# Inference by Stochastic Optimization: A Free-Lunch Bootstrap

Jean-Jacques Forneron, Boston University Serena Ng, Columbia University and NBER November 22, 2019

## **Introduction: Challenging Inferences**

- Extremum estimation: GMM, NLS, MLE, . . .
  - where computing the asymptotic variance is not tractable e.g. rely on transformed/generated data, multi-step estimation, complicated moments/likelihood
  - or counterfactuals st.  $\Delta$ -method is challenging to implement

# **Introduction: Challenging Inferences**

- Extremum estimation: GMM, NLS, MLE, . . .
  - where computing the asymptotic variance is not tractable e.g. rely on transformed/generated data, multi-step estimation, complicated moments/likelihood
  - or counterfactuals st. Δ-method is challenging to implement
- But estimation procedure needs to be repeated many times
   ⇒ rely on Bootstrap inference
  - common in structural estimation (IO, labour, macro, etc.)
- Classical Bootstrap: run the optimizer many times

## **Introduction: Challenging Inferences**

- Extremum estimation: GMM, NLS, MLE, ...
  - where computing the asymptotic variance is not tractable e.g. rely on transformed/generated data, multi-step estimation, complicated moments/likelihood
  - or counterfactuals st.  $\Delta$ -method is challenging to implement
- But estimation procedure needs to be repeated many times
   ⇒ rely on Bootstrap inference
  - common in structural estimation (IO, labour, macro, etc.)
- Classical Bootstrap: run the optimizer many times
- THIS PAPER: focused on a **Stochastic Newton-Raphson** algorithm, a single run produces
  - a consistent estimator by simple averaging
  - asymptotically valid Bootstrap draws (free-lunch)

# The Setup

• Interested in the sample GMM/MLE/MD estimator:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} Q_n(\theta)$$

 $Q_n(\cdot)$  is the sample objective function

# The Setup

Interested in the sample GMM/MLE/MD estimator:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} Q_n(\theta)$$

 $Q_n(\cdot)$  is the sample objective function

Ideal Bootstrap sample:

$$\hat{\theta}_m^b = \operatorname{argmin}_{\theta \in \Theta} Q_m^{(b)}(\theta)$$

for  $b=1,\ldots,B$ , where  $Q_m^{(b)}(\cdot)$  is an m out of n re-sampled objective (or re-weighted/multiplier)

# The Setup

Interested in the sample GMM/MLE/MD estimator:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} Q_n(\theta)$$

 $Q_n(\cdot)$  is the sample objective function

Ideal Bootstrap sample:

$$\hat{\theta}_m^b = \operatorname{argmin}_{\theta \in \Theta} Q_m^{(b)}(\theta)$$

for  $b=1,\ldots,B$ , where  $Q_m^{(b)}(\cdot)$  is an m out of n re-sampled objective (or re-weighted/multiplier)

Goal: a 2-in-1 procedure for estimation and inference

# Algorithm: Stochastic Newton-Raphson

i. initialize: at  $\theta^0$ , given

## Algorithm: Stochastic Newton-Raphson

- i. initialize: at  $\theta^0$ , given
- ii. for  $b = 1, \dots, B$  compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

 $G_m^{(b)}, H_m^{(b)}$  re-sampled gradient, hessian;  $m/n \to c \in (0, 1];$   $\gamma \in (0, 1]$  fixed learning rate

## Algorithm: Stochastic Newton-Raphson

- i. initialize: at  $\theta^0$ , given
- ii. for  $b = 1, \ldots, B$  compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

 $G_m^{(b)}, H_m^{(b)}$  re-sampled gradient, hessian;  $m/n \to c \in (0, 1]$ ;  $\gamma \in (0, 1]$  fixed learning rate

iii. 
$$\frac{1}{B} \sum_{b=1}^{B} \theta^b \simeq \hat{\theta}_n$$

## Algorithm: Stochastic Newton-Raphson

- i. initialize: at  $\theta^0$ , given
- ii. for  $b = 1, \ldots, B$  compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

 $G_m^{(b)}, H_m^{(b)}$  re-sampled gradient, hessian;  $m/n \to c \in (0, 1];$   $\gamma \in (0, 1]$  fixed learning rate

iii. 
$$\frac{1}{B} \sum_{b=1}^{B} \theta^b \simeq \hat{\theta}_n$$

iv.  $var(\theta^b) \simeq \frac{\gamma^2}{1-[1-\gamma]^2} var(\hat{\theta}_n)$  (the asymptotic variance)

#### **Related Literatures**

#### • Computationally Attractive Bootstrap:

Davidson and MacKinnon (1999); Andrews (2002); Kline and Santos (2012); Armstrong et al. (2014); Honoré and Hu (2017),... k-step re-sampling at a converged estimate of  $\hat{\theta}_n$ 

#### • Stochastic Derivative-Based Optimization:

Robbins and Monro (1951); Dvoretzky (1956); Ruppert (1988); Polyak and Juditsky (1992),[...], Bach and Moulines (2011); Moritz et al. (2016); Mandt et al. (2017),... interested in optimization on very large or online data sets

#### • Stochastic Optimization and Inference:

Chernozhukov and Hong (2003),...

