TOSHIBA

Leading Innovation >>>>

Toshiba UFS Memory Overview for LGMC

in Seoul, Korea Oct. 22nd 2015

Memory Application Engineering Dept. I
Memory Division
Semiconductor & Storage Products Company
Toshiba Corporation

e-MMCTM is a trademark and a product category for a class of embedded memory products built to the joint JEDEC/MultiMediaCard Association (MMCA) MMC Standard specification.

© 2015 Toshiba Corporation

Agenda

- Comparison : UFS vs. e-MMC
- > UFS Specific feature : UME (Unified Memory Extension)
- > Toshiba UFS latest roadmap

Toshiba's Current Portfolio

e-MMC is a DeFact Standard Memory for Mobile Applications such as Smartphone and Tablet. UFS is a successor of e-MMC.

1Gb 2Gb 4Gb 1GB 2GB 4GB 8GB **16GB 32GB** 256GB **64GB 128GB SLC NAND TSOP** 63FBGA 132BGA **BENAND** NAND I/F 63FBGA **Embedded type** on die ECC engine **TSOP Smart NAND** Controller embedded / pseudo SLC partition supporte **TSOP 153FBGA** e-MMC **HS-MMC I/F** (169FBGA) Controller embedded / pseudo SLC partition supported 153FBGA **UFS UFS I/F** (169FBGA) Controller embedded / pseudo SLC partition suppo Next Gen. **BGA** type or ... I/F **SSD** Removable type SATA I/F Controller embedded SD Card / microSD Card SD I/F Controller embedded **USB Memory** 64GB TOSHIBA **USB I/F** Controller embedded

JEDEC / MIPI standardization schedule

Toshiba has essential IP's (M-PHY, UniPro, NAND, Controller) for UFS development. We will expand and lead UFS memory market with these.

Toshiba's strategy

e-MMC : Keep supporting the customers, but no huge investment anymore.

UFS: Focusing on UFS development and following JEDEC standard and market.

New feature list for each standard ver.

Toshiba has essential IP's (M-PHY, UniPro, NAND, Controller) for UFS development. And move the development resource to UFS step-by-step.

	e-MMC										
Ver.	5.0/5.01	5.1	5.2								
Standard	JESD84-B50 / 50.1	JESD84-B51	tbd								
Publication	Sep.'13 / Jul.'14 (Done)	Feb.'15	3Q'16(Not fixed yet)								
Main New feature on consensus list	HS400 & Adding DS pin Product State Awareness Device Health Report Field FW update etc.	Command Queuing (Optional) Cache barrier RPMB Throughput Improvement(8KB) Enhanced Strobe at HS400 etc.	tbd Companies don't like to introduce the items which causes HW changes.								
Main Proposal Under discussion	n/a	No other Proposal (Fixed in Dec.'14 Committee meeting)	I/F improvement(HS533/HS667) Inline encryption(HCI) CQ improvement(HCI) HS400 tuning								

		UFS						
Ver.	1.0/1.1	2.0	2.1	х.х				
Stdndard JESD220 / 220A		JESD220B	tbd	tbd				
Publication	Feb.'11 / Jun.'12 (done)	Sep.'13 (done)	Mar.'16(tbd)	Sep'17(tbd)				
Main New feature on consensus list	Initial ver. HS-G2 Single-lane support M-PHY2.0 / UniPro1.41	HS-G3 support Multi-lane support M-PHY3.0 / UniPro1.6 Power-Up/down sequence etc.	Editorial change Minor change	UFS Lite - Remove LCC feature - Remove PWM-G2-4 - Relax the timing, etc, UFS Card				
Main Proposal Under discussion	n/a	n/a	Inline encryption(HCI) Multiple LU(8->32) etc.	HS-G4Bx2 New topology etc.				

Memory I/F Trend on Mobile Application * Toshiba estimation TOSHIBA

UFS memory will be applied to High-tier smartphone in 2015. After that in Mid/Low-tier area, UFS will replace e-MMC memory step-by-step in 2016 or later.

