Отчет по лабораторной работе №1

Модель боевых действий

Ильин Никита Евгеньевич

2022 Feb 10th

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	10
5	Выводы	16
6	Список литературы	17

List of Figures

4.1	Рис. №1 - Код задачи №1							10
4.2	Рис. №2 - Настройки симуляции задачи №1							11
4.3	Рис. №3 - Результат симуляции задачи №1 .							12
4.4	Рис. №4 - Код задачи №2							13
4.5	Рис. №5 - Настройки симуляции задачи №2							14
4.6	Рис. №6 - Результат симуляции задачи №2 .							15

List of Tables

1 Цель работы

Цель работы научиться строить математические модели в OpenModelica.

2 Задание

Необходимо:

- 1. Рассмотреть 3 модели боя:
 - 1. Модель боевых действий между регулярными войсками
 - 2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов
- 2. Построить графики y(t) и x(t)
- 3. Найти условие, при котором та или другая сторона выигрывают бой (для каждого случая).

3 Теоретическое введение

Моделирование боевых действий - метод военно-теоретического или военно-технического исследования объектов (систем, явлений, событий, процессов), участвующих (происходящих) в ходе боевых действий, путём создания и изучения их моделей (аналогов) в целях получения знаний о физических, информационных и иных процессах вооруженной борьбы, а также для сравнения вариантов решений командующих (командиров), планов и прогнозов ведения боевых действий, оценки влияния на них различных факторов. [1]

Модель боевых действий Рассмотрим некоторые простейшие модели боевых действий – модели Ланчестера. В противоборстве могут принимать участие как регулярные войска, так и партизанские отряды. В общем случае главной характеристикой соперников являются численности сторон. Если в какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается проигравшей (при условии, что численность другой стороны в данный момент положительна). Рассмотри три случая ведения боевых действий: 1. Боевые действия между регулярными войсками 2. Боевые действия с участием регулярных войск и партизанских отрядов 3. Боевые действия между партизанскими отрядами В первом случае численность регулярных войск определяется тремя факторами: - скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями (болезни, травмы, дезертирство); - скорость потерь, обусловленных боевыми действиями противоборствующих сторон (что связанно с качеством стратегии, уровнем вооружения, профессионализмом солдат и т.п.); - скорость поступления подкрепления (задаётся некоторой функцией от време-

ни). В этом случае модель боевых действий между регулярными войсками описывается следующим образом:

$$\frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t)$$

$$\frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t)$$

Потери, не связанные с боевыми действиями, описывают члены -a(t)x(t) и -h(t)y(t), члены -b(t)y(t) и -c(t)x(t) отражают потери на поле боя. Коэффициенты b(t) и c(t) указывают на эффективность боевых действий со стороны у и х соответственно, a(t) и h(t) - величины, характеризующие степень влияния различных факторов на потери. Функции P(t), Q(t) учитывают возможность подхода подкрепления к войскам X и У в течение одного дня.

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что тем потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид:

$$\frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t)$$

$$\frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t)$$

Модель ведение боевых действий между партизанскими отрядами с учетом предположений, сделанном в предыдущем случаем, имеет вид:

$$\frac{dx}{dt} = -a(t)x(t) - b(t)x(t)y(t) + P(t)$$

$$\frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t)$$

4 Выполнение лабораторной работы

1. Пишем программу для построения модели боевых действий между регулярными войсками, используя OpenModelica. Используем приведенные выше уравнения.

```
model lab03 1
 1
      parameter Real a = 0.45;
      parameter Real b = 0.86;
      parameter Real c = 0.49;
      parameter Real h = 0.73;
      parameter Real x0 = 21200;
      parameter Real v0 = 9800;
8
      Real t = time;
10
      Real x(start = x0);
11
      Real y(start = y0);
    equation
       der(x) = -a*x-b*y+sin(t+1);
       der(y) = -c*x-h*y+cos(t+2);
    end lab03 1;
```

Figure 4.1: Рис. №1 - Код задачи №1

2. Совершаем симуляцию со следующими настройками:

Интервал Симуляции						
Начальное Время:	0					
Конечное Время:	1					
Число Интервалов:	500					
O Interval:	0.05					

Figure 4.2: Рис. №2 - Настройки симуляции задачи №1

3. Получаем следующий результат симуляции:

Figure 4.3: Рис. №3 - Результат симуляции задачи №1

По графику видим, что численность армии X превосходит численность армии Y.

4. Изменяем код программы под задачу №2:

```
model lab03 2
 1
      parameter Real a = 0.44;
      parameter Real b = 0.7;
      parameter Real c = 0.33;
      parameter Real h = 0.61;
     parameter Real x0 = 21200;
 7
     parameter Real y0 = 9800;
8
     Real t = time;
     Real x(start = x0);
10
      Real y(start = y0);
12 equation
       der(x) = -a*x-b*y+sin(2*t);
       der(y) = -c*x-h*y+cos(t+2);
14
    end lab03 2;
```

Figure 4.4: Рис. №4 - Код задачи №2

5. Совершаем симуляцию со следующими настройками:

Интервал Симуляции							
Начальное Время:	0						
Конечное Время:	1						
Число Интервалов:	500						
O Interval:	0.05						

Figure 4.5: Рис. №5 - Настройки симуляции задачи №2

6. Получаем следующий результат симуляции:

Figure 4.6: Рис. №6 - Результат симуляции задачи №2

По графику видим, что численность армии X превосходит численность армии Y.

5 Выводы

В ходе работы мы рассмотрели 2 модели боя: модель боевых действий между регулярными войсками, модель ведение боевых действий с участием регулярных войск и партизанских отрядов. Для этого были построены графики y(t) и x(t).

6 Список литературы

- 1. Д.В. Гордиенко "МОДЕЛИРОВАНИЕ БОЕВЫХ ДЕЙСТВИЙ",(https://clck.ru/cBXiK)
- 2. Методические материалы курса