Theorem: Let $1 \le p < \infty$ and let F = < 14: 4 is simple and FAEU s.t. $\mu(A) < \infty$ and $\Psi_{Ac} = 0)$ Then \mathcal{F} is dense in Lp(X, μ). Proof: We check that a simple function Ψ is in $Lp(x, \mu)$ if and only if there exists $A \in A$ such that $\mu(A) < \infty$ and $\Psi|_{A^c} = 0$. Included, let $\Psi = \sum_{k=1}^{\infty} a_k \chi_{A_k}$ with $a_k \in (D, \infty)$ and AKEA. Let m=min ?a,,..., any and M=max ?a,,..., any Then mpu(UAK) = 191 du = Mpu (UAK) Let A = Û Aκ ∈ A. If Ψ ∈ Lp(X,μ), then mpμ(A) ≤ ∫ pp du coo then $\mu(A) < \infty$ and $\Psi|_{AC} = 0$. Otherwise, if there exists $B \in \mathcal{A}$ such that $\mu(B) < \infty$ and $\Psi|_{B^c} = 0$, then $A \subseteq B$, so $\mu(A) < \infty$. Because $Lp(X, \mu)$ is a vector space we have $\mathcal{F} \subseteq Lp(x,\mu)$ Let $f \in Lp(x,\mu)$ be such that $f \ge 0$. Then there exists a sequence $(4n)_{n=1}^{\infty}$ of simple functions such that $4n \leq 4n+1$ for all n∈IN and 4n → f pointwise. Because 0 ≤ 4n ≤ f for all ne IN. July 14n1 du = Julf1 du < 00 so Un & F thein. Note that I Un - fit = Ifit and Ifit = L'(xi)

so by DCT,

 $\int_{\mathbf{x}} |\mathbf{f} - \mathbf{u}_{\mathbf{n}}|^{p} d\mu \rightarrow \int_{\mathbf{x}} 0 d\mu = 0, so$

lim n-0 llf-µnllp = 0.

For $f \in Lp(X, \mu)$, use a linear combination via treand -ve of the real and imaginary parts of f.

Theorem: Let 1 = p < 00 and let

 $C_c(IR, IK) = \{f : IR \rightarrow IK : f cont. and supp(f) is compact \}$ where $supp(f) = \{x \in IR : f(x) \neq 0\}$. Then $C_c(IR, IK)$ is dense in $Lp(IR, \lambda)$.

Proof: We first show that $C_c(IR,IK) \subseteq Lp(IR,\lambda)$. Indeed, if $f \in C_c(IR,IK)$, then there exists $M_1, M_2 > 0$ such that $|f| \subseteq M_1$ and $|f| \subseteq M_2, M_3$ = 0. Thus,

JR IfIP dλ ≤ Mi (2M2) <∞ 1 so f ∈ Lp(x,μ).

By the previous result, it suffices to show that if $\Psi \in L_p(IR, \lambda)$ is simple, then for all E > 0, there exists $f \in C_c(IR, IK)$ such that $\|f - \Psi_n\|_p < E$

Since $\Psi \times_{E-n,n_1} \nearrow \Psi$ pointwise, by repeating the proof, using DCT, we consider $\Psi \times_{E-n,n_1}$ in place of Ψ . By Lusin's theorem, there exists $g: E-n,n_1 \to IR$ such that g is continuous, $\lambda(\{x:g(x)\neq \Psi(x)\}) < \frac{\varepsilon}{3(2H^P+1)}$ max $\{[g(x)]: x\in E-n,n_1\} \le \max\{[\Psi(x)]: x\in E-n,n_1\}$. Then $\int_{\mathbb{R}} |f-\Psi \times_{E-n,n_1}|^p d\lambda$

 $= \int_{\mathbb{E}^{-n,n}} |f - \Psi \chi_{\mathbb{E}^{-n,n}}|^{p} d\lambda + \int_{\mathbb{E}^{-n,n}} |f - \Psi \chi_{\mathbb{E}^{-n,n}}|^{p} d\lambda$ $\leq \frac{\varepsilon}{3(2M^{p}+1)} (2M)^{p} + 2M^{p} (2\lambda(-)) < \varepsilon$

Vitali Covering Lemma

Definition: A collection T of intervals of IR that Contains no singleton points is said to be a Vitali covering of a set $X \subseteq IR$ if for all $x \in X$ and for all S > 0, there exists $I \in \mathcal{I}$ such that $x \in I$ and $\lambda(I) < S$.

Examples:

- All intervals (excluding singleton) of IR is a Vitalic
 covering.
- · All intervals of length more than one is not.

