How Central Banks Should Use Their Balance Sheets to Control Flight-to-Safety

Fengfan Xiang

University of Western Ontario

August 9, 2025

2025 Summer Workshop on Money, Banking, Payments and Finance

- ▶ Investors or depositors reallocate their portfolio from riskier to safer assets
- Large shifts in asset demand during financial crises (historically, regulated banking sector)

- ▶ Investors or depositors reallocate their portfolio from riskier to safer assets
- Large shifts in asset demand during financial crises (historically, regulated banking sector)

My Focus: Flight-to-Safety in the Wholesale Banking Sector

- ▶ Investors or depositors reallocate their portfolio from riskier to safer assets
- ► Large shifts in asset demand during financial crises (historically, regulated banking sector)

My Focus: Flight-to-Safety in the Wholesale Banking Sector

- ► <u>Wholesale banks</u>: fin. intermediaries outside of the regular banking system (BIS and Financial Stability Board: e.g., money market funds, hedge funds)
 - Held \$63 trillion in 2020, representing 79% of global GDP (S&P Global)

- ▶ Investors or depositors reallocate their portfolio from riskier to safer assets
- ► Large shifts in asset demand during financial crises (historically, regulated banking sector)

My Focus: Flight-to-Safety in the Wholesale Banking Sector

- ► <u>Wholesale banks</u>: fin. intermediaries outside of the regular banking system (BIS and Financial Stability Board: e.g., money market funds, hedge funds)
 - Held \$63 trillion in 2020, representing 79% of global GDP (S&P Global)
- ▶ Wholesale Banking Panics: several flight-to-safety events in the last decades
 - September 2008: \$400B withdrawal (2% of U.S. GDP); March 2020: \$100B withdrawal

Implications of wholesale banking panics for central bank balance sheet policies

Implications of wholesale banking panics for central bank balance sheet policies

Key finding: Balance sheet expansions mitigate panics but reduce asset returns/trading

Implications of wholesale banking panics for central bank balance sheet policies

Key finding: Balance sheet expansions mitigate panics but reduce asset returns/trading

- Expansions through open market operations involve purchasing Treasury bills
 - ullet Lower T-bill returns \longrightarrow reduce investors' flight-to-safety incentive
 - General asset return reduction through endogenous shifts in asset demand
 - Mitigate flight-to-safety \longrightarrow increase demand for bank liabilities, bidding down returns

Implications of wholesale banking panics for central bank balance sheet policies

Key finding: Balance sheet expansions mitigate panics but reduce asset returns/trading

- ▶ Expansions through open market operations involve purchasing Treasury bills
 - ullet Lower T-bill returns \longrightarrow reduce investors' flight-to-safety incentive
 - General asset return reduction through endogenous shifts in asset demand
 - Mitigate flight-to-safety \longrightarrow increase demand for bank liabilities, bidding down returns

Endogenous shifts in asset demand can lead to unintended policy implications!

▶ Decreased asset returns hinder transactions, e.g., repo transactions involving T-bills

Model

► Three sets of private agents: convert labor (h) to goods (c) one-for-one

- ▶ Three sets of private agents: convert labor (h) to goods (c) one-for-one
 - 1. Measure one of depositors:

$$-\underbrace{h_1}_{\text{work and deposit}} + \underbrace{u(c_2)}_{\text{consume}} - \underbrace{h_3}_{\text{work to pay taxes}} \text{ where } -c\frac{u''(c)}{u'(c)} < 1; \ u(0) = 0$$

- ▶ Three sets of private agents: convert labor (h) to goods (c) one-for-one
 - 1. Measure one of depositors:

$$-\underbrace{h_1}_{\text{work and deposit}} + \underbrace{u(c_2)}_{\text{consume}} - \underbrace{h_3}_{\text{work to pay taxes}} \text{ where } -c\frac{u''(c)}{u'(c)} < 1; \ u(0) = 0$$

2. Measure one of producers: $-h_2$ + c_3 work to produce goods for depositors consume returns

- ▶ Three sets of private agents: convert labor (h) to goods (c) one-for-one
 - 1. Measure one of depositors:

$$-\underbrace{h_1}_{\text{work and deposit}} + \underbrace{u(c_2)}_{\text{consume}} - \underbrace{h_3}_{\text{work to pay taxes}} \text{ where } -c\frac{u''(c)}{u'(c)} < 1; \ u(0) = 0$$

- 2. Measure one of producers: $-h_2$ + c_3 work to produce goods for depositors consume returns
- 3. Infinite measure of bankers self-select to operate retail or wholesale banks:

$$c_1^B - h_1^B + c_3^B - h_3^B$$

work in t = 1 to raise (sweat) equity and in t = 3 to pay debts; consume profits

- ▶ Three sets of private agents: convert labor (h) to goods (c) one-for-one
 - 1. Measure one of depositors:

$$-\underbrace{h_1}_{\text{work and deposit}} + \underbrace{u(c_2)}_{\text{consume}} - \underbrace{h_3}_{\text{work to pay taxes}} \text{ where } -c\frac{u''(c)}{u'(c)} < 1; \ u(0) = 0$$

