Contents		1.13 Geometry Shortest Distance be-		1.29 Template sos-dp 16
		tween two points	. 8	1.30 Template template yatin 16
		1.14 Geometry geometry 2d	. 9	1.31 dp opti 1D-1D(convex) 16
1 1	1	1.15 Geometry half plane	. 11	1.32 dp opti CHT Normal 17
1.1	Black-Magic Black Magic 1	1.16 Graph min vertex cover		1.33 dp opti CHT dynamic 17
1.2	Black-Magic Fast Integer IO 1	1.17 Math CRT	. 13	1.34 dp opti Knuth
1.3	Data Structure DSU on tree 1	1.18 Math Gray code		1.35 dp opti Li Chao
1.4	Data Structure Roll back 2	1.19 Math Linear Sieve		1.36 flow dinic
1.5	Data Structure centroid	1.20 Math Primitive Root		1.37 flow global min cut 19
1.6	Data Structure hld	1.21 Math Segmented Sieve		1.38 flow hungarian emaxx 19
1.7	FFT fft	1.22 Math euclid gcd	. 14	1.39 flow mcmf with negative cycle . 20
1.8		1.23 Math integer factorization polard rho brent	. 14	1.40 range query Fenwick 22
1.9	FFT polynomial	1.24 Math prime list		1.41 string AhoCorasick 22
	0 Geometry Convex Hull 6	1.24 Watti printe list		1.42 string circular lcs
	•	1.26 Matrix gauss any mod		1.43 string suffixArray 23
	2 Geometry Point in convex poly-	1.27 Matrix gauss mod 2		1.44 string suffix Automaton 24
	•	1.28 Template build system		1
Mo	obius Inversion:	summands.		# with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$
()				1)!)
g(n)	$= \sum_{d n} f(d) \Leftrightarrow f(n) = \sum_{d n} \mu(d)g(n/d)$	$p(0) = 1, p(n) = \sum_{n=0}^{\infty} (-1)^{k+1} p(n-k)$	(3k -	(1)/2)
	d n $d n$	$k \in \mathbb{Z} \setminus \{0\}$		$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$
	useful formulas/forms:	n(n) = 0.145/n avg(2.56/n)		
\sum	$\mu(d) = [n = 1]$ (very useful)	$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$		1 1
	$(n) = \sum_{n d} f(d) \Leftrightarrow f(n) =$:		
$\sum_{n d} \mu$	u(d/n)g(d)	n 012345 6 7 8 9 20 50	100	1.1 Black-Magic Black Magic
g(r)	$f(n) = \sum_{1 \le m \le n} f(\lfloor \frac{n}{m} \rfloor) \Leftrightarrow f(n) = 0$	$p(n)$ 1 1 2 3 5 7 11 15 22 30 627 \sim 2e5	~2e8	<pre>#pragma GCC optimize("03,unroll-loops,</pre>
	$<_n \mu(m)g(\lfloor \frac{n}{m} \rfloor)$			<pre>no-stack-protector") #pragma GCC target("sse, sse2, sse3,</pre>
$\sum_{1 \le m}$				
Nu	mber of ways of writing n as a sum of	# on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1 n_2 \cdots n_k$	_	ssse3,sse4,popcnt,abm,mmx,avx,tune

1.2 Black-Magic Fast Integer IO

```
static char buf[1 << 19]; // size :</pre>
   any number geg than 1024
static int idx = 0;
static int bytes = 0:
static inline int read() {
 if (!bytes || idx == bytes) {
  bytes = (int) fread(buf, sizeof(buf
      [0]), sizeof(buf), stdin);
  idx = 0;
 return buf[idx++];
static inline int _readInt() {
 int x = 0, s = 1;
 int c = read();
 while (c <= 32) c = read();
 if (c == '-') s = -1, c = read();
 while (c > 32) x = 10 * x + (c - '0')
    ), c = read();
 if (s < 0) x = -x;
```

```
return x;
}
```

1.3 Data Structure DSU on tree

```
int cnt[maxn];
void dfs(int v, int p, bool keep) {
 int mx = -1, bigChild = -1;
 for (auto u : q[v])
  if (u != p \&\& sz[u] > mx) mx = sz[u]
      ], bigChild = u;
 for (auto u : g[v])
  if (u != p && u != bigChild)
    dfs(u, v, 0);
 if (bigChild != -1)
  dfs(bigChild, v, 1);
 for (auto u : q[v])
  if (u != p && u != bigChild)
    for (int p = st[u]; p < ft[u]; p
       ++) cnt[col[ver[p]]]++;
 cnt[col[v]]++;
 if (keep == 0)
  for (int p = st[v]; p < ft[v]; p++)
       cnt[col[ver[p]]]--;
```

1.4 Data Structure Roll back

```
int find(int x) { return e[x] < 0 ?
    x : find(e[x]);
 int time() { return sz(st); }
 void rollback(int t) {
  for (int i = time(); i-- > t;) e[st
      [i].first] = st[i].second;
  st.resize(t);
 bool join(int a, int b) {
  a = find(a), b = find(b);
  if (a == b) return false;
  if (e[a] > e[b]) swap(a, b);
  st.push_back({a, e[a]});
  st.push_back({b, e[b]});
  e[a] += e[b];
  e[b] = a;
  return true;
};
```

1.5 Data Structure centroid

```
struct Graph {
  vector<vector<int>> adj;
  Graph(int n) : adj(n + 1) {}
  void add_edge(int a, int b, bool
      directed = false) {
      adj[a].pb(b);
      if (!directed) adj[b].pb(a);
    }
};

struct Centroid {
  vector<int>> stree, parent;
  void _dfs(vector<vector<int>> &adj,
      ll x, ll par = -1) {
      stree[x] = 1, parent[x] = par;
      for (auto &p : adj[x]) {
        if (p != par) {
```

```
_{dfs(adj, p, x);}
    stree[x] += stree[p];
 }
int decompose (Graph &G, Graph &cd,
   ll root = 1) {
 int n = G.adj.size() - 1;
 stree.resize(n + 1);
 parent.resize(n + 1);
 _dfs(G.adj, root);
 vector<bool> done(n + 1);
 return construct (G, cd, done, root)
int construct (Graph &G, Graph &cd,
   vector<bool> &done, ll root) {
 while (true) {
   11 \text{ maxm} = 0, \text{ ind} = -1;
   for (auto &x : G.adj[root]) {
    if (!done[x] && stree[x] > maxm)
      maxm = stree[x];
      ind = x;
   if (maxm <= stree[root] / 2) {</pre>
    done[root] = true;
    for (auto &p : G.adj[root]) {
      if (!done[p]) {
       11 x = construct(G, cd, done,
            p);
       cd.add edge(x, root);
       // root is parent of x is
           centroid tree
       // cd.parent[x] = root;
```

```
return root;
} else {
    ll temp = stree[root];
    stree[root] -= stree[ind];
    stree[ind] = temp;
    root = ind;
}
};
```

1.6 Data Structure hld

```
struct HLD {
 vector<int> sz, tin, tout, nxt,
    order, level, pars;
 int timer;
 // SegTree ST;
 void dfs(vector<vector<int>> &adj,
    int x, int par = -1) {
  sz[x] = 1;
  pars[x] = par;
  for (auto &p : adj[x])
    if (p != par) {
     level[p] = level[x] + 1;
     dfs(adj, p, x);
     if (adj[x][0] == par || sz[p] >
         sz[adj[x][0]]) swap(p, adj[x]
         ][0]);
 void dfs2(vector<vector<int>> &adj,
    int x) {
  tin[x] = timer++;
  order.push back(x);
  for (auto &p : adj[x]) {
    if (p == pars[x]) continue;
```

```
nxt[p] = (p == adj[x][0] ? nxt[x]
       : p);
   dfs2(adj, p);
 tout[x] = timer;
HLD(vector<vector<int>> &adj, int N,
    int root = 1)
   : sz(N + 5),
    tin(N + 5),
    tout (N + 5),
    nxt(N + 5),
    level(N + 5),
    pars (N + 5),
    timer(0) {
 int n = adj.size() - 1;
 level[root] = 0;
 dfs(adj, root);
 dfs2(adj, root);
 // build segment tree on "order"
    here
 // ST.resize(order.size());
 // ST.build(0, 0, order.size()-1,
     order);
int path_query(int a, int b) {
 int N = order.size();
 // int answer = -INFINT;
 while (nxt[a] != nxt[b]) {
  if (level[nxt[a]] < level[nxt[b</pre>
      ]]) swap(a, b);
   // answer = max(answer, ST.
      range_query(0, 0, N-1, tin[nxt
      [a]], tin[a]));
   a = pars[nxt[a]];
 if (tin[a] > tin[b]) swap(a, b);
```

```
// answer = max(answer, ST.
      range query (0, 0, N-1, tin[a],
      tin[b]));
  return answer;
 void point_update(int x, int val) {
  // ST.point_update(0, 0, order.size )
      ()-1, tin[x], val);
 }
} ;
```

1.7 FFT fft

```
using cd = complex<double>;
const double PI = acos(-1);
void fft(vector<cd> &a, bool invert) {
 int n = a.size();
 for (int i = 1, j = 0; i < n; i++) {
  int bit = n \gg 1;
   for (; j & bit; bit >>= 1) j ^= bit
   j ^= bit;
  if (i < j) swap(a[i], a[j]);
 for (int len = 2; len <= n; len <<=</pre>
   double ang = 2 * PI / len * (invert
       ? -1 : 1);
   cd wlen(cos(ang), sin(ang));
   for (int i = 0; i < n; i += len) {
    cd w(1);
    for (int j = 0; j < len / 2; j++)
      cd u = a[i + j], v = a[i + j +
         len / 2] * w;
      a[i + j] = u + v;
      a[i + j + len / 2] = u - v;
      w \star = wlen;
```

```
if (invert) {
  for (cd \&x : a) x /= n;
vector<int> multiply(vector<int> const
    &a, vector<int> const &b) {
 vector<cd> fa(a.begin(), a.end()),
    fb(b.begin(), b.end());
 int n = 1;
 while (n < a.size() + b.size()) n
    <<= 1;
 fa.resize(n);
 fb.resize(n);
 fft(fa, false);
 fft(fb, false);
 for (int i = 0; i < n; i++) fa[i] *=
     fb[i];
 fft(fa, true);
 vector<int> result(n);
 for (int i = 0; i < n; i++) result[i</pre>
    ] = round(fa[i].real());
 return result;}
```

