УТВЕРЖДЕНО Проректор по учебной работе А. А. Воронов 17 июня 2024 гола

ПРОГРАММА

по дисциплине: Общая физика: электричество и магнетизм по направлению подготовки: 03.03.01 «Прикладные математика и физика»

16.03.01 «Техническая физика»

09.03.01 «Информатика и вычислительная техника»

27.03.03 «Системный анализ и управления» 11.03.04 «Электроника и наноэлектроника»

физтех-школа: для всех физтех-школ кроме ФБВТ, ВШПИ

кафедра: общей физики

курс: $\frac{2}{5}$ семестр: $\frac{3}{5}$ лекции – 60 часов

Экзамен – 3 семестр

практические (семинарские)

занятия – 30 часов

лабораторные занятия – 60 часов Диф. зачёт – 3 семестр

ВСЕГО АУДИТОРНЫХ ЧАСОВ – 150

Самостоятельная работа: теор. курс — 105 часов физ. практикум — 75 часов

Программу и задание составили:

к.ф.-м.н., доц. К.М. Крымский к.ф.-м.н., доц. Л.М. Колдунов д.ф.-м.н., доц. С.Л. Клёнов к.ф.-м.н., проф. В. А. Петухов к.ф.-м.н., доц. П. В. Попов к.ф.-м.н., доц. Ю. Н. Филатов

Программа принята на заседании кафедры общей физики 10 мая 2024 г.

Заведующий кафедрой д.ф.-м.н., профессор

А. В. Максимычев

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

- 1. Электрические заряды и электрическое поле. Закон сохранения заряда. Напряжённость электрического поля. Закон Кулона. Системы единиц СИ и СГС. Принцип суперпозиции. Электрическое поле диполя. Теорема Гаусса для электрического поля в вакууме в интегральной и дифференциальной формах. Её применение для нахождения электростатических полей.
- 2. Потенциальный характер электростатического поля. Теорема о циркуляции электростатического поля. Потенциал и разность потенциалов. Связь напряжённости поля с градиентом потенциала. Граничные условия для вектора *E*. Уравнения Пуассона и Лапласа. Проводники в электрическом поле. Граничные условия на поверхности проводника. Единственность решения электростатической задачи. Метод изображений.
- 3. Электрическое поле в веществе. Поляризация диэлектриков. Свободные и связанные заряды. Вектор поляризации и вектор электрической индукции. Поляризуемость частиц среды. Диэлектрическая проницаемость среды. Теорема Гаусса в диэлектриках. Граничные условия на границе двух диэлектриков.
- 4. Электрическая ёмкость. Конденсаторы. Энергия электрического поля и её локализация в пространстве. Объёмная плотность энергии. Взаимная энергия зарядов. Энергия диполя во внешнем поле. Энергия в системе заряженных проводников. Силы в электрическом поле. Энергетический метод вычисления сил (метод виртуальных перемещений).
- 5. Постоянный ток. Сила тока. Объёмная и поверхностная плотности тока. Закон Ома в интегральной и дифференциальной формах. Уравнение непрерывности для плотности заряда. Электродвижущая сила. Правила Кирхгофа для электрических цепей. Работа и мощность постоянного тока. Закон Джоуля—Ленца. Токи в неограниченных средах.
- 6. Магнитное поле постоянного тока в вакууме. Вектор магнитной индукции. Сила Лоренца. Сила Ампера. Закон Био—Савара. Теорема Гаусса для магнитного поля. Теорема о циркуляции магнитного поля в вакууме в интегральной форме. Магнитное поле прямого провода, тороидальной катушки и соленоида.
- 7. Магнитный момент тока. Точечный магнитный диполь. Сила и момент сил, действующие на виток с током в магнитном поле. Эквивалентность витка с током и магнитного листка. Теорема о циркуляции магнитного поля в вакууме в дифференциальной форме.
- 8. Магнитное поле в веществе. Магнитная индукция и напряжённость поля. Вектор намагниченности. Токи проводимости и молекулярные токи. Теорема о циркуляции магнитного поля в веществе. Граничные условия на границе двух магнетиков.
- 9. Электромагнитная индукция. Поток магнитного поля. ЭДС индукции в

