**Credit Scoring & Data Mining** 

# Credit Scorecard

Word Count: 2066

2020-5-13

#### **CONTENTS**

| ABSTRACT                         | 1  |
|----------------------------------|----|
| EXPLORATORY ANALYSIS             |    |
| Missing Value                    | 2  |
| Outliers                         |    |
| Samples Imbalance                |    |
| MODEL BUILDING                   | 3  |
| Collinearity & Data Segmentation |    |
| Binning                          |    |
| WoE                              |    |
| IV                               |    |
| Logistic Regression              | 4  |
| Model Evaluation                 | 4  |
| Credit Scorecard                 |    |
| APPLICATION                      | 5  |
| LITERATURE REVIEW                | 6  |
| REFERENCES                       | 7  |
| APPENDIX                         | 8  |
| Figures and Tables               |    |
| Python Code                      | 12 |

# **ABSTRACT**

This report uses EM Model to deal with missing values, remove outliers, and use imblearn package to deal with sample imbalance. Then, this report build a credit scorecard with a 0.84 accuracy using Binning, Weight of Evidence(WoE), Information Value(IV) and Logistic Regression. This report primarily uses SPSS in the exploratory analysis process, and Python for model building. All data and codes in this report are available at <a href="https://github.com/mktming/creditscorecard">https://github.com/mktming/creditscorecard</a> (Open Access After 5/6/2020)

#### **EXPLORATORY ANALYSIS**

First, perform descriptive statistics and normality test on the original data set (es-train.csv) (as shown in *Table app-1* and *Table app-2*, in Appendix), and then remove the duplicate cases in SPSS (a total of 6096 duplicates cases, 149391 cases remain after removing).

#### **Missing Value**

If there are a small number of missing values (less than 5% of the total number of cases) and these values can be considered as missing randomly, then deleting missing values is relatively safe. However, the missing ratios of the two variables *MonthlyIncome* and *NumberOfDependents* are 19.56% and 2.56% respectively. Because of the huge amount of missing data, this report uses EM method to estimate missing value through SPSS.

EM method (Expectation-Maximization algorithm) assumes a distribution of partially missing data and makes inferences based on the probability under this distribution. Each iteration includes an E step and an M step. Given the observations and the current parameter estimates, E step finds the conditional expected values of missing data and replaces these missing values with the expected values. In M step, even if the missing data is filled in, the maximum likelihood estimate of the parameter will be calculated. For *NumberOfDependents*, its true result should be an integer. However, decimals appear after the EM method, so the Excel Round function is used for rounding. EM Model Summary are shown in *Table app-3* in Appendix.

#### **Outliers**

By drawing box plots (*Figure app-1*), this report finds that there are many outliers in the variables. But these outliers can be considered reasonable, such as people with extremely high monthly income. Therefore, this report only deletes the 23 most significant outliers among them (as shown in Table app-4). These deleted outliers may not be wrong, but they become influential points in model fitting process, which in turn affects the model training process. In addition, it is found that there is a data with an age of 0, which should be due to an entry error (149367 cases left).

In addition, there are three indicators that look strange: *NumberOfTime3059DaysPastDueNotWorse*, *NumberOfTime6089DaysPastDueNotWorse* and *NumberOfTimes90DaysLate*. These three indicators are still 2 at a 99% distribution, however the maximum value is 98 (or 96). That means that a person is overdue 98 times within 35 to 59 days in the past two years. But there are only six 60 days a year. There are 225 cases of this situation. This report believes that these cases are to some kinds of abnormality, and they should be deleted (149,142 cases left). Therefore, data set train clean2.csv

#### **Samples Imbalance**

In the descriptive statistical results (Table app-1), there is a partial distribution. This will cause the model to be more biased towards zero during the model training process. For example, a fool model forever output 0, and it can also achieve 93.38% accuracy, but obviously this model is not helpful for banking business. Therefore, this report uses Python's imblearn package to balance the samples to get the new dataset train\_clean3.csv

- Number of original samples: 149142; 1 accounts for 6.62%; 0 accounts for 93.38%
- Number of new samples: 278548; 1 accounts for 50.00%; 0 accounts for 50.00%

The descriptive statistics and normality test of the data after sample equalization are shown in *Table app-5* and *Table app-6* 

#### MODEL BUILDING

#### Collinearity & Data Segmentation

Next, this report uses the seaborn package in Python to check the collinearity of the data. As can be seen from *Figure app-2*, correlation between variables is not significant. Only the correlation coefficient of *NumberOfOpenCreditLinesAndLoans* and *NumberRealEstateLoansOrLines* is 0.48. In order to verify the fitting effect of the model, this report divides train\_clean3.csv according to the ratio of 7: 3 into training set (TrainData.csv) and test set (TestData.csv).

# **Binning**

Binning is a term for continuous variable discretization. Credit scorecard commonly used Equal length intervals and Optimal Binning. Equal length intervals means that the intervals of the segments are consistent, for example, age is ten years as a segment; Optimal Binning is also called supervised discretization. based on conditional inference to find a better grouping, using Recursive Partitioning algorithm to divide continuous variables into segments. This report first does Optimal Binning for continuous variables. When the distribution of continuous variables does not meet the requirements of Optimal Binning, it is then considered to divide the continuous variables using Equal length intervals

## WoE

WoE (Weight of Evidence) is to calculate the WoE value of each binning segment and observe their trend changing with indicators. Calculated as follows. According to the logarithmic transformation curve, WoE takes the value of all real numbers. In the part greater than 0, the larger the WoE, the greater the possibility of default samples in the group (positive effect). In the less than 0 part, the smaller the WoE, the more a kind of reverse effect. Therefore, WoE reflects the influence of the value of the independent variable on the target variable.

$$WOE_i = ln \frac{P(y_i)}{P(n_i)}$$

where

P(yi) represents the proportion of default samples of group i in the all default samples;

P(ni) represents the proportion of non-default samples of group i in the all non-default samples;

#### IV

IV (Information Value) considers the proportion of samples in the group to the total sample, which is equivalent to the weighted sum of WoE. The calculation formula is as follows:

$$IV_{i} = \sum_{i=1}^{n} (P(y_{i}) - P(n_{i})) \ln \frac{P(y_{i})}{P(n_{i})}$$

The above formula can calculate IV value of each variable as shown in *Figure 1*.



