Cl Atom-Initiated Oxidation of Three Homologous Methyl Perfluoroalkyl Ethers

KAYO NOHARA,*·† MITSUHIRO TOMA,† SHUZO KUTSUNA,‡ KOJI TAKEUCHI,‡ AND TAKASHI IBUSUKI‡

New Refrigerants Development Group, Research Institute of Innovative Technology for the Earth (RITE), and National Institute for Resources and Environment (NIRE), 16-3 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

Chlorine atom-initiated photooxidations of three homologous methyl perfluoroalkyl ethers (HFEs), $n-C_nF_{2n+1}OCH_3$ (n=2, 3, and 5), in air in the absence of NO_x were investigated with a long path FTIR/photochemical reaction system to elucidate the degradation mechanisms. The environmental removal processes of these three ethers in the troposphere were estimated. For oxidation of the three ethers, perfluoroalkyl formates ($C_nF_{2n+1}OCHO$; n=2, 3 and 5) as relatively stable intermediates were produced at unity of the production ratio, which was independent of the perfluoroalkyl length. The rate constants for the reaction of CI atoms with C_2F_5OCHO , C_3F_7OCHO , and $C_5F_{11}OCHO$ were (1.2 \pm 0.5) \times 10⁻¹⁴, (1.2 \pm 0.5) \times 10⁻¹⁴, and (1.8 \pm 0.7) \times 10⁻¹⁴ cm³ $molecule^{-1} s^{-1}$, respectively. The rate constants of the reaction of CI with produced perfluoroalkyl formates were larger than these of perfluoroalkyl ethers. The formyl group of the perfluoroalkyl formates was finally converted to carbon dioxide. The -CF₂- of the perfluoroalkyl groups for the three ethers was mainly converted to COF₂ through the C-C cleavage; the conversion ratios from the carbons of the perfluoroalkyl group to COF_2 were 48 \pm 10, 76 \pm 10, and 60 \pm 10% for C₂F₅OCH₃, n-C₃F₇OCH₃, and n-C₅F₁₁OCH₃, respectively. Sixteen percent of the perfluoroalkyl group for n-C₃F₇OCH₃ was converted to C₂F₅COF. Similarly, the perfluoroalkyl group of n-C₅F₁₁OCH₃ was converted to $C_nF_{2n+1}COF$ (n=2, 3, and/or 4) with the yield of 15-30%, while for C₂F₅OCH₃, the formation of CF₃COF was not confirmed. As an oxidation product of the terminal CF₃— group, 20, 22, and 16% of the CF₃ group for C₂F₅-OCH₃, n-C₃F₇OCH₃, and n-C₅F₁₁OCH₃, respectively, were converted to CF₃OOOCF₃.

Introduction

Development of alternatives to hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) has been extensively conducted throughout the world, because HFCs and HCFCs will be regulated due to their global warming potentials (GWPs) and/or stratospheric ozone depletion potentials (ODPs) (1, 2). Hydrofluorinated ether compounds (HFEs) (3, 4) are considered to be promising materials as new alterna-

tives. Their ODP is zero, because they contain no chlorine atoms. RITE (Research Institute of Innovative Technology for the Earth) has been developing three homologous methyl perfluoroalkyl ethers (n-C $_n$ F $_{2n+1}$ OCH $_3$; n=2,3,5) (5) as refrigerants and/or blowing agents. The rate constants for C₂F₅OCH₃ and n-C₃F₇OCH₃ for the reaction with the OH radical at 273 K are 0.819 \pm 0.025 \times $10^{-14}\,cm^3$ molecule $^{-1}\,s^{-1}$ and $0.741 \pm 0.023 \times 10^{-14} \, cm^3 \, molecule^{-1} \, s^{-1}$ (6) which were measured by the laser induced fluorescence technique (LIF). Their tropospheric lifetimes estimated by using the 7.5×10^5 molecule cm⁻³ of the concentration of [OH] (7) is thus less than 6 years. If they are degraded in the troposphere to form relative stable byproducts, it would induce the environmental impacts in addition to global warming. The research of degradation processes for HFEs in troposphere is important for the environmental assessment of HFEs.

In this study, the oxidations of the three ethers were initiated by Cl atoms. The changes in the concentration of the ethers and their degradation products were monitored by an FTIR spectrometer. It was revealed that the perfluoroalkyl formate was formed as a major intermediate in the reaction. The final products observed were CO_2 (produced from CH_3 group), COF_2 , CF_3OOOCF_3 , and $C_nF_{2n+1}COF$ (n=2,3, and/or 4) which were produced from the perfluoro alkyl group. The concentrations of all the final products were determined, to check the mass balance of the reactions and to elucidate the reaction mechanisms. The kind and distribution of the products from the perfluoro alkyl groups were found to be dependent on the chain length. The fate of the degradation products in the environment was discussed in connection with their environmental impact.

Experimental Section

The experimental apparatus used here has been previously described in detail (8). Experiments were carried out using a 25-L evacuable quartz cylinder (14 cm in diameter, 150 cm long), surrounded with four 40-W black lamps, equipped with an in situ multiple reflection optical system (30-m path length) interfaced to a JEOL JIR100 FTIR spectrometer. The IR spectra of the reactants and products were measured over the frequency range from 700 to 3500 cm⁻¹ at 0.5 cm⁻¹ resolution by 50 scans/interferograms. Liquid fluorinated ethers were injected into the chamber with a microsyringe. The prescribed amount of Cl_2 (2.46 \times 10¹⁴ molecule cm⁻³) was taken in a gas cell and then introduced into the reaction chamber. Each of the HFEs-Cl2 mixtures was diluted to atmospheric pressure (1.01 \times 10⁵ Pa) with synthetic air (80% $N_2 + 20\% O_2$) at 298 \pm 3 K. The initial concentrations of HFEs was 1.65 \times 10¹⁴, 1.23 \times 10¹⁴, and 2.16 \times 10¹⁴ molecule cm⁻³ for C₂F₅OCH₃, *n*-C₃F₇OCH₃, and *n*-C₅F₁₁OCH₃, respectively. The oxidation of HFEs was initiated by Cl atoms, which were generated by photolysis of Cl2.

