USM Numérica

Libraría Pandas

Objetivos

- 1. Conocer los principales comandos de la librería pandas
- 2. Utilizar pandas para limpieza y manipulación de datos.

Sobre el autor

Sebastián Flores

ICM UTFSM

sebastian.flores@usm.cl

Sobre la presentación

Contenido creada en ipython notebook (jupyter)

Versión en Slides gracias a RISE de Damián Avila

Software:

- python 2.7 o python 3.1
- pandas 0.16.1

Opcional:

- numpy 1.9.2
- matplotlib 1.3.1

Aprender haciendo

Consideraremos el siguiente archivo data.csv que contiene datos incompletos:

```
In [201]:
            %%bash
            cat data/data.csv
            diametro; altura; volumen; tipo de arbol
            11.2;75;19.9;Cherrie Tree
            11.3;79;24.2;Cherry Tree
            11.4;76;21.0;Cherry Tree
            11.4;76;21.4; Apple Tree
            13.7;71;25.7;Cherry Tree
            13.8;64;24.9;Cherry Tree
            14.0;78;34.5;Cherrie Tree
            14.2;80;31.7;Cherry Tree
            ;74;36.3;Apple Tree
            16.0;72;38.3;Cherry Tree
            16.3;77;42.6;Cherry Tree
            17.3;81;55.4;Apple Tree
            17.5;;55.7;Cherry Tree
            17.9;80;58.3;Cherry Tree
            18.0;80;51.5;Cherry Tree
            18.0;;51.0;
            20.6;;;Cherry Tree
```

1.- ¿Porqué utilizar pandas?

Razón oficial: Porque en numpy no es posible mezclar tipos de datos, lo cual complica cargar, usar, limpiar y guardar datos mixtos.

Razón personal: Porque habían cosas que en R eran más fáciles pero no pythonísticas. La librería pandas es un excelente compromiso.

```
In [202]:
           import numpy as np
            df = np.loadtxt("data/data.csv", delimiter=";", dtype=str)
           print( df )
            [['diametro' 'altura' 'volumen' 'tipo de arbol']
             ['11.2' '75' '19.9' 'Cherrie Tree']
             ['11.3' '79' '24.2' 'Cherry Tree']
             ['11.4' '76' '21.0' 'Cherry Tree']
             ['11.4' '76' '21.4' 'Apple Tree']
             ['13.7' '71' '25.7' 'Cherry Tree']
             ['13.8' '64' '24.9' 'Cherry Tree']
             ['14.0' '78' '34.5' 'Cherrie Tree']
             ['14.2' '80' '31.7' 'Cherry Tree']
             ['' '74' '36.3' 'Apple Tree']
             ['16.0' '72' '38.3' 'Cherry Tree']
             ['16.3' '77' '42.6' 'Cherry Tree']
             ['17.3' '81' '55.4' 'Apple Tree']
             ['17.5' '' '55.7' 'Cherry Tree']
             ['17.9' '80' '58.3' 'Cherry Tree']
             ['18.0' '80' '51.5' 'Cherry Tree']
             ['18.0' '' '51.0' '']
             ['20.6' '' '' 'Cherry Tree']]
```

```
import pandas as pd
    df = pd.read_csv("data/data.csv", sep=";")
    print( df )
#df
```

	diametro	altura	volumen	tipo_de_a	arbol
0	11.2	75	19.9	Cherrie	Tree
1	11.3	79	24.2	Cherry	Tree
2	11.4	76	21.0	Cherry	Tree
3	11.4	76	21.4	Apple	Tree
4	13.7	71	25.7	Cherry	Tree
5	13.8	64	24.9	Cherry	Tree
6	14.0	78	34.5	Cherrie	Tree
7	14.2	80	31.7	Cherry	Tree
8	NaN	74	36.3	Apple	Tree
9	16.0	72	38.3	Cherry	Tree
10	16.3	77	42.6	Cherry	Tree
11	17.3	81	55.4	Apple	Tree
12	17.5	NaN	55.7	Cherry	Tree
13	17.9	80	58.3	Cherry	Tree
14	18.0	80	51.5	Cherry	Tree
15	18.0	NaN	51.0		NaN
16	20.6	NaN	NaN	Cherry	Tree

```
inch2m = 0.0254
feet2m = 0.3048
df.diametro = df.diametro * inch2m
df.altura = df.altura * feet2m
df.volumen = df.volumen * (feet2m**3)
df.tipo_de_arbol = "Cherry Tree"
df
```

Out[207]:

	diametro	altura	volumen	tipo_de_arbol
0	0.007226	6.967728	0.015957	Cherry Tree
1	0.007290	7.339340	0.019405	Cherry Tree
2	0.007355	7.060631	0.016839	Cherry Tree
3	0.007355	7.060631	0.017159	Cherry Tree
4	0.008839	6.596116	0.020607	Cherry Tree
5	0.008903	5.945795	0.019966	Cherry Tree
6	0.009032	7.246437	0.027664	Cherry Tree
7	0.009161	7.432243	0.025418	Cherry Tree
8	NaN	6.874825	0.029107	Cherry Tree
9	0.010323	6.689019	0.030711	Cherry Tree
10	0.010516	7.153534	0.034159	Cherry Tree
11	0.011161	7.525146	0.044422	Cherry Tree
12	0.011290	NaN	0.044663	Cherry Tree
13	0.011548	7.432243	0.046747	Cherry Tree
14	0.011613	7.432243	0.041295	Cherry Tree
15	0.011613	NaN	0.040894	Cherry Tree
16	0.013290	NaN	NaN	Cherry Tree

```
In [208]:
            print( df.columns )
            Index([u'diametro', u'altura', u'volumen', u'tipo de arbol'], dtype='objec
            t')
In [209]:
            print( df.index )
            Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], dty
            pe='int64')
In [210]:
            print( df["altura"]*2 )
            0
                  13.935456
                  14.678680
            1
                  14.121262
            2
            3
                  14.121262
            4
                  13.192232
            5
                  11.891589
            6
                  14.492874
            7
                  14.864486
            8
                  13.749650
            9
                  13.378038
            10
                  14.307068
            11
                  15.050292
            12
                         NaN
            13
                  14.864486
            14
                  14.864486
            15
                         NaN
            16
                         NaN
            Name: altura, dtype: float64
```

```
0
      0.022799
1
      0.020102
2
      0.022682
3
      0.022258
4
      0.025006
5
      0.023606
6
      0.021370
7
      0.024540
8
           NaN
9
      0.023209
10
      0.023160
11
      0.021103
12
           NaN
13
      0.021203
14
      0.024272
15
           NaN
16
           NaN
```

