频器,可节省系统功耗
- 故障保护时钟监视器 (FSCM), 可检测时钟故障 并采取故障保护措施
- 振荡器控制寄存器 (OSCCON)
- 用于主振荡器选择的配置位

表 21-1 汇总了 dsPIC30F 的振荡器工作模式。图 21-1 给出了振荡器系统的简化框图。

配置位用于决定上电复位(POR)和欠压复位(BOR)时的时钟源。此后,可在允许的时钟源间切换时钟源。 OSCCON 寄存器控制时钟切换并包含与系统时钟相关的状态位。

表 21-1: 振荡器工作模式

振荡器模式	说明
XTL	OSC1:OSC2 上的晶振频率为 200 kHz-4 MHz
XT	OSC1:OSC2 上的晶振频率为 4 MHz-10 MHz
XT , PLL 4x	OSC1:OSC2 上的晶振频率为 4 MHz-10 MHz,使能 4x PLL
XT, PLL 8x	OSC1:OSC2 上的晶振频率为 4 MHz-10 MHz,使能 8x PLL
XT, PLL 16x	OSC1:OSC2 上的晶振频率为 4 MHz-10 MHz,使能 16x PLL ⁽¹⁾
LP	SOSCO:SOSCI 上的晶振频率为 32 kHz ⁽²⁾
HS	晶振频率为 10MHz-25MHz
EC	外部时钟输入 (0-40 MHz)
ECIO	外部时钟输入 (0-40 MHz),OSC2 引脚为 I/O
EC, PLL 4x	外部时钟输入 (0-40 MHz),OSC2 引脚为 I/O,使能 4x PLL ⁽¹⁾
EC, PLL 8x	外部时钟输入 (0-40 MHz),OSC2 引脚为 I/O,使能 8x PLL ⁽¹⁾
EC, PLL 16x	外部时钟输入 (0-40 MHz),OSC2 引脚为 I/O,使能 16x PLL ⁽¹⁾
ERC	外部 RC 振荡器, OSC2 引脚为 Fosc/4 输出 ⁽³⁾
ERCIO	外部 RC 振荡器, OSC2 引脚为 I/O ⁽³⁾
FRC	8 MHz 内部 RC 振荡器
FRC, PLL 4x	7.37 MHz 内部 RC 振荡器,使能 4x PLL
FRC, PLL 8x	7.37 MHz 内部 RC 振荡器,使能 8x PLL
FRC, PLL 16x	7.37 MHz 内部 RC 振荡器,使能 16x PLL
LPRC	512 kHz 内部 RC 振荡器

注 1: 必须满足 dsPIC30F 最大工作频率为 120 MHz 的要求。

2: LP 振荡器可方便地为系统时钟和 Timer1 实时时钟所共用。

3: 需要外部 R 和 C 元件。工作频率最高为 4 MHz。



# 21.2 振荡器配置

### 21.2.1 初始时钟源选择

当退出上电复位或欠压复位状态时,器件根据以下原则 进行时钟源的选择:

- a) 通过 FOS<1:0> 配置位选择四个振荡器组中的一组。
- b) 通过 FPR<3:0> 配置位选择主振荡器组中的 13 个振荡器之一。

选择如表 21-2 所示。

### 21.2.2 振荡器起振定时器 (OST)

为了确保晶振(或陶瓷谐振器)已起振并达到稳定状态,振荡器中包含一个振荡器起振定时器(OST)。该定时器仅仅是一个 10 位计数器,在允许振荡器时钟应用于其他部分之前该计数器将计数 1024 个 Tosc 周期。超时周期称为 Tost。每当振荡器重启(即当 POR、BOR 和从休眠模式唤醒时)需进行 Tost 时间的延时。振荡器起振定时器适用于主振荡器的 LP、XT、XTL 和HS 模式(从休眠模式唤醒、 POR 和 BOR 时)。

表 21-2: 时钟选择的配置位值

振荡器模式	振荡器源	FOS1	FOS0	FPR3	FPR2	FPR1	FPR0	OSC2 功能
EC	主	1	1	1	0	1	1	CLKO
ECIO	主	1	1	1	1	0	0	I/O
EC, PLL 4x	主	1	1	1	1	0	1	I/O
EC, PLL 8x	主	1	1	1	1	1	0	I/O
EC, PLL 16x	主	1	1	1	1	1	1	I/O
ERC	主	1	1	1	0	0	1	CLKO
ERCIO	主	1	1	1	0	0	0	I/O
XT	主	1	1	0	1	0	0	OSC2
XT , PLL 4x	主	1	1	0	1	0	1	OSC2
XT , PLL 8x	主	1	1	0	1	1	0	OSC2
XT , PLL 16x	主	1	1	0	1	1	1	OSC2
XTL	主	1	1	0	0	0	0	OSC2
HS	主	1	1	0	0	1	0	OSC2
FRC, PLL 4x	主	1	1	0	0	0	1	I/O
FRC, PLL 8x	主	1	1	1	0	1	0	I/O
FRC, PLL 16x	主	1	1	0	0	1	1	I/O
LP	辅助	0	0					(注1,2)
FRC	内部 FRC	0	1	_				(注1,2)
LPRC	内部 LPRC	1	0					(注1,2)

注 1: OSC2 引脚功能由主振荡器模式选择位 (FPR<3:0>)决定。

2: 注意,即使始终选择辅助振荡器或内部时钟源, OSC1 引脚仍不能用作引脚 I/O。

#### 21.2.3 LP 振荡器控制

通过以下各位可使能 LP 振荡器:

- 1. 当前振荡器组控制位 COSC<1:0>
- 2. LPOSCEN 位 (OSCCON<1>)

如果 LPOSCEN = 1,则 LP 振荡器工作(即使是在休眠模式期间)。 LP 振荡器用作器件时钟,如果:

- COSC<1:0> = 00 (选择 LP 作为主振荡器) 且
- LPOSCEN = 1

保持LP 振荡器始终开启可快速切换至32 kHz 系统时钟以实现低功耗运行。返回更快速的主振荡器仍需要经过起振时间。

### 21.2.4 锁相环 (PLL)

PLL 把主振荡器产生的时钟进行倍频处理。PLL 的增益可以选择为 x4、x8 或 x16。表 21-3 汇总了输入和输出频率范围。

表 21-3: PLL 频率范围

Fin	PLL 倍频	Fouт
4 MHz-10 MHz	x4	16 MHz-40 MHz
4 MHz-10 MHz	x8	32 MHz-80 MHz
4 MHz-7.5 MHz	x16	64 MHz-120 MHz

PLL 具有一个锁定输出,当 PLL 进入相位锁定状态,锁定输出有效。如果锁相环锁定失败(例如由噪音导致),锁定信号将为无效。此信号的状态将通过 OSCCON 寄存器中的只读位 LOCK 反映。

#### 21.2.5 快速 RC 振荡器 (FRC)

FRC 振荡器是一种快速(标称值为 7.37 MHz ±2%)的 内部 RC 振荡器。该振荡器用于提供合理的器件工作速 度而无需使用外部晶振、陶瓷谐振器或 RC 网络。使用 x4、x8 和 x16 PLL 选项,可以产生更高的工作频率。

一旦 OSCCON 寄存器 (OSCCON<13:12>) 中的当前 振荡器选择控制位 (COSC<1:0>) 设置为 01, dsPIC30F 将使用 FRC 振荡器进行工作。

在 OSCCON 寄存器中有 4 个用于 FRC 振荡器的调节位 (TUN<3:0>)。这些调节位可将 FRC 振荡器频率调整 到尽可能接近 7.37 MHz, 取决于器件的工作条件。FRC 振荡器频率在出厂测试时已被校准。表 21-4 给出了TUN<3:0> 位的调整范围。

注: OSCTUN 用来帮助客户在宽温度范围内补偿温度对 FRC 频率的影响。调整步长为近似值,非特性值且未经测试。

表 21-4: FRC 调节

TUN<3:0> 位	FRC 频率
0111	+10.5%
0110	+9.0%
0101	+7.5%
0100	+6.0%
0011	+4.5%
0010	+3.0%
0001	+1.5%
0000	中心频率 (振荡器运行于校准频率)
1111	-1.5%
1110	-3.0%
1101	-4.5%
1100	-6.0%
1011	-7.5%
1010	-9.0%
1001	-10.5%
1000	-12.0%

#### 21.2.6 低功耗 RC 振荡器 (LPRC)

LPRC 振荡器是看门狗定时器(WDT)的组成部分,其标称振荡频率为512 kHz。LPRC 振荡器是上电延时定时器(PWRT)电路、WDT 和时钟监视器电路的时钟源。它也可用于低功耗要求高但时序精度要求不高的应用场合作为低频时钟源。

由于 LPRC 振荡器是 PWRT 的时钟源,因此上电复位时该振荡器总是被使能。PWRT 超时后,如果以下任何一个条件为真, LPRC 振荡器将保持为开启状态:

- 已使能故障保护时钟监视器
- 已使能 WDT
- 已通过设置OSCCON寄存器中的COSC<1:0>控制 位选择 LPRC 振荡器作为系统时钟

如果以上任何一个条件都不为真,则 PWRT 超时之后 LPRC 将被关闭。

- 注 1: OSC2 引脚功能由主振荡器模式选择位 (FPR<3:0>)决定。
  - 2:注意,即使始终选择辅助振荡器或内部时钟源,OSC1引脚仍不能用作引脚I/O。

#### 21.2.7 故障保护时钟监视器

故障保护时钟监视器(FSCM)允许器件在即使振荡器 发生故障的情况下仍能继续运行。可通过正确地设置 Fosc 器件配置寄存器中的 FCKSM<1:0> 配置位(时钟 切换和监视器选择位)使能 FSCM 功能。如果使能了 FSCM 功能, LPRC 内部振荡器将始终保持运行(休眠 模式除外),并且不再受 SWDTEN 位的控制。

在发生振荡器故障时,FSCM 会产生时钟故障陷阱事件,并将系统时钟切换到FRC 振荡器。然后用户可以选择尝试重启振荡器,或执行受控关闭。用户可以把陷阱当作热复位来处理,这只要把复位地址装入振荡器陷阱向量即可。这种情况下,一旦识别到时钟故障,CF(时钟故障)状态位(OSCCON<3>)也将置1。

发生时钟故障时, WDT 不受影响,且继续靠 LPRC 时钟运行。

从 POR、 BOR 或休眠退出后,如果振荡器起振非常慢的话,则可能出现这样的情况,在振荡器起振之前 PWRT 定时器就已超时。在这样的情形下,FSCM 被激活。 FSCM 启动时钟故障陷阱,并将快速 RC(FRC)振荡器选择装入 COSC<1:0> 位。这实际上是关闭了正在尝试起振的原振荡器。

在时钟故障陷阱中断服务程序(ISR)中,用户可以检测到这样的情况并重启振荡器。

检测到时钟故障时,FSCM模块将按如下步骤将时钟切换至FRC振荡器:

- 1. 把 FRC 振荡器选择位的值装入 COSC<1:0> 位 (OSCCON<13:12>)中。
- 2. 将 CF 位 (OSCCON<3>) 置 1。
- 3. 清零 OSWEN 控制位 (OSCCON<0>)。

出于时钟切换的目的,可将时钟源分为以下四组:

- 主组
- 辅助组
- 内部 FRC 组
- 内部 LPRC 组

用户可在这些功能组之间进行切换,但不能在同一个组内进行切换。如果选择了主组的话,则组内的选择始终由 FPR<3:0> 配置位决定。

OSCCON 寄存器包含与时钟切换相关的控制和状态位。

- COSC<1:0>: 只读状态位,始终反映当前有效的振荡器组。
- NOSC<1:0>: 控制位,写此位表明选择了新的振荡器组
  - 在 POR 和 BOR 时,将把配置位 FOS<1:0>的值装入 COSC<1:0>和 NOSC<1:0>中。
- LOCK: LOCK 状态位,表明 PLL 是否锁定。
- CF:只读状态位,表明是否检测到时钟故障。
- OSWEN:控制位,当启动时钟转换序列时,从0 变为1。清零 OSWEN 控制位将中止正在进行中 的时钟转换(用于挂起情形)。

如果配置位 FCKSM<1:0> = 1x,那么时钟切换和故障保护时钟监视器功能被禁止。这是默认的配置位设置。

如果禁止时钟切换,则 FOS<1:0>和 FPR<3:0>位直接控制振荡器选择, COSC<1:0>位不控制时钟选择。然而,这些位将反映时钟源选择。

注: 当使能故障保护时钟监视器时,在应用中不应试图将时钟频率切换到低于100 kHz。如果执行了这样的时钟切换,则器件可能产生振荡器故障陷阱并切换至快速 RC(FRC)振荡器。

#### 21.2.8 防止意外写入 OSCCON

由于 OSCCON 寄存器控制时钟切换和时钟分频,因此有意地将其写入操作过程设计得较为困难。

要写入 OSCCON 低字节,必须执行以下代码序列且不应在其中插入任何其他指令:

向 OSCCON 的低字节写入字节 "0x46"

向 OSCCON 的低字节写入字节 "0x57"

允许在一个指令周期内进行字节写操作。写入期望值或 使用位操作指令。

要写入 OSCCON 高字节,必须执行以下指令且不应在 其中插入任何其他指令:

向 OSCCON 的高字节写入字节 "0x78"

向 OSCCON 的高字节写入字节 "0x9A"

允许在一个指令周期内进行字节写操作。写入期望值或 使用位操作指令。

### 21.3 复位

dsPIC30F4011/4012 器件有以下几种不同类型的复位:

- a) 上电复位 (POR)
- b) 正常工作期间的 MCLR 复位
- c) 休眠期间的 MCLR 复位
- d) 看门狗定时器 (WDT) 复位 (正常工作期间)
- e) 可编程欠压复位(BOR)
- f) RESET 指令
- g) 由陷阱锁定 (TRAPR)导致的复位
- h) 由非法操作码导致的复位,或者是由于把未初始 化的 W 寄存器用作地址指针 (IOPUWR)而导 致的复位

各种复位条件以不同的方式影响不同的寄存器。大多数寄存器不受 WDT 唤醒的影响,因为这被视为是正常工作的继续。在不同的复位条件下,将以不同的方式置 1 或清零 RCON 寄存器中的状态位,如表 21-5 所示。在软件中使用这些位来确定复位的性质。

片上复位电路的框图,如图 21-2 所示。

在 MCLR 复位路径上,提供了一个 MCLR 噪声滤波器。 该滤波器检测并滤除小脉冲。

内部产生的复位不会将 MCLR 引脚驱动为低电平。

#### 21.3.1 POR:上电复位

当检测到 VDD 上升时,上电事件将产生内部 POR 脉冲。复位脉冲将在 POR 电路门限电压(VPOR)处产生,标称门限值是 1.85V。器件电源电压特性曲线必须满足规定的起始电压和上升速度要求。 POR 脉冲将复位 POR 定时器,并使器件进入复位状态。POR 还将选择器件时钟源,时钟源由振荡器配置熔丝位指定。

POR 电路将插入一个标称值为 10  $\mu$ s 的小延时 TPOR,确保器件偏压电路是稳定的。此外,还要施加用户选择的上电延时(TPWRT)。 TPWRT 参数由器件配置位设定,可以是 0 ms(无延时)、4 ms、16 ms 或 64 ms。器件上电的总延时为 TPOR + TPWRT。在这些延时结束后,SYSRST 将在 Q1 时钟的下一个上升沿反相,PC将跳转到复位向量。

### 图 21-2: 复位系统框图









# 21.3.1.1 具有长晶振起振时间的 POR (FSCM 使能)

振荡器起振电路没有连接到 POR 电路。一些晶振电路 (尤其是低频晶振)的起振时间会相对较长。从而,在 POR 定时器和 PWRT 超时后,可能会出现下列情况:

- 振荡电路还没有开始振荡。
- 振荡器起振定时器还没有超时(如果使用晶振的话)。
- PLL 还未锁定 (如果使用了 PLL 的话)。

如果 FSCM 使能且出现上述条件之一时,就将产生时钟故障陷阱。器件将自动切换到 FRC 振荡器,而用户可在陷阱 ISR 中切换到期望的晶体振荡器。

### 21.3.1.2 FSCM 和 PWRT 禁止时的工作

如果 FSCM 禁止且上电延时定时器 (PWRT)也禁止的话,上电时器件将快速退出复位状态。如果时钟源是FRC、LPRC、ERC或EC,它将立即激活。

如果 FSCM 禁止而系统时钟还没有启动,器件将在复位向量处处于冻结状态,直到系统时钟启动为止。从用户的角度看,器件看上去仍然在复位状态,直到系统时钟可用为止。

#### 21.3.2 BOR:可编程欠压复位

BOR (欠压复位)模块是基于内部参考电压电路的。 BOR 模块的主要用途是在发生欠压条件时产生器件复位。欠压条件通常由交流电源线上的干扰信号(即,由于电源传输线路不良造成的交流周期波形部分丢失,或者由于接入大感性负载时电流消耗过大造成电压下降)产生的。

BOR 模块允许选择以下电压跳变点之一(见表 24-10):

- 2.6V-2.71V
- 4.1V-4.4V
- 4.58V-4.73V

注: 这里所述的 BOR 电压跳变点都是标称值, 仅供设计参考。 BOR 将产生复位器件的复位脉冲。 BOR 会根据器件配置位 (FOS<1:0> 和 FPR<3:0>) 的值选择时钟源。此外,如果选择了振荡器模式,BOR 将激活振荡器起振定时器 (OST)。系统时钟将保持到 OST 超时。如果使用了PLL,则时钟将被保持到LOCK位(OSCCON<5>)置1。

同时,在内部复位信号释放之前,还要施加 POR 延时 (TPOR)和 PWRT 延时 (Tpwrt)。如果 Tpwrt = 0 且 正在使用的是晶体振荡器的话,那么将施加 Tfscm = 100μs的标称延时。这样,总延时为(TPOR+Tfscm)。

BOR状态位(RCON<1>)将置1,以表明发生了BOR。使能时,BOR电路将在休眠或空闲模式下继续工作,当VDD下降到BOR门限电压以下时将复位器件。

# 图 21-6: 外部上电复位电路 (对于较慢的 VDD 上电过程)



- 注 1: 仅当 VDD 上电速率过慢时,才需要外部上电复位电路。二极管 D 有助于在 VDD 掉电时使电容迅速放电。
  - 2: 应该选择合适的 R 以确保 R 两端的压降不会 违反器件电气规范。
  - 3: 应该选择合适的 R1,这样在由于静电放电 (Electrostatic Discharge, ESD)或<u>电过载</u> (Electrical Overstress, EOS)而导致MCLR 引脚损坏时,R1 将对从外部电容 C 流入 MCLR 引脚的任何电流进行限流。

注: 专用监视器件,如 MCP1XX 和 MCP8XX 等,也可用作外部上电复位电路。

表 21-5 所示为 RCON 寄存器的复位状态。由于 RCON 寄存器中的控制位都是可读写的,表中的信息意味着:所有位状态是在"条件"这一列指定操作之前的位状态的反码。

表 21-5: RCON 寄存器的初始化条件,情形 1

条件	程序计数器	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
上电复位	0x000000	0	0	0	0	0	0	0	1	1
欠压复位	0x000000	0	0	0	0	0	0	0	0	1
正常工作期间的 MCLR 复位	0x000000	0	0	1	0	0	0	0	0	0
正常工作期间的软件复位	0x000000	0	0	0	1	0	0	0	0	0
休眠期间的 MCLR 复位	0x000000	0	0	1	0	0	0	1	0	0
空闲期间的 MCLR 复位	0x000000	0	0	1	0	0	1	0	0	0
WDT 超时复位	0x000000	0	0	0	0	1	0	0	0	0
WDT 唤醒	PC + 2	0	0	0	0	1	0	1	0	0
被中断从休眠状态唤醒	PC + 2 ⁽¹⁾	0	0	0	0	0	0	1	0	0
时钟故障陷阱	0x000004	0	0	0	0	0	0	0	0	0
陷阱复位	0x000000	1	0	0	0	0	0	0	0	0
非法操作陷阱	0x000000	0	1	0	0	0	0	0	0	0

