A NON-DIMENSIONAL ANALYSIS OF

CARDIOVASCULAR RESPONSE TO COLD STRESS

PART II: DEVELOPMENT OF THE NON-DIMENSIONAL PARAMETERS

Sharon A. Starowicz, M.S.

Biomedical Engineer

U.S. Food and Drug Administration

Silver Spring, Maryland 20910

Daniel J. Schneck, Ph.D.

Professor of Engineering Science and Mechanics

Head, Biomedical Engineering Program

Virginia Polytechnic Institute and State University

227 Norris Hall

Blacksburg, Virginia 24061

Approved for public releases

Pistribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE					
	REPORT DOCU	MENTATION	PAGE	11/2 11	
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS		
. Unclassified		3 01670101171011	/A./A./ A.D./.TV. O.C.	253223	
2a. SECURITY CLASSIFICATION AUTHORITY			/AVAILABILITY OF r public rel		
2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LE	1	n is unlimit	-	
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NUME	ER(S)
NMRI 86-80					
6a. NAME OF PERFORMING ORGANIZATION Naval Medical Research	66 OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGAN	NIZATION	
Navai medical Research	(If applicable)	Naval Medica	al Command		
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	y, State, and ZIP C	ode)	
Bethesda, Maryland 20814-5055			of the Navy		
		Washington,	D.C. 20372	-5120	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Naval Medical	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATION	NUMBER
Research and Development Command					·
8c. ADDRESS (City, State, and ZIP Code)	_ ~	10. SOURCE OF F	UNDING NUMBERS	5	· · · · · · · · · · · · · · · · · · ·
Bethesda, Maryland 20814-5055		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
·		61153N	MR041.01	06A .	DN277005
11. TITLE (Include Security Classification) A NON-DIMENSIONAL ANALYSIS OF CA PART II: DEVELOPMENT OF THE NON-	ARDIOVASCULAR RE- DIMENSIONAL PAR	ESPONSE TO CO	LD STRESS [PAR	T I: NMR	I 83-51]
12. PERSONAL AUTHOR(S) Starowicz SA, Schneck DJ	· · · · · · · · · · · · · · · · · · ·				
13a. TYPE OF REPORT 13b. TIME CO Technical Report FROM	OVERED TO	14. DATE OF REPO	85 (Year, Month, D		GE COUNT
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	18. SUBJECT TERMS (C	Continue on reverse	if necessary and	identify by	block number)
FIELD GROUP SUB-GROUP	Hypothermia		imensionless ardiovascula		
	Temperature Vascular Syste		lood	il Contro	.1
19. ABSTRACT (Continue on reverse if necessary			· · · · · · · · · · · · · · · · · · ·		
			•		
		•			4
	-				•
,		·			
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT			URITY CLASSIFICA	TION	
□ UNCLASSIFIED/UNLIMITED □ SAME AS R 22a. NAME OF RESPONSIBLE INDIVIDUAL	PT. DTIC USERS	Unclassifie		22c. OFFIC	E SYMBOL
Phyllis Blum, Information Serv		202-295-2188		ISD/AD	E SYMBOL MIN/NMLI
DD FORM 1473, 84 MAR 83 AP	Redition may be used un				ON OF THIS PAGE
	All other editions are of	かいきしき.	UNCLASSI	FIED	

TABLE OF CONTENTS

		Page
Chapter		
I	Introduction and Statement of the Problem	1
II	Historical Background	6
III	Method of Analysis	9
	A. The Buckingham Pi Theorem	9
	B. Simplification and Physical Significance of Dimensionless Parameters	13
IA	Tabulated Results of the Analysis	14
٧	Discussion of Results	18
VΪ	Conclusion	25
Referenc	es	29
Appendix	•••••	31
Tab	le 1 - Tabulation of Derived Dimensionless Parameters	32
	A. Blood	32
	B. Heart	43
	C. Vascular System	58
	D. Miscellaneous	80
Tab	le 2 - Derived Fundamental Scales Associated with Electro- thermodynamic Effects	86
Tab	le 3 - Other Derived Scales Associated with Electrothermo-dynamic Effects	87
Tab	le 4 - List of Symbols Used in Table 5	88

TABLE OF CONTENTS (continued)

	Page
Table 5 - Derived Dimensionless Parameters Written in Terms of Traditional Non-Dimensional Numbers Related to Fluid and Thermodynamic Theory	91
Table 6 - List of Variables Which Are Already Dimensionless by Definition	99
Table 7 - Other Variables That Can Be Associated with Cardio-vascular Function and Thermoregulation	103
Table 8 - Enzymes	107
Table 9 - Hormones	109
Table 10 - Nutrients	111
Table 11 - Vitamins	113
Table 12 - Buffering Ions, Minerals and Electrolytes, Trace Elements, Blood Gases, Byproducts of Metabolism	114

Acces	ion For	
DTIC	ounced	000
By Distrib	ution/	
A	vailability (Codes
Dist	Avail and Special	
A-1		

CHAPTER I

Introduction and Statement of the Problem

The thermoregulatory function of the cardiovascular system is extremely complex. It involves numerous physical and chemical parameters that interact to maintain a relatively constant temperature within the body core, an anatomical region containing organs vital to the sustenance of life. Under conditions of cold, the body utilizes a variety of feedback control regulatory mechanisms that attempt both to decrease heat loss to the environment and increase heat production. The primary effector of such control is the cardiovascular system, which has the ability to rapidly change blood flow patterns throughout the body in response to this need.

The reaction of the system to a moderately cold stimulus has been studied fairly extensively and is understood quite well \$\frac{13}{3}\$. Not so well understood, however, is what happens when one is subjected to extremes of cold, where body reactions can often be quite adverse. Not only is performance greatly restricted in the cold environment due to impaired musculoskeletal function, but a host of pathologic conditions result from the inability of the system to function under extremely low temperatures. In fact, the same mechanisms that attempt to protect and maintain the body in the presence of moderately cool temperatures, may indeed promote the destruction of the system when it is subjected to extremes in cold.

Relatively little is known about the physiology of temperature

Consul

regulation during prolonged periods of cold exposure. The complexities of the cardiovascular system even under normal operating conditions are vast. The fluid, blood, possesses certain non-Newtonian, anisotropic, and viscoelastic properties that directly influence its ability to transport heat. In addition to carrying heat, blood is responsible for transporting various biochemical constituents that are directly involved in thermoregulatory processes. The properties of blood are also highly temperature-dependent. For example, as the fluid is cooled it becomes more viscous and harder to pump, creating a tendency toward decreased blood flow.

An equally important constituent of cardiovascular thermoregulatory response is the vascular system, which provides the "pipes" through which the fluid is pumped. Both heat and mass transport occur across the blood vessel walls and the ease with which blood can be pumped through them is directly dependent upon various temperature-related elastic properties of the vessels themselves. In addition, the blood vessels are able to regulate the pathways of blood flow through local vasoconstrictive mechanisms in response to a cold stress.

The heart serves as the pump for the system and provides the energy needed to drive the blood. Under continuous nervous control, it can adjust its pumping rate to change cardiac output as needed.

In addition to these "hardware" components, one must also consider the intrinsic control mechanisms that govern the overall system response to any external stimulus. This would include the endocrine system as well as the central and autonomic nervous systems.

Any approach to studying the effects of cold on the cardiovascular system must necessarily account for all the governing factors mentioned above. This is to ensure model accuracy, since so many aspects of the system are interrelated and dependent on one another. The analysis must seek to isolate as many thermal, mechanical, and chemical properties of the system as possible, toward the ultimate goal of obtaining a detailed understanding of how these properties interact to protect body function this, in mind, the work which follows describes a non-dimensional approach which was taken to describe cardiovascular function,

Over six hundred physical and chemical variables that govern the thermoregulatory function of the cardiovascular system have been identified [13], and even this impressive list is far from exhaustive. In this study, the variables related to properties of blood, the vascular wall, the heart, and the cardiovascular control system were defined using dimensions of mass, length, time, temperature, and charge. From these, a working set of dimensionless parameters was developed using the Buckingham Pi Theorem. (see Chapter III and Table 1 of Chapter IV). This allowed the thermal, mechanical, and chemical properties of the cardiovascular system to be coupled through the non-dimensionalization process. (In order to obtain insight into the physics of the problem and to understand what the dimensionless groupings represent, these parameters were simplified and related to one another through geometric ratios and non-dimensional numbers common to the fields of fluid mechanics, solid and fluid heat conduction and convection, viscoelasticity, and electrochemical

diffusion (see Tables 4 and 5). On this basis, comparison of the parameters in terms of their relative significance to the problem was made. In addition, various scales were derived that are associated with electrothermodynamic processes and these were used to identify the physical significance of each parameter (see Tables 2 and 3).

Such a preliminary non-dimensional approach exploits a powerful technique for recognizing the fundamental aspects of the problem before a more complicated mathematical formulation is attempted. Because one can not initially know all the details associated with the response of the cardiovascular system to cold stress, and because there exist numerous experimental limitations that inhibit comprehensive study, a non-dimensional analysis provides a first order understanding of physical processes associated with the problem. This presents a foundation for future mathematical treatment.

In addition to identifying what experimental parameters might be useful for modeling studies, this analysis has direct application to the military, where prediction of physiologic response to adverse combat situations is often desired. Along these lines, relevant and measurable design parameters for protective clothing and gear may be proposed to enhance natural thermoregulation and compensate for adverse environmental reaction. Going one step further, the development of design parameters that may be useful in optimizing protective gear, and the suggestion of training methods to affect conditioning or adaptation to a cold environment, may all result from studies of this kind. By quantifying the final parameters and exploring their variability among individuals, a

basis for clinical diagnosis and treatment may be established, as well as a protocol for predicting one's susceptibility to cardiovascular stress in a cold environment.

CHAPTER II

Historical Background

The use of dimensional analysis is not recent. The development of the Buckingham Pi Theorem in 1914 provided a systematic mathematical approach to determine dimensionless groupings that contained variables pertinent to a given problem [6]. This technique is exploited in the following study and is explained in detail in Chapter III.

In 1927, Lambert and Teissier [10] first dealt with the question of circulatory similitude by proposing that the cardiac cycle and other biological periods are proportional to the length dimension of the body. Historically, similarity studies of the cardiovascular system have been based on well-established hydrodynamic principles [10]. However, such principles have often been used only to define local hemodynamic similarities without regard to the system as a whole. Current trends in this area combine such traditional methods with modern pulse transmission theory and cardiac dynamics, in an attempt to establish similarity criteria for the entire system that directly relate the physiological response of the system to its structural design [10].

A variety of cardiovascular phenomena have been explored using similarity criteria and dimensional analysis. McComis, Charm, and Kurland [11] attempted to characterize pulsating blood flow by using dimensional analysis as a method for obtaining equations which describe various pressure-velocity relationships. By investigating the parameters that

mign' influence the pulsating flow of blood through small tubes, and organizing these through dimensional analysis, they were successful in characterizing the steady flow of blood through small glass tubes. Further experimentation allowed the relationship between such parameters to be expressed in a simple form.

Another area where dimensional analysis has found great applicability is that of determining optimal design features of the cardiovascular system. For example, the recent works of Li and Milnor [10] have suggested that the arterial pulse transmission path length and wavelength are of such a ratio that the amount of external work performed by the ventricle at the resting heart rate is at a minimum. Using allometric equations for the given variables, a relationship may thus be derived for either ratio, and such may then be used to define a design feature of the system. Similarly, other dimensionless parameters may be used to characterize cardiac function and from these, the basis for optimal design of cardiovascular devices may be derived.

In addition to the utilization of non-dimensional analysis as it relates to design and experimentation, it has served as a means for making highly sophisticated mathematical analysis more manageable and applicable. In a study involving flows in the entrance regions of circular elastic tubes, Kuchar and Ostrach [8] made use of a non-dimensionalization scheme in order to obtain an approximate solution satisfying a simplified set of partial differential equations. Given the complexity of the equations for fluid velocity distributions, pressure distributions, and motions of the tube wall, an exact solution becomes impossible to obtain. By

introducing the non-dimensionalizing transformations for the variables involved into the Navier-Stokes equations and simplifying, significant non-dimensional fluid parameters are obtained as coefficients. These parameters contain the essential physics of the problem under investigation and, depending on their relative magnitudes, may be neglected if shown to be insignificant to the overall problem. In so doing, a simplified and more manageable set of partial differential equations is obtained which still contains the basic physics of the problem. The same technique is applied to the equations governing the motion of the tube wall. A similar non-dimensionalization scheme was used in the work of Schneck [16] to examine the phenomenon of pulsatile flow in a diverging circular channel.

Although the power of the technique is unquestionable, it has not been exploited to its fullest extent to describe the overall function of the cardiovascular system, particularly with regard to its thermoregulatory response. By reviewing the literature of past and present it becomes evident that the non-dimensional scheme is used as a tool in the simplification of equations governing specific cardiovascular phenomena only. It does not appear to be used as a method of modeling the way in which each aspect of the system interacts with one another and to what extent. It is this author's desire to explain more fully the integrated function of the cardiovascular system from the standpoint of heat and mass transport, and to do so by developing a set of dimensionless parameters that reveal the essential physics of the system without regard to complex mathematical analysis or sophisticated experimentation.

CHAPTER III

Method of Analysis

A. The Buckingham Pi Theorem

"A non-dimensional parameter or variable is any quantity, physical constant, or group of these formed in such a way that all of the units identically cancel" [16].

Such a statement is the basis for the Buckingham Pi Theorem. Developed in 1914, it provides a systematic method to develop a finite number of dimensionless parameters from a group of variables, where a fixed number of these variables are repeated in each parameter. In order to initiate such a scheme, it must first be determined which dimensions are to be considered fundamental. Most commonly, the choice for these are mass, length, and time. However, because the problem at hand is complex and involves variables representing thermal and electrical properties as well, temperature and charge must be added for a total of five fundamental dimensions. They are represented by the symbols M, L, T, θ , and q, respectively.

