Projeto de Automação do Misturador de Substâncias Farmacêuticas

Igor de Oliveira Silvestre

Este documento apresenta uma proposta de solução para a automação do processo de mistura de duas substâncias farmacêuticas em uma caldeira, visando eliminar a necessidade de operação manual. A proposta inicial para o projeto contempla os requisitos definidos para temperatura e velocidade de rotação. Ao final dessa proposta eu apresento no Anexo 2 um escopo expandido com outros possíveis parâmetros de interesse para o cliente, como sensores de pressão, nível de líquido, vibração e de presença de gás, assim como as alterações consequentes no corpo do projeto.

a. Levantamento de Arquitetura de Software Embarcado

Para fazermos um levantamento da arquitetura de software embarcado devemos primeiramente estabelecer o que o sistema de automação do misturador deve fazer, que segue:

- 1. Controlar a velocidade de rotação do motor de mistura, variando entre 20, 30 e 40 RPM conforme as etapas de tempo.
- 2. Controlar a temperatura da mistura, ajustando a resistência de aquecimento para atingir 50, 65 e 80 °C.
- 3. Monitorar continuamente os valores de velocidade e temperatura para assegurar que estão dentro dos limites definidos, realizando o controle dessas variáveis.
- 4. Registrar e exibir o status do processo (opcional), informando o tempo decorrido e a etapa atual.

Com o funcionamento do sistema delineado, podemos agora especificar seus requisitos funcionais e não funcionais:

Requisitos Funcionais:

- 1. Controle de Velocidade.
- 2. Controle de Temperatura.
- 3. Leitura de Sensores: Medir temperatura e rotação continuamente para assegurar o controle.
- 4. Interface de Controle de Processo: Monitorar e mudar de fase automaticamente conforme o tempo (0-30 min, 30-60 min, 60-120 min).
- 5. Interface Opcional de Usuário: Exibir informações em tempo real sobre a etapa e as condições atuais do processo.

Requisitos Não-Funcionais ou Qualidades:

- 1. Robustez: O sistema deve ser capaz de funcionar por longos períodos sem falhas.
- 2. Tempo de resposta: Reação rápida a variações de temperatura e rotação para manter a precisão do processo.
- 3. Eficiência Energética: Uso eficiente do motor e do aquecimento para reduzir consumo de energia.
- 4. Segurança: Operar de forma segura, com monitoração constante para evitar superaquecimento.

Para implementar essas funcionalidades e atender aos requisitos identificados, podemos adotar uma organização em três camadas principais. Essa abordagem estruturada facilita o gerenciamento de cada função e garante que o software mantenha flexibilidade e robustez durante o controle do processo de mistura:

- 1. Camada de Hardware/Dispositivos (inferior):
 - Conecta o software aos dispositivos físicos (sensores e atuadores).
 - Lida com a leitura dos dados dos sensores (temperatura e velocidade).
 - o Controla os atuadores: motor de rotação e resistência de aquecimento.
- 2. Camada de Controle de Processamento (intermediária):
 - o Responsável pelo processamento e controle do sistema.
 - o Define as lógicas de controle para cada etapa do processo.
 - Realiza ajustes de velocidade e temperatura com base no tempo e nos requisitos de cada fase.
 - Monitora e processa os dados dos sensores para tomar ações corretivas.
- 3. Camada de Interface de Usuário (opcional e superior):
 - Exibe informações do processo para o operador, como tempo restante, temperatura e velocidade atuais.
 - Permite o acompanhamento do status do processo sem interferir nas operações.

Após definir a arquitetura do software em três camadas principais podemos detalhar as entradas e saídas do sistema. As entradas compreendem dispositivos como sensores e botões, que enviam dados ao sistema, enquanto as saídas são os sinais e comandos enviados pelo sistema para controlar os atuadores, como o motor e a resistência de aquecimento. A figura abaixo ilustra um exemplo de diagrama de entradas e saídas do sistema de automação do misturador de substâncias farmacêuticas.

Figura 1: Diagrama Entradas/Saídas do Sistema

b. Especificação de microcontrolador/processador:

Inicialmente, com base nos requisitos funcionais de controle de temperatura, velocidade de agitação e sensoriamento, poderíamos optar pelo uso dos microcontroladores STM32F103 ou ESP32. Ambos possuem recursos adequados para o controle e monitoramento do processo de mistura, incluindo PWM para controle dos atuadores, ADCs para leitura de sensores, e temporizadores que permitem gerenciar os tempos de cada fase do processo.

