

Механико-математический факультет

Алгебра, 1 семестр, 2 поток

Преподаватель: Куликова Ольга Викторовна

Студент: Молчанов Вячеслав

Группа: 108

Содержание

1	Сис	тема линейных уравнений	
		Матрица. Основные понятия	
	1.2	Система линейных (алгебраческих) уравнений	
		Элементарные преобразования над СЛУ	
	1.4	Элементарные преобразования над матрицами	
		Решение СЛУ методом Гауса	
2	Векторные пространства		
	2.1	Аксиомы элементов векторного простанства	
	2.2	Следствия	
	2.3	Векторные подпространства	
	2.4	Линейная зависимость системы векторов	

1 Система линейных уравнений

1.1 Матрица. Основные понятия

Определение. Матрица A размера $m \times n$ это прямоугольная таблица с m строками и n столбцами

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} - элемент матрицы и индексы:

- \bullet i номер строками
- \bullet j номер столбца

 $M_{m \times n}(\mathbb{R})$ - Множество всех матриц размера $m \times n$ с элементами из \mathbb{R}

Матрица $m \times 1$ называется столбцом:

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$

Если $A=(a_{ij})$ - крадратная, $a_{ij}=0 \ \forall i\neq j,$ то A называется диальнольной.

$$A = \begin{pmatrix} a_{11} & & & & 0 \\ & a_{22} & & & \\ & & \ddots & & \\ 0 & & & a_{nn} \end{pmatrix}$$

Если A - диальнольная и $a_{ij}=1,$ то A называется единичной.

$$A = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix}$$

Если A - квадратная, то

$$ullet$$
 $A = \begin{pmatrix} a_{11} & & & \\ & \ddots & & \\ & & a_{nn} \end{pmatrix}$ главная диагональ

Определение. Если A - размера $m \times n, \, a_{ij} = 0 \,\, \forall i,j, \, {
m To} \,\, A$ называется нулевой.

1.2 Система линейных (алгебраческих) уравнений

$$(*) \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases}$$

где $a_{ij},b\in\mathbb{R},x_1,...,x_n$ - неизвестные.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} a_{11} \\ \vdots \\ b_n \end{pmatrix}$$

A - матрица коэфициентов, a_{ij} называется коэфициентом СЛУ.

B - столбец свобоных членов, b_j - свободный член.

Определение. Расширенная матрица (A|B). Набор чисел $x_1^0,...,x_n^0 \in \mathbb{R}$ называется решением системы (*), если подстановка этих чисел вместо неизвестных в (*) дает тождество в каждом уравнении. $(x_i^0 \longleftrightarrow x)$

Решить систему - это найти все решения системы. Любое конткретное решение называется частным.

Определение. Если СЛУ имеет решение, то она называется совместной, иначе несовместной.

Определение. Совместная система, имеющая одно решение, называется определенной, иначе неопределенной (более одного решения).

1.3 Элементарные преобразования над СЛУ

- 1. Прибавить к одному уравнению другое уравнение, умноженное на число $\lambda \in \mathbb{R}$
- 2. Поменять местами два уравнения
- 3. Умножить уравнение на ненулевое число $\mu \in \mathbb{R}$

Утверждение. Эти преобразования обратимы.

Определение. Две системы линеных уравнений называются эквивалентными, если их множества решений совпадают.

Утверждение. Если одна СЛУ получена из другой СЛУ с помощью конечного числа элементарных преобразований, то эти системы эквивалентны.

Доказательство.

 \Longrightarrow (Не Куликова) AX=B - сходная система, $\tilde{A}X=\tilde{B}$ преобразованная система.

