

2/19/1

003453739

WPI Acc No: 1982-06651J/ 198249

Prod'n. of medicinal polyurea - by reacting
bis-trimethyl-silyl deriv. of diamino-carboxylic acid ester with
activated bis-nitrophenyl or dinitro-phenyl carbonate

Patent Assignee: AS GEOR PHYSIOLOGY (AGPH-R)

Inventor: KARTVELISH T M; KATSARAVA R D; ZAALISHVIL M M

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
SU 905228	B	19820215				198249 B

Priority Applications (No Type Date): SU 2892710 A 19800306

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
SU 905228	B	5		

Abstract (Basic): SU 905228 B

Polyureas are obtd. more simply and the products have wide range of properties when activated bis (p-nitrophenyl) carbonate or bis-(2,4-dinitrophenyl) carbonate (I) is used as the carbonyl deriv. in its reaction with N,N'-bis-trimethylsilyl derivs. of the naturally occurring diamino-carboxylic acid esters.

The typical acids are ornithine, lysine, cystine, etc. The reaction is carried out in an aprotic solvent for 0.5-2 hrs. at 20-25 deg. C and 2-3hrs. at 80-100 deg. C followed by sepn. of the polymer, and the prods. find use as biocompatible polymers. (5pp)

Title Terms: PRODUCE; MEDICINE; POLYUREA; REACT; DI; TRI; METHYL; SILYL; DERIVATIVE; DI; AMINO; CARBOXYLIC; ACID; ESTER; ACTIVATE; DI; NITROPHENYL; DI; NITRO; PHENYL; CARBONATE

Derwent Class: A26; A96; D22

International Patent Class (Additional): C08G-071/02

File Segment: CPI

Manual Codes (CPI/A-N): A05-J04; A12-V01; D09-A; D09-C

Plasdoc Codes (KS): 0004 0226 0230 1286 1384 1444 1780 1790 2148 2152 2640
2676 2764 2766

Polymer Fragment Codes (PF):

001 013 02& 038 04& 075 081 149 155 157 158 192 194 344 346 525 528 575
577 645

Derwent WPI (Dialog® File 351): (c) 2004 Thomson Derwent. All rights reserved.

BEST AVAILABLE COPY

BEST AVAILABLE COPY

This Page Blank (uspto)

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

(11) 905228

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 06.03.80 (21) 2892710/23-05

с присоединением заявки № -

(51) М. Кл.³

С 08 Г 71/02

(23) Приоритет -

Опубликовано 15.02.82. Бюллетень № 6

Дата опубликования описания 15.02.82

(53) УДК 678.664
(088.8)

(72) Авторы
изобретения

М.М.Заалишвили, Р.Д.Кацарава и Т.М.Картвелашвили

(71) Заявитель

Институт физиологии им. акад. И.С.Бериташвили
АН Грузинской ССР

(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИМОЧЕВИНЫ

1

Изобретение относится к синтезу высокомолекулярных соединений, а именно к синтезу полимочевины на основе природных диаминокарбоновых кислот, которые могут быть использованы в различных областях медицины в качестве биосовместимых полимеров.

Известен способ получения полимочевины путем взаимодействия дизоцианата с диаминами в среде диметилформамида [1].

Однако неплавкость и значительная гидрофильность этих продуктов не позволяет применять получаемые полимочевины для производства пластических масс и волокон.

Наиболее близкий к предлагаемому по технической сущности является способ получения полимочевин путем взаимодействия N,N'-бистриметилсилильных производных жиров природных диаминокарбоновых кислот с карбонильными производными органи-

2

ческих соединений в среде аprotонного растворителя [2].

