

PENGGUNAAN METODE GEOGRAPHICALLY WEIGHTED LASSO (GWL) PADA KASUS TINGKAT PENGANGGURAN TERBUKA DI PROVINSI JAWA BARAT TAHUN 2022

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Statistika

Oleh

AQSAL MAULANA B2A020043

PROGRAM STUDI STATISTIKA

FAKULTAS SAINS DAN TEKNOLOGI PERTANIAN
UNIVERSITAS MUHAMMADIYAH SEMARANG
TAHUN 2024

PENGESAHAN KELULUSAN

Skripsi dengan Judul "Penggunaan Metode Geographically Weighted Lasso (GWL) pada Kasus Tingkat Pengangguran Terbuka di Provinsi Jawa Barat Tahun 2022." Yang disusun oleh:

Nama : Aqs

: Aqsal Maulana

NIM

: B2A020043

Program Studi: S1 - Statistika

Telah disetujui oleh dosen pembimbing pada tanggal 22 Agustus 2024

Panitia Ujian

Ketua Tim Penguji

Tiani Wahyu Utami, M.Si

NIK. 28.6.1026.341

Anggota Tim Penguji I

NIK. 28.6.1026.442

Anggota Tim Penguji II

Prizka Rismawati Arum,

M.Stat

NIK. 28.6.1026.441

Anggota Tim Penguji III

Fatkhurokhman Fauzi, S.Si.,

M.Stat

NIK. 28.6.1026.119

Mengetahui,

Ketua Prodi Studi

M. Al Harls, M.S.

NIK. 28.6.1026.442

PERNYATAAN KEASLIAN

Dengan ini saya menyatakan bahwa:

- Karya tulis asya, skripsi ini, adalah asli dan belum pernah diajukan untuk mendapat gelar akademik (sarjana, magister, dan/atau doktor), baik di Universitas Muhammadiyah Semarang maupun di perguruan tinggi lain.
- Karya tulis ini adalah murni gagasan, rumusan, dan penelitian, saya sendiri, tanpa bantuan pihak lain, kecuali arahan Tim pembimbing dan Masukan Tim Penguji.
- Dalam karya tulis ini tidak terdapat karya atau pendapat yang telah ditulis atau dipublikasikan orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama pengarang dan dicantumkan dalam daftar pustaka.
- 4. Pernyataan ini saya buat dengan sesungguhnya dan apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima sanksi akademi berupa pencabutan gelar yang telah diperoleh karena karya ini, serta sanksi lainnya sesuai dengan norma yang berlaku di perguruan tinggi ini.

Semarang, 26 Agustus 2024 Yang membuat pernyataan,

NIM. B2Å020043

KATA PENGANTAR

Assalamu'alaikum Warrahmatullahi Wabarakatuh

Segala puji dan syukur penulis ucapkan kehadirat Allah Subhanahu Wata'ala yang telah melimpahkan rahmat dan petunjuk-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul "Regresi Robust Menggunakan Estimasi Least Trimmed Square (LTS) dan Estimasi Method of Moment (MM) pada PDRB Indonesia Tahun 2022". Shalawat dan salam tercurah kepada junjungan alam Nabi Muhammad Shallallahu 'Alaihi Wasalam yang senantiasa dinantikan syafaat-Nya di yaumul akhir nanti, Aamiin.

Penelitian ini disusun sebagai salah satu syarat memperoleh gelar Sarjana Statistika pada Program Studi S1 Statistika Universitas Muhammadiyah Semarang. Penulis menyadari sepenuhnya bahwa penyelesaian skripsi ini tidak dapat terlaksana tanpa dukungan dan bimbingan dari berbagai pihak. Untuk itu pada kesempatan ini penulis ingin menyampaikan terima kasih dan penghargaan setinggi-tingginya kepada:

- Bapak Prof. Dr. Masrukhi, M.Pd., selaku Rektor Universitas Muhammadiyah Semarang.
- 2. Ibu Dr. Nurhidajah, S.TP., M.Si., selaku Dekan Fakultas Sains dan Teknologi Pertanian Universitas Muhammadiyah Semarang.
- Bapak M. Al Haris, M.Si., selaku Ketua Program Studi S1 Statistika
 Fakultas Sains dan Teknologi Pertanian Universitas
 Muhammadiyah Semarang
- 4. Ibu Prizka Rismawati Arum, S.Si., M.Stat., selaku dosen pembimbing I yang telah meluangkan waktu untuk memberikan bimbingan, dukungan, saran, motivasi, dan nasihat kepada penulis dalam penyusunan skripsi ini.
- 5. Bapak Fatkhurrohman Fauzi, S.Si, M.Stat., selaku dosen pembimbing II yang telah meluangkan waktu dan dengan sabar

memberikan bimbingan, pengarahan, saran, serta motivasi dalam

penyusunan skripsi ini.

6. Kedua orang tua yang senantiasa memberikan motivasi dan

dukungan berupa moral, materi, dan spiritual sehingga penulis dapat

menyelesaikan skripsi ini.

7. Teman-teman prodi Statistika angkatan 2020 yang telah

memberikan semangat, motivasi, dan bantuan dalam penyusunan

penelitian skripsi ini

8. Seluruh Dosen dan staf karyawan di lingkungan Program Studi

Statistika Fakultas Sains dan Teknologi Pertanian Universitas

Muhammadiyah Semarang yang telah memberikan bekal ilmu yang

bermanfaat kepada saya.

9. Sahabat saya di *discord* dan game yang saya sukai serta anak-anak

kontrakan (Adyas, Andri, Fahrul, Jimmy, Reyhan) yang telah

memberikan motivasi dan dukungan baik secara mental maupun

perbuatan.

Semarang, 21 Agustus 2024

Penulis

Aqsal Maulana

B2A020043

v

ABSTRAK

Maulana, Aqsal. 2024. Penggunaan Metode Geographically Weighted Lasso (GWL) Pada Kasus Tingkat Pengangguran Terbuka Di Provinsi Banten Tahun 2023. Skripsi, Program Studi Statistika, Universitas Muhammadiyah Semarang, Pembimbing: I. Prizka Rismawati Arum, S. Si., M.Stat, II. Fatkhurokhman Fauzi, M.Si.

Tingkat pengangguran terbuka (open unemployment) terjadi karena perbandingan antara penduduk yang siap kerja dan lapangan pekerjaan yang tersedia tidak seimbang. Wilayah Provinsi Jawa Barat menjadi yang tertinggi pada tingkat pengangguran terbuka untuk tahun 2022. Dalam pengidentifikasian faktor-faktor yang mempengaruhi tingkat pengangguran terbuka untuk tahun 2022 perlu pendekatan dari metode statistika khususnya yang bisa memperhatikan efek spasial karena faktor yang mempengaruhi masing-masing dipengaruhi oleh karakteristik masing-masing wilayah tersebut. Metode yang digunakan dalam penelitian ini adalah Geographically Weighted Lasso (GWL) yang merupakan metode penggabungan antara Geographically Weighted Regression (GWR) dan Lasso. Tujuan penggabungan dari kedua pendekatan tersebut adalah pada analisis GWR mampu memperhatikan aspek letak geografi dan Lasso untuk mengatasi multikolinearitas yang terjadi pada analisis GWR dengan cara menyusutkan koefisien variabel yang tidak berpengaruh hingga bernilai 0. Penelitian ini akan menganalisis faktor – faktor yang mempengaruhi tingkat pengangguran terbuka di tingkat wilayah kabupaten/kota pada Provinsi Jawa Barat dengan menerapkan dan menginterpretasi hasil dari metode GWL. Hasil analisis menunjukkan bahwa koefisien determinasi model GWL sebesar 0,886 lebih tinggi daripada koefisien determinasi dari model GWR dan model regresi global.

Kata kunci:, *Geographically Weighted Lasso* (GWL), Pembobot, Spasial, Tingkat Pengangguran Terbuka

ABSTRACT

Maulana, Aqsal. 2024. The use of Geographically Weighted Lasso (GWL) Method in the case of open-ended weighing in the West Java province in 2022. Skripsi, Statistics Studies Program, Muhammadiyah University Semarang, Guide: I. Prizka Rismawati Arum, S. Si., M. Stat, II. Fatkhurokhman Fauzi, M.Si.

The open unemployment rate occurs because the comparison between the population ready to work and the available jobs is not balanced. The West Java Province region has the highest open unemployment rate for 2022. In identifying the factors that influence the open unemployment rate for 2022, an approach from statistical methods is needed, especially those that can pay attention to spatial effects because the factors that influence each are influenced by the characteristics of each region. The method used in this study is Geographically Weighted Lasso (GWL) which is a method of combining Geographically Weighted Regression (GWR) and Lasso. The purpose of combining the two approaches is that the GWR analysis is able to pay attention to aspects of geographic location and Lasso to overcome multicollinearity that occurs in the GWR analysis by reducing the coefficients of variables that have no effect to a value of 0. This study will analyze the factors that influence the open unemployment rate at the district/city level in West Java Province by applying and interpreting the results of the GWL method. The results of the analysis show that the determination coefficient of the GWL model is 0.886, which is higher than the determination coefficient of the GWR model and the global regression model.

Keywords: Geographically Weighted Lasso (GWL), Open unemployment rate, , Spatial, Weighing

DAFTAR ISI

ABSTRAK	ii
ABSTRACT	vii
DAFTAR ISI	viii
DAFTAR GAMBAR	vi
DAFTAR TABEL	vii
BAB I	1
PENDAHULUAN 1.1. Latar Belakang	
1.2. Rumusan Masalah	7
1.3. Tujuan Penelitian	7
1.4. Manfaat Penelitian	8
1.5. Batasan Masalah	8
BAB II	9
TINJAUAN PUSTAKA	
2.2. Analisis Spasial	10
2.3 Geographically Weighted Regression (GWR)	13
2.4. Multikolinieritas Lokal	18
2.5. Geographically Weighted Lasso (GWL)	19
2.6 Pemilihan Model terbaik	22
2.7 Tingkat Pengangguran Terbuka	23
BAB III	25
METODE PENELITIAN	
3.2 Variabel Penelitian	25
3.3 Metode Analisis Data	27
3.4 Diagram Alir	28
BAB IV	29
HASIL DAN PEMBAHASAN	29
4.1. Deskripsi Data	29

4.2. Gambaran Umum Kasus Tingkat Pengangguran Terbuka	32
4.3. Analisis Data	33
BAB V	56
5.1. Kesimpulan	56
5.2. Saran	56
DAFTAR PUSTAKA	57
LAMPIRAN	60
Lampiran 1. Data Penelitian	60
Lampiran 2. Jarak <i>Euclidean</i>	62
Lampiran 3. Bobot GWR	68
Lampiran 4. Bobot GWL	74
Lampiran 5. Model GWL Lokal	81
Lampiran 6. Tabel VIF Lokal	82
Lampiran 7. Syntax R.Studio	83

DAFTAR GAMBAR

Gambar 1.1 Grafik TPT Indonesia usia 15 - 24 tahun	2
Gambar 1.2 Grafik TPT Tiap Provinsi	4
Gambar 3.1 Diagram Alir Penelitian	28
Gambar 4.1 Lima provinsi dengan tingkat pengangguran terbuka tertinggi	30
Gambar 4.2 persebaran tingkat pengangguran terbuka di Jawa Barat 2022	31
Gambar 4.3 Persebaran Angka Partisipasi Murni Jawa Barat 2022	44
Gambar 4.4 Persebaran Indeks Pembangunan Manusia Jawa Barat 2022	45
Gambar 4.5 Persebaran Pengaruh Penduduk Miskin Jawa Barat 2022	46
Gambar 4.6 Persebaran Angka Putus Sekolah Jawa Barat 2022	47
Gambar 4.7 Persebaran Tingkat Kemiskinan Jawa Barat 2022	48
Gambar 4.6 Peta Faktor Yang Berpengaruh Signifikan Terhadap Tingkat Pengangguran Terbuka Provinsi Jawa Barat Bedasarkan Model GWL	54

DAFTAR TABEL

Tabel 3.1 Variabel Penelitian	26
Tabel 3.2 Struktur Data Penelitian	26
Tabel 4.1 Statistika Deskriptif Tingkat Pengangguran Terbuka di Jawa Barat	32
Tabel 4.2 Nilai Uji T	34
Tabel 4.3 Hasil Uji Normalitas	35
Tabel 4.4 Pengujian Heterokedastisitas	35
Tabel 4.5 Nilai VIF Setiap Variabel Prediktor	36
Tabel 4.6 Pengujian Autokorelasi Spasial	37
Tabel 4.7 Penentuan nilai <i>Bandwidth</i>	38
Tabel 4.8 Nilai Jarak Euclidean dan Pembobot GWR	39
Tabel 4.9 Variabel signifikan untuk model GWR	42
Tabel 4.10 Ringkasan nilai VIF lokal untuk seluruh lokasi	49
Tabel 4.11 Nilai Jarak Euclidean dan Pembobot GWL	50
Tabel 4.12 Variabel signifikan pada setiap Kabupaten/Kota	52
Tabel 4.13 Perbandingan R ² model GWL dan GWR	55

BAB I

PENDAHULUAN

1.1. Latar Belakang

Pengangguran adalah keadaan manusia dimana seseorang termasuk dalam golongan angkatan kerja yang ingin bekerja tetapi belum ada pekerjaan yang diperoleh sama sekali (Sukirno, 1994). Penyebab seseorang dikatakan pengangguran terbagi menjadi 3 kelompok yaitu pengangguran friksional, pengangguran struktural, dan pengangguran teknologi (Sukirno, 1994).

Pengangguran friksional (*frictional unemployment*) merupakan pengangguran yang terjadi karena perkerja/individu sedang berada di proses pergantian pekerjaan dari satu pekerjaan ke pekerjaan lainnya. Jenis pengangguran ini memiliki sifat yang sementara karena individu sudah terbekali dengan kemampuan mereka dan mereka mencari pekerjaan yang sesuai dengan minat dan keahlian mereka. Penyebab dari pengangguran ini bisa karena jenuh dengan pekerjaan saat ini dan ingin mencari pekerjaan lain atau ingin mendapatkan gaji yang lebih tinggi (Koning et al., 1995).

Pengangguran struktural adalah pengangguran yang terjadi disebabkan kurang cocoknya antara keterampilan yang dimiliki oleh individu dan perusahaan butuhkan. Ada beberapa faktor yang mempengaruhi terjadinya pengangguran jenis ini seperti pergeseran dari industri manufaktur ke industri jasa, dinamika perdagangan global dan finansialisasi yang bisa berefek pada peluang kerja, dan *offshoring* pekerjaan oleh perusahaan transnasional (Akerlof, 1969).

Pengangguran teknologi merupakan pengangguran yang terjadi karena pergantian tenaga manusia oleh mesin – mesin/teknologi yang canggih karena kemajuan teknologi dan atau pengurangan biaya produksi. Perubahan ini terjadi karena perusahaan ingin berinovasi untuk membuat cara kerja yang produktif serta efisien. Inovasi ini membuat para pekerja yang berketerampilan rendah mudah untuk diotomatisasi (Sargent, 2000).

Pengangguran menjadi kategori masalah makro ekonomi karena bahaya yang ditimbulkan mempengaruhi manusia secara langsung dan berat. Bahaya yang ditimbulkan berupa penurunan standar kehidupan dan permasalahan psikologis. Masalah pengangguran hingga saat ini masih menjadi perbincangan hangat karena masih banyak provinsi-provinsi yang masih mengalami masalah tersebut hingga banyak kebijakan-kebijakan dibuat untuk menangani kasus kemiskinan (Mankiw, 2006). Penyebab tingginya angka pengangguran ada beberapa faktor seperti jumlah tenaga kerja dan lapangan pekerjaan yang tidak seimbang, Lulusan – lulusan yang ada tidak sesuai dengan lowongan pekerjaan yang dibutuhkan, pemutusan hubungan kerja (PHK), dan kemajuan teknologi yang tidak dibarengi dengan kemajuan masyarakat.

Permasalahan pengangguran sering terjadi di negara – negara berkembang salah satunya adalah negara Indonesia. Dari sekian banyak masalah penangguran, tingkat pengangguran terbuka (TPT) menjadi topik hangat ditahun 2022. Menurut berita CNN Indonesia, angka pengangguran di Indonesia menembus diangka 8,42 juta orang bedasarkan pencatatan yang dilakukan BPS. Bedasarkan kelompok umur penduduk berusia 15 – 24 tahun menjadi yang terbanyak untuk kasus TPT tahun ini. Menurut Menteri Ketenagakerjaan (Menaker) Ida Fauziah, 2,8 juta dari 8,42 juta pengnagguran sudah pasrah untuk mencari kerja/hopeless of job. Dari tirto.id memberitakan bahwa kategori Gen Z (kelompok umur 15-24 tahun) menjadi tertinggi untuk kasus TPT ini. Berikut grafik tingkat pengangguran terbuka (TPT) Indonesia berdasarkan kelompok umur penduduk 15-24 tahun (Gen Z).

Gambar 1. 1 Grafik TPT Indonesia usia 15 - 24 tahun Sumber : Sakernas, BPS

Gambar 1.1 diatas memvisualisasikan Tingkat Pengangguran Terbuka (TPT) untuk usia 15 – 24 tahun dengan tahun 2022 menjadi yang tertinggi dengan presentase 20,63%. Padahal ditahun 2021 angka TPT untuk usia tersebut sudah mengalami penurunan tetapi ditahun 2022 terjadi kenaikan kembali. Dilihat secara grafik angka kenaikan TPT dari tahun 2021 ke 2022 sebesar 1,08%. Sehingga penelitian ini akan mengambil tahun 2022 untuk mengetahui apa yang menjadi penyebab TPT tahun tersebut tinggi.

Pengangguran terbuka adalah masyarakat yang termasuk dalam umur siap kerja namun belum memiliki pekerjaan atau sedang mencari pekerjaan. Orang yang sedang mendirikan usaha dan belum mulai mencari pekerjaan juga termasuk dalam kategori masalah pengangguran terbuka (Sukirno, 2010). Menurut BPS (Badan Pusat Statistik) pengangguran terbuka (*open unemployment*) didasarkan pada konsep seluruh angkatan kerja yang membutuhkan pekerjaan, baik secara pekerjaan pertama atau yang sudah pernah bekerja sebelumnya. Menurut *International Labor Organitation (ILO)*, pengangguran terbuka merupakan sekelompok orang yang berada di kelompok penduduk berusia kerja yang selama waktu tertentu tidak bekerja dan bersedia untuk menerima pekerjaan serta sedang mencari pekerjaan.

Tingkat pengangguran terbuka (TPT) di Indonesia terhitung oleh Badan Pusat Statistik (BPS) per-bulan agustus tahun 2022 berada diangka 8,42 juta jiwa atau jika dipresentasekan sebesar 5,86%. Dari beberapa provinsi jika dilihat dari presentase kasus Tingkat pengangguran terbuka bedasarkan data BPS tahun 2022, Provinsi Jawa Barat menjadi daerah dengan kasus tertinggi diangka 8,31% dibandingkan dengan provinsi — provinsi yang lain per-bulan Agustus 2022. Untuk membandingkan dengan provinsi lain, dibawah ini bisa dilihat 5 provinsi teratas dan grafik batang untuk tiap provinsi untuk kasus tingkat pengangguran terbuka (TPT).

Gambar 1.2 Grafik TPT Tiap Provinsi Sumber : BPS

Gambar 1.2 memvisualisasikan tingkat pengangguran terbuka, dengan Provinsi Jawa Barat tercatat sebagai provinsi dengan kasus angka tertinggi sebesar 8,31%, diikuti oleh Kepulauan Riau dengan angka 8,23%, dan Ketiga terbesar pada Provinsi Banten dengan angka 8,09%. Bisa dilihat hanya 3 provinsi yang sudah disebutkan sebelumnya tadi yang angka kasus TPT diatas 8%. Provinsi Jawa Barat menjadi tertinggi tentu pasti ada beberapa faktor yang menjadi penyebabnya. Sehingga untuk penelitian kali ini akan diambil provinsi Jawa Barat untuk mengetahui faktor-faktor apa saja yang mempengaruhi TPT pada Provinsi Jawa Barat.

Dalam menentukan faktor-faktor yang mempengaruhi tingkat pengangguran terbuka perlu menentukan metode analisis yang akan digunakan. Salah satu metode analisis yang bisa digunakan adalah analisis regresi. Metode analisis regresi adalah metode yang memiliki kesinambungan dari variabel dependen terhadap satu atau lebih variabel independen/variabel penjelas. Tujuan dari analisis regresi adalah mengestimasi nilai rata-rata pada variabel dependen dari nilai yang diketahui dari variable independent (Gujarati & Porter, 2009). Penggambaran dari analisis regresi adalah melihat pengaruh variabel

independent dengan cara membentuk model yang sesuai dengan karakteristik data sehingga menghasilkan estimasi parameter pada model persamaan regresi.

Metode regresi yang digunakan untuk penelitian kali ini merupakan pengembangan dari analisis regresi sederhana karena pada kasus tingkat pengangguran terbuka ini memerlukan metode yang bisa memperhatikan pengaruh hubungan antar lokasi unit observasi (Taek et al., 2023). Sehingga analisis regresi spasial digunakan pada penelitian ini karena regresi tersebut bisa memperhatikan aspek hubungan antar lokasi (Grasa, 1989). Geographically Weighted Regression (GWR) merupakan salah satu turunan dari regresi spasial menambahkan pembobot spasial bedasarkan lokasi geografis. Geographically Weighted Regression merupakan teknik umum yang penting jika terjadi efek spasial dalam data. (Fotheringham & Brunsdon, 2002). Konsep dasar dari metode ini merupakan turunan dari model regresi spasial. Penggunaan model Geographically Weighted Regression (GWR) akan menghasilkan penaksir parameter bersifat lokal pada setiap lokasi pengamatan. Pengaruh dari perbedaan lokasi akan membentuk sebuah koordinat yang mana memboboti masing – masing parameter pada setiap titik lokasi pengamatan. Dengan adanya pembobot dalam *Geographically Weighted Regression* (GWR) memiliki peran yang sangat penting.

