

Towards Load Balancing Support for I/O-Intensive Parallel Jobs in a Cluster of Workstations

Presented by Dr. Hong Jiang

Department of Computer Science and Engineering

University of Nebraska-Lincoln

I/O-intensive Applications

long running simulations

12/14/2003

remote-sensing database systems

biological sequence analysis

Motivation

- I/O-intensive Applications require input and output of large amounts of data.
- I/O performance can be a potential bottleneck.

CPU

Contributions

- Developed two novel I/O-aware load balancing schemes
- Introduced I/O load index
- Evaluate the performance of the proposed load-balancing techniques.

System Architecture

Performance Metric: Slowdown

The slowdown of a job is defined as the ratio between the job's execution time in a resource-shared setting and its execution time running in the same system but without any resource sharing.

 $exe_time_{no-sharing}(s) = 10 \sec.$ $time_{sharing}(s) = 45 \sec.$

$$slowdown(s) = \frac{time_{sharing}(s)}{time_{no-sharing}(s)} = \frac{45}{10} = 4.5$$

Example

Number of I/O-intensive jobs

Average Slow Down without load balancing: 25.0

Average Slow Down with I/O-aware load balancing: 2.4 Improved by more than a factor of 10

Goals

- Consider multiple resources: Disk I/O, CPU, memory.
- Sustain high performance for I/Ointensive parallel applications.

Load Balancing with Remote Execution

A newly arrived job

Local Execution

Remote Execution

Running jobs

High Bandwidth network

The IOCM-RE Scheme

Criterion 1:

Given a task *s* arriving at node *i* and a candidate remote node *j*: The I/O load discrepancy between node *i* and *j* is greater than the I/O load induced by task *s*.

Criterion 2:

Given a task *s* arriving at node *i* and a candidate remote node *j*:

Expected response time (ERT) of task s on node i

node i

ERT of task *s* on node *j*

node j

$$r(i, s) > r(j, s) + c_s(i, j)$$

Remote execution cost

Expected response time of task *s* on the local node *i*

Expected response time of task s on the remote node j

Remote Execution Cost

Given a task *s* arrived in node *i* and a candidate remote node *j*:

Initial data: data initially stored on disk

$$c_{s}(i, j) = e + d_{s}^{INIT} \left(\frac{1}{b_{net}^{ij}} + \frac{1}{b_{disk}^{i}} + \frac{1}{b_{disk}^{j}} \right)$$

Fixed cost

Available network bandwidth

Available disk bandwidth

Expected Response Time

Given a task *s* arrived in node *i*:

Number of I/O requests

Response time per I/O requests

$$r(i,s) = t_s E(L_i) + t_s \lambda_s \left[E(s_{disk}^i) + \frac{\Lambda_{disk}^i E[(s_{disk}^i)^2]}{2(1 - \rho_{disk}^i)} \right]$$

CPU execution time

I/O processing time

Trace-driven simulations

- A mixture of sequential and parallel jobs are running.
- The number of tasks in each parallel job is randomly generated according to a uniform distribution between 2 and 32.
- Data sizes of the I/O requests are randomly generated based on a Gamma distribution with the mean size of 256Kbyte
- Compare with CPU-aware (CPU) and Memoryaware (MEM) schemes

Trace-driven simulations (Cont.)

Simulate a bulk-synchronous style of communication for parallel jobs

Performance Evaluation

I/O-intensive Workload Conditions

Improvements

Average : 24.5%

Max: 30.7%

- The mean slowdowns increase with the I/O load
- IOCM-RE is the best scheme

IO-CPU-Memory Based Load Balancing with Preemptive Migration (IOCM-PM)

Select Eligible Tasks for Migration

Guarantee that the response time of the expected execution on the selected remote node is less than the execution on the current node.

Given a task *s* running on node *i* and a candidate remote node *k*:

$$r_{PM}(i, s) > r_{PM}(j, s) + c_s(i, j)$$
 The migration cost

Expected response time of task *s* running on node *i*

Expected response time of task *s* running on the remote node *j*

Migration Cost

Given a task j running on node i and a candidate remote node k, the expected migration cost, $c_j(i, k)$, is estimated as:

Fixed cost

$$f + \frac{m_j}{b_{net}} + \left(d_j^{INIT} + d_j^{W}\right) \left(\frac{1}{b_{net}^{ik}} + \frac{1}{b_{disk}^{i}} + \frac{1}{b_{disk}^{k}}\right)$$

Memory transfer cost

The available bandwidth of the network link between node *i* and *k*

The available disk bandwidth in node *i* and *k*.

Data to be migrated

Expected Response Time of a Candidate Migrant

Given a task s arrived in node i:

Response time per I/O requests

Number of I/O requests

$$r_{PM}(i,s) = (t_s - a_s)E(L_i) + (t_s - a_s)\lambda_s \left[E(s_{disk}^i) + \frac{\Lambda_{disk}^i \times E[(s_{disk}^i)^2]}{2(1 - \rho_{disk}^i)} \right]$$

CPU execution time

I/O processing time

Remote Execution vs. Preemptive Migration

Workload	Remote execution	Preemptive Migration
CPU-intensive	+	+++
Memory-intensive	+++	+
I/O-intensive	?	?

• Question: Which one is better for I/O-intensive workload?

Evaluation of the IOCM-PM Scheme

I/O-intensive workload

- IOCM-PM performs the best among all the schemes.
- •An average performance improvement of 56.6% over IOPM-RE.

Evaluation of the IOCM-PM Scheme (Cont.)

- IOCM-RE and IOCM-PM benefit all I/O intensive applications
- IOCM-RE and IOCM-PM yield approximately identical performances.

Conclusion

- I/O-aware load balancing schemes with remote execution and preemptive migrations
- Preemptive migration is better than remote execution
- To achieve high performance under a wide spectrum of workload conditions

