Modelling Maritime SAR Effective Sweep Widths for Helicopters in VDM

By Alexander Sulaiman and Ken Pierce

Introduction

- Search and Rescue (SAR)
- Missing person search
- Small charities (Limited time and resources)
- · SAR managers need to plan effectively
- Which search asset to use?

Introduction

- Effective Sweep Width (W) from Search Theory
- Small land SAR charities are using camera drones
- They are not sure how effective they are at detecting...
- Field trials are expensive
- Is modelling a solution? (i.e. virtual trials)

Introduction

Eventually, model camera
 drones and compute W

 \bullet First, model helicopters for known W

Introduction: W for helicopters

	Altitude 150 metres (500 feet) Visibility (km (NM))	Altitude 300 metres (1000 feet) Visibility (km (NM))		Altitude 600 metres (2000 feet) Visibility (km (NM))				
n object s (feet)) n in water*		Altitude 150 metres (500 feet) Visibility (km (NM))						
-person -person								
person	Search object (metres (feet))	1.9 (1)	5.6 (3)	9.3 (5)	18.5 (10)	27.8 (15)	> 37.0 (> 20)	
person	Person in water*	0.0 (0.0)	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)	
person person	Raft 1-person	0.7 (0.4)	1.7 (0.9)	2.2 (1.2)	3.0 (1.6)	3.3 (1.8)	3.3 (1.8)	
oat < 5 (15)	Raft 4-person	0.9 (0.5)	2.2 (1.2)	3.0 (1.6)	4.1 (2.2)	4.8 (2.6)	5.2 (2.8)	
ooat 10 (33) ooat 16 (53)	Raft 6-person	0.9 (0.5)	2.6 (1.4)	3.5 (1.9)	5.0 (2.7)	5.9 (3.2)	6.5 (3.5)	
oat 24 (78) t 5 (15)	Raft 8-person	1.1 (0.6)	2.8 (1.5)	3.7 (2.0)	5.2 (2.8)	6.1 (3.3)	6.9 (3.7)	
8 (26)	Raft 10-person	1.1 (0.6)	3.0 (1.6)	4.1 (2.2)	5.7 (3.1)	6.7 (3.6)	7.4 (4.0)	
at 15 (49) at 21 (69)	Raft 15-person	1.1 (0.6)	3.1 (1.7)	4.3 (2.3)	6.1 (3.3)	7.4 (4.0)	8.1 (4.4)	
t 25 (83) -46 (90–150)	Raft 20-person	1.1 (0.6)	3.3 (1.8)	4.8 (2.6)	7.0 (3.8)	8.5 (4.6)	9.4 (5.1)	
-91 (150-300) 91 (300)	Raft 25-person	1.1 (0.6)	3.5 (1.9)	5.0 (2.7)	7.6 (4.1)	9.3 (5.0)	10.4 (5.6)	

^{*} For seach altitudes of 150 metres (500 feet) only, the sweep width values for a person in water may be multiplied by 4, if it is known that the person is wearing a personal flotation device

Background

Background: W

- Effective search (or sweep) width or sweep width
- · Quantifies a sensor's detectability
 - Specific object
 - Specific environmental conditions
- Quantity is length

Background: W

• W derived from a Lateral Range Curve (LRC)

•
$$W = \int_{-\infty}^{+\infty} p(x) dx$$

Background: Lateral Range Curve

Background: Lateral Range Curve: Four Brooms

Background: Lateral Range Curve: Broom performance profiles

Background: Lateral Range Curve: Broom experimental results

	Broom B1	Broom B2	Broom B3	Broom B4	
Broom Width	0.5 m	1.0 m	2.0 m	1.0 m	
Maximum Lateral Range	0.25 m	0.5 m	1.0 m	0.5 m	
Bristle Density	Dense	Less dense	Much less dense	Composite	
Broom Effectiveness (avg.)	100 %	50 %	25 %	50%	
Sand "Density"	10 g/m^2	10 g/m^2	10 g/m^2	10 g/m^2	
Sweeping Speed	0.5 m/sec	0.5 m/sec	0.5 m/sec	0.5 m/sec	
Time	20 sec	20 sec	20 sec	20 sec	
Distance Moved	10 m	10 m	10 m	10 m	
Area Swept	0.5 m x 10 m	1.0 m x 10 m	2.0 m x 10 m	1.0 m x 10 m	
Amount of Sand Swept Up	50 g	50 g	50 g	50 g	
Average Sand Removal Rate	2.5 g/sec	2.5 g/sec	2.5 g/sec	2.5 g/sec	
Effective Sweep Width	0.5 m	0.5 m	0.5 m	0.5 m	
Area Effectively Swept	0.5 m x 10 m				
Effective Sweep Rate	$0.25 \text{ m}^2/\text{sec}$	$0.25 \text{ m}^2/\text{sec}$	$0.25 \text{ m}^2/\text{sec}$	$0.25 \text{ m}^2/\text{sec}$	

VDM

VDM: Lateral range experiment grid setup

R = Rows C = Columns SL = Sea Length

VDM: Lateral range experiment randomly place objects

VDM: Lateral range experiment detection

VDM: Class diagram

VDM: Detection data

VDM: Detection factors

- Altitude
- Visibility
- Object size
- Angular resolution

Results

Results: Actual vs expected

- 600-metre altitude case
- Red = Expected
- Blue = Actual
- Limitations
 - 4000 detections for each object

Conclusions

Conclusions

- Initial model built (helicopter detection case)
- \bullet The number of detections is a key factor for W
- Derive W for any sensor using a lateral range experiment

Future work

Future work

Apply to drone camera detection case

- Sensor
 - Camera angular resolution
 - Human factors (E.g. detection fatigue and flying experience)
 - Real-time motion

Future Work

- Object
 - Real-time motion
 - Physical characteristics (E.g. colour)
- Environmental conditions
 - Weather
 - Lighting
 - Obstacles (E.g. waves or vegetation)

Thank you for listening!