Mini project BI

Realized by:

Ben Afia Edriss (TD1 TP1) Ben Nsib Nassim (TD1 TP1)

E-mails:

bennsib.nassim@gmail.com edriss.benafia1@gmail.com

Professor:

Gzara Mariem

Level:LA3INFO

TD: TD1

TP: TP1

Year: 2020-2021

Data Description

Dimension of data:

There are 98913 observations (98913 users)

There are 24 Variables

Names of variables, data types and data description

Variable	Туре	Description				
identifierHash Num		Anonymous unique id.				
type Chr		The type of entity. This file contains only "user" entities.				
country	Chr	User's country (written in french). See also the column "Country Code" if you prefer an ISO identifier.				
language	Chr	The user's preferred language (the language of their interface when using the site)				
socialNbFollowers	Int	Number of users who follow this user's activity. New accounts are automatically followed by the store's official accounts				
socialNbFollows Int		Number of user account this user follows. New accounts are automatically assigned to follow the official partners.				
socialProductsLiked Int		Number of products this user liked.				
productsListed Int		Number of currently unsold products that this user has uploaded.				
productsSold	Int	Number of products this user has sold.				
productsPassRate Num		% of products meeting the product description. (Sold products are reviewe by the store's team before being shipped to the buyer.)				
productsBought Int		Number of products this user bought				
gender Char user's gender		user's gender				
civilityGenderId	Int	civility as integer				

civilityTitle	Chr	Civility title				
hasAnyApp Chr		user has ever used any of the store's official app				
hasAndroidApp	Chr	user has ever used the official Android app				
hasIosApp	Chr	user has ever used the official iOS app				
hasProfilePicture Chr		user has a custom profile picture				
daysSinceLastLogin Int		Number of days since the last login. All user data were fetchedthe same day. See also "seniority".				
seniority senio	Int	Number of days since the user registered				
seniorityAsMonths	Num	see seniority. Here, expressed in months				
seniorityAsYears Num		see seniority. Here, expressed in years				
countryCode	Chr	user's country (ISO-3166-1)				

Number of distinct values for each variable

Variable Number of distinct values		Values description				
type	1	User : The type of entity. This file contains only "user" entities				
country	200	There are 200 name of country				
language	5	En: English Fr: French De: Deutsche Es: Spanish It: Italian				
gender	2	F : Female M : Male				

civilityTitle 3		Mrs : Madam			
		Mr : Mister			
		Miss : Miss			
hasAnyApp	2	True and false			
hasAndroidApp	2	True and false			
hasIosApp	2	True and false			
hasProfilePicture	Chr	True and false			
countryCode	200	There are 200 ISO codes of country			

Missing values

No missing data

Useless varaibles

There are some useless variables (duplicated variables, variables have no statistics values...)

Identifierhash and type have not statistics values.

civilityGenderId and gender: have the same meaning

country and countryCode: have the same meaning

→ We should to delete the useless columns.

New dimension of data:

There are 98913 observations (98913 users)

There are 20 Variables

Data Exploration

I) Data Exploration (Univariate exploration)

A) The categorical variables

How do you explore categorical data? We use the pie charts and the barplot

1) Language

Figure 1: Pie charts of language

➤ The majority of user preferred the English language 52 % of users preferred it and the second preferred language is French 27% of users preferred it

Figure 2 : Barplot of language

- More than 50000 users preferred the English language
- About 30000 users preferred the English language

2) Gender

Figure 3: Pie charts of gender

> The majority of users are females (77%) and 23% are males

Figure 4: Barplot of gender

Figure 4 : Barplot of gender

- More than 76000 of users are females
- > More than 22000 of users are males

3) civilityTitle

Figure 5: Pie charts of civilityTitle

- > 77% of users are Mrs.
- > 23% of users are Mrs.
- About 0% of users are Miss

Figure 6: Barplot of civility Title

Figure 6 : Barplot of civilityTitle

- More than 75000 of users are Mrs.
- > More than 22000 of users are Mrs.
- > About 437 of users are Miss (the lower)

4) hasAnyApp

Figure 7: Pie charts of hasAnyApp

- > 74% of users have not any of the store's official app
- > 26% of users have a store's official app

