HLMA408: Traitement des données

Statistiques descriptives

Joseph Salmon

http://josephsalmon.eu

Université de Montpellier

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Objectifs

- ► Sur un jeu de données, comparer la masse à la naissance suivant le statut tabagique de la mère
- ▶ Revoir rapidement quelques outils de statistique descriptive

Présentation des données babies 23⁽¹⁾

Poids Naissance	Statut Tabagique	 ▶ Poids (onces): $1 \mathrm{g} \approx 0.035 \mathrm{onc}$
120	0	 ► Statut :
113	0	 1, mère fumeuse
128	1	 0, mère non fumeuse
123	0	 ► Tableau entier :
108	1	 n = 1236 observations
136	0	 ► Étude à l'œil nu impossible
138	0	 ⇒ résumer les données par
132	0	 quelques valeurs numériques
:	:	 des graphiques parlants

 $^{^{(1)}}cf$. http://www.stat.berkeley.edu/users/statlabs/ pour une description, source http://josephsalmon.eu/enseignement/datasets/babies23.data

Table de fréquences croisées

Étude sur données complètes $^{(2)}$: le taux de mortalité infantile chez les enfants nés de mères fumeuses est plus faible $^{(3)}$:

Table: Taux de mortalité infantile en fonction de la masse (g) à la naissance différencié selon le statut tabagique de la mère

Masse du nourrisson (g)	Non fumeur	Fumeur
< 1500	792 ‰	565 ‰
1500-2000	406 ‰	346 ‰
2000–2500	78 ‰	27 ‰
2500-3000	11.6 ‰	6.1 ‰
3000–3500	2.2 ‰	4.5 ‰
≥ 3500	3.8 ‰	2.6 ‰

▶ Des critiques / commentaires sur le tableau?

⁽²⁾ ici on n'a qu'une sous-partie de l'ensemble des données de l'étude initiale.

⁽³⁾ D. Nolan and T. P. Speed. Stat labs: mathematical statistics through applications. Springer Science & Business Media, 2001.

Corrigeons l'erreur . . .

► Une autre étude préconise de travailler sur la masse à la naissance, après **standardisation**

```
\text{masse } \textbf{standardis\'ee} \text{ de l'obs} = \frac{\text{masse de l'obs.} - \text{masse moyenne}}{\text{\'ecart-type de toutes les obs.}}
```

- ► Cette standardisation est faite séparément pour les deux classes: pour les fumeurs et pour les non-fumeurs
- ► Intérêt: comparer ce qui est comparable ! Ici les bébés de mères fumeuses ont (en général) une masse plus faible

Corrigeons l'erreur . . .

► Une autre étude préconise de travailler sur la masse à la naissance, après **standardisation**

 $\text{masse } \textbf{standardis\'ee} \text{ de l'obs} = \frac{\text{masse de l'obs.} - \text{masse moyenne}}{\text{\'ecart-type de toutes les obs.}}$

- ► Cette standardisation est faite séparément pour les deux classes: pour les fumeurs et pour les non-fumeurs
- ► Intérêt: comparer ce qui est comparable ! Ici les bébés de mères fumeuses ont (en général) une masse plus faible
- Ainsi on comparera le taux de mortalité d'un bébé pesant 2680g (fumeur) à celui pesant 3000g (non-fumeur)

Corrigeons l'erreur . . .

► Une autre étude préconise de travailler sur la masse à la naissance, après **standardisation**

 $masse \ \, \frac{\text{standardis\'ee}}{\text{standardis\'ee}} \ \, \text{de l'obs} = \frac{\text{masse de l'obs.} - \text{masse moyenne}}{\text{\'ecart-type de toutes les obs.}}$

- ► Cette standardisation est faite séparément pour les deux classes: pour les fumeurs et pour les non-fumeurs
- ► Intérêt: comparer ce qui est comparable ! Ici les bébés de mères fumeuses ont (en général) une masse plus faible
- Ainsi on comparera le taux de mortalité d'un bébé pesant 2680g (fumeur) à celui pesant 3000g (non-fumeur)

Effets "cachés" (4)

FIGURE 1.2. Mortality curves for smokers and nonsmokers by kilograms (left plot) and by standard units (right plot) of birth weight for the Missouri study (Wilcox [Wil93]).