No entanto, considerando que o sistema será implementado em um ambiente fabril, onde podem ocorrer condições adversas, como temperaturas elevadas, interferências eletromagnéticas (EMI) e vibrações, uma alternativa mais robusta se faz necessária. Nesse contexto, recomendo utilizar microcontroladores com características industriais, como o STM32F4 (por exemplo, o STM32F407) e o PIC32MZ, com as seguintes caracteristicas:

- STM32F407: Microcontrolador que oferece maior potência de processamento e periféricos avançados, sendo amplamente utilizado em aplicações industriais. A série STM32F4 possui versões projetadas para ambientes de operação com maior resistência a ruídos e temperaturas estendidas.
- PIC32MZ: Conhecido pela robustez, o PIC32MZ é indicado para sistemas industriais críticos, oferecendo excelente resistência a EMI, maior tolerância a condições de operação adversas e um conjunto completo de periféricos.

Ambos possuem alta resolução dos ADCs e precisão no controle de PWM, assim como permitem comunicação pelas interfaces requisitadas (SPI, I2C, UART). Algo que difere os dois microcontroladores é a resistência a temperaturas elevadas, enquanto o STM32F407 permite temperaturas de operação no entre -40°C a +85°C, o PIC32MZ opera com estabilidade em uma faixa maior de temperatura, entre -40°C a +125°C.

Considerando à sua robustez e estabilidade em condições ambientais rigorosas, recomendo a princípio o PIC32MZ, sendo uma excelente escolha para sistemas críticos que demandam confiabilidade e precisão, especialmente em uma planta farmacêutica.

c. Especificação de periféricos necessários:

Para a implementação do sistema de automação do misturador de substâncias farmacêuticas, é fundamental definir os periféricos necessários para garantir o monitoramento eficaz e o controle preciso do processo. Os periféricos são divididos em duas categorias principais: entradas para leitura e saídas para atuação. As entradas fornecem informações ao sistema sobre o estado atual do processo, enquanto as saídas permitem que o sistema interaja com os dispositivos físicos, ajustando as condições de mistura conforme necessário.

i. Entradas para Leitura:

- 1. Sensor de Temperatura: Termopar ou PT100.
 - Função: Medir a temperatura da mistura com alta precisão, garantindo que os níveis desejados sejam mantidos durante todo o processo.
- 2. Sensor de Velocidade: Sensor óptico ou encoder acoplado ao eixo do motor.
 - Função: Monitorar a velocidade de rotação do motor, permitindo ajustes para garantir a agitação adequada da mistura.
- 3. Botoeiras (GPIO): Entradas digitais configuradas para permitir a ativação e desativação do sistema.
 - Função: Proporcionar uma interface física simples para que operadores possam ligar ou desligar o sistema manualmente.
- 4. Entrada UART: Interface de comunicação serial.
 - Função: Permitir o envio e recebimento de comandos e dados do sistema, possibilitando controle e monitoramento remoto.

ii. Saídas para Atuação:

- 1. Motor de Agitação
 - o Controle: PWM.
 - Função: Ajustar a velocidade de rotação do motor de agitação, garantindo a homogeneidade da mistura.
- 2. Resistência de Aquecimento
 - o Controle: PWM com dispositivo de potência (como TRIAC) ou MOSFET.
 - Função: Controlar a temperatura da mistura aquecendo o líquido conforme necessário.
- 3. Sinalizador (LED ou Buzzer)
 - Função: Indicar o estado do processo (por exemplo, se a temperatura ou a velocidade estiver fora dos limites desejados).
- 4. Dispositivo de Comunicação
 - o Tipo: Módulo de comunicação (UART, RS-232, Ethernet).
 - Função: Facilitar a comunicação do sistema com um sistema de supervisão ou interface de usuário, permitindo monitoramento remoto e ajustes.

d. Geração de um pseudocódigo e fluxograma:

Para melhor inteligibilidade do documento, o pseudocódigo baseado em C se encontra no **Anexo 1**, onde realizei a programação utilizando uma máquina de quatro estados e as seguintes funções:

iniciarSistema(): Configura os pinos de entrada e saída do microcontrolador, inicializa o ADC (Conversor Analógico-Digital) para a leitura dos sensores e estabelece a comunicação serial para logs e monitoramento.

desligarSistema(): Desativa todos os atuadores e limpa os recursos, como interrupções e timers, garantindo que o sistema possa ser reiniciado de forma segura. setTemperatura(int temperatura): Ajusta a saída da resistência para aquecer o líquido até a temperatura desejada.

setVelocidade(int velocidade): Usa PWM para controlar a velocidade do motor, ajustando a potência enviada ao motor para atingir a rotação desejada.