Пусть $z_1,...,z_n$ некотороое решение AX=B. Будем рассматривать $\tilde{A}X=\tilde{B},$ в ней ЭП II типа умножают строку на μ , имеем:

$$a_{i1}x_1 + \dots + a_{in}x_n = b_i$$
 в $AX = B$
$$\mu a_{i1}x_1 + \dots + \mu a_{in}x_n = \mu b_i$$
 в $\tilde{A}X = \tilde{B}$

Выносим μ из второго уравнения:

$$\mu(a_{i1}x_1 + \dots + a_{in}x_n) = \mu b_i$$

Получаем, что $z_1,...,z_n$ решение для $\tilde{A}X=\tilde{B}$. Для III типа ЭП очевидно. Теперь рассмотрим I тип, будем к і-ой строчке прибавлять ј-ую к коэфициентом λ , получаем:

$$(a_{i1} + \lambda a_{j1})x_1 + \dots + (a_{in} + \lambda a_{jn})x_n =$$

$$= a_{i1}x_1 + \lambda a_{j1}x_1 + \dots + a_{in}x_n + \lambda a_{jn}x_n =$$

$$= a_{i1}x_1 + \dots + a_{in}x_n + \lambda(a_{j1}x_1 + \dots + a_{jn}x_n) = b_i + \lambda b_j$$

Таким образом, любое решение старой СЛУ - это и решение новой, то есть множество решений не уменьшилось. (со столбами все тоже самое)

Мораль в том, что мы можем работать с расширенной матрицей (A|B).

1.4 Элементарные преобразования над матрицами

Элементарные преобразования над строками:

$$A = egin{pmatrix} \overline{a_1} \\ \overline{a_2} \\ \vdots \\ \overline{a_i} \end{pmatrix}, \; \mathrm{гдe} \; \overline{a_i} - \mathrm{строкa}$$

- $\ni \Pi 1: \overline{a_i} \to \overline{a_i} + \lambda \overline{a_i}$
- $\ni \Pi 2: \overline{a_i} \longleftrightarrow \overline{a_j}$
- $9\Pi3: \overline{a_i} \to \mu \overline{a_i}, \ \mu \neq 0$

Определение. Лидер строки (ведущий элемент) - это 1-й ненулевой элемент слева.

Пример:
$$(0,0,\underbrace{3}_{\text{лидер}},4,5,0,0,7)$$

Определение. Матрица A размера $m \times n$ называется ступенчатой, если

- 1. Номера лидеров ненулевых строк строго возрастают с увеличением номера строки.
- 2. Все нулевые строки стоят внизу (в конце).

Теорема. Любую матрица A размера $m \times n$ за конечное число элементарных преобразований над строками можно привести к ступенчатому виду.

 \mathcal{A} оказательство. Индукция по n:

Если A - нелувая, то A - ступенчатого вида. Если $A \neq 0$: найдем первый ненулевой столбец (начиная слева). Пусть j - номер первого ненулевого столбца. Пусть $a_{ij} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 \\ \vdots & \vdots \\ & & a_{ij} \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$$

Меняем 1-ю и i-ю строку местами и получаем, что a_{ij} стал лидером первой строки. Считаем, что сразу $a_{1j} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 & a_{ij} & * \\ \vdots & \vdots & * & * \\ & & \vdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \vdots \end{pmatrix}$$

Вычитаем из кажкой k-й строки, начиная со 2-ой, 1-ю строку, умноженную на число $\frac{a_{kj}}{a_{1j}}$. Получает вид:

$$\tilde{A} = \begin{pmatrix} 0 & 0 & & * & \\ \vdots & \vdots & & * & * \\ & & & \vdots & \\ \vdots & \vdots & & \vdots & \\ 0 & 0 & & \vdots & \end{pmatrix}$$

К правой части матрицы применяем индукцию и проводим матрицу к ступенчатому виду.

Замечание. Этот метод называется методом Гауса.

1.5 Решение СЛУ методом Гауса

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

Элементарные преобразования над $AX = B \iff$ элементарные преобразования над (A|B).

СЛУ AX = B ступенчатая $\Longrightarrow (A|B)$ имеет ступенчатый вид.

Утверждение. Решение СЛУ ступенчаного вида.

