

FORM PTO-1390 (Modified)
(REV 10-95)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTORNEY'S DOCKET NUMBER

TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371

TSO 167 P2

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR

09/720347

INTERNATIONAL APPLICATION NO.
PCT/US99/19869INTERNATIONAL FILING DATE
27 August 1999PRIORITY DATE CLAIMED
11 September 1998

TITLE OF INVENTION

LOW TEMPERATURE SPUTTER TARGET BONDING METHOD AND TARGET ASSEMBLIES PRODUCED THEREBY

APPLICANT(S) FOR DO/EO/US

Eugene Y. Ivanov and Harry W. Conard

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. 371(c)(2))
7. A copy of the International Search Report (PCT/ISA/210)
8. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made, however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made
9. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
10. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
11. A copy of the International Preliminary Examination Report (PCT/IPEA/409)
12. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 13 to 18 below concern document(s) or information included:

13. An Information Disclosure Statement under 37 CFR 1.97 and 1.98
14. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
15. A **FIRST** preliminary amendment.
- A **SECOND** or **SUBSEQUENT** preliminary amendment.
16. A substitute specification.
17. A change of power of attorney and/or address letter
18. Certificate of Mailing by Express Mail
19. Other items or information:

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR 09/720347	INTERNATIONAL APPLICATION NO. PCT/US99/19869	ATTORNEY'S DOCKET NUMBER TSO 167 P2
---	---	--

20. The following fees are submitted:

BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) :		CALCULATIONS PTO USE ONLY
<input type="checkbox"/> Search Report has been prepared by the EPO or JPO	\$840.00	
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482)	\$670.00	
<input type="checkbox"/> No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2))	\$760.00	
<input type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO	\$970.00	
<input checked="" type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4)	\$96.00	

ENTER APPROPRIATE BASIC FEE AMOUNT =

\$96.00

Surcharge of **\$130.00** for furnishing the oath or declaration later than months from the earliest claimed priority date (37 CFR 1.492 (e)) 20 30 **\$0.00**

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	
Total claims	33 - 20 =	13	x \$18.00	\$234.00
Independent claims	3 - 3 =	0	x \$78.00	\$0.00
Multiple Dependent Claims (check if applicable)			<input type="checkbox"/>	\$0.00

TOTAL OF ABOVE CALCULATIONS = \$330.00

Reduction of 1/2 for filing by small entity, if applicable. Verified Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28) (check if applicable). **\$0.00**

SUBTOTAL = \$330.00

Processing fee of **\$130.00** for furnishing the English translation later than months from the earliest claimed priority date (37 CFR 1.492 (f)). 20 30 + **\$0.00**

TOTAL NATIONAL FEE = \$330.00

Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable). **\$0.00**

TOTAL FEES ENCLOSED = \$330.00

Amount to be:	\$
refunded	
charged	\$

- A check in the amount of **\$330.00** to cover the above fees is enclosed
- Please charge my Deposit Account No. in the amount of to cover the above fees.
A duplicate copy of this sheet is enclosed.
- The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. **02-2262** A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO

Bruce E. Peacock
BIEBEL & FRENCH
35 East First Street
Dayton, Ohio 45402

(937) 461-4543

Bruce E. Peacock

SIGNATURE

Bruce E. Peacock

NAME

28,457

REGISTRATION NUMBER

DATE

LOW TEMPERATURE SPUTTER TARGET BONDING METHOD AND
TARGET ASSEMBLIES PRODUCED THEREBY

1. Field of the Invention

5

The present application pertains to a low temperature sputter target/backing plate bonding method and to the assemblies made thereby.

Background of the Invention

10 Cathodic sputtering is widely used for the deposition of thin layers of material onto desired substrates. Basically, this process requires gas ion bombardment of a target having a face formed of a material that is to be deposited as a thin film or layer on a substrate. Ion bombardment of the target not only causes atoms or molecules of the target material to be sputtered, but imparts considerable 15 thermal energy to the target. This heat is dissipated by use of a cooling fluid typically circulated beneath or around a heat conducting backing plate that is positioned in heat exchange relation with the target.

The target forms a part of a cathode assembly which together with an anode is placed in an evacuated chamber that contains an inert gas, preferably argon. 20 A high voltage electrical field is applied across the cathode and anode. The inert gas is ionized by collision with the electrons ejected from the cathode. Positively charged gas ions are attracted to the cathode and, upon impingement with the target surface, dislodge the target material. The dislodged target materials traverse the evacuated enclosure and deposit as a thin film on the desired substrate that is 25 normally located proximate the anode.

