Contents

0.1	set theory	1
0.2	ordering	1
0.3	cardinality	2
0.4	topology in metric space	3
lec 1 :	σ -algebra	4
lec 2 :	Borel σ -algebra on $\mathbb R$ and measure	6
2.1	generating Borel σ -algebra on $\mathbb R$	6
2.2	measure	7
lec 3 :	complete measure space and outer measure	9
3.1	outer measure	9
3.2	induce outer measure out of a "elementary length function"	10
lec 4 :	μ^* -measurability and Carathéodory's Theorem	11
4.1	μ^* -measurable	11
4.2	Carathéodory's Theorem	11
lec 5 :	premeasure and Hahn-Kolmogrov extension Theorem	14
5.1	induce outer measure out of a premeasure: preserving μ_0 on \mathcal{A}_0	14
5.2	Hahn-Kolmogrov Theorem	15
lec 6 :	distribution function and Borel measures on ${\mathbb R}$	17
6.1	distribution function of a locally finite Borel measure	17
6.2	any increasing and right ctn function is a unique distribution function	17
lec 7 :	Lebesgue-Stieltjes measure	21
7.1	inner and outer regularity of LS measure	21
7.2	Lebesgue-Stieltjes measurable 的等价条件	23
7.3	Lebesgue measure and its invariance properties	23
lec 8 :	measurable function	25
8.1	general measurable function	25
8.2	real and complex-valued measurable function	26
8.3	arithmetic and sequential preservation of measurable functions	27
lec 9 :	simple function and integration of nonnegative functions	29
9.1	indicator and simple function	29
9.2	measurable function is a limit of simple functions	30

	9.3	integration of non-neg functions	31
	9.4	MCT	33
lec	10:	properties of integration on $L^+(\mu)$	36
	10.1	Fatou's Lemma	36
	10.2	Chebyshev's inequality with corollaries	37
lec	11 :	integration of real and complex functions I	39
100		$\tilde{L}(X,\mu,\mathbb{C})$ and $L^1(X,\mu,\mathbb{C})$	39
		DCT	42
	11.2		72
lec	12:	integration of real and complex functions II	45
	12.1	corollaries of DCT	45
	12.2	L^1 as a Banach space	47
	12.3	density of simple function of $L^1(\mu)$	48
lec		integration of real and complex functions III	50
		another dense subspace of $L^1(m_s)$: $C_c(\mathbb{R})$	50
	13.2	Riemann v.s. Lebesgue integral	50
lec 14	14:	modes of convergence	54
	14.1	convergence family	54
	14.2	3 new modes of convergence w.r.t. measure	55
	14.3	a.e. and a.u. convergence, and Egoroff's Theorem	57
	14.4	summary: convergence mode relations	59
		product space and product measure	60
		product σ -algebra	60
	15.2	product measure	61
lec	16:	Tonelli's Thm	64
	16.1	$E \subset X \times Y$ 的 section	64
	16.2	Tonelli for sets: integrating a section to get product measure	66
	16.3	Tonelli's Theorem	67
,	15		60
iec		Fubini's Theorem and Lebesgue integral in \mathbb{R}^n	69
		Fubini's Theorem	69
	17.2	Lebesgue measure in \mathbb{R}^n	70
lec	18:	Lebesgue measure in \mathbb{R}^n	72
	18.1	behavior under affine transformation	73
lec	19 :	2/21	75

Prologue

In this Prologue, we will only state important prerequisites that we should know without proving them, for the sake of time saving.

0.1 set theory

Def 0.1 (lim sup and lim inf of of a sequence of sets)

$$\lim \sup E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$

$$\lim\inf E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$$

limsup represent the elements that occur in infinitely many E_n ; and liminf represent the elements that occur in all but finitely many E_n .

Def 0.2 (Cartesian product)

Let A be some index set, define

$$\prod_{\alpha \in A} X_{\alpha} := \{ f : A \to \bigcup_{\alpha \in A} X_{\alpha} \mid f(\alpha) \in X_{\alpha} \forall \alpha \}$$

Notice that if all $X_{\alpha} = Y$ for a fixed Y, then we have $\prod_{\alpha \in A} X_{\alpha} = Y^{A}$.

0.2 ordering

Def 0.3 (partial ordering, linear ordering)

A partial ordering on a nonempty set X is a relation R that is

- 1. transitive: $xRy, yRz \implies xRz$
- 2. reflexitive: $xRx \ \forall x$
- 3. antisymmetric: $xRy, yRx \implies x = y$

A linear ordering R is a partial ordering that also satisfies:

4. strongly connected: $\forall x, y \in X$, either xRy or yRx.

Axiom 0.1 (The Hausdorff Maximal Principle)

Every partially ordered set has a maximal linearly ordered subset. (i.e. there is a linearly ordered subset s.t. no other subset properly including it is linearly ordered.)

Def 0.4 (maximal/minimal element)

A maximal element $x \in X$ means that no other element is greater than it. (notice: It is possible that there exists another element that cannot be compared with it. The definition only says they cannot be greater than it.)

Dually can define minimal element.

*

Axiom 0.2 (Zorn's Lemma)

If X is a partially ordered set and every linearly ordered subset has an upper bound, then X has a maximal element.

 \Diamond

Remark Zorn's Lemma and the Hausdorff Maximal Principle can imply each other.

Def 0.5 (well ordering)

If X is linearly ordered and every nonempty subset has a **unique minimal element**, then X is said to be **well ordered**.

Lemma 0.1 (well ordering principle)

Every nonempty set can be well ordered.

Corollary 0.1 (Axiom of choice)

The Cartesian product of a nonempty collection of nonempty sets is nonempty.

0.3 cardinality

Proposition 0.1

Let X be any set. We must have $card(\mathcal{P}(X)) > card(X)$

Def 0.6

 $\mathfrak{c} := \operatorname{card}(\mathbb{R})$

Proposition 0.2

 $\operatorname{card}(\mathcal{P}(\mathbb{N}))=\mathfrak{c}$

(1)

Proof Using base-2 expansion, can create a bijective function from $\mathcal{P}(\mathbb{N})$ to [0,1].

Proposition 0.3

Given $f:X \to [0,\infty),$ $A:=\{f(x)>0\},$ if A is uncountable, then $\sum_{x\in X}f(x)=\infty$

0.4 topology in metric space

Def 0.7 (dense, nowhere dense, separable)

We say $E \subseteq X$ is dense in X if $\overline{E} = X$.

We say $E \subseteq X$ is nowhere dense in X if $\overline{E} = \emptyset$.

We say X is separable if it has a countable dense subset.

Proposition 0.4

TFAE for metric spaces:

- 1. $x \in \overline{E}$.
- 2. Every open ball centered at x has nonempty intersection with E.
- 3. There is a seq in E converging to x.

Def 0.8 (Cauchy, complete)

A sequence in metric space X is said to be Cauchy if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.

A subset $E \subseteq E$ is said to be complete if every Cauchy sequence in E converges.

Proposition 0.5

Complete is a stronger condition than closed, in any metric space. And a closed subset of a complete metric space is complete.

Theorem 0.1

TFAE for metric spaces:

- 1. E is complete and totally bounded.
- 2. E is compact.
- 3. E is sequentially compact. (Every sequence in E has a subseq converging to some point in E.)

Lec 1 σ -algebra

我们在 395 中已经证明: 在 \mathbb{R} 上不存在一个 measure function $\mu: \mathcal{P}(\mathbb{R}) \to [0,\infty]$ satisfying:

- 1. $\mu(\emptyset) = 0$;
- 2. translate invariant
- 3. countably additivite

因而, 对于比如 \mathbb{R} 的这种无法在其幂集上定义良好的 measure function 的集合, 我们要定义一个 $\mathcal{A} \subseteq \mathcal{P}(X)$, 使得我们能在这个 power set 的子集上, 定义一个 make sense 的 measure.

首先,为了对于一个任意的集合 X 都能在其上定义 measure, 我们要考虑在 X 的一个什么样的子集簇上有希望定义这样的 measure.

Def 1.1 (algera, σ -algebra)

对于 set $X, S \subseteq \mathcal{P}(X)$ 被称为 X 上的一个 σ -algebra, if 其满足:

- 1. $\emptyset \in X$:
- 2. closed under complement: if $E \in S$ then $X \setminus E \in S$;
- 3. closed under countable union: if $E_1, E_2, \dots \in S$ then $\bigcup_{k=1}^{\infty} E_k \in S$.

如果第三条并不满足, 而是只满足 **closed under finite union**, 则称 S 是 X 上的一个 algebra. 当然, σ -algebra 是比 algebra 严格更强的条件.

我们定义 X 的一个子集簇为一个 σ -algebra 如果它包含空集并 closed under complement and countable union. 但这并不是 σ -algebra 的全部性质. 这三个性质还蕴涵了: σ -algebra 也一定包含 X, 且 **closed under set difference**, **symmetric difference** 以及 **countable intersection**.

对于 algebra, 它也有以上的所有性质的 finite version.

Theorem 1.1 (σ -algebra also closed under set difference, symmetric difference and countable intersection)

Let S be a σ -algebra on set X.

Claim:

1. $X \in S$

Proof Directly from def.

2. $D, E \in S \implies D \cup E, D \cap E, D \setminus E \in S$

Proof union: from def by leaving others as \emptyset ;

intersection:

$$(D \cap E)^C = D^C \cup E^C \in S$$

setminus:

$$D \setminus E = D \cap (X \setminus E) \in S$$

3. $D, E \in S \implies D\Delta S \in S$

Proof

$$D\Delta E = (D \setminus E) \bigcup (E \setminus D)$$

4.
$$A_1, A_2, \dots \in S \implies \bigcap_{i=1}^{\infty} A_i \in S$$
Proof

$$(\bigcap_{n=1}^{\infty})^C = \bigcup_{n=1}^{\infty} E_n^C \in S$$

Remark 我们发现 σ -algerbra 很像是 topology. 实际上 σ -algerbra 和 topology 的区别就是: σ -algebra 只保证了 closed under countable union 而 topology closed under any union; topology 只保证 closed under finite intersection 而 σ -algebra closed under countable intersection.

 \Diamond

Lemma 1.1 (任意 σ -algebra 的 intersection 仍是 σ -algebra)

Let $\{S_{\alpha}\}_{{\alpha}\in A}$ be a collection of σ -algebra on X, then $\bigcap_{{\alpha}\in A}S_{\alpha}$ is a σ -algebra on X.

Proof 这是个 trivial proof. 但是它具有一定理解上的启发.

我们对 σ -algebra 有一个直观理解: 如果我们想把一些集合做成一个 σ -algebra, 那么首先我们把它们的 补集放进这个 σ -algebra 里, 其次我们把这些集合的 up to countable 的任意组合的并集也放进这个 σ -algebra 里.

因而即便我们把一些 σ -algebra 给 intersect 起来, 其中每个集合的补集和这些集合的 up to ctbl 的任意组合的并集也在这个 intersection 里.

这是个重要的直观理解. 我们想到,如果我们要把一个 sigma-algebra 里的一部分去掉,并保持它仍然是一个 sigma-algebra,那么我们得把这些集合的补集,以及能够 ctbly union 成这些集合的小集合也去掉,并对这些小集合也 recursively 进行这个操作.

Corollary 1.1 (unique smallest σ -algebra containing a collection of subsets)

Given $\varepsilon \subseteq \mathcal{P}(X)$

$$<\varepsilon>:=\bigcap_{\varepsilon\subseteq S\subseteq \mathcal{P}(X),S\text{ is }\sigma\text{ -algebra on }X}S$$

Def 1.2 (σ -algebra generated by a subset)

We call

$$:=\bigcap_{arepsilon\subseteq S\subseteq\mathcal{P}(X),S\ ext{is }\sigma\ ext{-algebra on }X}S$$

the σ -algebra generated by ε

Lec 2 Borel σ -algebra on $\mathbb R$ and measure

Recall: the σ -algebra generated by ε

$$<\varepsilon>:=\bigcap_{\varepsilon\subseteq S\subseteq\mathcal{P}(X).S\text{ is }\sigma\text{ -algebra on }X}S$$

is the smallsest σ -algebra containing ε .

Example 2.1

$$\langle \{E\} \rangle = \{\emptyset, E, E^c, X\}$$
 (2.1)

Lemma 2.1 (inclusion properties of generated σ -algebra)

- 1. if $\mathcal{E} \subseteq \mathcal{A}$ where \mathcal{A} is a σ -algebra, then $\langle \mathcal{E} \rangle \subseteq \mathcal{A}$.
- 2. if $\mathcal{E} \subseteq \mathcal{F}$, then $\langle \mathcal{E} \rangle \subseteq \langle \mathcal{F} \rangle$.
- 3. if $\mathcal{E} \subseteq \langle \mathcal{F} \rangle$, then $\langle \mathcal{E} \rangle \subseteq \langle \mathcal{F} \rangle$.

Proof trivial.

Def 2.1 (Borel σ -algebra defined on a topological space)

For topological space (X, \mathcal{T}) , we define:

$$\mathcal{B}_X := <\mathcal{T}>$$

Borel σ -algebra on a topological space 就是 σ -algebra generated by the topology. Its members are called Borel sets. 当然, 所有的 open sets 和 closed sets 都是 Borel sets.

2.1 generating Borel σ -algebra on $\mathbb R$

Example 2.2 Let \mathcal{E}_1 : \mathbb{R} 上所有的 open intervals;

 \mathcal{E}_2 : \mathbb{R} 上所有的 closed intervals;

 \mathcal{E}_3 : \mathbb{R} 上所有的左开右闭 intervals;

 \mathcal{E}_4 : ℝ 上所有的左闭右开 intervals;

 \mathcal{E}_5 : \mathbb{R} 上所有的左开右无界 intervals;

 \mathcal{E}_6 : \mathbb{R} 上所有的左闭右无界 intervals;

 \mathcal{E}_7 : \mathbb{R} 上所有的左无界右开 intervals;

 \mathcal{E}_8 : \mathbb{R} 上所有的左无界右闭 intervals;

 $\bigcup_{i=1,\dots,8} \mathcal{E}_i$ 即 \mathbb{R} 上的所有形式的 interals.

Lemma 2.2

任意以上
$$\mathcal{E}_i, i=1,\cdots,8$$
 都可以 generate $\mathcal{B}_{\mathbb{R}}$

Proof 我们 recall: 所有的 countable 以及 second countable 的 topological space 都具有 **Lindelöf property**: 任意 open covering 都存在一个 countable 的 subcovering.

Lindelöf property 的一个推论就是, 在具有 Lindelöf property 的 metric space 或者 second countable 的 space 中, 任意 open set 都可以写成 countable 个 open balls 的 union.

我们在 elementary 的 real analysis 中已经学过, $[a,b) = \bigcap_{n\geq 1} (a-1/n,b)$, 以其作为例子, 这些 intervals 彼此之间都可以相互转换.

2.2 measure

Def 2.2 (measurable space and measure space)

Let X be a set, \mathcal{M} be a σ -algebra on X.

A measure on (X, A) is a function $\mu : \mathcal{M} \to [0, \infty)$ satisfying:

- 1. $\mu(\emptyset) = 0$
- 2. countable additive:

$$\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$$

for disjoint seq of $E_i \in \mathcal{M}$.

如果这样的 μ 存在, 我们则称 (X,\mathcal{M}) 为一个 measurable space, 并称 (X,\mathcal{M},μ) 为一个 measure space.

Remark 一个 probability space 就是一个 measure space, satisfying $\mu(X)=1$.

Example 2.3

1. 对于任意的 (X, \mathcal{M}) , 我们可以定义:

$$\mu(A) := \#A \quad (\in \mathbb{Z}_{>0} \cup \{\infty\})$$

这个 measure 叫做 counting measure.

2. Fix $x_0 \in M$, 可以 define

$$\mu(A) := \delta_x := \begin{cases} 1 \text{ , if } x_0 \in A \\ 0 \text{ , if } x_0 \notin A \end{cases}$$

这个 measure 叫做 the **Dirac measure** at x_0 .

3. 给定一个 X 上的函数 $f: X \to [0, \infty)$, 我们可以通过这个函数来定义:

$$\mu(A) := \sum_{x \in A} f(x)$$

这个测度依赖于函数值来表示每个点的单点集的 measure, 并通过一个集合上所有点的单点集 measure 相加得到这个集合在这个函数下的 measure. (缺点: 我们已经知道, 如果一个函数在一个集合上的正集是 uncountable 的, 那么这个集合上的这个测度一定是 ∞ .)

以下是 measure function 由它的定义的两条性质 (空集为 0 以及 ctbl additivity) 推导出的一些基本性质:

Lemma 2.3 (measure is finitely additive)

Measure is finitely additive.

 \Diamond

Proof 显然, ctbl additive implies finite additive.

Remark 反向则不成立. 这让我们想起: Jordan measure 和 Lebesgue measure.

Lemma 2.4

$$A, B \in \mathcal{M} \implies$$

$$\mu(A) + \mu(B) = \mu(A \cap B) + \mu(A \cup B)$$

Proof

$$A \cup B = (A \setminus B) \sqcup (A \cap B) \sqcup (B \setminus A)$$

而后使用 finite additive 可得. 这是一个 direct corollary of countable additivity.

Corollary 2.1

$$A, B \in \mathcal{M}, A \subseteq B, \mu(A) < \infty \implies$$

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

Theorem 2.1 (properties of measure)

对于任何 measure space (X, \mathcal{M}, μ) :

- 1. **monotonicity**: $A \subseteq B \in \mathcal{M} \implies \mu(A) \leq \mu(B)$ **Proof** trivial.
- 2. countable subadditivity:

$$\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Proof By setting $B_i = A_i \setminus \bigcup_{j=1}^{i-1} A_j$, 而后通过 ctbl disjoint additivity 与 monotonicity 可得

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$$

Proof 使用 same trick as 2.

4. **countinuous from below**: 如果 $A_i \supseteq A_{i+1} \forall i$ 且存在某个 j 使得 $\mu(A_i) < \infty$, 则

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$$

Proof 前面的都无视, 直到第一个 measure $< \infty$ 的集合, 是可能出现在最后的 intersection 里的最大集合. 我们 Fix 这个 A_j . 通过构造补集的方式, 把交转为并, 从而用 (3) 得证. Define: $E_i := A_j \setminus A_i \forall i \geq j$ 从而

$$\bigcup_{i=j}^{\infty} E_i = A_j \setminus (\bigcap_{i=j}^{\infty} A_i)$$

进而

$$\mu(\bigcup_{i=j}^{\infty} E_i) = \mu(A_j) - \mu(\bigcap_{i=j}^{\infty} A_i)$$

进而 by (3)

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(\bigcap_{i=j}^{\infty} A_i) = \mu(A_j) - \lim_{i \to \infty} \mu(E_i) = \mu(A_j) - \lim_{i \to \infty} (\mu(A_j) - \mu(A_i)) = \lim_{i \to \infty} A_i$$

C

Lec 3 complete measure space and outer measure

Def 3.1 (nul set, subnull set, almost everywhere)

对于 measure space (X, \mathcal{M}, μ)

- 1. 我们称 $A \in \mathcal{M}$ 为一个 null set, 如果 $\mu(A) = 0$;
- 2. 我们称 $B \subseteq M$ 为一个 **subnull set**, 如果存在某个 null set A containing it.
- 3. 我们称一个 statement about X 是 **almost everywhere** (a.e.) 的, 如果这个 statement 除了在某个 null set 上之外, 在 X 上处处成立.

Def 3.2 (complete measure space)

我们称 (X, \mathcal{M}, μ) 是一个 complete measure space, 如果它其中的任意 subnull set 都是 null set. (即 它 measurable)

Remark 我们知道, 根据 measure 的 monotonicity, subnull set 的 measure, 如果存在, 一定是 \leq 它所在的 null set 的, 即一定 = 0. 所以 complete measure space 的实际意思是: 这个 measure space 里, 任意 null set 的所有子集都是 measurable 的, 即所有足够小的集合都在这个 σ -algebra 里.

Example 3.1 一个 not complete 的 measure space 的例子:

$$X = \{1, 2\}, \mathcal{M} = \emptyset, X, \mu(\forall) = 0.$$

这个例子中, $\{1\}$, $\{2\}$ 这两个集合不是 measurable 的, 但是却是 nullset (全集) 的子集.

Theorem 3.1 (every measure space can be completed)

Suppose (X, \mathcal{M}, μ) is a measure space.

Let

$$\mathcal{N} := \{ \text{all null sets in } \mathcal{M} \}$$

Claim:

$$\overline{M} := \{ E \cap F \mid E \in \mathcal{M}, F \subseteq N \text{ for some } N \in \mathcal{N} \}$$

is a σ -algebra, 并且在 $\overline{\mathcal{M}}$ 上存在一个 unique 的 extension $\overline{\mu}$ of μ .

