Constraint Satisfaction Problem

Constraint satisfaction problems (CSPs)

- Standard search problem: state is a "black box" any data structure that supports successor function and goal test
- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Allows useful general-purpose algorithms with more power than standard search algorithms

Constraint satisfaction problems (CSPs)

- What is a CSP?
 - Finite set of variables X₁, X₂, ..., X_n
 - Nonempty domain of possible values for each variable $D_1, D_2, ..., D_n$
 - Finite set of constraints C_1 , C_2 , ..., C_m
 - Each constraint C_i limits the values that variables can take,
 - e.g., $X_1 \neq X_2$
 - Each constraint C_i is a pair <scope, relation>
 - Scope = Tuple of variables that participate in the constraint.
 - Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.

CSP benefits

- Standard representation pattern
- Generic goal and successor functions
- Generic heuristics (no domain specific expertise).

Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T
- Domains D_i = {red,green,blue}
- Constraints: adjacent regions must have different colors
- e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

CRYPTARITHMETIC PROBLEM

- -> Type of constraint satisfaction broken (CSP)
- -> Constraints: (i) No two lettoss have some value.
 - (ii) Sum of digits must be as Shown in problem.
 - (iii) shere should be aly one carry forward.
- → Dignts can be assigned to a word/alphabet
 in the range (0-9).

		letter	Digit.
→ e.g,	TO	T	
	+ 60	0	
De Alexander	OUT	9	
Hint:		U	
-> Stoods from	tu		
left most	digit = 1 value = 0 (zer		
-> lettmost	value 70 (cer	(0	

CSP Example: Cryptharithmetic puzzle

Variables: $F T U W R O X_1 X_2 X_3$

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints

alldiff(F, T, U, W, R, O) $O + O = R + 10 \cdot X_1$, etc.

Solve the following problem

1.

SEND

+MORE

MONEY

2. BASE

+BALL

GAMES