CSCI2100C 2019-20: Solution 4 Part 2

- $^{\#}$ This assignment is due at 11:59:59pm, 5th May 2020.
- Q1. [38 marks] Consider the directed graph G_1 as shown in Figure 1. Answer the following questions.

Figure 1. Directed graph for Q1

- (i). [4 marks] Calculate the out-degree of v_3 and the in-degree of v_8 . (Refer to CSCI2100C-Lecture22 Page 11)

The out-degree of v_3 is 4. The in-degree of v_8 is 2.

- (ii). [8 marks] For G_1 , show both its adjacency list representation and its adjacency matrix representation. (Refer to CSCI2100C-Lecture22 Pages 17-20)

Adjacency	List	for	Q1(ii)
-----------	------	-----	--------

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
v_1		1				1		
v_2					1			
v_3	1				1	1		1
v_4		1	1					
v_5	1	1		1				
v_6								1
v_7						1		
v_8							1	

Adjacency Matrix for Q1(ii)

- (iii). [10 marks] Traverse G_1 using breadth-first search with v_1 as the source, assuming that the out-neighbors of a node are visited in ascending order of ID. Show the process and the content of the queue Q step by step. You may use 0 to denote the color to be white, 1 to denote the color to be gray, and 2 to denote the color to be black. (Refer to CSCI2100C-Lecture22 Pages 24-28)

Breadth-First Search for Q1(iii)

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
minlength	0	1	4	3	2	1	3	2
prev	nil	v_1	v_4	v_5	v_2	v_1	v_8	v_6

minlength and prev Array for Q1(iv)

- (iv). [8 marks] According to the results of Part (iii), show the contents of minlength array and prev array respectively. (Refer to CSCI2100C-Lecture22 Pages 34-35)
- (v). [4 marks] Show how to get the minimum length path from the source v_1 to v_4 using the **minlength** array and **prev** array. Justify your answer.

Get the previous node of v_4 in prev array, which is v_5 ; get the previous node of v_5 , which is v_2 ; get the previous node of v_1 , i.e., the source. We get the path: $v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_4$, which length is 3.

- (vi). [4 marks] Draw the BFS tree. (Refer to CSCI2100C-Lecture22 Page 36)

BFS Tree for Q1(vi)

■ Q2. [26 marks] A directed graph G_2 is shown in Figure 4. Assume that we use depth-first search (DFS) to check if G_2 is a DAG and the permutation of nodes to do DFS on G_2 is $(v_2, v_3, v_4, v_5, v_6, v_1, v_7)$. During a DFS traversal, assume that the out-neighbors of a node are visited in ascending order of ID. Answer the following questions.

Figure 4. Directed Graph G_2 for Q2

 - (i). [7 marks] Show the first discovery time and finish time of each node. (Refer to CSCI2100C-Lecture24 Pages 5-6)

 v_2 : 1/8, v_1 : 2/7, v_4 : 3/6, v_3 : 4/5, v_5 : 9/14, v_6 : 10/13, v_7 : 11/12.

- (ii). [4 marks] Draw the DFS trees. (Refer to CSCI2100C-Lecture24 Page 7)

DFS-Tree Rooted at v_2 for Q2(ii)

 (iii). [11 marks] Classify edges according to the interval of each node derived from Part (i). You should explicitly output the type of each edge. Justify your answer. (Refer to CSCI2100C-Lecture24 Page 8)

```
\langle v_1, v_4 \rangle, I(v_4) \subset I(v_1), forward edge. \langle v_2, v_1 \rangle, I(v_1) \subset I(v_2), forward edge. \langle v_2, v_3 \rangle, I(v_3) \subset I(v_2), forward edge. \langle v_3, v_1 \rangle, I(v_3) \subset I(v_1), backward edge. \langle v_4, v_3 \rangle, I(v_3) \subset I(v_4), forward edge. \langle v_5, v_2 \rangle, I(v_5) \cap I(v_2) = \emptyset, cross edge. \langle v_5, v_3 \rangle, I(v_5) \cap I(v_3) = \emptyset, cross edge. \langle v_5, v_6 \rangle, I(v_6) \subset I(v_5), forward edge. \langle v_6, v_4 \rangle, I(v_6) \cap I(v_4) = \emptyset, cross edge. \langle v_6, v_7 \rangle, I(v_7) \subset I(v_6), forward edge. \langle v_7, v_5 \rangle, I(v_7) \subset I(v_5), backward edge.
```

- (iv). [4 marks] Show why G_2 is (or is not) a DAG using the results in Part (iii). Justify your answer. (Refer to CSCI2100C-Lecture24 Page 11)

Since there exist backward edges $\langle v_3, v_1 \rangle$ and $\langle v_7, v_5 \rangle$, G_2 contains a cycle. So G_2 is not a DAG.