Figure 1 Information Value

The IV values of four variables (*DebtRatio*, *MonthlyIncome*, *NumberOfOpenCreditLinesAndLoans* and *NumberOfDependents*) are significantly lower, therefore delete them.

#### **Logistic Regression**

WOE can transform logistic regression into a standard scorecard format. Before establishing a logistic regression, this report converts the remaining six variables into their WoE values for credit score and saves them in the WoeData.csv. Then this report calls Python's statsmodels package to implement logistic regression. According to *Table app-5*, all variables of logistic regression have passed the significance test.

#### **Model Evaluation**

Next, this report uses the TestData.csv (not cs-test.csv) reserved at the beginning of modeling for verification. In Python, sklearn.metrics is used to automatically calculate ROC and AUC to evaluate the fitting ability of the model. It can be seen from *Figure 2* that the AUC value is 0.84. The prediction effect of this model is good, and the accuracy rate is relatively high.



Figure 2 ROC Curve

## **Credit Scorecard**

This report has basically completed the work related to modeling, and used the ROC curve to verify the predictive ability of the model. The next step is to convert the Logistic model into a standard scorecard format. This report takes 300 as the basic score and PDO is 20 (every 20 points is better than double). Based on this, get the scorecard as

#### shown in Table 1

Table 1 Credit Scorecard

| RevolvingUtilizationOfU | score | Age           | score | NumberOfTime3059Da | score | NumberOfTimes90Day | score | NumberRealEstateLoa | score | NumberOfTime6089Da | score |
|-------------------------|-------|---------------|-------|--------------------|-------|--------------------|-------|---------------------|-------|--------------------|-------|
| nsecuredLines           |       |               |       | ysPastDueNotWorse  |       | sLate              |       | nsOrLines           |       | ysPastDueNotWorse  |       |
| (-0.001, 0.0984]        | 51    | [21.0, 32.0]  | -8    | (-inf, 1.0]        | 16    | (-inf, 1.0]        | 16    | (-inf, 0.0]         | -7    | (-inf, 0.0]        | 6     |
| (0.0984, 0.465]         | 8     | (32.0, 38.0]  | -6    | (1.0, 2.0]         | -39   | (1.0, 2.0]         | -116  | (0.0, 1.0]          | 3     | (0.0, 1.0]         | -62   |
| (0.465, 0.875]          | -22   | (38.0, 42.0]  | -5    | (2.0, 3.0]         | -62   | (2.0, 3.0]         | -152  | (1.0, 2.0]          | 11    | (1.0, 3.0]         | -79   |
| (0.875, 22198.0]        | -27   | (42.0, 46.0]  | -4    | (3.0, 5.0]         | -69   | (3.0, 5.0]         | -172  | (2.0, 3.0]          | 7     | (3.0, inf)         | -73   |
|                         |       | (46.0, 50.0]  | -4    | (5.0, inf]         | -54   | (5.0, inf]         | -148  | (3.0, inf]          | -1    |                    |       |
|                         |       | (50.0, 55.0]  | -1    |                    |       |                    |       |                     |       |                    |       |
|                         |       | (55.0, 60.0]  | 3     |                    |       |                    |       |                     |       |                    |       |
|                         |       | (60.0, 67.0]  | 11    |                    |       |                    |       |                     |       |                    |       |
|                         |       | (67.0, 109.0] | 21    |                    |       |                    |       |                     |       |                    |       |

Apply the scorecard to TrainData.csv can get ScoreData.csv. The average value of ScoreData.csv is 220.37. Since the number of customers with *SeriousDlqin2yrs* = 1/0 in the data set is the same, the average value is used as the basis for segmentation. That is

$$\{If \ Score >= 220, SeriousDlqin2yrs = 1 \\ Else if Score < 220, SeriousDlqin2yrs = 0 \}$$

Applying this model to cs-test.csv (processed for outliers and missing values) can get the prediction result of its *SeriousDlqin2yrs*. As shown in cs-test-score.csv. Some results are shown in *Table 2*.

Table 2 Prediction Results for cs-test.csv

| SeriousDlg | Revolvingl | age | Numb | oerOf I | DebtRatio | Monthlylno | NumberOf N | lumberOf Nur | nberRe Nu | ımberOf Nur | nberOf Ba | seScore x | 1   | k2 | к3  | x7 x | 8 x9 | )   | Score |
|------------|------------|-----|------|---------|-----------|------------|------------|--------------|-----------|-------------|-----------|-----------|-----|----|-----|------|------|-----|-------|
| 1          | 0.041905   | 45  |      | 0       | 0.202724  | 6387       | 6          | 0            | 1         | 0           | 43        | 441       | 51  | -4 | -40 | -120 | 11   | -62 | 27    |
| 1          | 0.227651   | 41  |      | 0       | 4151      | 0          | 10         | 0            | 1         | 0           | 20        | 441       | 8   | -5 | -40 | -120 | 11   | -62 | 23    |
| 0          | 0.957847   | 47  |      | 0       | 0.477725  | 9000       | 16         | 0            | 2         | 0           | 10        | 441       | -28 | -4 | -40 | -120 | 9    | -62 | 19    |
| 1          | 0.054512   | 52  |      | 0       | 0.010944  | 18000      | 11         | 0            | 0         | 0           | 10        | 441       | 51  | -3 | -40 | -120 | 4    | -62 | 27    |
| 1          | 0.021415   | 55  |      | 0       | 0.780105  | 2100       | 4          | 0            | 1         | 0           | 10        | 441       | 51  | 2  | -40 | -120 | 11   | -62 | 28    |
| 0          | 0.53263    | 48  |      | 1       | 0.309114  | 16666      | 18         | 0            | 2         | 0           | 9         | 441       | -22 | -3 | -62 | -120 | 9    | -62 | 18    |
| 0          | 0.581969   | 53  |      | 0       | 0.205485  | 12871      | 16         | 0            | 0         | 0           | 9         | 441       | -22 | 2  | -40 | -120 | 4    | -62 | 20    |
| 0          | 0.486619   | 46  |      | 0       | 0.179879  | 8766       | 4          | 0            | 1         | 0           | 9         | 441       | -22 | -4 | -40 | -120 | 11   | -62 | 20    |
| 0          | 1          | 37  |      | 0       | 0.124837  | 13000      | 2          | 1            | 0         | 0           | 8         | 441       | -28 | -6 | -40 | -153 | 4    | -62 | 15    |
| 0          | 0.845031   | 43  |      | 2       | 0.145665  | 6665       | 6          | 0            | 0         | 1           | 8         | 441       | -22 | -5 | -62 | -120 | 4    | -78 | 15    |
| 0          | 1          | 40  | 1    | 0       | 0.172746  | 5400       | 2          | 0            | 0         | 0           | 8         | 441       | -28 | -5 | -40 | -120 | 4    | -62 | 19    |
| 0          | 1          | 50  |      | 0       | 0.982509  | 2000       | 2          | 0            | 1         | 0           | 8         | 441       | -28 | -3 | -40 | -120 | 11   | -62 | 19    |
| 1          | 0.20654    | 36  |      | 0       | 0.31402   | 4400       | 3          | 0            | 1         | 0           | 8         | 441       | 8   | -6 | -40 | -120 | 11   | -62 | 23    |
| 1          | 0.160535   | 44  |      | 0       | 0.210802  | 8775       | 12         | 0            | 2         | 0           | 8         | 441       | 8   | -4 | -40 | -120 | 9    | -62 | 23    |

