TD IV : Intégration pour quelques mesures particulières

1 Intégration et mesure produit

Exercice 1. L'aire sous la courbe

Soit $f: \mathbb{R} \to \mathbb{R}_+$ une fonction mesurable positive, et soit $V = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq y \leq f(x)\}$. Montrer que V est une partie mesurable de \mathbb{R}^2 , et calculer $\lambda_2(V)$.

Exercice 2. On considère, sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, la mesure de Lebesgue λ_1 et la mesure $\mu = \delta_1 + \sqrt{2}\delta_2$. On note $\rho = \lambda_1 \otimes \mu$, mesure sur $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$. Déterminer $\rho(D)$ dans les cas suivants :

- 1. $D = [-a, a]^2$, où a > 0.
- 2. D est le disque euclidien fermé de rayon 2 et de centre (0,0).

Exercice 3. Dans chacun des cas suivants, calculer $\int_D f(x,y) d\lambda_2(x,y)$.

- 1. $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0 \text{ et } x^2 + y^2 \le 1 \} \text{ et } f(x,y) = xy.$
- 2. $D = \{(x, y) \in \mathbb{R}^2 \mid x \ge 1 \text{ et } \frac{1}{x} \le y \le x\} \text{ et } f(x, y) = \frac{1}{x^2 y}.$

Exercice 4. Volume d'un ellipsoïde

Dans ce qui suit, λ_2 et λ_3 désignent les mesures de Lebesgue de \mathbb{R}^2 et \mathbb{R}^3 .

1. Soient $a,b \in \mathbb{R}_+^*$. Dans le plan \mathbb{R}^2 , le domaine elliptique d'axes a et b est $E = \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\}$.

Pour $t \in \mathbb{R}$, on note $D_t \subset \mathbb{R}^2$ la droite d'équation y = t. Déterminer la longueur $\ell(t)$ du segment $E_{\cdot,t} = E \cap D_t$.

En déduire $\lambda_2(E)$ en fonction de a et b.

2. Dans \mathbb{R}^3 on considère $F = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leqslant 1 \right\}$. Pour $t \in \mathbb{R}$, on note $P_t \subset \mathbb{R}^3$ le plan d'équation z = t.

Montrer que $F \cap P_t$ est un domaine elliptique et déterminer ses axes. En déduire $\lambda_3(F)$.

2 En probabilité

Exercice 5. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé.

- 1. Soit X une variable aléatoire positive sur Ω et x, p des réels strictement positifs. Montrer l'inégalité de Markov : $\mathbb{P}(X \geqslant x) \leqslant \frac{\mathbb{E}(X^p)}{x^p}$
- 2. En déduire l'inégalité de Chernov : pour toute variable aléatoire X sur Ω et tout réel $\lambda > 0$ on a $\mathbb{P}(X \geqslant x) \leqslant e^{-\lambda x} \mathbb{E}(e^{\lambda X})$.

3 Intégrales à paramètre

Exercice 6. Calculer
$$\lim_{n \to +\infty} \sum_{k \in \mathbb{N}^*} \frac{n}{nk^2 + k + 1}$$
 et $\lim_{n \to +\infty} \sum_{k=1}^{n^2} \frac{\sin k}{k^2} \left(\frac{k}{k+1}\right)^n$.

On pourra regarder la vidéo https://www.youtube.com/watch?v=851U557j6HE sur les intégrales de Borwein. Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \sin x \, e^{-xy}$.

- 1. Montrer que f n'est pas intégrable sur $\mathbb{R}_+ \times \mathbb{R}_+$, mais que, pour tout T > 0, f est intégrable sur $[0, T] \times [0, +\infty[$.
- 2. En utilisant le théorème de Fubini, calculer l'intégrale (au sens de Riemann) $\int_0^{+\infty} \frac{\sin x}{x} dx$.

Exercice 8. On considère \mathbb{R}_+ muni de la tribu borélienne et de la mesure de Lebesgue λ_1 , et on note $f: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ la fonction définie par $f(x,t) = \frac{\ln(1+xt^2)}{1+t^2}$.

Par ailleurs, pour tout $x \in \mathbb{R}_+$ on note $F(x) = \int_{\mathbb{R}_+} f(x,t) d\lambda_1(t)$.

- 1. Montrer que F est bien définie et continue sur \mathbb{R}_+ (on pourra commencer par montrer la continuité sur [0, a[, où a > 0.).
- 2. Montrer que F est C^1 sur \mathbb{R}_+^* et exprimer F' comme une intégrale dépendant d'un paramètre.
- 3. Calculer F'(x) pour tout x>0 (pour $x\neq 1$ fixé, on pourra décomposer la fraction rationnelle $t\mapsto \frac{t^2}{(1+t^2)(1+xt^2)}$ en éléments simples). En déduire F(x) pour tout x.

Exercice 9. On considère $F: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}$ définie par $F(x,y) = \frac{1}{(1+y)(1+x^2y)}$, et $f: \mathbb{R}_+^* \setminus \{1\} \to \mathbb{R}$ définie par $f(x) = \frac{\ln x}{x^2-1}$.

- 1. Soit $x \in \mathbb{R}_+^* \setminus \{1\}$. Montrer que la fonction $y \mapsto F(x,y)$ est intégrable sur \mathbb{R}_+^* et que $\int_{\mathbb{R}_+^*} F(x,y) d\lambda_1(y) = 2f(x)$. (On pourra déterminer deux fonctions a(x) et b(x) telles que $F(x,y) = \frac{a(x)}{1+y} + \frac{b(x)}{1+x^2y}$)
- 2. Montrer que f se prolonge par continuité à \mathbb{R}_+^* et que $f \in L^1(\mathbb{R}_+^*)$. On note $I = \int_{\mathbb{R}_+^*} f(x) d\lambda_1(x)$.

