Assignment1

1. 亂數分組(Random grouping)

Describe how to do an efficient random grouping for this course or do the roll calling randomly?

在老師的網站 mde. tw 的協同產品設計實習網站內,點進 Grouping 有亂數分組模擬的 python 程式可以使用,把課號改成 0780 即可進行乙班的亂數分組。

分組心得

這次的分組我被分配到亂數分組的部分, 亂數分組的難度我覺得 還可以, 其他主題大部分的組員都有做, 不過還是有些組員沒有 做, 甚至連網站都沒有開。

Assignment 2

Collaborative product design processes of industrial design and engineering design inconsumer product companies

工程設計和工業設計對向市場推出成功產品至關重要,產品設計很難 從單一學科的角度來解釋。"協同產品設計"是指工業設計和電子設計合 作貢獻而創造的產品設計,特別是在公司環境中,協同產品設計涉及一系 列設計活動,比如說創建最初產品概念、內部規格決策以及外觀和內部結 構的開發。

1. 研究方法

為了研究協作產品設計過程的類型和相關條件,我們設計的「馬賽克方法」,以重建工業設計師和工程設計師之間的協同設計過程。基礎理論方法在社會科學中被廣泛採用,作為為較少研究領域建立理論的系統方法,而在設計研究中,它已被長期採用。實際設計過程及其與上下文相關的特徵可以從實際設計項目中確定,這可能不同於公司記錄的設計流程。比較兩者將提供洞察力。但是,我們無法收集它們,因為它們被視為對外部保密。相反,我們詢問受訪者,他們的公司是否有有文檔記錄的標準設計流程,以及它是否與實際設計流程不相讓。

1.1 深入訪談

1.1.1 案列公司的選擇

為了提高適用性,設計過程應在公司的背景和環境範圍內理解因此,我們設定了三個標準,通過對案例公司進行探索。通過的三項標準如下:

- (1) 這些公司應該生產中複雜的電子消費品。
- (2) 他們應該有獨立的工業設計和工程設計部門。

圖1 研究專業

(3) 他們應該是市場領先的公司,生產設計良好的高品質產品。

第一個標準使在產品領域環境中具有類似條件的製造商得以選擇,其中工業設計師和工程設計師都扮演著重要的角色。

1.1.2 受訪者的選擇

我們選擇了有目的和 Snowball 採樣方法的被採訪者。每家公司的看門 人都建議他們的設計師,而設計師又推薦了同事。在這樣做的同時,我們 選擇了符合以下三個標準的被採訪者:

- (1) 兩年以上在 company 的經驗
- (2) 參與產品開發過程的至少一個週期
- (3) 與同行(即工業設計師與工程設計師)密切協作和互動

1.1.3 面試程式

我們採用了半結構化的深入面試方法,遵循文獻的建議指導。我們首 先列出了大約20個詳細的問題,並將其分為四個主題:(1)個人資訊(2)設 計過程(3)角色和專業知識(4)互動。然後,我們提出了四個關鍵問題:

- (1) 你在隊里的位置和位置是什麼?
- (2) 產品設計流程如何進行,過程中發生了什麼?
- (3) 您在設計過程中有哪些任務,執行專案需要哪些知識和技能?
- (4) 工業設計(工)和工程設計在設計過程中如何相互作用?

表1 案例公司資訊

公司	商務領域	工業設計師人數	工程設計師人數
公司 A	家電	10e20	50e100
公司 B	IT 產品	5.e10	5.e10
公司 C	移動通信	40e50	50e100
公司 D	移動通信	50e100	100e200
E 公司	安全設備	5.e10	20e30
公司 F	家電	5.e10	30e40

1.2 識別設計流程

1.2.1 確定每個人經歷的設計流程

雖然所有轉錄的數據都載有與設計過程有關的資訊,但它們都與其他 內容混合在一起,包括專案的情況和目標、個人的作用、必要的技能和知 識、行為者之間的衝突、彼此的感知圖像等。我們首先通過審查相關文獻 來確定過程要素用於構建設計過程的"過程元素",從而制定了編碼框架。 我們多次通過多次抄錄公司的採訪記錄來證實他們。關於過程建模的兩種 觀點,觀看過程作為資訊處理和狀態轉換系統,為流程建模的流程元素編 碼類別提供了有意義的線索。

進入狀態轉換,有兩個活動:執行任務和評估結果。大多數情況下,評估發生在相對較短的時間段內,以決定"前進、重複或下降"。因此,我們把這類活動(評估、設計重新查看、門查、決策)命名為"事件"。在此關頭,我們有兩個編碼類別;'任務'和'事件'。最後,我們可以對設計過程進行四個編碼類別的建模;'任務'',事件',"資訊流"和"交互",可以表示與階段的連接。此時,設計過程的階段可以使用「輸入 e 工作(設計活動)ee 事件(決策)ee 輸出「來表示。下面介紹了如何使用上述四個編碼類別對流程元素進行編碼。

