

BodySnatcher: Towards Reliable Volatile Memory Acquisition by Software

Ву

Bradley Schatz

Presented At

The Digital Forensic Research Conference **DFRWS 2007 USA** Pittsburgh, PA (Aug 13th - 15th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

BodySnatcher: Towards reliable volatile memory acquisition by software

Bradley Schatz
Brisbane, AU
bradley.schatz@evimetry.com.au

Agenda

- Introduction
- Overview of software based acquisition proposal
- Description of implementation
- Experimental results
- Conclusions
- Demo

Introduction Motivations

- RAM resident information
 - Passwords
 - Cryptographic keys
 - Network connections
 - Cleartext of encrypted data
- Erosion of trust in OS integrity
 - Was the computer operating correctly?

Introduction Challenges in Acquisition

- **Fidelity**
 - Atomicity
 - Integrity/Reliability
 - **Historical Artifacts**
 - Subversion
 - Hardware (Rutlowska)
 - Software DDefy (Bilby)
- Availability

Introduction Existing Approaches

Proposed Approach

- Problem:
 - Software memory imaging
 - High Availability
 - Atomicity
 - Resistance to subversion
- Proposed Solution:
 - Halt un-trusted OS
 - Capture using pristine OS

Proof of Concept Load

Proof of Concept | Create VSpaces & Snatch Control

Proof of Concept | Acquisition

Proof of Concept | BodySnatcher vs. ??Linux

	x86 Linux	coLinux	BodySnatcher
Hardware			
Devices	Real Hardware	Virtual Hardware	Minimal set of Real Hardware
Initialization	BIOS, Linux Kernel	BIOS, NT Kernel, Drivers	Re-initialize PIC, Serial port, Rest unchanged
OS Boot	BIOS, Real Mode Loader, Real Mode Kernel	User-space Loader, Kernel-space Driver, Trampoline address space	User-space Loader, Kernel-space Driver, Trampoline address space
Memory			
Physical Range	BIOS identified RAM	Windows allocated subset	Windows allocated subset
Virtual Scheme	Regular Virtual Memory	Virtualised Virtual Memory	Virtualised Virtual Memory
Physical Access	/dev/mem	None	De-virtualised /dev/mem

Experiment

Setup

- VMware 6
- Win2k SP4 Host OS
- 32M Acquisition memory sandbox
- 2.6MB kernel, 1MB initrd

Method

- Running guest
- Image { VMEM | dd | bodysnatcher }
- Verify image integrity ptfinder (Schuster)
- Compare differing pages between images

Experiment Acquisition

- VMware imaging
 - Snapshot VMware virtual machine, copy .vmem file
- Garner dd imaging
 - Mount USB storage in VM, image to USB
- BodySnatcher Imaging
 - telnet → named pipe TCP proxy → VMware Virtual Serial Port → linux serial console
 - In BodySnatcher terminal session
 - dd if=/dev/mem bs=4096 | gzip -9 | uuencode

Results 1

128M Acquisition – Win2KSP4 – light load

Compared Linear Linear Pages Pages Same						
t0 ® t1	VMEM/dd	18,536	14,231	43		
t0 ® t3	VMEM/bsdd (2)	21,307	11,461	35		
t1 ® t2	Dd/bsdd(1)	18,905	13,862	42		
t0 ® t2	VMEM/bsdd (1)	15,348	17,420	55		
t3 ® t4	Bsdd (2)/bsdd (3)	32,473	295	0.9		

Results 2 512M Acquisition – Win2KSP4 – heavy load

Compared Linear Linear Pages Pages Same						
t0®t1	VMEM/dd	70,886	60,185	46		
t0®t3	VMEM/bsdd	120,045	11,026	8.4		
t1®t2	dd/bsdd(2)	73,115	57,956	44		

Conclusions

Fidelity

- Integrity
 - Lower impact on unallocated memory than Garner's dd
 - Higher impact on unallocated memory than DMA
- Atomicity Host OS ceases to run, leaving in atomic state
- Availability
 - runs without advance preparation (vs. DMA, Crashdump)
- Reliability
 - (Arguably) Less vulnerable to subversion (vs. dd, CrashDump)

Conclusions Limitations

- Complex
- Currently runs on particular VMware configuration (Win2K, legacy PIC)
- Currently no support for APIC, SMP, x64, PAE
- Output channel slow (Serial)
- Still considerable changes to host memory in load stage
- Still prone to subversion
- Requires Admin access or exploitable kernel vulnerability to run

Future Work BodySnatcher

Engineering

- Remove virtualised virtual memory
- Real hardware
- USB Output Channel
- Driver signing
- Port to other OS
- Harden against subversion
- Non-contiguous BodySnatcher sandbox allocation

Research

- Resumption of Host OS
- Clearer picture of memory changes

Thank you!

bradley.schatz@evimetry.com.au