## Формальные языки

## Домашнее задание 4 Дмитрий Орехов

1

Доказать или опровергнуть свойство регулярных выражений:

$$\forall p, q$$
 — регулярные выражения :  $(p \mid q)^* = p^*(qp^*)^*$ 

Выражению  $(p|q)^*$  соответсвует такой автомат:



Кажется, это утверждение достаточно тривиально, чтобы не приводить пошаговое применение алгоритма перевода APB в автомат с удалением  $\epsilon$ -переходов. Логика такая: начальное состояние является принимающим, так как выражение принимает пустую строку (звезда Клини). Любое слово, принимаемое автоматом p или q, приводит так же в принимающее состояние.

Выражение  $p^*(qp^*)^*$  устроено посложнее.

Для начала приведу автомат для подвыражения  $(qp^*)^*$ , а после упрощу в нем  $\epsilon$ -переходы:



После построения  $\epsilon$ -замыкания:



Конкатенируем с автоматом для p:



После построения  $\epsilon$ -замыкания и удаления ставшего недостижимым S:



Состояния S' и B эквивалетны, упрощаем в:



Итак, получили эквивалентные автоматы для левого и правого выражения. А значит, выражения эквивалентны, а утверждение истинно.

2

Доказать или опровергнуть свойство регулярных выражений:

$$\forall p,q$$
 — регулярные выражения :  $(pq)^*p=p(qp)^*$ 

Разберем автомат для левого выражения.

Сначала рассмотрим автомат для его подвыражения  $(pq)^*,$  он будет выглядеть так:



Добавим к данному автомату автомат для p по  $\epsilon$  переходу:



Строя  $\epsilon$ -замыкания для состояния A и отбрасывая недостижимое без  $\epsilon$ -переходов состояние C, получаем:



Данный автомат можно детерминировать в:



Переходы в НКА:

|   | p         | q       |
|---|-----------|---------|
| Α | $\{B,D\}$ | Ø       |
| В | Ø         | $\{A\}$ |
| D | Ø         | Ø       |

Переходы в ДКА:

|    | p  | q |
|----|----|---|
| Α  | BD | Ø |
| BD | Ø  | A |

Рассмотрим теперь правое выражение,  $p(qp)^*$ .

Будем действовать очень похоже, рассмотрим автомат для  $(qp)^*$ :



3

Конкатенируем с автоматом для p:



Автомат после построения  $\epsilon$ -замыкания:



Данный автомат можно минимизировать в, имена состояний обозначают пары эквивалентных состояний в автомате выше:



Теперь, посмотрев на итоговые автоматы для левого и правого выражений, видим, что они идентчины (не учитвая имена состояний и их ориентацию на картинке). Таким образом, два выражения эквивалентны.

3

Доказать или опровергнуть свойство регулярных выражений:

$$\forall p,q$$
 — регулярные выражения :  $(pq)^*=p^*q^*$ 

Данное свойство не выполняется. Рассмотрим некоторое слово w, принимаеое выражением q, но не принимаемое выражением p. Выражение  $p^*q^*$  принимает слово w, так как мы можем полностью пропустить p. Выражение (pq)\* не позволяет пропустить p и не принимает слово w.

Таким образом, два выражение не эквивалентны.

4

Для регулярного выражения:

$$(a \mid b)^{+}(aa \mid bb \mid abab \mid baba)^{*}(a \mid b)^{+}$$

Построить эквивалентные:

- 1. Недетерминированный конечный автомат
- 2. Недетерминированный конечный автомат без  $\varepsilon$ -переходов
- 3. Минимальный полный детерминированный конечный автомат
- а. Нарисую отдельно автомат для выражения  $(a|b)^+,$  далее буду обозначать данный автомат как P:



Автомат для выражения  $(aa|bb|abab|baba)^*$ , далее буду обозначать его как Q:



Конкатенируем PQP. Тут, кажется, все понятно. Две копии автомата P. Конкатенация по  $\epsilon$ -переходам. Убираем терминальность у всех терминальных, кроме второго P.

## b. Уберем $\epsilon$ -переходы:

Сначала отдельно для автомата P:



Для автомата Q:



Конкатенация автоматов по epsilon-переходам:



Убираем  $\epsilon$ -переходы, построением  $\epsilon$ -замыкания:



Также еще можно убрать недостижимое состояние H. Ho, вроде, это уже не является обязательным шагом алгоритма построения  $\epsilon$ -замыкания.