- движущихся проводниках. Вихревое электрическое поле. Правило Ленца. Закон электромагнитной индукции в интегральной и дифференциальной формах.
- 10. Коэффициенты само- и взаимоиндукции. Установление тока в цепи, содержащей индуктивность. Теорема взаимности. Магнитная энергия токов. Локализация магнитной энергии в пространстве, объёмная плотность магнитной энергии. Энергетический метод вычисления сил в магнитном поле. Магнитные цепи. Подъёмная сила электромагнита.
- 11. Магнитные свойства вещества. Качественные представления о механизме намагничивания пара- и диамагнетиков. Понятие о ферромагнетиках. Ферромагнитный гистерезис. Магнитные свойства сверхпроводников I рода.
- 12. Относительный характер электрического и магнитного полей. Сила Лоренца. Преобразование \vec{E} и \vec{B} при смене системы отсчёта (при $v \ll c$). Поле равномерно движущегося точечного заряда. Движение заряженных частиц в электрических и магнитных полях. Дрейф в скрещенных однородных полях. Эффект Холла, влияние магнитного поля на проводящие свойства сред.
- 13. Квазистационарные процессы в электрических цепях. Колебания в линейных системах. Колебательный контур. Свободные затухающие колебания. Коэффициент затухания, логарифмический декремент и добротность. Энергетический смысл добротности.
- 14. Вынужденные колебания под действием синусоидальной силы. Амплитудная и фазовая характеристики. Резонанс. Процесс установления стационарных колебаний.
- 15. Установившиеся колебания в цепи переменного тока. Комплексная форма представления колебаний. Векторные диаграммы. Комплексное сопротивление (импеданс). Правила Кирхгофа для переменных токов. Работа и мощность переменного тока.
- Понятие о спектральном разложении. Спектр одиночного прямоугольного импульса и периодической последовательности импульсов. Соотношение неопределённостей. Вынужденные колебания под действием произвольной силы.
- 17. Спектральный анализ линейных систем. Частотная характеристика и импульсный отклик системы. Колебательный контур как спектральный прибор. Интегрирующая и дифференцирующая цепочки как высокочастотный и низкочастотный фильтры. Модуляция и детектирование сигналов. Амплитудная и фазовая модуляции. Квадратичное детектирование сигналов.
- 18. Электрические флуктуации. Тепловой шум, формула Найквиста. Дробовой шум, формула Шоттки. Флуктуационный предел измерения слабых сигналов.
- 19. Параметрическое возбуждение колебаний. Параметрический резонанс.

- Автоколебания в электрических цепях. Положительная обратная связь. Условие самовозбуждения. Роль нелинейности.
- 20. Уравнения Максвелла в интегральной и дифференциальной форме. Граничные условия. Ток смещения. Материальные уравнения.
- 21. Энергия переменного электромагнитного поля. Поток электромагнитной энергии, теорема Пойнтинга.
- 22. Волновое уравнение. Электромагнитные волны в однородном диэлектрике, их поперечность и скорость распространения. Электромагнитная природа света. Монохроматические волны. Комплексная амплитуда. Уравнение Гельмгольца. Плоская электромагнитная волна. Приближение сферической волны.
- 23. Электромагнитные волны на границе раздела двух диэлектриков. Формулы Френеля. Явление Брюстера. Поток энергии в электромагнитной волне. Давление излучения. Электромагнитный импульс. Понятие о механизме излучения электромагнитных волн.
- 24. Понятие о линиях передачи энергии. Двухпроводная линия. Коэффициент стоячей волны. Согласованная нагрузка.
- 25. Электромагнитные волны в прямоугольном волноводе. Дисперсионное уравнение. Критическая частота. Объёмные резонаторы.
- 26. Элементы физики плазмы. Дебаевский радиус экранирования. Плазменные колебания, плазменная частота. Диэлектрическая проницаемость холодной плазмы. Проникновение электромагнитных волн в плазму.
- 27. Квазистационарное проникновение поля в проводящую среду, скинэффект. Сжатие плазменного шнура под действием протекающего в нем тока, пинч-эффект.

Литература

Основная

- 1. Сивухин Д.В. Общий курс физики. Т. 3. Москва : Физматлит, 2004.
- 2. *Кингсеп А.С., Локшин Г.Р., Ольхов О.А.* Основы физики. Курс общей физики. Т. 1. / под ред. А.С. Кингсепа. Москва : Физматлит, 2007.
- 3. Кириченко Н.А. Электричество и магнетизм. Москва : МФТИ, 2011.
- 4. *Никулин М.Г. и др* . Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т. 2. Электричество и магнетизм./ под ред. А.В. Максимычева, М.Г. Никулина. (2-е изд., перераб. и доп.). Москва : МФТИ, 2019.
- 5. *Козел С.М., Лейман В.Г., Локшин Г.Р., Овчинкин В.А., Прут Э.В.* Сборник задач по общему курсу физики. Ч. 2. Электричество и магнетизм. Оптика. / под ред. В.А. Овчинкина (4-е изд., испр. и доп.). Москва : Физматкнига, 2017.

Дополнительная

- 1. Калашников С.Г. Электричество. Москва : Наука, 1997.
- 2. *Калашников Н.П., Смондырев М.А.* Основы физики. Т.1. Москва : Лаборатория знаний, 2017.

