STAT 849 Theory and Application of Regression and Analysis of Variance - I

Yinqiu He

Department of Statistics
UW Madison

Email: yinqiu.he@wisc.edu

Instructors

Instructor: Yinqiu He (Pronunciation: In-Cho Her)

Email: yinqiu.he@wisc.edu

Office hours: Wednesday 12:15PM - 1:30PM @7225D MSC

TA: Sijia Fang

Email: sfang44@wisc.edu

Office hours: Friday: 12:15PM - 1:30PM @1276 MSC

(Updates will be posted on Canvas.)

Course description

- ▶ This course is an **advanced** graduate study in statistics. It is designed for first or second year statistics PhD students. One of the four core courses to be tested in PhD qualifying exam.
- ► There are two courses in this sequence; the subsequent one is STAT 850, offered in spring semester.
- Course website: canvas.wisc.edu. Lecture notes, homework assignments, and important announcements will be posted there.

Prerequisite

- There are no formal course prerequisites to this class. But we will assume a **solid** background in linear algebra, probability, and statistical theory. Please find the pdf "Mathematics Prerequisites for Success in STAT 849.pdf" on canvas.
- Requires a general ability to do mathematical proofs and hands-on data analysis and programming skills.
- Students who wish to take the course for credit should submit an entrance quiz. A 75-mins countdown timer will start when you download the Quiz0.pdf file.
- Deadline for submission is **Sep 6**, **11:59PM** See Canyas for more accurate info. Graded by completion. Work independently.

Textbook

There are no required texts. The material that covered does not appear in one single text. The following is a list of useful supplementary reading and references.

- 1. Julian J. Faraway (2004) Linear Models with R.
- 2. Seber and Lee (2003) Linear Regression Analysis (2nd ed)
- 3. Ronald Christensen. (2011). Plane Answers to Complex Questions: The Theory of Linear Models.
- 4. McCullagh and Nelder (1999) Generalized Linear Models (2nd ed).

Reading instruction will be listed on Canvas "Supplementary Reading" page.

Homework

- Assignments will be posted on canvas and due back in approximately one or two weeks. There will be 5 ± 1 assignments.
- ▶ Upload a single PDF on Canvas for the homework assignment. Start each exercise on a new page and make sure they are in the correct order. Typed homework will be given 1 additional bonus point. Use R markdown to present R codes and results.
- Read syllabus requirements and communicate with the TA.

Exams

Two in-class midterms:

- Closed book and closed notes. You may take one (8.5 by 11 inches; both sides) paper as a cheat sheet.
- Midterm 1: Oct. 17th, M, 11:00AM-12:15PM. Midterm 2: Nov. 21st, M, 11:00AM-12:15PM.

Final is a take-home project:

- You will be provided a dataset with some questions.
- Write a report independently and keep it confidential.
- ► The deadline for submission is **Dec 21st**, **M**, **12:15PM**.

Grade: The grade will be weighted as: entrance quiz-0 and regular homework (25%), midterm 1 (25%), midterm 2 (25%), and the final (25%).

Email Policy: When sending an e-mail on the course, please include "STAT849" in subject line.

Probability vs. Statistics

POPULATION

parameters (unknown)

Probability vs. Statistics

Probability vs. Statistics

Regression Analysis

- Goal: Construct models to explain relationship between variables.
- Narl Pearson, late 19th century, studied n = 1375 heights of mothers in the United Kingdom under the age of 65 and one of their adult daughters over the age of 18

Figure: Scatterplot of mothers' and daughters' heights in the Pearson's data.

Regression Analysis

Goal: Learn an unknown function f that relates variables $Y \in \mathcal{R}$ and $X \in \mathcal{R}^p$ through $Y \approx f(X)$.

Terminology:

Independent variables (covariates, predictors, regressors, explanatory variables, exogeneous variables):

$$(X) = (X_1, \ldots, X_p)^{\text{t}} \in \mathcal{R}^p.$$

Dependent variables (response, outcome, endogeneous variables):

$$Y \in \mathcal{R}$$
.

Remark: The terms "independent" and "dependent" do not imply statistical independence or linear algebraic independence. They refer to the setting of an experiment where the value of X can be manipulated, and we observe the consequent changes in Y.

Regression Analysis

The regression analysis is empirical (based on a sample of data) Collect n pairs of observations (Y_i, X_i) for i = 1, ..., n:

$$(Y_i) \in \mathcal{R}, \quad X_i \in \mathcal{R}^p.$$

- \triangleright (n) is the sample size.
- Each pair (Y_i, X_i) tells us what is known about the *i*-th "observation" ("subject", "case", "analysis unit", "individual").

Why do we want to do regression analysis?

Prediction: predict the value of the response Y given a particular value of covariate X.

- ► What is the price of a 3500ft² house in Boston area?
- supervised learning in machine learning

Model Inference: inductive learning about the underlying relationship between the response Y and covariate X.

- ▶ Do taller mothers tend to have taller daughters?
- The goal is to better understand the physical (biological, social, etc.) mechanism underlying the relationship between X and Y.

