苏州大学 物理化学 1 课程 期末 试卷 (B) 卷 共 页

	考试形式_	<u>闭卷</u>	(填写开闭:	卷) 2015 4	年 7 月
学院(剖	3)	年级_		专业	
学号		姓名_		成绩	
一、选择	题 (每题 2	分,共	20 分)		
是 (A) 其电图	() 且随温度的升高	5而增大	(B) 其电阻队	 直温度的升高而	(的描述不正确的 减小 有化学反应发生
(A) Zn Zi (B) Zn Zi (C) Ag A	,池中,电池电 nCl ₂ (aq) Cl ₂ (g nCl ₂ (aq) KCl(AgCl(s) KCl(a Hg ₂ Cl ₂ (s) KC) Pt aq) AgCl (q) Cl ₂ (g)	(s) Ag Pt	J是 ()	
石墨表面的 在 (的覆盖度为θ=0).05,如果	要使覆盖度的	=0.5,此时苯蒸	系汽压为 40Pa 时, 泛汽的压力应控制
(A) $(\frac{\partial \gamma}{\partial a_B})_T$	条件下,将表 <0 正吸附 >0 正吸附	(B) $(\frac{\partial \gamma}{\partial a_B})$	7~<0 负吸附	,产生的结果是 付	<u>i</u> ()
(A) 反应位	理论中,校正 本系是非理想的 並撞的激烈程度	j (1	B) 空间的位图	且效应)
(A) 在等温	:化学反应,下 温等压下,可以	从进行 $\Delta_r G_m$	>0的反应)	
(B) 反应逐	基率基本不受温	且度的影响	,甚至有负温	度系数的现象	

(C) 反应初级过程的量子效率等于1

(D) 光化学反应的平衡常数等于热化学反应的平衡常数

7、 Tyndall 现象是发生了光的什么作用的结果 () (A) 散射 (B) 反射 (C) 折射 (D) 投射					
8、对于 AgI 的水溶胶,三种电解质 Al(NO ₃) ₃ 、Mg(NO ₃) ₂ 、NaNO ₃ 的聚沉值分别是 0.067 mmol.dm ⁻³ ,2.60 mmol.dm ⁻³ ,140 mmol.dm ⁻³ ,则 AgI 溶胶的胶粒所带电荷为 () (A) 正电荷 (B) 负电荷 (C) 不带电 (D) 无法判断					
9、胶体粒子的电势是指 () (A) 胶粒固体表面与本体溶液之间的电势差 (B) 双电层中紧密层与扩散层的分界处与本体溶液的电势差 (C) 扩散层与本体溶液之间的电势差 (D) 固体与溶液之间可以相对移动的界面与本体溶液之间的电势差					
10、300K 时,某基元反应的阈能为 83.68kJ.mol-1,则有效碰撞的分数值为 (A) 3.719×10 ⁻¹⁴ (B) 6.17×10 ⁻¹⁵ (C) 2.69×10 ⁻¹¹ (D) 2.69×10 ⁻¹⁵					
二、填空题(每题 2 分,共 20 分)					
11、综合反应 A →B (k_1), B→A(k_{-1}), B $\xrightarrow{k_2}$ C,稳态近似处理的条件 是。					
12、1 mol·kg ⁻¹ K ₄ [Fe(CN) ₆]溶液的离子强度为:。					
13、液体在固体表面的润湿程度以					
14、对于 AgI 的水溶胶, 当以 $AgNO_3$ 为稳定剂时, 如果 ξ 电势为 0 ,即等电态时的胶团结构为:。					
15、 什么是超电势?					
16、 写出 Debye-Hückel 极限公式。					
17、 什么叫势能面?					
18、 什么叫临界胶束浓度?					

19、	什么叫基元反应?
20.	什么叫 Brown 运动 ?

三、计算题

21, (10分)

有电池 Cu(s)|Cu(Ac)2(0.1 mol.kg-1) |AgAc(s) |Ag(s) ,已知 298K 时该电池的电动势 E(298K) = 0.372 V,在 308K 时 E(308K)=0.374V,设电动势 E 随温度的变化 是均匀的。又知 298K 时 $E^0_{Ag^+,Ag}$ =0.799V, $E^0_{Cu^{2+},Cu}$ =0.337 V。

- (1) 写出电极反应和电池反应
- (2) 当电池反应中电子得失数为2时,求反应进度为1mol时的 $\Delta_r G_m \cdot \Delta_r H_m$ 和 $\Delta_r S_m$ 。
- (3) 求 AgAc(s) 的活度积常数 K_{sp}^{θ} (设活度因子均为 1)。

22、(10分)

已知在 300K 时纯水的饱和蒸汽压为 3.529kPa, 密度为 997 kg.m⁻³,表面张力为 $0.0718N.m^{-1}$ 。该温度下,(1),将半径 r_1 =5.0× 10^{-4} m 的洁净玻璃毛细管插入纯水中,管内液面上升的高度为 h=2.8cm,试计算水与玻璃管之间的接触角;(2)若玻璃毛细管的半径为 r_2 =2.0nm,求水蒸气在该毛细管中发生凝聚的最低蒸汽压。

23、(5分)

293K 时,乙醚(E)-水(W),汞(Hg)-乙醚(E),汞(Hg)-水(W)的界面张力分别是 $\gamma_{E-W} = 0.0107 \text{N.m}^{-1}$, $\gamma_{Hg-E} = 0.379 \text{ N.m}^{-1}$, $\gamma_{Hg-W} = 0.375 \text{ N.m}^{-1}$ 。如果在乙醚与汞的界面上滴一滴水,求水与汞的接触角。

24、(10分)

在半透膜的一侧装入浓度为 10mol.m^{-3} 的高分子电解质 (Na_{15}P) ,膜的另一侧装入等体积的浓度为 50mol.m^{-3} 的 NaCl 水溶液,298 K 时,计算唐南平衡时膜两侧的浓度和渗透压。

25、(10分)

298K 时,溶液中 $CH_3COOC_2H_5$ + $NaCl \rightarrow H_3COONa + C_2H_5OH$ 为二级反应,速率常数为 $6.47~dm^3.mol^{-1}.min^{-1}$,将等体积的酯液和减液混合,求混合后多长时间 90%的酯被皂化。

- (1) 酯液和碱液混合前的浓度均为 0.02 mol.dm⁻³
- (2) 混合前酯液浓度为 0.02 mol.dm⁻³, 碱液浓度为 0.04 mol.dm⁻³

26、(5分)

有一平行反应 (1) A→B, (k_1,E_{a1}) ; (2) A→D, k_2 , E_{a2} ; 设两个基元反应的指前因子相同但活化能不同, E_{a1} = 120 kJ.mol⁻¹; E_{a2} = 80 kJ.mol⁻¹; 当反应在温度为 1000K 时进行,求速率系数的比值。

27、(10分)

光气分解反应 $COCl_2 \rightarrow CO + Cl_3$, 反应机理为

- (1) $Cl_2 \rightarrow 2Cl \quad k_1$, $2Cl \rightarrow Cl_2 \quad k_{-1}$
- (2) $COCl_2+Cl \rightarrow CO+Cl_3$ k_2
- (3) $Cl_3 \rightarrow Cl_2 + Cl$ k_3 , $Cl_2 + Cl \rightarrow Cl_3$ k_{-3} 其中反应(2)为速控步骤,(1)和(3)为快速对峙反应,Cl 和 Cl_3 为活性中间体,求导反应速率方程 r= d[CO]/dt 的表达式,及表观活化能与基元反应活化能的关系。