In addition to the use of an electrical field, increasing sputtering rates have been achieved by the concurrent use of an arch-shaped magnetic field that is superimposed over the electrical field and formed in a closed loop configuration over the surface of the target. These methods are known as magnetron sputtering 30 methods. The arch-shaped magnetic field traps electrons in an annular region adjacent the target surface thereby increasing the number of electron-gas atom collisions in the area to produce an increase in the number of positively charged gas

ions in the region that strike the target to dislodge the target material. Accordingly, the target material becomes eroded (i.e., consumed for subsequent deposition on the substrate) in a generally annular section of the target face, known as the target raceway.

5 In conventional target cathode assemblies, the target is attached to a nonmagnetic backing plate. The backing plate is normally water-cooled to carry away the heat generated by the ion bombardment of the target. Magnets are typically arranged beneath the backing plate in well-known disposition in order to form the above-noted magnetic field in the form of a loop or tunnel extending around the
10 exposed face of the target.

In order to achieve good thermal and electrical contact between the target and backing plate, these members are commonly attached to each other by means of soldering, brazing, diffusion bonding, clamping and by epoxy cement and the like.

15 In some prior art target/backing plate assemblies, projections formed in either the interfacial surfaces of the target or backing plate are received in corresponding recesses or grooves of the other member to improve thermal conductivity. For example in Hillman U.S. Patent No. 4,885,075, annularly arranged members of high thermal conductivity protrude from either the target or backing
20 plate into a corresponding recess formed in the other member. Upon heating of the target during sputtering, the protruding members expand radially to make contact with the recess wall to thereby improve heat transfer between the target and backing plate.

Elastic and plastic deformation of backing plate members in
25 target/backing plate cathode assemblies is minimized in accordance with U.S. Patent 5,269,899 (Fan), of common assignment herewith, by the provision of mating teeth like projections disposed along the target/backing plate interfacial surfaces, with the mating surface of the backing plate having a concave surface. Here again, upon heating of the target, the target teeth expand radially and make snug contact with the
30 mating teeth on the backing member to enhance thermal conductivity.

herewith teaches the use of diffusion bonding methods wherein one of the target/backing plate mating surfaces is first prepared with grooves or the like.

During the diffusion bonding process, jagged portions of the grooves penetrate into the metal from the opposed interfacial surface and disrupt the formation of oxide and other bond inhibiting layers that may otherwise form along the target/backing plate interface to thereby improve bonding efficacy. The method results in a strong bond with increased shear resistance such that the assembly can withstand thermal stress that otherwise may tend to result in debonding or target warpage during use.

In those cases in which diffusion bonding of Al, Cu, or other low melting point targets have been tried, the heat needed for the diffusion bonding process causes an undesirable growth in grain size. Accordingly, there is a need in the art to provide a low temperature target bonding method so that target grain size can be accurately controlled and maintained at a desired minimal size.

15

Summary of the Invention

In order to meet the above need, a target and backing plate are provided wherein the harder metal of the two is machined or otherwise formed so as to have a plurality of ridges or other salient surface portions thereof. These ridges or salient portions are formed along the interior surface space of the target or backing plate. The ridged surface is then placed alongside the mating surface of the other member of the assembly along a target/backing plate interface wherein bonding will occur.

The peripheral portion of the interfacial surface of the assembly is bonded by conventional means such as E-beam welding, TIG welding, friction welding, etc., preferably under vacuum. The assembly is then pressed together at a low temperature, such as room temperature, so that the target and backing plate are in contact to improve thermal conductivity of the assembly.

The projections or ridges formed along either the target or backing plate penetrate into the mating metal surface along the target/backing plate interface. These projections penetrate the softer metal on the opposing mating surface breaking through the oxide surface thereon. This results in a metal to metal cold diffusion

type bond with the projections bending as a result of the cold pressing and forming a mechanical interlocking mechanism.

After the cold pressing operation, a low temperature annealing can be performed on the assembly to enhance adherence of the mating surfaces.

