ZÁKLADY MULTIMÉDIÍ

Základní pojmy

Vlastnosti běžných multimediálních formátů

Používání multimédií v aplikacích a na webu

CO JE VIDEO

- Sekvence jednotlivých obrázků (tzv. snímků) doprovázena typicky audiozáznamem případně titulky
- 8 minutový klasický kreslený film
 - cca 7000 listů papíru
 - cca 100 tužek (různé síly, tloušťky)
 - cca 10 litrů barvy
 - Filmový materiál (cca 240 m)
 - Mnoho trpělivosti

- Snímky = bitmapové obrázky
 - Stejná velikost (rozlišení), např. 320x240
 - Stejný barevný model, např. YUV
 - Stejná bitová hloubka, např. 8 bitů / barevná složka
 - Sousední snímky se odlišují jen mírně
 - Nahrány/přehrávány konstantní rychlostí → tzv. snímková frekvence = počet snímků za sekundu (fps)
- Snímková frekvence
 - Minimálně 24 fps pro navození iluze plynulého pohybu
 - V praxi se používá rovněž 25 fps nebo 30 (29.97) fps

- Volba snímkové frekvence závisí
 - Na rychlosti pohybu, který chceme zachytit
 - Pro statická videa (např. redaktor, tutoriál ovládání nějaké aplikace) postačuje cca 15-20 fps
 - Pro velmi rychlé pohyby (např. závod sprinterů) je 24 fps nedostatečné (zachycený pohyb bude trhaný)
- Nejjednodušší podoba digitálního videa:
 - Adresář s obrázky (např. JPG)
 - DEMO

- Nejjednodušší podoba digitálního videa typicky nepraktická
 - Mnoho souborů pro distribuci
 - Vysoká neefektivita při přístupu k snímkům
 - Nelze využít HW cache
 - Může vést k "trhanému" videu
 - Informace o snímkové frekvenci (FPS) není součástí
- Lze částečně řešit uložením snímků do jednoho velkého souboru
 - FPS součástí hlavičky souboru
 - Přehraje pouze aplikace, která zná strukturu souboru

- Lepší je využít některý z dostupných standardních formátů
 - Obvykle nejrůznější omezení
- Omezení na snímkovou frekvenci
 - Nové HDTV standardy = lze použít libovolnou fps
 - Starší standardy = volba fps limitována
 - Např. 576 řádek při 25 fps,
 240 nebo 480 řádek při 29.97 fps
 - → Obecné pravidlo: nedefinovat si vlastní snímkovou frekvenci, pokud pro to nemáte skutečně dobrý důvod

- Omezení na velikost snímku (rozlišení)
 - Může být teoreticky libovolná
 - Prakticky se používá buď:
 - Standardní rozlišení (doporučeno)
 - Rozlišení s počtem řádek v jednoduchém poměru ke standardním rozlišením (např. polovina, tři čtvrtiny)
 - Je vhodné volit počet řádek i sloupců jako násobek 16 resp. 8
 - Je vhodné volit poměr stran jako 4:3 nebo 16:9
 - Vše ostatní může vést k tomu, že video nebude možné v budoucnosti přehrát, nebo oříznuté

- Standardní rozlišení
 - 240p 320x240 (4:3)
 - 360p 480x360 (4:3) nebo 640x360 (16:9)
 - 480p, 480i 640x480 (4:3) nebo 720x480 (3:2),
 resp. 704x480 (5:3) nebo 853x480 (16:9)
 - 720p 1280x720 (16:9); **HD**
 - 1080p, 1080i 1920x1080 (16:9); FullHD

- Progressive scan (p)
 - Pixely zpracovávány řádek po řádce zleva doprava
- Interlaced scan (i)
 - Pixely zpracovávány ob řádek zleva doprava
 - Polovina informace chybí!
 - Určeno pro analogové vysílání
 - má malou propustnost,
 - Určeno pro CRT monitory
 - dáno jejich principem
 - Lze na Plasma, LED, LCD, ...
 - deinterlaced filtr
 - doprovázeno artefakty
 - → (p) je lepší

