Using Dynamic Analysis to Generate Disjunctive Invariants

 $\label{eq:continuity} Thanh Vu \ (Vu) \ Nguyen^*,$ Deepak Kapur*, Westley Weimer † , Stephanie Forrest*

*University of New Mexico, †University of Virginia

ICSE 2014

Program Invariants

- "Invariants are asserted properties, such as relations among variables, at certain locations in a program"
 - Assertions
 - Pre/Post conditions
 - Loop invariants

Program Invariants

- "Invariants are asserted properties, such as relations among variables, at certain locations in a program"
 - Assertions
 - Pre/Post conditions
 - Loop invariants
- Uses of Invariants
 - Understand and verify programs
 - Debug (locate errors)
 - Formal proofs
 - Documentations

Program Invariants

- "Invariants are asserted properties, such as relations among variables, at certain locations in a program"
 - Assertions
 - Pre/Post conditions
 - Loop invariants
- Uses of Invariants
 - Understand and verify programs
 - Debug (locate errors)
 - Formal proofs
 - Documentations
- Invariants can generated using static or dynamic analysis
 - Static analysis examines program source code
 - Dynamic learns from program execution traces

• A polynomial invariant is a relation among numerical program variables, e.g., x = 2y + 3, $|arr| \ge x \ge 0$

- A polynomial invariant is a relation among numerical program variables, e.g., x = 2y + 3, $|arr| \ge x \ge 0$
- A conjunctive polynomial invariant is a set (logical and) of polynomial inariants, e.g., $x = 2y + 3 \land |arr| \ge x \ge 0$

- A polynomial invariant is a relation among numerical program variables, e.g., x = 2y + 3, $|arr| \ge x \ge 0$
- A conjunctive polynomial invariant is a set (logical and) of polynomial inariants, e.g., $x = 2y + 3 \land |arr| \ge x \ge 0$
- A disjunctive polynomial invariant is a disjunct (logical or) of polynomial invariants, e.g., $x = 2y + 3 \lor |arr| \ge x \ge 0$
 - Represent semantics of branching The invariant after if (p) {a=1;} else {a=2;} is $(p \land a = 1) \lor (\neg p \land a = 2)$
 - Existing approaches focus mostly on *conjunctive* relations

- A polynomial invariant is a relation among numerical program variables, e.g., x = 2y + 3, $|arr| \ge x \ge 0$
- A conjunctive polynomial invariant is a set (logical and) of polynomial inariants, e.g., $x = 2y + 3 \land |arr| \ge x \ge 0$
- A disjunctive polynomial invariant is a disjunct (logical or) of polynomial invariants, e.g., $x = 2y + 3 \lor |arr| \ge x \ge 0$
 - Represent semantics of branching The invariant after if (p) {a=1;} else {a=2;} is $(p \land a = 1) \lor (\neg p \land a = 2)$
 - Existing approaches focus mostly on conjunctive relations
- Existing approaches have trade-offs among soundness, efficiency, and expressive power
 - Static analyzers, e.g., Interproc, Astrée, support conjunctive relations
 - Dynamic techniques, e.g., Daikon, also have limited support for disjunctive invariants and can produce spurious results

Hybrid Invariant Generation

- DIG (Dynamic Invariant Generator)
 - Find invariants directly from program traces
 - Build nonconvex polyhedra over trace points and extract facets representing disjunctive relations
- KIP (K-Inductive Prover)
 - Verify candidate invariants statically from program code
 - Based on k-induction and SMT solving

Geometric Invariant Inference

- Treat trace values as points in multi-dimensional space
- Build a convex hull (polyhedron) over the points
- Representation of a polyhedron: a conjunction of inequalities

Geometric Invariant Inference

- Treat trace values as points in multi-dimensional space
- Build a convex hull (polyhedron) over the points
- Representation of a polyhedron: a conjunction of inequalities

	•	•
<u>x</u> <u>y</u>		
-2 1		
-1 -1	+ + + + + + + + + + + + + + + + + + + +	•
1 -3		
2 0		
3 -2	trace pts	polygon
5 2	in 2D	$\begin{array}{c} polygon \\ c_1 x + c_2 y \geq c \end{array}$
program traces		

Geometric Invariant Inference

- Treat trace values as points in multi-dimensional space
- Build a convex hull (polyhedron) over the points
- Representation of a polyhedron: a conjunction of inequalities

