

Note:- This playlist is only for explanation of the solutions.

See my "DP Concepts & dons"

Playlist for understanding

DP from Scratch...

Facebook] -> code storywith MIK
Twitter -> cswith MIK

-> codestory with MIK

Companies

You have n dice and each die has k faces numbered from 1 to k.

Given three integers n, k, and target, return the number of possible ways (out of the kn total ways) to roll the dice, so the sum of the face-up numbers equals target. Since the answer may be too large, return it **modulo** 109 + 7.

dice 1	dice 2	taget = 7
1	6	/
2	5	/
3	4	
4	3	
5	2_	
6		

$$n=2$$
, $K=6$, taget = 7

Solve (int n, int K, int targed) {

if (target <0) return 0,

if
$$(n = = 0)$$
 return (target = = 0);

if $(+ (n)(+n) = -1)$ return (target = = 0);

int ways = 0;

$$T \cdot C = K * K * K \dots ndicer$$

$$= O(K^n) possibility.$$

$$\gamma$$
 emoize = $f[3i][mi]$

Bottom U):-

f[n+1] [target+1];

int solve(int w, int k, int target) {

" target = 1 int ways = 0 j for (face = 1; face <= K; face++){ ways= (ways+ + [i-1](j-lace))/H t[i][j] = ways; f [n][target];