Application	os	Mem	ory	2015	2016	2017		
High-tier Smartphone	Android Windows		I/F	e-MMC V5.1	V5.1	V5.x		
Smartphone	BlackBerry	Storage		UFS V2.0	V2.0/2.1	V2.1		
			Density	16GB-128GB	32GB-128GB	64GB-256GB		
	Remov		Card	SD2.0 / 3.0 / 4.0 (UHS)	SD2.0 / 3.0 / 4.0 (UHS)	SD3.0 / 4.0 (UHS)		
		DRAM		LPDDR3 / LPDDR4	LPDDR3 / LPDDR4	LPDDR4		
Mid-tier Smartphone	Android Windows		I/F	e-MMC V5.1	V5.1	V5.x		
	BlackBerry	Storage		UFS	V2.0/2.1	V2.1		
			Density	8GB-32GB	16GB-64GB	32GB-128GB		
		Removable	Card	SD2.0 / 3.0 / 4.0 (UHS)	SD2.0 / 3.0 / 4.0 (UHS)	SD3.0 / 4.0 (UHS)		
		DRAM		LPDDR3 / LPDDR4	LPDDR3 / LPDDR4	LPDDR4		
Low-tier smartphone	Android Windows	C:	I/F	e-MMC V5.0/5.1	V5.1	V5.x		
	BlackBerry	Storage		UFS		V2.1		
			Density	4-16GB	8-32GB	16GB-64GB		
		Removable	Card	SD2.0 / 3.0 / 4.0 (UHS)	SD2.0 / 3.0 / 4.0 (UHS)	SD3.0 / 4.0 (UHS)		
		DRAM		LPDDR3	LPDDR3	LPDDR3/LPDDR4		
2-in-1 PC Tablet	Android Windows			e-MMC V5.1	V5.1	V5.x		
lablet	windows	Storage	I/F	UFS	V2.0/2.1	V2.1		
			Density	16-128GB	32-256GB	64GB-256GB		
		Removable	Card	SD2.0 / 3.0 / 4.0 (UHS)	SD2.0 / 3.0 / 4.0 (UHS)	SD3.0 / 4.0 (UHS)		
		DRAM		LPDDR3 / LPDDR4	LPDDR4 / DDR4?	LPDDR4 / DDR4?		

Comparison: UFS vs. e-MMC(1)

Embedded controller solution can provide better Raw NAND Management.

Comparison: UFS vs. e-MMC(2)

e-MMC features Parallel I/F which has a restriction for further performance improvement beyond HS400(400bps). Meanwhile, UFS features high-speed serial I/F which maintains a performance scalability to extend in the future.

		e-MMC	UFS						
	Year	Since 2007	Market adoption started in 2015						
1.75	Architecture	MMC I/F (Bus, Parallel I/F) Host e-MMC	UFS I/F (Serial I/F) Tx Host UFS						
I/F	Speed	400Mbps (=400MB/s, Ver.5.0) *Restricted for further improvement	5.8Gbps x 2 Lanes (=1160MB/s, Ver.2.0)						
	Pin count	11 (8 I/O and 3 control)	6 (4 I/O and 2 control) or 10 (in case of 2 lanes)						
	Signal amp.	1.8V or 1.2V	400mVp-p						
	Duplex	Half (In serial to send and/or receive the data)	Full (Simultaneously to send and receive the data.)						
Command Queue		Supported from Ver.5.1	Support						
Co	ommand Set	ММС	SCSI						

The state of the s

Comparison: UFS vs. e-MMC(3) Data transfer

Comparison: UFS vs. e-MMC(4) LU/Partition

LU 6 (e.g. Boot LU B) Well-known LU **Boot LU (W-LUN)** (Boot LU A or B is mapped) **RPMB LU** Well-known LU (Fixed size)

*Each configurable partition and LU can be set as enhanced memory

September 19 19 19

Configurable LUs

(Max 8 Logical Units: Max 2

LUs can be set as Boot LU)

Comparison: UFS vs. e-MMC(5) Protocol-1

Multi task on UFS memory

UFS can make the difference on Multi Task access from the host.

Sc	С	UFS	e-MMC			
Multi Core SoC & Issue multiple command		Multi task will be executed in parallel.	Handled by sequential.			
Command(CMD) Queue	Add Task No./ID to each command	Task reorder will be implemented.	There are only simple rule for Task reorder.			
Simultaneous NAND Access	Reduce idle time on SoC side	Intelligent memory controller can simultaneously access to each NAND Flash.	Access will sequentially happen to each NAND Flash.			

eMMC (Half duplex and Packed CMD)

Comparison: UFS vs. e-MMC(6) Protocol-2

e-MMC (Legacy)

: Push-car type

- > Luggage have to be carried one by one.
- > 2nd luggage cannot be carried until push car comes back.

e-MMC (Packed Command): Truck type

- Many luggage can be delivered at once.
- Efficiency is not so good.
- > Only same kind of luggage can be delivered.
- > 2nd batch cannot be carried until truck returns.