#### APPLICATION

Credit scorecard is a supervised learning model, which divides the customer group into non-default customers and default customers. Analyze the characteristics of the two types of customer groups from historical data, and establish a mathematical model according to the classification rules, and then use the model to calculate the lender's default risk as the basis for consumer credit decision. The model can be used for pre-loan approval to predict the borrower's probability of default. Compared to most machine learning models, credit scorecard is easy to explain and understand. Specifically, in the case of most machine learning models are black box models, if a customer is refused a loan because of credit problems, the bank teller can only tell this customer that it was rejected, but cannot tell why. The credit scorecard can tell customers why the loan was refused (for example, too young, too many credit card overdue, low monthly salary, etc.). This is conducive for banks to improve customer satisfaction to obtain a better brand reputation and encourage customers to more targeted increase their credit score and thereby increase loan turnover. However, compared with the scorecard model, the risk control model designed based on the machine learning does not need to be established under strict statistical assumptions, and the prediction effect is more accurate.

#### LITERATURE REVIEW

Maldonado, S., Peters, G., & Weber, R. (2020). Credit scoring using three-way decisions with probabilistic rough sets. *Information Sciences*, *507*, 700-714.

As financial data becomes more comprehensive, credit scoring has become one effective way to predict financial risks. Personal credit scores revolve around data, which includes financial data and big data derived from daily life. In the past year (2019-2020), many scholars are interested in predicting whether a customer will default or not. Are people who have overdue experience more likely to default (Xiao et al., 2020)? Can social network information help predict default (Luo,2019; Niu et al., 2019)? Which machine learning and traditional models have higher accuracy (Pei et al., 2020; Tripathi, 2019)? Whether focusing on the selection of independent variables, the source of the data set, or model selection, their final goal is to make prediction as accurate as possible. However, methods proposed in the above literature significantly increases the banks' data acquisition cost and labor cost.

For solving this problem, Maldonado et al. (2020) proposed to apply the three-way decision framework to one data set provided by the Chilean bank (including 7309 cases). This three-way decision framework uses logistic regression as basic classifier for the purpose of reducing bank costs. Borrowers are divided into three categories by this framework: For repeat customers (RET) and most new customers (NEW), the basic credit assessment is sufficient to determine their credit application. However, some new customers need to be interviewed and further detailed analysis. In this way, only a small number of new customers need to fill in all the information, while most customers only need to fill out a basic form. This framework not only does not reduce the prediction accuracy rate compared to mainstream machine learning methods (86.94%), also significantly reduces data search costs, labor costs and computer operating costs. Thereby make the bank gain more 1% profits in personal loan business.

This change has had a huge impact on repeat customers and new customers. Using three-way decision framework rather than traditional machine learning models of reporting revenue gains considerable profits in highly competitive markets, which are characterized by low personal profit margins for huge number of customers. In addition to financial advantage, a more efficient credit granting process also leads to faster decision-making speed, thereby gaining a significant strategic advantage among competitors. For consumers, faster credit decisions will lead to higher satisfaction.

However, this report believes that the framework is only applicable to personal petty loans. When it comes to large loans such as entrepreneurship loans or juridical person loans, banks must make decisions after grasping all the available information of the enterprise or legal person. Because such loans often involve huge amounts and extremely high interest rates and companies often fail to repay after bankruptcy. Then, the cost of investigation is insignificant. Besides, compared with credit scorecard, this framework is still lack of explanation. Credit scorecard can tell customers why the loan was refused (for example, too young, too many credit card overdue, low monthly salary, etc.). Customers who was refused loans for unknown reasons may have negative emotions for the bank and affect more people through social networks.

#### **REFERENCES**

- Luo, C. (2019). A comprehensive decision support approach for credit scoring. *Industrial Management & Data Systems*.
- Maldonado, S., Peters, G., & Weber, R. (2020). Credit scoring using three-way decisions with probabilistic rough sets. *Information Sciences*, 507, 700-714.
- Niu, B., Ren, J., & Li, X. (2019). Credit Scoring Using Machine Learning by Combing Social Network Information: Evidence from Peer-to-Peer Lending. *Information*, *10*(12), 397.
- Pei, S., Shen, T., Wang, X., Gu, C., Ning, Z., Ye, X., & Xiong, N. (2020). 3DACN: 3D Augmented convolutional network for time series data. *Information Sciences*, 513, 17-29.
- Tripathi, D., Edla, D. R., Cheruku, R., & Kuppili, V. (2019). A novel hybrid credit scoring model based on ensemble feature selection and multilayer ensemble classification. *Computational Intelligence*, *35*(2), 371-394.
- Xiao, J., Zhou, X., Zhong, Y., Xie, L., Gu, X., & Liu, D. (2020). Cost-sensitive semi-supervised selective ensemble model for customer credit scoring. *Knowledge-Based Systems*, 189, 105118.

