Assume two sublattices; A+B

 $\mathcal{H} = -J_1 \sum_{\langle n \rangle} S_i S_j + J_2 \sum_{\langle n \rangle} S_i S_j$

 $-J_1 \cdot Z_1 \cdot \frac{1}{2} \left(m_A^2 + m_B^2 \right) \cdot \frac{1}{2}$ $J_2 \cdot Z_2 \cdot \frac{1}{2} \cdot m_A m_B$

f= 1 2, J, m, m, - 1 Z, J, (m, 2+ m, 3)

 $-\frac{1}{2}T\left(\ln 2-\frac{1}{2}(1+m_A)\ln(1+m_A)-\frac{1}{2}(1-m_A)\ln(1-m_A)\right)$

 $m = \frac{m_A + m_B}{2} \qquad m_S = \frac{m_A - m_B}{2}$

f = fo(m) + \frac{1}{2} r_s(m) m_5^2 + U_4(m) m_5 + U_6(m) m_5

 $f_{\rho}(m) \equiv \frac{1}{2} \left(z_{2} J_{2} - z_{1} J_{1} \right) m^{2}$

 $r_s(m) = \frac{T}{1-m^2} - (Z_1J_1 + Z_2J_2)$

 $U_4(m) = \frac{T}{12} \frac{(+3m^2)^3}{(1-m^2)^3}$

But $f(m, m_s)$, \Rightarrow make $g(m_s)$

Use If = H to calculate m=mo for ms=0

Then expand f and
$$m = m_0 + \delta m$$

 $f(m, m_s) = f(m_0 + \delta m, m_s) = f(m_0, m_s) + \frac{\partial f}{\partial m} \int_{m = m_0}^{\infty} \delta m + \cdots$
 $g(m_s, \delta m) = \frac{1}{2} \chi_0^{-1} (\delta m)^2 + \frac{1}{2} r_s(m_0) m_s^2 + u_4(m_0) m_s^4 + u_6(m_0) m_s^6$
 $+ \lambda_0 m_s^2 \delta m$
 $\chi_0^{-1} = \frac{m_0 T}{1 - m_0^2}$

$$g(m_{s}, 5m) = \frac{1}{2} \chi_{o}^{-1} \left(5m + \lambda_{o} \chi_{o} m_{s}^{2} \right)^{2} + \frac{1}{2} r_{s}(m_{o}) m_{s}^{2} + \left(u_{4} - \frac{1}{2} \chi_{o}^{-1} \lambda_{o} \chi_{o} m_{s}^{2} \right) m_{s}^{4} + u_{6} m_{s}^{6}$$

At equilibrium if
$$m_s \neq 0$$
 $\delta m = -\lambda_0 \chi_0 m_s^2$
 $U_4 - \frac{1}{2} \chi_0 \lambda_0^2 = 0$ is tricritical point,

Ginzburg criterion (V.L. Ginzburg, 1960) Fluctuation averaged over coherence volume $\sqrt{3} \sim 5^d$ should be much less than $(4)^2$ itself. $\langle (b)^2 \rangle \langle (b)^2 \rangle$ $\delta \phi = \phi(\vec{x}) - \langle \phi \rangle$ $\langle (\delta \phi)^2 \rangle = \frac{1}{\sqrt{2}} \left(d^2 \times d^2 \times \left(\delta \phi(x) \right) \right)$ Ursell function $(\vec{x} - \vec{x}) = (\vec{x}, 0)$ = 1 (dx C(x,0) Static Susceptibility

Sum rule kBTX = S(q=0) $\sim \frac{1}{5}a. T\chi$ $= \left(\left((\dot{x}, \circ) \right) d^{x} \right)$ $(4)^{2} \sim t^{2\beta}$ $(4)^{2} \sim t^{-\gamma} \qquad t = [-\tau]$ $(7)^{2} \sim t^{-\gamma} \qquad t = [-\tau]$ 3-d. T. X << \$>^2 t+vd -x -26 << 1 えっ t $+ \nu \left(d - \frac{\gamma + 2\beta}{\nu}\right) << 1$ $\beta = \frac{1}{2} \quad \gamma = 1, \quad \nu = \frac{1}{2}$ + = (d-4) << | $d_c \equiv \frac{\gamma + 2\beta}{\nu}$ upper critical
dimension d < 4: not ok.

Tricritical B= /4 => dc=3