UFS (Command Queuing): Belt-conveyor type

- Many luggage can be delivered at once.
- Operator just can put on the belt.
- There are 2 belts (i.e. Receiver and Transfer lane)
 (Only 1 belt can be used in the case of e-MMC.)
- Many operators can simultaneously work (i.e. Multi Task)

Package signal assignment (Top view)

Toshiba Gen.3 UFS2.0 pin out & debugging pin

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	NC	NC	VDDiQ	vccq	vccq	VCCQ2	VCCQ2	VDDiQ2	VDDi	CPOUT1	C-	C+	NC	NC
В	NC	VSS	RFU	vccQ	vccq	VCCQ2	VCCQ2	vcc	vcc	CPOUT2	VSS	VSS	RFU	NC
С	vss	vss	VSS	vccq	vccq	VCCQ2	VCCQ2	vcc	vcc	RFU	VSS	vss	RFU	RFU
D	DIN1 _t	DIN1 _c	VSS	Index								vss	vss	VSS
E	VSS	VSS	VSS		vccq	VSF1	VSF2	vcc	VSF3	VSF4		vss	RFU	RFU
F	DIN0 _t	DIN0 _c	VSS		vccq					VSF5		vss	vss	VSS
G	vss	vss	vss		VSF6		Debug S 8p	ignal pin oin		vss		VSS	RFU	RFU
н	REF _CLK	RST _n	vss		vss			/i		vss		VSS	vss	vss
J	vss	vss	vss		vss		op v	/iew		VSF7		vss	RFU	RFU
К	DOUT0 _c	DOUT0 _t	vss		vss	VCCQ2	VCCQ2	vcc	NC	VSF8		vss	vss	vss
L	vss	vss	vss									vss	RFU	RFU
М	DOUT1 _c	DOUT1 _t	VSS	VSS	vss	RFU	RFU	NC	NC	RFU	NC	vss	vss	vss
N	NC	vss	vss	vss	vss	RFU	RFU	vcc	vcc	RFU	vss	vss	RFU	NC
. Р	NC	NC	RFU	VSS	vss	RFU	RFU	vcc	vcc	VSF9	VSS	VSS	NC	NC

Toshiba Gen.4 UFS2.0 pin out & debugging pin

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	NC	NC	VDDiQ	vccq	vccQ	VCCQ2	VCCQ2	VDDiQ2	VDDi	CPOUT1	C-	C+	NC	NC
В	NC	vss	RFU	vccq	vccQ	VCCQ2	VCCQ2	vcc	vcc	CPOUT2	vss	VSS	RFU	NC
С	vss	vss	vss	vccq	vccq	VCCQ2	VCCQ2	vcc	vcc	RFU	vss	vss	RFU	RFU
D	DIN1 _t	DIN1 _c	vss	Index								vss	vss	vss
E	vss	vss	vss		vccq	VSF1	VSF2	vcc	VSF3	VSF4		vss	RFU	RFU
F	DIN0 _t	DIN0 _c	vss		vccq					VSF5		vss	vss	vss
G	vss	vss	vss		VSF6		Debug S 2p	ignal pin pin		vss		vss	RFU	RFU
н	REF _CLK	RST _n	vss		VSS			li ou		vss		VSS	vss	vss
J	vss	vss	vss		VSS		op \	riew		VSF7		VSS	RFU	RFU
К	DOUT0 _c	DOUT0 _t	vss		vss	VCCQ2	VCCQ2	vcc	NC	VSF8		vss	vss	vss
L	vss	vss	vss									vss	RFU	RFU
М	DOUT1 _c	DOUT1 _t	vss	vss	vss	RFU	RFU	NC	NC	RFU	NC	vss	vss	vss
N	NC	vss	vss	VSS	VSS	RFU	RFU	vcc	vcc	RFU	vss	VSS	RFU	NC
. Р	NC	NC	RFU	VSS	VSS	RFU	RFU	vcc	vcc	VSF9	vss	VSS	NC	NC

