BROUILLON - RACINES RATIONNELLES D'UN POLYNÔME SYMÉTRIQUE DE DEGRÉ 4

CHRISTOPHE BAL

 $P(X) = aX^4 + bx^3 + cX^2 + bX + a$, un polynôme symétrique de degré 4, peut-il n'avoir que des racines entières? Que des racines rationnelles?

1. Constatations générales

On peut supposer que a=1, i.e. $P(X)=X^4+bX^3+cX^2+bX+1$.

Dès lors si
$$P(r) = 0$$
 alors $r \neq 0$ et $P\left(\frac{1}{r}\right) = 0$.

Ensuite, nous avons:

 $P(X) = X^4 P\left(\frac{1}{X}\right)$: caractérisation des polynômes symétriques de degré 4

$$P'(X) = 4X^{3}P\left(\frac{1}{X}\right) - X^{2}P'\left(\frac{1}{X}\right)$$

On en déduit que si r est une racine d'ordre au moins 2, il en est de même pour $\frac{1}{r}$.

2. Uniquement des racines entières?

Si P n'a que des racines entières, alors ces racines ne peuvent être que ± 1 qui sont les seuls entiers ayant un inverse entier. Ceci donne les uniques possibilités suivantes :

- (1) Pour $P(X) = (X+1)^4$ comme $X^4 \left(\frac{1}{X}+1\right)^4 = (1+X)^4$ on a : $P(X) = X^4 P\left(\frac{1}{X}\right)$ (on évite ainsi la tache ingrate de développer ceci même si les logiciels de calcul formel, comme https://www.wolframalpha.com, le font sans sourciller). Le polynôme est ok.
- (2) $P(X) = (X 1)^4$ est ok (comme ci-dessus et merci à l'exposant pair).
- (3) Pour $P(X) = (X-1)^3(X+1)$ comme $X^4\left(\frac{1}{X}-1\right)^3\left(\frac{1}{X}+1\right) = (1-X)^3(1+X)$, on a : $P(X) = -X^4P\left(\frac{1}{X}\right)$. Le polynôme est rejeté. En fait $P(X) = (X-1)^3(X+1) = X^4-2X^3+2X-1$ est anti-symétrique. Un polynôme de degré 4 est anti-symétrique ssi $P(X) = -X^4P\left(\frac{1}{X}\right)$.
- (4) $P(X) = (X+1)^3(X-1)$ est rejeté (comme ci-dessus).
- (5) $P(X) = (X+1)^2(X-1)^2$ est ok car il vérifie $P(X) = X^4 P\left(\frac{1}{X}\right)$.

Date: 6 Décembre 2018.

3. Uniquement des racines rationnelles?

Supposons que $r \in \mathbb{Q} - \mathbb{N}$ soit une racine de P.

Le résultat sur la multiplicité supérieure ou égale à 2 nous donne que si r est de multiplicité au moins 2 alors $\frac{1}{r} \neq r$ est aussi de multiplicité au moins 2. Ceci implique que r est de multiplicité 1 ou 2.

r est de multiplicité 1. Si P admet une autre racine $s \in \mathbb{Q} - \mathbb{N}$ avec $s \neq r$ et $s \neq \frac{1}{r}$ alors nécessairement $P(X) = (X - r) \left(X - \frac{1}{r} \right) (X - s) \left(X - \frac{1}{s} \right)$.

D'où
$$X^4P\left(\frac{1}{X}\right) = X^4\left(\frac{1}{X} - r\right)\left(\frac{1}{X} - \frac{1}{r}\right)\left(\frac{1}{X} - s\right)\left(\frac{1}{X} - \frac{1}{s}\right)$$

$$X^4P\left(\frac{1}{X}\right) = (1 - rX)\left(1 - \frac{X}{r}\right)(1 - sX)\left(1 - \frac{X}{s}\right)$$

$$X^4P\left(\frac{1}{X}\right) = r\left(\frac{1}{r} - X\right) \times \frac{1}{r}(r - X) \times s\left(\frac{1}{s} - X\right) \times \frac{1}{s}(s - X)$$

$$X^4P\left(\frac{1}{X}\right) = P(X)$$

Ce polynôme est donc ok.

