

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 048 912 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 02.11.2000 Patentblatt 2000/44

(51) int. Cl.7: F25D 17/04, F25D 21/14

(21) Anmeldenummer: 00108812.9

(22) Anmeldetag: 26.04.2000

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 29.04.1999 DE 19919448

(71) Anmelder:
Miele & Cie. GmbH & Co.
D-33332 Gütersioh (DE)

(72) Erfinder:

- Fox, Norbert 33442 Herzebrock (DE)
- Michels, Winfried, Dr. 34414 Warburg (DE)
- Last, Mario
 33615 Bielefeld (DE)

(54) Kühlgerät und Verfahren zur Verkeimungsindikation

(57) Kühlgerät mit einer Kälteerzeugungseinrichtung, einem Innenraum und einer Sammeleinrichtung für im Innenraum entstehendes Kondensat, wobei das Kühlgerät (1) ist in seinem Innenraum (2) mit einer Messeinrichtung (3,4,5) zur Indikation von Keimen und Sporen ausgestattet.

Die Messeinrichtung (3,4,5) nimmt eine selektive Messwerterfassung von aktuell vorhandenen Bakterien, Hefen und/oder Schimmelpilzen oder von mindestens einem derer Stoffwechselprodukte vor und wertet diese aus, wobei der Sensor (3) die Messwerte zum Vorhandensein von Bakterien, Hefen und/oder Schimmelpilzen und/oder deren Stoffwechselprodukten in definierbaren Zeitabständen erfasst und diese Messwerte mit in der Auswerteelektronik (4) abgelegten maximal zulässigen Verkeimungsgrenzwerten verglichen werden. Beim Überschreiten der Verkeimungsgrenzwerte durch mindestens einen aktuell erfassten Messwert wird ein Signal an das Anzeigeelement (5) weitergegeben.

F1G.1

EP 1 048 912 A

Beschreibung

[0001] Die Erfindung betrifft ein Kühlgerät mit einer Kälteerzeugungseinrichtung, einem Innenraum und einer Sammeleinrichtung für im Innenraum entstehen- 5 des Kondensat. Außerdem betrifft die Erfindung ein Verfahren zur Verkeimungsindikation in einem derartigen Kühlgerät.

1

[0002] Kühlgeräte sind für eine kurzzeitige Lagerung von verschiedenen Speisen und Lebensmittel bei unterschiedlich niedrigen Temperaturen geeignet. Bauart und Anordnung eines Verdampfers (z.B. plattenförmig, mit oder ohne Verdampferfach, in Rückwand integriert) sowie eine zweckmäßige Unterteilung des Innenraumes ermöglichen es, die Lebensmittel auf den entsprechenden Ebenen in den für sie optimalen Temperaturbereichen zu lagern.

[0003] Im Gegensatz zum statischen Kühlen, bei dem kühlzonenabhängig gekühlt wird und der Verdampfer an der Rückwand oder im oberen Bereich des Gerätes angeordnet ist, erobert in den letzten Jahren dynamisches Kühlen den Markt der Kühlgeräte. Hierbei wird die kalte Luft durch einen Ventilator im Kühlraum verteilt. Die Lebensmittel können im Kühlgerät unabhängig vom Standort bei gleichmäßiger Temperatur eingelagert werden. Besonders vorteilhaft ist hierbei neben der gleichmäßigen Kälte- und Luftfeuchtigkeitsverteilung das schnelle Abkühlen der eingebrachten Lebensmittel, allerdings werden so vorhandene oder entstehende Keirne, Pilze und Sporen schneller verbreitet.

