UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

LUIS GUILHERME MACHADO CAMARGO MARCELO TEIDER LOPES MATHEUS SILVA ARAÚJO

ROBÔ EXPLORADOR DE AMBIENTES

MONOGRAFIA

CURITIBA

2011

LUIS GUILHERME MACHADO CAMARGO MARCELO TEIDER LOPES MATHEUS SILVA ARAÚJO

ROBÔ EXPLORADOR DE AMBIENTES

Monografia apresentada ao Departamento Acadêmico de Eletrônica da Universidade Tecnológica Federal do Paraná como requisito parcial para aprovação na Disciplina de Oficina de Integração 2.

Orientadora: Profa. Dra. Myriam Regattieri De

Biase da Silva Delgado

CURITIBA

2011

AGRADECIMENTOS

Este trabalhado não teria sido possível sem o projeto anteriormente apresentado por Bruno Meneguele, Fernando Padilha e Vinicius Arcanjo. Por emprestar o robô e pelos diversos esclarecimentos (muitas vezes sobre assuntos que não os envolviam) nosso muito obrigado.

À Professora Myriam nosso agradecimento por aceitar o desafio de nos orientar.

Aos Professores Hugo Vieira e Mário Sérgio pela oportunidade sem par de aprendizado.

RESUMO

CAMARGO, Luis Guilherme M.; LOPES, Marcelo Teider; ARAÚJO, Matheus Silva. ROBÔ EXPLORADOR DE AMBIENTES. 24 f. Monografia – Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná. Curitiba, 2011.

Texto do resumo (máximo de 500 palavras).

Palavras-chave: Palavra-chave 1, Palavra-chave 2, ...

ABSTRACT

CAMARGO, Luis Guilherme M.; LOPES, Marcelo Teider; ARAÚJO, Matheus Silva. AMBIENCE EXPLORER ROBOT. 24 f. Monografia – Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná. Curitiba, 2011.

Abstract text (maximum of 500 words).

Keywords: Keyword 1, Keyword 2, ...

LISTA DE FIGURAS

FIGURA 1	- Diagrama do Robô	9
FIGURA 2	- Processo de Comunicação - Arduíno	12

LISTA DE TABELAS

TABELA 1	_	Pinos da placa Arduíno Duemilanove	13
TABELA 2	_	Sistema de Indicação	13
TABELA 3	_	Acionamento dos Motores	14

SUMÁRIO

1 INTRODUÇÃO
1.1 MOTIVAÇÃO 8
1.2 OBJETIVO
1.2.1 Objetivo Geral
1.2.2 Objetivos Específicos
1.3 VISÃO GERAL DO PROJETO
2 SISTEMA MECÂNICO
2.1 PROJETO MECÂNICO
2.1.1 Sistema de Alimentação
2.1.1.1 Bateria de 9V
2.1.1.2 Bateria de 4,2V
2.1.1.3 Bateria de 6V
2.1.2 Sistema de Indicação 10
2.1.2.1 LEDs
2.1.2.2 Speaker
2.1.3 Sistema de Tração
2.1.3.1 Motores
2.1.3.2 Caixas de redução
2.1.3.3 Rodas
2.1.4 Sistema de Controle
2.1.4.1 Ponte H
2.1.4.2 Arduíno Duemilanove
2.1.4.3 Microcontrolador ATMEGA328P
2.2 PLATAFORMA ARDUÍNO
2.2.1 Comunicação com Indicadores 12
2.2.2 Comunicação com Bússola
2.2.3 Acionamento dos Motores
2.2.4 Comunicação com CMUCam 15
2.3 SOFTWARE DE CONTROLE
3 SENSORES
3.1 BÚSSOLA
3.2 CÂMERA
4 VISÃO
4.1 RECONHECIMENTO DE IMAGENS
5 NAVEGAÇÃO
5.1 PLACE AGENTS
5.2 CONSTRUÇÃO DE MAPA
5.3 ROTEAMENTO
6 CONCLUSÃO 19
REFERÊNCIAS
Apêndice A – CADERNO DE BORDO

1 INTRODUÇÃO

- 1.1 MOTIVAÇÃO
- 1.2 OBJETIVO
- 1.2.1 OBJETIVO GERAL
- 1.2.2 OBJETIVOS ESPECÍFICOS
- 1.3 VISÃO GERAL DO PROJETO

2 SISTEMA MECÂNICO

O robô utilizado no projeto é o mesmo robô construído durante o projeto **Robô Explorador de Labirintos 2D** (MENEGUELE et al., 2011) desta mesma disciplina.