• Consider simpler shapes (decreasing precision, increasing efficiency)

Outline

$$L: (x < 5 \land 5 = y) \lor (x \ge 5 \land x = y), 11 \ge x$$

$$L: (x < 5 \land 5 = y) \lor (x \ge 5 \land x = y), 11 \ge x$$

Disjunction of 2 cases:

- **1** if x < 5 then y = 5
- 2 if $x \ge 5$ then x = y

$$L: (x < 5 \land 5 = y) \lor (x \ge 5 \land x = y), 11 \ge x$$

Disjunction of 2 cases:

1 if
$$x < 5$$
 then $y = 5$

2 if
$$x \ge 5$$
 then $x = y$

$$\longleftrightarrow$$
 if $0 > x - 5$ then $0 = y - 5$ else $x - 5 = y - 5$
 $\max(0, x - 5) = y - 5$

$$L: (x < 5 \land 5 = y) \lor (x \ge 5 \land x = y), 11 \ge x$$

Disjunction of 2 cases:

1 if
$$x < 5$$
 then $y = 5$

2 if
$$x \ge 5$$
 then $x = y$

$$\longleftrightarrow \text{ if } 0 > x - 5 \text{ then } 0 = y - 5 \text{ else } x - 5 = y - 5$$

$$\max(0, x - 5) = y - 5$$

a linear relation .. in max-plus algebra

	Linear	Max-plus
Domain	\mathbb{R}	$\mathbb{R} \cup \{-\infty\}$
Addition	+	max
Multiplication	×	+
Zero elem	0	$-\infty$
Unit elem	1	0
Relation form	$c_0+c_1t_1+\cdots+c_nt_n\geq 0$	$\max(c_0, c_1 + t_1, \ldots, c_n + t_n) \geq \max(d_0, d_1 + t_1, \ldots, d_n + t_n)$

	Linear	Max-plus
Domain	\mathbb{R}	$\mathbb{R} \cup \{-\infty\}$
Addition	+	max
Multiplication	×	+
Zero elem	0	$-\infty$
Unit elem	1	0
Relation form	$c_0+c_1t_1+\cdots+c_nt_n\geq 0$	$\max(c_0, c_1 + t_1, \dots, c_n + t_n) \ge \max(d_0, d_1 + t_1, \dots, d_n + t_n)$
Line shapes	Λ ↑ γ	↓ ↓

	Linear	Max-plus
Domain	\mathbb{R}	$\mathbb{R} \cup \{-\infty\}$
Addition	+	max
Multiplication	×	+
Zero elem	0	$-\infty$
Unit elem	1	0
Relation form	$c_0+c_1t_1+\cdots+c_nt_n\geq 0$	$\max(c_0, c_1 + t_1, \ldots, c_n + t_n) \geq \max(d_0, d_1 + t_1, \ldots, d_n + t_n)$
Line shapes		
Convex hull		

	Linear	Max-plus
Domain	\mathbb{R}	$\mathbb{R} \cup \{-\infty\}$
Addition	+	max
Multiplication	×	+
Zero elem	0	$-\infty$
Unit elem	1	0
Relation form	$c_0+c_1t_1+\cdots+c_nt_n\geq 0$	$\max(c_0, c_1 + t_1, \ldots, c_n + t_n) \geq \max(d_0, d_1 + t_1, \ldots, d_n + t_n)$
Line shapes		
Convex hull		
		Not convex in classical sense!

Examples

$$z = \max(x, y) \equiv (x < y \land z = x) \lor (x \ge y \land z = y)$$

ç

Examples

$$z = \max(x, y) \quad \equiv \quad (x < y \land z = x) \quad \lor \quad (x \ge y \land z = y)$$

$$\text{strncpy}(s, d, n) \quad \equiv \quad (n \ge |s| \land |d| = |s|) \quad \lor \quad (n < |s| \land |d| \ge n)$$

Examples

$$z = \max(x, y) \quad \equiv \quad (x < y \land z = x) \quad \lor \quad (x \ge y \land z = y)$$

$$\mathsf{strncpy}(s, d, n) \quad \equiv \quad (n \ge |s| \land |d| = |s|) \quad \lor \quad (n < |s| \land |d| \ge n)$$

