Universidade de Brasília

IE - Departamento de Ciência da Computação

Circuitos Digitais (116351) – 2°/2013 – turma C

20 Experimento - Portas Lógicas: NAND, NOR E XOR

EDUARDO FURTADO SÁ CORRÊA - 09/0111575

LEANDRO RAMALHO MOTTA FERREIRA - 10/0033571

OBJETIVO: Apresentar os conceitos, símbolos e tabelas da verdade das portas **NAND**, **NOR** e **XOR**.

Mostrar o caráter universal das portas NAND e NOR. Discutir ainda os conceitos de *fanin*,

fan-out e teorema de De Morgan.

Introdução

Uma porta NAND nada mais é do que uma porta AND seguida de uma porta NOT.

Uma porta XOR nada mais é do que uma porta OR seguida de uma porta NOT.

São ditas universais porque sozinhas são capazes de gerar qualquer função booleana através de combinações delas com elas mesmas.

Porta NAND			
Entradas		Saída	
A	В	Y	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Porta NOR			
Entradas		Saída	
A	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Tabela I - Tabela da verdade das portas NAND e NOR

O símbolo para a função XOR é ⊕.

A porta XNOR compara dois *bits* e a saída será 1 se e somente se eles forem iguais. No caso de várias entradas a saída só será 1 se houver um número par de 1's nas entradas. Esta porta é também conhecida como porta **comparadora**.

TEOREMA DE DE MORGAN

Dois teoremas muito úteis na implementação de circuitos lógicos são os teoremas de De Morgan.

a)
$$A + B = A \times B$$

b)
$$A \times B = A + B$$

Eles são demonstrados utilizando-se axiomas e outros teoremas da álgebra de Boole. Uma regra prática para memorizar estas relações diz: se a barra de inversão entre duas variáveis for quebrada, a operação (× ou +) entre elas deve ser intercambiada.

Procedimentos:

Painel digital;

Protoboard;

Ponta lógica;

Fios conectores;

Portas NAND e XOR

2.1) A primeira parte do experimento foi montar um circuito que implementasse uma porta NAND de três entradas, através de três portas NAND de duas entradas. Ligamos o circuito e, experimentalmente, preenchemos a tabela verdade das saídas ~(AB), AB e ~(ABC). Os dados obtidos foram experimentalmente foram:

Entradas		Saídas			
A	В	C	$\overline{A \cdot B}$	$A \cdot B$	$\overline{A \cdot B \cdot C}$
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	1	0	1	1

2.2) Implementamos a função XOR através de portas NAND. Completamos a tabela da verdade experimentalmente:

A	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

2.4) Implementamos a porta XOR de quatro entradas usando portas XORs de duas entradas. Obtivemos os seguintes dados:

Α	В	С	D	(A⊕B)⊕ (C⊕D)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Verificamos que a saída é um quando apenas uma das quatro entradas é 0 ou apenas uma das quatro é 1. Além disso, conclui-se, por De Morgan, que uma XOR de quatro entradas é

Análise de Dados

Confirmamos a universalidade da porta NAND e da porta NOR pois implementamos a porta NAND de três entrads e a porta XOR somente com NANDs de duas entradas. Os dados experimentais que utilizamos para completar as tabelas verdade estão de acordo com a teoria estudada em sala de aula.

Quando montamos o circuito da porta XOR de quatro entradas ficou evidente pelas simplificações álgebricas e DeMorgan, que o observado que estava de acordo com o esperado.

Conclusão:

Verificamos o teorema de DeMorgan, que é essencial para a tecnologia que temos, baseada em lógica booleana.

Nos fizemos amigos das portas NAND, XOR e NOR, explorando suas implementações, tabelas verdade e simbologia. Observamos a universalidade das portas NAND e XOR, de grande importância, tendo em vista que muito hardware está baseado apenas em alguma delas.

Respostas do Teste: B - A - D - D - B

- Se uma porta NAND de 3 entradas tiver duas de suas entradas ligadas a 5 V e a terceira entrada for A, então a saída será:
- a) A/A c) 1 d) 0
- Se uma entrada de uma porta NOR de 3 entradas for 1 e as outras entradas não forem conhecidas, então a saída será:
- a) 0 b) 1 c) Indeterminada d) NDA
- 3. Pelo teorema de De Morgan a função $f = |(A \cdot B) + C|$ é igual a:
 - a) $[(A+B) \cdot C]$ b) $[(\overline{A}+B) \cdot \overline{C}]$ c) $[(\overline{A}+\overline{B}) \cdot C]$ d) $[(\overline{A}+\overline{B}) \cdot \overline{C}]$
- 4. Para usar uma porta XOR como NOT:
 - a) ambas as entradas devem ser 1
 - b) ambas as entradas devem ser 0
 - c) uma das entradas deve ser aterrada
- d) uma das entradas deve ser ligada a 5V
- 5. Se as entradas de uma porta XOR forem iguais, a saída será 1?
 - a) Certo.
- b) Errado.
 - c) Depende do valor das entradas