Linear Algebra

Department of Mathematics Indian Institute of Technology Guwahati

January - May 2019

MA 102 (RA, RKS, MGPP, KVK)

Basis and dimension

Topics:

- Linear span
- Subspaces
- Linear independence
- Basis, Dimension & Rank

Definition: A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

Definition: A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

• The numbers c_1, c_2, \ldots, c_k are called the coefficients of the linear combination.

Definition: A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

• The numbers c_1, c_2, \ldots, c_k are called the coefficients of the linear combination.

Question: Is the vector $[1,2,3]^{\top}$ a linear combination of $[1,0,3]^{\top}$ and $[-1,1,-3]^{\top}$?

Definition: A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

• The numbers c_1, c_2, \ldots, c_k are called the coefficients of the linear combination.

Question: Is the vector $[1,2,3]^{\top}$ a linear combination of $[1,0,3]^{\top}$ and $[-1,1,-3]^{\top}$?

Theorem: A system of linear equations with augmented matrix $[A \mid \mathbf{b}]$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

Definition: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Definition: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

Definition: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

• Convention: $span(\emptyset) = \{0\}.$

Definition: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

- Convention: $span(\emptyset) = \{0\}.$
- If $\operatorname{span}(S) = \mathbb{R}^n$, then S is called a spanning set for \mathbb{R}^n .

Definition: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\mathsf{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

- Convention: $span(\emptyset) = \{0\}.$
- If $\operatorname{span}(S) = \mathbb{R}^n$, then S is called a spanning set for \mathbb{R}^n .
- $\mathbb{R}^2 = \text{span}(\mathbf{e}_1, \mathbf{e}_2)$, where $\mathbf{e}_1 = [1, 0]^{\top}$ and $\mathbf{e}_2 = [0, 1]^{\top}$.

Definition: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

- Convention: $span(\emptyset) = \{0\}.$
- If $\operatorname{span}(S) = \mathbb{R}^n$, then S is called a spanning set for \mathbb{R}^n .
- ullet $\mathbb{R}^2 = \text{span}(\mathbf{e}_1, \mathbf{e}_2)$, where $\mathbf{e}_1 = [1, 0]^{\top}$ and $\mathbf{e}_2 = [0, 1]^{\top}$.

Exercise: Let $\mathbf{u} = [1, 2, 3]^{\top}$ and $\mathbf{v} = [-1, 1, -3]^{\top}$. Describe span (\mathbf{u}, \mathbf{v}) geometrically.

Definition: A set $U \neq \emptyset \subseteq \mathbb{R}^n$ is called a subspace of \mathbb{R}^n if $a\mathbf{u} + b\mathbf{v} \in U$ for every $\mathbf{u}, \mathbf{v} \in U$ and for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}$.

Definition: A set $U \neq \emptyset \subseteq \mathbb{R}^n$ is called a subspace of \mathbb{R}^n if $a\mathbf{u} + b\mathbf{v} \in U$ for every $\mathbf{u}, \mathbf{v} \in U$ and for every $a, b \in \mathbb{R}$.

- $U = \{ \mathbf{0} \}$ and $U = \mathbb{R}^n$ are subspaces of \mathbb{R}^n , called trivial subspaces of \mathbb{R}^n .
- Any subspace contains **0**.

Definition: A set $U \neq \emptyset \subseteq \mathbb{R}^n$ is called a subspace of \mathbb{R}^n if $a\mathbf{u} + b\mathbf{v} \in U$ for every $\mathbf{u}, \mathbf{v} \in U$ and for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}$.

- $U = \{ \mathbf{0} \}$ and $U = \mathbb{R}^n$ are subspaces of \mathbb{R}^n , called trivial subspaces of \mathbb{R}^n .
- Any subspace contains 0.
- U is a subspace iff U is closed under addition and scalar multiplication.

Definition: A set $U \neq \emptyset \subseteq \mathbb{R}^n$ is called a subspace of \mathbb{R}^n if $a\mathbf{u} + b\mathbf{v} \in U$ for every $\mathbf{u}, \mathbf{v} \in U$ and for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}$.

- $U = \{ \mathbf{0} \}$ and $U = \mathbb{R}^n$ are subspaces of \mathbb{R}^n , called trivial subspaces of \mathbb{R}^n .
- Any subspace contains 0.
- U is a subspace iff U is closed under addition and scalar multiplication.
- For any finite subset S of \mathbb{R}^n , span(S) is a subspace of \mathbb{R}^n .

Definition: A set $U \neq \emptyset \subseteq \mathbb{R}^n$ is called a subspace of \mathbb{R}^n if $a\mathbf{u} + b\mathbf{v} \in U$ for every $\mathbf{u}, \mathbf{v} \in U$ and for every $a, b \in \mathbb{R}$.