Feuchtigkeit, die von den eingelagerten [0004] Lebensmitteln abgegeben wird oder durch warme Luft beim Öffnen der Tür in das Kühlgerät gelangt, kondensiert am Verdampfer. Um die dort entstehende Reifschicht möglichst gering zu halten und außerdem die Lebensmittel vor einem Austrocknen sowie vor Geschmacksübertragungen untereinander zu bewahren, sollten nicht nur geruchsintensive Lebensmittel in verschlossenen Gefäßen aufbewahrt werden. Obwohl das allgemein bekannt ist, werden trotzdem viele Lebensmittel auch unverpackt im Kühlgerät abgestellt. An den Lebensmitteln oder Behältnissen anhaftende Keime, Pilze bzw. Sporen werden sowohl durch natürliche als auch durch dynamische Luftzirkulation im Innenraum und auf den Lebensmitteln bzw. auf den diese aufnehmenden Behältnissen verteilt. Da bei einer dickeren Reifschicht sowohl der Wärmeübergang an das Kältemittel im Verdampfer schlechter und auch die Temperaturregelung ungenauer werden, sollte ein regelmäßig abgetaut werden. Unabhängig, ob von Hand oder teilautomatisch abgetaut wird, das unvermeidbar mit Keimen und Sporen belastete Tauwasser wird in einem unterhalb des Verdampfers angeordneten Auffangbehälter gesammelt. Bei einem automatischen Abtauvorgang ist ein großflächiger Rückwandverdampfer vorhanden. Das Tauwasser läuft über eine unterhalb des Verdampfers angeordnete Auffangrinne durch ein

kleines Rohr an der Rückwand des Kühlgerätes in einen Kondensatauffangbehälter, der auf dem Verdichter oder am Verflüssiger angeordnet ist. Das Tauwasser verdunstet durch die dort vorhandene Wärme.

[0005] Die DE 23 44 261 A1 beschreibt ein Kühlgerät mit Umluftsystem im Innenraum, wobei die Luft über eine Filtervorrichtung zwangsgeführt wird. Dadurch sollen die im Innenbereich auftretenden Gerüche wirksam beseitigt werden. Mit einem derartigen Aufbau lässt sich zwar der Geruch innerhalb des Kühlgerätes verbessern, jedoch werden durch die Luftbewegung die unvermeidlich vorhandenen Keime, Pilzsporen o.ä. unvermindert über den gesamten Innenraum verteilt. In der Filtervorrichtung erfolgt keine Abtötung dieser Keime und/oder Sporen. Das Kühlgerät wird zumeist aber erfahrungsgemäß erst gereinigt, wenn sichtbare Verschmutzungen auftreten. Bevor Keimen und/oder Sporen für das menschliche Auge sichtbar werden, ist der Innenraum aber bereits mit diesen belastet.

EP 312 060 B1 beschreibt ebenfalls ein automatisches Kühlgerät mit einer Einrichtung zur Luftumwälzung. Allerdings ist in diesem Kühlgerät ein gesondertes Lagerfach enthalten, das von Kunststoffmaterial eingegrenzt ist. Die Einrichtung zur Luftumwälzung erzeugt in diesem Fach eine Zwangsventilation über eine Keimtötungseinrichtung. Die Keimtötung erfolgt durch ultraviolette Strahlen, ohne dass das Fach selbst den ultravioletten Strahlen ausgesetzt ist. Bei einem derartigen Gerät ist zwar ein abgeschlossenes Fach vorhanden, in dem eine Keimtötung erfolgt, jedoch ist eine derartige Vorrichtung zur Keirnabtötung nicht direkt auf den gesamten Aufbewahrungsraum übertragbar. Ultraviolette Strahlen sind in Schattenbereichen sowie in Biofilmen und Anschmutzungen auf den Lebensmitteln bzw. Aufbewahrungsgefäßen hinein nicht wirksam. Biofilme sind in der Regel aber nicht sichtbar. Der Benutzer muss daher davon ausgehen, dass im Kühlinnenraum außerhalb des abgeschlossenen Faches unerwünschte Bakterien bzw. Keime vorhanden sein können. Ein Zeitpunkt für eine notwendige Reinigung kann davon nicht abgeleitet werden. Auch hier wird der Benutzer bei sichtbaren Verschmutzungen eine gründliche Reinigung der Innenwände vornehmen. Dann ist eine Verteilung/Vermehrung der Keime häufig schon weit fortgeschritten.

[0007] Der Erfindung stellt sich somit das Problem ein Kühlgerät zu schaffen, bei welchem selbst bei einem optisch vermeintlich sauberen Innenraum ein Hinweis auf eine empfehlenswerte Innenraumreinigung erfolgt, weil die tatsächlich vorhandene Keimanzahl erhöht ist.

[0008] Erfindungsgemäß wird dieses Problem durch ein Kühlgerät mit den im Patentanspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den nachfolgenden Unteransprüchen.