- 3. Тамм И.Е. Основы теории электричества. Москва : Физматлит, 2003.
- 4. Парселл Э. Электричество и магнетизм. Москва : Наука, 1983.
- Фейнман Р.П. Фейнмановские лекции по физике. Выпуски 5, 6, 7. Москва: Мир, 1977.
- 6. Горелик Г.С. Колебания и волны. Москва : Физматлит, 2006.
- 7. *Мешков И.Н., Чириков Б.В.* Электромагнитное поле. Новосибирск : Наука, 1987.
- 8. *Козел С.М., Локшин Г.Р.* Модулированные колебания, спектральный анализ, линейная фильтрация. Москва : МФТИ, 2009.
- Извекова Ю.Н., Извеков О.А. Диполь во внешнем поле. Москва : МФТИ, 2023.

Электронные ресурсы: http://physics.mipt.ru/S III/

ЗАДАНИЕ ПО ФИЗИКЕ

для студентов 2-го курса на осенний семестр 2024/25 учебного года

т	No	Tr	Задачи		
Дата	нед.	Тема семинарских занятий	0	I	II
1-7 сен.	1	Электростатическое поле в вакууме. Поле диполя. Теорема Гаусса.	⁰ 1.1 ⁰ 1.2 ⁰ 1.3	1.14 1.21 T1 1.22/23	1.7 1.10 1.16 1.17
8-14 сен.	2	Потенциал. Проводники в электрическом поле. Метод изображений.	⁰ 2.1 ⁰ 2.2 ⁰ 2.3	1.24 2.3 2.20 2.22	1.26 2.11 2.15 2.48 T2
15-21 сен.	3	Электрическое поле в веществе.	⁰ 3.1 ⁰ 3.2 3.1	3.8 3.26 3.39 3.77	T3 3.30 T4 3.79
22-28 сен.	4	Энергия и силы в электрическом поле. Токи в неограниченных средах.	⁰ 4.1 3.50 ⁰ 4.2	T1' 1.5 3.44 3.67/68 4.36	T5 3.73 T6 4.23
29 сен - 5 окт	5	Магнитное поле постоянного тока. Магнитный момент.	⁰ 5.1 ⁰ 5.2 ⁰ 5.3	5.5 5.10 5.17 5.26	5.12 5.14 5.23 T7

			6.3/4	6.7	6.5	
6–12 окт.	6	Магнитное поле в веществе.	0.3/4 06.1	6.17	6.9	
			⁰ 6.2	6.12	6.18	
			0.2	6.52	T8	
			7.1	10.1	5.28	
13–19 окт.	7	Электромагнитная индукция. Теорема взаимности. Магнитная энергия.	⁰ 7.1	5.29	T9	
			7.31	5.30	7.64	
				7.58	6.50	
				7.88	8.47	
		Сверхпроводники в магнит-	6.35	6.23	7.83	
20-26	8	ном поле. Эффект Холла.	8.9	6.37	8.34	
окт.	ð	Движение заряженных ча-	$^{0}8.1$	8.30	T10	
		стиц.		8.69	T11	
27 окт.						
- 2	9	Сдача 1-го	задания			
ноя.			0.4	0.0	0.27	
		Переходные процессы и сво-	9.4	9.8	9.27	
3–9	10	бодные колебания в электрических цепях.	⁰ 10.1	9.15	9.36	
нояб.			9.33	9.48	9.54	
			⁰ 11.1	9.34	T12	
	11	Вынужденные колебания	⁰ 11.1	10.8	10.20	
10–16			T13	10.6 10.23	10.25	
нояб.			113	10.23	10.82 T14	
				10.39	10.92	
			11.1	11.16	11.10	
17–23 нояб.	12	Спектральный анализ электрических сигналов. Модуляция.	11.1 11.3(a,б)		11.10	
			⁰ 12.1	11.2	T1.13	
		Параметрические колебания.	12.1	11.35	11.36	
		Параметрические колеоания. Автоколебания.		T1.33	T18	
24–30 нояб.	13	Уравнения Максвелла. Вектор Пойнтинга.	⁰ 13.1	8.51	12.22	
			⁰ 13.2	12.3	12.27	
			13.2	12.5/8	12.81	
				12.9	T19	
1-7 дек.	14	Электромагнитные волны. Линии передачи энергии. Волноводы. Резонаторы.	⁰ 14.1	12.25/40	12.67	
			014.2	12.42	12.48	
			014.3	12.46	T20	
			_	12.52		

8–14 дек.	15	Элементы физики плазмы. Скин-эффект.	⁰ 15.1 ⁰ 15.2 ⁰ 15.3	12.55 12.58 12.96 T22	12.53 T21 T23	
15-21 дек.		Сдача 2-го задания				

Примечания

Номера задач указаны по «Сборнику задач по общему курсу физики. Ч. 2. Электричество и магнетизм. Оптика» / под ред. В.А. Овчинкина (4-е изд., испр. и доп.). — Москва : Физматкнига, 2017.