Il reste à étudier les cas suivants.

(1)
$$P(X) = (X - r) \left(X - \frac{1}{r} \right) (X + 1)^2$$
 et $P(X) = (X - r) \left(X - \frac{1}{r} \right) (X - 1)^2$ sont ok car il suffit de reprendre le calcul précédent avec $s = \pm 1$.

(2)
$$P(X) = (X - r) \left(X - \frac{1}{r} \right) (X + 1)(X - 1)$$
 vérifie $P(X) = -X^4 P\left(\frac{1}{X}\right)$ donc on a un polynôme anti-symétrique que l'on rejette.

r est de multiplicité 2. Dans ce cas, $P(X) = (X - r)^2 \left(X - \frac{1}{r}\right)^2$ nécessairement!

Il est immédiat que $P(X) = X^4 P\left(\frac{1}{X}\right)$ donc ce polynôme est ok.

4. CALCUL FORMEL. BON OU MAUVAIS CHOIX?

Par flemme, l'auteur avait d'abord raisonner avec un logiciel de calcul formel comme suit où des lettres différentes indiquent des racines différentes.

(1)
$$P(X) = (X - r)^4 = X^4 - 4rX^3 + 6r^2X^2 - 4r^3X + r^4$$
 est symétrique ssi $r^4 = 1$ et $r^3 = r$. Si $r \in \mathbb{Q}$ alors nécessairement $r = \pm 1$. C'est alors ok via le développement de $(X - r)^4$.

(2)
$$P(X) = (X - r)^3(X - s) = X^4 - (3r + s)X^3 + (3r^2 + 3rs)X^2 - (r^3 + 3r^2s)X + r^3s$$
 est symétrique ssi $r^3s = 1$ et $3r + s = r^3 + 3r^2s$. On en déduit $3r^4 + 1 = r^6 + 3r^2$ d'où $T^3 - 3T^2 + 3T - 1 = 0$ i.e. $(T - 1)^3 = 1$ en posant $T = r^2$. On en déduit que $r = \pm 1$ mais dans ce cas $s = r!$ Donc on rejette.

$$(3) \ \ P(X) = (X-r)^2(X-s)^2 = X^4 - (2r+2s)X^3 + (r^2+4rs+s^2)X^2 - (2r^2s+2rs^2)X + r^2s^2 \\ \text{est symétrique ssi } r^2s^2 = 1 \text{ et } r+s = r^2s + rs^2 \text{ soit } rs = \pm 1 \text{ et } r+s = rs(r+s).$$

- (a) rs = 1 donne r + s = r + s et surtout $s = \frac{1}{r}$. C'est alors ok via le développement de $(X r)^2 \left(X \frac{1}{r}\right)^2$.
- (b) rs = -1 donne r+s = 0 i.e. s = -r d'où $r = \pm 1$. C'est alors ok via le développement de $(X-1)^2(X+1)^2$.
- (4) $P(X) = (X r)^2(X s)(X t) = X^4 (s + t + 2r)X^3 + (st + r^2 + 2rs + 2rt)X^2 (r^2s + r^2t + 2rst)X + r^2st$ est symétrique ssi $r^2st = 1$ et $s + t + 2r = r^2s + r^2t + 2rst$. Que faire?

A partir de là, on est bloqué avec trois inconnues et seulement deux équations! De plus, pour ce qui précède, on n'a aucun recul sur ce que l'on fait. C'est moche!

5. Et les polynômes anti-symétriques?

En fait la preuve nous donne pour P un polynôme anti-symétrique de degré dominant 1 (toujours possible) :

- (1) P n'a que des racines entières ssi $P(X) = (X-1)^3(X+1)$ ou $P(X) = (X-1)(X+1)^3$.
- (2) P n'a que des racines rationnelles dont une au moins non entière ssi $P(X) = (X 1)^3(X+1)$ ou $P(X) = (X-r)\left(X-\frac{1}{r}\right)(X-1)(X+1)$ où $r \in \mathbb{Q} \mathbb{N}$.

Comment généraliser à d'autres degrés?

Mais surtout, blanquette de veau ou moussaka?