BIOS 635: K-Nearest Neighbor and Linear Regression

Kevin Donovan

1/28/2021

Review

- Homework I due on today at I IPM through GitHub Classroom
- Article Evaluation I assigned, due on 2/9 through GitHub Classroom
- Last lecture: discussed bias and variance trade-off, classification, k-nearest neighbor

K-nearest Neighbor (KNN)

Simple and flexible algorithm:

- 1. Given training data $D = \{\mathbf{x}_i, y_i\}$, distance function $d(\cdot, \cdot)$ and input \mathbf{x}
- 2. Find $\{j_1, \dots, j_K\}$ closest examples with respect to $d(\mathbf{x}, \cdot)$
 - (regression) if $y \in \mathbf{R}$, return average: $\frac{1}{K} \sum_{k=1}^{K} y_{j_k}$
 - (classification) if $y \in \pm 1$, return majority: $sign(\sum_{k=1}^K y_{j_k})$

- Suppose we want to predict chance at getting admitted to graduate school based on
 - GRE (GRE Score)
 - GPA (CGPA)
- First, we don't split the data

```
knnFit <- train(admit ~ ., data = student_data, method = "knn", tuneLength = 20)</pre>
# Look at tuning results
knnFit
```

```
## k-Nearest Neighbors
##
## 400 samples
    2 predictor
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 400, 400, 400, 400, 400, 400, ...
## Resampling results across tuning parameters:
##
##
        RMSE
                    Rsquared
                               MAE
##
     5 0.08399026 0.6562708 0.06198492
##
     7 0.08250409 0.6657843 0.06149025
##
     9 0.08164273 0.6721247 0.06108271
##
    11 0.08119285 0.6745646 0.06083617
##
    13 0.08096974 0.6762516 0.06057670
##
    15 0.08083990 0.6772038 0.06050660
##
    17 0.08049822 0.6797874 0.06026656
##
    19 0.08038855 0.6805712 0.06016444
##
    21 0.08042498 0.6804126 0.06019089
##
    23 0.08027426 0.6818170 0.06004864
##
    25 0.08035880 0.6810901 0.06020992
##
    27 0.08033956 0.6813598 0.06026175
##
    29 0.08048045 0.6803138 0.06043737
##
    31 0.08072203 0.6784773 0.06083795
##
    33 0.08097813 0.6764790 0.06116968
##
    35 0.08113881 0.6753223 0.06121701
##
    37 0.08146372 0.6729074 0.06161808
##
    39 0.08176444 0.6704537 0.06187339
##
    41 0.08196063 0.6690050 0.06220046
##
    43 0.08215608 0.6674638 0.06244537
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 23.
```

```
plot(knnFit)
```


[1] "RMSE=0.0754339"

- Split the data into training and testing portion
- 60:40 split used

```
student_data <- student_data %>% select(-knn_pred_admit)
set.seed(12)
student_data_tt_index <- createDataPartition(student_data$admit, p=0.6, list = FALSE)</pre>
student_data_train <- student_data[student_data_tt_index,]</pre>
student_data_test <- student_data[-student_data_tt_index,]</pre>
knnFit <- train(admit ~ ., data = student_data_train, method = "knn", tuneLength = 20)
# Look at tuning results
knnFit
```

```
## k-Nearest Neighbors
##
## 241 samples
##
    2 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 241, 241, 241, 241, 241, ...
## Resampling results across tuning parameters:
##
##
        RMSE
                    Rsquared
##
     5
        0.08642279 0.6348680 0.06442511
##
       0.08523053 0.6409723 0.06380427
##
     9 0.08383730 0.6504916 0.06227605
##
    11 0.08371969 0.6520071 0.06207500
##
    13 0.08381847 0.6517754 0.06229965
##
    15 0.08398719 0.6493221 0.06242865
##
    17 0.08400965 0.6487351 0.06258471
##
    19 0.08400019 0.6483039 0.06272774
##
    21 0.08398394 0.6484643 0.06296187
##
    23 0.08384457 0.6496890 0.06313776
##
    25
        0.08358056 0.6517596 0.06331797
##
    27 0.08348635 0.6527741 0.06334313
##
    29 0.08349258 0.6532058 0.06354299
##
    31 0.08356277 0.6529664 0.06376675
##
    33 0.08346069 0.6545094 0.06377156
##
    35 0.08353767 0.6545371 0.06389530
##
    37 0.08376537 0.6532999 0.06416951
##
    39 0.08399193 0.6529646 0.06463158
##
    41 0.08427033 0.6518218 0.06504143
##
    43 0.08459924 0.6500339 0.06540996
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 33.
```

```
plot(knnFit)
```


