Inhaltsverzeichnis

1	Maſ	Se	2
	1.1	Mengensysteme	2
	1.2	Maße und Inhalte	3
	1.3	Folgerungen für Maße	3
	1.4	Eigenschaften von Maßen (Inhalten) auf Ringen(Semiringen)	4
	1.5	Bedingte Wahrscheinlichkeit	4
	1.6	Der Fortsetzungssatz für Maßfunktionen	4
	1.7	Zusammenhang zwischen dem Maß auf dem Ring und dem Maß auf dem Sigmaring	5
	1.8	Make auf $(\mathbb{R},\mathfrak{B})$	5
	1.9	Maße auf $(\mathbb{R}, \mathfrak{B})$, zweiter Anlauf	6
	1.10	Ergänzungen zu bedingten Wahrscheinlichkeiten	6
	1.11	Eigenschaften von Verteilungsfunktionen	6
	1.12	Maße von Mengen mit Verteilungsfunktionen	6
	1.13	Mehrdimensionale Lebesgue-Stieltjes Maße und Verteilungsfunktionen	7
	1.14	Approximationssätze und Regularität	8
2	Das	Lebesgue-Integral	9
	2.1	Erweiterte \mathbb{R} -Funktionen	10
	2.2	Treppenfunktionen	10
	2.3	Konvergenzarten	10
	2.4	Messbare Funktionen und Maße	11
	2.5	Zufallsvariable/Verteilungen	12
		2.5.1 Diskrete Verteilungen	12
		2.5.2 Stetige Verteilungen	12
	2.6	Das Integral	12

Kapitel 1

Maße

In diesem Abschnitt werden wir uns drei Fragen stellen:

- Was können wir messen?
- Wie können wir messen?
- Wie können wir Maße ökonomisch definieren?

1.1 Mengensysteme

Lemma 1.1.1. (i) Wenn ein Dynkinsystem abgeschlossen bezüglich \cap ist, so ist es eine Sigmaalgebra.

(ii) Sei \mathfrak{C} ein Mengensystem, welches abgeschlossen bezüglich \cap ist, so gilt:

$$\mathfrak{D}(\mathfrak{C}) = \mathfrak{A}_{\sigma}(\mathfrak{C})$$

(iii) Für endliche Maße μ, ν auf einem Ring \Re ist

$$\{a \in \mathfrak{R} : \mu(A) = \nu(A)\}\$$

ein Dynkinsystem im weiteren Sinn.

Satz 1.1.2. Eine Mengenfunktion μ auf einem Semiring im engeren Sinn $\mathfrak T$ ist genau dann additiv, wenn für disjunkte Mengen $A, B \in \mathfrak T$ mit $A \cup B \in \mathfrak T$ gilt:

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

Satz 1.1.3. \mathfrak{T} sei ein Semiring (in weiterem Sinne) und $I := \{1, ..., n\}$. Dann gilt:

$$\mathfrak{R}(\mathfrak{T}) = \{\bigcup_{i=1}^n A_i, n \in \mathbb{N}, A_i \in \mathfrak{T}\} = \{\sum_{i=1}^n, n \in \mathbb{N}, A \in \mathfrak{T}\}$$

Satz 1.1.4. Sei & ein nicht leeres Mengensystem. Dann ist

$$\{\bigcap_{i=1}^{n} A_{i} | n \in \mathbb{N}, A_{1} \in \mathfrak{C}, A_{i} \in \mathfrak{C} \lor A_{i}^{c} \in \mathfrak{C}, i \ge 1\}$$

ein Semiring.

