KOCAELI ÜNİVERSİTESİ ® MÜHENDİSLİK FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ

GÖRÜNTÜ DOSYA FORMATLARI

Pelin ÇAĞAN 080227010

BİTİRME ÇALIŞMASI

KOCAELİ Haziran, 2012

KOCAELI ÜNİVERSİTESİ ® MÜHENDİSLİK FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ

GÖRÜNTÜ DOSYA FORMATLARI

Pelin ÇAĞAN 080227010

BİTİRME ÇALIŞMASI

Danışman : Yard. Doç. Dr. Orhan KURT

Üye :

KOCAELİ Haziran, 2012

İÇİNDEKİLER

		Sayfa
İÇİNDE	EKİLER	ii
SİMGE	LİSTESİ	iii
KISAL	ΓMA LİSTESİ	iv
ŞEKİL	LİSTESİ	v
ÇİZELO	GE LİSTESİ	vi
ÖNSÖZ	Z	vii
ÖZET		viii
1.	GİRİŞ	9
2.	SAYI SİSTEMLERİ	14
3.	BİLGİSAYARDA GÖRÜNTÜ OLUŞTURMA ve SAKLAMA	15
3.1	Görüntü Oluşturma	16
3.1.1	Renk Derinliği	16
3.1.2	Renk Uzayı	
3.1.3 3.2	Renk Matrisi	
3.2.1	BMP Görüntü Formatı	
3.2.2	JPEG Görüntü Formatı	
3.2.3	TIFF Görüntü Formatı	22
4.	UYGULAMA	24
4.1	BMP Formati	24
4.2	JPEG Formatı	27
5.	SONUÇ	31
KAYNA	AKLAR	32
INTERI	NET KAYNAKLARI	32

SİMGE LİSTESİ

A	16'lık sayı sisteminde 10'luk sayı sistemindeki 10 değeri
	, , , , , , , , , , , , , , , , , , ,
В	16'lık sayı sisteminde 10'luk sayı sistemindeki 11 değeri
C	16'lık sayı sisteminde 10'luk sayı sistemindeki 12 değeri
D	16'lık sayı sisteminde 10'luk sayı sistemindeki 13 değeri
E	16'lık sayı sisteminde 10'luk sayı sistemindeki 14 değeri
F	16'lık sayı sisteminde 10'luk sayı sistemindeki 15 değeri
В	ASCII tablosunda 42'ye karşılık gelen değer
M	ASCII tablosunda 4D'ye karşılık gelen değer
I	ASCII tablosunda 49'a karşılık gelen değer
MB	Megabayt, dosya boyutu
KB	Kilobayt, dosya boyutu

KISALTMA LİSTESİ

BMP	Basic Multilingual Plane, Temel Çok Dilli Seviye
DRI	Define Restart Interval, Tanımlanmış Yeniden Başlatma Aralığı
ASCII	American Standard Code for Information Interchange, Bilgi Değişimi İçin
	Amerikan Standart Kodlama Sistemi
GIF	Graphics Interchange Format, Grafik Değiştirme Biçimi
JPEG	Joint Photographic Experts Group, Birleşik Fotoğraf Uzmanları Grubu
PNG	Portable Network Graphics, Taşınabilir Ağ Grafiği
TIFF	Tagged Image File Format, Yüksek Kaliteli Resim Dosyası
CMYK	CMYK Renk Uzayı, "Cyan", "Magenta", "Yellow", "Key" Kelimelerinin
	kısaltmasıdır.
RGB	RGB Renk Uzayı, "Red", "Green", "Blue" Kelimelerinin kısaltmasıdır.
CBS	Coğrafi Bilgi Sistemleri
CAD	Format, Computer Aided Design, Bilgisayar Destekli Tasarım
JFIF	JPEG File Interchange Format, JPEG Dosyası Değişim Formatı

ŞEKİL LİSTESİ

	Sayfa
ŞEKİL 1 Ayrı formatlarda saklanan örnek görüntü	11
ŞEKİL 2 Ayrı formatlarda saklanan Miss Lena görüntüsü	12
ŞEKİL 3 Bilgisayarda görüntünün oluşumu	15
ŞEKİL 4 Raster tabanlı görüntü ile vektör tabanlı görüntü arasındaki fark	16
ŞEKİL 6 Artan renk derinliğine göre görüntüdeki değişim	17
ŞEKİL 7 RGB renk uzayı	18
ŞEKIL 8 Renk matrisi içeriği	19
ŞEKİL 9 BMP formatında piksel dizilimi	20
ŞEKİL 10 BMP formatı örnek görüntü	24
ŞEKİL 11 BMP formatı hex dizilimi	25
ŞEKİL 12 RGB bileşenleri değiştirilen görüntü dizilimi	27
ŞEKİL 13 Değiştirilen RGB bileşenleri sonucu oluşan görüntü	27
ŞEKİL 14 JPEG formatı uygulama görüntüsü	27
ŞEKİL 15 (a) JPEG Formatı	
ŞEKİL 15 (b) JPEG Formatı	
ŞEKIL 15 (c) JPEG formatı	30
ŞEKIL 15 (d) JPEG formatı	30

ÇİZELGE LİSTESİ

	Sayfa
ÇİZELGE 1 Görüntü dosya boyutları (ŞEKİL 1, 2).	13
ÇİZELGE 2. Sayı sistemleri	14
ÇİZELGE 3. Görüntü oluşturmada renk derinliği	
ÇİZELGE 4. JPEG Formatında Başlangıç Hex Kodları	
ÇİZELGE 5. BMP Dosya Formatı	
ÇİZELGE 6. JPEG Dosya Formatı Başlangıcı	
ÇİZELGE 7. JPEG Dosya Formatı Frame Başlangıcı	
ÇİZELGE 8. JPEG Dosya Formatı	
ÇİZELGE 9. JPEG Dosya Formatı	
ÇİZELGE 10. JPEG Dosya Formatı Tarama Başlangıcı	
ÇİZELGE 11. JPEG Dosya Formatı Görüntü Bitişi	

ÖNSÖZ

Bu kılavuzun ilk taslaklarının hazırlanmasında emeği geçen Kocaeli Üniversitesi Teknik Eğitim Fakültesi Bilgisayar Öğretmenliği Bölümü'nde okuyan Mehmet DİNÇ, Duran BÜYÜKÖZTÜRK, Necati Evren YAŞAR, İletişim Fakültesi Gazetecilik Bölümü'nde okuyan Koray ZÖNGÜR ve Mühendislik Fakültesi Harita Mühendisliği bölümünde okuyan Burak ÜSTÜNER arkadaşlarıma, kılavuzun son halini almasında yol gösterici olan Sayın Yard. Doç. Dr. Orhan KURT hocama ve bu çalışmayı destekleyen Kocaeli Üniversitesi'ne içten teşekkürlerimi sunarım.

