Sieci neuronowe

Zadanie 1

Napisz program będący implementacją perceptronu dla poniższego ciągu uczącego:

X ₁	X ₂	d
2	1	1
2	2	1
0	6	1
-2	10	-1
-2	0	-1
0	0	-1
4	-20	-1

Jakie jest równanie prostej rozdzielającej punkty z d=1 od punktów z d=-1?

Zadanie 2

Napisz program dla **neuronu Hebba** z nauczycielem rozpoznającego dwie cyfry:

Po nauczeniu sprawdź jak są klasyfikowane poniższe obrazki:

Zadanie 3

Problem z zdania 2 rozwiąż za pomocą neuronu sigmoidalnego z unipolarną funkcją aktywacji.

Zadanie 4

Sieć jednowarstwowa złożona z **neuronów sigmoidalnych** rozpoznająca litery:

Zadanie 5

Sieć dwuwarstwowa (1 neuron w warstwie wyjściowej, 2 w wewnętrznej) dla problemu **XOR**. Wykorzystaj ciąg uczący:

[0,0] – wartość oczekiwana: **d=0**

[1,1] – wartość oczekiwana: d=0

[0,1] – wartość oczekiwana: **d=1**

[1,0] – wartość oczekiwana: **d=1**

i unipolarną funkcję aktywacji:

$$f\left(x\right) = \frac{1}{1 + e^{-\beta x}}$$