A Natural Product Combination for Alzheimer's Disease

Skylar Saveland

November 29, 2015

Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative condition associated with old age. It is the most common cause of dementia, inflicting an increasing social and economic burden. Medications which are currently approved in the United States do not reverse or prevent disease progression. Therefore, we seek new therapies with more dramatic impact.

There has been abundant interest in natural products to treat Alzheimer's. A large number of preclinical studies have demonstrated that many crude natural products have therapeutic potential. Clinical trials have been conducted on a few of these natural products. A number of traditional medicines which are combinations of natural products have been used to treat AD. Particularly in China, Japan and Korea, testing has been undertaken to scientifically verify the activities of these combinations. Some clinical trials have been conducted that support the usefulness of these combinations. Ascertaining which constituents are responsible for the positive effects, what interactions may be involved, and what role synergism plays, are daunting combinatorial problems.

Prevailing theories of AD causation have focused on the observed biochemical abnormalities of the senile brain. Observations of amyloid- β plaques, cholinergic deficits, tau protein abnormalities, neuroinflammation and oxidative stress, and aberrant signalling cascades leading to neuronal apoptosis have partially elucidated the clinical picture but have failed to produce satisfactory pharmaceuticals. Natural products are rich in substances which target relevant pathways in AD. Some have even become FDA-approved treatments for AD.

Recent research has produced evidence that AD may be caused by fungal infection in the central nervous system (CNS). Many natural products which have been investigated for their potential to curb the biochemical abnormalities associated with AD also show promise as antifungal agents.

Here we conduct a review of the available literature in an attempt to determine which natural products are the most promising candidates for AD therapy. Preferred candidates will have success in clinical trial, clean safety profiles and robust biochemical rationale. We propose a combination of the best candidates to be tested in a new RCT.

Contents

L	Background	4
	1.1 Alzheimer's Disease Etiology	4

		1.1.1 Amyloid- β (AB)	4					
		1.1.2 Microcirculation	5					
		1.1.3 Inflammation	5					
		1.1.4 Infection	5					
		1.1.5 Other theories of causation	5					
	1.2	Traditions	6					
		1.2.1 Kampo	6					
		1.2.2 TCM	6					
		1.2.3 Mixtures Used in Other Countries	6					
2	Evic	dence for Combinations of Natural Products	6					
	2.1	Yokukansan (YKS)						
	2.2	Di-Tan Decoction (DTD)	8					
	2.3	Shen-Zhi-Ling (SZL)	8					
	2.4	Keishi-ka-ryukotsu-borei-to (KRBT)	8					
	2.5	Chotosan (CTS)	8					
	2.6	Kamikohito (KKT)	8					
	2.7	Ninjin'yoeito (NYT)	9					
	2.8	Hochuekkito	9					
	2.9	.9 Zokumei-to (ZMT)						
	2.10	Ba Wei Di Huang Wan (BWD)	9					
	2.11	Kai-xin-san (KXS)	9					
	2.12	Yishen Huazhuo decoction (YHD)	9					
	2.13	And more?	10					

3 Evidence for Individual Natural Products

	3.1	Acorus	10				
	3.2	Curcuma	11				
	3.3	Salvia	11				
	3.4	Syzygium	11				
	3.5	Citrus	11				
	3.6	Panax	12				
	3.7	Fungi	12				
		3.7.1 Ganoderma	12				
		3.7.2 Hericium	12				
		3.7.3 Poria cocos	12				
4	Bio	chemical Targets	12				
	4.1	Fungal Infection	12				
	4.2	Innate Immunity	13				
	4.3 Amyloid- β						
	4.4	Inflammation	13				
	4.5	Cholinergic Drugs	14				
	4.6	Hormonal Therapy	14				
5	Safe	${f ety}$	14				
6	Cha	allenges	14				

1 Background

Natural products have probably been used as medicine for over 60,000 years. From then until modern times, more than 200,000 natural products and compounds have been discovered. [1] In recent history, modern chemistry has allowed the chemical design of individual molecules for pharmaceutical applications. But, applying individual molecules to chronic neurodegenerative diseases, for instance, has brought scant success. Interest in natural medicine has sustained through the modern era. A large majority of drugs derive from natural products. There were no fully synthetic compounds approved as a drugs in this time frame between 1981 and 2002. [2] Of 175 small molecules used against cancer up to 2010, 74.8% were not completely synthetic and 48.6%, were directly derived from natural products. [3] Antibiotic and antifungal compounds have come from leads provided by nature. Antibiotic discovery has been dependent on metabolites produced by soil bacteria. [4] Ethnobotany still provides a rich resevoir of CNS-active pharmacological leads. [5, 6]

Traditional medicines from China, Japan and Korea invariably employ combinations of different materials from plants and fungi. A large number of active components have been identified. [7] Synergistic relationships have been shown between substances in traditional combinations. Multiple active components working together may be the key to future AD treatments. [8, 9]

Psycotropic medicines derived from natural products are particularly promising. [10] Significant evidence exists that suggests that NPs may be effective psychotherapeutics. [11] A wealth of NPs are candidates for the treatment of Alzheimer's in particular. One candidate, [12] Many acetylcholinesterase(ACHE) inhibitors with potential clinical relevance have been discovered from natural products. [13] NPs may play a role in inhibiting microglial neurotoxicity. [14] In addition to biochemical target activities, traditional medicines may provide improvements in cognitive impairment, fatigue,

1.1 Alzheimer's Disease Etiology

AD is a disease of old age characterized by slow onset with a progressive loss of cognitive function and gradual decline into dementia. AD is the most common cause of dementia. The time from diagnosis until death is usually 8-10 years. The most notable pathological changes are plaques of misfolded proteins, neurofibrillary tangles, alterations in the microvasculature of the brain. oxidative stress.

1.1.1 Amyloid- β (AB)

The cerebral deposition of amyloid- β protein in AD patients has been recognized for decades. These proteins, which begin to accumulate for years or even decades before the onset of dementia, have long been considered central to the pathology of AD. [16]

A popular hypothesis states that AB is the causative agent in AD, causing the cascade of abnormality observed. Genetic mutations which cause abnormal amyloid precursor protein (APP) are implicated. AB is neurotoxic and could lead to the neurofibrillary tangles and ultimately the death of neurons. [17]

Soluble AB was strongly correlated with AD severity. Measures of insoluble AB could distinguish AD patients from controls; but, could not predict AD severity. AB is usually thought of as extracellular. However, soluble AB can be extracellular or intracellular. [18]

More recently, synaptotoxic AB oligomers have been implicated in AD biopathology, triggering the accumulation of reactive oxygen species (ROSs). This provides an explanation for the therapeutic action of memantine. [19]

1.1.2 Microcirculation

A idea related to AB toxicity is that disturbed microcirculation in the brain causes AD. [20] One recent review stated that the AB hypothesis of AD causation has proven inadequate and that therapeutic strategies should focus on the microcirculation hypothesis and supporting normal angiogenesis. [21]

The microcirculation hypthesis states that the primary cause of AD is related to deficiencies in the microvasculature of the brain. These deficits may allow the inflow of neurotoxins into the brain and, perhaps more importantly, prevent the adequate outflows of neurotoxins such as AB.

BBB dysfunction has been noted in AD patients, including leakage which may allow neurotoxins and infectious agents to enter the brain. However, this finding is controversial. Some studies failed to find additional leakage in AD brains when compared to age-matched controls. Other BBB dysfunctions observed in AD involve inadequate nutrient supply and inadequate clearance of toxic substances. In addition, altered proteins at the neuro-vascular unit may promote inflammation, oxidative stress and neuronal damage. [22]

1.1.3 Inflammation

Certainly AD pathology involves extracellular plaques involving AB, neurofibrillary tangles with abnormal tau protiens, vascular malfunction and cell death caused by ROS and inflammation. Some propose that inflammation and oxidative stress precede the development of the AB plaques, initiating the pathological cascade observed in AD. [23]

1.1.4 Infection

The idea that infections cause AD has been widely studied and has not been ruled out. In fact, a substantial amount of evidence suggests that AD may be caused by infection. Histopathological hallmarks of AD are known to occur in chronic infections, including those of the CNS. [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] In addition, evidence has emerged that AB is antimicrobial and may be produced as an innate immune response to infection. [36]

Inflammatory cytokines typical of immune response to infection are associated with the inflammation observed in AD. Elevated levels of interleukin-1, interleukin-6 and tumor necrosis factor- α have been observed. [37, 38, 39, 40]

Pathogens most commonly studied in AD etiology have been viral, bacterial and prional. These include HSV-1, *C. pneumoniae*, *B. burgdorferi*, *H. pylori*, and prions. One group has argues that HSV-1 initiates the pathological cascade. [41] Although, if HSV-1 is the primary cause of AD, how do some people without HSV-1 infection develop AD? Another group found that anti-HSV IgM was associated with double the risk of developing AD, indicating that reactivated HSV-1 infection increases the risk of developing AD. [42]

The possibility of fungal pathogenisis has been almost completely overlooked. [43]

Recently, a series of studies from the same research group have provided evidence that AD may be caused by fungal infection in the CNS [44, 45, ?]