Ayrıca eğitimim süresince bana her konuda tam destek veren aileme ve bana hayatlarıyla örnek olan tüm hocalarıma saygı ve sevgilerimi sunarım.

Pelin ÇAĞAN Haziran 2012, Kocaeli

ÖZET

Görüntü dosya formatlarının tanıtılması, kullanım alanlarının belirtilmesi ve yaygın biçimde kullanılan BMP, JPEG, TIFF dosyalarını oluşturan hex sistemindeki karşılıklarının incelenmesi ile oluşmuş herhangi bir görüntü formunu yorumlamak amacıyla düzenlenmiştir. Ayrıca proje sonunda edinilen bilgiler ile hex kodları girilerek bir BMP görüntü dosyası oluşturulabilecektir.

Anahtar Sözcükler: BMP, JPEG, TIFF Dosya Formatı, BITMAP, Hex, Renk Derinliğ

1. GİRİŞ

Görüntü dosya formatları görüntüleri bilgisayar ekranında görüntülemek, düzenlemek ve saklamak amacıyla, dijital verilerin uyarlanması ile oluşturulurlar. Veriyi sıkıştırılmış, sıkıştırılmamış veya vektör formda saklayabilirler.

Görüntü formatları, raster format, vektör format ve 3 boyutlu görüntü formatları şeklinde ayrılırlar.

Raster grafikler en yaygın biçimde kullanılan görüntü formatlarını içerir. Bu formatlar resmin çözünürlüğüne bağlı sabit bir tanımlama ile görüntüyü oluşturur ve oluşan görüntüyü Bitmap ya da diğer adıyla Pixmap şeklinde saklar. Pikseller yatay ve düşey doğrultuda bir kafes sistemi oluşturur, her piksel bağımsız olarak içersinde bir rengi temsil eder. İnternet grafikleri ve dijital fotoğraflar raster grafikler şeklinde saklanır. Raster görüntü formatları görüntüyü sıkıştırılmış veya sıkıştırılmamış biçimde saklar. En çok bilinen raster görüntü format uzantıları .BMP, .TIFF, .JPEG, .GIF ve .PNG'dir. Bu görüntü formatları, birbirinden kodlama, sıkıştırma algoritmaları gibi özelliklerde farklılık gösterir.

BMP Formatı en temel görüntü formatıdır. Adını Temel Çok Dilli Seviye anlamına gelen Basic Multilingual Plane kelimelerinin baş harflerinden almıştır. BMP, Microsoft Windows'un çıkarmış olduğu bir standart olup Windows'un arka plan resimleri ve buna benzer uygulamalarda kullanılır.

Herhangi bir sıkıştırma yapmayan oldukça hızlı bir formattır. Bununla birlikte görüntü ölçeklendirildiğinde büyük ayrıntılar kaybedilebilir. Bu formatta resmin içindeki renk sayısı değil, resmin büyüklüğü önemlidir. Görüntüyü piksel tabanlı saklar.

BMP formatı, 1-24-bit arasında değişen bir renk derinliğine sahiptir. Bu formatta resim dosyasının boyutu, renk derinliği ile birlikte resmin çözünürlüğüne bağlı olarak hesaplanır.

JPEG Formatı özellikle internet üzerine görüntü paylaşımlarında ve fotografik görüntü saklamak amacıyla kullanılan en popüler görüntü formatıdır. Adını Joint Photographic Experts Group kelimelerinin baş harflerinden almıştır. JPEG olarak bildiğimiz dosya biçimi, Independent JPEG Goup adlı başka bir grubun JFIF adlı standardı tarafından tanımlanmıştır.

JPEG formatının özelliği 24-bit gerçek renk değerlerini içermesidir. Bu nedenle yaygın olarak dijital kameralarda ve diğer fotografik görüntü cihazları tarafından kullanılır.

Dijital ortamda JPEG, dijital fotoğraf için görüntü kalitesinde ayarlanabilir veri kaybı ile sıkıştırma yaptığı için tercih edilir. Ancak sıkıştırma oranı yükseldikçe görüntü kalitesi düşer. JPEG görüntünün algılanmasında zorunlu olmayan detayları bulup atarak sıkıştırma yapar. Veri her kaydedilişinde, düşen görüntü kalitesi veriyi düzeltilemez hale gelir, kaybedilen detaylar geri getirilemez bu nedenle üst üste değişim yapılacağı durumlarda TIFF formatı tercih edilir.

TIFF Formatı Tagged Image File Format kelimelerinin baş harflerinden oluşmuştur. 24-bit renk derinliğini desteklemesi sayesinde fotoğrafların kayıpsız olarak sıkıştırılmasında tercih edilir. Yerleşik ve kullanışlı CMYK renk uzayına sahip olması nedeniyle baskıda tercih edilir.

Haritacılık alanında kullanımında ise TIFF sayısal görüntü formatı bilgisayarlar arası ortak bir dosya formatı olmasından dolayı CAD ve CBS programları dahil birçok program tarafından da desteklenmektedir. Böylece platformdan bağımsız olarak görüntünün saklanabilmesi de TIFF formatının bir diğer üstün yanıdır. Fotogrametri, Uzaktan Algılama ve Coğrafi Bilgi Sistemi uygulamalarında en yaygın kullanıma sahiptir.

GIF Formatı adını, Grafik Değiştirme Biçimi anlamına gelen Graphics Interchange Format kelimelerinin baş harflerinin kullanılmasından almıştır. GIF kayıpsız sıkıştırma yapan bir sayısal resim saklama biçimidir.

