Empirical Risk Minimization

Andrew Nobel

March, 2020

Alternative View of Classification Procedures

Given a classification procedure ϕ_n , let

$$\mathcal{F} = \{\phi_n(x:d_n): d_n \in (\mathcal{X} \times \{0,1\})^n\}$$

be the family of all possible classification rules it can produce. Note that

- ϕ_n selects rule $\hat{\phi}_n \in \mathcal{F}$ based on observations D_n
- selection involves fitting rules to observations D_n via indirect, approximate minimization of training error \hat{R}_n

Exact minimization of training error not computationally feasible, but provides a useful theoretical framework for understanding

- Role of family F
- Tradeoff between performance and complexity

Empirical Risk Minimization (ERM)

Given: Large finite family of fixed classification rules

$$\mathcal{F} = \{\phi_1, \dots, \phi_K\}$$

ERM: Given $D_n=(X_1,Y_1),\ldots,(X_n,Y_n)$ select rule $\phi\in\mathcal{F}$ with smallest number of misclassifications. Formally, let

$$\hat{\phi}_n = \underset{\phi \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_n(\phi) = \underset{\phi \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \mathbb{I}(\phi(X_i) \neq Y_i)$$

Fact: (Training error bias) The ERM rule $\hat{\phi}_n$ satisfies the inequality

$$R(\hat{\phi}_n) \geq \mathbb{E}\hat{R}_n(\hat{\phi}_n)$$

Estimation and Approximation Error

Given: Family of rules \mathcal{F} , joint distribution (X,Y). How good is $\hat{\phi}_n$?

▶ Note: Bayes rule $\phi^*(x)$ for (X,Y) probably not in \mathcal{F}

Compare conditional risk $R(\hat{\phi}_n)$ and Bayes risk $R(\phi^*)$. Easy to see that

$$R(\hat{\phi}_n) - R(\phi^*) = \left[R(\hat{\phi}_n) - \min_{\phi \in \mathcal{F}} R(\phi) \right] + \left[\min_{\phi \in \mathcal{F}} R(\phi) - R(\phi^*) \right]$$

- ▶ [1] = *Estimation error*: $\hat{\phi}_n$ vs best rule in \mathcal{F} (random)
- ▶ [2] = Approximation error: best rule in \mathcal{F} vs Bayes rule (fixed)

In general: If $\mathcal F$ gets bigger EstE increases while AppE decreases

Bound on Estimation Error for ERM

Fact: If $\hat{\phi}_n$ is the ERM rule derived from a family $\mathcal F$ then the estimation error

$$0 \le R(\hat{\phi}_n) - \min_{\phi \in \mathcal{F}} R(\phi) \le 2 \max_{\phi \in \mathcal{F}} |R(\phi) - \hat{R}_n(\phi)|$$

Upshot

- For finite families F we can control the estimation error using Chebyshev's or Hoeffding's inequalities plus the union bound
- For infinite families F we can control the estimation error using Vapnik-Chervonenkis inequalities and uniform LLNs