Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 **Experimento 6** 12/12/2024

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

2 Materiais

- National Instruments Elvis II
- 1 capacitor de $100 \mathrm{n} F$
- 2 resistores de 47Ω
- 1 indutor de 1mH

3 Procedimentos

Como usual, os componentes têm suas grandezas medidas para efeito de comparação. Os resultados são adicionados à Tabela 1.

Grandeza	Valor calculado	Valor medido	Erro (%)
R_1			
R_2			
C			
L			

Tabela 1: Valores dos componentes

Em seguida, é montado o circuito da Figura 1 e liga-se o gerador de funções do Elvis para obter uma onda senoidal com $2V_{pp}$ e frequência de 14kHz.

Figura 1: Circuito sem capacitor

Usando o osciloscópio do Elvis, são medidas as tensões V_0 e V_{carga} , obtidas no Gráfico 1. Esses valores são usados para obter V_{R_1} e são encontrados na Tabela 2.

Gráfico 1: Circuito sem capacitor

Grandeza	Valor calculado	Valor medido	Erro (%)
Valor eficaz de V_0			
Valor eficaz de V_{carga}			
Valor eficaz de V_{R_1}			
Fase de V_{carga} em relação a V_0			
Fase de V_{R_1} em relação a V_0			
Fator de potência da carga			

Tabela 2: Valores do primeiro circuito

4 Conclusão

5 Bibliografia

6 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.