En fazla 8-bit renk derinliğine sahip görüntülere destek verir. Bundan dolayı renkli fotoğraf görüntülerinin sıkıştırılmasında yetersizlik göstermektedir. Az renk içermeleri nedeniyle grafiksel gösterim, basit şekiller gibi görüntülerin kayıpsız olarak sıkıştırılıp saklanmasında tercih edilir. Yüksek renk derinliği gerektiren görüntülerde tercih edilmez.

Ayrıca GIF formatı, PNG ve JPEG'den farklı olarak piksel tabanlı animasyonların üretilmesine olanak tanır.

GIF formatının 87a ve 89a olmak üzere iki farklı versiyonu vardır. 89a versiyonu, tek bir GIF dosyası içersine birden çok GIF formatlı resim yerleştirilmesine ve piksel tabanlı animasyonların üretilmesine olanak sağlayan versiyonudur. Bu görüntüye hareketli GIF görüntüsü adı verilir. Ayrıca 89a versiyonu, katmanlı görüntü saklama özelliğine de sahiptir, bu özellik daha çok internet üzerindeki resimlerde kullanılır. Bu sayede, GIF formatındaki resim her seferinde 1 katman gelecek şekilde ekranında görür ve tüm resim ekrana gelmese de resmin bütünü hakkında fikir sahibi olunabilir.

PNG Formatı adını Taşınabilir Ağ Grafiği anlamındaki Portable Network Graphics kelimelerinin baş harflerinden almıştır. Kayıpsız sıkıştırmayla görüntü saklamak için kullanılan bir formattır.

PNG formatının geliştirilmesini sağlayan en önemli etken, yeterli başarıya sahip bir kayıpsız sıkıştırma algoritması bulunan GIF formatının patent koruması altında bulunmasıdır. GIF'in tersine PNG'nin kullandığı algoritmada patent koruması bulunmamaktır.

ŞEKİL 1 Ayrı formatlarda saklanan örnek görüntü

PNG biçiminde görüntü üretirken, görüntünün istenen kalite seviyesinin gerektirdiği en az renk derinliğinde saklanması dikkat edilmesi gereken bir husustur. Ayrıca görüntü üretilirken saklanan tanımlayıcı veriler de dosyanın boyutunun artmasına neden olmaktadır.

PNG kayıpsız saklanmak istenen çizim ya da metin içeren resimlerde, küçük dosya boyutlarında tercih edilir. 48-bit gerçek renk derinliğine, değişken saydamlık düzeyine

sahiptir. Ayrıca GIF'e göre %10-30 arasında daha küçük boyutta sıkıştırma yapar. Tüm formatları tek bir örnek görüntüde inceleyecek olursak;

ŞEKİL 2 Ayrı formatlarda saklanan Miss Lena görüntüsü

PNG olarak oluşturulmuş görüntüleri ADOBE PHOTOSHOP programı yardımıyla açıp öncelikle BMP formatında, sonrasında sırasıyla JPEG, TIFF, GIF ve tekrar PNG

formatlarında saklayıp görüntüleri yan yana koyarsak BMP ve kayıpsız olarak saklanmış TIFF formatındaki görüntünün dosya boyutlarının en yüksek olduğunu görürüz.

Birinci örnekte gözle ayırt edilebilir bir değişim olmamasına rağmen dosya boyutlarında önemli farklılıklar göze çarpmaktadır. En yüksek dosya boyutunun yerleşik ve kullanışlı CMYK renk uzayı destek yapısı nedeniyle TIFF formatına ait olduğunu gözlemleyebiliriz. Ardından görüntüyü kayıpsız bir şekilde piksel piksel saklaması nedeniyle yüksek boyuta sahip olan BMP formatının geldiğini görebiliriz.

İkinci örnekte ise kayıpsız olarak sıkıştırma yapan TIFF, GIF, PNG formatlarında ve sıkıştırmasız saklama yapan BMP formatlarında ayırt edilebilir bir farklılık olmadığı gözlenmiştir ancak kayıplı sıkıştırma yapan JPEG formatında görüntüdeki kayıpların gözle ayırt edilebilir olduğu belirlenmiştir.

Her iki örnekte de en yüksek dosya boyutu TIFF formatına ait olurken, en düşük dosya boyutunun ise sıkıştırmadaki kayıplardan dolayı %100 kayıplı JPEG formatındaki görüntüye ait olduğu görüntülenmiştir.

ÇİZELGE 1 Görüntü dosya boyutları (ŞEKİL 1, 2).

Numaralandırma	Format Adı	Şekil 1 Boyut	Şekil 2 Boyut
A	BMP	1.11 MB	153 KB
В	TIFF	1.13 MB	183 KB
С	GIF	250 KB	53.0 KB
D	PNG	810 KB	57.6 KB
Е	JPEG(Kayıplı-%50)	151 KB	33.2 KB
F	JPEG(Kayıplı-%100)	60.4 KB	26.1 KB

Bundan sonraki aşamada yaygın olarak kullanılan BMP, JPEG ve TIFF format yapılarını ayrıntılı biçimde inceleyeceğiz. Bunun için öncelikle yorumlamada ihtiyaç duyacağımız sayı sistemlerini, renk uzayı ve renk derinliği kavramlarını açıklayacağız.

2. SAYI SİSTEMLERİ

Dosya formatı incelenirken ikilik, sekizlik, onluk ve on altılık sayı sistemlerinde kodlanabilir.

Bu sayı sistemleri;

ÇİZELGE 2. Sayı sistemleri.

Binary	2'lık sayı sistemi	0 1
Octal	8'lik sayı sistemi	0 1 2 3 4 5 6 7 8
Decimal	10'luk sayı sistemi	0123456789
Hexadecimal	16'lık sayı sistemi	0123456789abcdef

şeklinde sıralanabilir.

Formatlar oluşturulurken düzenlemesi ve okuması kolay olduğu için 16'lık sayı sistemi tercih edilir.

Onluk sistemle on altılık sayı sistemini karşılaştıracak olursak;

şeklinde ilerler.

Örneğin; 5C=92; 5*16=80; C=12; 80+12=92 olarak hesaplanır.