- ► Il semblerait maintenant que les bébés de mères fumeuses aient un taux de mortalité plus élevé
- Faites attention aux effets cachés (variables confondantes)!
- Thème similaire: le paradoxe de Simpson https://www.youtube.com/watch?v=vs_Zzf_vL2I

⁽⁴⁾ D. Nolan and T. P. Speed. Stat labs: mathematical statistics through applications. Springer Science & Business Media, 2001.

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Statistiques de tendance centrale/indicateurs de position Statistiques de dispersion Covariances et corrélations (de Pearson)

Visualisation de distributions

Données étudiées

Pour les prochaines visualisations on utilise les tailles des pères (en cm), tirées de la base de données babies23.data obtenues par:

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées
Statistiques de tendance centrale/indicateurs de position
Statistiques de dispersion
Covariances et corrélations (de Pearson)

Visualisation de distributions

Moyenne (arithmétique)

Définition: Moyenne (arithmétique)

$$\bar{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$$

Notation: $\mathbf{y} = (y_1, \dots, y_n)^{\top}$, où le symbole \mathbf{y}^{\top} représente le transposé du vecteur \mathbf{y} (par convention on représente les vecteurs comme des colonnes : $\mathbf{y} \in \mathbb{R}^n \iff \mathbf{y} \in \mathbb{R}^{n \times 1}$)

Médiane

Med_n(y): médiane empirique

On ordonne les y_i dans l'ordre croissant : $y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n)}$

Définition: Médiane =

$$\mathrm{Med}_n(\mathbf{y}) = \begin{cases} \frac{y_{(\frac{n}{2})} + y_{(\frac{n}{2}+1)}}{2}, & \text{si } n \text{ est pair} \\ y_{(\frac{n+1}{2})}, & \text{si } n \text{ est impair} \end{cases}$$

<u>Rem.</u> : utile pour décrire le niveau de richesse dans une population <u>Rem.</u> : définition ambiguë : non unicité (idem pour les quantiles)

Moyenne tronquée

Pour un paramètre α (e.g., $\alpha=15\%$), on calcule la moyenne en enlevant les $\alpha\%$ plus grandes et plus petites valeurs

Définition: Moyenne tronquée (à l'ordre lpha)

$$\bar{y}_{n,\alpha} = \bar{z}_n$$

où $\mathbf{z} = (y_{(|\alpha n|)}, \dots, y_{(|(1-\alpha)n|)})$ est l'échantillon α -tronqué

<u>Rem.</u> : $\lfloor u \rfloor$ est le nombre entier tel que $\lfloor u \rfloor \leq u < \lfloor u \rfloor + 1$

Moyenne *vs* médiane

- Les trois statistiques ne coïncident pas
- ► Moyennes tronquées et médianes sont robustes aux points atypiques (ﷺ : *outliers*), la moyenne non!

Moyenne géométrique (pour aller plus loin)

Définition: Moyenne géométrique

$$\overline{y}_n^{\text{geom}} = \left(\prod_{i=1}^n y_i\right)^{\frac{1}{n}} = \exp\left[\frac{1}{n}\sum_{i=1}^n \ln y_i\right]$$

Rem. : définie uniquement pour des données positives

▶ usage: croissance exponentielle (virus, intérêts bancaires, etc.)

Voir aussi https://www.youtube.com/watch?v=SmxKyTnfB2c

Moyenne harmonique (pour aller plus loin)

Définition: Moyenne harmonique

$$\overline{y}_n^{\text{harmo}} = \frac{n}{\frac{1}{y_1} + \frac{1}{y_2} + \dots + \frac{1}{y_n}}$$

▶ Usage: physique (vitesse), apprentissage automatique (F_1) , etc.

Voir aussi

https://fr.wikipedia.org/wiki/Moyenne_harmonique

Pour aller plus loin . . .