Пусть AX = B - ступенчатая

$$(A|B) = \begin{pmatrix} a_{11} & & & & b_{1} \\ & a_{22} & & & \vdots \\ & & \ddots & & \vdots \\ & & & a_{sn} & b_{s} \\ & & & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & b_{\widetilde{s}} \end{pmatrix}$$

 \widetilde{s} - ненулевые строки расширенной матрицы

s - число ненулевых строк

$$\widetilde{s} = \begin{bmatrix} s \\ s+1 \end{bmatrix}$$

1 случай: $\widetilde{s} \neq s \; (\widetilde{s} = s + 1)$

Рассмотрим последнюю ненулевую строку:

$$\begin{pmatrix} a_{11} & & & & b_1 \\ & a_{22} & & & \vdots \\ & & \ddots & & \vdots \\ & & a_{sn} & b_s \\ 0 & \cdots & \cdots & 0 & b_{s+1} \end{pmatrix}$$

 $0x_1 + ... + 0x_n = b_s + 1 \Longrightarrow$ решение у этого уравнения нет \Longrightarrow СЛУ не имеет решения, т.е. несовместнаю.

Далее $\widetilde{s} = s$

Заметим, что $\widetilde{s} = s \le n$ (п-количество столбов)

2случай: $\widetilde{s}=s=n$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ & \vdots \\ a_{nn}x_n = b_n \end{cases}$$

Такая СЛУ называются строго треугольной

Из n-го уравнения однозначно находится $x_n = \frac{b_n}{a_{nn}}$ Подставляем во все оставшиеся уравнения $x_n = \frac{b_n}{a_{nn}} \Longrightarrow$ исключаем x_n . Получаем строго треугольную систему с меньшим количество неизвестных.

Далее из (n-1)-го уравнения находим x_{n-1} и т.д. \Longrightarrow СЛУ имеет единственное решение т.е. является определенной.

3 случай: $\widetilde{s} < n$

$$\begin{pmatrix} 0 & 0 & |a_{1k_1} & * & \cdots & * & * \\ 0 & 0 & 0 & |a_{2k_2} & * & \cdots & * & * \\ & & & \ddots & & & \vdots \end{pmatrix}$$

 $a_{1k_1},...,a_{sk_s}$ - лидеры;

 $x_{k_1},...,x_{k_s}$ - главные неизвестные (неизвестные соответствуют лидерам) Оставшиеся неизвестные назовем свободными.

Перекинем в правую часть СЛУ слагаемые, соответствующие свободным неизвестным \Longrightarrow получаем относительно главных неизвестных строго треугольную СЛУ.

Как в случае 2 однозначно выражается главные неизвестные через свободные \implies с точностью до нумерации получаем:

$$\begin{cases} x_1 = c_{1,s+1}x_{s+1} + \dots + c_{1n}x_n + d_1 \\ \vdots \\ x_s = c_{s,s+1}x_{s+1} + \dots + c_{sn}x_n + d_s \end{cases}$$

Это выражение называется общим решением системы. Подставляя вместо свободных неизвестных конкретное число из \mathbb{R} , получаем значение для главных.

⇒ получаем все решения СЛУ

Если СЛУ имеет > 1 решения - такое СЛУ называется неопределенным.

СЛУ
$$\widetilde{s} \neq s \qquad \qquad \widetilde{s} = s$$
 несовместна
$$\widetilde{s} = s = n \qquad \qquad \widetilde{s} = s \leq n$$
 определенна неопределенна

Алгоритм. $AX = B \longmapsto (A|B) \sim (A_c|B_c) \longmapsto A_cX = B_c$

Определение. Матрица A имеет улучшенный ступенчатый вид, если выполнены следующие условия:

- 1. A ступенчатого вида
- 2. Все лидеры равны 1
- 3. В каждом столбце, где есть лидер $\neq 0$, все элементы равны 0

Утверждение. Любую матрицу A можно привести к улучшенному ступенчатому виду с помощью элементарных преобразований

Рассмотрим последний лидер a_{sk_s} . Если $a_{sk_s} \neq 1$, то s-ю строку делим на a_{sk_s} и получаем, что $\widetilde{a_{sk_s}}=1$.