任務:清除設計人員執行的任務,如"創意草圖"、"3D 建模"等。答辯人說;是的,我用圓珠筆做素描來表達我的想法。很少著色或掃描它,以修飾Photoshop。,我們將其編碼為一個任務類別,標籤為"創意草圖"。

事件:在特定任務之後,事件(決策)繼續進行,從而導致下一個操作。答辯人說;我們去類比公司製作原型,並帶來所有兩個或三個原型。與他們舉行模擬評估會議。工程師們聽了老闆的批評。老闆說,這是,也就是說,那麼如果工程師有不同的想法,他們提供的意見。.(省略). 最後選擇了一個。我們在事件類別中使用標籤"類比評估會議"對其進行編碼。資

訊流:當發生任務或事件時生成資訊流。它總是伴隨著輸入和輸出。答辯人說;事實上,我們根據從工程設計公司收到的規範開展工作。在有事到達之前,我們不會開始工作。描述工業設計師從工程設計師那裡收到"規範數據"作為輸入,他們開始工作。我們將此"從 ED 的規範數據編碼為 ID」。另一個摘錄是,選擇模型后,我們將模型的 3D 數據傳遞給工程部門。

Assignment 3

圖 5.26 F(s) 的步進回應

要設計 PI 控制器, 讓我們假設其傳輸功能由以下函數描述:

$$C(s) = K_P + \frac{K_I}{s}$$
$$= \frac{1 + \tau_n s}{\tau_i s}$$

$$E_P = \frac{\tau_0}{\tau_l} : K_I = \frac{1}{\tau_l}.$$

利用此,補償系統的開環傳輸功能由以下方式給出:

$$T(s) = C(s)G(s) = K(1 + \tau_n s) \frac{b_m s^m + \dots + b_1 s + 1}{s^{l+1} (a_n s^n + \dots + a_1 s + 1)}$$

$$K = \frac{k}{\tau_0}$$

以下程序可用於此控制器的設計:

1. 確定不等於原點極(對應於最高時間常數的極點)的最慢極, 然後繼續零/極取消。這會使我們能夠透過以下情況對參數 T 加進行排雷:

$$\tau_n = \max\{\tau_1, \cdots, \tau_\nu\}$$

其中 τ_{II} $J=1,\dots,\nu$ 是要控制的系統的時間常數。

2. 使用博德圖確定提供所需相位裕量的增益 A+P, 並取得:

$$\tau_i = \frac{k}{\bar{K}_P}$$

3. 使用: 1 控制器的增益 KP和 Kii

$$K_P = \frac{1}{\tau_i}$$

$$K_I = \frac{\tau_n}{\tau_i}$$

- 4. 確定補償系統的開環傳輸功能,並檢查是否獲得所需的性能。在負回應的情況下調整 \n 並重複過程設計。
- 5.6.6 相位滯後控制器

相位引線控制器的情況,經驗方法不能説明在階段滯後控制器的設計。在這裏,我們將使用另外兩種方法設計此控制器。對於根位點技術,我們將假定我們想要他遵循規範:

- 1. 穩定系統
- 2. 等於 0.01 的單位斜坡輸入的穩定狀態錯誤
- 3. 過沖約 5 %
- 4. 以 5% 等於 0 的設定時間。36 s

使用沉降和過衝規範, 我們得出結論, 佔主導地位的極 $1 \in \{1, 1, 2 = 1\}$ 。 33×8.35 ,和

從系統的根位點, 我們得到的增益 K1, 給這些極是 K1 = 8.3.5

現在使用穩態規範, 我們得出結論, K 2等於 100。從這兩個增益的值中, 我們得到的參數, 一個控制器

最後,控制器的傳輸功能由:

aT = 1

C(s) = KP , < 1 a

Ts = 1

使用 Bode 方法, 我們設計了一個控制器, 該控制器提供以下規範:

- 1. 穩定系統
- 2. 單位斜坡的穩定狀態誤差小於 0.01
- 3. 相位裕量大於 40o
- 4. 增益邊距大於 8 db
- 5.6.7 相位引線延遲控制器

對於此控制器,我們只能使用根位和 Bode 方法來設計它。讓我們首先開始使用根-locus 方法設計控制器。請務必注意,比例控制器在 5% 的最佳沉降時間約為 0.36 s.有了相位控制器,我們希望這次改進。讓具有正虛部分的所需極點佔主導地位 sd = 11.6 j 對應於等於 0 的安定時間。27 s 和過衝等於 5%。沒有控制器的系統階段由:

48.5/0 • 06

 $arg = 0 = 90 \times 65 \circ 9917 = =155 \circ 9917$

 $sd(ssd = 16) \circ 6667)$

相位引線控制器必須增加相位與180×155。 9917 = 24。0083 這意味著:

$$[] = 24 \circ 0083$$

如果我們將零點放在 -20, 這意味著 = $=53 \cdot 76760$ 和 -30 的極點給出 52 角 $\cdot 890$. 這貢獻了 21. 67880 由控制器和接近所需的控制器。從中, 我們有:

1

$$T1 = 30$$

1

a1T1 = 20

這給出了T1 = 0。0333 和 a1 = 1。5. .

對於使用根位點技術的相位延遲控制器設計,我們將假定我們需要以下規範:

- 1. 穩定系統
- 2. 等於 0.01 的單位斜坡輸入的穩定狀態錯誤
- 3. 過沖約 5 %
- 4. 以 5% 等於 0 的設定時間。27 s

控制器	演演算法		
P	u(k) = k e(k)		
Pi	$u(k)$ be $k = u(k = 1)_{\underline{s}} =$		
	$a(k) = (k = 1) a = K_P =$		
	$K = \underline{k}2\underline{T}$, $b = KP = KP =$		
	<u>K2 Ts</u>		
Pd	$u(k) = uu(kD_{-} = 1) = \varrho$		
	$ae(k) = (k = 1) a = K_P$		
	$= \underline{2} \underline{T}\underline{K}s.$, $b = \underline{K}P = \underline{2} \underline{T}\underline{K}Sp$		
Pid	$u(k)$ be $\underline{} = s$, $u(\underline{} k = 12)\underline{s} = ae_{\underline{b}}(k)$		
	$= (k+-1) = \underline{p} ce(k=2) I s_a a = K_P = K_2 T$		
	$= 2 T = b = K_I T_S = \underline{4} \underline{\pi}_S , C = K = \underline{2}T + \underline{2} \underline{\pi}_S$		
	$= K_P$		
導致	$u(k) = $ $\underline{\qquad}$ $s=a_0u(k = 1) = s \not\in (k) = ce(k)$		
	$=_s 1$)		
	<i>a</i> =		
	0 $TTs==22TT$, b $b = KPTTs=22aTT$, c $c = KPTTs=+22aTT$		
滞後	$u(k) = s = a_0 u(k = 1) = \mathcal{E}(k) = ce(k = s 1)$		
	<i>a</i> =		
	0 $T\underline{T}\underline{S}=2\underline{2}\underline{s}T\underline{T}$, $\underline{2}$ b b = KP $\underline{T}T\underline{S}=2\underline{2}\underline{a}T$ T , C C = KP $\underline{T}\underline{S}=2$		
	2 <u>aT</u> T		
鉛-拉	$u(k) = ce \theta_0 u(k = 1) = bu(k = 2) = = (k)$		
格	$= de_{-} (k = 1) = fe(k = 2)$		
	$\mathcal{A}_0 = (T \xrightarrow{\mathcal{A}_2 \cup \mathcal{A}_3} \mathcal{B}_2 = (Tt_{sss} + 22Tt_{11})()(Tt_{sss} + 22Tt_{22})),$		
	$C = \frac{\frac{(T_s + 2T_1)(T_s + 2T_2)}{(T_s - 2a_1T_1)(T_s + 2T_2)}}{\frac{(T_s + 2T_1)(T_s + 2T_2)}{(T_s + 2T_2)}} + (K_P (++7T_1)S_{sT} d = K_P)$ $T_{1s22}T_{s-2s2} z_{22}T_{ss} f = K_P)$		
	TT.s+2+2a+2a $T(2T.a$ $T(T)$ $T(Sa)$ $T(S-TT)$ ()(,)(),)()(= 2 a 1 T		
	1)(T s = 2 a 2 T 2), d = K P (T s = 2 a 1 T		
	1)(T s = 2 s a 2 T T 2 1)))(T T s = 2 2 T a		
	2 1)T 1)(T s = 2 2 T 2 1))(T s = 2 A 2 T		
	$(2), f = K P_{2+s}$		

5.7 結論

實用系統在設計時一般需要控制器的設計,以提高此類系統的性能。這些表演給出了一個對瞬時和瞬時制度的想法。大多數情況下,過沖、沉降時間、穩態 error 被認為是控制器的設計。本章介紹經典控制器的設計,如比例、積分和衍生動作。使用實證方法、根-洛庫斯技術和博德繪圖技術的過程通過數值示例進行支撐和說明。