

Octroolraad

@ATerinzagelegging @ 9001081

Nederlan

(19 NL

- Bulsvormig omhulsel voor dichtingsmateriaal.
- 6) Int.CL.*: E21B 33/12.
- Aanvrager: Eijkelkamp Agrisearch Equipment B.V. te Giesbeek.
- Gem.: Ir. L.W. Kooy c.s. Octroolbureau Vriesendorp & Gaede Dr. Kuyperstraat 6 2514 BB 's-Gravenhage.

(1) Aenvrage Nr. 9001081.

2 Ingediend 4 mei 1990.

₩ --

339 ---

௵ --

62) -

(3) Ter inzage gelegd 2 december 1991.

De aan dit blad gehechte stukken zijn een efdruk van de oorspronkelijk ingediende beschrijving met conclusie(s) en eventuele tekening(en).

De uitvinding heeft nu tot doel een maatregel te verschaffen von een buisvormige omhulsel van de in de annhef genoemde soort, waardoor dit buisvormige omhulsel sterker uitgevoerd kan worden, b.v. door een grotere wanddikte en/of sterkere materiaalsoort, en derhalve een grotere (buig)sterkte zal besitten, waarbij de tijd die benodigd is voor het bezwijken van het omhulsel en ook het toetreden van de vloeistof naar het vulmateriaal zelfs kan verminderen ten oorichte van de bij de bekende omhulsele benodigde tijd daarvoor.

Biertoe heeft de uitvinding het kenmerk, dat de wand van het buisvormige omhulsel voorsien is van tenminste één verswakking.

The plantner was do verrowhicing sal de coperingsvlocistof relation Youg kunnen doordringen tot in het vulnateriaal. Daarbij sal ook de binnensijde van het ochulsel in aanraking komen met de vloeistof, zodat de wand van het ochulsel tweezijdig onder inwerking sal etaen van de vloeistof en eneller sal verzwakken, on aldus het vulnateriaal onder het zwellen daarvan het ochulsel uiteen te laten drukken en de weg vrij te maken voor grootschaliger toetreding van de vloeistof naar het vulnateriaal. Bij een wanddikte gelijk aan die van de bekende omhulsels zou hierdoor de watertoetreding en het uiteendrukken van het onhulsel en daarmas het uiteindelijke afdichtingsproces in vergelijking met de stand van de techniek veel sneller verlopen, sodat derhalve de mogelijkheid geschapen wordt on de wand van het ombulsel dikker uit te vooren.

Volgens een voorkeureuitvooring zijn meerdere verzeekkingen in de vors van perforaties voorzien, die met voordeel gerangschikt kunnen zijn in de vorm van een zich in hoofdzaak in de richting van de bulses uitstrekkunde lijn. Alternatief kan de verzeekking uitgevoerd zijn in de vorm van een diktevermindering in de wand van het bulsevormion enhulsel.

De uitvinding zal nu mader beschreven worden aan de hand van de in de tekening weergegeven voorbeelduitvoering.

Fig. 1 toomt een cambilsel volgens de uitvinding, zonder vulling. Fig. 2 toomt het cambilsel van fig. 1, in gevulde toestand, waarbij een deel van de wand weggebroken is.

Fig. 3 toont een alternatieve uitvoering van een omhulsel volgens

10

15

20

25

de uitvinding.

10

15

20

25

30

35

Fig. 4 geeft in verticale doorsnede een boorgat weer, waarin een reeks ombulsels volgens de uitvinding neergelaten is.

Bet cambules! van fig. 1 is ean kartonnen kokar 1, met een uit een spiraalvormig gewikkelde baan 14 gevormde wand 2 van ongeveer 1 mm dikte, welke wand voorzien is van een plastselijke verzwekking in de vorm van een lijnvormige reeks perforaties 3. De kokar heeft een doorsnede van bijvoorbeeld 5 centimeter. De perforaties hebben bijvoorbeeld een diameter van ongeveer 1-2 mm en kunnen op een hart op hart afstend van eikaar gelegen zijn die lets groter is dan han diameter. De wand 2 is hier opgebouwd uit drie lagen stevige kraftliner, in plasts van zoals voorbeen wel het geval wan uit twee lagen testiiner met een of twee tussanliggende lagen kraftliner. De namen testliner ee kraftliner zijn in de handel bekend. Testliner is in verpelijking set kraftliner swak en en en verweekbear zodat de nieuwe kokar een relatief stecke van heeft.

In fig. 2 is de koker van fig. 1 weergogeven, echter hier gevuld met bentontetkorrels 5. Zen uiteinde van de koker is geeloten middele een kartonnen plaatje 4, tervijl het andere uitende geeloten is met behulp van een lijalaag 5. In dees worm worden de kokere volgens de uitvinding naar de plaats van gebruik getransporteard, tijdens well teamsport zij niet of nauwelijks beschadigd zullen geraken vanween de realtief grote sterkte van de kokere.

In fig. 3 in een alternatieve uitwooring van de koker volgans de uitvinding weergegeven, warbij de wand 2, die relatief dik is, voorsien is van een gleufvormige diktevermindering 15, welke sich in de lengterichting van de koker uitstrekt.

