

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 199 31 431.4

Anmeldetag: 8. Juli 1999

Anmelder/Inhaber: BASF Aktiengesellschaft, Ludwigshafen/DE

Bezeichnung: Corynebacterium glutamicum Genes encoding novel proteins

IPC: C 07 K 14/34

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 25. August 2000
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Jaenisch", is placed over the typed title of the document.

Waasmaier

CERTIFIED COPY OF
PRIORITY DOCUMENT

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING NOVEL PROTEINS

Background of the Invention

5 Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic 10 compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through the large-scale culture of bacteria developed to produce and secrete large quantities of one or more desired molecules. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have 15 been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

Summary of the Invention

20 This invention provides novel nucleic acid molecules which may be used to identify or classify *Corynebacterium glutamicum* or related species of bacteria. *C. glutamicum* is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The 25 nucleic acid molecules therefore can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. While *C. glutamicum* itself is nonpathogenic, it is related to other *Corynebacterium* species, such as *Corynebacterium diphtheriae* (the causative agent of diphtheria), which are important human pathogens. The ability to identify the presence of *Corynebacterium* species 30 therefore also can have significant clinical relevance, e.g., diagnostic applications. Further, these nucleic acid molecules may serve as reference points for the mapping of the *C. glutamicum* genome, or of genomes of related organisms.

These novel nucleic acid molecules encode proteins, referred to herein as marker and fine chemical production (MCP) proteins. These MCP proteins may be involved, 35 for example, in the direct or indirect production of one or more fine chemicals from *C. glutamicum*. The MCP proteins of the invention may also participate in the degradation of hydrocarbons or the oxidation of terpenoids. These proteins may also be utilized for

the identification of *Corynebacterium glutamicum* or organisms related to *C. glutamicum*: the presence of an MCP protein specific to *C. glutamicum* and related species in a mixture of proteins may indicate the presence of one of these bacteria in the sample. Further, these MCP proteins may have homologues in plants or animals which 5 are involved in a disease state or condition: these proteins thus may serve as useful pharmaceutical targets for drug screening and the development of therapeutic compounds.

Given the availability of cloning vectors for use in *Corynebacterium glutamicum*, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and 10 techniques for genetic manipulation of *C. glutamicum* and the related *Brevibacterium* species (e.g., *lactofermentum*) (Yoshihama et al. *J. Bacteriol.* 162: 591-597 (1985); Katsunata et al., *J. Bacteriol.* 159: 306-311 (1984); and Santamaria et al., *J. Gen Microbiol.* 130: 2237-2246 (1984)), the nucleic acid molecules of the invention may be utilized in the genetic engineering of this organism to modulate the production of one or 15 more fine chemicals. This modulation may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an indirect effect of such manipulation. For example, by modifying the activity of a protein involved in the biosynthesis or degradation of a fine chemical (i.e., through mutagenesis of the corresponding gene), one may directly modulate the ability of the cell to synthesize or to degrade this 20 compound, thereby modulating the yield and/or efficiency of production of the fine chemical. Similarly, by modulating the activity of a protein which regulates a fine chemical metabolic pathway, one may directly influence whether the production of the desired compound is up- or down-regulated, either of which will modulate the yield or efficiency of production of the fine chemical from the cell.

25 Indirect modulation of fine chemical production may also result by modifying the activity of a protein of the invention (i.e., by mutagenesis of the corresponding gene) such that the overall ability of the cell to grow and divide or to remain viable and productive is increased. The production of fine chemicals from *C. glutamicum* is generally accomplished by the large-scale fermentative culture of these microorganisms. 30 conditions which are frequently suboptimal for growth and cell division. By engineering a protein of the invention (e.g., a stress response protein, a cell wall protein, or proteins involved in the metabolism of compounds necessary for cell growth and division to occur, such as nucleotides and amino acids) such that it is better able to survive, grow, and multiply in such conditions, it may be possible to increase the number and productivity of such engineered *C. glutamicum* cells in large-scale culture, 35 which in turn should result in increased yields and/or efficiency of production of one or more desired fine chemicals. Further, the metabolic pathways of any cell are necessarily

interrelated and coregulated. By altering the activity or regulation of any one metabolic pathway in *C. glutamicum* (i.e., by altering the activity of one of the proteins of the invention which participates in such a pathway), it is possible to concomitantly alter the activity or regulation of other metabolic pathways in this microorganism, which may be directly involved in the synthesis or degradation of a fine chemical.

The invention provides novel nucleic acid molecules which encode proteins, referred to herein as MCP proteins, which are capable of, for example, modulating the production or efficiency of production of one or more fine chemicals from *C. glutamicum*, or of serving as identifying markers for *C. glutamicum* or related organisms. Nucleic acid molecules encoding an MCP protein are referred to herein as MCP nucleic acid molecules. In a preferred embodiment, the MCP protein is capable of modulating the production or efficiency of production of one or more fine chemicals from *C. glutamicum*, or of serving as identifying markers for *C. glutamicum* or related organisms. Examples of such proteins include those encoded by the genes set forth in Table 1.

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs) comprising a nucleotide sequence encoding an MCP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of MCP-encoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth in Appendix A or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth in Appendix A, or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth in Appendix B. The preferred MCP proteins of the present invention also preferably possess at least one of the MCP activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B, e.g., sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains an MCP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to modulate the production or efficiency of production of one or more fine chemicals from *C. glutamicum*, or of

serving as an identifying marker for *C. glutamicum* or related organisms. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%. 80%, or 90% and most preferably at least about 95%. 96%, 97%. 98%, or 99% or more homologous to an

5 amino acid sequence of Appendix B (e.g., an entire amino acid sequence selected from those sequences set forth in Appendix B). In another preferred embodiment, the protein is a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

10 In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (e.g., an MCP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of Appendix B and is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to
15 degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15
20 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of Appendix A. Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring *C. glutamicum* MCP protein, or a biologically active portion thereof.

25 Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an MCP protein by culturing the host cell in a suitable medium. The MCP protein can then be isolated from the medium or the host cell.

30 Yet another aspect of the invention pertains to a genetically altered microorganism in which an MCP gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated MCP sequence as a transgene. In another embodiment, an endogenous MCP gene within the genome of
35 the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered MCP gene. In a preferred embodiment, the microorganism belongs to the genus *Corynebacterium* or *Brevibacterium*, with

Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

- Still another aspect of the invention pertains to an isolated MCP protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the isolated MCP protein or portion thereof is capable of modulating the production or efficiency of production of one or more fine chemicals from *C. glutamicum*, or of serving as an identifying marker for *C. glutamicum* or related organisms. In another preferred embodiment, the isolated MCP protein or portion thereof is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to, for example, modulate the production or efficiency of production of one or more fine chemicals from *C. glutamicum*, or to serve as identifying markers for *C. glutamicum* or related organisms.

The invention also provides an isolated preparation of an MCP protein. In preferred embodiments, the MCP protein comprises an amino acid sequence of Appendix B. In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame set forth in Appendix A). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of Appendix B. In other embodiments, the isolated MCP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of Appendix B and is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms.

Alternatively, the isolated MCP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous, to a nucleotide sequence of Appendix B. It is also preferred that the preferred forms of MCP proteins also have one or more of the MCP bioactivities described herein.

The MCP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-MCP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the

protein alone. In other preferred embodiments, this fusion protein is capable of modulating the yield, production and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, or of serving as an identifying marker for *C. glutamicum* or related organisms. In particularly preferred embodiments, integration of this fusion protein into a host cell modulates production of a desired compound from the cell.

5 Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an MCP nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of
10 obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an MCP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

15 Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates MCP protein activity or MCP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum*
20 MCP protein activities, such that the yield, production, and/or efficiency of production of a desired fine chemical by this microorganism is improved. The agent which modulates MCP protein activity can be an agent which stimulates MCP protein activity or MCP nucleic acid expression. Examples of agents which stimulate MCP protein activity or MCP nucleic acid expression include small molecules, active MCP proteins, and nucleic acids encoding MCP proteins that have been introduced into the cell.
25 Examples of agents which inhibit MCP activity or expression include small molecules and antisense MCP nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields, production, and/or efficiency of production of a desired compound from a cell, involving the introduction of a wild-type or mutant MCP gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

Detailed Description of the Invention

The present invention provides MCP nucleic acid and protein molecules. These MCP nucleic acid molecules may be utilized in the identification of *Corynebacterium glutamicum* or related organisms, in the mapping of the *C. glutamicum* genome (or a 5 genome of a closely related organism), or in the identification of microorganisms which may be used to produce fine chemicals, e.g., by fermentation processes. The proteins encoded by these nucleic acids may be utilized in the direct or indirect modulation of the production or efficiency of production of one or more fine chemicals from *C. glutamicum*, as identifying markers for *C. glutamicum* or related organisms, in the 10 oxidation of terpenoids or the degradation of hydrocarbons, or as targets for the development of therapeutic pharmaceutical compounds. Aspects of the invention are further explicated below.

I. Fine Chemicals

15 The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, 20 nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, 25 vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research - 30 Asia, held Sept. 1-3, 1994 at Penang, Malaysia AOCS Press. (1995)). enzymes, and all other chemicals described in Gutcho (1983) Chemicals by Fermentation. Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.

35 A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is art-

recognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds. While the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ullmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though L-amino acids are generally the only type found in naturally-occurring proteins.

Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosynthesis, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, L-methionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/L-methionine are common feed additives. (Leuchtenberger, W. (1996) Amino acids – technical production and use, p. 466-502 in Rehm et al. (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E. (1978) *Ann. Rev. Biochem.* 47: 533-606). Glutamate is synthesized by the reductive amination of α-

ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a three-step process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both 5 cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step 10 biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11-step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all 15 biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored. 20 and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. 25 Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount 30 of that amino acid present in the cell.

B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although 35 they are readily synthesized by other organisms such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of

metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, 5 "Vitamins" vol. A27, p. 443-613. VCH: Weinheim, 1996.) The term "vitamin" is art- recognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

15 The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613. VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and 20 Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research - Asia, held Sept. 1-3, 1994 at Penang, Malaysia. AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B₂) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B₆' (e.g., pyridoxine, pyridoxamine, pyridoxal-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of 25 the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)-β-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β-alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β-alanine and for the condensation to pantothenic acid are known. The metabolically 30 active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of

panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives

of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrrole ring system. The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid

moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are

- 5 nucleotides which may serve as energy stores (e.g., ADP, ATP) or as coenzymes (i.e., FAD and NAD).

Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christoperson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of *de novo* pyrimidine and purine

- 10 biosynthesis as chemotherapeutic agents." *Med. Res. Reviews* 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L. (1995) "Enzymes in nucleotide synthesis." *Curr. Opin. Struct. Biol.* 5: 752-757; (1995) *Biochem Soc. Transact.* 23: 877-902). However, purine
15 and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) *Nucleotides and*
- 20 *Related Compounds in Biotechnology* vol. 6. Rehm et al., eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

- The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "*de novo* purine nucleotide biosynthesis", in: *Progress in Nucleic Acid Research and Molecular Biology*, vol. 42. Academic Press; p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides". Chapter 8 in: *Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology*. Wiley: New York). Purine metabolism has been the subject of intensive research, and is
25 essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'-phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as
30 nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP)

from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). The deoxy-forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to 5 participate in DNA synthesis.

D. Trehalose Metabolism and Uses

Trehalose consists of two glucose molecules, bound in a, α -1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen 10 foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto et al., (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) *Trends Biotech.* 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) *Biotech. Ann. Rev.* 2: 293-314; and Shiosaka, M. (1997) *J. Japan* 172: 97-102). Trehalose is produced by enzymes from 15 many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Elements and Methods of the Invention

The present invention is based, at least in part, on the discovery of novel 20 molecules, referred to herein as MCP nucleic acid molecules. These MCP nucleic acid molecules are useful not only for the identification of *C. glutamicum* or related bacterial species, but also as markers for the mapping of the *C. glutamicum* genome and in the identification of bacteria useful for the production of fine chemicals by, e.g., fermentative processes. The present invention is also based, at least in part, on the MCP 25 protein molecules encoded by these MCP nucleic acid molecules. These MCP proteins are capable of modulating the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, of serving as identifying markers for *C. glutamicum* or related organisms, of degrading hydrocarbons, and of serving as targets for the development of therapeutic pharmaceutical compounds. In one embodiment, the 30 MCP molecules of the invention directly or indirectly participate in one or more fine chemical metabolic pathways in *C. glutamicum*. In a preferred embodiment, the activity of the MCP molecules of the invention to indirectly or directly participate in such metabolic pathways has an impact on the production of a desired fine chemical by this microorganism. In a particularly preferred embodiment, the MCP molecules of the 35 invention are modulated in activity, such that the *C. glutamicum* metabolic pathways in which the MCP proteins of the invention participate are modulated in efficiency or

output, which either directly or indirectly modulates the production or efficiency of production of a desired fine chemical by *C. glutamicum*.

- The language, "MCP protein" or "MCP polypeptide" includes proteins which are able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target protein for drug screening or design, or to serve as identifying markers for *C. glutamicum* or related organisms. Examples of MCP proteins include those encoded by the MCP genes set forth in Table 1 and Appendix A. The terms "MCP gene" or "MCP nucleic acid sequence" include nucleic acid sequences encoding an MCP protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions. Examples of MCP genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound.

- In another embodiment, the MCP molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as *C. glutamicum*, either directly or indirectly. Using recombinant genetic techniques, one or more of the MCP proteins of the invention may be

manipulated such that its function is modulated. Such modulation of function may result in the modulation of the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*.

For example, by modifying the activity of a protein involved in the biosynthesis 5 or degradation of a fine chemical (i.e., through mutagenesis of the corresponding gene), one may directly modulate the ability of the cell to synthesize or to degrade this compound, thereby modulating the yield and/or efficiency of production of the fine chemical. Similarly, by modulating the activity of a protein which regulates a fine 10 chemical metabolic pathway, one may directly influence whether the production of the desired compound is up- or down-regulated, either of which will modulate the yield or efficiency of production of the fine chemical from the cell.

Indirect modulation of fine chemical production may also result by modifying 15 the activity of a protein of the invention (i.e., by mutagenesis of the corresponding gene) such that the overall ability of the cell to grow and divide or to remain viable and productive is increased. The production of fine chemicals from *C. glutamicum* is generally accomplished by the large-scale fermentative culture of these microorganisms. conditions which are frequently suboptimal for growth and cell division. By engineering a protein of the invention (e.g., a stress response protein, a cell wall protein, or proteins involved in the metabolism of compounds necessary for cell growth and 20 division to occur, such as nucleotides and amino acids) such that it is better able to survive, grow, and multiply in such conditions, it may be possible to increase the number and productivity of such engineered *C. glutamicum* cells in large-scale culture, which in turn should result in increased yields and/or efficiency of production of one or more desired fine chemicals. Further, the metabolic pathways of any cell are necessarily 25 interrelated and coregulated. By altering the activity or regulation of any one metabolic pathway in *C. glutamicum* (i.e., by altering the activity of one of the proteins of the invention which participates in such a pathway), it is possible to concomitantly alter the activity or regulation of other metabolic pathways in this microorganism, which may be directly involved in the synthesis or degradation of a fine chemical.

The isolated nucleic acid sequences of the invention are contained within the 30 genome of a *Corynebacterium glutamicum* strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequences of the isolated *C. glutamicum* MCP nucleic acid molecules and the predicted amino acid sequences of the *C. glutamicum* MCP proteins are shown in Appendices A and B. respectively. Computational analyses were performed which classified and/or identified 35 many of these nucleotide sequences as sequences having homology to *E. coli* or *Bacillus subtilis* genes.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of Appendix B. As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the 5 selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid 10 sequence.

The MCP protein or a biologically active portion or fragment thereof of the invention is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying 15 marker for *C. glutamicum* or related organisms.

Various aspects of the invention are described in further detail in the following subsections:

A. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that 20 encode MCP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of MCP-encoding nucleic acid (e.g., MCP DNA). These nucleic acid molecules may be used to identify *C. glutamicum* or related organisms, to map the genome of *C. glutamicum* or closely related bacteria, or to identify microorganisms 25 useful for the production of fine chemicals, e.g., by fermentative processes. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated 30 sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3' end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is 35 separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the

- nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated MCP nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell
- 5 from which the nucleic acid is derived (e.g. a *C. glutamicum* cell). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
- A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule
- 10 having a nucleotide sequence of Appendix A, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a *C. glutamicum* MCP cDNA can be isolated from a *C. glutamicum* library using all or portion of one of the sequences of Appendix A as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and
- 15 Maniatis, T. *Molecular Cloning. A Laboratory Manual*. 2nd. ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
- Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing
- 20 all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence of Appendix A). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. (1979) *Biochemistry* 18: 5294-5299) and cDNA can be prepared using reverse transcriptase
- 25 (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL) and random polynucleotide primers or oligonucleotide primers based upon one of the nucleotide sequences shown in Appendix A. Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the
- 30 nucleotide sequences shown in Appendix A. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an MCP
- 35 nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in Appendix A. The sequences of Appendix A correspond to the *Corynebacterium glutamicum* MCP cDNAs of the invention. This cDNA comprises sequences encoding MCP proteins (i.e., "the coding region", indicated in each sequence in Appendix A), as well as 5' untranslated sequences and 3' untranslated sequences, also indicated in Appendix A. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the sequences in Appendix A.

For the purposes of this application, it will be understood that each of the sequences set forth in Appendix A has an identifying RXA number having the designation "RXA" followed by 5 digits (i.e., RXA00003). Each of these sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA designation to eliminate confusion. The recitation "one of the sequences in Appendix A", then, refers to any of the sequences in Appendix A, which may be distinguished by their differing RXA designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is set forth in Appendix B. The sequences of Appendix B are identified by the same RXA designations as Appendix A, such that they can be readily correlated. For example, the amino acid sequence in Appendix B designated RXA00003 is a translation of the coding region of the nucleotide sequence of nucleic acid molecule RXA00003 in Appendix A.

In one embodiment, the nucleic acid molecules of the present invention are not intended to include those compiled in Table 2.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences shown in Appendix A, or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in Appendix A is one which is sufficiently complementary to one of the nucleotide sequences shown in Appendix A such that it can hybridize to one of the nucleotide sequences shown in Appendix A, thereby forming a stable duplex.

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, or 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in Appendix A, or a portion thereof. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a

nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences shown in Appendix A, or a portion thereof.

- Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in Appendix A, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an MCP protein. The nucleotide sequences determined from the cloning of the MCP genes from *C. glutamicum* allows for the generation of probes and primers designed for use in identifying and/or cloning MCP homologues in other cell types and organisms, as well as MCP homologues from other *Corynebacteria* or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in Appendix A, an anti-sense sequence of one of the sequences set forth in Appendix A, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of Appendix A can be used in PCR reactions to clone MCP homologues. Probes based on the MCP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an MCP protein, such as by measuring a level of an MCP-encoding nucleic acid in a sample of cells, e.g., detecting MCP mRNA levels or determining whether a genomic MCP gene has been mutated or deleted.
- In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of Appendix B) amino acid residues to an amino acid sequence of Appendix B such that the protein or portion thereof is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*.

glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms. Examples of such activities are also described herein. Thus, "the function of an MCP protein" contributes to the overall regulation of one or more fine chemical 5 metabolic pathways, or to the degradation of a hydrocarbon, or to the oxidation of a terpenoid.

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino 10 acid sequence of Appendix B.

Portions of proteins encoded by the MCP nucleic acid molecules of the invention are preferably biologically active portions of one of the MCP proteins. As used herein, the term "biologically active portion of an MCP protein" is intended to include a portion, e.g., a domain/motif, of an MCP protein that modulates the yield, production, and/or 15 efficiency of production of one or more fine chemicals from *C. glutamicum*, that degrades hydrocarbons, that oxidizes terpenoids, that may serve as a target for drug development, or that may serve as an identifying marker for *C. glutamicum* or related organisms. To determine whether an MCP protein or a biologically active portion thereof can modulate the yield, production, and/or efficiency of production of one or 20 more fine chemicals from *C. glutamicum*, can degrade hydrocarbons, or can oxidize terpenoids, an assay of activity may be performed. Such assay methods are well known to those skilled in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an MCP protein can be prepared by isolating a portion of one of the sequences in Appendix 25 B, expressing the encoded portion of the MCP protein or peptide (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the MCP protein or peptide.

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Appendix A (and portions thereof) due to degeneracy 30 of the genetic code and thus encode the same MCP protein as that encoded by the nucleotide sequences shown in Appendix A. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in Appendix B. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length *C. glutamicum* protein which is 35 substantially homologous to an amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

In addition to the *C. glutamicum* MCP nucleotide sequences shown in Appendix A, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of MCP proteins may exist within a population (e.g., the *C. glutamicum* population). Such genetic polymorphism in the

- 5 MCP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an MCP protein, preferably a *C. glutamicum* MCP protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the MCP gene. Any and all such nucleotide variations and
10 resulting amino acid polymorphisms in MCP that are the result of natural variation and that do not alter the functional activity of MCP proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-*C. glutamicum* homologues of the *C. glutamicum* MCP cDNA of the invention can be isolated based on
15 their homology to the *C. glutamicum* MCP nucleic acid disclosed herein using the *C. glutamicum* cDNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid
20 molecule comprising a nucleotide sequence of Appendix A. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are
25 such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization
30 conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of Appendix A corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an
35 RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural *C. glutamicum* MCP protein.

In addition to naturally-occurring variants of the MCP sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into a nucleotide sequence of Appendix A, thereby leading to changes in the amino acid sequence of the encoded MCP protein, without altering the functional ability 5 of the MCP protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of Appendix A. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the MCP proteins (Appendix B) without altering the activity of said MCP protein, whereas an "essential" amino acid residue is required for 10 MCP protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having MCP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering MCP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules 15 encoding MCP proteins that contain changes in amino acid residues that are not essential for MCP activity. Such MCP proteins differ in amino acid sequence from a sequence contained in Appendix B yet retain at least one of the MCP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 20 50% homologous to an amino acid sequence of Appendix B and is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms. Preferably, the protein encoded by the nucleic acid molecule is at least about 25 50-60% homologous to one of the sequences in Appendix B, more preferably at least about 60-70% homologous to one of the sequences in Appendix B, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of the sequences in Appendix B, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences in Appendix B.

To determine the percent homology of two amino acid sequences (e.g., one of the sequences of Appendix B and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid 30 positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences of Appendix B) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of

the sequence selected from Appendix B), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences

- 5 (i.e., % homology = # of identical positions/total # of positions x 100).

- An isolated nucleic acid molecule encoding an MCP protein homologous to a protein sequence of Appendix B can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of Appendix A such that one or more amino acid substitutions, additions or deletions are introduced into the
10 encoded protein. Mutations can be introduced into one of the sequences of Appendix A by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a
15 similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine,
20 proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an MCP protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly
25 along all or part of an MCP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an MCP activity described herein to identify mutants that retain MCP activity. Following mutagenesis of one of the sequences of Appendix A, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of
30 the Exemplification).

- In addition to the nucleic acid molecules encoding MCP proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g.,
35 complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be

complementary to an entire MCP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an MCP protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are
5 translated into amino acid residues (e.g., the entire coding region of SEQ ID RXA00003 comprises nucleotides 1 to 741). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding MCP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred
10 to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding MCP disclosed herein (e.g., the sequences set forth in Appendix A), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of MCP mRNA, but
15 more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of MCP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of MCP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed
20 by chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic
25 acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil,
30 dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-

amino-3-N-2-carboxypropyl) uracil. (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target 5 nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an MCP protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by 10 conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or 15 an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a eubacterial, viral or eucaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention 20 is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier et al. (1987) *Nucleic Acids Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o- 25 methylribonucleotide (Inoue et al. (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) *FEBS Lett.* 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they 30 have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave MCP mRNA transcripts to thereby inhibit translation of MCP mRNA. A ribozyme having specificity for an MCP-encoding nucleic acid can be designed based upon the nucleotide sequence of an MCP cDNA disclosed herein (i.e., 35 RXA00003 in Appendix A). For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an MCP-encoding mRNA.

See, e.g., Cech et al. U.S. Patent No. 4,987,071 and Cech et al. U.S. Patent No. 5,116,742. Alternatively, MCP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) *Science* 261:1411-1418.

- 5 Alternatively, MCP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an MCP nucleotide sequence (e.g., an MCP promoter and/or enhancers) to form triple helical structures that prevent transcription of an MCP gene in target cells. See generally, Helene, C. (1991) *Anticancer Drug Des.* 6(6):569-84; Helene, C. et al. (1992) *Ann N.Y. Acad. Sci.* 660:27-10 36; and Maher, L.J. (1992) *Bioassays* 14(12):807-15.

B. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an MCP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of 15 autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to 20 which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, 25 such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory 35 sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of

interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g.. in an *in vitro* transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, repressor binding sites, activator binding sites, enhancer regions and other expression control elements (e.g.. terminators, other elements of mRNA secondary structure, or polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; *Gene Expression Technology: Methods in Enzymology* 185. Academic Press. San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g.. MCP proteins, mutant forms of MCP proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of MCP proteins in prokaryotic or eukaryotic cells. For example, MCP genes can be expressed in bacterial cells such as *C. glutamicum*, insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review". *Yeast* 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi. J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi. Peberdy, J.F. et al., eds., p. 1-28. Cambridge University Press: Cambridge). algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency *Agrobacterium tumefaciens* -mediated transformation of *Arabidopsis thaliana* leaf and cotyledon explants" *Plant Cell Rep.*: 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, *Gene Expression Technology: Methods in Enzymology* 185. Academic Press. San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion

vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRJTS (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the MCP protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant MCP protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Armann et al., (1988) *Gene* 69:301-315) and pET 11d (Studier et al., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as *C. glutamicum* (Wada et al. (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

- In another embodiment, the MCP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYEpSec1 (Baldari, et al., (1987) *Embo J.* 6:229-234), pMFA (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz et al., (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi. in: Applied Molecular Genetics of Fungi. J.F. Peberdy, et al., eds., p. 1-28, Cambridge University Press: Cambridge.
- Alternatively, the MCP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) *Mol. Cell Biol.* 3:2156-2165) and the pVL series (Lucklow and Summers (1989) *Virology* 170:31-39).
- In another embodiment, the MCP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721.
- In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman et al. (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual*. 2nd. ed.. Cold Spring Harbor Laboratory. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
- In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al.

(1987) *Genes Dev.* 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) *Adv. Immunol.* 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) *EMBO J.* 8:729-733) and immunoglobulins (Banerji et al. (1983) *Cell* 33:729-740; Queen and Baltimore (1983) *Cell* 33:741-748), neuron-specific promoters

- 5 (e.g., the neurofilament promoter; Byrne and Ruddle (1989) *PNAS* 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) *Science* 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) *Science* 249:374-379) and the α -fetoprotein promoter (Campes and Tilghman (1989) *Genes Dev.* 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in 15 a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to MCP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which 20 direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene 25 expression using antisense genes see Weintraub, H. et al. (1986) "Antisense RNA as a molecular tool for genetic analysis", *Reviews - Trends in Genetics*, Vol. 1(1).

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such 30 terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

35 A host cell can be any prokaryotic or eukaryotic cell. For example, an MCP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other

suitable host cells are known to those skilled in the art. Microorganisms related to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via

- 5 conventional transformation or transfection techniques. As used herein, the terms "transformation", "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including using natural competence, chemical mediated transfer, calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or 10 transfecting host cells can be found in Sambrook, et al. (*Molecular Cloning. A Laboratory Manual. 2nd. ed. Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may

- 15 integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418.
- 20 hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an MCP protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by, for example, drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

25 To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an MCP gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the MCP gene. Preferably, this MCP gene is a *Corynebacterium glutamicum* MCP gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source.

- 30 In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous MCP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous MCP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous MCP protein). In the homologous recombination vector, the altered portion 35 of the MCP gene is flanked at its 5' and 3' ends by additional nucleic acid of the MCP

gene to allow for homologous recombination to occur between the exogenous MCP gene carried by the vector and an endogenous MCP gene in a microorganism. The additional flanking MCP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, less than one kilobase of flanking DNA (both at the 5' and 3' ends) is included in the vector (see e.g., Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced MCP gene has homologously recombined with the endogenous MCP gene are selected using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of an MCP gene on a vector placing it under control of the lac operon permits expression of the MCP gene in the presence of IPTG. Such regulatory systems are well known in the art.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) an MCP protein. Accordingly, the invention further provides methods for producing MCP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an MCP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered MCP protein) in a suitable medium until MCP protein is produced. In another embodiment, the method further comprises isolating MCP proteins from the medium or the host cell.

25 *C. Isolated MCP Proteins*

Another aspect of the invention pertains to isolated MCP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of MCP protein in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of MCP protein having less than about 30% (by dry weight) of non-MCP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-MCP protein, still more preferably less than about 10% of non-MCP protein, and most preferably less than about 5% non-MCP protein. When the MCP protein or biologically active portion

thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of MCP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of MCP protein having less than about 30% (by dry weight) of chemical precursors or non-MCP chemicals, more preferably less than about 20% chemical precursors or non-MCP chemicals, still more preferably less than about 10% chemical precursors or non-MCP chemicals, and most preferably less than about 5% chemical precursors or non-MCP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the MCP protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a *C. glutamicum* MCP protein in a microorganism such as *C. glutamicum*.

An isolated MCP protein or a portion thereof of the invention is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an MCP protein of the invention has an amino acid sequence shown in Appendix B. In yet another preferred embodiment, the MCP protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A. In still another preferred embodiment, the MCP protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, 90-95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid sequences of Appendix B. The preferred MCP proteins of the present invention also preferably possess at least one of the MCP

activities described herein. For example, a preferred MCP protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A, and which is able to modulate the yield, production, and/or efficiency of 5 production of one or more fine chemicals from *C. glutamicum*, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for *C. glutamicum* or related organisms.

In other embodiments, the MCP protein is substantially homologous to an amino acid sequence of Appendix B and retains the functional activity of the protein of one of 10 the sequences of Appendix B yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the MCP protein is a protein which comprises an amino acid sequence which is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80, 80-90, 90-95%, and most preferably at least about 96%, 97%, 98%, 15 99% or more homologous to an entire amino acid sequence of Appendix B and which has at least one of the MCP activities described herein. In another embodiment, the invention pertains to a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of Appendix B.

Biologically active portions of an MCP protein include peptides comprising 20 amino acid sequences derived from the amino acid sequence of an MCP protein, e.g., an amino acid sequence shown in Appendix B or the amino acid sequence of a protein homologous to an MCP protein, which include fewer amino acids than a full length MCP protein or the full length protein which is homologous to an MCP protein, and exhibit at least one activity of an MCP protein. Typically, biologically active portions 25 (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an MCP protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically 30 active portions of an MCP protein include one or more selected domains/motifs or portions thereof having biological activity.

MCP proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as 35 described above) and the MCP protein is expressed in the host cell. The MCP protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an MCP protein,

polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native MCP protein can be isolated from cells (e.g., endothelial cells, bacterial cells, fungal cells or other cells), for example using an anti-MCP antibody, which can be produced by standard techniques utilizing an MCP protein or fragment thereof of this invention.

The invention also provides MCP chimeric or fusion proteins. As used herein, an MCP "chimeric protein" or "fusion protein" comprises an MCP polypeptide operatively linked to a non-MCP polypeptide. An "MCP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to an MCP protein, whereas a "non-MCP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the MCP protein, e.g., a protein which is different from the MCP protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the MCP polypeptide and the non-MCP polypeptide are fused in-frame to each other. The non-MCP polypeptide can be fused to the N-terminus or C-terminus of the MCP polypeptide. For example, in one embodiment the fusion protein is a GST-MCP fusion protein in which the MCP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant MCP proteins. In another embodiment, the fusion protein is an MCP protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells, bacterial host cells, fungal host cells), expression and/or secretion of an MCP protein can be increased through use of a heterologous signal sequence.

Preferably, an MCP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An MCP-

encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the MCP protein.

Homologues of the MCP protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the MCP protein. As used herein, the term "homologue" refers to a variant form of the MCP protein which acts as an agonist or antagonist of the activity of the MCP protein. An agonist of the MCP protein can retain substantially the same, or a subset, of the biological activities of the MCP protein. An antagonist of the MCP protein can inhibit one or more of the activities of the naturally occurring form of the MCP protein, by, for example, competitively binding to a downstream or upstream member of a biochemical pathway which includes the MCP protein.

In an alternative embodiment, homologues of the MCP protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the MCP protein for MCP protein agonist or antagonist activity. In one embodiment, a variegated library of MCP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of MCP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential MCP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of MCP sequences therein. There are a variety of methods which can be used to produce libraries of potential MCP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential MCP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) *Tetrahedron* 39:3; Itakura et al. (1984) *Annu. Rev. Biochem.* 53:323; Itakura et al. (1984) *Science* 198:1056; Ike et al. (1983) *Nucleic Acid Res.* 11:477.

In addition, libraries of fragments of the MCP protein coding can be used to generate a variegated population of MCP fragments for screening and subsequent selection of homologues of an MCP protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an MCP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression

vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the MCP protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of MCP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify MCP homologues (Arkin and Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated MCP library, using methods well known in the art.

20 D. *Uses and Methods of the Invention*

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C. glutamicum* sequences of interest; evolutionary studies; determination of MCP protein regions required for function; modulation of an MCP protein activity; modulation of the activity of one or more metabolic pathways; and modulation of cellular production of a desired compound, such as a fine chemical.

The MCP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof. Also, they may be used to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes, and probes based thereon; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. Although *Corynebacterium glutamicum* itself is

nonpathogenic, it is related to pathogenic species, such as *Corynebacterium diphtheriae*. Detection of such organisms is of significant clinical relevance.

To detect the presence of *C. glutamicum* in a sample, techniques well known in the art may be employed. Specifically, the cells in the sample may optionally first be

- 5 cultured in a suitable liquid or on a suitable solid culture medium to increase the number of cells in the sample. These cells are lysed, and the total DNA content extracted and optionally purified to remove debris and protein material which may interfere with subsequent analysis. The polymerase chain reaction or a similar technique known in the art is performed (for general reference on methodologies commonly used for the
- 10 amplification of nucleic acid sequences, see Mullis et al., U.S. Patent No. 4,683,195. Mullis et al., U.S. Patent No. 4,965,188, and Innis, M.A. and Gelfand, D. H. (1989) PCR Protocols. A guide to Methods and Applications, Academic Press, p. 3-12, and (1988) Biotechnology 6:1197, and International Patent Application No. WO89/01050) in which primers specific to an MCP nucleic acid molecule of the invention are
- 15 incubated with the nucleic acid sample such that, if present in the sample, that particular MCP nucleic acid sequence will be amplified. The particular MCP nucleic acid to be amplified is selected based on its uniqueness to the *C. glutamicum* genome, or to the genomes of *C. glutamicum* and only a few closely related bacteria. The presence of the desired amplified product is thus indicative of the presence of *C. glutamicum*, or an
- 20 organism closely related to *C. glutamicum*.

Further, the nucleic acid and protein molecules of the invention may serve as markers for specific regions of the genome. It is possible, using techniques well known in the art, to ascertain the physical location on the *C. glutamicum* genome of the MCP nucleic acid molecules of the invention, which in turn provides markers on the genome which can be used to aid in the placement of other nucleic acid molecules and genes on the genome map. Also, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related bacterial species that these nucleic acid molecules may similarly permit the construction of a genomic map in such bacteria (e.g., *Brevibacterium lactofermentum*).

- 25 The nucleic acid molecules of the invention have utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed

multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds.

The MCP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

The MCP protein molecules of the invention may also be utilized as markers for the classification of an unknown bacterium as *C. glutamicum*, or for the identification of *C. glutamicum* or closely related bacteria in a sample. For example, using techniques well known in the art, cells in a sample may optionally be amplified (e.g., by culturing in an appropriate medium) to increase the sample size, and then may be lysed to release proteins contained therein. This sample may optionally be purified to remove debris and nucleic acid molecules which may interfere with subsequent analysis. Antibodies specific for a selected MCP protein of the invention may be incubated with the protein sample in a typical Western assay format (see, e.g., Ausubel et al., (1988) Current Protocols in Molecular Biology, Wiley: New York) in which the antibody will bind to its target protein if this protein is present in the sample. An MCP protein is selected for this type of assay if it is unique or nearly unique to *C. glutamicum* or *C. glutamicum* and bacteria very closely related to *C. glutamicum*. Proteins in the sample are then separated by gel electrophoresis, and transferred to a suitable matrix, such as nitrocellulose. An appropriate secondary antibody having a detectable label (e.g., chemiluminescent or colorimetric) is incubated with this matrix, followed by stringent washing. The presence or absence of the label is indicative of the presence or absence of the target protein in the sample. If the protein is present, then this is indicative of the presence of *C. glutamicum*. A similar process enables the classification of an unknown bacterium as *C. glutamicum*: if a panel of proteins specific to *C. glutamicum* are not detected in protein samples prepared from the unknown bacterium, then that bacterium is not likely to be *C. glutamicum*.