dtype: float64

In [211]: print(df["diametro"]**2 * df["altura"] / df.volumen)

2. Lo básico de pandas

- Pandas imita los dataframes de R, pero en python. Todo lo que no tiene sentido es porque se parece demasiado a R.
- Pandas permite tener datos como en tablas de excel: datos en una columna pueden ser mixtos.
- La idea central es que la indexación es "a medida": las columnas y las filas (index)
 pueden ser enteros o floats, pero también pueden ser strings. Depende de lo que tenga sentido.
- Los elementos básicos de pandas son:
 - Series: Conjunto de valores con indexación variable.
 - DataFrames: Conjunto de Series.

2.1 Series

Una serie es un conveniente conjunto de datos, como una columna de datos de excel, pero con indexación más genérica.

```
pd.Series(self, data=None, index=None, dtype=None, name=None, copy=False,
fastpath=False)

In []: import pandas as pd
    s1 = pd.Series([False, 1, 2., "3", 4 + 0j])
    print( s1 )

In []: # Casting a otros tipos
    print( list(s1) )
    print( set(s1) )
    print( np.array(s1) )
```

```
In [225]:
             # Ejemplo de operatoria
             s0 = pd.Series(range(6), index=range(6))
             s1 = pd.Series([1,2,3], index=[1,2,3])
             s2 = pd.Series([4,5,6], index=[4,5,6])
             s3 = pd.Series([10,10,10], index=[1,4,6])
In [217]:
             print( s0 )
             0
                   0
             1
                   1
             2
                   3
                   4
             5
                   5
             dtype: int64
In [219]:
             print( s0 + s1 )
             0
                  NaN
                    2
                    4
             3
                    6
             4
                 NaN
                  NaN
             dtype: float64
In [220]:
             print( s0 + s1 + s2 )
             0
                  NaN
             1
                  NaN
```

- 2 NaN
- 3 NaN
- 4 NaN
- 5 NaN
- 6 NaN

dtype: float64

```
In [222]: print( s0.add(s1, fill_value=0) )

0     0
1     2
2     4
3     6
4     4
5     5
dtype: float64
```

2.2 DataFrames

Un Dataframe es una colección de Series con una indexación común. Como una planilla de excel.

		col1	col2	col3
Out[223]:	0	1	1	uno
	1	2	2	dos
	2	3	3	tres
	3	4	4	cuatro

3.1 Obteniendo datos

- 1. Archivo csv
- 2. Archivo json
- 3. **Archivo de excel**: convertir a csv cuidadosamente (elegir un separador apropiado, no comentar strings).

```
In [228]: # csv
    df = pd.read_csv("data/data.csv", sep=";")
    df
```

Out[228]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherrie Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherrie Tree
7	14.2	80	31.7	Cherry Tree
8	NaN	74	36.3	Apple Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [227]:
```

df = pd.read_json("data/data.json")
df

Out[227]:

	altura	diametro	tipo_de_arbol	volumen
1	79	11.3	Cherry Tree	24.2
10	77	16.3	Cherry Tree	42.6
12	NaN	17.5	Cherry Tree	55.7
13	80	17.9	Cherry Tree	58.3
14	80	18.0	Cherry Tree	51.5
16	NaN	20.6	Cherry Tree	NaN
2	76	11.4	Cherry Tree	21.0
4	71	13.7	Cherry Tree	25.7
5	64	13.8	Cherry Tree	24.9
7	80	14.2	Cherry Tree	31.7
9	72	16.0	Cherry Tree	38.3

4.- Inspeccionando datos

- 1. Accesando las columnas
- 2. shape
- 3. head, tail, describe
- 4. histogram
- 5. pd.scatter_matrix
- 6. count_values

```
In [229]:
            df = pd.read_csv("data/data.csv", sep=";")
            df.columns
            Index([u'diametro', u'altura', u'volumen', u'tipo_de_arbol'], dtype='objec
Out[229]:
            t')
In [232]:
            df['altura']
Out[232]:
                   75
            0
                   79
            1
            2
                   76
            3
                   76
                   71
                   64
                   78
            7
                   80
            8
                   74
            9
                   72
            10
                   77
            11
                   81
            12
                  NaN
            13
                   80
            14
                   80
            15
                  NaN
            16
                  NaN
            Name: altura, dtype: float64
```

In [233]: df.shape

Out[233]: (17, 4)

In [234]:

df.head()

Out[234]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherrie Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree

In [235]:

df.tail()

Out[235]:

	diametro	altura	volumen	tipo_de_arbol
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

In [236]:

df.describe()

Out[236]:

	diametro	altura	volumen
count	16.000000	14.000000	16.000000
mean	15.162500	75.928571	37.025000
std	2.948418	4.615430	13.773816
min	11.200000	64.000000	19.900000
25%	13.125000	74.250000	24.725000
50%	15.100000	76.500000	35.400000
75%	17.600000	79.750000	51.125000
max	20.600000	81.000000	58.300000

In [289]:

df.describe(include="all")

Out[289]:

	diametro	altura	volumen	tipo_de_arbol
count	16.000000	14.000000	16.000000	16
unique	NaN	NaN	NaN	3
top	NaN	NaN	NaN	Cherry Tree
freq	NaN	NaN	NaN	11
mean	15.162500	75.928571	37.025000	NaN
std	2.948418	4.615430	13.773816	NaN
min	11.200000	64.000000	19.900000	NaN
25%	13.125000	74.250000	24.725000	NaN
50%	15.100000	76.500000	35.400000	NaN
75%	17.600000	79.750000	51.125000	NaN
max	20.600000	81.000000	58.300000	NaN

