01/07/2023, 09:29 Fourier_transform

Contents 2 *

- Table of Contents
- ▼ 2 From Fourier Series to Fourie2.1 Introduction and definition
- ▼ 2.2 Examples

2.2.1 The Fourier transform 2.2.2 Fourier transform of ε

[Jupyte

1 Table of Contents

- Fourier transform
- · From Fourier Series to Fourier transforms
 - Introduction and definitions
 - Examples
 - The Fourier transform of a rectangular window
 - Fourier transform of a sine wave

In [1]:

2 From Fourier Series to Fourier transforms

In this section, we go from the Fourier series to the Fourier transform for discrete signal. So doing, we also introduce the notion α will study in more details later. For now, we focus on the representations in the frequency domain, detail and experiment with so

2.1 Introduction and definitions

Suppose that we only have an observation of length N. So no periodic signal, but a signal of size N. We do not know if there w do not know if there were data after sample N. What to do? Facing to such situation, we can still

• imagine that the data are periodic outside of the observation interval, with a period N. Then the formulas for the Fourier ser interval. Actually there is no problem with that. The resulting transformation is called the *Discrete Fourier Transform*. The c

\begin{equation} \eqboxc{

$$x(n) = \sum_{k=0}^{N-1} X(k) e^{j2\pirac{kn}{N}}$$
 with $X(k) = rac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pirac{kn}{N}}$

} \label{eq:DFT} \end{equation}

• we may also consider that there is nothing --that is zeros, outside of the observation interval. In such condition, we can still i but with an infinite period. Since the separation of two harmonics in the Fourier series is Δf =1/period, we see that $\Delta f \rightarrow$ becomes continuous. This is illustrated below.

Fourier_transform

Contents 2 *

- Table of Contents
- ▼ 2 From Fourier Series to Fourie2.1 Introduction and definition
- ▼ 2.2 Examples
 - 2.2.1 The Fourier transform 2.2.2 Fourier transform of a

In [3]: Lpad = 20 # then 200, then 2000 # define a rectangular pulse rect = np.concatenate((np.ones(20), -np.ones(20))) # Add zeros after: rect_zeropadded = np.concatenate((rect, np.zeros(Lpad))) sig = rect_zeropadded plt.plot(sig) # compute the Fourier series for |k/Lsig|<1/4 Lsig = np.size(sig) fmax = int(Lsig / 4)kk = np.arange(-fmax, fmax) c = coeffck(sig[0:Lsig], Lsig, kk)# plot it plt.figure() plt.stem(kk / Lsig, np.abs(c)) plt.title("Fourier series coefficients (modulus)") plt.xlabel("Normalized frequency -- k/Lsig")

Out[3]: Text(0.5, 0, 'Normalized frequency -- k/Lsig')

Hence we obtain a formula where the discrete sum for reconstructing the time-series x(n) becomes a continuous sum, since f

$$egin{align} x(n) &= \sum_{k=0}^{N-1} c_k e^{j2\pirac{kn}{N}} = \sum_{k/N=0}^{1-1/N} NX(k) e^{j2\pirac{kn}{N}} rac{1}{N} \ & o x(n) = \int_0^1 X(f) e^{j2\pi fn} \mathrm{d}f \end{aligned}$$

\end{equation} Finally, we end with what is called the **Discrete-time Fourier transform**:\begin{equation}

\boxed{

$$x(n)=\int_0^1 X(f)e^{j2\pi fn}\mathrm{d}f$$
 with $X(f)=\sum_{n=-\infty}^\infty x(n)e^{-j2\pi fn}$

} \label{eq:DiscreteTimeFT} \end{equation}

Even before exploring the numerous properties of the Fourier transform, it is important to stress that

The Fourier transform of a discrete signal is periodic with period one.

Check it as an exercise! Begin with the formula for X(f) an compute X(f+1) . use the fact that n is an integer and that $\exp($

Contents 2 *

- Table of Contents
- 2 From Fourier Series to Fourie
 2.1 Introduction and definition
- ▼ 2.2 Examples

2.2.1 The Fourier transform 2.2.2 Fourier transform of ε

2.2 Examples

Exercise 1

- Compute the Fourier transform of a rectangular window given on N points. The result is called a (discrete) cardinal sine (o plot, and study the behaviour of this function with N.
- · Experiment numerically... See below the provided functions.
- Compute the Fourier transform of a sine wave $\sin(2\pi f_0 n)$ given on N points.
- Examine what happens when the N and f_0 vary.

