T05: Exploração de Marte

Agentes e Inteligência Artificial Distribuída

Novembro 2016

Marina Camilo - up201307722 - up201307722@fe.up.pt Diogo Ferreira - up201502853 - diogoff@fe.up.pt Ângela Cardoso - up200204375 - angela.cardoso@fe.up.pt

Conteúdo

1	Enu	Enunciado										
	1.1											
	1.2	Objectivos do trabalho	4									
	1.3	Resultados esperados e forma de avaliação	4									
2	Plataforma/Ferramenta 5											
	2.1	Para que serve	5									
		2.1.1 Jade	5									
		2.1.2 Repast 3	5									
		2.1.3 SAJaS	5									
	2.2	Descrição das características principais	5									
		2.2.1 Jade	5									
		2.2.2 Repast 3	6									
		2.2.3 SAJaS	6									
	2.3	Realce das funcionalidades relevantes para o trabalho	6									
3	Especificação 7											
	3.1											
	0.1	portamento, estratégias)	7									
	3.2	Protocolos de interacção	7									
	0.2	3.2.1 Divisão de espaços	7									
		3.2.2 Afetação de Producers	9									
		3.2.3 Afetação de Transporters	10									
	3.3		11									
	5.5	Faseamento do projecto	11									
4	Recursos 12											
	4.1	Bibliografia	12									
	4.2	Software	12									

A Anexos 13

Enunciado

1.1 Descrição do cenário

No âmbito da unidade Curricular de Agentes e Inteligência Artificial Distribuída o grupo propôs-se a implementar um Sistema Multi-Agente para simulação de um cenário de extração de minérios em Marte. Sendo assim, é necessário um conjunto de agentes com a tarefa de explorar o planeta Marte em busca de minérios, e de transportar a maior quantidade possível para a base. Para tal, existem três tipos de Agentes:

- \Spotter- Procura fontes de minérios e inspeciona-los para determinar se podem ser explorados.
- \ Transporter- É alocado pelo Producer para carregar o minério obtido para a base.

De forma a facilitar a procura, todos os agentes podem localizar fontes de minérios e enviar a sua localização para os *Spotter* que os analisarão. A escolha do *Producer* por parte do *Spotter* segue um protocolo de negociação. A alocação dos *Transporters* a uma determinada fonte segue também um protocolo de negociação, iniciado pelo *Producer*. Esta alocação, terá em conta a quantidade de minério a transportar, de modo a determinar mais corretamente o número necessário de *Transporters*.

1.2 Objectivos do trabalho

Um dos objetivos deste trabalho é implementar os agentes de forma a que a simulação da exploração do cenário de Marte se torne o mail eficiente possível. No caso do *Spotter* será implementado um algoritmo que dividirá a área explorada pelos *Spotter* existentes. Será também implementado um protocolo de negociação que irá determinar que *Producer* será melhor para se deslocar para o local do minério encontrado. No caso do *Producer* será implementado um protocolo de negociação que irá determinar que ou quais *Transporters* serão mais eficientes a recolher o minério.

1.3 Resultados esperados e forma de avaliação

Inicialmente serão implementadas apenas as funcionalidades básicas de cada Agente como tal: A 1º fase de avaliação será verificar o sucesso da implementação do comportamento de cada agente. Após se garantir que todos os agentes realizam o seu papel corretamente passamos para a fase seguinte, a fase de implementação de restrições. Nesta 2º fase, irá avaliar—se se os Transporters chamados não ultrapassam a sua capacidade, se o Transporters chamados conseguem recolher todo o minério presente. Após estas fases, implementaremos algoritmos de forma a tornar mais eficiente esta demanda, avaliando se as alocações dos demais agentes correspondem ao mais disponível na altura. Se o mapa fica corretamente dividido entre os Spotters e se o tempo de simulação foi o mínimo para o caso em questão.

Plataforma/Ferramenta

2.1 Para que serve

2.1.1 Jade

Permite desenvolver agentes distruídos por *containers* que podem estar em máquinas diferentes. Cada um destes agentes utiliza uma *thread*.

2.1.2 Repast 3

Permite construir simulações locais à máquina com diversos agentes. O processamento de cada agente é distribuído pelas *threads*.

2.1.3 SAJaS

Junta estas duas plataformas e toma vantagem dos benefícios de ambas.

2.2 Descrição das características principais

2.2.1 Jade

Suporta troca de mensagens ACL que seguem a especificação FIPA e permite ter agentes remotos.