In fig. 4 is een boorgat 7 weergegeven, welk boorgat zich vanaf het maaiveld 8 door zandlaag 10, veenlaag 9, kleilaag 11, ens. naar beneden toe uitstrekt, bijvoorbeeld tot op een diepts van 60 m. Bet boorgat 7 kan bljvoorbeeld dlenst hebben gedaan hij seismisch onderzoek. Het boorgat 7 is aan zijn omtrek voorzien van een verbuizing 12, waarbinnen een aantal met bentoniet gevulde kokers 1 van fig. 1 en 2 neergelaten zijn. Hadat de gewenste stapelhoogte van de kokers bereikt is, wordt de verbuizing 12 uit het boorgat 7 getrokken, waarna het grondwater, vaarvan de grondwaterpulegel 13 weergegeven is, toe

kan viceien tot in het boorgat 7. Het toegestroomde grondwater zal in aanraking komen met het buitenoppervlak van de wand 2 van de kokars 1. Tegelijkertijd zal echten rater doorzijpelen door de perforaties 3, waardoor ook het binnenoppervlak van de wand 2 in aanraking komt met het grondwater en ook daar zal verweken. Nede door de door het swellende vulmateriaal uitgeoefende druk zal de koker 1 al guuw opensplijten langs de lijn gewormd door de aanvaakslijk zanwesiga perforaties 3, om aldus vrij snel een grotere doorgang te varschaffen voor grondwater en het vulmateriaal ruimte te bisden voor verder uitzeten. De dizmeter van de kokers is hierbij zodanig gebosen dat tussen de kokers en het boorgat ruimte is voor het uitseenWijken van het omhulsel. De totale tijd die nodig is voor de bentonietvulling om de plaatselijke doorenede van het boorgat 7 af te dichten, zal nu niet of nauwelijks noesenswaardig toensman en opzichte van de tijd die daarvoor benodigd is bij bekende technieken.

CONCLUSIES

- 1. Baisworaig cabulsel voor een hoeveelheld vulmateriaal, dat bestend is om ingebracht te worden in bijvoorbeeld een boorgat en werkraam is na inverking van een vloeistof daarop, waarbij het cabulsel een wand bezit, die verveardigd is van een materiaal, dat onder inverking van de vloeistof verswakt, met het kenmerk, dat de wand (2) van het bulsvormige ombulsel (1) voorsien is van tenminste 66n verswakking (3).
- Buisvormig cabulsel volgens conclusie 1, met het kenmerk, dat de wand (2) van het buisvormige ombulsel (1) voorzien is van een reeks perforaties (3).
- 3. Buisvormig cabules! volgens conclusie 2, met het kenmerk, dat de perforaties een lijnvormige reeks (3) vorman, welke zich in hoofdzaak in de richting van de buisas uitstrekt.
- Buisvormig omhulsel volgens conclusie 1, met het kenmerk, dat de verzwakking (15) gevormd wordt door een vermindering in de dikte van de wand (2).
- Buisvormig omhulmel volgens conclusie 4, met het kenmerk, dat de verzwakking (15) lijavormig is en zich in hoofdzaak in de richting van de buisss uitstrekt.
- 6. Voortbrengeel gekennerkt door het buisvormig omhulsel (1) volgens 6dm dur voorgaande coorlusies, waarbij het omhulsel gevormd is met een onder invloed van vloeistof zwelbaar materiaal (6), bijvoorbeeld bentoniet, en het omhulsel voorzien is van afsluitziddelen (4, 5).

10

15

Patent Office [logo]

The Netherlands

- (12A) Application
- (11) 9001081
- (19) NL (The Netherlands)
- (54) Tubular casing for holding sealing material
- (51) Int. Cl.⁵: E21B 33/12
- (71) Applicant: Eijkelkamp Agrisearch Equipment B.V. in Giesbeek
- Applicant: Enjkerkamp Agrisearch Equipment B.V. in Crester
 Authorized representative: L.W. Kooy, Engineer Patent Office Vriesendorp & Gaade
 Dr. Kuyperstraat 6
 2514 BB The Hague
- (21) Application No. 9001081
- (22) Filed on May 4, 1990
- (32) --
- (33) --
- (31) -(62) -
- (43) Made public on December 2, 1991

The description and claim(s) and any drawing(s) attached to this page are a copy of the documents originally submitted.

The invention aims to provide a method involving a tubular casing of the type mentioned in the introduction, in which the tubular casing can be made stronger, e.g., by means of a greater wall thickness and/or stronger types of materials, and as a consequence possess greater (bending) strength, in which the time needed to cause the casing to disintegrate, as well as the penetration of liquids into the filling material may even decrease when compared to the time needed for this with current casines.

This feature of this invention is that the wall of the tubular casing has at least one weakened area.

At the location of the weakening, the surrounding liquid is able to penetrate relatively quickly into the filling material. Consequently, the interior of the casing will come into contact with the liquid, with the effect that the casing wall will be influenced by the liquid from both sides which causes it to weaken more quickly, thereby allowing the filling material to expand due to its swelling and facilitate the large-scale entrance of the liquid into the filling material. In the case of a wall thickness that is the same as the currently used casings, water penetration and expansion of the casing and the subsequent sealing process will therefore take place much more rapidly in comparison with the current status of the technique, which in turn provided the possibility of constructing a tube with a thicker wall.

