

MBA EM DATA SCIENCE & AI

APPLIED STATISTICS

NA ÚLTIMA AULA ...

Na última aula

FIND MBA+

- O que é estatística
- Para que serve a estatística
- Áreas de atuação
- Estatística descritiva

AULA 2 Estatística descritiva Primeiros gráficos

Vamos aquecer os motores?

Vamos nos dividir em grupos?

Exercícios

- Leia a base salario.csv e selecione as variáveis salario e anosexperiencia.
- 2) Calcule todas as medidas de resumo para as variáveis contínuas.
- Repita o cálculo cruzando as variáveis posição e sexo. (separadamente)
- 4) Repita o cálculo cruzando as variáveis posição e sexo. (Em conjunto)
- 5) Dê uma interpretação para os resultados.
 - Posição em do menor para o maior significa o cargo na Companhia
 - Salário em mil/ano
 - Sexo: 1 é Masculino 0 é Feminino

Frequência Absoluta e Relativa

Considere ao variável grau de Instrução dos dados da tabela (Variável qualitativa)

Grau de instrução	Contagem	f_{i}	f_{r_i}	f_{r_i} %
Fundamental	IN MI	12	0,3333	33,3%
Médio		18	0,5000	50 %
Superior	MI	6	0,1667	16.7%
total		n=36	1,0000	100%

 f_i :Frequência absoluta da categoria i (número de indivíduos que pertencem à categoria i

$$f_{r_i} = \frac{f_i}{n}$$
: Frequência relativa da categoria i

 $f_{r_i}\%=f_{r_i}*100\%$: Frequência relativa percentual da categoria i

Distribuição de Frequência

O número de vezes que ocorreram valores em cada classe ou valores chama-se frequência absoluta. O conjunto das ocorrências, com correspondentes frequências absolutas (FA) e relativas (FR), define a distribuição de frequências da variável. Conhecer o comportamento da variável.

Distribuição etária dos trabalhadores da Empresa XXX, 01/05/2019

Faixa etária	Frequency	Dorsont	Cumulative	Cumulative
		Percent	Frequency	Percent
00 - 17	19052	33,8	19052	33,8
18 - 29	16143	28,6	35195	62,4
30 - 39	13710	24,3	48905	86,7
40 - 49	5773	10,2	54678	96,9
50 - 59	1559	2,8	56237	99,7
60 - 69	174	0,3	56411	100,0
Acima 69	13	0,0	56424	100,0
Total	56424	100,0		

Exemplo no Python

Aula02_8DTSR.ipynb

Exercícios

- 1) Leia a base basefibrose.csv
- 2) Calcule a distribuição absoluta e relativa de todas as variáveis.
- 3) Dê uma interpretação para os resultados.

Medidas de Dispersão

Medidas de Dispersão: variância e desvio padrão Exemplo C

X	Média	(X-Média)	(X-Média) ²
1	4	-3	9
1	4	-3	9
3	4	-1	1
3	4	-1	1
5	4	1	1
5	4	1	1
7	4	3	9
7	4	3	9
Soma	-	0	40

Variância:

$$\sigma^2 = \frac{40}{8} = 5$$

Desvio padrão:

$$\sigma = \sqrt{\sigma^2} = \sqrt{5} = 2.24$$

Ш

Plots

Análises Gráficas com o Python

Por onde começar

Você já conhece minimamente seus dados?

• Quais perguntas quer responder?

Pacotes de plotagens mais conhecidos

Matplotlib

- Descrição: Um dos pacotes de visualização mais utilizados em Python, conhecido por sua flexibilidade e capacidade de criar uma ampla variedade de gráficos, desde gráficos simples até figuras complexas.
- Uso Comum: Gráficos de linha, barras, histogramas, gráficos de dispersão, etc.

Seaborn

- Descrição: Construído sobre o Matplotlib, o Seaborn oferece uma interface mais amigável e ferramentas para criar gráficos estatísticos mais atraentes e informativos.
- Uso Comum: Mapas de calor, gráficos de violino, gráficos de distribuição, etc.

Plotly

- Descrição: Uma biblioteca de gráficos interativos que pode ser usada em notebooks Jupyter e também em aplicações web. Oferece gráficos em 2D e 3D.
- Uso Comum: Gráficos interativos, gráficos de linhas, gráficos de dispersão 3D, mapas, etc.

HTTPS://SEABORN.PYDATA.ORG/

import seaborn as sns

Preparando o terreno...

```
#carregando a base
imdb <- readr::read_rds("imdb.rds")</pre>
#chamando o ggplot
ggplot(data = imdb)
#Com o pipe
imdb %>% ggplot()
```

Histograma

ax = sns.histplot(x = 'salario', data = df, bins = 10) ₹ Count

salario

Box Plot

Exercícios

- 1) Leia a base basefibrose.csv
- 2) Calcule as medidas de resumo para as variáveis contínuas
- 3) Calcule a distribuição absoluta e relativa de todas as variáveis categoricas.
- 4) Faça os gráficos de histograma por Grau de Fibrose.

O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

OBRIGADO

profleandro.ferreira@fiap.com.br

