Naloge za utrjevanje

1. Naj bo $\mathbb{N} = \{1, 2, 3, \ldots\}$ množica naravnih števil in naj bo $f \colon \mathbb{N} \to \mathbb{N}$ funkcija, dana s predpisom

$$f(x) = 2x + 3.$$

- (i) Poiščite f(f(4) + 1).
- (ii) Poiščite $f(\{1, 2, 3, 4, 5\})$.
- (iii) Poiščite $f^{-1}(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\})$.
- (iv) Ali je f injektivna?
- (v) Ali je f surjektivna?
- 2. V tej nalogi naj \mathbb{N}^+ označuje množico vseh pozitivnih celih števil, $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$. Obravnavajte injektivnost, surjektivnost in bijektivnost naslednjih funkcij:
 - (i) $f: \mathbb{N}^+ \to \mathbb{N}^+, f(n) = 2n;$
 - (ii) $f: \mathbb{N}^+ \to \mathbb{N}^+, f(n) = 2^n$;
 - (iii) $f \colon \mathbb{N}^+ \to \mathbb{N}^+, f(n) =$ število vseh pozitivnih deliteljev števila n.
- 3. Naj bo $S = \mathbb{N}$. Na množici $S \times S$ je definirana relacija R takole:

$$(a,b) R(c,d) \Leftrightarrow 2a - b = 2c - d.$$

- (i) Pokažite, da je R ekvivalenčna relacija.
- (ii) Če je $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$, določite R[(2, 5)], ekvivalenčni razred elementa (2, 5).
- 4. Naj bo relacija R_1 , ki delno ureja množico X, in relacija R_2 , ki delno ureja množico Y. Naj bo R definirana na množici $X \times Y$ takole:

$$(x_1, y_1) R(x_2, y_2) \Leftrightarrow x_1 R_1 x_2 \wedge y_1 R_2 y_2.$$

Pokažite, da R delno ureja $X \times Y$.

- 5. V tej nalogi naj \mathbb{R}^+ označuje množico vseh pozitivnih realnih števil, $\mathbb{R}^+ = \{x \mid x \in \mathbb{R} \land x > 0\}$, \mathbb{N}^+ pa množico vseh pozitivnih celih števil, $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$. Obravnavajte injektivnost, surjektivnost in bijektivnost naslednjih funkcij:
 - (i) $f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = |x|;$
 - (ii) $f \colon \mathbb{N}^+ \to \mathbb{R}^+, f(x) = 2x + 7;$
 - (iii) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x, y) = 2x y$.
- 6. Naj bo $S = \{x \in \mathbb{N} \mid 2 \le x \le 16\}$. Na množici S je definirana relacija deljivosti R:

$$x R y \Leftrightarrow x | y$$
.

- (i) Narišite Hassejev diagram glede na R.
- (i) Poiščite vse R-maksimalne elemente, če obstajajo.
- (iii) Poiščite vse R-minimalne elemente, če obstajajo.
- (iv) Ali ima S strukturo mreže glede na R?
- 7. Naj bo $S=\mathbb{R}.$ Na množiciSje definirana relacija R takole:

$$x R y \Leftrightarrow x - y \in \mathbb{Z}$$
.

- (i) Pokažite, da je R ekvivalenčna relacija.
- (ii) Določite $R[\frac{1}{2}]$, ekvivalenčni razred elementa $\frac{1}{2}$.
- 8. Naj bo $S=\{1,2,\dots,10\}.$ Na množiciS je definirana relacija takole:

$$x R y \Leftrightarrow x + y$$
 je sodo in $x \leq y$.

- (i) Pokažite, da R delno ureja množico S.
- (ii) Narišite Hassejev diagram glede na R.
- (iii) Poiščite vse R-maksimalne elemente, če obstajajo.
- (iv) Poiščite vse R-minimalne elemente, če obstajajo.
- (v) Ali ima S strukturo mreže glede na R?
- 9. Delna urejenost R je podana z naslednjim Hassejevim diagramom:

- (i) Poiščite vse R-maksimalne elemente, če obstajajo.
- (ii) Poiščite vse R-minimalne elemente, če obstajajo.
- (iii) Ali obstaja R-prvi element?
- (iv) Ali obstaja R-zadnji element?
- (v) Poiščite vse R-zgornje meje podmnožice $\{a, b, c\}$, če obstajajo.
- (vi) Poiščite R-najmanjšo zgornjo mejo podmnožice $\{a, b, c\}$, če obstaja.
- (vii) Poiščite vse R-spodnje meje podmnožice $\{f,g,h\}$, če obstajajo.

- (viii) Poiščite R-največjo spodnjo mejo podmnožice $\{f,g,h\}$, če obstaja.
- 10. Naj bo $S = \mathbb{N}$. Na množici S je definirana relacija R takole:

$$x R y \Leftrightarrow (\exists a)(a \in \mathbb{N} \land xy = a^2).$$

- (i) Pokažite, da je R ekvivalenčna relacija.
- (ii) Če je $S = \{1, 2, 3, \dots, 10\}$, določite R[1], ekvivalenčni razred elementa 1.
- (iii) Če je $S=\{1,2,3,\ldots,10\}$, določite vse ekvivalenčne razrede z več kot enim elementom.
- 11. Naj bo $n\geq 2$ in $M=\{1,2,\dots,n\}\subset \mathbb{N}.$ Na potenčni množici $\mathcal{P}(M)$ je definirana relacija R takole:

$$ARB \Leftrightarrow A \cup \{1\} = B \cup \{n\}.$$

- (i) Pokažite, da relacija R ni niti irefleksivna, niti simetrična, niti sovisna.
- (ii) Pokažite, da je relacija R tranzitivna.
- 12. Naj bo $S = \{[a,b] \mid a,b \in \mathbb{R}\} \cup \{[a,\infty) \mid a \in \mathbb{R}\} \cup \{(-\infty,b] \mid b \in \mathbb{R}\}$ množica vseh bodisi omejenih bodisi neomejenih zaprtih intervalov na realni osi. Nadalje, naj bo R relacija vsebovanosti na S, to je, $ARB \Leftrightarrow A \subseteq B$, in naj bo $U = \{[1,10],[3,20],[4,15]\} \subset S$.
 - (i) Poiščite R-spodnjo mejo za U, ki ni R-največja spodnja meja za U.
 - (ii) Poiščite R-največjo spodnjo mejo za U.
 - (iii) Poiščite R-zgornjo mejo za U, ki ni R-najmanjša zgornja meja za U.
 - (iv) Poiščite R-najmanjšo zgornjo mejo za U.
 - (v) Ali je R linearna urejenost na S?
 - (vi) Poiščite podmnožico $V \subseteq S$, ki nima R-spodnje meje.
- 13. Poiščite bijekcijo med intervalom $(-3, \infty)$ in množico \mathbb{R} .
- 14. Pokažite, da sta intervala $[-5, \infty)$ in [-1, 1) ekvipolentna.