Comparing random forest classifiers and the HDCZA heuristic algorithm for sleep onset and wake detection

- Vishwesh Pillai
- Parth Shah
- Yukta Sarode
- Yadvendra Naveen

The Problem

Sleep study and detection is difficult

Sleep diaries are cumbersome and often inaccurate

Wrist-worn accelerometers are a solution

Convenient and accurate, provided detection algorithm is sound

Use different methods and compare

Can provide insights into why a method might be better

Related Work

Conventional ML Models

- Bagging decision tree classifier - Boe et al.
- Random forest Sundararajan et al.
- K-means clustering and HMMs
 - Subramanian et al.

Heuristic Approaches

- Automated sleep detection
 algorithm using R package (Change
 of Z-Angle) Plekhanova et al.
- Detecting SPT window using the variance in z-axis angle without sleep diary van Hees *et al*.

Which works best Random forest classifier or HDCZA?

Let's compare them and find out!

Data Exploration

About the data

Events (Onset/Wakeup) and time-series (5 second time-steps)

z-angle

Angle between arm and vertical axis of the body

ENMO

Summary measure of all accelerometer data

Random Forest classifier

Feature selection is important

First variation of Z-angle and ENMO with various rolling windows

Compare correlation...

between sleep state and candidate features

Train RFC using the best features

Hyperparameter selection is also important

HDCZA Heuristic Algorithm

Results & Conclusion

Test accuracy for RFC is

45.5%

Test accuracy for HDCZA is

30.4%

Verdict

RFC with feature selection works better than HDCZA

Feature Importances

Future Work

Other features

- LIDS (Locomotor Inactivity
 During Sleep) calculated from
 ENMO
- Combination of Z-angle and ENMO

Deep learning approach

 CNNs could also be used to detect sleep windows

