=> fil reg FILE 'REGISTRY' ENTERED AT 16:17:44 ON 26 JUL 2011 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2011 American Chemical Society (ACS) Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem. STRUCTURE FILE UPDATES: 25 JUL 2011 HIGHEST RN 1313702-17-8 DICTIONARY FILE UPDATES: 25 JUL 2011 HIGHEST RN 1313702-17-8 CAS Information Use Policies apply and are available at: http://www.cas.org/legal/infopolicy.html TSCA INFORMATION NOW CURRENT THROUGH January 14, 2011. Please note that search-term pricing does apply when conducting SmartSELECT searches. REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to: http://www.cas.org/support/stngen/stndoc/properties.html => d ide 13 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN 92-52-4 REGISTRY RN Entered STN: 16 Nov 1984 1,1'-Biphenyl (CA INDEX NAME) OTHER CA INDEX NAMES: Biphenyl (8CI) OTHER NAMES: 1,1'-Diphenyl CN CN Bibenzene CN Carolid AL CN Diphenyl CN NSC 14916 CN Phenvlbenzene Tetrosin LY CN 1135443-72-9, 56481-93-7, 72931-46-5 DR MF C12 H10 CI COM LC STN Files: AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CABA, CAPLUS, CASREACT, CBNB, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSNB, DETHERM*, EMBASE, ENCOMPLIT, ENCOMPLIT2, ENCOMPPAT, ENCOMPPAT2, GMELIN*, IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, PIRA, PS, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL (*File contains numerically searchable property data)

DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

Other Sources:

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

47610 REFERENCES IN FILE CA (1907 TO DATE)
29792 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
47725 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> d ide 14

L4 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN

RN 98-82-8 REGISTRY

ED Entered STN: 16 Nov 1984

CN Benzene, (1-methylethyl) - (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Cumene (8CI)

OTHER NAMES:

CN (1-Methylethyl)benzene

CN 2-Phenylpropane

CN Cumol

CN i-Propylbenzene

CN Isopropylbenzene

CN NSC 8776

MF C9 H12

CI COM

LC STN Files: AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CAPLUS, CASREACT, CBNB, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSNB, DDFU, DETHERM*, DRUGU, EMBASE, ENCOMPLIT, ENCOMPLIT2, ENCOMPPAT, ENCOMPPAT2, GMELIN*, IFICDB, IFIPAT, IFIUDB, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, PIRA, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL

(*File contains numerically searchable property data)
Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

13394 REFERENCES IN FILE CA (1907 TO DATE)

122 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

13432 REFERENCES IN FILE CAPLUS (1907 TO DATE)

10 / 588481 => d ide 15 L5 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN RN 100-42-5 REGISTRY Entered STN: 16 Nov 1984 ED Benzene, ethenyl- (CA INDEX NAME) OTHER CA INDEX NAMES: Styrene (8CI) CN OTHER NAMES: Cinnamene CN CN Ethenylbenzene Maomin SM CN CN NSC 62785 CN Phenethylene CN Phenylethene CN Phenylethylene CN Styrol CN Styrole CN Styrolene CN Styropol SO CN TTB 7302 CN Vinylbenzene CN Vinylbenzol 1161074-30-1, 1198090-46-8, 79637-11-9 DR MF C8 H8 CI COM STN Files: ADISNEWS, AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CABA, LC CAPLUS, CASREACT, CBNB, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSNB, DDFU, DETHERM*, DRUGU, EMBASE, ENCOMPPAT, ENCOMPPAT2, GMELIN*, IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, PIRA, PS, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL (*File contains numerically searchable property data) Other Sources: DSL**, EINECS**, TSCA** (**Enter CHEMLIST File for up-to-date regulatory information) H2C==CH-Ph **PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT** 83187 REFERENCES IN FILE CA (1907 TO DATE) 25554 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA 83451 REFERENCES IN FILE CAPLUS (1907 TO DATE) => d ide 16

3

L6 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN RN 100-41-4 REGISTRY ED Entered STN: 16 Nov 1984 CN Benzene, ethyl- (CA INDEX NAME) OTHER NAMES: CN α -Methyltoluene CN EB CN Sthylbenzene CN Ethylbenzol

CN

NSC 406903

```
CN
     Phenylethane
MF
    C8 H10
CI
    COM
LC
     STN Files: AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CAPLUS, CASREACT,
       CBNB, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSNB, DETHERM*,
       EMBASE, ENCOMPLIT, ENCOMPLIT2, ENCOMPPAT, ENCOMPPAT2, GMELIN*, IFICDB,
       IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, PIRA,
      REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL
         (*File contains numerically searchable property data)
                     DSL**, EINECS**, TSCA**
     Other Sources:
         (**Enter CHEMLIST File for up-to-date regulatory information)
       _CH2-CH3
**PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT**
           33070 REFERENCES IN FILE CA (1907 TO DATE)
             232 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
           33237 REFERENCES IN FILE CAPLUS (1907 TO DATE)
=> d ide 17
    ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN
    108-88-3 REGISTRY
RN
    Entered STN: 16 Nov 1984
ED
    Benzene, methyl- (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN
    Toluene (8CI)
OTHER NAMES:
    1-Methylbenzene
CN
    Antisal 1a
CN
    CP 25
CN
CN
    CP 25 (solvent)
CN
    Methacide
CN
    Methylbenzene
CN
    Methylbenzol
    NSC 406333
CN
    Phenylmethane
CN
    Toluol
CN
    1053657-77-4, 1202864-97-8
DR
MF
    C7 H8
CI
    COM
                 ADISNEWS, AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CABA,
LC
       CAPLUS, CASREACT, CBNB, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN,
       CSNB, DDFU, DETHERM*, DRUGU, EMBASE, ENCOMPPAT, ENCOMPPAT2, GMELIN*,
       IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, PIRA,
       PS, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL,
```

(*File contains numerically searchable property data)

(**Enter CHEMLIST File for up-to-date regulatory information)

Other Sources: DSL**, EINECS**, TSCA**

VETU

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

116880 REFERENCES IN FILE CA (1907 TO DATE)
1086 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
117775 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> d ide 18

L8 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN

RN 98-06-6 REGISTRY

ED Entered STN: 16 Nov 1984

CN Benzene, (1,1-dimethylethyl) - (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Benzene, tert-butyl- (8CI)

OTHER NAMES:

CN (1,1-Dimethylethyl)benzene

CN 2-Methyl-2-phenylpropane

CN Dimethylethylbenzene

CN NSC 6557

CN Phenyltrimethylmethane

CN t-Butylbenzene

CN tert-Butylbenzene

CN Trimethylphenylmethane

MF C10 H14

CI COM

LC STN Files: AGRICOLA, ANABSTR, BIOSIS, CA, CAPLUS, CASREACT, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CSNB, DETHERM*, EMBASE, ENCOMPLIT, ENCOMPLIT2, ENCOMPPAT, ENCOMPPAT2, GMELIN*, IFICDB, IFIPAT, IFIUDB, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL, USPATOLD

(*File contains numerically searchable property data)

Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

3460 REFERENCES IN FILE CA (1907 TO DATE)
19 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

3472 REFERENCES IN FILE CAPLUS (1907 TO DATE)

6

=> d ide 19

ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN

RN 108-67-8 REGISTRY

Entered STN: 16 Nov 1984 ED

Benzene, 1,3,5-trimethyl- (CA INDEX NAME)

OTHER CA INDEX NAMES:

Mesitylene (8CI) CN

OTHER NAMES:

1,3,5-Trimethylbenzene CN

2,4,6-Trimethylbenzene CN

CN 3,5-Dimethyltoluene

CN NSC 9273

CN sym-Trimethylbenzene

MF C9 H12

COM CI

LC STN Files: AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CAPLUS, CASREACT, CBNB, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSNB, DDFU, DETHERM*, DRUGU, EMBASE, ENCOMPLIT, ENCOMPLIT2, ENCOMPPAT2, GMELIN*, IFICDB, IFIPAT, IFIUDB, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, PIRA, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL

(*File contains numerically searchable property data)

Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

10921 REFERENCES IN FILE CA (1907 TO DATE)

169 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

10979 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> d ide 114 tot

L14 ANSWER 1 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN

RN31620-80-1 REGISTRY

ED Entered STN: 16 Nov 1984

CN Benzene, bromoethyl- (CA INDEX NAME)

OTHER NAMES:

CN Bromoethylbenzene

MF C8 H9 Br

CI IDS

LC STN Files: CA, CAPLUS, CASREACT, CHEMCATS, CHEMLIST, CIN, TOXCENTER, USPATOLD

Other Sources: EINECS**, NDSL**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

D1**—** Br

D1-Et

42 REFERENCES IN FILE CA (1907 TO DATE)
42 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L14 ANSWER 2 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN

RN 2725-82-8 REGISTRY

ED Entered STN: 16 Nov 1984

CN Benzene, 1-bromo-3-ethyl- (CA INDEX NAME)

OTHER NAMES:

CN (3-Ethylphenyl)bromide

CN 1-Bromo-3-ethylbenzene

CN 3-Bromo-1-ethylbenzene

CN 3-Ethylbromobenzene

CN m-Bromoethylbenzene

CN m-Ethylbromobenzene

MF C8 H9 Br

LC STN Files: CA, CAPLUS, CASREACT, CHEMCATS, REAXYSFILE*, TOXCENTER, USPAT2, USPATFULL, USPATOLD

(*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

122 REFERENCES IN FILE CA (1907 TO DATE)

123 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L14 ANSWER 3 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN

RN 1973-22-4 REGISTRY

ED Entered STN: 16 Nov 1984

CN Benzene, 1-bromo-2-ethyl- (CA INDEX NAME)

OTHER NAMES:

CN 1-Bromo-2-ethylbenzene

CN 1-Ethyl-2-bromobenzene

CN 2-Bromo-1-ethylbenzene

CN 2-Ethylbromobenzene

CN o-Bromoethylbenzene

CN o-Ethylbromobenzene

MF C8 H9 Br

CI COM

LC STN Files: CA, CAPLUS, CASREACT, CHEMCATS, CHEMLIST, DETHERM*, IFICDB, IFIPAT, IFIUDB, REAXYSFILE*, SPECINFO, TOXCENTER, USPAT2, USPATFULL (*File contains numerically searchable property data)

Other Sources: EINECS**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

228 REFERENCES IN FILE CA (1907 TO DATE)
230 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L14 ANSWER 4 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN

RN 1585-07-5 REGISTRY

ED Entered STN: 16 Nov 1984

CN Benzene, 1-bromo-4-ethyl- (CA INDEX NAME)

OTHER NAMES:

CN 1-Bromo-4-ethylbenzene

CN 4-Bromoethylbenzene

CN 4-Ethyl-1-bromobenzene

CN 4-Ethylbromobenzene

CN 4-Ethylphenyl bromide

CN NSC 60144

CN p-Bromoethylbenzene

CN p-Ethylbromobenzene

CN p-Ethylphenyl bromide

MF C8 H9 Br

CI COM

LC STN Files: CA, CAPLUS, CASREACT, CHEMCATS, CHEMINFORMRX, CHEMLIST, DETHERM*, IFICDB, IFIPAT, IFIUDB, MSDS-OHS, REAXYSFILE*, SPECINFO, TOXCENTER, USPAT2, USPATFULL, USPATOLD

(*File contains numerically searchable property data)

Other Sources: EINECS**, NDSL**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

448 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

451 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> d ide 115

L15 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2011 ACS on STN

RN 110-00-9 REGISTRY

ED Entered STN: 16 Nov 1984

CN Furan (CA INDEX NAME) OTHER NAMES: CN Divinylene oxide CN Furfuran CN Oxacyclopentadiene CN Oxole CN Tetrole C4 H4 O MFCI COM, RPS ADISNEWS, AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CAPLUS, LC STN Files: CASREACT, CBNB, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSNB, DETHERM*, EMBASE, ENCOMPLIT, ENCOMPLIT2, ENCOMPPAT2, GMELIN*, IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, PIRA, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, ULIDAT, USPAT2, USPATFULL (*File contains numerically searchable property data) Other Sources: DSL**, EINECS**, TSCA** (**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

11969 REFERENCES IN FILE CA (1907 TO DATE)
2440 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
12010 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> d ide 119 tot