2.2.1 The Fourier transform of a rectangular window

The derivation of the formula will be done in class. Let us see the experimental part.

For the numerical experiments, import the fft (Fast Fourier Transform) function,

```
from numpy.fft import fft, ifft
```

define a sine wave, complute and plot its Fourier transform. As the FFT is actually an implementation of a discrete Fourier transf the true Fourier transform by using zero-padding (check that a parameter in the fft enables to do this zero-padding).

```
In [4]: from numpy.fft import fft, ifft

In [5]: #Define a rectangular window, of Length L
#on N points, zeropad to NN=1000
# take eg L=100, N=500
NN = 1000
L = 10 # 10, then 6, then 20, then 50, then 100...
r = np.ones(L)
Rf = fft(r, NN)
f = fftfreq(NN)
plt.plot(f, np.abs(Rf))
```

Out[5]: [<matplotlib.lines.Line2D at 0x7f5d27641d68>]

It remain to compare this to a discrete cardinal sinus. First we define a function and then compare the results.

```
In [6]:
    def dsinc(x, L):
        if isinstance(x, (int, float)): x = [x]
        x = np.array(x)
        out = np.ones(np.shape(x))
        I = np.where(x != 0)
        out[I] = np.sin(x[I]) / (L * np.sin(x[I] / L))
        return out
```

Fourier_transform

```
Contents 2 *
```

```
1 Table of Contents
```

▼ 2 From Fourier Series to Fourie
 2.1 Introduction and definition
 ▼ 2.2 Examples

2.2.1 The Fourier transform2.2.2 Fourier transform of a

```
In [7]: N = 1000
L = 40
f = np.linspace(-0.5, 0.5, 400)
plt.plot(f, dsinc(pi * L * f, L))
plt.grid(b=True)
```

```
0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.4
```

Comparison of the Fourier transform of a rectangle and a cardinal sine:

```
In [8]: NN = 1000
L = 10  # 10, then 6, then 20, then 50, then 100...
r = np.ones(L)
Rf = fft(r, NN)

N = 1000
f = np.linspace(-0.5, 0.5, 400)
plt.plot(f, L * np.abs(dsinc(pi * L * f, L)))
f = fftfreq(NN)
plt.plot(f, np.abs(Rf))
plt.grid(b=True)
```


Interactive versions...

Fourier_transform

```
Contents 2 *
```

```
    Table of Contents
```

- 2 From Fourier Series to Fourie 2.1 Introduction and definition ▼ 2.2 Examples
 - 2.2.1 The Fourier transform
 - 2.2.2 Fourier transform of a

```
In [9]: # using %matplotlib use a backend that allows external figures
         # using %matplotlib inline plots the results in the notebook
         %matplotlib inline
         slider = widgets.FloatSlider(min=0.1, max=100, step=0.1, value=8)
         display(slider)
         #---- Callbacks des widgets -----
         def pltsinc(change):
             L = change['new']
             plt.clf()
             clear_output(wait=True)
             #val.value=str(f)
             f = np.linspace(-0.5, 0.5, 400)
plt.plot(f, dsinc(pi * L * f, L))
plt.ylim([-0.3, 1.2])
             plt.grid(b=True)
         pltsinc({'new': 8})
         slider.observe(pltsinc, names=['value'])
```


This is an example with matplotlib widgets interactivity, (instead of html widgets). The docs can be found here (http://nbviewer.ipython.org/github/jakevdp/matplotlib_pydata2013/blob/master/notebooks/03_Widgets.html)

```
Contents 2 *
```

```
1 Table of Contents
```

- ▼ 2 From Fourier Series to Fourie
 2.1 Introduction and definition
 ▼ 2.2 Examples
 - 2.2.1 The Fourier transform 2.2.2 Fourier transform of a

```
In [10]: %matplotlib
         from matplotlib.widgets import Slider
         fig, ax = plt.subplots()
         fig.subplots_adjust(bottom=0.2, left=0.1)
         slider_ax = plt.axes([0.1, 0.1, 0.8, 0.02])
         slider = Slider(slider_ax, "Offset", 0, 40, valinit=8, color='#AAAAAA')
         L = 10
         f = np.linspace(-0.5, 0.5, 400)
         line, = ax.plot(f, dsinc(pi * L * f, L), lw=2)
         #Line2, = ax.plot(f,sinc(pi*L*f), Lw=2)
         #Line2 is in order to compare with the "true" sinc
         ax.grid(b=True)
         def on_change(L):
             line.set_ydata(dsinc(pi * L * f, L))
              line2.set_ydata(sinc(pi*L*f))
         slider.on_changed(on_change)
```

