

浅析基于机器学习的 变电站继电保护系统故障诊断与预测

程琦. 杨子江

(国网浙江省电力有限公司武义县供电公司,浙江 金华 321000)

摘要:在智能电网建设趋势下,变电站能够可靠运行受到继电保护系统故障处理的直接影响。传统故障诊断方法应用效果欠佳,影 响变电站运行效益创造。得益于机器学习技术融合应用,可促进继电保护系统故障的精准诊断,并通过科学预测来降低故障发生概率。本 文从机器学习应用优势分析入手,并阐明基于机器学习的继电保护系统故障诊断与预测方法。

关键词:变电站;机器学习;继电保护系统;故障诊断

中图分类号: TM63;TM77;TP18

文献标识码: A

文章编号: 1671-0711(2024)09(上)-0143-03

变电站继电保护系统运行过程中, 受到误操作、外 界环境、内部老化等因素的影响,增大系统出现故障异 常的概率,继而威胁到变电站的安全运行。而以往系统 阈值判定方法应用存在精度较差、效率较低等问题。随 着继电保护系统的数字化、数据化升级,机器学习算法 的有效应用可有效转变继电保护系统运行现状, 通过对 故障异常的精准、高效诊断以及故障提前预测,来促进 变电站继电保护系统功能的充分体现。

1 机器学习在故障诊断和预测中的优势

随着人工智能技术的持续创新与升级, 机器学习算 法在我国各领域得到广泛应用,其主要是依托计算机系 统从数据中学习模式、规律,从而实现对未知数据的预测 和决策,其主要原理如图1所示。在当前继电保护系统故 障诊断预测中,机器学习应用优势表现为: (1)数据驱 动模型。能够从海量数据中对相关模式和规律加以学习, 基于历史数据的分析和学习, 以实现对故障异常的准确 诊断与预测。相较以往基于规则方法的应用, 机器学习 适用于处理复杂非线性关系。(2)自动化处理。可支 持自动化处理数据,构建模型并进行预测,不仅可减少 人工干预需求, 也可加强效率控制并降低成本。在变电 站继电保护系统运行期间,可借助机器学习来实现实时 监测、预测,及时发现潜在故障并为应对措施的制定提

※ 也是最简单的一种的方法。流量与差压之间的关系: 量系数。

蜗壳差压为安装在水车室门口的蜗壳差压变送器提 供 $4 \sim 20$ mA 的模拟量给电调,在 6 号机大修后已接入, 但一直未参与调节。为了做最优协联试验,当6号机月 度维护时厂家重新加入了程序,而出现以下现象:6号 机开机并网即刻出现电调大、小故障信号,导、轮叶无 法打开。现场检查电调盘为"导、轮叶驱动器未准备好" 语句。手动打开导轮叶暂带 50MW 负荷, 导轮叶目前为 手动方式。

后经检查为输入电调的蜗壳差压为负数,无法计算 O,导致 PLC 判断出错,电调开出将导轮叶切手动,引 起机组并网后无法调节导轮叶,后经厂家修改程序,经 蜗壳差压模拟量大于0时才参与计算,且不开出导轮叶 切手动。

3.2 电调中的振摆越限信号

6号机大修后,电调盘引入振摆,以判断机组振摆 是否有越限报警, 当机组振摆越限动作后, 振摆装置输 出接点至 LCU, LCU 通过开出继电器 DO10 振摆越限重动, 引出接点至电调盘 A、B 套 PLC,同时电调通过通讯将"*6 号机电调 A/B 套机组振动超标报警动作"上送至 LCU。 为方便监视, 月度维护时将 6 号机振摆中上导 X 振摆报

警值设为350 μm, 法兰 X 报警定值设为650 μm, 振摆 装置经5秒延时上送信号。

4 结语

水轮机调速器是保障水电站正常工作的关键设备。 本文针对 6 号机调速器电气调节装置更换后新增的功 能以及出现的几个异常情况进行讨论,通过查阅调速 器原理和图纸资料以及事故控制流程等,进一步解释 了异常情况产生的原因,并提出了安全解决此类故障 的相应对策, 保证了调速器的运行可靠性及系统安全 性,对同类设备使用单位及研究具有一定的参考意义。

参考文献:

- [1] 刘桂波. 水电站调速器改造对策分析 [J]. 水利科学与寒区工 程,2022.5(8):161-163.
- [2] 缪新建. 浅谈水电站水轮机调速器的检修与维护 []]. 水电站机 电技术,2020,43(9):34-36.
- [3] 刘彦阳. 大型水电站水轮机调速器改造分析 [J]. 水电与新能 源,2021,35(10):64-66.
- [4] 冯雁敏,张雪源.水轮机调速器特性研究综述[J].水电能源科 学,2009,27(3):150-153.
- [5] 林广. 浅谈岩滩水电站 2 号机调速器电气部分升级改造 []]. 红水 河,2021,40(2):141-145,149.
- [6] 杨俊, 向泽毅, 丁立川, 吴鸿. 水电站水轮机调速器的调试与维 护[]]. 设备管理与维修,2019(4):86-88.

