Growth of InSb and InI crystals on Earth and in Microgravity

Aleksandar Ostrogorsky,

Alexei V. Churilov, RMD Watertown, MA

Martin P. Volz NASA MSFC, Huntsville, AL

V. Riabov, IIT

Dr. Lodewijk van den Berg,Constellation Technology Largo FL

- 1. Te and Zn doped InSb: NASA (1995-2004)
- 2. Inl DoE NNSA (2005-2015); CASIS/NASA (2015-2017)

SUBSA: Solidification Using a Baffle in Sealed Ampoules

- 1995-2004
- SCR 1998
- Design review 2000
- Endeavour, Expedition 5, 2002.
- Seven Te- and Zn-doped InSb crystals were grown.

SUBSA Design review 6/8/2000

SUBSA HARDWARE AT AT GLANCE

TecMasters Inc

LabVIEW 6i processes data on MSG Laptop Computer

1 DaqPad

1 Process Control

Video Camera

SUBSA AMPOULE ASSEMBLY

- InSb seed
- •50g InSb, doped with Te or Zn (MP 512 C)
- Sealed under vacuum.

SUBSA Status on Sunday 2/3/2002

Crew of the Expedition Five

June 5, 2002. Shuttle Endeavour, Flight UF-2 -STS-111

Valery Korzun
Expedition commander

Dr. Peggy Whitson, flight engineer, USA, payload specialist

Sergei Treschev flight engineer

CONTROL OF seeding and growth

Results SUBSA: Te-doped InSb

Results SUBSA #10: Zn-doped InSb

Zn-doped => k_0 =2.9> 1!!

k₀ >1 is proffered for growth in microgravity.

 $D = 1.2 \times 10^{-4} \text{ cm}^2/\text{s}$

Results – k_{eff} model

All previous equations are based on δ :

- 1. BPS (1953) FC only.
- 2. Wilson (1978)-Garandet (2008) FC only.
- 3. Ostrogorsky-Muller, (OM, 1992, lateral convection, NC)
- 4. Yen and Tiller (1992, lateral convection considered).

. . .

$$\frac{C_{S}}{C_{I}} = k_{eff} \left(\delta \right)$$

$$\delta = 1.6 \ D^{1/3} v^{1/6} \, \omega^{-1/2}$$

- Laminar steady flow driven by a rotating disk
- *g* -driven flow ignored.

Equation based on <u>empirical</u> correlations for Nusselt (or <u>Sherwood</u>) Numbers (Ostrogorsky, 2012)

$$\frac{C_{S}}{C_{L}} = k_{eff} \left(k_{0}, Nu, Pe \right)$$

$$Nu \equiv \frac{h \cdot L}{D} = F(Gr, Pr, Sc)$$

$$Gr = \frac{g \beta \Delta T L^3}{v^2} = \frac{F_{buyancy}}{F_{viscous}}$$

k_{eff} as a function of k_0 and g-level

- Diffusion-controlled melt growth on orbital platforms is practical only with systems $0.5 \le k_0 \le \infty$
- Not recognized in the 1970s and 1980s; attempts were made to grow Sb-doped Ge (k_0 = 0.003) and Sn-doped InSb (k_0 = 0.057)

PART 2. Inl DoE NNSA (2005-2015); CASIS/NASA (2015-2017)

Hgl₂ (soft and grown from vapor phase)

• At in the vicinity of 130 ° C, tetragonal red α-HgI₂ crystals undergo a destructive phase transition to an orthorhombic yellow β-HgI₂ phase

Material	CdTe	ZnTe	Cd _{0.9} Zn _{0.1} Te	HgI_2	CdI_2	HgBr ₂	InI
Av. Atomic $Z_{\rm eff}$	50.16	46.21	49.1	59.9	51.3	50	51
ρ (g/cm ³)	5.85	6.34	5.78	6.4	5.640	6.05	5.31
Eg. (eV)	1.56	2.25	1.549	2.41	3.5	3.6	2.0
ρ [<u>Ω</u> cm]	~109		3x10 ⁹	10 ¹³			~10 ¹¹

GOALS: Investigate the potential of high-Z number binary and ternary iodides that have not received sufficient attention.