Proof 这一部分的 proof 以及 remark 在 hw2. 这里, \overline{M} 称为 completion of \mathcal{M} with respect to μ , 以及 $\overline{\mu}$ 称为 completion of μ .

3.1 outer measure

Def 3.3 (outer measure)

An outer measure on X is a function $\mu^* : \mathcal{P}(X) \to 0, \infty$) such that

- 1. $\mu(\emptyset) = 0$
- 2. monotone $(A \subseteq B \implies \mu^*(A) \le \mu^*(B))$
- 3. countable subadditive $(\mu^*(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu^*(E_i))$

Remark 我们对比 measure 和 outer measure 的定义: measure 的条件比 outer measure 强在:

- 1. measure 是定义在一个严格的 σ -algebra 上的, 而 outer measure 则是定义在整个幂集上的.
- 2. measure 要求 disjoint countable additivity, outer measure 并不要求

在这两个条件的缩减下, 我们规定 outer measure 具有 monotonicity 和 countable subadditivity. 注意: measure 本身也有这个性质, 这是 measure 的 countable additivity 的推论.

outer measure 的意义在于, 我们的 measure 只定义在 σ -algebra 上, 而我们想要给每个子集都赋予一个近似于测度的东西.

3.2 induce outer measure out of a "elementary length function"

Theorem 3.2 (construct outer measure out of an "elementary length function")

另 $\mathcal{E} \subseteq \mathcal{P}(X)$ 为一个包含 \varnothing, X 的集合, 并定义 $\rho: \mathcal{E} \to [0, \infty)$ 为一个满足 $\rho(\varnothing) = 0$ 的函数, 则

$$\mu^*(A) = \inf\{\sum_{i=1}^{\infty} \rho(E_i) \mid E_i \in \mathcal{E} \text{ for each i and } A \subseteq \bigcup_{i=1}^{\infty} E_i\}$$

is an outer measure.

C

Proof

- 1. 取所有 $E_i = \emptyset$, 得到 $\mu^*(\emptyset) = 0$
- 2. monotonicity 显然, 因为如果 $A \subseteq B$, 那么 A 取 inf 的这个集合是包含于 B 的, 因而取到的 inf 是小于等于的.
- 3. 证明 ctbl subadditivity, 我们使用经典的 $\epsilon/2^i$ argument. 这个 statement 直观上是显然的, 因为对一个 seq of sets, 每一个里面都有一个 seq of covering, 那么这个 seq of seq of covering 总体也是这个 seq union 的一个 covering. 不过我们不能这么说, 因为这里有一个 inf 操作的换序. 所以我们令 $\epsilon>0$, 对于每个 A_i 的 covering $(E_{i,k})_{k\in\mathbb{N}}$, 我们令 $\sum_k \rho(E_{i,k}) \leq \mu^*(A_i) + \epsilon/2^i$, 最后可以得到 $\mu^*(\bigcup_i A_i) \leq \sum_i \mu^*(A_i)$. 由于 ϵ arbitrary, 得证.

Example 3.2 我们取 \mathcal{E} 为 \mathbb{R} 上所有的 intervals, 并取 ρ 为 interval 的 length, 就得到了一个外测度. (也就是 Lebesgue outer measure)

Lec 4 μ^* -measurability and Carathéodory's Theorem

4.1 μ^* -measurable

Def 4.1 (μ^* -measurable)

Given outer measure μ^* , 我们称 $A \subseteq X \neq \mu^*$ -measurable 的, if:

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

Remark countable subadditivity 蕴含的信息是: 如果我们把一个集合 divide 成几部分, **其 outer measure 有可能 increase.** 而 μ^* -measurable 的含义是: 任何一个其他集合, 分割为和 E 重合以及和 E 的两部分之后, 其 measure 都不会增大.

Note: by subaddivity, must have $\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c)$, 而 μ^* -measurable 的集合, 则有 equality 总是成立.

同时注意: 这个行为对于 complement 是对称的.

Remark outer measure 是对于整个 power set 中每一个集合都赋予的, 并且其性质 ctbl subadditivity 严格 弱于 countable additivity. 我们自然想到: 是否有一个 power set 的子集, 其不仅是一个 σ-algebra, 并且其上满足 countable additivity? 如果存在, 那么我们就从 outer measure induce 出了 measure.

再加上之前的用随意的 length function 来 induce outer measure 的方法, 我们就可以通过一个随意的 length function → outer measure → measure. (eg: 从 box length induce 出 Legesgue outer measure, 再 induce 出 Lebesgue measure).

而实际上这个想法是正确的. 只要把 μ^* 的范围限制在所有 μ^* -measurable sets 上, 就形成了 σ -algebra, 并且其 restriction 是一个 measure, 甚至是一个 complete measure.

4.2 Carathéodory's Theorem

Theorem 4.1

对于任意的 outer measure μ^* ,

 $\mathcal{M} := \{\text{all } \mu^*\text{-measurable sets}\}$

is a σ -algebra.

并且, $\mu^*|_{\mathcal{M}}$ is a complete measure.

Proof 我们首先证明这个 M 是一个 σ-algebra

- 1. $\emptyset \in \mathcal{M}$ by def.
- 2. \mathcal{M} closed under complement, by def of μ^* -measurablity. (它对于 complement 是对称的.)
- 3. 为证明 \mathcal{M} closed under countable union, 我们首先 prove it for two sets. 假设 $A, B \in \mathcal{M}$, 且 disjoint. Let $E \subset X$. 我们已知

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c) \tag{4.1}$$

我们 WTS: $\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c)$

我们对于 $E \cap A$, $E \cap A^c$ 可以得到:

$$\mu^*(E \cap A) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) \tag{4.2}$$

$$\mu^*(E \cap A^c) = \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c)$$
(4.3)

By $A \cup B = (A \setminus B) \sqcup (A \cap B) \sqcup (B \setminus A)$, 可以得到:

$$\mu^*(E \cap (A \cup B)) \ge \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) \tag{4.4}$$

结合以上四个 equations 可以得到

$$\mu^*(E) \ge \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B^c)) \tag{4.5}$$

又 \leq by countable subadditivity 成立, 我们得证 closed under two union (从而 inductively closed under any finite union, \mathcal{M} 因而是一个 algebra).

Remark (Note: 这里我会想: 证明了这个 statement for any union of two sets 不就是证明了它对 any union 都成立吗? 实则不然, 因为 set union 的从属关系并不是可以从对任意 n 成立推广到对无穷成立, 因为这里的无穷是一个真实存在的 sequence, 而我们可以从"任意 n 成立推广到对无穷成立"的是比较数值大小, 因为 infinite series sum 的定义就是 limit, 而 set union 并没有 limit. 所以这里不能够直接得证.)

(Continuing the proof:) 现在我们再把这个 closed under finite union 推广到 closed under countable union, 以 映证 \mathcal{M} 是一个 σ -algebra. 注意到 **STS** (suffices to show): \mathcal{M} closed under countable disjoint union. 因 为任意不 disjoint 的两个集合都可以拆分成三个 disjoint 的集合.

我们令 (A_i) 为一个 \mathcal{M} 中的 disjoint sequence, 并定义 $B_n := \bigcup_{i=1}^n A_i$, 我们由上一步的结论知道, $B_n \in \mathcal{M}$ for all n. Define $B := \bigcup_{i=1}^\infty A_i$, Let $E \subseteq X$, WTS: $\mu^*(E) = \mu^*(E \cap B) + \mu^*(E \cap B^c)$.

考虑 $\mu^*(E \cap B_n) = \mu^*(E \cap B_n \cap A_n) + \mu^*(E \cap B_n \cap A_n^c) = \mu^*(E \cap A_n) + \mu^*(E \cap B_{n-1})$, 因为 inductively 可得到:

$$\mu^*(E \cap B_n) = \sum_{i=1}^n \mu^*(E \cap A_i)$$
(4.6)

从而:

$$\mu^*(E) = \mu^*(E \cap B_n) + \mu^*(E \cap B_n^c) \ge \sum_{i=1}^n \mu^*(E \cap A_i) + \mu^*(E \cap B^c)$$
(4.7)

by monotonicity $(\mu^*(E \cap B_n^c) \ge \mu^*(E \cap B^c))$, 这里是一个 infinite sum, 并且 true for every n, 因而可以推广到 infinity, 得到

$$\mu^*(E) \ge \sum_{i=1}^{\infty} \mu^*(E \cap A_i) + \mu^*(E \cap B^c) \ge \mu^*(\bigcup_{i=1}^{\infty} (E \cap A_i)) + \mu^*(E \cap B^c) = \mu^*(E \cap B) + \mu^*(E \cap B^c) \ge \mu^*(E)$$
(4.8)

This finishes the proof of \mathcal{M} being a σ -algebra. 我们同时发现, $\mu^*|_{\mathcal{M}}$ 是一个 complete measure on \mathcal{M} 是一个 trivial fact after the proof, 因为 taking B=E, 可以得到

$$\mu^*(B) = \sum_{i=1}^{\infty} \mu^*(A_i)$$
(4.9)

并且 by monotonicity, 对于任意的 $\mu^*(A) = 0$, 任取 $E \subseteq X$, 都有

$$\mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c) = \mu^*(E \cap A^c) \le \mu^*(E) \tag{4.10}$$

因而

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

得到 $A \in \mathcal{M}$. 从而得证这是一个 complete measure.

Remark 证明 Carathéodory's Theorem 的 punchline 在于: 我们令 $(A_i) \in \mathcal{M}$ be a sequence, B_n be its partial union for n terms, 可以得到

$$\mu^*(E \cap B_n) = \mu^*(E \cap B_n \cap A_n) + \mu^*(E \cap B_n \cap A_n^c) = \mu^*(E \cap A_n) + \mu^*(E \cap B_{n-1})$$

, 因为 inductively 可得到:

$$\mu^*(E \cap B_n) = \sum_{i=1}^n \mu^*(E \cap A_i)$$
(4.11)

这个 statement 对于 \mathcal{M} 是 σ -algebra 以及 $\mu^*|_{\mathcal{M}}$ 是 measure 的证明都很重要. 我们在 outer measure 的定义中, 只声明了 countable subadditivity, 而我们需要证明的是 countable diskjoint additivity, 也就是需要把不等式变成一个等式.

为此我们看到 μ^* -measurable 的定义 (Carathéodory condition) 中的等号, 并从中找到这个等式关系: **通 过 disjoint set sequence 上 inductively 对于前一项使用 Carathéodory condition, 得到 disjoint additivity.** (笔者的感觉是 Carathéodory condition 的直观看似不明显, 但是如果把一个 disjoint union 自身作为 E, 并把自身的某项作为 A, 就非常明显, 表示的是 disjoint measure sum 就是 measure of disjoint union.)

Lec 5 premeasure and Hahn-Kolmogrov extension Theorem

我们发现: 有些子集簇上的"length" 很明显, 并且也符合 measure 的定义, 但是这个子集簇却并不构成一个 σ -algebra. 比如:

Example 5.1 {all half-open, half-closed intervals} $\subseteq \mathbb{R}$ 上, 以 interval 的 length 作为 measure, 很显然符合 measure function 的定义, 但是 {all half-open, half-closed intervals} $\subseteq \mathbb{R}$ 并不是一个 σ -algebra, 因为它可以通过 ctbl union 出 open interval, 并不在这个子集簇中. 不过, 这是一个 algebra.

因此, 我们想要一个方法来 extend a "measure" function on an algebra, to a measure on a σ -algebra.

Def 5.1 (premeasure)

给定 $\mathcal{P}(X)$ 上的一个 **algebra** \mathcal{A}_0 , 我们称 $\mu_0: \mathcal{A}_0 \to [0, +\infty]$ 为一个 premeasure, if

- 1. $\mu_0(\emptyset) = 0$
- 2. μ_0 ctbl disjoint additive in \mathcal{A}_0

Remark premeasure 就是定义在 algebra instead of σ -algebra 上的 measure. 显然, 通过和 measure 相同的方式可证明, premeasure 在 A_0 上是 **monotone 以及 ctbl subadditive 的.**

5.1 induce outer measure out of a premeasure: preserving μ_0 on \mathcal{A}_0

Proposition 5.1

Any premeasure can induce an outer measure:

$$\mu^*(E) = \inf\{\sum_{i=1}^{\infty} \mu_0(A_i) \mid A_i \in \mathcal{A}_0, E \subseteq \bigcup_{i=1}^{\infty} A_i\}$$
 (5.1)

并且, we have:

$$\mu^*|_{\mathcal{A}_0} = \mu_0 \tag{5.2}$$

并且 every set in A_0 is μ^* -measurable.

Proof 这个 outer measure 的 construction directly follows from 3.2.

Proof that μ^* restricted to A_0 is μ_0 : 令 $E \in A_0$, 假设 $E \subseteq \bigcup_{i=1}^{\infty} A_i$, 我们令 $B_n := E \cap (A_n \setminus \bigcup_{i=1}^{n-1} A_i)$, 即把 covering intersecting E 变成 disjoint covering (B_n) , 从而由 μ_0 的 ctbl disjoint additivity 可得, 这一个新 covering 的 measure sum $\sum_{i=1}^{\infty} \mu_0(B_i) := \mu_0(E)$. 并且由于 A_0 是一个 algebra, 这些 B_n 也在 A_0 里面,从而它满足 monotonicty, then $\mu_0(E) = \sum_{i=1}^{\infty} \mu_0(B_i) \le \sum_{i=1}^{\infty} \mu_0(A_i)$

Proof that every set in A_0 is μ^* -measurable: Fix $A \in A_0$, 我们取任意 $E \subseteq X$. Let $\epsilon > 0$, by def of the outer measure, 存在一个 seq $\{B_i\}_{i=1}^{\infty} \subseteq A_0$, 使得 $E \subseteq \bigcup_{i=1}^{\infty} B_i$ 并且 $\sum_{i=1}^{\infty} \mu_0(B_i) \leq \mu^*(E) + \epsilon$. 有 disjoint additivity of μ_0 可得, $\sum_{i=1}^{\infty} \mu_0(B_i) = \sum_{i=1}^{\infty} \mu_0(B_i \cap A) + \sum_{i=1}^{\infty} \mu_0(B_i \cap A^c)$. 从而 $\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$, 得证. (实际上这是个 trivial argument, 通过 ϵ argument 来严格证明.)

Remark 这一 simple proposition 表明的是, μ_0 induce 出的 outer measure 在 \mathcal{A}_0 上 **presearve** μ_0 的 **measure** 与 **measurability.**

5.2 Hahn-Kolmogrov Theorem

Def 5.2 (σ -finite measure)

Let (X, \mathcal{M}, μ) be a measure space.

如果 $\mu(X) < \infty$, 则称 μ 是 finite 的.

如果存在一个 sequence (E_i) in \mathcal{M} 使得 $\bigcup_i E_i = X$ 并且每个 $\mu(E_i) < \infty$, 则称 μ 是 σ -finite 的.

Remark 一个 finite measure 说明 M 中的所有集合的 measure 都 finite.

Theorem 5.1 (Hahn-Kolmogrov Theorem)

给定一个 premeasure μ_0 on algebra \mathcal{M}_0 of X, 以及其 induced outer measure $\mu*$, 我们令

$$\mathcal{M} := <\mathcal{M}_0>$$

表示 σ -algebra generated by the algebra \mathcal{M}_0 .

并令

$$\mu := \mu^*|_{\mathcal{M}}$$

then we have:

- 1. $(X, \mathcal{M}_0, \mu_0)$ extends to (X, \mathcal{M}, μ) \mathbb{F} : $\mu|_{\mathcal{M}_0} = \mu_0$
- 2. $\mu|_{\mathcal{M}}$ 是 the largest extension of μ_0 to \mathcal{M} (即: 对于任意其他的 \mathcal{M} 上的 measure ν that extends μ_0 to \mathcal{M} , 都有 $\nu(E) \leq \mu(E)$ for all $E \in \mathcal{M}$);

并且 if μ_0 is σ -finite, 则 μ 是 the unique extension of μ_0 to \mathcal{M} .

Proof Proof of (X, A_0, μ_0) extends to (X, \mathcal{M}, μ) :

这个 Statement directly follows from 4.1(Carathéodory's Theorem) 以及上一个 proposition 5.1.

- 1. 我们首先用 μ_0 induce 出 μ^* , 再 restrict μ^* to $\mathcal{M}^* := \{\text{all } \mu^*\text{-measurable sets}\}$, 得到一个 σ -algebra \mathcal{M}^* . 注意此时: 由上一个 proposition 5.1 可得 \mathcal{M}_0 中所有集合都是 μ^* -measurable 的, thus $M_0 \subseteq \mathcal{M}^*$, 由于 \mathcal{M}^* 是一个 σ -algebra, 由 2.1 可得: $\mathcal{M} := <\mathcal{M}_0 > \subseteq \mathcal{M}^*$.
- 2. 由 Carathéodory's Theorem 可以得到: $\mu^*|_{\mathcal{M}^*}$ 是一个 measure, 从而 $\mu := \mu^*|_{\mathcal{M}}$ 也是一个 measure(等于 把 $\mu^*|_{\mathcal{M}^*}$ 限制在了一个更小的 sub- σ -algebra 上).

(Note: this is a trivial fact that if M^* is a σ -algebra and $M \subset M^*$ is also a σ -algebra, then $\mu|_M$ is a measure if given that μ is a σ -algebra on M^*)

Proof of μ being the largest extension of μ_0 to \mathcal{M} : 假设 ν 是一个 \mathcal{M} 上的 σ -algebra s.t. $\nu|_{\mathcal{M}_0} = \mu_0$. Let $E \subseteq \mathcal{M}$. (WTS: $\nu(E) \le \mu(E)$, 即 $\nu(E) \le \mu^*(E)$.)

由外测度 μ^* 的定义,对于任意 $\epsilon > 0$,存在一列集合 $\{A_i\}_{i=1}^{\infty} \subset A_0$ 满足

$$E \subset \bigcup_{i=1}^{\infty} A_i$$
 \mathbb{H} $\sum_{i=1}^{\infty} \mu_0(A_i) \leq \mu^*(E) + \epsilon$.

由于 ν 在 A_0 上和 μ_0 一致,即

$$\nu(A_i) = \mu_0(A_i) \quad \forall i,$$

因此,

$$\sum_{i=1}^{\infty} \nu(A_i) = \sum_{i=1}^{\infty} \mu_0(A_i) \le \mu^*(E) + \epsilon$$

利用 ν 的 additivity 和 monotoncity 得

$$\nu(E) \le \nu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \nu(A_i) = \sum_{i=1}^{\infty} \mu_0(A_i) \le \mu^*(E) + \epsilon$$

由于 ϵ arbitrary, 得到

$$\nu(E) \le \mu^*(E)$$

(证明思路: 在 $M \perp \mu$ 就等于 μ_0 induce 的外测度,对于其他的 extended measure, 其作用在一个集合上的测度一定小于等于任意的 M_0 covering 的 premeasure 和,而我们可以通过控制这个 covering 的测度和与它的外测度的差距 (since inf),从而使得这个测度小于等它的外测度加一个无限小的 ϵ ,从而得证.)

Proof of μ being the unique extension of μ_0 to \mathcal{M} , provided that μ_0 is σ -finite:

(recall μ_0 is σ-finite \mathbb{P} $\mu_0(X) < \infty$) It remains to show that $\nu(E) \ge \mu^*(E)$.

Continuing $\perp - \uparrow$ proof, we have:

$$\mu^*(E) \le \mu^*(\bigcup_{i=1}^{\infty} A_i) = \nu(\bigcup_{i=1}^{\infty} A_i) = \nu(E) + \nu(\bigcup_{i=1}^{\infty} A_i \setminus E)$$
$$\le \nu(E) + \mu^*(\bigcup_{i=1}^{\infty} A_i \setminus E)$$

我们只要 controlling $\mu^*(\bigcup_{i=1}^{\infty} A_i \setminus E) = \mu^*(\bigcup_{i=1}^{\infty} A_i) - \mu^*(E) = \epsilon$ 逼近 0, 即可得到反向的不等式关系. (证明思路: 我们证明了 $\nu(E) \leq \mu^*(E)$ 之后, 注意到 covering set 和 E 之间的差集的 ν -measure 自然也小于等于这个差集的 μ^* -measure, which can approximate 0.)

