A twelve hours course in Galois theory

Ken Lee

Autumn 2024

Contents

1	The Galois correspondence	1
2	Finite extensions and the embedding theorem	5
3	Normal and separable extensions	9
4	Galois extensions and the correspondence	12
5	Cyclotomic extensions, Cyclic extensions	16
6	Radical extensions	18
7	Finite fields, Frobenius lifts and existence of non-solvable quintic	21
8	Bonus : Sneak peak at p-adic and perfectoid fields	26

1 The Galois correspondence

We show an example of the Galois correspondence. Consider the polynomial $f(T) = T^3 - 2 \in \mathbb{Q}[T]$. Let $\alpha_0, \alpha_1, \alpha_2 \in \mathbb{C}$ be the roots of f.

Slogan: Galois theory studies the "symmetries" of roots of polynomials

To make this precise, let us first investigate the field obtained by chucking in $\alpha_0, \alpha_1, \alpha_2$ to \mathbb{Q} . Define

$$\mathbb{Q}_f:=\mathbb{Q}(\alpha_0,\alpha_1,\alpha_2):=\text{ smallest field in }\mathbb{C}\text{ containing }\mathbb{Q},\alpha_0,\alpha_1,\alpha_2$$

Question 0 : What does \mathbb{Q}_f **look like?** We try to describe $\mathbb{Q}(\alpha_0)$ first. Consider the map $T \mapsto \alpha_0$

The image is $\mathbb{Q}[\alpha_0]$ the collection of polynomial expressions in α_0 with coefficients in \mathbb{Q} . Since $f \in \mathbb{Q}[T]$ is irreducible we have $\mathbb{Q}[\alpha_0] = \mathbb{Q}[T]/(f)$ and hence this has a \mathbb{Q} -basis $1, \alpha_0, \alpha_0^2$.

- Exercise 1: show that for a field K and an K-algebra A which is finite dimensional as a K-vector space and an integral domain, A must be field.

It follows that $\mathbb{Q}[\alpha_0]$ is a field and hence

$$\mathbb{Q}[\alpha_0] = \mathbb{Q}(\alpha_0)$$

Now we do a trick by observing that

$$\left(\frac{\alpha_1}{\alpha_0}\right)^3 = 2/2 = 1$$

Later on, we will give a way of checking when a polynomial has repeated roots so assume for now that all $\alpha_0, \alpha_1, \alpha_2$ are distinct. Then we get $\alpha_1 = \alpha_0 \omega$ for some $\omega \neq 1 = \omega^3$, and similarly $\alpha_2 = \alpha_0 \omega^2$. The ω, ω^2 here are called a *primitive cube roots of unity*. They are both roots of the polynomial $T^2 + T + 1 \in \mathbb{Q}[T]$. In the next section, we will be able to show that $\omega \notin \mathbb{Q}(\alpha_0)$. Taking this for granted for now, $T^2 + T + 1$ does not have a root in $\mathbb{Q}(\alpha_0)$, so it is irreducible in $\mathbb{Q}(\alpha_0)[T]$. It follows that

$$\mathbb{Q}[\alpha_0,\omega] \simeq \mathbb{Q}[\alpha_0][T]/(T^2+T+1)$$

As a $\mathbb{Q}[\alpha_0]$ -vector space, this has dimension two and hence is again a field by Exercise 1. We deduce **Answer 0**:

$$\mathbb{Q}(\alpha_0, \alpha_1, \alpha_2) = \mathbb{Q}[\alpha_0, \omega] = \mathbb{Q}[\alpha_0, \alpha_1, \alpha_2]$$

We now define *the Galois group of f* as

$$G_f := \operatorname{Aut}_{\mathbb{Q}} \mathbb{Q}(\alpha_0, \alpha_1, \alpha_2) := \{ \sigma : \mathbb{Q}_f \to \mathbb{Q}_f \text{ s.t. } \sigma \text{ ring morphism and } \forall \lambda \in \mathbb{Q}, \ \sigma(\lambda) = \lambda \}$$

Question 1 : Why is this the "symmetries" of $\alpha_0, \alpha_1, \alpha_2$? Observation : any $\sigma \in G_f$ must permute $\{\alpha_0, \alpha_1, \alpha_2\}$. This is *the* trick that underlies Galois theory :

$$f(\sigma(\alpha_i)) = (\sigma(\alpha_i))^3 - 2 = \sigma(\alpha_i^3 - 2) = 0$$

Hence we have a well-define group morphism

$$G_f \to \operatorname{Aut} \{\alpha_0, \alpha_1, \alpha_2\}$$

Since $\mathbb{Q}_f = \mathbb{Q}[\alpha_0, \alpha_1, \alpha_2]$ any $\sigma \in G_f$ is determined by what it does on α_i hence the above morphism is injective. **Answer 1: The above morphism defines an isomorphism**

$$G_f \simeq \{\sigma \in \operatorname{Aut}\left\{\alpha_0, \alpha_1, \alpha_2\right\} \text{ s.t. } \forall g \in \mathbb{Q}[X_0, X_1, X_2], g(\alpha_0, \alpha_1, \alpha_2) = 0 \Rightarrow g(\sigma(\alpha_0), \sigma(\alpha_1), \sigma(\alpha_2)) = 0\}$$

in other words, G_f is the permutations of roots of f which preserves all algebraic relations over \mathbb{Q} .

Proof. $\mathbb{Q}[\alpha_0, \alpha_1, \alpha_2]$ is precisely the image of the evaluation map

$$\mathbb{Q}[X_0, X_1, X_2] \to \mathbb{Q}[\alpha_0, \alpha_1, \alpha_2], X_i \mapsto \alpha_i$$

 $^{^1}$ Can be checked by Eisenstein's criterion. Alternatively, a cubic over $\mathbb Q$ is reducible iff it has a root in $\mathbb Q$. This can be checked to be impossible by brute force.

It follows that $\mathbb{Q}[\alpha_0, \alpha_1, \alpha_2] \simeq \mathbb{Q}[X_0, X_1, X_2]/I$ where I is the set of polynomials $g(X_0, X_1, X_2)$ with $g(\alpha_0, \alpha_1, \alpha_2)$. From this, it is clear that G_f lands inside the RHS. Now given $\tilde{\sigma}$ in RHS, one can evaluate

$$\mathbb{Q}[X_0, X_1, X_2] \to \mathbb{Q}[\alpha_0, \alpha_1, \alpha_2], X_i \mapsto \tilde{\sigma}(\alpha_i)$$

Then by definition I is in the kernel of this evaluation map so it factors through the quotient by I to give an automorphism of $\mathbb{Q}(\alpha_0, \alpha_1, \alpha_2)$ preserving \mathbb{Q} .

Let us now compute G_f . We have the following

$$\mathbb{Q}_f = \mathbb{Q}[\alpha_0, \omega] = \mathbb{Q}[\alpha_0][\omega] \simeq \frac{\mathbb{Q}[\alpha_0][Y]}{(Y^2 + Y + 1)} \simeq \frac{\mathbb{Q}[X][Y]/(X^3 - 2)}{(X^3 - 2, Y^2 + Y + 1)/(X^3 - 2)} \simeq \frac{\mathbb{Q}[X, Y]}{(X^3 - 2, Y^2 + Y + 1)}$$

where the last isomorphism is the 3rd isomorphism theorem of rings. Consider the 3-cycle $\sigma := (\alpha_0 \ \alpha_1 \ \alpha_2)$. Knowing $\omega = \alpha_1/\alpha_0$ we send $X \mapsto \alpha_1, Y \mapsto \omega$.

$$\mathbb{Q}[X,Y] \xrightarrow{Y \mapsto \omega} \mathbb{Q}[\alpha_0,\omega]$$

$$X \mapsto \alpha_0 \qquad \qquad \simeq$$

$$Y \mapsto \omega \qquad \qquad \simeq$$

$$\mathbb{Q}[\alpha_0,\omega]$$

We get the factoring because $\alpha_1^3-2=0=\omega^2+\omega+1$ and so $\sigma\in G_f$. Now consider $\tau:=(\alpha_0\ \alpha_1)$. Again, since $\omega=\alpha_1/\alpha_0$ we know τ should send $\omega\mapsto 1/\omega=\omega^2$ so we send $X\mapsto \alpha_0,Y\mapsto \omega^2$.

$$\mathbb{Q}[X,Y] \xrightarrow{Y \mapsto \omega^2} \mathbb{Q}[\alpha_0,\omega]$$

$$X \mapsto \alpha_0 \downarrow \qquad \simeq$$

$$\mathbb{Q}[\alpha_0,\omega]$$

Again $\alpha_1^3 - 2 = 0 = (\omega^2)^2 + \omega^2 + 1$ gives the above factoring and hence $\tau \in G_f$. It follows that G_f is the whole of Aut $\{\alpha_0, \alpha_1, \alpha_2\}$.

Symmetry means "changes that cannot be observed". The symmetries of a triangle are the ways you can change the triangle such that you cannot tell the difference between before and after. In the same way, G_f are the ways you can swap of roots of f such that as far as $\mathbb Q$ can tell, nothing has changed. In this example, there is nothing special about α_0 ; the whole argument works starting with α_1 or α_2 . The roots are equally ambiguous, which is reflected in the quantitative fact that $G_f \simeq S_3$. An example of less ambiguity is T^3-1 . The roots are $1,\omega,\omega^2$. The Galois group of T^3-1 is cyclic order two generated by $\omega\mapsto\omega^2$. This reflects the fact that 1 is more special than ω,ω^2 whilst the latter cannot be distinguished from each other. Indeed if one writes $\mu:=\omega^2$ then $\omega=\mu^2$.

Back to T^3-2 . Observe that $\mathbb{Q}\subseteq\mathbb{Q}_f^{G_f}:=$ the set of elements in \mathbb{Q}_f fixed by G_f . Claim: $\mathbb{Q}=\mathbb{Q}_f^{G_f}$. Let $x\in\mathbb{Q}_f$ be fixed by G_f . We approach \mathbb{Q}_f this time by adding ω first then α_0 . Since $\mathbb{Q}_f=\mathbb{Q}[\omega][\alpha_0]$ we can write

$$x = \lambda_0 + \lambda_1 \alpha_0 + \lambda_2 \alpha_0^2$$

for $\lambda_i \in \mathbb{Q}(\omega)$. Then since $\sigma(\omega) = \omega$ we have

$$x = \sigma(x) = \lambda_0 + \lambda_1 \omega \alpha_0 + \lambda_2 \omega^2 \alpha_0^2$$

Since $1, \alpha_0, \alpha_0^2$ are a $\mathbb{Q}(\omega)$ -basis for \mathbb{Q}_f , we can compare coefficients to get $\lambda_1 = \lambda_1 \omega$ and $\lambda_2 = \lambda_2 \omega^2$ This implies $\lambda_1 = 0 = \lambda_2$ and so $x \in \mathbb{Q}(\omega)$. Now $x = \mu_0 + \mu_1 \omega$ for $\mu_i \in \mathbb{Q}$. Then

$$x = \tau(x) = \mu_0 + \mu_1 \omega^2 = (\mu_0 - \mu_1) - \mu_1 \omega$$

which implies $\mu_1 = -\mu_1$ and so $\mu_1 = 0$. We find that $x \in \mathbb{Q}$. More generally, given any subgroup H of G_f we can compute the *fixed subfield* \mathbb{Q}_f^H . Here is a diagram of all the subgroups of G_f and their corresponding fixed subfields.

The fundamental theorem of Galois theory says this is all of them. To be more precise, we make some definitions.

Definition - Galois extension

Let $K \to L$ be an extension of fields. We often identify K with its image in L. We call it *Galois* when there is a finite group $G \subseteq \operatorname{Aut}_K L$ such that $K = L^G$.