L19 ANSWER 1 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN 25496-07-5 REGISTRY RN Entered STN: 16 Nov 1984 ED 1,1'-Biphenyl, fluoro- (CA INDEX NAME) OTHER CA INDEX NAMES: Biphenyl, fluoro- (8CI) CN OTHER NAMES: CN Fluorobiphenyl C12 H9 F MF CI IDS STN Files: BIOSIS, CA, CAPLUS, IFICDB, IFIPAT, IFIUDB, TOXCENTER, LC

USPAT2, USPATFULL, USPATOLD

D1**—** F

D1-Ph

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

12 REFERENCES IN FILE CA (1907 TO DATE)
12 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L19 ANSWER 2 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN

RN 2367-22-8 REGISTRY

ED Entered STN: 16 Nov 1984

CN 1,1'-Biphenyl, 3-fluoro- (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Biphenyl, 3-fluoro- (6CI, 7CI)

OTHER NAMES:

CN 3-Fluorobiphenyl

CN m-Fluorodiphenyl

MF C12 H9 F

LC STN Files: CA, CAPLUS, CASREACT, CHEMCATS, GMELIN*, REAXYSFILE*, RTECS*, TOXCENTER, USPATFULL

(*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

53 REFERENCES IN FILE CA (1907 TO DATE)

53 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L19 ANSWER 3 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN

RN 324-74-3 REGISTRY

ED Entered STN: 16 Nov 1984

CN 1,1'-Biphenyl, 4-fluoro- (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Biphenyl, 4-fluoro- (6CI, 7CI, 8CI)

OTHER NAMES:

CN (4-Fluorophenyl)benzene

CN 4'-Fluoro-1,1'-biphenyl

CN 4'-Fluorobiphenyl

CN 4-Fluoro-1,1'-biphenyl

CN 4-Fluorobiphenyl

CN NSC 56686

CN p-Fluorobiphenyl

CN p-Fluorodiphenyl

MF C12 H9 F

CI COM

LC STN Files: AGRICOLA, ANABSTR, BIOSIS, BIOTECHNO, CA, CAPLUS, CASREACT, CHEMCATS, CHEMINFORMRX, CHEMLIST, EMBASE, IFICDB, IFIPAT, IFIUDB, MEDLINE, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, USPAT2, USPATFULL, USPATOLD

(*File contains numerically searchable property data)
Other Sources: EINECS**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

366 REFERENCES IN FILE CA (1907 TO DATE)
6 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
366 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L19 ANSWER 4 OF 4 REGISTRY COPYRIGHT 2011 ACS on STN

RN 321-60-8 REGISTRY

ED Entered STN: 16 Nov 1984

CN 1,1'-Biphenyl, 2-fluoro- (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Biphenyl, 2-fluoro- (6CI, 7CI, 8CI)

OTHER NAMES:

CN 2-Fluoro-1,1'-biphenyl

CN 2-Fluorobiphenyl

CN NSC 10366

CN o-Fluorodiphenyl

MF C12 H9 F

LC STN Files: ANABSTR, BIOSIS, CA, CAPLUS, CASREACT, CHEMCATS, CHEMLIST, IFICDB, IFIPAT, IFIUDB, MSDS-OHS, REAXYSFILE*, RTECS*, SPECINFO, TOXCENTER, USPAT2, USPATFULL, USPATOLD

(*File contains numerically searchable property data)

Other Sources: EINECS**, NDSL**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

206 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
207 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> fil hcaplus FILE 'HCAPLUS' ENTERED AT 16:18:57 ON 26 JUL 2011 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2011 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the

American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 26 Jul 2011 VOL 155 ISS 5

FILE LAST UPDATED: 25 Jul 2011 (20110725/ED)

REVISED CLASS FIELDS (/NCL) LAST RELOADED: Jun 2011

USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Jun 2011

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the first quarter of 2011.

CAS Information Use Policies apply and are available at:

http://www.cas.org/legal/infopolicy.html

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d bib abs hitind hitstr tot 172

COMBINATION 1

L72 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2006:1065902 HCAPLUS Full-text

DN 145:400980

- TI Electrolyte solutions for secondary batteries and secondary batteries
- IN Ishikawa, Hitoshi; Utsuki, Koji; Kusachi, Yuki
- PA Nec Corp., Japan
- SO Jpn. Kokai Tokkyo Koho, 39pp. CODEN: JKXXAF
- DT Patent
- LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	JP 2006278106	A	20061012	JP 2005-94513	20050329
PRAI	JP 2005-94513		20050329		
~ ~	MADDAM 145 400000				

OS MARPAT 145:400980

- The solution contains (A) electrolyte salt, (B) aprotic solvent, (C) compound which polymerizes, decomps. with emission of gases, or are redox reactive under a voltage equal or above the maximum battery driving voltage, e.g. (partially hydrogenated) biphenyl, cyclobenzylhexyl, di-Ph ether, and (D) R3SO2CR1R4SO2R2 (R1, R4 = H, (un)substituted C1-5 alkyl, alkoxy, or fluoroalkyl, C1-5 polyfluoroalkyl, SO2X1; SY1, COZ, halogen; R2, R3 (un)substituted C1-5 alkyl, alkoxy, or fluoroalkyl, (un)substituted phenoxy, C1-5 polyfluoroalkyl, C1-5 polyfluoroalkoxy, OH, halo, NX2X3, NY2CONY3Y4; X1, Y1 = (un)substituted C1-5 alkyl; X2, X3, Y2-4, Z = H (un)substituted C1-5 alkyl). The solution may also contain cyclic mono- or disulfonic acid esters (given in Markush). Secondary batteries using the electrolyte solns. are also claimed. The batteries may be packed in laminates. The batteries are safe even when over-charged.
- IPCR H01M0010-40 [I,A]; H01M0002-02 [I,A]; H01M0004-02 [I,A]; H01M0004-38 [I,A]; H01M0004-58 [I,A]
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- IT Battery electrolytes Secondary batteries

(electrolyte solns. containing disulfonylmethanes for secondary batteries

with overcharging safety)

IT 92-52-4, Biphenyl, uses 98-82-8, Cumene

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(electrolyte solns. containing disulfonylmethanes for secondary batteries with overcharging safety)

RN 92-52-4 HCAPLUS

CN 1,1'-Biphenyl (CA INDEX NAME)

RN 98-82-8 HCAPLUS

CN Benzene, (1-methylethyl) - (CA INDEX NAME)

OSC.G 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

L72 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2006:689399 HCAPLUS Full-text

DN 145:127638

TI Nonaqueous electrolyte solution for lithium secondary batteries

IN Ahn, Sun Ho; Cho, Jeong Ju; Kim, Hyeong Jin; Lee, Han Ho; Lee, Ho Chun; Lee, Jae Heon; Son, Mi Yeong

PA Lg Chem. Ltd., S. Korea

SO Repub. Korean Kongkae Taeho Kongbo, No pp. given CODEN: KRXXA7

DT Patent

LA Korean

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
ΡI	KR 2004023870	A	20040320	KR 2002-55309	20020912	
PRAI	KR 2002-55309		20020912			

AB In this Li battery with a nonaq. electrolyte solution overcharge current is blocked through polymerization of electrolyte components by degradation due to oxidation, thereby improving safety. The nonaq. electrolyte solution comprises a Li salt, an electrolyte solution compound, 0.5-5% of a nonconductive polymer monomer, and 0.1-2% of a conductive polymer monomer. Preferably the nonconductive polymer monomer is cyclohexylbenzene, isopropylbenzene or 5-butylbenzene; and the conductive polymer monomer is biphenyl, 1-phenyl-1-cyclohexane or benzofuran. The Li secondary battery comprises a cathode, an anode, a porous separator, and the nonaq. electrolyte solution.

IPCI H01M0010-40 [ICM, 7]

IPCR H01M0010-40 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Secondary batteries

(lithium; nonaq. electrolyte solution for lithium secondary batteries with safety feature)

IT Battery electrolytes

Safety

(nonaq. electrolyte solution for lithium secondary batteries with safety feature)

IT 92-52-4, Biphenyl, uses 98-82-8, Isopropylbenzene

RL: DEV (Device component use); USES (Uses)

(electrolyte containing; nonaq. electrolyte solution for lithium secondary batteries with safety feature)

RN 92-52-4 HCAPLUS

CN 1,1'-Biphenyl (CA INDEX NAME)

RN 98-82-8 HCAPLUS

CN Benzene, (1-methylethyl) - (CA INDEX NAME)

L72 ANSWER 3 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2006:600714 HCAPLUS Full-text

DN 145:48637

TI Secondary nonaqueous electrolyte batteries containing specific additives in organic electrolyte solutions

IN Oga, Keisuke; Iwanaga, Masato; Oshita, Ryuji

PA Sanyo Electric Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PA:	TENT NO.	KIND	DATE	APPLICATION NO.	DATE	
ΡI	JP	2006164742	A	20060622	JP 2004-354336	20041207	
PRAI	JΡ	2004-354336		20041207			

AB The batteries consist of cathodes containing hetero element-containing LiCoO2 cathode active mass with filling d. ≥3.6 g/cm3, anodes containing carbonaceous material anode active mass, and organic electrolyte solns. containing (a) alkylbenzene derivs., cycloalkylbenzene derivs, or biphenyl having tertiary carbon adjoining to Ph group and (b) Et diethylphosphinate. The batteries prevent swelling during long-term charge discharge cycles, and improve residual capacity.

IPCI H01M0010-40 [I,A]; H01M0004-02 [I,A]; H01M0004-58 [I,A]

IPCR H01M0010-40 [I,A]; H01M0004-02 [I,A]; H01M0004-58 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Secondary batteries

(lithium; secondary nonaq. electrolyte batteries containing specific additives in organic electrolyte solns.)

IT Battery anodes

Battery cathodes

Battery electrolytes

(secondary nonaq. electrolyte batteries containing specific additives in organic electrolyte solns.)

IT 92-52-4, **Biphenyl**, uses 98-82-8, **Cumene**

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(additive for electrolyte solution; secondary nonaq. electrolyte batteries containing specific additives in organic electrolyte solns.)

RN 92-52-4 HCAPLUS

CN 1,1'-Biphenyl (CA INDEX NAME)

RN 98-82-8 HCAPLUS

CN Benzene, (1-methylethyl) - (CA INDEX NAME)

L72 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2005:823988 HCAPLUS Full-text

DN 143:232676

TI Nonaqueous electrolyte for lithium secondary battery

IN Ahn, Soon-Ho; Lee, Jae-Hyun; Cho, Jeong-Ju; Lee, Ho-Chun; Son, Mi-Young;
Kim, Hyeong-Jin; Lee, Han-Ho

PA LG Chem, Ltd., S. Korea

SO PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.			KIND DATE			-	APPLICATION NO.					DATE						
															_				
PΙ	WO 2005076403			A1		20050818		,	WO 2004-KR257					2	0040	210			
		W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KΖ,	LC,	LK,	
			LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NI,	NO,	
			NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ΤJ,	
			TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW		
		RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AΖ,	
			BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	
			ES,	FI,	FR,	GB,	GR,	HU,	IE,	ΙT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
			TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	ΤG

```
EP 1728291
                             20061206
                                        EP 2004-709768
                                                              20040210
                        Α1
        R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
            IT, LI, LU, MC, NL, PT, RO, SE, SI, SK, TR
    CN 1914761
                           20070214 CN 2004-80041548
                                                              20040210
                       Α
    CN 100502132
                       С
                             20090617
                                      JP 2006-553038
    JP 2007522632
                       Τ
                             20070809
                                                              20040210
    TW 250678
                       В
                            20060301 TW 2004-106934
                                                              20040316
    US 20070141475
                       A1 20070621
                                        US 2006-588481
                                                              20060801
PRAI WO 2004-KR257
                       W
                             20040210
```

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

The invention relates to a nonaq. electrolyte solution containing new AΒ additives and a lithium secondary battery including the same. More particularly, the invention relates to a nonaq. electrolyte solution containing a lithium salt, an electrolyte compound, a first additive compound with an oxidation initiation potential of more than 4.2 V, and a second additive compound with an oxidation initiation potential of more than 4.2 V, which is higher in oxidation initiation potential than the first additive, and deposits oxidative products or form a polymer film, in oxidation, as well as a lithium secondary battery including the same. The present invention can provide a lithium secondary battery excellent in both the battery performance and the battery safety in overcharge by the combined use of the first additive and the second battery as additives to the nonaq. electrolyte solution.

