Columbia University

Math Methods for Political Science Fall 2017

Exercise Set 1

Due: October 4, 2017

1. Determinants

Exercise 1. Compute the determinant of the following matrices.

a)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \qquad D = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}.$$

b) Same question for A^T, B^T, C^T, D^T .

Exercise 2. For which values c_1, c_2, c_3 is the following matrix invertible?

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ c_1 & c_2 & c_3 \\ c_1^2 & c_2^2 & c_3^2 \end{array} \right]$$

Hint: show det $A = (c_2 - c_1)(c_3 - c_1)(c_3 - c_2)$.

Exercise 3. Let A be an $n \times n$ matrix. We say that A is triangular if either $A_{i,j} = 0$ for j > i or $A_{i,j} = 0$ for i > j. If $A_{i,j} = 0$ for j > i, then the matrix is called lower triangular. If $A_{i,j} = 0$ for i > j, then the matrix is called upper triangular. If $A_{i,j} = 0$ for i > j and i < j (i.e., $A_{i,j} = 0$ for $i \neq j$), then the matrix is called diagonal.

$$\begin{bmatrix} A_{1,1} & 0 & 0 & 0 & \cdots & 0 & 0 \\ A_{2,1} & A_{2,2} & 0 & 0 & \cdots & 0 & 0 \\ A_{3,1} & A_{3,2} & A_{3,3} & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & A_{n-2,n-2} & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & A_{n-1,n-2} & A_{n-1,n-1} & 0 \\ A_{n,1} & A_{n,2} & \cdots & \cdots & A_{n,n-3} & A_{n,n-1} & A_{n,n} \end{bmatrix}$$

lower triangular

$$\begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & \vdots & \vdots & \vdots & \vdots & A_{1,n} \\ 0 & A_{2,2} & A_{2,3} & \ddots & \vdots & \vdots & A_{2,n} \\ 0 & 0 & A_{3,3} & \ddots & \ddots & \vdots & \ddots \\ 0 & 0 & 0 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \cdots & \cdots & \ddots & A_{n-2,n-2} & A_{n-2,n-1} & A_{n-2,n} \\ 0 & 0 & 0 & \vdots & 0 & A_{n-1,n-1} & A_{n-1,n} \\ 0 & 0 & 0 & \vdots & 0 & 0 & A_{n,n} \end{bmatrix}$$

upper triangular

$\lceil A_{1,1} \rceil$	0	0	0	• • •	0	0 7
0	$A_{2,2}$	0	0	• • •	0	0
0	0	$A_{3,3}$	0		0	0
:	٠.	٠.	٠.	٠	:	:
0	:	٠٠.	٠٠.	$A_{n-2,n-2}$	0	0
0	0	:	٠.	0	$A_{n-1,n-1}$	0
	0	0	• • •	0	0	$A_{n,n}$

diagonal

Show that if A is triangular or diagonal, then its determinant is equal to the product of the diagonal elements, namely det $A = \prod_{i=1}^{n} A_{i,i}$.

Exercise 4. Let A and B be $n \times n$ matrices. Show:

- a) If A is invertible, then det [A⁻¹] = 1/det A.
 b) If A and B are invertible, then det [BAB⁻¹] = det A.
- c) If B is such that $B^TB = I_n$, then det $B = \pm 1$.
- d) If A is such that $\det [A^3] = 0$, then A is not invertible.
- e) If either A or B is not invertible, then AB is not invertible.

Exercise 5. Solve the following linear systems using Cramer's rule:

b)

$$x_1 + 4x_2 + x_3 = 1$$

 $2x_1 + 3x_2 + x_3 = 2$
 $3x_4 + 7x_2 + 2x_3 = 1$

2. Vector spaces

Exercise 6. Show:

a) If V is a vector space, then $\mathbf{0} \in V$ (i.e., the zero vector) is unique.

- b) If V be a vector space and $\mathbf{u} \in V$ a vector, then $-\mathbf{u} \in V$ (i.e., the inverse of \mathbf{u}) is unique.
- c) The set of polynomials of degree at most n, namely

$$\{a_0 + a_1t + ... + a_nt^n \mid a_0, ..., a_n \in \mathbb{R}\},\$$

is a vector space.

d) The set of polynomials of degree exactly 2, namely

$$\{a_0 + a_1t + a_2t^2 \mid a_0, a_1, a_2 \in \mathbb{R}, a_2 \neq 0\},\$$

is not a vector space.

