Introduction to Cryptography Lecture 12–14

©Michael Luttenberger

Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München

 $2018/12/12,\ 15{:}31$

1 Lecture 12-14 – Group theory

Motivation

Basic concepts from number theory (reminder)

Group theory

Generating primes

Recap 4

 As soon as we have a PRG, we also have PRFs, PRPs, CPA-secure ES, CCA-secure ES, secure MACs

- ▶ I.e. PRGs suffice for private-key cryptography.
- ▶ In fact, PRGs are also necessary for private-key cryptography (later).
- Open question: Do PRGs really exist?
- ▶ We don't know if PRGs (unconditionally) exists.

At least in the assymptotic setting, one can show that $\mathbf{NP} \neq \mathbf{P}$ if PRGs exist.

But we know how to build PRGs from a certain class of computational problems called one-way functions.

- Construction of PRGs is based on the existence of problems for which only a negligible fraction of the problem instances might be easy (i.e. in PPT) to solve.
 - Such problems are called one-way functions (OWF) (formal definition later).
- Some examples:
- ightharpoonup For G a PRG, computing x given G(x) needs to be hard not only for some $x\in\{0,1\}^n$ but for almost all except for a negl. fraction.
- ightharpoonup For G-sCTR with G a PRG, computing the secret key k from known plaintext-ciphertext pairs (m,c) (CPA setting) needs to be hard not only for some $k \in \{0,1\}^n$, but for almost all except a negl. fraction.
- ightharpoonup For F a PRF, computing the secret key k from a known input-output-pair $(x,F_k(x))$ needs to be hard not only for some $k\in\{0,1\}^n$ but for almost all except a negl. fraction. Analogously for F-MAC.

Motivation 6

 For the actual construction of PRGs, OWFs are of particular interest which are themselves not cryptographic problems like e.g. long standing problems from number theory:

- Integer factorization: Given an integer N
 find the largest prime factor of N.
- Discrete logarithm: Given a cyclic group $\langle g \rangle = \mathbb{G}$ and $y \in \mathbb{G}$, find $x \in \mathbb{Z}$ s.t. $g^x = y$.
- RSA problem: Given $N\in\mathbb{N}, e\in\mathbb{Z}^*_{\lambda(N)}$ and $y\in\mathbb{Z}^*_N$, find $x\in\mathbb{Z}^*_N$ s.t. $x^e\equiv y\pmod N$.
- Quadratic residues: Given N and $y \in \mathbb{Z}_N^*$, compute $x \in \mathbb{Z}_N^*$ with $x^2 \equiv y \pmod{N}$ if such an x exists.
- ▶ Hence, first a detour to primes and commutative groups.

1 Lecture 12-14 – Group theory

Motivation

Basic concepts from number theory (reminder)

Group theory

Generating primes

Notation 8

• Definition:

Let $a, b, N \in \mathbb{Z}$ with N > 0. Then:

- $\triangleright \mathbb{Z}_N := \{0, 1, 2, \dots, N-1\}.$
- $ho \ a|b \ \text{if} \ \exists k \in \mathbb{Z} : b = k \cdot a \text{, i.e., if} \ a \ \text{divides} \ b.$
- $ho \ a \ \mathrm{mod} \ N$ is the unique $k \in \mathbb{Z}_N$ s.t. N | (a k).
- $\, \triangleright \, \gcd(a,b) := \max\{d \in \mathbb{N} \mid d|a \wedge d|b\}.$
- $\, \rhd \, \operatorname{lcm}(a,b) := \min \{ m \in \mathbb{N} \mid m > 0 \wedge a | m \wedge b | m \} = \tfrac{ab}{\gcd(a,b)}.$
- $\rhd \ \mathbb{Z}_N^* := \{ k \in \mathbb{Z}_N \mid \gcd(k, N) = 1 \}.$
- $hd arphi(N) := |\mathbb{Z}_N^*|$ (Euler's phi-function)
- $ho \ a \equiv b \pmod{N}$, $a \equiv b \pmod{N}$, and $a \equiv_N b$ short for $a \mod N = b \mod N$.

• Given: Natural numbers $0 \le a \le b$.

Goal: Compute integers (x, y) s.t. gcd(a, b) = xa + yb.

Algorithm:

- If a = 0: return (0, 1)
- If $b \mod a = 0$: return (1,0)
- Recursively compute (x',y') s.t. $\gcd(b \bmod a,a) = x'(b \bmod a) + y'a$. Return (y'-kx',x') with $k = \lfloor \frac{b}{a} \rfloor = \frac{b-(b \mod a)}{a}$.
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- **Remark**: There are at most $2 \log_2 a$ many recursive calls.

- Example: recursive calls
 - $a_0 = 27, b_0 = 35$: recursion $(k_0 = 1)$.
 - $a_1 = 8, b_1 = 27$: recursion $(k_1 = 3)$.
 - $a_2 = 3, b_2 = 8$: recursion $(k_2 = 2)$.
 - $a_3 = 2, b_3 = 3$: recursion $(k_3 = 1)$.
 - $a_4 = 1, b_4 = 2$: return $(x_4, y_4) = (1, 0)$
 - Final result:

$$\begin{pmatrix} -k_0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -k_1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -k_2 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -k_3 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_4 \\ y_4 \end{pmatrix}$$

- Ex: Compute x, y for a = 23, b = 120.
- Ex: Let $F_0 := 0$, $F_1 := 1$, $F_{n+2} = F_{n+1} + F_n$ be the sequence of Fibonacci numbers.

Determine the number of recursive calls for $\mathsf{EEA}(F_n, F_{n+1})$.

