第6周习题课 连续函数

研究下列函数在定义域内的连续性,若有间断点,指出间断点及其类别.

(1)
$$f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}, \quad x \in (0,2\pi);$$
 (2) $f(x) = \frac{x(x-1)}{|x|(x^2-1)};$

(2)
$$f(x) = \frac{x(x-1)}{|x|(x^2-1)}$$

(3)
$$f(x) = [|\cos x|];$$

(4)
$$f(x) = \frac{[\sqrt{x}]\ln(1+x)}{1+\sin x}$$
;

(5)
$$f(x) = \begin{cases} \lim_{t \to x} (\frac{x-1}{t-1})^{\frac{t}{x-t}}, & x \neq 1, \\ 0, & x = 1. \end{cases}$$

注 (3)(4) 中的[x]是取整函数.

- 试举出定义在 $(-\infty, +\infty)$ 上的函数 f(x). 要求: f(x) 仅在0,1,2三点处连续,其余的点都 是 f(x) 的第二类间断点.
- 利用零点存在定理证明下列各题:
- (1) 设 $f \in C(-\infty, +\infty)$ 且f(f(x)) = x,证明:存在 $\xi \in (-\infty, +\infty)$ 使得 $f(\xi) = \xi$.
- (2) 设 f(x) 是以 2π 为周期的连续函数,则在任何一个周期内,存在 $\xi \in \mathbb{R}$,使得 $f(\xi + \pi) = f(\xi)$.
- (3) 设 $f \in C[a,b]$, 且 $f([a,b]) \subset [a,b]$. 证明: $\exists \xi \in [a,b]$ 使得 $f(\xi) = \xi$.
- 设 $f \in C[a,b]$, 且存在 $q \in (0,1)$, 使得 $\forall x \in [a,b]$, $\exists y \in [a,b]$, 满足 $|f(y)| \leq q |f(x)|$. 证明: $\exists \xi \in [a,b]$ 使得 $f(\xi) = 0$.
- 设 $\{f_n(x)\}$ 是[a,b]上的连续函数列,且存在M>0使得 $\forall n \in \mathbb{N}^+$ 及 $\forall x \in [a,b]$,有 $|f_n(x)| \le M$, 问 $F(x) = \inf_{x \in \mathbb{N}^+} \{f_n(x)\}$ 是否是连续函数?
- **6.** 设常数 a_1, a_2, \dots, a_n 满足 $a_1 + a_2 + \dots + a_n = 0$, 计算 $\lim_{x \to +\infty} \left(a_1 \sin \sqrt{x+1} + a_2 \sin \sqrt{x+2} + \dots + a_n \sin \sqrt{x+n} \right).$

- 7. 设 $f \in C[a,b]$, $f([a,b]) \subset [a,b]$, 且对 $\forall x, y \in [a,b]$, $|f(x)-f(y)| \le |x-y|$. 任取 $x_1 \in [a,b]$, 记 $x_{n+1} = \frac{1}{2}[x_n + f(x_n)]$, n = 1, 2, ...。证明:数列 $\{x_n\}$ 有极限 x_0 ,且 $f(x_0) = x_0$.
- **8.** (1) 求常数 a,b, 使得 $\lim_{x\to 1} \frac{\ln(2-x^2)}{x^2+ax+b} = -\frac{1}{2}$;
 - (2) 已知 $\lim_{x\to +\infty} ((x^3+x^2)^c-x)$ 存在,求常数 c 及极限值。

(3) 定义函数
$$f(x) = \begin{cases} \frac{\sin x}{2x}, & x < 0, \\ a, & x = 0,$$
 试确定常数 a, b 使得函数 $f(x)$ 在点 $x = 0$ 处
$$(1+bx)^{\frac{1}{x}}, & x > 0 \end{cases}$$

连续。

- **9.** 设定义在 \mathbb{R} 上的函数 f(x) 满足: f(x+y) = f(x) + f(y), $\forall x, y \in \mathbb{R}$ 。求证:
 - (1) 存在实数 $a \in \mathbb{R}$, 使得 $\forall x \in \mathbb{Q}$, f(x) = ax;
 - (2) 若 f(x) 在 x = 0 点连续,则存在实数 $a \in \mathbb{R}$,使得 $\forall x \in \mathbb{R}$, f(x) = ax .
- **10.** 设 f(x) 在 (a,b) 内至多只有第一类间断点,且满足如下凸性条件:

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}, \quad \forall x, y \in (a,b)$$
 (*)

证明:函数 f(x) 在(a,b) 上处处连续。

- **11.** 设函数 f(x) 在 $[0,+\infty)$ 上连续且非负。 若 $\lim_{x\to+\infty} f(f(x)) = +\infty$,证明 $\lim_{x\to+\infty} f(x) = +\infty$.
- **12.** 设 $f(x) = a_n \cos nx + a_{n-1} \cos(n-1)x + \dots + a_1 \cos x + a_0$, 其中系数满足

$$a_n > |a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0|.$$

证明:函数 f(x) 在区间 $[0,2\pi]$ 内至少有 2n 个根。

- **13.** 通过函数图像可知,方程 $\tan x = x$ 在区间 $(n\pi, n\pi + \frac{\pi}{2})$ 上有唯一个解 a_n ,即 $\tan a_n = a_n$, $n = 0, 1, 2, \cdots$ 。证明 $\lim_{n \to \infty} (a_{n+1} a_n) = \pi$ 。
- **14.** 设 f(x) 在区间 I 上有定义。一个点 $x_0 \in I$ 称作函数 f(x) 的极大值(或极小值)点,如果存在正数 $\delta > 0$,使得对 $\forall x \in I \cap (x_0 \delta, x_0 + \delta)$, $f(x) \leq f(x_0)$ (或 $f(x) \geq f(x_0)$)。极大点和极小点都称作极值点。证明命题:设函数 f(x) 在有界闭区间 I = [a, b] 上连续。若 f(x) 在开区间 (a, b) 上无极值点,则 f(x) 在 I 上严格单调。
- **15.** 设 $f(x) \in C[a, +\infty)$ 且有界,若 $f(a) < \sup_{x \in [a, +\infty)} \{f(x)\}$,则当 α 满足 $f(a) < \alpha < \sup_{x \in [a, +\infty)} \{f(x)\}$ 时,都存在 $\xi \in [a, +\infty)$,使得 $\alpha = f(\xi)$.

下列题目根据个人情况选做。

16. 设 $f \in C[a,b]$, $m(x) = \inf_{t \in [a,x]} \{f(t)\}$, $M(x) = \sup_{t \in [a,x]} \{f(t)\}$, 求证 m(x), $M(x) \in C[a,b]$. 证明: 首先证明 $m(x) \in C[a,b]$. $\forall x_0 \in (a,b)$, 下证 $\lim_{x \to x_0^+} m(x) = m(x_0)$.