Computação Gráfica

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

13 de Abril de 2023

- "Poliédricos" e "Poliedros" são frequentemente usados como sinônimos;
- Poliedro: utilizado se refere a qualquer sólido geométrico tridimensional;
- Poliédricos: Sólidos geométricos tridimensionais como a regularidade em suas faces, arestas e vértices;
- União de polígonos regulares (Figura fechadas);

Polígonos

- Segmento de retas;
- Polígono regular;
 - Todos os lados s\u00e3o iguais e todos os \u00e3ngulos internos t\u00e8m a mesma medida.
- Polígono irregular;
 - Todos os lados e os ângulos têm medidas diferentes.
- Nomeado conforme o número de lados que possuem:
 - Triângulo 3 lados;
 - Quadrilátero 4 lados;
 - Pentágono 5 lados;
 - etc.

- Objetos que são definidos por suas:
 - Faces:
 - Arestas:
 - Vértices:
- Sólido geométrico limitado por uma coleção finita de faces planas;
- Forma de representar objetos em computação gráfica;
- Amplamente utilizados em modelagem 3D, renderização e simulação.

Regulares

- Sólidos tridimensionais;
- Faces;
- Arestas;
- Vértices congruentes;
- Simétricos;
- Todas as suas faces são polígonos regulares congruentes;
- Lados e ângulos internos iguais.
- OpenGL;
 - Desenhado por linhas;
 - Loop de pontos;
 - Último ponto aponta para o primeiro;

Princípios:

- Princípio de superposição de ângulos;
- Princípio da adição de ângulos;
 - Conceitos na geometria;
 - Descreve como os ângulos são formados quando duas ou mais linhas se intersectam em um ponto.
- Fundamental na geometria;
- Usada para determinar a medida de ângulos;
- Como na resolução de problemas envolvendo:
 - polígonos;
 - trigonometria;
 - geometria analítica;
 - outras aplicações geométricas.

- Decomposição por triângulos;
- Angulação constante;
- Soma dos ângulos internos do triângulo;
- Triângulo 180°;

Decomposição por triângulos:

- Conceito utilizado na geometria;
- Consiste em dividir uma figura ou um polígono em triângulos menores;
- De forma a facilitar a análise e resolução de problemas geométricos;
- Estratégia comum.

Número de triângulos = Números de lados - 2;

Não Regulares

- Sólidos tridimensionais;
- Não possuem todas as suas faces congruentes;
- Todas as suas arestas congruentes;
- Grande variedade de formas e tamanhos;
- Não necessariamente fechadas;
- Curvas;
- Linhas ou pontos;
- Podem não produzir figuras geométricas.

- Como representar no **OpenGL**?
- Poliédricos (Ponto a Ponto):
 - Todos os pontos com sua cor;
 - Todos os pontos não brancos;

Preto e Branco		
100	100	
110	100	
115	105	
120	110	

Colorido				
100	100	0.55, 0.27, 0.07		
110	100	0.10, 0.92, 0.70		
115	105	0.10, 0.92, 0.70		
120	110	0.55, 0.27, 0.07		

- Como representar no **OpenGL**?
- Poliédricos (Por linhas):
 - Pontos de início e fim de cada linha;
 - Circular;
 - Número de retas;
 - Lista de vértices;

100	100	115	120
110	105	100	100
150	135	105	105
200	203	100	112

4	
100	100
115	120
110	105
100	100

```
void Desenha(void) {
glClear(GL COLOR BUFFER BIT);
qlPointSize(10.0);
qlColor3f(0.55, 0.27, 0.07);
glBegin(GL_LINE_STRIP);
glVertex2f(250, 500);
glVertex2f(100, 100);
glVertex2f(200, 200);
glVertex2f(300, 300);
glEnd();
glFlush();
```

- Como representar no **OpenGL**?
- Poliédricos (Polígonos):
 - Número de núcleos;
 - Números de linhas;
 - Vértices.

2	
2	
100	115
120	100
3	
100	100
120	125
125	100

Traço, Loops e Primitivas

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2023