Three kinds of methyl perfluoroalkyl ethers ($C_2F_5OCH_3$, 99.9%; n- $C_3F_7OCH_3$, 99.8%; n- $C_5F_{11}OCH_3$, 99.8%) were supplied from RITE and used without further purification.

Results and Discussion

The Identification of the Degradation Products by the IR Spectra. IR spectra of $n\text{-}C_5F_{11}\text{OCH}_3$ (2.16 \times 10^{14} molecule cm $^{-3}$) and Cl $_2$ (2.46 \times 10^{14} molecule cm $^{-3}$) in 1.01×10^5 Pa of air are shown in Figure 1(a) (before irradiation) and (b) (after 30 min irradiation). Figure 1(c) is the subtracted spectrum (1(b) - 1(a)). After 30-min irradiation, the peaks in the range of 1875–1978 cm $^{-1}$ and split peaks about 2300 cm $^{-1}$ appeared, which were attributed to COF $_2$ and CO $_2$,

 $^{^{\}ast}$ Corresponding author phone: +81-298-61-8163; fax: +81-298-61-8158; e-mail: nohara@nire.go.jp.

 $^{^\}dagger$ Research Institute of Innovative Technology for the Earth (RITE).

[†] National Institute for Resources and Environment (NIRE).

FIGURE 1. IR spectra in the frequency region of 700–3500 cm $^{-1}$ obtained from the photolysis of a mixture containing $C_5F_{11}OCH_3$ (2.16 \times 10 14 molecule cm $^{-3}$) and Cl $_2$ (2.46 \times 10 14 molecule cm $^{-3}$) in 1.01 \times 10 5 Pa of air: (a) before irradiation; (b) after 30-min irradiation; and (c) differential spectrum.

FIGURE 2. Comparison with the three subtracted IR features (1700—2100 cm $^{-1}$) obtained from the photolysis of the gas mixture: (a1) $C_5F_{11}\text{OCH}_3$ (2.16 \times 10 14 molecule cm $^{-3}$) after 180-min irradiation, (b1) $C_3F_7\text{OCH}_3$ (1.23 \times 10 14 molecule cm $^{-3}$) after 120-min irradiation, and (c1) $C_2F_5\text{OCH}_3$ (1.65 \times 10 14 molecule cm $^{-3}$) after 60-min irradiation with Cl $_2$ (2.46 \times 10 14 molecule cm $^{-3}$) in 1.01 \times 10 5 Pa of air. (a2), (b2), and (c2) are the subtracted IR features from each of the (a1), (b1), and (c1) from the IR spectra of COF $_2$.

respectively. Carbon monoxide was not detected in this experiment. The absorption bands of HCl were observed from 2726 to 3014 cm $^{-1}$. The IR absorption of intermediates appeared at 1805 and 1822 cm $^{-1}$.

Similar experiments were conducted for $C_2F_5OCH_3$ (1.65 \times 10¹⁴ molecule cm⁻³) or $C_3F_7OCH_3$ (1.23 \times 10¹⁴ molecule cm⁻³) mixed with Cl_2 (2.46 \times 10¹⁴ molecule cm⁻³). IR spectrum of $C_5F_{11}OCH_3$ in the range of 1700 to 2050 cm⁻¹ at 180 min illumination, that of $C_3F_7OCH_3$ after 120-min, and that of $C_2F_5OCH_3$ after 60-min irradiation are shown in Figure 2 [parts (a1), (b1), and (c1), respectively]. The peaks in the

TABLE 1. Comparison of Calculated and Observed Frequencies (cm⁻¹) for the IR Spectrum of Perfluoroalkyl Formates

		$v_{CH=0}$ (calcd) a	$ u_{CH=0}$ (exptI)
C ₂ F ₅ OCHO	anti	1827.4	1822
	syn	1806.0	1805
C ₃ F ₇ OCHO	anti	1827.0	1822
	syn	1805.0	1805
C ₅ F ₁₁ OCHO	anti	1827.3	1822
	syn	1805.0	1805

 $^{\it a}$ Ab initio MO calculation with RHF/6-31G(d, p) frequencies in cm $^{\!-1}\!$, scaled by 0.873.

range of $1875-1978~\rm cm^{-1}$ for COF_2 were detected as the final product. Two IR peaks at 1805 and $1822~\rm cm^{-1}$ for intermediates also appeared for the oxidation of both $C_2F_5OCH_3$ and $n\text{-}C_3F_7OCH_3$, as similarly to $n\text{-}C_5F_{11}OCH_3$. The absorption bands of the intermediates other than these two peaks were not observed in the oxidation of three ethers.

Wallington et al. (7) calculated the vibrational frequencies of syn and anti structures of CF₃OCHO by ab initio molecular orbital calculation with RHF/6-31G(d,p) to confirm the carbonyl stretching bands (C_H=O) at 1800 cm⁻¹ and 1823 cm⁻¹ for syn and anti structures, respectively. Therefore, the observed two peaks at 1805 cm⁻¹ and 1822 cm⁻¹ in the oxidation of three ethers can be attributed to the perfluoroalkyl formates. To estimate the vibrational frequencies of the carbonyl stretching bands (C_H=O) for the three perfluoroalkyl formates (C₂F₅OCHO, C₃F₇OCHO, and C₅F₁₁-OCHO), the syn and anti structures of these three perfluoroalkyl formates were calculated by the ab initio molecular orbital calculation with restricted Hartree-Fock (RHF), basis set of 6-31G-(d,p), by using the Gaussian 94 program. The calculated spectra are corrected by the scale factor of 0.873 which has been proposed for CH₃OCHO (7). The results of this calculation are summarized in Table 1. Calculated spectra for the C_H=O vibrational stretching bands for syn and anti of the three kinds of perfluoroalkyl formates show the frequencies similar to the experimental ones. The vibrational frequencies of C_H=O for syn and anti of three perfluoroalkyl formates are almost same. For the oxidation of C₂F₅OCH₃, n-C₃F₇OCH₃, and n-C₅F₁₁OCH₃, the observed spectra at 1805 and 1822 cm⁻¹ are thus attributed to the C_H=O bands of syn and anti of C₂F₅OCHO, C₃F₇OCHO, and C₅F₁₁OCHO, respectively.

