

Intro to Bioinformatics using Tufts HPC

Rebecca Batorsky

Sr Bioinformatics Specialist

Dec 2019

Outline

You'll need:

- Cluster Account please let me know if you don't have one
- Basic knowledge of Linux

Our goals:

- Writing and running bash scripts
- Intro to several bioinformatics tools: BWA, Samtools, Picard, GATK
- Variant Calling and Interpretation

Course format:

- Short explanations followed by hands on exercises
- Working with a partner is encouraged
- Please ask questions!

DNA and RNA in a cell

Two common analysis goals

DNA Sequencing

- Fixed copy of a gene per cell
- Analysis goal:
 Variant calling and interpretation

RNA Sequencing

- Copy of a transcript per cell depends on gene expression
- Analysis goal: Differential expression and interpretation

Today we will cover DNA sequencing

DNA Sequencing

- Fixed copy of a gene per cell
- Analysis goal:
 Variant calling and interpretation

Not today!

- 1) DNA is fragmented
- 2) Adaptors ligated to fragments
- 3) **Cluster** generation
- 4) Extension of fragments with fluorescently tagged nucleotides
- 5) Cyclic readout by imaging the array

- 1) DNA is fragmented
- 2) Adaptors ligated to fragments
- 3) Cluster generation
- 4) Extension of fragments with fluorescently tagged nucleotides
- 5) Cyclic readout by imaging the array

In vitro adaptor ligation

- 1) DNA is fragmented
- 2) Adaptors ligated to fragments
- 3) Cluster generation
- 4) Extension of fragments with fluorescently tagged nucleotides
- 5) Cyclic readout by imaging the array

- DNA is fragmented
- 2) Adaptors ligated to fragments
- 3) Cluster generation
- Extension of fragments with fluorescently tagged nucleotides
- 5) Cyclic readout by imaging the array

In vitro adaptor ligation

Generation of polony array

Cyclic array sequencing (> 10⁶ reads/array)

Illumina Video!

https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html

The result: lots of short reads

How do we make sense of these?

Today: we'll align to a reference sequence and look for variants

Variant Calling

A reference
sequence is a
previously
determined
sequence from your
organism

Reads are aligned to the reference based on sequence similarity

 Variants are positions where your sequences differ from the reference

Variant Calling

Interpretation

Variant Effect Predictor (VEP): what is the predicted consequence of the variant in a gene transcript?

Paired end vs Single end reads

Variant Calling workflow