1.8 FFT ntt

```
const int mod = 7340033;
const int root = 5;
const int root_1 = 4404020;
const int root_pw = 1 << 20;</pre>
const int mod = 998244353;
const int root = 3;
const int root 1 = 332748118;
const int root pw = 1 << 23;</pre>
const int root = generator(mod);
```

```
const int root_1 = mod_inv(root, mod);
void fft(vector<int>& a, bool invert)
   {
 for (int len = 2; len <= n; len <<=</pre>
  int wlen = invert ? root_1 : root;
   for (int i = len; i < root pw; i
      <<= 1)
    wlen = (int)(1LL * wlen * wlen %
       mod);
   for (int i = 0; i < n; i += len) {</pre>
    int w = 1;
    for (int j = 0; j < len / 2; j++)
      int u = a[i + j], v = (int)(1LL)
         * a[i + j + len / 2] * w %
         mod);
      a[i + j] = u + v < mod ? u + v :
          u + v - mod;
      a[i + j + len / 2] = u - v >= 0
         ? u - v : u - v + mod;
      w = (int) (1LL * w * wlen % mod);
 if (invert) {
  int n_1 = inverse(n, mod);
  for (int& x : a) x = (int)(1LL * x
      * n_1 % mod);
```

1.9 FFT polynomial

```
namespace algebra {
const int inf = 1e9;
```

```
const int magic = 500; // threshold
   for sizes to run the naive algo
namespace fft {
const int maxn = 1 << 18;</pre>
typedef double ftype;
typedef complex<ftype> point;
const ftype pi = acos(-1);
template <typename T>
void mul(vector<T> &a, const vector<T>
    (d&
 static const int shift = 15, mask =
     (1 << shift) - 1;
 size_t n = a.size() + b.size() - 1;
 while (__builtin_popcount(n) != 1) {
  n++;
 }
 a.resize(n);
 for (size t i = 0; i < n; i++) {
   A[i] = point(a[i] \& mask, a[i] >>
      shift);
   if (i < b.size()) {</pre>
    B[i] = point(b[i] \& mask, b[i] >>
         shift);
   } else {
    B[i] = 0;
   }
 fft(A, C, n);
 fft(B, D, n);
 for (size_t i = 0; i < n; i++) {</pre>
   point c0 = C[i] + conj(C[(n - i) %
      n]);
   point c1 = C[i] - conj(C[(n - i) %
      n]);
   point d0 = D[i] + conj(D[(n - i)) %
      n]);
```

```
point d1 = D[i] - conj(D[(n - i) %
  A[i] = c0 * d0 - point(0, 1) * c1 *
       d1:
  B[i] = c0 * d1 + d0 * c1;
 fft(A, C, n);
 fft(B, D, n);
 reverse (C + 1, C + n);
 reverse (D + 1, D + n);
 int t = 4 * n;
 for (size_t i = 0; i < n; i++) {</pre>
  int64_t A0 = llround(real(C[i]) / t
      );
  T A1 = llround(imag(D[i]) / t);
  T A2 = llround(imag(C[i]) / t);
  a[i] = A0 + (A1 << shift) + (A2 <<
      2 * shift);
 return;
} // namespace fft
template <typename T>
struct poly {
 poly inv(size_t n) const { // get
    inverse series mod x^n
  assert(!is_zero());
  poly ans = a[0].inv();
  size t a = 1;
  while (a < n) {
    poly C = (ans * mod_xk(2 * a)).
        substr(a, 2 * a);
    ans -= (ans * C).mod xk(a).mul xk
        (a);
    a *= 2;
   return ans.mod xk(n);
```

```
pair<poly, poly> divmod slow(
   const poly &b) const { // when
      divisor or quotient is small
 vector<T> A(a);
 vector<T> res;
 while (A.size() >= b.a.size()) {
   res.push back(A.back() / b.a.back
       ());
   if (res.back() != T(0)) {
    for (size_t i = 0; i < b.a.size</pre>
        (); i++) {
      A[A.size() - i - 1] -= res.
         back() * b.a[b.a.size() - i
          - 11;
   A.pop_back();
 std::reverse(begin(res), end(res));
 return {res, A};
pair<poly, poly> divmod(
   const poly &b) const { // returns
       quotiend and remainder of a
      mod b
 if (deg() < b.deg()) {</pre>
   return {poly{0}, *this};
 int d = deg() - b.deg();
 if (min(d, b.deg()) < magic) {</pre>
   return divmod_slow(b);
 poly D = (reverse(d + 1) * b.)
     reverse (d + 1) \cdot inv(d + 1)
            .mod xk(d + 1)
            .reverse(d + 1, 1);
```

```
return \{D, \star this - D \star b\};
poly log(size t n) { // calculate
   log p(x) mod x^n
 assert (a[0] == T(1));
 return (deriv().mod_xk(n) * inv(n))
     .integr().mod_xk(n);
poly exp(size_t n) { // calculate
   exp p(x) mod x^n
 if (is_zero()) {
   return T(1);
 assert(a[0] == T(0));
 poly ans = T(1);
 size t a = 1;
 while (a < n) {
   poly C = ans.log(2 * a).div_xk(a)
       - substr(a, 2 * a);
   ans -= (ans * C).mod xk(a).mul xk
       (a);
   a *= 2;
 return ans.mod_xk(n);
poly pow(size_t k, size_t n) { //
   calculate p^k(n) mod x^n
 if (is zero()) {
   return *this;
 if (k < magic) {</pre>
   return pow_slow(k, n);
 int i = leading xk();
 T \dot{j} = a[i];
 poly t = \text{div } xk(i) / j;
```

```
return bpow(j, k) * (t.log(n) * T(k)
    )).exp(n).mul xk(i * k).mod xk(
    n);
vector<T> chirpz even(T z, int n) {
   // P(1), P(z^2), P(z^4), ..., P(z
   ^{2}(n-1)
 int m = deq();
 if (is_zero()) return vector<T>(n,
     0);
 vector < T > vv(m + n);
 T zi = z.inv(); T zz = zi * zi;
 T cur = zi; T total = 1;
 for (int i = 0; i \le max(n - 1, m);
      i++) {
  if (i \le m) vv[m - i] = total;
  if (i < n) vv[m + i] = total;
   total *= cur; cur *= zz;
 poly w = (mulx sq(z) * vv).substr(m
     , m + n).mulx_sq(z);
 vector<T> res(n);
 for (int i = 0; i < n; i++) res[i]</pre>
    = w[i];
 return res;
vector<T> chirpz(T z, int n) { // P
   (1), P(z), P(z^2), ..., P(z^{(n-1)})
 auto even = chirpz_even(z, (n + 1))
 auto odd = mulx(z).chirpz even(z, n
     / 2);
 vector<T> ans(n);
 for (int i = 0; i < n / 2; i++) {
```

```
ans[2 * i] = even[i]; ans[2 * i +
      1 = odd[i];
 if (n \% 2 == 1) ans[n - 1] = even.
    back();
 return ans;
template <typename iter>
vector<T> eval(vector<poly> &tree,
   int v, iter 1,
           iter r) { // auxiliary
              evaluation function
 if (r - l == 1) return {eval(*1)};
 else {
   auto m = 1 + (r - 1) / 2;
   auto A = (*this % tree[2 * v]).
      eval(tree, 2 * v, l, m);
   auto B = (*this % tree[2 * v +
      1]).eval(tree, 2 * v + 1, m, r
      );
   A.insert(end(A), begin(B), end(B)
      );
   return A; }
vector<T> eval(vector<T> x) { //
   evaluate polynomial in (x1, ...,
   xn)
 int n = x.size();
 if (is_zero())return vector<T>(n, T
     (0));
 vector<poly> tree(4 * n);
 build(tree, 1, begin(x), end(x));
 return eval(tree, 1, begin(x), end(
    x));
template <typename iter>
poly inter(vector<poly> &tree, int v
   , iter 1, iter r, iter ly,
```

```
iter ry) { // auxiliary
             interpolation function
   if (r - 1 == 1) {
    return {*ly / a[0]};
   } else {
    auto m = 1 + (r - 1) / 2;
    auto my = ly + (ry - ly) / 2;
    auto A = (*this % tree[2 * v]).
        inter(tree, 2 * v, l, m, lv,
       my);
    auto B = (*this % tree[2 * v +
        1]).inter(tree, 2 * v + 1, m,
        r, my, ry);
    return A * tree[2 * v + 1] + B *
        tree [2 * v];
 }
};
template <typename T, typename iter>
poly<T> build(vector<poly<T>> &res,
   int v, iter L,
          iter R) { // builds
              evaluation tree for (x-
              a1) (x-a2) \dots (x-an)
 if (R - L == 1) {
   return res[v] = vector<T>{-*L, 1};
 } else {
  iter M = L + (R - L) / 2;
   return res[v] = build(res, 2 * v, L
      , M) \star build(res, 2 \star v + 1, M,
       R);
 }
template <typename T>
poly<T> inter(
   vector < T > x.
```

1.10 Geometry Convex Hull

```
struct pt {
 double x, y;
};
int orientation(pt a, pt b, pt c) {
 double v = a.x * (b.y - c.y) + b.x *
      (c.y - a.y) + c.x * (a.y - b.y);
 if (v < 0) return -1; // clockwise
 if (v > 0) return +1; // counter-
    clockwise
 return 0;
bool cw(pt a, pt b, pt c, bool
   include_collinear) {
 int o = orientation(a, b, c);
 return o < 0 || (include collinear</pre>
     \&\& \circ == 0);
bool ccw(pt a, pt b, pt c, bool
   include collinear) {
 int o = orientation(a, b, c);
```

```
return o > 0 || (include collinear
    \&\& \circ == 0);
void convex hull(vector<pt>& a, bool
   include collinear = false) {
 if (a.size() == 1) return;
 sort(a.begin(), a.end(),
     [](pt a, pt b) { return
        make_pair(a.x, a.y) <</pre>
        make_pair(b.x, b.y); });
 pt p1 = a[0], p2 = a.back();
 vector<pt> up, down;
 up.push back(p1);
 down.push back(p1);
 for (int i = 1; i < (int)a.size(); i
    ++) {
  if (i == a.size() - 1 || cw(p1, a[i
      ], p2, include collinear)) {
    while (up.size() >= 2 \&\&
          !cw(up[up.size() - 2], up[up]
             .size() - 1], a[i],
             include_collinear))
      up.pop_back();
    up.push_back(a[i]);
  if (i == a.size() - 1 || ccw(p1, a[
      il, p2, include collinear)) {
    while (down.size() >= 2 &&
          !ccw(down[down.size() - 2],
             down[down.size() - 1], a[
             il,
             include collinear))
      down.pop back();
    down.push back(a[i]);
```

1.11 Geometry Minkowski Sum

```
void reorder polygon(vector<pt>& P) {
 size t pos = 0;
 for (size_t i = 1; i < P.size(); i</pre>
    ++) {
   if (P[i].v < P[pos].v || (P[i].v ==
       P[pos].y \&\& P[i].x < P[pos].x)
      ) pos = i;
 rotate(P.begin(), P.begin() + pos, P
     .end());
vector<pt> minkowski(vector<pt> P,
   vector<pt> 0) {
 // the first vertex must be the
     lowest
 reorder_polygon(P); reorder_polygon(Q
 // we must ensure cyclic indexing
 P.push back (P[0]); P.push back (P[1]);
 Q.push\_back(Q[0]);Q.push\_back(Q[1]);
 // main part
 vector<pt> result; size t i = 0, j =
     0;
```

```
while (i < P.size() - 2 || j < Q.
    size() - 2) {
    result.push_back(P[i] + Q[j]);
    auto cross = (P[i + 1] - P[i]).
        cross(Q[j + 1] - Q[j]);
    if (cross >= 0) ++i;
    if (cross <= 0) ++j;}
return result;}</pre>
```

1.12 Geometry Point in convex polygon

```
struct pt {
 long long x, y;
 pt() {}
 pt(long long _x, long long _y) : x(
     _x), y(_y) {}
 pt operator+(const pt &p) const {
     return pt(x + p.x, y + p.y); }
 pt operator-(const pt &p) const {
     return pt(x - p.x, y - p.y); }
 long long cross(const pt &p) const {
     return x * p.y - y * p.x; }
 long long dot(const pt &p) const {
     return x * p.x + y * p.y; }
 long long cross (const pt &a, const
     pt &b) const {
   return (a - *this).cross(b - *this)
 long long dot (const pt &a, const pt
     &b) const {
  return (a - *this).dot(b - *this);
 long long sgrLen() const { return
     this->dot(*this); }
bool lexComp(const pt &1, const pt &r)
```

```
return l.x < r.x || (l.x == r.x && l
     .y < r.y);
int sqn(long long val) { return val >
   0 ? 1 : (val == 0 ? 0 : -1); }
vector<pt> sea;
pt translation;
int n;
bool pointInTriangle(pt a, pt b, pt c,
    pt point) {
 long long s1 = abs(a.cross(b, c));
 long long s2 =
    abs(point.cross(a, b)) + abs(
        point.cross(b, c)) + abs(point
        .cross(c, a));
 return s1 == s2;
void prepare(vector<pt> &points) {
 n = points.size();
 int pos = 0;
 for (int i = 1; i < n; i++) {
   if (lexComp(points[i], points[pos])
      ) pos = i;
 rotate(points.begin(), points.begin
     () + pos, points.end());
 seq.resize(n);
 for (int i = 0; i < n; i++) seq[i] =
      points[i + 1] - points[0];
 translation = points[0];
```

```
bool pointInConvexPolygon(pt point) {
 point = point - translation;
 if (seq[0].cross(point) != 1 &&
    sqn(seq[0].cross(point)) != sqn(
       seq[0].cross(seq[n - 1]))
   return false;
 if (seq[n - 1].cross(point) != 0 &&
    sqn(seq[n-1].cross(point)) !=
       sqn(seq[n-1].cross(seq[0])))
   return false;
 if (seq[0].cross(point) == 0) return
     seq[0].sqrLen() >= point.sqrLen
     ();
 int 1 = 0, r = n - 1;
 while (r - 1 > 1) {
  int mid = (1 + r) / 2;
  int pos = mid;
  if (seq[pos].cross(point) >= 0)
   l = mid;
  else
    r = mid;
 int pos = 1;
 return pointInTriangle(seq[pos], seq
     [pos + 1], pt(0, 0), point);
```

1.13 Geometry Shortest Distance between two points

```
vector<pt> t;
void rec(int l, int r) {
 if (r - 1 \le 3)  {
   for (int i = 1; i < r; ++i) {</pre>
```

```
for (int j = i + 1; j < r; ++j) {
    upd ans(a[i], a[i]);
 sort(a.begin() + l, a.begin() + r,
     cmp_y());
 return;
int m = (1 + r) >> 1;
int midx = a[m].x;
rec(1, m);
rec(m, r);
merge(a.begin() + 1, a.begin() + m,
   a.begin() + m, a.begin() + r, t.
   begin(),
    cmp_y());
copy(t.begin(), t.begin() + r - l, a
   .begin() + 1);
int tsz = 0;
for (int i = 1; i < r; ++i) {
 if (abs(a[i].x - midx) < mindist) { double angle(pt v, pt w) {</pre>
   for (int j = tsz - 1; j >= 0 && a
      [i].y - t[j].y < mindist; --j)
    upd_ans(a[i], t[j]);
  t[tsz++] = a[i];
```

