常用变换	傅里叶变换	拉普拉斯变换	
鼠: $\delta(t)$	1	1	
牛 : <i>C</i>	$2\pi C\delta(\omega)$		
虎: ε(t)	$\pi\delta(\omega)+rac{1}{j\omega}$	$\frac{1}{s}$	$\frac{z}{z-1}$
免: $sgn(t)$	$\frac{2}{j\omega}$		
龙: $e^{j\omega_c t}$	$2\pi \mathcal{S}(\omega-\omega_c)$		
蛇: $cos\omega_c t$	$\pi [\delta(\omega + \omega_c) + \delta(\omega - \omega_c)]$	$cos \omega_c t \epsilon(t) \leftrightarrow rac{s}{s^2 + \omega_c^2}$	$cosoldsymbol{eta}kToldsymbol{\epsilon}(k)\leftrightarrow rac{z(z-coseta T)}{z^2-2zcoseta T+1}$
马: $sin\omega_c t$	$j\pi[oldsymbol{\mathcal{S}}(\pmb{\omega}+\pmb{\omega}_c)-oldsymbol{\mathcal{S}}(\pmb{\omega}-\pmb{\omega}_c)]$	$sin m{\omega}_c t m{\epsilon}(t) \leftrightarrow rac{m{\omega}_c}{s^2 + m{\omega}_c^2}$	$sinoldsymbol{eta}kToldsymbol{\epsilon}(k)\leftrightarrow rac{zsinoldsymbol{eta}T}{z^2-2zcosoldsymbol{eta}T+1}$
羊: $\frac{1}{2}\sum_{n=-\infty}^{\infty}A_ne^{jn\Omega t}$	$\pi \sum_{n=-\infty}^{\infty} A_n {oldsymbol{\mathcal{S}}}(\pmb{\omega} - n\Omega)$		
猴: $oldsymbol{\mathcal{S}}_T(t) = \sum_{n=-\infty}^\infty oldsymbol{\mathcal{S}}(t-nT)$	$\sum_{n=-\infty}^{\infty} e^{jnT\omega} = \ \Omega oldsymbol{\delta}_{\Omega}(oldsymbol{\omega}), \Omega = rac{2\pi}{T}$		
鸡: $A(1-rac{\ t\ }{ au}), \ t\ \leq rac{ au}{2}$	$A \tau S a^2(\frac{\tau}{2} \omega)$		
狗: $AG_{\mathcal{T}}(t)=A, \ t\ \leq rac{ au}{2}$	$A au Sa(rac{ au}{2} oldsymbol{\omega})$		
猪: $e^{-\alpha t} \epsilon(t), \alpha > 0$	$\frac{1}{\alpha + j\omega}$	$\frac{1}{s+\alpha}$	
	$e^{-lpha \ t\ }$ $m{\epsilon}(t),$ $lpha>0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$	
$e^{\alpha t}t^n \epsilon(t)$		$\frac{n!}{(s-\alpha)^{n+1}}$	
$\mathcal{S}^{(n)}(t)$		s^n	
$v^k \epsilon(k)$			$\frac{z}{z-v}$
$kv^{k-1} \epsilon(k)$			$\frac{z}{(z-v)^2}$
$C_k^n v^{k-n} \epsilon(k)$			$\frac{z}{(z-v)^{n+1}}$