The extension earlier $\mathbb{Q} \subseteq \mathbb{Q}(\alpha_0, \alpha_1, \alpha_2)$ was an example of a Galois extension.

Proposition - The Galois correspondence

Let $K \to L$ be a Galois extension of fields and let $G := \operatorname{Aut}_K L$. Consider the following two constructions :

- Given a subgroup $H \subseteq G$, define L^H as the set of fixed points of L by H. This defines a field containing the image of K.
- Given a subfield $M \subseteq L$ containing K, define $\operatorname{Aut}_M L$ as the subgroup of G acting trivially on M.

Then we have an order reversing bijection

$$\{\text{subextensions } M\subseteq L\} \xrightarrow[L^-]{\underline{\operatorname{Aut}_{_}L}} \{\text{subgroups of } \operatorname{Aut}_{K}L\}$$

The Galois extension \mathbb{Q}_f/\mathbb{Q} is an example of a *solvable* extension.

Definition

ı

Let $K \to L$ be an extension. We say it is *radical* when there exists a chain of subextensions

$$K = L_0 \rightarrow L_1 \rightarrow \cdots \rightarrow L_{n-1} \rightarrow L_n = L$$

such that each $L_{i+1} = L_i(\alpha_i)$ for some α_i with $\alpha_i^{d_i} \in L_i$ for some $d_i > 0$.

For $f \in K[T]$ we say f is *solvable by radicals* when there exists a radical extension $K \to L$ which splits f.

Notice that in the example, that the sequence of groups

$$1 \to \langle (\alpha_0 \ \alpha_1 \ \alpha_2) \rangle \to G_f$$

is such that one subgroup is normal in the next and furthermore that the factor groups are cyclic. This is an example of a *solvable group*.

Definition

Let G be a finite group. Then G is called solvable when there exists a chain

$$1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_n = G$$

such that H_{n+1}/H_n is cyclic.

We will show the following by the end of the course.

Proposition - Characteristization of solvable polynomials

Let K be a field of characteristic zero and $f \in K[T]$. Then f is solvable by radicals iff G_f is solvable.

Proposition

The polynomial $T^5 - T - 1 \in \mathbb{Q}[T]$ has Galois group S_5 and hence is not solvable by radicals.

2 Finite extensions and the embedding theorem

We saw in the previous section that $\omega \in \mathbb{Q}(\alpha_0)$ precisely when there is a solution to $T^2 + T + 1$ inside $\mathbb{Q}(\alpha_0)$. Accordingly, there is no copy of $\mathbb{Q}(\omega)$ inside $\mathbb{Q}(\alpha_0)$. This section investigates this phenomenon. We didn't formally define field extensions last time.

Definition

A field extension is a ring morphism $\iota: K \to L$ between fields.

Since fields have no non-trivial ideals, any field extension $\iota: K \to L$ must be injective. When it is clear, we often identify K with its image ιK . Sometimes we write L/K to say L is an extension of K.

Example

i

Here is an example of a field extension from a field to itself. Let $\mathbb{Q}(T) := \operatorname{Frac} \mathbb{Q}[T]$. Define $\mathbb{Q}[T] \to \mathbb{Q}[T], T \mapsto T^2$. Then this induces a field extension $\mathbb{Q}(T) \to \mathbb{Q}(T)$ where the image of the first copy is $\mathbb{Q}(T^2)$.

A basic invariant of a field extension is its degree.

Definition - Degree of an extension

Let $K \to L$ be a field extension. Define its *degree* as $[L:K] := \dim_K L$. It is called finite when $[L:K] < \infty$.

When proving things about a finite extension $K \to L$, we will often do so by inducting on [L:K]. The following is useful.

Proposition - Tower law

Let $K \to L \to N$ be extensions of fields. Then [N:K] = [N:L][L:K]. In particular, a sequence of finite extensions is finite.

The following argument works for infinite extensions, though we will mostly be interested in finite extensions.

Proof. Let $B_L \subseteq L$ be a ι_L -basis and $B_N \subseteq N$ a ι_N -basis. The claim is that $B_L B_N := \{ab \mid a \in B_L, b \in B_N\}$ is a $(\iota_N \circ \iota_L)$ -basis of N and has cardinality $B_L \times B_N$.

(Cardinality) Let $(a_1, b_1), (a_2, b_2) \in B_L \times B_N$ such that $a_1b_1 = a_2b_2$. This is then a non-trivial L-linear combination of elements in B_N , contradicting linear independence of B_N . The cardinality is thus as desired.

(Linear Independence) Let $\sum_{(a,b)\in B_L\times B_N}\lambda_{a,b}ab=0$ where $\lambda_{a,b}\in K$ and only finitely many are non-zero. Then we have $\sum_{b\in B_N}\left(\sum_{a\in B_L}\lambda_{a,b}a\right)b=0$, giving $\sum_{a\in B_L}\lambda_{a,b}a=0$ by linear independence of B_N , which in turn gives $\lambda_{a,b}=0$ by linear independence of B_L .

(Spanning) Let $x \in N$. Since B_N is spanning, we have $\sum_{b \in B_N} \lambda_b b = x$ for some $\lambda_b \in L$, finitely many non-zero. Then since B_L is spanning, we have $\sum_{a \in B_L} \mu_{a,b} a = \lambda_b$ for each $b \in N_B$, where $\mu_{a,b} \in K$, finitely many non-zero. So $\sum_{(a,b) \in B_L \times B_N} \mu_{a,b} ab = x$ as desired.

Example.

Now we can show $\omega \notin \mathbb{Q}(\alpha_0)$ from the previous section. We have $3 = [\mathbb{Q}(\alpha_0) : \mathbb{Q}] = [\mathbb{Q}(\alpha_0) : \mathbb{Q}] = [\mathbb{Q}(\alpha_0) : \mathbb{Q}] = [\mathbb{Q}(\alpha_0) : \mathbb{Q}]$ which is a contradiction because 2 does not divide 3.

Definition

Let $K \to L$ be a field extension. For $A \subseteq L$, define $K(A) \subseteq L$ as the smallest subfield of L containing the image of K and A. We say $K \to L$ is finite type when there exists finite $A \subseteq L$ with L = K(A). In the case of $A = \{a\}$, we write K(a). We call extensions of the form $K \to K(a)$ simple.

Given $a \in L$, one can consider the evaluation ring morphism

$$\operatorname{ev}_a: K[T] \to L, f(T) \mapsto f(a)$$

We say a is algebraic over K when there exists a non-zero f with f(a) = 0, i.e. $0 \neq \ker \operatorname{ev}_a$.

We say $K \to L$ is algebraic when all $a \in L$ is algebraic over K.

Proposition – Characteristization of finite simple extensions

Let $K \to L$ be an extension and $a \in L$. Then the following are equivalent:

- 1. a is algebraic over K
- 2. [K(a):K] is finite 3. $K \to K(a)$ is algebraic.

Proof. $(1 \Rightarrow 2)$ We saw in section 1 how to compute K(a). Specifically, consider the evaluation map $K[T] \rightarrow P(a)$ $L, f \mapsto f(a)$ and let K[a] be its image. By assumption, there exists non-zero $f \in K[T]$ with f(a) = 0. WLOG $\deg f = N \geq 0$. Then $1, a, \ldots, a^{N-1}$ is a K-spanning set for K[a]. This implies K[a] is a finite dimensional K-vector space and hence a field and hence K[a] = K(a).

 $(2\Rightarrow 3)$ Let $b\in K(a)$. Since [K(a):K] is finite, there exists a non-trivial linear combination $0=\sum_{n\geq 0}\lambda_nb^n$ with $\lambda_n \in K$, which implies b is algebraic over K.

$$(3 \Rightarrow 1)$$
 trivial.

Proposition – Characteristization of finite extensions

Let $K \to L$ be an extension. The following are equivalent :

- 2. $K \rightarrow L$ is finite type and algebraic
- 3. There exists finite $A \subseteq L$ such that L = K(A) and all $a \in A$ are algebraic.

Proof. $(1 \Rightarrow 2)$ Take a K-basis and use the characterization of finite simple extensions. $(2 \Rightarrow 3)$ Clear. $(3 \Rightarrow 1)$ Induct on the size of A and use the characterization of finite simple extensions.

We are now ready for the main result of this section.

Proposition - Embedding theorem for finite simple extensions

Let $K \to L$ be an extension and $a \in L$ algebraic over K. The ideal $\ker \operatorname{ev}_a \subseteq K[T]$ is generated by a unique monic polynomial. We call it the *minimal polynomial of a over K*, denoted $\min(a, K)$. Let $K \to N$ be another extension. Then we have a bijection

$$\operatorname{Emb}_K(K(a), N) \simeq \{b \in N \text{ s.t. } \min(a, K) = \min(b, K)\}, \varphi \mapsto \varphi(a)$$

In particular, $|\text{Emb}_K(K(a), N)| \leq |K(a) : K|$. Elements $b \in N$ with $\min(b, K) = \min(a, K)$ are called Galois conjugates of a.

Proof. We saw $K(a) = K[a] \simeq K[T]/(\min(a, K))$. Given $\varphi : K(a) \to N$ a K-embedding, the composition $K[T] \to K(a) \to N$ is $ev_{\varphi(a)}$. Since $K(a) \to N$ is injective, we have $ker ev_{\varphi(a)} = ker ev_a$. It follows that $\min(\varphi(a), K) = \min(a, K)$. Conversely, given $b \in N$ a Galois conjugate of a we can define the K-embedding $K(a) \simeq K[T]/(\min(a, K)) = K[T]/(\min(b, K)) \simeq K(b) \subseteq N.$

We will now generalise the above to general finite extensions. For this, we need to know how embeddings from subextensions interact with the whole extension.

Proposition - Subextensions partition embeddings

Let $K \to L \to M$ and $K \to N$ be extensions. Then we have a bijection

$$\bigsqcup_{\iota\in \operatorname{Emb}_K(L,N)} \operatorname{Emb}_L(M,N) \xrightarrow{\sim} \operatorname{Emb}_K(M,N)$$
 by sending $(L \to N \in \operatorname{Emb}_K(L,N), M \to N \in \operatorname{Emb}_L(M,N))$ to $M \to N$ viewed as a K -embedding.

Proof. The point is that we have a map $\mathrm{Emb}_K(M,N) \to \mathrm{Emb}_K(L,N)$ and the fibers over each $\iota: L \to N$ is precisely the set of L-embeddings $M \to N$ where N is viewed as an L-extension by $\iota: L \to N$.

Proposition – Embedding theorem for finite extensions

Let $K \to L$ be an extension and $A \subseteq L$ finite set of algebraic generators for L over K. Let $K \to N$ be another extension and assume that for all $a \in A$ the minimal polynomial $\min(a, K)$ splits into linear factors in N[T]. Then

$$0 < |\mathrm{Emb}_K(L, N)| \le [L : K]$$

and we have equality if for all $a \in A$ the polynomial $\min(a, K)$ has no repeated roots in N.

Proof. Induct on the cardinality of A. $A = \emptyset$ is trivial so let $a_0 \in A$ and $M := K(A \setminus \{a_0\})$ and assume inductively $0 < \operatorname{Emb}_K(M, N) \leq [M : K]$ with equality if all for all $a_1 \in A \setminus \{a_0\}$ we have $\min(a_1, K)$ with no repeated roots in N. Then $L = M(a_0)$. We have $\min(a_0, M)$ divides $\min(a_0, K)$ in M[T], so $\min(a_0, M)$ also splits into linear factors in N[T]. It follows from the characterization of finite simple extensions and the tower law that

$$0<|\mathrm{Emb}_K(L,N)|=\sum_{\mathrm{Emb}_K(M,N)}|\mathrm{Emb}_M(L,N)|\leq \sum_{\mathrm{Emb}_K(M,N)}[L:M]\leq [L:M][M:K]=[L:K]$$

Now assume all $\min(a, K)$ for $a \in A$ split into linear factors in N. This implies $\min(a_0, M)$ splits into linear factors in N so $|\text{Emb}_M(L,N)| = [L:M]$. Then the first \leq is an equality and the second is also by the induction hypothesis on M.

