MEDIATEK

MT7681 IoT Wi-Fi

Calibration SO

Version:

0.09

Release date:

014-6-15

© 2008 - 2014 Media ek Inc

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Specifications are subject to change without notice.

Revision History

Date	Revision	Author	Description
01.16.2014	First v0.01	Jinchuan	Initial draft for MT7681 IoT Calibration SOP.
03.11.2014	v0.02	Jinchuan	Modify Offset, TxPower operation
			Modify Flash/Efuse Write Operation
03.12.2014	v0.03	Jinchuan	Modify Offset, TxPower operation
			AddFlash/Efuse Read Write Operation
03.20.2014	v0.04	Jinchuan	Add parameter –r to control TX speed
			Add Flash ATCommand detail operation
03.20.2014	v0.05	Jinchuan	Correct string "AT#ATE" to "AT#ATECAL"
04.15.2014	v0.06	Jinchuan	Add "AT#ATE –S2 –C6" for Rx Mode calibration
04.18.2014	v0.07	Jinchuan	Add AT#ATECAL parameter(-t) for RX Call
			Add AT#ATECAL parameter(-I) for TX cali
05.16.2014	v0.08	Jinchuan	Table-1 Update
			Add AT#ATECAL parameter(-1) for RX/TX Cali
			Calibration process of Tx, how to enter into Calibration Mode
			Calibration process of Rx. count other Packet
06.15.2014	V0.09	Jinchuan	Add iwpriv (3) command format
09.20.2014	V0.09	xThinkLab	Translate into English.

Table of Contents

1	learn abo	out storage location for calibration parameters	4
	1.1	Refer to file : MT7681_IoT_WIFI_Firmware_Programming_Guide.pdf	
	1.2	Preparing "default.bin" before calibration	
	1.3	Calibration method via Uart	
2	Calibrat	tion method of AT#ATECAL command	5
	2.1	The calibration process of TX Mode) 5
	2.1.	1 Enter into Calibration Mode	5
	2.1.	2 The calibration frequency deviation using default.bin (XTAL trim)	5
	2.1.	3 Test the TX power of Channelx	6
	2.1.	.4 Save the calibration parameter(take Tx Power for an example)	6
	2.2	The step of RX Mode Calibration	7
	2.2.	.1 Preparation of Rx Calibration	7
	2.2.	.2 The method of RX Test	7
3	The met	thod of adjusting IWPRIV RAO	8
	3.1	The step of TX Mode calibration.	8
	3.1.	1 Enter into Calibration Mode	8
	3.1.	2 Calibrate the offset frequency by default.bin(XTAL trim)	8
	3.1.	3 Test the TX power of Channels	9
	3.1.	.4 Save the calibration parameter(take Tx Power for an example)	9
	3.2	The process of Rx Mode calibration	10
	2.2.	1 reparation of Rx calibration	10
	3.2.	Method of RX Test	10

1 The place for storage of the CALIBRATION parameter

11 Refer to files: MT7681_IoT_WIFI_Firmware_Programming_Guide.pdf

The Calibration relevant parameter will storage in the EEPROM Block of the Flash

Partitions

		Flash La	ayout			
	Offest	Section	Size	HEX	DEC	
			(KB)	(Byte)	Offset	
1	0x0000	Loader	20	0x5000	0	
	0x5000	reserved 1	4	0x1000	20480	
2	0x6000	Recovery Mode FW	64	0x10000	24576	
	0x16000	reserved 2	4	0x1000	90112	
3	0x17000	EEPROM	4	0x1000	94208	• • • • • • • • • • • • • • • • • • • •
	0x16000	Common config	4	0x1000	96304	
	0x19000	Station Mode Config	4	0x1000	102400	
	0x1A000	AP Mode Config	4	0x1000	106496	
	0x1B000	User Config	4	0x1000	110592	
	0x1C000	reserved 3	12	0x3000	114688	
4	0x1F000	STA Mode FW	64	0x10000	126976	
	0x2F000	reserved 4	4	0x1000	192512	
5	0x30000	STA Mode-XIP FW	120	0x1E000	196608	
	0x4E000	reserved 5	4	0x1000	319488	
6	0x4F000	AP Mode FW	64	0x10000	323584	
	0x5F000	reserved 6	4	0x1000	389120	
7	0x60000	AP Mode-XIP FW	120	0x1E000	295216	
	0x7E000	reserved 7	4	0x1000	16296	1 Y
	0x7F000	Flash Write Buffer	4	0x1000	520 192 1	† •
	0x80000	reserved 8	0	0x0	524280)