Parts (a2), (b2), and (c2) of Figure 2 are obtained by subtracting the spectrum around 1900 cm⁻¹ of COF₂ from each of the IR spectra of (a1), (b1), and (c1). An absorption at 1889 cm⁻¹ was confirmed for both n-C₃F₇OCH₃ and n- \hat{C}_5 F₁₁-OCH₃ degradation. The peak at 1889 cm⁻¹ was the C=O stretching band of C₂F₅COF, which was confirmed by using the authentic sample. Although the C=O stretching band of CF₃COF has been reported to appear at 1898 cm⁻¹ (9), the absorption at 1898 cm⁻¹ (CF₃COF) was not detected in Figure 2 [parts (a2), (b2), and (c2)]. The absorption at 1889 cm^{-1} for n-C₃F₇OCH₃ can be attributed to C₂F₅COF. The peak at 1889 cm⁻¹ for *n*-C₅F₁₁OCH₃ may be attributed to C₂F₅COF, C₃F₇-COF, and/or C₄F₉COF, taking into account the degradation processes as described later, if the C=O stretching band of $C_nF_{2n+1}COF$ ($n \ge 2$) is independent of the perfluoroalkyl length.

The Quantification of the Intermediates and Final Products. The products other than the perfluoroalkyl formate were not observed at the initial reaction period for the oxidation of the three ethers. Assuming that CO_2 is produced from the oxidation of -CHO group for the perfluoroalkyl formates, the values which are derived by subtracting the CO_2 concentration formed from the loss of n- $C_5F_{11}OCH_3$ (Δ - $[HFES]-[CO_2]) would be same as the concentration of the$

FIGURE 3. The plots of IR peak area in the range of 1798—1812 cm⁻¹ for syn-C₅F₁₁OCHO (\diamondsuit) at arbitrary unit and the concentration of Δ [C₅F₁₁OCH₃]-[CO₂] (\spadesuit), and the concentration of CO₂ (\spadesuit) versus the loss of C₅F₁₁OCH₃ in the photolysis of the gas mixture of C₅F₁₁OCH₃ (2.16 \times 10¹⁴ molecule cm⁻³) with Cl₂ (2.46 \times 10¹⁴ molecule cm⁻³) in 1.01 \times 10⁵ Pa of air.

perfluoroalkyl formates. For the oxidation of *n*-C₅F₁₁OCH₃, the concentrations of $(\Delta[n-C_5F_{11}OCH_3]-[CO_2])$ are plotted against the loss of n-C₅F₁₁OCH₃ in Figure 3. Since the absorption coefficient of the perfluoroalkyl formate has not been reported and evaluated, the concentration of the perfluoroalkyl formate cannot be calculated. Therefore, the peak area in the range of 1798-1812 cm⁻¹ which has been assigned as the C_H=O stretching band of syn-C₅F₁₁OCHO is also plotted against the $\Delta[n-C_5F_{11}OCH_3]$ in Figure 3. The plots of the peak area at an arbitrary unit could be adjusted to those of (Δ [HFEs]-[CO₂]). The profile of plots of Δ [n-C₅F₁₁-OCH₃]-[CO₂] is good agreement with that of the peak area in the range of 1798-1812 cm⁻¹. For the oxidation of both $C_2F_5OCH_3$ and $n-C_3F_7OCH_3$, the profile of plots of Δ [HFEs]-[CO₂] were also similar to that of the peak area in the range of 1798-1812 cm⁻¹. This result supports that the perfluoroalkyl formate is the sole primary intermediate for the oxidation of the three ethers, and the CO₂ is quantitatively produced by the degradation of methyl perfluoroalkyl ether.

It has been reported that syn-CF₃OCHO is more stable than anti by about 1 kcal which implies the relative population of 80% syn and 20% anti (7). The C₅F₁₁OCHO may exist at the relative population of 80% syn and 20% anti on the basis of reference about CF₃OCHO. Given that the 80% of $(\Delta [n C_5F_{11}OCH_3$]-[CO₂]) corresponds to the concentration of syn-C₅F₁₁OCHO, the absorption coefficient of IR absorption band in the range of 1798-1812 cm⁻¹ for the C_H=O stretching band of syn-C₅F₁₁OCHO is calculated to be σ -(base e) = 3.9 \times 10⁻¹⁷ cm² molecule⁻¹. To confirm whether this absorption coefficient is reasonable for the C_H=O vibration band of syn-C₅F₁₁OCHO, the infrared absorption coefficient in the range of 1798-1812 cm⁻¹ was estimated by the following steps. IR absorption coefficient in the range of 1680-1820 cm⁻¹ for $C_H=O$ vibration band of CH_3OCHO was measured as σ -(base e) = 4.97×10^{-17} cm² molecule⁻¹ (a). The IR intensity for C=O vibration band of CH₃OCHO calculated by using the ab initio MO calculation with RHF/6-31G-(d,p) was 452 km/ mol (b). The ratio of (a)/(b), the experimental IR absorption coefficient to the calculated IR intensity for CH₃OCHO, was utilized to evaluate the IR absorption coefficient of syn-C₅F₁₁-OCHO as follows; the IR intensity for the C_H=O vibration band (1798–1812 $cm^{-1}\!)$ of syn-C5F11OCHO calculated with the ab initio MO was multiplied by (a)/(b). The calculated IR absorption coefficient for syn-C₅F₁₁OCHO was obtained

FIGURE 4. Change in the ratio of the concentrations of C_nF_{2n+1} OCHO (2, 3, and 5) to the initial HFEs concentrations versus the fractional loss of C_nF_{2n+1} OCH₃ (2, 3, and 5) in the photolysis of HFEs with Cl_2 (2.46 \times 10¹⁴ molecule cm⁻³) in 1.01 \times 10⁵ Pa of air: \spadesuit , C_2F_5 OCH₃, \spadesuit , C_3F_7 OCH₃ and \triangle , C_5F_{11} OCH₃. The initial concentrations of C_2F_5 OCH₃, C_3F_7 OCH₃, and C_5F_{11} OCH₃ are 1.65 \times 10¹⁴, 1.23 \times 10¹⁴, and 2.16 \times 10¹⁴ molecule cm⁻³, respectively.

to be σ -(base e) = 3.1×10^{-17} cm² molecule⁻¹, which is not so different from the experimental derived value of σ -(base e) = 3.9×10^{-17} cm² molecule⁻¹.