Далее из всех строк вычитаем первую, умноженную на $a_{ik_s} \Longrightarrow \widetilde{a_{ik_s}} = 0$ и т.д.

Определение. СЛУ AX = B называется однородной, если B = 0, т.е. все свободные члены ненулевые.

Утверждение. Однородная система всегда совместна.

Доказательство. AX=0 всегда имеет решение $x_1=0,...,x_n=0$ (тривиальное решение)

Следствие. Однородная СЛУ, в которой число уравнений < числа неизвестных, имеет нетривиальное решение.

Доказательство. (в обозначениях из метода Гаусса)

Т.к. система совместна (т.к. B=0), то $s=\widetilde{s}$

С другой стороны $s=\overline{s}\leq$ число исходных уравнений < n \Longrightarrow $s=\widetilde{s}<$ n \Longrightarrow СЛУ неопределенна \Longrightarrow \exists более одного решения \Longrightarrow \exists нетривиальное решение.

2 Векторные пространства

2.1 Аксиомы элементов векторного простанства

Мы рассматриваем векторные пространства над полем \mathbb{R} .

Определение. Векторным пространством над \mathbb{R} называют множество элементов V, на котором введены операции сложения и умножения на числа из \mathbb{R} :

1.
$$\forall x, y \in V \Longrightarrow x + y = z \in V$$

2.
$$\forall \lambda \in \mathbb{R}, \forall x \in V \Longrightarrow \lambda x = w \in V$$

Удовлетворяет следующими свойствами:

- 1. x+y = y+x (коммутативность)
- 2. (x+y)+z = x+(y+z) (ассоциативность)
- 3. $\exists \, 0 \in V : \forall x \in V : x + 0 = 0 + x = x$ (нейтральный элемент относильно сложения)
- 4. $\forall x \in V : \exists \, x' : x + x' = 0 \; ($ противоположный элемент)
- 5. $\forall \lambda \in \mathbb{R}, \forall x,y \in V: \lambda(x+y) = \lambda x + \lambda y$ (дистрибутивность умножения отностильно сложения)
- 6. $\forall \lambda, \mu \in \mathbb{R}, \forall x \in V : (\lambda + \mu)x = \lambda x + \mu x$ (дистрибутивность сложения отностильно умножения)
- 7. $\forall \lambda, \mu \in \mathbb{R}, \forall x \in V : \lambda(\mu x) = (\lambda \mu) x$ (ассоциативность умножения)
- 8. $\forall x \in V : 1 \cdot x = x$ (нейтральный элемент относильно умножения)

Определение. Любой элемент векторного пространства называется вектором

Примеры векторных пространств:

- 1. V^2 Геометрические векторы на плоскости
- 2. V^3 Геометрические векторы в пространстве
- 3. $\mathbb{R}^n = \{(a_1,...,a_n)|a_i \in \mathbb{R}\}$ арифметические векторы

"+":
$$(a_1,...,a_n)+(b_1,...,b_n)=(a_1+b_1,...,a_n+b_n)$$
"×": $(a_1,...,a_n)\times\lambda=(a_1\lambda,...,a_n\lambda)$

Упражнение. Проверьте, что \mathbb{R}^n (арифметическое пространство строк) с этими операциями является векторным пространством.

2.2 Следствия

1. нулевой вектор единственный

Доказательство. Пусть существует два $\overline{0}_1, \overline{0}_2 \in V$, тогда:

$$\overline{0}_2 = \overline{0}_1 + \overline{0}_2 = \overline{0}_2 + \overline{0}_1 = \overline{0}_1$$

2. $\forall x \in V$ противоположный вектор единственный

$$\overline{0} + x_2 = (x_1 + x) + x_2 = x_1 + (x + x_2) = x_1 + \overline{0}$$

3. $\forall \lambda \in \mathbb{R} : \lambda \cdot \overline{0} = \overline{0}$

Доказательство.

