

第九章: 代数系统

第一节:二元运算及其性质

第二节:代数系统

🎬 第三节: 代数系统的同态与同构

第九章:代数系统

- □代数结构
 - *用抽象的方法研究集合上的关系和运算
 - ❖对程序理论,数据结构,编码理论的研究和逻辑 电路的设计具有指导意义
- □代数(代数结构,代数系统)
 - *定义有若干运算的集合

第九章: 代数系统

- □代数由3部分组成
 - ❖一个集合,代数的载体
 - *定义在载体上的运算
 - ❖载体的特异元素,叫做代数常数。
- □代数用载体,运算和常数组成的n重组表示

第九章: 代数系统

第一节:二元运算及其性质

第二节:代数系统

第三节:代数系统的同态与同构

- □二元运算
 - ❖映射f: S×S→S称为S上的一个二元代数运算
 - ❖通常用算符*, •, +, ×表示
- □例: f是A上的二元运算,即f是A×A→A的映射
 - $\forall x,y \in A, f(\langle x,y \rangle) = z \in A$
 - ❖用算符表示为x*y=z
- □映射有存在性和唯一性的要求
 - ❖存在性,∀x,y∈A,x*y要有结果∈A
 - ❖唯一性,∀x,y∈A, x*y只能有一个结果∈A

□一元运算

❖映射f: A→A称为A上的一个一元代数运算

- □例: 在**Z**+上定义运算: *,+, ∀x,y∈ **Z**+ **x***y=x,y的最大公约数, **x**+y=x,y的最小公倍数
 - ***6*8=2, 6+8=24,**
 - ***12*15=3, 12+15=60**
- □例:在R上求平方根运算不是代数运算。
 - -9不存在平方根,存在性不满足
 - 9有两个平方根,3,-3,唯一性不满足
- □问: 在R+上求平方根运算是否是R+上的一元代数运算?

例:

- □自然数集合上的乘法是N上的二元运算。
- □整数集合Z上的加法、乘法、减法是Z上的二元运算,但除法不是Z上的代数运算。
- □集合的交,并运算是幂集上的二元运算,补 是幂集上的一元运算。
- □合取,析取,蕴含,等值、异或是命题公式 集合上的二元运算,否定是一元运算。

用运算表表示

a _i	* a _i
a	b
b	a
c	c

*	a	b	c
a	a	a	b
b	a	b	c
c	a	c	c

例:设S={1,2},给出P(S)上的运算~和⊕运算表,S为全集合

$\mathbf{a_{i}}$	$\stackrel{\sim}{a_{i}}$
Ф	{1,2}
{1}	{2}
{2}	{1}
{1,2}	Ф

⊕	Ф	{1}	{2}	{1,2}
Φ	Ф	{1}	{2 }	{1,2}
{1}	{1}	Ф	{1,2}	{2 }
{2}	{2 }	{1,2}	Ф	{1}
{1,2}	{1,2}	{2}	{1}	Ф

□交换律

❖对于任意的x,y∈S,有x*y=y*x

□结合律

*对于任意的x,y,z∈S,有 (x*y)*z=x*(y*z)

□幂等律

❖对于任意的x∈S都有x*x=x

□分配律

- ❖任意的x, y, z∈S, 有
- ❖x*(y⊙z)=(x*y)⊙(x*z) 左分配律
- **☆**(y⊙z)*x=(y*x)⊙(z*x) 右分配律

□吸收律

- ❖对于任意的x,y,z∈S,有
- $x*(x\odot y)=x$
- $x \odot (x * y) = x$

幺元

- □对一切 $x \in A$,有 $e_L * x = x$ (或 $x * e_r = x$)
- □称 $\mathbf{e}_{\mathbf{L}}$ ($\mathbf{e}_{\mathbf{r}}$)是关于运算*的一个左幺元(右 幺元)
- □若e既是左幺元,又是右幺元,e是关于运算 *的幺元
- □e也可记为1,称单位元

- □实数集上加法运算, 0 是 幺元; 乘法运算则 1 是 幺元
- □幂集P(A)上的U运算Ø是幺元,而∩运算则A是幺元。
- □例: 实数集R上定义运算∀a,b∈R,a*b=a 不存在左幺元,使得∀b∈R,e_L*b=b,而 对一切a∈R,∀b∈R,有b*a=b,
- ::该代数系统不存在左幺元 但R中的每一个元素a都是右幺元

定理: 若 $\mathbf{1}_{l}$ 和 $\mathbf{1}_{r}$ 分别是 \mathbf{S} 上对于*的左幺元和右幺元,那么 $\mathbf{1}_{l}=\mathbf{1}_{r}$,这个元素就是幺元。