Once this is determined, each variable must be written in terms of the fundamental dimensions, raised to some appropriate exponential power. For example, mean arterial blood velocity would be written as L^1T^{-1} , while fluid shearing stress would be represented by $M^1L^{-1}T^{-2}$. Each of the total of k (about 600) variables defined in Reference [13] and summa-

rized in Chapter IV (Table 1) were dimensioned in such a fashion.

The next step in the non-dimensionalization scheme is to select n variables from among the total. These n variables will form the basis of the technique in the sense that they will be inherent in all the final dimensionless parameters. In this case, k is approximately equal to six hundred and n = 5 (representing the number of fundamental dimensions chosen). The choice for the five starting variables is essentially arbitrary except that they must contain among them all five fundamental dimensions. Since this study specifically addressed heat transport processes, this author chose variables which reflect thermal concepts related to the heat transport characteristics of blood. The variables chosen were: Thermal Conductivity of the Biood (k_+) : $M^1L^1T^{-3}\theta^{-1}$, Total Thermal Capacity of the Blood (C): MIL2T-20-1, Specific Heat of the Blood at Constant Pressure (c_p) : $L^2T^{-2}\theta^{-1}$, Convection Coefficient of the Blood (film coefficient, h): $MT^{-3}\theta^{-1}$, and the Faraday Constant (F): M⁻¹q¹. These variables are used as "repeating variables" that can be grouped with any of the remaining variables to determine each new dimensionless parameter.

The essence of the Buckingham Pi Theorem states that, for the abovechosen variables, an equation may be written which has the form:

$$k_t^a C^b C_p^c h^d F^e (\underline{\ })^1 = M^0 L^0 T^0 \theta^0 q^0$$

The blank indicates where each of the remaining variables is to be inserted.

Rewriting each variable in terms of its own basic dimensions, the

equation becomes:

$$(M^{1}L^{1}T^{-3}\theta^{-1})^{a} \cdot (M^{1}L^{2}T^{-2}\theta^{-1})^{b} \cdot (M^{0}L^{2}T^{-2}\theta^{-1})^{c} \cdot (M^{1}L^{0}T^{-3}\theta^{-1})^{d}$$

$$(M^{-1}L^{0}T^{0}\theta^{0}q^{1})^{e} \cdot ()^{1} = M^{0}L^{0}T^{0}\theta^{0}q^{0}$$

By replacing the blank with each of the remaining k - n variables individually and by equating corresponding coefficients, five equations will be obtained that can be solved simultaneously for each of the five lettered exponents.

For example, in order to create the dimensionless parameter involving the electrical resistance of the vascular wall, R*, having the dimensions $M^{1}L^{2}T^{-1}\theta^{0}q^{-2}$, one would insert this quantity into the above equation and solve accordingly:

M:
$$(1 \cdot a) + (1 \cdot b) + (0 \cdot c) + (1 \cdot d) + (-1 \cdot e) + (1) = 0$$
L: $(1 \cdot a) + (2 \cdot b) + (2 \cdot c) + (0 \cdot d) + (0 \cdot e) + (2) = 0$
T: $(-3 \cdot a) + (-2 \cdot b) + (-2 \cdot c) + (-3 \cdot d) + (0 \cdot e) + (-1) = 0$
e: $(-1 \cdot a) + (-1 \cdot b) + (-1 \cdot c) + (-1 \cdot d) + (0 \cdot e) + (0) = 0$
q: $(0 \cdot a) + (0 \cdot b) + (0 \cdot c) + (0 \cdot d) + (1 \cdot e) + (-2) = 0$

or

$$a + b + d - e + 1 = 0$$

$$a + 2b + 2c + 2 = 0$$

$$-3a - 2b - 2c - 3d - 1 = 0$$

$$-a - b - c - d + 0 = 0$$

$$e - 2 = 0$$

Solving these simultaneously for the exponents:

$$a = -4$$

$$b = 2$$

$$c = -1$$

$$d = 3$$

$$e = 2$$

Hence, the dimensionless parameter becomes:

$$k_t^{-4}C^2c_p^{-1}h^3F^2R*$$

0r:

$$\frac{c^2h^3F^2R^*}{k_t^4c_p}$$

The same technique is performed for each of the k - n remaining variables to produce k - n unique dimensionless parameters.

B. Simplification and Physical Significance of Dimensionless Parameters

Once the dimensionless parameters have been developed, it is convenient to write them in terms of some "standard" dimensionless numbers that have already been defined for specific groupings of variables. These numbers (such as the Prandtl Number, Reynolds Number, Peclet Number, and so on) are common to the fields of solid and fluid mechanics and deal with such phenomena as magneto-fluid dynamics, heat and mass transfer, viscous flow, viscoelasticity and diffusion. By isolating combinations of variables in such a manner, the physical significance of each parameter becomes more readily realized.

In order to illustrate the technique, examine the dimensionless parameter involving vascular internal diameter, D: $\frac{hD}{k_t}$, which is recognized to be the familiar Nusselt number (Nu). Physically, this represents a ratio of heat transfer by convection to heat transfer by conduction. Similarly, the dimensionless parameter involving the asymptotic limiting value of thixotropic fluid shearing stress under constant load (τ_{∞}) : $C\tau_{\infty}/(k_t^3/c_ph)$, represents the ratio of heat generated by thixotropic shear effects to heat dissipated by a combination of convection and conduction effects. A physical significance can likewise be assigned to each of the remaining derived parameters (see Table 1).

Hence, by similar technique, a collection of parameters can be obtained which shows the types of phenomena that are prevalent to cardio-vascular function. The results of this investigation are presented in Chapter IV and discussed in the sections that follow.

CHAPTER IV

Tabulated Results of the Analysis

Table 1 presents the results of a non-dimensional analysis of cardiovascular function and thermoregulation. It lists each variable, together with its respective symbol, dimensions, derived dimensionless parameter, and the physical significance of this parameter. The variables are grouped according to whether they are related to the blood, the heart, the vascular system, or to some overall aspect of cardiovascular function and thermoregulation.

By applying the Buckingham Pi Theorem to each variable, a unique dimensionless parameter was derived involving that variable and a combination of other thermal and electrical variables. Each derived parameter has a unique physical significance (column 5 of Table 1) that reflects the role of the cardiovascular system in thermoregulation. Through the development of these parameters, thermal, electrical, and mechanical variables are coupled together in meaningful groupings that provide a powerful insight into heat transport phenomena, without having to get involved in tedious mathematical formulations. Depending on the magnitude of the individual variables (a subject which was not specifically addressed in this work) comprising the dimensionless groupings, each parameter reflects the significance and relative importance of various electrical and thermal processes involved in thermoregulation. Derived dimensionless parameters and their corresponding physical significance are discussed in Chapter V in terms of their relationship to the blood,

heart, vascular system and overall thermoregulatory response.

In the process of non-dimensionalizing and interpreting the resulting parameters, a series of fundamental scales associated with electrothermodynamic effects was derived naturally. These results are presented in Table 2 and include scales for mass, length, time, temperature, and charge. For each of these physical quantities, a unique scale has been derived that involves the variables originally chosen as the foundation for the Buckingham Pi method of non-dimensionalization. The combinations of these variables, as shown in Table 2, represent fundamental scales for the various electrical and thermal processes that are associated with the regulation of body temperature. This is significant in that it provides the ability to derive a unique dimensionless parameter for any variable by simply knowing its basic dimensions. For example, the Mass Density of Blood, pf, has the dimensions ML-3. This is rewritten in terms of the derived scales:

$$(C/c_p)(k_t/h)^{-3} = Ch^3/c_pk_t^3$$

Hence, a unique <u>dimensionless</u> parameter is created for this variable by forming the ratio of ρ_f to this quantity: $\rho_f/(Ch^3/c_pk_t^3)$. This ensures a non-dimensional parameter and precludes a longer and more formal analysis that is required using the Buckingham Pi Theorem. This not only serves to simplify the task of formulating the parameter itself, but it also facilitates the analysis of what the parameter represents from a physical standpoint.

Further expanding on the concept of scales associated with electrothermodynamic processes, a series of kinematic, kinetic, thermal, and transport quantities were written in terms of the fundamentally derived scales. These results are presented in Table 3. Having these quantities in this form simplifies the task of interpreting each derived parameter. The physical significance of many of the dimensionless parameters became evident after identifying groupings of these quantities from within the parameter itself. In this way, the translation between mathematical entity and physical phenomenon was realized.

The results of this analysis provide a valuable way to characterize cardiovascular thermoregulation through the development of a tangible set of numerical parameters consisting of several thermal and electrical variables that were selected for the purpose of the non-dimensionalization scheme. The resulting parameters may be further written in terms of more traditional dimensionless numbers, such as those listed in Table These dimensionless numbers are common to the fields of solid and fluid mechanics and incorporate various heat and mass transport phenomena. Several of the dimensionless parameters derived in this study were written in terms of the traditionally defined numbers. These results are presented in Table 5. Here, variables having the same basic dimensions are grouped together for purposes of reference. A sampling of some variables, along with the resulting combination of dimensionless numbers, is provided to illustrate that the parameters derived from this study relate not only to heat and mass transport within the cardiovascular system, but they reflect even more fundamental concepts of fluid flow and heat transfer inherent within any dynamic system. Since some of the variables defined in Reference [13] are inherently dimensionless already,

there was no need to involve these variables in any further non-dimen-They should, however, be recognized as important sional analysis. controlling factors in the system's attempt to protect itself from temperature extremes and are indeed parameters in and of themselves. listing of these dimensionless variables is presented in Table 6. Moreover, other variables defined in Reference [13] are difficult to quantify in the non-dimensional sense, but, either from a chemical or physical standpoint, they enhance or impede the thermoregulatory capacity of the cardiovascular system. These variables are found in Table 7 and relate to characteristics of the individual, climate, clothing, concentration and properties of carrier molecules in the blood, diet of the individual, predilection to cold stress, properties of the myocardial muscle, statistical parameters, and physical properties of the vascular system. A combination of some or all of these variables may interact to control the manner and the efficiency with which the system protects itself from an assaulting environment. To complete the list of variables, consideration must be given to the various enzymes, hormones, nutrients, vitamins, buffering ions, minerals and electrolytes, trace elements, blood gases, and byproducts of metabolism (Tables 8 - 12) that are found within the body and whose concentrations directly influence the processes of heat and mass transport.

CHAPTER V

Discussion of Results

The purpose of this work was to derive the dimensionless parameters, themselves. To actually calculate them, as well, would have been too formidable a task, and so this is left for a future study. some general qualitative discussion of the results obtained is in order at this point. For example, through the derivation of dimensionless parameters involving blood-related variables, various heat transfer processes are revealed that take place due to the inherent properties of blood itself. An examination of each derived parameter and its corresponding significance shows that blood has the ability to store heat, depending on its total thermal capacity, and to distribute this thermal energy throughout the body via momentum transport, molecular dispersion, ordinary diffusion, electromotive diffusion, and viscous dissipation. Each of these processes is incorporated in a respective associated Pi parameter. The variables involved are mathematically coupled with the established set of thermal and electrical variables chosen for the nondimensionalization scheme, i.e., Thermal Conductivity of the Blood (kt), Total Thermal Capacity of the Blood (C), Specific Heat of the Blood at Constant Pressure (cp), Convection Coefficient of the Blood (film coefficient, h), and the Faraday Constant (F).

associated with elastic effects, to the corresponding thermal energy (conduction) per volumetric flow rate of blood. This represents a ratio of well-defined physical quantities that relate the ability of the cardiovascular system to transport heat by each of these physical mechanisms. Similarly, the parameter involving the Dynamic Viscous Modulus of Blood $(E_i(t)/(k_t/c_n))$ represents the ratio of heat per volumetric flow rate associated with viscous dissipation in blood, to that transported by conduction. Other parameters involve the ratio of energy transported by molecular dispersion (Eddy Diffusion Coefficient, D_E), electromotive diffusion (Electromotive Diffusion Coefficient, D_{ς} *), and ordinary diffusion (Ordinary Mass Diffusion Coefficient, D_s) to heat transported by mass and mass flux through electrothermodynamic processes. In addition to these parameters involving energy and heat transport, a ratio of heat generated per mass flow rate of blood due to viscous dissipation and heat transported per mass flow rate of blood through electrothermodynamic processes is revealed in the derived parameter involving the Kinematic Viscosity of Blood (vf/(kt4/Ch3)).

Volume ratios were also derived using other variables. The parameter involving Total Blood Volume ($V_B/(k_t^3/h^3)$) represents the ratio of total blood volume to a characteristic volume of blood associated with thermodynamic events. Similarly, other non-dimensional volume ratios were defined for variables associated with other aspects of cardiovascular thermoregulation, such as End Diastolic Volume (EDV/ (k_t^3/h^3)), End Systolic Volume (ESV/ (k_t^3/h^3)), and Stroke Volume (S.V./ (k_t^3/h^3)). Each of these parameters involves the ratio of the specific heart volume

involved to the volume of blood characteristic of thermodynamic events.

Each variable in Table 1 with dimensions of time creates a unique parameter that addresses the ratio of the respective time scale associated with that particular event to the time scale associated with various thermodynamic processes. These parameters involve such time scales as the <u>Time Spent in Core (Blood)</u> $(t_c/(Ch/k_t^2))$ and the various ECG intervals, such as the <u>Q-R-S Complex Interval</u> $(t_{QRS}/(Ch/k_t^2))$. Parameters that involve frequency are merely reciprocals of time scales associated with the related phenomena. For example, the derived dimensionless parameter involving the Natural Frequency of the Vascular Wall $(\omega_n/(k_t^2/Ch))$ represents the ratio of the time scale associated with diffusion of heat through blood to the time scale associated with the kinematic translation of the vascular wall.

