臺中區國立高級中學 102 學年度 大學入學第三次指定科目聯合模擬考

化學考科

考試日期:103年3月5~6日

一作答注意事項-

考試時間:80 分鐘

作答方式:

- •選擇題用 2B 鉛筆在「答案卡」上作答;更正時,應以橡皮擦擦拭, 切勿使用修正液 (帶)。
- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

參考資料

説明:下列資料,可供回答問題之參考

一、元素週期表(1~36 號元素)

																2
																Не
	_															4.0
4											5	6	7	8	9	10
Be											l		N	_		Ne
												20.2				
12											13	l				18
Mg												l		l .	l	Ar
24.0																40.0
20	21	22	23	24	25	26	27	28	29	30					<u> </u>	36
Ca	Sc	Ti	v	Cr												Kr
40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7			69.7					83.8
	Be 9.0 12 Mg 24.0 20 Ca	Be 9.0 12 Mg 24.0 20 21 Ca Sc	Be 9.0 12 Mg 24.0 20 21 22 Ca Sc Ti	Be 9.0 12 Mg 24.0 20 21 22 23 Ca Sc Ti V	Be 9.0 12 Mg 24.0 20 21 22 23 24 Ca Sc Ti V Cr	Be 9.0 12 Mg 24.0 20 21 22 23 24 25 Ca Sc Ti V Cr Mn	Be 9.0 12 Mg 24.0 20 21 22 23 24 25 26 Ca Sc Ti V Cr Mn Fe	Be 9.0 12 Mg 24.0 20 21 22 23 24 25 26 27 Ca Sc Ti V Cr Min Fe Co	Be 9.0 12 Mg 24.0 20 21 22 23 24 25 26 27 28 Ca Sc Ti V Cr Mn Fe Co Ni	Be 9.0 12 Mg 24.0 20 21 22 23 24 25 26 27 28 29 Ca Sc Ti V Cr Min Fe Co Ni Cu	Be 9.0 12 Mg 24.0 20 21 22 23 24 25 26 27 28 29 30 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn	Be 9.0	Be 9.0 B C 10.8 12.0 13 14 Si 24.0 25 26 27 28 29 30 31 32 Ca Sc Ti V Cr Min Fe Co Ni Cu Zn Ga Ge	Be 9.0 B C N 10.8 12.0 14.0 12 Mg 24.0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As 40.1 45.0 45.0 50.0 50.0 50.0 50.0 50.0 B C N 10.8 12.0 14.0 13 14 15 14 15 Al Si P 27.0 28.1 31.0 28 29 30 31 32 33 31 32 33 40.1 45.0 45.0 50.0 50.0 50.0 50.0 Cu Zn Ga Ge As	Be 9.0 B C N O 10.8 12.0 14.0 16.0 12 Mg 24.0	Be 9.0 12 Mg 24.0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

二、理想氣體常數 $R = 0.08205 L atm K^{-1} mol^{-1} = 8.31 J K^{-1} mol^{-1}$

三、
$$E=hv=h\times\frac{c}{\lambda}$$
, h 為普朗克常數= 6.63×10^{-34} 焦耳.秒 c 為光速= 3.0×10^{8} 米/秒, v 為頻率, λ 為波長

四、1 法拉第=96500 庫侖

 \pounds \ $\log_{10} 2 = 0.301$ \, $\log_{10} 3 = 0.477$ \, $\log_{10} 7 = 0.845$

第壹部分:選擇題(占76分)

一、單選題(占 36 分)

說明:第1題至第12題,每題有5個選項,其中只有一個是正確或最適當的選項, 請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作 答或畫記多於一個選項者,該題以零分計算。

1. 已知下列反應的熱化學方程式:

$$6C_{(s)} + 5H_{2(g)} + 3N_{2(g)} + 9O_{2(g)} \rightarrow 2C_3H_5(ONO_2)_{3(l)} \quad \Delta H_1 = a \text{ kJ}$$

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} \quad \Delta H_2 = b \; kJ$$

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} \quad \Delta H_3 = c \text{ kJ}$$

則反應 $4C_3H_5(ONO_2)_{3(1)} \rightarrow 12CO_{2(g)} + 10H_2O_{(g)} + O_{2(g)} + 6N_{2(g)}$ 的 Δ H 爲多少 kJ?