Недостатками известного способа синтеза полимочевины являются: необходимость применения для их синтеза дизоцианатов на основе эфиров диаминокарбоновых кислот, которые получают в результате трудоемкого и нетехнологического процесса синтеза, заключающегося в применении абсолютных, легковоспламеняющихся растворителей (например серного эфира), охлаждения реакционной среды при фосгенировании N,N'-бистриметилсилильных производных эфиров α -диаминокарбоновых кислот; необходимость многократной высоковакуумной перегонки дизоцианатов с целью доведения их до необходимой кондиции; применение абсолютного спирта (метилового или этилового) для деблокирования силированных аминогрупп; необходимость синтеза большого числа дизоциана-

BEST AVAILABLE COPY

тв для получения полимочевин различной структуры, например, для синтеза полимочевин на основе D_4L или D_L изомеров природной диаминокарбоновой кислоты, необходим синтез каждого динизоцианата в отдельности.

Цель изобретения - получение полимочевины с широким диапазоном свойств при одновременном упрощении способа.

Указанныя цель достигается тем, что при получении полимочевины путем взаимодействия N,N'-бистриметилсилильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органических соединений в среде аprotонного растворителя, в качестве карбонильных производных органических соединений используют бис-(*n*-нитрофенил)карбонат или бис-(2,4-динитрофенил)карбонат и реакцию проводят при 20-25°С 0,5-2 ч и при 80-100°С 2-3 ч с последующим выделением полимера.

Под термином "активированный" карбонат подразумевается карбонат строения:

Излученные таким образом полимочевины имеют $\eta_{pr} = 0,3-0,9$ дL/g, а по остальным параметрам (ИК-спектры, растворимость, температура плавления) идентичны полимерам, полученным по известному способу из соответствующих диизоцианатов.

Пример 1. В трехгорлой колбе, снабженной мешалкой, вводом и выводом для аргона, 3,28 г (0,01 моль)⁴⁵ этилового эфира N,N'-бис- trimethylsilyl-(L)-TMCl-лизина растворяют в 10 мл N,N'-диметилацетамида (ДМАА), при 25°C добавляют 3,94 г (0,01 моль) бис-2,4-динитрофенилкарбоната (ДНФК) ⁵⁰ наблюдается сильный экзотермический эффект) и включают мешалку. Через 35–40 мин раствор быстро загустевает и образуется студнеобразная масса. Для обеспечения гомогенного течения ⁵⁵ реакции смесь нагревают до 90°C и перемешивают 3 ч, все время продувая колбу аргоном. Образуется вязкий

раствор, который в горячем виде выливают в воду. Выпавший в виде порошка полимер отфильтровывают, тщательно промывают водой, сушат и экстрагируют в аппарате Сокслета ацетоном. Выход 96% $\eta_{\text{пр}} = 0,95$ дл/г в диметилсульфоксиде, $C=0,5$ г/дл, $t=25^\circ\text{C}$.

Пример 2. В трехгорлой колбе, снабженной мешалкой, водом и вы-
10 водом для аргона, 3,18 г (0,01 моль) этилового эфира N,N'-бис-триметил-
силил-L-лизина растворяют в 10 мл диметилацетамида, при 25°C добавля-
ют 3,04 г (0,01 моль) бис-Н-нитро-
15 фенилкарбоната (наблюдается экзотер-
мический эффект), включают мешалку
и перемешивают 2 ч. Вязкость раст-
вора при комнатной температуре за
этот период времени возрастает не-
20 значительно, поэтому включают обо-
грев и реакционную смесь выдержива-
ют при 100°C 6 ч, все время продувая
колбу аргоном. Раствор охлаждают до
комнатной температуры (образование
25 гелеобразной массы не наблюдалось)
и выливают в воду. Полимер (в. комплекс-
се с Н-нитрофенолом) выпадает в виде
жидкой смолы, которая затвердевает
по мере отмычки Н-нитрофенола водой.
30 Тщательно промытый полимер сушат в
вакууме и экстрагируют в аппарате
Сокслетта ацетоном.

Выход полимера 97%, $\eta_{\text{пр}} = 0,4 \text{ дL/g}$
в диметилсульфоксида, $C = 0,5 \text{ г/dL}$,
 $t = 25^\circ\text{C}$.

П р и м е р 3. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо N,N' -диметилацетамиды используют N -метиллирролидон (N -МП). Выход полимера 95%, $\eta_{\text{пр}} = 0,85$ дL/g в диметилсульфокисиде.

