Recurrent Neural Networks

Nand Kishore, Audrey Huang, Rohan Batra

Roadmap

Motivation

- Sequential data is found everywhere
 - Sentence is sequence of words
 - Video is sequence of images
 - Time-series data is sequence across time
- Given a sequence $(x_1, x_2, ...x_i)$
 - The x_i 's are not i.i.d!
 - Might be strongly correlated
- Can we take advantage of sequential structure?

Machine Learning Tasks

- Sequence Prediction
 - Predict next element in sequence: $(x_1, x_2, ..., x_i) \rightarrow x_{i+1}$
- Sequence Labelling/Seq-to-Seq
 - Assign label to each element in sequence: $(x_1, x_2, ..., x_i) \rightarrow (y_1, y_2, ..., y_i)$
- Sequence Classification
 - Classify entire sequence $(x_1, x_2, ..., x_i) \rightarrow y$

Machine Learning Tasks

Hidden Markov Model (HMM)

Hidden Markov Models

- Generative Model
- Markov Assumption on Hidden States

Hidden Markov Model (HMM)

- Weaknesses
 - N states can only encode log(N) bits of information
 - In practice, generative models tend to be more computationally intensive/less accurate

Feedforward Neural Networks

$$s = f(U \cdot x)$$
$$o = softmax(V \cdot s)$$

Weaknesses of Feedforward Networks

- Fixed # outputs and inputs
- Inputs are independent

Recurrent Neural Networks Overcome These Problems

- Fixed # outputs and inputs
- Inputs are independent

- Variable # outputs and inputs
- Inputs can be correlated

Roadmap

Recurrent Neural Network - Structure

- RNNs are neural networks with loops
- Previous hidden states or predictions used as inputs

Recurrent Neural Network - Structure

How you loop the nodes depends on the problem

Recurrent Neural Networks - Training

- "Unroll" the network through time
 - Becomes a feedforward network
- Train using gradient descent
 - backpropagation through time (BPTT)

Recurrent Neural Network - Equations

Updating Hidden States s_t at time t

$$s_t = f(Ux_t + Ws_{t-1})$$

- s_t function of previous hidden state s_{t-1} and current input x_t
 - encodes prior information ("memory")

Recurrent Neural Network - Equations

Making Sequential Predictions o_t at time t

$$o_t = \operatorname{softmax}(Vs_t)$$

• o_t is function of current hidden state s_t

Backpropagation - Chain Rule

$$\frac{\partial \mathcal{L}_{t+1}}{\partial W} = \frac{\partial \mathcal{L}_{t+1}}{\partial o_{t+1}} \frac{\partial o_{t+1}}{\partial s_{t+1}} \frac{\partial s_{t+1}}{\partial W}$$

Backpropagation - Chain Rule

Example 2 - Machine Translation

Example 3 - Sentiment Analysis

Roadmap

Vanishing and Exploding Gradient

- Composition of many nonlinear functions can lead to problems
- $\bullet \quad s_t = f(Ux_t + Ws_{t-1})$
- When we backpropagate, gradient increases exponentially with W
- Behavior depends on eigenvalues of W
 - \circ If eigenvalues > 1, W^n may cause gradient to explodes
 - \circ If eigenvalues < 1, W^n may cause gradient to vanish

Short-term Memory

 In practice, simple RNN's tend to only retain information from few time-steps in the past

RNN's have a harder time remembering relevant information from farther back

Roadmap

Long short-term memory (LSTM)

- Adds a memory cell with input, forget, and output gates
- Can help learn long-term dependencies
- Helps solve exploding/vanishing gradient problem

Forget gate layer

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input gate layer

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Update cell state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Generate filtered output

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

But wait... there's more

 A number of challenging problems remain in sequence learning

Let's take a look at how the papers address these issues

Roadmap

SEQUENCE LEVEL TRAINING WITH RECURRENT NEURAL NETWORKS

By: Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba

Text Generation

- Consider the problem of text generation
- Machine Translation
- Summarization
- Question Answering

Text Generation

- We want to predict a sequence of words [w₁, w₂, ..., w_T] (that makes sense)
- At each time step, may take as input some context c,

Let's use an RNN

$$\mathbf{h}_{t+1} = \phi_{\theta}(w_t, \mathbf{h}_t, \mathbf{c}_t),$$

$$w_{t+1} \sim p_{\theta}(w|w_t, \mathbf{h}_{t+1}) = p_{\theta}(w|w_t, \phi_{\theta}(w_t, \mathbf{h}_t, \mathbf{c}_t))$$