REQUIREMENTS FOR RT DETECTORS

Room Temperature (RT) operation requirements

energy gap: 1.5 eV< Eg <2.5 eV Z>50

	Ш	Ш	IV	٧	VI		
		Group 13	Group 14	Group 15	Group 16	Group 17	Helium 4.002 60
		5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.0067	8 O Oxygen 15.9994	9 F Fluorine 18.998 4032	10 Ne Neon 20.1797
Group 11	Group 12	13 Al Aluminum 26.981 5386	Silicon 28.0855	15 P Phosphorus 30.973 762	16 S Sulfur 32.065	17 Cl Chlorine 35.453	18 Ar Argon 39.948
29 Cu Copper 63.546	30 Zn 65.409	31 Ga Sullium 69.723	32 Ge Germanium 72.64	33 As Arsenic 74.921 60	34 Se Selenium 78.96	35 Br Bromine 79.904	36 Kr Krypton 83.798
47 Ag Silver 107.8682	Cd Cddmium	49 In Indium 114.818	50 Sn Tin 118.710	Sb Antimony 121.760	52 Te Tellurium 127.60	53 	54 Xe Xenon 131.293
79 Au Gold 196.966 569	Hg Mercury 200.59	81 TI Thallium 204.3833	Pb Lead 207.2	83 Bi Bismuth 208.980 40	Polonium (209)	85 At Astatine (210)	Rn Radon (222)
Roentgenium (272)	Ununbium (285)		Uuq* Ununquadium (289)		Ununhexium (292)		

	Z	[eV]	
Si	14	1.12	
Ge	32	0.7	
GaAs	33	1.43]
InP	49	1.35	│
AlSb	51	1.6	Compounds
CdTe	52	1.49	
ZnTe	52	2.25	CZT"
Hgl ₂	80	<u>2.13</u>	Best Des
HgBr	80	3.6	Op.
Pbl ₂	82	2.55	
Bil ₃	83	1.75	
TIBr	81	2.8	
(TII	81	2.15	
Inl	53	2	

WHY INDIUM IODIDE?

- Promising semiconductor RT detector material + not toxic; MP= 360 C (perfect for SUBSA furnace)
- Developed procedures for synthesis, ZR, melt growth, vapor growth
- RPI (2006-2009); IIT (2009-present), RMD (2015).
- DoE, NNSA

15 mm diameter

Is CZ growth of InI possible?

	Disassociation Energy , eV		
I ₂	1.542		
Bil	0.3		
Hgl	0.35		
HgBr	0.71		
CdTe	1.2		
Pbl	2.0		
PbBr	2.5		
TII	2.76		
TIBr	2.34		
Inl	3.43		
InBr	3.9		

Fig. 38. Dumbbell Model of a Diatomic Molecule.

CZOCHRALSKI GROWTH OF Inl

- Detector materials have high vapor pressure; growth in sealed ampoules.
- CZ growth of a detector crystal demonstrated for the first time

DISTRIBUTION OF PRECIPITATES

10⁴

diameter (µm)

diameter (µm)

High Purity Indium (In) Metal

Analysis by Glow Discharge Mass Spectrometry

Tested by:	Institute for National Measurement Standards,		
	National Research Council		
Report Date:	14-Jul-10		
Report NO:	31810		
Lot Number:	92		

Element	Analytical Result in
Lieilleilt	ppb(mass)
Mg	<0.1
Al	<0.2
Si	0.7
S	2.8
Fe	0.5
Ni	18.4
Cu	8.3
Zn	<1.7
Ga	<0.4
Ge	<0.6
Ag	<0.8
Cd	79.3
Sn	13.4
TI	7.1
Pb	61.4
Bi	<0.9

Total Detected Impurities:	191.9
----------------------------	-------

Certicate of analysis iodine 5N metal basis (Alfa Aesar Inc.).

