МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка параметров надежности программ
по временным моделям обнаружения ошибок»

Студентка гр. 6304	Блинникова Ю. И.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020 Задание.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{Xi\}$, где Xi случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в π .3), в соответствии π :
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет mpaвн = 10, CKO spaвн = 20/(2*sqrt(3)) = 5.8.
 - Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1

и соответственно mэксп=sэксп= 1/b=10.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t)/b$

В) релеевским законом распределения

 $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно mpeл = c*sqrt($\square/2$), speл= c*sqrt($2-\square/2$).

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{Xi\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{Xi\}$ использовать n = 30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2...,n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.

- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Генерация массива равномерным законом.

1.1. n = 30

Таблица 1 – сгенерированный массив при n = 30(100%)

i	N	i	N	i	N
1	1.065	2	2.082	3	2.367
4	3.656	5	3.763	6	4.265
7	4.533	8	6.218	9	6.701
10	6.713	11	7.877	12	7.928
13	8.214	14	8.353	15	9.347
16	9.694	17	9.716	18	10.927
19	11.674	20	13.828	21	14.458
22	15.147	23	17.081	24	17.300
25	17.534	26	17.638	27	18.113
28	18.266	29	18.372	30	19.147

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
20.16 > 15.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 2 – Вычисления m, f, g

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.769	2.535	2.337	2.168	2.022	1.894
f-g	1.226	0.492	0.221	0.087	0.013	0.031

m = 35

B = m - 1 = 34

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.006482

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	Xi
31	38.569
32	51.426
33	77.139
34	154.278

Время до полного завершения тестирования: 321.412

Полное время: 633.389

1.2. n = 24

Таблица 3 – сгенерированный массив при n = 24(80%)

i	N	i	N	i	N
1	1.860	2	3.929	3	4.054

4	5.384	5	7.643	6	9.275
7	9.842	8	10.926	9	10.997
10	11.239	11	11.379	12	11.700
13	13.326	14	14.051	15	14.075
16	16.373	17	17.000	18	17.772
19	18.025	20	18.476	21	18.913
22	19.038	23	19.173	24	19.489

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
15.33 > 12.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 4 – Вычисления m, f, g

m	25	26	27	28	29	30	31	32	33
f	3.776	2.816	2.354	2.058	1.844	1.678	1.545	1.434	1.341
g	2.482	2.249	2.056	1.894	1.756	1.636	1.532	1.440	1.358
f-g	1.294	0.567	0.298	0.164	0.088	0.042	0.013	0.005	0.018

m = 32

$$B = m - 1 = 31$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

K = 0.004737

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	25	26	27	28	29	30	31
Xi	30.160	35.187	42.224	52.780	70.373	105.560	211.120

Время до полного завершения тестирования: 547.403

Полное время: 851.342

1.3. n = 18

Таблица 5 — сгенерированный массив при n = 18(60%)

i	N	i	N	i	N
1	0.500	2	1.750	3	1.945
4	2.604	5	3.256	6	3.419
7	5.913	8	7.516	9	8.979
10	9.336	11	9.760	12	10.363
13	13.098	14	14.996	15	15.393
16	15.934	17	17.305	18	18.444

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
12.813 > 9.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 6 – Вычисления m, f, g

m	19	20	21
f	3.495	2.548	2.098
g	2.909	2.505	2.199
f-g	0.586	0.043	0.101

B = m - 1 = 19

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.015604

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	Xi
19	64.085

Время до полного завершения тестирования: 64.085

Полное время: 224.596

2. Генерация массива экспоненциальным законом распределения.

2.1.
$$n = 30$$

Таблица 7 – сгенерированный массив при n = 30(100%)

i	N	i	N	i	N
1	0.642	2	1.051	3	1.532
4	1.553	5	2.015	6	2.028
7	2.127	8	2.706	9	3.234
10	3.733	11	3.798	12	3.845
13	3.857	14	4.510	15	4.820
16	5.305	17	5.625	18	5.914
19	6.732	20	6.758	21	7.337
22	7.937	23	8.891	24	9.250
25	9.865	26	9.990	27	12.778
28	16.882	29	22.552	30	34.632

Проверка существования максимума \hat{B} :

$$A > (n + 1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
22.34 > 15.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 8 – Вычисления m, f, g

m	31	32	33
f	3.995	3.027	2.558
g	3.466	3.107	2.815
f-g	0.529	0.079	0.257

$$m = 32$$

$$B = m - 1 = 31$$

K = 0.014661

i	Xi
31	68.209

Время до полного завершения тестирования: 68.209

Полное время: 280.108

2.2. n = 24

Таблица 9 – сгенерированный массив при n = 24(80%)

i	N	i	N	i	N
1	0.205	2	0.316	3	0.348
4	0.374	5	0.468	6	1.260
7	3.136	8	5.002	9	5.222
10	5.364	11	5.992	12	7.253
13	8.863	14	10.887	15	13.001
16	13.218	17	14.078	18	15.556

