Chapter 1 Introduction

Zhenghui Feng

- 1.1 Categorical Response Data
- 2 1.2 Probability Distributions for Categorical Data
- 3 1.3 Statistical Inference for A Proportion
- 4 1.4 More on Statistical Inference for Discrete Data
- 6 Homework

- 1.1 Categorical Response Data
- 2 1.2 Probability Distributions for Categorical Data
- 3 1.3 Statistical Inference for A Proportion
- 4 1.4 More on Statistical Inference for Discrete Data
- Homework

- 1.1 Categorical Response Data
- 2 1.2 Probability Distributions for Categorical Data
- 3 1.3 Statistical Inference for A Proportion
- 1.4 More on Statistical Inference for Discrete Data
- Homework

1.2.1 Binomial Distribution

Bernoulli Distribution.

A DRV Y is called a Bernoulli(π) (0 < π < 1) random variable if its PMF

$$f_Y(y) = \begin{cases} \pi & \text{if } y = 1, \\ 1 - \pi & \text{if } y = 0. \end{cases}$$

Binomial Distribution.

A DRV Y is called a Binomial (n,π) $(n \ge 0 \text{ and } 0 < \pi < 1)$ if its PMF is

$$f_Y(y) = \binom{n}{y} \pi^y (1-\pi)^{n-y}, x = 0, 1, \dots, n$$

- n Bernoulli trials, two possible outcomes for each (success, failure)
- $\pi = P(\text{success}), 1 \pi = P(\text{failure})$ for each trial
- Y = number of successes out of n trials
- Trials are independent

Then Y has binomial distribution, with the probability density function (pdf)

$$P(y) = \frac{n!}{y!(n-y)!} \pi^y (1-\pi)^{n-y}, \ y = 0, 1, 2, ..., n.$$

Example (Quiz)

Suppose a quiz has 10 multiple-choice questions, with five possible answers for each. A student who is completely unprepared randomly guesses the answer for each question. The probability of a correct response is 0.20 for a given question.

Figure: Binomial PMF

Note

- $E(Y) = \mu = n\pi$, $Var(Y) = n\pi(1 \pi)$, $\sigma = \sqrt{n\pi(1 \pi)}$
- $\hat{\pi} = \frac{Y}{n}$ = proportion of success, $E(\hat{\pi}) = \pi$, $Var(\hat{\pi}) = \frac{\pi(1-\pi)}{n}$
- When n is large, the distribution of Y can be approximated by a normal distribution with $\mu = n\pi$, $\sigma = \sqrt{n\pi(1-\pi)}$
- The approximation has a guideline that $n\pi$, $n(1-\pi)$, should be ≥ 5
- When each trial has n > 2 possible outcomes, numbers of outcomes in various categories have multinomial distribution.

1.2.2 Multinomial Distribution

Multinomial Distribution.

Let c denote the number of outcome categories. Their probabilities are denoted by $\{\pi_1, \pi_2, \dots, \pi_c\}$, where $\sum_j \pi_j = 1$. For n independent observations, the multinomial probability that n_1 fall in category 1, n_2 fall in category 2, ..., n_c fall in category c, where $\sum_j n_j = n$, equals

$$P(n_1, n_2, \dots, n_c) = \left(\frac{n!}{n_1! n_2! \cdots n_c!}\right) \pi_1^{n_1} \pi_2^{n_2} \cdots \pi_c^{n_c}.$$

1.2.2 Multinomial Distribution

Note

- The multinomial is a multivariate distribution
- The marginal distribution of the count in any particular category is binomial. For category j, the count n_j has mean $n\pi_j$ and standard deviation $\sqrt{n\pi_j(1-\pi_j)}$

- 1.1 Categorical Response Data
- 2 1.2 Probability Distributions for Categorical Data
- 3 1.3 Statistical Inference for A Proportion
- 1.4 More on Statistical Inference for Discrete Data
- 6 Homework

1.3.1 Likelihood Function and Maximum Likelihood

Estimation

Likelihood Function

The likelihood function is the probability of the observed data, expressed as a function of the parameter value.

