We claim:

1. A compound of the following formula:

or a pharmaceutically acceptable salt thereof, wherein

R1 is phenyl or thien-2-yl, each optionally substituted;

L is a covalent bond, -CH₂O-, -C(O)-, or -C(=N-OCH₃)-; and

 ${\sf R}^{\sf 5}$ is -halo or -OR $^{\sf 10}$ wherein ${\sf R}^{\sf 10}$ is phenyl, pyridinyl, or quinolinyl, each optionally substituted,

provided that when L is -CH₂O-, R⁵ is not -F or p-nitrophenyl.

- 2. The compound according to claim 1 wherein the substituents are independently selected from -NO₂, -CO₂H, and halo.
- 3. The compound according to claim 1 wherein R¹ is unsubstituted.
- 4. The compound according to claim 1 wherein R⁵ is selected from:

F	0-\NO ₂	o-{co₂-	o	∘ √>
0—————————————————————————————————————	O————CO ₂ -	o-⟨_N		o—
s—F	o-{\rightarrow\rightar	0 F F	0 0	0 F F
0 F	0	O CI	and	.Η.

5. The compound according to claim 1 wherein R¹L and R⁵ are selected from the following combinations:

R¹-L-	R ⁵
CH₂-O-	PNP
CH₂-O-	o-{\bigs_N}
CH₂-0-	0-
s	PNP
S II MeO N	o-{\bigci_N}
S II MeO N	o-(
s II MeO·N	o———
s II	PNP
CH₂-O-	s—
—————————————————————————————————————	0-{\bigcirc}-\sqrt{\sqrt{N}}
(s)	PNP

R¹-L-	R⁵		
S II MeO . N	F F		
— CH₂-O-			
	F F		
s II MeO.'N	0 F		
CH₂-O-	р Р Б		
s	o N		
and			
S N	-OH		

- 6. The compound according to claim 1 wherein the phosphonate moiety is replaced with a thiophosphonate moiety, provided that when R¹-L- is benzyloxy, R⁵ is not -O-PNP.
- 7. A compound of formula:

or a pharmaceutically acceptable salt thereof, wherein $\ensuremath{\mathsf{R}}^1$ is

WO 2004/048393 PCT/US2003/03692

 R^3 is -H or -CO₂ R^9 , wherein R^9 is -C₁-C₃-alkyl; R^6 is -L¹-A-(L²-B)_s, wherein

L1 is C₀-C₃-alkyl optionally mono- to per-halogenated;

A is C₃C₆-cycloalkyl, aryl, or heteroaryl;

L² is a covalent bond or $(C_0-C_3-hydrocarbyl)-X^1-(C_0-C_3-hydrocarbyl)$, wherein X^1 is - C(O)-, -NH-, -NH-C(O)-, -C(O)-NH-, or heteroaryl;

B is -H, C₃-C₆-cycloalkyl, aryl, or heteroaryl; and

s is 0 or 1;

wherein when s is 0, $(L^2-B)_s$ is -H or halo, and A and B are independently optionally substituted with 1-3 moieties independently selected from the group consisting of halo, -NO₂, -CO₂H, -CN, -C(O)-NH₂, -SO₂-NH₂, or -C₀-C₃-hydrocarbyl-Y-(C₁-C₃-hydrocarbyl) wherein Y is a covalent bond, -O-C(O)-, -C(O)-, -O-, -S-, -SO₂-, -C(O)-NH-, or -NH-C(O)-; and each alkyl moiety is optionally mono- to per-halogenated.

8. The compound according to claim 7 wherein R³ is H and R¹ is

9. The compound according to claim 7 wherein R³ is -CO₂Et and R¹ is

10. The compound according to claim 7 wherein L¹ is -0- and A is phenyl or pyridinyl, each optionally substituted, R³ is H and R¹ is

- 11. The compound according to claim 10 wherein A is pyridin-3-yl.
- 12. The compound according to claim 11 wherein s is 0.
- 13. The compound according to claim 11 wherein s is 1 and L² is -C(O)-, -C(O)NH-, -NH-, 1,2,4-oxadiazolyl, or 1,3,4-oxadiazolyl and B is phenyl, pyridinyl, cyclopropyl, or thienyl, wherein B is optionally substituted.
- 14. The compound according to claim 13 wherein the substituents on the A and B rings are independently selected from -F, -Cl, -Br, -CO₂H, -C(O)O-CH₃, -CF₃, -OCH₃, -OCF₃, -CH₃, -CN, -C(O)NH₂, -S-CF₃, -SO₂CH₃, -NO₂, -CF₃CF₃, -SO₂CF₃, -SO₂CF₃CF₃, and -SO₂NH₂.
- 15. The compound according to claim 8 wherein one or both of the following are true:
 - a. A is selected from phenyl and pyridinyl;
 - b. B is selected from phenyl, tetraazolyl, cyclopropyl, pyridinyl, and thienyl.
- 16. The compound according to to claim 9, wherein R⁶ is phenyl or p-nitro phenyl.
- 17. The compound according to claim 8 selected from those in which -O-R⁶ is