Pada analisis GWR khususnya pada data yang memiliki fenomena multikolinearitas lokal menjadi permasalahan baru yang bisa saja muncul dalam permodelan regresi spasial. Multikolinearitas lokal adalah fenomena yang terjadi disebabkan adanya satu atau lebih variabel bebas berkorelasi dengan satu atau lebih variabel bebas lainnya (Yulita et al., 2015a). Pada penelitian yang dilakukan (Lestar et al., 2020) mengangkat kasus tingkat pengangguran terbuka untuk tahun 2019 dan pada hasil analisis menunjukkan adanya efek multikolinearitas lokal. aHasil dari adanya multikolinearitas adalah dugaan parameter memiliki ragam yang besar. Solusi untuk mengatasi multikolinearitas salah satunya adalah penggunaan *Least Absolute Shrinkage Selection Operator* (LASSO). LASSO adalah metode regresi yang dapat menyusutkan koefisien regresi pada variabel yang tidak berpengaruh menjadi tepat bernilai nol (Hastie

et al., 2001). Penggunaan regresi LASSO akan digunakan' untuk mengatasi masalah multikolinearitas lokal.

Pada kasus TPT banyak variabel-variabel bebas yang bisa berpengaruh terhadap angka TPT baik itu bertambah atau berkurang. Tetapi untuk membuktikan variabel tersebut benar berpengaruh perlu dilakukan analisis. Pengecekan asumsi klasik menjadi proses yang sangat penting dalam analisis data agar variabel-variabel memiliki tingkat penjelasan yang baik. Pada penelitian ini asumsi multikolinearitas akan dibiarkan jika terlanggar dikarenakan penelitian ini berfokus pada permodelan pada tingkat wilayah kabupaten/kota yang memiliki banyak variabel bebas sehingga dengan banyaknya variabel bebas yang digunakan tidak menutup kemungkinan akan terjadi fenomena multikolinearitas. Permodelan GWL akan cocok pada penelitian ini karena menggabungkan GWR yang bisa memodelkan untuk masing-masing wilayah kabupaten/kota dan LASSO yang bisa mengatasi masalah multikolinearitas pada masing-masing wilayah pada model GWR sehingga model yang dihasilkan lebih akurat (D. Wheeler & M, 2005). Penggabungan dua metode diatas menghasilkan nama metode yang disebut Geographically Weighted Lasso (GWL).

Ada beberapa penelitian terdahulu yang membahas tentang Tingkat Pengangguran Terbuka dan metode *Geographically Weighted Lasso (GWL)* yaitu Embay Roheti, dkk (2020) melakukan penelitian pada kasus Produk Domestik Regional Bruto kabupaten/kota Pulau Jawa menggunakan *Geographically Weighted Lasso (GWL)*. Rita Herawaty dan Aida Meimela (2020) melakukan penelitian tentang pemetaan kemiskinan melalui pendekatan *Geographically Weighted Lasso*. Tiyas Yulita, dkk (2015) melakukan penelitian tentang kinerja Ridge dan LASSO pada data spasial dengan multikollinearitas.

Penelitian yang dilakukan oleh Embay Roheti, dkk (2020) berfokus pada mengatasi multikolinearitas lokal dalam analisis spasial pada kasus Produk Domestik Regional Bruto (PDRB) kabupaten/kota di Provinsi Jawa. Untuk mengatasi fenomena yang terjadi digunakan *Geographically Weighted Lasso*

(GWL) dengan algoritma LARS yang termodifikasi. Dalam penelitian ini GWL berhasil menangani multikolinearitas lokal dalam kasus PDRB di Provinsi Jawa Tengah dengan hasil pendugaan parameter yang lebih stabil dan akurasi model yang lebih tinggi.

Penelitian yang dilakukan Rita Herawaty dan Aida Meimela (2020) berfokus pada pentingnya memilih bandwidth yang optimal pada model GWL. Pada penelitian menggunakan pembobot *Fixed Exponential Kernel* dan *cross validation* sebagai kriteria untuk menetukan nilai bandwidthnya yang optimal. Strategi pemilihan pembobot dan bandwidth yang optimal ternyata mempengaruhi akurasi estimasi parameter. Dengan memanfaatkan pembobot dan kriteria pemilihan bandwidth tersebut terbukti adanya peningkatan ketepatan estimasi parameter.

Penelitian yang dilakukan oleh Tiyas Yulita, dkk (2015) berfokus pada kinerja *Geographical Weighted Ridge Regression* (GWRR) dan *Geographical Weighted Lasso* (GWL) dalam menangani fenomena multikolinearitas pada data spasial. Pada penelitian ini masalah yang diangkat adalah kasus PDRB di Provinsi Jawa Tengah dengan menggunakan pembobot *Fixed Exponential Kernel*. Dari penelitian yang dilakukan mendapatkan hasil GWL lebih unggul daripada GWRR dilihat dari nilai koefisien determinasi (R²) yang lebih rendah dan nilai akurasi yang lebih tinggi.

1.2. Rumusan Masalah

- 1. Bagaimana gambaran umum pengangguran di Provinsi Jawa Barat ?
- 2. Bagaimana model *Geographically Weighted Lasso* pada data tingkat pengangguran terbuka di Provinsi Jawa Barat ?
- 3. Faktor apa saja yang mempengaruhi Tingkat Pengangguran Terbuka di Jawa Barat ?

1.3. Tujuan Penelitian

- Untuk mengetahui gambaran umum pengangguran di Provinsi Jawa Barat.
- 2. Untuk mengetahui model *Geographically Weighted Lasso* pada data tingkat pengangguran terbuka di Provinsi Jawa Barat.

3. Untuk Mengetahui faktor apa saja yang mempengaruhi Tingkat Pengangguran Terbuka di Jawa Barat.

1.4. Manfaat Penelitian

1. Manfaat Teoritis

Penelitian ini dapat digunakan untuk menambah wawasan ilmiah terhadap fenomena tingkat pengangguran terbuka dikarenakan menggunakan metode analisis *Geographically Weighted Lasso* untuk mengetahui variabel yang berpengaruh pada masing - masing wilayah kabupaten/kota.

2. Manfaat Praktis

Pemerintah dapat membuat kebijakan yang bisa menyesuaikan dengan variabel berpengaruh pada masing - masing wilayah kabupaten/kota di Provinsi Jawa Barat

1.5. Batasan Masalah

- 1. Pemilihan *Bandwidth* optimum, digunakan pendekatan nilai *Cross Validation* (CV) dan dalam menentukan model terbaik akan dilihat pada nilai evaluasi *Akaike Information Criterion* (AIC).
- 2. Pengecekan efek spasial menggunakan uji Moran's I.
- 3. Data yang digunakan merupakan data pengangguran terbuka tahun 2022 untuk Provinsi Jawa Barat.
- 4. Fungsi pembobot yang digunakan dalam penelitian ini adalah *Fixed Exponential Kernel*.

BAB II TINJAUAN PUSTAKA

2.1. Data Spasial

Data spasial didefinisikan data dengan memiliki orientasi geografis yang memiliki system koordinat tertentu sebagai dasar referensinya yang membuat data spasial dapat dibuat dalam sebuah gambar peta. Spasial berasal dari kata space yang memiliki makna ruang. Data spasial memiliki khas tersendiri dari data-data yang lain yaitu informasi mengenai lokasi (spasial) dan informasi attribute dari data itu sendiri. Isi dari lokasi (spasial) sendiri adalah sebuah koordinat baik koordinat latitude dan longitude. Data attribute merupakan keterangan yang memiliki kaitan dengan suatu lokasi, seperti tingkat pengangguran terbuka, angka partisipasi murni, IPM dan sebagainya (Hidayat & Munir, 2006).

Menurut Irwansyah (2013) data spasial adalah suatu data yang mengacu pada posisi, objek dan hubungan dalam ruang bumi. Data spasial memiliki asumsi distribusi normal dan ada hubungan secara spasial untuk dapat dianalisis secara spasial. Data spasial saat ini sudah mengalami perkembangan dalam pemanfaatannya diikuti dengan kemajuan teknologi pada Sistem Informasi Geografis (SIG). Dalam SIG pada umumnya pemanfaat dari data spasial berupa peta atau gambar yang memiliki titik koordinat tertentu dengan format digital. Menurut Budiyanto (2009), data spasial berisis suatu informasi tentang posisi/lokasi dan memiliki system koordinat/titik tertentu sebagai dasar regerensinya sehingga memiliki penjelasan mengenai informasi geografis. Data spasial sendiri memiliki empat komponen pokok yaitu:

2.1.1. Komponen posisi geografis

Komponen ini berupa suatu hubungan koordinat geografis berbasis pada model matematis yang bisa diubah/ditransformasikan ke jenis system yang lain. Posisi geografis menunjukkan lokasi yang ditulis dengan longitude – latitude, koordinat kartesius atau easting-northing.

2.1.2. Komponen spasial

Komponen ini berisi hubungan topologis antar komponen dari entitas data spasial seperti koneksi antara titik dengan titik, titik dengan garis, garis dengan area, garis dengan garis, dan area dengan area lainnya. Inilah yang menyebabkan terjadinya sebuah kaitan sebab akibat fenomena.

2.1.3. Komponen atribut

Komponen ini menjelaskan penjelasan dari objek-objek apa yang ada pada data spasial. Biasanya atribut ini memberikan keterangan mengenai kuantitas dan kualitas sebuah fenomena.

2.1.4. Komponen waktu

Kompnen waktu/time menjelaskan sebuah informasi antara waktu dari data spasial. Fenomena-fenomena akan dibandingkan dengan fenomena yang sama namun terjadi diwaktu yang berbeda. Komponen ini memiliki kaitan dengan kemungkinan antara perubahan atau perkembangan dalam data spasial.

2.2. Analisis Spasial

Pada analisis spasial terdapat langkah dimana harus membuat model regresi yang mana hasil pengembangan dari regresi linier klasik yang disebut regresi spasial. pengembangan yang dilakukan tentu karena adanya pengaruh lokasi pada data yang dianalisis. Regresi spasial ini memiliki asumsi yang membedakan dengan regresi lainnya. Uji autokorelasi spasial merupakan uji untuk mendeteksi pengaruh spasial dan uji ini hanya terdapat pada regresi spasial saja. Selain Uji autokorelasi spasial yang harus terpenuhi ada beberapa asumsi lain yang perlu dilakukan dalam regresi spasial (Pfeiffer et al., 2008).

2.2.1 Uji Normalitas

Uji normalitas adalah uji yang memiliki fokus untuk mengetahui apakah distribusi data pada data yang digunakan dalam penelitian apakah berdistribusi normal atau tidak. Uji ini memiliki hipotesis sebagai berikut :

 H_0 : f(x) = normal (Data berdistribusi normal)

 $H_1: f(x) \neq \text{normal}$ (Data tidak berdistribusi normal)

Sistem pengambilan Keputusan ini adalah jika taraf signifikan/ $(\alpha) \le 0.10$ maka dapat diambil keputusan bahwa data tersebut tidak normal atau H_0

ditolak. Begitu juga sebaliknya data dikatakan berdistribusi normal jika taraf signifikansi ≥ 0.10 atau $W_{hitung} \leq W_{tabel}$ (Samadi et al., 2017). Dalam penelitian ini metode yang digunakan untuk uji normalitas adalah uji *Shapiro-wilk*. Berikut rumus uji *Shapiro-wilk*.

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
(2.1)

Keterangan:

W: nilai uji shaper-wilk.

 x_i : nilai data ke-i

 \bar{x} : rata - rata

2.2.2 Uji Heterogenitas

Uji heterogenitas merupakan uji untuk mengetahui varian populasi apakah memiliki kesamaan atau tidak (Anselin, 1988). Untuk penelitian ini digunakan uji *Breusch-Pagan*, berikut rumus untuk uji *Breusch-Pagan*.

$$BP = \frac{1}{2} f^t Z(Z^t Z)^{-1} Z^t f \sim X_p^2$$

Untuk nilai Vektor f

(2.2)

$$f_i(\frac{e_i^2}{\sigma^2}-1)$$

Dengan keterangan:

 $f_i = \text{matriks berukuran } n \times 1$

 e_j = sisaan pada lokasi pengamatan ke-j

Z = matriks berukuran $n \times (p + 1)$ yang berisi vector yang sudah denormal bakukan pada masing – masing lokasi pengamatan

 σ^2 = ragam dari residual (e_i)

 $X_p^2 = Pearson\ Chi\text{-}Square$

2.2.3 Uji Multikolinearitas

Analisis pada data spasial terdapat sebuah fenomena yang bisa dialami saat permbuatan model yaitu masalah multikolinieritas. Multikolinieritas menurut D. C. Wheeler, 2007, merupakan sebuah fenomena yang terjadi karena adanya korelasi yang tinggi antar variabel. Nilai multikolinieritas yang sangat tinggi menyebabkan varians dan standar eror estimasi koefisien regresi besar (Gujarati & Porter, 2009). Salah satu cara untuk mendeteksi adanya multikolinieritas adalah dengan menghitung nilai VIF yang dirumuskan sebagai berikut (Anselin, 1988):

$$VIF_k = \frac{1}{1 - R_k^2} \tag{2.3}$$

dimana R_k^2 adalah koefisien determinasi ketika x_k diregressikan dengan variabel penjelas lainnya untuk tiap lokasi ke-i. Nilai VIF>10 mengindikasikan terjadinya multikolinieritas.

2.2.4 Uji Autokorelsi Spasial

Uji autokorelasi spasial merupakan uji untuk mengetahui apakah pengamatan pada satu wilayah observasi memiliki pengaruh terhadap pengamatan di lokasi observasi yang lain (Anselin, 1988). Pada penelitian yang dilakukan oleh (Ganasegeran et al., 2022) uji Moran's I digunakan untuk pendeteksian efek spasial sebelum permodelan GWR. Untuk penelitian ini digunakan uji Moran's, berikut rumus untuk uji Moran's.

$$Z_I = \frac{\hat{I} - E(\hat{I})}{\sqrt{Var(\hat{I})}} \tag{2.4}$$

Dimana:

$$\hat{I} = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij} (y_i - \bar{y}) (y_j - \bar{y})}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

Dengan keterangan:

 \overline{y} : rata-rata variable y

 w_{ij} : elemen matrik pembobot

 $S_0: \sum_{i=1}^n \sum_{j=1}^n w_{ij}:$ jumlah elemen matriks pembobot

 \hat{I} : nilai indeks Moran's I

Z : nilai statistik uji indeks Moran's I

 $E(\hat{I})$: nilai ekspetasi dari indeks Moran's I

 $Var(\hat{I})$: nilai varians dari indeks Moran's I

Rata-rata varians dalam moran's I dapat ditulis sebagai berikut.

$$\widehat{I_0} = E(I) = \frac{-1}{(n-1)}$$

$$var(\hat{I}) = \frac{n^2 S_1 - n S_2 + 3 S_0^2}{(n^2 - 1)S_0^2} - (E(I))^2$$

Dimana:

$$S_0 = \sum_{i=1}^n \sum_{j=1}^n W_{ij}$$

$$S_1 = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (W_{ij} + W_{ji})^2}{2}$$

$$S_2 = \sum_{i=1}^{n} \sum_{j=1}^{n} (W_{ij} + W_{ji})^2$$

Daerah Kritis : Tolak H_0 jika $|Z_I|>Z_{\frac{\alpha}{2}}$ atau $p-value<\alpha$

2.3 Geographically Weighted Regression (GWR)

2.3.1. Fungsi Pembobot

2.3.1.1.Pembobot Kernel

Pada pendekatan untuk analisis spasial, penetuan estimasi parameter pada lokasi tertentu (u, v) dibentuk dengan adanya matriks pembobot (W) yang dibuat dengan fungsi kernel. Fungsi kernel merupakan teknik pembobotan dengan memberikan nilai yang tinggi terhadap lokasi yang berdekatan dengan lokasi regresi dan nilai bobot yang rendah terhadap lokasi yang berjauhan. Pada penentuan nilai fungsi kernel diperlukan parameter penghalusan yang disebut dengan *bandwidth*. *Bandwidth* memiliki konsep dengan penggambaran sebagai radius yang berbentuk lingkaran yang melebar dari titik Lokasi pusat. Titik – titik yang masuk dalam radius akan dianggap memiliki pengaruh pada analisis (K. -R. Muller et al., 2001).

Dalam penentuan nilai *bandwidth* tidak bisa sembarangan, diperlukan nilai *bandwidth* yang optimum agar mendapatkan estimasi fungsi kernel yang baik. Nilai *bandwidth* yang terlalu besar akan mengakibatkan bias yang signifikan (*oversmoothing*) begitu juga jika nilai *bandwidth* yang terlalu kecil akan mengakibatkan nilai variasi yang lebih besar pada estimasi parameter. Sehingga diperlukan pendekatan untuk mendapatkan nilai *bandwidth* yang optimal salah satu pendekatannya dengan melihat nilai *Cross Validatio* (CV). Kriteria penggunaan nilai CV adalah dengan meminimumkan nilai CV untuk mendapatkan nilai *bandwidth* yang optimal (Fortheringham et al., 2002). Berikut penghitungan CV secara matematis.

$$CV = \sum_{i=1}^{n} [y_i - \hat{y}_{\neq i}(b)]^2$$
 (2.5)

Dimana $\hat{y}_{\neq i}(b)$ adalah nilai penafsiran dari y_i dengan radius b, tetapi pengamatan untuk titik ke-i dieliminasi dari proses penafsiran. Menurut (D. C. Wheeler, 2009) menghilangkan titik data diperlukan untuk meminimalkan persamaan diatas agar memperoleh nilai asli yang (2.6) sesuai yaitu skor CV. Setelah didapat nilai CV yang paling rendah maka bandwidth tesebut sudah optimal. Fungsi spasial yang digunakan pada penelitian ini adalah fixed eksponential kernel. Berikut rumus untuk pembobotan fixed eksponential kernel (Pamungkas et al., 2016).

$$w_f(u_i, v_i) = \exp\left(\frac{-d_{ij}}{h}\right)$$

Dengan keterangan:

 u_i = koordinat *longitude* pada lokasi ke-i

 v_i = koordinat *latitude* pada lokasi ke-i

h = bandwidth pada semua lokasi

Penggunaan exponential pada fixed kernel merujuk pada karakteristik yang berdistribusi exponential. Titik – titik lokasi akan mengalami penurunan secara exponential seiring dengan peningkatan

jarak diantara titik – titik lokasi. Sehingga konsep ini memiliki sifat yang konsisten pada polanya, di mana pengaruh atau keterkaitan antara keberadaanya berkurang seiring dengan peningkatan jarak di antara satu sama lain (K. -R. Muller et al., 2001).

Pembobot *Fixed Exponential Kernel* digunakan pada penelitian ini bedasarkan penelitian yang dilakukan oleh Pamungkas, Rifki Adi, Yasin, Hasbi dan Rahmawati Rita (2016) menyimpulkan bahwa pembobot *Fixed eksponential Kernel* memiliki pendekatan yang sederhana dan efektif karena menggunakan nilai *bandwidth* yang sama untuk semua wilayah. Dari nilai *R*² menunjukkan *fixed* eksponensial memiliki nilai 0.9349 lebih besar daripada *adaptive* eksponensial sebesar 0.6878.

2.3.2. Bandwidth Cross Validation (CV)

Geographically Weighted Regression (GWR) adalah salah satu pengembangan dari model regresi dengan menambahkan vector titik. Geographically Weighted Regression memiliki khas daripada model yang lain yaitu adanya pembobot dengan memperhatikan efek spasial. Hasil dari model ini hanya memprediksi dari titik – titik mana saja data tersebut berasal (Fortheringham et al., 2002).

Bandwidth adalah lingkaran dengan radius h dari titik lokasi pengamtan ke-i. Lokasi pengamatan yang lebih dekat dengan lokasi ke-i akan memengaruhi penaksiran parameter. Pengamatan yang berada di dalam radius h akan diboboti oleh fungsi pembobotan yang digunakan, tetapi pengamatan yang berada di luar radius h akan diboboti nol, sehingga tidak mempengaruhi penaksiran paramter. Sehingga sangat penting untuk memilih bandwidth terbaik (Fotheringham et al., 2002).

Metode untuk menentukan bandwidth optimum adalah validasi silang atau *cross validation* (CV). Bandwidth optimum adalah bandwidth yang menghasilan nilai CV yang rendah. Rumus CV dapat dituliskan sebagai beikut (Lu et al., 2014):

$$CV(h) = \sum_{i=1}^{n} [y_i - \widehat{y_{\neq i}}(h)]^2$$
 (2.7)

Dengan $\hat{y}_{\neq i}(h)$ adalah penaksir y_i di mana pengamatan atas lokasi (u_i, v_i) dihilangkan dari proses penaksiran. Untuk mendapatkan suatu nilai bandwidth yang optimal (h), akan diperoleh dari h yang menghasilkan nilai CV yang minimum.

2.3.3. Model Geographically Weighted Regression (GWR)

Model *Geographically Weighted Regression* merupakan pengembangan dari model regresi linier dengan mempertimbangkan efek spasial (lokasi). Secara matematis model dari *Geographically Weighted Regression* (GWR) dapat dirumuskan sebagai berikut (Brunsdon et al., 1998):

$$y_i = \beta_0(u_i, v_i) + \sum_{k=1}^p \beta_k(u_i, v_i) x_{ik} + \varepsilon_i ; i = 1, 2, ..., n$$
 (2.8)

Keterangan:

 y_i : nilai observasi variabel respon lokasi ke – i

 x_{ik} : nilai observasi variable predikor k pada lokasi ke – i

 $\beta_0(u_i, v_i)$: nilai intersep model GWR

 $\beta_k(u_i, v_i)$: parameter regresi untuk setiap lokasi ke – i

 (u_i, v_i) : titik koordinat (lintang, bujur) pada lokasi ke – i

 ε_i : galat ke – i yang diasumsikan IIDN $\varepsilon_i \sim IIDN$ (0, σ^2)

2.3.4. Pendugaan Koefisien Parameter Model Geographically Weighted Regression (GWR)

Pendugaan koefisien parameter *Geographically Weighted Regression* (GWR) dengan metode *weighted least square* (WLS). Metode WLS digunakan dengan memberikan pembobot yang berbeda pada setiap lokasi. Pembobot masing – masing lokasi (u_i, v_i) adalah $w_j(u_i, v_i)$, dimana nilai j = 1,2,...,n. Pembobot ini mempunyai nilai yang berbeda untuk wilayah satu dengan wilayah lainnya yang menunjukkan sifat pada model GWR. Oleh karena itu, pembobot diberikan pada bentuk *likelihood* untuk

mendapatkan model GWR yang akan digunakan dalam pendugaan lokasi $\hat{\beta}_k(u_i, v_i)$, sebagai berikut (Anselin, 1988):

$$L(\beta, \sigma^{2}|y) = \prod_{i=1}^{N} \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}} w_{j}(u_{i}, v_{i})(y_{i} - (\beta_{0}(u_{i}, v_{i}) + \sum_{k=1}^{p} \beta_{k}(u_{i}, v_{i})x_{ik})\right)^{2}\right))$$
(2.9)

Setelah didapat bentuk *likelihood* yang sudah terboboti, selanjutnya persamaan diturunkan terhadap $\beta(u_i, v_i)$ untuk memperoleh parameter β_k seperti dibawah.

$$\frac{\partial(\ln L(\beta, \sigma^2|y))}{\partial(\beta(u_i, v_i))^T} = 0$$

$$\frac{\partial ((y - X\beta(u_i, v_i))^T W(u_i, v_i)(y - X\beta(u_i, v_i)))}{\partial (\beta(u_i, v_i))^T} = 0$$

$$\frac{(y^TW(u_i,v_i)y-y^TW(u_i,v_i)X\beta(u_i,v_i)-\beta(u_i,v_i)^TX^TW(u_iv_i)y+}{\partial\big(\beta(u_i,v_i)\big)^T}$$

$$\frac{\beta(u_i, v_i)^T X^T W(u_i, v_i) X \beta(u_i, v_i))}{\partial (\beta(u_i, v_i))^T} = 0$$

$$-X^TW(i)y - X^TW(i)y + 2X^TW(i)X\beta(i) = 0$$

$$\hat{\beta}(u_i, v_i) = (X^T W(u_i, v_i) X)^{-1} X^T W(u_i, v_i) Y$$
(2.10)

Sehingga bedasarkan teori weighted least square (WLS), pendugaan parameter untuk (u_i, v_i) adalah

$$\hat{\beta}(u_i, v_i) = (X^T W(u_i, v_i) X)^{-1} X^T W(u_i, v_i) Y$$
(2.11)

2.3.5 Pengujian Parameter Model GWR

Uji signifikansi parameter model pada setiap lokasi dilakukan dengan menguji parameter secara parsial. Pengujian ini dilakukan untuk mengetahui parameter mana saja yang memiliki pengaruh secara signifikan terhadap variabel respon. Berikut hipotesis yang digunakan.

$$H_0$$
: $\beta_k(u_i, v_i) = 0$

$$H_1: \beta_k(u_i, v_i) \neq 0; i = 1, 2, ..., n; k = 1, 2, ..., p$$

Rumus statistic uji:

$$T_{hitung} = \frac{\widehat{\beta_k}(u_i, v_i)}{\sigma \sqrt{\widehat{g_{kk}}}}$$
 (2.12)

Estimasi parameter $\beta(u_i,v_i)$ akan mengikuti distribusi normal dengan ratarata $\beta(u_i,v_i)$ dan matriks varians kovarians $GG^T\sigma^2$ dimana rumus untuk $G=(X^TW(u_i,v_i)X)^{-1}X^TW(u_i,v_i)$ sehingga didapatkan persamaan dengan $\frac{\widehat{\beta_k}(u_i,v_i)-\beta_k(u_i,v_i)}{\sigma\sqrt{g_{kk}}}\sim N(0,1)$, dengan g_{kk} adalah elemen diagonal kek dari matrik GG^T . Statistik uji T memiliki distribusi t dengan $df=\left[\frac{\delta_1^2}{\delta_2}\right]$ dan $\widehat{\sigma}=\sqrt{\frac{SSE_{GWR}}{\delta_2^2}}$ dengan Tingkat signifikansi α dimana $\delta_1=tr(R_1)$ dan $\delta_2=tr[(R_1)^2]$. Untuk daerah penolakan untuk H_0 jika $\left|T_{hitung}\right|>t_{(\frac{\alpha}{2};df)}$ atau jika $p-value<\alpha$.

2.4. Multikolinieritas Lokal

Analisis pada data spasial terdapat sebuah fenomena yang bisa dialami permbuatan model yaitu masalah multikolinieritas saat lokal. Multikolinieritas lokal menurut (Yulita et al., 2015b) merupakan sebuah fenomena yang terjadi setelah adanya pembobotan pada struktur data. Nilai pembobot yang sangat tinggi bisa membuat satu atau lebih variabel independent menjadi berkorelasi tinggi tetapi kasus seperti ini masih bergantung pada subset tertentu. Sementara itu nilai multikolinieritas yang sangat tinggi menyebabkan varians dan standar eror estimasi koefisien regresi besar (Gujarati & Porter, 2009). Salah satu cara untuk mendeteksi adanya multikolinieritas lokal adalah dengan menghitung nilai VIF yang dirumuskan sebagai berikut (Wheeler, 2007):

$$VIF_k(u_i, v_i) = \frac{1}{1 - R_k^2(u_i, v_i)}$$
 (2.13)

dimana $R_k^2(u_i, v_i)$ adalah koefisien determinasi ketika x_k diregressikan dengan variabel penjelas lainnya untuk tiap lokasi ke-i. Nilai VIF>10 mengindikasikan terjadinya multikolinieritas lokal.

2.5. Geographically Weighted Lasso (GWL)

Geographically Weighted Lasso (GWL) adalah teknik analisis spasial yang memiliki kemampuan untuk mengatasi adanya fenomena multikolinieritas. GWL dibentuk sebagai model antara geographically weighted regression (GWR) dengan least absolute shrinkage dan selection operator (LASSO) (Yuliana & Retno Sari Saputro, 2017). Metode GWL memiliki keunggulan yaitu dapat mengecilkan nilai koefisien regresi hingga ke nilai nol dengan pendekatan LASSO.

2.5.1. Model Geographically Weighted Lasso (GWL)

Model GWL memiliki formula yang dirumuskan sebagai berikut (D. C. Wheeler, 2009).

$$\hat{\beta}_{GWL}(\mu_i, \nu_i) = \arg_{\beta} \min \left\{ \sum_{i=1}^n (y_i - \beta_0(u_i, \nu_i) - \sum_{k=1}^p x_{ik} \beta_k(u_i, \nu_i))^2 + \lambda \sum_{k=1}^p |\beta_k(u_i, \nu_i)| \right\}$$
(2.14)

dengan syarat $\sum_{k=1}^{p} \beta_k(u_i, v_i) | \leq s_i$. Dimana s adalah nilai parameter penyusutan dan λ bandwidth optimum. Sebuah algoritma yang mampu menyelesaikan solusi LASSO, yakni dengan algoritma LAR (*Least Angle Regression*) (Efron et al., 2004b). Model GWL tergantung pada pembobot yang digunakan. Fungsi pembobot yang digunakan dalam penelitian ini adalah *Fixed Exponential Kernel* yang dituliskan sebagai berikut:

$$w_j(u_i, v_i) = \exp\left(\frac{-d_{ij}}{h}\right)$$
 (2.15)

Dimana $d_{ij} = \sqrt{\left(u_i - u_j\right)^2 + \left(v_i - v_j\right)^2}$ adalah jarak Euclidean lokasi (u_i, v_i) dengan lokasi (u_j, v_j) dan h adalah bandwidth optimum yang fixed atau yang sama di semua lokasi. Pemilihan bandwidth optimum juga memengaruhi ketepatan hasil estimasi parameter. Bandwidth yang digunakan dalam penelitian ini adalah Cross Validation (CV) yang memiliki rumus:

$$CV(h) = \sum_{i=1}^n [y_i - \widehat{y_{\neq i}}(h)]^2$$

Dimana $\widehat{y_{\neq l}}(h)$ adalah nilai taksiran untuk y_i dengan bandwidth h. Pemilihan bandwith optimum diperoleh dari proses iterasi yang menghasilkan bandwith terendah (Fotheringham et al., 2002).

2.5.2. Pendugaan Parameter GWL

Koefisien parameter pada model GWL diduga dengan weighted least squares (WLS). Batasan nilai mutlak pada koefisien regresi menyebabkan pola nonlinier sehingga harus diselesaikan dengan program kuadratik.

$$L(\beta, \sigma^{2}|y) = \prod_{i=1}^{N} \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}} w_{j}(u_{i}v_{i})(y_{i} - (\beta_{0}(u_{i}, v_{i}))\right) + \sum_{k=1}^{p} \beta_{k}(u_{i}, v_{i})x_{ik})\right)$$

$$+ \lambda \sum_{k=1}^{p} |\beta_{k}(u_{i}, v_{i})|$$

$$= (2\pi)^{-\frac{n}{2}} (\sigma^{2})^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^{2}} \exp w_{j}(u_{i}, v_{i})(y_{i})\right)$$

$$- (\beta_{0}(u_{i}, v_{i}) + \sum_{k=1}^{p} \beta_{k}(u_{i}, v_{i})x_{ik})) + \lambda \sum_{k=1}^{p} |\beta_{k}(u_{i}, v_{i})|$$

$$\ln L(\beta, \sigma^2 | y) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} A$$
 (2.16)

$$A = (Y - X\beta(u_i, v_i))^T W(u_i, v_i)(Y - X\beta(u_i, v_i) + \lambda^2 \beta(u_i, v_i))$$
(2.17)

$$\frac{\partial A}{\partial \left(\beta(u_i, v_i)\right)^T} = 0$$

$$\frac{\partial \left(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}(\mathbf{u}_{i}, v_{i})\right)^{T} W(u_{i}, v_{i}) (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}(u_{i}, v_{i}) + \lambda^{2} \boldsymbol{\beta}(u_{i}, v_{i})}{\partial \left(\boldsymbol{\beta}(u_{i}, v_{i})\right)^{T}} = 0 \qquad (2.18)$$

$$\frac{\left[Y^TY - Y^TX\beta(u_i, v_i) - \beta(u_i, v_i)^TX^TY + \beta(u_i, v_i)X^TX\beta(u_i, v_i)\right)W(u_i, v_i) + \lambda^2\beta(u_i, v_i)}{\partial(\beta(u_i, v_i))^T} = 0$$

$$(-2X^T + 2X^T X \beta(u_i, v_i)) W(u_i, v_i) + 2\lambda \beta(u_i, v_i) = 0$$

$$\hat{\beta}(u_i, v_i) = (X^T W(u_i, v_i) X + \lambda I)^{-1} X^T W(u_i, v_i) Y$$
(2.19)

2.5.3. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO merupakan sebuah metode yang dapat diaplikasikan ke model GWR yang membuat metode spasial dapat mengatasi kasus multikoliniritas lokal sehingga mampu memperoleh pendugaan parameter koefisien yang efisien pada hasil prediksi untuk mendapatkan model yang lebih akurat (D. Wheeler & M, 2005). LASSO dapat dirumuskan sebagai berikut:

$$\hat{\beta}_{LASSO} = \left(\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{k=1}^{p} x_{ik} \beta_k)\right)^2$$
 (2.20)

Dengan syarat $\sum_{k=1}^{p} |\beta_k| \le t$

LASSO memiliki Batasan $\sum_{k=1}^{p} |\beta_k| \leq t$ dengan nilai t adalah suatu nilai yang memiliki kendali dengan penyusutan pada pendugaan koefisien LASSO dengan $t \geq 0$. Jika β_k merupakan penduga parameter koefisien LASSO terkecil dan $t_0 = \sum_{k=1}^{p} |\widehat{\beta_k}|$, maka nilai $t < t_0$ akan menyebabkan solusi metode kuadrat terkecil menyusut ke arah nol, dan ada kemungkinan ada beberapa koefisien yang memiliki nilai sama dengan nol. Jika nilai t yang dipilih memiliki nilai lebih besar ata sama dengan t_0 , maka penduga LASSO memberikan hasil yang sama dengan penduga koefisien LASSO.

Pendugaan koefisien LASSO diperoleh dengan menentukan batas yaitu s=t atau $\sum_{k=1}^p |\hat{\beta}_k^0|$ dengan $t=\sum_{k=1}^p |\hat{\beta}_k|$ dan $\hat{\beta}_k^0$ adalah penduga parameter untuk model. Penelitian yang dilakukan oleh (Efron et al., 2004a) menyelesaikan masalah LASSO dengan cara memodifikasi algoritma LARS. Pada penyelesaian LASSO, *shrinkage* (s) merupakan komponen penting yang perlu diperhatikan. Parameter *shrinkage* (s) merupakan parameter yang memiliki fungsi sebagai batasan LASSO untuk menduga parameter yang berpengaruh signifikan terhadap variabel respon. Untuk menduga parameter *shrinkage* adalah dengan *cross validation* (CV). Berikut parameter *shrinkage* LASSO.

$$s = \frac{\sum_{k=1}^{p} |\hat{\beta}_k|}{\sum_{k=1}^{p} |\hat{\beta}_k^0|}$$
 (2.21)

Dengan s dinyatakan parameter penyusuta (*shrinkage*) yang memiliki nilai 0 sampai 1.

2.5.4 Algoritma Least Angle Regression (LARS)

LARS adalah sebuah algoritma yang memberikan solusi yang efektif dalam pengerjaan regresi LASSO dengan adanya modifikasi yang dilakukan (Tibshirani, 2011). LARS merupakan metode klasik yang berkaitan dengan metode seleksi model yang memiliki nama *forward selection atau forward stepwise regression*. Berikut algoritma dari LARS (Hastie et al., 2009):

- 1. Semua koefisien dibuat dengan sama dengan nol $(\beta_1, \beta_2, ..., \beta_k = 0,$ sehingga membuat $\varepsilon = y$
- 2. Mencari variabel predictor yang memiliki koefisien korelasi tertinggi dengan sisaan ε .
- 3. Koeisien parameter β_k diduga untuk x_{ik} yang memiliki korelasi dengan nilai paling tinggi dengan sisaan ε .
- 4. Sisaan $\varepsilon = y \hat{y}$ dihitung dengan variabel predictor x_k yang masuk ke dalam model.
- 5. Menghitung korelasi parsial antara variabel prediktor yang masih tersisa dengan sisaan terbaru.
- 6. Mengulangi Langkah 3-5 hingga seluruh variabel predictor masuk kedalam model dan berhenti jika korelasi antara y dan x_{ik} bernilai sama dengan nol.

2.6 Pemilihan Model terbaik

Dalam penelitian ini kriteria pemilihan model terbaik akan dilakukan dengan melihat nilai koefisien determinasi (R^2). Koefisien Determinasi (R^2) bisa dijadikan sebagai indikator untuk mngetahui tingkat kecocokan dari suatu model dengan kriteria jika nilai R^2 semakin tinggi maka model tersebut semakin baik. Koefisien determinasi bisa dirumuskan sebagai berikut (Rafi et al., 2019):

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$
(2.22)

Dengan Keterangan:

 \widehat{Y}_i : nilai estimasi dai variabel y pada pengamatan ke-i

 \overline{Y} : nilai rata-rata dari variabel y

2.7 Tingkat Pengangguran Terbuka

Pengangguran adalah istilah yang digunakan untuk menggambarkan seseorang yang sudah termasuk dalam angkatan kerja dan secara aktif mencari pekerjaan dengan upah tertentu, tetapi tidak dapat mendapatkan pekerjaan yang diinginkannya (Rahardja & Manurung, 2008). Pengangguran terjadi karena kurangnya permintaan tenaga kerja perekonomian dibandingkan dengan jumlah pekerja yang menawarkan tenaga kerja, atau karena kurangnya tenaga kerja yang ditawarkan oleh Perusahaan (Arida, 2015).

Pengangguran terbuka adalah salah satu jenis dari banyaknya jenis pengangguran. Menurut Biro Statistik Tenaga Kerja, banyak variabel ekonomi dan sosial, dapat memengaruhi tingkat pengangguran terbuka di suatu negara. Misalnya, perubahan dalam teknologi, struktur industri, dan kebijakan pemerintah juga dapat memengaruhi tingkat pengangguran terbuka. Menurut studi yang dilakukan oleh (Widayanti, 2021), menjelaskan beberapa variabel bebas yang menyebabkan terjadinya jenis pengangguran ini seperti upah minimum kabuaten/kota (UMK), penanaman modal asing (PMA) dan indeks pembangunan masyarakat (IPM). Sedangkan menurut (Lestari et al., 2019) menjabarkan beberapa variabel bebas yang memiliki pengaruh terhadap TPT yaitu jumlah pencari kerja, tingkat partisipasi murni dan IPM. Menurut (Pamungkas et al., 2016) TPT bisa dipengaruhi dari segi pendidikan seperti angka putus sekolah dan dari segi kependudukannya seperti tingkat kemiskinan, jumlah penduduk kabupaten/kota, dan jumlah penduduk miskin.

Pengangguran terbuka merupakan fenomena yang kompleks yang dipengaruhi oleh berbagai faktor ekonomi dan sosial. Karena tingkat pengangguran terbuka menunjukkan seberapa baik pasar tenaga kerja mampu menyerap angkatan kerja yang ada, tingkat pengangguran terbuka sering kali menunjukkan kesehatan perekonomian suatu negara. Tingkat pengangguran terbuka dapat menurun karena berbagai hal, seperti teknologi baru yang mengubah cara industri bekerja, kebijakan pemerintah yang mempengaruhi

investasi dan regulasi tenaga kerja, dan kondisi sosial ekonomi masyarkat. Perlu diingat bahwa pemerintah dan pembuat kebijakan dan semua pemangku kepentingan lainnya menghadapi tantangan untuk menurunkan tingkat pengangguran terbuka. Sektor publik, swasta, dan masyarakat sipil harus bekerja sama dengan baik untuk mengurangi pengangguran terbuka. Kebijakan yang mendorong pertumbuhan ekonomi yang inklusif dan berkelanjutan sambil memberikan perlindungan sosial kepada mereka yang rentan sangat penting bagi pemerintah. Sektor swasta, di sisi lain, dapat membantu dengan menciptakan lapangan kerja baru dan berinyestasi dalam pelatihan keterampilan untuk meningkatkan kompetensi tenaga kerja. Sementara itu, masyarakat sipil juga berperan penting dalam memperjuangkan hak-hak pekerja dan membangun kapasitas lokal untuk meningkatkan ketahanan ekonomi masyarakat. Dengan menggabungkan dari beberapa penelitian sebelumnya terkait variabel apa saja yang mempengaruhi TPT, dalam penelitian ini untuk variabel bebasnya terdiri dari tingkat partisipasi murni, jumlah pencari kerja, indeks pembangunan masyarakat, penduduk miskin, angka putus sekolah, tingkat kemiskinan, jumlah penduduk Provinsi Jawa Barat, upah minimum kerja, dan penanaman modal asing.

BAB III

METODE PENELITIAN

3.1 Sumber Data

Penelitian ini memanfaatkan data sekunder sebagai dasar analisis. Fokus penelitian tertuju pada variabel respon, yaitu Tingkat pengangguran terbuka, yang diambil dari data yang disediakan oleh BPS Provinsi Jawa Barat 2022 yang mencakup setiap kota/kabupaten di Jawa Barat. Informasi mengenai faktor-faktor yang memengaruhi Tingkat Pengangguran terbuka diperoleh melalui publikasi dan data profil provinsi Jawa Barat yang dikeluarkan oleh Badan Pusat Statistik (BPS).

Sumber daya dari laman BPS memberikan kekayaan informasi terkait karakteristik dan dinamika masing-masing kota/kabupatem di Jawa Barat. Melibatkan elemen-elemen seperti jumlah penduduk siap kerja, angka putus sekolah, dan variabel lain yang dapat memengaruhi tingkat pengangguran terbuka. Dengan pendekatan ini, diharapkan penelitian mampu memberikan wawasan baru mengenai faktor-faktor yang memengaruhi tingkat pengangguran terbuka di Provinsi Jawa Barat.

3.2 Variabel Penelitian

Adapun variabel respon yang digunakan dalam penelitian ini adalah jumlah kasus Tingkat pengangguran terbuka yang ada di 27 kota/kabupaten. Sedangkan pada setiap variabel prediktor juga akan diteliti per kota/kabupaten yang ada di Jawa Barat. Sumber data pada variabel prediktor (X) dan variabel respon (Y) diambil dari Badan Pusat Statistik (BPS) Republik Indonesia dan Publikasi dari BPS pada tahun 2022. BPS. Berikut merupakan variabel prediktor yang digunakan dalam penelitian ini yang teringkas dalam Tabel 3.1. Variabel *u* dan *v* merupakan variabel garis lintang dan garis bujur yang digunakan pada penelitian ini sebagai variabel tambahan yang digunakan dalam menganalisis dengan metode regresi spasial.

Tabel 3. 1 Variabel Penelitian

Peubah	Definisi Peubah	Keterangan
Y	Tingkat Pengangguran Terbuka	Skala Pengukuran Rasio
X_1	Angka Partisipasi Murni	Skala Pengukuran Rasio
X_2	Jumlah Pencari Kerja	Skala Pengukuran Diskrit
X_3	Indeks Pembangunan Manusia	Skala Pengukuran Rasio
X_4	Jumlah Penduduk Miskin	Skala Pengukuran Diskrit
X_5	Angka Putus Sekolah	Skala Pengukuran Diskrit
X_6	Tingkat Kemiskinan	Skala Pengukuran Rasio
X_7	Jumlah Penduduk Jawa Barat	Skala Pengukuran Diskrit
X_8	Upah Minimum Kerja	Skala Pengukuran Rasio
<i>X</i> ₉	Penanaman Modal Asing	Skala Pengukuran Rasio

Berdasarkan variabel penelitian diatas, dapat diketahui bahwa struktur data pada penelitian ini yang digunakan bisa dilihat pada Tabel 3.3.

