1 Notatnki

Definicja 1.1 (Metoda anonimowa)

Metoda jest anonimowa $\Leftrightarrow gdy$ wszyscy wyborcy są traktowani tak samo, to znaczy $\Leftrightarrow \forall_{x,y \in W}$ zamiana głosów x i y nie zmienia wyniku.

Definicja 1.2 (Metoda neutralna)

Metoda jest neutralna \Leftrightarrow wszyscy kandydaci są traktowani tak samo, to znaczy $\Leftrightarrow \forall_{x,y \in K}$ zamiana ról x i y nie zmienia wyniku.

Definicja 1.3 (Metoda efektywna)

 $Metoda\ zwycięzcy\ jest\ efektywna \Leftrightarrow zawsze\ wyłania\ przynajmniej\ jednego\ zwycięzcę.$

Definicja 1.4 (Metoda decyzyjna)

 $Metoda\ zwycięzcy\ jest\ decyzyjna \Leftrightarrow w\ każdym\ modelu\ wyłania\ dokładnie\ jednego\ zwycięzcę.$

Definicja 1.5 (Metoda prawie decyzyjna)

 $Metoda\ zwycięzcy\ jest\ prawie\ decyzyjna\ \Leftrightarrow w\ każdym\ modelu\ wyłania\ co\ najwyżej\ jednego\ zwycięzcę.$ $Sytuacja,\ w\ której\ nie\ ma\ zwycięzcy,\ zachodzi\ wtedy,\ gdy\ więcej\ niż\ jeden\ kandydat\ uzyskał\ tę\ samą,\ najwyższą\ liczbę\ punktów.$

Definicja 1.6 (Kryterium jednoznacznej bezwzględnej większości)

Metoda zwycięzcy (MZ) spełnia kryterium jednoznacznej bezwzględnej większości, wtedy i tylko wtedy, gdy kandydat, który otrzyma ponad 50% głosów, jest jedynym zwycięzcą.

Definicja 1.7 (Metoda monotoniczna ze względu na zwycięzce)

Z: MZ - klasyczna lub semi-klasyczna. Metoda jest monotoniczna ze względu na zwycięzcę, wtedy i tylko wtedy, gdy kandydat A jest zwycięzcą, a jeśli wybierzemy kandydat B różnego od A ($B \neq A$) oraz jego grupę wyborców, to jeśli ta grupa zmieni swoje głosy bez straty dla A (czyli zmiana nastąpi zgodnie z następującymi dozwolonymi operacjami):

M	\Rightarrow	N	
A B	\Rightarrow	A B	
	\Rightarrow		
+ +	\Rightarrow	+ +	
- +	\Rightarrow	+ -	

 $to: \Rightarrow A \ nadal \ wygrywa.$

Twierdzenie 1.1 (Maya - Kenneth Maya, 1952r)

Z: Klasyczna metoda zwycięzcy oraz #K = 2. Jeżeli metoda ta jest metodą:

- (1) anonimową
- (2) neutralna
- (3) monotoniczną ze względu na zwycięzcę
- (4) prawie decyzyjną
- ⇒ jest metodą bezwzględnej większości.

Definicja 1.8 (Metoda zakładająca uporządkowanie)

Metoda zwycięzcy jest metodą zakładającą uporządkowanie (MZU) \Leftrightarrow gdy $\forall_{w \in W}$ wyborca w ustala K kandydatów w liniowym porządku, a jego głos zależy od tego porządku.

Definicja 1.9 (Monotoniczność ze względu na transpozycję)

MZU jest monotoniczna ze względu na transpozycje $\Leftrightarrow \forall_{M-model} \forall_{w \in W} \forall_{A,B \in K}$, jeśli w M głosuje się $[\Delta, B, A, *]$ i w M wygrywa A, to w N, gdzie zmiana polega na $[\Delta, A, B, *]$, również wygrywa A.

Definicja 1.10 (Słaba zasada Pareto)

MZU spełnia słabą zasadę Pareto $\Leftrightarrow \forall_M(\exists_{A,B\in K}\forall_{w\in W}A\overset{w,M}{<}B)\Rightarrow A$ nie wygrywa w M.

Definicja 1.11 (Kandydat Condorceta)

 $A \in K$ jest kandydatem Condorceta (zwycięzcą Condorceta) $\Leftrightarrow w$ "bezpośrednich porównaniach" A jest lepszy od każdego innego kandydata $\Leftrightarrow \forall_{B \in K} : B \neq A$ $\#\{w : B \overset{w,M}{<} A\} > \#\{w : B \overset{w,M}{>} A\}$.

