Analysis I: Homework 8 and 9 Corrections

Thomas Fleming

Sun 05 Dec 2021 17:17

Problem (39). • Assume (f_n) does not converge to f in measure. That is, there is an $\varepsilon > 0$ so that for all $N \in \mathbb{N}$

$$m\left(\left\{x \in \mathbb{R} : \left|f_{n_N}(x) - f(x)\right| > \varepsilon\right\}\right) > \varepsilon$$

for some $n_N \geq N$. Denote this set A_N . Then, we see

$$\int |f_{n_N} - f| \ge \int_{A_N} |f_{n_N} - f| \ge \int \varepsilon \chi_{A_N} = \varepsilon m(A_N) \ge \varepsilon^2.$$

That is, for some $\varepsilon' = \varepsilon^2 > 0$, and all $N \in \mathbb{N}$ we find an $n_N \geq N$, so that $\int |f_n - f| \geq \varepsilon'$, so f_n does not converge to f in mean.

- First, note that if x = 0 or 1, then $f_n(x) = x$ for all $n \in \mathbb{N}$. Then, if $x \in (0,1)$, the ratio test proves $\sum_{i=1}^{\infty} nx^i < \infty$, hence $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nx^n = 0$.
 - To see that f_n converges to 0 in measure denote $E_{\varepsilon;n} = \{x \in [0,1] : nx^n < \varepsilon\}$. Then, suppose $c \in E_{\varepsilon;n}$, then either c=1 or $\lim_{n \to \infty} f_n(c) = 0$. We can exclude the first case as this happens only on a set of measure 0. Hence, fixing $\varepsilon > 0$ and assuming $c \in [0, 1 \frac{\varepsilon}{2})$ we see there is a $N \in \mathbb{N}$ so that $f_n(c) < \varepsilon$ for all $n \ge N$. So, we have $m(E_{\varepsilon;n}) \le m([1 \frac{\varepsilon}{2}, 1]) < \varepsilon$ for all $n \ge N$, so f_n converges to 0 in measure.
- Finally, to show that f does not converge in measure take $\varepsilon = \frac{1}{100}$. Then, we define $a_n = 1 \left(\frac{1}{100}\right)^{\frac{1}{n+1}}$ we define $s_n = f_n\left(a_n\right)\chi_{[a_n,1]}$. Then, we find f_n dominates s_n for every n, hence

$$\int f_n \ge \int s_n = n \left(\frac{1}{100}^{n+1} - \frac{1}{100} \right) \ge n \left(100^{-2} - \frac{1}{100} \right) = n\delta$$

for all $n\geq 1$. Since this grows linearly with n, we find for sufficiently large n, $n\delta>\varepsilon.$ Hence, it is shown.

Problem (42). 1. First, we prove the case $s < \infty$. Let $f \in L^s(S)$. Then, we define r so that $\frac{1}{s} + \frac{1}{r} = \frac{1}{p}$ (hence $\frac{s}{p}$ and $\frac{r}{p}$ are conjugate). Then, as we aim to show $||f||_p$ finite, we see it suffices to show $||f||_p^p = \int_S |f|^p = ||f^p||_1$ finite. We see

$$\begin{split} \|f\|_{p}^{p} &= \|1f\|_{p}^{p} \\ &= \|1^{p}f^{p}\|_{1} \\ &\leq \|1\|_{\frac{r}{p}}\|f^{p}\|_{\frac{s}{p}} \\ &= (\int_{S} 1^{\frac{r}{p}})^{\frac{p}{r}} \left(\int_{S} |f^{p}|^{\frac{s}{p}}\right)^{\frac{p}{s}} \\ &= \|1\|_{p}^{\frac{1}{r}}\|f\|_{s}^{p} \\ &= m \left(S\right)^{\frac{1}{r}}\|f\|_{s}^{p} \\ &< \infty. \end{split}$$

We find this finite by assumption, hence $f \in L^p(S)$, so the claim is shown. Next, we show the case $s = \infty$. In this case $f \in L^p(S)$ is bounded almost everywhere (else its essup would be infinite). Then, we see for $p < \infty$ $\int_S |f|^p \le \int_S \operatorname{esssup}(f)^p = S \|f\|_\infty^p < \infty$ by assumption so the claim holds. It is clear that if $m(S) = \infty$ this does not hold. For an example, sake $S = [0, \infty]$ and $f = \frac{1}{x}$, we see $\|f\|_1 = \int_{[0,\infty]} \frac{1}{x} = \infty$, however $\|f\|_2 = (\int_{[0,\infty]} \frac{1}{x^2})^{\frac{1}{2}}$. As $\frac{1}{x^2}$ is integrable on $[0,\infty]$ we find its root to be finite, hence $f \in L_2([0,\infty])$ but $f \notin L_1([0,\infty])$.

