

Nat 5 Nat 5 Nat 5 Nysic 2023 Marking Scheme

Grade	Frade Mark R		% soudidated calciavina and
Awarded	/100	%	% candidates achieving grade
Α	65+	65%	34.7%
В	52+	52%	19.8%
С	40+	40%	16.4%
D	27+	27%	15.5%
No award	<27	<27%	13.6%

Section:	Multiple Choice	Extended Answer	Assignment	
Average Mark:	14.5 /25	38.8 /75	No Assignment in 2023	

2023 Nat5 Physics Marking Scheme

0		%				Dhysia	. Carranad				
Question	Answer	Correct				Physics	Covered				
			X			Y			Z		
1	D	82	Vesters	Vector		tion Force	force	antitu.		acceleration	
					nitude and direc have magnitude		is a vector qua gnitude and di			on is a vector on itude and dire	
			_		neasure the ti	•					
					neasure the tir						
2	D	44			ure the instant						
_			☑D this	measures th	e instantaneo	us speed thro	ugh light ga	te Q			
			⊠ E this	does not me	asure the insta	anteous spee	d at any poir	nty in the	experime	nt	
					8.0						
				+							
					's 6.0 +				8		
				:	9 4.0 						
					9				6		
					ਨੇ 2.0 –	D					
3	С	62			0 +						
		02			0	2.0	4.0	6.0	8.0		
							time (s)				_
					a O		ea 2		Area		
				Distance = area		Distance = are		Distar	ice = area ui]
				= 2.0	x 4.0		6.0 x 2.0		= 6.0 x 4	1.0]
				= 8m	т.	= 6m otal Distance =		– 20m	= 24m		-
			l					- 30111		1 2 2]
		28	$E_w = ?$		_	F = 6.	UN	.1		d = 3.0m	
1	_				E	$_{\rm w}$ = F		d			
4	D				E	$_{\rm w} = 6.0$	х :	3.0			
					=	w = 18 J					
				Vinatia au				/in ation		C O ma n-1	1
			F - 3		nergy at 2.0 r					6.0 m s ⁻¹	.aa a-1
			$E_k = ?$		4.0 kg v				_	v = 6.0	ms-
_		40		_	x m x			_	x m		
5	В				x 4.0 x					$(6.0)^2$	
				$E_k = \frac{1}{2}$	x 4.0 x	4.0	E	$k = \frac{1}{2}$	x 4.0	x 36	
				$E_k = 8.0$	J		E	k = 72	.0 J		
			Increa	se in kinetic	energy = 72	.0 J – 8.0 J =	64 J				
			T = ?			$\alpha = 0$.				d = 1 /	AU
										-	
			T ² =		280 ²						
6	D	58									
		50									
			Χ Δ Δς+	eroid – obiec	t orbiting a sta	r which is sm	aller than a r	dwarf nla	net		
					bject which or					d as a small r	olanet
7	Α	67			et orbiting arc		_	_		a siriali þ	
'	'	,			III of matter. O						
					of matter unde					radiation	

