

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных систем и технологий **Кафедра** информационных систем

КУРСОВОЙ ПРОЕКТ

по дисциплине «Проектирование информационных систем» на тему: «Проектирование информационной системы оформления заявок на ремонт компьютерной техники»

Направление: 09.03.02 «Информационные системы и технологии»

Студент группы ИДБ-15-13	подпись	_ Федотов И.В.
Научный руководитель к.т.н., доц.	полнись	_ Овчинников П.Е.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)	4
ГЛАВА 2. ДИАГРАММЫ ПОТОКОВ ДАННЫХ (DFD)	6
ГЛАВА 3. ДИАГРАММЫ UML	7
3.1. ДИАГРАММЫ КЛАССОВ	7
3.2. ДИАГРАММЫ ПОСЛЕДОВАТЕЛЬНОСТИ	8
ЗАКЛЮЧЕНИЕ	10
СПИСОК ЛИТЕРАТУРЫ	11

ВВЕДЕНИЕ

Современному обществу удобнее искать информацию в интернете. В случае поломки компьютера или другого устройства, кто-то пытается решить проблему своими силами, что не всегда уместно, а остальная часть пользователей начинает поиски сервисных центров, чтобы оставить заявку на ремонт. Именно для этого и нужно оптимизировать данный процесс — создать систему, которая будет специализироваться на диагностике и ремонте компьютерной техники.

Актуальность разработки автоматизированной системы состоит в значительном упрощении и автоматизации процесса взаимодействия пользователя с сервисным центром, в удобном и быстром оформлении заявок на ремонт компьютерной техники.

Объектом исследования является структура сервисного центра компании ООО «Сити-Стрим».

Исследования выполняются с использованием следующих моделей:

- Функциональной (IDEF0);
- Диаграммы потоков данных(DFD);
- Диаграммы классов (UML).

Моделирование позволяет лучше понять структуру рассматриваемого процесса в рамках взятой компании. Разработка функциональной модели ведется с точки зрения клиента.

ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Функциональная модель IDEF0 представляет собой набор блоков, каждый из которых представляет собой «черный ящик» с входами и выходами, управлением и механизмами, которые детализируются (декомпозируются) до необходимого уровня. Наиболее важная функция расположена в верхнем левом углу. А соединяются функции между собой при помощи стрелок и описаний функциональных блоков. При этом каждый вид стрелки или активности имеет собственное значение. Данная модель позволяет описать все основные виды процессов, как административные, так и организационные.

Стрелки могут быть:

- входящие вводные, которые ставят определенную задачу;
- исходящие выводящие результат деятельности;
- управляющие (сверху вниз) механизмы управления (положения, инструкции и пр);
- механизмы (снизу вверх) что используется для того, чтобы произвести необходимую работу [1].

В качестве входящих потоков в процессе оформления заявок на ремонт компьютерной техники нужно рассматривать:

- данные о клиенте;
- проблема (причина, по которой клиент обращается в сервисный центр).

Выходным потоком будет выступать «оформленная заявка». Управляющим потоком является «пожелания клиента». Основные механизмы управления – клиент и система (сайт) (рис. 1).

Рис. 1. Функциональная модель IDEF0 (Ветка А0) Далее разбиваем ветку А0 (рис. 2) на три функциональных блока:

- А1: Выявить потребность пользователя;
- А2: Выбрать интересующую услугу;
- А3: Оформить заявку.

Рис. 2. Функциональная модель IDEF0 (Раскрытие ветки A0)

ГЛАВА 2. ДИАГРАММЫ ПОТОКОВ ДАННЫХ (DFD)

DFD — это нотация, предназначенная для моделирования информационных систем с точки зрения хранения, обработки и передачи данных [2]. В процессе декомпозиции было получено 2 блока (рис. 3-4).

Рис. 3. Диаграмма потоков данных «Выбрать интересующую услугу»

Рис. 4. Диаграмма потоков данных «Оформить заявку»

ГЛАВА 3. ДИАГРАММЫ UML

3.1. ДИАГРАММЫ КЛАССОВ

Диаграмма классов - это набор статических, декларативных элементов модели. Диаграммы применяться классов ΜΟΓΥΤ при прямом проектировании, то есть в процессе разработки новой системы, при обратном проектировании - описании существующих и используемых систем. Информация с диаграммы классов напрямую отображается в исходный код приложения - в большинстве существующих инструментов UML-моделирования возможна кодогенерация для определенного программирования. Таким образом, диаграмма классов - конечный результат проектирования и отправная точка процесса разработки [3].

Было рассмотрено 3 диаграммы:

- потоков (рис. 5);
- ролей (рис. 6);
- модулей (рис. 7).

Рис. 5. Диаграмма классов для потоков

Рис. 6. Диаграмма классов для ролей

Рис. 7. Диаграмма классов для модулей

3.2. ДИАГРАММЫ ПОСЛЕДОВАТЕЛЬНОСТИ

Диаграмма последовательности — диаграмма, на которой для некоторого набора объектов на единой временной оси показан жизненный цикл какого-либо определённого объекта (создание-деятельность-уничтожение некой сущности) и взаимодействие актёров (действующих лиц) ИС в рамках какого-либо определённого прецедента (отправка запросов и получение ответов)[4]. В данной работе бы разработана одна диаграмма последовательностей, исходя из процесса оформления заявок на ремонт (рис.

Рис. 8. Диаграмма последовательностей

Эффективность проекта

- Период рассмотрения 20 дней.
- t(оформление без системы) = 20 минут; t(с системой) = 5 минут.
- Сотрудник за рабочий день (9 часов) может принять 50 зявок.
- В системе: 50х5 = 250 мин/день; 250х20 = 5000 мин = 83,3 ч (за рассмотренный период).
- Без системы: 50x20 = 1000 мин/день; 1000x20 = 20000 мин = 333,3 ч (за рассмотренный период).
- Пусть 3 сотрудников в день пользуются системой: 3х83,3 = 250 ч/час.
- Если сотрудники не пользуются системой: 3х333,3 = 1000 ч/час.
- 1000 200 = 750 ч/час/мес. выгоды

Рис. 9. Расчет эффекта

ЗАКЛЮЧЕНИЕ

При выполнении проекта были созданы модели, которые показывают визуально процесс оформления заявок на ремонт компьютерной техники. Это функциональная модель (IDEF0), которая имела три уровня декомпозиции, 2 диаграммы потоков данных (DFD) и диаграммы (UML) разного назначения.

В рамках расчета эффективности проекта было получено, что использование системы максимально упрощает работу сотрудников сервисного центра (принятие заявок), а также обращение клиентов, так как при обычном оформлении заявки в центре уходит больше времени, чем при использовании системы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сайт «Хабр» [Электронный ресурс] Режим доступа: https://habr.com/company/trinion/blog/322832/, свободный. Дата обращения: 15.12.2018 г.
- 2. Сайт «Хабр» [Электронный ресурс] Режим доступа: https://habr.com/company/trinion/blog/340064/, свободный. Дата обращения: 15.12.2018 г.
- 3. Сайт «НОУ ИНТУИТ» [Электронный ресурс] Режим доступа: http://www.intuit.ru/studies/courses/1007/229/lecture/5954?page=2, свободный. Дата обращения: 15.12.2018 г.
- 4. Сайт «Википедия» [Электронный ресурс] Режим доступа: https://ru.wikipedia.org/wiki/Диаграмма_последовательности, свободный. Дата обращения: 15.12.2018 г.