MCMC similar to Simulated Annealing with a fixed temperature; (quasi)-posterior distribution asymptotically valid for inference

#### **Outline**

An Overview of Derivative-Based Methods

Asymptotic Results

**Empirical Illustration** 

Conclusion

# An Overview of

**Derivative-Based Methods** 

# **Gradient Descent and Newton-Raphson Methods**

#### Algorithm: Newton-Raphson

- i. initialize: at  $\theta^0$ , given
- ii. for  $b = 1, \ldots, B$  compute:

$$\theta^b = \theta^{b-1} - \underbrace{\gamma_b}_{\text{learning rate}} \cdot [H_n(\theta^{b-1})]^{-1} G_n(\theta^{b-1})$$

- Gradient-Descent:  $\theta^b = \theta^{b-1} \gamma_b \cdot [H_n(\theta^{b-1})]^{-1} G_n(\theta^{b-1})$
- less costly, slow convergence when  $\lambda_{\max}(H_n)/\lambda_{\min}(H_n)$  large

# Illustration OLS regression

- OLS regression:  $y_i = x_i'\theta + u_i$ ;  $\gamma_b = \gamma$  fixed
- Newton-Raphson:

$$\theta^b - \hat{\theta}_n = (1 - \gamma)^b [\theta^0 - \hat{\theta}_n]$$

- for  $\gamma_b=1$  convergence after one iteration
- Gradient Descent:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma [\sum_i x_i x_i'/n])^b [\theta^0 - \hat{\theta}_n]$$

- very slow convergence when  $\lambda_{\max}(X'X)/\lambda_{\min}(X'X)$  large

#### **Stochastic Gradient Descent**

- Full sample  $G_n$ ,  $H_n$  costly to compute for n very large
- **Solution**: use a *minibatch* (small) of subsamples  $m \ll n$
- In practice: m = 1 is popular

#### Algorithm: Stochastic Gradient-Descent

- i. initialize: at  $\theta^0$ , given
- ii. for  $b = 1, \ldots, B$  compute:

$$\theta^b = \theta^{b-1} - \gamma_b \cdot G_{\mathbf{m}}^{(b)}(\theta^{b-1})$$

# Simple Illustration: OLS estimation (m = 1)

- Mini-batch with m=1
- Stochatic Gradient Descent:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma_b \underbrace{x_i^{(b)} x_i^{(b)\prime}}_{\text{noisy}}) (\theta^{b-1} - \hat{\theta}_n) - 2\gamma_b \underbrace{x_i^{(b)} \hat{u}_i^{(b)}}_{\text{noisy}}$$

# Simple Illustration: OLS estimation (m = 1)

- Mini-batch with m=1
- Stochatic Gradient Descent:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma_b \underbrace{x_i^{(b)} x_i^{(b)\prime}}_{\text{noisy}}) (\theta^{b-1} - \hat{\theta}_n) - 2\gamma_b \underbrace{x_i^{(b)} \hat{u}_i^{(b)}}_{\text{noisy}}$$

- For  $\theta^b \stackrel{p^*}{\to} \hat{\theta}_n$  we need  $\gamma_b \searrow 0$ 
  - fast enough so that  $\mathbb{E}^\star \|2\gamma_b[x_i^{(b)}x_i^{(b)\prime}]\theta^{(b-1)}\|^2 o 0$
  - not too fast so that  $\mathbb{E}^\star \| (1-2\gamma_b x_i^{(b)} x_i^{(b)\prime}) (\theta^{b-1} \hat{\theta}_n) \|^2 o 0$
  - $\Rightarrow$  convergence can be very slow
    - in practice: adaptive methods (adagrad, RMSprop,...)

# Simple Illustration: OLS estimation (m = 1)

- Mini-batch with m=1
- Stochatic Gradient Descent:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma_b \underbrace{x_i^{(b)} x_i^{(b)\prime}}_{\text{noisy}}) (\theta^{b-1} - \hat{\theta}_n) - 2\gamma_b \underbrace{x_i^{(b)} \hat{u}_i^{(b)}}_{\text{noisy}}$$

- For  $\theta^b \stackrel{p^*}{\to} \hat{\theta}_n$  we need  $\gamma_b \searrow 0$ 
  - fast enough so that  $\mathbb{E}^{\star} \|2\gamma_b[x_i^{(b)}x_i^{(b)\prime}]\theta^{(b-1)}\|^2 \to 0$
  - not too fast so that  $\mathbb{E}^\star \| (1-2\gamma_b x_i^{(b)} x_i^{(b)\prime}) (\theta^{b-1} \hat{\theta}_n) \|^2 o 0$
  - ⇒ convergence can be very slow
  - in practice: adaptive methods (adagrad, RMSprop,...)
- **Stochatic Newton-Raphson**:  $H_1^{(b)}$  often noisy/near singular