İkilik sayı sisteminde sadece iki rakam söz konusudur ve bu rakamlar 0 ve 1 sembolleri ile gösterilir. İkilik sayı sistemi sayılarını ifade etmek için ikinin katları kullanılır. İkilik sayı sistemindeki sayıların onluk sayı sistemine çevrilebilmesi için ikilik sistemdeki sayının her bir basamağı soldan itibaren artan biçimde ikinin katı ile çarpılır ve elde edilen çarpımlar en son toplanarak onluk sistemdeki sayı elde edilir.

Örneğin; 01110000 sayısı onluk sistemde 112'ye karşılık gelir.

$$(0*=2^{\circ})+(0*2^{\circ}=0)+(0*2^{\circ}=0)+(0*2^{\circ}=0)+(1*2^{\circ}=16)+(1*2^{\circ}=32)+(1*2^{\circ}=64)+(0*2^{\circ}=0)=112$$

3. BİLGİSAYARDA GÖRÜNTÜ OLUŞTURMA ve SAKLAMA

Bilgisayarlarda ekrana yansıyan görüntüler piksel adı verilen noktalardan oluşmaktadır. Bilgisayar bir görüntü oluşturmak için bu piksellerden oluşan matrislere değişik renk değeri atamaları yapar.

Bilgisayarlarda bulunan işlemciler, bilgisayar ve ekran arasında bağdaştırıcı görevi üstlenen görüntü kartı belleğine doğrudan erişerek, görüntüyü 1 ve 0'lardan oluşan sayısal değerler olarak yerleştirir. Görüntü kartı, belleğindeki bu sayısal görüntüyü kendisine bağlı olan ekrana pikseller biçiminde yansıtır.

Görüntü bilgisayar ekranında çizim ve boyama yoluyla oluşturulabildiği gibi kameralar, video kaydediciler ve tarayıcılar gibi aygıtlarla da dış ortamdan bilgisayar ortamına aktarılabilir.

ŞEKİL 3 Bilgisayarda görüntünün oluşumu

Ekranın konumlandırabileceği piksel ve renk sayısının artmasıyla ekrana yansıyan görüntü için daha fazla bellek alanına gereksinim duyulmaktadır. 8 bit yani 1 bayt ile en fazla 256 farklı renk tanımlanabilmektedir, bu duyarlıkta ekrana yansıyan görüntülerin bilgisayar diskinde nokta nokta saklanması durumunda, 800*600 boyutlarında tam ekran büyüklüğündeki bir resim için bilgisayarın diskinde 48000 bayt yer gerekmektedir. Bu tür saklama biçimine bit işlem adı verilir.

ŞEKİL 4 Raster tabanlı görüntü ile vektör tabanlı görüntü arasındaki fark

İncelediğimiz raster tabanlı yani bit işlem görüntü formatlarından JPEG ve GIF yaygın olarak kullanılan, görüntüyü saklarken sıkıştırarak dosya büyüklüğünü küçülten formatlardır.

3.1 Görüntü Oluşturma

Görüntü, iki boyutlu ışık şiddeti fonksiyonudur. Bu fonksiyon f(x,y) şeklinde gösterilir. f'in sayısal değeri ise parlaklık değeri veya görüntünün ilgili noktadaki gri seviye değeridir.

Dijital tanımda her bir piksel ayrı bir alan olarak tanımlanmıştır. f fonksiyonuna derinlik, renk ve zaman değişkenleri de eklenerek fonksiyon a(x,y,z,c,t) şeklini alır.

Renkli görüntüler kırmızı, yeşil ve mavi tonları olmak üzere üç ayrı görüntü matrisinin üst üste çakıştırılması olarak düşünülebilir. Bu üç renk tonunun kombinasyonları ile renkli görüntüler elde edilir.

3.1.1 Renk Derinliği

Dijital bir görüntüdeki nokta sayısı ne kadar fazla olursa o kadar gerçeğe yakın netlikte bir görüntü oluşmaktadır. Ayrıca her bir noktanın ifade edeceği renk de ne kadar gerçeğe yakın olursa o kadar gerçeğe yakın netlikte bir görüntü elde edilmiş olur. Görüntüyü oluşturan her bir pikselin alabileceği renk aralığı ne kadar fazla ise o pikselin oluşturacağı görüntü de gerçeğe daha yakın olacaktır. Buna renk derinliği denir. Genelde bit olarak ifade edilir.

Format	Raster	1-Bit	2-Bit	4-Bit	8-Bit	16-Bit	24-Bit	32-Bit	sıkıştırma
BMP	X	X		X	X		X		Hayır
JPEG	X						X	X	Evet
TIFF	X	X	X	X	X	X	X	X	Evet
PNG	X	X	X	X	Х	Х	X	X	Evet
GIF	X	X	X	X	X				Evet

ŞEKİL 5 Yaygın Raster görüntü formatlarının sahip oldukları renk derinlikleri

ÇİZELGE 3. Görüntü oluşturmada renk derinliği.

Renk Derinliği	Renk Değerleri
1-bit	Siyah ve Beyaz
4-bit	16 renk
8-bit	256 renk
16-bit	65536 renk
24-bit	16777216 renk
32-bit	4.292.967.296(≈4.3 milyar) renk

1-bit renk derinliğine sahip bir piksel 2 adet renk bulundurur. Bunlar siyah ve beyazdır. 4-bit renk derinliğine sahip bir piksel 16 adet renk bulundurur. Sahip olunan renk değeri **2**ⁿ şeklinde ilerler.

ŞEKİL 6 Artan renk derinliğine göre görüntüdeki değişim

3.1.2 Renk Uzayı

Renk uzayı, rengi tanımlamak için kullanılan matematiksel modellerdir ve tüm renkleri içerirler. Bir renk uzayının oluşabilmesi için birbirinden bağımsız üç değişkene ihtiyaç vardır ve gerektiğinde herhangi başka bir renk uzayına doğrusal ya da doğrusal olmayan dönüşüm yapılabilmesi için renk uzayları 3 boyutlu olarak tasarlanırlar.

