Homework7

Qi'ao Chen 21210160025

November 17, 2021

Exercise 1. Let M and N be L-structures. Let T be the set of all L-sentences satisfied by M. Show that $M \equiv N$ iff $N \models T$

Proof. If $M \equiv N$, then for any L-sentence φ , if $M \models \varphi \Leftrightarrow N \models \varphi$. Hence $N \models T$.

If $N \vDash T$, then for any L-sentence φ , if $M \vDash \varphi$, then $N \vDash \varphi$. If there is a sentence ψ such that $N \vDash \psi$ and $M \vDash \neg \psi$. Then as $\neg \psi \in T$, we have $N \vDash \neg \psi$, a contradiction. Thus if $N \vDash \varphi$ then $M \vDash \varphi$. Hence $M \equiv N$

Exercise 2. Show that if (M, \leq) is a countable linear order, then there is an embedding $(M, \leq) \to (\mathbb{Q}, \leq)$

Proof. Take a element m from M and $q \in \mathbb{Q}$ and let $f_0 = \{(m,q)\}$. We build a chain of map

$$f_0 \subset f_1 \subset f_2 \subset \cdots$$

such that if $m_1,m_2\in f_i$, then $m_1\leq m_2$ iff $f(m_1)\leq f(m_2)$. Suppose f_i is defined and we can enumerate it $\{(m_0,q_0),\dots,(m_{i-1},q_{i-1})\}$ such that $m_0< m_1<\dots< m_{i-1}$. Take an element m_i of $M\setminus \mathrm{dom}(f_i)$, there are three cases

- 1. If $m_i > m_{i-1}$, then take $q_i = \max\{q_0,\dots,q_{i-1}\} + 1 = q_{i-1} + 1$
- 2. If there is j such that $m_j < m_i < m_{j+1}$, then take a $q_i \in (q_j,q_{j+1})$
- 3. If $m_i < m_0$, then take $q_i = q_0 1$

Let $f_{i+1} = f_i \cup \{(m_i,q_i)\}$. Then for any $n \in \text{dom}(f_i)$, $m_i < n$ if and only if $f_{i+1}(m_i) < f_{i+1}(n)$. Hence for any $m,n \in \text{dom}(f_{i+1})$, we have m < n if and only if $f_{i+1}(m) < f_i(n)$.

Let $f=\bigcup_{i\in |M|}f_i=\bigcup_{i\in \omega}f_0$. For any $a,b\in M$, there is $i\in \omega$ s.t. $a,b\in \mathrm{dom}(f_i)$ and $a\leq b$ if and only if $f(a)=f_i(a)\leq f_i(b)=f(b)$. Hence f is an embedding. \square

Exercise 3. Let L be a language and L' be a bigger language. Let M_1 be an L-structure and M_2 be an L'-structure. Suppose that $M_1 \equiv M_2 \upharpoonright L$. Show that there is an L'-structure M_3 with an L'-elementary embedding $i_2:M_2 \to M_3$ and an L-elementary embedding $i_1:M_1 \to (M_3 \upharpoonright L)$

Proof. Let $T_L(M_1)=\{\varphi(\overline{m})\mid \varphi\ L$ -formula and $M_1\vDash\varphi(\overline{m})\}$ and $T_{L'}(M_2)=\{\psi(\overline{m}')\mid \psi\ L'$ -formula and $M_2\vDash\psi(\overline{m}')\}$. Let $L''=L'\cup M_1\cup M_2$ and $\Gamma=T_L(M_1)\cup T_{L'}(M_2)$ an L''-theory. For any $\phi(\overline{m})\wedge\psi(\overline{m}')$ where $\phi(\overline{m})\in T_L(M_1)$ and $\psi(\overline{m}')\in T_{L'}(M_1)$. We have $M_1\vDash\phi(\overline{m})$ and hence $M_1\vDash\exists \overline{x}\ \phi(\overline{x})$. As $M_1\equiv M_2\upharpoonright L$, $M_2\vDash\exists \overline{x}\ \phi(\overline{x})$ and there is $\overline{n}\in M_2^m$ such that $M_2\vDash\phi(\overline{n})$. By interpreting \overline{m} to \overline{n} and $M_1\smallsetminus\overline{m}$ by arbitrary M_2 element, we have $M_2\vDash\phi(\overline{n})\wedge\psi(\overline{m}')$ and hence $\phi(\overline{m})\wedge\psi(\overline{m}')$ is satisfiable.