```
In [238]:
    from matplotlib import pyplot as plt
    df.hist(figsize=(10,10), layout=(3,1))
    #df.hist(figsize=(8,8), layout=(3,1), by="tipo_de_arbol")
    plt.show()
```



```
In [239]:
    from matplotlib import pyplot as plt
    pd.scatter_matrix(df, figsize=(10,10), range_padding=0.2)
    plt.show()
```



```
In [240]:
            df.tipo_de_arbol.value_counts()
Out[240]:
           Cherry Tree
                             11
```

Apple Tree

3 2 Cherrie Tree

dtype: int64

5.- Manipulando DataFrames

- 1. Agregando columnas
- 2. Borrando columnas
- 3. Agregando filas
- 4. Borrando filas
- 5. Mask
- 6. Grouping
- 7. Imputación de datos
- 8. Apply
- 9. Merge (a la SQL)
- 10. Accesamiento

5.1 Agregando columnas

```
In [241]:
    df = pd.read_csv("data/data.csv", sep=";")
    df["radio"] = .5 * df.diametro
    df
```

Out[241]:

	diametro	altura	volumen	tipo_de_arbol	radio
0	11.2	75	19.9	Cherrie Tree	5.60
1	11.3	79	24.2	Cherry Tree	5.65
2	11.4	76	21.0	Cherry Tree	5.70
3	11.4	76	21.4	Apple Tree	5.70
4	13.7	71	25.7	Cherry Tree	6.85
5	13.8	64	24.9	Cherry Tree	6.90
6	14.0	78	34.5	Cherrie Tree	7.00
7	14.2	80	31.7	Cherry Tree	7.10
8	NaN	74	36.3	Apple Tree	NaN
9	16.0	72	38.3	Cherry Tree	8.00
10	16.3	77	42.6	Cherry Tree	8.15
11	17.3	81	55.4	Apple Tree	8.65
12	17.5	NaN	55.7	Cherry Tree	8.75
13	17.9	80	58.3	Cherry Tree	8.95
14	18.0	80	51.5	Cherry Tree	9.00
15	18.0	NaN	51.0	NaN	9.00
16	20.6	NaN	NaN	Cherry Tree	10.30

```
In [242]:
    df.area = np.pi * df.radio **2
    df.columns
```

Out[242]: Index([u'diametro', u'altura', u'volumen', u'tipo_de_arbol', u'radio'], dt ype='object')

5.2 Renombrando columnas

5.3 Borrando columnas

```
In [258]:
                df = pd.read csv("data/data.csv", sep=";")
                print( df.columns )
                 Index([u'diametro', u'altura', u'volumen', u'tipo de arbol'], dtype='objec
                 t')
In [259]:
                df = df[["tipo de arbol", "volumen", "diametro"]]
                df
                    tipo_de_arbol volumen diametro
Out[259]:
                     Cherrie Tree
                                    19.9
                                             11.2
                     Cherry Tree
                                             11.3
                                    24.2
                     Cherry Tree
                                    21.0
                                             11.4
                      Apple Tree
                                    21.4
                                             11.4
                     Cherry Tree
                                    25.7
                                             13.7
                                             13.8
                     Cherry Tree
                                    24.9
                     Cherrie Tree
                                    34.5
                                             14.0
                                    31.7
                                             14.2
                     Cherry Tree
                                    36.3
                 8
                      Apple Tree
                                             NaN
                     Cherry Tree
                                    38.3
                                             16.0
                10
                     Cherry Tree
                                    42.6
                                             16.3
                11
                      Apple Tree
                                             17.3
                                    55.4
                12
                     Cherry Tree
                                    55.7
                                             17.5
                13
                     Cherry Tree
                                    58.3
                                             17.9
                14
                     Cherry Tree
                                             18.0
                                    51.5
                15
                                             18.0
                           NaN
                                    51.0
                16
                     Cherry Tree
                                    NaN
                                             20.6
```

```
In [260]: df = df.drop("tipo_de_arbol", axis=1)
```

Out[260]:

	volumen	diametro
0	19.9	11.2
1	24.2	11.3
2	21.0	11.4
3	21.4	11.4
4	25.7	13.7
5	24.9	13.8
6	34.5	14.0
7	31.7	14.2
8	36.3	NaN
9	38.3	16.0
10	42.6	16.3
11	55.4	17.3
12	55.7	17.5
13	58.3	17.9
14	51.5	18.0
15	51.0	18.0
16	NaN	20.6

In [261]:

df.drop("diametro", axis=1, inplace=True)
df

Out[261]:

	volumen
0	19.9
1	24.2
2	21.0
3	21.4
4	25.7
5	24.9
6	34.5
7	31.7
8	36.3
9	38.3

	volumen
10	42.6
11	55.4
12	55.7
13	58.3
14	51.5
15	51.0
16	NaN

5.4 Agregando filas (indices)