Variables involving pressure and stress are represented as ratios of certain energies per unit volume. The derived dimensionless parameter for Osmotic Pressure ($\pi_p/(k_t^3/Cc_ph)$), for example, represents the ratio of potential energy per unit volume associated with molecular kinetic energy driving mass across the membrane as a result of the existence of concentration gradients, to potential energy per unit volume associated with mass transport resulting from thermal gradients.

The examples presented above are not meant to be exhaustive. They morely serve to illustrate how one can interpret the physical significance represented by several types of non-dimensional parameters. Variables associated with the heart produce dimensionless parameters that reflect the role of the heart in thermoregulation. Such parameters provide a

relationship between the function of the heart—characterized by various ECG intervals, pressures, cardiac output, cardiac volumes, heart rate; and so on—and the electrical and thermal processes that take place within the body to control and regulate temperature. Similarly, variables related to the vascular system are found in parameters that reflect the role of the vascular system in thermal regulation. Energy per unit volume associated with elastic storage in vascular tissue, heat per unit volume associated with viscous dissipation in vascular tissue, energy transported across membranes by mass flux due to ordinary diffusion, electromotive diffusion, electromagnetic diffusion, and osmosis, and energy per unit volume associated with stress in the vascular wall are some of the quantities incorporated in the dimensionless parameters involving the vascular system.

By applying the techniques of non-dimensionalization to each variable, a dimensionless parameter is derived that relates this variable to the overall process of thermoregulation by creating a unique ratio of identifiable events. The resulting parameter provides a physical quantity to which a numerical value may be assigned. Depending on the value thus obtained, one may look, then, for a significant correlation between the function of the cardiovascular system under consideration and the mechanisms for controlling temperature within the body.

By examining the values of the derived fundamental reference scales found in Table 2 (as calculated in Reference [17]), valuable information is provided in interpreting the relative significance of various heat and mass transfer events taking place within the cardiovascular system. For

example, assuming a normal cardiac rate of 80 cycles per minute, the time scale for the transport of unsteady inertial phenomena is calculated as follows: $1/\omega = 1/2\pi f = 1/2\pi (80) = 0.002$ minutes, or, about 0.12 seconds. Similarly, calculating the time scale associated with the heat transport characteristics of blood, Ch/k_t^2 , (based on values provided in Reference [17]) one obtains the following result: $Ch/k_t^2 = (4.0)$ Kcalories/°C) $(174.96 \text{ KCal/°C-hr-m}^2)/(0.48 \text{ KCal/°C-hr-m})^2 = 2,975.2 \text{ hours}$ or about four months! The results of this simple calculation reveal that the events associated with the transport of blood through the cardiovascular system occur nearly 100 million times faster than do those associated with the ability of the fluid to dissipate heat through its own thermal properties[17]. Therefore, blood, being a poor conductor of heat, dissipates the heat generated within the body most effectively by physically carrying that heat through blood flow rather than waiting for the heat to dissipate by itself through the fluid - a process that would certainly lead to death since the body would not be able to handle the heat at the rate that it would be generated. Hence, blood can rapidly absorb and transport large quantities of heat, but it cannot easily allow that heat to move within the fluid as a result of thermal gradients associated with conductive and convective processes.

By also examining the calculated value for the reference temperature scale, 1.04 x 10^{-22} °C or nearly 0°C, one recognizes this as the "standard" thermodynamic reference temperature for the measurement of most heat transfer processes. The analysis thus suggests a reference temperature scale that is more generally associated with standard conditions (0°C and

atmospheric pressure) than with <u>physiologic</u> conditions (37°C and atmospheric pressure). Similarly, the derived length scale, k_t/h , has a calculated value of 2.75 millimeters. This is on the order of magnitude of the length of a capillary, the mean radius of a medium sized artery (or vein), or the average wall thickness of any major blood vessel, such as the aorta or the vena cava. The naturally derived mass scale, $C/c_p = 4.35 \text{ kilograms}$, represents a mass scale associated with the heat transport characteristics of the fluid and is defined to be the total blood mass divided by the specific heat ratio of the fluid.

Therefore, as a result of this analysis, various fundamental scales associated with electrothermodynamic processes taking place within the cardiovascular system were identified and calculated. Through this process, the response of the cardiovascular system to changes in the body temperature is better understood and is able to be quantified. Such quantities may, in turn, be applied to each derived parameter to characterize its importance to overall cardiovascular thermoregulation.

Since the cardiovascular system is extremely complex, as is evident by the extensive list of variables presented in Tables 1-12, many experimental limitations are imposed upon any comprehensive study that might be undertaken. Consequently, the need arises for a more fundamental approach to determine a working set of parameters that characterize the system and, from these, to select which factors would be most significant in future modeling and experimental studies. The power of a non-dimensionalization scheme provides a method for accomplishing this task. By isolating the thermal, mechanical, and chemical variables associated

with the cardiovascular system and by developing from these a set of non-dimensional parameters, a framework is established for modeling the heat and mass transport response of the system to a given thermal input. This analysis has served to develop these working parameters and to identify the physical quantities that predict and control such a response.

CHAPTER VI

Conclusion

As a result of the non-dimensional analysis described in the preceding chapters, several significant concepts regarding cardiovascular function and thermoregulation have been developed. Using the technique of the Buckingham Pi Theorem, a dimensionless parameter was derived for each isolated variable associated with heat and mass transfer within the cardiovascular system. This parameter is unique to this variable and directly couples the related phenomenon to other thermal, mechanical, and electrical events that take place within the system.

Through the process of non-dimensionalization, a series of fundamental scales for each of the five basic dimensions was derived naturally from the resulting parameters. These were identified and quantified in Table 2. Although they may appear to be quite simplistic at first glance, they contain powerful information that permits the derivation of <u>any</u> non-dimensional parameter directly, without having to employ rigorous calculations necessitated by the Buckingham Pi Theorem. The dimensions of any selected variable can be written in terms of the derived fundamental scales. By creating a ratio of the variable to the resulting combination of fundamental scales, the non-dimensional parameter is immediately formed. The ability to create dimensionless parameters in this way is highly significant. The technique ensures that the resulting parameter is non-dimensional, and it can be performed immediately, without solving any equations beforehand. It must be reminded, however, that the simplified

method of non-dimensionalization is possible only because the fundamental scales were initially derived for the problem - a process that required the structure and methodology afforded by the Buckingham Pi Theorem.

By examining the quantitative values for the fundamental scales that resulted from this analysis (Table 2), significant information is obtained regarding heat and mass transfer within the cardiovascular system. value obtained for the fundamental time scale, 4.16 months, appears vast when compared with the time scale for the transport of unsteady inertial phenomena - calculated to be about 0.12 seconds. This indicates that the events associated with the physical transport of blood through the cardiovascular system occur nearly 100 million times faster than do those associated with the ability of the fluid to dissipate heat through its own thermal properties. Blood is shown to be a poor conductor of heat. Hence, the human organism could not survive if it depended on blood, alone, to disperse heat due to the thermal properties of its constituents. There must be another mechanism to enhance heat transport and dissipation, and this occurs through the physical movement of the blood, or circulation. The value obtained for the fundamental time scale emphasizes that conductive heat transfer in the cardiovascular system is much smaller than that due to bulk flow.

Similarly, the other derived fundamental scales each bring a physical significance to the analysis through their respective numerical values. More important than the actual values calculated for these scales is the comparison between these values and the values associated with other events occurring within the cardiovascular system. Through such a compar-

ison, the relative significance of each event to overall cardiovascular thermoregulation is established. This type of information must be known before a more complicated analysis is attempted and, in fact, may help to develop fundamental assumptions (and simplifications) of the behavior of the cardiovascular system in its response to a thermal stress.

A non-dimensional analysis was chosen to approach this problem for the following reasons: First, the technique exploits a very powerful means for grasping the fundamental features and essential physics of any given problem before attempting to pursue a more complicated mathematical formulation. Second, it allows one to identify explicitly the important parameters that need to be measured when performing experiments that deal with physiological responses to environmental stresses. (The parameters are developed through a systematic technique and many parameters, that otherwise could only be identified through complex differential equations, are derived with relative ease using a non-dimensional scheme.) Third, criteria are established that can be used to screen individuals for their susceptibility to thermal (hot or cold) stress. Fourth, the resulting non-dimensional parameters may be used as design parameters for the development of physiologic training maneuvers and acclimatization exercises, as well as for the fabrication of thermal protection clothing and gear. And fifth, the parameters allow one to distinguish between firstorder effects and higher-order effects in the analysis of data obtained from well designed thermal stress experiments.

Given the complexity of the cardiovascular system, it is necessary to develop a framework for future studies by identifying what parameters

are most significant to the analysis. Otherwise, substantial time and wasted energy may be spent to produce results that are insignificant and unrelated to the original problem. To whatever extent non-dimensional techniques may contribute to directing future research, they should be pursued in a continuing effort to improve the health, comfort, and understanding of man.

REFERENCES

- 1. Barenblatt, G.I., Similarity, Self-Similarity, and Intermediate

 Asymptotics, New York, Consultants Bureau, Chapter 1, pp. 1330. 1979.
- 2. Bridgman, P.W., <u>Dimensional Analysis</u>, New Haven, Connecticut, Yale University Press, 1931.
- 3. Cooney, D.O., <u>Biomedical Engineering Principles</u>, New York, Marcel Dekker, Inc., Chapter 5, pp. 93-155, 1976.
- 4. Eshbach, O.W.(Editor), <u>Handbook of Engineering Fundamentals</u>, New York, John Wiley and Sons, Inc., Section 3, pp. 3-01 3-45, 1936.
- 5. Holman, J.P., <u>Heat Transfer</u>, New York, McGraw-Hill Book Company, Third Edition, 1972.
- Huntley, H.E., <u>Dimensional Analysis</u>, New York, Dover Publications, Inc., 1967.
- 7. Hwang, N.H.C., Gross, D.R., and Patel, D.J., Quantitative Cardiovas-cular Studies: Clinical and Research Applications of Engineering Principles, Baltimore, Maryland, University Park Press, pp. 41-51, 1979.
- 8. Kuchar, N.R., and Ostrach, S., Flows in the Entrance Regions of Circular Elastic Tubes, Case Western Reserve University, School of Engineering, Division of Fluid, Thermal and Aerospace Sciences, FTAS/TR-65-3, June 1965.
- 9. Land, N.S., A Compilation of Nondimensional Numbers, Washington, D.C., National Aeronautics and Space Administration, 1972.
- 10. Li, J. K-J., Fich, S., and Welkowitz, W., "Similarity Analysis of Mammalian Hemodynamics," in Welkowitz, W. (Editor),

 Proceedings of the Ninth Northeast Conference on Bioengineering,
 New York, Pergamon Press, pp. 50-53, 1981.
- 11. McComis, W., Charm, S., and Kurland, G., "Dimensional Analysis of Pulsating Flow - - An Introduction," in Copley, A.L. (Editor), Proceedings of the Fourth International Congress on Rheology, New York, Interscience Publishers, pp. 231-242, 1965.
- 12. Schepartz, B., <u>Dimensional Analysis in the Biomedical Sciences</u>, Springfield, Illinois, Charles C. Thomas, 1980.
- 13. Schneck, D.J., A Non-Dimensional Analysis of Cardiovascular Response

To Cold Stress: Part 1, Identification of Physical Parameters That Govern The Thermoregulatory Function of the Cardiovascular System, Naval Medical Research Institute Technical Information Service, Technical Report Number NMRI 83-51, NTIS Accession Number AD-A138 710/9, September, 1983.

- 14. Schneck, D. J., <u>Biomechanics of Striated Skeletal Muscle</u>, Santa Barbara, California, Kinko's Professor Publishing Service, 1986.
- 15. Schneck, D.J., Principles of Mass Transport Across Biological Membranes, Virginia Polytechnic Institute and State University, College of Engineering, Department of Engineering Science and Mechanics, Technical Report Number VPI-E-83-07, March 1983.
- 16. Schneck, D. J., "Pulsatile Blood Flow in a Diverging Circular Channel," Ph.D. Dissertation, Cleveland, Ohio, Case Western Reserve University, 1973.
- 17. Schneck, D.J., and Starowicz, S., "A Non-Dimensional Approach to the Analysis of the Heat-Transport Characteristics of Whole Human Blood," Paper submitted for publication, 1986.
- 18. Weast, R.C. (Editor), <u>CRC Handbook of Chemistry and Physics</u>, 52nd edition, Cleveland, Ohio, The Chemical Rubber Company, pp. F-266-F-283, 1971.

Appendix

TABLE 1

TABULATION OF DERIVED DIMENSIONLESS PARAMETERS

A. Blood VARIABLE Activity of Solution (Effective [])	SYMBOL B[S] _B	DIMENSIONS ML ⁻³	DERIVED DIMENSIONLESS PARAMETER B[S] _B Ch ³ /c _p kt ³	Energy Per Degree Handled by the Fluid Through Conduction and Convection Associated with the Presence of Species (And Their Interactions) in Blood Total Thermal Capacity of Blood
Asymptotic Limiting Value of Thixotropic Fluid Shearing Stress Under Constant Load	, s	ML-1T-2	τ∞ kt³/Ccph	Heat per Unit Volume Associated with Thixotropic Shear Effects Heat per Unit Volume Dissipated by the Thermal Properties of Blood
Blood Temperature	٦ 8	Ф	T _B k _t ⁶ /C ² c _p h ⁴	Blood Temperature Reference Temperature Scale Associ- ated with Heat Transfer Processes

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Boiling Point Temperature of Blood	Kererence lemperature Scale Associated with Heat Transfer Processes	Energy per Degree Handled by the Fluid Through Conduction and Convection Associated with the Presence of Species in Blood	Total Thermal Capacity of Blood	Energy per Volumetric Flow Rate Associated with Driving Blood	Through System	Energy per Volumetric Flow Rate Associated with Thermal Properties of Fluid	*
	Boili	Kererence Scale Ass Processes	Enerc Fluic Conve Prese	Tota	Energ	Throu	Energy Assoc Fluid	
DERIVED DIMENSIONLESS PARAMETER	T _b	kt "/ L * C p n †	.[] Ch ³ /c _p kt ³		, k	$ch(ch/k_t^2)^{(n-2)/c_pk_t}$,	*
DIMENSIONS	Φ		ML-3		ML-17(n-2)			*
SYMBOL	Д .	۵ ا			k			ح
VARIABLE	Boiling Point Temperature	soling Point Elevation of	Concentrations (See Tables 8-12)		Consistency Index of Blood			Convection Conductance (Film) Coefficient

TABLE 1 (continued)

Dynamic Elastic Modulus Of Blood Dynamic Viscosity (Apparent Viscosity for non-Newtonian Fluid) Dynamic Viscous Modulus Of Blood	E _d (t)	DIMENSIONS ML -1 T - 1 ML -1 T - 1	DERIVED DIMENSIONLESS PARAMETER Ed(t) kt/cp kt/cp Ej(t)	Energy per Volumetric Flow Rate Associated with Elastic Storage in Blood Heat per Volumetric Flow Rate Irans- ported by Conduction Hydrodynamic Boundary Layer Thickness Thermal Boundary Layer Thickness Thermal Boundary Layer Thickness Heat per Volumetric Flow Rate Associated with Viscous Dissipation in Blood Heat per Volumetric Flow Rate
Eddy Diffusion Coefficient	3 ₀	L ² T ⁻¹	D _E	Energy Transported per Mass Flow Rate of Blood by Molecular Dispersion Heat Transported per Mass Flow Rate of Blood by Thermodynamic Processes

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Charge Transported per Volumetric Flow Rate of Blood Through Electromotive Diffusion Charge Transported per Volumetric Flow Rate of Blood Through Electrothermodynamic Processes	Freezing Point Temperature of Blood Reference Temperature Scale Associated with Heat Transfer Prosesses	Heat Generated per Mass Flow Rate of Blood Due to Viscous Dissipation Heat Transported per Mass Flow Rate of Blood by Thermodynamic Processes	Energy per Degree Handled by the Fluid through Conduction and Convection Total Thermal Capacity of Fluid
DERIVED DIMENSIONLESS PARAMETER	0s* C2h4F/cpkt ⁵	Tf kt ⁶ /C ² c _p h ⁴	ν _f k _t ⁴ /Ch ³	of Ch³/cpkt³
DIMENSIONS	L ⁻³ Tq	Ф	L ² T ⁻¹	ML -3
SYMBOL	* S0	Tf ∆Tf	5 1	Pf
VARIABLE	Electromotive Diffusion Coefficient	Freezing Point Temperature Freezing Point Depression of Solvent	Kinematic Viscosity (= ua/of)	Mass Density of Blood

TABLE 1 (continued)

VARIABLE	SYMBOL	SYMBOL DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Ordinary Mass Diffusion Coefficient	S	L2T-1	D _S k _t ⁴ /Ch ³	Energy Transported per Mass Flow Rate of Blood by Ordinary Diffusion Heat Transported per Mass Flow Rate of Blood by Thermodynamic Processes
Osmotic Pressure	d #	ML -1T-2	πp kt³/Ccph	Energy per Unit Volume Associated with Pressure Energy Driving Mass Across Membranes by Osmosis Heat per Unit Volume of Blood Transported by Thermodynamic Processes
Quantity of Blood Pooling in Core	QB	L3	QB kt ³ /h ³	Volume of Blood Pooling in Core Reference Volume of Blood Associated with Heat Transfer Processes
Quantity of Blood Reaching Periphery	QE	L3	0ε kt ³ /h ³	Volume of Blood Reaching Periphery Reference Volume of Blood Associated with Heat Transfer Processes

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Stress Relaxation	Heat per Unit Volume Generated by Fluid Shear Effects Heat per Unit Volume Dissipated by Thermodynamic Processes	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Spatial Strain Rate	Energy per Degree Handled by the Fluid Through Conduction and Convection Associ- ated with the Presence of Species in Blood Total Thermal Capacity of Blood
DERIVED DIMENSIONLESS PARAMETER	λ kt²/Ch	t kt³/Ccph	ξ kt ² /Ch	[S] _B
SYMBOL DIMENSIONS	T-1	ML-1T-2	T-1	ML -3
SYMBOL	~	7 <u> 7 </u>	· w	[5] _B
VARIABLE	Relaxation Time Constant of Blood	Shearing Stress Magnitude of Shearing Stress	Spatial Strain Rate	Species Concentration in Blood

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Total Blood Volume per Unit Mass	Reference Volume of Blood per Unit Mass Associated with Heat Transfer Processes	*	Heat Required to Raise 1 gram of Blood 1°C at Constant Volume	Heat Required to Raise 1 gram of Blood 1°C at Constant Pressure	Temperature of Blood at Core Reference Temperature Scale Asso- ciated with Heat Transfer Processes	Temperature of Blood at Periphery Reference Temperature Scale Asso- ciated with Heat Transfer Processes
DERIVED DIMENSIONLESS PARAMETER	8 8	cpkt³/Ch³	*	^	g.	TBC kt ⁶ /C ² cph ⁴	TBE kt ⁶ /C ² cph ⁴
DIMENSIONS	M-1L3		*	L2T-20-1		Φ	Ф
SYMBOL	<i>"</i> B		d _o	ر ک		TBC	ТВЕ
VARIABLE	Specific Blood Volume		Specific Heat (Constant Pressure)	Specific Heat (Constant Volume)		Temperature of Blood at Core	Temperature of Blood at Periphery

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	"Lateral" Heat Transfer Across the Vascular Wall	"Longitudinal" Heat Transfer Associ- ated with Blood Flow	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Temporal Strain Rate	Total Thermal Capacity of Total Blood Volume	Total Thermal Capacity of Blood Volume Involved in Conductive and Convective Heat Transfer	*
DERIVED DIMENSIONLESS PARAMETER	$(\frac{\partial T}{\partial r})$	kt ⁵ /C ² c _p h³	2 //Ch	, , , , , , , , , , , , , , , , , , ,	ρfc _V	++ 	*
DIMENSIONS	ا_1θ		Τ-1		ML-1T-28-1		*
SYMBOL	(1e)		• ພ		ρfcv		, k
VARIABLE	Temperature Gradient (Blood-Endothelium)		Temporal Strain Rate		Thermal Capacitance		Thermal Conductivity

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Time Rate of Change of Temperature in Blood	Time Rate of Heat Influx or Efflux from Blood	Heat per Unit Volume Generated by Fluid Shear Effects Over Time	Heat per Unit Volume Dissipated Over Time by Thermodynamic Processes	Time Scale Associated with Blood in Core	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Blood at Periphery	Time Scale Associated with Diffusion of Heat Through Blood
DERIVED DIMENSIONLESS PARAMETER	ಶ	k _t 4/Ch 3	1(t)		, t	Ch/kt ²	ta	- C
DIMENSIONS	L2T-1		ML-17-2		F	ļ	⊢	
SYMBOL	გ		τ(t)		t C		ب ھ	
VARIABLE	Thermal Diffusivity		Time-Dependent Shearing Stress		Time Spent in Core (Blood)		Time Spent in Periphery (Blood)	

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Total Blood Volume	Reference Volume of Blood Associated with Heat Transfer Processes	*	Change in Velocity of Blood with Respect to Radial Distance at the Wall Due to Viscous Shear Effects	Change in Velocity of Blood per Unit Length Traversed Due to Thermodynamic Effects	Energy per Volumetric Flow Rate Associated with Elastic Storage and Viscous Dissipation in Blood	Heat per Volumetric Flow Rate Transported by Conduction
DERIVED DIMENSIONLESS PARAMETER	VB	kt 3/h 3	*	$\left(\frac{3V}{3\Gamma}\right)_{W}$, t	E _r (t) k _t /C _p	I
DIMENSIONS	L ³		*	1-1		ML-1T-1	
SYMBOL	VB		ပ	(<u>3e</u>)		i	Er(t)
VARIABLE	Total Blood Volume		Total Thermal Capacity	Velocity Gradient of Blood at Wall		Viscoelastic Complex Modulus Magnitude of Viscoelastic	Complex Modulus

TABLE 1 (continued)

		<u> </u>
PHYSICAL SIGNIFICANCE	Heat per Unit Volume Associated with Fluid Yield Stress	Heat per Unit Volume Dissipated by Thermodynamic Processes
DERIVED DIMENSIONLESS PARAMETER	ty	kt³/Ccph
DIMENSIONS	ML-17-2	
SYMBOL	t _y	
VARIABLE	Yield Stress	

TABLE 1 (continued)

HEART

8.

VARIABLE	SYMBOL	SYMBOL DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Amplitude of Ventricular Pressure	^dv	ML-17-2	Δρ _ν k _t ³/Ccph	Energy per Unit Volume Associated with Pressure Energy (Potential) in Heart
				Heat per Unit Volume of Blood Transported by Thermodynamic Processes
Circular Frequency of Oscillating Blood Flow (= 2mf)	3	T-1	w.	Time Scale Associated with Diffusion of Heat Through Blood
				Time Scale Associated with Kinematic Translation of Blood Through the Cardiovascular System
Conduction Velocity Through Myocardial Musculature	3	1-17	U V. 3/Ch2	Rate of Conduction Through Myocardial Musculature
			10/1	Rate at which Heat Diffuses Through Blood

TABLE 1 (continued)

D ILESS ER PHYSICAL SIGNIFICANCE	Volume of Blood per Unit Time Perfus ing the Heart	Reference Volume of Blood per Unit Time Associated with Heat Transfer Processes	Time Scale Associated with Completion of Ventricular Depolarization and Beginning of Ventricular Repolarization	Time Scale Associated with Diffusion Heat Through Blood	Time Scale Associated with Atrial Depolarization	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Atrial Depolar-ization and Propagation of Sino-Atrial	Time Scale Associated with Diffusion of Heat Through Blood
DERIVED DIMENSIONLESS PARAMETER	0 _C	25 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /	tQT' Ch/kt²	,	t tp	, , , , , , , , , , , , , , , , , , ,	tPQ Ch/kt ²	
DIMENSIONS	L3T ⁻ 1	·	-		⊢		- -	
SYMBOL	°0		tQT'	;	tр		tPQ	
VARIABLE	Coronary Perfusion Rate		ECG Intervals "Corrected" ()-T Duration (same as S-T Segment		P-Wave Interval		P-Q Wave Interval	

TABLE 1 (continued)

S PHYSICAL SIGNIFICANCE	Time Scale Associated with Atrio-Ventricular Node Delay Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Atrio-Ventricular Conduction Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Pre-Ejection Period Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with P-U Wave Interval Time Scale Associated with Diffusion of Heat Through Blood
DERIVED DIMENSIONLESS PARAMETER	tpR* Ch/kt ²	t PR Ch/kt ²	tSE Ch/kt ²	tpU Ch/kt ²
DIMENSIONS	!	⊢	-	-
SYMBOL	t pr	tpR	t S.E.	tPU
VARIABLE	P-R Segment Interval	P-R Wave Interval	Pre-Ejection Period (= tvs-tv)	P-U Wave Interval (= tRR = tpp)

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Time Scale Associated with Propagation of the Sino-Atrial Signal Through the Interventricular Septum Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Ventricular Depolarization Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with "Electrical Systole" Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with the Propagation of Sino-Atrial Signal Through Right Ventricular Musculature Time Scale Associated with Diffusion of Heat Through Blood
DERIVED DIMENSIONLESS PARAMETER	tQ Ch/kt	tqRS Ch/kt	tQT Ch/kt	ta Ch/kt
DIMENSIONS	-	⊢	⊢	-
SYMBOL	t T	tQRS	tQT	tR
VARIABLE	Q-Wave Interval	Q-R-S Complex Interval (same as Q-S Wave Interval)	Q-T Duration: "Electrical Systole"	R-Wave Interval

TABLE 1 (continued)

S PHYSICAL SIGNIFICANCE	Time Scale Associated with R' Wave Interval	Time Scale Associated with Diffusion of Heat Through Blood	Refractory Time of Cardiac Muscle	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with the Kinematic Translation of Blood Through the Cardiovascular System (Cardiac Period)	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Completion of Ventricular Depolarization	Time Scale Associated with Diffusion of Heat Through Blood
DERIVED DIMENSIONLESS PARAMETER	t R -	12	٦	Ch/kt	tRR Ch/kt		ts Ch/kt	
DIMENSIONS	⊢		⊢		_		⊢	
SYMBOL	tr.		ر ₊ ح		tRR		t S	
VARIABLE	R'-Wave Interval		Refractory Time of Cardiac Muscle		R-R Wave Interval (Cardiac Period = 1/f)		S-Wave Interval	

TABLE 1 (continued)

DERIVED DIMENSIONLESS JNS PARAMETER PHYSICAL SIGNIFICANCE	tSA Sino-Atrial Node Period Ch/kt² Time Scale Associated with Diffusion of Heat Through Blood	tST Time Scale Associated with Completion of Ventricular Depolarization and Beginning of Ventricular Repolarization Time Scale Associated with Diffusion of Heat Through Blood	ty Repolarization Ch/kt² Time Scale Associated with Diffusion of Heat Through Blood	tS ₂ Time to Closure of Aortic Valve Ch/kt ² Time Scale Associated with Diffusion of Heat Through Blood
DIMENSIONS	- -	-	⊢	-
SYMBOL	t SA	t S T	t T	t5 ₂
VARIABLE	Sino-Atrial Node Period	S-T Wave Interval	T-Wave Interval	Time to Closure of Aortic Valve

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Atrio-Ventricular Node Delay Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Membrane After Potentials Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Ventricular Diastole Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Ventricular Electromechanical Systole Time Scale Associated with Diffusion of Heat Through Blood
DERIVED DIMENSIONLESS PARAMETER	tAV Ch/kt ²	t _U Ch/k _t ²	t _d Ch/kt ²	tvs Ch/kt ²
DIMENSIONS	⊢	⊢	-	-
SYMBOL	tAv	tu.	t d	tγS
VARIABLE	Time to Onset of QRS Complex (AV Node Delay)	U-Wave Interval	Ventricular Diastole	Ventricular Electromechan- ical Systole (= t _{S2} - tAV)

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Left Ventricular Ejection Time	Time Scale Associated with Diffusion of Heat Through Blood	End Diastolic Volume of Blood	Reference Volume of Blood Associated with Heat Transfer Processes	End Systolic Volume of Blood	Reference Volume of Blcod Associated with Heat Transfer Processes	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Asscciated with the Firing Rate of Cardiac Mechanoreceptors	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Intrinsic "Natural Frequency" of the Sino-Atrial Node
DERIVED DIMENSIONLESS PARAMETER	tγ	Ch/kt ²	EDV	k _t ³ /h ³	ESV	kt ³ /h ³	f _{CM}	٥	fSA	kt²/Ch
DIMENSIONS	⊢		٦3		٦3		7-1		- L	
SYMBOL	t V		EDV		ESV		fcM		fSA	
VARIABLE	Ventricular Systole = Left Ventricular Ejection Time	(=tD - t0)	End Diastolic Volume		End Systolic Volume		Firing Frequency of Cardiac Mechanoreceptors		Intrinsic "Natural Frequency" of Sino-Atrial Node	

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Change in Elastic Energy per Unit Volume of Tissue per Unit Volume of Blood Stored in the Left Ventricle of the Heart Change in Heat per Unit Volume of Blood per Length of Blood Vessel Traversed per Area Available for Heat Transfer	Mass of Heart Mass Scale Associated with Heat Transfer Processes	Maximum Velocity of Contractile Element Shortening Rate at Which Heat Diffuses Through Blood	Energy per Unit Volume Associated with Pressure Energy (Potential) in Heart Luring Systole Heat per Unit Volume of Blood Transported by Thermodynamic Processes
DERIVED DIMENSIONLESS PARAMETER	dp dV h ² /Cc _p	щн С/Ср	ν _m k _t ³ /Ch ²	Pvmaxsys kt ³ /Cc _p h
DIMENSIONS	ML -47-2	Σ	1_1	ML-1T-2
SYMBOL	허칭	Ŧ	,E	Рутахѕуѕ
VARIABLE	Left Ventricular Compliance	Mass of Heart	Maximum Velocity of Contractile Element Shortening	Maximum Ventricular Blood Pressure

TABLE 1 (continued)

WARIABLE Mean Left Ventricular Blood Pressure (Aorta) = 1/2(Psystolic + Pdiastolic) Minimum Diastolic Blood Pressure Minimum Ventricular Blood Pressure	BOL o amin	DIMENSIONS ML-1T-2 ML-1T-2 ML-1T-2	DIMENSIONLESS PARAMETER Pao kt³/Ccph kt³/Ccph kt³/Ccph kt³/Ccph	Energy per Unit Volume Associated with Mean Pressure Energy (Potential) in Aorta Heat per Unit Volume of Blood Transported by Thermodynamic Processes Energy per Unit Volume Associated with Minimum Arterial Pressure Energy (Potential) During Diastole Heat per Unit Volume of Blood Transported by Thermodynamic Processes Energy per Unit Volume Associated with Pressure Energy (Potential) in Heart During Diastole
Myocardial Contraction u	u _n	٦-1	um k _t 3/Ch ²	Heat per Unit Volume of Blood Transported by Thermodynamic Processes Myocardial Contraction Velocity Rate at which Heat Diffuses Through Blood

TABLE 1 (continued)

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Energy per Unit Volume Associated with Pressure Energy (Potential) Driving Blood Flow Heat per Unit Volume of Blood Transported by Thermodynamic Processes	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Kinematic Translation of Blood Through the Cardiovascular System	Rate of Change of Ventricular Pressure with Time Rate of Change of Heat per Unit Blood Volume per Unit Time Associated with Heat Transfer Processes	Volume of O ₂ per Unit Time Consumed. by Myocardial Muscle Volume of Blood per Unit Time Involved in Heat Transfer
DERIVED DIMENSIONLESS PARAMETER	P _p W.	f	dp dt w kt ⁵ /C ² c _p h ² Ra	ν ^ω νο ₂ ν _ο ν _ο γ
DIMENSIONS	ML-17-2	1-1	ML-1T-3	L3T-1
SYMBOL	ď	4-	위#	, v _{m02}
VARIABLE	Pulse Pressure (= Psystolic - Pdiastolic)	Pulse Rate (Linear Frequency of Oscillating Blood Flow)	Rate of Change of Ventricular Pressure with Time (Carotid Artery)	Rate of O ₂ Consumption (Myocardial Muscle)

TABLE 1 (continued)

Right Atrial Blood Pressure Pra Stroke Power Stroke Volume Sympathetic Firing Rate FS	DIMENSIONS ML-1T-2 ML2T-3 L3 T-1	DERIVED DIMENSIONLESS PARAMETER Pra kt ³ /Cc _p h kt ³ /C ² c _p h ⁵ S.V. f ₅ f ₅	Energy per Unit Volume Associated with Pressure Energy (Potential) in Right Atrium of Heart Heat per Unit Volume Transported by Thermodynamic Processes Rate at Which Kinetic Energy is Imparted to Blood During Systole Rate of Heat Diffusion Through Blood Stroke Volume of Blood Reference Volume of Blood Associated with Heat Transfer Processes Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Sympathetic
---	----------------------------------	---	---

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Threshold Pressure (to fire receptor)	1	ML-1T-2	Pt kt³/Ccph	Energy per Unit Volume Associated with Pressure Energy (Potential) Needed to Fire Receptor
				Heat per Unit Volume of Blood Transported by Thermodynamic Processes
Time to Beginning of Pressure Upstroke	t o	⊢	t _o Ch/k _t ²	Time to Beginning of Pressure Upstroke Time Scale Associated with Diffusion of Heat Through Blood
Time to Dicrotic Notch on Pressure Curve	t O	-	tn Ch/kt²	Time to Dicrotic Notch on Pressure Curve Time Scale Associated with Diffusion of Heat Through Blood
Total Cardiac Output	C.0.	L3T-1	C.O. kt ⁵ /Ch ⁴	Total Cardiac Output Reference Volume of Blood per Unit Time. Associated with Heat Transfer Processes

TABLE 1 (continued)

SS PHYSICAL SIGNIFICANCE	Energy per Volumetric Flow Rate of Blood per Unit Volume of Vascular Tissue Associated with the Resistance to Blood Flow	Energy per Volumetric Flow Rate of Blood per Volume of Blood Vessel Traversed Associated with Thermodynamic Properties of Fluid	Volume of Blood per Unit Time Returned to Right Atrium of Heart	Reference Volume of Blood per Unit Time Associated with Heat Transfer Processes
DERIVED DIMENSIONLESS PARAMETER	RT h3/cpkt2		0RA k+ 5/Ch4	د د
DIMENSIONS	ML -47-1		1-12-1	
SYMBOL	RT		QRA	
VARIABLE	Total Peripheral Resistance		Venous Return to Right Atrium of Heart	

Table 1 (continued)

VASCULAR SYSTEM

ئ

Energy per Unit Volume Associated with Arterial Pressure Energy (Potential) Over Time Heat per Unit Volume of Blood Transported Length Scale Associated with Arrangement of Roughness Elements on Vascular Tissue Acceleration of Blood Leaving Ventricles Heat per Unit Mass Transported Over a Given Length of Blood Vessel Through Rate at Which Mass is Transported by Active Transport Through Membranes Rate at Which Heat Diffuses Through Length Scale Associated with Heat PHYSICAL SIGNIFICANCE by Thermodynamic Processes Thermodynamic Processes Transfer Processes Blood DIMENSIONLESS k_t^3/Cc_p^h PAKAMETER kt 5/C2h3 k_t^3/ch^2 DERIVED p(t) k_{t}/h aB ζ* ь Ч SYMBOL |DIMENSIONS| ML-17-2 LT-2 [1] p(t)**4** 2 дb ^A Active Transport Permeability Arrangement of Roughness Arterial Blood Pressure Acceleration of Blood Leaving Ventricles Elements (Spacing) VARIABLE Coefficient

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Energy per Unit Volume Associated with Arterial Partial Pressure of 0 ₂ Heat per Unit Volume of Blood Transported by Thermodynamic Processes	Energy per Unit Volume Associated with Venous Pressure Energy (Potential) Heat per Unit Volume of Blood Transported by Thermodynamic Processes	Heat per Unit Volume of Blood Transported by Thermodynamic Processes Energy per Unit Volume Associated with Elastic Scorage and Viscous Dissipation in Vascular Tissue	Heat per Unit Volume of Blood Transported by Thermodynamic Processes Energy per Unit Volume Associated with Elastic Storage in Vascular Tissue
DERIVED DIMENSIONLESS PARAMETER	p02 kt ³ /Ccph	p _C v kt³/Ccph	J Ccph/kt ³	J _{r(ω)} Cc _p h/k _t ³
DIMENSIONS	ML-1T-2	ML-1T-2	M-1LT2	M-1LT2
SYMBOL	p02	P.c.v	رت	آرω)
VARIABLE	Arterial Partial Pressure of O2	Central Venous Pressure	Complex Compliance:	Storage Compliance

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Heat per Unit Volume of Blood Transported by Thermodynamic Processes	Heat per Unit Volume Associated with Viscous Dissipation in Vascular Tissue	Energy per Unit Volume Associated with Elastic Storage and Viscous Dissipation in Vascular Tissue	Heat per Unit Volume of Blood Transported by Thermodynamic Processes	Energy per Unit Volume Associated with Elastic Storage in Vascular Tissue	Heat per Unit Volume Transported by Blood Through Thermodynamic Processes	Heat per Unit Volume Associated with Viscous Dissipation in Vascular Tissue	Heat per Unit Volume Dissipated by Thermodynamic Processes in Fluid
DERIVED DIMENSIONLESS PARAMETER	J ₁ (ω)		& kt³/Ccph	· ·	6 (ω)	id	(€) (€)	kt-/ccp
DIMENSIONS	M-1LT2		ML-1T-2		ML-17-2		ML-17-2	
SYMBOL	J ₁ (ω)		169		ر (m) .		(۳) لي	
VARIABLE	Viscous Compliance		Complex Elastic Modulus:		Storage Modulus		Viscous Modulus	

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Energy per Volumetric Flow Rate of Blood Associated with Elastic Storage and Viscous Dissipation in Vascular Tissue	Transported by Conduction	Heat per Unit Volume Generated by Viscous Dissipation in Vascular Tissue	Heat per Unit Volume Dissipated by Thermodynamic Effects in Fluid	Energy per Unit Volume Associated with Constant Stress in Vascular Wall	Energy per Unit Volume Associated with Thermal Properties of Fluid	*
DERIVED DIMENSIONLESS PARAMETER	kt/cp	-	ως μ κ+ 3/Cc.λ	· 	TO F	· 	ع ا د ع
DIMENSIONS	ML-1T-2		ML-1T-2		ML-17-2		MT-38-1
SYMBOL	ا ^ش		I SO		۲٥		ج ج
VARIABLE	Complex Impedance Function		Complex Viscous Modulus		Constant Stress in Vascular Wall		Convection Conductance (Film) Coefficient

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Creep Compliance	6 (t)	M-1L72	$\mathcal{E}_{c(t)}$	Heat per Unit Volume Transported by Blood Through Thermodynamic Processes Elastic Energy per Unit Volume Associated
				with Creep Phenomenon in Vascular Tissue
Cross Sectional Area of Vascular Lumen	A	7	А	Cross Sectional Area of Vascular Lumen
			kt 2/h 2	Reference Area Associated with Heat Transfer Processes
Derivative with Respect to Time of Vascular Wall Temperature	$\left(\frac{\partial T}{\partial t}\right)_{W}$	1-1θ	$\left(\frac{\partial T}{\partial t}\right)_{W}$	Rate of Change of Vascular Wall Temperature Over Time
			kt ⁸ /C³cph ⁵	Rate of Change of Blood Tempera- ture Over Time
Dynamic Modulus of Elasticity	<u>ا</u>	ML-17-2	1 3/E 1	Energy per Unit Volume Associated with Elastic Storage in Vascular Tissue
			t/	Heat per Unit Volume Transported by Blood Through Thermodynamic Processes

TABLE 1 (continued)

De PE	DIMENSIONS	DIMENSIONLESS PARAMETER De kt 4/Ch 3 Ch 2F/kt 3	Energy Transported per Mass Flow Rate of Blood by Diffusion Through Tortuous Pores Heat Transported per Mass Flow Rate of Blood by Thermodynamic Processes Energy Transported by Mass Flux Due to Electromotive Diffusion Heat Transported by Mass Flux Through Electrothermodynamic Processes
ي	ML2T ⁻² q ⁻¹	cpkt ⁴ /C ² h ³ F ² ε ^δ S kt ⁶ /C ² h ⁴ F	Membrane to Current or Ionic Flow Resistance per Unit Length of Membrane to Heat Flow Voltage Applied Across Membrane to Prevent Electrochemical Diffusion Thermal Gradient Applied Across Membrane to Prevent Heat Transfer
			DIMENSIONS L ² T ⁻¹ M ⁻¹ L ⁻¹ Tq ML ² T ⁻¹ q ⁻²

