CSE_2323

Combinational Logic

Digital Logic Design

Course code: CSE-2323
Credit Hour: 3

Md· Mujibur Rahman Maruf

Adjunct Lecturer,

Dept. of CSE, IIUC

Mujiburmaruf·cuet17@gmail·com

International Islamic University Chittagong(IIUC)

In ripple carry adders, the carry propagation time is the major speed limiting factor

carry look-ahead solves carry propagation delay of adders by calculating the carry signals in advance, based on the input signals.

let's consider the case of adding two *n-bit* numbers \boldsymbol{A} and \boldsymbol{B}

The Figure shows the full adder circuit used to add the operand bits in the i^{th} column; namely A_i & B_i and the carry bit coming from the previous column (C_i).

In this circuit, the 2 internal signals P_i and G_i are given by:

$$P_i = A_i \oplus B_i \tag{2}$$

$$G_i = A_i B_i$$
....(2)

The output sum and carry can be defined as :

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_{i+1} P_i C_i$$
 (4)

 P_i is known as the *carry propagate* signal since whenever $P_i = 1$, the input carry is propagated to the output carry, i.e., $C_{i+1} = C_i$ (note that whenever $P_i = I$, $G_i = 0$).

Computed values of all the P_i 's are valid one XOR-gate delay after the operands A and B are made valid.

Computed values of all the G's are valid one AND-gate delay after the operands A and B are made valid.

The Boolean expression of the carry outputs of various stages can be written as follows:

$$\begin{split} &C_1 = G_0 + P_0 C_0 \\ &C_2 = G_1 + P_1 C_1 = G_1 + P_1 \left(G_0 + P_0 C_0 \right) \\ &= G_1 + P_1 G_0 + P_1 P_0 C_0 \\ &C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + \\ &P_2 P_1 G_0 + P_2 P_1 P_0 C_0 C_4 = G_3 + P_3 C_3 \\ &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \end{split}$$

In general, the t^{h} carry output is expressed in the form $\mathbf{C}_i = \mathbf{F}_i$ (P's, G's, \mathbf{C}_0).

In other words, each carry signal is expressed as a direct SOP function of C_0 rather than its preceding carry signal Course Teacher: Mujibur Rahman Maruf

First level: Generates all the P & G signals. Four sets of P & G logic (each consists of an XOR gate and an AND gate). Output signals of this level (P's & G's) will be valid after It.

Second level: The Carry Look-Ahead (CLA) logic block which consists of four 2-level implementation logic circuits. It generates the carry signals (C_1 , C_2 , C_3 , and C_4) as defined by the above expressions. Output signals of this level (C_1 , C_2 , C_3 , and C_4) will be valid after 3t.

Third level: Four XOR gates which generate the sum signals (S_i) $(S_i = P_i \text{ Å } C_i)$. Output signals of this level $(S_0, S_1, S_2, \text{ and } S_3)$ will be valid after 4t.

Thus, the 4 Sum signals $(S_0, S_1, S_2 \& S_3)$ will all be valid after a total delay of 4+ compared to a delay of (2n+1)+ for Ripple Carry adders.

For a 4-bit adder (n = 4), the Ripple Carry adder delay is 9t.

BCD Adder

Four bits are needed to represent all BCD digits (0 – 9). But with four bits we can represent up to 16 values (0000 through IIII). The extra six values (1010 through IIII) are **not valid** BCD digits

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum BCD digit and a carry out bit.