- (A) 12a + 10b 4c
- (B) 12c + 5b 2a
- (C) a 5b 12c
- (D) 2a 5b 12c
- (E) 12c 5b 2
- 2. 在 25°C、1 atm 下使氫、甲烷及氧的混合氣體 48.0 mL,完全燃燒後通過含 Mg(ClO₄)_{2(s)}的管柱後,並使溫度恢復 25°C,而測得剩餘氣體爲 18.0 mL,再使其通過含 NaOH_(s)的管柱後,剩餘氣體爲 12.0 mL,則下列敘述何者正確?
 - (A) 最初的混合氣體中氫的莫耳數占全部混合氣體的 $\frac{1}{3}$
 - (B) 最初的混合氣體中含氧 24 mL
 - (C) 將氫、甲烷完全燃燒所需的氧氣共 12 mL
 - (D) 完全燃燒後產生的水共 30.0 mL
 - (E) 原混合氣體中氧與甲烷的質量比爲 10:1
- 3. 有六種電池中: ⓐ 勒克朗社電池、⑥ 鹼性乾電池、⑥ 水銀電池、④ 鎳鍋電池、
 - ⑥ 鉛蓄電池、⑥ 鹼性氫氧燃料電池,下列敘述何者錯誤?
 - (A) 以 MnO2 為氧化劑是@和 b
 - (B) 放電時之電壓以①最小
 - (C) 電解液引入 KOH 者有⑥、⑥、⑥、①
 - (D) 電極材料為 Zn 者只有@電池的「-」極
 - (E) 能量轉換效率以①最高
- 4. 在 220° C 時 $I_{2(g)} + H_{2(g)} \rightleftharpoons 2HI_{(g)}$,在一個密閉容器中置入這兩種氣體 I_2 與 H_2 ,已知一開始 I_2 與 H_2 的莫耳數比是 3:1,若將此容器保持在 220° C 下,此密閉容器中的反應達到平衡狀態,且此時 $I_{2(g)}$ 與 $H_{2(g)}$ 的分子數總和爲 $HI_{(g)}$ 分子數的 3 倍,則此反應在此溫度的平衡常數(K_c)爲下列何者?
 - (A) 0.3
 - (B) 0.6
 - (C) 0.8
 - (D) 1.0
 - (E) 1.5

5. 表(1)爲各離子化合物在 25°C 時的溶度積常數(K_{sp}),則在 25°C 時,取五個燒杯各加入 1 升的水,分別加入 1 莫耳的下列各離子化合物,充分的攪拌,何者未溶解的質量最多?(Pb=207、 Ag=108、 Cu=64.0 、Cl=35.5 、 Hg=201 、 P=31)

表((1)
離子化合物	溶度積常數(K _{sp})
PbCO ₃	1.5×10 ⁻¹⁵
$\mathrm{Ag_3PO_4}$	1.8×10^{-18}
$Cu(OH)_2$	2.2×10^{-22}
$\mathrm{Hg_2Cl_2}$	1.1×10^{-18}
AgCl	1.8×10^{-10}

- (A) PbCO₃
- (B) Ag_3PO_4
- (C) $Cu(OH)_2$
- (D) Hg₂Cl₂
- (E) AgCl
- 6. 假設下列氣體的行為皆能以理想氣體視之,圖(1)為氣體的密度與溫度的關係圖,若甲、乙曲線代表同壓下,兩種不同氣體,如果乙線是氧,則甲線可能是下列選項何種氣體?
 - (A) 氫
 - (B) 氮
 - (C) 戊烷
 - (D) 臭氧
 - (E) 二氧化碳

- 7. 在一容器中,將下列反應式中之各物質
 - 溶於氯仿的溶劑中(氯仿不會與反應物及生成物進行反應),使其進行反應: $C_6H_5COOH+CH_3OH \rightleftharpoons C_6H_5COOCH_3+H_2O$

假設在 15°C 時,此反應的平衡常數 K。 為 80,則下列敘述何者正確?

- (A) 在 15°C 時,當 [C₆H₅COOH]=10 M, [CH₃OH]=1M, [C₆H₅COOCH₃]=8 M, [H₂O]=10 M時,反應已達平衡
- (B) 在 15°C 時,當起始濃度爲[C₆H₅COOH]=10 M,[CH₃OH]=10 M, [C₆H₅COOCH₃]=10 M,[H₂O]=10 M時,反應達平衡後,[C₆H₅COOCH₃]會變小
- (C) 在 15°C 時,當起始濃度爲[C₆H₅COOH]=0.10 M,[CH₃OH]=0.10 M,[C₆H₅COOCH₄]=1 M,[H₂O]=1 M時,反應達平衡後,[CH₃OH]會變大
- (D) 在 15°C 時,當起始濃度為 [C₆H₅COOH]=1M, [CH₃OH]=0.10 M, [C₆H₅COOCH₄]=1M, [H₂O]=8 M 時,反應達平衡後,[C₆H₅COOH]會變大
- (E) 在 15°C 時,加入 5 mL的水到反應中,此反應的平衡常數會變小
- 8. 今有 1 莫耳氫原子之電子由某一激發狀態躍遷,最多可在紫外光區產生 6 條不同頻 率的光譜線,下列敘述何者正確?
 - (A) 此一激發狀態的主電子層爲 P 殼層
 - (B) 最多總共可產生 16 條不同頻率的光譜線
 - (C) 在可見光區最多產生 5 條不同頻率的光譜線、在紅外光區最多產生 4 條不同頻率的光譜線
 - (D) 在可見光區產生頻率最低的光譜線之能量爲 984 kJ/mol
 - (E) 產生的光譜線中,來曼系列的第一條光譜線、巴耳末系列的第二條光譜線及帕申系列的第三條光譜線的波長比爲 1:4:9