1 Lecture 12-14 – Group theory

Motivation

Basic concepts from number theory (reminder)

Group theory

Generating primes

- **Definition:** $\mathbb{G} = \langle \mathbb{G}, \cdot, 1 \rangle$ is a group if
 - $\mathbf{1} \cdot : \mathbb{G} \times \mathbb{G} \to \mathbb{G} \text{ (closed under } \cdot \text{)}.$
 - **2** $\forall a, b, c \in \mathbb{G}$: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (\cdot associative).
 - 3 $\forall a \in \mathbb{G} : a \cdot 1 = 1 \cdot a = a \ (1 \text{ is neutral}).$
 - $4 \ \forall a \in \mathbb{G} \exists b \in \mathbb{G} \colon a \cdot b = b \cdot a = 1 \ (b \text{ inverse of } a).$

 $|\mathbb{G}|$ is called the order of \mathbb{G} ; \mathbb{G} is finite if $|\mathbb{G}| < \infty$.

- \mathbb{G} is commutative if $\forall a, b \colon a \cdot b = b \cdot a$ holds in addition.
- ▶ Remark: For commutative groups the group operation is also often written additively (+,0). We will use the multiplicative notation (\cdot) most of the time, and simply write ab for $a \cdot b$, and \mathbb{G} for $a \cdot b \in \mathbb{G}$ for $a \cdot b \in \mathbb{$
- Remark/Lemma: Sometimes only $\forall a \in \mathbb{G} : a1 = a$ (right neutral) and $\forall a \in \mathbb{G} \exists b \in \mathbb{G} : ab = 1$ (right inverse) are required. One can show that every right neutral/inverse is also left neutral/inverse.

- Lemma: Neutral element and inverse are unique in a group.
- ▶ Proof:

Assume
$$ab=1=ac$$
. Then $b=b1=b(ac)=(ba)c=c$. Assume $a1'=a$ for all $a\in \mathbb{G}$. Then $1=1\cdot 1'=1'$.

- **Definition**: From now on a^{-1} denotes the unique inverse of a in \mathbb{G} . (For additively written groups: -a.)
- Corollary: In every group
 - $(a^{-1})^{-1} = a$
 - $(ab)^{-1} = b^{-1}a^{-1}$
 - The unique solution of ax = b (xa = b) is $x = a^{-1}b$ ($x = ba^{-1}$).
- ▶ Proof:

$$a^{-1}a=1=a^{-1}(a^{-1})^{-1} \text{ resp. } ab(ab)^{-1}=1=ab(b^{-1}a^{-1}x=(a^{-1}a)x=a^{-1}(ax)=a^{-1}b; \text{ analogously for } xa=b.$$

• **Definition**: Let $\langle \mathbb{G}, \cdot, 1 \rangle$ be a group. For $a \in \mathbb{G}$ and $k \in \mathbb{Z}$ define (inductively)

$$a^{k} := \begin{cases} 1 & \text{if } k = 0 \\ a \cdot a^{k-1} & \text{if } k > 0 \\ (a^{-1}) \cdot a^{k+1} & \text{if } k < 0 \end{cases}$$

```
and \langle a \rangle = \{ a^k \mid k \in \mathbb{Z} \} ord(a) := |\langle a \rangle| is called the order of a (in \mathbb{G}). \mathbb{G} is cyclic if there is some generator g \in \mathbb{G} s.t. \langle g \rangle = \mathbb{G}.
```

- **Remark**: a^k simply means "apply the group operation to k copies of a" if $k \geq 0$ resp. "apply the group operation to k copies of a^{-1} " if k < 0, which is written as exponentation when using the multiplicative notation.
- $\quad \vdash \text{ Hence: } a^k a^l = a^{k+l} = a^l a^k \text{ and } (a^k)^{-1} = a^{-k} = (a^{-1})^k.$
- ▶ Remark: Note that in the additive notation (i.e. a+b instead of $a \cdot b$) exponentation becomes multiplication so that $\langle a \rangle = \{ka \mid k \in \mathbb{Z}\}.$

- **Definition**: Let $\langle \mathbb{G}, \cdot, 1 \rangle$ be a group.
 - A (nonempty) subset $\mathbb{H} \subseteq \mathbb{G}$ is a subgroup of \mathbb{G} (short: $\mathbb{H} \subseteq \mathbb{G}$) if $(\mathbb{H}, \cdot, 1)$ is itself a group.
- Note that a subgroup ℍ always "inherits" the group operation and the neutral element from its "surrounding" group:
 - Let 1_H be neutral in H. Then in G: $1_H = 1_H \cdot 1 = 1_H \cdot (1_H \cdot 1_H^{-1}) = 1_H \cdot 1_H^{-1} = 1$.
 - Hence, assume ab=1 for $a,b\in H$. Then also ab=1 in G, and thus $b=a^{-1}$ and $a=b^{-1}$.
- Lemma: $\mathbb{H} \leq \mathbb{G}$ iff $ab^{-1} \in \mathbb{H}$ for any $a, b \in \mathbb{H}$.
- ▶ Proof:

If $\mathbb{H} \leq \mathbb{G}$, then trivially $ab^{-1} \in \mathbb{H}$ for any $a, b \in \mathbb{H}$.

Assume that $ab^{-1} \in \mathbb{H}$ for any $a, b \in \mathbb{H}$.

Then also $1=aa^{-1}\in\mathbb{H}$, thus also $b^{-1}=1b^{-1}\in\mathbb{H}$ and $ab=a(b^{-1})^{-1}\in\mathbb{H}$.

• Lemma: Let G be a group.

Then $\langle a \rangle$ is a cyclic subgroup of \mathbb{G} for any $a \in \mathbb{G}$.

▶ Proof:

We only need to check that $cd^{-1} \in \langle a \rangle$ for any $c, d \in \langle a \rangle$.

Note that $(a^k)^{-1} = a^{-k}$ because of uniqueness of the inverse.

As $c, d \in \langle a \rangle$, we find $m, n \in \mathbb{Z}$ s.t. $c = a^m$ and $d = a^n$.

Thus $c^{-1}d = (a^m)^{-1}a^n = a^{-m}a^n = a^{-m+n} \in \langle a \rangle$.

Simply use $aa^{-1}=a^{-1}a=1$ to reduce the term until |-m+n| copies of a (if $-m+n\geq 0$) resp. a^{-1} remain.

Corollary: Every cyclic group is commutative.

