Задание по Курсовой работе Предобусловленный метод сопряженных градиентов для разреженных матриц

Задача: запрограммировать метод сопряженных градиентов с предобуславливателем на основе неполного разложения Холецкого. Учесть, что метод будет применяться к разреженным матрицам (в частности к 5-ти диагональным). Для заданного уравнения Пуассона построить и решить СЛАУ. Исследовать метод по вариантам

Этапы решения

- 1. Способ хранения разреженной матрицы. Реализация действий над матрицами и векторами
- 2. Разложение Холецкого.
 - А) Разложение Холецкого для разреженной матрицы
- Б) Неполное разложение Холецкого с нулевым порогом факторизация, которая содержит ненулевые элементы только в тех позициях, что и исходная матрица.
- В) Неполное разложение Холецкого с ненулевым порогом отсекаются только те элементы, которые меньше порогового значения, исключая диагональные
- 3. Метод сопряженных градиентов
 - А) Без предобуславливателя
 - Б) С предобуславливателем
- 4. Построить СЛАУ для модельной задачи по вариантам

$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$ с заданными условиями на границе области					
Вариант	$u_{\text{точное}}(x,y)$	область	вариант	$u_{\text{точное}}(x,y)$	область
1	x^3y+xy^3	[0,1]x[0,1]	8	$e^{2x}sin(2y)$	$[0,1]x[0,\pi]$
2	$y^2 + y^3(1+x)$	[0,1]x[0,1]	9	cos(x)cos(y)	$[0,\pi]x[0,\pi]$
3	sin(x)cos(y)	$[0,\pi]$ x $[0,1]$	10	$xy^2(1+y)$	[0,1]x[0,1]
4	$e^x sin(y)$	$[0,1]x[0,\pi]$	11	$sin(\pi x)cos(\pi y)$	[0,1]x[0,1]
5	$sin(\pi x)cos(\pi y)$	[0,1]x[0,1]	12	$2x^3y^3$	[0,1]x[0,1]
6	$2x^3y^3$	[0,1]x[0,1]	13	ysin(x+y)	[0,1]x[0,1]
7	$x^2y^2(1+y)$	$[0,1]x[0,\pi]$			

5. Опыты и графики. При построении графиков все параметры фиксированы, кроме одного, от которого строится зависимость.

Вариант а Число итераций в зависимости от величины порога в неполном разложении Холецкого

Вариант б Число итераций от заданной точности без предобуславливателя и с предобуславливателем (нулевой порог)

Вариант в Фактическая ошибка от заданной точности