

General information

Designation

6151, wrought	
Condition	T6 (Solution heat-treated and artificially aged)
UNS number	A96151
EN name	EN AW-6151

Typical uses

Die forgings and rolled rings for crank cases, fuses, and machine parts. Applications requiring good forgeability, good strength, and resistance to corrosion

Composition overview

Compositional summary

 $\label{lem:lem:higher} Al96-99 \ / \ Si0.6-1.2 \ / \ Mg0.45-0.8 \ / \ Cr0.15-0.35 \ (impurities: Fe<1, Cu<0.35, Zn<0.25, Mn<0.2, Ti<0.15, Other<0.15)$

Material family	Metal (non-ferrous)
Base material	Al

Composition detail (metals, ceramics and glasses)

Al (aluminum)	* 95,6	-	98,8	%
Cr (chromium)	0,15	-	0,35	%
Cu (copper)	0	-	0,35	%
Fe (iron)	0	-	1	%
Mg (magnesium)	0,45	-	0,8	%
Mn (manganese)	0	-	0,2	%
Si (silicon)	0,6	-	1,2	%
Ti (titanium)	0	-	0,15	%
Zn (zinc)	0	-	0,25	%
Other	0	-	0,15	%

Price

Price	* 8,53	-	9,95	BRL/kg
Price per unit volume	* 2,3e4	-	2,72e4	BRL/m^3

Physical properties

Density	2,69e3 -	2,73e3	kg/m^3

Mechanical properties

• •				
Young's modulus	67,9	-	71,3	GPa
Specific stiffness	25	-	26,3	MN.m/kg
Yield strength (elastic limit)	255	-	297	MPa
Tensile strength	303	-	353	MPa
Specific strength	94	-	110	kN.m/kg
Elongation	10	-	14,4	% strain
Compressive modulus	69,3	-	72,8	GPa
Compressive strength	* 255	-	297	MPa
Flexural modulus	* 67,9	-	71,3	GPa
Flexural strength (modulus of rupture)	* 255	-	297	MPa
Shear modulus	25,9	-	27,2	GPa

Shear strength	193	-	225	MPa
Bulk modulus	* 67,9	-	71,3	GPa
Poisson's ratio	0,325	-	0,335	
Shape factor	23,9			
Hardness - Vickers	103	-	108	HV
Elastic stored energy (springs)	469	-	632	kJ/m^3
Fatigue strength at 10^7 cycles	* 117	-	136	MPa
Fatigue strength model (stress range)	* 107	-	149	MPa

Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles

Impost 0	fractions	properties
Impact &	Tracture	properties

Fracture toughness	* 30	-	36	MPa.m^0.5
Toughness (G)	13	-	18,5	kJ/m^2

Thermal properties

Melting point	588	-	650	°C
Maximum service temperature	130	-	150	°C
Minimum service temperature	-273			°C
Thermal conductivity	173	-	188	W/m.°C
Specific heat capacity	963	-	1e3	J/kg.°C
Thermal expansion coefficient	23	-	24,2	μstrain/°C
Thermal shock resistance	154	-	182	°C
Thermal distortion resistance	* 7,29	-	8,01	MW/m
Latent heat of fusion	384	-	393	kJ/kg

Electrical properties

Electrical resistivity	3,8	-	4,2	µohm.cm
Electrical conductivity	41,1	-	45,4	%IACS
Galvanic potential	* -0,78	-	-0,7	V

