

제1회 K-PaaS Summit 2023

K-PaaS가 고려해야하는 컴퓨팅 환경, 멀티 클라우드

- CSP 중립적인 K-PaaS를 위하여 -

2023년 10월 25일(수), 엘타워 그랜드홀(7층)

한국전자통신연구원, 강동재

목 차

도입

II 클라우드 기술 동향

┃┃ 국내 멀티 클라우드 보유 기술 - 클라우드바리스타

[V] 제언

ChatGPT가 말하는 PaaS는... (1/2)

(Q) PaaS의 정의를 설명해줘

PaaS(Platform-as-a-Service)는 클라우드 컴퓨팅의 한 형태로, 하드웨어와 소프트웨어 플랫폼을 제공하는 서비스입니다[1]. PaaS 는 애플리케이션 개발 및 배포를 단순화하고 가속화하는 데 사용됩 니다.

이 서비스는 개발자들에게 애플리케이션을 개발하기 위한 기반이나 환경을 제공합니다. 개발자는 이를 통해 애플리케이션 코드를 작성 하고 테스트하며, 클라우드 기반 PaaS 플랫폼을 통해 애플리케이션 을 배포하고 관리할 수 있습니다. 이로써 <u>개발자는 하드웨어 및 인프 라스트럭처 관리에 대한 부담을 덜고 애플리케이션 개발에 집중</u>할 수 있습니다.

PaaS의 주요 특징은 다음과 같습니다:

- 개발자 친화적: 개발자들은 애플리케이션 코드 작성과 관련된 작업에 집중할 수 있습니다.
- 확장성: PaaS 플랫폼은 필요에 따라 애플리케이션을 확장할 수 있는 기능을 제공합니다.
- 자동화: 배포, 스케일링, 백업 등의 작업은 자동화되어 개발자가 신속하게 대응할 수 있습니다.

PaaS는 SaaS(Software-as-a-Service) 및 laaS(Infrastructure-as-a-Service)와 함께 클라우드 서비스 모 델 중 하나로, 다양한 비즈니스 및 개발 요구사항에 맞게 활용됩니다.

(Q) PaaS 서비스의 예시 20개를 표로 정리해줘

PaaS 서비스 또는 제품	설명
AWS Elastic Beanstalk	애플리케이션 배포 및 관리를 위한 PaaS 플랫폼
Google App Engine	웹 애플리케이션 및 서비스 개발을 위한 PaaS 플랫폼
Heroku	애플리케이션 배포 및 호스팅 서비스
Microsoft Azure App Service	웹 애플리케이션 및 API 개발 및 배포를 위한 서비스
IBM Cloud Foundry	클라우드 애플리케이션 배포와 관리를 위한 PaaS 플랫폼
Red Hat OpenShift	컨테이너 기반 애플리케이션 개발과 관리를 위한 PaaS 플랫폼
Salesforce App Cloud	CRM 및 엔터프라이즈 애플리케이션 개발을 위한 PaaS 서비스
Mendix	비즈니스 애플리케이션 개발을 위한 로우코드 PaaS 플랫폼
Oracle Cloud Platform	다양한 애플리케이션과 데이터베이스 개발을 위한 PaaS 플랫폼
Docker Cloud	컨테이너 관리와 클러스터링을 위한 PaaS 서비스
Cloud Foundry	개발자 친화적인 애플리케이션 배포 및 실행을 위한 PaaS 플랫폼
AppFog	웹 애플리케이션 개발 및 배포를 위한 PaaS 플랫폼
Engine Yard	Ruby on Rails 애플리케이션 개발 및 호스팅을 위한 PaaS
SAP Cloud Platform	비즈니스 애플리케이션 개발, 통합 및 확장을 위한 PaaS 플랫폼
Jelastic	Java, PHP, Node.js 등 다양한 언어로 애플리케이션 개발을 위한 PaaS
Cloudify	NFV(네트워크 기능 가상화) 및 애플리케이션 오케스트레이션을 위한 PaaS
Mendel Linux	머신러닝 및 딥러닝 모델을 위한 PaaS 플랫폼
CloudBees Jenkins	지속적 통합 및 지속적 배포(CI/CD)를 위한 PaaS 서비스
Firebase	모바일 및 웹 애플리케이션 개발을 위한 백엔드 PaaS 플랫폼
Twilio	클라우드 통신 서비스를 위한 PaaS 플랫폼

