9.0 Some Fundamental Problem-solving Approaches

References: 1. 4.3.1, 4.3.2, 4.4.2 of Huang, or 9.1-9.3 of Jelinek

- 2. 6.4.3 of Rabiner and Juang
- 3. "The Expectation-Maximization Algorithm", IEEE Signal Processing Magazine, Nov 1996
- 4. "Minimum Classification Error Rate Methods for Speech Recognition", IEEE Trans. Speech and Audio Processing, May 1997

EM (Expectation and Maximization) Algorithm

Goal

estimating the parameters for some probabilistic models based on some criteria

- Parameter Estimation Principles given some observations $X=[x_1, x_2, \ldots, x_N]$:
 - Maximum Likelihood (ML) Principle find the model parameter set θ such that the likelihood function is maximized, $P(X | \theta) = \max$.
 - For example, if $\theta = \{\mu, \Sigma\}$ is the parameters of a normal distribution, and **X** is i.i.d, then the ML estimate of $\theta = \{\mu, \Sigma\}$ is

$$\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
, $\Sigma_{ML} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{ML}) (x_i - \mu_{ML})^t$

- the Maximum A Posteriori (MAP) Principle
 - Find the model parameter θ so that the A Posterior probability is maximized i.e. $P(\theta | X) = P(X | \theta) P(\theta) / P(X) = \max$

$$\Rightarrow$$
 P($X \mid \theta$) P(θ) = max

EM (Expectation and Maximization) Algorithm

• Why EM?

- In some cases the evaluation of the objective function (e.g. likelihood function) depends on some intermediate variables (latent data) which are not observable (e.g. the state sequence for HMM parameter training)
- direct estimation of the desired parameters without such latent data is impossible or difficult e.g. almost impossible to estimate $\{A,B,\pi\}$ for HMM without considerations on the state sequence

• Iteractive Procedure with Two Steps in Each Iteration:

- E (Expectation): expectation with respect to the possible distribution (values and probabilities) of the latent data based on the current estimates of the desired parameters conditioned on the given observations
- M (Maximization): generating a new set of estimates of the desired parameters by maximizing the objective function (e.g. according to ML or MAP)
- the objective function increased after each iteration, eventually converged

EM Algorithm: An example

Parameter to be estimated : $\lambda = \{P(A), P(B), P(R|A), P(G|A), P(R|B), P(G|B)\}$

• **First, randomly assigned** $\lambda^{(0)} = \{P^{(0)}(A), P^{(0)}(B), P^{(0)}(R|A), P^{(0)}(G|A), P^{(0)}(R|B), P^{(0)}(G|B)\}$ for example :

 $\{P^{(0)}(A) = 0.4, P^{(0)}(B) = 0.6, P^{(0)}(R|A) = 0.5, P^{(0)}(G|A) = 0.5, P^{(0)}(R|B) = 0.5, P^{(0)}(G|B) = 0.5\}$

• Expectation Step: find the expectation of logP(O| λ) 8 possible state sequences q_i:{AAA},{BBB},{AAB},{BBA},{ABA},{BAB},{BAB},{ABB},{BAB},{ABB},

$$E_{\mathbf{q}}\left(\log P(O|\lambda)\right) = \sum_{i=1}^{8} \log P(\mathbf{O}, \mathbf{q}_{i}|\lambda) P(\mathbf{q}_{i}|\mathbf{O}, \lambda^{(0)}) = \sum_{i=1}^{8} \log P(\mathbf{O}, \mathbf{q}_{i}|\lambda) \frac{P(\mathbf{O}, \mathbf{q}_{i}|\lambda^{(0)})}{P(\mathbf{O}|\lambda^{(0)})} = \frac{1}{P(\mathbf{O}|\lambda^{(0)})} \sum_{i=1}^{8} \log P(\mathbf{O}, \mathbf{q}_{i}|\lambda) P(\mathbf{O}, \mathbf{q}_{i}|\lambda^{(0)})$$

For example, when $q_i = \{AAB\}$

$$P(\mathbf{O} = RGG, \mathbf{q}_{i} = AAB | \lambda^{(0)}) = P(\mathbf{O} = RGG | \mathbf{q}_{i} = AAB, \lambda^{(0)}) P(\mathbf{q}_{i} = AAB | \lambda^{(0)})$$

$$= [P^{(0)}(R|A)P^{(0)}(G|A)P^{(0)}(G|B)][P^{(0)}(A)P^{(0)}(A)P^{(0)}(B)] = 0.5 * 0.5 * 0.5 * 0.4 * 0.4 * 0.6 \text{ (known values)}$$

$$\log P(\mathbf{O} = RGG, \mathbf{q}_{i} = AAB | \lambda) = \log[P(R|A)P(G|A)P(G|B)][P(A)P(A)P(B)] \text{ (with unknown parameters)}$$