1.1.5 Other theories of causation

Deficits in glucose metabolism including insulin resistance have been implicated as risk factors for AD. [22] Some have even proposed that these irregularities could play a role in the etiology of the disease. [23] Research has indicated that those who develop type 2 diabetes and those who develop AD share some genetic risk factors. [46]

One review found that AD may be related to sleep apnea. [47]

In addition to a number of possible environmental hazards, an epidemiological review found a number of genes which increased the risk of early-onset and late-onset AD. [48]

1.2 Traditions

1.2.1 Kampo

Kampo medicine, a traditional medicine of Japan, is a complex system of individualized diagnosis and treatment. An important component of Kampo is precise formulations of natural products based on older Chinese recipes. 148 or more combinations are covered by the national health insurance system in Japan. Of 135 published randomized controlled trials on Kampo combinations published between 1986 and 2007, 37 were available in English. As chronic degenerative diseases have become more prominent in an aging population, interest in Kampo has increased as has Kampo's integration into modern medical practice. A recent survey indicated that 70% of Japanese physicians prescribe Kampo formulations. Insurance-covered formulations include standardized extracts and crude decoctions. Applying Kampo formulations to conventional diagnoses is a challenge because in traditional Kampo, the same conventional diagnosis could result in the prescription of different formulations while different conventional diagnoses could result in the prescription of the same formulation. [49] However, Kampo may evolve based on new scientific evidence. [50]

The testing specific individual formulations on a specific conventional diagnosis is useful for applying Kampo formulations in clinical practice in countries like the United States where expert Kampo practioners are few. Therefore, for the purposed of this review, the best evidence will be considered to be randomized, placebo-controlled clinical trials on specific formulations for the specific diagnosis of AD.

1.2.2 TCM

A review of Chinese Herbal Medicine for the management of vascular dementia (VD), a disease similar to AD, was conducted, highlighting the urgent need for more clinical trials of high quality. [?]

1.2.3 Mixtures Used in Other Countries

2 Evidence for Combinations of Natural Products

Many different traditional mixtures exist which are used treat AD. The mixtures have many overlapping components.

Table 1 shows the degree of overlap between individual natural products and some traditional mixtures

In a review of double blind clinical trials of Chinese medicine to improve cognitive function, the most commonly used ingredients found were Acorus, Panax, Polygala, and Poria.

Our review so far has found that Poria, Acorus, Citrus, Glycyrrhiza and Zingiberis are the most commonly found in traditional medicine used in Asia to treat AD.

2.1 Yokukansan (YKS)

Yokukansan is a mixture of seven crude natural products, Atractylodis lanceae rhizoma, Poria cocos sclerotia, Cnidii rhizoma, Angelicae radix, Bupleuri radix, Glycyrrhizae radix, and Uncariae uncis cum ramulus. Yokukansan is called Yi-Gan San in TCM. [51] Clinical trials have demonstrated Yokukan-sans efficacy in treating patients with BPSD. Accordingly, Yokukansan has been listed by The Japanese Society of Neurology in the Japanese Guidelines for the

Genus	YKS	DTD	FMJ	PN-1	SZL	WD	BDW	CMT	HCKT	KRBT	CTS
Poria	X	X	X		X	X	X	X			X
Atractylodis	X								X		
Ligusticum	X										
Angelica	X								X		
Bupleurum	X								X		
Glycyrrhiza	X								X	X	X
Astragalus				X					X		
Uncariae	X										X
Arisaema		X									
Pinellia		X				X		X			
Citrus		X	X			X			X		X
Acorus		X	X		X	X		X			
Ginseng		X							X		X
Bambusa		X				X					
Zingiberis		X							X	X	X
Rehmannia			X				X				
Gastrodia						X					
Ophiopogon			X								X
Anemarrhena			X								
Paeonia			X				X			X	
Dendrobium			X								
Akebia			X								
Cistanche				X							
Codonopsis					X						
Cinnamomum					X		X			X	
Polygala					X			X			
Ostrea										X	
Polygonum						X					
Ziziphus						X			X	X	
Aconitum							X				

Table 1: Mixture to Genus Matrix

Management of Dementia since 2010. A recent review found 13 clinical trials of varying quality included a total of 466 patients that found YKS to be a safe and effective way to raise Neuropsychiatric Inventory (NPI) scores. The Mini-Mental State Examination (MMSE) score of cognitive impairment and the Disability Assessment for Dementia (DAD) score of caregiver burden were unimproved, however. [52] Another review of noted improvements in the activities of daily living (ADL) score. [53] Repeated clinical trials have proven the efficacy of YKS in improving NPI and ADL scores in patients with AD. [54]

In a cross-over study of 106 patients to investigate the use of Yokukansan to treat the behavioural and psychological symptoms of dementia (BPSD), a significant improvement in Neuropsychiatric Inventory (NPI) was found. Significant improvements were observed in delusions, hallucinations, agitation/aggression, depression, anxiety, and irritability/lability. Effects were sustained for one month after treatment was ceased. Cognitive function was not significantly improved. [55] In a 52 patient RCT of Yokukansan to treat dementia, BPSD and ADL scores were improved. [51] In an open-label study of 26 patients who received 7.5 grams/day of Yokukansan for 4 weeks, success was seen in reducing hallucinations, agitation, anxiety, irritability and abnormal behavior. But, overall disability and congnitive function were not improved. The mixture was well tolerated. [56] In a non-blinded, randomized, parallel-group comparison study with 61 participants, YKS with donepezil was better than donepezil alone in measures BPSD. Proving YKS to be safe and effective. [57]

Yokukansan is considered very safe. In a case series of 3 patients between 10 and 13 years old, YKS considered effective in treating pediatric emotional and behavioral problems within 14-21 days. [58]

2.2 Di-Tan Decoction (DTD)

DTD is a combination of ...

A double-blind, randomized, placebo-controlled, add-on trial testing the efficacy of DTD to treat cognitive impairment in AD patients. [59]

2.3 Shen-Zhi-Ling (SZL)

98 patients completed a double-blind clinical trail of SZL. SZL was found to be more effective than placebo, delaying BPSD and improving scores of evening activity and nocturnal activity. [60]

2.4 Keishi-ka-ryukotsu-borei-to (KRBT)

KRBT is a mixture of 7 natural products: cinnamon bark, peony root, jujube fruit, oyster shell, fossilized bone, glycyrrhiza, and ginger rhizome that was found to effectively BPSD in a case report. Gonadotrophin profiles were positively altered. [61]

2.5 Chotosan (CTS)

Chotosan is a mixture of 11 natural products, Uncariae Uncis cum Ramulus, Aurantii Nobilis pericarpium, Pinelliae tuber, Ophiopogonis tuber, Poria cocos, Ginseng radix, Saposhnikoviae radix, Chrysanthemi flos, Glycyrrhizae radix, Zingiberis rhizome, and Gypsum fibrosum. Along with YKS, Chotosan has shown promise in clinical and preclinical studies as a treatment for AD. Both mixtures contain Uncariae Uncis. [62]

2.6 Kamikohito (KKT)

KKT is composed of 14 crude drugs:

Ginseng Radix (P. ginseng C.A. Meyer), Polygalae Radix (P. tenuifolia Willd.), Astragali Radix (A. membranaceus Bunge), Zizyphi Fructus (Zizyphus jujube Mill. var. inermis Rehd.), Zizyphi Spinosi Semen (Z. jujube Mill. var. spinosa), Angelicae Radix (Angelica acutiloba Kitagawa), Glycyrrhizae Radix (Glycyrrhiza uralensis Fisch), Atractylodis Rhizoma (Atractylodes japonica Koidzumi ex Kitamura), Zingiberis Rhizoma (Zingiber officinale Roscoe), Poria (Poria cocos Wolf), Saussureae Radix (Saussurea lappa Clarke), Longanae Arillus (Dimocarpus longana), Bupleuri Radix (Bupleurum falcatum Linne), and Gardeniae Fructus (Gardenia jasminoides Ellis). Eleven of the fourteen NPs are listed in 1. Saussurea, Dimocarpus, and Gardenia are unique to KKT.