			Unwards force = 2200N									
			Downwards force = mg = 350kg x 3.7 N kg ⁻¹ = 1295 N									
			DOWNWards force - flig - 550kg x 5.7 fv kg - 1255 fv									
8	D	48	nbalanced force = 2200N – 1295N = 905N upwards									
			·									
			As space vehicle is decending when rockets fire then the vehicle will still decend to the									
			surface but there is a decrease in speed as there is a unbalanced force upwards.									
			☑A A negative particle P will deflect away from a negatively charged plate R									
			☑B If particle P had no charge it would pass through undeflected through electric field									
9	Ε	79	☑C If particle P had no charge it would pass through undeflected through electric field									
			☑D A positive particle P will deflect away from a positively charged plate R									
			☑E A positive particle P will bend towards a negatively charged plate R									
			■ A Negative charges (electrons) move in both a.c. and d.c. current									
10	С	81	☑B In a.c. current, direction of current reverses constantly back and forth									
10	C	ΟŢ	☑C In a.c. current, charges (electrons) reverse intervals at regular interval ☑D Only negative charges (electons) move in a current in both a.c. and d.c. current									
			☑E The quantity of current rises and falls during a.c. current									
			Voltage across resistor R = 5.0V – 2.2V = 2.8V									
11	_	25	Current in Resistor R = 10.0 mA = 0.0100 A									
11	D	35	$R = \frac{V}{I} = \frac{2.8}{0.0100} = 280 \Omega$									
			$V_{s}=24~V$ $V_{2}=$? $R_{1}=2.4~k\Omega$ $R_{2}=1.2~k\Omega$									
			$V_2 = \frac{R_2}{R_1 + R_2} \times V_s$									
			$R_1 + R_2$									
12	Α	58										
12		50	$V_2 = \frac{1.2}{2.4 + 1.2} \times 24$									
			2.4 + 1.2									
			V 0 V									
			$V_2 = 8 V$ \blacksquare A Variable resistor is at bottom of circuit so motor will switch on when light is high.									
			☑B circuit contains thermistor which would make the circuit dependent on temperature									
13	С	44	☑C Variable resistor is at top of circuit and circuit contains LDR to switch on motor on low light									
			☑D circuit contains thermistor which would make the circuit dependent on temperature not light									
			☑E circuit contains thermistor which would make the circuit dependent on temperature not light									
	_		P = 250 W $E = ?$ $t = 2 hours = 2x60x60 s$									
14	E	70	$P = \frac{E}{t}$: $250 = \frac{E}{2x60x60}$: $E = 250 \times 2x60x60 = 1860000 \text{ J}$									
			From graph: When Power P = 1 W then Resistance R = 4 Ω									
15	С	64	$P = \frac{V^2}{R} : 1 = \frac{V^2}{4} : V^2 = 4$									
13												
			∴ V = 2 V									
			Statement I - Correct Statement II - Correct Statement III - Incorrect									
16	С	64	The mass of the copper The initial and final temperatures The power supply does not give the									
	_		block gives the mass in the equation $E_h = cm\Delta T$ are needed to to calculate ΔT for energy supplied. Joulemeter provides E_h for the equation $E_h = cm\Delta T$									
ì			If the equation $Lh = CM\Delta T$, the equation $Lh = CM\Delta T$.									
			E = ?									
17	В	57	E = ? $m = 3.5 \text{ kg}$ $l = 3.34 \times 10^5 \text{ J kg}^{-1}$ E = $m \times l$									
17	В	57	E = ?									

			D 2 0::108 Da	FOOON	A 2
			$P = 2.0x10^8 Pa$ $F = 5.0 kN = $		A = ?
			$P = \frac{F}{A}$	_	
18	В	65		200	
			$2x10^8 = \frac{5}{}$	<u>000 </u>	
			۸ - 2	5x10 ⁻⁵ m ²	
			A = 2. ☑A Pressure & temperature are directly properties.		nnerature Law calculations
			■B Pressure & temperature are directly properties.	•	•
19	Α	56	☑ C The volume is constant in the bhoy	<i>p</i>	
			☑D Temperatures used in <i>pressure-temperatu</i>		
			■E Temperatures used in pressure-temperatu		
			$p_1 = 5.0 \times 10^5 \text{ Pa}$ $V_1 = 3$		
			$p_2 = 5.5 \times 10^5 \text{ Pa}$ $V_2 = 10^{-5} \text{ Pa}$	$T_2 = 54^{\circ}C$	C = 370 K
			p_1 V_1	5.0x10 ⁵ x 2.2	0.407.5
			$\frac{p_1 V_1}{T_1} = constant =$	320	= 3437.5
20		4.0	n V	E Ev105 v V	
20	C	48	$\frac{p_2 V_2}{T_2} = \text{constant} =$	3.3X10° X V ₂	= 3437.5
			12	370	
				,, 3	437.5 x 370 5 5×10 ⁵
				V ₂ =—	5.5x10 ⁵
				V -	2.23
					2.3 m ³
			Amplitude		requency
21	В	58	Amplitude = $\frac{0.4}{2}$ = 0.2m	Wavelength = 12r	
			Amplitude = $\frac{1}{2}$ = 0.2m	$f = \frac{V}{\lambda}$	$=\frac{3.0}{6}=0.5$ Hz
			 ■A wavelength should be same before and af	λ.	<u> </u>
			☑B ends of waves should curve as waves diffr		gap in barrier.
22	Ε	69	☑ C boths sides of diffracted waves should be	~	
			☑D this answer is clearly nonsense		
			☑E wavelength the same after barrier, ends o		
			☑A Ray P has bent away from the normal as it 図B Ray Q has not changed direction and has o		
23	Α	41	☑C Ray R is on wrong side of the normal	ontinueu in a straight i	ille from the glass
25		71	☑D Ray S is on wrong side of the normal		
			☑E Ray T is on wrong side of the normal		
24	Ε	65	2.4×10^4 Bq : 1 s = 2.4×10^4 decays :	$15x60 s = 2.4x10^4 d$	ecays x15x60 = 2.2x10 ⁷
F -				nent II - Correct	Statement III - Incorrect
25	_	C3		hot temperatures	
25	В	62		fusion to take place,	Nuclear fusion takes place
			smaller nuclei containmen	of plasma is an issue	only at <i>high</i> temperatures