[0009] Die mit der Erfindung erreichbaren Vorteile bestehen insbesondere darin, dass der Benutzer

bereits auf eine sinnvolle Reinigung bzw. eine desinfizierende Sanierung des Innenraumes hingewiesen wird, wenn bereits eine erhebliche Anzahl von Keimen und/oder Sporen o.ä. vorhanden sind, aber noch keine sichtbare Verschmutzung feststellbar ist. Dazu ist in dem Kühlgerät mindestens eine Messeinrichtung zur frühzeitigen Indikation von Keimen und/oder Sporen angeordnet. Diese Messeinrichtung setzt sich vorteilhaft aus mindestens einem Sensor zur Erfassung von Bakterien, Hefen, Schimmelpilzen und/oder von deren Stoffwechselprodukten. einer Auswerteelektronik und/oder einem Anzeigeelement zusammen. Der geeignete Zeitpunkt zur Reinigung wird insbesondere durch Vergleich mit in der Auswerteelektronik abgelegten Grenzwerten ermittelt und signalisiert. Überschreitet der aktuelle Messwert vorhandener Bakterien, Hefen, Schimmelpilze und/oder deren Stoffwechselprodukte, z.B. Nitritkonzentration, den Vergleichs- bzw. Grenzwert, wird in einer weiteren vorteilhaften Ausgestaltung in wiederkehrenden Abständen eine Warnung über ein Anzeigeelement vorgenommen. Diese Warnung erfolgt entweder optisch und/oder akustisch. In einer vorteilhaften Ausgestaltung ist der Sensor zur Messung der vorherrschenden Verkeimung an einem Ort angeordnet, welcher von Kondensat aus dem Innenraum des Kühlgerätes durchspült ist. Besonders vorteilhaft ist dabei eine Anordnung des Sensors in oder an einer Kondensatauffangrinne oder an dem Rückwandverdampfer, weil dort garantiert eine Benetzung des Sensors mit Kondensat erfolgt. In einer anderen vorteilhaften Ausgestaltung ist zwischen der Konden-. satauffangrinne und dem Rückwandverdampfer eine Abtropfleiste angeordnet, welche mit dem Sensor in Kontakt steht. Da bekannt ist, dass eine Vielzahl von Bakterien Nitrit als Stoffwechselprodukt erzeugen, ist der Sensor vorteilhaft als Nitritsensor ausgestattet. Dieser erfasst entweder direkt das im Kondensat vorhandene Nitrit oder es wird die Oxidation als Messverfahren angewendet und dabei Nitrit zu Nitrat oxidiert.

[0010] Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen rein schematisch dargestellt und wird nachfolgend näher beschrieben. Es zeigt

Figur 1 Kühlgerät ohne Tür

Figur 2 Kühlgerät mit geöffneter Tür

[0011] Die Figur 1 zeigt ein Kühlgerät (1) in Form eines Kühlschrankes, bei dem zur besseren Übersicht die Tür (10) weggelassen wurde. Der Kühlschrank (1) weist in einem wärmeisolierten Gehäuse einen Innenraum (2) mit glatten Seitenwänden auf. Die Einteilung des Innenraumes (2) kann unterschiedlich ausgestaltet sein. Üblicherweise befinden sich dort mindestens eine, hier nicht dargestellte, Gemüseschale und in mehreren Ebenen Abstellflächen für Kühlgut. Natürlich kann der Innenraum (2) auch derart aufgeteilt sein, dass mehrteilige Schalen nebeneinander eingeschoben werden und/oder im oberen Bereich zusätzlich ein Gefrierfach

angeordnet ist. Der Kühlschrank (1) kann als Mehrtemperaturen - Kühlschrank ausgestattet sein. Gleichfalls ist es möglich, das Kühlgerät (1) in mindestens zwei übereinander getrennte Innenräume (2) mit jeweils separat zugeordneten Türen aufzuteilen. Ein besonders gutes Innenraumklima lässt sich mit einer dynamischen Kühlung erreichen. Hier sorgt ein im oberen Innenraumbereich angeordneter Ventilator (9) für einen guten Luftdurchsatz und damit für gleichmäßige Temperaturen im gesamten Innenraum (2). Außerdem wird das eingelagerte Kühlgut viel schneller durchgekühlt.

