Clase 11: Teoría de respuesta al ítem

Héctor Nájera

Expectativa

150

100

50

-50

-100

-150

-200

Realidad

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.545891

Iterations: 35

Results: Logit

M-J-1.							
Model:	Logi	C		o. Iterat	35.0000		
Dependent Variable:	У			seudo R-s			
Date:		-09-10 12:1		IC:	55867.177		
No. Observations:	51134	4		IC:	56044.021 -27914.		
Df Model:	19			Log-Likelihood:			
	51114			LL-Null:			
Converged:	0.000	90	S	1.0000			
	Coef.	Std.Err.	z	P> z	[0.025	0.975]	
euribor3m	-0.4634	0.0091	-50.947	1 0.0000	-0.4813	-0.445	
job blue-collar	-0.1736	0.0283	-6.123	0.0000	-0.2291	-0.118	
-	-0.3260	0.0778	-4.191	2 0.0000	-0.4784	-0.173	
marital_unknown	0.7454	0.2253	3.308	2 0.0009	0.3038	1.187	
education_illiterate					0.4585	2.172	
default no			0.003	0.9976	-10595.2387	10627.542	
default_unknown	15.8945	5414.0744	0.002	9 0.9977	-10595.4963	10627.285	
contact_cellular	-13.9393	5414.0744	-0.002	6 0.9979	-10625.3302	10597.451	
contact_telephone				6 0.9979	-10625.3973	10597.384	
month_apr	-0.8356	0.0913	-9.149	0.0000	-1.0145	-0.656	
month_aug	-0.6882	0.0929	-7.405	3 0.0000	-0.8703	-0.506	
month dec	-0.4233	0.1655	-2.557	9 0.0105	-0.7477	-0.099	
month_jul	-0.4056	0.0935	-4.339	1 0.0000	-0.5889	-0.222	
month_jun	-0.4817	0.0917	-5.255	0.0000	-0.6614	-0.302	
month_mar	0.6638	0.1229	5.398	9 0.0000	0.4228	0.904	
month_may	-1.4752	0.0874	-16.881	5 0.0000	-1.6465	-1.303	
month_nov	-0.8298	0.0942	-8.808	5 0.0000	-1.0144	-0.645	
month_oct	0.5065	0.1175	4.311	1 0.0000	0.2762	0.736	
poutcome_failure	-0.5000	0.0363	-13.770	6 0.0000	-0.5711	-0.428	
poutcome success	1.5788	0.0618	25.531	3 0.0000	1.4576	1.700	

Modelos de medición con categorías

- Sabiduría popular: Si dicotomizas una variable pierdes información.
- Sabiduría informada: No hagas regresión lineal cuando la dependiente es categórica
- ¿Cómo podemos abordar el problema de trabajar con categorías en medición?
- Vimos que AFC permite tratar con variables categóricas, pero no es muy claro cómo hacer interpretaciones que vayan más allá de la varianza atribuible al factor

Repensando las categorías

Tratamiento clásico. Categorías absolutas/predefinidas: ¿Sexo?, Grupos de edad, estado de nacimiento, religión.

Tratamiento moderno. No todas las categorías son absolutas. Podemos pensar en un continuo, en el que hay un valor crítico que separa a los grupos de interés

¿Qué valor crítico en el continuo produce una buena separación?

Nivel crítico de separación o creación de grupos

Dos modelos de medición complementarios

Las respuestas categóricas como manifestaciones de cierto fenómeno (medición) Las respuestas categóricas como manifestaciones de pertenencia a cierto grupo (clasificación)

Análisis factorial

Análisis de mezclas

• Teoría de respuesta al ítem

Clases latentes

Dos modelos de medición complementarios

Cambios en el nivel subyacente de alcoholismo explica la variabilidad de las respuestas Pertenencia al grupo de alcohólicos explica la probabilidad de respuesta