Question	Answer	Physics Covered						
		Horizontal displacement = 74m – 11m = 63m (WEST or 270)						
		Vertical displacement = 38m – 14m = 24m (North or 000)						
		$x = \sqrt{(24)^2 + (63)^2}$						
1a(i)	67 m	$x = \sqrt{576 + 3969}$						
		$24m \qquad x = \sqrt{4545}$						
		$\begin{array}{c} x = \sqrt{4343} \\ x = 67 \text{ m} \end{array}$						
		7						
1.0(**)	201	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{63}{24} = 2.625$: $\theta = 69^{\circ}$						
1a(ii)	291							
		Bearing = $360^{\circ} - 69^{\circ} = 291$ S = 67 m \bar{v} = ? $t = 31 \text{ s}$						
		$S = 67 \text{ m}$ $\bar{v} = ?$ $t = 31 \text{ s}$ $s = \bar{v}$ $t = 31 \text{ s}$						
1b(i)	2.2 m s ⁻¹ at bearing 291	3 = 0 (1.1101N)						
15(1)	2.2 ms at bearing 231	$67 = \bar{\upsilon} \times 31 \qquad (1 mark)$						
		$\bar{v} = 2.2 \mathrm{m s^{-1}}$ (1 mark)						
		The distance travelled is greater than the displacement as in both the vertical and horizontal						
	<u>1 mark</u>	directions.						
	distance is greater	Direction Displacement Distance						
1b(ii)	than displacement	Horizontal (West – East) 74m – 11m = 63m 74m + 11m = 85m						
	<u>1 mark</u>	Vertical (North – South) 38m – 14m = 24m 38m + 14m = 52m						
	same time taken	Because the total distance and the displacement take place over the same time period, the						
		average velocity is less because the displacement is less before being divided by the time taken. $E_p = ?$ $m = 0.0025 \text{ kg}$ $g = 9.6 \text{ N kg}^{-1}$ $h = 7.5 \text{ m}$						
		$E_p = m$ $g = h$ (1 mark)						
1c(i)	Working showing 0.18J							
10(1)		$E_p = 0.0025 \times 9.8 \times 7.5 \text{ (1 mark)}$						
		$E_p = 0.18 J$						
		E _k = 0.18 J m = 0.0025 kg v = ?						
		$E_k = \frac{1}{2} \qquad m \qquad v^2 \qquad (1 mark)$						
	12 m s ⁻¹	$E_k = \frac{1}{2} \qquad \qquad m \qquad \qquad v^2 \qquad \qquad (1 mark)$						
1c(ii)		1						
10(11)		$0.18 = \frac{1}{2} \times 0.0025 \times v^2$ (1 mark)						
		$v^2 = \sqrt{144}$						
		·						
		$V = 12 \text{ m s}^{-1}$ (1 mark)						
1c(iii)	One answer from:	Energy lost (as heat) due to						
		air resistance						
		A suitable curved path where the ball does not increase in height.						
2a		The stone will have fall vertically faster the further it falls due to gravity						
Za	\	The score will have rail vertically laster the railtier it rails due to gravity The horizontal velocity will remain the same						
		The nonzontal velocity will remain the same						
	-	$a = 9.8 \text{ m s}^{-2}$ $v = ?$ $u = 0 \text{ m s}^{-1}$ $t = 0.53 \text{ s}$						
		a = v - u (1 mark)						
		a – t						
2 h (1)	F 2 a-1	v - 0						
2b(i)	5.2 m s ⁻¹	9.8 = (1 mark)						
		$9.8 \times 0.53 = v - 0$						
		$5.2 \text{ m s}^{-1} = v$ (1 mark)						
		v (m s ⁻¹)						
		5.2 1st Mark 2nd Mark						
2b(ii)	Graph showing:	Straight line Graph ends at						
	C. S.F. 10.10 W. 18.	Positive gradient (0.53, 5.2) Starting at origin						
		0.53 t (s) Starting at Origin						

