Linear Algebra

Orthogonal Matrices and QR Decomposition: Part 1

Automotive Intelligence Lab.

Contents

- Orthogonal matrices
- **■** Gram-Schmidt
- QR decomposition
- Summary
- Code exercise

Orthogonal Matrices

Introduction of Orthogonal Matrices

- Important and special matrices for several decompositions
 - ▶ QR decomposition
 - ► Eigen decomposition
 - ► Singular value decomposition
- Letter Q
 - Often used to indicate orthogonal matrices.

Mathematical Expression of Orthogonal Matrices

Two properties of orthogonal matrices

- Orthogonal columns
 - All columns are pผ่า- ผ่งย orthogonal.
- Unit-norm columns
 - The norm (geometric length) of each column is exactly [].

G 62 63 . 94

$$Q = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 12 & 13 \end{bmatrix}$$

$$Q^{T} \cdot Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Translate those two properties into a mathematical expression.

- (a, b) alternative notation for the dot product
- *i*th column of matrix

$$\langle q_i, q_j \rangle = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$

Mathematical expression of orthogonal matrices

- Dot product of a column with itself is 1.
- Dot product of a column with any other column is 0.

Characteristic of Orthogonal Matrices

- **Definition of Matrix multiplication**
 - ▶ Dot products between all rows of the left matrix with all columns of the right matrix
- lacksquare Q^T is a matrix that multiplies Q to produce the identity matrix.
 - Exact same definition as the matrix [w/er/se]
 - ▶ Inverse of an orthogonal matrix is its transpose.
 - Matrix inverse: tedious and prone to numerical in accuracies.
 - Matrix transpose: fast and accurate

- if) Q orthogonal.

 Q=QT

Identity matrix is an example of an orthogonal matrix.

$$Q^TQ=I$$

Characteristic of an orthogonal matrix

Example of Orthogonal Matrices

Practice in MATLAB with below matrices

- Does each column have unit length?
 - Yes.
- ▶ Does each column orthogonal to other columns?
 - [es].
- ightharpoonup Compute QQ^T .
 - Is that still the identity matrix? Try it to find out!

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \qquad \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$

Example of an orthogonal matrices

```
% Clear workspace, command
window, and close all
figures
clc; clear; close all;

% Display results
disp("Q1T * Q1");
Q1 = [1 -1; 1 1]/sqrt(2);
Q2 = [1 2 2; 2 1 -2; -2 2 -
1]/3;

% Orthogonal matrices
Q1TQ1 = Q1' * Q1;
Q2TQ2 = Q2' * Q2;
disp(q2TQ1);
disp(Q2TQ2);
```

MATLAB code to compute QQ^T

Gram-Schmidt

Process of Gram Schmidt

Way of making two or more vectors perpendicular to each other

- Technical definition of Gram Schmidt
 - Method of constructing an orthogonal basis
 - From a set of vectors in an inner space.
 - Most commonly Euclidean space \mathbb{R}^n equipped with standard inner product.
- Takes a finite, linearly independent set of vectors $S = \{v_q, ..., v_k\}$.
 - ► Generate an orthogonal set $S' = \{u_1, ..., u_k\}$.
 - Spans the same k-dimensional subspace of \mathbb{R}^n as S.
- Application to column vectors of full column rank matrix
 - Yields the QR decomposition.
 - Decomposed into orthogonal and a triangular matrix.
 - We will study QR decomposition in next section!

Basic principles of the Gram-Schmidt process

Reference: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

Vector Projection

- \blacksquare Vector projection of a vector v on a nonzero vector u.
 - ightharpoonup < v, u >: inner product of vectors u and v.
 - $ightharpoonup proj_{u}(v)$: orthogonal projection of v onto the line spanned by u.
 - ▶ If *u* is zero vector,
 - $proj_{u}v$ is defined as zero vector.

$$proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

Vector projection

Expression of Gram Schmidt Using Vector Projection

- Given k vectors $v_1, ..., v_k$.
 - ▶ Gram Schmidt process defines vectors $u_1, ..., u_k$ as shown in below expression.
 - $u_1, ..., u_k$ is required system of orthogonal vectors.
 - Known as Gram-Schmidt orthogonal: zation
 - Normalized vector e_1 , ... e_k form an orthonormal set.
 - Known as Gram-Schmidt orthogonalization.

$$u_{1} = v_{1}$$
 $e_{1} = \frac{u_{1}}{\|u_{1}\|}$ $u_{2} = v_{2} - proj_{u_{1}}(v_{2})$ $e_{2} = \frac{u_{2}}{\|u_{2}\|}$ $u_{3} = v_{3} - proj_{u_{1}}(v_{3}) - proj_{u_{2}}(v_{3})$ $e_{2} = \frac{u_{2}}{\|u_{2}\|}$ \vdots \vdots $u_{k} = v_{k} - \sum_{i=1}^{k-1} proj_{u_{j}}(v_{k})$ $e_{k} = \frac{u_{k}}{\|u_{k}\|}$

Expression of Gram Schmidt using vector projection

Check Formula Validity

- First, compute $\langle u_1, u_2 \rangle$
 - ightharpoonup Substituting previous formula for u_2 .
 - $u_2 = v_2 proj_{u_1}(v_2)$
 - ► Get zero.
- Then, Compute $< u_1, u_3 >$
 - \triangleright Substituting previous formula for u_3 .
 - $u_3 = v_3 proj_{u_1}(v_3) proj_{u_2}(v_3)$
 - ► Get zero.