- Lemma: If $\mathbb{H} \leq \mathbb{G} = \langle g \rangle$, then \mathbb{H} is cyclic, too.
- \triangleright Proof: Let $\mathbb{H} \leq \langle g \rangle$. ($\mathbb{H} \neq \emptyset$.)

Then $\emptyset \neq \mathbb{H} = \{g^k \mid k \in E\}$ for suitable exponents $E \subseteq \mathbb{Z}$.

Then there is a least $m \in \mathbb{N} \setminus \{0\}$ s.t. $g^m \in \mathbb{H}$ (as $a, a^{-1} \in \mathbb{H}$).

Hence $\langle g^m \rangle \leq \mathbb{H}$. Pick any $a \in \mathbb{H}$.

Then there is some $k \in \mathbb{Z}$ s.t. $a = g^k$.

If k < 0, switch to a^{-1} , s.t. k > 0.

Then also $a \cdot (g^m)^{-\lfloor k/m \rfloor} = g^{k \bmod m} \in \mathbb{H}$.

By choice of m, we must have $k \mod m = 0$ and thus a = 1 – contradiction.

Corollary: If \mathbb{H} ≤ $\langle a \rangle$ ≤ \mathbb{G} , then \mathbb{H} is cyclic.

 As we will see later (Chinese remainder theorem), we can decompose large groups into the so called direct product of two or more smaller groups.

Definition:

```
Let \langle \mathbb{G}_1, \cdot_1, 1_1 \rangle, \langle \mathbb{G}_2, \cdot_2, 1_2 \rangle be two groups. Their direct product \langle \mathbb{G}_1 \times \mathbb{G}_2, \cdot, 1 \rangle is defined by: Carrier: \mathbb{G}_1 \times \mathbb{G}_2 := \{(a_1, a_2) \mid a_1 \in \mathbb{G}_1, a_2 \in \mathbb{G}_2\}. Group operation: (a_1, a_2) \cdot (b_1, b_2) := (a_1 \cdot_1 b_1, a_2 \cdot_2 a_2) Neutral element: 1 := (1_1, 1_2)
```

- **Lemma**: The direct product is again a group.
- ▶ Proof: Obvious we simply compute in both groups in parallel.

- $\mathbb{Z} \hat{=} \langle \mathbb{Z}, +, 0 \rangle$
- Infinite.
- ▶ Group operation: canonical addition.
- \triangleright Cyclic: generated by 1, -1.
- Reminder:

For additive groups (group operation denoted by +), the inverse is denote by -a,

and $\langle a \rangle$ becomes:

$$\dots, \underbrace{(-a) + (-a) + (-a)}_{3 \cdot (-a)}, (-a) + (-a), (-a), 0, a, a + a, a + a + a, \dots$$

 $\vdash \mathsf{Here} \colon \langle 2 \rangle = \{ 2k \mid k \in \mathbb{Z} \} = 2\mathbb{Z}.$

- Let N > 2 be a natural number.
- $\mathbb{Z}_N = \langle \mathbb{Z}_N, +_N, 0 \rangle$
- ightharpoonup Group operation: canonical addition on $\mathbb Z$ modulo N,
 - i.e. $a +_N b := (a + b) \mod N$.

(We simply write + for $+_N$ if not misleading.)

- ightharpoonup Inverse: -a = N a in \mathbb{Z}_N .
- ho Cyclic: $\langle g \rangle = \mathbb{Z}_N$ iff $\gcd(g,N) = 1$. (later)
- \triangleright **Ex**: Compute $\langle 4 \rangle$ in \mathbb{Z}_7 .
- \triangleright **Ex**: Compute $\langle 4 \rangle$ in \mathbb{Z}_6 .
- ightharpoonup Ex: Compute $\langle (1,1) \rangle$ in $\mathbb{Z}_4 \times \mathbb{Z}_6$.
- $ightharpoonup Z_M imes \mathbb{Z}_N$ is cyclic iff gcd(M,N) = 1.

- Let N > 1 be a natural number.
- $\mathbb{Z}_N^* = \langle \{a \in \mathbb{Z}_N \mid \gcd(a, N) = 1\}, \cdot_N, 1 \rangle.$
- ho Group operation: canonical multiplication on \mathbb{Z} modulo N, i.e. $a\cdot_N b:=(a\cdot b) \bmod N$. (We simply write \cdot for \cdot_N if not misleading.)
- $\hbox{ Inverse: As $\gcd(a,N)=1$ there are x,y s.t. $1=xa+yN$,}$ hence $a^{-1}=(x\bmod N)$ in $\mathbb{Z}_N^*.$
- ▶ Theorem: (w/o proof) \mathbb{Z}_N^* is cyclic iff $N \in \{2,4,p^r,2p^r\}$ for p>2 prime and r>0.
- ightharpoonup Ex: Compute $\langle 4 \rangle$ and $\langle 5 \rangle$ in \mathbb{Z}_7^* .
- \triangleright **Ex**: Compute $\langle 5 \rangle$ in \mathbb{Z}_6^* .
- \triangleright **Ex**: Compute $\langle 3 \rangle$ in \mathbb{Z}_8^* .