		Height dropped from		0 . 1	1 mark)		
2b(iii)	1.4 m		_		1 mark)		
		5411 2211 2211	= :		1 mark)		
2c(i)	0.43 m s ⁻²	_{un} = 54 N – 22 N = 32 N	F = m	-	a = ?		
-(/			32 = 74	•			
		$a = 0.43 \text{ m s}^{-2}$					
2c(ii)	Reduces friction	he cyclist take sthe full air resi	stamnce whi	le the rider behind ber	netits from less air		
	or air resistance	esistance as a result.					
		1 mark Astra 1KR					
3a	Answer to include:	it is a geostationary satellit	٥r	s an orbital d of 24 hours a	it is at an orbital Ititude of 36 000 km		
		V = ?	$m = 3.5k_{2}$	g	g = 7.7 N kg ⁻¹		
		W =	m x	g	(1 mark)		
3b	27N	W = 3	8.5 x	7.7	(1 mark)		
			7 N		(1 mark)		
	A				\- ···•··/		
	Answer is Greater then 101 minutes	Satellite Orbital Altitude (kr UKube-1 825	1)	Orbital Period 101 minutes			
3c	and	Satellite 1200	Longer th	an 101minutes & shorte	r than 676 minutes		
	Less than 676 minutes	Cosmos2460 19100	- 0 -	676 minutes			
		1 mark	2 marks	3 m	arks		
			ate has demonstrated a	involved They show a good con	good understanding of the physics in prehension of the physics of the		
4	Open ended question:	make some statement(s) that are relevant physics i	ole understanding of the volved. They make son	ne situation and provide a logically co	rrect answer to the question posed. ude a statement of the principles		
		understood at least a little of the physics situatio	(s) that are relevant to , showing that they have	involved, a relationship or an equa	tion, and the application of these to er does not need to be 'excellent' or		
			erstood the problem.	·	didate to gain full marks.		
5a	One answer from:		ortion from)	no light	can use telescope		
			osphere	pollution	during the day		
		hydrogen		. •	line spectra from star		
	Hydrogen	helium		Some helium lines m			
5b	Calcium	mercury Some mercury lines missing from sta					
	(both required for 1 mark)	sodium		Some sodium lines n	•		
		star					
		d = v >		t	(1 mark)		
_	working showing			265 25 24 60			
5c	3.2x10 ¹⁸ m	$d = 3.0x10^8$	343 X	365.25 x 24 x 60 x	60 (1 mark)		
		$d = 3.2x10^{18} \text{m}$					
		otal Resistance when Switch S	is closed = 3	36Ω + 24Ω = 60Ω (1 ma	rk)		
		= 12 V	I =		R = 60 Ω		
		V	= I	R (1 mark)			
6a	0.20 A		_				
		12	= I x	60 (1 mark)			
		I	= 0.20 A	(1 mark)			
		Combine 2 parallel res	stors	Combine with	series resistor		
		1 1 1					
		${R_T} = {R_1} + {R_2}$	(1 mark)				
		1 1 1					
6b(i)	3.2 Ω	$\frac{1}{R_T} = \frac{1}{36} + \frac{1}{36}$	(1 mark)		+ R ₂		
		1 2		 	+ 36 (1 mark) (1 mark)		
		$\frac{1}{P_{T}} = \frac{2}{26}$		$R_T = 42 \Omega$	(± mdfK)		
		n⊺ 50					
		$R_T = 18 \Omega$					

