Third Semester B.E. Degree Examination, Feb./Mar Additional Mathematics - I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Find the modulus and amplitude of the complex number: $\frac{(2-3i)(2+i)^2}{1+i}$ (07 Marks)
 - Prove that $\left(\frac{1+\cos\theta+i\sin\theta}{1+\cos\theta-i\sin\theta}\right)^n = \cos n\theta+i\sin n\theta$. (06 Marks)
 - Show that the vectors $\vec{a} = 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} 4\vec{c}$, $-\vec{b} + 2\vec{c}$ are coplanar. (07 Marks)

- Given $\vec{a} = 2\hat{i} + 2\hat{j} \hat{k}$, $\vec{b} = 6\hat{i} 3\hat{j} + 2\hat{k}$. Find: i) $\vec{a} \cdot \vec{b}$ ii) $\vec{a} \times \vec{b}$ iii) $|\vec{a} \times \vec{b}|$. (07 Marks)
 - Determine the value of λ , so that $\vec{a} = 2\hat{i} + \lambda\hat{j} \hat{k}$, and $\vec{b} = 4\hat{i} 2\hat{j} 2\hat{k}$, are perpendicular. (06 Marks)
 - Express $1-i\sqrt{3}$ in the polar form and hence find its modulus and amplitude. (07 Marks)

- Using Euler's theorem, prove that $xu_x + yu_y = -3 \cot u$ where $u = \sin^{-1} \left(\frac{x^2 y^2}{x + y} \right)$. (07 Marks)
 - b. Using Maclaurin's series, prove that $\sqrt{1+\sin 2x} = 1+x-\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{24}+\dots$ (06 Marks)
 - c. If $u = x + 3y^2$, $v = 4x^2yz$, $w = 2z^2 + xy$, evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at the point (1, -1, 0). (07 Marks)

- a. Obtain Maclaurin's series expansion for the function ex upto x4. (07 Marks)
 - b. If $u = \sin^{-1} \left[\frac{x^3 + y^3}{x + y} \right]$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$. (06 Marks)
 - c. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. (07 Marks)

- a. A particle moves along the curve $x = (1 t^3)$, $y = (1 + t^2)$, z = (2t 5) determine its velocity and acceleration at t = 1 sec (07 Marks)
 - b. If $\vec{F} = 2x^2 \hat{i} 3yz \hat{j} + xz^2 \hat{k}$, and $\phi = 2z x^3y$, find $\vec{F} \cdot (\nabla \phi)$ and $\vec{F} \times (\nabla \phi)$ at (1, -1, 1).
 - Find the constants a, b, c so that $\vec{f} = (x+2y+az)\hat{i}+(bx-3y-z)\hat{j}+(4x+cy+2z)\hat{k}$ is irrotational. (07 Marks)

- 6 a. Find the directional derivate of $\phi = x^2yz + 4xz^2$ at (1,-2,-1) along $\vec{a} = 2\hat{i} \hat{j} 2\hat{k}$ (07 Marks)
 - b. Find curl \vec{f} given that $\vec{f} = xyz^2 \hat{i} + xy^2z \hat{j} + x^2yz \hat{k}$. (06 Marks)
 - c. If $\vec{f} = x^2i + y^2j + z^2k$ and $\vec{g} = yzi + zxj + xyk$. Show that $\vec{f} \times \vec{g}$ is a solenoidal vector. (07 Marks)

- 7 a. Obtain the reduction formula, I cos" xdx, where n is a positive integer. (07 Marks)
 - b. Evaluate \[\left(xydydx \). (06 Marks)
 - Evaluate [(07 Marks)
- a. Evaluate: $\int \sin^6(3x) dx$. (07 Marks)
 - b. Evaluate: \int x \sin^4 x \cos^6 x d (06 Marks)
 - Evaluate $\iint_{0}^{\infty} xyz dxdydz$ (07 Marks)

- a. Solve: (2x + y + 1) dx + (x + 2y + 1) dy = 0. b. Solve: $(4xy + 3y^2 x) dx + (x^2 + 2xy) dy = 0$. c. Solve: $y(2xy + e^x) dx e^x dy = 0$. (07 Marks)
 - (06 Marks)
 - (07 Marks)
- (07 Marks) (06 Marks)
 - c. Solve: $\frac{dy}{dx} + y \cot x = \cos x$. (07 Marks)