```
In [263]:
                 df = pd.read csv("data/data.csv", sep=";")
                 print( df.index )
                 df
                 Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], dty
                 pe='int64')
                    diametro altura volumen tipo_de_arbol
Out[263]:
                         11.2
                                        19.9
                                 75
                                               Cherrie Tree
                         11.3
                                        24.2
                                 79
                                               Cherry Tree
                  2
                                 76
                                               Cherry Tree
                         11.4
                                         21.0
                  3
                                 76
                         11.4
                                                Apple Tree
                                         21.4
                 4
                                               Cherry Tree
                         13.7
                                 71
                                        25.7
                 5
                                               Cherry Tree
                         13.8
                                 64
                                        24.9
                 6
                                        34.5
                         14.0
                                 78
                                               Cherrie Tree
                 7
                         14.2
                                 80
                                         31.7
                                               Cherry Tree
                 8
                                        36.3
                                                Apple Tree
                         NaN
                                 74
                                 72
                                        38.3
                                               Cherry Tree
                         16.0
                        16.3
                10
                                 77
                                        42.6
                                               Cherry Tree
                         17.3
                                                Apple Tree
                 11
                                 81
                                        55.4
                 12
                         17.5
                               NaN
                                        55.7
                                                Cherry Tree
                13
                                               Cherry Tree
                         17.9
                                 80
                                        58.3
                 14
                         18.0
                                 80
                                         51.5
                                                Cherry Tree
                15
                                         51.0
                         18.0
                               NaN
                                                     NaN
                 16
                         20.6
                               NaN
                                        NaN
                                                Cherry Tree
```

```
Out[265]: diametro altura volumen tipo_de_arbol  
0 11.2 75 19.9 Cherrie Tree
```

df

df = df.reindex(range(20))

In [265]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherrie Tree
7	14.2	80	31.7	Cherry Tree
8	NaN	74	36.3	Apple Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree
17	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN

In [269]:

Usando loc para acceder con notación de indices tradicional
df.loc[20, :] = [10, 20, 30, "CT"]
df

Out[269]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherrie Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherrie Tree
7	14.2	80	31.7	Cherry Tree
8	NaN	74	36.3	Apple Tree
				·

	diametro	altura	volumen	tipo_de_arbol
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree
17	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN
20	10.0	20	30.0	СТ

5.5 Renombrando filas (índices)

```
In [270]:
            df = pd.read csv("data/data.csv", sep=";")
            print df.index
            Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], dty
            pe='int64')
In [271]:
            df.index = df.index + 10
            print df.index
            Int64Index([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2
            5,
                         261,
                       dtype='int64')
In [272]:
            df.index = ["i %d"%idx for idx in df.index]
            print df.index
            Index([u'i 10', u'i 11', u'i 12', u'i 13', u'i 14', u'i 15', u'i 16', u'i
            17',
                   u'i 18', u'i 19', u'i 20', u'i 21', u'i 22', u'i 23', u'i 24', u'i
            25',
                   u'i 26'],
                  dtype='object')
```

5.6 Borrando indices

```
In [273]:
                print df.index
                 df
                 Index([u'i 10', u'i 11', u'i 12', u'i 13', u'i 14', u'i 15', u'i 16', u'i
                 17',
                           u'i_18', u'i_19', u'i_20', u'i_21', u'i_22', u'i_23', u'i_24', u'i_
                 25',
                           u'i 26'],
                          dtype='object')
                     diametro altura volumen tipo_de_arbol
Out[273]:
                i_10
                          11.2
                                 75
                                         19.9
                                                Cherrie Tree
                 i_11
                          11.3
                                 79
                                         24.2
                                                Cherry Tree
                i_12
                          11.4
                                  76
                                         21.0
                                                Cherry Tree
                i_13
                          11.4
                                  76
                                         21.4
                                                 Apple Tree
                i_14
                          13.7
                                  71
                                         25.7
                                                Cherry Tree
                i_15
                          13.8
                                  64
                                         24.9
                                                Cherry Tree
                                 78
                i_16
                          14.0
                                         34.5
                                                Cherrie Tree
                 i_17
                          14.2
                                 80
                                         31.7
                                                Cherry Tree
                i_18
                          NaN
                                  74
                                         36.3
                                                 Apple Tree
                i_19
                          16.0
                                  72
                                         38.3
                                                Cherry Tree
                i_20
                          16.3
                                  77
                                         42.6
                                                Cherry Tree
                i_21
                          17.3
                                  81
                                         55.4
                                                 Apple Tree
                i_22
                          17.5
                                NaN
                                         55.7
                                                Cherry Tree
                i_23
                          17.9
                                 80
                                         58.3
                                                Cherry Tree
                i_24
                          18.0
                                  80
                                         51.5
                                                Cherry Tree
                i_25
                          18.0
                                         51.0
                                                      NaN
                                NaN
                i 26
                          20.6
                                NaN
                                         NaN
                                                Cherry Tree
```

In [274]: df = df.drop(["i_11","i_13","i_19"], axis=0)

print(df.index)
df

Out[274]:

	diametro	altura	volumen	tipo_de_arbol
i_10	11.2	75	19.9	Cherrie Tree
i_12	11.4	76	21.0	Cherry Tree
i_14	13.7	71	25.7	Cherry Tree
i_15	13.8	64	24.9	Cherry Tree
i_16	14.0	78	34.5	Cherrie Tree
i_17	14.2	80	31.7	Cherry Tree
i_18	NaN	74	36.3	Apple Tree
i_20	16.3	77	42.6	Cherry Tree
i_21	17.3	81	55.4	Apple Tree
i_22	17.5	NaN	55.7	Cherry Tree
i_23	17.9	80	58.3	Cherry Tree
i_24	18.0	80	51.5	Cherry Tree
i_25	18.0	NaN	51.0	NaN
i_26	20.6	NaN	NaN	Cherry Tree

In [275]:

df.drop(["i_24","i_25","i_26"], axis=0, inplace=True)
df

Out[275]:

	diametro	altura	volumen	tipo_de_arbol
i_10	11.2	75	19.9	Cherrie Tree
i_12	11.4	76	21.0	Cherry Tree
i_14	13.7	71	25.7	Cherry Tree
i_15	13.8	64	24.9	Cherry Tree
i_16	14.0	78	34.5	Cherrie Tree
i_17	14.2	80	31.7	Cherry Tree
i_18	NaN	74	36.3	Apple Tree
i_20	16.3	77	42.6	Cherry Tree
i_21	17.3	81	55.4	Apple Tree
i_22	17.5	NaN	55.7	Cherry Tree
i_23	17.9	80	58.3	Cherry Tree

In [276]:

df = df[-5:]
df

Out[276]:

	diametro	aitura	volumen	tipo_de_arbol
i_18	NaN	74	36.3	Apple Tree
i_20	16.3	77	42.6	Cherry Tree
i_21	17.3	81	55.4	Apple Tree
i_22	17.5	NaN	55.7	Cherry Tree
i_23	17.9	80	58.3	Cherry Tree

Observación

