

VKBOT智能复合机器人

VKBOT智能复合机器人,是集合了威控公司多年的机器人开发经验,打造的一款针对智能机器人教学及相关应用开发的综合性实践平台,该平台具备高精度SLAM定位导航、机械臂视觉抓取、路径规划、物体识别、语音语义识别、人脸人体追踪等功能,学校教学实训、实验室研究开发、技能竞赛参赛训练的理想平台。

针对移动机器人的基础技术,提供运动控制、机器人操作系统、机器人仿真、智能应用等丰富的多元化实践教学案例

□ 机电系统拆装实践	□ 电机控制实践	□ 运动控制实践
□ 传感器融合实践	□ Gazebo 仿真实践 □	」机器人操作系统 ROS 实
□ 机械臂应用实践	□ SLAM 定位导航实践	□ 路径规划开发实践
□ 语音语义识别实践	□ OpenCV 图像应用实践	□ 深度学习应用实践

底盘 参数	操作系统	Linux Ubuntu 16.04 + R OS kinetic	7
	主控 器	NUC8i7BEH	
	电机模块	伺服轮毂电机	
	轮子	2个主动轮+2个从动轮	
	电池	24V 10AH 锂离子电池	
	运行速度	< 1.0 m/s	
	续航时间	约6个小时	
	越障高度	10 mm	
	爬波能力	< 15 度	
	激光雷达	高精度激光雷达	;
	视觉传感器	鱼眼摄像	
	避障传感器	5路超声波传感器	
	开发工具	显示器+无线鼠标键盘	

机械	关节单元	伺服执行单元4+1
臂参	输入电压	12 V
数	自由度	5 (4 DOF + 1DOF gripper)
	负载	500 g
	工作行程	伸展500mm升降280mm
	重复精度	< 1 mm
	关节速度	46 RPM
	夹持器行程	50 mm
	体积	460 x 460 x1300 mm
结构	万向轮	2寸橡胶轮
参数	驱动轮	6.5寸橡胶轮
	主结构材料	钢板材+铝型材+碳纤维
	载重	50 kg
	自重	40 kg

运动控制器

工控机-----Intel NUC

激光雷达 深度摄像头 超声波

VKBOT开机流程

检查急停开关

旋转开关旋钮

检查电源电压

等待VKBOT启动

系统用户	vkrobot
用户密码	vkrobot
操作系统	Ubuntu 16.04
ROS版本	Kinetic

工程路径/home/vkbot/vkbot_ws

vkbot_driver/kobuki	底盘运动驱动实现
dynamic_reconfigure-kinetic-devel	Realsense深度相机驱动
realsense-ros-development	Realsense深度相机
ydlidar_v1.3.1	激光雷达功能包
vkbot_bringup	启动文件
vkbot_description	vkbot的urdf文件
vkbot_teleop	vkbot键盘控制
darknet_ros	物体识别

vkbot_add_waypoint	多点导航RVIZ插件	
vkbot_follow_waypoints	多点导航功能包	
vkbot_navigation	导航功能包	
vkbot_simulator	仿真功能包	
vkbot_vision	视觉应用相关功能包	
vkbot_voice	语音识别功能包	

机器人的前方为X轴的正方向 机器人的水平左方向为Y轴正方向 机器人的上方为Z轴正方向

坐标系基础

三种运动状态

\$ roslaunch vkbot_bringup minimal.launch

```
vkrobot@vkrobot-desktop:~$ roslaunch vkbot bringup minimal.launch
... logging to /home/vkrobot/.ros/log/628cef94-caf3-11ea-aca9-1c697a621449/roslaunch-vkrobot-desktop-8552.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://vkrobot-desktop:46881/
SUMMARY
PARAMETERS
* /base: kobuki
 * /bumper2pointcloud/pointcloud radius: 0.24
* /cmd vel mux/yaml cfg file: /home/vkrobot/vkb...
 * /diagnostic aggregator/analyzers/input ports/contains: ['Digital Input',...
 * /diagnostic aggregator/analyzers/input ports/path: Input Ports
* /diagnostic aggregator/analyzers/input ports/remove prefix: mobile base nodel...
 * /diagnostic aggregator/analyzers/input ports/timeout: 5.0
* /diagnostic aggregator/analyzers/input ports/type: diagnostic aggreg...
 * /diagnostic aggregator/analyzers/kobuki/contains: ['Watchdog', 'Mot...
 * /diagnostic aggregator/analyzers/kobuki/path: Kobuki
 * /diagnostic aggregator/analyzers/kobuki/remove prefix: mobile base nodel...
 * /diagnostic aggregator/analyzers/kobuki/timeout: 5.0
* /diagnostic aggregator/analyzers/kobuki/type: diagnostic aggreg...
 * /diagnostic aggregator/analyzers/power/contains: ['Battery', 'Lapt...
* /diagnostic aggregator/analyzers/power/path: Power System
 * /diagnostic aggregator/analyzers/power/remove prefix: mobile base nodel...
 * /diagnostic aggregator/analyzers/power/timeout: 5.0
 * /diagnostic aggregator/analyzers/power/type: diagnostic aggreg...
 * /diagnostic aggregator/analyzers/sensors/contains: ['Cliff Sensor', ...
* /diagnostic aggregator/analyzers/sensors/path: Sensors
 * /diagnostic aggregator/analyzers/sensors/remove prefix: mobile base nodel...
* /diagnostic aggregator/analyzers/sensors/timeout: 5.0
```


