Data Mining W4240 Section 001

Giovanni Motta

Columbia University, Department of Statistics

October 19, 2015

Recall from last time:

- ▶ have binary responses (0 or 1)
- $ightharpoonup Y_i \sim Ber(p(x_i))$
- use a linear model for log odds:

$$\log\left(\frac{p(x_i)}{1 - p(x_i)}\right) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

Can predict probability of $\{Y_i = 1\}$ as

$$p(x_i) = \frac{e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}}{1 + e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}}$$

Interpretation: one unit more of x_{ij} multiplies the probability of seeing $\{Y_i=1\}$ by e^{β_j} .

Problems:

- estimator may not converge (common with colinear covariates)
- estimator may be unstable when classes are linearly separable

Example: is smoking associated with cancer?

Doll and Hill (1950)

- interviewed lung cancer patients newly admitted to hospitals
- randomly interviewed other newly admitted patients

	Control	Cancer
Smokers	1296	1350
Nonsmokers	61	7

$$\log\left(\frac{\pi(x_i)}{1-\pi(x_i)}\right) = \beta_0 + \beta_1 \mathbf{1}_{\{\text{patient } i \text{ is a smoker}\}}$$

Parameter	Value	p-value	
eta_0	-2.1650	5.78e - 08	
eta_1	2.2058	3.76e - 08	

Doll and Hill (1954)

- surveyed smoking habits of 30,000 British doctors
- tracked deaths over 10 years

Cigarettes/day	0	1-14	15-24	5+
% of sample	10	40	30	20
% of lung cancer deaths	2	16	40	42

$$\log\left(\frac{p(x_i)}{1 - p(x_i)}\right) = \beta_0 + \beta_1 \mathbf{1}_{\{\text{light}\}} + \beta_2 \mathbf{1}_{\{\text{moderate}\}} + \beta_3 \mathbf{1}_{\{\text{heavy}\}}$$

Parameter	Value	p-value
eta_0	-5.5175	< 2e - 16
eta_1	0.6972	0.0231
eta_2	1.9201	9.50e - 11
eta_3	2.3903	7.24e - 16

Linear Models and Classification

Are there other ways to use linear models?

- ▶ logistic regression: linear in log odds
- what about linear decision boundaries?¹

¹Some figures reprinted from *The Elements of Statistical Learning* by Hastie, Tibshirani and Friedman.

Linear Models and Classification

k-nearest neighbors decision boundaries (and Bayes estimate)

when k increasing, more smooth

Suppose we want to classify an observation into one of K classes, where $K \geq 2$. Let C_k denote the k-th class, $k = 1, \ldots, K$.

Define

$$\pi_k = \mathbb{P}\left(Y = k\right) \qquad \qquad \textit{prior} \text{ probability that an observation } Y \text{ belongs to } C_k$$

$$p_k(x) = \mathbb{P}\left(Y = k \,|\, X = x\right) \qquad \textit{posterior} \text{ probability that an observation } X = x \text{ belongs to } C_k$$

$$f_k(x) = \mathbb{P}\left(X = x \,|\, Y = k\right) \qquad \qquad \textit{density function of } X \text{ for an observation that belongs to } C_k$$

- $f_k(x)$ is the density for class k
- \blacktriangleright π_k is the probability of class k, with $\sum_{k=1}^{K} \pi_k = 1$

Let's compute the probability of class k given covariates x:

$$\begin{split} \mathbb{P}\left(Y=k \,|\, X=x\right) &= \frac{\mathbb{P}(Y=k,X=x)}{\mathbb{P}(X=x)} \\ &= \frac{\mathbb{P}(X=x \,|\, Y=k)\mathbb{P}(Y=k)}{\mathbb{P}(X=x)} \\ &= \frac{\mathbb{P}(X=x \,|\, Y=k)\mathbb{P}(Y=k)}{\sum_{\ell=1}^{K}\mathbb{P}(X=x \,|\, Y=\ell)\mathbb{P}(Y=\ell)} \\ &= \frac{f_k(x)\pi_k}{\sum_{\ell=1}^{K}f_\ell(x)\pi_\ell} \end{split}$$

Issues:

- ▶ need to know $f_1(x), \ldots, f_K(x)$
- ▶ need to know π_1, \ldots, π_K

First, let's assume (for now) that

- ightharpoonup p = 1 (we have only one covariate) and X is continuous
- K = 2 (we have only 2 classes)

Idea:

- ▶ model distribution of data for each class (fit distribution f_1 , f_2 , π_1 , π_2)
- compare probabilities for each class at a location (using previous slide)
- select one with highest probability (Bayes Classifier)

When a distribution is continuous, a *Gaussian distribution* is often a good fit

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

Here μ_k is the mean for the k^{th} component and σ_k^2 is the variance.

