第四章 几种重要的分布 §1 重要的离散型分布

(一)0-1分布

$$\xi$$
 0 1
P 1-p p
E ξ =p D ξ =p(1-p)

(二)离散型均匀分布

$$\xi$$
 1 2 ... r

P $\frac{1}{n}$ $\frac{1}{n}$... $\frac{1}{n}$

$$E\xi = 1 \times \frac{1}{n} + 2 \times \frac{1}{n} + \dots + n \times \frac{1}{n} = \frac{n+1}{2}$$

$$E\xi^{2} = 1^{2} \times \frac{1}{n} + 2^{2} \times \frac{1}{n} + \dots + n^{2} \times \frac{1}{n}$$

$$= \frac{1}{6}n(n+1)(2n+1) \times \frac{1}{n} = \frac{(n+1)(2n+1)}{6}$$

$$D\xi = \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^{2} = \frac{n^{2}-1}{12}$$

(三)几何分布

$$P(\xi = k) = (1-p)^{k-1}p$$
 $k = 1, 2, ...$

$$E\xi = \frac{1}{p} \qquad \qquad D\xi = \frac{1-p}{p^2}$$

(四)二项分布

做n重贝努里试验,以ξ表示某事件A发生的 次数,则

$$P(\xi = k) = C_n^k p^k q^{n-k}$$
 $k = 0,1,...,n$

其中0<p<1,q=1-p

称ξ服从参数为n, p的二项分布。

简记为 $\xi \sim B(n, p)$

由二项展开公式

$$\sum_{k=0}^{n} C_{n}^{k} p^{k} q^{n-k} = (p+q)^{n} = 1$$

■例1 某工厂每天用水量保持正常的概率为³/₄, 求最近6天内用水量正常的天数的分布。

解:设最近6天内用水量保持正常的天数为发

它服从二项分布,其中n=6,p=0.75

$$P(\xi = 0) = \left(\frac{1}{4}\right)^6 = 0.0002$$

$$P(\xi = 1) = C_6^1 \left(\frac{3}{4}\right) \left(\frac{1}{4}\right)^5 = 0.0044$$

.

$$P(\xi = 6) = \left(\frac{3}{4}\right)^6 = 0.1780$$

列成分布表为

■ 例2 10部机器各自独立地工作,因修理调整等原因, 每部机器停车的概率为0.2,求同时停车数目ξ的分 布。

解: と服从二项分布

$$n=10 p=0.2$$

$$P(\xi = k) = C_{10}^{k} 0.2^{k} 0.8^{10-k}$$
 $k = 0,1,...,10$

将计算结果列成分布表

■ 例3 一批产品的废品率p=0.03,进行20次重复抽样,每次抽取一个,求出现废品的频率为0.1的概率。

解: ξ表示20次重复抽样中废品出现的次数,

を服从二项分布

n=20 p=0.03

$$P(\xi = k) = C_{20}^{k} (0.03)^{k} 0.97^{20-k}$$

$$P\left(\frac{\xi}{20} = 0.1\right) = P(\xi = 2)$$

$$= C_{20}^{2} (0.03)^{2} 0.97^{18}$$

$$= 0.0988$$

直接计算二项分布的期望与方差较麻烦。

若ξ服从二项分布

则
$$\xi = \xi_1 + \xi_2 + ... + \xi_n$$

其中ξ1, ...,ξ1相互独立,且服从同一0-1分布

即
$$\xi_i = 0$$
 1 P $1-p$ p

 $\sqrt{D\xi} = \sqrt{npq}$

因
$$E\xi_i = p$$
 $D\xi_i = pq$ $q = 1-p$
$$E\xi = E\xi_1 + ... + E\xi_n = np$$

$$D\xi = D\xi_1 + ... + D\xi_n = npq$$

二项分布中使概率P(ξ=k)取最大值的k,

称为二项分布的最可能值,记为 k_0

若 $P(\xi=k_0)$ 为最大,则

$$P(\xi = k_0) \ge P(\xi = k_0 - 1)$$
 (1)

$$P(\xi = k_0) \ge P(\xi = k_0 + 1)$$
 (2)

