Plant Leaf Disease Detection Using ResNet-50

Ajay Jeevan Jose 53 MCA TCR21MCA-2004

Guided By: **Sminesh C N** Associate Professor

Department of Computer Applications
Government Engineering College, Thrissur, Kerala

कौशलम

Outline

- 1 Introduction
- 2 Data Flow Diagram
- 3 Block Diagram
- 4 Raw Input Image
- 5 Implementation
- 6 Partial Results
- 7 Testing
- 8 Action Plan

Early disease detection is crucial for improved crop yield and quality. Due to a decline in the quality of the agricultural produce, diseased plants can cause large financial losses for individual farmers. In a nation like India, where a substantial section of the population relies on agriculture for a living, it is essential to spot the disease at its earliest stages. A precise diagnosis of the plant disease might reduce losses. The objective of this research is to develop a model that can correctly forecast whether a leaf is disease-infected or not. The main objectives of this study include identifying plant disease and suggesting pesticides that can help to reduce the crop loss.

DFD Level 0

DFD Level 1

System Architecture

Block Diagram of Model Creation

Input image

The leaf image of paddy and maize is to be taken from Kaggle dataset. The dataset selected for Paddy contains,

- 523 Brown Spot
- 1488 Healthy
- 565 Hispa
- 779 Leaf Blast images

and maize dataset contains

- 1146 blight
- 1306 common rust
- 574 Grey leaf spot
- 1162 Healthy images

For this project we are taking 523 images from every datasets

Input image

The leaf image of paddy and maize is to be taken from Kaggle dataset. The dataset selected for Paddy contains,

- 523 Brown Spot
- 1488 Healthy
- 565 Hispa
- 779 Leaf Blast images

and maize dataset contains

- 1146 blight
- 1306 common rust
- 574 Grey leaf spot
- 1162 Healthy images

For this project we are taking 523 images from every datasets.

Dataset Collection and Pre-processing

The dataset is collected from Kaggle and imported to colab. Steps involved in data pre-processing are,

- Encoding
- Turn into tensor set
- reshaping and normalising

```
# read, turn image into number, normalize, resize
def preprocess_image(image_path, labels=None):
    # read image
    image = tf.io.read_file(image_path)
    # turn jpeg into numbers
    image = tf.iimage.decode_jpeg(image, channels=3)

# scaling / normalize (0,255) becomes (0,1)
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    # resize to (224,224)
    image = tf.image.resize(image, size=[IMAGE_SIZE, IMAGE_SIZE])
# return
    return image, labels
```


Model Building

Model for the project is being built using ResNet-50 model

After creating the model it is complied and a early stopping callback is created before training the model in order to prevent overfitting.

```
# EARLYSTOPPING CALLBACK
# monitor the val loss (prevent overfitting)
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)
```

Model Building

Model is then trained with 50 epochs

```
history_train = model.fit(train_set, epochs=50,
validation_data = val_set,
callbacks=[early_stopping]])
```

The model is saved fro further processing.

Labelled Images

Here are some images that are labelled for training

Testing

```
# upload files
uploaded=files.upload()
filename = []
test images = []
for fn in uploaded.keys():
    filename.append(fn)
    path='/content/' + fn
    test images,append(path)
# turn into set
test set = tf.data.Dataset.from_tensor_slices(( tf.constant(test_images) ))
# preprocess
test set = test set.map(preprocess image)
# batching
test set = test set.batch(batch size=32)
# predict
test predictions = model.predict(test set)
label prediction = []
for i in range(len(test predictions)):
    label_prediction.append(unique_label[np.argmax(test_predictions[i])])
# show prediction results
for i in range(len(test images)):
    print(label prediction[i])
    pil_img = Image(filename=test_images[i], width=150, height=150)
    display(pil img)
```

Choose Files 3 files

- Brown_leaf_spot_of_rice-min.jpg(image/jpeg) 298948 bytes, last modified: 9/18/2022 100% done
 brown-spot-1.jpg(image/jpeg) 86292 bytes, last modified: 9/18/2022 100% done
- download (1).jpg(image/jpeg) 9944 bytes, last modified: 10/12/2022 100% done
- Saving Brown_leaf_spot_of_rice-min.jpg to Brown_leaf_spot_of_rice-min.jpg Saving brown-spot-1.jpg to brown-spot-1.jpg
- Saving download (1).jpg to download (1).jpg 1/1 [======= 25 25/step

Paddy: Leaf Blast

Paddy: Brown Leaf Spots

Corn. Lear dray Spo

Action Plan

Thank you!