Note :the above is just an example, if you want to know the accurate Flash Partitions Table, you must refer to the newest Programming Guide

1.2 Preparing "default.bin" before calibration

Before Calibration , you should flash the default.bit (supported by Mediatek SA)to Flash EEPROM Block, it is better to integrate the default.bin into MT7681_all.bin and flash it before prepare the MT7681_all.bin((Firmware of MT7681)

The format of the default.bin Layout

52h	0000	Channel 2 TX0 power(ALC)	Channel 1 TX0 power(ALC)
54h	0000	Channel 4 TX0 power(ALC)	Channel 3 TX0 power(ALC)
56h	0000	Channel 6 TX0 power(ALC)	Channel 5 TX0 power(ALC)
58h	0000	Channel 8 TX0 power(ALC)	Channel 7 TX0 power(ALC)
5Ah	0000	Channel 10 TX0 power(ALC)	Channel 9 TX0 power(ALC)
5Ch	0000	Channel 12 TX0 power(ALC)	Channel 11 TX0 power(ALC)
5Eh	0000	Channel 14 TX0 power(ALC)	Channel 13 TX0 power(ALC)

XTAL trim (0x3A)

OAII 0120 LED Wode I requestey disset	3Ah	012C	LED Mode	Frequency offset
---------------------------------------	-----	------	----------	------------------

TSSI(0x6E/0x6F/0x70/0x71)

Offset	b15~b8	b7 ~ b0
6eh	Offset for Channel 1~4	TSSI slope
70h	Offset for Channel 9~14	Offset for Channel 5~8

25° C Temperature Sensor calibration register (0xD1H)

D0h F920	25C Temp Sensor Calibration	2.4G Target Power

Note: the above is just an example, if you want to know the accurate default.bin Layout, you must refer to the newest EEPROM Content

1.3 Calibration method via Uart

Connect to MT7681 via UART, then transmits AT Command, execute Calibration

2 Calibration method of AT#ATECAL command

2.1 The step of TX Mode Calibration

2.1.1 Enter into Calibration Mode

Step1: Power on the MT7681

Step2: After the [RTask]*** is printed on terminal, type into AT#ATECAL -S, and then the 7681 will print "Enter into Calibration Mode", and get into the Calibration mode

Step3: Send Tx Packet by typing into command to serial port: AT#ATECAL -S1 -m1 -c7 -b0 -C1 -g0 -f95 -p0 -n1000 -r1 -l100 Or type into command to do the receiving test: AT#ATECAL -S2 -b0 -C1

Remark: In Calibration, the following parameters are used by default.

 SourceMac:
 00:aa:bb:cc:dd:ee

 Dest Mac :
 00:11:22:33:44:55

 BSSID:
 00:11:22:33:44:55

BandWidth: BW_20

PayLoadLength: 800 Bytes (not include MAC Header)

The calibration parameter is decimal system by default

The calibrated parameter can be write into Chip Efuse or Flash, but there is time limit for Efuse writing.

