Prob 140 Fall 2018 Final Exam Reference	inal Exar	n Reference Sheet			A	A. Adhikari
name and parameters	values	mass fn. or pdf	cdf or survival fn.	expectation	variance	MGF M(t)
Uniform	$m \le k \le n$	1/(n-m+1)		(m+n)/2	$((n-m+1)^2-1)/12$	
Bernoulli (p)	0, 1	$p_1=p$, $p_0=q$		р	bd	$q + pe^t$
Binomial (n, p)	$0 \le k \le n$	$\binom{n}{k} p^k q^{n-k}$		du	bdu	$(q+pe^t)^n$
Poisson (μ)	<i>k</i> ≥ 0	$e^{-\mu}\mu_k/k$ i		η	щ	$\exp(\mu(e^t-1))$
Geometric (<i>p</i>)	$k \geq 1$	$q^{k-1}p$	$P(X > k) = q^k$	$1/\rho$	q/p^2	
"Negative binomial" (r, p)	$k \geq r$	$inom{(k-1)}{(r-1)} p^{r-1} q^{k-r} p$		r/p	rq/p^2	
Geometric (<i>p</i>)	$k \geq 0$	d_{k}^{b}	$P(X>k)=q^{k+1}$	d/b	q/p^2	
Negative binomial (r, p)	$k \geq 0$	$inom{(^{k+r-1})}{r-1}igphi^{r-1}q^k p$		rq/p	rq/p^2	
Hypergeometric (N, G, n)	$0 \le g \le n$	$\binom{G}{g}\binom{B}{b}/\binom{N}{n}$		$n\frac{G}{N}$	$n \frac{G}{N} \cdot \frac{B}{N} \cdot \frac{N-n}{N-1}$	
Uniform	$x \in (a, b)$	1/(b-a)	F(x) = (x-a)/(b-a)	(a+b)/2	$(b-a)^2/12$	
Beta (r, s)	$x \in (0,1)$	$\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}$	ts if r, s integers	r/(r+s)	$rs/((r+s)^2(r+s+1))$	
Exponential $(\lambda) = Gamma \; (1,\lambda)$	0 < ×	$\lambda e^{-\lambda x}$	$F(x) = 1 - e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	
Gamma (r,λ)	0 < ×	$\frac{\lambda^r}{\Gamma(r)} \chi^{r-1} e^{-\lambda x}$		r/\	r/λ^2	$(\lambda/(\lambda-t))^r$ for $t<\lambda$
Chi-square (n)	0 ≤ x	same as gamma $(n/2, 1/2)$		n	2 <i>n</i>	
Normal (0, 1)	$x \in \mathbb{R}$	$\phi(x)=rac{1}{\sqrt{2\pi}}\mathrm{e}^{-rac{1}{2}x^2}$	cdf: $\phi(x)$	0	1	$\exp(t^2/2)$
Normal (μ,σ^2)	$x \in \mathbb{R}$	$\frac{1}{\sigma}\phi((x-\mu)/\sigma)$	cdf: $\Phi((x-\mu)/\sigma)$	μ	σ^2	
Rayleigh	0 < x	$xe^{-\frac{1}{2}x^2}$	$F(x) = 1 - e^{-\frac{1}{2}x^2}$	$\sqrt{\pi/2}$	$(4-\pi)/2$	
Cauchy	$x \in \mathbb{R}$	$1/\pi(1+x^2)$	$F(x)=rac{1}{2}+rac{1}{\pi}arctan(x)$			

• If X_1, X_2, \ldots, X_n are i.i.d. with variance σ^2 , then $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is an unbiased estimator of σ^2 but $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ is not.

• For r>0, the integral $\Gamma(r)=\int_0^\infty x^{r-1}e^{-x}dx$ satisfies $\Gamma(r+1)=r\Gamma(r)$. So $\Gamma(r)=(r-1)!$ if r is an integer. Also, $\Gamma(1/2)=\sqrt{\pi}$.

• If Z_1 and Z_2 are i.i.d. standard normal then $\sqrt{Z_1^2+Z_2^2}$ is Rayleigh.

• If Z is standard normal then $E(|Z|) = \sqrt{2/\pi}$

• The kth order statistic $U_{(k)}$ is kth smallest of U_1, U_2, \ldots, U_n i.i.d. uniform (0,1), so $U_{(1)}$ is min and $U_{(n)}$ is max. Density of $U_{(k)}$ is beta (k, n-k+1).

• If S_n is the number of heads in n tosses of a coin whose probability of heads was chosen according to the beta (r,s) distribution, then the distribution of S_n is beta-binomial (r,s,n) with $P(S_n=k)=\binom{n}{k}C(r,s)/C(r+k,s+n-k)$ where $C(r,s)=\digamma(r+s)/(\digamma(r)\digamma(s))$ is the constant in the beta (r,s) density.

ullet If **X** has mean vector μ and covariance matrix Σ then ${\sf AX}+{\sf b}$ has mean vector ${\sf A}\mu+{\sf b}$ and covariance matrix ${\sf A}\Sigma{\sf A}^T$.

• If X has the multivariate normal distribution with mean vector μ and covariance matrix Σ , then X has density $f(\mathbf{x}) = \frac{1}{(\sqrt{2\pi})^n \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$

• The least squares linear predictor of Y based on the $p \times 1$ vector \mathbf{X} is $\hat{Y} = \mathbf{b}^T(\mathbf{X} - \mu_{\mathbf{x}}) + \mu_Y$ where $\mathbf{b} = \Sigma_{\mathbf{x}}^{-1} \Sigma_{\mathbf{x},Y}$. Here the ith element of the $p \times 1$ vector $\Sigma_{\mathbf{x},Y}$ is $Cov(X_i,Y_i)$. In the case p=1 this is the equation of the regression line, with slope $Cov(X_i,Y_i)/Var(X) = rSD(Y_i)/SD(X_i)$ and intercept $E(Y_i)$ slope $E(X_i)$.

• If $W = Y - \hat{Y}$ is the error in the least squares linear prediction, then E(W) = 0 and $Var(W) = Var(Y) - \Sigma_{Y,X}\Sigma_X^{-1}\Sigma_{X,Y}$. In the case p = 1, $Var(W) = (1 - r^2)Var(Y)$.

• If Y and X are multivariate normal then the formulas in the above two bullet points are the conditional expectation and conditional variance of Y given X.

• If Y and X are standard bivariate normal with correlation r, then $Y = rX + \sqrt{1 - r^2}Z$ for some standard normal Z independent of X.

ullet Under the multiple regression model ${f Y}={f X}eta+\epsilon$, the least squares estimate of eta is $\hat{eta}=({f X}^{\sf T}{f X})^{-1}{f X}^{\sf T}{f Y}$.