

ADDENDUM TO IMPINJ INC TEST REPORT FC06-010I

FOR THE

ANTENNA, IPJ-A0402-USA

FCC PART 15 SUBPART C SECTION 15.247(d)

TESTING

DATE OF ISSUE: SEPTEMBER 25, 2008

PREPARED FOR: PREPARED BY:

Impinj Inc
701 N. 34th Street
CKC Laboratories, Inc.
Seattle, WA 98103
Seattle, WA 98103
Mariposa, CA 95338

P.O. No.: 100400 Date of test: September 18-23, 2008

W.O. No.: 88581

Report No.: FC06-010J

This report contains a total of 46 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

:
5
6
6
6

ADMINISTRATIVE INFORMATION

DATE OF TEST: September 18-23, 2008 **DATE OF RECEIPT:** September 18, 2008

REPRESENTATIVE: Dan Apone

MANUFACTURER:

Impinj Inc 701 N. 34th Street Seattle, WA 98103

TEST METHOD: ANSI C63.4 (2003)

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

TEST LOCATION:

CKC Laboratories, Inc.

22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Donald Jones, Senior EMC Engineer / Lab

Manager

Jeffrey A. Gilbert, EMC Engineer

PURPOSE OF TEST:

Original Report: To demonstrate the compliance of the Speedway Reader, IPJ-R1000, with the requirements for FCC part 15 Subpart B sections 15.107 & 15.109 Class B, Subpart C Sections 15.207, 15.209 &15.247 and RSS-210 devices.

Addendum A: To clarify the plot on page 21 with no new testing.

Addendum B: To demonstrate the compliance of the RFID Reader, IPJ-R1000, with partial retesting for FCC Part 15 Subpart C Sections 15.209 and 15.247 after component changes in the EUT.

Addendum C is to add limit lines to the band edge plots and revise the frequency range on page 5.

Addendum D: To demonstrate the compliance of the RFID Reader Antenna (Brickyard), IPJ-A0400-USA; RFID Reader Antenna (Guardwall), IPJ-A0401-USA and RFID Reader Antenna (Mini-Guardrail), IPJ-A0301-USA with the requirements for FCC Part 15 Subpart C Sections 15.209 & 15.247 devices with testing of new antennas.

Addendum E: To correct sequence 7 on page 12 and sequence 6 on page 18 with no new testing. **Addendum F:** To demonstrate the compliance of the RFID Reader Core, IPJ-R1000-USA-0-01-01 with the requirements for FCC Part 15 Subpart C Section 15.247 devices. This EUT was retested with a cable attached. It will be professionally installed and the power output was measured at the end of the cable. Additional data from FC06-010A (Number of Hopping Channels, Dwell Time and Average Time of Occupancy) is included in this report because these sections were not affected by the re-testing.

Addendum G: To perform partial testing to demonstrate the RFID Reader Core, IPJ-R1000-USA1M still complies with the requirements for FCC Part 15 Subpart C Section 15.247 for: 1) hopping channel bandwidth and band-edge spurious for modify transmit data format (highest data rate mode only) and 2) reduced power channels. Both due to firmware changes only.

Addendum H: To correct the name of the test on page 29 and the units on page 30 with no new testing.

Addendum I: To perform new testing of the IPJ-R1000-USA1M with the Threshold Antenna to show compliance with the requirements of FCC Part 15 Subpart C Sections 15.209 and 15.247(d). **Addendum J:** To perform testing of the IPJ-R1000-USA1M with the Antenna, IPJ-A0402-USA with the requirements for FCC Part 15 Subpart C Section 15.247(d).

Page 4 of 46 Report No: FC06-010J

SUMMARY OF RESULTS

Test	Specification/Method	Results
Radiated Emissions	FCC 15.247(d)	Pass
Band Edge	FCC 15.247(d)	Pass
20dBc	FCC 15.247(d)	Pass
Site File No.	FCC Site No.318736	
	Industry of Canada File No. IC 4653	

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

Page 5 of 46 Report No: FC06-010J

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Antenna RFID Transceiver

Manuf: Impinj, Inc. Manuf: Impinj, Inc.

Model: IPJ-A0402-USA Model: IPJ-R1000-USAM1

Serial: NA Serial: 40307140716 FCC ID: TWYIPJR1000

AC/DC Power Supply

Manuf: CUI, Inc.

Model: DSA-60W-20

Serial: NA

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 6 of 46 Report No: FC06-010J

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS						
	Meter reading	$(dB\mu V)$				
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	$(dB\mu V/m)$				

Page 7 of 46 Report No: FC06-010J

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 8 of 46 Report No: FC06-010J

FCC 15.247(d) –RADIATED SPURIOUS EMISSIONS

Test Setup Photos

Page 9 of 46 Report No: FC06-010J

Page 12 of 46 Report No: FC06-010J

Test Data

Worst Case Radiated Emissions Plots

Test Equipment and Test Conditions are listed in the following data sheets.

Page 13 of 46 Report No: FC06-010J

Page 14 of 46 Report No: FC06-010J

Radiated Emissions Data

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: **Impinj Inc**

Specification: 15.247(d)/15.209/15.205

Work Order #: 88581 Date: 9/18/2008 Test Type: **Radiated Scan** Time: 10:28:34 Sequence#: 7

Equipment: Antenna

Tested By: Jeff Gilbert Manufacturer: Impinj, Inc. Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

1 1					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Filter		05/01/2008	05/01/2010	AN02750	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a	
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716	
AC/DC Power Supply	CUL Inc.	DSA-60W-20	n/a	

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 1 - 2 GHz. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on low channel, continuous TX (902.75 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Meas	urement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distance	e: 1 Meter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	1805.499M	27.6	+26.5	+3.7	+2.2	+0.4	-10.0	50.4	54.0	-3.6	Horiz
	Ave						342				115
/	1805.499M	31.3	+26.5	+3.7	+2.2	+0.4	-10.0	54.1	54.0	+0.1	Horiz
							342				115
3	1942.649M	22.7	+27.2	+3.8	+2.3	+0.3	-10.0	46.3	54.0	-7.7	Horiz
											100
	1915.005M	22.6	+27.1	+3.8	+2.3	+0.4	-10.0	46.2	54.0	-7.8	Horiz
											100
5	1972.356M	22.3	+27.4	+3.9	+2.3	+0.3	-10.0	46.2	54.0	-7.8	Horiz
											100
6	5 1995.049M	22.2	+27.5	+3.9	+2.3	+0.3	-10.0	46.2	54.0	-7.8	Horiz
											100