After completing write, is it Efuse or Flash for 7681 to use indiscriminately in the Normal Mode? It can be decided by user in the MT7681 code(in the code, there is only one global variable gCaliFrEufse, [0:Flash, 1:Efuse])

After every AT# command, it must end with Carriage return

2.1.2 Calibrate the offset frequency by default.bin (XTAL trim)

```
Step1: send "AT#ATECAL-S1"
                                       //ATE process Tx Mode Start
                                                                    [0:Stop, 1:Tx, 2:Rx]
Step2: send "AT#ATECAL-m1"
                                        //TX Mode 11g
                                                                    [0:CCK, 1:OFDM, 2:HT Mixed, 3:HT Green]
                                                                    [See: Table-1]
Step3: send "AT#ATECAL-c5"
                                       //TXMCS Max rate
Step4: send "AT#ATECAL-b0"
                                       //Bandwidth 20M
                                                                    [0:BW20,
                                                                               1:BW40]
Step5 : send "AT#ATECAL -C1"
                                        //channel 1
                                                                    [1~14]
Step6: send "AT#ATECAL –g0"
                                        //TXGI long guard interval
                                                                   [0:ShortGI, 1:FullGI]
Step7: send "AT#ATECAL –f65"
                                       //TX Freq Offset (XTAL)
                                                                    [0~256]
Step8: send "AT#ATECAL -p30"
                                        //TXpower (refer to value in default.bin) [0~39]
Step9: send "AT#ATECAL -n100000"
                                       //ATE TX Count
                                                                    [0~4294967295]
Step10: send "AT#ATECAL -r1000"
                                       //ATE TX Frame Speed(uint:1ms)[0~4294967295]
Step11 : send "AT#ATECAL -I800"
                                       //ATE TX PayloadLength
                                                                     [00800]
```

If you set -b1, it means entry the <u>Bandwidth 40M mode</u>, while the -C means Center Channel You can also input the following command (notice the order must be kept)

AT#ATECAL -S1 -m1 -c5 -b0 -C1 -g0 -f65 -p30 -n10000 -r1000 -l800

Adjust the value of XTALL offset in red color, make the Feq Err(kHz) is in the -5~5

If you want to stop the adjustment, you can input the following AT Command

Step1: send "AT#ATECAL –S0" //ATE process End

Mode	BandWidth (-b)				M	cs			
(0) CCK	0	0	1	2	3	8	9	10	11
	0								
(1) OFDM	#1(Duplicate mode)	0	1	2	3	4	5	6	7
(2) HTMIX	0 / 1	0	1	2	3	4	5	6	7
(3) HT GreenFiled	0 / 1	0	1	2	3	4	5	6	7

Table-1

2.1.3 Test the TXpower of Channelx

```
Step1: send "AT#ATECAL-S1"
                                       //ATE process Tx Mode Start
                                                                    [0:Stop, 1:Tx, 2:Rx]
Step2: send "AT#ATECAL-m1"
                                        //TX Mode 11g
                                                                    [0:CCK, 1:OFDM, 2:HT Mixed, 3:HT Green]
Step3: send "AT#ATECAL-c5"
                                       //TXMCS Max rate
                                                                    [See: Table-1]
Step4: send "AT#ATECAL-b0"
                                       //Bandwidth 20M
                                                                    [0:BW20,
                                                                               1:BW40]
Step5 : send "AT#ATECAL -Cx"
                                       //channel 1
                                                                    [1~14]
Step6: send "AT#ATECAL –g0"
                                        //TXGI long guard interval
                                                                    [0:ShortGI, 1:FullGI]
Step7: send "AT#ATECAL -f65"
                                       //TX Freq Offset (XTAL)
                                                                    [0~256]
Step8: send "AT#ATECAL -p30"
                                        //TXpower (refer to value in default.bin) [0~39]
Step9: send "AT#ATECAL -n100000"
                                        //ATE TX Count
                                                                    [0~4294967295]
Step10: send "AT#ATECAL -r1000"
                                       //ATE TX Frame Speed(uint:1ms)[0~4294967295]
Step11 : send "AT#ATECAL –I800"
                                       //ATE TX PayloadLength
                                                                     [0^800]
```

