

Test Report

FCC ID: 2AM87-AV83

Date of issue: Mar. 02, 2020

Report number: MTi19123009-3E2

Sample description: CAR FM TRANSMITTER

Model(s): AV839, C89S, C88, BTFM1IS, MNCA102

Applicant: INTRO UNION ELECTRONICS CO, LIMITED

Address: 6F, F BUILDING, EAST AREA NO.8, SHANGXUE TECH-CITY,

BANTIAN, LONGGANG, SHENZHEN, China

Date of test: Jan. 02, 2020 – Feb. 28, 2020

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

Table of Contents

1	GENER	AL DESCRIPTION	. 4
	1.1 DESC	RIPTIONS OF EUT	4
	1.2 CHAN	INELS ARE PROVIDED TO FM	5
	CHANNEL I	LIST	5
	1.3 FREQ	UENCY CHANNEL UNDER TEST	5
	1.4 ANCI	LLARY EQUIPMENT LIST	5
	1.5 DESC	RIPTION OF SUPPORT UNITS	5
2	SUMM	ARY OF TEST RESULTS	. 6
			_
3	TEST FA	CILITIES AND ACCREDITATIONS	. 7
	3.1 TEST	LABORATORY	7
	3.2 ENVII	RONMENTAL CONDITIONS	7
	3.3 MEAS	SUREMENT UNCERTAINTY	7
	3.4 TEST	SOFTWARE	7
4	EQUIPN	ΛΕΝΤ LIST	. 8
5	TECT DE	SULT	٥
3			
	5.1 ANTE	NNA REQUIREMENT	
	5.1.1	Standard requirement	
	5.1.2	EUT antenna description	
		OWER LINE CONDUCTED EMISSION	
	5.2.1	Limit	
	5.2.2	Test method	-
	5.2.3	Test Result	
		STRENGTH OF FUNDAMENTAL AND HARMONIC EMISSIONS	
	5.3.1	Limits	
	5.3.2 5.3.3	Test Method Test Result	
		ATING FREQUENCY& OCCUPIED BANDWIDTH	
	5.4 OPER 5.4.1	Limits	
	5.4.1 5.4.2	Test method	
	5.4.2 5.4.3	Test result	
	• • • • • • • • • • • • • • • • • • • •	ATED EMISSION.	
	5.5.1	Limit	
	5.5.2	Test method	
	5.5.3	Test Result	
٠.			
PF	HUTUGRAP	HS OF THE TEST SETUP	19
D.	IOTOCD A D	US OF THE FUT	20

Test Result Certification

Report No.: MTi19123009-3E2

Applicant's name:

INTRO UNION ELECTRONICS CO, LIMITED

6F, F BUILDING, EAST AREA NO.8, SHANGXUE TECH-CITY, BANTIAN, LONGGANG, SHENZHEN, China

INTRO UNION ELECTRONICS CO, LIMITED

6F, F BUILDING, EAST AREA NO.8, SHANGXUE TECH-CITY, BANTIAN, LONGGANG, SHENZHEN, China

Trademark: N/A

Product name:

Model name: AV839, C89S, C88, BTFM1IS, MNCA102

Standards: FCC Part 15.239

ANSI C63.10-2013

CAR FM TRANSMITTER

Test procedure: DA 00-705

This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	Der	Demy Mu		
	Demi Mu	Feb. 28, 2020		
Reviewed by:	tec	> Su		
	Leo Su	Mar. 02, 2020		
Approved by:	Tom	r Xue		
	Tom Xue	Mar. 02, 2020		

1 General description

1.1 Descriptions of EUT

Product name:	CAR FM TRANSMITTER	
Model name:	AV839	
Series model:	C89S, C88, BTFM1IS, MNCA102	
Difference of series model:	All the model are the same circuit and RF module, except the model No	
Tx/Rx frequency range:	88.1 MHz to 107.9 MHz	
Modulation type:	FM	
Power source:	DC 12V from battery	
Adapter information:	N/A	
Antenna designation:	Cable antenna (Antenna Gain: 0dBi)	
Hardware version:	V1.0	
Software version:	V1.0	