Genetic manipulation of the MCP nucleic acid molecules of the invention may result in the production of MCP proteins having functional differences from the wild-

type MCP proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

Such changes in activity may directly modulate the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum*. For example, by modifying the activity of a protein involved in the biosynthesis or degradation of a fine chemical (i.e., through mutagenesis of the corresponding gene), one may directly modulate the ability of the cell to synthesize or to degrade this compound, thereby modulating the yield and/or efficiency of production of the fine chemical. Similarly, by modulating the activity of a protein which regulates a fine chemical metabolic pathway, one may directly influence whether the production of the desired compound is up- or down-regulated, either of which will modulate the yield or efficiency of production of the fine chemical from the cell.

Indirect modulation of fine chemical production may also result by modifying the activity of a protein of the invention (i.e., by mutagenesis of the corresponding gene) such that the overall ability of the cell to grow and divide or to remain viable and productive is increased. The production of fine chemicals from *C. glutamicum* is generally accomplished by the large-scale fermentative culture of these microorganisms, conditions which are frequently suboptimal for growth and cell division. By engineering a protein of the invention (e.g., a stress response protein, a cell wall protein, or proteins involved in the metabolism of compounds necessary for cell growth and division to occur, such as nucleotides and amino acids) such that it is better able to survive, grow, and multiply in such conditions, it may be possible to increase the number and productivity of such engineered *C. glutamicum* cells in large-scale culture, which in turn should result in increased yields and/or efficiency of production of one or more desired fine chemicals. Further, the metabolic pathways of any cell are necessarily interrelated and coregulated. By altering the activity or regulation of any one metabolic pathway in *C. glutamicum* (i.e., by altering the activity of one of the proteins of the invention which participates in such a pathway), it is possible to concomitantly alter the activity or regulation of other metabolic pathways in this microorganism, which may be directly involved in the synthesis or degradation of a fine chemical.

The aforementioned mutagenesis strategies for MCP proteins to result in increased yields of a fine chemical from *C. glutamicum* are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated MCP nucleic acid and protein molecules such that

the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any natural product of *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-
5 occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, and published patent applications cited throughout this application are hereby incorporated by reference.

5

Exemplification

Example 1: Preparation of total genomic DNA of *Corynebacterium glutamicum* ATCC 13032

10 A culture of *Corynebacterium glutamicum* (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation. the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose, 2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O, 10 mg/l ZnSO₄ x 7 H₂O, 3 mg/l MnCl₂ x 4 H₂O, 30 mg/l H₃BO₃, 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent 20 (EDTA or citric acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-panthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 µg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by extraction with phenol, phenol-chloroform-isoamylalcohol and chloroform-isoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20

µg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30 min incubation at -20°C, the DNA was collected by centrifugation (13.000 rpm, Biofuge 5 Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Starting from DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al. (1989) "Molecular Cloning : A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) Proc. Natl. Acad. Sci. USA. 75:3737-3741); pACYC177 (Change & Cohen (1978) J. Bacteriol. 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) Gene 53:283-286).

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see e.g., Fleischman, R.D. et al. (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd.", Science, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

30 Example 4: *In vivo* Mutagenesis

In vivo mutagenesis of *Corynebacterium glutamicum* can be performed by passage of plasmid (or other vector) DNA through *E. coli* or other microorganisms (e.g. *Bacillus* spp. or yeasts such as *Saccharomyces cerevisiae*) which are impaired in their capabilities to maintain

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia coli* and *Salmonella*, p. 2277-2294. ASM: Washington.) Such strains are well known to those skilled in the art. The use of such strains is 5 illustrated, for example, in Greener, A. and Callahan, M. (1994) Strategies 7: 32-34.

Example 5: DNA Transfer Between *Escherichia coli* and *Corynebacterium glutamicum*

Several *Corynebacterium* and *Brevibacterium* species contain endogenous plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for *Escherichia coli* and *Corynebacterium glutamicum* can be readily constructed by using standard vectors for *E. coli* (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) to which a origin or replication for and a suitable marker from *Corynebacterium glutamicum* is added. Such origins of replication are preferably taken from endogenous plasmids isolated from *Corynebacterium* and *Brevibacterium* species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 10 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both *E. coli* and *C. glutamicum*, and which can be used for several purposes, including gene over-expression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597, 15 20 25 Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene. 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of *Corynebacterium glutamicum*. Transformation of *C. glutamicum* can be achieved by 30 protoplast transformation (Kastsumata, R. et al. (1984) J. Bacteriol. 159:306-311), electroporation (Liebl, E. et al. (1989) FEMS Microbiol. Letters, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al. (1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for 35 40 45

C. glutamicum to *E. coli* by preparing plasmid DNA from *C. glutamicum* (using standard methods well-known in the art) and transforming it into *E. coli*. This transformation step can be performed using standard methods, but it is advantageous to use an *Mcr*-deficient *E. coli* strain, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166:1-19).

5

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of 10 the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is 15 extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from *Corynebacterium glutamicum* by several methods, all well-known in the art, such as that described in Bormann, E.R. et al. 20 (1992) *Mol. Microbiol.* 6: 317-326.

20

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a 25 matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

30

Example 7: Growth of Genetically Modified *Corynebacterium glutamicum* — Media and Culture Conditions

Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for *Corynebacteria* are both well-known and readily available (Lieb *et al.* (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der Osten *et al.* (1998) *Biotechnology Letters*, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus *Corynebacterium*, in: *The Prokaryotes, Volume II*. Balows, A. *et al.*, eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, tibulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuic, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0

19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (brain heart infusion, DIFC) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 10 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media.

An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, 15 the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the micro-organisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the 20 broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 25 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control 30 clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of 0.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2.5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract,

22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

5 Example 8 – *In vitro* Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: Dixon, M. and Webb, E.C., (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik. 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim. p. 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) EMBO J. 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg. p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing

the medium and/or the cellular component for increased production of the desired product (i.e., an amino acid). Such analysis techniques are well known to one skilled in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129: 131-163: and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from *C. glutamicum* Culture

Recovery of the desired product from the *C. glutamicum* cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the *C. glutamicum*

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernatant fraction is retained for further purification.

- The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on
- 5 a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One skilled in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified.
- 10 The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. *Biochemical*
15 *Engineering Fundamentals*, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994)
20 *Appl. Environ. Microbiol.* 60: 133-140; Malakhova et al. (1996) *Biotehnologiya* 11: 27-32; and Schmidt et al. (1998) *Bioprocess Engineer.* 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) *Biochemical Pathways: An*
25 *Atlas of Biochemistry and Molecular Biology*, John Wiley and Sons; Fallon, A. et al. (1987) *Applications of HPLC in Biochemistry* in: *Laboratory Techniques in Biochemistry and Molecular Biology*, vol. 17.

Equivalents

Those skilled in the art will recognize, or will be able to ascertain using no more
30 than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

TABLE 1: GENES IN THE APPLICATION

Identification Code	Config	NT Start	NT Stop
RXA02223	GR00652	425	6
RXA00911	GR00248	1259	1765
RXA02032	GR00618	4160	4729
RXA01707	GR00481	802	1629
RXA00271	GR00641	709	2720
RXA02427	GR00707	3447	3061
RXA01999	GR00987	930	1144
RXA01186	GR00338	3742	2645
RXA00150	GR00023	4085	4858
RXA00118	GR00055	428	635
RXA00138	GR00059	1	783
RXA00555	GR00145	2555	1865
RXA00657	GR00169	10882	9980
RXA00930	GR00253	3841	3089
RXA01198	GR00143	3422	3724
RXA01588	GR00443	497	33
RXA01693	GR00474	1553	2974
RXA02425	GR00707	1	630
RXA02573	GR00739	594	151
RXA02865	GR00753	6497	6018
RXA00889	GR00242	15341	15928
RXA02008	GR00787	48	570
RXA01656	GR00460	1548	2444
RXA02721	GR00759	1373	636
RXA00462	GR00116	3023	1644
RXA01286	GR00387	14457	13423
RXA01380	GR00403	2	2017
RXA02528	GR00725	7943	8071
RXA00027	GR00003	5142	5507
RXA00117	GR00019	791	201
RXA00247	GR00037	7097	6171
RXA01815	GR00515	3294	4085
RXA02138	GR00639	4409	4750
RXA02107	GR00682	1536	1677
RXA02180	GR00841	16813	16356
RXA01968	GR00567	47	703
RXA00411	GR00092	1685	1011
RXA01982	GR00573	3001	1844

<u>Identification</u>	<u>Code</u>	<u>Config.</u>	<u>Start</u>	<u>NT</u>	<u>NT</u>	<u>Stop</u>
RXA02387	GR00687	2162	1554			
RXA02884	GR10020	1695	2156			
RXA02711	GR00782	6407	8027			
RXA02840	GR00835	488	119			
RXA01998	GR00585	88	624			
RXA01195	GR00343	1413	1859			
RXA00305	GR00051	1257	826			
RXA02383	GR00692	608	6			
RXA02735	GR00763	777	73			
RXA00239	GR00036	5118	4534			
RXA01091	GR00305	546	76			
RXA02690	GR00754	14502	13405			
RXA00867	GR00175	593	1177			
RXA00356	GR00070	2853	104			
RXA00628	GR00165	1284	877			
RXA00719	GR00188	5283	6911			
RXA01845	GR00456	10574	9889			
RXA02070	GR00827	1733	2830			
RXA00349	GR00066	3	1081			
RXA02124	GR00868	1548	2633			
RXA02848	GR00848	113	511			
RXA00153	GR00023	7656	7231			
RXA00417	GR00093	404	3100			
RXA02443	GR00379	6818	7771			
RXA00325	GR00057	8594	9238			
RXA00874	GR00241	758	1848			
RXA02403	GR00100	896	1860			
RXA01211	GR00367	23467	21656			
RXA01288	GR00367	19365	18526			
RXA01848	GR00458	11513	10695			
RXA01671	GR00466	854	1468			
RXA00895	GR00215	2057	2938			
RXA00088	GR00002	606	115			
RXA01359	GR00393	6897	8038			
RXA00881	GR00235	6	431			
RXA01076	GR00300	4374	3355			
RXA02244	GR00654	12058	13590			
RXA01696	GR00475	799	203			
RXA02545	GR00728	18749	18192			
RXA02688	GR00754	12258	12924			
RXA02689	GR00754	13405	13084			
RXA02588	GR00741	13037	12354			
RXA01367	GR00397	1518	1919			
RXA01577	GR00448	8811	9185			
RXA01585	GR00441	1228	800			
RXA01492	GR00423	6133	5330			
RXA01592	GR00447	3	1295			

<u>Identification Code</u>	<u>Config.</u>	<u>NT</u>	<u>Start</u>	<u>NT</u>	<u>Stop</u>
RXA01597	GR00447	6220	7401		
RXA01176	GR00335	1980	1477		
RXA01748	GR00495	3681	4460		
RXA02117	GR00639	4166	3489		
RXA02141	GR00839	8457	8864		
RXA02076	GR00528	6902	7435		
RXA00473	GR00119	5768	6361		
RXA00211	GR00036	420	4		
RXA00234	GR00036	998	459		
RXA00161	GR00024	4893	5354		
RXA00183	GR00028	7344	8195		
RXA00279	GR00043	4001	2616		
RXA00474	GR00119	6575	8152		
RXA02114	GR00685	6179	5939		
RXA00560	GR00149	256	492		
RXA00587	GR00156	13008	13490		
RXA02575	GR00739	1907	3064		
RXA02824	GR00805	551	4		
RXA02849	GR00849	2	283		
RXA01159	GR00328	3089	2775		
RXA01023	GR00292	1817	867		
RXA01944	GR00558	2	385		
RXA01635	GR00454	5575	6315		
RXA01636	GR00454	6326	6898		
RXA01945	GR00558	192	1633		
RXA01968	GR00587	3295	2138		
RXA02452	GR00710	5271	5092		
RXA02183	GR00641	18663	19187		
RXA00614	GR00162	1680	2594		
RXA01322	GR00385	443	6		
RXA01142	GR00089	11298	12807		
RXA00054	GR00008	8557	11469		
RXA00098	CR00014	4746	5048		
RXA00087	CR00014	5222	6382		
RXA00118	CR00019	918	1172		
RXA00122	CR00019	4220	5842		
RXA00114	CR00021	1648	1079		
RXA00159	CR00024	3868	2687		
RXA00185	GR00028	9418	12045		
RXA00220	GR00032	20666	20163		
RXA00248	GR00037	7843	7121		
RXA00285	GR00046	3	515		
RXA00321	GR00057	2411	597		
RXA00322	GR00057	3688	2555		
RXA00339	GR00059	817	1533		
RXA00398	GR00086	6653	6103		
RXA00422	GR00097	428	6		

<u>Identification</u>	<u>NT</u>	<u>NT</u>	<u>Slop</u>
<u>Code</u>	<u>Config.</u>	<u>Start</u>	<u>Stop</u>
RXA00426	GR00098	2657	2025
RXA00491	GR00122	1057	638
RXA00505	GR00128	1	52
RXA00540	GR00139	2027	2269
RXA00552	GR00145	2	718
RXA00553	GR00145	742	1062
RXA00573	GR00156	117	767
RXA00574	GR00158	767	645
RXA00578	GR00156	4087	3365
RXA00586	GR00156	12818	11937
RXA00610	GR00161	1193	2056
RXA00613	GR00162	1652	1200
RXA00627	GR00167	2002	2754
RXA00649	GR00169	2823	3278
RXA00666	GR00175	390	4
RXA00691	GR00181	2152	1223
RXA00713	GR00188	71	1033
RXA00716	GR00188	3002	3514
RXA00722	GR00189	1015	512
RXA00738	GR00201	78	365
RXA00765	GR00204	3281	3969
RXA00787	GR00204	5280	5993
RXA00788	GR00204	5956	6398
RXA00781	GR00206	2682	2395
RXA00846	GR00230	391	5
RXA00859	GR00234	4	636
RXA00869	GR00239	1	792
RXA00887	GR00242	13544	14266
RXA00940	GR00257	129	524
RXA00849	GR00259	5400	8047
RXA00986	GR00280	60	401
RXA00987	GR00280	875	411
RXA01011	GR00288	2089	857
RXA01017	GR00290	2175	1587
RXA01021	GR00291	1759	2280
RXA01074	GR00300	2811	2107
RXA01078	GR00300	8043	6876
RXA01088	GR00404	3083	1902
RXA01129	GR00314	1461	3326
RXA01198	GR00343	1889	2578
RXA01197	GR00343	3333	2881
RXA01207	GR00347	126	773
RXA01237	GR00358	2751	2311
RXA01248	GR00360	1824	2462
RXA01249	GR00363	303	4
RXA01251	GR00365	228	538
RXA01282	GR00369	5444	4865
RXA01294	GR00373	3537	2872
RXA01348	GR00392	261	752
RXA01357	GR00393	4357	4659

Table 1, Page 4

<u>Identification</u>	<u>NT</u>	<u>Stop</u>
<u>Code</u>	<u>Config.</u>	<u>Start</u>
RXA01382	GR00395	J
RXA01384	GR00396	1397
RXA01386	GR00397	4
RXA01388	GR00398	1869
RXA01370	GR00399	980
RXA01372	GR00400	2225
RXA01379	GR00402	1
RXA01398	GR00408	591
RXA01397	GR00408	928
RXA01409	GR00410	6
RXA01428	GR00417	6218
RXA01439	GR00418	6894
RXA01463	GR00421	6475
RXA01488	GR00423	2493
RXA01497	GR00424	1179
RXA01501	GR00424	2179
RXA01505	GR00424	262
RXA01523	GR00424	1179
RXA01595	GR00447	5651
RXA01600	GR00447	6288
RXA01622	GR00452	5949
RXA01682	GR00462	6484
RXA01803	GR00509	1310
RXA01804	GR00509	11318
RXA01809	GR00483	11815
RXA01805	GR00483	27951
RXA01715	GR00485	28901
RXA01738	GR00485	4285
RXA01822	GR00485	10480
RXA01862	GR00485	11128
RXA01882	GR00485	2510
RXA01883	GR00485	1908
RXA01884	GR00485	2432
RXA01879	GR00485	1890
RXA01879	GR00485	745
RXA01875	GR00485	416
RXA01877	GR00485	3328
RXA01844	GR00485	1267
RXA01871	GR00493	1982
RXA01871	GR00493	10480
RXA01871	GR00493	11128
RXA01880	GR00537	1171
RXA01898	GR00544	4884
RXA01916	GR00548	2510
RXA01931	GR00537	4712
RXA01942	GR00537	5671
RXA01992	GR00549	6117
RXA02023	GR00550	5797
RXA02057	GR00550	6106
RXA02071	GR00522	1950
RXA01880	GR00537	1771
RXA01898	GR00537	4884
RXA01916	GR00537	2510
RXA01931	GR00537	4712
RXA01942	GR00537	5671
RXA01992	GR00549	6117
RXA02023	GR00550	5797
RXA02057	GR00550	6106
RXA02071	GR00522	1950
RXA02104	GR00537	1771
RXA02108	GR00544	4884
RXA02117	GR00549	2510
RXA02123	GR00550	5797
RXA02123	GR00550	6106
RXA02124	GR00555	1950
RXA02124	GR00555	2927
RXA02166	GR00631	2044
RXA02166	GR00632	2077
RXA02177	GR00636	280
RXA02177	GR00636	1056
RXA02177	GR00636	1244
RXA02187	GR00636	1056
RXA02211	GR00636	1244