Thus by compactness, Γ is satisfiable and there is a L''-structure N such that $N \vDash \Gamma$. Let $M_3 = N \upharpoonright L'$, we have $M_3 \vDash T(M_2)$ and $M_3 \upharpoonright L \vDash T(M_1)$. Hence M_3 is an elementary extension of M_2 and $M_3 \upharpoonright L$ is an elementary extension of M_1

Exercise 4. Show that there is a structure $(N, \leq, P^N) \equiv (M, \leq, P)$ and an embedding $i: (\mathbb{Q}, \leq) \to (P^N, \leq)$

Proof. Consider a new language $L'=L\cup\mathbb{Q}$ and L'-theory $\Gamma=\operatorname{Th}(M,\leq,P)\cup\operatorname{Diag}(\mathbb{Q},\leq)\cup\{P(q):q\in\mathbb{Q}\}$. For any finite $\Delta_1\cup\Delta_2\cup\Delta_3\subseteq_f\Gamma$ where $\Delta_1\subseteq_f\operatorname{Th}(M,\leq,P)$, $\Delta_2\subseteq_f\operatorname{Diag}(\mathbb{Q},\leq)$ and $\Delta_3\subseteq_f\{P(q):q\in\mathbb{Q}\}$, let $A\subseteq\mathbb{Q}$ denote the constants of \mathbb{Q} occurring in $\Delta_2\cup\Delta_3$. As A is finite and A is an infinite linear order, we can find suitable interpretation such that for any $a_1,a_2\in A$, $\mathbb{Q}\models a_1\leq a_2$ if and only if $(M,\leq,P)\models a_1^M\leq a_2^M$. By interpreting $\mathbb{Q}\setminus A$ to arbitrary elements of A, we have $(M,\leq,P,\mathbb{Q}^M)\models\Delta_1\cup\Delta_2\cup\Delta_3$.

Exercise 5. Show that there is a countable structure $(N, \leq, P^N) \equiv (M, \leq, P)$ and an embedding $i: (\mathbb{Q}, \leq) \to (P^N, \leq)$

Proof. From previous exercise we get a structure $(N, \leq, P^N) \equiv (M, \leq, P)$ and an embedding $i: (\mathbb{Q}, \leq) \to (P^N, \leq)$. Let $S = i(\mathbb{Q}) \subseteq N$, then Downward Löwenheim–Skolem Theorem we can get a countable elementary substructure $(N', \leq, P^{N'})$ of (N, \leq, P^N) containing $i(\mathbb{Q})$. Hence $(N', \leq, P^{N'}) \equiv (M, \leq, P)$.

Now we prove that there is an embedding $j:(\mathbb{Q},\leq)\to (P^{N'},\leq)$. For any $q\in\mathbb{Q}$, as $N'\models P^{N'}i(q)$ if and only if $N\models P^Ni(q)$, we have $i(\mathbb{Q})\subseteq P^{N'}$. Hence we define j(q)=i(q) for any $q\in\mathbb{Q}$. Then for any $q_1,q_2\in\mathbb{Q}$, $\mathbb{Q}\models q_1\leq q_2\Leftrightarrow P^N\models i(q_1)\leq i(q_2)\Leftrightarrow P^{N'}\models j(q_1)\leq j(q_2)$ and j is indeed an embedding. \square

Exercise 6. Show that there is a structure $(N,\leq,P^N)\equiv (M,\leq,P)$ and an embedding $f:(N,\leq)\to (P^N,\leq)$

Proof. Suppose we have a countable structure $(N, \leq, P^N) \equiv (M, \leq, P)$ and an embedding $i:(\mathbb{Q}, \leq) \to (P^N, \leq)$. Then N is a countable linear order and by Exercise 2 we have an embedding $j:(N, \leq) \to (\mathbb{Q}, \leq)$. Then $i \circ j$ is still an embedding as for any $a,b \in N$, $N \vDash a \leq b \Leftrightarrow \mathbb{Q} \vDash j(a) \leq j(b) \Leftrightarrow P^N \vDash ij(a) \leq ij(b)$

Exercise 7. Show that there is an elementary extension $(N,\leq,P^N)\succeq (M,\leq,P)$ and an embedding $f:(N,\leq)\to (P^N,\leq)$

Proof. Consider a new language $L' = L \cup M \cup \{f\}$, let φ be $\forall x, y (x \leq y \leftrightarrow f(x) \leq f(y) \land P(f(x)) \land P(f(y)))$ and a theory $\Gamma = \operatorname{Diag}_{\operatorname{el}}(M, \leq, P) \cup \{\varphi\}$

From previous exercise, we have a structure $(N,\leq,P^N)\equiv (M,\leq,P)$ and an embedding $g:(N,\leq)\to (P^N,\leq)$. For any $\psi(\overline{m})\land \varphi$ where $\psi(\overline{m})\in \operatorname{Diag}_{\mathrm{el}}(M,\leq,P)$ is a L-formula, $M\vDash \exists \overline{x}\psi(\overline{x})$ and $N\vDash \exists \overline{x}\psi(\overline{x})$. So there is $\overline{n}\in N^n$ such that $N\vDash \psi(\overline{n})$. By interpreting \overline{m} as \overline{n} and $M\smallsetminus \overline{m}$ as arbitrary elements of $N,(N,\leq,P^N,M^N,g)\vDash \psi(\overline{m})\land \varphi$, hence $\psi\land \varphi$ is satisfiable and thus Γ is satisfiable.

Then there is a model $(O,\leq,P^O,M^O,f^O) \vDash \Gamma$ such that $(O,\leq,P^O) \succeq (M,\leq,P)$ and $f^O:(O,\leq) \to (P^O,\leq)$ is an embedding