

DIFFERENTIAL EVOLUTION (DE)

agungsetiabudi@ub.ac.id

Differential Evolution (DE)

- Differential Evolution adalah algoritma optimisasi stokastik berbasis populasi yang dikembangkan untuk menyelesaikan masalah optimisasi kontinu.
- DE berfokus pada eksplorasi ruang pencarian dengan cara yang berbeda dari algoritma evolusi lainnya, yaitu melalui pemanfaatan perbedaan (differential) antar solusi yang ada dalam populasi.

Keunggulan DE

- Cepat dalam mencapai konvergensi dibandingkan beberapa metode optimasi lainnya.
- Robust terhadap berbagai jenis masalah, baik linier maupun nonlinear.
- Menggunakan parameter tuning yang minimal (hanya tiga parameter utama: ukuran populasi, faktor skala F, dan probabilitas crossover CR).

Langkah-Langkah DE

Differential Evolution bekerja dengan empat langkah utama:

- 1. Inisialisasi Populasi
- 2. Mutasi
- 3. Rekombinasi
- 4. Seleksi

Contoh Permasalahan

Misalkan kita ingin meminimalkan fungsi berikut:

$$f(x,y) = x^2 + y^2$$

Ruang pencarian yang digunakan adalah [-5,5] untuk masing-masing variabel x dan y.

1. Inisialisasi Populasi

 Misalkan kita memilih ukuran populasi (N = 4) dan memulai dengan 4 vektor acak:

$$X_1 = [1.2, -3.4],$$

$$\circ \ X_2 = [-2.1, 1.0],$$

$$X_3 = [0.5, -1.5],$$

$$\circ \ X_4 = [-4.0, 2.3]$$

 Setiap vektor dalam populasi ini adalah solusi kandidat yang akan dievaluasi pada setiap iterasi.


```
def initialize_population(population_size, bounds):
    population = []
    for _ in range(population_size):
        individual = [np.random.uniform(low, high) for (low, high) in bounds]
        population.append(individual)
    return np.array(population)
```


2. Mutasi

• Di tahap mutasi, DE membuat vektor mutasi V_i untuk setiap vektor target X_i dalam populasi. Vektor mutasi diperoleh dengan rumus berikut:

$$0 \circ V_i = X_{r1} + F \cdot (X_{r2} - X_{r3})$$

- di mana:
 - $\circ X_{r1}, X_{r2}$, dan X_{r3} adalah tiga vektor acak yang berbeda dari X_i ,
 - \circ F adalah faktor skala, biasanya dalam rentang [0 1].

2. Mutasi

• Misalkan F=0.8. Untuk menghitung V_1 , misalkan kita memilih:

$$egin{aligned} \circ \ X_{r1} = X_2 = [-2.1, 1.0] \end{aligned}$$

$$\circ \; X_{r2} = X_3 = [0.5, -1.5]$$

$$\circ \; X_{r3} = X_4 = [-4.0, 2.3]$$

2. Mutasi

• Maka, vektor mutasi V_1 dihitung sebagai berikut:

$$egin{array}{lll} \circ & V_1 = X_2 + F \cdot (X_3 - X_4) \ & \circ & = [-2.1, 1.0] + 0.8 \cdot ([0.5, -1.5] - [-4.0, 2.3]) \ & \circ & = [-2.1, 1.0] + 0.8 \cdot [4.5, -3.8] \ & \circ & = [-2.1, 1.0] + [3.6, -3.04] \ & \circ & = [1.5, -2.04] \end{array}$$

• Jadi, vektor mutasi V_1 untuk X_1 adalah [1.5, -2.04].


```
r1, r2, r3 = np.random.choice(indices, 3, replace=False)
mutant_vector = population[r1] + F * (population[r2] - population[r3])
```


3. Rekombinasi (Crossover)

- Langkah berikutnya adalah menghasilkan vektor uji U_i melalui rekombinasi antara vektor target X_i dan vektor mutasi V_i .
- \bullet Crossover dilakukan elemen demi elemen berdasarkan probabilitas crossover CR.
- Misalkan CR=0.9. Untuk menghasilkan U_1 , kita melakukan hal berikut:
 - \circ Jika nilai acak r < CR, elemen dari V_i digunakan.
 - \circ Jika $r \geq CR$, elemen dari X_i digunakan.

3. Rekombinasi (Crossover)

• Misalkan untuk $X_1=[1.2,-3.4]$ dan $V_1=[1.5,-2.04]$, kita mendapatkan nilai acak r=0.8 untuk elemen pertama dan r=0.5 untuk elemen kedua. Karena r< CR untuk kedua elemen, kita mengambil elemen-elemen dari V_1 sepenuhnya:

$$\circ \ U_1 = [1.5, -2.04]$$


```
trial_vector = []
for j in range(len(bounds)):
    if np.random.rand() < CR:
        trial_vector.append(mutant_vector[j])
    else:
        trial_vector.append(population[i][j])
trial_vector = np.array(trial_vector)</pre>
```


4. Seleksi

- Dalam tahap seleksi, kita memilih antara vektor target X_i dan vektor uji U_i untuk dimasukkan ke generasi berikutnya.
- Seleksi dilakukan berdasarkan nilai fungsi objektif, yaitu solusi dengan nilai fungsi objektif yang lebih baik akan dipertahankan.

4. Seleksi

- Misalkan kita ingin meminimalkan $f(x,y) = x^2 + y^2$:
- $f(X_1) = f(1.2, -3.4) = 1.2^2 + (-3.4)^2 = 1.44 + 11.56 = 13.0$
- $f(U_1) = f(1.5, -2.04) = 1.5^2 + (-2.04)^2 = 2.25 + 4.1616 = 6.4116$
- Karena $f(U_1) < f(X_1)$, kita memilih $U_1 = [1.5, -2.04]$ sebagai bagian dari populasi baru.


```
if objective_function(trial_vector) < objective_function(population[i]):
    new_population.append(trial_vector)
else:
    new_population.append(population[i])</pre>
```


Iterasi

• Langkah-langkah ini diulangi untuk semua vektor dalam populasi, dan proses diulangi selama beberapa generasi hingga tercapai kondisi penghentian, seperti jumlah maksimum generasi atau konvergensi solusi.

Contoh Iterasi Singkat

- Misalkan kita melakukan satu iterasi untuk semua vektor di populasi:
 - 1. **Mutasi**: Buat vektor mutasi untuk setiap vektor target X_i .
 - 2. **Rekombinasi**: Buat vektor uji U_i dari kombinasi X_i dan V_i .
 - 3. **Seleksi**: Bandingkan nilai fungsi objektif dari X_i dan U_i , pilih yang lebih baik.
- Dengan terus mengulangi langkah ini, populasi akan bergerak menuju area optimum di ruang pencarian.