<u>Identification</u>	<u>Code</u>	<u>Config.</u>	<u>Start</u>	<u>NT</u>	<u>Stop</u>
RXA02216		GRO0851	2	307	
RXA02217		GRO0851	968	306	
RXA02218		GRO0651	1299	1565	
RXA02219		GRO0851	1578	2983	
RXA02255		GRO0654	22507	23442	
RXA02298		GRO0662	10310	8652	
RXA02308		GRO0684	939	511	
RXA02337		GRO0672	2891	3816	
RXA02347		GRO0677	509	189	
RXA02349		GRO0878	394	5	
RXA02352		GRO0681	2	556	
RXA02387		GRO0694	683	6	
RXA02393		GRO0697	168	449	
RXA02395		GRO0698	2	733	
RXA02396		GRO0698	1309	1031	
RXA02407		GRO0701	1680	1885	
RXA02409		GRO0702	1248	835	
RXA02430		GRO0707	7498	7683	
RXA02459		GRO0712	4341	5015	
RXA02472		GRO0715	5435	5725	
RXA02484		GRO0718	2317	1817	
RXA02486		GRO0718	3441	4076	
RXA02496		GRO0720	10025	9219	
RXA02514		GRO0723	1	837	
RXA02518		GRO0723	3464	3874	
RXA02521		GRO0724	2924	4368	
RXA02525		GRO0725	3113	3490	
RXA02540		GRO0728	12438	12001	
RXA02601		GRO0742	5228	7246	
RXA02617		GRO0745	1404	1910	
RXA02639		GRO0749	511	1344	
RXA02672		GRO0753	12903	13400	
RXA02714		GRO0758	14754	1426	
RXA02720		GRO0759	6711	5	
RXA02751		GRO0764	6393	5930	
RXA02768		GRO0770	986	594	
RXA02789		GRO0777	5237	5782	
RXA02796		GRO0778	1648	1100	
RXA02874		GR0015	1348	889	
RXA02901		GR10040	9518	10195	
RXA01504		GRO0424	10710	11318	
RXA01508		GRO0424	11815	12225	
RXA01647		GRO0458	12422	11535	
RXA01798		GRO0508	2	484	
RXA02132		GRO0638	737	1275	
RXA02254		GRO0654	21769	22449	
RXA02482		GRO0718	914	105	
RXA02789		GRO0780	182	454	
RXA00052		GRO0008	7957	7247	

<u>Identification</u>	<u>Code</u>	<u>Config.</u>	<u>Start</u>	<u>Stop</u>	<u>NT</u>	<u>NT</u>
RXA00100		GRO0028	2334	1795		
RXA00763		GRO0204	1384	2166		
RXA00926		GRO0253	466	104		
RXA01273		GRO0367	26475	25042		
RXA02798		GRO0778	2842	4286		
RXA02847		GRO0847	598	5		
RXA02898		GR0040	1631	6		
RXA02899		GR01040	2125	1846		
RXA00255		GRO0003	2211	3647		
RXA00093		GRO0014	204	2428		
RXA00101		GRO0014	10514	10107		
RXA00108		GRO0015	546	4		
RXA00197		GRO0030	1731	2741		
RXA00297		GRO0048	2881	3772		
RXA00301		GRO0049	1970	2506		
RXA00316		GRO0057	19481	19331		
RXA00444		GRO0063	6	584		
RXA00448		GRO0093	1	327		
RXA00418		GRO0094	1	1065		
RXA00440		GRO0098	3473	3063		
RXA00447		GRO0108	518	817		
RXA00455		GRO0113	2	619		
RXA00485		GRO0119	25230	23188		
RXA00490		GRO0121	2876	1774		
RXA00506		GRO0126	489	1829		
RXA00515		GRO0131	1	482		
RXA00520		GRO0132	599	796		
RXA00602		GRO0159	4907	4155		
RXA00611		GRO0161	3640	2165		
RXA00688		GRO0176	797	6		
RXA00674		GRO0177	755	6		
RXA00731		GRO0185	2613	142		
RXA00830		GRO0224	266	889		
RXA00835		GRO0228	3	692		
RXA01068		GRO0298	2184	3254		
RXA01071		GRO0289	2822	2436		
RXA01102		GRO0306	10016	8174		
RXA01119		GRO0310	1068	139		
RXA01158		GRO0328	2580	1639		
RXA01177		GRO0335	2121	4108		
RXA01229		GRO0355	2805	3498		
RXA01331		GRO0367	1605	1031		
RXA01507		GRO0424	12339	12861		
RXA01623		GRO0452	2514	3224		
RXA01624		GRO0452	3220	3564		
RXA01669		GRO0465	1002	271		
RXA01673		GRO0467	1807	773		
RXA01685		GRO0470	1488	910		

<u>Identification</u>	<u>Code</u>	<u>Config.</u>	<u>Start</u>	<u>NT</u>	<u>Stop</u>
RXA01749		GR00195	4633	6249	
RXA01806		GR00509	6595	7074	
RXA02080		GR00828	1017	1021	1
RXA02172		GR00841	6919	6581	
RXA02295		GR00862	8842	6063	
RXA02297		GR00862	7502	8638	
RXA02390		GR00695	1500	832	
RXA02408		GR00702	832	5	
RXA02488		GR00719	1	369	
RXA02489		GR00719	373	936	
RXA02493		GR00720	9002	6435	
RXA02524		GR00725	2405	3094	
RXA02544		GR00726	16715	18142	
RXA02584		GR00741	8925	8575	
RXA02585		GR00741	9917	8937	
RXA02598		GR00742	2576	3165	
RXA02600		GR00742	5027	3830	
RXA02602		GR00742	7239	7742	
RXA02604		GR00742	8800	10835	
RXA02693		GR00755	1650	4	
RXA02700		GR00757	3507	4742	
RXA02701		GR00757	4838	6145	
RXA00854		GR00169	7213	8478	
RXA01425		GR00417	1701	2585	
RXA02549		GR00728	1331	6	
RXA02579		GR00740	4385	3838	
RXA02580		GR00740	4982	4239	
RXA00806		GR00216	277	5	
RXA00808		GR00217	1029	352	
RXA01318		GR00382	3616	2315	
RXA01677		GR00467	5043	4300	
RXA01658		GR00481	5	1489	
RXA02697		GR00757	1	699	
RXA02719		GR00758	19598	20245	
RXA00003		GR00001	2279	3019	
RXA00015		GR00002	5999	6307	
RXA00018		GR00002	12978	14277	
RXA00020		GR00002	17142	16363	
RXA00021		GR00002	18766	20338	
RXA00022		GR00002	20583	21297	
RXA00028		GR00003	8058	6112	
RXA00031		GR00003	10381	9982	
RXA00036		GR00004	7204	8619	
RXA00037		GR00004	9557	8635	
RXA00039		GR00006	2099	1431	
RXA00040		GR00006	2499	2095	

Table I, Page 8

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
		<u>Config.</u>	<u>Start</u>
RXA00047	RX00008	514	95
RXA00049	GR00008	270	2656
RXA00058	GR00009	1463	714
RXA00059	GR00009	7394	6831
RXA00063	GR00010	8101	8020
RXA00065	GR00010	1658	1174
RXA00067	GR00010	4140	4412
RXA00088	GR00011	708	223
RXA00077	GR00012	1305	724
RXA00079	GR00012	4228	5589
RXA00080	GR00012	6599	6820
RXA00082	GR00012	7342	6923
RXA00083	GR00013	771	1070
RXA00086	GR00013	2739	1092
RXA00087	GR00013	3983	1456
RXA00094	GR00014	3163	3435
RXA00110	GR00016	364	912
RXA00114	GR00017	3420	3908
RXA00119	GR00019	1704	2462
RXA00120	GR00019	2798	1451
RXA00121	GR00019	3473	4183
RXA00127	GR00020	2871	2416
RXA00128	GR00020	4709	3006
RXA00140	GR00022	3841	1658
RXA00141	GR00022	4307	3846
RXA00142	GR00022	4776	4300
RXA00151	GR00023	4958	5552
RXA00154	GR00023	8568	7728
RXA00155	GR00023	8615	9397
RXA00162	GR00024	5438	5701
RXA00167	GR00025	4324	4584
RXA00169	GR00026	5222	3150
RXA00170	GR00026	9914	8081
RXA00171	GR00028	10316	10086
RXA00173	GR00027	1716	1384
RXA00174	GR00027	2079	1795
RXA00175	GR00027	2732	2103
RXA00176	GR00027	3475	3317
RXA00179	GR00028	1714	1258
RXA00194	GR00030	290	6
RXA00199	GR00031	2172	754
RXA00200	GR00031	2837	2535
RXA00207	GR00032	8430	6747
RXA00211	GR00032	10120	10782
RXA00218	GR00032	18104	19243
RXA00222	GR00032	21073	22218
RXA00230	GR00034	746	27

<u>Identification</u>	<u>Code</u>	NT	Stop
RXA00232	GR00035	527	18
RXA00236	CR00036	3300	2575
RXA00237	CR00036	3668	4045
RXA00238	GR00038	4188	4554
RXA00240	GR00038	5142	5133
RXA00242	CR00036	7031	8233
RXA00244	CR00037	1585	930
RXA00245	CR00037	3049	1565
RXA00250	GR00038	6	221
RXA00252	GR00038	485	727
RXA00255	CR00039	2	604
RXA00256	CR00039	968	1738
RXA00257	OR00039	1760	2215
RXA00258	GR00039	3219	3890
RXA00260	CR00039	9234	10409
RXA00261	CR00039	11693	11265
RXA00264	GR00040	2459	2836
RXA00267	GR00040	4091	3822
RXA00272	GR00041	4420	4791
RXA00273	GR00042	185	1297
RXA00274	GR00042	1556	4165
RXA00275	GR00042	4696	4238
RXA00276	GR00042	5016	4675
RXA00282	GR00044	793	5
RXA00283	GR00045	142	1269
RXA00286	GR00046	578	1142
RXA00289	GR00047	2781	3189
RXA00302	GR00049	2595	3416
RXA00303	GR00050	459	4
RXA00308	GR00052	1081	887
RXA00320	GR00057	358	537
RXA00326	GR00057	9378	9857
RXA00334	OR00057	16762	17097
RXA00337	GR00058	510	6
RXA00342	GR00061	73	501
RXA00371	GR00071	4013	5464
RXA00353	CR00068	988	1680
RXA00355	GR00069	635	510
RXA00357	GR00070	3724	2768
RXA00358	GR00070	4069	5199
RXA00362	GR00073	2	961
RXA00373	CR00079	342	4
RXA00375	GR00080	549	49
RXA00380	GR00082	836	216
RXA00384	GR00083	395	6
RXA00387	GR00084	1403	591
RXA00390	GR00086	1437	1841
RXA00392	GR00086	3890	3027

Table 1, Page 10

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
<u>Config.</u>	<u>Start</u>	<u>NT</u>	<u>Stop</u>
RXA00194	GR00086	5312	4990
RXA00195	GR00086	5417	5716
RXA00197	GR00086	7206	6667
RXA00198	CR00087	1	681
RXA00408	GR00091	842	1088
RXA00409	GR00091	1088	2580
RXA00423	GR00097	809	457
RXA00424	GR00097	1379	909
RXA00425	GR00097	1433	1657
RXA00429	GR00098	3063	2682
RXA00433	CR00100	1446	1970
RXA00451	GR00110	816	325
RXA00457	GR00114	1451	372
RXA00463	GR00116	4288	3388
RXA00468	GR00118	1282	464
RXA00469	CR00119	1647	472
RXA00472	CR00119	5449	4589
RXA00475	GR00119	8822	8163
RXA00476	GR00119	8961	9821
RXA00481	GR00119	17636	18220
RXA00486	CR00120	1	702
RXA00493	GR00123	3	326
RXA00496	GR00123	1776	2177
RXA00504	GR00125	5007	5252
RXA00507	CR00127	1098	244
RXA00509	CR00128	316	140
RXA00510	CR00128	384	914
RXA00519	GR00132	4	516
RXA00522	GR00134	111	575
RXA00527	CR00136	3123	1380
RXA00528	CR00136	3562	4650
RXA00529	CR00136	5274	4712
RXA00530	CR00136	6837	5557
RXA00535	CR00137	5155	5871
RXA00546	CR00142	1	690
RXA00547	GR00142	641	1054
RXA00548	GR00143	3	506
RXA00549	GR00143	502	897
RXA00550	GR00143	935	1255
RXA00554	GR00145	1608	1136
RXA00581	GR00151	1	2739
RXA00584	GR00151	J744	4148
RXA00586	GR00156	2916	2245
RXA00587	GR00156	2980	3327
RXA00592	GR00156	9442	8924
RXA00595	GR00156	11894	11577
RXA00599	GR00156	14220	14582
RXA00595	GR00159	3	332

Identification	Code	Config	Start	NT	Stop	NT
RXA00597	RXA00597	GRO0159	797	1066		
RXA00598	RXA00598	GRO0159	1070	1187		
RXA00601	RXA00601	GRO0159	3459	3749		
RXA00604	RXA00604	GRO0159	5489	5779		
RXA00616	RXA00616	GRO0162	3574	3918		
RXA00617	RXA00617	GRO0162	4002	5084		
RXA00631	RXA00631	GRO0166	172	1626		
RXA00646	RXA00646	GRO0169	446	6		
RXA00647	RXA00647	GRO0169	641	1273		
RXA00652	RXA00652	GRO0169	5449	5997		
RXA00653	RXA00653	GRO0169	6924	6160		
RXA00656	RXA00656	GRO0169	9495	9235		
RXA00661	RXA00661	GRO0172	864	1353		
RXA00662	RXA00662	GRO0172	2671	1403		
RXA00664	RXA00664	GRO0173	635	1219		
RXA00676	RXA00676	GRO0178	647	1393		
RXA00678	RXA00678	GRO0179	1037	103		
RXA00682	RXA00682	GRO0181	3450	2317		
RXA00683	RXA00683	GRO0181	4303	3821		
RXA00701	RXA00701	GRO0182	427	801		
RXA00704	RXA00704	GRO0183	2972	3484		
RXA00707	RXA00707	GRO0185	177	1348		
RXA00712	RXA00712	GRO0187	1048	500		
RXA00714	RXA00714	GRO0188	1809	1249		
RXA00720	RXA00720	GRO0188	7865	7000		
RXA00721	RXA00721	GRO0189	361	5		
RXA00723	RXA00723	GRO0190	537	4		
RXA00724	RXA00724	GRO0191	811	164		
RXA00725	RXA00725	GRO0191	458	808		
RXA00728	RXA00728	GRO0192	841	701		
RXA00729	RXA00729	GRO0194	1	642		
RXA00730	RXA00730	GRO0194	1063	771		
RXA00739	RXA00739	GRO0202	819	4		
RXA00740	RXA00740	GRO0202	1646	1088		
RXA00741	RXA00741	GRO0202	2988	2054		
RXA00742	RXA00742	GRO0202	5517	3888		
RXA00743	RXA00743	GRO0202	6852	6210		
RXA00745	RXA00745	GRO0202	13874	11141		
RXA00746	RXA00746	GRO0202	11755	14945		
RXA00747	RXA00747	GRO0202	15067	15654		
RXA00748	RXA00748	GRO0202	15917	16380		
RXA00749	RXA00749	GRO0202	17240	16542		
RXA00750	RXA00750	GRO0202	18937	19374		
RXA00751	RXA00751	GRO0202	20245	19418		
RXA00752	RXA00752	GRO0202	21847	21419		
RXA00754	RXA00754	GRO0202	144	664		
RXA00757	RXA00757	GRO0202	3119	4372		
RXA00769	RXA00769	GRO0204	6624	6836		

<u>Identification</u>	<u>Code</u>	<u>Config.</u>	<u>Start</u>	<u>NT</u>	<u>Stop</u>
RXA00771	GR00205		857	180	
RXA00785	CR00207		625	5	
RXA00788	CR00209		910	686	
RXA00785	GR00211		4228	4755	
RXA00844	GR00215		438	881	
RXA00811	CR00218		1695	2198	
RXA00812	CR00219		287	1345	
RXA00814	GR00219		2463	3236	
RXA00815	GR00219		3236	3808	
RXA00816	CR00219		4382	4878	
RXA00826	CR00223		567	37	
RXA00831	CR00224		1662	961	
RXA00838	GR00226		797	2487	
RXA00837	GR00227		540	247	
RXA00840	GR00228		742	1455	
RXA00841	CR00228		1486	2002	
RXA00853	CR00231		3775	3173	
RXA00854	CR00231		4708	4920	
RXA00855	GR00232		526	242	
RXA00862	GR00236		580	17	
RXA00876	CR00241		4208	2454	
RXA00881	GR00242		8057	8434	
RXA00882	GR00242		8788	9485	
RXA00883	CR00242		10060	9542	
RXA00893	GR00244		789	193	
RXA00895	CR00244		2578	1988	
RXA00904	GR00246		1457	702	
RXA00908	GR00247		1611	2168	
RXA00914	GR00250		1271	6	
RXA00915	GR00251		514	5	
RXA00916	GR00251		4108	518	
RXA00917	GR00251		5534	4152	
RXA00919	CR00252		1890	882	
RXA00920	GR00252		2852	1890	
RXA00921	GR00252		4750	2852	
RXA00922	GR00252		6409	4823	
RXA00923	CR00252		6857	6684	
RXA00924	GR00252		7278	6817	
RXA00925	GR00252		8546	7281	
RXA00922	GR00253		5088	5541	
RXA00931	GR00253		6047	5588	
RXA00943	GR00258		3	509	
RXA00948	GR00259		3034	3807	
RXA00939	GR00265		402	728	
RXA00953	GR00268		442	5	
RXA00959	GR00273		1	147	
RXA00971	GR00273		1421	1149	
RXA00973	GR00274		2272	1670	

Table I. Page 13

Table I, Page 14

<u>Identification Code</u>	<u>NT Start</u>	<u>NT Stop</u>
RXA00978	GR00276	217
RXA00980	GR00280	1371
RXA01005	GR00286	520
RXA01007	GR00287	2572
RXA01008	GR00287	2719
RXA01016	GR00280	1141
RXA01028	GR00280	3
RXA01029	GR00285	1336
RXA01031	GR00285	1182
RXA01032	GR00295	3974
RXA01033	GR00295	4363
RXA01034	GR00295	5177
RXA01035	GR00295	5918
RXA01036	GR00285	6513
RXA01037	GR00295	7000
RXA01038	GR00295	7530
RXA01039	GR00295	9540
RXA01040	GR00295	9711
RXA01041	GR00295	10780
RXA01042	GR00295	11088
RXA01043	GR00295	12774
RXA01044	GR00295	14024
RXA01045	GR00295	15407
RXA01046	GR00295	17441
RXA01047	GR00295	19244
RXA01058	GR00296	8568
RXA01052	GR00297	490
RXA01063	GR00297	828
RXA01066	GR00298	605
RXA01069	GR00299	606
RXA01075	GR00300	3289
RXA01083	GR00302	1777
RXA01085	GR00303	980
RXA01086	GR00304	2
RXA01092	GR00305	702
RXA01098	GR00306	4341
RXA01103	GR00306	10316
RXA01107	GR00308	13612
RXA01108	GR00308	15882
RXA01109	GR00308	16281
RXA01112	GR00307	1
RXA01121	GR00310	2419
RXA01122	GR00311	557
RXA01123	GR00311	1090
RXA01127	GR00314	2
RXA01128	GR00314	1325
RXA01131	GR00315	445
RXA01134	GR00317	2