# APPENDIX

# **Figures and Tables**

Table app-1 Descriptive Statistic for cs-train.csv

|                                         |        |             |             |             | Me          | ean         |             |             | Skev      | ness    | Peake     | dness   |
|-----------------------------------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|---------|-----------|---------|
|                                         | Ν      | Range       | Min         | Max         | Statictic   | Std Err     | Std Dev     | Variance    | Statistic | Std Err | Statistic | Std Err |
| SeriousDlqin2yrs                        | 150000 | 1           | 0           | 1           | .07         | .001        | .250        | .062        | 3.469     | .006    | 10.033    | .013    |
| RevolvingUtilizationOfUns ecuredLines   | 150000 | 50708.0000  | .0000       | 50708.0000  | 6.048438    | .6448656    | 249.7553706 | 62377.745   | 97.632    | .006    | 14544.713 | .013    |
| age                                     | 150000 | 109         | 0           | 109         | 52.30       | .038        | 14.772      | 218.208     | .189      | .006    | 495       | .013    |
| NumberOfTime3059Days<br>PastDueNotWorse | 150000 | 98          | 0           | 98          | .42         | .011        | 4.193       | 17.579      | 22.597    | .006    | 522.377   | .013    |
| DebtRatio                               | 150000 | 329664.0000 | .000000     | 329664.0000 | 353.0050758 | 5.261624802 | 2037.818523 | 4152704.333 | 95.158    | .006    | 13734.289 | .013    |
| MonthlyIncome                           | 150000 | 3325666.075 | -316916.075 | 3008750.000 | 6231.918166 | 33.64945146 | 13032.37651 | 169842837.5 | 122.713   | .006    | 23236.215 | .013    |
| NumberOfOpenCreditLin esAndLoans        | 150000 | 58          | 0           | 58          | 8.45        | .013        | 5.146       | 26.481      | 1.215     | .006    | 3.091     | .013    |
| NumberOfTimes90DaysLate                 | 150000 | 98          | 0           | 98          | .27         | .011        | 4.169       | 17.383      | 23.087    | .006    | 537.739   | .013    |
| NumberRealEstateLoans<br>OrLines        | 150000 | 54          | 0           | 54          | 1.02        | .003        | 1.130       | 1.276       | 3.482     | .006    | 60.477    | .013    |
| NumberOfTime6089Days<br>PastDueNotWorse | 150000 | 98          | 0           | 98          | .24         | .011        | 4.155       | 17.266      | 23.332    | .006    | 545.683   | .013    |
| NumberOfDependents                      | 150000 | 25          | -5          | 20          | .75         | .003        | 1.104       | 1.219       | 1.605     | .006    | 3.124     | .013    |
| MissingValueCount                       | 150000 | 2           | 0           | 2           | .22         | .001        | .476        | .226        | 2.021     | .006    | 3.331     | .013    |
| valid cases                             | 150000 |             |             |             |             |             |             |             |           |         |           |         |

Table app-2 Normality Test for cs-train.csv

| II                        |                  | - · · · J |                      |      |
|---------------------------|------------------|-----------|----------------------|------|
|                           | SeriousDlqin2yrs | Statistic | Degree of<br>Freedom | Sig. |
| RevolvingUtilizationOfUns | 0                | .505      | 139956               | .000 |
| ecuredLines               | 1                | .500      | 10021                | .000 |
| age                       | 0                | .032      | 139956               | .000 |
|                           | 1                | .041      | 10021                | .000 |
| NumberOfTime3059Days      | 0                | .462      | 139956               | .000 |
| PastDueNotWorse           | 1                | .419      | 10021                | .000 |
| DebtRatio                 | 0                | .426      | 139956               | .000 |
|                           | 1                | .433      | 10021                | .000 |
| MonthlyIncome             | 0                | .226      | 139956               | .000 |
|                           | 1                | .200      | 10021                | .000 |
| NumberOfOpenCreditLin     | 0                | .110      | 139956               | .000 |
| esAndLoans                | 1                | .103      | 10021                | .000 |
| NumberOfTimes90DaysL      | 0                | .484      | 139956               | .000 |
| ate                       | 1                | .429      | 10021                | .000 |
| NumberRealEstateLoans     | 0                | .230      | 139956               | .000 |
| OrLines                   | 1                | .236      | 10021                | .000 |
| NumberOfTime6089Days      | 0                | .483      | 139956               | .000 |
| PastDueNotWorse           | 1                | .451      | 10021                | .000 |
| NumberOfDependents        | 0                | .347      | 139956               | .000 |
|                           | 1                | .294      | 10021                | .000 |
| MissingValueCount         | 0                | .482      | 139956               | .000 |
|                           | 1                | .499      | 10021                | .000 |