注 1: 如果唤醒由允许的中断引起, PC 将装入相应的中断向量。

表 21-6 显示了 RCON 寄存器位状态的第二个示例。在此情形中,假设用户在条件列中所指定的操作前未置 1/清零特定位。

表 21-6: RCON 寄存器的初始化条件,情形 2

条件	程序计数器	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
上电复位	0x000000	0	0	0	0	0	0	0	1	1
欠压复位	0x000000	u	u	u	u	u	u	u	0	1
正常工作期间的 MCLR 复位	0x000000	u	u	1	0	0	0	0	u	u
正常工作期间的软件复位	0x000000	u	u	0	1	0	0	0	u	u
休眠期间的 MCLR 复位	0x000000	u	u	1	u	0	0	1	u	u
空闲期间的 MCLR 复位	0x000000	u	u	1	u	0	1	0	u	u
WDT 超时复位	0x000000	u	u	0	0	1	0	0	u	u
WDT 唤醒	PC + 2	u	u	u	u	1	u	1	u	u
被中断从休眠状态唤醒	PC + 2 ⁽¹⁾	u	u	u	u	u	u	1	u	u
时钟故障陷阱	0x000004	u	u	u	u	u	u	u	u	u
陷阱复位	0x000000	1	u	u	u	u	u	u	u	u
非法操作复位	0x000000	u	1	u	u	u	u	u	u	u

**图注:** u = 不变

注 1: 如果唤醒由允许的中断引起, PC 将装入相应的中断向量。

### 21.4 看门狗定时器 (WDT)

#### 21.4.1 看门狗定时器的工作

看门狗定时器(WDT)的主要功能是在软件故障时使处理器复位。 WDT 是独立运行的定时器,它使用片上RC 振荡器,不需要外部元件。于是,即使主处理器时钟(例如,晶振)出现故障,WDT定时器仍将继续工作。

#### 21.4.2 使能和禁止 WDT

看门狗定时器的使能或禁止,只能通过配置寄存器 FWDT中的配置位(FWDTEN)来进行。

设置 FWDTEN = 1,使能看门狗定时器。使能是在对器件进行编程时完成的。默认情况下,在擦除芯片后,FWDTEN 位 = 1。任何能够对 dsPIC30F 器件进行编程的编程器,都能够对这个配置位及其他配置位进行编程

如果使能的话,WDT 将递增,直到它溢出或"超时"。 WDT 超时将强制器件复位(除非是在休眠期间)。要 防止 WDT 超时,用户必须使用 CLRWDT 指令清零看门 狗定时器。

如果休眠期间 WDT 超时,器件将唤醒。RCON 寄存器中的 WDTO 位将清零,表明 WDT 超时导致唤醒。

设置 FWDTEN = 0,允许用户软件通过 SWDTEN (RCON<5>)控制位来使能/禁止看门狗定时器。

## 21.5 省电模式

通过执行一条特殊的指令 PWRSAV,可以进入两个省电状态。

这两个状态是:休眠和空闲。

PWRSAV <parameter>

其中,

"parameter"定义是空闲还是休眠模式。

#### 21.5.1 休眠模式

在休眠模式下,CPU 和外设的时钟关闭。如果在使用片上振荡器,它也将关闭。

休眠期间,故障保护时钟监视器不起作用,因为没有时钟需要监视。不过,如果休眠期间 WDT 工作的话,LPRC 时钟将保持为活动状态。

欠压复位保护电路和低电压检测(LVD)电路,如果使能的话,在休眠期间仍然起作用。

发生以下任一事件时,处理器将从休眠模式唤醒:

- 任何中断,如果已单独允许并且满足所需的优先级
- 任何复位 (POR、BOR 和 MCLR)
- WDT 超时

从休眠模式唤醒时,处理器将重新启动进入休眠模式之前处于活动状态的时钟。当时钟切换使能时,COSC<1:0> 位将决定唤醒时所使用的振荡器源。如果时钟切换禁止,则只有一个系统时钟。

**注:** 如果发生 POR 或 BOR ,则根据 FOS<1:0> 和 FPR<3:0> 配置位来选择振荡器。

如果时钟源是振荡器,器件的时钟将一直关闭,直到OST 超时为止(这表明振荡器已经稳定)。如果使用了PLL,系统时钟关闭,直到LOCK=1为止(这表明PLL已经稳定)。不管是哪种情况,都要加上Tpor、Tlock和Tpwrt 延时。

如果使用了 EC、FRC、LPRC 或 ERC 振荡器 , 那么要 加上 Tpor 的延时 ( $\sim$ 10  $\mu$ s)。这是从休眠中唤醒时的 最小延时。

此外,如果在休眠期间 LP 振荡器处于工作状态,并且 LP 是唤醒时使用的振荡器,那么起振延时等于 Tpor。不会有 PWRT 和 OST 延时。为了使从休眠中唤醒的起振延时最小,在进入休眠之前,应该选择这些快速唤醒选项之一。

任何中断,如果被单独允许(通过相应的 IE 位)并且优先级占先的话,将唤醒处理器。处理器将处理中断,转移至 ISR。唤醒时 RCON 寄存器中的 SLEEP 状态位将置 1。

注: 尽管要加上各种延时(Tpor、TLOCK 和Tpwrt),在延时结束后晶振(和PLL)可能并未处于工作状态(例如,对于低频晶振)。在这样的情形下,如果FSCM被使能,则器件将这种情况作为时钟故障并处理时钟故障陷阱。FRC振荡器被使能,而

用户必须重新使能晶振。如果 FSCM 没有使能,器件将暂停代码执行直至时钟稳定,且将继续处于休眠模式直至振荡器时钟启动。

所有复位都将把处理器从休眠模式中唤醒。除 POR 之外的任何复位,都将置 1 SLEEP 状态位。 POR 时,SLEEP 状态位将被清零。

如果看门狗定时器被使能,则处理器在 WDT 超时时将 从空闲模式中唤醒。SLEEP 和 WDTO 状态位都将被置 1。

#### 21.5.2 空闲模式

在空闲模式下, CPU 的时钟关闭, 而外设继续运行。与 休眠模式不同的是, 时钟源继续保持为工作状态。

对于一些外设而言,每个模块中有一个与外设对应的控制位,控制外设在空闲期间是否工作。

如果时钟故障检测使能的话,LPRC 故障保护时钟监视器继续保持为工作状态。

以下任一条件为真时,处理器将从空闲模式唤醒:

- 任何中断,如果被单独允许(IE 位为 1)并且满足所需的优先级
- 任何复位 (POR、BOR 和 MCLR)
- WDT 超时

在从空闲模式唤醒时,时钟再次供 CPU 使用且指令立即开始执行,从 PWRSAV 指令之后的第一条指令处开始执行。

任何中断,如果已单独允许(使用相应的 IE 位)并且优先级占先的话,将唤醒处理器。处理器将处理中断,转移至 ISR。唤醒时 RCON 寄存器中的 IDLE 状态位将置 1。

除 POR 之外的任何复位,都将把 IDLE 状态位置 1。 POR 时, IDLE 状态位将被清零。

如果看门狗定时器被使能,则处理器在 WDT 超时时将从空闲模式中唤醒。IDLE 和WDTO 状态位都将被置 1。与从休眠中唤醒不同的是,从空闲中唤醒时不存在延时。

#### 21.6 器件配置寄存器

每个器件配置寄存器中的配置位指定某些器件模式,配置位通过器件编程器或者器件的在线串行编程(ICSP™)功能来进行编程。虽然每个器件配置寄存器都是24位寄存器,但只有低16位可用来保存配置数据。有5个器件配置寄存器可供用户使用:

- 1. FOSC (0xF80000): 振荡器配置寄存器
- 2. FWDT (0xF80002): 看门狗定时器配置寄存器
- 3. FBORPOR (0xF80004): BOR 和 POR 配置寄存器
- 4. FGS (0xF8000A): 通用代码段配置寄存器
- 5. FICD (0xF8000C): 调试配置寄存器

如果在器件编程器中选择了器件,配置位的位置将被自动处理。可以在源代码(这取决于使用的语言工具)中或者通过编程接口来指定配置位的期望状态。在对器件编程之后,应用软件可以通过表读指令读取配置位的值。更多信息,请参见器件的编程规范。

注: 如果设置了代码保护配置熔丝位 (FGS<GCP>和FGS<GWRP>),那么只 有在电压 VDD ≥ 4.5V 时才可以擦除整个代 码保护的器件。

## 21.7 在线调试器

如果选择 MPLAB[®] ICD 2 作为调试器 ,则使能在线调试功能。与 MPLAB IDE 一起使用时 , 该功能允许简单的调试功能。当使能器件的这个功能时 , 某些资源不能用于通常的用途。这些资源包括数据 RAM 的前 80 字节和两个引脚 I/O。

用户使用 MPLAB IDE 中的配置选项,可选择 4 对调试引脚I/O中的一对。这些引脚为EMUD/EMUC、EMUD1/EMUC1、EMUD2/EMUC2 和 MUD3/EMUC3。

无论选取哪对调试引脚,选取的 EMUD 引脚都是仿真/调试数据线,而 EMUC 引脚则是仿真/调试时钟线。这些引脚将与 Microchip 提供的 MPLAB ICD 2 模块接口。MPLAB ICD 2 使用选取的调试引脚 I/O,发送命令、接收响应,发送和接收数据。要使用器件的在线调试功能,应用设计必须实现至 MCLR、VDD、VSS、PGC、PGD以及选取的 EMUDx/EMUCx 引脚对的 ICSP 连接。

#### 这样就产生了两种可能性:

- 1. 如果选取 EMUD/EMUC 作为调试引脚 I/O 对,那么只需要一个5 引脚的接口,这是因为,在所有的 dsPIC30F 器件上, EMUD 和 EMUC 引脚功能均与 PGD 和 PGC 引脚功能复用。
- 2. 如果选取了 EMUD1/EMUC1、 EMUD2/EMUC2 或 EMUD3/EMUC3 作为调试引脚 I/O 对,那么需要 7 引脚的接口,这是因为,EMUDx/EMUCx 引脚功能(x = 1、2 或 3)不与 PGD 和 PGC 引脚功能复用。

# 表 21-7: 系统集成寄存器映射 (1)

SFR 名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	复位状态
RCON	0740	TRAPR	IOPUWR	BGST	_	_	_	_	_	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	取决于复位类型。
OSCCON	0742	TUN3	TUN2	COSC	<1:0>	TUN1	TUN0	NOSC-	<1:0>	POST	<1:0>	LOCK		CF	_	LPOSCEN	OSWEN	取决于配置位。

**图注:** — = 未实现位,读为 0

注 1: 有关寄存器各位的说明,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。

# 表 21-8: 器件配置寄存器映射 (1)

寄存器名称	地址	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FOSC	F80000	FCKSM	l<1:0>	_	_	_	_	FOS	S<1:0>	_	_	_	_		FPR<	3:0>	
FWDT	F80002	FWDTEN	_	-	_	1	-	-	_	_	_	FWPS.	A<1:0>		FWPSE	3<3:0>	
FBORPOR	F80004	MCLREN	_	-	_	ı	PWMPIN	HPOL	LPOL	BOREN	_	BORV	/<1:0>	_	-	FPWR	T<1:0>
FBS	F80006	_	_	保旨	刀 (2)	1	-	-	保留 ⁽²⁾	_	_	1	_		保留	(2)	
FSS	F80008	_	_	保旨	召(2)	ı	ı	保	留 (2)	_	_	ı	_		保留	(2)	
FGS	F8000A	_	_	-	_	ı	ı	-	_	_	_	ı	_	_	保留 ⁽²⁾	GCP	GWRP
FICD	F8000C	BKBUG	COE		_		-		_	_	_		_	ICS<1:0>			:1:0>

dsPIC30F4011/4012

**图注:** — = 未实现位,读为 0

1: 有关寄存器各位的说明,请参见《dsPIC30F系列参考手册》(DS70046E_CN)。

**2:** 保留位读为 1, 且必须编程为 1。

## 22.0 指令集汇总

注:

本数据手册总结了 dsPIC30F 系列器件的功能,但是不应把本手册当作无所不包的参考手册来使用。有关 CPU、外设、寄存器说明和一般器件功能的更多信息,请参见《dsPIC30F 系列参考手册》

(DS70046E_CN)。有关器件指令集和编程的更多信息,请参见《16 位 MCU 和DSC程序员参考手册》

(DS70157E_CN)。

dsPIC30F 指令集的众多增强性能扩展了以往的 PIC[®] MCU 指令集,同时可以方便地从 PIC MCU 指令集移植到 dsPIC30F 指令集。

大部分指令的长度为一个程序存储字(24位)。只有三条指令需要两个程序存储单元。

每一条单字指令长 24 位,分为一个指定指令类型的 8 位操作码和进一步指定指令操作的一个或多个操作数。

指令集是高度正交的,分为5个基本类别:

- 针对字或字节的操作
- 针对位的操作
- 立即数操作
- DSP 操作
- 控制操作

表 22-1 给出了在说明指令时使用的通用符号。

表 22-2 是 dsPIC30F 指令集汇总,还给出了每条指令影响的状态标志位。

大多数针对字或字节的 W 寄存器指令 (包括桶形移位指令)有三个操作数:

- 第一个源操作数通常是寄存器 Wb,不带任何地址 修改量
- 第二个源操作数通常是寄存器 Ws,带或不带地址 修改量
- 运算结果的目标寄存器,通常是寄存器 Wd,带或不带地址修改量

不过,针对字或字节的文件寄存器指令只有两个操作数:

- 文件寄存器由 f 值指定
- 目标寄存器可以是文件寄存器 f 或 W0 寄存器 (用 WREG 表示)

大多数位操作类指令 (包括简单的循环/移位指令)有两个操作数:

- W 寄存器 (带或不带地址修改量)或文件寄存器 (由 Ws 或 f 的值指定)
- W 寄存器或文件寄存器中的位(由一个立即数指定,或者由寄存器 Wb 的内容间接指定)

涉及数据传送的立即数指令,可以使用下列操作数:

- 要被装入到W寄存器或文件寄存器中的立即数(由k值指定)
- 要装入立即数的 W 寄存器或文件寄存器 (由 Wb 或 f 指定)

然而,涉及算术或逻辑操作的立即数指令,使用如下的 操作数:

- 第一个源操作数是寄存器 Wb, 不带任何地址修改量
- 第二个源操作数是立即数
- 操作结果的目标寄存器(仅在与第一个源操作数不同时)通常是寄存器Wd(带或不带地址修改量)

MAC 类 DSP 指令可使用下列操作数:

- 要使用的累加器 (A或B)(必需的操作数)
- 要用作两个操作数的 W 寄存器
- X和Y地址空间预取操作
- X和Y地址空间预取目标寄存器
- 累加器回写目标寄存器

与乘法无关的其他 DSP 指令使用的操作数可能包括:

- 要使用的累加器 (必需)
- 源操作数或目标操作数 (分别由 Wso 或 Wdo 指定),带或不带地址修改量
- 移位位数,由W寄存器Wn或立即数指定

控制指令可以使用下列操作数:

- 程序存储地址
- 表读和表写指令的模式

除了某些双字指令外,所有指令都是单字指令;双字指令之所以是双字长的(48位),是因为要用 48位来提供所需信息。在第二个字中,8个MSb全为0。如果指令自身把第二个字当作一条指令来执行的话,它将作为一条NOP指令来执行。

大多数单字长指令都在一个指令周期内执行,除非条件测试为真或者指令运行结果改变了程序计数器。对于上述两种特殊情况,指令执行需要两个指令周期,在第二个指令周期中执行一条 NOP 指令。值得注意的例外是BRA(无条件/计算转移)、间接 CALL/GOTO、所有的表读和表写以及 RETURN/RETFIE 指令,它们是单字长指令,但执行需要两个或三个周期。某些与跳过后续指令有关的指令,如果要执行跳过的话,可能需要两个或三个周期,这取决于被跳过的指令是单字还是双字指令。此外,双字传送需要两个周期。双字指令执行需要两个指令周期。

注: 有关指令集的更多详细信息,请参见《16 位 MCU 和 DSC 程序员序员参考手册》 (DS70157E_CN)。

表 22-1: 操作码说明中使用的符号

字段	说明
#text	表示由 text 定义的立即数
(text)	表示 text 的内容
[text]	表示由 text 寻址的存储单元
{ }	可选字段或操作
<n:m></n:m>	寄存器位域
.b	字节模式选择
.d	双字模式选择
.S	影子寄存器选择
.W	字模式选择 (默认)
Acc	两个累加器 {A, B} 之一
AWB	累加器回写目标地址寄存器 ∈ {W13, [W13]+=2}
bit4	4 位位选择字段 (用于字寻址指令) ∈ {015}
C, DC, N, OV, Z	MCU 状态位:进位、半进位、负、溢出和全零标志位
Expr	绝对地址、标号或表达式 (由链接器解析)
f	文件寄存器地址 ∈ {0x00000x1FFF}
lit1	1 位无符号立即数 ∈ {0,1}
lit4	4 位无符号立即数 ∈ {015}
lit5	5 位无符号立即数 ∈ {031}
lit8	8 位无符号立即数 ∈ {0255}
lit10	10 位无符号立即数,对于字节模式, ∈ {0255} ;对于字模式, ∈ {0:1023}
lit14	14 位无符号立即数 ∈ {016384}
lit16	16 位无符号立即数 ∈ {065535}
lit23	23 位无符号立即数 ∈ {08388608} ; LSB 必须为 0
None	字段无需内容,可为空
OA, OB, SA, SB	DSP 状态位:ACCA 溢出、 ACCB 溢出、 ACCA 饱和和 ACCB 饱和
PC	程序计数器
Slit10	10 位有符号立即数 ∈ {-512511}
Slit16	16 位有符号立即数 ∈ {-3276832767}
Slit6	6 位有符号立即数 ∈ {-1616}

## 表 22-1: 操作码说明中使用的符号 (续)

字段	说明
Wb	基本 W 寄存器 ∈ {W0W15}
Wd	目标 W 寄存器 ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	目标 W 寄存器 ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	被除数和除数工作寄存器对 (直接寻址)
Wm*Wm	用于平方指令的被乘数和乘数工作寄存器对 ∈ {W4*W4, W5*W5, W6*W6, W7*W7}
Wm*Wn	用于 DSP 指令的被乘数和乘数工作寄存器对 ∈ {W4*W5, W4*W6, W4*W7, W5*W6, W5*W7, W6*W7}
Wn	16 个工作寄存器中之一 ∈ {W0W15}
Wnd	16 个目标工作寄存器之一 ∈ {W0W15}
Wns	16 个源工作寄存器之一 ∈ {W0W15}
WREG	W0 (文件寄存器指令中使用的工作寄存器)
Ws	源 W 寄存器 ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	源 W 寄存器 ∈ { Wns, [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	用于 DSP 指令的 X 数据空间预取地址寄存器 ∈ {[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2, [W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2, [W9+W12], 无 }
Wxd	用于 DSP 指令的 X 数据空间预取目标寄存器 ∈ {W4W7}
Wу	用于 DSP 指令的 Y 数据空间预取地址寄存器 ∈ {[W10]+=6, [W10]+=4, [W10]+=2, [W10], [W10]-=6, [W10]-=4, [W10]-=2, [W11]+=6, [W11]+=4, [W11]+=2, [W11], [W11]-=6, [W11]-=4, [W11]-=2, [W11+W12], 无 }
Wyd	用于 DSP 指令的 Y 数据空间预取目标寄存器 ∈ {W4W7}