Realizei também o fluxograma de funcionamento do sistema de automação do misturador de substâncias farmacêuticas, representando as diferentes fases do processo de mistura. O sistema começa em um estado inicial onde aguarda o despejo das substâncias e o acionamento do botão "Liga". Após acionamento, a configuração de temperatura e de velocidade é alterada de acordo com os parâmetros da fase 1 de mistura (velocidade de 20 RPM e temperatura 50°C). A partir desse ponto, o sistema segue um fluxo sequencial, passando por outras duas fases de mistura, cada uma com suas próprias configurações de temperatura e velocidade. A sequência natural do fluxograma é dada pelas seguintes etapas:

- Estado Inicial: O sistema começa com a temperatura e a velocidade "zerados".
 Neste estado, o sistema se prepara para iniciar o processo de mistura, aguardando o despejo das substâncias e o acionamento do botão "Liga".
- 2. **FASE 1:** Durante os primeiros 30 minutos, a temperatura é mantida a 50 °C e a velocidade de agitação é de 20 rpm. O sistema opera nessa configuração para garantir a homogeneidade da mistura inicial.
- 3. **FASE 2:** Após a conclusão da FASE 1, o sistema transita para a FASE 2, onde a temperatura aumenta para 65 °C e a velocidade de agitação é ajustada para 30 rpm, também por um período de 30 minutos. Este aumento de temperatura e velocidade é crucial para atingir a consistência desejada na mistura.
- 4. **FASE 3:** Em seguida, o sistema avança para a FASE 3, mantendo uma temperatura de 80 °C e uma velocidade de agitação de 40 rpm durante 60 minutos. Esta fase final é vital para garantir que a mistura esteja completamente homogênea e dentro dos padrões requeridos.
- 5. **Finalização da mistura:** Após a conclusão da FASE 3, a resistência e o motor do misturador são desligados retornando para o estado inicial. Isso permite que a mistura esfrie naturalmente até a temperatura ambiente, garantindo que o produto final esteja seguro e pronto para o próximo passo no processo de produção.

O fluxograma é ilustrado abaixo e apresenta uma visão clara da lógica de controle do sistema:

Figura 2: Fluxograma de comportamento do sistema

Anexo 1: Pseudocódigo

```
#define TEMPERATURA_FASE1 50
#define TEMPERATURA_FASE2 65
#define TEMPERATURA FASE3 80
#define VELOCIDADE FASE1 20
#define VELOCIDADE FASE2 30
#define VELOCIDADE_FASE3 40
// declara estados
typedef enum {
      OFF, // Desligado
      FASE1,
      FASE2,
      FASE3
} Estado;
// Func auxiliares
void iniciarSistema();
void desligarSistema();
void setTemperatura(int temperatura);
void setVelocidade(int velocidade);
void delay(int milissegundos);
// Func principal
int main() {
      Estado estadoAtual = OFF;
      int tempoDecorrido = 0;
      iniciarSistema();
      while (1) {
      switch (estadoAtual) {
      case OFF:
             // Espera o sistema ser ativado
             if (/* condicao para ativar o sistema */) {
             estadoAtual = FASE1;
             tempoDecorrido = 0;
             }
             break;
      case FASE1:
             setTemperatura(TEMPERATURA FASE1);
             setVelocidade(VELOCIDADE_FASE1);
             delay(1800000); // 30 minutos em ms
             tempoDecorrido += 30;
```

```
estadoAtual = FASE2;
              break;
       case FASE2:
              setTemperatura(TEMPERATURA FASE2);
              setVelocidade(VELOCIDADE_FASE2);
              delay(1800000); // 30 minutos em ms
              tempoDecorrido += 30;
              estadoAtual = FASE3;
              break:
       case FASE3:
              setTemperatura(TEMPERATURA_FASE3);
              setVelocidade(VELOCIDADE_FASE3);
              delay(3600000); // 60 minutos em ms
              tempoDecorrido += 60;
              estadoAtual = OFF; // Retorna para o estado desligado apos o termino
              break:
       }
       //Adiciona condicao para desligar o sistema manualmente como botao off
       if (/* condicao para desligar o sistema */) {
       desligarSistema();
       estadoAtual = OFF;
       }
       }
       return 0;
}
// Implementacao das func auxiliares
void iniciarSistema() {
       // Inicializa pinos do microcontrolador
       // Configura ADC para ler temperatura e velocidade
       // Inicializa comunic serial
}
void desligarSistema() {
       // Desliga os atuadores (motor e resistencia)
       // Limpa recursos utilizados
}
void setTemperatura(int temperatura) {
       // Ajusta a saida da resistencia
       // Implementa controle PID (se necessário)
}
void setVelocidade(int velocidade) {
       // Ajusta a velocidade do motor usando PWM
}
```