Satz 1.1.5 (monotone classstheorem). Der von einem Ring erzeugte Sigmaring stimmt mit dem erzeugten monotonen System überein (Jeder monotone Ring ist Sigmaring)

Satz 1.1.6. Sei $f: \Omega_1 \to \Omega_2$, \mathfrak{S}_2 Sigmaalgebra über Ω_2 dann ist $f^{-1}(\mathfrak{S}_2) := \{f^{-1}(A) : A \in \mathfrak{S}_2\}$ eine Sigmaalgebra über Ω_1

Satz 1.1.7. Sei $f: \Omega_1 \to \Omega_2$ und \mathfrak{C} ein beliebiges Mengensystem über Ω_2

$$\Rightarrow \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C})) = f^{-1}(\mathfrak{A}_{\sigma}(\mathfrak{C}))$$

1.2 Maße und Inhalte

Satz 1.2.1. Seien μ_n Inhalte auf \mathfrak{C} , und existiere $\mu(A) = \lim_{n \to \infty} \mu_n(A)$. Dann ist μ ein Inhalt.

Satz 1.2.2 (Satz von Vitali-Hahn Saks:). Wenn \mathfrak{C} ein Sigmaring ist und μ_n endliche Maße und für alle $A \in \mathfrak{C}$: $\mu(A) = \lim_{n \to \infty} \mu_n(A)$, dann ist μ auch ein Maß.

Satz 1.2.3. Sei μ ein Inhalt/Maß auf einem Ring. Dann gilt:

1. Monotonie:

$$A, B \in \mathfrak{R}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$$

2. Additions theorem:

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

3. Allgemeineres Additionstheorem:

$$\begin{split} \mu\left(\bigcup_{i=1}^n A_i\right) &= \sum_{J\subseteq\{1,\dots,n\}, J\neq\varnothing} (-1)^{|J|-1} \mu\left(\bigcap_{i\in J} A_i\right) \\ &= \sum_{k=1}^n (-1)^{k-1} S_k \quad f\ddot{u}r \ S_k = \sum_{i\le i_1<\dots< i_k\le n} \mu\left(\bigcap_{k=1}^n A_{i_k}\right) \end{split}$$

4. Subadditivität:

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

Satz 1.2.4. Sei μ Inhalt auf \Re , $A_n, n \in \mathbb{N}$, $A \subseteq \Re$, dann gilt:

$$\sum_{n\in\mathbb{N}} A_n \subseteq A \Rightarrow \sum_{n\in\mathbb{N}} \mu(A_n) \le \mu(A)$$

1.3 Folgerungen für Maße

Satz 1.3.1. Sei μ ein Ma β auf \Re :

1. Stetigkeit von unten:

$$A_n \uparrow A, A_n, A \in \mathfrak{R}$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

2. Stetigkeit von oben:

$$A_n \downarrow A, A_n, A \in \mathfrak{R} \land \mu(A_1) < \infty$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

1.4 Eigenschaften von Maßen (Inhalten) auf Ringen(Semiringen)

Satz 1.4.1. Sei μ ein Maß auf dem Ring \Re , $A_n \uparrow A$, A_n , $A \in \Re$. Dann gilt

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Entsprechendes für $A_n \downarrow A$.

Satz 1.4.2. Sei μ Inhalt auf Ring \Re ist genau dann ein Ma β , wenn μ stetig von unten ist.

Satz 1.4.3. Sei μ ein endlicher Inhalt auf einem Ring \Re . Dann ist μ genau dann ein Ma β , wenn er stetig von oben bei \varnothing ist, also

$$A_n \downarrow \varnothing \Rightarrow \mu(A_n) \to 0.$$

Satz 1.4.4. Sei μ ein Maß auf dem Ring(Semiring) \Re , A_n , $A \in \Re$ mit

$$A \subseteq \bigcup_{n \in \mathbb{N}} A_n$$

so gilt

$$\mu(A) \leq \sum_{n \in \mathbb{N}} \mu(A_n)$$
. (μ ist abzählbar-, bzw sigmasubadditiv)

Satz 1.4.5. Sei μ ein Ma β auf dem Sigmaring \Re und A_n eine Folge von Mengen aus \Re . Dann gilt:

$$\limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} A_k$$

Satz 1.4.6. Lemma von Borel Cantelli:

Sei μ ein Maß auf einem Sigamring \mathfrak{R} . Ist $\sum_{n\in\mathbb{N}}\mu(A_n)<\infty$ für $A_n\in\mathfrak{R}$, so gilt:

$$\mu(\limsup_{n\to\infty} A_n) = 0$$

1.5 Bedingte Wahrscheinlichkeit

Satz 1.5.1 (Borel-Cantelli II). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei $A_n \in \mathfrak{S}$ eine Folge unabhängiger Ereignisse.

