Contents

1	Σ υ	Σ υνή ϑ εις Δ ιαφορικές Εξισώσεις			
	1.1	Θεωρίο	t [.]		
		1.1.1	Συνήθης Διαφορική Εξίσωση (Σ.Δ.Ε.)		
		1.1.2	Χαραχτηριστιχή Εξίσωση		
1.2 Παραδείγματα		είγματα			
		1.2.1	Εύρεση Γ.Λ. Σ . Δ .Ε.		
		1.2.2	Προβλήματα αρχικών (ή συνοριακών) τιμών Σ.Δ.Ε	4	
		1.2.3	Επίλυση $\Gamma.\Lambda$. των παρακάτω $\Sigma.\Delta.Ε.$	4	
2	Μετασχηματισμός Laplace			Ę	
3	Σειρές Fourier			7	
4	Πιθανότητες			ę	

2 CONTENTS

Συνήθεις Διαφορικές Εξισώσεις

1.1 Θεωρία

1.1.1 Συνήθης Δ ιαφορική Εξίσωση (Σ. Δ .Ε.)

$$\alpha y''(x) + \beta y'(x) + \gamma y = 0$$

Η $\Sigma.\Delta.E.$ είναι γραμμική, δεύτερης τάξης, ομογενής, με α, β, γ σταθερούς συντελεστές.

1.1.2 Χαρακτηριστική Εξίσωση

$$\alpha r^2 + \beta r + \gamma = 0$$

Για την γενική λύση της X.E. διακρίνονται οι παρακάτω περιπτώσεις:

1.
$$\Delta > 0$$

$$r_1, r_2 \in \Re$$
 $y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
 $y_1(x) = c_1 e^{r_1 x}$
 $y_2(x) = c_2 e^{r_2 x}$
 c_1, c_2 σταθερές

$2. \ \Delta = 0$

$$r\in\Re$$

$$y(x)=c_1e^{rx}+c_2xe^{rx}$$

$$y_1(x)=c_1e^{rx}$$

$$y_2(x)=c_2xe^{rx}$$

$$c_1,c_2 \text{ stabspés}$$

3. $\Delta < 0$

$$\begin{aligned} r_1 &= A + Bi \\ r_2 &= A - Bi \end{aligned}$$

$$A &= \frac{-\beta}{2\alpha}, \ B &= \frac{\sqrt{-\Delta}}{2\alpha} \\ y(x) &= c_1 e^{Ax} \sin Bx + c_2 e^{Ax} \cos Bx \\ y_3(x) &= c_1 e^{Ax} \sin Bx \\ y_4(x) &= c_2 e^{Ax} \cos Bx \\ c_1, c_2 & \text{staddepés} \end{aligned}$$

Η απόδειξη περίπτωης $\Delta < 0$ Είναι:

$$y_1(x) = e^{Ax}(\sin Bx + i\cos Bx) \tag{1.1}$$

$$y_2(x) = e^{Ax}(\sin Bx - i\cos Bx) \tag{1.2}$$

Έχουμε:

$$(1.1) + (1.2)$$

$$e^{Ax}(\sin Bx + i\cos Bx) + e^{Ax}(\sin Bx - i\cos Bx)$$

$$e^{Ax}(\sin Bx + i\cos Bx + \sin Bx - i\cos Bx)$$

$$e^{Ax}(2\sin Bx)$$

$$y_1(x) + y_2(x) = 2e^{Ax}\sin Bx$$

$$\frac{1}{2}y_1(x) + \frac{1}{2}y_2(x) = e^{Ax}\sin Bx$$

$$y_3(x) = e^{Ax} \sin Bx$$

Και:

$$(1.1) - (1.2)$$

$$e^{Ax}(\sin Bx + i\cos Bx) - e^{Ax}(\sin Bx - i\cos Bx)$$

$$e^{Ax}(\sin Bx + i\cos Bx - \sin Bx + i\cos Bx)$$

$$e^{Ax}(2i\cos Bx)$$

$$y_1(x) + y_2(x) = 2ie^{Ax}\cos Bx$$

$$\frac{1}{2i}y_1(x) + \frac{1}{2i}y_2(x) = e^{Ax}\cos Bx$$

$$y_4(x) = e^{Ax} \cos Bx$$

1.2 Παραδείγματα

1.2.1 Εύρεση $\Gamma.\Lambda.$ $\Sigma.\Delta.E.$

1.
$$y'' - y' - 6y = 0$$

$$r^2 - r - 6 = 0$$
, $\Delta = 25 > 0$

$$r_1 = \frac{-(-1) + \sqrt{\Delta}}{-2} = \frac{-(-1) + \sqrt{25}}{-2} = -3$$

$$r_2 = \frac{-(-1) - \sqrt{\Delta}}{-2} = \frac{-(-1) - \sqrt{25}}{-2} = 2$$

Άρα η γενική λύση είναι η

$$y(x) = c_1 e^{-3x} + c_2 e^{2x}$$

2.
$$y'' - 4y' - 5y = 0$$

 $r^2 - 4r - 5 = 0, \ \Delta = -4 < 0$
 $r_1 = \frac{-(-4) + i\sqrt{-\Delta}}{-2} = 2 + i$

$$y(x) = c_1 e^{2x} \sin x + c_2 e^{2x} \cos$$

3.
$$y'' - 4y' - 4y = 0$$

$$r^2 - r - 6 = 0, \ \Delta = 25 > 0$$

$$r_1 = \frac{-(-1) + \sqrt{\Delta}}{-2} = \frac{-(-1) + \sqrt{25}}{-2} = -3$$

$$r_2 = \frac{-(-1) - \sqrt{\Delta}}{-2} = \frac{-(-1) - \sqrt{25}}{-2} = 2$$

Άρα η γενιχή λύση είναι η

$$y(x) = c_1 e^{-3x} + c_2 e^{2x}$$

1.2.2 Προβλήματα αρχικών (ή συνοριακών) τιμών Σ.Δ.Ε

1.
$$y'' + 4y' = 0$$
, $y(0) = 0$, $y(\frac{\pi}{12}) = 1$

$$r^2 + 4 = 0$$

Οι ρίζες της Χ.Ε. είναι οι

$$r_1 = 2i, r_2 = -2i$$

Η
$$\Gamma.\Lambda$$
. της $\Delta.Ε$. δίνεται από

$$y(x) = c_1 e^{0x} \sin 2x + c_2 e^{0x} \cos 2x$$

 $y(x) = c_1 \sin 2x + c_2 \cos 2x$

2.
$$y'' + 4y' = 0$$
, $y(0) = 0$, $y(\pi) = 1$

3.
$$y'' + 4y' = 0$$
, $y(0) = 0$, $y(\pi) = 0$

4.
$$y'' - 2y' + 2y = 0$$
, $y(0) = 0$, $y'(0) = 2$

1.2.3 Επίλυση $\Gamma.\Lambda$. των παρακάτω $\Sigma.\Delta.E$.

1.
$$y'' - 2y' - 3y = 0$$

2.
$$y'' - 4y' = 0$$

3.
$$y'' - 4y' + 4y = 0$$

Μετασχηματισμός Laplace

Σειρές Fourier

Πιθανότητες