由(1)式

$$\frac{n!}{k_0!(n-k_0)!}p^{k_0}q^{n-k_0} \ge \frac{n!}{(k_0-1)!(n-k_0+1)!}p^{k_0-1}q^{n-k_0+1}$$

化简得
$$(n-k_0+1)p \ge k_0q$$

 $k_0 \le (n+1)p$

由(2)式

$$\frac{n!}{k_0!(n-k_0)!}p^{k_0}q^{n-k_0} \ge \frac{n!}{(k_0+1)!(n-k_0-1)!}p^{k_0+1}q^{n-k_0-1}$$

化简得
$$(k_0+1)q \ge (n-k_0)p$$

 $k_0 \ge (n+1)p-1$

所以 $(n+1)p-1 \le k_0 \le (n+1)p$

即

$$k_0 = \begin{cases} (n+1)p或(n+1)p-1 & 当(n+1)p是整数时 \\ [(n+1)p] & 其它 \end{cases}$$

其中[(n+1)p]表示(n+1)p的整数部分。

■例4 某批产品80%的一等品,对它们进行重复抽样检验,共取出4个样品,求其中一等品数ξ的最可能值k₀,并用贝努里公式验证。

解: と服从二项分布, n=4, p=0.8 $(n+1)p = (4+1) \times 0.8 = 4$ k₀=4或3 用贝努里公式算出的分布表 0.0016 0.0256 0.1536 0.4096 0.4096 P ξ=3或ξ=4时,概率最大。

将不等式

$$(n+1)p-1 \le k_0 \le (n+1)p$$

改写为

$$p + \frac{p-1}{n} \le \frac{k_0}{n} \le p + \frac{p}{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$p \qquad p \qquad p$$

n充分大时,
$$\frac{k_0}{n} \approx p$$

频率为概率的可能性最大

(五)超几何分布

■例5 袋中有20个小球,其中5个白球,15个黑球, 任取4球,求取到的白球数ξ的分布。

解: ξ可取0, 1, 2, 3, 4等5个值。

$$P(\xi = k) = \frac{C_5^k C_{15}^{4-k}}{C_{20}^4}$$
$$k=0,1,2,3,4$$

经计算列出概率分布表。

 $\xi = 0$ 1 2 3 4

P 0.2817 0.4696 0.2167 0.0310 0.0010

■ 例6 一批灯泡有8只,其中6只是合格的,任取4只, 求取到的合格灯泡数ξ的分布。

解: ξ的取值不能为0与1

$$P(\xi = 2) = \frac{C_6^2 C_2^2}{C_8^4} = \frac{15}{70} \approx 0.2143$$

$$P(\xi = 3) = \frac{C_6^3 C_2^1}{C_8^4} = \frac{40}{70} \approx 0.5714$$

$$P(\xi = 4) = \frac{C_6^4}{C_8^4} = \frac{15}{70} \approx 0.2143$$

设N个元素分为两类,有N₁个属于第一类,N₉个属于 第二类(N₁+N₂=N)。从中不重复抽取n个,用ξ表示取 到第一(第二)类元素的个数,则

$$P(\xi = k) = \frac{C_{N_1}^k C_{N_2}^{n-k}}{C_{N_1}^n} \qquad k = 0, 1, ..., n$$

