

# Electiva 188 - Introducción a Octave Trabajo Práctico 5

Daniel Millán, Nicolás Muzi, Eduardo Rodríguez

# $\underset{\boldsymbol{\ell}\boldsymbol{\xi}}{CONICET}$

Facultad de Ciencias Aplicadas a la Industria, UNCuyo San Rafael 5600, Argentina Abril–Mayo de 2020

#### Ejercicio 1. Cinemática del sólido rígido.

Se considera un sistema de barras que giran sin rozamiento, ver diagrama en Figura 1. Una barra AB de longitud a=10cm gira con velocidad angular  $\omega=12rad/s$  en sentido anti horario, respecto al punto A que se encuentra fijo. A esta barra está unida una barra BC de longitud b=15cm, la cual gira libremente. Finalmente el otro extremo de la barra BC está unida a la barra CD de longitud c=20cm que posee su otro extremo fijo.

Mediante el empleo de un *script* resuelva los siguiente ítems en Octave:

- 1. Determinar la posición de los extremos de las barras en función del tiempo, grafique las trayectorias en el plano xy.
- 2. Graficar la posicion horizontal y vertical del punto C en funcion del tiempo.
- 3. Determinar numéricamente la velocidad del punto de unión C para cada instante de tiempo.
- 4. Realizar una animación para ver la cinemática de las barras. Muestre en la misma figura la posición de las barras y la velocidad horizontal y vertical del punto C en función del tiempo.



Figura 1: Esquema cinemática barras rígidas. Una barra AB de longitud 10cm gira con velocidad angular  $\omega = 12rad/s$  respecto al punto A, que se encuentra fijo. A esta barra está unida una barra BC de longitud 15cm, la cual gira libremente. La barra BC está unida a la barra CD, de longitud 20cm, que posee su otro extremo fijo (punto D).

Ayuda: emplee el script TP5\_Ej1\_Cinematica\_Barras.m subido a la web de la asignatura.

**Ejercicio 2.** En el Trabajo Práctico 2 se analizó el estado estacionario de una red de 5 mezcladores químicos. En este ejercicio se considera la respuesta transitoria o dinámica, ver descripción en Figura 12.3 del libro de Chapra y Canale, Capítulo 12, 5ta Ed, 2007. El ejercicio propuesto se basa en el análisis del estado transitorio desarrollado en el Capítulo 28 del mismo libro.

Mediante el empleo de un *script* resuelva los siguiente ítems en Octave:

- 1. El tiempo hasta el estado estacionario se caracteriza por el tiempo que tarda cada reactor en alcanzar el 90 % de la concentración en el estado estacionario,  $t_{90}$ . Estime  $t_{90}$  para cada reactor.
- 2. Se produce una variación de la concentración en t=10min en la entrada del reactor 1 el cual se aproxima por

$$b_1(t) = 1 + \exp(-(t-10)^2).$$

- a) Grafique el la entrada  $b_1(t)$  en función del tiempo t.
- b) Determine las respuestas transitorias y grafique  $c_i(t)$ .
- 3. La carga en el reactor 3 decrece en un 25% de forma abrupta en t=10min. Luego de media hora se restablece súbitamente el valor de entrada.
  - a) Cree una función TP5\_Ej2\_Carga3\_Escalon.m que modele el valor en la entrada b(t) en función del tiempo. Grafique  $b_3(t)$ .
  - b) Determine las respuestas transitorias y grafique  $c_i(t)$ .

Ayuda: emplee el script TP5\_Ej2\_Mezcladores\_Transitorio.m de la web de la asignatura.

**Ejercicio 3.** Considere que se mezclan perfectamente dos fluidos A y B con temperatura diferente de modo que alcanzan la misma temperatura. La mezcla se realiza en un recipiente perfectamente aislado del medio exterior, proceso adiabático.

La capacidad calorífica específica o calor específico a presión constante del fluido A está dada por:

$$c_p = 925.858 - 2.692 T + 0.002 T^2,$$

y el calor específico del fluido B se obtiene con:

$$c_p = -1444.258 + 3.492 T - 0.002 T^2,$$

donde  $c_p$  se expresa en unidades de cal/mol K y T está en unidades de K.

El fluido A entra al mezclador a  $T_{A1}$  en el rango [300,600]°C y el B entra a una temperatura  $T_{B1}$  entre 500°C y 800°C. Al mezclador entra el doble de fluido A que B. Mediante el empleo de un script resuelva los siguiente ítems en Octave:

- 1. Cree funciones anónimas de  $c_P$  para el fluido A y B. Grafique el comportamiento de los calores específicos, en los rangos de temperatura correspondientes y en una sola figura.
- 2. ¿A qué temperatura  $T_2$  salen los dos fluidos del mezclador en el rango analizado? Grafique la superficie de respuesta empleando la orden surfc.
- 3. El rango de operación del proceso industrial requiere que  $T_2$  se restrinja en el rango  $[525,550]^{\circ}$ C.
  - 3.a) Muestre el resultado empleando curvas de nivel, un mapa de colores y las opciones necesarias tal de obtener la Figura 2.

3.b) Realice una discusión en base a los resultados obtenidos para el rango de operación desde un punto de vista tecnológico, económico y como ingeniero responsable del proceso industrial.



