Prueba de Normalidad

Linda Estefany Bravo López

22/11/2021

PRUEBAS DE NORMALIDAD
Instalar la paquetería "stats" y "nortest", después activar la libreria
library(stats) library(nortest)
Importación de matriz
1 Lectura de la matriz
BD3<-read.csv("BD3_penguins.csv")
2 Determinar el número de observaciones.
<pre>length(BD3\$Largo_pico_mm)</pre>
[1] 344
3 Visualización de la distribución de la variable
hist(BD3\$Largo_pico_mm)

Histogram of BD3\$Largo_pico_mm

Creación de matriz <50

Variable: Masa_corporal_g

1.- visualizamos el nombre de las variables para identificar el número de la columna.

colnames(BD3)

```
## [1] "X" "Especies" "Isla" "Largo_pico_mm"
## [5] "Ancho_pico_mm" "Largo_aleta_mm" "Masa_corporal_g" "Sexo"
## [9] "Año"
```

2.- Se seleccionan de las filas 4 a la 36 y la columna 6.

peso<-BD3[4:36,6]

3.- Se seleccionan de las filas 4 a la 36 y la columna 7.

peso<-BD3[4:36,7]

4.- Se visualiza la variable

peso

```
## [1] 3700 3450 3650 3625 4675 3475 4250 3300 3700 3200 3800 4400 3700 3450 4500 
## [16] 3325 4200 3400 3600 3800 3950 3800 3550 3200 3150 3950 3250 3900 3300 
## [31] 3900 3325 4150
```

KOLMOGOROV-SMIRNOV

NOTA: Se aplica sí tenemos MÁS de 50 observaciones. Ho: La variable tiene distribución normal. Ha: La variable tiene una distribución diferente a la normal.

Interpretación:

p-valor > 0.05 NO rechazo Ho. < 0.05 rechazo Ho.

1.- Exploración de la variable

hist(BD3\$Largo_pico_mm)

Histogram of BD3\$Largo_pico_mm

2.- Aplicación de la prueba de hipótesis

lillie.test(BD3\$Largo_pico_mm)

```
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: BD3$Largo_pico_mm
## D = 0.070865, p-value = 0.0002714
```

3.- Intepretación:

p-valor= 0.0002714, es **menor** a 0.05. Por lo tanto, **RECHAZO Ho**. Los datos siguen una distribución diferente a la normal.

SHAPIRO WILKS

 $\bf NOTA:$ Se aplica sí tenemos MENOS de 50 observaciones.

Ho: La variable tiene distribución normal. Ha: La variable tiene una distribución diferente a la normal.

Interpretación:

p-valor > 0.05 NO rechazo Ho. < 0.05 rechazo Ho.

1.- Exploración de la variable

hist(peso)

length(peso)

[1] 33

2.- Prueba de hipótesis

shapiro.test(peso)

```
##
## Shapiro-Wilk normality test
##
## data: peso
## W = 0.94792, p-value = 0.1157
```

3.- Interpretación:

p-valor: 0.4668, es **mayor** que 0.05. Por lo tanto, **NO se rechaza Ho**, *p-valor:* 0.1157, es **mayor** que 0.05. Por lo tanto, **NO se rechaza Ho**, eso quiere decir que los datos siguen una distribución normal.