BioMon Sensor

Datasheet

Version 1.1

SFH7050

Features:

- · Multi chip package featuring 3 emitters and one detector
- Small package: (WxDxH) 4.7 mm x 2.5 mm x 0.9 mm
- · Light Barrier to block optical crosstalk

Applications

- Heart rate monitoring
- · Pulse oximetry

tor:

- Wearable devices (e.g. smart watches, fitness trackers, ...)
- Mobile devices

Ordering Information SFH7050 BioMon

Type:	Ordering Code
SFH7050	Q65111A6271

Pin configuration

Pin	Name	Function		
1	GC Green LED Cathode			
2	GA	Green LED Anode		
3	RA	Red LED Anode		
4	PA	Photodiode Anode		
5	PC	Photodiode Cathode		
6	RC	Red LED Cathode		
7	IA	Infrared LED Anode		
8	IC	Infrared LED Cathode		

Top view

Block diagram

Maximum Ratings ($T_A = 25$ °C)

Parameter	Symbol	Values	Unit	
General				
Operating temperature range	T _{op}	-40 85	°C	
Storage temperature range	T _{stg}	-40 85	°C	
ESD withstand voltage (acc. to ANSI/ ESDA/ JEDEC JS-001 - HBM)	V _{ESD}	2	kV	
Infrared Emitter				
Reverse Voltage	V_R	5	٧	
Forward current	I _{F (DC)}	60	mA	
Surge current $(t_p = 100 \ \mu s, \ D = 0)$	I _{FSM}	1	А	
Red Emitter				
Reverse voltage	V_R	12	٧	
Forward current	I _{F (DC)}	40	mA	
Surge current $(t_p = 100 \ \mu s, \ D = 0)$	I _{FSM}	600	mA	
Green Emitter				
Reverse voltage	V _R	not designed for reverse operation	V	
Forward current	I _{F (DC)}	25	mA	
Surge current $(t_p = 100 \ \mu s, D = 0)$	I _{FSM}	300	mA	
Detector				
Reverse voltage	V_R	16	V	

Note: The stated maximum ratings refer to single emitter chip operation, unless otherwise specified.

Characteristics $(T_A = 25 \, ^{\circ}C)$

Parameter		Symbol	Value	Unit
Infrared Emitter				
Wavelength of peak emission $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ.)	λ_{peak}	950	nm
Centroid Wavelength $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ. (max.))	$\lambda_{centroid}$	940 (±10)	nm
Spectral bandwidth at 50% of I_{max} ($I_F = 20 \text{ mA}$, $t_p = 20 \text{ ms}$)	(typ.)	Δλ	42	nm
Half angle	(typ.)	φ	± 60	0
Rise and fall time of I_e (10% and 90% of $I_{e max}$) ($I_F = 100$ mA, $t_p = 16$ µs, $R_L = 50$ Ω)	(typ.)	t _r , t _f	16	ns
Forward voltage $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ. (max.))	V _F	1.3 (≤ 1.8)	V
Reverse current		I _R	not designed for reverse operation	μΑ
Radiant intensity $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ.)	l _e	2	mW / sr
Total radiant flux $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ.)	Фе	5.3	mW
Temperature coefficient of I_e or Φ_e (I_F = 20 mA, t_p = 20 ms)	(typ.)	TC _I	-0.3	% / K
Temperature coefficient of V_F ($I_F = 20 \text{ mA}$, $t_p = 20 \text{ ms}$)	(typ.)	TC _V	-0.8	mV / K
Temperature coefficient of $\lambda_{centroid}$ (I _F = 20 mA, t _p = 20 ms)	(typ.)	TC_{\lambdacentroid}	0.25	nm / K

Characteristics (T_A = 25 °C)

Parameter		Symbol	Value	Unit
Red Emitter				
Wavelength of peak emission (I _F = 20 mA)	(typ.)	λ_{peak}	660	nm
Centroid Wavelength (I _F = 20 mA)	(typ. (max.))	$\lambda_{centroid}$	655 (±3)	nm
Spectral bandwidth at 50% of I_{max} ($I_{F} = 20 \text{ mA}$)	(typ.)	Δλ	17	nm
Half angle	(typ.)	φ	± 60	0
Rise and fall time of I_e (10% and 90% of $I_{e max}$) ($I_F = 100$ mA, $t_p = 16$ µs, $R_L = 50$ Ω)	(typ.)	t _r , t _f	17	ns
Forward voltage (I _F = 20 mA)	(typ. (max.))	V _F	2.1 (≤ 2.8)	V
Reverse current	(typ. (max.))	I _R	not designed for reverse operation	μΑ
Radiant intensity $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ.)	l _e	2.6	mW/sr
Total radiant flux $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ.)	Фе	6.4	mW
Temperature coefficient of $\lambda_{centroid}$ (I _F = 20 mA, -10°C \leq T \leq 100°C)	(typ.)	TC _{λcentroid}	0.13	nm / K

Characteristics (T_A = 25 °C)