- Let N > 1 be a natural number.
- The equivalence class of $a\in\mathbb{Z}$ w.r.t. \equiv_N is denoted by $[a]_N:=\{a+zN\mid z\in\mathbb{Z}\}$ and called the residue class of $a\in\mathbb{Z}$ modulo N,
- $\bullet \ \, \mathsf{Set} \,\, \mathbb{Z}/N\mathbb{Z} := \{[a]_N \mid a \in \mathbb{Z}\}\text{, } (\mathbb{Z}/N\mathbb{Z})^* := \{[a]_N \mid a \in \mathbb{Z}, \mathsf{gcd}(a,N) = 1\}$
- Define $[a]_N + [b]_N := [a+b]_N$ and $[a]_N \cdot [b]_N := [a \cdot b]_N$.
- Reminder: Then
 - $\mathbb{Z}/N\mathbb{Z} = \{[a]_N \mid a \in \mathbb{Z}_N\} \text{ and } (\mathbb{Z}/N\mathbb{Z})^* = \{[a]_N \mid a \in \mathbb{Z}_N^*\}.$
 - $[a +_N b]_N = [a + b]_N$ and $[a \cdot_N b]_N = [a \cdot b]_N$ (\equiv_N is a congurence)
 - \mathbb{Z}_N and $\mathbb{Z}/N\mathbb{Z}$ resp. \mathbb{Z}_N^* and $(\mathbb{Z}/N\mathbb{Z})^*$ are the "same" (isomorphic).
- ightharpoonup Most of the time, it is easier to compute in $\mathbb{Z}/N\mathbb{Z}$ and only reduce the result to \mathbb{Z}_N at the very end.
- \triangleright **Ex**: $994 \cdot 995 \cdot 996 \equiv_{997} (-3) \cdot (-2) \cdot (-1) = -6 \equiv_{997} 991$
- \triangleright We won't distinguish between \mathbb{Z}_N and $\mathbb{Z}/N\mathbb{Z}$ resp. \mathbb{Z}_N^* and $(\mathbb{Z}/N\mathbb{Z})^*$ in the following.

- Let N > 1 be a natural number.
- $\mathbb{QR}_N = \langle \{x^2 \bmod N \mid x \in \mathbb{Z}_N^*\}, \cdot, 1 \rangle$
- \triangleright Subgroup of \mathbb{Z}_N^* .
- \triangleright In general not cyclic. Cyclic if \mathbb{Z}_N^* is cyclic.
- \triangleright **Ex**: Compute $\langle 4 \rangle$ in \mathbb{QR}_7 .
- \triangleright **Ex**: Compute \mathbb{QR}_6 , \mathbb{QR}_8 , \mathbb{QR}_{85} .

- We are only interested in finite commutative groups in this lecture.
- For these, many things can be shown more easily than in the general setting.
- Let G be finite and commutative.
- ightharpoonup Obviously, the map $f_a \colon \mathbb{G} \to \mathbb{G} \colon x \mapsto ax$ is bijective for any $a \in \mathbb{G}$.
- ho Hence: $\mathbb{G} = \{f_a(x) \mid x \in \mathbb{G}\}$ and

$$c := \prod_{x \in \mathbb{G}} x = \prod_{x \in \mathbb{G}} f_a(x) = \prod_{x \in \mathbb{G}} ax = a^{|\mathbb{G}|} \prod_{x \in \mathbb{G}} x = a^{|\mathbb{G}|} c$$

- ▶ **Lemma**: For \mathbb{G} a finite commutative group: $\forall a \in \mathbb{G}$: $a^{|\mathbb{G}|} = 1$.
- ightharpoonup Corollary: $\forall a \in \mathbb{G} \colon a^{|\langle a \rangle|} = 1$.
- ▶ Remark: The results is also valid for non-commutative finite groups (see Lagrange's theorem)

- Lemma: Let
 - G be a finite group and
 - λ any positive natural number s.t. $\forall a \in \mathbb{G} : a^{\lambda} = 1$.
 - ▶ For instance, choose $\lambda = |\mathbb{G}|$ (if \mathbb{G} is commutative).

Then $\forall a \in G$:

- $a^{\lambda 1} = a^{-1}.$
- 3 $a^k = a^{k \bmod \lambda}$ and $a^k = a^{k \bmod |\langle a \rangle|}$ for all $k \in \mathbb{Z}$
- **5** If $\lambda \geq |\mathbb{G}|$ is prime, then \mathbb{G} is cyclic.
- Ex: Compute 7^{1023} and 7^{-1} in \mathbb{Z}_{11}^* .

- Proof:
 - ① $a^{\lambda-1}a=a^{\lambda}=1$ by assumption on λ so $a^{-1}=a^{\lambda-1}$.
 - 2 As $a^{-1}=a^{\lambda-1}$ also $a^{-k}=a^{k(\lambda-1)}$ so it suffices to only consider nonnegative powers of a, i.e. $\langle a \rangle = \{a^k \mid k \in \mathbb{N}_0\}$.

Using $a^{\lambda}=1$ any product/term of k copies of a is reduced to a product of $k \mod \lambda$ copies.

In particular, this is true for $\lambda = |\langle a \rangle|$ as $\langle a \rangle$ is itself a group.

- 3 See (2) recall that $-k \equiv_{\lambda} (\lambda 1)k$.
- $As 1 = a^{\lambda} = a^{\lambda \bmod |\langle a \rangle|}.$
- **5** If λ is prime, then either $|\langle a \rangle| = 1$ (i.e. a = 1) or $|\langle a \rangle| = \lambda \ge |\mathbb{G}|$, i.e. $\langle a \rangle = \mathbb{G}$. (Note: we may have $\lambda < |\mathbb{G}|$, e.g. $\langle \mathbb{Z}_8^*, \cdot, 1 \rangle$.)

- Definition: The exponent $\lambda_{\mathbb{G}}$ of a group \mathbb{G} is the smallest positive integer λ s.t. $\forall a \in \mathbb{G} \colon a^{\lambda} = 1$. If $\mathbb{G} = \mathbb{Z}_N^*$, then $\lambda(N) := \lambda_{\mathbb{Z}_N^*}$ is called Carmichael function.
- ${} \hspace{-0.2cm} \triangleright \hspace{-0.2cm} \textbf{Corollary} \hspace{-0.2cm} : \hspace{-0.2cm} \lambda_{\mathbb{G}} = \operatorname{lcm} \{\operatorname{ord}(a) \mid a \in \mathbb{G}\} \hspace{0.2cm} \text{and} \hspace{0.2cm} \lambda_{\mathbb{G}} \mid |\mathbb{G}|$
- ▶ **Remark**: If \mathbb{G} is cyclic, then obviously $\lambda_{\mathbb{G}} = |\mathbb{G}|$; in particular, if \mathbb{G} is finite, then $|\langle a \rangle| = \lambda_{\langle a \rangle}$ for any $a \in \mathbb{G}$. One can show: if \mathbb{G} is finite and commutative and $\lambda_{\mathbb{G}} = |\mathbb{G}|$, then \mathbb{G} is cyclic.
- ▶ **Ex**: Compute the exponent of (1) \mathbb{Z}_6 , (2) \mathbb{Z}_8^* , (3) $\mathbb{Z}_{10} \times \mathbb{Z}_6$.