[1] "Test RMSE=0.0825106"

Linear Regression

- lacktriangle Let's model the relationship between Y and X_1,\ldots,X_p
 - ullet Model: $Y=eta_0+eta_1X_1+\ldots+eta_pX_p+\epsilon$
 - Simple, but very flexible and generalizable
 - True trend never linear, but may be **good approximation**

Simple Linear Regression

- $lacksquare Model: Y = eta_0 + eta_1 X + \epsilon$
 - β_0 , β_1 are coefficients or parameters
 - ϵ is error
- Idea: estimate trend by estimating parameters
 - Estimates = $\hat{\beta_0}$, $\hat{\beta_1}$
 - ullet Predict Y using estimated trend: $\hat{Y}=\hat{eta_0}+\hat{eta_1}x$
 - How to estimate?

Simple Linear Regression: Estimation

Estimation by least squares

- Suppose $\hat{eta_0},\hat{eta_1}$ is a possible estimate
- Suppose we observe data $\{(x_1,y_1),\ldots,(x_n,y_n)\}$
- ullet For above estimates, define residuals $e_i=y_i-(\hat{eta_0}+\hat{eta_1}x_i)$
- ullet Define residual sum of squares (RSS) as $RSS = \sum_{i=1}^n (e_i)^2$
- ullet Goal: Choose $\hat{eta_0},\hat{eta_1}$ which minimizes RSS

Simple Linear Regression: Estimation

■ In case with one feature, can show

$$egin{aligned} \hat{eta_1} &= rac{\sum_{i=1}^n (X_i - ar{X})(Y_i - ar{Y})}{\sum_{i=1}^n (X_i - ar{X})^2} \ &= r_{xy} rac{\hat{\sigma_y}}{\hat{\sigma_x}} \end{aligned}$$

$$\hat{eta_0} = ar{Y} - \hat{eta_1} ar{X}$$

where
$$ar{Y} = rac{1}{n} \sum_{i=1}^n Y_i$$
 and $ar{X} = rac{1}{n} \sum_{i=1}^n X_i$

Assessing Variability of Estimates

- Standard error(SE) of estimator = variability across repeated samples
- lacksquare Denoting $\mathrm{Var}(\epsilon) = \sigma^2$

$$ext{SE}(\hat{eta_1}) = \sqrt{rac{\sigma^2}{\sum_{i=1}^n (X_i - ar{X})}} \ ext{SE}(\hat{eta_0}) = \sqrt{\sigma^2 \Big[rac{1}{n} + rac{\sigma^2}{\sum_{i=1}^n (X_i - ar{X})}\Big]}$$

• Confidence intervals (CI): for eta_j for j=0,1

$$\hat{eta_j} \pm z_{1-lpha/2} * ext{SE}(\hat{eta_j})$$

- ullet Ex. For 95% CI, lpha=0.05 with $z_{0.975}=1.96$
- Never know σ^2 thus need to replace in formulas with estimate $\hat{\sigma^2}$
- ullet Results in **estimates** $\hat{SE}(\hat{eta_j})$ with $t_{n-2,1-lpha/2}$ used

Hypothesis Testing

- SEs also used to perform *hypothesis tests* on coefficients
- Ex. Test the null hypthesis of
 - ullet H_0 : There is no relationship between X and Y
 - ullet Alternative H_1 : There is **some** relationship between X and Y
- Mathematically, this corresponds to
 - H_0 : $\beta_1 = 0$
 - $H_1: \beta_1 \neq 0$