Inégalité reliant les diverses moyennes:

https://twitter.com/TamasGorbe/status/1253987114104041472

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Statistiques de tendance centrale/indicateurs de position Statistiques de dispersion

Covariances et corrélations (de Pearson)

Visualisation de distributions

Dispersion: variance et écart-type

Définitions

Variance:
$$\operatorname{var}_n(\mathbf{y}) = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y}_n)^2$$

Écart-type:
$$s_n(\mathbf{y}) = \sqrt{\operatorname{var}_n(\mathbf{y})}$$

Rem. : divers choix possibles pour le dénominateur (n ou n-1), soit un degré de liberté (\mathbb{Z} : degree of freedom) ddof=0 ou 1 cf. https://numpy.org/doc/stable/reference/generated/numpy.std.html

Exercice (à faire seul)

Exercice: Décrire quels sont les vecteurs $\mathbf{y} \in \mathbb{R}^n$ tels que $\operatorname{var}_n(\mathbf{y}) = 0$.

Dispersion: MAD

Définition

Déviation médiane absolue (Median Absolute Deviation) :

$$MAD_n(\mathbf{y}) = Med_n(|Med_n(\mathbf{y}) - \mathbf{y}|)$$

où $\mathrm{Med}_n(\mathbf{y})$ est la médiane de l'échantillon $\mathbf{y} = (y_1, \ldots, y_n)^{\top}$

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Statistiques de tendance centrale/indicateurs de position Statistiques de dispersion

Covariances et corrélations (de Pearson)

Visualisation de distributions

Covariances et corrélations empiriques

Soient deux échantillons
$$\mathbf{x} = (x_1, \dots, x_n)^{\top}$$
 et $\mathbf{y} = (y_1, \dots, y_n)^{\top}$

Notation:
$$\mathbf{1}_n := (1,\dots,1)^{\top} \in \mathbb{R}^n:$$
 vecteur constant $\langle \mathbf{x},\mathbf{y} \rangle := \sum_{i=1}^n x_i y_i:$ produit scalaire $\|\mathbf{x}\| := \sqrt{\sum_{i=1}^n x_i^2}:$ norme

Définition: covariance /corrélation empirique

$$\operatorname{cov}_{n}(\mathbf{x}, \mathbf{y}) := \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})(y_{i} - \bar{y}_{n}) = \frac{1}{n} \langle \mathbf{x} - \bar{x}_{n} \mathbf{1}_{n}, \mathbf{y} - \bar{y}_{n} \mathbf{1}_{n} \rangle$$

$$\operatorname{corr}_{n}(\mathbf{x}, \mathbf{y}) := \frac{\operatorname{cov}_{n}(\mathbf{x}, \mathbf{y})}{\sqrt{\operatorname{var}_{n}(\mathbf{x})} \sqrt{\operatorname{var}_{n}(\mathbf{y})}} = \frac{\langle \mathbf{x} - \bar{x}_{n} \mathbf{1}_{n}, \mathbf{y} - \bar{y}_{n} \mathbf{1}_{n} \rangle}{\|\mathbf{x} - \bar{x}_{n} \mathbf{1}_{n}\| \|\mathbf{y} - \bar{y}_{n} \mathbf{1}_{n}\|}$$

Interprétation de la corrélation:

$$n = 3$$
 et $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$

Standardisation

Soit un échantillon $\mathbf{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$

Définition: échantillon standardisé

On note \tilde{x} l'échantillon standardisé de x obtenu comme suit

$$\tilde{\mathbf{x}} = \frac{\mathbf{x} - \bar{x}_n \mathbf{1}_n}{s_n(\mathbf{x})} \iff \tilde{x}_i = \frac{x_i - \bar{x}_n}{s_n(\mathbf{x})}, \quad \forall i \in [1, n]$$

avec $s_n(\mathbf{x}) = \sqrt{\mathrm{var}_n(\mathbf{x})}$ son écart type et \bar{x}_n sa moyenne

- \triangleright $\tilde{\mathbf{x}}$ est
 - **centré** (moyenne nulle: $\bar{x}_n = 0$)
 - **réduit** (écart-type unitaire: $s_n(\tilde{\mathbf{x}}) = 1$)
- x̄ est sans unité

Rem. : on passe de covariance à corrélation en standardisant ("réduire" suffirait) et la covariance des échantillons standardisés est la corrélation des échantillons originaux

Exemples de corrélations: taille du père / masse du père

Exemples de corrélations: taille du père / masse du père

Plus d'exemples

Exemples de corrélations proches de zéro

Exemples de corrélations proches de zéro

Exemples de corrélations proches de zéro

Corrélation \neq **causalité**

US spending on science, space, and technology

Suicides by hanging, strangulation and suffocation

Corrélation: 0.9979

cf. http://www.tylervigen.com/spurious-correlations

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Rappels: quantiles et fonctions de répartition Histogrammes