$$\begin{array}{c|c}
CI \\
O \longrightarrow Br \\
O \longrightarrow F \\
O \longrightarrow F \\
CF_2CF_3 \\
O \longrightarrow S \\
CF_3 \\
O \longrightarrow S \\
CF_3 \\
O \longrightarrow Br \\
O \longrightarrow CH_3 \\
O \longrightarrow Br \\
O \longrightarrow CH_3 \\
O$$

WO 2004/048393 PCT/US2003/036929

18. A compound of formula:

or a pharmaceutically acceptable salt thereof, wherein R^1 is

optionally substituted with 1-3 moieties independently selected from the group consisting of -F, -Cl, -Br, -CO₂H, -C(O)O-CH₃, -CF₃, -OCH₃, -OCF₃, -C₁-C₆ alkyl, -CN, -C(O)NH₂, -S-CF₃, -SO₂CH₃, -NO₂, -CF₃CF₃, -SO₂CF₃CF₃, and -SO₂NH₂; R^6 is L^1 -A- L^2 -B)_s, wherein

L¹ is C₀-C₃-alkyl optionally mono- to per-halogenated;

A is C₃-C₆-cycloalkyl, aryl, or heteroaryl;

 L^2 is a covalent bond or (C₀-C₃-hydrocarbyl)-X¹-(C₀-C₃-hydrocarbyl), wherein X¹ is -C(0)-, -NH-, -NH-C(0)-, -C(0)-NH-, or heteroaryl;

B is -H, C_3 -C₆-cycloalkyl, aryl, or heteroaryl; and s is 0 or 1;

wherein when s is 0, $(L^2-B)_s$ is -H or halo, and A and B are independently optionally substituted with 1-3 moieties independently selected from the group consisting of halo, -CF₃, -NO₂, -CO₂H, -CN, -C(O)-NH₂, -SO₂-NH₂, or -C₀-C₃-hydrocarbyl-Y-(C₁-C₃-hydrocarbyl) wherein Y is a covalent bond, -O-C(O)-, -C(O)-, -O-, -S-, -SO₂-, -C(O)-NH-, or -NH-C(O)-; and each alkyl moiety is optionally mono- to per-halogenated.

WO 2004/048393 PCT/US2003/036929

The compound according to claim 18 wherein R⁶ is phenyl optionally substituted with 1-3 moieties independently selected from the group consisting of halo, -CF₃, -NO₂, -CO₂H, -CN, -C(O)-NH₂, -SO₂-NH₂, or -C₀-C₃-hydrocarbyl-Y-(C₁-C₃-hydrocarbyl), wherein Y is a covalent bond, -O-C(O)-, -C(O)-, -O-, -S-, -SO₂-, -C(O)-NH-, or -NH-C(O)-, and each alkyl moiety is optionally monoto per-halogenated.

- 20. The compound according to claim 19 wherein R¹ is optionally substituted with 1 or 2 moieties independently selected from the group consisting of F, Cl, Br and C₁-C₆ alkyl.
- 21. The compound according to claim 20 wherein R1 is

- 22. The compound according to claim 19 wherein R⁶ is phenyl optionally substituted with 1 or 2 moieties independently selected from the group consisting of halo, -CF₃, and CN.
- 23. The compound according to claim 22 wherein the compound is selected from those in which -O-R⁶ is;

$$O \longrightarrow CN$$
 or $O \longrightarrow CF_3$

24. The compound according to claim 18 having the structure:

25. The compound according to claim 18 having the structure:

26. The compound according to claim 18 having the structure:

27. The compound according to claim 18 having the structure:

28. The compound according to claim 18 having the structure:

29. The compound according to claim 18 having the structure:

30. The compound according to claim 18 having the structure:

- 31. A composition comprising the compound according to any one of claims 1 to 30 and a pharmaceutically acceptable carrier or diluent.
- 32. A method of inhibiting β-lactamase, the method comprising contacting a cell with a compound according to any one of claims 1 to 30.