显色指数的原理和基本计算

上海时代之光照明电器检测有限公司 蒋毅平

众所周知色表和显色性是反应光源颜色的两个重要的量,不同光谱功率分布的光源可以有相同的色表,但是有相同色表的几种光源的显色性却可能完全不同,因此,只有讲色表和显色性两者结合起来才能全面反映光源的颜色特征。用光谱功率分布不同的光源照明物体,产生的颜色感觉是不一样的,光源这样的决定被照物体颜色感觉的性质称之为显色性。

显色指数是描述光源显色性的一个量,具有重要的意义。本文简单介绍显色指数的计算。

1、基本概念及计算公式

1.1 RGB 系统

三原色定义: 所有颜色的光都可以由某 3 种单色光按一定比例混合而成,但这 3 种单色光中任何一种都不能由其余两种混合产生,这 3 种单色光称为三原色。1931 年 CIE 规定,RGB 系统的三原色为红光(R): 700nm,绿光(G): 546nm,蓝光(B): 435.8nm。在 RGB 系统中,按下式比例混合可得到等能量白光,即

$$F_R: F_G: F_R = 1:4.5907:0.0601$$
 (1-1)

于是可以用数学式表达混色结果为

$$|F| = 1R + 4.5907G + 0.0601B$$
 (1-2)

|F|表示混色后的光通量,而 R、G、B 称为三刺激值。

为了便于计算以及更直观的了解光源颜色特征,引入

$$\begin{cases} r = R/(R+G+B) \\ g = G/(R+G+B) \\ b = B/(R+G+B) \end{cases}$$
 (1-3)

这三个量称为色度坐标或色坐标。因为 r+g+b=1,因此只要知道色坐标中的两个值就能得出第三个,即可以用平面图来表示色度,这就是色度图。

三刺激值的计算可由下式计算得出

$$\begin{cases} R = \int_{380}^{780} P_{\lambda} \bar{r}(\lambda) d\lambda \\ G = \int_{780}^{380} P_{\lambda} \bar{g}(\lambda) d\lambda \end{cases}$$

$$B = \int_{380}^{780} P_{\lambda} \bar{b}(\lambda) d\lambda$$
(1-4)

式中 P 为光源光谱功率分布, $\overset{-}{r}$ 、 $\overset{-}{g}$ 、 $\overset{-}{b}$ 分别为 1931 CIE-RGB 系统标准色度观察者光谱三刺激值。

1.2 XYZ 系统

在 RGB 系统中匹配某些可见光谱颜色时需要用到基色的负值,而且使用不便,于是国际 照明委员会采用了一种新的颜色系统,1931 CIE XYZ 系统。该系统根据 1931 CIE RGB 系统,设想出三原色(X)、(Y)、(Z)来表示原来的三原色(R)、(G)、(B),XYZ 系统三刺激值与 RGB 系统三刺激值的关系如下式

$$\begin{cases} X = 2.7689R + 1.7517G + 1.1302B \\ Y = 1.0000R + 4.5907G + 0.0601B \\ Z = 0.0000R + 0.0565G + 5.5943B \end{cases}$$
(1-5)

XYZ 系统中的色度坐标由下式决定

$$\begin{cases} x = X /(X + Y + Z) \\ y = Y /(X + Y + Z) \\ z = Z /(X + Y + Z) \end{cases}$$
 (1-6)

1.3 CIE1960 均匀颜色空间

在 x-y 色度图上,不同部分的相等距离并不代表视觉上相等的色度差,为了克服这个缺点, 麦克亚当引入了一种新的均匀色度 u-v 色度图。均匀色度坐标 u、v 与 x、y 的关系为

$$\begin{cases} u = \frac{4x}{-2x + 12y + 3} \\ v = \frac{6y}{-2x + 12y + 3} \end{cases}$$
 (1-7)