Definicja 1.12 (Przegrany Condorceta)

 $A \in K$ to przegrany Condorceta (w modelu M) $\Leftrightarrow \forall_{B \in K} : B \neq A \quad \#\{w : B \overset{w,M}{<} A\} < \#\{w : B \overset{w,M}{<} A\}$.

Definicja 1.13 (Kryterium Condorceta)

Metoda spełnia kryterium Condorceta $\Leftrightarrow \forall_M$: Istnieje kandydat Condorceta $(w\ M) \Rightarrow A$ -jedyny zwycięzca $w\ M$.

Definicja 1.14 (Kryterium przegranych Condorceta)

Metoda spełnia kryterium przegranych Condorceta $\Leftrightarrow \forall_M$: Istnieje przegrany Condorceta A w $M \Rightarrow A$ nie wygrywa w M.

Definicja 1.15 (Metoda jednoznacznie większościowa)

Metoda jest jednoznacznie większościowa $\Leftrightarrow \forall_M \text{ kandydat } A \text{ w } M \text{ ma ponad połowę pierwszych } miejsc \Rightarrow A - jedyny zwycięzca.}$

Definicja 1.16 (Metoda słabo niezależna od ubocznych opcji IIA)

 $Metoda\ słabo\ niezależna\ od\ ubocznych\ opcji\ spełnia\ warunek\ niezależności\ porażki\ od\ ubocznych\ opcji\ (spełnia\ słaby\ warunek\ IIA) \Leftrightarrow$

$$\forall_{A,B \in K} \forall_{M,N-modele} \ spełnia \left[\begin{array}{c} \forall_{w \in W} (B \stackrel{w,M}{<} A) \Leftrightarrow (B \stackrel{w,N}{<} A) \\ A \ wygrywa \ w \ M, \ B \ nie \ wygrywa \ w \ M \end{array} \right] \Rightarrow B \ nie \ wygrywa \ w \ N.$$

Innymi słowy: zmiany nie wpływające na relacje przegrany-zwycięzca nie mogą dać przegrywającemu zwycięstwa.

Twierdzenie 1.2

MZU, anonimowa, neutralna \Rightarrow metoda nie jest decyzyjna.

Twierdzenie 1.3

MZU spełnia kryterium Condorceta \Rightarrow jest jednoznacznie większościowa.

Lemat 1.1 (Lemat o decyzyjności)

Z: MZU, efektywna, $\#K \geq 3$, $\#W \geq 2$. Metoda spełnia słabą zasadę Pareto i słabe IIA \Rightarrow jest decyzyjna.

Twierdzenie 1.4 (Twierdzenie Arrowa dla metod zwycięzcy (1951))

 $Załóżmy: \#K \geq 3, \#W \geq 2, MZU, efektywna, spełnia słabą zasadę Pareto i słabe IIA <math>\Rightarrow dyktatura.$

Wniosek 1.4.1 (Twierdzenie Arrowa o niemożliwości)

Załóżmy, że $\#K \geq 3$, $\#W \geq 2$. Wówczas: nie istnieje metoda zakładająca uporządkowanie (MZU) efektywna, która jednocześnie spełnia następujące warunki:

- anonimowa,
- słabą zasadę Pareto,
- słabe kryterium niezależności od opcji ubocznych (IIA).

Twierdzenie 1.5 (Twierdzenie Taylora o niemożliwości)

Dla $\#K \geq 3$, $\#W \geq 3$: nie istnieje MZU efektywna, która spełnia jednocześnie kryterium Condorceta oraz słabe kryterium niezależności od ubocznych opcji (IIA).

$$\begin{bmatrix} \Sigma = \{M : W \to K\} & \Sigma = \{M : W \to \{\text{TAK}, \text{NIE}\}\} \\ f : \Sigma \to P(K) & f : \Sigma \to \{\text{TAK}, \text{NIE}\} \end{bmatrix}$$

Definicja 1.17 (Założenia metody TAK/NIE)

Założenia: '

- $\forall_{w \in W} w : TAK \Rightarrow wynik: TAK$,
- $\forall_{w \in W} w : NIE \Rightarrow wynik: NIE$.