- e.g. 
$$x_i = (1, x_{i,1}), x_{i,1} \sim Bernoulli(p)$$
  
 $\Rightarrow x_i x_i' \text{ singular wp. 1 for any } p \in [0, 1]$ 

# This Paper: S-NR with larger batches

- Three changes over S-GD:
  - a. re-introduce the Hessian  $H_m^{(b)}(\theta^{b-1})$  (NR)
  - b. sample m out of n observations,  $m/n \rightarrow c \in (0,1]$
  - c. fixed learning rate  $\gamma_b = \gamma \in (0,1]$

#### Algorithm: Stochastic Newton-Raphson

- i. initialize: at  $\theta^0$ , given
- ii. for  $b = 1, \ldots, B$  compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

# Simple Illustration: OLS estimation $(m/n \rightarrow c \in (0,1])$

• Stochatic Newton-Raphson:

$$\theta^b - \hat{\theta}_n = \underbrace{(1 - \gamma)(\theta^{b-1} - \hat{\theta}_n)}_{\text{deterministic cv.}} + \underbrace{\gamma(\hat{\theta}_m^{(b)} - \hat{\theta}_n)}_{\text{noise}}$$

# Simple Illustration: OLS estimation $(m/n \rightarrow c \in (0,1])$

• Stochatic Newton-Raphson:

$$\theta^b - \hat{\theta}_n = \underbrace{(1 - \gamma)(\theta^{b-1} - \hat{\theta}_n)}_{\text{deterministic cv.}} + \underbrace{\gamma(\hat{\theta}_m^{(b)} - \hat{\theta}_n)}_{\text{noise}}$$

- For  $\gamma=1$ ,  $\theta^b=\hat{\theta}_m^{(b)}$  the bootstrapped estimate
- $\theta^b \not\stackrel{\rho}{\to} \hat{\theta}_n$  with  $\gamma$  fixed but

    $\mathbb{E}^*(\theta^b) \simeq \hat{\theta}_n$  and  $var^*(\theta^b) \simeq \frac{\gamma^2}{1 [1 \gamma]^2} var^*(\hat{\theta}_m^{(b)})$

# Simple Illustration: OLS estimation $(m/n \rightarrow c \in (0,1])$

• Stochatic Newton-Raphson:

$$\theta^b - \hat{\theta}_n = \underbrace{(1 - \gamma)(\theta^{b-1} - \hat{\theta}_n)}_{\text{deterministic cv.}} + \underbrace{\gamma(\hat{\theta}_m^{(b)} - \hat{\theta}_n)}_{\text{noise}}$$

- For  $\gamma = 1$ ,  $\theta^b = \hat{\theta}_m^{(b)}$  the bootstrapped estimate
- $\theta^b \not\stackrel{\rho}{\to} \hat{\theta}_n$  with  $\gamma$  fixed but

    $\mathbb{E}^*(\theta^b) \simeq \hat{\theta}_n$  and  $var^*(\theta^b) \simeq \frac{\gamma^2}{1-[1-\gamma]^2} var^*(\hat{\theta}_m^{(b)})$
- Now: extend this result to a class of non-linear models

# Asymptotic Results

# **Assumptions:** $Q_n$

## **Assumption (Sample Objective Function)**

i. 
$$\|H_n(\theta)^{-1}G_n(\theta)\|_2 \leq \overline{C}\|\theta - \hat{\theta}_n\|_2$$
,

ii. 
$$\underline{C} \|\theta - \hat{\theta}_n\|_2^2 \le \langle \theta - \hat{\theta}_n, H_n(\theta)^{-1} G_n(\theta) \rangle$$
,

iii. 
$$\underline{c}_H \leq \lambda_{\min}(H_n(\theta)^{-1}) \leq \lambda_{\max}(H_n(\theta)^{-1}) \leq \overline{C}_H$$
,

iv. 
$$||H_n(\theta) - H_n(\hat{\theta}_n)||_2 \le C_{n,1} \times ||\theta - \hat{\theta}_n||_2$$
,

v. 
$$\|\sup_{\theta\in\Theta}G_n(\theta)\|_2\leq\overline{C}_n$$

Remark: conditions i-iii. imply strong convexity

## **Newton-Raphson**

## Lemma (Newton-Raphson)

Suppose Assumption 1 holds, then for  $\gamma \in (0,1)$  small enough,  $\exists \bar{\gamma} \in (0,1)$  such that for any  $\theta^0$ :

$$\|\theta_{NR}^b - \hat{\theta}_n\|_2 \leq (1 - \bar{\gamma})\|\theta^{b-1} - \hat{\theta}_n\|_2 \leq (1 - \bar{\gamma})^b\|\theta^0 - \hat{\theta}_n\|_2$$