Unabhängig von der Innenraumgestaltung ist es bei ständigem Gebrauch eines Kühlschrankes (1) unvermeidbar, dass an Lebensmitteln bzw. deren Verpackungen anhaftende Bakterien, Hefen, Pilzen o.ä. sich im Innenraum (2) des Kühlschrankes (1) schnell ausbreiten. Daher ist in das Kühlgerät (1) eine Messeinrichtung (3, 4, 5) integriert, welche in der Lage ist, eine direkte oder indirekte Quantifizierung von im Innenraum (2) vorhandenen Keimen und Sporen vorzunehmen. Diese Messeinrichtung (3, 4, 5) beinhaltet neben einem Sensor (3), der beispielsweise als elektrochemischer oder biochemischer Sensor ausgebildet ist, mindestens eine Auswerteelektronik (4) und vorteilhafterweise auch ein Anzeigeelement (5). Es wird die Gesamtkeimzahl direkt oder indirekt ermittelt und mit einem in der Auswerteelektronik (4) abgelegten Basisgrenzwert verglichen. Als Gesamtkeimzahl wird die Keim- und Sporenbelastung im Kühlschrank (1) bezeichnet, wobei dafür insbesondere hohe Werte für Bakterien, Schimmel und Hefen ausschlaggebend sind. Es ist allgemein bekannt, dass eine Vielzahl von Pilzen und Bakterien Nitrit ausscheidet. Dieses Wissen erlaubt, aus einer ermittelten Nitritkonzentration einen Schluss auf den Verkeimungsgrad des Innenraumes (2) des Kühlschrankes (1) abzuleiten. Nicht immer sind Pilze, Schimmel o.ä. auch optisch erkennbar, aber durch biochemische Sensoren trotzdem schon direkt oder indirekt zu erfassen. Wenn die Messung beispielsweise hohe Nitritkonzentrationen aufweist, z.B. > 1mg/l, kann gleichzeitig von einer hohen Keimbelastung des Innenraums (2) ausgegangen werden. Der Sensor (3) dient bei indirekter Keimermittlung vorzugsweise einer Erfassung der Stoffwechselprodukte von Bakterien, Hefen und/oder Schimmelpilzen, wie z.B. Nitritkonzentrationen. Dabei wird Nitrit entweder direkt gemessen oder es wird die Oxidation als Messverfahren angewendet und Nitrit zu Nitrat oxidiert, um daraus auf den Verkeimungsgrad des Innenraumes (2) rückzuschließen.

[0013] Um rechtzeitig auf eine notwendige Reinigung hinweisen zu können, ist der Sensor (3) an mindestens einer von Kondensat umspülten Stelle des Innenraums (2) angeordnet. Beispielsweise sichert eine Anordnung des Sensors (3) an einem Verdampfer (7), welcher an Rück-, Seitenwand, Decken- oder Bodenfläche angeordnet sein kann, gute Messergebnisse. Ebenso ist aber auch eine Anordnung des Sensors (3) in oder an einem Kondensatauffangbehälter (8) oder in

der Verdampferschale ein sinnvoller Ort zur Anordnung des Sensors. Eine kleine Veränderung im Innenraum. wobei zwischen Kondensatauffangbehälter (8) und dem Rückwandverdampfer (7) eine Abtropfleiste (6) angeordnet ist, schafft einen Ort für eine besonders sichere Meßwerterfassung des Sensors (3). Dabei bietet es sich an, den Sensor (3) am unteren Ende dieser Abtropfleiste (6) anzuordnen. Von einem besonderen Vorteil ist es, wenn der Sensor (3) auswechselbar ist. Insbesondere biochemische Sensoren sollten auswechselbar sein, da sie sich nach einer bestimmten Einsatzzeit, je nach Ausgestaltung, sich von selbst erschöpfen. Ein Beispiel für einen auswechselbaren Sensor ist eine Ausbildung in Form eines Chips. Auch eine automatische oder manuell einstellbare Reinigung eines Sensors ist sinnvoll und beispielsweise durch eine kurzzeitige Potentialumkehr oder Potentialerhöhung erreichbar.