Parameter		Symbol	Value	Unit
Green Emitter				
Wavelength of peak emission $(I_F = 20 \text{ mA})$	(typ.)	λ_{peak}	525	nm
Centroid Wavelength (I _F = 20 mA)	(typ. (max.))	$\lambda_{centroid}$	530 (±10)	nm
Spectral bandwidth at 50% of I_{max} ($I_F = 20 \text{ mA}$)	(typ.)	Δλ	34	nm
Half angle	(typ.)	φ	± 60	0
Rise and fall time of I_e (10% and 90% of $I_{e max}$) ($I_F = 100$ mA, $I_p = 16$ µs, $I_p = 100$ $I_p = 100$	(typ.)	t _r , t _f	32	ns
Forward voltage (I _F = 20 mA)	(typ. (max.))	V _F	3.4 (≤ 4.4)	V
Reverse current		I _R	not designed for reverse operation	μΑ
Radiant intensity $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ.)	l _e	1.3	mW/sr
Total radiant flux $(I_F = 20 \text{ mA}, t_p = 20 \text{ ms})$	(typ.)	Фе	2.9	mW
Temperature coefficient of $\lambda_{centroid}$ ($I_F = 20 \text{ mA}, -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$)	(typ.)	TC _{λcentroid}	0.03	nm / K
Temperature coefficient of V_F ($I_F = 20 \text{ mA}, -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$)	(typ.)	TC _V	-3.60	mV / K

Characteristics (T_A = 25 °C)

Parameter		Symbol	Value	Unit
Detector				
Photocurrent $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 530 \text{ nm}, V_R = 5 \text{ V})$	(typ.)	I _{P,530}	0.42	μА
Photocurrent $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 655 \text{ nm}, V_R = 5 \text{ V})$	(typ.)	I _{P,655}	0.76	μΑ
Photocurrent $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 940 \text{ nm}, V_R = 5 \text{ V})$	(typ.)	I _{P,940}	1.3	μΑ
Wavelength of max. sensitivity	(typ.)	λ _{S max}	920	nm
Spectral range of sensitivity	(typ.)	λ _{10%}	400 1100	nm
Radiation sensitive area	(typ.)	Α	1.7	mm ²
Dimensions of radiant sensitive area	(typ.)	LxW	1.3 x 1.3	mm x mm
Dark current (V _R = 5 V, Ee = 0 mW/cm ²)	(typ. (max.))	I _R	1 (≤ 5)	nA
Spectral sensitivity of the chip $(\lambda = 530 \text{ nm})$	(typ.)	S _{λ530}	0.26	A/W
Spectral sensitivity of the chip $(\lambda = 655 \text{nm})$	(typ.)	S _{\lambda655}	0.47	A/W
Spectral sensitivity of the chip $(\lambda = 940 \text{ nm})$	(typ.)	S _{λ940}	0.77	A/W
Open-circuit voltage $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 530 \text{ nm})$	(typ.)	V _{O,530}	240	mV
Short-circuit current $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 530 \text{ nm})$	(typ.)	I _{SC,530}	0.40	μΑ
Open-circuit voltage $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 655 \text{nm})$	(typ.)	V _{O,655}	250	mV
Short-circuit current $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 655 \text{ nm})$	(typ.)	I _{SC,655}	0.71	μА
Open-circuit voltage $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 940 \text{ nm})$	(typ.)	V _{O,940}	270	mV
Short-circuit current $(E_e = 0.1 \text{ mW/cm}^2, \lambda = 940 \text{ nm})$	(typ.)	I _{SC,940}	1.2	μΑ

Characteristics ($T_A = 25$ °C)

Parameter		Symbol	Value	Unit
Rise and fall time (V _R = 3.3 V, R _L = 50 Ω , λ = 940 nm)	(typ.)	t _r , t _f	2.3	μs
Forward voltage (I _F = 10 mA, E = 0 mW/cm ²)	(typ.)	V _F	0.9	V
Capacitance (V _R = 5 V, f = 1 MHz, E = 0 mW/cm²)	(typ.)	C ₀	5	pF

Diagrams for infrared emitter

Relative spectral emission 1)

 $I_{rel} = f(\lambda), T_A = 25 \, ^{\circ}C, I_F = 20 \, \text{mA}$

Forward current 1)

 $I_F = f(V_F)$, single pulse, $t_D = 100 \mu s$, $T_A = 25^{\circ} C$

Relative radiant flux 1)

 $\Phi_{\rm e}/\Phi_{\rm e}(\rm 20~mA) = f(I_F),$ single pulse, $\rm t_p = 25\mu s, \, T_A = 25^{\circ}C$

