Găsirea Contururilor În Imaginile Digitale

Tache Daria Elena Zavoianu Catinca

Facultatea de Matematică și Informatică Universitatea din București Specializarea Informatică

January 16, 2025

Cuprins

Introducere

Metode Matematice

Operatori de Gradient

Operatori Gaussieni

Concluzii și Comparații

Biblioteci Folosite

Bibliografie

Introducere

Proiectul despre detecția marginilor se concentrează pe identificarea marginilor în imagini digitale, care sunt definite ca linii sau curbe unde luminozitatea imaginii suferă schimbări bruste sau întreruperi.

- Detecția marginilor este esențială în procesarea imaginilor.
- Aplicații: recunoașterea obiectelor, realitatea augmentată, imagistica medicală.
- ► Probleme practice: fragmentarea marginilor, margini false, segmente lipsă.

Derivate și Margini

- Marginea unei imagini delimitează două obiecte distincte, caracterizată prin variația intensității pixelilor.
- Analiza derivatelor:
 - Derivata de ordinul întâi (Gradient): măsoară variația intensitătii.
 - Derivata de ordinul al doilea (Laplacian): indică schimbarea de curbură.
- Gradientul este o metodă simplă de detecție a marginilor, bazată pe derivata de ordinul întâi.

Derivate și Margini

► Model Grafic pentru Derivate.

Derivate și Margini - Formula Gradientului

Gradientul se poate calcula prin convoluție cu un kernel. Derivata pe axa x a unei imagini poate fi scrisă astfel:

$$\frac{\partial I(x,y)}{\partial x} = I(x,y) * K_x$$

unde K_x este kernelul pentru derivata pe axa x. Kernelul K_x este definit astfel:

$$K_x = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

► Similar, derivata pe axa y poate fi scrisă astfel:

$$\frac{\partial I(x,y)}{\partial y} = I(x,y) * K_y$$

unde K_y este kernelul pentru derivata pe axa y. Kernelul K_y este definit astfel:

$$K_y = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Derivate și Margini - Detecția Marginilor

După aplicarea operatorilor de gradient, magnitudinea gradientului se calculează astfel:

$$G = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

- Aceasta măsoară variația intensității imaginii, iar valorile mari ale magnitudinii indică margini.
- Direcția gradientului este dată de:

$$\theta = \operatorname{atan2}\left(\frac{\partial I}{\partial y}, \frac{\partial I}{\partial x}\right)$$

Operatorul Sobel

- Operatorul Sobel este utilizat pentru detecția marginilor într-o imagine, fiind o variantă netezită a operatorilor Prewitt.
- Acesta utilizează două kerneluri pentru calcularea gradientului pe axele X și Y:

$$G_{x} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \quad G_{y} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

- Aceste kerneluri sunt aplicate pe imagine pentru a calcula gradientul orizontal și vertical al pixelilor.
- ▶ Gradienții ∇G_x și ∇G_y sunt combinați pentru a obține magnitudinea gradientului:

Magnitudine =
$$\sqrt{G_x^2 + G_y^2}$$

▶ Direcția gradientului poate fi calculată prin:

$$\theta = \operatorname{atan2}(G_y, G_x)$$

Operatorul Canny

- Operatorul Canny este un algoritm pentru detecția marginilor care combină filtrarea Gaussiană, calculul gradientului și aplicarea unor praguri multiple pentru a identifica marginile într-o imagine.
- Formula pentru aplicarea filtrului Gaussian pe o imagine este:

$$I_G(x,y) = I(x,y) * G(\sigma)$$

unde I(x,y) reprezintă imaginea originală, iar $G(\sigma)$ este funcția de distribuție normală Gaussiană cu deviația standard σ .

După filtrare, se calculează gradientul imaginii folosind operatorii Sobel G_x și G_y pentru a determina magnitudinea și directia

Concluzii și Comparații: food.jpeg

Imagine: food.jpeg (dimensiune: 123 KB)

Rezultat Canny:

Timp de execuție: 0.108 secunde

Rezultat Sobel:

Timp de execuție: 0.093 secunde

Concluzii și Comparații: cameleon.jpeg

Imagine: cameleon.jpeg (dimensiune: 111 KB)

Rezultat Canny:

Timp de execuție: **0.111 secunde**

Rezultat Sobel:

Timp de execuție: **0.04 secunde**

Biblioteci Folosite

- OpenCV: procesare imagini eficientă.
- Numpy: manipulare rapidă a matricilor.
- ▶ Matplotlib: vizualizare și graficare rezultate.
- ► Time: măsurare eficiență algoritmi.

Concluzii

- Operatorul Canny, deși este mai costisitor din punct de vedere al resurselor (timp și energie), oferă cele mai precise rezultate în detecția imaginlor datorită eliminării zgomotului.
- Operatorul Sobel, pe de altă parte, este mai rapid și mai eficient din punct de vedere al resurselor, însă oferă rezultate mai puțin precise, fiind mai sensibil la zgomot.
- ▶ În funcție de nevoi, modul de utilizare și resurse, poate fi ales un operator diferit pentru procesarea imaginilor, întrucât fiecare are avantaje / dezavantaje

Bibliografie

Djemel Ziou and Salvatore Tabbone
Edge Detection Tehniques - An Overview.
URL: https://inria.hal.science/inria-00098446/

O. R. Vincent, Clausthal University of Technology, Germany and University of Agriculture, Abeokuta, Nigeria O. Folorunso Department of Computer Science, University of Agriculture, Abeokuta, Nigeria

A Descriptive Algorithm for Sobel Image Edge Detection URL: https://proceedings.informingscience.org/InSITE2009/InSITE09p097-107Vincent613.pdf

The University of Edinburgh Canny Edge Detector URL:

https://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm