Simulated Annealing Uma resolução para Caixeiro Viajante

César Eduardo de Souza¹, Guilherme Diel¹

¹Departamento de Ciência da Computação Universidade do Estado de Santa Catarina (UDESC) – Joinville, SC – Brazil

{cesar.souza, guilherme.diel}@edu.udesc.br

Resumo. Algoritmos heurísticos se alicerçam em técnicas de busca de solução satisfatória. Um deles é o Simulated Annealing, que se baseia no processo de resfriamento de metais. Este algoritmo é capaz de resolver problemas NP-Hard e NP-Completo, como o problema do Caixeiro Viajante, que consiste em determinar o ciclo de menor custo que percorre um conjunto de cidades, visitando cada uma exatamente uma vez e retornando ao ponto de partida. Neste trabalho, apresentamos uma implementação do Simulated Annealing para resolver o problema do Caixeiro Viajante, com resultados satisfatórios e consistentes, principalmente para instâncias de maior dimensão. Além disso, discutimos possíveis aplicações futuras e comparações com outras abordagens.

1. Introdução

Foi no século XX que se iniciou a busca pela resolução de problemas NP, NP-Hard e NP-Completo usando ferramentas computacionais. Estas, portanto, foram, em sua maioria, desenvolvidas com base em algoritmos heurísticos — alicerçados em técnicas de busca de solução não necessariamente ótimas, mas sim satisfatórias. — Sendo assim, alguns destes tornaram-se mais disseminados na literatura científica, como a **Busca Gulosa**, **Algoritmo A***, **Subida de Encosta** e **Simulated Annealing**.

O método de **Simulated Annealing** teve sua lógica concebida a partir do método de anelização de materiais, Metropolis, desenvolvido por Gibbs em 1953. Baseado na fabricação de anéis, este método usa como base o fato de que, quanto mais quente está o material, maior se torna a facilidade de moldá-lo.Sob o mesmo ponto de vista, este método consiste em uma sequência de temperaturas decrescentes em que, quanto maior a temperatura atual, mais aleatorizadas são as otimizações geradas pelo algoritmo, sendo que, quando a temperatura chega a um certo ponto, idealiza-se a otimização do resultado conforme decresce a temperatura, até que esta se torne mínima.

Um problema muito conhecido e discutido na literatura, que é capaz de ser resolvido por algoritmos heurísticos, é o problema do **Caixeiro Viajante** (*Traveling Salesman Problem* - TSP), que consiste em, dado um conjunto de cidades e as distâncias entre cada par de cidades, determinar o ciclo hamiltoniano de custo mínimo que visita cada cidade exatamente uma vez e retorna à cidade de origem. Formalmente, dado um conjunto finito de vértices $V = \{v_1, v_2, \dots, v_n\}$ e uma função de custo $c: V \times V \to R^+$, o objetivo é encontrar uma permutação $\pi \in S_n$ que minimize o custo total da rota, ou seja:

$$\min_{\pi \in S_n} \left(c(v_{\pi(1)}, v_{\pi(2)}) + c(v_{\pi(2)}, v_{\pi(3)}) + \ldots + c(v_{\pi(n)}, v_{\pi(1)}) \right) \tag{1}$$

Ao longo deste relatório, será abordada uma proposta de implementação do **Simulated Annealing** para resolução do problema do Caixeiro Viajante, um problema NP-Completo que consiste em encontrar o ciclo hamiltoniano de menor custo.

Este relatório está organizado da seguinte maneira: a seção 2 apresenta estratégias utilizadas, descrições, justificativas de escolhas, fórmulas utilizadas e descrições. Em seguida, na seção 3 são abordadas descrições dos experimentos, configurações utilizadas e descrições dos resultados obtidos. Outrossim, na seção 4 expõem-se considerações sobre os resultados obtidos e análises críticas sobre os mesmos. Por fim, na seção 5 mostram-se considerações sobre o trabalho desenvolvido e identificação de direcionamentos futuros na pesquisa.