According to a preferred application, several weakened spots were applied in the form of perforations preferably arranged in a straight line along the tube's axis. Alternatively, the weakening may be applied in the form of a reduction in the wall thickness of the tubular casing.

The invention will now be described in more detail on the basis of the sample application as shown in the drawings:

Fig. 1 shows a casing according to the invention, without filling material.

Fig. 2 shows the casing of Fig. 1 with the filling in place, with part of the wall broken away.

Fig. 3 shows an alternative application of a casing according to the invention.

Fig. 4 provides a vertical cross section of a drill hole, in which a series of casings according to the invention have been inserted.

The casing of Fig. 1 consists of a cardboard tube 1, with a wall 2 formed by a spiral-wound strip 14 of approximately 1 mm in thickness, with the wall having a local weakening in the form of a line-shaped series of perforations 3. The tube has a diameter of approximately 5 cm. The perforations have a diameter of approximately 1-2 mm and may be spaced apart from center to center slightly more than the diameter of the holes. The wall 2 in this example is constructed of 3 layers of sturdy kraft liner, instead of the previously used two layers of test liner with one or two central layers of kraft liner. The terms test liner and kraft liner are commonly known in the industry. Test liner is weaker than kraft liner and softens more rapidly, so that the new tube has a relatively strong wall.

Fig. 2 shows the tube of Fig. 1, but in this case it is filled with bentonite granules 6. One end of the tube is closed by means of a cardboard disc 4, while the other end is closed off with a layer of glue 5. The tubes according to the invention are transported in this form to the work site. Due to the relatively great strength of the tubes, little or no damage should occur to them as a result of the transportation.

Fig. 3 shows an alternative application of the tube according to the invention, wherein the wall 2, which is relatively thick, has a groove-shaped thickness reduction 15, situated along the length of the tube.

Fig. 4 shows a drill hole 7, which penetrates through the top soil 8, the sand layer 10, peat layer 9, clay layer 11, etc., to the bottom, to a depth, for instance, of 60 m. The drill hole 7 can, for example, have served in a seismic research project. The contour of the drill hole 7 is protected by a well casing 12, into which several bentonite-filled tubes 1 of Fig. 1 and 2 have been lowered. When the desired stacking height of the tubes has been reached, the well casing 12 is pulled out of the drill hole 7, so that the groundwater, whose groundwater level 13 is indicated,

can flow into the drill hole 7. The penetrating groundwater will make contact with the outer surface of the wall 2 of the tubes 1. At the same time, the water will also seep through the perforations 3, causing the inside surface of the wall 2 also to come into contact with the groundwater and cause a softening of the filling material. Aided by the pressure caused by the swelling of the filling material, the tube 1 will rapidly split open along the line formed by the perforations 3 that were made, and quickly provide increased penetration of the groundwater and make room for the filling material for increased expansion. The diameter of the tubes has been chosen in such a way that there must be room between the tube and the drill hole wall for the outer casing to disintegrate. The total amount of time needed for the bentonite filling material to seal the diameter of the drill hole 7 will not increase considerably compared to the time that is required in current techniques.

CLAIMS

- 1. Tubular casing for holding a certain amount of filling material, for the purpose of being inserted into—for example—a drill hole, which is activated when a liquid acts upon it, wherein the casing has a wall made of a material that weakens when it comes into contact with liquid, in which the wall (2) of the tubular casing (1) has at least one weakened area (3).
- 2. Tubular casing according to claim 1, in which the wall (2) of the tubular casing (1) has a series of perforations (3).
- 3. Tubular casing according to claim 2, in which the perforations form a straight line (3), which primarily stretches along the length of the tube axis.
- 4. Tubular casing according to claim 1, in which the weakening (15) is formed by a reduction in the thickness of the wall (2).
- 5. Tubular casing according to claim 4, in which the weakening (15) forms a line and primarily stretches along the length of the tube axis.
- 6. Application characterized by the tubular casing (1) according to one of the foregoing claims, in which the casing contains a filling material (6) that expands when it comes into contact with liquid, e.g., bentonite, and in which the easing is closed off by caps (4, 5).

[see source for figures]

r

AFFIDAVIT OF ACCURACY

I. Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, a true and accurate translation performed by professional translators of Patent 9001081 from Dutch to English.

Kim Stewart

ATLANTA

BOSTON

BRUSSELS CHICAGO

DALLAS DETROIT FRANKFURT HOLSTON LONDON

LOS ANGELES

SAN DIEGO SAN FRANCISCO

SEATTLE

WASHINGTON, DC

MIAMI MINNEAPOLIS NEW YORK PARIS PHILADELPHIA TransPerfect Translations, Inc. 3600 One Houston Center 1221 McKinney

Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

OFFICIAL SEAL MARIA A. SERNA NOTARY PUBLIC

Stamp, Notary Public

Harris County

Houston, TX