1.2 At t = 8 s, the analytical solution is 41.137 (Example 1.1). The relative error can be calculated with

absolute relative error =
$$\frac{\text{analytical} - \text{numerical}}{\text{analytical}} \times 100\%$$

The numerical results are:

step	v(8)	absolute relative error		
2	44.8700	9.074%		
1	42.8931	4.268%		
0.5	41.9901	2.073%		

The error versus step size can then be plotted as

Thus, halving the step size approximately halves the error.

1.6 (a) This is a transient computation. For the period ending June 1:

The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:

Date 1-May	Deposit	Withdrawal	Interest	Balance \$1,522.33
1-Jun	\$220.13	\$327.26	\$15.22	\$1,430.42
1-Jul	\$216.80	\$378.51	\$14.30	\$1,283.02
1-Aug	\$450.35	\$106.80	\$12.83	\$1,639.40
1-Sep	\$127.31	\$350.61	\$16.39	\$1,432.49

(b)
$$\frac{dB}{dt} = D(t) - W(t) - iB$$

(c) for
$$t = 0$$
 to 0.5:

$$\frac{dB}{dt} = 220.13 - 327.26 + 0.01(1522.33) = -91.91$$

$$B(0.5) = 1522.33 - 91.91(0.5) = 1476.38$$
for $t = 0.5$ to 1:

$$\frac{dB}{dt} = 220.13 - 327.260 + 0.01(1476.38) = -92.37$$

$$B(0.5) = 1476.38 - 92.37(0.5) = 1430.19$$

The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:

Date	Deposit	Withdrawal	Interest	dB/dt	Balance
1-May	\$220.13	\$327.26	\$15.22	-\$91.91	\$1,522.33
16-May	\$220.13	\$327.26	\$14.76	-\$92.37	\$1,476.38
1-Jun	\$216.80	\$378.51	\$14.30	-\$147.41	\$1,430.19
16-Jun	\$216.80	\$378.51	\$13.56	-\$148.15	\$1,356.49
1-Jul	\$450.35	\$106.80	\$12.82	\$356.37	\$1,282.42
16-Jul	\$450.35	\$106.80	\$14.61	\$358.16	\$1,460.60
1-Aug	\$127.31	\$350.61	\$16.40	-\$206.90	\$1,639.68
16-Aug	\$127.31	\$350.61	\$15.36	-\$207.94	\$1,536.23
1-Sep					\$1,432.26

(d) As in the plot below, the results of the two approaches are very close.

2.1

$$IF \ x < 100 \ THEN$$

$$IF \ x < 50 \ THEN$$

$$x = 0$$

$$ELSE$$

$$x = 75$$

$$END \ IF$$

$$ELSE$$

$$DO$$

$$IF \ x \le 500 \ EXIT$$

$$x = x - 50$$

$$END \ DO$$

$$ENDIF$$

2.9 A MATLAB M-file can be written to solve this problem as

```
function annualpayment(P, i, n)
nn = 1:n;
A = P*i*(1+i).^nn./((1+i).^nn-1);
y = [nn;A];
fprintf('\n year annual payment\n');
fprintf('%5d %14.2f\n',y);
```

This function can be used to evaluate the test case,

```
>> annualpayment(55000,0.066,5)
```

```
year annual payment
1 58630.00
2 30251.49
3 20804.86
4 16091.17
5 13270.64
```

3.6 For the first series, after 20 terms are summed, the result is

	А	В	С	D	Е	* F. *	G	Н
1	X	5						
2	n	n!	x^n/n!	Sign	Series	True Value	et (%)	ea(%)
3	0	1	4	1	1.000000E+00	6.737947E-03	14741.32	2 10
4	1	1	5	-1	-4.000000E+00	6.737947E-03	59465.26	125.0000000
5	2	2	12.5	1	8.500000E+00	6.737947E-03	126051.2	147.0588235
6	3	6	20.83333	-1	-1.233333E+01	6.737947E-03	183142.9	168.9189189
7	4	24	26.04167	1	1.370833E+01	6.737947E-03	203349.7	189.9696049
8	- 5	120	26.04167	-1	-1.233333E+01	6.737947E-03	183142.9	211.1486486
9	6	720	21.70139	1	9.368056E+00	6.737947E-03	138934.3	231.6530764
10	7	5040	15.50099	-1	-6.132937E+00	6.737947E-03	91120.85	252.7499191
11	8	40320	9.68812	1	3.555184E+00	6.737947E-03	52663.6	272.5068890
12	9	362880	5.382289	-1	-1.827105E+00	6.737947E-03	27216.65	294.5801032
13	10	3628800	2.691144	1	8.640391E-01	6.737947E-03	12723.48	311.4609662
14	11	39916800	1.223247	-1	-3.592084E-01	6.737947E-03	5431.125	340.5397724
15	12	4.79E+08	0.509686	1	1.5047B0E-01	6.737947E-03	2133.292	338.7115011
16	13	6.23E+09	0.196033	-1	-4.555520E-02	6.737947E-03	776.0992	430.3202153
17	14	8.72E+10	0.070012	1	2.445667E-02	5.737947E-03	262.9692	285.2690254
18	15	1.31E+12	0.023337	-1	1.119380E-03	5.737947E-03	83.38693	2084.8412684
19	16	2.09E+13	0.007293	1	8.412283E-03	6.737947E-03	24.84936	86.6935085
20	17	3.56E+14	0.002145	-1	6.267312E-03	6.737947E-03	6.984846	34.2247480
21	18	6.4E+15	0.000596	1	6.863137E-03	6.737947E-03	1.857988	8.6815321
22	19	1.22E+17	0.000157	-1	6.706341E-03	6.737947E-03	0.469074	2.3380286
23	20	2.43E+18	3.92E-05	1	6.745540E-03	6.737947E-03	0.112692	0.5811105

The result oscillates at first. By n = 20 (21 terms), it is starting to converge on the true value. However, the relative error is still a substantial 0.11%. If carried out further to n = 27, the series eventually converges to within 7 significant digits.

