0

**(3)** 

(4)

(3)

19 BUNDESREPUBLIK DEUTSCHLAND





Auslegeschrift 27 24 860 1 1

Aktenzeichen:

P 27 24 860.8-22

Anmeldetag:

2. 6.77

Offenlegungstag:

Bekanntmachungstag: 10. 8.78

3 Unionspriorität:

**39 39** 

Bezeichnung: Fahrtanzeigeinstrument für Flugzeuge

1 Anmelder: Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen

Ø Erfinder: Schänzer, Gunther, Dr.-Ing., 7770 Überlingen

**6** Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften: DE-OS 24 30 805

## Patentansprüche:

1. Fahrtanzeigeinstrument für Flugzeuge mit einer feststehenden Fahrtskala und einem über der 5 Fahrtskala spielenden Zeiger, der durch ein vom Staudruck gesteuertes Meßwerk auslenkbar ist, dadurch gekennzeichnet, daß die Fahrtskala (12) logarithmisch und der Zeiger (20) durch das Meßwerk (94) um einen ersten Weg 10 (φ) auslenkbar ist, der linear vom Logarithmus der Fahrt (v) abhängig ist, daß zusätzlich zu der feststehenden logarithmischen Fahrtskala (12) eine bewegliche ebenfalls logarithmische Skala (16) in gleichem Maßstab wie die Fahrtskala (12) vorgese- 15 hen ist, die gegenüber der Fahrtskala (12) um einen zweiten Weg ( $\varphi$ ) verstellbar ist, der linear vom Logarithmus des maximalen Auftriebsbeiwertes (CAmax) und vom Logarithmus des Fluggewichts (G) abhängt, und die lineare Abhängigkeit so gewählt ist, 20 daß für ein bekanntes Fluggewicht und einen

bekannten maximalen Auftriebsbeiwert der Skalen-

2. Fahrtanzeigeinstrument nach Anspruch 1, gekennzeichnet durch einen Flächenbelastungsgeber (78, 110), der ein den Logarithmus der effektiven Flächenbelastung (g.) wiedergebendes Signal liefert, einen auf Änderungen der Flugzeuggeometrie ansprechenden Geber (58, 60, 106), der ein den Logarithmus des maximalen Auftriebsbeiwertes (CAMAX) wiedergebendes Signal liefert und

einen von den Signalen der beiden Geber beaufschlagten Stellmechanismus (108, 112, 114, 116), der die bewegliche Skala (16) um den besagten zweiten Weg verstellt, der proportional zu

$$\frac{1}{2} (\ln 2 - \ln v_0 - \ln v_a) + \frac{1}{2} \left( \ln \left( n \frac{G}{S} \right) - \ln C_{amax} \right)$$

30

ist, wobei

CAmax der maximale Auftriebswert.

die Flügelfläche,

die Luftdichte in Meereshöhe. Đο

п das Lastvielfache und

V. der Anfangswert der Fahrtskala

ist.

3. Fahrtanzeigeinstrument nach Anspruch 2, 33 dadurch gekennzeichnet, daß der auf Änderungen der Flugzeuggeometrie ansprechende Geber einen Klappenfühler (58), einen von dem Signal  $(\eta_K)$  des Klappenfühlers (58) beaufschlagten Funktionsgeber (60) zur Erzeugung 40 eines dem maximalen Auftriebsbeiwert (CAIMAX) proportionalen Signals als Funktion des Klappenfühler-Signals  $(\eta_K)$  und ein von dem besagten Funktionsgeber-Signal beaufschlagtes Logarith-

mierglied (106) enthält. 4. Fahrtanzeigeinstrument nach Anspruch 2 oder

3, dadurch gekennzeichnet, daß der Stellmechanismus einen Differenzverstärker (108) enthält, dem das dem Logarithmus des maximalen Auftriebsbeiwertes (CAmax) und das dem 50 Logarithmus der effektiven Flächenbelastung  $\left(\frac{n\overline{G}}{S}\right)$  proportionale Signal zugeführt werden, und

einen Summierverstärker (114), dem das mit dem Faktor 0,5 versehene Ausgangssignal des Differenz- 55 verstärkers sowie ein festes aber justierbares Signal (U<sub>6</sub>) zugeführt wird, welches proportional zu

$$\frac{1}{2}(\ln 2 - \ln \varrho_0) - \ln v_u$$

ist, sowie einen vom Ausgang des Summierverstärkers (114) gesteuerten Stellmotor (116) zur Verstellung der beweglichen Skala.

5. Fahrtanzeigeinstrument nach Anspruch 4, 65 dadurch gekennzeichnet, daß ein Signal, das dem Staudruck (q) proportional ist, auf ein elektrisches Logarithmierglied (88) geschaltet ist, dessen Ausgangssignal mit einem Faktor 0,5 (bei 90) an einem Summierverstärker (92) anliegt, wobei durch den Summierverstärker (92) dem logarithmierten Ausgangssignal ein konstantes oder fest einstellbares Signal

$$\left(\frac{1}{2}\left[\ln 2 - \ln \varrho_0\right] - \ln \nu_a\right)$$

überlagert wird und der Ausgang des Summierverstärkers (92) das Meßwerk (94) für den Zeiger (20) beaufschlagt.

6. Fahrtanzeigeinstrument nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Zeiger (20) um eine Zeigerachse (18) beweglich und die Fahrtskala (12) eine ringförmige äußere Skala konzentrisch zu der Zeigerachse (18) ist und daß die bewegliche Skala (16) konzentrisch innerhalb der feststehenden äußeren Skala und um die Zeigerachse (18) verdrehbar angeordnet ist.

7. Fahrtanzeigeinstrument für Flugzeuge nach Anspruch 6, dadurch gekennzeichnet, daß mit dem Zeiger (20) eine Abdeckung (24) verbunden ist, welche den größten Teil der beweglichen Skala (16) abdeckt und mit dem Fenster (26) versehen ist, das nur einen begrenzten Bereich der beweglichen Skala (16) um den Zeiger (20) herum frei läßt.

8. Fahrtanzeigeinstrument nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,

daß an der Fahrtskala (12) ein Sollwertzeiger vorgesehen ist.

daß an dem Fahrtanzeigeinstrument ein Sollwert des Auftriebsbeiwertes (CAROL) mittels eines Sollwertgebers (56) einstellbar ist und

daß ein Rechner (Fig. 2) vorgesehen ist, der von dem Signal des Sollwertgebers (56), dem Signal der Auftriebswert-Meßvorrichtung (54) und einem dem Staudruck (q) proportionalen Signal von einem Staudruckmesser (52) beaufschlagt ist und der ein den Sollwert des Staudrucks wiedergebendes Ausgangssignal (qsoll) liefert, von welchem der Sollwertzeiger (48) steuerbar ist.

9. Fahrtanzeigeinstrument nach Anspruch 8, dadurch gekennzeichnet,

daß an einem Summationspunkt (62) das Signal (CAsol) des Sollwertgebers (56) dem Signal (CA) der Meßeinrichtung (54) für den Auftriebsbeiwert

entgegengeschaltet ist,

daß das erhaltene Differenzsignal ( $\Delta C_A$ ) als Zählergröße an einem Eingang eines ersten Quotientenbildners (63) anliegt, auf dessen anderen Eingang das Signal ( $C_{Asoll}$ ) des Sollwertgebers (56) geschaltet ist, daß der Ausgang des ersten Quotientenbildners (63) an einem Eingang eines Multipliziergliedes (64) anliegt, auf dessen anderen Eingang der Ausgang eines zweiten Quotientenbildners (66) geschaltet ist, daß der Ausgang des Multipliziergliedes (64) an einem Summationspunkt (68) dem Signal (q) des Staudruckmessers (52) überlagert ist, daß dem so erhaltenen Signal ( $q_{soll}$ ) an einem Summationspunkt (70) das Ausgangssignal ( $q_{soll}$ )

Summationspunkt (70) das Ausgangssignal  $(q_{soll})$  an einem Summationspunkt (70) das Ausgangssignal  $(q_{soll})$  des zweiten Quotientenbildners (66) zur Bildung 20 eines Anzeigefehlersignals ( $\Delta q_s$ ) entgegengeschaltet

daß das Anzeigefehlersignal ( $\Delta q_S$ ) einmal direkt und einmal über einen Integrator (74) auf zwei Eingänge eines Summierverstärkers (78) geschaltet ist, an 25 dessen dritten Eingang ein den wahrscheinlichen Wert der effektiven Flächenbelastung  $q_{sm}$  darstellendes festes Signal anliegt,

daß das Ausgangssignal des Summierverstärkers (78) als Zählergröße an einem Eingang des zweiten 30 Quotientenbildners (66) anliegt, auf dessen anderen Eingang das Signal (CAsol) des Sollwertgebers (56) geschaltet ist, und

daß das Ausgangssignal des zweiten Quotientenbildners (66) einen Stellmechanismus (104) für den 35

Sollwertzeiger (48) steuert.