ChatGPT가 말하는 PaaS는... (2/2)

(Q) PaaS의 주요한 기능을 설명해줘

PaaS(Platform-as-a-Service)는 애플리케이션 개발 및 배포를 지원하는 다양한 기능을 제공합니다. 이를 구체적으로 설명하겠습니다:

- 애플리케이션 개발 환경 제공: PaaS는 개발자들에게 필요한 개발 환경을 제공하며, 이를 통해 코드 작성, 테스트, 및 디버깅을 간편하게 할 수 있습니다.
- 애플리케이션 호스팅 및 배포: PaaS는 애플리케이션을 호스팅하고 클라우드 환경에서 배포하는 기능을 제공합니다. 이로써 개발자는 하드웨어 또는 인프라 관리에 대한 걱정 없이 애플리케이션을 사용자에게 제공할 수 있습니다.
- 스케일링 및 자원 관리: PaaS 플랫폼은 애플리케이션의 수요에 따라 자동으로 스케일링되며, 필요한 리소스를 동적으로 할당하여 성능을 최적화합니다.
- 데이터베이스 관리: PaaS는 데이터베이스 관리를 지원하며, 데이터 저장, 백업, 복구, 확장성 등을 관리합니다.
- 보안 및 규정 준수: PaaS는 보안 및 규정 준수를 위한 기능을 제공하여 데이터와 애플리케이션을 안전하게 관리합니다.
- 협업 도구: 몇몇 PaaS 플랫폼은 개발자 및 팀 간의 협업을 지원하는 도구와 기능을 포함하고 있습니다.
- 서비스 통합: PaaS는 다른 서비스 및 API와의 통합을 간편하게 만들어줍니다.
- 모니터링 및 로깅: 애플리케이션 성능을 모니터링하고 로그를 관리하여 문제 해결 및 최적화를 지원합니다.
- 저렴한 비용 모델: PaaS는 리소스 사용량에 따라 비용을 지불하므로 비용을 효율적으로 관리할 수 있습니다.

PaaS는 개발자들이 애플리케이션 개발에 집중하고 더 신속하게 시장에 출시할 수 있도록 도와주는 효율적인 개발 및 배포 환경을 제공합니다.

- PaaS 플랫폼의 정의
 - 클라우드 인프라의 복잡성 완화 및 관리 부담을 경감하고, 애플리케이션의 개발, 배포, 통합, 관리에 집중할 수 있도록 하는 클라우드 서비스 기술 분야
- K-PaaS의 미래를 추측해보면...
 - 손쉬운 개발 환경 -> AI 기술 수용
 - 제약없는 배포 -> 멀티 클라우드 기술 수용
 - 단순/직관적 관리 -> AI+멀티클라우드

클라우드 기술 동향

클라우드 활용 형상의 변화

• 1세대 클라우드(단일/하이브리드 클라우드) → 2세대 클라우드(멀티/분산 클라우드)로 변모

구축 → 활용, 서비스 커버리지 확장, 저지연성 강화, 서비스 이동성, 서비스/CSP 상호운용성, 서비스 연결성 단일 클라우드 멀티 클라우드 분산 클라우드 **AS-IS** 2세대 클라우드('21~'30) 1세대 클라우드('10~'20) (1단계)단일/사설→ (2단계)하이브리드 (1단계) 멀티 → (2단계) 분산

[클라우드 활용 형상 변화]

