PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-259906

(43) Date of publication of application: 16.09.2004

(51)Int.CI.

H01L 29/78 H01L 21/316 // C23C 14/06 C23C 16/30

(21)Application number: 2003-048515

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

26.02.2003

(72)Inventor: HIRANO IZUMI

KOYAMA MASATO

NISHIYAMA AKIRA

(54) SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a semiconductor device utilizing a metal silicate film which can reduce leak current of an insulation film, and also to provide an easy method of manufacturing the same semiconductor device.

SOLUTION: The semiconductor device comprises a silicon substrate 10; the first layer region of a gate insulating film 12' including silicon, nitrogen, and metal element formed on the silicon substrate 10 and in contact therewith; a second layer region provided in the side opposed to the first layer region of the gate insulating film 12'; a third layer region provided between the first and second layer regions; a gate insulating film wherein the maximum concentration of metal in the third layer region is higher than the minimum value of concentration of metal in the first and second layer regions, and the maximum concentration of nitrogen in the third layer region is higher than the minimum value of concentration of nitrogen in the first and second layer region; a gate electrode which is in contact with the second layer region; and a pair of source and drain regions formed in both sides of the gate insulating film.

LEGAL STATUS

[Date of request for examination]

09.06.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]

Silicon substrate,

The 1st layer field which is gate dielectric film containing silicon, oxygen, nitrogen, and a metal formed on said silicon substrate, and touches said silicon substrate, It has the 3rd layer field between the 1st layer field of said gate dielectric film, the 2nd layer field of the opposite side, and said 1st and 2nd layer fields. Said gate dielectric film with the maximum concentration of said metal in said 3rd layer field higher than the minimum value of the concentration of said metal in said 1st and 2nd layer fields, and the maximum concentration of said nitrogen in said 3rd layer field higher than the minimum value of the concentration of said nitrogen in said 1st and 2nd layer fields,

The gate electrode which touches said 2nd layer field,

The semiconductor device characterized by having the source / drain field of the pair formed in both the sides of said gate dielectric film.

[Claim 2]

Silicon substrate,

The 1st layer field which is gate dielectric film containing the oxygen and nitrogen which were formed on said silicon substrate, and a metal, and touches said silicon substrate, It has the 3rd layer field between the 1st layer field of said gate dielectric film, the 2nd layer field of the opposite side, and said 1st and 2nd layer fields. Said gate dielectric film with the concentration of said metal uniform in the said 1st, 2nd, and 3rd layer fields, and the maximum concentration of said nitrogen in said 2nd layer field higher than the minimum value of the concentration in said 1st and 3rd layer fields,

The gate electrode which touches said 2nd layer field,

The semiconductor device characterized by having the source / drain field of the pair formed in both the sides of said gate dielectric film.

[Claim 3]

Said metal is a semiconductor device according to claim 1 or 2 characterized by being either a zirconium, a hafnium, titanium, a tantalum, aluminum, an yttrium or rare earth elements.

[Claim 4]

In forming the metal silicate film containing silicon, oxygen, nitrogen, and a metal on a silicon substrate, The concentration of said nitrogen in said metal silicate film rather than the 1st layer field by the side of said silicon substrate, and said 1st layer field and 2nd layer field of the opposite side After it was high in the 3rd layer field inserted into said 1st and 2nd layer fields and forming the uniform metal silicate film for the concentration of said silicon and said metal over the said 1st, 2nd, and 3rd layer fields The manufacture approach of the semiconductor device characterized by heat-treating said metal silicate film.

[Claim 5]

Concentration distribution of the nitrogen in said metal silicate film is the manufacture approach of the semiconductor device according to claim 4 which is the process which deposits said metal silicate film, and is characterized by controlling by carrying out time amount change of the flow rate of argon gas, nitrogen gas, and oxygen gas.

[Claim 6]

Said metal is the manufacture approach of the semiconductor device according to claim 4 or 5 characterized by being either a zirconium, a hafnium, titanium, a tantalum, aluminum, an yttrium or other rare earth elements.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention]

This invention relates to the semiconductor device equipped with the MIS (Metal-Insulator- Semiconductor) structure where electric fields, such as a field-effect transistor, are impressed, and its manufacture approach. [0002]

[Description of the Prior Art]

Detailed-ization of the further transistor is advanced by the demand of improvement in the speed of LSI, and high integration, and thin film-ization of gate dielectric film is demanded in connection with it by it. In the field-effect transistor (MISFET) of the conventional metal-insulator-semiconductor structure, SiO2 has been used as gate dielectric film. However, if thin film-ization of SiO2 progresses to 1nm, the problem that the leakage current which flows to a substrate through SiO2 becomes large will arise from a gate metal. Especially, in MISFET of low standby power, this problem is serious.

Then, high dielectric constant gate dielectric film is examined as gate dielectric film replaced with SiO2. The advantage is using an ingredient with a dielectric constant higher than SiO2 for gate dielectric film, and is that gate capacitance is securable, without making effective thickness of an insulator layer thin. Thereby, the leakage current which flows gate dielectric film can be suppressed. However, a high dielectric insulator layer ingredient has the problem that an interface property with a silicon substrate is bad, and generally tends to produce interface state density, a fixed charge, etc.

Moreover, the so-called metal silicate which added the metal to SiO2 is also examined as a gate-dielectric-film ingredient. Although the specific inductive capacity is as lower as 8-20 since metal silicate contains silicon, it excels in the interface property with a silicon wafer, and it is thought that the fall of the current driving force resulting from an interface defect which is easy to produce with the usual High-kappa ingredient cannot occur easily.

[0003]

However, the interface property of a silicon substrate and the metal silicate film does not attain to the interface property of a silicon substrate and SiO2 film far more strictly. For example, when metal silicate is used as gate dielectric film of FET, the problem that the electron which runs the channel field of a silicon substrate surface receives remote dispersion by the potential field which the metal contained in metal silicate forms arises. Moreover, it is thought that it is the factor to which the nitrogen added in the metal silicate film also worsens an interface property.

[0004]

Then, in order to improve the interface property of an insulator layer, the structure of the so-called "inclination presentation metal silicate" of making the metal presentation and nitrogen presentation in the interior of metal silicate so high [it is low at a silicon substrate side, and] that it separating from a silicon substrate is proposed (patent reference 1 reference).

[0005]

Moreover, the structure which makes a metal presentation high and makes it low near the interface of near a gate electrode and a silicon substrate in the center of gate dielectric film is also proposed (patent reference 2 reference).

[0006]

[Patent reference 1]

JP,2000-49349,A official report

[Patent reference 2]

2002 to application-for-patent 49464 official report [0007]

[Problem(s) to be Solved by the Invention]

As explained above, in order to keep an interface property with silicon good, with the gate dielectric film using metal silicate, the structure of making the presentation of a metal or nitrogen inclining is proposed. However, with such structures, since the metal concentration and nitrogen concentration by the side of a gate electrode are high, band offset of an insulator layer becomes small and it becomes the cause by which leakage current increases.