The rate constants of the perfluoroalkyl formates with the Cl atom can be evaluated using eq I (10)

[formate]_t/[HFE]_{t0} =
$$[\alpha/(1 - k_2/k_1)](1 - x)[(1 - x)^{(k_2/k_1 - 1)} - 1]$$
 (I)
$$x = 1 - [HFE]_t/[HFE]_{t0}$$
 (II)

where α is the yield of formate from perfluoroalkyl methyl ether (0 $\leq \alpha \leq$ 1), and k_1 and k_2 are the secondary rate constants of reactions 1 and 2, respectively.

The relevant reactions are

$$Cl + C_n F_{2n+1} OCH_3 \xrightarrow{k_1} \alpha [C_n F_{2n+1} OCHO] + other product$$
 (1)

$$Cl + C_n F_{2n+1} OCHO \xrightarrow{k_2} HCl + C_n F_{2n+1} OC(O)$$
 (2)

Ratios of the concentration of $C_nF_{2n+1}OCHO$ (n=2, 3, and5), which are used by the value of $\Delta[C_nF_{2n+1}OCH_3] - [CO_2]$ (n=2, 3, and 5), to the initial HFEs concentration are plotted against the fractional loss of HFEs in Figure 4. Each rate constant (k₁) of the H abstractions for the C₂F₅OCH₃, n-C₃F₇-OCH₃, and n-C₅F₁₁OCH₃ by Cl atom was measured by the method of relative rate constant study (11). The kinetics of (HFEs + Cl) were measured relative to reaction ($CH_4 + Cl$). The initial concentrations were $1.2-2.2 \times 10^{14}$ molecule cm⁻³ of the three ethers, $3.2-4.5 \times 10^{14}$ molecule cm⁻³ of Cl, and $4.9\times10^{14}\ molecule\ cm^{-3}$ of CH_4 in the $1.01\times10^5\ Pa$ of air diluent. The observed loss of three ethers versus those of reference compounds in the presence of Cl atoms is shown in Figure 5. Absorption bands used were at 1462.2 cm⁻¹ for $C_2F_5OCH_3$, 1461.7 cm⁻¹ for n- $C_3F_7OCH_3$, 1462.0 cm⁻¹ for n-C₅F₁₁OCH₃, and 3017 cm⁻¹ for CH₄. The k_1 values for three ethers were obtained by linear least-squares analysis of the data in Figure 5. Using the rate constant for CH₄ + Cl as 1.0 $\times 10^{-13} \, \text{cm}^3 \, \text{molecule}^{-1} \, \text{s}^{-1}$ (12), these k_1 for $C_2F_5OCH_3$, n- C_3F_7 -OCH₃ and n-C₅F₁₁OCH₃ are (11.0 \pm 1.4) \times 10⁻¹⁴ cm³

FIGURE 5. The loss of three ethers, $C_2F_5OCH_3$ (\spadesuit), $C_3F_7OCH_3$ (\spadesuit), and $C_5F_{11}OCH_3$ (\triangle), versus the loss of CH₄ compounds in the presence of CI atoms in the 1.01 \times 10⁵ Pa of air diluent.

TABLE 2. k_2/k_1 , k_1 , and k_2 Values for the Degradation of the Three Ethers

				$(\times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	
	CF ₃ OCH ₃	C ₂ F ₅ OCH ₃	C ₃ F ₇ OCH ₃	C ₄ F ₉ OCH ₃	C ₅ F ₁₁ OCH ₃
k_2/k_1		0.11 ± 0.02	0.10 ± 0.02 0.09 ± 0.02^{b}		0.17 ± 0.06
<i>k</i> ₁	14 ± 0.2^a	11.0 ± 1.4	11.8 ± 1.4	9.7 ± 1.4^c	10.3 ± 1.4
<i>k</i> ₂	0.98 ± 0.12^{a}	1.2 ± 0.5	9.1 ± 1.3^{b} 1.2 ± 0.5 0.82 ± 0.22^{b}	1.6 ± 0.7^{c}	1.8 ± 0.7

 a The data for the CI atom initiated oxidation of CF $_3$ OCH $_3$ by L. K. Christensen et al. (11). b The data for the CI atom initiated oxidation of C $_3$ F $_7$ OCH $_3$ by Y. Ninomiya et al. (13). c The data for the CI atom initiated oxidation of C $_4$ F $_5$ OCH $_3$ by T. J. Wallington et al. (7).

molecule $^{-1}$ s $^{-1}$, $(11.8\pm1.4)\times10^{-14}$ cm 3 molecule $^{-1}$ s $^{-1}$, and $(10.3\pm1.4)\times10^{-14}$ cm 3 molecule $^{-1}$ s $^{-1}$ (see Table 2), respectively.