Figure 8: Barplot of hasAnyApp

Figure 8 : Barplot of hasAnyApp

- More than 72000 of users have not any of the store's official app
- More than 26000 of users have a store's official app

5) hasAndroidApp

Figure 9: Pie charts of hasAndroidApp

- > 95% of users have not the android app
- > 26% of users have the android app

Figure 10 : Barplot of hasAndroidApp

Figure 10 : Barplot of hasAndroidApp

- More than 94000 of users have not the android app
- More than 4800 of users have the android app

6) haslosApp

Figure 11 : Pie charts of haslosApp

- > 78% of users have not the iOS app
- > 26% of users have the iOS app

Figure 12: Barplot of haslosApp

False
True

77386
21527

- More than 77000 of users have not the iOS app
- More than 21000 of users have the iOS app

7) hasProfilePicture

Figure 13: Pie charts of hasProfilePicture

Figure 12 : Barplot of haslosApp

- > 98% of users have not a profile picture
- > 2% of users have profile picture

Figure 14: Barplot of hasProfilePicture

Figure 14 : Barplot of hasProfilePicture

- ➤ More than 97000 of users have profile picture
- > 1895 of users have profile picture

8) countryCode

- > More than 25000 users live France
- More than 20000 of users live US

B) The numeric variables

1) socialnbFollowers

Figure 16: Boxplot of socialNbFollowers

- > The boxplot is so tight
- Presence of some outliers
- High density of data between Min and Max

Figure 17: Histogram of socialNbFollowers

Figure 17 : Histogram of socialNbFollowers

- Uni modal data distribution
- > There is one peak of data

2) socialnbFollows

Figure 18: Boxplot of socialNbFollows

Figure 18 : Boxplot of socialNbFollows

- > The boxplot is so tight
- Presence of some outliers
- High density of data between Min and Max

Figure 19: Histogram of socialNbFollows

Figure 19 : Histogram of socialNbFollows

- > Uni modal data distribution
- > There is one peak of data

3) socialProductsLiked

Figure 20 : Boxplot of socialProductsLiked

Figure 20 : Boxplot of socialProductsLiked

- > The boxplot is so tight
- Presence of some outliers
- High density of data between Min and Max

Figure 21: Histogram of socialProductsLiked

Figure 21 : Histogram of socialProductsLiked

- > Uni modal data distribution
- > There is one peak of data

4) ProductsListed

Figure 22 : Boxplot of productsListed

Figure 22 : Boxplot of productsListed

- > The boxplot is so tight
- > Presence of some outliers
- High density of data between Min and Max

Figure 23: Histogram of productsListed

Figure 23: Histogram of productsListed

- Uni modal data distribution
- There is one peak of data

5) ProductsSold

Figure 24: Boxplot of productsSold

Figure 24 : Boxplot of productsSold

- > The boxplot is so tight
- > Presence of some outliers
- High density of data between Min and Max

Figure 25: Histogram of productsSold

Figure 25 : Histogram of productsSold

- Uni modal data distribution
- > There is one peak of data

6)ProductsPassRate

Figure 26: Boxplot of productsPassRate

Figure 26 : Boxplot of productsPassRate

- > The boxplot is so tight
- > Presence of some outliers
- High density of data between Min and Max

Figure 27 : Histogram of productsPassRate

Figure 27 : Histogram of productsPassRate

- Uni modal data distribution
- There is one peak of data

7)ProductsBought

Figure 28: Boxplot of productsBought

Figure 28 : Boxplot of productsBought

- > The boxplot is so tight
- > Presence of some outliers
- High density of data between Min and Max

Figure 29: Histogram of productsBought

Figure 29 : Histogram of productsBought

- Uni modal data distribution
- > There is one peak of data

8)daysSinceLastLogin

Figure 30 : Boxplot of daysSinceLastLogin

Figure 30 : Boxplot of daysSinceLastLogin

- > The boxplot is so tight
- > Presence of some outliers
- High density of data between Min and Max

Figure 31: Histogram of daysSinceLastLogin

Figure 31 : Histogram of daysSinceLastLogin

- Uni modal data distribution
- There is one peak of data

9)seniority

Figure 32 : Boxplot of seniority

Figure 32 : Boxplot of seniority

- low density of data between Q1 and Mean
- Very higher of density in [min-Q1] and [median-max]