Page 15 of 46 Report No: FC06-010J

10												
10	7	1981.433M	22.2	+27.4	+3.9	+2.3	+0.3	-10.0	46.1	54.0	-7.9	Horiz 100
10 1878.696M 22.4 +26.9 +3.8 +2.2 +0.4 -10.0 45.7 54.0 -8.3 Hori Idology	8	1881.172M	22.7	+26.9	+3.8	+2.2	+0.4	-10.0	46.0	54.0	-8.0	Horiz 100
10 11 1820.932M 22.6 +26.6 +3.7 +2.2 +0.4 -10.0 45.5 54.0 -8.5 Hori 10 12 1856.416M 22.3 +26.8 +3.8 +2.2 +0.4 -10.0 45.5 54.0 -8.5 Hori 10 13 1815.156M 22.3 +26.6 +3.7 +2.2 +0.4 -10.0 45.2 54.0 -8.8 Hori 10 10 14 1842.387M 22.1 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -8.9 Hori 10 10 15 1847.338M 22.1 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -8.9 Hori 10 10 16 1838.674M 22.0 +26.7 +3.7 +2.2 +0.4 -10.0 45.0 54.0 -9.0 Hori 10 10 17 1657.543M 22.9 +25.7 +3.6 +2.1 +0.5 -10.0 44.8 54.0 -9.2 Hori 10 10 18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 10 19 1743.363M 22.3 +26.2 +3.6 +2.1 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 10 10 10 10 10 10 10	9	1887.360M	22.7	+26.9	+3.8	+2.2	+0.4	-10.0	46.0	54.0	-8.0	Horiz 100
11 1820.932M 22.6 +26.6 +3.7 +2.2 +0.4 -10.0 45.5 54.0 -8.5 Hori 10 12 1856.416M 22.3 +26.8 +3.8 +2.2 +0.4 -10.0 45.5 54.0 -8.5 Hori 10 13 1815.156M 22.3 +26.6 +3.7 +2.2 +0.4 -10.0 45.2 54.0 -8.8 Hori 10 14 1842.387M 22.1 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -8.9 Hori 10 15 1847.338M 22.1 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -8.9 Hori 10 16 1838.674M 22.0 +26.7 +3.7 +2.2 +0.4 -10.0 45.0 54.0 -9.0 Hori 10 17 1657.543M 22.9 +25.7 +3.6 +2.1 +0.5 -10.0 44.8 54.0 -9.2 Hori 10 18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -1	10	1878.696M	22.4	+26.9	+3.8	+2.2	+0.4	-10.0	45.7	54.0	-8.3	Horiz 100
12 1856.416M 22.3 +26.8 +3.8 +2.2 +0.4 -10.0 45.5 54.0 -8.5 Hori 10 13 1815.156M 22.3 +26.6 +3.7 +2.2 +0.4 -10.0 45.2 54.0 -8.8 Hori 10 14 1842.387M 22.1 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -8.9 Hori 10 15 1847.338M 22.1 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -8.9 Hori 10 16 1838.674M 22.0 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -9.0 Hori 10 17 1657.543M 22.9 +25.7 +3.6 +2.1 +0.5 -10.0 44.8 54.0 -9.2 Hori 10 18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 20 1733.048M 22.3 +26.2 +3.6 +2.1 +0.5 -1	11	1820.932M	22.6	+26.6	+3.7	+2.2	+0.4	-10.0	45.5	54.0	-8.5	Horiz 100
10	12	1856.416M	22.3	+26.8	+3.8	+2.2	+0.4	-10.0	45.5	54.0	-8.5	Horiz 100
10 15 1847.338M 22.1 +26.7 +3.7 +2.2 +0.4 -10.0 45.1 54.0 -8.9 Hori 100 16 1838.674M 22.0 +26.7 +3.7 +2.2 +0.4 -10.0 45.0 54.0 -9.0 Hori 100 17 1657.543M 22.9 +25.7 +3.6 +2.1 +0.5 -10.0 44.8 54.0 -9.2 Hori 100 18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -10.0 44.7 54.0 -9.3 Hori 100 19 1743.363M 22.3 +26.2 +3.6 +2.1 +0.5 -10.0 44.7 54.0 -9.3 Hori 100 20 1733.048M 22.3 +26.1 +3.6 +2.1 +0.5 -10.0 44.6 54.0 -9.4 Hori 100 21 1749.965M 22.0 +26.2 +3.7 +2.2 +0.5 -10.0 44.6 54.0 -9.4 Hori 100 22 1000.000M 22.7 +24.4 +2.9 +1.6 +2.7 -10.0 44.3 54.0 -9.7 Hori 100 23 1003.379M 22.8 +24.4 +2.9 +1.6 +2.7 -10.0 44.3 54.0 -9.7 Hori 100 24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.6 -10.0 44.3 54.0 -9.7 Hori 100 24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.6 -10.0 44.3 54.0 -9.7 Hori 100	13	1815.156M	22.3	+26.6	+3.7	+2.2	+0.4	-10.0	45.2	54.0	-8.8	Horiz 100
10 16 1838.674M 22.0 +26.7 +3.7 +2.2 +0.4 -10.0 45.0 54.0 -9.0 Hori 10 17 1657.543M 22.9 +25.7 +3.6 +2.1 +0.5 -10.0 44.8 54.0 -9.2 Hori 10 18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 19 1743.363M 22.3 +26.2 +3.6 +2.1 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 20 1733.048M 22.3 +26.1 +3.6 +2.1 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 21 1749.965M 22.0 +26.2 +3.7 +2.2 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 22 1000.000M 22.7 +24.4 +2.9 +1.6 +2.7 -10.0 44.3 54.0 -9.7 Hori 10 23 1003.379M 22.8 +24.4 +2.9 +1.6 +2.6 -10.0 44.3 54.0 -9.7 Hori 10 24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.6 -10.0 43.8 54.0 -9.7 Hori 10	14	1842.387M	22.1	+26.7	+3.7	+2.2	+0.4	-10.0	45.1	54.0	-8.9	Horiz 100
10 17 1657.543M 22.9 +25.7 +3.6 +2.1 +0.5 -10.0 44.8 54.0 -9.2 Hori 10 18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 19 1743.363M 22.3 +26.2 +3.6 +2.1 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 20 1733.048M 22.3 +26.1 +3.6 +2.1 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 21 1749.965M 22.0 +26.2 +3.7 +2.2 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 22 1000.000M 22.7 +24.4 +2.9 +1.6 +2.7 -10.0 44.3 54.0 -9.7 Hori 10 23 1003.379M 22.8 +24.4 +2.9 +1.6 +2.6 -10.0 44.3 54.0 -9.7 Hori 10 24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.4 -10.0 43.8 54.0 -10.2 Hori	15	1847.338M	22.1	+26.7	+3.7	+2.2	+0.4	-10.0	45.1	54.0	-8.9	Horiz 100
17 1657.543M 22.9 +25.7 +3.6 +2.1 +0.5 -10.0 44.8 54.0 -9.2 Hori 10 18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 19 1743.363M 22.3 +26.2 +3.6 +2.1 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 20 1733.048M 22.3 +26.1 +3.6 +2.1 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 21 1749.965M 22.0 +26.2 +3.7 +2.2 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 22 1000.000M 22.7 +24.4 +2.9 +1.6 +2.7 -10.0 44.3 54.0 -9.7 Hori 10 23 1003.379M 22.8 +24.4 +2.9 +1.6 +2.6 -10.0 44.3 54.0 -9.7 Hori 10 24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.4 -1	16	1838.674M	22.0	+26.7	+3.7	+2.2	+0.4	-10.0	45.0	54.0	-9.0	Horiz 100
18 1614.633M 23.3 +25.4 +3.5 +2.0 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 19 1743.363M 22.3 +26.2 +3.6 +2.1 +0.5 -10.0 44.7 54.0 -9.3 Hori 10 20 1733.048M 22.3 +26.1 +3.6 +2.1 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 21 1749.965M 22.0 +26.2 +3.7 +2.2 +0.5 -10.0 44.6 54.0 -9.4 Hori 10 22 1000.000M 22.7 +24.4 +2.9 +1.6 +2.7 -10.0 44.3 54.0 -9.7 Hori 10 23 1003.379M 22.8 +24.4 +2.9 +1.6 +2.6 -10.0 44.3 54.0 -9.7 Hori 10 24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.4 -10.0 43.8 54.0 -10.2 Hori 10	17	1657.543M	22.9	+25.7	+3.6	+2.1	+0.5	-10.0	44.8	54.0	-9.2	Horiz 100
20 1733.048M 22.3 +26.1 +3.6 +2.1 +0.5 -10.0 44.6 54.0 -9.4 Hori 10.0	18	1614.633M	23.3	+25.4	+3.5	+2.0	+0.5	-10.0	44.7	54.0	-9.3	Horiz 100
20 1733.048M 22.3 +26.1 +3.6 +2.1 +0.5 -10.0 44.6 54.0 -9.4 Hori 1000	19	1743.363M	22.3	+26.2	+3.6	+2.1	+0.5	-10.0	44.7	54.0	-9.3	Horiz 100
21 1749.965M 22.0 +26.2 +3.7 +2.2 +0.5 -10.0 44.6 54.0 -9.4 Hori 1000	20	1733.048M	22.3	+26.1	+3.6	+2.1	+0.5	-10.0	44.6	54.0	-9.4	Horiz 100
23 1003.379M 22.8 +24.4 +2.9 +1.6 +2.6 -10.0 44.3 54.0 -9.7 Hori 100 24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.4 -10.0 43.8 54.0 -10.2 Hori	21	1749.965M	22.0	+26.2	+3.7	+2.2	+0.5	-10.0	44.6	54.0	-9.4	Horiz 100
24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.4 -10.0 43.8 54.0 -10.2 Hori	22	1000.000M	22.7	+24.4	+2.9	+1.6	+2.7	-10.0	44.3	54.0	-9.7	Horiz 100
24 1007.278M 22.5 +24.4 +2.9 +1.6 +2.4 -10.0 43.8 54.0 -10.2 Hori	23	1003.379M	22.8	+24.4	+2.9	+1.6	+2.6	-10.0	44.3	54.0	-9.7	Horiz 100
10	24	1007.278M	22.5	+24.4	+2.9	+1.6	+2.4	-10.0	43.8	54.0	-10.2	Horiz 100
	25	1189.223M	23.3	+24.5	+3.1	+1.8	+0.9	-10.0	43.6	54.0	-10.4	Horiz 100
26 1581.834M 22.3 +25.2 +3.5 +2.0 +0.6 -10.0 43.6 54.0 -10.4 Hori	26	1581.834M	22.3	+25.2	+3.5	+2.0	+0.6	-10.0	43.6	54.0	-10.4	Horiz 100
27 1394.843M 23.2 +24.6 +3.3 +1.9 +0.5 -10.0 43.5 54.0 -10.5 Hori	27	1394.843M	23.2	+24.6	+3.3	+1.9	+0.5	-10.0	43.5	54.0	-10.5	Horiz 100
28 1548.431M 22.5 +25.0 +3.5 +2.0 +0.5 -10.0 43.5 54.0 -10.5 Hori	28	1548.431M	22.5	+25.0	+3.5	+2.0	+0.5	-10.0	43.5	54.0	-10.5	Horiz 100
29 1575.612M 22.2 +25.2 +3.5 +2.0 +0.6 -10.0 43.5 54.0 -10.5 Hori	29	1575.612M	22.2	+25.2	+3.5	+2.0	+0.6	-10.0	43.5	54.0	-10.5	Horiz 100
30 1227.171M 23.1 +24.6 +3.1 +1.8 +0.8 -10.0 43.4 54.0 -10.6 Hori	30	1227.171M	23.1	+24.6	+3.1	+1.8	+0.8	-10.0	43.4	54.0	-10.6	Horiz 100
31 1586.091M 22.1 +25.2 +3.5 +2.0 +0.6 -10.0 43.4 54.0 -10.6 Hori	31	1586.091M	22.1	+25.2	+3.5	+2.0	+0.6	-10.0	43.4	54.0	-10.6	Horiz 100