Figura 2: Temperatura de equilibrio de un mezclador de dos fluidos a diferente temperatura.

## **Ejercicio 4.** Dado el siguiente polinomio $p(x) = x^5 - 4x^3 + x - 1$ , se pide

- 1. Realizar el gráfico de la figura en el intervalo [-2.5,2.5]. Observando la figura aproxime los valores de las raíces.
- 2. Implemente el método de la secante en Octave utilizando el código dado de ejemplo en es.wikipedia.org/wiki/Método\_de\_la\_secante. Calcule las raíces del polinomio.
- 3. Utilize la función roots para determinar las raíces. ¿Encuentra alguna diferencia? Discuta.
- 4. Determine el orden de convergencia del algoritmo de la secante según la expresión dada por [wiki]:  $q \approx \frac{\ln\left|\frac{x_{n+1}-x_n}{x_n-x_{n-1}}\right|}{\ln\left|\frac{x_n-x_{n-1}}{x_{n-1}-x_{n-2}}\right|}$ .
- 5. Discuta el resultado dado por la función secante(ff, 0, 1, 0.0001), donde ff es p(x).
- En la siguiente web puede entontrar ejemplos e información útil sobre funciones Matlab/Octave para calcular las raíces de una ecuación www.sc.ehu.es/.../raices3.html

**Ejercicio 5.** Sea la función  $f(x) = x \sin(\pi x) - \exp(-x)$ . Considere el siguiente algoritmo del método de Newton-Raphson para determinar la raíz de f(x) implementado en Octave:

```
function x=newton_raphson(f,fp,x0,TOLX)
    while(1)
        x=x0-f(x0)/fp(x0);
        if abs((x-x0)/x)<TOLX
             break
        end
        x0=x;
    end
end</pre>
```

Donde a la función newton\_raphson, se le pasa la función f y su derivada fp, la aproximación inicial x0 y la tolerancia TOLX.

- 1. Dibuje la función. Determine por inspección visual el valor de la menor raíz.
- 2. Implemente en Octave el algoritmo de Newton-Raphson (N-R) dado por la función newton\_raphson. Realice los cambios que considere oportunos para que esta función sea robusta y pueda concluir si excede un número de iteraciones especificado por ITERMAX.
- 3. Determine el cero de f(x) mediante el método de N-R. Para ello cree un script que contenga las siguientes líneas:

```
f=@(x) x*sin(pi*x) - exp(-x);
fp=@(x) sin(pi*x) + x*pi*cos(pi*x) + exp(-x);
xs=newton_raphson(f,fp,0.5,0.0001);
disp([xs,f(xs)])
```

4. Determine el orden de convergencia para este problema dado por el método de N-R (ver Ejercicio 4.4).

### Ejercicio 6.

Un fluido se bombea en la red de tubos que se muestra en la Figura 3. En estado estacionario, se cumplen los balances de flujo siguientes:

$$Q_1 = Q_2 + Q_3,$$
  
 $Q_3 = Q_4 + Q_5,$   
 $Q_5 = Q_6 + Q_7,$ 

donde  $Q_i$  es el flujo en el tubo i  $(m^3/s)$ . Además, la caída de presión alrededor de los tres lazos en los que el flujo es hacia la derecha debe ser igual a cero.



Figura 3: Red de tubos. Figura P8.44 del libro de Chapra y Canale, Métodos Numéricos Para Ingenieros. Capítulo 8, 5ta Ed, 2007.

La caída de presión en cada tramo de tubo circular se calcula por medio de la ecuación:

$$\Delta P = \frac{16}{\pi^2} \frac{fL\rho}{2D^5} Q^2,$$

donde  $\Delta P$  es la caída de presión (Pa), f = factor de fricción [adimensional], L es la longitud del tubo (m),  $\rho$  es la densidad del fluido  $(kg/m^3)$ , y D es el diámetro del tubo (m).

Todos los tubos tienen D=500 mm. Las longitudes de los tubos son:  $L_3=L_5=L_8=L_9=2m; L_2=L_4=L_6=4m; y L_7=8m.$ 

Escriba un script en Octave que permita calcular el flujo en cada tramo de tubo, dado que  $Q_1 = 1m^3/s$  y  $\rho = 1.23kg/m^3$ . Considere:

- 1. El factor de fricción f = 0.005.
- 2. El factor de fricción se calcula con la ecuación de von Karman, que es:

$$\frac{1}{\sqrt{f}} = 4\log_{10}(Re\sqrt{f}) - 0.4,$$

donde Re es el número de Reynolds. Obsérve que para un tubo circular,  $V=4Q/\pi D^2$  dada en m/s. Suponga que el fluido tiene una viscosidad de  $1.79\times 10^{-5}N\cdot s/m^2$ .

3. Se desea conocer el comportamiento del sistema en el rango previsible de operación, para el cual  $Q_1$  se estima que será  $[\frac{1}{4},\frac{7}{4}]m^3/s$ . El factor de fricción está dado por la ecuación de von Karman. Realice las curvas  $Q_i(Q_1),\ i=2,\ldots,7$ , analice los resultados.

Entrega obligatoria del script utilizado para resolver un Ejercicio a elección.