PRACTICA Nº 2

CIRCUITO TRIFASICO FUENTE DELTA

Y CARGA DELTA EQUILIBRADO

OBJETIVOS.-

- Aprender a realizar una conexión delta delta, y realizar mediciones de tensiones y corrientes.
- Verificar las relaciones entre corriente de fase y de línea en conexión delta.
- Verificar y comparar el comportamiento de tensiones y corrientes con cargas puramente resistivas y cargas RL y RC conectadas en delta.

FUNDAMENTO TEORICO.-

Una fuente trifásica de tensión delta es aquella que no tiene salida de neutro, teóricamente está formada por tres fuentes monofásicas conectadas una a continuación de la otra de igual valor eficaz pero desfasadas 120° entre ellas. Por lo tanto, en su salida solamente medimos tensiones de línea.

El circuito trifásico con generación delta y carga delta $(\Delta - \Delta)$ es el mostrado en la figura:

En estos circuitos se cumplen las siguientes relaciones:

$$V_{linea} = V_{fase}$$
 (A)

$$I_{linea} = \sqrt{3} * I_{fase}$$
 (B)

Como se puede observar las tensiones de línea y de fase son iguales, y las corrientes de línea y de fase son diferentes.

ARMADO DEL CIRCUITO.-

- Caso 1.- Carga Resistiva
- Caso 2.- Carga resistiva inductiva.
- Caso 3.- Carga resistiva capacitiva

EQUIPOS Y/O ELEMENTOS A UTILIZAR:

- Fuente de tensión trifásica 220 V rms línea
- Multímetros

- Tres resistencias monofásicas de igual valor
- Tres inductancias monofásicas de igual valor
- Tres capacitancias monofásicas de igual valor
- Conectores requeridos

PROCEDIMIENTO.-

- 1. Realizar los respectivos cálculos teóricos.
- 2. Armar los circuitos indicados en la clase.
- 3. Realizar las mediciones y llenar las tablas.

CASO 1.- CARGA RESISTIVA.-

I_{L1}	I_{L2}	I_{L3}

	Z_1	Z_2	Z_3
U _{FASE}			
FASE			

CASO 2 .- CARGA RESISTIVA-INDUCTIVA.-

I_{L1}	I_{L2}	I_{L3}

	Z_1	Z_2	Z_3
U _{FASE}			
U _R			
U _{IND}			
I _{FASE}			

CASO 3.- CARGA RESISTIVA - CAPACITIVA.-

I_{L1}	I_{L2}	I_{L3}

	Z_1	Z_2	Z_3
U _{FASE}			
U _R			
U _{CAP}			
I _{FASE}			

CUESTIONARIO.-

- 1. Los voltajes de fase medidos, ¿son perfectamente equilibrados? ¿A qué se debe el deseguilibrio?
- 2. Con los datos de laboratorio determine las relaciones entre corrientes de línea y de fase. ¿Este factor cumple las relaciones establecidas en teoría?. Explique las variaciones en ambos casos claramente si los hubiera.
- 3. Verificar con las tensiones medidas la ley de voltajes de Kirchhoff en cada impedancia R-L y R-C. Dibuje el diagrama fasorial para cada caso y determine el ángulo de desfase entre la tensión de fase en la carga y la corriente de fase.
- 4. Investigue cuales son las ventajas y/o desventajas de este sistema delta frente al sistema estrella.

CONCLUSIONES Y RECOMENDACIONES.-