ECE124: Discussion

Discussion #5

YeonsikNoh, PhD

2.15Simplify the following Boolean functions T1and T2to minimum number of literals:

¹ A	В	C	T	Т
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

m0 m1 m2 t1(abc) = m0+m1+m2A'B'C'+A'B'C+A'BC' A'B'(C'+C)+A'BC'A'B'+A'BC' A'(B'+BC') A'B'+A'C'

•For the Boolean function: F(a, b, c, d) = (c' + d)(b + c')

(a) Express the function in sum of minterms and product of maxterms forms.

(b)Obtain the truth table of F.

abc'd	abc'c
0010	0010
0110	0011
1010	1010
1110	1011

$$f = pi(2 3 6 10 11 14)$$

- •For the Boolean function: F(a, b, c, d) = (c' + d)(b + c')
- (c) Use Boolean algebra to simplify the function to a minimum number of literals.

$$F = (c+d)(b+c')$$
 $(c'+d)b+(c'+d)c'$
 $bc'+bd+c'+c'd$
 $c'(b+1+d)+bd = c'bd$

2.19Express the following function as a sum of minterms and as a product of maxterms:

```
F (A, B, C, D) = B'D + A'D + BD
ab'cd
0001
0010
1000
1010
```

```
f= sum(1 3 5 7 11
13 15)
pi(0 2 4 6 8 10 12
14
```

2.29Determine whether the following Boolean equation is true or false.

$$x'y' + x'z + x'z' = x'z' + y'z' + x'z$$

f1 = x'y' + x'z + x'z'	x'yz'	xy'z'	x'yz
•	000	000	001
sum(0 1 2 3)	010	100	011

2.30Write the following Boolean expressions in sum of products form and in sum of mintermsform.

$$F(a, b, c, d) = (b + d)(a' + b' + c)$$

f = (b+d)(a'+b'+c)	abcd	a'b'cd
(b+d)a'+(b+d)b'+(b+d)c	000	1100
a'b+a'd+b'd+bc+cd	0010	1101
	1000	
f = pi(0 2 8 10 12 13	1010	

* Simplify function F(x, y) = x'y' + x'y + xy' using Boolean algebra

* Simplify function X (A, B, C) = AB + ABC + AB'C' + AC' using Boolean algebra

$$X(ABC) = AB(1+c) + Ac'(b'+1)$$

$$AB+AC'$$

$$A(B+C')$$

A+0)(B+c')

* Simplify function F = A'BC + AB'C + ABC' + ABC using Boolean algebra

$$F(ABC) = 9A'B+AB')C+AB(C'+C)$$
 $(A'B+AB')C+AB$
 $(A'B)+A$
 $\{A'B+A(B'+B)\}(C+AB)$
 $((A'+A)(B+A))(C+AB)$
 $(B+A)(C+AB)$
 $BC+AC+AB$

- *From the logic diagram,
- (a) Express the function F in Boolean expression.

(b) Construct the truth table describing the outputs

$$F = A NAND C + (B+C)+(BD)$$

A'C+AC'+B'C'+BD

F = SUM(0 1 2 3 5 6 7 8 9 12 13 15

	d ——		\mathcal{F}		
A'C'+AC	a	b	С	d	
FC //	0	0	0	0	1
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	1
	0	1	1	0	1
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	1
	1	0	1	0	0
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	0
	1	1	1	1	1