1.14 Geometry geometry 2d

```
namespace geometry 2d {
typedef double T;
typedef complex<T> pt;
int sgn(T x) \{ return (T(0) < x) - (x 
   < T(0)); }
```

```
#define x real()
#define y imag()
T sq(pt p) { return p.x * p.x + p.y *
   p.y; }
pt translate(pt v, pt p) { return p +
    v; }
pt scale(pt c, double factor, pt p) {
    return c + (p - c) * factor; }
pt rot(pt p, double a) { return p *
   polar(1.0, a); }
pt perp(pt p) { return {-p.y, p.x}; }
pt linearTransfo(pt p, pt q, pt r, pt
    fp, pt fa) {
  return fp + (r - p) * (fq - fp) / (q
      - p);
T dot(pt v, pt w) { return (conj(v) *
   w).x; }
T cross(pt v, pt w) { return (conj(v)
    * w).y; }
bool isPerp(pt v, pt w) { return dot(v
    , w) == 0; 
  return acos(clamp(dot(v, w) / abs(v)
      / abs(w), -1.0, 1.0));
T orient(pt a, pt b, pt c) { return
   cross(b - a, c - a); }
bool inAngle(pt a, pt b, pt c, pt p) {
  assert (orient (a, b, c) != 0);
  if (orient(a, b, c) < 0) swap(b, c);
  return orient(a, b, p) >= 0 \&\&
     orient(a, c, p) \leq 0;
double orientedAngle(pt a, pt b, pt c)
```

```
if (orient(a, b, c) >= 0)
  return angle(b - a, c - a);
   return 2 * M_PI - angle(b - a, c -
      a);
bool isConvex(vector<pt> p) {
 bool hasPos = false, hasNeg = false;
 for (int i = 0, n = p.size(); i < n;
     i++) {
  int o = orient(p[i], p[(i + 1) % n]
      ], p[(i + 2) % n]);
  if (o > 0) hasPos = true;
  if (o < 0) hasNeg = true;</pre>
 return ! (hasPos && hasNeg);
bool half(pt p) {
 // true if in blue half
 assert (p.x != 0 | | p.y != 0); // the
      argument of (0,0) isundefined
 return p.y > 0 || (p.y == 0 && p.x <
      0);
void polarSort(vector<pt> &v) {
 sort(v.begin(), v.end(), [](pt v, pt
      w) {
  return make_tuple(half(v), 0, sq(v)
      ) <
        make_tuple(half(w), cross(v,
           w), sq(w);
 });
void polarSortAround(pt o, vector<pt>
 sort(v.begin(), v.end(), [=](pt v,
    pt w) {
```

```
return make tuple(half(v - o), 0) <</pre>
        make tuple(half(w - o), cross
            (v - 0, w - 0);
 });
struct line {
 pt v;
 T c;
 // From direction vector v and
     offset c
 line(pt v, T c) : v(v), c(c) {}
 // From equation ax+by=c
 line(T a, T b, T c) : v(\{b, -a\}), c(
     c) {}
 // From points P and Q
 line(pt p, pt q) : v(q - p), c(cross
     (v, p)) \{ \}
 // Will be defined later:
 // - these work with T = int
 T side(pt p) { return cross(v, p) -
     c; }
 double dist(pt p) { return abs(side(
    p)) / abs(v); }
 double sqDist(pt p) { return side(p)
      * side(p) / (double)sq(v); }
 line perpThrough(pt p) { return {p,
     p + perp(v) }; }
 bool cmpProj(pt p, pt q) { return
     dot(v, p) < dot(v, q);
 line translate(pt t) { return {v, c
     + cross(v, t) }; }
 line shiftLeft(double dist) { return
      \{v, c + dist * abs(v)\}; \}
 bool inter(line 11, line 12, pt &out
  T d = cross(11.v, 12.v);
  if (d == 0) return false;
```

```
out =
      (12.v * 11.c - 11.v * 12.c) / d;
          // requires floating-point
         coordinates
  return true;
 pt proj(pt p) { return p - perp(v) *
     side(p) / sq(v); }
 pt refl(pt p) { return p - perp(v) *
     T(2) * side(p) / sq(v);
};
line bisector(line 11, line 12, bool
   interior) {
 assert (cross(11.v, 12.v) != 0); //
    11 and 12 cannot be parallel!
 double sign = interior ? 1 : -1;
 return {12.v / abs(12.v) + 11.v /
    abs(l1.v) * sign,
       12.c / abs(12.v) + 11.c / abs(
          11.v) * sign ;
bool inDisk(pt a, pt b, pt p) { return
    dot(a - p, b - p) \le 0;
bool onSegment(pt a, pt b, pt p) {
 return orient(a, b, p) == 0 \&\&
    inDisk(a, b, p);
bool properInter(pt a, pt b, pt c, pt
   d, pt &out) {
 double oa = orient(c, d, a), ob =
    orient(c, d, b), oc = orient(a, b
    , c),
      od = orient(a, b, d);
 // Proper intersection exists iff
    opposite signs
 if (oa * ob < 0 && oc * od < 0) {
```

```
out = (a * ob - b * oa) / (ob - oa)
   return true;
 return false;
struct cmpX {
 bool operator()(pt a, pt b) const {
   return make_pair(a.x, a.y) <</pre>
      make_pair(b.x, b.y);
 }
} ;
set<pt, cmpX> inters(pt a, pt b, pt c,
    pt d) {
 pt out;
 if (properInter(a, b, c, d, out))
     return {out};
 set<pt, cmpX> s;
 if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
 if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
 return s;
double seqPoint(pt a, pt b, pt p) {
 if (a != b) {
  line l(a, b);
  if (l.cmpProj(a, p) && l.cmpProj(p,
       b)) // if closest toprojection
    return l.dist(p);
  // output distance toline
 return min(abs(p - a), abs(p - b));
    // otherwise distance to A or B
double segSeg(pt a, pt b, pt c, pt d)
```

```
pt dummy;
 if (properInter(a, b, c, d, dummy))
     return 0:
 return min({segPoint(a, b, c),
     segPoint(a, b, d), segPoint(c, d,
     a),
          seqPoint(c, d, b)});
double areaTriangle(pt a, pt b, pt c)
   { return abs(cross(b - a, c - a))
   / 2.0; }
double areaPolygon(vector<pt> p) {
 double area = 0.0;
 for (int i = 0, n = p.size(); i < n;
     i++) {
   area += cross(p[i], p[(i + 1) % n])
      ; // wrap back to 0 if i == n-1
 return abs(area) / 2.0;
// true if P at least as high as A (
   blue part)
bool above (pt a, pt p) { return p.y >= |
    a.y; }
// check if [PQ] crosses ray from A
bool crossesRay(pt a, pt p, pt q) {
 return (above(a, q) - above(a, p)) *
      orient(a, p, q) > 0;
// if strict, returns false when A is
   on the boundary
bool inPolygon(vector<pt> p, pt a,
   bool strict = true) {
 int numCrossings = 0;
 for (int i = 0, n = p.size(); i < n;
     i++) {
```

```
if (onSegment(p[i], p[(i + 1) % n],
       a)) return !strict;
   numCrossings += crossesRay(a, p[i],
       p[(i + 1) % n]);
 return numCrossings & 1; // inside
     if odd number of crossings
double angleTravelled(pt a, pt p, pt q
 // remainder ensures the value is in
     [-pi,pi]
 return remainder (arg (q - a) - arg (p
     - a), 2 * M_PI);
int windingNumber(vector<pt> p, pt a)
 double ampli = 0;
 for (int i = 0, n = p.size(); i < n;
      i++)
   ampli += angleTravelled(a, p[i], p
      [(i + 1) % n]);
 return round(ampli / (2 * M PI));
pt circumCenter(pt a, pt b, pt c) {
 b = b - a, c = c - a; // consider
     coordinates relative to A
 assert (cross(b, c) != 0); // no
     circumcircle if A, B, C aligned
 return a + perp(b * sq(c) - c * sq(b
     )) / cross(b, c) / T(2);
int circleLine (pt o, double r, line l,
    pair<pt, pt> &out) {
 double h2 = r * r - l.sqDist(o);
 if (h2 >= 0) {
```

```
// the line touches the circle
   pt p = 1.proj(0);
                              // point
  pt h = l.v * sqrt(h2) / abs(l.v);
      // vector parallel to 1,
      oflength h
   out = \{p - h, p + h\};
 return 1 + sqn(h2);
int circleCircle(pt o1, double r1, pt
   o2, double r2, pair<pt, pt> &out)
   {
 pt d = 02 - 01;
 double d2 = sq(d);
 if (d2 == 0) {
  assert (r1 != r2);
  return 0;
                                  //
    concentric circles
 double pd = (d2 + r1 * r1 - r2 * r2)
     / 2; // = |0.1P| * d
 double h2 = r1 * r1 - pd * pd / d2;
    // = h2
 if (h2 >= 0) {
  pt p = o1 + d * pd / d2, h = perp(d
      ) \star sqrt(h2 / d2);
  out = \{p - h, p + h\};
 return 1 + sqn(h2);
int tangents (pt o1, double r1, pt o2,
   double r2, bool inner,
          vector<pair<pt, pt>> &out) {
 if (inner) r2 = -r2;
 pt d = 02 - 01;
```

1.15 Geometry half plane

```
const long double eps = 1e-9, inf = 1
   e9;
struct Point {
 long double x, y;
 explicit Point (long double x = 0,
    long double y = 0) : x(x), y(y)
    { }
 friend Point operator+(const Point&
    p, const Point& q) {
  return Point(p.x + q.x, p.y + q.y);
 friend Point operator-(const Point&
    p, const Point& q) {
  return Point(p.x - q.x, p.y - q.y);
 friend Point operator* (const Point&
    p, const long double& k) {
  return Point(p.x * k, p.y * k);
```

```
friend long double dot(const Point&
    p, const Point& q) {
  return p.x * q.x + p.y * q.y;
 friend long double cross (const Point
     & p, const Point& q) {
  return p.x * q.y - p.y * q.x;
} ;
struct Halfplane {
 Point p, pq;
 long double angle;
 Halfplane() {}
 Halfplane (const Point& a, const
    Point \{a, b\}: \{a, b\}
  angle = atan21(pq.y, pq.x);
 bool out(const Point& r) { return
    cross(pq, r - p) < -eps; }
 bool operator<(const Halfplane& e)</pre>
     const { return angle < e.angle; }</pre>
 friend Point inter(const Halfplane&
     s, const Halfplane& t) {
  long double alpha = cross((t.p - s.
      p), t.pq) / cross(s.pq, t.pq);
   return s.p + (s.pq * alpha);
vector<Point> hp intersect(vector<
   Halfplane>& H) {
 Point box[4] = \{Point(inf, inf),
    Point (-inf, inf), Point (-inf, -
    inf),
```

```
Point(inf, -inf)};
for (int i = 0; i < 4; i++) {
 Halfplane aux(box[i], box[(i + 1) %
      4]);
 H.push_back(aux);
sort(H.begin(), H.end());
deque<Halfplane> dq;
int len = 0;
for (int i = 0; i < int(H.size()); i</pre>
   ++) {
 while (len > 1 && H[i].out(inter(dg
     [len - 1], dq[len - 2]))) {
   dq.pop back();
   --len;
 while (len > 1 && H[i].out(inter(dq
     [0], dq[1]))) {
   dq.pop front();
   --len;
 if (len > 0 && fabsl(cross(H[i].pq,
      dq[len - 1].pq)) < eps) {
   // Opposite parallel half-planes
      that ended up checked against
      each other.
   if (dot(H[i].pq, dq[len - 1].pq)
      < 0.0) return vector<Point>();
   if (H[i].out(dq[len - 1].p)) {
    dq.pop_back();
    --len;
   } else
    continue:
```

```
dq.push back(H[i]);
 ++len;
while (len > 2 && dq[0].out(inter(dq
   [len - 1], dq[len - 2]))) {
 dq.pop_back();
 --len;
while (len > 2 && dq[len - 1].out(
   inter(dq[0], dq[1]))) {
 dq.pop_front();
 --len;
if (len < 3) return vector<Point>();
vector<Point> ret(len);
for (int i = 0; i + 1 < len; i++) {
 ret[i] = inter(dq[i], dq[i + 1]);
ret.back() = inter(dq[len - 1], dq
   [0]);
return ret;
```

