Medium-resistant absolute-pressure sensors Micromechanical type

Measurement of pressure in gases and liquid mediums up to 600 kPa

p/U

- Delivery possible either without housing or inside rugged housing.
- EMC protection up to 100 V · m⁻¹.
- Temperature-compensated.
- Ratiometric output signal.
- All sensors and sensor cells are resistive to fuels (incl. diesel), and oils such as engine lube oils.

These monolithic integrated silicon pressure sensors are high-precision measuring elements for measuring the absolute pressure. They are particularly suitable for oper-ations in hostile environments, for instance for measuring the absolute manifold pressure in internal-combustion engines.

Design and function

The sensor contains a silicon chip with etched pressure diaphragm. When a change in pressure takes place, the diaphragm is stretched and the resulting change in resistance is registered by an evaluation circuit. This evaluation circuit is integrated on the silicon chip together with the electronic calibration elements. During production of the silicon chip, a silicon wafer on which there are a number of sensor elements, is bonded to a glass plate. After sawing the plate into chips, the individual chips are soldered onto a metal base complete with pressure connection fitting. When pressure is applied, this is directed through the fitting and the base to the rear side of the pressure diaphragm. There is a reference vacuum trapped underneath the cap welded to the base. This permits the absolute pressure to be measured as well as protecting the front side of the pressure diaphragm. The programming logic integrated on the chip performs a calibration whereby the calibration parameters are permanently stored by means of thyristors (Zener-Zapping) and etched conductive paths. The calibrated and tested sensors are mounted in a special housing for attachment to the intake manifold.

Signal evaluation

The pressure sensor delivers an analog output signal which is ratiometric referred to the supply voltage. In the input stage of the downstream electronics, we recommend the use of an RC low-pass filter with, for instance, t=2 ms, in order to suppress any disturbance harmonics which may occur. In the version with integrated temperature sensor, the sensor is in the form of an NTC resistor (to be operated with series resistor) for measuring the ambient temperature.

Installation information

When installed, the pressure connection fitting must point downwards in order that condensate cannot form in the pressure cell.

Construction

Sensors with housing:

This version is equipped with a robust housing. In the version with temperature sensor, the sensor is incorporated in the housing.

Sensors without housing:

Casing similar to TO case, pressure is applied through a central pressure fitting. Of the available soldering pins the following are needed:

Pin 6 Output voltage U_A ,

Pin 7 Ground,

Pin 8 +5 V.

Pressure range	Chara.	Features	Dimens	sion	Part number
kPa (p1p2)	curve 1)		drawin	g ²)	
20115	1	_	4	1	0 261 230 020
20250	1	-	4	1	0 281 002 137
10115	1	Integrated temperature sensor	2	2	0 261 230 022
20115	1	Integrated temperature sensor	2	2	0 261 230 013
20250	1	Integrated temperature sensor	2	2	0 281 002 205
50350	2	Integrated temperature sensor	5	$(5)^3$	0 281 002 244
50400	2	Integrated temperature sensor	_	_	0 281 002 316
50600	2	Integrated temperature sensor	6	6	0 281 002 420
10115	1	Hose connection	1	$(1)^3$	0 261 230 009
15380	2	Clip-type module with	3	3	1 267 030 835
		connection cable			

Pressure-sensor cells in casings similar to transistors

Suitable for installation inside devices

Pressure range	Chara.	Features	Dimen	sion	Part number
kPa (p1p2)	curve 1)		drawin	ıg ²)	
10115	1	_	7	7	0 273 300 006
15380	2	_	7	7	0 273 300 017
15380	2	_	8	$(7)^3$	0 261 230 036
20105	1	_	7	7	0 273 300 001
20115	1	_	7	7	0 273 300 002
20250	1	_	7	7	0 273 300 004
50350	2	_	7	7	0 273 300 010
50400	2	_	7	7	0 273 300 019
50400	2	-	8	(7) ³)	0 261 230 033
50600	2	_	7	7	0 273 300 012

¹⁾ The characteristic-curve tolerance and the tolerance extension factor apply to all versions, refer to Page 42.

Accessories

For 0 261 230 009, .. 020;

281	002	137

Plug housing	1 928 403 870
Contact pin	2-929 939-1 4)
Individual gasket	1 987 280 106

For 0 261 230 013, .. 022;

0 281 002 205, ..420

Plug housing	1 928 403 913
Contact pin	2-929 939-1 4)
Individual gasket	1 987 280 106

For 0 281 002 244

Plug housing	1 928 403 913
Contact pin	2-929 939-6 ⁴)
Individual gasket	1 987 280 106

For 0 281 002 420

Plug housing	1 928 403 736
Contact pin	1 928 498 060
Individual gasket	1 928 300 599

Note

Each 3-pole plug requires 1 plug housing, 3 contact pins, and 3 individual gaskets. 4-pole plugs require 1 plug housing, 4 contact pins, and 4 individual gaskets.

Technical data

	min.	typical	max.
V	4.5	(<mark>5</mark>)	5.5
mA	6	9	12.5
mA	-0.1	_	0.1
kΩ	50		_
V	0.25	0.30	0.35
V	4.75	4.80	4.85
$k\Omega$	2.4	4.7	8.2
k $Ω$	3.4	5.3	8.2
ms	-	0.2	=
°C	-40	_	+125
°C	- -40	-	16 +130
°C	-40	-	+130
kΩ	_	680	<u> </u>
kΩ	_	100	_
	_	21.5	<u> </u>
nF	_	100	<u> </u>
	-40	_	+125
mA	_	_	1 ⁵)
kΩ	_	2,5 ±5 %	_
S	_	_	45
	$\begin{array}{c} mA \\ mA \\ k\Omega \\ V \\ V \\ k\Omega \\ k\Omega \\ ms \\ ^{\circ}C \\ \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

⁵) Operation with series resistor 1 k Ω .

²⁾ See Page 43/44
3) For similar drawing, see dimension drawing on Pages 43/44
4) To be obtained from AMP Deutschland GmbH, Amperestr. 7–11, D-63225 Langen, Tel. 06103/709-0, Fax 06103/7091223, E-Mail: AMP.Kontakt@tycoelectronics.com

⁶⁾ In air with airflow speed 6 m·s⁻¹.

Micromechanical TO-design absolute-pressure sensors (contd.) Measurement of pressures in gases and liquid media up to 600 kPa

Characteristic curve 2 ($U_V = 5.0 \text{ V}$).

Tolerance extension factor.

Tolerance multiplication factorFollowing endurance test

N As-new state

 $U_{\rm V}$ Supply voltage

Micromechanical TO-design absolute-pressure sensors (contd.) Measurement of pressures in gases and liquid media up to 600 kPa