DIG discovers disjunctive relations of the max-plus form

$$\max(c_0, c_1 + t_1, \dots, c_n + t_n) \ge \max(d_0, d_1 + t_1, \dots, d_n + t_n)$$

Examples

$$z = \max(x,y) \quad \equiv \quad \big(x < y \land z = x\big) \quad \lor \quad \big(x \ge y \land z = y\big) \\ \mathrm{strncpy}\big(s,d,n\big) \quad \equiv \quad \big(n \ge |s| \land |d| = |s|\big) \quad \lor \quad \big(n < |s| \land |d| \ge n\big)$$

DIG discovers disjunctive relations of the max-plus form

$$\max(c_0, c_1 + t_1, \dots, c_n + t_n) \ge \max(d_0, d_1 + t_1, \dots, d_n + t_n)$$

Method

- Represent trace values as points
- Build a max-plus convex polyhedron
- Extract facets represented by max-plus relations

 x
 y

 -1
 5

 :
 :

 5
 5

 6
 6

 :
 :

 11
 11

DIG builds a max-plus polygon and finds candidate invs:

$$11 \ge x \ge -1, \quad 11 \ge y \ge 5, \quad 0 \ge x - y \ge -6$$

$$\max(0, x - 5) \ge y - 5 \equiv (x < 5 \land 5 \ge y) \lor (x \ge 5 \land y \le x)$$

DIG builds a max-plus polygon and finds candidate invs:

$$11 \ge x \ge -1, \quad 11 \ge y \ge 5, \quad 0 \ge x - y \ge -6$$

$$\max(0, x - 5) \ge y - 5 \equiv (x < 5 \land 5 \ge y) \lor (x \ge 5 \land y \le x)$$

- KIP removes the spurious invariants $x \ge -1$ and $x y \ge -6$
- Remaining invariants are true and equivalent to

$$(x < 5 \land 5 = y) \lor (11 \ge x \ge 5 \land x = y)$$

DIG introduces weak max-plus relations of the form

$$\max(c_0, c_1 + t_1, \dots, c_k + t_k) \ge t_j + d,$$

 $t_j + d \ge \max(c_0, c_1 + t_1, \dots, c_k + t_k),$

where $d \in \mathbb{R}$ and $t_j \in \{t_1, \ldots, t_k\}$

DIG introduces weak max-plus relations of the form

$$\max(c_0, c_1 + t_1, \dots, c_k + t_k) \ge t_j + d,$$

 $t_j + d \ge \max(c_0, c_1 + t_1, \dots, c_k + t_k),$

where $d \in \mathbb{R}$ and $t_i \in \{t_1, \ldots, t_k\}$

- Restrict values of coefs c_i to $\{0, -\infty\}$
- Fix the number k of variables t_i , e.g., k=2
- Allow only one unknown param d

Algorithm for Finding Weak Max-plus Invs

Given 2D points $\{(x_1, y_1), \dots, (x_n, y_n)\}$, build a weak max-plus polygon, i.e., a conjunction of inequalities of the form

$$\max(c_0, c_1 + x, c_2 + y) \ge x + d, \quad x + d \ge \max(c_0, c_1 + x, c_k + y),$$

 $\max(c_0, c_1 + x, c_2 + y) \ge y + d, \quad y + d \ge \max(c_0, c_1 + x, c_k + y)$

Algorithm for Finding Weak Max-plus Invs

Given 2D points $\{(x_1, y_1), \dots, (x_n, y_n)\}$, build a weak max-plus polygon, i.e., a conjunction of inequalities of the form

$$\max(c_0, c_1 + x, c_2 + y) \ge x + d, \quad x + d \ge \max(c_0, c_1 + x, c_k + y),$$

 $\max(c_0, c_1 + x, c_2 + y) \ge y + d, \quad y + d \ge \max(c_0, c_1 + x, c_k + y)$

- **1** Enumerate weak relations by instantiating c_i over $\{0, -\infty\}$
 - Each weak max-plus form yields at most 8 relations,
 e.g., max(c₀, c₁ + x, c₂ + y) ≥ x + d produces

$$\max(0, x, y) \ge x + d, \quad \max(0, x) \ge x + d,$$

$$\max(0, y) \ge x + d, \quad 0 \ge x + d, \dots$$

• Obtain at most 32 relations from 4 weak max-plus forms

Algorithm for Finding Weak Max-plus Invs

Given 2D points $\{(x_1, y_1), \dots, (x_n, y_n)\}$, build a weak max-plus polygon, i.e., a conjunction of inequalities of the form

$$\max(c_0, c_1 + x, c_2 + y) \ge x + d, \quad x + d \ge \max(c_0, c_1 + x, c_k + y),$$

