#### MATLAB Fundamentals

Heidelberg-EMBL 12-15/09/2016

Tutor: Karin Sasaki (EMBL Centre for Biological Modelling)

# Introductions and expectation

What is your name?

What do you do?

Why do you want to learn MATLAB?

#### Course content

- Get familiarised:
  - MATLAB syntax and functions
  - Basics of programming
- Learn to:
  - Import, visualise, explore and export data
  - Build, simulate and explore mathematical models of biological systems with MATLAB

#### MATLAB

- MATLAB is a language for technical computing
- MATLAB (Matrix Laboratory) is based on matrix (array) operations
- It integrates computation, visualisation, and programming
- Interactive environment
- MATLAB is a numerical software

# MATLAB Windows, Lyariables and output format

# MATLAB Windows, Wariables and output format

exercise 2.1 in pdf

#### Arrays

MATLAB was originally written to ease dealing with tools of linear algebra – vectors and matrices.

Array - is a multi dimensional grid of data.

**Single number:** is a 1 x 1 array.

**Column vector:** a m x 1 array.

Row vector: a 1 x n array.

**Matrix:** a m x n array.

$$\mathbf{x} = \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \\ x5 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{y} = (\mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3 \ \mathbf{y}_4 \ \mathbf{y}_5) \end{pmatrix} \begin{pmatrix} \mathbf{A} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ -5 & -1 & 3 & 0 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ -5 & -1 & 3 & 0 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ -5 & -1 & 3 & 0 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ -5 & -1 & 3 & 0 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ -5 & -1 & 3 & 0 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 4 & -3 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 2 & 3 & -5 & 2 & 2 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \\ 2 & 3 & -5 & 2 & 2 \end{pmatrix} \begin{pmatrix} m \\ \mathbf{x} = \begin{pmatrix} -3 & 0 & 2 & 3 & -3 \\ 2 & 3 & -5 & 2 & 2 \\ -1 & 0 & 2 & -1 & -2 \end{pmatrix} \end{pmatrix}$$

MATLAB stores data all in arrays

So working with arrays is fundamental to working with MATLAB



#### Arrays









#### Arrays - Example 1 Image storage

**Image:** set of data that is real-valued, ordered, represents color and intensity



| 73  | 61  | 55  | 27  | 137 | 112 | 121 | 197 | 239 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 9   | 25  | 131 | 55  | 124 | 147 | 173 | 133 | 135 |
| 32  | 42  | 86  | 76  | 144 | 68  | 143 | 94  | 178 |
| 26  | 76  | 57  | 78  | 91  | 87  | 51  | 176 | 148 |
| 42  | 60  | 95  | 90  | 95  | 36  | 150 | 158 | 122 |
| 38  | 26  | 84  | 65  | 51  | 49  | 106 | 66  | 119 |
| 32  | 48  | 78  | 28  | 24  | 19  | 94  | 127 | 62  |
| 61  | 128 | 88  | 92  | 55  | 99  | 110 | 126 | 127 |
| 55  | 70  | 57  | 63  | 59  | 101 | 118 | 90  | 88  |
| 54  | 26  | 38  | 31  | 67  | 78  | 31  | 127 | 107 |
| 67  | 57  | 81  | 70  | 83  | 142 | 143 | 99  | 88  |
| 103 | 48  | 78  | 119 | 61  | 55  | 120 | 139 | 201 |
|     |     |     |     |     |     |     |     |     |

#### Arrays - Example 2 Stoichiometry matrix

E + S → ES  

$$k_1*E*S$$
  
E--; S--; ES++  
ES → E + S  
 $k_2*ES$   
ES--; E++;S++  
ES → E + P  
 $k_3*ES$   
ES--; E++; P++

|                        | Ε  | S  | ES | Ρ |
|------------------------|----|----|----|---|
| $E + S \rightarrow ES$ | -1 | -1 | 1  | 0 |
| ES → E + S             | 1  | 1  | -1 | 0 |
| ES → E + P             | 1  | 0  | -1 | 1 |

#### Arrays - Other examples

Can you think of other examples?

### Operations on Arrays



#### Help



#### Arrays

exercise 2.2 in pdf



### Data types/classes



#### Data types

exercise 2.3 in pdf



#### In-built Functions



#### In-built Functions

exercise 2.4 in pdf

# Scripts, logical operators And control of flow





| <  | Less than                |  |  |
|----|--------------------------|--|--|
| <= | Less than or equal to    |  |  |
| >  | Greater than             |  |  |
| >= | Greater than or equal to |  |  |
| == | Equal to                 |  |  |
| ~= | Not equal to             |  |  |
| &  | Logical AND              |  |  |
|    | Logical OR               |  |  |



#### Control flow

|                  | Description                                            | Language Synthanx                                                                                   | Use for:                                                                                                                           |
|------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| if, elseif, else | Execute statements if condition is true                | if logical operator (true) statements elseif logical operator (true) statements else statements end | <ul> <li>Conditional assignment</li> <li>Compare arrays</li> <li>Test for equality</li> <li>Evaluate various conditions</li> </ul> |
| for              | Execute statements a specified number of times         | for condition<br>statements<br>end                                                                  | <ul><li>Assign matrix values</li><li>Decrement values</li><li>Execute statements for specificed values</li></ul>                   |
| while            | Repeat execution of statements while condition is true | while logical operator (true)<br>statements<br>end                                                  | <ul> <li>Repeat statements until<br/>expression is false</li> </ul>                                                                |

• Loops have always been slow in MATLAB, so avoid loops if possible.; Vectorisation still speeds things up.