- Počet bitů za sekundu, které potřeba přenést
- FullHD (1920x1080) film se snímkovou frekvencí 29.97 při 24 bitech na pixel= cca 178 MB/s
- Přenosové rychlosti zařízení různé
 - Pevný SSD disk cca 465 MB/s
 - Pevný disk SATA 6G až 240 MB/s
 - USB 3.0 až 180 MB/s
 - ! Blu-ray mechanika (12x) cca 54 MB/s
 - ! USB 2.0 cca 35 MB/s
 - ! DVD mechanika (22x) cca 30 MB/s
 - ! internet ZCU cca 10 MB/s
 - •! průměrný internet v ČR cca 2 MB/s

http://rychlost.cz/vysledek/

10.3.2015:

Průměr pro Česká republika	
Stahování	Nahrávání
16,4 Mbit/s	8,0 Mbit/s
MP3 za 1,9 sec	MP3 za 4,0 sec
CD za 5,7 min	CD za 11,7 min
DVD za 38,1 min	DVD za 1,3 hod
<u>Statistiky</u>	<u>Poskytovatelé v ČR</u>

- Film typické délky (120 min) = 416.7 GB
 - cca 1 pevný disk
 - cca 4 Blue-ray disky největší velikosti
 - cca 44 DVD (oboustranných)
 - cca 595 CD
 - nebo cca 50 flash disků obvyklé velikosti (8 GB)

- Možnosti snížení datového toku
 - Nižší rozlišení
 - Ztráta kvality
 - Nižší snímková frekvence
 - Ztráta plynulosti pohybu zejména u rychlého videa
 - Komprese dat
 - Výhradně ztrátová (aby se dosáhlo požadovaného toku)

- Algoritmus pro kompresi naimplementován v tzv. kodéru (coder)
 - Softwarový nebo hardwarový program
- Algoritmus pro dekompresi naimplementován v tzv. dekóderu (decoder)
- Kodér obvykle pro svou činnost vyžaduje rovněž dekóder → standardní označení programů pro kompresi/dekompresi:
 - Kodek (codec = coder decoder)
- Existuje mnoho kodeků

- Kodek transformuje data do úspornější podoby, která vyhovuje nastavení
 - Obvykle ztráta věrnosti reprezentace barvy, ostrosti obrazu, přesnosti pohybu, ...
 - Kódování časově náročné, dekódování v reálném čase
- Kodek má různé parametry pro nastavení
 - Nejvýznamnějším je velikost toku dat (bitrate)
- Kodek musí být k dispozici na straně příjemce
 - Exotický kodek může vést k nižšímu datovému toku, ale video nelze pak přehrát na mnohých zařízeních
- Mnohé součástí OS, jiné lze stáhnout z netu

- Možnosti volby velikosti datového toku:
 - Konstantní velikost (CBR, constant bit rate)
 - Variabilní velikost (VBR, variable bit rate)
- CBR = každý snímek kódován přibližně stejným počtem bytů
 - Jednoduché, obsah snímku ignorován
 - Černá plocha kódována zbytečně příliš kvalitně
 - Záběr na vlasy kódován nedostatečně

- VBR = snímky mohou být kódovány různě velkým počtem bytů
 - Udává se průměrný požadovaný tok + maximální povolený (vychází z přenosového kanálu)
- Komprese může být:
 - Jednoprůchodová
 - Víceprůchodová
- Jednoprůchodová komprese
 - Snímek okamžitě zpracován a odeslán na výstup
 - Úroveň komprese pro dosažení průměrného toku nutno odhadnout
 - Jediné možné pro přímý přenos televizního vysílání

- Víceprůchodová komprese
 - Obvykle dvouprůchodová
 - V prvním průchodu se zjistí složitost snímků
 - Vlastní komprese ve druhém průchodu
 - Vhodné např. pro vytvoření videa pro archivační účely

■ MPEG-2

- Standardně užíváno pro DVD filmy, tj. DVD formát
- Jeden z formátů pro Blu-ray
- Digitální televizní vysílání (HDTV)
- Nižší nároky na výkon dekódovacího zařízení
- Vizuálně bezeztrátová komprese cca 50:1
- Typicky 480 nebo 576 řádek

