(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年6 月17 日 (17.06.2004)

PCT

(10) 国際公開番号 WO 2004/050291 A1

(51) 国際特許分類7:

B23K 26/04, B28D 5/00

(21) 国際出願番号:

PCT/JP2003/015555

(22) 国際出願日:

2003年12月4日(04.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-354234 2002年12月5日(05.12.2002) JP

(71) 出願人(米国を除く全ての指定国について): 浜松ホトニクス株式会社 (HAMAMATSU PHOTONICS K.K.) [JP/JP]; 〒435-8558 静岡県 浜松市 市野町1126番地の 1 Shizuoka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 福世 文嗣 (FUKUYO, Fumitsugu) [JP/JP]; 〒435-8558 静岡県 浜 松市 市野町1126番地の1 浜松ホトニクス株式会社 内 Shizuoka (JP). 福満 憲志 (FUKUMITSU, Kenshi) [JP/JP]; 〒435-8558 静岡県 浜松市市野町1126番地の1 浜松ホトニクス株式会社内 Shizuoka (JP). 筬島 哲也 (OSA, JIMA, Tetsuya) [JP/JP]; 〒435-8558 静岡県 浜 松市市野町1126番地の1 浜松ホトニクス株式会社内 Shizuoka (JP).
- (74) 代理人: 長谷川 芳樹, 外(HASEGAWA, Yoshiki et al.); 〒104-0061 東京都 中央区 銀座一丁目10番6号 銀座 ファーストビル 創英国際特許法律事務所 Tokyo (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

[続葉有]

(54) Title: LASER PROCESSING DEVICE

(54) 発明の名称: レーザ加工装置

(57) Abstract: A laser processing device (20) has a diaphragm member (38) with a first light passage hole (32) and a second light passage hole (39) that has the same diameter as the first light passage hole, and the device is provided on a light path of laser light (L1), which path connects a beam expander (34) and the first light passage hole (32) of a lens holder (29). The diaphragm member (38) is separated from the lens holder (29), so that, even if the diaphragm member (38) is heated by the laser light (L1) cut at a peripheral portion of the second light passage hole (39), heat is prevented from being transmitted from the diaphragm member (38) to the lens holder (29). As a consequence, positional displacement of a light collection point (P1) of the laser light (L1) caused by heating of the lens holder (29) is limited to a small amount.

DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

レーザ加工装置(20)は、ビームエキスパンダ(34)とレンズホルダ(29)の第1の光通過孔(32)とを結ぶレーザ光(L1)の光路上に、第1の光通過孔(32)と同径の第2の光通過孔(39)を有する絞り部材(38)が配置されている。絞り(38)は、レンズホルダ(29)から離間しているため、第2の光通過孔(39)の周囲部分でカットされるレーザ光(L1)により、絞り部材(38)が加熱されても、絞り部材(38)からレンズホルダ(29)への熱伝達が防止される。

したがって、レンズホルダ(29)の加熱によるレーザ光(L1)の集光点(P1)の位置変動を小さく抑える。

明細書

レーザ加工装置

技術分野

【0001】 本発明は、ウェハ状の加工対象物の内部に多光子吸収による改質 領域を形成するためのレーザ加工装置に関する。

背景技術

5

10

【0002】 従来から、レーザ光を加工対象物に照射することで溶断等の加工を行うレーザ工装置がある。この種のレーザ加工装置は、レーザ光を加工対象物に向けて集光するための集光レンズが設けられたレーザへッドを有し、このレーザへッドのレーザ光入射側には、集光レンズに入射するレーザ光の径を一定にするための入射瞳として光通過孔が設けられるのが一般的である(例えば、特開平5-212571号公報、実開平3-18979号公報参照)。

発明の開示

- 【0003】 上述したようなレーザ加工装置においては、入射瞳径より大きいビームサイズのレーザ光がレーザヘッドの光通過孔に向けて照射されるので、光通過孔の周囲部分でカットされたレーザ光によってレーザヘッドが加熱され、これにより集光レンズも加熱されることになる。そのため、レーザヘッドや集光レンズが膨張するなどして、加工対象物に対するレーザ光の集光点の位置がレーザ加工中に変動してしまうおそれがある。
- 20 【0004】 そして、このような集光点の位置変動は、ウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するようなレーザ加工では、特にシビアな問題となる。その理由としては、例えば、厚さ100μm以下のシリコンウェハを加工対象物とする際には、レーザ光の集光点の位置制御がμmオーダーで要求される場合があるからである。
- 25 【0005】 そこで、本発明は、このような事情に鑑みてなされたものであり 、レーザ加工中におけるレーザ光の集光点の位置変動を小さく抑えることのでき

るレーザ加工装置を提供することを目的とする。

5

10

15

20

25

【0006】 上記目的を達成するために、本発明に係るレーザ加工装置は、ウェハ状の加工対象物の内部に集光点を合わせてレーザ光を照射し、加工対象物の内部に多光子吸収による改質領域を形成するレーザ加工装置であって、レーザ光源から出射されたレーザ光のビームサイズを拡大するビームエキスパンダと、ビームエキスパンダを介して入射したレーザ光を加工対象物の内部に集光する集光レンズと、集光レンズを保持すると共に、集光レンズにレーザ光を入射させる第1の光通過孔を有するレンズホルダとを備え、ビームエキスパンダと第1の光通過孔とを結ぶレーザ光の光路上には、レーザ光を絞って通過させる第2の光通過孔を有する絞り部材が設けられ、その絞り部材はレンズホルダから離間していることを特徴とする。

【0007】 このレーザ加工装置においては、ビームエキスパンダによりビームサイズを拡大されたレーザ光が絞り部材の第2の光通過孔に向けて照射されるため、第2の光通過孔より大きいレーザ光の外周部分がカットされ、これにより、レーザ光はビームサイズを絞られて第2の光通過孔を通過することになる。この第2の光通過孔を通過したレーザ光は、集光レンズを保持するレンズホルダの第1の光通過孔に向けて照射され、この第1の光通過孔を通過したレーザ光が集光レンズにより集光される。そして、その集光点をウェハ状(すなわち、薄く平たい形状)の加工対象物の内部に合わせることで、加工対象物の内部に多光子吸収による改質領域を形成する。このようにビームエキスパンダと第1の光通過孔とを結ぶレーザ光の光路上に絞り部材を設けることで、ビームエキスパンダによりビームサイズを拡大されたレーザ光をレンズホルダの第1の光通過孔に向けて直接照射させる場合に比べ、第1の光通過孔の周囲部分によるレーザ光のカット量を減少させることができ、カットされたレーザ光によるレンズホルダの加熱を抑えることが可能になる。しかも、絞り部材はレンズホルダから離間しているため、第2の光通過孔の周囲部分でカットされたレーザ光によって絞り部材が加熱