2.2.2 Repast 3

Suporta simulação de espaços físicos, representação 2D e 3D e análise em tempo real.

2.2.3 SAJaS

Permite manter o código exatamente igual apenas necessitando trocar as packages usadas.

2.3 Realce das funcionalidades relevantes para o trabalho

Com o suporte do Jade são feitos os protocolos de comunicação entre os diferentes agentes utilizando mensagens ACL. Usando o Repast 3 torna-se fácil simular um espaço físico, popular o espaço com agentes, desenhá-los e finalmente vê-los em ação. A ferramenta **massim2dev**¹ automaticamente adapta as *packages* utilizadas num projecto Jade para as disponibilizadas pelo SAJaS de modo a funcionar juntamente com o Repast 3.

¹https://web.fe.up.pt/ hlc/doku.php?id=massim2dev

Especificação

- 3.1 Identificação e caracterização dos agentes (arquitectura, comportamento, estratégias)
- 3.2 Protocolos de interacção

3.2.1 Divisão de espaços

Inicialmente cada *spotter* deve comunicar e acordar com os restantes *spotters* o espaço reservado para este explorar. É assumido que o espaço físico se trata sempre de uma matriz quadrada.

Figura 3.1: Alocação simples por linhas

Inicialmente o espaço é divido por linhas e repartido pelos diferentes *Spotters*. Estes ficam encarregues de confirmar esta afetação com os *Spotters* restantes.

Figura 3.2: Diagrama temporal das comunicações entre spotters

- 1. Spotter
1 comunica ao restantes $\mathit{spotters}$ o espaço que este pretende explorar.
- 2. Spotter1 recebe confirmação dos *spotters* e fica afecto ao espaço que o mesmo pretendia.
- 3. Spotter3 comunica ao restantes *spotters* o espaço que este pretende explorar.
- 4. Spotter
2 comunica ao restantes $\mathit{spotters}$ o espaço que este pretende explorar.
- 5. Spotter3 recebe confirmação dos *spotters* e fica afecto ao espaço que o mesmo pretendia.
- 6. Spotter2 recebe confirmação dos *spotters* e fica afecto ao espaço que o mesmo pretendia.

3.2.2 Afetação de Producers

Uma vez encontrado minério é necessário chamar um *Producer* para o extrair. O *Spotter* envia então a posição do minério a todos os *Producers* e espera que lhe respondam com um valor indicante do esforço necessário a cada *Producer*. O *Spotter* escolhe o *Producer* com o menor esforço e comunica de novo pedindo para confirmar a afetação do mesmo. Caso seja recusado, porque o *Producer* foi afeto a outro minério entretanto, o *Spotter* pede de novo o valor do esforço e repete o processo anterior.

Figura 3.3: Exemplo de afetação de *Producers*

Os *Producers* guardam numa *queue* os diferentes minérios que vão extrair. Com esta *queue* o calculo do esforço para extrair um minério baseia-se em somar a distância entre cada um dos minérios, a distância do ponto corrente para o primeiro minério e a distância do ultimo minério ao potencial minério.

3.2.3 Afetação de Transporters

Após a extração do minério é necessário transportá-lo para a nave-mãe. O *Producer* que acabou de extrair o minério tem que selecionar um *Transporter*, do mesmo modo que o *Spotter* seleciona um *Producer*. Cada *Transporter* comunica o valor do esforço e o minério que consegue transportar possibilitando o *Producer* de escalonar os diferentes agentes.

Figura 3.4: Exemplo de afetação de *Transporters*

3.3 Faseamento do projecto

T 1 1 0	1		• ,			. ,
Tabela 3.	١.	Hagag	nrowicted	nara (nro	10cto
Tabua 9.	т.	rascs	previous	para	DIO	

1º Ponto	Construir ambiente de simulação na tecnologia Repast
2º Ponto	Criação do Spotter com as função de explorar e dividir ter-
	ritório a explorar.
3º Ponto	Criação do <i>Producer</i> com a função básica de produzir. Me-
	Ihoramento do Spotter para chamar Producers.
4º Ponto	Criação do <i>Transporter</i> sem limite de capacidade e apenas
	com a função básica de transportar. Melhoramento do Pro-
	ducer para chamar Transporters.
5° Ponto	Melhoria dos Agentes Spotter, Producer e Transporter.
6° Ponto	Defenir estratégias de forma a tornar a exploração de Marte
	o mais eficiente possível.

Recursos

- 4.1 Bibliografia
- 4.2 Software

Apêndice A Anexos

Dicas úteis e waypoints