An animal model revealed that KKT improved amyloid- β -induced tau phosphorylation and axonal atrophy even after axonal degeneration had progressed. [63, 64]

2.7 Ninjin'yoeito (NYT)

23 patients who had a insufficient response to donepezil received donepezil alone or donepezil and NYT. A 2-year follow-up showed that patients receiving NYT had an improved cognitive outcome and alleviation of AD-related depression. [65]

2.8 Hochuekkito

Hochuekkito is a mix of 10 natural products, Astragali Radix, Atractylodis lanceae Rhizoma, Ginseng Radix, Angelicae Radix, Bupleuri Radix, Zizyphi Fructus, Aurantii Bobilis Pericarpium, Glycyrrhizae Radix, Cimicifugae Rhizoma, and Zingiberis Rhizoma. [66]

In a placebo-controlled clinical trial of Hochuekkito showed that the formulation improved the QOL and immunological status of elderly patients with weakness. [67]

2.9 Zokumei-to (ZMT)

In an animal model of AD using Amyloid- β , ZMT treatment significantly increased the level of expression of synaptophysin up to the control level. Memory impairment and synaptic loss was ameliorated in the mice even after impairment had progressed. [68]

2.10 Ba Wei Di Huang Wan (BWD)

BWD is a traditional Chinese formulation of 8 natural products, Rehmannia glutinosa, Cornus officinalis, Dioscoreabatatas root, Alisma orientale rhizome, Poria cocos, Paeonia suffruti-cosa, Cinnamomum cassia, and Aconitum carmichaeli.

In a placebo-controlled RCT of 33 patients with AD, cognitive function was significantly improved by BWD compared to placebo based on the Mini-Mental State Examination (MMSE). The activities of daily living (ADLs) score was also improved versus placebo. Scores returned to baseline after eight weeks. [69]

2.11 Kai-xin-san (KXS)

KXS is a traditional formulation thought to be beneficial in the treatment of AD. It contains Panax, Polygala, Acorus, and Poria. KXS modulated neurological parameters in an animal model of depression. [70] The Chinese report progress in using KXS against AD. [71]

2.12 Yishen Huazhuo decoction (YHD)

YHD was found to be comparable or better than the conventional AChE drug donepezil

[72]

2.13 And more?

Xixin Decoction is a mixture of Ginseng Radix et Rhizoma, Pinelliae Rhizoma, Poria, Aconiti lateralis Radix praeparata, et al(?) that was effective in an animal model of AD. [73]

Juzen-taiho-to (JTT), also known as Shi quan da bu tang in Chinese medicine is a mixture of 10 familiar ingredients, Panax ginseng (Ginseng), Angelica sinensis (Dong quai), Paeonia lactiflora (Peony), Atractylodes macrocephala (Atractylodes), Poria cocos (Hoelen), Cinnamomum cassia (Cinnamon), Astragalus membranaceus (Astragulus), Liqusticum wallichii (Cnidium), Glycyrrhiza uralensis (Licorice), and Rehmannia glutinosa (Rehmannia). JTT has been investigated in an animal model for its potential to help against *Candida* infection. [74] In another model that tested components individually, Ginseng, Glycyrrhizae radix, Atractylodis and Cnidii were found to be the promising antifungal components individually. [75]

3 Evidence for Individual Natural Products

Natural products are evaluated for their effects as refined molecules and as crude drugs. Molecules of interest in AD include, polyphenols, flavonoids, alkaloids, phenylpropanoids, triterpenoid saponins, and polysaccharides which are investigated against multiple pathological pathways. [76, ?]

In addition to the traditional formulations, individual constituents are studied for their potential to treat AD including Huperzine, Gingko, Curcuma, Salidroside, Periwinkle-vinca, Centella, Melissa, Polygala, Salvia, and Withania. [77] Investigation in the West has been limited to a few herbs, notably Gingko. Some herbs used in traditional European medicine such as Salvia officinalis and Melissa officinalis are under investigation for their potential as AD treatments. [6]

3.1 Acorus

Acorus calamus (Ac), found in N out of M of the reviewed Asian combinations, has a long history of medicinal and recreational use including use in India, China, Thailand and by Native Americans. [78]

A survey of Thai plants found that Ac exhibited strong antimicrobial activity against spoilage yeasts and moderate, antioxidant and AChE-inhibiting activities. [79] An in vitro study showed that β -asarone, an active constituent of Ac, was highly potent against Candida albicans, disrupting ergosterol synthesis, and suggested that β -asarone could be used as a topical antifungal. [80] It has been reported that some variations of Acorus calamus, namely the American dipoloid varieties, do not contain β -asarone. [78] We have not seen a study indicating whether crude extracts of these non- β -asarone producing varieties are antifungal. Other related substances have been found to be potent antifungals. [81]

Further in vitro evidence suggest that an active fraction of Ac, by inhibiting ergosterol synthesis, could help us overcome strains which have become resistant to current antifungal drugs. [82] Researchers have become fairly confident based on in vitro results that α and β asarones are responsible for the pronounced antifungal activity. [83] Against Candida biofilms, compared to Amphotericin B and ketoconazole, the gold-standard antifungals, Acorus calamus fractions were superior. The fungal biomass was completely killed at 2mg/ml concentrations of the Ac concetrates; but, the standard antifungal drugs were unable to perfuse the biofilm and had little effect. [84] Although, an earlier review with a different assay showed that, while Ac and clove were moderately effective fungistatics (Ac < clove <eugenol < Amphotericin B), Amphotericin B was a far stronger fungicidal agent compared to calamus. [85] However, recently, it was shown that asarones from Ac interacted synergistically with standard antifungals, requiring less of each to express fungicidal activity. [86] The in vitro antifungal effects of AC

were confirmed *in vivo*. Acorus calamus extract was superior to ketoconazole in an animal model. [87]

Perhaps irrelevantly, an endophytic fungus associated with Ac, *Fusarium oxysporum*, had modest antimicrobial and antifungal activity. [88]

3

3.2 Curcuma

Turmeric, Curcuma longa root, has a long history of use as medicine. [?] Curry consumption in old age may benefit cognitive function according to an epidemiological study. [89]

A case series reported that turmeric was remarkably effective in treating 3 patients with AD. Interestingly, two of these patients were also taking Yokukansan under the supervision of the Japanese physicians. [90]

Curcumin, a phenolic compound derived from turmeric, has been investigated for various neurological disorders including major depression, tardive dyskinesia and diabetic neuropathy. [91] Curcumin has been effective in animal models of AD. [?] The effects are hypothesized to be antioxidant, antiinflammatory, acetylcholinesterase-inhibiting, and AB inflammation-inhibiting. [?] In vivo studies have show that the bioavailability of curcumin alone is poor. [?] However, it has been show that curcumin can pass the BBB. Also, some compounds may be able to increase the bioavailability of curcumin. In one study, piperine, an alkaloid from black pepper, was able to increase curcumin concentrations in the serum of human volunteers by 2000%. [92] An effort has been made make curcumin more soluble in water through the use of synthetic nanoparticles. [93]

The success of curcuminoids in preclinical models of AD has been impressive, suppressing presenilin, reducing the burden of AB and tau, modulating the immune system, increasing AB efflux, and enhancing spatial memory. [94, 95, 96, 97, 98, ?]

At least 4 clinical trials have been initiated to test the efficacy of curcumin in treating AD. No trial has been done on a crude extract of turmeric.(?)

However, preclinical reviewers have emphasized that non-curcumin constituents of turmeric may be important in the overall therapeutic action of turmeric. [99] Human safety trials have shown that curcumin is relatively safe up to 12 grams a day. However, a review of clinical trials evaluating curcumin in AD have failed to establish curcumin as an effective drug. [100]

Compounds other than curcumin may be important to prevent cognitive decline in the elderly and even to help cure AD. In addition to curcumin, turmeric contains small molecules that were able to protect cell cultures from AB. [101]

3.3 Salvia

Salvia lavandulaefolia (Spanish sage) had strong in vitro antiinflammatory activity relevant to AD. [102] Salvia is a large genus with antifungal properties. [103, 104]

3.4 Syzygium

Syzygium is not mentioned in the traditional combinations used to treat AD from Japan, China and Korea. However, it was found that Syzygium aromaticum (clove) extract was more potent than Acorus calamus in some assays. [105]

3.5 Citrus

Different species for Citrus are used in traditional medicines which are employed against AD. Typically, the mesocarpum and epicarpum are studied for their neuroprotective, antiinflammatory and antioxidant flavonoids. [?]