IPCI H01M0010-40 [ICM, 7]

IPCR H01B0001-12 [I,A]; H01M0010-40 [I,A]; H01M0010-42 [I,A]

52-2 (Electrochemical, Radiational, and Thermal Energy Technology) CC

ΙT Secondary batteries

(lithium; nonaq. electrolyte for lithium secondary battery)

Battery electrolytes ΙT

(nonag. electrolyte for lithium secondary battery)

92-52-4, Biphenyl, uses 98-82-8, Isopropylbenzene ΙT

RL: MOA (Modifier or additive use); USES (Uses)

(nonaq. electrolyte for lithium secondary battery)

RN 92-52-4 HCAPLUS

1,1'-Biphenyl (CA INDEX NAME) CN

98-82-8 HCAPLUS RN

Benzene, (1-methylethyl) - (CA INDEX NAME) CN

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L72 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN AN 2004:352048 HCAPLUS Full-text

- DN 140:378001
- TI Secondary nonaqueous electrolyte battery
- IN Matsui, Toru; Deguchi, Masaki; Sonoda, Kumiko; Nishimura, Makiko; Koshina, Shigeru
- PA Matsushita Electric Industrial Co., Ltd., Japan; Panasonic Corporation
- SO Jpn. Kokai Tokkyo Koho, 18 pp. CODEN: JKXXAF
- DT Patent
- LA Japanese

FAN.CNT 1

T T T T T							
PATEN	T NO.	KIND	DATE	APPLICATION NO.	DATE		
PI JP 20	04134261	A	20040430	JP 2002-298206	20021011		
JP 43	13017	B2	20090812				
PRAI JP 20	02-298206		20021011				

AB The battery comprises a cathode, an anode, and a nonaq. electrolyte solution, having a solute dissolved in a solvent mixture which contains a main solvent and a secondary solvent; where the secondary solvent comprises a compound A, selected from cyclohexyl benzene, biphenyl, and/or di-Ph ether, and a compound X whose oxidation potential is 0.1-0.4 V higher than that of the compound A; and the weight ratio of the secondary solvent to the solvent mixture and the compound X to the secondary solvent is 0.01-5 and 20-99 resp.

IPCI H01M0010-36 [I,A]

IPCR H01M0010-40 [I,A]; H01M0010-36 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Battery electrolytes

(electrolyte solvents containing carbonates and aromatic compds. for secondary batteries)

IT 92-52-4, **Biphenyl**, uses 98-82-8

RL: DEV (Device component use); USES (Uses)

(electrolyte solvents containing carbonates and aromatic compds. for secondary batteries)

RN 92-52-4 HCAPLUS

CN 1,1'-Biphenyl (CA INDEX NAME)

RN 98-82-8 HCAPLUS

CN Benzene, (1-methylethyl) - (CA INDEX NAME)

OSC.G 4 THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITINGS)

- L72 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN
- AN 2003:853424 HCAPLUS Full-text
- DN 139:352674
- TI Nonaqueous electrolyte secondary battery

IN Mori, Sumio

PA Japan Storage Battery Co., Ltd., Japan; GS Yuasa Co., Ltd.

SO Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	JP 2003308875	A	20031031	JP 2002-115896	20020418
	JP 4625231	В2	20110202		
PRA	AI JP 2002-115896		20020418		

AB The secondary battery comprises a cathode, an anode, and nonaq. electrolyte containing ≥1 of sultone compds. (e.g. propane sultone, propene sultone, butane sultone), cyclic sulfates (e.g. glycol sulfate, propylene glycol sulfate), and vinylene carbonates, and ≥1 of derivs. of alkylbenzenes having tertiary carbon binding to the Ph groups (e.g. cumene, 1,3-diisopropyl benzene, 1,4-diisopropyl benzene, 1-Me Pr benzene, 1,3-bis(1-Me Pr)benzene, 1,4-bis(1-Me Pr)benzene), cycloalkyl benzenes (e.g. cyclohexyl benzene, cyclopentyl benzene), and biphenyl derivs. (e.g. biphenyl, 2-fluoro biphenyl, 2-brome biphenyl, 2-chloro biphenyl). The battery is excellent in high temperature exposure characteristics.

IPCI H01M0010-0567 [I,A]; H01M0010-052 [I,A]

IPCR H01M0010-40 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Battery electrolytes

Secondary batteries

(nonaq. electrolyte secondary battery)

IT 92-52-4, Biphenyl, uses 98-82-8, Cumene

 $\mbox{RL:}\mbox{ NUU (Other use, unclassified); USES (Uses)}$

(nonaq. electrolyte secondary battery)

RN 92-52-4 HCAPLUS

CN 1,1'-Biphenyl (CA INDEX NAME)

RN 98-82-8 HCAPLUS

CN Benzene, (1-methylethyl) - (CA INDEX NAME)

OSC.G 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

=> d bib abs hitind hitstr tot 174

COMBINATION 2

L74 ANSWER 1 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN AN 2009:146058 HCAPLUS Full-text

```
DN
    150:218258
ΤI
    Swelling inhibition in batteries
ΙN
    Mikhaylik, Yuriy V.; Kovalev, Igor
    Sion Power Corporation, USA
PA
    U.S. Pat. Appl. Publ., 12pp.; Chemical Indexing Equivalent to 150:218253
SO
    CODEN: USXXCO
    Patent
DT
    English
FAN.CNT 2
    PATENT NO.
                       KIND
                               DATE
                                          APPLICATION NO.
    _____
                        ----
                               _____
                                           _____
                                                                  _____
    US 20090035646
                         A1
                               20090205
                                          US 2007-888339
                                                                  20070731
PΙ
                        A1
                               20090205
    WO 2009017726
                                          WO 2008-US9158
                                                                  20080729
        W: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
            CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES,
            FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE,
            KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
            ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
            PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
            TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
        RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU,
            IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK,
            TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
            TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW,
            AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
                               20070731
PRAI US 2007-888339
                        Α
ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
     The present invention relates generally to electrochem. cells, and more
     specifically, to additives for electrochem. cells which may enhance the
     performance of the cell. In some cases, the additive may advantageously
     interact with at least one component or species of the cell to increase the
     efficiency and/or lifetime of the cell. The incorporation of certain
     additives within the electrolyte of the cell may improve the cycling lifetime
     and/or performance of the cell.
INCL 429050000; 429163000; 429188000
IPCI H01M0006-14 [I,A]
IPCR H01M0006-14 [I,A]
    429/050.000; 429/163.000; 429/188.000
NCL
CC
    52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ΙT
    Battery electrolytes
    Secondary batteries
        (swelling inhibition in batteries)
ΙT
    100-41-4, Ethylbenzene, uses 100-42-5, Styrene, uses
    RL: MOA (Modifier or additive use); USES (Uses)
        (swelling inhibition in batteries)
RN
    100-41-4 HCAPLUS
CN
    Benzene, ethyl- (CA INDEX NAME)
```

```
RN 100-42-5 HCAPLUS
CN Benzene, ethenyl- (CA INDEX NAME)
```

 $H2C \longrightarrow CH \longrightarrow Ph$

```
L74 ANSWER 2 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN
    2009:140215 HCAPLUS Full-text
    150:218253
DN
    Swelling inhibition in batteries
ΤI
    Mikhaylik, Yuriy V.; Kovalev, Igor
ΙN
PΑ
    Sion Power Corporation, USA
SO
    PCT Int. Appl., 31pp.; Chemical Indexing Equivalent to 150:218258 (US)
    CODEN: PIXXD2
DT
    Patent
LA
    English
FAN.CNT 2
                       KIND
                                          APPLICATION NO.
    PATENT NO.
                               DATE
                       ____
                                           _____
                              20090205
                                         WO 2008-US9158
PΙ
    WO 2009017726
                        A1
                                                                 20080729
        W: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
            CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES,
            FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE,
            KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
            ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
            PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
            TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
        RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU,
            IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK,
            TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
            TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW,
            AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
    US 20090035646
                    A1 20090205
                                          US 2007-888339
PRAI US 2007-888339
                         Α
                               20070731
ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
      The present invention relates generally to electrochem. cells, and more
      specifically, to additives for electrochem. cells which may enhance the
     performance of the cell. In some cases, the additive may advantageously
      interact with at least one component or species of the cell to increase the
      efficiency and/or lifetime of the cell. The incorporation of certain
      additives within the electrolyte of the cell may improve the cycling lifetime
      and/or performance of the cell.
IPCI H01M0004-62 [I,A]; H01M0010-44 [I,A]
IPCR H01M0004-62 [I,A]; H01M0010-44 [I,A]
CC
    52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ΙT
    Secondary batteries
        (lithium; swelling inhibition in batteries)
ΙT
    Battery electrolytes
        (swelling inhibition in batteries)
    100-41-4, uses 100-42-5, uses
ΙT
    RL: MOA (Modifier or additive use); USES (Uses)
        (swelling inhibition in batteries)
    100-41-4 HCAPLUS
RN
CN
    Benzene, ethyl- (CA INDEX NAME)
```


RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

H2C==CH-Ph

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 3 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2006:340840 HCAPLUS Full-text

DN 144:373068

TI Polymer electrolyte fuel cell system and its operation by supplying organic substance

IN Nogi, Atsushi; Shibata, Motokazu; Takeguchi, Shinsuke; Yasumoto, Eiichi; Hato, Kazuhito

PA Matsushita Electric Industrial Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 23 pp. CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
ΡI	JP 2006100194	A	20060413	JP 2004-286932	20040930		
PRAT	JP 2004-286932		20040930				

AB The title system is equipped with an oxidant gas supply line, a means for adding a detergent chosen from organic substances having unsatd. bond or forming unsatd. bond by oxidation with the oxidant gas, and a means for controlling addition of the detergent. The system prevents decrease of cell damage caused by mixing of an organic foreign substance.

IPCI H01M0008-06 [I,A]; H01M0008-10 [I,A]

IPCR H01M0008-06 [I,A]; H01M0008-10 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Fuel cells

(polymer electrolyte; organic substance in oxidant gas supply for operation of polymer electrolyte fuel cell system)

IT 100-41-4, Ethylbenzene, uses 100-42-5, Styrene, uses

RL: NUU (Other use, unclassified); USES (Uses)

(detergent; organic substance in oxidant gas supply for operation of polymer electrolyte fuel cell system)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

OSC.G THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS) L74 ANSWER 4 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN 2005:823988 HCAPLUS Full-text 143:232676 DN ΤI Nonaqueous electrolyte for lithium secondary battery ΙN Ahn, Soon-Ho; Lee, Jae-Hyun; Cho, Jeong-Ju; Lee, Ho-Chun; Son, Mi-Young; Kim, Hyeong-Jin; Lee, Han-Ho PΑ LG Chem, Ltd., S. Korea SO PCT Int. Appl., 33 pp. CODEN: PIXXD2 DT Patent English LA FAN.CNT 1 DATE PATENT NO. KIND DATE APPLICATION NO. _____ ______ ----A1 20050818 WO 2004-KR257 WO 2005076403 PΙ W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG EP 1728291 A1 20061206 EP 2004-709768 R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, SI, SK, TR CN 1914761 A 20070214 CN 2004-80041548 CN 100502132 С 20090617 Τ 20070809 JP 2006-553038 20060301 TW 2004-106934 JP 2007522632 20040210 В TW 250678 20040316 US 2006-588481 20070621 DRAI WO 2004-KR257 W ASSIGNMENT HIGHS 20060801 20040210 ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT The invention relates to a nonag. electrolyte solution containing new additives and a lithium secondary battery including the same. More particularly, the invention relates to a nonaq. electrolyte solution containing a lithium salt, an electrolyte compound, a first additive compound with an oxidation initiation potential of more than 4.2 V, and a second additive compound with an oxidation initiation potential of more than 4.2 V, which is higher in oxidation initiation potential than the first additive, and deposits oxidative products or form a polymer film, in oxidation, as well as a lithium secondary battery including the same. The present invention can provide a lithium secondary battery excellent in both the battery performance and the battery safety in overcharge by the combined use of the first additive and the second battery as additives to the nonaq. electrolyte solution. IPCI H01M0010-40 [ICM, 7] IPCR H01B0001-12 [I,A]; H01M0010-40 [I,A]; H01M0010-42 [I,A] 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) CC ΙT Secondary batteries

(lithium; nonaq. electrolyte for lithium secondary battery)

IT Battery electrolytes

CH2-CH3

RN 100-42-5 HCAPLUS CN Benzene, ethenyl- (CA INDEX NAME)

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 5 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2004:650537 HCAPLUS Full-text

DN 142:218629

TI Catalytic hydrogenation of organic compounds without H2 supply: an electrochemical system

AU do Amaral Ferraz Navarro, Daniela Maria; Navarro, Marcelo

CS Departamento de Quimica fundamental-CCEN, Universidade Federal de Pernambuco, Recife, 50740-901, Brazil

SO Journal of Chemical Education (2004), 81(9), 1350-1352 CODEN: JCEDA8; ISSN: 0021-9584

PB Journal of Chemical Education, Dept. of Chemistry

DT Journal

LA English

AB The electrocatalytic hydrogenation of organic compds. is a simple and interesting procedure that may exemplify the advantages of electrochem. An electrochem. system for the catalytic hydrogenation of organic compds. without a hydrogen supply is described. The process employs an electrochem. apparatus for the generation of hydrogen in situ. An experiment was developed for an undergraduate organic chemical laboratory course, and can be used to introduce the catalytic hydrogenation reaction, catalysis, electrochem. principles, and gas chromatog. The experiment employs a sacrificial anode because it simplifies the electrochem. system and allows use of an undivided cell.