The data in Figure 4 were fitted nonlinearly by eq I to obtain the k_2/k_1 which are summarized in Table 2. Using k_1 values which was obtained in our experiments, the rate constants (k_2) for reaction of Cl atoms with the formates C₂F₅OCHO, C₃F₇OCHO, and C₅F₁₁OCHO were calculated to be (1.2 \pm 0.5) \times 10⁻¹⁴, (1.2 \pm 0.5) \times 10⁻¹⁴, and (1.8 \pm 0.7) \times $10^{-14}\,\text{cm}^3\,\text{molecule}^{-1}\,\text{s}^{-1}\text{, respectively (see Table 2)}.$ The rate constants of the reaction of Cl with produced perfluoroalkyl formates were larger than these of perfluoroalkyl ethers. The k_2/k_1 , k_1 , and k_2 for the Cl atom initiated degradations of CF₃OCH₃ (11), n-C₄F₉OCH₃ (7), and n-C₃F₇OCH₃ (13) which have been reported by other groups were also depicted in Table 2. Measured k_1 values for three ethers were similar to that of n-C₄F₉OCH₃. The values of k_2 (Cl + C₅F₁₁OCHO) were also similar to that of k_2 (Cl + C₄F₉OCHO) and were larger than that of k_2 (Cl + C₂F₅OCHO) and k_2 (Cl + C₃F₇OCHO). The value of k_2 (Cl + C₃F₇OCHO) observed in our experiment indicated the similar value of k_2 (Cl + C₃F₇OCHO) which was reported by Ninomiya et al. in the range of experimental error.

Figure 6(a),(b) shows the change in the concentration of CO_2 and perfluoroacetyl fluoride, respectively, with the loss of HFEs (Δ HFEs) for the degradation of $C_2F_5OCH_3$ (1.65 \times 10^{14} molecule cm⁻³), n- $C_3F_7OCH_3$ (1.23 \times 10^{14} molecule cm⁻³), and n- $C_5F_{11}OCH_3$ (2.16 \times 10^{14} molecule cm⁻³) under the same conditions as in Figure 3. For the oxidation of three ethers,

FIGURE 6. The plots of the production yields of CO₂ (a) and perfluoroalkylacetyl fluoride (b) versus the fractional loss of HFEs (Δ HFEs) for the photolysis of C₂F₅OCH₃ (\spadesuit), C₃F₇OCH₃ (\spadesuit), and C₅F₁₁OCH₃ (\triangle). The initial concentrations of C₂F₅OCH₃, C₃F₇OCH₃, and C₅F₁₁OCH₃ are 1.65 \times 10¹⁴, 1.23 \times 10¹⁴, and 2.16 \times 10¹⁴ molecule cm⁻³, respectively.

the formations of CO₂ were not observed in the initial loss of HFEs. CO₂ was produced after approximately 20% loss of HFEs. When the loss of HFEs reached 100%, the production of CO₂ continues to increase. The final concentration of CO₂ for $C_2F_5OCH_3$, n- $C_3F_7OCH_3$, and n- $C_5F_{11}OCH_3$ were 1.59 \times $10^{14}\ molecule\ cm^{-3},\, 1.18\times 10^{14}\ molecule\ cm^{-3},\, and\, 2.10\times$ $10^{14}\,molecule\,cm^{-3},$ respectively, which was the same as the initial concentration of each ether. The production of perfluoroalkylacetyl fluoride was not observed at the initial reaction period. For n-C₃F₇OCH₃, perfluoroalkyl acetyl fluoride appeared after a 60% loss of n-C₃F₇OCH₃. Concerning n-C₅F₁₁OCH₃, perfluoroalkyl acetyl fluoride began to be produced after a 32% loss of n-C₅F₁₁OCH₃. The final concentrations of perfluoroalkyl acetyl fluoride for n-C₃F₇OCH₃ and $n\text{-}C_5F_{11}OCH_3$ were 2.16×10^{13} molecule cm⁻³ and 8.11 \times 10¹³ molecule cm⁻³, respectively.

For the degradation of $n\text{-}C_3F_7OCH_3$, only C_2F_5COF is produced as a perfluoroalkyl acetyl fluoride. The conversion ratio of the perfluoroalkyl group to C_2F_5COF was 11.7%. For $n\text{-}C_5F_{11}OCH_3$, the produced perfluoro acetyl fluoride may be C_2F_5COF , C_3F_7COF , and/or C_4F_9COF as mentioned in the previous section. The actual conversion ratio cannot be calculated, but the conversion ratio would be 15%, if only C_2F_5COF would be produced. Similarly, given that only C_4F_9COF was produced, the ratio would be 30%. Therefore, the conversion ratio is estimated to be in the range of 15–30%.

Figure 7(a),(b) plots the COF₂ and bis(trifluoromethyl)trioxide (CF₃OOOCF₃) formed, respectively, as a function of the loss of HFEs (ΔHFEs) for the degradation of C₂F₅OCH₃ $(1.65 \times 10^{14} \text{ molecule cm}^{-3}), n-C_3F_7OCH_3 (1.23 \times 10^{14})$ molecule cm⁻³), and n-C₅F₁₁OCH₃ (2.16 × 10¹⁴ molecule cm⁻³) under the same conditions as in Figure 3. The subtracted IR feature (700-1400 cm⁻¹) for the reaction gas mixture of C₂F₅-OCH₃ degraded after 90 min is shown in Figure 8. The absorption of CF₃OOOCF₃ appeared at 1292, 1252, and 1169 cm⁻¹ (14, 15). The concentration of CF₃OOOCF₃ was calculated by using the absorption coefficient at 1292 cm $^{-1}$ (σ (base e) = 4.1×10^{-18} cm² molecule⁻¹) (16). For the oxidation of three ethers, the formation of COF2 seems to have the same induction periods. The production of COF2 occurred after the approximately 50-60% loss of HFEs. The concentration of \hat{COF}_2 reached a constant value at 1.77×10^{14} , 2.77 \times 10¹⁴, and 6.81 \times 10¹⁴ molecule cm⁻³ for C₂F₅OCH₃, n-C₃F₇-

FIGURE 7. The plots of the concentrations of COF₂ (a) and CF₃-OOOCF₃ (b) versus the fractional loss of HFEs (Δ HFEs) obtained from the photolysis of C₂F₅OCH₃ (\spadesuit), C₃F₇OCH₃ (\spadesuit), and C₅F₁₁OCH₃ (\triangle). The initial concentrations of C₂F₅OCH₃, C₃F₇OCH₃, and C₅F₁₁OCH₃ are 1.65 \times 10¹⁴, 1.23 \times 10¹⁴, and 2.16 \times 10¹⁴ molecule cm⁻³, respectively.

