Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$. Soit \mathcal{C} sa représentation graphique.

- 1. Écrire l'équation réduite de la tangente à C au point d'abscisse a (avec a<0).
- 2. Montrer que la droite $d_1: y = \frac{1}{10}x + \frac{5}{2}$ est tangente à $\mathcal C$ au point d'abscisse 25.
- 3. Montrer que la droite $d_2: y = \frac{1}{2}x + 1$ n'est pas la tangente au point d'abscisse 1.
- 4. Trouver l'équation de la tangente d_3 à $\mathcal C$ au point d'abscisse 3.
- **5.** Montrer que La droite $d_4: y = -x + 5$ n'est pas une tangente à \mathcal{C} ?
- **6.** Trouver en quel point la droite $d_5: y = \frac{1}{2\sqrt{2}}(x-2) + \sqrt{2}$ est tangente à C.
- 7. Trouver en quel point la droite $d_6: y = \frac{1}{2\sqrt{5}}x + \frac{\sqrt{5}}{2}$ est tangente à C.
- **8.** Montrer que la droite $d_7: y = \frac{1}{2\sqrt{3}}x + \frac{\sqrt{3}}{2}$ est une tangente à \mathcal{C} .