Теория типов

О курсе

Краткое содержание вступительного занятия

- 1. История вопроса: что вообще изучает теория типов, типы в математике, типы в лямбда-исчислении. Краткое повторение материала, знание которого ожидается от участников.
- 2. Содержание текущего курса: изоморфизм Карри-Ховарда и его применение в программировании и математике
- 3. Особенности преподавания.

Типы в теории множеств

- ▶ Парадокс Рассела: $\{x \mid x \notin x\}$. Законна ли эта запись? $a \in b$ ожидаем, что слева элемент, а справа множество.
- lacktriangle Давайте запретим. Например, введём тип множества: \varnothing^0 , $\{x^n,y^n,z^n\}^{n+1}$ и т.п.
- В. Russel, A. Whitehead, Ramified type theory, 1908 (разветвлённая теория типов). Все объекты получают тип и порядок. Формулы m+1 порядка работают с объектами, задаваемыми формулами m порядка:

$$^{m+1}F^n: {}^mP^n \rightarrow {}^mQ^n$$
 n
 n

▶ По силе примерно Р.Т.Т. соответствует аксиоматике Цермело-Френкеля, но неудобна. В ZF можно приписать множествам схожую типу характеристику («ранг»), сложностью выражений можно управлять, например, средствами аксиомы конструктивности.

Лямбда-исчисление: история возникновения

• Готлоб Фреге, 1893 год, «карринг». Двуместную функцию a+b можно представить как композицию двух одноместных функций: f(s) "nyusabas"

$$f(a) = \lambda x.a + x$$
 $a + b = f(a)(b)$

Моисей Шейнфинкель, 1924, комбинаторы:

$$Kab = a$$
 $Sabc = ac(bc)$

£(5)4=9

(f(s) 7=12

cy = 1(t)

9(7)=12

Алонзо Чёрч. 1932, лямбда-исчисление:

$$(\lambda x.M) = M[x := N]$$

- Алонзо Чёрч, 1932, 1934: В λ-исчислении арифметика выражается естественно. Попробуем λ -исчисление расширить до логики?
- С.Клини и Б.Россер, 1935, противоречие (модификация парадокса Ришара).

Лямбда-исчисление как логический язык

«Анахроническое» изложение, пересказ современным языком: следуем J. Barkley Rosser: Highlights of the history of the Lambda-Calculus

- В лямбда-исчисление введём логический символ \to . Формулы исчисления будем считать логическими высказываниями. Добавим логические аксиомы. Ожидаем такое: $\vdash 0+1=1$
- Получение противоречия: определим минимальные требования к исчислению.
 Очевидно, хотя бы следующее мы должны уметь доказывать:
 - $1 \vdash A \rightarrow A$
 - $2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$
 - 3. Если $\vdash A$ и $\vdash A \rightarrow B$, то $\vdash B$.
- Менее очевидное: $\vdash A \to B$, если $A =_{\beta} B$. Мотивация: если $0+1=_{\beta} 1$, то X(0+1) всегда можно заменить на X(1) (равенство по Лейбницу).

Лямбда-исчисление как логический язык

«Анахроническое» изложение, пересказ современным языком: следуем J. Barkley Rosser: Highlights of the history of the Lambda-Calculus

- В лямбда-исчисление введём логический символ \to . Формулы исчисления будем считать логическими высказываниями. Добавим логические аксиомы. Ожидаем такое: $\vdash 0+1=1$
- Получение противоречия: определим минимальные требования к исчислению.
 Очевидно, хотя бы следующее мы должны уметь доказывать:
 - $1 \vdash A \rightarrow A$
 - $2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$
 - 3. Если $\vdash A$ и $\vdash A \rightarrow B$, то $\vdash B$.
- Менее очевидное: $\vdash A \to B$, если $A =_{\beta} B$. Мотивация: если $0+1=_{\beta} 1$, то X(0+1) всегда можно заменить на X(1) (равенство по Лейбницу). $1=0.5\cdot 2$ влечёт $\sin 1=\sin(0.5\cdot 2)$, а как иначе?