- 2. Measure one of producers: $-h_2$ + c_3 work to produce goods for depositors consume returns
- 3. Infinite measure of bankers self-select to operate retail or wholesale banks:

$$c_1^B - h_1^B + c_3^B - h_3^B$$

work in t = 1 to raise (sweat) equity and in t = 3 to pay debts; consume profits

► Government: fiscal authority and central bank

Trading Frictions Give Rise to Demand for Assets

- ► Exchanges are essential because goods are **perishable**
 - Depositors trade *bilaterally* with producers in period 2 (take-it-or-leave-it offer)
- lacktriangle Limited commitment \longrightarrow no unsecured IOU \longrightarrow exchanges are supported by assets
 - Depositors and banks trade goods and assets in a Walrasian market in period 1

Trading Frictions Give Rise to Demand for Assets

- ► Exchanges are essential because goods are **perishable**
 - Depositors trade bilaterally with producers in period 2 (take-it-or-leave-it offer)
- lacktriangle Limited commitment \longrightarrow no unsecured IOU \longrightarrow exchanges are supported by assets
 - Depositors and banks trade goods and assets in a Walrasian market in period 1

Underlying Assets (scarce in aggregate)

- ► Government bonds (\hat{b}): everyone can hold them
- ▶ Central bank reserves (\bar{m}): restricted to retail banks only

- ▶ details
- Central bank purchase $\hat{b} \bar{b}$ government bonds (assets) with \bar{m} reserves (liabilities)
- The rest of the bonds circulate in the private sector

Banking & Risk of Wholesale Banking Failure

▶ Banks have access to a **collateral technology** to secure their liabilities (deposits, loans)

Banking & Risk of Wholesale Banking Failure

- ▶ Banks have access to a **collateral technology** to secure their liabilities (deposits, loans)
- lacktriangle An *exogenous* fraction $1-\delta$ of wholesale banks fail in period 2 (collapse in collateral tech.)
 - Failed banks default on their liabilities and abscond with assets

Banking & Risk of Wholesale Banking Failure

- ▶ Banks have access to a **collateral technology** to secure their liabilities (deposits, loans)
- An *exogenous* fraction 1δ of wholesale banks fail in period 2 (collapse in collateral tech.)
 - Failed banks default on their liabilities and abscond with assets

Risk of Banking Failure Sparks Wholesale Banking Panics (Gertler and Kiyotaki, 2015)

- Depositors decide whether to withdraw in period 1 under imperfect information
 - Withdraw with exogenous prob. ρ to meet liquidity needs
 - Withdraw with **endogenous** prob. η due to safety concerns (panicking depositors)
 - Panicking depositors flee to bonds, capturing the severity of panics

Retail Bank

- 1. Deposit contract: required deposits (k^r), deposit claims (d^r) (secured and tradeable IOUs)
- 2. Financial portfolio: reserves (m), government bonds (b^r), interbank borrowing (ℓ^r)

Retail Bank

- 1. Deposit contract: required deposits (k^r), deposit claims (d^r) (secured and tradeable IOUs)
- 2. Financial portfolio: reserves (m), government bonds (b^r), interbank borrowing (ℓ^r)

Subject to a leverage constraint (collateral constraint holds automatically)

- \triangleright A fraction θ of their return on assets should cover their payments on liabilities
- Finance 1θ of their assets with bank capital (sweat equity) \longrightarrow balance sheet cost

Asset	Liability & Equity
$r^m m$	d^r
r^bb^r	$r^\ell\ell^r$
	e → equity

Wholesale Bank

- 1. Deposit contract: k^w , quantity of bonds if withdrawal (b'), and d^w
 - ρ depositors must trade with bonds (liquidity needs in settling wholesale payments)
- 2. Financial portfolio: government bonds (b^w), interbank lending (ℓ^w)

Wholesale Bank

- 1. Deposit contract: k^w , quantity of bonds if withdrawal (b'), and d^w
 - ullet ho depositors must trade with bonds (liquidity needs in settling wholesale payments)
- 2. Financial portfolio: government bonds (b^w), interbank lending (ℓ^w)

Subject to a collateral constraint (no leverage requirement \longrightarrow no bank capital)

Asset	Liability	
r^bb^w	$r^b[ho+(1- ho){\color{red}\eta}]b'$	\longrightarrow withdraw
$r^\ell\ell^w$	$(1- ho)(1-{\color{red}\eta})d^w$	\longrightarrow not withdraw

Endogenous withdrawal probability η adjusts the composition bank liabilities

Wholesale bank depositors' ex ante expected utility

$$\underbrace{-k^{w}}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho)\eta\right]u(r^{b}b') + (1-\rho)\left(1-\frac{\eta}{\rho}\right)\left[\delta u\left(d^{w}\right) + (1-\delta)u\left(0\right)\right]}_{\text{expected return on deposit contract}}$$