Ist nun

$$\sum_{n=0}^{\infty} \mathbb{P}(A_n) = \infty$$

so folgt

$$\mathbb{P}(\limsup_{n \to \infty} A_n) = 1$$

1.6 Der Fortsetzungssatz für Maßfunktionen

In diesem Abschnitt werden wir den folgenden Satz beweisen:

Satz 1.6.1 (Fortsetzungssatz für Maßfunktionen). Sei μ ein Maß auf einem Ring \mathfrak{R} . Dann gilt:

- 1. μ kann zu einem Maß $\widetilde{\mu}$ auf dem erzeugten Sigmaring fortgesetzt werden.
- 2. Wenn μ sigmaendlich ist, dann ist $\widetilde{\mu}$ eindeutig bestimmt.

Satz 1.6.2 (Eigenschaften von äußeren Maßfunktionen). Sei μ ein Maß und μ^* das von μ erzeugte äußere Maß. Dann gilt:

1.
$$\mu^*(A) \geq 0$$

1.7. ZUSAMMENHANG ZWISCHEN DEM MASS AUF DEM RING UND DEM MASS AUF DEM SIGMARING KAPITEL 1. MASSE

- 2. $\mu^*(\emptyset) = 0$
- 3. Monotonie:

$$A \subseteq B \subseteq \Omega \Rightarrow \mu^*(A) \le \mu^*(B)$$

4. Sigmasubadditivität:

$$A\subseteq\bigcup_{n\in\mathbb{N}}A_n\subseteq\Omega$$

$$\Rightarrow \mu^*(A) \le \sum_{n \in \mathbb{N}} \mu^*(A_n)$$

Satz 1.6.3. 1. m ist eine Sigmaalgebra, $\mu^*|_m$ ein Ma β .

2. Wenn μ^* von einem Maß μ auf einem Ring \Re erzeugt wird und $\mu^*(B) = \mu(B)$, so folgt $\Re \subseteq m$.

Satz 1.6.4. Ist $\widetilde{\mu}$ eine Fortsetzung von μ auf $\mathfrak{R}_{\sigma}(\mathfrak{R})$ ist, dann gilt

$$\widetilde{\mu} = \mu^*|_{\mathfrak{R}_{\sigma}}$$

Satz 1.6.5. Ist μ auf \Re sigmaendlich, dann auch auf dem erzeugten Sigmaring.

Satz 1.6.6. $F\ddot{u}r A \in \mathfrak{R}_{\sigma}(\mathfrak{R}) : \widetilde{A} \leq \mu^*(A)$

Satz 1.6.7. $\widetilde{\mu}(A) = \mu^*(A)$ (siehe oben)

1.7 Zusammenhang zwischen dem Maß auf dem Ring und dem Maß auf dem Sigmaring

Satz 1.7.1 (Approximationstheorem I). Sei μ ein sigmaendliches Maß auf einem Ring \Re . Sei $A \in \Re_{\sigma}(\Re), \mu(A) < \infty$. Dann gilt

$$\forall \epsilon > 0 : \exists B \in \Re : \mu(A\Delta B) < \epsilon$$

Satz 1.7.2. Ist A messbar, so kann man A schreiben als Vereinigung einer Menge aus dem Sigmaring und einer Nullmenge, also

$$A = F \cup N, F \in \mathfrak{R}_{\sigma}, N \subseteq M \in \mathfrak{R}_{\sigma} : \mu(M) = 0$$

Satz 1.7.3. Ist $\mu *$ das von einem Ma $\beta \mu$ auf dem Ring \Re erzeugte äußere Ma β , so ist ein $A \subseteq \Omega$ messbar genau dann, wenn

$$\forall B \in \mathfrak{R} : (\mu^*(B) =) \mu(B) = \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Ist zusätzlich $\mu(\Omega) < \infty \ (\mu^*(\Omega) < \infty)$, dann ist A messbar, wenn

$$\mu(\Omega) = \mu^*(A) + \mu^*(A^c).$$

1.8 Maße auf $(\mathbb{R}, \mathfrak{B})$

Die Frage, die sich stellt ist: Ist μ^* auf \mathbb{R} frei definiert, wann gilt $\mathfrak{B} \subseteq \mathfrak{M}_{\mu^*}$?

