6th-column in source files

Haruhisa lijima 2018.01.26

Data format 1

Jiang-san's email

The start time is the beginning of the year 2016.0.

The format of the file is as follows.

1st column: the day since the cycle start 2nd column: latitude of positive polarity 3rd column: longitude of positive polarity 4th column: latitude of negative polarity 5th column: longitude of negative polarity 6th column: area of the sunspot groups

(umbra+penumbra+faculae) in degree^2, which can be changed to millionth hemisphere area by dividing 0.5*0.041253. I suppose our magnetic field distributions are not exactly the same. What I did is same as Baumann et al.(2004).

ActiveRegionRecord2Lisa.107

==> ActiveRegionRecord2Lisa.107 <==									
#Day	+Lat	+Long	-Lat	-Long	d/deg				
2596	-2.5452	196.0718	-2.0418	192.7798	3.3277				
2598	-7.5414	288.5524	-8.2395	286.8873	1.7910				
2599	-4.5171	216.6101	-4.5916	214.4622	2.1424				
2602	14.7376	159.1701	14.8907	160.8600	1.6409				
2603	-21.3769	31.8299	-21.6050	26.1165	5.3211				
2605	13.0967	243.3235	13.4049	244.9792	1.6409				
2607	12.9797	318.3947	11.6249	324,1292	5.7642				
2608	12.0133	184.0656	12.8983	189.9634	5.8267				
2609	13.1525	14.3308	12.8474	25.0899	10.4878				

Data format 2

Jiang-san's email

Since Lisa requested the flux of each BMR in my source term last time I sent, I attached it here as well. This is an extreme case for the dipole field generation.

ActiveRegionRecord.dat

==> ActiveRegionRecord.dat <==									
#Day	+Lat	+Long	-Lat	-Long	Flux in 1e21 Mx				
2596	-2.5452	196.0718	-2.0418	192.7798	6.0445				
2598	-7.5414	288.5524	-8.2395	286.8873	0.9843				
2599	-4.5171	216.6101	-4.5916	214.4622	1.6769				
2602	14.7376	159.1701	14.8907	160.8600	0.7529				
2603	-21.3769	31.8299	-21.6050	26.1165	21.5245				
2605	13.0967	243.3235	13.4049	244.9792	0.7535				
2607	12.9797	318.3947	11.6249	324.1292	26.9678				
2608	12.0133	184.0656	12.8983	189.9634	27.5568				
2609	13.1525	14.3308	12.8474	25.0899	120.4368				

Derivation of separation and inclination

From the analogous equations in Cameron et al. (2010) (Eq. (4)—(7)),

$$\lambda_{\pm} = \lambda \pm \frac{1}{2} \Delta \beta \sin \alpha$$

$$\phi_{\pm} = \phi \pm \frac{1}{2} \Delta \beta \cos \alpha (\cos \lambda)^{-1}$$

I derived the separation between the two polarities $\Delta \beta$ and the tilt angle respect to the azimuthal direction α as follows:

$$\lambda = (\lambda_{+} + \lambda_{-})/2, \ \phi = (\phi_{+} + \phi_{-})/2$$

$$\Delta \lambda = |\lambda_{+} - \lambda_{-}|, \ \Delta \phi = |\phi_{+} - \phi_{-}|$$

$$\tan \alpha = \frac{\Delta \lambda}{\Delta \phi \cos \lambda}$$

$$\Delta \beta = \sqrt{\Delta \lambda^{2} + \Delta \phi^{2} \cos^{2} \lambda}$$

Separation v.s. 6th column in 1st source file

"Area" is not the total area of sunspot group?

How can we define the flux in each BMR?

The total unsigned flux of each BMR will depend on the actual size of the individual polarity patches (δ of Eq. (3) in Cameron et al., 2010 or δ_0 of Eq. (6) in Baumann et al., 2004).

This region is cancelled and the total unsigned flux decrease.

In the formulation of Eq. (5) in Baumann et al. (2004) using the actual (or initial) size of BMR δ_{in} , the cancelled flux is smaller than 10%.

If we neglect the cancelation, the total flux (double of each pole's flux) is approximately (within a few % error) derived as:

$$\begin{split} \Phi_{\rm BMR} &= 2 \times \pi B_{\rm max} R^2 (\delta_{\rm in} \ [{\rm rad}])^2 & \text{where I assume} \\ &= 5.488 \times (\delta_{\rm in} \ [{\rm deg}])^2 \ [10^{21} \ {\rm Mx}] & \begin{array}{c} {\rm B_{max} = 592 \ G} \\ {\rm and} \\ &= 0.878 \times (\Delta \beta [{\rm deg}])^2 \ [10^{21} \ {\rm Mx}] & \\ & \delta_{\rm in} = 0.4 \angle \beta. \end{split}$$

Separation v.s. 6th column in 2nd source file

"Flux" does not follow single curve nor line? Flux = $\Delta \beta^2$ indicates $B_{max} = 674$ G?