# MGRECON - Class 1 (after class)

### What is Managerial Economics?

### Managerial Economics:

· studies how i) firms, ii) customers and iii) government agencies interact in markets

firms maximize profits buyers maximize *consumer surplus* governments maximize ...

- · is partly descriptive and partly prescriptive
- · can provide qualitative and quantitative predictions

### **Economic Models**

Geographical maps are models

Models are used in physics, chemistry, biology, geology, ...

Example: to predict the position of a planet in the solar system, we can use a model where the sun and the planets in the solar system are *perfect spheres*, moving according to Newton's law of gravitation  $F = G \cdot \frac{m_1 \cdot m_2}{r^2}$ .

Nothing else is in the model: no asteroids, radiations, other galaxies ...

This model yields accurate predictions.

The best models are *simple*, but capture essential features of the phenomenon under analysis.

### Math Pre-Requisites 1: solve linear equations

1. Solve one linear equation, for one variable in terms of any other variable, Example: solve the following equation for y in terms of x

$$3x + 6y = 12 \rightarrow 6y = 12 - 3x$$

$$\rightarrow y = \frac{12}{6} - \frac{3}{6}x$$

$$\rightarrow y = 2 - \frac{1}{2}x$$

2. Solve **two** linear equations in two unknowns **simultaneously** 

$$\begin{bmatrix} 3x + y = 13 \\ x - 4y = 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3x + y = 13 \\ x = 4y \end{bmatrix} \rightarrow \begin{bmatrix} 3(4y) + y = 13 \\ x = 4y \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 13y = 13 \\ x = 4y \end{bmatrix} \rightarrow \begin{bmatrix} y = 1 \\ x = 4 \end{bmatrix}$$

4 / 27

### Math Pre-Requisites 2: plot a linear function

Plot 
$$P = 18 - 2Q$$



- 1) draw the Cartesian axes
- 2) find the y-intercept  $Q = 0 \rightarrow P = 18$
- 3) find the x-intercept  $P=0 \rightarrow 0=18-2Q \rightarrow Q=9$
- 4) connect the intercepts
- 5) check the slope:  $-\frac{18}{9} = -2$

## Math Pre-Requisites 3: derivatives of polynomials

$$\frac{d}{dx}(2x^3 + 5x - 7) = 6x^2 + 5$$

$$\frac{d}{dx}(x^3 + 8x^2 + 3x - 7) = 3x^2 + 16x + 3$$

$$\frac{d}{dx}(-2x^2 + 5x) = -4x + 5$$

The general rule:

#### Economics is the "mother" of all business functions



### Willingness to Pay

A buyer's **willingness to pay** (WTP) for a good is the  $\underline{\text{highest price}}$  the buyer is willing to pay for that good

In general, a buyer's WTP for a good depends on:

prices of substitute goods ("substitutes")  $P_S$ prices of complementary goods ("complements")  $P_C$ income, wealth, or "purchasing power" Iperceived quality, or "utility" U  $WTP = f(P_S, P_C, I, U)$ 

### Consumer Surplus

A buyer's **consumer surplus** (CS) is the difference

$$CS = WTP - P$$

### Each buyer maximizes her/his own consumer surplus



Since WTP > p, the consumer buys

$$\Rightarrow$$
 CS = \$4

Since WTP < p, the consumer does not buy

$$\Rightarrow$$
 CS = \$0

### Diminishing Marginal WTP

As we consume more of the same good, we enjoy additional units less and less



### Reading a demand curve "horizontally" and "vertically"



**Exercise**: If the price of water is \$25 per box, how many units does Pino buy?



Answer: if we read the demand "horizontally", we see that Pino buys 6 units

$$CS = \underbrace{(\$60 - \$25)}_{4^{th} \text{ unit}} + \underbrace{(\$45 - \$25)}_{5^{th} \text{ unit}} + \underbrace{(\$38 - \$25)}_{4^{th} \text{ unit}} + \underbrace{(\$35 - \$25)}_{5^{th} \text{ unit}} + \underbrace{(\$30 - \$25)}_{6^{th} \text{ unit}}$$

$$= \$98$$

Buying the 7th unit would decrease Pino's CS by 13 (12 - 25 = -13)