Wholesale bank depositors' ex ante expected utility

$$\underbrace{-k^{w}}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho)\eta\right]u(r^{b}b') + (1-\rho)\left(1-\eta\right)\left[\delta u\left(d^{w}\right) + (1-\delta)u\left(0\right)\right]}_{\text{expected return on deposit contract}}$$

<u>Withdraw</u>: Get b' units of government bonds with gross interest rate of r^b

Wholesale bank depositors' ex ante expected utility

$$\underbrace{-k^{w}}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho) \eta\right] u(r^{b}b') + (1-\rho) \left(1 - \eta\right) \left[\delta u\left(d^{w}\right) + (1-\delta) u\left(0\right)\right]}_{\text{expected return on deposit contract}}$$

<u>Withdraw</u>: Get b' units of government bonds with gross interest rate of r^b

Not withdraw: Get a tradeable claim to d^r units of consumption goods with probability δ

Wholesale bank depositors' ex ante expected utility

$$\underbrace{-k^{w}}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho)\eta\right]u(r^{b}b') + (1-\rho)\left(1-\frac{\eta}{\eta}\right)\left[\delta u\left(d^{w}\right) + (1-\delta)u\left(0\right)\right]}_{\text{expected return on deposit contract}}$$

<u>Withdraw</u>: Get b' units of government bonds with gross interest rate of r^b

Not withdraw: Get a tradeable claim to d^r units of consumption goods with probability δ

(i) No banking panic:
$$\eta = 0, \quad \text{if } u\left(r^bb'\right) \leq \delta u\left(d^w\right) + (1-\delta)u\left(0\right);$$
 (ii) Partial banking panic:
$$0 < \eta < 1, \quad \text{if } u\left(r^bb'\right) = \delta u\left(d^w\right) + (1-\delta)u\left(0\right);$$
 (iii) Full banking panic:
$$\eta = 1, \quad \text{if } u\left(r^bb'\right) \geq \delta u\left(d^w\right) + (1-\delta)u\left(0\right).$$

Perfectly Competitive Wholesale Banking

▶ retail bank's problem

► Maximize depositors' expected utility (infinite mass of potential entrants & free entry)

$$\underbrace{-k^w}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho) \frac{\eta}{\eta}\right] u(r^bb') + (1-\rho) \left(1 - \frac{\eta}{\eta}\right) \delta u\left(d^w\right)}_{\text{expected return on deposit contract}}$$

Subject to

▶ retail bank's problem

► Maximize depositors' expected utility (infinite mass of potential entrants & free entry)

$$\underbrace{-k^w}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho) \frac{\mathbf{\eta}}{\mathbf{\eta}}\right] u(r^bb') + (1-\rho) \left(1 - \frac{\mathbf{\eta}}{\mathbf{\eta}}\right) \delta u\left(d^w\right)}_{\text{expected return on deposit contract}}$$

Subject to

► Nonnegative profit:

$$\underbrace{k^{w}-\left(1-\rho\right)\left(1-\frac{\eta}{\eta}\right)\delta d^{w}}_{\text{profits from deposit contract}}\underbrace{-b^{w}-\ell^{w}+r^{b}\left[b^{w}-\left[\rho+\left(1-\rho\right)\frac{\eta}{\eta}\right]b'\right]+r^{\ell}\ell^{w}}_{\text{profits from portfolio decision}}\geq0$$

Perfectly Competitive Wholesale Banking

▶ retail bank's problem

► Maximize depositors' expected utility (infinite mass of potential entrants & free entry)

$$\underbrace{-k^w}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho) \frac{\mathbf{\eta}}{\mathbf{\eta}}\right] u(r^bb') + (1-\rho) \left(1 - \frac{\mathbf{\eta}}{\mathbf{\eta}}\right) \delta u\left(d^w\right)}_{\text{expected return on deposit contract}}$$

Subject to

► Nonnegative profit:

$$\underbrace{k^{w} - (1 - \rho) \left(1 - \frac{\eta}{\eta}\right) \delta d^{w}}_{\text{profits from deposit contract}} \underbrace{-b^{w} - \ell^{w} + r^{b} \left[b^{w} - \left[\rho + (1 - \rho) \frac{\eta}{\eta}\right] b'\right] + r^{\ell} \ell^{w}}_{\text{profits from portfolio decision}} \geq 0$$

► Collateral constraint (holds for all wholesale banks ex-ante):

$$\underbrace{r^b \left[b^w - \left[\rho + (1 - \rho) \, \frac{\eta}{\eta} \right] b' \right] + r^\ell \ell^w}_{\text{returns on assets}} \ge \underbrace{\left(1 - \rho \right) \left(1 - \frac{\eta}{\eta} \right) d^w}_{\text{payments on liabilities}}$$

Perfectly Competitive Wholesale Banking

▶ retail bank's problem

► Maximize depositors' expected utility (infinite mass of potential entrants & free entry)

$$\underbrace{-k^{w}}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho) \frac{\eta}{\eta}\right] u(r^{b}b') + (1-\rho) \left(1 - \frac{\eta}{\eta}\right) \delta u\left(d^{w}\right)}_{\text{expected return on deposit contract}}$$

