CONCOURS D'ADMISSION 2007

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Régularisation de fonctions

Ce problème présente un procédé d'approximation de fonctions par des fonctions plus régulières.

Pour tout entier $k\geqslant 0$ on désigne par $C^k_{\rm per}$ l'espace des fonctions d'une variable réelle à valeurs complexes, 2π -périodiques et de classe C^k ; on note de même $C^{\rm pm}_{\rm per}$ l'espace des fonctions 2π -périodiques et continues par morceaux. Pour toute fonction f de $C^{\rm pm}_{\rm per}$ on définit ses coefficients de Fourier par

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx \quad , \quad n \in \mathbf{Z} .$$

Étant donné une suite $(\alpha_n)_{n\in\mathbb{Z}}$, on dit que la série $\sum_{n\in\mathbb{Z}} \alpha_n$ est convergente si les séries $\sum_{n\geqslant 0} \alpha_n$ et $\sum_{n\geqslant 1} \alpha_{-n}$ le sont, et on pose alors

$$\sum_{n\in\mathbb{Z}} \alpha_n = \sum_{n\geq 0} \alpha_n + \sum_{n\geq 1} \alpha_{-n} .$$

Première partie

1. Dire pour quelles valeurs du couple $(t,x) \in \mathbb{R}^2$ la série $\sum_{n \in \mathbb{Z}} e^{-|n|t} e^{inx}$ est convergente.

On suppose maintenant t > 0 et on note P(t,x) ou $P_t(x)$ le nombre $\sum_{n \in \mathbb{Z}} e^{-|n|t} e^{inx}$.

- **2.** Vérifier que P(t,x) est réel. Calculer $\int_{-\pi}^{\pi} P(t,x) dx$.
- **3.a)** Montrer que la fonction P, définie sur l'ensemble $\mathbb{R}_+^* \times \mathbb{R}$, est indéfiniment différentiable, et écrire ses dérivées partielles $\frac{\partial^{p+q}}{\partial t^p \partial x^q} P(t,x)$ sous forme de sommes de séries.

- **3.b)** Calculer $\frac{\partial^2 P}{\partial t^2} + \frac{\partial^2 P}{\partial x^2}$.
- 4. Déterminer les coefficients de Fourier de la fonction P_t .
- **5.** Dire pour quelles valeurs du couple $(t,x) \in \mathbb{R}^2$ on a $1-2e^{-t}\cos x + e^{-2t} = 0$.

On suppose maintenant t > 0.

6. Démontrer l'égalité

$$P(t,x) = \frac{1 - e^{-2t}}{1 - 2e^{-t}\cos x + e^{-2t}}$$

et préciser le signe de cette expression.

7. Démontrer les assertions suivantes. On suppose $x \in [-\pi, \pi]$ et on fait tendre t vers 0 par valeurs supérieures; alors $P_t(x)$ tend vers 0 si $x \neq 0$, vers $+\infty$ si x = 0, et la convergence est uniforme sur tout ensemble de la forme $[-\pi, -a] \cup [a, \pi]$ où $a \in [0, \pi[$.

Deuxième partie

Dans cette seconde partie on se donne une fonction f de $C_{\text{per}}^{\text{pm}}$; on suppose toujours t > 0.

8. Vérifier que la série $\sum_{n\in\mathbb{Z}}\hat{f}(n)\,e^{-|n|t}\,e^{inx}$ est convergente.

Sa somme sera notée $\Phi_f(t,x)$ ou $\Phi_{f,t}(x)$.

9. Montrer que la fonction Φ_f , définie sur l'ensemble $\mathbb{R}_+^* \times \mathbb{R}$, est indéfiniment différentiable, et écrire ses dérivées partielles sous forme de sommes de séries.

10. Calculer
$$\Phi_{f,t}(x) - \frac{1}{2\pi} \int_{-\pi}^{\pi} P_t(x-y) f(y) dy$$
.

11. On suppose $f \in C_{\text{per}}^k$, $k \ge 0$. Montrer que, lorsque $t \to 0$, $\Phi_{f,t}^{(p)}$ converge uniformément vers $f^{(p)}$ pour tout $p \le k$.

Troisième partie

12. Étant donné un nombre réel $\alpha \ge 1$, montrer qu'il existe un réel μ_{α} tel que l'on ait $(1+u)^{\alpha} \le \mu_{\alpha}(1+u^{\alpha})$ pour tout $u \ge 0$.

Pour tout $\alpha \geqslant 0$ on note E_{α} l'ensemble des fonctions f de $C_{\rm per}^{\rm pm}$ satisfaisant

$$\sum_{n\in\mathbb{Z}} |\hat{f}(n)|^2 (1+n^2)^{\alpha} < +\infty.$$

On pourra admettre que cet ensemble est un sous-espace vectoriel de $C_{\rm per}^{\rm pm}$

- **13.a)** Montrer que, pour tout entier $k \ge 0$, on a $C_{\text{per}}^k \subset E_k$.
- **13.b)** A-t-on $C_{per}^k = E_k$?
- **13.c)** Montrer que $E_{\alpha} \subset C_{\text{per}}^k$ si $k \geqslant 0$ et $\alpha > k + 1/2$.

[On pourra traiter d'abord le cas où k = 0].

Dans la suite du problème, on se donne un nombre réel $r \ge 0$; pour tout $(t, x) \in \mathbb{R}_+^* \times \mathbb{R}$, on pose $\varphi_t(x) = x^r e^{-tx}$.

- 14. Exprimer le nombre $C=t^{r+1}\int_0^{+\infty}\varphi_t(x)dx$ à l'aide de la fonction Γ et vérifier qu'il est indépendant de t.
 - **15.** Montrer que $\sum_{n\geqslant 1} n^r e^{-tn}$ tend vers $+\infty$ lorsque $t\to 0$.
 - 16. Étant donné un réel $\tau > 0$, déterminer un réel C' tel que l'on ait

$$\sum_{n\geq 1} n^r e^{-tn} \leqslant C' t^{-r-1} \quad \text{pour tout} \quad t \in]0,\tau] \ .$$

On se donne maintenant une fonction $f \in E_{\alpha}$ pour un certain $\alpha \in]\frac{1}{2}, 1]$; on désigne encore par τ un réel > 0.

17.a) Déterminer un réel C'' tel que l'on ait

$$\left| \frac{\partial}{\partial t} \Phi_f(t, x) \right| \leqslant C'' t^{\alpha - 3/2} \quad \text{pour} \quad (t, x) \in]0, \tau] \times \mathbb{R} .$$

17.b) Déterminer un réel C''' tel que l'on ait $\|\Phi_{f,t} - f\|_{\infty} \leq C'''t^{\alpha-1/2}$ pour tout $t \in]0,\tau]$, où l'on a posé, pour toute fonction g bornée sur \mathbb{R} ,

$$||g||_{\infty} = \sup_{x \in \mathbb{R}} |g(x)|.$$

* *

*