Mardi le 19 novembre 1996; Durée: 14h40 à 15h20

Aucune documentation permise; aucune calculatrice permise.

Problème 1 (1 point sur 5)

Pour chacun des 4 énoncés suivants encadrez la bonne réponse (vrai ou faux). *Aucun crédit partiel*.

1- Si la réponse d'un filtre pour l'entrée x(t) = U(t) est $y(t) = e^{-t}U(t)$ alors la réponse de ce filtre pour l'entrée $x(t) = \delta(t)$ sera $y(t) = -e^{-t}U(t)$

VRAI FAUX

2- On considère un filtre dont la fonction de transfert est $H(\omega) = \frac{j\omega}{1+j\omega}$.

Si l'entrée du filtre est $x(t) = 5\cos(t)$ alors la sortie sera $y(t) = \frac{5}{\sqrt{2}}\cos\left(t + \frac{\pi}{4}\right)$

VRAI FAUX

 $3-\{f(u)*\delta(u-\tau)\}(t)=f(t+\tau)$

VRAI FAUX

4- Le filtre dont la réponse impulsionnelle h(t) vérifie $\int_{-\infty}^{+\infty} |h(t)| dt < \infty$ est causal.

VRAI FAUX

Nom: Matricule: .

Problème 2 (2 point sur 5)

1- Trouver la fonction de transfert $H(\omega)$ du circuit suivant :

2- Donner le gain $|H(\omega)|$ et la phase $Arg\{H(\omega)\}$ du filtre.

Nom: Matricule: .

Problème 3 (2 point sur 5)

Calculer le produit de convolution suivant : $x(t) = \{\text{Rect}(u) * \text{Rect}(u/2)\}(t)$