Satz 1.8.1 (Satz von Carathéodory). $\mathfrak{B} \subseteq \mathfrak{M}_{\mu^*}$ genau dann, wenn μ^* arithmetisch ist.

1.9 Maße auf $(\mathbb{R}, \mathfrak{B})$, zweiter Anlauf

Im folgenden ist immer $\mathfrak{T} := \{(a, b], a \leq b, a, b \in \mathbb{R}\}.$

Satz 1.9.1. μ ist genau dann endliches Maß auf \mathfrak{T} , wenn

$$\forall x \in \mathbb{R} \exists \delta(x) > 0 : \mu((x - \delta(x), x]) < \infty$$

Satz 1.9.2. Zu jeder Lebesgue-Stieltjes Maßfunktion gibt es eine Verteilungsfunktion. Diese ist bis auf eine additive Konstante eindeutig bestimmt.

1.10 Ergänzungen zu bedingten Wahrscheinlichkeiten

Satz 1.10.1 (Satz von der vollständigen Wahrscheinlichkeit). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei dann $(B_i, i \in I)$ eine Partition, I höchstens abzählbar mit $B_i \in \mathfrak{S}, \mathbb{P}(B_i) > 0, \sum_{i \in I} B_i = \Omega$ und $A \in \mathfrak{S}$. Dann ist

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(B_i) \mathbb{P}(A|B_i).$$

Satz 1.10.2 (Satz von Bayes). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei wieder $(B_i, i \in I)$ eine Partition, I höchstens abzählbar mit $B_i \in \mathfrak{S}, \mathbb{P}(B_i) > 0, \sum_{i \in I} B_i = \Omega$ und $A \in \mathfrak{S}$. Zusätzlich zu vorher gelte $\mathbb{P}(A) > 0$. Dann gilt:

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A \cap B_i)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_i)\mathbb{P}(A|B_i)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_i)\mathbb{P}(A|B_i)}{\sum_{j \in I} \mathbb{P}(B_j)\mathbb{P}(A|B_j)}$$

1.11 Eigenschaften von Verteilungsfunktionen

Satz 1.11.1. Sei $F : \mathbb{R} \to \mathbb{R}$ eine Verteilungsfunktion. Dann gilt:

1. Monotonie:

$$a < b \Rightarrow F(a) < F(b)$$

2. Rechtsstetigkeit:

$$b_n \downarrow b \Rightarrow F(b_n) \downarrow F(b)$$

Satz 1.11.2. Sei $F: \mathbb{R} \to \mathbb{R}$ nichtfallend und rechtsstetig. Dann ist durch

$$\mu_F((A,b]) := F(b) - F(a)$$

ein Maß auf $\mathfrak{T} = \{(a, b], a \leq b, a, b, \in \mathbb{R}\}$ definiert.

1.12 Maße von Mengen mit Verteilungsfunktionen

Ab diesem Kapitel werden wir offene Intervallgrenzen auch mit eckigen Klammern schreiben. Wir wissen schon:

$$\mu([a, b]) = F(b) - F(a).$$

Was passiert, $f \ddot{u} r \mu([a, b]), \mu([a, b]), \mu([a, b])$?

$$\mu([a,b]) = \mu(\bigcap_{n \in \mathbb{N}}]a - \frac{1}{n}, b]) = \lim_{n \to \infty} \mu(F(b) - F(a - \frac{1}{n})) = F(b) - F(a - 0)$$

$$\mu(]a,b[) = \mu(\bigcup_{n \in \mathbb{N}}]a,b-\frac{1}{n}]) = \lim_{n \to \infty} (F(b-\frac{1}{n}) - F(a)) = F(b-0) - F(a)$$

$$\mu([a,b]) = F(b-0) - F(a-0)$$

Und damit auch

$$\mu(\lbrace x \rbrace) = \mu([x,x]) = F(x) - F(x-0) (= \text{Sprungh\"ohe von } F \text{ in } x)$$