$u_1 = v_1$	$e_1 = \frac{u_1}{\ u_1\ }$
$u_2 = v_2 - proj_{u_1}(v_2)$	$\boldsymbol{e_2} = \frac{\boldsymbol{u_2}}{\ \boldsymbol{u_2}\ }$
$u_3 = v_3 - proj_{u_1}(v_3) - proj_{u_2}(v_3)$	$\boldsymbol{e_2} = \frac{\boldsymbol{u_2}}{\ \boldsymbol{u_2}\ }$
:	:
$u_k = v_k - \sum_{j=1}^{k-1} proj_{u_j}(v_k)$	$\boldsymbol{e_k} = \frac{\boldsymbol{u_k}}{\ \boldsymbol{u_k}\ }$

Expression of Gram Schmidt using vector projection

Geometrically Check Formula Validity

lacksquare To compute u_i ,

- \triangleright Projects v_i orthogonally onto subspace U.
 - U: generated by $u_1, ..., u_{i-1}$
 - Same as subspace generated by $v_1, ..., v_{i-1}$
 - Vector u_i defined to be the difference between v_i .

Expression of Gram Schmidt using vector projection

► This projection guaranteed to be **orthogonal to all of the vectors in the subspace** *U*.

Gram-Schmidt and Linearly Independent Sequence

■ Gram-Schmidt process applies to linearly independent countably infinite sequence $\{v_i\}_i$.

Result of application

- An orthogonal(or orthonormal) sequence $\{u_i\}_i$.
 - For natural number n: algebraic span of $v_1, ..., v_n$ is same as that of $u_1, ..., u_n$.

How about applied to a linearly dependent sequence?

- ▶ Outputs **0** vector in the i^{th} step.
 - Assuming that v_i is a linear combination of $v_1, ..., v_{i-1}$.
- ▶ To produce orthonormal basis.
 - Algorithm should test for zero vectors in the output.
 - Algorithm should discard zero vectors.
 - Because no multiple of a zero vector can have a length of ...
 - Number of vectors output by algorithm will be dimension of the space spanned by the original inputs.

Euclidean Space

- Consider following set of vectors in \mathbb{R}^2 as Eq 1...
 - With conventional inner product
- Then, perform Gram-Schmidt as Eq 2...
 - ▶ To obtain orthogonal set of vectors!

$$S = \left\{ v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$$

Eq 1. Set of vectors

$$\boldsymbol{u}_{1} = \boldsymbol{v}_{1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\boldsymbol{u}_{2} = \boldsymbol{v}_{2} - proj_{\boldsymbol{u}_{1}}(\boldsymbol{v}_{2}) = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - proj_{\begin{bmatrix} 3 \\ 1 \end{bmatrix}} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \frac{8}{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix}$$

Eq 2. Gram-Schmidt

Check Whether Orthogonal or Not

- lacksquare Check that vectors u_1 and u_2 are indeed orthogonal as Eq 1..
 - If dot product of two vectors is 0, then they are orthogonol.
- In case of non-zero vectors,
 - ▶ We can normalize vectors by dividing out their sizes as Eq 2...

$$\langle \boldsymbol{u}_1, \boldsymbol{u}_2 \rangle = \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix} \right) = -\frac{6}{5} + \frac{6}{5} = 0$$

Eq 1. Dot product of two vectors

$$\boldsymbol{e}_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$e_2 = \frac{1}{\sqrt{\frac{40}{25}}} \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Eq 2. Normalizing vectors

Code Exercise of Gram-Schmidt algorithm using MATLAB

- Code Exercise (09_01)
 - ► Follow the order of Gram-Schmidt algorithm in previous slide.

```
%% Gram-Schmidt Algorithm
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Initialize the matrices
A = [8 \ 1 \ 6; \ 3 \ 5 \ 7; \ 4 \ 9 \ 2];
Q = zeros(3);
% Perform the Gram-Schmidt process
for i = 1:size(A, 2)
   % Start with the original vector
    V = A(:, i);
    % Subtract the projections onto all previously obtained orthogonal vectors
        V = V - (Q(:, j)' * A(:, i)) / (Q(:, j)' * Q(:, j)) * Q(:, j);
    % Normalize the vector to make it orthogonal
    Q(:, i) = v / norm(v);
end
% Display the original and orthogonalized matrices
disp('Original Matrix A:');
disp(A);
disp('Orthogonalized Matrix Q:');
disp(Q);
% Verify orthogonality by computing dot proudct
disp('Dot products between different vectors of Q (should be close to zero):');
for i = 1:size(Q, 2)
    for j = i+1:size(0, 2)
        fprintf('Dot product between Q(:, %d) and Q(:, %d): %f\n', i, j, dot(Q(:, i), Q(:, j)));
    end
end
                                            MATLAB code
```


THANK YOU FOR YOUR ATTENTION