10. Fahrtanzeigeinstrument nach Anspruch 8, dadurch gekennzeichnet, daß zur Bildung eines die effektive Flächenbelastung wiedergebenden Signals der Ausgang (C<sub>A</sub>) der Meßvorrichtung für den 40 Auftriebsbeiwert und das Signal (q) von dem Staudruckmesser an einem Multiplizierglied anliegen, welches die effektive Flächenbelastung g, näherungsweise als Ausgangssignal

$$g_s = g_{sm} = C_A \cdot q$$

45

liefert

11. Fahrtanzeigeinstrument nach Anspruch 10, dadurch gekennzeichnet, daß das besagte Ausgangssignal gs auf ein elektrisches Logarithmierglied (98) 50 geschaltet ist, dessen Ausgang multipliziert mit einem Faktor 0,5 an einem Eingang eines Summierverstärkers (102) anliegt, auf dessen anderen Eingang ein durch den Skalenanfang (va) und die mittlere Luftdichte am Boden Qo) bestimmtes 55 konstantes oder fest einstellbares Signal

$$\left(\frac{1}{2}\left[\ln 2 - \ln \varrho_0\right] - \ln \nu_u\right)$$

anliegt und dessen Ausgang den Stellmechanismus (104) des Sollwertzeigers (48) beaufschlagt.

12. Fahrtanzeigeinstrument nach Anspruch 9 oder 10, dadurch gekennzeichnet,

daß der Ausgang des Summierverstärkers (78) an 65 einem Eingang eines zweiten Multipliziergliedes (80) anliegt, an dessen anderem Eingang ein der Normalbeschleunigung (2) längs der Hochachse des

Flugzeugs proportionales Signal anliegt, wobei der Ausgang des Multipliziergliedes (80) dem Fluggewicht (G) proportional ist.

13. Fahrtanzeigeinstrument nach Anspruch 2 und 12, dadurch gekennzeichnet, daß der Flächenbelastungsgeber von dem Ausgang des Summierverstärkers (78) bzw. Multipliziergliedes (118) in Verbindung mit einem nachgeschalteten Logarithmierglied (110) gebildet wird.

14. Fahrtanzeigeinstrument nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, daß an dem Instrument Retriebsartenschalter

daß an dem Instrument Betriebsartenschalter vorgesehen sind, durch welche wahlweise nachstehende Betriebsarten vorgebbar und ein zugehöriger interner Regelkreis (124, 126, 128, 130, 132) einschaltbar ist, durch welchen der Sollwertzeiger automatisch auf einen der Betriebsart entsprechenden Fahrtsollwert eingestellt wird:

(a) Einhaltung einer vorgegebenen Machzahl,

(b) Einhaltung einer vorgegebenen Fahrt,

(c) Einhaltung eines vorgegebenen Sicherheitsabstandes von der Abreißgeschwindigkeit,

(d) Fliegen mit größtem Bahnwinkel,

(e) Fliegen mit größter Steiggeschwindigkeit.

15. Fahrtanzeigeinstrument nach Anspruch 14, dadurch gekennzeichnet, daß an einem Stellmechanismus für den Sollwertzeiger (48) ein durch den Skalenanfang (va) und die mittlere Luftdichte (Qo) in Meereshöhe bestimmtes konstantes oder fest einstellbares Signal

$$\left(\frac{1}{2}\left[\ln 2 - \ln \varrho_0\right] - \ln \nu_o\right)$$

sowie über eine Anordnung von sich gegenseitig verriegelnden Schaltern wahlweise eines der folgenden Signale anliegt:

(a) das durch ein Logarithmierglied (136) logarithmierte Ausgangssignal eines Machzahl-Sollwertgebers (42"), dem ein dem statischen Druck in der Flughöhe entsprechendes, von einem Druckgeber (140) geliefertes, durch ein Logarithmierglied (142) logarithmiertes und mit dem Faktor 0,5 aufgeschaltetes Signal sowie ein konstantes Signal entsprechend

$$\frac{1}{2} (\ln \varkappa - \ln 2)$$

überlagert ist, wobei z der Isotropenexponent der Luft ist,

(b) ein der kommandierten Fahrt entsprechendes Singal von einem Fahrtsollwertgeber (40"), das durch ein Logarithmierglied (146) logarithmiert wird und dem ein konstantes Signal entsprechend

$$U_0 = \frac{1}{2} (\ln 2 - \ln \varrho_0) - \ln v_u$$

"entgegengeschaltet ist,

(c) ein dem kommandierten Verhältnis (ksod) von Fahrt zu Abreißgeschwindigkeit entsprechendes Signal von einem »k«-Wertgeber (38"), das durch ein Logarithmierglied (158) logarithmiert

wird und dem ein durch ein weiteres Logarithmierglied (106) logarithmiertes und mit einem Faktor 0,5 aufgeschaltetes, den maximalen Auftriebsbeiwert (CAmax) wiedergebendes Signal entgegengeschaltet und ein dem Logarithmus der effektiven Flächenbelastung (g.) entsprechendes, mit einem Faktor 0,5 aufgeschaltetes Signal überlagert ist,

(d) ein festes Signal von einem ersten Signalgeber (150), das einem dem steilsten Bahnwinkel 10 zugeordneten kommandierten Auftriebsbeiwert (CANO) entspricht, das durch ein Logarithmierglied (152) logarithmiert wird und dem ein dem Logarithmus der effektiven Flächenbelaschaltet ist, wobei das resultierende Signal mit einem Faktor 0,5 aufgeschaltet wird, oder

(e) ein festes Signal von einem zweiten Signalgeber, das einem der größten Steiggeschwindigkeit zugeordneten kommandierten Auftriebsbeiwert (C<sub>Asoll</sub>) entspricht, das durch ein Logarithmierglied logarithmiert wird und dem ein dem Logarithmus der effektiven Flächenbelastung (g.) entsprechendes Signal entgegengeschaltet ist, wobei das resultierende Signal mit 25 einem Faktor 0,5 aufgeschaltet wird.

Die Erfindung betrifft ein Fahrtanzeigeinstrument für Flugzeuge mit einer feststehenden Fahrtskala und einem über der Fahrtskala spielenden Zeiger, der durch ein vom Staudruck gesteuertes Meßwerk auslenkbar ist. 35

Zur Anzeige des aerodynamischen Strömungszustandes wird bei Flugzeugen üblicherweise die Fahrt v (in Knoten) benutzt, die aus einer Staudruckmessung abgeleitet wird. Die Fahrtmessung wird beispielsweise benötigt, um eine von der Flugsicherung vorgeschriebene Geschwindigkeit einzuhalten, oder bei bestimmten Flugmanövern wie der Waffenablieferung. Die Fahrt muß unterhalb eines bestimmten kritischen Wertes gehalten werden, um den Staudruck aus Gründen der diesen Kriterien wird am Fahrtmesser ein Sollwert eingestellt und manuell oder automatisch geregelt.

Die Fahrt muß mit Sicherheit oberhalb eines kritischen Wertes, der »Abreißgeschwindigkeit« vs. liegen, bei welcher die Strömung abreißt und der 50 Auftrieb schlagartig wegfällt. Die Abreißgeschwindigkeit vs ist abhängig von der Geometrie des Flugzeuges, also beispielsweise von der Stellung der Landeklappen, und vom Flugzeuggewicht G. Sie stellt also keinen konstanten Wert dar, sondern muß vom Piloten unter 55 Berücksichtigung des Fluggewichts G bestimmt werden. Das beansprucht den Piloten in unerwünschter Weise und kann in kritischen Situationen zu schwerwiegenden Fehlsteuerungen führen.

Eine andere Größe, die unabhängig vom Fluggewicht 60 den aerodynamischen Strömungszustand eindeutig wiedergibt, ist der Auftriebsbeiwert CA. Dieser Auftriebsbeiwert hängt vom Anstellwinkel und von der Klappenstellung ab. Der Auftrieb des Flugzeugs ist gleich Staudruck mal Auftriebsbeiwert mal Flügelfläche. 65 Je höher der Auftriebsbeiwert  $C_A$  ist, je größer also z. B. der Anstellwinkel wird, desto kleiner kann der Staudruck und damit die Fahrt werden, ohne daß sich

6 das Gleichgewicht zwischen Auftrieb und Fluggewicht

Durch einen Auftriebsbeiwert lassen sich eindeutig aerodynamische Strömungszustände festlegen, durch die jeweils eines der nachstehenden Kriterien erfüllt wird: maximaler Steigwinkel, größte Steiggeschwindigkeit, steilstes Sinken, größte Reichweite, minimaler Treibstoffverbrauch, engste Kurvenradien oder niedrigste zulässige Fahrt (Fluggeschwindigkeit). Bei einem bestimmten Wert CAMER des Auftriebsbeiwertes, der aber anders als die Abreißgeschwindigkeit unabhängig vom Fluggewicht ist, erfolgt wieder das Abreißen der Strömung. Wenn der aerodynamische Strömungszustand nur durch die Fahrt angezeigt wird, muß der Pilot stung (gs) entsprechendes Signal entgegenge- 15 auch in den vorgenannten Fällen wieder über das schwierig zu ermittelnde Fluggewicht mit Hilfe seines Flughandbuches die zugehörige Fahrt ermitteln.