Subject to

► Nonnegative profit:

$$\underbrace{k^{w} - \left(1 - \rho\right)\left(1 - \frac{\eta}{\eta}\right)\delta d^{w}}_{\text{profits from deposit contract}} \underbrace{-b^{w} - \ell^{w} + r^{b}\left[b^{w} - \left[\rho + \left(1 - \rho\right)\frac{\eta}{\eta}\right]b'\right] + r^{\ell}\ell^{w}}_{\text{profits from portfolio decision}} \geq 0$$

► Collateral constraint (holds for all wholesale banks ex-ante):

$$\underbrace{r^b \left[b^w - \left[\rho + (1 - \rho) \, \frac{\eta}{\eta} \right] b' \right] + r^\ell \ell^w}_{\text{returns on assets}} \ge \underbrace{\left(1 - \rho \right) \left(1 - \frac{\eta}{\eta} \right) d^w}_{\text{payments on liabilities}}$$

Nonnegative constraints: k^w , b', d^w , b^w , $b^w - [\rho + (1 - \rho) \eta] b' \ge 0$

No Bank Holds Government Bonds as Collateral

▶ scarcity of collateral

Retail	

Wholesale Bank

Asset	Liability & Equity	Asset	Liability
$r^m m$	d^r	r^bb^w	$r^b[ho + (1- ho)\eta]b'$
r^bb^r	$r^\ell\ell^r$	$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$
	e		

No Bank Holds Government Bonds as Collateral

▶ scarcity of collateral

Retail Bank	Wholesale Bank
•	

Asset	Liability & Equity		Asset	Liability
$r^m m$	d^r	•	r^bb^w	$r^b[ho+(1- ho)\eta]b'$
rbbr	$r^\ell\ell^r$		$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$
	е			

Lemma 1 Retail banks never hold government bonds

▶ intuition

Wholesale banks value bonds more as they are not subject to leverage requirements

No Bank Holds Government Bonds as Collateral

▶ scarcity of collateral

Retail	Bank	Wholesale Bank			
Asset	Liability & Equity	Asset	Liability		
$r^m m$	d^r	$r^b b^w = [\rho + (1-\rho)\eta]b'$	$r^b[ho+(1- ho)\eta]b'$		
	$r^\ell\ell^r$	$r^\ell\ell^w$	$(1-\rho)(1-\eta)d^w$		

Lemma 1 Retail banks never hold government bonds

▶ intuition

▶ Wholesale banks value bonds more as they are not subject to leverage requirements

Lemma 2 Wholesale banks only purchase government bonds for depositors' withdrawal requests

▶ Wholesale bank depositors directly use government bonds in exchange to avoid risk

Central Bank Balance Sheet and Wholesale Banking Panics

Size of the Central Bank's Balance Sheet

Partial panic (0 < η < 1): only case withdrawal prob. changes in response to policies (constant η in full/partial panic)

Central Bank Balance Sheet and Wholesale Banking Panics

Size of the Central Bank's Balance Sheet

Partial panic (0 < η < 1): only case withdrawal prob. changes in response to policies (constant η in full/partial panic)

Main Result

An expansion of the central bank's balance sheet mitigates wholesale banking panics but lowers asset returns and impedes transactions.

Equilibrium Conditions under Partial Banking Panic $u(c_2^b) = \delta u(c_2^w)$

No-arbitrage Interbank Market (equate marginal returns from trading with retail/wholesale deposits)

$$u'\left(c_{2}^{r}\right) = 1 - \delta + \delta u'\left(c_{2}^{w}\right)$$

Collateral Market Clearing

details

effective collateral supply (i.e., reserves)
$$= \underbrace{\alpha c_2^r \left[1 - \theta + \theta u'(c_2^r)\right]}_{\text{retail banks' demand for collateral}} + \underbrace{\left(1 - \alpha\right) \left(1 - \rho\right) \left(1 - \eta\right) c_2^w \left[1 - \theta \delta + \theta \delta u'(c_2^w)\right]}_{\text{wholesale banks' demand for collateral}}$$

Bond Market Clearing

$$\hat{\underline{b}} - \underline{\overline{m}} = \underbrace{(1-\alpha)[\rho + (1-\rho)\eta]c_2^b u'(c_2^b)}_{\text{wholesale bank depositors' demand for bonds}}$$

Mitigation of Wholesale Banking Panics

A central bank balance sheet expansion has three effects (open market operations)

- 1. Government bond supply $\downarrow \longrightarrow$ interest rate on government bonds \downarrow (price \uparrow)
- 2. Reserve supply $\uparrow \longrightarrow \text{relax banks' constraints} \longrightarrow \text{returns on deposits} \uparrow$
 - Directly relax retail banks' leverage constraint
 - Indirectly relax wholesale banks' collateral constraint through the interbank market

Mitigation of Wholesale Banking Panics

A central bank balance sheet expansion has three effects (open market operations)

