考点分布

考点7差错控制

封装成帧

检错编码——奇偶校验码

奇偶校验码特点:只能检查出奇数个比特错误,检错能力为50%。

检错编码——循环冗余码CRC

+ -(5

例:要发送的数据是1101 0110 11,采用CRC校验,生成多项式是10011,那么最终发送的数据应该是?

最终发送的数据:

要发送的数据+帧检验序列FCS

计算冗余码:

- (1)加0 假设生成多项式G(x)的阶为r,则加r个0。
- (2)模2除法数据加0后除以多项式,余数为冗余码/FCS/ CRC检验码的比特序列。

10011表示成多项式为

异或:同0异1

 $X^4 + X^1 + X^0$

 $=X^4+X^1+1$

阶为4

TIPS: 多项式N位, 阶为N-1。

纠错编码——海明码

检验d位错,码距为d+1

纠正d位错,码距为2d+1

1.确定校验码位数r

数据/信息有m位, 冗余码/校验码有r位

 $2^r \ge m + r + 1$

2.确定校验码和数据的位置

3.求出校验码的值

4.检错并纠错

	D=1100	0						
序号	7	6	5	4	3	2	1	
值	1	(1)	0	X ₄	0	X ₂	x_1	/