1.2 Channels are provided to FM

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	88.1	100	98.0	198	107.8		
2	88.2	101	98.1	199	107.9		
k	88.1+0.1(k-1)						

1.3 Frequency Channel Under Test

Channel	Frequency
Low	88.1MHz
Middle	98.1MHz
High	107.9MHz

1.4 Ancillary equipment list

Equipment	Model	S/N	Manufacturer
Mobile phone	/	/	/
iPhone5S	/	/	APPLE
Battery	/	/	/

1.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
/	/	/	/	/	
/	/	/	/	/	

Note:

(1)The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.

2 Summary of Test Results

Test procedures according to the technical standards:

Item	FCC Part No.	Description of Test	Result	Remark		
1	15.203	Antenna requirement	Pass			
2	15.207	AC power line conducted emission	N/A			
3	15.239 (b)	Field strength of fundamental and harmonic emissions	Pass			
4	15.209	Radiated emission	Pass			
5	15.239 (a)	Operating frequency	Pass			
6	15.239 (a)	Occupied Bandwidth	Pass			
The mea	The meaning of symbols: "N/A" – Not Applicable					

3 Test Facilities and Accreditations

3.1 Test laboratory

Test Laboratory	Shenzhen Microtest Co., Ltd	
Location	No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China	
FCC Registration No.:	448573	

3.2 Environmental conditions

Temperature:	15°C~35°C
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 Measurement uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %

RF frequency	1 x 10 ⁻⁷
RF power, conducted	±1.38dB
Conducted emission(150kHz~30MHz)	±0.21dB
Radiated emission(30MHz~1GHz)	±4.68dB
Radiated emission (above 1GHz)	±4.89dB
Temperature	±0.5°C
Humidity	± 2 %

3.4 Test software

Software Name	Manufacturer	Model	Version
RF Test System	Shenzhen JS tonscend co,.ltd	JS1120-3	2.5.77.0418

4 Equipment list

Equipment No.	Equipment Name	Manufactu rer	Model	Serial No.	Calibration date	Due date
MTI-E004	EMI Test Receiver	Rohde&sch warz	ESPI7	100314	2019/10/09	2020/10/08
MTI-E006	TRILOG Broadband Antenna	schwarabe ck	VULB 9163	9163-872	2019/10/15	2020/10/14
MTI-E014	amplifier	Hewlett-Pa ckard	8447D	3113A061 50	2019/10/09	2020/10/08
MTI-E036	Single path vehicle AMN(LISN)	Schwarzbe ck	NNBM 8124	01175	2019/10/09	2020/10/08
MTI-E038	Low noise active vertical monopole antenna	Schwarzbe ck	VAMP 9243	#565	2019/10/16	2020/10/15
MTI-E039	Biconical antenna	Schwarzbe ck	BBA 9106	#164	2019/10/15	2020/10/14
MTI-E041	MXG Vector Signal Generator	Agilent	N5182A	MY49060 455	2019/04/16	2020/04/15
MTI-E042	ESG Series Analog signal generator	Agilent	E4421B	GB40051 240	2019/05/21	2020/05/20
MTI-E044	Thermometer clock humidity monitor	-	HTC-1	/	2019/04/17	2020/04/16
MTI-E062	Log Periodic Antenna	Schwarzbe ck	VUSLP 9111B	#312	2018/04/11	2020/04/10
MTI-E063	Log Periodic Dipole Array Antenna	ETS-LIND GREN	3148B	00224524	2018/04/11	2020/04/10
MTI-E065	Amplifier	EMtrace	RP06A	00117	2019/04/29	2020/04/28
MTI-E066	Comprehensive test instrument	Rohde&sch warz	CMW500	149155	2019/04/16	2020/04/15
MTI-E071	PXA Signal Analyzer	Agilent	N9030A	MY51350 296	2019/10/25	2020/10/24
MTI-E076	EMI Test Receiver	Rohde&sch warz	ESIB26	100273	2019/04/16	2020/04/15
MTI-E078	Synthesized Sweeper	Agilent	83752A	3610A019 57	2019/04/16	2020/04/15
MTI-E079	DC Power Supply	Agilent	E3632A	MY40027 695	2019/04/16	2020/04/15
MTI-E093	Artificial mains network	3ctest	LISN J50	ES391180 5	2019/04/16	2020/04/15
MTI-E096	Power amplifier	Space-Dtro niccs	EWLNA0118G -P40	1852001	2019/04/29	2020/04/28
MTI-E097	Current Probe	SOLAR ELECTRO NICS CO.	9207-1	220095-1	2019/04/17	2020/04/16
MTI-E098	Loop Sensor	SOLAR ELECTRO NICS CO.	7334-1	220095-2	2019/04/21	2020/04/20

