This presentation

- Hierarchical clustering
- Linkage methods
- Note for BiBC Master students: this presentation is exactly equal to the Essentials course one except for 4 slides at the end. If you feel comfortable with hierachical clustering, feel free to tune out and start on the short practical!

- Make a tree connecting all samples, which you can separate into clusters at any level you like
- Start from clusters containing individual samples, stop when you've agglomerated all clusters into one big clustering.

Source: https://commons.wikimedia.org/wiki/File:Phylogenetic_Tree.pdf

Let's look at an example: find most similar objects and group

them

Let's look at an example: find most similar objects and group

them

Let's look at an example: find most similar objects and group

them

Again, find most similar objects and group them

Now: closest distance between cluster 1 and point 3!

Keep iterating until everything is clustered together

Keep iterating until everything is clustered together

Keep iterating until everything is clustered together → Done!

Keep iterating until everything is clustered together → Done!

Make clusters by cutting the tree at any position

Make clusters by cutting the tree at any position Dendrogram data ordered on similarity Gene 1

Cluster	Gene 1	Gene 2
1	8	3.5
2	3.2	7.6
3	2.5	7
4	2.9	7.8

Cluster	Gene 1	Gene 2	Distance	1	2	3	4
1	8	3.5	1	0	-	-	-
2	3.2	7.6	 2	6.31	0	-	-
3	2.5	7	3	6.52	0.92	0	-
4	2.9	7.8	4	6.67	0.36	0.89	0

Cluster	Gene 1	Gene 2		Distance	1	2+4	3
1	8	3.5		1	0	-	-
2+4	?	?	-	2+4	?	0	-
3	2.5	7		3	6.52	?	0

Three main methods (but there are MANY):

- Three main methods:
 - Average linkage (UPGMA)

 Make centroids: distance to a cluster is distance to its mean features

Cluster	Gene 1	Gene 2
1	8	3.5
2	3.2	7.6
3	2.5	7
4	2.9	7.8

- Three main methods:
 - Average linkage (UPGMA)

 Make centroids: distance to a cluster is distance to its mean features

Cluster	Gene 1	Gene 2			
1	8	3.5	Cluster	Gene 1	Gene 2
2	3.2	7.6	1	8	3.5
3	2.5	7	2+4	3.05	7.7
4	2.9	7.8	3	2.5	7

- Three main methods:
 - Average linkage (UPGMA)
 - Single linkage
 Distance between two clusters =
 distance between their closest component
 points

- Three main methods:
 - Average linkage (UPGMA)
 - Single linkage
 Distance between two clusters =
 distance between their closest component
 points

Distance between 3 and 2+4?

Distance	1	2	3	4
1	0	_	_	-
2	6.31	0	-	-
3	6.52	0.92	0	-
4	6.67	0.36	0.89	0

- Three main methods:
 - Average linkage (UPGMA)
 - Single linkage
 Distance between two clusters =
 distance between their closest component
 points

Distance between 3 and 2+4?

Distance	1	2	3	4
1	0	-	_	-
2	6.31	0	-	-
3	6.52	0.92	0	_
4	6.67	0.36	0.89	0

- Three main methods:
 - Average linkage (UPGMA)
 - Single linkage
 - Complete linkage
 Distance between two clusters =
 distance between their furthest component
 points

Distance	1	2	3	4
1	0	-	_	-
2	6.31	0	-	-
3	6.52	0.92	0	_
4	6.67	0.36	0.89	0

Distance between 3 and 2+4?

- Three main methods:
 - Average linkage (UPG)
 - Single linkage
 - Complete linkage
- Quite different results:

FIGURE 14.13. Dendrograms from agglomerative hierarchical clustering of human tumor microarray data.

- Three main methods:
 - Average linkage (UPGMA)
 - Single linkage
 - Complete linkage
- Quite different results:

- Single linkage drawback:
 - Chaining → combines observations that are very far away by many small intermediate steps

- Single linkage drawback:
 - Chaining → combines observations that are very far away by many small intermediate steps

- Single linkage drawback:
 - Chaining → combines observations that are very far away by many small intermediate steps
 - Doesn't lead to compact clusters

Complete linkage drawback:

Opposite problem: close only if close

to all members of a group.

Complete linkage drawback:

Opposite problem: close only if close

to all members of a group, so *samples* that are close can get assigned to very different clusters

Complete linkage drawback:

Opposite problem: close only if close

to all members of a group, so *samples* that are close can get assigned to very different clusters

- Average linkage (UPGMA):
 - Compromise between the two.
 - Does depend on the numerical scale

Summary agglomerative/hierarchical clustering

- Start with each data point in a cluster by itself
- Calculate distances between all clusters
- Join closest clusters together
- Recalculate distances (depending on linkage method!)
- Iterate until all clusters are connected
- Make clusters by ,cutting through' the tree at any level of clustering.

Divisive clustering

- Similar to bisecting K-means, you can also start with every observation grouped together, and then split off parts.
- Example = DIANA:
 - → pick the object with the highest average dissimilarity to all other objects in its cluster (most distant from all others)

Divisive clustering

- Similar to bisecting K-means, you can also start with every observation grouped together, and then split off parts.
- Example = DIANA:
 - → pick the object with the highest average dissimilarity to all other objects in its cluster (most distant from all others)
 - → put it in a new cluster, cluster it together with everything that is closer to it than to the centroid of the original cluster

Divisive clustering

- Similar to bisecting K-means, you can also start with every observation grouped together, and then split off parts.
- Example = DIANA :
 - → pick the object with the highest average dissimilarity to all other objects in its cluster (most distant from all others)
 - → put it in a new cluster, cluster it together with everything that is closer to it than to the centroid of the original cluster
- Won't go into further detail here.

Break for short practical