Nobiletin-rich Citrus reticulata peels, a kampo medicine for Alzheimer's disease: A case series [106]

3.6 Panax

Ginseng was part of a mixture that helped mice with macrophage abnormalities survive *Candida* infection. [74]

3.7 Fungi

Many mushrooms and other fungi are used around the world for medical purposes. There is a robust scientific rationale suggesting that some fungal products may prove to be effective treatments for AD.

3.7.1 Ganoderma

Aqueous extract of $Ganoderma\ lucidum$ was able to prevent the harmful effects of amyloid- β in an $in\ vitro$ study, preserving the synaptic density protein, synaptophysin in a dose-dependent manner. [107]

Ganoderma lucidum was able to prevent neurotoxicity and hippocampal degeneration while improving cognitive dysfunction in an animal model of AD produced by toxic oxidative stress via streptozotocin (STZ). [108]

Ganoderma lucidum contains small molecules which inhibit AChE. [109]

An immune-modulating polysaccharide from *Ganoderma atrum* was able to attenuate neuronal apoptosis by preventing oxidative damage by modifying the redox system and helping to maintain calcium homeostasis in an animal model. [110]

Learning and memory were improved with administration of *Ganoderma lucidum* in senescent mice, improving antioxidant status. [111]

3.7.2 Hericium

3.7.3 Poria cocos

Poria is the most common ingredient in the many Asian mixtures which are used for AD. In animal models Poria has been shown to be essential in the action of the Chinese mixture Kaixinsan. [112] Poria is used in a Korean medicine, Jangwonhwan, which show promising preclinical results. [113] Poria enhanced learning and memory in an animal model of scopolamine-induced dysfunction [114] and may have acetylcholinesterase inhibiting activity as it did in an animal model when administered with *Polygala*. [115]

Poria mitigated chronic kidney disease in an animal model. [116]

4 Biochemical Targets

4.1 Fungal Infection

Evidence has been put forth that fungal infection is detectable in brain samples from Alzheimer's disease patients. [45] Recently, fungal infection was directly visualized in the brains of 11 of 11 AD patients and 0 of 10 controls. [44] Misfolded amyloid proteins may originate from a transmissible infectious process (like prion disease). Some proteins behave as prions in yeast and other fungi. [117] Neuroinflammation is associated with innate immunity, intended to fight infection at the blood-brain barrier (BBB). [118] Fungal infection could explain the connection between neuroinflammation, innate immunity and the toxic cell debris associated with AD. Amyloid- β is toxic to yeast cells as well as nerve cells. A yeast model of amyloid toxicity has been proposed because of yeast's susceptibility to the protein. [119] Conversely, amyloids are also believed to be expressed on fungal cell surfaces. [120] The relationship between amyloid, prion and fungi is complicated. [121]

Genus	A - β	AF	AO	ΑI	AChE
Acorus		XX	X		X
Curcuma	X	X	XX	XX	
Poria	X				

Table 2: Genus to Effects

An early screening of 16 herbs for antifungal activity found that cloves, cinnamon, mustard, allspice, garlic, and oregano were promising. A possible synergism between Potassium sorbate and cloves was identified. [122] The main constituent of clove oil is eugenol which is also present in nutmeg, cinnamon, basil and bay leaf. [?] Another screening of 52 herbs for their antifungal activity against phytopathogenic fungi showed that two herbs from the Apiaceae family, cumin and black zira, followed by cardamom from the Zingiberaceae family were active against Fusarium, Verticillium, Botrytis and Alternaria. In our matrix of Asian mixtures we have at least 3 Apiaceae, Ligusticum, Angelica, and Bupleurum. Ginger represents the Zingiberaceae.

Many screenings of antifungal activity focus on phytopathogenic fungi. However, all of the species that are suspected to play a role in AD are known human pathogens, not phytopathogens, Candida Cladosporium Malasezzia Neosartorya Phoma Sacharomyces and Sclerotinia. Because different fungi are susceptible to different antifungal agents, and different fungi are resistant to those same agents, we must narrow our search for antifungal evidence to these species.

4.2 Innate Immunity

The innate immune system, preserved from ancient genes, is involved in response to pathogenic fungi. [123] The innate immune system in organisms as diverse as humans and plants is remarkably similar. [124, 125] The signalling cascades involved in innate immune functions are providing insights into infectious disease, autoimmunity and allergy. The innate

immune response to many infectious agents is associated with inflammation. [126] Inflammation in AD may be mediated by innate immunity, according to transgenic animal model. [127]

Innate immune response to fungal infection is contributed to by Toll-like receptors (TLRs). [128] Immune response to to some pathogenic fungi is dependent on TLRs. [129, ?]

Pathogen associated molecular patterns (PAMPs) are associated with both fungal infection [130] and AD. [131]

4.3 Amyloid- β

An animal model found ZMT effective in reducing Amyloid- β toxictiy. [68]

4.4 Inflammation

Long-term use of Non-Steroidal Antiinflammatory Drugs (NSAIDs) have been associated with a dramatic decrease in the risk of AD in a large cohort. The risk ratio was 0.20 (95 percent confidence interval, 0.05 to 0.83). [132]

Other epidemiological evidence suggests that individuals with diets right in antiinflammatory Curmcumin are at lower risk of developing AD. [?]

Inflammation may be the key to initiating the toxic cascade that characterized Alzheimer's rather than the result of midfolded proteins such as amyloid and tau. [133]

Because greater neuroinflammation is observed in human disease than current animal models, new animal models are sought with increased neuroinflammation. One such model is involving increased interleukin-6. [134]

4.5 Cholinergic Drugs

Cholinergic drugs were able to slow the progression of AD after 2 years of follow-up. Although, cognitive deterioration was not stopped. [135]

4.6 Hormonal Therapy

Postmenopausal hormone therapy was not found to affect AD risk in a systematic review of epidemiological studies. [136]

5 Safety

Most of the promising natural products used for AD are generally recognized as safe (GRAS) food supplements. Some specific products have been tested in human safety trials.

Turmeric in moderate doses is considered safe in normal doses. Curcumin is considered safe up to several grams a day in normal subjects. However, several contraindications have been identified. There is also the possibility of allergic reaction. Interactions have also been noted. Some interactions may be valuable, if carefully applied. For instance, coadministration with piperine resulted in a 20000% increase in the bioavailability of curcumin. [137]

6 Challenges

A major concern raised about crude natural products is the challenge of standardization.

A formulation called kamikihito (KKT) in Japan and kami-guibi-tang (KGT) in Korea were comparable in enhancing memory in an animal model, although chromatography revealed differences in the formulations. [64]

Though there are many studies indicating that a combination of natural products should be effective AD treatment, we do not see many studies that failed to find evidence that a natural combination should be effective. Thus, we do not know to what extent our review falls victim to publication bias.

7 Conclusion

Write your conclusion here.

References

- [1] H.-F. Ji, X.-J. Li, and H.-Y. Zhang. Natural products and drug discovery. *EMBO reports*, 10(3), 2009.
- [2] D. J. Newman, G. M. Cragg, and K. M. Snader. Natural products as sources of new drugs over the period 1981-2002. *Journal of natural products*, 66(7), 2003.
- [3] D. J. Newman and G. M. Cragg. Natural products as sources of new drugs over the 30 years from 1981 to 2010. *Journal of natural products*, 75(3), 2012.
- [4] J. B. Laursen and J. Nielsen. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. *Chemical reviews*, 104(3), 2004.

