Kalman Filter and Extended Kalman Filter

Jungtaek Kim (jtkim@postech.edu)

Machine Learning Group,
Department of Computer Science and Engineering, POSTECH,
77-Cheongam-ro, Nam-gu, Pohang-si 790-784,
Gyungsankbuk-do, Republic of Korea

May 31, 2015

Table of Contents

Kalman Filter

Block Diagram of Kalman Filter

Preliminaries Block Diagram of Kalman Filter

Proof of Kalman Filter

State and Covariance Extrapolation State Update Kalman Gain Computation Covariance Update

Extended Kalman Filter

Kalman Filter vs. Extended Kalman Filter Extended Kalman Filter

Kalman Filter

- Kalman filter uses a series of measurements observed over time, containing noise and other inaccuracies.
- It produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone.
- ▶ It operates recursively on streams of noisy input data.

Preliminaries

- ► Input (Measurement) z_k
- ▶ Output (State) \hat{x}_k
- ▶ System Model A, H_k, Q, R
- $ightharpoonup z_k = H_k x_k + v_k$ where $v_k \sim \mathcal{N}(0, R)$
- $x_{k+1} = Ax_k + w_k$ where $w_k \sim \mathcal{N}(0, Q)$

Block Diagram of Kalman Filter

Proof of Kalman Filter: State and Covariance Extrapolation

► State extrapolation is

$$\hat{x}_{k+1}^{-} = \mathbb{E}[x_{k+1}|I_k]$$

$$= \mathbb{E}[Ax_k + w_k|I_k]$$

$$= A\hat{x}_k.$$

Covariance extrapolation is

$$\begin{aligned} P_{k+1}^{-} &= \mathbb{E}[(x_{k+1} - \hat{x}_{k}^{-})(x_{k+1} - \hat{x}_{k}^{-})^{T} | I_{k}] \\ &= \mathbb{E}[(x_{k+1} - \hat{x}_{k}^{-})^{2} | I_{k}] \\ &= \mathbb{E}[(Ax_{k} + w_{k} - A\hat{x}_{k})^{2} | I_{k}] \\ &= \mathbb{E}[(A(x_{k} - \hat{x}_{k}) + w_{k})^{2} | I_{k}] \\ &= AP_{k}A^{T} + Q. \end{aligned}$$

► The next state given the current state and the measured state can be expressed by the equation with the given terms,

$$\hat{x}_{k+1} = K'_{k+1} \hat{x}_k + K_{k+1} z_{k+1}.$$

▶ The error term $\tilde{x}_k = \hat{x}_k - x_k$ has zero mean and covariance P_k .

The error term is arranged to

$$\hat{x}_{k+1} - x_{k+1} &= K'_{k+1} \hat{x}_k + K_{k+1} z_{k+1} - x_{k+1} \\
&= K'_{k+1} \hat{x}_k + K_{k+1} (H_{k+1} x_{k+1} + v_{k+1}) \\
&- x_{k+1} - K'_{k+1} x_k + K'_{k+1} x_k.$$

Rearranging term is

$$= K'_{k+1}(\hat{x}_k - x_k) + K_{k+1}(H_{k+1}(Ax_k + w_k) + v_{k+1}) - (Ax_k + w_k) + K'_{k+1}x_k$$

$$= K'_{k+1}(\hat{x}_k - x_k) + (K_{k+1}H_{k+1}A - A + K'_{k+1})x_k + (K_{k+1}H_{k+1} - I)w_k + K_{k+1}v_{k+1}.$$

▶ The expectation of the error term is

$$\mathbb{E}[\hat{x}_{k+1} - x_{k+1}] = [K_{k+1}H_{k+1}A - A + K'_{k+1}]\mathbb{E}[x_k] = 0.$$

Therefore,

$$K_{k+1}H_{k+1}A - A + K'_{k+1} = 0$$

 $K'_{k+1} = (I - K_{k+1}H_{k+1})A$

is satisfied.

The next state is

$$\begin{split} \hat{x}_{k+1} &= (I - K_{k+1} H_{k+1}) A \hat{x}_k + K_{k+1} z_{k+1} \\ &= \underbrace{A \hat{x}_k}_{\text{extrapolated state}} + \underbrace{K_{k+1} (z_{k+1} - H_{k+1} A \hat{x}_k)}_{\text{residual of measurement and prediction}} \\ &= \hat{x}_{k+1}^- + K_{k+1} (z_{k+1} - H_{k+1} \hat{x}_{k+1}^-) \quad \text{by } \hat{x}_{k+1}^- = A \hat{x}_k. \end{split}$$