2. Metodologia de Desenvolvimento

O método de Simulated Annealing consiste em:

- 1. Para uma temperatura T_i , realizar N vezes:
 - Realizar uma perturbação aleatória no estado atual $estado_0$, gerando um novo $estado_i$
 - Calcular a variação de energia $\Delta E = E(estado_i) E(estado_0)$
 - Se $\Delta E < 0$ (melhora na energia), aceitar a transição ($estado_i \rightarrow estado_0$)
 - Caso contrário, aceitar a transição com probabilidade $P_{accept}(T_i)$
- 2. Critério de parada:
 - Se $T_i \leq T_f$ (temperatura final) ou o sistema atingir convergência (e.g., $\Delta E \approx 0$ por k iterações consecutivas)
 - Retornar o *estado*₀ como solução
 - Caso contrário, reduzir a temperatura ($T_i \leftarrow \alpha T_i$, com $0 < \alpha < 1$) e retornar ao Passo 1

A aplicação do método de **Simulated Annealing** para a otimização do problema do Caixeiro Viajante foi realizada por meio da linguagem de programação *Python*, junto com a biblioteca *Numpy*. A Figura 1 retrata o passo a passo de como foi implementado este algoritmo.

A Figura 1 apresenta as etapas do algoritmo, que foi implementado da seguinte maneira:

1. Inicialização:

- Temperatura inicial $T_0 = 1000$
- Taxa de resfriamento $\alpha = 0.99$
- Temperatura final $T_f = 0.1$
- Número de iterações por temperatura N=1000
- $SA_{max} = 1,5$ ou 10 (limite mínimo de temperatura)

2. Iteração por temperatura:

- (a) Gerar nova solução aleatória (modificando uma variável)
- (b) Calcular $\delta E = E_{nova} E_{atual}$
- (c) Se $\delta E < 0$, aceitar a nova solução
- (d) Caso contrário, aceitar com probabilidade:

$$P_{accept} = \exp\left(-\frac{\Delta E}{T_i}\right) \tag{2}$$

3. Resfriamento:

- (a) Foram utilizados 3 tipos diferentes de funções de diminuição de temperatura: **Linear**, **Exponencial** e **Logaritmo**
- (b) Verificar critério de parada:
 - Se $T_i \leq T_{min} \rightarrow Parar$
 - Caso contrário → Voltar ao passo 2

Figura 1. Diagrama do algoritmo de Simulated Annealing

3. Descrição de Experimentos/Simulações e Resultados Obtidos

As configurações utilizadas foram: Temperatura inicial = 1.000, Temperatura minima = 0.01. A taxa de resfriamento foi de 3 tipos diferentes: Linear, Exponencial e Logarítmica. Na linear, a temperatura diminuiu de 1 em 1, enquanto na exponencial diminuiu sempre 95% da temperatura atual e na logarítmica diminuiu segundo a função: Temperatura atual / (1 + 0.001 * iteração)

Nestas configurações foram obtidos resultados para bases de eil51 e kroA100 como os seguintes gráficos de convergência, com o SA de 1 a 10 nas respectivas figuras 2 e 3.

Conseguimos perceber que todos os gráficos chegaram a energia final parecida, entretanto, quanto maior o SA_{MAX} , melhor tende a ser o resultado final.

Figura 2. Convergência para eil51

Figura 3. Convergência para kroA100

Ademais, foi gerado os boxplots para cada um dos 3 tipos de funções de diminuição de temperatura, com os respectivos resultados obtidos, conforme as figuras 4 e 5.

Aqui é possível perceber que no arquivo com menor quantidade de nós 4, o exponencial deu o melhor resultado. Porém, no maior arquivo, o resultado 5 foi o linear que apresentou o melhor resultado.

Figura 4. Convergência para eil51

Figura 5. Boxplots para kroA100

Além disso, é possível verificar a seguinte tabela com média e desvio padrão de 30 execuções do experimento, apontados pelos consecutivos boxplots.

A tabela confirma o que os gráficos mostraram, de maneira que mostra o exponencial como o melhor resultado para o menor arquivo, enquanto o linear foi o melhor resultado para o maior arquivo.

