Feuille d'exercices 1 : suites de fonctions

Progression possible.— Semaine 3: ex 1, 2, 3, 4; semaine 4: ex 5, 6, 7, 8.

Exercice 1.— Déterminer l'ensemble où la suite de fonctions (f_n) converge simplement lorsque

a)
$$f_n(x) = x^n$$

b)
$$f_n(x) = \frac{x^n}{n}$$

$$c) \quad f_n(x) = n^a$$

$$d) \quad f_n(x) = x^n e^n$$

a)
$$f_n(x) = x^n$$
 b) $f_n(x) = \frac{x^n}{n}$ c) $f_n(x) = n^x$ d) $f_n(x) = x^n e^n$ e) $f_n(x) = \frac{\sin(n^2 x)}{n}$ f) $f_n(x) = n \sin(\frac{x}{n})$

$$f_n(x) = n\sin(\frac{x}{n})$$

g)
$$f_n(x) = n^2(\cos(\frac{x}{n}) - 1)$$

Le cas échéant, on donnera la fonction limite simple.

Exercice 2.— Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur \mathbb{R}^+ par $f_n(x)=\frac{x}{x+n}$.

- 1. Montrer que pour chaque $x \in \mathbb{R}^+$, la suite numérique $(f_n(x))_{n \geq 1}$ converge. En déduire que la suite (f_n) converge simplement vers une fonction f que l'on précisera.
- 2. Pour $n \ge 1$, dresser le tableau de variations de la fonction f_n . En déduire la valeur de $||f_n - f||_{\infty} := \sup_{x \in \mathbb{R}^+} |f_n(x) - f(x)|$. La suite (f_n) converge-t-elle uniformément sur \mathbb{R}^+ ?
- 3. Montrer que pour tout a > 0, la suite $(f_n)_{n > 1}$ converge uniformément sur [0, a].

Exercice 3.— Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur \mathbb{R}^+ par $f_n(x)=\frac{1}{1+nx^2}$.

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f à déterminer.
- 2. Pour $n \ge 1$, dresser le tableau de variations de la fonction f_n . La suite $(f_n)_{n\geq 1}$ converge-t-elle uniformément sur \mathbb{R}^+ ?
- 3. Pour quels $a \in \mathbb{R}^+$, la suite $(f_n)_{n \geq 1}$ converge-t-elle uniformément sur $[a, +\infty[?]]$

Exercice 4.— Considérons la suite $(f_n)_{n\geq 0}$ où chaque f_n est une fonction de $[0,+\infty[$ dans \mathbb{R} définie par

$$f_n(x) = \sin\left(\frac{\pi}{2}e^{-nx}\right).$$

- 1. Montrer que la suite (f_n) converge simplement sur $[0, +\infty]$ vers une fonction f que l'on précisera.
- 2. Montrer que la suite (f_n) ne converge pas uniformément sur $[0, +\infty[$.
- 3. Soit a>0. Montrer que, si $n\geq 1$, alors la fonction f_n est décroissante sur $[a,+\infty[$. En déduire que la suite (f_n) converge uniformément sur $[a, +\infty[$.

Exercice 5.— Soit $(f_n)_{n\geq 1}$ une suite de fonctions qui converge uniformément sur [0,1] vers une fonction f continue.

- 1. Montrer que $|f_n(\frac{1}{n}) f(0)| \le \sup_{x \in [0,1]} |f_n(x) f(x)| + |f(\frac{1}{n}) f(0)|$.
- 2. En déduire que $f_n(\frac{1}{n}) \to f(0)$ quand $n \to +\infty$.
- 3. Application. Soit $f_n: x \mapsto nx \, e^{-nx \ln^2(1+x)}$. Montrer que $(f_n)_{n\geq 1}$ converge simplement vers la fonction nulle sur [0,1]. Montrer que cette convergence n'est pas uniforme sur [0,1].

Exercice 6.— Soit $\alpha > 0$.

Étudier la convergence simple puis la convergence uniforme des suites de fonctions $(f_n)_{n\geq 1}$ définies par :

- a) $f_n(x) = n^{\alpha} x e^{-nx}$ sur \mathbb{R}^+ (on discutera en fonction du paramètre $\alpha > 0$);
- b) $f_n(x) = n^2 x (1 nx)$ si $x \in [0, \frac{1}{n}]$ et $f_n(x) = 0$ si $x \in]\frac{1}{n}, 1]$.

Exercice 7.— Pour tout entier $n \ge 1$, on note g_n la fonction définie sur $[0, +\infty[$ par

$$g_n(x) = n \ln \left(1 + \frac{x}{n}\right).$$

- 1. Montrer que la suite de fonctions $(g_n)_{n\geq 1}$ converge simplement sur $[0,+\infty[$ vers une fonction g qu'on précisera.
- 2. Montrer que pour tout $t \in [0, +\infty[$, on a $0 \le t \ln(1+t) \le \frac{t^2}{2}$.
- 3. En déduire que la suite de fonctions $(g_n)_{n\geq 1}$ converge uniformément sur [0,a] pour tout réel a>0.
- 4. Montrer que la suite $(g_n)_{n\geq 1}$ ne converge pas uniformément sur $[0,+\infty[$.

Exercice 8.—(*) Pour $\alpha > 0$, on définit la suite $(f_n)_{n \ge 1}$ sur \mathbb{R}^+ par $f_n(x) = \frac{\sin(nx)}{1 + n^{\alpha}x^2}$.

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f à déterminer.
- 2. Calculer $f_n(\frac{1}{n})$. En déduire que si $\alpha \leq 2$ la suite (f_n) ne converge pas uniformément sur \mathbb{R}^+ .
- 3. Monter que si $\alpha > 2$, la suite (f_n) converge uniformément sur \mathbb{R}^+ . On pourra commencer par vérifier que, pour A > 0, on a $|f_n(x)| \leq nA$ sur [0,A] et $|f_n(x)| \leq 1/(1+n^{\alpha}A^2)$ sur $[A,+\infty[$.

Exercice 9.—(**) Pour chaque $n \in \mathbb{N}^*$, soit $f_n : \mathbb{R}^+ \to \mathbb{R}$ la fonction définie par

$$f_n(x) = \begin{cases} (1 - \frac{x}{n})^n & \text{si } x \in [0, n], \\ 0 & \text{si } x > n. \end{cases}$$

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f que l'on précisera.
 - Justifier que l'on a $0 \le f_n(x) \le f(x)$ pour tout entier $n \ge 1$ et tout réel $x \ge 0$.
- 2. Soit a un réel > 0. Montrer que (f_n) converge uniformément vers f sur [0, a].
- 3. En écrivant $R^+ = [0, a] \cup [a, +\infty[$ avec un choix convenable de a, montrer que la suite (f_n) converge uniformément vers f sur \mathbb{R}^+ .