Birth Weights

Maternal Smoker	Maternal Pregnancy Weight	Maternal Height	Maternal Age	Gestational Days	Birth Weight	Out[2]:
False	100	62	27	284	120	
False	135	64	33	282	113	
True	115	64	28	279	128	
True	125	67	23	282	108	
False	93	62	25	286	136	
False	178	62	33	244	138	
False	140	65	23	245	132	
False	125	62	25	289	120	
True	136	66	30	299	143	
False	120	68	27	351	140	

... (1164 rows omitted)

Out[3]:	Birth Weight	Maternal Smoker
---------	--------------	-----------------

• • • • • • • • • • • • • • • • • • • •	_
120 False	
113 False	
128 True	
108 True	
136 False	
138 False	
132 False	
120 False	
143 True	
140 False	

... (1164 rows omitted)

Out[4]: Maternal Smoker count

False 715

C:\Users\schoend\Anaconda3\lib\site-packages\datascience\tables.py:920: Vis ibleDeprecationWarning: Creating an ndarray from ragged nested sequences (w hich is a list-or-tuple of lists-or-tuples-or ndarrays with different lengt hs or shapes) is deprecated. If you meant to do this, you must specify 'dty pe=object' when creating the ndarray.

values = np.array(tuple(values))


```
In [6]:
             means table = smoking and birthweight.group('Maternal Smoker', np.average)
              means table
     Out[6]:
              Maternal Smoker Birth Weight average
                                        123.085
                        False
                        True
                                        113.819
 In [7]:
           ▶ def diff_between_group_means(tbl):
                  means = tbl.group('Maternal Smoker', np.average)
                  return means.column(1).item(0) - means.column(1).item(1)
             observed diff = diff between group means(smoking and birthweight)
 In [8]:
              observed_diff
     Out[8]: 9.266142572024918
 In [9]:
           M
             # PLAN:
              # Shuffle birth weights
             # Assign some to group A and some to group B
             # Find difference between averages of the two groups (statistic)
              # Repeat
             weights = smoking_and_birthweight.select('Birth Weight')
In [10]:
              weights
    Out[10]:
               Birth Weight
                      120
                      113
                      128
                      108
                      136
                      138
                      132
                      120
                      143
                      140
              ... (1164 rows omitted)
```

```
smoking = smoking_and_birthweight.select('Maternal Smoker')
In [11]:
              smoking
   Out[11]:
              Maternal Smoker
                        False
                        False
                        True
                        True
                        False
                        False
                        False
                        False
                        True
                        False
              ... (1164 rows omitted)
           # Shuffle birth weights
In [12]:
             weights = smoking_and_birthweight.select('Birth Weight')
In [13]:
          # Shuffle birth weights
              shuffled_weights = weights.sample(with_replacement=False).column(0)
              shuffled weights
   Out[13]: array([138, 167, 102, ..., 131, 121, 112])
```

```
In [14]:  # Assign some to group A and some to group B
simulated = smoking.with_column('Shuffled weights', shuffled_weights)
simulated
```

Out[14]: Maternal Smoker Shuffled weights

False	138
False	167
True	102
True	77
False	78
False	143
False	152
False	115
True	121
False	139

... (1164 rows omitted)

```
In [15]: # Find difference between averages of the two groups (statistic)
simulated_diff = diff_between_group_means(simulated)
simulated_diff
```

Out[15]: 0.995539101421457

```
Out[16]: array([ 2.24042232, -0.51763792, -1.5550406 , ..., 0.09764919, 0.423179 , 1.02057986])
```

In [17]: ► Table().with_column('Difference between group means', diffs).hist(bins=20)
plots.scatter(observed_diff, 0, color = 'red', s = 40);

Deflategate

```
Team Blakeman Prioleau
Patriots
                11.5
                           11.8
Patriots
              10.85
                           11.2
Patriots
              11.15
                           11.5
Patriots
               10.7
                            11
Patriots
                11.1
                         11.45
Patriots
                11.6
                         11.95
Patriots
              11.85
                          12.3
Patriots
                11.1
                         11.55
Patriots
              10.95
                         11.35
Patriots
                10.5
                           10.9
Patriots
                10.9
                         11.35
  Colts
                12.7
                         12.35
```

