Следствие 1.

$$\lim_{n \to \infty} \frac{S_n}{\frac{1}{2n} + \frac{1}{18n^2}} = 1.$$

Следствие 2. Для n > 11 сумма цифр случайного не более чем n-значного числа принадлежит интервалу

$$\left(\frac{9n+1}{2} + \frac{1}{18n}, \frac{9n+1}{2} + \frac{1}{16n}\right).$$

Литература

- 1. Рожков А.В. *Стратегия DPS Debian-Python-Sage: Проблемно-ориентированные вычислительные среды на открытом коде //* Труды V междунар. науч.-практич. Конф. «Информационные технологии в образовании и науке» (ИТОН 2016). Казань: КФУ, 2016. С. 172–179.
- 2. Рожков А.В., Рожкова М.В. *Экспериментальная (вычислительная) теория чисел* // Новые информационные технологии в образовании и науке: Материалы X межд. науч.-практ. конф., Екатеринбург, 27 февраля 3 марта 2017 г. ФГАОУ ВО «Рос. гос. проф.-пед. ун-т». Екатеринбург, 2017. С. 413–417.
- 3. Рожков А.В., Ниссельбаум О.В. *Теоретико-числовые методы в криптографии*. Тюмень: ТюмГУ, 2007. 160 с.

NOT CRYPTOGRAPHIC THE HASH FUNCTION AND SUM OF DIGITS OF RANDOM NATURAL NUMBER

A. Bolchakova, D. Stepanyan, A.V. Rozhkov

Number theory tasks which can be model for many sections of mathematics are studied. Keywords: number theory, packages of computer algebra, cryptography, prime numbers.

УДК 511.174

ЗАМЕТКА О ПРОБЛЕМЕ КОЛЛАТЦА

А. Большакова 1 , Д. Степанян 2 , А.В. Рожков 3

- 1 anastaicha94@mail.ru; Кубанский государственный университет
- 2 diana14.02.94@mail.ru; Кубанский государственный университет
- 3 ros.seminar@bk.ru; Кубанский государственный университет

Изучаются задачи теории чисел, которые могут быть модельными для других разделов математики.

Ключевые слова: теория чисел, пакеты компьютерной алгебры, криптография, простые числа.

Введение

Гипотеза Коллатца (гипотеза 3n+1, сиракузская проблема) — одна из нерешённых проблем математики. Названа по имени немецкого математика Лотара Коллатца, сформулировавшего эту задачу 1 июля 1932 года.

Это сведения из Википедии (https://ru.wikipedia.org/wiki/%D0%93%D0%B8 %D0%BF%D0%BE%D1%82%D0%B5%D0%B7%D0%B0_%D0%9A%D0%BE%D0%BB%D0%BB%D0%B0%D1 %82%D1%86%D0%B0)

У Проблемы (гипотезы) в этом году юбилей — 85 лет.

Проблемой занимается масса энтузиастов, в основном, программистов, см. http://boinc.thesonntags.com/collatz/.

Цель нашего исследования проста и наивна, — проанализировать саму проблему, а не десятилетия ее обсуждения.

Определение 1. *Множество нечетных чисел обозначим* \mathbb{N}_1 , а множество нечетных чисел, не кратных 3, обозначим как \mathbb{N}_3 .

Определение 2. Функция Коллатца K. Нечетному числу n ставится θ соответствие нечетное число m, которое получено из числа 3n+1 путем деления на максимально возможную степень числа θ . Таким образом θ : $\mathbb{N}_1 \to \mathbb{N}_1$.

Гипотеза Коллатца Для любого нечетного числа m найдется такое натуральное n, что $K^n(m) = 1$.

Лемма 1. $K(\mathbb{N}_1) \subseteq \mathbb{N}_3$.

Очевидно, ведь первое преобразование $n \rightarrowtail 3n+1$ и поэтому чисел, кратных 3 в образе быть не может.