- $U = \{ \mathbf{0} \}$ and $U = \mathbb{R}^n$ are subspaces of \mathbb{R}^n , called trivial subspaces of \mathbb{R}^n .
- Any subspace contains 0.
- *U* is a subspace iff *U* is closed under addition and scalar multiplication.
- For any finite subset S of \mathbb{R}^n , span(S) is a subspace of \mathbb{R}^n .

Exercise: Examine whether the sets

$$S = \{[x, y, z]^{\top} \in \mathbb{R}^3 : x = y + 1\}, \quad V = \{[x, y, z]^t \in \mathbb{R}^3 : x = 5y\}$$
 and $U = \{[x, y, z]^t \in \mathbb{R}^3 : x = z^2\}$ are subspaces of \mathbb{R}^3 .

Fact: Let A be an $m \times n$ matrix. Then $U := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A.

Fact: Let A be an $m \times n$ matrix. Then $U := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A.

Definition: Let U and V be two subspaces of \mathbb{R}^n . Then

$$U+V:=\{\mathbf{u}+\mathbf{v}:\mathbf{u}\in U,\mathbf{v}\in V\}$$

is called the sum of the subspaces U and V.

Fact: Let A be an $m \times n$ matrix. Then $U := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A.

Definition: Let U and V be two subspaces of \mathbb{R}^n . Then

$$U+V:=\{\mathbf{u}+\mathbf{v}:\mathbf{u}\in U,\mathbf{v}\in V\}$$

is called the sum of the subspaces U and V.

Definition: Let U and V be two subspaces of \mathbb{R}^n . If $U \cap V = \{\mathbf{0}\}$ then the sum U + V is called the direct sum of U and V and is denoted by $U \oplus V$. Thus

$$U \oplus V = U + V$$
 and $U \cap V = \{\mathbf{0}\}.$

Fact: Let A be an $m \times n$ matrix. Then $U := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A.

Definition: Let U and V be two subspaces of \mathbb{R}^n . Then

$$U+V:=\{\mathbf{u}+\mathbf{v}:\mathbf{u}\in U,\mathbf{v}\in V\}$$

is called the sum of the subspaces U and V.

Definition: Let U and V be two subspaces of \mathbb{R}^n . If $U \cap V = \{0\}$ then the sum U + V is called the direct sum of U and V and is denoted by $U \oplus V$. Thus

$$U \oplus V = U + V$$
 and $U \cap V = \{\mathbf{0}\}.$

Fact: Let U and V be subspaces of \mathbb{R}^n . Then U+V and $U\oplus V$ are subspaces of \mathbb{R}^n . If $\mathbf{z}\in U\oplus V$ then there exist unique $\mathbf{u}\in U$ and $\mathbf{v}\in V$ such that $\mathbf{z}=\mathbf{u}+\mathbf{v}$.

Definition: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if one of the vectors \mathbf{v}_i is a linear combination of the rest,

Definition: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if one of the vectors \mathbf{v}_i is a linear combination of the rest, i.e., if there are real numbers c_1, c_2, \dots, c_k of which at least one is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

Definition: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if one of the vectors \mathbf{v}_i is a linear combination of the rest, i.e., if there are real numbers c_1, c_2, \dots, c_k of which at least one is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

• We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent.

Definition: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if one of the vectors \mathbf{v}_i is a linear combination of the rest, i.e., if there are real numbers c_1, c_2, \dots, c_k of which at least one is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent.
- Any set of vectors containing the 0 is linearly dependent.

Definition: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if one of the vectors \mathbf{v}_i is a linear combination of the rest, i.e., if there are real numbers c_1, c_2, \dots, c_k of which at least one is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent.
- Any set of vectors containing the **0** is linearly dependent.

Exercise: Examine whether the sets $U := \{[1, 2, 0]^{\top}, [1, 1, -1]^{\top}, [1, 4, 2]^{\top}\}$ and $S := \{[1, 4]^{\top}, [-1, 2]^{\top}\}$ are linearly dependent.

Definition: A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is NOT linearly dependent.

Definition: A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is NOT linearly dependent.

• *S* is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow$

Definition: A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is NOT linearly dependent.

• S is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0$.

Definition: A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is NOT linearly dependent.

- *S* is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.

Definition: A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is NOT linearly dependent.

- *S* is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.

Question: Let $\mathbf{e}_i \in \mathbb{R}^n$ be the *i*-th column of the identity matrix I_n .

Definition: A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is NOT linearly dependent.

- *S* is linearly independent iff $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.

Question: Let $\mathbf{e}_i \in \mathbb{R}^n$ be the *i*-th column of the identity matrix I_n . Is $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ linearly independent?

Definition: A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is NOT linearly dependent.

- *S* is linearly independent iff $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.

Question: Let $\mathbf{e}_i \in \mathbb{R}^n$ be the *i*-th column of the identity matrix I_n . Is $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ linearly independent?