The maximum sum result of a BCD input adder can be 19. As maximum number in BCD is 9 and may be there will be a carry from previous stage also, so 9 + 9 + 1 = 19

BCD Adder

		3inary Su	.m				BCD Sun	n		Decimal	
K	Z_8	Z4	Z ₂	Z_1	C	S _{tt}		52	.51		
0	0	0	0	ο —	$\rightarrow 0$	0	0	0	0	0	
O	0	0	0	1 —	$\rightarrow 0$	0	0	0	1	ì	
0	0	0	1	0 —	$\rightarrow 0$	0	0	1	0	2	Г
0	0	0	1	1 —	$\rightarrow 0$	0	0	1	1	3	
0	0	1	0	0 —	$\rightarrow 0$	0	1	0	0	4	
0	0	1	0	1 -	$\rightarrow 0$	0	1	0	1	5	
0	0	1	1	0 -	$\rightarrow 0$	0	- 1	1	0	6	
0	0	1	1	1 —	→ ()	0	1	1	1	7	
0	1	0	0	0 —	$\rightarrow 0$	1	0	0	0	8	
0	1	0	0	1 -	$\rightarrow 0$	1	0	0	1	9	
0		0	1	0	1	0	0	0	0	10	
0	/	0	1	1	1	0	0	0	1	11	
0	1		0	0	1	0	0	1	0	12	
0	1	1	0	1	1	0	0	1	1	13	
0	\ 1 /	1	1	0	1	0	1	0	0	14	
0	\1/	1	$\langle 1 \rangle$	1	1	0	1	0	1	15	
/I\	ŏ	ŏ	0	0	1	0	1	1	0	16	
1	0	0	0	1	1	0	1	1	1	17	
1	0	0	1	0	1]	0	0	0	18	
1	0	0	1	1	1]	0	0	1	19	

When binary sum = 1001, identical binary and BCD

No conversion needed

When binary sum > 1001, non-valid binary corresponds to BCD number.

Correction required

- Add $(0110)_2$ or $(6)_{10}$ to binary sum for correct BCD representation
- This addition produces output carry.

Boolean function for correction:

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

- I. C=0, no addition to binary sum.
- 2. C=1, add $(OIIO)_2$ via bottom adder.

BCD Adder

The circuit of the BCD adder will be as shown in the figure.

> When the **Output carry** is equal to **zero**, the correction factor equals zero.

When the **Output carry** is equal to **one**, the correction factor is OIIO.

2 Bit Magnitude Comparator

2 Bit Magnitude Comparator — A comparator used to compare two binary numbers each of two bits is called a 2-bit Magnitude comparator. It consists of four inputs and three outputs to generate less than, equal to and greater than between two binary numbers. The truth table for a 2-bit comparator is given below:

	INPUT			OU	TPUT	
A1	A0	B1	B0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

2 Bit Magnitude Comparator

From the above K-maps logical expressions for each output can be expressed as follows

$$\mathbf{A} > \mathbf{B} : A_{1}B_{1}' + A_{0}B_{1}'B_{0}' + A_{1}A_{0}B_{0}'$$

$$\mathbf{A} = \mathbf{B} : A_{1}'A_{0}'B_{1}'B_{0}' + A_{1}'A_{0}B_{1}'B_{0} + A_{1}A_{0}B_{1}B_{0} + A_{1}A_{0}'B_{1}B_{0}'$$

$$: A_{1}'B_{1}'(A_{0}'B_{0}' + A_{0}B_{0}) + A_{1}B_{1}(A_{0}B_{0} + A_{0}'B_{0}')$$

$$: (A_{0}B_{0} + A_{0}'B_{0}')(A_{1}B_{1} + A_{1}'B_{1}')$$

$$: (A_{0} \text{ Ex-Nor } B_{0})(A_{1} \text{ Ex-Nor } B_{1})$$

$$\overline{A0 \oplus B0} \quad \overline{A1 \oplus B1}$$

$$\mathbf{A} < \mathbf{B}: A_1'B_1 + A_0'B_1B_0 + A_1'A_0'B_0$$

2 Bit Magnitude Comparator

By using these Boolean expressions, we can implement a logic circuit for this comparator.

$$A>B = A_1B_1' + B_0A_0B_1' + B_0A_0A_1$$

$$A=B = \overline{A0 \oplus B0} \cdot \overline{A1 \oplus B1}$$

$$A < B = B_1 A_1' + B_0 B_1 A_0' + A_1' A_0' B_0$$

Decoder

A Decoder is a combinational circuit that converts binary information from n input lines to a maximum of $\mathbf{2}^n$ unique output lines

