2 Unit Bridging Course -Day 5

Applications of calculus II: Curve sketching

Emi Tanaka

The derivative is also useful when sketching functions.

If y = f(x), then the value f'(x) at any point will tell you whether the function is increasing, decreasing or neither at that point.

Recall:

If f'(x) > 0 on an interval, then the function f is increasing on the interval.

If f'(x) < 0 on an interval, then the function f is decreasing on the interval.

The derivative is also useful when sketching functions.

If y = f(x), then the value f'(x) at any point will tell you whether the function is increasing, decreasing or neither at that point.

Recall

If f'(x) > 0 on an interval, then the function f is increasing on the interval.

If f'(x) < 0 on an interval, then the function f is decreasing on the interval.

The derivative is also useful when sketching functions.

If y = f(x), then the value f'(x) at any point will tell you whether the function is increasing, decreasing or neither at that point.

Recall:

If f'(x) > 0 on an interval, then the function f is increasing on the interval.

If f'(x) < 0 on an interval, then the function f is decreasing on the interval.

Example

Sketch the curve $y = x^3 + 3x^2 - 9x - 8$.

First we find the stationary points.

$$\frac{dy}{dx} = 3x^2 + 6x - 9 = 3(x^2 + 2x - 3)$$

Next, we let the derivative = 0 and solve the quadratic $x^2 + 2x - 3 = 0$ to get:

$$(x-1)(x+3) = 0$$

thus x = 1 or x = -3.

Sketch the curve $y = x^{3} + 3x^{2} - 9x - 8$.

First we find the stationary points.

$$\frac{dy}{dx} = 3x^2 + 6x - 9 = 3(x^2 + 2x - 3)$$

Next, we let the derivative = 0 and solve the quadratic $x^2 + 2x - 3 = 0$ to get:

$$(x-1)(x+3) = 0$$

thus x = 1 or x = -3.

Sketch the curve $y = x^{3} + 3x^{2} - 9x - 8$.

First we find the stationary points.

$$\frac{dy}{dx} = 3x^2 + 6x - 9 = 3(x^2 + 2x - 3)$$

Next, we let the derivative = 0 and solve the quadratic $x^2 + 2x - 3 = 0$ to get:

$$(x-1)(x+3)=0$$

thus x = 1 or x = -3.

Sketch the curve $y = x^3 + 3x^2 - 9x - 8$.

First we find the stationary points.

$$\frac{dy}{dx} = 3x^2 + 6x - 9 = 3(x^2 + 2x - 3)$$

Next, we let the derivative = 0 and solve the quadratic $x^2 + 2x - 3 = 0$ to get:

$$(x-1)(x+3)=0$$

thus x = 1 or x = -3.

We now examine $\frac{dy}{dx} = 3(x-1)(x+3)$ for the intervals

$$x < -3$$
 $-3 < x < 1$ $x > 1$

When
$$x < -3$$
, $(x - 1) < 0$ and $(x + 3) < 0$,

so $\frac{dy}{dx} = 3(x-1)(x+3) > 0$. Hence, the function is increasing, for x < -3. It is useful to draw up and complete a table as follows:

We now examine $\frac{dy}{dx} = 3(x-1)(x+3)$ for the intervals

$$x < -3$$
 $-3 < x < 1$ $x > 1$
 -3 1

When
$$x < -3$$
, $(x - 1) < 0$ and $(x + 3) < 0$,

so
$$\frac{dy}{dx} = 3(x-1)(x+3) > 0$$
. Hence, the function is increasing,

for x < -3. It is useful to draw up and complete a table as follows:

We now examine $\frac{dy}{dx} = 3(x-1)(x+3)$ for the intervals

When
$$x < -3$$
, $(x - 1) < 0$ and $(x + 3) < 0$,

so
$$\frac{dy}{dx} = 3(x-1)(x+3) > 0$$
. Hence, the function is increasing,

for x < -3. It is useful to draw up and complete a table as follows:

X	< -3	-3	> -3, < 1	1	> 1
y'	+ve	0	-ve	0	+ve
У	7	19		-13	7

We now examine $\frac{dy}{dx} = 3(x-1)(x+3)$ for the intervals

When
$$x < -3$$
, $(x - 1) < 0$ and $(x + 3) < 0$,

so $\frac{dy}{dx} = 3(x-1)(x+3) > 0$. Hence, the function is increasing, for x < -3. It is useful to draw up and complete a table as follows:

X	< -3	-3	> -3, < 1	1	> 1
<i>y'</i>	+ve	0	-ve	0	+ve
У	7	19	¥	-13	7

Sketch the curve $y = -x^3 + 9x$ and find where it crosses the axes.