## **Assumption (Re-Sampled Objective Function)**

Suppose the following holds uniformly over  $\theta \in \Theta$ :

i. 
$$\|[H_m^{(b)}(\theta)]^{-1}[G_m^{(b)}(\theta) - G_m^{(b)}(\hat{\theta}_n) - H_m^{(b)}(\theta)(\theta - \hat{\theta}_n)]\|_2 \le C_{m,1} \times \|\theta - \hat{\theta}_n\|_2^2$$
,

ii. 
$$\mathbb{E}^{\star}\left(\sup_{\theta\in\Theta}\|[H_n(\theta)]^{-1}-[H_m^{(b)}(\theta)]^{-1}\|_2^2\right)^{1/2}\leq C_{m,2}\times m^{-1/2}$$
,

iii. 
$$\left[\mathbb{E}^{\star}\left(\sup_{\theta\in\Theta}\|H_n(\theta)-H_m^{(b)}(\theta)\|_2^2\right)\right]^{1/2}\leq C_{m,3}\times m^{-1/2}$$
,

iv. 
$$\left[\mathbb{E}^{\star}\left(\sup_{\theta\in\Theta}\|\mathbb{G}_{m}^{(b)}(\theta)\|_{2}^{2}\right)\right]^{1/2}\leq\overline{C}$$
, for  $\mathbb{G}_{m}^{(b)}(\theta)\stackrel{def}{=}\sqrt{m}[G_{m}^{(b)}(\theta)-G_{n}(\theta)]$ .

where  $C_{m,1/2/3}$  and  $(C_n)_{n>1}$  are bounded above,  $\overline{C} < +\infty$ .

# Stochastic Newton-Raphson: Asymptotic Linearization

#### Lemma (Linearization of the S-NR Markov-Chain)

Suppose Assumptions 1-3 hold, then for  $\gamma \in (0,1)$  small enough,  $\exists \bar{\gamma} \in (0,1)$  such that  $\forall \theta^0$ , uniformly in  $b \geq 1$ :

$$\mathbb{E}^{\star} \Big( \|\theta_{NR}^{b} - \hat{\theta}_{n} + \gamma \sum_{j=0}^{b-1} (1 - \gamma)^{j} \mathbb{Z}_{m}^{b-j} \|_{2}^{2} \Big)^{1/2}$$

$$\lesssim m^{-1} + b \rho^{b} [d_{0,n} + d_{0,n}^{2}]$$

where 
$$\rho = \max(1 - \gamma, 1 - \bar{\gamma}) \in [0, 1)$$
;  $d_{0,n} = \mathbb{E}^{\star} \left( \|\theta^0 - \hat{\theta}_n\|_2^2 \right)^{1/2}$  and  $\mathbb{Z}_m^{b-j} = [H_n(\hat{\theta}_n)]^{-1} G_m^{(b-j)}(\hat{\theta}_n)$ 

# (Asymptotic) Bootstrap behaviour of the S-NR draws

#### Theorem (Convergence in Distribution)

Suppose Assumptions 1-3 hold, let  $\mathbb{Z}_m^b = [H_n(\hat{\theta}_n)]^{-1} \mathbb{G}_m^{(b)}(\hat{\theta}_n)$  and  $\Sigma_m = var^*(\mathbb{Z}_m^b)$ . Suppose  $0 < \underline{\lambda} \leq \lambda_{\min}(\Sigma_m) \leq \overline{\lambda} \leq \lambda_{\max}(\Sigma_m) < +\infty$ , and conditions on the characteristic function of  $\mathbb{Z}_m^b$  hold then:

$$\sqrt{m}\Sigma_m^{-1/2}(\theta^b - \hat{\theta}_n) \overset{d^*}{\to} \mathcal{N}\left(0, \frac{\gamma^2}{1 - [1 - \gamma]^2}I\right),$$

as  $m, b \to \infty$ ; if  $\log(m)/b \to 0$  and  $d_{0,n} = O(1)$ , n/m = O(1).

**Empirical Illustration** 

# Simple Example: Mroz (1987) Probit model

• Probit model:  $\mathbb{P}(y_i = 1 | x_i) = \Phi(x_i' \theta)$ 

-0.012

(0.005)

 $SNR_m$ 

0.132

(0.025)

0.124

(0.019)

- Sample of n = 753 observations, m = n,  $\gamma = 0.3$
- $SNR_{np/m}$ : iid re-sampling and multiplier Bootstrap (5k draws)
- Compare  $\hat{\theta}_{n,MLE}$ , asym. & boot. standard errors with SNR

|                       | nwifeinc | educ    | exper   | exper2  | age     | kidslt6 | kidsge6 | constant |
|-----------------------|----------|---------|---------|---------|---------|---------|---------|----------|
| $\hat{	heta}_{n,MLE}$ | -0.012   | 0.131   | 0.123   | -0.002  | -0.053  | -0.868  | 0.036   | 0.270    |
| Asym.                 | (0.005)  | (0.025) | (0.019) | (0.001) | (800.0) | (0.119) | (0.043) | (0.509)  |
| $ar{	heta}_{n,boot}$  | -0.012   | 0.134   | 0.124   | -0.002  | -0.054  | -0.883  | 0.036   | 0.275    |
| Boot.                 | (0.005)  | (0.027) | (0.020) | (0.001) | (0.009) | (0.122) | (0.046) | (0.524)  |
| $SNR_{np}$            | -0.012   | 0.133   | 0.123   | -0.002  | -0.053  | -0.873  | 0.038   | 0.263    |
|                       | (0.005)  | (0.026) | (0.019) | (0.001) | (0.010) | (0.119) | (0.046) | (0.510)  |

