MATH355 2017-11-08

COMPLEX MATRICES ARE SOMETIMES EASIER

For A, B \in M_{2×2}, recall we say A \sim B (A is similar to B) if there exists an invertible matrix $P \in GL_n$ such that $B = PAP^{-1}$.

We view similarity as follows. A and B are both representing the same linear map but in different bases. The relevant change of basis matrix is given precisely by P.

We call a matrix D diagonal if the only nonzero entries are on the diagonal. I.e., if D = (d_{ij}) then $d_i j = 0$ for $i \neq j$.

We call a matrix A diagonalizable of it is similar to a diagonal matrix. Explicitly, there exists P such that PAP^{-1} is a diagonal matrix. We say that P diagonalizes A.

Example 1. Consider the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then det A = 1 but A is not similar to I, the identity matrix. Why? Well, if $PAP^{-1} = I$ then $A = P^{-1}IP = P^{-1}P = I$, but $A \neq I$.

Example 2. Consider B =
$$\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$$
. Take P = $\begin{pmatrix} \frac{-\sqrt{\frac{3}{2}}}{2} & \frac{1}{2} \\ \frac{\sqrt{\frac{3}{2}}}{2} & \frac{1}{2} \end{pmatrix}$. Verify that $P^{-1} = \begin{pmatrix} -\sqrt{\frac{3}{2}} & \sqrt{\frac{2}{3}} \\ 1 & 1 \end{pmatrix}$.

A quick calculation reveals that

$$D := PBP^{-1} = \begin{pmatrix} -\sqrt{6} & 0\\ 0 & \sqrt{6} \end{pmatrix}$$

which is a diagonal matrix!

Why is this so great? Well, remember we interpret similarity as a change of basis. Let us do it explicitly here. Write $q: \mathbb{R}^2 \to \mathbb{R}^2$ for the linear map defined as

$$g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ 3x \end{pmatrix}$$

so that $\operatorname{Rep}_{\operatorname{std}} g = B$. Now, consider the basis $\mathbb{B} = (\vec{v}_1, \vec{v}_2)$ where

$$\vec{v}_1 = \begin{pmatrix} -\sqrt{\frac{2}{3}} \\ 1 \end{pmatrix}$$

$$\vec{v}_2 = \begin{pmatrix} \sqrt{\frac{2}{3}} \\ \end{pmatrix}$$

$$\vec{v}_2 = \left(\sqrt{\frac{2}{3}} \right)$$

so that $\operatorname{Rep}_{\mathbb{B},\operatorname{std}}\operatorname{id}=\operatorname{P}^{-1}$ and $\operatorname{Rep}_{\mathbb{B}}g=\operatorname{D}$.

Date: John Calabrese, November 13, 2017.

Wait, how did we figure out this last part (in the previous example) without having to compute anything? Well, first off, P^{-1} is an invertible matrix so its columns must form a basis (why?). The vectors \vec{v}_1, \vec{v}_2 are indeed the columns of P^{-1} .

What is $Rep_{\mathbb{B},std}$ id? Well, the first column is $Rep_{std}\vec{v}_1$ and the second column is $Rep_{std}\vec{v}_2$. So, $Rep_{\mathbb{B},std}$ id = P^{-1} . Also, we showed a long time ago that we always have

$$P = (P^{-1})^{-1} = Rep_{std, \mathbb{R}} id$$
.

OK, now we nailed down our change of basis matrix. How do we compute $Rep_{\mathbb{B}}$ g? Once again, we know how to do this already (we've seen this formula many times!):

$$\operatorname{Rep}_{\mathbb{B}} g = \operatorname{Rep}_{\mathbb{B},\mathbb{B}} g = \operatorname{Rep}_{\operatorname{std},\mathbb{B}} \operatorname{Rep}_{\operatorname{std}} g \operatorname{Rep}_{\mathbb{B},\operatorname{std}} = \operatorname{PBP}^{-1}.$$

So the basis $\mathbb B$ is the best possible basis for g, as $Rep_{\mathbb B} g$ is diagonal! Indeed, you can easily calculate that

$$g(\vec{v}_1) = -\sqrt{6}\vec{v}_1$$
$$g(\vec{v}_2) = \sqrt{6}\vec{v}_2$$

The vectors \vec{v}_1 and \vec{v}_2 are called *eigenvectors* (for g). The scalars $-\sqrt{6}$, $\sqrt{6}$ are called *eigenvalues*.

Example 3. What about our $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$? Can A be diagonalized? In other words, can we find P such that PAP⁻¹ is diagonal? More explicitly, does there exist P and scalars $\lambda, \mu \in \mathbf{R}$ such that

$$PAP^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}?$$

Let $f: \mathbf{R}^2 \to \mathbf{R}^2$ be the linear map $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$. So that $A = \operatorname{Rep}_{std} f$. If A were diagonalizable, then (by proceeding in the same way as the previous example) there would exist a basis \vec{v}_1, \vec{v}_2 such that $f(\vec{v}_1) = \lambda \vec{v}_1, f(\vec{v}_2) = \mu \vec{v}_2$.

