

Hilos

- Revisión
- Modelos Multihilados
- ▶ Librerías de Hilos
- ▶ Aspectos sobre Hilos
- ▶ Ejemplos de Sistemas Operativos
- ▶ Hilos en Linux

KMC © 2017

Objetivos

- Introducir la noción de hilo una unidad fundamental de la utilización CPU que forma la base de los sistemas de computación multihilados
- Discutir las APIs para librerías de hilos Pthreads, Win32 y Java
- Examinar aspectos relacionados a las programación multihilos

KMC © 2017

Sistemas Operativos - Hilos

Hilos

- Un thread (o proceso de peso liviano) es una unidad básica de utilización de CPU, consiste de:
 - > contador de programa
 - conjunto de registros
 - espacio de stack
- Un thread comparte con sus threads compañeros su:
 - Sección de código
 - > sección de datos
 - recursos del SO.
- Un proceso tradicional o peso pesado es igual a una tarea con un solo thread.

KMC © 2017

Hilos

- En una tarea con múltiple threads, mientras un thread servidor está bloqueado y esperando, un segundo thread de la misma tarea puede estar corriendo.
- Cooperación de múltiple threads en una misma tarea confiere alto procesamiento total y mejora el rendimiento.
 - ▶ Aplicaciones que requieren compartir un buffer común (p.e., productor-consumidor) se benefician con la utilización de threads.
- Los threads proveen un mecanismo que permite a procesos secuenciales hacer llamadas al sistema bloqueantes mientras que también logra paralelismo.

KMC © 2017

Beneficios

- ▶ Capacidad de Respuesta
- ▶ Compartir Recursos
 - Dado que los threads dentro de un mismo proceso comparten memoria y archivos, pueden comunicarse unos con otros sin invocar al kernel
- **Economía**
 - Toma menos tiempo crear un nuevo thread que un proceso
 - Menos tiempo terminar un thread que un proceso
 - Menos tiempo en conmutar entre dos threads dentro del mismo proceso
- Utilización de Arquitecturas Multiprocesador
- Escalabilidad

KMC © 2017

Sistemas Operativos - Hilos

Programación Multicore

- Los sistemas multicore introducen nuevos desafíos.
 - Dividir actividades
 - **▶** Balance
 - Partición de datos
 - Dependencia de los datos
 - Verificación y depuración

KMC © 2017

Ejecución Concurrente y Paralela Un solo núcleo T_1 T_2 T_3 T_2 T_3 T_4 T_1 T_4 T_1 tiempo **Múltiples núcleos** core 1 T_1 T_3 T₁ T_3 T_1 core 2 T_2 T_4 T_2 T_4 T_2 tiempo KMC © 2017

Hilos - Clasificación

- ▶ A nivel de **usuario** la administración es realizada por librerías a nivel de usuario.
 - ▶ Tres librerías primarias:
 - **▶** POSIX Pthreads
 - ▶ Win32 threads
 - Java threads
- ▶ A nivel de KERNEL la administración es realizada por el sistema operativo
 - ▶ Ejemplos:
 - ▶ Windows XP/2000/Vista/7/8
 - > Solaris (de Sun, ahora Oracle)
 - > Tru64 UNIX (de Digital, luego Compaq, finalmente HP)
 - Mac OS X (Apple)

KMC © 2017

Modelos de Multihilados

- Muchos a Uno (M:1)
- ▶ Uno a Uno (1:1)
- ▶ Muchos a Muchos (M:M)

KMC © 2017

Sistemas Operativos – Hilos

Muchos a Uno

- ▶ Muchos hilos a nivel de usuario mapean a un hilo a nivel de kernel.
- Usado en sistemas que no soportan hilos a nivel kernel.

KMC © 2017

Muchos a Muchos

- Permite que muchos hilos a nivel de usuario mapeen a muchos hilos a nivel de kernel
- Permite al SO crear un número suficiente de hilos a nivel de kernel
- Solaris antes de la versión 9
- Windows NT/2000 en adelante con paquete ThreadFiber

KMC © 2017

Sistemas Operativos - Hilos

Uno a Uno

- ▶ Cada thread nivel usuario mapea a un thread kernel.
- ▶ Ejemplos
 - ▶ Windows NT/XP/2000 y los que siguen
 - ▶ Linux
 - ▶ Solaris 9 y los que siguen

KMC © 2017

Librerías de Hilos

- Las librerías de hilos proveen a los programadores con APIs para crear y administrar hilos
- Dos formas primarias de implementarlas
 - Librerías enteramente en espacio de usuario
 - Librería a nivel de Kernel soportada por el SO

KMC © 2017

Sistemas Operativos - Hilos

Librería de hilos - Pthreads

- Pueden ser provistas sea a nivel de usuario como a nivel de kernel
- ► Es un standard POSIX (IEEE 1003.1c) API para creación y sincronización de hilos
- Las API especifican el comportamiento de la librería de hilos
- ▶ Común en SOs UNIX (Solaris, Linux, Mac OS X)

KMC © 2017

Cancelación de Hilos

- ▶ Terminar un hilo antes que finalice
- Dos propuestas generales:
 - Cancelación asincrónica termina el hilo señalado inmediatamente
 - ▶ Cancelación Diferida permite al hilo señalado verificar periódicamente si debería ser cancelado

KMC © 2017

Sistemas Operativos - Hilos

Manejo de Signal

- Los Signals son usados en UNIX para notificar a un proceso que un particular evento ha ocurrido
- Un signal handler es usado para signals a procesos
 - 1. El Signal es generado por un particular evento
 - 2. El Signal es enviado a un proceso
 - 3. El Signal es manejado
- Opciones:
 - Enviar el signal al hilo sobre el cual el signal se aplica
 - ▶ Enviar el signal a cada hilo en el proceso
 - Enviar el signal a ciertos hilos en el proceso
 - Asignar un hilo específico para recibir todos los signals al proceso

KMC © 2017

Pools de Hilos

- ▶ Crea un número de hilos en un pool donde esperan por trabajo
- Ventajas:
 - Usualmente es ligeramente mas rápido servir un requerimiento con un hilo existente que crear uno nuevo
 - Permite que el número de hilos de la aplicación sea liitado al tamaño del pool

KMC © 2017

Sistemas Operativos - Hilos

Hilos en Linux

- Linux se refiere a ellos como tareas más que como hilos
- La creación de hilos es hecha por la llamada a sistema clone()
- clone() permite a una tarea hija compartir el espacio de direcciones de la tarea-padre (proceso)

KMC © 2017

Bibliografía:

- Silberschatz, A., Gagne G., y Galvin, P.B.; "*Operating System Concepts*", 7^{ma} Edición 2009; 9^{na} Edición 2012; 10^{ma} Edición 2018.
- Stallings, W. "Operating Systems: Internals and Design Principles", Prentice Hall, 5^{ta} Edición 2005; 6^{ta} Edición 2009; 7^{ma} Edición 2011, 9^{na} Edición 2018.
- Tanenbaum, A.; "*Modern Operating Systems*", Addison-Wesley, 3^{ra} Edición 2008, 4^{ta}. Edición 2014.

KMC © 2017