CC 20-4 (History, Education, and Documentation)

Section cross-reference(s): 22, 72

IT Cathodes

Electrochemical cells Electrolysis catalysts

Gas chromatography

Laboratory experiment

Sacrificial anodes

(catalytic hydrogenation of organic compds. without H2 supply)

IT 100-42-5, Styrene, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(catalytic hydrogenation of organic compds. without H2 supply)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

 $H_2C \longrightarrow CH - Ph$

100-41-4P, preparation RL: SPN (Synthetic preparation); PREP (Preparation) (catalytic hydrogenation of organic compds. without H2 supply) RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RE.CNT 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 6 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

2004:456351 HCAPLUS Full-text ΑN

DN 141:163788

ΤI Electrocatalytic hydrogenation of organic compounds using a nickel sacrificial anode

Santana, Diogo S.; Melo, Givaldo O.; Lima, Marcio V. F.; Daniel, Jorge R. ΑU R.; Areias, Madalena C. C.; Navarro, Marcelo

Departamento de Quimica Fundamental, Centro de Ciencias Exatas e da CS Natureza, CEP, Universidade Federal de Pernambuco, UFPE, Recife, 50670-901 PE, Brazil

Journal of Electroanalytical Chemistry (2004), 569(1), 71-78 SO CODEN: JECHES

PB Elsevier

DT Journal

LA English

An electrochem. method, aimed at the hydrogenation of organic substrates, was AΒ developed, using a Ni sacrificial anode. The electrochem. system included an Fe cathode with deposited Ni and presented good electrochem. efficiency. Some different parameters such as co-solvent, c.d., supporting electrolyte and pH were studied to obtain the maximum efficiency for the process. An elevated cell voltage was observed (2.3 V) when 0.2M NH4OAc was used as supporting electrolyte, whereas in NH4Cl expts. could be carried out at a low potential (1.3 V). Electrocatalytic hydrogenation (ECH) of organic substrates showed that nonconjugated olefins (cyclohexene and geraniol) were not reactive, while conjugated substrates (2-cycloexen-1-one, benzaldehyde, acetophenone, styrene, trans-trans-2,4-hexadien-1-ol, 1,3-cyclohexadiene, citral and linalool) showed good reactivity and selectivity in some cases. A direct correlation was observed between the electrochem. efficiency, substrate concentration and c.d.

CC 72-2 (Electrochemistry)

Section cross-reference(s): 22, 23, 25

ΙT Electrolytic cells

> (with nickel sacrificial and iron cathode with electrodeposited nickel for hydrogenation of organic compds.)

ΙT 100-42-5, **Styrene**, properties

> RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent) (electrocatalytic hydrogenation in cell with nickel sacrificial anode and iron cathode with electrodeposited nickel in aqueous methanol

containing ammonium salt)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

H2C==CH-Ph

IT 100-41-4P, Ethylbenzene, properties

RL: PNU (Preparation, unclassified); PRP (Properties); PREP (Preparation) (preparation in electrocatalytic hydrogenation of styrene in cell with nickel sacrificial anode and iron cathode with electrodeposited nickel in aqueous methanol containing ammonium salt)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

OSC.G 7 THERE ARE 7 CAPLUS RECORDS THAT CITE THIS RECORD (7 CITINGS)
RE.CNT 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 7 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2004:220281 HCAPLUS Full-text

DN 140:238272

TI Production of high purity hydrogen by integrated flameless distributed combustion-membrane steam reforming

IN Matzakos, Andreas Nicholas; Wellington, Scott Lee; Clomburg, Lloyd Anthony; Veenstra, Peter; Munshi, Abdul Wahid; Jean, Rong-her; Elliott, Glenn William; Groeneveld, Michiel Jan

PA Shell Oil Company, USA; Miglin, Maria Therese

SO PCT Int. Appl., 64 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.			KIND DATE		APPLICATION NO.						DATE						
ΡΙ	WO 2004022480 WO 2004022480 WO 2004022480				A2 A3 B1		2004 2004 2004	1007		WO 2003-US27995								
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LR,
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	ΝI,	NO,	NZ,	OM,
			PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ΤJ,	TM,	TN,
			TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW			
		RW:	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,
			KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,
			FΙ,	FR,	GB,	GR,	HU,	ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,
			BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG
	CA	2497	441			A1		2004	0318		CA 2	003-	2497	441		2	0030	905
	AU	2003	2685	22		A1		2004	0329		AU 2	003-	2685	22		2	0030	905
	EP	1534	627			A2		2005	0601		EP 2	003-	7494	91		2	0030	905

```
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
     JP 2005538022
                         Τ
                               20051215
                                           JP 2004-534713
                                                                   20030905
     NO 2005001646
                                20050419
                                           NO 2005-1646
                                                                   20050404
                         Α
     US 20060248800
                                20061109
                                           US 2005-526915
                                                                   20050701
                         Α1
PRAI US 2002-408427P
                         Ρ
                                20020905
     WO 2003-US27995
                         W
                                20030905
ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
```

High purity hydrogen is produced by steam reforming of a vaporizable hydrocarbon at 200-700° and 1-200 bar in an integrated flameless distributed combustion-membrane steam reforming (FDC-MSR) reactor. The flameless distributed combustion drives the steam reforming reaction which provides great improvements in heat exchange efficiency and load following capabilities. The reactor may contain multiple flameless distributed combustion chambers and multiple hydrogen-selective, hydrogen-permeable, membrane tubes. The hydrogen-selective membrane is made of a Pd-alloy layer supported on a porous metal, particularly a Pd-alloy layer deposited by electroless plating on porous metal with an in -situ oxide protection layer. The porous metal can be (i) porous nickel-based alloy, [ii] porous Hastelloy, and (iii) porous Inconel. The feed and reaction gases may flow through the reactor either radially or axially. The vaporizable hydrocarbon can be natural gas, methane, ethylbenzene, methanol, ethane, ethanol, propane, butane, light C1-4 hydrocarbons, light petroleum fractions including naphtha, diesel, kerosene, jet fuel or gas oil. The system includes an integrated FDC-membrane de-hydrogenation reactor for producing high purity hydrogen and styrene by dehydrogenation of ethylbenzene. The produced hydrogen is used to power a high-pressure internally manifolded molten carbonate fuel cell. design of the FDC-SMR powered fuel cell makes it possible to capture good concns. of CO2 for sequestration or for enhanced recovery of oil in oil wells or methane in coal bed formations.

CC 51-11 (Fossil Fuels, Derivatives, and Related Products) Section cross-reference(s): 49, 52, 59

IT Fuel cells

(molten carbonate; production of high purity hydrogen by integrated flameless distributed combustion-membrane steam reforming)

IT 100-41-4, Ethyl benzene, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(dehydrogenation; production of high purity hydrogen by integrated flameless distributed combustion-membrane steam reforming)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

IT 100-42-5P, **Styrene**, preparation

RL: IMF (Industrial manufacture); PREP (Preparation) (production of high purity hydrogen by integrated flameless distributed combustion-membrane steam reforming)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

 $H_2C \longrightarrow CH - Ph$

OSC.G 12 THERE ARE 12 CAPLUS RECORDS THAT CITE THIS RECORD (13 CITINGS)

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 8 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2003:376054 HCAPLUS Full-text

DN 138:357255

TI Fabrication of extruded thin-walled articles from ceramic or metal powders in a polymeric binder system

IN Smirnova, Alevtina; Crosbie, Gary Mark; Pett, Robert Allan

PA Ford Global Technologies, Inc., USA; Ford Global Technologies, LLC

SO U.S. Pat. Appl. Publ., 6 pp. CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	US 20030090027	A1	20030515	US 2001-683031	20011109
	US 6827892	B2	20041207		
	US 20050065259	A1	20050324	US 2004-950880	20040927
PRAI	US 2001-683031	A3	20011109		

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A polymeric binder system is used to prepare mixts. with ceramic or metal powders for forming thin-walled articles such as thin-walled tubes by extrusion. The extrusion method comprises providing a polymeric binder system comprising a homogeneous solution of a polymeric binder in an organic solvent, adding a ceramic or metal powder to form a mixture, and evaporating the solvent from the mixture before die extrusion, heat-treatment to burn-off the binder and sintering of the green ceramics.

INCL 264177110; 428036900; 264638000; 264670000; 524081000

IPCI B32B0001-08 [ICM, 7]; C04B0035-634 [ICS, 7]

IPCR C04B0035-634 [I,A]; #01M0008-12 [I,A]

NCL 264/177.110; 264/638.000; 264/670.000; 428/036.900; 524/081.000; 264/104.000; 264/150.000; 264/165.000; 264/176.100; 264/209.100

CC 57-2 (Ceramics)

Section cross-reference(s): 38

IT 100-41-4, Ethylbenzene, uses 100-42-5, Styrene, uses

RL: NUU (Other use, unclassified); USES (Uses)

(solvent; fabrication of extruded thin-walled articles from ceramic or metal powders in a polymeric binder system)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

```
RN 100-42-5 HCAPLUS
```

CN Benzene, ethenyl- (CA INDEX NAME)

H 2 C === C H == P h

```
OSC.G 2
             THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)
RE.CNT 13
             THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD
             ALL CITATIONS AVAILABLE IN THE RE FORMAT
L74 ANSWER 9 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN
     2003:282182 HCAPLUS Full-text
AN
DN
    138:289859
ΤI
    Method for producing nanocarbon material
IN Kawakami, Soichiro; Yamamoto, Tomoya; Sano, Hitomi; Tani, Atsushi
    Canon Kabushiki Kaisha, Japan
PA
    Eur. Pat. Appl., 34 pp.
SO
    CODEN: EPXXDW
DT
    Patent
    English
LA
FAN.CNT 1
                   KIND DATE APPLICATION NO. DATE
     PATENT NO.
                       ____
                               _____
                                          ______
    EP 1300364
                       A2 20030409 EP 2002-22459 20021004
PΙ
                        A3 20050112
B1 20110126
    EP 1300364 A3
EP 1300364 B1
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK
     JP 2003221217
                     A
                              20030805
                                          JP 2002-289557
                                                                 20021002
     JP 4109952
                        В2
                              20080702
    US 20030086859 A1
US 7001581 B2
                              20030508
                                         US 2002-263754
                                                                 20021004
                       B2 20060221
                       A 20030716 CN 2002-154271
C 20070321
T 20110215 AT 2002-22459
     CN 1429767
                                                                 20021004
    CN 1305759
    AT 496867
PRAI JP 2001-309271 A 20011004
JP 2002-289557 A 20021002
ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
     Nanocarbon material is produced from aromatic compound-containing starting
     material by contacting it with a supercrit. fluid or a subcrit. fluid in the
     presence of a transition metal element-containing catalyst at a temperature
     of 350-800° and at a pressure of 3-50 MPa. The supercrit. fluid or said
     subcrit. fluid is formed from one or more kinds of materials selected from
      the group consisting of an aromatic compound as said starting material, a
      solvent for said aromatic compound, a solvent for said catalyst, water,
     dinitrogen monoxide, and ammonia.
IPCI B82B0003-00 [I,A]; C01B0031-02 [I,A]; B01J0003-00 [I,A]
IPCR B82B0003-00 [I,A]; B01J0003-00 [I,A]; B01J0020-20 [I,A]; B01J0023-755 [I,A];
     B01J0027-22 [I,A]; B01J0027-25 [I,A]; B01J0031-04 [I,A]; B01J0031-22 [I,A];
     C01B0031-02 [I,A]; D01F0009-127 [I,A]; F17C0011-00 [I,A]; H01J0009-02 [I,A];
     H01M0004-58 [I,A]; H01M0004-86 [I,A]
CC
     49-1 (Industrial Inorganic Chemicals)
    100-41-4, Ethylbenzene, reactions 100-42-5, Styrene, reactions
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (method for producing nanocarbon material from aromatic compds. using
       transition metal catalysts)
     100-41-4 HCAPLUS
RN
```

Benzene, ethyl- (CA INDEX NAME)

CN

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

H 2 C ___ C H __ P h

OSC.G 16 THERE ARE 16 CAPLUS RECORDS THAT CITE THIS RECORD (34 CITINGS)

RE.CNT 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 10 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2003:148537 HCAPLUS Full-text

DN 139:135948

TI Technical assessment of fuel cell operation on landfill gas at the Groton, CT, landfill

AU Spiegel, R. J.; Preston, J. L.