Tabel 3. 2 Struktur Data Penelitian

i	Y_i	$X_{1,j}$	$X_{2,j}$	•••	$X_{9,j}$	u_i	v_i
1	<i>Y</i> ₁	X _{1,1}	X _{2,1}	•••	X _{9,1}	u_1	v_1
2	Y_2	$X_{1,2}$	$X_{2,2}$		$X_{9,2}$	u_2	v_2
:	÷	:	:	:	:	:	:
26	<i>Y</i> ₂₆	<i>X</i> _{1,26}	$X_{2,26}$		X _{9,26}	u_{26}	v_{26}
27	<i>Y</i> ₂₇	<i>X</i> _{1,27}	$X_{2,27}$		X _{9,27}	u ₂₇	v_{27}

3.3 Metode Analisis Data

Langkah-langkah analisis pada penelitian ini sebagai berikut:

- 1. Menggambarkan secara umum keadaan data tingkat pengangguran terbuka di Provinsi Jawa Barat tahun 2022.
- 2. Permodelan regresi berganda dengan OLS
- 3. Melakukan uji asumsi klasik.
- 4. Melakukan uji autokorelasi spasial dengan uji Moran's I dengan rumus (2.4).
- 5. Menghitung jarak *euclidean* berdasarkan lokasi geografis (u_j, v_j) menggunakan rumus $d_{ij} = \sqrt{\left(u_i u_j\right)^2 + \left(v_i v_j\right)^2}$.
- 6. Melakukan Pemodelan Geographically Weighted Regression.
 - a. Menentukan *bandwith* optimum berdasarkan kriteria CV menggunakan rumus (2.7).
 - b. Menghitung matriks pembobot dengan menggunakan fungsi pembobot *fixed exponential kernel*.
 - c. Menduga parameter model GWR.
 - d. Menguji parameter model GWR secara simultan dan parsial.
 - e. Pemodelan GWR
- 7. Deteksi multikolinieritas lokal dengan menggunakan *Variance Inflation Factor* (VIF) dengan persamaan (2.13).
- 8. Mengatasi kasus multikolineritas dengan metode *Geographically Weighted Lasso* (GWL).
 - a. Menentukan *bandwith* yang optimum untuk penghitungan fungsi pembobot *fixed eksponential kernel*
 - b. Melakukan penanganan dengan GWL
 - c. Melakukan estimasi parameter pada model GWL
 - d. Permodelan GWL.
- 9. Mencari model terbaik dengan melihat nilai R^2 terbesar dengan persamaan (2.21).
- 10. Interpretasi model GWL yang sudah didapatkan dan membuat peta pengelompokkan.

3.4 Diagram Alir

Diberikan diagram alir penelitian yang berisi tahapan analisis *Geographically* Weighted Lasso diilustrasikan sebagai berikut.

Gambar 3. 1 Diagram Alir Penelitian

BAB IV

HASIL DAN PEMBAHASAN

Pada bagian bab IV ini hasil dari analisis yang sudah dilakukan digunakan untuk menjawab rumusan masalah dalam penelitian ini. Pembahasan pada bab ini meliputi beberapa aspek penting yang ada kaitannya dengan kasus tingkat pengangguran terbuka yang terjadi di Provinsi Jawa Barat untuk tahun 2022. Analisis diawali dengan deskripsi secara statistik pada kasus – kasus tersebut, diikuti dengan mendeteksi multikolinieritas antara variabel – variabel pada model regresi berganda yang sudah dibentuk. Karena pada kasus kali ini uji multikolinieritas harus dilanggar maka setelah pengecekan multikolinieritas dilanjut pengecekan autokorelasi spasial pada model regresi berganda. setelah terbukti ada autokorelasi spasial maka akan dilanjutkan dengan permodelan spasial dengan metode Georaphically Weighted Regression. Setelah didapat model dari Georaphically Weighted Regression akan dilanjutkan dengan pengecekan multikolinieritas lokal antar variabel pada masing - masing wilayah. Setelah terbukti adanya multikolinieritas lokal akan dilanjutkan dengan permodelan Georaphically Weighted Lasso metode ini menggabungkan antara Georaphically Weighted Regression karena adanya autokorelasi spasial dan regresi Lasso untuk menangani kasus multikolinieritas lokal. Setelah terbentuk model Georaphically Weighted Lasso tidak perlu dilakukan pengecekan uji signifikansi parameter secara parsial dan serentak karena variabel yang tidak memiliki pengaruh akan disusutkan nilai koefisiennya hingga ke nol. Terakhir akan dilakukan perbandingan nilai koefisien determinasi antara model Georaphically Weighted Regression dan Georaphically Weighted Lasso untuk melihat model mana yang terbaik diantara Georaphically Weighted Regression dan Georaphically Weighted Lasso untuk data pada kasus tingkat pengangguran terbuka di Provinsi Jawa Barat tahun 2022.

4.1. Deskripsi Data

Jawa Barat merupakan salah satu provinsi yang ada di Indonesia. Pada tahun 2022 Provinsi Jawa Barat dalam kasus tingkat pengangguran terbuka menjadi yang tertinggi dari semua provinsi yang ada di Indonesia. Pengangguran terbuka sudah

menjadi masalah sejak lama khususnya pada wilayah Provinsi Jawa Barat. Berikut 5 peringkat tertinggi untuk presentase tingkat pengangguran terbuka.

Gambar 4.1. Lima provinsi dengan tingkat pengangguran terbuka tertinggi

Bedasarkan Gambar 4.1 wilayah Jawa Barat menjadi yang tertinggi dengan menempati posisi pertama dengan tingkat pengangguran terbuka sebesar 8,31 persen. Diikuti oleh Kepulauan Riau dengan angka 8,23%, dan Ketiga terbesar pada Provinsi Banten dengan angka 8,09%. Bisa dilihat hanya 3 provinsi yang sudah disebutkan sebelumnya tadi yang angka kasus TPT diatas 8%. Berikut akan ditampilkan gambaran awal mengenai presentasi tingkat pengangguran terbuka pada kabupaten/kota dengan peta tematik. Pada peta tematik ini akan ditampilkan dengan warna yang berbeda – beda setiap wilayahnya sesuai dengan kategori nilai tingkat pengangguran terbukanya. Pembagian kategori ini akan dibagi menjadi 5 kategori dari sangat rendah, rendah, sedang, tinggi dan sangat tinggi. Pembagian kategori ini bertujuan untuk mengetahui persebaran kasus tingkat pengangguran terbuka bedasarkan kota/kabupaten. Visualisasi peta tematik mampu membantu dalam mengidentifikasi daerah – daerah mana saja dengan tingkat pengangguran terbuka dari yang terendah sampai yang tertinggi.

Persebaran Tingkat Pengangguran Terbuka Provinsi Jawa Barat 2022

Gambar 4.2 persebaran tingkat pengangguran terbuka di Jawa Barat 2022

Bedasarkan Gambar 4.2 dapat diketahui jumlah wilayah untuk bedasarkan kategori dari terendah ada 5 wilayah dan yang tertinggi ada 5 wilayah. Warna yang paling terang menandakan kategori paling rendah dan warna paling gelap menandakan kategori paling tinggi. Wilayah dengan tingkat pengangguran terbuka tertinggi ada Bekasi, Bogor, Karawang, Kota Bogor dan Kota Cimahi dengan range nilai 9,870 – 10,780 dengan wilayah Kota Bogor menjadi yang paling tinggi dengan nilai 10,780. Wilayah dengan tingkat pengangguran terbuka terendah ada Ciamis, Kota Banjar, Majalengka, Pangandaran, dan Tasikmalaya dengan Pangandaran sebagai wilayah terendah.

Pada masing-masing wilayah di Provinsi Jawa Barat jika dilihat secara geografis memiliki karakteristik yang berbeda. Pada penanganan kasus TPT ini penting untuk melihat karakteristik per masing-masing wilayahnya. Belum tentu penanganan yang dilakukan pada wilayah Bekasi akan sama efektifnya jika dilakukan pada daerah Pangandaran. Efek spasial seperti ini penting untuk diperhatiakan demi membuat kebijakan yang sesuai dan efektif untuk menangani kasus TPT ini.

4.2. Gambaran Umum Kasus Tingkat Pengangguran Terbuka

Sebagai gambaran umum data tentang tingkat pengangguran terbuka yang terjadi di Provinsi Jawa Barat pada tahun 2022, maka disajikan statistika deskriptif terhadap jumlah tingkat pengangguran terbuka dan faktor yang mempengaruhi tingkat pengangguran terbuka sebagai berikut.

Tabel 4.1 Statistika Deskriptif Tingkat Pengangguran Terbuka di Jawa Barat

Peubah	Nilai Terendah	Nilai Tertinggi	Rata - rata	Ragam
Y	1,56	10,78	7,8	5,438
X_1	58,91	72,11	65,15	13,699
X_2	1.812	43.428	14.421,52	117.962.442
X_3	65,94	82,5	72,61	22,287
X_4	12,7	474,7	150,78	10.488,57
X_5	13	1706	364,41	132.205,3
X_6	2,53	12,77	8,65	7,975
X_7	206.457	5.566.838	1.829.845	$1,452 \times 10^{12}$
X_8	1.852.100	4.816.921	3.048.663	$1,025 \times 10^{12}$
X_9	0,03	47,03	6,47	123,555

Bedasarkan tabel 4.1 dapat dilihat bahwa rata-rata untuk kasus tingkat pengangguran terbuka adalah 7,8 di Provinsi Jawa Barat tahun 2022. Rata-rata pada variabel X_1 (angka partisipasi murni) adalah 65,15 untuk kabupaten/kota dengan wilayah Bandung Barat memiliki nilai terendah sebesar 58,91. Rata-rata pada variabel X_2 (jumlah pencari kerja) adalah 14.421,52 untuk kabupaten/kota dengan Kota Banjar memiliki nilai terendah sebesar 1.812. Rata-rata pada X_3 (indeks pembangunan manusia) adalah 72,61 untuk kabupaten/kota dengan Cianjur memiliki nilai terendah sebesar 65,94. Rata-rata pada variabel X_4 (jumlah penduduk miskin) adalah 150,78 untuk kabupaten/kota dengan Kota Banjar memiliki nilai terendah sebesar 12,7. Rata-rata pada variabel X_5 (angka putus sekolah) adalah 364,41 untuk kabupaten/kota dengan Kota Cimahi memiliki nilai terendah sebesar 13. Rata-rata pada variabel X_6 (tingkat kemiskinan) adalah 8,65 untuk kabupaten/kota dengan Kota Depok memiliki nilai terendah sebesar 2,53. Rata-rata pada variabel X₇ (jumlah penduduk Jawa Barat) adalah 1.829.845 untuk kabupaten/kota dengan Kota Banjar memiliki nilai terendah sebesar 206.457. Ratarata pada variabel X_8 (upah minimum kerja) adalah 3.048.663 untuk kabupaten/kota

dengan Kota Banjar memiliki nilai terendah sebesar 1.852.100. Rata-rata pada variabel X_9 (penanaman modal asing) adalah 6,47 untuk kabupaten/kota dengan Kota Ciamis memiliki nilai terendah sebesar 0,03.

4.3. Analisis Data

4.3.1. Permodelan Regresi Berganda

Regresi berganda merupakan model regresi yang umum digunakan untuk mengetahui tingkat kebaikan model antara variabel terikat dan variabel bebas yang lebih dari satu. Pada kasus tingkat pengangguran terbuka digunakan satu variabel dependent dan sembilan variabel bebas. Berikut adalah model regresi berganda terhadap data tingkat pengangguran terbuka.

$$Y = -4,798 - 0,352X_1 + 2,707 \times 10^{-6}X_2 + 0,463X_3 + 0,029X_4$$
$$+2,93 \times 10^{-4}X_5 - 0,161X_6 - 2,144 \times 10^{-6}X_7$$
$$+9,266 \times 10^{-7}X_8 - 3,306 \times 10^{-3}X_9$$

4.3.2. Uji Signifikansi Secara Serentak

Uji serentak diperlukan dalam regresi berganda untuk mengetahui ada tidaknya pengaruh variabel independen secara serentak terhadap variabel dependen. Berikut hipotesis untuk uji serentak.

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

$$H_1$$
: setidaknya ada satu $\beta_i \neq 0$, $i = 1, 2, ..., i$

Hasil dari perhitungan dari uji F didapat nilai statistik 3,305 dan nilai F tabel pada signifikansi 0,10 dengan $df_2 = 17$ dan $df_1 = 9$ adalah 2,03. karena nilai $f_{hitung} > f_{tabel}$ maka H_0 ditolak. Dengan ditolaknya H_0 maka dapat diambil kesimpulan bahwa variabel independent secara serentak berpengaruh terhadap variabel dependen.

4.3.3. Uji Signifikansi Secara Parsial

Uji parsial disini akan menggunakan uji t yang bertujuan untuk mengetahui seberapa berpengaruh masing – masing veriabel independen (X) terhadap variabel dependen (Y). Berikut Hipotesis untuk uji t.

$$H_0: \beta_i = 0$$

 H_1 : setidaknya ada satu $\beta_i \neq 0$, i = 1, 2, ..., i

Berikut Tabel untuk menampilkan nilai t untuk masing – masing variabel.

Tabel 4.2 Nilai Uji T

Estimasi Parameter	Nilai t _{hitung}	Keterangan
$\widehat{eta_1}$	-2,082	Signifikan
$\widehat{eta_2}$	0,055	Tidak Signifikan
$\widehat{eta_3}$	2,536	Signifikan
$\widehat{eta_4}$	1,338	Tidak Signifikan
$\widehat{eta_5}$	0,109	Tidak Signifikan
$\widehat{eta_6}$	-0,486	Tidak Signifikan
$\widehat{eta_7}$	-1,365	Tidak Signifikan
$\widehat{eta_8}$	1,499	Tidak Signifikan
$\widehat{eta_9}$	-0,098	Tidak Signifikan

Pada Tabel 4.6 dapat dilihat untuk nilai uji T pada masing – masing variabel. Nilai $t_{tabel(0,10;\,17)}$: 1,734 dengan nilai tersebut akan dicek variabel mana yang berpengaruh bedasarkan nilai t_{hitung} dengan syarat pengambilan keputusan jika nilai $t_{hitung} > t_{tabel}$ maka H_1 diterima. Untuk variabel X_1 dan X_3 memiliki nilai $t_{hitung} > t_{tabel}$ maka sesuai syarat pengambilan keputusan X_1 dan X_3 memiliki pengaruh terhadap variabel dependen secara parsial. Untuk Variabel $X_2, X_4, X_5, X_6, X_7, X_8, X_9$ memiliki nilai $t_{hitung} < t_{tabel}$ maka sesuai syarat pengambilan keputusan variabel – variabel tersebut tidak berpengaruh signifikan secara parsial.

4.3.4. Asumsi Normalitas

Uji Normalitas memiliki tujuan penting dalam mendeteksi apakah galat memiliki distribusi yang normal atau tidak. Uji Normalitas menggunakan uji *shapiro-wilk* dengan hipotesis berikut.

 H_0 : residual mengikuti distribusi normal.

 H_1 : residual tidak mengikuti distribusi normal.

Dengan syarat pengambilan Keputusan

Jika p-value > α (0,10): gagal untuk menolak H_0 , yang berarti residual mengikuti distribusi normal.

Jika p-value $\leq \alpha$ (0,10): Tolak H_0 , yang berarti residual tidak mengikuti distribusi normal.

Tabel 4.3 Hasil Uji Normalitas

	W_{hitung}	p-value	n
Residual	0,962	0,415	27

Pada Tabel 4.2 didapat nilai p-value 0,415 > 0,10, sesuai dengan syarat pengambilan keputusan jika p-value > 0,10 maka H_0 diterima yang berarti residual mengikuti distribusi normal.

4.3.5. Pengujian Heterokedastisitas

Dalam penelitian ini digunakan pengujian pengaruh heterogenitas spasial dengan menggunakan uji *Breusch-Pagan* untuk mengetahui efek spasial pada data pengamatan. Hasil perhitungan statistic uji *Breusch Pagan* dapat dilihat pada Tabel 4.5 dengan hipotesis sebagai berikut.

 $H_0: \sigma_i^2 = 0$ (tidak terdapat heterogenitas)

 H_1 : minimal ada satu $\sigma_i^2 \neq \sigma^2$ (terdapat heterogenitas)

Tabel 4.4 Pengujian Heterokedastisitas

Statistik Uji Breusch Pagan	p-value
7,116	0,625

Hasil uji Heterogenitas spasial *Breusch Pagan* pada data transformasi menunjukkan bahwa terdapat heterogenitas pada data tingkat pengangguran terbuka di Jawa Barat. Bedasarkan nilai *p-value* sebesar $0.625 > \alpha$ (0.10), sehingga dapat disimpulkan bahwa residual dari model bersifat homogen. Nilai statistik uji BP didapat 7,116 lebih dari titik kritis $x_{(0.1;9)}^2 = 14,684$

sehingga dapat diambil keputusan untuk menerima H_0 , yang bersimpulkan terdapat residual bersifat homogen.

4.3.6. Asumsi Multikoliniearitas

Sebelum pengujian *Georaphically Weighted Lasso* asumsi multikoliniearitas pada regresi berganda ini harus dilanggar. Maka dalam pengujian multikoliniearitas ini akan dilihat apakah ada antara variabel predictor ini memiliki korelasi yang tinggi. Kriteria penilaian untuk mendeteksi adalah dengan nilai VIF (*Variance Inflation Factor*). Berikut nilai VIF pada setiap variabel predictor.

Tabel 4.5 Nilai VIF setiap Variabel Prediktor

Variabel	Nilai VIF
X_1	3,373*
X_2	2,485*
X_3	6,375*
X_4	41,603
X_5	8,256*
X_6	7,505*
X_7	30,790
X_8	3,368*
X_9	1,215*

Multikolinearitas terjadi Ketika nilai VIF pada setiap variabel prediktor mempunyai nilai lebih dari 10. Bedasarkan table 4.4 diatas variabel X_4 dan X_7 memiliki nilai VIF > 10, yang berarti variabel prediktor pada data tingkat pengangguran terbuka memiliki korelasi yang tinggi pada minimal 1 variabel prediktor. Sehingga model ini akan cocok pada metode *Georaphically Weighted Lasso* jika pada model *Georaphically Weighted Regression* masih terdapat multikoliniearitas khususnya multikolinearitas lokal.

4.3.7. Pengujian Autokorelasi Spasial

Dalam penelitian ini digunakan pengujian pengaruh dependensi spasial dengan menggunakan uji Moran's I untuk mengetahui efek spasial pada data pengamatan. Hasil perhitungan statistic uji Moran's I dapat dilihat pada Tabel 4.5 dengan hipotesis sebagai berikut.

 $H_0: I_m = 0$ (tidak terdapat dependensi spasial)

 $H_1: I_m \neq 0$ (terdapat dependensi spasial)

Tabel 4.6 Pengujian Autokorelasi Spasial

Statistik Uji Moran's I	p-value
0,448	0,0002

Hasil uji autokorelasi spasial menunjukkan bahwa terdapat autokorelasi spasial pada data tingkat pengangguran terbuka di Jawa Barat. Bedasarkan nilai p-value sebesar $0,0002 < \alpha$ (0,10), sehingga dapat disimpulkan bahwa terdapat pengaruh antar lokasi pengamatan terhadap lokasi pengamatan lainnya. Nilai p-value uji Moran's < 0,10 sehingga dapat diambil keputusan untuk menolak H_0 , yang bersimpulkan terdapat autokorelasi spasial.

4.3.8. Permodelan Georaphically Weighted Regression

4.3.8.1. Menghitung *Bandwidth*, Jarak Euclidean dan Matriks Pembobot

Setelah dilakukan pengujian autokorelasi spasial, dan menghasilkan adanya pengaruh autokorelasi spasial pada residual, langkah berikutnya adalah melakukan permodelan dengan metode *Georaphically Weighted Regression*. Untuk mendapatkan hasil pemodelan pada masing – masing lokasi perlu dilakukan penentuan *bandwidth* optimal dengan metode *Cross-Validation*. Fungsi pembobot yang digunakan adalah *Fixed Ekspnential Kernel* dengan jarak *euclidean* bedasarkan *latitude* dan *longitude* pada masing – masing wilayah pengamatan.

Bandwidth	CV score
0,8972	103,4917
1,4503	106,7276
:	:
0,56308	100,5682
0,56312	100,5682

Tabel 4.7 Penentuan nilai Bandwidth

Bedasarkan hasil pada Tabel 4.7 didapat nilai bandwidth optimum sebesar 0,56312 dengan nilai CV score yang minimum adalah 100,5682. setelah diperoleh nilai bandwidth yang optimum akan dilanjutkan menentukan nilai pembobot pada lokasi (u_i, v_i) dengan menggunakan jarak euclidean.

Pada penentuan jarak *euclidean* diperlukan letak geografis yakni *longitude* dan *latitude* disetiap kota/kabupaen di Provinsi Jawa Barat. Berikut perhitungan jarak *euclidean* menggunakan rumus

$$d_{ij} = \sqrt{(u_i - u_j)^2 + (v_i - v_j)^2}$$
.

Diketahui:

$$u_{Bandung} = 107,6962$$
 $v_{Bandung} = -7,1002$ $u_{bogor} = 106,8166$ $v_{bogor} = -6,595$ $d_{ij} = \sqrt{(107,6962 - 106,8166)^2 + (-7,1002 - (-6,595))^2}$ $d_{ij} = \sqrt{0,7737 + 0,2552}$ $d_{ij} = 1,014$

Pada perhitungan diatas untuk jarak *euclidean* antara wilayah Bandung dan Bogor didapat nilai 1,014. Perhitungan jarak *euclidean* lengkapnya untuk semua wilayah ada pada lampiran. Setelah dilakukan perhitungan secara matematis untuk mendapatkan jarak *euclidean* yang nantinya akan digunakan dalam perhitungan matriks pembobot. Hasil dari perhitungan pada jarak *euclidean* yaitu [0, 0.0000004, 1.110157, 1.014280, ..., 0.5522378]. Setelah mendapatkan nilai jarak *euclidean* dan *Bandwidth*, selanjutnya menghitung pembobot dicari dengan

menggunakan matriks *fixed eksponential kernel*. Berikut perhitungan matriks pembobot *fixed eksponential kernel* mengunaan rumus $\begin{pmatrix} -d_{ij} \end{pmatrix}$

$$w_f(u_i, v_i) = \exp\left(\frac{-d_{ij}}{h}\right).$$

Diketahui:

$$(u_i, v_i) = (u_{bandung}, v_{bandung})$$

$$h = 0.56312$$

$$d_{ii} = 1,014$$

$$w_f(u_{bandung}, v_{bandung}) = \exp\left(\frac{-1,014}{0,56312}\right)$$

$$w_f(u_{bandung}, v_{bandung}) = \exp(-0.18012)$$

$$w_f(u_{bandung}, v_{bandung}) = 0.165$$

Sebagai contoh, matriks pembobot yang didapat dari fungsi *fixed eksponential kernel* adalah sebagai berikut.

Berikut tabel untuk nilai pembobot *fixed eksponential kernel* dan jarak *euclidean* GWR.