Tabela 1. Média e Desvio Padrão dos Resultados Obtidos

Arquivo	Algoritmo de Resfriamento	Média	Desvio Padrão
eli51	EXP	517.55	17.44
eli51	LINEAR	712.49	36.62
eli51	LOG	560.58	25.29
kroA100	EXP	37455.66	2638.58
kroA100	LINEAR	32617.12	2189.60
kroA100	LOG	41868.92	2443.86

Dessa maneira, é possível obter uma visão aprofundada da execução do algoritmo, discutida na seção a seguir.

4. Análise dos resultados obtidos.

A análise dos resultados obtidos permite verificar a influência significativa da estratégia de resfriamento na qualidade das soluções encontradas pelo algoritmo de **Simulated Annealing** para o problema do Caixeiro Viajante. Os dados apresentados demonstram que, embora todas as abordagens de resfriamento tenham convergido para soluções de energia final semelhante, a taxa de resfriamento e a quantidade de iterações (SA_{MAX}) impactaram diretamente a qualidade da solução final.

Observa-se que, para a instância *eil51*, de menor dimensão, a estratégia de resfriamento exponencial apresentou desempenho superior, obtendo a menor média de custo e o menor desvio padrão. Este comportamento pode ser atribuído ao fato de que, em instâncias menores, uma redução mais rápida da temperatura favorece a exploração eficiente do espaço de soluções, evitando a estagnação em mínimos locais sem comprometer a convergência.

Em contraste, para a instância *kroA100*, de maior dimensão, o resfriamento linear demonstrou desempenho superior. A diminuição gradual e uniforme da temperatura parece ter permitido uma exploração mais robusta do espaço de soluções, resultando em soluções de menor custo médio e menor variabilidade em relação às demais estratégias. Esse comportamento sugere que, em instâncias mais complexas, uma taxa de resfriamento mais conservadora contribui para um equilíbrio mais eficaz entre exploração e intensificação.

Adicionalmente, constata-se que, independentemente da estratégia de resfriamento, o aumento de SA_{MAX} resultou, de forma consistente, em melhores soluções finais, evidenciando a relevância da quantidade de iterações no desempenho do algoritmo.

Portanto, conclui-se que a escolha da estratégia de resfriamento deve considerar a dimensão e a complexidade da instância do problema, sendo o resfriamento exponencial mais adequado para instâncias menores e o resfriamento linear mais indicado para instâncias maiores. Esta constatação destaca a necessidade de parametrização criteriosa para maximizar a eficiência do **Simulated Annealing** na resolução do problema do Caixeiro Viajante.

5. Conclusões e Trabalhos Futuros

Neste trabalho, foi apresentada uma implementação do algoritmo de **Simulated Anne-** aling aplicado à resolução do problema do Caixeiro Viajante, avaliando o impacto de diferentes estratégias de resfriamento sobre a qualidade das soluções obtidas. As análises realizadas demonstraram que a escolha da função de resfriamento exerce influência relevante no desempenho do algoritmo, sendo que o resfriamento exponencial apresentou melhores resultados em instâncias de menor dimensão, enquanto o resfriamento linear se mostrou mais eficaz em instâncias de maior complexidade.

Além disso, verificou-se que o aumento do número de iterações contribui consistentemente para a obtenção de soluções mais próximas do ótimo, reforçando a importância de uma parametrização adequada conforme a instância do problema.

Como trabalhos futuros, propõe-se a realização de experimentos adicionais utilizando outras instâncias clássicas do problema do Caixeiro Viajante, de diferentes tamanhos e características, a fim de validar a generalização dos resultados obtidos. Ademais, sugere-se a investigação de estratégias híbridas, combinando **Simulated Annealing** com outros métodos heurísticos ou metaheurísticos, como algoritmos genéticos ou busca tabu, visando potencializar a eficiência e a robustez da abordagem.

Outra linha de pesquisa promissora consiste na adaptação dinâmica da taxa de resfriamento durante a execução do algoritmo, com base em métricas de desempenho em tempo de execução, de forma a automatizar a escolha da estratégia mais adequada conforme o comportamento da busca.

Dessa forma, espera-se que os avanços futuros ampliem a aplicabilidade e a eficácia do **Simulated Annealing** na resolução de problemas de otimização combinatória, em especial o problema do Caixeiro Viajante.