Laboratorio di Meccanica PPI1-Pendolo : Studio di un pendolo semplice e misura dell'accelerazione di gravita'

Francesco Iacobelli 2008402 21 Aprile 2022

1 Scopo dell'esperienza

- Verificare l'indipendenza del periodo del pendolo dalla massa.
- Misurare l'accelerazione di gravità.

2 Apparato sperimentale

2.1 Strumenti di misura

Strumento	Portata	Risoluzione con interpolazione	Incertezza di tipo B	Offset	Unità
Riga	$25~\mathrm{cm}$	$0.1~\mathrm{cm}$	0.1 cm	-	cm
Cronometro digitale	-	0.001s	0.020 s	$0.035 \; { m s}$	s
Bilancia digitale	2000g	0.1g	0.1g	-	

Tabella 1: Caratteristiche degli strumenti.

- Cronometro digitale: non possedendo dati tecnici relativi allo strumento, l'incertezza di tipo B sulle misure di tempo è valutata a partire dai dati raccolti durante la prima esperienza di laboratorio. Si stima quindi un offset di 0.035 s ed un incertezza di tipo B ad esso associata pari a 0.020 s. L'incertezza di tipo B dovuta alla risoluzione dello strumento risulta trascurabile.
- Bilancia digitale: dalla scheda tecnica della bilancia si ottiene un incertezza di tipo B pari a 0.1 g.
- Riga: date le condizioni sperimentali non si ritiene possibile interpolare tra le tacche. La difficoltà ad eseguire le misure porta a considerare un incertezza di tipo B pari a 0.1 cm è quindi possibile trascurare l'incertezza dovuta alla risoluzione dello strumento.

n° misura	$T_5(M_1)$ [s]	$T_5(M_2)$ [s]
1	3.971	3.891
2	3.884	3.980
3	4.009	4.004
4	3.954	3.932
5	3.945	3.939
6	3.981	4.029
7	4.028	3.995
8	3.988	3.988
9	3.972	3.99
10	3.941	4.003
11	3.931	3.962
12	3.964	3.94
13	3.914	3.899
14	3.996	3.954
15	3.957	3.972
16	3.988	3.898
17	3.954	3.948
18	3.940	3.940
19	3.963	3.971
20	3.963	4.011

Tabella 2: Misure del tempo di 5 oscillazioni nelle due configurazioni di massa $(M_1 \text{ ed } M_2)$.

3 Sequenza operazioni sperimentali

3.1 Misura 1

Figura 1: Istogrammi misure del periodo di una singola oscillazione.

Le incertezze sulle misure di tempo si ottengono sommando in quadratura l'incertezza di tipo A ottenuta tramite le misure ripetute e l'incertezza di tipo B indicata nella tabella riepilogativa sugli strumenti. $T_5(M_1)$ e $T_5(M_2)$ sono misure di 5 periodi di oscillazione del pendolo. Per ottenere il valore atteso di un singolo periodo è sufficiente dividere la media delle misure per il numero di oscillazioni corrispondenti. Propagare le incertezze da una misura che è n volte una grandezza di interesse permette di ridurre sensibilmente le incertezze: dato Y = kX, dalle formule di propagazione si ottiene:

$$\sigma_Y = k\sigma_X \tag{1}$$

Ne consegue che l'incertezza associata ad un singolo periodo, calcolata a partire dalla misura dei periodi di dieci oscillazioni t_1 , è espressa attraverso la seguente formula:

$$\sigma_{T_1} = \frac{\sigma_{t_1}}{5} \tag{2}$$

e si procede in maniera analoga per le altre misure.

	valore	σ_{tot}	unità
$T(M_1)$	0.792	0.004	s
$T(M_2)$	0.792	0.004	s

Tabella 3: Risultati finali per il periodo con le corrispondenti incertezze.

Verifico se le due misure di periodo sono confrontabili:

$$Z = \frac{T_{M_2} - T_{M_1}}{\sqrt{\sigma_{T_{M_2}}^2 + \sigma_{T_{M_1}}^2}} = 0 \tag{3}$$

Il valore atteso delle due misure di periodo è lo stesso, quindi l'ipotesi di indipendenza della masse è verificata.

3.2 Misura 2

E' nota dalla scheda dell'esperienza la relazione lineare:

$$T^2 = \frac{4\pi^2}{a}L\tag{4}$$

I quattro valori della lunghezza del pendolo sono stati presi piu distanziati possibile in modo da aumentare il braccio di leva.

$$n \mid T_1(s) \mid T_2(s) \mid T_3(s) \mid T_4(s)$$

Tabella 4: Misure di tempo.

Per propagare l'incertezza sulle misure di tempo al quadrato si fa uso della seguente formula:

$$\sigma[T^2] = 2\sigma_T T \tag{5}$$

L [cm]	T [s] T^2 [s^2]	
40.6 ±0.1	1.281 ± 0.005	1.60 ± 0.01
33.4 ± 0.1	1.156 ± 0.004	1.336 ± 0.009
23.6 ± 0.1	0.970 ± 0.005	0.94 ± 0.01
14.0 ± 0.1	0.742 ± 0.004	0.551 ± 0.006

Tabella 5: Misure di lunghezza, periodo e periodo al quadrato per le quattro configurazioni considerate, con le corrispondenti incertezze. Riportare le formule utilizzate e la loro motivazione nel testo.

3.2.1 Fit lineare

Figura 2: Grafico di T^2 in funzione di L con curva del best fit.

	valore	unità	
\overline{x}	\overline{x} AAAAAAA		
\overline{y}	AAAAAAA	AAAAAAA	
$\overline{x^2}$	AAAAAAA	AAAAAAA	
\overline{xy}	AAAAAAA	AAAAAAA	
Var[x]	AAAAAAA	AAAAAAA	
Cov[x,y]	AAAAAAA	AAAAAAA	
$\sum_{i} \sigma_{y_i}^{-2}$	AAAAAAA	AAAAAAA	

Tabella 6: Quantità utilizzate come input del fit lineare. Definizioni: $y = T^2$, x = L, σ_{y_i} = incertezze <u>finali</u> associate alle y_i (tenendo eventualmente conto anche delle incertezze sulle x_i). Calcolare le medie pesate, somme, varianze, e covarianze campionarie riportate in tabella. Nota: anche varianza e covarianza sono ottenute a partire da medie pesate. Mostrare molte cifre significative e riportare le unità di misura.

Figura 3: Grafico dei residui normalizzati.

	valore	σ_{tot}	unità
m	3.9779	0.0388	s^2/m
c	-0.0035	0.0102	s^2

Tabella 7: Risultato del fit lineare $T^2 = m \cdot L + c$.

A partire dal valore atteso del coefficiente angolare m è possibile stimare l'accelerazione di gravita g tramite la seguente formula:

$$g = \frac{4\pi^2}{m} = 9.993m/s^2 \tag{6}$$

L'incertezza si stima tramite la seguente formula:

$$\sigma_g = \sqrt{\left(\frac{\partial g}{\partial m}\right)^2 \sigma_m^2} = \frac{4\pi^2 \sigma_m}{m^2} = 0.097 m/s^2 \tag{7}$$

Verifico, tramite la seguente formula, la compatibilita della misura ottenuta con il valore noto dell'accelerazione di gravita a Roma $g_{Roma} = 9.805 m/s^2$:

$$Z = \frac{g - g_{Roma}}{\sigma_g} = 1.938 \tag{8}$$

I due valori risultano compatibili.