Fatgraphs of $M_{0,3}$

Automatically generated by FatGHoL 5.4 (See: http://fatghol.googlecode.com/)
2012-02-09

There are a total of 3 undecorated fatgraphs in the Kontsevich graph complex of $M_{0,3}$, originating 7 marked ones.

Contents

Notation	2
Fatgraphs with 2 edges / 1 vertex	3
Fatgraphs with 3 edges / 2 vertices	3

Notation

We denote $G_{m,j}$ the j-th graph in the set of undecorated fatgraphs with m edges; the symbol $G_{m,j}^{(k)}$ denotes the k-th inequivalent marking of $G_{m,j}$.

Fatgraph vertices are marked with lowercase latin letters "a", "b", "c", etc.; edges are marked with an arabic numeral starting from "1"; boundary cycles are denoted by lowercase greek letters " α ", " β ", etc.

Automorphisms are specified by their action on the set of vertices, edges, and boundary cycles: for each automorphism A_k , a table line lists how it permutes vertices, edges and boundary cycles relative to the identity morphism A_0 . The automorphism table is printed only if the automorphism group is non-trivial.

Automorphisms that reverse the orientation of the unmarked fatgraph are indicated with a "†" symbol in the automorphism table; those that reverse the orientation of the marked fatgraphs are distinguished with a "‡" sign.

If a fatgraph is orientable, a "Markings" section lists all the inequivalent ways of assigning distinct numbers $\{0, \ldots, n-1\}$ to the boundary cycles; this is of course a set of representatives for the orbits of \mathfrak{S}_n under the action of $\mathrm{Aut}(G)$.

A separate section lists the differential of marked fatgraphs; graphs with null differential are omitted. If no marked fatgraph has a non-zero differential, the entire section is dropped.

Boundary cycles are specified using a "sequence of corners" notation: each corner is represented as $^pL^q$ where L is a latin letter indicating a vertex, and $p,\ q$ are the attachment indices of the incoming and outgoing edges, respectively. Attachment indices match the Python representation of the vertex: e.g., if a=Vertex([0,0,1]), the two legs of edge 0 have attachment indices 0 and 1, and the boundary cycle enclosed by them is represented by the (single) corner $^0a^1$.

Fatgraphs with 2 edges / 1 vertex

There is 1 unmarked fatgraph in this section, originating 6 marked fatgraphs (3 orientable, and 3 nonorientable).

The Fatgraph $G_{2,0}$ (non-orientable, 3 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= (^0a^1) \ eta &= (^1a^2
ightarrow ^3a^0) \ \gamma &= (^2a^3) \end{aligned}$$

Automorphisms

Markings

Fatgraphs with 3 edges / 2 vertices

There are 2 unmarked fatgraphs in this section, originating 8 marked fatgraphs (4 orientable, and 4 nonorientable).

The Fatgraph $G_{3,0}$ (non-orientable, 3 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^1a^2 o {}^2b^0 o {}^0a^1 o {}^0b^1) \ eta &= ({}^2a^0) \ \gamma &= ({}^1b^2) \end{aligned}$$

Automorphisms

Markings

	$G_{3,0}^{(0)}$	$G_{3,0}^{(1)}$	$G_{3,0}^{(2)}$
α	0	1	2
β	1	0	0
γ	2	2	1

Differentials

$$D(G_{3,0}^{(1)}) = +G_{2,0}^{(0)}$$

The Fatgraph $G_{3,1}$ (non-orientable, 1 orientable marking)

Boundary cycles

$$egin{aligned} lpha &= (^0a^1
ightarrow ^1b^2) \ eta &= (^1a^2
ightarrow ^0b^1) \ \gamma &= (^2a^0
ightarrow ^2b^0) \end{aligned}$$

Automorphisms

A_0	a	b	0	1	2	α	β	γ
A_1^{\ddagger}	a		2		1	β	γ	α
$A_2{}^{\ddagger}$	a	b	1			γ	α	β
$A_3^{\dagger \ddagger}$	b	a	0	2	1	β	α	γ
$A_4^{\dagger \ddagger}$	b	a	1	0	2	α	γ	β
$A_5^{\dagger \ddagger}$	b	a	2	1	0	γ	β	α

Markings

Differentials

$$D(G_{3,1}^{(0)}) = +G_{2,0}^{(0)}$$