Boîtes à moustache

Méthode à noyau pour l'estimation de la densité

Violons

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Rappels: quantiles et fonctions de répartition

Histogrammes

Boîtes à moustache

Méthode à noyau pour l'estimation de la densité

Violons

Fonction de répartition

Nombre d'échantillons: n = 695

Définition: fonction de répartition

Empirique:
$$F_n(u) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i \le u\}}$$
, avec $\mathbb{1}_{\{y_i \le u\}} = \begin{cases} 1, & \text{si } y_i \le u, \\ 0, & \text{sinon.} \end{cases}$

Interprétation: proportion d'observations sous un certain niveau

Fonction quantile

Nombre d'échantillons: n = 695

Pour
$$p \in]0,1], \quad F_n^{\leftarrow}(p) = \inf\{u \in \mathbb{R} : F_n(u) \ge p\}$$

Rem. : c'est l'inverse (généralisée) de la fonction de répartition; sa définition admet plusieurs conventions, *cf.* percentile dans Numpy

Quantiles

En bref: "le quantile d'ordre p est le seuil tel que $p\times 100\%$ des gens sont en dessous du seuil, et $(1-p)\times 100\%$ sont au-dessus"

- \blacktriangleright la médiane est le quantile d'ordre $\frac{1}{2}=F_n^\leftarrow(\frac{1}{2})$
- ▶ le premier quartile (Q_1) = quantile d'ordre $\frac{1}{4} = F_n^{\leftarrow}(\frac{1}{4})$
- lacksquare le troisième quartile $(Q_3)=$ quantile d'ordre $rac{3}{4}=F_n^{\leftarrow}(rac{3}{4})$

Rem. : de manière similaire on parle de déciles et de centiles

Définition

L'Écart interquartile (: Interquartile range), noté IQR, est défini comme étant l'écart entre le 3^e quartile et le 1^{er} quartile:

$$IQR = F_n^{\leftarrow}(\tfrac{3}{4}) - F_n^{\leftarrow}(\tfrac{1}{4})$$

Quantiles (seconde définition)

Échantillon : y_1,\ldots,y_n

Échantillon réordonné : $y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{(n)}$

Quantile d'ordre p : valeur associée à l'indice $j \approx \lfloor pn \rfloor$

$$= \begin{cases} \frac{1}{2}(y_{(j)}+y_{(j+1)}), & \text{ si } j=pn \\ y_{(j+1)}, & \text{ sinon} \end{cases}$$

Exemple:

- $n = 1000, p = \frac{1}{2} \implies j = 500 = \frac{1000}{2}$ et $q_p(y) = \frac{1}{2}(y_{500} + y_{501})$
- $ightharpoonup n = 1001, p = \frac{1}{2} \implies j = 500 \neq \frac{1001}{2} \text{ et } q_p(y) = y_{501}$

cette convention⁽⁵⁾ ne coïncide pas avec la précédente, ici on choisit le milieu de l'intervalle au lieu de l'extrémité gauche

⁽⁵⁾ voir https://fr.wikipedia.org/wiki/Quantile pour d'autres conventions possibles

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Rappels: quantiles et fonctions de répartition

Histogrammes

Boîtes à moustache

Méthode à noyau pour l'estimation de la densité

Violons

Chargement (de nouveau)

Pour les prochaines visualisations on utilise de nouveau la base de données babies23.data obtenues par:

Histogrammes

(a) Histogramme de la taille des mères: affichage d'une proportion densité (aire=1)

(b) Histogramme du nombre de cigarettes fumées par jour par les mères : effectif

Qu'est-ce qu'un histogramme?