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Extravascular Compression Pressure	p e v	ML-1T-2	P _{ev} kt³/Ccph	Energy per Unit Volume Associated with Pressure Energy (Potential) Due to Extravascular Compression
				Energy per Unit Volume Associated with Thermal Properties of Fluid
Firing Frequency of: Baroreceptors	f _B j	1-1	f _B i	Time Scale Associated with Diffusion of Heat Through Blood
			kt²/Ch	Time Scale Associated with Firing Frequency of Baroreceptors
Chemoreceptors	fcM	1-1	fCM	Time Scale Associated with Diffusion of Heat Through Blood
			10/14	Time Scale Associated with Firing Frequency of Chemoreceptors
Lung Inflation Receptors (Pulmonary Stretch Recentors)	fLUNG	7 - 1	fLUNG	Time Scale Associated with Diffusion of Heat Through Blood
			, , , , , , , , , , , , , , , , , , ,	Time Scale Associated with Firing Frequency of Pulmonary Strength Receptors
			1	المائية المائي

TABLE 1 (continued)

S PHYSICAL SIGNIFICANCE	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Firing Frequency of Osmoreceptors	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Firing Frequency of Stretch Receptors in Core Region	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Firing Frequency of Thermoreceptors	Energy per Unit Volume Associated with Elastic Energy in Vascular Tissue Energy per Unit Volume Associated with Thermal Properties of Fluid
DERIVED DIMENSIONLESS PARAMETER	fosm kt²/ch	fsr kt²/ch	fTHERM kt²/Ch	€i kt³/Ccph
DIMENSIONS	Ĺ	۲-1	T-1	ML-17-2
SYMBOL	fosm	fsR	^f тн <u>е</u> км	ون ون
VARIABLE	Osmoreceptors	Stretch Receptors in Core Region	Thermoreceptors (mucosal, hypothalamic, spinal cord, cutaneous, central visceral)	Generalized Static Young's Moduli

TABLE 1 (continued)

DERIVED DIMENSIONLESS IONS PARAMETER PHYSICAL SIGNIFICANCE	D* Hydraulic Diameter of Blood Vessel kt/h Length Scale Associated with Heat Transfer Processes	Energy per Unit Fluid Volume per Unit Length of Membrane Associated with Pressure kt²/Ccp Energy Causing Hydrostatic Flow Energy per Unit Fluid Volume per Unit Length of Blood Vessel Associated with Thermodynamic Properties of Fluid	-2 ψ(t) Vascular Tissue Upon Cyclic Loading and kt ³ /Cc _p h Unloading Heat per Unit Volume Transported by Blood Through Thermodynamic Processes	Internal Diameter of Blood Vessel kt/h Length Scale Associated with Heat Transfer Processes
DIMENSIONS	٦	ML -2 T-2	ML-17-2	
SYMBOL	*0	* .	ψ(t)	Q
VARIABLE	Hydraulic Diameter of Blood Vessel	Hydrostatic Pressure- Filtration Coefficient	Hysteresis of Vascular Wall Tissue	Internal Diameter of Blood Vessel

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Internal Radius of Blood Vessel	ره	J	2 2 2	Internal Radius of Blood Vessel
			kt/1:	Lengin Scale Associated With Heat Transfer Processes
Joule Coefficient	د 3	MLT-20-1	n _w Ch/k _t	Elastic Energy Associated with a Constant Length of Vascular Tissue at a Given Temperature
				Heat Dissipated by Rlood Through a Constant Length of Blood Vessel at a Given Temperature
Length of Blood Vessel			_	Length of Blood Vessel
			k _t /h	Length Scale Associated with Heat Transfer Processes
Linear Thermal Expansion Coefficient	¾	1-	δ _W	Time Scale Associated with Diffusion of Heat Through Blood
				Time Scale Associated with Linear Thermal Expansion of Vascular Tissue

TABLE 1 (continued)

S PHYSICAL SIGNIFICANCE	Energy Transported by Mass Flux Due to Electromagnetic Diffusion	Heat Transported by Mass Flux Through Electrothermodynamic Processes	Energy per Degree Handled by the Vascular Wall Through Conduction and Convection	Total Thermal Capacity of Blood	Heat per Unit Volume Associated with Maximum Stress in Vascular Wall	Heat per Unit Volume Associated with Thermal Properties of Fluid	Mean Arterial Blood Velocity	Rate at Which Heat Diffuses Through Blood
DERIVED DIMENSIONLESS PARAMETER	p*	را ا	Pw Ch ³ /cpkt ³		tmax kt³/Ccph		>	kt ³ /Ch ²
DIMENSIONS	MLq-2		ML ⁻³		ML-17-2		LT-1	
SYMBOL	* a		o M		ттах		>	v(r)
VARIABLE	Magnetic Permeability		Mass Density of Vascular Wall		Maximum Stress in Vascular Wall		Mean Blood Velocity (Arterial)	Velocity Profile of Blood

TABLE I (continued)

S PHYSICAL SIGNIFICANCE	Heat per Unit Volume Associated with Minimum Stress in Vascular Wall	Heat per Unit Volume Associated with Thermal Properties of Fluid	Rate of Mass Flow Due to Thermodynamic Processes	Rate of Mass Flow Due to Electromotive Diffusion	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Myogenic Activity of Vascular Smooth Muscle Tissue	Time Scale Associated with Diffusion of Heat Through Blood	Time Scale Associated with Kinematic Translation of Vascular Wall
DERIVED DIMENSIONLESS PARAMETER	Tmin kt ³ /Ccph		n*	cp ⁽¹ / ₄ t ²	f _{SM}		ω _n k+2/Ch	٠
DIMENSIONS	ML-17-2		M-1⊤		1-1		1-1	
SYMBOL	^t min	. 1	* -	;	fSM		a C	
VARIABLE	Minimum Stress in Vascular Wall		Mobility Constant		Myogenic Activity of Vascular Smooth Muscle Tissue		Natural Frequency of Vascular Wall	

TABLE 1 (continued)

S PHYSICAL SIGNIFICANCE	Osmotic Force per Unit Volume of Fluid for Species S Force per Unit Volume Associated with Thermal Properties of Fluid	Rate at Which Mass is Transported by Osmosis Through Membranes Rate at Which Heat Diffuses Through Blood	Energy Transported per Mass Flow Rate of Blood by Osmosis Heat Transported per Mass Flow Rate of Blood by Thermodynamic Processes	Peak Flow Velocity at Root of Aorta Rate at Which Heat Diffuses Through Blood
DERIVED DIMENSIONLESS PARAMETER	kt ² /Ccp	PH20 kt ³ /Ch ²	P ₀ k _t ⁴ /Ch ³	vmax kt ³ /Ch ²
DIMENSIONS	ML-27-2	LT-1	1-12-1	٢٦.,
SYMBOL	+ 6	PH20	P ₀	v ma x
VARTABLE	Osmotic Force/Volume for Species S	Osmotic Permeability Coefficient	Osmotic Pressure-Filtration Coefficient	Peak Flow Velocity (as measured at root of aorta)

TABLE 1 (continued)

TABLE 1 (continued)

SS PHYSICAL SIGNIFICANCE	Energy per Degree Handled by Pore Fluid Through Conduction and Convection Total Thermal Capacity of Blood	Energy per Unit Volume Associated with Pressure Energy (Potential) in Pulmonary Artery Energy per Unit Volume Associated with Thermal Properties of Fluid	Axial Radius of Curvature Length Scale Associated with Heat Transfer Processes	Cross Sectional Radius of Curvature Length Scale Associated with Heat Transfer Processes
DERIVED DIMENSIONLESS PARAMETER	Pp Ch3/cpkt3	Ppa kt ³ /Ccph	R, kt/h	R _x
DIMENSIONS	ML -3	ML-1T-2	_1	٦
SYMBOL	d d	Ppa	<u>م</u>	×
VARIABLE	Pore Fluid Mass Density	Pulmonary Artery Pressure	Radius of Curvature (Axial)	Radius of Curvature (Cross Sectional)

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Relaxation Modulus for Vascular Wall	% (t)	ML-1T-2	%R(t) kt³/Ccph	Energy per Unit Volume Associated with Stress Relaxation of Vascular Wall Energy per Unit Volume Associated with Thermal Properties of Fluid
Resonance Frequency of Vascular Wall (Driving)	р ж	1-1	wd kt ² /Ch	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Kinematic Translation of Vascular Wall at Resonance
Size of Roughness Projections	۵	7	5 <u>kt/h</u>	Size of Roughness Projections On Vascular Tissue Length Scale Associated with Heat Transfer Processes
Specific Conductivity of Vascular Wall	1/0*	M-1L-3Tq2	1/p* C2h4F2/cpkt ⁵	Affinity of Membrane to Current or Ionic Flow Affinity of Membrane to Heat Transfer

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Specific Heat of Vascular Wall (Constant Pressure)	* d ₂	L2T-20-1	* d d	*
Specific Heat of Vascular Wall (Constant Volume)	* ^ 2	L2T-20-1	* ^ do	Heat Required to Raise 1 gram of Vascular Tissue 1°C at Constant Volume Heat Required to Raise 1 gram of Blood 1°C at Constant Pressure
Specific Resistivity of Vascular Wall	* 0	ML3 T-1q-2	p* Cpkt ⁵ /C ² h ⁴ F ²	Resistance of Membrane to Current or Ionic Flow Resistance of Membrane to Heat Flow
Specific Vascular Wall Conductance	D)	M-1L-4Tq2	g C ² h ⁵ F ² /c _p kt ⁶	Affinity to Current or Ionic Flow per Unit Length of Membrane Affinity to Heat Transfer per Unit Length of Membrane Traversed by Blood

TABLE 1 (continued)

DERIVED DIMENSIONLESS SYMBOL DIMENSIONS PARAMETER PHYSICAL SIGNIFICANCE	hrough v_{w} LT ⁻¹ v_{w} Rate at Which the Pulse Wave Moves Through the Vascular Wall Rate at Which Heat Diffuses Through Blood	$\psi_S(t) \text{ML}^2 T^{-2} \qquad \psi_S(t) \qquad \text{Energy Associated with Strain in Vascular Wall} \\ \hline k_t^6/Cc_ph^4 \qquad \text{Energy Associated with Thermal Properties of Fluid}$	ESM T ⁻¹ ESM Time Scale Associated with Diffusion of Heat Through Blood kt²/Ch Time Scale Associated with Strain Rate in Vascular Smooth Muscle	nstant λ _F Time Scale Associated with Diffusion of Heat Through Blood kt²/Ch Time Scale Associated with Strain Relaxation of Vascular Tissue
VARIABLE	Speed of Propagation (Phase Velocity) of Pulse Wave Through Vascular Wall	Strain Energy	Strain Rate in Vascular Smooth Muscle	Strain Relaxation Time Constant (same as Strain Retardation Time Constant)

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSIONS	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
Stress Relaxation Time Constant (same as Stress Retardation Time Constant)			λ _ε kt ² /Ch	Time Scale Associated with Diffusion of Heat Through Blood Time Scale Associated with Stress Relaxation of Vascular Tissue
Surface Diffusion Coefficient of Vascular Wall	* * * o	L2T-1	0 _K * k _t ⁴ /Ch ³	Energy Transported per Mass Flow Rate of Blood by Surface Diffusion Heat Transported per Mass Flow Rate of Blood by Thermodynamic Processes
Temperature of Vascular Smooth Muscle	T	Φ	T _m kt ⁶ /C ² c _p h ⁴	Temperature of Vascular Smooth Muscle Reference Temperature Scale Associated with Heat Transfer Processes
Temperature of Vascular Wall (Inner)	۲. د.	Φ	Tw; kt ⁶ /C ² cph ⁴	Inner Temperature of Vascular Wall Reference Temperature Scale Associated with Heat Transfer Processes

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Outer Temperature of Vascular Wall Reference Temperature Scale Associated with Heat Transfer Processes	*	Time Rate of Change of Temperature in Vascular Wall Time Rate of Change of Heat Influx or Efflux from Vascular Wall	Thickness of Vascular Wall Length Scale Associated with Heat Transfer Processes
DERIVED DIMENSIONLESS PARAMETER	Two kt ⁶ /C ² cph ⁴	د، اج	α _{W,} kt ⁴ /Ch ³	a kt/h
DIMENSIONS	Φ	MLT ⁻³ 6 ⁻¹	L2T ⁻ 1	
SYMBOL	T _w O	χŽ	³ σ	т
VARIABLE	Temperature of Vascular Wall (Outer)	Thermal Conductivity of Vascular Wall	Thermal Diffusivity of Vascular Wall	Thickness of Vascular Wall

TABLE 1 (continued)

Time-Dependent Shearing Stress t*(t)	SYMBOL	DIMENSIONS	PARAMETER	PHYSICAL SIGNIFICANCE
מסכת מ אמון	*(t)	ML-17-2	τ*(t) kt³/Ccph	Heat per Unit Volume Associated with Shear Effects in Vascular Wall Over Time
				Heat per Unit Volume Dissipated Over Time by the Thermal Properties of Blood
Tissue Dashpot (Viscous) Constant	B _j .	M1 - 1	Bj kt²/cph	Energy per Unit Area per Unit Time Associated with Viscous Dissipation During Vascular Tissue Deformation
j=1,2	,2.		,	Heat per Unit Area per Unit Time Transported by Thermodynamic Processes in Blood
Tissue Elastic Constant Kj		MT-2	K j	Elastic Energy per Unit Area Associated with Vascular Tissue Deformation
j=1,2.	,2		of Actor	Heat per Unit Area Transported by Thermodynamic Processes in Blood
Total Surface Area of Vascular System (Heat and A _v Mass Transfer)	~ ~	12	A _v	Total Surface Area of Vascular System Available for Heat and Mass Transfer
			د	Reference Area Associated with Heat Transfer Processes