Text Generation

Simple Elman RNN:

$$\mathbf{h}_{t+1} = \sigma(M_i \mathbf{1}(w_t) + M_h \mathbf{h}_t + M_c \mathbf{c}_t),$$

$$\mathbf{o}_{t+1} = M_o \mathbf{h}_{t+1},$$

$$w_{t+1} \sim \text{softmax}(\mathbf{o}_{t+1}),$$

Training

- Optimize cross-entropy loss at each time-step
- Given a target sequence [w₁, w₂, ..., w_T]

$$L = -\log p(w_1, \dots, w_T) = -\log \prod_{t=1}^T p(w_t | w_1, \dots, w_{t-1}) = -\sum_{t=1}^T \log p(w_t | w_1, \dots, w_{t-1})$$

Why is this a problem?

- Notice that the RNN is trained to maximize $p_{\theta}(w|w_t,h_{t+1})$, where w_t is the ground truth
- Loss function causes model to be good at predicting the next word given previous ground-truth word

Why is this a problem?

- But we don't have the ground truth at test time!!!
- Remember that we're trying to generate sequences
- At test time, the model needs to use it's own predictions to generate the next words

Why is this a problem?

This can lead to predicting sub-optimal sequences

$$\prod_{t=1}^{T} \max_{w_{t+1}} p_{\theta}(w_{t+1}|w_{t}^{g}, \mathbf{h}_{t+1}) \leq \max_{w_{1}, \dots, w_{T}} \prod_{t=1}^{T} p_{\theta}(w_{t+1}|w_{t}^{g}, \mathbf{h}_{t+1})$$

 The most likely sequence might actually contain a sub-optimal word at some time-step

Techniques

- Beam Search
 - At each point instead of just taking highest scoring word, look at k next word candidates
 - Significantly slows down word generation process
- Data as Demonstrator
 - During training, with certain probability take either model prediction or ground truth
 - Alignment issues
 - "I took a long walk" vs. "I took a walk"
- End to End Backprop
 - Instead of ground-truth, propagate top-k words at previous time-step
 - Weigh each word by its score and re-normalize

Reinforcement Learning

- Suppose our RNN is an agent
 - Parameters define a policy
 - Picks an action
- After taking an action, updates internal states
- At the end of sequence, observes a reward
 - Can use any reward function, authors use BLUE and ROUGE-2

REINFORCE

- We want to find parameters that maximize expected reward
- Loss is negative expected reward

$$L_{\theta} = -\sum_{w_1^g, \dots, w_T^g} p_{\theta}(w_1^g, \dots, w_T^g) r(w_1^g, \dots, w_T^g) = -\mathbb{E}_{[w_1^g, \dots, w_T^g] \sim p_{\theta}} r(w_1^g, \dots, w_T^g),$$

 In practice, we actually approximate the expected reward with a single sample...

REINFORCE

 $\bullet \quad \text{For estimating the gradients,} \quad \frac{\partial L_{\theta}}{\partial \theta} = \sum_{t} \frac{\partial L_{\theta}}{\partial \mathbf{o}_{t}} \frac{\partial \mathbf{o}_{t}}{\partial \theta}$

$$\frac{\partial L_{\theta}}{\partial \mathbf{o}_{t}} = (r(w_{1}^{g}, \dots, w_{T}^{g}) - \bar{r}_{t+1}) \left(p_{\theta}(w_{t+1}|w_{t}^{g}, \mathbf{h}_{t+1}, \mathbf{c}_{t}) - \mathbf{1}(w_{t+1}^{g}) \right)$$

- \bar{r}_{t+1} is a baseline estimator that can reduce variance
 - Authors use linear regression with the hidden states of RNN as input to estimate this
 - Unclear what is best technique to select this
- If $r > \bar{r}_{t+1}$ encourages word choice, or else discourages word choice

MIXED INCREMENTAL CROSS-ENTROPY REINFORCE

- Instead of starting from poor random policy, start from RNN trained using ground truth with cross-entropy
- Start using REINFORCE according to an annealing schedule

```
Data: a set of sequences with their corresponding context. Result: RNN optimized for generation. Initialize RNN at random and set N^{\text{XENT}}, N^{\text{XE+R}} and \Delta; for s = T, 1, -\Delta do

| if s = T then
| train RNN for N^{\text{XENT}} epochs using XENT only; else
| train RNN for N^{\text{XE+R}} epochs. Use XENT loss in the first s steps, and REINFORCE (sampling from the model) in the remaining T - s steps; end
```

Algorithm 1: MIXER pseudo-code.

