# Appunti di Analisi 2 Paolini - Luccardesi

Ludovico Sergiacomi a.a. 2025/2026

# Indice

| 1 | Funzioni in $\mathbb{R}^N$           | 3 |
|---|--------------------------------------|---|
|   | 1.1 Norme e Distanze                 | 9 |
|   | 1.2 Successioni in $\mathbb{R}^N$    | 4 |
|   | 1.2.1 Parentesi di Topologia         | 4 |
| 2 | Limiti di funzioni tra spazi metrici | 7 |

### 1 Funzioni in $\mathbb{R}^N$

 $\mathbb{R}^N = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{N \text{ volte}}$ è uno **spazio vettoriale**. I suoi elementi sono  $x \in \mathbb{R}^N$  e si indicano con  $x_i \in \mathbb{R}$  le componenti.

Abbiamo i sottoinsiemi  $\Omega \subset \mathbb{R}^N \quad \Omega = \{x \in \mathbb{R}^N \mid espressione \ analitica\}.$ 

Possiamo scrivere le funzioni  $f: \mathbb{R}^N \to \mathbb{R}^M$  in questo modo

$$f(x_1,...,x_N) \in \mathbb{R}^M = (f_1(x_1,...,x_N),...,f_M(x_1,...,x_N))$$

Def.

- $f: \mathbb{R}^N \to \mathbb{R}$  (n=1) f si dice scalare
- $f: \mathbb{R}^N \to \mathbb{R}^M$  f si dice vettoriale
- $f: \mathbb{R}^N \to \mathbb{R}^N$  f si dice campo vettoriale

Osservazione. Le varie  $f_i$  (componenti) sono funzioni scalari.

Esempio. f(x,y,z,t)= Temperatura del punto di coordinate (x,y,z) all'istante t.

#### 1.1 Norme e Distanze

Un concetto chiave è quello di **vicinanza** tra gli elementi di  $\mathbb{R}^N$ .

- In  $\mathbb{R}$  abbiamo il modulo |x-y|
- In  $\mathbb{R}^2$  abbiamo  $||x y|| = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$

In  $\mathbb{R}^N$  possiamo estendere la norma come segue:

**Def.**  $\forall x \in \mathbb{R}^N$  si chiama norma euclidea

$$||x|| = \sqrt{\sum_{i=1}^{N} x_i^2}$$

Ricordiamo che la norma in uno spazio vettoriale X è una funzione  $\| \| : X \to \mathbb{R}$  che rispetta le seguenti proprietà:

- 1.  $||x|| \ge 0$ ,  $||x|| = 0 \Leftrightarrow x = 0$
- 2.  $\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \ \forall x$
- 3.  $||x + y|| \le ||x|| + ||y||$

Possiamo verificare che la norma euclidea rispetti effettivamente le condizioni.

**Def.** Chiamiamo palla di raggio r centrata in O

$$B_r = \{ x \in \mathbb{R}^N \mid ||x|| < r \}$$

E se definissi la norma in un'altra maniera? Che cosa posso dire?

**Def.** Due norme  $\| \|_A$  e  $\| \|_B$  sullo stesso spazio vettoriale, sono dette equivalenti se

$$\exists c, \tilde{c} > 0 \text{ t.c. } \tilde{c} ||x||_B < ||x||_A < c||x||_B$$

Spoiler. In  $\mathbb{R}^N$  so no tutte equivalenti. In generale no.

Notazione.  $\| \|_A \sim \| \|_B$ 

Osservazione. Per costruire le norme fa comodo il **prodotto scalare**:  $x \cdot y = \sum x_i y_i \longrightarrow ||x|| = \sqrt{xx}$ . Dunque il prodotto scalare induce la norma, che a sua volta induce la distanza

**Def.** Dato X spazio vettoriale, una distanza su X è una funzione  $d: X \times X \to \mathbb{R}$  t.c.

- 1.  $d(x,y) \ge 0 \quad \forall x,y \in X$
- 2. d(x,y) = d(y,x)
- 3.  $d(x,y) = 0 \Leftrightarrow x = y$
- 4.  $d(x,y) \le d(x,z) + d(y,z)$

Osservazione. Non è richiesta l'omogeneità per d, questo "implica" che non tutte le distanza sono indotte da norme.