Fact: Let $S := \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$. Consider the $n \times m$ matrix $A := [\mathbf{v}_1 \ \mathbf{v}_2] \dots [\mathbf{v}_m]$. Then S is linearly dependent iff the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

Linear combinations of rows

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}
ight]$$
 be an $m imes n$ matrix. Then

Linear combinations of rows

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}
ight]$$
 be an $m imes n$ matrix. Then

• For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A.

Linear combinations of rows

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}
ight]$$
 be an $m imes n$ matrix. Then

• For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^\top \in \mathbb{R}^n$.

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}
ight]$$
 be an $m imes n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^\top \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m = [c_1, \dots, c_m] A$.

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ dots \\ {f A}_m \end{array}
ight]$$
 be an $m imes n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^\top \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^\top A$ is a linear combination of rows of A.

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}\right]$$
 be an $m imes n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^\top \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^\top A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^{\top}A = c_1\mathbf{A}_1 + \dots c_m\mathbf{A}_m = \mathbf{0}$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}\right]$$
 be an $m imes n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^\top \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^\top A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^{\top}A = c_1\mathbf{A}_1 + \dots c_m\mathbf{A}_m = \mathbf{0}$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}\right]$$
 be an $m\times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^\top \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^\top A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^{\top}A = c_1\mathbf{A}_1 + \dots c_m\mathbf{A}_m = \mathbf{0}$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.
- The rows of A are linearly dependent iff $\mathbf{A}_1^{\top}, \dots, \mathbf{A}_m^{\top}$ are linearly dependent in \mathbb{R}^n ,

Let
$$A:=\left[egin{array}{c} {f A}_1 \\ \vdots \\ {f A}_m \end{array}\right]$$
 be an $m\times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} := c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^\top \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{A}_1 + \dots c_m \mathbf{A}_m = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^\top A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^{\top}A = c_1\mathbf{A}_1 + \dots c_m\mathbf{A}_m = \mathbf{0}$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.
- The rows of A are linearly dependent iff $\mathbf{A}_1^{\top}, \dots, \mathbf{A}_m^{\top}$ are linearly dependent in \mathbb{R}^n , i.e., the columns of A^{\top} are linearly dependent.

Theorem: Let $S := \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and $A := [\mathbf{v}_1 \cdots \mathbf{v}_m]$. Then the following are equivalent.

 $oldsymbol{0}$ S is linearly dependent.

- $oldsymbol{0}$ S is linearly dependent.
- 2 Columns of A are linearly dependent.

- $oldsymbol{0}$ S is linearly dependent.
- 2 Columns of A are linearly dependent.
- **3** $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

- **1** *S* is linearly dependent.
- **2** Columns of *A* are linearly dependent.
- **3** $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- **4** Rows of A^{\top} are linearly dependent.

- $oldsymbol{0}$ S is linearly dependent.
- Columns of A are linearly dependent.
- **3** Ax = 0 has a nontrivial solution.
- **4** Rows of A^{\top} are linearly dependent.
- \bullet rank $(A^{\top}) < m$.

Theorem: Let $S := \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and $A := [\mathbf{v}_1 \cdots \mathbf{v}_m]$. Then the following are equivalent.

- $oldsymbol{0}$ S is linearly dependent.
- ② Columns of A are linearly dependent.
- **3** $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- **4** Rows of A^{\top} are linearly dependent.
- \bullet rank $(A^{\top}) < m$.
- \bullet rref (A^{\top}) has a zero row.

Proof: $(1) \Rightarrow (2) \Rightarrow (3)$ trivial. Suppose (3) holds. Then

Theorem: Let $S := \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and $A := [\mathbf{v}_1 \cdots \mathbf{v}_m]$. Then the following are equivalent.

- $oldsymbol{0}$ S is linearly dependent.
- ② Columns of A are linearly dependent.
- **3** $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- **4** Rows of A^{\top} are linearly dependent.
- \bullet rank $(A^{\top}) < m$.
- \bullet rref(A^{\top}) has a zero row.

Proof: $(1) \Rightarrow (2) \Rightarrow (3)$ trivial. Suppose (3) holds. Then $\mathbf{x}^{\top} A^{\top} = \mathbf{0} \Rightarrow x_1 \mathbf{A}_1 + \cdots + x_m \mathbf{A}_m = \mathbf{0} \Rightarrow (4)$ holds.

Theorem: Let $S := \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and $A := [\mathbf{v}_1 \cdots \mathbf{v}_m]$. Then the following are equivalent.

- $oldsymbol{0}$ S is linearly dependent.
- ② Columns of A are linearly dependent.
- **3** $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- **4** Rows of A^{\top} are linearly dependent.
- \bullet rank $(A^{\top}) < m$.
- \bullet rref(A^{\top}) has a zero row.

Proof: $(1) \Rightarrow (2) \Rightarrow (3)$ trivial. Suppose (3) holds. Then $\mathbf{x}^{\top} A^{\top} = \mathbf{0} \Rightarrow x_1 \mathbf{A}_1 + \cdots + x_m \mathbf{A}_m = \mathbf{0} \Rightarrow (4)$ holds.

