Have we been exercising?

Qing Gong and Louis Dulana STAT407 Group Project

Outline

- Research Questions
- Data
- Methods
- Results
- Conclusions
- Additional Analysis

(1) Research Question

Research Question 1: Do the machine type, wearing a mask, and subjects affect the heart rate?

Data

• Response:

o heart rate(measure 3 times)

• Factors:

- machine (treadmill, elliptical)
- subject (Louis, Qing)
- o mask (with or without)
- watch (Apple, Fitbit)

Procedure:

- 1. Randomize the 3-factor combinations in R.
- 2. Measure subjects' heart rate using a phone app before the exercise.
- 3. Perform the exercise, meanwhile start a 10-minute workout on a smart watch, according to the randomized order.
- 4. Measure subjects' heart rate after the exercise using a phone app.
- 5. Cool down, record the average heart rate from the smart watch and wait until heart rate is back to resting heart rate.
- 6. Repeat Steps 2-5.

Method

(1) 2³ Factorial Design without replicates

Α	В	С	Difference		
1	1	1	3		
-1	-1	1	33		
-1	1	1	29		
1	-1	1	14		
-1	1	-1	14		
-1	-1	-1	20		
1	1	-1	8		
1	-1	-1	3		

Factor	-1	+1	
A: Machine	Elliptical	Treadmill	
B: Mask	without	with	
C: Subject	Louis	Qing	

Half-Normal Plot of Effects

ANOVA

Residual Assumptions

```
m2 <- lm(diff ~ A+C, data = data2)
anova(m2)
```

Analysis of Variance Table

```
Response: diff

Df Sum Sq Mean Sq F value Pr(>F)

A 1 578.0 578.0 18.1191 0.00804 **

C 1 144.5 144.5 4.5298 0.08659 .

Residuals 5 159.5 31.9
```

Shapiro-Wilk normality test

data: m2\$residuals w = 0.89614, p-value = 0.2666

Bartlett test of homogeneity of variances

data: m2\$residuals and data2\$A
Bartlett's K-squared = 0.23357, df = 1, p-value = 0.6289

Bartlett test of homogeneity of variances

data: m2\$residuals and data2\$C
Bartlett's K-squared = 0.15026, df = 1, p-value = 0.6983

(2) Research Question

Research Question 2: Do watch brand, wearing a mask, and subject affect the reported heart rate while using the treadmill?

Method

(2) 2³ Factorial Design with replicates

Α	В	С	Difference
1	1	-1	53
1	-1	-1	36
-1	-1	-1	67
-1	1	-1	42
1	1	-1	35
1	-1	-1	64
-1	-1	-1	42
-1	1	-1	31
1	1	1	31
-1	-1	1	27
1	-1	1	22
-1	1	1	22
1	1	1	19
-1	1	1	24
1	-1	1	19
-1	-1	1	22

Factor	-1	+1	
A: Watch	Apple	Fitbit	
B: Mask	without	with	
C: Subject	Louis	Qing	

ANOVA Results (Full Model)

```
m2 <- lm(difference ~ (A+B+C)^3, data = proj.data)
anova(m2)
Analysis of Variance Table
Response: difference
          Df Sum Sq Mean Sq F value Pr(>F)
               0.25 0.25 0.0020 0.965732
          1 110.25 110.25 0.8664 0.379185
          1 2116.00 2116.00 16.6287 0.003545 **
A:B
          1 81.00 81.00 0.6365 0.447998
               6.25 6.25 0.0491 0.830161
A:C
         1 182.25 182.25 1.4322 0.265661
B:C
               9.00
                       9.00 0.0707 0.797007
A:B:C
Residuals 8 1018.00 127.25
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Results (Reduced Model)

Shapiro-Wilk normality test

