Álgebra III Parcial 1

27 de abril de 2022

Notación: \mathbb{F} denota un cuerpo. Para una matriz A, $p_A(x)$ y $m_A(x)$ denotan, respectivamente, el polinomio característico y el polinomio minimal de A.

- 1. Sea $h \in \mathbb{F}[x]$ un polinomio mónico de grado n y sea $V \subset \mathbb{F}[x]$ el espacio vectorial de los polinomios de grado menor que n. Definimos una multiplicación en V de la siguiente forma: dados $r_1, r_2 \in V$, $r_1 * r_2$ denota el resto en la división del producto usual $r_1 r_2$ por h.
 - (a) Probar que V, dotado con este producto, es un álgebra conmutativa sobre $\mathbb F$ con unidad, al cual denotaremos R.
 - (b) Probar que R es un cuerpo si y solo si h es irreducible.
 - (c) Sea $T:R\to R$ el operador lineal definido por T(r)=x*r. Probar que el polinomio característico de T es h.
- 2. Sea $T:\mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por

$$T(x_1, x_2, x_3) = (-x_1, 7x_1 + 2x_2 + 3x_3, -x_3)$$

- (a) Encontrar los autovalores y los autoespacios asociados. ¿Es diagonalizable?
- (b) Calcular el polinomio minimal.
- 3. Sea $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ una matriz en bloque, con $A \in \mathbb{F}^{r \times r}$ y $B \in \mathbb{F}^{s \times s}$.
 - (a) Mostrar que $p_C(x) = p_A(x)p_B(x)$.
 - (b) Probar que $m_C(x)$ es el mínimo común múltiplo de $m_A(x)$ y $m_B(x)$.
 - (c) Mostrar que C es diagonalizable si y solo si A y B son diagonalizables.
- 4. Sean $A, B \in \mathbb{F}^{n \times n}$ matrices diagonalizables que conmutan. Si $\lambda_1, \ldots, \lambda_n$ son los autovalores de A y $\sigma_1, \ldots, \sigma_n$ los autovalores de B (contados con multiplicidad), demostrar que A+B es diagonalizable y que sus autovalores (contados con multiplicidad) son $\lambda_1 + \sigma_{s(1)}, \ldots, \lambda_n + \sigma_{s(n)}$, para alguna permutación $s \in S_n$.
- 5. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si R es un anillo conmutativo con unidad y $A \in R^{n \times n}$ es una matriz con inversa a izquierda, entonces A es inversible.
 - (b) $A \in \mathbb{F}^{n \times n}$ es inversible si y solo si $m_A(x)$ tiene término constante no nulo.
 - (c) Existe $A \in \mathbb{R}^{n \times n}$ tal que xI + A no es inversible para infinitos valores de x.
 - (d) Si $A \in \mathbb{F}^{n \times n}$ tiene n autovalores distintos y $B \in \mathbb{F}^{n \times n}$ conmuta con A, entonces B es un polinomio en A.