\$ roslaunch vkbot_teleop keyboard_teleop.launch

```
vkrobot@vkrobot-desktop:~$ roslaunch vkbot teleop keyboard teleop.launch
... logging to /home/vkrobot/.ros/log/628cef94-caf3-1lea-aca9-1c697a621449/roslaunch-vkrobot-desktop-9337.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://vkrobot-desktop:45743/
SUMMARY
_____
PARAMETERS
 * /rosdistro: kinetic
 * /rosversion: 1.12.14
 * /vkbot teleop keyboard/scale angular: 0.1
 * /vkbot teleop keyboard/scale linear: 0.5
NODES
   vkbot_teleop_keyboard (vkbot_teleop_key)
ROS MASTER_URI=http://localhost:11311
process[vkbot teleop keyboard-1]: started with pid [9376]
Control Your vkbot!
Moving around:
q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop
anything else : stop smoothly
CTRL-C to quit
currently:
                speed 0.35
                                turn 0.8
```


VKBOT移动

启动键盘操纵

SLAM

SLAM(Simultaneous Localization and Mapping,同步定位与建图)SLAM问题可以描述为: 机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和地图进行自身定位,同时在自身定位的基础上建造增量式地图,实现机器人的自主定位

和导航。

地图

大致可分为三类: 栅格表示、几何信息表示和拓扑图表示。

栅格地图表示法即将整个环境分为若干相同大小的栅格,对于每个栅格各指出其中是否存在障碍物。它的优点在于创建和维护容易,尽量的保留了整个环境的各种信息,可以方便地进行自定位和路径规划。缺点在于: 当栅格数量增大时对地图的维护行为将变得困难,同时定位过程中搜索空间很大,如果没有较好的简化算法,实现实时应用比较困难。

地图

SLAM算法

TF: 坐标关系

Scan: 激光雷达数据

map: 地图数据

SLAM----Gmapping功能包

gmapping功能包集成了Rao-Blackwellized粒子滤波算法,为开发者隐去了复杂的内部实现。gmapping功能包订阅机器人的深度信息、IMU信息和里程计信息,同时完成一些必要参数的配置,即可创建完成基于概率的二维栅格地图。gmapping功能包基于openslam社区的开源SLAM算法。

安装

\$ sudo apt-get install ros-kinetic-slam-gmapping

SLAM----Gmapping功能包

参数	类型	默认值	描述
~throttle_scans	int	1	每接收到该数量的激光数据后
			只处理其中一帧数据
~base_frame	string	base_link	机器人坐标系
~map_frame	string	map	地图坐标系
~odom_frame	string	odom	里程计坐标系
~map_update_inte	float	5.0	地图更新频率
rval			
~maxUragne	float	80.0	激光可探测最大距离
~sigma	float	0.05	端点匹配的标准差
~kernelSize	int	1	对应的内核进行查找
~lstep	float	0.05	平移过程中的优化步长
~astep	float	0.05	旋转过程中的优化步长

~iterations	int	5	扫描匹配迭代次数
~lsigma	float	0.075	似然计算的激光标准差
~ogain	float	3.0	似然计算用于平滑重采样效果
~lskip	int	0	每次扫描跳过的光束数
~minimumScore	float	0.0	扫描匹配结果的最低值
~srr	Float	0.1	平移函数, 平移时的里程误差
~srt	float	0.2	旋转函数,平移时的里程误差
~str	float	0.1	平移函数, 旋转时的里程误差
~stt	float	0.2	旋转函数,旋转时的里程误差
~linearUpdate	float	1.0	机器人每平移该距离处理一次
			激光
~angularUpdate	float	0.5	机器人每旋转该弧度处理一次
			激光
~temporalUpdate	float	-1.0	小于零关闭基于时间的更新
~resampleThresho	float	0.5	基于Neff的重采样阈值
Id			