Tabel 4.8 Nilai Jarak Euclidean dan Pembobot GWR

No	Kabupaten/Kota	Jarak Euclidean	Pembobot
1	Bandung	0	1
2	Bandung Barat	0,0000040	0,9999
3	Bekasi	1,1101570	0,1982
4	:	:	:
26	Sumedang	0,3919820	0,4985
27	Tasikmalaya	0,5523780	0,3751

4.3.8.2. Model Georaphically Weighted Regression (GWR)

Georaphically Weighted Regression merupakan metode spasial yang memperhatikas aspek lokasi. Model GWR menggunakan pembobot geografis dalam penaksiran parameternya. Matriks pembobot diperoleh menggunakan fungsi Fixed Eksponential Kernel, yang mampu menyesuaikan bobot bedasarkan Lokasi geografis.

Dengan pendekatan ini, parameter yang dihasilkan akan bervariasi untuk setiap kabupaten/kota di Jawa Barat. Berikut model global untuk *Georaphically Weighted Regression*.

$$\hat{y} = -4,798 - 0,352X_{i1} + 0,463X_{i3} + 0,029X_{i4} + 0,0003X_{i5} - 0,161X_{i6} - 0,003X_{i9}$$

Dari model diatas dapat di interpretasikan sebagai berikut.

- Angka partisipasi murni dengan nilai koefisien -0,352 yang berarti setiap kenaikan 1 persen pada angka partisipasi murni akan menurunkan tingkat pengangguran terbuka sebesar 0,352 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Indeks pembangunan manusia dengan nilai koefisien 0,463 yang berarti setiap penurunan 1 persen pada variabel indeks pembangunan manusia akan menaikkan tingkat pengangguran terbuka sebesar 0,463 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Jumlah penduduk miskin dengan nilai koefisien 0,029 yang berarti setiap kenaikan 100.000 penduduk miskin pada variabel jumlah penduduk miskin akan menaikkan tingkat pengangguran terbuka sebesar 0,029 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Angka putus sekolah dengan nilai koefisien 0,0003 yang berarti setiap kenaikan 1 anak putus sekolah pada variabel angka putus sekolah akan menaikkan tingkat pengangguran terbuka sebesar 0,0003 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Tingkat kemiskinan dengan nilai koefisien -0,161 yang berarti setiap penurunan 1 persen pada variabel tingkat kemiskinan akan menurunkan tingkat pengangguran terbuka sebesar 0,161 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Penanaman modal asing dengan nilai koefisien -0,003 yang berarti setiap kenaikan 1 persen pada variabel penanaman modal

asing akan menurunkan tingkat pengangguran terbuka sebesar - 0,003 dengan asumsi semua variable lain konstan pada wilayah ke i.

Tujuan dari pembentukan model *Georaphically Weighted Regression* adalah untuk mengetahui apakah setelah diberikan pembobot masih terdapat korelasi yang kuat atau tidak pada masing – masing variabel independen. Setelah model masing – masing wilayah terbentuk, akan dilakukan pengecekan multikoliniearitas lokal per wilayah antar variable.

4.3.8.3. Uji Serentak

Uji serentak diperlukan dalam regresi berganda untuk mengetahui ada tidaknya pengaruh variabel independen secara serentak terhadap variabel dependen. Berikut hipotesis untuk uji serentak.

$$H_0: \beta_1(u_i, v_i) = \beta_2(u_i, v_i) = \dots = \beta_k(u_i, v_i) = 0$$

$$H_1$$
: setidaknya ada satu $\beta_k(u_i, v_i) \neq 0, k = 1, 2, ..., k$

Hasil dari perhitungan dari uji F didapat nilai statistik 0,743 dan nilai F tabel pada signifikansi 0,10 dengan $df_2 = 17$ dan $df_1 = 9$ adalah 2,03. karena nilai $f_{hitung} < f_{tabel}$ maka H_0 diterima. Dengan diterimanya H_0 maka dapat diambil kesimpulan bahwa variabel independent secara serentak tidak berpengaruh terhadap variabel dependen.

4.3.8.4. Uji Parsial

Uji parsial disini akan menggunakan uji t yang bertujuan untuk mengetahui seberapa berpengaruh masing – masing veriabel independen (X) terhadap variabel dependen (Y). Berikut Hipotesis untuk uji t.

$$H_0: \beta_k = 0$$

 H_1 : minimal ada satu $\beta_k \neq 0, k = 1,2,...,k$

Bedasarkan hasil pengujian didapat parameter yang berbeda untuk setiap lokasi untuk pengamatan Kab/Kota di Jawa Barat. Nilai t_{hitung} yang dibandingkan dengan nilai $t_{tabel(0,10;17)}=1,734$. Menolak H_0 jika nilai $t_{hitung}>1,734$. Variabel yang signifikan di masing – masing Kab/Kota di Jawa Barat akan ditampilkan pada tabel berikut.

Tabel 4.9 Variabel signifikan untuk model GWR

Variabel	Kab/Kota	Jumlah
signifikan		Wilayah
X ₁ (Angka	Ciamis, Cirebon, Indramayu, Kota	10
Partisipasi	Banjar, Kota Cirebon, Kota	
Murni)	Tasikmalaya, Kuningan, Majalengka,	
	Pangandaran, Tasikmalaya	
X ₃ (Indeks	Bandung, Bandung Barat,	17
Pembangunan	Ciamis, Cirebon, Garut,	
Manusia)	Indramayu, Kota Bandung, Kota	
	Banjar,Kota Cimahi, Kota	
	Cirebon, Kota Tasikmalaya,	
	Kuningan, Majalengka,	
	Pangandaran, Subang,	
	Sumedang, Tasikmalaya	
X ₄ (Jumlah	Bekasi, Bogor, Ciamis, Cirebon,	19
Penduduk	Indramayu, Karawang, Kota	
Miskin)	Banjar, Kota Bekasi, Kota	
	Bogor, Kota Cirebon, Kota	
	Depok, Kota Tasikmalaya,	
	Kuningan, Majalengka,	
	Pangandaran, Purwakarta,	
	Subang, Sumedang,	
	Tasikmalaya	
X ₅ (Angka	Bandung, Ciamis, Cirebon,	9
Putus Sekolah)	Garut, Kota Banjar, Kota	

Variabel	Kab/Kota	Jumlah
signifikan		Wilayah
	Tasikmalaya, Kuningan,	
	Pangandaran, Tasikmalaya	
<i>X</i> ₆ (Tingkat	Bekasi, Cirebon, Indramayu,	11
Kemiskinan)	Karawang, Kota Bekasi, Kota	
	Cirebon, Kuningan, Majalengka,	
	Purwakarta, Subang, Sumedang	

Bedasarkan hasil pengujian GWR didapatkan dua pengelompokan seperti pada Tabel 4.9 Hasil pengelompokan menunjukkan bahwa terdapat lima variabel yang berpengaruh signifikan untuk wilayah tertentu pada kabupaten/kota di Jawa Barat yaitu angka partisipasi murni (X_1) , indeks pembangunan manusia (X_3) , jumlah penduduk miskin (X_4) , angka putus sekolah (X_5) dan tingkat kemiskinan (X_6) . Sedangkan untuk X_2 (jumlah pencari kerja), X_7 (jumlah penduduk), upah minimum kerja (X_8) dan X_9 (penanaman modal asing) tidak berpengaruh signifikan pada 27 kabupaten/kota di Jawa Barat.

Berikut visualisasi peta untuk variabel yang berpengaruh pada Provinsi Jawa Barat.

BOOGOR KOTA BEKKEL BOOGOR KOTA BOOK BANDUNG BARAT SUMBDANG MAJALENGKA KOTA SUKABUMI BANDUNG BARAT SUMBDANG MAJALENGKA KUNINGAN CIAMUR CIAMUR CIAMUR CIAMUR TASIKMALAYA

Persebaran Pengaruh Angka Partisipasi Murni

Legend

Jawa Barat

X1

Tidak Berpengaruh

Berpengaruh

Gambar 4.3 Persebaran Angka Partisipasi Murni Jawa Barat 2022

Pada Gambar 4.3 dapat dilihat untuk peta persebaran angka partisipasi murni untuk warna hijau gelap termasuk dalam wilayah yang dipengaruhi oleh angka partisipasi murni dan untuk warna hijau terang termasuk dalam wilayah yang tidak dipengaruhi oleh angka partisipasi murni. Untuk wilayah – wilayahnya yang dipengaruhi sudah dijelaskan pada Tabel 4.9.

Legend Jawa Barat X3 Tidak Berpengaruh Berpengaruh

Gambar 4.4 Persebaran Indeks Pembangunan Manusia Jawa Barat 2022

Pada Gambar 4.4 dapat dilihat untuk peta persebaran indeks pembangunan manusia untuk warna hijau gelap termasuk dalam wilayah yang dipengaruhi oleh indeks pembangunan manusia dan untuk warna hijau terang termasuk dalam wilayah yang tidak dipengaruhi oleh indeks pembangunan manusia. Untuk wilayah — wilayahnya yang dipengaruhi sudah dijelaskan pada Tabel 4.9.

Legend Jawa Barat X4

Tidak Berpengaruh

Berpengaruh

Gambar 4.5 Persebaran Pengaruh Penduduk Miskin Jawa Barat 2022

Pada Gambar 4.5 dapat dilihat untuk peta pengaruh penduduk miskin untuk warna hijau gelap termasuk dalam wilayah yang dipengaruhi oleh pengaruh penduduk miskin dan untuk warna hijau terang termasuk dalam wilayah yang tidak dipengaruhi oleh penduduk miskin. Untuk wilayah — wilayahnya yang dipengaruhi sudah dijelaskan pada Tabel 4.9.

Persebaran Pengaruh Angka Putus Sekolah

Legend Jawa Barat **X5** Tidak Berpengaruh Berpengaruh

Gambar 4.6 Persebaran Angka Putus Sekolah Jawa Barat 2022

Pada Gambar 4.6 dapat dilihat untuk peta persebaran angka putus sekolah untuk warna hijau gelap termasuk dalam wilayah yang dipengaruhi oleh angka putus sekolah dan untuk warna hijau terang termasuk dalam wilayah yang tidak dipengaruhi oleh angka putus sekolah. Untuk wilayah - wilayahnya yang dipengaruhi sudah dijelaskan pada Tabel 4.9.

Persebaran Tingkat Kemiskinan

Gambar 4.7 Persebaran Tingkat Kemiskinan Jawa Barat 2022

Berpengaruh

Pada Gambar 4.7 dapat dilihat untuk peta persebaran tingkat kemiskinan untuk warna hijau gelap termasuk dalam wilayah yang dipengaruhi oleh tingkat kemiskinan dan untuk warna hijau terang termasuk dalam wilayah yang tidak dipengaruhi oleh tingkat kemiskinan. Untuk wilayah — wilayahnya yang dipengaruhi sudah dijelaskan pada Tabel 4.9.

4.3.8.5. Pengecekan Multikolinearitas Lokal

Multikolinearitas lokal memiliki konsep yang sama seperti multikoliniearitas pada umumnya namum yang membedakannya adalah multikolinearitas lokal berfokus pada pengecekan korelasi antar variabel pada setiap wilayah. Berikut hasil dari pengecekan multikoliniearitas lokal pada masing – masing wilayah.

Tabel 4.10 Ringkasan nilai VIF lokal untuk seluruh lokasi.

Independent Variabel	Banyaknya wilayah VIF > 10
X_1	4
X_2	0
X_3	13
X_4	27
X_5	9
X_6	8
X_7	27
X_8	0
X_9	0

Dari tabel 4.10 dapat dilihat bahwa variabel X_1, X_3, X_4, X_5, X_6 dan X_7 pada beberapa lokasi memiliki nilai VIF > 10. Dari tabel tersebut jelas terdapat multikolinearitas lokal pada model GWR yang sudah dibentuk pada masing — masing wilayah. Sehingga akan dilanjutkan analisis menggunakan metode *Geographically Weighted Lasso*.

4.3.9. Permodelan Geographically Weighted Lasso (GWL)

Metode GWL merupakan metode yang menggabungkan antara GWR dan Lasso. Metode ini sangat cocok jika dalam model GWR terdapat multikolinearitas seperti kasus tingkat pengangguran terbuka di Provinsi Jawa Barat. Pada model GWL ini akan perubahan pada nilai *bandwidth* yang mana pada model GWL menggunakan *bandwidth* senilai 0,1415008. Karena bandwidth yang berbeda maka bobot yang digunakan juga berubah berikut perhitungan matriks pembobot untuk GWL.

Diketahui:

$$(u_i, v_i) = (u_{bandung}, v_{bandung})$$

 $h = 0.1415008$

$$d_{ij} = 1,014$$

$$w_f(u_{bandung}, v_{bandung}) = \exp\left(\frac{-1,014}{0,1415008}\right)$$

$$w_f(u_{bandung}, v_{bandung}) = \exp\left(-4,606\right)$$

$$w_f(u_{bandung}, v_{bandung}) = 0,00077$$

Sebagai contoh, matriks pembobot yang didapat dari fungsi *fixed eksponential kernel* adalah sebagai berikut.

Berikut tabel untuk nilai pembobot *fixed eksponential kernel* dan jarak *euclidean*.

Tabel 4.11 Nilai Jarak Euclidean dan Pembobot GWL

No	Kabupaten/Kota	Jarak Euclidean	Pembobot
1	Bandung	0	1
2	Bandung Barat	0,0000040	0,9998
3	Bekasi	1,1101570	0,0008
4	:	:	:
25	Sukabumi	0,7874877	0,0038
26	Sumedang	0,3919820	0,0627
27	Tasikmalaya	0,5523780	0,0202

Berikutnya adalah pemodelan GWL dan berikut adalah model global untuk GWL.

$$\hat{y}_{gwl} = -0.22 - 0.22X_{i1} + 1.542X_{i2} + 0.054X_{i3} + 0.057X_{i4}$$
$$-0.013X_{i5} + 0.005X_{i6} + 0.615X_{i7} - 0.005X_{i8}$$
$$-0.015X_{i9}$$

Dari model diatas dapat di interpretasikan sebagai berikut.

 Angka partisipasi murni dengan nilai koefisien -0,22 yang berarti setiap kenaikan 1 persen pada variabel angka partisipasi murni akan menurunkan tingkat pengangguran terbuka sebesar

- 0,22 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Jumlah pencari kerja dengan nilai koefisien 1,542 yang berarti setiap kenaikan 1.000 jiwa pencari kerja akan menaikkan tingkat pengangguran terbuka sebesar 1,542 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Indeks pembangunan masyarakat dengan nilai koefisien 0,054 yang berarti setiap penurunan 1 persen pada variabel indeks pembangunan masyarakat akan menaikkan tingkat pengangguran terbuka sebesar 0,054 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Jumlah penduduk miskin dengan nilai koefisien 0,057 yang berarti setiap kenaikan 100.000 penduduk miskin pada variabel jumlah penduduk miskin akan menaikkan tingkat pengangguran terbuka sebesar 0,057 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Angka putus sekolah dengan nilai koefisien -0,013 yang berarti setiap penurunan 1 anak pada variabel angka putus sekolah akan menurunkan angka tingkat pengangguran terbuka sebesar 0,013 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Tingkat kemiskinan dengan nilai koefisien 0,005 yang berarti setiap kenaikan 1 persen pada tingkat kemiskinan akan menaikkan tingkat pengangguran terbuka sebesar 0,005 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Jumlah penduduk dengan nilai koefisien 0,615 yang berarti setiap kenaikan 100.000 penduduk pada variabel jumlah penduduk akan menaikkan tingkat pengangguran terbuka sebesar 0,615 dengan asumsi semua variable lain konstan pada wilayah ke i.
- Upah minimum kerja dengan nilai koefisien -0,005 yang berarti setiap kenaikan 1 rupiah pada variabel upah minimum kerja akan menurunkan tingkat pengangguran terbuka sebesar

0,005 dengan asumsi semua variable lain konstan pada wilayah ke i.

 Penanaman modal asing dengan nilai koefisien -0,015 yang berarti setiap kenaikan 1 persen pada variabel penanaman modal asing akan menurunkan tingkat pengangguran terbuka sebesar 0,015 dengan asumsi semua variable lain konstan pada wilayah ke i.

Berikut 1 contoh model GWL lokal untuk wilayah Bandung Barat.

$$Y_{Bandung\,Barat\,(gwl)} = -1,826 - 0,490X_1 - 0,58 \times 10^{-4}X_2$$

$$+0,584X_3 + 0,045X_4 + 0,001X_5 - 0,424X_6$$

$$-3,5 \times 10^{-6}X_7 + 1,01 \times 10^{-6}X_8 - 0,09X_9$$

Pada model GWL untuk wilayah Bogor dapat diinterpretasikan bahwa jika variabel angka partisipasi murni bertambah 1 persen dan variabel lainnya konstan maka menurunkan tingkat pengangguran terbuka sebesar 0,490 dengan asumsi semua variable lain konstan.

Berikut tabel untuk mengecek variabel apa saja yang signifikan pada masing – masing wilayah.

Tabel 4.12 Variabel signifikan pada setiap Kabupaten/Kota

No	Kabupaten/Kota	variabel signifikan
1	Bandung	$X_1X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
2	Bandung Barat	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
3	Bekasi	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
4	Bogor	X_2, X_3, X_6, X_8
5	Ciamis	X_5, X_6, X_9
6	Cianjur	X_3, X_6, X_8
7	Cirebon	X_2, X_4, X_5, X_8, X_9
8	Garut	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
9	Indramayu	$X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
10	Karawang	$X_1X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
11	Kota Bandung	X_2, X_3, X_4, X_7, X_8
12	Kota Banjar	X_2, X_5, X_6, X_9
13	Kota Bekasi	$X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}$
14	Kota Bogor	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$

No	Kabupaten/Kota	variabel signifikan
15	Kota Cimahi	$X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
16	Kota Cirebon	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
17	Kota Depok	X_6, X_8, X_9
18	Kota Sukabumi	$X_2, X_3, X_4, X_5, X_7, X_8, X_9$
19	Kota Tasikmalaya	$X_1, X_2, X_4, X_5, X_6, X_7, X_8, X_9$
20	Kuningan	$X_1, X_2, X_4, X_5, X_7, X_8, X_9$
21	Majalengka	$X_2, X_4, X_5, X_7, X_8, X_9$
22	Pangandaran	X_2, X_4, X_5, X_9
23	Purwakarta	X_1
24	Subang	$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9$
25	Sukabumi	$X_2, X_3, X_4, X_6, X_8, X_9$
26	Sumedang	$X_2, X_3, X_4, X_5, X_7, X_8, X_9$
27	Tasikmalaya	$X_1, X_2, X_3, X_4, X_5, X_7, X_8, X_9$

Pada Tabel 4.12 menerangkan variabel – variabel apa saja yang signifikan pada wilayah masing – masing, Dari wilayah awal ada Bandung dan wilayah terakhir adalah Tasikmalaya.

Berikut visaualisasi dengan peta untuk variabel yang berpengaruh pada tingkat pengangguran terbuka pada model GWL.

Gambar 4.8 Peta Faktor Yang Berpengaruh Signifikan Terhadap Tingkat Pengangguran Terbuka Provinsi Jawa Barat Bedasarkan Model GWL

4.3.10. Perbandingan Model GWR dan GWL

Perbandingan model terbaik dilakukan untuk mengetahui model yang paling baik diantara kedua model. Kriteria pemilihan model terbaik menggunakan *R-square*. Model terbaik adalah model dengan nilai *R-square* terbesar. Tabel 4.13 adalah tabel perbandingan nilai *R-square* dari ketiga model.

Tabel 4.13 Perbandingan R² model GWL dan GWR

Model	R-square
OLS	0,611
GWR	0,843
GWL	0,886

Bedasarkan nilai R^2 dihasilkan nilai untuk model GWR adalah 0,843 atau 84,3% dan untuk model GWL adalah 0,886 atau 88,6%. Dari hasil perbandingan diatas dapat diketahui bahwa model GWL adalah model yang sesuai pada data tingkat pengangguran terbuka untuk wilayah Jawa Barat tahun 2022 karena 88,6% keragaman model dapat dijelaskan oleh variabel respon yaitu tingkat pengangguran terbuka, sehingga model GWL cocok untuk memprediksi tingkat pengangguran terbuka di kabupaten/kota di Jawa Barat tahun 2022.

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

- 1. Gambaran Umum tingkat pengangguran terbuka untuk Provinsi Jawa Barat tahun 2022 untuk variabel – variabel yang diteliti memiliki pengaruh yang signifikan tergantung wilayah kabupaten/kota masing – masing karena letak geografis juga ikut mempengaruhi untuk kasus ini.
- **2.** Berikut Model *Geographically Weighted Lasso* secara global untuk kasus tingkat pengangguran terbuka pada Provinsi Jawa Barat untuk tahun 2022.

$$\hat{y}_{gwl} = -0.22 - 0.22X_{i1} + 1.542X_{i2} + 0.054X_{i3} + 0.057X_{i4}$$
$$-0.013X_{i5} + 0.005X_{i6} - 0.615X_{i7} - 0.005X_{i8}$$
$$-0.015X_{i9}$$

3. Faktor – faktor yang paling dominan berpengaruh pada wilayah Provinsi Jawa Barat ada variabel penanaman modal asing (X_9) dan upah minimum kerja (X_8) .

5.2. Saran

Bedasarkan hasil penelitian ini disarankan menggunakan permodelan GWL daripada GWR pada data yang memiliki masalah multikolinearitas lokal dan heterogenitas spasial, sehingga menghasilkan nilai keakuratan yang lebih baik. Untuk penelitian selanjutnya dengan kasus yang sama yaitu ada multikolinearitas dan heterogenitas spasial bisa menggunakan pembobot yang berbeda seperti adaptive kernel dan adaptive bisquare.

