Algorithms and Data Structures II

Lecture 10:

Algorithm Design Techniques: Dynamic Programming

https://elms.u-aizu.ac.jp

Dynamic programming

- Dynamic programming solves a given problem by combining the solutions to subproblems.

 Programming here means a tabular method, not writing a computer code.
- ▶ Dynamic programming is different from divide-and-conquer which partitions the problem into independent subproblems, solves the subproblems recursively, and then combines the solutions to solve the original problem.

Dynamic programming

Dynamic programming is applicable when the subproblems are not independent but dependent, i.e., subproblems share subproblems. In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving the common subproblems.

Dynamic programming

A dynamic programming algorithm solves every subproblem only once and then saves its answer in a table to avoid recomputing the answer every time the subproblem is encountered.

Warshall's and Floyd's algorithms

▶ Warshall's algorithm to find the transitive closure of a graph and Floyd's algorithm to find the shortest paths between every pair of nodes of a weighted graph are examples of dynamic programming algorithms.

Warshall's Algorithm

 \triangleright For every pair of nodes i and j, we find the path from i to j which may pass through nodes $1, 2, \ldots, k$, using the path from i to j, the paths from i to k and from kto j, that may pass through nodes $1, 2, \ldots, k-1$ (the result of the subproblems which is kept in the table $C^{k-1}[i, j]$).

$$C^{k}[i,j] = C^{k-1}[i,j] \lor (C^{k-1}[i,k] \land C^{k-1}[k,j])$$

matrix chain product

- ► Another example of dynamic programming algorithm for matrix chain product problem.
- ▶ Given an $\ell \times m$ matrix A and an $m \times q$ matrix B, the product

$$C = A \times B$$

$$(\ell, q) \quad (\ell, m) \quad (m, q)$$

is an $\ell \times q$ matrix, for $1 \leq i \leq \ell$ and $1 \leq j \leq q$,

$$C[i,j] = \sum_{k=1}^{m} A[i,k] \times B[k,j]$$

If we use the standard method to compute C, $\ell \times m \times q$ multiplications are used.

matrix chain product

 \triangleright Assume *n* matrices are to be multiplied together:

$$M_1$$
 M_2 M_3 \cdots M_{n-1} M_n , (r_1, r_2) (r_2, r_3) (r_3, r_4) \cdots (r_{n-1}, r_n) (r_n, r_{n+1})

where the matrices satisfy the constraint that M_i has r_i rows and r_{i+1} columns for $1 \le i \le n$.

matrix chain product

- The product can be computed in many orders, e.g., in the left-to-right order $(\cdots ((M_1M_2)M_3)\cdots M_{n-1})M_n$, or in the right-to-left order $M_1(M_2\cdots (M_{n-2}(M_{n-1}M_n))\cdots)$. Many other orders are also possible.
- ➤ The total number of multiplications used in different orders are different.

Example

► Given the matrix chain A_1 , A_2 , A_3 , A_4 . Let A_1 be 30×1 , A_2 be 1×40 , A_3 be 40×10 , A_4 be 10×25 .

Order of Multiplications	Number of scalar multiplications
$A_1 \times (A_2 \times (A_3 \times A_4))$	$40 \times 10 \times 25 + 1 \times 40 \times 25 + 30 \times 1 \times 25 = 11,750$
$A_1 \times ((A_2 \times A_3) \times A_4)$	$1 \times 40 \times 10 + 1 \times 10 \times 25 + 30 \times 1 \times 25 = 1,400$
$(A_1 \times A_2) \times (A_3 \times A_4)$	$30 \times 1 \times 40 + 40 \times 10 \times 25 + 30 \times 40 \times 25 = 41,200$
$(A_1 \times (A_2 \times A_3)) \times A_4$	$1 \times 40 \times 10 + 30 \times 1 \times 10 + 30 \times 10 \times 25 = 8,200$
$((A_1 \times A_2) \times A_3) \times A_4$	$30 \times 1 \times 40 + 30 \times 40 \times 10 + 30 \times 10 \times 25 = 20,700$

matrix chain product problem

➤ The matrix chain product problem is to find the order of multiplying the matrices that minimizes the total number of multiplications used.

matrix chain product problem

- Now, we use dynamic programming approach to find a solution for the matrix chain product problem:
 - First, there is only one way to compute (M_1M_2) which takes $r_1 \times r_2 \times r_3$ multiplications, (M_2M_3) which takes $r_2 \times r_3 \times r_4$ multiplications, . . ., and $(M_{n-1}M_n)$ which takes $r_{n-1} \times r_n \times r_{n+1}$ multiplications.
 - ► We record those costs in a table.

matrix chain product problem[Next Step]

Next, we find the best way to multiply successive triples. $(M_1M_2M_3), (M_2M_3M_4), \ldots, (M_{n-2}M_{n-1}M_n).$ The minimum cost of $(M_1M_2M_3)$ is the smaller of the cost of $((M_1M_2)M_3) = r_1 \times r_2 \times r_3 + r_1 \times r_3 \times r_4$ and the cost of $(M_1(M_2M_3)) = r_2 \times r_3 \times r_4 + r_1 \times r_2 \times r_4.$

matrix chain product problem[Next Step] (contd)

