

Technische Grundlagen: Übungssatz 4

Aufgabe 4.1

Für die nebenstehende Schaltung sind folgende Aufgaben zu lösen:

- (a) Geben Sie den Strom I in Abhängigkeit von U_{R1} , U_b und R_2 an!
- (b) Stellen Sie die Funktion $f(U_{R1})$ in einem U-I-Diagramm dar.
- (c) Stellen Sie $I_{R1} = g(U_{R1}) = U_{R1}/R_1$ in dem gleichem Koordinatensystem dar.
- (d) Was beschreibt der Schnittpunkt der beiden Funktionen?
- (e) Welche Veränderungen ergeben sich bei Vergrößerung bzw. Verkleinerung von *R*1?

- (f) Bestimmen Sie grafisch die Werte von U_{R1} , U_{R2} und I für $U_b=5\,\mathrm{V}$ und $R_2=1\,\mathrm{k}\Omega$ sowie $R_1=500\,\Omega$, $1\,\mathrm{k}\Omega$ und $2\,\mathrm{k}\Omega$.
- (g) Hausaufgabe: Überprüfen Sie (f) auf analytischem Weg.
- (h) Ermitteln Sie grafisch den zulässigen Wertbereich für R_1 , wenn die maximale Leistung am Widerstand R_1 den Wert $P_{max}=4\,\mathrm{mW}$ nicht überschreiten darf? (Zeichnen Sie sich dazu die Funktion $I_{R1}=h(U_{R1})$ bei konstanten $P=4\,\mathrm{mW}$ ein.)
- (i) Hausaufgabe: Überprüfen Sie das Ergebnis aus (h) durch Rechnung!

Aufgabe 4.2

Gegeben ist die folgende Schaltung mit einem steuerbaren Widerstand (SR), bei dem mit dem Potential an der Klemme X die Größe des Widerstandes zwischen den Klemmen Y und Z gesteuert wird. Für den Strom in den Eingang X gilt: $I_X = 0$.

- (a) Skizzieren Sie das U-I-Kennlinienfeld für U_{YZ} und I_Y am steuerbaren Widerstand!
- (b) Leiten Sie allgemein die Spannungsübertragungskennlinie $U_{out} = f(U_{in})$ für die Schaltung her.
- (c) Zeichnen Sie die Spannungsübertragungskennlinie für $U_b=5\,\rm V$, $R=1\,k\Omega$, $K=0.2\,\rm mA/V^3$, $U_{in}=0...5\,\rm V$
- (d) **Zusatzaufgabe:** Stellen Sie die Kennlinien für SR und R im *U-I*-Kennlinienfeld für *U*_{out} und *I*_Y graphisch dar, und versuchen Sie die Spannungsübertragungskennlinie graphisch zu ermitteln, indem Sie eine zusätzliche 3. Achse für *U*_{in} einführen.

Aufgabe 4.3

Zusatzaufgabe: In nebenstehender Schaltung werden die informationstragenden Spannungen U_{e1} und U_{e2} , mit einer konstanten Spannung U_b verknüpft.

- (a) Bestimmen Sie die resultierenden Spannung U_a ! Bestimmen Sie hierzu zuerst mit der Maschenstromanalyse die Maschenströme und im Anschluss dann die Spannung U_a .
- (b) Bestimmen sie U_a mit Hilfe des Überlagerungssatzes.

