HiFi-GAN: Generative Adversarial Networks for Effi cient and High Fidelity Speech Synthesis

2022. 08. 16. (TUE)
Youngwon Choi
대무의연구소

풀잎스쿨 Hands-on TTS

Contents

- **□1. Introduction**
- □2. HiFi-GAN
- **□3. Experiments & Results**

1. Introduction

Introduction

□ Previous work

- Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms.
- Although such methods improve the sampling efficiency and memory usage, their sample quality
 has not yet reached that of autoregressive and flow-based generative models.
- Despite of the sophisticated GANs (MelGAN, Parallel WaveGAN, etc.,), there is still a gap in sample quality between the GAN models and AR or flow-based models.
- □ Authors propose HiFi-GAN, which achieves both higher computational efficiency and sample quality than AR or flow-based models.
 - As speech audio consists of sinusoidal signals with various periods, modeling the periodic patterns matters to generate realistic speech audio. Therefore, we propose a discriminator which consists of small sub-discriminators, each of which obtains only a specific periodic parts of raw waveforms

2. HifiGAN

- □ HiFi-GAN consist of one generator and two discriminators.
 - Discriminators: multi-scale and multi-period discriminator
 - Multi-scale discriminator

- Multi-period discriminator

□ Generator

- The generator is a fully convolutional neural network.
- It uses a mel-spectrogram as input and upsamples it through transposed convolutions until the length of the output sequence matches the temporal resolution of raw waveforms
- Multi-Receptive Field Fusion (MRF)
 - Different kernel sizes and dilation rates are selected for each residual block to form diverse receptive field patterns.
 - MRF module returns the sum of outputs from multiple residual blocks.

Figure 1: The generator upsamples mel-spectrograms up to $|k_u|$ times to match the temporal resolution of raw waveforms. A MRF module adds features from $|k_r|$ residual blocks of different kernel sizes and dilation rates. Lastly, the n-th residual block with kernel size $k_r[n]$ and dilation rates $D_r[n]$ in a MRF module is depicted.

- □ Multi-period discriminator
 - MPD is a mixture of sub-discriminators, each of which only accepts equally spaced samples of an input audio; the space is given as period p.
 - period p: [2, 3, 5, 7, 11]
 - The sub-discriminators are designed to capture different implicit structures from each other by looking at different parts of an input audio
 - We first reshape 1D raw audio of length T into 2D data of height T /p and width p and then apply 2D convolutions to the reshaped data.
 - In every convolutional layer of MPD, we restrict the kernel size in the width axis to be 1 to process the periodic samples independently.
 - By reshaping the input audio into 2D data instead of sampling periodic signals of audio, gradients from MPD can be delivered to all time steps of the input audio.

- □ Multi-scale discriminator
 - The architecture of MSD is drawn from that of MelGAN.
 - Because each sub-discriminator in MPD only accepts disjoint samples, we add MSD to consecutively evaluate the audio sequence.
 - MSD is a mixture of three sub-discriminators operating on different input scales:
 - raw audio, ×2 average-pooled audio, and ×4 average-pooled audio.
 - Note that MPD operates on disjoint samples of raw waveforms, whereas MSD operates on smoothed waveforms.

□ Training loss terms

- − *G*: Generator, *D*: Discriminator
- -x: ground truth audio, s: mel-spectrogram of the ground truth audio
- Final Loss = GAN Loss + Mel-Spectrogram loss + Feature matching loss

☐ GAN Loss

- For training stability, the objectives follow the least-squares GAN (LSGAN). (1 for real, 0 for fake)
- Discriminator

$$\mathcal{L}_{Adv}(D;G) = \mathbb{E}_{(x,s)} \left[(D(x) - 1)^2 + \left(D(G(s)) \right)^2 \right]$$

Generator

$$\mathcal{L}_{Adv}(G;D) = \mathbb{E}_{(x,s)} \left[\left(D(G(s)) - 1 \right)^2 \right]$$

□ Mel Spectrogram loss

- Reconstruction loss
- The mel-spectrogram loss is the L1 distance between the mel-spectrogram of a waveform synthesized by the generator and that of a ground truth waveform.

$$\mathcal{L}_{Mel}(G) = \mathbb{E}_{(x,s)}[\|\phi(x) - \phi(G(s))\|_{1}]$$

- The mel-spectrogram loss helps the generator to synthesize a realistic waveform corresponding to an input condition, and also stabilizes the adversarial training process from the early stages.
- The mel-spectrogram loss can be expected to have the effect of focusing more on improving the perceptual quality due to the characteristics of the human auditory system.

