

Data Science Foundation Lesson #6 - Exploratory Data Analysis II

Ivanovitch Silva September, 2017

Agenda

- Case study: movie ratings
- Histogram and Box Plots
- Wrapper from Pandas to Matplotlib
- Guided project: EDA for academic performance

Update the repository

git clone https://github.com/ivanovitchm/EEC2006.git

Or

git pull

Case study: movie ratings

IMDB

Rotten Tomatoes

Fandango

Bias in movie ratings

Reviewing the dataset

	FILM	RT_user_norm	Metacritic_user_nom	IMDB_norm	Fandango_Ratingvalue	Fandango_Stars
0	Avengers: Age of Ultron (2015)	4.3	3.55	3.90	4.5	5.0
1	Cinderella (2015)	4.0	3.75	3.55	4.5	5.0
2	Ant-Man (2015)	4.5	4.05	3.90	4.5	5.0
3	Do You Believe? (2015)	4.2	2.35	2.70	4.5	5.0
4	Hot Tub Time Machine 2 (2015)	1.4	1.70	2.55	3.0	3.5

https://github.com/fivethirtyeight/data/tree/master/fandango

Frequency Distribution

Frequency Distribution (sorted by frequency in descending order)

> Value Frequency 4.1 16 4.2 12 3.9 12 4.3 11 3.7 9 3.5 4.5 3.4 4.4 4.0 2.9 5 3.8

Frequency Distribution (sorted by unique value in ascending order)

Value	Frequency
2.7	2
2.8	2
2.9	5
3.0	4
3.1	3
3.2	5
3.3	4
3.4	9
3.5	9
3.6	8
3.7	9
3.8	5
3.9	12
4.0	7
4.1	16
4.2	12
4.3	11
4.4	7
4.5	9
4.6	4
4.8	3

Name: Fandango_Ratingvalue, dtype: int64

3

2 2

3.3 4.6 3.0 4.8 3.1

2.8

Name: Fandango_Ratingvalue, dtype: int64

Binning

Histogram in Matplotlib

ax.hist(norm_reviews['Fandango_Ratingvalue'], range=(0, 5))

Comparing histograms

Around 50% of user ratings fall in the 2 to 4 score range

Around 75% of user ratings fall in the 2 to 4 score range

Around 50% of user ratings fall in the 2 to 4 score range

Around 90% of user ratings fall in the 2 to 4 score range

Quartis and Box Plot

Rotten Tomatoes

Multiple Box Plot

pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

matpletlib


```
# Enable matplotlib plot inline
%matplotlib inline
norm_reviews.Fandango_Ratingvalue.hist(bins=20, range=(0,5))
```

other way to do the same thing
norm_reviews.Fandango_Ratingvalue.plot(kind='hist', bins=20, range=(0,5));

norm_reviews.plot(kind='hist', bins=20, range=(0,5), alpha=0.3);

norm_reviews.plot(kind='hist', bins=20, range=(0,5), stacked=True);

norm_reviews.Fandango_Ratingvalue.plot(kind='box')
norm_reviews.plot(kind='box',rot=90)

norm_reviews.plot(kind='scatter',x='RT_user_norm', y='Fandango_Ratingvalue')

Guided Project: academic performance

	a_ID	CEP	ano_ingresso	periodo_ingresso	status	ano_disciplina	periodo_disciplina	nota	disciplina_ID	status.disciplina	enen-nota
0	0	59015430	2014	1	CANCELADO	2014	2	2.6	0	Reprovado	618.0
1	0	59015430	2014	1	CANCELADO	2015	1	8.0	0	Aprovado	618.0
2	1	59073120	2014	1	CANCELADO	2014	2	0.1	0	Reprovado	615.0
3	2	59072580	2014	1	ATIVO	2014	2	6.1	0	Aprovado	600.0
4	3	59088150	2014	1	ATIVO	2014	1	3.0	0	Reprovado	673.0