Figure 33: Histogram of seniority

Figure 33: Histogram of seniority

- > Bi modal data distribution
- There is two groups of data well separated

10)seniorityAsMonths

Figure 34: Boxplot of seniorityAsMonths

Figure 34: Boxplot of seniorityAsMonths

- low density of data between Q1 and Mean
- Very higher of density in [min-Q1] and [median-max]

Figure 35: Histogram of seniorityAsMonths

- > Bi modal data distribution
- > There is two groups od data well separated

11)seniorityAsYears

Figure 36: Boxplot of seniorityAsYears

Figure 36 : Boxplot of seniorityAsYears

- low density of data between Q1 and Mean
- Very higher of density in [min-Q1] and [median-max]

Figure 37 : Histogram of seniorityAsYears

Figure 37 : Histogram of seniorityAsYears

- > Bi modal data distribution
- There is two groups of data well separated
- > The peak is in the end of the histogram

12)productsWished

Figure 38 : Boxplot of productsWished

Figure 38 : Boxplot of productsWished

- The boxplot is so tight
- Presence of some outliers
- High density of data between Min and Max

Figure 39: Histogram of productsWished

- Uni modal data distribution
- > There is one peak of data

II) Data Exploration (Bivariate exploration)

Correlation of numeric variables (with command cor(data))

1) socialNbFollowers

- Moderate positive correlation with socialProductsLiked, productsSold and socialNbFollows.
- Weak positive correlation with productsListed, productsPassRate and productsWished.
- There is independence with the other variables

2) socialNbFollows

- Strong positive correlation with socialProductsLiked.
- Moderate positive correlation with socialNbFollows.
- There is independence with the other variables

3) socialProductsLiked

- Strong positive correlation with socialNbFollows.
- Moderate positive correlation with socialNbFollowers.
- Weak positive correlation with productsWished.
- There is independence with the other variables.

4) productsListed

- Moderate positive correlation with productsSold
- Weak positive correlation with socialNbFollowers and productsPassRate .
- There is independence with the other variables.

5) productsSold

- Moderate positive correlation with socialNbFollowers and productsListed.
- Weak positive correlation with, productsPassRate.
- There is independence with the other variables.

6) productsPassRate

- Weak positive correlation with socialNbFollowers and productsSold.
- There is independence with the other variables.

7) productsWished

- Weak positive correlation with socialNbFollowers, socialProductsLiked and productsBought.
- There is independence with the other variables.

8) productsBought

- Weak positive correlation with productsWished.
- There is independence with the other variables.

9) daysSinceLastLogin

- There is independence with all variables.

10) seniority

- Very Strong positive correlation with seniorityAsMonths and seniorityAsYears.
- There is independence with the other variables.

11) seniorityAsMonths

Very Strong positive correlation with seniority and seniorityAsYears.
 There is independence with the other variables

12) seniorityAsYears

- Very Strong positive correlation with seniority and seniorityAsYears.
- There is independence with the other variables

Conclusion:

→ We can now considerate seniority, seniorityAsMonths and seniorityAsYears as one column because they have a very strongly positively correlated and they having the same meaning.

→Now we have 18 variables

Puisque on a pour but de déterminer les personnes qui vont rester dans le store et les personnes qui vont quitter le store on a consentré sur deux variables qui peut nous aider à atteindre notre but à savoir : productsBought & products Sold . On a étudier les correlations entre productsBought et les autres variables numeriques de meme pour la variable productsSold

Scatter plots productsBought:

1) productsBought – socialNbFollowers

- Presence of one group of data between 0 and 100
- > High density of data
- > Presence of some outliers
- Independent between the 2 variables

2)productsBought - socialNbFollows

- > Presence of one group of data between 0 and 100
- > High density of data
- Presence of some outliers
- Independent between the 2 variables

3)productsBought - socialProductsLiked

4)productsBought - productsListed

Figure 43: productsBought-productsListed

- Perfect corroelation between the 2 variables.
- Discontinious distribution of data
- Presence of some outiers

5)productsBought - productsSold

Figure 44: productsBought-productsSold

- Presence of one group of data between 0 and 100
- > High density of data
- > Presence of some outliers
- Independent between the 2 variables

6)productsBought - productsPassRate

Figure 45: productsBought-productsPassRate

- Presence of 2 groups of data between 0 and 100 well separated
- High density of data in the 2 groups
- Presence of some outliers

