

Procesamiento de Lenguaje Natural

Introducció

en el PLN

Clasificador Naive Bayes

Procesamiento de Lenguaje Natural Naive Bayes

Mauricio Toledo-Acosta mauricio.toledo@unison.mx

Departamento de Matemáticas Universidad de Sonora

Procesamiento de Lenguaje Natural

Introducción

Clasificaciór en el PLN

Clasificador Naive Bayes

Section 1 Introducción

Referencias

Procesamiento de Lenguaje Natural

Introducció

Ciasificación en el PLN

Clasificador Naive Bayes

 Chapter 4. Jurafsky, D., Martin, J. H. (2019). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition.

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes

Section 2 Clasificación en el PLN

Clasificación en PLN

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN

Naive Bayes

Consideremos la tarea de clasificación en PLN, es decir, asignar categorías a textos.

 Análisis de sentimientos: La extracción del sentimiento, es decir, la orientación positiva o negativa que el escritor expresa hacia algún objeto.

Reseña de una película, $\ \leftrightarrow$ un libro o un producto		El sentimiento del au- tor hacia el producto	
Editorial o un texto político	\leftrightarrow	El sentimiento hacia un candidato o una acción política.	
Textos en redes so- ciales	\leftrightarrow	El estado de animo.	

Clasificación en PLN

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes

- Detección de SPAM
- Identificación de idioma
- Atribución de autoría
- Detección de tópicos o temática
- Predicción de la siguiente palabra

Clasificación en el Machine Learning

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Naive Bayes

¿Quienes son las features en el NLP?

- Métodos clásicos: BOW, TF-IDF, ...
- Embeddings: Redes Neuronales, LLMs.

Procesamiento de Lenguaje Natural

Introducció

en el PLN

Clasificador Naive Bayes

Section 3

Clasificador Naive Bayes

Clasificación

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN

Clasificador Naive Bayes

Clasificador Naive Bayes

Naive Bayes es un algortimo de clasificación binaria y multiclase. Se llama *Naive* Bayes o Bayes ingenuo porque se hacen suposiciones para simplificar los cálculos de probabilidades por cada clase.

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes A diferencia de los clasificadores lineales que buscan una frontera de decisión que separe los datos en el espacio, un clasificador probabilístico busca estimar

$$P(\operatorname{clase}_j|d)$$

Es decir, ¿cuál es la probabilidad de que estemos en la clase j si observamos el documento d?

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN

Clasificador Naive Baye A diferencia de los clasificadores lineales que buscan una frontera de decisión que separe los datos en el espacio, un clasificador probabilístico busca estimar

$$P(\operatorname{clase}_j|d)$$

Es decir, ¿cuál es la probabilidad de que estemos en la clase j si observamos el documento d?

En un problema de clasificación binaria, predecimos que un documento *d* pertenece a la clase 0 si

$$P(\mathsf{clase}_0|d) > P(\mathsf{clase}_1|d).$$

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN

Clasificador Naive Baye A diferencia de los clasificadores lineales que buscan una frontera de decisión que separe los datos en el espacio, un clasificador probabilístico busca estimar

$$P(\operatorname{clase}_j|d)$$

Es decir, ¿cuál es la probabilidad de que estemos en la clase j si observamos el documento d?

En un problema de clasificación binaria, predecimos que un documento *d* pertenece a la clase 1 si

$$P(\mathsf{clase}_1|x) > P(\mathsf{clase}_0|x).$$

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN

Clasificador Naive Baye A diferencia de los clasificadores lineales que buscan una frontera de decisión que separe los datos en el espacio, un clasificador probabilístico busca estimar

$$P(\operatorname{clase}_j|d)$$

Es decir, ¿cuál es la probabilidad de que estemos en la clase j si observamos el documento d?

En general, en un problema de clasificación multiclase con clases $C = \{c_0, ..., c_m\}$, la clase predicha es

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d).$$

Formulación

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes El objetivo de la clasificación Bayesiana es determinar

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d)$$

transformado esta expresión en algo más fácil de calcular. Para esto, usamos la regla de Bayes:

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)}.$$

En todas las clases $c \in C$, el término P(d) no cambia, entonces:

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c).$$

Formulación

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes $\hat{c} = \operatorname{argmax} \underbrace{P(d|c)}^{\text{likelihood prior}} \underbrace{P(c)}.$

Representamos cada documento d con las features $w_1, ..., w_n$ (típicamente, las palabras del documento).

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(w_1, w_2, ..., w_n | c) P(c).$$

Usando la suposición *naive* de que los eventos w_1 , ..., w_n son independientes:

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(w_1|c)P(w_2|c) \cdots P(w_n|c)P(c).$$

Formulación

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes También estamos haciendo la suposición que la posición de la palabra no importa, sólo su aparición.

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(w_1|c)P(w_2|c) \cdots P(w_n|c)P(c).$$

Aspectos técnicos

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Baye Para evitar el underflowing, usando logaritmos:

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \left(\log P(w_1|c) + \log P(w_2|c) + \cdots + \log P(w_n|c) + P(c) \right)$$

Entrenamiento

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes Entrenar el modelo Naive Bayes quiere decir estimar las probabilidades P(c) y $P(w_j|c)$. Esto lo hacemos contando:

$$P(c) = rac{N_c}{N_{ ext{total}}}$$
 $P(w_i|c) = rac{ ext{count}(w_i,c) + 1}{\sum_{w \in V} (ext{count}(w_i,c) + 1)}$

V es el vocabulario del corpus: el conjunto de todas las palabras que aparecen en el corpus de entrenamiento.

Consideraciones adicionales

Procesamiento de Lenguaje Natural

Introducciói

Clasificación en el PLN

Clasificador Naive Bayes

- ¿Qué hacemos con las palabras desconocidas en el conjunto de prueba?
- ¿Qué hacemos con las stopwords?
- ¿Cómo manejamos las negaciones? didn't like this movie , \rightarrow didn't NOT_like but I ... NOT_this NOT_movie , but I ...
- Podemos incluir n-gramas, palabras de acuerdo al dominio de la tarea.
- Podemos incluir conteos binarios (presencia o ausencia de palabras).

Ejemplo

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

¿Por qué Naive Bayes Multinomial?

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes Supongamos que se realiza un experimento consistente en **extraer** *n* **bolas de** *k* **colores diferentes de una bolsa**, sustituyendo las bolas extraídas después de cada extracción. Las bolas del mismo color son equivalentes.

Denotemos por X_i la variable que denota el número de bolas extraídas de color i, y como p_i la probabilidad de que una extracción dada sea de color i. La función de masa de probabilidad de esta distribución multinomial es:

$$f(x_1,...,x_k;n,p_1,...,p_k) = \frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k},$$

para enteros no negativos $x_1, ..., x_k$.

La distribución multinomial

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Clasificador Naive Bayes

Es decir:

n: longitud del documento (en palabras)

k: número de palabras posibles

 p_i : probabilidad de que la palabra aparezca en la clase.

Supongamos que se realiza un experimento consistente en **extraer** *n* **bolas de** *k* **colores diferentes de una bolsa**, sustituyendo las bolas extraídas después de cada extracción. Las bolas del mismo color son equivalentes.

Ejercicio

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN

Clasificador Naive Bayes Considera los siguientes reviews cortos de películas:

fun, copuple, love, love	comedy
fast, furious, shoot	action
copuple, fly, fast, fun, fun	comedy
furious, shoot, shoot, fun	action
fly, fast, shoot, love	action

Usando Naive Bayes y un suavizado *add-1*, predice el genero de la pelicula del siguiente review:

fast, couple, shoot, fly, live