WHAT IS CLAIMED IS:

1. A PPG phosphoramidite comprising a photolabile hydroxy protecting group, wherein said phosphoramidite nucleoside is of the formula:

wherein

R¹ is selected from the group consisting of hydrogen and alkyl;

R² is selected from the group consisting of hydrogen, alkyl, and an amine protecting group, or R¹ and R² together form an amine protecting group;

each of Z^1 , Z^2 , Z^4 , and Z^6 is independently selected from the group consisting of hydrogen, halide, alkyl, $-OR^{11}$, wherein each R^{11} is independently selected from the group consisting of hydrogen, alkyl, and a hydroxy protecting group or two R^{11} groups form a diol protecting group, or Z^2 and Z^4 together with the carbon atoms to which they are attached and C-3 carbon atom of the carbohydrate ring form a five-to seven membered ring; and

one of Z^3 or Z^5 is $-OR^{12}$ and the other is $-OR^{13}$,where R^{12} is a photolabile hydroxy protecting group and R^{13} is a phosphoramidite.

2. The PPG phosphoramidite according to Claim 1 of the formula:

wherein

 R^1 , R^2 , Z^3 and Z^5 are those defined in Claim 1.

- 3. The PPG phosphoramidite according to Claim 2, wherein Z^3 is $-OR^{13}$ and Z^5 is $-OR^{12}$, where R^{12} and R^{13} are those defined in Claim 1.
- 4. The PPG phosphoramidite according to Claim 3, wherein the photolabile hydroxy protecting group is selected from the group consisting of α-methyl-6-

nitropiperonyloxycarbonyl, 2-(2-nitrophenyl)-2-methylethoxycarbonyl, 2-(2-nitro-6-chlorophenyl)-2-methylethylsulfonyl, and 3',5'-dimethoxybezoinoxycarbonyl.

- 5. The PPG phosphoramidite according to Claim 4, wherein R¹ and R² together form an amine protecting group.
- 6. The PPG phosphoramidite according to Claim 5, wherein R^1 and R^2 together form an amine protecting group of the formula: =CH-N(CH₃)₂.
- 7. A process for producing a non-halogenated nucleoside base containing nucleoside comprising:
- (a) contacting a halogenated nucleoside base with an activated sugar under conditions sufficient to produce a halogenated nucleoside base containing nucleoside; and
- (b) reducing said halogenated nucleoside base containing nucleoside under conditions sufficient to produce said non-halogenated nucleoside base containing nucleoside.
- 8. The process of Claim 7, wherein said non-halogenated nucleoside base containing nucleoside is purified by recrystallization.
- 9. The process of Claim 7, wherein the yield of said non-halogenated nucleoside base containing nucleoside from said halogenated nucleoside base is at least about 50%.
- 10. The process of Claim 7, wherein said halogenated nucleoside base containing nucleoside reducing step comprises hydrogenation of said halogenated nucleoside base containing nucleoside in the presence of a hydrogenation catalyst.
- 11. The process of Claim 7, wherein said non-halogenated nucleoside base containing nucleoside is used in a synthesis of a phosphoramidite nucleoside.
- 12. The process of Claim 11, wherein said phosphoramidite nucleoside is used in a synthesis of an oligonucleoside or an oligonucleotide.
- 1 13. A process for producing a nucleoside comprising a
 2 hydropyrazolopyrimidine nucleoside base, said process comprising hydrolyzing and reducing
 3 or reducing and hydrolyzing an iodopyrazolopyrimidine nucleoside of the formula:

6 under conditions sufficient to produce a hydropyrazolopyrimidine nucleoside of the formula:

wherein

4 5

7

16

17

18 19

20

R¹ is selected from the group consisting of hydrogen and alkyl;

R² is selected from the group consisting of hydrogen, alkyl, and an amine protecting group, or R¹ and R² together form an amine protecting group;

R³ is selected from the group consisting of alkyl, and a hydroxy protecting group; and

each of Y^1 , Y^2 , Y^3 , Y^4 , Y^5 , and Y^6 is independently selected from the group consisting of hydrogen, halide, alkyl, $-OR^4$, wherein each R^4 is independently selected from the group consisting of hydrogen, alkyl, and a hydroxy protecting group or two R^4 groups form a diol protecting group, or Y^2 and Y^4 together with the carbon atoms to which they are attached to and C-3 carbon atom of the carbohydrate ring form a five-to seven membered ring.