- 9. 已知某正二價陽離子之最外層電子組態為 5s²,此原子的中子數比質子數多 19 個,則下列敘述何者正確?
 - (A) 此原子的原子序是 48
 - (B) 此原子的質量數是 115
 - (C) 此原子爲非金屬元素
 - (D) 四個量子數 $(n, \ell, m_{\ell}, m_{s}) = (4, 3, -1, -\frac{1}{2})$,可描述其 4d 軌域上的一個電子
 - (E) 四個量子數 $(n, \ell, m_{\ell}, m_{s}) = (5, 1, 0, -\frac{1}{2})$,可描述其中性原子最後一個填入軌域的電子(假設 m_{ℓ}, m_{s} 量子數均是由負値開始)
- 10. 圖(2)爲金屬的面心立方堆積(又叫立方最密堆積),已知銀的晶體結構爲面心立方堆積,銀原子的半徑爲 1.44 Å,今有一邊長爲 10 nm 的立方銀顆粒,試問共含有多少個銀原子?

- (A) 5.92×10^4
- (B) 2.96×10^4
- (C) 2.09×10^4
- (D) 1.48×10^4
- (E) 5.23×10^3
- 11. 比較碳原子所用混成軌域,何選項與1,3-環丁二烯相同?
 - (A) 4-乙基環戊烯
 - (B) 3-甲基-1-戊炔
 - (C) 4-甲基-2-戊酮
 - (D)順-丁烯二酸
 - (E) 2-甲基-1,3-丁二烯
- 12. 在 25°C 時,某一元弱鹼水溶液 20 mL,加入 40 mL之 0.1 M HCl_(aq)時達當量點,若此時再加入 0.1 M NaOH_(aq)20 mL,測得溶液之 [H⁺]=2.0×10⁻⁹ M,則此一元弱鹼之 K_h=?
 - (A) 2.0×10^{-6}
 - (B) 5.0×10^{-6}
 - (C) 1.0×10^{-7}
 - (D) 2.0×10^{-9}
 - (E) 5.0×10^{-9}

二、多選題(占 40 分)

說明:第13題至第22題,每題有5個選項,其中至少有一個是正確的選項,請 將正確選項畫記在答案卡之「選擇題答案區」。各題之選項獨立判定,所 有選項均答對者,得4分;答錯1個選項者,得2.4分,答錯2個選項者, 得0.8分,答錯多於2個選項或所有選項均未作答者,該題以零分計算。

- 13. 下列化合物(或分子式)中,其異構物數目有6個的有哪些?
 - $(A) C_4H_8$
 - (B) C_6H_{14}
 - (C) C₄H₉Cl
 - (D) C₄H₈O₂(羧酸和酯)
 - (E) C₆H₃F₂Cl(含一個苯環)
- 14. 下列各選項中,何者結果爲正確?
 - (A) 持續通 CO_{2(g)}於 0.1 M 氧化鈣水溶液中最後變爲 Ca(HCO₃)2水溶液
 - (B)逐滴加濃氨水溶液於 0.1 M CuSO,水溶液中,先產生沉澱而後沉澱消失
 - (C) AgI(s)可溶於濃氨水
 - (D) 0.1 M 二鉻酸鉀水溶液加入足量 HCl 後,再加入 0.1 M 氯化鋇水溶液可產生鉻酸 鋇沉澱
 - (E) 碳酸銨和 HBr(a)、 NaOH(a) 反應均有無色氣體生成
- 15. 半導體業可區分爲材料(矽晶棒)製造(上游)、積體電路晶圓製造(中游)及積體電路 封裝(下游)三大類。下列有關半導體材料與產業的敘述,何者正確?
 - (A) 矽是半導體工業最主要的材料,也是地殼含量最多的元素
 - (B) 在矽半導體中摻雜少量具有 3 個價電子的硼元素,可製成 N 型半導體
 - (C) 臺灣著名的台積電半導體公司是從事中游的積體電路晶圓製造
 - (D) 半導體產業是高科技、低汙染、低毒性的產業
 - (E) 氫氟酸是半導體業蝕刻製程常用的酸
- 16. 有一可逆反應 $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ $\Delta H = 91 \, kJ/mol$,在 $140 \, ^{\circ}$ C 達成平衡狀態,下列選項中,加入改變平衡的變因,新平衡的結果,何選項的組合是正確的?
 - (A) 定溫定壓下加入氦氣,平衡向右反應,顏色會變淡
 - (B) 定溫定容下加入 N₂O_{4(g)}, 平衡向右反應, 顏色會變深
 - (C) 定溫下壓縮體積,平衡向左反應,顏色會變淡
 - (D) 定溫下擴大體積,平衡向右反應,顏色會變深
 - (E) 升高容器溫度,平衡向左反應,顏色會變淡
- 17. 如圖(3)所示,在中部某河川上游原本盛產魚蝦,生態豐富,但流經甲、乙、丙、丁、戊五個工廠後,變得魚蝦絕跡,假設這五家工廠有未經處理就任意排放的廢液中,每一個工廠只分別含有氫氧化鈉、二鉻酸鉀、硝酸鉛、硝酸與碳酸鈉其中一種。今有某環保小組對此河川進行監測與調查時,發現(I) 甲處河水呈橙黃色;(II) 乙處河水呈黃色;(III) 丙處河水的有黃色污泥;(IV) 丁處河水的水質是酸性;(V) 戊處河水中會產生氣泡。由此判斷下列敘述哪一些是正確?

