1. Task 1: 直接三角化

evo_traj tum frame_traj_est.txt --ref=frame_traj_gt.txt -p --plot_mode xyz --align --correct_scale


```
evo_ape tum frame_traj_est.txt frame_traj_gt.txt -va --plot --plot_mode xyz --
save_results ape.zip
    max    7.988524
    mean    4.854794
    median    4.779704
    min    1.140661
    rmse    5.119821
    sse    2516.406403
    std    1.625897
```

```
evo_rpe tum frame_traj_est.txt frame_traj_gt.txt -va --plot --plot_mode xyz --
save_results rpe.zip

max 2.503827
mean 1.380783
median 1.401187
min 0.345557
rmse 1.479378
sse 207.913208
std 0.531035
```

```
evo_res ape.zip -p --save_table table.csv

max mean median min rmse sse std

frame_traj_gt 7.98852 4.85479 4.7797 1.14066 5.11982 2516.41 1.6259
```

2. task2:三角化 + BA

 $evo_traj \ tum \ frame_traj_est.txt \ --ref=frame_traj_gt.txt \ -p \ --plot_mode \ xyz \ --align \ --correct_scale$


```
evo_rpe tum frame_traj_est.txt frame_traj_gt.txt -va --plot --plot_mode xyz --
save_results rpe.zip
    max    1.798316
    mean    0.498460
    median    0.380933
        min    0.027438
    rmse    0.624018
        sse    36.992823
        std    0.375414
```

3. task3: 三角化 + BA + outlier

evo_traj tum frame_traj_est.txt --ref=frame_traj_gt.txt -p --plot_mode xyz -align --correct_scale


```
evo_ape tum frame_traj_est.txt frame_traj_gt.txt -va --plot --plot_mode xyz --
save_results ape.zip
    max 6.969077
    mean 2.746384
    median 2.443365
        min 0.281874
    rmse 3.175060
        sse 967.776786
        std 1.593231
```

```
evo_rpe tum frame_traj_est.txt frame_traj_gt.txt -va --plot --plot_mode xyz --
save_results rpe.zip
    max 2.184738
    mean 0.556210
    median 0.509827
        min 0.029194
    rmse 0.698139
        sse 46.302846
        std 0.421934
```

```
evo_res ape.zip -p --save_table table.csv

max mean median min rmse sse std

frame_traj_gt 6.96908 2.74638 2.44336 0.281874 3.17506 967.777 1.59323
```

4 综合分析

evo_ape(计算绝对位姿误差)

	1	2	3
max	7.988524	2.830356	6.969077
mean	4.854794	1.088119	2.746384
median	4.779704	1.117042	2.443365
min	1.140661	0.046486	0.281874
rmse	5.119821	1.222984	3.17506
sse	2516.406403	143.586343	967.776786
std	1.625897	0.558291	1.593231

evo_rpe(计算相对位姿误差)

max	2.503827	1.798316	2.184738
mean	1.380783	0.49846	0.55621
median	1.401187	0.380933	0.509827
min	0.345557	0.027438	0.029194
rmse	1.479378	0.624018	0.698139
sse	207.913208	36.992823	46.302846
std	0.531035	0.375414	0.421934

**evo_res(结果比较)

max mean median min rmse sse std frame_traj_gt 7.98852 4.85479 4.7797 1.14066 5.11982 2516.41 1.6259 frame_traj_gt **2.83036 1.08812 1.11704 0.0464858 1.22298** 143.586 **0.558291** frame_traj_gt 6.96908 2.74638 2.44336 0.281874 3.17506 967.777 1.59323

** 时间消耗

-	1	2	3
时间(clock())	3,539,027	25,676,731	20,456,998

总体效果,任务一计算的vo有较大的累积偏差,任务二加入ba的优化的效果比较好,能有效减少偏差,但相应的计算耗时接近10倍增加,任务三加入outlier的方式, vo优化效果相比任务二效果变差了一点,整体上强于任务一,因为outlier判断减少了计算点数,耗时比任务二少。

注意事项:

eigen对数据类型敏感,double与float需要显示转换; ba优化中的相机节点的pose需要是Tcw; 两帧BA 优化中需要将第一帧fixed; 注意eigen与cv::mat间的转换, 坐标系的转换