Page 16 of 46 Report No: FC06-010J

CKC Laboratories Date: 9/18/2008 Time: 10:28:34 Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 1 Meter Sequence#: 7 Polarity: Horiz Notes:

Page 17 of 46 Report No: FC06-010J

Customer: Impinj Inc

Specification: 15.247(d)/15.209/15.205

Work Order #: 88581 Date: 9/18/2008
Test Type: Radiated Scan Time: 10:19:37
Equipment: Antenna Sequence#: 6

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Filter		05/01/2008	05/01/2010	AN02750	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	

Equipment Under Test (* = EUT):

=quipilient entre: 1 est (
Function	Manufacturer	Model #	S/N	
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a	
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716	
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 1 - 2 GHz. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on low channel, continuous TX (902.75 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

2. 4	
T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Measurement Data: Reading listed by margin. Test Distance: 1 Meter

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	1805.503M	25.3	+26.5	+3.7	+2.2	+0.4	-10.0	48.1	54.0	-5.9	Vert
	Ave						351				105
^	1805.503M	29.8	+26.5	+3.7	+2.2	+0.4	-10.0	52.6	54.0	-1.4	Vert
							351				105
3	1974.419M	23.1	+27.4	+3.9	+2.3	+0.3	-10.0	47.0	54.0	-7.0	Vert
											100
4	1990.923M	22.6	+27.5	+3.9	+2.3	+0.3	-10.0	46.6	54.0	-7.4	Vert
											100
5	1789.575M	23.3	+26.4	+3.7	+2.2	+0.4	-10.0	46.0	54.0	-8.0	Vert
											100
6	1811.030M	22.7	+26.5	+3.7	+2.2	+0.4	-10.0	45.5	54.0	-8.5	Vert
											100

Page 18 of 46 Report No: FC06-010J

7	1860.129M	22.1	+26.8	+3.8	+2.2	+0.4	-10.0	45.3	54.0	-8.7	Vert 100
8	1851.052M	22.2	+26.7	+3.8	+2.2	+0.4	-10.0	45.3	54.0	-8.7	Vert 100
9	1799.064M	22.4	+26.5	+3.7	+2.2	+0.4	-10.0	45.2	54.0	-8.8	Vert 100
10	1028.591M	24.3	+24.4	+2.9	+1.6	+1.7	-10.0	44.9	54.0	-9.1	Vert 100
11	1044.187M	24.3	+24.4	+2.9	+1.6	+1.5	-10.0	44.7	54.0	-9.3	Vert 100
12	1189.742M	24.4	+24.5	+3.1	+1.8	+0.9	-10.0	44.7	54.0	-9.3	Vert 100
13	1230.550M	24.3	+24.6	+3.1	+1.8	+0.8	-10.0	44.6	54.0	-9.4	Vert 100
14	1023.653M	23.2	+24.4	+2.9	+1.6	+1.9	-10.0	44.0	54.0	-10.0	Vert 100
15	1580.524M	22.6	+25.2	+3.5	+2.0	+0.6	-10.0	43.9	54.0	-10.1	Vert 100
16	1638.563M	22.3	+25.6	+3.5	+2.0	+0.5	-10.0	43.9	54.0	-10.1	Vert 100
17	1148.415M	23.5	+24.5	+3.1	+1.8	+0.9	-10.0	43.8	54.0	-10.2	Vert 100
18	1620.822M	22.3	+25.5	+3.5	+2.0	+0.5	-10.0	43.8	54.0	-10.2	Vert 100
19	1627.836M	22.3	+25.5	+3.5	+2.0	+0.5	-10.0	43.8	54.0	-10.2	Vert 100
20	1271.383M	23.2	+24.6	+3.2	+1.8	+0.7	-10.0	43.5	54.0	-10.5	Vert 100
21	1509.461M	22.7	+24.8	+3.4	+2.0	+0.5	-10.0	43.4	54.0	-10.6	Vert 100
22	1552.361M	22.2	+25.0	+3.5	+2.0	+0.5	-10.0	43.2	54.0	-10.8	Vert 100
23	1051.984M	22.3	+24.4	+3.0	+1.7	+1.4	-10.0	42.8	54.0	-11.2	Vert 100
24	1238.867M	22.4	+24.6	+3.1	+1.8	+0.7	-10.0	42.6	54.0	-11.4	Vert 100
25	1250.044M	22.3	+24.6	+3.2	+1.8	+0.7	-10.0	42.6	54.0	-11.4	Vert 100
	1003.518M Ave	20.9	+24.4	+2.9	+1.6	+2.6	-10.0 360	42.4	54.0	-11.6	Vert 100
	1003.518M	29.8	+24.4	+2.9	+1.6	+2.6	-10.0 360	51.3	54.0	-2.7	Vert 100
28	1067.060M	22.1	+24.4	+3.0	+1.7	+1.2	-10.0	42.4	54.0	-11.6	Vert 100

