DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2003 EPO. All rts. reserv.

10358986

Basic Patent (No, Kind, Date): JP 4034979 A2 920205 < No. of Patents: 001>

SEMICONDUCTOR DEVICE (English)

Patent Assignee: SEIKO INSTR INC Author (Inventor): KATO YUICHI

IPC: *H01L-029/784;

Derwent WPI Acc No: G 92-092128 JAPIO Reference No: 160210E000070 Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 4034979 A2 920205 JP 90143030 A 900530 (BASIC)

Priority Data (No,Kind,Date): JP 90143030 A 900530

DIALOG(R)File 347:JAPIO

(c) 2003 JPO & JAPIO. All rts. reserv.

03669879 **Image available**

SEMICONDUCTOR DEVICE

PUB. NO.:

04-034979 [JP 4034979 A]

PUBLISHED:

February 05, 1992 (19920205)

INVENTOR(s): KATO YUICHI

APPLICANT(s): SEIKO INSTR INC [000232] (A Japanese Company or Corporation),

JP (Japan)

APPL. NO.:

02-143030 [JP 90143030]

FILED:

May 30, 1990 (19900530)

INTL CLASS:

[5] H01L-029/784

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD: R097 (ELECTRONIC MATERIALS -- Metal Oxide Semiconductors,

MOS)

JOURNAL:

Section: E, Section No. 1203, Vol. 16, No. 210, Pg. 70, May

19, 1992 (19920519)

ABSTRACT

PURPOSE: To avoid the formation of a back channel for restraining the off leakage by isolating a source and a drain from an insulator.

CONSTITUTION: A gate insulating film 6 and a gate electrode 7 are provided on a channel region while a source 4 and a drain 5 are provided on both sides of the channel 3. At this time, the source 4 and the drain 5 must be formed to be isolated from an insulating film body 1. On the other hand, a depletion layer 9 as a drain must reach the underneath insulator 1. Accordingly, an SOI- MOSFET in the small drain capacity capable of rapid operations and in the low off leakage current due to the back channel formation can be manufactured.

@ 公 開 特 許 公 報 (A) 平4-34979

50 Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)2月5日

H 01 L 29/784

9056-4M H 01 L 29/78

3 1 1 S

審査請求 未請求 請求項の数 1 (全3頁)

半導体装置 ⑤発明の名称

> 顧 平2-143030 20特

願 平2(1990)5月30日 22出

@発 明 者 加藤 東京都江東区亀戸6丁目31番1号 セイコー電子工業株式

会补内

加出 願 人 セイコー電子工業株式 東京都江東区亀戸6丁目31番1号

会社

弁理士 林 敬之助 個代 理 人

1. 発明の名称

半導体装置

2. 特許請求の範囲

絶縁体上に設けられた半導体活性領域と、前記 半導体活性領域内のチャネル領域と、前記チャネ ル領域上に設けられたゲート絶縁膜と、前記ゲー ト絶縁膜上に設けられたゲート電極と、前記半導 体活性領域内で前記チャネル領域の両側に隣接し て設けられたソース・ドレイン領域からなる構造 において、前記ソース・ドレイン領域が前記絶縁 体に接することなく、しかも前記ソース・ドレイ ン領域に電圧を印加したときに形成される空泛層 が前記絶縁膜に接していることを特徴とする半導 体装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、SOI基板や多結晶薄膜Si薄膜等

に形成されたMISFETに関する。

(発明の概要)

本発明は、SOIや多結晶Si薄膜に形成され たMISFETにおいて、ソース・ドレイン拡散 層が下層の絶縁体にまで突き抜けることなく、し かしソース・ドレインに電圧を印加したときに形 成される空乏層が下層の絶縁体に接することによ り、パックチャネルによるオフリーク電流をドレ イン容量の増大を同時に抑制することを可能にし t.

〔従来の技術〕

従来のSOE技術によるMOSFETの一例を 第3図を用いて説明する。1は下地絶縁体、2は 半導体活性層である。この中にチャネル領域 3. ソース4,ドレイン5があり、チャネル3上には ゲート酸化膜 6 , さらにゲート電極 7 が設けられ ている。ソース4,ドレイン5は半導体層2の上 下方向全体にわたっている。

(発明が解決しようとする課題)

しかしながら、絶縁体1と半導体層2との界面

特開平4-34979 (2)

状態が不安定なため、半導体層 2 の裏面に反転層 または空乏層(いわゆるバックチャネル 8)が形 成され、ここに電流が流れてオフリークとなって しまう。

(課題を解決するための手段)

そこで、ソース 4. ドレイン 5 を絶縁体 2 から離すことによって、バックチャネルの形成を防ぎオフリークを抑制した。この距離を離しすぎるとドレイン - 基板間の容量が増えて、SOI 基板を使用した意味が半減してしまう。本発明ではドレイン 5 に電圧が印加されたときに延びる空乏層が絶縁体 2 に接するようドレイン 5 の深さをコントロールした。

(作用)

以上の手段により、パックチャネルによるオフリークを抑え、しかもドレイン容量も増加しない。 SOI基板上のMISFETが実現可能となった。 (実施例)

本発明による実施例の断面図を第1図に示す。 1は下地絶縁体、2は半導体活性層である。3の

以上、(1)、(2)式を満足する d s p, w p , t s p l を選ぶことによって、ドレイン容量が小さく高速で、しかもバックチャネル形成によるオフリーク 電流の少ない S O I M O S F E T を得ることができた。

4. 図面の簡単な説明

第1図は本発明による半導体装置の断面図、第 2図は本発明による半導体装置における電圧印加 時の断面図、第3図は従来の半導体装置の断面図 である。

・1・・・下地絶縁体

2・・・半導体活性層

3・・・チャネル

4 - - - ソース・

5・・・ドレイン

6・・・ゲート絶縁膜

7・・・ゲート電極

8・・・バックチャネル

チャネル領域上にばゲート絶縁膜 6. ゲート電極 7 が設けられており、チャネル 3 の両側にソース 4. ドレイン 5 が設けられている。ソース 4 及びドレイン 5 は絶縁体 1 から分離されるよう形成する必要があり、ソース 4. ドレイン 5 の深さを d so. 半導体活性層 2 の厚みを t so. とすると、

dso < tso; …(1)
としなければならない。 dsoはイオン注入時の飛程距離と、その後の熱処理による拡散から決まる値で、計算、シミュレーション、実測等から求めておく。

第2図は、第1図の実施例においてドレインに 電源電圧を印加したときの断面図である。ドレインの空乏層 8 が下地絶縁体 1 まで届かなければな らない。空乏層 8 の巾をw。とすると、

dss + ws > tso; …(2) とする必要がある。ws は電源電圧、半導体層 2 とソース 4 . ドレイン 5 の濃度、半導体層 2 の誘 電率、温度から計算することができる。

(発明の効果)

9・・・空乏層

DI E

出願人 セイコー電子工業株式会社 代理人 弁理士 林 敬 之 助

第3図