Math 002 P1

Quiz # 2

September 9, 2014 No electronic devices or interpersonal communication allowed. Show work to get credit.

(1) Place an 'x' in a cell below if (and only if) the number for that row belongs in the set for that column.

Name: Solutions

		N	W	Z	Q	\mathbb{R}
	1/2				X	×
2=	2/1	X	X	X	X	X
	-2/1		-176	X	X	×
0=	0/2		X	X	X	X
	2/0					
2 =	$\sqrt{4}$	X	×	×	×	×
	$\sqrt{5}$					X
	$\sqrt{-4}$			4		
-2=	$-\sqrt{4}$			X	X	X

(2) Simplify $\frac{3}{20} - \frac{1}{14}$. = $\frac{3 \cdot 7}{2^2 \cdot 5 \cdot 7} - \frac{1 \cdot 2 \cdot 5}{2 \cdot 7 \cdot 2 \cdot 5} = \frac{21 - 10}{2^2 \cdot 5 \cdot 7} = \frac{11}{2^2 \cdot 5 \cdot$

$$14 = 2.7$$

(cm = $2^2.5.7$

- (3) Evaluate $(3-2(3+2))(-3^2)$. = (3-2.5)(-9)= (3-10)(-9)= $(-7)\cdot(-9)$ = (63)
- (4) Rewrite $|\pi 7|$ without absolute value signs.

$$\pi - 7 < 0$$
, so $|\pi - 7| = -(\pi - 7) = [-\pi + 7]$