## Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher

Go to next item

1/1 point

1. Consider using this encoder-decoder model for machine translation.



True/False: This model is a "conditional language model" in the sense that the decoder portion (shown in purple) is modeling the probability of the output sentence y given the input sentence x.

False

True



**⊘** Correct

The encoder-decoder model for machine translation models the probability of the output sentence y conditioned on the input sentence  $\mathbf{x}$ .

 $\textbf{2.} \quad \text{In beam search, if you increase the beam width } B, \text{which of the following would you expect to be true? Check all that apply.}$ 

1/1 point

- Beam search will converge after fewer steps.
- Beam search will use up more memory.

✓ Correct

Beam search will generally find better solutions (i.e. do a better job maximizing

 $P(y \mid x)$ 

✓ Correct

Beam search will run more slowly.

Loading [MathJax]/jax/output/CommonHTML/jax.js



**⊘** Correct

Great, you got all the right answers.

True/False: In machine translation, if we carry out beam search using sentence normalization, the algorithm will tend to output overly short translations. 1/1 point

False

○ True

∠<sup>∧</sup> Expand

**⊘** Correct

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

**4.** Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes  $P(y\mid x)$ .

1/1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript  $\hat{y}=$  "I'm building an A Eye system in Silly con Valley,", whereas a human gives a much superior transcript  $y^*=$  "I'm building an AI system in Silicon Valley."

According to your model,

 $P(\hat{y} \mid x) = 1.09 * 10^{-7}$ 

 $P(y^* \mid x) = 7.21 * 10^-8$ 

- $\bigcirc$  No, because  $P(y^* \mid x) \leq P(\hat{y} \mid x)$  indicates the error should be attributed to the search algorithm rather than to the RNN.
- $\bigcirc \quad \text{No, because } P(y^* \mid x) \leq P(\hat{y} \mid x) \text{ indicates the error should be attributed to the RNN}$
- O Yes, because  $P(y^* \mid x) \leq P(\hat{y} \mid x)$  indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because

 $P(y^* \mid x) \le P(\hat{y} \mid x)$ 



**⊘** Correct

5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake,  $P(y^* \mid x) > P(\hat{y} \mid x)$  . This suggests you should focus your attention on improving the search algorithm.

1/1 point

False.

True.



**⊘** Correct

6. Consider the attention model for machine translation.

1/1 point



Further, here is the formula for  $\alpha^{< t, t'>}$  .

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about  $\alpha^{< t, t'>}$  are true? Check all that apply.

 $\bigvee$  We expect  $\alpha^{< t,t'>}$  to be generally larger for values of  $a^{<t'>}$  that are highly relevant to the value the network should output for  $\boldsymbol{y}^{< t>}$  . (Note the indices in the superscripts.)

## ✓ Correct

Correct  $\alpha^{<t,\ell>}$  is equal to the amount of attention  $y^{<\varepsilon>}$  should pay to a< t'>. So, if a value of a< t'> is highly relevant to  $y^{<\varepsilon>}$ , then the attention coefficient  $\alpha^{<t,\ell>}$  should be larger. Note the difference between a (activation) and a (attention coefficient).

 $\begin{tabular}{ll} \hline & \begin{tabular}{ll} We expect $\alpha^{<\ell,\ell'}$ to be generally larger for values of $\alpha^{<\ell'}$ that are highly relevant to the value the network should output for $y^{<\ell'}$. (Note the indices in the superscripts.) \end{tabular}$ 

## ✓ Correct

Correct! If we sum over

for all t' (the formulation can be seen in the image), the numerator will be equal to the denominator, therefore,

## ∠<sup>7</sup> Expand

Great, you got all the right answers.

7. The network learns where to "pay attention" by learning the values  $e^{< t, t'>}$  , which are computed using a small

1/1 point

We can replace  $s^{< t-1>}$  with  $s^{< t>}$  as an input to this neural network because  $s^{< t>}$  is independent of  $\alpha^{< t, t'>}$ and  $e^{< t,t'>}$  .

|     | ○ True                                                                                                                                                                                                                                                                                              |           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | False                                                                                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
|     | ∠ Expand                                                                                                                                                                                                                                                                                            |           |
|     | $\bigodot$ correct  We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t^{>}}$ which in turn depends on and $e^{< t, t^{>}}$ ; so at the time we need to evaluate this network, we haven't computed $s^{< t>}$ . |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
| 8.  | Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the least advantage when:                                                                                                                 | 1/1 point |
|     |                                                                                                                                                                                                                                                                                                     |           |
|     | One input sequence length $T_x$ is large.                                                                                                                                                                                                                                                           |           |
|     | The input sequence length T <sub>x</sub>                                                                                                                                                                                                                                                            |           |
|     | ie.email Loading [Math-Jax/jax/output/CommonHTML/jax.js                                                                                                                                                                                                                                             |           |
|     | coming from souther controls tree being                                                                                                                                                                                                                                                             |           |
|     | ∠ <sup>7</sup> Expand                                                                                                                                                                                                                                                                               |           |
|     | 2 Experiu                                                                                                                                                                                                                                                                                           |           |
|     | Correct The encoder-decoder model works quite well with short sentences. The true advantage for the attention model occurs when the input sentence is large.                                                                                                                                        |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
| 9.  | Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed.                                                                                                                                                                                        | 1/1 point |
|     | Under the CTC model, what does the following string collapse to?                                                                                                                                                                                                                                    |           |
|     | c_oo_o_kkb_oooooookkk                                                                                                                                                                                                                                                                               |           |
|     | cokbok                                                                                                                                                                                                                                                                                              |           |
|     | © cookbook                                                                                                                                                                                                                                                                                          |           |
|     | O mythark                                                                                                                                                                                                                                                                                           |           |
|     | Cook book                                                                                                                                                                                                                                                                                           |           |
|     | C000kkb0000000kkk                                                                                                                                                                                                                                                                                   |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
|     | ∠ <sup>™</sup> Expand                                                                                                                                                                                                                                                                               |           |
|     | <b>⊘</b> Correct                                                                                                                                                                                                                                                                                    |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
| 10. | In trigger word detection, if the target label for $x^{< t>}$ is 1:                                                                                                                                                                                                                                 | 1/1 point |
|     | Only one word has been stated.                                                                                                                                                                                                                                                                      |           |
|     | The total time that the trigger word detection algorithm has been running is 1.                                                                                                                                                                                                                     |           |
|     | Someone has just finished saying the trigger word at time <i>t</i> .                                                                                                                                                                                                                                |           |
|     | There is exactly one trigger word.                                                                                                                                                                                                                                                                  |           |
|     |                                                                                                                                                                                                                                                                                                     |           |
|     | ∠ <sup>™</sup> Expand                                                                                                                                                                                                                                                                               |           |
|     | ⊘ Correct     Target labels indicate whether or not a trigger word has been said.                                                                                                                                                                                                                   |           |
|     |                                                                                                                                                                                                                                                                                                     |           |