Name: sushant tyagi

Roll no: 2301201099

Sec: B

BBC News Article Classification Project Report

1. Introduction

Text classification is a fundamental task in Natural Language Processing (NLP) that involves categorizing textual data into predefined classes. The BBC News dataset contains news articles from five categories: **business**, **entertainment**, **politics**, **sport**, **and tech**.

This project aims to develop a **machine learning-based news classifier** that can predict the category of a news article with high accuracy using various feature extraction techniques and models.

2. Dataset Description

• Source: BBC News Dataset

• Total Articles: 2225

• Categories: business, entertainment, politics, sport, tech

• Articles per Category:

o Business: 510

o Entertainment: 386

o Politics: 417

o Sport: 511

o **Tech: 401**

The dataset is pre-divided into folders corresponding to each category. Each folder contains multiple .txt files representing individual news articles.

3. Data Preprocessing

To ensure that the text is in a suitable format for machine learning, the following preprocessing steps were applied:

- 1. **Lowercasing:** Convert all text to lowercase.
- 2. **Punctuation Removal:** Remove all non-alphabetic characters.
- 3. **Stopwords Removal:** Remove common English stopwords using NLTK.

4. Stemming/Lemmatization:

- Stemming: Reduce words to their root form using Porter Stemmer.
- Lemmatization: Convert words to base form using WordNet Lemmatizer.

Example:

Original Text	Stemmed Text	Lemmatized Text
"The stock market fell sharply today."	"stock market fell sharp today"	"stock market fell sharply today"

4. Feature Extraction

Two types of numerical representations were created from the text:

1. Bag-of-Words (BoW)

- o Converts text into a sparse matrix of token counts.
- o Used unigrams and bigrams (ngram_range=(1,2)) with maximum 5000 features.

2. TF-IDF (Term Frequency-Inverse Document Frequency)

- o Captures the importance of words relative to the dataset.
- o Same n-grams and feature limit as BoW.

Both representations were used to train classifiers.

5. Model Training

Four classifiers were trained using different combinations of features:

Model	Feature	Accuracy
Logistic Regression	BoW	0.9685
Logistic Regression	TF-IDF	0.9742
SVM (Linear)	BoW	0.9753
SVM (Linear)	TF-IDF	0.9810

• Training Data: 80%

• **Testing Data:** 20% (stratified by category)

Observation: Linear SVM with TF-IDF features performed best with an accuracy of 98.1%.

6. Evaluation

6.1 Classification Report for Best Model (SVM + TF-IDF)

Category	Precision	Recall	F1-Score
Business	0.98	0.99	0.98

Category **Precision Recall F1-Score** 0.96 0.97 Entertainment 0.98 Politics 0.98 0.98 0.98 Sport 0.99 0.99 0.99 Tech 0.97 0.97 0.97 0.98 0.98

6.2 Category-wise Accuracy

0.98

• Highest accuracy: Sport (0.99)

• Lowest accuracy: Entertainment (0.96)

6.3 Visualizations

Average

1. Accuracy Comparison of Models

o TF-IDF outperforms BoW across both Logistic Regression and SVM.

2. Category Distribution

Pie charts showing true vs predicted categories indicate excellent balance and low misclassification.

3. Category-wise Accuracy

Bar chart shows consistent high accuracy across all categories.

7. Conclusion

- A news classification system was successfully implemented using the BBC News dataset.
- TF-IDF representation combined with Linear SVM provided the best performance with 98.1% accuracy.
- Preprocessing steps such as stopword removal and stemming significantly improved classifier performance.
- The project demonstrates the effectiveness of traditional machine learning techniques for text classification.

Artifacts Generated:

- accuracy_comparison.png (model performance)
- category_distribution.png (category-wise evaluation)
- news_classifier.py (main script)

8. Future Work

- Implement hyperparameter tuning for SVM and Logistic Regression.
- Explore **deep learning approaches** like LSTM or BERT for further improvement.
- Deploy the model using a web interface or API for real-time news classification.