$$\langle a \rangle \left\langle \frac{a}{b} \right\rangle \left\langle \frac{a}{b} \right\rangle$$

$$(x+a)^n = \sum_{k=0}^n \int_{t_1}^{t_2} \binom{n}{k} x^k a^{n-k} f(x) \, dx$$

$$\bigcup_{a}^b \bigcap_{c}^d E_{ab} F' \underset{cd}{\Rightarrow} G$$

$$\underbrace{aaaaaaa}_{\text{Siedém}} \underbrace{aaaaa}_{\text{pięć}}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{2}}}} = \frac{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}}{\frac{2}{3}}$$

$$\aleph_0 < 2^{\aleph_0} < 2^{2^{\aleph_0}}$$

$$x^{\alpha}e^{\beta x^{\gamma}}e^{\delta x^{\epsilon}}$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_S \mathbf{\nabla} \times \mathbf{F} \cdot d\mathbf{S} \qquad \oint_C \vec{A} \cdot \vec{dr} = \iint_S (\nabla \times \vec{A}) \, d\vec{S}$$

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \left[\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy \right]^{1/2}$$

$$= \left[\int_0^{2\pi} \int_0^{\infty} e^{-r^2} r \, dr \, d\theta \right]^{1/2}$$

$$= \left[\pi \int_0^{\infty} e^{-u} du \right]^{1/2}$$

 $=\sqrt{\pi}$