가트너 전망 (Hype Cycle for Cloud Computing - '19~'22)

출처: Hype Cycle for Cloud Computing, 2019~2022, Gartner

- ('19~'22, 주요 기술 키워드) Edge Computing, Multicloud, PaaS플랫폼 관련 기술
- (향후 기술 키워드 전망) Distributed Cloud, Industry Cloud 관련 기술

현재 성숙된 기술 키워드가 아닌, 앞으로 연구가 진행되어야 하는 기술 키워드임

클라우드 공개SW 기술 동향

- '00년 ~ '23년까지의 주요 기술의 태동 및 진화
 - 기술의 등장 후, 최소 5년 후 산업계에서 적용, 활용 활성화(기업의 제품, 솔루션, 서비스화 등)
- (흐름의 키워드) 인프라 → 미들웨어(실행환경), 실행환경 경량화

클라우드 응용 실행환경의 변화 방향

• 클라우드 애플리케이션 실행환경의 "3rd Wave", <u>WebAssembly</u>

응용 실행환경 변화 및 새로운 CMP의 등장 시기

• 클라우드 기술의 변화에 따라, 응용 실행환경의 혁신 및 고도화를 동반 → CMP 솔루션 필연적 고도화 야기

글로벌 사업자 사업 영역의 변화

- 글로벌 사업자의 서비스 영역 확대로, *aaS 사업자 구분 모호
 - 특정 기업의 사업 영역을 laaS / PaaS / SaaS로 한정할 수 없는 상황
 - 클라우드 시장 동향을 laaS / PaaS / SaaS로 구분하여 정리하기가 더욱 어려워 집니다. ^^

국내 멀티 클라우드 보유 기술

- 클라우드바리스타 (Cloud-Barista) -

클라우드바리스타(Cloud-Barista)?

멀티클라우드 서비스/솔루션을 만드는데 반드시 요구되는 기반, 공통SW 기술 / 커뮤니티

※ 멀티클라우드 기술: 2개 이상의 (퍼블릭)클라우드를 연계, 운용, 활용, 관리하기 위한 클라우드 기반 기술

멀티클라우드 서비스 공통 플랫폼

멀티 클라우드 C.E.O SW 확보

- · (Common) 멀티클라우드 서비스/솔루션에 공통 적으로 요구되는 핵심SW 개발
- · (Efficient) 개별 기업/기관마다 중복개발의 비효율성을 제거
- · (Open) 니즈가 있는 수요자라면, 누구나 자유롭게 사용할 수 있는 공개SW로 제공

기술활용.확산의 GAP 해소

커뮤니티

- · (소통) Cloud-Barista 기술의 국내 내재화를 위한 소통 창구
- · (공유) Cloud-Barista의 개발 결과물(소스코드, 문서, 노하우 등) 공유의 장
- ·(협업) 자발적 개발자 및 참여자와의 협업 장소

멀티 클라우드 기반의 솔루션 개발

• 멀티 클라우드 관련한 다양한 기술들이 있겠지만...

	멀티 클라우드 PaaS 플랫폼	Cloud Migration 솔루션	멀티 클라우드 관리 플랫폼	
멀티 클라우드 서비스 공통 프레임워크 (Cloud-Barista)				

멀티 클라우드의 주요 기술

멀티 클라우드 기술은 인프라, 미들웨어 및 애플리케이션의 모든 기술 계층에 걸쳐 있는 하나의 기술 영역임

[이종 퍼블릭 클라우드 활용을 위한 주요 기술 및 국내외 사업자]

클라우드바리스타: 멀티클라우드 서비스 공통 프레임워크

클라우드바리스타는...

