Attention is All You Need

introduction to the transformer architecture

Felix Karg March 11, 2023

Institute for Theoretical Informatics: Artificial Intelligence for Materials Science

Overview **Background**

Embedding

Attention

Successes

Conclusion

Transformer

Compression

Overview

Background

Embedding

Attention

Transformer

Compression

Successes

Conclusion

Individual Parts:

• Normal FeedForward MLP

- Normal FeedForward MLP
- Embedding: Input

- Normal FeedForward MLP
- Embedding: Input
- Embedding: Location

- Normal FeedForward MLP
- Embedding: Input
- Embedding: Location
- Basics of Attention (before transformer)

- Normal FeedForward MLP
- Embedding: Input
- Embedding: Location
- Basics of Attention (before transformer)
- Attention is All You Need [1]

- Normal FeedForward MLP
- Embedding: Input
- Embedding: Location
- Basics of Attention (before transformer)
- Attention is All You Need [1]
- FastFormer [2]

- Normal FeedForward MLP
- Embedding: Input
- Embedding: Location
- Basics of Attention (before transformer)
- Attention is All You Need [1]
- FastFormer [2]
- (fun:) One Model to Learn Them All [3]

- Normal FeedForward MLP
- Embedding: Input
- Embedding: Location
- Basics of Attention (before transformer)
- Attention is All You Need [1]
- FastFormer [2]
- (fun:) One Model to Learn Them All [3]
- Distillation / Quantization [4]

Overview

Transformer

Background

Compression

Embedding

Successes

Attention

Conclusion

Background

Multi-Layer Perceptron

Dropout

Residual Connections

RegNet

Multi-Layer Perceptron

Source: Public Domain

Background

Multi-Layer Perceptron

Dropout

Residual Connections

RegNet

Powerful method for regularization during training Dropout [5]

Background

Multi-Layer Perceptron

Dropout

Residual Connections

RegNet

Skipping connections to propagate gradients Residual Connections [6]

Background

Multi-Layer Perceptron
Dropout
Residual Connections
RegNet

Self-Regulated Network [7]

Overview

Background

Embedding

Attention

Transformer

Compression

Successes

Conclusion

Embedding

Input

Location

• Build Vocabulary

- Build Vocabulary
- Define Embedding Dimensions

- Build Vocabulary
- Define Embedding Dimensions
- Learn Mapping

Embedding

Input

Location

Basically sinosoidal grid-cell patterns Simply getting added on top Overview

Background

Embedding

Attention

Transformer

Compression

Successes

Conclusion

Attention

Basic Attention

Multi-Head Attention

Masked Attention

 $\begin{array}{lll} \mbox{Attention before Transformers} \\ \mbox{Something about Q, K, V matrices and effects} \\ \mbox{Yes we have empty context} \end{array}$

Attention

Basic Attention

Multi-Head Attention

Masked Attention

Multi-Head-Attention

Attention

Basic Attention

Multi-Head Attention

Masked Attention

Masking Attention

Overview

Background

Embedding

Attention

Transformer

Compression

Successes

Conclusion

Transformer

Output

Putting it all Together Sparse Transformer FastFormer FF and Softmax over embedding followed by topk selection

Transformer

Output

Putting it all Together

Sparse Transformer

FastFormer

Full Architecture Overview

Transformer

Output
Putting it all Together

Sparse Transformer

FastFormer

Even the original GPT didn't use 'full' transformers, but Sparse Transformer [8]

Transformer

Output
Putting it all Together
Sparse Transformer
FastFormer

Recently, people built a linear-cost attention mechanism: FastFormer [2]

Overview

Background

Embedding

Attention

Transformer

Compression

Successes

Conclusion

Compression

Quantization

Distillation

Reducing resolution of models after training significantly, e.g. from fp32 to fp8 $\,$

Compression

Quantization

Distillation

Training a smaller model on outputting similar outputs distributions for given inputs

Overview

Background

Embedding

Attention

Transformer

Compression

Successes

Conclusion

Successes

BERT

GPT2

CLIP

Diffusion

generating language embeddings for NLP tasks $\,$

Successes

BERT

GPT2

CLIP

Diffusion

because architecture parameters and dimensions are known

Successes

BERT

GPT2

CLIP

Diffusion

Building semantic embeddings shared from pictures and text

Successes

BERT

GPT2

CLIP

Diffusion

Generating images based on shared semantic embeddings

Overview

Background

Embedding

Attention

Transformer

Compression

Successes

Conclusion

Conclusion

We've seen:

Conclusion

We've seen:

things

Sources i

- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, t. L. Kaiser, and I. Polosukhin, "Attention is all you need," *Advances in neural information processing systems*, vol. 30, 2017.
- C. Wu, F. Wu, T. Qi, Y. Huang, and X. Xie, "Fastformer: Additive Attention Can Be All You Need," Sept. 2021.
- L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszkoreit, "One Model To Learn Them All," June 2017.

Sources ii

- A. Polino, R. Pascanu, and D. Alistarh, "Model compression via distillation and quantization," Feb. 2018.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," *The journal of machine learning research*, vol. 15, no. 1, pp. 1929–1958, 2014.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.

Sources iii

- J. Xu, Y. Pan, X. Pan, S. Hoi, Z. Yi, and Z. Xu, "RegNet: Self-Regulated Network for Image Classification," Jan. 2021.
- R. Child, S. Gray, A. Radford, and I. Sutskever, "Generating Long Sequences with Sparse Transformers," Apr. 2019.

End

Additional slide

without numbering, does not show up in normal numbers