Using matplotlib backend: TkAgg

Out[10]: 0

2.2.2 Fourier transform of a sine wave

Again, the derivation will be done in class.

https://perso.esiee.fr/~bercherj/Lectures_SignalProcessing/Fourier_transform.html#Examples

```
Contents 2 🌣
```

```
1 Table of Contents
```

- 2 From Fourier Series to Fourie2.1 Introduction and definition
- ▼ 2.2 Examples
 - 2.2.1 The Fourier transform 2.2.2 Fourier transform of ϵ

```
In [11]: %matplotlib inline
    from numpy.fft import fft, ifft
    N = 250
    f0 = 0.1
    NN = 1000
    fig, ax = plt.subplots(2, 1)

def plot_sin_and_transform(N, f0, ax):
    t = np.arange(N)
    s = np.sin(2 * pi * f0 * t)
    Sf = fft(s, NN)
    ax[0].plot(t, s)
    f = np.fft.fftfreq(NN)
    ax[1].plot(f, np.abs(Sf))
plot_sin_and_transform(N, f0, ax)
```


Interactive versions

Contents 2 *

Table of Contents

- ▼ 2 From Fourier Series to Fourie 2.1 Introduction and definition ▼ 2.2 Examples
 - 2.2.1 The Fourier transform 2.2.2 Fourier transform of a

```
In [12]: # using %matplotlib use a backend that allows external figures
         # using %matplotlib inline plots the results in the notebook
         %matplotlib inline
         sliderN = widgets.IntSlider(
             description="N", min=1, max=1000, step=1, value=200)
         sliderf0 = widgets.FloatSlider(
             description="f0", min=0, max=0.5, step=0.01, value=0.1)
         c1 = widgets.Checkbox(description="Display time signal", value=True)
         c2 = widgets.Checkbox(description="Display frequency signal", value=True)
         #display(sliderN)
         #display(sliderf0)
         N = 500
         f0 = 0.1
         t = np.arange(N)
         s = np.sin(2 * pi * f0 * t)
         Sf = fft(s, NN)
         f = np.fft.fftfreq(NN)
         out = widgets.Output()
         #---- Callbacks des widgets -----
         @out.capture(clear_output=True, wait=True)
         def pltsin(dummy):
             #clear_output(wait=True)
             N = sliderN.value
             f0 = sliderf0.value
             t = np.arange(N)
             s = np.sin(2 * pi * f0 * t)
             Sf = fft(s, NN)
             f = np.fft.fftfreq(NN)
             if c1.value:
                 plt.figure(1)
                 plt.clf()
                 plt.plot(t, s)
             if c2.value:
                 plt.figure(2)
                 plt.clf()
                 plt.plot(f, np.abs(Sf))
             plt.show()
         pltsin(8)
         sliderN.observe(pltsin, names='value')
         sliderf0.observe(pltsin, names='value')
         c1.observe(pltsin, names='value')
         c2.observe(pltsin, names='value')
         display(widgets.VBox([sliderN, sliderf0, c1, c2, out]))
```


Widget Javascript not detected. It may not be installed or enabled properly.

01/07/2023, 09:29

Contents 2 *

Fourier_transform

```
1 Table of Contents
2 From Fourier Series to Fourie
2.1 Introduction and definition
2.2 Examples
```

2.2.1 The Fourier transform
2.2.2 Fourier transform of a

```
In [13]: %matplotlib tk
          from matplotlib.widgets import Slider
          fig, ax = plt.subplots()
          fig.subplots_adjust(bottom=0.2, left=0.1)
          slider_ax = plt.axes([0.1, 0.1, 0.8, 0.02])
slider = Slider(slider_ax, "f0", 0, 0.5, valinit=0.1, color='#AAAAAA')
          f = np.linspace(-0.5, 0.5, 400)
          N = 1000
          t = np.arange(N)
          s = np.sin(2 * pi * f0 * t)
          Sf = fft(s, NN)
          f = np.fft.fftfreq(NN)
          line, = ax.plot(f, np.abs(Sf))
          ax.grid(b=True)
          def on_change(f0):
    s = np.sin(2 * pi * f0 * t)
               Sf = fft(s, NN)
               line.set_ydata(np.abs(Sf))
               line2.set_ydata(sinc(pi*L*f))
          slider.on_changed(on_change)
```

Out[13]: 0

In [14]: | %matplotlib inline

Index (toc.html) - Back (Intro_Fourier.html) - Next

[Jupyter notebook] (Fourier_transform.ipynb)