# 05 - WLAN Encryption and Data Integrity Protocols WIRELESS LAN SECURITY

#### Introduction

- 802.11i adds new encryption and data integrity methods.
- includes encryption algorithms to protect the data, cryptographic integrity checks to prevent message modification and replay, and dynamic key management algorithms
- describes the new security association concept associated with 802.11i.

#### IEEE 802.11i

 enhances 802.11 with several new security mechanisms to ensure message confidentiality and integrity.

 also incorporates the 802.1x port authentication algorithm to provide a framework for strong mutual authentication and key management.

#### **Features**

- Two new network types, called Transition Security Network (TSN) and Robust Security Network (RSN)
- New data encryption and data integrity methods: Temporal Key Integrity Protocol (TKIP) and Counter mode/CBC-MAC Protocol (CCMP)
- New authentication mechanisms using the Extensible Authentication Protocol (EAP)
- Key management via security handshake protocols conducted over 802.1x

#### **TKIP**

- a cipher suite
- includes a key mixing algorithm and a packet counter to protect cryptographic keys
- includes Michael, a Message Integrity Check (MIC) algorithm that, along with the packet counter, prevents packet replay and modification

#### **CCMP**

- based on AES that accomplishes encryption and data integrity
- provides stronger encryption and message integrity than TKIP
- not compatible with the older WEPoriented hardware

#### **RSN**

- RSN allows only machines using TKIP/Michael and CCMP.
- A TSN is one that supports both RSN and pre-RSN (WEP) machines to operate.
- RSN is definitely preferred, and getting all networks to use CCMP exclusively would be ideal.

### **Encryption Protocols**

- Three encryption protocols: WEP, TKIP, and CCMP.
- They primarily are used for confidentiality but also include message integrity.
- TKIP and CCMP also include replay protection.
- WEP does not provide robust message integrity or replay protection.

### Wired Equivalent Privacy

#### Three main design goals:

- To prevent disclosure of packets in transit
- To prevent modification of packets in transit
- To provide access control for use of the network

#### Preventing Disclosure of Packets

- uses the RC4 algorithm
- RC4 is a stream cipher and is not supposed to be reused with the same key
- Therefore, the designers added the initialization vector (IV), which allows a fresh RC4 key to be used for every packet.
- Failure to prevent repeats of IV means that an attacker can replay packets, or attack on the RC4 keystream.

# Preventing Modification of Packets

- uses the integrity check vector (ICV)
- The ICV is a four-octet linear checksum calculated over the packet's plaintext payload and included in the encrypted payload.
- It uses the 32-bit cyclic redundancy check (CRC-32) algorithm.

#### **Achieving Access Control**

- chooses a challenge-response mechanism based on knowledge of the WEP key, called shared-key authentication
- The idea was that a station needed to prove its knowledge of the WEP key to gain access to the network.
- This method not only is flawed, but it also compromises bits of the keystream.

#### RC4

- RC4 is the basic encryption algorithm that WEP employs.
- RC4 is a symmetric stream cipher, so it produces a keystream of the same length as the data.
- In WEP, this keystream is combined with the data using the exclusive OR (XOR) operation to produce the ciphertext.

### WEP Encapsulation

- involves encryption, integrity check calculation, possible fragmentation, and attachment of headers.
- Decapsulation is the opposite, involving processes such as removing headers, decryption, reassembling packets, and verifying integrity checks.

#### **WEP Packet Format**



# The Process of Encapsulation of the WEP Packet



# WEP Decapsulation



# TKIP (802.11i/WPA)

- 2 main design goals:
  - to fix the problems with WEP
  - to work with legacy hardware: the initialization vector, RC4 encryption, and integrity check vector
- TKIP consists of three protocols:
  - a cryptographic message integrity algorithm
  - a key mixing algorithm
  - an enhancement to the initialization vector.