Satz 1.12.1. Jedes (sigma-)endliche Ma β μ auf (Ω, \mathfrak{S}) lässt sich darstellen als Summe eines stetigen Ma β es μ_c und eines diskreten Ma β es μ_d , wobei

• μ_d diskret, wenn es eine Menge D gib, die höchstens abzählbar ist, sodass

$$\mu(D^c) = 0.$$

• μ_c stetig, wenn

$$\forall w \in \Omega : \mu_c(\{w\}) = 0.$$

 $N\ddot{a}mlich$

$$\mu(A) = \mu(A \cap D^c) + \mu(A \cap D) = 0 + \mu(\bigcup_{x \in A \cap D} \{x\}) = \sum_{x \in A \cap D} \mu(\{x\}) = \sum_{x \in A} \mu(\{x\})$$

Satz 1.12.2. Jede diskrete Verteilungsfunktion (Verteilungsfunktion eines diskreten, endlichen $Ma\beta es$) auf \mathbb{R} lässt sich anschreiben als

$$F(x) = \sum_{y \le x} p(y).$$

Ist $\sum_{y \in \mathbb{R}} p(y) = 1$, so nennen wir p Wahrscheinlichkeitsfunktion. Umgekehrt gibt es zu jeder Funktion p mit $p(y) \geq 0$ eine diskrete Verteilungsfunktion.

Satz 1.12.3. Ist eine Verteilungsfunktion F(x) (stückweise) stetig differenzierbar, $f(x) := F'(x) \ge 0$, so ist

$$\mu_F(]a,b]) = \int_a^b f(x)dx.$$

f(x) heißt dann Dichtefunktion.

1.13 Mehrdimensionale Lebesgue-Stieltjes Maße und Verteilungsfunktionen

Der hier verwendete Maßraum ist $(\mathbb{R}^d, \mathfrak{B}_d)$ mit

$$\mathfrak{B}_d := \mathfrak{A}_{\sigma} \left(\{ [a, b] : a, b \in \mathbb{R}, a \leq b \} \right),$$

wobei die Ungleichung $a \leq b$ komponentenweise zu verstehen ist, also

$$a \leq b : \Leftrightarrow \forall i \in \{1, ..., d\} : a_i \leq b_i$$

und

$$|a, b| := |a_1, b_1| \times |a_2, b_2| \times ... \times |a_d, b_d|$$

Satz 1.13.1. F ist eine Verteilungsfunktion von einem Lebesgue-Stieltjes Ma β μ , wenn

• F rechtsstetig ist, also

$$x_n \downarrow x \Rightarrow F(x_n) \downarrow F(x)$$

• F monoton ist, also

$$a \le b \Rightarrow F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2) \ge 0$$

Satz 1.13.2. Sei λ_d das Lebesguemaß auf \mathfrak{B}_d . Dann gilt:

• λ_d ist translations invariant:

$$A \oplus c := \{x + c : x \in A\},$$

$$A \in \mathcal{L}_d, c \in \mathbb{R}^d \Rightarrow A \oplus c \in \mathcal{L}_d, \lambda_d(A \oplus c) = \lambda_d(A)$$

Satz 1.13.3. Wenn μ auf $(\mathbb{R}^d, \mathfrak{B}_d)$ ein translationsinvariantes Lebesgue-Stieltjes Ma β ist, dann gilt

$$\mu = c\lambda_d, c > 0.$$

Satz 1.13.4. Seien Ω_1, Ω_2 Mengen und $\mathfrak{C}_1, \mathfrak{C}_2$ Mengensysteme über Ω_1, Ω_2 . Dann ist

$$\mathfrak{A}_{\sigma}(\mathfrak{C}_1) \times \mathfrak{A}_{\sigma}(\mathfrak{C}_2) = \mathfrak{A}_{\sigma}(\mathfrak{C}_1 \otimes \mathfrak{C}_2),$$

wobei

$$\mathfrak{C}_1 \otimes \mathfrak{C}_2 := \{ A_1 \times A_2 : A_1 \in \mathfrak{C}_1, A_2 \in \mathfrak{C}_2 \}$$

und

$$\mathfrak{A}_{\sigma}(\mathfrak{C}_1) \times \mathfrak{A}_{\sigma}(\mathfrak{C}_2) := \mathfrak{A}_{\sigma}(\mathfrak{A}_{\sigma}(\mathfrak{C}_1 \otimes \mathfrak{C}_2))$$