Iodine lump, ultra dry, 99.999% (metals basis)

Stock Number: 44857 Lot Number: J21W012

Analysis

Purity > 99.999 % (metals basis)

Mg	< 0.5	Mn	< 0.2
Al	< 0.2	Fe	< 0.2
P	< 0.1	Ni	< 0.1
K	< 0.1	Cu	< 0.1
Ca	< 0.1	Zn	< 0.1
Ti	< 0.1	As	< 0.1
V	< 0.1	Sn	< 0.1
Cr	< 0.1	Pb	< 0.1

Values given in ppm unless otherwise noted All other impurities are lower than detection limits (<0.01 ppm)

Analysis method: Mass spectrometry

PURIFICATION BY ZONE REFINING (ZR)

350 g ingot, was ZR and grown in an open boat, under dynamic gas flow 5% H₂ +95 %Argon, RMD 2015.

IIT 2012: Final concentration of S, Li, B, Na, Mg, Cl, Ca, Cr, Fe, Ni and Zn (ppb by weight) vs normalized length of the zone refined material ZR001 - Glow Discharge Mass Spectrometry (GMDS) by Evans Analytical Group.

Instrumental Gas Analysis (IGA) by Evans Analytical Group.

Comparison of concentrations of oxygen (ppm by weight) of the zone refined (ZR) material ZR 001 on: (a) before zone refining, (b) highest purity concentration after ZR, and (c) Lowest purity concentration after ZR.

2012, IIT:

Concentration of oxygen and selected elements in ZR 001

Oxygen: Instrumental Gas Analysis (IGA)

All others elements: GDMS

	Before		After
	Sample 1	Sample 2	
O_2	16 ppm	180 ppm	< 10 ppm
Li	$<10~\rm ppb$	$<10~\rm ppb$	$<10~\rm ppb$
B	$<10~\rm ppb$	$11~\mathrm{ppb}$	$<10~\rm ppb$
Na	$30~\mathrm{ppb}$	$20~\mathrm{ppb}$	$<10~\rm ppb$
Mg	$30~\mathrm{ppb}$	$20~\mathrm{ppb}$	$<10~\rm ppb$
Al	$30~\mathrm{ppb}$	$180~\rm ppb$	$<10~\rm ppb$
Si	230 ppb	$620~\mathrm{ppb}$	530 ppb
S	$220~\rm ppb$	$240~\rm ppb$	$20~\rm ppb$
Cl	$50~\mathrm{ppb}$	$130~\rm ppb$	$20~\mathrm{ppb}$
Ca	$60~\mathrm{ppb}$	50 ppb	$20~\mathrm{ppb}$
Ti	$120~\rm ppb$	$10~\rm ppb$	$<10~\rm ppb$
Cr	$10~\mathrm{ppb}$	$<10~\rm ppb$	$<10~\rm ppb$
Fe	$40~\rm ppb$	$80~\rm ppb$	$<10~\rm ppb$
Ni	$<10~\rm ppb$	$10~\rm ppb$	$<10~\rm ppb$
Cu	$20~\rm ppb$	$10~\rm ppb$	$<10~\rm ppb$
Zn	$50~\mathrm{ppb}$	$80~\rm ppb$	$<10~\rm ppb$

RMD 2015

- Zone Refining (ZR)
- Bubbling Ar+5% H₂ through the melt

RMD 2015: Zone Refining (ZR)

Charge: InI (Sigma Aldrich, 99.999 %)

Inl #4 InI-ZR-05 A

Samp	le l	D.	

20-Jul-15	
Inl	
#2 InI-ZR-04 B	

Job # Sample ID:

Element	Concentration	Element	Concentration
_	[ppm wt]		[ppm wt]
Li	< 0.01	Ag	< 0.05
Be	< 0.01	Cd	<1
В	< 0.01	In	Matrix
F	< 0.5	Sn	< 0.5
Na	0.02	Sb	< 0.1
Mg	0.04	Te	< 0.5
Al	1.1	I	Matrix
Si	1.8	Cs	<1
Р	< 0.01	Ba	< 0.1
S	0.24	La	< 0.05
CI	0.02	Ce	< 0.05
K	< 0.5	Pr	< 0.05
Ca	< 0.01	Nd	< 0.01
Sc	< 0.01	Sm	< 0.01
Ti	< 0.01	Eu	0.16
V	< 0.01	Gd	< 0.01
Cr	< 0.01	Tb	< 0.01
Mn	< 0.01	Dy	< 0.01
Fe	0.03	Ho	< 0.01
Co	< 0.01	Er	< 0.01
Ni	< 0.01	Tm	< 0.01
Cu	< 0.01	Yb	< 0.01
Zn	< 0.01	Lu	< 0.05
Ga	< 0.05	Hf	< 0.01
Ge	< 0.05	Ta	Source
As	< 0.05	W	< 0.01
Se	< 0.1	Re	< 0.01
Br	1.3	Os	< 0.01
Rb	< 0.01	lr .	< 0.05
Sr	< 0.01	Pt	< 0.1
Υ	< 0.01	Au	< 0.1
Zr	< 0.01	Hg	< 0.05
Nb	< 0.01	TI	0.91
Mo	< 0.01	Pb	< 0.05
Ru	< 0.01	Bi	< 0.05
Rh	< 0.01	Th	< 0.01
Pd	< 0.05	U	< 0.01

Element	Concentration [ppm wt]	Element	Concentration [ppm wt]
Li	< 0.01	Ag	< 0.05
D-	- 0.04	0-1	- 4

Liement	Concentration	Liement	Concentration	
	[ppm wt]		[ppm wt]	
Li	< 0.01	Ag	< 0.05	
Be	< 0.01	Cd	< 1	
В	< 0.01	<u>In</u>	Matrix	
F	< 0.5	Sn	< 0.5	
Na	0.03	Sb	< 0.1	
Mg	< 0.01	Te	< 0.5	
Al	< 0.01		Matrix	
Si	0.06	Cs	< 1	
Р	< 0.01	Ba	< 0.1	
S	< 0.01	La	< 0.05	
CI	0.03	Ce	< 0.05	
K	< 0.5	Pr	< 0.05	
Ca	< 0.01	Nd	< 0.01	
Sc	< 0.01	Sm	< 0.01	
Ti	< 0.01	Eu	< 0.1	
٧	< 0.01	Gd	< 0.01	
Cr	< 0.01	Tb	< 0.01	
Mn	< 0.01	Dy	< 0.01	
Fe	< 0.01	Ho	< 0.01	
Со	< 0.01	Er	< 0.01	
Ni	< 0.01	Tm	< 0.01	
Cu	0.53	Yb	< 0.01	
Zn	< 0.01	Lu	< 0.05	
Ga	< 0.05	Hf	< 0.01	
Ge	< 0.05	Ta	Source	
As	< 0.05	W	< 0.01	
Se	< 0.1	Re	< 0.01	
Br	0.09	Os	< 0.01	
Rb	< 0.01	lr .	< 0.05	
Sr	< 0.01	Pt	< 0.1	
Υ	< 0.01	Au	< 0.1	
Zr	< 0.01	Hg	< 0.05	
Nb	< 0.01	TI	0.06	
Mo	< 0.01	Pb	< 0.05	
Ru	< 0.01	Bi	< 0.05	
Rh	< 0.01	Th	< 0.01	
Pd	< 0.05	U	< 0.01	
			-	

I-V curve of detector BS2-A_(annealed):

Material	$Cd_{0.9}Zn_{0.1}Te$	Hgl_2	Ini	
	(CZT)			
Average atomic number, Z	49.1	62	51	
Density, g/cm ³	5.78	6.4	5.31	
Band gap, eV	1.55	2.14	2.0	
Melting point, ^O C	~1100	259	351	
Structure	Zincblende	Tetrahedral- layered	Orthorhombic	
Knoop Hardness, kg/mm ²	92	10	27	
Molecule Disassoc. Energy eV Herzberg's tables [19]	1.2	0.35	3.43	
Electrical Resistivity, Ohm-cm	3 x10 ¹⁰	10 ¹³ to 10 ¹⁴	1x10 ¹¹	
				$\rho \approx 4 \times 10^{12}$

CASIS/NASA, 2015: "Detached Melt and Vapor Growth of Inl in SUBSA Hardware"

(a) Detached directional solidification: 3 crystals

Improve crystalline perfection

Observe the dewetting process in microgravity

(b) **Physical vapor transport growth**: **3** crystals.