1.16 Graph min vertex cover

```
/**
 * Description: Simple bipartite
   matching algorithm. Graph $g$
   should be a list
 * of neighbors of the left partition,
   and $btoa$ should be a vector
   full of
```

```
\star -1's of the same size as the right
    partition. Returns the size of the
 * matching. $btoa[i]$ will be the
    match for vertex $i$ on the right
    side, or
 * $-1$ if it's not matched. Time: O(
    VE) Usage: vi btoa(m, −1);
    dfsMatching(q,
 * btoa); Description: Finds a minimum
     vertex cover in a bipartite graph
* size is the same as the size of a
    maximum matching, and the
    complement is a
* maximum independent set*/
bool find(int j, vector<vi>& q, vi&
   btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
 vis[j] = 1;
 int di = btoa[i];
 for (int e : q[di])
  if (!vis[e] && find(e, q, btoa, vis
      ) ) {
    btoa[e] = di;
    return 1;
 return 0;
int dfsMatching(vector<vi>& q, vi&
   btoa) {
 vi vis;
 rep(i, 0, sz(q)) {
  vis.assign(sz(btoa), 0);
  for (int j : g[i])
    if (find(j, g, btoa, vis)) {
     btoa[j] = i;
      break:
```

```
return sz(btoa) - (int)count(all(
    btoa), -1);
vi cover(vector<vi>& q, int n, int m)
 vi match(m, -1);
 int res = dfsMatching(q, match);
 vector<bool> lfound(n, true), seen(m
    );
 for (int it : match)
  if (it != -1) lfound[it] = false;
 vi q, cover;
 rep(i, 0, n) if (lfound[i]) q.
    push back(i);
 while (!q.empty()) {
  int i = q.back();
  q.pop back();
  lfound[i] = 1;
   for (int e : q[i])
   if (!seen[e] && match[e] != -1) {
      seen[e] = true;
      q.push_back(match[e]);
 rep(i, 0, n) if (!lfound[i]) cover.
    push back(i);
 rep(i, 0, m) if (seen[i]) cover.
    push_back(n + i);
 assert(sz(cover) == res);
 return cover;
```

1.17 Math CRT

```
for (int i = 0; i < k; ++i) {
   x[i] = a[i];
   for (int j = 0; j < i; ++j) {</pre>
```

```
x[i] = r[j][i] * (x[i] - x[j]);

x[i] = x[i] % p[i];
if (x[i] < 0)
        x[i] += p[i];
}</pre>
```

1.18 Math Gray code

```
int g(int n) { return n ^ (n >> 1); }
int rev_g(int g) {
  int n = 0;
  for (; g; g >>= 1) n ^= g;
  return n;
}
```

1.19 Math Linear Sieve

```
const int N = 10000000;
vector<int> lp(N + 1);
vector<int> pr;
for (int i = 2; i <= N; ++i) {
  if (lp[i] == 0) {
    lp[i] = i;
    pr.push_back(i);
  }
  for (int j = 0; j < (int)pr.size()
    && pr[j] <= lp[i] && i * pr[j] <=
    N; ++j) {
    lp[i * pr[j]] = pr[j];
  }
}</pre>
```

1.20 Math Primitive Root

```
int generator(int p) {
  vector<int> fact;
  int phi = p - 1, n = phi;
  for (int i = 2; i * i <= n; ++i)
   if (n % i == 0) {
    fact.push_back(i);
}</pre>
```

```
while (n % i == 0) n /= i;
}
if (n > 1) fact.push_back(n);

for (int res = 2; res <= p; ++res) {
  bool ok = true;
  for (size_t i = 0; i < fact.size()
        && ok; ++i)
   ok &= powmod(res, phi / fact[i],
        p) != 1;
  if (ok) return res;
}
return -1;
}</pre>
```

1.21 Math Segmented Sieve

```
vector<char> segmentedSieve(long long
   L, long long R) {
 // generate all primes up to sqrt(R)
 long long lim = sqrt(R);
 vector<char> mark(lim + 1, false);
 vector<long long> primes;
 for (long long i = 2; i \le \lim_{t \to \infty} ++i)
  if (!mark[i]) {
    primes.emplace_back(i);
    for (long long j = i * i; j <=
        lim; j += i) mark[j] = true;
 vector<char> isPrime(R - L + 1, true
    );
 for (long long i : primes)
  for (long long j = max(i * i, (L +
      i - 1) / i * i); j <= R; j += i
    isPrime[j - L] = false;
```

```
if (L == 1) isPrime[0] = false;
return isPrime;
```

1.22 Math euclid gcd

```
int gcd(int a, int b, int& x, int& y)
   {
 x = 1, y = 0;
 int x1 = 0, y1 = 1, a1 = a, b1 = b;
 while (b1) {
  int q = a1 / b1;
  tie(x, x1) = make\_tuple(x1, x - q *
       x1);
   tie(y, y1) = make\_tuple(y1, y - q + q)
       v1);
  tie(a1, b1) = make\_tuple(b1, a1 - q)
       * b1);
 return a1;
```

1.23 Math integer factorization polard rho brent

```
long long f(long long x, long long c,
   long long mod) {
 return (mult(x, x, mod) + c) % mod;
long long brent (long long n, long long
    x0 = 2, long long c = 1) {
 long long x = x0;
 long long q = 1;
 long long q = 1;
 long long xs, y;
 int m = 128;
 int 1 = 1;
 while (q == 1) {
  y = x;
```

```
, c, n);
 int k = 0;
 while (k < 1 \&\& q == 1) {
   xs = x;
   for (int i = 0; i < m && i < 1 -
      k; i++) {
    x = f(x, c, n);
    q = mult(q, abs(y - x), n);
   q = qcd(q, n);
   k += m;
 1 *= 2;
if (q == n) {
 do {
  xs = f(xs, c, n);
   q = qcd(abs(xs - y), n);
 \} while (q == 1);
return q;
```

1.24 Math prime list

999999937

```
NTT Prime: 998244353 = 119 * 2^23 +
   1. Primitive root: 3. 985661441 =
    235 \times 2^2 + 1. Primitive root:
   3. 1012924417 = 483 * 2^21 + 1.
   Primitive root: 5.
```

1.25 Math prime test miller rabin

```
using u64 = uint64 t;
using u128 = uint128 t;
```

```
for (int i = 1; i < 1; i++) x = f(x | bool check_composite(u64 n, u64 a, u64))
                                         d, int s) {
                                      u64 x = binpower(a, d, n);
                                      if (x == 1 | | x == n - 1) return
                                          false:
                                      for (int r = 1; r < s; r++) {
                                        x = (u128)x * x % n;
                                        if (x == n - 1) return false;
                                      return true;
                                     };
                                     bool MillerRabin (u64 n) { // returns
                                        true if n is prime, else returns
                                        false.
                                      if (n < 2) return false;
                                      int r = 0;
                                      u64 d = n - 1;
                                      while ((d \& 1) == 0) {
                                        d >>= 1;
                                        r++;
                                      for (int a : {2, 3, 5, 7, 11, 13,
                                          17, 19, 23, 29, 31, 37}) {
                                        if (n == a) return true;
                                        if (check_composite(n, a, d, r))
                                            return false;
                                      return true;
```

1.26 Matrix gauss any mod

```
int gauss(vector<vector<int> > &a,
   vector<int> &ans) {
 int n = (int)a.size();
 int m = (int)a[0].size() - 1;
```

```
vector\langle int \rangle where (m, -1);
for (int col = 0, row = 0; col < m
   && row < n; ++col) {
 int sel = row;
 for (int i = row; i < n; ++i)</pre>
   if (a[i][col] > a[sel][col]) sel
      = i;
 if (a[sel][col] == 0) continue;
 for (int i = col; i \le m; ++i) swap
     (a[sel][i], a[row][i]);
 where [col] = row;
 for (int i = 0; i < n; ++i)
  if (i != row) {
    int c = a[i][col] * mod inv(a[
        row][col], mod) % mod;
    for (int j = col; j <= m; ++j) {
      a[i][j] = (a[i][j] - a[row][j]
           * c % mod + mod) % mod;
 ++row;
ans.assign(m, 0);
vi out(1);
for (int i = 0; i < m; ++i)
 if (where[i] != -1)
   ans[i] = a[where[i]][m] * mod_inv
       (a[where[i]][i], mod) % mod;
for (int i = 0; i < n; ++i) {
 int sum = 0;
 for (int j = 0; j < m; ++j) sum = (
     sum + ans[j] * a[i][j]) % mod;
 if (sum != a[i][m]) return -1;
for (int i = 0; i < m; ++i)
 if (where[i] == -1) return 2;
return 1:
```

1.27 Matrix gauss mod 2

```
const int N = 500;
int gauss(vector<bitset<N> > a, int n,
    int m, bitset<N>& ans) {
 vector<int> where (m, -1);
 for (int col = 0, row = 0; col < m
     && row < n; ++col) {
  for (int i = row; i < n; ++i)</pre>
    if (a[i][col]) {
      swap(a[i], a[row]);
     break;
  if (!a[row][col]) continue;
  where [col] = row;
   for (int i = 0; i < n; ++i)
    if (i != row && a[i][col]) a[i]
        ^= a[row];
  ++row;
 ans.reset();
 for (int i = 0; i < m; ++i)
  if (where[i] != -1) ans[i] = a[
      where[i]][m] / a[where[i]][i];
 for (int i = 0; i < n; ++i) {
  int sum = (ans & a[i]).count();
  if (sum % 2 != a[i][m]) return 0;
 for (int i = 0; i < m; ++i)
  if (where[i] == -1) return 2;
 return 1;
```

1.28 Template build system

"g++ -std=c++17 -Wshadow -Wall fsanitize=address,undefined"

```
"-static-libasan -g3 -fno-omit-frame-
pointer -fmax-errors=2"
"g++ -std=c++17 -Ofast -W1,-z,stack-
size=412943040 "
```

1.29 Template sos-dp

```
for (int i = 0; i < (1 << N); ++i) F[i
   ] = A[i];
for (int i = 0; i < N; ++i)
  for (int mask = 0; mask < (1 << N);
    ++mask) {
   if (mask & (1 << i)) F[mask] += F[
     mask ^ (1 << i)];}</pre>
```