Лемма 2. $K(\mathbb{N}_3) = \mathbb{N}_3$, более того, каждый образ $m \in \mathbb{N}_3$ имеет бесконечно много прообразов в \mathbb{N}_3 .

Лемма 3. Существуют сколь угодно длинные цепочки, подтверждающие гипотезу Коллатца.

Пример. Для любого натурального n имеет место равенство $K(2^n-1)=3\cdot 2^{n-1}-1$, поэтому длина цепочки до 1 не менее, чем n.

Лемма 4. Прообраз $K^{-1}(1)$ бесконечен и состоит из чисел $\{\frac{4^n-1}{3}|n\in\mathbb{N}\}$ или в дво-ичной записи $\{1,101,10101,1010101,...\}$

Вычисления вероятностей

Формально, преобразование Коллатца умножает исходное число на 3, а деление гарантировано только на 2. Поэтому возникает ложное ощущение, что образы преобразования Коллатца могут расти до бесконечности.

Лемма 5. Четное число делится в среднем на 4.

В самом деле, вычислим на какую степень делится среднее четное число. Каждое первое делится на 2, т.е. степень 1, каждое второе еще дополнительно на 2, т.е. $\frac{1}{2}$, каждое четвертое еще дополнительно на 2, это $\frac{1}{4}$ и т.д. В итоге получаем сумму

$$1 + \frac{1}{2} + \frac{1}{4} + \dots = 2.$$

Поэтому, в среднем, после преобразования Коллатца, исходное число m умножается на 3 и делится на 4, и значит станет равно 1 примерно через $\log_{4/3}(n)$ шагов.

Однако в процессе выполнения преобразований Коллатца могут возникнуть далеко не все четные числа.

Лемма 6. Рассмотрим преобразование Коллатца как отображение $K : \mathbb{N}_3 \longrightarrow \mathbb{N}_3$, тогда только $\frac{2}{9}$ четных чисел могут появиться в цепочках Коллатца.

В самом деле, это только числа вида 3(6k+1)+1=2(9k+2) и $3(6k+5)+1=2(9k+8), k \in \mathbb{N}$.

Однако и четные числа такого вида тоже в среднем делятся на 4 и поэтому наша оценка длины цепочки как примерно равной $\log_{4/3}(n)$ не изменяется.

Преобразование Коллатца — это типичная цепь Маркова, когда следующий шаг зависит только от предыдущего. Рассмотрим два простейших случаю.

Первый случай. Поскольку первая итерация преобразования Коллатца нас отправляет внутрь множества \mathbb{N}_3 , то у нас есть только два вида нечетных чисел, с которыми нам нужно работать — это 6k + 1 и 6k + 5, $k \in \mathbb{N}$.

Лемма 7. Пусть у нас есть два состояния системы — это числа вида 6k+1 и 6k+5, $k \in \mathbb{N}$. Тогда матрица переходов марковского процесса имеет вид

$$\frac{1}{3} \cdot \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array} \right)$$

Это уже сразу матрица предельных переходов. При этом, как следует из леммы 7, в цепочках переходов преобразований Коллатца числа $6k+5,\ k\in\mathbb{N}$ встречаются в два раза чаще, чем числа вида $6k+1,\ k\in\mathbb{N}$.

Теперь рассмотрим числа нечетные числа по модулю 18. В этом случае множество \mathbb{N}_3 будет разбито на 6 подмножеств

$$18k+1, 18k+5, 18k+7, 18k+11, 18k+13, 18k+17, k \in \mathbb{N}.$$
 (1)

Лемма 8. Пусть у нас есть 6 состояний системы — это числа вида (1). Тогда матрица переходов марковского процесса имеет вид

$$\frac{1}{63} \cdot \begin{pmatrix}
16 & 8 & 4 & 32 & 1 & 2 \\
4 & 2 & 1 & 8 & 16 & 32 \\
16 & 8 & 4 & 32 & 1 & 2 \\
4 & 2 & 1 & 8 & 16 & 32 \\
16 & 8 & 4 & 32 & 1 & 2 \\
4 & 2 & 1 & 8 & 16 & 32
\end{pmatrix}$$

Эта матрица имеет характеристический многочлен x^6-x^5 и жорданову форму из 5 жордановых клеток — 3 клетки с 0, одна с 1, и одна размера 2×2 , с собственным значением 0.