Table app-3 EM Model Summary

| RevolvingUtilizationOfUnsecuredLine     | es age                                   | DebtRatio                 | Mont     | hlyIncome | ome NumberOfO    |                       | CreditLinesAr | dLoans | NumberRealEstateLoansOrL             | ines | NumberOfDependents         |                    |
|-----------------------------------------|------------------------------------------|---------------------------|----------|-----------|------------------|-----------------------|---------------|--------|--------------------------------------|------|----------------------------|--------------------|
| 5.310000E+00                            | 00 52.41                                 | 3.44475020E+002           |          | 6709.32   | 2                |                       |               | 8.45   |                                      | 1.01 | .76                        |                    |
|                                         | Revolving Utilization Of Unsecured Lines |                           | es age   |           | DebtRatio        | DebtRatio MonthlyInco |               | me Nur | umber Of Open Credit Lines And Loans |      | mberRealEstateLoansOrLines | NumberOfDependents |
| RevolvingUtilizationOfUnsecuredLines    |                                          | 3.8477191E+0              | 04       |           |                  |                       |               |        |                                      |      |                            |                    |
| age                                     |                                          | -2.0963058E+0             | 01       | 218.441   |                  |                       |               |        |                                      |      |                            |                    |
| DebtRatio                               |                                          | 1.2299969E+0              | 03       | 832.312   | 2.665367189E     | +006                  |               |        |                                      |      |                            |                    |
| MonthlyIncome                           |                                          | 6.3547126E+0              | 03 11    | 305.781   | -2.306033695E    | +005                  | 1332641751.   | 162    |                                      |      |                            |                    |
| NumberOfOpenCreditLinesAndLoans         |                                          | -1.1210074E+0             | 01       | 10.932    | 5.468221107E     | +002                  | 6410.         | 504    | 26.46                                | 2    |                            |                    |
| NumberRealEstateLoansOrLines            |                                          | 8.6594510E-001            |          | .438      | 2.342479973E+002 |                       | 1894.         | 831    | 2.462                                |      | 1.233                      |                    |
| NumberOfDependents                      |                                          | 4.4721740E-0              | 01       | -3.718    | -8.597943369E    | +001                  | 1 866.869     |        | .390                                 |      | .155                       | 1.294              |
|                                         | Revolvi                                  | ng Utilization Of Unsecur | redLines | s age     | DebtRatio        | Mont                  | thlyIncome    | Number | Of Open Credit Lines And Loans       | Numb | perRealEstateLoansOrLines  | NumberOfDependents |
| Revolving Utilization Of Unsecured Line | s                                        |                           | 1        | 1         |                  |                       |               |        |                                      |      |                            |                    |
| age                                     |                                          |                           | 007      | 7 1       |                  |                       |               |        |                                      |      |                            |                    |
| DebtRatio                               |                                          |                           | .004     | .034      | 1                |                       |               |        |                                      |      |                            |                    |
| MonthlyIncome                           |                                          |                           | .001     | .021      | 004              |                       | 1             |        |                                      |      |                            |                    |
| Number Of Open Credit Lines And Loans   |                                          |                           | 011      | .144      | .065             |                       | .034          |        | 1                                    |      |                            |                    |
| NumberRealEstateLoansOrLines            |                                          |                           | .004     | .027      | .129             |                       | .047          |        | .431                                 |      | 1                          |                    |
| Number Of Dependents                    |                                          |                           | .002     | 2221      | 046              |                       | .021          |        | .067                                 |      | .122                       | 1                  |

MCAR Test: Chi-Square = 22672.888, Degree of Freedom = 11, Sig. = .000



Figure app-1 Box Plots

Table app-4 Deleted Cases

| deleted value ID | Variables                            | SeriousDlqin2yrs | Value   |
|------------------|--------------------------------------|------------------|---------|
| 6300             | NumberOfDependents                   | 0                | 20      |
| 128036           | NumberOfDependents                   | 0                | 13      |
| 60153            | DebtRatio                            | 0                | 329664  |
| 36601            | DebtRatio                            | 0                | 326442  |
| 127048           | DebtRatio                            | 0                | 307001  |
| 58901            | DebtRatio                            | 0                | 220516  |
| 4855             | DebtRatio                            | 0                | 168835  |
| 7514             | DebtRatio                            | 0                | 110952  |
| 103042           | DebtRatio                            | 0                | 106885  |
| 69846            | DebtRatio                            | 0                | 101320  |
| 73764            | MonthlyIncome                        | 0                | 3008750 |
| 137141           | MonthlyIncome                        | 0                | 1794060 |
| 111366           | MonthlyIncome                        | 0                | 1560100 |
| 50641            | MonthlyIncome                        | 0                | 1072500 |
| 30588            | NumberRealEstateLoansOrLines         | 0                | 54      |
| 104199           | NumberRealEstateLoansOrLines         | 0                | 32      |
| 65729            | NumberRealEstateLoansOrLines         | 1                | 29      |
| 103894           | NumberRealEstateLoansOrLines         | 1                | 25      |
| 98387            | NumberRealEstateLoansOrLines         | 1                | 20      |
| 144888           | RevolvingUtilizationOfUnsecuredLines | 1                | 8328    |
| 114779           | RevolvingUtilizationOfUnsecuredLines | 1                | 6190    |
| 85490            | RevolvingUtilizationOfUnsecuredLines | 0                | 50708   |
| 31415            | RevolvingUtilizationOfUnsecuredLines | 0                | 29110   |

 Table app-5
 Descriptive Statistic for train\_clean3.csv

|                                         |        |             |             |             | Me          | ean         |             |             | Skev      | vness   | Peake     | edness  |
|-----------------------------------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|---------|-----------|---------|
|                                         | N      | Range       | Min         | Max         | Statictic   | Std Err     | Std Dev     | Variance    | Statictic | Std Err | Statistic | Std Err |
| SeriousDlqin2yrs                        | 278548 | 1           | 0           | 1           | .50         | .001        | .500        | .250        | .000      | .005    | -2.000    | .009    |
| RevolvingUtilizationOfUns ecuredLines   | 278548 | 22198.0000  | .0000       | 22198.0000  | 4.196220    | .2908258    | 153.4910209 | 23559.493   | 74.063    | .005    | 7538.021  | .009    |
| age                                     | 278548 | 88          | 21          | 109         | 49.11       | .026        | 13.895      | 193.073     | .368      | .005    | 256       | .009    |
| NumberOfTime3059Days<br>PastDueNotWorse | 278548 | 13          | 0           | 13          | .42         | .002        | .875        | .765        | 2.892     | .005    | 11.772    | .009    |
| DebtRatio                               | 278548 | 61907.00000 | .00000000   | 61907.00000 | 321.6236526 | 2.251682050 | 1188.384799 | 1412258.430 | 10.514    | .005    | 249.810   | .009    |
| MonthlyIncome                           | 278548 | 883128.4403 | -48088.4403 | 835040.0000 | 5807.513412 | 12.86888925 | 6791.896914 | 46129863.68 | 38.364    | .005    | 3285.129  | .009    |
| NumberOfOpenCreditLin<br>esAndLoans     | 278548 | 57          | 0           | 57          | 7.99        | .010        | 5.034       | 25.337      | 1.131     | .005    | 2.676     | .009    |
| NumberOfTimes90DaysLate                 | 278548 | 17          | 0           | 17          | .23         | .001        | .722        | .521        | 5.054     | .005    | 39.046    | .009    |
| NumberRealEstateLoans<br>OrLines        | 278548 | 26          | 0           | 26          | .88         | .002        | 1.106       | 1.224       | 2.654     | .005    | 18.205    | .009    |
| NumberOfTime6089Days<br>PastDueNotWorse | 278548 | 11          | 0           | 11          | .12         | .001        | .424        | .180        | 5.009     | .005    | 36.502    | .009    |
| NumberOfDependents                      | 278548 | 13          | 0           | 13          | .70         | .002        | 1.023       | 1.048       | 1.567     | .005    | 2.574     | .009    |
| valid cases                             | 278548 |             |             |             |             |             |             |             |           |         |           |         |