Лямбда-исчисление как логический язык

«Анахроническое» изложение, пересказ современным языком: следуем J. Barkley Rosser: Highlights of the history of the Lambda-Calculus

- ▶ В лямбда-исчисление введём логический символ \rightarrow . Формулы исчисления будем считать логическими высказываниями. Добавим логические аксиомы. Ожидаем такое: $\vdash 0+1=1$
- Получение противоречия: определим минимальные требования к исчислению.
 Очевидно, хотя бы следующее мы должны уметь доказывать:

```
(Cx.) 1. \vdash A \to A

(Cx?) 2. \vdash (A \to (A \to B)) \to (A \to B)

\downarrow A 3. Ecju \vdash A u \vdash A \to B, to \vdash B.
```

- № Менее очевидное: $\vdash A \to B$, если $A =_{\beta} B$. Мотивация: если $0+1=_{\beta} 1$, то X(0+1) всегда можно заменить на X(1) (равенство по Лейбницу). $1=0.5\cdot 2$ влечёт $\sin 1 = \sin(0.5\cdot 2)$, а как иначе?
- ▶ Заметим: $0+1 \twoheadrightarrow_{\beta} 1$, поэтому $\vdash (1=1) \rightarrow (0+1=1)$.

Парадокс Карри

$$\Phi_{\alpha} := Y (\lambda x. x \to \alpha) - 3 \text{ any a.}$$

Редуцируя Φ_{α} , получаем:

$$\Phi_{\alpha} \twoheadrightarrow_{\beta} (\lambda x. x \to \alpha) \left(\underline{Y} (\lambda x. x \to \alpha) \right) \twoheadrightarrow_{\beta} \Phi_{\alpha} \to \alpha$$

 $(\gamma(\lambda_{x,x} \rightarrow \lambda))^{r} \rightarrow \lambda$

И доказательство:

4) $(\Phi_{\alpha} \rightarrow \alpha) \rightarrow \Phi_{\alpha}$

$$\begin{array}{c} \text{(Cx.2)} \\ \text{(Cx.2)} \\ \text{(A)} & \text{(A)} \\ \text{(Cx.2)} \\ \text{(Cx.2)}$$

 $(A \rightarrow A)$ $\Phi_{\alpha} \rightarrow \alpha =_{\beta} \Phi_{\alpha}$

5) Φ_{α} MP 3.4 MP 5.3 6) α

Парадокс Карри: «Если данное высказывание верно, то луна сделана из зелёного сыра». То есть.

$$\Phi_{\alpha} \leftrightarrow (\Phi_{\alpha} \rightarrow \alpha)$$

Лямбда-исчисление как вычислительная модель

- ▶ Из исчисления А. Чёрч выделил некоторую часть и доказал её непротиворечивость: Church, A. (1935). "A Proof of Freedom from Contradiction." Proceedings of the National Academy of Sciences of the United States of America, 21(5):275–281.
- ► Но затем предложил смотреть на исчисление как на вычислительную модель: Church, A. (1936). "An Unsolvable Problem of Elementary Number Theory." American Journal of Mathematics, 58(2):345–363, 1936.
- ▶ Начала современного понимания теории типов были заложены в этой работе: Church, A. (1940). A formulation of the simple theory of types, Journal of Symbolic Logic 5, pp. 56–68.

Примеры вычислений

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n}:=\lambda f.\lambda x.f^{(n)}(x).$ Например, $\overline{3}=\lambda f.\lambda x.f(f(f(x)))$

Пример

Инкремент:
$$Inc := \lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$$
 $IsZero := \lambda n.n \ (\lambda x.F) \ T$
 $Pair \ a \ b := \lambda s.s \ a \ b, \ Fst := \lambda p.p \ T, \ Snd := \lambda p.p \ F$
 $Dec := \lambda n.Snd \ (n \ (\lambda p.Pair \ (Snd \ p) \ (Inc \ (Snd \ p)))) \ (Pair \ \overline{0} \ \overline{0})$
 $Y := \lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x))$

Пример

Fact $n := Y (\lambda f.\lambda x.(IsZero x) \overline{1} (Mul x (f (Dec x)))) n$

Порядок вычислений

```
Body := \lambda f. \lambda x. (IsZero \ x) \ \overline{1} \ (Mul \ x \ (f \ (Dec \ x))) Fact n := Y \ Body \ n
```

