

Введем ось x, сонаправленную с вектором начальной скорости. Запишем второй закон Ньютона:

$$m\vec{a} = -k\vec{v}$$
 $\qquad \qquad \frac{dv}{dt} = -\frac{k}{m}v$ $\mathbf{x}: ma = -kv$ $\qquad \qquad -\frac{m}{k}\frac{dv}{v} = dt$

Можем найти v(t):

$$\int_0^t dt = -\frac{m}{k} \int_{v_0}^{v(t)} \frac{dv}{v} \qquad \qquad \frac{v(t)}{v_0} = e^{-\frac{k}{m}t}$$
$$t = -\frac{m}{k} \ln\left(\frac{v(t)}{v_0}\right) \qquad \qquad v(t) = v_0 e^{-\frac{k}{m}t}$$

Заметим, что скорость равна нулю при $t \to \infty$. Проинтегрировав еще раз, найдем S(t), учитывая, что v(t) всегда неотрицательна:

$$\int_{0}^{x(t)} dx = \int_{0}^{t} v_{0} e^{-\frac{k}{m}t} dt$$
$$S = x(t) = v_{0} \frac{m}{k} [1 - e^{-\frac{k}{m}t}]$$

Можем выразить функцию времени через функцию пути:

$$e^{-\frac{k}{m}t} = 1 - \frac{kS}{v_0 m}$$
$$v(S) = v_0 e^{-\frac{k}{m}t} = v_0 - \frac{kS}{m}$$

Тогда можем найти полный путь до остановки, т.к. в момент остановки v=0:

$$v(S) = 0$$

$$\frac{kS}{m} = v_0$$

$$S = \frac{mv_0}{k}$$