Definicja 1.18 (Koalicja wygrywająca)

Podzbiór $A \subset W$ jest koalicja wygrywającą wtedy i tylko wtedy, gdy:

$$\{x \in A : x \text{ glosuje } TAK\} \Rightarrow wynik: TAK.$$

Definicja 1.19 (Monotoniczność metody TAK/NIE)

Metoda TAK/NIE jest monotoniczna wtedy i tylko wtedy, gdy:

$$\begin{bmatrix} A \subset A_1 \\ A \text{ jest koalicją wygrywającą} \end{bmatrix} \Rightarrow A_1 \text{ jest koalicją wygrywającą.}$$

Definicja 1.20 (Wskaźnik Banzhafa)

Załóżmy, że $W = \{a_1, \ldots, a_n\}$. Wskaźnik Banzhafa dla a_i jest równy liczbie:

$$B(a_i) = \#\{A : a_i \in A \ i \ a_i \ jest \ decydujący \ dla \ A\}.$$

Definicja 1.21 (Indeks Banzhafa (Penrose'a-Banzhafa))

Indeks Banzhafa dla a_i definiuje się jako:

$$I_B(a_i) = \frac{B(a_i)}{B(a_1) + \dots + B(a_n)}.$$

Definicja 1.22 (Wskaźnik/Indeks Shapleya-Shubika)

Dla metody monotonicznej: Porządkujemy wyborców jako $W = (w_1, \ldots, w_n)$. W ciągu (w_1, \ldots, w_n) wyborca w_k jest wpływającym wyborcą, jeśli:

$$\{w_1,\ldots,w_{k-1}\}$$
 nie tworzy koalicji wygrywającej, a $\{w_1,\ldots,w_k\}$ już tak.

Wskaźnik Shapleya-Shubika:

$$S(w_k) = \#\{ciaqi, w \ kt\'orych \ w_k \ jest \ wpływającym \ wyborcą\}.$$

Indeks Shapleya-Shubika:

$$I_S(w_k) = \frac{S(w_k)}{n!}.$$

Definicja 1.23 (Słaby porządek)

Zbiór K jest słabo uporządkowany wtedy i tylko wtedy, $gdy \exists R$ — relacja równoważności w K taka, że K/R jest uporządkowany liniowo przez relację \leq .

 $Dla\ a,b\in K\ definiujemy$:

$$a < b \stackrel{def}{\Leftrightarrow} [a]_R < [b]_R,$$

gdzie relacja jest przechodnia i słabo antysymetryczna.

Definicja 1.24 (Metoda porządkowa (MP))

Każdy wyborca porządkuje kandydatów w sposób liniowy.

Wynik wyborów jest słabym porządkiem w zbiorze K:

- $L(K) = \{(K, \leq) : \leq \text{ jest porzadkiem } w K\},$
- $\bullet \ S(K) = \{(K, \leq) : \leq \ \textit{jest słabym porządkiem w } K\}.$

Zapis formalny:

$$\Sigma = \{M : W \to L(K)\}, \quad f : \Sigma \to S(K).$$

Definicja 1.25 (Porządkowa zasada Pareto)

Metoda porządkowa (MP) spełnia (porządkową) zasadę Pareto wtedy i tylko wtedy, gdy:

$$\forall_M \forall_{A,B \in K} \left(\forall_w \ A \overset{w,M}{<} B \right) \Rightarrow A \underset{M}{<} B.$$

Definicja 1.26 (Metoda spełniająca postulat liberalizmu Sena)

Metoda spełnia postulat liberalizmu Sena, jeśli:

$$\forall_{w \in W} \exists_{A,B \in K \ (A \neq B)} \ \left(A \overset{w,M}{<} B \Rightarrow A \underset{M}{<} B \right) \ \textit{oraz} \ \left(A \overset{w,M}{>} B \Rightarrow A \underset{M}{>} B \right).$$

Twierdzenie 1.6 (Twierdzenie Sena)

Niech $\#K \geq 2$ oraz $\#W \geq 2$. Wtedy: Nie istnieje metoda spełniająca jednocześnie:

- 1. zasadę Pareto,
- 2. postulat liberalizmu Sena.

Definicja 1.27 (Filtr)

Niech X będzie zbiorem. Podzbiór $F \subset P(X)$, gdzie $F \neq \emptyset$, nazywamy **filtrem**, jeśli spełnia następujące warunki:

- *1*) ∅ ∉ *F*
- 2) Jeśli $A, B \in F$, to $A \cap B \in F$
- 3) $Jeśli A \in F$ oraz $A \subset B \subset X$, to $B \in F$

Definicja 1.28 (Ultrafiltr)

 $Podzbi\'{o}r\ F \subset P(X)\ nazywamy\ **ultrafiltrem**,\ jeśli\ spełnia\ następujące\ warunki:$

- 1) F jest filtrem.
- 2) Dla każdego $A \subset X$ zachodzi dokładnie jedno z dwóch: $A \in F$ albo $X \setminus A \in F$.