- ▶ Histogramme \neq diagramme en barre (\implies : barplot) !!!
- Décrit / estime la distribution : unimodalité, symétrie, étendue, . . .
- Construction :
 - Axe horizontal : gradué (échelle des valeurs observées)
 - Axe vertical : DENSITÉ!!! de fréquence ou d'effectif

```
densité de fréquence de la classe k=\frac{\text{fréquence de la classe }k}{\text{longueur de la classe }k} densité d'effectif de la classe k=\frac{\text{effectif de la classe }k}{\text{longueur de la classe }k}
```

► Attention à l'unité sur l'axe vertical (e.g., l'option density=True/False de hist en Matplotlib)

Exemple de construction d'histogramme⁽⁶⁾

Nombre de cigarettes par jour pour les mères fumeuses:

Nb de cig.	% de fumeurs
0	46.76
1–5	12.37
5-10	12.37
10-15	6.33
15-20	1.72
20-30	16.55
30-40	2.73
40-60	1.15
60-	0.00
Total	100

▶ Problème de "bords": le 5 appartient à quelle classe? choix = à la deuxième!

 $\overline{\text{Rem.}}$: toujours regarder l'aide pour savoir si hist est ouvert à droite ou à gauche (généralement : [a,b[

► Hauteur du rectangle (cas densité):

$$h_0 = \frac{46.76}{1 \times 100} = 0.4676$$

$$h_1 = \frac{12.37}{4 \times 100} = 0.0309$$

$$\vdots = \vdots$$

$$h_{40} = \frac{1.15}{200 \times 100} = 0.00057$$

⁽⁶⁾ https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

Exemple de construction d'histogramme⁽⁶⁾

Nombre de cigarettes par jour pour les mères fumeuses:

Nb de cig.	% de fumeurs
0	46.76
1–5	12.37
5-10	12.37
10-15	6.33
15-20	1.72
20-30	16.55
30-40	2.73
40-60	1.15
60–	0.00
Total	100

▶ Problème de "bords": le 5 appartient à quelle classe? choix = à la deuxième!

 $\frac{\text{Rem.}}{\text{savoir si hist est ouvert à droite ou à gauche (généralement : } [a,b[\)$

► Hauteur du rectangle (cas densité):

$$h_0 = \frac{46.76}{1 \times 100} = 0.4676$$

$$h_1 = \frac{12.37}{4 \times 100} = 0.0309$$

$$\vdots = \vdots$$

$$h_{40} = \frac{1.15}{20 \times 100} = 0.00057$$

⁽⁶⁾ https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Rappels: quantiles et fonctions de répartition Histogrammes

Boîtes à moustache

Méthode à noyau pour l'estimation de la densité Violons

Nuage de points (: scatterplot)

Nuages de points des masses des parents

Nuage de points (: scatterplot) et boîte à moustache (: boxplot)

Nuages de points et boîtes à moustache des masses des parents.

Boîte à moustache (: boxplot)

Boîtes à moustache des masses des parents.

Qu'est-ce qu'une boîte à moustache⁽⁷⁾?

► Représentation synthétique de la distribution d'une variable, similaire à l'histogramme, mais plus compacte

Utilité :

- Comparer des distributions
- Permet de détecter les "valeurs aberrantes"
- Visualiser un grand nombre de variables (compact), et représenter des variables quantitatives en fonction de variables qualitatives

Construction d'une boîte à moustache

- ▶ la boîte est limitée par le 1^{er} et le 3^e quartiles
- le est coupée en deux par la médiane
- les deux moustaches s'étendent de part et d'autre de la boîte sur une longueur (par défaut) de $\frac{3}{2}$ fois l'écart inter-quartile

Rem. : il y a parfois des modifications à la marge pour les cas extrêmes, e.g., affichage de points aberrants (\mathbb{R} : outliers)⁽⁸⁾

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Rappels: quantiles et fonctions de répartition

Histogrammes

Boîtes à moustache

Méthode à noyau pour l'estimation de la densité

Violons

Estimateur à noyau de la densité

(Gauche) histogramme — (droite) densité des tailles des mères

 $\underline{\mathsf{Rem.}}$: on parle d'estimateur à noyau $^{(9),\,(10)}$ de la densité

(Kernel Density Estimator, KDE)

Rem. : les deux figures bleues ont une aire égale à 1

⁽⁹⁾M. Rosenblatt. "Remarks on some nonparametric estimates of a density function". In: *Ann. Math. Statist.* 27 (1956), pp. 832–837.

⁽¹⁰⁾ E. Parzen. "On estimation of a probability density function and mode". In: Ann. Math. Statist. 33 (1962), pp. 1065–1076.