CS US Environmental Protection Agency (EPA), National Risk Management Research Laboratory, Research Triangle Park, NC, 27711, USA

SO Energy (Oxford, United Kingdom) (2003), 28(5), 397-409 CODEN: ENEYDS; ISSN: 0360-5442

PB Elsevier Science Ltd.

DT Journal

LA English

- This paper summarizes the results of a seminal assessment conducted on a fuel cell technol. that generates elec. power from landfill waste gas. This assessment at Groton, Connecticut was the second such project conducted by the Environmental Protection Agency, the first being conducted at the Penrose Power Station near Los Angeles, California. The main objective was to demonstrate the suitability of the landfill gas energy conversion equipment at Groton with different conditions and gas compns. than at Penrose. The operation of the landfill gas cleanup system removed contaminants from the gas stream with essentially the same efficacy as at Penrose, even though the quantity and kinds of contaminants were somewhat different. The maximum output power of fuel cell power plant improved from 137 kW at Penrose to 165 kW at Groton, due to a 31% increase in the heating value of the Groton landfill gas.
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Fuel cells

(power plants; tech. assessment of fuel cell operation on landfill gas)

IT Fuel cells

(tech. assessment of fuel cell operation on landfill gas)

IT 100-41-4, Ethylbenzene, processes 100-42-5, Styrene, processes

RL: REM (Removal or disposal); PROC (Process)

(landfill gas containing; tech. assessment of fuel cell operation on landfill gas)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 100-42-5 HCAPLUS CN Benzene, ethenyl- (CA INDEX NAME)

H 2 C ___ C H __ P h

OSC.G 10 THERE ARE 10 CAPLUS RECORDS THAT CITE THIS RECORD (10 CITINGS)

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 11 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2002:773833 HCAPLUS Full-text

DN 137:303358

TI Secondary power source and its manufacture

IN Kuruma, Isamu; Morimoto, Takeshi; Tsushima, Manabu

PA Japan Carlit Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 6 pp. CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.					KIN	D	DATE			APPLICATION NO.						DATE		
							_									_			
ΡI	JP	2002	2988	49		А		2002	1011		JP 2	001-	1036	33		2	0010	402	
	WO 2002082568				A1		20021017			WO 2002-JP3305				2	0020	402			
		\mathbb{W} :	CN,	US															
		RW:	ΑT,	BE,	CH,	CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	ΙT,	LU,	MC,	NL,	

PT, SE, TR
PRAI JP 2001-103633 A 20010402

AB The power source has an activated C pos. electrode, a neg. electrode of graphitic carbonaceous material, having d002 0.334-0.337 nm, coated with a low crystallinity carbonaceous material, and an electrolyte solution containing a Li salt dissolved in an organic solvent. The power source is prepared by contacting the graphitic material with an organic vapor, and pyrolyzing the vapor to form the low crystallinity coating.

IPCI H01M0004-58 [ICM,7]; C01B0031-04 [ICS,7]; C23C0016-26 [ICS,7];
H01G0009-058 [ICS,7]; H01G0009-038 [ICS,7]; H01M0004-02 [ICS,7];
H01M0010-40 [ICS,7]

IPCR C01B0031-04 [I,A]; C23C0016-26 [I,A]; H01G0009-038 [I,A]; H01G0009-058 [I,A]; H01M0004-02 [I,A]; H01M0004-36 [N,A]; H01M0004-58 [I,A]; H01M0010-40 [I,A]

CC 76-10 (Electric Phenomena)
Section cross-reference(s): 52

IT Secondary batteries

(lithium; secondary power source containing activated carbon pos electrodes and graphitic carbon neg. electrodes and lithium salt electrolytes)

IT 100-41-4, Ethylbenzene, processes 100-42-5, Styrene, processes RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

H 2 C - CH - Ph

OSC.G 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS)

L74 ANSWER 12 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2002:368715 HCAPLUS Full-text

DN 136:360989

TI Electrochemical process for oxidation of alkanes to alkenes

IN Chuang, Karl T.; Sanger, Alan R.; Luo, Jingli; Slavov, Stefan V.

PA The Governors of the University of Alberta, Can.

SO PCT Int. Appl., 38 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.					KIND DATE			APPLICATION NO.					DATE				
ΡI	WO	2002	 0388:	32					WO 2001-CA1603									
		W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	, BG,	BR,	BY,	BZ,	CA,	CH,	CN,
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,
			HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	, KP,	KR,	KΖ,	LC,	LK,	LR,	LS,
			LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	, MX,	MZ,	NO,	NΖ,	PL,	PT,	RO,
			RU,	SD,	SE,	SG,	SI,	SK,	SL,	ТJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,
			VN,	YU,	ZA													
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	, TZ,	UG,	ZW,	AT,	BE,	CH,	CY,
			•									, LU,			•		TR,	BF,
												, MR,						
	_	2325				A1						2000-						
	_	2428									CA 2	2001-	2428	200		2	0011	109
	_	2428				С		2010	-									
		2002				А						2002-					0011	
		2387				А						2003-					0011	
		2004		713							US 2	2003-	4158	85		2	0031	010
		7338				В2		2008										
PRAI	_		_					2000	_									
	WΟ	2001	-CA1	603		W		2001	1109									

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB An electrochem. process for the oxidation of an alkane to at least one corresponding alkene uses an electrochem. cell having an anode chamber on one side of a proton conducting medium, and a cathode chamber on the other side of the said medium. The alkane is oxidized in the anode chamber to produce at least one corresponding alkene and protons are transferred through a proton conducting membrane to the cathode chamber where protons combine with a proton acceptor, while generating electricity and water. An apparatus for use in the process is also provided.

IPCI C25B0003-02 [ICM,7]; H01M0008-00 [ICS,7]; H01M0008-10 [ICS,7]

32

```
10 / 588481
IPCR C25B0003-02 [I,A]; H01M0004-86 [I,A]; H01M0004-92 [I,A]; H01M0008-04 [I,A];
     H01M0008-10 [I,A]
CC
     72-7 (Electrochemistry)
     Section cross-reference(s): 23, 48, 67
ΙT
     Electrolytic cells
        (membrane; electrochem. process for oxidation of alkanes to alkenes in)
ΙT
     100-42-5P, Styrene, processes
     RL: CPS (Chemical process); PEP (Physical, engineering or chemical
     process); PNU (Preparation, unclassified); PREP (Preparation); PROC
     (Process)
        (C2-C6; electrochem. process for oxidation of Et benzene to)
RN
     100-42-5 HCAPLUS
     Benzene, ethenyl- (CA INDEX NAME)
CN
H 2 C ___ C H __ P h
```

100-41-4, Ethyl benzene, reactions TΤ RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process); RACT (Reactant or reagent) (electrochem. process for oxidation of alkanes to alkenes) 100-41-4 HCAPLUS RN Benzene, ethyl- (CA INDEX NAME) CN

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 13 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN ΑN 1999:615296 HCAPLUS Full-text DN 131:259900 ΤI Fuel cell operation on landfill gas at Penrose Power Station Spiegel, R. J.; Preston, J. L.; Trocciola, J. C. ΑU CS National Risk Management Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC, 27711, USA SO Energy (Oxford) (1999), 24(8), 723-742 CODEN: ENEYDS; ISSN: 0360-5442 PΒ Elsevier Science Ltd. DTJournal English LA This demonstration test successfully demonstrated the operation of a com.

phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low secondary emissions (dry gas, 15% O2) of 0.77 ppmV CO, 0.12 ppmV NOx, and undetectable SO2; no forced outages with an adjusted availability of 98.5%; and a total of 707 h of operation on LG. The LG pretreatment unit (GPU) operated for a total of 2297 h, including the 707 h with the FC, and documented total sulfur and halide removal to much lower than the specified <3 ppmV for the FC. The GPU flare safely disposed of the removed LG contaminants by achieving destruction efficiencies greater than 99%.

CC 52-4 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 59

IT Fuel cells

(fuel cell operation on landfill gas at Penrose Power Station)

IT 100-41-4, Ethylbenzene, occurrence 100-42-5, occurrence

RL: OCU (Occurrence, unclassified); POL (Pollutant); OCCU (Occurrence) (fuel cell operation on landfill gas at Penrose Power Station)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

OSC.G 14 THERE ARE 14 CAPLUS RECORDS THAT CITE THIS RECORD (14 CITINGS)

RE.CNT 16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 14 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 1999:231880 HCAPLUS Full-text

DN 130:269694

TI Manufacture of anodes containing lithium mixed nitrides and secondary lithium batteries using them

IN Shodai, Takahisa; Saito, Keiichi; Sakurai, Yoji; Yamaki, Junichi; Yamaura, Junichi; Kondo, Shigeo; Tsutsumi, Shuji; Hasegawa, Masaki

PA Nippon Telegraph and Telephone Corp., Japan; Matsushita Battery Industrial Co., Ltd.

SO Jpn. Kokai Tokkyo Koho, 7 pp. CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	• 01:1						
	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
ΡI	JP 11097020	A	19990409	JP 1997-276502	19970924		
	JP 3461698	B2	20031027				
PRA	I JP 1997-276502		19970924				

AB The title anodes are manufactured by dispersing active mass containing Licontaining transition metal nitrides Lil+xMyN (M = transition metals; x = -0.2-2.0; y = 0.1-0.5) in organic solvents selected from aliphatic hydrocarbons and aromatic hydrocarbons. Secondary Li batteries using the above anodes are also claimed. The batteries suppress shedding of active mass and have long cycle life.

IPCI H01M0004-58 [ICM,6]; H01M0004-02 [ICS,6]; H01M0004-04 [ICS,6]; H01M0004-62 [ICS,6]; H01M0010-40 [ICS,6]

IPCR H01M0004-58 [I,A]; H01M0004-02 [I,A]; H01M0004-04 [I,A]; H01M0004-62 [I,A];
H01M0010-40 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Secondary batteries

(lithium; solvents in manufacture of anodes containing lithium transition

metal nitrides for batteries)

IT Battery anodes

for batteries)

IT 100-41-4, Ethylbenzene, uses 100-42-5, uses

RL: NUU (Other use, unclassified); USES (Uses)

(solvents in manufacture of anodes containing lithium transition metal nitrides for batteries)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

 $H_2C \longrightarrow CH - Ph$

L74 ANSWER 15 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 1998:488274 HCAPLUS Full-text

DN 129:154052

OREF 129:31273a,31276a

TI Hydrogenation method and electrolytic cell containing hydrogen-absorbing cathode

IN Shimamune, Takayuki; Tanaka, Masashi; Hirao, Kazuhiro; Yoshida, Hiroki; Nishiki, Yoshinori; Iwakura, Chiaki; Inoue, Hiroshi

PA Permelec Electrode Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 7 pp. CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	JP 10195686	A	19980728	JP 1997-13083	19970107
	JP 3561108	B2	20040902		
PRAI	JP 1997-13083		19970107		

AB The electrolytic cell is divided into an electrolysis chamber and a hydrogenation chamber by a cathode made of a hydrogen-absorbing material. A porous hydrogen-absorbing body is elec. connected to the cathode. By conducting electrolysis, the active hydrogen which was generated, absorbed, and permeated at the cathode is used to hydrogenate a compound to be hydrogenated. The hydrogen-absorbing body is selected from the group consisting of Pd, Pd alloy, and Ni. Hydrogen is absorbed by the cathode so even an excess hydrogen is generated, it is absorbed by the cathode therefore it is not discharged so that hydrogen can be utilized effectively.