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
RXA01137	GR00318	1101	1480
RXA01140	GR00318	3272	4957
RXA01148	GR00323	1452	2051
RXA01153	GR00325	546	4
RXA01154	GR00326	808	9
RXA01155	GR00327	1170	6
RXA01159	GR00327	1588	1088
RXA01160	GR00328	4187	3213
RXA01163	GR00331	710	6
RXA01165	GR00332	2155	1583
RXA01166	GR00332	3005	2523
RXA01167	GR00333	3	123
RXA01169	GR00334	1	567
RXA01170	GR00334	638	1120
RXA01171	GR00334	1714	2408
RXA01173	GR00334	4853	4239
RXA01174	GR00324	6004	5255
RXA01176	GR00335	4106	4555
RXA01184	GR00338	1489	17
RXA01187	GR00338	3850	4308
RXA01206	GR00146	593	853
RXA01210	GR00349	3	695
RXA01213	GR00351	1508	282
RXA01218	GR00353	1078	1505
RXA01231	GR00356	1384	1887
RXA01233	GR00156	4242	3871
RXA01234	GR00357	6113	250
RXA01256	GR00365	5613	5785
RXA01263	GR00367	10720	11631
RXA01287	GR00387	16799	15986
RXA01275	GR00367	28418	29335
RXA01276	GR00387	29993	30518
RXA01281	GR00389	3869	4630
RXA01295	GR00373	3764	4738
RXA01298	GR00373	5836	4754
RXA01301	GR00375	1993	1589
RXA01304	GR00376	1982	2467
RXA01306	GR00376	5691	4684
RXA01310	GR00380	803	47
RXA01313	GR00381	1116	112
RXA01315	GR00382	1394	744
RXA01316	GR00382	1855	1563
RXA01317	GR00382	2286	1877
RXA01326	GR00386	45	318
RXA01330	GR00387	569	1024
RXA01333	GR00389	1231	227
RXA01336	GR00389	1840	1038
RXA01337	GR00389	3065	3653

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
RXA01349		GR00392	1531
RXA01378		GR00401	1281
RXA01383		GR00408	1147
RXA01384		GR00406	3238
RXA01380		GR00408	992
RXA01391		GR00408	2078
RXA01400		GR00409	2986
RXA01401		GR00409	1193
RXA01402		GR00409	3508
RXA01403		GR00409	3981
RXA01405		GR00410	4410
RXA01410		GR00410	1844
RXA01413		GR00411	6866
RXA01414		GR00412	8554
RXA01415		GR00412	1628
RXA01417		GR00412	2192
RXA01421		GR00414	845
RXA01422		GR00416	1215
RXA01434		GR00416	2003
RXA01440		GR00417	10228
RXA01441		GR00418	7496
RXA01445		GR00418	8542
RXA01447		GR00418	15083
RXA01448		GR00418	17885
RXA01452		GR00419	19756
RXA01456		GR00420	2363
RXA01457		GR00420	898
RXA01459		GR00420	1499
RXA01460		GR00420	3111
RXA01469		GR00422	4066
RXA01470		GR00422	2091
RXA01471		GR00422	4112
RXA01472		GR00422	5243
RXA01473		GR00422	5783
RXA01474		GR00422	6596
RXA01475		GR00422	6878
RXA01476		GR00422	7651
RXA01479		GR00422	7847
RXA01484		GR00422	12423
RXA01485		GR00422	20068
RXA01518		GR00424	7223
RXA01519		GR00424	8188
RXA01520		GR00424	23725
RXA01525		GR00424	12650
RXA01527		GR00425	19523
RXA01529		GR00426	24764
RXA01536		GR00427	32301
RXA01538		GR00428	22281
		GR00424	21228
		GR00424	24471
		GR00426	2
		GR00427	2825
		GR00428	2042

<u>Identification</u>	<u>NT</u>	<u>NT</u>
<u>Code</u>	<u>Start</u>	<u>Stop</u>
<u>Config</u>		
RXA01540	GR00428	3083
RXA01542	GR00429	3
RXA01543	GR00430	2802
RXA01544	GR00430	3498
RXA01545	GR00430	4838
RXA01546	GR00430	5584
RXA01547	GR00430	6371
RXA01548	GR00430	6742
RXA01549	GR00430	8426
RXA01552	GR00431	6122
RXA01554	GR00432	3719
RXA01557	GR00433	859
RXA01560	GR00435	767
RXA01563	GR00437	1176
RXA01566	GR00437	1666
RXA01567	GR00437	2213
RXA01574	GR00438	6963
RXA01575	GR00438	8024
RXA01579	GR00439	671
RXA01586	GR00441	1597
RXA01587	GR00442	120
RXA01590	GR00445	1710
RXA01598	GR00447	7414
RXA01602	GR00447	13591
RXA01605	GR00448	880
RXA01610	GR00449	4343
RXA01611	GR00449	4832
RXA01612	GR00449	5235
RXA01618	GR00451	1387
RXA01619	GR00451	2407
RXA01627	GR00453	1
RXA01628	GR00453	4476
RXA01630	GR00454	866
RXA01634	GR00454	1004
RXA01638	GR00456	825
RXA01639	GR00456	1334
RXA01641	GR00456	866
RXA01642	GR00456	5182
RXA01643	GR00456	6557
RXA01652	GR00458	8374
RXA01659	GR00458	971
RXA01683	GR00462	3
RXA01685	GR00463	438
RXA01672	GR00467	2
RXA01675	GR00467	2824
RXA01676	GR00467	4179
RXA01681	GR00467	10881
RXA01688	GR00470	2026

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
RXA01694	GR00474	3931	3032
RXA01697	GR00476	761	1486
RXA01701	GR00478	196	328
RXA01703	GR00479	2118	1648
RXA01708	GR00482	312	602
RXA01711	GR00484	2007	850
RXA01714	GR00485	985	371
RXA01729	GR00489	2836	3154
RXA01731	GR00491	109	697
RXA01734	GR00492	544	1077
RXA01741	GR00493	7535	6738
RXA01742	GR00493	7614	8117
RXA01750	GR00498	1878	3518
RXA01751	GR00496	5576	5830
RXA01752	GR00497	557	6
RXA01753	GR00497	2095	557
RXA01754	GR00497	4082	2142
RXA01760	GR00498	5095	5376
RXA01761	GR00499	7001	5484
RXA01765	GR00500	3144	4085
RXA01767	GR00501	341	6
RXA01768	GR00501	627	450
RXA01769	GR00501	1275	847
RXA01770	GR00501	5134	1370
RXA01771	GR00502	888	85
RXA01773	GR00503	34	444
RXA01774	GR00503	634	1416
RXA01775	GR00504	176	741
RXA01776	GR00504	838	2289
RXA01777	GR00504	2319	2777
RXA01778	GR00504	2012	4048
RXA01779	GR00504	4246	5684
RXA01780	GR00504	5721	6095
RXA01781	GR00504	6052	6312
RXA01782	GR00504	6384	6779
RXA01783	GR00504	6842	7078
RXA01785	GR00505	729	1304
RXA01787	GR00506	2	355
RXA01788	GR00506	381	801
RXA01789	GR00506	875	1516
RXA01790	GR00508	1872	1731
RXA01791	GR00508	1885	2247
RXA01792	GR00508	2310	2582
RXA01793	GR00508	2916	3149
RXA01794	GR00508	3194	3427
RXA01799	GR00509	377	1570
RXA01800	GR00509	2292	1573
RXA01809	GR00510	3	638

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
RXA01812	CR00514	3	1232
RXA01813	GRO0515	635	6
RXA01816	GRO0515	4210	4941
RXA01817	OR00515	4941	5573
RXA01820	CR00515	8180	9733
RXA01825	CR00516	2847	2578
RXA01831	GRO0516	10413	10413
RXA01834	GRO0517	2418	1777
RXA01842	GRO0522	1397	480
RXA01843	GRO0522	876	1067
RXA01845	GRO0522	1919	2126
RXA01846	GRO0523	261	4
RXA01847	GRO0524	52	788
RXA01854	GRO0525	5692	5946
RXA01855	GRO0526	1	1816
RXA01856	GRO0527	225	770
RXA01857	GRO0527	939	1589
RXA01858	GRO0529	518	6
RXA01870	GRO0524	2123	2797
RXA01874	GRO0535	2556	2903
RXA01889	GRO0544	1674	2659
RXA01902	GRO0544	7957	7094
RXA01903	GRO0545	J	281
RXA01904	GRO0545	762	340
RXA01905	GRO0545	1074	1604
RXA01906	GRO0545	2322	2788
RXA01907	GRO0545	3176	3787
RXA01908	GRO0545	4030	4512
RXA01909	GRO0546	59	937
RXA01910	GRO0546	1030	1875
RXA01911	GRO0546	2189	3044
RXA01921	GRO0551	943	5
RXA01923	GRO0552	1311	1739
RXA01924	GRO0553	1	837
RXA01925	GRO0553	1008	1674
RXA01930	GRO0555	1817	2867
RXA01941	GRO0557	995	1429
RXA01956	GRO0563	221	1270
RXA01957	GRO0564	389	850
RXA01958	GRO0564	910	1416
RXA01959	GRO0584	1639	2019
RXA01980	GRO0585	187	504
RXA01981	GRO0585	521	1000
RXA01982	GRO0585	1022	1591
RXA01983	GRO0585	1757	2440
RXA01984	GRO0566	1329	4
RXA01985	GRO0566	1935	1375
RXA01988	GRO0567	5889	5216

Table 1, Page 19

<u>Identification</u>	<u>NT</u>	<u>NT</u>
<u>Code</u>	<u>Start</u>	<u>Stop</u>
<u>Config.</u>		
RXA01971	GR00570	583
RXA01974	GR00570	2109
RXA01978	GR00571	2222
RXA01977	GR00571	3742
RXA01973	GR00571	4547
RXA01981	GR00572	3972
RXA01981	GR00573	1187
RXA01989	GR00573	2105
RXA01987	GR00576	2583
RXA01888	GR00576	167
RXA01990	GR00576	379
RXA01991	GR00581	462
RXA01991	GR00581	1
RXA01989	GR00581	999
RXA02006	GR00589	928
RXA02007	GR00589	1720
RXA02001	GR00589	2384
RXA02003	GR00590	2854
RXA02004	GR00590	700
RXA02011	GR00593	152
RXA02011	GR00594	4
RXA02005	GR00594	501
RXA02013	GR00594	999
RXA02014	GR00597	447
RXA02007	GR00597	4
RXA02019	GR00598	55
RXA02009	GR00601	223
RXA02011	GR00601	127
RXA02011	GR00603	5
RXA02013	GR00603	209
RXA02014	GR00603	46
RXA02019	GR00603	166
RXA02009	GR00607	498
RXA02019	GR00607	4
RXA02019	GR00612	651
RXA02021	GR00612	223
RXA02011	GR00612	597
RXA02013	GR00612	106
RXA02014	GR00612	5
RXA02021	GR00613	1061
RXA02016	GR00619	3441
RXA02039	GR00621	3821
RXA02040	GR00621	812
RXA02045	GR00621	5
RXA02046	GR00623	9113
RXA02049	GR00623	2173
RXA02050	GR00623	2680
RXA02051	GR00623	2943
RXA02045	GR00624	1452
RXA02046	GR00624	925
RXA02049	GR00624	915
RXA02050	GR00624	540
RXA02051	GR00624	940
RXA02051	GR00624	540
RXA02051	GR00624	925
RXA02051	GR00624	1452
RXA02051	GR00624	925
RXA02058	GR00625	1452
RXA02059	GR00625	2462
RXA02051	GR00624	2833
RXA02051	GR00624	9113
RXA02051	GR00624	2173
RXA02051	GR00624	2680
RXA02049	GR00624	1583
RXA02050	GR00624	2029
RXA02051	GR00624	2462
RXA02051	GR00624	3188
RXA02051	GR00624	1683
RXA02051	GR00624	2173
RXA02051	GR00624	2680
RXA02058	GR00625	5404
RXA02059	GR00625	4051
RXA02058	GR00625	4051
RXA02059	GR00625	4878
RXA02068	GR00626	4184
RXA02067	GR00626	6187
RXA02067	GR00626	6678
RXA02067	GR00626	6713
RXA02069	GR00627	7188
RXA02081	GR00628	1116
RXA02084	GR00628	1694
RXA02089	GR00628	12307
RXA02090	GR00629	13935
RXA02091	GR00629	10512
RXA02094	GR00629	9862
RXA02097	GR00629	13282
RXA02097	GR00630	13998
RXA02102	GR00630	184
RXA02102	GR00631	3555
RXA02103	GR00631	4479
RXA02109	GR00632	3322
RXA02114	GR00634	4905
RXA02114	GR00634	2540
RXA02114	GR00634	615
RXA02114	GR00634	130

Table I. Page 20

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
<u>Config.</u>	<u>Start</u>	<u>NT</u>	<u>Stop</u>
RXA02121	GR00636	5813	5109
RXA02125	GR00637	739	1539
RXA02129	GR00637	5906	6139
RXA02146	GR00639	14742	15168
RXA02151	GR00639	19913	21100
RXA02152	GR00640	237	638
RXA02163	GR00640	10072	10824
RXA02164	GR00640	10824	12398
RXA02165	GR00640	12388	12999
RXA02168	GR00641	2894	81
RXA02169	GR00641	3172	4017
RXA02170	GR00641	4798	4025
RXA02178	GR00641	13628	14497
RXA02181	GR00641	17168	17945
RXA02185	GR00641	20185	20763
RXA02186	GR00641	21213	20995
RXA02199	GR00646	2591	3160
RXA02203	GR00646	7469	7092
RXA02208	GR00846	9827	10362
RXA02207	GR00646	10909	11667
RXA02212	GR00649	964	467
RXA02221	GR00651	6720	8081
RXA02226	GR00653	1059	4
RXA02227	GR00851	1216	1853
RXA02230	GR00653	4158	3620
RXA02231	GR00851	5111	4356
RXA02238	GR00854	5241	5525
RXA02256	GR00855	653	1165
RXA02267	GR00655	2053	1181
RXA02271	GR00855	5406	5963
RXA02279	GR00657	1	1404
RXA02280	GR00858	2	754
RXA02283	GR00660	2	532
RXA02285	GR00860	1544	2272
RXA02286	GR00860	1285	1833
RXA02287	GR00880	4071	4622
RXA02294	GR00882	5992	5618
RXA02298	GR00862	8978	7466
RXA02300	GR00882	11184	10862
RXA02301	GR00882	11910	11194
RXA02302	GR00862	12036	12800
RXA02303	GR00883	1	720
RXA02304	GR00863	1613	723
RXA02307	GR00864	395	6
RXA02325	GR00868	4314	3445
RXA02330	GR00570	605	15
RXA02331	GR00871	396	781
RXA02338	GR00672	2731	2552

Table I. Page 21

<u>Identification</u>	<u>NT</u>	<u>Stop</u>
<u>Code</u>	<u>Start</u>	<u>Stop</u>
<u>Config.</u>	<u>Start</u>	<u>Stop</u>
RXA02330	GR00873	5
RXA02339	GR00874	492
RXA02340	GR00874	1214
RXA02341	GR00875	5
RXA02356	GR00884	761
RXA02358	GR00885	1239
RXA02360	GR00885	1529
RXA02361	GR00885	6076
RXA02362	GR00885	6810
RXA02366	GR00887	10743
RXA02368	GR00887	254
RXA02374	GR00888	1561
RXA02381	GR00891	2918
RXA02388	GR00898	2244
RXA02401	GR00899	6160
RXA02406	GR00701	1626
RXA02412	GR00701	2246
RXA02415	GR00704	1792
RXA02417	GR00705	770
RXA02421	GR00705	2841
RXA02423	GR00705	4370
RXA02428	GR00704	3391
RXA02433	GR00708	4755
RXA02437	GR00708	4491
RXA02441	GR00705	1122
RXA02452	GR00703	774
RXA02456	GR00703	2043
RXA02457	GR00707	2522
RXA02480	GR00708	695
RXA02481	GR00705	170
RXA02484	GR00705	4755
RXA02486	GR00708	2612
RXA02487	GR00708	6428
RXA02489	GR00706	221
RXA02494	GR00707	6
RXA02495	GR00707	4585
RXA02497	GR00708	3980
RXA02498	GR00709	2410
RXA02499	GR00709	9113
RXA02500	GR00711	7936
RXA02454	GR00711	3
RXA02457	GR00712	815
RXA02480	GR00712	2404
RXA02481	GR00712	5839
RXA02484	GR00712	5316
RXA02486	GR00713	6232
RXA02487	GR00713	5845
RXA02489	GR00713	815
RXA02494	GR00713	1107
RXA02495	GR00713	1613
RXA02497	GR00713	2014
RXA02498	GR00714	1616
RXA02499	GR00714	6
RXA02499	GR00714	92
RXA02499	GR00714	419
RXA02499	GR00715	5924
RXA02500	GR00715	8441
RXA02505	GR00715	8695
RXA02478	GR00716	1245
RXA02480	GR00716	10
RXA02481	GR00716	1813
RXA02481	GR00716	1001
RXA02510	GR00720	11016
RXA02510	GR00720	11819
RXA02510	GR00720	13460
RXA02510	GR00720	13558
RXA02510	GR00720	18423
RXA02508	GR00720	19484
RXA02508	GR00720	18603
RXA02510	GR00721	1983
RXA02510	GR00721	2618
RXA02519	GR00724	1913
RXA02520	GR00724	128
RXA02534	GR00724	2122
RXA02534	GR00726	2905
RXA02537	GR00726	5516
RXA02537	GR00726	6139
RXA02538	GR00726	9422
RXA02546	GR00726	10093
RXA02546	GR00726	18827