[8000]

This invention aims at offering the semiconductor device using the metal silicate film which reduces the leakage current of an insulator layer for the purpose of solving such a problem, and its simple manufacture approach.

[0009]

[Means for Solving the Problem]

The 1st layer field which is gate dielectric film containing silicon, oxygen, nitrogen, and a metal formed on the silicon substrate and the silicon substrate the first of this invention, and touches a silicon substrate in order to attain the above-mentioned purpose, It has the 3rd layer field between the 1st layer field of gate dielectric film, the 2nd layer field of the opposite side, and the 1st and 2nd layer fields. Gate dielectric film with the maximum concentration of the metal in the 3rd layer field higher than the minimum value of the metal concentration in the 1st and 2nd layer fields, and the maximum concentration of the nitrogen in the 3rd layer field higher than the minimum value of the nitrogen concentration in the 1st and 2nd layer fields, The semiconductor device characterized by having the source / drain field of the pair formed in the gate electrode which touches the 2nd layer field, and both the sides of gate dielectric film is offered.

Moreover, the 1st layer field which is gate dielectric film containing the oxygen and nitrogen which were formed on the second silicon substrate and silicon substrate of this invention, and a metal, and touches a silicon substrate, It has the 3rd layer field between the 1st layer field of gate dielectric film, the 2nd layer field of the opposite side, and the 1st and 2nd layer fields. Gate dielectric film with metaled concentration uniform in the 1st, 2nd, and 3rd layer fields, and the maximum concentration of the nitrogen of the 2nd layer field higher than the minimum value of the concentration of the nitrogen in the 1st and 3rd layer fields, The semiconductor device characterized by having the source / drain field of the pair formed in the gate electrode which touches the 2nd layer field, and both the sides of gate dielectric film.

[0011]

Here, it says that dispersion in concentration is about 20% or less as metaled concentration is uniform. [0012]

According to the above-mentioned configuration, the band gap of gate dielectric film becomes large in the 1st layer field by the side of a silicon substrate, and the 2nd layer field by the side of a gate electrode, and can control leakage current. Moreover, the gate dielectric film of the high quality required of a generation's 0.1 micrometers or less metal-insulator-semiconductor structure is realizable, preventing the thrust omission of an impurity to a silicon substrate, crystallization of a metaled oxide, etc.

[0013]

moreover, the thing for which a metal is made into either a zirconium, a hafnium, titanium, a tantalum, aluminum, an yttrium or rare earth elements -- it is -- a high dielectric constant -- having -- coincidence -- thermal resistance -- it excels in physical or chemical stability, and a metal silicate insulator layer also with little hygroscopicity is obtained.

[0014]

Furthermore, the third of this invention is in charge of forming the metal silicate film containing silicon, oxygen, nitrogen, and a metal on a silicon substrate. The concentration of nitrogen rather than the 1st layer field by the side of a silicon substrate, and said 1st layer field and 2nd layer field of the opposite side The manufacture approach of the semiconductor device characterized by heat-treating the metal silicate film after making it high in the 3rd layer field inserted into said 1st and 2nd layer fields and forming the uniform metal silicate film for concentration distribution of silicon and a metal over the 1st, 2nd, and 3rd layer fields is offered.

[0015]

By heat-treating, diffusion of silicon and a metal starts, silicon segregates to a gate electrode and silicon substrate side, and a metal moves near the center of the silicate film in the place where the concentration of

nitrogen is low. It is possible to attach the presentation inclination of a metal and nitrogen using such a diffusion phenomenon. Therefore, the metal in an insulator layer and the concentration of nitrogen can be changed into an ideal distribution condition comparatively easily.

[0016]

Moreover, in these manufacture approach, since the metal silicate film is a thing also containing nitrogen, by easing metaled diffusion, it can control migration of a metal and can also control formation of the thrust omission of an impurity, or a crystal to coincidence.

[0017]

[Embodiment of the Invention]

Hereafter, the gestalt and example of operation of this invention are explained to a detail, referring to a drawing. In addition, in future explanation, the explanation which shall give the same sign to a common configuration and overlaps it is omitted. Moreover, although it is a mimetic diagram and the configuration, a dimension, a ratio, etc. have a different part from actual equipment, in case each drawing manufactures actual equipment, it can be judged in consideration of the following explanation and a well-known technique.

[0018]

(Gestalt of the 1st operation)

<u>Drawing 1</u> is a sectional view for explaining the manufacture approach of MISFET in connection with the gestalt of operation of the 1st of this invention, and the semiconductor device obtained by that cause. [0019]

First, the laminating of the zirconium silicate film 12 and the cap layer 14 which carried out nitrogen addition on the silicon substrate 10 is carried out to order like <u>drawing 1</u> (a). in addition, the compound of the zirconium and silicon with which, as for the zirconium silicate film 12 which carried out nitrogen addition, nitrogen was added -- it is -- a zirconium and silicon -- the depth direction in the film -- abbreviation -- it has uniform presentation distribution. Here, the depth direction of the zirconium silicate film 12 is the direction of the other side at an interface with an interface with the cap layer 14 to the silicon substrate 10.

[0020]

The cap layer 14 is formed with conductive ingredients, such as polycrystalline silicon (polish recon) which added the impurity.

[0021]

Presentation distribution of the depth direction of each element in the zirconium silicate film 12 in this phase is explained using each drawing of drawing 2. In drawing 2 (a), drawing 2 (b) shows concentration distribution of silicon, and drawing 2 (c) shows concentration distribution of nitrogen for concentration distribution of a zirconium. The presentation of the depth direction of a zirconium and silicon is made uniform. Here, atomic concentration of silicon was made into 20at(s)% for the atomic concentration of a zirconium 20at(s)%. Moreover, by the cap layer 14 and silicon substrate 10 side, with 8at(s)%, concentration distribution of nitrogen is low and is made as high as 40at(s)% in the center. The implementation approach of such presentation distribution is explained in full detail behind. [0022]

Next, it heat-treats to this cascade screen. This heat treatment is about 1000-degree-C heat treatment for 30 seconds for example, in nitrogen-gas-atmosphere mind. By this heat treatment, diffusion of a silicon atom and a metal atom takes place in the layer field where nitrogen concentration is low, and the zirconium silicate film 12 becomes zirconium silicate film 12' from which the presentation distribution shown in drawing 2 (b) changed.

[0023]

Each element in this zirconium silicate film 12' has the presentation distribution shown in each drawing of drawing 3. That is, silicon moves to the 1st layer field by the side of a silicon substrate 10, and the 2nd layer field by the side of the cap layer 14 like drawing 3 (b) (segregation). Consequently, compared with the 1st layer field or the 2nd layer field, the silicon of the 3rd layer field inserted into these decreases in number (the maximum concentration of the silicon in the 2nd layer field is higher than each minimum value of the silicon in the 1st and 2nd layer fields.).