■ VC-1

- výplod Microsoftu, vylepšený MPEG-2
- určen zejména pro vysílání (např. internetové)
- jeden z formátů pro Blu-ray
- patentováno → nutná licence pro vytváření
- WMV resp. WMA codec

MPEG-4

- Stále se vyvíjející formát s mnoha doplňky (part)
- Náročnější kódování (hodiny)
- Vyšší nároky na výkon dekódovacího zařízení
- Mnohem menší datový tok (v závislosti na part)
- Part 2: DivX, XviD, QuickTime kodek
- Part 10: H.264 kodeky
 - Používáno pro Blu-ray, YouTube, kabelová televize
 - Používání vyžaduje licenci
 - Jediná volná (GNU licence) implementace je x264 kodek
 - Vizuálně bezeztrátová komprese cca 150:1
 - Typický počet řádek: 240 1080 (variabilita)

VP8

- Uveřejnil Google jako konkurenci H.264
 - poté, co koupil firmičku, co VPx vyvíjela
- Open-source licence (<u>webmproject.org</u>)
 - Patentový spor s MPEG LA a Nokií 2013: uzavřen dohodou
- WebM
- Theora
 - Uvažován jako nativní formát pro HTML5
 - Volná licence
 - Obdobné vlastnosti jako H.264

- Microsoft Video 1
 - Velmi jednoduchý formát
 - Kódování v reálném čase
 - Vhodné pro zachycení obrazovky

- Barevné podvzorkování
 - Zahození barevné informace
 - RGB na YCbCr, YCoCg, YUV, apod.
 - Zredukovat barevné kanály (CbCr, CoCg, UV)
 - Více možností, jak se provede
 - Označují se 4:2:2, 4:2:0, ...
 - Viz JPEG

- Snížení tzv. entropie dat, tj. různorodosti dat
 - Nižší entropie = lze odhadnout, co bude v datech dál
 - Netřeba ukládat to, co dokážu správně odhadnout
- Barevné komponenty ukládány různě
 - Komponenty pixelu u sebe × stejné komponenty různých pixelů u sebe
 - Např. YUY2, YV12, ...

- Statickou část scény neukládat vícekrát
 - Obraz rozsekán na tzv. makrobloky
 - Makroblok uložen jen jednou (v klíčovém snímku)
 - Pro další snímek jen informace, kam se makroblok pohnul + kompenzace chyby (tzv. rozdílový snímek)
 - Čas od času třeba restartovat

snímek 1 snímek 2 rozdíl

- GOP = Group of Picture Size
 - Určuje, jak často se snímek má kódovat jako klíčový
 - 1 každý snímek je klíčový
 - 30 klíčový snímek + 29 rozdílových snímků
 - Nejčastěji používané
 - Při poškození nejpozději za 30 snímků (cca 1 sekunda) se dekodér může "chytit"
 - Dlouhé GOP (např. 300)
 - Pro archivní účely
 - Obtížné skočit na libovolnou část videa
- Snímky nejsou ukládány v lineárním pořadí
 - Pro dekódování rozdílového snímku často třeba předchozí i následující klíčový snímek

AUDIO

- Zvuk = mechanické vlnění
 - Má frekvenci a amplitudu (intenzita)
- Digitální audio = sekvence amplitud mechanického vlnění (tzv. vzorků)
- Vzorkovací frekvence
 - Závisí na rychlosti zvuku, který se zachycuje
 - Nemusí být konstantní v celém záznamu

STANDARDNÍ VZORKOVACÍ FREKVENCE

- 16 KHz postačuje pro mluvené slovo
 - různé hlásky mohou znít stejně
- 44.1 KHz obsáhne celý slyšitelný rozsah
 - používáno v Audio CD
 - zkresluje zabarvení tónu
- 48 KHz nejčastěji užívaná frekvence
- 96 KHz, 192 KHz DVD a Blu-ray
 - umožňuje další editaci zvuku

- Počet bitů za sekundu, které potřeba přenést
- Hudba se vzorkovací frekvencí 192 KHz při 8 bytech (double) na vzorek = cca 1.5 MB/s
- Přenosové rychlosti zařízení různé
 - •! průměrný internet v ČR cca 0.5 MB/s
- Písnička typické délky (4 min) = cca 350 MB
- Hudba k filmu (120 min) = cca 10 GB
 - cca 2-3 DVD
 - cca 15 CD
 - nebo cca 2 flash disky obvyklé velikosti (8 GB)