Recommended System Design

e-MMC 1.8/3.3V SoC e-MMC T R_{RST} RST n *2 200MHz (HS400) CLK $R_{\underline{CMD}}$ **CMD** R_{DAT} **DAT0** *1 ${\color{red}\overline{\bf 1}}\, R_{\rm DAT}$ DAT7 *1 DS *3 R_{DS} **PMIC** 3.3V VCC 1.8V/3.3V **VCCQ VDDiQ** VSS/VSSQ Unused pins treatment

RFU

NC

UFS 1.2V R_{RST} SoC **UFS** RST n RST n* 19.2M/26M/38.4M/52MHz 1.2V amplitude **REF CLK*** REF_CLI is required. **Default setting** Differential signal pair (Isometric wiring) DOUT0/1 t *1 DOUT0/1 c *1 4pin for 1lane Differential signal pair 8pin for 2lane (Isometric wiring) DIN0/1 t *1 DIN0/1 c *1 **PMIC** VCC 3.3V 1.8V VCCQ2 **VCCQ** 1.2V VDDiQ2 VSS Unused pins treatment VDDi NC VSFn/RFU NC(=Floating)

C+/C-

CPOUT1/2

VDDiO

NC

NC

NC or GND

NC or GND

NC

NC or GND

NC or GND

^{*2:} RST_n might be NC or connected to GND when it is not used. DAT4 - DAT7 should be NC in 4 bit mode.

^{*3:} DS should be left floating in case of not using HS400.

^{*1:} If some of DINn_t/c or DOUTn_t/c are not used, the DINn_t/c is recommended to be connected to GND and DOUTn_t/c is recommended to be left floating.

^{*2 :} Optional feature. Some host would like not to use it because Power-on write protection will be released with this.

^{*3 :} Mandate feature. REF_CLK shall always be required when the device is in HS-mode.

Block diagram : Toshiba 15nm UFS

Toshiba "Gen.3" UFS Ver.2.0, 3 power rail

Pin name	VDDiQ2
Apply to	M-PHY
Typical	2.2uF
min.	0.7uF
max.	2.4uF

PMIC for	Required Max. current
VCC (3.3V)	750mA
VCCQ2 (1.8V)	450mA
VCCQ (1.2V)	450mA

Toshiba "Gen.4" UFS Ver.2.0, 2 power rail

Pin name	VDDiQ2
Apply to	M-PHY
Typical	2.2uF
min.	0.7uF
max.	2.4uF

PMIC for	Required Max. current
VCC (3.3V)	600mA
VCCQ2 (1.8V)	700mA
VCCQ (1.2V)	N/A

Please prepare the suitable VDDiQ2(Cap.) and LDO (PMIC) accordingly

UFS protocol layer structure

UFS adopts protocol stack architecture like OSI reference model

- Layer 1: M-PHYSM, which is defined by MIPI
- Layer 1.5-4: UniProSM, which is defined by MIPI
- Layer 5-7: UFS, which is defined by JEDEC

UFS specification defines 3 command types

Basic command (SCSI only in v2.0): Handled by UCS (Read/Write, etc.)

Task Management Request: Handled by Task Manager (abort/cancel task, etc.)

Query Request: Handled by Device Manager (access to descriptor, etc.)

Host/Device Connection image

- Both host and device have same protocol stack under UFS layer
- Host application accesses to device through UFS Host Controller Interface (UFS HCI)
 - UFS HCI is also standardized by JEDEC

UFS data flow image in host controller

Toshiba UFS Ver.2.0 memory roadmap

Note: This roadmap is subject to change without notice

TOSHIBA

Leading Innovation >>>

Toshiba UFS Performance data

This data is subject to change without notice.