Die Auswerteelektronik (4) ist vorzugsweise in die bereits im Kühlgerät (1) vorhandene Elektronik integriert oder in deren Nähe angeordnet. Sie (4) kann aber auch an einer anderen Stelle separat untergebracht sein. Das Anzeigeelement (5) ist vorzugsweise an der Bedienblende, wie sie für Kühl- und/oder Gefriergeräte bekannt ist, angeordnet oder in den Frontbereich der Tür (10) integriert. An der Bedienblende kann auch ein Bedienelement (11) angeordnet sein, über welches ein manuelles Aus- und Einschalten der Messeinrichtung (3, 4, 5) vorgenommen werden kann. Ein Ausschalten sollte insbesondere direkt nach einer Innenreinigung des Kühlgerätes (1) für einen definierten Zeitraum erfolgen, damit Interferenzen mit Putzmittelresten vermieden werden. Danach wird die Messeinrichtung (3, 4, 5) entweder automatisch oder manuell wieder eingeschaltet.

Umfangreiche Versuche bestätigen, dass eine aktuell ermittelte Nitritkonzentration durch eine Reinigung des Innenraumes (2) auf mindestens die Hälfte gesenkt wird. Die Messung der aktuellen Nitritkonzentration erfolgt am besten durch den Sensor (3) während des Durchspülens mit im Innenraum anfallendem Kondensat, wobei in regelmäßigen oder unregelmäßigen Abständen die Messung vorgenommen wird. Die Messabstände zur aktuellen Messwerterfassung sind entweder vom Hersteller oder vom Benutzer bestimmbar und über die Elektronik (4) abrufbar. In der Auswerteelektronik (4) ist ein Bezugsgrenzwert für einen sauberen innenraum (2) des Kühlschrankes (1) abgelegt, mit dem jeder aktuell erfasste Wert verglichen wird. Wird dieser Bezugsgrenzwert überschritten, wird ein Warnsignal ausgelöst, welches z.B. an einem Anzeigeelement optisch und/oder akustisch angezeigt wird. Das Warnsignal wird nach einer vorbestimmten Zeit, die ebenfalls in der Elektronik (4) ablegbar ist, unterbrochen und periodisch wieder aktiviert. Diese Warnung wird solange fortgesetzt, bis eine Reinigung des Innenraumes vorgenommen wird oder eine manuelles Abstellen des Warnsignals erfolgt ist. Die Zeitunterbrechung zum

Warnen kann auch eine erneute, aktuelle Messwerterfassung so lange unterbrechen bis tatsächlich die Reinigung des Innenraumes erfolgt ist. Außerdem ist aber auch möglich, dass die Zeitspanne zwischen den Warnungen kürzer ist, als die Abstände der einzelnen aktuellen Messwerterfassungen. Da die Keimbelastung nach fortgeschrittener Zeit überwiegend größer wird, d.h. auch immer höhere Konzentrationen der Stoffwechselprodukte, wie z.B. Nitrit erfasst werden, kann auch eine maximal mögliche Konzentration als Bezugsgrenzwert in der Auswerteelektronik (4) abgelegt werden. Beim Erreichen dieses Grenzwertes sollte das Warnsignal nicht mehr ausgesetzt werden. Eine ununterbrochene Anzeige soll die fortgeschrittene Verkeimung verdeutlichen, um einer Gesundheitsgefährdung beim Verzehr der eingelagerten Nahrungsmittel möglichst auszuschließen.

[0016] Allerdings sollte dem Benutzer auch die Möglichkeit gegeben werden, dass er die Messwerterfassung und/oder eine Warnung ausschalten kann, wenn er nicht an einer derartigen Information interessiert ist bzw. sich dadurch evtl. sogar belästigt fühlt.

[0017] Das Vorhandensein von Keimen lässt sich neben einer Messung eines der Stoffwechselprodukte von Bakterien. Hefen und/oder Schimmelpilze (wie z.B. Nitritkonzentration) auch direkt durch eine biochemische Sensierung von Bakterien, Hefen und/oder Schimmelpilzen o.ä. ermitteln. Daher sind je nach Ziel unterschiedlich ausgebildete Sensoren (3) einsetzbar, z.B. elektrochemische oder biochemische Sensoren.

