MAIN5 - Maillage et Éléments Finis

Bertrand Thierry 20/11/2020

CNRS - Laboratoire Jacques-Louis Lions

Organisation du Cours

Organisation

Moi

- B. THIERRY
- **≘** Chargé de Recherche CNRS

Distanciel

- Matériel : Ordinateur, connexion, ...: ok ?
- Au moindre problème ou question : me contacter !

Notation

- 50% : Contrôle(s) Continue(s) : 1 ou 2
- √> 50% : Projet

Organisation

Cours

- Site du cours :
 https://bthierry.pages.math.cnrs.fr/teaching/mef_main5
 Les slides y seront accessibles
- "Ancienne" version du cours en ligne : https://bthierry.pages.math.cnrs.fr/course/fem

Cette année: Réécriture du polycopié

- Focus plus important sur l'implémentation
- Fortement inspiré du polycopié de F.-J. Sayas https://team-pancho.github.io/documents/anIntro2FEM_2015.pdf

Introduction à la Simulation

Numérique

Simulation Numérique

Définition (Wikipédia)

L'exécution d'un programme informatique sur un ordinateur ou réseau en vue de simuler un phénomène physique réel et complexe (par exemple : chute d'un corps sur un support mou, résistance d'une plateforme pétrolière à la houle, fatigue d'un matériau sous sollicitation vibratoire, usure d'un roulement à billes ...)

Historique (Wikipédia)

- Militaire : Projet Manhattan (2nde Guerre mondiale)
- · Civil : Expérience de Fermi-Pasta-Ulam (1953)
- · Évolue en parallèle à l'informatique

Simulation Numérique

Pourquoi faire?

- Résolution manuelle impossible (pour l'instant ?)
- · Complexification des modèles
- Permet d'obtenir la valeur de quantités dans des zones inaccessibles en pratique
- Aide les expérimentateurs

Pourquoi pas faire?

 Ne remplace pas une expérimentation "réelle". C'est un complément.

Warning

Ce n'est parce que l'ordi¹ le dit que c'est vrai!

¹ou Facebook/Twitter/TikTok/...

Simulation Numérique : Schéma

Schéma

- 1. Problème Physique
- 2. Modélisation (= Équations, Simplifications, Approximations, ...)
- 3. Méthode de Résolution adaptée (Éléments Finis, Différences Finies, ...)
- 4. Implémentation ou Choix du logiciel
- 5. Interprétation des résultats

Dans ce cours : le modèle (= le système d'équations) est donné. On suppose qu'il est suffisamment précis pour le problème considéré (not our business)!

Simulation Numérique : quelques exemples

- · Site du cours
- Cerfacs Avbp7x
- · Imagerie du cerveau
- FreeFem Gallery

Simulation Numérique : Nous

Ce que vous saurez faire

- Mailler un domaine like a boss
- Prouver que certaines EDP (Équation aux Dérivées Partielles) elliptiques d'ordre 2 admettent une unique solution
- Écrire un programme Python qui résout numériquement et en dimension 2 de telles EDP

Simulation Numérique : Nous

Ce que vous saurez faire

- Mailler un domaine like a boss
- Prouver que certaines EDP (Équation aux Dérivées Partielles) elliptiques d'ordre 2 admettent une unique solution
- Écrire un programme Python qui résout numériquement et en dimension 2 de telles EDP

Ce que vous ne saurez pas faire

😐 Le reste : inventer un vaccin contre le COVID-19, ...

Éléments Finis Triangulaires

1. CAO

Y Z__X

- 1. CAO
- 2. Maillage du domaine

×

- 1. CAO
- 2. Maillage du domaine
- 3. Calcul des coefficients du système linéaire AU = b

- 1. CAO
- 2. Maillage du domaine
- 3. Calcul des coefficients du système linéaire AU = b
- 4. Résolution du système (=calcul de la solution)

- 1. CAO
- 2. Maillage du domaine
- 3. Calcul des coefficients du système linéaire AU = b
- 4. Résolution du système (=calcul de la solution)
- 5. Post-processing (Extraction des données d'intérêt)

Problème Modèle: Polygone

TODO:image

Notations

- · Ω : domaine de calcul : un ouvert borné polygonal
- **n** : normale unitaire sortante à Ω , vivant sur son bord²
- $\Gamma := \partial \Omega$: bord de Ω . Un gentil polygone.
- Γ_D et Γ_N : 2 parties complémentaires de Γ sans chevauchement mais non nécessairement connexes : $\Gamma_D \cap \Gamma_N = \emptyset$, $\Gamma = \overline{\Gamma_D} \cup \overline{\Gamma_N}$

²Problème?