TASK	XENT	DAD	E2E	MIXER
summarization	13.01	12.18	12.78	16.22
translation	17.74	20.12	17.77	20.73
image captioning	27.8	28.16	26.42	29.16

ROUGE-2 score for summarization BLEU-4 score for translation and image captioning

Algorithms + k Beam Search

Roadmap

Tree-Structured Decoding with Doubly-Recurrent Neural Networks

By: David Alvarez-Melis, Tommi S. Jaakkola

Motivation

- Given an encoding as input, generate a tree structure
- RNN's best suited for sequential data
 - Trees and graphs do not naturally conform to linear ordering
- Various types of sequential data can be represented in trees
 - Parse trees for sentences
 - Abstract syntax trees for computer programs
- Problem: generate full tree structure with node-labels using encoder-decoder framework

Encoder-Decoder Framework

- Given ground-truth tree and string representation of tree
- Use RNN to encode vector representation from string
- Use RNN to decode tree from vector representation

Example

Challenges with decoding

- Must generate tree top-down
 - Don't know node labels beforehand
 - Generating child node vs sibling node
- How to pass information?
 - Label of siblings not independent
 - A verb in a parse tree reduces chance of sibling nodes of being verb

(a) Encoder sentence input: "ROOT P R C"

Doubly Recurrent Neural Networks (DRNN)

- Ancestral and sibling flows of information
- Two input states:
 - Receive from parent node, update, send to descendent
 - Receive from previous sibling, update, send to next sibling

- Unrolled DRNN
- Nodes labeled in order generated
- Solid lines are ancestral, dotted lines are fraternal connections

Inside a node

Update node's hidden ancestral and fraternal states

$$egin{aligned} \mathbf{h}_i^a &= g^a(\mathbf{h}_{p(i)}^a, \mathbf{x}_{p(i)}) \ \mathbf{h}_i^f &= g^f(\mathbf{h}_{s(i)}^f, \mathbf{x}_{s(i)}) \end{aligned}$$

Combine to obtain predictive hidden state

$$\mathbf{h}_{i}^{(pred)} = anh\left(\mathbf{U}^f\mathbf{h}_i^f + \mathbf{U}^a\mathbf{h}_i^a
ight)$$

Producing an output

 Get probability of stopping ancestral or fraternal branch

$$p_i^f = \sigma(\mathbf{u}^f \cdot \mathbf{h}_i^{(pred)})$$

 $p_i^a = \sigma(\mathbf{u}^a \cdot \mathbf{h}_i^{(pred)})$

- Combine to get output
 - \circ α_i , φ_i binary variables corresponding to ground truth (training) or p_i^a , p_i^f (testing)
 - Assign node label

$$\mathbf{o}_i = \operatorname{softmax}(\mathbf{W}\mathbf{h}_i^{(pred)} + \alpha_i \mathbf{v}^a + \varphi_i \mathbf{v}^f)$$

Experiment: Synthetic Tree Recovery

- Generate dataset of labeled trees
 - Vocabulary is 26 letters
 - Condition label of each node on ancestors and siblings
 - Probabilities of children or next-siblings dependent only on label and depth
- Generate string representations with pre-order traversal
- RNN encoder
 - String to vector
- DRNN with LSTM module decoder
 - Vector to tree

Node retrieval: 75%

Edge retrieval: 71%

Experiment: Computer program generation

- Mapping sentences to functional programs
 - Given sentence description of computer program, generate abstract syntax tree
- DRNN performed better than all other baselines

Summary

- DRNN's are an extension of sequential recurrent architectures to tree structures
- Information flow
 - Parent to offspring
 - Sibling to sibling
- Performed better than baselines on tasks involving tree generation

Roadmap

Structure Inference Machines: Recurrent Neural Networks for Analyzing Relations in Group Activity Recognition

By: Zhiwei Deng, Arash Vahdat, Hexiang Hu, Greg Mori

Classification Problem:

- What is each person doing?
- What is the scene as a whole doing?

Classification Problem:

- What is each person doing?
- What is the scene as a whole doing?

Classification Problem:

- What is each person doing?
- What is the scene as a whole doing?

cnn action?

waiting

Classification Problem:

- What is each person doing?
 - waiting
 - walking
 - biking
- What is the scene as a whole doing?
 - waiting

Improving Group Activity Recognition - Model Relationships

Individual actions inform other individual actions & the scene action

relationships

Improving Group Activity Recognition - Model Relationships

Individual actions inform other individual actions & the scene action

relationships

Group Activity Recognition

waiting

Relationships depend on

- Spatial distance
- Relative motions
- Concurrent actions
- Number of people

Model Relationships Using RNNs

RNN structure reflects learning problem

- Fully connected
- Each "edge" represents a relationship

Model learns how important each relationship is

Train edge weights

Train Using Iterative Message Passing/Gradient Descent

Model the problem as a graphical model

Solve the graphical model as a structure inference machine(SIM)

Why do we need multiple iterations of message passing?