Es ist bekannt, den Auftriebsbeiwert CA unmittelbar zu messen und anzuzeigen (DE-OS 24 30 805). Es ist auch bekannt, den Anstellwinkel zu messen, der eindeutig mit dem Auftriebsbeiwert zusammenhängt. Diese Messung und Anzeige des Auftriebsbeiwertes oder Anstellwinkels ist von besonderer Bedeutung bei Kampfflugzeugen.

Für Auftriebsbeiwert oder Fahrt können Sollwerte entsprechend den jeweiligen Erfordernissen vorgegeben und manuell oder automatisch eingehalten werden.

In der Praxis bringt die getrennte Anzeige von Fahrt und Auftriebsbeiwert oder Anstellwinkel und das Erfordernis des abwechselnden Ablesens für den Piloten Adaptionsprobleme mit sich. Das gilt insbesondere, weil sich diese beiden Größen gegensinnig ändern: Eine Verringerung der Fahrt bewirkt eine Vergrößerung des Anstellwinkels und damit des Auftriebsbeiwertes.

Der Erfindung liegt die Aufgabe zugrunde, ein Flugzeuginstrument zu schaffen, das gleichzeitig sowohl die Fahrt als auch eine dem Auftriebsbeiwert entsprechende Größe in anschaulicher, für den Piloten bequemer Weise anzeigt, wobei nach Vorgabe eines gewünschten Auftriebsbeiwertes ein Sollwertzeiger für die Fahrtanzeige automatisch auf den zugeordneten Fahrtsollwert eingestellt und bei Veränderungen diesem nachgeführt wird.

Erfindungsgemäß wird ein Fahrtanzeigeinstrument Strukturfestigkeit und des Flatterns zu begrenzen. Nach 45 der eingangs definierten Art so ausgebildet, daß die Fahrtskala logarithmisch und der Zeiger durch das MeBwerk um einen ersten Weg auslenkbar ist, der linear vom Logarithmus der Fahrt abhängig ist,

daß zusätzlich zu der seststehenden logarithmischen Fahrtskala eine bewegliche ebenfalls logarithmische Skala in gleichem Maßstab wie die Fahrtskala vorgesehen ist, die gegenüber der Fahrtskala um einen zweiten Weg verstellbar ist, der linear vom Logarithmus des maximalen Auftriebsbeiwertes und vom Logarithmus des Fluggewichts abhängt, und die lineare Abhängigkeit so gewählt ist, daß für ein bekanntes Fluggewicht und einen bekannten maximalen Auftriebsbeiwert der Skalenanfang der beweglichen Skala mit dem der zugehörigen Abreißgeschwindigkeit entsprechenden Punkt der Fahrtskala fluchtet, wobei an der beweglichen Skala das Verhältnis von Fahrt zu Abreißgeschwindigkeit ablesbar ist.

Es sind dann zwei Skalen vorhanden, von denen die eine seststehende die übliche Fahrtskala ist und von denen die andere bewegliche in Werten des Verhältnisses  $v/v_S$  von Fahrt und Abreißgeschwindigkeit geteilt ist. Die bewegliche Skala stellt sich in Abhängigkeit von dem der jeweiligen Flugzeuggeometrie (z. B. Landeklappenstellung) entsprechenden maximalen Auftriebsbeiwert CAMER dem Fluggewicht G und dem Lastvielfachen ein. Die Justage ist so, daß für irgendeinen bekannten aerodynamischen Strömungszustand mit bekanntem Fluggewicht, bekannter Klappenstellung und Flügelgeometrie und dementsprechend bekannter Abreißgeschwindigkeit  $v_S$  der dem Wert  $v/v_S=1$ entsprechende Punkt der beweglichen Skala auf dem dieser Abreißgeschwindigkeit, entsprechenden Punkt der festen Skala steht. Der Zeiger zeigt dann über der 10 festen Skala die Fahrt und über der beweglichen Skala das Verhältnis von Fahrt und Abreißgeschwindigkeit an. Andert sich, ausgehend von diesem bekannten aerodynamischen Strömungszustand die Flugzeuggeometrie und damit der maximale Auftriebsbeiwert CAmex 15 beispielsweise beim Ausfahren der Landeklappen, so bringt das eine Verstellung der beweglichen Skala mit sich. Durch die logarithmische Charakteristik des Zeigermeßwerkes und die dadurch bedingte logarithmische Teilung der feststehenden Skala und durch die 20 ebenfalls logarithmische Verstellcharakteristik der beweglichen Skala, die ebenfalls logarithmisch geteilt ist, wird sichergestellt, daß auch bei diesen Änderungen der  $v/v_S = 1$ «-Punkt der beweglichen Skala stets auf dem der jeweiligen Abreißgeschwindigkeit entspre- 25 chenden Punkt der feststehenden Skala steht und daß der Zeiger über der beweglichen Skala stets richtig das Verhältnis von Fahrt und jeweiliger Abreißgeschwindigkeit anzeigt.

Aus den eingangs erwähnten Gründen ist es in vielen 30 Fällen vorteilhaft, einen bestimmten Auftriebsbeiwert Casse vorzugeben, der beispielsweise in einem vorgegebenen Sicherheitsabstand von dem maximalen Auftriebsbeiwert liegt, und die Fahrt so zu regeln, daß dieser

Auftriebsbeiwert gehalten wird.

In weiterer Ausbildung der Erfindung wird dies dadurch ermöglicht, daß an der Fahrtskala ein Sollwertzeiger vorgesehen ist, daß an dem Fahrtanzeigeinstrument ein Sollwert des Auftriebsbeiwertes mittels eines Sollwertgebers einstellbar ist und daß ein 40 Rechner vorgesehen ist, der von dem Signal des Sollwertgebers, dem Signal der Auftriebsbeiwert-Meßvorrichtung und einem dem Staudruck proportionalen Signal von einem Staudruckmesser beaufschlagt ist und der ein den Sollwert des Staudrucks wiedergebendes 45 Ausgangssignal liefert, von welchem der Sollwertzeiger steuerbar ist.

Weitere Ausgestaltungen der Erfindung sind Gegen-

stand von Unteransprüchen.

Die Erfindung ist nachstehend an einem Ausführungs- 50 beispiel unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert:

Fig. 1 ist eine Vorderansicht eines nach der Erfindung ausgebildeten Fahrtanzeigeinstruments für Flugzeuge;

Fig. 2 ist ein zugehöriges Blockschaltbild;

Fig. 3 zeigt die verschiedenen internen Regelkreise. Das Fahrtanzeigeinstrument von Fig. 1 enthält eine Frontplatte 10 mit einer ringförmigen festen Skala 12 zur Anzeige der Fahrt in Knoten. Die Skala 12 ist 60 A logarithmisch geteilt und erstreckt sich in dem S dargestellten Ausführungsbeispiel von 70 Knoten bis 400 Knoten. Eine Marke 14 ist in üblicher Weise im Bereich zwischen 250 und 300 Knoten angebracht, welche eine Höchstgeschwindigkeit angibt, die aus 65 Stabilitätsgründen nicht überschritten werden sollte. Konzentrisch innerhalb der festen äußeren Fahrtskala

12 ist eine innere Skala 16 angeordnet, die um ihren

Mittelpunkt und den der Fahrtskala 12 drehbeweglich ist. Durch diesen Mittelpunkt verläuft die Achse 18 eines Zeigers 20 der über den beiden Skalen 12 und 16 spielt. Mit dem Zeiger 20 ist eine Scheibe 22 verbunden, die einen undurchsichtigen Teil 24 und ein durchsichtiges Fenster 26 aufweist. Der undurchsichtige Teil 24 deckt den größten Teil der inneren Skala 16 ab. Nur ein begrenzter Abschnitt dieser Skala um den Zeiger 20 herum ist durch das Fenster 26 sichtbar.

Auf dem unteren Teil der Frontplatte sind ein Digitalanzeiger 28 für das Flugzeuggewicht, ein Digitalanzeiger 30 für einen Sollwert des Verhältnisses v/vs von Fahrt zu Abreißgeschwindigkeit, ein Digitalanzeiger 32 für einen Sollwert vc der Fahrt, ein Digitalanzeiger 34 für die Machzahl und ein Digitalanzeiger 36 für eine kommandierte Machzahl angeordnet. Unterhalb der Digitalanzeiger 30, 32 und 36 befinden sich kombinierte Tasten und Stellknöpfe 38, 40 bzw. 42 zur Einstellung der jeweiligen Sollwerte. Auf der linken Seite der Frontplatte 10 sind zwei Tasten 44 und 46 vorgesehen, mit denen sich typische, für einen Flugzeugtyp nur in Abhängigkeit von Auftriebsklappenstellung und Schub veränderliche Flugzustände einstellen lassen. Durch die Taste 46 wird der Casoli-Wert eingestellt, mit dem der größtmögliche Bahnwinkel erreicht wird. Durch die Taste 44 wird der CAsolt-Wert eingestellt, mit dem die größtmögliche Steiggeschwindigkeit (zeitliche Höhenänderung) erreicht wird.