국내외 다양한 사업자의 이종 클라우드를 누구나 손쉽게 접근하여 필요한 클라우드 인프라를 확보, 활용하고, 응용 서비스를 전세계 곳곳으로 제공 및 관리할 수 있는 멀티 클라우드 기반 기술

클라우드바리스타가 지향하는 서비스 환경

- 컴퓨팅 인프라에 제약없는(제로락인@EU) 서비스 생태계
 - CSP, 지역, 활용 방식의 이질성 등에 제약없이 SW서비스가 변경없이 동일한 방식으로 배포, 운용, 제공되는 서비스 환경
 - 국내에서 사용되는 유사의미의 키워드 : SaaS 상호운용성 제공, 사업자종속성 극복 등

상따계 인프라에 제약없는 서비스 出 非 に

주요 기술 스택

17

멀티클라우드 인프라 서비스 연동

- 이종 클라우드 인프라 서비스를 연동하여 사용자에게 동일한 접근 및 활용 방식을 제공하는 프레임워크
 - 다양한 클라우드 인프라의 이질적 운용 방식(API 및 서비스방식)에 대한 공통 운용 방식을 제공
 - 신규 클라우드 인프라의 동적 연동 및 기존 클라우드 인프라의 동적 제거
 - VPC/Subnet, Security Group, 가상머신, 로그인, NLB, Disk 등 컴퓨팅 자원 추상화
 - 멀티클라우드 메타정보의 빠른 접근을 위한 캐싱 기술(Spider-Edge)
 - 다양한 클라우드의 연동 및 운용 이력 데이터 기반의 인사이트 제공 기술(HisCall)
 - Parallelism/Fine-Grained를 강화한 Spider Lock 메커니즘(Sponge Lock)
 - ※ 7종의 CSP 인프라 연동
 - (세계 클라우드 시장 점유율 7위) AWS, MS Azure, Google GCP, Alibaba, Tencent, IBM Cloud, OpenStack
 - ※ '23년(2단계)부터, 국내 클라우드 인프라 연동 확대
 - 국내 주요 클라우드 사업자 및 및 중소/중견 사업자 클라우드

※ 멀티클라우드는 각 사업자의 개방형 API 기반으로 연동 (개별 사업자와의 협의/협약 불필요)

멀티클라우드 인프라 서비스 통합 운용 관리

- 사용자/서비스 니즈 기반의 최적 클라우드 인프라를 선정, 배치하고 멀티클라우드 상에 흩어져 존재하는 laaS 서비스를 하나의 서비스(MCIS)로 통합 관리하는 프레임워크
 - 멀티클라우드 인프라 서비스 최적 배치
 - 사용자/서비스 요구사항 기반의 배치 스케쥴링 / 알고리즘
 - MCIS 구성 및 라이프사이클 통합 관리
 - 멀티클라우드 인프라 서비스 동적 성능 평가 및 분석
 - CPU, 메모리, 파일처리, DB처리 등
 - ※ 최적 클라우드를 선정하기 위한 가상머신 최적 배치 정책
 - 컴퓨팅 자원의 스펙(CPU, Mem 등), 위치, 성능(동적 성능 측정 기반), 네트워크 응답속도(Delay)
 - ※ 지도(Map) 기반의 멀티 클라우드 서비스 배치 가시화 지원
 - Tumblebug MapUI

멀티클라우드 통합 모니터링

- 멀티클라우드 상에 배포, 운용되는 인프라 서비스 및 애플리케이션 실행환경의 대규모 모니터링을 제공하는 프레임워크
 - 대규모 모니터링 성능 안정성을 위한 구조 및 기능
 - (현) Agent-based monitoring → (향후) Agentless monitoring 추가 지원 예정
 - 이종 운영체제 모니터링 에이전트(리눅스, 윈도우, …)
 - 멀티클라우드 인프라&애플리케이션 실행환경 통합 모니터링
 - 다양한 클라우드 환경을 고려한 모니터링 방식(PUSH, PULL)
 - 멀티클라우드 특화 모니터링 메트릭