7)productsBought - gender

Figure 46: productsBought-gender

- Presence of 2 groups of data between 0 and 100 well separated
- High density of data in the 2 groups
- Presence of some outliers

8)productsBought – seniority

Figure 47: productsBought-seniority

- Presence of 2 groups of data between 0 and 100 well separated
- High density of data in the 2 groups
- > Presence of some outliers

9)productsBought - seniorityAsMonths

Figure 48: productsBought-seniorityAsMonths

- Presence of 2 groups of data between 0 and 100 well separated
- High density of data in the 2 groups
- Presence of some outliers

10)productsBought - seniorityAsYears

Figure 49: productsBought-seniorityAsYears

ProductsBought

- Presence of 2 groups of data between 0 and 100 well separated
- High density of data in the 2 groups
- Presence of some outliers

11)productsBought - productsWished

Figure 50: productsBought-productsWished

- Presence of one group of data between 0 and 100
- > High density of data
- > Presence of some outliers
- Independent between the 2 variables

Scatter plots productsSold

1)productsSold-socialNbFollowers

Figure 51: productsSold-socialNbFollowers

- Weak correlation between the 2 variables
- > Presence of some outliers
- > High density between 0 and 50

2)productsSold - socialNbFollows

Figure 52: productsSold-socialNbFollows

3)productsSold - socialProductsLiked

Figure 53: productsSold-socialProductsLiked

- Independent correlation between the 2 variables
- Presence of some outliers

4)productsSold - productsListed

Figure 54: productsSold-productsListed

- Moderate correlation between the 2 variables
- High density of data between 0 and 50
- Presence of some outliers

5)productsSold - productsPassRate

Figure 55: productsSold-productsPassRate

- > Presence of two groups of data
- > Presence of some outliers
- Weak correlation between the two variables

6)productsSold - productsBought

Figure 56: productsSold-productsBought

7)productsSold – gender

Figure 57: productsSold-gender

- Presence of 2 groups of data between 0 and 70 well separated
- High density of data in the 2 groups
- > Presence of some outliers

8)products Sold – daysSinceLastLogin

Figure 58: productsSold-daysSinceLastLogin

- High density of data between 0 and 70
- Presence of some outliers

9)productsSold – seniority

Figure 59: productsSold-seniority

- Presence of 2 groups of data between 0 and 50 well separated
- High density of data in the 2 groups
- > Presence of some outliers

10)productsSold - seniorityAsMonths

Figure 60: productsSold-seniorityAsMonths

- Presence of 2 groups of data between 0 and 70 well separated
- High density of data in the 2 groups
- Presence of some outliers

11)productsSold - productsWished

Figure 61: productsSold-productsWished

- > Independent
- > High density of data
- > Presence of some outliers

Data clustering and cluster validation

We have now 18 variables: 2 variables output (productsBought, productsSold) and 16 decisions variables. So:

- First: we will replace productsBought and productsSold with other column (leaveStore):
 All users bought or sold a product they take no and others they will take no
- Second: we will convert all categorical variables to numeric variables because we will be using the k-mean in clustering and this algorithm will only work with numeric variables.

1-Exploration the result of k-means

```
K-means clustering with 2 clusters of sizes 98903, 10
Cluster means:
 language socialNbFollowers socialNbFollows socialProductsLiked productsListed
1 2.757237
                              8.42572
                                               4.42119
                3.000000
                              8.00000
                                               0.00000
                                                         0.00000000
 productsPassRate productsWished gender civilityTitle hasAnyApp
      0.8123849 1.562753 1.230408 2.760755 1.264582
2
       0.0000000
                   0.000000 1.400000
                                      2.600000 1.600000
 hasAndroidApp hasIosApp hasProfilePicture daysSinceLastLogin
     1.048714 1.217607
                           1.98084
                                           581.2783
     1.100000 1.500000
                                          737028.0000
2
                             2.00000
 seniorityAsMonths countryCode
         102.1263
                  94.71073
1
2
          95.1000
                  103.70000
Clustering vector:
[98713] 1 1 1 1 1 1 1 1 1
                     1 1 1
                          1 1
[98749] 1 1 1
[98785] 1 1 1 1 1 1 1 1
                    1
[98821] 1 1 1 1 1 1 1 1 1
                                        111111111111111111
                                  1 1
[98893] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Within cluster sum of squares by cluster:
[1] 8208374205.5 44715.1
 (between_SS / total_SS = 99.8 %)
Available components:
[1] "cluster"
                "centers"
                            "totss"
                                         "withinss"
                                                     "tot.withinss"
[6] "betweenss"
                            "iter"
                                         "ifault"
                "size"
```