Estadísticas sociales y variables categóricas

1	0	1	0	1	1	1	1
2	1	0	1	0	0	0	1
3	0	1	1	1	1	0	0
4	0	0	0	0	0	1	1
5	0	0	1	0	0	1	0
6	1	1	1	1	0	1	0
7	0	0	0	0	0	1	0
8	1	1	1	1	0	0	1
9	0	0	0	0	0	0	0
10	1	0	0	1	0	0	0
11	0	0	0	1	1	0	0
12	1	1	0	0	1	1	1
13	1	0	0	1	0	1	1
14	1	0	0	1	0	1	1
15	1	0	1	1	0	1	0
16	0	1	0	1	0	0	1
17	1	0	1	1	1	0	1
18	1	0	0	0	0	1	0
19	1	1	0	1	0	0	0

Variables categóricas

¿Por qué observamos patrones de respuesta: I (Sí); 0 (No)?

Item response modelling (Edinburgh)

PSYCHOMETRIKA—VOL. 7, NO. 1 FEBRUARY, 1942

PSYCHOMETRIKA—VOL. 9, NO. 1 MARCH, 1944

ITEM SELECTION BY THE CONSTANT PROCESS*

GEORGE A. FERGUSON

DEPARTMENT OF EDUCATIONAL RESEARCH, UNIVERSITY OF TORONTO

This paper relates the constant process used in psychophysics to the problem of item selection. Each test item may be described in terms of a limen, which is an index of the point at which an item discriminates, and the standard deviation of the limen, which is an index of the be related n scription of terms of a l

THE APPLICATION OF PROBIT ANALYSIS TO THE RESULTS OF MENTAL TESTS

D. J. FINNEY ROTHAMSTED EXPERIMENTAL STATION

The application of the Müller-Urban constant process to item selection, as considered in a recent paper in this journal, is shown to be already and the analysis

XXIII.—On Problems connected with Item Selection and Test Construction. By D. N. Lawley, Moray House, University of Edinburgh. Communicated by Professor Godfrey H. Thomson.

(MS. received December 16, 1942. Read March 1, 1943.)

1. In constructing tests designed to measure mental ability it has been a common practice to use a fairly large number of questions or items each

Variables latentes y probabilidad de respuesta

Si las respuestas son manifestaciones de cierto fenómeno (θ), podemos pensar que la matriz observada de respuestas refleja la probabilidad de registrar 1 o 0

Por ejemplo, si θ es el nivel latente de precariedad laboral, esperaríamos que personas con niveles distintos tuvieran probabilidades diferentes de respuesta a cierta pregunta

Incluso podemos pensar que su respuesta es condicional a qué tan severa (difícil) es la pregunta. Por ejemplo, no es lo mismo "tener un salario" a "contar con seguridad social completa".

Podríamos pensar también que la probabilidad de respuesta depende de qué tan bien una pregunta distingue (discrimina) entre sujetos con valores diferentes. Por ejemplo, la seguridad social puede hacer un mejor trabajo en distinguir a dos personas con niveles distintos de θ que tener contrato

Teoría de respuesta al ítem

- Parte de que las unidades de análisis tienen un valor latente respecto al fenómeno de interés: θ (Es estructural)
- Las respuestas (score observados) son una probabilidad condicional a θ y otros posibles parámetros
 - Severidad / Dificultad
 - Discriminación
 - Suerte
- Estos tres son sujetos a perturbaciones

TRI o IRT en inglés

$$P(X_{ij} = 1 \mid \theta, a, b_i) = \frac{e^{Da(\theta_j - b_i)}}{1 + e^{Da(\theta_j - b_i)}}$$

$$(14.1)$$

where P means probability, X = 1 means that the item is correct (or the response is 1), and the symbol | means "conditional on." So we read $P(X_{ij} = 1 | \theta_j, a, b_i)$ as: The probability of a correct response to item i by examinee j conditional on examinee j's ability and the difficulty (b_i) of the item. The wording "conditional on" simply means that the probability of a correct response can (and usually does) depend on the examinee's ability level and the item difficulty. The expression $P(X_{ij} = 1 | \theta_j, a, b_i)$ is often shortened to $P(\theta)$, which will be used in the remainder of the model description.

TRI de un parámetro

El TRI de un parámetro sólo usa "b" (Severidad / Dificultad)

Asume que todos los indicadores "Discriminan" igual.

También se le conoce como modelo Rasch (Aunque la gente que sigue Rasch NO estarían muy de acuerdo).

Rasch quería separar cualquier relación que pudiera tener el "examinado" del "test".

IRT ve la interacción entre ambos

Explicación de pizarrón

EMSA: Por falta de recursos en los últimos tres meses

- 2. Se quedaron todo un día sin comida
- 3. Los adultos no tuvieron alguna de las tres comidas

Rasch vs TRI de un parámetro

The Food Insecurity Experience Scale:

Measuring food insecurity through people's experiences

n September 2015, **the 193 Member States of the United Nations adopted** the 2030 Agenda for Sustainable Development to succeed the Millennium Development Goals. The UN Statistical Commission (UNSC) agreed in March 2016 on a global indicator framework comprising 230 indicators to monitor targets and measure progress towards achievement of the 17 new Sustainable Development Goals (SDGs).

The UNSC created the Inter Agency and Expert Group on SDG indicators (IAEG-SDG), whose members are the chief statisticians (or their delegates) of 28 countries, elected on a rotating basis and representing all UN regions. The group includes regional and international agencies as observers with no deliberating power but who play an important advisory role.

IAEG-SDG has **appointed FAO** to serve as custodian of 21 indicators. FAO's responsibilities include maintaining the methodology needed to properly compile these indicators, providing technical support to countries, receiving data/indicators from countries to maintain a global database, and producing regional and global aggregates to report to the UN Department of Economic and Social Affairs (UNDESA).

Lo importante es qué tanto se parecen los datos a la teoría

El modelo es correcto y los datos deben ajustarse

Rasch vs TRI de un parámetro

Resto de la comunidad estadística: Los modelos son imperfectos y lo mejor que podemos hacer es evaluar si resultan en una buena representación del mundo observado

Rasch: Los datos deben ajustar al modelo

TRI: Los modelos deben ajustar a los datos

TRI dos parámetros:

Severidad: Eje de las x

Discriminación: Pendiente

La importancia de la pendiente

¿Qué curva nos hablaría de un mal indicador?

¿Qué quisiéramos en un buen indicador?

Explicación de pizarrón

EMSA: Por falta de recursos en los últimos tres meses

- 1. Tuvieron poca variedad de alimentos
- 2. Se quedaron todo un día sin comida
- 3. Los adultos no tuvieron alguna de las tres comidas
- 4. Los adultos no tomaron cerveza

Ejemplo

México (2012)

Argentina 2012

Ejemplo: Modelo de un parámetro (severidad)

Curvas características. Modelo de un parámetro (Rasch). Adultos

¿Uno o dos parámetros?

- La ventaja de TRI, al igual que en CFA, es que podemos comparar modelos usando estadísticos globales de ajuste
 - TLI, CFI, BIC, AIC, BICn
 - Podemos saber qué modelo hacer un mejor ajuste de los datos.

Supuestos básicos de TRI

- Dimensionalidad: Están pensados para modelos unidimensionales, aunque pueden acomodar modelos multidimensionales
- Independencia local: La variación se debe al factor y la correlación entre ítems se debe al factor
- Forma funcional: Relación entre el factor y las respuestas

Relación entre TRI y análisis factorial

- Parecen tener varios aspectos en común
- ¿Cuál puede ser la relación entre TRI y análisis factorial?
- Piensen en los parámetros de un modelo unidimensional
 - Discriminación - Carga factorial
- También pueden aplicarse a variables nominales y ordinales
 - Polytomous response theory

Parámetro de discriminación ~ carga factorial

PUED

Son equivalentes. La diferencia es la parametrización (Logit v métrica del factor)

• Si las cargas factoriales son bajas ¿Cómo lucirían las curvas?

