# Álgebra Linear I

Professora Kelly Karina

#### **Operadores Auto-adjuntos**

Dizemos que um operador  $T: V \to V$  é auto-adjunto (ou simétrico) se a matriz que o representa numa base ortonormal A é uma matriz simétrica, ou seja:

$$[T]_A^t = [T]_A$$

Note que em particular temos:

$$[T]^t = [T]$$

#### **Exemplo:**

1) O operador linear  $T: \mathbb{R}^2 \to \mathbb{R}^2$  dado por T(x,y) = (2x+4y,4x-y) é auto-adjunto, pois a matriz canônica de T

$$[T] = \left[ \begin{array}{cc} 2 & 4 \\ 4 & -1 \end{array} \right]$$

é simétrica, ou seja,  $[T]^t = [T]$ 

2) O operador linear  $T: \mathbb{R}^3 \to \mathbb{R}^3$  dado por T(x,y,z) = (x-y,-x+3y-2z,-2y) é auto-adjunto, pois a matriz canônica de T

$$[T] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & -2 \\ 0 & -2 & 0 \end{bmatrix}$$

é simétrica, ou seja,  $[T]^t = [T]$ 

# **Propriedade:**

Seja V um espaço vetorial euclidiano. Se  $T:V\to V$  é um operador simétrico, então para quaisquer  $u,v\in V$  temos

$$\langle T(u), v \rangle = \langle u, T(v) \rangle.$$

#### **Exemplo:**

Seja o operador simétrico, no  $\mathbb{R}^2$ , definido por

$$T(x,y) = (x+3y,3x-4y)$$
. Consideremos os vetores  $u = (2,3)$  e

$$v = (4,2)$$
 e calculemos  $T(u)$  e  $T(v)$ :

$$T(u) = T(2,3) = (11,-6)$$

$$T(v) = T(4,2) = (10,4)$$

Assim temos:

$$\langle T(u), v \rangle = \langle (11, -6), (4, 2) \rangle = 44 - 12 = 32$$

$$\langle u, T(v) \rangle = \langle (2,3), (10,4) \rangle = 20 + 12 = 32$$



# Subespaços Invariantes

#### Definição:

Se V é um espaço vetorial e W um subespaço vetorial de V, dizemos que W é invariante pelo operador linear  $T:V\to V$  quando  $T(W)\subset W$ , isto é, quando a imag em T(v) de qualquer vetor  $v\in W$  é ainda um vetor em W

#### **Exemplo:**

- Os subespaços {0} e V são invariantes por qualquer operador
  T: V → V;
- O núcleo N(T) e Im(T) são também exemplos de subespaço invariante;
- Um subespaço W de dimensão 1 é invariante por A se e somente se existe um número  $\lambda$  tal que  $T(v) = \lambda v$  para todo  $v \in W$ .

#### Observação:

Um vetor  $w \neq 0$  em V chama-se autovetor do operador T quando existe  $\lambda \in \mathbb{R}$  tal que  $T(v) = \lambda v$ .



#### Autovalores e Autovetores

Seja  $T:V\to V$  um operador linear. Um vetor  $v\in V,\ v\neq 0$  é um autovetor do operador T se existe  $\lambda\in\mathbb{R}$  tal que  $T(v)=\lambda v$ . O número  $\lambda$  tal que  $T(v)=\lambda v$  é denominado autovalor de T associado ao autovetor v.

## Observação:

- Os autovetores também podem ser denominados vetores próprios ou vetores característicos.
- Os autovalores também podem ser denominados valores próprios ou valores característicos.

### Exemplo:

1) O vetor v = (5,2) é autovetor do operador linear

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \ T(x,y) = (4x + 5y, 2x + y)$$

associado ao autovalor  $\lambda=6$  pois

$$T(v) = T(5,2) = (30,12) = 6(5,2)$$

O vetor v=(2,1) não é autovetor deste operador T pois

$$T(2,1)=(13,5) \neq \lambda(2,1)$$
 para todo  $\lambda \in \mathbb{R}$ .

2) Na simetria no  $\mathbb{R}^3$  definida por T(v) = -v, qualquer vetor  $v \neq 0$  é autovetor associado ao autovalor  $\lambda = -1$ .