You can also input the following command (notice the order must be kept)

```
AT#ATECAL -S1 -m1 -c5 -b0 -Cx -g0 -f65 -p30 -n10000 -r1000 -l800
```

D0h is OFDM 54M target power. Unit is 0.5 dBm. e.g. For target power 16 dBm, set D0h as 0x20

```
Set the channel x, adjust the value of TXpower according to customers' requirements reference values: AVg Pow (dBm) between target power -1~target power +1, evm:<-25

11n=11g-1 evm<-28
```

After adjust the channel x, record the adjusting value, and then adjust the channel x+1

After adjust the whole channel, write the value into Chip Efuse using the following ATE Command(the red value is the channle TxPower for adjusting)

2.1.4 Save the calibration parameter(take Tx Power for an example)

2.1.4.1.1 Write the TXPOWER into CHIP EFUSE from the position of 0X52~0X5A

```
AT#EFUSE –s82 –v17 //set Decimal Value:17 to Efuse offset 0x52(Dec:82)

AT#EFUSE –s90 –v20 //set Decimal Value:20 to Efuse offset 0x5A(Dec:90)
```

Read the value of what is wrote into the Efuse TxPower by using the following command

AT#EFUSE -r82 //read TxPower 0x52(Hex:82) value on Efuse

2.1.4.1.2 Write the TXPOWER intoFLASH EEPROM BLOCK from the position of 0X52~0X5A

AT#FLASH -s94290 -v17 //set Decimal Value:17 to Flash EEPROM offset 0x52(Dec:82)

0 0 0 0

AT#FLASH -s94298 -v20 //set Decimal Value:20 to Flash EEPROM offset 0x5A(Dec:90)

Read the value of TxPower which is wrote into the Flash EEPROM Block by using the following command

AT#FLASH -r94290 //read TxPower 0x52(Dec:82) value on Flash EEPROM Block

The method of calculating the Flash –s –r parameter , for example, the above 94290 : 0x17000 is the address of FLASH EEPROM (Refer to FlashLayout table),0x52 is the TxPower address in EEPROM Rlock

0x17000 + 0x52 = 0x17052 = 94290 (Decimal format)

- 2.2 The step of RX Mo de Calibration
- 2.2.1 Preparation of Rx Calibration

For testing purpose, There will be difference in the Source MAC of Calibration Rx, Tx mode.

a: TX Test Mode

Source MAC $_{is}$: 00:aa:bb:cc:dd:ee dest Mac $_{is}$: 00:11:22:33:44:55

b: RX Test Mode

Source MAC is: 00:11:22:33:44:55

In the 7681 Rx Test, it need to notice the set of Dest Mac, it should be 00:11:22:33:44:55(SourceMac of 7681 Rx Mode), so that the unicast packet which not for me is not dropped by MT7681.

2.2.2 The method of RX Test

```
Step1: AT#ATECAL -S2 -b0 -C6 -t2000
```

[-S2: start RxMode, -b0:Bandwidth20M -C6:switch to Channel 6, -t2000:count RxFrame in two seconds]

-t ,default is 1000 (unit:1ms)

Step2: printed by every 2s

LOG SM=0, Sub=0

TEPeriodicExec: Rx cnt = (U2M : 2 /ToTal:2)
(Other : 2 /ToTal:2)

(Mgmt/Cntl: 0 /Total:0)

AvgRssi0= -69

the above indicate respectively:

[the number of unicast packet received in 2 seconds / the total received unicast packet]

[the number of B/M/NU packet received in 2 seconds / the total received B/M/NU packet]

[the t number of management/control packet received in 2 seconds/ the total received management/control packet] (B/M/NU =

BroadCast+Multicast+NotToMeUnicast)

ATEPeriodicExec: RxU2M AvgRssi0=-37,

it means RSSI average for the received total Packet.