Все задачи обязательны для сдачи задания, их решения должны быть представлены преподавателю на проверку. В каждой теме семинара задачи разбиты на 3 группы:

- 3 адачи, которые студент должен решать заранее для подготовки к семинару;
- I задачи, рекомендованные для разбора на семинаре (преподаватель может разбирать на семинарах и другие равноценные задачи по своему выбору);
- II задачи для самостоятельного решения.

Решение всех задач обязательно для сдачи задания.

ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К СЕМИНАРАМ (задачи группы 0)

Семинар 1

- **⁰1.1.** Вычислить отношение сил электростатического отталкивания и гравитационного притяжения двух протонов.
- **01.2.** Оцените среднюю концентрацию электрических зарядов в атмосфере, если известно, что напряжённость электрического поля на поверхности Земли равна 100 B/m, а на высоте h=1,5 км она падает до 25 B/m. Вектор E направлен к

центру Земли. Ответ выразить в элементарных зарядах на см³.

⁰**1.3.** Используя формулу для напряжённости поля точечного диполя с дипольным моментом \vec{p} , найдите напряжённость поля на оси диполя ($\alpha = 0$) и в перпендикулярном направлении ($\alpha = \pi/2$).

Семинар 2

- 0 **2.1.** Незаряженный проводящий шар вносится в электрическое поле с известным распределением потенциала $\varphi(\vec{r})$. Каким будет потенциал шара?
- 0 2.2. В опытах Резерфорда золотая фольга бомбардировалась α -частицами $_{4}^{2}$ He с кинетической энергией W=5 МэВ. На какое минимальное расстояние может приблизиться α -частица к ядру золота $_{197}^{79}$ Au? (заряд электрона e=4,8 · 10^{-10} ед. СГС; 1 эВ = 1,6· 10^{-12} эрг).

$$\underline{\text{Otbet:}} \; r_{min} = 2 \cdot 79 \cdot \frac{e^2}{W} \Big(1 + \frac{4}{197} \Big) = 4.6 \cdot 10^{-12} \; \text{cm}.$$

 0 **2.3.** Напряжённость электрического поля Земли $E_{0}=130$ В/м, причём вектор $\vec{E}_{0}\uparrow\uparrow\vec{g}$. Какой заряд приобретёт горизонтально расположенный короткозамкнутый плоский конденсатор с площадью пластин S=1 м 2 ?

Ответ: Q = 3,4 ед. СГС.

Семинар 3

⁰3.1. Найдите плотность поляризационных зарядов на торцах однородно поляризованного параллелепипеда.

 0 3.2. Проводящий шар радиуса R_{0} несёт заряд q и окружён шаровым слоем диэлектрика с проницаемостью ε , вплотную прилегающим к поверхности шара. Внешний радиус равен R. Определить потенциал проводящего шара.

Otbet:
$$\varphi = \frac{q}{R} \left(1 + \frac{R - R_0}{\varepsilon R_0} \right)$$
.

Семинар 4

 $^{0}4.1$. Поверхностная плотность заряда на пластинах плоского конденсатора, заполненного твёрдым диэлектриком с проницаемостью ε , равна $\pm \sigma$. Определите объёмную плотность электрической энергии w в конденсаторе, а также силу f, действующую на единицу площади обкладок.

Otbet:
$$w = \frac{2\pi\sigma^2}{\varepsilon}$$
, $f = 2\pi\sigma^2$.

 $^{0}4.2$. Конденсатор ёмкостью C=20 см заполнен однородной слабо-проводящей средой, имеющей малую проводимость $\lambda=10^{-6}~\mathrm{Om^{-1}\cdot cm^{-1}}$ и диэлектрическую проницаемость $\varepsilon=2$. Определить электрическое сопротивление между обкладками.

Отве<u>т:</u> 8 кОм.

Семинар 5

 0 5.1. Определите индукцию магнитного поля в центре крайнего витка длинного соленоида с плотностью намотки n витков/см. По виткам соленоида протекает постоянный ток I.

$$\underline{\text{Otbet:}} B = \frac{2\pi nI}{c}.$$

 0 **5.2.** Проводящий контур, по которому течёт постоянный ток I, состоит из отрезков дуг и радиусов (см. рис.). Определите индукцию магнитного поля в точке O.

$$\underline{\text{OTBET:}} B = \frac{\pi l}{2c} \left(\frac{1}{r_1} - \frac{1}{r_2} \right).$$

 0 5.3. Плоский конденсатор с обкладками в виде круглых дисков радиуса R заполнен немагнитной слабо проводящей средой. Через конденсатор протекает постоянный ток I. Найдите индукцию магнитного поля на расстоянии $r \leq R$ от оси конденсатора.

$$\underline{\text{Ответ:}} \ B = \frac{2I}{c} \cdot \frac{r}{R^2}.$$

Семинар 6

 $^{0}6.1$. Постоянный магнит длиной L с однородной намагниченностью I согнут в кольцо так, что между полюсами остался маленький зазор $\ell \ll L$. Определите магнитную индукцию в зазоре.

