A Bird's Eye View on Discrete Logarithm Problems (DLP) over Finite Fields

Xiao'ou He

December 14, 2017

Key Laboratory of Mathematics Mechanization, AMSS

Motivation

DLP in Cryptography

Exposition of The Problem

Motivation

DLP in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Motivation

DLP in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Motivation

Motivation

DLP in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

DLP in Cryptography

• Key-exchange scheme [Diffie and Hellman, 1976]

DLP in Cryptography

- Key-exchange scheme [Diffie and Hellman, 1976]
- Encryption algorithm [ElGamal, 1985]

DLP in Cryptography

- Key-exchange scheme [Diffie and Hellman, 1976]
- Encryption algorithm [ElGamal, 1985]
- Digital Signature Algorithm (DSA) [NIST, 1991]

Motivation

DLP in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

• Cyclic group: $(G, \cdot) = \langle g \rangle$

- Cyclic group: $(G, \cdot) = \langle g \rangle$
- Based on number-theoretical hard problem

- Cyclic group: $(G, \cdot) = \langle g \rangle$
- Based on number-theoretical hard problem
 - $\mathbb{Z} \to G, x \mapsto h = g^x$
 - $G \to \mathbb{Z}, h \mapsto x = \log_g h$

- Cyclic group: $(G, \cdot) = \langle g \rangle$
- Based on number-theoretical hard problem
 - $\mathbb{Z} \to G, x \mapsto h = g^x$
 - $G \to \mathbb{Z}, h \mapsto x = \log_q h$
- Generic Algorithms $O(\exp(\log |G|))$
 - Pohlig-Hellman
 - Collision Making Shanks' baby-step giant-step, Pollard's ρ , etc.

- Cyclic group: $(G, \cdot) = \langle g \rangle$
- Based on number-theoretical hard problem
 - $\mathbb{Z} \to G, x \mapsto h = g^x$
 - $G \to \mathbb{Z}, h \mapsto x = \log_q h$
- Generic Algorithms $O(\exp(\log |G|))$
 - Pohlig-Hellman
 - Collision Making
 Shanks' baby-step giant-step, Pollard's ρ, etc.
- Concerning with two class of groups
 - 1. Elliptic curves
 - 2. Multiplicative groups of finite fields

Case over Finite Fields

- Given: Q, g and h, where $\langle g \rangle = \mathbb{F}_Q^{\times}$ containing h
- Find: $\log_g h$

Previous Work

Motivation

DLP in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

The \mathcal{L} Notation

$$\mathcal{L}_Q(\alpha) = \exp(O((\log Q)^{\alpha}(\log\log Q)^{1-\alpha}))$$

The \mathcal{L} Notation

$$\mathcal{L}_{Q}(\alpha) = \exp(O((\log Q)^{\alpha}(\log\log Q)^{1-\alpha}))$$

- $0 \le \alpha \le 1$
- $\mathcal{L}_Q(0) = (\log Q)^{O(1)} = \text{poly}(\log Q),$ $\mathcal{L}_Q(1) = (\exp(\log Q))^{O(1)} = \exp(\log Q)$

The \mathcal{L} Notation

$$\mathcal{L}_Q(\alpha) = \exp(O((\log Q)^{\alpha}(\log\log Q)^{1-\alpha}))$$

- $0 \le \alpha \le 1$
- $\mathcal{L}_Q(0) = (\log Q)^{O(1)} = \text{poly}(\log Q),$ $\mathcal{L}_Q(1) = (\exp(\log Q))^{O(1)} = \exp(\log Q)$
- When $0 < \alpha < 1$, $\mathcal{L}_{Q}(\alpha)$ is sub-exponential

The \mathcal{L} Notation

$$\mathcal{L}_{Q}(\alpha) = \exp(O((\log Q)^{\alpha}(\log\log Q)^{1-\alpha}))$$

- $0 \le \alpha \le 1$
- $\mathcal{L}_Q(0) = (\log Q)^{O(1)} = \text{poly}(\log Q),$ $\mathcal{L}_Q(1) = (\exp(\log Q))^{O(1)} = \exp(\log Q)$
- When $0 < \alpha < 1$, $\mathcal{L}_Q(\alpha)$ is sub-exponential

Quasi-poly

 $(\log Q)^{O(\log\log Q)}$ is **quasi-polynomial**, which is smaller than any $\mathcal{L}_Q(\alpha)$ for $\alpha>0$.

