Universidad de Costa Rica Escuela de Matemática Facultad de Ciencias

I ciclo del 2019 MA0292 Álgebra Lineal para computación

Duración: 3 horas

Puntaje: 55 puntos

Sábado 4 de mayo

Examen parcial No I

<u>Instrucciones</u>: Favor presentar su identificación. Muestre todos los cálculos y operaciones necesarias que justifiquen sus respuestas. Utilice lapicero azul o negro para poder tener derecho a reclamos. No se permite el uso de calculadoras gráficoprogramables, tabletas, etc.

- 1) (10pts) Conteste verdadero (V) o falso (F) en su cuaderno, debe justifica^r su respuesta para obtener puntaje. (2pts c/u).
 - a. u = (1, 2, k) y v = (3, k-1, 1) definen un ángulo de 270º si k = 3.
 - b. Si $A \in M(n,\mathbb{R})$, entonces $2(A+A^t)$ es antisimétrica.
 - c. Sean $v_1, v_2 \in \mathbb{R}^3$, vectores tales que $v_1 = 2v_2$, entonces $3v_1 \times v_2$ es el vector nulo.
 - d. Sea $A \in M(p,q,\mathbb{R})$. Si el sistema Ax = b tiene solución única, entonces el rango de A debe ser q. 💆
 - e. Sean $v_1, v_2, v_3 \in \mathbb{R}^3$ tales que v_1 es paraleló a v_2 , entonces v_1 debe ser un vector paralelo a $\operatorname{Proy}_{\nu_2}^{\nu_3}$.
- (12pts) Considere el sistema de ecuaciones lineales:

$$x + 4y + z = 4$$

$$x + 2y = 2$$

$$-x - y + kz = -1$$

Utilice eliminación gaussiana para determinar los valores de k para los cuales el sistema tiene infinitas soluciones, solución única y determine dichas soluciones.

(a.) (5pts) Calcule Proy, v.

(b) (3pts) Encuentre un vector ortogonal simultáneamente tanto a ucomo a -2 v.

c) (4pts) Calcule el área del paralelogramo definido por los vectores u v-2v.

4) (6pts) Considere la ecuación $(XC^t)^t = (3X)^t + A$.

Aplicando el álgebra de matrices, determine la matriz numérica X que satisface dicha ecuación, suponiendo que C-3I es invertible.

5) (15pts) Considere la matriz:

$$B = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{2} - \lambda \\ 4 - \lambda & 3 & -3 \\ 4 & -\lambda & 2 \end{bmatrix}$$

- a. (5pts) Calcular $\det(B)$, el cual puede quedar en términos del parámetro λ . \checkmark
- b. (3pts) ¿Qué valores de λ hacen que B sea equivalente a la matriz identidad I_n ?
- c. (7pts) Para $\lambda = 1$ calcule la inversa de B.