# Michael MIC (802.11i/WPA)

- The ICV can be recalculated even in an encrypted stream
- prevents message modification
- uses a cryptographic hash
- calculated over the length of the packet
- based on shift operations and XOR additions, which are quick to calculate.
- uses a key called the Michael key

### Michael Algorithm

- calculated over something called the padded MSDU, which is never transmitted
- The padded MSDU is the real MSDU plus some extra fields: the source and destination MAC addresses, some reserved octets, and a priority octet.
- The reason for adding these fields is that it protects them against modification when the MIC is checked on the other end.

#### Michael Padded MSDU

| Source<br>Address | Destination<br>Address | Reserved | Priority | MSDU | Stop<br>Octet | Padding       |
|-------------------|------------------------|----------|----------|------|---------------|---------------|
| 6 octets          | 6 octets               | 3 octets | 1 octet  |      | 1 octet       | 4 to 7 octets |
|                   |                        | 0x000000 | 0x00     |      | 0x5A          | 0x00 values   |

#### **Preventing Replay Attacks**

- The WEP specification fails to require that implementers use unique IVs, so it is easy for an attacker to replay packets.
- The TSC is a 48-bit counter that starts at 0 and increases by 1 for each packet. TSCs must be remembered because they must never repeat for a given key.
- If the receiver receives a packet that has a TSC value lower than or equal to one it has already received, it assumes it is a rebroadcast and drops it.

#### Preventing Replay Attacks (cont.)

- The ICV and MIC prevent an attacker from changing the TSC and using it to rebroadcast a packet.
- An attacker could attempt a DoS attack, in which he sends or modifies packets so that they have a future value of the TSC.
- The specification prevents this threat by specifying that the receiver not update his incoming TSC counter until he successfully verifies the MIC for each packet.

#### **TKIP Packet Format**



# **Key Mixing Algorithm**

- to protect the Temporal Encryption Key (TEK), the base key for creating unique per-packet keys.
- starts with the TEK, combines this TEK with the TSC and the Transmitter Address (TA) to create a unique perpacket, 128-bit WEP seed.

# TKIP Key Mixing Algorithm



#### **TKIP Packet Construction**

- TKIP adds three fields to the standard WEP packet format: the MIC, the Extended IV field, and the Extended IV bit in the KeyID octet.
- TSC<sub>0</sub> and TSC<sub>1</sub> are swapped to avoid known weak keys noted in the Fluhrer-Mantin-Shamir paper.
- The entire TSC is transmitted in plaintext so that the recipient can use it for decryption

# **TKIP Encapsulation**



# **TKIP Decapsulation**



# Counter Mode/CBC-MAC Protocol (CCMP)

- based on the Advanced Encryption Standard (AES)
- a stronger set of algorithms than TKIP and also provides confidentiality, integrity, and replay protection
- AES has several modes. CCMP uses the Counter mode for confidentiality and the CBC-MAC mode for integrity.

# **CCMP Packet (MPDU) Format**



# **CCMP** Encapsulation



# Confidentiality

- CCM encryption ensures the confidentiality of data.
- The block cipher encryption process prevents anyone without the key from reading the message that is in transit.
- The strength of the AES CTR mode and the protection of the key are the guarantees of this confidentiality.

### Integrity

- CCM encryption includes the calculation of a Message Integrity Check (MIC) that ensures the integrity of data and includes protection from replay attacks.
- CCMP uses a different algorithm than TKIP does: the AES CBC-MAC mode.
- The MIC is calculated over the data plus some portions of the MAC header, called the Additional Authentication Data (AAD).

# CCMP Additional Authentication Data Construction



### Replay Prevention

- employs an incrementing packet counter (PN)
- Along with the destination address and the Priority field, the PN is part of a nonce.
- This nonce is included in the CCM encryption algorithm, and it helps ensure that the inputs to CCM are different with every packet.

# **CCMP** Decapsulation



# **CCM Algorithm**

- AES is a block cipher.
- In CCM, AES takes a 128-bit chunk of data and returns a 128-bit chunk of encrypted data, when provided with a 128-bit key.
- CCM uses two AES modes of operation: Counter mode (CTR) for encryption and Cipher Block Chaining (CBC-MAC) to create the MIC.

#### **AES Counter Mode**



#### **AES CBC-MAC Mode**