Пример

Рассмотрим Fact $\overline{3} = Y Body \overline{3} \rightarrow_{\beta} Body (Y Body) \overline{3}$

Вычислять двумя способами:

- 1. Body (Y Body) $\overline{3} \rightarrow_{\beta} Body (Body (Y Body)) \overline{3}$
- 2. Body $(Y Body) \overline{3} = [\lambda f. \lambda x. (IsZero x) \overline{1} (Mul x (f (Dec x)))] (Y Body) \overline{3} \rightarrow \beta (IsZero \overline{3}) \overline{1} (Mul \overline{3} (Y Body (Dec \overline{3})))$

Ну и дальше (при втором способе):

$$(Mul \ \overline{3} \ (\underline{Y} \ Body \ (\underline{Dec} \ \overline{3}))) \xrightarrow{}_{\beta} \qquad \qquad \downarrow$$

$$Mul \ \overline{3} \ (\underline{Y} \ Body \ \overline{2}) \xrightarrow{}_{\beta} Mul \ \overline{3} \ (Body \ (\underline{Y} \ Body \ \overline{2})) \xrightarrow{}_{\beta} \dots$$

Теорема Чёрча-Россера гарантирует, что результат будет одинаков, если будет.

Нормальный и аппликативный порядок вычислений

Пример

$$\mathcal{K} := \lambda x.\lambda y.x$$
, $\mathcal{I} := \lambda x.x$, $\Omega := (\lambda x.x \ x) \ (\lambda x.x \ x)$

. — ж.х.у.х., Σ. — ж.х., ц. — (ж.х. х.) (ж.х. х.) Выражение ΚΙΩ можно редуцировать двумя способами:

1.
$$\[\underline{\mathcal{K}} \, \mathcal{I} \, \Omega =_{\alpha} ((\lambda \mathbf{a}.\lambda \mathbf{b}.\mathbf{a}) \, \mathcal{I}) \Omega \rightarrow_{\beta} (\lambda \mathbf{b}.\mathcal{I}) \Omega \rightarrow_{\beta} \mathcal{I} \]$$

2.
$$\mathcal{K}\mathcal{I}\underline{\Omega} =_{\alpha} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} \mathcal{K}\mathcal{I}\Omega$$

Определение (нормальный порядок редукции) Редукция самого левого β -редекса.

Определение (аппликативный порядок редукции)

Редукция самого левого β -редекса из самых вложенных.

Теорема (Приводится без доказательства)

Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальный порядок — медленный

Пример

Рассмотрим λ -выражение $(\lambda x.x \times x \times x)(\mathcal{I}\mathcal{I})$. Попробуем редуцировать его

нормальным порядком:

 $(\lambda x. x \times x \times)(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} ...$

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \times x \times x)(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} (\lambda x.x \times x \times x)\mathcal{I} \rightarrow_{\beta} \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I} \rightarrow_{\beta} \mathcal{I}\mathcal{I}\mathcal{I} \rightarrow_{\beta} \mathcal{I}\mathcal{I} \rightarrow_{\beta} \mathcal{I}$$

Как программировать? Любое значение – замыкание

```
let x = sqrt 256 let x = fun () -> sqrt 256
```

Плюс мемоизация:

```
let x = fun () -> sqrt 256;;
let y = x;;
y () + x () (* вычисляется два раза *)
```

Давайте запоминать результаты!

```
let x = ref (Compute (fun () -> sqrt 256));;
let y = x;;
compute y + compute x
```

Ленивые и энергичные вычисления

Энергичные вычисления: аппликативный порядок. Ленивые вычисления: нормальный порядок + мемоизация.

lf всегда ленив

let fact
$$n = if(n > 1)$$
 then $n * fact (n-1)$ else 1

Ленивое общение с внешним миром бессмысленно.