**Def.** Dato X spazio vettorial e d una distanza, (X, d) si chiama spazio metrico.

#### 1.2 Successioni in $\mathbb{R}^N$

Riprendiamo la definizione di successione da AM1:

**Def.** Una successione in X è una funzione  $\mathbb{N} \to X$ , di cui indichiamo l'immagine con  $\{x_n\}_{n\in\mathbb{N}}$ .

**Def.** In uno spazio metrico (X,d) una successione  $\{x_n\}_{n\in\mathbb{N}}$  a valori in X, si dice che converge a  $\overline{x}\in X$  se

$$\forall \varepsilon \ \exists \overline{n} \ \text{ t.c. } \ \forall n \geq \overline{n} \quad d(x_n, \overline{x}) < \varepsilon \quad \text{ cioè } \lim_{n \to \infty} d(x_n, \overline{x}) = 0.$$

#### 1.2.1 Parentesi di Topologia

#### Aperti

**Def.** Sia (X, d) uno spazio metrico e  $A \subseteq X$  un suo sottoinsieme, allora

- $x_0 \in A$  si dice interno ad A se  $\exists r \in \mathbb{R}$  t.c.  $B_r(x_0) \subset A$ .
- $\operatorname{Int}(A) = \mathring{A} = \{x \in A \mid x \text{ è interno ad } A\}$  si dice parte interna .
- A si dice aperto se  $A = \mathring{A}$ .

Esempio.  $A = \{(0,0)\}$   $A \neq \emptyset$  ma  $\mathring{A} = \emptyset$ , perché r > 0 (e non  $r \geq 0$ ).

Esempio. Definiamo  $Q = [0,1) \times [0,1)$ , cioè:



Nel disegno  $x_1$  è interno e  $x_2$  non lo è.  $\mathring{Q} = (0,1) \times (0,1) \neq Q \Rightarrow Q$  non è aperto. I punti interni hanno sempre quel dischetto che ricerchiamo, ma se prendo – ad esempio – (0, 0.5) ha sempre un po' di punti che finiscono fuori.

**Proposizione 1.** La palla aperta  $B_r(x_0)$  è aperta. Wow! - no invece è interessante...

Dimostrazione. Preso  $x \in B_r(x_0)$ , x soddisfa  $d(x,x_0) < r$ , quindi c'è un po' di spazio tra  $d(x,x_0)$  e r, all'interno del quale possiamo prendere s t.c.  $d(x,x_0) + s < r$ .

4

Claim:  $B_s(x) \subset B_r(x_0)$  è la palla che stiamo cercando. Infatti, preso  $z \in B_s(x)$ , esso è caratterizzato da d(z,x) < s. Cosa sappiamo invece su  $d(z,x_0)$ ? Che vale la disuguaglianza triangolare:

$$d(z, x_0) \le d(z, x) + d(x, x_0) < s + d(x, x_0) < r.$$

Abbiamo concluso: la palla di raggio s e centro x è contenuta nella palla aperta di partenza e questo vale per qualsiasi punto in  $B_r(x)$ . Dunque tutti i punti sono interni. Dunque l'insieme è aperto.

Osservazione. Funziona sempre perché non posso prendere i punti sul bordo.

#### Chiusi

**Def.** Sia (X, d) uno spazio metrico e  $A \subseteq X$  un suo sottoinsieme, allora

- $x_0 \in X$  si dice punto di chiusura di A se  $\forall r > 0$   $B_r(x_0) \cap A \neq \emptyset$ .
- $\overline{A} = \{x \in X \mid x \text{ è punto di chiusura di } A\}$  si dice chiusura di A.
- A si dice chiuso se  $A = \overline{A}$

Esempio. Riprendendo l'esempio di prima, con Q, abbiamo  $\overline{Q} = [0,1] \times [0,1] \neq Q$ .



In particolare,  $x_1$  appartiene alla chiusura,  $x_2$  no.

