

You are given a simple planar polygon in the 3-dimensional space. Find how many lattice points lie in the polygon's interior. A lattice point is a point that has integer Cartesian coordinates. That is, if the point is at (x,y,z), then x,y,zare all integers. Do not count lattice points on the polygon's boundary.

Standard input

The first line contains a single integer T, the number of test cases.

Each test case contains a single integer N on the first line, the number of vertices of the polygon. The next N lines each have a triplet of integers x_i, y_i, z_i which represent the X, Y, and Z coordinates of a vertex.

Standard output

For each test case, output the number of interior lattice points in the polygon on a single line.

Constraints and notes

- $1 \le T \le 10$ $3 \le N \le 10^3$ $10^{-9} \le x_i, y_i, z_i \le 10^9$
- The input vertices are given in the order of walking the polygon edges.
 The polygon is planar: it lies in a 2D plane.
- The polygon is simple: its edges have no intersection except that adjacent edges share a vertex.
 The polygon is non-degenerate: It has non-zero area.

Explanation

There are three test cases:

• Case 1: The polygon is a smallest right triangle in XY plane, which does not have any interior lattice point.

• Case 2: The polygon is a smallest square in a plane parallel to the XZ plane, which also does not have any interior lattice point.

 $\bullet~$ Case $3\!\!:$ The polygon is a 3×10 rectangle on an inclined plane. It has 2 (2 imes 1) interior lattice points.

Input -3 4 4 -3 7 4 -3 8 3 -3 8 1 -3 4 1 -3 4 1 3 1 0 0 1 785300 314159265 3 0 0 8 0 0 1 6 6 43 6 8 51 3 11 54 0 8 33 -3 11 36 -6 8 15

-6 6 7

Output 65

Explanation points.

 $\bullet \;\;$ Case 2: The polygon is a very tall triangle. Only the bottom half contains interior lattice points - one per line.

- Case 3: The polygon is a heart shaped non-convex polygon with $65\,$ interior lattice points.

14 0 9

 $\bullet \;$ Case 1: The polygon is a spiral with 14 interior lattice points. Note that there are $\boldsymbol{6}$ lattice points within the convex hull of the shape that are outside the polygon.

 $\bullet \;\;$ Case 2: The polygon is a staircase with no interior lattice points.

 $\bullet \;\;$ Case 3: The polygon is a degenerate pentagon - actually a square with 9 interior lattice points.

Input Output Explanation

Explanation

10 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.5