Network Security Security Services CME451 Tutorial 7

Hao Zhang (Graduate Teaching Fellow)

Department of Electrical & Computer Engineering University of Saskatchewan

Feb 17, 2017

*Most contents are from William Stallings, Data and Computer Communications, 8th edition, 2007 Pearson Education Inc.

Network Encryption

- Encrypt messages against passive attacks.
- Symmetric encryption:
 - Sender and receiver share the encryption key.
 - ▶ DES, 3DES, AES, ...
 - Key distribution.
- Asymmetric encryption (public-key encryption)
 - Public key made for others to use.
 - Private key known only to its owner.
 - ► RSA, ...
 - Sender encrypt message using receiver's public key.
 - Receiver decrypt the message using private key.
 - Help key distribution of symmetric encryption.

Network Authentication and Digital Signature

- Protect messages against active attacks.
- Encryption can realize authentication.
- Message authentication code(MAC):
 - Shared secret key.
 - Append a block to message.
 - Receiver check MAC match.
- Hash functions:
 - Variable size of message.
 - Fixed size message digest.
 - No secret keys.
 - ► MD5, SHA-1, SHA-256, ...
- Digital signature:
 - Another way of using asymmetric encryption.
 - Sender sign the message with private key.
 - Receiver verify the message with public key.
 - Sign the hash code instead of whole message.

- Symmetric Encryption:
 - des = DES.new('01234567', DES.MODE_ECB)
- Asymmetric Encryption:
 - key = RSA.generate(1024, random_generator)
- Hash function:
 - ▶ hash_md5 = MD5.new(b'CME451 Course').digest()
- ▶ Digital signature:
 - signature = privatekey.sign(hash_of_message, '')
 - publickey.verify(hash_of_decrypted, signature)

Network Security Services

Overview

- Security services implement a set of protocols.
- Transport Layer:
 - Secure Sockets Layer (SSL)
 - Transport Layer Security (TLS)
- Network Layer:
 - Internet Protocol Security (IPSec)
- WiFi:
 - WiFi Protected Access (WPA)

SSL and TLS

- Secure Sockets Layer (SSL)
- Transport Layer Security (TLS)
- Make use of TCP to provide reliable secure services.
- Protocol suites.
- Many web browsers are equipped with SSL.
- Most web servers support SSL protocols.

SSL and TLS

- SSL: two-layers of protocols.
- ▶ **SSL connection**: one transport, transient, associated with one session.
- ▶ **SSL session**: association between client and server, define a set of security parameters which are shared among multiple connections.
- Session avoids negotiation of security parameters for each connection.

SSL Record Protocol

SSL Record Protocol

- SSL Record Protocol Header
 - Content Type (8-bit): The higher layer protocol used to process the enclosed fragment.
 - change_cipher_spec
 - alert
 - handshake
 - application_data
 - Major Version (8-bit): Major version of SSL. For SSLv3, it is 3.
 - ▶ Minor Version (8-bit): Minor version of SSL. For SSLv3, it is 0.
 - Compressed Length (16-bit): Length in byte of compressed fragment.

SSL Change Cipher Spec and Alert Protocol

- SSL Change Cipher Spec Protocol:
 - Consist of a single byte of value 1 in a single message.
 - Cause a pending state to allow the connection to update the cipher suite.
- SSL Alert Protocol:
 - Used to convey SSL-related alerts.
 - Consist of two bytes:
 - First byte: warning (1) or fatal (2).
 - Fatal: terminates the connection and no new connection on this session.
 - Second byte: specific alert message.
 - Fatal alert: incorrect MAC.
 - Non-Fatal: close connection when communication ends.

SSL Hand Shake Protocol

- Allow the server and the client to authenticate each other.
- Negotiate encryption and MAC algorithm, key...
- Used before any application data transmission.

SSL Hand Shake Protocol

SSL Hand Shake Protocol

IPSec

- ▶ IPSec is designed to encrypt and authenticate all traffic at the IP level.
- Distributed applications can be secured:
 - remote login
 - email
 - file transfer
 - web access
- Scope:
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
 - key exchange function

IPSec Authentication Header

- ▶ AH provides support for data integrity and authentication of IP packets.
- Based on MAC code, need a secret key.

IPSec Encapsulating Security Payload

► ESP provide confidentiality services.

- ▶ WPA is involved in IEEE 802.11i.
- Address three security areas:
 - Authentication.
 - Authentication server (AS) and robust protocol.
 - Key management.
 - Authentication server (AS).
 - Data transfer privacy.
 - Encryption schemes: AES, ...

Overview of 802.11 architecture:

STA = station AP = access point

Overview of 802.11i operation:

Access Control

▶ IEEE 802.1X Port-Based Network Access Control.

