LECTURE 6

September 18, 2023

1. Groups: Binary Operations on a Set

DEFINITION 1.1. Let X be a set. A binary operation on X is a function $*: X \times X \to X$. Informally, it is a rule that assigns to every pair $(a, b) \in X \times X$ another member of X, usually denoted a * b.

Example 1.2. On \mathbb{Z} , "+" and "·" are binary operations.

EXAMPLE 1.3. For \mathbb{N} , denote $\mathcal{M}_n(\mathbb{R})$ to be the set of all $n \times n$ matrices with real entries. Then "+" and "·" (matrix multiplication) are binary operations on $\mathcal{M}_n(\mathbb{R})$. If $A, B \in \mathcal{M}_n(\mathbb{R})$, then sometimes $A \cdot B \neq B \cdot A$, hence why the order matters.

EXAMPLE 1.4. On \mathbb{R}^n , with $n \geq 2$, then "+" is a binary operation on \mathbb{R}^n .

EXAMPLE 1.5. However, " $\langle \cdot, \cdot \rangle$ " is not a binary operation on \mathbb{R}^n because for $x, y \in \mathbb{R}^n$, $\langle x, y \rangle \notin \mathbb{R}^n$.

EXAMPLE 1.6. On \mathbb{N} , define $m * n = \frac{m}{n}$ is not a binary operation on \mathbb{N} since sometimes $\frac{m}{n} \notin \mathbb{N}$.

EXAMPLE 1.7. On \mathbb{Q} , $a*b=\frac{a}{b}$, is also not a binary operation on \mathbb{Q} since sometimes it is not defined.

2. Integers Modulo n

NOTATION 2.1. For $n \in \mathbb{N}$, denote $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$. Therefore, if $a \in \mathbb{Z}_n$, then $a \in \mathbb{Z}$ and $0 \le a < n$.

REMARK 2.2. Usual addition and multiplication are *not* binary operations on \mathbb{Z}_n . For example, define $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Then take $3, 4 \in \mathbb{Z}_5$ and define the operation "+". Then 3+4=7, so it is not a binary operation since $7 \notin \mathbb{Z}_5$.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}_n$ such that $a \equiv r \pmod{n}$. In particular, r is the remainder of a divided by n.

DEFINITION 2.3. Let $n \in \mathbb{N}$. For $a, b \in \mathbb{Z}_n$, define the following:

(1) $a +_n b$ as the unique $r \in \mathbb{Z}_n$ such that $a + b \equiv r \pmod{n}$. This means $a +_n b \in \mathbb{Z}_n$ and $a + b \equiv a +_n b \pmod{n}$.

(2) $a \cdot_n b$ as the unique $s \in \mathbb{Z}_n$ such that $a \cdot b \equiv s \pmod{n}$. This means $a \cdot_n b \in \mathbb{Z}_n$ and $a \cdot b \equiv a \cdot_n b \pmod{n}$.

EXAMPLE 2.4. Take $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Take $3, 4 \in \mathbb{Z}_5$, $3 +_5 4 = 2$ because $3 + 4 = 7 \equiv 2 \pmod{5}$ and $2 \in \mathbb{Z}_5$. Similarly, take $2, 3 \in \mathbb{Z}_5$, then $2 \cdot_5 3 = 1$ since $2 \cdot_3 = 6 \equiv 1 \pmod{5}$ and $1 \in \mathbb{Z}_5$.

PROPOSITION 2.5. Let $n \in \mathbb{N}$. Then the following hold for $a, b \in \mathbb{Z}_n$:

- (1) $a +_n b = b +_n a$ and $a \cdot_n b = b \cdot_n a$ (commutativity of "+n" and "\cdot n")
- (2) $(a+_nb)+_nc = a+_n(b+_nc)$ and $(a\cdot_nb)\cdot_nc = a\cdot_n(b\cdot_nc)$. (associativity of $+_n$ and \cdot_n)
- (3) There exists an additive identity and multiplicative identity $0 \in \mathbb{Z}_n$ and $1 \in \mathbb{Z}_n$, respectively, such that $a +_n 0 = a$ and $a \cdot_n 1 = a$, respectively.
- (4) $a \cdot_n (b +_n c) = a \cdot_n b + a \cdot_n c$ (distributive property)
- (5) There exists $a \ b \in \mathbb{Z}_n$ such that $a +_n b = 0$
- (6) For $b \in \mathbb{Z}_n$, the following are equivalent:
 - (a) There exists $k \in \mathbb{Z}_n$ such that $b \cdot_n k = 1$
 - (b) gcd(n, b) = 1.

PROOF. We will prove (2) and (6). Let $a, b, c \in \mathbb{Z}_n$ be arbitrary and write $a+b \equiv a+_n b \pmod{n}$ (this is a defining property) Write $a+b+c \equiv (a+_n b)+c \pmod{n}$. Similarly, $b+c \equiv b+_n c \pmod{n}$ and add a to both sides of this equation so that $a+b+c \equiv a+(b+_n c) \pmod{n}$. Thus, $(a+_n b)+c \equiv (a+_n b)+_n c \equiv a+b+c \pmod{n}$. Similarly, $a+(b+_n c) \equiv a+_n (b+_n c) \equiv a+b+c \pmod{n}$, and therefore, $(a+_n b)+_n c \equiv a+_n (b+_n c) \pmod{n}$. Since both sides are in \mathbb{Z}_n , they are equal.

To show that (6) is true, we show that (a) \Rightarrow (b). Let $b, k \in \mathbb{Z}_b$ such that $b \cdot_n k = 1$. We will show that $\gcd(n, b) = 1$. Indeed, $1 = b_n k \equiv bk$ (mod n), which meas that $bk \equiv 1 \pmod{n}$. By definition $n \mid bk - 1$. Then by definition, there exists a $m \in \mathbb{N}$ such that bk - 1 = mn and so bk - mn = 1. Since $d = \gcd(n, b)$ divides both n and b, it will also divide any linear combination of n and b, i.e. bk - mn = 1. But then, $d = \gcd(n, b) = 1$. Now show that (b) \Rightarrow (a). Assume that $\gcd(n, b) = 1$. By Bezout's Theorem, there exists $x, y \in \mathbb{Z}$ such that xb + yn = 1. In other words, xb - 1 = -yn, which implies that $x \cdot b \equiv 1 \pmod{n}$. Take $k \in \mathbb{Z}_n$ such that $x \equiv k \pmod{n}$. Then we claim that $b \cdot_n k = 1$. Indeed, $b \cdot_n k \equiv b \cdot k \equiv b \cdot x \equiv 1 \pmod{n}$ and so $b \cdot_n k = 1$, as desired.

3. Multiplication and Addition Tables of \mathbb{Z}_4

Let us consider \mathbb{Z}_4 given below for operations $+_n$ and \cdot_n .

\cdot_n	0	1	2	3	$+_n$	0	1	2	3
0	0	0	0	0	0	0	1	2	3
1	0	1	2	3	1	1	2	3	0
2	0	2	0	2	2	2	3	0	1
3	0	3	2	1	3	3	0	1	2