אלגוריתמים כלכליים – תרגיל 2

מגיש: אייל שחימוב,

שאלה 6

 $Maximize V_1(X_1) + V_2(X_2)$

such that (X_1, X_2) is a partition

and
$$V_1(X_1) \ge \frac{1}{2}$$
 and $V_2(X_2) \ge \frac{1}{2}$

'סעיף א

צריך להוכיח שהפתרון לבעיה הוא תמיד חלוקה פרופורציונלית.

. כך ש- n - הוא מספר השחקנים ער עריך להוכיח כי $V_1(X_1) \geq \frac{1}{n}$ וגם $V_1(X_1) \geq \frac{1}{n}$ כלומר צריך להוכיח כי

במקרה שלנו n=2, ועל פי הנתון, ברור שהתנאי מתקיים.

'סעיף ב

צריך להוכיח שהפתרון לבעיה הוא תמיד חלוקה יעילה פארטו.

כך ש: (Y_1, Y_2) כך ש: כלומר צריך להוכיח כי לא קיימת

את משפר או 1 ו- Y_2 משפר את אורע משחקן 1 ו- $V_2(X_2) < V_2(Y_2)$ וגם אורע זורע $V_1(X_1) \leq V_1(Y_1)$ שחקן (2),

או Y_2 או פר את שחקן 1 ו- $Y_2(X_2) \leq V_2(Y_2)$ וגם $V_1(X_1) < V_1(Y_1)$ משפר את או $V_1(X_1) < V_1(Y_1)$ וגם לשחקן 2).

נניח בשלילה שקיימת חלוקה כזאת.

נבחר את אחד מהמקרים (זה לא משנה איזה מהם) ונחבר את שני האי שוויוניים.

$$V_1(X_1) + V_2(X_2) < V_1(Y_1) + V_2(Y_2)$$
 נקבל:

כעת נחלק למקרים:

- אז מקבלים סתירה לנתון ש (X_1,X_2) אז מקבלים סתירה אז מקבלים $V_1(Y_1),V_2(Y_2)\geq rac{1}{2}$ אם .1 . $V_1(X_1),V_2(X_2)\geq rac{1}{2}$ שמקיימת $V_1(X_1)+V_2(X_2)$ שמקיימת
 - .2 או שניהם. $V_2(Y_2) < \frac{1}{2}$ או או $V_1(Y_1) < \frac{1}{2}$ או שניהם.

.1- אז (Y_1,Y_2) לא שיפור פארטו, שכן היא גורעת מערכו של השחקן ה-

$$V_2(Y_2) < \frac{1}{2}$$
בדומה למקרה עבור

בסה"כ קיבלנו שלא קיים שיפור פארטו לחלוקה (X_1,X_2) ולכן היא יעילה פארטו.

'סעיף ג

צריך להוכיח שהפתרון לבעיה הוא תמיד חלוקה ללא קנאה.

 $V_2(X_2) \geq V_2(X_1)$ וגם $V_1(X_1) \geq V_1(X_2)$ כלומר צריך להוכיח כי

.i-ם את ערכה של כל "העוגה" עבור השחקן ה- $V_i(X)$

נשים לב כי ($V_1(X_1) + V_1(X_2) \leq V_1(X)$ (סכום ערכי החלקים יהיה קטן שווה לסכום (שים לב כי השלם).

. (נתון) $V_1(X_1) \geq \frac{1}{2}$ נתון) וגם $V_1(X) = 1$ (נתון) (ערך כל "העוגה")

 $V_1(X_2) \leq V_1(X) - V_1(X_1) = 1 - \frac{1}{2} = \frac{1}{2}$ נעביר אגפים ונקבל

 $V_1(X_1) \geq V_1(X_2)$ כלומר אוב ניזכר בנתון $V_1(X_1) \geq \frac{1}{2} \leq V_1(X_1)$, ונקבל אוב ניזכר בנתון פון ונקבל אוב ניזכר בנתון אונקבל אונקבל ונקבל אונקבל ו

והוכחנו עבור שחקן 1 (ההוכחה עבור שחקן 2 דומה).