Page 19 of 46 Report No: FC06-010J

29 1094.091M	22.2	+24.5	+3.0	+1.7	+1.0 -10.0	42.4	54.0	-11.6	Vert 100
30 1105.008M	22.1	+24.5	+3.0	+1.7	+1.0 -10.0	42.3	54.0	-11.7	Vert
									100
31 1100.329M	22.0	+24.5	+3.0	+1.7	+1.0 -10.0	42.2	54.0	-11.8	Vert
									100
32 1128.921M	22.1	+24.5	+3.0	+1.7	+0.9 -10.0	42.2	54.0	-11.8	Vert
									100

CKC Laboratories Date: 9/18/2008 Time: 10:19:37 Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 1 Meter Sequence#: 6 Polarity: Vert Notes:

Customer: **Impinj Inc**

Specification: 15.247(d)/15.209/15.205

Work Order #:88581Date:9/18/2008Test Type:Radiated ScanTime:11:07:29Equipment:AntennaSequence#:10Manufacturer:Impinj, Inc.Tested By:Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Filter		05/01/2008	05/01/2010	AN02750	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	

Equipment Under Test (* = EUT):

Equipment Chaci Test (_ 			
Function	Manufacturer	Model #	S/N	
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a	
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716	
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 2 - 9.3 GHz. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on low channel, continuous TX (902.75 MHz). There are two antennas in the enclosure. This test was antenna 1. There were no emissions found within 20 dB of the limit from 6 - 9.3 GHz.

Transducer Legend:

T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Measurement Data: Reading listed by margin. Test Distance: 1 Meter

Measurement Data. Reading listed by margin.						15111.	Test Distance. I Weter						
ĺ	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant	
ĺ	1	5890.987M	15.2	+34.7	+6.4	+4.1	+0.2	-10.0	50.6	54.0	-3.4	Horiz	
												100	
ĺ	2	5819.431M	15.1	+34.7	+6.4	+4.1	+0.2	-10.0	50.5	54.0	-3.5	Horiz	
												100	
ĺ	3	5470.082M	15.2	+34.6	+6.4	+3.9	+0.3	-10.0	50.4	54.0	-3.6	Horiz	
												100	
ĺ	4	5900.774M	15.0	+34.7	+6.4	+4.1	+0.2	-10.0	50.4	54.0	-3.6	Horiz	
												100	
ĺ	5	5970.300M	15.0	+34.7	+6.4	+4.1	+0.2	-10.0	50.4	54.0	-3.6	Horiz	
												100	
ĺ	6	5963.775M	14.9	+34.7	+6.4	+4.1	+0.2	-10.0	50.3	54.0	-3.7	Horiz	
												100	

Page 21 of 46 Report No: FC06-010J

7	5941.950M	14.8	+34.7	+6.4	+4.1	+0.2	-10.0	50.2	54.0	-3.8	Horiz 100
8	5805.417M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0	50.0	54.0	-4.0	Horiz 100
9	5862.474M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0	50.0	54.0	-4.0	Horiz 100
10	5919.562M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0	50.0	54.0	-4.0	Horiz 100
11	5938.799M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0	50.0	54.0	-4.0	Horiz 100
12	5962.200M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0	50.0	54.0	-4.0	Horiz 100
13	5777.389M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Horiz 100
14	5933.287M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Horiz 100
15	5990.438M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Horiz 100
16	5899.199M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0	49.8	54.0	-4.2	Horiz 100
17	5542.154M	14.2	+34.7	+6.5	+4.0	+0.3	-10.0	49.7	54.0	-4.3	Horiz 100
18	5903.587M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0	49.7	54.0	-4.3	Horiz 100
19	5992.350M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0	49.7	54.0	-4.3	Horiz 100
20	5550.162M	14.1	+34.7	+6.5	+4.0	+0.3	-10.0	49.6	54.0	-4.4	Horiz 100
21	5562.174M	14.1	+34.7	+6.5	+4.0	+0.3	-10.0	49.6	54.0	-4.4	Horiz 100
22	5574.186M	14.2	+34.7	+6.4	+4.0	+0.3	-10.0	49.6	54.0	-4.4	Horiz 100
23	5837.449M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0	49.6	54.0	-4.4	Horiz 100
24	5955.450M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0	49.6	54.0	-4.4	Horiz 100
25	5974.125M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0	49.6	54.0	-4.4	Horiz 100
26	5594.206M	14.1	+34.7	+6.5	+4.0	+0.2	-10.0	49.5	54.0	-4.5	Horiz 100
27	5829.441M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0	49.5	54.0	-4.5	Horiz 100
28	5964.112M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0	49.5	54.0	-4.5	Horiz 100
29	5914.387M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0	49.4	54.0	-4.6	Horiz 100
30	5993.137M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0	49.4	54.0	-4.6	Horiz 100

Page 22 of 46 Report No: FC06-010J

31 4513.712M	11.6	+32.4	+5.8	+3.6	+0.2	-10.0	43.6	54.0	-10.4	Horiz
Ave						169				99
^ 4513.754M	14.0	+32.4	+5.8	+3.6	+0.2	-10.0	46.0	54.0	-8.0	Horiz
						169				99
33 3611.048M	12.5	+31.8	+5.3	+3.0	+0.5	-10.0	43.1	54.0	-10.9	Horiz
Ave						175				99
^ 3611.004M	15.3	+31.8	+5.3	+3.0	+0.5	-10.0	45.9	54.0	-8.1	Horiz
						175				99
35 2708.272M	14.3	+29.8	+4.5	+2.7	+0.6	-10.0	41.9	54.0	-12.1	Horiz
Ave						177				100
^ 2708.266M	24.4	+29.8	+4.5	+2.7	+0.6	-10.0	52.0	54.0	-2.0	Horiz
						177				100

CKC Laboratories Date: 9/18/2008 Time: 11:07:29 Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 1 Meter Sequence#: 10 Polarity: Horiz Notes:

Customer: Impinj Inc

Specification: 15.247(d)/15.209/15.205

Work Order #: 88581 Date: 9/18/2008
Test Type: Radiated Scan Time: 11:27:08
Equipment: Antenna Sequence#: 12
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

I cst Equipment.					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Filter		05/01/2008	05/01/2010	AN02750	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 2 - 9.3 GHz. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on low channel, continuous TX (902.75 MHz). There are two antennas in the enclosure. This test was antenna 1. There were no emissions found within 20 dB of the limit from 6 - 9.3 GHz.