- ※ 글로벌스케일의 인프라 및 실행환경으로 부터 수집되는 대규모 정보를 누락없이 저장, 분석 • 어떠한 사업자의 클라우드라도 데이터를 수집
- ※ 사업자, 지역, 클라우드 운영체제, OS 등의 이질성을 극복하는 강인한 모니터링

멀티클라우드 애플리케이션 실행환경 통합 관리

- 멀티클라우드를 구성하는 다양한 이종 클라우드상에 응용서비스의 제약없는 배포, 실행을 위한 동일
 - 실행환경(Kubernetes)을 제공하는 프레임워크
 - 이종 실행환경의 추상화를 위한 공통 프레임워크 제공
 - 사업자 관리형 K8s(PMKS) 실행환경 제공
 - Cloud-Barista 관리형 K8s(CMKS) 실행환경 제공
 - 멀티클라우드 K8s(MCKS) 실행환경 제공
 - 응용서비스 실행환경의 라이프사이클 통합 관리
 - 멀티클라우드 애플리케이션 실행환경의 통합 관리
 - ※ 제약없는 K8s의 활용 환경 제공
 - 존재하는 K8s는 활용하고, 없으면 신규 배포하여 활용
 - ※ 단일 K8s의 서비스 커버리지의 제약 극복
 - 다중 클라우드상에 하나의 K8s를 배포 운용

모든 클라우드에서 K8s를 구동하고 하나의 콘솔에서 통합 운용할 수 있는 환경

클라우드에 제약없는 애플리케이션 배포, 실행을 위한 동일 환경 제공

멀티클라우드 애플리케이션 실행환경 통합 관리 프레임워크

사업자 관리형 K8s (Provider Managed K8s-PMKS)

Cloud-Barista 관리형 K8s (C.B Managed K8s-CMKS)

멀티클라우드 K8s (Multi-Cloud K8s-MCKS)

[CB-Ladybug 프레임워크 개념도]

멀티클라우드 개방형 API 및 플랫폼 운용 관리

- (CB-Waterstrider) Cloud-Barista의 주요 기능을 사용자가 활용하거나, Cloud-Barista 기반의 새로운 서비스를 만들어 갈 수 있도록 하는 멀티클라우드 서비스 공통 플랫폼의 <u>개방형 API를 제공</u>하는 프레임워크
 - RESTful API (개발-범용성), GO API (개발-성능), CLI API (활용-관리자/숙련자), 웹도구 (활용-편의성)

300개+ 의 개방형 공통 API를 제공

- (CB-Bridge) Cloud-Barista의 손쉬운 설치, 구동 및 운용 관리 기술
 - Cloud-Barista 설치 및 실행
 - 물리노드, 가상머신, 컨테이너, K8s 환경에 배포 및 실행 지원
 - Cloud-Barista 운용 및 관리
 - 프레임워크 별 모니터링, 오토스케일링, 장애 복구 등

주요 프레임워크 관련성

향후 개발 기술

• 컴퓨팅 인프라에 제약없는 SW 배포, 운용 및 제공 환경을 위해서는 하기의 부족 기술 확보가 필수

글로벌 스케일의 데이터 관리 기술

복잡한 구성을 갖는 SW의 손쉬운 배치 및 관리

멀티클라우드 가상 네트워킹 기술

국내 클라우드의 차별없는 연동

활용 시나리오 예

• [목표] 신산업 및 전통산업의 디지털 전환을 위한 다양한 산업분야의 컴퓨팅 인프라 기술로 활용을 지향

단일 사업자 보유 클라우드의 통합 서비스

국내외 클라우드 정보 및 활용 인사이트 제공 서비스

하이브리드 멀티클라우드 솔루션(기존 솔루션 고도화)