されても、絞り部材からレンズホルダへの熱伝達が防止される。したがって、レーザ加工中におけるレンズホルダの加熱を主原因としたレーザ光の集光点の位置 変動を小さく抑えることができ、ウェハ状の加工対象物の内部における所定の位置に精度良く改質領域を形成することが可能になる。

【0008】 また、ビームエキスパンダから出射されたレーザ光が略平行光である場合、第2の光通過孔の径は第1の光通過孔の径以下であることが好ましい。ビームエキスパンダから出射されたレーザ光が完全な平行光である場合には、第2の光通過孔の径と第1の光通過孔の径とを同径にすることで、絞り部材の第2の光通過孔を通過したレーザ光の径を第1の光通過孔の径と同等にすることができる。また、ビームエキスパンダから出射されたレーザ光が若干拡がるような略平行光である場合には、レーザ光の拡がり分を考慮して第2の光通過孔の径を第1の光通過孔の径より小さくすることで、第1の光通過孔の周囲部分に入射するレーザ光をほとんどなくすことができる。したがって、集光レンズの集光特性を最大限に発揮させつつ、第1の光通過孔の周囲部分によるレーザ光のカット量をほとんどなくし、レンズホルダの加熱をより一層抑えることが可能になる。ここで、略平行光とは、完全な平行光をも含む意味である。

【0009】 また、レーザ光源が、ビーム径 ϕ_0 、発散角度 $2\theta_0$ でレーザ光を出射し、ビームエキスパンダが、倍率Mでレーザ光のビームサイズを拡大し、発散角度 $2\theta_1$ でレーザ光を出射する場合、レーザ光源の出射部とビームエキスパンダの入射部との距離を d_1 、ビームエキスパンダの出射部と第 2の光通過孔の入射側開口との距離を d_2 、第 2の光通過孔の入射側開口と第 1の光通過孔の入射側開口との距離を d_3 とし、第 1の光通過孔の径を ϕ_L 、第 2の光通過孔の径を ϕ_S とすると、 ϕ_L 及び ϕ_S は、

$$\frac{\phi_L\left\{M(\phi_0 + 2d_1\tan\theta_0) + 2d_2\tan\theta_1\right\}}{M(\phi_0 + 2d_1\tan\theta_0) + 2(d_2 + d_3)\tan\theta_1} \ge \phi_S$$

5

10

15

20

25 の関係を満たすことが好ましい。このように、ビームエキスパンダから出射され

たレーザ光が発散光である場合には、第1の光通過孔の径 ϕ_L と第2の光通過孔の径 ϕ_S とが上記関係を満たすことで、第1の光通過孔の周囲部分に入射するレーザ光をほとんどなくすことができる。したがって、第1の光通過孔の周囲部分によるレーザ光のカット量をほとんどなくし、レンズホルダの加熱をより一層抑えることが可能になる。

【0010】 また、レーザ光源が、ビーム径 ϕ_0 、発散角度 $2\theta_0$ でレーザ光を出射し、ビームエキスパンダが、倍率Mでレーザ光のビームサイズを拡大し、集束角度 $2\theta_1$ でレーザ光を出射する場合、レーザ光源の出射部とビームエキスパンダの入射部との距離を d_1 、ビームエキスパンダの出射部と第 2の光通過孔の入射側開口との距離を d_2 、第 2の光通過孔の入射側開口と第 1の光通過孔の入射側開口との距離を d_3 とし、第 1の光通過孔の径を ϕ_s とすると、 ϕ_t 及び ϕ_s は、

$$\frac{\phi_L \{ M(\phi_0 + 2d_1 \tan \theta_0) - 2d_2 \tan \theta_1 \}}{M(\phi_0 + 2d_1 \tan \theta_0) - 2(d_2 + d_3) \tan \theta_1} \ge \phi_S$$

の関係を満たすことが好ましい。このように、ビームエキスパンダから出射されたレーザ光が集束光である場合には、第1の光通過孔の径 ϕ_L と第2の光通過孔の径 ϕ_S とが上記関係を満たすことで、第1の光通過孔の周囲部分に入射するレーザ光をほとんどなくすことができる。したがって、第1の光通過孔の周囲部分によるレーザ光のカット量をほとんどなくし、レンズホルダの加熱をより一層抑えることが可能になる。

20 図面の簡単な説明

5

10

15

【0011】 図1は、本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の平面図である。

【0012】 図2は、図1に示す加工対象物のIIーII線に沿った断面図である

25 【0013】 図3は、本実施形態に係るレーザ加工方法によるレーザ加工後の

加工対象物の平面図である。

【0014】 図4は、図3に示す加工対象物のIV-IV線に沿った断面図である

- 【0015】 図5は、図3に示す加工対象物のVーV線に沿った断面図である。
- 5 【0016】 図6は、本実施形態に係るレーザ加工方法により切断された加工 対象物の平面図である。
 - 【0017】 図7は、本実施形態に係るレーザ加工方法における電界強度とクラックスポットの大きさとの関係を示すグラフである。
- 【0018】 図8は、本実施形態に係るレーザ加工方法の第1工程における加工対象物の断面図である。
 - 【0019】 図9は、本実施形態に係るレーザ加工方法の第2工程における加工対象物の断面図である。
 - 【0020】 図10は、本実施形態に係るレーザ加工方法の第3工程における加工対象物の断面図である。
- 15 【0021】 図11は、本実施形態に係るレーザ加工方法の第4工程における 加工対象物の断面図である。
 - 【0022】 図12は、本実施形態に係るレーザ加工方法により切断されたシリコンウェハの一部における断面の写真を表した図である。
- 【0023】 図13は、本実施形態に係るレーザ加工方法におけるレーザ光の 波長とシリコン基板の内部の透過率との関係を示すグラフである。
 - 【0024】 図14は、本実施形態に係るレーザ加工装置の概略構成図である
 - 【0025】 図15は、図14に示すレーザ加工装置の要部を示す拡大図である。
- 25 【0026】 図16は、図14に示すレーザ加工装置におけるレーザ加工開始 からの経過時間とレンズホルダの上昇温度との関係を示すグラフである。

【0027】 図17は、ビームエキスパンダから出射されたレーザ光が発散光 である場合のレーザ加工装置の要部を示す概略構成図である。

【0028】 図18は、ビームエキスパンダから出射されたレーザ光が集束光である場合のレーザ加工装置の要部を示す概略構成図である。

発明を実施するための最良の形態

5

10

15

20

25

【0029】 以下、本発明に係るレーザ加工装置の好適な実施形態について、 図面を参照して詳細に説明する。

【0030】 本実施形態に係るレーザ加工装置は、ウェハ状の加工対象物の内部に集光点を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成するものである。そこで、本実施形態に係るレーザ加工装置の説明に先立って、多光子吸収による改質領域の形成について説明する。