3 Normal and separable extensions

Given an extension $K \to L = K(a_1, \ldots, a_n)$ with a_i algebraic over K, the embedding theorem for finite extensions tells us how to construct automorphisms of L over K. For the main theorem of Galois theory to hold true, we need to have the maximum number of automorphisms, i.e. $|\operatorname{Aut}_K L| = [L:K]$. The embedding theorem indicates two ways in which this can fail:

- 1. the polynomials $min(a_i, K)$ do not split into linear factors in L[X]
- 2. there exists some a_i such that $min(a_i, K)$ has a repeated root in L.

These two phenomena are respectively called normality and separability. Let us illustrate the failure of normality by focusing on the extension $\mathbb{Q} \to \mathbb{Q}(\alpha_0)$ from the first section. Using the embedding theorem for finite simple extensions, we see that $\sigma \in \operatorname{Emb}_{\mathbb{Q}}(\mathbb{Q}(\alpha_0),\mathbb{Q}(\alpha_0))$ correspond to solutions of T^3-2 in $\mathbb{Q}(\alpha_0)$. There is only α_0 : If there is another root $\tilde{\alpha_1}$ then $\tilde{\omega} := \tilde{\alpha_1}/\alpha_0$ would be a primitive cube root of unity and $[\mathbb{Q}(\tilde{\omega}):\mathbb{Q}]=2$ which we cannot have as we saw before. From this, we can see the problem is that $\mathbb{Q}(\alpha_0)/\mathbb{Q}$ does not contain all the roots of the polynomial T^3-2 . More precisely, T^3-2 does not factorise into linear factors in $\mathbb{Q}(\alpha_0)[T]$. We can also see this phenomenon in the following way: there are three ways of \mathbb{Q} -embedding $\mathbb{Q}(\alpha_0)$ inside $\mathbb{Q}(\alpha_0,\alpha_1,\alpha_2)$ corresponding to each $\mathbb{Q}(\alpha_i)$ and their images are different.

Definition - Normal Extension

Let $K \to L$ be an extension and $f \in K[X]$. Then we say L splits f when f factorises into linear factors in L[X].

Suppose L/K is algebraic. Then it is called *normal* when for all $a \in L$, it contains all the Galois K-conjugates of a, i.e. L splits $\min(a, K)$.

Proposition - Splitting Polynomials

Let K be a field and $f \in K[X] \setminus K$. Then there exists an extension $K \to L$ such that f has a root in L. In particular, there exists a K-extension that splits f.

Proof. Since f is non-constant and K[X] is a UFD, there exists an irreducible f_1 that divides f. Let $L = K[X]/(f_1)$. Then since f_1 is irreducible and K[X] is a PID, L is a field and thus a K-extension. Note that the image of the monomial X in L is a root of f_1 , and hence a root of f. To split f, use the above procedure to inductively construct a desired extension.

Proposition - Characterisation of Finite Normal Extensions

Let $K \to L$ be a finite extension. Then the following are equivalent :

- 1. (Contains all Galois *K*-Conjugates) $K \rightarrow L$ normal.
- 2. (Contains all Galois K-Conjugates of Generators) There exists $A \subseteq L$ a finite set of generators of $K \to L$ such that for all $a \in A$, a is algebraic over K and L splits $\min(a, K)$.
- 3. (is a Splitting Field) There exists a polynomial $f \in K[X]$ such that L splits f and is generated by the roots of f in L.

4. (Image Invariance) For all extensions $K \to N$ and two $\iota_0, \iota_1 \in \text{Emb}_K(L, N), \iota_0 L = \iota_1 L$.

Proof. $(1 \Rightarrow 2 \Rightarrow 3)$ is clear.

 $(3\Rightarrow 4)$ The key is that roots of f remain roots of f under K-embeddings. Let $f(X)=\prod_{k=1}^{\deg f}(X-a_k)\in L[X]$. where $a_k\in L$. Then $f(X)=\prod_{k=1}^{\deg f}(X-\iota_0(a_k))\in N[X]$ For all a_l , since ι_1 fixes K we get

$$0 = \iota_1(f(a_l)) = f(\iota_1(a_l)) = \prod_{k=1}^{\deg f} (\iota_1(a_l) - \iota_0(a_k))$$

so there exists a_k such that $\iota_1(a_l) = \iota_0(a_k)$. Since $L = K(a_1, \dots, a_{\deg f})$, this shows that $\iota_1 L \subseteq \iota_0 L$ and by symmetry $\iota_0 L \subseteq \iota_1 L$ as well.

 $(4\Rightarrow 1)$ Let $a\in L$. Since (L,ι_L) is finite, $\min(a,K)$ exists. We do not know if L splits $\min(a,K)$, but there exists an extension $L\to M$ such that M splits $\min(a,K)$. We seek to show that all Galois K-conjugates of a in M are actually in (the image of) L already. So let $\alpha\in M$ be a Galois K-conjugate of a. We have the following situation.

$$K \xrightarrow{\iota_L} K(a) \xrightarrow{\subseteq} L$$

$$\downarrow^{\phi_\alpha} \downarrow^{\iota_M}$$

$$M$$

By the embedding theorem for finite simple extensions, there exists $\phi_{\alpha} \in \operatorname{Emb}_K(K(a), M)$ that maps $a \mapsto \alpha$. Suppose we have an $\iota_1 \in \operatorname{Emb}_{K(a)}(L, \phi_{\alpha})$. Then certainly $\iota_1 \in \operatorname{Emb}_K(L, \iota_M \circ \iota_L)$. Also, trivially $\iota_M \in \operatorname{Emb}_K(L, \iota_M \circ \iota_L)$. So $\iota_1 L = \iota_M L$ implies $\alpha \in \iota_M L$ as desired. It thus suffices to give an $\iota_1 \in \operatorname{Emb}_{K(a)}(L, \phi_{\alpha})$. Well, since (L, ι_L) is finite, it is also a finite K(a)-extension, so it is generated by some finite subset B whose elements are all algebraic over K(a). Then we can extend M so that it splits all $\min(b, K(a))$ for $b \in B$. Thus by the embedding theorem, we have an $\iota_1 \in \operatorname{Emb}_{K(a)}(L, \phi_{\alpha})$.

Now let us discuss separability. As we will see, existence of inseparable irreducible polynomials is linked with the *characteristic* of the base field K. This implies that in terms of finding an insolvable quintic over \mathbb{Q} , the problem of inseparable minimal polynomials never happens.

Definition - Separable Polynomial, Separable extension

f is said to be *separable* when for all K-extensions in which f splits, f has no repeated roots. If otherwise, f is called *inseparable*. An algebraic extension $K \to L$ is called separable when for all $a \in L$, the polynomial $\min(a,K)$ is separable.

Proposition - Characterization of separable polymomials using differentials

Let K be a field and $f = \sum_{0 \le n} f_n X^n \in K[X]$. The formal derivative of f is defined to be $f' = \sum_{0 \le n} n f_n X^{n-1}$. Then f is separable iff (f, f') = 1.

Intuition : if $a \in K$, writing $f(X) = \sum_{d > 0} \lambda_d (X - a)^d$, a is a higher order root iff $\lambda_0 = \lambda_1 = 0$.

Proof. We will prove f is inseparable iff $(f,f') \neq 1$. Assume f is inseparable. Suppose (f,f')=1. Then by the Euclidean algorithm there exists $\lambda, \mu \in K[X]$ such that $\lambda f + \mu f' = 1$. Let $K \to L$ be an extension where f has a repeated root a. By factoring $f(X) = (X - a)^2 g(X)$ in L[X] and the product rule for formal differentiation (which can be proved by induction), we see a contradiction

$$1 = \lambda(a)f(a) + \mu(a)f'(a) = 0 + 0 = 0$$

Now assume $(f, f') \neq 1$. Let $h \in K[X]$ be the GCD of f and f', which is non-constant by assumption. Let $K \to L$ be any extension that splits f. It also splits h. Let $a \in L$ with h(a) = 0. We can write $f(X) = (X - a)^d g(X)$ in L[X] for some $d \geq 0$ and $g(a) \neq 0$. Since h divides f we have f(a) = 0 so $d \geq 1$. Suppose d = 1. We also have h divides f' yielding a contradiction

$$0 = f'(a) = g(a) \neq 0$$

To give an example of an inseparable extension, we need to discuss the notion of the characteristic of a field.

Definition - Characteristic of a Field

Let K be a field. \mathbb{Z} is generated by 1 and ring morphisms must preserve 1, so there is a unique ring morphism $\mathbb{Z} \to K$. Its image is an ID since K is an ID. So by \mathbb{Z} PID, its kernel is generated by either zero or a (positive) prime. This is defined as the *characteristic of* K, denoted $\operatorname{Char} K$.

More generally, the characteristic of any integral domain A is defined in the same way.

Example.

All fields K of characteristic 0 have a unique extension map $\mathbb{Q} \to K$. Similarly, all fields K of characteristic p > 0 have a unique extension map $\mathbb{F}_p \to K$.

The following is the root of all interesting phenomena in positive characteristic.

Proposition - Freshman's dream

Let *A* be an \mathbb{F}_p -algebra, i.e. p=0 in *A*, and $a,b\in A$. Then $(a+b)^p=a^p+b^p$

Proof. The point is that the binomial coefficient $\binom{p}{k}$ for 0 < k < p is divisible by p.

Example.

Consider $K = \mathbb{F}_p(T) := \operatorname{Frac} \mathbb{F}_p[T]$ and the polynomial $f(X) = X^p - T \in K[X]$. Then by Eisenstein's criterion f is irreducible. Let L := K[X]/(f) and $T^{1/p}$ the image of X in L. Then in L[X] we have by Freshman's dream

$$f(X) = X^p - T = X^p - (T^{1/p})^p = (X - T^{1/p})^p$$

So f is inseparable. Notice in that f' = 0 so indeed $(f, f') \neq 1$.

In fact, we cannot have inseparable extensions in characteristic zero.

Proposition

Let K be characteristic zero. Then any irreducible $f \in K[T]$ is separable.

Proof. f' is either zero or has degree strictly less than f. WLOG f is monic. Then 0 = f' implies by looking at the leading coefficient, $0 = \deg f$ as elements of K, contradicting the characteristic of K being zero. So $f' \neq 0$. But then we must have (f, f') = 1 because $\deg f' < \deg f$ implies f cannot divide f'.

4 Galois extensions and the correspondence

Definition

An extension $K \to L$ is called finite Galois when there exists a finite subgroup $G \subseteq \operatorname{Aut}_K L$ such that $K = L^G$.

The following is arguably the fundamental theorem of Galois theory.

Proposition - Artin's characterization of finite Galois extensions

Let $K \to L$ be an extension. Then $K \to L$ is finite, normal, separable iff $K \to L$ is finite Galois. In this case the finite subgroup $G \subseteq \operatorname{Aut}_K L$ such that $K = L^G$ must be $\operatorname{Aut}_K L$.

Proof. Slogan: set of Galois conjugates = orbit.

 $(1\Rightarrow 2)$ By the embedding theorem, $|\operatorname{Aut}_K L| \leq [L:K]$. We claim that $G:=\operatorname{Aut}_K L$ works. Let $a\in L^G$. Goal: $a\in K$. It suffices to show $\min(a,K)$ is linear. Since $K\to L$ is normal, $\min(a,K)$ splits in L. Since $K\to L$ is separable, it suffices to show that for any Galois K-conjugate α of a we have $\alpha=a$. Let $\alpha\in L$ with $\min(a,K)(\alpha)=0$. Since $a\in L^G$ is suffices to give $\sigma\in\operatorname{Aut}_K L$ which $\sigma(a)=\alpha$. By the embedding theorem applied to $K(a)\to L$, we can extend $K(a)\simeq K(\alpha)\to L$ to an automorphism $\sigma:L\to L$ preserving K. This maps a to α as desired.

 $(2 \Rightarrow 1)$ Let G be a finite subgroup of $\operatorname{Aut}_K L$ such that $K = L^G$. For $a \in L$ we claim that

$$\min(a, K)(T) = \prod_{\alpha \in Ga} (T - \alpha) \in L[T]$$

where Ga denotes the G-orbit of a. This proves that L/K is normal and separable. Let $f \in L[T]$ be the above product. The claim is equivalent to showing $f \in L^G[T] = K[T]$ and f is irreducible in K[T]. Let $\sigma \in G$. Then

$$\sigma f(T) = \sigma \prod_{\alpha \in Ga} (T - \alpha) = \prod_{\alpha \in Ga} (T - \sigma(\alpha)) = \prod_{\tilde{\alpha} \in Ga} (T - \tilde{\alpha}) = f(T)$$

Therefore $f \in K[T]$. For irreducibility, if f = gh is a non-trivial factoring in K[T] then one of g or h has a as a root. Say it's g, then by applying $\sigma \in G$ to the equation 0 = g(a) we get that g has all $\alpha \in Ga$ as roots, i.e. f divides g, a contradiction.

Now we show L/K is finite. We are expecting $G=\operatorname{Aut}_K L$ which should have size [L:K]. So we will bound $[L:K] \leq |G|$. Magic claim: $\dim_K L = \dim_L L[G] = |G|$ where L[G] is the set of functions from G to L. It will suffice for us to show that any K-linearly independent set gives rise to a L-linearly independent set in L[G] with the same cardinality. Let $A \subseteq L$ be a finite K-linearly independent set. Define $\tilde{A} := \{\operatorname{ev}_a\}_{a \in A} \subseteq L[G]$.

Then $ev_{\underline{}}: A \to \tilde{A}$ is a bijection because $ev_a = ev_{a_1}$ implies $a = ev_a(e) = ev_{a_1}(e) = a_1$ and surjectivity is by definition. Claim: \tilde{A} is a L-linearly independent set in L[G]. We induct on |A|. Let $\sum_{x \in X_0} \lambda_x ev_x = 0$ with $\lambda_x \in L$. Suppose for a contradiction that there exists $a_0 \in A$ such that $\lambda_{a_0} \neq 0$. It suffices to show for all $a \in A$ we have $\lambda_a \in L^G = K$, for then by evaluating at $e \in G$ gives $0 = \sum_{a \in A} \lambda_a a$, implying all $\lambda_a = 0$. So let $\sigma \in G$ with the goal of showing $\sigma(\lambda_a) = \lambda_a$ for all $a \in A$. By rescaling, WLOG $\lambda_{a_0} = 1$. By induction it suffices to show

$$\sum_{x \in X_0 \setminus \{x_0\}} (\lambda_x - \sigma(\lambda_x)) ev_x = 0 \in L[G]$$

Let $\rho \in G$. Then we have as desired

$$\begin{split} \sum_{a \in A \setminus \{a_0\}} (\lambda_a - \sigma(\lambda_a)) e v_a(\rho) &= \sum_{x \in X_0} \lambda_x e v_x(\rho) - \sum_{a \in A} \sigma(\lambda_a) \rho(a) \\ &= -\sigma\left(\sum_{a \in A} \lambda_a \sigma^{-1} \rho(a)\right) = -\sigma\left(\left(\sum_{a \in A} \lambda_a \operatorname{ev}_a\right) \sigma^{-1} \rho\right) = 0 \end{split}$$

Proposition - The Galois correspondence

Let $K \to L$ be a Galois extension of fields and let $G := \operatorname{Aut}_K L$. Then we have an order reversing bijection

$$\{K\text{-subextensions }E\subseteq L\} \xrightarrow[L^-]{\underline{\operatorname{Aut}_L L}} \{\operatorname{subgroups of Aut}_K L\}$$

Furthermore, for $E \subseteq L$ a K-subextension we have the following :

- 1. (Degree equals Index) $[E : K] = [\operatorname{Aut}_K L : \operatorname{Aut}_E L].$
- 2. (Group Action) For all $\sigma \in \operatorname{Aut}_K L$, $\operatorname{Aut}_{\sigma E} L = \sigma \operatorname{Aut}_E L \sigma^{-1}$.
- 3. (Normality) E is a normal K-extension if and only if $\operatorname{Aut}_E L$ is a normal subgroup of $\operatorname{Aut}_K L$. In this case, we have the isomorphism $\operatorname{Aut}_K E \cong \operatorname{Aut}_K L / \operatorname{Aut}_E L$.

Proof. We need a lemma.

Lemma. Let $K \to E \to L$ be a sequence of extensions.

- 1. If $K \to L$ is finite normal, then $E \to L$ is finite normal. 2. If $K \to L$ is finite separable, then $E \to L$ is finite separable.

(Surjectivity) Let $H \subseteq \operatorname{Aut}_K L$ be a subgroup. Then $\operatorname{Aut}_{L^H} L = H$ by the characterisation of Galois extensions. Now let $E \subseteq L$ be a K-subextension. Then by the above lemma, L/E is Galois so $E = L^{\operatorname{Aut}_E L}$.

(Injectivity) This actually does not use any Galois theory and is true for any partially ordered set. Here is the statement.

Lemma. Let I, J be partially ordered sets, $F: I \to J$ and $G: J \to I$ be order reversing functions satisfying:

- (Adjunction) For all $x \in I$ and $y \in J$, $x \leq G(y)$ iff $y \leq F(x)$.

Then FGF = F and GFG = G. In particular, F and G induce a bijection on the images FI, GJ.

(Degree equals index) Use the above lemma and the characterisation of Galois extensions.

(Group action) Exercise.

(Normality) If E/K is normal, then image-invariance of normal extensions we get a well-defined morphism of groups by restriction

$$\operatorname{Aut}_K L \to \operatorname{Aut}_K E$$

The kernel is by definition $\operatorname{Aut}_E L$ so it is normal.

If $\operatorname{Aut}_E L$ is normal, then for any $\sigma \in \operatorname{Aut}_K L$ we have

$$\sigma E = L^{\operatorname{Aut}_{\sigma E} L} = L^{\sigma \operatorname{Aut}_E L \sigma^{-1}} = L^{\operatorname{Aut}_E L} = E$$

so restriction gives a well-defined morphism of groups $\operatorname{Aut}_K L \to \operatorname{Aut}_K E$. Let G be the image. Then $E^G = E \cap L^{\operatorname{Aut}_K L} = E \cap L^G = E \cap K = K$ so E/K is Galois and hence normal. By the characterisation of Galois extensions, G must be all of $\operatorname{Aut}_K E$ and hence by the first isomorphism theorem of groups we have $\operatorname{Aut}_K E \simeq \operatorname{Aut}_K L/\operatorname{Aut}_E L$.

Example

Let us compute the Galois group of $T^4 - a \in \mathbb{Q}[T]$ over $K = \mathbb{Q}$ where a is a positive integer with no square factors.

Let p>0 be a prime that divides a. Then T^4-a satisfies Eisenstein's criterion and hence is irreducible in $\mathbb{Q}[T]$. Let L/K be a splitting field of T^4-a and $\alpha\in L$ any root. This is a Galois extension because \mathbb{Q} is characteristic zero. By separability of T^4-a , there exists another root β not equal to $\pm \alpha$. Let $i:=\beta/\alpha$. Then $0=i^4-1=(i-1)(i+1)(i^2+1)$ implies $i^2+1=0$. So the four roots are $\alpha,\alpha i,\alpha i^2,\alpha i^3$.

Let $\sqrt[4]{2} \in \mathbb{R}$ be the unique positive fourth-root of 2. Using the embedding theorem, there exists an embedding $\phi: L \to \mathbb{C}$ such that $\phi(\alpha) = \sqrt[4]{2}$. From this, we deduce $i \notin \mathbb{Q}(\alpha)$ because if it were it would give an element $\phi(i) \in \phi\mathbb{Q}(\alpha) \subseteq \mathbb{R}$ which is not fixed by complex conjugation. It follows that $T^2 + 1$ is irreducible in $\mathbb{Q}(\alpha)[T]$ and hence $[L:\mathbb{Q}] = [L:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}] = 2 \cdot 4 = 8$.

Using embedding theorem for $L/\mathbb{Q}(\alpha)$ *, we get* $\tau \in \operatorname{Aut}_{\mathbb{Q}} L$ *such that*

$$\tau(i) = -i \qquad \qquad \tau(\alpha) = \alpha$$

Since $\operatorname{deg\,min}(\alpha,\mathbb{Q}(i))=[L:\mathbb{Q}(i)]=4$ by the tower law, we have $\operatorname{min}(\alpha,\mathbb{Q}(i))=T^4-2$. Using embedding

theorem again, we have $\sigma \in \operatorname{Aut}_{\mathbb{Q}} L$ such that

$$\sigma(i) = i$$
 $\sigma(\alpha) = \alpha i$

We have $\sigma^k(\alpha) = \alpha i^k$ so σ has order 4.

$$\tau \sigma \tau^{-1}(i) = \tau \sigma(-i) = \tau(-i) = i$$
$$\tau \sigma \tau^{-1}(\alpha) = \tau \sigma(\alpha) = \tau(\alpha i) = -\alpha i = \sigma^{-1}(\alpha)$$

So $\tau \sigma \tau^{-1} = \sigma^{-1}$ and thus $\operatorname{Aut}_{\mathbb{Q}} L \simeq D_8$. We have the following classification of subgroups of D_8

The corresponding intermediate extensions are:

To compute fixed subfields L^H of a given subgroup H of $\operatorname{Aut}_{\mathbb Q} L$, one can use linear algebra: Choose a $\mathbb Q$ -basis for L, for each $\sigma \in H$ write the matrix A given by the K-linear map $x \mapsto \sigma(x)$ and compute the kernel of A-I where I is the identity matrix. Alternatively, one can check that it is invariant and then check the degree. For example, $\tau\sigma(\alpha-i\alpha)=\tau(\alpha i+\alpha)=\alpha-\alpha i$ so $\mathbb Q(\alpha-i\alpha)\subseteq L^{\langle \tau\sigma\rangle}$.

$$(\alpha - i\alpha)^4 = (-2i\alpha^2)^2 = -4a$$

so $[\mathbb{Q}(\alpha - i\alpha) : \mathbb{Q}] \le 4$. On the other hand, if $i \in \mathbb{Q}(\alpha - i\alpha)$ then $\alpha = (\alpha - i\alpha + i(\alpha - i\alpha))/2$ implies $L = \mathbb{Q}(\alpha - i\alpha)$ which would imply $8 = [L : \mathbb{Q}] \le 4$ a contradiction. Therefore $[L : \mathbb{Q}(\alpha - i\alpha)] = 2$ and hence $[\mathbb{Q}(\alpha - i\alpha) : \mathbb{Q}] = 4$. Since $[L^{\langle \tau \sigma \rangle} : \mathbb{Q}] = [\langle \sigma, \tau \rangle : \langle \tau \sigma \rangle] = 4$ we conclude $\mathbb{Q}(\alpha - i\alpha) = L^{\langle \tau \sigma \rangle}$.