Motivation

DLP in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Overview

$\mathcal{L}_Q(\frac{1}{2})$ Index Calculus Method

[Pohlig, 1977] and [Adleman, 1979] independently

Overview

$\mathcal{L}_Q(\frac{1}{2})$ Index Calculus Method

[Pohlig, 1977] and [Adleman, 1979] independently

$\mathcal{L}_Q(\frac{1}{3})$ by [Coppersmith, 1984]

- Originally \mathbb{F}_{2^n}
- Number Field Sieve by [Gordon, 1993]
- Function Field Sieve by [Adleman and Huang, 1999]

Overview

$\mathcal{L}_Q(\frac{1}{2})$ Index Calculus Method

[Pohlig, 1977] and [Adleman, 1979] independently

$\mathcal{L}_Q(\frac{1}{3})$ by [Coppersmith, 1984]

- Originally \mathbb{F}_{2^n}
- Number Field Sieve by [Gordon, 1993]
- Function Field Sieve by [Adleman and Huang, 1999]

$\mathcal{L}_Q(\frac{1}{4})$ by [Joux, 2013] to quasi-poly by [BGJT@EC'14]

- Originated from [Joux and Lercier@EC'06]
- For small char., roughly $p \leq \mathcal{L}_Q(\frac{1}{3})$.
- Heuristics

Smooth - Set A Bound

Definition

Given B > 0. $\forall n \in \mathbb{Z}$ is called *B*-smooth if all its prime factors are no larger than *B*. Thus denote factor basis as

$$\mathcal{F}(B) = \{ p \in \mathbb{N} : \text{prime and } p \leq B \}$$

Smooth - Set A Bound

Definition

Given B > 0. $\forall n \in \mathbb{Z}$ is called B-smooth if all its prime factors are no larger than B. Thus denote factor basis as

$$\mathcal{F}(B) = \{ p \in \mathbb{N} : \text{prime and } p \leq B \}$$

Definition

Given $B \in \mathbb{Z}_{>0}$. $\forall f[X] \in \mathbb{F}_q[X]$ is called B-smooth if all its irreducible factors are of degree no higher than B. Thus denote respective factor basis as

$$\mathcal{F}_q(B) = \{ F[X] \in \mathbb{F}_q[X] : \text{irr. monic and of deg } \leq B \}$$

• Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_a h$
- Process:
 - 1. Main Phase

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_q h$
- Process:
 - 1. Main Phase
 - Initialization Fix parameter B, thus $\mathcal{F}(B)$ is also given.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_a h$
- Process:
 - 1. Main Phase
 - Initialization Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection Random $c \in [1, Q-2]$ s.t. g^c is B-smooth:

$$g^c = \prod_{p \in \mathcal{F}(B)} p^{v(p,c)}$$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Initialization Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection Random $c \in [1, Q-2]$ s.t. g^c is B-smooth:

$$g^c = \prod_{p \in \mathcal{F}(B)} p^{v(p,c)}$$

• Relation Collection Take \log_g on both sides and substitute $\log_g p$ by unknown variable x_p (denoted as $\log_a p \leftarrow x_p$):

$$c \equiv \sum_{p \in \mathcal{F}(B)} v(p, c) x_p \mod Q - 1$$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Initialization Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection Random $c \in [1, Q-2]$ s.t. g^c is B-smooth:

$$g^c = \prod_{p \in \mathcal{F}(B)} p^{v(p,c)}$$

• Relation Collection Take \log_g on both sides and substitute $\log_q p$ by unknown variable x_p (denoted as $\log_q p \leftarrow x_p$):

$$c \equiv \sum_{p \in \mathcal{F}(B)} v(p, c) x_p \mod Q - 1$$

- Linea Algebra Solve system of linear equations.
- 2. Individual Logarithm

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_q h$
- Process:
 - 1. Main Phase
 - Initialization Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection Random $c \in [1, Q-2]$ s.t. g^c is B-smooth:

$$g^c = \prod_{p \in \mathcal{F}(B)} p^{v(p,c)}$$

• Relation Collection Take \log_g on both sides and substitute $\log_g p$ by unknown variable x_p (denoted as $\log_a p \leftarrow x_p$):

$$c \equiv \sum_{p \in \mathcal{F}(B)} v(p, c) x_p \mod Q - 1$$

- Linea Algebra Solve system of linear equations.
- 2. Individual Logarithm

Find $b \in [1, Q-2]$ s.t. $g^b h$ is B-smooth.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Initialization Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection Random $c \in [1, Q-2]$ s.t. g^c is B-smooth:

$$g^c = \prod_{p \in \mathcal{F}(B)} p^{v(p,c)}$$

• Relation Collection Take \log_g on both sides and substitute $\log_g p$ by unknown variable x_p (denoted as $\log_a p \leftarrow x_p$):

$$c \equiv \sum_{p \in \mathcal{F}(B)} v(p, c) x_p \mod Q - 1$$

- Linea Algebra Solve system of linear equations.
- 2. Individual Logarithm

Find $b \in [1, Q-2]$ s.t. $g^b h$ is B-smooth. Then factorization $g^b h = \prod p^{v_0(p)}$ implies

$$\log_a h \equiv \sum v_0(p) \log_a p - b \mod Q - 1$$

• Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_g h$.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_g h$.
- Process:
 - 1. Main Phase

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_g h$.
- Process:
 - 1. Main Phase
 - Initialization Fix *B* then obtain $\mathcal{F}_q(B)$. Find *n* satisfying $p^{n-1} < k \le p^n$, fix $n_1 + n_2 = n$.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_g h$.
- Process:
 - 1. Main Phase
 - Initialization Fix B then obtain $\mathcal{F}_q(B)$. Find n satisfying $p^{n-1} < k \le p^n$, fix $n_1 + n_2 = n$. Find S(X) of deg $\le B$ s.t. $\exists I_k(X)|X^{p^n} - S(X)$ with a root α .

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_q h$.
- Process:
 - 1. Main Phase
 - Initialization Fix B then obtain $\mathcal{F}_q(B)$. Find n satisfying $p^{n-1} < k \le p^n$, fix $n_1 + n_2 = n$. Find S(X) of deg $\le B$ s.t. $\exists I_k(X)|X^{p^n} - S(X)$ with a root α .
 - Smoothness Selection Random $G_1(X)$, $G_2(X)$ of $\deg \leq B$ s.t. both $C(X) = G_1(X) + X^{p^{n_1}} G_2(X)$ and $D(X) = C(X)^{p^{n_2}}$ are B-smooth, notice $\deg \leq p^{n_1} + B$ and $(p^{n_2} + 1)B$ respectively.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_q h$.
- Process:

1. Main Phase

- Initialization Fix B then obtain $\mathcal{F}_q(B)$. Find n satisfying $p^{n-1} < k \le p^n$, fix $n_1 + n_2 = n$. Find S(X) of deg $\le B$ s.t. $\exists I_k(X)|X^{p^n} - S(X)$ with a root α .
- Smoothness Selection Random $G_1(X)$, $G_2(X)$ of $\deg \leq B$ s.t. both $C(X) = G_1(X) + X^{p^{n_1}} G_2(X)$ and $D(X) = C(X)^{p^{n_2}}$ are B-smooth, notice $\deg \leq p^{n_1} + B$ and $(p^{n_2} + 1)B$ respectively.
- Relation Collection Known

$$(\prod F(X)^{v(C,F)})^{p^{n_2}} \equiv \prod F(X)^{v(D,F)} \mod I_k(X)$$
 $X \leftarrow \alpha$, take \log_g on both sides, and $\log_g F(\alpha) \leftarrow x_F$
$$\sum (p^{n_2}v(C,F) - v(D,F))x_F \equiv 0 \mod Q - 1$$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_g h$.
- Process:

1. Main Phase

- Initialization Fix B then obtain $\mathcal{F}_q(B)$. Find n satisfying $p^{n-1} < k \le p^n$, fix $n_1 + n_2 = n$. Find S(X) of deg $\le B$ s.t. $\exists I_k(X)|X^{p^n} - S(X)$ with a root α .
- Smoothness Selection Random $G_1(X)$, $G_2(X)$ of $\deg \leq B$ s.t. both $C(X) = G_1(X) + X^{p^{n_1}} G_2(X)$ and $D(X) = C(X)^{p^{n_2}}$ are B-smooth, notice $\deg \leq p^{n_1} + B$ and $(p^{n_2} + 1)B$ respectively.
- Relation Collection Known

$$(\prod F(X)^{v(C,F)})^{p^{n_2}} \equiv \prod F(X)^{v(D,F)} \mod I_k(X)$$
 $X \leftarrow \alpha$, take \log_g on both sides, and $\log_g F(\alpha) \leftarrow x_F$

$$\sum (p^{n_2}v(C,F) - v(D,F))x_F \equiv 0 \mod Q - 1$$

Linear Algebra Solve system of linear equations.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = p^k$; Find: $\log_g h$.
- Process:
 - 1. Main Phase
 - Initialization Fix B then obtain $\mathcal{F}_q(B)$. Find n satisfying $p^{n-1} < k \le p^n$, fix $n_1 + n_2 = n$. Find S(X) of deg $\le B$ s.t. $\exists I_k(X)|X^{p^n} - S(X)$ with a root α .
 - Smoothness Selection Random $G_1(X)$, $G_2(X)$ of $\deg \leq B$ s.t. both $C(X) = G_1(X) + X^{p^{n_1}} G_2(X)$ and $D(X) = C(X)^{p^{n_2}}$ are B-smooth, notice $\deg \leq p^{n_1} + B$ and $(p^{n_2} + 1)B$ respectively.
 - Relation Collection Known

$$(\prod F(X)^{v(C,F)})^{p^{n_2}} \equiv \prod F(X)^{v(D,F)} \mod I_k(X)$$
 $X \leftarrow \alpha$, take \log_g on both sides, and $\log_g F(\alpha) \leftarrow x_F$

$$\sum (p^{n_2}v(C,F) - v(D,F))x_F \equiv 0 \mod Q - 1$$

- Linear Algebra Solve system of linear equations.
- 2. **Individual Logarithm Phase** Descent strategy

Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$

Find $S_1(X)$, $S_2(X) \in \mathbb{F}_q[X]$ s.t. $\exists I_k(X)|X - S_1(S_2(X))$, a root α . Let $\beta = S_2(\alpha)$, then $\exists J_k(Y)|Y - S_2(S_1(Y))$ with root β .

Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$

Find $S_1(X)$, $S_2(X) \in \mathbb{F}_q[X]$ s.t. $\exists I_k(X)|X - S_1(S_2(X))$, a root α . Let $\beta = S_2(\alpha)$, then $\exists J_k(Y)|Y - S_2(S_1(Y))$ with root β .

Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$

Find $S_1(X)$, $S_2(X) \in \mathbb{F}_q[X]$ s.t. $\exists I_k(X)|X - S_1(S_2(X))$, a root α . Let $\beta = S_2(\alpha)$, then $\exists J_k(Y)|Y - S_2(S_1(Y))$ with root β .