First find the stationary points,

$$\frac{dy}{dx} = -3x^2 + 9 = -3(x^2 - 3) = 0.$$

We get $x = \pm \sqrt{3}$, so the stationary points are $(-\sqrt{3}, -6\sqrt{3})$ and $(\sqrt{3}, 6\sqrt{3})$. From the derivative we get:

Sketch the curve $y = -x^3 + 9x$ and find where it crosses the axes.

First find the stationary points,

$$\frac{dy}{dx} = -3x^2 + 9 = -3(x^2 - 3) = 0.$$

We get $x = \pm \sqrt{3}$, so the stationary points are $(-\sqrt{3}, -6\sqrt{3})$ and $(\sqrt{3}, 6\sqrt{3})$. From the derivative we get:

X	$< -\sqrt{3}$	$-\sqrt{3}$	$>-\sqrt{3},<\sqrt{3}$	$\sqrt{3}$	> \sqrt{3}
y'	-ve	0	+ve	0	-ve
У	¥	$-6\sqrt{3}$	7	6√3	¥

Sketch the curve $y = -x^3 + 9x$ and find where it crosses the axes.

First find the stationary points,

$$\frac{dy}{dx} = -3x^2 + 9 = -3(x^2 - 3) = 0.$$

We get $x = \pm \sqrt{3}$, so the stationary points are $(-\sqrt{3}, -6\sqrt{3})$ and $(\sqrt{3}, 6\sqrt{3})$. From the derivative we get:

X	$<-\sqrt{3}$	$-\sqrt{3}$	$>-\sqrt{3},<\sqrt{3}$	$\sqrt{3}$	$>\sqrt{3}$
<i>y'</i>	-ve	0	+ve	0	-ve
У	×	$-6\sqrt{3}$	7	$6\sqrt{3}$	K

$$y = -(0)^3 + 9(0) = 0.$$

So the curve crosses the y-axis at (0,0).

Now for the x intercept we substitute y = 0 in the original equation and solve for x.

$$-x^3 + 9x = -x(x^2 - 9) = -x(x - 3)(x + 3) = 0.$$

So we get x = 0, x = 3 or x = -3. The curve crosses the x-axis at (0,0), (3,0) and (-3,0)

$$y = -(0)^3 + 9(0) = 0.$$

So the curve crosses the y-axis at (0,0).

Now for the x intercept we substitute y = 0 in the original equation and solve for x.

$$-x^3 + 9x = -x(x^2 - 9) = -x(x - 3)(x + 3) = 0.$$

So we get x = 0, x = 3 or x = -3. The curve crosses the x-axis at (0,0), (3,0) and (-3,0)

$$y = -(0)^3 + 9(0) = 0.$$

So the curve crosses the y-axis at (0,0).

Now for the x intercept we substitute y = 0 in the original equation and solve for x.

$$-x^3 + 9x = -x(x^2 - 9) = -x(x - 3)(x + 3) = 0.$$

So we get x = 0, x = 3 or x = -3. The curve crosses the x-axis at (0, 0), (3, 0) and (-3, 0)

$$y = -(0)^3 + 9(0) = 0.$$

So the curve crosses the y-axis at (0,0).

Now for the x intercept we substitute y = 0 in the original equation and solve for x.

$$-x^3 + 9x = -x(x^2 - 9) = -x(x - 3)(x + 3) = 0.$$

So we get x = 0, x = 3 or x = -3.

The curve crosses the x-axis at (0,0), (3,0) and (-3,0).

$$y = -(0)^3 + 9(0) = 0.$$

So the curve crosses the y-axis at (0,0).

Now for the x intercept we substitute y = 0 in the original equation and solve for x.

$$-x^3 + 9x = -x(x^2 - 9) = -x(x - 3)(x + 3) = 0.$$

So we get x = 0, x = 3 or x = -3.

The curve crosses the x-axis at (0,0), (3,0) and (-3,0).