Transducer Legend:

Transaucer Legena.	
T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Measurement Data: Reading listed by margin. Test Distance: 1 Meter

				- 6						
Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
5914.612M	15.1	+34.7	+6.4	+4.1	+0.2	-10.0	50.5	54.0	-3.5	Vert
						360				100
5903.587M	14.9	+34.7	+6.4	+4.1	+0.2	-10.0	50.3	54.0	-3.7	Vert
						360				100
5726.338M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0	50.0	54.0	-4.0	Vert
						360				100
5895.937M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Vert
						360				100
5908.649M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Vert
						360				100
5971.537M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Vert
						360				100
	MHz 5914.612M 5903.587M 5726.338M 5895.937M 5908.649M	MHz dBμV 5914.612M 15.1 5903.587M 14.9 5726.338M 14.6 5895.937M 14.5 5908.649M 14.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Page 24 of 46 Report No: FC06-010J

7	5412.024M	14.8	+34.5	+6.2	+3.9	+0.3	-10.0 360	49.7	54.0	-4.3	Vert 100
8	5416.028M	14.7	+34.5	+6.3	+3.9	+0.3	-10.0 360	49.7	54.0	-4.3	Vert 100
9	5690.302M	14.4	+34.7	+6.4	+4.0	+0.2	-10.0 360	49.7	54.0	-4.3	Vert 100
10	5787.399M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Vert 100
11	5891.549M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Vert 100
12	5924.399M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Vert 100
13	5959.275M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Vert 100
14	5960.962M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Vert 100
15	5962.200M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Vert 100
16	5982.563M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Vert 100
17	5992.913M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Vert 100
18	5404.016M	14.6	+34.5	+6.2	+3.9	+0.3	-10.0 360	49.5	54.0	-4.5	Vert 100
19	5501.113M	14.1	+34.7	+6.4	+4.0	+0.3	-10.0 360	49.5	54.0	-4.5	Vert 100
20	5518.130M	14.0	+34.7	+6.5	+4.0	+0.3	-10.0 360	49.5	54.0	-4.5	Vert 100
21	5584.196M	14.0	+34.7	+6.5	+4.0	+0.3	-10.0 360	49.5	54.0	-4.5	Vert 100
22	5594.206M	14.1	+34.7	+6.5	+4.0	+0.2	-10.0 360	49.5	54.0	-4.5	Vert 100
23	5732.344M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Vert 100
24	5930.812M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Vert 100
25	5957.925M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Vert 100
26	5647.259M	14.1	+34.7	+6.4	+4.0	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
27	5948.362M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
28	5972.100M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
29	5973.112M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
30	5994.150M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100

Page 25 of 46 Report No: FC06-010J

31 4513.776M	11.7	+32.4	+5.8	+3.6	+0.2 -1	0.0 43.7	54.0	-10.3	Vert
Ave					13	80			100
^ 4513.754M	22.3	+32.4	+5.8	+3.6	+0.2 -1	0.0 54.3	54.0	+0.3	Vert
					13	80			100
33 2708.267M	15.6	+29.8	+4.5	+2.7	+0.6 -1	0.0 43.2	54.0	-10.8	Vert
Ave					13	84			100
^ 2708.267M	25.2	+29.8	+4.5	+2.7	+0.6 -1	0.0 52.8	54.0	-1.2	Vert
					13	84			100
35 3611.024M	12.4	+31.8	+5.3	+3.0	+0.5 -1	0.0 43.0	54.0	-11.0	Vert
Ave					19	91			100
^ 3611.004M	23.5	+31.8	+5.3	+3.0	+0.5 -1	0.0 54.1	54.0	+0.1	Vert
					19	91			100

CKC Laboratories Date: 9/18/2008 Time: 11:27:08 Impinj Inc WO#: 88581 15:247(d)/15:209/15:205 Test Distance: 1 Meter Sequence#: 12 Polarity: Vert Notes:

Page 26 of 46 Report No: FC06-010J

Customer: Impinj Inc

Specification: 15.247(d)/15.209/15.205

Work Order #: 88581 Date: 9/18/2008
Test Type: Radiated Scan Time: 12:40:14
Equipment: Antenna Sequence#: 14
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Filter		05/01/2008	05/01/2010	AN02750	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	

Equipment Under Test (* = EUT):

=quipilient entre rest (
Function	Manufacturer	Model #	S/N	
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a	
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716	
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 1 - 9.3 GHz. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on mid channel, continuous TX (915.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

2. 4	
T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Measurement Data: Reading listed by margin. Test Distance: 1 Meter

_												
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
	1	1830.507M	30.3	+26.6	+3.7	+2.2	+0.4	-10.0	53.2	54.0	-0.8	Horiz
		Ave						345				115
	٨	1830.507M	33.2	+26.6	+3.7	+2.2	+0.4	-10.0	56.1	54.0	+2.1	Horiz
								345				115
	3	5833.821M	15.2	+34.7	+6.4	+4.1	+0.2	-10.0	50.6	54.0	-3.4	Horiz
								360				100
	4	5985.689M	14.9	+34.7	+6.4	+4.1	+0.2	-10.0	50.3	54.0	-3.7	Horiz
								360				100
	5	5855.287M	14.8	+34.7	+6.4	+4.1	+0.2	-10.0	50.2	54.0	-3.8	Horiz
								360				100
	6	5904.657M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Horiz
								360				100

Page 27 of 46 Report No: FC06-010J

7	5978.355M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.8	54.0	-4.2	Horiz 100
8	5570.871M	14.3	+34.7	+6.4	+4.0	+0.3	-10.0 360	49.7	54.0	-4.3	Horiz 100
9	5717.017M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Horiz 100
10	5764.063M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Horiz 100
11	5874.069M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Horiz 100
12	5881.045M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Horiz 100
13	5921.472M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Horiz 100
14	5933.636M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Horiz 100
15	5839.903M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Horiz 100
16	5292.593M	15.1	+34.3	+6.1	+3.8	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
17	5696.997M	14.2	+34.7	+6.4	+4.0	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
18	5756.056M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
19	5758.058M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
20	5848.310M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
21	5905.730M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
22	5913.780M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
23	5401.702M	14.6	+34.5	+6.2	+3.9	+0.2	-10.0 360	49.4	54.0	-4.6	Horiz 100
24	5877.289M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Horiz 100
25	5889.273M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Horiz 100
26	5892.136M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Horiz 100
27	5655.956M	14.0	+34.7	+6.4	+4.0	+0.2	-10.0 360	49.3	54.0	-4.7	Horiz 100
28	5841.155M	13.9	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.3	54.0	-4.7	Horiz 100
29	5878.720M	13.8	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.2	54.0	-4.8	Horiz 100
30	5936.140M	13.8	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.2	54.0	-4.8	Horiz 100

Page 28 of 46 Report No: FC06-010J

31 3661.000M	13.3	+31.9	+5.3	+3.0	+0.5	-10.0	44.0	54.0	-10.0	Horiz
Ave						180				100
^ 3660.915M	25.4	+31.9	+5.3	+3.0	+0.5	-10.0	56.1	54.0	+2.1	Horiz
						180				100
33 4576.252M	11.2	+32.6	+6.0	+3.6	+0.2	-10.0	43.6	54.0	-10.4	Horiz
Ave						180				100
^ 4576.252M	24.7	+32.6	+6.0	+3.6	+0.2	-10.0	57.1	54.0	+3.1	Horiz
						180				100
35 2745.752M	14.8	+29.9	+4.5	+2.7	+0.6	-10.0	42.5	54.0	-11.5	Horiz
Ave						350				118
^ 2745.752M	25.1	+29.9	+4.5	+2.7	+0.6	-10.0	52.8	54.0	-1.2	Horiz
						350				118

CKC Laboratories Date: 9/18/2008 Time: 12:40:14 Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 1 Meter Sequence#: 14 Polarity: Horiz Notes:

Page 29 of 46 Report No: FC06-010J

Customer: **Impinj Inc**

Specification: 15.247(d)/15.209/15.205

Work Order #: Date: 9/18/2008 88581 Test Type: **Radiated Scan** Time: 11:55:03 Equipment: Antenna Sequence#: 13 Manufacturer: Tested By: Jeff Gilbert Impinj, Inc.

