Department of Computer Science

Computer Architecture

Exercise 2

1. The formula for the SPEC score of a computer under test is:

$$SPEC_{REF} (test) = \left[\prod_{i=1}^{n} \frac{T_i^{REF}}{T_i^{test}} \right]^{\frac{1}{n}}$$

Given the SPEC scores for two computers, the test computer and computer A, prove that the score for computer test relative to computer A (using computer A instead of the reference computer REF) is given by

$$SPEC_{A}(test) = \frac{SPEC_{REF}(test)}{SPEC_{REF}(A)}$$

2. The following are test results on SPEC CINT2017 for two Intel CPUs: (http://www.spec.org/cpu2017/results/cint2017.html)

СРИ	Clock Rate	Cores	Parallel Compilation	Cint2017
Xeon Gold 6146	3.40 GHZ	48	Yes	10.57
Xeon Platinum 8153	2.20 GHZ	64	Yes	7.70

- A. Which processor is faster? Explain.
- B. Find the speedup of the 6146 relative to the 8153.
- C. According to the formula

$$S = \frac{T^{old}}{T^{new}} = \frac{\text{program clock cycles}^{old}}{\text{program clock cycles}^{new}} \times \frac{\text{clock rate}^{new}}{\text{clock rate}^{old}}$$

Find the ratio of the clock cycles required to run a program on the 8153 relative to the 6146.

- D. If the clock rate for both CPUs were the same, which processor would be faster?
- 3. Translate the following instructions to the formal definition language, as in the example

$$Regs[R2] \leftarrow Regs[R9] + Mem[1001]$$

- 1. SUB R2, 12, 4(R4)
- 2. MULT R2, R3, 10(R4)
- 3. ADD R4, R5, (R2 + R3)
- 4. ADD (R2)+, R4, R5

$$(d = 4)$$

5. SUB 100 (R6) [R4], R9, 12
$$(d = 8)$$

- 4. Write the sequence of operations required to perform $\mathbf{Z} = \mathbf{5} * \mathbf{W} + \mathbf{2} * \mathbf{X} \mathbf{4} * \mathbf{Y}$ for each of the four processor structures:
 - A. stack
 - B. accumulator
 - C. register-memory
 - D. register-register