- 1 14. The process of Claim 13, wherein R¹, R², Y¹, Y², Y⁴, and Y⁶ are 2 hydrogen, and Y³ and Y⁵ are -OR⁴.
- 1 15. The process of Claim 14, wherein R⁴ are hydrogen.
- 1 16. The process of Claim 15 further comprising producing a PPG 2 phosphoramidite of the formula:

6

7

8 9

10

4 from said hydropyrazolopyrimidine nucleoside,

5 wherein

 R^1 is hydrogen and R^2 is an amine protecting group or R^1 and R^2 together form an amine protecting group; and

one of \mathbb{R}^9 and \mathbb{R}^{10} is a phosphoramidite and the other is a hydroxy protecting group,

said PPG phosphoramidite producing step comprises:

(a) (i) contacting said hydropyrazolopyrimidine nucleoside with an amine protecting reagent under conditions sufficient to produce an amine-protected nucleoside of the formula:

(ii) contacting said amine-protected nucleoside with a hydroxy protecting reagent under conditions sufficient to produce an amine/monohydroxy protected nucleoside of the formula:

18

22

19 or

20 (i) contacting said hydropyrazolopyrimidine with a hydroxy 21 protecting reagent under conditions sufficient to produce a

monohydroxy protected nucleoside of the formula:

24

(ii) contacting said monohydroxy protected nucleoside with an 25 amine protecting reagent under conditions sufficient to produce an

26

amine/monohydroxy protected nucleoside of the formula:

27

and

ļ. 1

2

3

1

2

1 2

3 4

1

2

wherein

 R^1 is hydrogen and R^2 is an amine protecting group or R^1 and R^2 together form an amine protecting group; and one of R⁷ and R⁸ is hydrogen and the other is a hydroxy protecting group;

- contacting said amine/monohydroxy protected nucleoside with an (b) activated phosphoramidite under conditions sufficient to produce said PPG phosphoramidite.
- 17. The process of Claim 16, wherein said amine protecting reagent is selected from the group consisting of N,N-dialkylformamide dialkylacetal, and N,Ndialkylacetamide dialkylacetal.
- 18. The process of Claim 16, wherein said hydroxy protecting reagent is a photolabile hydroxy protecting reagent.
- 19. The process of Claim 18, wherein said photolabile hydroxy protecting reagent is selected from the group consisting of 1-(3,4-methylenedioxy-6-nitrophenyl)ethyl chloroformate, 2-(2-nitrophenyl)-2-methylethyl chloroformate, 2-(2-nitro-6-chlorophenyl)-2methylethylsulfonyl chloride and 3',5'-dimethoxybezoinoxyl chloroformate.
- 20. The process of Claim 16, wherein said hydroxy protecting reagent is an acid labile hydroxy protecting reagent.

- 1 21. The process of Claim 20, wherein said acid labile hydroxy protecting 2 reagent is selected from the group consisting of trityl halide, monomethoxytrityl halide and 3 dimethoxytrityl halide.
- 1 22. The process of Claim 16, wherein said activated phosphoramidite is of the formula:

$$(i-Pr)_2N$$
 X^2 CCH_2CH_2CN

4 wherein

3

4 5

6

8

9

10

1

2

5 X^2 is a leaving group.

- 23. The process of Claim 22, wherein X^2 is selected from the group consisting of halide and diisopropylamino.
- 24. The process of Claim 22, wherein R⁹ is dimethoxytrityl and R¹⁰ is a phosphoramidite moiety of the formula –P[N(i-Pr)₂]OCH₂CH₂CN.
- 25. The process of Claim 13 further comprising producing said nucleoside of Formula I, wherein said nucleoside of Formula I producing step comprises: contacting an iodopyrazolopyrimidine of the formula:

$$\bigcap_{\mathbb{R}^2\mathbb{R}^1\mathbb{N}} \bigcap_{\mathbb{N}} \bigcap_{\mathbb{N}$$

with an activated sugar of the formula:

$$Y^5$$
 Y^6 Y^1 Y^1 Y^2 Y^1

7

wherein

R¹, R², R³, Y¹, Y², Y³, Y⁴, Y⁵, and Y⁶ are those defined Claim 13; and

under conditions sufficient to produce said nucleoside of Formula I,

 X^{1} is a leaving group.

26. The process of Claim 25 further comprising producing said iodopyrazolopyrimidine nucleoside of Formula I from a pyrimidinone of the formula:

4 said iodopyrazolopyrimidine nucleoside producing process comprising:

(i) contacting said pyrimidinone with a halogenating agent and a formylating agent under conditions sufficient to produce a dihalopyrimidine carboxyaldehyde of the formula:

9 wherein

3

5

6

7

8

10

11 12

15

16

17 18

19

20

1

2

each X³ is independently selected from the group consisting of F, Cl, Br and I;

(ii) contacting said dihalopyrimidine carboxyaldehyde with hydrazine under conditions sufficient to produce a halopyrazolopyrimidine of the formula:

(iii) contacting said halopyrazolopyrimidine with an alkoxide of the formula R³–OM, wherein R³ is alkyl and M is a metal, to produce an alkoxypyrazolopyrimidine of the formula:

and

- (iv) iodinating said alkoxypyrazolopyrimidine with an iodinating agent under conditions sufficient to produce said iodopyrazolopyrimidine.
- 1 27. The process of Claim 26, wherein said halogenating agent is selected 2 from the group consisting of POCl₃, iodine monochloride, N-iodosuccinamide and SOCl₂.
 - 28. The process of Claim 26, wherein said formylating agent is a compound comprising a formyl group attached to a secondary amino group.
- 1 29. The process of Claim 28, wherein said formylating agent is selected 2 from the group consisting of dimethyl formamide, 1-formylpiperidine, 1-formylmorpholine 3 and triformamide.

