INFORMATYKA (część 1, bez komputera, czas pracy: 60 minut, max 15 punktów)

Zadanie 1. Sumy kwadratów.

Każdą dodatnią liczbę całkowitą n można reprezentować jako sumę kwadratów dodatnich liczb całkowitych. Może istnieć wiele różnych takich sum.

Przykład:

$$1 = 1^2$$

 $9 = 3^2 = 2^2 + 2^2 + 1^2 = 2^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2$

Długością reprezentacji (kwadratowej) nazywamy liczbę składników sumy. W przykładzie liczba 9 ma trzy reprezentacje o długościach odpowiednio: 1, 3 i 6. Zauważ, że suma może być jednoskładnikowa. Jedną z metod otrzymywania krótkich reprezentacji kwadratowych jest **metoda zachłanna**, w której w każdym kroku jako kolejny składnik sumy bierze się największy możliwy kwadrat liczby całkowitej gwarantujący, że suma nie przekracza n. Ta metoda nie zawsze znajdzie najkrótsze reprezentacje.

Zadanie 1.1. (0-3)

Uzupełnij poniższą tabelę zgodnie z zapisanymi w niej warunkami, czyli:

- W wierszu 3 wpisz reprezentację kwadratową liczby 23 krótszą od jej reprezentacji otrzymanej metodą zachłanną
- W wierszu 4 podaj dodatnią liczbę n>23 taką, że jej reprezentacja kwadratowa otrzymana metodą zachłanną nie jest jej najkrótszą reprezentacją. Zapisz reprezentację tej liczby otrzymaną metodą zachłanną oraz reprezentację krótszą niż otrzymana metodą zachłanną.

Nr	n>0	Reprezentacja kwadratowa liczby n otrzymana metodą zachłanną	Reprezentacja kwadratowa liczby n krótsza od tej otrzymanej metodą zachłanną
1	12	$3^2 + 1^2 + 1^2 + 1^2$	$2^2 + 2^2 + 2^2$
2	18	$4^2 + 1^2 + 1^2$	$3^2 + 3^2$
3	23	$4^2 + 2^2 + 1^2 + 1^2 + 1^2$	
4			

Zadanie 1.2. (0-4)

Napisz algorytm (w postaci pseudokodu lub w wybranym języku programowania), który dla danej liczby całkowitej n obliczy długość jej reprezentacji kwadratowej wyznaczanej metodą zachłanną. Twój algorytm powinien być zgodny z poniższą specyfikacją.

Uwaga: W zapisie algorytmu możesz korzystać tylko z instrukcji sterujących, operatorów arytmetycznych (dodawania, odejmowania, mnożenia, dzielenia, dzielenia całkowitego i reszty z dzielenia), operatorów logicznych, porównań i instrukcji przypisania lub **samodzielnie napisanych** funkcji i procedur. **Zabronione** jest używanie funkcji wbudowanych, dostępnych w językach programowania, zwłaszcza funkcji pierwiastek.

Specyfikacja:

Dane

n – dodatnia liczba całkowita

Wynik

dl – długość reprezentacji kwadratowej liczby n, otrzymanej metodą zachłanną

Przykład:

Dla n=12 wynikiem jest dl=4

Zadanie 2. Modyfikacja tablicy.

Dane są dodatnia liczba całkowita n oraz tablica liczb całkowitych T[1..n]. Przeanalizuj działanie opisanej poniżej rekurencyjnej procedury modyfikuj(s,k), której parametrami są dodatnie liczby całkowite $s\ i\ k,s\leq n$.

```
\label{eq:modyfikuj} \begin{aligned} & \textbf{modyfikuj}(s,k) \\ & & \textbf{Jeżeli} \ s+k < n \ \textbf{to} \\ & & & modyfikuj(s+k,k) \\ & i \leftarrow s+1 \\ & & \textbf{dopóki} \ (i \leq n) \ \textbf{oraz} \ (i \leq s+k) \ \textbf{wykonuj} \\ & & & T[s] \leftarrow T[s] + T[i] \\ & & i \leftarrow i+1 \end{aligned}
```