AUDIO KANÁLY

- Audio může obsahovat více kanálů
 - Různé zvuky v různých kanálech
- Kanály ukládány nezávisle
- Datový tok roste lineárně s počtem kanálů
- Monofonní zvuk = 1 kanál
- Stereofonní zvuk = 2 kanály
 - Kanál č. 0 jde do levého reproduktoru
 - Kanál č. 1 jde do pravého reproduktoru
 - Označováno jako 2.0

AUDIO KANÁLY

- Domácí kino = 6 kanálů
 - Označováno jako 5.1
 - 1 speciální nízkofrekvenční kanál (hluboké tóny)
 - 5 běžných zvukových kanálů
 - 1 pro levý přední reproduktor
 - 1 pro pravý přední reproduktor
 - 1 pro středový přední reproduktor
 - 1 pro levý zadní reproduktor
 - 1 pro pravý zadní reproduktor
- Pro většinu práce si vystačíme však s mono

SNÍŽENÍ DATOVÉHO TOKU

- Nižší vzorkovací frekvence
 - Ztráta kvality
- Komprese dat
 - Zvukové kodeky
 - Obvykle se specifikuje požadovaná velikost datového toku (tzv. bitrate) a kodek automaticky určí, jak moc je třeba ztratit kvalitu

- Snížení počtu bitů potřebné pro vzorek
 - Kvantizace rozsahu
 - Nejčastěji 16 bitů / vzorek (-32768 ..32767)
 - Čím větší hodnota, tím hlasitější bude zvuk
- + další kompresní přístupy

WAV

- Provádí pouze kvantizaci na 16 nebo 8 bitů
- Vhodné pro Audio CD nebo další zpracování
 - 44 100*16 = 705 600 bit / s \rightarrow cca 5 MB / min, tj. cca 32 mono písniček a cca 16 stereo písniček na 1 audio CD
- Windows Media Audio (WMA)
 - Patentováno → nutná licence pro vytváření
 - Umožňuje digitální ochranu
 - Kompresní poměry běžně až 10:1
 - Bitrate < 128 kbit /s vede k slyšitelnému zkreslení
 - 160 kbit /s považováno za minimum pro stereo

STANDARDNÍ FORMÁTY

- MPEG-1 Audio Part 3 (MP3) nebo MPEG-2
 Audio Advanced Audio Coding (AAC)
 - Rovněž patentováno
 - Nízké nároky na dekódování
 - Srovnatelné s WMA
 - Podporuje nejen CBR, ale také VBR
 - Není všemi přehrávači podporováno
- OGG Vorbis
 - Open-source
 - Srovnatelné s předchozím

- Uložení video/audio záznamu vyžaduje dodatečné informace:
 - Rozlišení snímku
 - Typ použité komprese pro video/audio
 - Počet audio kanálů a jejich mapování na reproduktory
 - ...
- Pokud data na pevném disku, lze informace uložit do nějaké hlavičky
- Pokud data vysílána, informace musí přicházet k přijímači průběžně
 - Uživatel se může k vysílání připojit v průběhu

- Řešením jsou tzv. kontejnerové struktury
- Vyžadují dva programy:
 - Multiplexor (muxer)
 - Odesílací strana
 - Demultiplexor (demuxer, splitter)
 - Přijímací strana
- Multiplexor
 - Slučuje nezávislé proudy videa, zvuku, titulkových stop, ... do jednoho složitého proudu dat
 - Podporuje typicky různé video a audio kodeky

- Demultiplexor
 - Separuje ze složitého proudu data, o které je zájem
 - Např. obraz ve FullHD kvalitě, původní zvuk (např. v angličtině) a české titulky
 - Systém správy multimédií (typicky součást OS) předá separované proudy příslušným kodekům a jejich výstupy výstupním zařízením