- 1. Government bond supply $\downarrow \longrightarrow$ interest rate on government bonds \downarrow (price \uparrow)
- 2. Reserve supply $\uparrow \longrightarrow \text{relax banks' constraints} \longrightarrow \text{returns on deposits} \uparrow$
 - Directly relax retail banks' leverage constraint
 - Indirectly relax wholesale banks' collateral constraint through the interbank market
- \rightarrow 3. Deposits become more attractive relative to bonds \longrightarrow withdrawal probability $\eta \downarrow$

Reduction in Asset Returns & Trading Surplus

Retail	l Bank	Wholesa	Wholesale Bank		
Asset	Liability & Equity	Asset	Liability		
$r^m m$	d^r	r^bb^w	$r^b[ho + (1- ho)\eta]b'$		
	$r^\ell\ell^r$	$r^\ell\ell^w$	$(1-\rho)(1-\eta)d^w$		
	e				

Reduction in Asset Returns & Trading Surplus: Government Bonds

Ketali Bank			wholesale Bank			
Asset	Liability & Equity		Asset	Liability		
$r^m m$	d^r		$r^bb^w\downarrow$	$r^b[ho + (1- ho)\eta\downarrow]b'$		
	$r^\ell\ell^r$		$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$		
	е					

An expansion in the size of the central bank's balance sheet ($\bar{m} \uparrow$ and $\bar{b} \downarrow$)

- ► Harms depositors trading with **government bonds**
 - Lower interest rate on government bonds $(\frac{\partial r^b}{\partial \tilde{m}} < 0)$
 - Lower trading volume for transactions settled with government bonds $(\frac{\partial c_2^b}{\partial \bar{p}} < 0)$

Reduction in Asset Returns & Trading Surplus: Wholesale Deposits

Ketali Dalik			Wholesale ballk			
	Asset	Liability & Equity		Asset	Liability	
	$r^m m \uparrow$	d^r		r^bb^w	$r^b[ho + (1- ho)\eta]b'$	
		$r^\ell\ell^r\uparrow$		$r^\ell\ell^w\uparrow$	$r^b[ho + (1- ho)\eta]b' \ (1- ho)(1-rac{\eta}{\downarrow})d^w \uparrow$	
		е				

Wholocalo Bank

An expansion in the size of the central bank's balance sheet $(\bar{m} \uparrow \text{ and } \bar{b} \downarrow)$

- ▶ Harms depositors trading with government bonds: lower r^b , c_2^b
- ► Harms depositors trading with **wholesale deposits**

Rotail Bank

- Lower trading volume for transactions settled with wholesale deposits $(\frac{\partial c_2^w}{\partial \bar{m}} < 0)$
- Intensify banks' competition for collateral $(\frac{\partial r^{\ell}}{\partial \bar{m}} < 0)$ and $\frac{\partial r^{m}}{\partial \bar{m}} < 0)$

Reduction in Asset Returns & Trading Surplus: Retail Deposits

	Retail Bank			Wholesale Bank			
	Asset	Liability & Equity		Asset	Liability		
•	$r^m m \uparrow$	$d^r \downarrow$		r^bb^w	$r^b[ho+(1- ho)\eta]b'$		
		$r^\ell\ell^r\uparrow$		$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$		
		e					

An expansion in the size of the central bank's balance sheet $(\bar{m} \uparrow \text{ and } \bar{b} \downarrow)$

- ▶ Harms depositors trading with bonds & wholesale deposits: lower r^b , c_2^b ; c_2^w , r^ℓ , r^m
- Harms depositors trading with retail deposits
 - Retail banks substitute their funding source to cheaper interbank borrowing
 - Reduce the supply of retail deposits (no shift in demand for retail deposits)
 - Lower trading volume for transactions settled with retail deposits ($\frac{\partial c_2'}{\partial m} < 0$)

Expanding the Reach of Central Bank Liabilities to Wholesale Banks

Giving Wholesale Banks Direct Aceess to Central Bank Liabilities

- ▶ Introduce central bank liabilities (o) that <u>both</u> retail and wholesale banks can hold
 - Example: Fed's overnight reverse repurchase agreements (ON-RRPs)

Giving Wholesale Banks Direct Aceess to Central Bank Liabilities

- ▶ Introduce central bank liabilities (o) that <u>both</u> retail and wholesale banks can hold
 - Example: Fed's overnight reverse repurchase agreements (ON-RRPs)
- Monetary policy has two dimensions

central bank balance sheet

- Size of its balance sheet $s = \bar{m} + \bar{o}$ (same results as before)
- Composition of reserves (\bar{m}) and ON-RRPs (\bar{o})

Giving Wholesale Banks Direct Aceess to Central Bank Liabilities

- ▶ Introduce central bank liabilities (*o*) that <u>both</u> retail and wholesale banks can hold
 - Example: Fed's overnight reverse repurchase agreements (ON-RRPs)
- Monetary policy has two dimensions

central bank balance sheet

- Size of its balance sheet $s = \bar{m} + \bar{o}$ (same results as before)
- Composition of reserves (\bar{m}) and ON-RRPs (\bar{o})

Main Result

A swap of reserves (\bar{m}) for ON-RRPs (\bar{o}) mitigates banking panics and increases asset returns and promotes transactions