Suppose (4) holds. Then $\operatorname{rref}(A^{\top})$ has a zero row \Rightarrow (5) holds. Now (5) \Rightarrow (6) is immediate.

Theorem: Let $S := \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and $A := [\mathbf{v}_1 \cdots \mathbf{v}_m]$. Then the following are equivalent.

- **1** S is linearly dependent.
- Columns of A are linearly dependent.
- $\mathbf{a} \mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- **4** Rows of A^{\top} are linearly dependent.
- $\operatorname{rref}(A^{\top})$ has a zero row.

Proof: $(1) \Rightarrow (2) \Rightarrow (3)$ trivial. Suppose (3) holds. Then $\mathbf{x}^{\top} A^{\top} = \mathbf{0} \Rightarrow x_1 \mathbf{A}_1 + \cdots + x_m \mathbf{A}_m = \mathbf{0} \Rightarrow (4)$ holds.

Suppose (4) holds. Then $\operatorname{rref}(A^{\top})$ has a zero row \Rightarrow (5) holds. Now (5) \Rightarrow (6) is immediate.

Suppose (6) holds. Then $EA^{\top} = \operatorname{rref}(A^{\top})$ for some invertible matrix E. Now $\mathbf{e}_{m}^{\top}\operatorname{rref}(A^{\top}) = \mathbf{0} \Rightarrow A\mathbf{y} = 0$, where $\mathbf{y} := E^{\top}\mathbf{e}_{m}$.

Corollary: If m > n then any set of m vectors in \mathbb{R}^n is linearly dependent.

Corollary: If m > n then any set of m vectors in \mathbb{R}^n is linearly dependent.

Definition: Let S be a subspace of \mathbb{R}^n and $B \subseteq S$. Then B is said to be a basis for S iff B is linearly independent and span(B) = S.

Corollary: If m > n then any set of m vectors in \mathbb{R}^n is linearly dependent.

Definition: Let S be a subspace of \mathbb{R}^n and $B \subseteq S$. Then B is said to be a basis for S iff B is linearly independent and span(B) = S.

• The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).

Corollary: If m > n then any set of m vectors in \mathbb{R}^n is linearly dependent.

Definition: Let S be a subspace of \mathbb{R}^n and $B \subseteq S$. Then B is said to be a basis for S iff B is linearly independent and span(B) = S.

• The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).

The standard unit vector $\mathbf{e}_i \in \mathbb{R}^n$ is the *i*-th column of the identity matrix I_n . The set $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{R}^n and is called the standard basis.

Corollary: If m > n then any set of m vectors in \mathbb{R}^n is linearly dependent.

Definition: Let S be a subspace of \mathbb{R}^n and $B \subseteq S$. Then B is said to be a basis for S iff B is linearly independent and $\operatorname{span}(B) = S$.

• The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).

The standard unit vector $\mathbf{e}_i \in \mathbb{R}^n$ is the *i*-th column of the identity matrix I_n . The set $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{R}^n and is called the standard basis.

Exercise: Find a basis for the subspace $S := \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \}$, where

$$A = \left[\begin{array}{rrrr} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right].$$

Theorem: Let $S := \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \in \mathbb{R}^n$ and $U \subseteq \operatorname{span}(S)$ such that m := #(U) > r. Then U is linearly dependent.

Theorem: Let $S := \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \in \mathbb{R}^n$ and $U \subseteq \operatorname{span}(S)$ such that m := #(U) > r. Then U is linearly dependent.

Proof. Let $U := \{u_1, ..., u_m\}$.

Theorem: Let $S := \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \in \mathbb{R}^n$ and $U \subseteq \operatorname{span}(S)$ such that m := #(U) > r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq \mathrm{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \le i \le m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
.

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq\operatorname{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \le i \le m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. Then $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq\operatorname{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. Then $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent.

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq\operatorname{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. Then $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent. Then there exist $\alpha_j \in \mathbb{R}, j = 1 : m$, such that $\alpha_1 \mathbf{A}_1 + \cdots + \alpha_m \mathbf{A}_m = \mathbf{0}_{1 \times r}$.

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq\operatorname{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. Then $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent. Then there exist $\alpha_j \in \mathbb{R}, j=1:m$, such that $\alpha_1 \mathbf{A}_1 + \cdots + \alpha_m \mathbf{A}_m = \mathbf{0}_{1 \times r}$. Hence

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i =$$

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq\operatorname{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. Then $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent. Then there exist $\alpha_j \in \mathbb{R}, j = 1 : m$, such that $\alpha_1 \mathbf{A}_1 + \cdots + \alpha_m \mathbf{A}_m = \mathbf{0}_{1 \times r}$. Hence

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i = \sum_{i=1}^{m} \alpha_i \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} =$$

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq\operatorname{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. Then $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent. Then there exist $\alpha_j \in \mathbb{R}, j = 1 : m$, such that $\alpha_1 \mathbf{A}_1 + \cdots + \alpha_m \mathbf{A}_m = \mathbf{0}_{1 \times r}$. Hence

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i = \sum_{i=1}^{m} \alpha_i \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}_{1 \times r} \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} =$$

Theorem: Let $S:=\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}\in\mathbb{R}^n$ and $U\subseteq\operatorname{span}(S)$ such that m:=#(U)>r. Then U is linearly dependent.