```
# seleccionar la columna col
# regresa una serie
df[col]
# seleccionar las columnas col1, col2, ..., coln
# regresa dataframe
df[[col1,col2,.., coln]]
# selecciona solo el indice inicio
# regresa un dataframe
df[inicio:(inicio+1)]
# selecciona los indices en notacion
#regresa un dataframe
df[inicio:fin:salto]
# seleccion mixta
# regresa un dataframe
df.loc[inicio:fin:salto, col1:col2]
```

5.7 Masking

```
In [277]:
                df = pd.read csv("data/data.csv", sep=";")
                vol mean = df.volumen.mean()
                vol std = df.volumen.std()
In [279]:
                mask 1 = df.altura < 80</pre>
                mask 2 = df.volumen <= vol mean + vol std</pre>
                df1 = df[ mask 1 & mask 2 ]
                df1
                   diametro altura volumen tipo_de_arbol
Out[279]:
                        11.2
                               75
                                      19.9
                                            Cherrie Tree
                               79
                        11.3
                                      24.2
                                             Cherry Tree
                        11.4
                               76
                                       21.0
                                             Cherry Tree
                 3
                               76
                                       21.4
                                             Apple Tree
                        11.4
                       13.7
                               71
                                      25.7
                                             Cherry Tree
                                      24.9
                                             Cherry Tree
                       13.8
                               64
                       14.0
                               78
                                      34.5
                                             Cherrie Tree
                               74
                                      36.3
                                             Apple Tree
                       NaN
                                      38.3
                                             Cherry Tree
                       16.0
                               72
```

```
In [280]: # Si se hace dinamicamente, utilizar suficientes parentesis
#df2 = df[ ((vol_mean - vol_std) <= df.volumen) & (df.volumen <= (vol_mean + vol_std) ) ]
df2 = df[ (df.volumen >=(vol_mean - vol_std)) & (df.volumen <= (vol_mean + vol_std) ) ]
df2</pre>
```

			altura	volumen	tipo_de_arbo
Out[280]:	1	11.3	79	24.2	Cherry Tree
	4	13.7	71	25.7	Cherry Tree
	5	13.8	64	24.9	Cherry Tree

16.3

10

77

42.6

Cherry Tree

	diametro	altura	volumen	tipo_de_arbol
6	14.0	78	34.5	Cherrie Tree
7	14.2	80	31.7	Cherry Tree
8	NaN	74	36.3	Apple Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree

```
In [281]: # A veces para simplificar numpy ayuda
    mask_1 = df.volumen >= (vol_mean - vol_std)
    mask_2 = df.volumen <= (vol_mean + vol_std)
    mask = np.logical_and(mask_1, mask_2)
    df3 = df[np.logical_not(mask)]
    df3</pre>
```

Out[281]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherrie Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
11	17.3	81	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

5.8.- Grouping

```
In [282]:
           df = pd.read csv("data/data.csv", sep=";")
           df.columns
          Index([u'diametro', u'altura', u'volumen', u'tipo de arbol'], dtype='objec
Out[282]:
           t')
In [283]:
          q = df.groupby("tipo_de_arbol")
           print( g )
           <pandas.core.groupby.DataFrameGroupBy object at 0x7fb0e37e1f90>
In [284]:
          print( g.count() )
                         diametro altura volumen
           tipo de arbol
           Apple Tree
           Cherrie Tree
           Cherry Tree 11
                                               10
In [285]:
           print( g.sum() ) # .mean(), .std()
                         diametro altura volumen
           tipo de arbol
                           28.7 231 113.1
           Apple Tree
                         25.2 153 54.4
           Cherrie Tree
           Cherry Tree 170.7 679
                                            373.9
```

```
In [286]: # Ejemplo real
df[["tipo_de_arbol","diametro", "altura"]].groupby("tipo_de_arbol").mean()
```

Out [286] : diametro altura

tipo_de_arbol

Apple Tree 14.350000 77.000000

Cherrie Tree 12.600000 76.500000

Cherry Tree 15.518182 75.444444

5.9.- Imputación de datos

In [288]:

Antes de imputar datos, siempre explorar
df.describe(include="all")

Out[288]:

	diametro	altura	volumen	tipo_de_arbol
count	16.000000	14.000000	16.000000	16
unique	NaN	NaN	NaN	3
top	NaN	NaN	NaN	Cherry Tree
freq	NaN	NaN	NaN	11
mean	15.162500	75.928571	37.025000	NaN
std	2.948418	4.615430	13.773816	NaN
min	11.200000	64.000000	19.900000	NaN
25%	13.125000	74.250000	24.725000	NaN
50%	15.100000	76.500000	35.400000	NaN
75%	17.600000	79.750000	51.125000	NaN
max	20.600000	81.000000	58.300000	NaN