- (A) 甲工廠排放的廢液是硝酸鉛
- (B) 乙工廠排放的廢液是氫氧化鈉
- (C) 丙工廠排放的廢液是硝酸
- (D) 丁工廠排放的廢液是二鉻酸鉀
- (E) 戊工廠排放的廢液是碳酸鈉
- 18. 假設題中所有的氣體皆爲理想氣體,下列有關氣體的敘述哪些是正確?
 - (A) Xe 原子的平均速率在 200 K、760 mm Hg 與 200 K、380 mm Hg 時相同
 - (B) Kr 原子的平均動能在 0°C、760 Pa 與 0°C、380 Pa 時相同
 - (C) 在 100°C、760 cm H₂O 時, Ar 原子的平均速率較 Ne 原子的平均速率快
 - (D) 在-100°C、760 torr 時, Ne 原子的平均動能較 He 原子的平均動能大
 - (E) 在 100 K、76 hPa、體積 200 L 時, Xe、Kr、Ar、Ne、He 五個氣體有相同的重量

19. 在 500°C 時, $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ 之初始反應速率如表(2):

丰	1	2	,
LX.	{	L	

N _{2(g)} 的初始濃度(M)×10	H _{2(g)} 的初始濃度(M)×10	$\frac{-\Delta[N_{2(g)}]}{\Delta t}(Ms^{-1})\times 10^2$
1	1	12
1	2	24
2	2	96

若現於 500° C 時,在 1 升的容器內置入 1 莫耳的 $N_{2(g)}$ 及 0.5 莫耳的 $H_{2(g)}$ 時,則下列 敘述哪一些是正確?

- (A) 初始反應速率為 60 Ms-1
- (B) N_{2(g)}的初始消耗速率爲120 Ms⁻¹
- (C) H_{2(g)}的初始消耗速率爲 360 Ms⁻¹
- (D) NH3(g)的初始生成速率爲 240 Ms-1
- (E) 速率常數 $k = 120 \,\mathrm{M}^{-2} \mathrm{s}^{-1}$
- 20. 下列各項性質比較,何者正確?
 - (A) 鍵能: $H_2 > F_2 > Cl_2 > Br_2$
 - (B) 鍵角: $SO_3 > SO_2 > SO_4^{2-} > SO_3^{2-}$
 - (C) 游離能: N⁺>B⁺>C⁺
 - (D) 游離能: Na⁺>Ne>F>F
 - (E) 熔點: Si>MgO>NaCl>CCl₄
- 21. 下列何組中的分子僅有一個非極性分子?
 - (A) $CH_4 \cdot ClF_3 \cdot SF_6$
 - (B) $NO_2 \cdot PCl_5 \cdot SF_4$
 - (C) $BF_3 \cdot P_4 \cdot N_2O$
 - (D) $CF_4 \cdot CH_2F_2 \cdot XeF_4$
 - (E) $O_3 \cdot PH_3 \cdot CS_2$
- 22. 在 25°C 時,X 溶液為 0.01 M 的 $H_3PO_{4(aq)}$, Y 溶液為 pH=12的 $NaOH_{(aq)}$, 假設溶液混合時體積具有加成性,則下列選項何者正確?(已知 25°C 時,磷酸的三個解離常數依次為 $Ka_1=7.1\times10^{-3}$ M, $Ka_2=6.3\times10^{-8}$ M, $Ka_3=4.4\times10^{-13}$ M)
 - (A) 取 X 溶液加水稀釋成體積 10^3 倍後,溶液的 pH 值 = 5
 - (B) 取 Y 溶液加水稀釋成體積 10^6 倍後,溶液的 pH 值 = 6
 - (C) 將 X、Y 兩者等體積混合時,溶液的 pH 值在 7~8 之間
 - (D) 將兩者以體積比 X: Y=1:3混合時,溶液的 pH 值在 6~7 之間
 - (E) 將兩者以體積比 X: Y=2: 3混合時,溶液的 pH 值在 7~8 之間