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

5 Test Result

5.1 Antenna requirement

5.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

5.1.2 EUT antenna description

The EUT antenna is Cable antenna (0dBi). It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

5.2 AC power line conducted emission

5.2.1 Limit

Frequency	Limit			
(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Note: Decreases with the logarithm of the frequency from 0.15MHz to 0.5MHz.

5.2.2 Test method

- 1. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. LISN is at least 80 cm from nearest part of EUT chassis.
- 5. The resolution bandwidth of EMI test receiver is set at 9kHz.

5.2.3 Test Result

Note: the device is battery powered, so this item is not available.

5.3 Field strength of fundamental and harmonic emissions

5.3.1 Limits

§15.239 (b): The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.

5.3.2 Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f ≥ 1GHz

RBW = 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = Auto

Detector function = Peak

Trace = max hold

- 4. Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the spectrum to

RBW = 1MHz

VBW = 10Hz

Detector = PK for AV value, while maintaining all of the other instrument settings

5.3.3 Test Result

Field Strength of Fundamental Emissions and Field strength of spurious emissions Value								
Operating Frequency (MHz)	Field Strength (dBuV/m)	Detector	Limit @3m (dBuV/m)	Margin (dB)	Antenna			
00.4	40.11	QP	67.96	27.85	Vertical			
88.1	22.03	Average	47.96	25.93	Horizontal			
00.1	42.98	QP	67.96	24.98	Vertical			
98.1	20.98	Average	47.96	26.98	Horizontal			
107.0	41.75	QP	67.96	26.21	Vertical			
107.9	21.25	Average	47.96	26.71	Horizontal			

Note: If the PK measured values lower than average mode limit, the EUT shall be deemed to meet average limits and then no additional average mode measurement performed.

5.4 Operating frequency& Occupied Bandwidth

5.4.1 Limits

§15.239 (a): Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz.

5.4.2 Test method

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥1% of the 20 dB bandwidth

VBW ≥RBW

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth and 99% occupied bandwidth of the emission.

5.4.3 Test result

Permitted range of operating frequencies							
F _∟ (KHz) (kHz)	F _H (kHz)	Limit (N	Result				
88.0576	107.9761	F∟≥88	F _H ≤108	Pass			

Frequency (MHz)	20dBm emission bandwidth (KHz)	Limit (KHz)
88.1	68.97	200
98.1	69.13	200
107.9	67.65	200

5.5 Radiated emission

5.5.1 Limit

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, (b)shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

Frequency (MHz)	Field strength µV/m	Field strength dBµV/m	Detector	Measurement distance
30-88	100	40	QP	
88-216	150	43.5	QP	
216-960	200	46	QP	3m
960-1000	500	54	QP	SIII
Above 1000	500	54	AV	
Above 1000	5000	74	PK	

5.5.2 Test method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f ≥ 1GHz

100 kHz for f < 1 GHz. VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

- 4. Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

5.5.3 Test Result

Remark:

If the PK measured values lower than average mode limit, the EUT shall be deemed to meet average limits and then no additional average mode measurement performed.