FIGURE 8. The subtracted IR feature (700–1400 cm $^{-1}$) of the gas mixture of $C_2F_5OCH_3$ degraded after 60-min irradiation.

OCH₃, and n-C₅F₁₁OCH₃, respectively. On the other hand, the production of CF₃OOOCF₃ was observed after approximately 90% loss of HFEs. The final concentrations of CF_3OOOCF_3 were 1.69×10^{13} , 1.99×10^{13} , and 1.92×10^{13} molecule cm⁻³ for C₂F₅OCH₃, n-C₃F₇OCH₃, and n-C₅F₁₁OCH₃, respectively. Concerning C₂F₅OCH₃, the molar conversion for the carbon of the perfluoroalkyl group to COF_2 was 48 \pm 10%, meaning that the -CF₂ group was completely converted to COF_2 , while the $-CF_3$ - group was not oxidized to COF_2 . For the degradation of *n*-C₃F₇OCH₃, the conversion from the perfluoroalkyl group to COF_2 was 76 \pm 10%. For the degradation of n-C₅F₁₁OCH₃, the conversion from C₅F₁₁ to COF₂ was 60 \pm 10%. Probably, a part of the CF₃- moiety is transformed into the CF_3OOOCF_3 . The conversion ratios from CF₃- group to CF₃OOOCF₃ were estimated as 20%, 22%, and 16% for C₂F₅OCH₃, n-C₃F₇OCH₃, and n-C₅F₁₁OCH₃, in that order. The conversion ratios of the perfluoroalkyl group for the ethers to COF₂, perfluoroalkyl acetyl fluoride, and CF₃-OOOCF₃ after 100% loss of the perfluoroalkyl formates are summarized in Table 3. For n-C₃F₇OCH₃ and n-C₅F₁₁OCH₃,

TABLE 3. Molar Conversion Ratio of the Perfluoroalkyl Group in the Ethers to the Products

	COF₂ (%)	C _n F _{2n+1} COF ^a (%)	CF ₃ 000CF ₃ (%)	total conversion
$\begin{array}{c} C_2F_5OCH_3\\ C_3F_7OCH_3\\ C_5F_{11}OCH_3 \end{array}$	76 ± 10	0 12 15-30	20 22 16	68 ± 10 110 ± 10 91 ± 10-106 ± 10

 a CF₃COF for C₂F₅OCH₃, C₂F₅COF for C₃F₇OCH₃, C_nF_{2n+1}COF (n = 2, 3, and/or 4) for C₅F₁₁OCH_{3fhjki}.

SCHEME 1

the mass balance of the degradation of the perfluoroalkyl group is about 100%. Scheme 1 of the Cl-initiated reaction of the methyl perfluoroalkyl ether (n-CF₃CF₂CF₂OCH₃) is estimated from the identified degradation products. The perfluoroalkyl ether is completely converted to perfluoroalkyl formate (n-CF₃CF₂CF₂OCHO). The O-C bond cleavage of perfluoroalkyl formate takes place to produce the CO₂ and perfluoroalkoxy radical (CF₃CF₂CF₂O*). The degradation of perfluoroalkoxy radical proceeds through the two different pathways to mainly produce the COF₂ and has the minor production of the perfluoroacetyl fluoride (CF₃CF₂COF).

Degradation Mechanism of the Methyl Perfluoroalkyl Ethers. The initial stages of oxidation are considered as follows: H-abstraction with a Cl atom from the methyl group occurs to produce the alkyl radical (17), and, then, the alkoxy radical is formed via O₂ addition and radical—radical reactions 3–5. Actually, the detection of C₄F₉OCH₂ and C₄F₉OCH₂O₂ radicals for the degradation of HFE–7100 (C₄F₉OCH₃) was reported (7).

$$C_2F_5OCH_3 + Cl \rightarrow C_2F_5OCH_2^{\bullet} + HCl$$
 (3)

$$C_2F_5OCH_2^{\bullet} + O_2 \rightarrow C_2F_5OCH_2O_2^{\bullet}$$
 (4)

$$2C_2F_5OCH_2O_2^{\bullet} \rightarrow 2C_2F_5OCH_2O^{\bullet} + O_2$$
 (5)

$$C_2F_5OCH_2O^{\bullet} + O_2 \rightarrow C_2F_5OCHO + HO_2$$
 (6)

Hydrogen of $C_2F_5OCH_2O^{\bullet}$ is abstracted by O_2 to produce pentafluoroethyl formate (C_2F_5OCHO) as reaction 6. Relatively stable C_2F_5OCHO is oxidized through reactions 7–10 to give $C_2F_5O^{\bullet}$. The C-C cleavage of $C_2F_5O^{\bullet}$ leads to formation of the CF_3 radical and COF_2 . For $C_3F_7OCH_3$ and $C_5F_{11}OCH_3$,

 $C_3F_7O^{\bullet}$, and $C_5F_{11}O^{\bullet}$ are produced by a route analogous to the degradation processes of $C_2F_5OCH_3$. Subsequently, the cleavage of C-C bond occurs to form $C_2F_5^{\bullet}$ and $C_4F_9^{\bullet}$ along with COF_2 . The C-C bond cleavage of $C_2F_5^{\bullet}$ and $C_4F_9^{\bullet}$ occurs gradually through such reactions as 12a-d and 14a-d, and the $(n-1)COF_2$ (n=3 and 5) and CF_3^{\bullet} were produced finally. In another pathway, the perfluoro acetyl fluoride is produced. The possible process of formation of it is that $C_3F_7O^{\bullet}$ may react with HO_2 (18) to produce C_3F_7OH , which is thermally transformed to C_2F_5COF (19). $C_nF_{2n+1}O^{\bullet}$ (n=5,4, and 3) also may react with HO_2 to produce $C_{n-1}F_{2n-1}COF$ (n=5,4, and 3) as 15a-b. However, the processes of formation of the perfluoroacetyl fluoride have not been revealed. Further discussion of these formation processes will be needed.

