Olympiades Nationales de Mathématiques 2017

Phase finale 3^{ème} tour Niveau 4AS

19 mars 2017 Durée 4 h

L'épreuve est composée de quatre exercices indépendants. Toute réponse doit être justifiée ; Les solutions partielles seront examinées ;

Calculatrice non autorisée.

Exercice 1 (4 points)

- 1) Calculer $\frac{1}{2} + \frac{1}{3} + \frac{1}{6}$ en déduire la valeur de $\frac{1}{4} + \frac{1}{6} + \frac{1}{12}$
- 2) Trouver 4 entiers naturels a, b, c et d tels que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} = 1$
- 3) Trouver 5 entiers naturels a, b, c, d et e tels que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e} = 1$

Soit
$$X = \sqrt{1+a+2\sqrt{a}} + \sqrt{1+a-2\sqrt{a}}$$
, $a \in \mathbb{R}_+$

- 1) Montrer que $(X^2 4)(X^2 4a) = 0$
- 2) Quelles sont les valeurs possibles de X ?
- 3) Simplifier $\sqrt{1000000 + 2\sqrt{999999}} + \sqrt{1000000 2\sqrt{999999}}$

Exercice 3 (4 points)

Trois tapis (que l'on peut supposer circulaires) ont une aire totale de 200 m^2 . En les superposant partiellement, ils recouvrent une surface de 140 m^2 . La partie recouverte par exactement deux tapis à une aire totale de 24 m^2 . Quelle est l'aire de la partie recouverte par les trois tapis superposés ?

Le rectangle ABCD a pour dimensions a et b.

E est le point de [AD] tel que $DE = \frac{1}{4}AD$. La parallèle à (DC)

passant par E coupe (BC) en F. Soit M le milieu de [DC]. La droite (BM) coupe (EF) en I. Montrer que le trapèze EIMD et le triangle BIF ont la même aire.

Exercice 5 (4 points)

Le demi-cercle C_1 de centre O passant par le point A et le demi-cercle C_2 de diamètre [AB] sont tangents

en A. La droite (OD) est un axe de symétrie de la figure et le point D appartient à C_1 . Le demi-cercle

 C_3 est le symétrique de C_2 par rapport à (OD) .

Le point E est l'intersection du segment [OD] et de C_2 . On donne OA =10 et DE = 6

- 1) Montrer que $\frac{AO}{AE} = \frac{AE}{AB}$
- 2) Calculer le rayon de C₂.
- 3) C₄ est le cercle de centre I passant par le point
- D. C_4 est tangent à C_1 en D, tangent à C_2 en J, et tangent à C_3 en K. Calculer le rayon de C_4 .

Fin.