2. Let $f \in L^r(S) \cap L^s(S)$. Denote the following sets, $A = \{x : x \in S, |f(x)| < 1\}$ and $B = \{x : x \in S, |f(x)| > 1\}$. It is clear $A \cup B = S$, with A, B being disjoint. Then, we see if $s \neq \infty$, we have

$$\begin{split} \|f\|_{p}^{p} &= \int_{S} |f|^{p} \\ &= \int_{A} |f|^{p} + \int_{B} |f|^{p} \\ &\leq \int_{A} |f|^{r} + \int_{B} |f|^{s} \\ &\leq \int_{S} |f|^{r} + \int_{S} |f|^{s} \\ &= \|f\|_{r}^{r} + \|f\|_{s}^{s} \\ &< \infty. \end{split}$$

In the other case where $s = \infty$ we apply the same logic as in 41, that being $|f| \le \operatorname{esssup}(f)$ on all but a set of measure 0, hence they may be

interchanged in the integral:

$$||f||_r^r = \int_S |f|^r$$

$$= \int_S |f|^p |f|^{r-p}$$

$$\leq \int_S |f|^p \underbrace{\left[\text{essup}(f)\right]^{r-p}}_{\text{constant}}$$

$$= ||f||_{\infty}^{r-p} ||f||_p^p < \infty \text{ by assumption.}$$

Problem (43). • First, note that $\int_I \cos(nx) = \int_I \cos^+(nx) + \int_I \cos^-(nx)$. Since I is a bounded interval, we see for all but a set of measure 0 on its boundary, if $x \in I$, then there is an $\varepsilon > 0$ so that $(x - \varepsilon, x + \varepsilon) \in I$. Then, $\cos^-(nx) = \cos^+(n\left(x + \frac{\pi}{2n}\right))$, so for almost every x, we find there is an $N \in \mathbb{N}$ so that $x + \frac{\pi}{2n} \in I$ for all $n \geq N$. Moreover it is bounded by g = 1 everywhere, so DCT proves it integrable. Then,

$$\lim_{n \to \infty} \int_{I} \cos(nx) = \lim_{n \to \infty} \int_{I} \cos^{+}(nx) - \lim_{n \to \infty} \int_{I} \cos^{+}\left(n\left(x + \frac{\pi}{2n}\right)\right)$$

$$= \lim_{n \to \infty} \int_{I} \cos^{+}(nx) - \int_{I + \frac{\pi}{2n}} \cos^{+}(nx)$$

$$= \lim_{n \to \infty} - \int_{\left(I + \frac{\pi}{2n}\right) \setminus I} \cos^{+}(nx)$$

$$\geq - \int_{\left(I + \frac{\pi}{2n}\right) \setminus I} 1$$

$$= - \lim_{n \to \infty} \frac{\pi}{2n}$$

$$= 0.$$

The same argument shows $\lim_{n\to\infty} \int_I \cos(nx) \le 0$ taking \cos^- instead. Hence, $\lim_{n\to\infty} \int_I \cos(nx) = 0$.

• First, note that since $\cos(nx) \in [-1, 1]$ we have $\int |f\cos(nx)| \le \int |f| < \infty$, hence it is integrable. Then, we see

$$\int f \cos(nx) = \int_{\mathbb{R}} f \cos^{+}(nx) - \int_{\mathbb{R}} f \cos^{-}(nx)$$
$$= \int_{\mathbb{R}} f \cos^{+}(nx) - \int_{\mathbb{R} + \frac{\pi}{2n}} f \cos^{+}(nx)$$
$$= \int_{\mathbb{R}} f \cos^{+}(nx) - \int_{\mathbb{R}} f \cos^{+}(nx)$$
$$= 0.$$