No projeto original o robô era utilizado para explorar e solucionar labirintos em duas dimensões feitos através de trilhas pretas em um chão branco, utilizado emissores e sensores de luz infravermelha para identificar a pista.

Todo o projeto mecânico foi reutilizado neste trabalho, incluindo rodas, caixa de redução e chassi. Foram reutilizados também o sistema de alimentação e a uma placa *Arduíno Duemilanove*; o conjunto de sensores do robô original foi substituído por uma câmera *CMUCam3*.

2.1 PROJETO MECÂNICO

O diagrama do projeto físico do robô é apresentado na Figura 1.

Figura 1: Diagrama do Robô

2.1.1 SISTEMA DE ALIMENTAÇÃO

Conjunto de baterias utilizadas como alimentação do robô.

2.1.1.1 BATERIA DE 9V

Utilizada para alimentação do Arduíno Duemilanove, uma bateria PP3.

2.1.1.2 BATERIA DE 4,2V

Usada na alimentação dos motores, bateria de câmera fotográfica digital.

2.1.1.3 BATERIA DE 6V

Usada na alimentação da CMUCam3, quatro pilhas AA em série.

2.1.2 SISTEMA DE INDICAÇÃO

LEDs e Speaker usados para indicar as ações do robô.

2.1.2.1 LEDS

Usados para indicação dos estados do robô, detalhados na Tabela 2

2.1.2.2 **SPEAKER**

Utilizado como indicador sonoro de estados específicos do sistema, como reconhecimento do objeto e início e fim da busca do mesmo.

2.1.3 SISTEMA DE TRAÇÃO

Para tração do robô foi construído um sistema baseado em um motor elétrico e duas rodas centrais.

2.1.3.1 MOTORES

Motor elétrico de corrente contínua *Mabuchi FA-130RA* de 3V com rotação de 12300 rpm, ou 205 voltas por segundo (MENEGUELE et al., 2011)

2.1.3.2 CAIXAS DE REDUÇÃO

Acopladas ao motor e às rodas reduzem a rotação do motor para que seja possível acionar as rodas. Na configuração usada, a redução é de 344:1 (MENEGUELE et al., 2011).

2.1.3.3 RODAS

O robô utiliza duas rodas *off-road* em seu centro e uma esfera com giro livre atrás para manter o equilíbrio.

Com a rotação de 205 voltas/segundo e a redução de 344:1, a roda completa 0,6 voltas por segundo.

2.1.4 SISTEMA DE CONTROLE

Sistema para controle da movimentação do robô.

2.1.4.1 PONTE H

A Ponte H é um circuito que permite a um microcontrolador acionar um motor de corrente contínua. Por questões eletrônicas (MENEGUELE et al., 2011), o circuito utilizado no projeto foi construído a partir de componentes discretos.

2.1.4.2 ARDUÍNO DUEMILANOVE

Placa *Arduíno* utilizada no projeto anterior e reutilizada no projeto atual. Faz o interfaceamento dos diversos sistemas do projeto, *i.e.*, recebe as decisões tomadas pelo Sistema de Navegação, embarcado na câmera, e aciona os motores para que o robô as execute. Seu funcionamento é detalhado na seção 2.2.

2.1.4.3 MICROCONTROLADOR ATMEGA328P

Microcontolador presente da *Arduíno Duemilanove*, os códigos construídos para controle do robô (Seção 2.3) serão executados por ele.

2.2 PLATAFORMA ARDUÍNO

Arduíno é uma plataforma *open-source* para prototipagem eletrônica que busca facilitar a construção de sistemas onde haja interação com objetos e o ambiente. (Arduino Team, 2011a)

Para o projeto **Robô Explorador** foi utilizado uma placa *Arduíno Duemilanove* que foi reutilizada no trabalho atual.

Dentro do projeto, o *Arduíno* exerce um papel central de receber, via comunicação serial, as decisões tomadas pelo Sistema de Exploração, embarcado na câmera, e atuar sobre os motores através da Ponte H. Além disso, ele recebe o sinal lido através da bússola e aciona os dispositivos de indicação. Esse processo é representado na Figura 2.