1.14 Approximationssätze und Regularität

Satz 1.14.1. Ein regulärer Inhalt ist ein Maß.

Satz 1.14.2. Sei μ ein Lebesgue-Stieltjes Ma β auf $(\mathbb{R}^d, \mathfrak{B}_d)$, dann ist μ regulär von oben.

Satz 1.14.3. Ist μ ein sigmaendliches Ma β auf $(\mathbb{R}^d, \mathfrak{B}_d)$, so ist μ regulär von unten.

Zusammenfassend ergibt das dann:

Satz 1.14.4. Jedes Lebesgue-Stieltjes Maß ist regulär.

Satz 1.14.5. Ein endliches/sigmaendliches Maß μ auf $(\mathbb{R}^d, \mathfrak{B}_d)$ ist regulär von unten.

Kapitel 2

Das Lebesgue-Integral

Motivation für dieses Kapitel: Wir wollen einen neuen Integralbegriff auf Basis des Riemann-Integrals definieren,

$$\int f = \int_0^\infty \mu([f > x]) dx,$$

wobei f auf beliebigen Mengen definiert sein darf, also wenn μ Maß auf einem Messraum (Ω, \mathfrak{S}) , dann ist

$$f:\Omega\to\mathbb{R}$$

und $\mu([f>x])$ definiert sein soll, also $[f>x]\in\sigma,$ wobei

$$[f > x] := \{\omega \in \Omega : f(\omega) > x\}.$$

Satz 2.0.1. Sei \mathfrak{C} ein Mengensystem über Ω_2 , das \mathfrak{S}_2 erzeugt, $\mathfrak{S}_2 = \mathfrak{A}_{\sigma}(\mathfrak{C})$, dann ist $f: \Omega_1 \to \Omega_2$ $\mathfrak{S}_1 - \mathfrak{S}_2$ -messbar genau dann, wenn

$$f^{-1}(\mathfrak{C}) \subset \mathfrak{S}_1$$

Satz 2.0.2. Sei $f: \mathbb{R} \to \mathbb{R}$, bzw $f: \mathbb{R}^d \to \mathbb{R}$, dann ist f Borelmessbar, wenn f

- monoton oder
- stetig

ist.

Satz 2.0.3. Ist

$$f_1:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

und

$$f_2:(\Omega_2,\mathfrak{S}_2)\to(\Omega_3,\mathfrak{S}_3),$$

dann ist auch

$$f_2 \circ f_1 : (\Omega_1, \mathfrak{S}_1) \to (\Omega_3, \mathfrak{S}_3)$$

messbar.

Satz 2.0.4. Seien $(\Omega_1, \mathfrak{S}_1), (\Omega_2, \mathfrak{S}_2), (\Omega_3, \mathfrak{S}_3)$ Messräume. Wir bilden den Produktraum $(\Omega_2 \times \Omega_3, \mathfrak{S}_2 \times \mathfrak{S}_3)$. Dann ist

$$f:\Omega_1\to\Omega_2\times\Omega_3, f=(f_2,f_3)$$

genau dann

$$f:(\Omega_1,\mathfrak{S}_1)\to (\Omega_2\times\Omega_3,\mathfrak{S}_2\times\mathfrak{S}_3),$$

wenn

$$f_2:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

und

$$f_3:(\Omega_1,\mathfrak{S}_1)\to(\Omega_3,\mathfrak{S}_3).$$

Satz 2.0.5. *Ist* $f : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ *stetig, so ist* f *Borel-messbar.*

