Lecture11: MOSFET, small-signal model

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Summary

- We can define two derivatives.
 - First, $\frac{\partial I_D}{\partial V_{GS}}$. It is the transconductance, g_m .
 - Second, $\frac{\partial I_D}{\partial V_{DS}}$. It is the inverse of the output resistance, r_O .

Large-signal model (1/2)

Saturation region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

- Drain current is determined by gate voltage. (voltage-controlled current source)
- Channel-length modulation?

Large-signal model (2/2)

Triode region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Still, it can be described by a voltage-controlled current source.

Example 6.13 (Razavi)

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal current

- Using the transconductance (g_m) and the output resistance (r_O) ,
 - The small-signal drain current is given as

$$i_D = g_m v_G + \frac{v_D}{r_O}$$

 When we build a small-signal model, two contributions must be separately considered.

Small-signal model

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Time-dependent one?

- Everything was in the dc steady-state...
 - How about the frequency-dependent case?
 - Capacitive components can be seen.
 - Their physical origin?

High-frequency, equivalent-circuit model for the case in which the source is connected to the substrate

At low frequencies

- Capacitor current is $I = C \frac{dV}{dt}$.
 - When a sinusoidal dependence, for example $\sin \omega t$, is assumed, the capacitor current is proportional to ω .
 - At low frequencies, ω can be regarded as a small number.
 - In other words, the electric conduction between two nodes becomes rather weak.
 - Therefore, we often neglect the capacitive components in the small-signal model.
 - Of course, at higher frequencies, they become very important.