П р и м е р 4. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо этилового эфира N,N' -бис-триметилсиланд- L -лизина берут этиловый эфир N,N' -бис-три-метилсиланд- D,L -лизина (D,L) TMCL. Выход полимера 97%, $M_{pp}=0,76$ дл/г в диметилсульфоксидае, $C=0,5$ г/дл, $t=25^{\circ}\text{C}$.

Пример 5. Синтез полимера осуществляют в соответствии с примером 1, с той разницей, что вместо этилового эфира N,N' -бис- trimethylsilyl-L-лизина используют этиловый

эфир N,N' -бис-триметилсилил-L-орнитина. Выход полимера 90%, $\eta_{pr} = 0,32$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

При мер 6. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо этилового эфира N,N' -бис-триметилсилил-L-лизина используют диэтиловый эфир N,N' -бис-триметилсилил-L-цистина. Выход полимера 96%, $\eta_{pr} = 0,85$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

При мер 7. В трехгорную колбу, снабженную мешалкой, вводом и выводом для аргона, помещают 1,59 г (0,005 моль) этилового эфира N,N' -бис-метил-L-лизина растворяют в 10 мл N,N' -диметилацетамида, добавляют 3,94 г (0,01 моль) бис-2,4-динитрофенилкарбоната, включают мешалку и смесь перемешивают при комнатной температуре 2 ч. К реакционному раствору затем добавляют 2,20 г (0,005 моль) диэтилового эфира N,N' -бис-триметилсилил-L-цистина (соотношение производных двух диаминокарбоновых кислот 1:1), включают обогрев и смесь нагревают до $90^\circ C$ 3 ч. Реакционный раствор выливают в воду. Выпавший полимер отфильтровывают, тщательно промывают водой, сушат и экстрагируют этилацетатом в аппарате Сокслетта. Выход полимера 97%, $\eta_{pr} = 0,68$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

При мер 8. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вначале вместо этилового эфира N,N' -бис-триметилсилил-L-лизина используют диэтиловый эфир N,N' -бис-триметилсилил-L-цистина, а затем к реакционному раствору добавляют этиловый эфир N,N' -

-бис-триметилсилил-L-лизина. Выход полимера 98%, $\eta_{pr} = 0,71$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

При мер 9. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо 0,005 берут 0,002 моль этилового эфира N,N' -бис-триметилсилил-L-лизина, а вместо 0,005 моль берут 0,008 моль диэтилового эфира N,N' -бис-триметилсилил-L-цистина. Выход полимера 96%, $\eta_{pr} = 0,70$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

При мер 10. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что берут 0,008 моль этилового эфира N,N' -бис-триметилсилил-L-лизина и 0,002 моль диэтилового эфира L-цистина. Выход 97%, $\eta_{pr} = 0,68$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

При мер 11. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо этилового эфира N,N' -бис-триметилсилил-L-лизина берут этиловый эфир N,N' -бис-триметилсилил-DL-лизина. Выход полимера 95%, $\eta_{pr} = 0,52$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

При мер 12. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо этилового эфира N,N' -бис-триметилсилил-L-лизина берут этиловый эфир N,N' -бис-триметилсилил-L-орнитина. Выход полимера 89%, $\eta_{pr} = 0,28$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

Основные характеристики полученных полимеров приведены в таблице.

Пример	Активированный карбонат	Диамин, моль, на 1 моль карбоната	Растворитель	Температура, $^\circ C/C$	Выход, %	Вязкость
1	2	3	4	5	6	7
1	ДНФК	(L) ТМСЛ (1)	ДМАА	25/0,5	96	0,95
				90/3		
2	ПНФК	(L) ТМСЛ (1)	ДМАА	25/2	97	0,4
				100/6		