Table 1, Page 22

<u>Identification</u>	<u>Code</u>	<u>NT</u>	<u>Stop</u>
<u>Conf.</u>	<u>Start</u>	<u>NT</u>	<u>Stop</u>
RXA02552	GR00730	924	110
RXA02554	GR00731	1050	427
RXA02555	GR00731	1157	1155
RXA02564	GR00732	2543	2217
RXA02568	GR00735	1363	5
RXA02569	GR00736	82	831
RXA02570	GR00736	837	1478
RXA02576	GR00740	1569	148
RXA02577	GR00740	2463	1579
RXA02591	GR00741	15780	17609
RXA02593	GR00741	18893	18481
RXA02594	GR00741	19077	18754
RXA02606	GR00742	13514	12144
RXA02609	GR00742	16197	16445
RXA02610	GR00742	16452	17378
RXA02619	GR00746	204	103
RXA02620	GR00746	192	1845
RXA02624	GR00748	5802	4889
RXA02647	GR00751	4155	4616
RXA02649	GR00752	1284	283
RXA02652	GR00752	2973	3551
RXA02655	GR00752	9313	8330
RXA02682	GR00753	1461	1724
RXA02670	GR00753	10189	10780
RXA02673	GR00753	14030	13388
RXA02676	GR00754	3858	4775
RXA02679	GR00754	5288	5893
RXA02680	GR00754	6392	5109
RXA02681	GR00754	5751	6194
RXA02683	GR00754	7742	7065
RXA02685	GR00754	10058	9402
RXA02698	GR00756	742	287
RXA02712	GR00758	13087	12273
RXA02715	GR00758	15847	15458
RXA02725	GR00760	1478	867
RXA02727	GR00780	6787	576
RXA02734	GR00762	6514	6897
RXA02738	GR00763	1753	797
RXA02744	GR00763	14460	13657
RXA02753	GR00765	2610	138
RXA02758	GR00766	3051	2981
RXA02757	GR00766	4475	3930
RXA02765	GR00769	3552	2794
RXA02770	GR00772	3	1122
RXA02774	GR00773	3	473
RXA02775	GR00773	744	968
RXA02776	GR00773	1713	1372
RXA02777	GR00773	4628	5732

Table 1, Page 2]

<u>Identification</u>	<u>Code</u>	<u>Config.</u>	<u>NT</u>	<u>Stop</u>
			<u>Start</u>	
RXA02778		GR00773	10095	10319
RXA02779		GR00773	10617	10895
RXA02780		GR00773	10954	11280
RXA02781		GR00774	11345	155
RXA02782		GR00775	204	975
RXA02783		GR00775	845	1393
RXA02784		GR00775	1751	1936
RXA02785		GR00777	2	808
RXA02793		GR00777	9185	8684
RXA02812		GR00793	2	568
RXA02815		GR00796	1	554
RXA02823		GR00804	275	6
RXA02825		GR00806	585	182
RXA02826		GR00812	428	6
RXA02827		GR00824	289	523
RXA02835		GR00831	1	462
RXA02838		GR00840	283	5
RXA02841		GR00841	356	15
RXA02842		GR00843	247	495
RXA02844		GR00844	2	616
RXA02845		GR00845	578	6
RXA02848		CR10003	459	211
RXA02853		CR10004	1392	267
RXA02858		CR10006	1695	2130
RXA02862		CR10008	610	5
RXA02867		CR10008	2017	1262
RXA02868		CR10009	390	4
RXA02869		CR10011	6	344
RXA02870		CR10011	398	830
RXA02871		CR10016	405	1067
RXA02876		CR10019	94	759
RXA02881		CR10020	2	724
RXA02882		CR10021	1	1538
RXA02885		CR10024	328	754
RXA02888		CR10026	1123	2706
RXA02889		CR10035	3	602
RXA02892		CR10035	1171	668
RXA02898		CR10038	256	5
RXA02895		CR10044	477	4
RXA01494		CR00423	8515	7520
RXA01092		GR00105	702	881
RXA01186		GR00138	3742	2645

TABLE 2: GENES IDENTIFIED FROM GENBANK

GenBank™ Accession No.	Gene Name	Gene Function	Reference
AG9073	ppg	Phosphoenol pyruvate carboxylase	Bachmann, B. et al "DNA fragment coding for phosphoenolpyruval carboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-amino acids using said strains," Patent: EP 0358940-A 3 03/21/90
A45579, A45581, A45583, A45585 A45587		Threonine dehydratase	Mockel, B. et al. "Production of L-isocucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent. WO 9519442-A 5 07/20/95
AB003132	murC, ftsQ, ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," <i>Biochem Biophys Res Commun</i> , 236(2):383-388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," <i>Appl. Microbiol Biotechnol</i> , 51(2):223-228 (1999)
AB018530	disR		Kimura, E. et al. "Molecular cloning of a novel gene, disR, which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium lacticfermentum</i> ," <i>Biochi Biotechnol Biochem</i> , 60(10):1563-1570 (1996)
AB018531	disR1; disR2	D,L-glutamate racemase	
AB020624	muuI	transketolase	
AB023377	tkI	Glutamine 2-oxoglutarate aminotransferase	
AB024708	gltB, gltD	large and small subunits	
AB023424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; aad	Replication protein; aminoglycoside adenyltransferase	
AF005242	argC	N-acetylglutamate- δ -semialdehyde dehydrogenase	
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	L-argininosuccinate synthetase	
AF031118	argF	Ornithine carbamoyltransferase	
AF036932	aoD	β -dihydroquinic dehydrogenase	

Table 2, Page 1

GenBank™ Accession No.	Gene Name	Gene Function	Reference
AF038548	pyc	Pyruvate carboxylase	
AF038651	dciA; epi; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP pyrophosphokinase	Wachmeier, L. et al. "The role of the <i>Corynebacterium glutamicum</i> rel gene in (p)ppGpp metabolism." <i>Microbiology</i> , 144, 1853-1862 (1998)
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB; argD; argF; argR; argG; argH	N-acetylglutamylphosphate reductase; ornithine acetyltransferase; N-acetylglutamate kinase; acetylornithine transaminase; ornithine carbamoyltransferase; arginine repressor; argininosuccinate synthase; argininosuccinate lyase	
AF050109	inhA	Enoyl-acyl carrier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino- δ -amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase	
AF052652	mcIA	Homocysteine O-acetyltransferase	Park, S. et al. "Isolation and analysis of mcIA, a methionine biosynthetic gene encoding homocysteine acetyltransferase in <i>Corynebacterium glutamicum</i> ," <i>Mol Cells.</i> , 8(3):286-294 (1998)
AF053071	aoB	Dihydroquinolale synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphonibosyl- λ TP, pyrophosphohydrolyase	
AF114233	aroY	S-enolpyruvylshikimate 3-phosphate synthase	
AF116184	panD	L-aspartate- α -ketoadoxylase precursor	Dusch, N. et al. "Expression of the <i>Corynebacterium glutamicum</i> panD gene encoding L-aspartate- α -ketoadoxylase leads to pantothenate overproduction in <i>Escherichia coli</i> ," <i>Appl. Environ. Microbiol.</i> , 65(4) 1530-1539 (1999)

GenBank™ Accession No.	Gene Name	Gene Function	Reference
AF124518	aroD; aroE	3-dehydroquinate; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB; pppQ	Chorismate synthase; shikimate kinase; 3-dehydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA ectP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes. Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," <i>J. Bacteriol.</i> , 180(22):6905-6912 (1998)
AJ001436			Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity. A study with Corynebacterium glutamicum," <i>J. Bacteriol.</i> , 180(12):3159-3165 (1998)
AJ004934	dapD	Tetrahydredipicolinate succinylase (incomplete)	
AJ007732	prc; secG; aml; ucd; soxA	Phosphoenolpyruvate-carboxylylase; ?; high affinity ammonium uptake protein; putative ornithine-cyclododecarboxylase; sarcosine oxidase	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; isolation of genes involved in biochemical characterization of corresponding proteins," <i>FEMS Microbiol.</i> , 173(2):303-310 (1999)
AJ010319	fusY; glnB; glnD; sfp; amfP	Involved in cell division; PII protein; uridylyltransferase (uridylyl-removing enzyme); signal recognition particle; low affinity ammonium uptake protein	
AJ132968	cai	Chloramphenicol acetyl transferase	Molenati, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," <i>Eur. J. Biochem.</i> , 254(2):395-403 (1998)
AJ224946	nqo	L-malate: quinone oxidoreductase	
AJ238750	ndh	NADH dehydrogenase	Lichingei, T. et al. "Biochemical and biophysical characterization of the cell wall protein of Corynebacterium glutamicum. The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
AJ238703	rpoA	Porin	Vernes, A.A. et al. "Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 11(4):739-746 (1994)
D17429		Transposable element IS31831	

GenBank® Accession No.	Gene Name	Gene Function	Reference
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the <i>Corynebacterium glutamicum</i> (Brevibacterium lactofermentum A) J2036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," <i>Microbiology</i> , 142:3347-3354 (1996)
E01358	hdh, hk	L-homoserine dehydrogenase; homoserine kinase Upstream of the start codon of homoserine kinase gene	Katsunuma, R. et al. "Production of L-threonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01359		Tryptophan operon	Katsunuma, R. et al. "Production of L-threonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375	mpL, mpE	Leader peptide; anthranilate synthase Promoter and operator regions of tryptophan operon	Matsuji, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87
E01376			Matsuji, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87
E01377			Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088-A 1 10/02/92
E03937		Biotin synthase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04040		Diamino pelargonic acid aminotransferase Desthiobiotin synthetase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04041			Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93
E04307		Flavum aspartase	Katsunuma, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04376		Isocitric acid lyase	Katsunuma, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04377		Isocitric acid lyase N-terminal fragment	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076332-A 2 03/10/93
E04484		Prephenate dehydratase	Fuguno, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93
E05108		Aspartokinase	Hatakeyama, K. et al. "Gene DNA coding dihydrodipicolinic acid synthetase and its use," Patent: JP 1993184371-A 1 07/27/93
E05112		Dihydro-dipicolinate synthetase	

Table 2, Page 4

GenBank™ Accession No.	Gene Name	Gene Function	Reference
E05776	Diaminopimelic acid dehydrogenase	Kobayashi, M et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93	
E05779	Threonine synthase	Kohama, K. et al. "Gene DNA coding threonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93	
E06110	Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93	
E06111	Mutated Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93	
E06146	Acetohydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetohydroxy acid synthetase and its use," Patent: JP 1993344881-A 1 12/27/93	
E06825	Aspartokinase	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94	
E06826	Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94	
E06827	Mutated aspartokinase beta subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94	
E07701	secY	Honno, N. et al. "Gene DNA participating in integration of membraneous protein to membrane," Patent: JP 1994169780-A 1 06/12/94	
E08177	Aspartokinase	Saito, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94	
E08178, E08179, E08180, E08181,	Feedback inhibition-released Aspartokinase	Saito, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94	
E08182	Acetohydroxy acid isomeroeductase	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroeductase," Patent: JP 1994277067-A 1 10/04/94	
E08232		Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94	
E08234	secE	Iitakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95	
E08643	FT aminotransferase and deslithiotobiol synthetase promoter region	Iitakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95	
E08646	Biotin synthetase		

GenBank™ Accession No.	Gene Name	Gene Function	Reference	
E08649	Aspartase	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent. JP 1995031478-A 1 02/03/95		
E08900	Dihydrodipicolinate reductase	Madori, M. et al "DNA fragment containing gene coding Dihydrodipicolinic acid reductase and utilization thereof," Patent. JP 1995075578-A 1 03/20/95		
E08901	Diaminopimelic acid decarboxylase	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent. JP 1995075579-A 1 03/20/95		
E12594	Serine hydroxymethyltransferase	Hatakeyama, K. et al. "Production of L-tryptophan," Patent. JP 1997028391-A 1 02/04/97		
E12760, E12759, E12758	transposase	Moriya, M. et al "Amplification of gene using artificial transposon," Patent. JP 1997070291-A 03/18/97		
E12764	Arginyl-tRNA synthetase; diaminopimelic acid decarboxylase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent. JP 1997070291-A 03/18/97		
E12767	Dihydrodipicolinic acid synthetase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent. JP 1997070291-A 03/18/97		
E12770	aspartokinase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent. JP 1997070291-A 03/18/97		
E12773	Dihydrodipicolinic acid reductase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent. JP 1997070291-A 03/18/97		
E13655	Glucose-6-phosphate dehydrogenase	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent. JP 1997224661-A 1 09/02/97		
L01508	Threonine dehydratase	Morckel, B. et al "Functional and structural analysis of the threonine dehydratase of <i>Corynebacterium glutamicum</i> ," <i>J. Bacteriol.</i> , 174:8065-8072 (1992)		
L07603	EC 4.2.1.15	3-deoxy-D-arabinohexulosonate-7-phosphate synthase	Chen, C. et al. "The cloning and nucleotide sequence of <i>Corynebacterium glutamicum</i> 3-deoxy-D-arabinohexulosonate-7-phosphate synthase gene," <i>FEBS Microbiol Lett.</i> , 107:223-230 (1993)	
L09232	IlvB; ilvN; ilvC	Acetoxyhydroxy acid synthase large subunit; Acetoxyhydroxy acid synthase small subunit; Acetoxyhydroxy acid isomicroeductase	Kellhauer, C. et al. "Isoleucine synthesis in <i>Corynebacterium glutamicum</i> . molecular analysis of the ilvB-ilvN-ilvC operon," <i>J. Bacteriol.</i> , 175(17),5595-5603 (1993)	

Table 2, Page 6

GenBank® Accession No.	Gene Name	Gene Function	Reference
L18874	PstM	Phosphoenolpyruvate sugar phosphotransferase	Fouet, A et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria," <i>PNAS USA</i> , 84(24):8773-8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence," <i>FEMS Microbiol Lett.</i> , 119(1-2):137-145 (1994)
L27123	aceB	Malate synthase	Lee, H.-S. et al. "Molecular characterization of aceB, a gene encoding malate synthase in Corynebacterium glutamicum," <i>J Microbiol Biotechnol</i> , 4(4):256-263 (1994)
L27126		Pyruvate kinase	Icen, M. S. et al. "Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum," <i>Appl Environ Microbiol</i> , 60(7):2501-2507 (1994)
L28760	aceA	Isocitrate lyase	Oguriza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dxr from Brevibacterium lactofermentum," <i>J Bacteriol</i> , 177(2):465-467 (1995)
L15906	dtxI	Diphtheria toxin repressor	Follette, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum phcA gene," <i>J Bacteriol</i> , 167:695-702 (1986)
M13774		Phenylate dehydratase	Park, Y-H et al. "Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences," <i>J Bacteriol</i> , 169:1801-1806 (1987)
M16175	5S rRNA		Sano, K. et al. "Structure and function of the tlp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)
M16663	tpeE	Anthranilate synthase, 5' end	Sano, K. et al. "Structure and function of the tlp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)
M16664	tpA	Tryptophan synthase, 3' end	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032," <i>Gene</i> , 77(2):237-251 (1989)
M23819		Phosphoenolpyruvate carboxylase	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," <i>J Gen Microbiol</i> , 138:1167-1175 (1992)
M85106		23S rRNA gene insertion sequence	

GenBank™ Accession No.	Gene Name	Gene Function	Reference
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within the 23S rRNA genes," <i>J. Gen. Microbiol.</i> , 138: 1167-1175 (1992)
M89931	aecD; bmrQ, yhhw	Beta C-S lyase, branched-chain amino acid uptake carrier, hypothetical protein yhhw	Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," <i>J. Bacteriol.</i> , 174(9):2968-2977 (1992); Tauth, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the bmrQ gene product," <i>Arch. Microbiol.</i> , 169(4):303-312 (1998)
S59299	trp	Lleader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a mycoplasmal hyperproducing strain of <i>Corynebacterium glutamicum</i> : identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)
U11545	trpD	Anthraniate phosphoribosyltransferase	O'Gara, J.P. and Dunigan, L.K. (1994) Complete nucleotide sequence of the <i>Corynebacterium glutamicum</i> ATCC 21850 trpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
U13922	cglIM; cglIR, cglEIR	Putative type II 5'-cytosine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease	Schäfer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from <i>Corynebacterium glutamicum</i> ATCC 13032 and analysis of its role in intergeneric conjugation with <i>Escherichia coli</i> ," <i>J. Bacteriol.</i> , 176(23):7309-7319 (1994); Schäfer, A. et al. "The <i>Corynebacterium glutamicum</i> cglIM gene encoding a 5-cytosine in an MrBC-deficient <i>Escherichia coli</i> strain," <i>Gene</i> , 203(2):95-101 (1997)
UJ4965	rcaV		Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31224	ppx		Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31225	proC	L proline NADP+ 5'-oxidoreductase	Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31230	obj; proB, unkdh	?gamma glutamyl kinase similar to D-isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)

GenBank™ Accession No.	Gene Name	Gene Function	Reference
U31281	bioB	Biotin synthase	Serebirstkii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of <i>Methyllobacillus flagellatum</i> and <i>Corynebacterium glutamicum</i> ," <i>Gene</i> , 175:15-22 (1996)
U35023	thrR, accBC	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Jager, W. et al. "A <i>Corynebacterium glutanicum</i> gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," <i>Arch Microbiol.</i> , 166(2):76-82 (1996)
U43535	cmt	Multidrug resistance protein	Jager, W. et al. "A <i>Corynebacterium glutamicum</i> gene conferring multidrug resistance in the heterologous host <i>Escherichia coli</i> ," <i>J Bacteriol.</i> 179(7):2449-2451 (1997)
U43536	clpR	Heat shock ATP-binding protein	
U53587	aphA-3	3'5"-aminoglycoside phosphotransferase	
U89648		<i>Corynebacterium glutamicum</i> unidentified sequence involved in histidine biosynthesis, partial sequence	
X04960	trpA; trpB; trpC; trpD; trpE; trpG; trpL	Tryptophan operon	Matsui, K. et al. "Complete nucleotide and deduced amino acid sequences of the <i>Brevibacterium lacosfermentum</i> tryptophan operon," <i>Nucleic Acids Res.</i> 14(24):10113-10114 (1986)
X07563	lys A	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Yeh, P. et al. "Nucleic sequence of the lysA gene of <i>Corynebacterium glutamicum</i> and possible mechanisms for modulation of its expression," <i>Mol Gen. Genet.</i> , 212(1):112-119 (1988)
X14234	EC 4.1.1.31	Phosphoenolpyruvate carboxylase	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of <i>Corynebacterium glutamicum</i> : Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant Mol. Biol.</i> , 21(3):487-502 (1993)
X17313	fdA	Fructose-bisphosphate aldolase	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and functional analysis of the <i>Corynebacterium glutamicum</i> fdA gene: structural comparison of C. glutamicum fructose-1,6-biphosphate aldolase to class I and class II aldolases," <i>Mol. Microbiol.</i>
X53993	dppA	1,2,3-dihydroxyproline synthetase (EC 4.2.1.52)	Bonassie, S. et al. "Nucleic sequence of the dppA gene from <i>Corynebacterium glutamicum</i> ," <i>Nucleic Acids Res.</i> , 18(21):6421 (1990)

