

REAL MATRIX-MATRIX PRODUCTS

Definition

Let $A \in \mathbf{R}^{l \times m}$ and $B \in \mathbf{R}^{m \times n}$. In this case we call A and B conformable. The matrix-matrix product of A and B is the matrix $C \in \mathbf{R}^{l \times n}$ whose ith row c_i (for i = 1, ..., n) is defind $c_i = Ab_i$ where b_i is the ith row of B.

Notation

We denote the matrix product of A and B by AB.

Properties

Future editions will contain accounts of the following basic properties.

Proposition 1. Matrix multiplication is associative.

Proposition 2. Matrix multiplication is not commutative.

Indeed, the matrix-matrix product of B and A may not even be defined, if B and A are not conformable.

Identity matrix

The matrix which is the identity under the operation of multiplication is the one which has ones on its diagonals and zero elswhere. We denote the $d \times d$ identity matrix by I_d , or, when no confusion is possible by I.

 $^{^1\}mathrm{Future}$ editions will improve and expand.