Example

Binomial, n = 10, y = 3.

$$P(Y=3) = \frac{10!}{3!7!} \pi^3 (1-\pi)^7 = l(\pi).$$

Figure: Likelihood Function for π

Maximum Likelihood Estimate

The maximum likelihood (ML) estimate is the parameter value at which the likelihood function takes its maximum.

Example

$$n = 10, y = 3.$$

$$l(\pi) = \frac{10!}{3!7!} \pi^3 (1 - \pi)^7.$$

is maximized at $\hat{\pi} = 0.3$.

Figure: Likelihood Function for π

Note

- For binomial, $\hat{\pi} = \frac{y}{n}$ = proportion of successes.
- If y_1, y_2, \ldots, y_n are independent from normal, ML estimate $\hat{\mu} = \bar{y}$.
- In ordinary regression $Y \sim \text{normal}$, "least squares" estimates are ML.
- For large n for any distribution, ML estimates are optimal (no other estimator has smaller standard error)
- \bullet For large n, ML estimators have approximate normal sampling distributions (under weak conditions).

1.3.2 Significance Test About a Binomial Proportion

Significance Test

$$H_0: \pi = \pi_0$$
 $H_A: \pi \neq \pi_0 \text{ (or 1-sided)}$

Test statistic is

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

has large-sample standard normal N(0,1) null distribution.

Question: How to do a hypothesis testing?

1.3.3 Example: Survey Results on Legalizing Abortion

Example

Do a majority, or minority, of adults in the United States believe that a pregnant woman should be able to obtain an abortion? Let π denote the proportion of the American adult population that responds "yes to the question, "Please tell me whether or not you think it should be possible for a pregnant woman to obtain a legal abortion if she is married and does not want any more children. We test $H_0: \pi = 0.50$ against the two-sided alternative hypothesis, $H_A: \pi \neq 0.50$.

1.3.4 Confidence Intervals for a Binomial Proportion

Let SE denote the estimated standard error of p. A large sample $100(1-\alpha)\%$ confidence interval for π has the formula

$$p \pm z_{\alpha/2}SE$$
, with $SE = \sqrt{p(1-p)/n}$,

where $z_{\alpha/2}$ denotes the standard normal percentile having right-tail probability equal to $\alpha/2$.

1.3.4 Confidence Intervals for a Binomial Proportion

Example

For the attitudes about abortion example just discussed, p = 0.448 for n = 893 observations. The 95% confidence interval equals

$$0.448 \pm 1.96 \sqrt{(0.448)(0.552)/893}$$

Note

- Unless π is close to 0.5, however, it doest not work well unless n is very large. It is especially poor when π is near 0 or 1.
- A better way: the CI contains all values π_0 for the null hypothesis that are not rejected: for given p and n, the π_0 values are the solution to the inequality

$$\frac{|p - \pi_0|}{\sqrt{\pi_0(1 - \pi_0)/n}} \le 1.96$$

• A simple alternative approximation: add 2 to the number of successes and 2 to the number of failures (and thus 4 to n) and then use the ordinary formula with the estimated standard error. Agresti-Coull confidence interval

- 1.1 Categorical Response Data
- 2 1.2 Probability Distributions for Categorical Data
- 3 1.3 Statistical Inference for A Proportion
- 1.4 More on Statistical Inference for Discrete Data
- Homework

1.4.1 Wald, Likelihood-Ratio, and Score Inference

Wald Test

Let β denote an arbitrary parameter. Consider a significance test of $H_0: \beta = \beta_0$. Let SE denote the standard error of ML estimator $\hat{\beta}$, evaluated by substituting the ML estimator for the unknown parameter in the expression for the true standard error. When H_0 is true, the test statistic

$$z = (\hat{\beta} - \beta_0)/SE$$

has approximately a standard normal distribution. Equivalently, z^2 has approximately a chi-squared distribution with df = 1. This type of statistic, which uses the standard error evaluated at the ML estimate, is called a Wald statistic. The z or chi-squared test using this test statistic is called a Wald test.