E se volessimo chiudere la palla aperta?



Allora scriviamo  $\overline{B}_r(x_0) = \{x \in X \mid d(x, x_0) \leq r\}$ : abbiamo aggiunto l'uguale.

Una caratterizzazione che si può dare di un insieme C chiuso.

**Proposizione 2.** Un sottoinsieme  $C \subset X$  è chiuso sse il suo complementare  $X \setminus C$  è aperto.

Dimostrazione. Un insieme è chiuso sse è uguale alla sua chiusura, ovvero

$$C = \{ x \in X \mid \forall r > 0 \ B_r(x) \cap C \neq \emptyset \}.$$

Per quanto riguarda il complementare, possiamo dire

$$X \setminus C = \{x \in X \mid \exists r > 0 \mid B_r(x) \cap C = \emptyset\}$$
$$= \{x \in X \mid \exists r > 0 \mid B_r(x) \subset X \setminus C\}$$

cioè  $X \setminus C$  è aperto.

Nota Per convenzione,  $\emptyset$  e X sono sia aperti che chiusi.

#### Caratterizzazione sequenziale di chiusura

**Proposizione 3.** Dato (X,d) spazio metrico e  $A \subset X$ , allora

$$x \in \overline{A} \Leftrightarrow \exists \{x_n\}_{n \in \mathbb{N}} \subset A \ t.c. \ x_n \to x.$$

Morale: la chiusura è fatta di tutti punti che sono limiti di successioni convergenti di elementi di A.

Dimostrazione.  $\implies$   $x \in A \Rightarrow \forall r > 0 \ \exists x_r \in B_r(x) \cap A$  che dunque ha le proprietà:  $x_r \in A$  e  $d(x_r, x) < r$ . Allora mi basta scegliere r della forma r = [ successione convergente decrescente con  $n \in \mathbb{N}$  ] – ad esempio  $\frac{1}{n}$ . Allora vale

$$0 \le \lim_{r \to \infty} d(x_r, x) \le \lim_{n \to \infty} \frac{1}{n} = 0$$

e quindi, per il *Teorema dei Carabinieri*, si ha che  $\{x_n\}_{n\in\mathbb{N}}\to x$ .



Restringo sempre di più le palle, stringendole intorno a x e scegliendo come  $x_r$  dei punti appartenenti anche ad A.

 $\Leftarrow$  Se ho  $\{x_n\}_{n\in\mathbb{N}}\subset A, x\in X, x_n\to x$ , allora è vero che  $\forall r>0$   $B_r(x)\cap A\neq\emptyset$ ? L'idea è la seguente: il fatto che la successione converga a x vuol dire che, presa una qualsiasi distanza  $\varepsilon$  da x, trovo alcuni elementi della successione a distanza minore di  $\varepsilon$ . Quindi mi basta usare come distanza il raggio di  $B_r(x)$  e trovo elementi di A arbitrariamente vicini a x, ovvero x è un punto di chiusura.

$$x_n \to x$$
 rispetto a  $d \Rightarrow \exists \overline{n}$  t.c.  $\forall n > \overline{n}$   $d(x_n, x) < \varepsilon = r$ .

Per ipotesi  $x_n \in A$ , quindi ne ho infiniti!

**Def.** (X,d) spazio metrico e  $A\subset X,$  allora si chiama frontiera (o bordo) di A

$$\partial A = \{ x \in X \mid \forall r > 0 \quad B_r(x) \cap A \neq \emptyset, \quad B_r(x) \cap (X \setminus A) \neq \emptyset \}$$

cioè le varie palle di x intersecano sia l'interno che l'esterno: sono punti che appartengono sia alla chiusura di A che alla chiusura del suo complementare  $A^C$ .

Osservazione.

$$\overline{A} = \mathring{A} \ \dot{\cup} \ \partial A$$
$$= A \ \cup \ \partial A$$

Esempio. La frontiera di una palla è  $\partial B_r(x_0) = \{x \in X \mid d(x, x_0) = r\}.$ 

#### Esercizio/proposizione

- $\bigcap$  finita di aperti è aperta;
- U arbitraria di aperti è aperta;

e, passando ai complementari,

- $\cap$  arbitraria di chiusi è chiusa;
- [] finita di chiusi è chiusa.