1.30 Template template yatin

```
#include <bits/stdc++.h>
#include <ext/pb ds/assoc container.</pre>
   hpp>
#include <ext/pb ds/tree policy.hpp>
using namespace std;
using namespace gnu pbds;
template <typename T>
using ordered_set =
   tree<T, null_type, less<T>,
      rb tree tag,
      tree_order_statistics_node_update
      >;
#define all(x) x.begin(), x.end()
#define fix(f, n) std::fixed << std::</pre>
   setprecision(n) << f
#define start clock()
 auto start time = chrono::
    high resolution clock::now(); \
```

```
auto end time = start time;
#define measure()
 end time = chrono::
     high_resolution_clock::now();
 cerr << (end_time - start_time) /</pre>
     std::chrono::milliseconds(1) << "</pre>
    ms" \
     << endl;
mt19937_64 rng(chrono::steady_clock::
   now().time_since_epoch().count());
struct custom hash {
 static uint64 t splitmix64(uint64 t
    x) {
   x += 0x9e3779b97f4a7c15;
   x = (x ^ (x >> 30)) * 0
      xbf58476d1ce4e5b9;
   x = (x ^ (x >> 27)) * 0
      x94d049bb133111eb;
   return x ^ (x >> 31);
 size_t operator()(uint64_t x) const
   static const uint64_t FIXED_RANDOM
      chrono::steady_clock::now().
         time_since_epoch().count();
   return splitmix64(x + FIXED_RANDOM)
};
int main() {
```

```
ios_base::sync_with_stdio(false);
cin.tie(NULL);
return 0;
}
```

```
1.31 dp opti 1D-1D(convex)
// Monge condition : a < bc < d,
// Convex Monge condition : f(a,c)+f(b)
   , d) f (a, d) + f (b, c)
// Concave Monge condition : f(a,c)+f(
   b, d) f(a, d) + f(b, c)
// Totally monotone : a < b c < d,</pre>
// Convex totally monotone : f(a,c)f(b
   (a,d) f (b,d)
// Concave totally monotone : f(a,c)f(
   b,c)f(a,d)f(b,d)
// Usually f(i,j) is something like
   dpi+cost(i+1,j) or cost(i,j).
struct Node {
 ll p, l, r; // p is the best
     transition point for dp[l], dp[l
     +1], ..., dp[r]
};
deque<Node> dq;
dp[0] = 0;
dq.push_back({0, 1, n});
for (int i = 1; i <= n; ++i) {
 dp[i] = f(dq.front().p, i)
        // r == i implies that this
           Node is useless later, so
           pop it
        if (dq.front().r == i) dq.
           pop front();
 // else update l
 else dq.front().l++;
```

```
// find l, r for i
// f(i, dg.back().l) < f(dg.back().p
   , dq.back().l) implies the last
   Node in
// deque is useless
while (!dq.empty() && f(i, dq.back()
   .1) < f(dq.back().p, dq.back().1)
   )
 dq.pop_back();
// we know that r=n, now we need to
   find 1
// l=i+1 as deque is empty
if (dq.empty()) dq.push_back({i, i +
    1, n});
// find l by binary search
else {
 int l = dq.back().l, r = dq.back().
     r;
 while (1 < r) {
   int mid = r - (r - 1) / 2;
   if (f(i, mid) < f(dq.back().p,
      mid))
    r = mid - 1;
   else
    1 = mid;
 dq.back().r = 1;
 // l == n means that i is useless
 if (l != n) dq.push_back({i, l + 1,
     n } ) ;
```

1.32 dp opti CHT Normal

```
vector<point> hull, vecs;
void add_line(ftype k, ftype b) {
```

```
point nw = \{k, b\};
 while (!vecs.empty() && dot(vecs.
    back(), nw - hull.back()) < 0) {
  hull.pop back();
  vecs.pop back();
 if (!hull.empty()) {
  vecs.push back(li * (nw - hull.back
      ()));
 hull.push_back(nw);
int get(ftype x) {
 point query = \{x, 1\};
 auto it = lower bound(vecs.begin(),
    vecs.end(), query,
                  [] (point a, point b)
                      { return cross(
                     a, b) > 0;  });
 return dot(query, hull[it - vecs.
    begin());
```

1.33 dp opti CHT dynamic

```
// * Description: Container where you
   can add lines of the form kx+m,
   and query
// maximum values at points x.
#pragma once

struct Line {
  mutable ll k, m, p;
  bool operator<(const Line& o) const
      { return k < o.k; }
  bool operator<(ll x) const { return
      p < x; }
};</pre>
```

```
struct LineContainer : multiset<Line,</pre>
   less<>>> {
 // (for doubles, use inf = 1/.0, div
     (a,b) = a/b
 static const ll inf = LLONG MAX;
 ll div(ll a, ll b) { // floored
     division
   return a / b - ((a ^ b) < 0 && a %
      b);
 bool isect(iterator x, iterator y) {
  if (y == end()) return x \rightarrow p = inf,
      0;
   if (x->k == y->k)
    x->p = x->m > y->m ? inf : -inf;
    x->p = div(y->m - x->m, x->k - y
        ->k);
   return x->p >= y->p;
 void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z
      ++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y))
      isect(x, y = erase(y));
   while ((y = x) != begin() \&\& (--x)
      ->p >= v->p) isect(x, erase(v))
 ll query(ll x) {
   assert(!empty());
   auto 1 = *lower bound(x);
  return 1.k * x + 1.m;
};
```

1.34 dp opti Knuth

```
int solve() {
 int N;
 int dp[N][N], opt[N][N];
 auto C = [\&](int i, int j) \{\};
 for (int i = 0; i < N; i++) {
  opt[i][i] = i;
 for (int i = N - 2; i >= 0; i--) {
  for (int j = i + 1; j < N; j++) {
    int mn = INT MAX;
    int cost = C(i, j);
    for (int k = opt[i][j-1]; k \le
       min(j - 1, opt[i + 1][j]); k
       ++) {
      if (mn >= dp[i][k] + dp[k + 1][j]
         ] + cost) {
       opt[i][j] = k;
       mn = dp[i][k] + dp[k + 1][j] +
            cost;
    dp[i][j] = mn;
```

1.35 dp opti Li Chao

```
typedef long long ftype;
typedef complex<ftype> point;
#define x real
#define y imag

ftype dot(point a, point b) { return (
    conj(a) * b).x(); }

ftype f(point a, ftype x) { return dot
    (a, {x, 1}); }
```

```
const int maxn = 2e5;
point line[4 * maxn];
void add line(point nw, int v = 1, int
    l = 0, int r = maxn) {
 int m = (1 + r) / 2;
 bool lef = f(nw, 1) < f(line[v], 1);
 bool mid = f(nw, m) < f(line[v], m);
 if (mid) {
  swap(line[v], nw);
 if (r - 1 == 1) {
  return;
 } else if (lef != mid) {
  add line(nw, 2 * v, l, m);
 } else {
  add line(nw, 2 * v + 1, m, r);
 }
}
ftype get(int x, int v = 1, int l = 0,
    int r = maxn) {
 int m = (1 + r) / 2;
 if (r - 1 == 1) {
  return f(line[v], x);
 else if (x < m) 
  return min(f(line[v], x), get(x, 2
      * v, 1, m));
 } else {
  return min(f(line[v], x), get(x, 2
      * v + 1, m, r));
```

1.36 flow dinic

```
struct FlowEdge {
  int v, u;
```

```
long long cap, flow = 0;
 FlowEdge (int v, int u, long long cap
    ) : v(v), u(u), cap(cap) {}
};
struct Dinic {
 const long long flow_inf = 1e18;
 vector<FlowEdge> edges;
 vector<vector<int>> adi;
 int n, m = 0;
 int s, t;
 vector<int> level, ptr;
 queue<int> q;
 Dinic(int n, int s, int t) : n(n), s
     (s), t(t) {
  adj.resize(n);
  level.resize(n);
  ptr.resize(n);
 void add_edge(int v, int u, long
    long cap) {
  edges.emplace_back(v, u, cap);
  edges.emplace_back(u, v, 0);
  adj[v].push_back(m);
  adj[u].push_back(m + 1);
  m += 2;
 bool bfs() {
  while (!q.empty()) {
    int v = q.front();
    q.pop();
    for (int id : adj[v]) {
     if (edges[id].cap - edges[id].
         flow < 1) continue;
```

```
if (level[edges[id].u] != -1)
        continue;
    level[edges[id].u] = level[v] +
        1;
    q.push(edges[id].u);
 return level[t] != -1;
long long dfs(int v, long long
   pushed) {
 if (pushed == 0) return 0;
 if (v == t) return pushed;
 for (int& cid = ptr[v]; cid < (int)</pre>
     adj[v].size(); cid++) {
   int id = adj[v][cid];
   int u = edges[id].u;
   if (level[v] + 1 != level[u] ||
      edges[id].cap - edges[id].flow
       < 1)
    continue:
   long long tr = dfs(u, min(pushed,
       edges[id].cap - edges[id].
      flow));
   if (tr == 0) continue;
   edges[id].flow += tr;
   edges[id ^ 1].flow -= tr;
   return tr;
 return 0;
long long flow() {
 long long f = 0;
 while (true) {
```

```
fill(level.begin(), level.end(),
        -1);
    level[s] = 0;
    q.push(s);
    if (!bfs()) break;
    fill(ptr.begin(), ptr.end(), 0);
    while (long long pushed = dfs(s,
        flow inf)) {
      f += pushed;
   return f;
};
```