Proof. Let $U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Then

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. Then $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent. Then there exist $\alpha_j \in \mathbb{R}, j = 1 : m$, such that $\alpha_1 \mathbf{A}_1 + \cdots + \alpha_m \mathbf{A}_m = \mathbf{0}_{1 \times r}$. Hence

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i = \sum_{i=1}^{m} \alpha_i \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}_{1 \times r} \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}.$$

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

Dimension: The number of elements in a basis of a subspace U of \mathbb{R}^n is called the dimension of U and is denoted by $\dim(U)$.

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

Dimension: The number of elements in a basis of a subspace U of \mathbb{R}^n is called the dimension of U and is denoted by $\dim(U)$.

• $\dim(\mathbb{R}^n) =$

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

Dimension: The number of elements in a basis of a subspace U of \mathbb{R}^n is called the dimension of U and is denoted by $\dim(U)$.

- $\dim(\mathbb{R}^n) = n$.
- dim({**0**}) =

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

Dimension: The number of elements in a basis of a subspace U of \mathbb{R}^n is called the dimension of U and is denoted by $\dim(U)$.

- $\dim(\mathbb{R}^n) = n$.
- $dim(\{0\}) = 0$, since $span(\{\}) = \{0\}$).

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

- $\dim(\mathbb{R}^n) = n$.
- $dim(\{0\}) = 0$, since $span(\{\}) = \{0\}$).
- If v₁,..., v_m are linearly independent, then dim(span(v₁,..., v_m)) =

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

- $\dim(\mathbb{R}^n) = n$.
- $dim(\{0\}) = 0$, since $span(\{\}) = \{0\}$).
- If v₁,..., v_m are linearly independent, then dim(span(v₁,..., v_m)) = m.

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

- $\dim(\mathbb{R}^n) = n$.
- $dim(\{0\}) = 0$, since $span(\{\}) = \{0\}$).
- If v₁,..., v_m are linearly independent, then dim(span(v₁,..., v_m)) = m.
- A set $S := \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq \mathbb{R}^n$ is a basis of $\mathbb{R}^n \iff S$ is linearly independent

Theorem: Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases of U have the same number of elements.

- $\dim(\mathbb{R}^n) = n$.
- $dim(\{0\}) = 0$, since $span(\{\}) = \{0\}$).
- If $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly independent, then $\dim(\operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_m)) = m$.
- A set $S := \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq \mathbb{R}^n$ is a basis of $\mathbb{R}^n \iff S$ is linearly independent $\iff \operatorname{span}(S) = \mathbb{R}^n$.

Definition: Let A be an $m \times n$ matrix.

• The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A.

Definition: Let A be an $m \times n$ matrix.

1 The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) := \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.

- **1** The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) := \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- ② The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A.

Definition: Let A be an $m \times n$ matrix.

- **1** The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) := \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- ② The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A. In other words, $row(A) := \{\mathbf{x}^\top A \mid \mathbf{x} \in \mathbb{R}^m\}$

[Here, elements of row(A) are row vectors. How can they be elements of \mathbb{R}^n .

Definition: Let A be an $m \times n$ matrix.

- The column space / range space of A, denoted col(A), is the subspace of R^m spanned by the columns of A. In other words, col(A) := {Ax | x ∈ Rⁿ}.
- ② The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A. In other words, $row(A) := \{\mathbf{x}^\top A \mid \mathbf{x} \in \mathbb{R}^m\}$

[Here, elements of row(A) are row vectors. How can they be elements of \mathbb{R}^n . In strict sense, row(A) := col(A^{\top}).]

- **1** The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) := \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- The row space of A, denoted row(A), is the subspace of Rⁿ spanned by the rows of A. In other words, row(A) := {x[⊤]A | x ∈ R^m}
 [Here, elements of row(A) are row vectors. How can they be elements of Rⁿ. In strict sense, row(A) := col(A[⊤]).]
- **3** The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.