Mitigation of Wholesale Banking Panics

Effective collateral supply (determined by \bar{o} for any s)

▶ collateral market clearing

reserve supply balance sheet size
$$\theta \times \overbrace{\bar{m}} + \underbrace{\bar{o}}_{\text{ON-RRP supply}} = \theta \times \overbrace{s} + (1-\theta)\,\bar{o}$$

- A swap increases effective collateral supply by avoiding retail banks' regulatory costs
- Wholesale banks provide more attractive deposits to compete for depositors:
 - \longrightarrow Mitigating wholesale banking panics (withdrawal probability $\eta \downarrow$)

Moderate Shifts in Asset Demand

► A swap of reserves for ON-RRPs does not take out government bonds

$$\hat{b} - s = \underbrace{(1 - \alpha)[\rho + (1 - \rho)\eta]c_2^b u'(c_2^b)}_{\text{bonds circulating in private sector, } \bar{b}} = \underbrace{(1 - \alpha)[\rho + (1 - \rho)\eta]c_2^b u'(c_2^b)}_{\text{wholesale bank depositors' demand for bonds}}$$

- No direct pressure that makes bonds less attractive \longrightarrow moderate change in η
- Opposite effects on asset returns and transactions

By contrast, central bank balance sheet expansions impede transactions because

Large change in withdrawals $\eta \longleftrightarrow$ Large shifts in demand for assets

► Two direct effects: increased collateral supply + decreased government bond supply

Increase in Asset Returns & Trading Surplus

Retail Bank			Wholesale Bank			
	Asset	Liability	Asset	Liability		
	$r^m m$	d^r	r^bb^w	$r^b[ho+(1- ho)\eta]b'$		
		$r^\ell\ell^r$	$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$		
		е	$r^o o$			

Increase in Asset Returns & Trading Surplus: Government Bonds

Retail Bank			Wholesale Bank			
Asset	Liability		Asset	Liability		
$r^m m$	d^r		r^bb^w	$r^b[ho + (1- ho)\eta \downarrow]b'$		
	$r^\ell\ell^r$		$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$		
	е		$r^{o}o$			

A swap of reserves for ON-RRPs ($\bar{m} \downarrow \text{ and } \bar{o} \uparrow$)

- ▶ Benefits depositors trading with **government bonds** (no shift in bond supply)
 - Higher interest rate on government bonds $(\frac{\partial r^b}{\partial \bar{m}} > 0)$
 - Higher trading volume for transactions settled with government bonds $(\frac{\partial c_2^b}{\partial \bar{m}} > 0)$

Increase in Asset Returns & Trading Surplus: Wholesale Deposits

Retail Bank			wholesale bank			
	Asset	Liability	Asset	Liability		
	$r^m m \downarrow$	d^r	r^bb^w	$r^b[ho + (1- ho)\eta]b'$		
		$r^\ell\ell^r\downarrow$	$r^\ell\ell^w\downarrow$	$(1-\rho)(1-\frac{\eta}{\downarrow})d^w\uparrow$		
		е	$r^{o}o\uparrow$			

1471- -1 - - -1 - D - -- 1 -

A swap of reserves for ON-RRPs ($\bar{m} \downarrow \text{ and } \bar{o} \uparrow$)

Data:1 Dan1.

- **b** Benefits depositors trading with government bonds: higher r^b , c_2^b
- Benefits depositors trading with wholesale deposits
 - Higher trading volume for transactions settled with wholesale deposits $(\frac{\partial c_2^w}{\partial \bar{b}} > 0)$
 - Reduce banks' competition for collateral $(\frac{\partial r^{\ell}}{\partial \bar{o}} > 0 \text{ and } \frac{\partial r^{m}}{\partial \bar{o}} > 0)$

Increase in Asset Returns & Trading Surplus: Retail Deposits

Retail Bank		Wholesale Bank			
	Asset Liability		Asset	Liability	
	$r^m m \downarrow$	$d^r \uparrow$	r^bb^w	$r^b[ho + (1- ho)\eta]b'$	
		$r^\ell\ell^r\downarrow$	$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$	
		е	$r^o o$		

A swap of reserves for ON-RRPs ($\bar{m} \downarrow$ and $\bar{o} \uparrow$)

- ▶ Benefits depositors trading with bonds & wholesale deposits: higher r^b , c_2^b ; c_2^w , r^ℓ , r^m
- Benefits depositors trading with retail deposits
 - Retail banks substitute their funding source to cheaper deposits
 - Increased supply of retail banks' deposit claims (no shift in demand for these claims)
 - Higher trading volume for transactions settled with these claims $(\frac{\partial c_2'}{\partial \bar{o}} > 0)$

Conclusions

- Two-sector banking model with flight-to-safety driven by wholesale banking panics
- ▶ Endogenous shifts in asset demand in response to central bank crisis interventions
- Expanding the balance sheet mitigates banking panics but impedes transactions
 - Differ from scenarios when there is no shift in asset demands (no/full banking panic)