第貳部分:非選擇題(占24分)

說明:本部分共有三大題,答案必須寫在「答案卷」上,並於題號欄標明大題號 (一、二、三)與子題號(1、2、……),作答時不必抄題。計算題必須寫出 計算過程,最後答案應連同單位劃線標出。作答務必使用筆尖較粗之黑 色墨水的筆書寫,且不得使用鉛筆。

- 一、X、Y和Z均為原子序 1~18的元素,且原子序依次增大,X的單質分子為沸點僅高於 He 的氣體,Y原子最外層電子數是其週期數的三倍,Z與X的價電子數相同。 請以元素符號回答下列問題:
 - 1. X、Y和 Z的元素符號分別爲____、__、__、__。(3 分)
 - 2. 由上述元素組成的化合物中,既含有共價鍵又含有離子鍵的有______。(2分)
 - 3. X 和 Y 組成的化合物中,既含有極性共價鍵又含有非極性共價鍵的是_____。 (1分)
- 二、如圖(4)進行比色法測定平衡常數的實驗,藥品A爲xM Fe(NO₃)₃溶液,藥品B爲yM KSCN溶液,試回答各小題:

- 1. 本實驗所進行的比色,主要是測定何種物質的濃度?(2分)
- 2. 為操作本實驗 x、y 的數值何選項比較恰當?(2分)
 - (A) 2 , 2

 $(B) 0.2 \cdot 2$

 $(C) 2 \cdot 0.2$

 $(D) 0.2 \cdot 0.002$

(E) 2, 20

3. 承上小題,稀釋 A 溶液至 0.08 M 後,取此溶液 5 mL 與 B 溶液 5 mL 混合,此混合液試管高度為 7.0 cm 時,進行比色的標準液高度為 6.3 cm(標準液是由 x M Fe(NO₃)₃ 溶液 5 mL 與 y M KSCN 溶液 5 mL 混合而成),可測得本反應的平衡常數爲何?(3 分)

三、25°C下,以器皿 X 精確量取 20.0 mL的醋酸溶液,置入器皿 Y 中,並加入 2~3 滴酚酞作爲指示劑,再以標定過濃度的氫氧化鈉標準溶液滴定 20 mL 未知濃度的醋酸溶液,所得的數據如表(3)所示:

表(3)

34	
$V_{NaOH}(mL)$	[H ⁺]
0	1×10 ⁻³
5	7×10 ⁻⁵
10	3×10 ⁻⁵
20	1×10 ⁻⁵
30	3×10 ⁻⁶
39	2.5×10 ⁻⁷
40	$\sqrt{3} \times 10^{-10}$
41	1.2×10 ⁻¹¹
50	1.4×10 ⁻¹²

- 1. 以加入 NaOH 的體積爲橫軸,pH 值爲縱軸,畫出此一酸鹼滴定曲線。(3 分)
- 2. 器皿 X 和器皿 Y 分別爲圖(5)中的何項器材?(請以代號作答)(各 2 分, 共 4 分)
- 3. 氫氧化鈉標準溶液及醋酸的濃度各爲何?(各 2 分,共 4 分)

臺中區國立高級中學 102 學年度大學入學第三次指定科目聯合模擬考

化學考科解析

考試日期:103年3月5~6日

選擇題答案

21.2 1	2 4 8	₹ 3	4 🛂	5	6	7 6	. 8	. 9	10	11*	12
В	Е	D	С	D	С	С	E	E	A	D	В
	14	1 1.	5 19 4 18	16	17.	.18	- 19	20 July 192	0 🐇 🖟	21	22: hin
ADE	ABE	C)	H I	AB	BE	AB	AE		CE	BE	Е