$$C_2F_5OCHO + Cl \rightarrow C_2F_5OCO^{\bullet} + HCl$$
 (7)

$$C_9F_5OCO^{\bullet} + O_9 \rightarrow C_9F_5OC(O)OO^{\bullet}$$
 (8)

$$2C_{2}F_{5}OC(O)OO^{\bullet} \rightarrow 2C_{2}F_{5}OCOO^{\bullet} + O_{2}$$
 (9)

$$C_2F_5OCO_2^{\bullet} \rightarrow C_2F_5O^{\bullet} + CO_2$$
 (10)

$$C_2F_5O^{\bullet} \rightarrow CF_3^{\bullet} + COF_2$$
 (11)

In the case of C₃F₇OCH₃

$$C_3F_7O^{\bullet} \rightarrow C_2F_5^{\bullet} + COF_2$$
 (12a)

$$C_2F_5' + O_2 \rightarrow C_2F_5O_2'$$
 (12b)

$$2C_2F_5O_2^{\bullet} \rightarrow 2C_2F_5O^{\bullet} + O_2$$
 (12c)

$$C_2F_5O^{\bullet} \rightarrow CF_3^{\bullet} + COF_2$$
 (12d)

$$C_3F_7O^{\bullet} + HOO \rightarrow C_3F_7OH + O_2$$
 (13a)

$$C_3F_7OH \rightarrow C_9F_5COF + HF$$
 (13b)

In the case of C₅F₁₁OCH₃

$$C_5F_{11}O^{\bullet} \rightarrow C_4F_9^{\bullet} + COF_2$$
 (14a)

$$C_4F_9^{\bullet} + O_2 \rightarrow C_4F_9O_2^{\bullet} \tag{14b}$$

$$2C_4F_9O_2^{\bullet} \rightarrow 2C_4F_9O^{\bullet} + O_2$$
 (14c)

$$C_4F_9O^{\bullet} \rightarrow \rightarrow \rightarrow CF_3^{\bullet} + 3COF_2$$
 (14d)

$$C_n F_{2n+1} O^{\bullet} + HO_2 \rightarrow C_n F_{2n+1} OH + O_2$$
 (15a)

(n = 5, 4, and 3)

$$C_n F_{2n+1}OH \rightarrow C_{n-1} F_{2n-1}COF + HF$$
 (15b)

 CF_3 radicals react with oxygen to produce the CF_3O_2 radicals (20) as shown in reaction 16, and, subsequently, the bimolecular reaction of CF_3O_2 (reaction 17) takes place to produce the CF_3O^{\bullet} (21-23). The CF_3O radical reacts with CF_3O_2 to produce CF_3OOOCF_3 as shown in reaction 18.

$$CF_3' + O_2 \rightarrow CF_3O_2'$$
 (16)

$$2CF_3O_2^{\bullet} \rightarrow CF_3O^{\bullet} + O_2 \tag{17}$$

$$CF_3O_2^{\bullet} + CF_3O^{\bullet} \rightarrow CF_3OOOCF_3$$
 (18)

FIGURE 9. ^{1}H NMR spectrum of the photolysis mixture of $C_{5}F_{11}OCH_{3}$ (12.3 \times 10 14 molecule cm $^{-3}$) and Cl $_{2}$ (49.2 \times 10 14 molecule cm $^{-3}$) in 1.01 \times 10 5 Pa of air sampled in CDCl $_{3}$ after 30-min irradiation.

Estimation of Environmental Impacts of the Degradation Products. Formation of various kinds of relatively stable intermediates and degradation products has been confirmed in this study. The Cl-initiated oxidation of three methyl perfluoroalkyl ethers (n- $C_nF_{2n+1}OCH_3$; n=2, 3, and 5)produces the corresponding perfluoroalkyl formates (n- $C_nF_{2n+1}OCHO$; n=2, 3, and 5) as the sole product. This formation process of the perfluoroalkyl formates is insensitive to the difference in the perfluoroalkyl length of the compounds. In general, the reaction rate of organic compounds with Cl atoms is faster than that with OH radicals (12). Therefore, the lifetime of the perfluoroalkyl formates in the troposphere was estimated by assuming the k_2 values in Table 2 as an upper limit of the reaction rate constant of OH \pm $C_nF_{2n+1}O\hat{C}\hat{H}O$. Using the average tropospheric OH concentration of 7.5×10^5 molecules cm⁻³ (7), the corresponding lifetimes were calculated to be longer than 3.5 \pm 0.10, 3.6 \pm 0.10, and 2.4 \pm 0.3 years for C₂F₅OCHO, C₃F₇OCHO, and C₅F₁₁OCHO, respectively, assuming a temperature of 298 K. Since the lifetimes of the formates seem to be relatively long with respect to reaction with OH radicals, tropospheric removal processes by water droplets such as clouds and/or rain will be important. A reaction gas mixture of n-C₅F₁₁- $OCH_3 (1.23 \times 10^{15} \, molecules \, cm^{-3}) / Cl_2 (4.92 \times 10^{15} \, molecules)$ cm $^{-3})/air\ (1.01\ \times\ 10^5\ Pa)$ which was irradiated for 30 min was taken by a stainless steel cylinder cooled at 203 K. The collected sample was transferred to CDCl₃ solution in a NMR sample tube and was analyzed by a 1H and 19F-NMR spectrometer. The spectrum of ¹H NMR shows that water is present in the sample (see Figure 9). In the ¹H NMR spectrum, the peak of the formyl proton appeared at 8.03 ppm. The peak at 119 ppm in ¹⁹F NMR was assigned as F atom of -CF₂-COOH. It is thus implied that the C₅F₁₁OCHO produced in the gas-phase reaction is hydrolyzed to CF₃(CF₂)₄OH and formic acid in the water which contained HCl in the steel cylinder. No NMR peaks which could be assigned to CF₃(CF₂)₄-OH were observed. CF₃(CF₂)₄OH, which is unstable (23), may be readily converted to CF₃(CF₂)₃COF, which may be further hydrolyzed to produce a perfluoro carboxylic acid. Further studies on an uptake and a chemical reaction of the perfluoroalkyl formates by water will be desired to estimate their environmental impacts including their GWP values.