Test Statistic

- To test null vs alternative, need to aggregate data into test statistic
 - ullet Then compare statistic value to it's distribution under H_0
 - For linear regression, test statistic is

$$T=rac{\hat{eta_1}-0}{\hat{SE}(\hat{eta_1})}$$

- lacksquare T has a t-distriubtion with n-2 degrees of freedom under null
- lacktriangle Can compute probability of observing $|T| \geq |t|$ in sample
 - Denoted as p-value

Model Assumptions

- Note that above **distribution** for test statistic only hold if
 - 1. Usual linear regression assumptions met:
 - Homoskedasicity
 - Independent residuals
 - o and one of the following
 - 2. Normally distributed residuals
 - 3. Large sample approximation

Assessing Model Accuracy

Residual Standard Error

$$RSE = \sqrt{rac{1}{n-2}RSS}$$
 where $RSS = \sum_{i=1}^n (y_i - \hat{y_i})^2$

■ R^2 or "fraction of variance accounted for"

$$R^2 = rac{TSS - RSS}{TSS}$$
 where $TSS = \sum_{i=1}^n (y_i - ar{y})^2$

TSS is the total sum of squares

Multiple Linear Regression

Model is

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon$$

- Interpretation:
 - ullet eta_j is mean change in Y after a one unit increase in X_j , holding other X fixed
- For the graduate student admissions example:
 - $admit = \beta_0 + \beta_1 GRE + \beta_2 GPA + \epsilon$
- **Estimation**:
 - Again, least squares
 - $RSS = \sum_{i=1}^{n} (e_i)^2 = \sum_{i=1}^{n} (y \hat{eta_0} \hat{eta_1} X_1 \ldots \hat{eta_p} X_p)^2$

Collinearity

- Two or more predictors have **high correlation** with each other
- Implying holding one constant while varying others not possible in data
- Can result in poor estimation

Example

- Let's use regression instead of KNN to predict admission chance
- Model: admit = β_0 + β_1 GRE + β_2 GPA + ϵ

```
lm_fit <- lm(formula = admit~., data=student_data)</pre>
tidy(lm_fit) %>%
 mutate(p.value=ifelse(p.value<0.005, "<0.005",</pre>
                         as.character(round(p.value, 2)))) %>%
  flextable()
```

term	estimate	std.error	statistic p.value
(Intercept)	-1.6175	0.10612	-15.2 <0.005
gre	0.0031	0.00053	5.8 < 0.005
CGPA	0.1599	0.01015	15.8 < 0.005

Example

Let's look at the correlation matrix to assess collinearity

Qualitative Predictors

- lacktriangle Quantitative: eta assess change in mean Y when X changes by lacktriangle unit
- How do this work with variables indicating categories?
- Ex. Consider X=0 or I
 - Model: $Y = \beta_0 + \beta_1 X$
 - Change in X of I unit = change from category "0" to category "I"
- What about multi-category *X*?
 - ullet Ex. Consider $X=0,1\,$ or 2
 - Change in X of I unit = change from category "x" to category "x+I"
 - Assumes same level of change from 0 to 1, 1 to 2
 - Unrealistic for **nominal** variables

Qualitative Predictors: Dummy Coding

- lacksquare X with M categories $(0,1,\ldots,M)$ create M-1 features
- One is reference level, denoted by all dummy features = 0
- Ex. Graduate Admissions
 - ullet Model: $admit=eta_0+eta_1prestige+\epsilon$
 - Suppose prestige is categorical ("low", "medium", "high")
 - Model: $admit = \beta_0 + \beta_1 prestige_1 + \beta_2 prestige_2 + \epsilon$

$$egin{aligned} prestige_1 &= egin{cases} 1 & X = ext{medium} \ 0 & ext{else} \ \end{aligned} \ prestige_2 &= egin{cases} 1 & X = ext{high} \ 0 & ext{else} \ \end{cases}$$