- [5] W. C. McClatchey, G. B. Mahady, B. C. Bennett, L. Shiels, and V. Savo. Ethnobotany as a pharmacological research tool and recent developments in cns-active natural products from ethnobotanical sources. *Pharmacology & therapeutics*, 123(2), 2009.
- [6] E. K. Perry, A. T. Pickering, W. W. Wang, P. J. Houghton, and N. S. Perry. Medicinal plants and alzheimer's disease: from ethnobotany to phytotherapy**. *Journal of Phar*macy and Pharmacology, 51(5), 1999.
- [7] J. Gao, Y. Inagaki, X. Li, N. Kokudo, and W. Tang. Research progress on natural products from traditional chinese medicine in treatment of alzheimer's disease. *Drug discoveries* & therapeutics, 7(2), 2013.
- [8] D.-X. Kong, X.-J. Li, and H.-Y. Zhang. Where is the hope for drug discovery? let history tell the future. *Drug discovery today*, 14(3), 2009.
- [9] P. Liu, M. Kong, S. Yuan, J. Liu, and P. Wang. History and experience: a survey of traditional chinese medicine treatment for alzheimer's disease. Evidence-Based Complementary and Alternative Medicine, 2014, 2014.
- [10] J. Lake. Psychotropic medications from natural products: a review of promising research and recommendations. Alternative therapies in health and medicine, 6(3), 2000.
- [11] A. Fugh-Berman and J. M. Cott. Dietary supplements and natural products as psychotherapeutic agents. *Psychosomatic Medicine*, 61(5), 1999.
- [12] P. Houghton and M.-J. Howes. Natural products and derivatives affecting neurotransmission relevant to alzheimers and parkinsons disease. *Neurosignals*, 14(12), 2005.
- [13] J. M. B. Filho, K. C. P. Medeiros, M. de F. F. Diniz, L. M. Batista, P. F. Athayde-Filho, M. S. Silva, E. V. d. Cunha,

- J. R. Almeida, and L. J. Quintans-Júnior. Natural products inhibitors of the enzyme acetylcholinesterase. *Revista Brasileira de Farmacognosia*, 16(2), 2006.
- [14] D. K. Choi, S. Koppula, and K. Suk. Inhibitors of microglial neurotoxicity: focus on natural products. *Molecules*, 16(2), 2011.
- [15] M. D. d. Rocha, F. P. D. Viegas, H. C. Campos, P. C. Nicastro, P. C. Fossaluzza, C. A. M. Fraga, E. J. Barreiro, and C. Viegas. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders ii: Alzheimer's disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 10(2), 2011.
- [16] M. Citron, T. Oltersdorf, C. Haass, L. Mc-Conlogue, A. Y. Hung, P. Seubert, C. Vigo-Pelfrey, I. Lieberburg, and D. J. Selkoe. Mutation of the β -amyloid precursor protein in familial alzheimer's disease increases β -protein production. *Nature*, 360(6405), 1992.
- [17] J. A. Hardy and G. A. Higgins. Alzheimer's disease: the amyloid cascade hypothesis. *Science*, 256(5054), 1992.
- [18] C. A. McLean, R. A. Cherny, F. W. Fraser, S. J. Fuller, M. J. Smith, K. Vbeyreuther, A. I. Bush, and C. L. Masters. Soluble pool of aβ amyloid as a determinant of severity of neurodegeneration in alzheimer's disease. Annals of neurology, 46(6), 1999.
- [19] W. L. Klein. Synaptotoxic amyloid-b oligomers: a molecular basis for the cause, diagnosis, and treatment of alzheimers disease. J. Alzheimers Dis, 33, 2013.
- [20] J. D. l. Torre and T. Mussivand. Can disturbed brain microcirculation cause alzheimer's disease? Neurological research, 15(3), 1993.
- [21] D. A. Drachman. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of alzheimer's disease. *Alzheimer's & Dementia*, 10(3), 2014.

- [22] M. A. Erickson and W. A. Banks. Blood—brain barrier dysfunction as a cause and consequence of alzheimers disease. *Journal of Cerebral Blood Flow & Metabolism*, 33(10), 2013.
- [23] D. Luque-Contreras, K. Carvajal, D. Toral-Rios, D. Franco-Bocanegra, and V. Campos-Pe na. Oxidative stress and metabolic syndrome: cause or consequence of alzheimer's disease? Oxidative medicine and cellular longevity, 2014, 2014.
- [24] K. Iked, H. Akiyama, H. Kondo, T. Arai, N. Arai, and S. Yagishita. Numerous glial fibrillary tangles in oligodendroglia in cases of subacute sclerosing panencephalitis with neurofibrillary tangles. *Neuroscience letters*, 194(1), 1995.
- [25] T. Mandybur. The distribution of alzheimer's neurofibrillary tangles and gliosis in chronic subacute sclerosing panencephalitis. Acta neuropathologica, 80(3), 1990.
- [26] Y. Kueh and G. Devathasan. Amyloid neuropathy in a woman with tabes dorsalis. The New England journal of medicine, 310(12), 1984.
- [27] P. P. Liberski. Transmissible cerebral amyloidoses as a model for alzheimers disease. *Molecular neurobiology*, 8(1), 1994.
- [28] A. Kobayashi, K. Arima, M. Ogawa, M. Murata, T. Fukuda, and T. Kitamoto. Plaquetype deposition of prion protein in the damaged white matter of sporadic creutzfeldt-jakob disease mm1 patients. Acta neuropathologica, 116(5), 2008.
- [29] B. Sikorska, P. Liberski, T. Sobow, H. Budka, and J. Ironside. Ultrastructural study of florid plaques in variant creutzfeldt–jakob disease: a comparison with amyloid plaques in kuru, sporadic creutzfeldt–jakob disease and gerstmann–strussler–scheinker disease. Neuropathology and applied neurobiology, 35(1), 2009.

- [30] F. D. Beer, A. Nel, R. Gie, P. Donald, and A. Strachan. Serum amyloid a protein and creactive protein levels in pulmonary tuberculosis: relationship to amyloidosis. *Thorax*, 39(3), 1984.
- [31] L. Looi, P. Jayalakshim, K. Lim, and K. Rajagopalan. An immunohistochemical and morphological study of amyloidosis complicating leprosy in malaysian patients. *Annals of the Academy of Medicine*, Singapore, 17(4), 1988.
- [32] C. Rcken, D. Radun, B. Glasbrenner, P. Malfertheiner, and A. Roessner. Generalized aa-amyloidosis in a 58-year-old caucasian woman with an 18-month history of gastrointestinal tuberculosis. Virchows Archiv, 434(1), 1999.
- [33] A. G. Wangel, O. Wegelius, and A. E. Dyrting. A family study of leprosy: subcutaneous amyloid deposits and humoral immune responses. International Journal of Leprosy and Other Mycobacterial Diseases, 50(1), 1982.
- [34] S. J. Tank, R. S. Chima, V. Shah, S. Malik, S. Joshi, and R. H. Mazumdar. Renal amyloidosis following tuberculosis. *The Indian Jour*nal of Pediatrics, 67(9), 2000.
- [35] B. A. Urban, E. K. Fishman, S. Goldman, W. S. Jr, B. Jones, R. Humphrey, and R. Hruban. Ct evaluation of amyloidosis: spectrum of disease. *Radiographics*, 13(6), 1993.
- [36] S. J. Soscia, J. E. Kirby, K. J. Washicosky, S. M. Tucker, M. Ingelsson, B. Hyman, M. A. Burton, L. E. Goldstein, S. Duong, R. E. Tanzi, et al. The alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide. 2010.
- [37] M. Sastre, T. Klockgether, and M. T. Heneka. Contribution of inflammatory processes to alzheimer's disease: molecular mechanisms. *International Journal of Developmental Neu*roscience, 24(2), 2006.

- [38] C. Holmes and J. Butchart. Systemic inflammation and alzheimer's disease. *Biochemical Society Transactions*, 39(4), 2011.
- [39] H. Akiyama, S. Barger, S. Barnum, B. Bradt, J. Bauer, G. M. Cole, N. R. Cooper, P. Eikelenboom, M. Emmerling, B. L. Fiebich, et al. Inflammation and alzheimers disease. *Neuro-biology of aging*, 21(3), 2000.
- [40] I. M. Cojocaru, M. Cojocaru, G. Miu, and V. Sapira. Study of interleukin-6 production in alzheimers disease. Rom J Intern Med, 49(1), 2011.
- [41] M. J. Ball, W. J. Lukiw, E. M. Kammerman, and J. M. Hill. Intracerebral propagation of alzheimers disease: strengthening evidence of a herpes simplex virus etiology. *Alzheimer's & Dementia*, 9(2), 2013.
- [42] H. Lvheim, J. Gilthorpe, R. Adolfsson, L.-G. Nilsson, and F. Elgh. Reactivated herpes simplex infection increases the risk of alzheimer's disease. Alzheimer's & Dementia, 2014.
- [43] F. Mawanda and R. Wallace. Can infections cause alzheimer's disease? *Epidemiologic reviews*, 35(1), 2013.
- [44] D. Pisa, R. Alonso, A. Rábano, I. Rodal, and L. Carrasco. Different brain regions are infected with fungi in alzheimers disease. Scientific reports, 5, 2015.
- [45] R. Alonso, D. Pisa, A. I. Marina, E. Morato, A. Rábano, and L. Carrasco. Fungal infection in patients with alzheimer's disease. *Journal* of Alzheimer's disease: JAD, 41(1), 2013.
- [46] K. Hao, A. F. D. Narzo, L. Ho, W. Luo, S. Li, R. Chen, T. Li, L. Dubner, and G. M. Pasinetti. Shared genetic etiology underlying alzheimer's disease and type 2 diabetes. *Molec*ular aspects of medicine, 43, 2015.
- [47] W. Pan and A. J. Kastin. Can sleep apnea cause alzheimer's disease? Neuroscience & Biobehavioral Reviews, 47, 2014.

