Algorithm SMMB

Convention: Sets of variables (i.e. ensembles) will be denoted in bold font.

```
Algorithm 1 Stochastic Multiple Markov blanket
SMMB(r, t, X, T, K, k, m, α): consensus_MB
```

```
INPUT:
```

```
r, maximal number of Markov blankets (|\mathbf{MBs}|) output by the algorithm t, maximal number of iterations at top level, \mathbf{X}, observed data for genotypes, data matrix of dimension n*p, with:

n, the number of individuals, and p, the number of variables

\mathbf{T}, observed data for phenotype (vector of dimension n)

\mathbf{K}, total number of variables sampled from \mathbf{X} to learn a Markov blanket (top level) \mathbf{k}, number of variables sampled from \mathbf{K} variables (inner level), \mathbf{k} < \mathbf{K}

\mathbf{m}, maximal number of resamplings (of \mathbf{k} variables) as long as the Markov blanket remains empty

\boldsymbol{\alpha}, type I error threshold
```

OUTPUT:

 $\mathbf{consensus_MB}, \text{ a consensus from all learned Markov blankets } \mathbf{MBs}, \, |\mathbf{MBs}| \leq \mathbf{r}$

```
1: \mathbf{MBs} \leftarrow \emptyset

2: i \leftarrow 0

3: \mathbf{while} \ (|\mathbf{MBs}| \leq r \ \text{and} \ i \leq t)

4: \mathbf{X}^* \leftarrow sampling\_without\_replacement(K, \mathbf{X})

5: \mathbf{MB}^* \leftarrow learnMB(\mathbf{X}^*, T, k, m, \alpha)

6: if not empty(\mathbf{MB}^*) then add(\mathbf{MBs}, \mathbf{MB}^*) end if

7: incr(i)

8: end while

9: consensus\_\mathbf{MB} \leftarrow buildConsensus(\mathbf{MBs}, \alpha)

10: return consensus\_\mathbf{MB}
```

Algorithm 2 learnMB(X^* , T, k, m, α): MB

OUTPUT:

 \mathbf{MB} , a Markov blanket, possibly empty

```
1: MB \leftarrow \emptyset /*initialization of candidate Markov blanket*/
 2: i \leftarrow 0
 3: repeat
 4: \mathbf{S} \leftarrow sampling\_without\_replacement(\mathbf{k}, \mathbf{X}^*)
       \mathbf{s} \leftarrow argmax_{\mathbf{s'} \subseteq \mathbf{S}} \{assoc\_score(\mathbf{s'}, T, \mathbf{MB})\}
 5:
       if not significant\_indep_{|_{MB}}(\mathbf{s},T,\mathbf{MB},\alpha) then
         MB \leftarrow MB \cup s
 7:
          /*Backward step*
 8:
         for each X \in MB
           for each \mathbf{S} \subseteq \mathbf{MB} \setminus \{X\}, \mathbf{S} \neq \emptyset
9:
10:
              if (significant\_independence(X, T, S, \alpha) \text{ then } MB \leftarrow MB \setminus \{X\}; \text{ break end if }
11:
            end for
12:
          end for
       end if
13:
14: incr(i)
15: until ((not empty(\mathbf{MB})) and (MB does\ not\ change)) or (empty(\mathbf{MB}) and i=m)
16: return MB
```

Algorithm 3 buildConsensus(MBs, α): consensus_MB

```
INPUT:

MBs, a set of Markov blankets
\alpha, type I error threshold

OUTPUT:

consensus_MB, a consensus from all Markov blankets MBs

1: consensus_MB \leftarrow \bigcup_{\mathbf{MB} \in \mathbf{MBs}} \mathbf{MB} / * initialization of consensus */

/*Backward step*/

2: for each X \in \mathbf{consensus} . \mathbf{MB}

3: for each S \subseteq \mathbf{consensus} . \mathbf{MB} \setminus \{X\}, \mathbf{S} \neq \emptyset

4: if (significant\_independence(X, T, \mathbf{S}, \alpha)) then

5: consensus_MB \leftarrow \mathbf{consensus} . \mathbf{MB} \setminus \{X\}; break

6: end if

7: end for

8: end for
```

Algorithm 4 $assoc_score(S_1, T, S_2) : maximal score$

```
INPUT: \mathbf{S_1}, a set of variables \mathbf{T}, a variable, \mathbf{T} \notin \mathbf{S_1} \mathbf{S_2}, a set of variables, \mathbf{T} \notin \mathbf{S_2}

1: score_{max} \leftarrow -\infty

2: for \ each \ X \in \mathbf{S_1}

3: stat \leftarrow stat\_independence\_test(X, T, \mathbf{S_2} \cup (\mathbf{S_1} \setminus \{X\}))

4: if \ (stat > score_{max}) \ then \ score_{max} \leftarrow stat; memorize(p-value) \ end \ if

5: end for
```

Comments

6: return $score_{max}$

9: return consensus_MB

Algorithms 2 (learnMB) and 3 (buildConsensus) use function $significant_independence(X, T, \mathbf{S}, \alpha)$, with $X \neq T$ and $X \notin \mathbf{S}$. Function $significant_independence(X, T, \mathbf{S}, \alpha)$ runs a G-test of independence between variables X and T, conditional on set \mathbf{S} . We denote $stat_o$ the observed statistic returned by the test for Stat, the random variable with an unknown distribution. For the G-test, the distribution P_{H_0} of Stat under the hypothesis of independence H_0 is known, it is the Chi - Squared law. Thus, the function $significant_independence$ returns true if and only if $P_{H_0}(Stat \geq stat_o) \geq \alpha$.

Algorithm 4 $(assoc_score(\mathbf{S_1}, T, \mathbf{S_2}, \alpha))$ iteratively runs function $stat_independence_test(X, T, \mathbf{S_2} \cup (\mathbf{S_1} \setminus \{X\})), \ \forall \ X \in \mathbf{S_1}$. The test used by $stat_independence_test$ is the G-test, to assess independence between X and T, conditional on $\mathbf{S_2} \cup (\mathbf{S_1} \setminus \{X\})$. The higher the test statistic, the higher the dependence.

In Algorithm 2 (learnMB), function $assoc_score(\mathbf{s}', T, \mathbf{MB})$ (line 5) is run on all subsets \mathbf{s}' of \mathbf{S} , including subset \mathbf{s} , the future candidate. In particular, in Algorithm 4 $(assoc_score)$, function $assoc_score(\mathbf{s}, T, \mathbf{MB})$ will return the maximal G-test statistic computed for some $X^* \in \mathbf{s}$ by $stat_independence_test(X^*, T, \mathbf{MB} \cup (\mathbf{s} \setminus \{X^*\}))$. Let us denote test* this test. In Algorithm 2 (learnMB), function $significant_indep_{|_{MB}}(\mathbf{s}, T, \mathbf{MB}, \alpha)$ (line 6) is run after function $assoc_score(\mathbf{s}, T, \mathbf{MB})$ (in particular) has been run. The p-value of test* was memorized during the execution of $assoc_score(\mathbf{s}, T, \mathbf{MB})$ (Algorithm 4, line 4); this p-value is

then available. In learn MB, this p-value is directly used by the function $significant_indep_{|_{MB}}(\mathbf{s},T,\mathbf{MB},\alpha)$, to assess independence of \mathbf{s} et T, given the current MB.