Let's also assume all of the classes have the same variance, $\sigma_1^2=\cdots=\sigma_K^2=\sigma^2.$

So, we can compute the probability of seeing the k^{th} class when ${\cal X}=x{:}\,$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{\ell=1}^K \pi_\ell \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_\ell)^2\right)}$$
(1)

Bayes classifier: assign an observation X = x to the class for which (1) is largest.

$$p_{1}(x) \geq p_{2}(x)$$

$$\Rightarrow \log(p_{1}(x)) \geq \log(p_{2}(x))$$

$$\Rightarrow \log(\pi_{1}) - \frac{1}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}(x - \mu_{1})^{2}$$

$$\geq \log(\pi_{2}) - \frac{1}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}(x - \mu_{2})^{2}$$

$$\Rightarrow \log(\pi_{1}) - \frac{1}{2\sigma^{2}}(x - \mu_{1})^{2} \geq \log(\pi_{2}) - \frac{1}{2\sigma^{2}}(x - \mu_{2})^{2}$$

$$\Rightarrow \log(\pi_{1}) + x\frac{\mu_{1}}{\sigma^{2}} - \frac{\mu_{1}^{2}}{2\sigma^{2}} \geq \log(\pi_{2}) + x\frac{\mu_{2}}{\sigma^{2}} - \frac{\mu_{2}^{2}}{2\sigma^{2}}$$

Call one side of the last equation the discriminant function:

one good for use normal as can find discriminant funcion

$$\delta_k(x) = \log(\pi_k) + x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2}$$

$$\delta_k(x) = \log(\pi_k) + x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2}$$

- if K=2 and $\pi_1=\pi_2$, the Bayes classifier assigns an observation
 - to class 1 if $2x(\mu_1 \mu_2) > \mu_1^2 \mu_2^2$,
 - to class 2 if $2x(\mu_1 \mu_2) < \mu_1^{\bar{2}} \mu_2^{\bar{2}}$

In this case, the Bayes decision boundary corresponds to the point where

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}$$

If we have discriminant functions for all of the K>2 classes, choose the class with the highest value. That is, we assign the observation to the class for which $\delta_k(x)$ is largest.

But how do we find the parameters?

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

$$\hat{\pi}_k = \frac{n_k}{n} \quad \text{n_k is the number of observation in k}$$

$$\hat{\hat{\mu}}_k$$

$$\hat{\delta}_k(x) = \log(\hat{\pi}_k) + x \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2}$$

Now suppose that p > 1...

Idea: model $f_k(x)$ as a multivariate Gaussian distribution

$$f_k(x) = (2\pi)^{-\frac{p}{2}} |\Sigma_k|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)}$$

 μ_k is a p-dimensional vector of means, $[\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_p]]^T$ Σ_k is a $p \times p$ covariance matrix, $\Sigma_{k,ij} = \operatorname{Cov}[X_i, X_j]$

Estimating the parameters for a multivariate Gaussian (MLE):

$$\ell(\mu, \Sigma) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log(|\Sigma|) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^T \Sigma^{-1}(x_i - \mu)$$

$$\nabla_{\mu} \ell(\mu_j, \Sigma) = -\sum_{i=1}^{n} \Sigma^{-1}(x_i - \mu)$$

$$0 = \Sigma 0 = \sum_{i=1}^{n} (x_i - \mu)$$

$$L = \text{some matrix calculus...}$$

$$\hat{\mu}=rac{1}{n}\sum_{i=1}^n x_i$$
 sample mean is the ML estimator $\hat{\Sigma}= ext{ some matrix calculus...}$ $=rac{1}{n}\sum_{i=1}^n (x_i-ar{x})(x_i-ar{x})^T\left(pproxrac{1}{n-1}\sum_{i=1}^n (x_i-ar{x})(x_i-ar{x})^T
ight)$

Back to estimating class probabilities...

$$\mathbb{P}(G = k \,|\, X = x) = \frac{f_k(x)\pi_k}{\sum_{\ell=1}^K f_{\ell}(x)\pi_{\ell}}$$

Idea 1: model data with Gaussians...that have the same covariance matrix

Idea 2: choose the class with the higher probability by comparing log probabilities

$$\log \frac{\mathbb{P}(G=k \mid X=x)}{\mathbb{P}(G=\ell \mid X=x)} = \log \frac{f_k(x)}{f_\ell(x)} + \log \frac{\pi_k}{\pi_\ell}$$

$$\log \frac{\mathbb{P}(Y = k \mid X = x)}{\mathbb{P}(Y = \ell \mid X = x)} = \log \frac{f_k(x)}{f_\ell(x)} + \log \frac{\pi_k}{\pi_\ell}$$