Remark 1. 我们首先容易定义 X 上的一个 algebra \mathcal{M}_0 和一个 algebra 上的 premeasure μ_0 ;

- 2. 然后用 inf of covering sum 来 induce 出一个 $\mathcal{P}(X)$ 上的 outer measure μ^* , 而后我们限制 μ^* 到 $\mu^*|_{\mathcal{M}^*}$ (where \mathcal{M}^* 表示所有的 μ^* -measurable sets), by Carathéodory's theorem 这就 induce 出了一个 complete measure.
- 3. 我们可以再取 \mathcal{M}^* 的一个 sub σ -algebra $\mathcal{M} := < \mathcal{M}_0 >$,限制在这个集合上的 $\mu^*|_{\mathcal{M}}$ 自然也是一个 measure, 并且是 \mathcal{M}_0 extend 到 \mathcal{M} 上的 lartest measure. By Hahn-Kolmogrov Thm, 这个 measure 如果是 σ -finite 的则是 \mathcal{M}_0 extend 到 \mathcal{M} 上的 unique measure.

(Notice: 自然地, $(X, \mathcal{M}^*, \mu^*|_{\mathcal{M}^*})$ 是 $(X, \mathcal{M}, \mu^*|_{\mathcal{M}})$ 的一个 completion.)

Lec 6 distribution function and Borel measures on $\mathbb R$

This lecture: 1. distribution function 是 increasing 且 right continuous 的, 2. 任意 increasing 且 right continuous 的函数可以作为 distribution function, 用它来构造它对应的 measure.

6.1 distribution function of a locally finite Borel measure

Def 6.1 (distribution function of μ)

给定一个 locally finite (finite on all compact sets) 的 Borel measure on \mathbb{R} (即 (\mathbb{R} , $\mathcal{B}(bR)$, μ)), 我们 定义:

$$F_{\mu}(x) := \begin{cases} \mu((0,x]) & , x \ge 0 \\ -\mu((x,0]) & , x < 0 \end{cases}$$

这个函数被称为 μ 的 **distribution function.**

Remark

Proposition 6.1

容易发现: $F \in \mu$ 的 distribution function, 当且仅当 $\mu((a,b]) = F(b) - F(a)$, 任取这样的 interval.

这两个定义是等价的.

Theorem 6.1 (distribution function is increasing and right ctn)

对于 \mathbb{R} 上的任意 locally finite Borel measure μ , 其 distribution function F_{μ} 都是 increasing 且 right continuous 的. (right ctn:

$$F_{\mu}(a) = \lim_{x \to a^{+}} f(x)$$

Proof increasing: trivially by monotonicity of measure.

right continuous: follows from measure 的 ctnity. 正轴上: $\mu((0, x + 1/n])$ 的 sequence 极限为 $\mu(0, x]$), by ctn from above; 负轴上, $\mu((x + 1/n, 0])$ 的 sequence 极限为 $\mu((x, 0])$, by ctn from below.

Remark Note: distribution function 是 right ctn 的, 但却未必是 left ctn 的. 因为我们构造离散的 measure, 使得这个 distribution function 具有间断点. 这样导致了左不连续. 反例: 例如 atomic measure.

6.2 any increasing and right ctn function is a unique distribution function

Def 6.2 (h-interval)

我么定义形如 (a,b], $(-\infty,b]$ 的 \mathbb{R} 的子集, 以及 \emptyset , \mathbb{R} , 为 h-intervals.

h-intervals 即所有的左开右闭区间.

Lemma 6.1 (h-intervals form an algebra and generate borel set)

 $A_0 := \{ \text{finite (disjoint) unions of h-intervals} \}$

是一个 algebra, 并且

$$\langle \mathcal{A}_0 \rangle = \mathcal{B}(\mathbb{R})$$

Proof trivial. follows from lec 2 $\not\bowtie$ generating set of borel set on \mathbb{R} .

Theorem 6.2 (任意 increasing 且 right ctn 函数都是某个 locally finite Borel measure 的 distribution 函数)

取 lemma 中的 A_0 . 对于任意的 **increasing** 且 **right ctn** 的 $F: \mathbb{R} \cup \{\pm \infty\} \to \mathbb{R}\{\pm \infty\}$, 我们 define $\mu_0: A_0 \to [0, \infty]$, by:

$$\mu_0(\bigcup_{i=1}^n (a_i, b_i]) = \sum_{i=1}^n (F(b_i) - F(a_i))$$

并规定 $\mu_0(0) = 0$, 以及 $F(\infty) = \lim_{x \to \infty} F(x)$

, Claim 1: μ_0 是一个 A_0 上的 σ -finite premeasure.

Claim 2: (by Hahn-Kolmogrov) μ_0 extend to a locally finite Borel measure μ_F , 并且 $\mu_F((a,b]) = F(b) - F(a)$ for any h-interval, i.e. $F \not \in \mu_F$ 的 distribution function.

Claim 3: $F \neq \mu_F$ 的唯一 **distribution function up to constant term**, in the sense that 任意其他的 such function G 如果也是 μ_F 的 distribition function, 则必然有 F - G 为 const.

Proof Claim1

- 1. well-definedness of μ_0 : 对于两个结果一样的 union, finding common refinement 即可.
- 2. $\mu_0(\emptyset) = 0$: 因为 Ø 就是 (a, a].
- 3. finite additivity: trivial.
- 4. σ -finiteness: each $\mu_0((n, n+1]) < \infty$
- 5. ctbl additivity: nontrivial, 下面详细展开.

Suppose A_1, A_2, \cdots $\not\equiv$ seq of disjoint h-intervals in \mathcal{A}_0 . Let $A := \bigsqcup_i A_i$.

WTS: $\mu_0(A) = \sum_i \mu_0(A_i)$.

(1) WTS $\mu_0(A) \geq \sum_i \mu_0(A_i)$ 这个 direction easy. We define $B_n := \bigsqcup_1^n A_i$,由 finite additivity 得到: $\mu_0(B_n) = \sum_i^n \mu_0(A_i)$,从而

$$\mu_0(A) = \mu_0(B_n) + \mu_0(A \setminus B_n) \ge \mu_0(B_n)$$

for each n, 由于这是一个 numerical seq, 可以 conclude $\mu_0(A) \geq \sum_i \mu_0(A_i)$. (2) WTS $\sum_i \mu_0(A_i) \geq \mu_0(A)$. 这个 direction 较难, 需要用到 $\epsilon/2^n$ 的 argument.

For simplicity, 我们只需要考虑 $A_i = (a_i, b_i]$ 的 interval 形式, 其他形式 can trivially prove. 并且, 由于 A_0

中任何一个元素至多只有 finite 个离散的 h-intervals, 我们 suffice to assume A 是一个 h-interval. 从而, 我们也可以 denote A = (a, b].

Let $\epsilon > 0$.

By F 的 increasing 和 right ctn, 存在 δ , δ_i s.t.

$$F(a+\delta) - F(a) \le \epsilon$$

同样地,对于每个 A_i . 我们都可以找到 δ_i 使得

$$F(b_i + \delta_i) - F(b_i) \le \frac{\epsilon}{2^i}$$

于是 $(a_i, b_i + \delta_i)_{i \in \mathbb{N}}$ 就形成了一个 open covering for $[a + \delta, b]$. By cptness, 存在一个 finite subcovering $(a_i, b_i + \delta_i)_{1 \le i \le N}$.

By relabelling, 我们 **suppose** A_i 是从左到右排序的**.** 于是每个 $b_i + \delta_i$ 都处于下一个 A_{i+1} 之内**.**

从而:

$$\mu_0(A) \le F(b) - F(a+\delta) - \epsilon \tag{6.1}$$

$$\leq F(b_N + \delta_N) - F(a_1) + \epsilon \tag{6.2}$$

$$= F(b_N + \delta_N) - F(a_N) + \sum_{i=1}^{N-1} (F(a_{i+1}) - F(a_i)) + \epsilon$$
(6.3)

$$\leq F(b_N + \delta_N) - F(a_N) + \sum_{i=1}^{N-1} (F(b_i + \delta_i) - F(a_i)) + \epsilon$$
(6.4)

$$<\sum_{1}^{N} (F(b_i) - A(a_i) + \frac{\epsilon}{2^i}) + \epsilon \tag{6.5}$$

$$<\sum_{1}^{\infty}\mu_{0}(A_{i})+2\epsilon\tag{6.6}$$

Claim 2, 3 都 directly follows from Hahn-Komogrov Thm.

Remark 这一证明实则简单. 关键的步骤是 1. 简化问题为 union 成一个 h-interval; 2. 通过 cptness 取 finite covering; 3. 对每个 A_i 取一个 $\epsilon/2^i$ 的小 cover, 最后可以被 ϵ bound.

Example 6.1 我们已经证明, 从任意的 increasing 且 right ctn 的函数都可以构造出一个以其为 distribution function 的 locally finite Borel measure on \mathbb{R} , 因而我们简称这样的函数都叫做 distribution function. 以下为两个 distribution function 的例子:

1. Heaviside function

$$H(x) = \begin{cases} 1 & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

2. 我们将 \mathbb{Q} 以某种形式列出: $\mathbb{Q} = \{q_1, q_2, \dots\}$ 而后定义:

$$F(x) := \sum_{i=1}^{\infty} 2^{-n} H(x - r_n) \in (0, 1)$$

这个函数通过有理数的次序给每个有理数赋了一个"weight", 并对于每个 x, 把所有有理数分为 > x 和

 $\leq x$ 的两部分,只把 $\leq x$ 的那部分有理数的权重算进 F(x). 于是 x 越大,被算进 F(x) 的有理数越多, F(x) 就越大. (虽然每个有理数的权重是乱的). 这个函数在每一点上都 discrete. 这个过程可推广,不取 $\mathbb Q$ 而取任意的 countable sets in $\mathbb R$ 作为参照.

本 lec 总结: 通过直接定义 distribution function 来得到的 measure, 实则就是不同于直接取 interval 长度, 我们隐性地给每个点一个 mass (类似概率密度), 从而把区间的长度中每一个点加上一个权重. 最后形成一个不一定均匀的 measure. 这个 distribution 的分布曲线决定了这个 measure.

Lec 7 Lebesgue-Stieltjes measure

给定一个 increasing 且 right ctn 的函数 F, 我们已经展示了用它作为 distribution function 来 induce 出一个 Borel measure μ_F on $\mathcal{B}(\mathbb{R})$.

在构造这个函数时, 我们使用的是用 premeasure \mathcal{A}_0 (of all finite unions of h-intervals), 使用 Hahn-Kolmogrov 来 induce outer measure μ_F^* , 再把 restrict 它到 $<\mathcal{A}_0>$, 即 $\mathcal{B}(\mathbb{R})$ 上, 获得的 measure. **这一个 measure 是** 一个 Borel measure, 但是它并不 complete.

recall in lec 6: 我们其实可以 complete 这个 measure, 只需要在第二步, 用 premeasure \mathcal{A}_0 induce 出 outer measure 后, 不要 restrict 它到 $\mathcal{B}(\mathbb{R})$ 上, 而是 restrict 到取 $\mathcal{M}_{\mu} := \{\text{all } \mu_F^*\text{-measurable set}\}$ 上, 得到的就是 completion of μ_F , 即

$$(\mathbb{R}, \mathcal{M}_{\mu}, \overline{\mu_F})$$

其中, A^* 是 < A_0 > 即 $\mathcal{B}(\mathbb{R})$ 的 proper super set. 我们把这个 completed measure 叫做 Lebesgue Stieltjes measure associated with F, 并用 μ_F 来指代它. (刚才, 我们把未完备的 measure 叫做 μ_F , 但现在我们不再使用这个 measure, 而是使用它的 completion, 并转而称它的 completion ($\overline{\mu_F}$) 为 μ_F .)

Def 7.1 (Lebesgue-Stieltjes measure associated with F)

给定一个 distribution function F, 我们使用它来定义 h-intervals 的 premeasure μ_0 , 并把这个 premeasure induce 出的 outer measure μ^* 限制在

$$\mathcal{M}_{\mu} := \{ \text{all } \mu^* \text{-measurable set} \}$$

上, 由 Carathéodory Thm 得它是 complete 的. 称这个 complete 的 measure

$$\mu_F := \mu^*|_{\mathcal{M}_\mu}$$

カ Lebesgue Stieltjes measure associated with F.

Remark 根据定义, 对于任意 $E \in \mathcal{M}_{\mu}$, 它的 measure 为:

$$\mu_F(E) = \inf \{ \sum_{1}^{\infty} (F(b_i) - F(a_i)) \mid E \subseteq \bigcup_{1}^{\infty} (a_i, b_i) \}$$

7.1 inner and outer regularity of LS measure

虽然我们使用 h-intervals 来 induce 了这个 measure, 但是实际上我们在表示 measure 时, 可以用 open intervals 来代替 h-intervals:

Lemma 7.1 (open intervals can substitute for h-intervals when computing measure)

固定一个 Lebesgue-Stieltjes measure associated with F, 任意 $E \in \mathcal{M}_{\mu}$, 它的 measure 等于:

$$\mu_F(E) = \inf\{\sum_{1}^{\infty} (F(b_i) - F(a_i)) \mid E \subseteq \bigcup_{1}^{\infty} (a_i, b_i)\}$$

Proof 每个 open interval 都等于 a ctbl disjoint union of h-intervals, 从而是在这个被取 inf 集合内的; 所以只需要证明能取到这个 inf 即可. Fix $\epsilon > 0$, 我们根据定义可以取到一个 seq $(a_i, b_i]$ 使得它 measure sum

 $\leq \mu(E) + \epsilon/2$, 而我们对于每个 i, 在 interval 的右边再取一个 $< \epsilon/2^{i+1}$ 的 δ_i , 就变成了一个 open interval, 并且最后距离这个 h-interval seq 的 measure sum 差距至多 $\epsilon/2$. 从而得证.

Theorem 7.1 (outer regularity)

对于一个 Lebesgue-Stieltjes measure associated with F, 任意 $E \in \mathcal{M}_{\mu}$, 它的 measure 等于:

$$\mu_F(E) = \inf\{\mu_F(U) \mid U \text{ open , and } E \subseteq U\}$$

$$(7.1)_{\bigcirc}$$

Proof Directly follows from lemma. 首先, by monotonicity, 一个包含 E 的开集 U 的 μ_F 一定比 E 的大. 并且, 对于任意的 $\epsilon > 0$, 都可以找到一个 open covering 使得 measure sum $< \mu_F(E) + \epsilon$, by def.

Theorem 7.2 (inner regularity)

对于一个 Lebesgue-Stieltjes measure associated with F, 任意 $E \in \mathcal{M}_{\mu}$, 它的 measure 等于:

$$\mu_F(E) = \sup\{\mu_F(K) \mid K \text{ compact , and } K \subseteq E\}$$
 (7.2)

Proof 首先证明 E bounded 的 case. 假设 E bdd.

如果 E closed, 则 E cpt, trivially true.

如果 E open, 那么 E 的 bounadry 是 closed (cpt) 的, 从而 $\partial E \in \mathcal{M}_{\mu}$ 我们 let $\epsilon > 0$. 我们对 ∂E 使用 outer regularity, 可以取一个 open set U covering ∂E , 并且使得 $\mu_F(U) \leq \mu_F(E) + \epsilon$

此时取 $K := E \setminus U$, 我们发现这是一个 approximating E 的 compact set, 并且有:

$$E = K \sqcup (U \cap E)$$

从而:

而对于 unbounded 的 case, 直接由

$$E = \bigsqcup_{j} (E \cap (j, j+1])$$

得到.

Remark outer / inner regularity 表示, \mathbb{R} 上一个 (LS-measurable set 的) LS measure 就等于它内部用 cpt set 逼近它的 measure limit; 以及等于它外部用 open set 逼近它的 measure limit. 这个性质也可以推广到 \mathbb{R}^n 上.

7.2 Lebesgue-Stieltjes measurable 的等价条件

Def 7.2 $(G_{\delta}, F_{\sigma} \text{ sets})$

Topological space 中, 一个 coutable intersection of open sets 被称为一个 G_{δ} set, 一个 countable union of closed sets 被称为一个 F_{σ} set.

Remark topological space 中, finite intersection of open sets 还是 open set, 但是 countable intersection 则未必; finite union of closed sets 还是 closed set, 但是 countable union 则未必.

 G_{δ} sets 包括了所有的 open sets, 以及一部分扩充; F_{σ} sets 包括了所有的 closed sets, 以及一部分扩充.

Theorem 7.3 (Lebesgue-Stieltjes measurable 的等价条件)

TFAE:

i

$$E \in \mathcal{M}_{\mu}$$

ii 存在一个 G_δ set V 以及一个 measure zero set N_1 ($\mu_F(N_1)=0$) 使得

$$E = V \setminus N_1$$

iii 存在一个 F_{σ} set H 以及一个 measure zero set N_2 ($\mu_F(N_2)=0$) 使得

$$E = H \cup N_2$$

iv 存在一个 open set U 使得对于任意的 $\epsilon > 0$, 都有

$$\mu^*(U \setminus E) < \epsilon$$

Proof 由 (ii) 和 (iii) 推得 (i) 是 trivial 的. 这是因为 LS measure 是 complete measure, 任意 null set 都是 measurable 的. 由 (i) 推 (ii) 和 (iii): follows from outer 与 inner regularity. 假设 E 是 LS-measurable 的, 我们直接取一个 inner seq of cpt subsets 以及一个 outer seq of open super sets, 使得

$$\mu_F(U_j) - \frac{1}{2i} \le \mu_F(E) \le \mu_F(K_j) + \frac{1}{2i}$$
 (7.3)

于是就得到: $V := \bigcap_i U_i$, $H := \bigcup_i K_i$, 与 E 的差集都是一个 null set. 并且它们分别为 G_δ 和 F_σ sets.

Remark σ-algebra 和 topology 各自只 closed under finite 的交和并, 而 $< \mathcal{B}(\mathbb{R}) > \mathbb{N}$ closed under ctbl 交和并, 从而所有的 G_δ 和 F_σ sets 都在其中. \mathcal{M}_μ 是一个比 $< \mathcal{B}(\mathbb{R}) > \mathbb{N}$ 更大的集合, 但是其实它其中的元素都可以用 G_δ 和 F_σ sets, 即 $< \mathcal{B}(\mathbb{R}) > \mathbb{N}$ 中的集合来逼近. 这是合理的, 因为 completion 就是把一些 subnull sets 加入到了 σ -algebra 里.

7.3 Lebesgue measure and its invariance properties

Def 7.3 (Lebesgue measure)

Lebesgue measure 即 Lebesgue-Stieltjes measure associated with F(x) = x. 我们用 $m := \mu_F$ 来表示它,并用 $\mathfrak{L} := \mathcal{M}_m$ 来表示所有的 Lebesgue measurable sets.

从而 R 上的 Lebesgue measure space 表示为:

 $(\mathbb{R},\mathfrak{L},m)$

Remark Lebesgue measure 是最 normal 的 Lebesgue-Stieltjes measure, 它 preserve intervals 的长度作为其 measure:

$$m((a,b]) = b - a$$

Theorem 7.4 (£ preserves translation and scaling)

if $E \in \mathfrak{L} \Longrightarrow E + s, rE \in \mathfrak{L} \, \forall s, r \in \mathbb{R}$.

并且, m(E+s) = m(E), m(rE) = |r|m(E)

0

Proof 首先, 如果 $E \in \mathcal{B}(\mathbb{R})$, 那么 by hw 1, 我们证明了 $\mathcal{B}(\mathbb{R})$ 是 closed under translation 和 scaling 的, 因而 $rE, E + s \in \mathcal{B}(\mathbb{R})$.

我们 define on $A_0 := \{\text{finite union of h-intervals}\}:$

$$m_s(E) := m(E+s)$$

$$m^r(E) := m(rE)$$

显然, 这两个函数 agree with m, |r|m. 由于 $m \not\in \sigma$ -finite 的, 从而 by Hahn-Kolmogrov, 它 uniquely extend to $\mathcal{B}(\mathbb{R})$. 因而, m_s 在 $\mathcal{B}(\mathbb{R})$ 上和 m 相等, m^r 在 $\mathcal{B}(\mathbb{R})$ 上和 |r|m 相等. 并且, 我们知道 $(\mathbb{R}, \mathcal{L}, m)$ 是 completion of $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$, 因而 m_s 也同样 complete to m on \mathcal{L} . (同理, m^r 也同样 complete to |r|m on \mathcal{L})

Remark 我们只要证明两个 measure function 在 premeasure 上相等或称倍数关系, 就能证明它们在 induced (complete) measure 上相等.

此外, 有另一种证明方式. After we know m_s 在 $\mathcal{B}(\mathbb{R})$ 上和 m 相等, m^r 在 $\mathcal{B}(\mathbb{R})$ 上和 |r|m 相等, 我们由 7.3 Lebesgue-Stieltjes measurable 的等价条件可知: \mathfrak{L} 上的集合一定是一个 Borel set 并上一个 null set, 由于 null set 的 measure 在经过 translation 和 scaling 后仍然是 0, 同样得证.