- Nejčastější kontejnerové struktury:
 - Audio Video Interleave (AVI)
 - MPEG, např. MPEG-2 Transport Stream (MPEG-TS) nebo MPEG-4 (ASF)
 - Matroska (MKV, WebM)
 - Flash Video (FLV)
 - Windows Media Video (WMV)
- Audio Video Interleave
 - Soubory s příponou .avi
 - Bývalý standard pro Windows
 - Dnes již překonaný

- MPEG-2 Transport Stream (MPEG-TS)
 - Interně používán v digitálních kamerách
 - Studiové zpracování
 - Televizní a filmová distribuce
 - MPEG-2 video kodek
- Flash Video (FLV)
 - Zejména pro distribuci videa na internetu

- Pro samostatné audio lze využít:
 - Některý z obecných kontejnerů pro video
 - Specializované audio kontejnery
 - WAV, MP3 (jen MP3 kodek), ...

- Pro zjištění, co je uloženo v kontejneru, je typicky nutné použít nějakou utilitu
 - Např. MediaInfo

- Chceme vytvořit multimediální prezentaci
- Multimediální prezentace = interaktivní prezentace s videosekvencemi
 - Interaktivitu s uživatelem lze zajistit různě
- Problém s distribucí takovéto prezentace: koncový uživatel musí mít všechny nástroje potřebné k přehrání videa
 - Splittery, kodeky, přehrávač, ...

Řešení č. 1:

- Uložit celou prezentaci jako jedno video v nějakém běžném formátu (např. AVI, H.264, MP3)
- Interakce není k dispozici
 - Uživatel může ve svém přehrávači pouze přehrávat
- Videosoubor lze distribuovat na datovém nosiči
- Videosoubor lze zpřístupnit prostřednictvím internetu
 - Např. vlastní webové stránky nebo datová úložiště
 - Uživatel si soubor stáhne a přehraje ve svém prohlížeči

- Řešení č. 2:
 - Uložit prezentaci v DVD nebo Blu-ray formátu
 - Omezené možnosti interakce
 - Zejména pro DVD
 - Vše distribuovat na DVD nebo Blu-ray
 - Blu-ray dosud nepříliš rozšířen (ale lepší se)

Řešení č. 3:

- Napsat si vlastní interaktivní aplikaci v nějakém programovacím jazyce (např. Java, C++, C#)
- Maximální možnosti interakce
- Vývoj může být obtížnější
- Funguje na platformách, pro které aplikace přeložena
 - Pozor na knihovny, které užíváme!
 - Knihovny typicky pouze pro nějakou platformu
 - Důsledek: dokonce ani Java aplikace nemusí být spustitelná jinde, než na platformě MS Windows
- Videosekvence mohou být distribuovány s aplikací, resp. uživatel si je může stáhnout z internetu pro následné off-line přehrání

- Videosekvence mohou být také umístěny na internetovém serveru a přistupovány online
 - Dvě možnosti: vlastní internetový server nebo "Content Delivery Server" (CDS)
- Vlastní internetový server
 - "Můj server, moje pravidla"
 - Je třeba zajistit, aby současný přístup uživatelů server nezahltil (tzv. DoS problém)
- CDS server
 - Automaticky rozkládá zátěž
 - Omezení na obsah, formát, ...
 - Např. YouTube, Vimeo

- Pro psaní aplikace lze využít rovněž Adobe Flash (resp. Adobe AIR) nebo Microsoft SilverLight
 - Určeno primárně pro aplikace ve webovém prohlížeči
 - Vývoj aplikace často jednodušší
 - Nemusí fungovat na všech platformách
 - Video obsah typicky umístěn na webovém serveru

- Nutno rozlišovat účel
 - Může dekodér ovládat načítání vstupu?
- Televizní vysílání (DBV-T, satelitní, kabelové)
 - Proudy rozděleny na velmi drobné úseky (např. několik milisekund) a úseky uloženy
 - "Hlavička" pro každý úsek
 - Např. V_{Info}V₀A_{Info}A₀V_{Info}V₁A_{Info}A₁V_{Info}V₂A_{Info}A₂...

- Uložení do souboru na pevné médium
 - Uložení po proudech teoreticky možné
 - Většina médií ale nedokáže dostatečně rychle skákat z místa na místo (neefektivní využití cache)
 - Praxe: video a audio stopy rozděleny na úseky
 - Úseky jsou delší než u vysílání
 - Hlavička uložena jen na začátku
 - Titulková stopa uložena samostatně
 - Např. V_{Info}A_{Info}V₀A₀V₁A₁V₂A₂...

