MA513 Parallel Computing Assignment-7 Report

Paranjay Bagga 160101050

Problem Statement:

Perform **Polynomial Multiplication** using a shared memory model while observing the speedup for different values of PEs as well as the precision involved.

System Specifications:

All the experiments have been performed on **Dell Inspiron 5559** laptop with **Intel i5-6200U dual core processor** and **8 GB RAM**. Each core has **2 threads.** Also, it was made insured that no other applications were running in the background during each experiment which could have incurred biased readings.

Experiments:-

The value of N is varied from **2^10(1024)** upto **2^17(131072)**.

The results are shown in the tables and graphs below.

1. Varying No. of Threads and taking N=131072:

No. of Threads	School Method (Speed Up)
1	1
2	1.94897584107865
4	2.14770170902152
8	2.15011839137792

Comparison of SpeedUp

By varying Threads and taking N=131072

2. Varying N and taking 4 Threads:

N	School Method (Speed Up)
1024	1.33542074363992
2048	2.15918909936856
4096	2.08855195774023
8192	2.08057315362048
16384	2.10832808461655
32768	2.11523886794254
65536	2.10849084905431
131072	2.14770170902152

Comparison of SpeedUp

By varying N and taking Threads=4

Observations:-

- From Graph-1, it is clear that the Speed Up increases upto 4 Threads and then it becomes nearly constant. This may be because the system contains a total of 4 threads.
- Graph-2 points out that the Speed Up increases upto N=2048 and then it becomes nearly constant.