- Lemma: Let \mathbb{G} be finite and commutative, and $k \in \mathbb{Z}$.
 - Set $g_e : \mathbb{G} \to \mathbb{G} : x \mapsto x^k$. Then:
 - **1** $g_k(x) := x^k$ is a permutation on \mathbb{G} iff $\gcd(k, \lambda_{\mathbb{G}}) = 1$.
 - 2 If g_k is a permutation, there are $e,d\in\mathbb{Z}_{\lambda_{\mathbb{G}}^*}$ s.t. $g_k=g_e$ and $g_k^{-1}=g_d$.
- ▶ This is the algebraic essence of RSA:
 - e is the encryption exponent, d is the decryption exponent.
 - In order to compute g_e , one has to know e and how to compute in \mathbb{G} .
 - Necessary requirement: "Computing d from e and $\mathbb G$ has to be hard."
- ightharpoonup Ex: Show that if $e \in \mathbb{Z}_{|\mathbb{G}|}^*$, then g_e is also a permutation on \mathbb{G} .
 - But there might be an $e' \in \mathbb{Z}_{|\mathbb{G}|}^*$ with $e \neq e'$ and yet $g_e = g_{e'}$.

Proof:

1 As \mathbb{G} is finite, g_e is bijective iff it is injective.

```
We have: g_e(x) = g_e(y)

iff (xy^{-1})^e = 1 (as \mathbb G is commutative)

iff e \mod |\langle xy^{-1}\rangle| = 0

iff \gcd(e, \lambda_{\mathbb G}) \ge |\langle xy^{-1}\rangle|

As |\langle xy^{-1}\rangle| = 1 iff x = y, the claim follows.
```

- $\textbf{2} \ \operatorname{Pick} \ e := (k \bmod \lambda_{\mathbb{G}}) \ \operatorname{and} \ d \in \mathbb{Z}^*_{\lambda_{\mathbb{G}}} \ \operatorname{s.t.} \ ed \equiv_{\lambda_{\mathbb{G}}} 1$
- **3** We have:

```
\forall x \in \mathbb{G} \colon g_k(x) = g_k(x) \text{ iff } \forall x \in \mathbb{G} \colon x^{k-l} = 1 \text{ iff } \lambda_{\mathbb{G}} \mid k-l \text{ iff } k \equiv_{\lambda_{\mathbb{G}}} l
```

Finding generators of cyclic groups

- Often we know that a group is cyclic, e.g. as its order is a prime.
- But we still need to find some generator.
- Idea: use again rejection sampling
 - Choose a group element $a \stackrel{u}{\in} \mathbb{G}$ uniformaly at random.
 - ⊳ For $\mathbb{G} = \mathbb{Z}_N^*$, you can also use rejection sampling here: Choose $a \stackrel{u}{\in} \mathbb{Z}_N$ and reject it if $\gcd(a, N) > 1$.
 - Test if a is a generator.
- This works quite well if
 - (1) we hit a generator with high prob. (enough generators) and
 - (2) we can efficiently test if a is a generator.
- ▶ First: How to test if *a* is generator.
- ▶ Then: How many generators has a cyclic group?

Generator test 31

- Lemma: Let \mathbb{G} be a finite group of order M.
 - Then: $\langle a \rangle = \mathbb{G}$ iff $a^{M/p} \neq 1$ for every prime $p \mid M$.
- Proof:
- (\Rightarrow) Assume $\langle a \rangle = \mathbb{G}$. Then $\operatorname{ord}(a) = M = \min\{k > 0 \mid a^k = 1\}$.
- \triangleright (\Leftarrow) Assume $\langle a \rangle \neq \mathbb{G}$, i.e. $\operatorname{ord}(a) < M$.
 - ightharpoonup As $\operatorname{ord}(a) \mid M$, there is a m > 1 s.t. $M = m \cdot \operatorname{ord}(a)$.
 - \triangleright Choose any p|m s.t. m=m'p. Then: $a^{M/p}=a^{m'\cdot {\rm ord}(a)}=1$.
- Remark: There are at most $\log_2 M$ distinct primes p with $p \mid M$.
- Remark: When the prime factors of M are unknown, no efficient generator test is known.
- ho Corollary: $\langle a \rangle = \mathbb{Z}_N$ iff gcd(a, N) = 1.
- \triangleright Proof: The generator test becomes " $\langle a \rangle \neq \mathbb{Z}_N$ iff $\gcd(a,N) > 1$ ".

- First question: How many generators has \mathbb{Z}_N ?
- ho As just seen: $\langle a \rangle = \mathbb{Z}_N$ iff $\gcd(a,N) = 1$.
- \triangleright So \mathbb{Z}_N^* is exactly the set of all generators of \mathbb{Z}_N (!).
- ightarrow Euler's φ -function: $\varphi(N) := |\mathbb{Z}_N^*|$.
- Lemma:

$$\begin{split} &\varphi(p^r)=p^{r-1}(p-1) \text{ for any prime } p \text{ and } r>0.\\ &\varphi(MN)=\varphi(M)\cdot\varphi(N) \text{ if } \gcd(M,N)=1. \end{split}$$

- Proof:
- ightharpoonup First claim: $gcd(a, p^r) > 1$ iff $a = p \cdot s$ with $s \in \mathbb{Z}_{p^{r-1}}$.
- ▶ Second claim follows from the Chinese remainder theorem (later).
- Ex: Compute $\varphi(57)$.
- Ex: How many generators has \mathbb{Z}_{100} ?

- Ex: Let N=pq for $p \neq q$ distinct odd primes. Show: Given N and $\varphi(N)$, we can compute p,q efficiently. That is: if factoring N is hard, then so is computing $\varphi(N)$.
- ightharpoonup So, in general computing $\varphi(N)$ is infeasible for large N if we do not know a factorization of N.