DAFTAR PUSTAKA

- Akerlof, G. A. (1969). Structural Unemployment in a Neoclassical Framework. *The University of Chicago Press*, 77(3), 399–407. https://www.jstor.org/stable/1828911
- Anselin, L. (1988). *Spatial Econometrics : Methods and Models*. Kluwer Academic Publishers.
- Arida, A. (2015). Analisis Permintaan Dan Penawaran Tenaga Kerja Pada Sektor Pertanian di Provinsi Aceh. *Jurnal Agrisep*, *16*(1).
- Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. *Environment and Planning A*, *30*, 1905–1927.
- DC, W. (n.d.). Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression. *Environment and Planning A*, 39, 2464–2481.
- Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004a). Least Angle Regression. In *The Annals of Statistics* (Vol. 32, Issue 2).
- Efron, B., Hastie, T., Johnstone, L., & Tibshirani, R. (2004b). Least angle regression. The Annals of Statistics. *The Annals of Statistics*, 32(2), 407–499.
- Fortheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression The Analysis of Spatially Varying Relationships. *John Wiley & Sones*.
- Fotheringham, A. S., Brundon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. *John Wiley & Sons*.
- Fotheringham, A. S., & Brunsdon, C. M. (2002). Geographically Weighted Regression, the Analysis of Spatially Varying Relattionships.
- Ganasegeran, K., Jamil, M. F. A., Appannan, M. R., Ch'ng, A. S. H., Looi, I., & Peariasamy, K. M. (2022). Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia. *International Journal of Environmental Research and Public Health*, 19(4). https://doi.org/10.3390/ijerph19042082
- Grasa, A. A. (1989). *Econometric Model Selection: A New Approach*. Springer Science and Bussiness Media.
- Gujarati, D. N., & Porter, D. C. (2009b). *Basic econometric*(5th edition).

- Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements od Statistical Learning Data Mining, Infrerence, and Prediction.
- Hastie, T., Tibshirani, R., & Friendman, J. (2009). *The Elements od Statistical Learning Data Mining, Inference, and Prediction*. Springer.
- Hidayat, T., & Munir, A. Q. (2006). Perancangan Sistem Informasi Geografis Penentuan Jalur Jalan Optimum Kodya Yogyakarta. *Seminar Nasional Aplikasi Teknologi Informasi*.
- K. -R. Muller, S. Mika, G. Ratsch, K. Tsuda, & B Scholkopf. (2001). An introduction to kernel-based learning algorithms. *IEEE Transactions on Neural Networks*, 12(2), 181–201.
- Koning, P., Ridder, G., & Van Den Berg, G. J. (1995). Structural and frictional unemployment in an equilibrium search model with heterogeneous agents. *Journal of Applied Econometrics*, 10(1 S), S133–S151. https://doi.org/10.1002/jae.3950100508
- Lestari, S. S. S., Meimela, A., & Revildy, W. D. (2019). Analisi Faktor Tingkat Pengangguran Terbuka Dengan Metode Geographically Weighted LASSO. Seminar NasionalOfficial Statistics 2020: Statistics In The New Normal A Challenge Of Big Data And Official Statistics, 1286–1293.
- Lu, B., Charlton, M., Harris, P., & Fotheringham, A. S. (2014). Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. *International Journal of Geographical Information Science*, 28(4), 660–681. https://doi.org/10.1080/13658816.2013.865739
- Mankiw, N. G. (2006). Pengantar Teori Ekonomi Makro (3rd ed.).
- Pamungkas, R. A., Yasin, H., & Rahmawati, R. (2016). Perbandingan Model GWR Dengan Fixed Dan Adaptive Bandwidth Untuk Persentase Penduduk Miskin Di Jawa Tengah. *Jurnal Gaussian*, 5(3), 535–544. http://ejournal-s1.undip.ac.id/index.php/gaussian
- Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements. (2008). Analysis in Epidemiologi. *A.C.A*.
- Rafi, A., Diastina, N., Handajani, S. S., & Slamet, I. (2019). Analisis Model Geographically Weighted Regression (GWR) Pada Kasus Jumlah Peserta Kb Aktif Di Provinsi Jawa Tengah.
- Rahardja, P., & Manurung, M. (2008). Pengantar Ilmu Ekonomi (Mikroekonomi dan Makroekonomi). *Fakultas Ekonomi Universitas Islam*.
- Samadi, H., Asdi, Y., & Matematika, J. (2017). Penerapan Model Regresi Spasial Dalam Menentukan Faktor-Faktor Yang Mempengaruhi Indeks Pembangunan Manusia Di Kabupaten/Kota Provinsi Sumatera Barat. *Jurnal Matematika UNAND*, *4*, 80–89.

- Sargent, T. C. (2000). Structural Unemployment and Technological Change in Canada, 1990-1999. *University of Toronto Press*, 26, 109–123.
- Sukirno, S. (1994). Pengantar Makro Ekonomi (1st ed.).
- Sukirno, S. (2010). Mikro Ekonomi Teori Pengantar. Rajawali Pers.
- Taek, Y., Dwi Bekti, R., Suryowati, K., & Statistika, J. (2023). Penerapan Model Geograpgically Weighted Regression (GWR) Menggunakan Fungsi Pembobot Adaptive Kernel Gaussian Dan Adaptive Kernel Bisquare Pada Tingkat Pengangguran Terbuka Di Pulau Papua. *Jurnal Statistika Industri Dan Komputasi*, 08(2), 84–101. https://papua.bps.go.id
- Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. In *J. R. Statist. Soc. B* (Vol. 73). https://academic.oup.com/jrsssb/article/73/3/273/7034363
- Wheeler, D. C. (2007). Diagnostic tools and a remedial method for collinearity in geographically weighted regression. *Environment and Planning A*, 39(10), 2464–2481.
- Wheeler, D. C. (2009). Simultaneous coefficient penalization and model selection in geographically weighted regression: The geographically weighted lasso. *Environment and Planning A*, 41(3), 722–742.
- Wheeler. D., & M, T. Multicollinearity (2005).and correlation local regression coefficients in among geographically weighted regression. Journal of Geographical System, 7, 161-187.
- Widayanti, H. (2021). Analisis Faktor-faktor yang Mempengaruhi Tingkat Pengangguran Terbuka (TPT) di Kabupaten/Kota Provinsi Jawa Barat [Universitas Islam Indonesia]. https://dspace.uii.ac.id/bitstream/handle/123456789/34187/17313090%20Ha nny%20Widayanti.pdf?sequence=1&isAllowed=y
- Yuliana, & Retno Sari Saputro, D. (2017). Algoritme Least Angle Regression untuk Model Geographically Weighted Least Absolute Shrinkage and Selection Operator. Seminar Matematika dan Pendidikan Matematika UNY.
- Yulita, T., Saefuddin, A., & Hamim Wigena, A. (2015a). *Ridge And Lasso Performance In Spatial Data With Heterogeneity And Multicollinearity* (Vol. 20, Issue 2).
- Yulita, T., Saefuddin, A., & Hamim Wigena, A. (2015b). *Ridge And Lasso Performance In Spatial Data With Heterogeneity And Multicollinearity* (Vol. 20, Issue 2).

LAMPIRAN

Lampiran 1. Data Penelitian

Kabupaten/Kota	TPT	APM	JPK	IPM	JPM	APS
Bandung	6,98	71,08	11.317	73,16	258,6	74
Bandung Barat	9,63	63,12	3.355	69,04	183,7	85
Bekasi	10,31	71,79	30.163	75,22	201,1	139
Bogor	10,64	66,44	21.248	71,2	474,7	501
Ciamis	3,75	68,99	9.902	71,45	94	23
Cianjur	8,41	64,69	30.070	65,94	246,8	246
Cirebon	8,11	70,61	43.428	70,06	266,1	47
Garut	7,6	67,75	22.682	67,41	276,7	169
Indramayu	6,49	69,42	16.189	68,55	225	160
Karawang	9,87	70,00	27.400	71,74	199,9	129
Kota Bandung	9,55	74,83	9.855	82,5	109,8	24
Kota Banjar	5,53	78,88	1.812	72,55	12,7	7
Kota Bekasi	8,81	78,45	12.318	82,46	137,4	140
Kota Bogor	10,78	69,27	3.220	77,17	79,2	20
Kota Cimahi	10,77	76,78	2.175	78,77	31,2	3
Kota Cirebon	8,42	69,22	2.475	75,89	31,5	29
Kota Depok	7,82	78,00	5.263	81,86	64,4	55
Kota Sukabumi	8,83	77,73	3.930	75,4	26,6	17
Kota Tasikmalaya	6,62	78,04	4.652	73,83	87,1	7
Kuningan	9,81	73,25	13.824	70,16	140,3	7
Majalengka	4,16	73,43	18.996	68,56	147,1	47
Pangandaran	1,56	75,71	2.762	69,03	37,9	7
Purwakarta	8,75	64,09	20.008	71,56	83,4	66
Subang	7,77	66,35	27.167	69,87	155,3	51
Sukabumi	7,77	67,23	20.383	67,64	186,3	168
Sumedang	7,72	75,42	10.450	72,69	120,1	17
Tasikmalaya	4,17	76,05	14.337	66,84	194,1	137

TK	JP	UMK	PMA	Longitude	Latitude
6,8	3718660	3241930	13,33	107,6962	-7,10016
10,82	1846969	3248284	0,13	107,6962	-7,10016
5,01	3214791	4791844	0,79	106,9924	-6,24159
7,73	5566838	4217206	4,02	106,8166	-6,59504
7,72	1247768	1897867	0,42	108,3294	-7,32622
10,55	2542793	2699814	0,07	107,143	-6,82076
12,01	2315417	2279983	1,96	108,5507	-6,73725
10,42	2627220	1975221	8,34	107,6215	-7,13407
12,77	1871832	2391567	0,21	108,3249	-6,32758
8,44	2505247	4798312	0,03	107,4438	-6,40008
4,25	2461553	3774861	0,03	107,6131	-6,90598
6,73	206457	1852100	3,02	108,5582	-7,37459
4,43	2590257	4816921	1,57	106,9924	-6,24159
7,1	1063513	4330250	1,80	106,8166	-6,59504
5,11	575235	3272669	2,67	107,5339	-6,89954
9,82	341235	2304943	3,03	108,5507	-6,73725
2,53	2123349	4377231	6,30	106,7784	-6,40291
8,02	356410	2562434	8,11	106,9287	-6,9237
12,72	733467	2363390	0,21	108,203	-7,31956
12,76	1196017	1908102	7,79	108,4831	-6,97583
11,94	1335460	2027619	47,03	108,2833	-6,81667
9,32	432380	1884364	37,20	108,6404	-7,6673
8,7	1028569	4173569	1,26	107,4499	-6,53868
9,75	1624386	3064218	5,74	107,7587	-6,57159
7,34	2806664	3125444	3,03	106,9287	-6,9237
10,14	1167033	3241930	1,17	107,9833	-6,83333
10,73	1906288	2326772	15,34	108,203	-7,31956

Keterangan:

TPT: Tingkat Pengangguran Terbuka

APM : Angka Partisipasi Murni

JPK : Jumlah Pencari Kerja

IPM: Indeks Pembangunan Manusia

JPM: Jumlah Penduduk Miskin

APS : Angka Putus Sekolah

TK: Tingkat Kemiskinan

JP: Jumlah Penduduk

UMK : Upah Minimm Kerja

PMA: Penanaman Modal Asing

Lampiran 2. Jarak Euclidean

Kabupaten/Kota	Bandung	Bandung Barat	Bekasi	Bogor
Bandung	0,000	0,000	1,110	1,014
Bandung Barat	0,000	0,000	1,110	1,014
Bekasi	1,110	1,110	0,000	0,395
Bogor	1,014	1,014	0,395	0,000
Ciamis	0,672	0,672	1,722	1,680
Cianjur	0,620	0,620	0,598	0,397
Cirebon	0,928	0,928	1,635	1,740
Garut	0,082	0,082	1,092	0,969
Indramayu	0,996	0,996	1,335	1,532
Karawang	0,744	0,744	0,478	0,657
Kota Bandung	0,211	0,211	0,909	0,855
Kota Banjar	0,905	0,905	1,933	1,908
Kota Bekasi	1,110	1,110	0,000	0,395
Kota Bogor	1,014	1,014	0,395	0,000
Kota Cimahi	0,258	0,258	0,852	0,779
Kota Cirebon	0,928	0,928	1,635	1,740
Kota Depok	1,153	1,153	0,268	0,196
Kota Sukabumi	0,787	0,787	0,685	0,347
Kota Tasikmalaya	0,552	0,552	1,621	1,564
Kuningan	0,797	0,797	1,662	1,709
Majalengka	0,652	0,652	1,413	1,483
Pangandaran	1,101	1,101	2,179	2,116
Purwakarta	0,613	0,613	0,546	0,636
Subang	0,532	0,532	0,834	0,942
Sukabumi	0,787	0,787	0,685	0,347
Sumedang	0,392	0,392	1,154	1,191
Tasikmalaya	0,552	0,552	1,621	1,564

Kabupaten/Kota	Ciamis	Cianjur	Cirebon	Garut
Bandung	0,672	0,620	0,928	0,082
Bandung Barat	0,672	0,620	0,928	0,082
Bekasi	1,722	0,598	1,635	1,092
Bogor	1,680	0,397	1,740	0,969
Ciamis	0,000	1,290	0,629	0,733
Cianjur	1,290	0,000	1,410	0,572
Cirebon	0,629	1,410	0,000	1,010
Garut	0,733	0,572	1,010	0,000
Indramayu	0,999	1,281	0,468	1,070
Karawang	1,281	0,517	1,157	0,755
Kota Bandung	0,830	0,478	0,953	0,228
Kota Banjar	0,234	1,520	0,637	0,967
Kota Bekasi	1,722	0,598	1,635	1,092
Kota Bogor	1,680	0,397	1,740	0,969
Kota Cimahi	0,903	0,399	1,030	0,250
Kota Cirebon	0,629	1,410	0,000	1,010
Kota Depok	1,805	0,555	1,804	1,116
Kota Sukabumi	1,457	0,238	1,633	0,724
Kota Tasikmalaya	0,127	1,172	0,678	0,610
Kuningan	0,383	1,349	0,248	0,876
Majalengka	0,512	1,140	0,279	0,734
Pangandaran	0,462	1,720	0,934	1,150
Purwakarta	1,180	0,417	1,118	0,620
Subang	0,946	0,664	0,809	0,579
Sukabumi	1,457	0,238	1,633	0,724
Sumedang	0,602	0,840	0,575	0,470
Tasikmalaya	0,127	1,172	0,678	0,610

Kabupaten/Kota	Indramayu	Karawang	Kota Bandung	Kota Banjar
Bandung	0,996	0,744	0,211	0,905
Bandung Barat	0,996	0,744	0,211	0,905
Bekasi	1,335	0,478	0,909	1,933
Bogor	1,532	0,657	0,855	1,908
Ciamis	0,999	1,281	0,830	0,234
Cianjur	1,281	0,517	0,478	1,520
Cirebon	0,468	1,157	0,953	0,637
Garut	1,070	0,755	0,228	0,967
Indramayu	0,000	0,884	0,917	1,073
Karawang	0,884	0,000	0,534	1,480
Kota Bandung	0,917	0,534	0,000	1,055
Kota Banjar	1,073	1,480	1,055	0,000
Kota Bekasi	1,335	0,478	0,909	1,933
Kota Bogor	1,532	0,657	0,855	1,908
Kota Cimahi	0,976	0,508	0,080	1,129
Kota Cirebon	0,468	1,157	0,953	0,637
Kota Depok	1,548	0,665	0,975	2,028
Kota Sukabumi	1,518	0,734	0,685	1,691
Kota Tasikmalaya	0,999	1,192	0,720	0,359
Kuningan	0,667	1,188	0,873	0,406
Majalengka	0,491	0,937	0,676	0,622
Pangandaran	1,376	1,743	1,279	0,304
Purwakarta	0,900	0,139	0,402	1,388
Subang	0,617	0,359	0,365	1,133
Sukabumi	1,518	0,734	0,685	1,691
Sumedang	0,610	0,692	0,377	0,790
Tasikmalaya	0,999	1,192	0,720	0,359

Kabupaten/Kota				
			Kota	Kota
	Kota Bekasi	Kota Bogor	Cimahi	Cirebon
Bandung	1,110	1,014	0,258	0,928

Bandung Barat	1,110	1,014	0,258	0,928
Bekasi	0,000	0,395	0,852	1,635
Bogor	0,395	0,000	0,779	1,740
Ciamis	1,722	1,680	0,903	0,629
Cianjur	0,598	0,397	0,399	1,410
Cirebon	1,635	1,740	1,030	0,000
Garut	1,092	0,969	0,250	1,010
Indramayu	1,335	1,532	0,976	0,468
Karawang	0,478	0,657	0,508	1,157
Kota Bandung	0,909	0,855	0,080	0,953
Kota Banjar	1,933	1,908	1,129	0,637
Kota Bekasi	0,000	0,395	0,852	1,635
Kota Bogor	0,395	0,000	0,779	1,740
Kota Cimahi	0,852	0,779	0,000	1,030
Kota Cirebon	1,635	1,740	1,030	0,000
Kota Depok	0,268	0,196	0,904	1,804
Kota Sukabumi	0,685	0,347	0,606	1,633
Kota Tasikmalaya	1,621	1,564	0,790	0,678
Kuningan	1,662	1,709	0,952	0,248
Majalengka	1,413	1,483	0,754	0,279
Pangandaran	2,179	2,116	1,347	0,934
Purwakarta	0,546	0,636	0,370	1,118
Subang	0,834	0,942	0,398	0,809
Sukabumi	0,685	0,347	0,606	1,633
Sumedang	1,154	1,191	0,454	0,575
Tasikmalaya	1,621	1,564	0,790	0,678

Kabupaten/Kota	Kota Depok	Kota Sukabumi	Kota Tasikmalaya	Kuningan
Bandung	1,153	0,787	0,552	0,797

Bandung Barat	1,153	0,787	0,552	0,797
Bekasi	0,268	0,685	1,621	1,662
Bogor	0,196	0,347	1,564	1,709
Ciamis	1,805	1,457	0,127	0,383
Cianjur	0,555	0,238	1,172	1,349
Cirebon	1,804	1,633	0,678	0,248
Garut	1,116	0,724	0,610	0,876
Indramayu	1,548	1,518	0,999	0,667
Karawang	0,665	0,734	1,192	1,188
Kota Bandung	0,975	0,685	0,720	0,873
Kota Banjar	2,028	1,691	0,359	0,406
Kota Bekasi	0,268	0,685	1,621	1,662
Kota Bogor	0,196	0,347	1,564	1,709
Kota Cimahi	0,904	0,606	0,790	0,952
Kota Cirebon	1,804	1,633	0,678	0,248
Kota Depok	0,000	0,542	1,694	1,798
Kota Sukabumi	0,542	0,000	1,334	1,555
Kota Tasikmalaya	1,694	1,334	0,000	0,443
Kuningan	1,798	1,555	0,443	0,000
Majalengka	1,561	1,359	0,509	0,255
Pangandaran	2,251	1,866	0,559	0,709
Purwakarta	0,685	0,648	1,085	1,122
Subang	0,995	0,902	0,870	0,829
Sukabumi	0,542	0,000	1,334	1,555
Sumedang	1,279	1,058	0,534	0,520
Tasikmalaya	1,694	1,334	0,000	0,443

Kabupaten/Kota	Majalengka	Pangandaran	Purwakarta	Subang
Bandung	0,652	1,101	0,613	0,532
Bandung Barat	0,652	1,101	0,613	0,532
Bekasi	1,413	2,179	0,546	0,834
Bogor	1,483	2,116	0,636	0,942
Ciamis	0,512	0,462	1,180	0,946

Cianjur	1,140	1,720	0,417	0,664
Cirebon	0,279	0,934	1,118	0,809
Garut	0,734	1,150	0,620	0,579
Indramayu	0,491	1,376	0,900	0,617
Karawang	0,937	1,743	0,139	0,359
Kota Bandung	0,676	1,279	0,402	0,365
Kota Banjar	0,622	0,304	1,388	1,133
Kota Bekasi	1,413	2,179	0,546	0,834
Kota Bogor	1,483	2,116	0,636	0,942
Kota Cimahi	0,754	1,347	0,370	0,398
Kota Cirebon	0,279	0,934	1,118	0,809
Kota Depok	1,561	2,251	0,685	0,995
Kota Sukabumi	1,359	1,866	0,648	0,902
Kota Tasikmalaya	0,509	0,559	1,085	0,870
Kuningan	0,255	0,709	1,122	0,829
Majalengka	0,000	0,923	0,879	0,579
Pangandaran	0,923	0,000	1,640	1,406
Purwakarta	0,879	1,640	0,000	0,311
Subang	0,579	1,406	0,311	0,000
Sukabumi	1,359	1,866	0,648	0,902
Sumedang	0,300	1,062	0,609	0,345
Tasikmalaya	0,509	0,559	1,085	0,870

Kabupaten/Kota	Sukabumi	Sumedang	Tasikmalaya
Bandung	0,787	0,391982	0,552238
Bandung Barat	0,787	0,391982	0,552237
Bekasi	0,685	1,154154	1,62095
Bogor	0,347	1,190781	1,564246
Ciamis	1,457	0,602219	0,126549
Cianjur	0,238	0,840464	1,171507
Cirebon	1,633	0,575408	0,678218
Garut	0,724	0,47047	0,610311
Indramayu	1,518	0,610307	0,99945

Karawang	0,734	0,691988	1,192418
Kota Bandung	0,685	0,377247	0,720382
Kota Banjar	1,691	0,789569	0,359453
Kota Bekasi	0,685	1,154154	1,62095
Kota Bogor	0,347	1,190781	1,564246
Kota Cimahi	0,606	0,454314	0,790013
Kota Cirebon	1,633	0,575408	0,678218
Kota Depok	0,542	1,279483	1,693993
Kota Sukabumi	0,000	1,058469	1,33432
Kota Tasikmalaya	1,334	0,53354	0
Kuningan	1,555	0,51965	0,443398
Majalengka	1,359	0,300462	0,509273
Pangandaran	1,866	1,0617	0,558783
Purwakarta	0,648	0,609359	1,084817
Subang	0,902	0,344892	0,869949
Sukabumi	0,000	1,058469	1,33432
Sumedang	1,058	0	0,53354
Tasikmalaya	1,334	0,53354	0

Lampiran 3. Bobot GWR

Kabupaten/Kota	Bandung	Bandung Barat	Bekasi	Bogor
Bandung	1	0,999999	0,139257	0,165105
Bandung Barat	0,999999	1	0,139257	0,165104
Bekasi	0,139257	0,139257	1	0,496087
Bogor	0,165105	0,165104	0,496087	1
Ciamis	0,303041	0,303041	0,047019	0,050608
Cianjur	0,332667	0,332667	0,345526	0,494296
Cirebon	0,192324	0,192324	0,054816	0,045518
Garut	0,864496	0,864495	0,143838	0,179018
Indramayu	0,170524	0,170524	0,093365	0,065858
Karawang	0,266716	0,266716	0,427638	0,31154
Kota Bandung	0,687256	0,687256	0,198961	0,21906
Kota Banjar	0,200597	0,200597	0,032318	0,033764
Kota Bekasi	0,139257	0,139257	1	0,496087
Kota Bogor	0,165105	0,165104	0,496087	1