Proof of Kalman Filter: Kalman Gain Computation

▶ The covariance of the error term is

$$P_{k+1} = \mathbb{E}[(x_{k+1} - \hat{x}_{k+1})(x_{k+1} - \hat{x}_{k+1})^{T}]$$

$$= \mathbb{E}[(x_{k+1} - \hat{x}_{k+1})^{2}]$$

$$= \mathbb{E}[(x_{k+1} - \hat{x}_{k+1}^{-} - K_{k+1}(z_{k+1} - H_{k+1}\hat{x}_{k+1}^{-}))^{2}]$$

$$= \mathbb{E}[(x_{k+1} - (I - K_{k+1}H_{k+1})\hat{x}_{k+1}^{-} - K_{k+1}z_{k+1})^{2}]$$

$$= \mathbb{E}[(x_{k+1} - (I - K_{k+1}H_{k+1})\hat{x}_{k+1}^{-} - K_{k+1}H_{k+1}x_{k+1} - K_{k+1}v_{k+1})^{2}]$$

$$= \mathbb{E}[((I - K_{k+1}H_{k+1})(x_{k+1} - \hat{x}_{k+1}^{-}) - K_{k+1}v_{k+1})^{2}]$$

$$= (I - K_{k+1}H_{k+1})\mathbb{E}[(x_{k+1} - \hat{x}_{k+1}^{-})^{2}](I - K_{k+1}H_{k+1})^{T} + K_{k+1}\mathbb{E}[v_{k+1}^{2}]K_{k+1}^{T}$$

$$= (I - K_{k+1}H_{k+1})P_{k+1}^{T}(I - K_{k+1}H_{k+1})^{T} + K_{k+1}RK_{k+1}^{T}$$

Proof of Kalman Filter: Kalman Gain Computation

▶ (con'd)

$$\begin{split} P_{k+1} &= P_{k+1}^{-} - K_{k+1} H_{k+1} P_{k+1}^{-} - P_{k+1}^{-} H_{k+1}^{T} K_{k+1}^{T} \\ &\quad + K_{k+1} (H_{k+1} P_{k+1}^{-} H_{k+1}^{T} + R) K_{k+1}^{T}. \end{split}$$

▶ It can be substituted from k + 1 to k,

$$P_{k} = P_{k}^{-} - K_{k} H_{k} P_{k}^{-} - P_{k}^{-} H_{k}^{T} K_{k}^{T} + K_{k} (H_{k} P_{k}^{-} H_{k}^{T} + R) K_{k}^{T}.$$

▶ The trace of P_k is

$$\nabla_{K} \operatorname{tr}(P_{k}) = -P_{k}^{-} H_{k}^{T} - P_{k}^{-} H_{k}^{T} + 2K_{k} H_{k} P_{k}^{-} H_{k}^{T} + 2K_{k} R = 0.$$

► Thus, Kalman gain is

$$K_k = P_k^- H_k^T (H_k P_k^- H_k^T + R)^{-1}.$$

Proof of Kalman Filter: Covariance Update

► The covariance of the error term can be expressed with substituting Kalman gain by

$$\begin{aligned} P_{k} &= P_{k}^{-} - K_{k} H_{k} P_{k}^{-} - P_{k}^{-} H_{k}^{T} K_{k}^{T} + K_{k} (H_{k} P_{k}^{-} H_{k}^{T} + R) K_{k}^{T} \\ &= P_{k}^{-} - K_{k} H_{k} P_{k}^{-} - P_{k}^{-} H_{k}^{T} K_{k}^{T} + P_{k}^{-} H_{k}^{T} K_{k}^{T} \\ &= (I - K_{k} H_{k}) P_{k}^{-}. \end{aligned}$$

Kalman Filter vs. Extended Kalman Filter

- ► Kalman Filter a linear system
- Extended Kalman Filter a nonlinear system

Extended Kalman Filter

▶ State and measurement are the functions of x_k ,

$$x_{k+1} = f_k(x_k) + w_k$$

$$y_k = h_k(x_k) + v_k,$$

where $w_k \sim \mathcal{N}(0, Q)$ and $v_k \sim \mathcal{N}(0, R)$.

▶ Let F(k) and H(k) be the Jacobian matrices of f(.) and h(.), denoted by

$$F(k) = \nabla f_k|_{\hat{x}(k|k)}$$

$$H(k+1) = \nabla h|_{\hat{x}(k=1|k)}.$$

Extended Kalman Filter

Predict Cycle

$$\hat{x}(k+1|k) = f_k(\hat{x}(k|k))$$

 $P(k+1|k) = F(k)P(k|k)F^{T}(k) + Q(k)$

Filtered Cycle

$$\begin{split} \hat{x}(k+1|k+1) &= \hat{x}(k+1|k) \\ &\quad + K(k+1)(y_{k+1} - h_{k+1}(\hat{x}(k+1|k))) \\ K(k+1) &= P(k+1|k)H^{T}(k+1) \\ &\quad * (H(k+1)P(k+1|k)H^{T}(k+1) + R(k+1))^{-1} \\ P(k+1|k+1) &= (I - K(k+1)H(k+1))P(k+1|k) \end{split}$$

Reference

- Sungpil Kim. Essential Kalman Filter. A-Jin.
- ► http://www.academia.edu/1512888/Introduction_to_ the_Kalman_Filter_and_its_Derivation
- http://users.isr.ist.utl.pt/~mir/pub/kalman.pdf
- http://www.aticourses.com/kalman_filter.pdf
- http://en.wikipedia.org/wiki/Kalman_filter
- http:
 //en.wikipedia.org/wiki/Extended_Kalman_filter