- Second question: How many generators has a finite cyclic group $\langle g \rangle = \mathbb{G}$?
- ightharpoonup Let $M=|\mathbb{G}|.$ Then \mathbb{G} is isomorphic to \mathbb{Z}_M by means of $h\colon Z_M \to \mathbb{G}\colon k\mapsto g^k.$
 - Remark: Isomorphic groups $\mathbb{G}_1 \cong \mathbb{G}_2$ are "the same" w.r.t. the group properties.

From a computational point of view, computing in \mathbb{G}_1 (e.g. \mathbb{Z}_M) can still be much easier than in \mathbb{G}_2 .

See the discrete logarithm problem later.

- ▶ So:
 - **Lemma**: A cyclic group \mathbb{G} has exactly $\varphi(|\mathbb{G}|)$ many generators.
- Ex: How many generators has \mathbb{Z}_{85}^* ?
- Ex: Is 7 a generator of \mathbb{Z}_{54}^* ? What is the prob. that $a \in \mathbb{Z}_{54}^*$ is a generator?

• Second question:

How many generators has a finite cyclic group $\langle g \rangle = \mathbb{G}$?

ightharpoonup Definition: Let $\langle \mathbb{G}_1,\cdot_1,1_1 \rangle$, $\langle \mathbb{G}_2,\cdot_2,1_2 \rangle$ be two groups.

A map $h \colon \mathbb{G}_1 \to \mathbb{G}_2$ is a homomorphism if it respects the group operations i.e.

$$h(a \cdot_1 b) = h(a) \cdot_2 h(b)$$

If h is a homorphism and bijective, then it is called an isomorphism, and \mathbb{G}_1 and \mathbb{G}_2 are called ismorphic (short: $\mathbb{G}_1 \cong \mathbb{G}_2$).

- Lemma: If $h \colon \mathbb{G}_1 \to \mathbb{G}_2$ is a homomorphism, then
 - **1** $h(1_1) = 1_2$
 - **2** $h(a^{-1}) = h(a)^{-1}$
- ▶ Proof:

$$\begin{array}{rcl} 1_2 = h(1_1) \cdot_2 h(1_1)^{-1} & = & h(1_1 \cdot_1 1_1) \cdot_2 h(1_1)^{-1} \\ & = & h(1_1) \cdot_2 h(1_1) \cdot_2 h(1_1)^{-1} = h(1_1) \\ h(a)^{-1} = h(a)^{-1} \cdot_2 1_2 & = & h(a)^{-1} \cdot_2 h(a \cdot_1 a^{-1}) \\ & = & h(a)^{-1} \cdot_2 h(a) \cdot_2 h(a^{-1}) = h(a^{-1}) \\ h(a) \cdot_2 h(b)^{-1} & = & h(a \cdot_1 b^{-1}) \in \mathbb{H} \end{array}$$

- Lemma: If $h \colon \mathbb{G}_1 \to \mathbb{G}_2$ is an isomorphism, then
 - **1** Also the inverse map $h^{-1}: \mathbb{G}_2 \to \mathbb{G}_1$ is an isomorphism.
 - $\langle g \rangle = \mathbb{G}_1 \text{ iff } \langle h(g) \rangle = \mathbb{G}_2.$
 - **3** Both groups have the same number of generators.
- ▶ Proof:

 - 2 If $\langle g \rangle = \mathbb{G}_1$, then $\langle h(g) \rangle = h(\langle g \rangle) = h(\mathbb{G}_1) = \mathbb{G}_2$, and analogously for h^{-1} .
 - 3 Follows from (3).
- Lemma: Let $\mathbb{G} = \langle g \rangle$ be a finite cyclic group. Then \mathbb{G} is isomorphic to $\langle \mathbb{Z}_N, +, 0 \rangle$ for $N = |\mathbb{G}|$ via

$$h: \mathbb{Z}_N \to \mathbb{G}: k \mapsto g^k$$

• Lemma: Let $\mathbb{G}=\langle g \rangle$ be a finite cyclic group. Then \mathbb{G} is isomorphic to $\langle \mathbb{Z}_N, +, 0 \rangle$ for $N=|\mathbb{G}|$ via

$$h: \mathbb{Z}_N \to \mathbb{G}: k \mapsto g^k$$

- $\qquad \qquad \triangleright \ \, \mathsf{Proof:} \ \, N = \lambda_{\mathbb{G}} = \min\{\lambda > 0 \colon g^{\lambda} = 1\}.$
- **▷** Corollary:

A finite cyclic group $\mathbb G$ has exactly $\varphi(|\mathbb G|)$ many generators.

- Ex: How many generators has \mathbb{Z}_{85}^* ?
- Ex: Is 7 a generator of \mathbb{Z}_{54}^* ? What is the prob. that $a \overset{u}{\in} \mathbb{Z}_{54}^*$ is a generator?

- Theorem: Let M, N be coprime, i.e. gcd(M, N) = 1.
 - Then (i) $\mathbb{Z}_{MN} \cong \mathbb{Z}_M \times \mathbb{Z}_N$ and (ii) $\mathbb{Z}_{MN}^* \cong \mathbb{Z}_M^* \times \mathbb{Z}_N^*$.

by means of $h \colon \mathbb{Z}_{MN} \to \mathbb{Z}_M \times \mathbb{Z}_N \colon a \mapsto (a \bmod M, a \bmod N)$.

For $\alpha, \beta \in \mathbb{Z}$ s.t. $1 = \alpha M + \beta N$:

$$h^{-1}(u,v) = (u\beta N + v\alpha M) \bmod MN.$$

- Remark: α, β can be computed using the extended Euclidean algorithm.
- CRT short for "chinese remainder theorem".

- ▷ Proof:
- ▶ Ex: Show
 - $(a \mod MN) \mod M = a \mod M$.

Conclude:

- $((a+b) \mod MN) \mod M = (a+b) \mod M$ and
- $((ab) \mod MN) \mod M = ab \mod M$.
- ▶ Ex: Show
 - $(a+b) \mod M = ((a \mod M) + (b \mod M)) \mod M$ and
 - $ab \mod M = ((a \mod M)(b \mod M)) \mod M$.

