|Chapter 4 Statistical Inference

4.1 Probability

Key Concepts

- Statistical Inference: Drawing conclusions about a population using data from a sample.
- Probability: A mathematical framework for reasoning about uncertainty.

Probability Experiment

- A probability experiment must be repeatable and allow the listing of all possible outcomes.
 Example: Tossing a coin twice:
 - Sample space: {HH, HT, TH, TT}.
 - An event is a subset of the sample space, e.g., "at least one tail" = {HT, TH, TT}.

Probability Rules

- 1. $0 \le P(E) \le 1$.
- 2. P(S) = 1 (Probability of the entire sample space is 1).
- 3. If events E and F are mutually exclusive: $P(E \cup F) = P(E) + P(F).$

Uniform Probability

• Equal probability for all outcomes:

$$P(\text{each outcome}) = \frac{1}{N}$$

Example: Rolling a fair die once:

Sample space = {1, 2, 3, 4, 5, 6}, $P(\text{each face}) = \frac{1}{6}$.

4.2 Conditional Probability and Independence

Conditional Probability

• P(E | F): Probability of E given F occurred.

$$P(E|F) = rac{P(E \cap F)}{P(F)}$$

Example: In a lucky draw with 500 participants, 280 males:

- E: Winner is John.
- F: Winner is male.

$$P(E|F) = rac{P(E \cap F)}{P(F)} = rac{rac{1}{500}}{rac{280}{500}} = rac{1}{280}.$$

Independence

• Two events \boldsymbol{A} and \boldsymbol{B} are independent if:

$$P(A\cap B)=P(A)\cdot P(B)$$

• Example: Rolling two dice. Probability of rolling a 4 on die 1 and a 6 on die 2:

$$P(4\cap 6) = P(4)\cdot P(6) = \frac{1}{6}\cdot \frac{1}{6} = \frac{1}{36}.$$

Random sampling	Corresponds to	Probability experiment
Sampling frame	Corresponds to	Sample space
A subgroup A of the sampling f	rame Corresponds to	An event A of the sample space
The rate of A , rate(A)	Corresponds to	The probability of A , $P(A)$

4.3 Common Fallacies

- 1. Prosecutor's Fallacy: Confusing $P(A \mid B)$ with $P(B \mid A)$.
 - Example: Sally Clark case where $P(\text{Evidence} \mid \text{Innocent}) \neq P(\text{Innocent} \mid \text{Evidence})$.
- 2. Conjunction Fallacy: Believing $P(A \cap B) > P(A)$.

Fact: $P(A \cap B) \leq P(A)$.

3. Base Rate Fallacy: Ignoring base rates when calculating conditional probabilities.

Example: Breathalyzer test.

- False positive rate: 5%.
- Drunk driving rate: 0.1%.
- $P(\text{Drunk} | \text{Positive}) \approx 2\%$.

4.4 Confidence Intervals

Definition

• A confidence interval gives a range likely to contain a population parameter with a specified confidence level (e.g., 95%).

For Proportion

$$p^*\pm z^*\cdot\sqrt{rac{p^*(1-p^*)}{n}}$$

Where:

- p^* : Sample proportion.
- z*: Z-value for the chosen confidence level (e.g., 1.96 for 95%).
- n: Sample size.

Example: 95% confidence interval for a sample proportion of 0.254 (sample size = 2000):

$$0.254 \pm 1.96 \cdot \sqrt{\frac{0.254(1 - 0.254)}{2000}} = 0.254 \pm 0.0191$$

We are 95% confident that the population proportion (the parameter in this case) of resale flat transactions in 2020 that are 5-room, lies within the confidence interval.

For Mean

$$\bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}}$$

Where:

- \bar{x} : Sample mean.
- t^* : T-value based on confidence level and sample size.
- s: Sample standard deviation.

4.5 Hypothesis Testing

Key Steps

- 1. State Hypotheses:
 - Null hypothesis H_0 : No effect or difference.
 - Alternative hypothesis H_1 : Effect or difference exists.
- 2. Set Significance Level: Commonly $\alpha=0.05$.
- 3. Calculate Test Statistic: Based on sample data.
- 4. Compute p-value: Probability of observing test results as extreme as the sample, assuming H_0 is true
- 5. Conclusion:
 - If $p \leq \alpha$: Reject H_0 .
 - If $p > \alpha$: Fail to reject H_0 .

p-value $<$ significance level	p -value \geq significance level	
Sufficient evidence to reject null	Insufficient evidence to reject the	
hypothesis in favour of the alter-	null hypothesis. The hypothe-	
native hypothesis	sis test is inconclusive. This	
	does not mean that we accept the	
	null hypothesis.	

Example: Hypothesis Test for Proportion

- Question: Is the proportion p=0.5?
- Observed: Sample proportion $p^* = 0.335$, n = 200.
- Compute p-value: p < 0.001.
- Conclusion: Reject H_0 , proportion is likely less than 0.5.

Example: Hypothesis Test for Mean

• $H_0: \mu = 69, H_1: \mu > 69.$

- Sample mean: $\bar{x}=70.345$.
- p=0.093 (not significant at $\alpha=0.05$).
- \bullet Conclusion: Insufficient evidence to reject ${\cal H}_0.$

Summary

- 1. Probability is essential for reasoning about uncertainty and forming statistical inferences.
- $2. \ Confidence \ intervals \ provide \ a \ range \ for \ population \ parameters.$
- ${\it 3. } \ Hypothesis \ testing \ evaluates \ claims \ about \ population \ parameters \ using \ p-values.$
- 4. Avoid common fallacies (e.g., base rate and prosecutor's fallacies) by using structured approaches like contingency tables and precise formulas.