*

S=5, D=14 => Time

S=5, D=14

bool is Path (N, E, U[], V[], src, dest) {

list(int) g(N+1); //TODO.(Adj. List)

bool vis (N+1) = (false 3;

dfs(q, vis, src);

veturn vis(dest);

Void dfs(list(int) q, bool vis(), int s) {

if (vis(s) = = +one) veturn;

vis(s) = tore;

for(i=0; i(q(s).size(); i++) {

V = q(s)(i);

dfs(q, vis, V);

3

Di Given an undirected graph, find the number of connected components.

connected component => If from energy node, we can visit all the nodes of a component.

No. of connected components:

Bool vis[N+1]

_	
0	A 1 200
١	PT ⇒ Apply DFS
2	₽T
3	₽ T
Ч	7 4
\$	APP by DES
6	₽T = U
エ	XT
8	FT
٩	FT A L DEC
16	*T > Apply DFS
11	FT
12	
13	*T => Apply DFS
14	₹ T
13	FT

No. et connected components = No. et DFS calls. # 1 connected component. Components (N, E, U[], V[]) (int list (int) g[N+1]; 11 Create : [I+N] siv lood aus = 0 for (i= 1; i < = N; i++) (if (!vis[i]) { dfs(d, vis, i);

ans++; void dfs (list (int) q, bool visl), int 3) 1 if (vis[s] = = +one) neturn; Vis[8] = true; for(1=0; i(q [S]. size(); i++) { v = g (3) (1); dfs(g, vis, v); TC:- O(E), 8C: O(N+E) 64 E >> N

Islands = 5

Up
$$(0,0)$$
 sight $(0,1)$ $(0,2)$ $(0,2)$ $(0,2)$ $(0,2)$ $(0,2)$ $(0,2)$ $(0,2)$

```
int
                                                                       Islands (int max (1) () , M) 1
                                                                                                             C = 0
                                                                                                             for(i= 0; i( N; i++) {
                                                                                                                                                              for(j=0; j<M; j++)1
                                                                                                                                                                                                      if (max[i][i] = = \bot)
                                                                                                                                                                                                                                           // with in call DFS.
                                                                                                                                                                                                                                               dfs(mat, i,j, N,M);
                    \frac{3}{100} = \frac{3}
                        void dfs(maxl)(), i,j, N, M) <
(i,j) is fif(i(0 || j(0 || i >= N || j >= M || matsigsj== 0){

Twalid

Inden. 3
                                                                             maylillin = 0
                                                                               dfs(mat, i+1, j, N, M);
                                                                             dfs(mat, (-1, j, N, M);
dfs(mat, l, j+1, N, M);
dfs(mat, l, j-1, N, M);
                                                                                                                                 for (K = 0; K < 4; K + + ) <

defs (max, i+ n(K), j+ y(K), N, M)

3
```

SC: D(NM)

Multisource BFS

→ Given N nodes 4 multiple sources 151,82,53 3. Find the length of shortest path for all the nodes to any of the source nodes.

1,7,2 8,12,18,3,1,15 4,6,14,8,9,10 level=1 devel=2

Idea: - Only Change is to push all the given source notes in the June 4 apply BFS.

=> TODO

Every minute any fresh orange, adjacent to a rotten orange becomes rotten. Find min time when all the oranges will become notten.

	0	ţ	2	3	ч
0	X34	٥×	3	D	X5
ı	12	+	72	-1/3-	> K4
٤	0	2	0	74	0
3	Dx+	*	12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	→ K3-	> / Y
4	X3	+ A	1 1 1	0	1/5

	O	ţ	٤	3	ч
0	+3	0	+,	No	+
l	+2	X	X2	X	X2
٤	0	NO	0	42	0
3	O	+	42	X,	+2
4	+3	+2	P ₁	20	0

→ Multisource BFS

=> aus = man (mat[][]) = \frac{8}{2}

level 0: (0,3) (2,1) (4,3) dener: (1,2) (1,4) (2,3) (1,0) (4,1) (3,2) (3,3)

Level: (1,2) (1,4) (2,3) (1,0) (4,1) (3,2) (3,4)

```
int
      min Time (mat[][], N, M) (
        Quine ( Pair ( int ) ) 9;
         int time[N][M] = {-1};
        for(1=0; 1< N; 1++) {
               for (j=0; j< M; j++) <
                    if (mat[i][j] == 2) (
                       g.enqueue((i,j3);
fime (i)[j) = 0
       \frac{3}{1} int n[] = \{-1, 1, 0, 0\}
         int yes = 20,0,1,-13
         mhile (q. size (>>0) {
               Pair (int, int) d = q. front();
               q. dequeue ();
               i= d.first;
                j= d. second;
                for ( K = 0; K < 4; K + + ) 1
 a = i + n | k |, b = j + y | k |;

if this is true, if (a_1b) is a valid if (a_2b) is a valid mathematical b = 1 of b < m < 2
   inden
                              madfa1167 = 2
                               9. enqueue (20,63);
                               time [a][b] = time[i][i]++;
```

- → 11 Check mad1)1), if even a single (1) is
 1|fresent, return -1;
- => // Iterate over time[][], & find man eleme.

3

TC: 0(N·M)

8C: O(N·M)

_____* * _____

Doubts

ij

N×M ⇒ N-1,M-1

Imalia

M= (1 11 0 > 1 11 0 > 5

Valid

17=0&4 37=048 i < N& 2 3 < M