5 The invention will be further described in conjunction with the attached drawings and following detailed description. In the drawings:

Brief Description of the Drawings

Figure 1 is a cross-sectional view of the preferred target/backing plate
10 assembly in accordance with the invention, prior to the low temperature pressure
consolidation step;

Figure 2 is a cross-sectional view, similar to Fig. 1, of another
embodiment of the invention;

15 Figure 3 is a cross-sectional view, similar to Fig.1, of another
embodiment of the invention;

Figure 4 is a cross-sectional view of the target/backing plate assembly
shown in Fig. 1, taken after bonding of the assembly by the low temperature pressure
consolidation step in accordance with the invention;

20 Figure 5 is a cross-sectional view similar to Fig. 4 but showing the
embodiment of Fig. 2 in its bonded position;

Figure 6 is a cross-sectional view similar to Fig. 4 but showing the
embodiment of Fig. 3 in its bonded position;

25 Figure 7 is a schematic drawing of a photomicrograph taken showing
a magnified view of a portion of the target/backing plate interface of the Fig. 4
embodiment;

Figure 8 is a magnified view of a portion of the target/backing plate
interface encircled in Fig. 5;

Figure 9 is a magnified view of a portion of the target/backing plate
interface encircled in Fig. 6; and

30 Figure 10 is a top plan view of the backing plate shown in the Fig. 1
embodiment.

Detailed Description of the Preferred Embodiment

Turning first to figures 1 and 4, there is shown a first embodiment of a target/backing plate assembly in accordance with the invention. The assembly comprises a target 2a having a top side 23a carrying metal or metal alloy that, in 5 accordance with conventional sputtering methods, will be ejected from the target 2a via ionic bombardment and will travel to and coat the desired substrate.

A backing plate 4a is provided under the target 2a, with the bottom side 11a of the target 2a adapted to mate with the top side 13a of the backing plate 4a to define an interfacial surface area 28. A generally horizontal plane exists through 10 the points 31a, 31b, along this interfacial surface area 28 and serves as the location where the interfacial surfaces will be joined upon bonding. Commonly, a heat exchange fluid such as water is circulated adjacent the bottom side 21a of the backing plate 4a so as to cool the assembly during its sputtering operation.

In some cases, it is desired to provide a filler material 6, such as an 15 Al-4%Si alloy or other suitable alloy, in the form of a ring or the like, adjacent the peripheral border of the assembly between the target and backing plate. The filler material 6 enhances bonding of the target 2a to the backing plate 4a as shall be explained hereinafter. Alternatively, the filler material 6 may be omitted.

A plurality of salient portions 8a, shown in the drawing as "M" - 20 shaped ridges or projections are machined into either one of the surfaces 11a or 13a depending on whether the target 2a or backing plate 4a is harder. Stated differently, the projections 8a are formed in the harder of the surfaces 11a or 13a. In this embodiment, the "M" cross-sectioned salient portions are machined into the top surface of the backing plate. As can be seen in Figure 10, the salient portions 8a are 25 arranged in a plurality of concentrically arranged annular rows.

The assembly is first bonded around a band or zone adjacent the periphery of the target as designated by the number 25. This initial bonding along the peripheral border of the assembly may be achieved by conventional means such as by E-beam welding under vacuum conditions, TIG welding, and friction welding 30 and the like. Preferably, the bonding of the peripheral boundaries of the target and backing plate is performed via E-beam welding under vacuum conditions.

The result of the peripheral bonding is that a strong target/backing plate bond is provided in this preipheral area 25 that surrounds the salient portions 8a of the assembly. After the peripheral bonding, the assembly is consolidated, via pressure application thereto, at pressures of about 50 tons - 5,000 tons; preferably 5 less than about 1,000 tons, under low temperature conditions.

The projections 8a from the harder metal penetrate into the softer metal and disrupt the oxide film that may exist along the interface thereby promoting a metal to metal cold diffusion type bond.

After the low temperature pressure consolidation, the assembly may 10 be subjected to a low temperature annealing step conducted at temperatures of about room to 200°C to 482°C for a period of 0.5 to 4 hours. This will help ensure adequate adhesion of the pressure consolidated surfaces.

The phrase "low temperature pressure consolidation" refers to pressure consolidation that may occur at a temperature of less than 50% of the 15 melting point of the target, preferably at temperature of less than about 200 degrees C, preferably at room temperature up to about 38 degrees C.

Turning now to figure 7, there is shown a magnified view of the target/backing plate interface at the area having salient portions or projections 8a after the target/backing plate assembly has been consolidated by the above low 20 temperature/pressure step. As a result of the low temperature pressure consolidation step, the points or projections 8a deform and fold back toward the interfacial plane 31, providing a physical locking mechanism between the surfaces.