[0018] Auch andere Verfahren, beispielsweise ein Abklatsch mit einem anschließenden Bebrüten kann zur Keimermittlung führen. Den meisten Benutzern eines Haushalt-Kühlschrankes (1) fehlen allerdings die Kenntnisse und Voraussetzungen für eine Durchführung derartiger Verfahren und ein derartiger Aufwand findet sicherlich auch nur wenig Akzeptanz beim Kunden. Ein Abklatsch muss sporadisch per Hand durchgeführt werden und die anschließenden Messungen erfordern Erfahrungen im Umgang mit biochemischen Verfahren. Eine solche Möglichkeit scheidet für einen im Haushalt genutzten Kühlschrank (1) aus, weil eine Warnung vor einer zu hohen Verkeimung im Innenraum (2) nicht rechtzeitig erfolgen kann. Die Anordnung eines Sensors (3) zur automatischen und gebrauchsbegleitenden Erfassung der Verkeimung stellt also eine einfache und bequeme Möglichkeit dar, um indirekt über den hygienischen Zustand seines Kühlschrankes (1) eine schnelle und orientierende Aussage zu erhalten. Ein kontinuierlich arbeitender Sensor (3) gewährleistet eine zuverlässige Warnung bei vorhandener Verkeimung.

[0019] In der Figur 2 ist ein Kühlschrank (1) dargestellt, dessen seitlich angeschlagene Tür (10) geöffnet dargestellt ist. Die Tür (10) enthält auf ihrer Innenseite Abstellmöglichkeiten, insbesondere für schmales bzw. hohes Kühlgut. Auch an der Innenseite der Tür kann zusätzlich zum Innenraum (2) ein weiterer Sensor (3) zur Messung der Verkeimung angeordnet sein. Der

10

30

45

50

Innenraum (2) ist entsprechend dem in Figur 1 beschriebenen Kühlgerät ausgestaltet. Grundsätzlich sammelt sich im Innenraum (2) die Feuchtigkeit am Verdampfer, kondensiert dort, vereist und schmilzt wieder. Daher ist eine ideale Stelle für die Anordnung eines 5 Sensors (3) in der Ablaufrinne (8) oder in der Verdampferschale.

Patentansprüche

- Kühlgerät mit einer Kälteerzeugungseinrichtung, einem Innenraum und einer Sammeleinrichtung für im Innenraum entstehendes Kondensat, dadurch gekennzeichnet, dass das Kühlgerät (1) im Innenraum (2) eine Messeinrichtung (3, 4, 5) zur Indikation von Keimen und/oder Sporen aufweist.
- Kühlgerät nach Anspruch 1 dadurch gekennzeichnet, dass die Messeinrichtung (3, 4, 5) mindestens einen Sensor (3) und eine Auswerteelektronik (4) umfasst.
- Kühlgerät nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass der Sensor (3) an einem von Kondensat aus dem Innenraum (2) durchspülten Ort angeordnet ist.
- Kühlgerät nach mindestens einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass der Sensor (3) mit der Auswerteelektronik (4) und/oder einem Anzeigeelement (5) verbunden ist.
- Kühlgerät nach mindestens einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass der Sensor (3) als biochemischer Sensor zur selektiven Erfassung von Bakterien, Hefen und/oder Schimmelpilzen ausgebildet ist.
- 6. Kühlgerät nach mindestens einem der Ansprüche 1 bis 4 oadurch gekennzeichnet, dass der Sensor (3) als biochemischer oder elektrochemischer Sensor zur Erfassung von Stoffwechselprodukten der Bakterien, Hefen und/oder Schimmelpilze ausgebildet ist.
- Kühlgerät nach mindestens einem der Ansprüche 1 bis 6 oadurch gekennzeichnet, oass der Sensor (3) zur Nitrit- oder Nitrat-Erfassung 55 ausgebildet ist.
- 8. Kühlgerät nach mindestens einem der Ansprüche 1

bis 7 dadurch gekennzeichnet, dass der Sensor (3) entnehmbar im Kühlgerät (1) angeordnet ist.