IPJ-A0402-USA Model:

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Filter		05/01/2008	05/01/2010	AN02750	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	

Equipment Under Test (* = EUT):

(. — / -			_
Function	Manufacturer	Model #	S/N	
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a	
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716	
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 1 - 9.3 GHz. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on mid channel, continuous TX (915.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

2. 4	
T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Reading listed by margin. Measurement Data: Test Distance: 1 Meter

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1830.509M	29.3	+26.6	+3.7	+2.2	+0.4	-10.0	52.2	54.0	-1.8	Vert
	Ave						349				114
٨	1830.509M	32.6	+26.6	+3.7	+2.2	+0.4	-10.0	55.5	54.0	+1.5	Vert
							349				114
3	5797.097M	16.2	+34.7	+6.4	+4.1	+0.2	-10.0	51.6	54.0	-2.4	Vert
											100
4	5925.407M	15.2	+34.7	+6.4	+4.1	+0.2	-10.0	50.6	54.0	-3.4	Vert
											100
5	5929.521M	15.1	+34.7	+6.4	+4.1	+0.2	-10.0	50.5	54.0	-3.5	Vert
											100
6	5713.013M	15.0	+34.7	+6.4	+4.1	+0.2	-10.0	50.4	54.0	-3.6	Vert
											100

Page 30 of 46 Report No: FC06-010J

7	5958.679M	15.0	+34.7	+6.4	+4.1	+0.2	-10.0	50.4	54.0	-3.6	Vert 100
8	5983.722M	14.9	+34.7	+6.4	+4.1	+0.2	-10.0	50.3	54.0	-3.7	Vert 100
9	5466.767M	15.0	+34.6	+6.4	+3.9	+0.3	-10.0	50.2	54.0	-3.8	Vert 100
10	5533.833M	14.6	+34.7	+6.5	+4.0	+0.3	-10.0	50.1	54.0	-3.9	Vert 100
11	5583.884M	14.6	+34.7	+6.5	+4.0	+0.3	-10.0	50.1	54.0	-3.9	Vert 100
12	5805.104M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0	50.0	54.0	-4.0	Vert 100
13	5920.935M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0	49.8	54.0	-4.2	Vert 100
14	5974.241M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0	49.8	54.0	-4.2	Vert 100
15	5854.034M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0	49.7	54.0	-4.3	Vert 100
16	5928.806M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0	49.7	54.0	-4.3	Vert 100
17	5987.479M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0	49.7	54.0	-4.3	Vert 100
18	5952.776M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0	49.6	54.0	-4.4	Vert 100
19	5627.928M	14.2	+34.7	+6.4	+4.0	+0.2	-10.0	49.5	54.0	-4.5	Vert 100
20	5703.002M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0	49.5	54.0	-4.5	Vert 100
21	5978.177M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0	49.5	54.0	-4.5	Vert 100
22	5993.024M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0	49.5	54.0	-4.5	Vert 100
23	5989.804M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0	49.4	54.0	-4.6	Vert 100
24	5961.362M	13.9	+34.7	+6.4	+4.1	+0.2	-10.0	49.3	54.0	-4.7	Vert 100
25	5967.802M	13.9	+34.7	+6.4	+4.1	+0.2	-10.0	49.3	54.0	-4.7	Vert 100
26	5934.351M	13.8	+34.7	+6.4	+4.1	+0.2	-10.0	49.2	54.0	-4.8	Vert 100
27	5962.793M	13.8	+34.7	+6.4	+4.1	+0.2	-10.0	49.2	54.0	-4.8	Vert 100
28	5451.751M	13.8	+34.6	+6.4	+3.9	+0.3	-10.0	49.0	54.0	-5.0	Vert 100
29	5940.791M	13.6	+34.7	+6.4	+4.1	+0.2	-10.0	49.0	54.0	-5.0	Vert 100
30	5961.720M	13.6	+34.7	+6.4	+4.1	+0.2	-10.0	49.0	54.0	-5.0	Vert 100

Page 31 of 46 Report No: FC06-010J

31 5972.811M	13.6	+34.7	+6.4	+4.1	+0.2	-10.0	49.0	54.0	-5.0	Vert
										100
32 2745.763M	17.9	+29.9	+4.5	+2.7	+0.6	-10.0	45.6	54.0	-8.4	Vert
Ave						351				100
^ 2745.763M	27.0	+29.9	+4.5	+2.7	+0.6	-10.0	54.7	54.0	+0.7	Vert
						351				100
34 3661.004M	14.6	+31.9	+5.3	+3.0	+0.5	-10.0	45.3	54.0	-8.7	Vert
Ave						190				100
^ 3661.003M	23.8	+31.9	+5.3	+3.0	+0.5	-10.0	54.5	54.0	+0.5	Vert
						190				100
36 1003.548M	23.4	+24.4	+2.9	+1.6	+2.6	-10.0	44.9	54.0	-9.1	Vert
Ave						354				99
^ 1003.536M	34.6	+24.4	+2.9	+1.6	+2.6	-10.0	56.1	54.0	+2.1	Vert
						354				99
38 4576.239M	11.6	+32.6	+6.0	+3.6	+0.2	-10.0	44.0	54.0	-10.0	Vert
Ave						190				100
^ 4576.253M	22.2	+32.6	+6.0	+3.6	+0.2	-10.0	54.6	54.0	+0.6	Vert
						190				100

CKC Laboratories Date: 9/18/2008 Time: 11:55:03 Impinj Inc WO#: 88581 15:247(d)/15:209/15:205 Test Distance: 1 Meter Sequence#: 13 Polarity: Vert Notes:

Page 32 of 46 Report No: FC06-010J

Customer: Impinj Inc

Specification: 15.247(d)/15.209/15.205

Work Order #:88581Date:9/18/2008Test Type:Radiated ScanTime:12:55:31Equipment:AntennaSequence#:15Manufacturer:Impinj, Inc.Tested By:Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Filter		05/01/2008	05/01/2010	AN02750	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	

Equipment Under Test (* = EUT):

=quipilient entre rest (
Function	Manufacturer	Model #	S/N	
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a	
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716	
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a	

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 1 - 9.3 GHz. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on high channel, continuous TX (927.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

2. 4	
T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Measurement Data:Reading listed by margin.Test Distance: 1 Meter#FreqRdngT1T2T3T4DistCorrSpec

#	Freq	Rang	11	12	13	14	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	3708.899M	21.7	+32.1	+5.4	+2.9	+0.4	-10.0	52.5	54.0	-1.5	Horiz
	Ave						350				110
٨	3708.899M	34.5	+32.1	+5.4	+2.9	+0.4	-10.0	65.3	54.0	+11.3	Horiz
							350				110
3	5788.087M	14.9	+34.7	+6.4	+4.1	+0.2	-10.0	50.3	54.0	-3.7	Horiz
							360				100
4	5886.054M	14.7	+34.7	+6.4	+4.1	+0.2	-10.0	50.1	54.0	-3.9	Horiz
							360				100
5	5838.830M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0	49.9	54.0	-4.1	Horiz
							360				100
6	5891.599M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0	49.8	54.0	-4.2	Horiz
							360				100

Page 33 of 46 Report No: FC06-010J

7	5922.545M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.8	54.0	-4.2	Horiz 100
8	5992.845M	14.3	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.7	54.0	-4.3	Horiz 100
9	5276.577M	15.2	+34.3	+6.1	+3.8	+0.2	-10.0 360	49.6	54.0	-4.4	Horiz 100
10	5979.608M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Horiz 100
11	5960.110M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
12	5962.078M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Horiz 100
13	5981.933M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Horiz 100
14	5992.487M	13.9	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.3	54.0	-4.7	Horiz 100
15	5974.778M	13.8	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.2	54.0	-4.8	Horiz 100
16	5983.543M	13.8	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.2	54.0	-4.8	Horiz 100
17	5965.476M	13.7	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.1	54.0	-4.9	Horiz 100
18	5977.282M	13.7	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.1	54.0	-4.9	Horiz 100
19	5987.657M	13.6	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.0	54.0	-5.0	Horiz 100
20	5997.496M	13.6	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.0	54.0	-5.0	Horiz 100
21	5975.494M	13.5	+34.7	+6.4	+4.1	+0.2	-10.0 360	48.9	54.0	-5.1	Horiz 100
22	5144.445M	14.7	+34.0	+6.0	+3.8	+0.3	-10.0 360	48.8	54.0	-5.2	Horiz 100
23	5353.654M	14.1	+34.4	+6.2	+3.9	+0.2	-10.0 360	48.8	54.0	-5.2	Horiz 100
24	5372.672M	14.0	+34.5	+6.2	+3.9	+0.2	-10.0 360	48.8	54.0	-5.2	Horiz 100
	2781.730M Ave	20.9	+30.0	+4.5	+2.7	+0.6	-10.0 345	48.7	54.0	-5.3	Horiz 106
	2781.730M	33.9	+30.0	+4.5	+2.7	+0.6	-10.0 345	61.7	54.0	+7.7	Horiz 106
27	5399.700M	13.9	+34.5	+6.2	+3.9	+0.2	-10.0 360	48.7	54.0	-5.3	Horiz 100
28	5032.333M	14.7	+33.8	+6.1	+3.7	+0.3	-10.0 360	48.6	54.0	-5.4	Horiz 100
	1854.526M Ave	25.3	+26.8	+3.8	+2.2	+0.4	-10.0 350	48.5	54.0	-5.5	Horiz 110
	1854.526M	34.7	+26.8	+3.8	+2.2	+0.4	-10.0 350	57.9	54.0	+3.9	Horiz 110