Justifier que $J = \int_{\mathbb{R}_+^* \times \mathbb{R}_+^*} F(x,y) d\lambda_2(x,y)$ est bien définie. En calculant J de deux façons différentes, montrer que $I = \frac{\pi^2}{4}$.

3. Montrer que $I=2\int_0^1 \frac{\ln x}{x^2-1} dx$. En déduire, à l'aide des questions précédentes, que $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$, puis que $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

4 Pour s'entrainer

Exercice 10. Soit $X = [1, +\infty[$ muni de sa tribu borélienne et de la mesure de Lebesgue λ_1 .

- 1. Montrer que la série de fonctions de terme général $f_n(x) = ne^{-nx}$ est simplement convergente sur X. On pose, pour tout $x \in X$, $f(x) = \sum_{n \in \mathbb{N}} f_n(x)$.
- 2. Justifier que f est borélienne sur X et calculer $\int_X f d\lambda_1$.

Exercice 11. On considère \mathbb{R} muni de sa tribu borélienne et de la mesure de Lebesgue λ_1 . Pour tout $n \ge 1$, soit f_n la fonction définie sur \mathbb{R} par $f_n(t) = \frac{n}{t^2 + n^2}$.

- 1. Montrer que les fonctions f_n sont mesurables et calculer $\int_{\mathbb{R}} f_n d\lambda_1$ pour tout $n \ge 1$.
- 2. Calculer la limite simple de la suite $(f_n)_{n\in\mathbb{N}}$ et la limite de la suite $(\int_{\mathbb{R}} f_n d\lambda_1)_{n\in\mathbb{N}}$. Expliquer pourquoi ce résultat ne contredit pas les théorèmes de convergence monotone et de convergence dominée.

Exercice 12.

- 1. Montrer que $(1+\frac{x}{n})^n \leqslant e^x$ pour tout $n \in \mathbb{N}$ et tout réel $x \geqslant -n$.
- 2. Soit $p \in \mathbb{N}$, montrer que $\lim_{n \to +\infty} \int_0^n \left(1 \frac{x}{n}\right)^n x^p dx = p!$.
- 3. Soit b > 1, calcular $\lim_{n \to +\infty} \int_{\mathbb{R}_+} \left(1 + \frac{x}{n}\right)^n e^{-bx} d\lambda_1(x)$.

Exercice 13. Dans chacun des cas suivants, calculer $\int_D f(x,y) d\lambda_2(x,y)$.

1.
$$D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0 \text{ et } x + y \le 1\} \text{ et } f(x,y) = x^2 + y^2.$$

2.
$$D = \left\{ (x,y) \in \mathbb{R}^2 \mid 1 \leqslant x \leqslant 2, \text{ et } 0 \leqslant xy \leqslant \frac{\pi}{2} \right\} \text{ et } f(x,y) = \cos(xy).$$

Exercice 14. Extrait d'un sujet d'examen

On considère [0,1] muni de la tribu borélienne et de la mesure de Lebesgue λ_1 , et on note $f: \mathbb{R}_+ \times [0,1] \to \mathbb{R}$ définie par $f(x,t) = \frac{e^{-x^2(1+t^2)}}{1+t^2}$ et $F: \mathbb{R}_+ \to \mathbb{R}$ définie par $F(x) = \int_{[0,1]} f(x,t) d\lambda_1(t)$.

- 1. Montrer que F est bien définie. Calculer F(0) et $\lim_{x\to +\infty} F(x)$.
- 2. Montrer que F est dérivable sur \mathbb{R}_+ et exprimer sa dérivée.
- 3. On note $G: \mathbb{R}_+ \to \mathbb{R}$ définie par $G(x) = \left(\int_0^x e^{-s^2} ds\right)^2$.
 - (a) Montrer que G est dérivable sur \mathbb{R}_+ et que F'(x) + G'(x) = 0.
 - (b) Déduire de ce qui précède la valeur de $\int_{\mathbb{R}} e^{-s^2} d\lambda_1(s)$.

Exercice 15. Extrait d'un contrôle continu

Soit μ une mesure borélienne finie sur \mathbb{R} . Pour tout $t \in \mathbb{R}$ on note

$$\phi(t) = \int_{\mathbb{R}} e^{-itx} d\mu(x)$$

La fonction ϕ s'appelle la **transformée de Fourier** de la mesure μ . Par ailleurs, on note $K: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$K(y) = \begin{cases} \frac{\sin(y)}{y} & \text{si } y \neq 0\\ 1 & \text{si } y = 0 \end{cases}$$

- 1. Montrer que la fonction ϕ est continue et bornée sur \mathbb{R} .
- 2. Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Montrer que

$$\frac{1}{2n} \int_{-n}^{n} e^{iat} \phi(t) dt = \int_{\mathbb{R}} K(n(a-x)) d\mu(x).$$

3. Déterminer $\lim_{n\to +\infty} \frac{1}{2n} \int_{-n}^{n} e^{iat} \phi(t) dt$. En déduire que, si ϕ est Lebesgue-intégrable sur \mathbb{R} , alors la mesure μ est diffuse (c'est à dire que $\forall a \in \mathbb{R} \ \mu(\{a\}) = 0$).