Problème Modèle: EDP 2e ordre

TODO:image

$$\begin{cases}
-\Delta u + cu &= f & (\Omega) \\
\partial_n u &= g_N & \Gamma_N \\
u &= g_D & \Gamma_D
\end{cases}$$

Nom	Désignation	Nom	Désignation
Ω	Domaine	$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2}$	Laplacien
$\Gamma := \partial \Omega$	Bord de Ω	$\nabla u := [\partial_x u, \partial_y u]^T$	Gradient
Γ_D	Condition Dirichlet	$\partial_{\mathbf{n}}u := \nabla u \cdot \mathbf{n}$	Dérivée normale
Γ_N	Condition Neumann	f	Terme source
n	Normale unit. sort.	g _N , g _D	Données
		$c \in \{1, 0\}$	Quantité artificielle

- $\cdot -\Delta u$: Terme de diffusion ; $\partial_n u$: Flux ; cu: Terme de Réaction
- · On suppose le problème bien posé, on le montrera plus tard !

Théorème de (Georges) Green

Theorem (de Green)

$$\forall u, v,$$

$$\int_{\Omega} (\Delta u) v = -\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Gamma} (\partial_{\mathsf{n}} u) v$$

Remarque

• Extension multi-dim. de l'intégration par partie (IPP) sur [a, b]:

$$\int_{a}^{b} u''v = -\int_{a}^{b} u'v' + u'(b)v(b) - u'(a)v(a)$$

- $\Gamma = \{a, b\}, \mathbf{n} = \pm 1 : \mathbf{n}(b) = +1, \mathbf{n}(a) = -1$
- $\cdot \partial_n u = nu' \implies \partial_n u(b) = u'(b) \text{ et } \partial_n u(a) = -u'(a)$

$$\implies \int_a^b u''v = -\int_a^b u'v' + \partial_n u(b)v(b) + \partial_n u(a)v(a)$$

$$-\Delta u + cu = f$$

³pourquoi pas hein!

⁴C'est la recette "comme un cochon", je vous ai prévenu!

$$-\Delta u + cu = f \implies (-\Delta u)^{\mathbf{v}} + cu^{\mathbf{v}} = f^{\mathbf{v}}$$

Principe "comme un cochon mais ça fonctionne"

1. Multipliez l'EDP par une fonction³ v

³pourquoi pas hein!

⁴C'est la recette "comme un cochon", je vous ai prévenu!

$$-\Delta u + cu = f \implies (-\Delta u)^{\mathbf{v}} + cu^{\mathbf{v}} = f^{\mathbf{v}} \implies \int_{\Omega} (-\Delta u)^{\mathbf{v}} + \int_{\Omega} cu^{\mathbf{v}} = \int_{\Omega} f^{\mathbf{v}}$$

- 1. Multipliez l'EDP par une fonction³ v
- 2. Intégrez sur Ω

³pourquoi pas hein!

⁴C'est la recette "comme un cochon", je vous ai prévenu!

$$-\Delta u + cu = f \implies (-\Delta u)v + cuv = fv \implies \int_{\Omega} (-\Delta u)v + \int_{\Omega} cuv = \int_{\Omega} fv$$
$$\implies \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma} (\partial_{n} u)v + c \int_{\Omega} uv = \int_{\Omega} fv$$

- 1. Multipliez l'EDP par une fonction³ v
- 2. Intégrez sur Ω
- 3. Appliquez le Théorème de Green

³pourquoi pas hein!

⁴C'est la recette "comme un cochon", je vous ai prévenu!

$$\begin{split} -\Delta u + cu &= f \implies (-\Delta u)v + cuv = fv \implies \int_{\Omega} (-\Delta u)v + \int_{\Omega} cuv = \int_{\Omega} fv \\ &\implies \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma} (\partial_{\mathbf{n}} u)v + c \int_{\Omega} uv = \int_{\Omega} fv \\ &\implies \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma_{N}} (\partial_{\mathbf{n}} u)v - \int_{\Gamma_{D}} (\partial_{\mathbf{n}} u)v + c \int_{\Omega} uv = \int_{\Omega} fv \end{split}$$

- 1. Multipliez l'EDP par une fonction³ v
- 2. Intégrez sur Ω
- 3. Appliquez le Théorème de Green
- 4. Appliquez les conditions aux limites de Neumann

³pourquoi pas hein!