5 Cyclotomic extensions, Cyclic extensions

We saw in the example of T^3-2 that in understanding its roots, the roots of T^3-1 appeared. This reduces the understanding of radical Galois extensions into two steps : *cyclotomic* and *cyclic* extensions. We study these as stepping stones towards understanding radical extensions.

Definition

Let K be a field and $f \in K[T]$. A *splitting field of* f is an extension $K \to L$ that splits f and is generated by the roots of f.

It will be useful to have another characterisation of Galois extensions.

Proposition - Splitting field characterisation of Galois extensions

Let $K \to L$ be an extension. Then L/K is the splitting field of a separable $f \in K[T]$ iff L/K is Galois.

Proof. (\Rightarrow) Let $G = \operatorname{Aut}_K L$ which is finite by the embedding theorem. We know that L/L^G is Galois so STS $L^G = K$. Since f is separable, $\min(\alpha, K)$ is also separable for any root α of f. Since the roots of f generate L over K, by the embedding theorem we have |G| = [L:K]. Then $[L^G:K] = [L:K]/[L:L^G] = [L:K]/[L:K] = 1$.

 (\Leftarrow) By the characterisation of normal extensions, L/K is the splitting field of some $f \in K[T]$. Remove all repeated irreducible factors of f so that f is square-free. Any pair of distinct irreducible factors g,h of f must satisfy $1 = \lambda g + \mu h$ for some $\lambda, \mu \in K[T]$. It follows that they do not share roots in any extension of K. The irreducible factors of f are (scalar multiplies of) minimal polynomials, which are separable because L/K is Galois. Thus f is a separable polynomial.

Proposition - Galois groups of cyclotomic extensions

Let $n \in \mathbb{N}$ and L/K the splitting field of $X^n-1 \in K[T]$. Assume that X^n-1 is separable, or equivalently $n \neq 0$ as elements of K. Let $\mu_n \subseteq L^{\times}$ be the subgroup of roots of X^n-1 . A primitive n-th root of unity is defined as a generator of μ_n . Then

- 1. there are $\phi(n)$ many primitive n-th roots of unity in L
- 2. the group morphism

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}_{\operatorname{Grp}} \mu_n$$

 $k \mapsto (z \mapsto z^k)$

^aThere should be a way to do this without using \mathbb{R} but this is probably the easiest way.

is an isomorphism, where $\operatorname{Aut}_{\operatorname{Grp}} \mu_n$ denotes the group of group automorphisms of μ_n . The restriction $\operatorname{Gal}(L/K) \to \operatorname{Aut}_{\operatorname{Grp}} \mu_n$ is injective, so $\operatorname{Gal}(L/K)$ is abelian.

Proof. (1) Let $\mu_n^d \subseteq \mu_n$ be the subset of elements with order d. Then by strong induction on n we have

$$|\mu_n^n| = |\mu_n| - \sum_{n>d|n} |\mu_n^d| n - \sum_{n>d|n} \phi(d) = \phi(n)$$

(2) Being a splitting field of a separable polynomial, it makes sense to talk about the Galois group L/K. We give an inverse group morphism. Since $\phi(n)>0$ there exists $z_0\in\mu_n$ with order n. For any $\sigma\in\operatorname{Aut}_{\operatorname{Grp}}\mu_n$, there is a unique $k_\sigma\in\mathbb{Z}/n\mathbb{Z}$ such that $\sigma(z_0)=z_0^{k_\sigma}$. Since σ has to send z_0 to another element of order n, we must have $(n,k_\sigma)=1$ i.e. $k_\sigma\in(\mathbb{Z}/n\mathbb{Z})^\times$. Then $\sigma\mapsto k_\sigma$ gives the desired inverse.²

Remark. It is possible to show that when $K = \mathbb{Q}$, the morphism $Gal(\mathbb{Q}(\mu_n)/\mathbb{Q}) \to Aut_{Grp} \mu_n$ is surjective and hence bijective. This is not necessary for solvability of polynomials so we will return to this later.

Proposition - Characterization of cyclic extensions

Let $n \in \mathbb{Z}_{>0}$ and $K \to L$ be an extension where $T^n - 1 \in K[T]$ is split and separable in K. Then

1. if $L = K(\alpha)$ where $\alpha^n \in K$ and is the minimal power of α in K, then L/K is Galois and the map

$$\operatorname{Gal}(L/K) \to \mu_n$$

 $\sigma \mapsto \sigma(\alpha)/\alpha$

is group isomorphism. Hence Gal(L/K) is cyclic.

2. Conversely if L/K is Galois with $\operatorname{Gal}(L/K)$ cyclic order n then there exists $\alpha \in L$ such that $L = K(\alpha)$ and α^n is the minimal power of α in K.

This is completely analogous to the situation $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}(\omega)$.

Proof. (1) (Galois) L/K is the splitting field of $T^n - \alpha^n$ which is separable by separability of $T^n - 1$. (Group morphism) For $\sigma, \rho \in \operatorname{Gal}(L/K)$ we have

$$\frac{\sigma(\rho(\alpha))}{\alpha} = \frac{\sigma(\rho(\alpha))}{\rho(\alpha)} \frac{\rho(\alpha)}{\alpha} = \frac{\sigma(\alpha)}{\alpha} \frac{\rho(\alpha)}{\alpha}$$

because $\rho(\alpha) = \alpha z$ for some $z \in \mu_n$ so

$$\frac{\sigma(\rho(\alpha))}{\rho(\alpha)} = \frac{\sigma(\alpha)z}{\alpha z} = \frac{\sigma(\alpha)}{\alpha}$$

 $^{^1}$ Here is a proof of $n=\sum_{0\leq d\mid n}\phi(d)$. We take as definition $\phi(d):=\left|(\mathbb{Z}/d\mathbb{Z})^{\times}\right|$. Then the chinese remainder theorem implies ϕ is multiplicative so it suffices to prove the result for $n=p^a$ where p>0 is prime and a>0. Now $p^a=(p^a-p^{a-1})+\cdots+(p-1)+1=\phi(p^a)+\phi(p^{a-1})+\cdots+\phi(p)+1$ because an element in $\mathbb{Z}/p^k\mathbb{Z}$ is invertible iff it is invertible mod p.

²Although the definition of the inverse used a choice of generator of μ_n , it is independent of this choice because inverse of group morphisms are unique and $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}_{\operatorname{Grp}} \mu_n$ does not use any choices of generator of μ_n .

(Bijective) Injectivity follows from kernel being trivial because any σ is determined by what it does on α . Suppose for a contradiction that $\operatorname{Gal}(L/K) \to \mu_n$ is not surjective. Then the image of $\operatorname{Gal}(L/K)$ is a subgroup of order d < n so by Lagrange's theorem for all $\sigma \in \operatorname{Gal}(L/K)$ we have $(\sigma(\alpha)/\alpha)^d = 1$. This says $\sigma(\alpha^d) = \alpha^d$ i.e. $\alpha^d \in L^G = K$ which contradicts minimality of n.

(2) Let $\sigma \in \operatorname{Gal}(L/K)$ be a generator. The proof of (1) shows that we are expecting $\alpha \in L$ to be such that $\sigma(\alpha)/\alpha \in \mu_n$, i.e. α is an eigenvector of σ with eigenvalue $z \in \mu_n$. So consider σ as a K-linear map $L \to L$. Then the minimal polynomial of σ divides $T^n - 1$ in K[T]. This is split and separable over K so the minimal polynomial of σ is split and separable over K. This occurs iff σ is diagonalizable as a K-linear map. The eigenvalues of σ are precisely the roots of its minimal polynomial, which divides $T^n - 1$ so consequently there exists $\alpha \in L$ with eigenvalue $z \in \mu_n$, i.e. $\sigma(\alpha) = z\alpha$. Then $\sigma((\alpha)^n) = (\sigma(\alpha))^n = (z\alpha)^n = \alpha^n$ so $\alpha^n \in L^G = K$. Let \tilde{n} be the minimal power of α in K. Then by (1) we have $\tilde{n} = |\operatorname{Gal}(L/K)| = n$.

6 Radical extensions

Today we discuss solvability polynomials.

Definition

Let $K \to L$ be an extension. We say it is *radical* when there exists a chain of subextensions

$$K = L_0 \to L_1 \to \cdots \to L_{n-1} \to L_n = L$$

such that each $L_{i+1} = L_i(\alpha_i)$ for some α_i with $\alpha_i^{d_i} \in L_i$ for some $d_i > 0$.

For $f \in K[T]$ we say f is *solvable by radicals* when there exists a radical extension L/K which splits f.

Some group theoretic things we need...

Definition

Let *G* be a finite group. Then *G* is called solvable when there exists a chain

$$1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_n = G$$

such that H_{n+1}/H_n is cyclic.

Proposition

Suppose we have a normal subgroup N of a finite group G.

$$1 \to N \to G \to G/N \to 1$$

If N and G/N are solvable, then G is solvable. If G is solvable, then N is solvable.

Proof. Exercise in group theory.

The main result is:

^aOne can prove in this case that G/N is solvable, too, but this is not relevant for solvability of polynomials.

Proposition - Characterization of solvable polynomials in characteristic zero

Let K be a characteristic zero field and $f \in K[T]$ be irreducible. Then f is solvable by radicals iff there exists a splitting field L/K of f such that Gal(L/K) is solvable.

Remark. In the above, L/K is normal by the characterization of finite normal extensions. K characteristic zero implies all extensions of K are separable, so L/K is indeed Galois and it makes sense to talk about its Galois group. Furthemore if \tilde{L}/K is another splitting field of f then by the embedding theorem there exists an isomorphism $\gamma: L \simeq \tilde{L}$ of extensions of K. It follows that $\gamma_-\gamma^{-1}: \operatorname{Gal}(L/K) \to \operatorname{Gal}(\tilde{L}/K)$ is an isomorphism of groups. So for a polynomial f solvable by radicals, all splitting fields of f have solvable Galois groups.

Proof of characterization of solvable polynomials in characteristic zero. (\Rightarrow) Assume there is a tower of simple radical extensions

$$K = L_0 \rightarrow L_1 \rightarrow \cdots \rightarrow L_{n-1} \rightarrow L_n = L$$

where $L_{i+1}=L_i(\alpha_i)$ for some $\alpha_i^{d_i}\in L_i$ and $d_i>0$, and that L contains a splitting field of f. Let us first assume L/K is Galois. Then L/K Galois implies it splits X^N-1 where $N=d_1\cdots d_n$. It is separable by the assumption that K is characteristic zero. Let $\tilde{L}_0:=L_0(\mu_N)$ and $\tilde{L}_{i+1}:=\tilde{L}_i(\alpha_i)$.

Applying the main theorem of Galois theory we obtain a sequence of subgroups

$$\operatorname{Gal}(\tilde{L}_n/\tilde{L}_n) \subseteq \operatorname{Gal}(\tilde{L}_n/\tilde{L}_{n-1}) \subseteq \cdots \subseteq \operatorname{Gal}(\tilde{L}_n/\tilde{L}_1) \subseteq \operatorname{Gal}(\tilde{L}_n/\tilde{L}_0) \subseteq \operatorname{Gal}(\tilde{L}_n/L_0) = \operatorname{Gal}(L/K)$$

Then

- 1. each factor group $\operatorname{Gal}(\tilde{L}_n/\tilde{L}_i)/\operatorname{Gal}(\tilde{L}_n/\tilde{L}_i) \simeq \operatorname{Gal}(\tilde{L}_{i+1}/\tilde{L}_i)$ is cyclic by the characterisation of cyclic extensions.
- 2. For the final factor group at the top, \tilde{L}_0/L_0 is a cyclotomic extension. So it has abelian Galois group, which is in particular solvable by, say, the classification of finite abelian groups.