19	15.606	20	19.108	21	24.382
22	24.981	23	30.519	24	60.246

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
18.96> 12.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 10 – Вычисления m, f, g

m	25	26
f	3.776	2.816
g	3.972	3.408
f-g	0.196	0.592

$$m = 25$$

$$B = m - 1 = 24$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.013919

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

Время до полного завершения тестирования: 0

Полное время: 285.385

2.3.
$$n = 18$$

Таблица 11 – сгенерированный массив при n = 18(60%)

i	N	i	N	i	N
1	0.182	2	1.289	3	4.554
4	5.620	5	6.498	6	7.214
7	7.627	8	9.770	9	11.530
10	13.147	11	15.551	12	15.849
13	16.205	14	16.617	15	17.806
16	28.719	17	34.841	18	38.702

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$

$$13.12 > 9.5$$

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 12 – Вычисления m, f, g

m	19	20	21
f	3.495	2.548	2.098
g	3.059	2.615	2.283
f-g	0.436	0.067	0.185

$$m = 20$$

$$B = m - 1 = 19$$

K = 0.010387

i	Xi
19	96.271

Время до полного завершения тестирования: 96.271

Полное время: 347.992

3. Генерация массива релеевским законом распределения.

3.1. n = 30

Таблица 13 – сгенерированный массив при n = 30(100%)

i	N	i	N	i	N
1	0.591	2	1.812	3	4.475
4	5.104	5	6.049	6	7.139
7	7.558	8	8.110	9	8.556
10	8.900	11	8.905	12	9.049
13	9.217	14	9.483	15	9.484
16	9.649	17	9.716	18	9.734
19	10.759	20	10.778	21	11.031
22	11.232	23	11.270	24	13.039
25	13.594	26	13.951	27	15.159
28	17.581	29	17.869	30	19.833

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
18.955> 15.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 14 – Вычисления m, f, g

m	31	32	33	34	35	36	37	38	39	40	41
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609	1.510	1.425	1.350
g	2.491	2.300	2.136	1.994	1.870	1.760	1.662	1.575	1.497	1.425	1.361
f-g	1.504	0.728	0.423	0.262	0.165	0.103	0.062	0.034	0.013	0.001	0.011

$$m = 40$$

$$B = m - 1 = 39$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.004758

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	Ĺ	31	32	33	34	35	36	37	38	39
7	Xi	23.355	26.274	30.028	35.032	42.039	52.548	70.064	105.097	210.193

Время до полного завершения тестирования: 594.629

Полное время: 894.256

3.2. n = 24

Таблица 15 – сгенерированный массив при n = 24(80%)

i	N	i	N	i	N
1	3.923	2	4.346	3	5.262
4	5.450	5	5.494	6	6.390
7	6.421	8	6.786	9	6.973
10	7.190	11	7.611	12	9.246
13	9.664	14	9.707	15	10.619
16	10.952	17	11.556	18	12.223
19	13.149	20	13.169	21	13.858
22	14.398	23	16.280	24	16.779

Проверка существования максимума \widehat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
15.19>12.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 16 – Вычисления m, f, g

m	25	26	27	28	29	30	31	32	33
f	3.776	2.816	2.354	2.058	1.844	1.678	1.545	1.434	1.341
g	2.447	2.220	2.032	1.874	1.738	1.621	1.518	1.428	1.348
f-g	1.329	0.596	0.322	0.184	0.106	0.058	0.027	0.007	0.007

m = 32

B = m - 1 = 31

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.006278

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	25	26	27	28	29	30	31
Xi	22.756	26.549	31.859	39.824	53.098	79.647	159.294

Время до полного завершения тестирования: 413.027

Полное время: 640.473

3.3. n = 18

Таблица 17 — сгенерированный массив при n=18(60%)

i	N	i	N	i	N
1	2.511	2	3.487	3	4.415
4	6.182	5	7.136	6	7.186
7	7.741	8	9.224	9	9.637
10	10.249	11	10.324	12	11.381

13	12.652	14	14.422	15	16.742
16	17.884	17	19.784	18	21.447

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
12.056 > 9.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 18 – Вычисления m, f, g

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.592	2.266	2.013	1.810	1.645
f-g	0.903	0.282	0.085	0.002	0.037

m = 22

$$B = m - 1 = 21$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.009408

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	19	20	21
Xi	35.431	53.146	106.292

Время до полного завершения тестирования: 194.869

Полное время: 387.273

4. Полученные результаты.

Таблица 19 – Оценка первоначального количества ошибок

Закон распределения	n = 30	n = 24	n = 18
Равномерный	34	31	19
Экспоненциальный	31	24	19
Релеевский	39	31	21

Таблица 20 – Оценка полного времени проведения тестирования

Закон распределения	n = 30	n = 24	n = 18
Равномерный	633.389	851.342	224.596
Экспоненциальный	280.108	285.385	347.992
Релеевский	894.256	640.473	387.273

Выводы.

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.