Evaluación de discriminación y dificultad

- Discriminación baja es definitivamente indeseable. Qué bajo es muy bajo: .9 (~.4 con cargas factoriales estandarizadas).
- Un modelo TRI o factorial con bajas cargas factoriales es un mal modelo.
- Severidad. Depende del estudio, pero extremos >+3 o <-3 desviaciones estándar difícilmente va a ser útil

TRI y teoría de la información

- Claude Shannon 1948
 - Información: Todo aquello de un mensaje que no nos sorprende -señal-
 - Entropía: Medida de la cantidad de información una vez que conozco el resultado

TRI: Respuestas aleatorias tienen poca información (alta entropía). Si la discriminación me dice la probabilidad de respuesta puedo deducir la información

Teoría de la información y desigualdad

Producción de medidas de desigualdad

Descomposición comparable bajo indices de Theil

ICC and information curves

Las curvas de información me ayudan a visualizar "el rango" de la variable latente para el cuál tengo más información

Esto es útil para evaluar confiabilidad relativa

Curvas en TRI

Total Information: 3.763
Information in (-4, 0): 2.165 (57.53%)
Information in (0, 4): 0.768 (20.4%)

Pasando de scores obervados a scores latentes

¿Cómo se obtienen?

Curva de información

Ejemplo: Escala Alimentaria


```
##
         param
                 est
## 13
        IA_1AD 0.455
## 15
        IA_3AD 0.729
       IA_7MEN 0.854
## 17
        IA_5AD 1.096
       IA_8MEN 1.105
       IA_9MEN 1.118
## 14
       IA_2AD 1.141
        IA_6AD 1.333
## 18
       IA_4AD 1.343
## 23 IA_11MEN 1.512
## 22 IA_10MEN 1.522
## 24 IA_12MEN 1.705
```


Total Information Curve

Usos de TRI

• Comparación de los puntajes de grupos a partir de variables categóricas

Usos TRI: Comparación de escalas

Comparar escalas a partir de su información

Hay cierta relación entre información y confiabilidad

Ejemplo: Escala y subescala

Esta es la información total de una escala - suma de las curvas de información-.

¿Mínimo de información?

Usos TRI

Medición invariante: Mido lo mismo y de la misma manera entre distintos grupos

PUED

TRI y clasificación

Entropía relativa

IRT: Avanzado

SEM es un marco potente y flexible

IRT es un caso especial de SEM que puede extenderse para abordar distintos problemas de investigación:

- Problemas de clasificación
- Problemas de muchos ceros

Clasificación IRT

Dado un patrón de respuestas, nos gustaría clasificar a la población en grupos

Clasificación IRT

Análisis de clases latentes (Mixture modelling)

La clasificación será tan buena como la confiabilidad de los scores

PUED

IRT: Muchos ceros

Hay mediciones que requieren muchas preguntas para poder estimar con confiabilidad scores para ciertas áreas de la distribución

Cuando no se tienen esas escalas, uno tiene altos falsos positivos y negativos

IRT + Clases latentes

• ¿Qué tal si combinamos un modelo factorial (IRT) con un modelo de clasificación?

Fig. 1. Uni-dimensional factor analysis.

Classes can be indicated by item thresholds (categorical)\ item means (continuous) or factor mean and variance

IRT + Clases latentes

Figure 2.

Truth is ZI K = 2 mixture with 75% non-pathological.

Note. Side-by-side boxplots of 100 estimates of all 10 of the discrimination parameter β_1 - β_{10} (true value = 1) for each of the three models. ZI = zero-inflated.

Figure 4.

Truth is ZI K=3 mixture with 50% of the population non-pathological.

Note. Empirical mean (and median for the four-class ZI mixture) item parameter estimates (discrimination on left, severity on right) across 100 simulated data sets estimated with the four different models. ZI = zero-inflated.

Próxima clase

• Sesión práctica de TRI