- **1** The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) := \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- The row space of A, denoted row(A), is the subspace of Rⁿ spanned by the rows of A. In other words, row(A) := {x[⊤]A | x ∈ R^m}
 [Here, elements of row(A) are row vectors. How can they be elements of Rⁿ. In strict sense, row(A) := col(A[⊤]).]
- **③** The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, null(A) := { $\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}$ }

- **1** The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $\operatorname{col}(A) := \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A. In other words, $row(A) := \{\mathbf{x}^\top A \mid \mathbf{x} \in \mathbb{R}^m\}$ [Here, elements of row(A) are row vectors. How can they be elements of \mathbb{R}^n . In strict sense, $row(A) := col(A^\top)$.]
- The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, null(A) := $\{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$
- The null space of A^{\top} : null $(A^{\top}) = \{ \mathbf{x} \in \mathbb{R}^m \mid A^{\top}\mathbf{x} = \mathbf{0} \}$.

Theorem: If two matrices A and B are row equivalent, then

$$row(B) = row(A)$$

.

Theorem: If two matrices A and B are row equivalent, then

$$row(B) = row(A)$$

. **Proof.** A and B are row equivalent \Rightarrow B = PA, for some invertible P.

Theorem: If two matrices A and B are row equivalent, then

$$row(B) = row(A)$$

. **Proof.** A and B are row equivalent \Rightarrow B = PA, for some invertible P. Thus,

$$\mathsf{row}(B) = \{\mathbf{x}^{\top}B \mid \mathbf{x} \in \mathbb{R}^n\} = \{(\mathbf{x}^{\top}P)A \mid \mathbf{x} \in \mathbb{R}^n\} \subseteq \mathsf{row}(A).$$

Theorem: If two matrices A and B are row equivalent, then

$$row(B) = row(A)$$

. **Proof.** A and B are row equivalent \Rightarrow B = PA, for some invertible P. Thus,

$$row(B) = \{\mathbf{x}^{\top}B \mid \mathbf{x} \in \mathbb{R}^n\} = \{(\mathbf{x}^{\top}P)A \mid \mathbf{x} \in \mathbb{R}^n\} \subseteq row(A).$$

Similarly, $row(A) \subseteq row(B)$, since $A = P^{-1}B$.

Theorem: If two matrices A and B are row equivalent, then

$$row(B) = row(A)$$

. **Proof.** A and B are row equivalent \Rightarrow B = PA, for some invertible P. Thus,

$$row(B) = \{\mathbf{x}^{\top}B \mid \mathbf{x} \in \mathbb{R}^n\} = \{(\mathbf{x}^{\top}P)A \mid \mathbf{x} \in \mathbb{R}^n\} \subseteq row(A).$$

Similarly, $row(A) \subseteq row(B)$, since $A = P^{-1}B$.

Corollary: For any A, row(A) = row(rref(A)).

Theorem: If two matrices A and B are row equivalent, then

$$row(B) = row(A)$$

. Proof. A and B are row equivalent \Rightarrow B = PA, for some invertible P. Thus,

$$row(B) = \{\mathbf{x}^{\top}B \mid \mathbf{x} \in \mathbb{R}^n\} = \{(\mathbf{x}^{\top}P)A \mid \mathbf{x} \in \mathbb{R}^n\} \subseteq row(A).$$

Similarly, $row(A) \subseteq row(B)$, since $A = P^{-1}B$.

Corollary: For any A, row(A) = row(rref(A)).

Corollary: For any matrix A, the non-zero rows of rref(A) forms a basis of row(A).

Question: (a) Suppose A and B are row-equivalent. Are col(A) and col(B) equal?

Question: (a) Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No.

Question: (a) Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Question: (a) Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. (b) Suppose A and B are row-equivalent. Do col(A) and col(B) have same dimension?

Question: (a) Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. (b) Suppose A and B are row-equivalent. Do col(A) and col(B) have same dimension? Yes. We will see soon.

Question: (a) Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. (b) Suppose A and B are row-equivalent. Do col(A) and col(B) have same dimension? Yes. We will see soon.

Theorem: Let P be an invertible matrix. Then a set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ in \mathbb{R}^n is linearly independent iff the set $\{P\mathbf{v}_1, P\mathbf{v}_2, \dots, P\mathbf{v}_m\}$ is linearly independent.

```
Question: (a) Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} and B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}. (b) Suppose A and B are row-equivalent. Do col(A) and col(B)
```

Theorem: Let P be an invertible matrix. Then a set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ in \mathbb{R}^n is linearly independent iff the set $\{P\mathbf{v}_1, P\mathbf{v}_2, \dots, P\mathbf{v}_m\}$ is linearly independent.

have same dimension? Yes. We will see soon.

Corollary: Let $A := [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ and $\operatorname{rref}(A) = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$. If $\operatorname{are} \ \mathbf{b}_{j_1}, \mathbf{b}_{j_2}, \ldots, \mathbf{b}_{j_r}$ are pivot columns of $\operatorname{rref}(A)$, then $\{\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \ldots, \mathbf{a}_{j_r}\}$ is a basis of $\operatorname{col}(A)$.

Algorithm for computing bases of null spaces

INPUT: An $m \times n$ matrix A.