 Table app-6
 Normality Test for train\_clean3.csv

|                           | SeriousDlqin2yrs | Statistic | Degree of Freedom | Sig. |
|---------------------------|------------------|-----------|-------------------|------|
| RevolvingUtilizationOfUns | 0                | .505      | 139274            | .000 |
| ecuredLines               | 1                | .501      | 139274            | .000 |
| age                       | 0                | .032      | 139274            | .000 |
|                           | 1                | .039      | 139274            | .000 |
| DebtRatio                 | 0                | .426      | 139274            | .000 |
|                           | 1                | .435      | 139274            | .000 |
| MonthlyIncome             | 0                | .226      | 139274            | .000 |
|                           | 1                | .183      | 139274            | .000 |
| NumberOfOpenCreditLin     | 0                | .111      | 139274            | .000 |
| esAndLoans                | 1                | .101      | 139274            | .000 |
| NumberRealEstateLoans     | 0                | .230      | 139274            | .000 |
| OrLines                   | 1                | .289      | 139274            | .000 |



Figure app-2 Correlation Matrix

Table app-7 Logistic Model Summary

|                                      |        | -       | -       |       |        |        |
|--------------------------------------|--------|---------|---------|-------|--------|--------|
|                                      |        |         |         |       |        |        |
|                                      | coef   | std err | Z       | P> z  | [0.025 | 0.975] |
| const                                | 7.6368 | 0.103   | 74.252  | 0.000 | 7.435  | 7.838  |
| RevolvingUtilizationOfUnsecuredLines | 0.8045 | 0.005   | 158.378 | 0.000 | 0.795  | 0.814  |
| age                                  | 0.4836 | 0.010   | 48.982  | 0.000 | 0.464  | 0.503  |
| NumberOfTime3059DaysPastDueNotWorse  | 1.5517 | 0.024   | 64.167  | 0.000 | 1.504  | 1.599  |
| NumberOfTimes90DaysLate              | 2.2536 | 0.037   | 60.328  | 0.000 | 2.180  | 2.327  |
| NumberRealEstateLoansOrLines         | 0.6126 | 0.026   | 23.210  | 0.000 | 0.561  | 0.664  |
| NumberOfTime6089DaysPastDueNotWorse  | 1.5277 | 0.061   | 25.211  | 0.000 | 1.409  | 1.646  |
|                                      |        |         |         |       |        |        |