表 22-2: 指令集概述

表 22-2:			<b>?耒慨还</b>				
基本 指令 编号				说明	字数	周期数	影响的状态标志
1	ADD	ADD	Acc	累加器相加	1	1	OA, OB, SA, SB
		ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
		ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
		ADD	Wso,#Slit4,Acc	将 16 位有符号立即数加到累加器	1	1	OA, OB, SA, SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
3	AND	AND	f	f = f .AND.WREG	1	1	N, Z
		AND	f,WREG	WREG = f .AND.WREG	1	1	N, Z
		AND	#lit10,Wn	Wd = lit10 .AND.Wd	1	1	N, Z
		AND	Wb,Ws,Wd	Wd = Wb .AND.Ws	1	1	N, Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
4	ASR	ASR	f	f = 算术右移 f	1	1	C, N, OV, Z
		ASR	f,WREG	WREG = 算术右移 f	1	1	C, N, OV, Z
		ASR	Ws,Wd	Wd = 算术右移 Ws	1	1	C, N, OV, Z
		ASR	Wb, Wns, Wnd	Wnd = 将 Wb 算术右移 Wns 位	1	1	N, Z
		ASR	Wb,#lit5,Wnd	Wnd = 将 Wb 算术右移 lit5 位	1	1	N, Z
5	BCLR	BCLR	f,#bit4	将f中的指定位清零	1	1	无
		BCLR	Ws,#bit4	将 Ws 中的指定位清零	1	1	无
6	BRA	BRA	C,Expr	如果有进位则转移	1	1 (2)	无
		BRA	GE, Expr	如果大于或等于则转移	1	1 (2)	无
		BRA	GEU, Expr	如果无符号大于或等于则转移	1	1 (2)	无
		BRA	GT,Expr	如果大于则转移	1	1 (2)	无
		BRA	GTU, Expr	如果无符号大于则转移	1	1 (2)	无
		BRA	LE, Expr	如果小于或等于则转移	1	1 (2)	无
		BRA	LEU, Expr	如果无符号小于或等于则转移	1	1 (2)	无
		BRA	LT, Expr	如果小于则转移	1	1 (2)	无
		BRA	LTU, Expr	如果无符号小于则转移	1	1 (2)	无
		BRA	N,Expr	如果为负则转移	1	1 (2)	无
		BRA	NC,Expr	如果没有进位则转移	1	1 (2)	无
		BRA	NN, Expr	如果不为负则转移	1	1 (2)	无
		BRA	NOV, Expr	如果未溢出则转移	1	1 (2)	无
		BRA	NZ,Expr	如果不为零则转移	1	1 (2)	无
		BRA	OA, Expr	如果累加器 A 溢出则转移	1	1 (2)	无
		BRA	OB, Expr	如果累加器 B 溢出则转移	1	1 (2)	无
		BRA	OV, Expr		1	1 (2)	无
		BRA	SA, Expr	如果溢出则转移 如果累加器 A 饱和则转移	1	1 (2)	无 无
		BRA	SB, Expr	如果累加器 B 饱和则转移	1	1 (2)	无
		BRA	Expr	五条件转移 无条件转移	1	2	无 无
		BRA	Z,Expr	如果为零则转移	1	1 (2)	五 无
		BRA	Z,Expr Wn	如果乃参则转移 计算转移	1	2	
7	BSET	<b>†</b>	f,#bit4		1	1	无   エ
	DOLL	BSET		将 f 中的指定位置 1			无
,		DODE	Wa Hhi+1				
8	BSW	BSET BSW.C	Ws,#bit4 Ws,Wb	将 Ws 中的指定位置 1 将 C 位内容写入 Ws <wb></wb>	1	1	<u>无</u> 无

衣 22	<u> </u>	<u>打日文</u>	集慨处 (			1	1
基本 指令 编号	汇编 助记符	1		字数	数周期数	影响的状态标志	
9	BTG	BTG	f,#bit4	将 f 中的指定位翻转	1	1	无
		BTG	Ws,#bit4	将 Ws 中的指定位翻转	1	1	无
10	BTSC	BTSC	f,#bit4	对 f 中的指定位进行测试,如果为零则跳过	1	1 (2 或 3)	无
		BTSC	Ws,#bit4	对 Ws 中的指定位进行测试,如果为零则跳过	1	1 (2 或 3)	无
11	BTSS	BTSS	f,#bit4	对 f 中的指定位进行测试,如果为 1 则跳过	1	1 (2 或 3)	无
		BTSS	Ws,#bit4	对 Ws 中的指定位进行测试,如果为 1 则跳过	1	1 (2 或 3)	无
12	BTST	BTST	f,#bit4	对 f 中的指定位进行测试	1	1	Z
		BTST.C	Ws,#bit4	对 Ws 中的指定位进行测试,并将其值存储到 C	1	1	С
		BTST.Z	Ws,#bit4	对 Ws 中的指定位进行测试,并将其反码存储到 Z	1	1	Z
		BTST.C	Ws,Wb	对 Ws <wb> 位进行测试,并将其值存储到 C</wb>	1	1	С
		BTST.Z	Ws,Wb	对 Ws <wb> 位进行测试,并将其反码存储到 Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	对 f 中的指定位进行测试,并将 f 中的该位置 1	1	1	Z
		BTSTS.C	Ws,#bit4	对 Ws 中的指定位进行测试,并将其值存储到 C,然后将 Ws 中的该位置 1	1	1	С
		BTSTS.Z	Ws,#bit4	对 Ws 中的指定位进行测试,并将其反码存储到 Z, 然后将 Ws 中的该位置 1	1	1	Z
14	CALL	CALL	lit23	调用子程序	2	2	无
		CALL	Wn	间接调用子程序	1	2	无
15	CLR	CLR	f	f = 0x0000	1	1	无
		CLR	WREG	WREG = 0x0000	1	1	无
		CLR	Ws	Ws = 0x0000	1	1	无
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	将累加器清零	1	1	OA, OB, SA, SB
16	CLRWDT	CLRWDT		将看门狗定时器清零	1	1	WDTO, Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N, Z
		COM	f,WREG	WREG = $\bar{f}$	1	1	N, Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
18	CP	CP	f	比较 f 和 WREG	1	1	C, DC, N, OV, Z
		CP	Wb,#lit5	比较 Wb 和 lit5	1	1	C, DC, N, OV, Z
		CP	Wb,Ws	比较 Wb 和 Ws (Wb - Ws)	1	1	C, DC, N, OV, Z
19	CP0	CP0	f	比较 f 和 0x0000	1	1	C, DC, N, OV, Z
		CP0	Ws	比较 Ws 和 0x0000	1	1	C, DC, N, OV, Z
20	CPB	CPB	f	带借位比较 f 和 WREG	1	1	C, DC, N, OV, Z
		CPB	Wb,#lit5	带借位比较 Wb 和 lit5	1	1	C, DC, N, OV, Z
		CPB	Wb,Ws	带借位比较 Wb 和 Ws(Wb - Ws - C)	1	1	C, DC, N, OV, Z
21	CPSEQ	CPSEQ	Wb, Wn	比较 Wb 和 Wn,如果相等则跳过	1	1 (2 或 3)	无
22	CPSGT	CPSGT	Wb, Wn	比较 Wb 和 Wn,如果大于则跳过	1	1 (2 或 3)	无
23	CPSLT	CPSLT	Wb, Wn	比较 Wb 和 Wn,如果小于则跳过	1	1 (2 或 3)	无
24	CPSNE	CPSNE	Wb, Wn	比较 Wb 和 Wn,如果不相等则跳过	1	1 (2 或 3)	无
25	DAW	DAW	Wn	Wn = 十进制调整 Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, Z
		DEC	f,WREG	WREG = f - 1	1	1	C, DC, N, OV, Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
27	DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
		DEC2	f,WREG	WREG = f - 2	1	1	C, DC, N, OV, Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
28	DISI	DISI	#lit14	在 k 个指令周期内禁止中断	1	1	无

表 22 基本 指令 编号	汇编 助记符	JES	〉集概述 (续) 汇编语法	说明	字数	周期数	影响的状态标志
29	DIV	DIV.S	Wm, Wn	有符号 16/16 位整数除法	1	18	N, Z, C, OV
		DIV.SD	Wm, Wn	有符号 32/16 位整数除法	1	18	N, Z, C, OV
		DIV.U	Wm, Wn	无符号 16/16 位整数除法	1	18	N, Z, C, OV
		DIV.UD	Wm, Wn	无符号 32/16 位整数除法	1	18	N, Z, C, OV
30	DIVF	DIVF	Wm, Wn	有符号 16/16 位小数除法	1	18	N, Z, C, OV
31	DO	DO	#lit14,Expr	执行 Do 循环代码到 PC + Expr , 执行次数为 lit14 + 1 次	2	2	无
		DO	Wn,Expr	执行 Do 循环代码到 PC + Expr , 执行次数为 (Wn) +1 次	2	2	无
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	欧几里德距离 (无累加)	1	1	OA, OB, OAB, SA, SB, SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	欧几里德距离	1	1	OA, OB, OAB, SA, SB, SAB
34	EXCH	EXCH	Wns, Wnd	交换 Wns 和 Wnd 的内容	1	1	无
35	FBCL	FBCL	Ws,Wnd	从左边 (MSb) 查找第一个位变化	1	1	С
36	FF1L	FF1L	Ws,Wnd	从左边 (MSb) 查找第一个 1	1	1	С
37	FF1R	FF1R	Ws, Wnd	从右边 (LSb) 查找第一个 1	1	1	С
38	GOTO	GOTO	Expr	转移到地址	2	2	无
		GOTO	Wn	间接转移到地址	1	2	无
39	INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
		INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
40	INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
		INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
41	IOR	IOR	f	f = f .IOR.WREG	1	1	N, Z
		IOR	f,WREG	WREG = f .IOR.WREG	1	1	N, Z
		IOR	#lit10,Wn	Wd = lit10 .IOR.Wd	1	1	N, Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR.Ws	1	1	N, Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
42	LAC	LAC	Wso,#Slit4,Acc	<b>装载累加器</b>	1	1	OA, OB, OAB, SA, SB, SAB
43	LNK	LNK	#lit14	分配堆栈帧	1	1	无
44	LSR	LSR	f	f = 逻辑右移 f	1	1	C, N, OV, Z
		LSR	f,WREG	WREG = 逻辑右移 f	1	1	C, N, OV, Z
		LSR	Ws,Wd	Wd = 逻辑右移 Ws	1	1	C, N, OV, Z
		LSR	Wb, Wns, Wnd	Wnd = 将 Wb 逻辑右移 Wns 位	1	1	N, Z
		LSR	Wb,#lit5,Wnd	Wnd = 将 Wb 逻辑右移 lit5 位	1	1	N, Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	相乘并累加	1	1	OA, OB, OAB, SA, SB, SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	平方并累加	1	1	OA, OB, OAB, SA, SB, SAB
46	MOV	MOV	f,Wn	将 f 中的内容送入 Wn	1	1	无
		MOV	f	将 f 中的内容送入目标寄存器	1	1	无
		MOV	f,WREG	将 f 中的内容送入 WREG	1	1	无
		MOV	#lit16,Wn	将 16 位立即数送入 Wn	1	1	无
		MOV.b	#lit8,Wn	将 8 位立即数送入 Wn	1	1	无
		MOV	Wn,f	将 Wn 中的内容送入 f	1	1	无
		MOV	Wso,Wdo	将 Ws 中的内容送入 Wd	1	1	无
		MOV	WREG, f	将 WREG 中的内容送入 f	1	1	无
		MOV.D	Wns,Wd	将 W(ns):W(ns + 1) 中的双字内容送入 Wd	1	2	无
	1	MOV.D	Ws,Wnd	将 Ws 中的双字内容送入 W(nd + 1):W(nd)	1	2	无
47	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	预取操作数并保存累加器	1	1	无

基本 指令 编号	汇编 助记符		汇编语法	说明	字数	周期数	影响的状态标志
48	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Wm 与 Wn 相乘,结果存入累加器	1	1	OA, OB, OAB, SA, SB, SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Wm 平方,结果存入累加器	1	1	OA, OB, OAB, SA, SB, SAB
49	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Wm 与 Wn 相乘并取反,结果存入累加器	1	1	无
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	相乘再从累加器中减去	1	1	OA, OB, OAB, SA, SB, SAB
51	MUL	MUL.SS	Wb, Ws, Wnd	{Wnd+1, Wnd} = 有符号 (Wb) * 有符号 (Ws)	1	1	无
		MUL.SU	Wb, Ws, Wnd	{Wnd+1, Wnd} = 有符号 (Wb) * 无符号 (Ws)	1	1	无
		MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = 无符号 (Wb) * 有符号 (Ws)	1	1	无
		MUL.UU	Wb, Ws, Wnd	{Wnd+1, Wnd} = 无符号 (Wb) * 无符号 (Ws)	1	1	无
		MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = 有符号 (Wb) * 无符号 (lit5)	1	1	无
		MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = 无符号 (Wb) * 无符号 (lit5)	1	1	无
		MUL	£	W3:W2 = f * WREG	1	1	无
52	NEG	NEG	Acc	将累加器内容求补	1	1	OA, OB, OAB, SA, SB, SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
		NEG	f,WREG	WREG = <del>f</del> + 1	1	1	C, DC, N, OV, Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
53	NOP	NOP		空操作	1	1	无
		NOPR		空操作	1	1	无
54	POP	POP	f	将栈顶 (TOS)的内容弹出到 f	1	1	无
		POP	Wdo	将栈顶 (TOS)的内容弹出到 Wdo	1	1	无
		POP.D	Wnd	将栈顶 (TOS)的内容弹出到 W(nd):W(nd +1)	1	2	无
		POP.S		将影子寄存器的内容弹出到主寄存器	1	1	全部
55	PUSH	PUSH	f	将 f 的内容压入栈顶 (TOS)	1	1	无
		PUSH	Wso	将 Wso 的内容压入栈顶 (TOS)	1	1	无
		PUSH.D	Wns	将 W(ns):W(ns + 1) 的双字内容压入栈顶 ( TOS )	1	2	无
		PUSH.S		将主寄存器中的双字内容压入影子寄存器	1	1	无
56	PWRSAV	PWRSAV	#lit1	进入休眠或空闲模式	1	1	WDTO, Sleep
57	RCALL	RCALL	Expr	相对调用	1	2	无
		RCALL	Wn	计算调用	1	2	无
58	REPEAT	REPEAT	#lit14	将下一条指令重复执行 lit14 + 1 次	1	1	无
		REPEAT	Wn	将下一条指令重复执行 (Wn) + 1 次	1	1	无
59	RESET	RESET		软件器件复位	1	1	无
60	RETFIE	RETFIE		从中断返回	1	3 (2)	无
61	RETLW	RETLW	#lit10,Wn	返回并将立即数存入 Wn	1	3 (2)	无
62	RETURN	RETURN		从子程序返回	1	3 (2)	无
63	RLC	RLC	f	f = 对 f 执行带进位的循环左移	1	1	C, N, Z
		RLC	f,WREG	WREG = 对 f 执行带进位的循环左移	1	1	C, N, Z
		RLC	Ws,Wd	Wd = 对 Ws 执行带进位的循环左移	1	1	C, N, Z
64	RLNC	RLNC	f	f = 循环左移 f (不带进位)	1	1	N, Z
		RLNC	f,WREG	WREG = 循环左移 f (不带进位)	1	1	N, Z
		RLNC	Ws,Wd	Wd = 循环左移 Ws (不带进位)	1	1	N, Z
65	RRC	RRC	f	f = 对 f 执行带进位的循环右移	1	1	C, N, Z
		RRC	f,WREG	WREG = 对 f 执行带进位的循环右移	1	1	C, N, Z
		RRC	Ws,Wd	Wd = 对 Ws 执行带进位的循环右移	1	1	C, N, Z

基本 指令 指令 助记符		7 257英法		说明	字数	周期数	影响的状态标志
66	RRNC	RRNC	f	f = 循环右移 f (不带进位)	1	1	N, Z
		RRNC	f,WREG	WREG = 循环右移 f (不带进位)	1	1	N, Z
		RRNC	Ws,Wd	Wd = 循环右移 Ws (不带进位)	1	1	N, Z
67	SAC	SAC	Acc,#Slit4,Wdo	保存累加器内容	1	1	无
		SAC.R	Acc,#Slit4,Wdo	保存舍入后的累加器内容	1	1	无
68	SE	SE	Ws,Wnd	Wnd = 符号扩展后的 Ws	1	1	C, N, Z
69	SETM	SETM	f	f = 0xFFFF	1	1	无
		SETM	WREG	WREG = 0xFFFF	1	1	无
		SETM	Ws	Ws = 0xFFFF	1	1	无
70	SFTAC	SFTAC	Acc, Wn	对累加器算术移位 (Wn) 次	1	1	OA, OB, OAB, SA, SB, SAB
		SFTAC	Acc,#Slit6	对累加器算术移位 Slit6 次	1	1	OA, OB, OAB, SA, SB, SAB
71	SL	SL	f	f = 左移 f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = 左移 f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = 左移 Ws	1	1	C,N,OV,Z
		SL	Wb, Wns, Wnd	Wnd = 将 Wb 左移 Wns 位	1	1	N, Z
		SL	Wb,#lit5,Wnd	Wnd = 将 Wb 左移 lit5 位	1	1	N, Z
72	SUB	SUB	Acc	从累加器减去	1	1	OA, OB, OAB, SA, SB, SAB
		SUB	f	f = f - WREG	1	1	C, DC, N, OV,
		SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV,
		SUB	#lit10,Wn	Wn = Wn - lit10	1	<u>·</u> 1	C, DC, N, OV,
		SUB	Wb, Ws, Wd	Wd = Wb - Ws	1	1	C, DC, N, OV,
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, 2
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
7.5	SOBB	SUBB	f,WREG	$WREG = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV,
		SUBB	Wb, Ws, Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV,
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	<u>·</u> 1	C, DC, N, OV,
74	SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV,
, ,	SOBIC	SUBR	f,WREG	WREG = WREG - f	1	1	C, DC, N, OV,
		SUBR	Wb, Ws, Wd	Wd = Ws - Wb	1	1	C, DC, N, OV, 2
		SUBR	Wb, #lit5, Wd	Wd = lit5 - Wb	1	1	C, DC, N, OV,
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV,
, ,	SOBBIC	SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, 2
		SUBBR	Wb, Ws, Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, 2
		SUBBR	Wb,#lit5,Wd	$Wd = Vt3 - Vtb - (\overline{C})$ $Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, 2
76	SWAP	SWAP.b	Wn	Wn = 半字节交换 Wn 内容	1	1	无
70	SWAF	SWAP.D	Wn	Wn = 将 Wn 的两个字节相交换	1	1	无
77	TBLRDH	TBLRDH	Ws, Wd		1	2	无
78	TBLRDL		Ws, Wd	将程序存储单元的 <23:16> 读入 Wd<7:0>	1	2	
79				将程序存储单元的 <15:0> 读入 Wd	1		五
79 80	TBLWTH		Ws, Wd	将 Ws<7:0> 写入程序存储单元的 <23:16>	1	2	无
	TBLWTL		Ws,Wd	将 Ws 写入程序存储单元的 <15:0>	1	1	五
81	ULNK	ULNK	£	释放堆栈帧	-		无 N 7
82	XOR	XOR	f IDDG	f = f .XOR.WREG	1	1	N, Z
		XOR	f,WREG	WREG = f .XOR.WREG	1	1	N, Z
	I	XOR	#lit10,Wn	Wd = lit10 .XOR.Wd	1	1	N, Z
		TIOD					
		XOR	Wb, Ws, Wd Wb, #lit5, Wd	Wd = Wb .XOR.Ws Wd = Wb .XOR. lit5	1	1	N, Z N, Z

## 23.0 开发支持

一系列软件及硬件开发工具对 PIC® 单片机和 dsPIC® 数字信号控制器提供支持:

- 集成开发环境
  - MPLAB® IDE 软件
- 编译器 / 汇编器 / 链接器
  - 适用于各种器件系列的 MPLAB C 编译器
  - 适用于各种器件系列的 HI-TECH C® 编译器
  - MPASM™ 汇编器
  - MPLINK™ 目标链接器 / MPLIB™ 目标库管理器
  - 适用于各种器件系列的 MPLAB 汇编器 / 链接器 / 库管理器
- 模拟器
  - MPLAB SIM 软件模拟器
- 仿真器
  - MPLAB REAL ICE™ 在线仿真器
- 在线调试器
  - MPLAB ICD 3
  - PICkit™ 3 Debug Express
- 器件编程器
  - PICkit™ 2 编程器
  - MPLAB PM3 器件编程器
- 低成本演示 / 开发板、评估工具包及入门工具包

#### 23.1 MPLAB 集成开发环境软件

MPLAB IDE 软件为 8/16/32 位单片机市场提供了前所未有的易于使用的软件开发平台。 MPLAB IDE 是基于 Windows[®] 操作系统的应用软件,包括:

- 一个包含所有调试工具的图形界面
  - 模拟器
  - 编程器 (单独销售)
  - 在线仿真器 (单独销售)
  - 在线调试器 (单独销售)
- 具有彩色上下文代码显示的全功能编辑器
- 多项目管理器
- 内容可直接编辑的可定制式数据窗口
- 高级源代码调试
- 鼠标停留在变量上进行查看的功能
- 将变量从源代码窗口拖放到 Watch (观察)窗口
- 丰富的在线帮助
- 集成了可选的第三方工具,如 IAR C 编译器

### MPLAB IDE 可以让您:

- 编辑源文件 (C语言或汇编语言)
- 点击一次即可完成编译或汇编,并将代码下载到仿 真器和模拟器工具中(自动更新所有项目信息)
- 可使用如下各项进行调试:
  - 源文件 (C语言或汇编语言)
  - 混合 C 语言和汇编语言
  - 机器码