Examples

- Prediction: An empirical model for the weather conditions 48 hours from now could be based on current and historical weather conditions. Such a model could have a lot of practical value but it would not necessarily provide a lot of insight into the atmospheric processes that underly changes in the weather.
- exposure and subsequent health problems would primarily be of interest for inference, rather than prediction. Such a model could be used to assess whether there is any risk due to lead exposure, and to estimate the overall effects of lead exposure in a large population. The effect of lead exposure on an individual child is probably too small in relation to numerous other risk factors for such a model to be of predictive value at the individual level.

Topics

- Least-squares fitting: estimation and testing;
- Analysis of variation;
- Measurement errors, confounding;
- Regression diagnostics;
- Model selection;
- Prediction, bias and variance trade-off, shrinkage methods;
- Generalized linear models and beyond (if time permits).

Regression function / model

The most common way of relating $X \times X$ is through conditional mean $E(Y \mid X_1 = x_1, \dots, x_p = x_p) = f(x_1, \dots, x_p)$ or $E(Y \mid X = x) = f(x)$ We store

3 The regression can be defined as a

conditional quatile. Such as median

Median $(Y \mid X = x) = f(x)$

l

other quamile d Qd(.) d-level quantile

⇒ [Quantile regression]

Focus: conditional mean

E(Y X) can viewed in 2 ways

11) A deterministic function of a realization * of

random vector X

 $E(\Upsilon \mid \mathbf{X} = \mathbf{x}) = \int y \cdot f(y \mid \mathbf{X} = \mathbf{x}) \, dy$

A scalar random variable. A realization of ElTIX) by sampling X from its marginal distribution. Plugging realization of X into deterministic function in (1)

(Regression Annalysis: (1) more common than (2))

Linear Model special model

$$f(\mathbf{x}) = f(x_1 \cdots x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

linear in the parameters (Bo. BI... Pp)

(NOT because a linear function of x)

Linearity restriction: not as restrictive as one might think 1 Many function can be approximately linear over a sufficiently small region

1 Midel may be made linear with transformations

Ex 1. Theory of gravitation > F = d/d B

F: force of gravity between two objects d: constant related to masses of 2 objects d: distance between objects log F = log & - Blog of (B, constant) Generally, covariate Xi in the linear model can be functions of other variables $E_{\times} 2$. $\begin{pmatrix} \times_1 \\ \times_2 \\ \vdots \\ \times_n \end{pmatrix} = \begin{pmatrix} 2 \\ 2^2 \\ \vdots \\ 2^p \end{pmatrix}$ \Rightarrow poly nomial model "linear" in parameters. not variables Ex 3. "categorical" model Dummy variable. takes 0 or 1 to indicate the presence or absence of certain categorical effect Model mean hourly wage T of married/non MI = E(UI): mean of hourly wage of married Uz = E(Uz): mean of hourly wage of non-married Combine into one linear model, through dummy X X = 0 if Y an observaation from married
X=1 otherwise $E(\Upsilon \mid X = X) = \mathcal{M}_1 + (\mathcal{M}_2 - \mathcal{M}_1) \times$

Estimation / fitting of linear model

To estimate f, equivalently $\beta = (\beta_0 \cdots \beta_p)^T$ in linear models

One approach least squares fitting / estimation (LS)

Minimize the loss function of $\beta = \begin{pmatrix} \beta_0 \\ \beta_p \end{pmatrix}$ $L(\beta) = \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} \beta_j X_j - \beta_0)^2$

 $= \sum_{i=1}^{n} \left(Y_i - \boldsymbol{\beta}^T \boldsymbol{x}_i \right)^2 \qquad \left(\text{5quared error} \right)$

Understand? Solve?

Simple Linear Regression (SLR)

[SLR 1] Model: intercept + p=1 covariate

(can be a viewed as a covariate whose value = 1)

 $E(\Upsilon \mid X) = Q + \beta X$

d: Intercept mean of Υ if X=0

B: Slope change of mean of I per unit change in x

d & B: Regression coefficients

[SLR 2] Estimation/fitting based on data

To fit in practice, observe data pairs (Xi, Yi) i=1...n

Interprotations can be different

1 Vertical Yi - f(Xi)

Given x, the distance between observed \(\) & fitted values of \(\) \(\) ordinay least square

- 2 Perpendicular => Orthogonal regression (Deming regression)

 (ervors in variable), PCA
- 3 Horizontal Xi f-1(Yi)

Ordinary LS is the most common

[SLR3] Ordinary LS estimates in SLR

Loss function:
$$L(a, \beta) = \sum_{i=1}^{n} (Y_i - \alpha - \beta X_i)^2$$

Minimize (a. 3) F (R2

$$L(x) \Rightarrow stationary, gradient \Rightarrow (Quiz 0, 7)$$

Differentiate

By setting
$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, $\bar{Y} = \frac{\sum_{i=1}^{n} \hat{Y}_i}{n}$

$$\begin{cases} n \hat{\alpha} + \hat{\beta} \times (n \bar{x}) - n \bar{\gamma} = 0 \\ n \bar{x} \times \hat{\alpha} + \sum_{i=1}^{n} \chi_i^2 \times \hat{\beta} - n \sum_{i=1}^{n} \gamma_i \chi_i = 0 \end{cases}$$

$$(\widehat{x}_{i}^{2}x_{i}^{2} - n\widehat{x}^{2}) \widehat{\beta} = \widehat{x}_{i}^{2} \widehat{x}_{i} \widehat{x}_{i} - n\widehat{x}\widehat{x}$$

Solution:
$$\hat{\beta} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$$