Centers of clusters

	language	$social {\bf N} b Followers$	$social {\bf N} b {\sf Follows}$	social Products Liked	products Listed	products Pass Rate	productsWished	
1	2.757237	3.432312	8.42572	4.42119	0.09331365	0.8123849	1.562753	
2	2.400000	3.000000	8.00000	0.00000	0.00000000	0.0000000	0.000000	

productsWished	gender	${\it civility} \\ {\it Title}$	hasAnyApp	has Android App	haslosApp	has Profile Picture	daysSinceLastLogin	senior
1.562753	1.230408	2.760755	1.264582	1.048714	1.217607	1.98084	581.2783	
0.000000	1.400000	2.600000	1.600000	1.100000	1.500000	2.00000	737028.0000	

${\it civility} \\ {\it Title}$	hasAnyApp	has Android App	haslosApp	has Profile Picture	days Since Last Login	seniority As Months	countryCode
2.760755	1.264582	1.048714	1.217607	1.98084	581.2783	102.1263	94.71073
2.600000	1.600000	1.100000	1.500000	2.00000	737028.0000	95.1000	103.70000

Clusters

Size of clusters

First cluster has 98903 users and the second has only 10 users.

→Clust1 >> Clust2

Totss

Totss = 5431197845194.74 : very big value

withinss of clusters

First clust: 8208374205.53964

Second clust: 44715.1

tot.withinss

Tot.withinss: 8208418920.63964

2-Evolution of inertie

Figure A-1 : Data cluster using k-means

→In the second time, the value of inertia is reduced and remains constant

3-Plot of clust

SocialNbFollows
SocialNbFollow

socialNbFollowers

Figure A-2: Data cluster with k-means

- > There are some outliers
- > Higher density in [0,200]
- We show only one clust because the other clust has only 10 items very smaller than the first clust

We thing the clustring of users is not powerful to create 2 cluster of users (leave or not leave the store)

Data classification and validation

We have 18 variables and we replace two columns productsBought and productsSold with leaveStore because all users they buy or sold a product they stay in the store.

leaveStore has 2 class ("no" and "yes")

→15 decision variables: inputs→1 column (leaveStore): output

1) Data classification

Our tree structure:

Conditional inference tree with 54 terminal nodes

```
leaveStore
Response:
Inputs: language, socialNbFollowers, socialNbFollows, socialProductsLiked, productsLis
ted, productsPassRate, productsWished, gender, civilityTitle, hasAnyApp, hasAndroidApp,
hasIosApp, hasProfilePicture, daysSinceLastLogin, seniorityAsMonths, countryCode
Number of observations: 65942
1) hasProfilePicture == {False}; criterion = 1, statistic = 8071.497
  2) daysSinceLastLogin <= 233; criterion = 1, statistic = 322.369
    3) productsPassRate <= 0; criterion = 1, statistic = 122.698
      4) daysSinceLastLogin <= 17; criterion = 1, statistic = 44.809
        5)* weights = 183
      4) daysSinceLastLogin > 17
        6) hasAndroidApp == {True}; criterion = 0.979, statistic = 33.732
          7)* weights = 33
        6) hasAndroidApp == {False}
          8) socialProductsLiked <= 87; criterion = 0.996, statistic = 37.455
            9) productsListed <= 0; criterion = 0.978, statistic = 32.947
              10)* weights = 196
            9) productsListed > 0
             11)* weights = 52
          8) socialProductsLiked > 87
            12)* weights = 23
    3) productsPassRate > 0
      13)* weights = 229
  2) daysSinceLastLogin > 233
    14) productsPassRate <= 0; criterion = 1, statistic = 66.314
      15) daysSinceLastLogin <= 644; criterion = 1, statistic = 40.509
        16) socialNbFollowers <= 3; criterion = 0.994, statistic = 31.66
          17) socialProductsLiked <= 2; criterion = 0.968, statistic = 9.5
            18)* weights = 72
          17) socialProductsLiked > 2
           19)* weights = 7
        16) socialNbFollowers > 3
          20) * weights = 222
      15) daysSinceLastLogin > 644
        21) socialNbFollows <= 8; criterion = 0.998, statistic = 14.723
          22)* weights = 196
        21) socialNbFollows > 8
         23)* weights = 15
    14) productsPassRate > 0
     24)* weights = 24
1) hasProfilePicture == {True}
  25) socialNbFollowers <= 5; criterion = 1, statistic = 6058.467
    26) socialNbFollowers <= 3; criterion = 1, statistic = 3652.25
      27) socialProductsLiked <= 3; criterion = 1, statistic = 1414.29
```

```
28) productsWished <= 0; criterion = 1, statistic = 689.095
      29)* weights = 50861
    28) productsWished > 0
      30) daysSinceLastLogin <= 374; criterion = 1, statistic = 140.349
        31) civilityTitle == {miss, mr}; criterion = 1, statistic = 52.053
          32) gender == {F}; criterion = 0.956, statistic = 24.611
            33)* weights = 9
          32) gender == {M}
            34)* weights = 190
        31) civilityTitle == {mrs}
          35) productsListed <= 0; criterion = 1, statistic = 43.994
            36)* weights = 723
          35) productsListed > 0
            37)* weights = 15
      30) daysSinceLastLogin > 374
        38) productsWished <= 18; criterion = 1, statistic = 31.18
          39) socialNbFollows <= 8; criterion = 0.985, statistic = 31.328
            40)* weights = 1563
          39) socialNbFollows > 8
           41)* weights = 99
        38) productsWished > 18
          42)* weights = 40
  27) socialProductsLiked > 3
    43) daysSinceLastLogin <= 146; criterion = 1, statistic = 265.529
      44) productsWished <= 0; criterion = 0.999, statistic = 56.525
        45)* weights = 481
      44) productsWished > 0
        46) daysSinceLastLogin <= 11; criterion = 0.983, statistic = 39.194
          47)* weights = 69
        46) daysSinceLastLogin > 11
          48)* weights = 591
    43) daysSinceLastLogin > 146
      49) socialNbFollows <= 8; criterion = 1, statistic = 63.29
        50) daysSinceLastLogin <= 677; criterion = 1, statistic = 47.926
          51)* weights = 1125
        50) daysSinceLastLogin > 677
          52)* weights = 442
      49) socialNbFollows > 8
        53) productsWished <= 19; criterion = 1, statistic = 17.649
          54) hasAndroidApp == {True}; criterion = 0.959, statistic = 15.23
            55)* weights = 19
          54) hasAndroidApp == {False}
           56)* weights = 111
        53) productsWished > 19
          57)* weights = 8
26) socialNbFollowers > 3
  58) daysSinceLastLogin <= 384; criterion = 1, statistic = 1277.87
    59) daysSinceLastLogin <= 70; criterion = 1, statistic = 84.642
      60) productsPassRate <= 0; criterion = 1, statistic = 49.211
        61) productsWished <= 1; criterion = 0.999, statistic = 51.017
          62)* weights = 361
        61) productsWished > 1
          63)* weights = 309
      60) productsPassRate > 0
        64)* weights = 43
    59) daysSinceLastLogin > 70
      65) productsPassRate <= 0; criterion = 1, statistic = 45.162
        66) gender == {M}; criterion = 1, statistic = 47.111
          67)* weights = 205
        66) gender == {F}
          68) productsWished <= 3; criterion = 0.985, statistic = 41.361
            69)* weights = 640
          68) productsWished > 3
            70)* weights = 125
```

```
65) productsPassRate > 0
            71)* weights = 20
      58) daysSinceLastLogin > 384
        72) daysSinceLastLogin <= 690; criterion = 1, statistic = 188.943
          73) productsWished <= 0; criterion = 1, statistic = 53.011
            74) socialNbFollowers <= 4; criterion = 1, statistic = 52.513
              75) gender == {M}; criterion = 0.999, statistic = 55.689
                76)* weights = 284
              75) gender == {F}
                77)* weights = 838
            74) socialNbFollowers > 4
              78)* weights = 386
          73) productsWished > 0
            79)* weights = 255
        72) daysSinceLastLogin > 690
          80) seniorityAsMonths <= 95.23; criterion = 1, statistic = 45.201
            81)* weights = 1584
          80) seniorityAsMonths > 95.23
            82) daysSinceLastLogin <= 695; criterion = 1, statistic = 50.33
                   weights = 58
              83) *
            82) daysSinceLastLogin > 695
              84) socialNbFollowers <= 4; criterion = 1, statistic = 46.454
                85) productsWished <= 0; criterion = 1, statistic = 35.155
                  86) gender == {M}; criterion = 0.975, statistic = 35.006
                    87)* weights = 279
                  86) gender == {F}
                    88)* weights = 1094
                85) productsWished > 0
                  89)* weights = 52
              84) socialNbFollowers > 4
                90) daysSinceLastLogin <= 701; criterion = 1, statistic = 37.049
                  91)* weights = 42
                90) daysSinceLastLogin > 701
                  92)* weights = 383
  25) socialNbFollowers > 5
    93) daysSinceLastLogin <= 377; criterion = 1, statistic = 265.065
      94) productsPassRate <= 0; criterion = 1, statistic = 95.284
        95) daysSinceLastLogin <= 16; criterion = 0.995, statistic = 56.338
          96)* weights = 156
        95) daysSinceLastLogin > 16
          97) civilityTitle == {miss, mr}; criterion = 0.966, statistic = 54.219
            98) * weights = 100
          97) civilityTitle == {mrs}
            99) * weights = 373
      94) productsPassRate > 0
        100)* weights = 251
    93) daysSinceLastLogin > 377
      101) productsPassRate <= 0; criterion = 1, statistic = 63.674
        102) civilityTitle == {miss, mr}; criterion = 1, statistic = 66.87
          103)* weights = 126
        102) civilityTitle == {mrs}
          104) countryCode == {ch, cn, dk, fi, fr, gb, gu, hr, hu, it, la, lb, mc, nl,
nz, pr, ro, sa, se, tw, ua, us}; criterion = 0.992, statistic = 67.857
            105)* weights = 268
          104) countryCode == {at, au, be, ca, de, ee, es, hk, ie, jp, lt, sg, sk}
            106)* weights = 93
      101) productsPassRate > 0
        107)* weights = 19
```