RGB renk uzayı en yaygın olarak kullanılan renk uzayıdır. Her renk 3 numaradan oluşur, bu numaralar 3 birincil rengin %0 ile %100 arasında yoğunluğunu içerir. Burada birincil renkler kırmızı yeşil ve mavidir. 3 birincil rengin farklı yoğunluklardaki birleşimi ile hedeflenen renkler elde edilir.

ŞEKİL 7 RGB renk uzayı

RGB'de her renk 8 bit ile temsil edilir. 1 piksel 24 bit renk derinliğine sahiptir.

(28) =16,777,216 farklı renk oluşturabilir.

CMYK renk uzayı RGB renk uzayını tamamlayıcı bir renk uzayıdır. CMYK renk uzayı çıkarmalı renk karışım yöntemi yardımıyla birim küpte renklerin tanımlanmasıdır. Cyan magenta ve sarı, bu uzayın eksenleridir. CMYK renk uzayını oluşturan iki bileşenin karışımıyla RGB renk uzayını oluşturan bir bileşen elde edilir.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix} \tag{1}$$

YCbCr renk uzayı RGB renk uzayında olduğu gibi 3 numara ile temsil edilir. Y bileşeni ışık şiddetini belirtir. Cb ve Cr bileşenleri, mavi ve kırmızı bileşenlerin yeşil bileşene göre yoğunluğunu temsil eder. Bu renk uzayı insan gözünün özelliklerinden faydalanır, göz renk tonundaki değişimlere göre ışık şiddeti değişimlerine fazlasıyla duyarlıdır. Eğer bilgiler azaltılmak istenirse, ışık şiddeti bileşeni, Cb ve Cr bileşenlerine oranla daha yüksek doğrulukta saklanır. JPEG formatı YCbCr renk uzayından, çok gerekli olmayan bileşenlerin çıkarılmasında faydalanır.

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

(2)

3.1.3 Renk Matrisi

Renk matrisi kırmızı yeşil ve mavi renklerin görüntüdeki yoğunluk değerlerini saklar. Alfa değeri ise görüntünün saydamlığını ifade eder.

0 resmin en saydam olduğu yeri belirtirken, 1 ise en koyu olduğu yeri belirtir.

				_	
1	0	0	0	0	M[0][0] → Kırmızı
0	1	0	0	0	M[1][1]→Yeşil
0	0	1	0	0	
0	0	0	1	0	M[2][2] → Mavi
0	0	0		1	M[3][3] → Alfa

ŞEKİL 8 Renk matrisi içeriği

3.2 Görüntü Saklama

Görüntüler farklı formatlarda farklı algoritmalarla saklanırlar. Sıkıştırma kullanıp kullanmamaları, kullanıyorlarsa kullandıkları algoritmalar birbirinden farklıdır. Görüntüyü kaydederken referans aldıkları başlangıçları farklıdır, örneğin BMP formatı görüntüyü sol alt köşeden başlayıp sıkıştırılmamış biçimde saklarken JPEG formatı saklamaya sol üst köşeden başlayıp çeşitli sıkıştırma algoritmaları kullanır. Dizilimleri birbirinden tamamen farklıdır. Örneğin TIFF formatı kendi içerisinde TIFF II ve TIFF MM diye ayrılan iki farklı türe sahiptir. Buradaki fark işlemcinin önemli olan baytı solda veya sağda saklıyor olmasından kaynaklanmaktadır.

3.2.1 BMP Görüntü Formatı

BMP formatı 42 4D ile başlar. Görüntüleri piksel piksel kaydeder ve piksel okumaları sol alt köşeden başlayarak sağa doğru ilerler. Her satırın sonunda 00 00 00 şeklinde satır dolgu kısmı bulunur. Okuma bir üst satırın sol kenarından başlayarak devam eder. BMP dosyasında Reserved1 ve Reserved2 şeklinde iki tane alan bulunmaktadır. Bu alanlar formata sıkıştırma özelliği eklenebileceği düşünülerek ayrılmış kısımlardır, sıkıştırma olmadığı için her zaman 0 değerini alır. Ayrıca görüntü verisinin bittiği kısımda 4 bayta tamamlamak üzere satır dolgu devam ettirilir, en sonda bulunan 00 00 kısmı dosyayı belirli bir boyuta tamamlamak için eklenir ve okuma bitmiş olur.

Görüntü Verisi								
Pixel[0,h-1]	Pixel[1,h-1]	Pixel[2,h-1]		Pixel[w-1,h-1]	Sathr Dolgu			
Pixel[0,h-2]	Pixel[1,h-2]	Pixel[2,h-2]		Pixel[w-1,h-2]	Satir Dolgu			
Pixel[0,9]	Pixel[1,9]	Pixel[2,9]		Pixel[w-1,9]	Sathr Dolgu			
Pixel[0,8]	Pixel[1,8]	Pixel[2,8]		Pixel[w-1,8]	Satir Dolgu			
Pixel[0,7]	Pixel[1,7]	Pixel[2,7]	***	Pixel[w-1,7]	Satir Dolgu			
Pixel[0,6]	Pixel[1,6]	Pixel[2,6]		Pixel[w-1,6]	Sathr Dolgu			
Pixel[0,5]	Pixel[1,5]	Pixel[2,5]		Pixel[w-1,5]	Sator Dolgu			
Pixel[0,4]	Pixel[1,4]	Pixel[2,4]	***	Pixel[w-1,4]	Satir Dolgu			
Pixel[0,3]	Pixel[1,3]	Pixel[2,3]	***	Pixel[w-1,3]	Sathr Dolgu			
Pixel[0,2]	Pixel[1,2]	Pixel[2,2]	200	Pixel[w-1,2]	Sathr Dolgu			
Pixel[0,1]	Pixel[1,1]	Pixel[2,1]		Pixel[w-1,1]	Satır Dolgu			
Pixel[0,0]	Pixel[1,0]	Pixel[2,0]		Pixel[w-1,0]	Satır Dolgu			

ŞEKİL 9 BMP formatında piksel dizilimi

BMP formatını 3 bölümde inceleyebiliriz.

