Room boundary estimation Master thesis

June 2016

Domínguez Simón, José Ignacio Suhr Jøns, Christian 16qr1060@es.aau.dk

Agenda

Introduction

Problem analysis

System design

Conclusion and further research

Room boundary estimation

Group 1060

troduction

Problem analysis

System design Conclusion and

Conclusion and further research

Introduction Presentation of problem

Room boundary estimation

Group 1060

) Introduction

System design

Conclusion and further research

There exists a unique relationship from the **boundaries** to the **sound field** (*Kirchhoff-Helmholtz theorem*).

Problem statement: how can boundaries' characteristics be evaluated based on acoustical measurements in the room?

Introduction Motivation

Room boundary estimation Group 1060

•

3 Introduction

System design

Conclusion and further research

This problem is not new, some approaches exist:

- ► Acoustical:
 - ► From measured echoes [Jager, 2015]
 - ► Using a directional microphone [Gunel, 2016]
- ▶ Optical:
 - ► Using a Kinect camera [Olesen et al., 2014]

The acoustical ones are limited to **simple geometries** or a **low degree of precision**, while the optical is almost useless for the estimation of materials' characteristics.

Problem analysis Sound field in enclosures

Effects of having boundaries (finite enclosures)

- Sound pressure is not radially decaying
- Maxima and minima found depending on freq. and boundaries

Identifying the components of the sound field within the enclosure:

- Direct sound (single wavefront)
- Reflected sound (multiple wavefronts)

Room boundary estimation

Group 1060

Introduction

Problem analysis

Sound field in enclosures
Virtual sources / reflections

System design

Conclusion and further research

Problem analysis Virtual sources / reflections

Wall

Virtual source

Source

Reflections understood as virtual sources

▶ Delayed (longer path)

► Filtered (reflection absorption)

Any enclosure can be modeled after a set of virtual sources that represent the effect of the reflections.

New task: find the set of virtual sources.

Receiver

Room boundary estimation Group 1060

Virtual sources / reflections

System design

System design Microphones array

All information is obtained from **IR measurements** performed with an **array**.

Uniform circular arrays offer:

- ► Homogeneous resolution
- Good performance over freq.

Better geometries can be derived from the UCA.

Using IRs allows the data to be processed using **narrow or wide band techniques** (e.g. it can be filtered).

Room boundary estimation Group 1060

Introduction

Problem analysis

System design

Microphones array Impulse responses

IR processing I - Peak detection

windowing

detection IR processing IV - DO

> estimation B processing IV - DOA

estimation IR processing IV - DC

timation

Sound field reconstruction I
Sound field reconstruction

onclusion and orther research

System design Impulse responses

Data captured with the array is a **set of impulse responses**.

- ► One IR per microphone
- Signals are analysed group or individually

There exist **zones of interest** where the analysis must focus.

⇒ These *events* lead to **estimated sources**.

Room boundary estimation Group 1060

Introduction

Problem analysis

System design

Impulse responses

IR processing I - Peak detection

IR processing II - Time windowing

detection

estimation

estimation

IB processing IV - DO

H processing IV - DC estimation

Virtual sources cloud Sound field reconstruction I Sound field reconstruction

Conclusion and urther research

System design IR processing I - Peak detection

Combining and low-pass filtering the IRs, the zones of interest are found.

- The analysis of IRs is only performed on those zones greatly reducing the computation time.
- It almost eliminates the false detections that other methods show.

Room boundary estimation Group 1060

•

Introduction

Problem analysis

System design

Microphones arra

IR processing I - Peak

IR processing II - Time

IR processing III - Sign

IR processing IV - E

estimation

estimation
IR processing IV - DC

R processing IV - E estimation

Virtual sources cloud

Sound field reconstruction I

Conclusion an

System design IR processing II - Time windowing

Each zone of interest is processed for:

- ► **Detection** (amount of events)
- ► Direction of arrival estimation
- ► Spectrum estimation

Sources are defined with characteristics derived from these estimations. This process creates a **cloud of virtual sources** with location and spectrum.

Room boundary estimation Group 1060

Introduction

Problem analysis

System design

Microphones array Impulse responses IR processing I - Peak

IR processing II - Time windowing

IR processing III - Signa detection

> R processing IV - DC estimation

estimation

R processing IV - DOA stimation

/irtual sources cloud Sound field reconstruction I

onclusion and

onclusion and irther research

System design IR processing III - Signal detection

Classic detection methods are not valid or impractical:

- ► Eigenvalue decomposition: not valid for coherent signals
- ► GLRT (hypothesis testing): threshold value is hard to find and change with the environment

A new method is designed for this specific needs:

- Each microphone signal is rectified and filtered
- A peaks-detection method is executed
- ► The mode of the amount of peaks is taken