 $\max(c_0, c_1 + x, c_2 + y) \ge y + d, \quad y + d \ge \max(c_0, c_1 + x, c_k + y)$

- **1** Enumerate weak relations by instantiating c_i over $\{0, -\infty\}$
 - Each weak max-plus form yields at most 8 relations, e.g., $\max(c_0, c_1 + x, c_2 + y) \ge x + d$ produces

$$\max(0, x, y) \ge x + d, \quad \max(0, x) \ge x + d,$$

 $\max(0, y) \ge x + d, \quad 0 \ge x + d,...$

- Obtain at most 32 relations from 4 weak max-plus forms
- Solve for d in the obtained relations using given points, e.g.,

$$\max(0, y) \ge x + d \rightarrow d = \min(\max(0, y_i) - x_i)$$

 $x + d \ge \max(0, y) \rightarrow d = \max(\max(0, y_i) - x_i)$

DIG discovers disjunctive relations of the min-plus form

$$\min(c_0, c_1 + t_1, \dots, c_n + t_n) \ge \min(d_0, d_1 + t_1, \dots, d_n + t_n)$$

• DIG discovers disjunctive relations of the min-plus form

DIG discovers disjunctive relations of the min-plus form

Also support weak min-plus relations of the form

$$\min(c_0, c_1 + t_1, \dots, c_k + t_k) \ge t_j + d_i,$$

 $t_j + d_i \ge \min(c_0, c_1 + t_1, \dots, c_k + t_k)$

DIG discovers disjunctive relations of the min-plus form

Also support weak min-plus relations of the form

$$\min(c_0, c_1 + t_1, \dots, c_k + t_k) \ge t_j + d_i,$$

 $t_i + d_i \ge \min(c_0, c_1 + t_1, \dots, c_k + t_k)$

• Combine max and min-plus invariants for more experessive power, e.g., can capture iff behavior

13

Algorithmic Analysis

	Linear	Max/Min-plus	Weak Max/Min-plus
Complexity	$O(p^{\frac{n}{2}})$	$O(pn^2(p+n)^n)$	$O(p2^k)$

p=# of trace pts, n=# of variables, k=a predefined constant, e.g., k=2

Algorithmic Analysis

	Linear	Max/Min-plus	Weak Max/Min-plus
Complexity Facets	$O(p^{\frac{n}{2}})$ unbounded	$O(pn^2(p+n)^n)$ unbounded	$O(p2^k) \\ k2^{k+2}$

p=# of trace pts, n=# of variables, k=a predefined constant, e.g., k=2

Algorithmic Analysis

	Linear	Max/Min-plus	Weak Max/Min-plus
Complexity Facets	$O(p^{\frac{n}{2}})$ unbounded	$O(pn^2(p+n)^n)$ unbounded	$O(p2^k) \\ k2^{k+2}$

p=# of trace pts, n=# of variables, k=a predefined constant, e.g., k=2

Underapproximation Property

- Theorem: If the form of the true invariant f is supported, then DIG generates only the candidate invariant f' such that $f' \Rightarrow f$
- Application: useful for debugging; if f' strictly overapproximates f, then there is a trace representing a counterexample violating f

Outline

Proving Program Invariants Using k-Induction

• Represent a program execution as a state transition system

$$M = (I, T),$$

with the initial state I and the transition relation T

Proving Program Invariants Using k-Induction

Represent a program execution as a state transition system

$$M=(I,T),$$

with the initial state I and the transition relation T

Use k-induction to prove that p is an invariant of M

$$\begin{array}{ccc}
I \wedge T_1 \wedge \cdots \wedge T_k & \Rightarrow & p_0 \wedge \cdots \wedge p_k \\
p_n \wedge T_{n+1} \wedge \cdots \wedge p_{n+k} \wedge T_{n+k+1} & \Rightarrow & p_{n+k+1}
\end{array}$$

- More powerful than standard (k = 0) induction
- Help prove properties cannot be proved using standard induction

```
def sqrt(x):
    assert(x \geq 0);
    a = 0; s = 1; t = 1
    while[L] s \leq x:
        a += 1; t += 2; s += t
    return a
```

