Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-2: Linear and Logistic Regression (Part-II)

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

Supervised Learning [revisited]

• Given a set of data points $\{x^{(1)}, x^{(2)},, x^{(n)}\}$ associated to a set of outcomes $\{y^{(1)}, y^{(2)},, y^{(n)}\}$, we want to build a model that learns how to predict y from x.

Type of prediction — The different types of predictive models are summed up in the table below:

	Regression	Classification	
Outcome	Continuous	Class	
Examples	Linear regression	Logistic regression, SVM, Naive Bayes	

Classification: Example

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

 $y = \{0, 1\}$

0: "Negative Class" (e.g., benign tumor) ____Two-class/Binary

Classification

1: "Positive Class" (e.g., malignant tumor)

 $y = \{0, 1, 2, 3\}$ 0: "SMALL"

1: "MEDIUM"

2: "LARGE"

3: "EXTRA LARGE"

Classification: Task Description

Given:

– Data $m{X} = \left\{m{x}^{(1)}, \dots, m{x}^{(n)}
ight\}$ where $m{x}^{(i)} \in \mathbb{R}^d$

– Corresponding labels $~m{y}=\left\{y^{(1)},\ldots,y^{(n)}
ight\}$ where $~y^{(i)}\in~\{0,\ldots,k\}$

k = 1 for Two-class/Binary Classification

Can the task be performed by Linear Regression?

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If $h_{\theta}(x) > 0.5$, predict "y = 1"

If $h_{\theta}(x) < 0.5$, predict "y = 0"

Classification: Task Description

Given:

- Data $m{X} = \left\{m{x}^{(1)}, \dots, m{x}^{(n)}
 ight\}$ where $m{x}^{(i)} \in \mathbb{R}^d$
- Corresponding labels $\ y=\left\{y^{(1)},\ldots,y^{(n)}\right\}$ where $\ y^{(i)}\in \ \{0,\ldots,k\}$ k=2 for Two-class/Binary Classification

Can the task be performed by Linear Regression?

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- Classification based on Probability: Instead of just predicting the class, give the probability of the instance being in that class. *Two* key models:

Discriminative model	Generative model	
Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$	
Learns decision boundary		Learns the probability distributions of the data

Generative vs. Discriminative

Training Samples

Test Sample What is this?

It's a dog....because dogs have folded ears and they wear collars!

Discriminative model

Directly estimate P(y|x)

It's a dog.....because it fits well with my generated dog image!

Generative model

Estimate P(x|y) to then deduce P(y|x)

Logistic Regression: Model Representation

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\theta}(x)$ should give $p(y=1 \mid x; \theta)$ – Want $0 \le h_{\boldsymbol{\theta}}(\boldsymbol{x}) \le 1$

Can't just use linear regression with a threshold

• Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g\left(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}\right)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}x}}$$

Interpretation of Hypothesis Output

$$h_{\theta}(x)$$
 = estimated $p(y = 1 \mid x; \theta)$

Example: Cancer diagnosis from tumor size

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\theta}(\mathbf{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that: $p(y = 0 \mid \boldsymbol{x}; \boldsymbol{\theta}) + p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1$

Therefore, $p(y = 0 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1 - p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Logistic Regression: Hypothesis

 $h_{\theta}(x) = g(\underbrace{\theta_0 + \theta_1 x_1 + \theta_2 x_2})$

Predict "y = 1" if $-3 + x_1 + x_2 \ge 0$

 $\theta^\intercal x$ should be large <u>negative</u> values for negative instances

 $\theta^{\intercal}x$ should be large positive values for positive instances

Decision boundary: $x_1 + x_2 = 3$

- Assume a threshold and...
 - Predict y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict y = 0 if $h_{\theta}(x) < 0.5$

At decision boundary:

 $x_1 + x_2 = 3$

So, $h_{\theta}(x) = 0.5$

Non-Linear Decision Boundary

 Can apply basis function expansion to features, same as with linear regression

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Logistic Regression: Cost Function

- Given $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \dots, \left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$
- How to choose parameters?

Logistic Regression: Cost Function

Logistic regression objective:

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Why not
$$J(\theta) = \left(\frac{1}{1 + e^{-\theta x}} - y\right)^2$$
 ?

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Intuition Behind the Objective

If y = 1

 $h_{\boldsymbol{\theta}}(\boldsymbol{x})$

cost

 $cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$

If y = 1

- Cost = 0 if prediction is correct
- As $h_{\theta}(x) \to 0, \cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $\,h_{m{ heta}}(m{x})=0$, but y = $m{1}$

Intuition Behind the Objective

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(x)) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Intuition Behind the Objective

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

• Cost of a single instance:

$$cost(h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

• Can re-write objective function as

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \cot \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)} \right)$$

Compare to linear regression:
$$J(m{ heta}) = rac{1}{2n} \sum_{i=1}^n \left(h_{m{ heta}} \left(m{x}^{(i)}
ight) - y^{(i)}
ight)^2$$

Regularized Logistic Regression

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

• We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Gradient Descent for Logistic Regression

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

Want $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

Use the natural logarithm (In = $\log_{
m e}$) to cancel with the exp() in $h_{m{ heta}}(m{x})$

Gradient Descent for Logistic Regression

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

Want $\min_{\pmb{\theta}} J(\pmb{\theta})$

- Initialize θ
- Repeat until convergence (simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{n} \theta_j \right]$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Gradient Descent for Logistic Regression

- Initialize θ
- Repeat until convergence (simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{n} \theta_j \right]$$

This looks IDENTICAL to linear regression!!!

- Ignoring the 1/n constant
- However, the form of the model is very different:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Multi-Class Logistic Regression

Split into One vs Rest:

• Train a logistic regression classifier for each class i to predict the probability that y = i with

$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}{\sum_{c=1}^{C} \exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Multi-Class Logistic Regression

• For 2 classes:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 0} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 1}$$

• For *C* classes {1, ..., *C*}:

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

- Called the softmax function

Implementing Multi-Class Logistic Regression

- Use $h_c(x) = \frac{\exp(\pmb{\theta}_c^\mathsf{T} x)}{\sum_{c=1}^C \exp(\pmb{\theta}_c^\mathsf{T} x)}$ as the model for class c
- Gradient descent simultaneously updates all parameters for all models
 - Same derivative as before, just with the above $h_c(\boldsymbol{x})$
- · Predict class label as the most probable label

$$\max_{c} h_{c}(\boldsymbol{x})$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

26

Questions?