

COMSATS University Islamabad Department of Computer Science Course Syllabus

Course Information

Course Code: CSC241 Course Title: Object Oriented Programming

Credit Hours: **4(3,1)** Lecture Hours/Week: **3**

Lab Hours/Week: 3 Pre-Requisites: CSC103-Programming Fundamentals

Catalogue Description:

This course emphasizes the concepts of object-oriented techniques used in developing computer-based system. The topics include: Overview of Object-Oriented Programming; Classes & its Concepts; Problem Solving in Object Oriented Paradigm; Inheritance; Polymorphism; Library Components; Object Oriented Concepts of File Handling; Swing Classes; Events & Event Handlers; and Canonical Uses.

Text and Reference Books

Textbook:

1. Introduction to Java Programming and Data Structures, Comprehensive Version, Y. Liang, Y. Daniel Liang, Pearson, 2019.

Reference Books:

- 1. Concise Guide to Object-Oriented Programming, Kingsley Sage, Springer, 2019.
- 2. Absolute Java, Savitch, W. & Mock, K., Pearson, 2016.

Week wise P	Plan:			
Lecture #	CDF Unit #	Topics Covered	Reading Material	
		Evolution of Object Oriented Programming (OOp); Difference		
1.	1	between Object Oriented Approach & Modular/Structural	Liang: Ch10	
		Approach, and Object-Oriented Concepts & Principles.		
2.	2	Definition of Classes: Fields & Methods, Creation of Objects, and	Liang: Ch9	
2.	2	Understanding State of Object.	Liang. City	
3.	2	Defining Constructors, and Concept of Overloaded Constructors.	Liang: Ch9	
4.	2	Memory Allocation to Objects, Object as a Reference, Finalizer ()	Liang: Ch9	
4.	2	Method, and Garbage Collection.	Liang. City	
5.	2	Object-Oriented Idioms for Encapsulation: Privacy &	Liang: Ch9	
J.		Visibility of Class Members, and Package Access.	Liang. City	
6.	2	Passing & Returning Objects from Methods, This Operator, and	Liang: Ch9,	
0.		Copy Constructors.	Savitch: Ch5	
7.	2	Static Data, and Methods.	Liang: Ch9	
8.	2	Object Arrays.	Liang: Ch9	
9.	2	Immutable Classes, and String as Immutable Class.	Liang: Ch9 & 10	
10.	2	Wrapper Classes.	Liang: Ch10	
	3	Class Diagram, Forward Engineering of Class Diagram to Code,		
11.		Reverse Engineering of Code to Class Diagram, and	Liang: Ch9	
		Decomposition into Objects.		
12.	3	Composition, and Aggregation (Has-A Relationship).	Liang: Ch10	
13.	3	Introduction to Inheritance & Subclasses, and Super Keyword.	Liang: Ch11	
14.	3	Constructor Chaining, Object-Oriented Idioms for Encapsulation	Liang: Ch11	

		(Protected Access Specifier), and Final Modifier.		
15.	3	Method Overriding, and Difference Between Overriding & Overloading.	Liang: Ch11	
16.	3	Object Class, and toString () Method.	Liang: Ch11	
17.		Mid Term Exam		
18.		- Wild Terin Exam		
19.	4	Polymorphism & Dynamic Binding, Notion of Behavioral Replacement (Subtypes Acting like Super-Types); and Relationship Between Sub-Typing & Inheritance.	Liang: Ch11	
20.	4	Down Casting & Up Casting, and Equals () Method of Object Class.	Liang: Ch11	
21.	4	Abstract Classes, and Methods.	Liang: Ch13	
22.	4	Interfaces & their Usage, and Comparable & Cloneable Interfaces.	Liang: Ch13	
23.	4	Array List Class.	Liang: Ch11	
24.	4	Generic Types, and Static & Dynamic Typing.	Liang: Ch19	
25.	5	Introduction to File I/O.	Liang: Ch12	
26.	5	Binary Files (Object Streaming).	Liang: Ch17	
27.	5	Object Serialization.	Liang: Ch17	
28.	6	GUI Components (Labels, Buttons, Text Field, Text Areas, Radio Buttons, Combo Box, List View, and Scroll Bar).	Liang: Ch16 & 14	
29.	6	Containers, and Layout Managers.	Liang: Ch14	
30.	6	Introduction to Event Driven Programming, and Events & Listeners.	Liang: Ch15	
31.	6	Listeners as Inner Classes, Anonymous Inner Classes, and Event Handling using Lambda Expression.	Liang: Ch15	
32.	6	Using Reactive Framework, Externally-Generated Events, Window Listeners, and Adapter Classes.	Savitch: Ch18	
		Einal Tarres Errares		