【0031】 材料の吸収のバンドギャップ E_c よりも光子のエネルギー $h\nu$ が小さいと光学的に透明となる。よって、材料に吸収が生じる条件は $h\nu>E_c$ である。しかし、光学的に透明でも、レーザ光の強度を非常に大きくすると $nh\nu>E_c$ の条件(n=2, 3, 4, \cdots)で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm^2)で決まり、例えばピークパワー密度が 1×10^8 (W/cm^2)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm^2)で決まる。

【0032】 このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について、図1~図6を参照して説明する。図1はレーザ加工中の加工対象物1の平面図であり、図2は図1に示す加工対象物1のIIーII線に沿った断面図であり、図3はレーザ加工後の加工対象物1の平面図であり、図4は図3に示す加工対象物1のIVーIV線に沿った断面図であり、図5は図3に示す加工対象物1

のV-V線に沿った断面図であり、図6は切断された加工対象物1の平面図である

【0033】 図1及び図2に示すように、加工対象物1の表面3には、加工対象物1を切断すべき所望の切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である(加工対象物1に実際に線を引いて切断予定ライン5としてもよい)。本実施形態に係るレーザ加工は、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して改質領域7を形成する。なお、集光点とはレーザ光Lが集光した箇所のことである。

5

10

15

20

25

【0034】 レーザ光Lを切断予定ライン5に沿って(すなわち矢印A方向に沿って)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3〜図5に示すように改質領域7が切断予定ライン5に沿って加工対象物1の内部にのみ形成され、この改質領域7でもって切断予定部8が形成される。本実施形態に係るレーザ加工方法は、加工対象物1がレーザ光Lを吸収することにより加工対象物1を発熱させて改質領域7を形成するのではない。加工対象物1にレーザ光Lを透過させ加工対象物1の内部に多光子吸収を発生させて改質領域7を形成している。よって、加工対象物1の表面3ではレーザ光Lがほとんど吸収されないので、加工対象物1の表面3が溶融することはない。

【0035】 加工対象物1の切断において、切断する箇所に起点があると加工対象物1はその起点から割れるので、図6に示すように比較的小さな力で加工対象物1を切断することができる。よって、加工対象物1の表面3に不必要な割れを発生させることなく加工対象物1の切断が可能となる。

【0036】 なお、切断予定部を起点とした加工対象物の切断には、次の2通りが考えられる。1つは、切断予定部形成後、加工対象物に人為的な力が印加されることにより、切断予定部を起点として加工対象物が割れ、加工対象物が切断される場合である。これは、例えば加工対象物の厚さが大きい場合の切断である

。人為的な力が印加されるとは、例えば、加工対象物の切断予定部に沿って加工対象物に曲げ応力やせん断応力を加えたり、加工対象物に温度差を与えることにより熱応力を発生させたりすることである。他の1つは、切断予定部を形成することにより、切断予定部を起点として加工対象物の断面方向(厚さ方向)に向かって自然に割れ、結果的に加工対象物が切断される場合である。これは、例えば加工対象物の厚さが小さい場合には、1列の改質領域により切断予定部が形成されることで可能となり、加工対象物の厚さが大きい場合には、厚さ方向に複数列形成された改質領域により切断予定部が形成されることで可能となる。なお、この自然に割れる場合も、切断する箇所において、切断予定部が形成されていない部位に対応する部分の表面上にまで割れが先走ることがなく、切断予定部を形成した部位に対応する部分のみを割断することができるので、割断を制御よくすることができる。近年、シリコンウェハ等の加工対象物の厚さは薄くなる傾向にあるので、このような制御性のよい割断方法は大変有効である。

5

10

15

20

25

【0037】 さて、本実施形態において多光子吸収により形成される改質領域 としては、次の(1)~(3)がある。

【0038】 (1) 改質領域が1つ又は複数のクラックを含むクラック領域の 場合

加工対象物(例えばガラスやLiTaO $_3$ からなる圧電材料)の内部に集光点を合わせて、集光点における電界強度が 1×10^8 (W/cm²)以上で且つパルス幅が 1μ s以下の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせつつ加工対象物の表面に余計なダメージを与えずに、加工対象物の内部にのみクラック領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収による光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部に熱ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。電界強度の上限値としては、例えば 1×10^{12} (W/cm²)である。パルス幅は例えば $1ns\sim200ns$ が好ましい。なお、多

光子吸収によるクラック領域の形成は、例えば、第45回レーザ熱加工研究会論 文集(1998年.12月)の第23頁~第28頁の「固体レーザー高調波によ るガラス基板の内部マーキング」に記載されている。

【0039】 本発明者は、電界強度とクラックの大きさとの関係を実験により 求めた。実験条件は次ぎの通りである。

- (A) 加工対象物:パイレックス(登録商標)ガラス(厚さ700µm)
- (B) レーザ

5

10

15

25

光源:半導体レーザ励起Nd:YAGレーザ

波長:1064nm

レーザ光スポット断面積: 3. 14×10⁻⁸cm²

発振形態: Qスイッチパルス

繰り返し周波数:100kHz

パルス幅:30ns

出力:出力<1mJ/パルス

レーザ光品質: TEM₀₀

偏光特性:直線偏光

(C)集光用レンズ

レーザ光波長に対する透過率:60パーセント

- (D) 加工対象物が載置される載置台の移動速度:100mm/秒
- 20 【0040】 なお、レーザ光品質がTEM₀₀とは、集光性が高くレーザ光の波 長程度まで集光可能を意味する。
 - 【0041】 図7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は1パルスのレーザ光により加工対象物の内部に形成されたクラック部分(クラックスポット)の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの大きさは、クラックスポットの形状の

うち最大の長さとなる部分の大きさである。グラフ中の黒丸で示すデータは集光 用レンズ (C) の倍率が100倍、開口数 (NA) が0.80の場合である。一 方、グラフ中の白丸で示すデータは集光用レンズ (C) の倍率が50倍、開口数 (NA) が0.55の場合である。ピークパワー密度が10¹¹ (W/cm²)程 度から加工対象物の内部にクラックスポットが発生し、ピークパワー密度が大き くなるに従いクラックスポットも大きくなることが分かる。