- ▶ In finding the costs of $((M_1M_2)M_3)$ and $(M_1(M_2M_3))$, we do not recompute the costs of (M_1M_2) and (M_2M_3) but simply find them from the table.
- The minimum costs of $(M_1M_2M_3), (M_2M_3M_4), \ldots, (M_{n-2}M_{n-1}M_n)$ are kept in the table.

matrix chain product problem[in general] We find the best way to compute (MM)

- We find the best way to compute $(M_i M_{i+1} \cdots M_{i+j})$ by finding the minimum cost of computing $(M_i M_{i+1} \cdots M_{k-1})(M_k \cdots M_{i+j})$ for $i < k \le i+j$.
- The cost of $(M_i M_{i+1} \cdots M_{k-1})(M_k \cdots M_{i+j})$ is the sum of the cost of $(M_i M_{i+1} \cdots M_{k-1})$, the cost of $(M_k \cdots M_{i+j})$, and $r_i \times r_k \times r_{i+j+1}$.
- ▶ The cost of $(M_iM_{i+1}\cdots M_{k-1})$ and the cost of $(M_k\cdots M_{i+j})$ are found from the table.
- ▶ The minimum cost of $(M_iM_{i+1}\cdots M_{i+j})$ is kept in the table.

$cost[\]]$

- Let cost[][] be a 2D array such that cost[i][i+j] keeps the minimum cost of computing the product $M_iM_{i+1}\cdots M_{i+j}$. For example,
 - ightharpoonup cost[1][2] keeps the cost of M_1M_2 ,
 - ightharpoonup cost[1][3] keeps the minimum cost of $M_1M_2M_3$,
 - ightharpoonup cost[3][5] keeps the minimum cost of $M_3M_4M_5$, and
 - ightharpoonup cost[1][n] keeps the minimum cost of $M_1M_2M_3\cdots M_{n-1}M_n$.
 - ightharpoonup cost[i][i], i = 1, 2, ..., n are 0.
 - ightharpoonup cost[i][j], i > j are NOT used.

$best[\][\]$

- Another array $best[\][\]$ is used to derive a way of multiplication which has the minimum cost. best[i][i+j] keeps a value k which indicates that the product of $(M_iM_{i+1}\cdots M_{i+j})$ should be done by $(M_iM_{i+1}\cdots M_{k-1})(M_k\cdots M_{i+j})$.
- ▶ For example, if best[1][3] has the value 2 then $(M_1M_2M_3)$ should be computed as $(M_1(M_2M_3))$.

$\mathbf{program} \ \mathbf{with} \ cost[\][\] \ \mathbf{and} \ best[\][\]$

- ▶ The following is a program to compute cost[][] and best[][].
- ▶ In the program, array r[i] and r[i+1] have the numbers of rows and columns of matrix M_i , respectively.

program with cost[][] and best[][]

```
for (i=1;i<=n;i++)
  for(j=i+1; j<=n; j++)cost[i][j]=infty;
for (i=1:i \le n:i++) cost[i][i]=0:
for (j=1; j< n; j++)
  for (i=1;i<=n-i;i++)
    for (k=i+1;k<=i+j;k++)
      t=cost[i][k-1]+cost[k][i+j]
          +r[i]*r[k]*r[i+i+1];
      if (t<cost[i][i+j])</pre>
        {cost[i][i+j]=t;best[i][i+j]=k;}
```

understanding of the program

▶ In the the program cost[i][i+j], $1 \le j \le n-1$ and $1 \le i \le n-j$, are computed by

$$cost[i][i+j] = \min_{k=i+1}^{i+j} \{cost[i][k-1] + cost[k][i+j] + r[i] * r[k] * r[i+j+1]\}$$

Note that cost[i][k-1] and cost[k][i+j] do not need to be recomputed. The following is a procedure that finds the best order of multiplying $M_i \cdots M_j$.

understanding of the process

- For j=1, the costs of $M_1M_2, M_2M_3, M_3M_4, \ldots, M_{n-1}M_n$ are computed.
- For j=2, the minimum costs of $M_1M_2M_3, M_2M_3M_4, \ldots, M_{n-2}M_{n-1}M_n$ are computed.
- For j = n 1, the minimum cost of $M_1 M_2 M_3 \cdots M_{n-1} M_n$ is computed.

for output

```
/*Find the best multiplication order for n
matrices; uses the best[][] from previous code*/
order(int i,int j){
  if (i==j) printf("M%d",i);
  else {
    printf("(");
    order(i,best[i][j]-1);
    order(best[i][j],j);
    printf(")");
```

Note for square matrices:

Any ordering can not save multiplications since the costs for multiplications are always the same in any order.

In other words, no need to consider the ordering.