멀티클라우드 기반 응용 배포, 관리 플랫폼

활용 기술 #1 - 클라우드 마이그레이션 플랫폼

활용기술의 목표

이종 사업자 컴퓨팅 환경의 이질성 및 복잡성을 극복하는 <u>상호운용성을 기반</u>으로 국내 기업이 직면하고 있는 서비스형SW

전환/이관((전환)구축형SW→서비스형SW, (이관) 서비스형SW의 CSP변경)의 애로사항을 해소하는 <u>클라우드 마이그레이션 기술 제공</u>

활용 기술 #2 - 멀티 클라우드 관리 플랫폼

활용기술의 목표

- 다양한 이종 클라우드의 활용 및 관리 복잡성을 극복하고, 멀티 클라우드 서비스의 활용 및 관리 비용 최적화를 제공
 - (CMP 위상) 구축형 클라우드를 관리하기 위한 부가 솔루션 → 이종 퍼블릭 클라우드를 제약없이 사용할 수 있는 독립적인 솔루션

기존 CMP 사업자간 경쟁 심화(현, 제한된 퍼블릭 클라우드)

BUT, 기술적 복잡성 급격히 심화로 진입장벽은 높아짐

완전한 클라우드 상호운용 생태계의 조성을 위해서는...

- 국내 클라우드 활성화는 CSP PaaS SaaS 사업자의 상호 고도화 환경하에서 선순환 생태계 조성이 가능
 - 클라우드바리스타는 PaaS/SaaS 활성화, 선순환 생태계 조성을 위한 디딤돌(Trigger)로서 역할을 수행

클라우드바리스타 릴리스 및 컨퍼런스 로드맵

- 소스코드 라이선스 및 개발언어
 - 기술수요자 측면에서 활용 및 사업화에 유리하고 Cloud-Barista의 활용 공개SW와 호환이 우수한 아파치2 라이선스로 릴리스
 - 주요한 클라우드 공개SW가 수용하고, 개발자 확산 비율이 가장 높은 GO 언어 기반으로 개발

- (멀티 클라우드 시장, 국내 준비도 미흡) 멀티, 분산 클라우드의 핵심은 개방형 API 고도화
 - 3rd Party 서비스, 솔루션 개발 활성화를 위한 필수조건으로 생태계 조성을 가속화
 - 하지만, 국내 주요 CSP의 클라우드는 개방형 API 제공 측면과 기능 안정성의 보완이 필요한 상황
 - VPC, Subnet의 제어 API 등
- (<u>클라우드 규모 보다는 SW로 경쟁</u>) 진입 비용은 낮지만, 효과는 클 수 있는 영역
 - 국내 주요 클라우드 3사가 운용중인 클라우드 리전은 글로벌 클라우드 사업자 1개사 리전의 ½ 보다 적음
 - 멀티 클라우드 생태계는 클라우드 위쪽의 또 다른 가상 생태계 형성이 가능

- (글로벌 공개SW 생태계로의 진입 노력 미흡) 주요 공개SW 솔루션의 글로벌 생태계로 진입 필요
 - 클라우드 분야는 유난히 공개SW의 지배력이 큰 분야
 - 클라우드 산업계의 지배적인 공개SW 솔루션은 글로벌 CSP 3~4개 사를 중심으로 개발, 제공되고 있음
 - 국내 CSP 사업자는 보유 클라우드 서비스가 글로벌 솔루션 및 생태계에 연계가 가능하도록 개발 참여가 필요한 상황
 - 예, 공개SW로 글로벌 수요자들의 활용도가 높은, 쿠버네티스 관리 솔루션(Kube-sphere, Kub-Fed 등) 등

맺음 말

클라우드바리스타의 기술과 커뮤니티는 글로벌을 지향하고 있으나,

그 끝은 국내 공개SW와 클라우드를 지향 하고 있습니다.

'23년 11월 22일, Cloud-Barista Season2가 시작됩니다.^^

13:30~, 그랜드 인터콘티넨탈 서울 파르나스 호텔

K-PaaS의 Rabbit Jump를 기원합니다

감사합니다.