Higher Algebra Midterm 3 - Winter 2021

December 16, 2021

Name:

This examination contains 8 pages and 7 problems.

You can write on the blank page after the problem if the space is not enough. Please do NOT tear out the pages.

Read all the questions carefully before starting the exam.

Use of Calculators and Books are NOT permitted!

Show all your work!!! Good Luck!!!!

Problem	Score	
1	/20	
2	/15	
3	/15	
4	/15	
5	/15	
6	/10	
7	/10	
Total	/100	

- 1. True or False.
 - (a) $_$ Let H be a subgroup of G. If H is abelian, then H is a normal subgroup of G.

(b) Let G be a group and $g \in G$. Suppose that |G| = 45, $g^9 \neq e$, and $g^{15} \neq e$. Then G is cyclic.

By Lagrange's Theorem,

$$|g| = 5, g^{5} = e$$
 $|g| = 45 = 3^{2} \times 5$
 $|g| = 16 \times 6$
 $|g| = 5, g^{5} = e$
 $|g| = 45 \times 6$
 $|g| = 16 \times 6$

(c) Let G be a group and H be a subgroup of G. If [G:H]=2, then H is normal.

(d)
$$(1,3,4,8,2)A_8 = (1,3,4,2)A_8$$

 $(1,3,4,8,2)A_8 = (1,3,4,2)A_8$
 $(1,3,4,8,2) = (1,2)(1,8)(1,4)(1,3)$ even

(e) Let G_1 and G_2 be groups and $h: G_1 \to G_2$ be a homomorphism. If h is one-to-one and G_2 is abelian, then G_1 is abelian.

2. (a) Please state the definition of index.

(b) Please state the Lagrange's theorem.

Let G be a group and H be a subgroup of G.

If
$$|G| \in G$$
, then
$$|G| = (G:H)|H|$$

In other words,
$$|H| |G|$$
.

(c) Suppose that G is a group with |G| = 18. What are the orders of possible subgroups of G?

Let
$$M$$
 be a subgrup of G .

Lagrange's bluorun: $|M|/|8=2\times3^2$

$$= 2|M|=1 \text{ or } 2 \text{ or } 3 \text{ or } 6 \text{ or } 9 \text{ or } 18$$

- 3. Let $H = \langle (1,2,3) \rangle$. Consider H as a subgroup of A_4 .
 - (a) Please list all left cosets of H. (including the elements of the cosets)

$$H = \{e, (1,2,3), (1,3,2)\}$$

$$(1,3)(3,4)H = \{(1,2)(3,4), (2,4,3), (1,4,3)\}$$

$$(1,3)(2,4)H = \{(1,3)(2,4), (1,4,2), (2,3,4)\}$$

$$(1,0)(2,3)H = \{(1,0)(2,3), (1,2,4), (1,3,4)\}$$

(b) Please list all right cosets of H. (including the elements of the cosets)

$$H = \{e, (1,2,3), (1,3,2)\}$$

$$L((1,2)(3,4) = \{(1,2)(3,4), (1,3,4), (2,3,4)\}$$

$$L((1,3)(2,4) = \{(1,3)(2,4), (2,4,3), (1,2,4)\}$$

$$L((1,4)(2,3) = \{(1,4)(2,3), (1,4,2)\}$$

(c) Is
$$H$$
 a normal subgroup of A_4 ? Ans: $\underline{\qquad}$

$$(\begin{array}{c} (\begin{array}{c} 1 \\ 1 \end{array}) \end{array}) \begin{array}{c} (\begin{array}{c} 2 \\ 3 \end{array}) \end{array}) \begin{array}{c} (\begin{array}{c} 3 \\ 4 \end{array}) \end{array}) \begin{array}{c} (\begin{array}{c} 3 \\ 4 \end{array}) \end{array})$$

4. Consider the group D_4 and $H = \{e, (13)(24)\}$. H is a normal subgroup of D_4 . The quotient group D_4/H contains 4 elements

$$H,rH,sH,srH$$
 (1)

where r = (1, 2, 3, 4) and s = (2, 4).