MPLAB IDE 在单个开发范例中支持使用多种调试工具,包括从成本效益高的模拟器到低成本的在线调试器,再到全功能的仿真器。这样缩短了用户升级到更加灵活而功能强大的工具时的学习时间。

# 23.2 适用于各种器件系列的 MPLAB C 编译器

MPLAB C 编译器代码开发系统是完全的 ANSI C 编译器,适用于 Microchip 的 PIC18、PIC24 和 PIC32 系列单片机及 dsPIC30 和 dsPIC33 系列数字信号控制器。这些编译器提供强大的集成功能和出众的代码优化能力,且使用方便。

为便于源代码调试,编译器提供针对 MPLAB IDE 调试器优化的符号信息。

# 23.3 适用于各种器件系列的 HI-TECH C 编译器

HI-TECH C 编译器代码开发系统是完全的 ANSI C 编译器,适用于 Microchip 的 PIC 系列单片机及 dsPIC 系列数字信号控制器。这些编译器提供强大的集成功能和全知代码生成能力,且使用方便。

为便于源代码调试,编译器提供针对 MPLAB IDE 调试器优化的符号信息。

编译器包括一个宏汇编器、链接器、预处理程序和单步 驱动程序,可以在多种平台上运行。

### 23.4 MPASM 汇编器

MPASM 汇编器是全功能通用宏汇编器,适用于 PIC10/12/16/18 MCU。

MPASM 汇编器可生成用于 MPLINK 目标链接器的可重定位目标文件、Intel® 标准 HEX 文件、详细描述存储器使用状况和符号参考的 MAP 文件、包含源代码行及生成机器码的绝对 LST 文件以及用于调试的 COFF 文件。

MPASM 汇编器具有如下特性:

- 集成在 MPLAB IDE 项目中
- 用户定义的宏可简化汇编代码
- 对多用途源文件进行条件汇编
- 允许完全控制汇编过程的指令

# 23.5 MPLINK 目标链接器 / MPLIB 目标库管理器

MPLINK目标链接器包含了由 MPASM 汇编器、MPLAB C18 C 编译器产生的可重定位目标。通过使用链接器脚本中的指令,它还可链接预编译库中的可重定位目标。

MPLIB目标库管理器管理预编译代码库文件的创建和修改。当从源文件调用库中的一段子程序时,只有包含此子程序的模块被链接到应用程序。这样可使大型库在许多不同应用中被高效地利用。

目标链接器 / 库管理器具有如下特性:

- 高效地连接单个的库而不是许多小文件
- 通过将相关的模块组合在一起来增强代码的可维护性
- 只要列出、替换、删除和抽取模块,便可灵活地创建库

# 23.6 适用于各种器件系列的 MPLAB 汇编器、链接器和库管理器

MPLAB 汇编器为 PIC24、PIC32 和 dsPIC 器件从符号 汇编语言生成可重定位机器码。 MPLAB C 编译器使用 该汇编器生成目标文件。汇编器产生可重定位目标文件 之后,可将这些目标文件存档,或与其他可重定位目标 文件和存档链接以生成可执行文件。该汇编器有如下显 著特性:

- 支持整个器件指令集
- 支持定点数据和浮点数据
- 命令行界面
- 丰富的指令集
- 灵活的宏语言
- MPLAB IDE 兼容性

### 23.7 MPLAB SIM 软件模拟器

MPLAB SIM 软件模拟器通过在指令级对 PIC MCU 和dsPIC® DSC 进行模拟,可在 PC 主机环境下进行代码 开发。对于任何给定的指令,都可以对数据区进行检查或修改,并通过一个全面的激励控制器来施加激励。可以将各寄存器记录在文件中,以便进行进一步的运行时分析。跟踪缓冲区和逻辑分析器的显示使软件模拟器还能记录和跟踪程序的执行、 I/O 的动作、大部分的外设及内部寄存器。

MPLAB SIM 软件模拟器完全支持使用 MPLAB C 编译器以及 MPASM 和 MPLAB 汇编器的符号调试。该软件模拟器可用于在硬件实验室环境外灵活地开发和调试代码,是一款完美且经济的软件开发工具。

### 23.8 MPLAB REAL ICE 在线仿真器系统

MPLAB REAL ICE 在线仿真器系统是 Microchip 针对其 闪存 DSC 和 MCU 器件而推出的新一代高速仿真器。结合 MPLAB 集成开发环境(IDE)所具有的易于使用且 功能强大的图形用户界面,该仿真器可对 PIC[®] 闪存 MCU 和 dsPIC[®] 闪存 DSC 进行调试和编程。 IDE 是随每个工具包一起提供的。

该仿真器通过高速 USB 2.0 接口与设计工程师的 PC 相连,并利用与在线调试器系统兼容的连接器(RJ11)或新型抗噪声、高速低压差分信号(LVDS)互连电缆(CAT5)与目标板相连。

可通过 MPLAB IDE 下载将来版本的固件,对该仿真器进行现场升级。在即将推出的 MPLAB IDE 版本中,会支持许多新器件,还将增加一些新特性。在同类仿真器中,MPLAB REAL ICE 的优势十分明显:低成本、全速仿真、运行时变量查看、跟踪分析、复杂断点、耐用的探针接口及较长(长达3米)的互连电缆。

### 23.9 MPLAB ICD 3 在线调试器系统

MPLAB ICD 3 在线调试器系统是 Microchip 成本效益最高的高速硬件调试器 / 编程器 , 适用于 Microchip 闪存数字信号控制器 (DSC)和单片机 (MCU)器件。结合 MPLAB 集成开发环境 (IDE)所具有的功能强大但易于使用的图形用户界面 , 该调试器可对 PIC® 闪存单片机和 dsPIC® DSC 进行调试和编程。

MPLAB ICD 3 在线调试器通过高速 USB 2.0 接口与设计工程师的PC相连,并利用与MPLAB ICD 2或MPLAB REAL ICE 系统兼容的连接器(RJ-11)与目标板相连。MPLAB ICD 3 支持所有 MPLAB ICD 2 转接器。

# 23.10 PICkit 3 在线调试器 / 编程器及 PICkit 3 Debug Express

结合 MPLAB 集成开发环境(IDE)所具有的功能强大的图形用户界面,MPLAB PICkit 3 可对 PIC[®] 闪存单片机和 dsPIC[®] 数字信号控制器进行调试和编程,且价位较低。MPLAB PICkit 3 通过全速 USB 接口与设计工程师的 PC 相连,并利用 Microchip 调试(RJ-11)连接器(与 MPLAB ICD 3 和 MPLAB REAL ICE 兼容)与目标板相连。连接器使用两个器件引脚 I/O 和复位线来实现在线调试和在线串行编程。

PICkit 3 Debug Express 包括 PICkit 3、演示板和单片机、连接电缆和光盘(内含用户指南、课程、教程、编译器和 MPLAB IDE 软件)。

# 23.11 PICkit 2 开发编程器 / 调试器及 PICkit 2 Debug Express

PICkit™ 2 开发编程器 / 调试器是一款低成本开发工具,具有易于使用的界面,适用于对 Microchip 的闪存系列单片机进行编程和调试。这一全功能的 Windows® 编程界面支持低档 ( PIC10F、PIC12F5xx 和 PIC16F5xx )、中档 ( PIC12F6xx 和 PIC16F) 、 PIC18F、 PIC24、dsPIC30、dsPIC33 和 PIC32 系列的 8 位、16 位及 32位单片机,以及许多 Microchip 串行 EEPROM 产品。结合 Microchip 功能强大的 MPLAB集成开发环境 ( IDE ),PICkit 2 可对大多数 PIC® 单片机进行在线调试。即使PIC 单片机已嵌入应用,在线调试功能仍可以运行、暂停和单步执行程序。在断点处暂停时,可以检查和修改文件寄存器。

PICkit 2 Debug Express 包括 PICkit 2、演示板和单片机、连接电缆和光盘(内含用户指南、课程、教程、编译器和 MPLAB IDE 软件)。

#### 23.12 MPLAB PM3 器件编程器

MPLAB PM3 器件编程器是一款符合 CE 规范的通用器件编程器,在 VDDMIN 和 VDDMAX 点对其可编程电压进行校验以确保可靠性最高。它有一个用来显示菜单和错误消息的大 LCD 显示器(128 x 64),以及一个支持各种封装类型的可拆卸模块化插槽装置。编程器标准配置中带有一根 ICSP™ 电缆。在单机模式下,MPLAB PM3 器件编程器不必与 PC 相连即可对 PIC 器件进行读取、校验和编程。在该模式下它还可设置代码保护。MPLAB PM3 通过 RS-232 或 USB 电缆连接到 PC 主机上。MPLAB PM3 具备高速通信能力以及优化算法,可对具有大存储器的器件进行快速编程。它还包含了MMC卡,用于文件存储及数据应用。

# 23.13 演示 / 开发板、评估工具包及入门工具包

有许多演示、开发和评估板可用于各种 PIC MCU 和 dsPIC DSC,实现对全功能系统的快速应用开发。大多数的演示、开发和评估板都有实验布线区,供用户添加定制电路;还有应用固件和源代码,用于检查和修改。

这些板支持多种功能部件,包括 LED、温度传感器、开关、扬声器、RS-232 接口、LCD 显示器、电位计和附加 EEPROM 存储器。

演示和开发板可用于教学环境,在实验布线区设计定制 电路,从而掌握各种单片机应用。

除了 PICDEM™ 和 dsPICDEM™ 演示 / 开发板系列电路外,Microchip 还有一系列评估工具包和演示软件,适用于模拟滤波器设计、KEELOQ® 数据安全产品 IC、CAN、IrDA®、 PowerSmart 电池管理、 SEEVAL® 评估系统、Σ-Δ ADC、流速传感器,等等。

同时还提供入门工具包,其中包含体验指定器件功能所需的所有软硬件。通常提供单个应用以及调试功能,都包含在一块电路板上。

有关演示、开发和评估工具包的完整列表,请访问 Microchip 网站(www.microchip.com)。

# 24.0 电气特性

本章将对 dsPIC30F 电气特性进行概括介绍。其余信息将在该文档的后续版本中给出。

有关 dsPIC30F 架构和内核的详细信息,请参见《dsPIC30F 系列参考手册》(DS70046E_CN)。

下面列出了 dsPIC30F 系列器件的绝对最大额定值。器件长时间工作在最大额定值条件下可能会影响其可靠性。我们不建议使器件在或超过本规范指定的最大额定值条件下运行。

## 绝对最大额定值(†)

环境温度	40°C 至 +125°C
储存温度	65°C 至 +150°C
任一引脚相对于 Vss 的电压 (除 Vdd 和 MCLR 外) <b>(注 1)</b>	0.3V至(VDD+0.3V)
VDD 引脚相对于 Vss 的电压	0.3V 至 +5.5V
MCLR 引脚相对于 Vss	
流出 Vss 引脚的最大电流	300 mA
流入 VDD 引脚的最大电流 (注2)	250 mA
输入箝位电流, lik ( Ⅵ < 0 或 Ⅵ > VDD )	
输出箝位电流, IOK ( VO < 0 或 VO > VDD )	±20 mA
任一引脚 I/O 的最大输出灌电流	25 mA
任一引脚 I/O 的最大输出拉电流	
所有端口的最大灌电流	200 mA
所有端口的最大拉电流 <b>(注 2)</b>	200 mA
注 1:MCLR 引 <u>脚上的</u> 尖峰电压低于 Vss,导致感应电流超过 80 mA 时,可能引起锁死。	。因此,当把一个"低"

注 1: MCLR 引<u>脚上的</u>尖峰电压低于 Vss,导致感应电流超过 80 mA 时,可能引起锁死。因此,当把一个"低"电平加到 MCLR 引脚上时,应串联一个 50-100Ω 的电阻,而不要将这个引脚直接接到 Vss。

2:允许的最大电流由器件最大功耗决定 (见表 24-2)。

†注:如果器件工作条件超过上述"绝对最大额定值",可能引起器件永久性损坏。这仅是极限参数,我们不建议器件工作在极限值甚至超过上述极限值。器件长时间工作在极限条件下可能会影响其可靠性。

# 24.1 直流特性

表 24-1: 工作 MIPS 与电压

V 共国	温布共用	最大	MIPS
VDD 范围	温度范围	dsPIC30F401X-30I	dsPIC30F401X-20E
4.5-5.5V	-40°C 至 +85°C	30	_
4.5-5.5V	-40°C 至 +125°C	_	20
3.0-3.6V	-40°C 至 +85°C	20	_
3.0-3.6V	3.0-3.6V -40°C 至 +125°C		15
2.5-3.0V	-40°C 至 +85°C	10	_

表 24-2: 热工作条件

<u> </u>					
额定值	符号	最小值	典型值	最大值	单位
dsPIC30F401X-30I					
工作结温范围	TJ	-40	_	+125	°C
工作环境温度范围	TA	-40	_	+85	°C
dsPIC30F401X-20E					
工作结温范围	TJ	-40	_	+150	°C
工作环境温度范围	TA	-40	_	+125	°C
功耗: 内部芯片功耗: PINT = VDD x (IDD - ∑ IOH)	Pb	ı	PINT + PI/O		W
引脚 I/O 功耗: PI/O = ∑ ({VDD – VOH} x IOH) + ∑ (VOL x IOL)					
最大允许功耗	PDMAX	(	TJ – TA)/θJ	IA	W

表 24-3: 热封装特性

特性	符号	典型值	最大值	单元	注
封装热阻, 28 引脚 SPDIP (SP)	θЈА	41	_	°C/W	1
封装热阻 , 28 引脚 SOIC (SO)	θЈА	45	_	°C/W	1
封装热阻 , 40 引脚 PDIP (P)	θЈА	37		°C/W	1
封装热阻 , 44 引脚 TQFP , 10x10x1 mm (PT)	θЈА	40		°C/W	1
封装热阻 , 44 引脚 QFN (ML)	θЈА	28	_	°C/W	1

 $\mathbf{i}$  1: 通过封装模拟获得结点与环境的热阻值  $\theta$ JA。

表 24-4: 直流温度和电压规范

<u> </u>	•	旦川川又作で上水心					
直流特	性		<b>标准工作</b> 工作温度	<b>条件:2.5</b> V ₹	-40	$0^{\circ}C \leq TA$	<b>8外声明)</b> ≤+85°C (工业级) ≤+125°C (扩展级)
参数 编号	符号	特性	最小值	典型值 ⁽¹⁾	最大值	单位	条件
工作电	压 ⁽²⁾						
DC10	VDD	供电电压	2.5	_	5.5	V	工业级温度
DC11	VDD	供电电压	3.0	_	5.5	V	扩展级温度
DC12	VDR	RAM 数据保持电压 ⁽³⁾	1.75	_	_	V	
DC16	VPOR	VDD 启动电压 (确保内部上电复位信号)	_	Vss	_	V	
DC17	SVDD	VDD <b>上升率</b> (确保内部上电复位信号)	0.05	_	_	V/ms	0-5V/0.1s , 0-3V/60 ms

注 1: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。

2: 这些参数为特性值,但生产时未经测试。

3: 这是在不丢失 RAM 数据的前提下, VDD 的下限值。

表 24-5: <u>直流特性:工作电流(IDD)</u>

直流特性			<b>标准工作条件</b> 工作温度			<b>声明)</b> -85°C (工业级) -125°C (扩展级)					
参数编号	典型值 ⁽¹⁾	最大值	单位	条件							
工作电流 (IDD) ⁽²⁾											
DC31a	2	4	mA	+25°C							
DC31b	2	4	mA	+85°C	3.3V						
DC31c	2	4	mA	+125°C		0.128 MIPS					
DC31e	3	5	mA	+25°C		LPRC (512 kHz)					
DC31f	3	5	mA	+85°C	5V						
DC31g	3	5	mA	+125°C							
DC30a	4	6	mA	+25°C							
DC30b	4	6	mA	+85°C	3.3V						
DC30c	4	6	mA	+125°C		(1.8 MIPS)					
DC30e	7	10	mA	+25°C		FRC (7.37 MHz)					
DC30f	7	10	mA	+85°C	5V						
DC30g	7	10	mA	+125°C	-						
DC23a	12	19	mA	+25°C							
DC23b	12	19	mA	+85°C	3.3V						
DC23c	13	19	mA	+125°C		4 MIPS					
DC23e	19	31	mA	+25°C		4 1/11/5					
DC23f	20	31	mA	+85°C	5V						
DC23g	20	31	mA	+125°C							
DC24a	28	39	mA	+25°C							
DC24b	28	39	mA	+85°C	3.3V						
DC24c	29	39	mA	+125°C		10 MIPS					
DC24e	46	64	mA	+25°C		10 IVIIF 3					
DC24f	46	64	mA	+85°C	5V						
DC24g	47	64	mA	+125°C							
DC27a	53	72	mA	+25°C	3.3V						
DC27b	53	72	mA	+85°C	J.J V						
DC27d	87	120	mA	+25°C		20 MIPS					
DC27e	87	120	mA	+85°C	5V						
DC27f	87	120	mA	+125°C							
DC29a	124	170	mA	+25°C	5V	30 MIPS					
DC29b	125	170	mA	+85°C	JV	30 IVIII 3					

注 1: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。

^{2:}供电电流主要受工作电压和频率的影响。其他因素如引脚 I/O 负载和开关速率、振荡器类型、内部代码执行模式以及温度也对电流消耗有影响。所有 IDD 测量的测试条件为:OSC1 使用满幅的外部方波进行驱动。所有引脚 I/O 配置为输入且被拉到 VDD。MCLR = VDD,WDT、FSCM、LVD 和 BOR 被禁止。CPU、SRAM、程序存储器和数据存储器处于工作状态。外设模块均不工作。

表 24-6: <u>直流特性:空闲电流(IIDLE)</u>

直流特性			<b>标准工作条</b> 工作温度			<b>声明)</b> ·85℃(工业级) ·125℃(扩展级)
参数编号	典型值 (1,2)	最大值	单位			条件
工作电流(Idi	o) ⁽³⁾					
DC51a	1.3	3	mA	+25°C		
DC51b	1.3	3	mA	+85°C	3.3V	
DC51c	1.3	3	mA	+125°C		0.128 MIPS
DC51e	2.7	5	mA	+25°C		LPRC (512 kHz)
DC51f	2.7	5	mA	+85°C	5V	
DC51g	2.7	5	mA	+125°C		
DC50a	4	6	mA	+25°C		
DC50b	4	6	mA	+85°C	3.3V	
DC50c	4	6	mA	+125°C		( 1.8 MIPS )
DC50e	7	11	mA	+25°C		FRC (7.37 MHz)
DC50f	7	11	mA	+85°C	5V	
DC50g	7	11	mA	+125°C		
DC43a	7	11	mA	+25°C		
DC43b	7	11	mA	+85°C	3.3V	
DC43c	7	11	mA	+125°C		AMIDO
DC43e	12	17	mA	+25°C		4 MIPS
DC43f	12	17	mA	+85°C	5V	
DC43g	12	17	mA	+125°C		
DC44a	15	22	mA	+25°C		
DC44b	15	22	mA	+85°C	3.3V	
DC44c	16	22	mA	+125°C		40 MIDO
DC44e	26	36	mA	+25°C		10 MIPS
DC44f	27	36	mA	+85°C	5V	
DC44g	27	36	mA	+125°C		
DC47a	30	40	mA	+25°C	2.21/	
DC47b	30	40	mA	+85°C	3.3V	
DC47d	50	65	mA	+25°C		20 MIPS
DC47e	50	65	mA	+85°C	5V	
DC47f	51	65	mA	+125°C		
DC49a	72	95	mA	+25°C	<b>5</b> \/	20 MIDC
DC49b	73	95	mA	+85°C	5V	30 MIPS

注 1:除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃条件下的值。这些参数仅供设计参考,未经测试。

^{2:} 基本 IIDLE 电流的测量是在内核不工作、时钟工作而所有外设模块关闭的条件下进行的。

表 24-7: 直流特性: 掉电电流 (IPD)