Theorem: (Vitali Covering Lemma) Let $X \subseteq IR$ be such that $\lambda^*(X) < \infty$. If Z is a Vitali Covering of X, then for all E > 0, there exists ne IN such that $\{I_k\}_{k=1}^{\infty} \subseteq Z$ pairwise disjoint such that $\lambda^*(X) \bigcup_{i=1}^{\infty} I_k \} < \varepsilon$.

Proof: By the definition of λ^* , there exists $u \in \mathbb{R}$ such that $u \in \mathbb{R}$ and $u \in \mathbb{R}$ such that $u \in \mathbb{R}$ and $u \in \mathbb{R}$ such that

Let J = jJ: J = I with $I \in Z$, $J \subseteq U_j$. We claim that J is a Vitali covering of X. Indeed, we do not have singletons. Let $X \in X$ and S > 0. Because $X \in U$, there exists E > 0 such that $(X - E, X + E) \subseteq U$. Choose $I \in Z$ such that $X \in I$ and $X \in I$ and $X \in I$ such that $X \in I$ and $X \in I$ such that $X \in I$ and $X \in I$ such that $X \in I$ and $X \in I$ such that $X \in I$ and $X \in I$ so $X \in J$ so $X \in J$ and $X \in I$ so $X \in J$ so $X \in J$ and $X \in I$ so $X \in J$ so $X \in J$ and $X \in I$ so $X \in J$ so $X \in$

Hence, T is a Vitali covering of X. It suffices to prove the result using T in place of Z as this changes the set difference $X \setminus \bigcup_{k \in I} I_k$ by at most 2n points which has measure 0.

Let & 70. We will construct $\{J_n\}_{n=1}^\infty \leq \mathcal{T}$ recursively with specific properties.

- · Choose J, E J.
- · Assume we have constructed { J_k 3^k=1 ∈ J pairwise disjoint with properties. If $X \setminus \bigcup_{k=1}^{\infty} J_k = \emptyset$, we are done. Otherwise, assume $X \setminus \bigcup_{k=1}^{\infty} J_k \neq \emptyset$. Let $M_n = \sup \{\lambda(J) : J \in \mathcal{J} \text{ and } J \cap (\bigcup_{k=1}^{n} J_k) = \emptyset \}$ Note for all $J \in \mathcal{T}$ that $J \subseteq U$, so $Mn \subseteq \lambda(U) < \infty$. To see Mn>0, note X \ U Jr + Ø so there exists XEX \ U Jr. Since T contains closed sets, U Jr is closed, so & = dist (1x), U Jr) >0. Since Jis a Vitali covering there exists JEJ such that x & J and X(J) &. The above implies $J \cap (\mathcal{V} J_{k}) = \emptyset$, so $M_{n} \ge \lambda(J) > 0$. Hence, we can choose Jn+1 such that J1,..., Jn+1 are pairwise disjoint and Mn ≥ λ(Jn+1) ≥ = 1 Mn > 0.

This process either stops yielding the result, or constructs a sequence $1 Jn /n^{\infty} \subseteq \mathcal{T}$ pairwise disjoint and

Mn ≥ λ(Jn+1) ≥ 2 Mn>0. Note $\frac{\infty}{2\pi}$ $\lambda(J_n) = \lambda(\bigcup_{u \in J_n} J_n) \leq \lambda(u) < \infty$. Thus, how a (Jn) = 0, so how Mn = 0. Choose NEIN "Start by going against the US by spelling centre correctly". such that Σ λ(Jn) < ξ. For each neln, let In be the closed interval with same centre as In but with 5 times the length. Then Σ_{n=Nfl} λ(In) ∠ ε, Claim: X \ U Jn & U In Given the claim, we are done. To prove the claim let x e X \ Jn be arbitrary. So x & Jn for all $n \in \{1, 2, ..., N\}$. As before, if $\delta = dist(\{x\}, \bigcup_{n=1}^{\infty} J_n)$, then $\delta > 0$. Since $\lim_{n \to \infty} M_n = 0$, there exists $m \in IN$ such that Mm < S = SO for any $J_x = J$ such that $x \in J_x$ we have Jx intersects one of J,..., Jm. Choose the smallest nx EIN such that any interval I.e.T such that x & Jx intersecting one of Ji)..., Jnx, so, Jx n Jnx \$ \$ for K<nx. Note $h_X > N$. Then $M_{N_X-1} \ge \lambda(J_X)$ and $M_{N_{X-1}} \le 2\lambda(J_{N_X})$. Thus, $\lambda(J_x) \leq 2\lambda(J_{nx})$. Hence, the distance from x to the centre of J_{n_x} is $\lambda(J_x) + \frac{1}{2} \lambda(J_{n_x}) \leq \frac{1}{2} \lambda(J_{n_x})$ SU XE Inx