Other:
$$B = 4\pi I \frac{L}{L+\ell} \approx 4\pi I$$
.

 $^{0}6.2.$ (2017-1A) Постоянный магнит изготовлен из однородно намагниченного материала и имеет форму тонкого диска толщиной d и площадью S. Вектор намагниченности \vec{I} направлен по нормали к плоскости диска. Найти циркуляцию векторов индукции и напряжённости магнитного поля \vec{B} и \vec{H} по контуру L, показанному на рисунке штриховой линией.

Семинар 7

 $^{0}7.1$. Определить давление магнитного поля на стенки длинного соленоида кругового сечения, в котором создано магнитное поле B=10 Тл. Какова при этом должна быть поверхностная плотность тока i?

Ответ:
$$P \approx 400$$
 атм, $i = 80$ кА/см.

Семинар 8

 $^{0}8.1$. Протон влетает в область поперечного магнитного поля B=5 Тл со скоростью $v=2,4\cdot 10^{10}$ см/с. Толщина области, занятой полем, d=50 см (см. рис.). Найти угол отклонения протона α от первоначального направления движения. Излучением пренебречь.

Otbet:
$$\alpha \approx \arcsin \frac{3}{5} \approx 37^\circ$$
.

Семинар 10

 $^{0}10.1$. Найти зависимость тока в цепи I(t) от времени в схеме на рис., если после замыкания ключа в момент t=0 напряжение источника меняется по закону $\mathcal{E}(t)=At$. Рассмотреть случай $t\ll L/R$.

$$\underline{\text{Otbet:}}\ I(t) \approx \frac{At^2}{2L}.$$

Семинар 11

 0 **11.1.** К последовательно соединенным резистору с сопротивлением R=3,2 кОм и конденсатору ёмкостью C=1 мкФ приложено сетевое напряжение с частотой f=50 Гц. Найдите сдвиг фаз $\Delta \varphi$ между напряжением в сети и напряжением на резисторе.

$$Ω$$
TBeT: $Δφ ≈ −45°$.

 0 **11.2.** Некоторый двухполюсник, имеющий импеданс $Z=3+i\sqrt{3}$ [Ом], подключён к идеальному источнику переменной ЭДС с амплитудой $\mathcal{E}_{0}=2$ В. Найдите среднюю мощность, потребляемую двухполюсником.

Ответ:
$$P = 0,5$$
 Вт.

Семинар 12

 0 **12.1.** Найдите спектр модулированного по амплитуде сигнала вида $g(t) = f(t) \cdot \cos \omega_0 t$, если спектр сигнала f(t) равен $F(\omega)$. Рассмотрите случай $f(t) = e^{-\gamma t}$ при $t \geq 0$.

$$\underline{\mathrm{Otbet:}} \ G(\Omega) = \frac{\gamma + \mathrm{i}\Omega}{(\gamma + \mathrm{i}\Omega)^2 + \omega_0^2}$$

Семинар 13

 0 **13.1.** Напряжение в плоском конденсаторе меняется по гармоническому закону $U=U_{0}\sin\omega t$. Пластины имеют форму дисков радиуса R, расстояние между которыми $h\ll R$, между пластин — среда с проницаемостью ε . Пренебрегая краевыми искажениями поля, найдите магнитное поле на краю конденсатора (на расстоянии R от оси). Частоту считать малой: $\omega\ll c/R$.

$$\underline{\text{OTBET:}} \ B = \frac{\omega R}{2c} \cdot \frac{\varepsilon U_0}{h} \cos \omega t.$$

 $^{0}13.2$. Используя выражение для вектора Пойнтинга S, в условиях предыдущей задачи найдите полный поток электромагнитной энергии из конденсатора и сравните его с выражением для скорости изменения энергии, запасённой в конденсаторе dW/dt.

Other:
$$S \cdot 2\pi Rh = \frac{dW}{dt} = \frac{\varepsilon \pi R^2}{h} \sin 2\omega t$$
.

Семинар 14

- ⁰**14.1.** Плоская электромагнитная волна бежит в однородной среде в направлении оси z и имеет компоненты поля $E_x(z,t)$ и $B_y(z,t)$. Фазовая скорость волны равна v. Показать, что в любой момент времени $E_x = \frac{v}{c} B_y$.
- 0 **14.2.** При какой длине кабеля его нельзя при расчётах заменить эквивалентным точечным сопротивлением, если частота в цепи $\nu = 50 \, \Gamma$ ц?

Ответ:
$$\ell \gtrsim 6 \cdot 10^3$$
 км.

 0 **14.3.** Найти минимальную частоту электромагнитных колебаний в объёмном прямоугольном резонаторе со сторонами $1 \times 2 \times 3$ см, выполненном из идеального проводника.

Ответ: 9 ГГц.