Conclude:

- h(a+b) = h(a) + h(b) and h(ab) = h(a)h(b).
- **Ex**: Check that h^{-1} (as defined in the theoem) is the inverse map of h.
- $hd \$ hd Ex: Show $h(\mathbb{Z}_{MN}^*)=\mathbb{Z}_M^* imes \mathbb{Z}_N^*$

Corollary:

Let $N = \prod_{i=1}^r p_i^{e_i}$ be a prime factorization of N.

Then: $\mathbb{Z}_N^* \cong \mathbb{Z}_{p_1^{e_1}}^* \times \mathbb{Z}_{p_2^{e_2}}^* \times \ldots \times \mathbb{Z}_{p_r^{e_r}}^*$.

Thus
$$\varphi(N) = \prod_{i=1}^r \varphi(p_i^{e_i}) = \prod_{i=1}^r p_i^{e_i-1}(p_i-1).$$

• Remark: The CRT allows us to compute within $\mathbb{Z}_M \times \mathbb{Z}_N$ instead of \mathbb{Z}_{MN} , i.e. we may compute with smaller numbers.

This can be used to speed-up the decryption of RSA-based PKES (later).

ightharpoonup Ex: Let p=13, q=19 and N=pq=247. Compute 197^{200} in \mathbb{Z}_N^* using the CRT.

Reminder:

 $\lambda_{\mathbb{G}}$ is the least positive integer λ s.t. $\forall a \in \mathbb{G} \colon a^{\lambda} = 1$. For $\mathbb{G} = \mathbb{Z}_N^* \colon \lambda(N) := \lambda_{\mathbb{Z}_N^*}$ (Carmichael function).

- ${\rm \rhd} \ \ {\sf Recall:} \ \ \mathbb{Z}_N^* \ \ {\sf is} \ \ {\sf cyclic} \ \ {\sf iff} \ \ N \in \{2,4,p^r,2p^r\} \ \ \ \ (p>2 \ \ {\sf prime}, r>0 \big).$

Hence: $\lambda(p^r) = \varphi(p^r)$ if p is a odd prime.

- What about $\mathbb{Z}_{2^k}^*$?
 One can show: \mathbb{Z}^* . $\cong \mathbb{Z}_0 \times \mathbb{Z}$
 - One can show: $\mathbb{Z}_{2^k}^* \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{k-2}}$ for k > 2.
- ▶ Hence: $\lambda(2) = 1$, $\lambda(4) = 2$, $\lambda(2^k) = 2^{k-2}$ for k > 2.
- ▷ 2 is the "oddest" prime.

- Recall: $\mathbb{QR}_N := \{x^2 \bmod N \mid x \in \mathbb{Z}_N^*\}$ is the set of quadratic residues modulo N.
 - \mathbb{QR}_p will be important later for the Elgamal PKES.
- Lemma: $\mathbb{QR}_N \leq \mathbb{Z}_N^*$.
- ho Proof: $1 \in \mathbb{QR}_N$ and it is closed under multiplication.
- Corollary: \mathbb{QR}_p is cyclic for any prime p.
- Ex: \mathbb{QR}_N can be cyclic although \mathbb{Z}_N^* is acyclic (e.g. N=15).
- Remark: Let $N = \prod_{i=1}^r p_i^{e_i}$ be a prime factorization of N. From the CRT it follows:

```
x^2 \equiv y \pmod{N} iff \forall i \in [r] \colon x^2 \equiv y \pmod{p_i^{e_i}}.
That is: \mathbb{QR}_N \cong \mathbb{QR}_{p_1^{e_i}} \times \ldots \times \mathbb{QR}_{p_r^{e_r}}.
```

▶ **Ex**: Modulo a composite N=pq (both prime), every $y\in \mathbb{QR}_N$ has at least four square roots. Hence: $|\mathbb{QR}_N|\leq \varphi(N)/4$.

- Lemma: Let p > 2 be prime.
 - Then every $y \in \mathbb{QR}_p$ has exactly two square roots modulo p.
- ▶ Proof: Ex
 - Hint: recall that $u^2 v^2 = (u+v)(u-v)$.
- ightharpoonup Corollary: $x^{\frac{p-1}{2}} \equiv_p \pm 1$ for p prime and $\left| \mathbb{QR}_p \right| = (p-1)/2$.
- Remark: Let p be prime with $p \equiv 3 \pmod{4}$ (e.g. a safe prime).

Then: $(x^2)^{\frac{p+1}{4}} \equiv_p x^{\frac{p+1}{2}} \equiv_p x^{\frac{p-1}{2}} \cdot x \equiv_p \pm x.$

Computing a square root of x^2 in the case $p \equiv 1 \pmod 4$ is more difficult, see e.g. here.

- \triangleright **Definition**: Let p > 2 be prime.
 - $\left(\frac{x}{p}\right) := x^{\frac{p-1}{2}} \mod p$ is the Legendre symbol modulo p.
- ightharpoonup Let p>2 be prime, and $y\in\mathbb{Z}_p^*.$ Then:

$$\left(\tfrac{y}{p}\right) = -1 \text{ iff } y \in \mathbb{Z}_p^* \setminus \mathbb{Q}\mathbb{R}_p \text{, and } \left(\tfrac{y}{p}\right) = 1 \text{ iff } y \in \mathbb{Q}\mathbb{R}_p.$$

▶ Proof: Ex

Hint: Let $\langle g \rangle = \mathbb{Z}_p^*$ and show that $g^{\frac{p-1}{2}} \equiv_p -1$.

- Note: Let *p* be prime.
 - Then \mathbb{Z}_p^* has $\varphi(\varphi(p))$ many generators.
 - While computing $\varphi(p) = p 1$ is trivial,
 - computing $\varphi(\varphi(p))=\varphi(p-1)$ requires a factorization of p-1.

One possible solution: Use safe primes.