Qualitative Predictors: Dummy Coding

- Ex. Graduate admission data
 - Model: $admit = \beta_0 + \beta_1 prestige_1 + \beta_2 prestige_2 + \beta_3 prestige_3 + \beta_4 prestige_4 + \epsilon$

```
student_data <- student_data_full %>%
  mutate(`University Rating`=factor(`University Rating`-1)) %>%
  plyr::rename(c("Chance of Admit"="admit",
                 "University Rating"="prestige"))
lm_fit <- lm(formula = admit~prestige, data=student_data)</pre>
tidy(lm_fit) %>%
 mutate(p.value=ifelse(p.value<0.005, "<0.005",</pre>
                        as.character(round(p.value, 2)))) %>%
  flextable()
```

term	estimate	std.error	statistic p.value
(Intercept)	0.548	0.020	27.8 < 0.005
prestige1	0.078	0.022	3.5 < 0.005
prestige2	0.164	0.022	7.6 < 0.005
prestige3	0.270	0.023	11.8 < 0.005
prestige4	0.340	0.024	14.4 < 0.005

Interactions:

- Recall: In the graduate admission data model, we assumed GPA and GRE effected admissions independently
 - $admit = \beta_0 + \beta_1 GRE + \beta_2 GPA + \epsilon$
 - ullet Change in average admit from one unit change in GRE always eta_1
 - Perhaps GRE matters more for admission chance among certain GPA ranges?
 - Referred to as an interaction between these features

Interactions:

- Ex. I: Two continuous features
 - Model:

$$admit = eta_0 + eta_1 GRE + eta_2 GPA + eta_3 GRE * GPA + \epsilon$$

$$= eta_0 + (eta_1 + eta_3 GPA) * GRE + eta_2 GPA + \epsilon$$

$$= eta_0 + eta_1 GRE + (eta_2 + eta_3 GRE) * GPA + \epsilon$$

- Ex. 2: Continuous and categorical feature
 - Model: Suppose we look at research experience ("No" or "Yes") and GPA
 - $admit = \beta_0 + \beta_1 Research + \beta_2 GPA + \beta_3 Research * GPA + \epsilon$

```
# Center CGPA
student_data <- student_data %>%
  mutate(CGPA_c = CGPA - mean(student_data$CGPA))
lm_fit <- lm(formula = admit~Research+CGPA_c+Research*CGPA_c, data=student_data)</pre>
tidy(lm_fit) %>%
  mutate(p.value=ifelse(p.value<0.005, "<0.005",</pre>
                         as.character(round(p.value, 2)))) %>%
  flextable()
```

term	estimate	std.error	statistic p.value
(Intercept)	0.699	0.0062	112.1 <0.005
Research	0.041	0.0081	5.0 < 0.005
CGPA_c	0.178	0.0108	16.5 < 0.005
Research:CGPA_c	0.022	0.0137	1.6 0.1

```
# Compare R2 without interaction
lm_fit_no_int <- lm(formula = admit~Research+CGPA_c, data=student_data)</pre>
r2_no_int <- round(summary(lm_fit_no_int)$r.squared, 3)</pre>
r2_int <- round(summary(lm_fit)$r.squared, 3)
```

lacksquare for interaction model is 0.777 compared to 0.776 without the interaction

Interactions:

- Ex. 2: Continuous and categorical feature
 - No interaction term

With interaction term

$$admit pprox eta_0 + eta_1 Research + eta_2 GPA + eta_3 Research * GPA \ = egin{cases} eta_0 + eta_2 GPA & Research = \operatorname{No} \ (eta_0 + eta_1) + (eta_2 + eta_3) GPA & Research = \operatorname{Yes} \end{cases}$$

Outliers and High Leverage Points

- An **outlier** is a data point whose response y does not follow the general trend of the rest of the data.
- A data point has high leverage if it has "extreme" predictor x values.

Residual plot can be used to identify outliers.

Leverage statistic:
$$h_i = rac{1}{n} + rac{(x_i - ar{x})}{\sum_{j=1}^n (x_j - ar{x})}$$