Artificial Intelligence

Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology

Content

- ✓ Probability: Brief review
- ✓ Robot localization problem
- Baysian filter
- ✓ Particle filter

 \checkmark Probability that a random variable X has value x

$$p(X=x)$$

Example:

Example:
$$p(X = \text{head}) = p(X = \text{tail}) = \frac{1}{2}$$

Abbreviation:

- ✓ Probability density function
 - \diamond Univariate normal distribution $\mathcal{N}(x;\mu,\sigma^2)$

- ✓ Probability density function
 - Multivariate normal distributions

Probability density function

Probability of the random variable falling within a particular range of values

values
$$\Pr[a \leq X \leq b] = \int_a^b f_X(x) dx$$

$$\int p(x) \ dx = 1$$
 TÀI LIỆU SỬU TẬP BỞI HCMUT-CNCP

- ✓ Joint distribution of 2 random variables p(x,y) = p(X = x and Y = y)

✓ Conditional probability

$$p(x\mid y) = p(X = x\mid Y = y) \text{NOACN} p(x\mid y) = \frac{p(x,y)}{p(y)}$$
 es rule
$$p(x\mid y) = p(y\mid x) p(x)$$

✓ Bayes rule

$$p(x \mid y) = p(y \mid x) p(x)$$

$$p(y)$$

p(y) doesn't depent on x p(x|y) $|\hat{x}| = y$ p(y|x) p(x)

BŐI HCMUT-CNCP

✓ Conditional independence

$$p(x | y, z) = \frac{p(y | x, z) p(x | z)}{p(y | z)} \qquad p(a, b | c) = p(a | b, c) p(b | c)$$

$$p(x, y | z) = p(x | z) p(y | z) = p(a | c) p(b | c).$$

Localization Problem

Localization Problem

Why localization problem?

- ✓ Fundamental problem in robotics
- ✓ Control noise

Localization Problem

- ✓ State
 - . x_t
- ✓ Control actions

 u_t

✓ Sensor measurements

 z_t

√

State evolution: state transition probability

$$p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t \mid x_{t-1}, u_t)$$

Markov process: a process for which predictions can be made regarding future outcomes based solely on its present state (as good as the ones that could be made knowing the process's full history)

 \checkmark Measurement model: $p(z_t \mid x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t \mid x_t)$

(a) Sonar data

(b) Laser data

Measurement model:

 $p(z_t \mid x_t)$

 z_t^{k*} $z_{
m max}$ (a) Gaussian distribution $p_{\rm hit}$

(c) Uniform distribution $p_{
m max}$

(b) Exponential distribution $p_{\rm short}$

(d) Uniform distribution $p_{\rm rand}$

$$p(z_t^k \mid x_t, m)$$

$$z_t^{k*} \qquad z_{\text{max}}$$

✓ Hidden Markov chain:

Belief

Bayesian filter


```
1: Algorithm Bayes filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx
4: bel(x_t) = \int p(z_t \mid x_t) \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```


Bayes filter

Bayes filter

Bayes filter

- ✓ No closed form solution in general
- ✓ Two approachs:

 \checkmark Represent the posterior bel(x_t) by a set of random state samples

 \checkmark Approximate the belief bel(X_t) by the set of particles X_t

$$\mathcal{X}_t := x_t^{[1]}, x_t^{[2]}, \dots, x_t^{[M]}$$

✓ Particles: samples of a posterior distribution

$$x_t^{[m]} \sim p(x_t \mid z_{1:t}, u_{1:t})$$


```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
                        \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
                        for m=1 to M do
3:
                              sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})
w_t^{[m]} = p(z_t \mid x_t^{[m]})
\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
4:
5:
6:
                        endfor TÀI LIÊU SƯU TÂP
7:
                        for m=1 to M^{\rm H}{
m do}^{\rm UT-CNCP}
8:
                               draw i with probability \propto w_t^{[i]}
9:
                              add x_t^{[i]} to \mathcal{X}_t
10:
                        endfor
11:
12:
                        return \mathcal{X}_t
```


$$\begin{array}{ll} p(x_{0:t} \mid z_{1:t}, u_{1:t}) \\ \stackrel{\text{Bayes}}{=} & \eta \ p(z_t \mid x_{0:t}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t}) \\ \stackrel{\text{Markov}}{=} & \eta \ p(z_t \mid x_t) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t}) \\ = & \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t}) \\ \stackrel{\text{Markov}}{=} & \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1}) \end{array}$$

$$p(x | y, z) = \frac{p(y | x, z) p(x | z)}{p(y | z)}$$
 $p(a, b | c) = p(a | b, c) p(b | c)$
 $= p(a | c) p(b | c).$