Suppose now we can find a vector $\vec{v} \in \mathbb{R}^2$ such that $f(\vec{v}) = \lambda \vec{v}$ (for whatever value of $\lambda \in \mathbb{R}$). Say $\vec{v} = \begin{pmatrix} a \\ b \end{pmatrix}$, then

$$f(\vec{v}) = \begin{pmatrix} -b \\ \alpha \end{pmatrix}$$
$$\lambda \vec{v} = \begin{pmatrix} \lambda \alpha \\ \lambda b \end{pmatrix}$$

so

$$\begin{cases} -b = \lambda a \\ a = \lambda b \end{cases}$$

so that $-b = \lambda a = \lambda^2 b$ which means $(\lambda^2 + 1)b = 0$. Since $(\lambda^2 + 1)$ is never zero (for *real* values of λ), we must have b = 0. But then the second equation above implies a = 0. So $\vec{v} = \vec{0}$.

This means we can *never* find the basis we want. So A cannot be diagonalized!

Nevertheless, we persist. Indeed, check this out. Consider the matrix $Q = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$, where $i \in C$ is that funny number such that $i^2 = -1$. Consider also $R = \begin{pmatrix} \frac{1}{2} & -\frac{i}{2} \\ -\frac{i}{2} & \frac{1}{2} \end{pmatrix}$. A quick calculation will show that QR = I is the identity! So $Q = R^{-1}$. Also, compute the following amazing fact

$$RAR^{-1} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

WAIT A MINUTE! The matrix on the RHS is diagonal! I thought we couldn't diagonalize A??? The point is, we lacked imagination.

In the example above we used that $(\lambda^2 + 1)$ is never zero. But if λ is allowed to be complex number, then that quantity *can* be zero: $(\pm i)^2 + 1 = 0$! So, we should have enlarged the domain of definition of A (and viewed it as a linear map of \mathbb{C}^2 , rather than just \mathbb{R}^2).

The point being:

sometimes we make things bigger to understand them.

For example, say we have a polynomial ax^2+bx+c and we wish to find the roots. Luckily, we have a formula that tells us the answer! However, even if a, b, $c \in \mathbf{R}$ the formula (implicitly) goes via the complex numbers. It's a good thing that we have a formula for the roots, even when the roots aren't real. The point being: if we didn't know about the complex numbers we couldn't have a homogeneous formula to calculate the roots of a quadratic polynomial. The same philosophy applies to diagonalizing matrices.

OK, what is a complex vector space anyway? Well, it's a set of vectors V with addition and scalar multiplication, only now the scalars are allowed to be complex numbers. For instance, if $\vec{v} \in V$ the quantity $(3+2i)\vec{v}=3\vec{v}+i(2\vec{v})\in V$ makes sense.

Example 4. \mathbb{R}^3 is *not* a complex vector space: the only meaning we give to the quantity $\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ is

the vector
$$\begin{pmatrix} 3i\\i\\2i \end{pmatrix}$$
 which lives in C^3 but not R^3 .

On the other hand, \mathbb{C}^3 is a complex vector space.

Now, if $\vec{v}_1, \dots, \vec{v}_k \in \mathbf{C}^n$ are a bunch of vectors in \mathbf{C}^n (or any complex vector space V), we should be careful to distinguish between two things.

A C-linear combination is
$$\sum_j \lambda_j \vec{v}_j$$
 with $\lambda_j \in C$

An **R**-linear combination is
$$\sum_{i}^{n} \alpha_{i} \vec{v}_{i}$$
 with $\alpha_{i} \in \mathbf{R}$.

This is crux the matter: whether we allow arbitrary complex numbers as scalars, or just real numbers.

Using this, we have different notions of span, linear independence, linear dependence, subspace, dimension etc.

Example 5. Take
$$\vec{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} 0 \\ i \end{pmatrix}$ in \mathbf{C}^2 . Then
$$\operatorname{Span}_{\mathbf{C}} \{ \vec{v}, \vec{w} \} = \mathbf{C}^2$$

$$\operatorname{Span}_{\mathbf{R}} \{ \vec{v}, \vec{w} \} \neq \mathbf{C}^2$$

(exercise!) indeed,

$$\operatorname{Span}_{\mathbf{R}}\{\vec{v}, \vec{w}\} = \left\{ \begin{pmatrix} a \\ ib \end{pmatrix} \mid a, b \in \mathbf{R} \right\}$$

and this is only a *real* subspace of \mathbb{C}^2 but not a complex one (why? what does real/complex subspace mean? what's the difference?)

Example 6. The vectors
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ are a **C**-basis of \mathbf{C}^2 (why?). While $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ are *not* an **R**-basis of \mathbf{C}^2 . However, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$, $\begin{pmatrix} i \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -2i \end{pmatrix}$ is an **R**-basis of \mathbf{C}^2 (why?). So we see that $\dim_{\mathbf{C}} \mathbf{C}^2 = 2$ while $\dim_{\mathbf{R}} \mathbf{C}^2 = 4$.

In any case, don't stress too much about vector spaces over the complex numbers. I promise you that things will become obvious in a few days (you'll realize complex vector spaces aren't at all that complex).

We will follow the following convention:

if we don't say anything, vector spaces, matrices, linear maps, bases, dimension etc. will be over the real numbers.