Osservazione. In uno spazio metrico (X,d) le relazioni insiemistiche tra la palla aperta

$$B_r(x_0) = \{ x \in X \mid d(x, x_0) < r \},\$$

la palla chiusa

$$C_r(x_0) = \{ x \in X \mid d(x, x_0) \le r \},\$$

e la sfera

$$S_r(x_0) = \{x \in X \mid d(x, x_0) = r\}$$

non sono quelle intuitive che applichiamo in  $\mathbb{R}^N$ , cioè

$$\overline{B_r}(x_0) = C_r(x_0), \quad \partial B_r(x_0) = S_r(x_0).$$

In generale valgono soltanto le inclusioni:

$$\overline{B_r}(x_0) \subset C_r(x_0), \quad \partial B_r(x_0) \subset S_r(x_0).$$

Dimostrazione. La prima si dimostra osservando che: la chiusura è il più piccolo insieme chiuso che contenga la palla aperta; la palla chiusa contiene la palla aperta.

La seconda invece, deriva dal fatto che la chiusura  $\overline{B_r}(x_0)$  è l'unione disgiunta tra la parte interna  $B_r(x_0)$  e la frontiera, quindi  $\partial B_r(x_0) = \overline{B_r}(x_0) \setminus B_r(x_0)$  e, per l'inclusione precedente, si ottiene  $\partial B_r(x_0) \subset C_r(x_0) \setminus B_r(x_0) = S_r(x_0)$ .

*Esempio.* Siamo in  $\mathbb{R}^N$  e consideriamo la distanza come segue:

$$d_{discr} = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}.$$

Allora, per un qualsiasi  $x_0 \in \mathbb{R}$  vale

$$\overline{B_1}(x_0) = \{x_0\} \subsetneq \mathbb{R}^N = C_1(x_0) \tag{1}$$

$$\partial B_1(x_0) = \overline{B_1}(x_0) \setminus B_1(x_0) = \emptyset \subsetneq \mathbb{R}^N \setminus \{x_0\} = S_1(x_0) \tag{2}$$

Infatti ogni  $B_1(x)$  include il solo punto x: stiamo chiedendo che la distanza sia minore di 1, quindi non può che essere 0; ma l'unico punto che dista 0 da x è il punto stesso.

Per la seconda, osserviamo che  $B_1(x_0) = \{x_0\} = \overline{B_1}(x_0)$  e che la sfera di raggio 1 include tutti i punti con distanza = 1, ovvero  $x \neq x_0$  e quindi è proprio  $\mathbb{R}^N \setminus \{x_0\}$ .

## 2 Limiti di funzioni tra spazi metrici

Consideriamo una funzione  $f: X \to Y$  con  $(X, d_X)$  e  $(Y, d_Y)$  spazi metrici (ad esempio  $f: \mathbb{R}^N \to \mathbb{R}^M$ ). Vogliamo definire la scrittura

$$\lim_{x \to x_0} f(x) = y_0.$$

Osserviamo che sono presenti due limiti: il primo è dato dalla convergenza delle  $x \to x_0$ ; il secondo dalla convergenza delle  $f(x) \to y_0$ .

**Def.** Siano  $(X, d_X)$  uno spazio metrico e  $A \subset X$  un suo sottoinsieme. Allora un punto generico  $x_0 \in X$  si dice punto di accumulazione di A se

$$\forall r > 0 \qquad (B_r(x_0) \cap A) \setminus \{x_0\} \neq \emptyset.$$

Esempi in  $\mathbb{R}^2$ 

- 1. I punti di accumulazione del disco aperto  $B_r((0,0))$  e del disco chiuso sono cotituiti dal disco chiuso
- 2. Un insieme che includa un solo punto non ha punti di accumulazione.
- 3. I punti di accumulazione del piano perforato  $\mathbb{R}^2 \setminus \{(0,0)\}$  sono tutti i punti di  $\mathbb{R}$ : anche  $x_0$  è punto di accumulazione perché, per quanto piccolo possa essere il raggio, comunque il disco interseca il resto del piano.