-0.002

(0.001)

-0.053

(800.0)

-0.873

(0.115)

0.267

(0.500)

0.037

(0.044)

# Simple Example: Mroz (1987) Probit model



red:  $\hat{\theta}_n$ ; black/blue: SNR with iid/multiplier Bootstrap

# Simple Example: m = n

(0.005)

-0.012

(0.005)

 $SNR_m$ 

(0.026)

0.132

(0.025)

(0.019)

0.124

(0.019)

|                         | nwifeinc | educ    | exper   | exper2  | age     | kidslt6 | kidsge6 | constant |
|-------------------------|----------|---------|---------|---------|---------|---------|---------|----------|
| $\hat{	heta}_{n,MLE}$   | -0.012   | 0.131   | 0.123   | -0.002  | -0.053  | -0.868  | 0.036   | 0.270    |
| Asym.                   | (0.005)  | (0.025) | (0.019) | (0.001) | (0.008) | (0.119) | (0.043) | (0.509)  |
| $\bar{\theta}_{n,boot}$ | -0.012   | 0.134   | 0.124   | -0.002  | -0.054  | -0.883  | 0.036   | 0.275    |
| Boot.                   | (0.005)  | (0.027) | (0.020) | (0.001) | (0.009) | (0.122) | (0.046) | (0.524)  |
| CND                     | -0.012   | 0.133   | 0.123   | -0.002  | -0.053  | -0.873  | 0.038   | 0.263    |
| $SNR_{np}$              | (0.005)  | (0.000) | (0.010) | (0.001) | (0.010) | (0.110) | (0.046) | (0.510)  |

(0.001)

-0.002

(0.001)

(0.010)

-0.053

(800.0)

(0.119)

-0.873

(0.115)

(0.046)

0.037

(0.044)

(0.510)

0.267

(0.500)

# **Simple Example:** m = 500, (n = 753)

0.133

(0.026)

0.134

(0.029)

0.123

(0.020)

0.123

(0.022)

-0.012

(0.005)

-0.012

(0.006)

SNRnp

 $SNR_m$ 

|                                | nwifeinc | educ    | exper   | exper2  | age     | kidsltb | kidsgeb | constant |
|--------------------------------|----------|---------|---------|---------|---------|---------|---------|----------|
| $\hat{	heta}_{n, 	extit{MLE}}$ | -0.012   | 0.131   | 0.123   | -0.002  | -0.053  | -0.868  | 0.036   | 0.270    |
| Asym.                          | (0.005)  | (0.025) | (0.019) | (0.001) | (0.008) | (0.119) | (0.043) | (0.509)  |
| $\bar{\theta}_{n,boot}$        | -0.012   | 0.134   | 0.124   | -0.002  | -0.054  | -0.883  | 0.036   | 0.275    |
| Boot.                          | (0.005)  | (0.027) | (0.020) | (0.001) | (0.009) | (0.122) | (0.046) | (0.524)  |

-0.002

(0.001)

-0.002

(0.001)

-0.053

(800.0)

-0.053

(0.010)

-0.876

(0.120)

-0.876

(0.133)

0.037

(0.045)

0.036

(0.053)

0.277

(0.505)

0.259

(0.585)

# **Simple Example:** m = 200, (n = 753)

0.135

(0.026)

0.140

(0.033)

0.124

(0.020)

0.122

(0.025)

-0.013

(0.005)

-0.014

(0.007)

SNRnn

 $SNR_m$ 

|                         | nwifeinc | educ    | exper   | exper2  | age     | kidslt6 | kidsge6 | constant |
|-------------------------|----------|---------|---------|---------|---------|---------|---------|----------|
| $\hat{	heta}_{n,MLE}$   | -0.012   | 0.131   | 0.123   | -0.002  | -0.053  | -0.868  | 0.036   | 0.270    |
| Asym.                   | (0.005)  | (0.025) | (0.019) | (0.001) | (0.008) | (0.119) | (0.043) | (0.509)  |
| $\bar{\theta}_{n,boot}$ | -0.012   | 0.134   | 0.124   | -0.002  | -0.054  | -0.883  | 0.036   | 0.275    |
| Boot.                   | (0.005)  | (0.027) | (0.020) | (0.001) | (0.009) | (0.122) | (0.046) | (0.524)  |
|                         |          |         |         |         |         |         |         |          |

-0.002

(0.001)

-0.002

(0.001)

-0.054

(0.009)

-0.054

(0.011)

-0.884

(0.121)

-0.898

(0.158)

0.039

(0.046)

0.036

(0.058)

0.267

(0.512)

0.248

(0.655)

# **Simple Example:** m = 100, (n = 753)

0.139

(0.027)

0.144

(0.035)

0.125

(0.021)

0.127

(0.027)

-0.014

(0.006)

-0.015

(0.007)