推论:一个二元运算的幺元是唯一的

定义:

设*是A上的二元运算,如果存在元素 O_L (或 O_r) \in A,使得对一切 $x\in$ A,

均有 $0_L * x = 0_L (或 x * 0_r = 0_r)$

则称O_L(O_r)是A中关于运算*的一个左零元(右零元)若元素O既是左零元,又是右零元,则称O是A中关于运算*的一个零元

- □在实数集合R上,对乘法运算而言,0是零元
- □在P(A)中,对∪而言,A是零元;对∩而言,Ø是零元
- □ {命题}中,对∨而言,T是零元;对∧而言,F 是零元

定理: 若 0_1 和 0_r 分别是S上对于*的左零元和右零元,那么 0_1 = 0_r ,且这个元素就是零元。

推论:一个二元运算的零元是唯一的。

定理: 设*为S上的二元运算,1和0分别为*运算的幺元和零元,如果S至少有两个元素,则1≠0。

定义:设*是集合A上的二元运算, $1 \in A$ 是运算 *的幺元,对于 $\forall x \in A$,如果存在一个元 素 $y \in A$,使得x*y=1,y*x=1,则称y是 x的逆元,记 $y=x^{-1}$,如果x的逆元存在,则 称x是可逆的。

例: Z上的加法运算,则任一元素的逆元就是它的相反数;而对N上的加法运算,只有O存在逆元是O

- □代数A=<{a,b,c},*>由下表定义
- □b是幺元。a的右逆元是c, b的逆元是自身,c 的左逆元是a

*	a	b	c
a	a	a	b
b	a	b	c
c	a	c	c

- □例:设A是集合,S是A上的函数全体
 - ❖合成运算是否为S上的代数运算?
 - ❖幺元是什么?
 - ❖什么样的函数有逆元?
- □例: Z={0,1,2,3,4},定义Z中二个运算为 对任意x,y∈Z有

 $x+_5y=(x+y) \mod 5$

 $x \times_5 y = (x \times y) \mod 5$

+ 5	0	1	2	3	4	
0	0	1	2	3	4	
+ 5 0 1 2 3 4	1	2	3	4	0	
2	2	3	4	0	1	
3	3	4	0	1	2	
4	4	0	1	2	3	

幺元=
$$0,0^{-1}$$
= $0,1^{-1}$ = 4 , 幺元= 1 ,零元= $0,1^{-1}$ = 1 2^{-1} = $3,3^{-1}$ = $2,4^{-1}$ = 4 ,

幺元=
$$0,0^{-1}$$
= $0,1^{-1}$ = 4 , 幺元= 1 ,零元= $0,1^{-1}$ = 1 , 2^{-1} = 3 , 3^{-1} = 2 , 4^{-1} = 1 , 0 没有逆元。

定理: 设A是集合,*是A上的二元运算,并且是可结合的,运算*的幺元是1。若x∈A有左逆元和右逆元,则它的左逆元等于右逆元,且逆元是唯一的。

证明:

(1) 证左逆元=右逆元:

设x_I和x_r分别是x的左逆元和右逆元,

- :x是可逆的和可结合的
 - $\therefore x_1 * x = x * x_r = 1$

$$\therefore x_1 = x_r$$

(2) 证明逆元是唯一的:

假设y和z是x的二个不同的逆元,

则
$$y=y*1=y*(x*z)=(y*x)*z=1*z=z$$

和假设矛盾

∴x若存在逆元,则一定是唯一的(前提*是可结合的)

定义: 设*是S上的二元运算,如果对于每一x,y,z∈S有

若x*y=x*z,且x≠0,则y=z;

若y*x=z*x,且x≠0,则y=z;

则称运算*满足消去律。

例:整数集合上加法,乘法运算都满足消去律。幂集合上交和并运算不满足消去律,但对称差运算满足消去律。

第九章: 代数系统

第一节:二元运算及其性质

第二节:代数系统

第三节:代数系统的同态与同构

定义: 由非空集合和集合上k个一元或二元运算 所 组 成 的 系 统 称 为 代 数 系 统 , 用 符号 $\forall = < S, f_1, f_2, ... f_m > 表示, 其中<math>S$ 为非空集合, $f_1, f_2, ... f_m$ 表示运算。

讨论定义:

- (1) 构成一个代数系统必须具备的条件:
 - ●一个非空集合S,称为载体;
 - ●在S上的运算;

- (2) 通常也可把特异元素(常数)放在代数系统之中,形成<S, f_1 , f_2 ,... f_m ,k>;
- (3)代数系统的基数|V|=|S|,就是非空集合的基数。