As shown in Figure 7, the deformed edge 100a of the "M" shaped projections, is bent toward the backing plate 4a as a result of the low temperature 25 pressure consolidation. This edge 100a forms a re-entrant angle, as shown of about 55-60°, relative to the horizontal plane made along interfacial surfaces of the target and backing plate. The plane is shown generally in this figure as 31. The projections each contain a second bent edge 100b also forming a re-entrant angle relative to the horizontal plane. Due to bending of the edges 100a, 100b, the tips 102a, 102b of the 30 projection adjacent edges 100a, 100b form a locking type joint, overlaying target material 104 and trapping target material 104 against separation forces or vectors that

would act in shear or in a perpendicular direction relative to the plane 31. This forms a tenacious joint of backing plate and target.

The method and assembly have shown promise in bonding high-purity targets such as Al, Al-Cu, or Al-Cu-Si targets, to lower-purity backing members, 5 such as Al 6061. Additionally, the method may also be employed to bond Cu targets and Cu containing alloy targets over 6061 Al or Cu metallurgies (Cu Alloys).

Turning now to Figs. 2 and 5, there is shown a second embodiment of a target/backing plate assembly in accordance with the invention. The second embodiment comprises a target 2b having a top side 23b and a bottom side 11b, and 10 a backing plate 4b having a top side 13b adapted to mate with the bottom side 11b. The filler material 6 may optionally be provided adjacent the peripheral border 25 of the second embodiment between the target 2b and backing plate 4b.

A plurality of salient portions of projections 8b are formed on the harder of either one of the surfaces 11b or 13b. In this embodiment, the projections 15 are formed on the underside of the target. Corresponding grooves 30b, adapted to receive the projections 8b, are formed in the other of the surfaces 11b or 13b; here, on the top side of the backing plate. The grooves 30b are formed by machining concentric circular grooves that angle radially inward toward the center of the target/backing plate assembly. Alternatively, the grooves 30b may angle radially 20 outward.

The target 2b and backing plate 4b are joined together in the same manner as detailed above for the first embodiment.

As can be seen in Fig. 5, as a result of the low temperature pressure consolidation step, the projection 8b are deformed radially inward and fold back 25 toward the surface 13b, thereby providing a physical locking mechanism between the surfaces 11b, 13b.

A third embodiment of the target/backing plate assembly of the invention is shown in Figs. 3 and 6, wherein features corresponding to those of the first and second embodiments disclosed above are denoted by the same reference 30 numerals having the suffix "c". As shown, alternate grooves 30c are formed so as to angle radially opposite each other so that, after the low temperature pressure

consolidation step, the projections 8c are deformed or "splay" in opposite directions.

Turning now to Figure 8, the target/backing plate interface is shown for the Figure 2 target/backing plate joint structure. Here, the edge 100 of projection 8b forms a re-entrant angle α relative to the plane of the surfaces of target 2b and backing plate 4b (i.e. plane 31) of about 60° . The tip 102 of the projection connected to edge 100 thereby locks or grips the backing plate material 105 to withstand mechanical and thermal forces that may otherwise act during sputtering to separate the assembly.

Figure 9 magnifies the target/backing plate joint or interface of Fig. 6, 10 2 having substantially "V" shaped projections 8c with deformed edges 100a, 100b each defining a re-entrant angle α of about 60° relative to the horizontal mating plane of the target and backing plate. Tips 102a, 102b respectively of the projection form a locking joint trapping backing plate material 105 in a snug, interlocking joint structure.

15 The locking joint of the invention can thereby be described as a joint formed between mating interfacial surfaces of the target and backing plate wherein the harder metal or alloy of either the target or backing plate member is provided with a projection. An edge of the projection is bent or deformed during the lower temperature/pressure consolidation so that it forms a re-entrant angle of less than 90° 20 as measured from the mating plane formed between the target and backing plate. Preferably, this angle is on the order of about $35\text{--}80^\circ$.

The leading tip of the projection connected to this re-entrant edge thereby forms an angled lock or grip over the other metal to thereby resist shear and tensile forces that may otherwise tend to de-bond the assembly.

25 The invention will be further described in conjunction with the ensuing examples which are not to be construed as limitations to the inventions but instead are illustrative of specific embodiments of the invention.

