빅데이터 혁신공유대학

파이썬으로 배우는 데이터 구조

한동대학교 전산전자공학부 김영섭 교수

Data Structures in Python Chapter 6

- Hash Table
- Collision Resolutions
- Double Hashing & Rehashing
- Hash Implementation

Agenda & Readings

- Collision Resolution
 - Separate chaining
 - Open addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Reference:
 - Problem Solving with Algorithms and Data Structures
 - Chapter 5 Hashing

Collision Resolution

- Perfect hash functions are hard to come by, especially if you do not know the input keys beforehand.
- If multiple keys map to the same hash value this is called collision.
 - For non-perfect hash functions we need systematic way to handle collisions.
- Handling collisions systematically is required collision resolution.

Collision Resolution

- Collision resolution methods
 - Chaining Store colliding keys in a linked list at the same hash table index
 - Open addressing Store colliding keys elsewhere in the table
 - Linear Probing
 - Quadratic Probing
 - Double hashing.

Collision Resolution by Chaining

- Maintains a linked list at every hash index for collided elements
 - Hash table T is a vector of linked lists.
 - Insert element at the head (as shown here) or at the tail.
 - Key k is stored in list a HashTable[h(k)]
 - For example,
 - TableSize = 10
 - h(k) = k % 10
 - Insert first 10 perfect squares

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 }

Collision Resolution by Chaining

- Load factor λ of a hash table T is defined as follows:
 - Element size: N = number of elements in T
 - Table size: M = size of T
 - Load factor: λ = N/M (적재율)
 - i.e., λ is the average length of a chain
- Unsuccessful search time: O(λ)
 - Same for insert time
- Successful search time average: O(λ/2)
- Ideally, want $\lambda \le 1$ (then, not a function of N)

Collision Resolution by Chaining

- Potential disadvantages of Chaining
 - Linked lists could get long
 - Especially when N >> M
 - Longer linked lists could negatively impact performance
 - More memory because of pointers
 - Absolute worst-case (even if N << M):
 - All N elements in one linked list!
 Typically the result of a bad hash function

Collision Resolution by Open Addressing

- 1. Linear Probing (선형조사법)
- 2. Quadratic Probing (이차조사법)
- 3. Double Hashing (이중해싱법)

Collision Resolution by Open Addressing

- When a collision occurs, look elsewhere in the table for an empty slot.
- Advantages over chaining
 - No need for list structures.
 - No need to allocate/deallocate memory during insertion/deletion (slow)
- Disadvantages
 - Slower insertion May need several attempts to find an empty slot.
 - Table needs to be bigger (than chaining-based table) to achieve average-case constanttime performance.
 - Load factor $\lambda \approx 0.5$

Collision Resolution by Open Addressing

- A "Probe sequence" is a sequence of slots in hash table while searching for an element k
 - $h_0(k)$, $h_1(k)$, $h_2(k)$, ...
 - Needs to visit each slot exactly once
 - Needs to be repeatable (so we can find/delete what we've inserted before)
- Hash function
 - $h_i(k) = (h(k) + f(i)) \%$ TableSize
 - f(0) = 0 \rightarrow position for the 0th probe
 - **f(i)** is "the distance to be traveled relative to the 0th probe position, during the ith probe". It can be linear, quadratic etc.

Collision Resolution by Open Addressing - Linear Probing

• f(i) = is a **linear** function of i, e.g., **f(i) = i**

• f(i) = is a **linear** function of i, e.g., **f(i) = i**

- Example: h(k) = k % TableSize
 - $h_0(89) = (h(89) + 0) \% 10 = 9$
 - $h_0(18) = (h(18) + 0) \% 10 = 8$
 - $h_0(49) = (h(49) + 0) \% 10 = 9$ (collision) $h_1(49) = (h(49) + 1) \% 10 = (h(49) + 1) \% 10 = 0$

		Insert s	sequence	h(k) = k % 7			
	Empty Table	After 8	After 1	After 9	After 6	After 15	
0 1 2 3 4 5 6		8	8 1				$h_0(8) = 8 \% 7 = 1$ $h_0(1) = 1 \% 7 = 1$ $h_1(1) = (h(1)+1) \% 7 = 2$

	Insert sequence: 8, 1, 9, 6, 15									
	Empty Table	After 8		After 1		After 9		After 6		After 15
0										
1		8		8		8		8		
2				1		1		1		
3						9		9		
4										
5										
6								6		

$$h(k) = k \% 7$$

$$h_0(8) = 8 \% 7 = 1$$

$$h_0(1) = 1 \% 7 = 1$$

 $h_1(1) = (h(1)+1) \% 7 = 2$

$$h_0(8) = 8 \% 7 = 1$$
 $h_0(1) = 1 \% 7 = 1$
 $h_1(1) = (h(1)+1) \% 7 = 2$
 $h_0(9) = 9 \% 7 = 2$
 $h_1(9) = (h(9)+1) \% 7 = 3$
 $h_0(6) = 6 \% 7 = 6$