(a) Please complete the Cayley (multiplication) table of D_4/H in terms of the expressions in

	(1). (6 poi	nts)				,	
	*	Н	/ rH	sH	srH		
	H	Н	rH	sH	srH		
	rH	rH	Н	srH	sH	<u> </u>	
	sH	sH	srH	(1-1)	(8/4)		
	srH	srH	SH	8 (1	H		
(SH) (SH) = SZH = EH = H							

(b) Is D_4/H cyclic? Ans: _/_(\bigcirc (4 points)

$$H : order = 1$$

$$(rH)^{2} = H : order = 2$$

$$(sH)^{2} = H : order = 2$$

$$(sH)^{2} = H : order = 2$$

(c) Simplify $(2,4)H * [(4,3,2,1)H]^{-1} * [(1,4)(2,3)H]$. (5 points) Please express your answer in terms of the expressions in (1).

$$(2.4)H ((4.3.2.1)H)^{-1}(14)(2.3)H$$

$$= (2.4)H (4.3.2.1)^{-1}H (1.4)(2.3)H$$

$$= (2.4)(03.2.1)^{-1}(1.4)(2.3)H$$

$$= (2.4)(1.2.3.4)(1.4)(2.3)H$$

$$= (2.4)(1.2.3.4)(1.4)(2.3)H$$

$$= (4)$$

5. Let $\phi : \mathbb{R} \to GL_2(\mathbb{R})$ be defined by

$$\phi(x) = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}.$$

(a) Prove that ϕ is a homomorphism. (10 points) Hint: $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$, $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

bet
$$\pi, y \in TR$$
. Then

$$\phi(x) \neq (y) = \begin{cases} \cos x - \sin x \\ \sin x \cos y \end{cases} \begin{cases} \cos y - \sin y \\ \sin y \cos y \end{cases}$$

$$= \begin{cases} \cos x \cos y - \sin x \sin y - \cos x \sin y - \sin x \cos y \\ \sin x \cos y + \cos x \sin y - \sin x \sin y + \cos x \cos y \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \end{cases}$$

$$= \begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \\ \cos(x + y) \end{cases}$$
Therefore, $\begin{cases} \cos(x + y) - \sin(x + y) \\ \sin(x + y) \\ \cos(x + y) \end{cases}$

(b) Please find the kernel of ϕ . (5 points)

$$\phi(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{cases} \cos x = 1 \\ \sin x = 0 \end{cases} \Rightarrow x = 2\pi \quad \text{in } 6\pi$$

$$= \begin{cases} \sin x = 0 \\ \sin x = 0 \end{cases} \Rightarrow x = \pi \quad \text{in } 6\pi$$

$$= \begin{cases} \sin x = 0 \\ \sin x = 0 \end{cases} \Rightarrow x = \pi \quad \text{in } 6\pi$$

$$= \begin{cases} \sin x = 0 \\ \sin x = 0 \end{cases} \Rightarrow x = \pi \quad \text{in } 6\pi$$

6. (a) Let G be a group and $a,b \in G$ with $a \neq b$. Suppose that $\phi: G \to S_3$ is a homomorphism such that $\phi(a) = (1,2)$ and $\phi(b) = (1,2,3)$. Evaluate $\phi(ab^{-1}a)$.

$$\phi(ab^{-1}a) = \phi(a) \phi(b^{-1}) \phi(a)
= \phi(a) [\phi(b)]^{-1} \phi(a)
= (1,2) (1,2,3)^{-1} (1,2)
= (1,2) (1,3,2) (1,2)
= (1,2) (1,3,2) (1,2)
= (1,2,3)
= (1,2,3)
= (1,2,3)
= (1,2,3)
= (1,2,3)
= (1,2,3)
= (1,2,3)
= (1,2,3)
= (1,2,3)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,3,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,3)
= (1,2) (1,3)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2)
= (1,2) (1,2$$

(b) Let G be a group and $a,b \in G$ with $a \neq b$. Suppose that $\phi: G \to \mathbb{R}^2$ is a homomorphism such that $\phi(a) = (1,2)$ and $\phi(b) = (2,1)$. Find a solution of x such that $\phi(x) = (4,-1)$.

such that
$$\phi(a) = (1,2)$$
 and $\phi(b) = (2,1)$. Find a solution of

Let $x = a^m b^n$, $a \in \mathbb{Z}$.

$$\phi(x) = \phi(a^m b^n) = m\phi(a)^m + n\phi(b)^m$$

$$= m(1,2) + n(2,1)$$

$$= (m+2n, 2m+n)$$

7

$$\int x = a^{-2}b^{3}$$

7. Let G be an abelian group with |G| = 15. Prove that G has a subgroup of order 3 and a subgroup of order 5. Please use only the materials that were taught so far.

$$H = Zg > = \{e, g, g^2\}$$

$$(aH)^3 = a^3 H = eH = H$$

If
$$|a| = 5$$

 $(aH)^{5} = a^{5}H = eH = |-|-$

Lagrange's theorem