January 10, 2019

Let $P^{(0)}$ be an upper triangular parent matrix, with $P^{(0)}_{ij}=1$ if $\pi(i)=j$, i.e. j is the parent of vertex i. This matrix will have a single nonzero entry per row and represents a forest. Given a set of undirected edges E, define upper triangular adjacency matrix A, such that $A_{ij}=1$ if $(i,j)\in E$ with i< j. We seek to find a parent matrix which corresponds to a forest in which each tree is a connected component in G=(V,E). Let $A^{(0)}=A$. Initialize, $\pi(i)=\max(i,\max_j A_{ij}j)$ and $P^{(0)}$ accordingly. Compute

$$B_{ij}^{(k)} = \max_{l} P_{li}^{(m)} A_{lj}^{(k)}$$

$$A_{ij}^{(k)} = \begin{cases} 0 & : i > j \\ \max(B_{ij}^{(k)}, B_{ji}^{(k)}) & : i \leq j \end{cases}.$$

So that if $A_{ij}^{(k)}=1$, then $B_{\pi(i),j}^{(k)}=1$, and $A_{\pi(i),j}^{(k)}=1$ if $\pi(i) < j$ or $A_{j,\pi(i)}^{(k)}=1$ if $\pi(i) \geq j$. Execute until convergence for some k. Then, set $\pi(i)=\max(i,\max_j A_{ij}^{(k)}j)$ and $P^{(m+1)}$ accordingly.