Step3: **Stop** Rx Mode: AT#ATECAL –S0

3 The method of adjusting IWPRIV RAO

3.1 The step of TX Mode calibration

3.1.1 Enter into Calibration Mode

Step1: Power on MT7681

Step2: After the [RTask]*** is printed, input 'iwpriv ra0 set' by serial port, and then the MT7681 will print Enter

into Calibration Mode', enter the Calibration mode

Remark: in the adjusting, the following parameters are used by default.

 SourceMac:
 00:aa:bb:cc:dd:ee

 Dest Mac :
 00:11:22:33:44:55

 BSSID:
 00:11:22:33:44:55

BandWidth: BW_20

PayLoadLength: 800 Bytes (not include MAC Header)

The adjusting parameter is decimal format by default

The adjusted parameter can be write into Chip Efuse or Flash, but there is time limit for Efuse writing.

After completing write, is it Efuse or Flack for 7681 to use indiscriminately in the Normal Mode? It can be decided by customer in the M 7681 colle(in the code, there is a global variable **gCaliFrEufse**, [0:Flash, 1:Efuse])

After every AT# command, it must end with Carriage return

3.1.2 Calibrate the offset frequency by default.bin(XTAL trim)

iwpriv ra0 set ATE=ATESTAR //ATE process Start

iwpriv ra0 set ATECHANNEL //channel 1 [1~14

iwpriv ra0 set ATETX ODE=0 //TX Mode 11g [0:CCK, 1:OFDM, 2:HT Mixed, 3:HT Green]

wpriv ra0 set ATETXMCS //TXMCS Max rate [See: Table-1]

iwpriv ra0 set TFTX 9=0 //Bandwidth 20M [0:BW20, 1:BW40] iwpriv ra0 set ATEXGI=0 //TXGI long guard interval [0:ShortGI, 1:FullGI]

wpriv ra0 set ATETXLEN=800 //ATE TX PayloadLength [0~800] wpriv ra0 set ATETXFREQOFFSET=95 //TX Freq Offset (XTAL) [0~256]

iwpher 0 set ATETXCNT=1000 //ATE TX Count [0~4294967295] iwj riv ra0 set ATETXPOW0=0 //TXpower (refer to value in default.bin) [0~39]

Twpriv ra0 set ATE=TXFRAME

you set -b1, it means entry the Bandwidth 40M mode, while the -C means Center Channel

Adjust the value of XTALL offset in red color, make the Feq Err(kHz) is in the -5~5 If you want to stop the adjustment, you can input the following AT Command

iwpriv ra0 set ATE=ATESTOP //ATE process End

Mode	BandWidth (-b)				M	cs			
(0) CCK	0	0	1	2	3	8	9	10	11
	0								
(1) OFDM	L1(Duplicate mode)	0	1	2	3	4	5	6	7
(2) HTMIX	0 / 1	0	1	2	3	4	5	6	7
(3) HT GreenFiled	0 / 1	0	1	2	3	4	5	6	7

Table-1

3.1.3 Test the TXpower of Channelx

iwpriv ra0 set ATE=ATESTART //ATE process Start iwpriv ra0 set ATECHANNEL=1 //channel 1 [1~14] iwpriv ra0 set ATETXMODE=0 //TX Mode 11g [0:CCK, 1:OFDM, 2:HT Mixed iwpriv ra0 set ATETXMCS=1 //TXMCS Max rate [See: Table-1] iwpriv ra0 set ATETXBW=0 //Bandwidth 20M [0:BW20, 1:BW40 iwpriv ra0 set ATETXGI=0 //TXGI long guard interval [0:ShortGI, iwpriv ra0 set ATETXLEN=800 //ATE TX PayloadLength [0~800] //TX Freq Offset (XTAL) iwpriv ra0 set ATETXFREQOFFSET=95 iwpriv ra0 set ATETXCNT=1000 //ATE TX Count iwpriv ra0 set ATETXPOW0=0 //TXpower (refer to default.) iwpriv ra0 set ATE=TXFRAME