Lec 8 measurable function

8.1 general measurable function

Def 8.1 ((\mathcal{M} , \mathcal{N})-measurable function)

Let (X, \mathcal{M}) , (Y, \mathcal{N}) be measurable spaces, 如果 $f: X \to Y$ 满足:

$$B \in \mathcal{N} \implies f^{-1}(B) \in \mathcal{M}$$

,则称 f 为一个 $(\mathcal{M}, \mathcal{N})$ -measurable function.

从一个 measurable space 到另一个 measurable space 的 function 被称为 measurable 的条件是: 被映射到可测集的集合只能是可测集.

这个定义和 topological space 上 continuous 的定义: 被映射到开集的只能是开集, 形式是完全一样的. 并且我们知道, topological space 和 measure space 也有很多相似之处. 因而连续性和可测性有一定的关系.

函数的可测性的定义是 with respect to 它们所在可测空间选定的 σ -algebra 的, 就像 topologica spaces 之间函数的连续性的定义是 with respect to 它们所在的 topological spaces 选定的 topology.

这两个定义都表示的是: 性质不好的集合不会被映射到性质良好的集合. (但是性质良好的集合有可能被映射到性质不好的集合.)

Proposition 8.1 (composition preserves measurability)

如果 $f \in (A, B)$ -measurable 的, $g \in (B, C)$ -measurable 的, 那么 $g \circ f \in (A, C)$ -measurable 的.

Proof Trivial.

Lemma 8.1

Let (X, \mathcal{M}) , (Y, \mathcal{N}) be measurable spaces, 如果 $\mathcal{N} = <\varepsilon >$ for some $\varepsilon \subseteq Y$, 那么

$$f: X \to Y (\mathcal{M}, \mathcal{N})$$
-measurable $\iff f^{-1}(E) \in \mathcal{M} \quad \forall E \subseteq \varepsilon$

Proof foward direction: trivial.

backward direction: Let

$$D := \{ E \subset Y \mid f^{-1}(E) \in \mathcal{M} \}$$

容易证明: $D \supseteq \varepsilon$, 并且 D 是一个 σ -algebra.

因而 $D \supseteq < \varepsilon > = \mathcal{N}$

Remark 如果我们知道 \mathcal{N} 是由某个子集生成出来的,那么对于映射到这个 measurable space 的函数,只要保证这个子集中的每个集合的 preimage 都是可测集就可以了,可以 reduce 判断 f measurable 的条件.

同样类比 topological space, 如果 Y 的 topology 存在一个 basis, 那么判断 $f: X \to Y$ 连续, 只需要判断这个 basis 的 preimage 都是 open 的就好了.

Proposition 8.2

对于 topological space X, Y, let $f: X \to Y$

$$f$$
 continuous $\Longrightarrow f \not\in (\mathcal{B}(X), \mathcal{B}(Y))$ measurable 的.

Remark topological spaces 之间, 连续函数一定是在它们的 Borel algebra 之间 measurable 的.

8.2 real and complex-valued measurable function

Def 8.2 ((real-valued) measurable functions)

Let (X, A) be a measurable space, 对于 $f: X \to \mathbb{R}$ 如果它是 $(A, \mathcal{B}(\mathbb{R}))$ -measurable 的, 我们直接简称它是 A-measurable 的, 或者简称为 measurable 的.

Remark 实际上,使用无穷作为值,就是把原本不在定义域上的无穷跳跃点放到了定义域上,些情况下,仅仅是一种方便的记号,但它们通常不会被视为真正的值.

但是等价地, 我们为了便利一般都会使用 extended real number system 来进行分析, 把这些无穷间断 当作无穷的值来进行分析.

这样做法的合理性是,对于**零测集大小多个这样的无穷间断点**,在 Lebesgue 积分体系下这一行为 **并不会影响函数的 integrability 以及 integral 的值**,因而我们可以这么做.这一点之后并不会造成困扰, 因为我们在之后定义可积空间时,会避开有超过零测集大小多个无穷间断点的函数,以及无法定义的行为.

我们容易验证:

$$\mathcal{B}(\overline{\mathbb{R}}) = \{ E \subseteq \overline{\mathbb{R}} \mid E \cap \mathbb{R} \in \mathcal{B}(\mathbb{R}) \}$$

以及, $\mathcal{B}(\mathbb{R})$ 的 generating set 可以是所有的 $(a,\infty]$ 集合或者 $[-\infty,a)$ 集合. 所以一个 map to \mathbb{R} 的函数是可测的, 当且仅当任意 $(a,\infty]$ 的 preimage 都可测.

Def 8.3 ((complex-valued) measurable functions)

如果 $f:X\to\mathbb{C}$ 满足: $\mathrm{Re}\,f,\mathrm{Im}\,f$ 都是 (real-valued) X-measurable 的,那么也称 f 是 X-measurable 的,或者直接说是 measurable 的.

Remark 任意 complex function f 都可以写为

$$f = \operatorname{Re} f + i \operatorname{Im} f$$

这个定义其实等价于 $f \in (\mathcal{M}, \mathcal{B}(\mathbb{C}))$ -measurable 的,因为这个 statment 等价于 $\operatorname{Re} f$, $\operatorname{Im} f$ 都是 (real-valued) X-measuable 的,这是因为

$$\mathcal{B}(\mathbb{C}) \equiv \mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$$

Def 8.4 (Lebesgue measurable functions, Borel measurable functions)

Naturally, 如果 $f: \mathbb{R} \to \mathbb{C}$ 是一个 \mathfrak{L} -measurable 的函数, 那么我们称 f 是 **Lebesgue measurable** 的. 同样地, 如果它是一个 $\mathcal{B}(\mathbb{R})$ -measurable 的函数, 称 f 是 **Borel measurable** 的.

Proposition 8.3

在任何 \mathcal{M} -measurable function f 前 compose 一个 Borel measurable 的 function, 结果仍然是 \mathcal{M} -measurable 的, follows from composition preserves measurability.

Proof Follows from def.

Example 8.1 f^2 , -3f, $\frac{1}{|f|}$ $(f \neq 0)$ 都仍然是 \mathcal{M} -measuble 的.

8.3 arithmetic and sequential preservation of measurable functions

Proposition 8.4 (addition and multiplication 保留 measuability)

如果 f,g 是 \mathcal{M} -measurable function, 那么 f+g,fg 也是.

Proof Suffices to assume f, g is (extended) real-valued. Complex case follows trivially.

Suppose f, g 是 \mathcal{M} -measurable 的, 我们想要证明: f + g 是 \mathcal{M} -measurable 的, suffices to show: $(f + g)^{-1}(a, \infty] \in \mathcal{M}$ for any $a \in \mathbb{R}$.

我们 notice:

$$\{x \in X \mid f(x) + g(x) > a\} = \bigcup_{r \in \mathbb{Q}} \{x \mid f(x) > r\} \cap \{x \mid g(x) > a - r\}$$
(8.1)

于是 finishes the proof.

对于 fg, 我们发现有

$$fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$$

于是也 finishes the proof, following 前一个 proposition.

Lemma 8.2 (sequential behavior of real-valued measurable function)

如果 $\{f_n:X\to\overline{\mathbb{R}}\}_{n\in\mathbb{N}}$ 是一个 seq of \mathcal{M} -measurable functions, 那么

•

$$g_1(x) := \sup_{j} f_j(x)$$

•

$$g_2(x) := \inf_j f_j(x)$$

•

$$g_3(x) := \limsup_{j \to \infty} f_j(x)$$

•

$$g_4(x) := \liminf_{j \to \infty} f_j(x)$$

都是 M-measurable 的.

Proof

$$g_1(x) = \sup_{j \in \mathbb{N}} f_j(x).$$

由上确界的定义:

$$g_1(x) > a \iff \exists j \in \mathbb{N}, \text{ such that } f_j(x) > a.$$

因此,

$${x \mid g_1(x) > a} = \bigcup_{j \in \mathbb{N}} {x \mid f_j(x) > a}.$$

因而:

$$g_1^{-1}((a,\infty]) = \bigcup_{1}^{\infty} f_j^{-1}((a,\infty])$$

由于 f_j 可测,集合 $\{x\mid f_j(x)>a\}$ 是 \mathcal{M} -measurable,而可测集合的可数并仍然是可测的,因此 g_1 可测。

inf: dually.

limsup: 等于 inf of sup $(k \ge n)$

liminf: 等于 sup of inf $(k \ge n)$

Remark 从这个 proof 里笔者发现了这个惊人的事情。居然有

$$(sup_j f_j)^{-1}((a, \infty]) = \bigcup_{1}^{\infty} f_j^{-1}((a, \infty])$$

但是仔细想想也是合理的. 因为 function seq 的 sup 函数能够 map 到的值大的元素肯定比其中任何一个 function f_n 更多. 并且其中存在一个 limit 关系.

以及得出了一个很重要的结论: 可测函数的 seq 的各种极限仍然是可测函数.

Corollary 8.1

如果 $\{f_n:X o\overline{\mathbb{R}}\}_{n\in\mathbb{N}}$ 是一个 seq of \mathcal{M} -measurable functions, 且在任意 x 处极限都存在, 那么

$$f(x) := \lim_{j \to \infty} f_j(x)$$

是 \mathcal{M} -measurable 的.

 \circ

Proof directly follows from lemma. 因为 x 处极限如果存在, 那么 $\sup_f f_i(x) = \inf_i f_i(x)$

Corollary 8.2

$$f, g \mathcal{M}$$
-measurable $\implies \max(f, g), \min(f, g)\mathcal{M}$ - measurable

 \sim

Proof two element sequence, 剩余的用空集, 于是 follows form above.

Remark 于是我们知道, 当我们把 f 拆分成 $f^+ := \max(f, 0), f^- := \max(-f, 0),$ 我们有

$$f \mathcal{M}$$
-measurable $\implies f^+, f^- \mathcal{M}$ -measurable

并且由于 $f = f^+ - f^-$, 反向也成立. 并且 $|f| = f^+ + f^-$, 因而有:

$$f \mathcal{M}$$
-measurable $\iff f^+, f^- \mathcal{M}$ -measurable $\iff |f| \mathcal{M}$ -measurable

Lec 9 simple function and integration of nonnegative functions

9.1 indicator and simple function

Def 9.1 (characteristic (indicator) function)

Given $E \subseteq X$, 我们定义:

$$\chi_E(x) := \begin{cases} 1 & , x \in E \\ 0 & , x \notin E \end{cases}$$

Lemma 9.1

如果 (X, \mathcal{M}) 是一个 measurable space, 那么一个 indicator function

$$\chi_E$$
 on X 是 measurable 的 \iff $E \in \mathcal{M}$

indicator function measurable 当且仅当它 indicate 的集合是 measurable 的.

Def 9.2 (simple function)

一个 simple function on measurable space (X,\mathcal{A}) 是一个 \mathcal{A} -measurable function $\phi:X\to\mathbb{C}$, taking only finitely many values.

*

$$\mathfrak{P} \colon \phi(X) = \{c_1, \cdots, c_k\}$$

Proposition 9.1 (使用 a sum of indicator functions of measurable sets 来定义 simple function)

对于 simple function $\phi: X \to \mathbb{C}$ s.t. $\phi(X) = \{c_1, \dots, c_n\}$, 我们也可以定义它为:

$$\phi(x) = \sum_{i=1}^{n} c_j \chi_{E_j}$$

其中, $E_j = \phi^{-1}(\{c_j\})$. 我们称之为: the standard representation of simple ϕ .

这是因为, 单点集在 $\mathcal{B}(\mathbb{C})$ 上是 measurable 的, 由于 ϕ measurable, 我们得到 $E_j \in \mathcal{M}$. Remark 对于 simple function

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{E_j}$$

一定有

$$\bigsqcup_{j=1}^{n} E_j = X$$

其中通常有一个 E_i 上 ϕ 的值是 0.

Lemma 9.2

如果 $\phi, \psi: X \to \mathbb{C}$ 是 simple functions, 那么

- \bullet $\phi + \psi$
- $\bullet \phi \psi$

- $|\phi|$
- $k\phi \ \forall k \in \mathbb{C}$

都是 simple functions.

特别地, 如果 $\phi, \psi: X \to \mathbb{R}$, 那么 $\max(\phi, \psi)$, $\min(\phi, \psi)$ 也是 simple functions.

 \bigcirc

Proof trivial.

9.2 measurable function is a limit of simple functions

Theorem 9.1 (approximating a nonneg measurable function by simple function)

任意的 measurable $f:X \to [0,\infty]$ 都是 pointwise limit of an increasing sequence of simple functions $\{\phi_n:X \to [0,\infty]\}_{n\in\mathbb{N}}$.

Proof 这个构造看起来有点复杂但是其实非常直观.

对于 $n \in \mathbb{N}$, 我们都 index $0 \le k \le 2^{2n} - 1$

然后对每个 k 取:

$$E_n^k := f^{-1}((\frac{k}{2^n}, \frac{k+1}{2^{n+1}}])$$

以及:

$$F_n := f^{-1}((2^n, \infty])$$

即,我们把 $(0,2^n]$ 这一部分值域切成了 2^{2n} 份,再把 $(2^n,\infty]$ 这一部分值域单独列成一份.

这 $2^{2n}+1$ 份值域的切片, 我们对每一份所对应的 function graph, 都取它对应的 Preimage 上的 indicator function 乘以 $\frac{k}{2n}$, 这段值域的最小值的 constant 函数, 于是一定会得到一个 well approximation:

$$\phi_n := \sum_{k=0}^{2^{2n}-1} k \frac{k}{2^n} \chi_{E_n^k} + 2^n \chi_{F_n}$$

易得,

$$\phi_n \le \phi_{n+1} \le f$$

for all n. 并且在 $X \setminus F_n = \{x \mid f(x) \le 2^n\}$ 上我们有:

$$0 \le f - \phi_n \le \frac{1}{2^n}$$

随着n增大,最终这个近似会覆盖整个 image, (除非具有非零测数量的无穷间断点,那样的话最后结果也是无穷),并且值域的划分越来越精细,最后会得到:

- $\phi_n \to f$ pointwisely
- 在 f bounded 的定义域 $\{x \mid f(x) < \infty\}$ 上, $\phi_n \to f$ uniformly.

Remark 我们在构造 simple function 的时候这样用到 measurability: 这里的每个 ϕ_n 是 simple function, 是由于 f measurable, 以至于每个 E_n^k , F_n 作为 interval 的 preimage, 都是 measurable sets.

Corollary 9.1 (approximating a complex-valued measurable function by simple function)

对于任意的 measurable $f: X \to \mathbb{C}$, 都存在 a seq of simple functions

$$0 \le |\phi_1| \le |\phi_2| \le \dots \le |f|$$

使得

- $\phi_n \to f$ pointwisely
- $\phi_n \to f$ uniformly on $\{x \mid |f(x)| < \infty\}$

Proof 我们可以把 f 拆为 Im f, Re f, 然后再把它们分别拆为 $\text{Im } f^+ - \text{Im } f^-$, 以及 $\text{Re } f^+ - \text{Re } f^-$. 得到四个 real-valued nonng functions.

9.3 integration of non-neg functions

Def 9.3 (L^+ space and integration on it)

给定一个 measure space (X, \mathcal{M}, μ) 我们定义:

$$L^+(\mu) := \{ \text{measurable functions } f: X \to [0, \infty] \}$$

对于所有的 **simple functions** $\phi = \sum_{j=1}^{n} a_j \chi_{E_j} \in L^+(\mu)$, 即所有非负的 simple functions, 我们定义 **the integral of** ϕ **with respect to** μ by:

$$\int \phi d\mu \ (= \int_X \phi d\mu) := \sum_{i=1}^n a_i \mu(E_i)$$

对于任意的 $f \in L^+(\mu)$, 我们定义 the integral of f with respect to μ by:

$$\int f d\mu \; (= \int_X f d\mu) := \sup \{ \int \phi d\mu \mid 0 \le \phi \le f, \phi \; \text{simple} \}$$

Remark 因而对于 general 的非负可测函数, 我们通过 9.1 得知, 我们可以用 simple function 来近似它. 从而, 我们使用 simple function 的积分的极限来定义 general measurable function 的积分.

而 simple function 的积分,即等于它下方的面积. 因而我们发现,这个积分的定义和 $\mathbb{R}^n \to \mathbb{R}$ 上 Rieamnn 积分有很大的相似之处,不同在于一个竖切定义域一个横切值域.

之后我们也会证明, 在 $\mathbb{R}^n \to \mathbb{R}$ 上, 所有 Riemann 可积的函数也 Lebesgue 可积, 并且得到的结果相同.

这一积分的定义是对 Riemann 积分的推广.

Remark measure theory 中的积分理论是把从 \mathbb{R}^n 出发的函数推广到了从抽象的测度空间出发的函数; 而还有其他的积分理论, 比如微分形式上的积分则是把实值函数的积分推广到了 oriented smooth manifolds 上, 不仅可以积分 scalars 还可以积分向量场. 这些积分理论的共同点是对 $\mathbb{R}^n \to \mathbb{R}$ 上的函数的积分是 coincide 的.

笔者感觉积分理论就是在一个抽象空间上,通过一个抽象的密度函数 (被积函数) 以及体积指标 (measure function), 得到一个抽象质量。由于这个理念本身是从 \mathbb{R}^n 上 generalize 的,因而各种不同的积分理论在 \mathbb{R}^n 上的积分总是 coincide 的

Def 9.4 (integration on a subset)

对非负 simple functions $\phi = \sum_{j=1}^{n} a_j \chi_{E_j} \in L^+(\mu)$, 我们定义 the integral of ϕ on $A \in \mathcal{M}$ with respect to μ by:

$$\int_A \phi \ d\mu := \int \phi \chi_A \ d\mu$$

对于 general 的 $f \in L^+(\mu)$, 我们也从而定义:

$$\int_A f d\mu := \sup \{ \int_A \phi d\mu \mid 0 \le \phi \le f, \phi \text{ simple} \}$$

Remark

$$\int_{A} \phi \ d\mu := \int \phi \chi_{A} \ d\mu = \sum_{j} a_{j} \chi_{A \cap E_{j}}$$

Proposition 9.2 (integral of simple functions 的性质)

Let ϕ, ψ be simple functions in $L^+(\mu)$, 有:

- homogeneity: 对于任意非负 c, 有 $\int c\phi = c \int \phi$
- linearity: $\int (\phi + \psi) = \int \phi + \int \psi$
- monotonicity: $\phi \leq \psi \implies \int \phi \leq \int \psi$
- induced measure: $A\mapsto \int_A \phi\ d\mu$ 是一个 $\mathcal M$ 上的 measure.

Proof homogeneity trivial.

linearity: Let

$$\phi = \sum_{i=1}^{n} a_i \chi_{E_i} \quad , \psi = \sum_{j=1}^{n} b_j \chi_{F_j}$$

则有:

$$E_j = \bigsqcup_k (E_j \cap F_k)$$
 , $F_k = \bigsqcup_j (E_j \cap F_k)$

for each j, k. 从而有

$$\int \phi + \int \psi = \sum_{j,k} (a_j + b_k) \mu(E_j \cap F_k)$$

Monotonicity: trivial.

induced measure: 只需要证明 countable additivity, 于是我们让 A be the union of a disjoint seq in \mathcal{M} ,:

$$\int_{A} \phi = \sum_{i} a_{j} \mu(A \cap E_{j}) = \sum_{i,k} a_{j} \mu(A_{k} \cap E_{j}) = \sum_{k} \int_{A_{k}} \phi$$

Remark 本身, 我们已经基于一个 measure 作为"体积密度", 来定义一个 simple function 按照这个体积密度得到的积分, 而它在每个可测集上的积分又可以定义另一个 measure;

这个 measure 表示"某个集合和 E_1, \dots, E_n 的交集在这个体积密度以及 simple function 放缩下有 多大".

那么对于 general 的 $f \in L^+(\mu)$, 有刚才的四条性质成立吗? **显然, monotonicity 和 homogeinity 是成立的**, 但是我们会发现, 很难证明

$$\int f \ d\mu + \int g \ d\mu = \int (f+g) \ d\mu$$

≤是容易证明的,但是≥有点困难. 为了证明≥这个方向,我们需要下面这个重要定理:

9.4 MCT

Theorem 9.2 (monotone convergence theorem)

Let $\{f_n\}_{n\in\mathbb{N}}$ be a seq in $L^+(\mu)$, 并且有 $f_n \leq f_{n+1}$ for each n. 我们 define:

$$f := \lim_{n} f_n \ (= \sup_{n} f_n)$$

,则一定有

$$\int f = \lim_{n \to \infty} \int f_n$$

Proof 首先 Note 几个事情: 1. 这个极限函数 f 是 well-defined 的 (可能 ∞), by numerical sequence 的 monotone bounded convergence theorem.