- Zdrojem obrazu:
 - Hardwarové zařízení, např. web kamera
 - Video konference, živé video, ...
 - Oblast obrazovky, tj. bitmapa
 - Tutoriály používání nějakého softwarového nástroje, ...
 - Uspořádaná množina obrázků vytvořených nějakým programem (např. snímky 3D scény)
 - Animované filmy, časově proměnlivé vizualizace, ...
 - Snímky jiného video (např. v jiném formátu)
 - Cílem typicky: změna datového toku, změna velikosti obrazu, oříznutí snímků, komprese lepším kodekem, odšumění obrazu (zejména při rekompresi), střih, ...

- Mnoho dostupných nástrojů a knihoven
 - Microsoft Movie Maker,
 - Microsoft Expression Encoder 4,
 - CamStudio (http://camstudio.org/),
 - VirtualDub,
 - ffmpeg,
 - Xuggler
 - Knihovna pro Javu
 - ...

- Microsoft Movie Maker
 - Velmi jednoduchý, ale postačuje pro mnoho účelů
 - Problémy:
 - Střihání videa a zejména audia je pracné
 - Omezená sada efektů

- Microsoft Expression Encoder
 - Sofistikovanější, více parametrů
 - Problémy:
 - Žádné efekty
 - Střih audia

- CamStudio
 - Zachycení obrazovky
- VirtualDub
 - Poněkud neintuitivní
 - Střih obtížný
 - Mnoho filtrů
 - OpenSource

CamStudio

File Region Options Tools Effects View Help

_ _ _ _

Record to AVI

FFmpeg

- Určeno pro dávkové zpracování
- Volání z příkazové řádky
- Několik příkladů:
 - ffmpeg -i in.avi -vcodec libx264 -b:v 512k -acodec mp3
 -b:a 128k vystup.mkv
 - Konvertuje soubor in.avi do vystup.mkv kontejnerové struktury mkv (Matroska) s použitím videokodeku H.264 (datový tok 512 kbit/s) a audiokodeku MP3 (datový tok 128 kbit/s)
 - ffmpeg -r 25 -i img%04d.jpg out.webm
 - Vstupní sekvenci obrázků img0001.jpg, img0002.jpg, ... interpretuje jako video s 25 fps a uloží do out.webm
 - ffmpeg.exe -i in.mkv -vf "scale=320x240,hqdn3d=1.0" out.flv
 - Převede in.mkv do out.flv, přičemž aplikuje řetězec videofiltrů: změna rozlišení na 320×240 a jemné odšumení (vstupní parametr 1.0)

- Xuggle
 - Knihovna pro Javu

```
//Otevření souboru s videem
IMediaReader reader = ToolFactory.makeReader("videofile.flv");
//Napojení obsluhy snímku/audio úseku
reader.addListener(<instance>);
//Čtení vstupního souboru, dekódování dat a zasílání
//dekódovaných dat <instanci>
while (reader.readPacket() == null) ;
```

- Instancí obsluhy může být:
 - Zapisovač videa v nějakém formátu
 - Např. ToolFactory.makeWriter("output.mov", reader)
 - Přehrávač videa
 - Např. ToolFactory.makeViewer(Mode.AUDIO_VIDEO, false, JFrame.EXIT_ON_CLOSE)
 - Instance vlastní třídy odděděná od MediaToolAdapter
 - Manipulace se snímky nebo audiem, např. zobrazení snímku do svého okna v aplikaci

- Výstup z obsluhy může být napojen na další obsluhu:

```
IMediaTool updater1 = new MyVideoUpdator();
reader.addListener(updater1);
```

```
IMediaTool updater = new MyAudioUpdator();
updater1.addListener(updater);
```

•••

Vytvoření nového videa:

- Různé přístupy
 - Různé knihovny, různé programovací jazyky
- GraphEdit
 - Utilita Microsoft DirectShow
 - Bez programování si lze naklikat, jak se má dané video zpracovat/vytvořit
 - Postup lze uložit a dávkově pak spustit