【0042】 次に、本実施形態に係るレーザ加工において、クラック領域形成による加工対象物の切断のメカニズムについて図8~図11を用いて説明する。図8に示すように、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光しを加工対象物1に照射して切断予定ラインに沿って内部にクラック領域9を形成する。クラック領域9は1つ又は複数のクラックを含む領域である。このクラック領域9でもって切断予定部が形成される。図9に示すようにクラック領域9を起点として(すなわち、切断予定部を起点として)クラックがさらに成長し、図10に示すようにクラックが加工対象物1の表面3と裏面17に到達し、図11に示すように加工対象物1が割れることにより加工対象物1が切断される。加工対象物の表面と裏面に到達するクラックは自然に成長する場合もあるし、加工対象物に力が印加されることにより成長する場合もある。

【0043】 (2) 改質領域が溶融処理領域の場合

5

10

15

20

25

加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が1×10⁸(W/cm²)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。これにより加工対象物の内部は多光子吸収によって局所的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということ

もできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。電界強度の上限値としては、例えば 1×10^{12} (W/c m²) である。パルス幅は例えば $1 \text{ n s} \sim 200 \text{ n}$ s が好ましい。

【0044】 本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次の通りである。

(A) 加工対象物:シリコンウェハ (厚さ350 μm、外径4インチ)

10 (B) レーザ

5

15

光源:半導体レーザ励起Nd:YAGレーザ

波長:1064nm

レーザ光スポット断面積:3.14×10^{-8.}c m²

発振形態:Qスイッチパルス

繰り返し周波数:100kHz

パルス幅:30ns

出力:20μ] / パルス

レーザ光品質:TEM。

偏光特性:直線偏光

20 (C) 集光用レンズ

倍率:50倍

N. A. : 0. 55

レーザ光波長に対する透過率:60パーセント

(D) 加工対象物が載置される載置台の移動速度:100mm/秒

25 【0045】 図12は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に

溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理 領域13の厚さ方向の大きさは100μm程度である。

【0046】 溶融処理領域 13 が多光子吸収により形成されたことを説明する。図 13 は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚さ t が 50 μ m、100 μ m

【0047】 例えば、Nd:YAGレーザの波長である1064nmにおいて

5

10

15

20

25

、シリコン基板の厚さが500μm以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図12に示すシリコンウェハ11の厚さは350μmであるので、多光子吸収による溶融処理領域13はシリコンウェハの中心付近、つまり表面から175μmの部分に形成される。この場合の透過率は、厚さ200μmのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域13がシリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域13が多光子吸収により形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶接学会全国大会講演概要第66集(2000年4月)の第72頁~第73頁の「ピコ秒パルスレーザによるシリコンの加工特性評価」に記載されている

【0048】 なお、シリコンウェハは、溶融処理領域でもって形成される切断 予定部を起点として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面とに到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達するこの割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより成長する場合もある。なお、切断予定部からシ

リコンウェハの表面と裏面とに割れが自然に成長する場合には、切断予定部を形成する溶融処理領域が溶融している状態から割れが成長する場合と、切断予定部を形成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、どちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断面には、図12のように内部にのみ溶融処理領域が形成されている。加工対象物の内部に溶融処理領域でもって切断予定部を形成すると、割断時、切断予定部ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。

【0049】 (3)改質領域が屈折率変化領域の場合

5

10

15

20

25

加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強度が 1×10^8 (W/cm²)以上で且つパルス幅が1ns以下の条件でレーザ光を照射する。パルス幅を極めて短くして、多光子吸収を加工対象物の内部に起こさせると、多光子吸収によるエネルギーが熱エネルギーに転化せずに、加工対象物の内部にはイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率変化領域が形成される。電界強度の上限値としては、例えば 1×10^{12} (W/cm²)である。パルス幅は例えば1ns以下が好ましく、1ps以下がさらに好ましい。多光子吸収による屈折率変化領域の形成は、例えば、第42回レーザ熱加工研究会論文集(1997年、11月)の第105頁~第111頁の「フェムト秒レーザー照射によるガラス内部への光誘起構造形成」に記載されている。

【0050】 次に、本実施形態に係るレーザ加工装置について、図14及び図15を参照して説明する。

【0051】 図14に示すように、レーザ加工装置20は、ウェハ状の加工対象物1の内部に集光点P1を合わせて加工用レーザ光L1を照射することで、加工対象物1の内部に多光子吸収による改質領域7を形成し、この改質領域7でもって、加工対象物1の表面3に沿って延在する切断予定部8を形成する装置であ

る。ここで、、加工対象物1はシリコンウェハ等の半導体ウェハであり、改質領域7は溶融処理領域である。

【0052】 このレーザ加工装置20は、加工対象物1が載置されるステージ21を有しており、このステージ21は、上下方向を2軸方向としてX軸方向、Y軸方向、Z軸方向の各方向に移動可能となっている。ステージ21の上方には、加工用レーザ光L1を発生するレーザ光源22等を収容した筐体23が配置されている。このレーザ光源22は、例えばNd:YAGレーザであり、真下に位置するステージ21上の加工対象物1に向けてパルス幅1μs以下のパルスレーザ光である加工用レーザ光L1を出射する。

5

10

15

20

25

【0053】 筐体23の下端面には電動レボルバ24が取り付けられており、この電動レボルバ24には、加工対象物1を観察するための観察用対物レンズ26と、加工用レーザ光L1を集光するための加工用対物レンズ27とが装着されている。各対物レンズ26,27の光軸は、電動レボルバ24の回転によって加工用レーザ光L1の光軸に一致させられる。なお、加工用対物レンズ27と電動レボルバ24との間には、ピエゾ素子を用いたアクチュエータ28が介在されており、このアクチュエータ28によって加工用対物レンズ27の位置が2軸方向(上下方向)に微調整される。

【0054】 図15に示すように、加工用対物レンズ27は円筒形状のレンズホルダ29を有し、このレンズホルダ29は、その内部において複数のレンズを組み合わせてなる開口数「0.80」の集光レンズ31を保持している。そして、レンズホルダ29の上端部には、集光レンズ31に対する加工用レーザ光L1の入射瞳として第1の光通過孔32が形成され、レンズホルダ29の下端部には加工用レーザ光L1の出射開口33が形成されている。このように構成された加工用対物レンズ27によって加工用レーザ光L1が集光され、集光レンズ31による集光点P1での加工用レーザ光L1のピークパワー密度は1×108(W/cm²)以上となる。

【0055】 また、筐体23内における加工用レーザ光L1の光軸上には、図14に示すように、レーザ光源22で発生したレーザ光L1のビームサイズを拡大するビームエキスパンダ34と、レーザ光L1の出力や偏光を調整するレーザ光調整光学系36と、レーザ光L1の通過又は遮断を行う電磁シャッタ37と、レーザ光L1のビームサイズを絞る絞り部材38とが上から下にこの順序で配置されている。なお、ビームエキスパンダ34は、略平行光としてレーザ光L1を出射する。