- 2. 同样地, 由于 $\int f_n \leq \int f_{n+1} \leq \int f$, 这个 $\lim \int f_n$ 也是存在的.
- 3. 并且, f 也是一个可测函数, 因为 by 上个 lecture 的定理: 可测函数序列的极限也是可测函数。现在进行证明: By monotonicity of integral,

$$\lim \int f_n \le \int f$$

是 natural 的. 因而只需要证明另一方向.

By def, $\int f = \sup\{\int \phi \mid \phi \leq f\}$ where ϕ is simple. 因而 it **suffices to show:** 对于任意 **simple** $\phi \leq f$, 都有 $\lim \int f_n \geq \int \phi$.

我们 fix 一个 $0 \le \phi \le f$. WTS:

$$\lim_{n} \int f_n \ge \int \phi$$

要证明 $\lim \int f_n \ge \int \phi$, 我们再把它转化成证明:

$$\forall \alpha \in (0,1) \lim_{n} \int f_n \ge \alpha \int \phi$$

我们取

$$E_n := \{x \mid f_n(x) \ge \alpha \phi\} = f^{-1}([\alpha \phi, \infty]) \in \mathcal{M}$$

容易发现, $E_n \subseteq E_{n+1}$ for each n. 并且 Claim: $\bigcup_n E_n = X$. (这就是为什么要做取 α 这个意义不明的行为) 这是因为 $\alpha < 1$, 并且 f_n converge pointwisely to f, by measurable function 的 limit behavior. 而由于 simple function ϕ 是 bounded 的,从而 f_n 会 uniformly 向上接近 (以至于超过) ϕ . 取 α 是为了保证,

一定存在一个n使得 $E_n = X$

于是我们有:

$$\int f_n \ge \int f_n \chi_{E_n} \ge \int \alpha \phi \chi_{E_n} = \alpha \int_{E_n} \phi$$

我们此处又可以用到一条冷门的性质: 由于 $E\mapsto \int_E \phi$ 是一个 measure on (X,\mathcal{A}) , by continuous from below, 有:

$$\lim_{n} \int_{E_{n}} \phi = \int \phi$$

从而有

$$\lim_{n} \int f_n \ge \alpha \int \phi$$

finishing the proof.

Remark 这是一个非常重要的定理. 它表示了非负可测函数的极限的积分等于积分的极限,可以把取极限和积分这两个操作进行换序.

以下为一个应用 MCT 得到的结论.

Example 9.1 取

$$(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{counting})$$

于是

$$L^+(\mu) = \{ f : \mathbb{N} \to [0, \infty] \}$$

是所有的从自然数到 reals 的函数. (因为我们取了 power set 作为 σ -algebra) 注意到任何一个这样的函数都可以被

$$\phi_n := \sum_{j=1}^n f(j)\mu(\{j\}) = \sum_{j=1}^n f(j)$$

来逼近. 从而

$$\int f = \sum_{j=1}^{\infty} f(j) \in [0, \infty]$$

如果取一个从下逼近 f 的可测函数序列 $\{f_n\}_{n\in\mathbb{N}}$, 那么 by MCT, 我们总有:

$$\sum_{1}^{\infty} f_n(j) \nearrow \sum_{1}^{\infty} f(j)$$

9.4.1 (countable) linearity of integral

Corollary 9.2

$$f, g \in L^+(\mu) \implies \int (f+g) = \int f + \int g$$

Proof 使用 approximation by simple functions 以及 MCT. 取

$$\phi_n \nearrow f$$
, $\psi_n \nearrow g$

,从而

$$\phi_n + \psi_n \nearrow f + g$$

,从而我们有

$$\int (f+g) \stackrel{MCT}{=} \lim_{n} \int (\phi_n + \psi_n)$$

从而由 simple function 的 Linearity 得到:

$$\int (f+g) = \lim_{n} \int \phi_n + \lim_{n} \int \psi_n$$

并且由于

$$\int \phi_n \nearrow \int f, \int \psi_n \nearrow \int g$$

我们得到:

$$\int (f+g) \ge \int f + \int g$$

另一方向 trivial.

Remark 由此可见,

 $f \mapsto \int f$ 是 \mathbb{R} -linear 的映射.

9.4.2 Tonelli for sum and integrals

Corollary 9.3 (Tonelli for sum and integrals)

for $\{f_i\}_{i\in\mathbb{N}}$ in $L^+(\mu)$, 有:

$$\int \sum_{i=1}^{\infty} f_i = \sum_{i=1}^{\infty} \int f_i$$

 $^{\circ}$

Proof Apply MCT to

$$g_n = \sum_{i=1}^n f_i$$

可得证.

Remark 这是 linearity of integral 的 countable version.

由此可见 MCT 的用处很大.

Lec 10 properties of integration on $L^+(\mu)$

10.1 Fatou's Lemma

Theorem 10.1 (Fatou's Lemma)

 $\diamondsuit (f_n)$ be a seq of functions in $L^+(\mu)$, then

$$\liminf_{n} \int f_n \ge \int \liminf_{n} f_n$$

Proof Set

$$g_n := \inf_{m > n} f_n$$

于是

$$g_n \nearrow \liminf_n f_n$$

于是 by MCT, we have:

$$\lim_{n} \int g_{n} = \int \lim_{n} g_{n} = \int \liminf_{n} f_{n}$$

By def, 我们有 $g_n \leq f_n \ \forall n$, 于是 by monotonicity, $\int g_n \leq \int f_n$. 因而

$$\liminf_{n} \int f_n \ge \liminf_{n} \int g_n = \lim_{n} \int g_n = \int \liminf_{n} f_n$$

Remark 对于 increasing 的从而有 limit 的可测 (f_n) , 我们可以使用 MCT.

但是对于任意的可测 (f_n) , 我们无法使用 MCT, 不过有弱化的版本 Fatou's Lemma. 它表示**下极限的积分小于等于积分的下极限**.

这是一个符合直觉的事情, 因为取函数的 pointwise 极限是一个很容易极端的事情.

积分的极限是一个 numerical seq 的极限, 比较 robust. 而函数的逐点极限是一个比较不稳定的事情, 在对函数逐点极限的过程中,它的"质量"会存在一个比较大的损失,因为其中可能包含了 uncountably many 个点的函数值的逐点极限的累积,而积分的极限只是单个点的逐点极限. 因而大小关系很显然. Example 10.1 取 $(\mathbb{R}, \mathcal{L}, m)$, 考虑 $L^+(m)$ 上的函数, 即非负 Lebesgue 可测函数.

下面有几个非常经典的 Fatou's Lemma 的例子:

1. escape to hat:

$$f_n = \chi_{(n,n+1)}$$

 f_n 在 \mathbb{R} 上平移

2. escape to width:

$$f_n = \frac{1}{n}\chi_{(0,n)}$$

 f_n 逐渐变得平坦

3. escape to height:

$$f_n = n\chi_{(0,n)}$$

 f_n 逐渐变成一根针.

这三个例子中都有 $f_n \to 0$ pointwisely. 因而

$$\int \lim f_n = 0$$

,而

$$\lim \int f_n = 1$$

,因为对于所有 f_n 都有 $\int f_n = 1$

10.2 Chebyshev's inequality with corollaries

Lemma 10.1 (Chebyshev's inequality)

对于 measure space (X, \mathcal{M}, μ) , 如果 $f \in L^+(\mu)$ 并且 c > 0, 那么

$$\mu\{f \ge c\} \le \frac{1}{c} \int f$$

Proof Let $E := \mu \{ f \ge c \}$

$$\int f \ge \int f \chi_E \ge \int c \chi_E = c \int \chi_E = c \mu(E)$$

Remark 一个可测集的测度, 就等于 constant 1 在它上面的积分, by definition.

这是一个简单而常用的结论.

Proposition 10.1 (非负函数积分为 0 等价于几乎处处为 0)

令 $f ∈ L^+(\mu)$, 有:

$$\int f = 0 \iff f = 0 \text{ a.e. } (\text{即只在一个零测集上非 0})$$

Proof forward direction: directly follows from Chebyshev: set $A_n := \{f \geq \frac{1}{n}\}$, 对于任意 n 都有 $\mu(A_n) \leq n \int f = 0$. 从而 by ctn from below, > 0 处构成零测集.

backward direction: 对于 simple function, trivial by 积分的定义; 对于 general f, 通过 limit 得到 (它下方的所有 simple functions 也 a.e. 为 0 从而积分为 0).

Corollary 10.1 (几乎处处相等的非负函数积分相等)

Let $f, g \in L^+(\mu)$ 且 f = g a.e., 则有

$$\int f = \int g$$

 \bigcirc

Proof Set $D := \{x \mid f(x) \neq g(x)\}, \mathbb{N} \mid \mu(D) = 0 \text{ by def}$

$$\int f = \int_{D} f + \int_{D^{c}} f = 0 + \int_{D^{c}} g = \int g$$

Corollary 10.2 (liminf version of MCT)

suppose $(f_n)_{n\in\mathbb{N}}$ 是一个 seq of functions in $L^+(\mu)$, 且 $f_n\to f\in L^+(\mu)$, 则:

$$\liminf_{n} \int f_n \ge \int f$$

 \sim

Proof 这是一个条件稍微弱化的 MCT: 把 $f_n \nearrow f$ 的条件改成了 $f_n \to f$ a.e., 得到的结论也稍弱化. **modify** f_n **and** f **on a null set** (thus without chaning the integral) 后, follows directly from **Fatou's lemma**,

Theorem 10.2 (积分收敛 \Longrightarrow 发散点集零测, 以及 support σ -finite)

如果 $f \in L^+(\mu)$ 且 $|\int f| < \infty$, 则有:

$$\mu(\{x \in X \mid f(x) = \infty\}) = 0$$

并且

$${x \mid f(x) > 0}$$

is σ -finite

Proof 直接 follows from Chebyshev. 取

$$A_t := \{x \mid f(x) \ge t\}$$

for t > 0.

于是:

$${x \in X \mid f(x) = \infty} = \bigcap_{n=1}^{\infty} A_n$$

By Chebyshev, each A_n 都有: $\mu(A_n) \leq \frac{1}{n} \int t$, 从而 by continuous from above 可得这个交集的 measure 为 0.

又有:

$${x \in X \mid f(x) > 0} = \bigcup_{n=1}^{\infty} A_{\frac{1}{n}}$$

其中, each set has measure $\leq n \int f \leq \infty$. By def, 这个集合 σ -finite.

Lec 11 integration of real and complex functions I

我们目前只定义了 non-negative \mathbb{R} -valued measurable function 的积分, 而我们想要完整地定义: \mathbb{R} -valued measurable function 的积分 $\int f \in \mathbb{R}$, 以及 \mathbb{C} -valued measurable function 的积分 $\int f \in \mathbb{C}$.

recall: 对于任意 $\overline{\mathbb{R}}$ -valued f,

$$f = f^+ - f^-$$

因而我们希望 define:

$$\int f = \int f^+ - \int f^-$$

但是其中有一个 undefined 的问题: 我们要避免 $\infty - \infty$ 这一类的问题. 因而我们无法对所有的可测函数进行积分, 而是定义"integrable"的可测函数.

Lemma 11.1

$$\begin{cases} \int f^+ < \infty \\ \int f^- < \infty \end{cases} \iff \int |f| < \infty$$

Proof trivial.

正负部分都可控,肯定是当且仅当绝对值函数可控.

我们接下来将定义可积函数的空间是: 所有绝对值积分非无穷的函数. (怎么和预期不一样... 这样的话这个空间在积分运算下的值域就是 \mathbb{R} 而不是 $\overline{\mathbb{R}}$ 了. 我期待的是为了避免无穷之间相减的 undefined behavior 只需要正负部分有一个积分非无穷就行了. 但是我们要求的是都不是无穷. 不过既然这么定义了肯定有其道理.)

11.1 $\tilde{L}(X,\mu,\mathbb{C})$ and $L^1(X,\mu,\mathbb{C})$

Def 11.1 (real-valued integrable function)

Given measure space (X, \mathcal{M}, μ) , **measurable** $f: X \to \mathbb{R}$ 被称为 **integrable** 的, 如果它满足

$$\int |f| < \infty$$

并定义其 integral 为:

$$\int f = \int f^+ - \int f^-$$

Def 11.2 (complex-valued integrable function)

Further, 我们定义 measurable $f: X \to \mathbb{C}$ 是 integrable 的, 如果它同样满足:

$$\int |f| < \infty$$

注意到这个条件等价于 $\operatorname{Re} f$, $\operatorname{Im} f$ integrable, 因为

$$|f| \le |\operatorname{Re} f| + |\operatorname{Im} f| \le 2|f|$$

我们定义其 integral 为:

$$\int f = \int \operatorname{Re} f + i \int \operatorname{Im} f$$

Remark 所以说,实值函数的积分要计算两个,复值函数的积分要计算四个. (好麻烦.)

Proposition 11.1

所有的 real-valued integrable functions 构成一个 \mathbb{R} -vector space, 并且 integral 是一个 linear functional on it.

所有的 complex-valued integrable functions 构成一个 C-vector space, 并且 integral 是一个 linear functional on it.

Proof trivial.

下面我们可以定义这个 vector space 并在上面进行一定研究. 此处为一个 temporary 的记号:

Def 11.3 $(\tilde{L}(X,\mu,\mathbb{R})$ 以及 $\tilde{L}(X,\mu,\mathbb{C})$ space)

给定 measure space (X, \mathcal{M}, μ) 我们定义

 $\tilde{L}(X,\mu,\mathbb{R}):=\{ ext{all (extended) real-valued integrable functions on }X\}$

以及

$$\tilde{L}(X,\mu,\mathbb{C}):=\{\text{all complex-valued integrable functions on }X\}$$

Remark 这基本接近我们最终的可积空间的定义了. 只需要再 quotient 掉所有的 a.e. 相等的函数就可以. 在此之间, 我们首先在这临时的空间上证明一些结论.

我们基本不使用 $\tilde{L}(X,\mu,\mathbb{R})$, 因为它是 $\tilde{L}(X,\mu,\mathbb{C})$ 的 subspace, 而且大部分结论基本都在更 general 的 $\tilde{L}(X,\mu,\mathbb{C})$ 上成立.

Remark 这个 C-vector space 的 dimension 是多少呢:

如果 X 是一个 finite set, 那么 $\tilde{L}(X,\mu,\mathbb{C})$ 的 dimension 是 |X|, 因为 $e_i:x_j\mapsto \delta_{ij}$ 是一个 basis; 同样 的, 如果 X countable, 那么 $\tilde{L}(X,\mu,\mathbb{C})$ 的 dimension 也是 countably infinite 的; 如果 X uncountable, 那么 $\tilde{L}(X,\mu,\mathbb{C})$ 的 dimension 也是 uncountable 的.

比如, $\tilde{L}(\mathbb{R}^n, \mu, \mathbb{C})$ 的 dimension 就是 uncountable 的.

Proposition 11.2

$$\tilde{L}(X,\mu,\mathbb{C})$$
 上, $f\mapsto \int f$ 为一个 linear functional.

因为积分是 linear 的, as we have proved.

Proposition 11.3

$$f \in \tilde{L}(X, \mu, \mathbb{C}) \implies |\int f| \le \int |f|$$

Proof For real-valued case,

$$\Big|\int f\Big| = \Big|\int f^+ - \int f^-\Big| \le \Big|\int f^+\Big| + \Big|\int f^-\Big| = \int f^+ + \int f^- = \int |f|$$

For complex-valued case, Set

$$\alpha = \frac{\int f}{|\int f|}$$

于是有 $\alpha \in \mathbb{C}$ 且 $|\alpha| = 1$. Note: 一个绝对值为 **1** 的 complex number 的倒数是它的 conjuate. 因而:

$$\Big| \int f \Big| = \overline{\alpha} \int f = \int \overline{\alpha} f \in \mathbb{R}$$

从而

$$\left| \int f \right| = \int \overline{\alpha} f = \int \operatorname{Re}(\overline{\alpha} f) \le \int |\operatorname{Re}(\overline{\alpha} f)| \le \int |\overline{\alpha} f| = \int |f|$$

Def 11.4 (integratal restricted to a measurable set)

if $f \in \tilde{L}(X, \mu, \mathbb{C})$, $E \in \mathcal{A}$ (μ 的 σ -algebra), 我们 define:

$$\int_E f \, d\mu := \int f \chi_E \, d\mu$$

Remark 容易验证, restricted to a measurable set 的积分也是 linear 且 monotone 的.

Proposition 11.4 (可积函数几乎处处相等的等价条件)

if $f,g \in \tilde{L}(X,\mu,\mathbb{C})$, 则 TFAE:

- f = g a.e.
- $\int |f g| = 0$
- $\int_E f = \int_E g$ for all $E \in \mathcal{A}$

Proof $(i) \iff (ii)$: by last time proposition.

 $(ii) \Longrightarrow (iii)$: 因为

$$\left| \int_{E} f - \int_{E} g \right| = \left| \int (f - g) \chi_{E} \right| \le \int |f - g| \chi_{E} \le \int |f - g| = 0$$

 $(iii) \implies (ii) \colon \diamondsuit \ u := \mathrm{Re}(f-g), \, v := \mathrm{Im}(f-g), \, \mathbb{M}$

$$\int |f - g| = \int u^{+} + \int u^{-} + i \int v^{+} + i \int v^{-}$$

这四个积分都是正值。容易发现如果 u^+ 在一个 positive measure set E 上非 0, 那么 $\int_E u^+>0$, 那么 $\int_E u^+>0$, 那么 $\int_E u^+>0$, 那么

Remark $\int |f-g|=0$ 是一个比 $\int f-g=0$ 更强的条件. $\int f-g=0$ 可以是非零集有交错并且正负抵消, 而 $\int |f-g|=0$ 则表示 a.e. 相等.

Remark 有这个定理得: **我们可以** integrate $f: X \to \mathbb{C}$ a.e. defined. 即:

$$f: E^c \to \mathbb{C}$$
 , $\mu(E) = 0$

其中的一种情况是:

$$f: X \to \overline{\mathbb{R}}$$
 s.t. $|f| < \infty$ a.e.

并且我们发现, a.e. 相等的两个可积函数 $f,g \in \tilde{L}(X,\mu,\mathbb{C})$ 在任意可测集上的积分都相等. 于是这两个函数在 $\tilde{L}(X,\mu,\mathbb{C})$ 中的表现是相等的. 因而我们可以把 a.e. 相等的这种关系 quotient 掉, 简化这个

空间:

Def 11.5 ($L^1(\mu)$ **space**)

我们定义 $L^1(X,\mu,\mathbb{C})$, 或简称为 $L^1(\mu)$, 为:

$$\tilde{L}(X,\mu,\mathbb{C})/\sim$$

其中 \sim 表示一个 equivalent class: $f \sim g$ if f = g a.e. (等价于 $\int |f - g| = 0$)

 $L^{1}(\mu)$ 中的每个函数之间彼此至少都在一个正测度集上相互不同. 这减去了分析上考虑几乎处处相等的集合的顾虑, 对于处处相等的函数, 我们认为它们在 $L^{1}(\mu)$ 上直接相等. 并且, 我们有:

$$f \mapsto \int f$$

在 $L^1(\mu)$ 上是一个 well-defined function.

11.2 DCT

Lemma 11.2

 (f_n) $\not\to$ a seq of **a.e. defined functions** on X., s.t.

$$f(x) := \lim_{n \to \infty} f_n(x)$$

exists a.e. Claim: f is measurable.

Remark Measurability is well preserved by taking limit, 并且更改一个零测集上函数的 definedness 不会改变这个 behavior. (这是一个很宽的条件了)

Theorem 11.1 (dominated convergence theorem)

Let (f_n) be a seq of functions in $L^1(\mu)$, s.t.

- $f_n \to f$ a.e.
- 存在 $g \in L^1(\mu)$ s.t. $|f_n| \leq g$ a.e. for all n.

Claim: $f \in L^1(\mu)$ 并且

$$\int f = \lim_{n} \int f_{n}$$

Proof 首先由于 $f_n \to f$ a.e., by lemma 可以得到 f 是 measurable 的. 并且

 $|f_n| \le |g|$ a.e. $\implies |f| \le |g|$ a.e.

于是

$$\int |f| \le \int |g| < \infty$$

即 $f \in L^1$. (从而 |f| 至多在一个 measure zero set 上无穷).