$$\lambda \cdot \overline{0} = \lambda \cdot (\overline{0} + \overline{0}) = \lambda \cdot \overline{0} + \lambda \cdot \overline{0}$$

Прибавим к обе им частям уравнения $\lambda\cdot\overline{0}=\lambda\cdot\overline{0}+\lambda\cdot\overline{0}$ противоположный к $\lambda\cdot\overline{0}$, тогда:

$$\lambda \cdot \overline{0} + (-\lambda \cdot \overline{0}) = \lambda \cdot \overline{0} + \lambda \cdot \overline{0} + (-\lambda \cdot \overline{0})$$
$$\overline{0} = \lambda \cdot \overline{0}$$

4.
$$\lambda \cdot (-x) = -\lambda \cdot x$$

5.
$$\lambda \cdot (x - y) = \lambda x - \lambda y$$

6.
$$\lambda \cdot \overline{0} = \overline{0}$$

7.
$$(-1) \cdot x = -x$$

8.
$$(\lambda - \mu) \cdot x = \lambda x - \mu x$$

2.3 Векторные подпространства

Определение. Подмножество $U \subseteq V$ над векторным подпространством, если:

- 1. $x, y \in U \Longrightarrow x + y \in U$
- 2. $\forall \lambda \in \mathbb{R}, \forall x \in U \Longrightarrow \lambda \cdot x \in U$
- 3. $U \neq \emptyset$

Замечание. 3 условие заменить на условие: $0 \in U \iff$ очевидно.

$$\Longrightarrow$$
 если $U \neq \varnothing$, то $\exists x \in U \Longrightarrow$ по $2: (-1) \cdot x \in U \Longrightarrow -x \in U$ $\Longrightarrow x + (-x) \in U \Longrightarrow 0 \in U$

Утверждение. Любой вектор подпространства векторного простанства V сам является векторным пространством относительно операций векторного пространства

Доказательство. Надо проверить определение. 1 и 2 свойство из операций векторного простанства означают, что в U заданы операции сложения и умножения на вещественное число. Проверка аксиом векторного простанства: 1,2,5,6,7,8 выполнены для всех векторов из V, а значит и для всех векторов из U. 3,4 доказательство как в замечании.

$$\forall x \in U, \ \exists (-x) = (-1) \cdot x \in U, \ \overline{0} \in U, \text{ t.k. } U \neq \emptyset$$

Примеры.

- 1. V^3, U множество всех векторов из $V^3,$ параллельные фиксированной плоскости.
- 2. $\mathbb{R}^n, U = \{(a_1, ..., a_n) | a_{2i} = 0\}$ векторное подпространство $\widetilde{U} = \{(a_1, ..., a_n) | a_{2i} = 1\}$ не векторное подпространство, т.к. множество не замкнуто относительно сложения и умножения.
- 3. В любом векторном простанстве V есть такие подпространства, состоящие только из нулевого вектора. (тривиальное или несобственное подпространство) (Остальное называется собственными)

2.4 Линейная зависимость системы векторов

V - векторное пространство над полем $\mathbb R$

Определение. Линейной комбинацией векторов $v_1, ..., v_n \in V$ с коэфициентами $\lambda_1, ..., \lambda_n \in \mathbb{R}$ называется выражение вида:

$$\lambda_1 x_1 + \cdots + \lambda_n x_n$$

Говорят, что вектора $w \in V$ линейно выражается через $(v_1, ..., v_n)$, если $\exists \lambda_1, ..., \lambda_n \in \mathbb{R} : w = \lambda_1 x_1 + \cdots + \lambda_n x_n$

Определение. Линейной комбинацией $\lambda_1 x_1 + \cdots + \lambda_n x_n$ назавается тривиальной, если $\lambda_1 = 0, ..., \lambda_n = 0$. Иначе нетривиальной.