Swapping reserves for ON-RRPs mitigates panics and facilitates transactions

Moderate shifts in asset demands: Swap of central bank liabilities does not take out government bonds, putting no direct pressure that makes bonds less attractive

Appendix

Related Literature

- 1. Monetary model with financial instability: Williamson (2019) + Gertler and Kiyotaki (2015)
 - Diamond-Dybvig type: Robatto(2017,2014), Andolfatto, Berentsen, Martin (2020), Gu, Monnet, Nosal, and Wright (2023)
 - Wholesale bank run in the absence of sequential service constraints: Gertler, Kiyotaki, and Prestipino (2016), Andolfatto and Nosal (2020), Huang and Keister (2024)
- 2. Central bank balance sheet and the role of central bank liabilities in financial stability
 - Reserves and ON-RRPs: Carlson, Duygan-Bump, Natalucci, Greenwood, Hanson, and Stein (2016), Nelson, Ochoa, Stein, and Van den Heuvel (2016), Bush, Kirk, Martin, Weed, and Zobel (2019)
- 3. Policy implications for short-term funding markets
 - Gorton and Metrick (2012), Martin, Skeie, and Thadden (2014), Arrata, Nguyen, Rahmouni-Rousseau, and Vari (2020)

Endogenous shifts in asset demand can lead to unintended policy implications!

Fiscal Authority & Central Bank

▶ back

Fiscal authority issues government bonds (\hat{b}) and transfer revenue (τ_1) to depositors:

$$\hat{b} = \tau_1$$

▶ **Central bank** purchases $\hat{b} - \bar{b}$ with reserves \bar{m} :

$$\bar{m} = \hat{b} - \bar{b}$$

- ► Government liabilities are redeemed in period 3
 - Fiscal authority taxes depositors τ_3 , pays off debt, transfers τ^{cb} to central bank:

$$r^b\hat{b} + \tau^{cb} = \tau_3$$

• Central bank pays off its debt:

$$r^m \bar{m} = r^b (\hat{b} - \bar{b}) + \tau^{cb}$$

Fiscal policy: determine the total government bonds supply $\hat{b} = \bar{m} + \bar{b}$ (exogenous, fixed) Monetary policy: determine the size of the central bank's balance sheet, described by \bar{m}

Central Bank's Balance Sheet

Baseline case

Asset	Liability
$\hat{b}-ar{b}$	\bar{m}

ightharpoonup Central bank purchases $\hat{b} - \bar{b}$ to back its reserves \bar{m}

After introducing ON-RRPs

Asset	Liability
$\hat{b} - \bar{b}$	\bar{m}
	\bar{o}

lacktriangle Central bank purchases $\hat{b} - \bar{b}$ to back reserves \bar{m} and ON-RRPs \bar{o}

Perfectly Competitive Retail Banking

► Maximize depositors' utility (infinite mass of potential entrants & free entry):

$$-k^r + u(d^r)$$

Subject to

► Nonnegative profit:

profits from deposit contract

$$\underbrace{k^r - d^r}_{\text{profits from portfolio decision}} \underbrace{-m - b^r + \ell^r + r^m m + r^b b^r - r^\ell \ell^r}_{\text{profits from portfolio decision}} \ge 0$$

Leverage constraint:

$$\frac{e^{\text{returns on assets}}}{\theta(r^m m + r^b b^r)} \ge \underline{d}^r + r^\ell \ell^r$$
payments on liabilities

Nonnegative constraints: k^r , d^r , m, $b^r \ge 0$

Sweat Equity

Retail banks finance part of their assets by supplying their own capital

Nonnegative profit constraint holds in equality due to free entry, implying

$$\underbrace{m + b^r - k^r - \ell^r}_{\text{equity raised at } t = 1} = \underbrace{r^m m + r^b - d^r - r^\ell \ell^r}_{\text{equity return at } t = 3} = e$$

• Leverage requirement further implies a positive equity holdings (e > 0), recall

$$\theta \overbrace{(r^m m + r^b b^r)}^{\text{returns on assets}} \geq \underline{d^r + r^\ell \ell^r}$$
payments on liabilities

▶ "Sweat equity" requires banks to work → costly internal funding source

▶ back

Retail Banks Never Invest in Government Bonds: Intuition

Retail Bank			Wholesale Bank			
	Asset Liability & Equity		Asset	Liability		
•	$r^m m$	d^r	r^bb^w	$r^b[ho + (1- ho)\eta]b'$		
	X	$r^\ell\ell^r$	$r^\ell\ell^w$	$r^b[ho+(1- ho)\eta]b' \ (1- ho)(1-\eta)d^w$		
		e				

- Retail banks invest in a positive stock of government bonds only if $r^b > r^\ell$
 - Strict inequality comes from their costs of holding assets due to leverage requirements
- ▶ Wholesale banks ask a higher return on loans than bonds, i.e., $r^{\ell} \ge r^{b}$
 - Government bonds provide a greater liquidity, which are always available to them
- ightharpoonup Contradiction \longrightarrow retail banks never invest in bonds