Example 1

30 An assembly of the type shown in Figure 1 was bonded in accordance with the invention. Target 2a was composed of high purity Al with the backing plate

4a composed of Al 6061. The projections 8a were provided in the backing plate 4a with each projection 8a having a height of about 0.05". A filler material 6 comprising Al-4%Si was positioned around the inside of the peripheral boundary of the assembly. The peripheral zone was E-beam welded under vacuum. Then, the
5 assembly was pressure consolidated at room temperature such that the overall thickness of the assembly decreased by about 0.1".

Example 2

An assembly of the general type shown in Figure 2 was bonded in
10 accordance with the invention. Target 2b was composed of high purity Cu with the backing plate 4b composed of Cu-1%Cr. The projections were provided in the backing plate with each projection having a height of about 0.1". No filler material was used. The peripheral zone was E-beam welded under vacuum. Then, the assembly was pressure consolidated at room temperature such that the overall
15 thickness of the assembly decreased by about 0.1".

While the methods described herein, and the target/backing plate assemblies produced in accordance with the methods, have been described with regard to certain specific forms and certain modifications thereof, it will be
20 appreciated that a wide variety of other modifications can be made without departing from the scope and spirit of this invention as defined in the appended claims. It is also to be kept in mind that reference to a metal or metal component herein also includes reference to alloyed forms of the stated metal.

CLAIMS

1. In a method of preparing a bonded sputter target/backing plate assembly comprising a target composed of a metal or alloy to be sputtered and an underlying metallic backing plate member, an improved method for joining said target and backing plate along mating surfaces thereof, comprising:

- 5 a) forming a plurality of salient portions in at least one of said mating surfaces;
- b) positioning said target and backing plate adjacent each other to form an assembly having an interface defined by said mating surfaces;
- c) pressure consolidating said assembly under low temperature
10 conditions.

2. Method as recited in claim 1 wherein said assembly comprises a peripheral boundary surrounding said projections and wherein said method comprises the additional step of bonding said assembly proximate said peripheral boundary.

3. Method as recited in claim 2 wherein said step (d) is performed after said step (b) and before said step (c).

4. Method as recited in claim 3 wherein said step (d) comprises e-beam welding of said peripheral boundary.

5. Method as recited in claim 4 wherein said step (d) further comprises interposing a weldable filler material between said target and said backing plate proximate said peripheral boundary.

6. Method as recited in claim 2 wherein said step (d) comprises friction welding.

7. Method as recited in claim 2 wherein said step (d) comprises TIG welding.
8. Method as recited in claim 1 wherein said target comprises Al, Cu, Ti, Co or their alloys.
9. Method as recited in claim 6 wherein said backing plate comprises Al, stainless steel, Cu, Ti or their alloys.
10. Method as recited in claim 6 wherein said target comprises Cu.
11. Method as recited in claim 2 wherein said step (d) comprises e-beam welding said target along an annular zone located adjacent said peripheral boundary.
12. Method as recited in claim 1 wherein said step (c) comprises pressure consolidating said assembly at about room temperature.
13. Method as recited in claim 2 further comprising (e) low temperature annealing said pressure consolidated assembly.
14. Method as recited in claim 1 wherein said low temperature is a temperature of less than 50% of the melting temperature of the lower melting member of the target and backing plate.
15. Method as recited in claim 1 wherein said low temperature is less than about 100°C.
16. Method as recited in claim 15 wherein said low temperature is less than about 38°C.

-12-

17. Method as recited in claim 16 wherein said low temperature is about room temperature
18. Method of bonding a sputter target to a backing plate member along a plane defined by mating interfacial surfaces of said target and backing plate, said method comprising:
 - a) forming a plurality of salient portions in one of said interfacial surfaces, wherein said salient portions have at least one edge and a projection tip connected to said edge.
 - b) positioning said target and backing plate in a position ready for bonding with said interfacial surfaces adjacent each other, and
 - c) consolidating said target and backing plate at a temperature of less than about 50% of the melting point of the lower melting member of said target and said backing plate and at a pressure sufficient to deform said at least one edge so that at least one edge forms a re-entrant angle relative to said plane of less than 90° and said projection tip forms an angled, locking grip over the other of said interfacial surfaces.
19. Method as recited in claim 18 wherein said step (c) is conducted at a temperature of less than 200°C.
20. Method as recited in claim 19 wherein said step (c) is conducted at a temperature of less than about 38°C.
21. Method as recited in claim 20 wherein said step (c) is conducted at about room temperature.
22. Method as recited in claim 18 wherein said target is Al or Al alloy.
23. Method as recited in claim 18 wherein said target is Cu or Cu alloy.

