```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
```

Analysing basic metrics

```
df = pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/06
In [2]:
         df.shape
In [3]:
         (180, 9)
Out[3]:
In [5]:
         df.dtypes
         Product
                            object
Out[5]:
                             int64
         Age
         Gender
                            object
         Education
                             int64
         MaritalStatus
                            object
                             int64
         Usage
         Fitness
                             int64
         Income
                             int64
         Miles
                             int64
         dtype: object
In [6]:
         df.head()
Out[6]:
            Product Age
                          Gender
                                  Education
                                             MaritalStatus Usage Fitness
                                                                          Income
                                                                                  Miles
         0
              KP281
                      18
                             Male
                                         14
                                                               3
                                                                            29562
                                                                                    112
                                                    Single
              KP281
                      19
                             Male
                                         15
                                                    Single
                                                                       3
                                                                            31836
                                                                                     75
         2
              KP281
                      19
                           Female
                                         14
                                                 Partnered
                                                               4
                                                                       3
                                                                            30699
                                                                                     66
         3
              KP281
                      19
                             Male
                                         12
                                                    Single
                                                                       3
                                                                            32973
                                                                                     85
              KP281
                      20
                                         13
                                                 Partnered
                                                               4
                                                                       2
                                                                            35247
                                                                                     47
                             Male
```

Non-Graphical Analysis: Value counts and unique attributes

```
df.isnull().sum()
In [7]:
         Product
Out[7]:
         Age
                           0
         Gender
                           0
         Education
         MaritalStatus
                           0
         Usage
                           0
         Fitness
                           0
         Income
                           0
        Miles
         dtype: int64
         for i in df.columns:
In [8]:
             print(i,':',df[i].nunique())
```

```
Product : 3
         Age : 32
         Gender : 2
         Education: 8
         MaritalStatus : 2
         Usage: 6
         Fitness : 5
         Income: 62
         Miles: 37
In [48]:
         df['Product'].value_counts(normalize=True)
                  0.444444
         KP281
Out[48]:
         KP481
                  0.333333
         KP781
                  0.22222
         Name: Product, dtype: float64
In [61]: def gender_given(Gender, print_marginal=False):
             df1 = pd.crosstab(index=df['Gender'], columns=[df['Product']])
             p_781 = df1['KP781'][Gender]/df1.loc[Gender].sum()
             p_481 = df1['KP481'][Gender]/df1.loc[Gender].sum()
             p_281 = df1['KP281'][Gender]/df1.loc[Gender].sum()
             if print_marginal:
                  print(f"P(Male): {df1.loc['Male'].sum()/len(df):.2f}")
                  print(f"P(Female): {df1.loc['Female'].sum()/len(df):.2f}\n")
                  print(f"P(KP781/{Gender}): {p_781:.2f}")
                  print(f"P(KP481/{Gender}): {p_481:.2f}")
                  print(f"P(KP281/\{Gender\}): \{p_281:.2f\}\n")
         gender_given('Male', True)
         gender_given('Female', True)
         P(Male): 0.58
         P(Female): 0.42
         P(KP781/Male): 0.32
         P(KP481/Male): 0.30
         P(KP281/Male): 0.38
         P(Male): 0.58
         P(Female): 0.42
         P(KP781/Female): 0.09
         P(KP481/Female): 0.38
         P(KP281/Female): 0.53
In [ ]:
```

Visual Analysis - Univariate & Bivariate

```
In [12]: df.describe()
```

Out[12]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

```
In [15]: plt.figure(figsize=(10,5))
sns.boxplot(x=df['Age'])
```

Out[15]: <AxesSubplot:xlabel='Age'>


```
In [16]: plt.figure(figsize=(10,5))
sns.boxplot(data=df, x='Age', y='Gender')
```

Out[16]: <AxesSubplot:xlabel='Age', ylabel='Gender'>


```
In [17]: plt.figure(figsize=(10,5))
    sns.boxplot(data=df, x='Age', y='Gender', hue='MaritalStatus')
```

Out[17]: <AxesSubplot:xlabel='Age', ylabel='Gender'>


```
In [22]: plt.figure(figsize=(10,5))
sns.boxplot(data=df, x='Product', y='Income')
```

Out[22]: <AxesSubplot:xlabel='Product', ylabel='Income'>


```
In [25]: plt.figure(figsize=(10,5))
sns.countplot(data=df, x='Product')
```

Out[25]: <AxesSubplot:xlabel='Product', ylabel='count'>


```
In [29]: plt.figure(figsize=(10,5))
    sns.histplot(data=df, x='Product', hue='Gender', multiple='dodge', shrink=0.8)
    #sns.histplot(data=tips, x="day", hue="sex", multiple="dodge", shrink=.8)
```

Out[29]: <AxesSubplot:xlabel='Product', ylabel='Count'>


```
In [32]: plt.figure(figsize=(10,5))
    sns.histplot(data=df, x='Product', hue='MaritalStatus', multiple='dodge', shrink=0
```

Out[32]: <AxesSubplot:xlabel='Product', ylabel='Count'>


```
In [47]: plt.figure(figsize=(10,5))
    sns.histplot(data=df, x='Product',y = 'Income', hue='MaritalStatus', multiple='dod
Out[47]: <AxesSubplot:xlabel='Product', ylabel='Income'>
```



```
In [37]: plt.figure(figsize=(10,5))
    sns.pairplot(df, hue='Gender')
```

Out[37]: <seaborn.axisgrid.PairGrid at 0x1ffb3857940>


```
In [42]: plt.figure(figsize=(10,5))
    corr_data = df.corr()
    sns.heatmap(corr_data, annot=True)
```

Out[42]: <AxesSubplot:>

Missing Value & Outlier Detection

```
#checking outliers in Age Column
In [45]:
         Age_Q1 = df['Age'].quantile(0.25)
         Age_Q3 = df['Age'].quantile(0.75)
         IQR = Age_Q3 - Age_Q1
         #Defining lower and upper bounds for outliers
         lower = Age Q1 - 1.5*IQR
         upper = Age_Q3 + 1.5*IQR
         #identifying the outliers
         outliers = df[(df['Age'] < lower) | (df['Age'] > upper)]
         #print('Age_Outliers:',outliers)
         print(outliers)
             Product Age Gender Education MaritalStatus Usage Fitness Income
         78
               KP281
                            Male
                                         16
                                                Partnered
                                                               4
                                                                       3
                                                                            56850
                      47
                                                              3
                                                                        3
         79
               KP281
                      50 Female
                                         16
                                                Partnered
                                                                            64809
         139
               KP481
                      48
                            Male
                                         16
                                                Partnered
                                                              2
                                                                        3
                                                                            57987
         178
               KP781
                                                              4
                                                                        5 104581
                      47
                            Male
                                         18
                                                Partnered
         179
               KP781
                      48
                            Male
                                         18
                                                Partnered
                                                                            95508
              Miles
         78
                 94
         79
                 66
         139
                 64
         178
                120
         179
                180
```

Business Insights based on Non-Graphical and Visual Analysis

- 1. From the data we found that most of men are attracted to fitness as compared to women.
- 2. According to MaritalStatus, observed that partnered showed intrested to fitness.
- 3. Most of the people showed interested to purchase KP281 as compared to KP481 and KP781.
- 4. people interested in fitness for the Age below 45, its observed from outliers.

Recommendations

- 1. Most of the people showed interested to product KP781 having advanced features, those having salary > 40000.
- 2. Most of people are having 16 years of education.
- 3. standard deviation for income and miles are high, theae might lead to outliers.

In []:	