- Kühlgerät nach mindestens einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass der Sensor (3) im Innenraum (2) und die Auswerteelektronik (4) und/oder das Anzeigeelement (5) außerhalb des Innenraumes (2) angeordnet sind.
- 10. Kühlgerät nach mindestens einem der Ansprüche 1
 15 bis 9
 dadurch gekennzeichnet,
 dass der Sensor (3) in oder an einem Kondensatauffangbehälter (8) angeordnet ist.
- 20 11. Kühlgerät nach mindestens einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass der Sensor (3) an einem Rückwandverdampfer (7) oder in einer Verdampferschale angeordnet ist.
 - 12. Kühlgerät nach mindestens einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass zwischen dem Kondensatauffangbehälter (8) und dem Rückwandverdampfer (7) eine Abtropfleiste (6) angeordnet ist, an welcher der Sensor (3) angeordnet ist.
- 35 13. Kühlgerät nach Anspruch 12 dadurch gekennzeichnet, dass ein Bedienelement (11) zur Unterbrechung der Messwerterfassung durch die Messeinrichtung (3, 4, 5) am Kühlgerät (1) angeordnet ist.
 - Verfahren zur Verkeimungsindikation in einem Kühlgerät nach mindestens einem der Ansprüche 1 bis 13
 - dadurch gekennzeichnet,
 dass eine Messeinrichtung (3, 4, 5) selektiv Messwerte von Bakterien, Hefen und/oder Schimmelpilzen oder von mindestens einem derer
 Stoffwechselprodukte erfasst und auswertet wobei
 über den Sensor (3) die Messwerte in definierbaren
 Zeitabständen erfasst und diese Messwerte in der
 Auswerteelektronik (4) mit dort abgelegten maximal
 zulässigen Verkeimungsgrenzwerten verglichen
 werden und
 dass beim Überschreiten der Verkeimungsgrenz
 - werte durch mindestens einen aktuell erfassten Messwert ein Signal an das Anzeigeelement (5) weitergegeben wird.

20

30

15. Verfahren zur Verkeimungsindikation in einem Kühlgerät nach Anspruch 14 dadurch gekennzeichnet, dass der Sensor (3) die aktuelle Messwerterfassung während eines Durchspülens mit Kondensat vornimmt.

 Verfahren nach einem der Ansprüche 14 oder 15 dadurch gekennzeichnet,
 dass aus der Höhe der Konzentration der Stofe

dass aus der Höhe der Konzentration der Stoffwechselprodukte von Bakterien, Hefen und/oder Schimmelpilzen die Belastung mit Keimen und/oder Sporen herleitbar ist.

17. Verfahren nach mindestens einem der Ansprüche 15 14 bis 16 dadurch gekennzeichnet,

dass die Messwerte vorn Sensor (3) direkt gemessen werden.

 Verfahren nach mindestens einem der Ansprüche 14 bis 16

dadurch gekennzeichnet,

angezeigt wird.

dass die Ermittlung einer Nitritkonzentration indirekt durch eine elektrochemische Reaktion vorgenommen wird, bei welcher Nitrit zu Nitrat oxidiert wird.

19. Verfahren nach mindestens einem der Ansprüche 14 bis 18 dadurch gekennzeichnet, dass das Anzeigeelement (5) ein optisches und/oder akustisches Warnsignal darstellt.

20. Verfahren nach mindestens einem der Ansprüche
14 bis 19
dadurch gekennzeichnet,
dass das Warnsignal nach einer Zeitspanne unterbrochen wird, welche kleiner als die Zeitspanne
zwischen den aktuellen Messungen ist, und
dass nach einer danach folgenden Meßwerterfassung durch den Sensor (3) erneut ein Warnsignal

21. Verfahren nach mindestens einem der Ansprüche 14 bis 19 dadurch gekennzeichnet, dass das Warnsignal beim Überschreiten mindestens eines in der Auswerteelektronik (4) abgelegten maximal zulässigen Verkeimungsgrenzwertes dauerhaft angezeigt wird.

22. Verfahren nach mindestens einem der Ansprüche
16 bis 21
dadurch gekennzeichnet,
dass die Messeinrichtung (3, 4, 5) nach einer Reinigung des Kühlgerätes (1) automatisch oder manuell ausgeschaltet und nach einem definierten

Zeitraum wieder eingeschaltet wird.

23. Verfahren nach mindestens einem der Ansprüche 16 bis 22 dadurch gekennzeichnet, dass nach einer Reinigung des Kühlgerätes (1) eine Reinigung des Sensors (3) vorgenommen wird.