Start with $G_1(Y)X + G_2(Y)$, we will reach the relation

$$G_1(S_2(\alpha))\alpha + G_2(S_1(\alpha)) = G_1(\beta)S_1(\beta) + G_2(\beta)$$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$
- Process:

- Initialization Fix parameter B then obtain $\mathcal{F}_q(B)$. Find $S_1(X)$, $S_2(X) \in \mathbb{F}_q[X]$ of deg d_1 , d_2 satisfying $d_1d_2 \geq k$ s.t. $\exists I_k(X)|X S_1(S_2(X))$ with a root α
- Smoothness Selection Random $G_1(X)$, $G_2(X)$ of $\deg \leq B$ s.t. both $G_1(S_2(X))X + G_2(S_1(X))$ and $G_1(X)S_1(X) + G_2(X)$ are B-smooth, notice $\deg \leq Bd_2 + 1$, Bd_1 respectively.
- Relation Collection Known $G_1(S_2(\alpha))\alpha + G_2(S_1(\alpha)) = G_1(\beta)S_1(\beta) + G_2(\beta)$ and smoothness implies $\prod F(\alpha)^{v(F)} = \prod F(\beta)^{w(F)}$. Then take \log_g and $F(\alpha) \leftarrow x_F$, $F(\beta) \leftarrow y_F$

$$\sum v(F)x_F \equiv \sum w(F)y_F \mod Q - 1$$

- Linear Algebra Solve system of linear equations.
- Individual Logarithm Phase Descent strategy.

[Joux, 2013] and [BGJT@EC'14] - Half Relation

Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$ and q > k

Take advantage of the itentity $X^q - X = \prod_{\gamma \in \mathbb{F}_q} (X - \gamma)$.

[Joux, 2013] and [BGJT@EC'14] - Half Relation

Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$ and q > k

Take advantage of the itentity $X^q - X = \prod_{\gamma \in \mathbb{F}_q} (X - \gamma)$.

Find $S(X) \in \mathbb{F}_q$ s.t. $\exists I_k(X)|X^q - S(X)$ with a root α .

[Joux, 2013] and [BGJT@EC'14] - Half Relation

Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$ and q > k

Take advantage of the itentity $X^q - X = \prod_{\gamma \in \mathbb{F}_q} (X - \gamma)$.

Find $S(X) \in \mathbb{F}_q$ s.t. $\exists I_k(X)|X^q - S(X)$ with a root α .

From $G_1(Y)G_2(X) - G_1(X)G_2(Y)$ we can reach the relation

$$\prod_{\gamma \in \mathbb{F}_q} (G_1(\alpha) - \gamma G_2(\alpha)) = G_1(S(\alpha))G_2(\alpha) - G_1(\alpha)G_2(S(\alpha))$$

[Joux, 2013] and [BGJT@EC'14]

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$ and q > k; Find: $\log_g h$
- Process
 - 1. Main Phase
 - Initialization Fix parameter B then we obtain $\mathcal{F}_q(B)$ Find $S(X) \in \mathbb{F}_q$ of deg $\leq B$ s.t. $\exists I_k(X)|X^q S(X)$ with a root α .
 - Smoothness Selection Random $G_1(X)$, $G_2(X)$ of deg $\leq B$ s.t. $G_1(S_2(X))G_2(X) G_1(X)G_2(S(X))$ is B-smooth, notice deg $\leq B(B+1)$.
 - Relation Collection Known $\prod_{\gamma \in \mathbb{F}_q} (G_1(\alpha) \gamma G_2(\alpha)) = G_1(S(\alpha)) G_2(\alpha) G_1(\alpha) G_2(S(\alpha))$ and smoothness implies $\prod_{\alpha \in \mathbb{F}_q} (G_1(\alpha) \gamma G_2(\alpha)) = \prod_{\alpha \in \mathbb{F}_q} F(\alpha)^{v(F)}.$ Then take \log_g and $G_1(\alpha) \gamma G_2(\alpha) \leftarrow x_\gamma$, $F(\alpha) \leftarrow x_F$ $\sum_{\alpha \in \mathbb{F}_q} x_\gamma \equiv \sum_{\alpha \in \mathbb{F}_q} v(F) x_F \mod Q 1$
 - Linear Algebra Solve system of linear equations.
 - Individual Logarithm Phase Descent strategy.

