Principles of Data Mining

Support Vector Machines

Xiaowei Jia

• Find a linear hyperplane (decision boundary) that will separate the data

• One Possible Solution

• Another possible solution

• Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

• Find hyperplane maximizes the margin => B1 is better than B2

Linear SVM

• Linear model:

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

- Learning the model is equivalent to determining the values of \vec{w} and b
 - How to find \vec{w} and \vec{b} from training data?

Learning Linear SVM

• Objective is to maximize: $Margin = \frac{2}{||\vec{w}||}$

- Which is equivalent to minimizing: $L(\vec{w}) = \frac{||\vec{w}||^2}{2}$
- Subject to the following constraints:

$$y_i = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \ge 1 \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \le -1 \end{cases}$$
$$y_i(\mathbf{w} \bullet \mathbf{x}_i + b) \ge 1, \qquad i = 1, 2, \dots, N$$

or

- This is a constrained optimization problem
 - Solve it using Lagrange multiplier method

Example of Linear SVM

Learning Linear SVM

- Decision boundary depends only on support vectors
 - If you have data set with same support vectors, decision boundary will not change
 - How to classify using SVM once w and b are found? Given a test record, x_i

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{||\vec{w}||^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

• Subject to:

$$y_i = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \le -1 + \xi_i \end{cases}$$

• If k is 1 or 2, this leads to similar objective function as linear SVM but with different constraints (see textbook)

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1 & \text{otherwise} \end{cases}$$

Nonlinear Support Vector Machines

Transform data into higher dimensional space

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46.$$

$$\Phi: (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$w_4 x_1^2 + w_3 x_2^2 + w_2 \sqrt{2} x_1 + w_1 \sqrt{2} x_2 + w_0 = 0.$$

Decision boundary:

$$\vec{w} \bullet \Phi(\vec{x}) + b = 0$$

Learning NonLinear SVM

• Issues:

- What type of mapping function Φ should be used?
- How to do the computation in high dimensional space?
 - Most computations involve dot product $\Phi(x_i) \bullet \Phi(x_i)$
 - Curse of dimensionality?

Learning Nonlinear SVM

Optimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
subject to $y_i(\mathbf{w} \cdot \Phi(\mathbf{x}_i) + b) \ge 1, \ \forall \{(\mathbf{x}_i, y_i)\}$

• Which leads to the same set of equations (but involve $\Phi(x)$ instead of x)

$$L_D = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \qquad \mathbf{w} = \sum_i \lambda_i y_i \Phi(\mathbf{x}_i)$$
$$\lambda_i \{ y_i (\sum_j \lambda_j y_j \Phi(\mathbf{x}_j) \cdot \Phi(\mathbf{x}_i) + b) - 1 \} = 0,$$

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \Phi(\mathbf{z}) + b) = sign(\sum_{i=1}^{n} \lambda_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{z}) + b).$$

Learning Nonlinear SVM

- Kernel Trick:
 - $\Phi(x_i)$ $\Phi(x_i) = K(x_i, x_i)$
 - $K(x_i, x_j)$ is a kernel function (expressed in terms of the coordinates in the original space)
 - Examples:

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^{p}$$

$$K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|^{2}/(2\sigma^{2})}$$

$$K(\mathbf{x}, \mathbf{y}) = \tanh(k\mathbf{x} \cdot \mathbf{y} - \delta)$$

Example of Nonlinear SVM

SVM with polynomial degree 2 kernel

Learning Nonlinear SVM

- Advantages of using kernel:
 - Don't have to know the mapping function Φ
 - Computing dot product $\Phi(x_i)$ $\Phi(x_j)$ in the original space avoids curse of dimensionality
- Not all functions can be kernels
 - Must make sure there is a corresponding Φ in some high-dimensional space
 - Mercer's theorem (see textbook)

Characteristics of SVM

- The learning problem is formulated as a convex optimization problem
 - Efficient algorithms are available to find the global minima
 - Many of the other methods use greedy approaches and find locally optimal solutions
 - High computational complexity for building the model
- Robust to noise
- Overfitting is handled by maximizing the margin of the decision boundary,
- SVM can handle irrelevant and redundant better than many other techniques
- The user needs to provide the type of kernel function and cost function
- Difficult to handle missing values
- What about categorical variables?