Kota Cimahi	0,632374	0,632373	0,22021	0,250648
Kota Cirebon	0,192324	0,192324	0,054816	0,045518
Kota Depok	0,129148	0,129148	0,621325	0,706186
Kota Sukabumi	0,246983	0,246983	0,296242	0,539747
Kota Tasikmalaya	0,375058	0,375059	0,056218	0,062174
Kuningan	0,243004	0,243004	0,052297	0,048049
Majalengka	0,314166	0,314167	0,0813	0,07178
Pangandaran	0,141434	0,141434	0,020866	0,023356
Purwakarta	0,336633	0,336633	0,379556	0,323329
Subang	0,388602	0,388602	0,22726	0,187586
Sukabumi	0,246983	0,246983	0,296242	0,539747
Sumedang	0,498531	0,498532	0,128791	0,12068
Tasikmalaya	0,375058	0,375059	0,056218	0,062174

Kabupaten/Kota	Ciamis	Cianjur	Cirebon	Garut
Bandung	0,303041	0,332667	0,192324	0,864496
Bandung Barat	0,303041	0,332667	0,192324	0,864495
Bekasi	0,047019	0,345526	0,054816	0,143838
Bogor	0,050608	0,494296	0,045518	0,179018
Ciamis	1	0,101262	0,327158	0,271867
Cianjur	0,101262	1	0,08174	0,362119
Cirebon	0,327158	0,08174	1	0,16627
Garut	0,271867	0,362119	0,16627	1
Indramayu	0,169752	0,102863	0,435784	0,149513
Karawang	0,102741	0,399165	0,128115	0,261552
Kota Bandung	0,228865	0,42803	0,184224	0,66676
Kota Banjar	0,660102	0,067288	0,322428	0,179552
Kota Bekasi	0,047019	0,345526	0,054816	0,143838
Kota Bogor	0,050608	0,494296	0,045518	0,179018
Kota Cimahi	0,201291	0,492562	0,160655	0,641065
Kota Cirebon	0,327158	0,08174	1	0,16627
Kota Depok	0,040547	0,37354	0,040653	0,137821
Kota Sukabumi	0,075176	0,655682	0,055066	0,276439
Kota Tasikmalaya	0,798733	0,124883	0,299875	0,338307
Kuningan	0,506885	0,091113	0,643805	0,211082

Majalengka	0,403108	0,13198	0,609427	0,271605
Pangandaran	0,440559	0,047139	0,190278	0,129758
Purwakarta	0,122905	0,476949	0,137213	0,33276
Subang	0,186362	0,30739	0,237699	0,357668
Sukabumi	0,075176	0,655682	0,055066	0,276439
Sumedang	0,343204	0,224808	0,359939	0,433671
Tasikmalaya	0,798733	0,124883	0,299875	0,338307

Kabupaten/Kota				
	Indramayu	Karawang	Kota Bandung	Kota Banjar
Bandung	0,170524	0,266716	0,687256	0,200597
Bandung Barat	0,170524	0,266716	0,687256	0,200597
Bekasi	0,093365	0,427638	0,198961	0,032318
Bogor	0,065858	0,31154	0,21906	0,033764
Ciamis	0,169752	0,102741	0,228865	0,660102
Cianjur	0,102863	0,399165	0,42803	0,067288
Cirebon	0,435784	0,128115	0,184224	0,322428
Garut	0,149513	0,261552	0,66676	0,179552
Indramayu	1	0,208024	0,196182	0,148843
Karawang	0,208024	1	0,387746	0,072155
Kota Bandung	0,196182	0,387746	1	0,153629
Kota Banjar	0,148843	0,072155	0,153629	1
Kota Bekasi	0,093365	0,427638	0,198961	0,032318
Kota Bogor	0,065858	0,31154	0,21906	0,033764
Kota Cimahi	0,176662	0,406052	0,868277	0,134646
Kota Cirebon	0,435784	0,128115	0,184224	0,322428
Kota Depok	0,063954	0,30681	0,177158	0,027299
Kota Sukabumi	0,067479	0,27137	0,29647	0,04967
Kota Tasikmalaya	0,169511	0,12033	0,278241	0,528177
Kuningan	0,30577	0,121251	0,212294	0,486473
Majalengka	0,418254	0,189308	0,300999	0,331389
Pangandaran	0,0868	0,045271	0,103255	0,582803
Purwakarta	0,202218	0,781626	0,48981	0,085001

Subang	0,334586	0,528933	0,523271	0,133696
Sukabumi	0,067479	0,27137	0,29647	0,04967
Sumedang	0,33831	0,292631	0,511749	0,246072
Tasikmalaya	0,169511	0,12033	0,278241	0,528177

Kabupaten/Kota			Kota	Kota
	Kota Bekasi	Kota Bogor	Cimahi	Cirebon
Bandung	0,139257	0,165105	0,632374	0,192324
Bandung Barat	0,139257	0,165104	0,632373	0,192324
Bekasi	1	0,496087	0,22021	0,054816
Bogor	0,496087	1	0,250648	0,045518
Ciamis	0,047019	0,050608	0,201291	0,327158
Cianjur	0,345526	0,494296	0,492562	0,08174
Cirebon	0,054816	0,045518	0,160655	1
Garut	0,143838	0,179018	0,641065	0,16627
Indramayu	0,093365	0,065858	0,176662	0,435784
Karawang	0,427638	0,31154	0,406052	0,128115
Kota Bandung	0,198961	0,21906	0,868277	0,184224
Kota Banjar	0,032318	0,033764	0,134646	0,322428
Kota Bekasi	1	0,496087	0,22021	0,054816
Kota Bogor	0,496087	1	0,250648	0,045518
Kota Cimahi	0,22021	0,250648	1	0,160655
Kota Cirebon	0,054816	0,045518	0,160655	1
Kota Depok	0,621325	0,706186	0,200795	0,040653
Kota Sukabumi	0,296242	0,539747	0,341135	0,055066
Kota Tasikmalaya	0,056218	0,062174	0,245878	0,299875
Kuningan	0,052297	0,048049	0,18433	0,643805
Majalengka	0,0813	0,07178	0,262102	0,609427
Pangandaran	0,020866	0,023356	0,091481	0,190278
Purwakarta	0,379556	0,323329	0,517926	0,137213
Subang	0,22726	0,187586	0,493546	0,237699
Sukabumi	0,296242	0,539747	0,341135	0,055066
Sumedang	0,128791	0,12068	0,446294	0,359939
Tasikmalaya	0,056218	0,062174	0,245878	0,299875

Kabupaten/Kota		Kota	Kota	
	Kota Depok	Sukabumi	Tasikmalaya	Kuningan
Bandung	0,129148	0,246983	0,375058	0,243004
Bandung Barat	0,129148	0,246983	0,375059	0,243004
Bekasi	0,621325	0,296242	0,056218	0,052297
Bogor	0,706186	0,539747	0,062174	0,048049
Ciamis	0,040547	0,075176	0,798733	0,506885
Cianjur	0,37354	0,655682	0,124883	0,091113
Cirebon	0,040653	0,055066	0,299875	0,643805
Garut	0,137821	0,276439	0,338307	0,211082
Indramayu	0,063954	0,067479	0,169511	0,30577
Karawang	0,30681	0,27137	0,12033	0,121251
Kota Bandung	0,177158	0,29647	0,278241	0,212294
Kota Banjar	0,027299	0,04967	0,528177	0,486473
Kota Bekasi	0,621325	0,296242	0,056218	0,052297
Kota Bogor	0,706186	0,539747	0,062174	0,048049
Kota Cimahi	0,200795	0,341135	0,245878	0,18433
Kota Cirebon	0,040653	0,055066	0,299875	0,643805
Kota Depok	1	0,381905	0,049379	0,041027
Kota Sukabumi	0,381905	1	0,093527	0,06318
Kota Tasikmalaya	0,049379	0,093527	1	0,455029
Kuningan	0,041027	0,06318	0,455029	1
Majalengka	0,062561	0,089544	0,404795	0,635384
Pangandaran	0,018374	0,03637	0,370725	0,283853
Purwakarta	0,296225	0,316404	0,145666	0,136408
Subang	0,170939	0,201676	0,21334	0,229231
Sukabumi	0,381905	1	0,093527	0,06318
Sumedang	0,103093	0,152644	0,387721	0,397403
Tasikmalaya	0,049379	0,093527	1	0,455029

Kabupaten/Kota	Majalengka	Pangandaran	Purwakarta	Subang
Bandung	0,314166	0,141434	0,336633	0,388602
Bandung Barat	0,314167	0,141434	0,336633	0,388602
Bekasi	0,0813	0,020866	0,379556	0,22726

	1	1	1	
Bogor	0,07178	0,023356	0,323329	0,187586
Ciamis	0,403108	0,440559	0,122905	0,186362
Cianjur	0,13198	0,047139	0,476949	0,30739
Cirebon	0,609427	0,190278	0,137213	0,237699
Garut	0,271605	0,129758	0,33276	0,357668
Indramayu	0,418254	0,0868	0,202218	0,334586
Karawang	0,189308	0,045271	0,781626	0,528933
Kota Bandung	0,300999	0,103255	0,48981	0,523271
Kota Banjar	0,331389	0,582803	0,085001	0,133696
Kota Bekasi	0,0813	0,020866	0,379556	0,22726
Kota Bogor	0,07178	0,023356	0,323329	0,187586
Kota Cimahi	0,262102	0,091481	0,517926	0,493546
Kota Cirebon	0,609427	0,190278	0,137213	0,237699
Kota Depok	0,062561	0,018374	0,296225	0,170939
Kota Sukabumi	0,089544	0,03637	0,316404	0,201676
Kota Tasikmalaya	0,404795	0,370725	0,145666	0,21334
Kuningan	0,635384	0,283853	0,136408	0,229231
Majalengka	1	0,194323	0,210114	0,357638
Pangandaran	0,194323	1	0,05431	0,082295
Purwakarta	0,210114	0,05431	1	0,576106
Subang	0,357638	0,082295	0,576106	1
Sukabumi	0,089544	0,03637	0,316404	0,201676
Sumedang	0,58651	0,151771	0,33888	0,542013
Tasikmalaya	0,404795	0,370725	0,145666	0,21334

Kabupaten/Kota	Sukabumi	Sumedang	Tasikmalaya
Bandung	0,246983	0,498531	0,375058
Bandung Barat	0,246983	0,498532	0,375059
Bekasi	0,296242	0,128791	0,056218
Bogor	0,539747	0,12068	0,062174
Ciamis	0,075176	0,343204	0,798733
Cianjur	0,655682	0,224808	0,124883

			_
Cirebon	0,055066	0,359939	0,299875
Garut	0,276439	0,433671	0,338307
Indramayu	0,067479	0,33831	0,169511
Karawang	0,27137	0,292631	0,12033
Kota Bandung	0,29647	0,511749	0,278241
Kota Banjar	0,04967	0,246072	0,528177
Kota Bekasi	0,296242	0,128791	0,056218
Kota Bogor	0,539747	0,12068	0,062174
Kota Cimahi	0,341135	0,446294	0,245878
Kota Cirebon	0,055066	0,359939	0,299875
Kota Depok	0,381905	0,103093	0,049379
Kota Sukabumi	1	0,152644	0,093527
Kota Tasikmalaya	0,093527	0,387721	1
Kuningan	0,06318	0,397403	0,455029
Majalengka	0,089544	0,58651	0,404795
Pangandaran	0,03637	0,151771	0,370725
Purwakarta	0,316404	0,33888	0,145666
Subang	0,201676	0,542013	0,21334
Sukabumi	1	0,152644	0,093527
Sumedang	0,152644	1	0,387721
Tasikmalaya	0,093527	0,387721	1

Lampiran 4. Bobot GWL

Kabupaten/Kota	Bandung	Bandung Barat	Bekasi	Bogor
Bandung	1,0000000	0,9999969	0,0003915	0,0007708
Bandung Barat	0,9999969	1,0000000	0,0003915	0,0007708
Bekasi	0,0003915	0,0003915	1,0000000	0,0614375
Bogor	0,0007708	0,0007708	0,0614375	1,0000000
Ciamis	0,0086411	0,0086411	0,0000052	0,0000070
Cianjur	0,0125249	0,0125248	0,0145654	0,0605596
Cirebon	0,0014149	0,0014149	0,0000096	0,0000046
Garut	0,5601956	0,5601940	0,0004453	0,0010637
Indramayu	0,0008766	0,0008766	0,0000797	0,0000199

		1		
Karawang	0,0051986	0,0051986	0,0340267	0,0096466
Kota Bandung	0,2247983	0,2247980	0,0016194	0,0023751
Kota Banjar	0,0016731	0,0016731	0,0000012	0,0000014
Kota Bekasi	0,0003915	0,0003915	1,0000000	0,0614375
Kota Bogor	0,0007708	0,0007708	0,0614375	1,0000000
Kota Cimahi	0,1614170	0,1614167	0,0024251	0,0040597
Kota Cirebon	0,0014149	0,0014149	0,0000096	0,0000046
Kota Depok	0,0002900	0,0002900	0,1504822	0,2504686
Kota Sukabumi	0,0038286	0,0038286	0,0078949	0,0859444
Kota Tasikmalaya	0,0201870	0,0201870	0,0000106	0,0000158
Kuningan	0,0035890	0,0035890	0,0000079	0,0000057
Majalengka	0,0099743	0,0099743	0,0000460	0,0000280
Pangandaran	0,0004164	0,0004164	0,0000002	0,0000003
Purwakarta	0,0131298	0,0131298	0,0211677	0,0111832
Subang	0,0232478	0,0232478	0,0027491	0,0012812
Sukabumi	0,0038286	0,0038286	0,0078949	0,0859444
Sumedang	0,0626509	0,0626511	0,0002869	0,0002214
Tasikmalaya	0,0201870	0,0201870	0,0000106	0,0000158

Kabupaten/Kota	Ciamis	Cianjur	Cirebon	Garut
Bandung	0,0086411	0,0125249	0,0014149	0,5601956
Bandung Barat	0,0086411	0,0125248	0,0014149	0,5601940
Bekasi	0,0000052	0,0145654	0,0000096	0,0004453
Bogor	0,0000070	0,0605596	0,0000046	0,0010637
Ciamis	1,0000000	0,0001102	0,0117196	0,0056098
Cianjur	0,0001102	1,0000000	0,0000470	0,0175547
Cirebon	0,0117196	0,0000470	1,0000000	0,0007927
Garut	0,0056098	0,0175547	0,0007927	1,0000000
Indramayu	0,0008609	0,0001173	0,0366802	0,0005194
Karawang	0,0001167	0,0258664	0,0002809	0,0048094
Kota Bandung	0,0028272	0,0341508	0,0011922	0,1992799
Kota Banjar	0,1914784	0,0000217	0,0110597	0,0010763
Kota Bekasi	0,0000052	0,0145654	0,0000096	0,0004453

Kota Bogor	0,0000070	0,0605596	0,0000046	0,0010637
Kota Cimahi	0,0016962	0,0597182	0,0006914	0,1704277
Kota Cirebon	0,0117196	0,0000470	1,0000000	0,0007927
Kota Depok	0,0000029	0,0198637	0,0000029	0,0003757
Kota Sukabumi	0,0000337	0,1864266	0,0000098	0,0059948
Kota Tasikmalaya	0,4088791	0,0002538	0,0082873	0,0133916
Kuningan	0,0669345	0,0000724	0,1733455	0,0020491
Majalengka	0,0268983	0,0003162	0,1393372	0,0055883
Pangandaran	0,0383060	0,0000053	0,0013559	0,0002955
Purwakarta	0,0002381	0,0525337	0,0003691	0,0125388
Subang	0,0012482	0,0091452	0,0032872	0,0167115
Sukabumi	0,0000337	0,1864266	0,0000098	0,0059948
Sumedang	0,0141798	0,0026330	0,0171379	0,0359776
Tasikmalaya	0,4088791	0,0002538	0,0082873	0,0133916

Kabupaten/Kota			TZ .	TZ 4
	Indramayu	Karawang	Kota Bandung	Kota Banjar
Bandung	0,0008766	0,0051986	0,2247983	0,0016731
Bandung Barat	0,0008766	0,0051986	0,2247980	0,0016731
Bekasi	0,0000797	0,0340267	0,0016194	0,0000012
Bogor	0,0000199	0,0096466	0,0023751	0,0000014
Ciamis	0,0008609	0,0001167	0,0028272	0,1914784
Cianjur	0,0001173	0,0258664	0,0341508	0,0000217
Cirebon	0,0366802	0,0002809	0,0011922	0,0110597
Garut	0,0005194	0,0048094	0,1992799	0,0010763
Indramayu	1,0000000	0,0019335	0,0015312	0,0005102
Karawang	0,0019335	1,0000000	0,0230446	0,0000286
Kota Bandung	0,0015312	0,0230446	1,0000000	0,0005787
Kota Banjar	0,0005102	0,0000286	0,0005787	1,0000000
Kota Bekasi	0,0000797	0,0340267	0,0016194	0,0000012
Kota Bogor	0,0000199	0,0096466	0,0023751	0,0000014
Kota Cimahi	0,0010090	0,0276884	0,5700099	0,0003424

Kota Cirebon	0,0366802	0,0002809	0,0011922	0,0110597
Kota Depok	0,0000177	0,0090767	0,0010204	0,0000006
Kota Sukabumi	0,0000219	0,0055691	0,0079192	0,0000065
Kota Tasikmalaya	0,0008560	0,0002189	0,0061518	0,0788435
Kuningan	0,0089550	0,0002256	0,0020963	0,0568339
Majalengka	0,0311510	0,0013286	0,0084117	0,0123345
Pangandaran	0,0000597	0,0000045	0,0001191	0,1166441
Purwakarta	0,0017275	0,3751247	0,0584014	0,0000549
Subang	0,0128149	0,0792934	0,0759689	0,0003329
Sukabumi	0,0000219	0,0055691	0,0079192	0,0000065
Sumedang	0,0133920	0,0075188	0,0695269	0,0037727
Tasikmalaya	0,0008560	0,0002189	0,0061518	0,0788435

Kabupaten/Kota		Kota	Kota	Kota
	Kota Bekasi	Bogor	Cimahi	Cirebon
Bandung	0,0003915	0,0007708	0,1614170	0,0014149
Bandung Barat	0,0003915	0,0007708	0,1614167	0,0014149
Bekasi	1,0000000	0,0614375	0,0024251	0,0000096
Bogor	0,0614375	1,0000000	0,0040597	0,0000046
Ciamis	0,0000052	0,0000070	0,0016962	0,0117196
Cianjur	0,0145654	0,0605596	0,0597182	0,0000470
Cirebon	0,0000096	0,0000046	0,0006914	1,0000000
Garut	0,0004453	0,0010637	0,1704277	0,0007927
Indramayu	0,0000797	0,0000199	0,0010090	0,0366802
Karawang	0,0340267	0,0096466	0,0276884	0,0002809
Kota Bandung	0,0016194	0,0023751	0,5700099	0,0011922
Kota Banjar	0,0000012	0,0000014	0,0003424	0,0110597
Kota Bekasi	1,0000000	0,0614375	0,0024251	0,0000096
Kota Bogor	0,0614375	1,0000000	0,0040597	0,0000046
Kota Cimahi	0,0024251	0,0040597	1,0000000	0,0006914
Kota Cirebon	0,0000096	0,0000046	0,0006914	1,0000000
Kota Depok	0,1504822	0,2504686	0,0016796	0,0000029
Kota Sukabumi	0,0078949	0,0859444	0,0138427	0,0000098

Kota Tasikmalaya	0,0000106	0,0000158	0,0037609	0,0082873
Kuningan	0,0000079	0,0000057	0,0011949	0,1733455
Majalengka	0,0000460	0,0000280	0,0048498	0,1393372
Pangandaran	0,0000002	0,0000003	0,0000735	0,0013559
Purwakarta	0,0211677	0,0111832	0,0729274	0,0003691
Subang	0,0027491	0,0012812	0,0601948	0,0032872
Sukabumi	0,0078949	0,0859444	0,0138427	0,0000098
Sumedang	0,0002869	0,0002214	0,0403292	0,0171379
Tasikmalaya	0,0000106	0,0000158	0,0037609	0,0082873

Kabupaten/Kota			Kota	
	Kota Depok	Kota Sukabumi	Tasikmalaya	Kuningan
Bandung	0,0002900	0,0038286	0,0201870	0,0035890
Bandung Barat	0,0002900	0,0038286	0,0201870	0,0035890
Bekasi	0,1504822	0,0078949	0,0000106	0,0000079
Bogor	0,2504686	0,0859444	0,0000158	0,0000057
Ciamis	0,0000029	0,0000337	0,4088791	0,0669345
Cianjur	0,0198637	0,1864266	0,0002538	0,0000724
Cirebon	0,0000029	0,0000098	0,0082873	0,1733455
Garut	0,0003757	0,0059948	0,0133916	0,0020491
Indramayu	0,0000177	0,0000219	0,0008560	0,0089550
Karawang	0,0090767	0,0055691	0,0002189	0,0002256
Kota Bandung	0,0010204	0,0079192	0,0061518	0,0020963
Kota Banjar	0,0000006	0,0000065	0,0788435	0,0568339
Kota Bekasi	0,1504822	0,0078949	0,0000106	0,0000079
Kota Bogor	0,2504686	0,0859444	0,0000158	0,0000057
Kota Cimahi	0,0016796	0,0138427	0,0037609	0,0011949
Kota Cirebon	0,0000029	0,0000098	0,0082873	0,1733455
Kota Depok	1,0000000	0,0216938	0,0000063	0,0000030
Kota Sukabumi	0,0216938	1,0000000	0,0000803	0,0000169
Kota Tasikmalaya	0,0000063	0,0000803	1,0000000	0,0435635
Kuningan	0,0000030	0,0000169	0,0435635	1,0000000

Majalengka	0,0000162	0,0000675	0,0273489	0,1644966
Pangandaran	0,0000001	0,0000019	0,0192745	0,0066606
Purwakarta	0,0078931	0,0102600	0,0004683	0,0003606
Subang	0,0008851	0,0017092	0,0021377	0,0028453
Sukabumi	0,0216938	1,0000000	0,0000803	0,0000169
Sumedang	0,0001183	0,0005641	0,0230387	0,0254149
Tasikmalaya	0,0000063	0,0000803	1,0000000	0,0435635