[0024]

Moreover, like <u>drawing 3</u> (a), the zirconium in zirconium silicate film 12' decreases in the 1st layer field by the side of a silicon substrate 10, and the 2nd layer field by the side of the cap layer 14, and moves toward the 3rd layer field. Thereby, the maximum concentration in the 2nd layer field of a zirconium becomes

higher than each minimum value of the concentration in the 1st and 2nd layer fields. [0025]

In addition, as shown in <u>drawing 3</u> (c), in order that the nitrogen which was segregating to the 3rd layer field may carry out amount migration a little to the 1st and 2nd layer fields by heat treatment, compared with <u>drawing 2</u> (c), distribution becomes smooth (the maximum concentration in the 3rd layer field of nitrogen is higher than the minimum value of the concentration in the 1st and 2nd layer fields).

That is, the zirconium silicate film of the gestalt of this operation is equipped with the following nitrogen concentration distribution. a presentation inclination -- false -- in the 1st and 2nd layer fields set to SiO2, nitrogen concentration is relatively low, and nitrogen concentration is high structure relatively in the 3rd layer field where metal concentration is high.

[0027]

In addition, in a heat treatment process, diffusion of a metal atom is controllable by adding nitrogen to zirconium silicate 12. Inside the zirconium silicate film 12 which added nitrogen, since Si-N association is formed, the diffusion in the zirconium silicate film of a metal atom (zirconium) can be controlled. Thereby, the effectiveness of phase separation control or crystallization control is expectable. [0028]

Moreover, the effectiveness which controls the impurity diffusion from the cap layer 14 to a silicon substrate 10 is also expectable with the nitrogen addition to the zirconium silicate film 12. That is, when the polish recon which added impurities, such as boron, as a cap layer 14 is used, the diffusion to the silicon substrates 12, such as boron, can be suppressed. [0029]

Furthermore, by adding nitrogen on the zirconium silicate film 12, the thermal resistance of zirconium silicate film 12' finally formed can be raised, and the crystallization can be prevented. It can control further "thrust" by control of this crystallization. [of the impurity from the cap layer 14 to a silicon substrate 10] [0030]

In addition, since it is easy to crystalize by heat treatment so that the zirconium concentration in zirconium silicate film 12' is high, crystallization of a layer can also be controlled by making nitrogen concentration high in the high place of zirconium concentration.

[0031]

As mentioned above, as explained in full detail, according to the gestalt of this operation, the metal silicate film which made the metal presentation of a zirconium etc. incline easily can be formed. [0032]

In addition, the gestalt of this operation explained the zirconium to the example as a metal of the metal silicate film. In the gestalt of each operation of this invention, it can change to a zirconium and a hafnium, titanium, a tantalum, aluminum, an yttrium, a lanthanum, a cerium, or other rare earth elements can be used. [0033]

<u>Drawing 4</u> is the sectional view of the direction of gate length for explaining MISFET. [0034]

That is, on the main front face of a silicon substrate 10, the metal-insulator-semiconductor structure which carried out the laminating of metal silicate film 12' of an above-mentioned inclination presentation and the gate electrode 24 is formed. Generally, metal silicate film 12' and the gate electrode 24 have the shape of a rectangle extended to the space perpendicular direction (the gate width direction) of <u>drawing 5</u>. [0035]

The gate electrode 24 consists of a polycrystalline silicon layer. The side-attachment-wall insulator layer 26 is formed in the both-sides wall of the gate electrode 24. Deep diffusion field 28A of the pair which the impurity diffused in high concentration, deep diffusion layer 28A, and shallow diffusion field 28B formed between the gate electrodes 24 are formed in silicon substrate 10 front face of both the sides of the gate electrode 24. Moreover, the metal silicide layer 30 is formed on the polycrystalline silicon layer of deep diffusion field 28A and the gate electrode 24. [0036]

Furthermore, between shallow diffusion field 28B of a pair, the channel field 32 formed of the electrical-potential-difference impression to the gate is formed. The amount of the impurity which adds a channel field suitably for adjustment of the threshold of a transistor is adjusted. In addition, generally the component isolation region which insulates between the next components electrically is formed in both the sides of this MISFET (not shown).

[0037]

Metal silicate film 12' in which MISFET of the gestalt of this operation has an inclination presentation acts as gate dielectric film, and a high dielectric constant and high dependability are acquired. Therefore, leakage current and tunnel current between the gate electrode 24 and a silicon substrate 10 can be inhibited.
[0038]

(Gestalt of the 2nd operation)

The manufacture approach of the gate dielectric film of MISFET in connection with the gestalt of operation of the 2nd of this invention is explained. <u>Drawing 5</u> (a), (b), and (c) are the process sectional views for explaining the manufacture approach of MISFET of the gestalt the 2nd operation. [0039]

First, the silicon substrate 10 in which the component isolation region (not shown) which insulates between components electrically was formed is prepared. Next, rare fluoric acid (HF) solution processing removed the natural oxidation film of the front face of this silicon substrate 10, and termination of the uncombined hand of the front face of a silicon substrate 10 was carried out by hydrogen. And the metal silicate film 12 of a homogeneity presentation was formed on the silicon substrate 10 (drawing 5 (a)). As metal silicate film, the zirconium silicate film with a thickness of about 2nm was formed. In this case, sputtering using the mixed-gas plasma of an argon, oxygen, and nitrogen was used using the zirconic acid ghost target and the silicon oxide target.

[0040]

In this case, in the depth direction of a layer, a metal and silicon are uniform presentations, and nitrogen concentration forms the metal silicate film 12 which becomes high and becomes low in the center of the depth direction near an interface with a silicon substrate 10, and near an interface with the gate electrode 14.

[0041]

As the formation approach, a CVD method, vacuum deposition, etc. can be used other than a spatter. [0042]

Distribution of above-mentioned nitrogen is realizable by carrying out time amount change of the flow rate of the nitrogen (N2) poured for example, during a spatter. The example of the time amount change of the flow rate of the nitrogen under spatter (N2) to <u>drawing 6</u> is shown typically. Moreover, the above-mentioned nitrogen presentation distribution is also realizable with the plasma nitriding performed by choosing conditions (a pressure, class of plasma), after depositing the metal silicate film which does not contain nitrogen.

[0043]

Thus, by heat-treating the silicon substrate 10 equipped with the formed metal silicate film 12, metal silicate film 12' of an inclination presentation which was explained with the gestalt of the 1st operation was formed. [0044]

In addition, there are vacuum deposition and a spatter in other methods of realizing the presentation inclination of the metal silicate film. For example, by the vacuum evaporationo approach, the separate source of a metal and the source of silicon are used, and there is a method of changing a metal / silicon ratio in the middle of formation of a layer. Moreover, in a spatter, since it is difficult to realize an inclination presentation from the target of one kind of presentation, the target with which presentations differ is used and an inclination presentation can be realized by dividing deposition of a layer into multiple times and performing it. These approaches are processes complicated a little compared with the above-mentioned approach based on the phenomenon of being hard to move a metal atom and a silicon atom by the high place of the nitrogen concentration in the film, and being easy to move a metal atom and a silicon atom by the low place of nitrogen concentration.

Here, as an example, polish recon was used for the cap layer 24 (gate electrode), and after carrying out a temperature up with the programming rate of 100 degrees C/second, heat treatment for 30 seconds was performed in 1000-degree C nitrogen-gas-atmosphere mind. By this heat treatment, the presentation inclination metal silicate film 12 has been formed.

[0045]

Moreover, it is also possible to carry out after the gate electrode formation expressed to <u>drawing 5</u> (b) rather than to to perform elevated-temperature annealing for making a presentation incline in the formation process of the impurity ranges 10A and 10B shown in <u>drawing 5</u> (c). [0046]

(Gestalt of the 3rd operation)

Next, the gestalt of the 3rd operation in connection with this invention is explained using <u>drawing 7</u> and <u>drawing 8</u>. The metallic oxide which does not add not only metal silicate but silicon positively can also be used for an insulating layer. The gestalt of the 3rd operation explains the gate dielectric film by this metallic oxide.

[0047]

<u>Drawing 7</u> is the sectional view of the laminated structure which formed the metallic-oxide film 34 on the silicon substrate 10, and formed the conductive cap layer 14 on the metallic-oxide film 34 further. Moreover, the mimetic diagram of concentration distribution of the metal in this metallic-oxide film 34 (Zr as an example), nitrogen (N), and oxygen (O) is shown in <u>drawing 8</u>. [0048]

The nitrogen in the metallic-oxide film 34 is relatively low near an interface with a silicon substrate 10 (1st layer field), and near an interface with the conductive cap layer 14 (2nd layer field), and is the structure where nitrogen concentration becomes high relatively, in the meantime (3rd layer field). [0049]

Like metal silicate film 12', in the 1st and 2nd layer fields, a band gap can be enlarged and leakage current can be controlled rather than the 3rd layer field according to such concentration distribution. As the manufacture approach in this case is shown for example, during a spatter at <u>drawing 8</u> (b), that nitrogen presentation distribution is realizable by changing the flow rate of nitrogen (N2) according to assembly time. Moreover, nitrogen presentation distribution is also realizable with plasma nitriding, after depositing the metallic-oxide film which does not contain nitrogen. [0050]

(The 1st example)

Next, the example of the manufacture approach explained with the gestalt of the 1st operation is explained. Drawing 9 (a), (b), (c), (d), (e), and (f) show the zirconium of the membranous depth direction before and behind heat treatment of the zirconium silicate film which carried out nitrogen addition, and change of presentation distribution of silicon.

[0051]

An axis of ordinate shows the concentration (at%) of Zr or Si for the depth until the axis of abscissa of each drawing of <u>drawing 9</u> results in a silicon substrate 10 with an interface as the starting point with the zirconium silicate film 12 and the cap layer 14 of 12'. The thickness of the zirconium silicate film 12 in this example is 95A.

[0052]

<u>Drawing 9</u> (a) shows distribution from a depth of 0A before heat treatment to 40A, and <u>drawing 9</u> (b) shows the distribution after the heat treatment. <u>Drawing 9</u> (c) shows the distribution before heat treatment from a depth of 40A to 70A, and <u>drawing 9</u> (d) shows the distribution after the heat treatment. Furthermore, <u>drawing 9</u> (e) shows the distribution before heat treatment from a depth of 75A to 95A, and <u>drawing 9</u> (f) shows the distribution after the heat treatment. These distribution was measured by HR-RBS (High Resolution Ratheford Back Scattering).

[0053]

Moreover, the nitrogen concentration before heat treatment made [from 75A to 95A] 8at(s)% from a depth of 0A to 50A 40at(s)% for from 50A to 75A 8at(s)%. Furthermore, concentration of JIRUKOUMU and silicon was made into abbreviation homogeneity in the depth direction of a layer. In addition, although the concentration of Zr has fallen to 5at(s)% in drawing 9 (a), it is because pollutants, such as C, mix in a front-face side and are low as atomic concentration also with Si and Zr relatively as a cause. However, when there are few degrees of contamination, even if it does not produce such a problem and there is contamination like an actual semiconductor device production process, pollutants decrease in number after annealing. In the phase of drawing 9 (a), Zr may be actually changed, although a completely uniform thing is an ideal. In that case, desired effectiveness will be acquired if the amount of fluctuation is about 20% or less. Zr concentration shown in drawing 9 (a) can also be referred to as more uniform as compared with concentration distribution of Zr after heat treatment.

In the field by the side of the silicon substrate 10 with low nitrogen concentration, and the field by the side of the conductive cap layer 14, by heat treatment, the concentration of Zr is low at a front face and an interface, and distribution with high concentration can be realized inside so that <u>drawing 9</u> (b), (d), and (f)

may show. [0055]

[0054]

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran web cgi ejje

Moreover, drawing 9 (c) and (d) show that most of silicon and a zirconium is not moving after heat treatment before heat treatment in the central field whose nitrogen concentration was high. Thus, by the manufacture approach in connection with the gestalt of the 1st operation, metal silicate film 12' toward which the metal presentation inclined can be formed.

In the above, the gestalt of operation of this invention was explained, illustrating the gestalt and example of operation. However, this invention is not limited to each example mentioned above, and can be suitably changed into a claim in accordance with the summary of a publication.

[0056]

For example, all the transistors obtained by carrying out a design change, not being limited to what was expressed as an example, in addition this contractor applying this invention also about the structure of a transistor are included by the range of this invention.

[0057]

For example, that in which this contractor did the design change suitably about the ingredient which constitutes each part of a transistor, an addition impurity, thickness, the configuration, the conductivity type, the formation approach, etc. is included by the range of this invention. [0058]

[Effect of the Invention]

As explained in full detail above, according to this invention, the semiconductor device using the metal silicate film which maintains a good interface property and reduces the leakage current of an insulator layer, and its simple manufacture approach can be offered.

[Brief Description of the Drawings]

[Drawing 1] It is a cross section for explaining the manufacture approach of the semiconductor device in connection with the gestalt of operation of the 1st of this invention.

[Drawing 2] It is a concentration distribution map for explaining the manufacture approach of the semiconductor device in connection with the gestalt of operation of the 1st of this invention.

[Drawing 3] It is a concentration distribution map for explaining the manufacture approach of the semiconductor device in connection with the gestalt of operation of the 1st of this invention.

[Drawing 4] It is a cross section for explaining MISFET in connection with the gestalt of operation of the 2nd of this invention.

[Drawing 5] It is a cross section for explaining the manufacture approach of MISFET in connection with the gestalt of operation of the 2nd of this invention.

[Drawing 6] It is the mimetic diagram showing time amount change of the flow rate of the nitrogen (N2) poured during a spatter.

[Drawing 7] It is a cross section for explaining MISFET in connection with the gestalt of operation of the 3rd of this invention.

[Drawing 8] It is the concentration distribution map of the metal in the metallic-oxide film in connection with the gestalt of the 3rd operation, oxygen, and nitrogen.

[Drawing 9] It is as a result of concentration distribution of the metal (zirconium) by HR-RBS in the 1st example of this invention and silicon.

[Description of Notations]

10 ... Silicon substrate

12 12' ... Zirconium silicate film

14 ... Conductive cap layer

24 ... Gate electrode

26 ... Side-attachment-wall insulator layer

28A ... Deep diffusion layer

28B ... Shallow diffusion layer

30 ... Metal silicide layer

32 ... Channel field

34 ... Metallic oxide

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

10…シリコン基板 12、12' …ジルコニウムシリケート膜 14…導電性キャップ層

[Drawing 2]

[Drawing 3]

[Drawing 4]

24…ゲート電極 26…側壁絶縁 28A…深い拡散領域 28B…浅い拡散領域 30…金属シリサイド層 32…チャネル領域

[Drawing 5]

34…金属酸化物膜

[Drawing 8]

[Drawing 9]

[Translation done.]

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-259906

最終頁に続く

(P2004-259906A)

(43) 公開日 平成16年9月16日 (2004.9.16)

			(13) 4 51	# # AS 10	43月10日	1 (2004.9.1)
(51) Int.Ci. ⁷	Fi			テー	マコード	(参考)
HO1L 29/78	HO1 L	29/78	301G	4 K	029	
HO1L 21/316	HO1L	21/316	P	4 K	030	
// C23C 14/06	C23C	14/06	L	5 F	058	
C23C 16/30	C23C	16/30			140	
		審查請求	未請求 記	情求項の数 6	OL	(全 12 頁)
(21) 出願番号 (22) 出願日	特顯2003-48515 (P2003-48515) 平成15年2月26日 (2003. 2. 26)	(71) 出題人	000003078			
	•	i	東京都港区芝浦一丁目1番1号			
		(74) 代理人				
			弁理士 外川 英明	•		
		(72) 発明者	平野 泉			
		神奈川県横浜市磯子区新杉	【新杉田町	8番地 株		
				芝横浜事業 所		
		(72) 発明者	小山 正人	l.		
			神奈川県村	黄浜市破子区	【新杉田町	8番地 株
			式会社東京	艺横浜事業所	i内	
		(72) 発明者	西山 彰			
				黄浜市碳子区		8番地 株
				5横浜事業所		
	ĺ	Fターム (参	考) 4KO29	AA06 AA24	BA64 B	001

(54) 【発明の名称】半導体装置及びその製造方法

(57)【要約】

【課題】絶縁膜のリーク電流を低減することが可能な金属シリケート膜などを用いた半導体装置とその簡便な製造方法の提供。

【解決手段】シリコン基板10と、シリコン基板10上に形成された、シリコン、酸素、窒素、及び金属を含有するゲート絶縁膜12'であって、シリコン基板10に接する第1の層領域と、ゲート絶縁膜12'の第1の層領域と反対側の第2の層領域と、第1および第2の層領域の間にある第3の層領域を備え、前記第3の層領域における金属の最大濃度が第1及び第2の層領域における窒素の最大濃度が第1及び第2の層領域における窒素の最大濃度が第1及び第2の層領域における窒素の最小値よりも高いゲート絶縁膜と、第2の層領域に接するゲート電極と、ゲート絶縁膜の両脇に形成された一対のソース/ドレイン領域を備えることを特徴とする半導体装置を提供する。

【選択図】 図2

【特許請求の範囲】

【請求項1】

シリコン基板と、

前記シリコン基板上に形成された、シリコン、酸素、窒素、及び金属を含有するゲート絶 縁膜であって、前記シリコン基板に接する第1の層領域と、前記ゲート絶縁膜の第1の層 領域と反対側の第2の層領域と、前記第1および第2の層領域の間にある第3の層領域を 備え、前記第3の層領域における前記金属の最大濃度が前記第1及び第2の層領域におけ る前記金属の濃度の最小値よりも高く、前記第3の層領域における前記窒素の最大濃度が 前記第1及び第2の層領域における前記窒素の濃度の最小値よりも高い前記ゲート絶縁膜 ٤,

前記第2の層領域に接するゲート電極と、

前記ゲート絶縁膜の両脇に形成された一対のソース/ドレイン領域を備えることを特徴と する半導体装置。

【請求項2】

シリコン基板と、

前記シリコン基板上に形成された、酸素、窒素、及び金属を含有するゲート絶縁膜であっ て、前記シリコン基板に接する第1の層領域と、前記ゲート絶縁膜の第1の層領域と反対 側の第2の層領域と、前記第1および第2の層領域の間にある第3の層領域を備え、前記 金属の濃度が前記第1、第2および第3の層領域において一様であり、前記第2の層領域 における前記窒素の最大濃度が前記第1及び第3の層領域における濃度の最小値よりも高 い前記ゲート絶縁膜と、

前記第2の層領域に接するゲート電極と、

前記ゲート絶縁膜の両脇に形成された一対のソース/ドレイン領域を備えることを特徴と する半導体装置。

【請求項3】

前記金属は、ジルコニウム、ハフニウム、チタン、タンタル、アルミニウム、イットリウ ム、あるいは希土類元素のいずれかであることを特徴とする請求項1または2に記載の半 導体装置。

【請求項4】

シリコン基板上に、シリコン、酸素、窒素及び金属を含む金属シリケート膜を形成するに 30

前記金属シリケート膜中の前記窒素の濃度を、前記シリコン基板側の第1の層領域及び前 記第1の層領域と反対側の第2の層領域よりも、前記第1および第2の層領域に挟まれた 第3の層領域において高く、前記シリコン及び前記金属の濃度を前記第1、第2および第 3 の層領域にわたって一様な金属シリケート膜を形成した上で、前記金属シリケート膜を 熱処理することを特徴とする半導体装置の製造方法。

【請求項5】

前記金属シリケート膜中の窒素の濃度分布は、前記金属シリケート膜を堆積する過程で、 アルゴンガス、窒素ガス、及び酸素ガスの流量比を時間変化させることにより制御するこ とを特徴とする請求項4記載の半導体装置の製造方法。

【請求項6】

前記金属は、ジルコニウム、ハフニウム、チタン、タンタル、アルミニウム、イットリウ ム、あるいはその他の希土類元素のいずれかであることを特徴とする請求項4または5に 記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電界効果トランジスタ等のような電界が印加されるMIS(Metal-In sulator - Semiconductor)構造を備えた半導体装置及びその製造 方法に関する。

10

20

30

40

50

[0002]

【従来の技術】

LSIの高速化、高集積化の要求により、更なるトランジスタの微細化が進められており、それに伴ってゲート絶縁膜の薄膜化が要求されている。従来のMIS構造の電界効果トランジスタ(MISFET)では、ゲート絶縁膜としてSiO2が使われてきた。しかし、SiO2の薄膜化が1nmまで進むと、ゲート金属からSiO2を介して基板に流れるリーク電流が大きくなるという問題が生じる。特に、低スタンパイ電力のMISFETにおいてこの問題は深刻である。

そこでSi〇₂に替わるゲート絶縁膜として高誘電率ゲート絶縁膜が検討されている。その利点は、ゲート絶縁膜にSiО₂よりも誘電率の高い材料を用いることで、絶縁膜のの の利点は、ゲート絶縁膜にSiО₂よりも誘電率の高い材料を用いることで、絶縁膜ト や高いできる。これにより、ゲートや緑膜を流れるリーク電流を抑えることができる。しかし、高誘電絶縁膜材料は一般にシリン基板との界面特性が悪く、界面準位や固定電荷などを生じやすいという問題がある。また、SiО₂に金属を添加したいわゆる金属シリケートもゲート絶縁膜材料として砂計されている。金属シリケートはシリコンを含むため、その比誘電率は8~20と低めでするが、シリコンウェーハとの界面特性に優れており、通常のHigh-κ材料で生じやすい、界面欠陥に起因した電流駆動力の低下が起きにくいと考えられる。

[00003]

ただし、より厳密には、シリコン基板と金属シリケート膜との界面特性は、シリコン基板とSi〇₂膜の界面特性にはるかに及ばない。例えば、金属シリケートをFETのゲート絶縁膜として用いた場合、金属シリケートに含まれる金属が形成するポテンシャル場により、シリコン基板表面のチャネル領域を走行する電子がリモート散乱を受けるという問題が生じる。また、金属シリケート膜中に添加される窒素も界面特性を悪くする要因であると考えられる。

[0004]

そこで、絶縁膜の界面特性を向上するために、金属シリケートの内部における金属組成と窒素組成を、シリコン基板側で低く、シリコン基板から離れるほど高くするという、いわゆる「傾斜組成金属シリケート」の構造が提案されている(特許文献 1 参照)。

[0005]

また、金属組成をゲート絶縁膜の中央で高くし、ゲート電極付近とシリコン基板との界面付近で低くする構造も提案されている(特許文献 2 参照)。

[0006]

【特許文献1】

特開2000-49349公報

【特許文献2】

特願2002-49464公報

[0007]

【発明が解決しようとする課題】

以上説明したように、金属シリケートを用いたゲート絶縁膜では、シリコンとの界面特性を良好に保つために金属や窒素の組成を傾斜させる構造が提案されている。しかし、これらの構造では、ゲート電極側の金属濃度や窒素濃度が高いため、絶縁膜のバンドオフセットが小さくなり、リーク電流が増大する原因となる。

[0008]

本発明は、このような問題を解決することを目的とし、絶縁膜のリーク電流を低減する金属シリケート膜などを用いた半導体装置とその簡便な製造方法を提供することを目的とする。

[0009]

【課題を解決するための手段】

上記目的を達成するため、本発明の第一は、シリコン基板と、シリコン基板上に形成された、シリコン、酸素、窒素、及び金属を含有するゲート絶縁膜であって、シリコン基板に

接する第1の層領域と、ゲート絶縁膜の第1の層領域と反対側の第2の層領域と、第1および第2の層領域の間にある第3の層領域を備え、第3の層領域における金属の最大濃度が第1及び第2の層領域における金属濃度の最小値よりも高く、第3の層領域における窒素の最大濃度が第1及び第2の層領域における窒素濃度の最小値よりも高いゲート絶縁膜と、第2の層領域に接するゲート電極と、ゲート絶縁膜の両脇に形成された一対のソース/ドレイン領域を備えることを特徴とする半導体装置を提供する。

[0010]

また、本発明の第二は、シリコン基板と、シリコン基板上に形成された、酸素、窒素、及び金属を含有するゲート絶縁膜であって、シリコン基板に接する第1の層領域と、ゲート絶縁膜の第1の層領域と反対側の第2の層領域と、第1および第2の層領域の間にある第3の層領域を備え、金属の濃度は第1、第2および第3の層領域で一様であり、第2の層領域の窒素の最大濃度は第1及び第3の層領域における窒素の濃度の最小値よりも高いゲート絶縁膜と、第2の層領域に接するゲート電極と、ゲート絶縁膜の両脇に形成された一対のソース/ドレイン領域を備えることを特徴とする半導体装置。

[0011]

ここで、金属の濃度が一様とは、濃度のばらつきが約20%以下であることをいう。

[0012]

上記構成によれば、ゲート絶縁膜のバンドギャップはシリコン基板側の第1の層領域と、ゲート電極側の第2の層領域で大きくなり、リーク電流を抑制することができる。また、シリコン基板に対する不純物の突き抜けや、金属の酸化物の結晶化等をふせぎつつ、0.1μm以下の世代のMIS構造に要求される高い品質のゲート絶縁膜を実現することができる。

[0013]

また、金属は、ジルコニウム、ハフニウム、チタン、タンタル、アルミニウム、イットリウム、あるいは希土類元素のいずれかとすることで、高い誘電率を有し、同時に耐熱性、物理的あるいは化学的安定性に優れ、吸湿性も少ない金属シリケート絶縁膜が得られる。 【0014】

さらに、本発明の第三は、シリコン基板上に、シリコン、酸素、窒素及び金属を含む金属シリケート膜を形成するにあたって、窒素の濃度を、シリコン基板側の第1の層領域及び前記第1の層領域と反対側の第2の層領域よりも、前記第1および第2の層領域に挟まれた第3の層領域で高くし、シリコン及び金属の濃度分布を第1、第2および第3の層領域にわたって一様な金属シリケート膜を形成した上で、金属シリケート膜を熱処理することを特徴とする半導体装置の製造方法を提供する。

[0015]

熱処理を施すことにより、窒素の濃度が低いところではシリコンと金属の拡散がおこり、シリコンがゲート電極側及びシリコン基板側に偏析し、金属がシリケート膜の中央付近に移動する。このような拡散現象を用い、金属及び窒素の組成傾斜をつけることが可能である。よって、比較的容易に絶縁膜中の金属および窒素の濃度を理想的な分布状態にすることができる。

[0016]

また、これら製造方法において、金属シリケート膜は、窒素も含むものであるため、金属 の拡散を緩和することにより、金属の移動を制御し、同時に不純物の突き抜けや結晶の形 成も抑制することができる。

[0017]

【発明の実施の形態】

以下、図面を参照しつつ、本発明の実施の形態および実施例について詳細に説明する。尚、以後の説明では、共通の構成に同一の符号を付すものとし、重複する説明は省略する。また、各図は模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、実際の装置を製造する際は、以下の説明と公知の技術を参酌して判断することができる

20

30

[0018]

(第1の実施の形態)

図1は、本発明の第1の実施の形態に関わるMISFETの製造方法とそれにより得られる半導体装置を説明するための断面図である。

[0019]

まず、図1(a)のように、シリコン基板10の上に、窒素添加したジルコニウムシリケート膜12、キャップ層14を順に積層する。尚、窒素添加したジルコニウムシリケート膜12は、窒素が添加されたジルコニウムとシリコンとの化合物であり、ジルコニウムとシリコンは膜中の深さ方向に略均一な組成分布を有する。ここで、ジルコニウムシリケート膜12の深さ方向とは、キャップ層14との界面からシリコン基板10との界面に向う方向である。

[0020]

キャップ層14は、例えば、不純物を添加した多結晶シリコン(ポリシリコン)等の導電性の材料により形成する。

[0021]

この段階でのジルコニウムシリケート膜12中の各元素の深さ方向の組成分布を図2の各図を用いて説明する。図2(a)はジルコニウムの濃度分布を、図2(b)はシリコンの濃度分布を、図2(c)は窒素の濃度分布を示す。ジルコニウムとシリコンの深さ方向の組成は、一様にする。ここではジルコニウムの原子濃度を20at%、シリコンの原子濃度を20at%とした。また、窒素の濃度分布は、キャップ層14側とシリコン基板10側で8at%と低く、中央で40at%と高くする。このような組成分布の実現方法は後に詳述する。

[0022]

次に、この積層膜に熱処理を施す。この熱処理は、例えば窒素雰囲気中で約1000℃3 0秒の熱処理である。この熱処理により、窒素濃度の低い層領域でシリコン原子と金属原子の拡散が起こり、ジルコニウムシリケート膜12は、図2(b)に示す組成分布の変化 したジルコニウムシリケート膜12′となる。

[0023]

このジルコニウムシリケート膜12'中の各元素は、図3の各図に示す組成分布を持つ。つまり、シリコンは、図3(b)のように、シリコン基板10側の第1の層領域、及びキャップ層14側の第2の層領域に移動(偏析)する。その結果、第1の層領域や第2の層領域に比べて、これらに挟まれた第3の層領域のシリコンが減少する(第2の層領域におけるシリコンの各最小値よりも高い。)。

[0024]

また、ジルコニウムシリケート膜12′中のジルコニウムは、図3(a)のように、シリコン基板10側の第1の層領域とキャップ層14側の第2の層領域で減少し、第3の層領域に向って移動する。これにより、ジルコニウムの第2の層領域における最大濃度は、第1および第2の層領域における濃度の各最小値よりも高くなる。

[0025]

尚、第3の層領域に偏析していた窒素は図3(c)に示すように、熱処理により第1 および第2の層領域へ若干量移動するため、図2(c)に比べて分布はなめらかになる(窒素の第3の層領域における最大濃度は、第1 および第2の層領域における濃度の最小値よりも高い)。

[0026]

つまり、本実施の形態のジルコニウムシリケート膜は、次のような窒素濃度分布を備える。組成傾斜によって擬似Si〇₂になった第1および第2の層領域では窒素濃度が相対的に高い構造である。

[0027]

尚、窒素をジルコニウムシリケート12に添加することにより、熱処理工程において金属

10

20

40

50

原子の拡散を制御することができる。窒素を添加したジルコニウムシリケート膜12の内部では、Si-N結合が形成されるため、金属原子(ジルコニウム)のジルコニウムシリケート膜中における拡散が抑制できる。これにより、相分離抑制や結晶化抑制という効果が期待できる。

[0028]

また、ジルコニウムシリケート膜12への窒素添加により、キャップ層14からシリコン基板10への不純物拡散を抑制する効果も期待できる。つまり、キャップ層14としてボロン等の不純物を添加したポリシリコンを用いた場合は、ポロン等のシリコン基板12への拡散を抑えることができる。

[0029]

さらに、ジルコニウムシリケート膜12に窒素を添加することにより、最終的に形成されるジルコニウムシリケート膜12′の耐熱性を向上させ、その結晶化を防ぐことができる。この結晶化の抑制によりキャップ層14からシリコン基板10への不純物の「突き抜け」をさらに抑制することができる。

[0030]

尚、ジルコニウムシリケート膜12'中のジルコニウム濃度が高い程、熱処理によって結晶化しやすいため、ジルコニウム濃度の高いところで窒素濃度を高くすることで、層の結晶化を抑制することもできる。

[0031]

以上、詳述したように、本実施の形態によれば容易にジルコニウムなどの金属組成を傾斜させた金属シリケート膜を形成することができる。

[0032]

尚、本実施の形態では、金属シリケート膜の金属としてジルコニウムを例に説明した。本発明の各実施の形態において、ジルコニウムに替えてハフニウム、チタン、タンタル、アルミニウム、イットリウム、ランタン、セリウム、あるいはその他の希土類元素を用いることができる。

[0033]

図4は、MISFETを説明するためのゲート長方向の断面図である。

[0034]

すなわちシリコン基板10の主表面上には、上述の傾斜組成の金属シリケート膜12′及びゲート電極24を積層したMIS構造が形成されている。一般に、金属シリケート膜12′及びゲート電極24は図5の紙面垂直方向(ゲート幅方向)に伸びる短冊形状を有する。

[0035]

ゲート電極24は多結晶シリコン層からなる。ゲート電極24の両側壁には、側壁絶縁膜26が形成されている。ゲート電極24の両脇のシリコン基板10表面には、高濃度に不純物が拡散された一対の深い拡散領域28Aと、深い拡散層28Aとゲート電極24の間に形成された浅い拡散領域28Bが形成されている。また、深い拡散領域28Aとゲート電極24の多結晶シリコン層上には金属シリサイド層30が形成されている。

[0036]

さらに、一対の浅い拡散領域28Bの間には、ゲートへの電圧印加により形成されるチャネル領域32が形成されている。チャネル領域はトランジスタのしきい値の調整のため、適宜、添加する不純物の量が調整されている。尚、このMISFETの両脇には、隣の素子との間を電気的に絶縁する素子分離領域が一般に形成される(図示せず)。

[0037]

本実施の形態のMISFETは、傾斜組成を有する金属シリケート膜12'がゲート絶縁膜として作用して、高い誘電率と高い信頼性が得られる。そのため、ゲート電極24とシリコン基板10との間のリーク電流やトンネル電流を抑止することができる。

[0038]

(第2の実施の形態)

10

20

50

本発明の第2の実施の形態に関わるMISFETのゲート絶縁膜の製造方法を説明する。図5(a)、(b)および(c)は、第2の実施の形態のMISFETの製造方法を説明するための工程断面図である。

[0039]

まず、素子間を電気的に絶縁する素子分離領域(図示せず)を形成したシリコン基板10を準備する。次に、このシリコン基板10の表面の自然酸化膜を希フッ酸(HF)溶液処理により除去し、シリコン基板10の表面の未結合手を水素により終端した。そして、均一組成の金属シリケート膜12をシリコン基板10の上に形成した(図5(a))。金属シリケート膜として、例えば厚さ約2nmのジルコニウムシリケート膜を形成した。この際には、ジルコニウム酸化物ターゲットとシリコン酸化物ターゲットとを用い、アルゴンと酸素、窒素の混合ガスプラズマを用いたスパッタリングを用いた。

[0040]

この際には、層の深さ方向において金属およびシリコンが均一な組成で、且つ、窒素濃度が深さ方向の中央で高くなり、シリコン基板10との界面付近及びゲート電極14との界面付近で低くなる金属シリケート膜12を形成する。

[0041]

形成方法としてはスパッタ法の他にも、CVD法、蒸着法等を用いることができる。

[0042]

上述の窒素の分布は、例えば、スパッタ中に流す窒素(N_2)の流量を時間変化させることによって実現することができる。図 6 にスパッタ中の窒素(N_2)の流量の時間変化の例を模式的に示す。また、上記窒素組成分布は、窒素を含まない金属シリケート膜を堆積した後、条件(圧力、プラズマの種類)を選択して行うプラズマ窒化により、実現することもできる。

[0043]

このようにして形成した金属シリケート膜12を備えるシリコン基板10を熱処理することで、第1の実施の形態で説明したような傾斜組成の金属シリケート膜12′を形成した

[0044]

尚、金属シリケート膜の組成傾斜を実現する他の方法には、蒸着法やスパッタ法がある。例えば、蒸着方法では、別個の金属源とシリコン源を使用し、層の形成の途中で金属/シリコン比を変える方法がある。また、スパッタにおいては、1種類の組成のターゲットから傾斜組成を実現するのは困難であるため、組成の異なるターゲットを使用し、層の堆積を複数回に分けて行うことで傾斜組成が実現できる。これらの方法は、膜中の窒素濃度の高いところで金属原子およびシリコン原子が動きにくく、窒素濃度の低いところで金属原子およびシリコン原子が動きにくく、窒素濃度の低いところで金属原子およびシリコン原子が動きやすいという現象に基づく上述の方法と比べると若干煩雑な製法である。

ここでは一例として、キャップ層 2 4 (ゲート電極)にポリシリコンを用い、昇温速度 1 0 0 ℃/秒で昇温した後に、 1 0 0 0 ℃の窒素雰囲気中で 3 0 秒間の熱処理を行った。この熱処理により、組成傾斜金属シリケート膜 1 2 が形成できた。

[0045]

また、組成を傾斜させるための高温アニールは図5(c)に示す不純物領域10A、10Bの形成工程において行うのではなく、図5(b)に表したゲート電極形成後に行うことも可能である。

[0046]

(第3の実施の形態)

次に、本発明に関わる第3の実施の形態について、図7および図8を用いて説明する。絶縁層には、金属シリケートだけでなくシリコンを積極的に添加しない金属酸化物を用いることもできる。第3の実施の形態では、この金属酸化物によるゲート絶縁膜について説明する。

[0047]

10

20

30

図7は、シリコン基板10上に金属酸化物膜34を形成し、さらに金属酸化物膜34上に 導電性キャップ層14を設けた積層構造の断面図である。また、この金属酸化物膜34中 の金属(例としてZr)、窒素(N)、酸素(O)の濃度分布の模式図を図8に示す。 【0048】

金属酸化物膜34中の窒素は、シリコン基板10との界面付近(第1の層領域)、および 導電性キャップ層14との界面付近(第2の層領域)では相対的に低く、その間(第3の 層領域)では窒素濃度が相対的に高くなるような構造である。 【0049】

このような濃度分布により、金属シリケート膜12.と同様に、第1および第2の層領域において、第3の層領域よりもバンドギャップを大きくでき、リーク電流を抑制することができる。この場合の製造方法は、たとえば、スパッタ中に、図8(b)に示すように、窒素(N_2)の流量を堆積時間に応じて変化させることで、その窒素組成分布を実現することができる。また、窒素組成分布は、窒素を含まない金属酸化物膜を堆積した後、プラズマ窒化により、実現することもできる。

[0050]

(第1の実施例)

次に、第1の実施の形態で説明した製造方法の具体例を説明する。図9(a)、(b)、(c)、(d)、(e)および(f)は、窒素添加したジルコニウムシリケート膜の熱処理前後の、膜の深さ方向のジルコニウムとシリコンの組成分布の変化を示す。

図9の各図の横軸は、ジルコニウムシリケート膜12、12'のキャップ層14との界面を起点としてシリコン基板10に至るまでの深さを、縦軸は、2rやSiの濃度(at%)を示す。この例でのジルコニウムシリケート膜12の厚さは95オングストロームである。

[0052]

[0053]

[0054]

図9 (b)、(d) および (f) からわかるように、窒素濃度が低いシリコン基板 1 0 側の領域および導電性キャップ層 1 4 側の領域では、熱処理によって、表面と界面で 2 r の濃度が低く、内側で濃度が高い分布が実現できる。

[0055]

また、図9 (c)及び(d)から、熱処理前に窒素濃度が高かった中央領域では、熱処理

20

30

40

後、シリコンとジルコニウムはほとんど移動していないことがわかる。このように第1の実施の形態に関わる製造方法により、金属組成の傾斜した金属シリケート膜12°が形成できる。

以上、実施の形態や実施例を例示しつつ本発明の実施の形態について説明した。しかし、本発明は、上述した各具体例に限定されるものではなく、特許請求の範囲に記載の要旨に沿って、適宜、変更することができる。

[0056]

例えば、トランジスタの構造についても、具体例として表したものには限定されず、その他、当業者が本発明を適用しつつ設計変更して得られる全てのトランジスタは、本発明の 範囲に包含される。

[0057]

例えば、トランジスタの各部を構成する材料、添加不純物、膜厚、形状、導電型、形成方法などについて当業者が適宜設計変更したものは本発明の範囲に包含される。

[0058]

【発明の効果】

以上詳述したように、本発明によれば、良好な界面特性を維持し、且つ絶縁膜のリーク電流を低減する金属シリケート膜などを用いた半導体装置とその簡便な製造方法を提供することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に関わる半導体装置の製造方法を説明するための断面模式図である。

【図2】本発明の第1の実施の形態に関わる半導体装置の製造方法を説明するための濃度分布図である。

【図3】本発明の第1の実施の形態に関わる半導体装置の製造方法を説明するための濃度分布図である。

【図4】本発明の第2の実施の形態に関わるMISFETを説明するための断面模式図である。

【図 5 】本発明の第 2 の実施の形態に関わる M I S F E T の製造方法を説明するための断面模式図である。

【図6】スパッタ中に流す窒素(N2)の流量の時間変化を示す模式図である。

【図7】本発明の第3の実施の形態に関わるMISFETを説明するための断面模式図である。

【図8】第3の実施の形態に関わる、金属酸化物膜中の金属、酸素、窒素の濃度分布図である。

【図9】本発明の第1の実施例における、HR-RBSによる金属(ジルコニウム)、シリコンの濃度分布の結果である。

【符号の説明】

10・・・シリコン基板

12、12'・・・ジルコニウムシリケート膜

14・・・導電性キャップ層

24・・・ゲート電極

26 · · · 側壁絶縁膜

2 8 A・・・深い拡散層

28B・・・浅い拡散層

30・・・金属シリサイド層

32・・・チャネル領域

3 4・・・金属酸化物

10

20

30

【図1】

10…シリコン基板

12、12"…ジルコニウムシリケート度

14…導電性キャップ層

[図3]

【図2】

[図4]

24…ゲート電径

26…側壁艳緑

284…深い拡散領域

288…浅い拡散領域

30…金属シリサイド層

32…チャネル領域

(a)

34…金属酸化物膜

[図8]

フロントページの続き

Fターム(参考) 4K030 BA35 CA04 CA12 LA11 LA15

5F058 BA01 BA20 BC03 BD05 BF02 BF11 BF12 BF36 BH04 BJ01

5F140 AA24 BA01 BD11 BD12 BD13 BD15 BD17 BE03 BE08 BE09

BE10 BE17 BF04 BF11 BF18 BG08 BH15 BJ08

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.