- 1 30. The process of Claim 26, wherein said iodinating agent is selected
- 2 from the group consisting of iodine monochloride and N-iodosuccinimide.
- 1 31. A process for producing a nucleoside comprising:
- 2 (a) contacting an iodopyrazolopyrimidine of the formula:

4 with an activated sugar of the formula:

$$R^{5}O$$
 $R^{6}O$
 X^{1}

under conditions sufficient to produce an deoxy iodopyrazolopyrimidine nucleoside of the formula:

- (b) producing an amino dihydro hydropyrazolopyrimidine nucleoside from said deoxy iodopyrazolopyrimidine nucleoside, wherein said amino dihydro
- 11 hydropyrazolopyrimidine nucleoside is of the formula:

13 wherein

3

5

6

9

10

12

ettig ettig ettig igate pa ettig ettig ettig ä il deell keell itaa beekeelisten ened Kuff alf all mult il tinti ikkeelisti itaa

- 14 R^3 is alkyl;
- 15 R⁵ and R⁶ are hydroxy protecting groups; and
- X^1 is a leaving group.
- 1 32. The process of Claim 31, wherein said step of producing said amino
- 2 dihydro hydropyrazolopyrimidine nucleoside comprises removing said hydroxy protecting
- 3 groups R⁵ and R⁶; hydrolyzing -OR³ group; and reducing the iodine.

- 1 33. The process of Claim 31 further comprising:
- 2 (c) contacting said amino dihydro hydropyrazolopyrimidine nucleoside 3 with an amine protecting reagent under conditions sufficient to produce an amine protected 4 nucleoside of the formula:

7

8

THE REPORT OF THE PARTY OF THE

(d) contacting said amine protected nucleoside with a hydroxy protecting reagent under conditions sufficient to produce an amine/monohydroxy protected nucleoside of the formula:

and

(e) contacting said amine/monohydroxy protected nucleoside with an activated phosphoramidite of the formula:

(i-Pr)₂N
$$X^2$$
 | OCH₂CH₂CN

13 14

under conditions sufficient to produce a PPG phosphoramidite of the formula:

15

16 wherein

17 R¹ is hydrogen;

 R^2 is an amine protecting group;

or R¹ and R² together form an amine protecting group;

- 20 R⁴ is a hydroxy protecting group; and X² is a leaving group.
 - 1 34. The process of Claim 33, wherein X^2 is selected from the group
- 2 consisting of halide, and $-N(i-Pr)_2$.

The second of th

3

8

- 1 35. The process of Claim 33, wherein R¹ and R² together form a nitrogen protecting group of the formula: =CH-N(CH₃)₂.
- 1 36. The process of Claim 35, wherein R⁴ is selected from the group 2 consisting of an acid labile hydroxy protecting group and a photolabile hydroxy protecting 3 group.
 - 37. The process of Claim 36, wherein R^4 is selected from the group consisting of dimethoxytrityl, trityl, pixyl, 1,1-bis(4-methoxyphenyl)-1-pyrenylmethyl, α -methyl-6-nitropiperonyloxycarbonyl, 2-(2-nitrophenyl)-2-methylethoxycarbonyl, 2-(2-nitro-6-chlorophenyl)-2-methylethylsulfonyl and 3',5'-dimethoxybezoinoxycarbonyl.
 - 38. The process of Claim 31, wherein said step (b) comprises reducing the iodide by hydrogenation.
 - 39. The process of Claim 31, wherein said iodopyrazolopyrimidine is produced from a pyrimidinone of the formula:

- 4 said iodopyrazolopyrimidine producing step comprising:
- 5 (i) contacting said pyrimidinone with a halogenating agent and a 6 formylating agent under conditions sufficient to produce a dihalopyrimidine carboxyaldehyde 7 of the formula:

- 9 wherein each X³ is independently selected from the group consisting of F, Cl, Br and I;
- 10 (ii) contacting said dihalopyrimidine carboxyaldehyde with hydrazine 11 under conditions sufficient to produce a halopyrazolopyrimidine of the formula:

14

(iii) contacting said halopyrazolopyrimidine with an alcohol of the formula R³-OH to produce an alkoxypyrazolopyrimidine of the formula:

15

Ħ

2

16 and

- 17 (iv) iodinating said alkoxypyrazolopyrimidine with an iodinating agent 18 under conditions sufficient to produce said iodopyrazolopyrimidine.
 - 40. The process of Claim 39, wherein said halogenating agent is selected from the group consisting of POCl₃, iodine monochloride, N-iodosuccinamide and SOCl₂.
 - 41. The process of Claim 40, wherein said halogenating agent is selected from the group consisting of POCl₃ and SOCl₂.
 - 42. The process of Claim 39, wherein said formylating agent is selected from the group consisting of dimethyl formamide, 1-formylpiperidine, 1-formylmorpholine and triformamide.
 - 43. The process of Claim 39, wherein said iodinating agent is selected from the group consisting of iodine monochloride and N-iodosuccinimide.