5

10

15

20

25

【0056】 図15に示すように、絞り部材38は、加工用対物レンズ27の第1の光通過孔32の上方に位置して筺体23に取り付けられており、加工用レーザ光L1の光軸上においてこのレーザ光L1を絞って通過させるアパーチャとしての第2の光通過孔39を有している。この第2の光通過孔39は、加工用対物レンズ27の第1の光通過孔32と同径に形成されており、第2の光通過孔39の中心軸線は、絞り部材38に設けられた調節ネジ35によって第1の光通過孔32の中心軸線に正確に一致させることができる。したがって、ビームエキスパンダ34によりビームサイズを拡大された加工用レーザ光L1は、絞り部材38によって第2の光通過孔39より大きいレーザ光L1の外周部分がカットされ、これにより、第2の光通過孔39を通過した加工用レーザ光L1の径は、加工用対物レンズ27の第1の光通過孔32の径と同等になる。なお、ビームエキスパンダ34から出射されたレーザ光L1が完全な平行光ではなく、レーザ光L1が若干拡がるような略平行光である場合には、レーザ光L1の拡がり分を考慮して、第1の光通過孔32の周囲部分に入射するレーザ光L1がほとんどなくなるように第2の光通過孔39の径を第1の光通過孔32の径より小さくすればよい

【0057】 さらに、レーザ加工装置20は、図14に示すように、加工用対物レンズ27と加工対象物1の表面3との距離をレーザ加工中常に一定に保つべく、測距用レーザ光を発生するレーザダイオード等の測距用光源41と、フォト

ダイオードを4等分してなる4分割位置検出素子42とを筐体23内に有している。

【0058】 すなわち、測距用光源41から出射された測距用レーザ光は、ピンホール43、ビームエキスパンダ44を順次通過した後、ミラー46、ハーフミラー47により順次反射されて、電磁シャッタ37と絞り部材38との間に配置されたダイクロイックミラー48に導かれる。このダイクロイックミラー48により反射された測距用レーザ光は、加工用レーザ光L1の光軸上を下方に向かって進行し、絞り部材38の第2の光通過孔39を通過した後、加工用対物レンズ27の集光レンズ31により集光されて加工対象物1に照射される。なお、加工用レーザ光L1はダイクロイックミラー48を透過する。

5

10

15

20

25

【0059】 そして、加工対象物1の表面3で反射された測距用レーザ光の反射光は、加工用対物レンズ27の集光レンズ31に再入射して加工用レーザ光L1の光軸上を上方に向かって進行し、絞り部材38の第2の光通過孔39を通過した後、ダイクロイックミラー48により反射される。このダイクロイックミラー48により反射された測距用レーザ光の反射光は、ハーフミラー47を通過した後、シリンドリカルレンズと平凸レンズとからなる整形光学系49により集光されて4分割位置検出素子42上に照射される。

【0060】 この4分割位置検出素子42上における測距用レーザ光の反射光の集光像パターンは、加工用対物レンズ27と加工対象物1の表面3との距離に応じて変化する。このレーザ加工装置20では、加工用対物レンズ27と加工対象物1の表面3との距離がレーザ加工中常に一定となるように、4分割位置検出素子42上の集光像パターンに基づいてアクチュエータ28をフィードバック制御し、加工用対物レンズ27の位置を上下方向に微調整する。

【0061】 さらに、レーザ加工装置20は、ステージ21上に載置された加工対象物1を観察すべく、観察用可視光を発生する観察用光源51を筐体23外に有し、CCDカメラ52を筐体23内に有している。

【0062】 すなわち、観察用光源51で発せられた観察用可視光は、光ファイバからなるライトガイド53により筐体23内に導かれ、視野絞り54、開口絞り56、ダイクロイックミラー57等を順次通過した後、絞り部材38と加工用対物レンズ27の第1の光通過孔32と間に配置されたダイクロイックミラー58により反射される。反射された観察用可視光は、加工用レーザ光L1の光軸上を下方に向かって進行し、電動レボルバ24の回転によって加工用レーザ光L1の光軸上に配置された観察用対物レンズ26を通過して加工対象物1に照射される。なお、加工用レーザ光L1、測距用レーザ光及びその反射光はダイクロイックミラー58を透過する。

5

20

25

10 【0063】 そして、加工対象物1の表面3で反射された観察用可視光の反射 光は、観察用対物レンズ26内に再入射して加工用レーザ光し1の光軸上を上方 に向かって進行し、ダイクロイックミラー58により反射される。このダイクロ イックミラー58により反射された反射光は、ダイクロイックミラー57により 更に反射されて、フィルタ59、結像レンズ61、リレーレンズ62を順次通過 し、CCDカメラ52に入射することになる。

【0064】 このCCDカメラ52により撮像された撮像データは全体制御部63に取り込まれ、この全体制御部63によってTVモニタ64に加工対象物1の表面3等の画像が映し出される。なお、全体制御部63は、各種処理を実行すると共に、ステージ21の移動、電磁レボルバ24の回転、電磁シャッタ37の開閉、CCDカメラ52による撮像等の他、レーザ加工装置20の全体の動作を制御するものである。

【0065】 次に、上述したレーザ加工装置20によるレーザ加工手順について説明する。まず、ステージ21上に加工対象物1を載置する。続いて、加工対象物1の改質領域7の形成開始位置と加工用レーザ光L1の集光点P1とが一致するようにステージ21を移動させる。なお、このときの加工用対物レンズ27と加工対象物1の表面3との距離は、加工対処物1の厚さや屈折率に基づいて決

定することができる。

5

10

15

20

25

【0066】 続いて、レーザ光源22から加工用レーザ光L1を加工対象物1に向けて出射させる。このとき、加工用レーザ光L1の集光点P1は、加工対象物1の表面3から所定距離内側に位置しているので、改質領域7は加工対象物1の内部に形成される。そして、切断すべき所望の切断予定ラインに沿うようにステージ21をX軸方向やY軸方向に移動させて、加工対象物1の表面3に沿って延在する切断予定部8を改質領域7により形成する。

【0067】 この切断予定部8の形成中は、4分割位置検出素子42上における測距用レーザ光の反射光の集光像パターンに基づいて、加工用対物レンズ27と加工対象物1の表面3との距離が一定となるように、アクチュエータ28によって加工用対物レンズ27の位置が上下方向に微調整される。そのため、加工対象物1の表面3に面振れがあったり、ステージ21が振動したりしても、加工用対物レンズ27と加工対象物1の表面3との距離は一定に保たれることになる。したがって、加工対象物1の表面3から所定距離内側に精度良く切断予定部8を形成することができる。