Radiated emission

Between 30MHz - 1GHz

Note: All the modulation modes have been tested, and the worst result was report as below:

	The same of the sa		
EUT:	CAR FM TRANSMITTER	Model Name:	AV839
Pressure:	1010 hPa	Phase:	Н
Test Mode :	TX (98.1MHz)	Test Voltage :	DC 12V from battery

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector
1		47.9939	34.94	-12.26	22.68	40.00	-17.32	QP
2		71.8319	40.05	-15.89	24.16	40.00	-15.84	QP
3		131.7576	50.07	-16.81	33.26	43.50	-10.24	QP
4	*	287.9904	53.07	-10.55	42.52	46.00	-3.48	QP
5	İ	539.4774	49.26	-6.97	42.29	46.00	-3.71	QP
6	İ	744.8659	44.95	-4.11	40.84	46.00	-5.16	QP

EUT: CAR FM TRANSMITTER Model Name: AV839

Pressure: 1010 hPa Phase: V

Test Mode: TX (98.1MHz) Test Voltage: DC 12V from battery

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector
1		48.1625	42.91	-12.26	30.65	40.00	-9.35	QP
2		119.8555	47.43	-14.33	33.10	43.50	-10.40	QP
3		216.0240	42.38	-12.65	29.73	46.00	-16.27	QP
4		312.1792	49.61	-9.96	39.65	46.00	-6.35	QP
5	*	431.0316	50.09	-7.93	42.16	46.00	-3.84	QP
6		649.6597	43.81	-5.47	38.34	46.00	-7.66	QP

ABOVE 1GHz

12

5851.364

46.31

-0.42

45.89

54.00

-8.11

AVG

EUT:	CAR FM TRANSMI		CAR FM TRANSMITTER Model Na		Model Nam	el Name: AV839		
Pressure:	1010 hPa	1010 hPa		,	V			
Test Mode:	TX (98.1MHz)		Test Voltage	e:	DC 12V fro	om battery		
90.0 dBuV/m								
80			Fee	15 C Radiation A	1011 m			
70			FCC	15 C Hadiation A	toove Tunz (Pr	()		
70								
60			FCC 1	5 C Radiation Ab	ove 1GHz (AVC	i)		
50	a 5	8	9(n	12	Mind		
40 ~~~~	~	Market Ma	WALL MANNE	D Marting Agents of Marting Agents	MANAN MANAN	may be		
30								
20								
10								
o								
-10								
1000.000	•	2000 (MHz)	3000	40	100 5	5000 6000. O		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector
1		1117.495	52.13	-7.35	44.78	74.00	-29.22	peak
2	*	1117.495	52.13	-7.35	44.78	54.00	-9.22	AVG
3		1420.750	51.28	-8.18	43.10	74.00	-30.90	peak
4		1420.750	51.28	-8.18	43.10	54.00	-10.90	AVG
5		1790.190	52.41	-8.06	44.35	74.00	-29.65	peak
6		1790.190	52.41	-8.06	44.35	54.00	-9.65	AVG
7		2414.629	51.63	-7.96	43.67	74.00	-30.33	peak
8		2414.629	51.63	-7.96	43.67	54.00	-10.33	AVG
9		3193.317	50.63	-7.63	43.00	74.00	-31.00	peak
10		3193.317	50.63	-7.63	43.00	54.00	-11.00	AVG
11		4668.852	48.25	-4.65	43.60	74.00	-30.40	peak
12		4668.852	48.25	-4.65	43.60	54.00	-10.40	AVG

PHOTOGRAPHS OF THE TEST SETUP

Radiated emission

PHOTOGRAPHS OF THE EUT

See the APPENDIX 1: EUT PHOTO in the report No.: MTi19123009-3E1-1.

----END OF REPORT----