Nonconvex Optimization

Axel Böhm

November 17, 2021

Introduction

2 GD for linear networks

Gradient Descent in the nonconvex world

may get stuck in a local minimum and miss the global minimum

Gradient Descent in the nonconvex world II

Even if there is a unique local minimum (equal to the global minimum), we

- may get stuck in a saddle point;
- run off to infinity;
- $\diamond\,$ possibly encounter other bad behaviors.

Smooth (but not necessarily convex) functions

Recall: A differentiable $f: \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth over a convex set *X* if

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \quad \forall x, y \in X.$$

Bounded Hessians ⇒ smooth

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be twice differentiable and

$$\|\nabla^2 f(x)\| \le L$$

where $\|\cdot\|$ is spectral norm. Then f is L-smooth

Examples:

- \diamond all quadratic functions $f(x) = x^T A x + b^T x + c$
- $\diamond f(x) = \sin(x)$ (many global minima)

Gradient descent on smooth functions

Will prove: $\|\nabla f(x_k)\|^2 \to 0$ for $k \to \infty$...

... at the same rate as $f(x_k) - f(x^*) \rightarrow 0$ in the convex case.

 ϕ $f(x_k) - f(x^*)$ itself may not converge to 0 in the nonconvex case:

What does $\|\nabla f(x_k)\|^2 o 0$ mean?

- \diamond May or may not mean convergence to a critical point $\nabla f(y^*) = 0$
- o critical point might not be even local minimum

Figure

Gradient descent on smooth (not necessarily convex) functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be L-smooth with a global minimum x^* . Choosing stepsize $\alpha := \frac{1}{L}$ gradient descent yields

$$\frac{1}{K} \sum_{k=0}^{K-1} \|\nabla f(x_k)\|^2 \leq \frac{2L}{K} (f(x_0) - f(x^*)).$$

In particular, same bound hold for "best" iterate

$$\min_{0 \le k \le K-1} \|\nabla f(x_k)\|^2 \le \frac{2L}{K} (f(x_0) - f(x^*))$$

and

$$\lim_{k\to\infty}\|\nabla f(x_k)\|^2=0.$$

Gradient descent on smooth functions II: Proof

Smoothness gives:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

Use $y = x_{k+1}$ and $x = x_k$

$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), -\nabla \alpha f(x_k) \rangle + \frac{L\alpha^2}{2} \|\nabla f(x_k)\|^2$$

to obtain sufficient decrease:

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2!} \|\nabla f(x_k)\|^2.$$

Proof II

sufficient decrease:

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2.$$

Sum up from $k = 0, 1, \dots, K - 1$ to get

$$\frac{1}{2L}\sum_{k=0}^{K-1}\|\nabla f(x_k)\|^2 \leq f(x_0) - f(x_k) \leq f(x_0) - f(x^*).$$

Multiply by 2L/K to get the statement of the theorem.

No overshooting

Under the smoothness assumption and appropriate stepsize $\alpha \leq 1/L$, GD cannot pass a critical point:

Trajectory Analysis

Even if the "landscape" (graph) of a nonconvex function has local minima, saddle points, and flat parts, gradient descent may avoid them and still converge to a global minimum. For this, one needs a good starting point and some theoretical understanding of what happens when we start there—this is trajectory analysis.

Linear models with several outputs

Recall: Learning linear models

- \diamond *n* inputs x_1, \ldots, x_n , where each input $x_i \in \mathbb{R}^d$
- \diamond *n* outputs $y_1, \ldots, y_n \in \mathbb{R}$
- Hypothesis (after centering):

$$y_i \approx w^T x_i$$

for a weight vector $\mathbf{w} = (w_1, ..., w_d) \in \mathbb{R}^d$ to be learned.

Now more than one output value:

- \diamond *n* outputs $y_1, ..., y_n$, where each output $y_i \in \mathbb{R}^m$
- Hypothesis:

$$y_i \approx Wx_i$$

for a weight matrix $W \in \mathbb{R}m \times d$ to be learned