tive elements the equation (1.3) holds for every $\Phi \in C_0(X)^*$, $\rho \in C_0(X)$ ". This means that the net $(\int_0^r T(t)^* \Phi dt)_{r>0}$ converges weakly to $R(0,A^*)^{\varphi}$. But for positive ${}^{\varphi}$ the net is monotone and therefore strongly convergent by Dini's Theorem (see Schaefer (1974), II.Thm.5.9). Hence $R(0,A^*)^{\varphi} = \int_0^{\infty} T(t)^{*\varphi} dt$ for every $\varphi \in C_{\Omega}(X)^*$. Now we make use of the special character of the space $C_{\Omega}(X)$. For positive functions f_1 , $f_2 \in C_0(X)$ we have $\sup(\|f_1\|, \|f_2\|) =$ $\|\sup(f_1,f_2)\|$. Let μ_1 , μ_2 \in $C_0(X)$, and $\varepsilon > 0$. Then there are positive elements f , g in the unit ball of $C_{Q}(X)$ such that $\langle f, \mu \rangle \ge \|\mu\| - \varepsilon$ and $\langle g, \mu_2 \rangle \ge \|\mu_2\| - \varepsilon$. For $h := \sup(f,g)$ we obtain ||h|| ≤ 1 and $\|\mu_1 + \mu_2\| \ge \langle h, \mu_1 + \mu_2 \rangle \ge \langle f, \mu_1 \rangle + \langle g, \mu_2 \rangle \ge \|\mu_1\| + \|\mu_2\| - 2\varepsilon$. Hence $\|\mu_1 + \mu_2\| = \|\mu_1\| + \|\mu_2\|$ for μ_1 , $\mu_2 \in C_0(X)_+$ (see also C-I). Approximating the integral by Riemann sums one obtains ($\mu \in C_{o}(X)^{*}_{+}$). Given $\mu \in C_{o}(X)^{*}$ there is a sequence $\mu_{n} \in C_{o}(X)^{*}_{+}$ converging $\sigma(E',E)$ to $|\mu|$ (Lemma 1.3). From $|\langle f,T(t)'\mu\rangle| \leq$ $\langle T(t)|f|, |\mu| \rangle = \lim_{n\to\infty} \langle T(t)|f|, \mu_n \rangle$ we conclude $|\langle f, T(t)|\mu \rangle| \le$ $\liminf_{n\to\infty} \|f\| \|T(t)^*\mu_n\|$ and therefore $\|T(t)^*\mu\| \le \liminf_{n\to\infty} \|T(t)^*\mu_n\|$ (t \geq 0). Applying Fatou's Lemma we obtain $\int_{0}^{\infty} \|T(t)'\mu\| dt \le \int_{0}^{\infty} (\liminf \|T(t)'\mu\|) dt \le$ $\lim \inf \int_0^\infty \|T(t)'\mu\| dt = \lim \|R(0,A^*)\mu_n\| \le \|R(0,A^*)\| \cdot \lim \|\mu_n\| < \infty.$ (observe that $t \rightarrow ||T(t)'\mu|| = \sup \{\langle T(t)f, \mu \rangle : ||f|| \le 1\}$ is lower semi-continuous and hence measurable). Using A-IV, Thm.1.10 we obtain $\omega(A^*)$ < 0 . But $\omega(A) = \omega(A^*)$ by A-III, 4.4(iii), which contradicts $\omega(A) = 0 .$

Remark 1.5. If (T(t)) is a positive semigroup on an α -directed ordered Banach space E (see Asimow-Ellis (1980),p.39), then the dual of E admits a reversion of the triangle inequality; i.e. $\sum \|\mu_i\| \leq \alpha \|\sum \mu_i\|$ for $\mu_i \in E_i^*$, and Theorem 1.4 remains valid (see Batty-Davies (1983)). The proof given above may be used with almost no modification.

At this point we close the discussion of the stability of positive semigroups on $C_{O}(X)$ and refer to Section 1 of C-IV and D-IV respectively, where the stability of positive semigroups on arbitrary Banach lattices and on C^* -algebras will be treated.