

Gliederung

- Idee
- Vorgehen
- Datenaufbereitung
- Ergebnisse Buchstaben
- Ergebnisse Wörter
- Vergleich
- Fazit

Idee

• Handschrift auf Bildern erkennen

Vorgehen: Datenbeschaffung

- "NIST Handprinted Forms and Characters NIST Special Database 19"
- National Institute of Standards and Technology
- https://catalog.data.gov/dataset/nist-handprinted-forms-and-characters-nist-special-database-19-0f025
- tausende Bilder zu jedem Buchstaben
- Keine kompletten Wörter

Datenaufbereitung

Verkleinern

Pro: schnell

Zu klein für Architekturen

- Zuschneiden
- Quadratisches Bild erstellen

LeNet5 (32px)

AlexNet (32px)

Validation/Test loss vs. Number of Training Epochs 3 Validation/Test loss Train Test Train Test 9 10 11 12 13 14 15 16 17 18 19 20 Training Epochs

ResNet50 (32px)

ResNeXt50 (128px)

ResNeXt50: gute Vorhersagen

ResNeXt50: Verwechslungen

Richtig gewertet

ResNeXt50: Confusion Matrix

Groß-/Kleinbuchstab en verwechselt

ResNeXt50

р	recision	recall f	f1-score	support										
0	0.32	0.42	0.36	55		0.36	0. 53	0.43	e e				0.00	
1	0.42	0.31	0.36	55	0	0.36	0.53	0.43	55			.83 0.95		
2	0.80	0.95	0.87	55	P	0.54	0.91	0.68	55		3	.84 0.89		
3	0.93	1.00	0.96	55	Q	1.00	0.96	0.98	55			.74 0.87		
4	1.00	0.71	0.83	55	R	0.98	1.00	0.99	55		1 0.	.50 0.49	0.50	
5	0.98	0.95	0.96	55	S	0.61	0.96	0.75	55		m 1.	.00 0.18	0.31	
6	0.87	0.60	0.71	55	Т	0.95	0.98	0.96	55		n 0.	.76 0.95	0.85	
7	0.88	0.80	0.84	55	U	0.84	0.47	0.60	55		0 0.	.57 0.07	0.13	
8	0.84	0.96	0.90	55	V	0.53	0.95	0.68	55		p 0.	67 0.18	0.29	
9	0.65	0.27	0.38	55	W	0.60	0.95	0.73	55		q 0.	.57 0.80	0.67	
Α	0.96	0.98	0.97	55	X	0.71	0.96	0.82	55		r 0.	87 0.60	0.71	
В	0.96	0.98	0.97	55	Ŷ				55		s 0.	.88 0.13	0.22	
С	0.55	0.89	0.68	55		0.51	1.00	0.67			t 0.	.81 0.93	0.86	
D	0.86	1.00	0.92	55	Z	0.77	0.91	0.83	55		u 0.	.90 0.69	0.78	
E	1.00	0.98	0.99	55	a	0.98	0.96	0.97	55		v 0.	.89 0.60	0.72	
F	0.51	0.91	0.65	55	b	0.76	0.96	0.85	55		w 0.	.91 0.53	0.67	
G	0.79	0.96	0.87	55	С	0.66	0.38	0.48	55			.91 0.56		
H	0.98	0.98	0.98	55	d	0.91	0.96	0.94	55			.64 0.13		
I	0.63	0.58	0.60	55	е	0.97	0.65	0.78	55		•	.83 0.45		
J	0.93	0.93	0.93	55	f	0.57	0.15	0.23	55					
K	0.93	0.71	0.80	55	g	0.70	0.87	0.77	55	accurac	· V		0.75	
L	0.87	0.96	0.91	55	h	0.84	0.96	0.90	55			.78 0.75		
М	0.53	1.00	0.70	55	"				55	macro av	•			
N	1.00	1.00	1.00	55	1 1	0.83	0.95	0.88	22	weighted av	/g 0.	.78 0.75	0.73	

Prinzip

- Ein Wort besteht aus mehreren Buchstaben
- Jeder Buchstabe ist eine zusammenhängende Fläche
- -> Modell auf jede zusammenhängende Fläche anwenden

Levenshtein Distanz

• "minimale Anzahl der notwendigen Änderungen, um zwei Zeichenketten aneinander anzugleichen"

(https://www.bigdata-insider.de/was-ist-die-levenshtein-distanz-a-502eb7581b6879ee988a93b214821689/)

· Einfügen, Löschen, Ersetzen

ResNeXt50: Wörter

ResNeXt50: Zahlen

Der Buchstabe "i"

• Levenshtein Distanz gesamt: 0.73

State of the art

https://research.aimultiple.com/ocr-accuracy/

Konfusions matrix Tesseract

Vergleich

Variante	Precision	Recall	F1-Score	Levenshtein
Tesseract	0.55	0.39	0.41	0.7
ResNeXt50	0.78	0.75	0.73	0.73

Fazit

- Einzelne Buchstaben vs komplettes Wort

 Weiterer Ansatz: Objekterkennung

 Auch zusammengeschriebene Buchstaben
- Mein Modell erkennt getrennte Buchstaben mit selbst implementierter Bounding Box Probleme mit "i", "ä", "ö", "ü" Abhängig vom Datensatz
- ResNeXt50 am besten
- Hochauflösende Bilder langsamer, aber besser
- Ziel erreicht