OUTPUT: A matrix X whose columns form a basis of the null space of A.

Algorithm for computing bases of null spaces

INPUT: An $m \times n$ matrix A. OUTPUT: A matrix X whose columns form a basis of the null space of A.

1. Compute R = rref(A).

Algorithm for computing bases of null spaces

INPUT: An $m \times n$ matrix A.

Output: A matrix X whose columns form a basis of the null space of A.

- 1. Compute R = rref(A).
- 2. Suppose that R has p-nonzero rows. So it has p-pivot columns. Interchange columns of R (i.e., choose a permutation matrix P) so that

$$RP = \begin{bmatrix} I_p & F \\ 0 & 0 \end{bmatrix} = \text{column interchanged form of } R,$$

where I_p is the identity matrix of size p.

Bases of null spaces

3. Set
$$Y := \begin{bmatrix} -F \\ I_{n-p} \end{bmatrix}$$
, where I_{n-p} is the identity matrix of size $n-p$.

Bases of null spaces

3. Set
$$Y := \begin{bmatrix} -F \\ I_{n-p} \end{bmatrix}$$
, where I_{n-p} is the identity matrix of size $n-p$.

4. Now interchange rows of Y according to the permutation P. This means compute

$$X := PY$$
.

Bases of null spaces

- 3. Set $Y := \begin{bmatrix} -F \\ I_{n-p} \end{bmatrix}$, where I_{n-p} is the identity matrix of size n-p.
- 4. Now interchange rows of *Y* according to the permutation *P*. This means compute

$$X := PY$$
.

Then rank(X) = n - p and RX = RPY = 0. Thus columns of X span the null space of R and hence the null space of A.

Compute bases of the null space, row space and the column space of the matrix

$$A := \left[\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array} \right].$$

Compute bases of the null space, row space and the column space of the matrix

$$A := \left[\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array} \right].$$

We have
$$R = \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

Compute bases of the null space, row space and the column space of the matrix

$$A := \left[\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array} \right].$$

We have
$$R = \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Therefore

• $\{[1,3,0,-1],[0,0,1,1]\}$ is a basis for the row space of A.

Compute bases of the null space, row space and the column space of the matrix

$$A := \left[\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array} \right].$$

We have
$$R = \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Therefore

- $\{[1,3,0,-1],[0,0,1,1]\}$ is a basis for the row space of A.
- $\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\9\\3 \end{bmatrix} \right\}$ is a basis for the column space of A.

Compute bases of the null space, row space and the column space of the matrix

$$A := \left[\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array} \right].$$

We have
$$R = \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Therefore

- $\{[1,3,0,-1],[0,0,1,1]\}$ is a basis for the row space of A.
- $\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\9\\3 \end{bmatrix} \right\}$ is a basis for the column space of A.
- Solve $R\mathbf{x} = \mathbf{0}$ to find a basis of null(R),

Example

Compute bases of the null space, row space and the column space of the matrix

$$A := \left[\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array} \right].$$

We have
$$R = \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Therefore

- $\{[1,3,0,-1],[0,0,1,1]\}$ is a basis for the row space of A.
- $\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\9\\3 \end{bmatrix} \right\}$ is a basis for the column space of A.
- Solve $R\mathbf{x} = \mathbf{0}$ to find a basis of null(R), or use the previous algorithm.

Example (cont.)

Interchanging 2nd and 3rd columns of R, we have

$$RP = \begin{vmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \end{vmatrix} = \begin{bmatrix} I_2 & F \\ 0 & 0 \end{bmatrix}.$$

Now define

$$Y := \begin{bmatrix} -F \\ I_{n-p} \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \\ \hline 1 & 0 \\ 0 & 1 \end{bmatrix},$$

where p = 2 and n = 4.

Example (cont.)

Interchanging 2nd and 3rd columns of R, we have

$$RP = \begin{vmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \end{vmatrix} = \begin{bmatrix} I_2 & F \\ 0 & 0 \end{bmatrix}.$$

Now define

$$Y := \begin{bmatrix} -F \\ I_{n-p} \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \\ \hline 1 & 0 \\ 0 & 1 \end{bmatrix},$$

where p = 2 and n = 4.

Finally, interchange 2nd and 3rd row of Y to obtain X, that is,

$$X = PY = \left| \begin{array}{rrr} -3 & 1 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{array} \right|,$$

which gives a basis of the null space of A.

Theorem: The row space and the column space of a matrix A have the same dimension, and $\dim(\text{row}(A)) = \dim(\text{col}(A)) = \text{rank}(A)$.

Theorem: The row space and the column space of a matrix A have the same dimension, and $\dim(\text{row}(A)) = \dim(\text{col}(A)) = \text{rank}(A)$.