```
In [290]:
```

```
# Imputación manual de datos (incorrecto)
df["tipo_de_arbol"][df.tipo_de_arbol=="Cherrie Tree"] = "Cherry Tree"
df
```

/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

from ipykernel import kernelapp as app

Out[290]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherry Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherry Tree
7	14.2	80	31.7	Cherry Tree
8	NaN	74	36.3	Apple Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [291]: # Imputación manual de datos
    df = pd.read_csv("data/data.csv", sep=";")
    index_mask = (df.tipo_de_arbol=="Cherrie Tree")
    df.loc[index_mask, "tipo_de_arbol"] = "Cherry Tree" # .loc es esencial
    df
```

Out[291]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherry Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherry Tree
7	14.2	80	31.7	Cherry Tree
8	NaN	74	36.3	Apple Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [292]: # Imputación de datos: llenar NaNs con promedio
    df = pd.read_csv("data/data.csv", sep=";")
    df1 = df.fillna(df.mean())
    df1
```

Out[292]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2000	75.000000	19.900	Cherrie Tree
1	11.3000	79.000000	24.200	Cherry Tree
2	11.4000	76.000000	21.000	Cherry Tree
3	11.4000	76.000000	21.400	Apple Tree
4	13.7000	71.000000	25.700	Cherry Tree
5	13.8000	64.000000	24.900	Cherry Tree
6	14.0000	78.000000	34.500	Cherrie Tree
7	14.2000	80.000000	31.700	Cherry Tree
8	15.1625	74.000000	36.300	Apple Tree
9	16.0000	72.000000	38.300	Cherry Tree
10	16.3000	77.000000	42.600	Cherry Tree
11	17.3000	81.000000	55.400	Apple Tree
12	17.5000	75.928571	55.700	Cherry Tree
13	17.9000	80.000000	58.300	Cherry Tree
14	18.0000	80.000000	51.500	Cherry Tree
15	18.0000	75.928571	51.000	NaN
16	20.6000	75.928571	37.025	Cherry Tree

In [293]:

Imputación de datos: llenar NaNs con valor
df2 = df.fillna(0)
df2

Out[293]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherrie Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherrie Tree
7	14.2	80	31.7	Cherry Tree
8	0.0	74	36.3	Apple Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
12	17.5	0	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	0	51.0	0
16	20.6	0	0.0	Cherry Tree

```
In [294]:
```

Imputación de datos: desechar filas con NaN
df3 = df.dropna()
df3

Out[294]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherrie Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherrie Tree
7	14.2	80	31.7	Cherry Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree

5.10 Apply

```
In [295]:
            df = pd.read csv("data/data.csv", sep=";")
            df1 = df.diametro.apply(lambda x: x*2)
            df1
                   22.4
Out[295]:
            0
                   22.6
            1
            2
                   22.8
                   22.8
            3
                   27.4
             4
                   27.6
             5
                   28.0
             6
                   28.4
            8
                   NaN
            9
                   32.0
            10
                   32.6
                  34.6
            11
            12
                  35.0
                  35.8
            13
            14
                  36.0
                   36.0
            15
            16
                   41.2
            Name: diametro, dtype: float64
```

```
In [296]:
           # Aplicación incorrecta
            df2 = df["tipo de arbol"].apply(str.upper) # Error
            df2
            TypeError
                                                       Traceback (most recent call las
            t)
            <ipython-input-296-1993c7531ea9> in <module>()
                  1 # Aplicación incorrecta
            ---> 2 df2 = df["tipo de arbol"].apply(str.upper) # Error
                  3 df2
            /usr/local/lib/python2.7/dist-packages/pandas/core/series.pyc in apply(sel
            f, func, convert dtype, args, **kwds)
               2051
                                values = lib.map infer(values, lib.Timestamp)
               2052
            -> 2053
                            mapped = lib.map infer(values, f, convert=convert dtype)
               2054
                            if len(mapped) and isinstance(mapped[0], Series):
               2055
                                 from pandas.core.frame import DataFrame
            pandas/src/inference.pyx in pandas.lib.map infer (pandas/lib.c:58519)()
            TypeError: descriptor 'upper' requires a 'str' object but received a 'floa
            t. '
In [297]:
           # Aplicación correcta
            df2 = df["tipo de arbol"].apply(lambda s: str(s).upper() )
            df2
Out[297]:
                  CHERRIE TREE
```

1

CHERRY TREE

```
2
      CHERRY TREE
      APPLE TREE
      CHERRY TREE
      CHERRY TREE
5
    CHERRIE TREE
6
     CHERRY TREE
8
      APPLE TREE
9
      CHERRY TREE
   CHERRY TREE
10
11
   APPLE TREE
12
    CHERRY TREE
    CHERRY TREE
13
14
   CHERRY TREE
15
              NAN
16
   CHERRY TREE
Name: tipo_de_arbol, dtype: object
```

```
In [298]:
```

Error (o no?)
df3 = df.apply(lambda x: x*2)
df3

Out[298]:

	diametro	altura	volumen	tipo_de_arbol
0	22.4	150	39.8	Cherrie TreeCherrie Tree
1	22.6	158	48.4	Cherry TreeCherry Tree
2	22.8	152	42.0	Cherry TreeCherry Tree
3	22.8	152	42.8	Apple TreeApple Tree
4	27.4	142	51.4	Cherry TreeCherry Tree
5	27.6	128	49.8	Cherry TreeCherry Tree
6	28.0	156	69.0	Cherrie TreeCherrie Tree
7	28.4	160	63.4	Cherry TreeCherry Tree
8	NaN	148	72.6	Apple TreeApple Tree
9	32.0	144	76.6	Cherry TreeCherry Tree
10	32.6	154	85.2	Cherry TreeCherry Tree
11	34.6	162	110.8	Apple TreeApple Tree
12	35.0	NaN	111.4	Cherry TreeCherry Tree
13	35.8	160	116.6	Cherry TreeCherry Tree
14	36.0	160	103.0	Cherry TreeCherry Tree
15	36.0	NaN	102.0	NaN
16	41.2	NaN	NaN	Cherry TreeCherry Tree

Atajo

Para usar las operaciones de string en una columna de strings, es posible utilizar la siguiente notación para ahorrar espacio.