<sup>\*</sup> Examples adapted from the Mathworks website

# Scripts, logical operators and control of flow

exercises 2.5 and 4.3 in pdf

# Array operations vs loops





#### Functions



#### Functions

exercise 4.1 in pdf



### Scripts vs Functions The Scripts vs Functions



### Scripts vs Functions

exercise 4.2 in pdf



#### Debugging tools



#### Debugging

exercise 4.4 in pdf

#### Contractile actin network



#### Contractile actin network

The nucleus is (0,0)



Q3. Is the network contracting?

Q4. Can you quantify the behaviour?

Cytosim

### Lipid-mediated recruitment of proteins to specific membranes



Image from Prof. Wonhwa Cho website.

### Lipid-mediated recruitment of proteins to specific membranes

Measured membrane-binding properties of some of the most common phosphoinositide-binding targets

We want to answer two questions

- Q1. Do we observe cooperativity between lipids?
- Q2. Is cooperativity inhibitory or enhancing for protein recruitment?

# Importing data interactively/programatically



#### Importing data

exercise 6.1 in pdf

# Plotting interactively/ programatically





# Plotting

| plot(x, y)                            | Plots graph with x and y being vecotors with the coordinates in the x and y axes |  |  |
|---------------------------------------|----------------------------------------------------------------------------------|--|--|
| xlabel('X')<br>xlabel('Y')            | names the axes                                                                   |  |  |
| title('Plot')                         | Names the figure                                                                 |  |  |
| xlabel('range')<br>ylabel('variable') | Names the axes                                                                   |  |  |
| legend('name1')                       | Graph legend for lines and patches                                               |  |  |
| hold on<br>hold off                   | Retains current graph in figure<br>Transcribes current graph in<br>figure        |  |  |
| figure (1)                            | Creates figure 1                                                                 |  |  |
| saveas(h,<br>filename)                | Saves figure with handle h to file filename                                      |  |  |

| Color<br>specifier | Colors  | Line<br>specifier |                            | Marker<br>specifier  |              |
|--------------------|---------|-------------------|----------------------------|----------------------|--------------|
| r                  | Red     | í_1               | Solid<br>line<br>(default) | '+'                  | Plus<br>sign |
| g                  | Green   | ·1                | Dashed<br>line             | 'o'                  | Circle       |
| b                  | Blue    | · . 1             | Dotted<br>line             | 1*1                  | Asterisk     |
| С                  | Cyan    | ''                | Dash-<br>dot line          |                      | Point        |
| m                  | Magenta |                   |                            | 'X'                  | Cross        |
| У                  | Yellow  |                   |                            | square'<br>or 's'    | Square       |
| k                  | Black   |                   |                            | 'diamon<br>d' or 'd' | Diamon<br>d  |
| W                  | White   |                   |                            |                      |              |

# Plotting (interactively/programatically)

exercise 6.2 in pdf

## More practice!

Mathematical descriptions of the time behaviour of a spatially homogenous chemical system

Image processing

Mathematical descriptions of the time behaviour of a spatially homogenous chemical system

#### What is a mathematical model?

Wikipedia (April 17th 2013): "A mathematical model is a description of a system using mathematical concepts and language."

#### variables

[x]

**Vmax** 

Kd

EC<sub>50</sub>

length

t<sub>1/2</sub>

#### relationships

$$K_d = \frac{[A] \cdot [B]}{[AB]}$$

$$d[X]/dt = k \cdot [Y]^2$$

$$\sum_{i} [X]_i - F(t) = 0$$

$$k(t) \sim N(k, \sigma^2)$$

$$\begin{array}{ll} \text{If} & \text{mass}_t > \text{threshold} \\ \text{then} & \text{mass}_{t+\Delta t} = 0.5 \cdot \text{mass} \end{array}$$

#### constraints

**Energy conservation** 

Boundary conditions (v < upper limit)

Objective functions (maximise ATP)

Initial conditions

Different types: Dynamical models, logical models, rule-based models, multi-agent models, statistical models, etc.