非選擇題答案

				72500	**************************************			
	2 . 7.	A 3	* * 1,	2.4.	3	1.	2.	# \$ 3 B B B B B B B B B B B B B B B B B B
H,O,Na	NaOH,	H_2O_2	FeSCN ²⁺	(D)	225	如附圖	器皿 X:己	[NaOH] = 0.05 M,
H / O / Na	Na ₂ O ₂	11202	H ₂ O ₂ rescn	(D)	223		器皿Y:乙	$[CH_3COOH] = 0.1 M$

第壹部分

--、單撰題

- 2. $V_{CO_2} = 18 12 = 6 \; mL$,剩餘氣體 $12 \; mL$ 為未反應完之 O_2 利用氣體反應之方程式係數比 = 反應莫耳數比 = 反應體積 比,設 $V_{H_2} = b$ 、 $V_{O_2} = c$

$$\begin{split} \mathrm{CH_{4(g)}} + 2\mathrm{O_{2(g)}} &\to \mathrm{CO_{2(g)}} + 2\,\mathrm{H_2\,O_{(\ell)}} \\ \mathrm{2H_{2(g)}} + \mathrm{O_{2(g)}} &\to 2\mathrm{H_2O_{(\ell)}} \end{split} \\ = V_{\mathrm{CO_2}} = 6~\mathrm{mL} \end{split}$$

$$\begin{cases} b + c = 48 - 6 \\ c = 2 \times 6 + \frac{b}{2} + 12 \end{cases}, \quad b = 12 \text{ mL} = V_{\text{H}_2}$$

$$c = 30 \text{ mL} = V_{\text{O}_2}$$

- 3. 電極材料 Zn 作爲「-」極者有②、⑤、②
- 4. $I_{2(g)} + H_{2(g)} \rightleftharpoons 2HI_{(g)}$

$$(3-x)+(1-x)=3\times 2x$$
 $x=0.5$

$$Kc = \frac{\left(\frac{2 \times 0.5}{v}\right)^2}{\left(\frac{3 - 0.5}{v}\right)\left(\frac{1 - 0.5}{v}\right)} = 0.8$$

- 5. $PbCO_3$ 式量爲 $267 \cdot Ag_3PO_4$ 式量爲 $419 \cdot Cu(OH)_2$ 式量爲 $98 \cdot Hg_2Cl_2$ 式量爲 $473 \cdot AgCl$ 式量爲 $143.5 \cdot 风皆爲難溶解的鹽類,所以溶入一升的水中的量很少,故剩下的質量約爲其一 莫耳的質量$
- 6. 在同壓 400K 下,

 $PM = dRT \cdot M \propto d$

$$\frac{M_{\text{H}}}{M_Z} = \frac{d_{\text{H}}}{d_Z}$$
, $\frac{M_{\text{H}}}{32} = \frac{0.9}{0.4}$, $M_{\text{H}} = 72$

- (A) $H_2 = 2$
- (B) $N_2 = 28$
- (C) $C_5H_{12} = 72$
- (D) $O_3 = 48$
- (E) $CO_2 = 44$
- 7. (A) Q=(8)(10) =8 < K ,未達平衡
 - (B) $Q = \frac{(10)(10)}{(10)(10)} = 1 < K$, 未達平衡 , 反應向右 , 反應達平衡
 - 後,[C₆H₅COOCH₃]會變大

(C) $Q = \frac{(1)(1)}{(0.10)(0.10)} = 100 > K$, 未達平衡, 反應向左, 反應

達平衡後,[CH3OH]會變大

- (D) $Q = \frac{(1)(8)}{(1)(0.10)} = 80 = K$,反應達平衡, $[C_6H_5COOH]$ 不變
- (E) 溫度固定 K 値不變
- 8. (A) 此一激發態電子位於n=7即Q殼層
 - (B)(C) 紫外光區 = 6條、可見光區 = 5條、紅外光區 = 10條,最多共可產生 21條光譜線

(D)
$$\Delta E_{n=3\rightarrow n=2} = 1312 \times (\frac{1}{2^2} - \frac{1}{3^2}) = 182.2 \text{ k J/mol}$$

(E)
$$\lambda_1: \lambda_2: \lambda_3 = (\frac{1}{\frac{1}{1^2} - \frac{1}{2^2}}): (\frac{1}{\frac{1}{2^2} - \frac{1}{4^2}}): (\frac{1}{\frac{1}{3^2} - \frac{1}{6^2}}) = 1: 4: 9$$

- 9. 此中性原子之最外層電子組態為 5s²5p² (A)(B)(C) 此原子為 ¹¹⁹Sn
 - (D) 4d 軌域之ℓ値≃2
- 10. 面心立方堆積:(1) $4r = \sqrt{2}\ell$, $\ell = 2\sqrt{2}r$
 - (2) 單位晶格內含 4 個原子