直流特性		· 3+ 0 0///	<b>标准工作条</b> ℓ 工作温度	<b>眭工作条件:2.5V 至 5.5V (除非另外声明)</b> 乍温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)							
参数编号	典型值 ⁽¹⁾	最大值	单位			条件					
掉电电流(IPD	) ⁽²⁾										
DC60a	0.3	_	μΑ	25°C							
DC60b	1	30	μΑ	85°C	3.3V						
DC60c	12	60	μΑ	125°C		│ │基本掉电电流					
DC60e	0.5	_	μΑ	25°C		→ 基本掉电电流 (*/ 					
DC60f	2	45	μΑ	85°C	5V						
DC60g	17	90	μΑ	125°C							
DC61a	5	8	μΑ	25°C							
DC61b	5	8	μΑ	85°C	3.3V						
DC61c	6	9	μΑ	125°C		<b>差</b> 闪初常时留由流,A=(3)					
DC61e	10	15	μΑ	25°C		─看门狗定时器电流:ΔIWDT ⁽³⁾					
DC61f	10	15	μΑ	85°C	5V						
DC61g	11	17	μΑ	125°C							
DC62a	4	10	μΑ	25°C							
DC62b	5	10	μΑ	85°C	3.3V						
DC62c	4	10	μΑ	125°C		Timer1_, 带 32 kHz 晶振:					
DC62e	4	15	μΑ	25°C		ΔΙΤι32 ⁽³⁾					
DC62f	6	15	μΑ	85°C	5V						
DC62g	5	15	μΑ	125°C							
DC63a	32	48	μΑ	25°C							
DC63b	35	53	μΑ	85°C	3.3V						
DC63c	37	56	μΑ	125°C		DOD T#5 : Albob(3)					
DC63e	37	56	μΑ	25°C		BOR 工作:∆IBOR ⁽³⁾					
DC63f	41	62	μΑ	85°C	5V						
DC63g	57	86	μΑ	125°C							

注 1: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。

2: 这些参数为特性值,但生产时未经测试。

表 24-8: 直流特性:引脚 I/O 输入规范

直流特性	<b>生</b>	2//61V 12 · 31DF 11 ~ 1007 (7/07C)	<b>标准工作条件: 2.5V 至 5.5V</b> ( <b>除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)					
参数 编号	符号	特性	最小值	典型值 ⁽¹⁾	最大值	单位	条件	
	VIL	输入低电压 ⁽²⁾						
DI10		引脚 I/O: 带施密特触发缓冲器	Vss	_	0.2 VDD	٧		
DI15		MCLR	Vss	_	0.2 Vdd	V		
DI16		OSC1(在 XT、 HS 和 LP 模式 下)	Vss	_	0.2 VDD	V		
DI17		OSC1 (在 RC 模式下) ⁽³⁾	Vss	_	0.3 VDD	V		
DI18		SDA 和 SCL	Vss	_	0.3 VDD	V	禁止 SM 总线	
DI19		SDA 和 SCL	Vss	_	0.8	٧	使能 SM 总线	
	VIH	输入高电压 ⁽²⁾						
DI20		引脚 I/O: 带施密特触发缓冲器	0.8 VDD	_	VDD	V		
DI25		MCLR	0.8 VDD	_	VDD	V		
DI26		OSC1(在 XT、 HS 和 LP 模式 下)	0.7 VDD	_	VDD	V		
DI27		OSC1(在 RC 模式下) ⁽³⁾	0.9 VDD	_	VDD	V		
DI28		SDA 和 SCL	0.7 VDD	_	VDD	V	禁止 SM 总线	
DI29		SDA 和 SCL	2.1	_	VDD	٧	使能 SM 总线	
DI30	ICNPU	CNxx 上拉电流 ⁽²⁾	50	250	400	μΑ	VDD = 5V, VPIN = VSS	
	lı∟	输入泄漏电流 ^(2,4,5)						
DI50		I/O 端口	_	0.01	±1	μΑ	Vss ≤ Vpin ≤ Vdd , 引脚处于高阻态	
DI51		模拟输入引脚	_	0.50	_	μΑ	Vss ≤ Vpin ≤ Vdd , 引脚处于高阻态	
DI55		MCLR	_	0.05	±5	μΑ	$Vss \le Vpin \le Vdd$	
DI56		OSC1	_	0.05	±5	μΑ	Vss ≤ Vpin ≤ Vdd, XT、HS 和 LP 振荡器模式	

- 注 1: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。
  - 2: 这些参数为特性值,但生产时未经测试。
  - 3: 在 RC 振荡器配置中, OSC1/CLKI 引脚为施密特触发器输入。不建议在 RC 模式下使用外部时钟驱动 dsPIC30F 器件。
  - **4:** MCLR 引脚上的泄漏电流主要取决于所施加电压。规定电压为正常工作条件下的电压。在不同的输入电压下可能测得更高的泄漏电流。
  - 5: 负电流定义为引脚的拉电流。

表 24-9: 直流特性:引脚 I/O 输出规范

			标准工作条件:2.5V 至 5.5V (除非另外声明)						
直流特性	ŧ		工作温度	μ-143 <i>)</i>	-40°	C ≤ Ta ≤	≨+85℃(工业级)		
		,		-40°C≤Ta≤+125°C(扩展级					
参数 编号	符号	特性	最小值	典型值 ⁽¹⁾	最大值	单位	条件		
	VOL	输出低电平电压 ⁽²⁾							
DO10		I/O 端口	_	_	0.6	V	IOL = 8.5  mA , $VDD = 5V$		
			_	_	0.15	V	IOL = 2.0  mA , $VDD = 3V$		
DO16		OSC2/CLKO	_	_	0.6	V	IOL = 1.6 mA , VDD = 5V		
		(RC或EC振荡器模式)	-	_	0.72	V	IOL = 2.0  mA , $VDD = 3V$		
	Vон	输出高电平电压 (2)							
DO20		I/O 端口	VDD - 0.7	_	_	V	IOH = -3.0 mA , VDD = 5V		
			VDD - 0.2	_	_	V	IOH = -2.0 mA , VDD = 3V		
DO26		OSC2/CLKO	VDD - 0.7	_	_	V	IOH = -1.3 mA , VDD = 5V		
		(RC或EC振荡器模式)	VDD - 0.1	_	_	V	IOH = -2.0 mA , VDD = 3V		
		输出引脚上的容性负载规范 (2)							
DO50	Cosc2	OSC2/SOSC2 引脚	_	_	15	pF	当外部时钟用于驱动 OSC1		
							时且处于 XTL、XT、 HS 和 LP 模式下		
DO56	Сю	所有引脚 I/O 和 OSC2	_	_	50	pF	RC 或 EC 振荡器模式		
DO58	Св	SCL和 SDA	_	_	400	pF	在 I ² C™ 模式下		

注 1:除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃条件下的值。这些参数仅供设计参考,未经测试。

2: 这些参数为特性值,但生产时未经测试。





表 24-10: 电气特性: BOR

**标准工作条件: 2.5V 至 5.5V (除非另外声明)**工作温度 -40°C ≤ TA ≤ +85°C (工业级)
-40°C ≤ TA ≤ +125°C (扩展级)

参数 编号	符号	特性		最小值	典型值 ⁽¹⁾	最大值	单位	条件
BO10	VBOR	- 122 // (I-) U I MI	BORV = 11 ⁽³⁾		_		V	不在工作电压范围内
		转至低电平时的	BORV = 10	2.6	_	2.71	V	
		BOR 电压 ⁽²⁾	BORV = 01	4.1	_	4.4	V	
			BORV = 00	4.58	_	4.73	V	
BO15	VBHYS			_	5	_	mV	

注 1: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。

2: 这些参数为特性值,但生产时未经测试。

3: 11 值不在可用工作电压范围内。

表 24-11: 直流特性:程序存储器和 EEPROM

直流特	生		<b>标准工</b> 位工作温度	<b>标准工作条件:2.5V 至 5.5V (除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)					
参数编号	符号	特性	最小值	典型值 ⁽¹⁾	最大值	单位	条件		
		数据 EEPROM 存储器 ⁽²⁾							
D120	ED	字节耐擦写能力	100K	1M	_	E/W	-40°C ≤ TA ≤ +85°C		
D121	VDRW	读 / 写操作时的 VDD	VMIN	_	5.5	V	使用 EECON 读 / 写 , VMIN = 最小工作电压		
D122	TDEW	擦/写周期时间	0.8	2	2.6	ms	RTSP		
D123	TRETD	特性保持时间	40	100	_	年	假设没有违反其他规范		
D124	IDEW	编程时的 IDD		10	30	mΑ	行擦除		
		闪存程序存储器 (2)							
D130	ЕР	单元耐擦写能力	10K	100K	_	E/W	-40°C ≤ TA ≤ +85°C		
D131	VPR	读操作时的 VDD	VMIN	_	5.5	V	VMIN = 最小工作电压		
D132	VEB	批量擦除时的 VDD	4.5	_	5.5	V			
D133	VPEW	擦 / 写操作时的 VDD	3.0	_	5.5	V			
D134	TPEW	擦/写周期时间	0.8	2	2.6	ms	RTSP		
D135	TRETD	特性保持时间	40	100	_	年	假设没有违反其他规范		
D137	IPEW	编程时的 IDD	_	10	30	mA	行擦除		
D138	lев	编程时的 IDD	_	10	30	mA	批量擦除		

注 1: 除非另外声明,否则"典型值"栏中的数据均为5V和25°C条件下的值。

2: 这些参数为特性值,但生产时未经测试。

#### 24.2 交流特性和时序参数

交流特性

本节包含的信息说明了 dsPIC30F 系列器件的交流特性和时序参数。

表 24-12: 温度和电压规范 —— 交流

**标准工作条件: 2.5V 至 5.5V**(除非另外声明)
工作温度 -40°C ≤ TA ≤ +85°C (工业级)
-40°C ≤ TA ≤ +125°C (扩展级)
工作电压 VDD 范围如**第 24.1 节 " 直流特性 "** 中所介绍。

图 24-2: 器件时序规范的负载条件



MHz

kHz

ns

ns

ns

ns

DC

20

FRC 内部

LPRC 内部

见表 24-16

见参数 DO31

见参数 DO32

EC

EC

Fosc 值见参数 OS10

表 24-13: 外部时钟时序要求

**OS20** 

**OS25** 

**OS30** 

**OS31** 

**OS40** 

**OS41** 

Tosc

TCY

TosL .

TosH

TosR .

TosF

**TckR** 

TckF

标准工作条件:2.5V 至 5.5V (除非另外声明) 交流特性 -40°C≤TA≤+85°C (工业级) 工作温度 -40°C≤Ta≤+125°C(扩展级) 参数 典型值 (1) 符号 特性 最小值 最大值 单位 条件 编号 Fosc DC FC **OS10** 外部 CLKI 频率 40 MHz (外部时钟仅允许运行于 EC 4 10 MHz 带 4x PLL 的 EC 模式)⁽²⁾ 4 10 MHz 带 8x PLL 的 EC 4 7.5 MHz 带 16x PLL 的 EC DC 振荡器频率(2) 4 MHz RC 0.4 4 MHz XTL 4 10 MHz XT 4 10 MHz 带 4x PLL 的 XT 4 10 MHz 带 8x PLL 的 XT MHz 4 7.5 带 16x PLL 的 XT MHz 10 25 HS 31 33 kHz LP

7.37

512

注 1: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25°C 条件下的值。这些参数仅供设计参考,未经测试。

33

.45 x Tosc

2: 这些参数为特性值,但生产时未经测试。

Tosc = 1/Fosc

指令周期时间(2,3)

上升或下降时间(2)

CLKO 上升时间 (2,4)

CLKO 下降时间 (2,4)

外部时钟输入(OSC1)

高电平或低电平时间(2)

外部时钟输入(OSC1)

- 3: 指令周期时间(TCY)等于输入振荡器时基周期的 4 倍。所有规定值均为基于针对特定振荡器类型,器件在标准工作条件下执行代码时的特性数据。超出这些规定的限定值,可能导致振荡器运行不稳定和 / 或导致电流消耗超出预期值。所有器件在测试"最小"值时,都在 OSC1/CLKI 引脚连接了外部时钟。当使用了外部时钟输入时,所有器件的"最大"周期时间限制为"DC"(无时钟)。
- **4:** 测量在 RC 或 ERC 模式下进行。在 OSC2 引脚上测量 CLKO 信号。 CLKO 在 Q1-Q2 周期 (1/2 Tcy) 中 为低电平,在 Q3-Q4 周期 (1/2 Tcy) 中为高电平。

表 24-14: PLL 时钟时序规范 (VDD = 2.5 至 5.5V)

 标准工作条件: 2.5V 至 5.5V (除非另外声明)

 交流特性
 工作温度
 -40°C ≤ TA ≤ +85°C (工业级)

 -40°C ≤ TA ≤ +125°C (扩展级)

			10 0 = 11 = 1 = 0 (31 100 42)						
参数 编号	符号	特性 ⁽¹⁾	最小值	i 典型值 ⁽²⁾	最大值	单位	条件		
OS50	FPLLI	PLL 输入频率范围 ⁽²⁾	4 4 4 4 4 4	_ _ _ _ _	10 10 7.5 ⁽³⁾ 10 10 7.5 ⁽³⁾	MHz MHz MHz	带 4x PLL 的 EC 带 8x PLL 的 EC 带 16x PLL 的 EC 带 4x PLL 的 XT 带 8x PLL 的 XT 带 16x PLL 的 XT		
OS51	Fsys	片上 PLL 输出 ⁽²⁾	16	_	120	MHz	带 PLL 的 EC 和 XT		
OS52	TLOC	PLL 起振时间 (锁定时	时间) 一	20	50	μs			

注 1: 这些参数为特性值,但生产时未经测试。

2: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25°C 条件下的值。这些参数仅供设计参考,未经测试。

3: 受到器件工作频率范围的限制。

表 24-15: PLL 抖动

交流特性		<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度							
参数编 号	特性	最小值	典型值 ⁽¹⁾	最大值	单位	条件			
OS61	x4 PLL	_	0.251	0.413	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0 至 3.6V		
		_	0.251	0.413	%	-40°C ≤ TA ≤ +125°C	VDD = 3.0 至 3.6V		
			0.256	0.47	%	-40°C ≤ TA ≤ +85°C	VDD = 4.5 至 5.5V		
			0.256	0.47	%	-40°C ≤ TA ≤ +125°C	VDD = 4.5 至 5.5V		
	x8 PLL	_	0.355	0.584	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0 至 3.6V		
		_	0.355	0.584	%	-40°C ≤ TA ≤ +125°C	VDD = 3.0 至 3.6V		
		_	0.362	0.664	%	-40°C ≤ TA ≤ +85°C	VDD = 4.5 至 5.5V		
		_	0.362	0.664	%	-40°C≤ TA ≤ +125°C	VDD = 4.5 至 5.5V		
	x16 PLL	_	0.67	0.92	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0 至 3.6V		
			0.632	0.956	%	-40°C ≤ TA ≤ +85°C	VDD = 4.5 至 5.5V		
		_	0.632	0.956	%	-40°C ≤ TA ≤ +125°C	VDD = 4.5 至 5.5V		

注 1: 这些参数为特性值,但生产时未经测试。

表 24-16: 内部时钟时序示例

<u> </u>	Lamber thesis.	73 17 3				
时钟 振荡器模式	Fosc (MHz) (1)	Tcy (μs) ⁽²⁾		MIPS 带 PLL x4 ⁽³⁾	MIPS 带 PLL x8 ⁽³⁾	MIPS 带 PLL x16 ⁽³⁾
EC	0.200	20.0	0.05	_	_	_
	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	_
	25	0.16	6.25	_	_	_
XT	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	_

**注 1**: 假设:振荡器后分频器分频比为 1。 **2**: 指令执行周期时间:TCY = 1/MIPS。

3: 指令执行频率: MIPS = (Fosc * PLLx)/4 (因为每个指令周期有 4 个 Q 时钟)。

表 24-17: 交流特性: 内部 FRC 精度

标准工作条件: 2.5V 至 5.5V (除非另外声明) 交流特性 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C≤TA≤+125°C (扩展级) 参数 特性 典型值 最大值 单位 条件 最小值 编号 FRC 频率 = 7.37 MHz⁽¹⁾ 时的内部 FRC 精度 FRC OS63 ±2.00 -40°C  $\leq$  TA  $\leq$  +85°C VDD = 3.0-5.5V-40°C  $\leq$  TA  $\leq$  +125°C VDD = 3.0-5.5V±5.00

注 1: 在 7.372 MHz ±2%、 25°C 和 5V 条件下进行频率校准。 TUN<3:0> 位可用来补偿温度漂移。

表 24-18: 交流特性: 内部 LPRC 精度

<u> </u>											
交流特性		<b>标准工作条件:2.5V 至 5.5V (除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)									
参数编号	特性	最小值	典型值	最大值	条件						
频率 = 51	2 kHz ⁽¹⁾ 时的 LPRC										
OS65A		-50	_	+50	%	$VDD = 5.0V, \pm 10\%$					
OS65B		-60	_	+60	%	$VDD = 3.3V, \pm 10\%$					
OS65C		-70	-70 — +70 % VDD = 2.5\								

注 1: LPRC 频率将随 VDD 的变化而变化。



表 24-19: CLKO 和 I/O 时序要求

<u></u>	OFICE OF HE OTHER						
		标准工作条件:2	2.5V 至 5.5V	/ (除非另外	小声明 )		
交流特性		工作温度	-40	$0^{\circ}C \leq TA \leq$	+85°C (	工业级	)
			-40	$0^{\circ}C \leq TA \leq$	+125°C	(扩展级	t)

参数 编号	符号	特性 ^(1,2,3)	最小值	典型值 ⁽⁴⁾	最大值	单位	条件
DO31	TioR	端口输出上升时间	_	7	20	ns	
DO32	TioF	端口输出下降时间		7	20	ns	
DI35	TINP	INTx 引脚高电平或低电平时间 (输出)	20		_	ns	
DI40	TRBP	CNx 高电平或低电平时间 (输入)	2 Tcy	1	_	ns	

注 1: 这些参数是与任何内部时钟边沿无关的异步事件。

2: 测量是在 RC 模式和 EC 模式下进行的,其中 CLKO 输出为 4 x Tosc。

3: 这些参数为特性值,但生产时未经测试。

4: 除非另外声明,否则"典型值"栏中的数据均为5V和25°C条件下的值。



表 24-20: 复位、看门狗定时器、振荡器起振定时器、上电延时定时器和欠压复位时序要求

交流特	性		(除非列	<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) 40°C ≤ TA ≤ +125°C (扩展级				
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件	
SY10	TmcL	MCLR 脉冲宽度 (低电平)	2	_	_	μs	-40°C 至 +85°C	
SY11	TPWRT	上电延时定时器周期	2 8 32	4 16 64	6 24 96	ms	-40°C 至 +85°C , VDD = 5V , 用户可编程	
SY12	TPOR	上电复位延时	3	10	30	μs	-40°C 至 +85°C	
SY13	Tioz	自 MCLR 低电平或看门狗定时器 复位起 I/O 处于高阻态的时间	_	0.8	1.0	μs		
SY20	TWDT1 TWDT2 TWDT3	看门狗定时器超时周期 (无预分频器)	0.6 0.8 1.0	2.0 2.0 2.0	3.4 3.2 3.0	ms ms ms	VDD = 2.5V VDD = 3.3V, ±10% VDD = 5V, ±10%	
SY25	TBOR	欠压复位脉冲宽度 ⁽³⁾	100		_	μs	VDD≤VBOR (D034)	
SY30	Tost	振荡器起振定时器周期	_	1024 Tosc	_	_	Tosc = OSC1 周期	
SY35	TFSCM	故障保护时钟监视器延时	_	500	900	μs	-40C 至 +85C	

- 注 1: 这些参数为特性值,但生产时未经测试。
  - 2: 除非另外声明,否则"典型值"栏中的数据均为5V和25°C条件下的值。
  - 3: 有关 BOR 的信息,请参见图 24-1 和表 24-10。

图 24-6: 带隙启动时间特性



表 24-21: 带隙启动时间要求

交流特性	ŧ		<b>标准工作</b> 工作温度	<b>F条件:2.5</b> V 度	-40	: <b>另外声明)</b> △≤+85°C (工业级) △≤+125°C (扩展级)	
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	条件		
SY40	TBGAP	带隙启动时间	_	40	65	μs	定义为带隙功能使能和带隙参考电压稳定 之间的时间(RCON<13> 状态位)

注 1: 这些参数为特性值,但生产时未经测试。

2: 除非另外声明,否则"典型值"栏中的数据均为5V和25°C条件下的值。



表 24-22: TIMER1 外部时钟时序要求

	标准工作条件:2.5V 至 5.5V (除非另外声明)					
交流特性	工作温度	-40°C ≤ TA ≤ +85°C (工业级)				
		-40°C < T₄ < +125°C (扩展级)				

