

Gene2vec : distributed representation of genes based on co-expression

Vasudev R Empid - 10073 Software developer trainee in machine learning Machine learning department

Agenda for discussion

Machine Learning Algorithms working

- Machine learning classification
- A simple example
- Modelling process in SL
- Real world example
- Overall Architecture of SL

Deep Learning Algorithms working

- What is ANN
- What's Artificial Neuron
- How relationship is captured
- What's weight and bias ?

Natural Language Processing

- Types of input in NLP tasks ?
- Whats RNN?
- Whats word Embeddings in NLP?
- What's with word2vec

Gene2vec Paper explaination

Machine Learning algorithms working

MACHINE LEARNING ALGOS CLASSIFICATION

• Can you find the values of y for 4 and 5

Input (X)	Output (Y)
1	2
2	5
3	10
4	?
5	?

- Modelled the equation is $y = f(x) = x^2 + 1$
- And substituted x with 4 and 5

Input (X)	Output (Y)	
1	2	
2	5	Training data
3	10	
4	17	Test data
5	26	2 0 0 0.0.00

• Example Boston House price prediction dataset

	Α	В	С	D	E
1	area	bedrooms	balcony	age	price
2	1200	2	0	2	500000
3	2300	3	2	5	620000
4	2500	4	2	1	122500
5	3650	5	3	3	6000000
6	1800	3	1	5	2122000
7	3000	3	1	4	120000
8	1222	1	0	2	450000
9	4600	5	3	1	6500000
10	2050	2	2	2	1530000
11	1450	2	2	3	1563330

Input x1, x2, x3, x4

Output (Y)

• In real life the output and input wont have a perfect relationship

Input (X)	Output (Y)
1	2 3
2	5- 4
3	10- 11
4	
5	

It approximates to a function that minimizes the error as small as possible

Here
$$y = f(x) = x^2 + 1$$

Overall Architecture of Supervised Learning Algorithms

Deep Learning algorithms working

What's inside an ANN?

- Inside ANN there are many number of neurons
- Neurons are inspired by biological neural network

Neurons

- Input layer and an activation layer
- have weights and bias

How the mathematical relationship is captured?

- Instead of calculating a mathematical function
- Based on inputs and their corresponding output labels
- Weights and bias values are updated from a small initial value through a process called Backpropagation

Deep learning algorithms applications

Aims to replicate how humans see and understand the world around them.

- •Facial recognition.
- Self-driving cars.
- Robotic automation.
- •Medical anomaly detection.
- •Sports performance analysis.
- •Manufacturing fault detection.
- •Agricultural monitoring.
- •Plant species classification.

Technology that allows computers to understand, process, and manipulate human language.

- Interpret the semantic meaning of language
- Translate between human languages
- Recognize patterns in human languages
- Read text
- Hear speech
- Measure sentiment
- Determine which parts of a text are important

NATURAL LANGUAGE PROCESSING

Difference in Input type in NLP vs ML tasks

	Α	В	С	D	Е
1	area	bedrooms	balcony	age	price
2	1200	2	0	2	500000
3	2300	3	2	5	620000
4	2500	4	2	1	122500
5	3650	5	3	3	6000000
6	1800	3	1	5	2122000
7	3000	3	1	4	120000
8	1222	1	0	2	450000
9	4600	5	3	1	6500000
10	2050	2	2	2	1530000
11	1450	2	2	3	1563330

	news_headline	news_category
0	saudi arabia open air space land maritime bord	world
1	indian railway use facial recognition end desp	tech
2	u pursuing seditious conspiracy case unprecede	world
3	coronavirus outbreak hertha berlin striker sal	health
4	google former ceo urge u govt invest artificia	tech
5	amid record \boldsymbol{u} case new white house outbreak tr	world
6	india inoculates cr report covid upsurge five	india
7	u rescinds trump administration claim u n sanc	world
8	govt working relief plan sc order vodafone ide	tech
9	india first indigenous pneumonia vaccine devel	health

- Input sizes (of sentences) are varying
- Sequential Information is also present

To Resolve this We use RNN (Recurrent Neural Network)

Recurrent means repeating nature

E.g. input : **Cells** are the basic building blocks.

E.g. input: Cells **are** the basic building blocks.

E.g. input: Cells are **the** basic building blocks.

E.g. input: Cells are the **basic** building blocks.

E.g. input: Cells are the basic **building** blocks.

E.g. input: Cells are the basic building **blocks**.

E.g. input: Cells are the basic building blocks.

- This final output carrys the sequential information of each sentence.
- This output is also a fixed size Blocks' i.e. for each senteces it gives out fixed size output **RNN** RNN **RNN RNN RNN RNN** basic building blocks the Cells are

Overall architecture of RNN + ANN

Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. Cells also contain the body's hereditary material and can make copies of themselves.

Data Preprocessing
The Encoding process
Word Embeddings
Word2vec
Gene2vec

Why Data Preprocessing is needed?

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	F
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	 0	١
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	 0	١
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	١
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	١
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	١
5	6	50	RL	85.0	14115	Pave	NaN	IR1	Lvl	AllPub	 0	١
6	7	20	RL	75.0	10084	Pave	NaN	Reg	Lvl	AllPub	 0	١

Some Data Preprocessing techniques

- Scaling
- Normalization
- Filling N/A values
- Outlier treatment
- Data Encoding
- Attribute selection
- Dimensionality Reduction

Data Encoding

Categorical Data Numerical data

- Common techniques include
 - One hot encoding
 - Ordinal encoding
 - Label Encoding
 - Target Encoding
 - Hash Encoding
 - Categorical Encoding