~particles	int	30	滤波器中的粒子数
~xmin	int	-100.0	地图x最小尺寸
~ymin	int	-100.0	地图y最小尺寸
~xmax	int	100.0	地图x最大尺寸
~ymax	int	100.0	地图y最大尺寸
~delta	float	0.05	地图分辨率
~llsamplerange	float	0.01	似然计算的平移采样距离
~llsamplestep	float	0.01	似然计算的平移采样步长
~lasamplerange	float	0.005	似然计算的角度采样距离
~lasamplestep	float	0.005	似然计算的角度采样步长
~transform_publil	float	0.05	TF变换发布的时间间隔
sh_period			
~occ_thresh	float	0.25	栅格地图占用率阈值
~maxRange	float	-	传感器最大范围

\$ roslaunch vkbot_navigation vkbot_gmapping_rviz_demo.launch

```
vkrobot@vkrobot-desktop:~$ roslaunch vkbot navigation vkbot gmapping rviz demo.launch
... logging to /home/vkrobot/.ros/log/19d1de4e-caf4-11ea-aca9-1c697a621449/roslaunch-vkrobot-desktop-9838.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://vkrobot-desktop:34777/
SUMMARY
_____
PARAMETERS
* /base: kobuki
 * /bumper2pointcloud/pointcloud radius: 0.24
 * /cmd vel mux/yaml cfg file: /home/vkrobot/vkb...
* /diagnostic aggregator/analyzers/input ports/contains: ['Digital Input',...
 * /diagnostic aggregator/analyzers/input ports/path: Input Ports
 * /diagnostic aggregator/analyzers/input ports/remove prefix: mobile base nodel...
* /diagnostic aggregator/analyzers/input ports/timeout: 5.0
* /diagnostic aggregator/analyzers/input ports/type: diagnostic aggreg...
 * /diagnostic aggregator/analyzers/kobuki/contains: ['Watchdog', 'Mot...
* /diagnostic aggregator/analyzers/kobuki/path: Kobuki
 * /diagnostic aggregator/analyzers/kobuki/remove prefix: mobile base nodel...
 * /diagnostic aggregator/analyzers/kobuki/timeout: 5.0
* /diagnostic aggregator/analyzers/kobuki/type: diagnostic aggreg...
* /diagnostic aggregator/analyzers/power/contains: ['Battery', 'Lapt...
 * /diagnostic aggregator/analyzers/power/path: Power System
* /diagnostic aggregator/analyzers/power/remove prefix: mobile base nodel...
* /diagnostic aggregator/analyzers/power/timeout: 5.0
 * /diagnostic aggregator/analyzers/power/type: diagnostic aggreg...
* /diagnostic aggregator/analyzers/sensors/contains: ['Cliff Sensor', ...
 * /diagnostic aggregator/analyzers/sensors/path: Sensors
 * /diagnostic aggregator/analyzers/sensors/remove prefix: mobile base nodel...
* /diagnostic aggregator/analyzers/sensors/timeout: 5.0
* /diagnostic aggregator/analyzers/sensors/type: diagnostic aggreg...
 * /diagnostic aggregator/base path:
 * /diagnostic aggregator/pub rate: 1.0
```


\$ roslaunch vkbot_teleop keyboard_teleop.launch


```
$ roscd vkbot_navigation←
$ · cd · maps←
$ rosrun map_server map_saver -f vk_test_2←
 vkrobot@vkrobot-desktop:~$ cd vkbot ws/src/vkbot/vkbot apps/vkbot navigation/maps/
 vkrobot@vkrobot-desktop:~/vkbot ws/src/vkbot/vkbot apps/vkbot navigation/maps$ rosrun map server map saver -f vk te
 st 2
  [ INFO] [1595312136.577260847]: Waiting for the map
  [ INFO] [1595312136.852730225]: Received a 608 X 576 map @ 0.050 m/pix
   INFO] [1595312136.852752955]: Writing map occupancy data to vk_test_2.pgm
   INFO] [1595312136.858657783]: Writing map occupancy data to vk_test_2.yaml
  [ INFO] [1595312136.858734413]: Done
 vkrobot@vkrobot-desktop:~/vkbot_ws/src/vkbot/vkbot_apps/vkbot_navigation/maps$
```

图 保存地图

导航技术

导航技术是移动机器人的一项核心技术之一,它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动。目前,移动机器人主要的导航方式包括:磁导航、惯性导航、视觉导航等。