- Maximization Step : find λ (1) to maximize the expectation function $E_q(logP(O|\lambda))$
- Iterations : $\lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \lambda^{(2)} \rightarrow ...$

EM Algorithm

- In Each Iteration (assuming $logP(x | \theta)$ is the objective function)
 - E step: expressing the log-likelihood $logP(x|\theta)$ in terms of the distribution of the latent data conditioned on $[x, \theta^{(k)}]$
 - M step: find a way to maximized the above function, such that the above function increases monotonically, i.e., $\log P(x|\theta^{(k+1)}) \ge \log P(x|\theta^{(k)})$
- The Conditions for the Iterations to Converge
 - x: observed (incomplete) data, z: latent data, $\{x, z\}$: complete data $p(x, z|\theta) = p(z|x, \theta)p(x|\theta)$ $\Rightarrow \log p(x|\theta) = \log p(x, z|\theta) - \log p(z|x, \theta)$ assuming z is generated based on $p(z|x, \theta^{[k]})$, $E_z[\log p(x|\theta)] = E_z[\log p(x, z|\theta)] - E_z[\log p(z|x, \theta)]$ $= \int \log p(x, z|\theta) p(z|x, \theta^{[k]}) dz - \int \log p(z|x, \theta) p(z|x, \theta^{[k]}) dz$ $= Q(\theta, \theta^{[k]}) - H(\theta, \theta^{[k]})$

EM Algorithm

For the EM Iterations to Converge:

$$E_{z}[\log p(x|\theta)] = E_{z}[\log p(x,z|\theta)] - E_{z}[\log p(z|x,\theta)]$$

$$= \int \log p(x,z|\theta) p(z|x,\theta^{[k]}) dz - \int \log p(z|x,\theta) p(z|x,\theta^{[k]}) dz$$

$$= Q(\theta,\theta^{[k]}) - H(\theta,\theta^{[k]})$$

- to make sure $\log P(x|\theta^{[k+1]}) \ge \log P(x|\theta^{[k]})$

$$\Rightarrow Q\left(\theta^{[k+1]},\theta^{[k]}\right) - Q\left(\theta^{[k]},\theta^{[k]}\right) - H\left(\theta^{[k+1]},\theta^{[k]}\right) + H\left(\theta^{[k]},\theta^{[k]}\right) \geq 0$$

− $H(\theta^{[k+1]}, \theta^{[k]}) \le H(\theta^{[k]}, \theta^{[k]})$ due to Jenson's Inequality

$$\sum_{i} p_{i} \log p_{i} \ge \sum_{i} p_{i} \log q_{i}, or \sum_{i} p_{i} \log p_{i} - \sum_{i} p_{i} \log q_{i} \ge 0$$

$$= \text{when } p_{i} = q_{i}$$

– the only requirement for convergence is to have $\theta^{[k+1]}$ such that

$$Q(\theta^{[k+1]}, \theta^{[k]}) - Q(\theta^{[k]}, \theta^{[k]}) \ge 0$$

– $Q(\theta, \theta^{[k]})$: auxiliary function, or Q-function, the expectation of the objective function in terms of the distribution of the latent data conditioned on $(x, \theta^{[k]})$

Example: Use of EM Algorithm in Solving Problem 3 of HMM

- Observed data : observations O, latent data : state sequence q
- The probability of the complete data is

$$P(\mathbf{O}, \mathbf{q} | \lambda) = P(\mathbf{O} | \mathbf{q}, \lambda) P(\mathbf{q} | \lambda)$$

• E-Step:

$$Q(\lambda, \lambda^{[k]}) = E[\log P(O, \mathbf{q} | \lambda) | O, \lambda^{[k]}] = \sum_{\mathbf{q}} P(\mathbf{q} | O, \lambda^{[k]}) \log[P(O, \mathbf{q} | \lambda)]$$