Kabupaten/Kota	Majalengka	Pangandaran	Purwakarta	Subang
Bandung	0,0099743	0,0004164	0,0131298	0,0232478
Bandung Barat	0,0099743	0,0004164	0,0131298	0,0232478
Bekasi	0,0000460	0,0000002	0,0211677	0,0027491
Bogor	0,0000280	0,0000003	0,0111832	0,0012812
Ciamis	0,0268983	0,0383060	0,0002381	0,0012482
Cianjur	0,0003162	0,0000053	0,0525337	0,0091452
Cirebon	0,1393372	0,0013559	0,0003691	0,0032872
Garut	0,0055883	0,0002955	0,0125388	0,0167115
Indramayu	0,0311510	0,0000597	0,0017275	0,0128149
Karawang	0,0013286	0,0000045	0,3751247	0,0792934
Kota Bandung	0,0084117	0,0001191	0,0584014	0,0759689
Kota Banjar	0,0123345	0,1166441	0,0000549	0,0003329
Kota Bekasi	0,0000460	0,0000002	0,0211677	0,0027491
Kota Bogor	0,0000280	0,0000003	0,0111832	0,0012812
Kota Cimahi	0,0048498	0,0000735	0,0729274	0,0601948
Kota Cirebon	0,1393372	0,0013559	0,0003691	0,0032872
Kota Depok	0,0000162	0,0000001	0,0078931	0,0008851
Kota Sukabumi	0,0000675	0,0000019	0,0102600	0,0017092
Kota Tasikmalaya	0,0273489	0,0192745	0,0004683	0,0021377
Kuningan	0,1644966	0,0066606	0,0003606	0,0028453
Majalengka	1,0000000	0,0014743	0,0020120	0,0167060
Pangandaran	0,0014743	1,0000000	0,0000092	0,0000483
Purwakarta	0,0020120	0,0000092	1,0000000	0,1114008
Subang	0,0167060	0,0000483	0,1114008	1,0000000

Sukabumi	0,0000675	0,0000019	0,0102600	0,0017092
Sumedang	0,1196247	0,0005514	0,0134820	0,0873887
Tasikmalaya	0,0273489	0,0192745	0,0004683	0,0021377

Kabupaten/Kota	Sukabumi	Sumedang	Tasikmalaya
Bandung	0,0038286	0,0626509	0,0201870
Bandung Barat	0,0038286	0,0626511	0,0201870
Bekasi	0,0078949	0,0002869	0,0000106
Bogor	0,0859444	0,0002214	0,0000158
Ciamis	0,0000337	0,0141798	0,4088791
Cianjur	0,1864266	0,0026330	0,0002538
Cirebon	0,0000098	0,0171379	0,0082873
Garut	0,0059948	0,0359776	0,0133916
Indramayu	0,0000219	0,0133920	0,0008560
Karawang	0,0055691	0,0075188	0,0002189
Kota Bandung	0,0079192	0,0695269	0,0061518
Kota Banjar	0,0000065	0,0037727	0,0788435
Kota Bekasi	0,0078949	0,0002869	0,0000106
Kota Bogor	0,0859444	0,0002214	0,0000158
Kota Cimahi	0,0138427	0,0403292	0,0037609
Kota Cirebon	0,0000098	0,0171379	0,0082873
Kota Depok	0,0216938	0,0001183	0,0000063
Kota Sukabumi	1,0000000	0,0005641	0,0000803
Kota Tasikmalaya	0,0000803	0,0230387	1,0000000
Kuningan	0,0000169	0,0254149	0,0435635
Majalengka	0,0000675	0,1196247	0,0273489
Pangandaran	0,0000019	0,0005514	0,0192745
Purwakarta	0,0102600	0,0134820	0,0004683
Subang	0,0017092	0,0873887	0,0021377
Sukabumi	1,0000000	0,0005641	0,0000803
Sumedang	0,0005641	1,0000000	0,0230387
Tasikmalaya	0,0000803	0,0230387	1,0000000

Lampiran 5. Model GWL Lokal

Kabupaten/Kota							
Trabapaten/Trota	$\hat{y} = -1,826 - 0,489X_1 - 5,818 \times 10^{-5}X_2 + 0,583X_3 + 0,045X_4$						
	$+0.001X_5 - 0.423X_6 - 3.5 \times 10^{-6}X_7$						
Bandung	$+0.001X_5 - 0.425X_6 - 3.5 \times 10^{-5}X_7 + 1.01 \times 10^{-6}X_8 - 0.09X_9$						
2 41144118	$\hat{y} = -1,826 - 0,490X_1 - 0,58 \times 10^{-4}X_2 + 0,584X_3 + 0,045X_4$						
	$+0.001X_5 - 0.424X_6 - 3.5 \times 10^{-6}X_7$						
Bandung Barat	$+ 0.001X_5 - 0.121X_6 - 3.3 \times 10^{-1}X_7 + 1.01 \times 10^{-6}X_8 - 0.09X_9$						
	$\hat{y} = 16,006 + 0,281X_1 - 5,9 \times 10^{-5}X_2 - 0,303X_3 - 0,059X_4$						
	$-0.005X_5 - 0.657X_6 - 3.2 \times 10^{-6}X_7$						
Bekasi	$+7,43 \times 10^{-7} X_8 + 0,034 X_9$						
Bogor	$\hat{y} = -4.5 \times 10^{-6} X_2 + 0.005 X_3 + 0.536 X_6 + 1.48 \times 10^{-6} X_8$						
Ciamis	$\hat{y} = -0.0003X_5 + 0.451X_6 + 0.119X_9$						
Cianjur	$\hat{y} = 0.084X_3 + 0.056X_6 + 6.35 \times 10^{-7}X_8$						
<i>y</i>	$\hat{y} = -4.8 \times 10^{-5} X_2 + 0.021 X_4 - 0.014 X_5 + 3.77 \times 10^{-6} X_8$						
Cirebon	$+ 0.04X_9$						
	$\hat{y} = 6,629 - 0,557X_1 - 4,3 \times 10^{-5}X_2 + 0,555X_3 + 0,026X_4$						
	$+0.002X_5 - 0.433X_6 - 2.7 \times 10^{-6}X_7$						
Garut	$+5.74 \times 10^{-7} X_8 - 0.069 X_9$						
	$\hat{y} = 9.68 \times 10^{-6} X_2 + 0.084 X_{\underline{3}} + 0.009 X_4 - 0.003 X_5 - 0.149 X_6$						
Indramayu	$-6.4 \times 10^{-7} X_7 + 1.28 \times 10^{-6} X_8 + 0.008 X_9$						
	$\hat{y} = 0.152X_1 - 2.9 \times 10^{-5}X_2 - 0.005X_3 + 0.039X_4 - 0.001X_5$						
	$-0.362X_6 - 2.6 \times 10^{-6}X_7 + 7.2 \times 10^{-7}X_8$						
Karawang	$+0.028X_9$						
	$\hat{y} = 2,124 - 2,997 \times 10^{-5} X_2 + 0,009 X_3 + 0,005 X_4$						
Kota Bandung	$-1,039 \times 10^{-6} X_7 + 6,263 \times 10^{-7} X_8$						
Kota Banjar	$\hat{y} = 6,184 \times 10^{-5} X_2 - 0,0003 X_5 + 0,385 X_6 + 0,199 X_9$						
	$\hat{y} = 16,006 + 0.281X_1 - 0.0001X_2 - 0.303X_3 + 0.059X_4 - 0.005X_5$						
	$-0.658X_6 - 3.239 \times 10^{-6}X_7 + 7.429 \times 10^{-7}X_8$						
Kota Bekasi	$+0.034X_9$						
	$\hat{y} = 17,006 + 0,242X_1 - 5,259X_2 - 0,288X_3 + 0,058X_4 - 0,006X_5$						
Kota Bogor	$-0.641X_6 - 3.050 \times 10^{-6}X_7 + 8.097X_8 + 0.028X_9$						
	$\hat{y} = -3,166X_2 + 0,116X_3 + 0,019X_4 + 0,001X_5 - 0,190X_6 - 2,039X_7$						
Kota Cimahi	$+9,981 \times 10^{-7} X_8 - 0,015 X_9$						
	$\hat{y} = -37,469 + 0,002X_1 - 0,0005X_2 + 0,612X_3 + 0,249X_4 - 0,019X_5$						
Kota Cirebon	$-1,079X_6 - 1,484 \times 10^{-5}X_7 + 4,409 \times 10^{-6}X_8$						
	$-0.129X_9$						
Kota Depok	$\hat{y} = 0.914 + 0.546X_6 + 1.271 \times 10^{-6}X_8 + 0.009X_9$ $\hat{y} = 2.189 - 5.035 \times 10^{-5} + 0.039X_3 + 0.009X_4 + 0.177X_6$						
Vote Culrobyer							
Kota Sukabumi	$-6,737 \times 10^{-7} X_7 + 9,632 \times 10^{-7} X_8 + 0,035 X_9$ $\hat{y} = -14,969 + 0,136 X_2 + 3,581 X_4 - 1,744 X_5 + 0,621 X_6 - 0,003 X_7$						
Kota Tasikmalaya	$y = -14,909 + 0,130\lambda_2 + 3,301\lambda_4 - 1,744\lambda_5 + 0,021\lambda_6 - 0,003\lambda_7 + 0,007X_8 + 1,392X_9$						
Tasikmalaya							
Vyminasa	$\hat{y} = -0.005X_1 - 0.0002X_2 + 0.072X_4 - 0.015X_5 - 3.219 \times 10^{-5}X_7$						
Kuningan	$+3,559 \times 10^{-6} X_8 + 0,024 X_9$						
3.6 . 1	$\hat{y} = -4,269 \times 10^{-6} X_2 + 0,014 X_4 - 0,006 X_5 - 1,145 \times 10^{-6} X_7$						
Majalengka	$+ 2,911 \times 10^{-6} X_8 + 0,023 X_9$ $\hat{y} = -0,714 - 0,0001 X_2 + 0,071 X_4 - 0,012 X_5 + 0,426 X_9$						
Pangandaran	$y = -0.714 - 0.0001X_2 + 0.071X_4 - 0.012X_5 + 0.426X_9$						
Purwakarta	$\hat{y} = 0.081X_1$						

	$\hat{y} = -0.152X_1 - 4.014 \times 10^{-5}X_2 + 0.259X_3 + 0.052X_4 - 0.001X_5$
	$-0.637X_6 - 3.69 \times 10^{-6}X_7 + 1.392 \times 10^{-6}X_8$
Subang	$-0.025X_9$
	$\hat{y} = -6.2 \times 10^{-5} X_2 + 0.043 X_3 + 0.002 X_4 + 0.379 X_6$
Sukabumi	$+1,07 \times 10^{-6} X_8 + 0,029 X_9$
	$\hat{y} = -4.6 \times 10^{-5} X_2 + 0.021 X_3 + 0.014 X_4 - 0.002 X_5$
Sumedang	$-7.7 \times 10^{-7} X_7 - 2.23 \times 10^{-6} X_8 - 0.023 X_9$
	$\hat{y} = -8,322 - 0,102X_1 - 3,4 \times 10^{-5}X_2 + 0,196X_3 + 0,054X_4$
	$-0.006X_5 - 2.9 \times 10^{-6}X_7 + 2.27 \times 10^{-6}X_8$
Tasikmalaya	$+ 0.159X_9$

Lampiran 6. Tabel VIF Lokal

Kabupaten/Kota	X1	X2	X3	X4	X5	X6	X7	X8	X9
Bandung	4,807	1,813	9,372	38,532	6,485	6,562	25,240	3,099	1,192
Bandung Barat	6,403	1,755	12,287	40,379	7,969	8,086	25,749	2,924	1,264
Bekasi	8,321	3,115	16,669	65,169	14,245	15,252	48,336	3,078	1,808
Bogor	10,519	2,923	21,428	112,006	28,555	16,019	73,851	3,384	1,710
Ciamis	2,156	4,161	3,691	60,546	6,598	5,201	33,354	3,472	1,160
Cianjur	7,139	2,161	14,842	45,728	10,023	8,929	29,599	3,230	1,277
Cirebon	1,714	6,459	3,090	65,799	5,354	6,143	33,379	3,057	1,260
Garut	3,565	2,263	6,958	41,012	6,801	5,028	25,149	3,330	1,138
Indramayu	2,713	3,001	5,143	41,457	5,335	8,157	25,795	3,229	1,375
Karawang	6,128	2,696	12,280	51,935	10,336	12,314	38,936	2,708	1,397
Kota Bandung	5,291	1,852	10,282	36,517	6,440	7,137	23,350	3,007	1,213
Kota Banjar	2,134	4,814	3,426	70,808	7,018	5,492	37,360	3,556	1,203
Kota Bekasi	10,169	3,041	20,518	76,578	17,756	16,538	53,618	3,238	1,789
Kota Bogor	10,154	2,850	20,636	102,125	25,918	15,311	68,127	3,336	1,675
Kota Cimahi	5,820	1,835	11,211	37,445	7,122	7,249	23,394	2,935	1,239
Kota Cirebon	1,710	6,458	3,088	65,889	5,359	6,148	33,448	3,054	1,261
Kota Depok	11,001	3,075	22,945	96,725	23,567	18,494	64,005	3,314	1,772
Kota Sukabumi	8,761	2,465	17,443	64,697	15,114	11,244	43,454	3,553	1,442
Kota Tasikmalaya	2,352	3,316	4,431	52,574	6,939	4,707	31,181	3,406	1,133
Kuningan	1,854	5,177	3,231	61,584	5,567	5,776	32,391	3,295	1,194
Majalengka	2,239	3,518	4,180	43,648	4,974	5,989	26,072	3,219	1,203
Pangandaran	2,154	4,404	3,534	69,568	7,929	5,013	37,936	3,649	1,185
Purwakarta	6,040	2,076	11,615	43,918	8,614	9,330	30,568	2,837	1,290
Subang	4,440	2,232	8,453	37,997	6,288	8,630	27,035	2,949	1,195
Sukabumi	9,431	2,578	19,436	64,240	16,615	11,652	43,694	3,903	1,466
Sumedang	3,188	2,404	6,027	36,763	4,673	6,322	24,534	3,155	1,162
Tasikmalaya	2,343	3,071	4,746	51,898	7,573	4,587	30,643	3,393	1,126

Lampiran 7. Syntax R.Studio

```
####Packages Yang Digunakan####
library(readxl)
library(openxlsx)
library(spdep)
library(rgdal)
library(raster)
library(corrplot)
library(DescTools)
library(nortest)
library(car)
library(spatialreg)
library(sf)
library(nortest)
library(DescTools)
library(lmtest)
library(tidyverse)
library(spgwr)
library(openxlsx)
library(gwrr)
library(GWRLASSO)
library(spgwr)
library(GWmodel)
library(glmnet)
library(openxlsx)
####input file####
# Path lengkap ke file shapefile
peta_jabar<- st_read(file_path, quiet = FALSE)</pre>
file_path <- "C:\\Users\\mrere_1cl1lhs\\Downloads\\Compressed\\jabar1.shp"
#### Transformsi manual####
# Membaca shapefile langsung
view(peta_jabar)
```

```
str(peta_jabar)
#### DESKIRPSI DATA ####
#### y ###
min(peta_jabar$Y)
max(peta_jabar$Y)
mean(peta_jabar$Y)
#### X1 ###
min(peta_jabar$X1)
max(peta_jabar$X1)
mean(peta_jabar$X1)
#### X2 ###
min(peta_jabar$X2)
max(peta_jabar$X2)
mean(peta_jabar$X2)
#### X3 ###
min(peta_jabar$X3)
max(peta_jabar$X3)
mean(peta_jabar$X3)
#### X4 ###
min(peta_jabar$X4)
max(peta_jabar$X4)
mean(peta_jabar$X4)
#### X5 ###
min(peta_jabar$X5)
max(peta_jabar$X5)
mean(peta_jabar$X5)
#### X6 ###
min(peta_jabar$X7)
max(peta_jabar$X7)
mean(peta_jabar$X7)
#### X7 ###
min(peta_jabar$X8)
```

```
max(peta_jabar$X8)
mean(peta_jabar$X8)
#### X8 ###
min(peta_jabar$X9)
max(peta jabar$X9)
mean(peta_jabar$X9)
#### X9 ###
min(peta_jabar$X10)
max(peta_jabar$X10)
mean(peta jabar$X10)
#### REGRESI BERGANDA####
reg6<-
lm(peta_jabar$Y~(peta_jabar$X1+peta_jabar$X2+peta_jabar$X3+peta_jabar$
X4+peta_jabar$X5+peta_jabar$X7++peta_jabar$X8+peta_jabar$X9+peta_jaba
r$X10))
#### UJI ASUMSI ####
residual_reg6<-reg6$residuals
moran test resi <- moran.test(residual reg6, listw)# UJI SHAPIRO WILK (
berdsitribusi normal)
shapiro.test(reg6$residuals)
vif(reg6)
#### UJI GWR ####
#untuk mencari bandwidth
b2_gwr<- gwr.sel(peta_jabar$Y ~
(peta_jabar$X1+peta_jabar$X2+peta_jabar$X3+peta_jabar$X4+peta_jabar$X5
+peta_jabar$X7+peta_jabar$X8+peta_jabar$X9+peta_jabar$X10), data =
peta_jabar, coords = coords)
#matriks pembobot fixed eksponential kernel
dist_matrix <- as.matrix(dist(coords))</pre>
kernel_weights <- exp(-dist_matrix / h)</pre>
listw <- mat2listw(kernel_weights, style = "W")</pre>
#Fungsi pembobot fixed eksponential kernel
```

```
#pemisahan variabel
coords <- cbind(peta_jabar$Longitude, peta_jabar$Latitude)</pre>
Y <- peta_jabar$Y
cbind(peta_jabar$X1,peta_jabar$X2,peta_jabar$X3,peta_jabar$X4,peta_jabar$
X5,peta_jabar$X7,peta_jabar$X8,peta_jabar$X9,peta_jabar$X10)
bandwith_m1<0.563121
gwr_exponential <- function(d, bandwidth) {</pre>
 gwe<-exp(-d / bandwidth)
 return(gwe)
bobot<-gwr_exponential(d=dist_matrix,bandwidth = bandwith_m)
bobot3<- gwr_exponential(d=dist_matrix,bandwidth = bandwith_m1)
gwr_model33 < -gwr(Y \sim x,
          data = peta_jabar,
          coords = coords,
          gweight = gwr_exponential,
          bandwidth = bandwidth m1,
          hatmatrix = TRUE
#### UJI T DAN UJI F GWR ####
# Uji T
t_b0=gwr_model33$SDF$`(Intercept)`/gwr_model33$SDF$`(Intercept)_se`
t_b1=gwr_model33$SDF$x1/gwr_model33$SDF$x1_se
t\_b2 = gwr\_model33\$SDF\$x2/gwr\_model33\$SDF\$x2\_se
t_b3=gwr_model33$SDF$x3/gwr_model33$SDF$x3_se
t_b4=gwr_model33$SDF$x4/gwr_model33$SDF$x4_se
t_b5=gwr_model33$SDF$x5/gwr_model33$SDF$x5_se
t_b6=gwr_model33$SDF$x6/gwr_model33$SDF$x6_se
t_b7=gwr_model33$SDF$x7/gwr_model33$SDF$x7_se
t_b8=gwr_model33$SDF$x8/gwr_model33$SDF$x8_se
t_b9=gwr_model33$SDF$x9/gwr_model33$SDF$x9_se
```

```
t_gwr_model=data.frame(peta_jabar$KAB_KOTA,t_b0,t_b1,t_b2,t_b3,t_b4,t_
b5,t_b6,t_b7,t_b8,t_b9)
t_gwr_model
#UJI F
# Nilai yang ada dalam output GWR
n <- 27
df_residual <- 7.814765
df model <- 10.5146
RSS <- 18.47988
R2 global <- 0.8692971
k <- 10# Jumlah prediktor, termasuk intercept
# Hitung MSR dan MSE
MSR <- RSS / df_model
MSE <- RSS / df_residual
# Hitung statistik uji F
F statistic <- MSR / MSE
# Hitung nilai kritis dari distribusi F
p_value <- pf(F_statistic, k, df_residual - k, lower.tail = FALSE)</pre>
alpha <- 0.05 # Tingkat signifikansi
# Output hasil
cat("F-statistic:", F_statistic, "\n")
cat("p-value:", p_value, "\n")
#### MODEL GWR####
#Pendugaan parameter
#X1,X2,X4,X5,X6,X7,X9,X10
b0=gwr_model1$SDF$`(Intercept)`
b1=gwr_model1$SDF$x1
b2=gwr_model1$SDF$x2
b3=gwr_model1$SDF$x3
```

```
b4=gwr_model1$SDF$x4
b5=gwr_model1$SDF$x5
b6=gwr_model1$SDF$x6
b7=gwr_model1$SDF$x7
b8=gwr_model1$SDF$x8
b9=gwr_model1$SDF$x9
gwr_coef2=data.frame(peta_jabar$KAB_KOTA,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9
gwr_coef <- as.data.frame(gwr_model1$SDF[, c("X1", "X2", "X3")])
gwr coef2
#### CEK MULTIKOLINIERITAS LOKAL ####
# Konversi peta_jabar dari sf ke Spatial*DataFrame
bw <- 0.563121
y <- peta_jabar_spdf$Y
cbind(peta_jabar_spdf$X1,peta_jabar_spdf$X2,peta_jabar_spdf$X3,peta_jabar
_spdf$X4,peta_jabar_spdf$X5,peta_jabar_spdf$X7,peta_jabar_spdf$X8,peta_j
abar_spdf$X9,peta_jabar_spdf$X10)
formula<- y \sim x
result54 <- gwr.collin.diagno(formula, data = peta_jabar_spdf, bw = bw, kernel
= "exponential")
result$VIF
result$local CN
#### Model GWL ####
#Model GWL
tol<-0.25
X10, coords, peta_jabar_df, "exp",tol)
gwl_model311999b
# Menampilkan koefisien global
print(gwl_coef2)
#Beta
```

```
gwl_model311999b$beta

#R-Square
gwl_model311999b$rsquare

#Bandwidth
gwl_model311999b$phi
bobot_gwl3<-gwr_exponential(d=dist_matrix,bandwidth = 0,1415008)
bobot_gwl3
```