GenBank™ Accession No.	Gene Name	Gene Function	Reference
X54223		AttB-related site	Cianciotto, N. et al. "DNA sequence homology between attB-related sites of <i>Corynebacterium diphtheriae</i> , <i>Corynebacterium ulcerans</i> , <i>Corynebacterium glutamicum</i> , and the attP site of lambdacorynephage," <i>FEMS Microbiol. Lett.</i> , 66:299-302 (1990)
X54740	argS; lysA	Arginyl-tRNA synthetase; Diaminopimelate decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the <i>Corynebacterium glutamicum</i> lysA gene," <i>Mol. Microbiol.</i> , 4(11):1819-1830 (1990)
X55994	trpL; trpE	Putative leader peptide; anthranilate synthase component 1	Heery, D.M. et al. "Nucleotide sequence of the <i>Corynebacterium glutamicum</i> trpE gene," <i>Nucleic Acids Res.</i> , 18(23):7138 (1990)
X56037	thrC	Threonine synthase	Han, K.S. et al. "The molecular structure of the <i>Corynebacterium glutamicum</i> threonine synthase gene," <i>Mol. Microbiol.</i> , 4(10), 1693-1702 (1990)
X56075	attB-related site	Attachment site	Cianciotto, N. et al. "DNA sequence homology between attB-related sites of <i>Corynebacterium diphtheriae</i> , <i>Corynebacterium ulcerans</i> , <i>Corynebacterium glutamicum</i> , and the attP site of lambdacorynephage," <i>FEMS Microbiol. Lett.</i> , 66:299-302 (1990)
X57226	lysC-alpha; lysC-beta; asd	Aspartokinase-alpha subunit; Aspartate beta semialdehyde dehydrogenase	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspartic beta semialdehyde dehydrogenase gene asd in <i>Corynebacterium glutamicum</i> ," <i>Mol. Gen. Genet.</i> , 224(3):317-324 (1990)
X59403	gap; pgk; tpi	Glyceraldehyde-3-phosphate phosphoglycerate kinase, triosephosphate isomerase	Eikmanns, B.J. "Identification, sequence analysis, and expression of a <i>Corynebacterium glutamicum</i> gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase," <i>J. Bacteriol.</i> , 174(19):6076-6086 (1992)
X59404	gdh	Glutamate dehydrogenase	Bormann, E.R. et al. "Molecular analysis of the <i>Corynebacterium glutamicum</i> gdh gene encoding glutamate dehydrogenase," <i>Mol. Microbiol.</i> , 6(3):317-326 (1992)
X60312	lysI	L-lysine permease	Seep-Feldhaus, A.H. et al. "Molecular analysis of the <i>Corynebacterium glutamicum</i> lysI gene involved in lysine uptake," <i>Mol. Microbiol.</i> , 5(12):2995-3005 (1991)

Table 2, Page 11

GenBank™ Accession No.	Gene Name	Gene Function	Reference
X66078	cop1	Psi protein	Joliff, G. et al. "Cloning and nucleotide sequence of the <i>csp1</i> gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," <i>Mol. Microbiol.</i> , 6(16):2349-2362 (1992)
X66112	gII	Citrate synthase	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gIIA gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817-1828 (1994)
X67737	dapB	Dihydrodipicolinate reductase	Peyrel, J.L. et al. "Characterization of the <i>cspB</i> gene encoding PS2, an ordered surface-layer protein in <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 9(1):97-109 (1993)
X69103	csp2	Surface layer protein PS2	Bonamy, C. et al. "Identification of IS1206, a <i>Corynebacterium glutamicum</i> IS3-related insertion sequence and phylogenetic analysis," <i>Mol. Microbiol.</i> , 14(3):571-581 (1994)
X69104		IS3 related insertion element	Patek, M. et al. "Leucine synthesis in <i>Corynebacterium glutamicum</i> : enzyme activities, structure of leuA and effect of leuA inactivation on lysine synthesis," <i>Appl. Environ. Microbiol.</i> , 60(1):133-140 (1994)
X70959	leuV	Isopropylmalate synthase	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the <i>Corynebacterium glutamicum</i> icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," <i>J. Bacteriol.</i> , 177(3):774-782 (1995)
X71489	icd	Isocitrate dehydrogenase (NADP+)	
X72855	GDIIV	Glutamate dehydrogenase (NADP+)	Heger, D.M. et al. "A sequence from a tryptophan-hypocrotophan producing strain of S-methyltryptophan resistance Corynebacterium glutamicum encoding resistance to S-methyltryptophan," <i>Biotech Biophys Res. Commun.</i> , 20(3):1255-1262 (1994)
X75083, X75084	mtA		Fitzpatrick, R. et al. "Construction and characterization of recA mutant strains of <i>Corynebacterium glutamicum</i> and <i>Brevibacterium liquefamentum</i> ," <i>Appl. Microbiol. Biotechnol.</i> , 42(4):575-580 (1994)
X75085	icCA		Reinscheid, D.J. et al. "Characterization of the isocitric lyase gene from <i>Corynebacterium glutamicum</i> and biochemical analysis of the enzyme," <i>J. Bacteriol.</i> , 176(12):3474-3483 (1994)
X75504	aceA; thiX	Partial isocitrate lyase; ?	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta subunit genes," <i>Antonie Van Leeuwenhoek</i> , 64:285-305 (1993)
X76875		ATPase beta-subunit	

Table 2, Page 12

GenBank™ Accession No.	Gene Name	Gene Function	Reference
X77034	wf	Elongation factor Tu	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," <i>Antonie Van Leeuwenhoek</i> , 64: 285-305 (1993)
X77384	recA		Billman-Jacobs, H. "Nucleotide sequence of a recA gene from Corynebacterium glutamicum," <i>DNA Seq.</i> , 4(6):403-404 (1994)
X78491	aceB	Malate synthase	Reinscheid, D.J. et al. "Malate synthase from <i>Corynebacterium glutamicum</i> plasmid pCNEK encoding phosphotransacylase: sequence analysis," <i>Microbiology</i> , 140:309-3108 (1994)
X80629	16S rDNA	16S ribosomal RNA	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Nocardioides and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528 (1995)
X81191	gluA; gluB; gluC; gluD	Glutamate uptake system	Kronemeyer, W. et al. "Structure of the GluABCD cluster encoding the glutamate uptake system of <i>Corynebacterium glutamicum</i> ," <i>J Bacteriol.</i> , 177(5):1152-1158 (1995)
X81379	dapE	Succinylaminopimelate desuccinylase	Wehnmann, A. et al. "Analysis of different DNA fragments of <i>Corynebacterium glutamicum</i> complementing dapE of <i>Escherichia coli</i> ," <i>Microbiology</i> , 40:3349-3356 (1994)
X82061	16S rDNA	16S ribosomal RNA	Ruimy, R. et al. "Phylogeny of the genus <i>Corynebacterium</i> deduced from analyses of small-subunit ribosomal DNA sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):740-746 (1995)
X82928	astI; lysC	Aspartate-semialdehyde dehydrogenase; ?	Serebriiskii, I. et al. "Multicopy suppression by ast gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," <i>J. Bacteriol.</i> , 177(24):7255-7260 (1995)
X82929	proA	Gamma-glutamyl phosphate reductase	Serebriiskii, I. et al. "Multicopy suppression by ast gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," <i>J. Bacteriol.</i> , 177(24):7255-7260 (1995)
X84257	16S rDNA	16S ribosomal RNA	Pascual, C. et al. "Phylogenetic analysis of the genus <i>Corynebacterium</i> based on 16S rRNA gene sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):724-728 (1995)
X85965	aroP; dapE	Aromatic amino acid permease; ?	Wehnmann, A. et al. "Functional analysis of sequences adjacent to dapE of <i>Corynebacterium glutamicum</i> reveals the presence of aroP, which encodes the aromatic amino acid transporter," <i>J. Bacteriol.</i> , 177(20):5991-5993 (1995)

Table 2, Page 13

GenBank™ Accession No.	Gene Name	Gene Function	Reference
X86157	aigB, aigC; argD; aigF; argJ	Acetylglutamate kinase; N-acetyl-gamma-glutamyl-phosphate reductase; acetylornithine aminotransferase; ornithine carbamoyltransferase; glutamate N-acetyltransferase	Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in <i>Corynebacterium glutamicum</i> : enzyme evolution in the early steps of the arginine pathway," <i>Microbiology</i> , 142:99-108 (1996)
X89084	ackA	Phosphate acetyltransferase, acetate kinase	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the <i>Corynebacterium glutamicum</i> pha-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)
X89850	attB	Attachment site	Le Marrec, C. et al. "Genetic characterization of site-specific integration functions of phi A U2 infecting "Arthrobacter aurus" C70," <i>J. Bacteriol.</i> 178(7):1996-2004 (1996)
X90356		Promoter fragment F1	Palek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90357		Promoter fragment F2	Palek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90358		Promoter fragment F10	Palek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90359		Promoter fragment F13	Palek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90360		Promoter fragment F22	Palek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90361		Promoter fragment F34	Palek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90362		Promoter fragment F37	Palek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)

GenBank™ Accession No.	Gene Name	Gene Function	Reference
X90363	Promoter fragment F45	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142: 1297-1309 (1996)	
X90364	Promoter fragment F64	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142: 1297-1309 (1996)	
X90365	Promoter fragment F75	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142: 1297-1309 (1996)	
X90366	Promoter fragment PF101	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142: 1297-1309 (1996)	
X90367	Promoter fragment PF104	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142: 1297-1309 (1996)	
X90368	Promoter fragment PF109	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142: 1297-1309 (1996)	
X93513	am1	Siewe, R. M. et al. "Functional and genetic characterization of the (methyl) ammonium uptake carrier of <i>Corynebacterium glutamicum</i> ," <i>J. Biol. Chem.</i> , 271(10): 5398-5403 (1996)	
X93514	betP	Petei, I. et al. "Isolation, characterization, and expression of the <i>Corynebacterium glutamicum betP</i> gene, encoding the transport system for the compatible solute glycine betaine," <i>J. Bacteriol.</i> , 178(17):5229-5234 (1996)	
X93649	orf4	Patek, M. et al. "Identification and transcriptional analysis of the dapB-ORF2-dapA-ORF4 operon of <i>Corynebacterium glutamicum</i> , encoding two enzymes involved in L-lysine synthesis," <i>Biochemical Lett.</i> , 19:1113-1117 (1997)	
X96471	LysE, LysG	Vrijic, M. et al. "A new type of transporter with a new type of cellular function: L-lysine export from <i>Corynebacterium glutamicum</i> ," <i>Mol Microbiol</i> , 22(5):815-826 (1996)	

Table 2, Page 14

GenBank™ Accession No.	Gene Name	Gene Function	Reference
X96580	p _{anB} ; p _{anC} ; xylB	3-methyl-2-oxobutanoate hydroxymethyltransferase; pantoate beta-alanine ligase; xylulokinase	Sahin, H. et al. "D-pantothenate synthesis in <i>Corynebacterium glutamicum</i> and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," <i>Appl Environ Microbiol.</i> , 65(5):1973-1979 (1999).
X96962		Insertion sequence IS1207 and transposase	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer <i>Brevibacterium lactofermentum</i> (Corynebacterium glutamicum ATCC 13869)," <i>Gene</i> , 198:217-222 (1997)
X99289		Elongation factor P	Marcos, I.M. et al. "Nucleotide sequence of the homoserine kinase (thiB) gene of the <i>Brevibacterium lactofermentum</i> ," <i>Nucleic Acids Res.</i> , 15(9):3922 (1987)
Y00140	thiB	Homoserine kinase	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from <i>Corynebacterium glutamicum</i> ," <i>Nucleic Acids Res.</i> , 15(9):3917 (1987)
Y00151	ddh	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.16)	Maleus, L. M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thiA) gene of the <i>Brevibacterium lactofermentum</i> ," <i>Nucleic Acids Res.</i> , 15(24):10598 (1987)
Y00476	thiA	Homoserine dehydrogenase	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the <i>Corynebacterium glutamicum</i> hom-thiB operon," <i>Mol Microbiol.</i> , 2(1):63-72 (1988)
Y00546	hom; thiB	Homoserine dehydrogenase; homoserine kinase	Honnibia, M. P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from <i>Brevibacterium lactofermentum</i> ," <i>Mol Gen Genet.</i> , 259(1):97-104 (1998)
Y08964	mutC; ftsQ; divD; ftsZ	UPD-N-acetyl muramate-alanine ligase, division initiation protein or cell division protein; cell division protein	Peter, H. et al. "Isolation of the ftsZ gene of <i>Corynebacterium glutamicum</i> and characterization of a low-affinity uptake system for compatible solutes," <i>Arch Microbiol.</i> , 168(2):143-151 (1997)
Y09163	puuP	High affinity proline transport system	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from <i>Corynebacterium glutamicum</i> : characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915-927 (1998)
Y09548	pyc	Pyruvate carboxylase	Patek, M. et al. "Analysis of the leuB gene from <i>Corynebacterium glutamicum</i> ," <i>Appl Microbiol Biotechnol.</i> , 50(1):42-47 (1998)
Y09578	leuB	3-isopropylmalate dehydrogenase	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539-548 (1999)
Y12472		Attachment site bacteriophage Phi-16	

GenBank™ Accession No.	Gene Name	Gene Function	Reference
Y12537	prop	Proline/actone uptake system protein Attachment site Corynephage 304L	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary canters for compatible solutes. Identification, sequencing, and characterization of the proline/actone uptake system, ProP, and the actone/proline/glycine betaine carrier, EcpP," <i>J. Bacteriol.</i> , 180(22):6005-6012 (1998)
Y13221	glnA	Glutamine synthetase 1	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase 1," <i>FEMS Microbiol Lett.</i> , 154(1):81-88 (1997)
Y16642	lpd	Dihydrolipopamide dehydrogenase	Moreau, S. et al. "Analysis of the integration functions of & phi;304L. An integrase module among corynephages," <i>Virology</i> , 255(1): 150-159 (1999)
Y18059			Oguiza, J. A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum. Regulation of argS-lysA cluster expression by argininc," <i>J. Bacteriol.</i> , 175(22):7356-7362 (1993)
221501	argS; lysA	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydridopicolinic reductase, and a third polypeptide of unknown function," <i>J. Bacteriol.</i> , 175(9):2743-2749 (1993)
221502	dapA; dapB	Dihydridopicolinate synthase; dihydridopicolinic reductase	Malumbros, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," <i>Appl Environ Microbiol.</i> , 60(7):2209-2219 (1994)
229563	thrC	Threonine synthase	Oguiza, J. A. et al. "Multiple sigma factor genes in Brevibacterium lactofermentum. Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)
246753	16S rDNA	Gene for 16S ribosomal RNA	Oguiza, J. A. et al. "The galE gene encoding the UDP-galactose 4-epimerase; diphtheria toxin regulatory protein," <i>Gene</i> , 177:103-107 (1996)
249822	sigA	SigA sigma factor	Oguiza, J. A. et al. "Multiple sigma factor genes in Brevibacterium lactofermentum. Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)
249823	galE; dtxR	Catalytic activity UDP-galactose 4-epimerase; diphtheria toxin regulatory protein	Corcilia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," <i>Gene</i> , 170(1): 91-94 (1996)
249824	orf1; sigB	?; SigB sigma factor	
266534		Transposase	

* A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

GENUS	SPECIES	STRAIN	TYPE	DATE	NAME	NUMBER
Brevibacterium	ammoniagenes	21054				
Brevibacterium	ammoniagenes	19350				
Brevibacterium	ammoniagenes	19351				
Brevibacterium	ammoniagenes	19352				
Brevibacterium	ammoniagenes	19353				
Brevibacterium	ammoniagenes	19354				
Brevibacterium	ammoniagenes	19355				
Brevibacterium	ammoniagenes	19356				
Brevibacterium	ammoniagenes	21055				
Brevibacterium	ammoniagenes	21077				
Brevibacterium	ammoniagenes	21553				
Brevibacterium	ammoniagenes	21580				
Brevibacterium	ammoniagenes	39101				
Brevibacterium	butanicum	21196				
Brevibacterium	divaricatum	21792	R928			
Brevibacterium	flavum	21474				
Brevibacterium	flavum	21129				
Brevibacterium	flavum	21518				
Brevibacterium	flavum			B11474		
Brevibacterium	flavum			B11472		
Brevibacterium	flavum	21127				
Brevibacterium	flavum	21128				
Brevibacterium	flavum	21427				
Brevibacterium	flavum	21475				
Brevibacterium	flavum	21517				
Brevibacterium	flavum	21526				
Brevibacterium	flavum	21529				
Brevibacterium	flavum	B11477				

Table 3, Page 2

<i>Brevibacterium</i>	<i>flavum</i>			B11478
<i>Brevibacterium</i>	<i>flavum</i>	21127		
<i>Brevibacterium</i>	<i>flavum</i>			B11474
<i>Brevibacterium</i>	<i>halalii</i>	15527		
<i>Brevibacterium</i>	<i>keioglutamicum</i>	21004		
<i>Brevibacterium</i>	<i>ketoglutamicum</i>	21089		
<i>Brevibacterium</i>	<i>ketosoreductum</i>	21914		
<i>Brevibacterium</i>	<i>lactofermentum</i>		70	
<i>Brevibacterium</i>	<i>lactofermentum</i>		74	
<i>Brevibacterium</i>	<i>lactofermentum</i>		77	
<i>Brevibacterium</i>	<i>lactofermentum</i>	21798		
<i>Brevibacterium</i>	<i>lactofermentum</i>	21799		
<i>Brevibacterium</i>	<i>lactofermentum</i>	21800		
<i>Brevibacterium</i>	<i>lactofermentum</i>	21801		B11470
<i>Brevibacterium</i>	<i>lactofermentum</i>			B11471
<i>Brevibacterium</i>	<i>lactofermentum</i>			
<i>Brevibacterium</i>	<i>lactofermentum</i>	21086		
<i>Brevibacterium</i>	<i>lactofermentum</i>	21420		
<i>Brevibacterium</i>	<i>lactofermentum</i>	21086		
<i>Brevibacterium</i>	<i>lactofermentum</i>	31269		
<i>Brevibacterium</i>	<i>linens</i>	9174		
<i>Brevibacterium</i>	<i>linens</i>	19391		
<i>Brevibacterium</i>	<i>linens</i>	8377		
<i>Brevibacterium</i>	<i>pantothenticum</i>		11160	
<i>Brevibacterium</i>	<i>spec.</i>			7117.73
<i>Brevibacterium</i>	<i>spec.</i>			7117.73
<i>Brevibacterium</i>	<i>spec.</i>	14604		
<i>Brevibacterium</i>	<i>spec.</i>	21860		
<i>Brevibacterium</i>	<i>spec.</i>	21864		
<i>Brevibacterium</i>	<i>spec.</i>	21865		
<i>Brevibacterium</i>	<i>spec.</i>	21866		
<i>Brevibacterium</i>	<i>spec.</i>	19240		