No Banking Panic ($\eta = 0$) & Full Banking Panic ($\eta = 1$)

	∂c_2^r	∂c_2^w	∂c_2^b	∂r^m	∂r^ℓ	∂r^b
$\partial \bar{m}$	+	+	_	+	+	_

Expanding the size of the central bank's balance sheet has only two effects

- ▶ government bond supply ↓: reduce transactions settled with government bonds
- ▶ effective collateral supply ↑: increase transactions settled with deposit claims

No change in withdrawal behavior given η constant (endogenously determined)

▶ Different effects compared to the baseline case

▶ Central bank cannot improve welfare (in Pareto sense) by adjusting its balance sheet size

Scarcity of Total Government Bond Supply

Assumption 1

Total supply of government bonds is scarce, such that $\theta \hat{b} < \alpha c^*$, where $u'(c^*) = 1$.

- ▶ Retail bank's leverage and wholesale bank's collateral constraints bind
 - Otherwise, depositors consume a satiated level c^* and monetary policy becomes neutral
 - Low return on safe assets, particularly, government bonds

Characterization of Equilibrium

Express conditions on consumption allocation (c_2^r, c_2^b, c_2^w) and withdrawal probability η

$$c_2^r = d^r$$
, $c_2^b = r^b b'$, $c_2^w = d^w$

Depositors' consumption level reflects the overall total trading surplus/welfare (competitive producers and bankers earn zero profit)

- ► No-arbitrage interbank market
- Collateral market clearing
- Bond market clearing
- One of depositors' incentive conditions to determine η (no banking panic $\eta = 0$, partial banking panic $0 < \eta < 1$, and full banking panic $\eta = 1$)

Equilibrium Conditions

No-arbitrage Interbank Market:

$$\underbrace{u'\left(c_{2}^{r}\right)}_{\text{marginal return on retail bank's deposit claims}} = \underbrace{1 - \delta + \delta u'\left(c_{2}^{w}\right)}_{\text{marginal return on wholesale bank's deposit claims}}$$

- ► Equate depositors' marginal returns from trading with retail and wholesale deposits
- Marginal returns determine interest rates (consumption-based asset pricing)
 - e.g., $\frac{1}{r^{\ell}} = u'(c_2^r)$, marginal utility of trading retail deposits

Equilibrium Conditions

No-arbitrage Interbank Market:

$$u'\left(c_{2}^{r}\right)=1-\delta+\delta u'\left(c_{2}^{w}\right)$$

Collateral Market Clearing:

effective collateral supply (i.e., reserves) =
$$\alpha c_2^r \left[1 - \theta + \theta u'(c_2^r)\right]$$
 retail banks' demand for collateral

$$+\underbrace{\left(1-\alpha\right)\left(1-\rho\right)\left(1-\frac{\eta}{l}\right)c_{2}^{w}\left[1-\theta\delta+\theta\delta u'\left(c_{2}^{w}\right)\right]}_{\text{wholesale banks' demand for collateral}}$$

- \triangleright Expanding central bank balance sheet (\bar{m}) increases the effective collateral supply
- The severity of wholesale banking panics η determines the demand for collateral
 - By mitigating banking panics, policy shifts this demand upward

▶ ON-RRP

Equilibrium Conditions

No-arbitrage Interbank Market:

$$u'\left(c_{2}^{r}\right)=1-\delta+\delta u'\left(c_{2}^{w}\right)$$

Collateral Market Clearing:

$$\begin{split} \theta \bar{m} = & \alpha c_2^r \left[1 - \theta + \theta u' \left(c_2^r \right) \right] \\ & + \left(1 - \alpha \right) \left(1 - \rho \right) \left(1 - \frac{\eta}{l} \right) c_2^w \left[1 - \theta \delta + \theta \delta u' \left(c_2^w \right) \right] \end{split}$$

Bond Market Clearing:

$$\hat{b} - \bar{m} = \underbrace{(1-\alpha)[\rho + (1-\rho)\eta]c_2^b u'(c_2^b)}_{\text{bonds circulating in private sector, } \bar{b}} = \underbrace{(1-\alpha)[\rho + (1-\rho)\eta]c_2^b u'(c_2^b)}_{\text{wholesale bank depositors' demand for bonds}}$$

- ▶ Expanding central banks balance sheet reduce the supply of government bonds
- \triangleright The severity of banking panics η determines the aggregate demand for bonds
 - By mitigating banking panics, policy shifts this demand **downward**

No-arbitrage Condition: Inituition

Retail	l Bank	Wholesale Bank			
Asset	Liability & Equity	Asset	Liability		
$r^m m$	d^r	r^bb^w	$r^b[ho+(1- ho)\eta]b'$		
	$r^\ell\ell^r$	$r^\ell\ell^w$	$r^b[ho+(1- ho)\eta]b' \ (1- ho)(1-\eta)d^w$		
	е				

On the liability side of the retail bank

return rate on retail deposits = return rate on interbank borrowing

▶ Wholesale banks use claims on interbank lending back deposit claims

return rate on interbank lending = return rate on wholesale deposits adjusted by risk