□ Feature matching loss

- The feature matching loss is a learned similarity metric measured by the difference in features of the discriminator between a ground truth sample and a generated sample.
- This objective minimizes the L1 distance between discriminator feature maps of reals and synthetic speech.

$$\mathcal{L}_{FM}(G; D) = \mathbb{E}_{(x,s)} \left[\sum_{i=1}^{T} \frac{1}{N_i} \| D^i(x) - D^i(G(s)) \|_1 \right]$$

☐ Final Loss

— Final Loss = GAN Loss + Mel-Spectrogram loss + Feature matching loss

$$\mathcal{L}_{G} = \mathcal{L}_{Adv}(G; D) + \lambda_{fm} \cdot \mathcal{L}_{FM}(G; D) + \lambda_{mel} \cdot \mathcal{L}_{Mel}(G)$$

$$\mathcal{L}_D = \mathcal{L}_{Adv}(D;G)$$

Where $\lambda_{fm}=2$, $\lambda_{mel}=45$

- \Box The three variations of the generator V1, V2 and V3:
 - V1: h_u = 512, k_r = [3, 7, 11], k_u = [16, 16, 4, 4], D_r =[[1,1], [3,1], [5,1]] x 3
 - V2 : The small version of V1, h_u = 128.
 - V3: h_u = 256, k_r = [3, 5, 7], k_u = [16, 16, 8], D_r =[[1], [2]], [[2], [6]], [[3], [12]]
- □ 기타 Experiment configuration 은 생략하겠습니다.

Figure 1: The generator upsamples mel-spectrograms up to $|k_u|$ times to match the temporal resolution of raw waveforms. A MRF module adds features from $|k_r|$ residual blocks of different kernel sizes and dilation rates. Lastly, the n-th residual block with kernel size $k_r[n]$ and dilation rates $D_r[n]$ in a MRF module is depicted.

 h_u : hidden dimension

 k_r : kernel size of standard convolution

 k_u : kernel size of transposed convolution

 D_r : dilation rates

□ MOS Test

Table 1: Comparison of the MOS and the synthesis speed. Speed of n kHz means that the model can generate $n \times 1000$ raw audio samples per second. The numbers in () mean the speed compared to real-time.

Model	MOS (CI)	Speed on CPU (kHz)	Speed on GPU (kHz)	# Param (M)
Ground Truth	$4.45~(\pm 0.06)$	_	-	_
WaveNet (MoL) WaveGlow MelGAN	4.02 (±0.08) 3.81 (±0.08) 3.79 (±0.09)	4.72 (×0.21) 145.52 (×6.59)	0.07 (×0.003) 501 (×22.75) 14,238 (×645.73)	24.73 87.73 4.26
HiFi-GAN $V1$ HiFi-GAN $V2$ HiFi-GAN $V3$	4.36 (±0.07) 4.23 (±0.07) 4.05 (±0.08)	31.74 (×1.43) 214.97 (×9.74) 296.38 (× 13.44)	3,701 (×167.86) 16,863 (×764.80) 26,169 (× 1,186.80)	13.92 0.92 1.46

□ Ablation Study

Model	MOS (CI)
Ground Truth	4.57 (±0.04)
Baseline (HiFi-GAN V3)	4.10 (±0.05)
w/o MPD w/o MSD w/o MRF w/o Mel-Spectrogram Loss MPD p=[2,4,8,16,32]	2.28 (±0.09) 3.74 (±0.05) 3.92 (±0.05) 3.25 (±0.05) 3.90 (±0.05)
MelGAN MelGAN with MPD	$2.88~(\pm 0.08)$ $3.35~(\pm 0.07)$

☐ Generalization to Unseen Speakers

Table 3: Quality comparison of synthesized utterances for unseen speakers.

Model	MOS (CI)
Ground Truth	$3.79 (\pm 0.07)$
WaveNet (MoL)	$3.52 (\pm 0.08)$
WaveGlow	$3.52 (\pm 0.08)$
MelGAN	$3.50 (\pm 0.08)$
HiFi-GAN $V1$	3.77 (±0.07)
HiFi-GAN $V2$	3.69 (±0.07)
HiFi-GAN $V3$	3.61 (±0.07)

☐ End to End speech synthesis®

Figure 3: Pixel-wise difference in the mel-spectrogram domain between generated waveforms and a mel-spectrogram from Tacotron2. Before fine-tuning, HiFi-GAN generates waveforms corresponding to input conditions accurately. After fine-tuning, the error of the mel-spectrogram level increased, but the perceptual quality increased.

Table 4: Quality comparison for end-to-end speech synthesis.

Model	MOS (CI)
Ground Truth	4.23 (±0.07)
WaveGlow (w/o fine-tuning)	3.69 (±0.08)
HiFi-GAN V1 (w/o fine-tuning) HiFi-GAN V2 (w/o fine-tuning) HiFi-GAN V3 (w/o fine-tuning)	$3.91 (\pm 0.08)$ $3.88 (\pm 0.08)$ $3.89 (\pm 0.08)$
WaveGlow (find-tuned)	3.66 (±0.08)
HiFi-GAN V1 (find-tuned) HiFi-GAN V2 (find-tuned) HiFi-GAN V3 (find-tuned)	4.18 (±0.08) 4.12 (±0.07) 4.02 (±0.08)

Thank you for listening! Q&A