Семинар 15

 0 **15.1.** Температура электронов в плазме тлеющего разряда $T_e \sim 10^4$ K, концентрация $n_e \sim 10^9$ см $^{-3}$. При каком радиусе трубки разряд можно считать квазинейтральным?

Ответ: $r \gg 0.2$ мм.

⁰**15.2.** В условиях предыдущей задачи оцените кулоновскую энергию взаимодействия заряженных частиц в плазме (в расчёте на одну частицу). Можно ли считать такую плазму идеальным газом?

Ответ:
$$w_{\text{кул}} \sim 10^{-4} \text{ эВ; да, можно.}$$

 0 **15.3.** Радиосигнал с частотой $\nu = 4$ МГц посылается вертикально вверх и отражается от ионосферы на некоторой высоте. Определить концентрацию электронов в точке отражения.

Ответ:
$$n_e = 2 \cdot 10^5 \text{ см}^{-3}$$
.

ускорения этих молекул.

Текстовые задачи

Ответ:
$$\vec{F}_2 = -\vec{F}_1$$
 а) $F_{1x} = -2F_0$, $F_{1y} = 0$; б) $F_{1x} = \pm F_0$, $F_{1y} = 0$; в) $F_{1x} = 0$, $F_{1y} = \pm F_0$, где $F_0 \approx 6.8 \cdot 10^{-15}$ H; $a_{max} \sim 2.3 \cdot 10^{10}$ g.

- **Т1**′. Для задачи Т1 определите энергию взаимодействия диполей и проекции силы взаимодействия для произвольных углов α_1 и α_2 .
- **Т2**. (2019-1Б) Напряжённость поля на поверхности земли под одиночным заряженным бесконечным проводом радиуса R=1 см, расположенным параллельно поверхности, равна $E_0=750$ В/м. Расстояние от поверхности до оси провода h=4 м. Определите потенциал провода, считая потенциал поверхности земли равным нулю.

Otbet:
$$\varphi = \frac{hE_0}{2} \ln \frac{2h}{R} \approx 10$$
 κB.

Т3. (2015-1A) Плоскопараллельная пластина изготовлена из диэлектрика с «замороженной» поляризацией, направленной вдоль оси x, перпендикулярной поверхностям пластины. Пластина поляризована неоднородно: $\vec{P}(x) = \vec{P}_0 \cdot (1 + x^2/d^2)$, где 2d — толщина пластины (начало отсчёта – в

центре пластины). Определите разность потенциалов U между поверхностями пластины. Краевыми эффектами пренебречь.

$$\underline{\text{Ответ:}}\ U = \frac{32}{3}\pi P_0 d.$$

Т4. На обкладках плоского конденсатора размещены заряды q и -q. Зазор между обкладками заполнен веществом, диэлектрическая проницаемость которого меняется по закону $\varepsilon = \frac{2}{1+x/h}$, где x – расстояние до положительной пластины, h – расстояние между пластинами. Найдите распределение объёмной плотности поляризационного заряда $\rho_{\text{пол}}$ в конденсаторе, а также его ёмкость C. Площадь каждой пластины S.

Otber:
$$\rho_{\text{пол}} = +\frac{q}{2Sh} = \text{const}, C = \frac{S}{3\pi h}$$
.

Т5. (2018-1Б) На расстоянии 2R от центра заземленного проводящего шара радиуса R находится точечный заряд q. Заряд перемещают на расстояние 4R от центра шара. Чему равна работа по перемещению точечного заряда q? Чему равно изменение энергии взаимодействия индуцированных зарядов между собой?

Ответ:
$$A = \frac{2q^2}{15R}$$
, $\Delta W_{\text{инд}} = -\frac{2q^2}{15R}$.

Т6. (2023-2Б) Внутренняя и внешняя металлические обкладки уединённого сферического конденсатора заряжены одинаковыми положительными зарядами $q_1=q_2=q$. Радиус внешней обкладки R, внутренней R/2. Конденсатор заполнен диэлектриком с проницаемостью $\varepsilon=2$, вне конденсатора — вакуум. Найдите запасённую в системе энергию.

$$\underline{\text{Otbet:}} W = \frac{9}{4} \frac{q^2}{R}.$$

Т7. (2019-3Б) Постоянный ток силы *I* подводится по вертикальному кабелю к полусферическому небольшому заземлителю и равномерно растекается в однородном грунте. Пренебрегая проводимостью окружающего воздуха, определить напряженность магнитного поля в грунте в точке A, расположенной на расстоянии a от оси провода на глубине $h = a/\sqrt{3}$.

$$\underline{\text{Otbet:}}\ H = \frac{I}{ca}.$$

Т8. (2018-2A) Сердечник тонкой тороидальной катушки изготовлен из магнетика, зависимость намагничености I(H) которого показана на рисунке. При некотором токе через катушку поле в сердечнике оказывается равным $\frac{1}{2}H_{\rm H}$. При увеличении тока в три раза магнитная индукция

B в сердечнике увеличивается в 2,1 раза. Определите магнитную проницаемость магнетика μ на участке линейного роста зависимости I(H).

