COURS DE THERMODYNAMIQUE

Chapitre 1 : NOTIONS DE BASES

Chapitre 2 : ETUDE DES GAZ (PARFAITS ET REELS)

Chapitre 3 : PREMIER PRINCIPE DE LA THERMODYNAMIQUE

Chapitre 4 : DEUXIEME PRINCIPE DE LA THERMODYNAMIQUE

Chapitre 5 : ETUDE DES MACHINES THERMIQUES

Chapitre 5 : ETUDE DES MACHINES THERMIQUES

1. MACHINES A VAPEUR

- 1.1 Fonctionnement
- 1.2 Rendement

2. MACHINES FRIGORIFIQUES - POMPES A CHALEUR

- 2.1 Fonctionnement
- 2.2 Efficacité ou coefficient performance (COP)
- 2.3 Cycle de Carnot d'une machine frigorifique ou pompe à chaleur

3. DIFFERENTS TYPES DE POMPES A CHALEUR

- 3.1 Echanges directs
- 3.2 Echangeurs de chaleur

Chapitre 5. MACHINES THERMIQUES

On désigne par machines thermiques les deux types de machines suivantes :

- 1 Machines qui convertissent de la chaleur en travail : machines à vapeur, moteurs à explosion, moteurs à réaction, fusées,...
- 2- Machines qui transfèrent de la chaleur en échangeant du travail : machines frigorifiques et pompes à chaleur.

Nous développerons essentiellement l'étude des machines frigorifiques et pompes à chaleur qui interviennent en climatisation.

5.1. Machines à vapeur

Système qui évolue = eau (à l'état de liquide ou de vapeur).

schéma de principe d'une centrale thermique classique

5.1.2 Rendement

La machine à vapeur est un moteur thermique. Son rendement a été calculé au paragraphe 4 du chapitre précédent.

Rendement réel

$$\eta = \frac{|\mathbf{W}|}{\mathbf{Q}_2}$$
$$= 1 + \frac{\mathbf{Q}_1}{\mathbf{Q}_2}$$

Rendement optimal de Carnot

$$\eta_{r\acute{e}v} = \frac{T_2 - T_1}{T_2}$$

Le rendement d'un moteur thermique est d'autant meilleur que les températures T_1 et T_2 sont éloignées.

Chapitre 5 : MACHINES THERMIQUES

1. MACHINES A VAPEUR

- 1.1 Fonctionnement
- 1.2 Rendement

2. MACHINES FRIGORIFIQUES - POMPES A CHALEUR

- 2.1 Fonctionnement
- 2.2 Efficacité ou coefficient performance (COP)
- 2.3 Cycle de Carnot d'une machine frigorifique ou pompe à chaleur

3. DIFFERENTS TYPES DE POMPES A CHALEUR

- 3.1 Echanges directs
- 3.2 Echangeurs de chaleur

5.2. Machines frigorifiques – Pompes à chaleur

Système qui évolue = fluide frigorigène (couramment appelé "fréon") CO_2 ou NH_3 (grandes installations), HCFC ou HFC

5.2.1 Fonctionnement: Inverse des machines à vapeur

Représentation du cycle décrit par le fluide frigorigène sur le diagramme de Mollier (p, H)

 \underline{A} : vapeur (T_1, p_1) .

<u>AB</u>: compression du gaz jusqu'à p_2 avec circulation de fluide. Si compression adiabatique (p.56) W_{AB} (>0) = $H_B - H_A \Rightarrow H_B > H_A$

 \underline{BC} : refroidissement de la vapeur à p_2 = cte de T_B jusqu'à T_2 .

 \underline{CD} : liquéfaction de la vapeur à p_2 et à T_2 .

<u>DE</u>: détente du liquide jusqu'à p_1 et T_1 avec circulation de fluide, mais sans production de travail (W_{DE} = 0).

Q₂
Source
Chaude

Si détente adiabatique: $W_{DE} = H_E - H_D = 0 \Rightarrow H_E = H_D$ Vaporisation partielle du liquide.

EA: vaporisation du mélange liquide + vapeur à p_1 et à T_1 .

COMPRESSEUR

CONDENSEUR

DETENDEUR

EVAPORATEUR

5.2.2 Efficacité ou coefficient de performance (COP)

 \implies Si on s'intéresse à $Q_1 (> 0)$ on a une machine frigorifique (mf)

$$\frac{COP_{mf} = \frac{Q_1}{W}}{COP_{mf}} < (COP_{mf})_{Mollier} = \frac{H_A - H_E}{H_B - H_A}$$

$$\frac{Compression\ adiabatique\ avec\ circulation\ de\ fluide\ W = \Delta H$$

 \implies Si on s'intéresse à Q_2 (< 0) on a une pompe à chaleur (pc)

$$\begin{split} & \textbf{COP}_{pc} = \frac{|Q_2|}{W} & < \left(\textbf{COP}_{pc} \right)_{Mollier} = \frac{|H_D - H_B|}{H_B - H_A} \\ & = \frac{W + Q_1}{W} = 1 + \frac{Q_1}{W} > 1 \qquad \text{L'efficacit\'e est sup\'erieure \`a 1.} \end{split}$$

Cela ne doit pas choquer car la chaleur Q_1 prise à la source froide ne coûte rien ; on fournit seulement le travail W nécessaire à la circulation du fluide.

5.2.3 Cycle de Carnot d'une machine frigorifique ou pompe à chaleur

On peut imaginer un cycle idéal (réversible) constitué de 2 adiabatiques et de 2 isothermes.

Ce cycle est décrit en sens inverse de celui d'un moteur thermique (p.63).

A'B': compression adiabatique $Q_{A'B'} = 0$; $W_{A'B'} > 0$

B'C': compression isotherme $(T_2 = cte)$ $Q_{B'C'} = Q_2 < 0 ; W_{B'C'} > 0$

C'D': détente adiabatique $Q_{C'D'} = 0$; $W_{C'D'} < 0$

D'A': détente isotherme (T_1 = cte) $Q_{D'A'} = Q_1 > 0$; $W_{D'A'} < 0$

 $W = W_{A'B'} + W_{B'C'} + W_{C'D'} + W_{D'A'} > O$ (surface délimitée par le cycle)

COP optimaux correspondant à l'hypothèse de Carnot

$$\frac{(\text{COP}_{\text{mf}})_{\text{r\'eel}} = \frac{Q_1}{W} = \frac{Q_1}{-(Q_1 + Q_2)}}{\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0 \quad \text{(cycle r\'eversible)} } \Rightarrow \frac{(\text{COP}_{\text{mf}})_{\text{r\'ee}} = \frac{1}{\frac{T_2}{T_1} - 1} = \frac{T_1}{T_2 - T_1}}{> (\text{COP}_{\text{mf}})_{\text{Mollier}} > (\text{COP}_{\text{mf}})_{\text{r\'eel}}}$$

$$\frac{(\text{COP}_{pc})_{\text{r\'eel}} = \frac{|Q_2|}{W} = \frac{-Q_2}{-(Q_1 + Q_2)}}{\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0} \quad \text{(cycle r\'eversible)}$$
 \Rightarrow
$$\frac{(\text{COP}_{pc})_{\text{r\'ev}} = \frac{1}{1 - \frac{T_1}{T_2}} = \frac{T_2}{T_2 - T_1}}{> \left(\text{COP}_{pc}\right)_{\text{Mollier}} > \left(\text{COP}_{pc}\right)_{\text{r\'eel}}}$$

Les COP d'une machine frigorifique ou d'une pompe à chaleur sont d'autant meilleurs que les températures T_1 et T_2 sont voisines.

Chapitre 5 : MACHINES THERMIQUES

1. MACHINES A VAPEUR

- 1.1 Fonctionnement
- 1.2 Rendement

2. MACHINES FRIGORIFIQUES - POMPES A CHALEUR

- 2.1 Fonctionnement
- 2.2 Efficacité ou coefficient performance (COP)
- 2.3 Cycle de Carnot d'une machine frigorifique ou pompe à chaleur

3. DIFFERENTS TYPES DE POMPES A CHALEUR

- 3.1 Echanges directs
- 3.2 Echangeurs de chaleur

5.3. Différents types de pompes à chaleur

A l'aide d'une vanne quatre voies (5) on peut inverser le cycle.

Ainsi une pompe à chaleur peut chauffer ou rafraîchir un local (climatiseur).

Les échanges de chaleur au niveau du condenseur ou de

l'évaporateur peuvent se faire soit directement au contact de l'air, soit à l'aide d'échangeurs de chaleur.

5.3.1 Echanges directs

- climatiseur mobile,

CLIMATISEUR MOBILE

5.3. Différents types de pompes à chaleur

A l'aide d'une vanne quatre voies (5) on peut inverser le cycle.

Ainsi une pompe à chaleur peut chauffer ou rafraîchir un local (climatiseur).

Les échanges de chaleur au niveau du condenseur ou de

l'évaporateur peuvent se faire soit directement au contact de l'air, soit à l'aide d'échangeurs de chaleur.

5.3.1 Echanges directs

- climatiseur mobile,
- climatiseur de fenêtre (windows),

INTERIEUR **EXTERIEUR** Paroi (Local) Légère pente vers l'extérieur Etanchéité Air réchauffé Air Traitement soufflé de l'air Air repris Air de refroidissement Support (pour parois minces)

CLIMATISEUR DE FENETRE

5.3. Différents types de pompes à chaleur

A l'aide d'une vanne quatre voies (5), on peut inverser le cycle.

Ainsi une pompe à chaleur peut chauffer ou rafraîchir un local (climatiseur).

Les échanges de chaleur au niveau du condenseur ou de

l'évaporateur peuvent se faire soit directement au contact de l'air, soit à l'aide d'échangeurs de chaleur.

5.3.1 Echanges directs

- climatiseur mobile placé dans la pièce,
- climatiseur de fenêtre (windows),
- climatiseur à éléments séparés (split et multisplit systèmes).

CLIMATISEUR
BIBLOC
"SPLIT-SYSTEM"

5.3.2 Echangeurs de chaleur

Dans le cas d'échangeurs de chaleur, on peut utiliser comme fluide caloporteur soit de l'air, soit de l'eau, ce qui multiplie les types de chauffage :

Air - Air

Eau - Eau

Air - Eau

Eau - Air

Cas de l'hiver

Source froide

- air (extérieur,

POMPE A CHALEUR EN RELEVE DE CHAUDIERE : LA BI-ENERGIE

En mi-saison (5°C à 15°C): seule la PAC fonctionne

Entre 5°C et 0°C:

PAC et chaudière

fonctionnent : la PAC

préchauffe l'eau qui

arrive à la chaudière

<u>En dessous de 0°C</u>: seule la chaudière fonctionne

Cas de l'hiver

Source froide

- air (extérieur, extrait dans le cas d'une VMC double flux),

VMC DOUBLE FLUX

Récupérateur à plaques + PAC

RECUPERATION SUR L'AIR EXTRAIT

Cas de l'hiver

Source froide

- air (extérieur, extrait dans le cas d'une VMC double flux),
- eau (nappe phréatique,

RECUPERATION SUR NAPPE PHREATIQUE

Cas de l'hiver

Source froide

- air (extérieur, extrait dans le cas d'une VMC double flux),
- eau (nappe phréatique, lac, rivière, boucle d'eau ...).

RECUPERATION
SUR
BOUCLE D'EAU

Cas de l'hiver

Source froide

- air (extérieur, extrait dans le cas d'une VMC double flux),
- eau (nappe phréatique, lac, rivière, boucle d'eau...).

Source chaude

- air pulsé à travers des bouches après acheminement dans un réseau de gaines,
- eau alimentant des radiateurs, un plancher ou des ventiloconvecteurs.

VENTILO-CONVECTEUR

CHAUFFAGE
ET
RAFRAICHISSEMENT
PAR
VENTILO-CONVECTEURS

Cas de l'été

Source froide

- air pulsé directement dans le local ou à travers des bouches après acheminement dans un réseau de gaines,
- eau alimentant des ventilo-convecteurs ou un plancher.

Source chaude

- air rejeté directement à l'extérieur,
- eau rejetée dans une nappe phréatique ou circuit fermé avec tour de refroidissement placée à l'extérieur.

TOUR DE REFROIDISSEMENT

RECUPERATION DE LA CHALEUR DU SOL PAC Géothermiques

Capteurs horizontaux

Détente directe

Echangeur eau/eau

Capteurs horizontaux

IMMEUBLE DE L'ADEME A ANGERS

Capteurs verticaux

FIN

Différents types de PAC

Type de récupération	Type de chauffage	Source froide θ_1	Source chaude θ_2	T_2	$T_2 - T_1$	$(COP)_{pac} = \frac{T_2}{T_2 - T_1}$
Eau (lac, nappe)	Air chaud pulsé	14°C	40 °C	313	26	12
	Eau chaude à		60°C	333	46	7
	circulation forcée		40 °C	313	26	12
Air extérieur	Air chaud pulsé	varie de -5°C à 15°C	40 °C	313	45 à 25	7 à 12
	Eau chaude à circulation forcée		60°C	333	65 à 45	5 a 7
			40°C	313	45 à 25	7 à 12
Air extrait	Air chaud pulsé	18°C	40 °C	313	22	14
	Eau chaude à circulation forcée		60°€	333	42	8
			40°C	313	22	14

Un chauffage à 40°C est nettement plus performant qu'un chauffage à 60°C Meilleurs COP :

- 1- Récupération sur air extrait mais réserve de calories limitée (1vol/h)
- 2- Récupération sur eau quand c'est possible
- 3- Récupération sur l'air toujours possible mais faible COP par temps froid