

Universidade do Minho

Recebido por			
N°			
Nome			

Licenciatura em Engenharia Informática Sistemas de Representação de Conhecimento e Raciocínio 3° Ano, 2° Semestre Ano letivo 2012/2013

Prova escrita 20 de junho de 2013

GRUPO 1

(6 valores)

QUESTÃO 1

Responda às questões deste grupo em folha separada.

Considere o cenário descrito na Tabela 1, onde se ilustram alguns casos de horários de partidas e chegadas de ligações ferroviárias.

Tabela 1
Horário de partidas e chegadas de algumas ligações ferroviárias.

ORIGEM	DESTINO	PARTIDA	CHEGADA
Porto	Guimarães		16:00
Guimarães	Porto	16:15	
Guimarães	Porto	21:45	
Guimarães	Trofa		atrasado
Trofa	Guimarães		[17:00, 17:30]
Guimarães	{ Trofa, Fafe, Braga }	18:45	
Braga	cancelado		19:00
#	Braga	21:00	21:00

Atenda a que ' { ' e ' } ' é a notação usada para denotar conjuntos e ' [' e '] ' é a notação a que se recorre para representar intervalos de valores, para valores nulos do tipo impreciso. Os átomos 'atrasado' e 'cancelado' denotam valores nulos do tipo incerto. O símbolo ' # 'representa um valor nulo do tipo interdito.

- a) Caracterize o sistema a desenvolver em termos da representação do conhecimento;
- b) Represente o conhecimento descrito na Tabela 1 em termos das extensões dos predicados caracterizados em a);
- c) Apresente o invariante que garanta não ser possível remover informação respeitante a uma ligação que ainda não chegou ao destino;
- d) Apresente o invariante que garanta não ser possível uma ligação ter como destino o local de origem.

QUESTÃO 2

No contexto da programação em lógica estendida e da representação de conhecimento imperfeito, desenvolva o sistema de inferência com capacidade para lidar com a agregação de questões, dada pela conjunção ou pela disjunção de termos.

	N°
GRUPO 2 (6 valores)	Responda às questões deste grupo neste enunciado, assinalando a veracidade (V) ou falsidade (F) das afirmações produzidas, justificando a resposta EXCLUSIVAMENTE no espaço disponibilizado.
	NÃO SERÃO CONSIDERADAS respostas para as quais não exista uma justificação expressa.
QUESTÃO 1	Na linguagem de programação em lógica PROLOG, o predicado = (X, Y) representa a unificação de termos. Justificação:
QUESTÃO 2	Na linguagem de programação em lógica PROLOG, a expressão X==2 resulta na unificação da variável X com a constante 2. Justificação:
QUESTÃO 3	Numa linguagem de programação em lógica, a representação de listas de termos deve assegurar que todos os seus elementos são do mesmo tipo de dados. Justificação:
QUESTÃO 4	Um invariante tanto pode representar uma restrição à inserção como uma restrição à remoção de conhecimento do sistema. Justificação:
QUESTÃO 5	O uso de mecanismos de raciocínio por defeito de base hierárquica só é adequado quando se assuma uma estratégia de controlo sobre a herança. Justificação:
QUESTÃO 6	Os predicados in(X) e out(X), das bibliotecas LINDA do SICStus PROLOG, bloqueiam se não for possível realizar a unificação do termo dado em X. Justificação:

GRUPO 3

(6 valores)

Responda às questões deste grupo neste enunciado, assinalando a veracidade (V) ou falsidade (F) das afirmações produzidas.

EM CADA QUESTÃO, uma afirmação incorretamente assinalada ANULA outra afirmação assinalada corretamente.

QUESTÃO 1

Assuma que os predicados é_um(Agente, Superi or, Li sta) e agente(Agente, Teori a) são os adequados para a representação de conhecimento num sistema de raciocínio de base hierárquica.

Considere, ainda, os predicados demo1(Agente, Questão) e demo2(Agente, Questão), cujas extensões corporizam sistemas de inferência, dados no que se segue:

```
demo1( Agente, Questão ) :-
    agente( Agente, Teoria ),
    prova( Questão, Teoria ).

demo1( Agente, Questão ) :-
    é_um( Agente, Superior, Lista ),
    pertence( Questão, Lista ),
    demo1( Superior, Questão ).
demo2( Agente, Questão ) :-
    é_um( Agente, Superior, Lista ),
    não( pertence( Questão, Lista ) ),
    demo2( Superior, Questão ).
```

A extensão do predicado ${ m dem}{ m o}{ m 1}$ não tem capacidade de herdar conhecimento devido a um
erro na segunda cláusula.

A extensão do predicado $demo1$ tem capacidade para herdar conhecimento se e só se o termo
Li sta representar uma lista vazia.

A extensão do predicado demo 1 não tem capacidade para lidar com situações de herança múltipla.

A extensão do predicado demo 1 está incorreta porque está a permitir herdar quando a questão pertence às propriedades canceladas.

A extensão do predicado demo2 tem capacidade para herdar conhecimento se e só se o termo Li sta representar uma lista vazia.

Os predicados demo1 e demo2 são equivalentes porque a extensão do predicado pertence não está definida.

Se a teoria do agente for representada por uma lista de regras, o predicado demo2 não tem capacidade de herdar conhecimento.

QUESTÃO 2

Considere o seguinte excerto de PROLOG, que mostra a extensão de predicados usados na implementação de agentes inteligentes, segundo o modelo de distribuição de computação baseado em quadros negros disponibilizado pelas bibliotecas LINDA do SICStus PROLOG:

```
run( Agente ) :-
                                            demo( Agente, Questão ) :-
   in( pergunta( Agente, Questão ) ),
                                               findall ( Questão, Questão, Lista ),
                                               out( resposta( Agente, Lista ) ).
   demo( Agente, Questão ),
   run( Agente ).
                                            demo( Agente, Questão ) :-
                                               é_um( Agente, Superior ),
                                               out( pergunta( Superior, Questão ) ).
     A expressão pergunta ( Agente, Questão ) é um termo da linguagem de comunicação
     que representa um pedido de obtenção de todas as soluções para uma questão.
     A expressão resposta ( Agente, Sol ução ) é um termo da linguagem de comunicação
     que identifica uma e uma só solução para cada questão colocada a um agente.
     Um agente corporizado por estes procedimentos envia a questão para todos os superiores
     hierárquicos quando não tenha capacidade para construir uma resposta.
     O sistema de inferência representado pelo predicado demo está incorreto porque não
     apresenta qualquer estratégia para o controlo da herança.
     Um agente corporizado por estes procedimentos não apresenta capacidade de herança de
     conhecimento.
     Recorrendo às bibliotecas LINDA do SICStus PROLOG não é possível construir agentes
     inteligentes com a característica de mobilidade, por só ser possível haver uma ligação a um
     quadro negro em cada momento.
     Um agente inteligente que englobe estes procedimentos não é autónomo porque depende,
     sempre, de outros para iniciar o seu ciclo de atividade.
```

GRUPO 4

(2 valores)

Responda às questões deste grupo em folha separada.

Dado o predicado f: X_1 , X_2 , $X_3 \rightarrow \{V,F\}$, considere a sua extensão, dada na forma:

...

Dado o predicado i. λ_1 , λ_2 , $\lambda_3 \rightarrow \{v,i\}$, considere a sua extensão, dada

f([20, 40], desconheci do, 43).f([15, 70], 75, [40, 50]).

[10, 80] [50, 100] [40, 60] , os quais denotam os domínios das variáveis X_1 , X_2 e X_3 , respetivamente.

٠..

- a) Discretize a informação dada.
- b) Justifique a sua resposta.