【0068】 以上説明したようにレーザ加工装置20おいては、ビームエキスパンダ34とレンズホルダ29の第1の光通過孔32とを結ぶ加工用レーザ光L1の光路上に、第1の光通過孔32と同径の第2の光通過孔39を有する絞り部材38が配置されている。そのため、ビームエキスパンダ34によりビームサイズを拡大された加工用レーザ光L1は、絞り部材38によって第2の光通過孔39より大きいレーザ光L1の外周部分がカットされ、これにより、第2の光通過孔39を通過した加工用レーザ光L1の径は、レンズホルダ29の第1の光通過孔32の径と略同等になる。したがって、第1の光通過孔32の周囲部分によるレーザ光L1のカット量をほとんどなくすことができ、加工用レーザ光L1の照射によるレンズホルダ29の加熱を防止することが可能になる。しかも、絞り部材38はレンズホルダ29から離間しているため、第2の光通過孔39の周囲部

分でカットされたレーザ光L1によって絞り部材38が加熱されても、絞り部材38からレンズホルダ29への熱伝達が防止される。よって、レーザ加工中におけるレンズホルダ29の加熱を主原因とした加工用レーザ光L1の集光点P1の位置変動を小さく抑えることができ、加工対象物1の内部における所定の位置に精度良く改質領域7を形成することが可能になる。

5

10

15

20

25

【0069】 図16は、レーザ加工開始からの経過時間とレンズホルダの上昇温度との関係を示すグラフである。このグラフに示されるように、レーザ加工装置20においては、絞り部材39を設けることによって、絞り部材39を設けなかった場合に比べ、レーザ加工開始から30分の経過後におけるレンズホルダ29の上昇温度を1℃も抑えることができる。

【0070】 また、レーザ加工装置20においては、加工対象物1の内部に多光子吸収を起こさせるために、集光点P1での加工用レーザ光L1のピークパワー密度を1×10⁸(W/cm²)以上というように高くする必要があり、また、加工対象物1がウェハ状であるがために多光子吸収により発生する改質領域7を微小なものにする必要がある。このような改質領域7を形成するためには、例えば「0.80」といった開口数の大きい集光レンズ31を用いる必要があり、そのため、集光レンズ31の入射瞳径、すなわち第1の光通過孔32の径を大きくする必要がある。このレーザ加工装置20においては、ビームエキスパンダ34を設けることで、レーザ光源22で発生した加工用レーザ光L1のビームサイズを、大型化された第1の光通過孔32の径に対応可能となるように十分に大きくすることができる。

【0071】 本発明に係るレーザ加工装置は上記実施形態に限定されない。例 えば、絞り部材38の第2の光通過孔39は、レンズホルダ29の第1の光通過 孔32の径と同径であるものに限らず、ビームエキスパンダ34によりビームサイズを拡大された加工用レーザ光L1を絞って通過させるものであれば、第1の 光通過孔32の径より大きくてもよい。この場合にも、ビームエキスパンダ34

により拡大された加工用レーザ光L1を第1の光通過孔32に向けて直接照射させる場合に比べ、第1の光通過孔32の周囲部分によるレーザ光L1のカット量を減少させることができ、カットされたレーザ光L1によるレンズホルダ29の加熱を抑えることが可能になる。

【0072】 また、上記実施形態は、ビームエキスパンダ34から出射された レーザ光L1が略平行光である場合であったが、発散光や集束光であってもよい

【0073】 まず、ビームエキスパンダ34から出射されたレーザ光L1が発散光である場合について説明する。なお、レーザ光源22は、ビーム径 $_0$ 、発散角度2 θ_0 でレーザ光L1を出射し、ビームエキスパンダ34は、倍率Mでレーザ光L1のビームサイズを拡大し、発散角度2 θ_1 でレーザ光L1を出射するものとする。また、図17に示すように、レーザ光源22の出射部22aとビームエキスパンダ34の入射部34aとの距離を d_1 、ビームエキスパンダ34の出射部34bと第2の光通過孔39の入射側開口39aとの距離を d_2 、第2の光通過孔39の入射側開口39aと第1の光通過孔32の入射側開口32aとの距離を d_3 とする。

【0074】 このとき、ビームエキスパンダ34の入射部34aでのレーザ光 L1のビーム径は「 $\phi_0+2d_1\cdot \tan\theta_0$ 」であるから、ビームエキスパンダ34 の出射部34bでのレーザ光 L1のビーム径 ϕ_1 は、次式(1)で表される。

 $\phi_1 = M \left(\phi_0 + 2 d \cdot \tan \theta_0 \right) \cdots (1)$

【0075】 ここで、ビームエキスパンダ34が無いと仮定した場合、ビームエキスパンダ34の出射部34bの位置でビーム径 $_0$ 1、発散角度 2θ 1となるレーザ光L1を出射する疑似点光源位置Qとビームエキスパンダ34の出射部34bとの距離 d_4 は、次式(2)で表される。

25 $d_4 = \phi_1 / (2 \cdot \tan \theta_1) \cdots (2)$

5

10

15

20

【0076】 そして、疑似点光源位置Qから発散角度 $2\theta_1$ でレーザ光L1が

出射されると仮定した場合、疑似点光源位置Qから距離「 $d_4+d_2+d_3$ 」の位置にある第1の光通過孔32の入射側開口32aに入る光線角度2 θ_L は、第1の光通過孔32の径を θ_1 とすると、次式(3)で表される。

$$2 \theta_L = 2 \cdot \tan^{-1} \{ \phi_L / 2 (d_4 + d_2 + d_3) \} \cdots (3)$$

5 【0077】 したがって、第2の光通過孔39の径を ϕ_s とすると、光線角度 $2\theta_L$ 以下のレーザ光L1しか通さないように第2の光通過孔39の径 ϕ_s を次式(4)で定義すれば、第1の光通過孔32の周囲部分に入射するレーザ光L1 をほとんどなくすことができる。

2 $(d_4 + d_2) \tan \theta_L \ge \phi_s \cdots (4)$

10 【0078】 上記式(1)~式(4)よりφ₁, d₄, θ_Lを消去すると、第1 の光通過孔32の径φ_L及び第2の光通過孔39の径φ_Sは、

$$\frac{\phi_L \{ M(\phi_0 + 2d_1 \tan \theta_0) + 2d_2 \tan \theta_1 \}}{M(\phi_0 + 2d_1 \tan \theta_0) + 2(d_2 + d_3) \tan \theta_1} \ge \phi_S$$

の関係を満たすことになる。

【0079】 以上のように、ビームエキスパンダ34から出射されたレーザ光 L1が発散光である場合には、第1の光通過孔32の径 ø Lと第2の光通過孔39の径 ø s とが上記関係を満たすことで、第1の光通過孔32の周囲部分に入射 するレーザ光L1をほとんどなくすことができる。したがって、第1の光通過孔32の周囲部分によるレーザ光L1のカット量をほとんどなくし、レンズホルダ29の加熱をより一層抑えることが可能になる。