Figura 2: Processo de Comunicação - Arduíno

O *Arduíno Duemilanove* possui um microprocessador *ATMEGA328P*, sua programação pode ser feita utilizando a linguagem de programação própria, baseada em *Wiring* (Arduino Team, 2011a). No entanto, também é possível é utilizar C++ para construir bibliotecas próprias utilizando também as bibliotecas já prontas do *Arduíno*, e essa foi a opção feita pela equipe. O software de controle é detalhado na Seção 2.3.

Para o interfaceamento com os diversos módulos do sistema, o *Arduíno Duemilanove* possui 14 pinos de comunicação digital (Arduino Team, 2011b), a configuração desses pinos está resumida na Tabela 1.

2.2.1 COMUNICAÇÃO COM INDICADORES

Os indicadores do robô são os LEDs, esquerdo e direito, e o *Speaker*.

Os estados possíveis dos LEDs são aceso ou apagado, como visto na Tabela 2. Para produzir os dois estados, é utilizada uma comunicação digital TTL, em que um sinal baixo

Pino	Sentido do Sinal	Tipo de Comunicação	Função
00	(RX)	Serial	Comunicação Câmera
01	(TX)	Serial	Comunicação Câmera
02	Entrada	Digital TTL	Bússola - Pino 1
03	Entrada	Digital TTL	Bússola - Pino 4
04	Saída	Digital TTL	LED Direito
05	Saída	Sinal PWM	Motor Esquerdo - Pino 2
06	Saída	Sinal PWM	Motor Esquerdo - Pino 1
07	Entrada	Digital TTL	Bússola - Pino 3
08	Entrada	Digital TTL	Bússola - Pino 2
09	Saída	Digital TTL	Speaker
10	Saída	Sinal PWM	Motor Direito - Pino 2
11	Saída	Sinal PWM	Motor Direito - Pino 1
12	Saída	Digital TTL	LED Esquerdo
13	-	-	Não utilizado

Tabela 1: Pinos da placa Arduíno Duemilanove

(LOW) produzirá o estado apagado e o sinal alto (HIGH) irá deixar o LED aceso.

Estado	LED Esquerdo	LED Direito
Parado	Apagado	Apagado
Andando para frente	Aceso	Apagado
Virando para esquerda	Aceso	Apagado
Virando para direita	Apagado	Aceso

Tabela 2: Sistema de Indicação

O LED Direito é ligado no pino 04 e o Esquerdo no 12.

Para o *Speaker* é gerado um sinal com *duty-cycle* de 50% numa frequência especificada através da função *tone* presente na biblioteca básica do *Arduíno*.

O Speaker é ligado ao Arduíno através do pino 09.

2.2.2 COMUNICAÇÃO COM BÚSSOLA

A bússola utilizada pela equipe é a *Dinsmore Sensor Modelo #1490*, uma bússola digital com precisão de 45 graus, ou oito estados (Dinsmore Sensor Division, 1993).

A *Dinsmore #1490* gera quatro sinais digitais TTL, a combinação desses sinais fornece a orientação lida pela bússola.

Os quatro sinais são ligados nos pinos 02, 03, 07 e 08 do Arduíno.

Para funcionamento detalhado da bússola, ver seção 3.1.

2.2.3 ACIONAMENTO DOS MOTORES

Para acionamento dos motores, são utilizadas Pontes H, circuitos eletrônicos que permitem o acionamento por parte de um microcontrolador de um motor de corrente contínua em qualquer sentido de rotação. Por não ser objeto de estudo deste trabalho, seu funcionamento e a construção do circuito utilizado no robô não será explicitado, maiores informações podem ser encontradas em (MENEGUELE et al., 2011) e (PATSKO, 2006).

A Ponte H, por sua vez, é acionada através de um sinal PWM - *Pulse Width Modulation*. A modulação por largura de pulso é uma técnica usada para obter resultados analógicos com um sinal digital (Arduino Team, 2011c). Uma onda quadrada é gerada, mudando o período em que essa onda está em ALTO (*duty cycle*) é possível obter níveis médios de tensão diferentes. Assim, por exemplo, uma onda sempre em BAIXO, produrizá 0 V de nível médio de tensão, uma onda sempre em ALTO, 5 V; e uma onda 50% do tempo em ALTO, 2,5 V. Esses diferentes níveis de tensão produzirão diferentes velocidades nos motores.