TABLE 1 (continued)

PHYSICAL SIGNIFICANCE	Heat per Unit Volume Associated with Shear Effects in Vascular Smooth Muscle	Heat per Unit Volume Dissipated by the Thermal Properties of Blood	Velocity of Vascular Wall	Rate at Which Heat Diffuses Through Blood	Energy per Unit Volume Associated with Venous Partial Pressure of CO ₂	Heat per Unit Volume of Blood Transported by Thermodynamic Processes
DERIVED DIMENSIONLESS PARAMETER	1 Sm	*t*/ccp.	* * * ^ ^	kt³/Ch²	pc02	xt./rcpn
DIMENSIONS	ML-17-2		LT-1		ML-17-2	
SYMBOL	t Sm		* > 3		² 00d	
VARIABLE	Vascular Smooth Muscle Stress		Appointy of Mascular Wall		Fernal Pressure	

TABLE 1 (continued)

Rate at Which Heat is Dissipated Through Blood Time Scale Associated with Diffusion of Heat Time Scale Associated with Breathing Rate Reference Temperature Scale Associated Rate at Which Heat is Produced Due to Metabolism PHYSICAL SIGNIFICANCE with Heat Transfer Processes Body Core Temperature Through Blood DIMENSIONLESS $kt^8/C^2c_ph^5$ PARAMETER $k_t^6/C^2c_ph^4$ DERIVED kt²/Ch BMR ည BR SYMBOL | DIMENSIONS | ML27-3 ;-Φ BMR ر ک 8 R Body Core Temperature Basal Metabolic Rate MISCELLANEOUS VARIABLE **Breathing Rate** ·

TABLE 1 (continued)

TABLE 1 (continued)

DERIVED DIMENSION PARAMETER PHYSICAL SIGNIFICANCE	ML2T-3 q Rate of Overall Heat Transfer in Body kt ⁸ /C ² c _p h ⁵ Rate of Heat Transfer Through Blood by Thermodynamic Processes	ML2T ⁻³ QCOND Rate of Heat Transfer by Conduction	ML2T-3 QCONV Convection kt ⁸ /C ² c _p h ⁵ Rate of Heat Transfer Through Blood by Other Thermodynamic Processes	L3 ICF Intracellular Fluid Volume kt ³ /h ³ Reference Volume of Blood Associated With Heat Transfer Processes
SYMBOL DIM	∑	M GNOOP	dCONV	ICF
VARIABLE	Heat Flow	Heat Flow Due to Conduction	Heat Flow Due to Convection	Intracellular Fluid Space (Volume)

TABLE 1 (continued)

VARIABLE	SYMBOL	DIMENSION	DERIVED DIMENSIONLESS PARAMETER	PHYSICAL SIGNIFICANCE
0 ₂ Ventilation Rate	, , , 0 ₂	L3T-1	, , ,	Volume of O ₂ per Unit Time Extracted in Alveolar Air Space
			k _t 5/Ch⁴	Reference Volume of Slood per Unit Time Associated with Heat Transfer Processes
Rate of Environmental Cooling (Ambient)	dT _E	T-10	dT _E	Change in Ambient Temperature Over Time
			k _t ⁸ /C ³ c _p h ⁵	Change in Body Temperature per Unit Time as a Result of Heat Transfer Processes
Sensitivity Coefficients for Rangreceptor Pressure Response	61	M-1LT2	61 C-h/k+3	The Responsiveness of Baroreceptors to Changes in Arterial Pressure Over Time
	25	M-1LT2	62 Ccph/kt ³	The Responsiveness of Thermoreceptors to Temperature Changes in Blood Over Time
	63	K-1LT	63	
			c _p /kt	

TABLE 1 (continued)

Species Concentration in Extravascular Environment Striated Skeletal Muscle Mass of Shivering Individual Temperature Gradient Driving Heat In at Core	[S]E [S]E (aT)	DIMENSION ML-3 M M-3	DERIVED DIMENSIONLESS PARAMETER [S]E Ch3/cpkt3 C/cp C/cp	Energy per Degree Handled by the Fluid Through Conduction and Convection Associated with the Presence of Species in the Extravascular Environment Total Thermal Capacity of the Blood Striated Skeletal Muscle Mass of Shivering Individual Mass Scale Associated with Heat Transfer Processes Heat Transfer Into Body Core Heat Transfer Associated with Blood Flow
Temperature Gradient Driving Heat Out at Periphery	(31) (31) E	۲-19	$\frac{\left(\frac{3T}{3r}\right)_{E}}{k_{t}^{5}/C^{2}c_{p}h^{3}}$	Heat Transfer Out to Body Periphery Heat Transfer Associated with Blood Flow

TABLE 1 (continued)

VED ONLESS ETER PHYSICAL SIGNIFICANCE	Heat Required to Raise 1 mole of Gas 1°K	Heat Required to Raise 1 gram of Blood 1°C at Constant Pressure	Energy per Unit Volume Associated with Vapor Pressure	Heat per Unit Volume of Blood Transported By Thermodynamic Processes	Volume of Urine Produced per Unit	Reference Volume of Blood per Unit Time Associated with Heat Transfer Processes
DERIVED DIMENSIONLESS PARAMETER	S C D		O O	At crp	0,0	× + - / C
DIMENSION	L2T-28-1		ML-1T-2		L3T-1	
SYMBOL	~		P _O	0000	o ³	
VARIABLE	Universal Gas Constant		Vapor Pressure		Volumetric Urinary Output	

TABLE 2

DERIVED FUNDAMENTAL SCALES ASSOCIATED WITH ELECTROTHERMODYNAMIC EFFECTS

DIMENSION		SCALE	VALUE([17])
Mass	М	<u>C</u>	4.35 Kilograms
		c _p	
Length	Ĺ	k _t	2.75 Millimeters
		h	
Time	Т	Ch	4.16 Months
		kt²	
Temperature	θ	k _t ⁶	1.04 x 10 ⁻²² °C, or Nearly 0°C
		C ² cph ⁴	or hearty o c
Charge	q	CF Cp	4.2 x 13° Coulombs

OTHER DERIVED SCALES ASSOCIATED WITH ELECTROTHERMODYNAMIC EFFECTS

KINEMATIC QUANTITIES

Displacement (L):

k_t/h

Velocity (L/T):

 k_t^3/Ch^2

Acceleration (L/T^2) :

kt⁵/C²h³

KINETIC QUANTITIES

Angular Momentum (r x mv)

kt4/cph3

Angular Impulse (r x FT)

Force (F):

k_t⁵/Cc_ph³

Moment $(r \times F)$:

kt⁶/Ccph4

Momentum (Mv) Impulse (FT)

 $k_t^3 c_p h^2$

Power (FL/T):

 $k_t^8/C^2c_ph^5$

Pressure or Stress (F/L²):

kt3/Ccph

Work (FL) Energy (FL) kt⁶/Ccph4

THERMAL OR THERMODYNAMIC QUANTITIES

Heat Capacity (FL/θ) :

kt⁶/Ccph⁴

Temperature (θ) :

 $k_t^6/C^2c_ph^4$

TRANSPORT QUANTITIES

Diffusion (L^2/T) :

kt4/Ch3

Volumetric Flow Rate (L^3/T): k_t^5/Ch^4

TABLE 4

LIST OF SYMBOLS USED IN TABLE 5

(Yield Stress)/(Viscous Stress)	(Heat Produced by Viscous Dissipation) (Heat Transported by Molecular Conduction)					(Kinetic Energy) (Thermal Energy)	(Pressure Force) (Inertia Force)	(Shear Stress)/(Dynamic Pressure)				
TL/bav =	μav ² /ktΔθ =	= po	ρfc√VB			$v^2/c_{p\Delta\theta} =$	Δp/cfv ² =	2to/pfv2 =	ktt/pfc _p L²	۱/۲	q/v3L ² pf	
Bingham Number ≕	Brinkman Number =	Total Thermal Capacity of Blood =		Diameter	Molecular Diffusivity	Eckert Number =	Euler Number =	"Modified" Fanning Number =	Fourier Number ≈	Geometric Ratio =	Heat Transfer Number =	Length
	۳ د د	"		# Q	= -0	E C	Eu =	F d_ =	۳ ۵	e e	ж О	" J

Lewis Number for Heat and Mass Transfer = Fe ⊨

hD/kt

o/^

cpμa/kt =

Prandtl Number =

Pr =

(Pr)(Re) =

Prandtl Velocity Ratio =
$$v/(\tau_W/\rho_f)^{1/2}$$
 =

PVR =

ρfvD/μa =

(Inertia Force/Wall Shear Force) 1/2

Reynolds Number =

Re =

11

Sc

h/cpofv =

Stanton Number =

Sn =

It

Pe

TABLE 4 (continued)

(Frequency)	(Translation Speed)
fL/v =	
trouhal Number =	
St = St	

 V_B/L^2

TABLE 5

DERIVED DIMENSIONLESS PARAMETERS WRITTEN IN TERMS OF TRADITIONAL NON-DIMENSIONAL NUMBERS

RELATED TO FLUID AND THERMODYNAMIC THEORY

DERIVED VARIABLE	CHARACTERISTIC SCALE	ASSOCIATED NON-DIMENSIONAL PARAMETER
Length: L	(k _t /h)	
Internal Diameter of Blood Vessel D		(Nu)
Length of Blood Vessel		(Nu)(Ge)
Thickness of Vascular Wall a		(Nu)(Ge)
Area: L ²	(k_t^2/h^2)	
Cross Sectional Area of Vascular Lumen A		(Nu) ² (Ge)
Volume: L³	(k_t^3/h^3)	
Quantity of Blood Pooling in Core Q _B		(Nu)³(Ge)
Velocity: LT ⁻¹	(k _t ³/ch²)	
Velocity Profile of Blood v(r)		(Nu) ² (Pr)(Re)(Ge)

DERIVED VARIABLE	CHARACTER ISTIC SCALE	ASSOCIATED NON-DIMENSIONAL PARAMETER
Myocardial Contraction Velocity Um		$(Nu)^2(Pr)(Re)$ (u_m) (Ge) (γ)
Acceleration: LT ⁻²	(k _t ⁵ /C ² h ³)	
Acceleration of Blood Leaving Ventricles aB	icles	$(Nu)^{3}(Pe)^{2}$ (A) $(Ge)^{2}$ $(\gamma)^{2}(Mt)^{2}$ (A_{W})
Temperature: 0	(kt ⁶ /C ² cph ⁴)	
Blood Temperature TB		$(Nu)^4(Pr)^3(Re)^2$ (Ge) ² $(\gamma)^2(Rr)$
Temperature of Vascular Smooth Muscle T _m	Je	$(Nu)^4(Pr)^3(Re)^2$ (ΔT_m) (Ge) $(\gamma)^2(Br)$
Temperature Gradient (Spatial): BL-1 (Inverse Linear Thermal Expansion Coefficient) (k _t ⁵ /C ² c _p h ³)	$ctent)$ $(k_t^5/c^2c_ph^3)$	$(Nu)^5$ $(Ge)^2$

TABLE 5 (continued)

DERIVED VARIABLE	CHARACTERISTIC SCALE	ASSOCIATED NON-DIMENSIONAL PARAMETER
Temperature Gradient (Temporal): 0T-1	(k _t ⁸ /c ³ c _p h ⁵)	$(Nu)^8(St)$ $(Ge)^3$ $(Sn)^3(\gamma)^3(Ec)$
Inverse Thermal Capacitance: M- $^1 \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	(k _t ³ /ch ³)	(Nu) ³ (Ge)
Heat Flow: ML ² T-3 q	(k _t ⁸ /c ² c _p h ⁵)	$(Nu)^5(Pe)^3(K_Q)$ (Ge) $(\gamma)^2$
Time: T	(Ch/k _t ²)	
Q-R-S Complex Interval tQRS		(γ) (tqRS) (NU)(Pe) (τΗ)
Refractory Time of Cardiac Muscle tr		$ \frac{(\gamma)}{(Nu)(Pe)} \frac{(t_r)}{(\tau_H)} $

TABLE 5 (continued)

DERIVED VARIABLE	CHARACTERISTIC SCALE	ASSOCIATED NON-DIMENSIONAL PARAMETER
Frequency: T ⁻¹ (Strain Rate)	(k _t ² /Ch)	
Circular Frequency of Oscillating Blood Flow $^\omega$	d Flow	(St)(Nu)(Pe) (Ge)
Natural Frequency of Vascular Wall wn		$(St)(Nu)(Pe) (\omega_n) (Ge)$
Struin Rate in Vascular Smooth Muscle		
• SM		(St)(Nu)(Pe) (εSM) (Ge) (γ) (ω)
Mass: M	(C/c _p)	
Mass of Heart	#E	(Hw)(\(\lambda \)
Striated Skeletal Muscle Mass of Shivering Individual	ring Individual M√	(A) (m) (\(\text{\text{\mathbb{M}}} \)

VARIABLE	
DERIVED	

Mass Density/Concentration: ML⁻³

Mass Density of Blood Pf

Mass Density of Vascular Wall $_{\textrm{P}_{\textrm{W}}}$

Species Concentration in Blood [S] $_{\rm B}$

Volumetric Flow Rate: L³T⁻1

 (k_t^{5}/ch^{4})

Coronary Perfusion Rate Q_c

CHARACTERISTIC SCALE

 $(\mathrm{Ch}^3/\mathrm{cpk}_t^3)$

ASSOCIATED NON-DIMENSIONAL PARAMETER

 $\frac{(Pe)(Sn)(\gamma)}{(Nu)^4} \frac{1}{(Ge)}$

 $\frac{(\gamma)}{(Nu)^3} \frac{(\rho)}{(\rho_f)} \frac{1}{(Ge)}$

 $\frac{(\gamma)}{(Nu)^3} \frac{([S]_B)}{(\rho_f)} \frac{1}{(Ge)}$

 $\frac{(Nu)^4}{(\gamma)(Fo)}$ (Ge)

	and Moduli
DERIVED VARIABLE	Stress, Pressure, of Elasticity: ML

CHARACTERISTIC SCALE

 (k_t^3/cc_ph)