例:下列均为代数系统<Z,+>,<Z,×>,<N,+>,<Z,->

而Z上的"÷"和N上的"-"均不能构成代数系统

定义:如果两个代数系统中有相同个数的运算和常数,且对应运算的元数相同,则称这两个代数系统具有相同的构成成分,也称为同类型的代数系统

例:代数<N,*,1>和<Z,-,0>有相同的构成成分,因为都有一个二元运算和一个常数

如果具有相同构成成分的代数系统也有一组相同的称为公理的规则,那么他们同是某种特殊的代数系统。

例:代数系统<N,+,0>有如下公理

- 1) a+b=b+a
- 2) (a+b)+c=a+(b+c)
- 3) a + 0 = a

代数系统<**Z**,*,**1**>,<**p**(**S**),∪,**Φ**>和它类似,都是可交换独异点这种代数类型的成员。

例:集合的 ∩, ∪ 是P(A)上代数运算,因而 <P(A), ∪, ∩ >构成代数系统, 称为集合代数

例:A为命题公式的全体, \, \ \ 是A上两个逻辑 运算, < A, \, \ > 是代数系统, 称为逻辑代数

定义: 设*和 Δ 是集合S上的二元和一元运算,S'是S的子集。如果a,b \in S'蕴涵着a*b \in S',那么S'对*是封闭的。如果a \in S'蕴涵着 Δ a \in S',那么S'对 Δ 是封闭的。

例:Z上的减法运算,N对减法不封闭。

例:除法是非零实数集上的二元运算,对其子集非零整数集不封闭。

定义:设<A, f_1 ,..., f_m ,k>是一个代数系统, 若B⊆A,B≠Φ,如果B对运算 f_1 , f_2 ,..., f_m 是封闭的,且k∈B。则<B, f_1 ,..., f_m ,k>是代数系统<A, f_1 ,..., f_m ,k>的子代数系统

例:整数集合Z在加法下构成一个代数系统<Z,+,0>

 Z_2 是偶数集合, $<Z_2$,+,0>是否其子代数系统?

 Z_1 是奇数集合, $<Z_1$,+>是否其子代数系统?

- □平凡子代数
 - ❖▲的最大的子代数是它自己
 - ❖如果A的常数集合在A的运算下是封闭的
 - ,那么它组成A的最小子代数
- □真子代数

第九章: 代数系统

第一节:二元运算及其性质

第二节:代数系统

第三节:代数系统的同态与同构

定义 设<G,*>和<H, \odot >是同类型的代数 系统, g:G \rightarrow H是从G到H的函数。

若对任意a,b∈G有g(a*b)=g(a) ⊙ g(b) 成立,则称g:G→H是从<G,*>到<H, ⊙ >的同态映射。

若g:G→H是

[满射函数,则称g为满同态; 单射函数,则称g为单一同态; 双射函数,则称g为同构。

例:设代数系统 $G_1 = \langle Z_1 + \rangle \pi G_2 = \langle N_n \rangle$ **,+**,>。令 f: $Z \rightarrow N_n$, $f(x) = (x) \mod n$ 则f是G₁到G₂的同态。 因为∀x,y∈Z有 $f(x+y)=(x+y) \mod n=(x) \mod n + n$ (y)modn = $f(x)+_n f(y)$ 为满同态。

例:设代数系统 $G_1 = \langle R, + \rangle$ 和非零实数关于普通乘法构成的代数系统 $G_2 = \langle R^*, \times \rangle$,令

 $f: R \rightarrow R^*, f(x) = e^x$

则f是 G_1 到 G_2 的同态。

因为∀x,y∈R有

 $f(x+y)=e^{x+y}=e^x\times e^y=f(x)\times f(y)$

为单同态,同态像是<R+,×>。

例: <N,+>和<{/,0,1},*>是两个代数系统, "*"由运算表给出定义。定义一函数

		0			$N \rightarrow \{1,0,1\}$
$\overline{\ell}$	ℓ	0	1	g(i) = 0	i∈N且i≠0
		0			i∈N且i=0

×	1	2
1	1	2
2	2	1

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

练习

- □设A={1,2}, B是A上的等价关系的集合。
 - ❖列出B的元素。
 - ❖给出代数系统V=<B, ∩>的运算表。
 - ❖求出V的单位元、零元和所有可逆元素的逆元。
 - ❖说明V是否为半群、独异点和群。

练习

- □1)2个元素集合上只有两种划分,因此只有2个等价关系,即 $\mathbf{B} = \{\mathbf{I}_A, \mathbf{E}_A\}$ 。
- □2) V的运算表如下。
- \square 3)V的单位元是 E_A ,零元是 I_A ,可逆元素只有 E_A ,其逆元是 E_A 。
- □4) V为半群,独异点,不是群。