Definicja 1.29 (Liberalizm Senna)

$$\forall_{w \in W} \exists_{a,b \in K; a \neq b} \forall_M \ w \ decyduje \ o \ (a,b)$$

Twierdzenie 1.7

Dla K i W istnieje metoda spełniająca postulat liberalizmu Senna wtedy i tylko wtedy, gdy # W < # K.

Definicja 1.30 (Warunki sensowności metody rozdziału)

- 1. (Warunek quoty) $\lfloor q_i \rfloor \leq a_i \leq \lceil q_i \rceil$ (uwzględniając $q_i \in \mathbb{Z} \Rightarrow g_i = a_i$)
- 2. (Warunek monotoniczności) $p_i > p_j \Rightarrow a_i \geq a_j$ (analogicznie w drugą stronę)
- 3. (Warunek populacji) Dla S, m danych:

$$p_1,\ldots,p_s\longmapsto a_1,\ldots,a_s$$

jeśli nastąpiła zmiana:

$$\bar{p_1}, \ldots, \bar{p_s} \longrightarrow \bar{a_1}, \ldots, \bar{a_s},$$

to:

$$\exists_{i,j}\bar{p}_i > p_i, \bar{a}_i < a_i \quad oraz \quad \bar{p}_i < p_i, \bar{a}_i > a_i$$

4. (Warunek monotoniczności akcji) Dla p_1, \ldots, p_n stałych, jeśli $\bar{m} > m$, to $\forall_i \bar{a}_i \geq a_i$. Nie mogą zajść wszystkie te warunki na raz.

Paradoks Alabamy

Dla $S=3,\ m=10,\ W=100,$ po zmianie liczby akcji na $m=11,\ W=90,9,$ wyniki się zmieniają:

p_i	q_i	$\lfloor q_i \rfloor$	Wynik
145	1,45	1	2
340	3,40	3	3
515	5, 15	5	5
$\Sigma = 1000$		9	10

	p_i	q_{i}	$\lfloor q_i \rfloor$	Wynik
	145	1,595	1	1
>	340	3,740	3	4
	515	5,665	5	6
	$\Sigma = 1000$		9	11

Paradoks Oklahomy

Po zmianie liczby akcjonariuszy i akcji, np. $S=4,\ m=13,\ W=76,9,$ także mogą wystąpić sprzeczne wyniki.

Twierdzenie 1.8 (Tw. Balińskiego-Younga)

 $Dla\ S \ge 4\ i\ m \ge 7$ nie istnieje metoda spełniająca jednocześnie warunki:

- quoty,
- monotoniczności,
- populacji.

Definicja 1.31 (Metoda dzielników)

Metoda rozdziału nazywana jest metodą dzielników, jeśli istnieje funkcja $f:[0,\infty)\to\mathbb{N}$, taka że:

- a) $x \in \mathbb{Z} \Rightarrow f(x) = x$
- b) Funkcja jest rosnąca: $x \le y \Rightarrow f(x) \le f(y)$

Definicja 1.32 (Metoda wartościująca – XXI wiek)

Niech S będzie zbiorem stopni (ocen wartości). Metoda $M:W\to \{f:K\to S\}$ polega na tym, że wyborca każdemu kandydatowi przypisuje ocenę.

Definicja 1.33 (Metoda rankingowo niezależna od ubocznych opcji)

Metoda wartościująca jest rankingowo niezależna od ubocznych opcji wtedy i tylko wtedy, gdy:

$$\forall_{M,N} \, \forall_{A,B} \begin{bmatrix} M, N - modele \\ K_M = K_N \cup \{C\}, \ C \notin K_M \\ \forall v \in W \ oceny \ v \ w \ M = \ oceny \ v \ w \ N \end{bmatrix} \Rightarrow (A \leqslant B \Leftrightarrow A \leqslant B).$$

Definicja 1.34 (Metoda odporna na nieobecność)

Metoda (MP, MW) jest odporna na nieobecność wtedy i tylko wtedy, gdy:

$$\forall_{M,N}\forall_{A,B}\begin{bmatrix} M,N-modele\\ W_N=W_M\cup W^*, & W^*\cap W_M=\emptyset\\ v\in W_M\Rightarrow & glos\ v\ w\ M=&glos\ v\ w\ N\\ A\leqslant B & oraz\ \forall_{v\in W^*}A\stackrel{v,N}{\leqslant}B \end{bmatrix}\Rightarrow A\leqslant B.$$