Написати програми з використанням циклу for. Оформити звіт (з використанням блок-схем).

Індивідуальні завдання "Обчислення суми ряду"

№ вар.	Варіанти завдань			
1	Ввести натуральне число n і дійсне число x , обчислити $s = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + = \sum_{i=0}^{s} \frac{x^i}{i}$			
2	Ввести натуральне число n та обчислити $s = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \sum_{i=1}^{n} \frac{(-1)^{i+1}}{2i-1}$			
3	Ввести два натуральні числа n та m ($n < m$), вивести всі кратні 4 числа від n до m та обчислити їхню суму			
4	Ввести ціле число n і дійсне x , обчислити $s = \cos(x) + \frac{\cos(2x)}{2} + \frac{\cos(3x)}{3} + \dots = \sum_{i=1}^{n} \frac{\cos(ix)}{i}$			
5	Ввести ціле число n і дійсне число a , обчислити $s = 1 - a + a^2 - a^3 + = \sum_{i=0}^{n} (-a)^i$			
6	Ввести натуральне число n та обчислити $s = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + = \sum_{i=1}^{n} \frac{1}{i}$			
7	Ввести двозначне число N , вивести всі непарні числа від 1 до N та обчислити їхню суму			
8	Ввести два натуральні числа n та m ($n \le m$), обчислити $s = \sum_{i=n}^{m} i$			
9	Ввести ціле число n і дійсне x , обчислити $s = -\frac{1}{x} + \frac{3}{x^2} - \frac{5}{x^3} - \dots = \sum_{i=1}^n \frac{(-1)^i (2i-1)}{x^i}$			
10	Ввести двозначне число N, вивести всі кратні 3 числа від 1 до N та обчислити їхню суму			
11	Ввести ціле число n і дійсне число x , обчислити $s = -x + \frac{x^3}{2} - \frac{x^5}{3} + = \sum_{i=1}^{n} \frac{(-1)^i x^{2i-1}}{i}$			
	Ввести ціле число п і дійсне число х, обчислити			
12	$s = \cos(x) + \cos(3x^{3}) + \dots = \sum_{i=1}^{n} \cos((2i-1)x^{2i-1})$			
13	Ввести ціле число n і дійсне число x , обчислити $s = \frac{1}{2} + \frac{x^2}{5} + \frac{x^3}{8} + = \sum_{i=1}^{n} \frac{x^{i-1}}{3i-1}$			
14	Ввести два натуральні числа n та m ($n < m$), вивести всі парні числа від n до m та обчислити їхню суму			
15	Ввести ціле число n і дійсне x , обчислити $s = 1 - \frac{2}{x^2} + \frac{3}{x^4} = \sum_{i=1}^n \frac{(-1)^{i+1}i}{x^{2i}}$			
16	Ввести ціле число n і дійсне x , обчислити $s = \sin(x) + \frac{\sin^2(x)}{4} + \frac{\sin^3(x)}{7} + \dots = \sum_{i=1}^n \frac{\sin^i(x)}{3i - 2}$			

№	Варіанти завдань				
вар.	•				
17	Ввести ціле число n і дійсне число x , обчислити $s = x - \frac{x^3}{3} + \frac{x^5}{5} = \sum_{i=0}^{n} \frac{(-1)^{i-1} x^{2i+1}}{2i+1}$				
18	Ввести двозначне число N , вивести всі парні числа від 1 до N та обчислити їхню суму				
19	Ввести ціле число n і дійсне число x , обчислити $s = (x+1) + \frac{(x+2)^3}{4} + \frac{(x+3)^5}{9} - \dots = \sum_{i=1}^n \frac{(x+i)^{2i-1}}{i^2}$				
20	Ввести двозначне число N, вивести всі кратні 3 числа від 1 до N та обчислити їхню суму				
21	Ввести ціле число n і дійсне x , обчислити $s = \sin(1-x) + \frac{\sin(2-x)}{4} + \frac{\sin(3-x)}{9} + \dots = \sum_{i=1}^{n} \frac{\sin(i-x)}{i^2}$				
22	Ввести ціле число <i>n</i> і дійсне число <i>x</i> , обчислити $s = \frac{1}{(x+1)} - \frac{3}{(x+2)^2} + \frac{5}{(x+3)^3} - \dots = \sum_{i=1}^n (-1)^{i+1} \frac{2i-1}{(x+i)^i}$				
23	Ввести ціле число n і дійсне число x , обчислити $s = -1 + \frac{x}{2} + \frac{x^2}{7} + \frac{x^3}{14} \dots = \sum_{i=1}^{n} \frac{x^{i-1}}{i^2 - 2}$				
24	Ввести натуральне число N до 10, вивести всі степені числа 2 від 1 до N та обчислити їхню суму				
25	Ввести ціле число n і дійсне x , обчислити $s = \frac{\cos(2x)}{3} + \frac{\cos(4x)}{15} + \frac{\cos(6x)}{35} \dots = \sum_{i=1}^{n} \frac{\cos(2ix)}{(2i-1)(2i+1)}.$				
26	Ввести ціле число n і дійсне x , обчислити $s = \frac{4}{x} + \frac{9}{2x^3} + \frac{16}{3x^5} + = \sum_{i=1}^{\kappa} \frac{(i+1)^2}{ix^{2i-1}}$				
27	Ввести натуральне число n (до 10) і дійсне x , вивести всі степені числа x від 1 до n та обчислити суму цих чисел				
28	Ввести ціле число n і дійсне x , обчислити $s = \frac{1}{2} + \frac{\sin(x)}{3} + \frac{\sin^2(x)}{4} + = \sum_{i=0}^n \frac{\sin^i(x)}{i+2}$				
29	Ввести ціле число n і дійсне x , обчислити $s = \frac{x}{2} + \frac{x^3}{12} + \frac{x^5}{30} \dots = \sum_{i=1}^{n} \frac{x^{2i-1}}{2i(2i-1)}$				
30	Ввести ціле число n і дійсне x , обчислити $s = 2 + \frac{3x}{9} + \frac{4x^2}{25} + \frac{5x^3}{49} \dots = \sum_{i=1}^{n} \frac{(i+1)x^{i-1}}{(2i-1)^2}$				

