Домашнее задание 4

- (1) Доказать, что не существует сюръективного гомоморфизма:
 - (a) $S_5 \rightarrow C_8$

 $\forall y \in C_8 \exists x \in S_5 : \varphi(x) = y.$

Пусть $x^n = e, (\varphi(x))^n = e \Rightarrow Ord(\varphi(x))|Ord(x).$

Теперь рассмотрим группы S_5 и C_8 : в C_8 есть элемент порядка 8, но в группе S_5 нет элемента, порядок которго был бы кратен 8 (так как в группе всего 5 элементов). Следовательно, нет сюръективноо гомоморфизма.

(b) $(Q, +) \to (Z, +)$

Пусть $1 \to a, 1/2 \to b \Rightarrow 1/2 + 1/2 \to a = 2b$. Аналогично для 1/i, где $i \in (-\infty; 0) \cup (0; +\infty)$, получаем, что а кратно всем числам, чего быть не может. Что и требовалось доказать.

(2) $C_{12} \times C_{18} = C_4 \times C_3 \times C_9 \times C_2, C_4 = \langle a, e, e, e \rangle, C_4 = \langle a, e, b \rangle, C_4 = \langle a, e, b \rangle, C_2 = \langle b \rangle, (b^2 = e) \Rightarrow 2$ подгруппы.

Ответ: 2.

- (3) $\varphi(G_1) \to G_2$ гомоморфизм, $H < G_1$.
 - (a) В случае конечного порядка G_1 , $|\varphi(H)|$ делит $|G_1|$.

Доказательство:

Порядок подгруппы делит порядок группы по теорме Лагранжа, а так как степени любого элемента образуют группу→ порядок элемента делит порядок группы. По доказанному в пункте 1

имеем: $Ord(\varphi(x))|Ord(x) \Rightarrow |G_1| : |\varphi(H)|$. Доказано.

(b) Если гомоморфизм сюръективный и H - нормальная подгруппа в G, то $\varphi(H)$ - нормальная подгруппа.

Доказательство:

Гомоморфизм сюръективный $\Rightarrow \forall y \in G_2 \exists x \in G_1 : \varphi(x) = y$

 $\forall a \in G \hookrightarrow aH = Ha.$

 $\varphi(aH) = \varphi(a) \cdot \varphi(H)$

 $\varphi(Ha)=\varphi(H)\cdot \varphi(a)=\varphi(aH)=\varphi(a)\cdot \varphi(H)$ \Rightarrow , так как $\varphi(H)< G_2$, то $\varphi(H)$ - нормальная подгруппа.

(с) Нет неверно, приведем контрпример:

 $\varphi(C_4) \to S_4$ - это не сюръективный гомомрфизм, так как в группе S_4 есть элемент порядка 3, а в группе C_4 - нет. C_2 - нормальная подгруппа в C_4 , так как C_4 - абелева группа. $a \to (1\ 2\ 3\ 4), a^2 \to (1\ 3)(2\ 4), C_2 = < a^2 >$

$$a \to (1 \ 2 \ 3 \ 4) \ a^2 \to (1 \ 3)(2 \ 4) \ C_2 = \langle a^2 \rangle$$

$$(1\ 3)(2\ 4)\cdot(1\ 2) = \begin{pmatrix} 1\ 2\ 3\ 4 \\ 3\ 4\ 1\ 2 \end{pmatrix} \begin{pmatrix} 1\ 2\ 3\ 4 \\ 2\ 1\ 3\ 4 \end{pmatrix} = \begin{pmatrix} 1\ 2\ 3\ 4 \\ 4\ 3\ 1\ 2 \end{pmatrix}$$

Очевидно, что подгруппа не является нормальной

(4) Рассмотрим отображение $f:(Z,Z)\to (Z/5Z,Z/5Z)$

 $f:(a,b)\to ((a+3b)\ mod\ 5,(2a+b)\ mod\ 5)$

- (a) Сохраняется операция : $f(a+b,c+d) = f(((a+b)+3(c+d)) \mod 5, ((2(a+b)+(c+d)) \mod 5) = (a+b) + (a+b)$ $f(a,c) + f(b,d) \Rightarrow$ гомоморфизм.
- (b) Ядро: $(a + 3b) \equiv (2a + b) \equiv 0 \mod 5, a \equiv (-3b) \mod 5 \Rightarrow a \equiv 2b \mod 5$, тогда элементы ядра это такие пары:([0],[0]),([2],[1]),([3],[4]),([4],[2]),([1],[3])),[a] - числа, дающие остаток а при делении на 5. Также можно задать формулой: (a, 2a + 5k), где $a, k \in \mathbb{Z}$.
- (c) a + 3b = 5n + x, 2a + b = 5m + y, при каких x и y данная система имеет решения в целых числах? $\begin{pmatrix} 1 \ 3 \ 0 \ -5 \ x \\ 2 \ 1 \ -5 \ 0 \ y \end{pmatrix} = \begin{pmatrix} 5 \ 0 \ -15 \ 5 \ 3y - x \\ 0 \ 5 \ 5 \ 10 \ y - 2x \end{pmatrix} \Rightarrow 3y \equiv x \ mod \ 5, 2x \equiv y \ mod \ 5 \ \text{Образ}$ - множество пар: (0,0),(1,2),(4,3),(2,4),(3,1))
- (5) Фактор-группа комплексных матриц изоморфна мультипликативной группе положительных чисел по подгруппе матриц с определителем, по модулю равным единице. $(GL(n,C)/SL(n,C) \cong (R^*,\cdot))$ Доказательство:

Подберем такой гомоморфизм f, при котором SL(n,C)=Ker(f). Очевидно, что $f:A\to |det(A)|$. Построим смежные классы по подгруппе SL(n,C): $A \cdot SL(n,C)$, $f(A \cdot SL(n,C)) = |det(A)|$. Тогда каждому смежному классу по ядру гомоморфизма поставим в соответствие det матрицы - какоето комплексное число $ai+b, |ai+b| = \sqrt{a^2+b^2}$. Таким образом, каждому смежному классу по ядру ставим в соответствие положительное действительное число. Заметим, что сохраняется операция $:f(AB)=|det(AB)|=|det(A)|\cdot|det(B)|=f(A)\cdot f(B)$. Получаем, что Фактор-группа комплексных матриц изоморфна мультипликативной группе положительных чисел по подгруппе матриц с определителем, по модулю равным единице.

Пусть $g'x = xg', g' \in N(x)$ Предположим, что $g = yg'y^{-1}$, докажем, что $g \in N(yxy^{-1})$: $yxy^{-1}g = yxy^{-1}yg'y^{-1} = yxg'y^{-1} = yg'xy^{-1}$, а так как $g' = y^{-1}gy$, получаем $yxy^{-1}g = gyxy^{-1} \Rightarrow g \in N(yxy^{-1})$. Что и требовалось доказать.

(7) (а) Доказать, что для любого элемента группы $g \in G$ отображение $\varphi : G \to G$ является изоморфизмом группы в себя.

Доказательство:

- 1) биекция: $x \to g^{-1}xg$. При эо очевидно, что $g^{-1}xg \in G$, то есть группа отображается в себя.
- 2) сохранение операции: $\varphi(xy) = g^{-1}xyg = g^{-1}xgg^{-1}yg = \varphi(x)\varphi(y)$.
- (b) Доказать, что у элементов ab и ba одинаковые порядки.

Доказательство:

 $ab \in G, ba \in G, \varphi_a(ab) = a^{-1}aba = ba.$ Отображение является изоморфизмом, следовательно, у элементов одинаковые порядки.

- (c) N(a) нормализатор элемента $a, a \in G$. Докажем, что N(a) подгруппа в G: 1) $e \in N(a)$
 - 2) $b, c \in N(a) \Rightarrow ab = ba, ac = ca \Rightarrow a = caa^{-1} \Rightarrow ab = bcac^{-1} \Rightarrow a(bc) = (bc)a \Rightarrow bc \in N(a)$
 - 3) $b \in N(a) \Rightarrow ab = ba \Rightarrow b^{-1}a = ab^{-1}$. Следовательно, N(a) подгруппа G.

Теперь докажем, что существует взаимооднозначное соответствие между элементами класса сопряженности, в котором лежит элемент a и классами смежности по подгруппе N(a). Для этого докажем, что если $g^{-1}ag = h^{-1}ah$, то элементы g и h принадлежат одному классу смежности по подгруппе N(a). Действительно : $g^{-1}ag = h^{-1}ah \Rightarrow hg^{-1}a = ahg^{-1} \Rightarrow hg^{-1} \in N(a) \Rightarrow h = ng, n \in N(a)$. То есть элементы отличаются на элемент из подгруппы, следовательно, лежат в одном классе смежности по этой подгруппе. Получается, какие бы элементы группы из одного и того же класса смежности по подгруппе мы не брали, все равно получим один и тот же элемент, сопряженны с a. Следовательно, между классами смежности и элементами класса сопряженности есть взаимооднозначное соответствие, количество элементов в классе сопряженности равно количеству классов смежности.

- (8) (а) Пусть σ перестановка, представимая в виде простого цикла длины n. Доказать, что уравнение $x^k = \sigma$ имеет решения ,только если (k,n) = 1. Доказательство:
 - $Ord(\sigma) = n \Rightarrow x^{nk} = \sigma^n = e$. Пусть перестановка x представима в виде t простых циклов длины $l_i, i \in [1, t]$. Очевидно, что $(k, l_i) = 1$, иначе $x^k = e = \sigma$, что неверно $\Rightarrow l_i | n$. Предлоложим, что (n, k) = f, f < n, пусть n = fj, тогда $x^{jk} = \sigma^j = e$, но σ простой цикл длины $n \Rightarrow Ord(\sigma) = n$, но j < n. Получаем противоречие. Следовательно, уравнение имеет решения только если (n, k) = 1.
 - (b) Чтобы было решение, необходимо, чтобы перестановка x и σ имели одинаковое цикловое разложение, потому что в перестановке σ все циклы разной длины, следовательно ни один из них не был получен из большего возведением в степень, так как в этом случае длины каких-то циклов совпадали бы. Значит, между циклами, входящими в разложение перестановки x и циклами, входящими в разложение перестановки σ существует взаимооднозначное соответствие. То есть цикл длины k_i получается при возведении цикла той же длины в степень k. Из пункта a: уравнение будет иметь решение, если $(k,k_i)=1$ и при этом те числа, которые входят в цикл длины k_i входят в цикл k_i , возведенный в k—ую степень. Следовательно, зная перестановку σ мы однозначно получим перестановку x, то есть есть единственное возможное решение.