Room boundary estimation Group 1060

ntroduction

r robioiri anaiyolo

Microphones array

IR processing I - Peak detection

IR processing II - Time windowing

) IR processing III - Signal detection

detection R processing IV - DOA

IR processing IV - DOA estimation

R processing IV - DO stimation

Virtual sources cloud

Sound field re

Conclusion and further research

DOA estimation and what choices were made:

- ► Widely used, precise methods:
 - ► MUSIC
 - ► ESPRIT
 - Capon

These methods will fail with **coherent** signals present. Another method was chosen:

► Stochastic maximum likelihood estimator (SML)

Room boundary estimation Group 1060

Introduction

Problem analysi

System desian

Microphones array Impulse responses

detection

windowing

IR processing III - Signa

detection IR processing IV - DOA

estimation

IR processing IV - DOA estimation

processing IV - Do imation

Virtual sources cloud
Sound field reconstruction

Conclusion and further research

System design IR processing IV - DOA estimation

The SML works with coherent signals:

Room boundary estimation

Group 1060

System design

IR processing IV - DOA estimation

System design IR processing IV - DOA estimation

Minimizing the **SML** estimator. Several possible minimizing techniques exits such as:

- Newtons method
- ▶ Hillclimbing techniques
- ▶ Genetic algorithms

A genetic algorithm approach was chosen. Reasons are:

- ► Good solutions space search
- Fast convergence
- ► Consistent convergence

Room boundary estimation

Group 1060

ntroduction

Problem analysis

System design

Microphones array Impulse responses IR processing I - Peak

IR processing II - Time

IR processing III - Signa detection

R processing IV - DO/ stimation

IR processing IV - DO/

IR processing IV - DOA estimation

Sound field reconstruction I

Conclusion and further research

System design Virtual sources cloud

A **virtual sources cloud** is estimated from data of IRs analysis

- ► False detection is almost eliminated.
- ► Computational time is greatly improved.

Room boundary estimation

Group 1060

System design

Virtual sources cloud

System design Sound field reconstruction I

New geometry estimation principle:

- ► From the cloud of sources
- Use Green's function to reconstruct the pressure map
- ➤ Average over frequency to get the boundary silhouette (prime numbers)

This procedure is applied for full clouds of virtual sources:

- It is shown to work for any arbitrary geometry
- Spacial averaging concept is introduced

Room boundary estimation Group 1060

Introduction

System design

Microphones array Impulse responses

IR processing I - Peak detection

IR processing II - Time windowing

detection IR processing IV - DOA

estimation IR processing IV - DO

estimation IR processing IV - D

estimation
Virtual sources cloud

Sound field reconstruction I

Conclusion and

further researc

System design Sound field reconstruction I

Rectangular and **irregular** boundaries examples:

Room boundary estimation

Group 1060

System design

Sound field reconstruction I

System design Sound field reconstruction II

Deriving boundaries' absorption from virtual sources:

- From the estimated geometry
- Analysing the spectrum of direct and reflected rays (in the IRs)
- ► Beamforming is necessary if several events coincide in the same time window

 The estimated absorption characteristics are valid in the mid - high freq range (window size)

Room boundary estimation

Group 1060

ntroduction

Problem analysis

System design

Microphones array Impulse responses

detection

IR processing II - Time windowing

IR processing III - Sign detection

IR processing IV - DC estimation

IR processing IV - DOA estimation

IR processing IV - DC estimation

Virtual sources cloud

Sound field reconstruction I

Sound field reconstruction

||

Conclusion and further research

Conclusion and further research

Proven facts and developed new methods:

- ▶ New methods for IRs analysis and VS estimation
 - ► Zones of interest detection
 - ► Amount of events estimation (peak detection)
- ► SML-DOA efficiency estimation for cloud decomposition
 - ► Evaluation of standard (scan) and intelligent minimiser (GA)
- ▶ Principle of *freq superposition* for geometry estimation
 - ► Shown to work for arbitrary geometries
 - Spatial averaging proven to work
- Method for boundaries absorption estimation
 - Proven to work although limited to mid-high frequency

Conclusion: all elements needed for a real-time system implementation are ready

Room boundary estimation Group 1060

.

ntroduction

Problem analysis System design

Conclusion and

Results

Further research

Conclusion and further research

The **basic elements** are working, but there is room for improvement:

- ► Improve **geometry estimation** precision (small details, presence of furniture, etc).
- ► Expand **absorption estimation** frequency range.
- ► Extend the system to a 3D version
- ► Evaluate the complete setup with real IRs in 3D
- ► Implement a **real-time** system

Room boundary estimation

Group 1060

Introduction

Problem analysis

System design Conclusion and

further researd Results

Room boundary estimation Master thesis presentation - June 2016

Room boundary estimation

Group 1060

System design

Conclusion and further research