Ag原子數=
$$\frac{(10\times10^{-9})^3}{(2\sqrt{2}\times1.44\times10^{-10})^3}\times4=5.92\times10^4$$

11. 1,3-環丁二烯: , C 原子均爲 sp² 混成

(A) ,C 原子為
$$sp^3 \setminus sp^2$$
混成 C_2H_5

$$CH_3$$
 (B) $CH_3 - CH_2 - CH - C = CH \cdot C 原子爲 $sp^3 \setminus sp^2$ 混成$

- (E) $CH_2 = C CH = CH_2$,C原子為 $sp^3 \times sp^2$ 混成
- 12. (B) HCl+BOH → BCl+H₂O 當量點生成,BCl mol = 0.1×40 = 4 mmol

BCl + NaOH → BOH + NaCl

初4mmol 2mmol

後 2 mmol 2 mmol 2 mmol

形成 BOH/BCI 共存之緩衝溶液

$$[OH^{-}] = K_b \times \frac{[BOH]}{[BCl]}$$
, $\frac{10^{-14}}{2 \times 10^{-9}} = K_b \times \frac{\frac{2}{80}}{\frac{2}{80}}$, $K_b = 5 \times 10^{-6}$

二、多選題

- 13. (A) C₄H₈ {烯:4種 環烷:2種
 - (B) C₆H₁₄:5種
 - (C) C₄H₆Cl:4種
 - (D) $C_4H_8O_2$ {羧酸:2種 酯:4種
 - (E) C₆H₃F₂Cl:6種
- 14. (A) $CaO \xrightarrow{H_2O} Ca(OH)_{2(aq)} \xrightarrow{CO_2} CaCO_{3(s)}$ $\xrightarrow{CO_2 過量} Ca(HCO_3)_{2(aq)}$

(B)

$$CuSO_{4(aq)}$$
 \longrightarrow $Cu(OH)_{2(s)}$ \longrightarrow $NH_{3(aq)}$ 過量 \longrightarrow $Cu(NH_3)_{4(aq)}^{2+}$

- (C) AgI(s) 不可溶於濃氨水
- (D) $CrO_4^{2-} \xrightarrow{H^+} Cr_2O_7^{2-}$, $Cr_2O_7^{2-} + HCl$ 仍爲 $Cr_2O_7^{2-}$
- (E) $(NH_4)_2CO_3 \xrightarrow{HBr} CO_{2(q)}$ $NAOH \longrightarrow NH_{3(g)}$
- 15. (A) 地殼元素含量: O > Si > A1 > Fe > Ca
 - (B) Si(B)為 P 型半導體
 - (D) 半導體業會產生酸鹼、含氟廢水問題
 - (E) $Si_{(s)} + 4HF_{(aq)} \rightarrow SiF_{4(g)} + 2H_{2(g)}$
- 16. 依據勒沙特列原理
 - (A) 定溫定壓下加入氦氣,分壓皆變小,平衡向氣體係數和 大的方向反應,顏色會變淡
 - (B) 定溫定容下加入 $N_2O_{4(g)}$, $N_2O_{4(g)}$ 分壓變大,平衡向右反應,顏色會變深
 - (C) 定溫下壓縮體積,分壓皆變大,平衡向氣體係數和小的 方向反應,平衡向左反應,顏色會變深
 - (D) 定溫下擴大體積,分壓皆變小,平衡向氣體係數和大的 方向反應,顏色會變淡
 - (E) 升高容器溫度,往吸熱方向,平衡向右反應,顏色會變深 用工廠排放的廢源是二級整細,河水且檢蓋魚。乙工廠排放的
- 17. 甲工廠排放的廢液是二鉻酸鉀,河水呈橙黃色。乙工廠排放的 廢液是氫氧化鈉,二鉻酸鉀碰到氫氧化鈉變成鉻酸鉀河水呈黃 色。丙工廠排放的廢液是硝酸鉛,碰到鉻酸鉀產生鉻酸鉛黃色 沉澱。丁工廠排放的廢液是硝酸,河水的水質是酸性。戊工廠 排放的廢液是碳酸鈉,碰到流下的硝酸產生二氧化碳氣體
- 18. (A) 溫度相同平均速率相同
 - (B) 溫度相同平均動能相同,與壓力無關
 - (C) 溫度相同平均動能相同,原子量大平均速率慢
 - (D) 溫度相同平均動能相同
 - (E) 同溫同壓同體積莫耳數相同,重量不同
- 19. 利用表格中的數據可得知 $R = k[N_{2(g)}]^2[H_{2(g)}]$,且速率常數 $k = 120 \, M^{-2} s^{-1}$,當 1 升的容器內置入 1 莫耳的 $N_{2(g)}$ 及 0.5 莫耳的 $H_{2(g)}$ 時, $N_{2(g)}$ 及 $H_{2(g)}$ 的初始濃度分別為 1.0 M 與 0.5 M,因此反應初始速率為 $R = 120 \times (1.0)^2 \times (0.5) = 60 \, M s^{-1}$ 。另外

$$R = \frac{-\Delta[N_{2(g)}]}{1} = \frac{-\Delta[H_{2(g)}]}{3} = \frac{-\Delta[NH_{3(g)}]}{2}$$

