

知识与经验

冷蒸气原子荧光光谱法测定稻田水中汞

郎春燕,毛玉凤*,缪丘健

(成都理工大学 材料与化学化工学院 应用化学系, 成都 610059)

中图分类号: O657.31 文献标志码: B 文章编号: 1001-4020(2012)10-1240-02

汞是一种具有严重生理毒性的化学物质,环境中任何形态的汞均可在一定条件下转化为甲基汞,甲基汞具有很强的毒性。食物链对汞有相当大的富集能力[1],人类若长期食用被汞污染的食物,会危害身体健康。有研究指出[2],种植区灌溉水中,汞能够通过水稻的根、茎、叶吸收,富集在稻米中。文献[3]报道成都地区谷类含汞量均值已达到 $10.6~\mu g \cdot kg^{-1}$ 。

近年来,有关成都平原土壤中汞含量的研究报道较多^[4-6]。而关于农田水中汞含量的研究鲜有报道。本工作采用冷原子荧光光谱法测定稻田水样中汞的含量,该方法检出限低,能满足水中痕量汞的测定,同时,具有灵敏度高、操作简单、快捷的特点。

1 试验部分

1.1 仪器与试剂

AFS-2202 型原子荧光光度计。

氢氧化钾溶液:0.2 mol·L⁻¹。

载流:盐酸(5+95)溶液。

汞标准储备溶液:1 000 mg • L⁻¹。

汞标准工作溶液: $10.0 \mu g \cdot L^{-1}$ 。

硼氢化钾溶液:称取硼氢化钾 7.5 g 溶于 5 g • L^{-1} 氢氧化钾溶液 500 mL 中,混匀,配成 15 g • L^{-1} ,用时现配。

氯化溴溶液:称取溴化钾 1.08 g 于 100 mL 盐酸(1+1)溶液中,搅拌 1 h 后加入 1.52 g 溴酸钾,再搅拌 1 h 后停止,通风橱内配制。

试验所用试剂均为优级纯,水为二级去离子水, 所用玻璃器皿均经硝酸(2+8)溶液浸泡 24 h 后,用 自来水、蒸馏水清洗。

收稿日期: 20012-02-31

* 联系人

• 1240 •

1.2 仪器工作条件

灯电流 20 mA;负高压 400 V;原子化器温度 $200 \text{ }^{\circ}\mathbb{C}$;原子化器高度 8 mm;载气流量 $0.4 \text{ L} \cdot \text{min}^{-1}$;屏蔽气流量 $0.6 \text{ L} \cdot \text{min}^{-1}$;读数时间 15 s,延迟时间 2 s,测定方法为标准曲线法,读数方式为峰面积积分。

1.3 试验方法

移取稻田表面水(或稀释 5 倍的土壤孔隙水) 15.00 mL于 25 mL 比色管中,加入氯化溴溶液使其质量浓度为 $20 \text{ g} \cdot \text{L}^{-1}$,4 $^{\circ}$ 下放置 24 h,再加入 $100 \text{ g} \cdot \text{L}^{-1}$ 盐酸羟胺溶液 2 滴,摇匀,以 $15 \text{ g} \cdot \text{L}^{-1}$ 硼氢化钾溶液为还原剂,盐酸(5+95)溶液为载流,按仪器工作条件进行测定。同时做空白试验。

2 结果与讨论

2.1 仪器工作条件的选择

以 $1.0~\mu g \cdot L^{-1}$ 汞标准溶液,对负高压、灯电流、原子化器高度、载气流量和屏蔽气流量等仪器工作条件进行考察。

2.1.1 负高压

试验结果表明: 汞荧光强度随负高压增大呈现增强趋势,同时噪声也随之增加,导致测定结果不稳定性,同时缩减仪器使用年限。故在不降低信噪比的条件下,采用尽可能大的负高压,试验选择负高压为 $400~\rm V$ 。

2.1.2 灯电流

试验结果表明:灯电流小于 20 mA 时,荧光强度较小;灯电流大于 20 mA 时,荧光强度随之有明显的增加,同时噪声也明显增加,不利于仪器的维护。试验选择灯电流为 20 mA。

2.1.3 原子化器高度

试验结果表明:原子化器高度过高或过低,汞的 荧光强度均不佳,当原子化器高度为8 mm 时,荧光

强度较稳定且较大,测定的准确性较高,试验选择原子化器高度为8 mm。

2.1.4 载气流量

载气流量对样品的检出信号有很大作用,试验考察了载气流量为 $0.2\sim0.7~\mathrm{L}\cdot\mathrm{min}^{-1}$ 时的荧光强度。结果表明: 当载气流量为 $0.4~\mathrm{L}\cdot\mathrm{min}^{-1}$ 时,荧光强度较大且稳定,试验选择载气流量为 $0.4~\mathrm{L}\cdot\mathrm{min}^{-1}$ 。