1.37 flow global min cut

```
/* Description: Find a global minimum
   cut in an undirected graph, as
   represented
 * by an adjacency matrix. Time: O(V
    ^3) */
pair<int, vi> globalMinCut(vector<vi>)
   mat) {
 pair<int, vi> best = {INT_MAX, {}};
 int n = sz(mat);
 vector<vi> co(n);
 rep(i, 0, n) co[i] = {i};
 rep(ph, 1, n) {
   vi w = mat[0];
   size_t s = 0, t = 0;
   rep(it, 0, n - ph) { // O(V^2) \rightarrow O
      (E log V) with prio. queue
    w[t] = INT MIN;
    s = t, t = max_element(all(w)) -
        w.begin();
    rep(i, 0, n) w[i] += mat[t][i];
```

```
best = min(best, \{w[t] - mat[t][t],
      co[t]});
 co[s].insert(co[s].end(), all(co[t
    ]));
 rep(i, 0, n) mat[s][i] += mat[t][i]
    1;
 rep(i, 0, n) mat[i][s] = mat[s][i];
 mat[0][t] = INT_MIN;
return best;
```

 $// a[1...n][1...m] \rightarrow cost function$

1.38 flow hungarian emaxx

```
// n<=m with n people having to assign
    m jobs
vector < int > u(n + 1), v(m + 1), p(m +
   1), way(m + 1);
for (int i = 1; i <= n; ++i) {
 p[0] = i;
 int j0 = 0;
 vector<int> minv(m + 1, INF);
 vector<char> used(m + 1, false);
 do {
   used[j0] = true;
   int i0 = p[j0], delta = INF, j1;
   for (int j = 1; j <= m; ++j)
    if (!used[j]) {
      int cur = a[i0][j] - u[i0] - v[j] using namespace std;
         , way[j] = j0;
      if (minv[j] < delta) delta =</pre>
         minv[j], j1 = j;
   for (int j = 0; j \le m; ++j)
    if (used[j])
```

```
u[p[j]] += delta, v[j] -= delta;
      minv[j] -= delta;
   j0 = j1;
 \} while (p[j0] != 0);
 do {
   int j1 = way[j0];
   p[j0] = p[j1];
   j0 = j1;
 } while (j0);
vector < int > ans(n + 1);
for (int j = 1; j \le m; ++j) ans[p[j]]
    = j;
int cost = -v[0];
```

1.39 flow mcmf with negative cycle

```
// Push-Relabel implementation of the
                                      cost-scaling algorithm
                                  // Runs in O( <max flow> * log(V *
                                      max\_edge\_cost)) = O(V^3 * log(V *
                                       C))
                                  // 3e4 edges are fine.
                                  // Operates on integers, costs are
                                      multiplied by N!!
                                  #include <bits/stdc++.h>
if (cur < minv[j]) minv[j] = cur | template <typename flow_t = int,</pre>
                                      typename cost t = int>
                                  struct mcSFlow {
                                    struct Edge {
                                     cost_t c;
                                     flow t f;
                                     int to, rev;
```

```
Edge (int to, cost t c, flow t f,
     int rev)
    : c(_c), f(_f), to(_to), rev(
        rev) {}
};
static constexpr cost_t INFCOST =
   numeric_limits<cost_t>::max() /
   2;
cost_t eps;
int N, S, T;
vector<vector<Edge> > G;
vector<unsigned int> isq, cur;
vector<flow_t> ex;
vector<cost t> h;
mcSFlow(int _N, int _S, int _T) :
   eps(0), N(_N), S(_S), T(_T), G(_N)
   ) {}
void add_edge(int a, int b, cost_t
   cost, flow t cap) {
 assert (cap >= 0);
 assert (a >= 0 \&\& a < N \&\& b >= 0 \&\&
     b < N);
 if (a == b) {
   assert(cost >= 0);
   return;
 cost *= N;
 eps = max(eps, abs(cost));
 G[a].emplace_back(b, cost, cap, G[b
     1.size());
 G[b].emplace_back(a, -cost, 0, G[a
     ].size() -1);
void add flow(Edge &e, flow t f) {
 Edge &back = G[e.to][e.rev];
 if (!ex[e.to] && f) hs[h[e.to]].
     push back (e.to);
```

```
e.f -= f;
 ex[e.to] += f;
 back.f += f;
 ex[back.to] -= f;
vector<vector<int> > hs;
vector<int> co;
flow t max flow() {
 ex.assign(N, 0);
 h.assign(N, 0);
 hs.resize(2 * N);
 co.assign(2 * N, 0);
 cur.assign(N, 0);
 h[S] = N;
 ex[T] = 1;
 co[0] = N - 1;
 for (auto &e : G[S]) add flow(e, e.
     f);
 if (hs[0].size())
   for (int hi = 0; hi >= 0;) {
    int u = hs[hi].back();
    hs[hi].pop back();
    while (ex[u] > 0)  { // discharge
      if (cur[u] == G[u].size()) {
       h[u] = 1e9;
       for (unsigned int i = 0; i <
          G[u].size(); ++i) {
         auto &e = G[u][i];
         if (e.f && h[u] > h[e.to] +
             1) {
          h[u] = h[e.to] + 1, cur[u]
               = i;
       if (++co[h[u]], !--co[hi] &&
          hi < N)
```

```
for (int i = 0; i < N; ++i)
          if (hi < h[i] && h[i] < N)
            --co[h[i]];
            h[i] = N + 1;
       hi = h[u];
      } else if (G[u][cur[u]].f && h
         [u] == h[G[u][cur[u]].to] +
          1)
       add_flow(G[u][cur[u]], min(ex
           [u], G[u][cur[u]].f));
      else
       ++cur[u];
    while (hi >= 0 && hs[hi].empty()
       ) --hi;
 return -ex[S];
void push(Edge &e, flow t amt) {
 if (e.f < amt) amt = e.f;
 e.f -= amt;
 ex[e.to] += amt;
 G[e.to][e.rev].f += amt;
 ex[G[e.to][e.rev].to] -= amt;
void relabel(int vertex) {
 cost_t newHeight = -INFCOST;
 for (unsigned int i = 0; i < G[</pre>
     vertex].size(); ++i) {
   Edge const &e = G[vertex][i];
   if (e.f && newHeight < h[e.to] -
      e.c) {
    newHeight = h[e.to] - e.c;
    cur[vertex] = i;
```

```
h[vertex] = newHeight - eps;
static constexpr int scale = 2;
pair<flow t, cost t> minCostMaxFlow
   () {
 cost_t retCost = 0;
 for (int i = 0; i < N; ++i)
   for (Edge &e : G[i]) retCost += e
      .c * (e.f);
 // find max-flow
 flow_t retFlow = max_flow();
 h.assign(N, 0);
 ex.assign(N, 0);
 isq.assiqn(N, 0);
 cur.assign(N, 0);
 queue<int> q;
 for (; eps; eps >>= scale) {
   // refine
   fill(cur.begin(), cur.end(), 0);
   for (int i = 0; i < N; ++i)
   for (auto &e : G[i])
     if (h[i] + e.c - h[e.to] < 0
         && e.f) push(e, e.f);
   for (int i = 0; i < N; ++i) {
    if (ex[i] > 0) {
      q.push(i);
     isq[i] = 1;
   // make flow feasible
   while (!q.empty()) {
   int u = q.front();
    q.pop();
    isq[u] = 0;
    while (ex[u] > 0) {
```

```
if (cur[u] == G[u].size())
         relabel(u);
      for (unsigned int &i = cur[u],
          \max i = G[u].size(); i <
         max i; ++i) {
       Edge &e = G[u][i];
       if (h[u] + e.c - h[e.to] < 0)
         push(e, ex[u]);
         if (ex[e.to] > 0 \&\& isq[e.
            to] == 0) {
          q.push(e.to);
          isq[e.to] = 1;
         if (ex[u] == 0) break;
  if (eps > 1 && eps >> scale == 0)
    eps = 1 \ll scale;
 for (int i = 0; i < N; ++i) {
  for (Edge &e : G[i]) {
    retCost -= e.c * (e.f);
 return make_pair(retFlow, retCost /
     2 / N);
flow t getFlow(Edge const &e) {
   return G[e.to][e.rev].f; }
```

1.40 range query Fenwick

} **;**

struct FenwickTree2D {

```
vector<vector<int>> bit;
 int n, m;
 int sum(int x, int y) {
  int ret = 0:
  for (int i = x; i >= 0; i = (i & (i + i))
       + 1)) - 1)
    for (int j = y; j >= 0; j = (j &
        (i + 1) - 1) ret += bit[i][i
       1;
  return ret;
 void add(int x, int y, int delta) {
  for (int i = x; i < n; i = i | (i + i)
       1))
    for (int j = y; j < m; j = j | (j
         + 1)) bit[i][j] += delta;
} ;
```

1.41 string AhoCorasick

```
template<int ALPHABET = 26, int LOW =
    'a'>
struct AhoCorasick {
    struct Node {
    int next[ALPHABET], link, parent;
    char ch; bool ends;
    Node(int par = -1, char c = LOW - 1)
        : parent(par), ch(c), link(-1),
        ends(false) {
    for(int i=0; i<ALPHABET; i++)
        next[i] = -1;
    }
};
vector<Node> nodes;
int root;
AhoCorasick(): root(0), nodes(1) {}
void add string(string &s, int idx) {
```

```
int cur = root;
for(auto c: s) {
 if (nodes[cur].next[c - LOW] == -1)
  nodes.push back(Node(cur, c)),
     nodes[cur].next[c - LOW] = (int
     ) nodes.size() -1;
 cur = nodes[cur].next[c - LOW];
nodes[cur].leaves.push_back(idx),
    nodes[cur].ends = true;
void build_links() {
queue<int> q; q.push(0);
while(!q.empty()) {
 int fr = q.front(); q.pop();
 if(nodes[fr].parent <= 0) {</pre>
  nodes[fr].link = 0;
  for(int i=0; i<ALPHABET; i++)</pre>
  if(nodes[fr].next[i] == -1)
   if(nodes[fr].parent == -1)
    nodes[fr].next[i] = 0;
   else
    nodes[fr].next[i] = nodes[nodes[
        fr].link].next[i];
   else
   q.push(nodes[fr].next[i]);
 else {
  nodes[fr].link = nodes[nodes[nodes[
     fr].parent].link].next[nodes[fr
     ].ch - LOW];
  for(int i=0; i<ALPHABET; i++)</pre>
  if(nodes[fr].next[i] == -1)
   nodes[fr].next[i] = nodes[nodes[
       fr].link].next[i];
   else
   q.push(nodes[fr].next[i]);
```

```
}
}
};
```