由于待测光源 K 与参照照明体 r 的色适应情况不同,必须将待测光源的色度坐标调整为参 照照明体下的色度坐标,这种色坐标的调整成为适应性色位移。计算色位移用以下公式

$$\begin{cases} u_{i}' = \frac{10.872 + 0.404 \frac{C_{r}}{C} C_{i} - 4 \frac{d_{r}}{d} d_{i}}{16.518 + 1.481 \frac{C_{r}}{C} C_{i} - \frac{d_{r}}{d} d_{i}} \\ v_{i}' = \frac{5.520}{16.518 + 1.481 \frac{C_{r}}{C} C_{i} - \frac{d_{r}}{d} d_{i}} \end{cases}$$
(1-8)

待测光源的 C,d,参照照明体的 C_r,d_r,以及待测光源下各颜色样品的 C_i,d_i均由下式计算

$$\begin{cases}
C = \frac{1}{v} (4 - u - 10v) \\
d = \frac{1}{v} (1.708v + 0.404 - 1.481u)
\end{cases} (1-9)$$

1.4 色差的计算

计算色差 ΔE_i , 先将色度数据现要转成 1964 统一空间坐标,用以下公式:

$$\begin{cases} W_{i}^{*'} = 25Y_{i}^{1/3} - 17 \\ U_{i}^{*'} = 13W_{i}^{*'}(u_{i} - u_{i}') = 13W_{i}^{*'}(u_{i}' - u_{r}) \\ V_{i}^{*'} = 13W_{i}^{*'}(v_{i}' - v_{i}') = 13W_{i}^{*'}(v_{i}' - v_{r}) \end{cases}$$
(1-10)

这样就可以用下式计算出同一颜色样品i分别用待测光源和参照照明体时的色差

$$\Delta E_{i} = \left[(U_{ri}^{*} - U_{i}^{*'})^{2} + (V_{ri}^{*} - V_{i}^{*'})^{2} + (W_{ri}^{*} - W_{i}^{*'})^{2} \right]$$
(1-11)

1.5 显色指数

对某一色样 i 的显色指数 Ri 成为特殊显色指数,由下式求得

$$R_i = 100 - 4.6\Delta E_i$$
 (1-12)

一般显色指数 R_a是由 8 个特殊显色指数 (i=1,2, ···, 8) 取算数平均求得

$$R_a = \frac{1}{8} \sum_{i=1}^{8} R_i \qquad (1-13)$$

2、实例分析

用光谱分析系统对一自镇流荧光灯进行扫描,得到其光谱功率分布,数据见下表

λ (nm)	P_{λ}								
380	0.257246	460	5.499649	540	15.737046	620	4.445175	700	0.172981
385	0.126356	465	4.964067	545	34.109205	625	4.633801	705	1.364595
390	0.128321	470	4.402982	550	15.015015	630	4.328845	710	2.076595
395	0.142901	475	3.802672	555	3.324843	635	1.330425	715	0.61551
400	0.712168	480	3.767636	560	1.069738	640	0.639018	720	0.077193
405	6.786326	485	6.935848	565	0.611294	645	0.661358	725	0.089535
410	1.617295	490	7.221295	570	0.407798	650	1.297212	730	0.059501
415	1.494094	495	4.789406	575	2.057994	655	0.956685	735	0.07993
420	2.255416	500	3.216166	580	5.075464	660	0.810063	740	0.110256
425	3.198316	505	2.686125	585	5.573117	665	0.73065	745	0.0763
430	4.153792	510	2.937546	590	4.288448	670	0.531319	750	0.199523

435	17.848428	515	2.988402	595	3.079917	675	0.451441	755	0.031492
440	8.791853	520	2.637013	600	2.292535	680	0.535701	760	0.132688
445	6.050924	525	2.150665	605	1.721003	685	0.69586	765	0.148135
450	6.134753	530	1.866938	610	18.008509	690	0.619307	770	0.140336
455	5.919576	535	2.69381	615	13.11472	695	0.427507	775	0.036128
								780	0.062394

