Applicant:

Petrovich et al.

For:

SENSOR READOUT CIRCUIT

A sensor readout circuit which provides a frequency signal output, the 1 1. 2 readout circuit comprising: a phase detector circuit responsive to an output signal from a sensor and 3 an input signal to the sensor and configured to detect the phase difference between the 4 input signal and the output signal; and 5 a drive circuit responsive to the phase detector circuit and configured to 6 7 maintain a fixed phase difference between the input signal and the output signal. 2. The sensor readout circuit of claim 1 in which the fixed phase difference between the input signal and the output signal is maintained at zero degrees by the drive 2 circuit. 3 3. The sensor readout circuit of claim 1 in which the fixed phase difference 1 between the input signal and the output signal is maintained at 90° by the drive circuit. 2 The sensor readout circuit of claim 1 in which the fixed phase difference 1 4. between the input signal and the output signal is maintained at 180° by the drive circuit. 2

DR-338J RJC:ci

1

2

5.

between the input signal and the output signal is maintained at 270° by the drive circuit.

The sensor readout circuit of claim 1 in which the fixed phase difference

1 6. The sensor readout circuit of claim 1 in which the fixed phase difference 2 between the input signal and the output signal is maintained at a fixed phase difference between 0° and 360° by the drive circuit. 3 1 7. The sensor readout circuit of claim 1 further including a phase delay 2 adjustment circuit responsive to the input signal and the phase detection circuit for 3 adjusting the phase difference between the input signal and the output signal. 8. 1 The sensor readout circuit of claim 1 in which the output signal is a 2 sinusoidal voltage at a predetermined frequency. 9. The sensor readout circuit of claim 8 in which the predetermined 1 frequency is in the range of 10 MHz to 30 MHz. 1 10. The sensor readout circuit of claim 8 further including a voltage step 2 module configured to offset the input voltage by a predetermined amount to offset the 3 frequency and measure the corresponding phase detector circuit output change. 1 11. The sensor readout circuit of claim 10 in which input voltage is offset 90°. 1 The sensor readout circuit of claim 10 in which input voltage is offset 12.

180°.

2

- 1 13. The sensor readout circuit of claim 10 in which input voltage is offset 2 270°.
- 1 14. The circuit of claim 9 in which the Q is calculated from the ratio of the offset of the voltage and the offset of the frequency.
- 1 15. The sensor readout circuit of claim 1 in which the sensor is a flexure plate 2 wave device.
- 1 16. The sensor readout circuit of claim 1 in which the sensor readout circuit 2 continuously outputs a frequency representing the resonance frequency of the sensor.

1	17. A sensor readout circuit which provides a frequency signal output, the		
2	readout circuit comprising:		
3	a phase detector circuit responsive to an output signal from a sensor and		
4	an input signal to the sensor and configured to detect the phase difference between the		
5	input signal and the output signal;		
6	a drive circuit responsive to the phase detector circuit and configured to		
7	maintain a fixed phase difference between the input signal and the output signal; and		
8	a phase delay adjustment circuit responsive to the input signal and		
9	the phase detection circuit for adjusting the phase difference.		

1	18. A sensor readout circuit which provides a frequency signal output, the		
2	readout circuit comprising:		
3	a phase detector circuit responsive to an output signal from a sensor and		
4	an input signal to the sensor and configured to detect the phase difference between the		
5	input signal and the output signal; and		
6	a drive circuit responsive to the phase detector circuit and configured to		
7	maintain a fixed phase difference between the input signal and the output signal; and		
8	a voltage step module configured to offset the voltage by a predetermined		
9	amount to offset the frequency and measure the corresponding phase detector circuit		
10	output change.		
1	19. The circuit of claim 18 in which the Q is calculated from the ratio of the		
2	offset of the voltage and the offset of the frequency.		

1	20.	A sensor readout circuit which provides a frequency signal output, the		
2	readout circuit comprising:			
3		a phase detector circuit responsive to an output signal from a sensor and		
4	an input signal to the sensor and configured to detect the phase difference between the			
5	input signal and the output signal;			
6		a drive circuit responsive to the phase detector circuit and configured to		
7	maintain a fix	ed phase difference between the input signal and the output signal;		
8		a phase delay adjustment circuit responsive to the input signal and the		
9	phase detectio	on circuit for adjusting the phase difference; and		
.0		a voltage step module configured to offset the voltage by a predetermined		
1	amount to offs	set the frequency and measure the corresponding phase detector circuit		
.2	output change	•		

1	21.	A sensor readout circuit which provides a frequency signal output, the
2	readout circui	t comprising:
3		a phase detector circuit responsive to an output signal from a flexure plate
4	wave device a	and an input signal to the flexure plate wave device and configured to detect
5	the phase diffe	erence between the input signal and the output signal; and
6		a drive circuit responsive to the phase detector circuit and configured to
7	maintain a fix	ed phase difference between the input signal and the output signal.
1	22.	The sensor readout circuit of claim 21 in which the fixed phase difference
2	between the in	aput signal and the output signal is maintained at zero degrees by the drive
3	circuit.	
1	23.	The sensor readout circuit of claim 21 in which the fixed phase difference
2	between the in	aput signal and the output signal is maintained at 90° by the drive circuit.
1	24.	The sensor readout circuit of claim 21 in which the fixed phase difference
2	between the in	put signal and the output signal is maintained at 180° by the drive circuit.
1	25.	The sensor readout circuit of claim 21 in which the fixed phase difference
2	between the in	put signal and the output signal is maintained at 270° by the drive circuit.

- 1 26. The sensor readout circuit of claim 21 in which the fixed phase difference 2 between the input signal and the output signal is maintained at a fixed phase difference
- 3 between 0° and 360° by the drive circuit.
- 1 27. The sensor readout circuit of claim 21 further including a phase delay
- 2 adjustment circuit responsive to the input signal and the phase detection circuit for
- 3 adjusting the phase difference.
- 1 28. The sensor readout circuit of claim 21 in which the output signal is a 2 sinusoidal voltage at a predetermined frequency.
- The circuit of claim 24 further including a voltage step module configured to offset the voltage by a predetermined amount to offset the frequency and measure the corresponding phase detector circuit output change.
- 1 30. The sensor readout circuit of claim 21 in which the sensor readout circuit continuously outputs a frequency representing the resonance frequency of the flexure plate wave device.

- 1 31. A method for determining the frequency signal output of a sensor, the
- 2 method comprising the steps of:
- detecting the phase difference between an output signal from a sensor and
- 4 an input signal to a sensor; and
- 5 maintaining a fixed phase difference between the input signal and the
- 6 output signal.

1	32.	A method for determining the frequency signal output of a sensor, the	
2	method comprising:		
3		detecting the phase difference between an output signal from a sensor and	
4	an input signal to a sensor;		
5		maintaining a fixed phase difference between the input signal and the	
6	output signal; and		
7		adjusting the phase difference between the input signal and the output	
8	signal to a predetermined fixed phase difference.		