

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 🔲 : 6932327283 - 6955058444

# ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΘΕΩΡΙΑ, ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

#### 10 Ιουλίου 2019

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

## Γ΄ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

# Όρια - Συνέχεια

### ΣΥΝΑΡΤΗΣΗ 1-1

### ΟΡΙΣΜΟΙ

#### ΟΡΙΣΜΟΣ 1: ΣΥΝΑΡΤΗΣΗ 1-1

Μια συνάρτηση  $f:A\to\mathbb{R}$  ονομάζεται 1-1 εάν κάθε στοιχείο  $x\in A$  του πεδίου ορισμού αντιστοιχεί μέσω της συνάρτησης, σε μοναδική τιμή f(x) του συνόλου τιμών της. Για κάθε ζεύγος αριθμών  $x_1,x_2\in A$  του πεδίου ορισμού της f θα ισχύει

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

# **ΘΕΩΡΗΜΑΤΑ**

#### ΘΕΩΡΗΜΑ 1: ΣΥΝΑΡΤΗΣΗ 1-1

Μια συνάρτηση  $f:A\to\mathbb{R}$  είναι μια συνάρτηση 1-1 αν και μόνο αν για κάθε ζεύγος αριθμών  $x_1,x_2\in A$  του πεδίου ορισμού της, η ισότητα των εικόνων τους συνεπάγεται την ισότητα μεταξύ τους. Δηλαδή θα ισχύει η παρακάτω σχέση

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

#### ΘΕΩΡΗΜΑ 2: ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΗΣ 1-1

Έστω μια συνάρτηση  $f:A\to\mathbb{R}$ . Αν η f είναι μια συνάρτηση 1-1 τότε γι αυτήν ισχύουν οι παρακάτω ιδιότητες :

- i. Για κάθε  $x_1, x_2 \in A$  ισχύει  $x_1 = x_2 \Leftrightarrow f(x_1) = f(x_2)$ .
- ii. Κάθε οριζόντια ευθεία της μορφής  $y=\kappa$  με  $\kappa\in\mathbb{R}$  θα έχει το πολύ ένα κοινό σημείο με τη γραφική παράσταση της συνάρτησης f .
- iii. Εαν η συνάρτηση είναι γνησίως μονότονη σε κάθε διάστημα του πεδίου ορισμού της τότε θα είναι και 1-1. Το αντίστροφο δεν ισχύει πάντα.
- iv. Η εξίσωση f(x) = 0 έχει το πολύ μια λύση στο πεδίο ορισμού της f. Εαν  $0 \in f(A)$  τότε η εξίσωση έχει μια λύση ακριβώς.



Αν η συνάρτηση f δεν είναι 1-1 τότε θα υπάρχει τουλάχιστον ένα ζεύγος αριθμών  $x_1, x_2 \in A$  που να έχουν την ίδια τιμή δηλαδή :

$$x_1 \neq x_2 \Rightarrow f(x_1) = f(x_2)$$