Correction TD1

Note: Nous ferons le reste des exercices le 22 novembre

Exercice I.1:

Définir l'ensemble des entiers naturels strictements inférieurs à 5.

Solution : $A = \{x \mid x \in \mathbb{N} \text{ et } x < 5\}$ ou $A = \{x \in \mathbb{N} \mid x < 5\}$

Exercice I.2:

Définir l'ensemble des entiers relatifs divisibles par 3 de deux façons différentes.

Solution:

$$A=\{x\in\mathbb{Z}\mid \exists k\in\mathbb{Z},\; x=3k\}$$

ou

$$A=\{3k\mid k\in\mathbb{Z}\}$$

ou encore (en utilisant la fonction partie entière):

$$A = \left\{ x \in \mathbb{Z} \mid \frac{x}{3} = \left\lfloor \frac{x}{3} \right\rfloor \right\}$$

Exercice I.3:

Définir l'ensemble des nombres impaires strictements supérieurs à 3.

$$A=\{2k+1\mid k\in\mathbb{N}\ et\ k>0\}$$

Exercice II.1

Soient $A=\{1,2,3\}$ et $B=\{0,1,2,3\}$. Décrire les ensembles $A\cap B$, $A\cup B$ et $A\times B$.

Solution:

$$A\cap B=\{1,2,3\}$$
, $A\cup B=\{0,1,2,3\}$

$$A \times B = \{(1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)\}$$

Exercice II.2

Soient $A = \{0, 2, 4\}$ et $B = \{1, 3, 4, 5\}$ dans le référentiel $E = \{0, 1, 2, 3, 4, 5\}$.

Déterminer les ensembles $\overline{A}, \overline{B}, A \cap B, A \cup B, A \setminus B, \mathcal{P}(A)$ et $A \times B$

Exercice II.3

Soient A=[1,3] et B=[2,4]. Déterminer les ensembles $A\cap B$ et $A\cup B$.

Solution:

$$A \cap B = [2,3]$$

 $A \cup B = [1,4]$

Exercice II.4

Déterminer le complémentaire dans $\mathbb R$ des ensembles suivants $A_1=]-\infty,0]$, $A_2=]-\infty,0[$, $A_3=]0,+\infty[$, $A_4=[0,+\infty[$, $A_5=]1,2[$, $A_6=[1,2[$

Solution:

$$egin{aligned} \overline{A_1} = &]0, +\infty[\ \overline{A_2} = &[0, +\infty[\ \overline{A_3} = &] - \infty, 0] \ \overline{A_4} = &] - \infty, 0[\ \overline{A_5} = &] - \infty, 1] \cup [2, +\infty[\ \overline{A_6} = &] - \infty, 1[\cup [2, +\infty[\end{aligned}$$

Exercice II.8:

Soit $C_{red} = [0; 2], C_{green} = [0; 2], C_{blue} = [0; 2],$ Décrire $C_{red} \times C_{green} \times C_{blue}$.

Solution:

$$C_{red} imes C_{green} imes C_{blue} = \{(0,0,0), (0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2), \dots, (2,2,0), (2,2,1), (2,2,2)\}$$

Exercice II.8 (complément):

Donner l'ensemble des couleurs possibles en informatique.

Note : En informatique les couleurs sont codés sur 3 octets (1 octet = 8 bits = 256 valeurs possibles). Le premier octet pour le rouge, le deuxième pour le vert et le troisième pour le bleu. Chaque combinaison de 3 octets représente une couleur.

Solution:

Soient les ensembles $R=G=B=\llbracket 0,255
rbracket$.

Les couleurs possibles sont :

$$R \times G \times B = \{(0,0,0), (0,0,1), (0,0,2), (0,0,3), \dots, (255,255,254), (255,255,255)\}$$

Exercice II.9

Rappel du cours

Soit E un ensemble, A et B deux parties de E.

Egalité : A et B sont égaux si et seulement si $A \subset B$ et $B \subset A$.

Inclusion : $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$

Démonstration 1)

Soit E un ensemble, A, B et C trois parties de E. Montrons que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Pour cela on montre qu'il y a double inclusion.

i) Montrons que $A\cup (B\cap C)\subset (A\cup B)\cap (A\cup C)$

 $x \in A \cup (B \cap C) \Rightarrow x \in A \text{ ou } (x \in B \text{ et } x \in C)$

On réalise une disjonction de cas (par rapport au "ou").

 $\underline{\mathsf{1er \ cas:}}\ x \in A \Rightarrow x \in A \cup B \ \mathrm{et}\ x \in A \cup C$

<u>2eme cas:</u> $x \in B$ et $x \in C \Rightarrow x \in A \cup B$ et $x \in A \cup C$

Ainsi, $x \in A \cup (B \cap C) \Rightarrow x \in (A \cup B) \cap (A \cup C)$

On a vérifié la première inclusion $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$

ii) Montrons désormais que $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$

 $x \in (A \cup B) \cap (A \cup C) \Rightarrow (x \in A \text{ ou } x \in B) \text{ et } (x \in A \text{ ou } x \in C)$

On réalise une disjonction de cas (par rapport aux "ou").

1er cas: $x \in A$ et $(x \in A \text{ ou } x \in C)$

- 1er sous cas: $x \in A$ et $x \in A \Rightarrow x \in A \Rightarrow x \in A \cup (B \cap C)$
- <u>2eme sous cas:</u> $x \in A$ et $x \in C \Rightarrow x \in A \Rightarrow x \in A \cup (B \cap C)$

2eme cas: $x \in B$ et $(x \in A \text{ ou } x \in C)$

- 1er sous cas: $x \in B$ et $x \in A \Rightarrow x \in A \Rightarrow x \in A \cup (B \cap C)$
- 2eme sous cas: $x \in B$ et $x \in C \Rightarrow x \in B \cap C \Rightarrow x \in A \cup (B \cap C)$

Ainsi, $x \in (A \cup B) \cap (A \cup C) \Rightarrow x \in A \cup (B \cap C)$

On a vérifié la seconde inclusion $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$

La double inclusion est donc bien vérfiée et donc $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Démonstration 2)

Soit E un ensemble, A, B et C trois parties de E. Montrons que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(Démonstration que l'on réalisera au prochain cours)