PROTOCOLO TCP/IP – CAMADA DE REDE

Leandro Teodoro Fev/2022

A camada de rede tem por objetivo realizar o roteamento dos pacotes TCP/IP entre os endereços lógicos das máquinas conectadas a uma mesma rede ou entre redes. Tal camada também é conhecida por fazer referência direta a camada de rede do modelo OSI. O principal protocolo operando nessa camada é o Internet Protocol (IP), que apesar de possuir esse nome tem por finalidade destinar os pacotes na rede local (LAN). O protocolo de internet possui duas versões em uso, IPv4 e IPv6, sendo o primeiro o mais utilizado para as redes LAN.

O gerenciamento da cama de rede é de responsabilidade do sistema operacional em contraste com a camada física que é de responsabilidade do hardware de interface com a rede. O equipamento concentrador que opera na camada de rede é chamado de roteador e tem a função de entregar os pacotes na rede local.

A estrutura do cabeçalho do datagrama IPv4 é formado da seguinte maneira:

0	4	8 16		24	31
Ver	IHL	Service Type	Total Length		
Identifier			Flags	Fragment Of	fset
Time to Live Protoc		Protocol	Header Checksum		Ç
		32 bit Sou	rce Addres	s	
		32 bit Destir	ation Addr	ess	
		Options and	Padding		

Onde temos:

- Ver: Versão do protocolo IP utilizado, valor 4 para IPv4.
- IHL: Internet Header Lenght, indica o tamanho do cabeçalho em variáveis de 32 bits. Acima cada linha equivale a uma variável de 32 bits. O campo Options é opcional, devendo ser excluído da contagem se não utilizado, assumindo nesse caso o IHL valor 5.
- Service Type: Sendo os 6 bits mais significativos o DiffServ(DS) e os 2 bits menos significativos o ECN.
- Total Lenght: Tamanho total do datagrama IPv4 compreendendo cabeçalho mais área de dados medido em palavras de 8 bits. Podendo ser na faixa de 0 a 65535.
- Identifier: Se o segmento TCP ou o datagrama UDP encapsulado for maior que a área de dados do datagrama IP ocorrerá o processo de fragmentação. Esse

número é inserido para orientação na remontagem de datagramas fragmentados.

- Falgs: Com tamanho de 3 bits para controle dos fragmentos.
- Fragment Offset: Para identificação do fragmento que está sendo tratado.
- Time to Live: Tempo de vida do datagrama na rede, utilizado para evitar que datagramas congestionem a rede.
- Protocol: Identifica o protocolo utilizado no campo de dados do datagrama IP. Dentre alguns dos listados em tabela padronizada temos: 6 pata o TCP e 17 para o UDP.
- Header Checksum: Soma de verificação somente da área do cabeçalho. É utilizado no receptor para checar se algum dado foi corrompido.
- Source Adress: Endereço lógico IP do remetente.
- Destination Adress: Endereço lógico IP do destino.
- Options: Informações adicionais sobre o datagrama, porém normalmente não é utilizado.

Ao final do cabeçalho temos a área de dados, o datagrama IPv4 pode ter um tamanho total de 65535 bytes mas normalmente possui um tamanho típico de 576 bytes. O tamanho da área de dados dá-se pela área total menos o tamanho do cabeçalho.

O endereçamento IPv4 possui faixas de endereços IPs destinados a usos especiais ou reservados. Esses não devem ser utilizados para os propósitos que não foram estabelecidos. Algumas dessas faixas são:

Endereço IP	Máscara de Rede	Uso Especial	
		Dependendo do contexto pode indicar	
0.0.0.0	255.0.0.0	todos em endereços IPv4 de uma	
		máquina local.	
		Indica o endereço de loopback que	
	255.0.0.0	aponta para a própria máquina, ou seja,	
127.0.0.0		o pacote IP não sai da máquina.	
		Também conhecido como endereço de	
		localhost(127.0.0.1).	
	255.255.0.0	Faixa de rede privada, utilizado para o	
192.168.0.0		endereçamento de computadores em	
		uma rede local(LAN)	
	255.240.0.0	Faixa de rede privada, utilizado para o	
172.16.0.0		endereçamento de computadores em	
		uma rede local(LAN)	
		Faixa de rede privada, utilizado para o	
10.0.0.0	255.0.0.0	endereçamento de computadores em	
		uma rede local(LAN)	
192.0.2.0			
198.51.100.0	255.255.255.0	Documentação e exemplos	
203.0.113.0			
169.254.0.0	255.255.0.0	Zeroconf/APIPA	
198.18.0.0	255.254.0.0	Equipamentos de teste de rede	
192.88.99.0	255.255.255.0	Conversão IPv4 para IPv6	

192.0.0.0	255.255.255.0	Reservado
224.0.0.0	240.0.0.0	Reservado
240.0.0.0	240.0.0.0	Reservado

Concluindo, foi dada uma pequena introdução a camada de rede TCP/IP e o Protocolo IPv4. Lembrando que existem outros protocolos que podem atuar nessa camada, assim, a continuação de estudos mais aprofundados são necessários para um entendimento pleno.