Anexo 2: Escopo expandido com sensoriamento adicional

Em uma aplicação farmacêutica, o controle do processo de mistura em uma caldeira pode ser beneficiado pela adição de outros sensores, que permitem monitorar variáveis críticas para a segurança e a eficácia do processo. Além da temperatura e da rotação, outras variáveis, como pressão, nível de líquido e presença de gases, podem oferecer uma visão mais abrangente do ambiente e aumentar a confiabilidade do sistema de automação. Esse sensoriamento adicional pode ser especialmente relevante para:

- Segurança: O monitoramento de pressão e gases ajuda a prevenir condições de risco, como sobrepressão ou vazamentos de gases inflamáveis.
- Controle de Qualidade: Medir o nível de líquido e vibração garante a consistência da mistura e identifica possíveis falhas mecânicas que poderiam afetar o produto final.

Essas variáveis adicionais acarretam em algumas mudanças na estrutura do software embarcado, como a adição de algumas entradas e saídas adicionais, que seguem:

Entradas novas do sistema:

- 1. Sensor de Pressão: Monitoramento para evitar condições de sobrepressão, ajustando o aquecimento ou acionando válvulas de escape quando necessário.
- Sensor de Nível de Líquido: Garante que o nível das substâncias esteja adequado para a mistura, sinalizando a necessidade de reabastecimento ou interrompendo o processo em caso de níveis críticos.
- Sensor de vibração: Detecta possíveis falhas mecânicas que podem afetar a operação do motor, identificando vibrações anormais e alertando sobre desgaste ou defeitos.
- 4. Sensor de gás: Detecta vazamentos de gases inflamáveis, aumentando a segurança e interrompendo o processo em concentrações perigosas de gás.

Saídas novas do sistema:

- 1. Válvula de Escape de Pressão: Permite o alívio seguro da pressão excessiva na caldeira.
- 2. Alarme Sonoro: Alerta trabalhadores próximos em caso de condições de erro ou perigo.
- 3. Indicador de Nível: Permite a visualização direta do nível de líquido.

Essas entradas e saídas adicionais acabam alterando o diagrama de entradas e saídas do sistema apresentado na Figura 1, que é ilustrado abaixo em sua nova versão:

Figura 3: Novo Diagrama de Entradas/Saídas do Sistema

Impacto na escolha do microcontrolador:

Com a adição de sensores de pressão, nível de líquido, válvulas de pressão e atuadores adicionais, o STM32F4 e o PIC32MZ previamente mencionados continuam como os microcontroladores preferidos devido à quantidade de GPIOs disponíveis, precisão dos ADCs e capacidade de comunicação com múltiplos sensores via interfaces SPI e I2C. Além disso, ambos suportam saídas PWM de alta frequência e precisão para controle de motores e resistências de aquecimento, garantindo um controle preciso da temperatura e da velocidade de agitação.

Impacto nos periféricos:

Com a adição de sensores mencionados, a lista de periféricos deve ser atualizada incluindo, por exemplo, os seguintes periféricos:

i. Entradas adicionais para Leitura:

- 1. Sensor de Pressão: Transdutor de pressão.
 - Função: Monitorar a pressão interna da caldeira, garantindo que permaneça dentro de limites seguros e desejados.
- 2. Sensor de Nível de Líquido: Sensor de nível ultrassônico ou capacitivo.
 - Função: Determinar o nível de líquido na caldeira, evitando transbordamentos ou operação em condições de baixo nível que poderiam prejudicar o processo.

Estes são apenas dois exemplos de periféricos adicionais que seriam necessários para implementar o escopo expandido do projeto. Além destes impactos na lista de periféricos, outras diversas alterações seriam necessárias no pseudocódigo e fluxograma, que não apresento neste documento para mantê-lo conciso.