- [48] T. Jiang, J.-T. Yu, Y. Tian, and L. Tan. Epidemiology and etiology of alzheimers disease: from genetic to non-genetic factors. *Current Alzheimer Research*, 10(8), 2013.
- [49] K. Watanabe, K. Matsuura, P. Gao, L. Hottenbacher, H. Tokunaga, K. Nishimura, Y. Imazu, H. Reissenweber, and C. M. Witt. Traditional japanese kampo medicine: clinical research between modernity and traditional medicinethe state of research and methodological suggestions for the future. Evidence-Based Complementary and Alternative Medicine, 2011, 2011.
- [50] K. Terasawa. Evidence-based reconstruction of kampo medicine: part its kampo cam? Evidence-Based Complementary and Alternative Medicine, 1(1), 2004.
- [51] K. Iwasaki, T. Satoh-Nakagawa, M. Maruyama, Y. Monma, M. Nemoto, N. Tomita, H. Tanji, H. Fujiwara, T. Seki, M. Fujii, et al. A randomized, observer-blind, controlled trial of the traditional chinese medicine yi-gan san for improvement of behavioral and psychological symptoms and activities of daily living in dementia. *Journal* of Clinical Psychiatry, 66(2), 2005.
- [52] H. Okamoto, M. Iyo, K. Ueda, C. Han, Y. Hi-rasaki, and T. Namiki. Yokukan-san: a review of the evidence for use of this kampo herbal formula in dementia and psychiatric conditions. Neuropsychiatric disease and treatment, 10, 2014.
- [53] Y. Matsuda, T. Kishi, H. Shibayama, and N. Iwata. Yokukansan in the treatment of behavioral and psychological symptoms of dementia: a systematic review and meta-analysis of randomized controlled trials. *Human Psychopharmacology: Clinical and Experimental*, 28(1), 2013.
- [54] K. Mizukami. Kampo therapy and behavioral and psychological symptoms of dementia. *Traditional & Kampo Medicine*, 1(2), 2014.

- [55] K. Mizukami, T. Asada, T. Kinoshita, K. Tanaka, K. Sonohara, R. Nakai, K. Yamaguchi, H. Hanyu, K. Kanaya, T. Takao, et al. A randomized cross-over study of a traditional japanese medicine (kampo), yokukansan, in the treatment of the behavioural and psychological symptoms of dementia. *International Journal of Neuropsychopharmacology*, 12(2), 2009.
- [56] Y. Hayashi, Y. Ishida, T. Inoue, M. Uda-gawa, K. Takeuchi, H. Yoshimuta, K. Kiue, Y. Ninomiya, J. Kawano, T. Sameshima, et al. Treatment of behavioral and psychological symptoms of alzheimer-type dementia with yokukansan in clinical practice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(3), 2010.
- [57] K. Okahara, Y. Ishida, Y. Hayashi, T. Inoue, K. Tsuruta, K. Takeuchi, H. Yoshimuta, K. Kiue, Y. Ninomiya, J. Kawano, et al. Effects of yokukansan on behavioral and psychological symptoms of dementia in regular treatment for alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(3), 2010.
- [58] Y. Tanaka and T. Sakiyama. Potential usefulness of the kampo medicine yokukansan, containing uncaria hook, for paediatric emotional and behavioural disorders: A case series. Evidence-Based Complementary and Alternative Medicine, 2013, 2013.
- [59] K.-K. Chua, A. Wong, P. W. Kwan, J.-X. Song, L.-L. Chen, A. L. Chan, J.-H. Lu, V. Mok, and M. Li. The efficacy and safety of the chinese herbal medicine di-tan decoction for treating alzheimers disease: protocol for a randomized controlled trial. *Trials*, 16(1), 2015.
- [60] W. Pan, Q. Wang, S. Kwak, Y. Song, B. Qin, M. Wang, and Y. Yamamoto. Shen-zhi-ling oral liquid improves behavioral and psychological symptoms of dementia in alzheimers dis-

- ease. Evidence-Based Complementary and Alternative Medicine, 2014, 2014.
- [61] T. Niitsu, H. Okamoto, and M. Iyo. Behavioural and psychological symptoms of dementia in an alzheimer's disease case successfully treated with natural medicine: association with gonadotropins. *Psychogeriatrics*, 13(2), 2013.
- [62] K. Matsumoto, Q. Zhao, Y. Niu, H. Fujiwara, K. Tanaka, S. Sasaki-Hamada, and J.-I. Oka. Kampo formulations, chotosan, and yokukansan, for dementia therapy: existing clinical and preclinical evidence. *Journal of pharmacological sciences*, 122(4), 2013.
- [63] H. Watari, Y. Shimada, and C. Tohda. New treatment for alzheimers disease, kamikihito, reverses amyloid-induced progression of tau phosphorylation and axonal atrophy. Evidence-Based Complementary and Alternative Medicine, 2014, 2014.
- [64] H. Watari, M. Shigyo, N. Tanabe, M. Tohda, K.-H. Cho, P. S. Kyung, W. S. Jung, Y. Shimada, N. Shibahara, T. Kuboyama, et al. Comparing the effects of kamikihito in japan and kami-guibi-tang in korea on memory enhancement: Working towards the development of a global study. *Phytotherapy Research*, 29(3), 2015.
- [65] C. Kudoh, R. Arita, M. Honda, T. Kishi, Y. Komatsu, H. Asou, and M. Mimura. Effect of ninjin'yoeito, a kampo (traditional japanese) medicine, on cognitive impairment and depression in patients with alzheimer's disease: 2 years of observation. Psychogeriatrics, 2015.
- [66] H. Kiyohara, K. Nonaka, M. Sekiya, T. Matsumoto, T. Nagai, Y. Tabuchi, and H. Yamada. Polysaccharide-containing macromolecules in a kampo (traditional japanese herbal) medicine, hochuekkito: dual active ingredients for modulation of immune functions on intestinal peyer's patches and epithelial cells. Evidence-Based Complementary and Alternative Medicine, 2011, 2011.

- [67] N. Satoh, S. Sakai, T. Kogure, E. Tahara, H. Origasa, Y. Shimada, K. Kohoda, T. Okubo, and K. Terasawa. A randomized double blind placebo-controlled clinical trial of hochuekkito, a traditional herbal medicine, in the treatment of elderly patients with weakness n of one and responder restricted design. *Phytomedicine*, 12(8), 2005.
- [68] C. Tohda, T. Tamura, and K. Komatsu. Repair of amyloid β (25–35)-induced memory impairment and synaptic loss by a kampo formula, zokumei-to. *Brain research*, 990(1), 2003.
- [69] K. Iwasaki, S. Kobayashi, Y. Chimura, M. Taguchi, K. Inoue, S. Cho, T. Akiba, H. Arai, J.-C. Cyong, and H. Sasaki. A randomized, double-blind, placebo-controlled clinical trial of the chinese herbal medicine ba wei di huang wan in the treatment of dementia. Journal of the American Geriatrics Society, 52(9), 2004.
- [70] K. Y. Zhu, Q.-Q. Mao, S.-P. Ip, R. C.-Y. Choi, T. T.-X. Dong, D. T.-W. Lau, and K. W.-K. Tsim. A standardized chinese herbal decoction, kai-xin-san, restores decreased levels of neurotransmitters and neurotrophic factors in the brain of chronic stress-induced depressive rats. Evidence-Based Complementary and Alternative Medicine, 2012, 2012.
- [71] W. E. N. Wei, L. I. U. Xue-wei, L. I. Fu-dong, S. m. HUANG, B. A. I. Yun, M. ZHOU, and S. U. N. Yang. Research progress of kaixinsan for anti-senile dementia. *Information on Traditional Chinese Medicine*, 4, 2013.
- [72] Y. Zhang, C. Lin, L. Zhang, Y. Cui, Y. Gu, J. Guo, D. Wu, Q. Li, and W. Song. Cognitive improvement during treatment for mild alzheimers disease with a chinese herbal formula: A randomized controlled trial. *PloS one*, 10(6), 2015.
- [73] Y. c. DIWU, J. z. TIAN, and S. H. I. Jing. Effect of xixin decoction on o-glcnac glycosylation of tau proteins in rat brain with spo-

