

- Most cosmological parameters are known to 1% accuracy
- Contemporary instrumentation lacks the sensitivity to conduct a HI galaxy survey

 → Alternative: HI intensity mapping (IM) method
- Investigate the impact on the recovery of the HI angular power spectrum in the presence of a single instrumental systematic: 1/f noise

SKA as an array of single-dish instruments

Pros	Cons	
increased surface brightness	poor resolution of observations	
 increased sensitivity on large angular scales 	separating contaminants from the signal	

1/f noise:

- Form of correlated noise present in radio receiver systems
- Manifests as small gain fluctuations
 - → how it manifests in sky maps depends on the noise properties and the details of the observing strategy
- Phenomenon separate to thermal noise
- Can be modelled and phenomenologically described by a few statistical properties
 - $\hookrightarrow \alpha$: spectral index of the noise
 - $\beta = 0$: identical 1/f in every channel $\beta = 1$: independent 1/f in every channel

Instrument Design

Modelling the telescope array and scanning strategy:

Description	Parameter	Value
Dish Diameter	D_{dish}	$15 m^a$
N° Dishes	N_{dish}	200
Receiver + CMB	$T_{CMB} + T_{rx}$	$20K^b$
N° Polarimeters	N_{pol}	2
N° Channels	$N_{ u}$	23
Bandwidth	Δu	950 < v < 1410 MHz
Channel width	δu	20 MHz
Sample Rate	f_{sr}	4 <i>Hz</i>
Integration Time	T_{obs}	30 days
Elevation	E	55 <i>deg</i>
Slew Speed	v_t	$0.5 < v_t < 2.0 \ deg \ s^{-1}$

 Observing strategy: continuously slew the SKA dishes 360° at a constant elevation of 55° to control systematics (local horizon or ground pick-up)

Sky Model

- Synchrotron:
 - → Relativistic cosmic ray electrons interacting within the galactic magnetic field
 - → Tracer for relatively recent star formation
 - → Vastly brighter than any other emission from the sky at low radio frequencies
- Free-Free:
 - → Unbound interactions within ionized interstellar regions
 - → It will flatten the foreground spectrum at higher frequencies
 - → Adds spectral curvature to the foreground components, making it more challenging to characterize and remove
- H/:

$$T_{obs} = 44\mu K \left(\frac{\Omega_{HI}(z)h}{2.45 \cdot 10^{-4}}\right) \frac{(1+z)^2}{E(z)} \longrightarrow C_l = \frac{H_0 b^2}{c} \int dz \, E(z) \left[\frac{T_{obs}(z) \, D(z)}{r(z)}\right]^2 P_{cdm} \left(\frac{l+\frac{1}{2}}{r}\right)$$

Modelling 1/f Noise

• 1/f in TOD originates as correlated fluctuations in the gain of the receiver amplifiers

Highly correlated

Time-frequency plots generated using the simulation pipeline

Completely uncorrelated

Sky Mask

• The sky maps from the simulation pipeline were multiplied with a mask that removes just the brightest regions of the Galactic plane

Regions that have been masked

• The resulting total observed sky fraction after masking is $f_{sky} = 0.3$

Component Separation and Power Spectrum Estimation

- Principle Component Analysis (PCA):
 - → not robust at removing foregrounds
 - → computationally fast: highly suited to Monte-Carlo simulations
 - → always remove components that are completely correlated in frequency
- For each realization and frequency, the angular power spectrum was calculated
- Each map was decomposed into spherical harmonic coefficients
- Before PSE, each map is smoothed to a full width at half maximum (FWHM)

Summary

- Complete summary of each step taken in the process of the simulations:
- 1. Generate sky foreground and signal maps
- 2. Simulate TODs for the observing strategy
- 3. Produce a correlated 1/f noise signal for each block of TOD
- 4. Produce a noise-free data stream and add 1/ f noise and white noise.
 - i. Combine the TOD into a realization map of the sky.
- 5. Separate each sky map realization into eigenmode components using PCA
- 6. Calculate the C_l of every map for each frequency and eigenmode.

Power Spectra Uncertainty and Bias

• How much statistical uncertainty does 1/f contribute to the recovered HI C_l ?

- → Highly correlated 1/ f noise in frequency = very small contribution to the final HI statistical uncertainty
- Survey will be more sensitive to low redshift HI emission

- stable receivers are an order-of-magnitude more important than choice of scan speed
- scan speed is coupled with the spectral index of the 1/ f noise as is has greater impact for steep spectrum
- 1/ f noise can contribute additional uncertainty on all scales
- The bias is significant when the 1/f noise power exceeds the HI angular power
- Is it possible to model the 1/f noise bias and remove it?
 - → in these simulations that would be trivial as the input 1/f noise is known
 - → in real data where it might be non-Gaussian and coupled with other systematics, accurate modelling may be challenging

Impact of Specific Data Analysis Methods and Systematics

- Could the impact of the 1/f noise be reduced in a real HI IM survey?

 - → 1/f noise be suppressed during the calibration process
- Real observations suppression of 1/f noise will be more challenging due to the presence of other systematics in the data
 - intrinsic to the 1/f
 - intrinsic to the instrument or the observations
 - → how the data is processed, calibrated and binned into maps

- Numerous assumptions have been made to simplify the 1/f noise signal:

 intrinsic properties are assumed to have Gaussian distributed amplitudes
 the interactions of the 1/f noise with additional systematics is not explored

 Given those assumptions, this paper provides some guidelines:

 a design for receivers to make the 1/f noise as correlated as possible
- 1/f noise could be significantly detrimental to future HI IM surveys
- Careful choices of observing strategy, data analysis and component separation method should be sufficient to recover the cosmological HI signal.

→ data analysis pipeline designed to not corrupt the receiver 1/ f noise properties

