

Information theory

École Polytechnique de Bruxelles

Professeur: Nicolas CERF

Sami ABDUL SATER

Année académique : 2021-2022

Contents

1	Intr	Introduction				
	1.1	Funda	nmental goals, questions, and operations			
		1.1.1	Highest achievable data compression			
		1.1.2	Highest achievable data send rate through channel 5			
	1.2	Overv	riew of the course			
	1.3	First t	heorem: source coding theorem			
		1.3.1	Definition of entropy			
		1.3.2	Example			
		1.3.3	Block coding			
	1.4	Secon	d theorem : channel coding theorem			
		1.4.1	Definition of capacity			
		1.4.2	Example			
			1			
2	Ove	rview (of Shannon's entropy 7			
	2.1	Probal	bilities prerequisite			
	2.2	Entrop	ру			
			Units			
		2.2.2	Examples			
		2.2.3	Remarks			
		2.2.4	Link with uncertainty: axiomatic approach			
		2.2.5	Interpretation of H			
2.3		Joint e	entropy			
	2.4		tional entropy			
		2.4.1	Definition			
		2.4.2	Chain rule			
		2.4.3	Examples			
		2.4.4	Illustration: entropy Venn diagrams, link with mutual entropy 8			
	2.5	Mutua	al entropy			
		2.5.1	Formal definition of mutual entropy			
	2.6	Relativ	ve entropy			
		2.6.1	Definition			
		2.6.2	Conditional relative entropy			
		2.6.3	Chain rule for relative entropy			
		2.6.4	Fundamental information theorem			
	2.7		by of multipartide systems			
		2.7.1	Chain rule for entropy			
		2.7.2	Chain rule for information			

4 CONTENTS

Chapter 1

Introduction

- 1.1 Fundamental goals, questions, and operations
- 1.1.1 Highest achievable data compression
- 1.1.2 Highest achievable data send rate through channel
- 1.2 Overview of the course
- 1.3 First theorem : source coding theorem
- 1.3.1 Definition of entropy
- 1.3.2 Example
- 1.3.3 Block coding
- 1.4 Second theorem : channel coding theorem
- 1.4.1 Definition of capacity
- 1.4.2 Example

Chapter 2

Overview of Shannon's entropy

- 2.1 Probabilities prerequisite
- 2.2 Entropy
- 2.2.1 Units
- 2.2.2 Examples
- 2.2.3 Remarks
- 2.2.4 Link with uncertainty: axiomatic approach
- 2.2.5 Interpretation of H

Special case: Bernoulli variable

Concavity of H

- 2.3 Joint entropy
- 2.4 Conditional entropy
- 2.4.1 Definition
- 2.4.2 Chain rule
- 2.4.3 Examples
- 2.4.4 Illustration: entropy Venn diagrams, link with mutual entropy
- 2.5 Mutual entropy
- 2.5.1 Formal definition of mutual entropy
- 2.6 Relative entropy
- 2.6.1 Definition
- 2.6.2 Conditional relative entropy
- 2.6.3 Chain rule for relative entropy