Ответ:
$$\mu = 10$$
.

Т9. (2023-4Б) Два одинаковых сверхпроводящих плоских витка с коэффициентами самоиндукции L расположены в плоскостях xz (виток 1) и xy (виток 2). В начальном состоянии ток в витках отсутствует. Для измерения взаимной индукции витки помещают в плавно нарастающее однородное магнитное поле, направленное под углом

 α = arctg 3 к оси y в плоскости yz. Оказалось, что отношение токов в витках равно $|I_2/I_1|$ = 2. Найдите коэффициент взаимной индукции витков M.

Otbet:
$$|M| = 1/5 L$$
.

Т10. (2020-4A) Длинный однородный металлический цилиндр радиусом r=30 см несёт на себе некоторый заряд, так что статическая напряжённость поля на его боковой поверхности равна $E_0=30~{\rm kB/cm}$. Цилиндр подключили к идеальному вольтметру как показано на рис.: одним контактом к оси, а другим скользящим контактом — к боковой поверхности в середине цилиндра. Какую разность

потенциалов $\Delta \varphi$ покажет вольтметр при вращении цилиндра вокруг оси с угловой скоростью $\omega=10^3$ рад/с? Центробежные эффекты не учитывать.

Ответ:
$$\Delta \varphi = 0.45$$
 мкВ.

Т11. (2016-2A) В однородном магнитном поле \vec{B} , направленном вдоль оси y, находится сверхпроводящее кольцо, лежащее в плоскости xy. Масса кольца M, коэффициент самоиндукции L, радиус R. Найти период

малых колебаний кольца при вращении вокруг оси x. Начало координат совпадает с центром кольца.

Otbet:
$$T = \sqrt{2LM}/(RB)$$
.

Т12. (2020-3A) Переменное однородное внешнее магнитное поле $B_{\rm BH}(t)=B_0\cos\omega t$ пронизывает катушку индуктивности вдоль её оси (см. рис.). Катушка имеет индуктивность L и замкнута на сопротивление $R=\omega L$. Найдите амплитуду и сдвиг фазы (относительно $B_{\rm BH}$)

установившихся колебаний суммарного магнитного поля внутри катушки.

Otbet:
$$|B| = 1/\sqrt{2} B_0$$
, $\varphi = -\pi/4$.

Т13. (2023-1Б) В представленной на рисунке электрической схеме генератор Γ создаёт переменный ток по закону $I(t) = I_0(\cos\omega_0 t + \cos 2\omega_0 t)$, где $\omega_0 = 1/\sqrt{LC}$. Определите выделяющуюся на сопротивлении R среднюю мощность, если $\sqrt{L/C} = 3/2$ R.

$$\underline{\text{Otbet:}} \ \ P = \frac{3}{4}I_0^2 R .$$

Т14. (2019-4Б) Определите коэффициент взаимной индукции катушек M в схеме, изображённой на рисунке, если ток в колебательном контуре отстаёт от входного напряжения по фазе на $\pi/4$. Параметры цепи: $L_1=20$ мГн, $L_2=5$ мГн, R=5 Ом, C=100 мкФ, $\omega=10^3$ рад/с.

Ответ:
$$M = 5$$
 мГн.

Т15. (2019-5А) Вынужденные колебания напряжения на конденсаторе высокодобротного колебательного контура возбуждаются внешней ЭДС $\mathcal{E}(t)=\mathcal{E}_0(1+m\cos\Omega t)\cos\omega_0 t$, где частота модуляции $\Omega=\omega_0/2,\,m<1$. При резонансной

частоте контура $\omega_{\rm p}=\omega_0/2$ оказалось, что две гармоники из спектра колебаний напряжения на конденсаторе V(t) имеют одинаковые амплитуды. Определите глубину модуляции m, если добротность контура Q=25.

$$Other: $m = \frac{2}{30} = \frac{2}{75}$$$

Т16. (2020-1Б) Вынужденные колебания в высокодобротном *RLC*-контуре возбуждаются последовательно включённой внешней ЭДС $\mathcal{E} = \mathcal{E}_0 \cos(\omega_0 \ t + \varphi(t))$ с законом фазовой модуляции $\varphi(t) = m \cos \Omega t$, где $m = \frac{1}{9}$ и $\Omega = \frac{4}{5} \omega_0$. Зависимость амплитуды напряжения V на конденсаторе от его ёмкости \mathcal{C} схематично показана на рисунке. Найдите отношения V_2/V_1 и V_1/V_3 .

$$V_2$$
 V_1
 V_3
 C_1
 C_2
 C_3

Other:
$$\frac{V_2}{V_1} = 10$$
, $\frac{V_1}{V_3} = 9$.