Продолжение таблицы

1	2	3	4	5	6	7
3	ДИФК	(L) ТМСЛ (1)	N-МП	25/0,5	95	0,95
				90/3		
4	ДИФК	(dL) ТМСЛ (1)	ДМАА	25/0,5	97	0,76
				90/3		
5	ДИФК	(L) ТМСО (1)	ДМАА	25/0,5	90	0,32
				90/3		
6	ДИФК	(L) ТМСЦ (1)	ДМАА	25/0,5	96	0,85
				90/3		
7	ДИФК	(L) ТМСЛ (0,5)	ДМАА	25/2	97	0,68
		(L) ТМСЦ (0,5)		90/3		
8	ДИФК	(L) ТМСЦ (0,5)	ДМАА	25/2	98	0,71
		(L) ТМСЛ (0,5)				
9	ДИФК	(L) ТМСЛ (0,2)	ДМАА	25/2	95	0,70
		(L) ТМСЦ (0,8)				
10	ДИФК	(L) ТМСЛ (0,8)	ДМАА	25/2	97	0,68
		(L) ТМСЦ (0,2)		90/3		
11	ДИФК	(dL) ТМСЛ (0,5)	ДМАА	25/2	95	0,52
		(L) ТМСЦ (0,5)		90/3		
12	ДИФК	(L) ТМСО (0,5)	ДМАА	25/3	89	0,28
		(L) ТМСЦ (0,5)		90/3		

Приимечание: ТМСО - этиловый эфир N,N'-бис- trimетилсилил-орнитина; ТМСЛ - этиловый эфир N,N'-бис-trиметилсилилизина; ТМСЦ - динэтиловый эфир N,N'-бис-trиметилсилилцистина; ДИФК-бис-2,4-динитрофенилкарбонат; ДИФК-бис-p-нитрофенилкарбонат; ДМАА - N,N'-диметилацетамид; N-МП-N-метилпирролидон. Вязкость определена в диметилсульфоксиде при 25°C, C=0,5 г/дл.

Применение предлагаемого способа получения полимочевины на основе природных диаминокарбоновых кислот обеспечивает по сравнению с известными способами, следующие преимущества: легкость получения высокомолекулярных полимочевин на основе при-

родных диаминокарбоновых кислот с использованием только их триметилсилильных производных и одного активированного карбоната, например бис-2,4-динитрофенилкарбоната, не прибегая к труднодоступным динозианатам; отсутствие необходимости сня-

BEST AVAILABLE COPY

9

905228

10

тия триметилсилильных защитных группировок с аминогрупп; широкие возможности синтеза сополимочевин различного состава на основе двух или более диаминокарбоновых кислот (в том числе D,L или DL), используя для этой цели лишь N,N'-бис-триметилсилильные производные их эфиров и один активированный карбонат, например бис-2,4-динитрофенилкарбонат; простота в обращении и легкость очистки активированных карбонатов, являющихся кристаллическими соединениями.

Формула изобретения

Способ получения полимочевины путем взаимодействия N,N'-бис-триметилсилильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органических соединений в среде аprotон-

ного растворителя, отличающемся тем, что, с целью получения полимочевины с широким диапазоном свойств при одновременном упрощении способа, в качестве карбонильных производных органических соединений используют бис-(n-нитрофенил)карбонат или бис-(2,4-динитрофенил)карбонат и реакцию проводят при 20-25°C 0,5-2 ч и при 80-100°C 2-3 ч с последующим выделением полимера.

Источники информации, принятые во внимание при экспертизе

- 15 1. Саундерс Дж.Х., Фриш К.К. Химия полиуретанов, М., "Химия", 1968, с. 13-14.
20 2. Сенцова Т.И., Бутаева В.И.,
Давидович Ю.А., Рогожин С.В., Коршак В.В. Синтез синтетических активных полимочевин на основе природных диаминокарбоновых кислот. Доклад АН СССР 232, 225, 1977 (прототип).

Составитель С.Пурина
Редактор М.Недолуженко Техред А. Ач Корректор М.Коста
Заказ 279/35 Тираж 511 Подписьное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
Филиал ПИЛ "Патент", г. Ужгород, ул. Проектная, 4

This Page Blank (uspto)