Final Term Exam

Studen	t Outcomes (SOs)
S.#	Description
	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and
1	mathematics, science, and domain knowledge appropriate for the computing specialization to the
	abstraction and conceptualization of computing models from defined problems and requirements
	Identify, formulate, research literature, and solve complex computing problems reaching substantiated
2	conclusions using fundamental principles of mathematics, computing sciences, and relevant domain
	disciplines
	Design and evaluate solutions for complex computing problems, and design and evaluate systems,
3	components, or processes that meet specified needs with appropriate consideration for public health
	and safety, cultural, societal, and environmental considerations
4	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools
4	to complex computing activities, with an understanding of the limitations
5	Function effectively as an individual and as a member or leader in diverse teams and in multi-
3	disciplinary settings.

Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional

Course Learning Outcomes (CLOs)

Sr.#	Unit #	Course Learning Outcomes	Blooms Taxonomy Learning Level	so					
		CLO's for Theory							
CLO-1	1-2	Explain the concepts of Object-Oriented Programming (OOP) paradigms.	Understanding	1					
CLO-2	3-4	Design an Object-Oriented model for a real-world problem.	Creating	2,3					
CLO-3	3-4	Prepare a program reflecting Object-Oriented concepts.	Applying	2-4					
	CLO's for Lab								
CLO-4	3-4	Implement a small module utilizing Object-Oriented design.	Applying	2-4					
CLO-5	1-6	Develop a GUI based project for a real-world problem in a team environment.	Creating	2-5,9					

CLO Assessment Mechanism

LO Assessment Mechanism								
Assessment Tools	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5			
Quizzes	Quiz 1	Quiz 2	Quiz 3&4	-	-			
Assignments	Assignment 1	Assignment 2	Assignment 3&4	Lab Assignments	Lab Assignments			
Mid Term Exam	Mid Term Exam			-	-			
Final Term Exam		Final Term Ex	am	-	-			
Project	-	-	-	-	Lab Project			

Policy & Procedures

• **Attendance Policy:** Every student must attend 80% of the lectures as well as laboratory in this course. The students falling short of required percentage of attendance of lectures/laboratory work, is not allowed to appear in the terminal examination.

• Course Assessment:

	Quizzes	Assignments	Mid Term Exam	Terminal Exam	Total				
Theory (T)	15	10	25	50	100				
Lab (L)	-	25	25	50	100				
Final Marks (T+L)	(T/100) *75 + (L/100) *25								

• **Grading Policy:** The minimum passing marks for each course is 50% (In case of LAB; in addition to theory, student is also required to obtain 50% marks in the lab to pass the course). The correspondence between letter grades credit points and percentage marks at CUI is as follows:

Grade	A	A-	В+	В	В-	C+	С	C-	D+	D	F
Marks	>= 85	80 - 84	75 - 79	71 - 74	68 - 70	64 - 67	61 - 63	58 - 60	54 - 57	50-53	< 50
Cr. Point	3.67- 4.00	3.34- 3.66	3.01- 3.33	2.67- 3.00	2.34- 2.66	2.01- 2.33	1.67- 2.00	1.31- 1.66	1.01- 1.30	0.10- 1.00	0.00

- **Missing Exam:** No makeup exam will be given for final exam under any circumstance. When a student misses the mid-term exam for a legitimate reason (such as medical emergencies), his grade for this exam will be determined based on the Department policy. Further, the student must provide an official excuse within one week of the missed exam.
- **Academic Integrity:** All CUI policies regarding ethics apply to this course. The students are advised to discuss their grievances/problems with their counsellors or course instructor in a respectful manner.
- **Plagiarism Policy:** Plagiarism, copying and any other dishonest behaviour is prohibited by the rules and regulations of CUI. Violators will face serious consequences.