Page 34 of 46 Report No: FC06-010J

31 4701.001M	15.3	+32.9	+6.1	+3.6	+0.2	-10.0	48.1	54.0	-5.9	Horiz
						360				100
32 5082.383M	14.1	+33.9	+6.1	+3.7	+0.3	-10.0	48.1	54.0	-5.9	Horiz
						360				100
33 5214.515M	13.9	+34.1	+6.0	+3.8	+0.3	-10.0	48.1	54.0	-5.9	Horiz
						360				100
34 4991.292M	14.2	+33.7	+6.1	+3.7	+0.3	-10.0	48.0	54.0	-6.0	Horiz
						360				100
35 5258.559M	13.5	+34.2	+6.1	+3.8	+0.3	-10.0	47.9	54.0	-6.1	Horiz
						360				100

CKC Laboratories Date: 9/18/2008 Time: 12:55:31 Impinj Inc WO#: 88581 15:247(d)/15:209/15:205 Test Distance: 1 Meter Sequence#: 15 Polarity: Horiz Notes:

Customer: Impinj Inc

Specification: 15.247(d)/15.209/15.205

Work Order #: 88581 Date: 9/23/2008
Test Type: Radiated Scan Time: 08:20:41
Equipment: Antenna Sequence#: 16
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
Andrews Heliax		07/22/2008	07/22/2010	ANP05545
Filter		05/01/2008	05/01/2010	AN02750
Pasternack Coax		07/20/2007	07/20/2009	AN05425
Pasternack Coax		07/20/2007	07/20/2009	AN05428
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. Frequency Range Investigated: 1 - 9.3 GHz 20° / 39% / 103.1 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. The EUT is on high channel, continuous TX (927.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

T1=ANT-AN01412-111207	T2=CAB-ANP05425-072007
T3=CAB-ANP05545-072208	T4=Filter 1GHz HP AN02750

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

			<u></u>		6						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	5738.038M	15.6	+34.7	+6.4	+4.1	+0.2	-10.0	51.0	54.0	-3.0	Vert
							360				100
2	5911.813M	15.1	+34.7	+6.4	+4.1	+0.2	-10.0	50.5	54.0	-3.5	Vert
							360				100
3	5952.418M	14.8	+34.7	+6.4	+4.1	+0.2	-10.0	50.2	54.0	-3.8	Vert
							360				100
4	5990.698M	14.8	+34.7	+6.4	+4.1	+0.2	-10.0	50.2	54.0	-3.8	Vert
							360				100
5	5925.049M	14.7	+34.7	+6.4	+4.1	+0.2	-10.0	50.1	54.0	-3.9	Vert
							360				100

Page 36 of 46 Report No: FC06-010J

6	5869.418M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0 360	50.0	54.0	-4.0	Vert 100
7	5993.203M	14.6	+34.7	+6.4	+4.1	+0.2	-10.0 360	50.0	54.0	-4.0	Vert 100
8	5829.170M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.9	54.0	-4.1	Vert 100
9	5836.862M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.9	54.0	-4.1	Vert 100
10	5875.321M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.9	54.0	-4.1	Vert 100
11	5959.395M	14.5	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.9	54.0	-4.1	Vert 100
12	5519.820M	14.3	+34.7	+6.5	+4.0	+0.3	-10.0 360	49.8	54.0	-4.2	Vert 100
13	5876.037M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.8	54.0	-4.2	Vert 100
14	5877.468M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.8	54.0	-4.2	Vert 100
15	5919.683M	14.4	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.8	54.0	-4.2	Vert 100
16	5400.701M	14.9	+34.5	+6.2	+3.9	+0.2	-10.0 360	49.7	54.0	-4.3	Vert 100
17	5439.740M	14.5	+34.6	+6.4	+3.9	+0.3	-10.0 360	49.7	54.0	-4.3	Vert 100
18	5859.401M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Vert 100
19	5866.735M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Vert 100
20	5928.806M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Vert 100
21	5996.601M	14.2	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.6	54.0	-4.4	Vert 100
22	5981.933M	14.1	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.5	54.0	-4.5	Vert 100
23	5867.271M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
24	5876.752M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
25	5949.914M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
26	5950.987M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
27	5961.362M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
28	5970.127M	14.0	+34.7	+6.4	+4.1	+0.2	-10.0 360	49.4	54.0	-4.6	Vert 100
	2781.740M Ave	10.8	+30.0	+4.5	+2.7	+0.6	+0.0 351	48.6	54.0	-5.4	Vert 100
	2781.740M	31.9	+30.0	+4.5	+2.7	+0.6	+0.0 349	69.7	54.0	+15.7	Vert 100

Page 37 of 46 Report No: FC06-010J

CKC Laboratories Date: 9/23/2008 Time: 08:20:41 Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 3 Meters Sequence#: 16 Polarity: Vert Notes:

Page 38 of 46 Report No: FC06-010J

Customer: **Impinj Inc**

Specification: 15.247(d)/15.209/15.205

Work Order #: 88581 Date: 9/18/2008
Test Type: Maximized Emissions Time: 1:49:59 PM

Equipment: Antenna Sequence#: 18

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

1 1					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	
Chase BILOG	2458	01/31/2007	01/31/2009	AN01993	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a

Support Devices:

. 11			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210. BAND EDGE. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. Testing is on low & high channel, continuous TX (902.75 & 927.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

Transaucer Legena.	
T1=CAB-ANP05425-072007	T2=CAB-ANP05545-072208
T3=ANT AN01993 25-1000MHz	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	902.754M	101.8	+2.8	+1.5	+23.4		+0.0	129.5	137.0	-7.5	Horiz
											100
2	880.673M	26.3	+2.7	+1.5	+23.2		+0.0	53.7	117.0	-63.3	Horiz
											100
3	901.556M	25.0	+2.8	+1.5	+23.4		+0.0	52.7	117.0	-64.3	Horiz
											100
4	894.724M	24.1	+2.8	+1.5	+23.3		+0.0	51.7	117.0	-65.3	Horiz
											100
5	899.853M	23.8	+2.8	+1.5	+23.4	•	+0.0	51.5	117.0	-65.5	Horiz
											100

Page 39 of 46 Report No: FC06-010J

6	871.361M	24.1	+2.7	+1.5	+23.1	+0.0	51.4	117.0	-65.6	Horiz 100
7	891.074M	23.9	+2.7	+1.5	+23.3	+0.0	51.4	117.0	-65.6	Horiz 100
8	852.029M	24.1	+2.7	+1.5	+22.9	+0.0	51.2	117.0	-65.8	Horiz 100
9	866.013M	24.0	+2.7	+1.5	+23.0	+0.0	51.2	117.0	-65.8	Horiz 100
10	891.205M	23.6	+2.7	+1.5	+23.3	+0.0	51.1	117.0	-65.9	Horiz 100