Thus Gal(L/K) is solvable.

To complete the proof of the forward direction, we need to show that we can always enlarge L so that L/K is not just radical but also Galois. By splitting minimal polynomials of generators of L/K, we can find N/L such that N/K is finite normal. Since K is characteristic zero, N/K is separable and hence Galois. But N is made with choices (the generators of L/K) so we do not know immediately that N/K is radical.

 $^{^1}$ This is analogous to the following phenomenon from algebraic topology: given a topological space X and a path γ from a point x to \tilde{x} , then $\gamma_-\gamma^{-1}$ gives an isomorphism $\pi_1(X,x)\simeq\pi_1(X,\tilde{x})$. These two are united in algebraic geometry.

Let $Gal(N/K) = \{\sigma_1, \dots, \sigma_{[N:K]}\}$ with $\sigma_1 = e$. The reason why L/K is not Galois is more or less because we don't have the Galois conjugates of α_i . So we add them in. Define the tower of subextensions

$$K = L_{1,0} \subseteq L_{1,1} \subseteq \cdots \subseteq L_{1,n-1} \subseteq L_{1,n}$$

$$= L_{2,0} \subseteq L_{2,1} \subseteq \cdots \subseteq L_{2,n-1} \subseteq L_{2,n}$$

$$= L_{3,0} \subseteq \cdots$$

$$= L_{[N:K],0} \subseteq L_{[N:K],1} \subseteq \cdots \subseteq L_{[N:K],n} =: M$$

where $L_{i,j+1} = L_{i,j}(\sigma_i(\alpha_j))$. Goal: each step is simple radical and M/K is Galois. The point is that

- $\sigma_2 L_{1,1} = \sigma_2 L_{1,0}(\alpha_1) = L_{1,0}(\sigma_2(\alpha_1)) \subseteq L_{2,0}(\sigma_2(\alpha_1)) = L_{2,1}$
- $\sigma_2 L_{1,2} = \sigma_2 L_{1,1}(\alpha_2) \subseteq L_{2,1}(\sigma_2(\alpha_2)) = L_{2,2}$
- by induction the same for the entirety of second row.
- By the same reasoning, we get for every *i*-th row $\sigma_i L_{1,j} \subseteq L_{i,j}$ for all *j*.

From this we get

$$(\sigma_i(\alpha_j))^{d_j} = \sigma_i(\alpha_j^{d_j}) \in L_{i,j}$$

so that $L_{i,j+1}/L_{i,j}$ is simple radical. To show M/K is Galois, it suffices by the characterisation of Galois extensions to show that M is stable under the action of $\operatorname{Gal}(N/K)$. For this we guess another construction of M. From the proof of the Tower law, we define \tilde{M} as the set of finite K-linear combinations of $\sigma_1(x_1)\cdots\sigma_{[N:K]}(x_{[N:K]})$ where $x_i\in L$. This is a subring of N containing K and finiteness of L/K implies finiteness of \tilde{M} as a K-vector space. It follows that \tilde{M} is a K-subextension of N/K. By looking at the proof of the Tower law, $M\subseteq \tilde{M}$. Conversely, any $\sigma_1(x_1)\cdots\sigma_{[N:K]}(x_{[N:K]})\in (\sigma_1L)\cdots(\sigma_{[N:K]}L)\subseteq L_{1,n}\cdots L_{[N:K],n}\subseteq M$ so $\tilde{M}\subseteq M$ and hence $M=\tilde{M}$.

 (\Leftarrow) Suppose L/K is a splitting field of f and $\mathrm{Gal}(L/K)$ is solvable. Again, for the characterisation of cyclic extensions to apply we need enough roots of unity in our base field. Let $L \to \tilde{L}$ be a splitting field of $T^{[L:K]} - 1 \in L[T]$ and $\tilde{K} := K(\mu_{[L:K]}) \subseteq \tilde{L}$. The extension \tilde{L}/K is the splitting field of $(T^{[L:K]} - 1)f \in K[T]$, and hence Galois because we are in characteristic zero. By the main theorem of Galois theory, we have

$$\operatorname{Gal}(\tilde{L}/K)/\operatorname{Gal}(\tilde{L}/L) \simeq \operatorname{Gal}(L/K)$$

The latter is solvable and the kernel is solvable too because \tilde{L}/L is a cyclotomic extension. Thus $\operatorname{Gal} \tilde{L}/K$ is also solvable. Since $\operatorname{Gal} \tilde{L}/\tilde{K}$ is a normal subgroup, it is also solvable. So we have

$$1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_n = \operatorname{Gal}(\tilde{L}/\tilde{K})$$

with cyclic factor groups. To apply the characterisation of cyclic extensions to get $\tilde{K} \to \tilde{L}$, we need to know $|H_{i+1}/H_i|$ divide [L:K] so that we have the correct roots of unity. $|H_{i+1}/H_i|$ divides $\left|\operatorname{Gal}(\tilde{L}/\tilde{K})\right|$ so it STS that the composition

$$\operatorname{Gal} \tilde{L}/\tilde{K} \to \operatorname{Gal}(\tilde{L}/K) \to \operatorname{Gal} L/K$$

is injective. If $\sigma \in \operatorname{Gal}(\tilde{L}/\tilde{K})$ fixes L then it fixes the roots of f and T^n-1 . But these generate \tilde{L} over K so then $\sigma=1$. Hence, $\tilde{K}\to \tilde{L}$ is radical. Since $K\to \tilde{K}$ is cyclotomic and so also radical, we have thus that $K\to \tilde{L}$ is radical, completing the proof.

 $^{^{1}}$ The trick of constructing \tilde{M} here is called taking *normal closure*. It comes from trying to force the image invariance property in the characterisation of finite normal extensions.

7 Finite fields, Frobenius lifts and existence of non-solvable quintic

By the characterisation of solvability over characteristic zero, to show that there exists quintics with roots *inexpressible* in terms of basic arithmetic and radicals, it suffices to give an irreducible quintic with non-solvable Galois group. We claim that $T^5 - T - 1 \in \mathbb{Q}[T]$ has Galois group S_5 which is not solvable. To compute its Galois group, we introduce an effective technique using *finite fields* called *Frobenius lifts*.

Definition

Let *A* be a ring where p = 0. The *Frobenius map* is the map $x \mapsto x^p$ on *A*. This is a ring morphism by freshman's dream.

Proposition - Classification of finite fields

Let p > 0 be a prime.

- (Existence) For n > 0, let \mathbb{F}_{p^n} be a splitting field of $X^{p^n} X$ over \mathbb{F}_p . Then \mathbb{F}_{p^n} is a field with p^n elements. This is well-defined up to isomorphism as \mathbb{F}_p extensions.
- (Uniqueness) Any finite extension $\mathbb{F}_p \to F$ must be isomorphic to \mathbb{F}_{p^n} for some n > 0 as extensions of \mathbb{F}_p .
- (Galois) $\mathbb{F}_p \to \mathbb{F}_{p^n}$ is finite Galois with Galois group cyclic order n generated by the Frobenius map $x \mapsto x^p$.

More generally, for 0 < n and $0 \le d$, the extension $\mathbb{F}_{p^n} \to \mathbb{F}_{p^{n+d}}$ is finite Galois with Galois group cyclic order d generated by $x \mapsto x^{p^n}$.

Proof. (Existence) Because the Frobenius is a ring morphism on \mathbb{F}_{p^n} , the set of roots of $X^{p^n} - X$ forms a subfield containing \mathbb{F}_p . It follows that this must be all of \mathbb{F}_{p^n} .

(Uniqueness) Let $n:=[F:\mathbb{F}_p]$. Then $|F|=p^{[F:\mathbb{F}_p]}$. By Lagrange's theorem on groups, we have that any $x\in F^\times$ must satisfy $x^{\left|\mathbb{F}_p^\times\right|}-1=0$. It follows that the elements of F are precisely all the roots of the polynomial $X^{p^n}-X$ and hence must be a splitting field for it.

(Galois) For $x \in \mathbb{F}_{p^n}$, $x^p = x$ iff $x \in \mathbb{F}_p$. The result follows from the characterisation of finite Galois extensions. We leave the general case as an exercise.

Example.

Let us find all the monic irreducible quadratics in $\mathbb{F}_3[T]$. By the classification of finite fields, they are precisely the minimal polynomials of $x \in \mathbb{F}_9 \setminus \mathbb{F}_3$. This implies there are precisely three of them. At this point we can guess. The following quadratics do not have roots in \mathbb{F}_3 and hence are irreducible.

- $-T^2+1$
- $-T^2-T-1$
- $-T^2+T-1$

Proposition – Frobenius lifts

Let $f \in \mathbb{Z}[T]$ be monic and separable, $\mathbb{Q} \to K$ a splitting field of f. Let $S \subseteq K$ be the set of roots of f and consider the subring generated by S

$$A := \mathbb{Z}[S] \subseteq K$$

Let p>0 be a prime such that the mod p reduction $\overline{f}\in \mathbb{F}_p[T]$ is separable. Then :

- 1. There exists a maximal ideal $q \subseteq A$ which contains p. We call q a prime lying above p.
- 2. Let \mathfrak{q} be a prime lying above p. Define the *decomposition group*

$$D(\mathfrak{q}/p) := \{ \sigma \in \operatorname{Gal}(K/\mathbb{Q}) \text{ s.t. } \sigma(\mathfrak{q}) = \mathfrak{q} \}$$

Then

- (a) $\kappa(\mathfrak{q}) := A/\mathfrak{q}$ is a splitting field of \overline{f}
- (b) The ring morphism $\mathbb{Z}[S] \to \kappa(\mathfrak{q}), x \mapsto \overline{x}$ induces a bijection between S and its image \overline{S} . The action of $D(\mathfrak{q}/p)$ on S is compatible with the action of $\mathrm{Gal}(\kappa(\mathfrak{q})/p)$ on \overline{S} , i.e. the following diagram commutes

$$D(\mathfrak{q}/p)\times S \longrightarrow S$$

$$\downarrow \sim$$

$$\downarrow \sim$$

$$\operatorname{Gal}(\kappa(\mathfrak{q})/p)\times \overline{S} \longrightarrow \overline{S}$$

(c) The group morphism $D(\mathfrak{q}/p) \to \operatorname{Gal}(\kappa(\mathfrak{q})/\mathbb{F}_p)$ is bijection.

In particular, there exists a unique $\phi \in \operatorname{Gal}(K/\mathbb{Q})$ which such that $\phi|_A = \operatorname{Frob} \bmod \mathfrak{q}$.

Let's see the applications to Galois groups before the proof.

Proposition - Dedekind's result on cycle shapes

Let $f \in \mathbb{Z}[T]$ be monic separable, K/\mathbb{Q} a splitting field and $S \subseteq K$ the set of its roots. Let p > 0 a prime such that mod p reduction $\overline{f} \in \mathbb{F}_p[T]$ is separable. Suppose that \overline{f} factors into irreducible polynomials of degree n_1, \ldots, n_r . Then there exists $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ such that under the injection $\operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{Aut} S$, σ has cycle shape $(n_1) \cdots (n_r)$.

Proof. Let \mathfrak{q} be as in the previous proposition and σ be a Frobenius lift from $\kappa(\mathfrak{q})$. Then the cycle shape of σ acting on S is the cycle shape of the Frobenius acting on \overline{S} . The cycles are precisely the orbits under the action of the Galois group $\operatorname{Gal}(\kappa(\mathfrak{q})/p)$. Elements of each orbit share the same minimal polynomial, and the set of minimal polynomials ranging across the orbits is precisely the irreducible factors of \overline{f} (up to scaling by \mathbb{F}_p^{\times}).

Proposition

The polynomial $T^5 - T - 1 \in \mathbb{Q}[T]$ has Galois group S_5 and hence is not solvable by radicals.

Proof. Mod 2 we get $(T^2 + T + 1)(T^3 + T^2 + 1)$ which are irreducible because they do not have roots in \mathbb{F}_2 . So there exists an element of the Galois group with cycle shape (2)(3) and hence there exists one with cycle shape (2), i.e. a transposition.

Mod 3 it is irreducible. It has no roots and we can check it is not divisible by the three monic irreducible quadratics in $\mathbb{F}_3[T]$.

$$-T^{5} - T - 1 = (T^{2} + 1)(T^{3} - T) - 1$$

$$-T^{5} - T - 1 = (T^{2} - T - 1)(T^{3} + T^{2} - T - 1) + 1$$

$$-T^{5} - T - 1 = (T^{2} + T - 1)(T^{3} - T^{2} - T) + (T - 1)$$

So there exists an element of the Galois group with cycle shape (5).

Lemma. Let $G \subseteq S_p$ where p > 0 is prime. Suppose G contains a transposition and a p-cycle. Then $G = S_p$.

Proof. Exercise in group theory.

So the Galois group is S_5 . The fact that this is not solvable is a group theory fact so we omit it. \Box

We give another application of Frobenius lifts.

Proposition - Cyclotomic extensions in characteristic zero

Let n>0 and let $\mathbb{Q}(\mu_n)/\mathbb{Q}$ be a splitting field of T^n-1 . Recall we have a canonical isomorphism $\operatorname{Aut}_{\operatorname{Grp}}\mu_n\simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$ and hence an injection

$$\operatorname{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$$

This is in fact an isomorphism.

Proof. Let $m \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. This corresponds to $x \mapsto x^m \in \operatorname{Aut}_{\operatorname{Grp}} \mu_n$. To show m is in the image of $\operatorname{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q})$, it suffices to do case of m=p a prime. By assumption, $n \neq 0 \mod p$ so T^n-1 is separable over \mathbb{F}_p . Then we have a commuting diagram of group morphisms:

This implies there's $\sigma \in \operatorname{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q})$ which gives $x \mapsto x^p$ in $\operatorname{Aut}_{\operatorname{Grp}} \mu_n$.

We can apply this to lines and circle constructions to determine which regular n-gons are constructible using lines and circles.

Definition

Let K be a field and $x, y \in L/K$ some extension. We say (x, y) is *constructible in one step from* K when it they can be obtained as solutions to the following three kinds of simultaneous equations.

- 1. (Line-Line intersection) $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$.
- 2. (Line-circle intersection) ax + by + c = 0 and $x^2 + y^2 + Ax + By + C = 0$.
- 3. (Circle-circle intersection) $x^2 + y^2 + Ax + By + C = 0$ and $x^2 + y^2 + Rx + Sy + T = 0$

We say (x,y) is constructible from K when there exists a sequence $(x_0,y_0),\ldots,(x_n,y_n)$ with $x_0,y_0\in K$ and $x_n=x,y_n=y$ such that (x_{i+1},y_{i+1}) is constructible from K_i in one step and $K_{i+1}:=K_i(x_{i+1},y_{i+1})$.

Proposition

Let K be a field and $x, y \in L/K$ some extension. Then (x, y) is constructible in one step from K iff $[K(x, y) : K] \le 2$. Hence (x, y) is constructible from K iff [K(x, y) : K] is a power of 2.

Proof. The three kinds of simultaneous equations are all equivalent to solving at most a quadratic equation.

Example (Constructing regular pentagon).

We ask if we can construct the regular pentagon from \mathbb{Q} . This is equivalent to $(\cos(2\pi/5),\sin(2\pi/5))$ being constructible from \mathbb{Q} , which is equivalent to $[\mathbb{Q}(\cos(2\pi/5),\sin(2\pi/5)):\mathbb{Q}]=2^n$. By chucking in i, this is equivalent to $[\mathbb{Q}(\cos(2\pi/5),\sin(2\pi/5),i):\mathbb{Q}]=2^{n+1}$. Now $\mathbb{Q}(\mu_5)\subseteq\mathbb{Q}(\cos(2\pi/5),\sin(2\pi/5),i)$. If you chuck i into $\mathbb{Q}(\mu_5)$ then you can make $\sin(2\pi/5)$ because $\zeta:=e^{2\pi i/5}=\cos(2\pi/5)+i\sin(2\pi/5)$. So the condition is equivalent to $[\mathbb{Q}(\mu_5):\mathbb{Q}]=2^n$. By the theory of cyclotomic extensions over \mathbb{Q} , $[\mathbb{Q}(\mu_5):\mathbb{Q}]=\phi(5)=4$ so the regular pentagon is constructible. In fact we can derive a contruction by writing $\mathbb{Q}\to\mathbb{Q}(\mu_5)$ as a tower of degree 2 extensions solving quadratics we can construct. In this case, we are lucky because $\cos(2\pi/5)=(\zeta+\zeta^{-1})/2$ which is fixed by the unique order two element in $\mathrm{Gal}(\mathbb{Q}(\mu_5)/\mathbb{Q})$. Indeed,

$$(\zeta + \zeta^{-1})^2 = \zeta^2 + \zeta^{-2} + 2 = \zeta - \zeta^{-1} + 1$$

S0

$$\cos(2\pi/5) = \frac{-1+\sqrt{5}}{4}$$

Proposition – Characterization of constructible regular polygons TODO

Proof of Frobenius lifts. Just as $K^G = \mathbb{Q}$, we prove $A^G = \mathbb{Z}$. The following is an "integral version" of the characterisation of finite simple extensions.

Lemma (Characterisation of integral elements). Let K/\mathbb{Q} be an extension and $\alpha \in K$. Then α is the root of a monic $f \in \mathbb{Z}[X]$ iff $\mathbb{Z}[\alpha]$ is finitely generated as a \mathbb{Z} -module. If any of the above are satisfied, we say α is integral over \mathbb{Z} .

Consequently, if $\alpha, \beta \in K$ are integral over \mathbb{Z} , then so is any $x \in \mathbb{Z}[\alpha, \beta]$.

Proof. (\Rightarrow) Same strategy as for algebraic elements. (\Leftarrow) Since $\mathbb{Z}[\alpha] \subseteq K$ which does not have any torsion, it follows from Smith normal form that $\mathbb{Z}[\alpha]$ has a \mathbb{Z} -basis x_1,\ldots,x_d . We can write $x_i=g_i(\alpha)$ for some $g_i\neq 0\in \mathbb{Z}[X]$. Let n= maximum of the degrees of g_i . Then $\alpha^{n+1}=\lambda_1x_1+\cdots+\lambda_dx_d$ for some $\lambda_i\in\mathbb{Z}$. Expanding out $x_i=g_i(\alpha)$ implies α satisfies $X^{n+1}-\lambda_1g_i(X)-\cdots-\lambda_dg_d(X)$, which is monic and in $\mathbb{Z}[X]$.

For the consequence, α, β integral implies $\mathbb{Z}[\alpha, \beta]$ is finitely generated as a \mathbb{Z} -module. This implies the submodule $\mathbb{Z}[x] \subseteq \mathbb{Z}[\alpha, \beta]$ is also, and hence x is integral over \mathbb{Z} .

The lemma implies that every element in A is integral over \mathbb{Z} . Then for any $x \in A^G = A \cap K^G = A \cap \mathbb{Q}$, we can write x = a/b for $a, b \in \mathbb{Z}$ coprime and $b \neq 0$, and $x^d + \lambda_1 x^{d-1} + \dots + \lambda_d = 0$ for some $\lambda_i \in \mathbb{Z}$ and d > 0. Then $a^d + \lambda_1 b a^{d-1} + \dots + \lambda_d b^d = 0$ so b divides a and hence $b = \pm 1$. Thus $A^G = \mathbb{Z}$.

- (1) It is a consequence of Zorn's lemma that if $p \in A$ is not a unit, then such \mathfrak{q} exists. We have $1/p \notin A$ because if it were then $1/p \in A^G = \mathbb{Z}$.
- (2) (a) It is a field because \mathfrak{q} is maximal and it is the splitting field of \overline{f} because it is generated by the image of S, which gives all the roots of \overline{f} . Note that $\mathfrak{q} \cap \mathbb{Z}$ is a proper ideal containing (p) so $\mathfrak{q} \cap \mathbb{Z} = (p)$.
- (b) Write $f(T) = \prod_{a \in S} (T-a) \in \mathbb{Z}[S][T]$. Then $\overline{f}(T) = \prod_{a \in S} (T-\overline{a}) \in \kappa(\mathfrak{q})[T]$ where $\overline{a} = a \mod \mathfrak{q}$. By assumption of \overline{f} being separable, $a \neq b$ in S implies $\overline{a} \neq \overline{b}$. So $S \to \overline{S}$ is an injection of finite sets and hence a bijection. The compatibility of actions is clear.
- (c) Injectivity follows from $S \to \overline{S}$ being bijective. Surjectivity is more subtle, we closely follow the argument from [Stacks, Lemma 0BR]].

Lemma. For primes $\mathfrak{q}, \mathfrak{q}_1 \subseteq A$ lying above p, there exists $\sigma \in G := \operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{q}) = \mathfrak{q}_1$. It follows that there are finitely many primes lying above p.

Proof. Suppose for a contradiction that there exists $x \in \mathfrak{q}_1$ and not in $\sigma(\mathfrak{q})$ for any $\sigma \in G$. Then $\prod_{\sigma \in G} \sigma(x) \in \bigcap_{\sigma \in G} \sigma(\mathfrak{q}_1)$. The latter is a proper ideal of $A^G = \mathbb{Z}$ containing (p) so must be equal to (p). But then we have $\prod_{\sigma \in G} \sigma(x) \in (p) \subseteq \mathfrak{q}$ and hence $x \in \sigma^{-1}(\mathfrak{q})$ for some $\sigma \in G$, a contradiction.

By the Chinese remainder theorem, we have a surjection

$$A \to \prod_{\mathfrak{q}_1 \in \mathrm{Orb}(\mathfrak{q})} A/\mathfrak{q}_1$$

We know $\kappa(\mathfrak{q})$ is a finite extension of \mathbb{F}_p . So by the theory of finite fields and cyclotomic extensions, there exists \overline{a} generating $\kappa(\mathfrak{q})^{\times}$. Choose $a \in A$ such that $a = \overline{a} \mod \mathfrak{q}$ and $0 \mod \mathfrak{q}_1 \neq \mathfrak{q}$. Now we use the Galois theory trick: $\min(a,\mathbb{Q})(T) = \prod_{\alpha \in \operatorname{Orb}(a)}(T-\alpha) \in K[T]$. Since $a \in A$ it follows that $\min(a,\mathbb{Q}) \in A[T]$. Reducing \mathfrak{q} , we find that the minimal polynomial of \overline{a} must divide $\prod_{\alpha \in \operatorname{Orb}(a)}(T-\overline{\alpha})$. This implies $\operatorname{Frob}(\overline{a}) = \overline{\sigma(a)}$ for some $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$. It STS $\sigma \in D(\mathfrak{q}/p)$. Let $x \in \mathfrak{q}$. Then $ax = 0 \mod \bigcap_{\mathfrak{q}_1 \in \operatorname{Orb}(\mathfrak{q})} \mathfrak{q}_1$ so $\sigma(ax) = 0 \mod \bigcap_{\mathfrak{q}_1 \in \operatorname{Orb}(\mathfrak{q})} \mathfrak{q}_1$. Looking at the A/\mathfrak{q} component, $0 = \sigma(x)\sigma(a) = \sigma(x)\overline{a}^p \mod \mathfrak{q}$ which implies $\sigma(x) = 0 \mod \mathfrak{q}$.

