Ayudantía Álgebra N.10

Daniel Sánchez

27 de Mayo 2022

Propiedades:

$$\bullet \ \vec{a} \cdot \vec{a} = \|\vec{a}\|^2$$

•
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

•
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

•
$$\alpha \ (\vec{a} \cdot \vec{b}) = (\alpha \ \vec{a}) \cdot \vec{b} = (\alpha \ \vec{b}) \cdot \vec{a}$$

1. Si
$$\|\vec{a}\| = 6$$
, $\|\vec{a} + \vec{b}\| = 11$ y $\|\vec{a} - \vec{b}\| = 7$, calcule $\|\vec{b}\|$

- 2. Determine las coordenadas de un vector \vec{a} de norma $\sqrt{3}$ que sea perpendicular a los vectores $\hat{i} \hat{j}$ y $\hat{j} \hat{k}$.
- 3. Determine en cada caso las ecuaciones vectoriales, paramétricas y simétricas de las rectas que pasan por los puntos dados.

(a)
$$P(1,2,-6)$$
 y $Q(-8,2,5)$

(b)
$$P(7,1,3) y Q(-6,9,1)$$

(c)
$$P(5,-6,-3)$$
 y $Q(2,-6,-8)$

4. Sean \vec{a} y \vec{b} vectores en el espacio. Demuestre que:

$$\vec{a} \cdot \vec{b} = \frac{1}{4} ||\vec{a} + \vec{b}||^2 - \frac{1}{4} ||\vec{a} - \vec{b}||^2$$