MATH 5302 Elementary Analysis II - Homework 5

Jonas Wagner

2022, March 25th

Problem 1

Let f be a real-valued bounded function on [-1,1]. Let

$$\alpha(x) = \begin{cases} 0 & \text{if } -1 \le x < 0; \\ 2 & \text{if } 0 \le x \le 1. \end{cases}$$

Assume f is Riemann-Stieljes integrable with respect to α on [-1,1]. Show that

- a. f is continuous at 0 from the left.
- b. $\int_{-1}^{1} f(x) d\alpha(x) = 2f(0)$.
- a) f is continuous at 0 from the left

Example 1. Let $f:[-1,1] \to \mathbb{R}$ bounded. Let

$$\alpha(x) = \begin{cases} 0 & -1 \le x < 0 \\ 2 & 0 \le x < 1 \end{cases}$$

If f is Riemann-Stieljes integrable w.r.t. α on [-1,1], then f is continuous at 0 from the left. Proof.

Let f and α be real-valued bounded functions on [a,b] and α is increasing. Let $L(f,\alpha)$ and $U(f,\alpha)$ represents the lower and upper Darboux-Stieltjes integral of f with respect to α on [a,b], respectively,

- a. Show that $U(f, \alpha) \leq U(|f|, \alpha)$.
- b. Is it true that $L(f,\alpha) \leq L(|f|,\alpha)$?

Let α be a bounded real-0valued increasing function on [a,b]. Assume a < c < b and α is continuous at c. Let

$$f(x) = \begin{cases} 1 & \text{if } x = c; \\ 0 & \text{if } x \neq c. \end{cases}$$

Show directly that f is Darboux-Stieltjes integrable on [a,b] and $\int_a^b f(x) d\alpha(x) = 0$. (Do not use Theorem 8.16.)

Let f and α be real-valued bounded functions on [a,b] and α is increasing on [a,b]. Assume f is Darboux-Stieltjes integrable with respect to α on [a,b]. Let $[c,d] \subset [a,b]$. Show that f is Darboux-Stieltjes integrable with respect to α on [c,d].

Let α be a real-valued bounded function on [a,b] and α is increasing with $\alpha(a) < \alpha(b)$. Let

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational;} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Show that if α is continuous on [a,b], then f is not Darboux-Stieltjes integrable with respect to α on [a,b].