- BMP dosya başlangıcı (BMPFILEHEADER)
 - o Görüntü başlangıcı
 - o Dosya boyutu
 - o Reserved1
 - o Reserved2
 - o Bitmap verisini bulunduran çıkış
- Bitmap bilgileri başlangıcı (DIBHEADER)
 - o Bitmap bilgi içeriği uzunluğu
 - o Görüntünün genişliği
 - o Görüntünün yüksekliği
 - o Düzlem adedi
 - o Renk derinliği
 - Sıkıştırma türü
 - o Ham görüntü değeri
 - Yatayda metre başına düşen piksel sayısı
 - O Düşeyde metre başına düşen piksel sayısı
 - o Paletteki renk numaraları
 - o Önemli olan renkler (0 değeri tüm renklerin önemli olduğunu ifade eder)
- Piksel dizilişi
 - o BGR sıralamasıyla pikseller
 - Satır sonu dolgusu

3.2.2 JPEG Görüntü Formatı

JFIF dosyalarında görüntü yönelimi her zaman yukarıdan aşağı doğrudur. JFIF dosyasında görüntüye ait ilk örnek kodlama en üst sol köşede yer almaktadır ve bu kodlama soldan sağa ve yukarıdan aşağı şekilde devam eder. JPEG formatını 8 bölümde inceleyebiliriz.

- Görüntünün başlangıcı
- APP0 markacı(marker)
 - o APPO uzunluğu
 - o Tanımlayıcı kimlik (ID)
 - o Sürüm
 - o X & Y yoğunluğu adedi
 - o X yoğunluğu
 - Y yoğunluğu
 - Yatay pikseller için ön izleme görüntüsü
 - o Düşey pikseller için ön izleme görüntüsü
 - o RGB değerleri için ön izleme görüntüsü
- APPn markacı (1 ile 15 arasında değer alabilir)
 - o APPn uzunluğu
 - Uygulamaya özgü bilgiler
- Bir veya daha fazla niceleme tablosu (Quantization table)
 - o Niceleme tablosu uzunluğu
 - Niceleme tablosu numarası
 - o Niceleme tablosu
- Şeklin başlangıcı
 - Şekil başlangıç uzunluğu
 - o Duyarlık (Bit piksel renk bileşenleri)
 - o Görüntü yüksekliği
 - o Görüntü genişliği
 - o Renk bileşenleri numaraları
 - o Her bileşen için
- Kimlik bilgisi
- Düşey çarpan
- Yatay çarpan
- Niceleme tablosu
- Bir veya daha fazla Huffman tablosu
 - o Huffman tablosu uzunluğu
 - o AC veya DC olduğunu belirten türü
 - o İçeriği
 - o Bit tablosu

- Değer tablosu
- Tarama başlangıcı
 - o Tarama başlangıcı uzunluğu
 - o Renk bileşenleri numaraları
 - o Her bileşen için
- Kimlik bilgisi
- AC tablosu
- DC tablosu
- Sıkıştırılmış görüntüye ait veri (Tarama başlangıcı uzunluğuna dahil değildir)
- Görüntü sonu

ÇİZELGE 4. JPEG Formatında Başlangıç Hex Kodları

Bölüm	
Görüntünün Başlangıcı	FF D8
APP0 markacı	FF E0
APPn markacı	FF E1 – FF EF
Niceleme tablosu	FF DB
Şeklin başlangıcı	FF C0
Huffman tablosu	FF C4
Tarama başlangıcı	FF DA
Görüntü sonu	FF D9

3.2.3 TIFF Görüntü Formatı

İşlemciler, baytları saklarken önemli olan baytın solda veya sağda olmasına göre sınıflandırılır. Buna endianness adı verilir. Önemli baytın solda olduğu sıralamaya big endian, önemli baytın en sağda olduğu sıralamaya ise little endian sıralaması denir. Bütün işlemciler kendilerine ait bir sıralama seçmiş buna göre düzenleme yapmaktadır. Sparc, Motorola, PowerPC ve Java Sanal İşlemcisi big endian kullanırken intel386 ve klonları little endian sıralamasını kullanır. TIFF formatı bu iki tür sıralamayı da içermektedir.

TIFF dosyası 8 baytlık bir başlangıç kısmı içerir, bu kısımdan sonra görüntü dizini gelir. Bir görüntü dizini görüntü ile ilgili bilgileri gerçek görüntü verisindeki kadar iyi şekilde içerir.

TIFF formatını 3 bölümde inceleyebiliriz.

- TIFF dosya başlangıcı (IMAGEFILEHEADER)
 - o TIFF II veya TIFF MM başlangıcı
 - o Bayt değeri
 - o Görüntü dizin içeriği ofset

- Görüntü dosyası dizin içeriği(IFD)
 - o Görüntü dosyası dizin içeriği girişi
 - Görüntü dosyası dizin içeriği adlandırması
 - Görüntü yüksekliği
 - o Görüntü genişliği
 - o Sıkıştırma
 - o Fotometrik yorumlama
 - o Bant karşılığı
 - o Bant sırası
 - o Bant boyutları
 - o X çözünürlüğü
 - o Y çözünürlüğü
 - o Yazılım
 - o Tarih ve Zaman
 - o Sonraki görüntü dosyası dizini
 - 1. bayttan büyük olan değerler
 - * Bant karşılığı
 - * Bant boyutları
 - * X çözünürlüğü
 - * Y çözünürlüğü
 - * Yazılım
 - * Tarih ve Zaman
 - 2. Görüntü verisi (Sıkıştırılmış bantların sıralaması)
- Görüntü sonu

4. UYGULAMA

Görüntü formatlarında dizilim algoritmalarını ayrıntılı görebilmek için yaygın olarak kullanılan ve sıkıştırma algoritması bulunmayan BMP formatı ile sıkıştırma kullanan JPEG formatı seçildi. İki format için ŞEKİL 1'de kullanılan görüntünün 10*10 piksel boyutlarında görüntüsü öncelikle BMP sonra JPEG formatına saklandı. Bu iki formatların görüntüyü saklarken yararlandığı algoritmaları inceleyeceğiz.

4.1 BMP Formati

Uygulamada 24-bit gerçek renk olarak kaydedilen 10*10 piksel boyutundaki görüntünün daha önce değindiğimiz BMP formatına uygun dizilimde olduğunu göreceğiz.

