Remember to adequately label all plots and include any MATLAB scripts and functions with your solutions. A clear and complete presentation of your solutions is required for full credit.

- 1. Polynomial Interpolation. By hand, find the unique polynomial P(x) having degree at most two that passes through the three points (-1,1), (2,3), (3,0) using each of the following three approaches.
 - (a) Vandermonde matrix.
 - (b) Lagrange's interpolating polynomials.
 - (c) Newton's divided differences.

Verify that the polynomial you obtain is the same in (a)–(c).

- 2. Lagrange's Interpolating Polynomials.
 - (a) Recall that the unique polynomial of degree $m \leq n-1$ interpolating n points $x_1 < x_2 < \cdots < x_n$ can be written as

$$P_m(x) = \sum_{i=1}^n y_i \, \ell_i(x) \quad \text{where} \quad \ell_i(x) = \prod_{\substack{k=1 \ k \neq i}}^n \frac{x - x_k}{x_i - x_k}.$$

Write a function with the declaration function yy = lagrange(x,y,xx) which evaluates the interpolating polynomial using the Lagrange polynomials. Its inputs are x and y, vectors containing the x- and y-coordinates of the data to be interpolated, and a vector xx of points at which to evaluate the polynomial. Its output yy is a vector containing the values of the polynomial.

- (b) Demonstrate empirically that the computational cost of this method of evaluating the interpolating polynomial is $\mathcal{O}(n^2)$ for large values of n. To do this, you might interpolate $f(x) = \sin(x)$ at n equally spaced points on the interval $-\pi \le x \le \pi$, where you take $n = \{10, 20, 50, 100, 200, 500, 1000, \dots\}$. Measure the time that it takes to evaluate the polynomial using the functions tic and toc, averaging over many evaluations. Then plot your results on log-log axes. Explain in a few sentences how your data verify that the cost is $\mathcal{O}(n^2)$.
- 3. Newton's Divided Differences.
 - (a) Recall that the unique polynomial of degree $m \leq n-1$ interpolating n points $x_1 < x_2 < \cdots < x_n$ can be written as

$$P_m(x) = \sum_{i=1}^n c_i p_i(x)$$
 where $p_i(x) = \prod_{k=1}^{i-1} (x - x_k)$

and the coefficients are given by the divided differences $c_i = f[x_1, x_2, \ldots, x_i]$. Write a function with the declaration function $c = newton_coef(x,y)$ which computes the coefficients of the Newton polynomials. Its inputs x and y are vectors containing the x- and y-coordinates of the data to be interpolated and its output c is a vector containing the coefficients (c_1, c_2, \ldots, c_n) .

(b) Write a function with the declaration function yy = newton_eval(c,x,xx) which uses the nested formula

$$P(x) = c_1 + (x - x_1) [c_2 + (x - x_2) [c_3 + (x - x_3) [c_4 + \dots + (x - x_{n-1}) c_n]]$$

to evaluate the interpolating polynomial. Its inputs are the vector \mathbf{c} of coefficients, a vector \mathbf{x} containing the x-coordinates of the data points, and a vector $\mathbf{x}\mathbf{x}$ of points at which to evaluate the polynomial. Its output $\mathbf{y}\mathbf{y}$ is a vector containing the values of the polynomial.

- (c) Use the functions you have written to evaluate the polynomial that interpolates $f(x) = \sin(x)$ at 5 equally spaced points on the interval $-\pi \le x \le \pi$. Plot the function and its interpolating polynomial on this interval. Both of these should be smooth functions. Also, plot the interpolation error on this interval.
- (d) Analytically determine an upper bound for the interpolation error at $x = \pi/4$. Does this match your calculations?