- radic alzheimer's disease. Chinese Traditional Patent Medicine, 8, 2013.
- [74] G. Akagawa, S. Abe, S. Tansho, K. Uchida, and B. Yamaguchi. Protection of c3h/he j e from developement of candida albicans infection by oral administration of juzen-taihoto and its component, ginseng radix: Possible roles of macrophages in tee bost defense mechanisms. *Immunopharmacology and immunotoxicology*, 18(1), 1996.
- [75] S. Abe, S. Tansho, H. Ishibashi, N. Inagaki, Y. Komatsu, and H. Yamaguchi. Protective effect of oral administration of: A traditional medicine, juzen-taiho-to, and its components on lethal candida albicans infection in immunosuppressed mice. *Immunopharmacology* and immunotoxicology, 20(3), 1998.
- [76] A. S. Darvesh, R. T. Carroll, A. Bishayee, W. J. Geldenhuys, and C. J. V. der Schyf. Oxidative stress and alzheimer's disease: dietary polyphenols as potential therapeutic agents. 2010.
- [77] Z.-K. Sun, H.-Q. Yang, and S.-D. Chen. Traditional chinese medicine: a promising candidate for the treatment of alzheimers. 2013.
- [78] S. Phongpaichit, N. Pujenjob, V. Rukachaisirikul, and M. Ongsakul. Antimicrobial activities of the crude methanol extract of acorus calamus linn. Songklanakarin J. Sci. Technol, 27(2), 2005.
- [79] S. Nanasombat, T. Bubpasawa, N. Tamaput, and Y. Srimakhan. Antimicrobial activity of thai medicinal plants against beverage spoilage microorganisms and their potential in retarding alzheimers disease progression. *Pharmacog Com*, 4(3), 2014.
- [80] S. B. Rajput and S. M. Karuppayil. β -asarone, an active principle of acorus calamus rhizome, inhibits morphogenesis, biofilm formation and ergosterol biosynthesis in candida albicans. *Phytomedicine*, 20(2), 2013.

- [81] S. B. Rajput, R. B. Shinde, M. M. Routh, and S. M. Karuppayil. Anti-candida properties of asaronaldehyde of acorus gramineus rhizome and three structural isomers. *Chinese* medicine, 8(1), 2013.
- [82] T. Subha and A. Gnanamani. Effect of active fraction of methanolic extract of acorus calamus on sterol metabolism of candida albicans. J. Appl. Biosci, 8, 2008.
- [83] S. Devi, D. Ganjewala, et al. Antimicrobial activity of acorus calamus (l.) rhizome and leaf extract. Acta biologica szegediensis, 53(1), 2009.
- [84] T. Subha, A. Gnanamani, et al. Candida biofilm perfusion using active fractions of acorus calamus. *Journal of Animal & Plant Sciences*, 4(2), 2009.
- [85] S. Thirach, K. Tragoolpua, S. Punjaisee, C. Khamwan, C. Jatisatiennr, and N. Kunyanone. Antifungal activity of some medicinal plant extracts against candida albicans and cryptococcus neoformans. Acta Hort (ISHS), 597, 2003.
- [86] S. N. Kumar, S. Aravind, T. Sreelekha, J. Jacob, and B. D. Kumar. Asarones from acorus calamus in combination with azoles and amphotericin b: A novel synergistic combination to compete against human pathogenic candida species in vitro. Applied biochemistry and biotechnology, 175(8), 2015.
- [87] T. Subha, A. Gnanamani, et al. Combating oral candidiasis in albino rats using bioactive fraction of acorus calamus. *Journal of Applied Biosciences*, 21, 2009.
- [88] B. P. Barik, K. Tayung, P. N. Jagadev, and S. K. Dutta. Phylogenetic placement of an endophytic fungus fusarium oxysporum isolated from acorus calamus rhizomes with antimicrobial activity. *EJBS*, 2(1), 2010.
- [89] T.-P. Ng, P.-C. Chiam, T. Lee, H.-C. Chua, L. Lim, and E.-H. Kua. Curry consumption

- and cognitive function in the elderly. American journal of epidemiology, 164(9), 2006.
- [90] N. Hishikawa, Y. Takahashi, Y. Amakusa, Y. Tanno, Y. Tuji, H. Niwa, N. Murakami, and U. Krishna. Effects of turmeric on alzheimer's disease with behavioral and psychological symptoms of dementia. Ayu, 33(4), 2012.
- [91] S. Kulkarni and A. Dhir. An overview of curcumin in neurological disorders. *Indian journal of pharmaceutical sciences*, 72(2), 2010.
- [92] G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. Srinivas. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. *Planta med*, 64(4), 1998.
- [93] A. Mathew, T. Fukuda, Y. Nagaoka, T. Hasumura, H. Morimoto, Y. Yoshida, T. Maekawa, K. Venugopal, and D. S. Kumar. Curcumin loaded-plga nanoparticles conjugated with tet-1 peptide for potential use in alzheimers disease. *PLoS One*, 7(3), 2012.
- [94] H. Yoshida, N. Okumura, Y. Nishimura, Y. Kitagishi, and S. Matsuda. Turmeric and curcumin suppress presenilin 1 protein expression in jurkat cells. Experimental and therapeutic medicine, 2(4), 2011.
- [95] R. D. Shytle, J. Tan, P. C. Bickford, K. Rezai-Zadeh, L. Hou, J. Zeng, P. R. Sanberg, C. D. Sanberg, R. S. Alberte, R. C. Fink, et al. Optimized turmeric extract reduces β-amyloid and phosphorylated tau protein burden in alzheimers transgenic mice. Current Alzheimer Research, 9(4), 2012.
- [96] T. Ahmed, S. Enam, and A. Gilani. Curcuminoids enhance memory in an amyloid-infused rat model of alzheimer's disease. *Neuroscience*, 169(3), 2010.
- [97] T. Ahmed and A.-H. Gilani. A comparative study of curcuminoids to measure their effect

- on inflammatory and apoptotic gene expression in an $a\beta$ plus ibotenic acid-infused rat model of alzheimer's disease. *Brain research*, 1400, 2011.
- [98] L. Zhang, M. Fiala, J. Cashman, J. Sayre, A. Espinosa, M. Mahanian, J. Zaghi, V. Badmaev, M. C. Graves, G. Bernard, et al. Curcuminoids enhance amyloid-beta uptake by macrophages of alzheimer's disease patients. *Journal of Alzheimer's disease*, 10(1), 2006.
- [99] T. Ahmed and A.-H. Gilani. Therapeutic potential of turmeric in alzheimer's disease: curcumin or curcuminoids? *Phytotherapy Research*, 28(4), 2014.
- [100] T. Hamaguchi, K. Ono, and M. Yamada. Review: Curcumin and alzheimer's disease. *CNS neuroscience & therapeutics*, 16(5), 2010.
- [101] S.-Y. Park and D. S. Kim. Discovery of natural products from curcuma l onga that protect cells from beta-amyloid insult: A drug discovery effort against alzheimer's disease. *Journal of natural products*, 65(9), 2002.
- [102] N. S. Perry, P. J. Houghton, J. Sampson, A. E. Theobald, S. Hart, M. Lis-Balchin, J. R. S. Hoult, P. Evans, P. Jenner, S. Milligan, et al. In-vitro activity of s. lavandulaefolia (spanish sage) relevant to treatment of alzheimer's disease. *Journal of Pharmacy and pharmacology*, 53(10), 2001.
- [103] E. Yuce, N. Yildirim, N. Yildirim, M. Paksoy, and E. Bagci. Essential oil composition, antioxidant and antifungal activities of salvia sclarea l. from munzur valley in tunceli, turkey. Cellular and molecular biology (Noisyle-Grand, France), 60(2), 2014.
- [104] N. Tabanca, B. Demirci, K. H. C. Baser, Z. Aytac, M. Ekici, S. I. Khan, M. R. Jacob, and D. E. Wedge. Chemical composition and antifungal activity of salvia macrochlamys and salvia recognita essential oils. *Journal of agricultural and food chemistry*, 54(18), 2006.