- $\lambda^{[k]}$: k-th estimate of λ (known), λ : unknown parameter to be estimated
- M-Step:
 - Find $\lambda^{[k+1]}$ such that $\lambda^{[k+1]}$ =arg max $\lambda^{[k]}$ $Q(\lambda, \lambda^{[k]})$
- Given the Various Constraints (e.g. $\sum_{i} \pi_{i} = 1, \sum_{j} a_{ij} = 1$, etc.), It can be shown
 - the above maximization leads to the formulas obtained previously
 - $P(O | \lambda^{[k+1]}) \ge P(O | \lambda^{[k]})$

Minimum-Classification-Error (MCE) Training

- General Objective: find an optimal set of parameters (e.g. for recognition models) to *minimize the expected error of classification*
 - the statistics of test data may be quite different from that of the training data
 - training data is never enough
- Assume the recognizer is operated with the following classification principles :

```
\begin{split} \{C_i, i=1,2,...M\}, & M \ classes \\ \lambda^{(i)} \colon statistical \ model \ for \ C_i \\ \Lambda = & \{\lambda^{(i)}\}_{i=1,...,M} \ , \ the \ set \ of \ all \ models \ for \ all \ classes \\ X \colon observations \\ g_i(X,\Lambda) \colon class \ conditioned \ likelihood \ function, \ for \ example, \\ g_i(X,\Lambda) = & P \ (X|\lambda^{(i)}) \end{split}
```

- $C(X) = C_i$ if $g_i(X, \Lambda) = \max_j g_j(X, \Lambda)$: classification principles an error happens when $P(X|\lambda^{(i)}) = \max$ but $X \notin C_i$
- Conventional Training Criterion:

find $\lambda^{(i)}$ such that $P(X|\lambda^{(i)})$ is maximum (Maximum Likelihood) if $X \in C_i$

- This does not always lead to minimum classification error, since it doesn't consider the mutual relationship among competing classes
- The competing classes may give higher likelihood function for the test data

Minimum-Classification-Error (MCE) Training

One form of the misclassification measure

$$d_{i}(X,\Lambda) = -g_{i}(X,\Lambda) + \left[\frac{1}{M-1} \sum_{j \neq i} g_{j}(X,\Lambda)^{\alpha}\right]^{\frac{1}{\alpha}} \quad X \in C_{i}$$

- Comparison between the likelihood functions for the correct class and the competing classes

 $\alpha = 1$ all other classes included and averaged with equal weights $\alpha \rightarrow \infty$ only the most competing one considered

 $d_i(X) \ge 0$ implies a classification error

$d_i(X) < 0$ implies a correct classification • **A continuous loss function is defined**

$$l_{i}(X,\Lambda) = l(d_{i}(X,\Lambda)), X \in C_{i}$$

$$l(d) = \frac{1}{1 + \exp[-\gamma(d-\theta)]}, sigmoid function$$

- $l(d) \rightarrow 0$ when $d \rightarrow -\infty$
 - $l(d) \rightarrow 1$ when $d \rightarrow \infty$

 $\dot{\theta} = 0$ switching from 0 to 1 near θ

 γ : determining the slope at switching point

• Overall Classification Performance Measure :

$$L(\Lambda) = E_X [L(X, \Lambda)] = \sum_{X} [L(X, \Lambda)] = \sum_{X} \sum_{i=1}^{M} l_i(X, \Lambda) \delta(X \in C_i)$$
$$\delta(X \in C_i) = \begin{bmatrix} 1 & \text{if } X \in C_i \\ 0 & \text{otherwise} \end{bmatrix}$$

Minimum-Classification-Error (MCE) Training

• Find \hat{A} such that

$$\hat{\Lambda} = \arg\min_{\Lambda} L(\Lambda) = \arg\min_{\Lambda} E_X [L(X, \Lambda)]$$

- the above objective function in general is difficult to minimize directly
- local minimum can be obtained iteratively using gradient (steepest)
 descent algorithm

$$\Lambda_{t+1} = \Lambda_t - \varepsilon_t \nabla L(\Lambda_t)$$

 ∇ : partial differentiation with respect to all different parameters individually

t: the t-th iteration

 ε : adjustment step size, should be carefully chosen

$$a_{t+1} = a_t - \varepsilon_t \frac{\partial L(\Lambda)}{\partial a}, a: an arbitrary parameter of \Lambda$$

 every training observation may change the parameters of ALL models, not the model for its class only

