

Implementation of "The Train" problem

Statistical Methods in Applied Computer Science, DD2447 Final Project

> JIM HOLMSTRÖM JIMHO@KTH.SE JOHAN GARDELL JGAR@KTH.SE

> > Teacher: Jens Lagergren

Contents

1 The Problem			
	1.1 problemformulation	1	
2	Implementation	3	
3	Results & Discussion	5	

Chapter 1

The Problem

1.1 Problem formulation ¹

G is undirected and all vertices has degree 3. At each vertex the edges are labeled 0,L, and R (an edge can have different labels at different vertices). So a vertex is a switch. Start positions and switch settings have uniform priors.

A switch setting is a function $\sigma: V(G) \to \{L, R\}$, which has the natural interpretation. By a position we mean a pair (v, e), where $v \in V(G)$ and $e \in E(G)$, with the interpretation that the train has passed v and exited through e.

Below we give a DP algorithm for $p(s, O, G|\sigma)$. We will estimate $p(\sigma|G, O)$ using MCMC and then p(s|G, O) using:

$$p(s|G,O) = \sum_{\sigma} p(s,\sigma|G,O) = \sum_{\sigma} p(s|\sigma,G,O)p(\sigma|G,O) = \sum_{\sigma} \frac{p(s,G,O|\sigma)p(\sigma|G,O)}{p(G,O|\sigma)}$$
(1.1)

The probability p is 0.05. Given $G, \sigma, s \in V(G)$ (s is a stop position), $O \in \{L, R, 0\}^T$ (observed switch signals), we can compute $p(s, G, O|\sigma)$ using DP and in each step compute the probability of going from some position s' to s in t steps and observing $O_{1:t} = \{o_i\}_{i=1}^t$ when the switch settings are σ . By doing this for all stop positions s and then summing out the stop position, we obtain $p(O|G, \sigma)$ in time $O(N^2T)$, where N = |V(G)|.

The states in our HMM are positions. The transition probabilities are always 1, i.e., given how we enter a vertex it is uniquely determined how we exit (since switches are fixed). Also, when passing a switch the correct direction of the label of the position is emitted with probability 1-p and any different direction is emitted with probability p/2.

Let c(s,t) be computed as below (we want c(s,t) to be the probability of going from some position s' to s=(v,e) in t steps and observing $O_{1:t}$). Let f=(u,v) and g=(w,v) be the two edges that are incident with v but different from e.

¹ This formulation has some minor differences but it should still be equivalent with the original one.

CHAPTER 1. THE PROBLEM

$$c(s,t) = \begin{cases} 1/N, & t = 0 \\ [c((u,f),t-1) + c((w,g),t-1)] (1-p) & e = 0 \land o_t = 0 \\ [c((u,f),t-1) + c((w,g),t-1)] p & e = 0 \land o_t \neq 0 \\ [c((u,f),t-1)] (1-p) & e = L \land o_t = L \land f = 0 \\ [c((u,f),t-1)] p & e = L \land o_t \neq L \land f = 0 \\ [c((u,f),t-1)] (1-p) & e = R \land o_t = R \land f = 0 \\ [c((u,f),t-1)] p & e = R \land o_t \neq R \land f = 0 \end{cases}$$

$$(1.2)$$

Chapter 2

Implementation

*The ignoring of G. email Jens bout it $*MCMC * basic basic MCMC abstract theory *MCMC used for estimating \\ E[f(\sigma)] without going through all \sigma which is intractable. *why is E[f(\sigma)] = sum f(\sigma)p(\sigma) = sum_s ampled f(\sigma) *how it relates to our problem *sigma graph with the weights Q(sigma, sigma') which 2^N states devil) *different algorithms for implementing MCMC *compare the different ones shortly (what they as sexplain why we chose it *how we chose Q what are the requirements for it *hamming distance measure and pick why hamming? amore natural distance for switch settings than say euclidean or such. * abstractly relate to the graph (what is this type of graph called?) *describe the marginalization over states in p(states). *The problem is a sum of the problem is$

Chapter 3

Results & Discussion