Outline

Motivation

DLP in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

- Initiation
- Smoothness Selection
- Relation Collection
- Linear Algebra
- 2. Individual Logarithm Phase

- Initiation Field extension brings freedom in presentation
- Smoothness Selection
- Relation Collection
- Linear Algebra
- 2. Individual Logarithm Phase

- Initiation Field extension brings freedom in presentation
- Smoothness Selection Randomly choose ⇒ Sieve
- Relation Collection
- Linear Algebra
- 2. Individual Logarithm Phase

1. Main Phase

- Initiation Field extension brings freedom in presentation
- Smoothness Selection Randomly choose ⇒ Sieve
- Relation Collection
 Understanding (virtual) logarithms
- Linear Algebra

1. Main Phase

- Initiation Field extension brings freedom in presentation
- Smoothness Selection Randomly choose ⇒ Sieve
- Relation Collection
 Understanding (virtual) logarithms
- Linear Algebra Take advantage of the sparseness

1. Main Phase

- Initiation Field extension brings freedom in presentation
- Smoothness Selection Randomly choose ⇒ Sieve
- Relation Collection
 Understanding (virtual) logarithms
- Linear Algebra Take advantage of the sparseness

2. Individual Logarithm Phase Descent Strategy

Preparations

• Algorithm

Number theory

- Polynomials over finite fields
- Lattice
- Algebraic geometry

Preparations

Algorithm

Algorithmic Cryptanalysis by Joux Course taken: Computational Number Theory

- Number theory
 - A Classical Introduction to Modern Number Theory by Ireland and Rosen
- Polynomials over finite fields 2017 summer schools
- Lattice Lectures
- Algebraic geometry Course taken

Heuristics: From assumption to rigorous.
 CWZ, 2014: Three Heuristics

Heuristics: From assumption to rigorous.
 CWZ, 2014: Three Heuristics

Relation obtaining
 Use other identities in finite fields and number theory.

- Heuristics: From assumption to rigorous.
 CWZ, 2014: Three Heuristics
- Relation obtaining
 Use other identities in finite fields and number theory.
- As for other characteristics
 Generalization of FFS and NFS.

Thank you! Any questions?

References

- 1. Diffie W., Hellman M.E., New directions in cryptography, IEEE Trans. Inf. Theory, 22(6), 644-654(1976).
- Adleman L., A subexponential algorithm for the discrete logarithm problem with applications to cryptography, In: Proceedings of the 20th Annual Syposium on Foundations of Computer Science: FOCS'79, 55-60.
- Coppersmith D., Fast evaluation of logarithms in fields of characteristic two, IEEE Trans. Inf. Theory, 30(4): 587-593(1984).
- EIGmal T., A publick key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theory, 31(4): 469-472(1985).
- Adleman L., Huang M.D., Function field sieve method for discrete logarithms over finite fields, Inf. Comput., 151(1-2): 5-16(1999).
- Joux A., Lercier R., The function field sieve in the medium prime case, In:Advances in Cryptography: EUROCRYPT'2006, 254-270.
- Joux A., A new index calculus algorithm with complexity L(1/4 + o(1)) in small characteristic, In: Selected Areas in Cryptography: SAC'2013, 355-379.
- Barculescu R., Gaudry P., Joux A., Thomé E., A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, In: Advances in Cryptography: EUROCRYPT'2014, 1-16.
- Joux A., Pierrot C., Technical history of discrete logarithms in small characteristic finite fields, Des. Codes Cryptogr. 78: 73-85(2016).