 $SNR_{np}$ 

 $SNR_m$ 

|                         | nwifeinc | educ    | exper   | exper2  | age     | kidslt6 | kidsge6 | constant |
|-------------------------|----------|---------|---------|---------|---------|---------|---------|----------|
| $\hat{	heta}_{n,MLE}$   | -0.012   | 0.131   | 0.123   | -0.002  | -0.053  | -0.868  | 0.036   | 0.270    |
| Asym.                   | (0.005)  | (0.025) | (0.019) | (0.001) | (800.0) | (0.119) | (0.043) | (0.509)  |
| $\bar{\theta}_{n,boot}$ | -0.012   | 0.134   | 0.124   | -0.002  | -0.054  | -0.883  | 0.036   | 0.275    |
| Boot.                   | (0.005)  | (0.027) | (0.020) | (0.001) | (0.009) | (0.122) | (0.046) | (0.524)  |

-0.002

(0.001)

-0.002

(0.001)

-0.055

(0.009)

-0.056

(0.012)

-0.906

(0.128)

-0.930

(0.164)

0.038

(0.047)

0.039

(0.061)

0.281

(0.525)

0.263

(0.681)

# **Simple Example:** m = 50, (n = 753)

0.149

(0.029)

0.155

(0.037)

0.128

(0.024)

0.133

(0.030)

-0.015

(0.006)

-0.016

(800.0)

 $SNR_{np}$ 

 $SNR_m$ 

|                                | nwifeinc | educ    | exper   | exper2  | age     | kidslt6 | kidsge6 | constant |
|--------------------------------|----------|---------|---------|---------|---------|---------|---------|----------|
| $\hat{	heta}_{n, 	extit{MLE}}$ | -0.012   | 0.131   | 0.123   | -0.002  | -0.053  | -0.868  | 0.036   | 0.270    |
| Asym.                          | (0.005)  | (0.025) | (0.019) | (0.001) | (800.0) | (0.119) | (0.043) | (0.509)  |
| $\bar{\theta}_{n,boot}$        | -0.012   | 0.134   | 0.124   | -0.002  | -0.054  | -0.883  | 0.036   | 0.275    |
| Boot.                          | (0.005)  | (0.027) | (0.020) | (0.001) | (0.009) | (0.122) | (0.046) | (0.524)  |

-0.002

(0.001)

-0.002

(0.001)

-0.057

(0.009)

-0.059

(0.012)

-0.948

(0.137)

-0.974

(0.180)

0.037

(0.050)

0.045

(0.065)

0.270

(0.566)

0.243

(0.735)

#### Simple Example: $m \le 30 \ (n = 753)$

#### Windows

A fatal exception 0E has occurred at 0028:C0068F8in VxD VMM(01) + 000059F8. The current application will be terminated.

- \* Press any key to terminate the current application.
- \* Press CTRL+ALT+DEL to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue \_

• OLS regression: run SGD with  $m \to \infty$ 

$$\theta^b = \theta^{b-1} - \gamma \cdot G_m^{(b)}(\theta^{b-1})$$

• As  $m, b \to \infty$ , we have a VAR(1) representation:

$$\mathbb{E}^{\star}(\|\theta^{b} - \hat{\theta}_{n} - \gamma \sum_{j=0}^{b-1} (I - 2\gamma X_{n}' X_{n}/n)^{j} \mathbb{Z}_{m}^{(b-j)}\|)$$
$$\lesssim m^{-1} + \rho^{b} d_{0,n}$$

where 
$$\rho = \lambda_{\max}(I - 2\gamma X_n' X_n/n)$$
 (assuming  $\lambda_{\min} \ge 0$ );  $d_{0,n} = \mathbb{E}^{\star} \left( \|\theta^0 - \hat{\theta}_n\| \right)$  and  $\mathbb{Z}_m^{b-j} = -2X_m^{(b)'} \hat{e}_m^{(b)}/m$ 

• As  $m, b \to \infty$ , we have a VAR(1) representation:

$$\theta^b - \hat{\theta}_n \stackrel{approx.}{=} (I - 2\gamma X_n' X_n / n)(\theta^{b-1} - \hat{\theta}_n) + \gamma \mathbb{Z}_m^b$$

• Run a VAR(1) regression:

$$\theta^b = A_0 + A_1 \theta^{b-1} + \varepsilon^b$$

• As  $m, b \to \infty$ , we have a VAR(1) representation:

$$\theta^b - \hat{\theta}_n \stackrel{approx.}{=} (I - 2\gamma X_n' X_n/n)(\theta^{b-1} - \hat{\theta}_n) + \gamma \mathbb{Z}_m^b$$

• Run a VAR(1) regression:

$$\theta^b = A_0 + A_1 \theta^{b-1} + \varepsilon^b$$

Heuristically we should have:

$$X'_n X_n / n \stackrel{approx.}{=} 0.5 \gamma^{-1} (I - A_1)$$
  
 $\hat{\theta}_n \stackrel{approx.}{=} (I - A_1)^{-1} A_0$ 

without explicitly computing these quantities

• As  $m, b \to \infty$ , we have a VAR(1) representation:

$$\theta^b - \hat{\theta}_n \stackrel{approx.}{=} (I - 2\gamma X_n' X_n / n)(\theta^{b-1} - \hat{\theta}_n) + \gamma \mathbb{Z}_m^b$$

• Run a VAR(1) regression:

$$\theta^b = A_0 + A_1 \theta^{b-1} + \varepsilon^b$$

Heuristically we should have:

$$X'_{n}X_{n}/n \stackrel{approx.}{=} 0.5\gamma^{-1}(I - A_{1})$$
$$\hat{\theta}_{n} \stackrel{approx.}{=} (I - A_{1})^{-1}A_{0}$$

without explicitly computing these quantities

• QUESTION: can we transform  $\theta^b$  into asymptotically valid Bootstrap draws without additional information?