Proof: Let R := rref(A). Then $\dim(row(A)) = \dim(row(R)) =$ number of nonzero rows of R = rank(A).

```
Theorem: The row space and the column space of a matrix A have the same dimension, and \dim(\operatorname{row}(A)) = \dim(\operatorname{col}(A)) = \operatorname{rank}(A).

Proof: Let R := \operatorname{rref}(A). Then \dim(\operatorname{row}(A)) = \dim(\operatorname{row}(R)) = \operatorname{number} of nonzero rows of R = \operatorname{rank}(A).

Also A = ER for some m \times m invertible matrix E. Hence \dim(\operatorname{col}(A)) = \dim(\operatorname{col}(R)) = \operatorname{number} of pivot columns of R = \operatorname{rank}(A).
```

Theorem: The row space and the column space of a matrix A have the same dimension, and $\dim(\text{row}(A)) = \dim(\text{col}(A)) = \text{rank}(A)$.

Proof: Let R := rref(A). Then $\dim(row(A)) = \dim(row(R)) =$ number of nonzero rows of R = rank(A).

Also A = ER for some $m \times m$ invertible matrix E. Hence $\dim(\operatorname{col}(A)) = \dim(\operatorname{col}(R)) = \operatorname{number}$ of pivot columns of $R = \operatorname{rank}(A)$.

Theorem: For any matrix A, we have $rank(A^{\top}) = rank(A)$.

Theorem: The row space and the column space of a matrix A have the same dimension, and $\dim(\text{row}(A)) = \dim(\text{col}(A)) = \text{rank}(A)$.

Proof: Let R := rref(A). Then $\dim(row(A)) = \dim(row(R)) =$ number of nonzero rows of R = rank(A).

Also A = ER for some $m \times m$ invertible matrix E. Hence $\dim(\operatorname{col}(A)) = \dim(\operatorname{col}(R)) = \operatorname{number}$ of pivot columns of $R = \operatorname{rank}(A)$.

Theorem: For any matrix A, we have $rank(A^{\top}) = rank(A)$.

Definition: The nullity of a matrix A is the dimension of its null space and is denoted by nullity(A).

Theorem: (Rank-nullity theorem) Let A be an $m \times n$ matrix. Then rank(A) + nullity(A) = n.

Theorem: (Rank-nullity theorem) Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n$$
.

Proof: Suppose that rank(A) = r. Claim: rank(A) = r - r.

Theorem: (Rank-nullity theorem) Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n$$
.

Proof: Suppose that rank(A) = r. Claim: nullity(A) = n - r.

Let R := rref(A). Then R has r nonzero rows. Equivalently, A has r pivot columns and n - r non-pivot columns.

Theorem: (Rank-nullity theorem) Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n.$$

Proof: Suppose that rank(A) = r. Claim: rank(A) = r - r.

Let R := rref(A). Then R has r nonzero rows. Equivalently, A has r pivot columns and n - r non-pivot columns.

Hence there are n-r free variables in the solution to the system $A\mathbf{x} = \mathbf{0}$.

Theorem: (Rank-nullity theorem) Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n.$$

Proof: Suppose that rank(A) = r. Claim: rank(A) = r - r.

Let R := rref(A). Then R has r nonzero rows. Equivalently, A has r pivot columns and n - r non-pivot columns.

Hence there are n-r free variables in the solution to the system $A\mathbf{x} = \mathbf{0}$. Thus $\operatorname{nullity}(A) = n - r$. (WHY?)

Theorem: (Rank-nullity theorem) Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n.$$

Proof: Suppose that rank(A) = r. Claim: rank(A) = r - r.

Let R := rref(A). Then R has r nonzero rows. Equivalently, A has r pivot columns and n - r non-pivot columns.

Hence there are n-r free variables in the solution to the system $A\mathbf{x} = \mathbf{0}$. Thus $\operatorname{nullity}(A) = n - r$. (WHY?)

If x is a solution with n-r free parameters, then setting all but one parameter to zero at a time results in n-r linearly independent solutions.

Theorem: Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- 1. A is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- 3. Ax = 0 has only the trivial solution.
- 4. The reduced row echelen form of A is I_n .
- 5. A is a product of elementary matrices.

Theorem: Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- 1. A is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- 3. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 4. The reduced row echelen form of A is I_n .
- 5. A is a product of elementary matrices.
- 6. $\operatorname{rank}(A) = n$.

7. $\operatorname{nullity}(A) = 0$.

- 7. $\operatorname{nullity}(A) = 0$.
- 8. The column vectors of A are linearly independent.
- 9. The column vectors of A span \mathbb{R}^n .
- 10. The column vectors of A form a basis for \mathbb{R}^n .

- 7. $\operatorname{nullity}(A) = 0$.
- 8. The column vectors of A are linearly independent.
- 9. The column vectors of A span \mathbb{R}^n .
- 10. The column vectors of A form a basis for \mathbb{R}^n .
- 11. The row vectors of A are linearly independent.
- 12. The row vectors of A span \mathbb{R}^n .
- 13. The row vectors of A form a basis for \mathbb{R}^n .