Research and Exploration | 研究与探索・智能检测与诊断

供参考。(3)鲁棒性强。该算法具备鲁棒性特征,对数据中噪声、不确定性具有相应容忍度,可有效应对复杂的环境变化和数据波动,确保故障诊断与预测的准确性得以提升。(4)高效性能。对于大规模数据的处理,机器学习算法表现出色,能够快速训练模型并进行预测,适用于实时故障诊断与预测需求。同时,得益于硬件计算能力的持续增强,有助于不断提升机器学习性能。

图 1 机器学习算法原理

2 基于机器学习的继电保护系统故障诊断

2.1 数据采集与处理

为保障故障诊断中模型构建符合准确、客观要求,需以数据有效采集与处理为前提。鉴于此,在开展基于机器学习的故障诊断时,可结合以下几点来提升数据采集与处理水平: (1)数据采集。需以采集数据类型和来源的确定为前提,继电保护系统运行期间,采集数据需涉及电流、电压、频率、功率因数等传感器数据,并将继电保护设备的工作状态、报警信息等数据囊括在内。可视情况利用 SCADA 系统、智能传感器等设备进行实时采集,或者是以历史数据库为载体来全面获取。 (2)数据清洗。在多方面因素影响下,其采集数据出现缺失值、异常值或噪声等问题的概率较大,需在采集后及时进行数据清洗。清洗过程涉及缺失值填充、异常值处理、数据平滑等操作,以加强对数据完整性和准确性的保障。

(3)数据标准化。为避免不同特征的量纲存在差异影响到模型训练的稳定性,可视情况对数据进行标准化处理,以保证其尺度、范围相同。对于标准化方法的应用,涉及均值标准化、最大最小标准化等。(4)数据划分。为实现对模型性能和泛化能力的有效评估,可按规则将数据集划分为训练集、验证集和测试集。其中训练集用于模型训练,验证集用于调参和模型选择,测试集用于评估模型的性能。

2.2 特征提取与选择

为促进故障诊断的准确、高效开展,并保证模型泛 化能力符合预期要求,离不开对数据特征的有效提取与 选择。在继电保护系统故障诊断处理过程中,需注意以 下几点。

(1) 特征提取。视情况从原始数据中提取具有代

表性和区分性的特征,以供机器学习模型使用。以变电站继电保护系统为基准,可根据领域知识和数据分析的结果提取与故障相关的特征。通常情况下,特征提取方法包括时域特征(如均值、标准差)、频域特征(如功率谱密度)、统计特征(如峰度、偏度)等。(2)特征选择。以特征提取为前提,获取的大量特征中部分呈现出冗余或无关特点,继而对模型训练和预测效果产生影响。鉴于此,需通过特征选择筛选出对模型性能影响较大的特征。在实际处理过程中,可视情况合理选择相关系数、方差分析、递归特征消除)、如 L1 正则化等,其中递归特征消除方法的应用,具体如图 2 所示。

(3)组合特征。除了单一特征外,为了促进模型表达与预测效果的提升,可视情况将多个特征进行组合。特征组合可采取加减乘除等方式得到新特征,或者是借助多项式特征扩展等方法进行。(4)特征重要性评估。特征选择期间需做到对特征的重要性的明确,以促进其模型决策过程的优化。鉴于此,可通过特征重要性评估来确定哪些特征对模型的预测起到关键作用,以实现进一步优化特征选择的过程。

图 2 递归特征消除方法

2.3 模型构建与训练

为了保证系统故障诊断符合准确、高效要求,需以 模型的有效构建与训练为关键。首先,结合对根据故障 诊断问题和数据特征的分析,合理选择机器学习模型, 具体包括决策树、支持向量机、神经网络、随机森林等。 针对变电站继电保护系统故障诊断,可根据数据的复杂 性和规模进行模型优化选择。其次, 在选择模型后合理 设定模型结构和参数设置。基于对特征提取与选择结果 的分析,构建契合系统故障诊断需求的输入层、隐藏层 和输出层,确定模型网络结构和激活函数。同时,还需 重视对损失函数和优化算法的优化选择, 以实现模型有 效训练。再次,可依托于训练集对模型进行训练,通过 优化模型参数来提升拟合数据成效。在训练期间要求人 员注意对过拟合、欠拟合问题加以规避,依托调整模型 复杂度和正则化等方法来提高模型泛化能力。最后,训 练完成后需借助验证集对模型进行评估、调优。基于对 模型在验证集上性能指标的有效评估,如准确率、召回 率、F1 值等, 可判断模型泛化能力和预测效果是否符合 预期要求,并对模型的参数进行调整和优化。