并且 $g(x) \pm f_n(x) \ge 0$ a.e. 这一点很重要, 因为从而我们可以对 $g + f_n$, $g - f_n$ 使用 Fatou's Lemma:

$$\int g + \int f = \int (g + f) = \int (g + \lim_{n \to \infty} f_n)$$
(11.1)

$$= \int \lim_{n \to \infty} (g + f_n) \tag{11.2}$$

$$= \int \lim_{n \to \infty} (g + f_n)$$
by Fatou
$$\leq \liminf_{n} \int (g + f_n)$$
(11.2)

$$= \int g + \liminf_{n} \int f_{n} \tag{11.4}$$

从而 (由于 $\int g < \infty$)

$$\int f \le \liminf_{n} \int f_{n}$$

以及 similarly get:

$$\int g - \int f \stackrel{\text{by Fatou}}{\leq} \liminf_{n} \int (g - f_n) = \int g - \limsup_{n} \int f_n$$

从而:

$$\int f \ge \limsup_{n} \int f_{n}$$

(这里注意, negate 一个 numerical seq 后 liminf 变 limsup. 由此可见 Fatou'e Lemma 其实是很强大的,只 需要对 $\int g + \int f$ 和 $\int g - \int f$ 各用一次就可以得到:)

$$\int f = \lim_{n \to \infty} \int f_n$$

Remark DCT 是 MCT 在 L^1 上的推广. MCT 只作用于非负的可测函数, 并且要求序列递增. 而 DCT 则 作用于更加广泛的情况.

DCT 增加的要求是存在一个 L^1 的 (a.e.) bound function, 以及极限 a.e. 存在于 extened $\mathbb R$. 这两个要 求都是合理的,一个控制了函数的上下浮动程度,一个控制了序列的收敛性.

而进一步, 我们可以把"存在 $g \in L^1$ s.t. $|f_n| \leq |g|$ a.e. for all n."这一条件放宽到: 存在一个 seq (g_n) 以及 g in L^1 , 使得

- $|f_n| \leq g_n$
- $g_n \to g$ a.e.
- $\int g_n \to \int g$

Proof 在 hw 5.

Example 11.1 Suppose $u:[0,1] \rightarrow [0,1]$ is Lebesgue measurable.

考虑这一 seq of function: (u^n) .

容易发现 $u^n \to \chi_{\{u=1\}}$ p.w. 我们可以用 g=1 作为 bound function. 从而得到:

$$\int f = \lim_{n \to \infty} \int f_n = \int_{\{u=1\}} 1 = m(\{\mu = 1\})$$

Example 11.2 compute

$$I = \lim_{n \to \infty} \int_{[0,1]} \frac{1 + nx^2}{(1 + x^2)^n}$$

 $f_n(x):=\frac{1+nx^2}{(1+x^2)^n},$ 有: $f_n(x)\to 0$ as $n\to\infty$ for $x\in(0,1]$;

并且考虑 g=1, 作为 bound.

因而有 I=0

Lec 12 integration of real and complex functions II

12.1 corollaries of DCT

以下为 DCT 的 corollaries:

12.1.1 Fubini for series and integral

Corollary 12.1 (Fubini for series and integral)

对于 $L^1(\mu)$ 中的 sequence (f_n) , 如果 $\sum_{n=1}^{\infty} \int |f_n| < \infty$, 则

$$\sum_{n=1}^{\infty} f_n \stackrel{a.e.}{\to} F \in L^1(\mu)$$

并且

$$\int \sum_{n=1}^{\infty} f_n = \int F = \sum_{n=1}^{\infty} \int f_n$$

Proof Recall **Tonelli for sum and integrals**: 对于 $\{f_n\}_{n\in\mathbb{N}}$ in $L^+(\mu)$, 有:

$$\int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$$

(又是经典 Fubini 补充 Tonelli) 这个定理是 Tonelli for sum and integrals 在 L^1 上的推广. 我们 set

$$F_n := \sum_{i=1}^n f_j \quad G := \sum_{n=1}^\infty |f_n|$$

By Tonelli for sum and integrals, 有:

$$\int G = \int \sum_{n=1}^{\infty} |f_n| = \sum_{n=1}^{\infty} \int |f_n|$$

由条件知道, $\int G < \infty$, 因而 $G \in L^1(\mu)$. 所以 G 可以作为 F_n 的 DCT bound:

$$\int |F| \le \int G = \sum_{n=1}^{\infty} \int |f_n|$$

因而 by DCT::

$$\int F = \lim_{n \to \infty} \sum_{i=1}^{n} \int f_i = \sum_{n=1}^{\infty} \int f_n$$

Remark Fubini's for sum and integrals:对于一个 seq of 可积函数,如果它们的绝对积分和收敛,那么它们的 infinite sum 函数也是可积的,并且可以交换积分和极限次序.

其实显然. 因为绝对积分和肯定 by tri ineq 是大于等于和的积分的, 绝对积分和能作为一个 bound function.

12.1.2 a function that is measurable in one var and ctn/diffble in another

Corollary 12.2

 \diamondsuit (X, \mathcal{A}, μ) be a measure space.

如果 $f: X \times [a,b] \to \mathbb{C}$ 满足 $f(\cdot,t) \in L^1(\mu)$ for all $t \in [a,b]$, 令

$$F(t) := \int f(x,t) \ d\mu(x)$$

则有:

- 1. 如果 $t \mapsto f(x,t)$ 对于任意 x 都连续, 并且存在一个 $g \in L^1(\mu)$ 使得 $|f(t,x)| \leq g(x)$ for all t,x, 那么 F 也是 **ctn** 的.
- 2. 如果 $\frac{\partial f}{\partial t}(x,t)$ 对于任意 x,t 都存在, 并且存在一个 $g \in L^1(\mu)$ 使得 $|\frac{\partial f}{\partial t}(x,t)| \leq g(x)$ for all t,x, 那么 F 是 differentiable 的, 并且

$$F'(t) = \int \frac{\partial f}{\partial t}(x,t) \ d\mu(x)$$

 \odot

Proof 这一证明并不困难.

For part(1), STS: $t_n \to t \implies F(t_n) \to F(t)$

Apply DCT with $f_n(x) = f(x, t_n), f(x) = f(x, t).$

For part(2), Suppose $t_n \to t$.

Apply DCT to

$$h_n(x) := \frac{f(x, t_n) - f(x, t)}{t_n - t}$$

由可导得连续得 $x \mapsto \frac{\partial f}{\partial t}(x,t)$ measurable.

并且 by MVT,

$$|h_n(x)| \le \sup_{t \in [a,b]} \left| \frac{\partial f}{\partial t}(x,t) \right| \le g(x)$$

从而我们也用 g bound 住了 $h_n(x)$. Apply DCT:

$$F'(t) = \lim_{n \to \infty} \frac{F(t_n) - F(t)}{t_n - t} = \lim_{n \to \infty} \int \frac{f(x, t_n) - f(x, t)}{t_n - t} = \lim_{n \to \infty} \int h_n = \int \frac{\partial f}{\partial t}(x, t) \ d\mu(x)$$

Remark 由 DCT, 我们不仅可以交换积分和求极限的次序, 还可以在足够的条件下交换多变量的求导和积分的次序. 这一点是值得注意的, 因为 DCT 描述的 sequential behavior 可以应用到证明函数 continuous 和 derivative 存在, 使用 sequential definition.

如: 如果一个多变量函数对于 x 是 measurable 的, 并且满足对于 t 的 partial derivative 处处符合 DCT 条件. 那么我们可以**调换它对于** x **积分和对于** t **求导的顺序**.

看起来很雾但是我们看一个例子(此为一个反例):

Example 12.1 是否有:

$$\frac{\partial}{\partial t} \int_{\mathbb{R}_{>0}} e^{-tx} dm(x) \stackrel{???}{=} \int_{\mathbb{R}_{>0}} -xe^{-tx} dm(x) = -\frac{1}{t^2}$$

Here

$$f(t,x) = e^{-tx}, \quad t > 0, x > 0$$

因而

$$\left| \frac{\partial}{\partial t} f(t, x) \right| = x e^{-tx}, \quad t > 0, x > 0$$

尝试找到它的 dominating g(x): 这个函数在 $t \to 0$ 处的上极限是 g(x,t) = x, 但是这个 g 却不是一个 L^1 函数 (在半轴上积分为 ∞). 从而它不可以这么交换积分和求导顺序. 但是如果把 t 的范围限制在 $t \ge a \in \mathbb{R}_+$ 而不是 t > 0, 我们就可以交换这个积分和求导顺序, 因为此时可以设定

$$g(x,t) = xe^{-ax}$$

12.2 L^1 as a Banach space

Theorem 12.1 ($L^1(\mu)$ 以 integral w.r.t. μ 作为 norm 是一个 normed VS)

在 $L^1(\mu)$ 上, 我们 set

$$||f|| := \int |f|$$

则 $(L^1(\mu), ||\cdot||)$ 为一个 normed \mathbb{C} -vector space. 即, 这是一个 well-defined norm.

Proof recall norm 的定义, 需要符合:

• Homogeneity:

$$||af|| = |a| \cdot ||f||$$

• triangle ineq:

$$||f + g|| \le ||f|| + ||g||$$

• nonnegativity:

$$||f|| \ge 0$$
, = iff $f = 0 \in L^1$ (i.e. $f(x) = 0$ a.e.)

前两条是积分的 linearity 的下位推论. 后一条 by def.

Corollary 12.3 $((L^1(\mu), ||\cdot||)$ 是一个 Banach space)

 $(L^1(\mu), ||\cdot||)$ 的 induced metric space 是 complete 的. 即, every Cauchy seq converges.

(从而这是一个 Banach space.)

 \sim

Proof $\mathbb{R} - \uparrow$ Cauchy seq (f_n) in L^1 .

这里有一个值得 recall 的 proposition:

Proposition 12.1

在一个 metric space 中, 一个 Cauchy seq converges 当且仅当它存在一个 convergent 的 subsequence.

证明很简单. 对于任意的 ϵ , 可以取 $\max(N, M)$, 其中 N 为使得这个子序列所有元素距离 $x_* < \epsilon/2$ 的下标, M 为使得主序列所有元素两两之间距离 $< \epsilon/2$ 的下标.

因而我们只需要证明存在一个 subseq (f_{n_j}) s.t. $f_{n_j} \stackrel{j \to \infty}{\longrightarrow} f \in L^1$ 即可.

已知 Cauchy, WTS: f_n 收敛且极限在 L^1 中. 我们直觉: 用 Cachy 条件构造 $1/\epsilon^2$ argument.

我们 pick 子下标 $(n_i)_{i\in\mathbb{N}}$ 使得对于每个 j 都有

$$m, n \ge n_j \implies ||f_m - f_n||_1 \le \frac{1}{2^j}$$

并 set

$$g_j := f_{n_j} - f_{n_{j-1}}, \quad g_1 = f_{n_1}$$

则有

$$\sum_{j=1}^{\infty} \int |g_j| \le 1 < \infty$$

从而 by Fubini's Thm for series and seqs, 存在:

$$f := \lim_{j \to \infty} \sum_{i=1}^{j} g_j = \lim_{j \to \infty} f_{n_j} \in L^1 \ \exists a.e.$$

同时有

$$\int |f - f_{n_j}| \le \sum_{j=1}^{\infty} \int |g_j| \le \frac{1}{2^j} \stackrel{j \to \infty}{\longrightarrow} 0$$

Remark 这里就发现了 Fubini for series and seq 的用处: 把求和与积分的换序从有限推广到无限求和上, 以绝对积分和有限为条件. 因而, **绝对积分和有限的 seq 是性质强大的.**

而我们可以运用这一点来发掘 function seq 的性质, 比如这里把一个 function seq 通过构造前后项差的方式, induce 出一个绝对积分和有限的 seq, 从而用这个 seq 的积分和反向证明原 seq 的性质.

12.3 density of simple function of $L^1(\mu)$

Theorem 12.2 (density of simple functions in $L^1(\mu)$)

 \diamondsuit (X, \mathcal{A}, μ) 为一个 measure space, \diamondsuit $f \in L^1(\mu)$,

对于任意 $\epsilon > 0$, 都存在 simple $\phi: X \to \mathbb{C}$ in $L^1(\mu)$, 使得

$$\int |f - \phi| < \epsilon$$

Proof 这是显然的, by 积分的定义. 我么首先把 f divide 为

$$f = u + iv$$
, $u = u^{+} - u^{-}$, $v = v^{+} - v^{-}$

而后对这四个非负函数 u^+, u^-, v^+, v^- 分别使用 simple function seq approximation, 再使用 DCT:

$$\int \lim \phi_n = \int u^+ = \lim \int \phi_n$$

比方说 (ϕ_n) 为从下逼近 u^+ 的 simple function seq, 那么 u^+ 是它的 dominating function, 同时也是极限. 那么对于任意的 $\epsilon > 0$ 都存在一个 n 使得

$$||u^+ - \phi_n||_1 \le \int u^+ - \int \phi_n < \epsilon$$

尤其是这一特殊情况:

12.3.1 density of step functions in $L^1(m)$

Theorem 12.3 (LS measure space H/3 L^1 space \pm H/3 density of step functions)

考虑 $(\mathbb{R},\mathcal{L},m_s)$ where m_s 为一个 Lebesgue-Stieljes measure on \mathbb{R} , let $f\in L^1(\mu)$, 对于任意 $\epsilon>0$, 都存在 step function $\phi=\sum_{j=1}^N c_j\chi_{I_j}$, 使得

$$\int (f - \phi) < \epsilon$$

where each I_j 都是 open intervals.

 ${f Proof}$ 和 general case 相似. 利用 the fact that 任意一个 Lebesgue mble function 都可以用 step function 来 approximate.

Lec 13 integration of real and complex functions III

13.1 another dense subspace of $L^1(m_s)$: $C_c(\mathbb{R})$

上一节课我们知道了: 所有的 simple functions 在 $L^1(\mu)$ 中构成了一个 dense subspace. 尤其是特殊情况: 对于 $(\mathbb{R}, \mathcal{L}, m_s)$, **所有的 step functions 构成了一个 dense subspace of** $L^1(m_s)$.

今天我们先介绍另一个特殊情况 $(\mathbb{R}, \mathcal{L}, m_s)$ 的 $L^1(m_s)$ 的 **另一个 dense subspace: 所有的 cpt supported continuous function.**

也就是说, 任意的 Lebesgue intble function 都可以用 ctn function with compact supp 来近似. 一个可积函数可以是 supp 非常怪异的以及非常 unctn 的, 但是却可以用 ctn and cpt supp functions 来逼近, in L^1 sense. 当然这是一种弱逼近. 函数可以差异很大.

Def 13.1 $(C_c(X))$

$$C_c(X) := \{ \text{all ctn functions } f: X \to \mathbb{C} \text{ with cpt supp} \}$$

*

Theorem 13.1 ($C_c(X) \subset L^1(\mu)$ 是一个 dense linear subspace)

 $C_c(\mathbb{R}) \subset L^1(\mu_m) \not \to - \uparrow \text{ dense linear subspace.}$

 \Diamond

Proof 对于 $f \in L^1(m_s)$, let $\epsilon > 0$. 我们首先 pick 一个 step function 来 approximate f:

$$\phi = \sum_{j=1}^{n} c_j \chi_{I_j}, \quad s.t. ||f - \phi||_1 < \frac{\epsilon}{2}$$

空出来的 $\frac{\epsilon}{2}$, 我们使用 ctn and cpt supp function f_j 对每个 χ_{I_j} 进行逼近, by:

从而 $\|\sum_i f_i - \phi\| < \frac{\epsilon}{2}$, 因此 $\|\sum_i f_i - f\| < \frac{\epsilon}{2}$ by tri ineq. 得证.

13.2 Riemann v.s. Lebesgue integral

我们已经完成了一个任意的 measure space 上的 Lebesgue 积分的定义, 以及可积空间的定义. Recall: Riemann integral 是对于 $\mathbb{R}^n \to \mathbb{R}$ 的函数定义的, 经典定义为 $\mathbb{R} \to \mathbb{R}$ 的函数. 现在我们比较对于 $\mathbb{R} \to \mathbb{R}$ 的函数的 Riemann 和 Lebesgue 积分. 我们将会得出结论: **Riemann 积分是 Lebesgue 积分的特殊情况, 即, Riemann 可积的函数一定也 Lebesgue 可积, 并且积分值相同**. (对于

 $\mathbb{R}^n \to \mathbb{R}$ 的函数也一样, 之后将展开.)

Recall Riemann integral 的定义:

Def 13.2

对于 $f:[a,b] \to \mathbb{R}$ bdd, 一个 partition $\mathcal{P} = \{t_j\}_{j=0}^n$ on [a,b] 满足

$$a = t_0 < t_1 < \dots < t_n = b$$

Define:

$$S_{\mathcal{P}}(f) := \sum_{j=1}^{n} \sup_{[t_{j-1}, t_j]} f(t_j - t_{j-1})$$

$$s_{\mathcal{P}}(f) := \sum_{j=1}^{n} \inf_{[t_{j-1}, t_j]} f(t_j - t_{j-1})$$

Define over all possible partition on [a, b]: lower integral and upper integral

$$\overline{I}(f) := \inf_{\mathcal{P} \text{ partition}} S_{\mathcal{P}}(f)$$

$$\underline{I}(f) := \sup_{\mathcal{P} \text{ partition}} s_{\mathcal{P}}(f)$$

注意到,对于任意的f,总是有

$$\underline{I}(f) \leq \overline{I}(f)$$

我们称 f 是 Riemann integrable 的, if

$$\underline{I}(f) = \overline{I}(f) := I(f)$$

这个 I(f) 称为 f 在 [a,b] 上的 Riemann integral.

13.2.1 Riemann intble \implies Lebesgue intble

Theorem 13.2 (Riemann integral 是 Lebesgue integral 的特殊情况)

$$f$$
 Riemann integrable $\implies \begin{cases} f \in L^1([a,b],\mathcal{L}.m) \\ I(f) = \int_{[a,b]} f \ dm \end{cases}$

Proof for (a): 对于给定 partition \mathcal{P} , 我们 set:

$$G_{\mathcal{P}} := \sum_{j} M_{j} \chi_{[t_{j-1}, t_{j}]}, \quad g_{\mathcal{P}} := \sum_{j} m_{j} \chi_{[t_{j-1}, t_{j}]}$$

从而有:

$$S_{\mathcal{P}}(f) = \int G_{\mathcal{P}} dm, \quad s_{\mathcal{P}}(f) = \int g_{\mathcal{P}} dm$$

我们知道, refinement 能增加 s_P , 减小 S_P 从而增加逼近精度, 这一点在 Lebesgue integral 中更加明显:

$$\mathcal{P} \subset \mathcal{P}' \implies g_{\mathcal{P}} \le g_{\mathcal{P}'} \le f \le G_{\mathcal{P}'} \le G_{\mathcal{P}} \tag{13.1}$$

$$\implies s_{\mathcal{P}} \le s_{\mathcal{P}'} \le I(f) \le S_{\mathcal{P}'} \le S_{\mathcal{P}} \tag{13.2}$$

由于 f Riem integrable, 存在一个 seq of partitions (\mathcal{P}_n) 使得 $\mathcal{P}_n \subset \mathcal{P}_{n+1}$, $||\mathcal{P}|| \to 0$ (mesh), 并且

$$s_{\mathcal{P}_{\backslash}}, S_{\mathcal{P}_{\backslash}} \stackrel{n \to \infty}{\longrightarrow} I(f)$$

因而 settiing

$$g:=\lim_{n\to\infty}g_{\mathcal{P}_n}$$

为一个 increasing limit;

$$G := \lim_{n \to \infty} G_{\mathcal{P}_n}$$

为一个 decreasing limit; 由 mble seq 的 limit behvior 得 $g,G\in L^1(m)$ 且 $g\leq f\leq G$ 并且 by DCT:

$$\int g \, dm = \lim_{n} \int g_{\mathcal{P}_{n}} = I(f)$$

$$\int G \, dm = \lim_{n} \int G_{\mathcal{P}_{n}} = I(f)$$

从而

$$g \le f \le G$$
, and $\int (G - g) \ dm = 0$

因而

$$g = G \ a.e. \ (\Longrightarrow = f \ a.e.)$$

因而

$$I(f) = \int f \ dm$$

(由于 m complete, f 是 Lebesgue mble 的.)

Remark 整体 intuitive. 对定义域的切分是对值域的切分的特殊情况.

13.2.2 Lebesgue's criterion for Riemann integrability

Theorem 13.3 (Lebesgue's characterization of Riemann integrability)

定义

$$D_f = \{x \text{ where } f \text{ is not ctn at}\}$$

则有

f Riemann intble
$$\iff m(D_f) = 0$$

Proof 在 395 中已经证明一次. 这里再回顾一次.

Backward direction: trivial.

Forward direction: assume f Riemann intble .