```
In [299]:
            df.tipo de arbol.str.upper()
Out[299]:
                  CHERRIE TREE
                    CHERRY TREE
            1
                    CHERRY TREE
            2
            3
                     APPLE TREE
            4
                    CHERRY TREE
            5
                    CHERRY TREE
            6
                   CHERRIE TREE
            7
                    CHERRY TREE
                     APPLE TREE
            8
            9
                    CHERRY TREE
            10
                    CHERRY TREE
            11
                     APPLE TREE
            12
                    CHERRY TREE
            13
                    CHERRY TREE
            14
                    CHERRY TREE
            15
                            NaN
            16
                    CHERRY TREE
            Name: tipo de arbol, dtype: object
```

```
In [300]:
            df.tipo_de_arbol.str.len()
Out[300]:
            0
                   12
                   11
            2
                   11
                   10
             3
                   11
            5
                   11
             6
                   12
                   11
                   10
            8
            9
                   11
                   11
            10
                   10
            11
            12
                   11
            13
                   11
                   11
            14
            15
                  NaN
            16
                   11
            Name: tipo_de_arbol, dtype: float64
```

```
In [301]:
            df.tipo_de_arbol.str[3:-3]
Out[301]:
                  rrie T
            0
            1
                    rry T
            2
                    rry T
            3
                    le T
                    rry T
            4
            5
                    rry T
            6
                   rrie T
            7
                    rry T
            8
                    le T
            9
                    rry T
            10
                    rry T
            11
                    le T
            12
                    rry T
            13
                    rry T
            14
                    rry T
            15
                      NaN
            16
                    rry T
            Name: tipo_de_arbol, dtype: object
```

5.11 Merge

```
In [302]: df1 = pd.read_csv("data/data.csv", sep=";")
    df1
```

Out[302]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75	19.9	Cherrie Tree
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
3	11.4	76	21.4	Apple Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
6	14.0	78	34.5	Cherrie Tree
7	14.2	80	31.7	Cherry Tree
8	NaN	74	36.3	Apple Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
11	17.3	81	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [304]:
             df2 = pd.DataFrame(data={"tipo_de_arbol":["Cherry Tree", "Apple Tree", "Pear Tree"],
                                       "fruto":["guinda", "manzana", "pera"],
                                      "precio_pesos_por_kg":[500, 2000, np.nan]})
             df2
```

fruto precio_pesos_por_kg tipo_de_arbol Out[304]: o guinda 500 Cherry Tree 1 manzana 2000 Apple Tree NaN Pear Tree

pera

In [305]:

df3 = df1.merge(df2, how="left", on="tipo_de_arbol")
df3

Out[305]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.2	75	19.9	Cherrie Tree	NaN	NaN
1	11.3	79	24.2	Cherry Tree	guinda	500
2	11.4	76	21.0	Cherry Tree	guinda	500
3	11.4	76	21.4	Apple Tree	manzana	2000
4	13.7	71	25.7	Cherry Tree	guinda	500
5	13.8	64	24.9	Cherry Tree	guinda	500
6	14.0	78	34.5	Cherrie Tree	NaN	NaN
7	14.2	80	31.7	Cherry Tree	guinda	500
8	NaN	74	36.3	Apple Tree	manzana	2000
9	16.0	72	38.3	Cherry Tree	guinda	500
10	16.3	77	42.6	Cherry Tree	guinda	500
11	17.3	81	55.4	Apple Tree	manzana	2000
12	17.5	NaN	55.7	Cherry Tree	guinda	500
13	17.9	80	58.3	Cherry Tree	guinda	500
14	18.0	80	51.5	Cherry Tree	guinda	500
15	18.0	NaN	51.0	NaN	NaN	NaN
16	20.6	NaN	NaN	Cherry Tree	guinda	500

In [306]:

df3 = df1.merge(df2, how="right", on="tipo_de_arbol")
df3

Out[306]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.3	79	24.2	Cherry Tree	guinda	500
1	11.4	76	21.0	Cherry Tree	guinda	500
2	13.7	71	25.7	Cherry Tree	guinda	500
3	13.8	64	24.9	Cherry Tree	guinda	500
4	14.2	80	31.7	Cherry Tree	guinda	500
5	16.0	72	38.3	Cherry Tree	guinda	500
6	16.3	77	42.6	Cherry Tree	guinda	500
7	17.5	NaN	55.7	Cherry Tree	guinda	500
8	17.9	80	58.3	Cherry Tree	guinda	500
9	18.0	80	51.5	Cherry Tree	guinda	500
10	20.6	NaN	NaN	Cherry Tree	guinda	500
11	11.4	76	21.4	Apple Tree	manzana	2000
12	NaN	74	36.3	Apple Tree	manzana	2000
13	17.3	81	55.4	Apple Tree	manzana	2000
14	NaN	NaN	NaN	Pear Tree	pera	NaN

In [307]:

df3 = df1.merge(df2, how="inner", on="tipo_de_arbol")
df3

Out[307]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.3	79	24.2	Cherry Tree	guinda	500
1	11.4	76	21.0	Cherry Tree	guinda	500
2	13.7	71	25.7	Cherry Tree	guinda	500
3	13.8	64	24.9	Cherry Tree	guinda	500
4	14.2	80	31.7	Cherry Tree	guinda	500
5	16.0	72	38.3	Cherry Tree	guinda	500
6	16.3	77	42.6	Cherry Tree	guinda	500
7	17.5	NaN	55.7	Cherry Tree	guinda	500
8	17.9	80	58.3	Cherry Tree	guinda	500
9	18.0	80	51.5	Cherry Tree	guinda	500
10	20.6	NaN	NaN	Cherry Tree	guinda	500
11	11.4	76	21.4	Apple Tree	manzana	2000
12	NaN	74	36.3	Apple Tree	manzana	2000
13	17.3	81	55.4	Apple Tree	manzana	2000

