

GLRM Overview

Principal Component Analysis (PCA). • Unlike PCA which is limited to numerical data, GLRM can also handle categorical, ordinal and Boolean data.

GLRM is an extension of well-known matrix factorization methods such as

- Given: Data table A with m rows and n columns • Find: Compressed representation as numeric tables X and Y where k is a small user-specified number

- Y = archetypal features created from columns of A
- X = row of A in reduced feature space
- GLRM can approximately reconstruct A from product XY

Memory Reduction / Saving

GLRM Loss Functions

Each column can use different loss function

Loss	Principal Components Analysis	
Quadratic	PCA	
Absolute	Robust PCA	
Huber	Huber PCA (Hybrid of Quadratic and Robust)	
Poisson	Poisson PCA	
Hinge	Boolean PCA	
Logistic	Logistic PCA	
Periodic	Periodic PCA	
Categorica l	Categorical PCA	
Ordinal	Ordinal PCA	

GLRM Overview

- GLRM is an extension of well-known matrix factorization methods such as Principal Component Analysis (PCA).
- Unlike PCA which is limited to numerical data, GLRM can also handle categorical, ordinal and Boolean data.
- **Given**: Data table A with m rows and n columns
- Find: Compressed representation as numeric tables X and Y where k is a small user-specified number

- Y = archetypal features created from columns of A
- *X* = row of A in reduced feature space
- GLRM can approximately reconstruct A from product XY