Likelihood Ratio Test

Under $H_0: \beta = \beta_0$, the likelihood ratio test statistic

$$-2\log(l_0/l_1)$$

has a large-sample chi-squared distribution with df = 1. l_0 is the likelihood function calculated at β_0 , and l_1 is the likelihood function calculated at the ML estimate $\hat{\beta}$.

Score Test

The standard error are calculated under the assumption that the null hypothesis holds. E.g., $\sqrt{\pi_0(1-\pi_0)/n}$

1.4.2 Wald and Score Inference for Binomial Parameter

Wald Statistic for Binomial Parameter

 $H_0: \pi = \pi_0, H_A: \pi \neq \pi_0$, Wald statistic is

$$z = \frac{p - \pi_0}{\sqrt{\frac{p(1-p)}{n}}}$$

Wald Confidence Interval (CI) for Binomial Parameter

$$p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

Example

For n = 20, y = 5, find the 95% Wald CI.

Score test, Score CI use null SE

Score 95% CI is the set of π_0 values for which p-value > 0.05 in testing

$$H_0: \pi = \pi_0 \ H_A: \pi \neq \pi_0$$

using

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

Example

y = 5, n = 20, find the 95% Score CI.

Likelihood-ratio test

When $H_0: \pi = 0.5$ is true, $l_0 = [10!/9!1!](0.5)^9(0.5)^1 = 0.00977$. The likelihood-ratio test compares this to the value of the likelihood function at the ML estimate of p = 0.9, which is $l_1 = [10!/9!1!](0.9)^9(0.1)^1 = 0.387$. The likelihood-ratio test statistic

$$-2\log(l_0/l_1) = 7.36$$

From the χ_1^2 , the P-value is 0.007.

1.4.3 Small-Sample Binomial Inference

For small sample size, it is safer to use the binomial distribution directly (rather than a normal approximation) to calculate P-values. To illustrate, consider testing $H_0: \pi = 0.50$ against $H_A: \pi > 0.50$ for the example of a clinical trial to evaluate a new treatment, when the number of successes y = 9 in n = 10 trials. The exact P-value, based on the right tail of the null binomial distribution with $\pi = 0.50$, is

$$P(Y \ge 9) = [10!/9!1!](0.50)^9(0.50)^1 + [10!/10!0!](0.50)^{10}(0.50)^0 = 0.011.$$

For the two sided alternative $H_A: \pi \neq 0.50$, the P-value is

$$P(Y \ge 9 \text{ or } Y \le 1) = 2 \times P(Y \ge 9) = 0.021.$$

1.4.4 1.4.5 More about Small-Sample Inference

- With discrete probability distributions, small-sample inference using the ordinary P-value is conservative. This means that when H_0 is true, the P-value is ≤ 0.05 (thus leading to rejection of H_0 at the 0.05 sig. level) not exactly 5% of the time, but typically less than 5% of the time.
- Mid P-value: it adds only half the probability of the observed result to the probability of the more extreme results.

1.4.4 1.4.5 More about Small-Sample Inference

Example

 $H_0: \pi = 0.5$ v.s. $H_a: \pi > 0.5$ with y = 9, n = 10. The ordinary P-value is

P-value =
$$P(9) + P(10) = 0.011$$
.

The mid P-value is P(9)/2 + P(10) = 0.006.

- 1.1 Categorical Response Data
- 2 1.2 Probability Distributions for Categorical Data
- 1.3 Statistical Inference for A Proportion
- 4 1.4 More on Statistical Inference for Discrete Data
- 6 Homework

Homework 1

- 1. Read Preface, Chapter 11 and Chapter 1 carefully.
- 2. Problems in textbook 1.2, 1.4, 1.5, 1.6, 1.12.