

Sistemas de Processamento Digital de Sinal (SPDSina)

Exame – 27 de Junho de 2023 - Duração: 2h00

	Número:	Nome:
I — Assinale apenas uma respe	osta correcta. Cada resp	osta errada desconta ¼ valor. A nota mínima neste grupo é zero
valores.		
		o $\lambda=K_DF(0)K_0$ / N operando com ondas quadradas, com um sável pela limitação da banda de manutenção, esta banda é:
	largura de banda bilater	ral $\Delta f = 4$, centrado na frequência $f_0 = 22 ,$ pode ser amostrado
sem aliasing: $\square \text{ apenas com } f_s \ge 48.$		
\square apenas com $J_s \ge 40$. \square na prática, em apenas cinco	intervalos possíveis de	f
\square apenas com $24 \le f_s \le 40$.	intervatos possíveis de	J_{S} .
\square em apenas três intervalos p	ossíveis de f_s .	
3) Num conversor A/D sigma- Neste caso a ordem mínima do		${\rm A/D}$ de 16 bit @ f_s , a frequência de amostragem interna é $32f_s$.
4) No projecto de filtros IIR ut	tilizando o método da tr	ansformação bilinear a partir de um filtro analógico estável:
\square o filtro digital resultante po	ode ser instável.	
\Box não ocorre o fenómeno de a	liasing.	
o filtro digital resultante te		
		de Nyquist é exactamente a mesma do filtro analógico.
5) Num sistema de processan	nento de sinal multirit	no com factor $\frac{L}{M} < 1$ em que a frequência de amostragem de
entrada é f_s e o sinal de entra	da tem largura de band	a $B \leq \frac{f_s}{2}$:
☐ há sempre perda de informa	ıção se a decimação pred	ceder a interpolação.
\square se a interpolação for feita a	ntes da decimação nunc	a há perda de informação.
\square se $B > f_s \frac{L}{2M}$ há sempre po	erda de informação.	
o sistema actua como interp		
6) Uma malha PLL analógica	com ganho de retorno)	$\lambda > 0$:
\Box se for de 2ª ordem pode ser	instável.	
☐ é sempre estável qualquer o		
☐ se for de 2ª ordem é sempre		
I I so tor do 2º ordom ó sompro	estável	

 $\mathbf{H} = \text{Considere a implementação do filtro com a equação às diferenças} \ \ y_n = 1.2 \cdot x_n - 1.2 \cdot x_{n-1} \text{num processador de vírgula fixa de 16 bit. O formato das amostras de entrada} \ \ x_n \ \ \text{\'e} \ \ Q_{15} \ .$

- a) Diga de que tipo de filtro se trata (FIR/IIR; passa-baixo, passa-ba
ndo, passa-banda, rejeita-banda), se tem fase linear e qual é o formato aritmético que garante que y_n é sempre calculado correctamente. Justifique.
- b) Escreva o código C que realiza esta equação da forma mais precisa, utilizando 32 bit sempre que possível, incluindo todas as inicializações necessárias e considerando todas as variáveis do tipo short (Int16). Se não fez a alínea anterior considere que y_n é representado em Q_{12} .

III — Considere um sistema de processamento digital de sinal a funcionar com $f_s = \frac{1}{T_s} = 4$ kHz e com um sinal de entrada que tem largura de banda unilateral B. Pretende-se diminuir a frequência de amostragem do sistema para $f_s = 3$ kHz.

- a) Desenhe o esquema do circuito de processamento de sinal multiritmo que permite realizar esta operação com a menor perda de informação potencial. Indique a frequência de corte dos filtros e o factor de qualidade. Diga em que condições poderá ocorrer perda de informação e porquê.
- b) Represente o espectro dos diversos sinais ao longo do circuito considerando $B=1~\mathrm{kHz}$.
- c) Considere que o filtro anti-aliasing do decimador é um filtro CIC com uma secção. Desenhe o diagrama de blocos do filtro CIC/decimador que permite a maior economia de recursos. Represente a sua característica de amplitude para $0 \le f \le f_s$ e calcule a atenuação em dB introduzida pelo filtro na primeira réplica de potencial aliasing quando o sinal de entrada tem $B=1~\mathrm{kHz}$.

 ${\bf IV}$ — Considere uma malha PLL analógica realizada com um detector de fase cuja característica se encontra representada na figura ao lado. A malha dispõe de um filtro passa-baixo com tensões de saturação $\pm 6V$, ganho DC $F(0)=\pm 2~$ e um pólo em ω_p rad/s. O oscilador controlado gera uma onda com as características indicadas.

- a) Explique qual dos dois valores possíveis de F(0) deve ser selecionado e porquê.
- b) Represente as características de transferência estática de todos os componentes da malha e faça a sua representação gráfica encadeada. Determine k_o , ω_{ol} e o ganho do detector de fase k_D .
- c) Determine a banda de manutenção $\Delta\omega_L$ explicando quais os componentes que a limitam. Determine ω_p de modo que a banda de aquisição seja aproximadamente $\Delta\omega_C\approx 2\pi\times 10^6\,\mathrm{rad/s}.$

$$\omega_o = \begin{cases} 10\pi \times 10^6 \text{ rad/s}, & v_E \le -8V \\ \omega_{ol} + k_o v_E & -8V \le v_E \le 8V \\ 2\pi \times 10^6 \text{ rad/s}, & v_E \ge 8V \end{cases}$$

d) Determine a característica de detecção de fase de uma porta lógica NOR quando opera com ondas quadradas com níveis 0 V e 1 V.

$$\frac{2}{N} \left(f_0 + \frac{\Delta f}{2} \right) \leq f_s \leq \frac{2}{N-1} \left(f_0 - \frac{\Delta f}{2} \right)$$

$$H_{CIC}(z) = \left(\frac{1-z^{-M}}{1-z^{-1}} \right) \quad \therefore \quad \left| H_{CIC}(j\omega) \right| = \begin{vmatrix} \sin\left(\frac{M\omega T_s}{2}\right) \\ \sin\left(\frac{\omega T_s}{2}\right) \end{vmatrix}$$

$$\Delta\omega_C = \sqrt{2\omega_p^2 \left(\sqrt{1 + \left(\frac{\Delta\omega_L}{\omega_p}\right)^2} - 1 \right)} \quad \stackrel{\Delta\omega_L\gg\omega_p}{\approx} \sqrt{2\omega_p \cdot \Delta\omega_L}$$

$$\mathrm{SNR}_{\mathbf{Q}} \approx 6 \; \mathrm{dB/bit} \quad \therefore \quad \mathrm{SNR}_{\Sigma\Delta}(\mathrm{ordem} \; n) \approx (3+6n) \; \mathrm{dB/oitava}$$