Zadanie 2.1 (0-3)

Uzupełnij tabelę – podaj wynik działania procedury modyfikuj po jej wywołaniu dla wskazanych wartości parametrów s i k.

n	Zawartość T przed wywołaniem modyfikuj	Wartości parametrów s i k	Zawartość T po wywołaniu $modyfikuj(s,k)$
8	[1, 1, 1, 1, 1, 1, 1]	s = 3, k = 3	[1, 1, 6, 1, 1, 3, 1, 1]
10	[1, 4, 2, 8, 3, 6, 2, 9, 1, 5]	s = 5, k = 6	
13	[4, 2, 6, 2, 9, 3, 5, 2, 7, 4, 3, 2, 3]	s = 3, k = 5	
13	[4, 2, 6, 2, 9, 3, 5, 2, 7, 4, 3, 2, 3]	s = 4, k = 4	

Miejsce za obliczenia:

Zadanie 2.2 (0-2)

Dla danych n,s oraz k podaj łączną liczbę wywołań procedury modyfikuj dla wywołania modyfikuj(s,k). Wywołanie modyfikuj(s,k) jest liczone jako pierwsze.

n	s	k	Łączna liczba wywołań $modyfikuj(s,k)$
5	1	3	2
2021	1	100	
2021	20	35	

Miejsce za obliczenia:

Zadanie 3 Test

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1 (0-1)

Mamy dane operacje logiczne na bitach **not**, **and** i **or** opisane poniżej:

а	not a
1	0
0	1

а	b	a and b	
1	1	1	
0	1	0	
1	0	0	
0	0	0	

а	b	a or b	
1	1	1	
0	1	1	
1	0	1	
0	0	0	

oraz wyrażenie W(a,b):

((not a) and b)or (a and (not b))

1	W(0,0)=1	Р	F
2	W(1,0)=1	Р	F
3	W(0,1) = 1	Р	F
4	W(1,1)=1	Р	F

Zadanie 3.2 (0-1)

1	$(10101)_2 + (101011)_2 = (111111)_2$	Р	F
2	$(A)_{16} + (B)_{16} = (F)_{16}$	Р	F
3	$(12)_8 + (12)_8 = (14)_{16}$	Р	F
4	$(123)_{10} = (1111101)_2$	Р	F

Zadanie 3.3 (0-1)

W pewnej bazie danych istnieją tabele: uczniowie oraz oceny połączone relacją. Tabela uczniowie składa się z kolumn: iducznia (klucz główny), imie, nazwisko, klasa, a tabela oceny składa się z kolumn: idoceny (klucz główny), iducznia (klucz obcy), ocena.

1	Zapytanie: SELECT uczniowie, klasa, Count(oceny.ocena) FROM uczniowie INNER JOIN oceny ON uczniowie, iducznia = oceny.iducznia WHERE oceny.ocena=6 GROUP BY uczniowie.klasa; da w wyniku zestawienie podające dla każdej klasy liczbę ocen celujących (6)	Р	F
2	Zapytanie: SELECT Count(uczniowie. klasa) FROM uczniowie INNER JOIN oceny ON uczniowie.iducznia = oceny.iducznia WHERE oceny.ocena=6 da w wyniku zestawienie podające dla kazdej klasy liczbę ocen celujących (6)	Р	F
3	Zapytanie SELECT Count(uczniowie.klasa), oceny.ocena FROM uczniowie INNER JOIN oceny ON uczniowie.iducznia = oceny.iducznia GROUP BY oceny,ocena; da w wyniku zestawienie podające dla kazdej klasy liczbę wszystkich ocen	Р	F
4	Zapytanie: SELECT Count(uczniowie. klasa), oceny.ocena FROM uczniowie INNER JOIN oceny ON uczniowie.iducznia = oceny.iducznia WHERE oceny.ocena=3 GROUP BY oceny.ocena; da w wyniku zestawienie podające dla kazdej klasy liczbę ocen dostatecznych (3)	Р	F