7537/SCS8A42/ SCS9A41

APRIL 2013

NUMERICAL METHODS

(For those who joined in July 2008 and after)

Time: Three hours

Maximum: 75 marks

PART A $-(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Rounding off the number 32.68673 to 4 significant digits, we get a number ————
 - (a) 32.68

(b) 32.69

(c) 32.67

- (d) 32.686.
- 2. In bisection method if roots lies between a and b then $f(a) \times f(b)$ is ———
 - (a) <0

(b) = 0

(c) > 0

(d) none of these.

	f percentage error of a number is 3.264 × 10-4 hen its relative error is————				
(a)	3.264 × 10 ⁻⁵	(b)	3.264 × 10-6		
(c)	3.264×10^{-7}	(d)	none of these.		
	root of the eq	uation	$x^3 - 2x - 5 = 0$ lies		
(a)	0 and 1	(b)	1 and 2		
(c)	2 and 3	(d)	3 and 4.		
	$x_0 - f'(x_0)/f(x_0)$		e value of x is given by x_0		
	$f'(x_0)/f(x_0)$				
the	arguments which a	re —			
(a)	Equally	(b)	Distinct		
(c)	Unequally	(d)	None of these.		
1+4	\=				
(a)	E-1	(b)	V		
(c)	E	(d)	8.		

7537/SCS8A42/ SCS9A41

8.	The method of ——————————————————————————————————					
	(a)	least squares	(b)	least cube		
	(c)	square	(d)	none of these.		
9.	There is a class of methods as — which do not require the calculations of higher order derivatives and give greater accuracy					
	(a)	Euler's method				
	(b)	Euler's modified	meth	od		
	(c)	Kutta				
	(d)	Runge-Kutta of s	econ	d order.		
10.	Runge-Kutta method of second order is the method					
	(a)	Euler's method	(b)	Taylor's method		
	(c)	Euler's modified	(d) 3	None of these. 7537/SCS8A42/ SCS9A41		

PART B - (5 × 7 = 35 marks)

Answer ALL questions, choosing either (a) or (b).

11. (a) Using the Bisection method find the real root of the given equation $x^3 - x - 1 = 0$.

Or

- (b) Explain in brief inherent error and Truncation error. What is meant by Absolute, Relative and Percentage errors? Explain.
- 12. (a) Solve the following system by Gauss elimination method

$$4x + y + z = 4$$

 $x + 4y - 2z = 4$
 $3x + 2y - 4z = 6$

Or

(b) Solvethe following system by Gauss -Jordan method:

$$5x - 2y + z = 4$$

 $7x + y - 5z = 8$
 $3x + 7y + 4z = 10$

7537/SCS8A42/ SCS9A41 [P.T.O.]

Or

(b) Using Newton's Forward Interpolation formula, find the value of y when x = 21 from the following tabulated value:

X: 20 23 26 29 Y: 0.3420 0.3907 0.4384 0.4848

14. (a) Dividing the range into 10 equal parts, find the approximate value of $\sin x \, dx$ by Simpson's rule.

Or

- (b) Apply Trapezoidal rule to evaluate $\int_{0}^{1} \log x \, dx$ with h = 0.2.
- 15. (a) Using Euler's method, find y(0.5), given that $y' = y^2 x^2$ with y(0) = 1 and h = 0.1.

Or

(b) Obtain the Taylor's series for the differential equation $y' = y \sin x + \cos x$ with y(0) = 0.

7537/SCS8A42/ SCS9A41 PART C - (3 × 10 = 30 marks)

Answer any THREE questions.

- 16. Find a root of the equation $x^4 x 10 = 0$ which is near to 2 using Newton-Raphson method.
- 17. Solve, by Gauss-seidal Method

$$10x + 2y + z = 9$$
$$2x + 20y - 2z = -44$$
$$-2x + 3y + 10z = 22$$

18. Using Lagrange interpolation formula fit a polynomial to the data:

$$X: 0 1 3 4$$

 $Y: -12 0 6 12$

19. Determine the largest Eigen value and Eigeu vector of the given matrix:

$$A = 1 \quad 2 \quad 0$$
 $0 \quad 0 \quad 3$

20. Using Runge-Kutta second order formulae compute y(0.1) and y(0.2) correct to four decimal places, given that y' = y - x with y(0) = 2 and h = 0.1.