约定当m > n时 $C_n^m = 0$

$$C_n^m = 0$$

称と服从超几何分布。

利用组合数的性质

$$\sum_{k=0}^{n} C_{N_1}^k C_{N_2}^{n-k} = C_{N_1+N_2}^n$$

可以验证

$$\sum_{k=0}^{n} P(\xi = k) = 1$$

当N→∞时,超几何分布以二项分布为极限。

$$_{$$
其中 $}p=rac{N_{1}}{N}$

■ 例7一大批种子的发芽率为90%,从中任取10粒,求播种后,(1)恰有8粒发芽的概率(2)不少于8粒发芽的概率

解: ξ表示10粒种子中发芽的种子数目。

ξ服从超几何分布

N很大, n很小, 可用二项分布近似计算。

$$n=10 p=0.9 q=0.1$$

$$(1)P(\xi = 8) = C_{10}^8 0.9^8 0.1^2 \approx 0.1937$$

$$(2)P(\xi \ge 8) = C_{10}^8 0.9^8 0.1^2 + C_{10}^9 0.9^9 0.1 + 0.9^{10}$$

$$\approx 0.9298$$

(六)Poisson分布

如果随机变量ξ的概率函数为

$$P_{\lambda}(k) = P(\xi = k) = \frac{\lambda^{k}}{k!}e^{-\lambda}$$
 $k = 0, 1, 2, ...$

其中λ>0,称ξ服从Poisson分布。

利用级数
$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$
, 易知 $\sum_{k=0}^{\infty} P_{\lambda}(k) = 1$

Poisson分布常见于稠密性问题,如:

候车室旅客数目,

原子放射粒数

织机上的断头数

印刷错误。

$$\begin{split} E\xi &= \sum_{k=0}^{\infty} k \cdot \frac{\lambda^{k}}{k!} e^{-\lambda} \\ &= \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} \\ \text{记k-1=m,} \text{见} \\ E\xi &= \lambda \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} e^{-\lambda} = \lambda \\ E\xi^{2} &= \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} \\ &= \lambda \sum_{m=0}^{\infty} (m+1) \frac{\lambda^{m}}{m!} e^{-\lambda} \\ &= \lambda \sum_{m=0}^{\infty} m \frac{\lambda^{m}}{m!} e^{-\lambda} + \lambda \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} e^{-\lambda} = \lambda^{2} + \lambda \end{split}$$

$$\text{故 } D\xi &= \lambda \end{split}$$

則8 已知 ξ 服从Poisson分布,且P($\xi=1$) = P($\xi=2$), 求P($\xi=4$)

解: 需要确定参数λ

$$P(\xi = 1) = P(\xi = 2)$$

$$\mathbb{E} \frac{\lambda}{1!} e^{-\lambda} = \frac{\lambda^2}{2!} e^{-\lambda}$$

由于λ>0,可求出λ=2

故
$$P(\xi=4) = \frac{2^4}{4!}e^{-2} = \frac{2}{3}e^{-2}$$

$$\approx 0.090224$$

实际计算时,可查Poisson分布表。

■ 例9 ξ 服从参数 λ =0.5的Poisson分布,查表求出 $p(\xi=2), P(\xi=6), P(\xi=30)$

解: 直接查表可得

$$P(\xi = 2) = 0.075816, P(\xi = 6) = 0.000013$$

 $P(\xi = 30) = 0$

解: $因\lambda = E\xi = 5$, 查表得

$$P(\xi = 3) = 0.140374$$

$$P(\xi = 5) = 0.175467$$

通常在n比较大, p很小时,可以用Poisson分布近似 代替二项分布,其中λ=np

■ 例12 一大批产品的废品率为p=0.015, 求任取一箱(有 100个产品), 箱中恰好有一个废品的概率。

解: 所取一箱中废品个数ξ服从超几何分布,

产品数量很大,可用二项分布计算,n=100,

$$P(\xi = 1) = C_{100}^{1} 0.015 \times 0.985^{99} \approx 0.335953$$

由于n较大,p很小,可用Poisson分布代替二项分布。

$$\lambda = np = 1.5$$
, 查表可得

$$P(\xi=1)=0.334695$$
 误差不超过1%

§ 2 重要的连续型分布

(一)连续型均匀分布

$$\xi \sim \varphi(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{其它} \end{cases}$$

$$E\xi = \frac{a+b}{2}$$
 $D\xi = \frac{1}{12}(b-a)^2$

(二)指数分布

$$\xi \sim \varphi(x) = \begin{cases} \lambda e^{-\lambda x} & \exists x > 0 \\ 0 & \exists \Xi \end{cases}$$

