

1.1 A find the sum of 34 and 126 using a caculator.

$$34 + 126 = \boxed{160}$$

B Find the sum using long addition.

1.2 Evaluate the following definite integral:

$$\int_{0}^{3} 2x \sqrt{x^{2} + 4} dx$$

$$u = x^{2} + 4 \quad du = 2x$$

$$\Rightarrow \int_{0^{2} + 4}^{3^{2} + 4} \sqrt{u} du = \frac{1}{2} u^{-\frac{1}{2}} \Big|_{4}^{13}$$

$$\frac{1}{2\sqrt{13}} - \frac{1}{2\sqrt{4}} \approx \boxed{-0.1113}$$

2.1 A Find the root of the quadratic equation $y = x^2 + 2x - 3$ using the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1 Weighted Residual Methods

Fundamental equations Consider the problem governed by the differential equation:

$$\Gamma u = -\overline{f}$$
 in D

The above differential equation is solved by using the boundary conditions given as follows:

$$\boldsymbol{u} = -\overline{\boldsymbol{u}}$$
 on S_u

$$t \equiv Bu = \overline{t}$$
 on $S \setminus S_t$

where the boundary S consists of S_t and S_u . The boundary conditions given in eqs. (84) and (85) are called rigid and natural boundary conditions, or Dirichlet and Neumann boundary conditions, respectively. In most engineering problems, Γ and B are different operators in the forms of $bm\Gamma = \Delta \cdot \Sigma$ and $B = n \cdot \Sigma$, where ς is another differential operators and n is the normal vector on S_t .

$$\Delta^2 u = -\overline{f} \quad in \ D,$$