										IIIS date	i is subj	ject to t	manige	withou	i ilotice.	
UFS Ver.							Ver	·.2.0				Ver.2.	0(2.1)			
Power mode										HS-	G3B					
Controller Gener	ation						Ge	n.3				Ge	n.4			
NAND Chip							15nm	64Gb		15nm	64Gb		15nm	128Gb	ib	
Density & Interle	eave					32GB ((4-Int.)	64GB ((8-Int.)	32GB ((4-Int.)	64GB	(4-Int.)	128GB	(4-Int.)	
Package (BGA)	Note						L3x1.0		13x1.2		<u>, , , , , , , , , , , , , , , , , , , </u>	11.5x1	<u> </u>		, ,	
CS schedule						No			ow	12	2/E		2/E	11/E	(CSO)	
# of lane						1	2	1	2	1	2	1	2	1	2	
# Of faile				Poad		470	520	470	520	525	610	525	610	525	610	
			512KB chunk		Normal	135	135	165	170	153	153	153	153	153	153	
	Seguential	OD:2	JIZKO CHUHK	Write	Enhanced	180	180	180	180	285	285	285	285	285	285	
				Read		440	480	440	480	520	610	520	610	520	610	
Performance			256KB chunk		Normal	90	100	110	120	150	150	150	150	150	150	
			- CHAIR	Write	Enhanced	150	160	150	160	285	285	285	285	285	285	
Ra	D d			Read		23K	23K	30K	30K	25K	25K	25K	25K	25K	25K	
		QD:8	4KB chunk	\	Cache-on	7.0K	7.0K	7.2K	7.2K	15K	15K	15K	15K	15K	15K	
	[IOps]			vvrite	Cache-off	4.0K	4.0K	4.0K	4.0K	2.3K	2.3K	2.3K	2.3K	2.3K	2.3K	
A						165	180	155	170	-	-	-	-	-	-	
Average	Read	400MB	chunk			130	175	150	200	325	380	325	380	335	395	
Current/Power	ricad	CHUIK				75	80	75	85	70	80	70	80	70	80	
V00 2.2V						680	800	710	850	820	950	820	950	840	980	
VCC = 3.3V VCCQ = 1.2V						130	135	135	140	-	-	-	-	-	-	
VCCQ2= 1.8V	Write	400MB cl	hunk			60	95	75	110	220	280	220	280	230	300	
Ta = RT						100	100	155	155	105	105	120	120	120	120	
						600	670	810	880	750	860	800	900	810	940	
Idle Current / Po	wer (Typic	cal), Recov	very=2ms			42	<u>20</u> .0	1	20 50	2,	- 40	24	- 	20	- : E	
							0		60		±05	8		10		
VCCQ2=1.8V, Ta	= RT						8 4		12	0.		0.		1.		
						42			20	<u> </u>	, 	<u> </u>	<i>, </i>	-		
		oical), Rec	overy=20ms				0	†	<u> </u>	23	30	23	 RN	24	10	
))	+	, 0)	(ļ)	
VCCQ2=1.8V, Ta	= RT					0.		0.		0.	~	0.		0.		
				TOWEI	[IIIIVV]	0.		indow	<i>J1</i>	0.	·-	5us w		0.	13	
Peak Current (Ty	pical)			IccQ	[mA]	305	320	295	310	-	-	-	-	-	-	
VCC = 3.6V, VCC				IccQ2	[mA]	180	215	205	240	400	450	400	450	400	450	
VCCQ2 = 1.95V, Ta	= RT			Icc	[mA]	315	325	465	465	350	360	400	400	480	500	
							5us w	indow				5us w	indow			
PeakCurrent Wo	rst (Worst))		IccQ	[mA]	405	420	400	410	-	-	-	-	-	-	
VCC = 3.6V, VCCC				IccQ2	[mA]	190	225	215	250	600	650	600	650	600	650	
VCCQ2= 1.95V, Ta	= HT			Icc	[mA]	370	373	530	550	450	460	500	500	560	570	

32GB e-MMC/UFS Performance/Power (incl. Target value) TOSHIBA

e-MMC Ver.5.1: HS400 mode UFS Ver.2.0 : HS-G3Bx1lane

Random performance

Power consumption

This information is subject to change w/o notice.

The state of the s

e·MMCTM Roadmap

 $e \cdot MMC^{TM}$ **Supreme**

 $e \cdot \mathsf{MMC^{TM}}$ **Premium** NAND Gen. Package Size CS Schedule

Seq.W [MB/s] M1CCL02-082 Oct., 2015 **TOSHIBA**

V5.1 V5.1 with CQ

Supreme+: Exclusively for 15nm 64GB (64Gb) device only 4GB: V5.0 devices

: This roadmap is subject to change without notice. Note

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT
 ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL
 DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS
 ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA

Leading Innovation