$$h_0(6) = 6 \% 7 = 6$$

Insert sequence: 8, 1, 9, 6, 15 After After After After After Empty Table

$$h(k) = k \% 7$$

$$h_0(8) = 8 \% 7 = 1$$
 $h_0(1) = 1 \% 7 = 1$
 $h_1(1) = (h(1)+1) \% 7 = 2$
 $h_0(9) = 9 \% 7 = 2$
 $h_1(9) = (h(9)+1) \% 7 = 3$
 $h_0(6) = 6 \% 7 = 6$
 $h_0(15) = (h(15) + 0) \% 7 = 1$
 $h_1(15) = (h(15) + 1) \% 7 = 2$
 $h_2(15) = (h(15) + 2) \% 7 = 3$
 $h_3(15) = (h(15) + 3) \% 7 = 4$

(collision)

 $h_3(15) = (h(15) + 3) \% 7 = 4$

probe sequence and it is linear

	Insert sequence: 89, 18, 49, 58, 69								
	Empty Table	After 89	After 18	After 49	After 58	After 69			
0 1 2 3 4 5 6 7 8			18	18	18				
9		89	89	89	89				
	cessful probes	0	0	1	3	3			

$$h(k) = k \% 10$$

probe sequence

For example, linear probing for 58

$$h_0(58) = (h(58)+f(0)) \% 10$$

 $= (8+0) \% 10 = 8 \text{ (collision)}$
 $h_1(58) = (h(58)+1) \% 10 = 9 \text{ (collision)}$
 $h_2(58) = (h(58)+2) \% 10 = 0 \text{ (collision)}$
 $h_3(58) = (h(58)+3) \% 10 = 1$

	Insert sec	quence:		h(k) = k % 10		
Empty Table	After 89	After 18	After 49	After 58	After 69	
0 1 2 3 4			49	49 58	49 58	For example, I $h_0(58) = (h(58))$ = (8) $h_1(58) = (h(58))$ $h_2(58) = (h(58))$ $h_3(58) = (h(58))$
5 6 7 8 9 Unsucessful	89	18 89	18 89	18 89	18 89	Complete the h ₀ (69) =
no. of probes			•			

$$h(k) = k \% 10$$

probe sequence

For example, linear probing for 58

$$h_0(58) = (h(58)+f(0)) \% 10$$

 $= (8+0) \% 10 = 8 \text{ (collision)}$
 $h_1(58) = (h(58)+1) \% 10 = 9 \text{ (collision)}$
 $h_2(58) = (h(58)+2) \% 10 = 0 \text{ (collision)}$
 $h_3(58) = (h(58)+3) \% 10 = 1$

e linear probing for 69

Collision Resolution - Linear Probing Issues

- Probe sequences can get longer with time.
- Primary clustering
 - Keys tend to cluster in one part of table.
 - Keys that hash into cluster will be added to the end of the cluster (making it even bigger).
 - Side effect:
 Other keys could also get affected if mapping to a crowded neighborhood.

Collision Resolution - Quadratic Probing이차조사법

- Avoids primary clustering
- f(i) is quadratic in i, e.g., f(i) = i²

$$h_i(k) = (h(k) + i^2)$$
 % TableSize
 i^{th} probe index 0^{th} probe index $f(i)$

Probe sequence: +0, +1, +4, +9, +16, ...

Continue until an empty slot is found Number of failed probes is a measure of performance

Collision Resolution - Quadratic Probing 이차조사법

- Avoids primary clustering
- f(i) is quadratic in i, e.g., f(i) = i²

$$h_i(k) = (h(k) + i^2)$$
 % TableSize
 i^{th} probe index 0^{th} probe index $f(i)$

Probe sequence: +0, +1, +4, +9, +16, ... ← quadratic

- Example:
 - $h_0(58) = (h(58) + 0^2) \% 10 = 8 \text{ (collision)}$
 - $h_1(58) = (h(58) + 1^2) \% 10 = 9$ (collision)
 - $h_2(58) = (h(58) + 2^2) \% 10 = 2$

Collision Resolution Exercise - Quadratic Probing이차조사법

Collision Resolution Exercise - Quadratic Probing이차조사법

Collision Resolution - Quadratic Probing Analysis

- Difficult to analyze
- Theorem:
 - New element can always be inserted into a table that is at least half empty and TableSize is prime.
 - Otherwise, may never find an empty slot, even is one exists.
- Ensure table never gets half full.
 - If close, then expand (rehash) it.
- May cause "secondary clustering"

Summary

- Table size prime
- Table size larger than number of inputs (to maintain $\lambda << 1.0$)
- Two types of collision resolution
 - Separate chaining
 - Open addressing probing
 - Tradeoffs between chaining vs. probing
- Collision chances decrease in this order:
 linear probing → quadratic probing → double hashing
- Rehashing recommended to resize hash table at a time when λ exceeds 0.5

Data Structures in Python Chapter 6

- Hash Table
- Collision Resolutions
- Double Hashing & Rehashing
- Hash Implementation