DIG

find candidate invariants at L

```
4s = t^{2} + 2t + 1
t = 2a + 1
s = (a + 1)^{2}
s \ge t
9989 \ge x
\vdots
```

```
def sqrt(x):
    assert(x \geq 0);
    a = 0; s = 1; t = 1
    while[L] s \leq x:
        a += 1; t += 2; s += t
    return a
```

DIG

KIP

find candidate invariants at L

```
4s = t^{2} + 2t + 1
t = 2a + 1
s = (a + 1)^{2}
s \ge t
9989 \ge x
\vdots
```

```
def sqrt(x):
    assert(x \geq 0);
    a = 0; s = 1; t = 1
    while[L] s \leq x:
        a += 1; t += 2; s += t
    return a
```

DIG

KIP

find candidate invariants at L

```
\begin{array}{ll} 4s = t^2 + 2t + 1 & \text{inductive} \\ t = 2a + 1 & \text{inductive} \\ s = (a + 1)^2 & \text{1-inductive} \\ s \geq t & \\ 9989 \geq x & \\ \vdots & & \end{array}
```

```
def sqrt(x):
    assert(x \geq 0);
    a = 0; s = 1; t = 1
    while[L] s \leq x:
        a += 1; t += 2; s += t
    return a
```

DIG

find candidate invariants at L

KIP

```
\begin{array}{lll} 4s = t^2 + 2t + 1 & & \text{inductive} \\ t = 2a + 1 & & \text{inductive} \\ s = (a+1)^2 & & 1\text{-inductive} \\ s \geq t & & \text{potentially non-inductive} \\ 9989 \geq x & & \vdots \end{array}
```

```
def sqrt(x):
    assert(x \geq 0);
    a = 0; s = 1; t = 1
    while[L] s \leq x:
        a += 1; t += 2; s += t
    return a
```

DIG

find candidate invariants at L

KIP

```
\begin{array}{lll} 4s = t^2 + 2t + 1 & & \text{inductive} \\ t = 2a + 1 & & \text{inductive} \\ s = (a + 1)^2 & & 1\text{-inductive} \\ s \geq t & & \text{potentially non-inductive} \\ 9989 \geq x & & \text{spurious} \\ \vdots & & \vdots & & \vdots \end{array}
```

Features of KIP

- Iterative k-induction
- Employ the Z3 SMT solver
- Learn lemmas
- Eliminate redundancy
- Parallelism

Outline

Evaluation

Benchmarks

- Disjunctive testsuite: 14 programs require disjunctive invariants
- Nonlinear test suite: 27 programs require nonlinear invariants

Setup

- Implemented in SAGE/Python (with Z3 backend solver)
- Test machine: 64-core 2.6GHZ CPU, 128GB RAM, Linux OS
- Traces obtained at loop entrances and program exits

Evaluation

Benchmarks

- Disjunctive testsuite: 14 programs require disjunctive invariants
- Nonlinear test suite: 27 programs require nonlinear invariants

Setup

- Implemented in SAGE/Python (with Z3 backend solver)
- Test machine: 64-core 2.6GHZ CPU, 128GB RAM, Linux OS
- Traces obtained at loop entrances and program exits

Results

- All generated equalities are valid and most inequalities are spurious (and removed by KIP)
- Identified invariants are sufficiently strong to explain program behavior
- Current dynamic analysis cannot find any of these invariants

Prog	Loc	Var
ex	1	2
strncpy	1	3
oddeven3	1	6
oddeven4	1	8
oddeven5	1	10
bubble3	1	6
bubble4	1	8
bubble5	1	10
partd3	4	5
partd4	5	6
partd5	6	7
parti3	4	5
parti4	5	6
parti5	6	7

total

Prog	Loc	Var	Gen	T_{Gen} (secs)	
ex	1	2	15	0.2	
strncpy	1	3	69	1.1	
oddeven3	1	6	286	3.7	
oddeven4	1	8	867	12.7	
oddeven5	1	10	2334	56.8	
bubble3	1	6	249	4.1	
bubble4	1	8	832	11.7	
bubble5	1	10	2198	53.9	
partd3	4	5	479	10.5	
partd4	5	6	1217	23.3	
partd5	6	7	2943	53.3	
parti3	4	5	464	10.3	
parti4	5	6	1148	22.4	
parti5	6	7	2954	53.6	
total			16055	317.6	