Graphs are cyclic so exact inference isn't possible

Graph Model

Training the Model

For each iteration t

For each edge (i, j)

Update messages $m_{i \to j}^{(t)}$ and $m_{j \to i}^{(t)}$

Update gates $g_{i \rightarrow j}^{(t)}$ and $g_{j \rightarrow i}^{(t)}$

Impose gates on messages

For each node i

Calculate prediction $c_i^{(t)}$

Output: Final predictions at time T, $c_i^{(T)}$

General Message-Passing Update Equations

$$m^{(t)} = f(W_{mm}m^{(t-1)} + W_{xm}x + W_{cm}c^{(t-1)} + b_m)$$

 $c^{(t)} = f(W_{mc}m^{(t)} + W_{xc}x + b_c)$

At time t, message $m^{(t)}$ is a function f of weighted sum with

- Input features *x*
- Last message $m^{(t-1)}$
- Last prediction $c^{(t-1)}$

At time t, prediction $c^{(t)}$ is a function f of weighted sum with

- Input features *x*
- Current message $m^{(t)}$

RNN Model

RNN Model - Get Feature Inputs

Individual Features

Scene Features

RNN Model - Initialize Messages at Time *t=0*

Training the Model

For each iteration t

For each edge (i, j)

Update messages $m_{i \rightarrow j}^{(t)}$ and $m_{j \rightarrow i}^{(t)}$

Update gates $g_{i \rightarrow j}^{(t)}$ and $g_{j \rightarrow i}^{(t)}$

Impose gates on messages

For each node i

Calculate prediction $c_i^{(t)}$

Output: Final predictions at time T, $c_i^{(T)}$

Training the Model

```
For each iteration t
```

For each edge (i, j)

Update messages $m_{i \rightarrow j}^{(t)}$ and $m_{j \rightarrow i}^{(t)}$

Update gates $g_{i\rightarrow j}^{(t)}$ and $g_{j\rightarrow i}^{(t)}$

Impose gates on messages

For each node i

Calculate prediction $c_i^{(t)}$

Output: Final predictions at time T, $c_i^{(T)}$

Just multiply message vectors by gate scalars

$$m'_{i \to j}^{(t)} = g_{i \to j}^{(t)} \odot m_{i \to j}^{(t)}$$

Training the Model - Imposing Gates

Training the Model

For each iteration *t*

For each edge (i, j)

Update messages $m_{i \to j}^{(t)}$ and $m_{j \to i}^{(t)}$

Update gates $g_{i \rightarrow j}^{(t)}$ and $g_{j \rightarrow i}^{(t)}$

Impose gates on messages

For each node i

Calculate prediction $c_i^{(t)}$

Output: Final predictions at time T, $c_i^{(T)}$

Training the Model - Getting Predictions $c_i^{(t)}$ at Time t

Training the Model - Getting Predictions $c_i^{(t)}$ at Time t

Training the Model - Getting Predictions $c_i^{(t)}$ at Time t

Training the Model

```
For each iteration t
```

For each edge (i, j)

Update messages $m_{i \to j}^{(t)}$ and $m_{i \to j}^{(t)}$

Update gates $g_{i \rightarrow j}^{(t)}$ and $g_{j \rightarrow i}^{(t)}$

Impose gates on messages

For each node i

Calculate prediction $c_i^{(t)}$

Output: Final predictions at time T, $c_i^{(T)}$

Output - Getting Final Predictions $c_i^{(T)}$ at Time T

Applied to Collective Activity Dataset

- 44 videos
- 7 actions
 - Crossing
 - Waiting
 - Queueing
 - Talking
 - Jogging
 - Dancing
 - o **N/A**

Visualization of Results on Collective Activity Dataset

Dancing Scene

Dancing Scene

Dancing Scene

Waiting Scene

Waiting Scene

Dancing Scene

Results on Collective Activity Dataset

Method	Accuracy
Learning Latent Constituent [4]	75.1%
Latent SVM with Optimized Graph [28]	79.7%
Deep Struct. Model [13]	80.6%
Unified Tracking And Recognition[9]	80.6%
Cardinality Kernel [17]	83.4%
Our Model	81.2%

Key Takeaways

- Previous outputs and hidden states can be looped back in as inputs
 - Model problems where inputs are highly correlated

thanks