- [105] . . . , . . , . . . , . . . , . . . , and Fungistatic property of eugenia caryophyllus bullock & harrison and acorus calamus linn. extracts against candida albicans and cryptococcus neoformans. Bulletin of Chiang Mai Associated Medical Sciences, 34(2), 2001.
- [106] T. Seki, T. Kamiya, M. Azumi, S. Ishizuka, K. Furukawa, T. Yamakuni, and K. Meguro. Nobiletin-rich citrus reticulata peels for alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 4(9), 2013.
- [107] C. S.-W. Lai, M.-S. Yu, W.-H. Yuen, K.-F. So, S.-Y. Zee, and R. C.-C. Chang. Antagonizing β -amyloid peptide neurotoxicity of the anti-aging fungus ganoderma lucidum. *Brain research*, 1190, 2008.
- [108] Y. Zhou, Z. q. Qu, Y. s. Zeng, Y. k. Lin, Y. Li, P. Chung, R. Wong, and U. Hgg. Neuroprotective effect of preadministration with ganoderma lucidum spore on rat hippocampus. Experimental and Toxicologic Pathology, 64(7), 2012.
- [109] I. Lee, B. Ahn, J. Choi, M. Hattori, B. Min, and K. Bae. Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of ganoderma lucidum. *Bioorganic & medicinal chemistry letters*, 21(21), 2011.
- [110] W.-J. Li, S.-P. Nie, M.-Y. Xie, Q. Yu, Y. Chen, and M. He. Ganoderma atrum polysaccharide attenuates oxidative stress induced by dgalactose in mouse brain. *Life sciences*, 88(15), 2011.
- [111] M.-F. Wang, Y.-C. Chan, C.-L. Wu, Y.-C. Wong, K. Hosoda, and S. Yamamoto. Effects of ganoderma on aging and learning and memory ability in senescence accelerated mice. In *International Congress Series*, volume 1260, 2004.
- [112] G. A. O. Bing-bing, X. U. Shu-ping, L. I. U. Xin-min, and L. w. WANG. Comparision of

- nootropic effects of kaixinsan prescription and kaixinsan without poria cocos (schw.) wolf to alzheimer's mice model [j]. *Chinese Journal of Comparative Medicine*, 7, 2010.
- [113] J.-S. Seo, E.-Y. Jung, J.-H. Kim, Y.-S. Lyu, P.-L. Han, and H.-W. Kang. A modified preparation (lmk03) of the oriental medicine jangwonhwan reduces a β 1–42 level in the brain of tg-appswe/ps1de9 mouse model of alzheimer disease. *Journal of ethnopharmacology*, 130(3), 2010.
- [114] M. ZHANG, D. x. CHEN, and S. U. N. Xiaomeng. Effects of the decoction of poria cocos on mouse learning and memory [j]. *Journal of Beihua University (Natural Science)*, 1, 2012.
- [115] L. I. Fu-ren, L. l. CHOU, and F. A. N. Xintian. Experimental studies on effects of eepp on learning and memory dysfunctions [j]. *Journal of Beihua University (Natural Science)*, 2, 2011.
- [116] Y.-Y. Zhao, H.-T. Li, Y.-L. Feng, X. Bai, and R.-C. Lin. Urinary metabonomic study of the surface layer of poria cocos as an effective treatment for chronic renal injury in rats. *Journal of ethnopharmacology*, 148(2), 2013.
- [117] C. Soto, L. Estrada, and J. Castilla. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends in biochemical sciences, 31(3), 2006.
- [118] M. Hauwel, E. Furon, C. Canova, M. Griffiths, J. Neal, and P. Gasque. Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, protective glial stem cells and stromal ependymal cells. Brain research reviews, 48(2), 2005.
- [119] S. Treusch, S. Hamamichi, J. L. Goodman, K. E. Matlack, C. Y. Chung, V. Baru, J. M. Shulman, A. Parrado, B. J. Bevis, J. S. Valastyan, et al. Functional links between $a\beta$ toxicity, endocytic trafficking, and

- alzheimers disease risk factors in yeast. *Science*, 334(6060), 2011.
- [120] M. F. Gebbink, D. Claessen, B. Bouma, L. Dijkhuizen, and H. A. Wsten. Amyloidsa functional coat for microorganisms. *Nature reviews* microbiology, 3(4), 2005.
- [121] P. M. Tessier and S. Lindquist. Unraveling infectious structures, strain variants and species barriers for the yeast prion [psi+]. *Nature structural & molecular biology*, 16(6), 2009.
- [122] M. A. Azzouz and L. B. Bullerman. Comparative antimycotic effects of selected herbs, spices, plant components and commercial antifungal agents. *Journal of Food Protection*(R), 45(14), 1982.
- [123] T. K. Means, E. Mylonakis, E. Tampakakis, R. A. Colvin, E. Seung, L. Puckett, M. F. Tai, C. R. Stewart, R. Pukkila-Worley, S. E. Hickman, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors scarf1 and cd36. The Journal of experimental medicine, 206(3), 2009.
- [124] T. Nrnberger and F. Brunner. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current opinion in plant biology, 5(4), 2002.
- [125] T. Nrnberger, F. Brunner, B. Kemmerling, and L. Piater. Innate immunity in plants and animals: striking similarities and obvious differences. *Immunological reviews*, 198(1), 2004.
- [126] S. Akira, S. Uematsu, and O. Takeuchi. Pathogen recognition and innate immunity. Cell, 124(4), 2006.
- [127] K. Fassbender, S. Walter, S. Khl, R. Landmann, K. Ishii, T. Bertsch, A. Stalder, F. Muehlhauser, Y. Liu, A. Ulmer, et al. The lps receptor (cd14) links innate immunity with alzheimers disease. The FASEB Journal, 18(1), 2004.

- [128] S. Bellocchio, C. Montagnoli, S. Bozza, R. Gaziano, G. Rossi, S. S. Mambula, A. Vecchi, A. Mantovani, S. M. Levitz, and L. Romani. The contribution of the toll-like/il-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. *The Jour*nal of Immunology, 172(5), 2004.
- [129] S. Viriyakosol, J. Fierer, G. D. Brown, and T. N. Kirkland. Innate immunity to the pathogenic fungus coccidioides posadasii is dependent on toll-like receptor 2 and dectin-1. *Infection and immunity*, 73(3), 2005.
- [130] H. Kumar, T. Kawai, and S. Akira. Pathogen recognition by the innate immune system. *International reviews of immunology*, 30(1), 2011.
- [131] A. Salminen, J. Ojala, A. Kauppinen, K. Kaarniranta, and T. Suuronen. Inflammation in alzheimer's disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Progress in neurobiology, 87(3), 2009.
- [132] B. A. I. Veld, A. Ruitenberg, A. Hofman, L. J. Launer, C. M. van Duijn, T. Stijnen, M. M. Breteler, and B. H. Stricker. Nonsteroidal antiinflammatory drugs and the risk of alzheimer's disease. New England Journal of Medicine, 345(21), 2001.
- [133] M. T. Heneka and M. K. O'Banion. Inflammatory processes in alzheimer's disease. *Journal* of neuroimmunology, 184(1), 2007.
- [134] C. Millington, S. Sonego, N. Karunaweera, A. Rangel, J. R. Aldrich-Wright, I. L. Campbell, E. Gyengesi, and G. Mnch. Chronic neuroinflammation in alzheimers disease: New perspectives on animal models and promising candidate drugs. *BioMed research interna*tional, 2014, 2014.
- [135] C. Requena, F. Maestu, P. Campo, A. Fernandez, and T. Ortiz. Effects of cholinergic

- drugs and cognitive training on dementia: 2-year follow-up. *Dementia and geriatric cognitive disorders*, 22(4), 2006.
- [136] J. O'Brien, J. W. Jackson, F. Grodstein, D. Blacker, and J. Weuve. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and alzheimer's disease. *Epidemiologic reviews*, 36(1), 2014.
- [137] S. Mishra and K. Palanivelu. The effect of curcumin (turmeric) on alzheimer's disease: An overview. Annals of Indian Academy of Neurology, 11(1), 2008.