Md. Rayed Bin Wahed □ ○ ■

EDUCATION

BRAC University

Dhaka, Bangladesh Jan 2012 - Aug 2016

Email: rayed@rayanalytics.org

Mobile: (+880) 1774882517

Bachelor of Science in Computer Science

- \circ CGPA: 3.75/4.00.
- Recipient: Merit Based Scholarship for the duration of the entire program.

EXPERIENCE

Therap (BD) Ltd.

Dhaka, Bangladesh

Software Engineer, System Architecture Team

Oct 2016 - Present

- o About:
 - $\ast\,$ Therap (BD) Ltd. is a fully owned subsidiary of Therap Services LLC, USA.
 - * Therap is an online documentation, reporting and communication software suite for agencies supporting individuals with Intellectual and Developmental Disabilities (I/DD).

o Core Responsibilities:

- $\ast\,$ Experience developing and maintaining large-scale Java EE, SaaS applications.
- * Strong understanding of Object Oriented Programming, Design Patterns, Data Structures, and Algorithms.
- * Thorough understanding of RDBMS and a demonstrated ability in database design using SQL.
- * Extensive experience working with Oracle WebLogic Server, Oracle Database and other Oracle Enterprise tools.
- * Practitioner of Agile software development methodologies and Test Driven Development.
- * Experience with Version Control Systems such as Git, Github, and Bitbucket.
- * Experience with dependency management and build systems such as Ant, Maven, and Gradle.
- * Comfort with front-end technologies such as HTML, CSS, Javascript and its many libraries.
- * Adept at configuring and deploying applications on Unix-like systems.
- Related Technologies: Spring MVC, Hibernate ORM, Bash.

BRAC University

Dhaka, Bangladesh

Teaching Assistant

Jan 2014 - Aug 2016

o Data Structures and Discrete Mathematics:

- * Grade quizzes.
- * Provid one-to-one consultations and exam hall invigilation.
- * Assemble and distribute supplementary study materials.

DEEP LEARNING

Machine Learning with TensorFlow on Google Cloud Platform Specialization

Online courses authorized by Google Cloud and offered through Coursera

Jan 2019

o Introduction to Tensorflow:

- st Create machine learning models and solve numeric problems in TensorFlow.
- * Troubleshoot and debug common TensorFlow code pitfalls.
- * Use tf.estimator to create, train, and evaluate an ML model.

• End-to-End Machine Learning with TensorFlow on GCP:

- * User BigQuery to clean and create train and test data.
- * Train and deploy an ML model on Cloud ML Engine using TensorFlow.
- * Use TensorFlow Serving to provide real-time inference.

Deep Learning Specialization

 $deep learning. ai\ offering\ taught\ by\ Professor\ Andrew\ Ng\ of\ Stanford\ Univsersity$

Dec 2016 - Mar 2017

• Course 1: Neural Networks and Deep Learning:

* Understand the major technology trends driving Deep Learning.

- * Be able to build, train and apply vectorized implementations of fully connected deep neural networks.
- * Understand the key parameters in a neural network's architecture.

• Course 2: Improving Deep Neural Networks, Hyperparameter tuning, Regularization and Optimization:

- * Understand industry best-practices for building deep learning applications.
- * Be able to effectively use common neural network "tricks", including initialization, L2 and dropout regularization, batch normalization, gradient checking.
- * Be able to implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence.
- * Understand new best-practices for the deep learning era of how to set up train/dev/test sets and analyze bias/variance.
- * Be able to implement a neural network in TensorFlow.

• Course 3: Structuring Machine Learning Projects:

- * Understand how to diagnose errors in a machine learning systems.
- * Be able to prioritize the most promising directions for reducing errors.
- * Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance.
- * Know how to apply end-to-end learning, transfer learning, and multi-task learning.

• Course 4: Convolutional Neural Networks:

- * Understand how to build a convolutional neural network, including recent variations such as residual networks.
- * Know how to apply convolutional networks to visual detection and recognition tasks.
- * Know to use neural style transfer to generate art.
- * Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data.

• Course 5: Sequence Models:

- * Understand how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs.
- * Be able to apply sequence models to natural language problems, including text synthesis.
- * Be able to apply sequence models to audio applications, including speech recognition and music synthesis.

Degree Thesis

Comparative Analysis Between Learning Models Using Facial Expression Recognition

Jan 2016 - Oct 2016

o Objectives:

- * Investigate the training time and prediction accuracy of Google's Inception-v3 Deep Neural Network (DNN) architecture in comparison to popular variants of Support Vector Machines (SVM) and a Convolutional Neural Network (CNN) model of our own design.
- * Do so using CPUs to assess it's viability as a feasible model for deployment in mobile devices.

o Result:

* The Inception-v3 architecture outperformed all previous benchmarks.

Programming Skills

• Languages: Java, JavaScript, Bash, Python, Keras, TensorFlow, Numpy, Pandas, Matplotlib, fast.ai, Pytorch.