• **Definition**: A prime p > 5 is safe iff p = 2q + 1 with q prime. (q is called a Sophie-Germain prime.)

- Ex: For p=2q+1 a safe prime, $\Pr_{a\in\mathbb{Z}_p^*}\left[\langle a\rangle=\mathbb{Z}_p^*\right]=\frac{1}{2}-\frac{1}{2q}.$
- Ex: Let p=2q+1 be a safe prime and $a\in\mathbb{Z}_p^*$. Then $\langle a^2\rangle=\mathbb{Q}\mathbb{R}_p$ if $a^2\not\equiv_p 1$, i.e. $\Pr_{a\in\mathbb{Z}_p^*}[\langle a^2\rangle=\mathbb{Q}\mathbb{R}_p]=1-\frac{1}{q}$.
- Ex: Compute all solutions of $X^2 \equiv_{221} 118$.
- Ex: Is 6 a quadratic residue modulo 47?

 If so, compute its square roots.

1 Lecture 12-14 – Group theory

Motivation

Basic concepts from number theory (reminder)

Group theory

Generating primes

• Theorem (w/o proof, see e.g. here):

Let
$$\pi(x) = |\{p \le x \mid p \text{ is prime }\}|$$
. Then: $\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$.

• **Lemma** (w/o proof, see e.g. here): For $x \ge 355991$:

$$\frac{x}{\ln x} \left(1 + \frac{1}{\ln x} \right) < \pi(x) < \frac{x}{\ln x} \left(1 + \frac{1}{\ln x} + \frac{2.51}{(\ln x)^2} \right).$$

- Ex: Use above lemma to show that there are at least $0.6\frac{2^n}{n}$ primes in $[2^{n-1}, 2^n 1]$ ("n-bit primes") if $n \ge 20$.
- Conjecture: (Hardy,Littlewood)

Let $\pi_s(x) = \{ p \le x \mid p \text{ is a Sophie-Germain prime } \}.$

Then: $\pi_s(x) \approx 1.32 \frac{x}{(\ln x)^2}$.

• Ex: Let $n \ge 20$.

As Primes is in P we can use rejection sampling for generating random primes uniformly distributed in $[2^{n-1}, 2^n - 1]$:

- Choose $x \stackrel{u}{\in} \{0,1\}^{n-2}$.
- Read 1||x||1 as an odd integer a in $[2^{n-1}, 2^n 1]$.
- If a is not a prime, go back to step 1; else return a.

Show that the prob. that we haven't found a prime within $r:=n^2$ rounds is negligible.

Hint: $(1-1/x)^x \le e^{-x}$ for all $x \ge 1$.

Ex: If the estimate on the number of Sophie-Germain primes is asympt. correct, we can also generate in this way safe primes (for $r \approx n^3$).

- While the AKS primality test runs in DPT, in practice, the probabilistic Miller-Rabin test is still used more often as it faster, and its prob. to give a false answer is negligible.
- ▶ It is based on the following results:
 - (i) $a^M = 1$ for all $a \in \mathbb{G}$ if \mathbb{G} is of finite order M.
 - (ii) \mathbb{Z}_N^* is a finite group of order $\varphi(N)$.
 - (iii) $\varphi(N) = N 1$ iff N is prime.
 - (iv) For p > 2 prime: $x^2 \equiv_p 1$ iff $x \equiv_p \pm 1$.

- Lemma: Let p > 2 be prime with $p 1 = 2^t d$ with d odd and t > 0.
 - Then $\forall a \in \mathbb{Z}_p^* \forall k = 0, 1, \dots, t 1 : a^{2^{k+1}d} \equiv_p 1 \to a^{2^k d} \equiv_p \pm 1.$
- $ightharpoonup Proof: \pm 1$ are the only two roots of 1 modulo a prime.
- **Corollary**: Let $N-1=2^td$ with d odd. If there is a k s.t. $a^{2^{k+1}d} \equiv_N 1$ and $a^{2^kd} \not\equiv \pm 1$, then N is not prime.
- Miller-Rabin test (simple version):
 - Assume N > 2 is prime.
 - Repeat r times:
 - Choose $a \stackrel{u}{\in} \mathbb{Z}_N \setminus \{0\}$
 - Check that indeed gcd(a, N) = 1.
 - Check that $a^{N-1} \equiv_N 1$.
 - · Check that the lemma holds.

• **Definition**: Input: odd integer N > 2 and number of rounds r > 0If $\sqrt{N} \in \mathbb{N}$, return "composite"; //N is a square Compute $t = \max\{k \in \mathbb{N}_0 : (N-1) \mod 2^k = 0\}$ (*) for i = 1 ... r: choose $a \stackrel{u}{\in} \{2, \dots, N-2\}$: if $gcd(a, N) \neq 1$, return "composite"; $//\mathbb{Z}_N^* \neq \{1, 2, \dots, N-1\}$ if $a^d \equiv_N \pm 1$, goto (*); //Lemma satisfied, N might be prime for i = 1 ...t - 1: if $a^{2^j d} \equiv_N 1$, return "composite"; $//a^{2^{j-1} d} \not\equiv_N \pm 1$, but a root of 1 if $a^{2^{j}d} \equiv_{N} -1$, goto (*); //Lemma satisfied, N might be prime return "composite"; return "probably prime";

- Assume N is a odd (non square) composite, i.e. $N \geq 15$. Then N passes one round of the test if by chance $a \in \mathsf{Bad} := \{ a \in \mathbb{Z}_N^* \mid a^d \equiv_N \pm 1 \lor \exists 0 < j < t \colon a^{2^j d} \equiv_N -1 \}.$
- Ex: Determine Bad for N=15 (use the CRT).
- Lemma (see e.g. here): $|\mathsf{Bad}| \leq \frac{1}{4}\varphi(N)$.
- ▶ Corollary An odd composite passes r rounds of the Miller-Rabin test with prob. at most 4^{-r} .
- Remark: Use repeated squaring to compute $a^d \pmod{N}$; after that only squaring required.
 - The total running time becomes $\mathcal{O}(r(\log_2 N)^3)$.