Team	Combined
Patriots	11.65
Patriots	11.025
Patriots	11.325
Patriots	10.85
Patriots	11.275
Patriots	11.775
Patriots	12.075
Patriots	11.325
Patriots	11.15
Patriots	10.7
Patriots	11.125
Colts	12.525
Colts	12.525
Colts	12.725
Colts	12.35

```
In [20]:
           \mathbb{N} np.ones(5)
    Out[20]: array([1., 1., 1., 1., 1.])
              initial_pressure = np.append(12.5 * np.ones(11), 13 * np.ones(4))
In [21]:
           initial_pressure
    Out[21]: array([12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
                      13. , 13. , 13. , 13. ])
           drop_values = initial_pressure - football.column(1)
In [22]:
In [23]:
              football = football.drop('Combined').with_column('Drop', drop_values)
In [24]:
              football.show()
                 Team
                       Drop
               Patriots
                        0.85
               Patriots
                      1.475
               Patriots
                      1.175
               Patriots
                        1.65
               Patriots
                      1.225
               Patriots
                      0.725
               Patriots 0.425
               Patriots
                      1.175
               Patriots
                        1.35
               Patriots
                         1.8
               Patriots
                      1.375
                 Colts 0.475
                 Colts
                      0.475
                 Colts
                      0.275
                 Colts
                        0.65
In [25]:
              means = football.group('Team', np.average)
              means
    Out[25]:
                 Team Drop average
                 Colts
                            0.46875
               Patriots
                            1.20227
```

```
In [26]:
             observed difference = means.column(1).item(0) - means.column(1).item(1)
             observed difference
    Out[26]: -0.733522727272728
In [27]:
          ▶ def diff_between_means(tbl):
                 means = tbl.group('Team', np.average).column(1)
                 return means.item(0) - means.item(1)
In [28]:
          drops = football.select('Drop')
             shuffled drops = drops.sample(with replacement = False).column(∅)
In [29]:
             shuffled drops
    Out[29]: array([1.175, 1.8 , 0.275, 0.65 , 0.725, 1.65 , 0.425, 0.475, 1.35 ,
                     1.225, 1.375, 1.475, 0.85, 1.175, 0.475])
In [30]:
             simulated football = football.with column('Drop', shuffled drops)
             simulated football.show(3)
                Team
                     Drop
              Patriots
                     1.175
              Patriots
                       1.8
              Patriots 0.275
             ... (12 rows omitted)

    diff between means(simulated football)

In [31]:
    Out[31]: -0.017613636363636553
In [32]:

    differences = make array()

             for i in np.arange(5000):
                 shuffled_drops = drops.sample(with_replacement = False).column(0)
                 simulated_football = football.with_column('Drop', shuffled_drops)
                 new diff = diff between_means(simulated_football)
                 differences = np.append(differences, new diff)
```

In [33]: N Table().with_column('Difference Between Means', differences).hist()
plots.scatter(observed_difference, 0, color='red', s=40);


```
In [34]: ▶ np.average(differences <= observed_difference)</pre>
```

Out[34]: 0.0012

Analyzing RCTs

```
In [36]:  bta = Table.read_table('bta.csv')
bta.show()
```

Group	Result
Control	1
Control	1
Control	0
Treatment	1
Treatment	0

```
In [37]: bta = Table.read_table('bta.csv')
bta.show()
```

Group	Result
Control	1
Control	1
Control	0
Treatment	1
Treatment	0

▶ bta.group('Group', sum) In [38]: Out[38]: Group Result sum Control 2 Treatment 9 ▶ bta.group('Group', np.average) In [39]: Out[39]: Group Result average 0.125 Control Treatment 0.6

Group	Outcome if assigned treatment	Outcome if assigned control
Control	Unknown	1
Control	Unknown	1
Control	Unknown	0
Treatment	1	Unknown
Treatment	0	Unknown

```
▶ bta.group('Group', np.average).column(1)
In [41]:
   Out[41]: array([0.125, 0.6])
         ▶ abs(0.125 - 0.6)
In [42]:
   Out[42]: 0.475
In [43]:

    def distance between group proportions(tbl):

                 proportions = tbl.group('Group', np.average).column(1)
                 return abs(proportions.item(1) - proportions.item(0))
          ▶ observed distance = distance between group proportions(bta)
In [44]:
             observed distance
   Out[44]: 0.475
In [45]:
          ▶ labels = bta.select('Group')
             results = bta.select('Result')
In [46]:
         # Repeat
             distances = make_array()
             for i in np.arange(2000):
                 shuffled results = results.sample(with replacement=False).column(0)
                 simulated = labels.with_column('Shuffled results', shuffled_results)
                 distance = distance between group proportions(simulated)
                 distances = np.append(distances, distance)
             distances
                                                      , ..., 0.0875
   Out[46]: array([0.04166667, 0.0875
                                          , 0.3
                                                                       , 0.17083333,
                    0.04166667])
```


In [48]: ▶ | np.average(distances >= observed_distance)

Out[48]: 0.01

In []: ▶