- 故 $N_{2(g)}$ 的初始消耗速率為 $60 \, \text{Ms}^{-1}$, $H_{2(g)}$ 的初始消耗速率為 $180 \, \text{Ms}^{-1}$, $NH_{3(e)}$ 的初始生成速率為 $120 \, \text{Ms}^{-1}$
- 20. (A) 鍵能: H₂ > Cl₂ > Br₂ > F₂
 - (D) 游離能: Na+>Ne>F>F-
- 21. (A) CH₄(非極性)、CIF₃(極性)、SF₆(非極性)
 - (B) NO₂(極性)、PCI₅(非極性)、SF₄(極性)
 - (C) BF3(非極性)、P4(非極性)、N2O(極性)
 - (D) CF₄(非極性)、CH₂F₂(極性)、XeF₄(非極性)
 - (E) O₃(極性)、PH₃(極性)、CS₂(非極性)
- 22. (A) 稀釋後[H₃PO₄]=1×10⁻⁵M ,但 H₃PO₄ 非強酸,解離之 [H⁺]<10⁻⁵ M ,故 pH 値 > 5
 - (B) 稀釋後[NaOH]=1×10⁻⁸ M 爲稀薄溶液,pH 值 ÷7
 - (C) $H_3PO_4 + NaOH \rightarrow NaH_3PO_4 + H_3O$

 $NaH_2PO_4 + NaOH \rightarrow Na_2HPO_4 + H_2O$

 $Na_2HPO_4 + NaOH \rightarrow Na_3PO_4 + H_2O$

故 H₃PO₄: NaOH=1: I混合時 ,生成 NaH₂PO₄ 酸式鹽呈酸性,pH 値 < 7

- (D) H₃PO₄: NaOH=1: 3混合時 , 生成 Na₃PO₄ 正鹽呈鹼性, pH 値 > 7
- (E) H,PO4: NaOH = 2: 3混合時

生成 $NaH_2PO_4: Na_2HPO_4 = 1:1$ 之緩衝溶液 此時 $[H^+] = Ka_2 = 6.3 \times 10^{-8} \, M$,pH 値 7~8 之間

第貳部分:非選擇題

- 一、1. He 之沸點最低,其次為 H₂,故 X 為 H Y 若為第二週期,則價電子數=6 Y 若為第三週期,則價電子數=9(不合理) 故可知 Y 為第二週期 6A 族,即 O Z 之原子序大於 Y,故 Z 為第三週期 1A 族,即 Na
- 二、1. Fe³⁺+SCN⁻ ⇔ FeSCN²⁺,故知爲 FeSCN²⁺
 - 2. 標準液中的 Fe³⁺ 與 SCN⁻ (限量試劑)視為完全反應,所以 之間的差距約 100 倍
 - 3. 標準液 [FeSCN²⁺] = $\frac{0.002 \times 5}{5+5}$ = 0.001 (M)

$$C_1h_1 = C_2h_2 \Rightarrow 0.001 \times 6.3 = C_2 \times 7$$
 ,故 $C_2 = 9.0 \times 10^{-4}$ (M)

Fe³⁺ + SCN⁻ \Rightarrow FeSCN²⁺
初 0.04 0.001 0

反應 -9.0×10^{-4} -9.0×10^{-4} $+9.0 \times 10^{-4}$

平衡 $= 0.04$ 1.0×10^{-4} 9.0×10^{-4}

$$K = \frac{9.0 \times 10^{-4}}{1.0 \times 10^{-4} \times 0.04} = 225$$

- 三、1. 14 12 10 pH 8 2 0 10 20 30 40 50 60 NaOH體積(mL)
 - 2. 器皿 X: 己、器皿 Y: 乙
 - 3. 由滴定曲線圖可知 V_{NaOH} = 40 mL 達當量點

故 $V_{NaOH} = 20 \text{ mL}$ 為半當量點,此時 $[H^{+}] = Ka = 1 \times 10^{-5}$

 $1 \times 10^{-3} = \sqrt{C_0 \times 1 \times 10^{-5}}$? $C_0 = [CH_3COOH] = 0.1 M$

 \mathbb{Z} [CH₃COOH]×20×1=[NaOH]×40×1

故[NaOH] = 0.05 M