- e) The set of $m \times n$ matrices is a vector space.
- f) If A is an $n \times n$ invertible matrix, then its columns are linearly independent.

Exercise 7. (a) What is the dimension of the subspace W of \mathbb{R}^2 defined as $W = \text{span}\{v_1, v_2, v_3\}$, where $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (b) Find a subset B of $\{v_1, v_2, v_3\}$ such that B is a basis of W.
- (c) Grow the subset $\{v_1 + v_2\} \subset W$ to obtain a basis of W.

Exercise 8. (a) Consider the vector $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ expressed in the standard basis for \mathbb{R}^2 .

Find the coordinates of v in the basis $\{b_1, b_2\}$ of \mathbb{R}^2 , where $b_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $b_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

(b) Same question for $v = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ given in the standard basis for \mathbb{R}^3 to express in the basis $\{b_1, b_2, b_3\}$ where $b_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $b_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Exercise 9. Let $A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$.

- (a) Compute the rank of A and the dimension of its null space.
- (b) Same question for A^T .
- (c) Same question for A, a 7×7 matrix with a pivot in every row.
- (d) Consider A, an $n \times m$ matrix, and a vector $b \in \mathbb{R}^n$. What relationship between the rank of $[A\ b]$ and the rank of A would guarantee the equation Ax = b to be consistent?

Exercise 10. Let

$$w = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 3 & -\frac{5}{2} \\ -3 & -2 & 4 \\ 2 & 4 & -4 \end{bmatrix}.$$

Which of the following proposals is correct? Justify briefly.

- (a) w belongs to $\operatorname{Col} A$, but not to $\operatorname{Nul} A$.
- (b) w belongs to Nul A, but not to Col A.
- (c) w belongs to Nul A and to Col A.
- (d) w belongs neither to Nul A nor to Col A.

Exercise 11. Determine whether each proposal is true or false and justify briefly your answer.

- (a) Let V be a vector space and H a subspace of V. Then V is a subspace of itself and H is a vector space.
- (b) If H is a subset of V, then $0 \in H$ implies that H is a subspace of V.
- (c) A square matrix A is invertible if and only if $\text{Nul } A = \{0\}$.
- (d) The null space of a matrix A is not always a vector space.

Exercise 12. (a) Let A be an 5×6 matrix. If dim Nul A = 3, what is Rank A?

- (b) Let A be an 7×3 matrix. What is the maximal rank for A? What is the minimal dimension of its null space? Same question if A is a 3×7 matrix.
- (c) Let A be an $n \times n$ matrix. Give a condition on Rank A for A^T to be invertible?

Exercise 13. (a) Show that the matrices
$$A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 1 & 2 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 0 & -19 \\ 0 & 1 & 0 & 11 \\ 0 & 0 & 1 & -\frac{7}{2} \end{bmatrix}$

are row equivalent.

- (b) Compute Rank A, dim Nul A, Rank B, dim Nul B.
- (c) Find a basis of Nul A and Nul B.
- (d) Find a basis of $\operatorname{Col} A$ and $\operatorname{Col} B$.
- (e) Find a basis of Row A and Row B.
 - 3. Eigenvalues and eigenvectors

Exercise 14. Let

$$A = \begin{bmatrix} 4 & 1 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & 2 \\ 0 & 4 \end{bmatrix}, C = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix},$$
 and
$$E = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 0 & 4 & 17 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Compute the characteristic polynomial, the eigenvalues and eigenvectors of matrices A, B, C, D, E.

Exercise 15. Using a minimal number of steps, determine whether the following matrices are diagonalizable:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ B = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}, \ C = \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}, \ D = \begin{bmatrix} -2 & 4 & -2 \\ 4 & -2 & -2 \\ -2 & -2 & 4 \end{bmatrix}.$$

Exercise 16. Determine whether each proposal is true or false and justify briefly your answer.

- a) A matrix A is not invertible if and only if 0 is an eigenvalue of A.
- b) A square matrix is invertible if and only if it is diagonalizable.
- c) The eigenvalues of a square matrix are its diagonal entries.
- d) We can find the eigenvalues of a matrix by computing its RREF.
- e) Si A et B sont deux matrices semblables, alors elles ont les mêmes valeurs propres.
- f) An $n \times n$ matrix needs to have n distinct eigenvalues to be diagonalizable.
- g) If \mathbf{v}_1 and \mathbf{v}_2 are two eigenvectors linearly independent, then their associated eigenvalues are distinct.
- h) Let A, B and C be matrices. If $A \sim B$ and $B \sim C$, then $A \sim C$.