其中λ>0,称ξ服从参数为λ的指数分布。

$$\int_{-\infty}^{+\infty} \varphi(x) dx = \int_{0}^{+\infty} \lambda e^{-\lambda x} dx = 1$$

指数分布常用来作为各种"寿命"分布的近似。如:随机服务系统中的服务时间。

产品的寿命

λ有时称为失效率。

产品在t时间(t>0)失效的概率为

$$P(\xi \le t) = F(t) = 1 - e^{-\lambda t}$$

而产品的可靠度为

$$R(t) = P(\xi > t)$$

$$= 1 - F(t) = e^{-\lambda t}$$

■ 例1 某元件寿命服从参数为λ(λ⁻¹ = 1000小时)的 指数分布。3个这样的元件使用1000小时后,都 没有损坏的概率是多少?

解:参数为\\的指数分布的分布函数为

$$F(x) = 1 - e^{-\frac{x}{1000}} \qquad (x > 0)$$

$$P(\xi > 1000) = 1 - P(\xi \le 1000)$$

$$= 1 - F(1000) = e^{-1}$$

各元件寿命相互独立

3个元件使用1000小时后都未损坏的概率为 $e^{-3} \approx 0.05$

(三) 厂一分布

关于 Γ 函数的复习: r>0时

$$\Gamma(r) = \int_0^{+\infty} x^{r-1} e^{-x} dx$$

它有性质:

$$\Gamma(r+1) = r\Gamma(r)$$

特别地

$$\Gamma(n+1) = n!\Gamma(1) = n!$$

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} x^{-\frac{1}{2}} e^{-x} dx = 2 \int_0^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

$$\xi \sim \phi(x) = \begin{cases} \frac{\lambda^{r}}{\Gamma(r)} x^{r-1} e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

其中 $\lambda > 0, r > 0$

称ξ服从 Γ 一分布,记作ξ~ Γ (λ ,r)

$$\int_{-\infty}^{+\infty} \varphi(x) dx = \int_{0}^{+\infty} \frac{\lambda^{r}}{\Gamma(r)} x^{r-1} e^{-\lambda x} dx$$

$$= \frac{\lambda x = t}{\Gamma(r)} \int_{0}^{+\infty} t^{r-1} e^{-t} dt$$

$$= \frac{1}{\Gamma(r)} \Gamma(r) = 1$$

因此,λ,r是两个参数

$$\begin{split} E\xi &= \int_0^{+\infty} x \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} dx \\ &= \frac{\lambda x = t}{\lambda \Gamma(r)} \frac{1}{\lambda \Gamma(r)} \int_0^{+\infty} t^r e^{-t} dt \\ &= \frac{1}{\lambda \Gamma(r)} \Gamma(r+1) = \frac{r}{\lambda} \end{split}$$

$$E\xi^2 &= \int_0^{+\infty} x^2 \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} dx \\ &= \frac{\lambda x = t}{\lambda^2 \Gamma(r)} \frac{1}{\lambda^2 \Gamma(r)} \int_0^{+\infty} t^{r+1} e^{-t} dt \\ &= \frac{1}{\lambda^2 \Gamma(r)} \Gamma(r+2) = \frac{(r+1)r}{\lambda^2} \end{split}$$

$$D\xi = \frac{(r+1)r}{\lambda^2} - \left(\frac{r}{\lambda}\right)^2 = \frac{r}{\lambda^2}$$

Γ一分布在概率论、数理统计等方面有很多应用。 当r=1时,

$$\varphi(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

即为指数分布。

当r为正整数时,

$$\varphi(x) = \begin{cases} \frac{\lambda^r}{(r-1)!} x^{r-1} e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