Т17. (2023-6A) Колебательный контур подключён к источнику тока (показан на схеме символом «I», стрелка указывает направление протекания тока). Величина тока источника регулируется напряжением $U_{\rm CB}$ на «катушке обратной связи» $L_{\rm CB}$ по закону $I=I_0+SU_{\rm CB}$, где I_0 , S—

константы. При каком наибольшем сопротивлении R катушки контура будет возможна генерация автоколебаний в контуре? Каким при этом должен быть коэффициент M взаимной индукции катушек L и $L_{\rm CB}$? Параметры цепи: S=2 мА/В, C=10 нФ, L=10 мГн, $L_{\rm CB}=0.01L$. Ток в катушке связи считать пренебрежимо малым.

Ответ:
$$R_{max} = \sqrt{LL_{\text{CB}}} \, S/C = 200 \, \text{Om}, \ |M| \le \sqrt{LL_{\text{CB}}} = 1 \, \text{м} \Gamma \text{H}.$$

Т18. (2023-6Б) Колебательный контур подключён к источнику тока (показан на схеме символом «I», стрелка указывает направление протекания тока). Контур содержит «конденсатор связи» C_1 , напряжение U1 на котором регулирует величину тока источ-

ника по закону $I=I_0+SU_1$, где I_0 , S — константы. Определите минимальное отношение C_1/C , при котором изменение напряжения на конденсаторе C будет иметь *колебательный* характер с нарастающей амплитудой. Параметры цепи: S=20 мА/В, C=1 нФ, L=1 мГн. Потерями пренебречь. Токи через C и C_1 считать одинаковыми.

Примечание: знаками «+/—» на схеме показано состояние конденсатора связи, когда U_1 считается положительным.

$$\underline{\text{Otbet:}} \frac{c_1}{c} \ge \frac{1}{2} \left(\sqrt{1 + \frac{s^2 L}{c}} - 1 \right) \approx 9.5.$$

Т19. (2016-6Б) В вакууме распространяются две плоские электромагнитные волны одинаковой частоты и амплитуды: одна вдоль оси x, а другая — вдоль оси y. Вектор **E** обеих волн направлен по оси z. Найдите среднее по времени значение вектора плотности потока энергии $\langle S \rangle$ во всех точках пространства. Укажите плоскости, вдоль которых средний поток энергии максимален.

$$\begin{array}{l} \underline{\text{Ответ:}} \left< \vec{S} \right> = \frac{c}{4\pi} E_0^2 \cos^2 \left[\frac{k}{2} (x-y) \right] \left(\vec{e}_x + \vec{e}_y \right), \\ \left| \left< \vec{S} \right> \right|_{max} = \sqrt{2} \frac{c}{4\pi} E_0^2 \text{ при } y = x + \lambda \ m. \end{array}$$

Т20. (2018-4A) В прямоугольном резонаторе с хорошо проводящими стенками размерами $a \times a \times b$, где a > b, две наименьшие резонансные частоты равны $\nu_1 = 10~\Gamma\Gamma$ ц и $\nu_2 = 11~\Gamma\Gamma$ ц соответственно. Найдите следующую разрешенную частоту резонатора.

Ответ:
$$\nu_3$$
 ≈ 13 ГГц.

Т21. Оцените омические потери в медном проводе длиной l=1 м сечением S=4 мм 2 при протекании через него синусоидального тока с амплитудой I=20 А и частотой v=13,56 МГц. Удельная проводимость меди $\sigma=5,2\cdot 10^{17}$ с $^{-1}$. Сравните результат с потерями при $v_0\lesssim 50$ Гц.

$$\underline{\text{Ответ:}}\ Q pprox rac{I_0^2 l}{2cr} \sqrt{rac{v}{\sigma}}\ \ [$$
ед. СГС] $pprox 30\ \mathrm{Bt}\ ($ при $50\ \Gamma$ ц $Qpprox 0.9\ \mathrm{Bt}).$

Т22. Оцените относительное уменьшение амплитуды сигнала из-за скин-эффекта в телевизионном коаксиальном кабеле длиной L=10 м на частоте f=1 ГГц (приблизительно верхняя граница дециметрового диапазона). Считать, что потери обусловлены в основном токами в центральном медном проводнике диаметром D=0.6 мм (потери в экране малы ввиду его большой площади). Удельная проводимость меди $\sigma=5.8\cdot 10^7$ См/м, волновое сопротивление кабеля $\rho=75$ Ом.

Otbet:
$$\Delta U/U \sim 0.4$$
.

Т23. Плазма имеет проводимость $\sigma \sim 10^{14}~{\rm c}^{\text{-1}}$. Оцените коэффициент диффузии магнитного поля в плазме и глубину проникновения магнитного поля за время $\tau=1$ мкс.

Ответ:
$$D_{\rm M} \approx 70 \, {\rm m}^2/{\rm c}, \, \delta \sim 1 \, {\rm cm}.$$