مدارهای منطقی

فصل اول

نمایش اعداد در سیستهمای دودویی

سرفصل مطالب

- ٥ نمایش اعداد در مبنای دو
- نمایش اعداد در سایر مبناها
 - O نمایش اعداد علامت دار
- O جمع و تفریق اعداد علامت دار

نمایش دهدهی اعداد (مبنای ۱۰)

نمایش دودویی اعداد (مبنای ۲)

MSB	SB Binary Digit							
2 ⁷	2 ⁶	2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹						
128	64	32	16	8	4	2	1	

نمایش اعداد در مبنای ۸

00106

70₁₀ 106₈

نمایش اعداد در مبنای ۱۷

```
16 (hex)
                                                        // Base
                                                        // Symbol
                                 10
                                                        // Decimal
                                                        // Value
                                                        // Exponent
                                   exponent
                value x base
                  15
                        x 16
                                          = 15
                  10
                        x 16
                                          = 160
                  12
                        x 16
                                          = 3,072
                        x 16
                                          = 12,288
```

= 15,535

ساير مبناها

مالت کلی

تبدیل مبنا (۱۰ به ۱۰)

تبدیل مبنا (۱۰ به ۲)

$$1864 = 2 \times 932 + 0$$

 $932 = 2 \times 466 + 0$
 $466 = 2 \times 233 + 0$
 $233 = 2 \times 11 | 6 + 1$
 $116 = 2 \times 58 + 0$
 $58 = 2 \times 29 + 0$
 $29 = 2 \times 14 + 1$
 $14 = 2 \times 7 + 0$
 $7 = 2 \times 3 + 1$
 $3 = 2 \times 1 + 1$
 $1 = 2 \times 0 + 1$

$$(1864)_{10} = (11101001000)_2$$

تبديل كسرها

$$(0.4304)_{10} = (?)_{5}$$

$$\frac{\times \quad 5}{2.1520} \quad \frac{\times \quad 5}{3.8000}$$

$$0.2034$$

$$\frac{\times \quad 5}{0.7600} \quad \frac{\times \quad 5}{4.0000}$$

$$(0.34375)_{10} = (0.01011)_2$$

توانهای دو

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024 (1K)	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096 (4K)	20	1,048,576 (1M)
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

Digital Design, Table 1.1 – Powers of Two

مقایسه مبناها

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Digital Design, Table 1.2 - Numbers with Different Bases.

روشهای نمایش اعداد علامتدار

- O مقدار علامت (Signed-Magnitude)
 - (Ones' Complement) مکمل یک
 - (Two's Complement) مکمل دو (Two's Complement)

روش نمایش مقدار-علامت

Most Significant Bit (MSB) ('0' represent that the number is positive)

روش مکمل یک

روش مکمل دو

روشهای مفتلف نمایش اعداد منفی

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

Digital Design, Table 1.3 - Signed Binary Numbers.

ممع و تفریق اعداد علامتدار

	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	00000000100000	6 4
	000000000101010	+ 4 2
	00000001101010	106
	1111111100000	
2's	00000000100000	6 4
complement`	1111111111010110	- 42
	$\overline{000000000010110}$	22

نمایش دهدمی ارقام دودویی

(Binary Coded Decimal)

مع دو رقم BCD معمع

- O دو رقم BCD را به روال عادی جمع اعداد دودویی با هم جمع کنید.
 - O اگر عاصل جمع کمتر از ۱۰ بود، جمع دو رقم به دست آمده است.
- اگر عاصل جمع برزگتر یا مساوی ۱۰ است، عاصل جمع را با ۶ جمع کنید
 و بیت نقلی را به رقم بعد انتقال دهید.

مثال – BCD مثال

 $+ \begin{array}{c} 0100 & 0011 \\ + 0011 & 0101 \\ \hline \hline 0111 & 1000 \\ \end{array}$

Both left and right BCD numbers are invalid. So we would add 6 to both the BCD numbers.

تفریق مستقیم دو رقم BCD

صاسبه A-B با لین فرض که A و B لرقام A-B هستند:

0 اگر A>B) داکر O

- 0011 - تفریق را به روال عادی تفریق دو عدد دودویی انبام دهید • تفریق اسلامی تفریق دو عدد دودویی انبام دهید • تفریق اسلامی تفریق دو عدد دودویی انبام دهید • تفریق اسلامی تفریق دو عدد دودویی انبام دهید • تفریق دو عدد دودویی انبام دو تفریق د

: **A < B** اگر ○

• A را با ١٥ جمع كنيد

یک رقم قرضی (borrow) در ستون بعدی در نظر بگیرید •

1101

0101

1000

تفریق اعداد BCD به کمک جمع – مثال

استفاده از روش مکمل ۱۰

0000 0100 0011 - 0000 0011 0101 0000 0100 0011 + 1001 0110 0101

 $1001 \ 1010 \ 1000$ $1010 \ 0000 \ 1000$ $0000 \ 0000 \ 1000$

روشهای مفتلف نمایش BCD

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
	1011	0110	0001	0010
Unused	1100	0111	0010	0011
bit combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Digital Design, Table 1.5 - Four Different Binary Codes for the Decimal Digits.

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

کد انعکاسی

Digital Design: Table 1.6 - Gray Code

نمایش مروف با کد ASCII

(American Standard Code for Information Interchange)

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Χ	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

بیت توازن (Parity) برای کشف فطا

parity bit = 1 (in case of even parity setting)
parity bit = 0 (in case of odd parity setting)

کد همینگ برای اصلاع فطا

P1 =	= XOR	(X3,X!	5,X7)
	<i>,</i> , , , , , ,		_ , , , ,

Parity Bits

$$P2 = XOR(X3,X6,X7)$$

$$P4 = XOR(X5,X6,X7)$$

digit	P4	P2	P1
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

کد همینگ برای اصلاع غطا (وارسی)

کد همینگ برای اصلاع فطا (مثال)

There are only 10 types of people in this world; those who understand binary and those who don't.