Bevor die Steuerung des Zeigers 20 und der beweglichen Skala 16 in Abhängigkeit von den Meßgrößen Auftriebsbeiwert  $C_A$  und Staudruck q im einzelnen beschrieben wird, ist es erforderlich, die Zusammenhänge zwischen den verschiedenen Größen zu untersuchen.

Es werden nachstehend die benutzten Bezeichnungen aufgeführt. Es bedeuten:

Auftrieb.

CA Auftriebsbeiwert,

G Fluggewicht,

g S Erdbeschleunigung,

Flügelfläche.

Lastvielfaches,

effektive Flächenbelastung nG

Fahrt (Fluggeschwindigkeit),

Verhältnis von Fahrt zu k

Abreißgeschwindigkeit,

Staudruck,

r T Regelkreiskonstanten,

Zeitkonstante,

Luftdichte in Meereshöhe,

Luftdichte,

angezeigte Geschwindigkeit, VIAS

wahre Geschwindigkeit, 55 VTAS

Isotropenexponent der Luft,

p(h) statischer Luftdruck in der Höhe h,

Es werden folgende Indizes verwendet:

Auftrieb.

AbreiBzustand (Stall),

Maximalwert, max

soll Sollwert

soll r errechneter Sollwert,

kommandierter Wert.

Oberhalb eines bestimmten Auftriebsbeiwertes CAMAR reißt die Strömung am Flügel ab. Die zugehörige kritische Fluggeschwindigkeit ist die Abreißgeschwindigkeit  $v_S$  Der zu dieser Abreißgeschwindigkeit gehörende Staudruck  $q_S$  ergibt sich aus

$$q_S = \frac{\varrho_0}{2} v_S^2. \tag{1}$$

Der Zusammenhang zwischen Auftrieb A, Fluggewicht G, Lastvielfachem n und Flügelfläche S ist gegeben durch

$$A = n G = q C_A \cdot S, \qquad (2)$$

wobei sich für den Abreißzustand ergibt

$$nG = q_S C_{Amax} \cdot S. \tag{2a}$$

$$v_S = \sqrt{\frac{2}{\rho_0} \frac{G}{S} \cdot n \frac{1}{C_{Amax}}}.$$
 (3)

Die Fahrt v kann als ein Vielfaches der Abreißgeschwindigkeit vs definiert werden:

$$v = k \cdot v_{S}. \tag{4}$$

Entsprechend Gleichung (1), (2) und (4) gilt

$$A = n G = \frac{\varrho_0}{2} k^2 v^2 C_A = \frac{\varrho_0}{2} v_S^2 C_{Amux} \cdot S.$$
 (5)

Daraus folgt:

$$C_A = \frac{1}{k^2} C_{Amux}. ag{5a}$$

Das bedeutet folgendes: Der maximale Auftriebsbeiwert  $C_{Amax}$  ist eine für ein bestimmtes Flugzeug bekannte Größe, die sich nur in Abhängigkeit von Klappenstellung, Machzahl und Flügelgeometrie ändert. Demnach ist die Größe k, also das Verhältnis  $v/v_S$  von 40 Fahrt und Abreißgeschwindigkeit dem Auftriebsbeiwert analog

Die Fahrtskala 12 ist logarithmisch geteilt, und der Zeigerausschlag ist dementsprechend proportional dem Logarithmus der Fahrt, wobei der Skalenanfang einer 45 bestimmten Fahrt  $\nu_a$  von beispielsweise 70 Knoten entspricht. Der Zeigerausschlag  $\varphi$  in Abhängigkeit von der Fahrt  $\nu_a$  und damit die Skalenteilung, ist somit gegeben durch

$$\varphi = a \left( \ln v - \ln v_a \right), \tag{6}$$

wobei a ein Proportionalitätsfaktor ist und »ln« den natürlichen Logarithmus bedeutet.

Entsprechend gilt für den der Abreißgeschwindigkeit 55  $v_S$ zugeordneten Zeigerausschlag  $\psi$ 

$$\psi = a \left( \ln v_S - \ln v_a \right). \tag{6a}$$

Die bewegliche innere Skala 16 ist in Werten von 60  $k=\nu/\nu_S$  logarithmisch geteilt. Sie beginnt mit k=1, und die den verschiedenen k-Werten zugeordneten Skalenstriche sind gegenüber dem Anfangspunkt der Skala (>k-1«-Punkt) um

$$\alpha = a \ln k \tag{7}$$

(mit dem gleichen Proportionalitätsfaktor wie die erste

Skala) winkelversetzt. Steht dann z. B. der \*k-1«-Punkt der beweglichen Skala 16 auf der 100-Knoten-Marke der Fahrtskala 12, dann ist der \*k-1,1«-Punkt der beweglichen Skala in Deckung mit der 110-Knoten-Marke der Fahrtskala 12. Steht der \*k-1«-Punkt der beweglichen Skala 16 auf der 120-Knoten-Marke, dann ist entsprechend der \*k-1,1«-Punkt in Deckung mit einem der Fahrt 132 Knoten entsprechenden Stelle der Fahrtskala.

Diese bewegliche innere Skala wird nun mit dem >k-1«-Punkt gegenüber dem Skalenanfang der Fahrtskala um den Winkel  $\psi$  verdreht, der von dem maximalen Auftriebsbeiwert  $C_{Amax}$  abhängt. Dieser maximale Auftriebsbeiwert  $C_{Amax}$  ändert sich, wie gesagt, in Abhängigkeit von der Klappenstellung.

Durch Logarithmieren von Gleichung (3) und Einsetzen von In vs in Gleichung (6a) ergibt sich

$$\psi = \frac{a}{2} (\ln g_z - \ln C_{Amux}) + \frac{a}{2} (\ln 2 - \ln \varrho_0) - a \ln \nu_a.$$
(8)

Dabei ist a wieder der Proportionalitätsfaktor der Fahrtskala 12 und des Zeigerausschlages. Die erste 25 Klammer ist variabel, während die beiden anderen Terme nur Konstanten enthalten.

Bei einer bestimmten Fluggeschwindigkeit v ist der Zeigerausschlag nach Gleichung (6) bestimmt. Der Winkel α zwischen der Zeigerstellung und dem 30 »k=1«-Punkt ist

$$\alpha = \varphi - \psi. \tag{9}$$

Aus Gleichung (6) und (6a) ergibt sich

$$\alpha = a (\ln v - \ln v_a) - a (\ln v_s - \ln v_a) \quad (10)$$

oder

35

65

$$\alpha = a \ln \frac{v}{v_s} = a \ln k$$

in Übereinstimmung mit Gleichung (7). Über der in der beschriebenen Weise beweglichen Skala 16 wird also das Verhältnis k von Fahrt zu Abreißgeschwindigkeit richtig angezeigt.

Mit dem beschriebenen Gerät lassen sich alternativ fünf für den Strömungszustand des Flugzeuges wichtige Betriebswerte einstellen. Die Wahl der Betriebsarten erfolgt durch Drücken einer der Tasten 42, 40, 38, 44 oder 46. Es wird dann der Sollwertzeiger 48 über einen internen Regelkreis auf den zugehörigen Fahrtsollwert eingestellt. Die Betriebsarten sind gegeneinander verriegelt. Die jeweils gewählte Betriebsart wird durch Aufleuchten einer Anzeigelampe in der entsprechenden Taste angezeigt. Die Betriebsartentasten 38, 40 und 42 sind mit den jeweiligen Einstellpotentiometern kombiniert. Die Betriebsarten sind:

- Einhaltung einer vom Piloten eingegebenen Machzahl. Dazu wird Taste 42 vom Piloten gedrückt und die Machzahl mittels des damit verbundenen Potentiometer-Stellknopfes eingestellt bzw. der vorher eingestellte Wert übernommen.
- Einhaltung einer vom Piloten eingegebenen Fahrt.
  Dazu wird Taste 40 vom Piloten gedrückt und die
  Fahrt mittels des damit verbundenen Potentiometer-Stellknopfes eingestellt bzw. der vorher eingestellte Wert übernommen.

- 3. Einhaltung eines vom Piloten vorgegebenen Sicherheitsabstandes (d. h. »k«-Wertes) von der Abreißgeschwindigkeit vs. Dazu wird Taste 38 vom Piloten gedrückt und der »k«-Wert mittels des damit verbundenen Potentiometer-Stellknopfes eingestellt bzw. der vorher eingestellte Wert übernommen.
- Fliegen mit größtem Bahnwinkel. Dazu wird, wie oben erwähnt, Taste 46 gedrückt.
- Fliegen mit größter Steiggeschwindigkeit. Dazu wird, 10 wie ebenfalls oben schon erwähnt, Taste 44 gedrückt.

Die Betriebsarten 3, 4 und 5 geben unmittelbar einen kommandierten Auftriebsbeiwert CARRI vor. Die Abweischung zwischen Sollwertanzeiger 48 und Fahrtanzeiger 20 kann vom Piloten oder vom Autopiloten ausgeregelt werden.