这是排队论中常用的爱尔朗分布

当
$$r = \frac{n}{2}$$
, n是正整数, $\lambda = \frac{1}{2}$ 时
$$\phi(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}} \prod_{x=0}^{\infty} x^{\frac{n}{2}-1} e^{-\frac{x}{2}} & x > 0 \\ 0 & x \le 0 \end{cases}$$

这是具有n个自由度的 χ^2 一分布,记作 $\chi^2(n)$

定理1 如果 ξ_1 , ..., ξ_n 相互独立,且 ξ_i 服从参数为 λ , r_i 的 Γ -分布(i=1,...,n),则 ξ_1 +...+ ξ_n 服从参数为 λ , r_i +...+ r_n 的 Γ -分布。

推论1 若 $\xi_1 \sim \chi^2(n_1), \xi_2 \sim \chi^2(n_2), \xi_1$ 与 ξ_2 相互独立,则 $\xi_1 + \xi_2 \sim \chi^2(n_1 + n_2)$

(四)正态分布

$$\xi \sim \varphi(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

其中σ, μ为常数, 且σ>0

称ξ服从正态分布,记作ξ~ $N(\mu,\sigma^2)$

这是最重要、最常见的分布。

许多微小的,独立的随机因素作用的总后果,一般可以认为服从正态分布。

例如人的身高、零件长度,考试成绩等。

特点为"中间大,两头小"。

$$\int_{-\infty}^{+\infty} \varphi(x) dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx$$

$$\frac{x-\mu}{\sqrt{2\sigma}} = t$$

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} dt = 1$$

$$E\xi = \int_{-\infty}^{+\infty} \frac{x}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx$$

$$\frac{x-\mu}{\sqrt{2\sigma}} = t$$

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (\mu + \sqrt{2\sigma}t) e^{-t^2} dt$$

$$= \frac{\mu}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} dt + \frac{\sqrt{2\sigma}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} t e^{-t^2} dt$$

$$= \frac{\mu}{\sqrt{\pi}} \sqrt{\pi} + 0 = \mu$$

$$D\xi = \int_{-\infty}^{+\infty} (x - E\xi)^{2} \varphi(x) dx$$

$$= \int_{-\infty}^{+\infty} (x - \mu)^{2} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x - \mu)^{2}}{2\sigma^{2}}} dx$$

$$\frac{x - \mu}{\sqrt{2\sigma}} = t$$

$$= \frac{2\sigma^{2}}{\sqrt{\pi}} \times 2\int_{0}^{+\infty} t^{2} e^{-t^{2}} dt$$

$$= \frac{2\sigma^{2}}{\sqrt{\pi}} \Gamma\left(\frac{3}{2}\right) = \frac{2\sigma^{2}}{\sqrt{\pi}} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)$$

$$= \frac{\sigma^{2}}{\sqrt{\pi}} \cdot \sqrt{\pi} = \sigma^{2}$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = \frac{i2}{\pi} \phi_0(x)$$

称为标准正态分布,记作ξ~N(0,1)

 $\varphi_0(x)$ 除具有概率密度的性质之外,还有如下性质:

(1)φ₀(x)具有各阶导数

$$(2)\phi_0(-x) = \phi_0(x)$$

(3) $φ_0(x)$ 在x=0左右分别单调上升和单调下降 在x=0达到最大值: $φ_0(x) = \frac{1}{\sqrt{2\pi}} \approx 0.3989$

(4) $\varphi_0(x)$ 在 $x=\pm 1$ 处有两个拐点。

$$(5)\lim_{x\to\infty}\varphi_0(x)=0$$

对于任给的x值,

可以利用标准正态分布的概率密度函数表查出 $\varphi_0(x)$ 的值。

样表如下:

X	0.00	0.03	0.04	0.05	0.08	0.09
0.0	0.3989	0.3988	0.3986	0.3984	0.3977	0.3973
0.1	0.3970	0.3956	0.3951	0.3945	0.3925	0.3918
•••						
1.5	0.1295	0.1238	0.1219	0.1200	0.1145	0.1127
1.6	0.1109	0.1057	0.1040	0.1023	0.09728	0.09566
•••						
3.0	0.0^24432	0.0^24049	0.0^23928	0.0^23810	0.0^23475	0.0^23370
3.1	0.0^23267	0.0^22975	0.0^22884	0.0^22794	0.0^22541	0.0^22461
•••						
4.9	$0.0^{5}2439$	$0.0^{5}2105$	$0.0^{5}2003$	$0.0^{5}1907$	$0.0^{5}1643$	$0.0^{5}1563$

■ 例2 已知ξ~N(0,1), 查表求出φ₀(1.63)

$$\varphi_0(0.18), \varphi_0(-3), \varphi_0(7), \varphi_0(0)$$

解:
$$φ_0(1.63) = 0.1057$$
 $φ_0(0.18) = 0.3925$

$$\varphi_0(-3) = \varphi_0(3) = 0.004432$$

$$\varphi_0(7) = 0$$
 $\varphi_0(0) = 0.3989$

标准正态分布的分布函数为

$$F(x) = \int_{-\infty}^{x} \phi_0(t) dt = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
一般记为 $\Phi_0(x)$

其函数值也要通过标准正态分布的分布函数表 查出。样表如下:

■ 例3 己知 $\xi \sim N(0,1)$, 求 $P(\xi \le 1.96)$, $P(\xi \le -1.96)$, $P(|\xi| \le 1.96), P(-1.6 < \xi \le 2.5), P(\xi \le 5.9)$ 解: $P(\xi \le 1.96) = \Phi_0(1.96) = 0.975$ $P(\xi \le -1.96) = \Phi_0(-1.96)$ $=1-\Phi_0(1.96) =0.025$ $P(|\xi| \le 1.96) = P(-1.96 \le \xi \le 1.96)$ $=\Phi_0(1.96)-\Phi_0(-1.96)$ $=2\Phi_0(1.96)-1=0.95$ $P(-1.6 < \xi \le 2.5) = \Phi_0(2.5) - \Phi_0(-1.6)$ $=\Phi_0(2.5)-(1-\Phi_0(1.6))$ =0.99379-(1-0.94520)=0.93899

$$P(\xi \le 5.9) = \Phi_0(5.9) \approx 1$$

概括起来,如果ξ~N(0,1),则

$$P(\xi \le x) = \begin{cases} \Phi_0(x) & x > 0 \\ 0.5 & x = 0 \\ 1 - \Phi_0(-x) & x < 0 \end{cases}$$

$$P(|\xi| \le x) = 2\Phi_0(x) - 1$$
 $(x > 0)$

$$P(a < \xi \le b) = \Phi_0(b) - \Phi_0(a)$$

当
$$\mathbf{x} \geq 5$$
时, $\Phi_0(\mathbf{x}) \approx 1$

当
$$x \le -5$$
时, $\Phi_0(x) \approx 0$

定理2 若ξ~ $N(\mu,\sigma^2)$, 则aξ+b~ $N(a\mu+b,a^2\sigma^2)$, (a ≠ 0)

证: 记 $\eta = a\xi + b$, 可以求出 $\alpha(x) = \frac{1}{2} \alpha(x - b)$

$$\phi_{\eta}(x) = \frac{1}{|a|} \phi_{\xi} \left(\frac{x-b}{a}\right)$$

$$= \frac{1}{|a|} \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}} \left(\frac{x-b}{a} - \mu\right)^{2}}$$

$$= \frac{1}{\sqrt{2\pi} |a| \sigma} e^{-\frac{1}{2a^{2}\sigma^{2}} \left[x - (a\mu + b)\right]^{2}}$$

