11. Связь между напряженностью и потенциалом. Теорема единственности.

$$arphi=arphi(ec{r})$$
 - рассматриваемое поле потенциальное(консервативное) $\delta A=ec{F}\cdot dec{r}=qec{E}\cdot dec{r};\;\delta A=-dW=qdarphi;\;\Pi$ олучаем: $ec{E}\cdot dec{r}=-darphi;\;$ Введем в ДСК, тогда: $ec{E}=E_xec{i}+E_yec{j}+E_zec{k};\;dec{r}=dxec{i}+dyec{j}+dzec{k}$ Пусть перемещение идет вдоль х, тогда: $dr=dxec{i};\;(E_xec{i}+E_yec{j}+E_zec{k})dxec{i}=-darphi$ $E_xi\cdot dxi=-darphi;\;E_xdx=-darphi;\;E_x=\dfrac{\deltaarphi}{dx}\Rightarrow E_x=\dfrac{\deltaarphi}{\delta x};\;$ Соответственно: $E_y=\dfrac{\deltaarphi}{\delta y};\;E_z=\dfrac{\deltaarphi}{\delta z}$

$$ec{E}=-rac{darphi}{dx}ec{i}-rac{darphi}{dy}ec{j}-rac{darphi}{dz}ec{k}=-\left(ec{i}rac{\delta}{\delta x}+ec{j}rac{\delta}{\delta y}+ec{k}rac{\delta}{\delta z}
ight)arphi\Rightarrow ec{E}=-
ablaarphi=-gradarphi;$$
 (Векторно дифференциальный оператор) Если действует скаляр $=gradarphi$ (вектор градиент)

Эквипотенциальная поверхность (поверхность равного потенциала) $\varphi=const$

$$ec{E}=E_nec{n}+E_ auec{ au};\;ec{d}r=drec{ au};\;ec{E}dec{r}=-darphi;\;(E_nec{n}+E_ auec{ au})drec{ au}=E_ au dr=-darphi$$
 $darphi=0$ - Нет изменения; $E_ au dr=0;\;dr
eq0$ $ec{E}=E_nec{n},$ т.е. он вблизи эквипотенциальной поверхности eta направлено eta

Рассмотрим 2 эквипотенциальные поверхности $dl_2 > dl_1$

 $dl_2 > dl_1$ $\dfrac{darphi}{dl_2} < \dfrac{darphi}{dl_1}$ - изменение быстрее

grad arphi - направление наискорейшего увеличения $ec{E}$ - наискорейшего уменьшения

На практике $arphi_3 > arphi_2 > arphi_1$

Теорема единственности

Теорема единственности гласит, что нахождение потенциала по известной плотности заряда $\rho=\rho(r)$ в некоторой области пространство имеет единственное решение, если известны значения потенциала в каждой точке поверхности S, ограничивающей эту область. Если $S\to\infty$, то $\varphi\to0$

$$\begin{cases} \Delta\varphi = \frac{-\rho}{\varepsilon_0} & \text{- Теорема единственности}\\ \varphi|_s = \varphi_0 & \text{- Граничные условия} \end{cases} \text{- имеет единственное решение} \end{cases}$$

$$\nabla(-\nabla\varphi) = \frac{\rho}{\varepsilon_0} \begin{cases} \text{Th. Гаусса в дифференциальной форме: } div\vec{E} = \frac{\rho}{\varepsilon_0} \Rightarrow \nabla\vec{E} = \frac{\rho}{\varepsilon_0} \\ \vec{E} = -grad\varphi \Rightarrow \vec{E} = -\nabla\varphi \\ \Delta\varphi = -\frac{\rho}{\varepsilon_0} & \text{- Уравнение Пауссона} \end{cases}$$
 част. случ. $\rho = 0$: $\Delta\varphi = 0$ - Уравнение Лапласса.