2.1.5 屏蔽气流量

试验结果表明:不同流量下荧光强度无显著变化,依据屏蔽气流量大于载气流量的原则,试验选择屏蔽气流量为 $0.6~L \cdot min^{-1}$ 。

2.2 试验条件的选择

2.2.1 酸性介质及浓度

固定汞的质量浓度为 $1.0 \mu g \cdot L^{-1}$,分别考察了不同体积分数的盐酸、硫酸溶液作为酸性介质时对荧光强度的影响。结果表明:以盐酸溶液为介质,体积分数大于 5%时,荧光强度出现明显的平台,能满足测定需要;增加硫酸浓度,荧光强度呈现先增加后减弱的趋势,不利于汞的测定。试验选择体积分数为 5% 盐酸溶液为介质。

2.2.2 盐酸羟胺的用量

试验考察了盐酸羟胺溶液用量对荧光强度的影响。结果表明: 盐酸羟胺质量浓度为 $100~{\rm g} \cdot {\rm L}^{-1}$ 时,有最大的荧光强度。滴加 $100~{\rm g} \cdot {\rm L}^{-1}$ 盐酸羟胺溶液 $2 \sim 4$ 滴时有较高的荧光强度,试验选用滴加 2~滴 $100~{\rm g} \cdot {\rm L}^{-1}$ 盐酸羟胺溶液还原过量的氯化溴。

2.2.3 硼氢化钾溶液浓度

试验考察了硼氢化钾作为还原剂对测定的影响。结果表明: 当硼氢化钾浓度过低时,溶液中 Hg^{2+} 未能全部还原; 当硼氢化钾质量浓度超过 $25~g \cdot L^{-1}$ 时,硼氢化钾溶液能与 H^+ 反应产生氢气,稀释基态汞原子浓度。试验选择 $15~g \cdot L^{-1}$ 硼氢化钾溶液为还原剂。

2.3 标准曲线、检出限及精密度

分别移取汞标准工作溶液于 7 支 50 mL 容量瓶内,同时加入盐酸 2.5 mL,用水配制成汞质量浓度分别为 0,0.1,0.2,0.4,0.6,0.8,1.0 μ g·L⁻¹标准溶液,按试验方法进行测定,并绘制标准曲线,线性回归方程为 y=406.39 x-0.736 4,相关系数为 0.999 9;按仪器工作条件对 11 个空白溶液进行测定,检出限(3S/N)为 0.01 μ g·L⁻¹;对汞的质量浓度为 1.0 μ g·L⁻¹汞标准溶液进行 12 次平行测定,

计算其相对标准偏差为 0.76%。

2.4 样品分析

按试验方法对 $1\sim8$ 号 8 个采集点稻田表面水及土壤孔隙水中总汞进行测定,结果见表 1。

表 1 样品中汞的测定结果

Tab. 1 Results of det'n, of Hg in samples

采样点	测定值 ρ/(μg・L ⁻¹)		采样点	测定值 ρ/(μg・L ⁻¹)	
	表面水	土壤孔隙水		表面水	土壤孔隙水
1	0.18	0.49	5	0.19	0.49
2	0.16	0.44	6	0.23	0.63
3	0.21	0.58	7	0.21	0.57
4	0.19	0.51	8	0.18	0.45

由表 1 可知: 各采集点稻田表面水及土壤孔隙 水中汞的质量浓度分别在 $0.16\sim0.23~\mu g \cdot L^{-1}$ 和 $0.44\sim0.63~\mu g \cdot L^{-1}$ 之间,均低于国家灌溉水质标准有关要求^[8],其中 6 号采样点汞含量偏大,这可能与此处紧靠绕城高速公路有关^[9]。

2.5 方法的回收率

以 2 号、6 号样品表面水为基体,分别添加 3 个浓度水平的汞标准溶液进行回收试验,结果见表 2。

表 2 回收试验结果

Tab. 2 Results of test for recovery

采样点	测定值 ρ/(μg•L ⁻¹)	加标量 ρ/(μg•L ⁻¹)	测定总量 ρ/(μg•L ⁻¹)	回收率
2	0.16	0.10	0.25	90.0
		0.20	0.35	95.0
		0.40	0.57	102
6	0.23	0.10	0.34	110
		0.20	0.42	95.0
		0.40	0.63	100

参考文献:

- [1] 于建国. 我国汞污染防治现状和发展趋势[J]. 化学工业, 2010, 28(2/3); 40-42.
- [2] 姜向阳,朱迎春. 汞在土壤-水稻系统中的迁移[J]. 重庆环境科学, 1995,17(3):54-57.
- [3] 汤奇峰. 四川成都经济区农田生态系统镉生态安全性 预测预警研究[D]. 北京:中国地质大学, 2007:1-141.
- [4] 姚学良,廖远安. 成都市金牛区土壤重金属污染状况——浅谈土壤生态环境治理的紧迫性问题[J]. 四川地质学报,2002,22(3):158-160.

