PHYSICS

Práctica exploratoria

Determine la Resultante de los vectores mostrados.

$$|\vec{A}| = 15u$$
, $|\vec{B}| = 10u$

RESOLUCIÓN

Para la dirección:

$$\theta_R$$
: (\rightarrow)

$$|\vec{R}| = |\vec{A}| + |\vec{B}|$$

 $|\vec{R}| = 15u + 10u = 25u$

Determine la Resultante de los vectores siguientes.

$$|\vec{A}|$$
 = 45u , $|\vec{B}|$ = 30u

Para la dirección:

$$\theta_R: (\rightarrow)$$

$$|\vec{R}| = |\vec{A}| - |\vec{B}|$$

 $|\vec{R}| = 45u - 30u = 15u$

$$R = 15u$$

Determine la Resultante de los vectores siguientes.

$$|\vec{A}| = 45u$$
 , $|\vec{B}| = 80u$

 $\vec{\mathbf{B}}$

RESOLUCIÓN

Para la dirección:

$$\theta_R$$
: (\leftarrow)

$$|\vec{R}| = |\vec{B}| - |\vec{A}|$$

 $|\vec{R}| = 80u - 45u = 35u$

$$R = 35u$$

Determine la Resultante de los vectores siguientes.

$$|\vec{A}|$$
 = 35u , $|\vec{B}|$ = 15u , $|\vec{C}|$ = 30u

 $\vec{\mathbf{B}}$

RESOLUCIÓN

Para la dirección:

$$\theta_R$$
: (\rightarrow)

$$|\vec{R}| = |\vec{A}| + |\vec{B}| - |\vec{C}|$$

 $|\vec{R}| = 35u + 15u - 30u = 20u$

Determine la diferencia \vec{A} - \vec{B} de los vectores mostrados.

$$|\vec{A}| = 45u$$
, $|\vec{B}| = 20u$

RESOLUCIÓN

Es el vector que une los extremos de los Vectores, desde el segundo Vector hasta el primer Vector en la diferencia.

Entonces, trazándolo:

Para la dirección:

$$\theta_D: (\rightarrow)$$

Para el módulo:

$$|\overrightarrow{D}| = |\overrightarrow{A}| - |\overrightarrow{B}|$$

 $|\overrightarrow{D}| = 45u - 20u$
 $|\overrightarrow{D}| = 25u$

Gráficamente:

$$D = 25u$$

$$\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$$

Una persona usa una resortera con un elástico para lanzar una piedra. En el instante que suelta la piedra, el elástico aplica una fuerza de 12 N. Para dicho instante, calcule el módulo de la fuerza resultante del elástico sobre la piedra.

RESOLUCIÓN

LEY DEL PARALELOGRAMO

$$R = \sqrt{A^2 + B^2 + 2A \cdot B \cdot Cos\alpha}$$

$$R = \sqrt{12^2 + 12^2 + 2 \cdot 12 \cdot 12 \cdot \frac{1}{2}} N$$

$$R = \sqrt{3 \cdot (12)^2} N$$
 $R = 12\sqrt{3} N$

Dos personas jalan una cuerda cada uno, como muestra la figura. Las cuerdas forman entre sí un ángulo de 45° y el módulo de la fuerza que ejercen las personas A y B en las cuerdas, son F_A = 30N y F_B = 20N. Determine el módulo de la Resultante.

<u>RESOLUCIÓN</u>

$$R = \sqrt{A^2 + B^2 + 2A \cdot B \cdot Cos60^{\circ}}$$

$$R = \sqrt{(30)^2 + (20)^2 + 2 \cdot 30 \cdot 20 \cdot \frac{1}{2}}$$

$$R = \sqrt{900 + 400 + 600}$$

$$R = 10\sqrt{19}N$$

8

Determine la diferencia \vec{A} - \vec{B} de los vectores mostrados.

$$|\vec{A}| = 25u \quad |\vec{B}| = 20u$$

Es el vector que une los extremos de los Vectores, desde el segundo Vector hasta el primer Vector en la diferencia.

LEY DEL PARALELOGRAMO

$$R = \sqrt{A^2 + B^2 - 2A \cdot B \cdot Cos\alpha}$$

$$R = \sqrt{(25)^2 + (20)^2 - 2 \cdot 25 \cdot 20 \cdot \frac{1}{2}} N$$

$$R = \sqrt{525} N$$

$$R = 5\sqrt{21} N$$