Hamming Distance

- □ Hamming Distance between two sequences
- = Number of bits in which they disagree

□ Example: 011011

110001

Difference $101010 \Rightarrow \text{Distance} = 3$

©2020 Mahbub Hassan

35

Multiple Access FDMA (frequency division multiple access)

38

FHSS Advantages and Disadvantages

- Advantages
 - > Difficult to intercept (appears as random 'blips')
- Narrowband interference can't jam
- Disadvantages
 - ➤ Requires increased bandwidth (ability to randomly hop between 1000 frequencies → 1000 more bandwidth)
 - > Both time and frequency synchronization

©2020 Mahbub Hassan

Error Correction Example

□ 2-bit words transmitted as 5-bit/word

 Data
 Codeword

 00
 00000

 01
 00111

 10
 11001

 11
 11110

Received = $00100 \Rightarrow$ Not one of the code words \Rightarrow Error

Distance (00100,00000) = 1 Distance (00100,00111) = 2

Distance (00100,11001) = 4 Distance (00100,11110) = 3

- \Rightarrow Most likely 00000 was sent. Corrected data = 00
- b. Received = 01010 Distance(...,00000) = 2 = Distance(...,11110) Error detected but cannot be corrected
- c. Three-bit errors will not be detected. Sent 00000, Received 00111.

©2020 Mahbub Hassan

36

CDMA

- Each communicating group is using a different "code"
- ☐ You can understand a conversation only if you know the code used in that conversation
- ☐ Much like a *multilingual party*, where people from different languages are all talking at the same time (code = language)
- ☐ Two popular coding methods for CDMA
 - > Frequency hopping spread spectrum (FHSS)
 - > Direct sequence spread spectrum (DSSS)

©2020 Mahbub Hassan

39

Multiple Access Methods

Time Division Multiple Access (communicating groups are taking turns)

Code Division Multiple Access
(all communicating groups are talking at the same time)

37

Frequency Hopping Spread Spectrum

- ☐ Transmit over a narrowband, but continuously switch (hop) frequency over a wide spectrum
 - Spreads the transmission (power) over a wide spectrum
 ⇒□Spread Spectrum
- □ Pseudo-random frequency hopping (both transmitter and receiver use the same pseud-random number sequence = code)
 - > Developed initially for military
 - Patented by actress Hedy Lamarr (idea came while playing a piano; tone changes continuously)

©2020 Mahbub Hassan

40

Direct-Sequence Spread Spectrum

- ☐ Many bits are transmitted for each data bit
- □ Spreading factor = Code bits/data bit, 10-100 commercial (Min 10 by FCC), 10,000 for military
- □ Signal bandwidth >10 × data bandwidth
- Code sequence synchronization
- □ Correlation between codes ⇒Interference (Orthogonal to avoid interference)

42

©2020 Mahbub Hassan

Doppler Shift

- ☐ If the transmitter or receiver or both are mobile the frequency of received signal changes
- \square Moving towards each other \Rightarrow Frequency increases
- \square Moving away from each other \Rightarrow Frequency decreases

Frequency difference = velocity/Wavelength = $v/\lambda = vf/c$

Example: 2.4 GHz $\Rightarrow \lambda = 3 \times 10^8 / 2.4 \times 10^9 = 0.125 \text{m}$

v = 120 km/hr = 120 x 1000/3600 = 33.3 m/sFreq diff (Doppler shift) = 33.3/0.125 = 267 Hz

©2020 Mahbub Hassan

43