Assumed Values:

Quantity	Value	Units
Strength	3.78	ksi
Thrust per motor	10	lbs
Dist. to 1st Motor	12	in
Dist. to 2 nd Motor	30	in

Moment of Inertia of a square about its diagonal:

$$I_x = I_y = \frac{a^4}{12}$$

https://byjus.com/jee/moment-of-inertia-of-a-square/

Flexure Formula:

$$\sigma = -\frac{My}{I}$$

http://www.engineeringcorecourses.com/solidmechanics1/C4-bending/C4.2-flexure-formula/theory/

Solution Steps:

$$M = 10[lb] * 12[in] + 10[lb] * 30[in] = 420[in * lb_f]$$

$$y = \sqrt{2} * a$$

$$a = \sqrt[3]{\frac{12 * M * F_{os}}{\sqrt{2} * \sigma}} [in] = 0.9806 * \sqrt[3]{F_{os}} [in]$$

$$F_{os} = \left(\frac{a}{0.9806}\right)^{3}$$

F_os of common square dowel sizes (referenced from Lowes website)

Square edge length [in]	F_os
0.7500	0.4475
1.0000	1.0607
1.2500	2.0716
1.7500	5.6845
2.0000	8.4853

Choice: 1.25in (which is currently out of stock, will likely end up using 1.75)

$$I = \frac{My}{\sigma} - \frac{840 \text{ [in lbf]}}{0.3 \text{ [klb/in}^2]} \cdot h$$

$$I_{x}=I_{y}=\frac{94}{12}$$
 q $\frac{94}{12}$ $(\frac{52}{4})=\frac{840}{0.3}$ $[in^{3}]$