2.4 故障诊断结果分析

要想帮助管理人员明确掌握继电保护系统故障成因,并为后续管护工作提供参考,需提高对故障诊断结

果分析的重视度。在实际诊断分析过程中,需做到以下 几点。

(1)故障特征分析。基于诊断结果对故障特征进行详细分析,视情况深入对诊断模型输出故障特征思维解读,以全面掌握系统中故障的表现和特点,有助于定位故障根源。(2)异常检测。针对诊断结果中异常进一步开展检测和分析。基于对实际数据和模型预测结果的比较,确定异常的原因和可能影响,为故障诊断和修复提供依据。(3)故障原因推断。结果诊断分析期间需对故障原因进行推断,结合系统运行日志、设备状态信息和模型输出结果,准确、客观推断出故障形成原因,为后续修复工作的有效开展提供参考。(4)诊断结果可视化。为做到对诊断结果、分析结论的直观地展示,采用可视化技术对数据、结果进行展示。以图表、图形等形式展现诊断结果的分布情况和关联性,帮助维护人员全面了解故障情况。

3 基于机器学习的变电站继电保护系统故障预测方法

3.1 故障预测模型构建

变电站继电保护故障预测成效受到模型构建的直接 影响,为了实现对潜在故障隐患的有效预测,可结合以 下几点来优化预测模型构建。

- (1)数据准备。视情况对故障预测的数据集提前准备,并强调其数据应涉及历史故障数据、传感器数据、设备运行状态等信息。并通过清洗和预处理来保障数据的完整性和准确性。
- (2)特征提取。数据准备后从中提取与故障相关的特征。结合对时域特征、频域特征、统计特征等的有效应用,以期全面反映系统运行状态的变化和异常情况。
- (3)模型选择。基于对故障预测需求和数据特征的分析,做到对逻辑回归、支持向量机、随机森林、深度学习等模型的合理选择,且模型选择时还需考虑根据问题的复杂性和数据规模,以随机森林模型的应用为例,具体原理如图 3 所示。
- (4)模型构建。模型选择后需建立模型结构和参数设置。以模型输入层、隐藏层和输出层的确定为前提,选择合适的激活函数和损失函数并构建完整模型框架,为后续故障预测夯实基础。
 - (5) 模型训练。利用预先准备的数据集对模型进

图 3 随机森林模型示意图

行训练,优化模型参数以使其能够更好地拟合数据。 训练期间,注意对监控模型性能指标的控制,如损失 函数值、准确率等,通过对模型参数的及时调整来提 高训练效果。

3.2 故障预测结果评估

为了有效判断模型准确性与预测能力是否符合预期要求,并实现对继电保护装置潜在故障的有效预防,离不开对故障预测结果的评估,需在评估期间注意以下几点。

(1) 指标选择。对于故障预测结果的有效评估, 可视情况选择合适的评估指标来衡量模型性能。如将准 确率、召回率、精确率、F1 值等纳入指标体系内,可综 合评估模型的预测效果和泛化能力。(2)混淆矩阵分 析。基于对混淆矩阵的有效构建,可直观展示模型在不 同类别上的预测结果。并以混淆矩阵中真阳性、真阴性、 假阳性、假阴性等指标为基准,计算出各项评估指标,以 加深对模型预测准确性和误差情况的理解。(3) ROC 曲 线与 AUC 值。可视情况绘制 ROC 曲线来直观展示模型在 不同阈值下的表现,基于对曲线下面积(AUC值)的计 算,精准评估模型分类能力和区分度。若 AUC 值越接近 1,说明模型性能愈发显著。(4)精度-召回率曲线。 依托于对精度-召回率曲线的有效应用,可实现对平衡 精度和召回率的关系的把握。以调整阈值为前提,可获 得不同精度、召回率的组合, 根据实际需求来合理选择 工作点。(5)交叉验证。为实现对模型泛化能力的有 效验证,可采用交叉验证方法对模型进行评估。结合实 际需求将数据集分成多个子集, 交替作为训练集和测试 集,以准确评估模型在不同数据上的表现,减少过拟合 来提高模型稳定性。

4 结语

综上所述,继电保护装置故障的有效诊断和预测,不仅可为变电站的安全、可靠运行提供保障,也可助力电力系统运行效益的增大创造。鉴于此,需在剖析机器学习算法应用优势的基础上,合理将机器学习算法应用于继电保护系统故障诊断、预测中,并依托数据集进行诊断、预测成效的验证,继而为继电保护系统的故障防范与处理提供助力。

参考文献:

- [1] 尚浩然,王丁丑.基于深度学习的变电站继电保护系统故障诊断与预测 [I].电气技术与经济,2023(9):168-170.
- [2] 郦阳, 王宝华. 继电保护系统故障的智能定位方法研究 [J]. 电力系统保护与控制,2022,50(2):69-76.
- [3] 吴杰,姜振超.智能变电站保护与控制障碍在线诊断与预测方法研究[J].电测与仪表,2019,56(5):7.
- [4] 刘立石,徐承森,汪健.基于大数据技术的电力系统故障预测与诊断方法分析[J].电子技术,2023(10):392-393.
- [5] 王晓丽, 孙晓莉. 基于机器学习的继电保护故障诊断和分类研究[[]. 电气传动自动化, 2021(004):043.
- [6] 申狄秋, 卢雯兴, 王荣超等. 支持向量机下基于机器学习优化的继电保护故障诊断技术研究[J]. 电子设计工程, 2021, 029(008):53-57.