SAMYAK JAIN

 $(+91)9179144039 \diamond$ samyakjain.cse18@itbhu.ac.in \diamond DOB: 1^{st} December, 1999

 $LinkedIn \diamond Github \diamond Webpage \diamond Google Scholar \diamond Twitter$

EDUCATION

Indian Institute of Technology (BHU) Varanasi

August 2018 - May 2023

Integrated Dual Degree (B.Tech + M.Tech) in Computer Science - CGPA: 9.55/10.0

Master's Thesis

AREAS OF INTEREST

AI Safety, Science of Deep Learning, Interpretability, Understanding Learning Dynamics

EXPERIENCE

Microsoft Research India July 2024 - Present Research Fellow Mentor Navin Goyal Five AI and Torr Vision Group, Oxford October 2023 - June-2024 Research Intern Mentor Puneet Dokania Krueger AI Safety Lab, Cambridge University May 2023 - October-2023 Research Intern Mentor David Krueger Vision and AI Lab, Indian Institute of Science, Bangalore May 2020 - May-2023 Research Intern Mentor Venkatesh Babu Theoretical Foundations of AI, Technical University of Munich May 2021 - August-2021 Research Intern Mentor Debarghya Ghoshdastidar

PUBLICATIONS

- What Makes Safety Fine-tuning Methods Safe? A Mechanistic Study
 Samyak Jain, Ekdeep Singh, Kemal Oksuz, Tom Joy, Phil Torr, Amartya Sanyal, Puneet Dokania
 ICML workshop on Mechanistic Interpretability, 2024 (Spotlight)
 NeurIPS 2024 main code
- Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks

 Samyak Jain*, Robert Kirk*, Ekdeep Singh*, Hidenori Tanaka, Robert Dick, Tim Rocktaschel, Edward

 Grefenstette, David Krueger

 ICLR 2024 main code
- DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks Samyak Jain*, Sravanti Addepalli*, Pawan Sahu, Priyam Dey, RV. Babu CVPR-2023 main code
- Efficient and Effective Augmentation Strategy for Adversarial Training Sravanti Addepalli*, Samyak Jain*, RV. Babu NeurIPS 2022 main code
- Scaling Adversarial Training to Large Perturbation Bounds Sravanti Addepalli*, <u>Samyak Jain</u>*, Gaurang Sriramanan, RV. Babu ECCV 2022 main code
- Boosting Adversarial Robustness using Feature Level Stochastic Smoothing Sravanti Addepalli*, <u>Samyak Jain</u>*, Gaurang Sriramanan*, RV. Babu SAIAD Workshop CVPR 2021 main code
- Towards Understanding and Improving Adversarial Robustness of Vision Transformers

 Samyak Jain, Tanima Dutta

 CVPR 2024 main

FEATURED ACADEMIC PROJECTS AND COLLABORATIONS

Understanding the lottery ticket hypothesis Navin Goval

- Neurons part of lottery tickets have high projection with final model at initialization itself.
- High projection leads to exponential rise in norm, thereby enforcing faster convergence of such neurons.

Mechanistic understanding of safety fine-tuning and jailbreaking attacks Puneet Dokania, Ekdeep Singh, Amartya Sanyal, Phil Torr

- Safety fine-tuning projects unsafe samples into model's (low rank) null space, resulting in safety.
- Safety fine-tuned model is unable to project jailbreaks into it's null space, thus circumventing safety.
- Gemma Scope highlighted the safety value of using sparse autoencoders based on insights in this work.

Mechanistic understanding of fine-tuning Robert Kirk, Ekdeep Singh, David Krueger

- Demonstrated that fine-tuning is unable to alter the model mechanistically, giving pretense of change.
- Reverse fine-tuning has become the staple method for evaluating unlearning.
- This work has been used to counter use of safety-finetuning as an assurance protocol. Some works [1], [2] have used our work to submit comments to RFI related to NIST's executive order concerning AI.

Exploring loss basin to find generalized solutions RV. Babu, Sravanti Addepalli

- Showed that using weight averaging of diverse models during training increases the convergence time for learning spurious features and aids the learning of robust features.
- Proposed method DART shows improvements on both in-domain and out of domain settings.

Using data augmentations effectively in adversarial training RV. Babu, Sravanti Addepalli

- Demonstrated for the first time that it is possible to use augmentations effectively in adversarial training irrespective of the type of augmentation and adversarial training (AT) method used.
- Demonstrated that weight space smoothing can help in preventing catastrophic overfitting.

Aligning adversarial training with Ideal training objectives RV. Babu, Sravanti Addepalli

- Observed that standard AT cannot generalize to larger perturbation bounds due to conflict in training.
- Developed Oracle-Aligned Adversarial Training (OAAT), which aims to align the model's predictions with the oracle labels of adversarial images.

Calibrating robust models to allow rejection of adversarial samples RV. Babu, Sravanti Addepalli

- Inspired by variational inference, proposed a stochastic classifier which aims to learn smoother class boundaries by sampling noise multiple times in it's latent space during inference.
- Proposed method demonstrated improved robustness along with improved calibration.

Understanding gradient masking in vision transformers Tanima Dutta

- Past works have demonstrated gradient masking in vision transformers, but failed to analyze the cause.
- Demonstrated that softmax in attention causes floating point errors leading to gradient masking in VITs.

SCHOLASTIC ACHIEVEMENTS

- Recipient of **DAAD-WISE**, a research oriented scholarship program by German Government.
- Fellow of Berkeley Existential Risk Initiative (BERI), which supported my research at Cambridge.
- Recipient of Summer Research Fellowship 2020 (SRFP), a research program by Indian Government.
- All India rank 922 in JEE Advanced 2018 and 346 in JEE Mains 2018 out of 1 million+ candidates.
- Selected for the KVPY 2018 Fellowship (IISc, Bangalore) by the Govt. of India.
- Ranked in amongst **Top 300** students in India for Maths, Physics and Astronomy Olympiads at national level INMO, INPhO, INAO 2018. City topper in National Talent Search Exam (NTSE) 2016.
- Member of Future of Life-Existential AI Safety Community.

FEATURED POSITIONS

Outstanding / Highlighted reviewer award: NeurIPS 2024, CVPR 2023, CVPR 2022, ICLR 2022

Teaching Assistant: Introduction to Database Management, Introduction to Machine Learning