$$= \log \frac{\pi_k}{\pi_\ell} + \log \left(\frac{(2\pi)^{-\frac{p}{2}} \mid \Sigma \mid^{-\frac{1}{2}} e^{-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k)}}{(2\pi)^{-\frac{p}{2}} \mid \Sigma \mid^{-\frac{1}{2}} e^{-\frac{1}{2}(x - \mu_\ell)^T \Sigma^{-1}(x - \mu_\ell)}} \right)$$

$$= \log \frac{\pi_k}{\pi_\ell} + \log \left(\frac{e^{-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k)}}{e^{-\frac{1}{2}(x - \mu_\ell)^T \Sigma^{-1}(x - \mu_\ell)}} \right)$$

$$= \log \frac{\pi_k}{\pi_\ell} + \log \left(e^{-\frac{1}{2}[(x - \mu_k)^T \Sigma^{-1}(x - \mu_k) - (x - \mu_\ell)^T \Sigma^{-1}(x - \mu_\ell)]} \right)$$

$$= \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2}(\mu_k + \mu_\ell)^T \Sigma^{-1}(\mu_k - \mu_\ell) + x^T \Sigma^{-1}(\mu_k - \mu_\ell)$$

Comparing two classes

- we choose class k over class ℓ if $\log \frac{\mathbb{P}(Y=k \mid X=x)}{\mathbb{P}(Y=\ell \mid X=x)} > 0$
- we choose class ℓ over class k if $\log \frac{\mathbb{P}(Y=k \mid X=x)}{\mathbb{P}(Y=\ell \mid X=x)} < 0$
- we are indifferent when $\log \frac{\mathbb{P}(Y=k \mid X=x)}{\mathbb{P}(Y=\ell \mid X=x)} = 0$ (this is the decision boundary!)

What is the decision boundary?

$$0=a+x^Tb$$
 so boundary is linear form $a=\log rac{\pi_k}{\pi_\ell}-rac{1}{2}(\mu_k+\mu_\ell)^T\Sigma^{-1}(\mu_k-\mu_\ell)$ $b=\Sigma^{-1}(\mu_k-\mu_\ell)$

Gaussian observations, K = 3, p = 2.

Left: $\mu_1 \neq \mu_2 \neq \mu_3$, $\Sigma_1 = \Sigma_2 = \Sigma_3$, 95% ellipses; Dashed lines:

Bayes decision boundaries.

Right: n = 20; Solid lines: LDA decision boundaries.

Multiple classes:

- ightharpoonup comparing pairs of log probabilities can get computationally intensive for large K
- use discriminant functions instead
- lacktriangle discriminant function is (condensed version of) $\log(f_k(x) \, \pi_k)$

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

Decision rule:

$$\hat{Y}(x) = \arg\max_{k} \delta_k(x)$$

Estimating parameters:

$$\begin{split} \hat{\pi}_k &= \frac{n_k}{n} \\ \hat{\mu}_k &= \sum_{g_i = k} \frac{x_i}{n_k} \\ \hat{\Sigma} &= \frac{1}{n-K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T \\ &\text{K of lose by estimate mean for each k} \end{split}$$

Extensions:

- can get <u>non-linear boundaries</u> by using <u>non-linear basis</u> <u>functions</u>

A <u>linear classifier</u> is a classifier whose decision boundary is a line <u>(or hyperplane)</u>

A linear classifier uses a linear combination of the features (or covariates) to make a classification decision

Define a hyperplane as

$$\mathbf{a}^T \mathbf{x} - b = 0$$

Can divide space into set of \mathbf{x} where $\mathbf{a}^T\mathbf{x} - b > 0$, $\mathbf{a}^T\mathbf{x} - b < 0$

Define a hyperplane as

$$\mathbf{a}^T \mathbf{x} - b = 0$$

Can divide space into set of \mathbf{x} where $\mathbf{a}^T\mathbf{x} - b > 0$, $\mathbf{a}^T\mathbf{x} - b < 0$

Classify the points: (0,1), (-1,1), (2,2), (0,0)

Example 1:
$$a = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
, $b = 1$

Example 2:
$$\mathbf{a} = \begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix}$$
, $b = 1$

Example 3:
$$\mathbf{a} = \begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix}$$
, $b = 0$

Define a hyperplane as

$$\mathbf{a}^T \mathbf{x} - b = 0$$

Can divide space into set of x where $\mathbf{a}^T\mathbf{x} - b > 0$, $\mathbf{a}^T\mathbf{x} - b < 0$

This can be extended to higher dimensions

Classify the points: (2, 2, 0, 0), (1, 1, -1, -1), (0, 0, 0, 0)

Example 1:
$$\mathbf{a} = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
, $b = 1$

Example 2:
$$\mathbf{a} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$
, $b = 0$

