

WP 3.2 Application

Alessandro Maccarini

Assistant Professor Aalborg University - Department of the Built Environment amac@build.aau.dk

Goals of WP3.2

Goal 1: To demonstrate capabilities enabled by the use of Modelica for the design and operation of building and district energy systems

Goal 2: To develop user-friendly tools and interfaces to facilitate the use of Modelica

Outcome

Outcome 1: Collection of application case studies

Outcome 2: Python-based tool for automatic generation of Modelica models from 3D urban building models

Outcome 1: Collection of application case studies

Collection of case studies

Participants fill in a "case study template" available at https://github.com/ibpsa/project1/tree/master/wp_3_2_app

Template for description of application case studies – IBPSA Project 1 WP3.2
1. Title and authors
-Provide a title for the application case study
-Name the authors that are responsible for the case study
Name/Institution/Country
2. General Description:
-Formulate a general outline of the case study by including: objective, description of HVAC/district systen and main results (if already available)

3. Diagram and picture
-Include at least two pictures for your case study:
One diagram showing the layout of the HVAC/district system One picture of Modelica model
4. Thermal zone modeling
-How many buildings have you modelled?
-How many thermal zones per building have you modelled? How many in total?
-What's the complexity of the thermal zone model (Low order / High order)?
-{only for district simulations} Are network and buildings coupled or decoupled? □ Coupled □ Decoupled
5. Modelica libraries and tools:
-Which Modelica library have you used? (Keep in mind that IBPSA library is for developers, not for users) AixLib Buildings Buildingsystems IDEAS

List of case studies

				Status	
	Title	Institute	Scale	Template received	Case study uploaded to website
1	MPC-oriented models of a small district with geothermal heat pumps	University of Southern Denmark	District	✓	✓
2	Single-zone model of a university building with hydronic heating and CO2-driven ventilation	University of Southern Denmark	Building	✓	✓
3	Dimensioning of IBPSA plug flow pipes for Vejle Nord LiveLab using Dymola FMI and Python	University of Southern Denmark	District	✓	✓
4	Multi-Infrastructure Modeling of Smart and Connected Communities	University of Colorado Boulder	District	✓	✓
5	Equation-Based Object-Oriented Modeling and Simulation for Data Center Cooling	University of Colorado Boulder	Building	✓	✓
6	Comprehensive Pliant Permissive Priority Optimization (C3PO)	University of Colorado Boulder	District	✓	✓
7	Modeling Air-to-Air and Finned-Tube Heat Exchangers	University of Colorado Boulder	Component	✓	✓
8	Feasibility study of DHC system in Køge (Denmark)	Aalborg University	District	✓	✓
9	Erdeis II – Local DHC provided with a LTN for residential buildings	RWTH Aachen	District	✓	✓
10	Quantifying uncertainty propagation for the district energy demand	KU Leuven	District	✓	✓
11	A zero-fossil-fuel energy concept in the historic city center of Bruges	KU Leuven	District	✓	✓
12	Quayside energy system analysis	LBNL	District	✓	✓

Uploading case studies on IBPSA Project 1 website

Outcome 2: Python-based tool for automatic generation of Modelica models from 3D urban building models

Development of BAGEL (Blender-based Automated Generator of Energy Loads)

- Graphically create 3D urban building forms
- Assign building properties (e.g. U-values)
- Export Modelica models for calculation of heating and cooling loads

What is Blender? 3D computer graphics modeling software Why Blender? Free and open source / Blender Python API

BAGEL (Blender-based Automatic Generator of Energy Loads)

Modelica conference 2021

Towards an automated generator of urban building energy loads from 3D building models

Alessandro Maccarini¹ Michael Mans² Christian G. Sørensen¹ Alireza Afshari¹

 $^1 \mbox{Department}$ of the Built Environment, Aalborg University, Denmark, amac@build.aau.dk $^2 \mbox{Institute}$ for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany

BAGEL – from toolchain to stand-alone tool

Run simulation

Modelica conference 2021

BAGEL – from toolchain to stand-alone tool

.exe file

Towards an automated generator of urban building energy loads from 3D building models

Alessandro Maccarini¹ Michael Mans² Christian G. Sørensen¹ Alireza Afshari¹ ¹Department of the Built Environment, Aalborg University, Denmark, amac@build.aau.dk ²Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany

Modelica conference 2021

Towards an automated generator of urban building energy loads from 3D building models

Alessandro Maccarini¹ Michael Mans² Christian G. Sørensen¹ Alireza Afshari¹

¹Department of the Built Environment, Aalborg University, Denmark, amac@build.aau.dk ²Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany

BAGEL – from toolchain to stand-alone tool

Breakout session

	Content - title	Presenter/Leader	time	comments
Session 1 (Day 1)	_ -		50 min	
WP3.1 DESTEST update	Current status	Dirk	5 min	Short update
	Update on CE buildings with focus on office building	Arash	20 min	
	Update on CE thermal neworks	Hicham	20 min	
	next steps + commitments	Dirk / Hicham	10 min	
Session 2 (Day 1)			55 min	
WP3.1 DESTEST Python Tool	Update on comparison tool	Hicham	25 min	Presentation of tool + discussion on KPI calculation
WP3.2 Application	Case study I - Demonstration project 'De Schipjes': a zero-fossil-fuel energy concept in the historic city center of Bruges	Jelger	15 min (10+5)	Alessandro moderates the session about case studies
	Case study II - Sidewalk Lab - Quayside Energy Systems Analysis	Jianjun	15 min (10+5)	
Session 3 (Day 2)	Joint session with WP3.1		45 min	
	Status of DESTEST emulator	Dirk		
	from BOPTEST to DOPTEST?			interest from the scientific community
	to be included in follow-up project?			