20 【0080】 次に、ビームエキスパンダ34から出射されたレーザ光L1が集 東光である場合について説明する。なお、レーザ光源22は、ビーム径φο、発 散角度2θοでレーザ光L1を出射し、ビームエキスパンダ34は、倍率Mでレ ーザ光L1のビームサイズを拡大し、集束角度2θ1でレーザ光L1を出射する ものとする。また、図18に示すように、レーザ光源22の出射部22aとビー ムエキスパンダ34の入射部34aとの距離をd1、ビームエキスパンダ34の

出射部34bと第2の光通過孔39の入射側開口39aとの距離をd₂、第2の光通過孔39の入射側開口39aと第1の光通過孔32の入射側開口32aとの距離をd₃とする。

【0081】 このとき、ビームエキスパンダ34の入射部34aでのレーザ光 L1のビーム径は「 $\phi_0+2d_1\cdot \tan\theta_0$ 」であるから、ビームエキスパンダ34 の出射部34bでのレーザ光L1のビーム径 ϕ_1 は、次式(5)で表される。

$$\phi_1 = M \left(\phi_0 + 2 d_1 \cdot \tan \theta_0 \right) \cdots (5)$$

5

10

15

20

【0082】 ここで、ビームエキスパンダ34の出射部34bの位置でビーム 径 ϕ_1 、集束角度2 θ_1 となるレーザ光L1が集光すると仮定した場合、疑似集光 点位置Rとビームエキスパンダ34の出射部34bとの距離 d_5 は、次式(6) で表される。

$$d_5 = \phi_1 / (2 \cdot \tan \theta_1) \cdots (6)$$

【0083】 そして、疑似集光点位置Rに集束角度 $2\theta_1$ で集光されるレーザ光 L1のうち、疑似集光点位置Rから距離「 d_5 -(d_2 + d_3)」の位置にある第1の光通過孔 32の入射側開口 32 a に入る光線角度 $2\theta_L$ は、第1の光通過孔 32の径を θ_1 とすると、次式 (7) で表される。

$$2 \theta_{L} = 2 \cdot \tan^{-1} \left[\phi_{L} / 2 \left\{ d_{5} - \left(d_{2} + d_{3} \right) \right\} \right] \cdots (7)$$

【0084】 したがって、第2の光通過孔39の径を ϕ_s とすると、光線角度 $2\theta_L$ 以下のレーザ光L1しか通さないように第2の光通過孔39の径 ϕ_s を次式 (8) で定義すれば、第1の光通過孔32の周囲部分に入射するレーザ光L1 をほとんどなくすことができる。

$$\phi_L + 2 d_3 \cdot \tan \theta_L \ge \phi_S \cdots (8)$$

【0085】 上記式(5)~式(8)より ϕ_1 , d_5 , θ_L を消去すると、第1の光通過孔32の径 ϕ_L 及び第2の光通過孔39の径 ϕ_S は、

25
$$\frac{\phi_L \{ M(\phi_0 + 2d_1 \tan \theta_0) - 2d_2 \tan \theta_1 \}}{M(\phi_0 + 2d_1 \tan \theta_0) - 2(d_2 + d_3) \tan \theta_1} \ge \phi_S$$

の関係を満たすことになる。

【0086】 以上のように、ビームエキスパンダ34から出射されたレーザ光 L1が集束光である場合には、第1の光通過孔32の径 $_{\phi_L}$ と第2の光通過孔39の径 $_{\phi_S}$ とが上記関係を満たすことで、第1の光通過孔32の周囲部分に入射 するレーザ光L1をほとんどなくすことができる。したがって、第1の光通過孔32の周囲部分によるレーザ光L1のカット量をほとんどなくし、レンズホルダ29の加熱をより一層抑えることが可能になる。

産業上の利用可能性

5

【0087】 以上説明したように本発明に係るレーザ加工装置によれば、レー ザ加工中におけるレンズホルダの加熱を主原因としたレーザ光の集光点の位置変 動を小さく抑えることができ、ウェハ状の加工対象物の内部における所定の位置 に精度良く改質領域を形成することが可能になる。

請求の範囲

- 1. ウェハ状の加工対象物の内部に集光点を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成するレーザ加工装置であって
- 5 レーザ光源から出射されたレーザ光のビームサイズを拡大するビームエキスパ ンダと、

10

20

前記ビームエキスパンダを介して入射したレーザ光を前記加工対象物の内部に 集光する集光レンズと、

前記集光レンズを保持すると共に、前記集光レンズにレーザ光を入射させる第 1の光通過孔を有するレンズホルダとを備え、

前記ビームエキスパンダと前記第1の光通過孔とを結ぶレーザ光の光路上には 、レーザ光を絞って通過させる第2の光通過孔を有する絞り部材が設けられ、そ の絞り部材は前記レンズホルダから離間していることを特徴とするレーザ加工装 置。

- 2. 前記ビームエキスパンダから出射されたレーザ光が略平行光である場合、 前記第2の光通過孔の径は前記第1の光通過孔の径以下であることを特徴とする請求の範囲第1項記載のレーザ加工装置。
 - 3. 前記レーザ光源が、ビーム径 ϕ 。、発散角度 2 θ 。でレーザ光を出射し、前記ビームエキスパンダが、倍率Mでレーザ光のビームサイズを拡大し、発散角度 2 θ ,でレーザ光を出射する場合、

前記レーザ光源の出射部と前記ビームエキスパンダの入射部との距離を d₁、前記ビームエキスパンダの出射部と前記第2の光通過孔の入射側開口との距離を d₂、前記第2の光通過孔の入射側開口と前記第1の光通過孔の入射側開口との距離を d₃とし、

25 前記第1の光通過孔の径を ϕ_L 、前記第2の光通過孔の径を ϕ_S とすると、前記 ϕ_L 及び前記 ϕ_S は、

$$\frac{\phi_{L}\{M(\phi_{0}+2d_{1}\tan\theta_{0})+2d_{2}\tan\theta_{1}\}}{M(\phi_{0}+2d_{1}\tan\theta_{0})+2(d_{2}+d_{3})\tan\theta_{1}} \ge \phi_{S}$$

5

の関係を満たすことを特徴とする請求の範囲第1項記載のレーザ加工装置。

4. 前記レーザ光源が、ビーム径 ϕ $_0$ 、発散角度 2 θ $_0$ でレーザ光を出射し、前記ビームエキスパンダが、倍率Mでレーザ光のビームサイズを拡大し、集束角度 2 θ $_1$ でレーザ光を出射する場合、

