Wed. Oct 7

Math 210: Homework 4 - Spring 2015

1. (Problem 4.36) Prove that for every positive real number x that $1 + \frac{1}{x^4} \ge \frac{1}{x} + \frac{1}{x^3}$.

PF

$$x^4(1 + \frac{1}{x^4} \ge \frac{1}{x} + \frac{1}{x^3})$$

$$\Rightarrow x^4 + 1 > x^3 + x$$

$$\Rightarrow x^4 + 1 - x^3 - x > 0$$

$$\Rightarrow x^3(x + \frac{1}{x^3}) - (x^3 - x) \ge 0$$

$$\Rightarrow (x^3 - 1)(x - 1) \ge 0$$

Since $(x^3-1)(x-1) \ge 0$, it follows that $x^4+1-x^3-x \ge 0$ and so $x^4+1-x^3-x \ge 0$

Dividing this by x^4 we get the desired result.

$$1 + \frac{1}{x^4} \ge \frac{1}{x} + \frac{1}{x^3}$$
.

//

2. (Problem 4.46) Let A and B be sets. Prove that $A \cup B = A \cap B$ if and only if A = B.

PF

(⇒) By Contrapositive

Assume $A \neq B$

Let $a \in A$ but $a \notin B$

Then $a \in A \cup B$

and $a \notin A \cap B$

So $A \cup B \neq A \cap B$

 (\Leftarrow)

Given A = B

So for every $a \in A$ then there is also $a \in B$

Then $A \cup B = A = B$

and $A \cap B = A = B$

Therefore $A \cup B = A \cap B$

//

3. (Problem 4.56) Let A, B and C be sets. Prove that $(A - B) \cup (A - C) = A - (B \cap C)$.

PF

 (\subseteq)

Let $x \in (A - B) \cup (A - C)$

wlog Assume $x \in A \times B$

By definition $x \in A$ and $x \notin B$

Similarly $x \in A$ and $x \notin C$

Therefore $x \in (A - B) \cup (A - C)$

 (\supseteq)

Let $x \in A - (B \cap C)$

By definition $x \notin B \cap C$

Then $x \in A$ and either $x \notin B$ and $x \in C$, or $x \in B$ and $x \notin C$, or $x \notin B$ and $x \notin C$

Case 1: $x \notin B$ and $x \in C$

Since $x \notin B$

By definition $x \notin B \cap C$

Case 2: $x \in B$ and $x \notin C$

Since $x \notin C$

By definition $x \notin B \cap C$

Case 3: $x \notin B$ and $x \notin C$

Since $x \notin C$ and $x \notin C$

By definition $x \notin B \cap C$

Therefore $x \in A - (B \cup C)$

So
$$(A - B) \cup (A - C) = A - (B \cup C)$$

//

4. (Problem 4.58) Let A, B and C be sets. Prove that $A \cap \overline{(B \cap \overline{C})} = \overline{(\overline{A} \cup B) \cap (\overline{A} \cup \overline{C})}$.

PF

$$A \cap \overline{(B \cap \overline{C})}$$

$$=A\cap(\overline{B}\cup\overline{\overline{C}})$$

$$= (A \cap \overline{B}) \cup (A \cap \overline{\overline{C}})$$

$$= \overline{(A \cup \overline{B})} \cap (\overline{A \cup \overline{\overline{C}}})$$

$$= \overline{(\overline{A} \cup B) \cap (\overline{A} \cup \overline{C})}.$$

//

5. (Problem 4.68) Let A, B, C and D be sets. Prove that

$$(A\times B)\cap (C\times D)=(A\cap C)\times (B\cap D).$$

PF

 (\subseteq)

Let
$$(x, y) \in (A \times B) \cap (B \times D)$$

Then
$$(x, y) \in A \times B$$
 and $(x, y) \in B \times D$

Thus
$$(x,y) \in A \times B$$
 and $(x,y) \in C \times D$

By definition
$$(x, y) \in (A \times B) \cap (C \times D)$$

 (\supseteq)

Let
$$(x, y) \in (A \cap C) \times (B \cap D)$$

thus
$$x \in (A \cap C)$$
 and $y \in (B \cap D)$
Then $x \in A$, $x \in C$
Also $y \in B$ and $y \in D$
By definition $(x,y) \in (A \cap C) \times (B \cap D)$
So $(A \times B) \cap (B \times D) = (A \cap C) \times (B \cap D)$

//