D0h is OFDM 54M target power. Unit is 0.5 dBm. e.g. For target power 16 dBm, set D0h as 0x20

Set the channel x, adjust the value of TXpower according to the command of customer

Reference value : AVg Pow (dBm) 在 targ t powe -1~target power +1, evm:<-25
11n=11g-1 evm<-28

After the channel x calibration, ecord the adjusting value, and then adjust the channel x+1

After the whole channel call pratio), write the value into Chip Efuse using the following ATE Comm (d) (the red value is the channle TxPower for adjusting)

3.1.4 Save the calibration parameter(take Tx Power for an example)

3.1.4.1.1 Write the TXPOWER into CHIP EFUSE from the position of 0X52~0X5A

iwp ra0 set e2p 0x52=0x11 //set Decimal Value:17 to Efuse offset 0x52

iwpriv ra0 set e2p 0x5A=0x14 //set Decimal Value:20 to Efuse offset 0x5A

Read the value of what is wrote into the Efuse TxPower by using the following command iwpriv ra0 set e2p 0x52 //read TxPower 0x52 value on Efuse

3.1.4.1.2 Write the TXPOWER into FLASH EEPROM BLOCK from the position of 0X52~0X5A

iwpriv ra0 set flash 0x17052=0x11 //set Decimal Value:17 to Flash EEPROM offset 0x52(Dec:82)

. . . .

Read the value of TxPower which is wrote into the Flash EEPROM Block by the following command.

iwpriv ra0 set flash 0x17052

//read TxPower 0x52(Dec:82) value on Flash EEPROM Block

0x17000 is the address of FLASH EEPROM (Refer to FlashLayout table),0x52 is the TxPower address in EEPROM Block.

0x17000 + 0x52 = 0x17052

3.2 The process of Rx Mode calibration

3.2.1 Preparation of Rx calibration

For testing purpose, There will be difference in the Source MAC of Calibration Rx, Tx mode

a: TX Test Mode

Source MAC i_S : 00:aa:bb:cc:dd:ee dest Mac i_S : 00:11:22:33:44:55

b: RX Test Mode

Source MAC is: 00:11:22:33:44:55

In the 7681 Rx Test, it need to notice the set of Dest Mac, it should be 00:11:22:33: 4:55 ourceMac of 7681 Rx Mode), so that the unicast packet which not for me is not dropped by MT7681.

3.2.2 Method of RX Test

iwpriv ra0 set ATE=ATESTART

iwpriv ra0 set ATECHANNEL=1

iwpriv ra0 set ATETXMODE=0

iwpriv ra0 set ATETXMCS=0

iwpriv ra0 set ATETXBW=0

iwpriv ra0 set ATETXGI=0

iwpriv ra0 set ATETXFREQOFFSET=65

iwpriv ra0 set ATE=RXFRAME

iwpriv ra0 set ResetCounter=1

/*Clean Counter*/

The corresponding Rx statistic will be printed after the following command is entered at every time.

iwpriv ra0 stat

Rx other Data

Rx success	= 17
Rx with CAC	= 12
Rx clap due to out of resource	= 0
Rx duplicate frame	= 0
alse CCA (total)	= 1112
False CCA (one second)	= 212
RSSI	= -55
RSSI(U2M average)	= -60
Rx U2M	= 0

= 17

 $Rx \ others(Mgmt+Cntl) &= 0 \\ Rx \ U2M \ (one \ second) &= 0 \\ Rx \ other \ Data \ (one \ second) &= 1 \\ Rx \ others(Mgmt+Cntl)(one \ second) &= 0 \\$

If you want to stop it, you can input the following AT Command

iwpriv ra0 set ATE=ATESTOP //ATE process End