故 η 是参数为 $a\mu+b$, $a^2\sigma^2$ 的正态分布

推论2 若 $\xi \sim N(\mu, \sigma^2)$,则 $\frac{\xi - \mu}{\sigma} \sim N(0, 1)$

证: 在定理中取 $a=\frac{1}{\sigma}, b=-\frac{\mu}{\sigma}$ 即可。

三 定理3 若ξ~N(μ,σ²),则

$$(1)\Phi(x) = \Phi_0\left(\frac{x-\mu}{\sigma}\right)$$

$$(2)\varphi(x) = \frac{1}{\sigma}\varphi_0\left(\frac{x-\mu}{\sigma}\right)$$

 \Box : $(1) \Phi(x) = P(\xi \le x)$

$$= P\left(\frac{\xi - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right)$$
$$= \Phi_0\left(\frac{x - \mu}{\sigma}\right)$$

(2) 在(1) 两边对x求导即得。

这样可利用标准正态分布计算一般正态分布。

■ 例4 设 $\xi \sim N(6, 2^2)$, 求 $P(\xi \le 10)$ 及 $P(4 \le \xi \le 8)$

解:
$$P(\xi \le 10) = P\left(\frac{\xi - 6}{2} \le \frac{10 - 6}{2}\right)$$
$$= P\left(\frac{\xi - 6}{2} \le 2\right)$$

$$=\Phi_0(2)=0.97725$$

$$P(4 \le \xi \le 8) = P(|\xi - 6| \le 2)$$

$$= P\left(\left|\frac{\xi - 6}{2}\right| \le 1\right)$$

$$=2\Phi_0(1)-1$$

$$=2\times0.8413-1=0.6826$$

■ 例5 设 $\xi \sim N(\mu, \sigma^2)$, $P(\xi \le -5) = 0.045$, $P(\xi \le 3) = 0.618$, 求 μ 及 σ

解:
$$P(\xi \le -5) = P\left(\frac{\xi - \mu}{\sigma} \le \frac{-5 - \mu}{\sigma}\right) = \Phi_0\left(\frac{-5 - \mu}{\sigma}\right) = 0.045$$

$$\Phi_0\left(\frac{5+\mu}{\sigma}\right) = 1 - \Phi_0\left(\frac{-5-\mu}{\sigma}\right) = 0.955$$

$$P(\xi \le 3) = P\left(\frac{\xi - \mu}{\sigma} \le \frac{3 - \mu}{\sigma}\right) = \Phi_0\left(\frac{3 - \mu}{\sigma}\right) = 0.618$$

查表可得
$$\begin{cases} \frac{5+\mu}{\sigma} = 1.7 \\ \frac{3-\mu}{\sigma} = 0.3 \end{cases}$$
 求解得 $\mu = 1.8, \sigma = 4$

定理4 若ξ~N(0,1),则ξ²~χ²(1)
证:
$$\phi_{\xi}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

 $n = \xi^2$,已求出, x>0时

$$\varphi_{\eta}(x) = \frac{1}{2\sqrt{x}} \left[\varphi_{\xi} \left(\sqrt{x} \right) + \varphi_{\xi} \left(-\sqrt{x} \right) \right]$$

$$= \frac{1}{2\sqrt{x}} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}} + \frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}} \right)$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{x}} e^{-\frac{x}{2}} = \frac{\left(\frac{1}{2}\right)^{\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right)} x^{\frac{1}{2}-1} e^{-\frac{x}{2}}$$

$$x < 0$$
时, $\phi_{\eta}(x) = 0$
故 $\eta = \xi^{2}$ 服从 $r = \frac{1}{2}$, $\lambda = \frac{1}{2}$ 的 Γ 分布
即 $\xi^{2} \sim \chi^{2}(1)$

定理5 若 ξ_1 ,..., ξ_n 相互独立,且 ξ_i ~ N(0,1),(i=1,...,n),则 $\xi_1^2+...+\xi_n^2 \sim \chi^2(n)$

证: 由定理4,可知

$$\xi_i^2 \sim \chi^2(1)$$
 $i = 1,...,n$

再由推论1

$$\xi_1^2 + ... + \xi_n^2 \sim \chi^2(n)$$