⁴C'est la recette "comme un cochon", ie vous ai prévenu!

$$-\Delta u + cu = f \implies (-\Delta u)v + cuv = fv \implies \int_{\Omega} (-\Delta u)v + \int_{\Omega} cuv = \int_{\Omega} fv$$

$$\implies \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma} (\partial_{n} u)v + c \int_{\Omega} uv = \int_{\Omega} fv$$

$$\implies \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma} (\partial_{n} u)v - \int_{\Omega} (\partial_{n} u)v + c \int_{\Omega} uv = \int_{\Omega} fv$$

- 1. Multipliez l'EDP par une fonction³ v
- 2. Intégrez sur Ω
- 3. Appliquez le Théorème de Green
- 4. Appliquez les conditions aux limites de Neumann
- Supprimez chaque intégrales portant sur une condition de Dirichlet⁴ en imposant v|_{□0} = 0

³pourquoi pas hein!

⁴C'est la recette "comme un cochon", je vous ai prévenu!

$$-\Delta u + cu = f \implies (-\Delta u)v + cuv = fv \implies \int_{\Omega} (-\Delta u)v + \int_{\Omega} cuv = \int_{\Omega} fv$$

$$\implies \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma} (\partial_{n} u)v + c \int_{\Omega} uv = \int_{\Omega} fv$$

 $\implies \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma} (\partial_{\Pi} u) v - \int_{\Gamma} (\partial_{\Pi} u) v + c \int_{\Omega} u v = \int_{\Omega} f v$

- 1. Multipliez l'EDP par une fonction³ v
- 2. Intégrez sur Ω
- 3. Appliquez le Théorème de Green
- 4. Appliquez les conditions aux limites de Neumann
- Supprimez chaque intégrales portant sur une condition de Dirichlet⁴ en imposant v|_{□0} = 0
- 6. Ajoutez la condition de Dirichlet

³pourquoi pas hein!

⁴C'est la recette "comme un cochon", je vous ai prévenu!

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \right. \end{aligned}$$

Remarques

• v est une fonction test

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \right. \end{aligned}$$

- v est une fonction test
- · Solution de FV = solution faible

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \right. \end{aligned}$$

- v est une fonction test
- · Solution de FV = solution faible
- Solution faible ⇒ Solution forte (= solution de l'EDP)?

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \end{array} \right.$$

- v est une fonction test
- · Solution de FV = solution faible
- · Solution faible ⇒ Solution forte (= solution de l'EDP)?
- FV admet une solution? unique?

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \right. \end{array} \right.$$

- v est une fonction test
- Solution de FV = solution faible
- Solution faible ⇒ Solution forte (= solution de l'EDP)?
- FV admet une solution? unique?
- Espace fonctionnel pour u et v?

Exercice

$$\begin{cases} -\Delta u = f & (\Omega) \\ \partial_n u + \alpha u = g & (\Gamma) \end{cases}$$

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \right. \end{array} \right.$$

$$(u, v)_{L^{2}(\Omega)} = ||u||_{L^{2}(\Omega)}^{2} =$$
 $(u, v)_{H^{1}(\Omega)} = ||u||_{H^{1}(\Omega)}^{2} =$

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \right. \end{aligned}$$

· Fonctions continues?

$$(u, v)_{L^{2}(\Omega)} = ||u||_{L^{2}(\Omega)}^{2} =$$
 $(u, v)_{H^{1}(\Omega)} = ||u||_{H^{1}(\Omega)}^{2} =$

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_{D}} = g_{D} \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_{D}} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_{N}} g_{N}v \end{array} \right.$$

- Fonctions continues?
- Fonctions L^2 ?

$$L^{2}(\Omega) = \left\{ f \colon \Omega \to \mathbb{R}; \int_{\Omega} |f|^{2} < +\infty \right\}$$

$$(u, v)_{L^{2}(\Omega)} = ||u||_{L^{2}(\Omega)}^{2} =$$
 $(u, v)_{H^{1}(\Omega)} = ||u||_{H^{1}(\Omega)}^{2} =$

$$\left\{ \begin{array}{l} \text{Trouver } u \text{ tel que, } u|_{\Gamma_D} = g_D \text{ et} \\ \forall v \text{ avec } v|_{\Gamma_D} = 0, \quad \int_{\Omega} \nabla u \cdot \nabla v + c \int_{\Omega} uv = \int_{\Omega} fv + \int_{\Gamma_N} g_N v \end{array} \right.$$

- · Fonctions continues?
- Fonctions L^2 ?

$$L^{2}(\Omega) = \left\{ f \colon \Omega \to \mathbb{R}; \int_{\Omega} |f|^{2} < +\infty \right\}$$

· Espace de Sobolev

$$H^1(\Omega) = \{ f \in L^2(\Omega); \partial_x f \in L^2(\Omega) \text{ et } \partial_y f \in L^2(\Omega) \}$$

$$(u,v)_{L^2(\Omega)} = ||u||_{L^2(\Omega)}^2 =$$

$$(u,v)_{H^1(\Omega)} = ||u||_{H^1(\Omega)}^2 =$$