IPCI C25B0003-04 [ICM,6]; C25B0009-00 [ICS,6]

IPCR C25B0003-04 [I,A]; C25B0009-00 [I,A]; C25B0009-08 [I,A]; C25B0009-18 [I,A]

CC 72-3 (Electrochemistry)

Section cross-reference(s): 23, 25

IT Electrolytic cells

Hydrogenation

(electrolytic cell containing hydrogen-absorbing cathode for hydrogenation)

IT 100-42-5, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(electrolytic cell containing hydrogen-absorbing cathode for hydrogenation of)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

H 2 C === C H -- P h

IT 100-41-4P, Ethylbenzene, preparation

RL: IMF (Industrial manufacture); PREP (Preparation) (formation in hydrogenation of styrene in electrolytic cell containing hydrogen-absorbing cathode)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

OSC.G 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

L74 ANSWER 16 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 1997:794623 HCAPLUS Full-text

DN 128:120903

OREF 128:23579a,23582a

TI Successive hydrogenation of styrene using a two-compartment cell separated by hydrogen storage alloy sheet electrodes

AU Iwakura, Chiaki; Abe, Toshiyuki; Inoue, Hiroshi

CS Dep. Applied Chem., Coll. Eng., Osaka Prefecture Univ., Osaka, 593, Japan

SO Denki Kagaku oyobi Kogyo Butsuri Kagaku (1997), 65(12), 1120-1121 CODEN: DKOKAZ; ISSN: 0366-9297

PB Denki Kagaku Kyokai

DT Journal

LA English

AB LaNi5 and MmNi3.6Mn0.4Al0.3Co0.7 were used as working electrodes and separators. Electrochem. reduction of water occurs on one side of the LaNi5 and MnNi3.6Mn0.4Al0.3Co0.7 electrodes in KOH solution and the absorbed hydrogen atoms diffuse to the other side and are utilized as a hydrogen source for hydrogenation of styrene to ethylbenzene.

CC 72-2 (Electrochemistry)

Section cross-reference(s): 22, 25

IT Electrolytic cells

(two-compartment cell separated by hydrogen storage alloy sheet electrodes for hydrogenation of styrene) $\$

IT 100-41-4P, Ethylbenzene, properties

RL: PNU (Preparation, unclassified); PRP (Properties); PREP (Preparation) (successive hydrogenation of styrene to ethylbenzene using two-compartment cell separated by hydrogen storage alloy sheet electrodes)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

ΙT 100-42-5, **Styrene**, properties

> RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent) (successive hydrogenation of styrene using two-compartment cell separated by hydrogen storage alloy sheet electrodes)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

H 2 C === C H -- P h

THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L74 ANSWER 17 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

1996:248799 HCAPLUS Full-text ΑN

124:300826 DN

OREF 124:55535a,55538a

A new successive system for hydrogenation of styrene using a two-compartment cell separated by a Pd sheet electrode

ΑU Iwakura, Chiaki; Abe, toshiyuki; Inoue, Hiroshi

Coll. Eng., Osaka Prefecture Univ., Sakai, 593, Japan CS

Journal of the Electrochemical Society (1996), 143(4), L71-L72 SO CODEN: JESOAN; ISSN: 0013-4651

PΒ Electrochemical Society

DT Journal

LA English

AΒ A new successive system for hydrogenation of styrene was constructed using a two-compartment cell separated by a Pd sheet electrode. The sole product in the hydrogenation of styrene was ethylbenzene. The amount of ethylbenzene produced increased linearly with electrolysis time after a certain induction period and the rate of ethylbenzene production depended on the applied current. The current efficiency for the production of ethylbenzene in this system exceeded 93% at an applied current of 10 mA.

CC 72-2 (Electrochemistry)

Section cross-reference(s): 25, 66

Electrolytic cells ΙT

> (new successive system for hydrogenation of styrene using two-compartment cell separated by Pd sheet electrode)

100-42-5, **Styrene**, properties ΙT

> RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent) (new successive system for hydrogenation of styrene using two-compartment cell separated by Pd sheet electrode)

RM100-42-5 HCAPLUS

Benzene, ethenyl- (CA INDEX NAME) CN

H 2 C ___ C H __ P h

IT 100-41-4P, Ethylbenzene, properties

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (preparation in hydrogenation of styrene using two-compartment cell separated by Pd sheet electrode)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

OSC.G 24 THERE ARE 24 CAPLUS RECORDS THAT CITE THIS RECORD (24 CITINGS)

L74 ANSWER 18 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 1991:665430 HCAPLUS Full-text

DN 115:265430

OREF 115:44941a,44944a

TI Electrochemical reactors and multicomponent membranes useful for oxidation reactions

IN Cable, Thomas L.; Frye, John G., Jr.; Kliewer, Wayne R.; Mazanec, Terry J.

PA Standard Oil Co., USA

SO Eur. Pat. Appl., 49 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 8

	PATENT NO.			KIND DATE			AP	PLICA:	DATE						
	EP EP	4389 4389 4389 4389	02 02			А3		1991 1992 1997 2003	0325 0507	EP	1990-	-3140	83	19	9901220
	EP	5306	411 30			A A1		1994 1997	0426 0402	EP	1990-	-6187	92	19	9901127 9901220
PRAI	ZA CN US US US US US US US US US	R: 9010 1214 6287	AT, 408 276 432 -4573 -4573 -5103 -6183 -2553 -3573 -3144 -4879	BE, 327 340 384 296 792 11 317 083 945	CH,	DE, A A B1 A A A A A A A A A A A A A A A A	DK,	ES, 1991 1999 2001 1989 1989 1989	FR, 1030 0421 0911 1227 1227 1227 0416 1127 0313 0525 1220 0607	GB, G ZA CN US	1990- 1997-	-1040 -1211	8 01	19 19	9901227 9971015 9990614

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A solid multicomponent membrane, for use in an electrochem. reactor, is characterized by a mixed metal oxide material having a perovskite structure comprising (1) a lanthanide, Y, or a combination of a lanthanide and Y; $(2) \ge 1$

alkaline earth metal; (3) Fe, and (4) Cr, Ti, or a combination of Cr and Ti. Also described is an element for use in an electrochem. reactor or reactor cell having a 1st surface capable of reducing O to O ions, a 2nd surface capable of reacting O ions with an O-consuming gas, an electron-conductive path between the 1st and 2nd surfaces and an O ion-conductive path between the 1st and 2nd surfaces characterized in that the element comprises (A) a mixed metal oxide material having a perovskite structure and (B) a conductive coating, a catalyst, or a conductive coating comprising a catalyst. The reactor permits the carrying out of a number of electrochem. reactions. IPCI H01M0008-12 [ICM,5]; C25B0005-00 [ICS,5]; B01D0071-02 [ICS,5] IPCR B01D0053-32 [I,A]; B01D0071-02 [I,A]; B01J0004-04 [I,A]; B01J0008-00 [I,A]; B01J0012-00 [I,A]; B01J0019-00 [I,A]; B01J0019-24 [I,A]; B01J0023-86 [I,A]; C01B0003-36 [I,A]; C01B0003-38 [I,A]; C01B0013-02 [I,A]; C01C0003-02 [I,A]; C01G0045-00 [I,A]; C01G0049-00 [I,A]; C01G0051-00 [I,A]; C25B0003-02 [I,A]; C25B0005-00 [I,A]; H01M0004-86 [I,A]; H01M0008-02 [I,A]; H01M0008-12 [I,A] CC 72-2 (Electrochemistry) Section cross-reference(s): 45, 51, 52, 57, 59 ΤТ Electrolytic cells (diaphragm, for multiple electrochem. reactions) ΙT 100-41-4P, Ethyl benzene, preparation 100-42-5P, Styrene, preparation RL: PREP (Preparation) (production of, electrochem. reactor for) 100-41-4 HCAPLUS RN CN Benzene, ethyl- (CA INDEX NAME)

RN 100-42-5 HCAPLUS CN Benzene, ethenyl- (CA INDEX NAME)

 $H2C \longrightarrow CH - Ph$

OSC.G 34 THERE ARE 34 CAPLUS RECORDS THAT CITE THIS RECORD (38 CITINGS)

 $\ensuremath{\text{L}74}$ ANSWER 19 OF 19 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 1980:520893 HCAPLUS Full-text

DN 93:120893

OREF 93:19201a

TI Effect of certain electrolytes on colloid-chemical properties of sodium pentadecanesulfonate in an aqueous medium

AU Aratyunyan, R. S.; Stepanyan, N. A.; Simonyan, L. Kh.; Atanasyan, E. N.; Beileryan, N. M.

CS Erevan. Univ., Yerevan, USSR

SO Kolloidnyi Zhurnal (1980), 42(4), 727-31 CODEN: KOZHAG; ISSN: 0023-2912

DT Journal

LA Russian

AB The effect of NaCl, KCl, and K2SO4 was studied on average micellar weight and kinetics of solubilization of styrene, EtPh, chloroprene, and Me methacrylate in aqueous Na pentadecane sulfonate solution. At a certain concentration of the electrolytes, the apparent micellar weight is min. The rate and the extent of solubilization grows in the presence of the electrolytes. The

distribution consts. and the changes of free energy of solubilization in the presence and without electrolytes were calculated

CC 66-4 (Surface Chemistry and Colloids)

IT Electrolytes

(solubilization of micelles in presence of)

IT 100-41-4, properties 100-42-5, properties

RL: PRP (Properties)

(micelles of, solubilization of, electrolyte effect on)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 100-42-5 HCAPLUS

CN Benzene, ethenyl- (CA INDEX NAME)

H 2 C === CH-Ph

=> => d bib abs hitind hitstr tot 176

COMBINATION 3

L76 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2009:796668 HCAPLUS Full-text

DN 151:128553

TI Nonaqueous electrolyte secondary battery

IN Takahashi, Kentaro

PA Sanyo Electric Co., Ltd., Japan

SO U.S. Pat. Appl. Publ., 8pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
PI I	US 20090170007	A1	20090702	US 2008-342667	20081223		
	JP 2009163937	A	20090723	JP 2007-340514	20071228		
(CN 101471459	A	20090701	CN 2008-10190203	20081226		
PRAI	JP 2007-340514	A	20071228				
ASSIG	NMENT HISTORY FOR U	S PATEN	T AVAILABLE	IN LSUS DISPLAY FORMAT			
OS I	MARPAT 151:128553						

GΙ

AB A non-aqueous electrolyte secondary cell is provided having enhanced safety against overcharge and reduced self-discharge. The non-aqueous electrolyte secondary cell includes: a pos. electrode having a pos. electrode active material; a neg. electrode having a neg. electrode active material; and a non-aqueous electrolyte containing a non-aqueous solvent and electrolytic salt. The non-aqueous solvent contains 20 to 80 volume% tertiary carboxylic acid ester represented by formula (I) at 25° and 1 atmospheric. The non-aqueous electrolyte contains an alkylbenzene compound and/or a halogenated benzene compound where R1 to R4 each denote a straight-chained or branched alkyl group having 4 or less carbon atoms and may be the same or different.