#### **Python Codes**

```
#utf-8 2020-04-28 20:35:44
#Samples Imbalance
import pandas as pd
import numpy as np
import imblearn
from imblearn.over sampling import SMOTE
data=pd.read csv('train clean2.csv',index
col=0)
print(data.shape)
x=data.iloc[:,1:]
y=data.iloc[:,0]
print(y.value_counts())
n sample=x.shape[0]
n_1_sample=y.value_counts()[1]
n_0_sample=y.value_counts()[0]
print('Samples:
{}; 1 {:.2%}; 0 {:.2%}'.format(n_sample,n_
1 sample/n sample,n 0 sample/n sample))
sm = SMOTE(random state=42)
x,y = sm.fit_sample(x,y)
n_sample_ = x.shape[0]
pd.Series(y).value_counts()
n_1_sample = pd.Series(y).value_counts()[1
n_0_sample = pd.Series(y).value_counts()[0
print('Samples:
{}; 1 {:.2%}; 0 {:.2%}'.format(n_sample_,n
_1_sample/n_sample_,n_0_sample/n_sample_))
x=pd.DataFrame(x)
y=pd.DataFrame(y)
new data=pd.concat([y,x],axis=1)
new_data.columns=data.columns
new data.shape
new_data.to_csv('./train_clean3.csv',index
=False, columns=new_data.columns)
```

```
#train & test split
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_
test split
import seaborn as sns
#Collinear heat map
data = pd.read_csv('train_clean3.csv')
#Calculate the correlation coefficient of
each variable
corr = data.corr()
xticks = ['x0','x1','x2','x3','x4','x5','x
6','x7','x8','x9','x10']#xaxis label
yticks = list(corr.index)#yaxis label
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
#Draw correlation coefficient heat map
sns.heatmap(corr, annot=True, cmap='rainbo
w', ax=ax1, annot_kws={'size': 9, 'weight'
: 'bold', 'color': 'blue'})
ax1.set xticklabels(xticks, rotation=0, fo
ntsize=10)
ax1.set_yticklabels(yticks, rotation=0, fo
ntsize=10)
plt.show()
# training set and testing set
if __name__ == '__main__':
    data = pd.read_csv('train_clean3.csv')
    data['SeriousDlqin2yrs']=1-
data['SeriousDlqin2yrs']
    Y = data['SeriousDlqin2yrs']
    X = data.iloc[:, 1:]
    X_train, X_test, Y_train, Y_test = tra
in_test_split(X, Y, test_size=0.3, random_
state=0)
    # print(Y train)
    train = pd.concat([Y_train, X_train],
axis=1)
    test = pd.concat([Y_test, X_test], axi
s=1)
```

```
clasTest = test.groupby('SeriousDlqin2
yrs')['SeriousDlqin2yrs'].count()
    train.to_csv('TrainData.csv',index=Fal
se)
    test.to_csv('TestData.csv',index=False
)
    print(train.shape)
    print(test.shape)
```

```
#utf-8 2020-05-03 19:34:32
#bin & weo & scoring calculating
import pandas as pd
import numpy as np
from pandas import Series,DataFrame
import scipy.stats.stats as stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
import math
# define binning function
def mono_bin(Y, X, n = 20):
    r = 0
    good=Y.sum()
    bad=Y.count()-good
    while np.abs(r) < 1:
        d1 = pd.DataFrame({"X": X, "Y": Y,
 "Bucket": pd.qcut(X, n)})
        d2 = d1.groupby('Bucket', as_index
 = True)
        r, p = stats.spearmanr(d2.mean().X
, d2.mean().Y)
        n = n - 1
    d3 = pd.DataFrame(d2.X.min(), columns
= ['min'])
    d3['min']=d2.min().X
    d3['max'] = d2.max().X
    d3['sum'] = d2.sum().Y
    d3['total'] = d2.count().Y
    d3['rate'] = d2.mean().Y
    d3['woe']=np.log((d3['rate']/(1-
d3['rate']))/(good/bad))
```

```
d3['goodattribute']=d3['sum']/good
    d3['badattribute']=(d3['total']-
d3['sum'])/bad
    iv=((d3['goodattribute']-
d3['badattribute'])*d3['woe']).sum()
    d4 = (d3.sort_values(by = 'min'))
    print("=" * 60)
    print(d4)
    cut=[]
    cut.append(float('-inf'))
    for i in range(1,n+1):
        qua=X.quantile(i/(n+1))
        cut.append(round(qua,4))
    cut.append(float('inf'))
    woe=list(d4['woe'].round(3))
    return d4,iv,cut,woe
#binning function
def self_bin(Y,X,cat):
    good=Y.sum()
    bad=Y.count()-good
    d1=pd.DataFrame({'X':X,'Y':Y,'Bucket':
pd.cut(X,cat)})
    d2=d1.groupby('Bucket', as_index = Tru
e)
    d3 = pd.DataFrame(d2.X.min(), columns=
['min'])
    d3['min'] = d2.min().X
    d3[\max'] = d2.max().X
    d3['sum'] = d2.sum().Y
    d3['total'] = d2.count().Y
    d3['rate'] = d2.mean().Y
    d3['woe'] = np.log((d3['rate'] / (1 -
d3['rate'])) / (good / bad))
    d3['goodattribute'] = d3['sum'] / good
    d3['badattribute'] = (d3['total'] - d3
['sum']) / bad
    iv = ((d3['goodattribute'] - d3['badat
tribute']) * d3['woe']).sum()
    d4 = (d3.sort_values(by='min'))
    print("=" * 60)
    print(d4)
    woe = list(d4['woe'].round(3))
    return d4, iv, woe
#woe
```

```
def replace_woe(series,cut,woe):
    list=[]
    i=0
    while i<len(series):</pre>
        value=series[i]
        j=len(cut)-2
        m=len(cut)-2
        while j \ge 0:
            if value>=cut[j]:
                j=-1
            else:
                j -=1
                m -= 1
        list.append(woe[m])
                                                es
        i += 1
    return list
# define score function
def get_score(coe,woe,factor):
    scores=[]
    for w in woe:
        score=round(coe*w*factor, 0)
        scores.append(score)
    return scores
#score function
def compute score(series,cut,score):
    list = []
    i = 0
    while i < len(series):</pre>
        value = series[i]
        j = len(cut) - 2
        m = len(cut) - 2
        while j >= 0:
            if value >= cut[j]:
                j = -1
            else:
                i -= 1
                m -= 1
        list.append(score[m])
        i += 1
    return list
if __name__ == '__main__':
    data = pd.read_csv('TestData.csv')
```

```
pinf = float('inf')
    ninf = float('-inf')
    dfx1, ivx1,cutx1,woex1=mono_bin(data.S
eriousDlqin2yrs,data.RevolvingUtilizationO
fUnsecuredLines, n=10)
    dfx2, ivx2,cutx2,woex2=mono_bin(data.S
eriousDlqin2yrs, data.age, n=10)
    dfx4, ivx4,cutx4,woex4 =mono_bin(data.
SeriousDlqin2yrs, data.DebtRatio, n=20)
    dfx5, ivx5,cutx5,woex5 =mono bin(data.
SeriousDlqin2yrs, data.MonthlyIncome, n=10
    # Discretization of continuous variabl
    cutx3 = [ninf, 0, 1, 3, 5, pinf]
    cutx6 = [ninf, 1, 2, 3, 5, pinf]
    cutx7 = [ninf, 0, 1, 3, 5, pinf]
    cutx8 = [ninf, 0,1,2, 3, pinf]
    cutx9 = [ninf, 0, 1, 3, pinf]
    cutx10 = [ninf, 0, 1, 2, 3, 5, pinf]
    dfx3, ivx3,woex3 = self bin(data.Serio
usDlqin2yrs, data['NumberOfTime3059DaysPas
tDueNotWorse'], cutx3)
    dfx6, ivx6 ,woex6= self_bin(data.Serio
usDlqin2yrs, data['NumberOfOpenCreditLines
AndLoans'], cutx6)
    dfx7, ivx7,woex7 = self_bin(data.Serio
usDlqin2yrs, data['NumberOfTimes90DaysLate
'], cutx7)
    dfx8, ivx8,woex8 = self bin(data.Serio
usDlqin2yrs, data['NumberRealEstateLoansOr
Lines'], cutx8)
    dfx9, ivx9,woex9 = self_bin(data.Serio
usDlqin2yrs, data['NumberOfTime6089DaysPas
tDueNotWorse'], cutx9)
    dfx10, ivx10,woex10 = self_bin(data.Se
riousDlqin2yrs, data['NumberOfDependents']
, cutx10)
    ivlist=[ivx1,ivx2,ivx3,ivx4,ivx5,ivx6,
ivx7,ivx8,ivx9,ivx10]
    index=['x1','x2','x3','x4','x5','x6','
x7','x8','x9','x10']
    fig1 = plt.figure(1)
```