8 Bonus: Sneak peak at p-adic and perfectoid fields

To be fleshed out:

- 1. $\mathbb{F}_p[T]$
- 2. $\mathbb{F}_p[[T]] := \varprojlim_{n \geq 0} \mathbb{F}_p[T]/(T^{n+1})$. As a set we have

$$\prod_{n\geq 0} \mathbb{F}_p \xrightarrow{\sim} \mathbb{F}_p[[T]]$$

by $(a_n) \mapsto (\sum_{0 \le d \le n} a_d T^d \mod T^{n+1})_n$. One can check that the coefficients of sums and products are as one would expect for power series. We have an induced ring morphism

$$\mathbb{F}_p[T] \to \mathbb{F}_p[[T]]$$

It is injective because if one has a polynomial $f \in \mathbb{F}_p[T]$ which is divisible by T^{n+1} for all $n \geq 0$ then f = 0. Notice in the T-adic completion, 1 - T has an inverse given by $\sum_{d \geq 0} T^d$. Indeed, mod T^{n+1} we have

$$(1-T)(1+T+\cdots+T^n)=1$$

In fact, (T) is the unique maximal ideal of $\mathbb{F}_p[[T]]$. (Hint: One idea is to use geometric series.) The geometric intuition is that $\mathbb{F}_p[T]$ is the ring of functions on the affine line, $\mathbb{F}_p[T]/(T)$ is the ring of functions at the point $\{0\}$ in the affine line. $\mathbb{F}_p[T]/(T^2)$ is the ring of functions on a subspace of the affine line that's a tiny bit bigger than just $\{0\}$. It's not bigger to the point that T can take on any values other than 0 because $T^2=0$. But this space is large enough to know about the first derivative of functions at $\{0\}$. This is call the *first order infinitesimal neighbourhood of* $\{0\}$. Similarly for $\mathbb{F}_p[T]/(T^{n+1})$. Finally, $\mathbb{F}_p[[T]]$ is the ring of functions on the union of these infinitesimal neighbourhoods. The fact that anything outside (T) is invertible says anything that is non-zero at zero is invertible. In this sense, we still don't have points other than zero.

One can show $\mathbb{F}_p[[T]]$ is a domain. Let $f,g \in \mathbb{F}_p[[T]]$ with fg = 0. Then $f_0g_0 = 0$ so WLOG $f_1 \in \mathbb{F}_p^{\times}$ and $g_0 = 0$. Then $f_0g_1 + f_1g_0 = 0$ implies $g_1 = 0$. By induction, $g_n = 0$ for all $n \geq 0$ so g = 0. This means we can take fraction field

$$\mathbb{F}_p((T)) := \operatorname{Frac} \mathbb{F}_p[[T]] \simeq \mathbb{F}_p[[T]][1/T]$$

which intuitively is the ring of functions on the punctured disk around zero.

3. \mathbb{Z} is similar to $\mathbb{F}_p[T]$ in the sense that elements can be written uniquely as polynomials with coefficients in $\{0,\ldots,p-1\}$. In \mathbb{Z} the "variable" is p and unlike \mathbb{F}_p , there's a non-trivial "carrying over" of coefficients when adding elements. For example in \mathbb{Z}

$$(0 \cdot 1 + 3 \cdot 5) + (0 \cdot 1 + 2 \cdot 5) = (0 \cdot 1 + 0 \cdot 5 + 1 \cdot 5^{2})$$

whilst in $\mathbb{F}_5[T]$

$$(0+3T) + (0+2T) = 0$$

An idea is that we can play the same game of completion with p instead of T. The resulting ring is called the p-adic integers.

$$\mathbb{Z}_p := \varprojlim_{n \ge 0} \mathbb{Z}/(p^{n+1})$$

By the same argument as for $\mathbb{F}_p[T]$ we have an injection

$$\mathbb{Z} \to \mathbb{Z}_p$$

Again, as sets we have

$$\prod_{n\geq 0} \{0, \cdots, p-1\} \xrightarrow{\sim} \mathbb{Z}_p$$
$$(a_n)_n \mapsto (\sum_{0\leq d\leq n} a_d p^d \bmod p^{n+1})_n$$

This is not too useful because of the non-trivial "carrying over" of coefficients when adding and multiplying unlike the case of $\mathbb{F}_p[[T]]$.

One can also show \mathbb{Z}_p has (p) as the unique maximal ideal. The key is that $\operatorname{in}\mathbb{Z}/(p^{n+1})$, p is nilpotent so any maximal ideal must contain (p), which is maximal itself. It follows that (p) is the unique maximal ideal of $\mathbb{Z}/(p^{n+1})$ for all $n \geq 0$. So if $x \in \mathbb{Z}_p$ with $x \neq 0 \mod p$, then $x \mod p^{n+1}$ is invertible for all $n \geq 0$ and hence x is invertible. ¹

Geometrically, if one pretends \mathbb{Z} is the ring of functions on some space and p is a point in that space, then one can imagine $\mathbb{F}_p = \mathbb{Z}/(p)$ as the ring of functions at the point p and \mathbb{Z}_p as the ring of functions on the formal disk around p.

One can also show \mathbb{Z}_p is a domain. The key is *p*-torsion-free.

```
Lemma. For x \in \mathbb{Z}_p, if px = 0 then x = 0.

Proof. Write x = \sum_{n \geq 0} x_n p^n with x_n \in \{0, \dots, p-1\} \subseteq \mathbb{Z}. Mod p^2 we have px_0 = 0 so x_0 = 0. Mod p^3 we have 0 = p(x_1p + x_2p^2) = x_1p^2 so x_1 = 0. By induction x_n = 0 for all n.
```

Let $x,y\in\mathbb{Z}_p$ with xy=0. Writing both as p-adic expansions with coefficients in $[0,p-1]\cap\mathbb{Z}$ gives $x_0y_0=0$ mod p and hence $x_0=0$ or $y_0=0$. WLOG $x_0\in\mathbb{F}_p^\times$ and $y_0=0$. Then we can write $0=xy=px(y_1+y_2p+\cdots)$ and so $x(y_1+y_2p+\cdots)=0$ in \mathbb{Z}_p . By induction, $y_n=0$ for all p and hence p=0.

Thus, we can take fraction fields and obtain the *p-adic rationals*.

$$\mathbb{Q}_p := \operatorname{Frac} \mathbb{Z}_p \simeq \mathbb{Z}_p[1/p]$$

Intuitively, this is the ring of functions on the punctured disk around p.

4. Why is this useful? Recall in the section on cyclotomic extensions, we proved that \mathbb{F}_p^{\times} is cyclic effectively by counting. Let us give a different proof by relating \mathbb{F}_p^{\times} with (p-1)-th roots of unity in \mathbb{C} , which we know is cyclic because it is generated by $e^{2\pi i/(p-1)}$.

Recall we wrote elements of \mathbb{Z}_p as power series in p with coefficients by picking $\{0,\ldots,p-1\}\subseteq\mathbb{Z}\subseteq\mathbb{Z}_p$ as lifts of \mathbb{F}_p^{\times} under $\mathbb{Z}_p\to\mathbb{F}_p$. This does not reflect the additive nor multiplicative nature of elements in \mathbb{F}_p^{\times} . We cannot expect addition of lifts to be respected because p=0 in \mathbb{F}_p but $p\neq 0$ in $\mathbb{Z}\subseteq\mathbb{Z}_p$. We now show that there is a better choice of coefficients which is multiplicative. More precisely,

¹This strategy also works for $\mathbb{F}_p[[T]]$.

Lemma. There exists a unique multiplicative map $[_] : \mathbb{F}_p \to \mathbb{Z}_p$ *such that* $[x] = x \mod p$.

Proof. The idea is that for $x=y\in \mathbb{F}_p=\mathbb{Z}/(p)$, although we cannot in general lift x,y so that $x=y \mod p^2$ we do have $x^p=y^p \mod p^2$ by binomial expansion. Take $x\in \mathbb{F}_p$, we define $[x] \mod p^{n+1}$ for each $n\geq 0$:

- (a) Take $x^{1/p} \in \mathbb{F}_p$, which is unique by the Frobenius being bijective. In general, take x^{1/p^n} .
- (b) Take any lift $x_1 \in \mathbb{Z}/(p^2)$ of $x^{1/p}$. For general n take any lift $x_n \in \mathbb{Z}/(p^{n+1})$ of x^{1/p^n} .
- (c) Take $[x]_1 := x_1^p \in \mathbb{Z}/(p^2)$. This only depends on the value of $[x]_1 \mod p$ which is $[x]_1 = x_1^p = (x^{1/p})^p = x \mod p$.

For any n, take $[x]_n := x_n^{p^n} \in \mathbb{Z}/(p^n)$. This depends only on the value of $[x]_n \mod p$ which is again x.

(d) Because $(x^{1/p^{n+1}})^p=x^{1/p^n} \mod p$ we have $[x]_{n+1}=(x^p_{n+1})^{p^n}=x^{p^n}_n=[x]_n \mod p^n$. This defines $[x]\in\mathbb{Z}_p$.

For $x,y\in \mathbb{F}_p$, x_ny_n lifts $(xy)^{1/p^n}$ so $[x]_n[y]_n=x_n^{p^n}y_n^{p^n}=[xy]_n$ mod p^{n+1} . It follows that [x][y]=[xy]. Uniqueness is straightforward to check.

In particular, $[\mathbb{F}_p^{\times}] \subseteq \mathbb{Z}_p$ gives (p-1)-th roots of unity! Furthermore, mod p gives a group isomorphism $[\mathbb{F}_p^{\times}] \simeq \mathbb{F}_p^{\times}$. So we have lifting the (p-1)-th roots of unity in characteristic p to characteristic zero.

Now note $\mathbb{Z}\subseteq \mathbb{Z}_p$ induces a field extension $\mathbb{Q}\to \mathbb{Q}_p$ (of infinite degree). Take $\mathbb{Q}([\mathbb{F}_p^\times])$ which is a finite subextension. This must be a splitting field for $X^{p-1}-1\in \mathbb{Q}[X]$. By the embedding theorem, we must have some isomorphism $\mathbb{Q}([\mathbb{F}_p^\times])\simeq \mathbb{Q}(e^{2\pi i/(p-1)})$ as extensions of \mathbb{Q} since both are splitting fields of $X^{p-1}-1$. Under this unknown isomorphism, $[\mathbb{F}_p^\times]\simeq \langle e^{2\pi i/(p-1)}\rangle$. Thus we conclude \mathbb{F}_p^\times is cyclic.

5. Define $\mathbb{F}_p((t^{1/p^\infty}))$ and \mathbb{Q}_p^∞ . State Fontaine–Winterberger isomorphism. [FW83]

These are examples of *perfectoid fields*. Just as fields generalise to rings, perfectoid fields generalise to *perfectoid rings*. The applications of these rings falls in the area called *p-adic Hodge theory*. Describing this is beyond the scope of these talks. Let's just say they were significant enough to win Peter Scholze the Fields medal in 2018!

6. (If time permits) Tilting \mathbb{Q}_p^{∞} to $\mathbb{F}_p((t^{1/p^{\infty}}))$.

References

[FW83] J.-M. Fontaine and J.-P. Wintenberger. "Le corps des normes de certaines extensions infinies de corps locaux ; applications". fr. In: *Annales scientifiques de l'École Normale Supérieure* 4e série, 16.1 (1983), pp. 59–89. URL: http://www.numdam.org/articles/10.24033/asens.1440/.

[Stacks] T. Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu. 2018.