FORMULARIO MATEMÁTICO (TEORÍA DE ERRORES)

MEDIDAS DIRECTAS(X;)

Valor medio: $\overline{X} = \frac{X_1 + X_2 + X_3 + ... + X_n}{n} = \frac{\sum_{i=1}^{n} X_i}{n}$

Desviación media: $s(X) = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n-1}} = \sqrt{\frac{n}{n-1}} (\langle X^2 \rangle - \langle X \rangle^2)$

Desviación cuadrática media: $s(\overline{X}) = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n(n-1)}} = \frac{s(X)}{\sqrt{n}}$

Intervalo de confianza de Student:

$$\Delta = t \, s\left(\overline{X}\right) = t \, \sqrt{\frac{\sum \left(X_i - \overline{X}\right)^2}{n \, (n-1)}} \, , \, \overline{X} - t \, s\left(\overline{X}\right) \leq \mu \leq \overline{X} + t \, s\left(\overline{X}\right)$$

Valores de t_n

En la siguiente tabla encontrarás algunos valores más del factor t_n para distintos valores del número de grados de libertad y $1 - \alpha$, siendo α el intervalo de confianza.

	р		
n	0.10	0.05	0.01
1	6,3138	12,706	63,657
2	2,9200	4,3027	9,9248
3	2,3534	3,1825	5,8409
4	2,1318	2,7764	4,6041
5	2,0150	2,5706	4,0321
6	1,9432	2,4469	3,7074
7	1,8946	2,3646	3,4995
8	1,8595	2,3060	3,3554
9	1,8331	2,2622	3,2498
10	1,8125	2,2281	3,1693
11	1,7959	2,2010	$3,\!1058$
12	1,7823	2,1788	3,0545
13	1,7709	2,1604	3,0123
14	1,7613	2,1448	2,9768
15	1,7530	2,1315	2,9467
20	1,7247	2,0860	2,8453
40	1,6839	2,0211	2,7045
60	1,6707	2,0003	2,6603
∞	1,6449	1,9600	2,5788

Media Ponderada:
$$\overline{X}_p = \frac{\sum_{i}^{n} \omega_i X_i}{\sum_{i}^{n} \omega_i}$$
,, $\omega_i = 1/s_i^2$

Desviación de la media ponderada: $\frac{I}{s_p} = \sum \omega_i = \sum \frac{I}{s_i}$

MEDIDAS INDIRECTAS Z=f(X,Y,..)

Valor medio: $\overline{Z} = f(\overline{X}, \overline{Y},)$

Propagación cuadrática: $s_z = \sqrt{\left[\frac{\partial f}{\partial X}\right]^2 s_x^2 + \left[\frac{\partial f}{\partial Y}\right]^2 s_y^2 + \dots}$

NUBES DE PUNTOS EXPERIMENTALES {Xi, Yi}

Condición de mínimo $Y = f(X,p_i)$:

$$\chi^2 = \sum_i \frac{\left(Y_i - f\left(X_i, p_j\right)\right)^2}{s_i^2}, \left\{\frac{\partial \chi^2}{\partial p_j}\right\}_j = 0$$

Regresión lineal Y= mX + p ,, $Y - \overline{Y} = m(X - \overline{X})$

$$\begin{cases} m = \frac{\sum (X_i - \overline{X})Y_i}{\sum (X_i - \overline{X})^2} = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2} \\ p = \overline{Y} - m \overline{X} = \frac{\sum X_i^2 \sum Y_i - \sum X_i \sum X_i Y_i}{n \sum X_i^2 - (\sum X_i)^2} \end{cases}$$

$$\begin{cases} s_m = s \sqrt{\frac{n}{n \sum X_i^2 - (\sum X_i)^2}} \\ s_p = s \sqrt{\frac{\sum X_i^2}{n \sum X_i^2 - (\sum X_i)^2}} \\ s = \sqrt{\frac{\sum (Y_i - m X_i - p)^2}{n - 2}} \end{cases}$$