INCL 429343000

IPCI H01M0010-00 [I,A]

IPCR H01M0010-00 [I,A]

NCL 429/343.000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Battery electrolytes Secondary batteries

(nonaq. electrolyte secondary battery)

IT 98-06-6, tert-Butylbenzene 108-88-3, Toluene, uses

RL: TEM (Technical or engineered material use); USES (Uses)

(nonaq. electrolyte secondary battery)

RN 98-06-6 HCAPLUS

CN Benzene, (1,1-dimethylethyl) - (CA INDEX NAME)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

L76 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2007:793705 HCAPLUS Full-text

DN 147:193049

TI Additives for nonaqueous electrolyte and lithium secondary battery using the same

IN Lee, Ro Chun; Shin, Sun Sik; Park, Hong Kyu; Jeon, Joo Mi; Cho, Jeong Ju

PA Lg Chem, Ltd., S. Korea

SO U.S. Pat. Appl. Publ., 8 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE

```
PΙ
    US 20070166609
                         Α1
                                20070719
                                           US 2007-623845
                                                                   20070117
     US 7927747
                         В2
                                20110419
     KR 2007076522
                         Α
                                20070724
                                          KR 2007-5085
                                                                   20070117
     KR 789107
                                20071226
                         В1
     WO 2007083917
                         Α1
                                20070726
                                          WO 2007-KR276
                                                                   20070117
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
            CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
             GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN,
             KP, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN,
            MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
             RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ,
            UA, UG, UZ, VC, VN, ZA, ZM, ZW
         RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
             IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,
             CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,
             GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
             KG, KZ, MD, RU, TJ, TM
                               20081015
     EP 1979979
                                          EP 2007-708501
                                                                   20070117
                         Α1
        R: DE, FR, GB, SE
     CN 101375459
                                20090225
                                          CN 2007-80003300
                                                                   20070117
                         Α
     CN 101375459
                         В
                                20101027
PRAI KR 2006-5058
                                20060117
                         Α
     WO 2007-KR276
                                20070117
ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
     Disclosed is an electrolyte for batteries, comprising: (a) an electrolyte
     salt; (b) an organic solvent; (c) a first compound having an oxidation
     initiation voltage (vs.Li/Li+) higher than the operating voltage of a cathode;
     and (d) a second reversible compound having an oxidation initiation voltage
     higher than the operating voltage of the cathode, but lower than the oxidation
     initiation voltage of the first compound. Also disclosed is a lithium
     secondary battery comprising the electrolyte. In the lithium secondary
     battery, two compds. having different safety improvement actions at a voltage
     higher than the operating voltage of the cathode are used in combination as
     electrolyte components. Thus, the safety of the secondary battery in an
     overcharged state can be ensured, and at the same time, the deterioration of
     the battery can be prevented from occurring when it is repeatedly cycled,
     continuously charged and stored at high temperature for a long time.
INCL 429105000; 429324000; 429200000; 429326000
IPCI H01M0008-20 [I,A]; H01M0010-40 [I,A]; H01M0006-16 [I,A]; H01M0006-04 [I,A]
IPCR H01M0008-20 [I,A]; H01M0010-0525 [I,A]; H01M0010-0567 [I,A]; H01M0010-36 [I,A]
    429/105.000; 429/200.000; 429/324.000; 429/326.000; 429/327.000
     52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
CC
ΙT
     Battery electrolytes
     Safety
        (additives for nonaq. electrolyte of lithium secondary battery)
ΙT
     Secondary batteries
        (lithium; additives for nonag. electrolyte of lithium secondary battery)
ΙT
     98-06-6, tert-Butylbenzene 108-88-3, Toluene, uses
```

(additives for nonaq. electrolyte of lithium secondary battery)

RL: MOA (Modifier or additive use); USES (Uses)

Benzene, (1,1-dimethylethyl) - (CA INDEX NAME)

98-06-6 HCAPLUS

RN

CN

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

L76 ANSWER 3 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2006:918270 HCAPLUS Full-text

DN 145:274968

TI Nonaqueous electrolyte secondary battery

IN Iwanaga, Masato; Nishida, Nobumichi; Tsutsumi, Shuji

PA Sanyo Electric Co., Ltd., Japan

SO U.S. Pat. Appl. Publ., 9pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
PΙ	US 20060199077	A1	20060907	US 2006-359965	20060223		
	JP 2006236725	A	20060907	JP 2005-48171	20050224		
	KR 2006094477	A	20060829	KR 2006-17530	20060223		
	CN 1825675	A	20060830	CN 2006-10009554	20060224		
	CN 100539291	С	20090909				
PRAI	JP 2005-48171	A	20050224				

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB The invention concerns a non-aqueous electrolyte secondary battery with excellent discharge cycle characteristics and a charging termination potential ranging from 4.4 to 4.6 V based on lithium, consisting of a pos. electrode comprising a pos. electrode active material, a neg. electrode, and a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte salt, in which the pos. electrode active material comprises a mixture of a lithium-cobalt composite oxide containing at least both zirconium and magnesium in LiCoO2, and a lithium-manganese-nickel composite oxide having a layered structure and containing at least both manganese and nickel, and the potential of the pos. electrode active material ranges from 4.4 to 4.6 V based on lithium, and the non-aqueous electrolyte contains at least one of aromatic compds. selected from the group consisting at least of toluene derivs., anisole derivs., biphenyl, cyclohexyl benzene, tert-Bu benzene, tert-amyl benzene, and di-Ph ether.

INCL 429231300; 429231600; 429224000; 429223000; 429326000

IPCI H01M0004-52 [I,A]; H01M0004-50 [I,A]; H01M0010-40 [I,A]

IPCR H01M0004-52 [I,A]; H01M0004-50 [I,A]; H01M0010-40 [I,A]

NCL 429/231.300; 429/223.000; 429/224.000; 429/231.600; 429/326.000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Battery cathodes

Battery electrolytes

Secondary batteries

(nonaq. electrolyte secondary battery)

IT 98-06-6, tert-Butylbenzene 108-88-3D, Toluene, derivative

RL: MOA (Modifier or additive use); USES (Uses)

(nonaq. electrolyte secondary battery)

RN 98-06-6 HCAPLUS

CN Benzene, (1,1-dimethylethyl) - (CA INDEX NAME)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

L76 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2005:823988 HCAPLUS Full-text

DN 143:232676

TI Nonaqueous electrolyte for lithium secondary battery

IN Ahn, Soon-Ho; Lee, Jae-Hyun; Cho, Jeong-Ju; Lee, Ho-Chun; Son, Mi-Young;
Kim, Hyeong-Jin; Lee, Han-Ho

PA LG Chem, Ltd., S. Korea

SO PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

I AIV.	PATENT NO.					KIND DATE			APPLICATION NO.						DATE				
ΡI	WO	2005	0764	03					WO 2004-KR257						20040210				
		W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	ВG,	BR,	BW,	BY,	BZ,	CA,	CH,	
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KΖ,	LC,	LK,	
			LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NΑ,	NΙ,	NO,	
			NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ΤJ,	
			TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW		
		RW:	BW,	GH,	GM,	KΕ,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	
			BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM,	ΑT,	BE,	ВG,	CH,	CY,	CZ,	DE,	DK,	EE,	
			ES,	FI,	FR,	GB,	GR,	HU,	IE,	ΙT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
			TR,	BF,	ΒJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	$\mathrm{ML}_{m{\prime}}$	MR,	NE,	SN,	TD,	ΤG
	EP	1728	291			A1	A1 20061206			EP 2004-709768						20040210			
		R:	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	
			ΙΤ,	LI,	LU,	MC,	ΝL,	PT,	RO,	SE,	SI,	SK,	TR						
		1914						2007	0214	CN 2004-80041548					20040210				
	СИ	100502132 2007522632				_		2009								20040210			
	JP							2007	0809	1	JP 2	006-	5530.	38					
		2506	-			В		2006								20040316			
	US	2007	0141	475		A1		2007	0621	US 2006-588481 2006				0060	801				
PRAI	WO	O 2004-KR257				W		2004	0210										

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB The invention relates to a nonaq. electrolyte solution containing new additives and a lithium secondary battery including the same. More particularly, the invention relates to a nonaq. electrolyte solution containing a lithium salt, an electrolyte compound, a first additive compound

with an oxidation initiation potential of more than 4.2 V, and a second additive compound with an oxidation initiation potential of more than 4.2 V, which is higher in oxidation initiation potential than the first additive, and deposits oxidative products or form a polymer film, in oxidation, as well as a lithium secondary battery including the same. The present invention can provide a lithium secondary battery excellent in both the battery performance and the battery safety in overcharge by the combined use of the first additive and the second battery as additives to the nonaq. electrolyte solution.

IPCI H01M0010-40 [ICM, 7]

IPCR H01B0001-12 [I,A]; H01M0010-40 [I,A]; H01M0010-42 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT Secondary batteries

(lithium; nonaq. electrolyte for lithium secondary battery)

IT Battery electrolytes

(nonaq. electrolyte for lithium secondary battery)

IT 98-06-6, tert-Butylbenzene 108-88-3, Toluene, uses

RL: MOA (Modifier or additive use); USES (Uses)

(nonaq. electrolyte for lithium secondary battery)

RN 98-06-6 HCAPLUS

CN Benzene, (1,1-dimethylethyl) - (CA INDEX NAME)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L76 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2005:219962 HCAPLUS Full-text

DN 142:282886

TI Nonaqueous solvent secondary battery

IN Takahashi, Kentaro

PA Sanyo Electric Co., Ltd., Japan

SO U.S. Pat. Appl. Publ., 11 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
ΡI	US 20050053843	A1	20050310	US 2004-936658	20040909		
	US 7582388	B2	20090901				
	JP 2005085608	А	20050331	JP 2003-316641	20030909		

10 / 588481 45

TW 238554 В 20050821 TW 2004-110633 20040416 CN 1595711 Α 20050316 CN 2004-10048573 20040608 CN 100466362 С 20090304 PRAI JP 2003-316641 20030909 Α

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

The invention concerns a nonaq. solvent secondary battery with a high initial charge/discharge capacity and excellent charge/discharge characteristics at high temperature, having a pos. electrode containing a pos. electrode active material capable of reversibly occluding and releasing lithium, a neg. electrode containing a neg. electrode active material capable of reversibly occluding and releasing lithium and a non-aqueous solvent electrolyte containing (1) acrylic acid anhydride, and (2) an aromatic compound having at least one electron donating group, wherein the electron donating group comprises at least one member selected from any of the alkyl group, alkoxy group, alkylamino group and amine, provided that each of the alkyl group, alkoxy group and alkylamino group includes a halogen substituted group and a cycloaliph. group.

INCL 429329000; 429303000

IPCI H01M0006-16 [I,A]; H01M0006-14 [I,A]

IPCR H01M0004-02 [I,A]; H01M0004-58 [I,A]; H01M0010-00 [I,A]; H01M0010-40 [I,A]; H01M0006-16 [I,A]; H01M0006-14 [I,A]

429/329.000; 429/303.000; 429/301.000; 429/324.000; 429/326.000; NCL 429/327.000

52-2 (Electrochemical, Radiational, and Thermal Energy Technology) CC

Battery electrolytes ΤT Secondary batteries

(nonaq. solvent secondary battery)

98-06-6, tert-Butylbenzene 108-88-3, Toluene, uses ΤТ

RL: DEV (Device component use); USES (Uses)

(nonaq. solvent secondary battery)

RN 98-06-6 HCAPLUS

CN Benzene, (1,1-dimethylethyl) - (CA INDEX NAME)

108-88-3 HCAPLUS RN

Benzene, methyl- (CA INDEX NAME) CN

OSC.G THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS) 1

RE.CNT 16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

L76 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2011 ACS on STN

2003:982461 HCAPLUS Full-text AN

DN

ΤI Redox mediator as an overcharge protection agent for 4 V class lithium-ion

rechargeable cells

- AU Shima, Kunihisa; Ue, Makoto; Yamaki, Jun-ichi
- CS Mitsubishi Chemical Group Science and Technology Research Center, Inc., Ami, Inashiki, Ibaraki, 300-0332, Japan
- SO Electrochemistry (Tokyo, Japan) (2003), 71(12), 1231-1235 CODEN: EECTFA; ISSN: 1344-3542
- PB Electrochemical Society of Japan
- DT Journal
- LA English
- AB It it well-known that an aromatic compound such as biphenyl is added into electrolyte solns. to prevent lithium-ion batteries from overcharging, generating hydrogen gas under overcharging conditions. We have examined the oxidative behaviors of one-benzene-ring aromatic compds. including benzene, toluene, ethylbenzene, cumene, tert-butylbenzene, and cyclohexylbenzene under the overcharging conditions. We have found that aromatic compds. without hydrogen atom at the benzylic position such as tert-butylbenzene generated mainly carbon dioxide, whereas those with hydrogen atom at the benzylic position showed polymerization accompanied by hydrogen evolution. It was considered that tert-butylbenzene works as a redox mediator, which mediates the oxidative decomposition of carbonate solvents evolving the carbon dioxide.
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- IT Secondary batteries

(aromatic compound redox mediators as overcharge protection agent for 4 V class lithium-ion batteries)

- IT 98-06-6, tert-Butylbenzene 108-88-3, Toluene, uses
 - RL: MOA (Modifier or additive use); USES (Uses)

(aromatic compound redox mediators as overcharge protection agent for $4\ \mathrm{V}$ class lithium-ion batteries)

- RN 98-06-6 HCAPLUS
- CN Benzene, (1,1-dimethylethyl) (CA INDEX NAME)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

OSC.G 8 THERE ARE 8 CAPLUS RECORDS THAT CITE THIS RECORD (8 CITINGS)

RE.CNT 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> => d 183 bib abs hitind hitstr

L83 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 1963:468800 HCAPLUS Full-text

DN 59:68800

OREF 59:12665c-d

TI An electrochemical method of reducing aromatic compounds selectively to dihydro or tetrahydro products

AU Benkeser, Robert A.; Kaiser, Edwin M.