1.42 string circular lcs

```
#define L 0 #define LU 1 #define U 2
-1, 0;
int al, bl;
char a[MAXL * 2], b[MAXL * 2]; // 0-
   indexed
int dp[MAXL * 2][MAXL];
char pred[MAXL * 2][MAXL];
inline int lcs length(int r) {
 int i = r + al, j = bl, l = 0;
 while (i > r) {
   char dir = pred[i][j];if (dir == LU
      ) 1++;
  i += mov[dir][0]; j += mov[dir][1];}
 return 1;
inline void reroot (int r) { // r = new
    base row
 int i = r, j = 1;
 while (j <= bl && pred[i][j] != LU)</pre>
    j++;
 if (j > bl) return; pred[i][j] = L;
 while (i < 2 * al && j \le bl) {
  if (pred[i + 1][j] == U) {
    i++;pred[i][j] = L;
  } else if (j < bl && pred[i + 1][j</pre>
      + 1] == LU) {
    i++; j++; pred[i][j] = L;
   } else j++;
int cyclic_lcs() {
```

```
// a, b, al, bl should be properly
   filled
char tmp[MAXL];
if (al > bl) {
 swap(al, bl);strcpy(tmp, a);
 strcpy(a, b); strcpy(b, tmp);}
strcpy(tmp, a);strcat(a, tmp);
// basic lcs
for (int i = 0; i \le 2 * al; i++) {
 dp[i][0] = 0; pred[i][0] = U;
for (int j = 0; j \le bl; j++) {
 dp[0][j] = 0; pred[0][j] = L;
for (int i = 1; i \le 2 * al; i++) {
 for (int j = 1; j <= bl; j++) {
   if (a[i - 1] == b[j - 1])
    dp[i][j] = dp[i - 1][j - 1] + 1;
   else
    dp[i][j] = max(dp[i - 1][j], dp[
        i][j - 1]);
   if (dp[i][j-1] == dp[i][j])
    pred[i][j] = L;
   else if (a[i - 1] == b[j - 1])
    pred[i][j] = LU;
   else
    pred[i][j] = U;
int clcs = 0;
for (int i = 0; i < al; i++) {</pre>
 clcs = max(clcs, lcs_length(i));
     reroot(i + 1);
a[al] = ' \setminus 0';
return clcs;}
```

1.43 string suffixArray

const int MAXLEN = 4e5 + 5;

```
template <int ALPHABET = 26, int LOW =
    'a'>
struct SuffixArray {
 vector<int> sa, order, lcp, locate;
 vector<vector<int>> sparse;
 string _s;
 SuffixArray() {}
 void build(string s) {
  s += (char) (LOW - 1);
  int n = s.size();
  _s = s;
   sa.resize(n);
   order.resize(n);
  vector<vector<int>> pos(ALPHABET +
      1);
   for (int i = 0; i < n; i++) pos[s[i
      ] - LOW + 1].push back(i);
   int idx = -1, o idx = -1;
   for (int i = 0; i < ALPHABET + 1; i
      ++) {
    o idx += (pos[i].size() > 0);
    for (auto& x : pos[i]) order[x] =
         o_idx, sa[++idx] = x;
   int cur = 1;
   while (cur < n) {</pre>
    cur \star= 2;
    vector<pair<int, int>, int>>
         w(n);
    vector<int> cnt(n), st(n), where(
       n);
    for (int i = 0; i < n; i++) {
     int from = sa[i] - cur / 2 + n;
      if (from >= n) from -= n;
      w[i] = {{order[from], order[sa[i
         ]]}, from};
```

```
cnt[order[from]]++;
    where [from] = i;
   for (int i = 1; i < n; i++) st[i]</pre>
       = st[i - 1] + cnt[i - 1];
   for (int i = 0; i < n; i++) sa[st
      [w[i].first.first]++] = w[i].
      second;
   order[sa[0]] = 0;
   for (int i = 1; i < n; i++)</pre>
    order[sa[i]] = order[sa[i - 1]]
                (w[where[sa[i]]].
                   first != w[where[
                    sa[i - 1]]].first
                   );
void build lcp() {
 int n = sa.size();
 lcp.resize(n);
 locate.resize(n);
 for (int i = 0; i < n; i++) locate[</pre>
     sa[i]] = i;
 for (int i = 0; i < n - 1; i++) {
   int wh = locate[i], up = sa[wh -
      11;
   if (i > 0) lcp[wh] = max(lcp[wh],
       lcp[locate[i - 1]] - 1);
   while (\_s[i + lcp[wh]] == \_s[up +
       lcp[wh]]) ++lcp[wh];
void build sparse() {
 int n = s.size();
 sparse.resize(20, vector<int>(n));
```

```
for (int i = 0; i < n; i++) sparse
      [0][i] = lcp[i];
  for (int i = 1, len = 2; i < 20; i
      ++, len *= 2)
    for (int j = 0; j + len <= n; j
      sparse[i][j] = min(sparse[i -
         1][j], sparse[i - 1][j + len
          / 2]);
 int find_lcp(int a, int b) {
  if (a == b)
    return _s.size() - 1 - a; //-1
       because sentinel is added to
       string
  a = locate[a];
  b = locate[b];
  if (a > b) {
    swap(a, b);
  a++;
  int which = log2(b - a + 1);
  return min(sparse[which][a], sparse
      [which][b - (1 << which) + 1]);
};
```

1.44 string suffixAutomaton

```
template <int MAXLEN = 1000000>
struct SuffixAutomaton {
  struct node_SA {
    int len, link, cnt;
    int next[26]; // map<char, int>
        next;
    node_SA() {
      for (int i = 0; i < 26; i++) next
      [i] = -2;
    }</pre>
```

```
};
vector<node SA> v;
int sz, last;
SuffixAutomaton(int MAX SIZE =
   MAXLEN) : sz(1), last(0), v(2 *
   MAX_SIZE + 5) {
 v[0].len = 0, v[0].link = -1;
int minlen(const int& idx) {
 return (v[idx].link == -1 ? 0 : v[v]
     [idx].link].len + 1);
int minlen(const node_SA& n) {
 return (n.link == -1 ? 0 : v[n.link]
    ].len + 1);
void add char(char c) {
 int cur = sz++;
 v[cur].len = v[last].len + 1;
 v[cur].cnt = 1;
 int temp = last;
 while (temp != -1 && v[temp].next[c
      - 'a' = -2)  {
   v[temp].next[c - 'a'] = cur;
   temp = v[temp].link;
 if (temp == -1)
   v[cur].link = 0;
 else {
   int nx = v[temp].next[c - 'a'];
   if (v[temp].len + 1 == v[nx].len)
    v[cur].link = nx;
   else {
    int clone = sz++;
    v[clone].len = v[temp].len + 1;
    v[clone].link = v[nx].link;
    for (int i = 0; i < 26; i++) v
        clone].next[i] = v[nx].next[
```

```
i];
while (temp != -1 && v[temp].
    next[c - 'a'] == nx) {
    v[temp].next[c - 'a'] = clone;
    temp = v[temp].link;
}
    v[nx].link = v[cur].link = clone
    ;
}
last = cur;
}
void build(std::string& s) {
    for (char c : s) add_char(c);
}
};
```

1.45 string z kmp manacher

```
vector<int> kmp(const string &s) {
 int n = (int)s.size();
 vector<int> ans(n, 0);
 for (int i = 1; i < n; i++) {
  int k = ans[i - 1];
  while (k \&\& s[k] != s[i]) k = ans[k]
       - 11;
  ans[i] = k + (s[k] == s[i]);
 return ans;
vector<int> zfunc(const string &s) {
 int n = (int)s.size();
 vector < int > z(n, 0);
 z[0] = n;
 for (int i = 1, l = 0, r = 0; i < n;
     i++) {
   z[i] = max(0, min(r - i + 1, z[i -
      11));
  while (s[i + z[i]] == s[z[i]]) ++z[
```

```
if (i + z[i] - 1 > r) l = i, r = i
      + z[i] - 1;
 return z;
pair<vector<int>, vector<int>>
   manacher(const string &s) {
 string t = "$";
 for (auto c : s) t += c, t += '^';
    // Only odd manacher will do the
    trick now
 int N = (int)t.size();
 vector<int> ans(N, 1);
 int 1 = 1, r = 1;
 for (int i = 1; i < N; i++) {
  ans[i] = max(0, min(r - i, ans[l +
      (r - i)));
  while (t[i - ans[i]] == t[i + ans[i]]
      ]]) ++ans[i];
  if (i + ans[i] > r) l = i - ans[i],
       r = i + ans[i];
 vector<int> odd, even;
 for (int i = 1; i < N - 1; i++) {
  if (i & 1)
    odd.push_back(1 + 2 * ((ans[i] -
        1) / 2));
  else
    even.push_back(2 * (ans[i] / 2));
 return {odd, even}; // odd[i] :
    length of palindrome centred at
    ith character
} // even[i]: length of palindrome
   centred after ith character (0-
   indexed)
```