Exercise 17. Diagonalize the following matrices

$$B = \begin{bmatrix} 2 & 0 & 4 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 3 & 3 \end{bmatrix}, C = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}, D = \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}.$$

Exercise 18. Show or find a counter-example:

Let A be an $n \times n$ matrix, $n \geq 2$ and $k \geq 2$.

- (a) If A is diagonalizable, then A^k is diagonalizable.
- (b) If A^k is diagonalizable, then A is diagonalizable.
- (c) The eigenvectors of A and A^{\top} are the same.

4. Orthogonality and least-squares

Exercise 19. a) Find a nonzero vector that is orthogonal to $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

b) Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 5 \\ 6 \\ 0 \end{bmatrix}$. Compute
$$\mathbf{u} \cdot \mathbf{v}, \quad \mathbf{v} \cdot \mathbf{w}, \quad \frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{v}\|}, \quad \frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}, \quad \frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{v}\|} \mathbf{v}.$$

- c) Compute the distance between \mathbf{u} and \mathbf{v} , and the distance between \mathbf{u} and \mathbf{w} .
- d) Compute the unit vectors corresponding to **u**, **v**, **w**.

Exercise 20. Let
$$\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
 and let $V = \mathrm{Span} \ \{ \mathbf{v} \}$. Find a basis of $W = V^{\perp}$.

Exercise 21. Determine whether each proposal is true or false and justify briefly your answer.

- a) For any vector \mathbf{v} and scalar c, $||c\mathbf{v}|| = c ||\mathbf{v}||$.
- b) Vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + 2\|\mathbf{u}\| \|\mathbf{v}\| + \|\mathbf{v}\|^2$.
- c) If vector \mathbf{v} is orthogonal to every vector of a basis of subspace W except one, then $\mathbf{v} \in W^{\perp}$.
- d) Let W be a subspace of a vector space V. If dim $W^{\perp} = 1$, then it is possible to form a basis for V using vectors in W.

Exercise 22. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix}$.

- (i) Verify that \mathbf{u}_1 and \mathbf{u}_2 are orthogonal.
- (ii) Compute $\operatorname{proj}_W \mathbf{v}$ with $W = \operatorname{Span} \{\mathbf{u}_1, \mathbf{u}_2\}$.
- (iii) Give the decomposition $\mathbf{v} = \mathbf{z} + \operatorname{proj}_W \mathbf{v}$ where $\mathbf{z} \in W^{\perp}$.

Exercise 23. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ et $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ two orthonormal bases for \mathbb{R}^n , $U = [\mathbf{u}_1 \cdots \mathbf{u}_n]$ and $V = [\mathbf{v}_1 \cdots \mathbf{v}_n]$. Show that $U^T U = I$, $V^T V = I$ and that UV is invertible.

Exercise 24. Use the Gram-Schmidt process to orthogonalize the bases of the following subspaces of \mathbb{R}^n

(i) Span
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$
(ii) Span $\left\{ \begin{bmatrix} 1\\3\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \right\}$

(iii) Give the orthonormal basis corresponding to (i) and (ii).

Exercise 25. Give the least-squares solution(s) to $A\mathbf{x} = \mathbf{b}$,

(i)
$$A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$,
(ii) $A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$,
(iii) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ 5 \\ 6 \\ 6 \end{bmatrix}$;

Exercise 26. a) Show that if Q is an orthogonal matrix, then so is Q^T .

- b) Show that if U, V are orthogonal matrices, then UV is also orthogonal.
- c) Let $\mathbf{u} \in \mathbb{R}^n$ be a unit vector. Show that $Q = I 2\mathbf{u}\mathbf{u}^T$ is orthogonal.
- d) Show that any real eigenvalue λ of an orthogonal matrix Q verifies $\lambda = \pm 1$.
- e) Let Q be an $n \times n$ orthogonal matrix and $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ an orthogonal basis of \mathbb{R}^n . Show that $\{Q\mathbf{u}_1, \dots, Q\mathbf{u}_n\}$ is also an orthogonal basis of \mathbb{R}^n .