(下转第 1243 页)

酸3种消解体系,结果表明:硝酸-过氧化氢体系消解效果最好,在此体系下消解总时间为 11 min,最高压力控制在 2.0 MPa 时,样品消解最完全。

2.2 仪器工作条件的选择

空心阴极灯一般需要预热 $10\sim30~\text{min}$ 才能达到稳定输出。灯电流过小,放电不稳定;灯电流过大,发射谱线变宽,灵敏度下降,校准曲线弯曲,且灯使用寿命缩短。一般在保证有足够强度且稳定的光输出条件下,尽量使用较低的工作电流^[4]。经过多次试验,选择铜、锌、铁的灯电流分别为 2.5,2.0,5.0~mA。

光电倍增管负高压的大小决定光电倍增管的放大倍数,负高压越高,放大倍数越高。负高压值越低,光电倍增管灵敏度就越低,直接影响检测光信号的强度;但如果负高压过高,虽然光电倍增管的灵敏度提高了,同时也将管子内部的光子噪声相应放大了,其结果直接影响到检测光信号的噪声和重现性。光电倍增管电压越高,信号越强,背景噪声越大,考虑到一定的分析灵敏度和较好的信噪比,测定铜、锌、铁时,选择光电倍增管的负高压均为 400~V。

自由原子在火焰空间的分布与火焰的类型与特性、元素的性质和浓度、基体的种类和含量相关,对于每一种元素的分析,都要选择最佳的燃烧器高度,经试验,选择铜、锌、铁的燃烧器高度均为 7 mm。火焰原子化法的检出限、灵敏度和线性范围都与火焰的类型和特征有关,试验选择测定铜、锌、铁时的燃助比见 1.2 节。

2.3 标准曲线和检出限

按试验方法对铜、锌、铁标准溶液系列进行测定,铜、锌、铁的质量浓度分别在 10.0, 11.0, 11.0 mg·L $^{-1}$ 范围内与吸光度呈线性关系,线性回归方程分别为 $A_{\rm Cu}=0.050$ 3 $\rho_{\rm Cu}+0.002$ 4, $A_{\rm Zn}=0.251$ 2 $\rho_{\rm Zn}+0.016$, $A_{\rm Fe}=0.007$ 1 $\rho_{\rm Fe}-0.000$ 7, 相

关系数分别为 $0.997\ 1,0.992\ 5,0.999\ 8$ 。对 11 份空白溶液进行测定,铜、锌和铁的检出限(3s)分别为 $21.5,14.6,24.6\ \mu g \cdot L^{-1}$ 。

2.4 方法的精密度和回收试验

按试验方法平行消解 6 份玉米面样品进行精密度试验,铜、锌、铁测定结果的相对标准偏差分别为 $0.41\% \sim 1.52\%$, $0.31\% \sim 1.85\%$, $0.81\% \sim 2.04\%$,同时对玉米面样品做加标回收试验,结果见表 3.8%

表 3 回收试验结果(n=6)

Tab. 3 Results of test for recovery

元素	測定值 $w/(\mu extbf{g} ullet extbf{g}^{-1})$	加标量 w/(μg・g ⁻¹)	测定总量 $w/(\mu ext{g} ullet ext{g}^{-1})$	回收率
Cu	2.1	1.0	3.1	100
		2.0	4.2	105
Zn	36.2	18.0	54.8	103
		36.0	72.0	99.4
Fe	37.3	19.0	56.6	102
		38.0	74.8	98.7

本方法具有仪器装置简单、操作方便、灵敏度 高、干扰小、分析成本低等优点。

参考文献:

- [1] **彭晓玲. 锌与人体健康**[J]. 微量元素与健康研究, 2003,20(3):60-62.
- [2] 程春杰. 微量元素与人体健康[J]. 安徽科技, 2005,26 (1):104-106.
- [3] 许刚. 微波消解-原子吸收法测定植物中微量金属元素 [J]. 无锡轻工大学学报, 1999, 11(4):13-16.
- [4] 戴骐,鲍晓霞,裘慧,等. 微波消解-端视 ICP-AES 测定 茶叶中微量重金属元素 [J]. 分析试验室, 2008, 27 (6):24-26.
- [5] 傅明,袁智能,黄志强.火焰原子吸收光谱法测定茶叶中的铅[J].光谱实验室,2002,19(1):66-68.

(上接第 1241 页)

- [5] 刘红樱,谢志仁,陈德友,等.成都地区土壤环境质量初步评价[J].环境科学报,2004,24(2):297-303.
- [6] 刘重芃,尚英男,尹观.成都市农业土壤重金属污染特征初步研究[J].广东微量元素科学,2006,13(3):41-45.
- [7] GB 5084-2005 农田灌溉水质标准[S].
- [8] 张永春,孙丽,苏国锋,等. 公路两侧农田土壤污染及作物中重金属的积累[J]. 江苏农业学报,2005,21(4): 336-340.