使用式 (1-4) 算得: R=89.291, G=118.229, B=115.919

再由式(1-5)算出 XYZ 系统中的三刺激值: X=585.272, Y=639.013, Z=655.166

由式 (1-6) 得到 XYZ 系统的色度坐标: x=0.3115, y=0.3402

用式 (1-7) 讲色度数据由 CIE1931 下的 (X, Y, Z, x, y) 值转为 1960 (u, v) 坐标: u=0.1929, v=0.3159

因色温为 6489K,所以选择 6500K 黑体作为参照照明体,由数据表可以查到 $\mathbf{u_r}$ =0.1978, $\mathbf{v_r}$ =0.3122, $\mathbf{C_r}$ =2.1785, $\mathbf{d_r}$ =2.0636,以及 U_n^* , V_n^* 和 W_n^* (下表)

	D 6	500K	
	Uri*'	Vri*'	Wri*'
1	32	8.46	60.49
2	15.21	23.78	59.71
3	-8.22	36.3	61.06
4	-33.37	18.64	60.23
5	-26.86	-6.54	61.4
6	-18.74	-28.8	60.49
7	9.87	-26.56	60.13
8	28.89	-16.22	61.82

由测得的光谱功率分布和 1-8 试验色的光谱亮度因数,计算该光源下 1-8 号试验色的色度坐标,并根据(1-7)求出相应的 \mathbf{u}_i , \mathbf{v}_i 。

CIE 颜色样品	ui	vi	
1	0.2331	0.3281	
2	0.2111	0.3418	
3	0.1757	0.3495	
4	0.1471	0.3353	
5	0.162	0.3108	
6	0.1674	0.2879	
7	0.2093	0.2851	
8	0.2316	0.3003	

由(1-9)式求出 C=2.0506,d=2.0825,以及 Ci,di,再由(1-8)式求出色适应调整后在该光源下的色坐标 \mathbf{u}_i '和 \mathbf{v}_i '

CIE 颜色样品	Ci	di	ui'	vi'
1	1.4809509	1.8871493	0.2372197	0.3251254
2	1.0851375	1.9752934	0.2156554	0.3393173
3	0.9422031	2.1194114	0.1808578	0.3471641
4	1.4909037	2.2631593	0.1529027	0.3321074
5	2.3487773	2.2359215	0.1676629	0.3067029
6	3.3122612	2.2501348	0.1730674	0.2830812
7	3.2960365	2.0378025	0.2138435	0.2804225
8	2.5487845	1.9111315	0.235628	0.2962263

由(1-10)式计算出该光源下颜色样品的 U_{i}^{*} , V_{i}^{*} 和 W_{i}^{*}

CIE 颜色样品	Ui*'	Vi*'	Wi*'
1	31.013881	10.169167	60.52
2	13.855263	21.042206	59.69
3	-13.45058	27.758368	61.07
4	-35.142495	15.582141	60.21
5	-24.082896	-4.3927883	61.47
6	-19.458643	-22.909545	60.52
7	12.547286	-24.852583	60.16
8	30.39101	-12.833266	61.8

由(1-11)式计算出该光源和参照照明体下各颜色样品的色差 ΔE_i

由(1-12)算出各颜色样品的特殊显色指数 Ri

由(1-13)算出平均显色指数 Ra=79.9

CIE 颜色样品	色差	Ri	Ra
1	1.97347	90.922038	79.930244
2	3.0547059	85.948353	
3	10.015914	53.926793	
4	3.534493	83.741332	
5	3.511086	83.849004	
6	5.9342069	72.702648	
7	3.1755361	85.392534	
8	3.7045109	82.95925	

3、结束语

光源对物体自然原色的呈现程度就是光源的显色指数,毫无疑问,显色指数是衡量光源 颜色特征一个非常重要的量。在计算机高度普及的当下,显色指数的计算都已经跟着光谱仪写 到了计算机程序中,可以直接读取,但弄清楚显色指数的计算过程还是有必要的。