Diagrams for infrared emitter

Max. permissible forward current 1)

$$I_{F,max} = f(T_A), R_{thJA} = 800 \text{ K/W}$$

Permissible pulse handling capability 1)

$$I_F = f(t_p)$$
, $T_A = 40$ °C, duty cycle D = parameter

Permissible pulse handling capability 1)

$$I_F = f(t_p)$$
, $T_A = 85$ °C, duty cycle D = parameter

Diagrams for red emitter

Relative spectral emission 1)

$$I_{rel} = f(\lambda), T_A = 25 \, ^{\circ}C, I_F = 20 \, \text{mA}$$

Forward current 1)

$$I_F = f(V_F), T_A = 25^{\circ}C$$

Relative radiant flux 1)

$$\Phi_{e}\,/\Phi_{e}($$
20 mA) = f(I_F), single pulse, t_{p} = 25 μ s, T_{A} = 25 $^{\circ}C$

Diagrams for red emitter

Max. permissible forward current 1)

$$I_{F,max} = f(T_A), R_{thJA} = 800 \text{ K/W}$$

Permissible pulse handling capability 1)

$$I_F = f(t_p)$$
, $T_A = 40$ °C, duty cycle D = parameter

Permissible pulse handling capability 1)

$$I_F = f(t_p)$$
, $T_A = 85$ °C, duty cycle D = parameter

Diagrams for green emitter

Relative spectral emission 1)

 $I_{rel} = f(\lambda), T_A = 25 \, ^{\circ}C, I_F = 20 \, \text{mA}$

Forward current 1)

Relative radiant flux 1)

 Φ_e/Φ_e (20 mA) = f(I_F), single pulse, t_p = 25 μ s, T_A = 25 $^{\circ}$ C

Diagrams for green emitter

Max. permissible forward current 1)

$$I_{F,max} = f(T_A), R_{thJA} = 800 \text{ K/W}$$

Permissible pulse handling capability 1)

$$I_F = f(t_p)$$
, $T_A = 40$ °C, duty cycle D = parameter

Permissible pulse handling capability 1)

$$I_F = f(t_p)$$
, $T_A = 85$ °C, duty cycle D = parameter

Diagrams for detector

Relative spectral sensitivity 1)

$$S_{rel} = f(\lambda), T_A = 25 \, ^{\circ}C$$

Dark current 1)

$$I_R = f(V_R)$$
, $E = 0 \text{ mW/cm}^2$, $T_A = 25 \text{ °C}$

Photocurrent 1)

$$I_P(V_R = 5 \text{ V}), T_A = 25 \text{ }^{\circ}\text{C}$$

Capacitance 1)

$$C = f(V_B)$$
, $f = 1$ MHz, $E = 0$ mW/cm², $T_A = 25$ °C

Directional characteristics of detector 1)

 $S_{rel} = f(\phi)$

Radiation characteristics of emitters 1)

 $I_{rel} = f(\phi)$

Package Outline

Pin1 Green LED cathode Pin2 Green LED anode Pin3 Red LED anode Pin4 PD anode PD cathode Pin5 Pin6 Red LED cathode IR LED anode Pin7 Pin8 IR LED cathode

Dimensions in mm.

Package:

chip on board

Approximate Weight:

18 mg

Recommended solder pad design

Component Location on Pad

Dimensions in mm (inch).

E062.3010.172-01

Reflow Soldering Profile

Product complies to MSL Level 4 acc. to JEDEC J-STD-020D.01

OHA04612

Profile Feature	Symbol	Pb-F	ree (SnAgCu) Asse	embly	Unit
Profil-Charakteristik	Symbol	Minimum	Recommendation	Maximum	Einheit
Ramp-up rate to preheat*) 25 °C to 150 °C			2	3	K/s
Time t _s T _{Smin} to T _{Smax}	t _s	60	100	120	s
Ramp-up rate to peak*) T _{Smax} to T _P			2	3	K/s
Liquidus temperature	T _L	217		°C	
Time above liquidus temperature	t _L		80	100	s
Peak temperature	T _P		245	260	°C
Time within 5 °C of the specified peak temperature T _P - 5 K	t _P	10	20	30	s
Ramp-down rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	s

All temperatures refer to the center of the package, measured on the top of the component

Method of Taping

Dimensions in mm [inch].

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Tape and Reel

12 mm tape with 3000 pcs. on Ø 180 mm reel

Trailer: min. 160 mm *

*) Dimensions acc. to IEC 60286-3; EIA 481-D OHAY0324

Dimensions in mm

Tape Dimensions [mm]

w	P ₀	P ₁	P ₂	D_0	E	F
12 +0.3 / -0.1	4 ±0.1	4 ±0.1	2 ±0.05	1.5 ±0.1	1.75 ±0.1	5.5 ±0.05

Reel Dimensions [mm]

Α	w	N _{min}	W ₁	W _{2max}
180	12	60	12.4 +2	18.4

Barcode-Product-Label (BPL)

Dry Packing Process and Materials

Note:

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card. Regarding dry pack you will find further information in the internet. Here you will also find the normative references like JEDEC.

Transportation Packing and Materials

Dimensions of transportation box in mm

Width	Length	Height
195 ± 5	195 ± 5	42 ± 5

Disclaimer

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.?If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. Ply agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Glossary

1) Typical Values: Due to the special conditions of the manufacturing processes of LED and photodiodes, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求;

按照中国的相关法规和标准,不含有毒有害物质或元素。