6b(ii)	Answer to include:		1 mark		eading will be)			
		1 mark	2 mark	1		DC 1033	1 mark	
7a(i)	Graph showing:	Suitable scales		1 mark All points plotted accurately to ± half a division			Best fit <u>curve</u>	
7a(ii)	74x10 ⁻¹² C							
7b	Any two from: (1 mark each)	Repeat measurements and average	Repeat measurements and average Repeat measurements to identify outliers/rogue points Increase the range of distances of different					
			kg ⁻¹ °C ⁻¹		90x10 ⁻² kg			5°C = 210°C
8a(i)	2120 J	E =	С	Х		X	ΔΤ	(1 mark)
,		E =	532 2120 J	Х	1.90x10 ⁻²	Х	210	(1 mark) (1 mark)
8a(ii)	Heat (energy) lost to the surroundings.	Heat loss must be inc	lentified a	s being lost to	the surroundi	ngs		
8b	Answer to include:	different (s	1 mark pecific) he	at capacity	diffe	1 mark erent ma	ass	
9a(i)	Force per unit area or Force per m ²	Pressure is calcuated	from equ	ation P = Force	$\prime_{\sf Area}$ and is de	efined as	Force per	unit area
			$p_1 = 10$	01 kPa	$V_1 = 2.3 \times 10^{-1}$	⁻³ m ³		
			$p_2 = 92$	2 kPa	$V_2 = ?$			
		(1	mark)	$p_1 V_1$	=	p_2V_2		
	2.5x10 ⁻³ m ³					-		
9a(ii)		(1	mark) 1	l01 x 2.3x10	O ⁻³ = 9	92 x V ₂		
			_1	101 x 2.3x10 92) -3 =	V ₂		
		(1	mark)	2.5x10 ⁻³ m	3 =	V ₂		
02(:::)	The (gas) particles	Pressure is caused by the gas in is.	the partio	cles inside a g	as colliding wit	h the wa	alls of they	container
9a(iii)	collide with the walls (of the crisp packet).	The faster te gas part	icles collic	de with the wa	alls of the conta	ainer the	e higher th	e pressure.
		\dot{H} = 6.0 µSv h ⁻¹		H =				3.5 hours
				$\dot{H} = \frac{H}{1}$	1 (1 ma	rk)		
9b	21 μSv			6.0 = $\frac{1}{3}$	H(1 ma	rk)		
				H = 2	1 μSv (1 ma	rk)		
		d = ?	v = 240) m s ⁻¹	$t = \frac{0.015s}{2} =$	0.0075s	; (1 mark)	
10a	2.6 m		d	= v	x t (1 m	nark)		
100	2.5 111		d	= 340	x 0.0075 (1 m	ark)		
			d	= 2.6 m	(1 m	nark)		
	Morking shows to	f = ?		N = 9 w		t = 2.0	x10 ⁻⁴ s	
10b(i)	Working shown to calculate 45000Hz				$\frac{9}{0 \times 10^{-4}} = 4500$	0 Hz		
10b(ii)	One answer from:	Speed of sound			•	distance	is the sam	ie