参数 编号	符号		特性		典型值	最大值	单位	条件
TA10	ТтхН	T1CK 高电 平时间	同步, 无预分频器	0.5 Tcy + 20	_	_	ns	也必须满足参数 TA15
			同步, 带预分频器	10	_	_	ns	
			异步	10	_	_	ns	
TA11	TTXL	T1CK 低电 平时间	同步, 无预分频器	0.5 Tcy + 20		_	ns	也必须满足参数 TA15
			同步, 带预分频器	10	_	_	ns	
			异步	10	_	_	ns	
TA15	TTXP	T1CK 输入 周期	同步, 无预分频器	Tcy + 10	_	_	ns	
			同步, 带预分频器	取如下二者 中较大值: 20 ns 或 (Tcy + 40)/N	_		_	N = 预分频值 (1, 8, 64, 256)
			异步	20	_	_	ns	
OS60	Ft1	SOSCO/T1CK 振荡器输 入频率范围 (通过置 1 TCS (T1CON<1>)使能振荡器)		DC	_	50	kHz	
TA20	TCKEXTMRL	从外部 T1Ck时器递增之间	く时钟边沿到定 同的延时	0.5 Tcy	_	1.5 TCY	_	

TIMER2 和 TIMER4 外部时钟时序要求 表 24-23:

标准工作条件: 2.5V 至 5.5V (除非另外声明) 交流特性

工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)

参数编号	符号	特性		最小值	典型值	最大值	单位	条件
TB10	ТтхН	TxCK 高电平时间	同步, 无预分频器	0.5 Tcy + 20	1	_	ns	也必须满足参数 TB15
			同步, 带预分频器	10	1		ns	
TB11	TTXL	TxCK 低电平时间	同步, 无预分频器	0.5 Tcy + 20	l	1	ns	也必须满足参数 TB15
			同步, 带预分频器	10	-		ns	
TB15	ТтхР	TxCK 输入周期	同步, 无预分频器	Tcy + 10	1		ns	N = 预分频值 (1, 8, 64, 256)
			同步, 带预分频器	取如下二者 中较大值: 20 ns 或 (TcY + 40)/N				
TB20	TCKEXTMRL	从外部 TxCK 时钟边沿到定时器递增之间的延时		0.5 Tcy	_	1.5 TcY		

TIMER3 和 TIMER5 外部时钟时序要求 表 24-24:

标准工作条件: 2.5V 至 5.5V (**除非另外声明)** 工作温度

交流特性

-40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)

							( 31 100-100 )	
参数 编号	符号	特性	ŧ	最小值	典型值	最大值	单位	条件
TC10	TtxH	TxCK 高电平时间	同步	0.5 Tcy + 20	_	_	ns	也必须满足参数 TC15
TC11	TtxL	TxCK 低电平时间	同步	0.5 Tcy + 20	_	_	ns	也必须满足参数 TC15
TC15	TtxP	TxCK 输入周期	同步, 无预分频器	Tcy + 10	_	_	ns	N = 预分频值 (1, 8, 64, 256)
			同步, 带预分频器	取如下二者 中较大值: 20 ns 或 (TcY + 40)/N				
TC20	TCKEXTMRL	从外部 TxCK 时钟 递增之间的延时	边沿到定时器	0.5 TcY	_	1.5 Tcy	_	



表 24-25: QEI 模块外部时钟时序要求

**交流特性**(除非另外声明)

工作温度

-40°C ≤ TA ≤ +85°C (工业级)

-40°C ≤ TA ≤ +125°C (扩展级)

标准工作条件: 2.5V 至 5.5V

				40 0 2 1A 2 1 120 0 ( 1) /k/3x )					
参数 编号	符号	特性 ⁽¹⁾		最小值	典型值	最大值	单位	条件	
TQ10	TtQH	TxCK 高电平时间	同步, 带预分频器	Tcy + 20	1	_	ns	也必须满足参数 TQ15	
TQ11	TtQL	TxCK 低电平时间	同步, 带预分频器	Tcy + 20	l	_	ns	也必须满足参数 TQ15	
TQ15	TtQP	TxCK 输入周期	同步, 带预分频器	2 * Tcy + 40	1	_	ns		
TQ20	TCKEXTMRL	从外部 TxCK 时钟边沿到定时器递增之间的延时		0.5 Tcy	_	1.5 Tcy	ns		

注 1: 这些参数为特性值,但生产时未经测试。

#### 图 24-9: 输入捕捉时序特性



#### 表 24-26: 输入捕捉时序要求

交流特性			<b>标准工作条件:2.5V 至 5.5V (除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)					
参数 编号	符号	特性 ⁽¹⁾		最小值	最大值	单位	条件	
IC10	TccL	ICx 输入低电平时间	无预分频器	0.5 Tcy + 20	-	ns		
			带预分频器	10		ns		
IC11	TccH	ICx 输入高电平时间	无预分频器	0.5 Tcy + 20	_	ns		
			带预分频器	10	_	ns		
IC15	TccP	ICx 输入周期		(2 Tcy + 40)/N	_	ns	N = 预分频值 (1、 4 或 16)	

注 1: 这些参数为特性值,但生产时未经测试。



表 24-27: 输出比较模块时序要求

交流特	交流特性			<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)					
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件		
OC10	TccF	OCx 输出下降时间	_	_	_	ns	见参数 DO32		
OC11	TccR	OCx 输出上升时间							

1: 这些参数为特性值,但生产时未经测试。

注

2: 除非另外声明,否则 " 典型值 " 栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。



表 24-28	B: '	简单输出比较 /PWM 模式时序要求							
交流特性	<b>+</b>			标准工作统 (除非另外		/ 至 5.5V			
X/ILITI:	I .			工作温度 -40°C ≤ TA ≤ +85°C (工业级)			)°C ≤ Ta ≤ +85°C (工业级) )°C ≤ Ta ≤ +125°C (扩展级)		
	1	1					) O S IA S + 125 O ( )) R 級 )		
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件		
OC15	TFD	故障输入到 PWM I/O 发 生变化的时间	_	_	50	ns			
OC20	TFLT	故障输入脉冲宽度	50	_	_	ns			

注 1: 这些参数为特性值,但生产时未经测试。

**2:** 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25°C 条件下的值。这些参数仅供设计参考,未经测试。





表 24-29: 电机控制 PWM 模块时序要求

交流特性			(除非牙	<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)				
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件	
MP10	TFPWM	PWM 输出下降时间	_	_	_	ns	见参数 DO32	
MP11	TRPWM	PWM 输出上升时间	_		_	ns	见参数 DO31	
MP20	TFD	故障输入↓到 PWM I/O 发生变化的时间	_		50	ns		
MP30	TFH	最小脉冲宽度	50	_	_	ns		

- 注 1: 这些参数为特性值,但生产时未经测试。
  - 2: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。



表 24	1-30	•	正交解码器时序要求
1X 4	T-JU	•	

交流特	<b>生</b>		<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度				
参数编号	符号	特性 ⁽¹⁾	典型值 ⁽²⁾	最大值	单位	条件	
TQ30	TquL	正交输入低电平时间	6 Tcy	_	ns		
TQ31	TquH	正交输入高电平时间	6 Tcy	_	ns		
TQ35	TquIN	正交输入周期	12 Tcy	_	ns		
TQ36	TQUP	正交相周期	3 Tcy	_	ns		
TQ40	TQUFL	数字滤波器确认低电平的时间	3 * N * Tcy	_	ns	N = 1、2、4、16、32、64、 128 和 256 <b>(注2)</b>	
TQ41	TQUFH	数字滤波器确认高电平的时间	3 * N * Tcy	_	ns	N = 1、2、4、16、32、64、 128和256(注2)	

注 1: 这些参数为特性值,但生产时未经测试。

**2**: N = 索引通道数字滤波器时钟分频选择位。请参见《dsPIC30F 系列参考手册》(DS70046E_CN)的**第 16 章** "正交编码器接口(QEI)"。



表 24-31	QEI 索引脉冲时序要求
衣 24-31	以口 系引加州的伊安尔

交流特性	±		<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)				
参数 编号	符号	特性 ⁽¹⁾	最小值	最大值	条件		
TQ50	TqIL	数字滤波器确认低电平的时间	3 * N * Tcy	_	ns	N=1、2、4、16、32、64、 128和256(注2)	
TQ51	TqiH	数字滤波器确认高电平的时间	3 * N * Tcy	_	ns	N=1、2、4、16、32、64、 128和256(注2)	
TQ55	Tqidxr	索引脉冲确认至位置计数器复位的时间 (无门控索引)	3 Tcy	_	ns		

注 1: 这些参数为特性值,但生产时未经测试。

2: 给出的索引脉冲与 QEA 和 QEB 对齐仅适用于位置计数器复位时序和正向旋转方式(QEA 超前 QEB)。 同样的时序适用于反向旋转的情形(QEA 滞后于 QEB), 但索引脉冲确认出现在下降沿。



表 24-32: SPI™ 模块主模式 (CKE = 0) 时序要求

交流特性			标准工作 (除非另统 工作温度	-	<b>至 5.5V</b> -40°C ≤ Ta ≤ +85°C (工业级) -40°C ≤ Ta ≤ +125°C (扩展级)		
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件
SP10	TscL	SCK1 输出低电平时间 ⁽³⁾	Tcy/2	_		ns	
SP11	TscH	SCK1 输出高电平时间 ⁽³⁾	Tcy/2	_	1	ns	
SP20	TscF	SCK1 输出下降时间 (4)	_	_		ns	见参数 DO32
SP21	TscR	SCK1 输出上升时间 (4)	_		1	ns	见参数 DO31
SP30	TdoF	SDO1 数据输出下降时间 (4)	_	_		ns	见参数 DO32
SP31	TdoR	SDO1 数据输出上升时间 ⁽⁴⁾	_	_		ns	见参数 DO31
SP35	TscH2doV , TscL2doV	在 SCK1 边沿之后 SDO1 数据 输出有效的时间	_		30	ns	
SP40	TdiV2scH , TdiV2scL	SDI1 数据输入到 SCK1 边沿的 建立时间	20	_		ns	
SP41	TscH2diL , TscL2diL	SDI1 数据输入到 SCK1 边沿的 保持时间	20	_	_	ns	

- 注 1: 这些参数为特性值,但生产时未经测试。
  - 2: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。
  - 3: SCK1 的最小时钟周期为 100 ns。因此,主模式下产生的时钟不应违反此规范。
  - 4: 假定所有 SPI 引脚上的负载均为 50 pF。



表 24-33: SPI™ 模块主模式 (CKE = 1) 时序要求

交流特性	交流特性			F条件:2.5V 外声明) ₹	<b>至 5.5V</b> -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)		
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件
SP10	TscL	SCK1 输出低电平时间 (3)	Tcy/2	_	_	ns	
SP11	TscH	SCK1 输出高电平时间 (3)	Tcy/2	_	_	ns	
SP20	TscF	SCK1 输出下降时间 (4)	_	_	_	ns	见参数 DO32
SP21	TscR	SCK1 输出上升时间 (4)	_	_	_	ns	见参数 DO31
SP30	TdoF	SDO1 数据输出下降时间 (4)	_	_	_	ns	见参数 DO32
SP31	TdoR	SDO1 数据输出上升时间 (4)	_	_	_	ns	见参数 DO31
SP35	TscH2doV , TscL2doV	在 SCK1 边沿之后 SDO1 数据输出有效的时间	_	_	30	ns	
SP36	TdoV2sc , TdoV2scL	SDO1 数据输出建立到 第一个 SCK1 边沿的时间	30	_	_	ns	
SP40	TdiV2scH , TdiV2scL	SDI1 数据输入到 SCK1 边沿 的建立时间	20	_	_	ns	
SP41	TscH2diL , TscL2diL	SDI1 数据输入到 SCK1 边沿的保持时间	20	_	_	ns	

- 注 1: 这些参数为特性值,但生产时未经测试。
  - **2:** 除非另外声明,否则 " 典型值 " 栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。
  - 3: SCK1 的最小时钟周期为 100 ns。因此,主模式下产生的时钟不应违反此规范。
  - 4: 假定所有 SPI 引脚上的负载均为 50 pF。



表 24-34: SPI™ 模块从模式 (CKE = 0) 时序要求

交流特性	交流特性			<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)					
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件		
SP70	TscL	SCK1 输入低电平时间	30			ns			
SP71	TscH	SCK1 输入高电平时间	30			ns			
SP72	TscF	SCK1 输入下降时间 (3)	_	10	25	ns			
SP73	TscR	SCK1 输入上升时间 ⁽³⁾	_	10	25	ns			
SP30	TdoF	SDO1 数据输出下降时间 ⁽³⁾	_	_	_	ns	见参数 DO32		
SP31	TdoR	SDO1 数据输出上升时间 ⁽³⁾	_	_	_	ns	见参数 DO31		
SP35	TscH2doV , TscL2doV	在 SCK1 边沿之后 SDO1 数据 输出有效的时间	_		30	ns			
SP40	TdiV2scH , TdiV2scL	SDI1 数据输入到 SCK1 边沿的建立时间	20	_	-	ns			
SP41	TscH2diL , TscL2diL	SDI1 数据输入到 SCK1 边沿的保持时间	20	ı	l	ns			
SP50	TssL2scH , TssL2scL	SS1↓到 SCK1↑或 SCK1↓输 入的时间	120			ns			
SP51	TssH2doZ	SS1 [↑] 到 SDO1 输出高阻态的 时间 ⁽³⁾	10	_	50	ns			
SP52	TscH2ssH TscL2ssH	SCK1 边沿后 SS1 有效的时间	1.5 TcY + 40	_	_	ns			

注 1: 这些参数为特性值,但生产时未经测试。

2: 除非另外声明,否则 " 典型值 " 栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。

3: 假定所有 SPI 引脚上的负载均为 50 pF。



表 24-35: SPI™ 模块从模式 (CKE = 1) 时序要求

交流特性	交流特性			<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)				
参数 编号	符号	特性 ⁽¹⁾	最小值	典型值 ⁽²⁾	最大值	单位	条件	
SP70	TscL	SCK1 输入低电平时间	30	_		ns		
SP71	TscH	SCK1 输入高电平时间	30	_		ns		
SP72	TscF	SCK1 输入下降时间 ⁽³⁾	_	10	25	ns		
SP73	TscR	SCK1 输入上升时间 ⁽³⁾	_	10	25	ns		
SP30	TdoF	SDO1 数据输出下降时间 ⁽³⁾	_	_		ns	见参数 DO32	
SP31	TdoR	SDO1 数据输出上升时间 ⁽³⁾	_			ns	见参数 DO31	
SP35	TscH2doV , TscL2doV	在 SCK1 边沿之后 SDO1 数据 输出有效的时间	_	_	30	ns		
SP40	TdiV2scH , TdiV2scL	SDI1 数据输入到 SCK1 边沿的 建立时间	20		1	ns		
SP41	TscH2diL , TscL2diL	SDI1 数据输入到 SCK1 边沿的保持时间	20		1	ns		
SP50	TssL2scH , TssL2scL	SS1 ↓ 到 SCK1 ↓ 或 SCK1 ↑ 输入 的时间	120		1	ns		
SP51	TssH2doZ	SS1 [↑] 到 SDO1 输出高阻态的时间 ⁽⁴⁾	10		50	ns		
SP52	TscH2ssH TscL2ssH	SCK1 边沿后 SS1↑有效的时间	1.5 Tcy + 40	_	_	ns		
SP60	TssL2doV	在 SS1 边沿之后 SDO1 数据输出有效的时间	_	_	50	ns		

注 1: 这些参数为特性值,但生产时未经测试。

2: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25°C 条件下的值。这些参数仅供设计参考,未经测试。

3: SCK1 的最小时钟周期为 100 ns。因此, 主模式下产生的时钟不应违反此规范。

4: 假定所有 SPI 引脚上的负载均为 50 pF。





表 24-36: I²C™ 总线数据时序要求 (主模式)

标准工作条件: 2.5V 至 5.5V (除非另外声明) 交流特性 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级) 参数 最小值 (1) 符号 特性 最大值 单位 条件 编号 **IM10** TLO:SCL Tcy/2 (BRG + 1) 时钟低电平时间 100 kHz 模式 us Tcy/2 (BRG + 1) 400 kHz 模式 μs Tcy/2 (BRG + 1) 1 MHz 模式 ⁽²⁾ μs **IM11** THI:SCL 时钟高电平时间 Tcy/2 (BRG + 1) 100 kHz 模式 us Tcy/2 (BRG + 1) 400 kHz 模式 μs Tcy/2 (BRG + 1) 1 MHz 模式 (2) μs **IM20** TF:SCL SDA 和 SCL 100 kHz 模式 300 ns CB 值规定在 10 至 下降时间 400pF 之间 20 + 0.1 CB 300 400 kHz 模式 ns 1 MHz 模式 (2) 100 ns **IM21** TR:SCL 1000 SDA 和 SCL 100 kHz 模式 ns CB 值规定在 10 至 上升时间 400pF 之间 400 kHz 模式 20 + 0.1 CB300 ns 1 MHz 模式 (2) 300 ns **IM25** TSU:DAT 250 ns 数据输入 100 kHz 模式 建立时间 100 400 kHz 模式 ns 1 MHz 模式 (2) ns **IM26** THD:DAT 数据输入 100 kHz 模式 0 ns 保持时间 0 400 kHz 模式 0.9 μs 1 MHz 模式 (2) ns IM30 TSU:STA Tcy/2 (BRG + 1) 启动条件 100 kHz 模式 μs 仅与重复启动条件相关 建立时间 400 kHz 模式 Tcy/2 (BRG + 1) μs 1 MHz 模式 (2) Tcy/2 (BRG + 1) μs **IM31** THD:STA Tcy/2 (BRG + 1) 启动条件 这个周期后产生第一个 100 kHz 模式 us 保持时间 时钟脉冲 400 kHz 模式 Tcy/2 (BRG + 1) μs 1 MHz 模式 (2) Tcy/2 (BRG + 1) μs **IM33** Tsu:sto Tcy/2 (BRG + 1) 停止条件 100 kHz 模式 μs 建立时间 400 kHz 模式 Tcy/2 (BRG + 1) μs Tcy/2 (BRG + 1) 1 MHz 模式 ⁽²⁾ นร **IM34** THD:STO Tcy/2 (BRG + 1) 停止条件 100 kHz 模式 ns 400 kHz 模式 Tcy/2 (BRG + 1) ns 保持时间 1 MHz 模式 ⁽²⁾ Tcy/2 (BRG + 1) ns IM40 TAA:SCL 3500 自时钟边沿到输 100 kHz 模式 ns 出有效的时间 1000 400 kHz 模式 ns 1 MHz 模式 ⁽²⁾ ns **IM45** TBF:SDA 总线空闲时间 4.7 100 kHz 模式 在启动一个新的传输前 us 总线必须保持空闲的时 1.3 400 kHz 模式 μs 间 1 MHz 模式 ⁽²⁾ μs IM50 Св 400 рF 总线容性负载

2: 所有  $I^2C$  引脚的最大引脚电容为 10 pF (仅对于 1 MHz 模式)。

注 1: BRG 为 I²C 波特率发生器的值。请参见 《dsPIC30F 系列参考手册》( DS70046E_CN ) 中的**第 21 章** " I²C™ 模块 "。





I²C™ 总线启动 / 停止位时序特性 (从模式) 表 24-37:

标准工作条件: 2.5V 到 5.5V (除非另外声明) 交流特性 工作温度 -40°C ≤ TA ≤ +85°C (工业级)