ax1 = fig1.add\_subplot(1, 1, 1)

```
x = np.arange(len(index))+1
    ax1.bar(x, ivlist, width=0.4)
    ax1.set_xticks(x)
    ax1.set xticklabels(index, rotation=0,
 fontsize=12)
    ax1.set_ylabel('IV(Information Value)'
, fontsize=14)
    for a, b in zip(x, ivlist):
        plt.text(a, b + 0.01, '%.4f' % b,
ha='center', va='bottom', fontsize=10)
    # woe
    data['RevolvingUtilizationOfUnsecuredL
ines'] = Series(replace_woe(data['Revolvin
gUtilizationOfUnsecuredLines'], cutx1, woe
x1))
    data['age'] = Series(replace woe(data[
'age'], cutx2, woex2))
    data['NumberOfTime3059DaysPastDueNotWo
rse'] = Series(replace_woe(data['NumberOfT
ime3059DaysPastDueNotWorse'], cutx3, woex3
    data['DebtRatio'] = Series(replace_woe
(data['DebtRatio'], cutx4, woex4))
    data['MonthlyIncome'] = Series(replace
woe(data['MonthlyIncome'], cutx5, woex5))
    data['NumberOfOpenCreditLinesAndLoans'
] = Series(replace_woe(data['NumberOfOpenC
reditLinesAndLoans'], cutx6, woex6))
    data['NumberOfTimes90DaysLate'] = Seri
es(replace woe(data['NumberOfTimes90DaysLa
te'], cutx7, woex7))
    data['NumberRealEstateLoansOrLines'] =
Series(replace_woe(data['NumberRealEstate
LoansOrLines'], cutx8, woex8))
    data['NumberOfTime6089DaysPastDueNotWo
rse'] = Series(replace_woe(data['NumberOfT
ime6089DaysPastDueNotWorse'], cutx9, woex9
))
    data['NumberOfDependents'] = Series(re
place_woe(data['NumberOfDependents'], cutx
10, woex10))
    data.to_csv('WoeData.csv', index=False
```

```
test= pd.read_csv('TestData.csv')
    # woe
    test['RevolvingUtilizationOfUnsecuredL
ines'] = Series(replace_woe(test['Revolvin
gUtilizationOfUnsecuredLines'], cutx1, woe
x1))
    test['age'] = Series(replace_woe(test[
'age'], cutx2, woex2))
    test['NumberOfTime3059DaysPastDueNotWo
rse'] = Series(replace_woe(test['NumberOfT
ime3059DaysPastDueNotWorse'], cutx3, woex3
))
    test['DebtRatio'] = Series(replace_woe
(test['DebtRatio'], cutx4, woex4))
    test['MonthlyIncome'] = Series(replace
woe(test['MonthlyIncome'], cutx5, woex5))
    test['NumberOfOpenCreditLinesAndLoans'
] = Series(replace_woe(test['NumberOfOpenC
reditLinesAndLoans'], cutx6, woex6))
    test['NumberOfTimes90DaysLate'] = Seri
es(replace woe(test['NumberOfTimes90DaysLa
te'], cutx7, woex7))
    test['NumberRealEstateLoansOrLines'] =
Series(replace_woe(test['NumberRealEstate
LoansOrLines'], cutx8, woex8))
    test['NumberOfTime6089DaysPastDueNotWo
rse'] = Series(replace_woe(test['NumberOfT
ime6089DaysPastDueNotWorse'], cutx9, woex9
))
    test['NumberOfDependents'] = Series(re
place_woe(test['NumberOfDependents'], cutx
10, woex10))
    test.to_csv('TestWoeData.csv', index=F
alse)
    # score calculating
    coe=[7.885545,0.811083,0.494714,1.5292
14,2.286435,0.612646,1.524416]
    p = 20 / math.log(2)
    q = 300 - 20 * math.log(20) / math.log
(2)
    baseScore = round(q + p * coe[0], 0)
    x1 = get_score(coe[1], woex1, p)
    x2 = get_score(coe[2], woex2, p)
```

```
x3 = get_score(coe[3], woex3, p)
   x7 = get_score(coe[4], woex7, p)
   x8 = get_score(coe[5], woex8, p)
   x9 = get score(coe[6], woex9, p)
   print(x1,x2, x3, x7, x8, x9)
   test1 = pd.read_csv('cs-test.csv')
   test1['BaseScore']=Series(np.zeros(len
(test1)))+baseScore
   test1['x1'] = Series(compute score(tes
t1['RevolvingUtilizationOfUnsecuredLines']
, cutx1, x1))
   test1['x2'] = Series(compute_score(tes
t1['age'], cutx2, x2))
   test1['x3'] = Series(compute score(tes
t1['NumberOfTime3059DaysPastDueNotWorse'],
 cutx3, x3))
   test1['x7'] = Series(compute_score(tes
t1['NumberOfTimes90DaysLate'], cutx7, x7))
   test1['x8'] = Series(compute_score(tes
t1['NumberRealEstateLoansOrLines'], cutx8,
 ((8x
   test1['x9'] = Series(compute_score(tes
t1['NumberOfTime6089DaysPastDueNotWorse'],
cutx9, x9))
   test1['Score'] = test1['x1'] + test1['
x2'] + test1['x3'] + test1['x7'] +test1['x
8']+test1['x9'] + baseScore
   test1.to_csv('cs-tset-
score.csv', index=False)
   plt.show()
```

```
#Logit Regression
import pandas as pd
import matplotlib.pyplot as plt #Import im
age Library
import matplotlib
import seaborn as sns
import statsmodels.api as sm
from sklearn.metrics import roc_curve, auc

if __name__ == '__main__':
    matplotlib.rcParams['axes.unicode_minu
s'] = False
    data = pd.read_csv('WoeData.csv')
```

```
Y=data['SeriousDlqin2yrs']
    X=data.drop(['SeriousDlgin2yrs','DebtR
atio','MonthlyIncome', 'NumberOfOpenCredit
LinesAndLoans','NumberOfDependents'],axis=
1)
    X1=sm.add_constant(X)
    logit=sm.Logit(Y,X1)
    result=logit.fit()
    print(result.params)
    print(result.summary())
    test = pd.read_csv('TestWoeData.csv')
    Y_test = test['SeriousDlqin2yrs']
    X test = test.drop(['SeriousDlqin2yrs'
 'DebtRatio', 'MonthlyIncome', 'NumberOfO
penCreditLinesAndLoans', 'NumberOfDependen
ts'], axis=1)
    X3 = sm.add constant(X test)
    resu = result.predict(X3)
    fpr, tpr, threshold = roc_curve(Y_test
, resu)
    rocauc = auc(fpr, tpr)
    plt.plot(fpr, tpr, 'b', label='AUC = %
0.2f' % rocauc)
    plt.legend(loc='lower right')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('TPR')
    plt.xlabel('FPR')
    plt.show()
```