Projekt

Sterowniki robotów

Dokumentacja

Humanistycznie upośledzony robot akrobatyczny

HURA

Skład grupy: Albert Lis, 235534 Michał Moruń, 235986

Termin: sr TP15

 $\frac{Prowadzący:}{\text{mgr inż. Wojciech Domski}}$

Spis treści

1	Opis projektu		
2	Konfiguracja mikrokontrolera 2.1 Konfiguracja pinów	3 5 5 5 5 6	
3	Urządzenia zewnętrzne 3.1 Moduł Wi-Fi ESP8266	6	
4	Projekt elektroniki 4.1 Połączenie pomiędzy STM32 a modułem WiFi 4.2 Schemat połączenia z serwomechanizmem 4.3 Schemat połączenia z silnikiem 4.4 Schemat połączenia z enkoderem	6 7 7 8	
5	Konstrukcja mechaniczna	8	
6	Opis działania programu6.1Schemat działania programu6.2Funkcja obsługująca przerwanie timera 66.3Funkcja obsługująca przerwanie USART	9 9 9	
7	Zadania niezrealizowane	9	
8	Podsumowanie	10	
В	bilografia	11	

1 Opis projektu

Celem projektu jest zbudowanie zdalnie sterowanego robota jezdnego. Robot będzie sterowany za pomocą akcelerometru w telefonie. Dane będą przesyłanie za pomocą Wi-Fi lub Bluetooth. Regulacja prędkości będzie się odbywać za pomocą regulatora PID. Dane o prędkości będą pobierane z enkoderów znajdujących się w kołach robota. Opcjonalnie robot będzie wyświetlał szczegółowe dane o swoim stanie wewnętrznym za pomocą wbudowanego w płytkę z mikrokontrolerem wyświetlacza LCD.

Rysunek 1: Architektura systemu

2 Konfiguracja mikrokontrolera

Rysunek 2: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 3: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

PIN	Tryb pracy	Funkcja/etykieta
PC14	OSC32_IN* RCC_OSC32_IN	
PC15	OSC32_OUT* RCC_OSC32_OUT	
PH0	OSC_IN* RCC_OSC_IN	
PH1	OSC_OUT*	RCC_OSC_OUT
PA2	${ m USART2_TX}$	$\operatorname{USART}_{\operatorname{TX}}$
PA3	USART2_RX	$USART_RX$
PA5	TIM2_CH1	PWM_MOTOR
PB7	$\mathrm{TIM4}^-\mathrm{CH2}$	PWM_SERVO

Tabela 1: Konfiguracja pinów mikrokontrolera

2.2 USART

Interfejs jest wykorzystywany do komunikacji z modułem Wi-Fi (ESP8266). Moduł odbiera dane za pomocą interfejsu UDP i przekazuje je do mikrokontrolera STM32 za pomocą interfejsu komunikacji szeregowej.

Parametr	Wartość
Baud Rate	115200
Word Length	8 Bits (including parity)
Parity	None
Stop Bits	1

Tabela 2: Konfiguracja peryferium USART

2.3 Timer 2

Parametr	Wartość	
Clock Source	Internal Clock	
Channel1	PWM Generation CH1	
Prescaler	PWM_PRESC	
Counter Mode	Up	
Counter Period	PWM_PERIOD	
Internal Clock Division	No Division	
\mathbf{Mode}	PWM mode 1	
CH Polarity	High	

Tabela 3: Konfiguracja peryferium Timer 2

2.4 Timer 2

Parametr	Wartość	
Clock Source	Internal Clock	
Channel	PWM Generation CH2	
Prescaler	999	
Counter Mode	Up	
Counter Period	999	
Internal Clock Division	No Division	
Mode	PWM mode 1	
CH Polarity	High	

Tabela 4: Konfiguracja peryferium Timer 4

2.5 Timer 5

Parametr	Wartość
Prescaler	TIM5_PRESC
Counter Mode	Up
Counter Period	TIM5_PERIOD
Trigger Event Selection	Update Event

Tabela 5: Konfiguracja peryferium Timer 6

3 Urządzenia zewnętrzne

Rozdział ten powinien zawierać opis i konfigurację zewnętrznych, jak np. akcelerometr.

3.1 Moduł Wi-Fi ESP8266

Moduł dobiera dane za pomocą protokołu UDP i przekazuje je odpowiednio sformatowane za pomocą portu szeregowego do mikrokontrolera STM32. Do oprogramowania modułu wykorzystano framework Arduino.

Ustawienia komunikacji szeregowej:

Parametr	Wartość
Baud Rate	115200
Word Length	8 Bits (including parity)
Parity	None
Stop Bits	1

Tabela 6: Konfiguracja peryferium UART w module Wi-Fi

4 Projekt elektroniki

4.1 Połączenie pomiędzy STM32 a modułem WiFi

Rysunek 4: Połączenie STM32 z ESP8266

4.2 Schemat połączenia z serwomechanizmem

Rysunek 5: Schemat elektryczny

4.3 Schemat połączenia z silnikiem

Za pomocą potencjometru regulujemy wypełnienie sygnału PWM. Sygnał ten jest wzmacniany za pomocą tranzystora NPN i przekazywany do silnika DC.

Rysunek 6: Schemat poglądowy regulacji prędkości obrotowej silnika

4.4 Schemat połączenia z enkoderem

5 Konstrukcja mechaniczna

Rysunek 7: Zdjęcie części mechanicznej nr $1\,$

Rysunek 8: Zdjęcie części mechanicznej nr $2\,$

6 Opis działania programu

6.1 Schemat działania programu

Rysunek 9: Schemat działania programu

6.2 Funkcja obsługująca przerwanie timera 6

6.3 Funkcja obsługująca przerwanie USART

```
volatile uint8 t xvalue, yvalue, yprevious, xprevious;
2
     volatile char xsign;
     void HAL UART RxCpltCallback(UART HandleTypeDef *huart)
3
4
5
       axis = (char)(Received[nrAxis]);
       sign = (char)(Received[nrSign]);
6
7
       value = (uint8 t)(Received[nrValue]);
8
       if(axis =   'x')
9
10
          x \operatorname{sig} n = \operatorname{sig} n;
12
          xprevious = xvalue;
13
          xvalue = value;
14
       if(axis = 'y')
16
17
18
          yprevious = yvalue;
          vvalue = value;
19
          if (abs(value - xprevious) < 2)
20
            yvalue = yprevious;
21
22
          else if (value > 100)
23
            yvalue = yprevious;
          else if (value < 50)
24
25
            yvalue = yprevious;
26
27
       HAL UART Receive DMA(&huart2, &Received, BUFSIZE);
28
```

7 Zadania niezrealizowane

Nie zostało zrealizowane przekazanie napędu z silnika i serwomechanizmu na mechanizm napędowy oraz na ten służący do skręcania. W pierwszym przypadku jest to spowodowane brakiem czasu, wynikający ze zbyt długim poszukiwaniem rozwiązania na problem przeniesienia napędu z silnika do przekładni, natomiast w drugim tym, że wał serwomechanizmu ma stępione zębatki co uniemożliwia przekazanie jakiejkolwiek siły na dalszy podzespół.

8 Podsumowanie

Udało się zrealizować większość zadań. Nastąpiły drobne zmiany koncepcyjne jak użycie potencjometru do regulacji prędkości obrotowej napędu. To będzie wymagać mniejszej ingerencji gdy będziemy projektować regulator PID.

Literatura