Prog	Loc	Var	Gen	T_{Gen} (secs)	Val	T_{Val} (secs)	
ex	1	2	15	0.2	4	1.5	
strncpy	1	3	69	1.1	4	7.7	
oddeven3	1	6	286	3.7	8	16.0	
oddeven4	1	8	867	12.7	22	46.0	
oddeven5	1	10	2334	56.8	52	1319.4	
bubble3	1	6	249	4.1	8	4.9	
bubble4	1	8	832	11.7	22	47.6	
bubble5	1	10	2198	53.9	52	938.2	
partd3	4	5	479	10.5	10	50.8	
partd4	5	6	1217	23.3	15	181.1	
partd5	6	7	2943	53.3	21	418.1	
parti3	4	5	464	10.3	10	45.5	
parti4	5	6	1148	22.4	15	165.1	
parti5	6	7	2954	53.6	21	405.6	
total			16055	317.6	264	3647.5	

Prog	Loc	Var	Gen	T_{Gen} (secs)	Val	T_{Val} (secs)	Strength
ex	1	2	15	0.2	4	1.5	✓
strncpy	1	3	69	1.1	4	7.7	✓
oddeven3	1	6	286	3.7	8	16.0	✓
oddeven4	1	8	867	12.7	22	46.0	✓
oddeven5	1	10	2334	56.8	52	1319.4	✓
bubble3	1	6	249	4.1	8	4.9	✓
bubble4	1	8	832	11.7	22	47.6	✓
bubble5	1	10	2198	53.9	52	938.2	✓
partd3	4	5	479	10.5	10	50.8	✓
partd4	5	6	1217	23.3	15	181.1	✓
partd5	6	7	2943	53.3	21	418.1	✓
parti3	4	5	464	10.3	10	45.5	✓
parti4	5	6	1148	22.4	15	165.1	✓
parti5	6	7	2954	53.6	21	405.6	✓
total			16055	317.6	264	3647.5	14/14

Results for Complex Invariants

Prog	Loc	Var	Gen	T _{Gen} (secs)	Val	T _{Val} (secs)	kl	Strength
cohendv	2	6	152	26.2	7	8.2	14	✓
divbin	2	5	96	37.7	8	8.7	15	_
manna	1	5	49	19.2	3	5.6	2	✓
hard	2	6	107	14.2	11	9.2	4	_
sqrt1	1	4	27	25.3	3	4.3	1	✓
dijkstra	2	5	61	30.7	8	10.9	6	_
freire1	1	3	25	22.5	2	2.2	0	✓
freire2	1	4	35	26.0	3	5.1	1	✓
cohencb	1	5	31	23.6	4	4.2	1	✓
egcd1	1	8	108	43.1	1	12.8	8	_
egcd2	2	10	209	60.8	8	14.6	12	✓
egcd3	3	12	475	67.0	14	23.4	25	✓
lcm1	3	6	203	38.9	12	14.2	0	✓
lcm2	1	6	52	14.9	1	0.9	10	✓
prodbin	1	5	61	28.3	3	1.1	10	_
prod4br	1	6	42	9.6	4	8.6	7	✓
fermat1	3	5	217	75.7	6	6.2	1	✓
fermat2	1	5	70	25.8	2	5.2	0	✓
knuth	1	8	113	57.1	4	24.6	6	✓
geo1	1	4	25	16.7	2	1.5	4	✓
geo2	1	4	45	24.1	1	2.1	10	✓
geo3	1	5	65	22.1	1	2.7	12	✓
ps2	1	3	25	21.1	2	4.0	0	✓
ps3	1	3	25	21.9	2	4.2	0	✓
ps4	1	3	25	23.5	2	4.9	0	✓
ps5	1	3	24	24.9	2	7.4	0	✓
рѕб	1	3	25	25.0	2	69.5	0	✓
total			2392	825.9	118	149	266.3	22/27

