

Рисунок 1 — Визуализация разделения крыла на зоны, покрытые прямоугольными структурированными сетками: по три зоны на верхней и на нижней поверхности крыла и 4 зоны на передней кромке

Проверка правильности работы данного интегратора осуществлялась в два этапа:

- 1. Вычисление аэродинамических коэффициентов для простых геометрических фигур, для которых данная задача решается аналитически (шар, куб, приближение крыла параллелепипедом без пары противоположных граней);
- 2. Сравнение результатов интегрирования полей из обучающей выборки со значениями коэффициентов из обучающей выборки (представлено в таблице 2).

Таблица 2 — Сравнение значений аэродинамических коэффициентов $C_{\rm x}$ и $C_{\rm y}$, взятых из обучающей выборки и вычисленных интегрированием полей $C_{\rm p}$ из обучающей выборки

Метод вычисления	Значение ошибки в каунтах	
ошибки	C_{x}	$C_{ m Y}$
RMSE	8.839	6.720
MAE	8.237	5.677
Максимальное отклонение	17.808	11.822

Стоит отметить, что полученные таким образом значения аэродинамических коэффициентов обусловлены только силами давления и не учитывают силы трения.

коэффициенты k_j^i из матрицы \mathbf{V}^{T} , с которыми надо сложить главные компоненты, чтобы предсказать распределение безразмерного коэффициента давления C_{P} . На такой обучающей выборке и была обучена суррогатная модель.

Рисунок 2 — первые три главные (слева на право) компоненты поля C_p на поверхности крыла. Верхний ряд — верхняя поверхность крыла, нижний ряд — нижняя

Таким образом, чтобы сделать предсказание, обученная суррогатная модель должна по входящим числу Маха M и углу атаки α набегающего потока предсказать коэффициенты k^i и сложить с этими коэффициентами соответствующие главные компоненты. В итоге по числу Маха M и углу атаки α предскажется распределение коэффициента давления C_P по поверхности крыла.

2.4 Метод k-fold кросс-валидации и его применение

Если имеется довольно большая обучающая выборка, то перед процессом обучения можно отделить часть обучающих данных, чтобы использовать их не для обучения, а для валидации. При этом в силу большого размера обучающей выборки модель не потеряет много важных данных для обучения. Если же обучающая выборка мала, и жертва обучающими данными

Таким образом, основной моделью, исследуемой в данной работе, является кригинг.

Рисунок 3 — Изменение ошибки предсказания (отмечена вдоль оси *y*) с изменением числа используемых главных компонент (отмечено вдоль оси *x*). Исследуются модели: линейная регрессия (голубой), кригинг (оранжевый), метод радиальных базисных функций (зелёный)

3.2 Оценка точности выбранной модели

Чтобы оценить точность выбранной решающей модели в задаче предсказания распределённых аэродинамических характеристик, лучшая суррогатная модель (кригинг + N_{PC}^{BEST} главных компонент) была обучена на 63 из 64 прецедентах. Затем на последнем незадействованном прецеденте ($\alpha = -1.65625^{\circ}$, M = 0.91836) было сделано предсказание поля коэффициента давления. Ошибка по метрике RMSE составила 0.0618. На рисунке 4 представлены оригинальное и предсказанное поле значений C_P на верхней и нижней поверхности исследуемого крыла.

Видно, что предсказание в целом верно. Заметные расхождения наблюдаются в области скачка – суррогатная модель сглаживает скачок в силу

линейности применяемого метода (итоговое предсказание является линейной комбинацией полей обучающей выборки).

Рисунок 4 — Поля коэффициента давления $C_{\rm p}$ на поверхности крыла. Левая колонка - поле из обучающей выборки, правая колонка — предсказанное поле. Верхний ряд — верхняя поверхность крыла, нижний ряд — нижняя поверхность крыла.

Оценка точности модели в задаче предсказания интегральных аэродинамических характеристик прямым методом рассчитывалась по метрике RMSE, т.е. если $\hat{C}_{\rm X}^{j}$ — это предсказанное значение коэффициента сопротивления для j-го прецедента, а $C_{\rm X}^{j}$ — соответствующее оригинальное значение, то ошибка данной модели $e_{\rm X}$ высчитывается следующим образом:

$$e_{X} = \sqrt{\frac{1}{|V|} \sum_{j \in V} (\hat{C}_{X}^{j} - C_{X}^{j})^{2}}$$
 (19)

где V — это множество валидационных прецедентов, а |V| — количество прецедентов в нём. Аналогично для коэффициента подъёмной силы $C_{\rm Y}$.

При таком способе подсчёта точности и обучении кригинга (с использованием квадратичного тренда и ядра "matern52") на 56 прецедентах и валидации на 8 оставшихся ошибка модели составила $e_{\rm x}=5.539$ каунтов и $e_{\rm y}=6.134$ каунтов (1 каунт для $C_{\rm x}$ равен 10^{-4} , 1 каунт для $C_{\rm y}$ равен 10^{-3}).

Аналогичным образом можно оценить предсказания значений аэродинамических коэффициентов, полученные интегрированием

Рисунок 6 — Поля значений $C_{\rm x}$ и $C_{\rm y}$, полученных прямым методом предсказания

Рисунок 5 — Поля значений $C_{\rm x}$ и $C_{\rm y}$, полученных интегрированием предсказанного поля $C_{\rm p}$

ЗАКЛЮЧЕНИЕ

Данная работа ставила целью создание суррогатной модели, которая бы с приемлемой точностью предсказывала аэродинамические характеристики крыла.