X//L101E			工作温度		$C \le TA \le +1$			
参数 编号	符号	特	性	最小值	最大值	单位	条件	
IS10	TLO:SCL	时钟低电平时间	100 kHz 模式	4.7	_	μs	器件工作频率不得低于 1.5 MHz	
			400 kHz 模式	1.3	_	μs	器件工作频率不得低于 10 MHz	
			1 MHz 模式 ⁽¹⁾	0.5	_	μs		
IS11 THI:SCL	时钟高电平时间	100 kHz 模式	4.0	_	μs	器件工作频率不得低于 1.5 MHz		
			400 kHz 模式	0.6	_	μs	器件工作频率不得低于 10 MHz	
			1 MHz 模式 ⁽¹⁾	0.5	_	μs		
IS20	TF:SCL	SDA 和 SCL	100 kHz 模式	_	300	ns	CB 值规定在 10 至 400 pF	
		下降时间	400 kHz 模式	20 + 0.1 CB	300	ns	之间	
			1 MHz 模式 ⁽¹⁾	_	100	ns		
IS21	S21 TR:SCL	SDA 和 SCL	100 kHz 模式	_	1000	ns	CB 值规定在 10 至 400 pF	
	上升时间	400 kHz 模式	20 + 0.1 CB	300	ns	之间		
			1 MHz 模式 ⁽¹⁾	_	300	ns		
IS25	Tsu:dat	数据输入	100 kHz 模式	250	_	ns		
	建立时间	400 kHz 模式	100	_	ns			
			1 MHz 模式 ⁽¹⁾	100	_	ns		
IS26 THD:DAT	数据输入	100 kHz 模式	0	_	ns			
		保持时间	400 kHz 模式	0	0.9	μs		
	<u> </u>	1 MHz 模式 ⁽¹⁾	0	0.3	μs			
IS30	TSU:STA	启动条件 建立时间	100 kHz 模式	4.7	_	μs	仅与重复启动条件相关	
			400 kHz 模式	0.6	_	μs		
			1 MHz 模式 ⁽¹⁾	0.25	_	μs		
IS31	THD:STA	启动条件	100 kHz 模式	4.0	_	μs	这个周期后产生第一个时	
		保持时间	400 kHz 模式	0.6	_	μs	钟脉冲	
			1 MHz 模式 ⁽¹⁾	0.25	_	μs		
IS33	Tsu:sto	停止条件	100 kHz 模式	4.7	_	μs		
		建立时间	400 kHz 模式	0.6	_	μs		
			1 MHz 模式 ⁽¹⁾	0.6	_	μs		
IS34	THD:STO	停止条件	100 kHz 模式	4000	_	ns		
		保持时间	400 kHz 模式	600	_	ns		
			1 MHz 模式 ⁽¹⁾	250		ns		
IS40	TAA:SCL	自时钟边沿到输	100 kHz 模式	0	3500	ns		
		出有效的时间	400 kHz 模式	0	1000	ns		
			1 MHz 模式 ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	总线空闲时间	100 kHz 模式	4.7	_	μs	在启动一个新的传输前总	
			400 kHz 模式	1.3	_	μs	线必须保持空闲的时间	
			1 MHz 模式 ⁽¹⁾	0.5	_	μs		
IS50	Св	总线容性负载			400	pF		

1: 所有 I²C 引脚的最大引脚电容为 10 pF (仅对于 1 MHz 模式)。 注



表 24-38:	CAN 模块 I/O 时序要求

交流特性				F条件:2.5V 外声明) ፻	-40°C s		°C (工业级) 5°C (扩展级)
参数 编号			最小值	典型值 ⁽²⁾	最大值	单位	条件
CA10	TioF	端口输出下降时间	_	-		ns	见参数 DO32
CA11	TioR	端口输出上升时间	_			ns	见参数 DO31
CA20	Tcwf	触发 CAN 唤醒滤波器的脉 冲宽度	500			ns	

1: 这些参数为特性值,但生产时未经测试。

注

2: 除非另外声明,否则"典型值"栏中的数据均为 5V 和 25℃ 条件下的值。这些参数仅供设计参考,未经测试。

表 24-39: 10 位高速 A/D 模块规范

交流特		10 位高速 A/D 侯块戏池	<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)							
参数 编号	符号	特性	最小值	典型值	最大值	单位	条件			
器件电流	 原									
AD01	AVDD	模块 VDD 电压	VDD - 0.3 和 2.7 中的 较大值	_	VDD + 0.3 和 5.5 中的 较小值	V				
AD02	AVss	模块 Vss 电压	Vss - 0.3	_	Vss + 0.3	V				
参考输	λ									
AD05	VREFH	参考电压高电平	AVss + 2.7	_	AVDD	V				
AD06	VREFL	参考电压低电平	AVss	_	AVDD - 2.7	V				
AD07	VREF	绝对参考电压	AVss - 0.3	_	AVDD + 0.3	V				
AD08	IREF	电流消耗	_	200 .001	300 3	μA μA	A/D 操作 A/D 关闭			
模拟输	λ									
AD10	VINH-VINL	满量程输入范围	VREFL	_	VREFH	V				
AD11	VIN	绝对输入电压	AVss - 0.3	_	AVDD + 0.3	V				
AD12		泄漏电流	_	±0.001	±0.244	μΑ	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V, 源阻抗 = 5 kΩ			
AD13	_	泄漏电流	_	±0.001	±0.244	μΑ	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 3V, 源阻抗 = 5 kΩ			
AD17	RIN	模拟信号源阻抗的推荐值	_	_	5K	Ω				
DC 精度	<u> </u>				I.					
	Nr	分辨率	10	) 个数据(	 Ή	位				
AD21	INL	积分非线性 ⁽³⁾	_	±1	±1	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 5V			
AD21A	INL	积分非线性 (3)	_	±1	±1	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 3V			
AD22	DNL	微分非线性 ⁽³⁾	_	±1	±1	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 5V			
AD22A	DNL	微分非线性 ⁽³⁾	_	±1	±1	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 3V			
AD23	GERR	增益误差 (3)	±1	±5	±6	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 5V			
AD23A	GERR	增益误差 (3)	±1	±5	±6	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 3V			
AD24	EOFF	失调误差	±1	±2	±3	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 5V			
AD24A	EOFF	失调误差	±1	±2	±3	LSb	VINL = AVSS = VREFL = 0V , AVDD = VREFH = 3V			
AD25	_	单调性 ⁽²⁾	_	_	_	_	保证			

注 1: 因为采样电容最终将无法保持电荷,因此低于 10 kHz 的时钟频率可能影响线性性能,尤其是在温度较高时。

^{2:} A/D 转换结果不会因输入电压的增加而减小,并且不会丢失编码。

^{3:} 测量采用外部 VREF+ 和 VREF- 用作 ADC 参考电压。

表 24-39: 10 位高速 A/D 模块规范 (续)

			<u> </u>				
交流特性			标准工作条件 (除非另外第 工作温度	35°C (工业级) 125°C (扩展级)			
参数 编号	符号	特性	最小值	典型值	最大值	单位	条件
动态性	能						
AD30	THD	总谐波失真	_	-64	-67	dB	
AD31	SINAD	信号噪声和失真	_	57	58	dB	
AD32	SFDR	无杂散动态范围	_	67	71	dB	
AD33	FNYQ	输入信号带宽	— — 500 kHz				
AD34	ENOB	有效位数	9.29	9.41	_	位	

注 1: 因为采样电容最终将无法保持电荷,因此低于 10 kHz 的时钟频率可能影响线性性能,尤其是在温度较高时。

2: A/D 转换结果不会因输入电压的增加而减小,并且不会丢失编码。

3: 测量采用外部 VREF+ 和 VREF- 用作 ADC 参考电压。

#### 图 24-25: 10 位高速 A/D 转换时序特性

(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)



- ① 软件置 1 ADCONx.SAMP 以启动采样。
- ② 采样在放电周期之后启动。 TSAMP 在《dsPIC30F 系列参考手册》( DS70046E_CN )的**第 17 章" 10 位 A/D 转换器 "**中进行介绍。
- ③ 软件清零 ADCONx.SAMP 以启动转换。
- 4 采样结束,转换过程启动。
- ⑤ 转换 bit 9。
- ⑥ 转换 bit 8。
- **8** 转换 bit 0。
- (9) 转换结束的一个 TAD。

#### 图 24-26: 10 位高速 A/D 转换时序特性

(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)



- ① 软件置 1 ADCONx.ADON ,开始 AD 操作。
- ② 采样在放电周期之后启动。 TSAMP 在《dsPIC30F 系列参考手册》(DS70046E_CN)的第 17 章" 10 位 A/D 转换器"中进行介绍。
- ③ 转换 bit 9。
- (4) 转换 bit 8。

- (5) 转换 bit 0。
- ⑥ 转换结束的一个 TAD。
- 7 开始下一个通道的转换。
- 8 采样时间由 SAMC<4:0> 指定。

表 24-40: 10 位高速 A/D 转换时序要求

衣 24-4	<del>U</del> .	IU 心同还 A/D 积沃的办女术					
交流特性			<b>标准工作条件: 2.5V 至 5.5V</b> <b>(除非另外声明)</b> 工作温度 -40°C ≤ TA ≤ +85°C (工业级) -40°C ≤ TA ≤ +125°C (扩展级)				
参数 编号	符号	特性	最小值	典型值	最大值	单位	条件
时钟参数	数						
AD50	TAD	A/D 时钟周期	_	84		ns	见表 20-2 ⁽¹⁾
AD51	tRC	A/D 内部 RC 振荡器周期	700	900	1100	ns	
转换速◎	枢						
AD55	tCONV	转换时间	_	12 TAD		_	
AD56	FCNV	吞吐率	_	1.0		Msps	见表 20-2 ⁽¹⁾
AD57	TSAMP	采样时间	_	1 TAD		_	见表 20-2 ⁽¹⁾
时序参数	数						
AD60	tPCS	从触发采样到启动转换的时间	_	1.0 TAD		_	
AD61	tPSS	从采样位 (SAMP)置1到采样启动的时间	0.5 TAD		1.5 TAD	_	
AD62	tcss	转换结束到采样启动 (ASAM = 1) 的时间	_	0.5 TAD	_	_	
AD63	tDPU(2)	从 A/D 关闭到 A/D 开始工作使模拟 级稳定的时间	_		20	μs	

注 1: 因为采样电容最终将放电,低于 10 kHz 的时钟速率可能影响线性性能,尤其在温度较高时。

^{2:} tDPU 是指当 ADC 模块启动 (ADCON1<ADON> = 1) 时所需的稳定时间。在此期间, ADC 的转换结果为不确定。

### 25.0 封装信息

### 25.1 封装标识信息

### 28 引脚 PDIP( 窄型 DIP)



### 示例



#### 28 引脚 SOIC



#### 示例



#### 40 引脚 PDIP



#### 示例



图注: XX...X 客户信息

Y 年份代码 (日历年的最后一位数字) YY 年份代码 (日历年的最后两位数字) WW 星期代码 (1月1日的星期代码为"01")

NNN 以字母数字排序的追踪代码

e3 雾锡 (Matte Tin, Sn)的 JEDEC 无铅标志

表示无铅封装。 JEDEC 无铅标志 (@3) 标示于此种封装的外包装

上。

注: Microchip 元器件编号如果无法在同一行内完整标注,将换行标出。因此会限制表示客户信息的字符数。

### 封装标识信息 (续)

44 引脚 QFN



44 引脚 TQFP



#### 示例



### 示例



## 25.2 封装详细信息

28引脚窄型塑封双列直插式封装(SP)——300 mil主体 [SPDIP]

注: 最新封装图请至http://www.microchip.com/packaging查看Microchip封装规范。



	单位		英寸	
	尺寸范围	最小	正常	最大
引脚数	N		28	
引脚间距	е		.100 BSC	
顶端到固定面高度	А	-	_	.200
塑模封装厚度	A2	.120	.135	.150
塑模底面到固定面高度	A1	.015	_	_
肩到肩宽度	E	.290	.310	.335
塑模封装宽度	E1	.240	.285	.295
总长度	D	1.345	1.365	1.400
引脚尖到固定面高度	L	.110	.130	.150
引脚厚度	С	.008	.010	.015
引脚上部宽度	b1	.040	.050	.070
引脚下部宽度	b	.014	.018	.022
总排列间距	eB	-	_	.430

#### 注:

- 1. 引脚1的可见定位功能可能不同,但必须在阴影区域内。
- 2. 重要特性。
- 3. 尺寸D和E1不包括塑模毛边或突起。 塑模每侧的毛边或突起不得超过0.010英寸。
- 4. 尺寸和公差请参见ASME Y14.5M。

BSC: 基本尺寸。显示的是没有公差的理论精确值。

Microchip Technology图号C04-070B

## 28引脚塑封小外形封装(SO)——宽条, 7.50 mm主体 [SOIC]

注: 最新封装图请至http://www.microchip.com/packaging查看Microchip封装规范。



#### 注:

- 1. 引脚1的可见定位功能可能不同,但必须在阴影区域内。
- 2. 重要特性。
- 3. 尺寸D和E1不包括塑模毛边或突起。 塑模每侧的毛边或突起不得超过0.15毫米。
- 4. 尺寸和公差请参见ASME Y14.5M。

BSC: 基本尺寸。显示的是没有公差的理论精确值。

REF: 参考尺寸,通常无公差,仅供参考。

Microchip Technology图号C04-052B

## **40**引脚塑封双列直插式 (P) ——**600** mil主体 [PDIP]

注: 最新封装图请至http://www.microchip.com/packaging查看Microchip封装规范。



	单位		英寸	
	尺寸范围	最小	正常	最大
引脚数	N		40	
引脚间距	е		.100 BSC	
顶端到固定面高度	А	-	_	.250
塑模封装厚度	A2	.125	_	.195
塑模底面到固定面高度	A1	.015	_	_
肩到肩宽度	E	.590	_	.625
塑模封装宽度	E1	.485	_	.580
总长度	D	1.980	_	2.095
引脚尖到固定面高度	L	.115	_	.200
引脚厚度	С	.008	_	.015
引脚上部宽度	b1	.030	_	.070
引脚下部宽度	b	.014	_	.023
总排列间距	eB	_	_	.700

#### 注:

- 1. 引脚1的可见定位功能可能不同,但必须在阴影区域内。
- 2. 重要特性。
- 3. 尺寸D和E1不包括塑模毛边或突起。 塑模每侧的毛边或突起不得超过0.010英寸。
- 4. 尺寸和公差请参见ASME Y14.5M。

BSC: 基本尺寸。显示的是没有公差的理论精确值。

Microchip Technology图号C04-016

## 44引脚塑封正方扁平无脚封装(ML)——8x8 mm主体 [QFN]

注: 最新封装图请至http://www.microchip.com/packaging查看Microchip封装规范。



	单位		毫米	
	尺寸范围	最小	正常	最大
引脚数	N	44		
引脚间距	е	0.65 BSC		
总高度	А	0.80	0.90	1.00
悬空间隙	A1	0.00	0.02	0.05
触点厚度	A3	0.20 REF		
总宽度	E	8.00 BSC		
裸露金属焊垫宽度	E2	6.30	6.45	6.80
总长度	D		8.00 BSC	
裸露金属焊垫长度	D2	6.30	6.45	6.80
触点宽度	b	0.25	0.30	0.38
触点长度	L	0.30	0.40	0.50
触点到裸露金属焊垫的距离	K	0.20	_	_

#### 注:

- 1. 引脚1的可见定位功能可能不同,但必须在阴影区域内。
- 2. 封装为切割分离。
- 3. 尺寸和公差请参见ASME Y14.5M。

BSC: 基本尺寸。 显示的是没有公差的理论精确值。 REF: 参考尺寸,通常无公差,仅供参考。

Microchip Technology图号C04-103B

## 44引脚塑封薄型正方扁平封装 (PT) ——10x10x1 mm主体, 2.00 mm引脚投影长度 [TQFP]

注: 最新封装图请至http://www.microchip.com/packaging查看Microchip封装规范。



#### 注:

- 1. 引脚1的可见定位功能可能不同,但必须在阴影区域内。
- 2. 切角处的斜面是可选的; 大小可能有所不同。
- 3. 尺寸D1和E1不包括塑模毛边或突起。 塑模每侧的毛边或突起不得超过0.25毫米。
- 4. 尺寸和公差请参见ASME Y14.5M。

BSC: 基本尺寸。显示的是没有公差的理论精确值。

REF: 参考尺寸,通常无公差,仅供参考。

Microchip Technology图号C04-076B

注:

### 附录 A: 版本历史

#### 版本 D (2006年8月)

本数据手册的早期版本中包含超前或初步信息,其中包含不完善的特性数据。

#### 本版本进行了如下修改:

- 修改了 I²C 从地址 (见表 17-1)
- 更新了第 20.0 节 " 10 位高速模数转换器 (ADC) 模块 " 以更完整地说明配置指南
- 从指令集去除了基本指令 CP1 (见表 22-2)
- 修改了电气特性部分的:
  - 工作电流 (IDD) 规范 (见表 24-5)
  - 空闲电流 (IDLE) 规范 (见表 24-6)
  - 掉电电流 (IPD) 规范 (见表 24-7)
  - 引脚 I/O 输入规范 (见表 24-8)
  - BOR 电压限制 (见表 24-11)
  - 看门狗定时器超时限制 (见表 24-21)

### 版本 E (2007年1月)

- 此版本包含了对封装图的更新。

#### 版本 F (2008 年 3 月)

#### 本版本进行了如下修改:

- 在 32 位 Timer4/5 框图 (见图 11-1)和 16 位 Timer4/5 框图 (见图 11-2)中添加了注 1。
- 修改了 10 位高速 ADC 功能框图中输入参考电压的位置 (见图 20-1)
- 新增了 FUSE 配置寄存器 (FICD) 的详细信息 (见第 21.6 节 "器件配置寄存器"和表 21-8)
- 删除了针对产生 CAN 接收错误时的错误陈述 (见 第19.4.5 节"接收错误")
- 电气特性:
  - 给出了参数 DO10、 DO16、 DO20 和 DO26 的 TBD 值(见表 24-9)
  - 10 位高速 ADC:将时序参数 tPDU (稳定时间)从 20 μs (典型值)更新到 20 μs (最大值)(见表 24-40)
  - 扩展了参数 OS65 (内部 RC 精度),以反映 不同温度下的最大值和最小值(见表 24-18)
  - 更新了参数 DC12(RAM 数据保持电压), 以包含最小值(见表 24-4)
  - 更新了参数 D134 (擦/写周期时间),以包含最小值和最大值,删除了典型值(见表 24-11)
  - 删除了参数 OS62 (内部 FRC 抖动)和 OS64 (内部 FRC 漂移),并删除了交流特 性中的注 2 (见表 24-17)
  - 扩展了参数 OS63 (内部 FRC 精度),以反映不同温度下的多个最小值和最大值(见表24-17)
  - 更新了参数 SY11 的最小值、最大值和条件; 更新了参数 SY20 的最小值、典型值、最大值和条件(见表 24-20)
- 修正了错误的器件编号 (见"产品标识体系")
- 对整个文档通篇进行微小修正

## 版本G(2010年12月)

本版本对数据手册内容的语法和格式进行了通篇修订。

主要修改内容请参见表 A-1 中各章。

### 表 A-1: 主要章节更新

章节名称	更新说明
" 高性能 16 位数字信号控制器 "	在所有 QFN 引脚示意图中添加了注 1 (见 "引脚示意图")。
第 15.0 节 " 电机控制 PWM 模块 "	在 PWM 寄存器映射中添加了 IUE 位 ( PWMCON2<2> ) ( 见表 15-1 )。
	更新了 PWM 周期公式 (见公式 15-1 和公式 15-2)。
第 21.0 节 " 系统集成 "	在 <b>第 21.2.5 节 "快速 RC 振荡器 (FRC)</b> "中对 OSCTUN 功能添加了注释框。
第 24.0 节 " 电气特性 "	在引脚 I/O 输入规范 (见表 24-8)中,更新了参数 DI19 的最大值和参数 DI29 的最小值。
	在程序存储器和 EEPROM 规范中,删除了参数 D136 并更新了参数 D122 和 D134 的最小值、典型值、最大值和条件 (见表 24-11)。
" 产品标识体系 "	添加了" ML" 封装定义。

