Biologia Molecular I BFB 705

Programação da disciplina

- Estrutura do DNA e organização da cromatina
- Replicação do DNA
- Reparo do DNA
- Transcrição e processamento
- Síntese de proteínas
- Estrutura de proteínas
- Regulação gênica em procariotos (2x)
- Regulação gênica transcricional em eucariotos
- Regulação gênica pós-transcricional em eucariotos
- RNAs não codificantes
- Seminário I
- Seminário 2
- Seminário 3
- Seminário 4
- PROVA

Histórico

- 1865 Leis de Mendel (G. Mendel)
- 1869 Isolamento do DNA ("nucleína") (F. Miescher)
- 1910 Teoria cromossômica da hereditariedade (T. H. Morgan)
- 1913 Primeiro mapa genético (A. Sturtevant)
- 1944 Primeira evidência de que DNA é o material genético (O. Avery, M. McCarty & C. MacLeod)
- 1950 Relação entre purinas e pirimidinas: 1:1 (Chargaff)
- 1952 Demonstração definitiva de que o DNA é o material genético (A. Hershey & M. Chase)
- 1953 Estrutura do DNA (J. Watson & F. Crick)
- 1955 Sequenciamento de proteína (F. Sanger)
- 1958 Replicação semi-conservativa (M. Meselson & F. Stahl)
- 1960 Descoberta do RNA mensageiro (S. Brenner, F. Crick, F. Jacob & J. Monod)
- 1961 Deciframento do código genético (M. Nirenberg, H. Mathaei & S. Ochoa)
- 1961 Primeiro modelo de regulação gênica: operon lac (F. Jacob & J. Monod)
- 1969 Primeiro isolamento de um gene (J. Beckwith)
- 1970 Transcriptase reversa (H. Temin & D. Baltimore)
- 1970 Enzima de restrição sítio-específica (H. O. Smith)
- 1972-3 Tecnologia do DNA recombinante (H. Boyer, S. Cohen & P. Berg)
- 1977 Sequenciamento de DNA (A. Maxam, W. Gilbert & F. Sanger)
- 1977 Descoberta de exons e introns (R. Roberts & P. Sharp)
- 1981 Descoberta de RNAs com atividade catalítica (S. Altman & T. Cech)
- 1983 Reação em cadeia da polimerase: PCR (K. Mullis)
- 1993 Descoberta de RNAs reguladores (V. Ambros, R. Lee & R. Feinbaum)
- 1995 Sequenciamento completo do primeiro genoma celular (C. Venter et al.)
- 2003 Sequenciamento completo do genoma humano (Consórcio Internacional)

Definição de gene

- Unidade de hereditariedade (1900)
- Locus cromossômico (1910)
- Um gene, uma enzima -> um gene, uma proteína (1940)
- Gene: segmento de ácido nucleico que dá origem a uma molécula de RNA funcional (~1990)
- Gene: união de sequências genômicas que dá origem a um conjunto coerente de produtos funcionais potencialmente sobrepostos (2007)

Estrutura do DNA

Nucleotídeos

Composição de bases: Chargaff

Nucleoside Base Distribution in DNA

Organism	Base Composition (mole %)				Base Ratios		Ratio (A+T)/(G+C)
	Α	G	Т	С	A/T	G/C	Kallo (A+1)/(G+C)
Human	30.9	19.9	29.4	19.8	1.05	1.00	1.52
Chicken	28.8	20.5	29.2	21.5	1.02	0.95	1.38
Yeast	31.3	18.7	32.9	17.1	0.95	1.09	1.79
Clostridium perfringens	36.9	14.0	36.3	12.8	1.01	1.09	2.70
Sarcina lutea	13.4	37.1	12.4	37.1	1.08	1.00	0.35

Análise por difração de raio-X

Pareamento de bases

Estrutura tridimensional

Modelo em escala do DNA

Estrutura do DNA: animação

Cromatina

Problema da compactação

Problema da compactação

Problema da compactação

Estrutura "contas em colar"

Nucleossomo

Histonas

H2B*

H3

H4

16.0

9.6

10.8

6.4

13.3

13.7

125

135

102

13,774

15,273

11,236

[&]quot;The sizes of these histones vary somewhat from species to species. The numbers given here are for bovine histones.

Formação do octâmero

Interação histona-DNA

Estrutura do nucleossomo

Caudas N-terminais de histonas

Modificações covalentes de histonas

Fibra de 30 nm

Domínios de cromatina

Compactação e cromatina: animação

Cromatina: animação

wehi.edu.au