In contrast the second series converges much faster. It attains 6 significant digits by n = 20 with a percent relative error of 8.1×10^{-6} %.

	Α	В	C	D	Е	F	G	Н
1	х	5		0.000				
2	n	n!	x^n/n!	Series	1/Series	True Value	et (%)	ea(%)
3	0	1	1	1.000000E+00	1.000000E+00	6.737947E-03	1.47E+04	
4	1	1	5	6.000000E+00	1.666667E-01	6.737947E-03	2.37E+03	5.00E+02
5	2	2	12.5	1.850000E+01	5.405405E-02	6.737947E-03	7.02E+02	2.08E+02
6	3	6	20.83333	3.933333E+01	2.542373E-02	6.737947E-03	2.77E+02	1.13E+02
7	4	24	26.04167	6.537500E+01	1.529637E-02	6.737947E-03	1.27E+02	6.62E+01
8	5	120	26.04167	9.141667E+01	1.093892E-02	6.737947E-03	6.23E+01	3.98E+01
9	6	720	21.70139	1.131181E+02	8.840322E-03	6.737947E-03	3.12E+01	2.37E+01
10	7	5040	15.50099	1.286190E+02	7.774898E-03	6.737947E-03	1.54E+01	1.37E+01
11	8	40320	9.68812	1.383072E+02	7.230283E-03	6.737947E-03	7.31E+00	7.53E+00
12	9	362880	5.382289	1.436895E+02	6.959453E-03	6.737947E-03	3.29E+00	3.89E+00
13	10	3628800	2.691144	1.463806E+02	6.831506E-03	6.737947E-03	1.39E+00	1.87E+00
14	11	39916800	1.223247	1.476038E+02	6.774891E-03	6.737947E-03	5.48E-01	8.36E-01
15	12	4.79E+08	0.509686	1.481135E+02	6.751577E-03	6.737947E-03	2.02E-01	3.45E-01
16	13	6.23E+09	0.196033	1.483096E+02	6.742653E-03	6.737947E-03	6.9BE-02	1.32E-01
17	14	8.72E+10	0.070012	1.483796E+02	6.739472E-03	6.737947E-03	2.26E-02	4.72E-02
18	15	1.31E+12	0.023337	1.484029E+02	6.738412E-03	6.737947E-03	6.90E-03	1.57E-02
19	16	2.09E+13	0.007293	1.484102E+02	6.738081E-03	6.737947E-03	1.99E-03	4.91E-03
20	17	3.56E+14	0.002145	1.484124E+02	6.737983E-03	6.737947E-03	5.42E-04	1.45E-03
21	18	6.4E+15	0.000596	1.484130E+02	6.737956E-03	6.737947E-03	1.40E-04	4.01E-04
22	19	1.22E+17	0.000157	1.484131E+02	6.737949E-03	6.737947E-03	3.45E-05	1.06E-04
23	20	2.43E+18	3.92E-05	1.484131E+02	6.737948E-03	6.737947E-03	8.11E-06	2.64E-05

4.2 Use the stopping criterion: $\varepsilon_{\sigma} = 0.5 \times 10^{2-2}\% = 0.5\%$

True value: $cos(\pi/3) = 0.5$

$$\cos\left(\frac{\pi}{3}\right) = 1$$

$$\varepsilon_t = \left|\frac{0.5 - 1}{0.5}\right| \times 100\% = 100\%$$

first order:

$$\cos\left(\frac{\pi}{3}\right) = 1 - \frac{(\pi/3)^2}{2} = 0.451689$$

$$\varepsilon_t = 9.66\%$$

$$\varepsilon_a = \frac{0.451689 - 1}{0.451689} \times 100\% = 121.4\%$$

second order:

$$\cos\left(\frac{\pi}{3}\right) = 0.451689 + \frac{(\pi/3)^4}{24} = 0.501796$$

$$\varepsilon_t = 0.359\% \qquad \varepsilon_a = \frac{|0.501796 - 0.451689|}{0.501796} \times 100\% = 9.986\%$$

$$\cos\left(\frac{\pi}{3}\right) = 0.501796 - \frac{(\pi/3)^6}{720} = 0.499965$$

$$\varepsilon_t = 0.00709\% \qquad \varepsilon_a = \begin{vmatrix} 0.499965 - 0.501796 \\ 0.499965 \end{vmatrix} \times 100\% = 0.366\%$$

Since the approximate error is below 0.5%, the computation can be terminated.

4.5 True value: f(3) = 554.

zero order:

$$f(3) = f(1) = -62$$
 $\varepsilon_t = \left| \frac{554 - (-62)}{554} \right| \times 100\% = 111.191\%$

first order:

$$f(3) = -62 + f'(1)(3-1) = -62 + 70(2) = 78$$
 $\varepsilon_t = 85.921\%$

second order:

$$f(3) = 78 + \frac{f''(1)}{2}(3-1)^2 = 78 + \frac{138}{2}4 = 354$$
 $\varepsilon_t = 36.101\%$

third order:

$$f(3) = 354 + \frac{f^{(3)}(1)}{6}(3-1)^3 = 354 + \frac{150}{6}8 = 554$$
 $\varepsilon_t = 0\%$

Thus, the third-order result is perfect because the original function is a third-order polynomial.