对于 $f:[a,b] \to \mathbb{R}$, 我们 define:

$$H(x) := \lim_{\delta \to 0} \sup_{|y-x| \le \delta} f(y), \quad h(x) := \lim_{\delta \to 0} \inf_{|y-x| \le \delta} f(y)$$

即 f 在 x 处的上下极限. 从而:

$$f$$
 ctn at $x \Longleftrightarrow \lim_{y \to x} f(y) = f(x) \Longleftrightarrow H(x) = h(x)$

因而要证明 $m(D_f) = 0$, STS: H(x) = h(x) a.e.

To prove this: 见 395.

Lec 14 modes of convergence

14.1 convergence family

对于 $f_n, f: X \to \mathbb{C}$, 我们目前有 4 种不同的 convergence.

2 general ones:

- pointwise convergence: 字面意思.
- uniform convergence (on a subset): 对于任意 error bound ϵ , 存在同一个序号 N 可以 ϵ -bound 住这个集合里所有的 x 的函数值和 limit 函数值的 error.

2 in a measure space:

- a.e. convergence: ptwise convergence for a.e. x, \mathbb{H} outside a null E.
- convergence in L^1 : $\int |f_n f| \to 0$

我们 recall trivial relation:

uni. $conv \implies ptwise. conv \implies conv. a.e.$

但是我们不清楚 L^1 -convergence 和它们之间的关系.

我们看以下的 examples:

Example 14.1 on $(\mathbb{R}, \mathfrak{L}, m)$, $\normalfont{\bigvee} \dash (f_n)$:

escape to width

$$f_n = \frac{1}{n} \chi_{(0,n)}$$

 $f_n \to 0$ uniformly $\not \sqsubseteq \not \to 0$ in L^1

escape to hat:

$$f_n = \chi_{(n,n+1)}$$

 $f_n \to 0$ ptwisely 但并不 uniformly, 并且 $\to 0$ in L^1

• escape to height:

$$f_n = n\chi_{[0,\frac{1}{n})}$$

 $f_n \to 0$ a.e., 但是并不 ptwisely, 当然也并不 uniformly, 并且 o 0 in L^1

• **typewriter**: 我们把区间 [0,1] 划分成 n 个等长子区间, 每个子区间的长度为 $\frac{1}{n}$, 令 $f_n(x)$ 在这些子区间上交替取 1 或 0:

$$f_n(x) = \begin{cases} 1, & x \in \left[\frac{k}{n}, \frac{k+1}{n}\right) \text{ for some even } k, \\ 0, & \text{otherwise.} \end{cases}$$

再取:

$$g_n(x) = f_n(x)/n$$

有

$$||g_n||_1 = \int_0^1 g_n(x) dx = \frac{1}{2n} \to 0$$

因而 $g_n \to 0$ in L^1 , 但是 $\forall x \in [0,1], g_n(x) \nrightarrow 0$ ptwisely. (也不 a.e.)

在这些例子中,我们发现, L^1 -convergence 和 uniform, ptwise, a.e. 这三个 modes of covergence 都互不推导. 对于 uniform convergence 和 ptwise convergence, 这是很合理的,因为可以函数越来越宽和扁使得积分不变但是却 uni conv; 也可以函数积分收敛但是在一个零测集上反复跳跃.

并且我们进一步发现, 就算是 a.e. 收敛, 也和 L^1 收敛没有互推关系. 比如 ex (3), 这个函数只在 0 处不收敛至 0, 但是整体的积分却是 const 1.

我们 recall: 两个函数 a.e. 相等, 等价于它们的 L^1 distance 为 0. 但是**它们作为函数列极限行为,并不相干**.

关于 L^1 -convergence 和 uniform, ptwise, a.e. convergence 的关系我们已经讨论完了. 接下来我们将关于 L^1 -convergence 这一条线, 引入一些新的 convergence modes, 在更大的 convergence family 中讨论这些 convergence 的关系.

14.2 3 new modes of convergence w.r.t. measure

Def 14.1 (fast L^1 -convergence, convergence in measure, subseq a.e. convergence)

对于 $f_n, f: X \to \mathbb{C}$, 我们定义以下三种 convergence:

• fast L^1 -convergence: if

$$\sum_{n=1}^{\infty} \int |f_n - f| < \infty$$

• convergence in measure: if

$$\mu(x:|f_n(x)-f(x)|>\epsilon)\stackrel{n\to\infty}{\longrightarrow} 0$$

• **subseq a.e. convergence**: if 存在一个 subseq (f_{n_i}) 使得

$$f_{n_i} \stackrel{j \to \infty}{\longrightarrow} f \quad a.e.$$

显然, fast L^1 -convergence $\implies L^1$ -convergence;

我们接下来将说明, fast L^1 -convergence 也 \implies a.e. convergence (于是它同时作为 a.e. convergence 和 L^1 -convergence 的上位收敛, 作为这两条线路的上位交汇.)

而我们也将说明: L^1 -convergence 和 a.e. convergence 都 \Longrightarrow subseq a.e. convergence, 作为这两条线路的下位交汇.

以及, L^1 -convergence \Longrightarrow convergence in measure.

Remark 对于 convergence in measure, 还有一个可提及的定义是 Cachy in measure: 对于任意 $\epsilon > 0$,

$$\mu(x:|f_n(x)-f_m(x)|>\epsilon) \stackrel{n,m\to\infty}{\longrightarrow} 0$$

我们可以证明 (Folland 2.30)

Cauchy in measure \implies convergent in measure

但是反向并不成立. examples 中, escape to width, escape to hat 以及 typewritter 是 convergent to 0 in measure 的, 但不 Cauchy in measure;

这里和我们在 metric space 上 distance function 的定义中的"convergent" 和"Cauchy" 是不同的, **在以 distance** 为收敛条件的意义上, convergent 是比 Cauchy 更强的性质.

以下的标记将在之后几个定理的证明中用到: 我们现在 define:

$$B_{n,k} := \{ x \in X : |f_n(x) - f(x)| \le \frac{1}{k} \}$$

这个集合表示**对第** nth term, error 控制在 $\frac{1}{k}$ 以内的点.

从而我们可以用交并的形式来表示 ptwise 收敛点的集合:

$${x \mid f_n(x) \to f(x)} = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n \ge N} B_{n,k}$$

Recall Chebyshev:

$$g \in L^1 \implies \mu(\{|g| \ge c\}) \le \frac{1}{c} \int |g|$$

Proposition 14.1 (fast L^1 **-conv** \Longrightarrow **a.e. conv.)**

$$\sum_{j=1}^{\infty} \int |f_n - f| < \infty \implies f_n \to f \ a.e.$$

Proof 我们取

$$\{x \mid f_n(x) \to f(x)\} = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n>N} B_{n,k}$$

的 complement

$$E := \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n \ge N} B_{n,k}^{c} = \{ f_n \not\to f \}$$

By Cheb, for each n, k we have:

$$\mu(B_{n,k}^c) \le k \int |f_n - f|$$

因而由 fast L^1 -convergence 的条件可得

$$\forall k \forall N, \quad \mu(\bigcup_{n \geq N} B_{n,k}^c) \leq k \sum_{n=N}^{\infty} \int |f_n - f| \quad (\to 0 \text{ as } N \to \infty)$$

因而 by ctn from above,

$$\mu(\bigcap_{N=1}^{\infty} \bigcup_{n>N} B_{n,k}^c) = 0$$

因而

$$\mu(E) = 0$$

Remark 我们知道, L^1 -convergence 和 a.e. convergence 互不能推, 因为这一个是逐点的性质, 一个是整体的性质. 但是 L^1 -convergence 作为一个整体的性质又不够强大 (它允许用函数的纵深来换取宽度, 从而在收敛的情况下保持积分不变.). 然而, fast L^1 -convergence 则是一个足够强大的整体性质. 因而它可以imply a.e. convergence.

Corollary 14.1 (L^1 -convergence (\Longrightarrow conv. in measure) \Longrightarrow subseq a.e. conv.)

if $f_n \to f$ in L^1 , then there exists subseq $(f_{n_j})_{j \in \mathbb{N}}$ s.t. $f_{n_j} \to f$ a.e.

(\mathbb{R}^p L^1 convergence implies subseq a.e. convergence)

 \bigcirc

 \Diamond

Proof 注意: 对于 L^1 -convergent 的 seq, 我们可以 pick 出一个 fast L^1 -convergent 的 subseq. Pick $(n_j)_{j\in\mathbb{N}}$ s.t.

$$\int |f_{n_j} - f| \le \frac{1}{j^n}$$

Then

$$\sum_{j=1}^{\infty} \int |f_{n_j} - f| < \infty$$

由刚才的 prop 得, $f_{n_j} \to f$ a.e.

14.3 a.e. and a.u. convergence, and Egoroff's Theorem

Def 14.2

我们称 $f_n \to f$ almost uniformly (a.u.), 如果 $\forall \varepsilon > 0$, 都存在 $E \subseteq A$ s.t. $\mu(E) < \varepsilon$ 并且 $f_n \to f$ uniformly on E^C

Remark 和 a.e. convergence 的定义不同, a.u. convergence 并不能保证在一个零测集外都 uniform convergence, 但是它仍然 imply a.e. convergence.

Theorem 14.1 (Egoroff's Theorem)

如果 μ 是个 finite measure $(\mu(X) < \infty)$, 那么

$$f_n \to f \ a.e. \iff f_n \to f \ a.u.$$

Proof a.u. \Longrightarrow a.e.: DIY (显然)

a.e. \implies a.u.: Fix $\varepsilon > 0$, 我们有

$$f_n \to f \ a.e. \iff \mu(\bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n \ge N} B_{n,k}^c) = 0$$

因而

$$\forall k, \ \mu(\bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n>N} B_{n,k}^c) = 0$$

By Ctn from Above:

$$\forall k, \lim_{N \to \infty} \mu(\bigcup_{n \ge N} B_{n,k}) = 0$$

Then:

$$\forall k, \ \exists N_k \ s.t. \ \mu(\bigcup_{n \ge N} B_{n,k}) < \frac{\varepsilon}{2^k}$$

Set

$$E := \bigcup_{K=1}^{\infty} \bigcup_{n \ge N_k} B_{n,k}^c$$

Then we have:

$$\begin{cases} \mu(E) < \sum_{1}^{\infty} \frac{\varepsilon}{2^{k}} = \varepsilon \\ f_{n} \to f \text{ unif. on } E^{c} = \bigcap_{k=1}^{\infty} \bigcap_{n \geq N_{k}} B_{n,k} \end{cases}$$

Remark 在 Prob Theory 中很有用, 因为 prob space 是 finite measure space.

Example 14.2 $\mu = \infty$ 时的反例: 考虑 escape to hat function $f_n := \chi_{(n,n+1)}$ on $(\mathbb{R}, \mathfrak{L}, m)$. $f_n \to 0$ a.e. 但是并不 a.u., 因为 $\mu(X) = \infty$.

Theorem 14.2 (Lusin's Theorem)

If $f:[a,b]\to\mathbb{C}$ 是 Leb. mble 的, 那么 $\forall \varepsilon>0$, 都存在 compact $K\subseteq[a,b]$ s.t. $m(K^c)<\varepsilon$ 并且 $f|_K$ ctn.

Proof 这里我们 restrict $(\mathbb{R}, \mathfrak{L}, m)$ to [a, b], 得到这个 subspace 是一个 finite (=b-a) 的 measure space. 我们知道 $C_c([a, b]) \subseteq L^1(m)$ 是 dense subset.

First assume f bounded, then $f \in L^1(m)$, $\int |f| < \infty$.

Then:

$$\exists (f_n) \subseteq C_c([a,b]) \ s.t. \ f_n \to f \ \text{in} \ L^1$$

Pass to subseq: $(f_{n_j}) \to f$ a.e.

Then by **Egorov**:

$$\exists F\subseteq [a,b] \text{ mble } s.t. \ \ \mu(F)<\frac{\varepsilon}{2}$$

并且 $(f_{n_i}) \to f$ uniformly on F^c .

By inner regu: 存在 $K \subseteq [a,b]$ cpt s.t. $K \subseteq F^c$ 并且 $m(F^c \setminus K) < \frac{\varepsilon}{2}$, 从而 $m(K^c) < \varepsilon$ 并且 f_n conv unif. on K, so f ctn on K.

Remark 这个定理的证明中展示了 subseq a.e. convergence 的用处.

我们可以从一个 L^1 -convergent 的 seq 中" 蒸馏" 出一个 a.e. convergent 的 subseq, conv to 同一个函数. 并且如果把空间限制在 measure finite 的 subset 上, 还能获取到一个 a.u. convergent 的 seq. a.u. convergent 的作用很大, 比如可以保留函数在一个比较大的空间上的 ctn 性质.

因而 subseq convergent 的性质可以 as good as convergent, a.u. 的性质可以 as good as uniform.

14.4 summary: convergence mode relations

一条线是函数值方面的收敛,一条线是测度和积分方面的收敛,第一次交汇是 fast L^1 conv, 汇聚在 subseq a.e. conv.

subseq a.e. conv. 是最弱的 convergence, 这里所有的 convergence 都可以推到它.

这里可能还有其他的 convergence 关系. 但是我们不关心. 因为不太会用到它们的关系.

Lec 15 product space and product measure

Goal: Given (X_i, A_i, μ_i) , construct $X = \prod X_i$, s.t.

$$\mu(E_1 \times E_2) = \mu_1(E_1)\mu_2(E_2)$$

So that we can do Fubini (iterated integration) like that in Riemann integral.

15.1 product σ -algebra

Def 15.1 (product σ -algebra)

Suppose (X_i, A_i) mble, $1 \le i \le n$, the product σ -algebra $A_1 \otimes \cdots \otimes A_n$ on $X_1 \times \cdots \times X_n$ is the smallest σ -algebra s.t. the **coordinate map**

$$\pi_i: X_1 \times \cdots \times X_n \to X_i$$

is measurable.

 $\text{ \mathbb{F}r the σ-algebra generated by: } \{\pi_{\alpha}(E_{\alpha}): E_{\alpha} \in \mathcal{A}_{\alpha}\}.$

$$A_1 \otimes \cdots \otimes A_n := \langle \{\pi_{\alpha}(E_{\alpha}) : E_{\alpha} \in \mathcal{A}_{\alpha} \} \rangle$$

我们容易发现:

Proposition 15.1

$$A_1 \otimes \cdots \otimes A_n = \langle \{E_1 \times \cdots \times E_n \in \mathcal{A}_i \times \cdots \times \mathcal{A}_n \} \rangle$$

Proof By def 易得. (Prop 1.14 in book).

Remark 这里只考虑了有限情况, 但是无限的乃至于 ctblly 无限的相似. 取所有可能的 set product 作为 geneating 即可.

15.1.1 product Borel algebra ⊂ Borel algebra of the product space

Proposition 15.2

If X_1, \dots, X_n are metric spaces. Let $X := X_1 \times \dots \times X_n$ (with product metric), then:

$$\bigotimes_{i=1}^{n} \mathcal{B}_{X_i} \subseteq \mathcal{B}_X$$

and the equality holds if X_i separable $\forall i$.

Proof

$$\bigotimes_{i=1}^{n} \mathcal{B}_{X_i} \stackrel{\text{by prop}}{=} < \{U_1 \times \cdots \times U_n \text{ each open}\} > \subseteq \mathcal{B}_X$$

Now let $C_i \subseteq X_i$ dense, ctbl.

Set

$$\mathcal{E}_i := \{B_r(x) \mid x \in C_i, r \in \mathbb{Q}_{>0}\} \subseteq \mathcal{B}_{X_i}$$

Then: every open set in $X_1 \times \cdots \times X_n$ is a ctbl union of products $B_1 \times \cdots \times B_n$, each $B_1 \in \mathcal{E}_i$. Then we have:

$$B_X = \langle \{B_1 \times ... \times B_n\} \rangle \subset \bigotimes_{1}^{n} B_{X_i}$$

Remark 显然. 有限 index 情况下, 在 product topology 中, product of open sets 仍然是 open set, 但是 open sets 可以不止是 product of open sets 这些. 因而 $\bigotimes_{i=1}^{n} \mathcal{B}_{X_i} \subseteq \mathcal{B}_{X}$.

并且在 separable 的 topological space 上, 比如 \mathbb{R} , 我们有: \mathbb{R}^n 中的任意 open set 都是 a ctbl union of open boxes. 于是 $\bigotimes_{i=1}^n \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^n}$

Example 15.1

$$\mathcal{B}_{\mathbb{R}^n} = \mathcal{B}_{\mathbb{R}} \otimes \cdots \otimes \mathcal{B}_{\mathbb{R}}$$

Corollary 15.1

if (X, A) is a mble space, then

$$f: X \to \mathbb{C} \ (\mathcal{A}, \mathcal{B}_{\mathbb{C}})$$
-mble $\iff \operatorname{Re} f, \operatorname{Im} f \ \mathcal{A}$ -mble

Proof 略.

15.2 product measure

下面我们构建 product measure: Let (X_i, A_i, μ_i) , $1 \le i \le n$ be mble spaces.

And let $X:=X_1\times...\times X_n$, $\mathcal{A}:=\mathcal{A}_i\otimes\cdots\otimes\mathcal{A}_n$ Goal: 通过 Hahn-Kromolgrov 来构建 product measure on product mble space. Idea: Let

 $\mathcal{A}' := \{\text{all finite disjoint unions of rectangles (each measurable)} A_1 \times \cdots \times A_n \}$

Step 1:

15.2.1 all finite disjoint unions of rectangles as an algebra

Proposition 15.3

 \mathcal{A}' is an algebra.

Proof The set $\mathcal{E} := \{\text{rectangles}\} \subseteq \mathcal{P}(X)$ satisfies:

- \circ $\varnothing \in \mathcal{E}$
- $E, F \in \mathcal{E} \implies E \cap F \in \mathcal{E}$
- $E \in \mathcal{E} \implies E^c$ is a finite disjoint union of recs (画图可知).

Step 2:

15.2.2 各维度 measure 的 product 作为 rectangle 的 measure, 从而定义 premeasure

Now define

$$\mu': \mathcal{A}' \to [0, \infty]$$

as follows:

$$\mu'(\bigsqcup_{k=1}^{N} E_1^{(k)} \times \dots \times E_n^{(k)}) = \sum_{k=1}^{N} \prod_{i=1}^{n} \mu_i(E_i^{(k)})$$

Claim 2:

Proposition 15.4

- (1) μ' is a well-defined premeasure on \mathcal{A}' .
- (2) If each μ_i is σ -finite, so is μ' .

Proof Sketch: (2) DIY. (1) STS(check): if $E = E_1 \times \cdots \times E_n$ is a finite or ctbl union of rects $E^{(k)} = E_1^{(k)} \times \cdots \times E_n^{(k)}$, then

$$\prod_{1}^{n} \mu_{i}(E_{i}) = \sum_{k} \prod_{1}^{n} \mu_{i}(E_{i}^{(k)})$$

Use Tonelli for sums and integrals:

$$\prod_{1}^{n} \chi_{E_i}(x_i) = \chi_{E}(x_1, \dots, x_n)$$
(15.1)

$$= \sum_{k} \chi_{E(k)}(x_1, \dots, x_n)$$
 (15.2)

$$= \sum_{k} \prod_{i=1}^{n} \chi_{E_{i}^{(k)}}(x_{i}) \tag{15.3}$$

Integrate w.r.t. x_1 :

$$\mu_1(E_1) \prod_{i=1}^n \chi_{E_i}(x_i) = \int \sum_k \prod_{i=1}^n \chi_{E_i^{(k)}}(x_i)$$
(15.4)

$$\stackrel{\text{Tonelli}}{=} \sum_{k} \int (\prod_{1}^{n} \chi_{E_{i}^{(k)}}(x_{i})) d \mu_{1}(x_{1})$$
(15.5)

$$= \sum_{k} \mu_1(E_1^{(k)}) \prod_{i=1}^n \chi_{E_i^{(k)}}(x_i)$$
 (15.6)

And repeat for $i = 2, \dots, n$.

15.2.3 HK extension of the premeasure as definition of product measure

Step 3: 现在已经有了 σ -finite 的 premeasure, 我们可以应用 HK Thm 构建出完整的 measure. Now use HK:

Corollary 15.2

 \exists measure $\mu := \mu_1 \times \cdots \times \mu_n$ on $\mathcal{A} = \mathcal{A}_1 \otimes \cdots \mathcal{A}_n$ extending μ' .

(And if each μ_i are σ -finite, then product measure 也 σ -finite, 从而 μ 是 unique extension.)

 \Diamond

由此, 我们从 A_1, \dots, A_n 的 measure 中构建出了它们的 product measure.