- Xuggle
 - Pro Java aplikace
- Microsoft DirectShow
 - Knihovna různých modulů
 - Technologie COM
 - Určeno pro C++ apod. OOP jazyky
 - Principy stejné jako Xuggle

```
#include <dshow.h>
void main(void)
   IGraphBuilder *pGraph = NULL;
   IMediaControl *pControl = NULL;
   IMediaEvent *pEvent = NULL;
   // Initialize the COM library.
   HRESULT hr = CoInitialize(NULL);
   if (FAILED(hr))
        printf("ERROR - Could not initialize COM library");
        return;
   // Create the filter graph manager and query for interfaces.
    hr = CoCreateInstance(CLSID FilterGraph, NULL, CLSCTX INPROC SERVER,
                       IID IGraphBuilder, (void **)&pGraph);
    if (FAILED(hr))
        printf("ERROR - Could not create the Filter Graph Manager.");
        return;
    hr = pGraph->QueryInterface(IID IMediaControl, (void **)&pControl);
   hr = pGraph->OuervInterface(IID IMediaEvent, (void **)&pEvent);
```

```
// Build the graph. IMPORTANT: Change this string to a file on your system.
hr = pGraph->RenderFile(L"C:\\Example.avi", NULL);
if (SUCCEEDED(hr))
{
    // Run the graph.
    hr = pControl->Run();
    if (SUCCEEDED(hr))
    {
        // Wait for completion.
        long evCode;
        pEvent->WaitForCompletion(INFINITE, &evCode);

        // Note: Do not use INFINITE in a real application, because it
        // can block indefinitely.
    }
}
pControl->Release();
pEvent->Release();
pGraph->Release();
CoUninitialize();
```

- Managed DirectShow
 - Více obdobných projektů
 - Není podporováno ze strany Microsoftu
 - Wrapper nad DirectShow
 - Určeno pro .NET programovací jazyky
- Quartz.dll
 - Jádro Windows Media Player
 - COM technologie
 - ActiveMovie Control Type Library
 - C++ apod. OOP programovací jazyky, .NET jazyky
 - Určeno pouze pro přehrávání
 - Typicky v samostatném okně

- Příklad (C#)
 - Do References je nutné přidat COM: ActiveMovie Control Type Library
 - Pro přehrání lze pak použít

```
//Vytvoreni instance FilgraphManager
var prehravac = new QuartzTypeLib.FilgraphManager();

//nastaveni souboru pro prehravani
prehravac.RenderFile(@"big_buck_bunny_480p_stereo.avi");

//spusteni prehravani
prehravac.Run();
```

- Windows Presentation Foundation (WPF)
 - .NET programovací jazyky
 - Třída/Element MediaElement

```
<MediaElement x:Name="mediaEl" Grid.Row="1" LoadedBehavior="Manual"/>
```

```
this.mediaEl.Source = new Uri(@"big_buck_bunny_480p_stereo.avi");
this.mediaEl.Play();
```

PŘEHRÁVÁNÍ VIDEA VE WEBOVÝCH APLIKACÍCH

- YouTube/Vimeo + HTML 4+
 - Nejjednodušší možnost
 - Video umístit na CDS
 - Do své HTML stránky umístit odkaz:

```
<iframe width="1280" height="720"
src="http://www.youtube.com/embed/5SAdb70iKrc"
frameborder="0" allowfullscreen></iframe>
<iframe src="http://player.vimeo.com/video/64197938"
width="500" height="281" frameborder="0"
webkitAllowFullScreen mozallowfullscreen
allowFullScreen></iframe>
```

PŘEHRÁVÁNÍ VIDEA VE WEBOVÝCH APLIKACÍCH

HTML 5

- Elementy video a audio
- Možnost interakce
 - Javascript

PŘEHRÁVÁNÍ VIDEA VE WEBOVÝCH APLIKACÍCH

- Dosud není příliš rozšířeno
- Mnoho prohlížečů elementy nepodporuje
- Microsoft Silverlight
 - Totožné s WPF
 - Pouze platforma Windows a WinRT
- Adobe Flash Player
 - Podporován jen na některých mobilních platformách

KONEC

Příště: vědecké vizualizace

