

Licence 3

Images Contrôle Continu

Il est important de rédiger complètement et avec précision pour justifier toutes les affirmations.

Exercice 1
On considère une image I de taille 8x6 dont les niveaux de gris peuvent prendre des valeurs comprises entre 0 et 99.

90	96	86	86	86	96
96	90	6	6	90	90
90	14	28	26	7	80
86	22	24	28	7	35
86	21	7	8	20	30
80	6	7	19	21	30
7	16	16	20	23	8
14	13	13	12	9	23

1°/ En considérant un masque de taille 3x3, appliquer un filtre médian à l'image I pour obtenir une image J que l'on indiquera.

Appliquer deux fois un filtre médian est-il équivalent à l'application d'un seul filtre médian ? On justifiera la réponse.

2°/ Construire l'image I' transformée de I par la transformation ponctuelle associée à la fonction définie sur les niveaux de gris donnée par le graphe suivant.

3°/ Quel est l'objectif théorique de cette transformation?

4°/ Binariser l'image I' au niveau 30. Le résultat est une image I" que l'on indiquera.

5°/ Quel est le nombre de composantes 4-connexes de I" ? Quel est le nombre de composantes 8-connexes de I" ?

Exercice 2

Soit le filtre défini par le produit de convolution d'une image I et de $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$.

Dans quel objectif réalise-t-on la transformation? On précisera toutes les étapes qui sont nécessaires pour atteindre l'objectif.

Exercice 3

Calculer le produit de convolution entre les deux filtres suivants :

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 4 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} et \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$