Results for Complex Invariants

Prog	Loc	Var	Gen	T _{Gen} (secs)	Val	T _{Val} (secs)	kl	Strength
cohendv	2	6	152	26.2	7	8.2	14	✓
divbin	2	5	96	37.7	8	8.7	15	_
manna	1	5	49	19.2	3	5.6	2	✓
hard	2	6	107	14.2	11	9.2	4	_
sqrt1	1	4	27	25.3	3	4.3	1	✓
dijkstra	2	5	61	30.7	8	10.9	6	_
freire1	1	3	25	22.5	2	2.2	0	✓
freire2	1	4	35	26.0	3	5.1	1	✓
cohencb	1	5	31	23.6	4	4.2	1	✓
egcd1	1	8	108	43.1	1	12.8	8	_
egcd2	2	10	209	60.8	8	14.6	12	✓
egcd3	3	12	475	67.0	14	23.4	25	✓
lcm1	3	6	203	38.9	12	14.2	0	✓
lcm2	1	6	52	14.9	1	0.9	10	✓
prodbin	1	5	61	28.3	3	1.1	10	_
prod4br	1	6	42	9.6	4	8.6	7	✓
fermat1	3	5	217	75.7	6	6.2	1	✓
fermat2	1	5	70	25.8	2	5.2	0	✓
knuth	1	8	113	57.1	4	24.6	6	✓
geo1	1	4	25	16.7	2	1.5	4	✓
geo2	1	4	45	24.1	1	2.1	10	✓
geo3	1	5	65	22.1	1	2.7	12	✓
ps2	1	3	25	21.1	2	4.0	0	✓
ps3	1	3	25	21.9	2	4.2	0	✓
ps4	1	3	25	23.5	2	4.9	0	✓
ps5	1	3	24	24.9	2	7.4	0	✓
ps6	1	3	25	25.0	2	69.5	0	✓
total			2392	825.9	118	149	266.3	22/27

Summary

Hybrid invariant generation:

- **DIG** employs geometric concepts for dynamic invariant inference
 - Build max-plus polyhedra to find disjunctive polynomial invariants
 - Combine max and min relations for expressive power
 - Introduce new classes of *weak* max/min invariants that retain expressiveness and have polynomial time complexity
- **KIP** verifies invariants using program code (k-induction, SMT solving, lemmas learning, redundancy elimination, parallelism)

Results:

- Identify strong enough invariants to prove correctness of 36/41 programs
- Produce no spurious results
- Take 2 minutes per program, on avg, to find and prove invs

Thank you for your attention!

Project (DIG + KIP) is open source and available at

http://cs.unm.edu/~tnguyen

Ask me about (or check my webpage for details)

- Dynamic analysis on complex array invariants (identified 60% of array relations in AES)
- Static analysis on octagonal and max-plus invariants using quantifier elimination
- Automatic program repair using test-input generation (equivalence theorem: program reachability \equiv program synthesis)

<pre>def ex2(x):</pre>	X	y	b
		-51	
y - x + 1 else:		-34	
y = x - 1		10	
b = y > 10	10	11	1
[L]	12	13	1
return b	40	41	1

def ex2(x):
 x
 y
 b

 if
$$x \ge 0$$
:
 -50
 -51
 0

 $y = x + 1$
 -33
 -34
 0

 $y = x - 1$
 $y = x$

· By building max and min-plus polyhedra in 3D, DIG obtains

$$1 \ge b \ge 0$$
, $\max(y - 10, 0) \ge b$, $b + 10 \ge \min(y, 11)$,

$$1 \ge b \ge 0 \land \max(y - 10, 0) \ge b \Rightarrow b = 0 \Rightarrow y \le 10$$

$$1 \ge b \ge 0 \land b + 10 \ge \min(y, 11) \Rightarrow b \ne 0 \Rightarrow y > 10$$

def ex2(x):
 x
 y
 b

 if
$$x \ge 0$$
:
 -50
 -51
 0

 $y = x + 1$
 -33
 -34
 0

 else:
 $y = x - 1$
 $y = x -$

By building max and min-plus polyhedra in 3D, DIG obtains

$$1 \ge b \ge 0$$
, $\max(y - 10, 0) \ge b$, $b + 10 \ge \min(y, 11)$,

i.e.,

$$1 \ge b \ge 0 \land \max(y - 10, 0) \ge b \Rightarrow b = 0 \Rightarrow y \le 10$$

 $1 \ge b \ge 0 \land b + 10 \ge \min(y, 11) \Rightarrow b \ne 0 \Rightarrow y > 10$

Logically equivalent to the iff condition

$$b=0 \Leftrightarrow y \leq 10$$