Let's implement LDA on the Default dataset with covariates balance and income.

```
> mu <- mat.or.vec(2.2)
> mu[1,1] <- mean(balance[default=="No"])
> mu[1.2] <- mean(balance[default=="Yes"])
> mu[2,1] <- mean(income[default=="No"])
> mu[2,2] <- mean(income[default=="Yes"])
> data.centered = rbind(cbind(balance[default=="No"]-mu[1,1],income[default=="No"]-mu[2,1]), +
cbind(balance[default=="Yes"]-mu[1,2],income[default=="Yes"]-mu[2,2]))
> Sigma <- mat.or.vec(2,2)
> Sigma[1,1] <- var(data.centered[,1])*10000/9998
                                                        n=10000, k=2
> Sigma[2,2] <- var(data.centered[,2])*10000/9998
> Sigma[1.2] <- cov(data.centered[.1].data.centered[.2])*10000/9998
> Sigma[2.1] <- cov(data.centered[.1].data.centered[.2])*10000/9998
> pi.vec <- rep(0,2) # why not just pi?
> pi.vec[1] <- sum((default=="No"))/10000</pre>
> pi.vec[2] <- sum((default=="Yes"))/10000
```

Let's implement LDA on the Default dataset with covariates balance and income.

Let's make a function that takes μ and Σ and produces a selection for a vector of inputs.

```
my.lda <- function(pi.vec,mu,Sigma,x){
# Inputs:
# pi.vec : vector of class probabilities
# mu : matrix of means per class
# Sigma : covariance matrix
# x : vector of inputs
# Outputs:
# out.vec : vector of predicted classes
x.dims <- dim(x)
n <- x.dims[1]
Sigma.inv <- Sigma^(-1)
out.prod <- rep(2,n)
discrim.1 <- apply(x,1,function(y) y %*% Sigma.inv %*% mu[,1]
- 0.5*t(mu[,1]) %*% Sigma.inv %*% mu[,1] + log(pi.vec[1]))
discrim.2 <- apply(x.1.function(v) v %*% Sigma.inv %*% mu[.2]
- 0.5*t(mu[.2]) %*% Sigma.inv %*% mu[.2] + log(pi.vec[2]))
out.prod[discrim.1 >= discrim.2] <- 1
return(out.prod)
```

So it turns out that when credit card balance and student status are used as covariates, we get an error rate of 2.75% (=23+252/10,000) on the training set.

Here we predict "Default" if our model says it has a probability higher than "No Default."

- Let's compare to the naive estimator: always predict the majority class.
- ▶ *Null* estimator has an error rate of 3.33% (=81+252/10,000).
- ▶ In this case, predictor usually says "No Default." This is common in problems with *unbalanced classes*.

our model not better a lot than simple null estimate, this because the unbalanced class, i.e. the difference of number of observations in difference class too large

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

Here we predict "Default" if our model says it has a probability higher than "No Default."

Is this the best way if our classes are unbalanced? What if we lower the probability threshold for "Default", to say a probability of 0.2 or greater?

Old (
$$\mathbb{P}(Y = Default | X = x) > 0.5)$$
):

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
default status	Yes	23	81	104
	Total	9,667	333	10,000

New (
$$\mathbb{P}(Y = Default | X = x) > 0.2)$$
):

as default's probability less than 0.5 in sample, so change the decision rule

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
default status	Yes	235	195	430
	Total	9,667	333	10,000

By changing the threshold, we can change the *sensitivity* and *specificity* of our classifier:

- Sensitivity: the percentage of true defaulters identified by the test
- Specificity: the percentage of non-defaulters correctly identified

Bayes rate: the lowest *total* possible error rate out of all classifiers. But this may not be our goal...

Black solid line: overall error rate. Blue dashed line: fraction of defaulting customers that are incorrectly classified. Orange dotted line: fraction of errors among the non-defaulting customers.

ROC Curves

We can characterize the tradeoff between sensitivity and specificity with an ROC (receiver operating characteristics) curve, which plots the true positive rate against the false positive rate.

ROC Curves

One way to describe the overall performance of a classifier is with the area under the ROC curve (AUC). A classifier no better than chance should have an AUC of 0.5. Here the AUC is 0.95, indicating a very good classifier.

Quadratic Discriminant Analysis

the boundary will be curve

Well, what happens if we let every class have its own covariance matrix?

- compare pairwise log probabilities
- ...which is the same as comparing log probabilities for all classes
- compute log probability

$$\log f_k(x)\pi_k = -\frac{p}{2}\log(2\pi) - \frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log \pi_k$$

remove common terms to get discriminant functions

$$\delta_k(x) = -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log \pi_k$$

Quadratic Discriminant Analysis

New discriminant function:

$$\delta_k(x) = -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log \pi_k$$

What type of boundaries?

▶ compute $\delta_k(x) - \delta_\ell(x) > 0$ to get class k region

Quadratic Discriminant Analysis

LDA vs QDA, where the Bayes boundary is linear (left) and quadratic (right)