24. Method as recited in claim 18 wherein said target and backing plate have a peripheral boundary portion circumscribing said salient portions, said method further comprising, prior to said step (c), a step (d) of bonding said target and backing plate member around a peripheral boundary portion of said mating
5 interfacial surfaces.
25. Method as recited in claim 24 wherein said step (d) comprises interposing a weldable filler material between said target and said backing plate along said peripheral boundary portion.
26. Method as recited in claim 24 wherein step (d) comprises e-beam welding.
27. Target/Backing plate assembly made by any one of the preceding claims.
28. Combination comprising a sputter target and backing plate, said target and backing plate mating along a plane defined by mating interfacial surfaces of each, a plurality of salient portions formed in one of said interfacial surfaces and having at least one edge and a projecting tip connected to said edge, said edge being
5 bent at a re-entrant angle of less than about 90° relative to said plane and said projecting tip forming an angled locking grip extending into and over the other of said interfacial surfaces.
29. Combination as recited in claim 28 further comprising a peripheral zone surrounding said salient portions, and a bondable filler material positioned in said peripheral zone.
30. Combination as recited in claim 28 wherein said backing plate comprises Al alloy and said target comprises Al, said salient portions comprising substantially "M" cross sectioned ridges formed in said backing plate with said

-14-

ridges provided along said interfacial surface of said backing plate in a plurality of
5 concentrically arranged rows.

31. Combination as recited in claim 28 wherein said target comprises Cu.

32. Combination as recited in claims 28 wherein said salient portions
included substantially "M" shaped cross-sectioned ridges and wherein said at least
one edge is bent at an angle of about 35-80°.

33. Combination as recited in claim 28 wherein said salient portions
include substantially "V" shaped cross-sectional ridges, each said "V" shaped ridge
having a pair of edges bent at re-entrant angles.

091720347
PCT/US99/19869

WO 00/15863

1/5

09/720 347

WO 00/15863

PCT/US99/19869

2/5

FIG -4

FIG -5

FIG -6

09/720 347

PCT/US99/19869

WO 00/15863

3/5

FIG - 7

FIG - 8

FIG - 9

09/720 347

PCT/US99/19869

WO 00/15863

5/5

Docket No.
TSO 167 P2

Declaration For Patent Application

English Language Declaration

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

LOW TEMPERATURE SPUTTER TARGET BONDING METHOD AND TARGET ASSEMBLIES PRODUCED THEREBY

the specification of which

(check one)

is attached hereto.

was filed on August 27, 1999 as United States Application No. or PCT International

Application Number PCT/US99/19869

and was amended on _____
(if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119(a)-(d) or Section 365(b) of any foreign application(s) for patent or inventor's certificate, or Section 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate or PCT International application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

Priority Not Claimed

(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>

I hereby claim the benefit under 35 U.S.C. Section 119(e) of any United States provisional application(s) listed below:

60/099,981	September 11, 1998
(Application Serial No.)	(Filing Date)
60/129,559	April 16, 1999
(Application Serial No.)	(Filing Date)

(Application Serial No.) (Filing Date)

I hereby claim the benefit under 35 U. S. C. Section 120 of any United States application(s), or Section 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. Section 112, I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, CFR Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application:

PCT/US99/19869	August 27, 1999	-----
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

100

Full name of sole or first inventor <u>Eugene Y. Ivanov</u>	
Sole or first inventor's signature <i>Eugene</i>	Date <i>12/19/2000</i>
Residence <u>3198 Windsor Place, Grove City, Ohio 43123</u>	<i>OH</i>
Citizenship <u>USA</u>	
Post Office Address <u>c/o Tosoh SMD, Inc., 3600 Gantz Road, Grove City, Ohio 43123-1895</u>	

200

Full name of second inventor, if any <u>Harry W. Conard</u>	
Second inventor's signature <i>Harry W. Conard</i>	Date <i>12/19/2000</i>
Residence <u>7493 Harrisburg London Road, Orient, Ohio 43146</u>	<i>OH</i>
Citizenship <u>USA</u>	
Post Office Address <u>c/o Tosoh SMD, Inc., 3600 Gantz Road, Grove City, Ohio 43123-1895</u>	

Full name of third inventor, if any	
Third inventor's signature	Date
Residence	
Citizenship	
Post Office Address	

Full name of fourth inventor, if any	
Fourth inventor's signature	Date
Residence	
Citizenship	
Post Office Address	