O *Arduíno* possui portas que implementam o PWM, para utilizá-las é necessário usar a função *analogWrite* que recebe como parâmetro um inteiro entre 0 e 255. Esse valor irá definir o tempo em que o sinal gerado ficará em ALTO.

Neste projeto, a velocidade do robô é constante, então o parâmetro para a *analogWrite* é constante em 127, que produzirá um *duty-cycle* de 50%, e metade da velocidade do robô.

Para cada Ponte H são gerados dois sinais que irão acionar os motores para frente ou para trás. Quando o sinal 1 é ALTO e o 2 é BAIXO, o motor gira num sentido, para frente, por exemplo; sinal 1 em BAIXO e sinal 2 em ALTO, ele gira no sentido inverto, para trás; esses sinais em função da ação executada pela robô são apresentados na tabela 3.

Ação	Motor Esquerdo	Motor Direito
Parado	Desligado	Desligado
Para frente	Frente	Frente
Para trás	Trás	Trás
Virando esquerda	Frente	Desligado
Virando direita	Desligado	Frente
Rotacionando esquerda	Frente	Trás
Rotacionando direita	Trás	Frente

Tabela 3: Acionamento dos Motores

- 2.2.4 COMUNICAÇÃO COM CMUCAM
- 2.3 SOFTWARE DE CONTROLE

3 SENSORES

- 3.1 BÚSSOLA
- 3.2 CÂMERA

4 VISÃO

4.1 RECONHECIMENTO DE IMAGENS

5 NAVEGAÇÃO

- 5.1 PLACE AGENTS
- 5.2 CONSTRUÇÃO DE MAPA
- 5.3 ROTEAMENTO

6 CONCLUSÃO

REFERÊNCIAS

Arduino Team. Arduino. Outubro 2011. http://arduino.cc.

Arduino Team. **Arduino Duemilanove**. Outubro 2011.

 ${\it http://arduino.cc/en/Main/arduinoBoardDuemilanove}.$

Arduino Team. PWM. Outubro 2011. http://www.arduino.cc/en/Tutorial/PWM.

Dinsmore Sensor Division. Dinsmore Sensing Systems Geral Information. 1993.

MENEGUELE, B.; PADILHA, F.; ARCANJO, V. Robô explorador de labirintos 2d. Universidade Tecnológica Federal do Paraná, 2011.

PATSKO, L. F. Tutorial de Montagem da Ponte H. Dezembro 2006.

APÊNDICE A - CADERNO DE BORDO

10 de Agosto

Primeira aula da disciplina.

17 de Agosto

Marcelo Teider e Matheus Araujo decidem formar a equipe, têm em mente o projeto de um robô explorador. A equipe ainda não tem os três integrantes, como sugerido para a Disciplina. Então iniciam-se negociações com outras equipes para a definição dos integrantes.

12 de Agosto

Após algumas conversas, as equipes da disciplina são definidas. Luis Camargo é integrado à equipe.

13 de Agosto

Após a definição da equipe, a professora Myriam Delgado é convidada para nos orientar, aceitando a proposta.

13 de Agosto

O projeto é então definido como a construção de um robô explorador. A intenção é "mostrar" ao robô um objeto para reconhecimento, então esse mesmo objeto é escondido de seu campo de visão e o robô deve então explorar o ambiente procurando-o. Ele deve também evitar obstáculos durante o percurso.

24 de Agosto

Apresentação da pré-proposta. A equipe apresentou aos professores da disciplina a pré-proposta de projeto, sendo aceita pelos professores. Como sugerido pelo professor Hugo durante a apresentação, decidimos comprar uma *SmartCam*. A primeira ideia seria utilizar a *CMUcam*, mas optamos por pesquisar outros modelos.

29/30 de Agosto

Iniciamos as pesquisas das câmeras. Pesquisamos os modelos *AVRcam*, que não está sendo produzido no momento; e alguns modelos comerciais, que foram descartados devido ao elevado custo, acima de US\$ 2000,00. Dentre os modelos *CMUcam*, ficamos em dúvida entre dois modelos, *CMUcam1* e *CMUcam2*.

Fizemos um levantamento do material que será necessário para a construção do robô, como motor, chassi, bateria e microprocessador.