前記レーザ光源の出射部と前記ビームエキスパンダの入射部との距離を d₁、前記ビームエキスパンダの出射部と前記第2の光通過孔の入射側開口との距離を d₂、前記第2の光通過孔の入射側開口と前記第1の光通過孔の入射側開口との距離を d₃とし、

10 前記第1の光通過孔の径を ϕ_L 、前記第2の光通過孔の径を ϕ_S とすると、前記 ϕ_L 及び前記 ϕ_S は、

$$\frac{\phi_L \{ M(\phi_0 + 2d_1 \tan \theta_0) - 2d_2 \tan \theta_1 \}}{M(\phi_0 + 2d_1 \tan \theta_0) - 2(d_2 + d_3) \tan \theta_1} \ge \phi_S$$

の関係を満たすことを特徴とする請求の範囲第1項記載のレーザ加工装置。

図2

図5

図12

. 7/13

8/13

11/13

図17

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/15555

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ B23K26/04, B28D5/00						
According to International Patent Classification (IPC) or to both national classification and IPC						
	B. FIELDS SEARCHED .					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ B23K26/04, B28D5/00						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2004 Kokai Jitsuyo Shinan Koho 1971-2004 Toroku Jitsuyo Shinan Koho 1994-2004						
Electronic	data base consulted during the international search (na	ame of data hase and where provide se	arch terms used)			
	9		active discourse and the second			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where		Relevant to claim No.			
A	EP 1338371 A1 (HAMAMATSU PH KAISHA), 27 August, 2003 (27.08.03), Full text; all drawings & WO 02/22301 A1	OTONICS KABUSHIKI	1-4			
А	US 6392683 B1 (SUMITOMO HEA 21 May, 2002 (21.05.02), Full text; all drawings & JP 11-156568 A	VY INDUSTRIES, LTD.),	1-4			
A	Kiyotaka MIURA, Kazuyuki HIR Shosha ni yoru Garasu Naibu Keisei", Dai 42 Kai Proceedi Processing Conference, 1997, ISBN:4-947684-15-1	eno Hikari Yuki Kozo ngs of Laser Materials	1-4			
	· .					
× Furthe	er documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "E" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to considered not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to considered not in conflict with the application but cited to considered not in conflict with the application but cited to considered not in conflict with the application but cited to considered not in conflict with the application but cited to considered not in conflict with the application but cited to considered not in conflict with the application but cited to considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search			e application but cited to crying the invention laimed invention cannot be ed to involve an inventive laimed invention cannot be when the document is documents, such skilled in the art amily			
04 Ma	arch, 2004 (04.03.04)	23 March, 2004 (23.	03.04)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				
		Telephone No.	ł			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/15555

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	Ken'ichi HAYASHI, "Kotai Laser Koshuha ni yoru Garasu Kiban eno Naibu Marking", Dai 45 Kai Proceedings of Laser Materials Processing Conference, 1998, pages 23 to 28, ISBN:4- 947684-21-6	1-4
Ą	Tomokazu SANO, Shinsuke ASADA, Yoshiaki SHINJO Isamu MIYAMOTO, "Pico-byo Pulse Laser ni yoru Silicon no Kako Tokusei Hyoka -Tan-Pulse Tanhacho Laser ni yoru Denshi Zairyo no Seimitsu Bisai Kako (first report)-, 2000, pages 72 to 73	1-4
А	Shuji TAKAOKA, "Gokuusu Handotai Wafer no Dicing ni Saiteki na Steals Dicing Gijutsu no Genri to Tokucho", Denshi Zairyo, 01 September, 2002 (01.09.02), pages 17 to 21	1-4
ļ		
		•
	*	
	·	
j		•
	·	
-		

		101/110	00/1000
A. 発明の	属する分野の分類(国際特許分類(IPC))		
Int. C	1' B23K26/04, B28D5/00		
B. 調査を	 行った分野		
	最小限資料(国際特許分類(IPC))		
Int. C	1' B23K26/04, B28D5/00		·
	外の資料で調査を行った分野に含まれるもの		
	実用新案公報 1922-1996 公開実用新案公報 1971-2004		
日本国	実用新案登録公報 1996-2004	年	
	登録実用新案公報 1994-2004	·	
国際調査で使	用した電子データベース(データベースの名称	が、調査に使用した用語) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
0 000+1		·	•
C. 関連する 引用文献の	ると認められる文献 		BR to be
カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	EP 1338371 A1 (HAMAMATSU PHOTONIC & WO 02/22301 A1	CS K. K.) 2003.08.27, 全文, 全図	1-4
A	US 6392683 B1(SUMITOMO HEAVY IND 文,全図 & JP 11-156568 A	USTRIES, LTD.)2002.05.21,全	1-4
A	三浦清貴・平尾一之,フェムト秒レーの光誘起構造形成,第42回レーザ素111, ISBN: 4-947684-15-1	-ザー照射によるガラス内部へ 熱加工研究会論文集,1997,P105-	1-4
× C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
もの「E」国際出版以優にを主い、「L」優先権して、日本献のでは、「O」国「P」国	原のある文献ではなく、一般的技術水準を示す 質日前の出願または特許であるが、国際出願日 表表されたもの ご張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する 理由を付す) る開示、使用、展示等に言及する文献 質日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表さ出願と矛盾するものではなく、発出願と矛盾するものではなく、発の理解のために引用するもの 「X」特に関連のある文献であって、当の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、当上の文献との、当業者にとって自よって進歩性がないと考えられる 「&」同一パテントファミリー文献	明の原理又は理論 該文献のみで発明 られるもの 該文献と他の1以 明である組合せに
国際調査を完了 	04.03.04	国際調査報告の発送日 23.3.2	2004
日本国 郵	名称及びあて先 特許庁 (ISA/JP) 便番号100-8915 千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 加藤 昌人 電話番号 03-3581-1101	3 P 9 2 5 7
HF	· · · · · · · · · · · · · · · · · · ·	THIPPEC OU DEMENDE	とり形形 くくんり !

C (続き).				
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A	林 健一, 固体レーザー高調波によるガラス基板への内部マーキング, 第45回レーザ熱加工研究会論文集, 1998, P23-28, ISBN: 4-94768 4-21-6	1-4		
A	佐野智一, 浅田晋助, 新城嘉昭, 宮本勇, ピコ秒パルスレーザによるシリコンの加工特性評価-短パルス・短波長レーザによる電子材料の精密微細加工(第1報)-, 2000, P72-73	1-4		
A	高岡秀嗣, 極薄半導体ウェハのダイシングに最適なステルスダイシング技術の原理と特徴, 電子材料, 2002. 09. 01, P17-21	1-4		
	·			
		·		
	·			