Wenn ein Auftriebsbeiwert  $C_{Apoll}$  kommandiert ist, dann soll der Sollwertzeiger 48 sich automatisch auf den 20 zugehörigen Fahrtsollwert einstellen. Dabei muß auch das Fluggewicht G ermittelt werden, da die zu einem vorgegebenen Auftriebsbeiwert gehörige Fahrt vom Fluggewicht abhängig ist.

Gemessen werden die tatsächliche Fahrt bzw. der 25 tatsächlich auftretende Staudruck q und der tatsächliche Auftriebsbeiwert CA, der beispielsweise von einer Meßvorrichtung nach Art der DE-OS 24 30 805 geliefert wird. Vorgegeben wird ferner der kommandierte Auftriebsbeiwert, der vom Piloten an dem 30 Stellknopf 38 oder durch die Tasten 44 und 46 eingestellt wird. Schließlich liefert ein auf die Flugzeuggeometrie, z. B. Klappenstellung ansprechender Geber ein den maximalen Auftriebsbeiwert CAmax wiedergebendes Signal.

Mit quot rist nachstehend der Wert des Staudruckes bezeichnet, welcher der tatsächlichen Stellung des Sollwertzeigers 48 auf der Fahrtskala 12 entspricht. Mit qual ist dagegen der Sollwert des Staudrucks bezeichnet, der genau dem kommandierten Auftriebsbeiwert Casoli 40 entspricht. Der Sollwertzeiger 48 soll diesem Wert qualit durch einen instrumenteninternen Regelkreis nachgeführt werden. Dieser Regelkreis hat nichts mit der manuellen oder automatischen Fahrtregelung des Flugzeuges zu tun. In dem Regelkreis hat die Größe qsoll 45 die Funktion der Führungsgröße, während die Größe q<sub>soll</sub>, die Regelgröße darstellt, welche dieser Führungsgröße nachgeführt wird. Da der Sollwert quoli des Staudrucks wegen der Abhängigkeit vom Fluggewicht in nicht eindeutiger Weise von dem kommandierten 50 Auftriebsbeiwert Cand abhängt, wird der Regelkreis ziemlich verwickelt. Die Abhängigkeiten sollen daher stufenweise unter vereinfachenden Annahmen unter-

Es sei zunächst angenommen, daß durch den Piloten 55 oder Autopiloten der kommandierte Auftriebsbeiwert genau eingehalten wird.

Der dem kommandierten Auftriebsbeiwert  $C_{Asoll}$  entsprechende Sollwert  $q_{soll}$  des Staudruckes ergibt sich

$$q_{soli} = g_s \frac{1}{C_{Asoli}} \tag{14}$$

mit

$$g_s = \frac{n \cdot G}{S}.$$

Dabei ist die Größe  $g_n$  in die das Fluggewicht und das Lastvielfache n eingeht, nicht genau bekannt. Dementsprechend ist der sich rechnerisch aus Gleichung (14) ergebende Wert  $q_{\infty l,n}$  auf den der Sollwertzeiger 48 eingestellt wird, mit einem Fehler  $\Delta q_s$  behaftet.

$$Aq_s = q_{soll} - q_{soll} r. ag{15}$$

Wenn nun, wie angenommen, der kommandierte Auftriebsbeiwert  $C_{Asoll}$  genau eingehalten wird, dann ist der richtige Sollwert  $q_{soll}$  des Staudruckes gleich dem tatsächlich gemessenen Staudruck q. Es ist also

$$Aq_s = q - q_{soff r}. (16)$$

Der Regelkreis muß den Anzeigefehler  $\Delta q_i$  des Staudrucksollwertes zum Verschwinden bringen. Es würde also praktisch der Sollwertzeiger 48 dem Zeiger 20 nachgeführt.

Der Fehler  $\Delta q_s$  beruht auf einem Fehler in der Bestimmung von  $g_s$  Der fehlerhafte Wert von  $g_s$  der zu dem fehlerhaften Wert  $q_{soff}$  führt, sei mit  $g_{sm}$  bezeichnet. Die Abweichung dieses Wertes  $g_{sm}$  von dem (unbekannten) richtigen Wert  $g_s$  ist mit  $\Delta g_s$  bezeichnet. Es ist also

$$g_s = g_{sm} + 1g_s. \tag{17}$$

Eingesetzt in Gleichung (14), ergibt sich

$$q_{soll} = (g_{sm} + .1 g_s) \frac{1}{C_{Asoll}}$$
 (18)

ode

$$q_{soll}$$
, +  $Aq_s = \frac{g_{son}}{C_{Asoll}} + \frac{Ag_s}{C_{Asoll}}$ 

Uber einen Koeffizientenvergleich ergibt sich

$$q_{soll\ r} = \frac{g_{som}}{C_{Asoll}}. (18a)$$

$$Aq_s = \frac{Ag_s}{C_{Asoll}}.$$
 (18b)

Setzt man diese Ausdrücke in Gleichung (16) ein, so ergibt sich

$$Ag_s = q C_{Asoll} - g_{sm}. ag{19}$$

Der Anzeigefehler  $\Delta q_s$  ist als Unterschied der Stellungen von Sollwertzeiger 48 und Fahrtzeiger 20 meßbar und wird in dem instrumenteninternen Regelkreis durch Variation der bei der Berechnung des Staudruck-Sollwertes  $q_{xxii}$ , benutzten Größe  $g_s$  zu null gemacht. Es wird hierzu eine PI-Regelung benutzt, d. h. der Regelkreis bildet bei Auftreten eines Anzeigefehlers  $\Delta q_s$  die Größe  $g_s$  nach der Beziehung

$$g_s = g_{sm} + r_0 A q_s + r_1 \int A q_s dt.$$
 (20)

Es ist somit

$$q_{soll r} = \frac{1}{C_{Asoll}} (g_{sm} + r_0 (q_{soll r} - q) + r_1 \int (q_{soll r} - q) dt.$$
 (21)

Die Beziehung zwischen q und  $q_{soll}$ , wird übersichtlicher mit Hilfe der Laplace-Transformation:

$$q_{soll r} = \frac{(r_1 + r_{0s}) q - g_{sm} \cdot s}{r_1 + (r_0 - C_{Asoll}) s}, \qquad (22)$$

wobei s die Variable der Laplace-Transformierten ist.

Bei einer sprungförmigen Veränderung des Staudrucks q, z. B. infolge einer Änderung des Lastvielfachen, und exakter Einhaltung des kommandierten 15 Auftriebsbeiwertes  $C_{Asoll}$  ergibt sich somit folgende Änderung von  $q_{soll n}$  also folgende Bewegung der Sollwertmarke 48: Zunächst läuft die Sollwertmarke durch den Proportionalanteil der Regelung sprungartig in eine neue Stellung. Von dieser Stellung aus läuft sie 20 durch den Integralanteil der Regelung mit einer Zeitkonstanten

$$T = \frac{r_0 - C_{Asoll}}{r_1}. (23)$$

in die dem richtigen Sollwert quou entsprechende

Stellung ein, die unter der hier gemachten Annahme mit der Stellung des Zeigers 20 übereinstimmt.

Die vorstehenden Untersuchungen gingen von der Annahme einer exakten Einhaltung des aerodynamischen Strömungszustandes aus. Diese Einschränkung ist unrealistisch, und es müssen auch Abweichungen des tatsächlichen Auftriebsbeiwertes  $C_A$  von dem kommandierten Auftriebsbeiwert  $C_{Asoll}$  und des tatsächlichen Staudrucks q von dem sich aus dem kommandierten Auftriebsbeiwert  $C_{Asoll}$  nach Gleichung (14) — auch bei richtigem  $g_i$  — ergebenden Staudruck-Sollwert  $q_{soll}$  berücksichtigt werden. Es ist

$$A C_A = C_{Asoll} - C_A , \qquad (24)$$

$$A q = q_{soff} - q. ag{25}$$

Unter der vorläufigen Annahme, daß gs genau bekannt und dementsprechend qsoll exakt ermittelt ist, ergibt sich aus den Gleichungen (14), (24) und (25):

$$q = q_{soll} - Aq = \frac{1}{C_{Asoll} - \Delta C_A} g_s = \frac{g_s}{C_{Asoll}} \frac{1}{1 - \frac{C_A}{C_{Asoll}}}.$$
 (26)

Unter der weiteren Annahme kleiner Abweichungen

$$\frac{\Delta C_A}{C_{Atall}} < 1$$

läßt sich Gleichung (17) in eine Reihe entwickeln und entsprechend vereinfachen:

$$q_{soll} - \Delta q \approx \frac{g_s}{C_{Asoll}} \left( 1 + \frac{\Delta C_A}{C_{Asoll}} \right)$$
 (27)

oder wegen Gleichung (14)

$$\Delta q = -\frac{g_s \Delta C_A}{C_{Axoll}^2} \tag{28}$$

und, wieder wegen Gleichung (14)

$$\Delta q = -\frac{q_{\text{soll}}}{C_{\text{Acc}}} \Delta C_A. \tag{29}$$

Damit sind alle erforderlichen Gleichungen zusammengestellt, um die korrekte Stellung des Sollwertzei- 55 gers 48 zu ermitteln und herzustellen. Dabei wird wie folgt vorgegangen:

$$q_{soll} = q + \Delta q$$
.

Es wird q gemessen,  $\Delta q$  wird bestimmt aus

$$q = -\frac{g_s}{C_{Appll}^2} \Delta C_A.$$

Dabei wird  $C_{Asoll}$  vorgegeben.  $C_A$  wird gemessen, 65 und  $\Delta$   $C_A$  wird dann bestimmt aus

$$\Delta C_A = C_{Amil} - C_A.$$

gs wird nach dem oben unter Annahme exakter Einhaltung des aerodynamischen Strömungszustandes 35 beschriebenen Verfahren bestimmt. Der Anfangswert gsm der in Rechnung gesetzten Flächenbelastung kann aus

$$g_{sm} = c_A \cdot q \tag{30}$$

40 gewonnen werden. Bei starker Turbulenz ist der aus dem Auftriebsbeiwert CA und dem Staudruck q ermittelte Wert stark verrauscht und stört den Regelkreis erheblich. Es kann daher zweckmäßig statt dessen ein wahrscheinlicher Wert von gsm fest vorgege-45 ben werden. Da der Regelkreis integrales Verhalten aufweist, hat der Anfangswert nur Einfluß auf das Einschaltverhalten nicht aber auf den Endwert.

Bei korrekter Arbeitsweise des Regelkreises zum Einstellen eines Sollwertes der Fahrt bei Vorgabe eines Sollwerts des Auftriebsbeiwertes CARON stellt sich durch die oben beschriebene PI-Regelung in dem Regelkreis ein Signal ein, das genau den Wert g, wiedergibt. Das Fluggewicht Gergibt sich dann zu

$$G = g_s \frac{S}{n}. (31)$$

Das Lastvielfache n kann direkt mittels eines flugzeugfest installierten Vertikalbeschleunigungsmessers gewonnen werden. Bezeichnet  $\ddot{z}$  die Vertikalbeschleunigung, so ist

$$n = \frac{\ddot{z}}{a}.$$
 (32)

Das Fluggewicht ergibt sich dann zu

$$G = S \cdot g \cdot g_s \cdot \frac{1}{2}. \tag{34}$$

15 Der Regelkreis ist in Fig. 2 als Blockschaltbild

dargestellt.

Als Meßwertgeber sind ein Vertikalbeschleunigungsmesser 50, ein Staudruckmesser 52 und eine Meßvorrichtung 54 für den Auftriebsbeiwert CA vorgesehen, welche letztere nach Art der DE-OS 24 30 805 aufgebaut sein kann. Ein Sollwertgeber 56 liefert ein Signal, das den Sollwert CAnol des Auftriebsbeiwertes wiedergibt. Ein Klappenfühler 58 liefert in üblicher Weise ein die Stellung der Landeklappen wiedergebendes Signal  $\eta_K$ . Dieses Signal  $\eta_K$  ist auf einen Funktionsgeber 60 geschaltet, welcher nach den bekannten Charakteristiken des Flugzeuges ein Ausgangssignal liefert, das den maximalen Auftriebsbeiwert CAmer wiedergibt.

Das Signal CAsos des Sollwertgebers 56 und das Signal CA der Meßvorrichtung 54 sind in einem Summierpunkt 62 gegeneinandergeschaltet. Es wird so ein Signal  $\Delta C_A$ erhalten. Dieses Signal ACA liegt als Zählergröße an einem Eingang eines ersten Quotientenbildners 63 an. 20 An dem anderen Eingang des ersten Quotientenbildners 63 liegt das Signal Casol von dem Sollwertgeber 56. Der Ausgang des ersten Quotientenbildners 63 liegt an einem Eingang eines Multipliziergliedes 64. An dem anderen Eingang des Multipliziergliedes 64 liegt der 25 Ausgang eines zweiten Quotientenbildners 66. Der Ausgang des Multipliziergliedes 64 wird an einem Summationspunkt 68 dem Signal q des Staudruckmessers 52 überlagert. Dem so erhaltenen Signal wird in einem Summationspunkt 70 der Ausgang des Quotien- 30 tenbildners 66 entgegengeschaltet, wodurch - wie noch gezeigt wird - ein Anzeigefehlersignal erzeugt wird, das dem Anzeigefehler des Sollwertzeigers 48 entspricht. Dieses Anzeigefehlersignal wird einmal, wie bei 72 angedeutet ist, direkt mit einem Faktor n und zum 35 anderen über einen Integrator 74 und, wie bei 76 angedeutet ist, mit einem Faktor n auf zwei Eingänge eines Summierverstärkers 78 geschaltet. Auf einen dritten Eingang des Summierverstärkers 78 wird ein festes Signal gegeben, das den wahrscheinlichen Wert 40 von gam also den Anfangswert der in Rechnung gesetzten Flächenbelastung wiedergibt. Der Ausgang des Summierverstärkers 78 liegt als Zählergröße an einem Eingang des zweiten Quotientenbildners 66. An dem anderen Eingang des Quotientenbildners 66 liegt 45 als Nennergröße das Signal CAsoll des Sollwerf-

gebers 56. Der Ausgang des Summierverstärkers 78 liegt außerdem als Zählergröße an einem dritten Quotientenbildner 80 an. An dem anderen Eingang des Quotientenbildners 80 liegt als Nennergröße der Ausgang z des Vertikalbeschleunigungsmessers 50. Der Ausgang des Quotientenbildners 80 wird, wie bei 82 angedeutet, mit einem festen Faktor  $S \cdot g$  multipliziert und durch ein Filter 84 geglättet. Das so erhaltene Signal repräsentiert, wie noch erläutert wird, das Fluggewicht G.

Das Ausgangssignal CA der MeBeinrichtung 54 für den Auftriebsbeiwert liegt zusammen mit dem Signal Camer des Funktionsgebers 60 an einem vierten Quotientenbildner 86 an, der gemäß Gleichung (5a) ein 60 das Quadrat des Verhältnisses von Fahrt und Abreißgeschwindigkeit ke liefert.

Das Ausgangssignal q des Staudruckmessers 52 ist auf ein Logarithmierglied 88 geschaltet. Der Ausgang des Logarithmiergliedes 88 wird, wie bei 90 angedeutet ist, mit einem Faktor 0,5 multipliziert und liegt an einem Eingang eines Summierverstärkers 92 an. An einem anderen Eingang des Summierverstärkers 92 liegt ein

Signal an, das den Ausdruck

$$\frac{1}{2}\left(\ln 2 - \ln \varrho_0\right) - \ln v_a$$

repräsentiert, wobei, wie gesagt,  $\varrho_0$  die Luftdichte auf Meereshöhe und v. der Anfangswert der Fahrtskala ist. In der Praxis wird dieses Signal empirisch justiert, so daß für den Staudruck, welcher der Fahrt v. entspricht, das Ausgangssignal des Summierverstärkers 92 verschwindet. Das Ausgangssignal des Summierverstärkers 92 beaufschlagt ein Meßwerk 94, das den Zeiger 20 auslenkt.

Der Ausgang des zweiten Quotientenbildners 66 liegt über ein Glättungsglied 96 an einem Logarithmierglied 98 an. Der Ausgang des Logarithmiergliedes 98 wird, wie bei 100 angedeutet ist, mit einem Faktor 0,5 multipliziert und liegt an einem Eingang eines Summierverstärkers 102 an. An dem anderen Eingang des Summierverstärkers 102 liegt - ähnlich wie bei dem Verstärker 92 - ein Signal entsprechend

$$\frac{1}{2} (\ln 2 - \ln \varrho_0) - \ln \nu_a$$

an. Der Ausgang des Summierverstärkers 102 beaufschlagt eine Stellvorrichtung 104 für den Sollwertzeiger

Das dem maximalen Auftriebsbeiwert C<sub>Amax</sub> entsprechende Ausgangssignal des Funktionsgebers 60 liegt an einem Logarithmierglied 106 an. Der Ausgang des Logarithmiergliedes 106 liegt an einem Eingang eines Differenzverstärkers 108 an. Das Ausgangssignal des Summierverstärkers 78, welcher die effektive Flächenbelastung g, repräsentiert, liegt an dem Logarithmierglied 110 an, dessen Ausgangssignal auf den anderen Eingang des Differenzverstärkers 106 geschaltet ist. Der Ausgang des Summierverstärkers 108 wird, wie bei 112 angedeutet, mit 0,5 multipliziert und auf einem Summierverstärker 114 gegeben. An einem anderen Eingang des Summierverstärkers 114 liegt ein Signal, welches die Größe

$$U_0 = \frac{1}{2} \left[ \ln 2 - \ln \varrho_0 \right] - \ln \nu_a$$

repräsentiert. Der Ausgang des Summierverstärkers 114 beaufschlagt einen Stellmechanismus 116 zur Verstellung der beweglichen Skala. In der Praxis wird das vorerwähnte Signal am anderen Eingang des Summierverstärkers 114 empirisch so eingestellt, daß der Skalenanfang (k-1) der beweglichen Skala 16 bei einem bestimmten bekannten aerodynamischen Strömungszustand und einem bestimmten bekannten Fluggewicht auf dem Punkt der Fahrtskala 12 steht, welcher dem zugehörigen Wert der Abreißgeschwindigkeit zugeordnet ist.

Die beschriebene Anordnung wirkt wie folgt:

Der Ausgang des Summierverstärkers 78 liefert im Rahmen der PI-Regelung ein Signal, das entsprechend Gleichung (20) auf einen Wert einläuft, welcher dem richtigen Wert g, der effektiven Flächenbelastung entspricht. Der Quotientenbildner 66 dividiert g. von Gleichung (20) durch CAson liefert also an seinem 65 Ausgang quar von Gleichung (21). Der Quotientenbildner 63 dividiert  $\Delta C_A$  durch  $C_{Asos}$  Am Ausgang des Multipliziergliedes 64 erscheint daher  $\Delta q$  gemäß Gleichung (28). In dem Summationspunkt 66 wird  $q+\Delta q$ , also nach Gleichung (25) der tatsächliche dem kommandierten Auftriebsbeiwert entsprechende Sollwert  $q_{soll}$  des Staudrucks gebildet. In dem Summationspunkt 70 wird die Differenz  $q_{soll}-q_{soll}$ , gebildet. Das ist nach Gleichung (16) der Anzeigefehler  $\Delta q$ , der Anzeige des Staudruck-Sollwertes durch den Sollwertzeiger 48. Diese Größe  $\Delta q$ , bildet richtig den Eingang des »PI-Reglers« 72, 74, 76, 78 und wird durch diesen durch Änderung von  $q_{soll}$ , auf null geregelt.  $q_{soll}$ , folgt durch diese Regelung  $q_{soll}$  nach. Das geglättete  $q_{soll}$ , Signal liefert somit auch bei Änderungen des Fluggewichtes G im Gleichgewichtszustand stets korrekt den Sollwert  $q_{soll}$  des Staudrucks, der einem kommandierten Auftriebsbeiwert entspricht.

Die Auslenkung des Zeigers 20 soll logarithmisch von der Fahrt abhängen. Dementsprechend wird das Staudrucksignal q logarithmiert und der Logarithmus mit 0,5 multipliziert, was der Bildung der Quadratwurzel aus q entspricht. Dem so erhaltenen Signal

$$\frac{1}{2} \ln q$$

wird im Summierverstärker 92 das Signal

$$\frac{1}{2} (\ln 2 - \ln \varrho_0) - \ln \nu_a$$

überlagert. Das Meßwerk 94 erhält daher ein Signal

$$\frac{1}{2} (\ln q + \ln 2 - \ln \varrho_0) - \ln \nu_a$$

und das ist wegen

$$v = \sqrt{\frac{2}{\varrho_0} \cdot q}$$

 $\ln v - \ln v_{\bullet}$  Die Anzeige des Meßwerkes 94 ist daher eine logarithmische Fahrtanzeige mit einem Skalenanfang  $v_{\bullet}$ 

In der gleichen Weise wird das q<sub>soll</sub>-Signal durch das Logarithmierglied 98, die Multiplikation bei 100 und den Summierverstärker 102 in eine logarithmische Einstellung des Sollwertzeigers 48 über der Fahrtskala 12 umgesetzt.

Der Ausgang des Summierverstärkers 78 liefert, wie erläutert, die effektive Flächenbelastung  $g_s$ . Der Quotientenbildner 80 bildet  $g_s/\mathbb{Z}$  Multipliziert mit  $S \cdot g$  bei 82 ergibt sich nach Gleichung (34) ein das Fluggewicht G wiedergebendes Signal. Da das Vertikalbeschleunigungssignal  $\mathbb{Z}$  stark verrauscht ist und andererseits das Fluggewicht sich nur langsam ändert, wird das Signal durch das Filter 84 geglättet. Es wird durch den Digitalanzeiger 28 (Fig. 1) angezeigt.

Der Differenzverstärker 108 liefert ein Signal In  $g_s$ - In  $C_{Amax}$  Mit 0,5 multipliziert liegt am Eingang des Summierverstärkers 114 dann ein Signal

$$\frac{1}{2} (\ln g_s - \ln C_{Amax}).$$

Diesem Signal wird ein fester Wert

$$U_0 = \frac{1}{2} (\ln 2 - \ln \varrho_0) - \ln \nu_u$$

an dem Summierverstärker 114 überlagert. Am Aus-

gang des Summierverstärkers 114 ergibt sich dann

$$\frac{1}{2} (\ln g_x - \ln C_{Amax}) + \frac{a}{2} (\ln 2 - \ln \varrho_0) - a v_a,$$

also abgesehen von den Proportionalitätsfaktor der Wert von ψ gemäß Gleichung (8). Um diesen Winkel wird die Skala 16 verdreht.

Durch die Erfindung wird somit ein Fahrtanzeigeinstrument geschaffen, bei welchem außer einer üblichen Fahrtanzeige weiterhin über einer sich automatisch entsprechend maximalem Auftriebsbeiwert und Fluggewicht einstellenden zweiten Skala das Verhältnis von Fahrt zu Abreißgeschwindigkeit ständig angezeigt wird. Es kann an dem Fahrtanzeigeinstrument weiterhin ein Sollwert CASOII des Auftriebsbeiwertes vorgegeben werden. Ein Sollwertzeiger läuft dann automatisch in eine Position auf der Fahrtskala, die unter Berücksichtigung von Fluggewicht und maximalem Auftriebswert dem zugehörigen Fahrtsollwert entspricht. Es erfolgt schließlich eine digitale Anzeige des Fluggewichts.

Der interne Regelkreis zur Ermittlung des Fahrtsollwertes kann gegebenenfalls vereinfacht werden, indem

$$g_s = g_{sm} = C_A \cdot q \tag{30a}$$

angenommen wird. Es ergibt sich dann die in Fig. 3 dargestellte vereinfachte Anordnung, wobei in Fig. 3 für entsprechende Teile die gleichen Bezugszeichen benutzt sind wie in den Fig. 1 und 2.

Bei der Ausführung nach Fig. 3 wird das den Staudruck q wiedergebende Signal von dem Staudruckmesser 52 zusammen mit dem den Auftriebsbeiwert CA wiedergebenden Signal von der Meßvorrichtung 54 einem Multiplizierglied 118 zugeführt. Das Ausgangssignal des Multipliziergliedes 118, das nach Gleichung (30a) der effektiven Flächenbelastung g, entspricht, wie sie in Fig. 2 als Signal am Ausgang des Summierverstärkers 78 erscheint, wird auf ein Glättungsfilter 84 gegeben, das in seiner Funktion dem entsprechend bezeichneten Filter in Fig. 2 entspricht. Im übrigen erfolgt die Verarbeitung der Signale im oberen Teil von Fig. 3 in gleicher Weise wie in Fig. 2 zur Erzielung einer Fahrtanzeige, einer Anzeige des Fluggewichts G und einer Verstellung der »k«-Skala 16.

In Fig. 3 sind weiterhin jedoch die internen Regelkreise für die Einstellung des Sollwertzeigers 48 bei den verschiedenen obenerwähnten Betriebsarten dargestellt.

Die Regelkreise zur Einstellung des Sollwertzeigers 48 enthalten gemeinsam das Filter 120, das den halben logarithmierten Sollwert des Staudrucks  $\frac{1}{2}$ ln  $q_{soll}$  glättet, und den Summationsverstärker 102, der dem ebenso bezeichneten Teil von Fig. 2 entspricht und der in Fig. 3 nur als Summationspunkt dargestellt ist. Dort

$$U_0 = \frac{1}{2} \left( \ln 2 - \ln \varrho_0 \right) - \ln \nu_u$$

60 überlagert.

Wenn zu  $\frac{1}{2}$ ln  $q_{soll}$  die Spannung  $U_0$  addiert wird, ergibt

$$\frac{1}{2}\left(\ln q_{soil} + \ln 2 - \ln \varrho_0\right) - \ln v_a = \ln \left| \sqrt{\frac{2}{\varrho_0} q_{soil}} - \ln v_a = \ln v_{soil} - \ln v_a\right|.$$

20

Es erfolgt somit dann richtig eine logarithmische Anzeige des Fahrtsollwertes v<sub>soll</sub>, wobei bei einem der Fahrt v<sub>s</sub> entsprechenden Staudruck-Sollwert das auf die Stellvorrichtung 104 gegebene Signal Null wird und der Sollwertzeiger 48 auf dem Skalenanfang der Fahrtskala 12 steht.

Die Schalter 38, 46, 44, 40 und 42 für die verschiedenen Betriebsarten sind in Fig. 3 als Kontakte 38', 46', 44', 40' und 42' eines Wählschalters 122 dargestellt, durch welche jeweils genau einer der 10 internen Regelkreise 124, 126, 128, 130 und 132 auf den Eingang des Filters 120 schaltbar ist.