Satz 2.0.6. *Ist* $f : \mathbb{R} \to \mathbb{R}$ *monoton, so ist* f *Borel-messbar.*

Satz 2.0.7. $f := (f_1, ..., f_d) : (\Omega, \mathfrak{S}) \to (\mathbb{R}^d, \mathfrak{B}_d)$ genau dann, wenn

$$\forall i = 1, ..., d : f_i : (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B}).$$

Satz 2.0.8. Aus $f_i:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B}),\ i=1,2\ folgt$

- 1. $f_1 + f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$),
- 2. $f_1f_2:(\Omega,\mathfrak{S})\to\mathbb{R}),$
- 3. $f_1 \wedge f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$),
- 4. $f_1 \vee f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$).

2.1 Erweitert reellwertige Funktionen

Whaaaaat??

Kuso abschreiben... S.86

Satz 2.1.1. Sei f_n eine Folge messbarer Funktionen. Dann ist

$$M := [\liminf f_n = \limsup f_n] \in \mathfrak{S}$$

Satz 2.1.2 (7.24).

2.2 Treppenfunktionen

Lemma 2.2.1. Eine Funktion $t: \Omega \to \mathbb{R}$ ist genau dann eine Treppenfunktion, wenn es Mengen $B_1, ..., B_m$ und reelle Zahlen gibt, sodass $t = \sum_{i=1}^m \beta_j \mathbb{1}_{B_j}$.

Satz 2.2.2. Zu jeder messbaren positiven Funktion f gibt es eine monoton steigende Folge (t_n) aus positiven Treppenfunktionen, sodass

$$\forall \omega \in \Omega : f(\omega) = \lim_{n \to \infty} t_n(\omega).$$

Weiters gibt es zu jeder messbaren Funktion f eine Folge (t_n) aus Treppenfunktionen, sodass

$$\forall \omega \in \Omega : f(\omega) = \lim_{n \to \infty} t_n(\omega)$$

und

$$\forall n \in \mathbb{N} : |t_n| \le |f|.$$

Ist f beschränkt, so konvergiert (t_n) gleichmäßig gegen f.

2.3 Konvergenzarten

Satz 2.3.1. Sei

$$\mathfrak{F} := \{ f : (\mathbb{R}^{(n)}, \mathfrak{B}_{(n)}) \to (\mathbb{R}^{(m)}, \mathfrak{B}_{(m)}) \}.$$

Nun ist \mathfrak{F} die kleinste Menge der reellen Funktionen, die die stetigen Funktionen enthält und bezüglich der Bildung von punktweisen Grenzwerten abgeschlossen ist

Satz 2.3.2. Sei c > 0. Dann ist

ess $\sup cf = c \operatorname{ess sup} f$.

Weiters ist für $f,g \geq 0$

$$\operatorname{ess\ sup} f + g \leq \operatorname{ess\ sup} f + \operatorname{ess\ sup} g$$

Satz 2.3.3 (Satz von Egorov). Sei $(\Omega, \mathfrak{S}, \mu)$ endlich

$$f_n, f: (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})$$

dann ist

$$f_n \to f \ \mu - fast \ \ddot{u}berall \Leftrightarrow f_n \to f \ \mu - fast \ gleichmäßig.$$

Satz 2.3.4. Gilt $f_n \to f$ im Ma β und $f_n \to g$ im Ma β , so folgt

$$f = g$$
 fast überall.

Lemma 2.3.5. Sei $\mathcal{L}_0 = \{f : (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})\}$. Dann ist

$$d(f,g) := \inf\{\varepsilon > 0 : \mu([|f - g| > \varepsilon]) < \varepsilon\}$$

eine Pseudometrik auf \mathcal{L}_0 . d heißt Lévy-Metrik.

Im Folgenden arbeiten wir auf den folgenden Satz hin:

Satz 2.3.6. (L_0, d) ist vollständig.

Satz 2.3.7. Sei (f_n) . Es gilt

$$f_n \to f$$
 im $Ma\beta \Leftrightarrow d(f_n, f) \to 0$.