```
data: m4$residuals
W = 0.94757, p-value = 0.4522
```

Bartlett test of homogeneity of variances

data: m4\$residuals and proj.data\$B Bartlett's K-squared = 0.65668, df = 1, p-value = 0.4177

Bartlett test of homogeneity of variances

data: m4residuals and proj.dataC Bartlett's K-squared = 4.1936, df = 1, p-value = 0.04058

Results (Reduced Model)

Shapiro-Wilk normality test

```
data: m4$residuals
W = 0.94757, p-value = 0.4522
```

Bartlett test of homogeneity of variances

data: m4\$residuals and proj.data\$B
Bartlett's K-squared = 0.65668, df = 1, p-value = 0.4177

Bartlett test of homogeneity of variances

data: m4\$residuals and proj.data\$C
Bartlett's K-squared = 4.1936, df = 1, p-value = 0.04058

Results (Reduced Model)

Shapiro-Wilk normality test

data: m5\$residuals W = 0.93479, p-value = 0.29

Bartlett test of homogeneity of variances

data: m5\$residuals and proj.data\$B
Bartlett's K-squared = 0.040087, df = 1, p-value = 0.8413

Bartlett test of homogeneity of variances

data: m5\$residuals and proj.data\$C
Bartlett's K-squared = 0.8804, df = 1, p-value = 0.3481

Additional Analysis Confounding the 2^3 Factorial Design in Two Blocks

ABC is confounded with two blocks.

■ TABLE 7.4

Table of Plus and Minus Sions for the 23 Design

Treatment Combination	Factorial Effect								
	I	\boldsymbol{A}	В	AB	C	AC	BC	ABC	Block
(1)	+	=	-	+	-	+	+	-	1
a	+	+	_	-	-	-	+	+	2
b	+	-	+	-	-	+	·	+	2
ab	+	+	+	+			-	-	1
C	+		-	+	+	-	-	+	2
ac	+	+	-	-	+	+	-		1
bc	+	-	+	-	+	-	+	-	1
abc	+	+	+	+	+	+	+	+	2

Additional Analysis

```
anova(m2)

Analysis of Variance Table

Response: avg - before

Df Sum Sq Mean Sq F value Pr(>F)

B 1 180.5 180.50 1.5851 0.27650

C 1 968.0 968.00 8.5005 0.04344 *

ABC 1 32.0 32.00 0.2810 0.62410

Residuals 4 455.5 113.87
```

m2 <- lm(avg-before ~ B+C + ABC, data =d2)

```
Shapiro-Wilk normality test
```

```
data: m2$residuals
W = 0.89811, p-value = 0.2778
```

Bartlett test of homogeneity of variances

data: m2\$residuals and d1\$B Bartlett's K-squared = 0.1024, df = 1, p-value = 0.749

Bartlett test of homogeneity of variances

```
data: m2residuals and d1residuals and d1residuals and d1residuals Martlett's K-squared = 0.30783, df = 1, p-value = 0.579
```

Bartlett test of homogeneity of variances

```
data: m2$residuals and ABC
Bartlett's K-squared = 0.48585, df = 1, p-value = 0.4858
```

Conclusions

 RQ1 - Machine type has significant effect on the heart rate, subjects and wearing masks or not don't significantly affect the heart rate.

 RQ2 - Only subject significantly affects the reported heart rate, smartwatch brand and wearing masks or not have no effect.

Future Work

- Find elliptical machines with intensity level settings.
- Increase the level of intensity to medium or difficult.
- More subjects.
- Energy drinks as factor.

References

- Epstein D., Korytny A., Isenberg Y., Marcusohn E., Zukermann R., Bishop B., Minha S., Raz A., Miller A. Return to Training in the COVID-19 Era: The Physiological Effects of Face Masks during Exercise. Scand. J. Med. Sci. Sports. 2021;31:70-75. doi: 10.1111/sms.13832. - DOI -PMC - PubMed
- 2. Myers J. Exercise and cardiovascular health. Circulation. 2003; 107:2e-5.
- 3. https://www.fyzical.com/lakewoodranch/blog/What-Is-a-Cardiovascular-Exercise