ŞEKİL 10 BMP formatı örnek görüntü

BMP formatında saklanan görüntü Ultraedit Professional Text/Hex Editor programı yardımıyla onaltılık sayı sistemindeki dizilimi görüntülenecek şekilde açılıp adres kısmı dahil olacak şekilde ekran görüntüsü alınmıştır. Alınan ekran görüntüsü üzerinde, BMP dosya formatı içersinde açıklanan bilgilere göre numaralandırma yapılmıştır. Yapılan numaralandırmanın ardından oluşturulan çizelge içersinde formatın dizilimine dair açıklamalar yapılmıştır. Ayrıca BMP formatında saklanan görüntüdeki RGB renk bileşenlerine doğrudan müdahale imkanı bulunduğu için bu örnekte hedef alınan piksellerin renk bileşenleri değiştirilerek yeni görüntü oluşturulmuştur.

ŞEKİL 11 BMP formatı hex dizilimi

- (3) 78 01 00 00 değeri onluk sistemde 7*16+8*1+1*256=376 bayta denk gelmektedir. Görüntünün özelliklerinden boyutunu sorguladığımızda, boyutun 376 bayt olduğunu görürüz.
- (13) Görüntü verisinin başlangıcından bitişine kadar olan hücrelerin her biri 1'er bayt değerindedir. Örnekteki 42 01 değeri onluk sistemde 4*16+2*1+1*256=322 bayta denk gelmektedir.
- (18) 55. Hücreden başlamak üzere gelecek olan değerler görüntüdeki renk verisinin koordinat değerleridir. Görüntü sol alt köşeden okunmaya başlanıp her satırın sonuna satır dolgu denilen 00 00 00 değeri eklendikten sonra bir üst satırın sol köşesinden başlanılarak okunmaya devam eder. Toplam 322 bayt bulunur.

- (19) Sol alt köşeden başlanıp her satırın bitiminde 00 00 satır dolgu eklenir.
- (20) Görüntü verisinin bittiği kısımda 4 bayta tamamlamak üzere satır dolgu devam ettirilir, en sonda bulunan 00 00 kısmı dosyayı belirli bir boyuta tamamlamak için eklenir ve okuma bitmis olur.

BMP formatında görüntünün sıkıştırma algoritması olmamasına karşın ileride formatta yapılabilecek herhangi bir değişiklik ön görülerek bunun için ayrılmış alanlar bulunmaktadır. Veriyi kayıpsız saklamasına dosya boyutun artmasına neden olmaktadır.

ÇİZELGE 5. BMP Dosya Formatı

SN	Hex	Açıklama	Algılanan
1	00000000h	Her baytın dahil olduğu adres kısmı	
2	42 4D	BM formati	BMP dosyası
3	78 01 00 00	Dosya boyutu	92 bayt(ŞEKİL n)
4	00 00	Reserved1	Sıkıştırma yok
5	00 00	Reserved2	Sıkıştırma yok
6	36 00 00 00	Dosyanın başlangıcından Bitmap verisi	54 bayt
		başlangıcına kadar olan kısım	
7	28 00 00 00	Bitmap Info Header uzunluğu	40 bayt
8	0A 00 00 00	Görüntünün genişliği	10 piksel
9	0A 00 00 00	Görüntünün yüksekliği	10 piksel
10	01 00	Düzlem Adedi	1 Düzlem
11	18 00	Renk derinliği	24-bit(ŞEKİL n)
12	00 00 00 00	Sıkıştırma türü	Sıkıştırma yok
13	42 01 00 00	Ham görüntü değeri	322 hücre*
14	12 0B 00 00	Yatayda metre başına düşen piksel sayısı	X yönünde çözünürlük
15	12 0B 00 00	Düşeyde metre başına düşen piksel sayısı	Y yönünde çözünürlük
16	00 00 00 00	Paletteki renk numaraları	0 Renk
17	00 00 00 00	Önemli olan renkler	0 ise tüm renkler önemli
18	A6 3800*	Pikseller halinde saklanan görüntü	Renk
19	00 00	Satır Dolgu	-
20	00 00	Satır Dolgu	-

Görüntü içersinde sol en alt satırdaki ilk 3 piksele ve bir üstündeki satırdaki ilk 3 piksele siyah ve beyaz renk değerleri verilmek istenmektedir. Siyah piksel BGR kodlamasında 00 00 00 değeri ile kodlanır. Beyaz piksel ise FF FF şeklindedir. BMP formatı görüntüyü sol alt köşeden okumaya başladığı için piksel kodlarının girildiği ilk 8 bitlik hücreden başlanarak istenilen piksel kadar FF FF değeri girilir, ardından ilk satır dolgunun sonundan başlayan bir üst satırın ilk 8 bitlik hücresine 3 piksel oluşturacak kadar 00 00 00 değeri girilir. Oluşturulan görüntü saklanılıp uygun görüntüleme programında açıldığında hedef alınan piksellerin renk değerlerinin değiştirildiği gözlemlenir.

ŞEKİL 12 RGB bileşenleri değiştirilen görüntü dizilimi

ŞEKİL 13 Değiştirilen RGB bileşenleri sonucu oluşan görüntü

4.2 JPEG Formati

Sıkıştırma yapması nedeniyle JPEG formatında saklanan 10*10 piksel görüntü incelemesi ile JPEG formatının karmaşık yapısı aktarılmaya çalışılmıştır. JPEG dosyası Huffman veri sıkıştırma algoritmasını kullanır.

ŞEKİL 14 JPEG formatı uygulama görüntüsü

ŞEKİL 15 (a) JPEG Formatı

ÇİZELGE 6. JPEG Dosya Formatı Başlangıcı

SN	Hex	Açıklama	Algılanan
1	00000000h	Her baytın dahil olduğu adres kısmı	-
2	FF D8	JPEG formatı	JPEG dosyası
3	FF E1	Uygulama 1 bölümü başlangıcı	-
4	03 A2	HDR uzunluğu	-
5	45 78 69 66 00	JFIF dizisi	-
6	00 4D	Büyük ve küçük uyarlama kimlikleri (ID'leri)	-
7	4D	Yoğunluk ünitesi	-
8	00 2A	X yönündeki yoğunluk	-
9	00 00	Y yönündeki yoğunluk	-
10	00	Ön izleme yüksekliği	-
11	08	Ön izleme genişliği	-
12	00 07	Açıklama etiketi	-
13	01 12	Açıklama göstergesi uzunluğu	-
14	00 03 00 00 00 01 00 01	Açıklama metni	-

ŞEKİL 15 (b) JPEG Formatı

ÇİZELGE 7. JPEG Dosya Formatı Frame Başlangıcı

SN	Hex	Açıklama	Algılanan
15	FF C0	Frame başlangıcıdır	JPEG dosyası
16	00 11	Frame uzunluğu	-
17	08	Veri duyarlığı	-
18	00 0A	Görüntü yüksekliği	-
19	00 0A	Görüntü genişliği	-
20	03	RGB bileşenleri numarası	Renk
21	01 22 00	Kimlik numarası / Örnekleme faktörü / Niceleme tablosu	-
		kimlik numarası	
22	02 11 01	Kimlik numarası / Örnekleme faktörü / Niceleme tablosu	-
		kimlik numarası	
23	03 11 01	Kimlik numarası / Örnekleme faktörü / Niceleme tablosu	-
		kimlik numarası	

(16) 00 11 değeri FF DD kısmına kadar olan frame uzunluğunu verir, 11 değeri onluk sistemde 17'ye karşılık gelmektedir. Burada da frame uzunluğunun 17 olduğu görülür.

(18) (19) 00 0A değeri onluk sistemde 10'a karşılık gelmektedir. Bu da görüntünün belirlemiş olduğumuz yükseklik ve genişlik değerlerine eşittir.

ÇİZELGE 8. JPEG Dosya Formatı

SN	Hex	Açıklama	Algılanan
24	FF DD	Tanımlanmış yeniden başlama aralığı (DRI)	-
25	00 04	Yeniden başlama aralığı uzunluğu	-
26	00 01	Yeniden başlama aralığı içeriği	-

ÇİZELGE 9. JPEG Dosya Formatı

SN	Hex	Açıklama	Algılanan
27	FF C4	Huffman Tablosu	-
28	01 3F	Huffman Tablosu uzunluğu	-
29	00	DC Tablosu	-
30	00 01 00	Uzunluk kodları ile sembollerin numaraları	=<256
31	03	2 bit uzunluğundaki kodlar	-
32	00	3 bit uzunluğundaki kodlar	-
33	01 02 04 05 06	4 bit uzunluğundaki kodlar	-
34	07	5 bit uzunluğundaki kodlar	-
35	08	6 bit uzunluğundaki kodlar	-
36	09	7 bit uzunluğundaki kodlar	-
37	0A	8 bit uzunluğundaki kodlar	_
38	0B	9 bit uzunluğundaki kodlar	-

ŞEKİL 15 (c) JPEG formatı

ÇİZELGE 10. JPEG Dosya Formatı Tarama Başlangıcı

SN	Hex	Açıklama	Algilanan
39	FF DA	Tarama başlangıcı	Sol üstten başlayan tarama
40	00 0C	Tarama uzunluğu	12 Bayt
41	03	Tarama bileşeni numarası	Renkli görüntü
42	01 00	Huffman tablosu bileşenleri	01 Huffman tablosu kullanılmıştır.
		kimliği	
43	02 11	Huffman tablosu bileşenleri	02 Huffman tablosu kullanılmıştır. AC
		kimliği	tablosu 1 ve DC tablosu 1 değeri
			almıştır.
44	03 11	Huffman tablosu bileşenleri	03 Huffman tablosu kullanılmıştır. AC
		kimliği	tablosu 1 ve DC tablosu 1 değeri
			almıştır.
45	00 3F 00	Gözardı edilen kısımdır (Ignored)	-

ŞEKİL 15 (d) JPEG formatı

ÇİZELGE 11. JPEG Dosya Formatı Görüntü Bitişi

SN	Hex	Açıklama	Algılanan
46	FF D9	Görüntünün bitişi	

(46) Görüntü her zaman FF D9 değeri ile sonlanır.

5. SONUÇ

Görüntü dosyaları formatları belirli algoritmalara göre oluşmaktadır. Her formatın kendine özgü geliştirdiği bir veri dizilimi bulunmaktadır, her format görüntüyü farklı biçimde saklar. Herhangi bir görüntü formatında saklanan dosya içeriği, bu formatı okuyabilen bir program ile yeniden görsel hale getirildiğinde görüntü üzerinde yapılan işlemler hatalı olbailir. Bilgisayarda oluşturulan görüntü üzerinde çalışmak yerine, orijinal dosyalardaki bilgileri doğrudan okutularak üzerinde işlem yapılmak daha doğru olacaktır.

Çalışmanın amacı bu görüntü formatlarının doğrudan okutulabilmesini sağlayabilmek için, bu formatları tanıtmaktır.

KAYNAKLAR

WOODS, Richard E. (1993), Digital Image Processing, Reading Massachusetts : Addison-Wesley, ISBN-0201600781.

INTERNET KAYNAKLARI

- URL 1: http://www.asciitable.com/, ASCII tablosu
- URL 2: http://tr.wikipedia.org/ Renk uzayı, PNG, JPEG, GIF, TIFF, BMP dosya formatları
- URL 3: http://www.fourcc.org/rgb.php,
- URL 4: http://www.wotsit.org/list.asp?search=BMP&button=GO%21
- URL 5: http://www.fortunecity.com/skyscraper/windows/364/bmpffrmt.html
- URL 6: http://www4.cs.fau.de/Services/Doc/graphics/doc/jpeg/libjpeg.html
- URL 7: http://class.ee.iastate.edu/ee528/Reading%20material/JPEG File Format.pdf
- URL 8: http://class.ee.iastate.edu/ee528/Reading%20material/JPEG File Format.pdf
- URL 9: http://gvsoft.homedns.org/exif/exif-explanation.html
- URL 10: http://www.scantips.com/basics9t.html
- URL 11: http://www.awaresystems.be/imaging/tiff/faq.html
- URL 12: http://www.tiffviewer.com/open-tif-file.htm