# Conclusion

#### **Conclusion**

- SNR: simultaneous estimation and Bootstrapping
- Appealing for two-step estimators with complicated variance
- Potential avenues of research:
  - Stochastic quasi-Newton Methods (S-BFGS)
     computationally very attractive
  - Alternative sampling schemes look for theoretical guarantees in non-convex settings

# THANK YOU!

#### References

- Andrews, D. W. K. (2002). Higher-Order Improvements of a Computationally Attractive k-Step Bootstrap for Extremum Estimators. <u>Econometrica</u>, 70(1):119–162.
- Armstrong, T. B., Bertanha, M., and Hong, H. (2014). A fast resample method for parametric and semiparametric models. Journal of Econometrics, 179(2):128–133.
- Bach, F. and Moulines, E. (2011). Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning. Nips.
- Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y. (2016). A Stochastic Quasi-Newton Method for Large-Scale Optimization. <u>SIAM Journal on</u> <u>Optimization</u>, 26(2):1008–1031.
- Chernozhukov, V. and Hong, H. (2003). An MCMC approach to classical estimation. Journal of Econometrics, 115(2):293–346.
- Davidson, R. and MacKinnon, J. G. (1999). Bootstrap Testing in Nonlinear Models. International Economic Review, 40(2):487–508.

#### References ii

- Dvoretzky, A. (1956). On stochastic approximation. Technical report, Columbia University New York City United States.
- Honoré, B. E. and Hu, L. (2017). Poor (Wo)man's Bootstrap. <u>Econometrica</u>, 85(4):1277–1301.
- Kline, P. and Santos, A. (2012). A Score Based Approach to Wild Bootstrap Inference. Journal of Econometric Methods, 1(1).
- Li, T., Kyrillidis, A., Liu, L., and Caramanis, C. (2018). Approximate Newton-based statistical inference using only stochastic gradients.
- Mandt, S., Hoffman, M. D., and Blei, D. M. (2017). Stochastic gradient descent as approximate bayesian inference. <u>The Journal of Machine Learning Research</u>, 18(1):4873–4907.
- Moffitt, R. and Zhang, S. (2018). Income Volatility and the PSID: Past Research and New Results. AEA Papers and Proceedings.
- Moritz, P., Nishihara, R., and Jordan, M. (2016). A Linearly-Convergent Stochastic
   L-BFGS Algorithm. In Gretton, A. and Robert, C. C., editors, <u>Proceedings of the</u>
   19th International Conference on Artificial Intelligence and Statistics, volume 51 of
   <u>Proceedings of Machine Learning Research</u>, pages 249–258, Cadiz, Spain. PMLR.

#### References iii

- Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4):838–855.
- Robbins, H. and Monro, S. (1951). A Stochastic Approximation Method. <u>The Annals of Mathematical Statistics</u>, 22(3):400–407.
- Ruppert, D. (1988). Efficient estimators from a slowly convergent Robbins-Monro procedure. School of Oper. Res. and Ind. Eng., Cornell Univ., Ithaca, NY, Tech. Rep, 781.

# **Application:**

**Sensitivity Analyses** 

#### **Influential Observations**

#### • Influential observations:

a subset  $\mathcal{I} \subset \{1, \dots, n\}$  of the data which impacts the conclusions significantly

- e.g. leads to very different point estimates or standard errors
  - outliers
  - leverage points
  - ...
- Idea: under  $H_0$  (no influential observations) removing  $\mathcal{I}$  during the iterations should not significantly affect the Markov-Chain
- Under H<sub>1</sub> (influential observations) should lead to a structural break in the levels/variance

#### Main Example: PSID Income Dynamics

- Panel Study of Income Dynamics (PSID)
- Moffitt and Zhang (2018) earnings volatility
- 3,508 males (36,403 person-year obs.)
- Model permanent and transitory components:

$$y_{iat} = \alpha_t \mu_{ia} + \beta_t \nu_{ia}$$

$$\mu_{ia} = \mu_{i0} + \sum_{s=1}^{a} \omega_{is}$$

$$\nu_{ia} = \varepsilon_{ia} + \sum_{s=1}^{a-1} \psi_{a,a-s} \varepsilon_{is}, \quad a \ge 2$$

•  $a = age \in [24, 54]$ 

#### **Empirics**

- De-trend the data using OLS with polynomial regressors
- Aggregate residual autocovariances by age-group
- Match sample with model-based autocovariance matrix
- Warning:
  - original paper estimates 11 variance parameters
  - we only estimate 4 because of identification issues

$$var(\mu_{i,0}): \nu_0$$
  
 $var(\omega_{ir}): \delta_0, \delta_1$   
 $var(\varepsilon_{ir}): \gamma_0, \gamma_1, k$   
 $\psi_{a,a-r}: \mathcal{K}, \mathcal{M}, \mathcal{M}, \mathcal{M}, \mathcal{M}$ 

Goal: Are the results sensitive to particular age groups?