Определение. Система векторов $v_1, ..., v_n$ называется линейно зависимой (ЛЗ), если \exists нетривиальная линейная комбинация равная 0, (т.е. $\exists \lambda_1, ..., \lambda_n \in \mathbb{R}$ не все равные 0) такая что $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$. Иначе система называется линейно независимой (ЛНЗ), т.е. из любого такого равенства $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$ $\Longrightarrow (\lambda_1, ..., \lambda_n) = 0$.

Примеры. $V^2, v_1 = i + j, v_2 = 2i, v_3 = 3i$ -линейно зависимая система, т.к.

$$1 \cdot (i+j) + (-\frac{1}{2}) \cdot (-\frac{1}{3}) \cdot (3i) = 0$$

$$1 \cdot v_1 + \left(-\frac{1}{2}\right) \cdot v_2 + \left(-\frac{1}{3}\right) \cdot v_3 = 0$$

Свойства.

- 1. Система из одного вектора V_1 ЛЗ $\Longleftrightarrow V_1=0$
- 2. Система из 2-х векторов v_1 и v_2 ЛЗ \iff противоположные, т.е. $v_1 = \lambda v_2$ $v_2 = \mu v_1$.

Пример. \mathbb{R}^n

Система $\underbrace{(1,0,0,...,0)}_{e_1},\underbrace{(0,1,0,...,0)}_{e_2},...,\underbrace{(0,0,0,...,1)}_{e_n}$ линейно независимая $\lambda_1e_1+\cdots+\lambda_ne_n=(0,...,0) \stackrel{e_2}{\Longleftrightarrow} (\lambda_1,...,\lambda_n)=0 \stackrel{e_n}{\Longleftrightarrow}$ ЛНЗ

Лемма. (Критерий линейной зависимости) Система векторов $v_1,...,v_n \in V$, n>1 - линейно зависимы \iff хотя бы один вектор линейно выражается через оставшиеся.

Доказательство.

 \Longrightarrow По определению ЛЗ $\exists \lambda_1, ..., \lambda_n \in \mathbb{R}$ не все нулевые: $\lambda_1 v_1 + \cdots + \lambda_n v_n = \varnothing$. Без ограничения общности можем считать, что $\lambda_1 \neq 0$, тогда $v_1 = \frac{1}{\lambda_1} (-\lambda_2 v_2 - \cdots - \lambda_n v_n)$

$$v_1 = \mu_2 v_2 + \dots + \mu_n v_n$$

 $1\cdot v_1-\mu v_2-\dots-\mu_n v_n=0$ - нетривиальная линейнвая комбинация, т.к. μ_1 (коэф. перед $v_1)\neq 0\Longrightarrow v_1,\dots,v_n$ - линейно зависима.

Замечание. В лемме 1 нельзя «хотя бы один» заменить на «любой»! Пусть $v_1 \neq 0, v_2 = 0$ и v_1, v_2 - ЛЗ, т.к. $0 \cdot v_1 + 1 \cdot v_2 = 0$

Лемма. Пусть $v_1, ..., v_n \in V$ - ЛНЗ, тогда $w \in V$ линейно выражается через $v_1, ..., v_n \iff (w, v_1, ..., v_n)$ - ЛЗ.

Доказательство.

$$\Longrightarrow \exists \mu_1, ..., \mu_n \in \mathbb{R} : w = \mu_1 v_1 + \cdots + \mu_n v_n \Longrightarrow$$
 по критерию ЛЗ система $\{w, v_1, ..., v_n\}$ - ЛЗ.

 $\underline{\longleftarrow}$ Пусть система ЛЗ $\Longrightarrow \exists \lambda_0,...,\lambda_n \in \mathbb{R}$ - не все нули, так что $\lambda_0 w + \lambda_1 v_1 + \cdots + \lambda_n v_n = 0$, тогда

1.
$$\lambda_0$$
, то $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ - нетривиальная линейная комбинация

2.
$$\lambda_0 \neq 0 \Longrightarrow w = (-\frac{\lambda_1}{\lambda_0})v_1 + \cdots + (-\frac{\lambda_n}{\lambda_0})v_n$$