Wenn die Machzahl Massel mittels des Stellknopfes 42 kommandiert wird, wobei der Schaltarm 134 des Wählschalters 122 in seiner untersten Stellung ist, so 15 ergibt sich folgendes:

Der Staudruck q hängt mit der Machzahl Ma nach der folgenden Beziehung zusammen:

$$q = \frac{\varrho_0}{2} v_{IAS}^2 = \frac{\varrho}{2} v_{IAS}^2 = \frac{\kappa}{2} p(h) M_0^2$$
, (35) 20

wobei

VIAS = angezeigte Geschwindigkeit,
 VTAS = wahre Geschwindigkeit,
 Q0 = Luftdichte in Meereshöhe,

= Luftdichte,

x = Isotropenexponent der Luft,
 p(h) = statischer Luftdruck in der Höhe h.

Der einer kommandierten Machzahl Masoli entsprechende Staudruck-Sollwert qsoll ergibt sich zu

$$q_{soll} = \frac{\varkappa}{2} p M \dot{a} = \frac{\varrho_0}{2} v_{soll}^2.$$
 (36)

Es wird also

$$v_{sall}^2 = \frac{\kappa}{n_0} \cdot p \, M a_{sall}^2. \tag{37}$$

Es wird

$$\frac{1}{2} \ln q_{soll} = \frac{1}{2} (\ln x - \ln 2) + \frac{1}{2} \ln p + \ln M a_{soll}$$
 (38)

addiert man hierzu

$$U_0 = \frac{1}{2} (\ln 2 - \ln \varrho_0) - \ln \nu_u,$$

so ergibt sich

$$\frac{1}{2} (\ln x - \ln \varrho_0) + \frac{1}{2} \ln p + \ln Ma - \ln v_a = \ln Ma_{sall} / \frac{x \cdot p}{\varrho_0} - \ln v_a = \ln v_{sall} - \ln v_a. \tag{39}$$

In dem internen Regelkreis 132 von Fig. 3 wird diese Operation durchgeführt.

Der Machzahlgeber 42" liefert ein der kommandierten Machzahl  $Ma_{soll}$  entsprechendes Signal. Dieses Signal wird durch ein Logarithmierglied 136 logarithmiert. In einem Summationspunkt 138 wird dem logarithmierten Signal  $\ln Ma_{soll}$  ein konstantes Signal  $\frac{1}{2}(\ln \varrho_0 - \ln 2)$  überlagert. Von einem Druckgeber 140 wird ein den statischen Druck p in der Flughöhe wiedergebendes Signal erzeugt. Dieses Signal wird mittels eines Logarithmiergliedes 142 logarithmiert und mit einem Faktor 0,5, wie bei 144 angedeutet, ebenfalls 30 auf den Summationspunkt 138 aufgeschaltet.

Es wird auf diese Weise die Gleichung (38) nachgebildet. Zu dem so erhaltenen Signal wird im Summationspunkt 102 in Analogie zu Gleichung (39) die konstante Spannung  $U_0$  addiert, so daß ein Signal 55 ln  $v_{soll}$ —ln  $v_a$  erhalten wird. Es wird also der einer kommandierten Machzahl  $Ma_{soll}$  zugeordnete Fahrtsollwert  $v_{soll}$  logarithmisch angezeigt, wobei richtig dem Wert  $v_a$  der Skalenanfang der Fahrtskala 12 entspricht.

Auf diese Anzeige des Fahrtsollwertes  $v_{soil}$  bei kommandierter Machzahl Ma kann u. U. verzichtet werden, da das Gerät die durch die digitalen Anzeigen 36 und 34 kommandierte und die tatsächliche Machzahl sowieso anzeigt. In diesem Falle müßte der Sollwertzeiger 48 bei Kommandieren einer Machzahl in eine eindeutige Stellung, z. B. an den Skalenanfang der Fahrtskala 12, gefahren werden, um den Piloten nicht zu irritieren.

Wenn die Fahrt  $v_c$  kommandiert werden soll, wird der Schaltarm 134 des Wählschalters 122 auf den zweituntersten Kontakt 40' geschaltet, so daß der interne Regelkreis 130 wirksam wird. Mittels des Fahrtsollwertgebers 40'' wird ein die kommandierte Fahrt  $V_c$  wiedergebendes Signal erzeugt. Dieses Signal wird durch ein Logarithmierglied 146 logarithmiert. In einem Summationspunkt 148 wird dem Signal ein konstantes Signal

$$\frac{1}{2} (\ln 2 - \ln \varrho_0)$$

entgegengeschaltet, während im Summationspunkt 102 das Signal

$$U_0 = \frac{1}{2} (\ln 2 - \ln \varrho_0) - \ln \nu_a$$

addiert wird. Die Stellvorrichtung 104 für den Zeiger 48 erhält dann ein Signal

$$\ln v_c - \ln v_a$$
,

d. h., der Sollwertzeiger 48 wird entsprechend dem Logarithmus der kommandierten Fahrt  $v_c$  ausgelenkt, wobei  $v_c = v_s$  richtig dem Skalenanfang der Skala 12 entspricht.

Die internen Regelkreise 128 und 126 zum Fliegen mit größtem Bahnwinkel bzw. mit größter Steiggeschwindigkeit sind abgesehen von den numerischen Werten übereinstimmend aufgebaut, und daher wird nur der Regelkreis 128 näher beschrieben.

Ein Geber 150 gibt einen festen Wert  $C_{ABOH} = C_{A(X)}$  vor, der dem Auftriebsbeiwert für maximalen Bahnwinkel entspricht. Es ist nach Gleichung (14)

$$q_{soil} = \frac{v_0}{2} v_{soil}^2 = \frac{g_s}{C_{Asoil}}.$$

Daraus folgt

$$\frac{1}{2} \ln q_{soll} = \frac{1}{2} (\ln g_s - \ln C_{Asoll}). \tag{40}$$

Addiert man dazu

$$U_0 = \frac{1}{2} (\ln 2 - \ln \varrho_0) - \ln \nu_a$$

so ergibt sich wie oben gezeigt, wieder In  $v_{soll}$ —In  $v_s$ .

Diese Operation wird in dem internen Regelkreis 128 mit den Signalen durchgeführt:

Das Signal  $C_{ADOI} = C_{A(X)}$  vom Geber 150 wird durch ein Logarithmierglied 152 logarithmiert. Dem so erhaltenen Signal ln  $C_{ADOI}$  wird im Summationspunkt 154 ein Signal ln  $g_s$  entgegengeschaltet. Dieses letztere Signal wird vom Ausgang des Filters 84 über ein Logarithmierglied 110 erhalten, wobei das letztere gleichzeitig die Funktion des Logarithmiergliedes 110 von F i g. 2 erfüllt. Die Summe wird analog zu Gleichung (40) mit einem Faktor 0,5 aufgeschaltet, wie bei 156 angedeutet ist. Durch Addition des Signals  $U_0$  im 30 Summationspunkt 102 ergibt sich am Eingang der Stellvorrichtung 104 ein Signal ln  $v_{DOI}$ —ln  $v_{DO$ 

Im internen Regelkreis 124 kann an einem »k«-Wertgeber 38" ein bestimmtes Verhältnis k<sub>soll</sub> von Fahrt v und Abreißgeschwindigkeit v<sub>s</sub> kommandiert werden. 35

Nach Gleichung (5a) ist

$$c_{Asoll} = \frac{C_{Amax}}{k_{soll}^2}.$$

Nach Gleichung (14) ist

$$q_{soll} = \frac{g_s}{C_{Asoll}} = \frac{k_{soll}^2 \cdot g_s}{C_{Amax}}.$$

Damit wird

$$\frac{1}{2} \ln q_{soll} = \ln k_{soll} + \frac{1}{2} \ln g_s - \frac{1}{2} \ln C_{Amax}$$

(42)

Diese Operation wird in dem Regelkreis 124 durchgeführt:

Das Signal  $k_{soil}$  von dem »k«-Wertgeber 38" wird durch ein Logarithmierglied 158 logarithmiert. Dem so erhaltenen Signal  $\ln k_{soil}$  wird in einem Summationspunkt 160 ein Signal  $\frac{1}{2} \ln C_{Amax}$  entgegengeschaltet, das von dem mit dem Faktor 0,5, wie bei 162 angedeutet, aufgeschalteten Ausgang des Logarithmiergliedes 106 erhalten wird. Ebenfalls mit dem Faktor 0,5, wie bei 164 angedeutet, wird im Summierpunkt 160 ein Signal  $\ln g_s$  aufgeschaltet, das vom Ausgang des Logarithmiergliedes 110 erhalten wird.

In der obersten Stellung des Schaltarmes 134 des Wählschalters 122 wird das so erhaltene Signal nach Überlagerung des Signals  $U_0$  im Summationspunkt 102 auf die Stellvorrichtung 104 geschaltet und bewirkt die Verstellung des Sollwertzeigers 48 wieder in eine Stellung ln  $v_{20}$ — ln  $v_{20}$ 

Hierzu 3 Blatt Zeichnungen

Nummer: Int. Cl.<sup>2</sup>; 27 24 860 B 64 D 43/02

Bekanntmachungstag: 10. August 1978



Nummer:

Int. Cl.2:

27 24 860 B 64 D 43/02

Bekanntmachungstag: 10. August 1978



Nummer: Int. Cl.<sup>2</sup>: 27 24 860 B 64 D 61

Bekanntmachungstag: 10. August 1978



Fig.1