		EM 1	Type Gam	ma	X-Ray Ultr	a-violet	Visible Infra-R	Red Microwav	e Radio & TV	1
	D. Hitmanialat	Ene	rgy Hig	gh	•			-	Low	
11a	P: Ultraviolet Q: Infrared	Frequ	iency Hig	gh ·				-	Low	-
	Q. IIIII ai eu	Wavel	length LO						High	-
		1 mark : Radio			<u> </u>					
11b	Answer to include:	1 mark : Longe:		ngth	Radio wav		tion is greater whe longest waveleng			etic radiation
11c(i)A	Working showing calculation of wavelength	$v = 3.0 \times 10^8 \text{ m s}^3$		ν 0x10 ⁸ λ	= 2.42	f :		1z (1 mark) (1 mark)	λ =	= ?
11c(i)B	microwaves		gam ray — — 10	ys ^	-rays P	Q Q 10 ⁻⁶ 10 wavelength	microwaves $\begin{array}{c} & & \\ & \\ 0^{-4} & 10^{-2} & 1 \\ \text{(m)} & \lambda = 0.12 \text{n} \end{array}$	radio waves		
		D = 5.0 μGy = 5	.0x10 ⁻⁶ Gy			E = ?			m = 4.5	i kg
11c(ii)A	2.3x10 ⁻⁵ J	$D = \frac{E}{m}$	∴ 5.0x1	LO ⁻⁶ =	E 4.5	. 1	= 5.0x1	0⁻⁶ x 4.5	= 2.3x1	LO ⁻⁵ J
		(1 mark)	(1 mark)			2-6-0		(1 m	,
11c(ii)B	5.0x10 ⁻⁶ Sv	H = ?		D = Н Н		O ⟨10 ⁻⁶	W _r (1 r		· (X-rays) :	= 1
12	Open ended question:	1 marl Candidate has demonst understanding of the physi make some statement(s) t to the situation, showing understood at least a littl within the prol	rated a limited ics involved. They that are relevant that they have le of the physics	reason physics statemer situatio	2 marks date has demons able understandi nvolved. They m t(s) that are rele n, showing that t erstood the prob	ng of the ake some vant to the hey have	Candidate has dem involved. They sho situation and provide This type of respon involved, a relationsh respond to the proble 'complete	w a good compreh a logically correct se might include a ip or an equation,	understanding of tension of the ph answer to the qu statement of the and the applicati es not need to be	ysics of the uestion posed. e principles on of these to e 'excellent' or
		1 mark Source								
13a	Answer to include:	1 mark gamr	of paper and absorbs ma radiation ing the cote further	on g	s alpha r Som gamma ra is able penetrat	e diation to	The ga	amma is able to ate the	(Source only sour reduction) Y is the rce with a n in count to paper
13b(i)	One answer from:	When an (uncl	harged) at	om	When an	(uncha	rged) atom	When an	(uncharg	ged) atom
130(1)	One answer nom.	gains or loses	s electron	(s)	gain	s electi	ron(s)	lose	es electro	n(s)
13b(ii)	Answer to include:	1 mark Alph	a radiatio	n only	has a	-	radiation Fewer alp	ha particle	es would r	reach
		li mark i	hort range	-		<u>or</u> t	he spark co	•		
13b(iii)	7.5x10 ⁻⁸ C		5 sparks: Q Q Q Spark:	= = (= 7	I 0.12x10 ⁻⁶ C 2x10 ⁻⁶ C 96	x x	x10 ⁻⁶ A t 60	(1 r	t = 1 minu mark) mark) mark)	ute = 60s
					.5x10 ⁻⁸ C			(1 r	mark)	

14a(i)	background count rate		t rate should be subtra easure of the activity fo		ate to the corrected						
14 a(ii)	60 days	5000 - 4500 - 4500 - 4500 - 3500 - 3500 - 3500 - 2500 - 2500 - 2500 - 2000 to 1000 counts per minute 1000 - 500 - 0 -		5 150 175 200 225 250 f days after implant	Take any halving of the corrected count rate on the y-axis. Work out the time interval on the x-axis for this halving.						
14a(iii)	180 days	1 half-life = 60 day	lives to decrease act	,	→						
14a(iv)	4000 counts per minute	Half-life is 60 days. ∴ 0 days is one half-life before 60 days and the count rate at 0 days should be double the count rate at 60 days. At 60 days the count rate is 2000 days ∴ at 0 days the count rate should be double at 4000 counts per minute.									
14b	Any suitable answer including:	tracers	sterilisation	smoke detectors	measuring thickness						