CS Purdue Univ., West Lafayette, IN

SO Journal of the American Chemical Society (1963), 85(18), 2858-9 CODEN: JACSAT; ISSN: 0002-7863

DT Journal

LA Unavailable

OS CASREACT 59:68800

AB In a simple electrolytic cell with an asbestos divider separating anode and cathode, aromatic hydrocarbons were reduced to cycloolefins. Similarly, but without the divider, 1,4-dihydro compds. were obtained. With the cell divided, anhydrous MeNH2 and LiCl were placed in each compartment, and the hydrocarbon in the cathode. Thus, 12 g. cumene, 17 g. LiCl, and 450 ml. MeNH2 (in each compartment) treated with 50,000 coulombs gave 75% product, consisting of 89% isopropylcyclohexenes (I) and 11% cumene, while without the divider, the same quantities gave 82% product, consisting of 78% 2,5-dihydroisopropylbenzene, 6% I, 13% cumene, and 3% unidentified diene. Similar results were obtained with C6H6, PhMe, PhEt, and PhCMe3. It was postulated that the actual reducing agent was Li generated at the cathode.

CC 35 (Noncondensed Aromatic Compounds)

IT 98-06-6, Benzene, tert-butyl-

(reduction of, electrochem)

RN 98-06-6 HCAPLUS

CN Benzene, (1,1-dimethylethyl) - (CA INDEX NAME)

IT 108-88-3, Toluene

(reduction of, electrochem.)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

OSC.G 8 THERE ARE 8 CAPLUS RECORDS THAT CITE THIS RECORD (8 CITINGS)

=> d bib abs hitind hitstr tot 178

COMBINATION 4

L78 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2011 ACS on STN

AN 2005:823988 HCAPLUS Full-text

DN 143:232676

TI Nonaqueous electrolyte for lithium secondary battery

IN Ahn, Soon-Ho; Lee, Jae-Hyun; Cho, Jeong-Ju; Lee, Ho-Chun; Son, Mi-Young; Kim, Hyeong-Jin; Lee, Han-Ho

PA LG Chem, Ltd., S. Korea

SO PCT Int. Appl., 33 pp. CODEN: PIXXD2 DTPatent English LA FAN.CNT 1 PATENT NO. KIND DATE APPLICATION NO. WO 2005076403 A1 20050818 WO 2004-KR257 PΙ 20040210 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG A1 20061206 EP 2004-709768 20040210 EP 1728291 R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, SI, SK, TR CN 1914761 A 20070214 CN 2004-80041548 20040210 CN 100502132 С 20090617 20070809 JP 2006-553038 JP 2007522632 Τ 20040210 20060301 TW 2004-106934 В TW 250678 20040316 US 20070141475 A1 PRAI WO 2004-KR257 W US 2006-588481 20070621 20060801 20040210 ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT The invention relates to a nonag. electrolyte solution containing new additives and a lithium secondary battery including the same. More particularly, the invention relates to a nonaq. electrolyte solution containing a lithium salt, an electrolyte compound, a first additive compound with an oxidation initiation potential of more than 4.2 V, and a second additive compound with an oxidation initiation potential of more than 4.2 V, which is higher in oxidation initiation potential than the first additive, and deposits oxidative products or form a polymer film, in oxidation, as well as a lithium secondary battery including the same. The present invention can provide a lithium secondary battery excellent in both the battery performance and the battery safety in overcharge by the combined use of the first additive and the second battery as additives to the nonag. electrolyte solution. IPCI H01M0010-40 [ICM, 7] IPCR H01B0001-12 [I,A]; H01M0010-40 [I,A]; H01M0010-42 [I,A] 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) ΙT Secondary batteries (lithium; nonaq. electrolyte for lithium secondary battery) ΙT Battery electrolytes (nonaq. electrolyte for lithium secondary battery) ΙT 108-67-8, Mesitylene, uses 1585-07-5, 1-Bromo-4-ethylbenzene RL: MOA (Modifier or additive use); USES (Uses)

(nonag. electrolyte for lithium secondary battery)

Benzene, 1,3,5-trimethyl- (CA INDEX NAME)

108-67-8 HCAPLUS

RN

CN

RN 1585-07-5 HCAPLUS

CN Benzene, 1-bromo-4-ethyl- (CA INDEX NAME)

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> => d bib abs hitind hitstr tot 180

COMBINATION 5

```
L80 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2011 ACS on STN
```

AN 2005:823988 HCAPLUS Full-text

DN 143:232676

TI Nonaqueous electrolyte for lithium secondary battery

IN Ahn, Soon-Ho; Lee, Jae-Hyun; Cho, Jeong-Ju; Lee, Ho-Chun; Son, Mi-Young; Kim, Hyeong-Jin; Lee, Han-Ho

PA LG Chem, Ltd., S. Korea

SO PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PAT	ENT	KIND DATE				APPLICATION NO.						DATE						
ΡI	WO	VO 2005076403			A1 20050818				WO 2004-KR257					20040210					
		W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KΖ,	LC,	LK,	
			LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NI,	NO,	
			NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ΤJ,	
			TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW		
		RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	
			BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	
			ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	ΙT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
			TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	ΤG
	ΕP	1728	291			A1 20061206		EP 2004-709768					20040210						
		R:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	
			ΙΤ,	LI,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR						
	CN	1914	761			А		2007	0214	CN 2004-80041548						20040210			
	CN	1005	0213	2		С		2009	0617							20040210			
	JΡ	2007	5226	32		Τ		2007	0809		JP 2	006-	5530	38					
	TW	2506	78			В		2006	0301		TW 2004-106934					20040316			
	US	2007	0141	475		A1		2007	0621		US 2	006	5884	81		2	20060801		
PRAI	WO	2004-KR257			W		2004	0210											

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB The invention relates to a nonaq. electrolyte solution containing new additives and a lithium secondary battery including the same. More particularly, the invention relates to a nonaq. electrolyte solution containing a lithium salt, an electrolyte compound, a first additive compound with an oxidation initiation potential of more than 4.2 V, and a second additive compound with an oxidation initiation potential of more than 4.2 V, which is higher in oxidation initiation potential than the first additive,

and deposits oxidative products or form a polymer film, in oxidation, as well as a lithium secondary battery including the same. The present invention can provide a lithium secondary battery excellent in both the battery performance and the battery safety in overcharge by the combined use of the first additive and the second battery as additives to the nonaq. electrolyte solution.

CN

RN 321-60-8 HCAPLUS CN 1,1'-Biphenyl, 2-fluoro- (CA INDEX NAME)

Furan (CA INDEX NAME)

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

```
=> => d his
```

(FILE 'HOME' ENTERED AT 15:54:12 ON 26 JUL 2011)

FILE 'REGISTRY' ENTERED AT 15:55:58 ON 26 JUL 2011 L245 S E1-E45 L3 1 S 92-52-4 L41 S 98-82-8 1 S 100-42-5 L51 S 100-41-4 L6 1 S 108-88-3 L71 S 98-06-6 L8 1 S 108-67-8 L9 L10 1 S 1585-07-5 92 S C8H9BR/MF AND 46.150.18/RID L11

```
L12
             51 S L11 AND ETHYL
L13
              4 S L12 AND ("BENZENE, 1-BROMO-2-ETHYL-" OR "BENZENE, BROMOETHYL-
L14
              4 S L10, L13
L15
              1 S 110-00-9
L16
              1 S 321-60-8
L17
             12 S C12H9F/MF AND 2 46.150.18/RID
L18
              4 S L17 NOT (18F OR D/ELS OR ION)
L19
              4 S L16, L18
     FILE 'HCAPLUS' ENTERED AT 16:04:23 ON 26 JUL 2011
          47725 S L3
L20
          13432 S L4
L21
L22
            807 S L20 AND L21
L23
          83451 S L5
          33237 S L6
L24
L25
           8216 S L23 AND L24
L26
         117775 S L7
L27
           3472 S L8
           1972 S L26 AND L27
L28
L29
          10979 S L9
L30
            728 S L14
L31
             19 S L29 AND L30
L32
          12010 S L15
L33
            532 S L19
              2 S L32 AND L33
L34
                E ELECTROLYTES/CT
          54175 S E3-E11
L35
                E E3+ALL
          86318 S E4 OR E10+OLD, NT OR E12+OLD, NT OR E23+OLD OR E24+OLD
L36
                E E28+ALL
L37
          29467 S E8+OLD
                E E22+ALL
                E E27+ALL
L38
          12953 S E7+OLD
                E E12+ALL
                E E29+ALL
L39
           5601 S E3
L40
         130608 S L35-L39
              6 S L22 AND L40
L41
             10 S L25 AND L40
L42
              5 S L28 AND L40
L43
L44
              1 S L31 AND L40
L45
              1 S L34 AND L40
L46
              6 S L22 AND H01M?/IPC, IC, ICM, ICS, EPC
L47
             12 S L25 AND H01M?/IPC, IC, ICM, ICS, EPC
L48
              5 S L28 AND H01M?/IPC, IC, ICM, ICS, EPC
L49
              1 S L31 AND H01M?/IPC, IC, ICM, ICS, EPC
L50
              1 S L34 AND H01M?/IPC, IC, ICM, ICS, EPC
                E BATTERY/CT
L51
          80230 S E5+OLD, NT OR E7+OLD, NT OR E9+OLD, NT OR E11+OLD, NT
                E E13+ALL
L52
          14755 S E2+OLD, NT OR E3+OLD, NT OR E4+OLD, NT
                E BATTERIES/CT
                E E3+ALL
L53
         200789 S E1 OR E2+OLD, NT OR E3+OLD, NT OR E4+OLD, NT OR E5+OLD, NT
                E E5+ALL
                E E33+ALL
L54
          29467 S E8+OLD
                E E5+ALL
```

L55

196552 S E3+NT

```
L56
       278623 S L51-L55
L57
            6 S L22 AND L56
L58
            19 S L25 AND L56
L59
             6 S L28 AND L56
L60
             1 S L31 AND L56
L61
             1 S L34 AND L56
L62
             9 S L22 AND ?ELECTROLYT? NOT L41, L46, L57
L63
            32 S L25 AND ?ELECTROLYT? NOT L42,L47,L58
            0 S L31 AND ?ELECTROLYT? NOT L44,L49,L60
L64
L65
             0 S L34 AND ?ELECTROLYT? NOT L45,L50,L61
             6 S L41, L46, L57
L66
            19 S L42, L47, L58
L67
L68
            6 S L43, L48, L59
             1 S L44, L49, L60
L69
            1 S L45, L50, L61
L70
L71
            2 S L66 AND (AHN S? OR LEE J? OR CHO J? OR LEE H? OR SON M? OR KI
L72
            6 S L66,L71
L73
            1 S L67 AND (AHN S? OR LEE J? OR CHO J? OR LEE H? OR SON M? OR KI
            19 S L67, L73
L74
L75
             2 S L68 AND (AHN S? OR LEE J? OR CHO J? OR LEE H? OR SON M? OR KI
L76
            6 S L68,L75
            1 S L69 AND (AHN S? OR LEE J? OR CHO J? OR LEE H? OR SON M? OR KI
L77
L78
            1 S L69,L77
            1 S L70 AND (AHN S? OR LEE J? OR CHO J? OR LEE H? OR SON M? OR KI
L79
            1 S L70,L79
L80
            1 S L22 AND (BATTERY OR FUEL CELL OR ELEC? CELL) NOT L72
L81
L82
            20 S L25 AND (BATTERY OR FUEL CELL OR ELEC? CELL) NOT L74
L83
            1 S L28 AND (BATTERY OR FUEL CELL OR ELEC? CELL) NOT L76
L84
            0 S L31 AND (BATTERY OR FUEL CELL OR ELEC? CELL) NOT L78
L85
            0 S L34 AND (BATTERY OR FUEL CELL OR ELEC? CELL) NOT L80
```