15.2.4 associativity of product σ -algebra and σ -finite product measure

Corollary 15.3 (assotiativity)

总有

$$\mathcal{A}_1 \otimes \mathcal{A}_2 \otimes \mathcal{A}_3 = (\mathcal{A}_1 \otimes \mathcal{A}_2) \otimes \mathcal{A}_3 = \mathcal{A}_1 \otimes (\mathcal{A}_2 \otimes \mathcal{A}_3)$$

并且, if μ_1, μ_2, μ_3 are σ -finite, then:

$$\mu_1 \times \mu_2 \times \mu_3 = (\mu_1 \times \mu_2) \times \mu_3 = \mu_1 \times (\mu_2 \times \mu_3)$$

Proof DIY. 前者 play with def, 后者直接由 σ -finite 的 premeasure 的 HK extension unique 得到.

Lec 16 Tonelli's Thm

我们将 focus on the case n=2: (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) , 考虑

$$(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$$

从而,它可以推广到任何 finite 个 measure space 的 product 上.

16.1 $E \subset X \times Y$ 的 section

Def 16.1 (*x*-section, *y*-section)

给定 product space 上的集合 $E \subset X \times Y$, 对于 $x \in X$, $y \in Y$, 我们定义:

$$E_x := \{ y \in Y \mid (x, y) \in E \}$$

$$E^y := \{ x \in X \mid (x, y) \in Y \}$$

给定从 product space 出发的函数 $f: X \times Y \to \mathbb{C}$, 对于 $x \in X, y \in Y$, 我们定义:

$$f_x(y) := f^y(x) := f(x, y)$$

表示固定住一个变量,另一个变量的变化.

Example 16.1 对于任意的 $E \subset X \times Y$ 如果定义:

$$f := \chi_E$$

那么有:

$$f_x = \chi_{E_x}, \quad f^y = \chi_{E^y}$$

对于 rectangle: $E = A \times B, A \in \mathcal{A}, B \in \mathcal{B}, 有$

$$E_x = \begin{cases} \varnothing, & x \notin A \\ B, & x \in A \end{cases}$$

Proposition 16.1

(a)

$$E \in \mathcal{A} \otimes \mathcal{B} \implies \begin{cases} E_x \in \mathcal{B}, & \forall x \in X \\ E^y \in \mathcal{A}, & \forall y \in Y \end{cases}$$

(b)

$$f ext{ is } \mathcal{A} \otimes \mathcal{B} ext{-measurable} \implies \begin{cases} f_x ext{ is } \mathcal{B} ext{-measurable} & \forall x \\ f^y ext{ is } \mathcal{A} ext{-measurable} & \forall y \end{cases}$$

Proof (a) Let

$$\mathcal{E} := \{ E \subset X \times Y \mid E_x \in \mathcal{B} \ \forall x \in X \quad \text{and} \quad E^y \in \mathcal{A} \ \forall y \in Y \}$$

Claim: \mathcal{E} 包含了所有的 rectangles, 并且 \mathcal{E} a σ -algebra.

容易证明这一点. 从而, 由 $A \otimes B$ 的定义 (为包含所有 rectangles 的最小 σ -algebra) 得 $A \otimes B \subset \mathcal{E}$, 从而 (a) 成立

并且由于 (check) $f_x^{-1}(V) = (f^{-1}(V))_x$ (Similar for f_y), (a) \Longrightarrow (b).

Remark 这里三件需要记住的事情:

- section 和取 preimage 可以交换顺序
- 对于一个 product measurable set, 任意 section 也 measurable
- 对于一个 product measurable function, 任意 section function 也 measurable

Remark 记录一下这里的证明方法,以前见的比较少. 这里证明条件 A 推出条件 B 的方法: 证明所有满足条件 B 的元素构成的集合包含了所有满足条件 A 得元素构成的集合.

这一方法的好处在于: 可以运用所有满足条件 B 的元素构成的集合的整体性质, 比如是 σ -algebra 等.

Def 16.2 (monotone class)

Given a set X, a collection $C \subset \mathcal{P}(X)$ is called a monotone class, if it is closed under **countable** increasing unions and countable decreasing intersections

当然, 一个 σ -algebra 是一个 monotone class. monotone class 是一个比 σ -algebra 更弱的定义.

Lemma 16.1 (monotone class lemma)

Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra.

Define C 为包含 A 的最小的 montone class.

Claim:

$$<\mathcal{A}>=\mathcal{C}$$

Proof $\mathcal{C} \subset A > \text{is trivial.}$

 $<A>\subset C$: STS C 是一个 σ -algebra. see p.66. 具体做法比较 tricky, 但是思路是先证明 C 是一个 algebra (这一部分较难. 我们对于 $E\in \mathcal{C}$, define $\mathcal{C}(E)$ 为 C 中所有和它的交和差也仍然在 C 中的 F 构成的集合, 并发现这个子集 $\mathcal{C}(E)$ 也同样是一个 monotone class. 从而 $\mathcal{C}=\mathcal{C}(E)$);

然后对于任意的 seq, 其前 n 项的 finite union $(\bigcup_{i=1}^n E_i)$ seq 是一个 increasing seq, 其 limit 等于原 seq limit, 是属于 $\mathcal C$ 的.

Remark 即, 对于一个已经是 algebra 的集合, 它生成的 monotone class 等于它生成的 σ -algebra.

这个 lemma 的好处在于, 我们在证明了一个集合是 algebra 后, 证明它是一个 σ -algebra, 只需要证明它 closed under ctbl increasing union 和 decreasing interection 即可. 我们可以利用这种 set seq 的单调性.

16.2 Tonelli for sets: integrating a section to get product measure

Theorem 16.1 (Tonelli for sets)

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be σ -finite measure spaces.

Take $E \in \mathcal{A} \otimes \mathcal{B}$. Then:

$$x \mapsto \nu(E_x), y \mapsto \mu(E_y)$$
 are **measurable**

并且

$$(\mu \times \nu)(E) = \int \nu(E_x) \ d\mu(x) = \int \mu(E^y) \ d\nu(y)$$

Remark 这个定理说明的是: 在 σ -finite 的 measure spaces 构成的 product measure space 中, 任意 product measurable set E, 把 x 映射到 E 的 x-section 的 measure ("扫描"这个集合在一个方向上的宽度变化) 的 行为是可测的.

并且, 我们可以把 E 的 measure 用 "对每个 x, 在 Y 上取 E 的 x-section 的 measure, 并对这一行为在 X 上进行积分" 来刻画. 这就把 product measure 拆分了开来. 其 following 是 Tonelli "把 n 个 measure spaces 的 product 上的积分拆成 n 个积分" 的强大定理.

Proof Define:

$$\mathcal{C} = \{ E \subset X \times Y \mid x \mapsto \nu(E_x), y \mapsto \mu(E_y) \text{ are measurable } \forall (x, y) \in E \text{ and } \cdots (2) \}$$

Claim 1: \mathcal{C} contains 所有的 rectangles. Proof of Claim 1: 考虑 $E = A \times B \in \mathcal{A} \times \mathcal{B}$, 即为一个 rectangle. 上一 lec 中, 我们 by def confirm: $\mathcal{A} \times \mathcal{B} \subset \mathcal{A} \otimes \mathcal{B}$.

那么对于任意的 $(x,y) \in E$, 我们有: $\nu(E_x) = \nu(B)$, 对于所有的 $(x,y) \notin E$, 则有 $\nu(E_x) = \emptyset$.

所以对于任意的 $x, \nu(E_x) = \chi_A(x)\nu(B)$, 同理 $\mu(E^y) = \chi_A(x)\mu(A)$.

由此得到 $x \mapsto \nu(E_x), y \mapsto \mu(E^y)$ 是 measurable 的, 并且

$$\mu \times \nu(E) = \mu(A) \times \nu(B) = \mu(A) \int \chi_B(y) \ d\nu(y) = \int \mu(E^y) \ d\nu(y)$$

同理, $\mu \times \nu(E) = \int \nu(E_x) \ d\mu(x)$. 从而得证. 从而, 对于任意 union of finite disjoint rectangles, 这个结论 也成立, by additivity in definition. 因而 \mathcal{C} 为一个 algebra.

Note: 由于 $\mathcal{A} \otimes \mathcal{B}$ 为包含所有 rectangles 的最小 σ -algebra, 我们只需要证明 \mathcal{C} 为一个 σ -algebra, 那么它一定包含 $\mathcal{A} \otimes \mathcal{B}$. 并且 by Monotone Class Lemma, **STS:** \mathcal{C} 为一个 **monotone class.**

Claim 2: \mathcal{C} 为一个 monotone class. \diamondsuit $\{E_n\}$ 为一个 increasing seq in \mathcal{C} , 定义其 union 为 $E:=\bigcup_{n=1}^{\infty}E_n$.

并定义:

$$f_n(y) := \mu((E_n)^y)$$

根据 C 的 definition, 每个 f_n 都是 measurable 的, 并且我们容易证明:

$$f_n \nearrow f(y) := \mu((E)^y)$$
 ptwise.

于是使用 MCT, 容易得到

$$\int \mu(E^y) \ d\nu(y) = \lim \int \mu((E_n)^y) \ d\nu(y) = \lim \mu \times \nu(E_n) \stackrel{\text{CFB}}{=} \mu \times \nu(E)$$

从而 $E \in \mathcal{C}$.

It remains to show: \mathcal{C} closed under ctbl decreasing intersection. 不过这里我们涉及到一个 decreasing sequence 中间突然从 infinite measure 变为 finite measure 的问题, 所以我们从这里开始要分 μ , ν finite π not finite (but still σ -finite) 的两种情况讨论. finite measure 不用担心上述这一问题.

Case 1: μ, ν finite, 于是令 $\{E_n\}$ 为一个 decreasing seq in \mathcal{C} , 和 increasing 的情况 similar, 得到 $\mu((E_n)^y) =: f_n \searrow f(y) := \mu((E)^y)$ ptwise., 从而 by DCT (取 $\mu(X)$ 为 donimating function), 得到

$$\int \mu(E^y) \ d\nu(y) = \lim \int \mu((E_n)^y) \ d\nu(y) = \lim \mu \times \nu(E_n) \stackrel{\text{CFA}}{=} \mu \times \nu(E)$$

从而我们证明了在 μ, ν 为 finite measure 的情况下, \mathcal{C} 为一个 monotone class, 从而为一个 σ -algebra, 从而 $\mathcal{M} \otimes \mathcal{N} \subset \mathcal{C}$.

Case 2: μ, ν σ -finite measure: 我们可以把 $X \times Y$ 写作 union of a seq of finite measure sets $\{X_i \times Y_i\}_{i \in \mathbb{N}}$, 从而也是 a union of increasing seq of finite measure sets $\{X_j \times Y_j\}_{j \in \mathbb{N}}$. (取 $X_j \times Y_j = \bigcup_{i=1}^j X_j \times Y_j$) 从而对于任意的 $E \in \mathcal{M} \otimes \mathcal{N}$,

$$E = \lim_{j \to \infty} (E \cap (X_j \times Y_j))$$

对于每个 $E \cap (X_i \times Y_i)$,我们可以应用前一结论,得到

$$\mu \times \nu(E \cap (X_j \times Y_j)) = \int \chi_{Y_j}(y)\mu(E^y \cap X_j) \ d\nu(y)$$

从而应用 MCT, 得到

$$\mu \times \nu(E) = \int \mu(E^y) \ d\nu(y)$$

同理 $\mu \times \nu(E) = \int \mu(E_x) d\mu(x)$, 从而 $E \in \mathcal{C}$, 得证.

16.3 Tonelli's Theorem

Theorem 16.2 (Tonelli)

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be σ -finite measure spaces.

条件: 令 $f \in L^+(X \times Y)$,

结论:

$$g(x) := \int f(x,y) \ d\nu \in L^+(X) \quad h(y) := \int f(x,y) \ d\mu \in L^+(Y)$$

(显然)并且

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x)$$

$$= \int \left[\int f(x, y) d\mu(x) \right] d\nu(y)$$
(16.1)

Remark Tonelli for sets 表示了 product measure 的计算方式: 通过对 x-section 的 y measure, 在 $x \in X$ 上进行积分可得到. 这就把 product measure 拆成了单个 measure 与积分.

而 Tonelli's Theorem 表示对一个非负 product measurable function 积分可以转化成对逐个 measure 积分.

recall: 非负 measurable 函数的积分, 就是一个 seq of simple functions 的积分的 sup, 而 simple function 的积分, 就是**几个 measurable set 的 measure 的加权和**. 因而 Tonelli's Theorem 基本上 naturally follows from Tonelli for sets.

Proof 首先, 对于 f 是 simple function 的 case, 直接 follows from Tonelli for sets. (mentioned in remark.) 对于 general case: $f \in L^+(X \times Y)$, 令 $\{f_n\}$ 为一个 seq of simple functions ptwisely converging to f. 于是

$$\int g \, d\mu = \lim \int g_n \, d\mu = \lim \int f_n \, d(\mu \times \nu) = \int f \, d(\mu \times \nu)$$
$$\int h \, d\mu = \lim \int h_n \, d\mu = \lim \int f_n \, d(\mu \times \nu) = \int f \, d(\mu \times \nu)$$

by MCT.

Lec 17 Fubini's Theorem and Lebesgue integral in \mathbb{R}^n

recall Tonelli's Theorem: Given $f \in L^+(X \times Y)$, set $g(x) := \int f_x d\nu$, $h(y) := \int f^y d\mu$. Then $g \in L^+(X)$, $h \in L^+(Y)$, 以及有:

$$\int f \ d(\mu \times \nu) = \int g \ d\mu = \int h \ d\nu$$

展开后可写作:

$$\int f \ d(\mu \times \nu) = \iint f(x,y) \ d\nu(y) d\mu(x) = \iint f(x,y) \ d\mu(x) d\nu(y)$$

更加简洁可写作:

$$\int f \ d(\mu \times \nu) = \iint f \ d\nu d\mu = \iint f \ d\mu d\nu$$

Corollary 17.1

if $f \in L^1(X \times Y)$ and $f \geq 0$ then

- $g(x) < \infty$ for a.e. x
- $h(y) < \infty$ for a.e. y

Remark 在 product measure space 上 measurable 的可积函数, 在每个成分上, 都不能有过多的 infinity point.

Next: Fubini's Theorem.

Fubini's Theorem 是 Tonelli's Theorem 对 \mathbb{C} -valued 函数 (instead of $\mathbb{R}_{\geq 0}$ -valued) 的推广. 但是其实证明很 trivial.

17.1 Fubini's Theorem

Theorem 17.1 (Fubini's Theorem)

条件: $f \in L^1(\overline{\mu \times \nu})$,

结论:

- $f_x \in L^1(\nu)$ for a.e. $x, f^y \in L^1(\mu)$ for a.e.
- The a.e. defined functions:

$$g(x) := \int f_x \, d\nu \in L^1(\mu), \quad h(x) := \int f^y \, d\nu \in L^1(\nu)$$

$$\int f \ d(\mu \times \nu) = \int g \ d\mu = \int h \ d\nu \ \ (= \iint f \ d\mu d\nu)$$

Proof f = Re f + i Im f, so WLOG can assume f is \mathbb{R} -valued.

又 $f = f^+ - f^-$, 直接 apply Tonellis's Thm 可得.

Remark Tonelli and Fubini's Theorem 不仅有用在可以拆分积分以进行计算,而且有用在积分换序. 实际上,根据它的条件可以发现,积分可换序的条件是很宽裕的,只要这个函数 f 在 L^+ 或者 L^1 space 中就可以了.

Example 17.1 求和换序的合理性:

考虑

$$(X, \mathcal{A}, \mu) = (Y, \mathcal{B}, \nu) = (\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{counting})$$

if $a_{mn} \in \mathbb{C}$ for $(m, n) \in \mathbb{N}^2$ and

$$\infty > \sum_{m,n} |a_{mn}| =: \sup_{F \subset \mathbb{N}^2 \text{finite}} \sum_{(m,n) \in F} |a_{m,n}|$$

Thm: 对于任意 $n \in \mathbb{N}$, $\sum_{m} a_{mn}$ conv absly to some $b_n \in \mathbb{C}$;

同样, 对于任意 $m \in \mathbb{N}$, $\sum_n a_{mn}$ conv absly to $c_m \in \mathbb{C}$. 以及 $\sum_n b_n$, $\sum_m c_m$ conv absly to $\sum_{m,n} a_{mn}$. 即:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |a_{mn}| = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{mn}| = \sum_{(m,n) \in \mathbb{N}^2} |a_{mn}|$$

Remark 即便 (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) 都 complete, product space $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ 不一定 complete! (甚至说基本很少 complete)

Example 17.2 考虑 $(X, \mathcal{A}, \mu) = (Y, \mathcal{B}, \nu) = (\mathbb{R}, \mathcal{L}, m)$ 考虑一个 Vitali set.

$$V \times \{0\} \subset \mathbb{R} \times \{0\}$$
 is a subnull set, not measurable

但是如果我们 consider completion:

$$(X \times Y, \overline{\mathcal{A} \otimes \mathcal{B}}, \overline{\mu \times \nu})$$

Theorem 17.2 (complete Fubini-Tonelli)

对于 complete measure space (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) , 取它们的 product measure space 的 completion:

$$(X \times Y, \overline{\mathcal{A} \otimes \mathcal{B}}, \overline{\mu \times \nu})$$

我们将 $\overline{A \otimes B}$ 简易写作 \mathcal{L} , $\overline{\mu \times \nu}$ 简易写作 λ .

Suppose $f: X \times Y \to \mathbb{C}$ is \mathcal{L} -measurable 并且 $f \in L^+(\lambda)$ or $f \in L^1(\lambda)$, 则有

- f_x 是 \mathcal{B} -measurable 的 for a.e. $x \perp x \mapsto \int f_x d\nu$ 是 measurable 的
- $f_y \not = A$ -measurable 的 for a.e. $y \not = y \mapsto \int f_y d\mu \not = m$ easurable 的

并且, 在 $f \in L^1(\lambda)$ 的情况下, $f_x, f_y, x \mapsto \int f_x d\nu, y \mapsto \int f_y d\mu$ 也是 **integrable** 的, 即 $\in L^1(\lambda)$, 并且

$$\int f \, d\lambda = \iint f \, d\mu d\nu = \iint f \, d\nu d\mu$$

 \Diamond

Proof exercise. 比较简单.

Remark 这一定理的意思是, 在 μ, ν 是 complete measure 的情况下, $\mu \times \nu$ 的 completion $\overline{\mu \times \nu}$ 虽然并不等于 $\mu \times \nu$,但是 $L^1(\overline{\mu \times \nu})$ 的函数的积分却可以当作 $L^1(\mu \times \nu)$ 的函数的积分,从而分成两个积分. 这是因为因为完备化测度只是增加了一些**原本测度为零的集合的子集**, 这些集合不会影响积分计算. 这一定理的直接应用是 Lebesgue integral on \mathbb{R}^n .

17.2 Lebesgue measure in \mathbb{R}^n

这是 product measure 最常见的应用和例子.

Def 17.1

 $(\mathbb{R}^n, \mathcal{L}^n, m^n)$ Lebesgue measure is **completion of** $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n}, m^n)$.

*

where $\mathcal{B}_{\mathbb{R}^n} = \mathcal{B}_{\mathbb{R}} \otimes \cdots \otimes \mathcal{B}_{\mathbb{R}} \mathcal{L}^{\setminus} = \{ \text{Leb meas sets} \} \supset \mathcal{B}_{\mathbb{R}^n} \text{ Write:}$

$$\int f \ dm^n$$

Theorem 17.3 (Fubini-Tonelli for m^n)

Suppose $f \in L^+(\mathbb{R}^n)$ or $L^1(\mathbb{R}^n)$

$$\int f \ dm^n = \int \cdots \int f(x_1, \cdots, x_n) \ dx_1 \cdots dx_n \tag{17.1}$$

$$= \int \cdots \int f(x_1, \cdots, x_n) \, dx_n \cdots dx_1 \tag{17.2}$$

Example 17.3 Show:

$$\int_0^\infty e^{-sx} \frac{\sin^2(x)}{x} \, dx = \frac{1}{4} \log(1 + 4s^{-2})$$

for s>0, by integrating $e^{-sx}\sin 2xy=f(x,y)$ over the rectangle $x\in(0,\infty),y\in(0,1)$.

Sketch: $f \in L^1$ (since it is ctn on \mathbb{R}) 以及

$$|f| \le e^{-sx}, \quad \int_{\mathbb{R}} e^{-sx} < \infty$$

可计算得

$$\int_0^1 \sin 2xy \ dy = \frac{1}{2x} \sin^2 x$$

而后 compute

$$\int_0^1 e^{-sx} \sin 2xy \ dy$$

by integration by part for twice.