Magnetic properties

Magnetic type	Non-magnetic
Magnotio type	1 toll magnetic

Optical, aesthetic and acoustic properties

Transparency	Opaque
Acoustic velocity	5e3 - 5,13e3 m/s
Mechanical loss coefficient (tan delta)	* 1e-4 - 0,002
Critical materials risk	
Contains >5wt% critical elements?	Yes
Notes	Al (aluminum) added to the 2018 US critical minerals list
Processing properties	
Metal casting	Unsuitable
Metal cold forming	Acceptable
Metal hot forming	Acceptable
Metal press forming	Acceptable
Metal deep drawing	Limited use
Machining speed	73,2 m/min
Weldability	Excellent
Notes	Preheating is not required, post weld heat treatment is
	required
Durability	
Water (fresh)	Excellent
Water (salt)	Acceptable
Weak acids	Excellent
Strong acids	Excellent
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Excellent
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Excellent
Galling resistance (adhesive wear)	Limited use
Notes Aluminum alloys perform poorly when self-mated but can be pro	ocessed without galling when mated with steels
Flammability	Non-flammable
	, terrilarini apie
Corrosion resistance of metals	Notaussantible
Stress corrosion cracking Notes	Not susceptible Rated in chloride; Other susceptible environments: Halide,
110103	water
Primary production energy, CO2 and wate	er
Embodied energy, primary production	* 190 - 209 MJ/kg
CO2 footprint, primary production	* 12,4 - 13,7 kg/kg
Water usage	* 1,11e3 - 1,23e3 I/kg
Processing energy, CO2 footprint & water	•
Roll forming, forging energy	* 6,22 - 6,88 MJ/kg
Roll forming, forging CO2	* 0,467 - 0,516 kg/kg
Roll forming, forging water	* 4,21 - 6,32 l/kg
Extrusion, foil rolling energy	* 12,2 - 13,4 MJ/kg
Extrusion, foil rolling CO2	* 0,912 - 1,01 kg/kg
Extrusion, foil rolling water	* 6,75 - 10,1 I/kg
Wire drawing energy	* 44,8 - 49,6 MJ/kg
Wire drawing CO2	* 3,36 - 3,72 kg/kg
·-······· · · · · · · · · · · · · · · ·	פייישיי – יי

Wire drawing water	* 16,9	-	25,3	l/kg
Metal powder forming energy	* 23,7	-	26,2	MJ/kg
Metal powder forming CO2	* 1,9	-	2,1	kg/kg
Metal powder forming water	* 25,9	-	38,8	l/kg
Vaporization energy	* 1,55e4	-	1,71e4	MJ/kg
Vaporization CO2	* 1,16e3	-	1,28e3	kg/kg
Vaporization water	* 6,46e3	-	9,69e3	l/kg
Coarse machining energy (per unit wt removed)	* 1,37	-	1,51	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0,102	-	0,113	kg/kg
Fine machining energy (per unit wt removed)	* 9,38	-	10,4	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0,704	-	0,778	kg/kg
Grinding energy (per unit wt removed)	* 18,3	-	20,2	MJ/kg
Grinding CO2 (per unit wt removed)	* 1,37	-	1,52	kg/kg
Non-conventional machining energy (per unit wt removed)	* 155	-	171	MJ/kg
Non-conventional machining CO2 (per unit wt removed)	* 11,6	-	12,8	kg/kg

Recycling and end of life

Recycle	✓	
Embodied energy, recycling	* 32,3 - 35,7 MJ/kg	
CO2 footprint, recycling	* 2,54 - 2,8 kg/kg	
Recycle fraction in current supply	40,5 - 44,7 %	
Downcycle	✓	
Combust for energy recovery	×	
Landfill	✓	
Biodegrade	×	

Notes

Keywords

BAW 6061, Alcan Wire (WALES); ANTICORODAL-100, Alusuisse-Lonza Group (SWITZERLAND); ANTICORODAL-062, Alusuisse-Lonza Group (SWITZERLAND);

Standards with similar compositions

· Canada:

0.6151 to CSA HA.8, SG11P to CSA

• France:

6181 to NF A50-411, 6181 to NF A50-451

· Japan:

A6151FD to JIS H4140, A6151FH to JIS H4140

· USA:

6151, 6151 to AMS 4125, 6151 to ASTM B247M, 6151 to MIL A-22771, 6151 to QQ A-367, UNS A96151

Links

ProcessUniverse	
Producers	
Reference	
Shape	