Asymptotic Limiting Value of Thixotropic Fluid Shearing Stress Under Constant Load

Yield Stress _{Tv} Constant Stress in Vascular Wall $^{\text{T}}_{\text{O}}$

Vascular Smooth Muscle Stress tsm

$$(Nu)(Pe)^{2} (\tau_{0}) (Ge)$$

$$(PVR)^{2}(\gamma) (\tau^{*}(t))$$

$$\frac{(Nu)(Pe)^2}{(PVR)^2(\gamma)} \frac{(\tau_{Sm})}{(\tau^*(t))}$$
 (Ge)

ASSOCIATED C SCALE NON-DIMENSIONAL PARAMETER	(Eu)(Nu)(Pe) ² (Ge)	(\(\)		(Nu) ⁴ (Ge)	(Re)(Sn)(γ)
CHARACTERISTIC SCALE			(k _t ⁴ /ch ³)		
DERIVED VARIABLE	Arterial Blood Pressure p(t)		Transport Coefficients: L ² T ⁻¹	Kinematic Viscosity Vf	

Thermal Diffusivity
$$\frac{(Nu)^4}{(Re)(Sn)(\gamma)}$$
 Thermal Diffusivity of Vascular Wall
$$\frac{(Nu)^3(Ge)}{(k_f)} \frac{(Nu)^3(Ge)}{(c_v)}$$

(Pr)

TABLE 5 (continued)

ASSOCIATED NON-DIMENSIONAL PARAMETER $(Pr)(Z) (Le)^2 (M_s^*) (W_T)$ $(Nu)^4 (S_c)^2 (M) (W_E)$	$\frac{(Nu)^2 (Re) (S_c)}{(Le) ([S])} \frac{(\rho_f)}{(R)} \frac{(M_s^*)}{(M)}$	$(Nu)^3 \frac{(S_c)^2}{(Pr)(2)^2} \frac{(M)}{(Le)^2} \frac{(W_E)}{(M_S^*)} \frac{(W_E)}{(W_T)}$	$\frac{(Pr)(Z)(Le)^2}{(Nu)^5(S_c)^2} \frac{(M_s^*)}{(M)} \frac{(W_T)}{(W_E)}$
CHARACTERISTIC SCALE L-3Tq (C ² h ⁴ F/c _p k _t ⁵)	(k _t ² F/c _p h)	(k _t ⁴ c _p /c ² h ³ f ²)	(c ² h ⁵ F ² /k _t ⁶ c _p)
DERIVED VARIABLE Electromotive Diffusion Coefficient: 0s*	Permeability Coefficient for Electromotive Diffusion: qT-l Vs	Electrical Resistance: ML ² T-l _q -2 R*	Specific Vascular Wall Conductance: M-lL-4Tq ² g

TABLE 6

LIST OF VARIABLES WHICH ARE ALREADY DIMENSIONLESS BY DEFINITION

DIMENSIONLESS VARIABLE	SYMBOL
Blood	
Arrangement Factor	ċ
Dielectric Constant for Blood	κ
Emissivity of Blood	ε
Hematocrit (%)	Н
Non-Newtonian Index	n
Percent O ₂ Saturation (Hemoglobin)	% 0 ₂
рН	рН
Species - Specific Constants for Rheologic Equation for Blood	C ₁ , C ₂ , C ₃ , C ₄
Specific Heat Ratio for Blood	Υ
<u>Heart</u>	
Efficiency of Cardiac Cycle (Overall)	nt
Efficiency of Cardiac Muscle Contraction	n _m
Efficiency of Energy Conversion from Stroke Power to Fluid Kinetic Energy	ηk
Efficiency of Energy Conversion into Stroke Volume	n_S

TABLE 6 (continued)

DIMENSIONLESS VARIABLE	SYMBOL
Efficiency of the Heart	ηh
"Other" Efficiencies in Cardiac Cycle	n_{n}
Frequency Component of ECG Spectrum	nį
Korotkoff Heart Sounds	(db) ₁ , (db) ₂ , (db) ₃ (db) ₄
"Other" Heart Sounds	(db) _i
Phase Lead Angle for Oscillating Blood Flow	φt
Magnitude of $\phi_{\mathbf{f}}$	
Probability Density Function	p(X)
Probability Distribution Function	P(X)
Probability Range Function $\int p(X)dX$	
Vascular System	
Amplitude Magnification Factor (for cyclic loading of vascular wall)	Q
Branching Angles of Vascular Geometry	θ
Coefficient of Friction (Wall Pore and Pore Fluid)	Sf
Coefficient of Friction (Pore Fluid and Solute)	s _p
Coefficient of Friction (Wall Pore and Solute)	s _s
Constant Strain in Vascular Wall	ξ ₀
Dielectric Constant for Vascular Wall	κ*
Elastic After-Effect (Strain)	ξ*(t)
Emissivity of Vascular Wall	ϵ_{W}
Form Factor	m

TABLE 6 (continued)

DIMENSIONLESS VARIABLE	SYMBOL
Fraction of Vascular Area Available for Heat Transfer to Body Core	A _C
Fraction of Vascular Area Available for Heat Transfer to Environment (near skin surface)	A _e
Friction Factor	f _R
Generalized Poisson Ratios for Vascular Smooth Muscle	σ _i i = 0, 1, N
Maximum Strain in Vascular Wall	^ξ ma x
Minimum Strain in Vascular Wall	⁵ min
Number of Anastomoses Open at any Time	N ₂
Number of Collateral Pathways at any Time	N_3
Number of Patent Blood Vessels at any Time	N_1
Number of Pores/Membrane Area	c
Percent by Weight:	
Collagen	Wc
Elast:	We
Smooth Muscle Tissue	W _s
Phase Angle for Viscoelastic Blood Vessel Wall	Φw
Magnitude of ϕ_{W}	\$\psi\
Pore - Free Surface Area (% of A _v)	Ao
Porous Surface Area (% of A _v)	Ap
Reflection Coefficient (Staverman Factor)	b
Roughness Factor	ζ/D

TABLE 6 (continued)

DIMENSIONLESS VARIABLE	SYMBOL
Specific Heat Ratio at Vascular Wall	Y* i = 0, 1,, N
Stimulation Coefficients for Vascular Smooth Muscle	q _i
Time-Dependent Strain in Vascular Wall	ξ(t)
Tortuosity Factor for Pores	δ*
Total Number of Cycles (required for hysteresis to reach steady-state)	м
Vascular Smooth Muscle Strain	$\xi_{\rm m} (\xi_{\rm m}^2,$
	ξ_m^3, \ldots)
Volume Fraction of Water in Pores	Фр
Miscellaneous	
"Activity Factor"	В
Ambient Humidity Ratio (%)	HR
Degree of Nonlinearity for any Model	N
Dissociation Constant for Electrolytes	Di
e = 2.718	е
Ionic Valence of Species S	Z
Partition Coefficient	\mathscr{P}_{V}
Pi - 3.14159 (circumference/diameter)	π
Respiration Quotient	RQ
Solubility	\mathscr{T}
Solubility Coefficient	\mathscr{S}^{n}

OTHER VARIABLES THAT CAN BE ASSOCIATED WITH CARDIOVASCULAR FUNCTION AND THERMOREGULATION

<u>Characteristics</u> of <u>Individual</u>

Age

Anthropometric Build

Height Ht

Muscle Mass

Physical Condition

Cardiovascular System

Central/Sympathetic Nervous System

Endocrine System

Musculoskeletal System (exercise)

Weight

Climate

Season of the Year (Fall, Winter, Spring, Summer)

Relative Humidity

Amount of Daylight

Presence or Absence of Wind (Wind Velocity)

Ambient Temperature T_A

Ũ

Time of Exposure t_e

Clothing

Amount

TABLE 7 (continued)

Type

Thermal Properties

Concentration and Properties of Carrier Molecules in Blood

Affinity for Substrate (Stereospecificity)

Deformability

Degree of Hydration

Degree of Saturation

Geometry (Stereochemistry)

Mobility

Diet of Individual

Chemical Composition of Blood

Alcohol Consumption

Quantity and Type of Food Intake (especially fats and carbohydrates)

History

Family History

Predilection to Cold Stress

Frequency of Previous Exposure

Time Between Exposures

Myocardial Muscle

"Contractility"

TABLE 7 (continued)

Statistical Parameters

General Wave Shape of ECG

Kurtosis (Flatness Factor)

Skewness

Width Factor

Vascular System

Cold Induced Vaso-Dilatation

CIVD

Geometry of Vascular Wall

Branches/Bifurcations

Convergence/Divergence

Curvature

Firallelism/Taper

Geometry of Vascular Smooth Muscle

Length of Blood Vessels

Development of Flow (inlet length)

Effective Length of Pressure Drop

End Effects

Pulse Wave Reflection

Orientation and Distribution of Blood Vessels

Arterio-Venous Anastomoses

AVAs

Pores

Cross Sectional Area

Cross Sectional Contour

Degree of Patency

TABLE 7 (continued)

Length

Mean Diameter

Number

Properties of Material Within Pore

Smoothness

Spatial Orientation

Symmetry

Wall Configuration

Symmetry of Vascular Cross Section

Vasoconstriction

Arteries

Capillaries

Veins

Vascular Lumen Patency

Degree of Extravascular Compression

Degree of Internal Occlusion

Level of Smooth Muscle Tone

Vascular Tone

Venous Shunt Response

VSR

Atrio-Ventricular Countercurrent Heat Exchange (see N_1 , N_2 , N_3)

ENZYMES

Dehydrogenases:

glucose-6-α-hydroxybutyric dehydrogenase

glutamic dehydrogenase

isocitric dehydrogenase

lcD

lactic dehydrogenase

LDH

maleic dehydrogenase

MDH

Transaminases:

acid phosphatase

aldolase

alkaline phosphatase

amino peptidase

amylase

arachidonic acid (test for presence of enzymes)

aromatic L-amino acid decarboxylase

cholinesterase

creatinine phosphokinase CPK (-MM, -MB, -BB)

dopamine-beta-hydroxylase

guanase

kinase I

kinase II (precursor- kininogen)

TABLE 8 (continued)

kininase

lipase LPP

ornithine carbamyl transferase OCT

phenylethanolamine-N-methyltransferase

prostacyclin

renin

tyrosine hydroxylase

HORMONES

Catecholamines (Blood and Vascular Smooth Muscle Tissue): epinephrine (adrenalin) norepinephrine (noradrenalin) (precursor-dopamine) local myocardial catecholamines Steroids: aldosterone corticosterones "A", "B", or "S" cortisone deoxycorticosterone hydroxycortisone (cortisol) acetylcholine Ach adrenocorticotropic hormone **ACTH** angiotensin I and II antidiuretic hormone (vasopressin) ADH calcitonin central nervous system chemical releasing factors corticotrophin releasing factor CRF dopa glucagon growth hormone release inhibiting hormone (somatostatin) GHRIH growth hormone releasing factor **GHRF**

histamine

TABLE 9 (continued)

insulin

kinins:

bradykinin

kallikrein

kallidin (lysin bradykinin)

parathormone

prostaglandins D₂, E₂, F₂

serotonin

somatotrophin (growth hormone) GH

thyrocalcitonin

thyrotrophin

thyrotrophin releasing hormone TRH

thyroxin

triiodothyronine

NUTRIENTS

water H₂0 Amino Acids: tyrosine tryptophan Proteins: total protein concentration [P] albumins [A] total protein minus albumin [TPMA] fibrinogen [F] globulins: [G] α ceruloplasmin (α₁, α₂, β, γ) immunoglobulins IgA, IgG, IgM vascular wall: elastin [E] collagen [C] <u>Carbohydrates:</u> glucose mucopolysaccharide in vascular wall [M]

Lipids and Fatty Acids:

TABLE 10 (continued)

```
cholesterol (fats): (vitamin F)

free

esterified

total

triglycerides

phospholipids

total lipids

subcutaneous fat content (insulation) [fat]

effective insulation thickness of human body
```

VITAMINS

<u>A</u>	retinol		
B complex:			
B ₁	thiamine		
B ₂	riboflavin (component- biotin)		
В3	niacin/nicotinamide		
B4	adenine		
B5	pantothenic acid		
B ₆	pyridoxine		
B ₁₂	choline folic acid inositol para-amino benzoic acid PABA		
<u>c</u>	ascorbic acid		
<u>C</u> <u>complex</u>	acerola hesperidin rutin		
<u>D</u>	calciferol		
<u>E</u>	tocopherol α -, β -		
E complex			
<u>K</u>	(clotting)		

BUFFERING IONS

ammonium		NH4+
bicarbonate		HC03-
hydrogen (pH)		Н+
phosphate		P0 ₄ -3
sulfate		s0 ₄ -2
MIN	ERALS AND ELECTROLYTES	
calcium		Ca
chloride		Cl
copper		Cu
iron		Fe
magnesium		Mg
phosphorus		Р
potassium		K
sodium		Na
	TRACE ELEMENTS	
cadmium		Cd

Crchromium

Cb cobalt

F fluorine

I iodine

TABLE 12 (continued)

protein-bound iodine

lithium

manganese

Mn

molybdenum

Selenium

Se

sulfur

S

zinc

Zn

BLOOD GASES

carbon dioxide $$\rm CO_2$$ oxygen $$\rm O_2$$ arterio-venous oxygen concentration difference $$\Delta \rm [O_2]$$ hemoglobin (percent saturated) Hb

BYPRODUCTS OF METABOLISM

bilirubin

blood urea nitrogen

carbon dioxide

creatine

creatinine

water

lactic acid