Consider a vending machine that takes 3 bits as input and releases a single product, out of the available 8 product sort

2-to-4 decoders

Decimal #	Inpu	ıt	Output					
	A_1	A_0	D_0	D_1	D ₂	D ₃		
0	0	0	1	0	0	0		
1	0	1	0	1	0	0		
2	1	0	0	0	1	0		
3	1	1	0	0	0	1		

Truth table for 2-to-4 decoder

Figure 3: Implementation 2-to-4 decoder

3×8 DECODER

- A 3 \times 8 line decoder decodes 3 input bits into one of 8 possible outputs x
- Each output representsone of the minterms of the 3 input variables

	Inputs		Outputs							
x	y	z	Do	D ₁	D ₂	D_3	D_4	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

2-to-4 decoder with enable

Decimal value	Enable	Inputs			Outputs				
	E	A ₁ A ₀		\mathbf{D}_0	$\mathbf{D_1}$	$\mathbf{D_2}$	\mathbf{D}_3		
	0	X	X	0	0	0	0		
0	1	0	0	1	0	0	0		
1	1	0	1	0	1	0	0		
2	1	1	0	0	0	1	0		
3	1	1	1	0	0	0	1		

Table 2: Truth table of 2-to-4 decoder with enable

Figure 4: Implementation 2-to-4 decoder with enable

Decoder implementation of a Full Adder

Decimal value		Input	Outpo	ut	
	Х	Υ	Z	S	С
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

 $Z \longrightarrow Z^{0}$ $X \longrightarrow Z^{1}$ $X \longrightarrow Z^{2}$ $Z \longrightarrow Z^{0}$ $Z \longrightarrow$

Truth table of the Full Adder

The output functions S & C can be expressed in sum-of-minterms forms as follows:

S
$$(X,Y,Z)=\sum (1,2,4,7)$$

C $(X,Y,Z)=\sum (3,5,6,7)$

ENCODERS

- An encoder is a digital circuit that performs the inverse operation of a decoder
- An encoder has 2^n input lines and n output lines
- The output lines generate the binary equivalent of the input line whose value is I

A typical Encoder

8×3 OCTAL-TO-BINARY ENCODER

: Octal-to-binary encoder

				C	utput	S				
D_0	D ₁	D ₂	D_3	D_4	D_5	D_6	D ₇	х	y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Truth table of Octal-to-binary encoder

$$x = D_4 + D_5 + D_6 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$z = D_1 + D_3 + D_5 + D_7$$

$$D_7D_6D_5D_4D_3D_2D_1D_0$$

Major Limitation of Encoders

- Exactly one input must be active at any given time.
- o If the number of active inputs is less than one or more than one, the output will be incorrect.

For example, if $D_1 = D_2 = 1$, the output of the encoder $A_1A_0 = 11$, which implies incorrect output.

In the previous example,

if $D_1 = D_2 = I$, the output corresponding to D_2 will be produced $(A_1A_0 = I0)$ since D_2 has higher priority than D_1 .

Major Limitation of Encoders

Two Problems to Resolve.

- . If two or more inputs are active at the same time, what should the output be?
- 2. An output of all 0's is generated in 2 cases:
 - when all inputs are 0
 - $_{\circ}$ when E_{0} is equal to 1.

How can this ambiguity be resolved?

Solution To Problem 1:

• Use a *Priority Encoder* which produces the output corresponding to the input with higher priority.

Solution To Problem 2:

- Provide one more output signal V to indicate validity of input data.
- $_{\circ}$ V = 0 if none of the inputs equals 1, otherwise it is 1

4-to-2 Priority Encoder

Truth table of 4-to-2 priority encoder

Figure: Equations and circuit for 4-to-2 priority encoder