31 de Agosto

Em conversa com o professor Hugo, optamos pela *CMUcam1*; uma vez que ela atende os requisitos do projeto e tem menor custo. Os procedimentos para adquirá-la foram tomados.

Conseguimos com a equipe que desenvolveu o Robô Explorador de Labirintos 2D nessa mesma disciplina, em 2011-01, o robô emprestado. Segundo a Equipe, uma das Pontes H do robô apresenta problemas, precisaremos solucioná-lo.

Precisamos agora decidir e conseguir o microcontrolador para o Robô. Os da plataforma *Arduíno* apresentam possibilidade de comunicação com a câmera via software e pela familiaridade dos membros da equipe podem se tornar uma boa escolha.

5 de Setembro

Pegamos o robô com a equipe do semestre passado. Sem problemas com a ponte H, o robô não apresenta nenhum problema mecânico ou elétrico-eletrônico. Estamos utilizando o mesmo microcontrolador da equipe, um *ATMEGA 328P* em uma placa *Arduíno Duemilanove*.

7 de Setembro

Desenvolvemos uma API para controle do hardware do Robô. Fizemos uma classe *Robot* em C++ com funções pré-definidas como *startrobot*, *forward*, *turnleft*. No código a ser desenvolvido não necessitaremos controlar o robô diretamente, apenas através dessa classe.

12 de Setembro

Por indicação de nossa orientadora, conhecemos o trabalho *A Distributed Cognitive Map for Spatial Navigation Based on Graphically Organized Place Agents*, de Jörg Conradt e Rodney Douglas, e por orientação do professor Luiz Merkle com um algoritmo de busca recursiva em um espaço bidimensional pelas quatro direções cardeais através de pilha, no livro *Data Structures - An advanced approach using C*.

21 de Setembro

Definida a data da banca final, 7 de Dezembro.

Por orientação do professor Hugo, entramos em contato com diversos artigos de Prestes, Lowe, Bay e Artolazabal.

23 a 28 de Setembro

Escrita do relatório de Qualificação, entregue aos professores no dia 28. Percebemos a necessidade de usar uma bússola como sensor para definir a direção em que se encontra o robô.

28 de Setembro

Entrega da Qualificação aos professores da Disciplina. Conseguimos emprestado com o professor Hugo duas bússolas *Dinsmore*, uma digital e outra analógica. Durante a próxima semana faremos os testes para definir qual iremos usar. A bússola será integrada ao sistema através da placa do *Arduíno*.

30 de Setembro

Foram encontrados problemas com o interfaceamento entre a bússola e o arduíno devido a diferentes níveis de tensão e corrente, será necessário construir um conversor DC-DC para fazer a integração.

6 de Outubro

Após orientação do professor Hugo e pesquisa de outros projetos, fizemos o primeiro experimento com a bússola e obtivemos 5 [V] na saída, o que possibilita interfaceamento direto com o arduíno.

12 de Outubro

Construímos um *shield* para a bússola, possibilitando conectá-la ao Arduíno.

14 de Outubro

A câmera foi finalmente enviada de Hong Kong. A previsão de entrega é de um mês, precisamos elaborar um plano B caso a câmera não chegue a tempo da finalização do projeto.

15 de Outubro

Conectamos o *shield* da bússola ao Arduíno; tivemos alguns problemas de mau contato com os cabos, mas o robô é capaz de interpretar as informações fornecidas pela bússola e segue os comandos que lhe foram dados.

18 de Outubro

Tivemos uma reunião com nossa orientadora, Prof. Myriam, onde apresentamos o estado atual do projeto e elaboramos um segundo plano, caso a câmera não chegue. Iremos

utilizar os sensores do projeto passado, cinco pares de leds emissor/receptor, e construir uma pasta com marcas de diferentes cores perceptíveis pelo robô, onde ele deverá construir um mapa cognitivo.

19 de Outubro

A câmera chegou! Iremos começar os testes com ela em breve. Precisaremos de um cabo serial ou um adaptador para comunicação com a placa e também de baterias para alimentação da mesa, 6V.

26 de Outubro

Compramos um adaptador para o cabo de comunicação e um suporte para quatro pilhas AA que servirá como alimentação.

Conseguimos compilar e gravar os códigos de exemplo na câmera.

2 de Novembro

Estamos estudando a comunicação da CMUCam com o Arduíno.

9 de Novembro

Concentramos nossas atenções na finalização da primeira versão da monografia.