10. Write a proof of Theorem 9-13.

Given: Secant segment \overline{PA} and tangent segment \overline{PC} drawn to the circle from P

Prove: $r \cdot s = t^2$

Plan for Proof: Draw chords \overline{AC} and \overline{BC} . Show that $\angle A$ and $\angle PCB$ are congruent because they intercept the same arc. Then show that $\triangle PAC$ and $\triangle PCB$ are similar triangles and use the properties of proportions to complete the proof.

- **B** 11. Given: $\bigcirc O$ and $\bigcirc P$ are tangent to \overline{UT} at T. Prove: $UV \cdot UW = UX \cdot UY$
- 12. Given: \overline{AB} is tangent to $\bigcirc Q$; \overline{AC} is tangent to $\bigcirc S$.

Prove: $\overline{AB} \cong \overline{AC}$

Chords \overline{AB} and \overline{CD} intersect at P. Find the lengths indicated.

Example
$$AP = 5$$
; $BP = 4$; $CD = 12$; $CP = \frac{?}{}$

Solution Let
$$CP = x$$
. Then $DP = 12 - x$.
 $x(12 - x) = 5 \cdot 4$
 $12x - x^2 = 20$
 $x^2 - 12x + 20 = 0$

$$x^{2} - 12x + 20 = 0$$

 $(x - 2)(x - 10) = 0$
 $x = 2$ or $x = 10$

$$CP = 2 \text{ or } 10$$

13.
$$AP = 6$$
; $BP = 8$; $CD = 16$; $DP = \frac{?}{}$

14.
$$CD = 10$$
; $CP = 6$; $AB = 11$; $AP = _{?}$

15.
$$AB = 12$$
; $CP = 9$; $DP = 4$; $BP = \frac{?}{}$

16.
$$AP = 6$$
; $BP = 5$; $CP = 3 \cdot DP$; $DP = \frac{?}{}$

17.
$$PT = 6$$
; $PB = 3$; $AB = \frac{?}{}$

18.
$$PT = 12$$
; $CD = 18$; $PC = \frac{?}{}$

19.
$$PD = 5$$
; $CD = 7$; $AB = 11$; $PB = \frac{?}{}$

20.
$$PB = AB = 5$$
; $PD = 4$; $PT = \frac{?}{}$ and $PC = \frac{?}{}$