Таблиця 5.2 Індивідуальні завдання "Дослідження функцій на певному проміжку (табулювання)"

№ вар.	Функція $y = f(x)$	Функція $z = f(x)$	Проміжок дослідження
1	$\sin(x)/x^2$	cos(x)/x	$x \in [0,5; 11], h = 0,3$
2	arctg(x + 3,1)	e ^x	$x \in [-6; 1], h = 0,2$
3	e ^{3(x-0.6)}	arcsin(x)	$x \in [-1; 1], h = 0.05$
4	$\sqrt{\left \sin(x+\pi/4)\right }$	sin x ² +cos x	$x \in [-4; 10], h = 0,4$
5	$\operatorname{tg}\sqrt{x}$	$x/(x-3)^2$	$x \in [4,5; 18,5], h = 0,4$
6	1/e ^x	$\lg(x/2+0,1)$	$x \in [0; 7], h = 0,2$
7	$tg(x/3) \cdot sin(x-1,2)$	2,5sin(x/2)	$x \in [-2; 5], h = 0,2$
8	1/x	$(x/3)^2$	$x \in [0,5; 4], h = 0,1$
9	$\cos(1,5x)\cdot\lg(2,5x)$	$e^{\frac{1}{\sqrt{x}}}\sin(x)$	$x \in [3,5; 10,5], h = 0,2$
10	$\cos(x)/x$	cos(x/2)	$x \in [0,3; 7,3], h = 0,2$
11	e ^x	$1,5\cos(x-\pi/4\cdot e^x)$	$x \in [-6; 1], h = 0,2$
12	arcsin(x)	$\cos(1/(x + \pi/3))$	$x \in [-1; 1], h = 0.05$
13	$\sin^2(x)\cdot\cos(x-\pi)$	$\cos(x)/x$	$x \in [0,5; 11], h = 0,3$
14	$\sin x^2 + \cos x$	$\frac{\sin x}{\lg(x^2+2)}$	$x \in [-4; 10], h = 0,4$
15	$x/(x-3)^2$	cos(x/3)	$x \in [4,5; 18,5], h = 0,4$
16	$\lg(x/2 + 0,1)$	$\cos((x+2\pi)e^x)$	$x \in [0; 7], h = 0,2$
17	$2,5\sin(x/2)$	$\sin(x)/\ln(x+4)$	$x \in [-2; 5], h = 0,2$
18	$(x/3)^2$	$\cos(x + \pi/3) + 1.8$	$x \in [0,5; 4], h = 0,1$
19	$e^{\frac{1}{\sqrt{x}}}\sin(x)$	$ tg \sqrt{x} \cdot \sin\left(x - \frac{\pi}{2}\right) $	$x \in [3,5; 10,5], h = 0,2$
20	cos(x/2)	$\sin(x + \pi/2) \cdot \cos(1/x)$	$x \in [0,3; 7,3], h = 0,2$
21	$\sin^2(x) \cdot \cos(x - \pi)$	$\sin(x)/x^2$	$x \in [0,5; 11], h = 0,3$
22	$1,5\cos(x-\pi/4\cdot e^x)$	arctg(x + 3,1)	$x \in [-6; 1], h = 0,2$
23	$\cos(1/(x+\pi/3))$	e ^{3(x-0.6)}	$x \in [-1; 1], h = 0.05$
24	$\frac{\sin x}{\lg(x^2+2)}$	$\sqrt{\left \sin\left(x+\pi/2\right)\right }$	$x \in [-4; 10], h = 0,4$
25	cos(x/3)	tg√x	$x \in [4,5; 18,5], h = 0,4$
26	$\cos((x+2\pi)e^x)$	1/e ^x	$x \in [0; 7], h = 0,2$
27	$tg(x/3)\cdot sin(x-1,2)$	$\sin(x)/\ln(x+4)$	$x \in [-2; 5], h = 0,2$
28	1/x	$\cos(x + \pi/3) + 1.8$	$x \in [0,5; 4], h = 0,1$
29	$\cos(1,5x)\cdot\lg(2,5x)$	$tg\sqrt{x}\cdot\sin(x-\pi/2)$	$x \in [3,5; 10,5], h = 0,2$
30	$\cos(x)/x$	$\sin(x + \pi/2) \cdot \cos(1/x)$	$x \in [0,3; 7,3], h = 0,2$