При второй итерации, т.е будучи возведенной в квадрат, эта матрица становится матрицей предельных вероятностей — все ее строки становятся одинаковыми, равными строке

$$\frac{1}{63}$$
 · (8, 4, 2, 16, 11, 22).

Таким образом, в траекториях действия преобразования Коллатца числа вида 18k+17 встречаются в 11 раз чаще, чем числа вида 18k+7. Это подтвержадают и прямые вычисления до 1 миллиона (дальше не проверялось).

Просто вычисления

В процессе вычислений были использованы идеи и методология, изложенная в работах [1], [2], [3]. Вычисления производились с использованием пакета компьютерной алгебры gap 4.8.8. официальный адрес http://www.gap-system.org/.

Обширные вычисления до 10^9 и далее позволили выдвинуть гипотезы.

Гипотеза 1. Пусть $n \in \mathbb{N}_3$ и k(n) — длина преобразований Коллатца, превращающих n в 1, тогда для $n > 2 * 10^6$ имеет место неравенство

$$\left| \frac{1}{n} \sum_{i=1}^{i=n} k(n) - 3.5 * \ln(n) - 1 \right| < 0.2$$

Гипотеза 2. Пусть $n \in \mathbb{N}_3$ и k(n) — длина преобразований Коллатца, превращающих n в 1, тогда для n > 1 имеет место неравенство

$$k(n) < 6 * 3.5 * \ln(n) = 21 \cdot \ln(n)$$
.

Литература

- 1. Рожков А. В. *Стратегия DPS Debian-Python-Sage: Проблемно-ориентированные вычислительные среды на открытом коде //* Труды V-я Междунар. Науч.-практич. Конф. «Информационные технологии в образовании и науке» (ИТОН 2016) Казань: КФУ, 2016. С. 172-179.
- 2. Рожков А. В., Рожкова М. В. Экспериментальная (вычислительная) теория чисел // Новые информационные технологии в образовании и науке: материалы X междунар. науч.-практ. конф., Екатеринбург, 27 февраля 3 марта 2017 г. ФГАОУ ВО «Рос. гос. проф.-пед. ун-т». Екатеринбург, 2017. С. 413-417.
- 3. Рожков А.В., Ниссельбаум О.В. *Теоретико-числовые методы в криптографии*. Тюмень: ТюмГУ, 2007. 160 с.

NOTE ABOUT KOLLATTS'S PROBLEM

A. Bolchakova, D. Stepanyan, A.V. Rozhkov

Number theory problems which can be model for many sections of mathematics are studied. Keywords: number theory, packages of computer algebra, cryptography, prime numbers.

УДК 514.763.85

О ТОЧНОСТИ КОНСТАНТ В ОБОБЩЕННОМ НЕРАВЕНСТВЕ МАКАИ ДЛЯ ЖЕСТКОСТИ КРУЧЕНИЯ

Л.И. Гафиятуллина 1 , Р.Г. Салахудинов 2

В данной работе с использованием подходов из [3] доказывается обобщение неравенства Макаи для жесткости кручения в классе выпуклых областей.

Ключевые слова: жесткость кручения, моменты Евклида области относительно границы, изопериметрические неравенства, функция расстояния до границы области.

¹ ligafiyatullina@kpfu.ru; Казанский (Приволжский) федеральный университет, институт математики и механики им. Н.И. Лобачевского

² *rsalakhud@gmail.com*; Казанский (Приволжский) федеральный университет, институт математики и механики им. Н.И. Лобачевского