Using MCE in feature optimization

$$\hat{f} = \arg\min_{f} E_{X} \left[L(f(X), \Lambda^{(f)}) \right]$$

f: a transformation function (with a set of parameters) to obtain better features from the original feature X

when the features changed, the models also changed accordingly

Maximum Mutual Information Estimation

Mutual Information

→ Channel ——— $\begin{array}{ll} m_k \hbox{: k-th symbol} & \hat{m}_k \hbox{: decided k-th symbol} \\ \text{ sent at transmitter} & \text{ at receiver} \\ m_k, \hat{m}_k \subseteq \{x_1, x_2, x_3, ... x_M\}, & M \text{ possibilities} \end{array}$

- knowledge at D about the event $m_k = x_i$

before reception/decision: $p(x_i)$

after reception/decision : $p(x_i|x_j)$, when $\hat{m}_k = x_j$ — Quantity of Information Changed by the reception/decision of $\hat{m}_k = x_j$ about the

event $\mathbf{m}_{\mathbf{k}} = \mathbf{x}_{\mathbf{i}}$ $I(x_i; x_j) = \log \left[\frac{p(x_i | x_j)}{p(x_i)} \right] = \log \left[\frac{p(x_i, x_j)}{p(x_i) p(x_j)} \right] = I(x_j; x_i) = \text{mutual information}$

• Example :Binary Symmetric Channel
$$p(1) = \frac{1}{2}, \quad p(1) = \frac{1}{2}, \quad p(1) = p(0) = 1 - p, \quad I(1;1) = I(0;0) = \log_2[2(1-p)]$$

$$p(0) = \frac{1}{2}, \quad p(1) = p(0) = p(0) = p, \quad I(1;0) = I(0;1) = \log_2[2p]$$

$$p(0) = \frac{1}{2}, \quad 0$$

- $I(1;1) = log_2[2(1-p)],$ p = 0 \rightarrow exact transmission, I(1;1) = 1 bit (of information)

0(of information)

 $p = \frac{1}{2} \rightarrow \text{completely confusing channel, I (1; 1)} = 0 \text{ bit}$ (of information)

I(1;0)=log₂[2p], $p=\frac{1}{2} \rightarrow \text{completely confusing channel}, I(1;0)=0 \text{ bit}$ (of information)

> 0(of information)

 $p = 0 \rightarrow \text{exact transmission}, \qquad I(1; 0) = -\infty$ (impossible)

Maximum Mutual Information Estimation

Classification Problem

• MAP Principle

$$p(C_{j}|X) = \frac{p(X|C_{j})p(C_{j})}{p(X)} \Rightarrow p(X|C_{j})p(C_{j}) = \max$$

$$- \text{ if } p(C_{j}) = \frac{1}{M}, \text{ all } j$$

$$p(C_{j}|X) = \frac{p(X|C_{j})}{p(X)} = \frac{p(X,C_{j})}{p(X)p(C_{j})} = e^{I(X,C_{j})} = \max, \text{ max mutual information}$$

- When All Classes are Equally Probable, MAP Principle Gives Maximum Mutual Information
 - maximum mutual information considers differently from MAP if $p(C_j)$ are not equal

Maximum Mutual Information Estimation

• A Different View (of MAP)

$$p(C_{j}|X) = \frac{p(X|C_{j})p(C_{j})}{p(X)} = \frac{p(X|C_{j})p(C_{j})}{\sum_{k} p(X|C_{k})p(C_{k})}, X \in C_{j}$$

$$= \frac{p(X|C_{j})p(C_{j})}{p(X|C_{j})p(C_{j}) + \sum_{k \neq j} p(X|C_{k})p(C_{k})} = \frac{1}{1 + \frac{\sum_{k \neq j} p(X|C_{k})p(C_{k})}{p(X|C_{j})p(C_{j})}} = \max_{\substack{\text{correct model competing model}}$$

• Discriminative Training

$$F(\Lambda) = \frac{p(X \middle| \lambda^{(j)}) p(C_j)}{\sum_{k \neq j} p(X \middle| \lambda^{(k)}) p(C_k)} = \max, \qquad \Lambda = \left\{ \lambda^{(1)}, \lambda^{(2)}, \dots \lambda^{(M)} \right\}$$

set of models for all classes

- $\Lambda_{t+1} = \Lambda_t \varepsilon_t \nabla F(\Lambda_t)$: gradient descent algorithm
- discriminating capabilities among competing models considered
- optimization with respect to the probability scores instead of error rates
- P(C_k) included in optimization
- number of completing models considered may be empirically chosen practically