\$ roslaunch vkbot_navigation vkbot_navigation_teb__rviz_test_demo.launch

```
<!-- Map server -->
<arg name="map_file" default="$(find vkbot_navigation)/maps/vk_test_2.yaml" />
<node name="map_server" pkg="map_server" type="map_server" args="$(arg map_file)" />
<!-- AMCL -->
<arg name="custom_amcl_launch_file" default="$(find vkbot_navigation)/launch/includes/amcl/amcl.launch.xml"/>
<arg name="initial pose x" default="0.0"/> <!-- Use 17.0 for willow's map in simulation -->
<arg name="initial pose y" default="0.0"/> <!-- Use 17.0 for willow's map in simulation -->
<arg name="initial pose a" default="0.0"/>
<include file="$(arg custom_amcl_launch_file)">
  <arg name="initial pose x" value="$(arg initial pose x)"/>
  <arg name="initial pose y" value="$(arg initial pose y)"/>
  <arg name="initial_pose a" value="$(arg initial pose a)"/>s
</include>
```


\$ roslaunch vkbot_navigation vkbot_navigation_teb__rviz_test_demo.launch

估计初始位姿

- 点击2D Pose Estimate按钮。
- 单击地图中VKBOT所在的近似点,然后拖动光标以指示VKBOT面向的方向。 或者可以选择在刚开始的时候,就把VKBOT移动到构建地图的起始位姿上。使得VKBOT在Rviz所显示的位置正确

发送导航目标

- 点击2D Nav Goal按钮。
- 单击地图中的特定点以设置目标位置,然后将光标拖到VKBOT最终应面向的方向
- 机器人将根据地图规划一条路径,以避开通往目的地的障碍。然后,机器人沿着路径移动。此时,即使突然检测到障碍物,机器人也会避开障碍物到达目标点。

3. 导航

多点导航技术要求

- (1) PYTHON编程基础
- (2) 机器人操作系统基础
- (3) 导航功能包move_base
- (4) 动作通信机制
- (5) 机器人坐标变换
- (6) 坐标变换功能包TF

```
1 #!/usr/bin/env python
 2 import rospy
 3 import actionlib
 4 from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
 5 from actionlib msgs.msg import GoalStatus
 6 #GOalStatus SUCCEEDED=3
   import tf
 8
   waypoints=
       [(3.5,2.5,0.0),(0.0,0.0,1.57)],
10
11
       [(3.5, -2.5, 0.0), (0.0, 0.0, 3.14)]
12
13
14
```

PYTHON多点导航脚本

- (1) 导入需要的模块rospy等
- (2) 定义导航点列表

3. 导航

坐标转换函数

导航点格式

位置: x, y,z 单位: 米

欧拉角: x,y,z 单位: 弧度

导航目标: 四元数

节点关闭函数

日志记录

取消上一次的目标

```
def goal_pose(pose):
16
       goal = MoveBaseGoal()
17
       goal.target_pose.header.frame_id="map"
       goal.target_pose.pose.position.x = pose[0][0]
18
19
       goal.target_pose.pose.position.y = pose[0][1]
20
       goal.target_pose.pose.position.z = pose[0][2]
21
22
       x, y, z, w = tf.transformations.quaternion_from_euler\
           (pose[1][0],pose[1][1],pose[1][2])
23
24
25
       goal.target pose.pose.orientation.x = x
26
       goal.target_pose.pose.orientation.y = y
       goal.target_pose.pose.orientation.z = z
27
       goal.target_pose.pose.orientation.w = w
28
29
       return goal
31 ~ def shutdown():
32
        rospy.loginfo('stop the robot')
33
        if sendGoal is True:
34
             client.cancel_goal()
35
        rospy.sleep(2.0)
36
```


3. 导航

主函数

注册节点 注册节点关闭函数

注册导航动作客户端

定义导航目标

发送导航目标

等待导航完成

日志记录

```
37 vif name ==' main ':
38
       rospy.init node("test nav")
       rospy.on_shutdown(shutdown)
39
       client = actionlib.SimpleActionClient('move_base', \
40 ~
           MoveBaseAction)
41
       sendGoal = False
42
43
       client.wait for server()
       while not rospy.is shutdown():
44 ~
45 ~
            for pose in waypoints:
46
                rospy.loginfo('start')
                goal = goal_pose(pose)
47
                client.send goal(goal)
48
                sendGoal=True
49
                isOnTime = client.wait for result(rospy.Duration(300))
50
                if not isOnTime:
51 ~
52
                    rospy.loginfo('TimeOut')
                state = client.get state()
53
54 ~
                if state == GoalStatus.SUCCEEDED:
55
                    rospy.loginfo('well done')
56
                sendGoal=False
57
                rospy.sleep(5.0)
58
```