The formyl group of perfluoroalkyl formate is oxidized to CO_2 via C-C cleavage in the presence of oxygen. The perfluoroalkyl group mainly reacts with O_2 to produce R_f - CF_2O_7 , followed by C-C bond cleavage to form COF_2 . However, when the carbon number of the perfluoroalkyl group is larger than 2, e.g. $n-C_3F_7$ - and $n-C_5F_{11}$ -, their corresponding a few perfluoro alkoxy radicals are converted to perfluoroacetyl fluorides. The terminal CF_3 - group is oxidized to produce CF_3OOCF_3 through the CF_3O^7 in the chamber experiment. However, CF_3OOCF_3 is unlikely to

form in the troposphere because the concentration of the CF₃O* and CF₃O₂ is considered to be very low.

As has been reported, the COF_2 and CF_3COF have the values larger than 0.5 of Hk, where H is the Henry's law constant and k is the hydrolysis rate constant and their tropospheric lifetimes by clouds/rain are estimated less than 30 days (24). For the perfluoroalkyl halides ($C_nF_{2n+1}COF$, n > 2), the values of Hk have not been determined but may be similar to those for COF_2 and CF_3COF . It is thus inferred that the perfluoroalkyl halides may not contribute to the global warming, because their short lifetimes will be estimated. However, it is to be noted that the perfluoroalkyl halides will be converted to perfluoroalkyl carboxylic acids and HF, which are suspected to cause ecological impacts.

In summary, we have the potential degradation products of the three ethers in troposphere. All the products except CO_2 are likely to be removed by clouds/rainwater, taking into account the rates of their gas-phase reactions estimated. The products themselves may not cause human health and ecological systems, but more attention should be paid to perfluoroalkyl carboxylic acids and HF.

Acknowledgments

The author (K. Nohara) thanks H. Yamamoto of Asahi Glass Company for the advice on computational calculations.

Literature Cited

- (1) Molina, M. B.; Rowland, F. S. Nature 1974, 249, 810.
- (2) Fisher, D. A.; Hales, C. H.; Filkin, D. L.; Ko, M. K. W.; Sze, N. D.; Connel, P. S.; Wuebbles, D. J.; Isaksen, I. S. A.; Strordal, F. *Nature* 1990, 344, 508.
- (3) Sekiya, A.; Misaki, S. Chemtech 1996, 26, 44.
- (4) Cavalli, F.; Glasius, M.; Hjorth, J.; Rindone, B.; Jensen, N. R. Atmos. Environ. 1998, 32, 3767.
- Heathfield, A. E.; Anastasi, C.; Pagsberg, P.; McCulloch, A, Atmos. Environ. 1998, 32, 711.
- (6) Tokuhashi, K.; Takahashi, A.; Kaise, M.; Kondo, S.; Sekiya, A.; Yamashita, S.; Ito, H. Int. J. Chem. Kinet. 1999, 31, 846.
- (7) Wallington, T. J.; Schneider, W. F.; Sehested, J.; Bilde, M.; Platz, J.; Nielsen, O. J.; Christensen, L. K.; Molina, M. J.; Molina, L. T.;

- Wooldridge, P. W. J. Phys. Chem. A 1997, 101, 8264.
- (8) Itoh, K.; Kato, J.; Nakayama, Y.; Kutsuna, S.; Koike, K.; Ibusuki, T. Chemosphere 1994, 29, 1701.
- Kutsuna, S.; Toma, M.; Takeuchi, K.; Ibusuki, T. Environ. Sci. Technol. 1999, 33, 1071.
- (10) Meagher, R. J.; McIntosh, M. E.; Hurly, M. D.; Wallington, T. J. Int. J. Chem. Kinet. 1997, 29, 691.
- (11) Christensen, L. K.; Wallington, T. J.; Guschin, A.; Hurley, M. D. J. Phys. Chem. A 1999, 103, 4202.
- (12) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, K. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. JPL Publication No 97-4; NASA Propulsion Laboratory: Pasadena, CA, 1997.
- (13) Ninomiya, Y.; Kawasaki, M.; Guschin, A.; Molina, L. T.; Molina, M. J.; Wallington, T. J. Environ. Sci. Technol. 2000, 34, 2973.
- (14) Tompson, P. G. J. Am. Chem. Soc. 1967, 89, 4316.
- (15) Hirschmann, R. P.; Fox, W. B.; Anderson, L. R. J. Phys. Chem. A 1969, 25A, 811.
- (16) Nielsen, O.J.; Ellermann, T.; Sehested, J.; Bartkiewicz, E.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1992, 24, 1009.
- (17) Tuazon, E. C.; Atkinson, R. Environ. Sci. Technol. 1994, 24, 2306.
- (18) Kormann, C. W.; Bahnemann, D.; Hoffmann, M. R. Environ. Sci. Technol. 1991, 25, 494.
- (19) Ishikawa, N.; Kobayashi, Y. *Fluorine Chemistry*; published in Koudansha, printed in Japan, 1979; p 101.
- (20) Nielsen, O. J.; Ellermann, T.; Sehested, J.; Bartkiewicz, E.; Wallington, T. J.; Hurley, M. D. Int J. Chem. Kinet. 1992, 24, 1009.
- (21) Wallington. T. J.; Hurley, M. D.; Schneider, W. F.; Sehested, J.; Nielsen, O. J. J. Phys. Chem. A 1993, 97, 7606.
- (22) Chen, J.; Young, V.; Niki, H.; Magid, H. J. Phys. Chem. A 1997, 101, 2648.
- (23) Mogelberg, T. E.; Sehested, J.; Bilde, M.; Wallington T. J.; Nielsen, O. J. J. Phys. Chem. A 1996, 100, 8882.
- (24) De Bruyn, W. J.; Shorter J. A.; Davidovits P.; Worsnop D. R.; Zahniser, M. S.; Kolb, C. E. Environ. Sci. Technol. 1995, 29, 1179.

Received for review January 12, 2000. Revised manuscript received September 26, 2000. Accepted October 12, 2000.

ES000895F