Satz 2.3.8. Sei (f_n) Cauchyfolge im Ma β . Dann existiert eine Teilfolge (f_{n_k}) , die fast gleichmäßig konvergiert.

Erinnerung: Sei

$$f:\Omega_1\to\Omega_2$$
,

 \mathfrak{S}_2 Sigmaalgebra über Ω_2 , $f^{-1}(\mathfrak{S}_2)$ ist Sigmaalgebra über Ω_1 (und zwar die kleinste Sigmaalgebra, bezüglich der f messbar ist).

Satz 2.3.9. Sei $f: \Omega_1 \to \Omega_2$, $(\Omega_2, \mathfrak{S}_2)$ ein Messraum. Dann ist

$$g:\Omega_1\to\mathbb{R}$$

genau dann bezüglich $f^{-1}(\mathfrak{S}_2)$ messbar (also $g:(\Omega_1,f^{-1}(\mathfrak{S}_2))\to(\mathbb{R},\mathfrak{B})$) wenn es ein $h:(\Omega_2,\mathfrak{S}_2)\to(\mathbb{R},\mathfrak{B})$ mit $g=h\circ f$ gibt.

2.4 Messbare Funktionen und Maße

Satz 2.4.1. Sei $(\Omega_1, \mathfrak{S}_1, \mu_1)$ ein Maßraum und $(\Omega_2, \mathfrak{S}_2)$ ein Messraum. Für eine Funktion

$$f:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

kann man ein eindeutig bestimmtes Maß

$$\mu_2(B) = \mu_1(f^{-1}(B))$$

definieren, sodass f eine maßtreue Abbildung wird. μ_2 heißt das von f induzierte Maß.

2.5 Zufallsvariable und ihre Vertilungen

2.5.1 Diskrete Verteilungen

2.5.2 Stetige Verteilungen

Satz 2.5.1. Sei $U \sim U[0,1]$ und F eine Verteliungsfunktion. Dann ist

$$F^{-1}(U) \sim F$$
.

Satz 2.5.2. Sei F stetig und $X \sim F$. Dann gilt

$$F(X) \sim U(0,1)$$
.

2.6 Das Integral

Anschaulich: Beim Lebesgue Integral wird im Gegensatz zum Riemann-Integral der Grenzwert nicht über vertikale, sondern über horizontale "Scheiben" gebildet.

Satz 2.6.1.

(1) Sei $f \geq 0$. Dann gilt

$$\int f \ge 0,$$

wobei

$$\int f = 0 \Leftrightarrow f = 0\mu - fast \ \ddot{u}berall$$

gilt.

(2) Sei $f \leq g$, so folgt

$$\int f \leq \int g.$$

(3) Sei $c \geq 0$, dann gilt

$$\int cf = c \int f.$$

(4) Seien f, g. Dann gilt

$$\int (f+g) = \int f + \int g.$$

(5) Satz von der monotonen Konvergenz, Satz von Beppo-Levi: Sei $f_n \uparrow f$. Dann folgt

$$\int f_n \uparrow \int f$$

(6) Sei $f = \sum_{i=1}^{n} a_i A_i(), a_i \ge 0, A_i \in \mathfrak{S}$ disjunkt, also eine Treppenfunktion. Dann gilt

$$\int f d\mu = \sum_{i=1}^{n} a_i \mu(A_i)$$

(7) Gilt $f = g \mu$ -fast überall, so folgt

$$\int f = \int g$$

(8)
$$\mu(A) := \int_A f = \int A()f$$

ist ein Maß.

Satz 2.6.2. Für eine messbare Funktion f gilt nun

(1)
$$f = g \mu$$
-fast überall, dann folgt

$$\int f = \int g$$

(2)
$$\int cf = c \int f$$

$$\int f + g = \int f + \int g$$

(4)
$$\sigma(A) = \int_{A} f d\mu$$

 $ist\ sigma additiv.$

Satz 2.6.3. Sei f fast überall messbar. Dann kann man f erweitern:

$$\exists \tilde{f} \ messbar : f = \tilde{f} \quad \mu - fast \ \ddot{u}berall$$