DSPS Lab VU4F2223112



# VASANTDADA PATIL PRATISHTHAN'S COLLEGE OF ENGINEERING AND VISUAL ARTS

ISO 9001:2015 Certified Institute

Department of Information Technology
NBA Accredited Course (Dated 01/07/2024 to 30/06/2027)

# EXPERIMENT - 6

Aim: Classification modeling

- a. Choose classifier for classification problem.
- b. Evaluate the performance of classifier.

## Theory:

### 1. Introduction to Classification

Classification is a type of supervised learning where the goal is to categorize data into predefined labels or classes. It involves training a model on labeled data so that it can make predictions on new, unseen data. In this experiment, we use the **Random Forest**Classifier to predict hair fall based on different features.

### 2. Dataset and Preprocessing

# Feature Selection:

- The dataset consists of various attributes related to hair fall.
- The target variable (hair\_fall) is a categorical feature indicating whether hair fall occurs.
- The independent variables (X) consist of different factors that may contribute to hair fall.

### Data Splitting:

- The dataset is split into **training (80%)** and **testing (20%)** sets using train test split().
- The training set is used to train the model, while the testing set evaluates its performance.

## Feature Scaling:

- Since features may have different units and magnitudes, we apply **Standardization** using StandardScaler().
- Standardization transforms the features to have a mean of 0 and standard deviation of 1, improving the model's performance.

## 3. Random Forest Classifier

PVPPCOE & VA TE-IT B

DSPS Lab VU4F2223112

Random Forest is an **ensemble learning method** that constructs multiple decision trees and combines their outputs for more accurate predictions.

# Key Advantages of Random Forest:

- Handles missing values and noise well.
- Reduces overfitting compared to a single decision tree.
- Can handle both classification and regression tasks.

#### Working of Random Forest:

- 1. Multiple decision trees are trained on different random subsets of the training data.
- 2. Each tree makes a prediction, and the majority vote is taken for classification.
- 3. The final prediction is based on the combined outputs of all trees.

#### 4. Model Evaluation

#### Accuracy Score:

- The accuracy score is calculated using accuracy score(y test, y pred).
- It measures how many predictions were correct compared to the total number of samples.

### Classification Report:

RandomForestClassifier(random\_state=42)

- Provides metrics like Precision, Recall, and F1-score for each class.
- classification\_report(y\_test, y\_pred) generates the report.

# Program:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
df = pd.read_csv("hair_loss.csv")
# Split the data into training and testing sets
X = df.drop('hair_fall', axis=1) # Features (all columns except hair_fall)
y = df['hair_fall'] # Target variable
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Classification model, random forest
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
                                     . .
       RandomForestClassifier
```

PVPPCOE & VA TE-IT B

DSPS Lab VU4F2223112

```
[12] # Evaluate the model
       y_pred = model.predict(X_test)
       accuracy = accuracy_score(y_test, y_pred)
       print("Accuracy:", accuracy)
       print(classification_report(y_test, y_pred))

→ Accuracy: 0.17085

                     precision
                                 recall f1-score
                                                    support
                  0
                          0.18
                                    0.20
                                              0.19
                  1
                          0.17
                                    0.19
                                              0.18
                                                        3317
                  2
                                    0.18
                                              0.18
                                                        3296
                          8.17
                  3
                          0.16
                                    0.15
                                              0.16
                                                        3328
                  4
                          0.16
                                    0.14
                                              0.15
                                                        3345
                  5
                          0.17
                                    0.16
                                              0.17
                                                        3366
                                              0.17
                                                       20000
          accuracy
                          0.17
                                    0.17
                                                       20000
          macro avg
                                              0.17
                                                       20000
       weighted avg
                          0.17
                                    0.17
                                              0.17
```



**Conclusion:** Thus, we have successfully implemented classification modeling using random forest

PVPPCOE & VA TE-IT B