### Influence: estimates without 24-28 age group



#### Influence: estimates without 29-33 age group



### Influence: estimates without 34-38 age group



#### Influence: estimates without 39-43 age group



#### Influence: estimates without 44-48 age group



#### Influence: estimates without 49-54 age group



## Influence of individual age-groups



#### **PSID Income Dynamics and Outlier Trimming**

- Common empirical practice: remove extreme observations
- Here: the authors of the original paper trimmed the top and bottom 1% observations in each age-time group
  - are the results sensitive to the level of trimming?
- We look at a range of trimming levels: 0, 0.5, 1, 1.5 and 2%

#### Influence of trimming: no trimming



#### Influence of trimming: trim 0.5%



### Influence of trimming: trim 1% (baseline)



### Influence of trimming: trim 1.5%



#### Influence of trimming: trim 2%



### Influence of trimming



#### Simple Example: IBES

- Institutional Brokers' Estimate System (IBES)
- Large database of analyst earnings estimates vs. realized
- Predictive regression:

$$y_i^{\text{actual}} = \theta_0 + \theta_1 y_i^{\text{medest}} + e_i$$

- medest = median estimate
- Rational expectations:  $\theta_0 \simeq 0, \theta_1 \simeq 1$
- Experiment: remove the 2% most influential obs. & compare
- n = 9,278 firms, t = 01/1985 12/2017
- $\gamma = 0.8$ ; m = 6,000 (re-sample firms)

## Simple Example: IBES - Full Sample



#### Simple Example: IBES - Without Outliers



#### Simple Illustration: OLS estimation by Newton-Raphson

- OLS regression:  $y_i = x_i'\theta + u_i$
- Sample objective:  $Q_n(\theta) = \sum_{i=1}^n (y_i x_i'\theta)^2 / n$ ,  $G_n(\theta) = -2 \sum_i x_i (y_i x_i'\theta) / n$ ,  $H_n(\theta) = -2 \sum_i x_i x_i' / n$
- Newton-Raphson Iterations:

$$\theta^b = \theta^{b-1} + \gamma_b \left( \sum_i x_i x_i' \right)^{-1} \left[ \sum_i (x_i y_i - \theta^{b-1} x_i x_i') \right]$$
$$= (1 - \gamma_b) \theta^{b-1} + \gamma_b \hat{\theta}_n$$

- For  $\gamma_b = 1$  convergence after one iteration
- For  $\gamma_b = \gamma \in (0,1]$  fixed, the error  $\theta^b \hat{\theta}_n$  is:

$$\theta^b - \hat{\theta}_n = (1 - \gamma)^b [\theta^0 - \hat{\theta}_n]$$

### Simple Illustration: OLS estimation by Gradient-Descent

• Gradient Descent Iterations:

$$\theta^{b} = \theta^{b-1} + 2\gamma_{b} \sum_{i} x_{i} [y_{i} - x_{i}' \theta^{b-1}] / n$$

$$= (I - 2\gamma_{b} \sum_{i} x_{i} x_{i}' / n) \theta^{b-1} + 2\gamma_{b} [\sum_{i} x_{i} x_{i}' / n] \hat{\theta}_{n}$$

• Re-write the error  $\theta^b - \hat{\theta}_n$  as:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma_b [\sum_i x_i x_i'/n])(\theta^{b-1} - \hat{\theta}_n)$$

• For  $\gamma_b = \gamma \le \lambda_{\max}(\sum_i x_i x_i'/n)/2$  fixed, the error  $\theta^b - \hat{\theta}_n$  is:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma [\sum_i x_i x_i'/n])^b [\theta^0 - \hat{\theta}_n]$$

• Convergence after one iteration in one direction if  $\gamma = \lambda_{\max}(\sum_i x_i x_i'/n)/2$ 

#### Issues with Mini-Batch Stochastic Newton-Raphson

- Deterministic case:  $heta^b_{NR} o \hat{ heta}_n$  faster than  $heta^b_{GD} o \hat{ heta}_n$
- Why is S-GD more popular than S-NR?
  - need to compute  $[H_1^{(b)}(\theta)]^{-1}$  often (near)-singular
  - e.g.  $x_i = (1, x_{i,1}), x_{i,1} \sim Bernoulli(p)$  $\Rightarrow x_i x_i'$  singular wp. 1 for any  $p \in [0, 1]$
- ⇒ mini-batch S-NR can be infeasible/unstable
  - some solutions:
    - use more observations for H (Byrd et al., 2016; Li et al., 2018)
    - use accumulated gradient for scaling: adagrad, RMSprop,...