Cathay Assignment

黄貞棠

Data preprocessing

- Split of data sets and preprocessing targets and features
- Data definition
 - Categorical data (Nominal or Ordinal)
 - Numerical data
- feature engineering
 - One hot encoding

ID	1	X0	X1	X2	X3	X4	X5	X6	vo	V10	X11	X12	V12	X14	X15	V16	V17	V10	V10	wan	
ID	У		A1	AZ	N3	Λ4	AS	VO	X8	X10	VII	AIZ	X13	A14	VID	X16	X17	X18	X19	X20	
	0	130.81 k	V	at	a	d	u	j	0		0	0	0	1	0	0	0	0	1	0	0
	6	88.53 k	t	av	e	d	у	1	0		0	0	0	0	0	0	0	0	1	0	0
	7	76.26 az	w	n	С	d	x	j	x		0	0	0	0	0	0	0	1	0	0	0
	9	80.62 az	t	n	f	d	x	1	e		0	0	0	0	0	0	0	0	0	0	0
	13	78.02 az	v	n	f	d	h	d	n		0	0	0	0	0	0	0	0	0	0	0
	18	92.93 t	b	e	С	d	g	h	S		0	0	0	0	1	0	0	0	0	0	0
	24	128.76 al	r	e	f	d	f	h	S		0	0	0	0	1	0	0	0	0	0	0
	25	91.91 o	1	as	f	d	f	j	a		0	0	0	0	1	0	0	0	0	0	0
	27	108.67 w	s	as	e	d	f	i	h		0	0	0	0	1	0	0	0	0	0	0
	30	126.99 ј	b	aq	С	d	f	a	e		0	0	0	0	1	0	0	0	0	0	0
	31	102.09 h	r	r	f	d	f	h	р		0	0	1	0	0	0	0	0	0	0	0
	32	98.12 al	r	e	f	d	f	h	0		0	0	0	0	1	0	0	0	0	0	0

	catX0_aj	catX0_ak	catX0_ap	catX0_ay	catX0_h	catX1_a	catX1_I	catX1_r	catX1_v	catX2_ak	 numX375	numX376
3540	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0
3748	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	 0.0	0.0
1287	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	1.0	 0.0	0.0
2856	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0
1380	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0

Model Selection

- Lasso (L1 norm)
 - Lasso sets the coefficients of certain features to zero, achieving feature selection.

$$\min_eta rac{1}{2n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 + lpha \sum_{j=1}^p |eta_j|$$

- Ridge (L2 norm)
 - Ridge retains all features but shrinks the coefficients.

$$\min_eta rac{1}{2n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 + lpha \sum_{j=1}^p eta_j^2$$

- Elastic Net (L1 norm +L2 norm)
 - Elastic Net combines both L1 and L2 regularization and allows for some level of feature selection.

$$\min_{eta} rac{1}{2n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 + lpha \left(
ho \sum_{j=1}^p |eta_j| + rac{1}{2} (1-
ho) \sum_{j=1}^p eta_j^2
ight)$$

Grid Search and Result

MSE: 102.20014237405286

```
Model Name: Lasso
平均準確率: -64.98740289905666, 標準差: 5.136347852809586, 參數組合: {'Lasso_alpha': 0.01}
平均準確率: -66.462815529369, 標準差: 5.452079050846119, 參數組合: {'Lasso_alpha': 0.1}
平均準確率: -91.7362542263196, 標準差: 4.247349227181149, 參數組合: {'Lasso alpha': 1}
最佳準確率: -64.98740289905666, 最佳參數組合: {'Lasso__alpha': 0.01}
MSE: 97.71311095102683
Model Name: ElasticNet
平均準確率: -65.42221025327328, 標準差: 5.600548427899211, 參數組合: {'ElasticNet__alpha': 0.01}
平均準確率: -67.39460322631605, 標準差: 5.602832617561342, 參數組合: {'ElasticNet_alpha': 0.1}
平均準確率: -96.54802738423814, 標準差: 5.887853871026864, 參數組合: {'ElasticNet_alpha': 1}
最佳準確率: -65.42221025327328,最佳參數組合: {'ElasticNet_alpha': 0.01}
MSE: 98.43141155328058
Model Name: Ridge
平均準確率: -73.01969276876399, 標準差: 7.29921795767681, 參數組合: {'Ridge_alpha': 0.01}
平均準確率: -72.2230680272748, 標準差: 7.018533350196532, 參數組合: {'Ridge__alpha': 0.1}
平均準確率: -69.82265609859135, 標準差: 6.312500911527025, 參數組合: {'Ridge_alpha': 1}
最佳準確率: -69.82265609859135,最佳參數組合:{'Ridge_alpha': 1}
```

Conclusion

- Understanding the data and defining the problem, and then performing data preprocessing to deal with features is very important and takes the most time.
- Understand the goals and choose the appropriate one from different models.