34

plot(tree)

There are many nodes we can't read the graphic. Many decision variable → many nodes

Prédiction

```
yes · yes ·
                                                                           yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes
\mathsf{yes} \cdot \mathsf{yes} \cdot \mathsf{no} \cdot \mathsf{yes} \cdot
                                                                           yes · yes ·
                                                                                                                                                                                                                                       yes ·
                                                                                                                                                                                                                                                                              yes · yes · yes · yes ·
                                                                                                                                                         yes · yes ·
                                                                                                                                                                                                                                                                                                                                                                                                                                           yes · yes ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         yes ·
                                                                           yes \cdot yes \cdot
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                yes · yes ·
yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes · yes ·
yes · yes · yes · yes · yes · yes ·
                                                                                                                                                                                                                                                                             yes · yes · yes · yes · yes · yes · yes · yes ·
yes · yes · yes · yes ·
                                                                                                                                                          yes · yes ·
                                                                                                                                                                                                                                     yes ·
                                                                                                                                                                                                                                                                              yes · yes · yes · yes ·
                                                                                                                                                                                                                                                                                                                                                                                                                                           no · yes · yes · yes · yes ·
yes · yes · yes · yes ·
                                                                                                                                                         yes · yes · yes ·
                                                                                                                                                                                                                                                                              yes \cdot yes
yes · yes
\mathsf{yes} \cdot \mathsf
yes · yes
\mathsf{no} \cdot \mathsf{yes} \cdot \mathsf{
yes · yes
yes · yes ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          yes · yes ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          yes
```

Prédiction table

prediction rel no yes no 817 1550 yes 273 30331

Calculer la précision

#calculer la précision de classification
precision=sum(diag(contingence))/sum(contingence)
precision

0.944708986685269

Calculer l'erreur

Erreur = 1-precision =0.0552910133147311

==>Donc on obtient un modèle très fortes puisque la précision plus que 94%