**Def.** Siano  $(X, d_X)$  e  $(Y, d_Y)$  due spazi metrici,  $f: A \to Y$  una funzione,  $A \subseteq X$  sottoinsieme,  $x_0 \in X$  punto di accumulazione. Un punto  $y_0 \in Y$  si dice limite di f per x che tende a  $x_0$ , e si scrive  $\lim_{x \to x_0} f(x) = y_0$  se

$$\forall \varepsilon > 0 \quad \exists \delta > 0$$
 t.c.  $x \in A, \ 0 < d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), y_0) < \varepsilon$ .

Osservazione. Per dare un senso alla definizione, non è necessario che  $f(x_0)$  esista (ovvero  $x_0 \in A$ . Anche perché la richiesta  $d_X(x,x_0) > 0$  lo esclude direttamente.

Si può dare una definizione equivalente di limite, come dimostra il seguente

**Teorema 1** (Caratterizzazione sequenziale di limite). Siano  $(X, d_X)$  e  $(Y, d_Y)$  due spazi metrici,  $f: A \to Y$  con  $A \subseteq X$ ,  $x_0 \in X$  punto di accumulazione di A. Allora sono equivalenti:

- 1.  $\lim_{x \to x_0} f(x) = y_0$
- 2. se  $\{x_n\}_{n\in\mathbb{N}}\subset A\setminus\{x_0\}\ e\ x_n\xrightarrow{d_X}x_0\ allora\ f(x_n)\xrightarrow{d_Y}y_0$ .

Dimostrazione.

 $[1. \Rightarrow 2.]$  Sia  $\{x_n\}_{n\in\mathbb{N}}\subset A\setminus\{x_0\}$  una successione convergente ad  $x_0$ . Vogliamo dimostrare che,

$$\forall \varepsilon > 0 \quad \exists \overline{n} \in \mathbb{N} \text{ t.c. } \forall n \geq \overline{n} \quad d_Y(f(x_n), y_0) < \varepsilon.$$

Sia  $\delta(\varepsilon) > 0$  un numero reale associato a  $\varepsilon$  secondo le condizioni dell'ipotesi (1), ovvero  $0 < d_X(x, x_0) < \delta(\varepsilon) \Rightarrow d_Y(f(x), y_0) < \varepsilon$ . L'ipotesi (2) ci dice che

$$\exists \overline{n} \in \mathbb{N} \text{ t.c. } \forall n \geq \overline{n} \quad 0 < d_X(x_n, x_0) < \delta(\varepsilon)$$

(la distanza non può mai essere nulla, perché  $x_n \neq x_0$ ). Quindi possiamo inserire  $x_n$  soddisfa le condizioni e possiamo scrivere  $0 < d_X(x_n, x_0) < \delta(\varepsilon) \Rightarrow d_Y(f(x_n), y_0) < \varepsilon$ , come volevasi dimostrare.

 $[2. \Rightarrow 1.]$  Devo dimostrare che, per ogni  $\varepsilon > 0$  esiste un  $\delta$ , come nella definizione di *limite* scritta sopra. Supponiamo per assurdo che (1) non valga; allora

$$\exists \varepsilon > 0 \text{ t.c. } \forall \delta > 0 \quad \exists x_{\delta} \text{ t.c. } 0 < d_X(x_{\delta}, x_0) < \delta, \text{ ma } d_Y(f(x_{\delta}), y_0) \geq \varepsilon.$$

Scegliamo una successione di  $\delta = \frac{1}{n}$ ,  $n \in \mathbb{R}$  e chiamiamo  $x_n$  i corrispondenti  $x_{\delta}$ . Allora, applicando l'ipotesi (2), otteniamo che

$$d_X(x_n, x_0) < \frac{1}{n}$$
, cioè  $x_n \to x_0$ , però  $d_Y(f(x_n), y_0) \ge \varepsilon$ ,

che contraddice  $f(x_n) \to y_0$ .