CKC Laboratories Date: 9/18/2008 Time: 1:49:59 PM Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 3 Meters Sequence#: 18 Polarity: Horiz Notes:

Customer: **Impinj Inc**

Specification: 15.247(d)/15.209/15.205

Work Order #: 88581 Date: 9/18/2008
Test Type: Maximized Emissions Time: 1:52:47 PM

Equipment: Antenna Sequence#: 19

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	
Chase BILOG	2458	01/31/2007	01/31/2009	AN01993	

Equipment Under Test (* = EUT):

1 1	- /:		
Function	Manufacturer	Model #	S/N
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a

Support Devices:

. 11			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210 BAND EDGE. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. Testing is on low & high channel, continuous TX (902.75 & 927.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

Transaucer Legena.	
T1=CAB-ANP05425-072007	T2=CAB-ANP05545-072208
T3=ANT AN01993 25-1000MHz	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	902.735M	100.9	+2.8	+1.5	+23.4		+0.0	128.6	137.0	-8.4	Vert
											100
2	880.655M	26.0	+2.7	+1.5	+23.2		+0.0	53.4	117.0	-63.6	Vert
											100
3	901.575M	25.1	+2.8	+1.5	+23.4		+0.0	52.8	117.0	-64.2	Vert
											100
4	892.534M	25.1	+2.7	+1.5	+23.3		+0.0	52.6	117.0	-64.4	Vert
											100
5	888.734M	24.2	+2.7	+1.5	+23.3		+0.0	51.7	117.0	-65.3	Vert
											100

Page 41 of 46 Report No: FC06-010J

6	900.845M	23.9	+2.8	+1.5	+23.4	+0.0	51.6	117.0	-65.4	Vert
										100
7	871.416M	24.1	+2.7	+1.5	+23.1	+0.0	51.4	117.0	-65.6	Vert
										100
8	894.761M	23.8	+2.8	+1.5	+23.3	+0.0	51.4	117.0	-65.6	Vert
										100
9	892.047M	23.8	+2.7	+1.5	+23.3	+0.0	51.3	117.0	-65.7	Vert
										100
10	896.352M	23.6	+2.8	+1.5	+23.4	+0.0	51.3	117.0	-65.7	Vert
										100

CKC Laboratories Date: 9/18/2008 Time: 1:52:47 PM Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 3 Meters Sequence#: 19 Polarity: Vert Notes:

Page 42 of 46 Report No: FC06-010J

Customer: Impinj Inc

Specification: 15.247(d)/15.209/15.205

 Work Order #:
 88581
 Date:
 9/18/2008

 Test Type:
 Maximized Emissions
 Time:
 1:59:54 PM

Equipment: Antenna Sequence#: 22

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	
Chase BILOG	2458	01/31/2007	01/31/2009	AN01993	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a

Support Devices:

. 11			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210 BAND EDGE. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. Testing is on low & high channel, continuous TX (902.75 & 927.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

Transaucer Legena.	
T1=CAB-ANP05425-072007	T2=CAB-ANP05545-072208
T3=ANT AN01993 25-1000MHz	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

					U						
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	927.243M	99.9	+2.8	+1.5	+23.7		+0.0	127.9	137.0	-9.1	Horiz
											100
2	933.178M	31.9	+2.8	+1.5	+23.8		+0.0	60.0	117.0	-57.0	Horiz
											100
3	933.256M	26.2	+2.8	+1.5	+23.8		+0.0	54.3	117.0	-62.7	Horiz
											100
4	955.424M	25.7	+2.8	+1.6	+24.0		+0.0	54.1	117.0	-62.9	Horiz
											100
5	928.463M	24.5	+2.8	+1.5	+23.7		+0.0	52.5	117.0	-64.5	Horiz
											100

Page 43 of 46 Report No: FC06-010J

6	931.184M	24.2	+2.8	+1.5	+23.8	+0.0	52.3	117.0	-64.7	Horiz 100
7	957.523M	23.9	+2.8	+1.6	+24.0	+0.0	52.3	117.0	-64.7	Horiz 100
8	948.485M	23.9	+2.8	+1.6	+23.9	+0.0	52.2	117.0	-64.8	Horiz 100
9	941.255M	23.9	+2.8	+1.5	+23.9	+0.0	52.1	117.0	-64.9	Horiz 100
10	951.363M	23.7	+2.8	+1.6	+24.0	+0.0	52.1	117.0	-64.9	Horiz 100

CKC Laboratories Date: 9/18/2008 Time: 1:59:54 PM Impinj Inc WO#: 88581 15.247(d)/15.209/15.205 Test Distance: 3 Meters Sequence#: 22 Polarity: Horiz Notes:

Customer: **Impinj Inc**

Specification: 15.247(d)/15.209/15.205

 Work Order #:
 88581
 Date:
 9/18/2008

 Test Type:
 Maximized Emissions
 Time:
 1:57:10 PM

Equipment: Antenna Sequence#: 21

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJ-A0402-USA

S/N: n/a

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Andrews Heliax		07/22/2008	07/22/2010	ANP05545	
Pasternack Coax		07/20/2007	07/20/2009	AN05425	
Chase BILOG	2458	01/31/2007	01/31/2009	AN01993	

Equipment Under Test (* = EUT):

1 1	-)-		
Function	Manufacturer	Model #	S/N
Antenna*	Impinj, Inc.	IPJ-A0402-USA	n/a
RFID transceiver	Impinj, Inc.	IPJ-R1000-USAM1	40307140716
AC/DC Power Supply	CUI, Inc.	DSA-60W-20	n/a

Support Devices:

. 11			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

FCC 15.247(d) / RSS-210 BAND EDGE. 23°C / 42% relative humidity / 102.3 kPa. The EUT is a new antenna for the previously certified IPJ-R1000 RFID reader. Testing is on low & high channel, continuous TX (902.75 & 927.25 MHz). There are two antennas in the enclosure. This test was antenna 1.

Transducer Legend:

Transaucer Legena.	
T1=CAB-ANP05425-072007	T2=CAB-ANP05545-072208
T3=ANT AN01993 25-1000MHz	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

			0								
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	927.243M	101.7	+2.8	+1.5	+23.7		+0.0	129.7	137.0	-7.3	Vert
											100
2	933.155M	35.6	+2.8	+1.5	+23.8		+0.0	63.7	117.0	-53.3	Vert
											100
3	955.389M	30.7	+2.8	+1.6	+24.0		+0.0	59.1	117.0	-57.9	Vert
											100
4	955.366M	29.2	+2.8	+1.6	+24.0		+0.0	57.6	117.0	-59.4	Vert
											100
5	932.226M	27.5	+2.8	+1.5	+23.8		+0.0	55.6	117.0	-61.4	Vert
											100

Page 45 of 46 Report No: FC06-010J

6	955.469M	27.0	+2.8	+1.6	+24.0	+0.0	55.4	117.0	-61.6	Vert 100
7	955.286M	26.0	+2.8	+1.6	+24.0	+0.0	54.4	117.0	-62.6	Vert 100
8	955.492M	25.9	+2.8	+1.6	+24.0	+0.0	54.3	117.0	-62.7	Vert 100
9	933.301M	26.1	+2.8	+1.5	+23.8	+0.0	54.2	117.0	-62.8	Vert 100
10	955.882M	25.5	+2.8	+1.6	+24.0	+0.0	53.9	117.0	-63.1	Vert 100

CKC Laboratories Date: 9/18/2008 Time: 1:57:10 PM Impinj Inc WO#: 88581 15:247(d)/15:209/15:205 Test Distance: 3 Meters Sequence#: 21 Polarity: Vert Notes:

