Object Detection

DERT: End-to-End Object Detection with Transformers

- **simplicity**: simplify the object detection pipeline by removing the need for intermediate steps like proposal generation and NMS
- end-to-end: predict the final set of objects (and their bounding boxes) in a single step
- fully differentiable: can be entirely trained in a single pass of gradient descent, which usually comes with significant speed and simplicity

DERT: End-to-End Object Detection with Transformers

1- Universal Data Tool

Universal Data Tool là một web/desktop app cho phép chỉnh sửa và đánh nhãn image, text, audio, document và cho phép xem và chỉnh sửa lại ngay trên giao diện.

2- Computer Vision Annotation Tool (CVAT)

3- <u>Label Studio</u>

4- CleanVision

YOLOv3 uses a variant of **Darknet**, which originally has **53** layer network trained on ImageNet. For the task of detection, 53 more layers are stacked onto it, giving us a **106** layer fully convolutional underlying architecture for YOLOv3. The detections are made at three layers **82nd**, **94th** and **106th** layer.

C	From	n	Params	Module	Arguments
0	-1	1	3520	CBS	[3, 32, 6, 2, 2]
1	-1	1	18,560	CBS	[32, 64, 3, 2]
2	-1	1	18,816	C3	[64, 64, 1]
3	-1	1	73,984	CBS	[64, 128, 3, 2]
4	-1	2	115,712	C3	[128, 128, 2]
5	-1	1	295,424	CBS	[128, 256, 3, 2]
6	-1	3	625,152	C3	[256, 256, 3]
7	-1	1	1,180,672	CBS	[256, 512, 3, 2]
8	-1	1	1,182,720	C3	[512, 512, 1]
9	-1	1	656,896	SPPF	[512, 512, 5]

The backbone is **CSPDarknet53**.

Parameter of backbone in YOLOv5 network structure.

PaddleDectection

- PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle.
- Providing over 30 model algorithm and over 300 pre-trained models.
- Task: object detection, instance segmentation, keypoint detection, multi-object tracking.
- Offer high- performance & lightweight industrial SOTA models on servers and mobile devices, champion solution and cutting-edge algorithm.

d	Whole Process Tutorial	Industrial Quality Inspection • Meter reading • Tile surface defect detection • PCB defect detection	spection vection compliance v statistics Smart Transportation Vehicle tracking by UVA Vehicle flow statistics Communication tower recognition		hicle tracking by A hicle flow statistics mmunication tower	Smart City Roadside litter detection Electrical bike detection in e Fighting, smoking, and cell detection			
d	High Performance Deployment	Model Compression Pruning • Knowledge Dis-Quantization • Neural Archite	Multi-End Secure Deployment Service · Mobile-Side · Local · Docker			Deployment Demo • Fitness APP • Tracking GUI • Pedestrian Detection APP			
n	Applications Pre-trained Models End to End Pipeline	Industrial Human Attribute Recognition, Beh Pedestrian attribute: 26 at Pedestrian Tracking: Single Visitor counting and tracki Behavior Detection: falling smoking and trespassing	avior Detection tributes such a e/Multi-Camer ing records	, Throughput, ReID s gender, age a Tracking (ReID), Car Type/Color Dete Car Attribute: car ty Key Technique: car			al Vehicle Analysis Tool PP-Vehicle ection, Illegal Behavior Detection, Throughput ype, color detection, Tracking, OCR leo and online video as input		
e n,	Industrial PP series models	PP-YOLOE+ PP-YOL PP-YOLOE-R PP-YOL (Rotate) (Small Ot	✓ UltraPP−Pico0.7M	tra-light Object Detection coDet		Nultra-light Human Keypoint Detectio PP-TinyPose 122FPS ∙51.8%AP			
t- n	Algorithm	General Object Dete Single Stage: YOLOv7、YOL Two Stage: Mask-RCNN、F Others: Transformer series、 SOLOv2	Single Sta Two Stag	Multi-Objects Tracking Single Stage: FairMOT、JDE Two Stage: ByteTrack、 DeepSORT、OC-SORT		Human Keypoint Detection Top Down: HRNet, DarkPo LiteHRNet Bottom Up: HigherHRNet,	se.		
n	Courses	Al Fast Track Industrial object dete technology and a whole practice	Freshman Learning Camp Object detection learning camp for 7 days		ion learning	Industry Lecture *Smart city session *Smart manufacture session *Smart finance session			
	Business Corporation	Joint Free tech support and jo	t Promotion	opportunities Co-constr		Co-constr	Co-Construction struct the ecology of PaddlePaddle		

PaddleDectection

Detectron2

- Detectron2 is Facebook AI Research next generation library that provides SoTA detection and segmentation algorithms.
- It is the successor of Detectron and maskrcnn-benchmark.
- Support a number of computer vision research projects and production applications in Facebook.

Detectron2

Tutorials

- Installation
- Requirements
- Build Detectron2 from Source
- Install Pre-Built Detectron2 (Linux only)
- Common Installation Issues
- Installation inside specific environments:
- Getting Started with Detectron2
 - Inference Demo with Pre-trained Models
 - Training & Evaluation in Command Line
 - Use Detectron2 APIs in Your Code
- · Use Builtin Datasets
- Expected dataset structure for COCO instance/keypoint detection:
- Expected dataset structure for PanopticFPN:
- Expected dataset structure for LVIS instance segmentation:
- Expected dataset structure for cityscapes:
- Expected dataset structure for Pascal VOC:
- Expected dataset structure for ADE20k Scene Parsing:
- Extend Detectron2's Defaults
- Use Custom Datasets
 - Register a Dataset
 - o "Metadata" for Datasets
 - Register a COCO Format Dataset
 - Update the Config for New Datasets
- Dataloader
 - How the Existing Dataloader Works
 - Write a Custom Dataloader
 - Use a Custom Dataloader
- Data Augmentation
 - Basic Usage
 - Write New Augmentations
 - Advanced Usage

- Use Models
 - Build Models from Yacs Config
- Write Models
 - Register New Components
 - Construct Models with Explicit Arguments
- Training
 - Custom Training Loop
 - Trainer Abstraction
 - Logging of Metrics
- Evaluation
 - Use evaluators
 - Evaluators for custom dataset
- Yacs Configs
 - Basic Usage
 - Configs in Projects
 - Best Practice with Configs
- Lazy Configs
 - Python Syntax
 - Recursive Instantiation
 - Using Model Zoo LazyConfigs
 - Summary
- Deployment
 - Deployment with Tracing or Scripting
 - Deployment with Caffe2-tracing
 - Conversion to TensorFlow

COCO Object Detection Baselines

Faster R-CNN:

Name	lr sched	train time (s/iter)	inference time (s/im)	mem (GB)	box AP	model id	download
R50-C4	1x	0.551	0.102	4.8	35.7	137257644	model metrics
R50-DC5	1x	0.380	0.068	5.0	37.3	137847829	model metrics
R50-FPN	1x	0.210	0.038	3.0	37.9	137257794	model metrics
R50-C4	Зх	0.543	0.104	4.8	38.4	137849393	model metrics
R50-DC5	Зх	0.378	0.070	5.0	39.0	137849425	model metrics
R50-FPN	3x	0.209	0.038	3.0	40.2	137849458	model metrics
R101-C4	Зх	0.619	0.139	5.9	41.1	138204752	model metrics
R101-DC5	3x	0.452	0.086	6.1	40.6	138204841	model metrics
R101-FPN	Зх	0.286	0.051	4.1	42.0	137851257	model metrics
X101-FPN	Зх	0.638	0.098	6.7	43.0	139173657	model metrics

Detectron2

RetinaNet:

Name	lr sched	train time (s/iter)	inference time (s/im)	train mem (GB)	box AP	model id	download
R50	1x	0.205	0.041	4.1	37.4	190397773	model metrics
R50	Зх	0.205	0.041	4.1	38.7	190397829	model metrics
R101	Зх	0.291	0.054	5.2	40.4	190397697	model metrics

RPN & Fast R-CNN:

Name	Ir sched	train time (s/iter)	inference time (s/im)	train mem (GB)	box AP	prop.	model id	download
RPN R50-C4	1x	0.130	0.034	1.5		51.6	137258005	model metrics
RPN R50-FPN	1x	0.186	0.032	2.7		58.0	137258492	model metrics
Fast R-CNN R50-FPN	1x	0.140	0.029	2.6	37.8		137635226	model metrics

Name	lr sched	time (s/iter)	time (s/im)	mem (GB)	box AP	mask AP	model id	download
R50-C4	1x	0.584	0.110	5.2	36.8	32.2	137259246	model metrics
R50-DC5	1x	0.471	0.076	6.5	38.3	34.2	137260150	model metrics
R50-FPN	1x	0.261	0.043	3.4	38.6	35.2	137260431	model metrics
R50-C4	Зх	0.575	0.111	5.2	39.8	34.4	137849525	model metrics
R50-DC5	3x	0.470	0.076	6.5	40.0	35.9	137849551	model metrics
R50-FPN	Зх	0.261	0.043	3.4	41.0	37.2	137849600	model metrics
R101-C4	3x	0.652	0.145	6.3	42.6	36.7	138363239	model metrics
R101-DC5	3x	0.545	0.092	7.6	41.9	37.3	138363294	model metrics

Name	epochs	train time (s/im)	inference time (s/im)	box AP	mask AP	model id	download
R50-FPN	100	0.376	0.069	44.6	40.3	42047764	model metrics
R50-FPN	200	0.376	0.069	46.3	41.7	42047638	model metrics
R50-FPN	400	0.376	0.069	47.4	42.5	42019571	model metrics
R101-FPN	100	0.518	0.073	46.4	41.6	42025812	model metrics
R101-FPN	200	0.518	0.073	48.0	43.1	42131867	model metrics
R101-FPN	400	0.518	0.073	48.9	43.7	42073830	model metrics
regnetx_4gf_dds_FPN	100	0.474	0.071	46.0	41.3	42047771	model metrics
regnetx_4gf_dds_FPN	200	0.474	0.071	48.1	43.1	42132721	model metrics
regnetx_4gf_dds_FPN	400	0.474	0.071	48.6	43.5	42025447	model metrics
regnety_4gf_dds_FPN	100	0.487	0.073	46.1	41.6	42047784	model metrics
regnety_4gf_dds_FPN	200	0.487	0.072	47.8	43.0	42047642	model metrics
regnety_4gf_dds_FPN	400	0.487	0.072	48.2	43.3	42045954	model metrics