Table 3, Page 3

<i>Corynebacterium</i>	<i>acecticidophilum</i>	21476	
<i>Corynebacterium</i>	<i>acetoacidophilum</i>	13870	
<i>Corynebacterium</i>	<i>uccologlutamicum</i>		B11473
<i>Corynebacterium</i>	<i>uccologlutamicum</i>		B11475
<i>Corynebacterium</i>	<i>acetoglutamicum</i>	15806	
<i>Corynebacterium</i>	<i>acetoglutamicum</i>	21491	
<i>Corynebacterium</i>	<i>acetoglutamicum</i>	31270	
<i>Corynebacterium</i>	<i>acetoglutamicum</i>		R3671
<i>Corynebacterium</i>	<i>acetophilum</i>		2399
<i>Corynebacterium</i>	<i>ammonigenes</i>	6872	
<i>Corynebacterium</i>	<i>ammoniagenes</i>	15511	
<i>Corynebacterium</i>	<i>fujikense</i>	21496	
<i>Corynebacterium</i>	<i>glutamicum</i>	14067	
<i>Corynebacterium</i>	<i>glutamicum</i>	39137	
<i>Corynebacterium</i>	<i>glutamicum</i>	21254	
<i>Corynebacterium</i>	<i>glutamicum</i>	21255	
<i>Corynebacterium</i>	<i>glutamicum</i>	31830	
<i>Corynebacterium</i>	<i>glutamicum</i>	13032	
<i>Corynebacterium</i>	<i>glutamicum</i>	14305	
<i>Corynebacterium</i>	<i>glutamicum</i>	15455	
<i>Corynebacterium</i>	<i>glutamicum</i>	13058	
<i>Corynebacterium</i>	<i>glutamicum</i>	13059	
<i>Corynebacterium</i>	<i>glutamicum</i>	13060	
<i>Corynebacterium</i>	<i>glutamicum</i>	21492	
<i>Corynebacterium</i>	<i>glutamicum</i>	21513	
<i>Corynebacterium</i>	<i>glutamicum</i>	21526	
<i>Corynebacterium</i>	<i>glutamicum</i>	21543	
<i>Corynebacterium</i>	<i>glutamicum</i>	13287	
<i>Corynebacterium</i>	<i>glutamicum</i>	21851	
<i>Corynebacterium</i>	<i>glutamicum</i>	21253	
<i>Corynebacterium</i>	<i>glutamicum</i>	21514	
<i>Corynebacterium</i>	<i>glutamicum</i>	21516	
<i>Corynebacterium</i>	<i>glutamicum</i>	21299	

Corynebacterium	glutamicum	21300
Corynebacterium	glutamicum	39684
Corynebacterium	glutamicum	21488
Corynebacterium	glutamicum	21649
Corynebacterium	glutamicum	21650
Corynebacterium	glutamicum	19223
Corynebacterium	glutamicum	13869
Corynebacterium	glutamicum	21157
Corynebacterium	glutamicum	21158
Corynebacterium	glutamicum	21159
Corynebacterium	glutamicum	21355
Corynebacterium	glutamicum	31808
Corynebacterium	glutamicum	21674
Corynebacterium	glutamicum	21562
Corynebacterium	glutamicum	21563
Corynebacterium	glutamicum	21564
Corynebacterium	glutamicum	21565
Corynebacterium	glutamicum	21566
Corynebacterium	glutamicum	21567
Corynebacterium	glutamicum	21568
Corynebacterium	glutamicum	21569
Corynebacterium	glutamicum	21570
Corynebacterium	glutamicum	21571
Corynebacterium	glutamicum	21572
Corynebacterium	glutamicum	21573
Corynebacterium	glutamicum	21579
Corynebacterium	glutamicum	19049
Corynebacterium	glutamicum	19050
Corynebacterium	glutamicum	19051
Corynebacterium	glutamicum	19052
Corynebacterium	glutamicum	19053
Corynebacterium	glutamicum	19054

Table 3, Page 5

<i>Corynebacterium</i>	<i>glutamicum</i>	19055
<i>Corynebacterium</i>	<i>glutamicum</i>	19056
<i>Corynebacterium</i>	<i>glutamicum</i>	19057
<i>Corynebacterium</i>	<i>glutamicum</i>	19058
<i>Corynebacterium</i>	<i>glutamicum</i>	19059
<i>Corynebacterium</i>	<i>glutamicum</i>	19060
<i>Corynebacterium</i>	<i>glutamicum</i>	19185
<i>Corynebacterium</i>	<i>glutamicum</i>	13286
<i>Corynebacterium</i>	<i>glutamicum</i>	21515
<i>Corynebacterium</i>	<i>glutamicum</i>	21527
<i>Corynebacterium</i>	<i>glutamicum</i>	21544
<i>Corynebacterium</i>	<i>glutamicum</i>	21492
<i>Corynebacterium</i>	<i>glutamicum</i>	B8183
<i>Corynebacterium</i>	<i>glutamicum</i>	B8182
<i>Corynebacterium</i>	<i>glutamicum</i>	B12416
<i>Corynebacterium</i>	<i>glutamicum</i>	B12417
<i>Corynebacterium</i>	<i>glutamicum</i>	B12418
<i>Corynebacterium</i>	<i>glutamicum</i>	B11476
<i>Corynebacterium</i>	<i>glutamicum</i>	21608
<i>Corynebacterium</i>	<i>lilium</i>	P973
<i>Corynebacterium</i>	<i>nitrolophilus</i>	21419
<i>Corynebacterium</i>	<i>spcc.</i>	P4445
<i>Corynebacterium</i>	<i>spec.</i>	P4446
<i>Corynebacterium</i>	<i>spec.</i>	31088
<i>Corynebacterium</i>	<i>spec.</i>	31089
<i>Corynebacterium</i>	<i>spec.</i>	31090
<i>Corynebacterium</i>	<i>spec.</i>	31090
<i>Corynebacterium</i>	<i>spec.</i>	15954
<i>Corynebacterium</i>	<i>spec.</i>	21857
<i>Corynebacterium</i>	<i>spec.</i>	21862
<i>Corynebacterium</i>	<i>spec.</i>	21863

- ATCC: American Type Culture Collection, Rockville, MD, USA
- FERM: Fermentation Research Institute, Chiba, Japan
- NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA
- CECT: Colección Española de Cultivos Tipo, Valencia, Spain
- NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK
- CBS: Centraalbureau voor Schimmelcultures, Baarn, NL
- NCTC: National Collection of Type Cultures, London, UK
- DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
- For reference see Sugiyama, H et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World Federation for culture collections world data center on microorganisms, Saitama, Japan.

Appendix A & B

>>RXA01397-amino acid sequence
(1-420, translated) 140 residues

VFMIEKELLNK LFGNKKASPA MTQSETISHK ENNTMPTYTI FGRGNMGTAI AGVLTGGAT VEHIGSADSD
IATINGDVVI LAVPYPAVES IIASHKDALA GKTVIDITNP LNFETFDLSV VPVGSSATAE IQAQLQPPAF

>RXA01397-nucleotide sequence A: upstream

TGAGCTGCTAAAGTCTCGCATTAAAGGACTGCTCCCTCGGGGGAGCATTCTTTAACTAATTACTTGACACG
TCAAGTAATTAGGGTCTAGTGTT

>RXA01397-nucleotide sequence B: coding region

GTGTCATGATCAAAGAACTGCTAACAAAGCTTACGGAAACAAAGAAGGCTTCCCCGGCAATGACACAATCTGAAAC
CATTTCACACAAGGAGAACAAACACAATGACCACTTACACCATCTCGGCCGGCAACATGGGCACCGCAATCGCAG
GCGTCCTCACCAAGGGTGGTGCAACTGTAGAACACATCGGTTCTGCAGATTCTGACATCGAACCATCAACGGTGAC
GTTGTTATCCTTGCTGTTCTACCCAGCAGTAGAGTCCATCATGCAAGCCACAAGGATGCTCTCGCAGGCAAGAC

CGTTATCGATATCACCAACCCACTTAACCTCGAGACCTTCGATTCCCTCGTCGTTCCAGTTGGTTCTCTGCAACCG

CTGAGATCCAGGCTCAGCTAACCTCCCGCGTT

>RXA01397-nucleotide sequence C: downstream

TGAAGGTTCAACACCAACTTC

>>RXA01396-amino acid sequence
(1-258, translated) 86 residues

LKAFNTNFAA TLATGKVGDI TTTVLVAGDD EDAKNALITD VNAGGLDALD AGSLKRAHEL EAVGFLQLTL
AGSEKIGWTG GFGLVK

>RXA01396-nucleotide sequence A: upstream

TCACCAACCCACTTAACCTCGAGACCTTCGATTCCCTCGTGTCCAGTTGGTTCTTGCAACCGCTGAGATCCAG
GCTCAGCTTCAACCTCCCCCGT

>RXA01396-nucleotide sequence B: coding region

TTGAAGGCTTCAACACCAACTTCGCAGCCACTTGGCTACCGGAAAGGTTGGCGATATCACCACCACCGTTTAGT
TGCAGGCGATGATGAAGACGCAAAGAACGCTTTATCACCGACGTCAACGCTGGCGGCCCTCGACGCCCTGACGCTG
GTTCCCTCAAGCGTGCACACGAGCTTGAAGCAGTTGGTTCTGCAGCTCACCCCTTGCAAGGTTCCGAGAAGATTGGA
TGGACCGGGCGGATTGGCCCTGGTCAAG

>RXA01396-nucleotide sequence C: downstream

TAACACCCAGCCTAAAAGCACT

>>RXA01379-amino acid sequence
(1-921, translated) 307 residues

LNVEEWISDH YLTNDDAKGA SF SKRVRERI KEWKT TEDAT QQSGPLTRFS SNRLQLQHAL SELDDATTAA
SLV ASALGYG VPSARHAQRG SDT ISYSSWV GNAGSVEFLA ATPAESFEEN FRS LPLEPVA VNDKPQDITA
AKL VGQIFLS DTPPAFVVIT AGKWWVLAER ETWPLGRHLA IDISLVVERN DTKAQGEMQQ TVVALARENT
ERAADGTWW EETIEQSREH AVKVSGELRS AVRESIEILG NDVLTRYEAK ELSTAEIDGG ELAKQSLRYL
YRILFLLFAE ASPELEILPT GTPEYDE

>RXA01379-nucleotide sequence B: coding region

CTAAATGTTGAAGAGTGAGTCAGTGACCACTACCTCACCAATGACGATGCCAAAGGTGCCTCATTTCAGCGGGT
GCGCGAGCGCATTAAGAACCGACCGAGGACGCAACCCAGCAGAGTGGCCCTTTAACCTCGTTTCCAGCA
ACCCCTGCAGTTGCAGCATGCTCTTGAGCTTGACGACGCCACCAGCGCCAGTTAGTGGCCTCTGCACTG
GGGTATGGTGTCCCCCAGCGCGGCCACGCAGCGCGCTCCGACACAATATCCTATTCCCTTGGGTGGAAATGC
CGGCAGTGTGGAATTCTTGAGCGACTCCCCGTGAAAGCTTGAGAGAACTTCCGATCCCTTCCCTTGAGCCAG
TAGCGGTCAATGACAAGCCCCAGGATATCACCGCAGCCAATTGGTGGGCCAGATTTCTTAGTGATACTCCCCCT
GCTTTGTTTATCACCGCTGGTAAATGGGTGGTTTAGCCGAGCGTGAAACCTGGCCTCTAGGCCGCCACCTAGC
TATTGATATTCCCTGGTGGAACGTAATGACACAAAAGCCCAGGGTGAGATGCAGCAGACGGTCGTAGCACTAG
CCCGCAAAATACCGAGCGTGCCGCCGATGGCACCACCTGGTGGAAAGAACATTGACCAATCCCGAACATGCT
GTCAAGGTTCTGGCGAGCTACGCA GTGCAGTGCGGTGCGTGAATCCATTGAAATCCTGGCAATGACGTGCTCACACGCTA
TGAAGCTAAAGAGCTCTCCACCGCTGAGATCGACGGTGGCGAGCTAGCTAACGAATCTTGCGCTATCTACCGCA
TTTGTCTGCTTTGCGAGGCTCACAGAGCTGAAATCCTGCCAACGGCACCCGGAAATATGACGAG

Appendix A & B

>>RXA01372-amino acid sequence

(1-591, translated) 197 residues

QDTFVLPTLP TAAGLSPARI VASISTLLDL LEADPSIISD RLEHLADCID EEVESLSPER DELVNPGRKL
RAYVDHARIV HTGRTDVGLA IANVIAPIWT RRGLVSAVLD FPELMESLPE LRGPEPITDD IFHDPPFIDDE
PGVVPFRAVV WAEEEP GIPD AMAQSCD GPS KGALTQALRL LVRGQSATTY SIEEKDL

>RXA01372-nucleotide sequence B: coding region

CAGGACACCTTCGTCCCTCCCACCTTGCACGGCCGGCAGGCTTGTCGCCCTGCCGCATCGTGGCGTCGATAAGCAC
TCTTTAGATCTTTAGAACGAGACCCCCAGCATTATTCCGACCGCTTGGAACACCTCGCCACTGCATTGATGAGG
AA GTGGAATCGCTATCGCCGGAACGTGACGA ACTAGTCAATCCGGCCAAA ACTGCGGCATACGTAGATCACGCA
CGGATCGTGCATACCGGGCGA ACTGATGTGGACTCGCGATTGCAACGTTATCGCCCCA ATCTGGACCCGACGAGG
CCTGGTATCAGCCGTGCTGGATTTC CGAGCTCATGGAATCATGCCGGAACTCCGGGACCCGAGCCAATTACCG
ACGATATATTCCATGACCATT CATAGATGACGAACCCGGGTGGTACCGTTAGGGCTTGTCTGGCCGAAGAG
GAACCCGGAATCCCCGATGCCATGGCGAA AGCTGCGACGGACCTAGCAAAGGGCGCTGACACAAGCACTGCGTT
GCTGGTGC CGGGACAGTCAGCCACGACCTATTCCATTGAAGAAAAGGACTTG

>RXA01372-nucleotide sequence C: downstream

TAAATGGAGCTATTGGAAGGCTC

Appendix A & B

>>RXA01370-amino acid sequence

(1-351, translated) 117 residues

MGAWDDAILT EEVNVDFLDE ISELDTQDIL EALEDACLLV VNQDNATEDE HLNGQAAATI AAIMFGAPYS
AGQVLENYPF IRELVGEGLSE ALRGAAAQVL EEADVEYDLE AYLEALN

>RXA01370-nucleotide sequence A: upstream

CTGTCTGAATCGTGTGGCGTTAGATGAATTGTTATAAACCGGATGTTAACGGAATTAAATACGTGTCTTATTACG
CGGACTAGAAAGGTTAGGGAC

>RXA01370-nucleotide sequence B: coding region

ATGGGTGCATGGGACGATGCAATCTTGACTGAGGAAGTCACGTTGATTTCTCGACGAGATCTCAGAATTAGATAC
TCAAGACATTCTTGAGGCCTGGAAAGACGCATGTTGCTGGTGGTTAACCAGGACAACGCCACTGAAGACGAACACC
TCAACGGTCAGGCCTGGCTGCGACGATCGCGGCCATCATGTTGGCGCTCCATATTCTGCGGGCCACGTGCTGGAGAAT
TACCCATTATCCCGGAACTCGTCGGTGAGGGCTCTGAAGCTCTCGCGGTGCTGCAGCGCAGGTTTGGAAAGAGGC

AGATGTGGAATATGACCTCGAAGCTTATTAGAGGCCCTCAAC

>RXA01370-nucleotide sequence C: downstream

TAGCCCTCCACTAAACAGCTTCA

Claims

1. An isolated nucleic acid molecule from *Corynebacterium glutamicum* encoding an MCP protein, or a portion thereof.
5
2. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid molecule encodes an MCP protein involved in fine chemical production.
3. An isolated *Corynebacterium glutamicum* nucleic acid molecule selected from the group consisting of those sequences set forth in Appendix A, or a portion thereof.
10
4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth in Appendix B.
5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth in Appendix B.
15
6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth in Appendix A, or a portion thereof.
20
7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth in Appendix A.
25
8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
9. An isolated nucleic acid molecule comprising the nucleic acid molecule of any one of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
30
10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
35
11. The vector of claim 10, which is an expression vector.
12. A host cell transfected with the expression vector of claim 11.
13. The host cell of claim 12, wherein said cell is a microorganism.
40
14. The host cell of claim 13, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.
45

16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, and enzymes.

5

17. A method of producing a polypeptide comprising culturing the host cell of claim 12 in an appropriate culture medium to, thereby, produce the polypeptide.

10 18. An isolated MCP polypeptide from *Corynebacterium glutamicum*, or a portion thereof.

15 19. The polypeptide of claim 18, wherein said polypeptide is involved in fine chemical production.

15

20 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B.

20 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B, or a portion thereof.

25 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.

25

23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth in Appendix A.

30 24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B.

35

25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.

26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.

40 27. The method of claim 25, wherein said method further comprises the step of transfecting said cell with the vector of claim 11 to result in a cell containing said vector.

45 28. The method of claim 25, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.

29. The method of claim 25, wherein said cell is selected from the group consisting of: *Corynebacterium glutamicum*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*.

Corynebacterium acetophilum. *Corynebacterium ammoniogenes*. *Corynebacterium fujiiokense*. *Corynebacterium nitrilophilus*. *Brevibacterium ammoniagenes*.
5 *Brevibacterium butanicum*. *Brevibacterium divisorcatum*. *Brevihacterium flavum*.
Brevibacterium healii, *Brevibacterium ketoglutamicum*. *Brevibacterium ketosoreductum*. *Brevibacterium lactofermentum*. *Brevibacterium linens*.
Brevihacterium paraffinolyticum, and those strains set forth in Table 3.

30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.
- 10 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, and enzymes.
- 15 32. The method of claim 25, wherein said fine chemical is an amino acid.
33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
- 20 34. A method for producing a fine chemical, comprising culturing a cell whose genomic DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.
- 25

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING NOVEL PROTEINS

Abstract of the Disclosure

5

Isolated nucleic acid molecules, designated MCP nucleic acid molecules, which encode novel MCP proteins from *Corynebacterium glutamicum* are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MCP nucleic acid molecules, and host cells into which the expression 10 vectors have been introduced. The invention still further provides isolated MCP proteins, mutated MCP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from *C. glutamicum* based on genetic engineering of MCP genes in this organism.