

ACTIVE: Activity Concept Transitions in Video Event Classification

Chen Sun and Ram Nevatia {chensun|nevatia}@usc.edu Institute for Robotics and Intelligent Systems, Viterbi School of Engineering, University of Southern California

Introduction

Goal

Classify high level events from unconstrained web videos

Challenges

- Complex human-object interactions
- Diverse video quality (e.g. YouTube)
- Large scale dataset

Motivation

Encoding activity concept transitions

Hidden Markov Model Fisher Vector (HMMFV) -0.05Dancing: t+1 Dancing 0.03 Running 0.14 Jumping: Running Input -0.07Walking L video General HMM Concept responses on clips **HMMFV**

55

Max

55

HMMFV

[2]

■ Max (Cross)

- Video Representation: A sequence of activity concept responses
- > Fisher Kernel: Partial derivatives of log-likelihood function
- HMMFV: Partial derivatives about HMM transition parameters

$$\frac{\partial}{\partial \tau_{i|j}} \log P(X|\theta, \tau) = \sum_{t} \left[\frac{\xi_t(i, j)}{\tau_{i|j}} - \gamma_{t-1}(j) \right]$$

$$FV(i,j) \sim \sum_{t} \alpha_{t-1}(j) \left[\theta_{x_t|i} \beta_t(i) - \beta_{t-1}(j) \right]$$

$$\xi_t(i,j) = P(s_t = i, s_{t-1} = j | X, \theta, \tau)$$

$$\gamma_{t-1}(j) = P(s_{t-1} = j | X, \theta, \tau)$$

$$\alpha_t(i) = P(x_1, ..., x_t, s_t = i | \theta, \tau)$$

 $\beta_t(i) = P(x_{t+1}, ..., x_n | s_t = i, \theta, \tau)$

Cross Domain

65.7

HMMFV (Same)

■ HMMV (Cross)
■ HMMV (Both)

Comparison with baseline

Training with 10 positive samples

■ Max (Same)

[1] H. Izadinia and M. Shah. Recognizing complex events using large

[2] C. Sun and R. Nevatia. Large-scale Web Video Event Classification

margin joint low-level event model. In ECCV, 2012.

by use of Fisher Vectors. In WACV, 2013

Same Domain

52.9

64.8

--- Cross Domain Same Domai

Experimental Setup

Top Activity Concept Transitions Visualization

attempting a board trick (jumping, jumping) (sliding, jumping) (flipping, jumping)

birthday party (singing, singing) (singing, jumping) (clapping, singing)

making a sandwich (hands visible, hands visible) (spreading cream, spreading cream) (spreading cream, hands visible)

feeding an animal (reeling, reeling) (hands visible, hands visible) (walking, animal eating)

changing a vehicle tire (turning wrench, turning wrench) (hands visible, turning wrench) (fitting bolts, turning wrench)

parade (marching, marching) (dancing, marching) (walking, marching)

landing a fish (reeling, reeling) (casting, reeling)

flash mob gathering (marching, marching) (dancing, marching) (dancing, dancing)

parkour (jumping, jumping) (flipping, jumping) (dancing, jumping)

(kissing, kissing) (pouring, kissing) (hugging, kissing)

getting a vehicle unstuck (steering, steering) (vehicle moving, steering)

repairing an appliance (hands visible, hands visible) (turning wrench, hands visible (pointing, hands visible)

grooming an animal

(washing, washing)

(hands visible, washing)

woodworking project

(hands visible, hands visible)

(carving, carving)

(carving, hands visible)

(sewing, sewing) (hands visible, sewing) (eating, sewing)

Quantitative results

Dataset

Setup

Activity Concepts

Cross domain (UCF 101)

TRECVID MED 2011 Event Kit

70% for training, 30% for testing

Gaussian kernel SVM, 5-fold cross validation

Same domain (Event Kit annotations [1])

Comparison with state-of-the-art

Event	Joint [1]	LL [2]	HMMFV	HMMFV+[2]
Board trick	75.7	81.3	88.5	88.2
Feed animal	56.5	36.3	46.8	46.1
Wedding	72.2	74.3	79.6	78.9
Land fish	67.5	82.9	77.1	81.1
Woodworking	65.3	49.6	60.4	62.3
Birthday party	78.2	73.6	81.1	81.4
Change tire	47.7	54.1	48.2	51.8
Flash mob	91.9	86.8	87.3	87.7
Vehicle unstuck	69.1	76.9	75.6	77.2
Groom animal	51.0	57.9	61.7	63.4
Make sandwich	41.9	51.5	47.6	52.4
Parade	72.4	72.0	77.0	77.0
Parkour	66.4	79.2	88.6	89.0
Repair appliance	78.2	66.1	61.9	63.4
Sewing	57.5	60.8	57.5	62.1
Mean AP	66.1	66.9	69.3	70.8

Conclusion

- Coding temporal transitions of activities by HMMFV improves performance
- Activity concepts coded by HMMFV is desirable with limited training samples
- May be useful for video event recounting (description)