UNDERSTANDING AI TODAY

Artificial Intelligence

Presented by [name here], 2025-10-25

What is Al?

Artificial Intelligence (AI) refers to the simulation of human intelligence by machines, enabling them to perform tasks that typically require human cognitive abilities. Key capabilities of AI include learning from data, reasoning through information, and problemsolving effectively. These systems can mimic human functions such as perception and planning, exemplified by AI voice assistants that engage in natural conversations. AI continues to evolve, significantly impacting various sectors and enhancing our daily lives.

Healthcare

Al enhances diagnostics and patient care efficiency.

Robotics

Al-powered robots enhance productivity in factories.

Autonomous Vehicles

Self-driving cars improve safety and traffic flow.

Finance

Al algorithms detect fraud and optimize trading.

Natural Language Processing

Al chatbots assist with customer service inquiries.

Smart Assistants

Devices like Alexa simplify daily life tasks.

Goals of Artificial Intelligence Development

Automate Repetitive Tasks

Automating complex and repetitive tasks frees up human resources, allowing for increased productivity and efficiency in various industries.

Develop Adaptive Systems

Developing adaptive and learning systems allows AI to improve over time, responding effectively to new information and changing environments.

Enhance Decision-Making

Al enhances decisionmaking by providing datadriven insights, enabling organizations to make informed choices based on comprehensive analysis and patterns.

Types of Al Agents and Environments

Simple Reflex Agents

Simple reflex agents react directly to stimuli, using predefined rules without internal state, suitable for straightforward problems like light following.

Model-Based Agents

Model-based agents
maintain an internal
model of the environment,
allowing them to make
decisions based on both
current input and past
experiences.

Goal-Based Agents

Goal-based agents
operate towards specific
goals or objectives,
assessing potential actions
to achieve desired
outcomes, exemplified in
pathfinding in navigation
systems.

Uninformed Search Algorithms Overview

Breadth-First Search (BFS)

BFS explores all nodes at the present depth prior to moving on to nodes at the next depth level, ensuring the shortest path is found.

Depth-First Search (DFS)

DFS traverses as far down a branch as possible before backtracking, which can lead to faster solutions but may get stuck in deep paths.

Depth-Limited Search (DLS)

DLS limits the depth of search to a predetermined level, balancing between breadth and depth and preventing infinite exploration in deep trees.

Informed Search Algorithms: Enhancing Efficiency

Best First Search

Best First Search is an optimal pathfinding method that evaluates nodes based on a heuristic to guide the search, prioritizing promising paths.

Beam Search

Beam Search is an

optimized approach that
limits the number of
expanded nodes at each
level, maintaining only the
most promising
candidates to streamline
search.

A* Algorithm

The A* Algorithm combines
cost and heuristic,
efficiently finding the
shortest path while
considering both actual
and estimated costs in its
search process.

8-Puzzle Problem Overview

States

Different arrangements of the puzzle tiles

Operators

Actions sliding tiles in various directions

Heuristics

Techniques
assessing tile
arrangement
efficiency

Goal

Reach the target tile arrangement configuration

Game Playing Algorithms: Minimax and Pruning

Understanding the Minimax Algorithm

The Minimax Algorithm is a decision-making process used in zero-sum games to determine optimal strategies for maximizing the outcome while minimizing potential losses.

Enhancing Efficiency with Alpha-Beta Pruning

Alpha-Beta Pruning
optimizes the Minimax
Algorithm by
systematically eliminating
branches in the game tree,
enhancing efficiency
without affecting the final
decision output.

Applications in Various Games

Game-playing algorithms
like Minimax and AlphaBeta Pruning find
applications in popular
games such as **Tic-Tac-Toe**and **Chess**, facilitating
strategic gameplay
decisions.

Understanding Constraint Satisfaction Problems (CSP)

Definition of CSP

A Constraint Satisfaction
Problem involves finding
values for variables that
meet specific constraints,
often used in scheduling
and resource allocation.

Examples of CSP

Sudoku puzzles, map coloring, and task scheduling. Each scenario requires unique solutions while adhering to defined rules.

Solution Approaches

Effective solution
techniques include
backtracking search,
forward checking, and
constraint propagation,
which help efficiently
navigate potential
solutions and prune the
search space.

Summary of Al

Artificial Intelligence (AI) simulates human intelligence and cognitive functions, enabling machines to learn, reason, and solve problems. Its applications span diverse fields, including healthcare, where it aids in diagnosis, and autonomous systems like self-driving cars. Al's development is driven by goals such as automating tasks and enhancing decision-making. By utilizing search algorithms and addressing constraint satisfaction problems, AI continues to evolve, offering innovative solutions across various industries and improving our daily lives.

Thank You