#### Why using mathematical models?



#### Modelling the spread of HIV in a society

#### **Necessary constituents?**

- ✓ Susceptible S
- ✓ Infected/infective I
- ✓ Recovered/no longer susceptible R

#### **Emerging properties**



### Naming variables carefully is very important!!

#### Relationships

$$\frac{dS}{dt} = -\beta \frac{SI}{N} 
\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I 
\frac{dR}{dt} = \gamma I 
N = S + I + R$$



#### Why using mathematical models?

Mathematical modelling can be very helpful for discovering and understanding biological processes and organisation principles, because:

- it forces the investigator to formulate hypotheses and insights in a clear-cut and formal way
- it may allow for the representation and evaluation of system compounds that are experimentally not accessible
- it allows to explore many scenarios or parameter values in less time and cheaper than in experiments
- it may help to extract structural dependencies or mathematical and physical relation that are hard to find by biological intuition, e.g. + and loops

# **Deterministic** mathematical description of the time behaviour of a spatially homogenous chemical system

#### Assumptions:

- 1. chemical reactions are continuous rate processes
- 2. chemical reactions are a predictable process, based only on the initial conditions
  - governed by a set of coupled, ordinary differential equations (ODEs)

## Differential Equations

A differential equation is a mathematical equation that relates some function with its derivatives.

(In biology) the functions represent physical quantities, the derivatives represent their rates of change, and the equation defines a relationship between the two.



#### **Law of Mass Action**

Waage and Guldberg (1864)





When the numbers of catalyst and substrate molecules are usually in the same order of magnitude, using mass action kinetics would make sense, since the reaction depends on those concentrations.

#### Reversible reaction

$$2x\stackrel{k1}{\rightleftharpoons}y$$
 is equivalent to  $2x \to y; v1=k1\cdot [x]^2$   $y \to 2x; v2=k2\cdot [y]$ 

$$\frac{d[x]}{dt} =$$

$$\frac{d[y]}{dt} =$$

#### **Example of an enzymatic reaction**

$$E + S \underset{k_2}{\overset{k_1}{\rightleftharpoons}} ES \overset{k_3}{\Rightarrow} E + P$$

$$d[E]/dt = -k_1[E][S] + k_2[ES] + k_3[ES]$$
  
 $d[S]/dt = -k_1[E][S] + k_2[ES]$   
 $d[ES]/dt = +k_1[E][S] -k_2[ES] -k_3[ES]$   
 $d[P]/dt = +k_3[ES]$ 



Not feasible in general

Numerical integration

(In biology) the functions represent physical quantities, the derivatives represent their rates of change, and the equation defines a relationship between the two.



Analytical (exact) solution

$$x(t) = [x]_0 \cdot e^{-kt}$$

Numerical approximation to solution

Others







## Exercises

Decay:

$$\mathbf{A} \xrightarrow{\mathbf{k}} \emptyset$$

**Exercises:** 

- Write an ODE model of each of these systems
  - use mass action
- Simulate the model in python

$$\mathbf{B} \to \mathbf{A}$$

**Enzymatic reaction**:  $S + E \rightarrow SE$ 

$$S + E \rightarrow SE$$

k3SF

#### Gene expression (central dogma):

Reactions:

$$G \rightarrow G + M$$

$$M \rightarrow M + P$$

$$M \rightarrow \emptyset$$

$$P \rightarrow \emptyset$$

k4G

#### Gene regulation:

Add a feedback in which the Protein inhibits transcription by binding.

Additional reactions:

$$G + P \rightarrow GP$$

$$GP \rightarrow G + P$$

(GP is inactive)

k4if

k4ir

#### Challenges:

Conceive an oscillatory system involving gene expression.

Conceive an oscillatory system involving the phosphorylation of proteins.

Develop a program which takes a list of reactions, and parameters as arguments.



## Image processing

exercise 8.2 in pdf

## Next steps

- Difference between decimal numbers and floating point numbers.
- Algorithmic analysis: How to define efficiency of an algorithm and why does this matter.
- **Performance tuning:** Useful Matlab tools for understanding your code: mlint, tic/toc, profile on/off/report.
- Learn about **numerical approaches for searching** (e.g. exhaustive enumeration, bisection search) and **numerical methods for approximations** to equations (e.g. Euler method, Newton method).
- Learn how to write recursive programs and why they might be useful. Use examples such as solving the problem of the Tower of Hanoi and calculating the Fibonacci numbers.

## Final comments

- For MATLAB, think \*ARRAYS\*
- Carefully name variables and files; choose names that already explain the program/variable
- Comment! (spend almost as much time as programming).
- Save, save save!
- More tips: <a href="http://www.matlabtips.com">http://www.matlabtips.com</a>

## Final comments

- Other apps: <a href="http://uk.mathworks.com/discovery/matlab-apps.html">http://uk.mathworks.com/discovery/matlab-apps.html</a>
- If you don't know how to do something:
  - Find previous examples (Google) and edit them
  - See the MATLAB documentation and videos
  - See MATLAB examples
     http://www.mathworks.com/examples/matlab
     MATLAB Central
  - For more mathematical questions see/ask in <u>mathsoverflow.net</u>
- · Alternatives:
  - SciLab
- Feedback Please fill in the online form!