## 索引

数字	CPU 空闲模式 ト的 PWM 操作	
10 位高速模数转换器 (ADC)模块 139	CPU 休眠模式下的 PWM 操作	106
16 位递增 / 递减位置计数器模式	操作码说明中使用的符号	166
	程序地址空间	25
错误检查 92	表指令	
计数方向状态 92	TBLRDH	27
计数器复位92	TBLRDL	
Α.		
A	TBLWTH	
ADC	TBLWTL	
1 Msps 配置指南144	存储器映射	25
600 ksps 时的配置指南145	构成	26
	使用表指令访问程序存储器中的数据	27
750 ksps 时的配置指南	数据访问自,地址生成	
ADCHS139	程序计数器	
ADCON1 139		10
ADCON2 139	程序空间可视性	
ADCON3139	窗口映射到程序空间的操作	29
ADCSSL139	程序数据表访问 (Isw)	
ADPCFG139	程序数据表访问 (MSB)	28
CPU 空闲模式期间的工作147	除法支持	
	从休眠和空闲中唤醒	
CPU 休眠模式期间的工作	从休眠状态唤醒	
采集要求 146	/八小式/八心·大胜	13
参考电压原理图144	D	
掉电模式 147		
复位的影响147	dsPIC30F4011 端口寄存器映射	
寄存器映射149	dsPIC30F4012 端口寄存器映射	
结果缓冲器	DSP 引擎	20
连接注意事项	乘法器	22
配置模拟端口引脚	代码保护	151
	代码示例	
输出格式	擦除程序存储器的一行	51
选择转换时钟 142	擦除数据 EEPROM 的一个字	56
选择转换顺序 141	擦除数据 EEPROM 的一块	50
中止转换 142		
转换操作 141	读数据 EEPROM	
转换触发的编程设定142	端口写/读	
转换速度	启动编程过程	52
转换速率参数	数据 EEPROM 块写入	58
村沃处平多数 140	数据 EEPROM 字写入	57
В	装入写锁存器	52
DOD 建分型包压与分	单脉冲 PWM 操作	
BOR。 <i>请参见</i> 欠压复位。	地址发生器单元	
版本历史	电机控制 PWM 模块	
备用 16 位定时器 / 计数器 93	寄存器映射	
备用中断向量表47		_
编程操作 51	电气特性	
擦除程序存储器的一行51	独立的 PWM 输出	
启动编程过程	读者反馈表	236
闪存程序存储器的算法51	F	
	Г	
装入写锁存器	防止意外写入 OSCCON	156
编程模型 18	封装	
图 19	标识	
变更通知客户服务 235		
边沿对齐的 PWM 101	详细信息	
^	复位	
C	BOR,可编程	
CAN 模块 129	可编程欠压复位 (BOR)	15
报文发送	POR	
77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	长晶振起振时间	159
报文接收	FSCM 和 PWRT 禁止时的工作	
波特率设置134	上电复位(POR)	
CAN1 寄存器映射 136	工吃女性(FUN) 上由环时宁时器 / DMDT)	10
概述 129	上电延时定时器 (PWRT)	
工作模式 131	振荡器起振定时器 (OST)	
帧类型 129	复位过程	
C 编译器	复位的来源	45
MPI AB C18 174		

G		K	
公式		开发支持	173
A/D 转换时钟	142	看门狗定时器 (WDT)	
波特率		工作	
I2CBRG 值			
PWM 分辨率		勘误表	
PWM 周期		可编程数字噪声滤波器	
PWM 周期 (中心对齐模式)		客户通知服务	
时钟发生的时间份额		客户支持	
工作 MIPS 与电压		快速现场保护	
	170	框图	71
Н		10 位,高速 ADC	140
互补 PWM 操作	102	16 位 Timer4	79
汇编器		16 位 Timer5	
MPASM 汇编器	174	16 位 Timer1 模块	
		32 位 Timer4/5	
I		ADC 模拟输入模型	
I/O 端口		CAN 缓冲器和协议引擎	
并行 I/O(PIO)	61	dsPIC30F4011	
I ² C 模块		dsPIC30F4012	
10 位从模式工作	115	DSP 引擎	
发送		复位系统	
接收		发世系统 共用端口结构	
7 位从模式工作		AMM 模块	
发送		SPI	
接收	-	SPI 主 / 从连接	
编程模型	-	新出比较模式	
CPU 休眠和空闲模式期间的工作		输入捕捉模式	
地址		· UART 发送器	
各种模式		UART 接收器	
功能说明		外部上电复位电路	
广播呼叫地址支持			
寄存器		振荡器系统	
寄存器映射		正交编码器接口	
IPMI 支持		专用端口结构	61
软件控制的时钟延长 (STREN = 1)		M	
斜率控制		Microchip 因特网网站	225
引脚配置		MPLAB ASM30 汇编器、链接器和库管理器	
中断		MPLAB PM3 器件编程器	
主模式的工作		MPLAB REAL ICE 在线仿真器系统	
波特率发生器(BRG)		MPLAB	
多主器件通信、总线冲突和仲裁		MPLINK 目标链接器 /MPLIB 目标库管理器	
发送		模寻址	
接收		操作示例	
时钟操作	-	起始地址和结束地址	
主模式支持		W 地址寄存器选择	
自动时钟延长		W 地址号仔备选择	
10 位寻址时 (STREN = 1)			40
7 位寻址时 (STREN = 1)		N	
发送		内部时钟时序示例	180
接收		内核概述	
	110	内核寄存器映射	
J			
简单捕捉事件模式		Р	
捕捉缓冲器操作	82	POR。 <i>请参见</i> 上电复位。	
捕捉预分频器		PWM 更新锁定	106
霍尔传感器模式	-	PWM 故障引脚	
Timer2 和 Timer3 选择模式		故障状态	
简单 PWM 模式		使能位	
输入引脚故障保护		输入模式	
周期		锁存	
简单输出比较匹配模式		逐周期	
交流特性		で月期 PWM 时基	
负载条件		单事件模式	
温度和电压规范		后分频器	
/巫/乂↑H~し上~ルノじ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100	/山 ノJ 7次 0日 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100

连续递增 / 递减计数模式99	时序规范	
双更新模式100	PLL 抖动	188
预分频器100	PLL 时钟	188
自由运行模式99	时序图	
PWM 输出改写104	A/D 转换	
互补输出模式104	10 位高速 (CHPS = 01, SIMSAM = 0,	
同步104	ASAM = 0 , SSRC = 000 )	216
PWM 输出和极性控制105	10 位高速 (CHPS = 01, SIMSAM = 0,	
输出引脚控制105	ASAM = 1, $SSRC = 111$ ,	
PWM 特殊事件触发器106	SAMC = 00001 )	
后分频器106	边沿对齐的 PWM	
PWM 占空比比较单元102	CAN 模块 I/O	
占空比寄存器缓冲器102	CAN 位	
PWM 周期	CLKO 和 I/O	
配置模拟端口引脚62	带隙启动时间 电机控制 PWM	
Q	电机控制 PWM 模块故障	
QEI 模块	复位、看门狗定时器、振荡器起振定时器和	200
CPU 休眠模式期间的工作93	上电延时定时器	102
CPU 休眠模式下的定时器操作	1 ² C 总线启动 / 停止位 (从模式)	211
器件 ID 存储单元	I ² C 总线启动 / 停止位 (主模式)	209
器件配置	I ² C 总线数据 (从模式)	
寄存器映射164	I ² C 总线数据 (主模式)	
器件配置寄存器	PWM 输出	
FBORPOR162	 QEI 模块索引脉冲	
FGS162	QEI 模块外部时钟	
FOSC162	SPI 从模式 (CKE = 0)	205
FWDT162	SPI 从模式 (CKE = 1)	207
欠压复位	SPI 主模式 (CKE = 0)	
特性 184	SPI 主模式 (CKE = 1)	
R	上电过程中的延时时序 ( <u>MCLR</u> 连接至 VDD)	
	上电过程中的延时时序 (MCLR 未连接至 VDD)	
RCON 寄存器的初始化条件,情形 1	情形 1	
RTSP	上电过程中的延时时序(MCLR 未连接至 VDD)	
操作50	情形 2	
控制寄存器	输出比较	
NVMADR	输出比较 /PWM 输入捕捉	
NVMADRU50	死区时间时序	
NVMCON50	Timerx 外部时钟	
NVMKEY50	外部时钟	
热封装特性 178	中心对齐的 PWM	
热工作条件 178	时序要求	
软件堆栈指针,帧指针18	A/D 转换	
CALL 堆栈帧33	10 位高速	218
软件模拟器 (MPLAB SIM)175	CAN 模块 I/O	
S	CLKO 和 I/O	191
	带隙启动时间	
SPI 模块	电机控制 PWM	200
	复位、看门狗定时器、振荡器起振定时器和	
CPU 休眠模式期间的工作	上电延时定时器	
从选择同步111 功能说明109	I ² C 总线数据 (从模式)	
		210
医万哭啦时 112	I ² C 总线数据 (主模式)	
寄存器映射112 SDO1 禁止 100	简单输出比较 /PWM 模式	199
SDO1 禁止109	简单输出比较 /PWM 模式QEI 模块索引脉冲	199 202
SDO1 禁止109 帧 SPI 支持110	简单输出比较 /PWM 模式 QEI 模块索引脉冲 QEI 模块外部时钟	199 202 196
SDO1 禁止	简单输出比较 /PWM 模式 QEI 模块索引脉冲 QEI 模块外部时钟 SPI 从模式 (CKE = 0)	199 202 196 206
SDO1 禁止       109         帧 SPI 支持       110         字和字节通信       109         STATUS 寄存器       18	简单输出比较 /PWM 模式 QEI 模块索引脉冲 QEI 模块外部时钟 SPI 从模式 (CKE = 0) SPI 从模式 (CKE = 1)	199 202 196 206 208
SDO1 禁止       109         帧 SPI 支持       110         字和字节通信       109         STATUS 寄存器       18         闪存程序存储器       49	简单输出比较 /PWM 模式	199 202 196 206 208
SDO1 禁止       109         帧 SPI 支持       110         字和字节通信       109         STATUS 寄存器       18         闪存程序存储器       49         表指令操作汇总       49	简单输出比较 /PWM 模式	199 202 196 206 208 203
SDO1 禁止       109         帧 SPI 支持       110         字和字节通信       109         STATUS 寄存器       18         闪存程序存储器       49	简单输出比较 /PWM 模式	199 202 206 206 208 204 198
SDO1 禁止       109         帧 SPI 支持       110         字和字节通信       109         STATUS 寄存器       18         闪存程序存储器       49         表指令操作汇总       49         运行时自编程(RTSP)       49	简单输出比较 /PWM 模式	199 202 196 206 203 204 198 197
SDO1 禁止       109         帧 SPI 支持       110         字和字节通信       109         STATUS 寄存器       18         闪存程序存储器       49         表指令操作汇总       49         运行时自编程(RTSP)       49         在线串行编程(ICSP)       49	简单输出比较 /PWM 模式 QEI 模块索引脉冲	199 202 206 208 204 198 197 195
SDO1 禁止       109         帧 SPI 支持       110         字和字节通信       109         STATUS 寄存器       18         闪存程序存储器       49         表指令操作汇总       49         运行时自编程(RTSP)       49         在线串行编程(ICSP)       49         省电模式       161	简单输出比较 /PWM 模式	199 202 196 208 203 204 198 197 195 195

外部时钟187	16 位异步计数器模式	67
正交解码器201	寄存器映射	
使用程序空间可视性访问程序存储器中的数据28	门控操作	
输出比较模块	实时时钟	
CPU 空闲模式期间	RTC 振荡器操作	
CPU 休眠模式期间	RTC 中断	
寄存器映射 89	休眠模式下的操作	
中断	预分频器	
数据地址空间	中断	
存储器映射30	桶形移位寄存器	
对齐 32	通用异步收发器模块 (UART)	12′
对齐(图)	U	
非法存储器访问的后果		
宽度32	UART	
MCU 和 DSP (MAC 类)指令示例	备用 I/O	
Near 数据空间 33	波特率发生器	
软件堆栈 33	CPU 休眠和空闲模式期间的工作	126
数据空间32	地址检测模式	125
数据 EEPROM 存储器55	发送数据	123
擦除	发送缓冲器 (UxTXB)	123
擦除,块 56	间隔字符	
擦除,字	在 8 位数据模式下	123
读	在 9 位数据模式下	
防止误写操作的保护措施59	中断	
写	环回模式	
写 , 块 58	接收错误处理	
= • • •	接收错误处理接收缓冲器溢出错误(OERR 位)	
写 , 字 57	接收间隔字符	
写校验		
数据累加器和加法器 / 减法器22	空闲状态	
回写 23	奇偶校验错误(PERR)	
舍入逻辑	帧错误(FERR)	
数据空间写饱和24	接收数据	
溢出和饱和22	接收缓冲器 (UxRXB)	
输入捕捉模块 81	在8位或9位数据模式下	124
寄存器映射84	中断	124
简单捕捉事件模式82	禁止	123
在 CPU 空闲模式下 82	模块概述	121
在 CPU 休眠模式下82	设置数据、奇偶性和停止位选择	123
中断 83	使能和设置	123
输入电平变化通知模块65	UART1 寄存器映射	127
寄存器映射 (bit 7-0 )65	UART2 寄存器映射	127
输入图	自动波特率支持	
QEA/QEB 输入	14/	
双输出比较匹配模式	W	
单输出脉冲模式	WWW 地址	235
连续输出脉冲模式	外部中断请求	
死区时间发生器	位反转寻址	
	示例	
范围103	实现	
T	修改量 (表)	
T:0/0 ####		
Timer2/3 模块	序列表 (16 项) 位置测量模式	
16 位定时器模式	过重/则里保式	90
32 位定时器模式	X	
32 位同步计数器模式 71	<i>无体</i> 集式	
ADC 事件触发信号74	系统集成	45
定时器预分频器74	概述	
寄存器映射75	寄存器映射	_
门控操作74	陷阱	
休眠模式下的操作 74	陷阱的来源	
中断74	硬和软	
Timer4/5 模块 77	陷阱向量	46
寄存器映射	Υ	
Timer2 和 Timer3 选择模式	1	
Timer1 模块	引脚说明	
16 位定时器模式	dsPIC30F4011	
16 位同步计数器模式67	因特网地址	235
- I-1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1 -> -1		

## Z

在线串行编程 (ICSP)	151
振荡器	
工作模式 (表)	
配置	
初始时钟源选择	
低功耗 RC(LPRC)	
故障保护时钟监视器	
快速 RC (FRC)	
LP	
起振定时器 (OST)	
锁相环 (PLL)	
振荡器选择	151
正交编码器接口 (QEI)	91
CPU 空闲模式期间的工作	
CPU 空闲模式下的定时器操作	94
寄存器映射	95
逻辑	92
中断	94
指令集概述	168
指令集汇总	165
指令寻址模式	37
MAC 指令	38
MCU 指令	37
其他指令	
文件寄存器指令	37
支持的基本模式	
传送指令和累加器指令	38
直流特性	178
BOR	
程序和 EEPROM	185
掉电电流 (IPD)	
工作电流 (IDD)	180
I/O 引脚输出规范	
I/O 引脚输入规范	
空闲电流 (IDLE)	
直流温度和电压规范	
中断过程	
 中断堆栈帧	
中断控制器	
寄存器映射	48
中断优先级	
中心对齐的 PWM	

注:

### MICROCHIP 网站

Microchip 网站(www.microchip.com)为客户提供在 线支持。客户可通过该网站方便地获取文件和信息。只 要使用常用的因特网浏览器即可访问。网站提供以下信 息:

- 产品支持——数据手册和勘误表、应用笔记和示例程序、设计资源、用户指南以及硬件支持文档、最新的软件版本以及存档软件
- 一般技术支持 —— 常见问题 (FAQ)、技术支持请求、在线讨论组以及 Microchip 顾问计划成员名单
- Microchip 业务 —— 产品选型和订购指南、最新 Microchip 新闻稿、研讨会和活动安排表、 Microchip 销售办事处、代理商以及工厂代表列表

### 变更通知客户服务

Microchip 的变更通知客户服务有助于客户了解 Microchip 产品的最新信息。注册客户可在他们感兴趣 的某个产品系列或开发工具发生变更、更新、发布新版 本或勘误表时,收到电子邮件通知。

欲注册,请登录 Microchip 网站 www.microchip.com。在"支持"(Support)下,点击"变更通知客户(Customer Change Notification)"服务后按照注册说明完成注册。

## 客户支持

Microchip 产品的用户可通过以下渠道获得帮助:

- 代理商或代表
- 当地销售办事处
- 应用工程师 (FAE)
- 技术支持

客户应联系其代理商、代表或应用工程师(FAE)寻求 支持。当地销售办事处也可为客户提供帮助。本文档后 附有销售办事处的联系方式。

也可通过 http://microchip.com/support 获得网上技术支持。

## 读者反馈表

我们努力为您提供最佳文档,以确保您能够成功使用 Microchip 产品。如果您对文档的组织、条理性、主题及其他有助于提高文档质量的方面有任何意见或建议,请填写本反馈表并传真给我公司 TRC 经理,传真号码为 86-21-5407-5066。请填写以下信息,并从下面各方面提出您对本文档的意见。

	· IRC 经埋 于: 读者反馈			总负数	
发E	自: 姓名				
	地址				
	国家/省份	分/城市/邮编			
	电话: ( _	)		传真:()	
应	用(选填):				
您都	希望收到回复吗	3?是 否			
器作	牛: dsPIC30	F4011/4012	文献编号:	DS70135G_CN	
问题	题:				
1.	本文档中哪些	部分最有特色?			
					_
2.	本文档是否满	足了您的软硬件开	发要求?如何满足的	?	
3	你认为太文档		—————— 解吗?如果不便于理解	解 那ん 问题何本 2	
0.	心队乃华又怕	17组织知何丈」 连	件号: XI未个区 ] 连!	好,加公问题刊工:	
4.	您认为本文档		以改善其结构和主题	?	
			_		_
5.	您认为本文档	中可以删减哪些内容	容,而又不会影响整位	体使用效果?	
6	木文档由早丕			 出是什么信息及其具体页数。	
٥.	<b>平</b> 久归于足口	<b>计任相关以及专</b> 位/	<b>芯:如来行在,</b> 说话	山 <b>足</b> 日 公旧志汉共共	
7.	您认为本文档	还有哪些方面有待。			

## 产品标识体系

欲订货,或获取价格、交货等信息,请与我公司生产厂或各销售办事处联系。





## 全球销售及服务网点

#### 美洲

公司总部 Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 1-480-792-7200 Fax: 1-480-792-7277

技术支持:

http://www.microchip.com/ support

网址: www.microchip.com

亚特兰大 Atlanta

Duluth, GA Tel: 1-678-957-9614

Fax:1-678-957-1455

波士顿 Boston

Westborough, MA Tel: 1-774-760-0087 Fax: 1-774-760-0088

芝加哥 Chicago

Itasca, IL Tel: 1-630-285-0071

Fax: 1-630-285-0075

克里夫兰 Cleveland Independence, OH

Tel: 1-216-447-0464 Fax: 1-216-447-0643

达拉斯 Dallas

Addison, TX Tel: 1-972-818-7423 Fax: 1-972-818-2924

底特律 Detroit

Farmington Hills, MI Tel: 1-248-538-2250 Fax: 1-248-538-2260

印第安纳波利斯 Indianapolis

Noblesville, IN Tel: 1-317-773-8323 Fax: 1-317-773-5453

洛杉矶 Los Angeles Mission Viejo, CA

Tel: 1-949-462-9523 Fax: 1-949-462-9608

圣克拉拉 Santa Clara

Santa Clara, CA Tel: 1-408-961-6444 Fax: 1-408-961-6445 加拿大多伦多 Toronto

Mississauga, Ontario,

Canada

Tel: 1-905-673-0699 Fax: 1-905-673-6509

#### 亚太地区

亚太总部 Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hona Kona

Tel: 852-2401-1200 Fax: 852-2401-3431

中国 - 北京

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

中国 - 成都

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

中国 - 重庆

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

中国 - 杭州

Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

中国 - 香港特别行政区 Tel: 852-2401-1200

Fax: 852-2401-3431

中国 - 南京

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

中国 - 青岛

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

中国 - 上海

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

中国 - 沈阳

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

中国 - 深圳

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

中国 - 武汉

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

中国 - 西安

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

中国 - 厦门

Tel: 86-592-238-8138 Fax: 86-592-238-8130

中国 - 珠海

Tel: 86-756-321-0040 Fax: 86-756-321-0049

#### 亚太地区

**台湾地区 - 高雄** Tel: 886-7-536-4818

Fax: 886-7-330-9305

台湾地区 - 台北 Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

台湾地区 - 新竹

Tel: 886-3-5778-366 Fax: 886-3-5770-955

澳大利亚 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

印度 India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

印度 India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

印度 India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

日本 Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

韩国 Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

**韩国 Korea - Seoul** Tel: 82-2-554-7200 Fax: 82-2-558-5932 或

82-2-558-5934

马来西亚 Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

马来西亚 Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

菲律宾 Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

新加坡 Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

泰国 Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

#### 欧洲

奥地利 Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

丹麦 Denmark-Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

法国 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

德国 Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

意大利 Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

荷兰 Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

西班牙 Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

英国 UK - Wokingham

Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/02/11