Pour aller plus loin

Histogramme pour données spatiales

NE PAS UTILISER: effet masque!

Source:

https://www.6sqft.com/see-how-nycs-urban-density-stacks-up-against-other-major-cities/

Densité spatiale

 Quantité numérique "intense" lorsqu'il y a beaucoup d'observations dans une région de l'espace et petite sinon

Densité de population humaine

Source: https://luminocity3d.org/WorldPopDen/#7/45.491/2.115

Densité spatiale

 Quantité numérique "intense" lorsqu'il y a beaucoup d'observations dans une région de l'espace et petite sinon

Densité de population d'autres espèces...

 $\underline{\underline{Source}}: \ \mathtt{https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html}$

Sommaire

Exemple introductif: impact du tabac sur les nouveaux nés

Statistiques descriptives univariées et bivariées

Visualisation de distributions

Rappels: quantiles et fonctions de répartition

Histogrammes

Boîtes à moustache

Méthode à noyau pour l'estimation de la densité

Violons

Nuages de points de la masse des parents

⁽¹¹⁾ J. L. Hintze and R. D. Nelson. "Violin plots: a box plot-density trace synergism". In: *The American Statistician* 52.2 (1998), pp. 181–184.

Boîte à moustache, information condensée

⁽¹¹⁾ J. L. Hintze and R. D. Nelson. "Violin plots: a box plot-density trace synergism". In: *The American Statistician* 52.2 (1998), pp. 181–184.

Violons de la masse des parents (estimateur de densité à noyau, pivoté et symétrisé) et nuage de points

⁽¹¹⁾ J. L. Hintze and R. D. Nelson. "Violin plots: a box plot-density trace synergism". In: *The American Statistician* 52.2 (1998), pp. 181–184.

Violons de la masse des parents (estimateur de densité à noyau, pivoté et symétrisé)

⁽¹¹⁾ J. L. Hintze and R. D. Nelson. "Violin plots: a box plot-density trace synergism". In: *The American Statistician* 52.2 (1998), pp. 181–184.

Expérience: croissance des poussins

<u>Scénario</u>: des chercheurs veulent déterminer si parmi trois traitements possibles, il en existe un qui facilite la prise de masse des poussins.

 $\underline{\text{Donn\'ees}}$: ils disposent des résultats des traitements (avec trois températures d'incubation différentes) sur la croissance de n=45 poussins.

- ► Les 45 œufs sont répartis aléatoirement entre les trois types de traitements (15 | 15 | 15)
- ► Au bout d'un nombre de jours fixé à l'avance, on note la croissance (masse, en dg) des poussins et leur sexe

Visualisation brute

Violons selon le type de traitement

Conclusion provisoire : le traitement 3 a le plus d'impact

Visualisation raffinée

Violons selon le type de traitement et le sexe

Conclusion : c'est le traitement 1 qui a le plus d'impact

Explication

Répartition des poussins par sexe et par traitement

<u>Conclusion</u>: il y avait trop de femelles dans le traitement 1, et l'effet sexe a caché l'impact du traitement (groupe inhomogène)

Retour sur l'exemple du tabac

Masse du nourisson selon le statut tabagique de la mère

Conclusion: les bébés de mères fumeuses ont une masse plus petite

Biographie du jour : John Tukey⁽¹²⁾

- Mathématicien américain (1915-2000)
- Créateur de la Transformée de Fourier Rapide (FFT)
- ► Popularisa la **boîte à moustache** en statistique
- ► Un des fondateurs de la statistique robuste (profondeur de Tukey)
- **.**..

Bibliographie I

- Hintze, J. L. and R. D. Nelson. "Violin plots: a box plot-density trace synergism". In: The American Statistician 52.2 (1998), pp. 181–184.
- McGill, R., J. W. Tukey, and W. A. Larsen. "Variations of box plots". In: The American Statistician 32.1 (1978), pp. 12–16.
- Nolan, D. and T. P. Speed. Stat labs: mathematical statistics through applications. Springer Science & Business Media, 2001.
- Parzen, E. "On estimation of a probability density function and mode". In: Ann. Math. Statist. 33 (1962), pp. 1065–1076.
- Rosenblatt, M. "Remarks on some nonparametric estimates of a density function". In: Ann. Math. Statist. 27 (1956), pp. 832–837.