

Olimpiada Națională de Matematică Etapa Finală, Târgu Mureș și Sovata, 20 aprilie 2016 CLASA a 12-a

Soluții și barem orientativ

Problema 1. Arătați că pentru orice $n \in \mathbb{N}^*$ există un unic $c_n \in (0,1)$, astfel încât

$$\int_0^1 \frac{1}{1+x^n} \, \mathrm{d}x = \frac{1}{1+(c_n)^n}$$

şi calculaţi $\lim_{n\to\infty} n(c_n)^n$.

Radu Pop

Problema 2. Fie A un inel şi fie D mulţimea elementelor sale neinversabile. Stiind că $a^2 = 0$ oricare ar fi $a \in D$, să se arate că:

- (a) axa = 0 oricare ar fi $a \in D$ si $x \in A$;
- (b) dacă D este mulțime finită cu cel puțin două elemente, atunci există $a \in D, a \neq 0$, astfel încât ab = ba = 0, oricare ar fi $b \in D$.

Ioan Băetu

Problema 3. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție crescătoare și $a \in \mathbb{R}$. Să se arate că f este continuă în a dacă și numai dacă există un șir $(a_n)_{n\geq 1}$, cu $a_n > 0$ pentru orice $n \in \mathbb{N}^*$, astfel încât

$$\int_{a}^{a+a_n} f(x)dx + \int_{a}^{a-a_n} f(x)dx \le \frac{a_n}{n},$$

oricare ar fi $n \in \mathbb{N}^*$.

Dan Marinescu

Soluție. Fie $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \int_a^x f(t)dt$. Cum f este continuă în a, atunci F este derivabilă în a și F'(a) = f(a). Rezultă că pentru orice $n \in \mathbb{N}^*$, există $\delta_n > 0$ astfel încât $|F(x)/(x-a) - f(a)| \le 1/(2n)$, oricare ar fi $x \in \mathbb{R}$ cu $|x-a| < \delta_n$. Fie $a_n = \delta_n/2$, $n \ge 1$.

Reciproc, deoarece f este crescătoare, rezultă că $g: \mathbb{R} \setminus \{a\} \to \mathbb{R}, \ g(x) = F(x)/(x-a)$, este crescătoare pe $\mathbb{R} \setminus \{a\}$. Într-adevăr, fie $x,y \in \mathbb{R} \setminus \{a\}$, a < x < y. Cum $(x-a)F(y) = (x-a)\int_a^x f(t)dt + (x-a)\int_x^y f(t)dt \ge (x-a)\int_a^x f(t)dt + (x-a)(y-x)f(x) \ge (x-a)\int_a^x f(t)dt + (y-x)\int_a^x f(t)dt = (y-a)F(x)$, deducem $g(y) \ge g(x)$. Analog pentru x < y < a și x < a < y.

......1 punct

Fie $x_n \in (0, a_n)$, pentru orice $n \in \mathbb{N}^*$, cu $x_n \to 0$. Din monotonia lui g rezultă că $g(a+x_n)-g(a-x_n) \leq g(a+a_n)-g(a-a_n) \leq \frac{1}{n}, n \in \mathbb{N}^*$. Prin trecere la limită obținem $g(a+0) \leq g(a-0)$. Cum $g(a-0) \leq g(a+0)$ rezultă că $g(a+0) = g(a-0) \in \mathbb{R}$, deci F este derivabilă în a și de aici concluzia.

......3 puncte

Problema 4. Fie K un corp finit cu q elemente, $q \geq 3$. Notăm cu M mulțimea polinoamelor de grad q-2 din K[X] care au toți coeficienții nenuli și distincți doi câte doi. Determinați numărul polinoamelor din M care au q-2 rădăcini distincte în K.

Marian Andronache

Soluție. Cum orice polinom g din M este asociat în divizibilitate cu un unic polinom f din M, astfel încât f(0) = 1, vom determina numărul polinoamelor de forma $f = 1 + a_1X + \cdots + a_{q-2}X^{q-2}$, care au proprietatea din enunț.

Fie f un astfel de polinom, fie $x_1,\,\ldots,\,x_{q-2}$ rădăcinile sale și fie

$$A = \begin{pmatrix} 1 & a_1 & a_2 & \dots & a_{q-3} & a_{q-2} \\ a_{q-2} & 1 & a_1 & \dots & a_{q-4} & a_{q-3} \\ a_{q-3} & a_{q-2} & 1 & \dots & a_{q-5} & a_{q-4} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a_2 & a_3 & a_4 & \dots & 1 & a_1 \\ a_1 & a_2 & a_3 & \dots & a_{q-2} & 1 \end{pmatrix}$$

şi

$$B = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ y & x_1 & x_2 & \dots & x_{q-3} & x_{q-2} \\ y^2 & x_1^2 & x_2^2 & \dots & x_{q-3}^2 & x_{q-2}^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y^{q-3} & x_1^{q-3} & x_2^{q-3} & \dots & x_{q-3}^{q-3} & x_{q-2}^{q-3} \\ y^{q-2} & x_1^{q-2} & x_2^{q-2} & \dots & x_{q-3}^{q-2} & x_{q-2}^{q-2} \end{pmatrix},$$

unde $K^* = \{y, x_1, x_2, \dots, x_{q-2}\}$. Cum $x^{q-1} = 1$, oricare ar fi x în K^* , obţinem

$$AB = \begin{pmatrix} f(y) & 0 & 0 & \dots & 0 & 0 \\ yf(y) & 0 & 0 & \dots & 0 & 0 \\ y^2f(y) & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ y^{q-3}f(y) & 0 & 0 & \dots & 0 & 0 \\ y^{q-2}f(y) & 0 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Deoarece $f(y) \neq 0$ și B este inversabilă în $\mathcal{M}_{q-1}(K)$, rezultă că rangul lui A este 1, deci toți minorii săi de ordin 2 sunt nuli. În particular,

$$\begin{vmatrix} a_1 & a_2 \\ 1 & a_1 \end{vmatrix} = \begin{vmatrix} a_1 & a_3 \\ 1 & a_2 \end{vmatrix} = \cdots = \begin{vmatrix} a_1 & a_{q-2} \\ 1 & a_{q-3} \end{vmatrix} = 0,$$

i.e., $a_2=a_1^2,\,a_3=a_1^3,\,\ldots,\,a_{q-2}=a_1^{q-2},$ deci mulţimea coeficienţilor lui f este $\{1,a_1,a_1^2,\ldots,a_1^{q-2}\}$. Cum această mulţime este egală cu K^* , rezultă că a_1 este un generator al grupului multiplicativ (K^*,\cdot) şi $f=1+a_1X+a_1^2X^2+\cdots+a_1^{q-2}X^{q-2}$ 2 puncte Reciproc, orice polinom $f=1+aX+a^2X^2+\cdots+a^{q-2}X^{q-2}$, unde a este

Reciproc, orice polinom $f=1+aX+a^2X^2+\cdots+a^{q-2}X^{q-2}$, unde a este un generator al grupului multiplicativ (K^*,\cdot) , are proprietatea din enunţ, deoarece $f(a^{-1}X)=1+X+X^2+\cdots+X^{q-2}=\prod_{\alpha\in K^*\setminus\{1\}}(X-\alpha)$, deci f are rădăcinile $a\alpha$, unde $\alpha\in K^*\setminus\{1\}$ 2 puncte