In [308]:

df3 = df1.merge(df2, how="outer", on="tipo_de_arbol")
df3

Out[308]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.2	75	19.9	Cherrie Tree	NaN	NaN
1	14.0	78	34.5	Cherrie Tree	NaN	NaN
2	11.3	79	24.2	Cherry Tree	guinda	500
3	11.4	76	21.0	Cherry Tree	guinda	500
4	13.7	71	25.7	Cherry Tree	guinda	500
5	13.8	64	24.9	Cherry Tree	guinda	500
6	14.2	80	31.7	Cherry Tree	guinda	500
7	16.0	72	38.3	Cherry Tree	guinda	500
8	16.3	77	42.6	Cherry Tree	guinda	500
9	17.5	NaN	55.7	Cherry Tree	guinda	500
10	17.9	80	58.3	Cherry Tree	guinda	500
11	18.0	80	51.5	Cherry Tree	guinda	500
12	20.6	NaN	NaN	Cherry Tree	guinda	500
13	11.4	76	21.4	Apple Tree	manzana	2000
14	NaN	74	36.3	Apple Tree	manzana	2000
15	17.3	81	55.4	Apple Tree	manzana	2000
16	18.0	NaN	51.0	NaN	NaN	NaN
17	NaN	NaN	NaN	Pear Tree	pera	NaN

Guardando datos

- 1. **csv**
- 2. json
- 3. excel

Lo más importante es tener cuidado de cómo se guardan los nombres de las columnas (header), y el indice (index).

Depende de la utilización, pero mi recomendación es guardar el header explícitamente y guardar el index como una columna.

```
In [311]: # guardar un csv

df = pd.read_csv("data/data.csv", sep=";")

df = df[df.tipo_de_arbol=="Cherry Tree"]

df.to_csv("data/output.csv", sep="|", index=True) # header=True by default

df
```

Out[311]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
7	14.2	80	31.7	Cherry Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

In [312]:

Leer el csv anterior
df2 = pd.read_csv("data/output.csv", sep="|", index_col=0) # get index from first column
df2

Out[312]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
7	14.2	80	31.7	Cherry Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

```
In [313]: %%bash cat data/output.csv | diametro|altura|volume
```

```
|diametro|altura|volumen|tipo_de_arbol
1|11.3|79.0|24.2|Cherry Tree
2|11.4|76.0|21.0|Cherry Tree
4|13.7|71.0|25.7|Cherry Tree
5|13.8|64.0|24.9|Cherry Tree
7|14.2|80.0|31.7|Cherry Tree
9|16.0|72.0|38.3|Cherry Tree
10|16.3|77.0|42.6|Cherry Tree
12|17.5||55.7|Cherry Tree
13|17.9|80.0|58.3|Cherry Tree
14|18.0|80.0|51.5|Cherry Tree
16|20.6|||Cherry Tree
```

```
In [314]: # guardar un json
    df = pd.read_csv("data/data.csv", sep=";")
    df = df[df.tipo_de_arbol=="Cherry Tree"]
    df.to_json("data/output.json")
    df
```

Out[314]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79	24.2	Cherry Tree
2	11.4	76	21.0	Cherry Tree
4	13.7	71	25.7	Cherry Tree
5	13.8	64	24.9	Cherry Tree
7	14.2	80	31.7	Cherry Tree
9	16.0	72	38.3	Cherry Tree
10	16.3	77	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80	58.3	Cherry Tree
14	18.0	80	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

```
In [315]:
```

Leyendo el json anterior
df2 = pd.read_json("data/output.json")
df2

Out[315]:

	altura	diametro	tipo_de_arbol	volumen
1	79	11.3	Cherry Tree	24.2
10	77	16.3	Cherry Tree	42.6
12	NaN	17.5	Cherry Tree	55.7
13	80	17.9	Cherry Tree	58.3
14	80	18.0	Cherry Tree	51.5
16	NaN	20.6	Cherry Tree	NaN
2	76	11.4	Cherry Tree	21.0
4	71	13.7	Cherry Tree	25.7
5	64	13.8	Cherry Tree	24.9
7	80	14.2	Cherry Tree	31.7
9	72	16.0	Cherry Tree	38.3

```
In [316]:
```

%%bash
cat data/output.json

```
{"diametro":{"1":11.3,"2":11.4,"4":13.7,"5":13.8,"7":14.2,"9":16.0,"10":16.3,"12":17.5,"13":17.9,"14":18.0,"16":20.6},"altura":{"1":79.0,"2":76.0,"4":71.0,"5":64.0,"7":80.0,"9":72.0,"10":77.0,"12":null,"13":80.0,"14":80.0,"16":null},"volumen":{"1":24.2,"2":21.0,"4":25.7,"5":24.9,"7":31.7,"9":38.3,"10":42.6,"12":55.7,"13":58.3,"14":51.5,"16":null},"tipo_de_arbol":{"1":"Cherry Tree","2":"Cherry Tree","4":"Cherry Tree","5":"Cherry Tree","7":"Cherry Tree","10":"Cherry Tree","12":"Cherry Tree","13":"Cherry Tree","16":"Cherry Tree","16":"Cherry Tree")}
```

Desafío para la casa

Descargar algún archivo de interés:

- Abrir el archivo.
- Explorar los datos
- Visualizar los datos
- Completar los datos incompletos
- Guardar el archivo