#### Exercise: fill the table below



| Q | MWTP |
|---|------|
| 1 | \$45 |
| 2 | \$38 |
| 3 | \$33 |
| 4 | \$27 |
| 5 | \$21 |
| 6 | \$15 |
| 7 | \$6  |
| 8 | \$0  |

| Option | Q | Total Price | Total WTP | CS | Unit Price |
|--------|---|-------------|-----------|----|------------|
| Α      | 2 | \$34        |           |    |            |
| В      | 3 | \$90        |           |    |            |
| C      | 6 | \$120       |           |    |            |
| D      | 7 | \$140       |           |    |            |

### **Exercise: Answers**



| Q | MWTP | Tot. WTP |
|---|------|----------|
| 1 | \$45 | \$45     |
| 2 | \$38 | \$83     |
| 3 | \$33 | \$116    |
| 4 | \$27 | \$143    |
| 5 | \$21 | \$164    |
| 6 | \$15 | \$179    |
| 7 | \$6  | \$185    |
| 8 | \$0  | \$185    |

|   | Option | Q | Total Price | Total WTP | CS   | Unit Price |
|---|--------|---|-------------|-----------|------|------------|
| ĺ | А      | 2 | \$34        | \$83      | \$49 | \$17       |
| Ì | В      | 3 | \$90        | \$116     | \$26 | \$30       |
| ĺ | С      | 6 | \$120       | \$179     | \$59 | \$20       |
| ĺ | D      | 7 | \$140       | \$185     | \$45 | \$20       |

### Market Demand

The **Market Demand** is the <u>horizontal</u> sum of all buyers' individual demands.

|   |      | MWTF | )    |
|---|------|------|------|
| Q | Ann  | Bob  | Cam  |
| 1 | \$42 | \$32 | \$20 |
| 2 | \$36 | \$24 | \$10 |
| 3 | \$27 | \$15 | \$0  |
| 4 | \$20 | \$0  | \$0  |
|   |      |      |      |



### Movements along the Demand vs. Demand Shifts

$$Q_D = f(P; P_S, P_C, I, U)$$

Movement along the demand,



Demand shift inward, due to  $P_S \downarrow$ ,  $P_C \uparrow$ ,  $I \downarrow$ , and/or  $U \downarrow$ ,



Movement along the demand,



Demand shift outward,

due to  $P_S \uparrow$ ,  $P_C \downarrow$ ,  $I \uparrow$ , and/or  $U \uparrow$ ,

#### **Exercises**

1. As the temperature rises in Dallas, what happens to the demand for insect repellents?

$$Q_D = f(P; P_S, P_C, I, \boxed{U})$$

The demand shifts out

2. If the price of iPhones goes up, what happens to the the demand curve for iPhone cases?

$$Q_D = f(P; P_S, P_C, I, U)$$

The demand shifts in

3. If the price of vanity plates goes down, what happens to the demand of vanity plates ?

The demand goes up this is a **movement along** the demand curve  $Q_D = f(|P|; P_S, P_C, I, U)$ 

### Linear Demand and its Inverse

We often work with linear estimates of demand curves.

Example: the estimated demand for a good is

$$Q = 360 - 4 \cdot P$$

if P goes up by 1.

Q goes down by 4 units

$$P = \frac{360}{4} - \frac{1}{4} \cdot Q$$
  
= 90 - 0.25 \cdot Q

to sell 1 more unit,

P must decrease by 0.25



#### In general:

Do not confuse

$$\frac{\Delta Q}{\Delta P} = -\frac{1}{h}$$

if P goes up by 1,

Q goes down by  $\frac{1}{b}$ 

VS.

$$\frac{\Delta P}{\Delta Q} = -b$$

to sell 1 more unit,

P must go down by -b



## Aggregate Consumer Surplus

If the price is \$20, the quantity sold is

$$Q = 360 - 4 \cdot 20 = 280$$

and the aggregate consumer surplus is

$$CS = \frac{1}{2} (90 - 20) 280 = $9800$$



## Measuring the Sensitivity of Demand to Price

It is often useful to measure the sensitivity of demand to price



The slope by itself is *not* a reliable indicator of sensitivity, because it depends on the *units* of measure we use for P (e.g. dollars vs. euros) and Q (e.g. kilos vs. tons)

### Price Elasticity of Demand

The **price elasticity of demand** is the **percentage** change of Q divided by the **percentage** change of P

$$E_P = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} = \frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q}$$

 $E_P$  is a "unit-free" (negative) number

 $E_P$  is specific to a point on the demand curve:

- we say that "demand is "**elastic**" (at a particular point)" to mean that  $|E_P| > 1$  (at that point)
- we say that "Demand is "**inelastic**" (at a particular point)" to mean that  $|E_P| < 1$  (at that point)

 $E_P$  is more accurate for smaller changes of P and Q

## Computing $E_p$ with the two-point formula

If we only have two points on the demand curve, we can use the **two-point formula** to estimate the elasticity

$$E = \frac{\frac{Q_1 - Q_0}{(Q_1 + Q_0)/2}}{\frac{P_1 - P_0}{(P_1 + P_0)/2}}$$
 (divide by mid-point values)

**Example** In response to a price increase from  $P_0 = \$30$  to  $P_1 = \$35$ , the number of vanity plates sold in one year has gone down from  $Q_0 = 60\,000$  to  $Q_1 = 40\,000$ 



### Remarks on the Two-point formula

The two-point formula uses the mid-point as "base" because the simpler formulas

$$\frac{(Q_2 - Q_1)/Q_1}{(P_2 - P_1)/P_1}$$
 or  $\frac{(Q_2 - Q_1)/Q_2}{(P_2 - P_1)/P_2}$ 

give different answers: percentage changes depend on the starting value.

#### Example:

if Q increases from 10 to 15, the percentage change is 50%.

if Q decreases from 15 to 10, the percentage change is -33.3%.

As  $\Delta Q$  and  $\Delta P$  increase, the accuracy of the mid-point formula decreases.

## Computing $E_p$ with a linear demand

If the (inverse) demand is linear, i.e.  $P = a - b \cdot Q$  (a and b are given numbers), we can use the formula

$$E_p = \frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q} = -\frac{1}{b} \cdot \frac{P}{Q}$$

#### **Exercise**



| Р | Q    | $E_P = -\frac{3}{2} \cdot \frac{P}{Q}$ |
|---|------|----------------------------------------|
| 7 | 1.5  |                                        |
| 5 | 4.5  |                                        |
| 4 | 6    |                                        |
| 3 | 7.5  |                                        |
| 2 | 9    |                                        |
| 1 | 10.5 |                                        |

### Computing $E_p$ with a linear demand: Answers

If the (inverse) demand is linear, i.e.  $P=a-b\cdot Q$  (a and b are given numbers), we can use the formula

$$E_p = \frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q} = -\frac{1}{b} \cdot \frac{P}{Q}$$

#### Exercise



| Р | Q    | $E_P = -\frac{3}{2} \cdot \frac{P}{Q}$ |
|---|------|----------------------------------------|
| 7 | 1.5  | -7                                     |
| 5 | 4.5  | -1.66                                  |
| 4 | 6    | -1                                     |
| 3 | 7.5  | -0.6                                   |
| 2 | 9    | -0.33                                  |
| 1 | 10.5 | -0.14                                  |

## Computing $E_p$ with a linear demand

If demand is linear P = a - bQ, we can use the formula

$$E_p = \frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q} = -\frac{1}{b} \cdot \frac{P}{Q}$$

#### **Exercise**



| Р | Q  | $ E  = 4 \cdot \frac{P}{Q}$    |
|---|----|--------------------------------|
| 6 | 0  | $4 \cdot \frac{6}{0} = \infty$ |
| 5 | 4  | $4 \cdot \tfrac{5}{4} = 5$     |
| 4 | 8  | $4 \cdot \tfrac{4}{8} = 2$     |
| 3 | 12 | $4 \cdot \frac{3}{12} = 1$     |
| 2 | 16 | $4 \cdot \frac{2}{16} = 0.5$   |
| 1 | 20 | $4 \cdot \frac{1}{20} = 0.2$   |
| 0 | 24 | $4 \cdot \frac{0}{24} = 0$     |

## Two-point Elasticity vs. Point Elasticity

Which formula should we use to compute elasticities?

If we have only two data points  $(P_A, Q_A)$  and  $(P_B, Q_B)$ , we use the **two-point** formula

$$E = \frac{\frac{Q_B - Q_A}{(Q_A + Q_B)/2}}{\frac{P_B - P_A}{(P_A + P_B)/2}}$$

If we have a linear (inverse) demand  $P = a - b \cdot Q$ , we use the **point-elasticity** formula

$$E = \frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q} = -\frac{1}{b} \cdot \frac{P}{Q}$$