

Resistance, energy and power

Circuits, potential difference and EMF

COULD (A/A*) Select and apply equations to calculate energy transfer

Potential difference equation:

$$V = \frac{W}{Q}$$

V = potential difference (volts)

W = energy transferred (J)

Q = charge (C)

Electromotive force equation:

$$\varepsilon = \frac{W}{O}$$

 ε = electromotive force (volts)

W = energy transferred (J)

Q = charge (C)

- a) What is the potential difference across a lamp if 12J of energy is transferred when 3C of charge passes through it?
- b) Another lamp has a potential difference of 5V across it. 4C of charge passes through it. How much energy is transferred?
- c) How much energy is transferred when 3C of charge passes through a cell with an emf of 9V?
- d) What is the emf of a battery if 48J is transferred to 3C of charge that passes through it?

Resistance, e	nergy and power	Circuits, potential difference and EMF
	MUST (C)	Be able to recognise and draw circuit symbols for common electrical components.
Learning objectives	SHOULD (B)	Understand potential difference and electromotive force, and the difference between them
·	COULD (A/A*)	Select and apply equations to calculate energy transfer

PLENARY: Name that component!

Charge carriers pass through a number of components; in each case there is an energy transfer. Tell me: does this component have a pd across it or provide an emf? What could it be?

- 1) Electrical to light
- 2) Light to electrical
- 3) Kinetic to electrical
- 4) Electrical to heat

1 - circuit symbols, potential difference and EMF.notebook

May 21, 2021