10 24. Verfahren nach Anspruch 23 dadurch gekennzeichnet, dass eine Reinigung des Sensors elektrochemisch durch Potentialumkehr oder Potentialerhöhung vorgenommen wird.

6

F/G.1

FIG. 2

EUROPÄISCHER RECHERCHENBERICHT

EP 00 10 8812

	EINSCHLÄGIGE			
Kategoria	Kennzeichnung des Dokum der maßgebliche	ents mit Angabe, soweit erfon in Teile	sertich, Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG ANLCL7)
Y	US 5 230 220 A (KANG 27. Juli 1993 (1993- * das ganze Dokument	-07-27)	1	F25D17/04 F25D21/14
γ .	US 1 979 590 A (CAR) 6. November 1934 (19 * das ganze Dokumen	934-11-06)	1	
A	US 5 558 841 A (NAK) 24. September 1996 * das ganze Dokumen	(1996-09-24)	(AL) 1,14	
A	DE 41 42 365 A (GOL 2. Juli 1992 (1992- * das ganze Dokumen	07-02)	1,14	
A	US 5 581 189 A (BRE 3. Dezember 1996 (1 * das ganze Dokumen	996-12-03)	1	
A	GB 1 093 080 A (CLA 29. November 1967 (* das ganze Dokumen	1967-11-29)	ANY) 1	RECHERCHERTE SACHGEBIETE (BLCL7) F25D G01N
A	US 4 829 774 A (WAS 16. Mai 1989 (1989- + das ganze Dokumen	05-16)	ET AL) 1	
Derv	orliegende Recherchenbencht wu			
1	Recherchynort	Apacrichiasum der Re		Profes Usuingascu R
X:voi Y:voi and	DEN HAAG KATEGORIE DER GENANNTEN DOK In besonderer Bedeutung allein betrach In besonderer Bedeutung in Verbindun deren Veröffertlichung derseiben Kate ihndlogischer Hintergrund	E: åtten nach g mit einer D: in de gone L: aue i	rindung zugrunde liegen es Patentdoloument, das i dem Arvneldedatum veri ir Anmeldung angeführte anderen Gründen angefüh	ifenticit worden ist ; Datument rres Datument
O:nx P:Zw	chtschriftliche Ottenbarung rischenäterstur	a : wing	lied der gleichen Patentla ument	milie, übereinstimmendes

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 00 10 8812

In diesem Anhang sind die Mitglieder der Patendamilien der im obengenannten europäischen Recherchenbericht angeführten Patendokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

21-07-2000

Im Recherchenb angeführtes Patentii		Deturn der Veröffentlichung		Mitglied(er) der Patendamilie	Datum der Veröffentlichung
US 5230220	A	27-07-1993	KR	9500706 Y	07-02-199
			KR	9400010 B	05-01-199
			JP	2545668 B	23-10-199
			JP	5113285 A	07-05-199
US 1979590	A	06-11-1934	KEI	NE	
US 5558841	A	24-09-1996	JP	7051225 A	28-02-199
			JP	7008456 A	13-01-199
DE 4142365	A	02-07-1992	KR	9402335 B	23-03-199
			KR	9303737 B	10-05-199
			JP	4292732 A	16-10-199
US 5581189	A	03-12-1996	KEI	NE	
GB 1093080	A		KEI	NE	
US 4829774	A	16-05-1989	AT	384668 B	28-12-198
			AT	346985 A	15-05-198
			AT	60428 T	15-02-199
			AU	590359 B	02-11-198
			AU	6568286 A	04-06-198
			BR	8605847 A	25-08-198
			CA	1268049 A	24-04-199
			CN	1013802 B	04-09-199
			DE	3677156 D	28-02-199
			EP	0224469 A	03-06-198
			IN	166430 A	05-05-199
			JP	2056082 C	23-05-199
			JP	7076660 B	16-08-199
			JP	62131170 A	13-06-198
			KR	9513601 B	13-11-199
			NZ	218339 A	26-02-199
			ZA	8608806 A	2 9- 07-198

Vanchin : 20 - 11480174 - 1

Für nähere Einzelheiten zu diesem Anhang : siehe Amsblatt des Europäischen Patentamts, Nr.12/82