Изоморфизм Карри-Ховарда

Просто типизированное λ -исчисление	Импликативный фрагмент ИИВ	
$\Gamma, x : \theta \vdash x : \theta$	$\Gamma, \varphi \vdash \varphi$	
$\frac{\Gamma, x : \overline{\varphi} \vdash P : \psi}{\Gamma \vdash (\lambda \ x. \ P) : \varphi \to \psi}$	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$	
$ \frac{\Gamma \vdash P : \varphi \rightarrow \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi} $	$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$	

Просто типизированное λ -исчисление	Импликативный фрагмент ИИВ	
Тип	Высказывание	
Терм	Доказательство высказывания	
Проверка типа	Проверка доказательства на корректность	
Обитаемый тип	Доказуемое высказывание	

(\Rightarrow) : изучение языков программирования

 Просто типизрованное исчисление соответствует исчислению высказываний. Малая выразительная сила просто-типизированного лямбда исчисления (полиномы). Bub. cura)_ nonumanon

Метод: усложняем исчисление — смотрим получающийся язык.

▶ Логика первого порядка: зависимые типы. Какой тип y sprintf? print + (char + fmt, ...) sprintf "%d" : int -> string fid<t>(Tx){
return x

sprintf "%d + %d" : int*int -> string Например, Идрис позволяет тип выписать. Логика второго порядка: генерики.

Программа Доказывает let id $x = x \mid \forall \tau. \tau \to \tau$ Классические функциональные языки — типовая система Хиндли-Милнера (разрешимый вариант системы F, соответствующей логике второго порядка).

 Алгоритмы вывода типов, анализ и верификация программ — используют матлог.

Языки с зависимыми типами данных (обычно около λC): Idris, Coq, Agda, Arend, C++ :).

 (\Leftarrow) : изучение логики и доказательств через написание программ

17

7149384

- ▶ Пер Мартин-Лёф, Intuonistic Type Theory: версии 1972 и 1979.
- ▶ Множество расширений и вариантов.
- ▶ Такие инструменты как Coq, Agda, Lean используют варианты этой теории.
- Мы будем рассматривать некоторую родственную теорию, гомотопическую теорию типов.

Гомотопическая теория типов

Владимир Александрович Воеводский, 1966-2017.

... Математика находится на пороге кризиса, а точнее двух кризисов. Первый связан с отрывом математики «чистой» от математики прикладной. Понятно, что рано или поздно встанет вопрос о том, а почему общество должно платить деньги людям, которые занимаются вещами, не имеющими никаких практических приложений. Второй, менее очевидный, связан с усложнением чистой математики, которое ведет к тому, что, опять же рано или поздно, статьи станут слишком сложными для детальной проверки и начнется процесс накопления незамеченных ошибок ...

Гомотопическая теория типов

- ▶ Центральный вопрос что такое равенство.
- ▶ Классический матлог: это предикат, удовлетворяющий свойствам.
- Однако, свойства обычно слишком общие (класс эквивалентности?).
 Интуитивно хочется большего, равенство не всегда просто эквивалентность.
- Изоморфизм Карри-Ховарда-Воеводского:

Логика	λ -исчисление	Топология
Утверждение	Тип	Пространство
Доказательство	Значение	Точка в пространстве
Предикат $(=)$	Зависимый тип (=)	Путь между точками

Реализация: кубическая теория типов, Аренд.

Построение курса

- 1. Аналогично с матлогом, будет разделение на теорию и практику.
- 2. Теория: знание определений, идей, теорем.
- 3. Практика: лабы на доказательства теорем с использованием языка Аренд, возможны дополнительные околокомпиляторные лабы.
- 4. Для закрытия предмета надо набрать баллы практическими заданиями и сдать зачёт/экзамен.

Not $x \equiv x \rightarrow \bot$ TX. x2 > 0] maton. 24 [x2>0] = M Nouva 1 nopogra: ARUKA 2 noperara: Wantopu no Cannin upoct. upog - upon. napon.
(p) f (px) > Not p (p>1)
(p) popolitiops.
(px) popolitiops.
(px) popolitiops.
(px) popolitiops.

$$\frac{7}{1} = \langle 0, b \rangle_{cqb} = \langle c, d \rangle \quad 0$$

$$\frac{1}{1} = \{\langle 1, 0 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \dots \} \quad 3$$

$$\frac{2}{2} \quad 1$$

$$\frac{3}{2} \quad$$