07 Matrices

07 03 Matrix Multiplication

-An Algorithm for Multiplication of Two Matrices Inputs: Matrix $A_{m \times n} = (a_{ij})$ and Matrix $B_{n \times p} = (b_{ij})$ Output: Matrix $C_{m \times p} = (c_{ij}) = A_{m \times n} B_{n \times p}$ for i from 0 to (m-1)for j from 0 to (p-1) $c_{ii} = 0$ for r from 0 to (n-1) $c_{ii} = c_{ii} + a_{ir} * b_{ri}$

The Multiplication of Two Matrices

In the multiplication of Matrix $A_{m \times n}$ and Matrix $B_{n \times p}$,

- -the number of matrix entry multiplications is (m*p*n),
- -the number of matrix entry addition is (m*p*(n-1)).

Thus, the cost for the multiplication of Matrix $A_{m \times n}$ and Matrix $B_{n \times p}$ is the sum of the cost of multiplying matrix entries (m^*p^*n) times and the cost of adding matrix entries $(m^*p^*(n-1))$ times.

An Example

In the multiplication of Matrix $A_{7 \times 11}$ and Matrix $B_{11 \times 17}$,

[1] the number of matrix entry multiplications:

$$7*17*11 = 1309,$$

[2] the number of matrix entry additions:

$$7*17*(11-1) = 1190.$$

The Multiplication of Two Square Matrices

In the multiplication of Matrix $A_{n \times n}$ and Matrix $B_{n \times n}$,

- -the number of matrix entry multiplications is n^3 .
- -the number of matrix entry addition is $(n^2(n-1))$.

The information on designing algorithms to reduce the cost for the multiplication of two square matrices can be found at

https://en.wikipedia.org/wiki/Strassen_algorithm

https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication

-Let $A_{7 \times 11}$, $B_{11 \times 17}$, and $C_{17 \times 5}$ be three matrices such that all the entries in the three matrices are real numbers.

The multiplication of $A_{7 \times 11}$, $B_{11 \times 17}$, and $C_{17 \times 5}$ can be carried out in the following two ways.

[1]
$$((A_{7 \times 11}B_{11 \times 17}) C_{17 \times 5}),$$

[2]
$$(A_{7 \times 11}(B_{11 \times 17}C_{17 \times 5})).$$

In
$$((A_{7 \times 11}B_{11 \times 17}) C_{17 \times 5})$$
,

Let
$$X_{7 \times 17} = A_{7 \times 11}B_{11 \times 17}$$
. Then $((A_{7 \times 11}B_{11 \times 17}) C_{17 \times 5}) = (X_{7 \times 17}C_{17 \times 5})$.

We need 7*17*11 = 1309 real number multiplications to compute $X_{7 \times 17}$. We need 7*5*17 = 595 real number multiplications to compute $(X_{7 \times 17} C_{17 \times 5})$. Thus, the total numbers of real number multiplications to compute $((A_{7 \times 11} B_{11 \times 17}) C_{17 \times 5})$ is 1904 = 1309 + 595.

In $(A_{7 \times 11} (B_{11 \times 17} C_{17 \times 5}))$,

Let $Y_{11 \times 5} = B_{11 \times 17} C_{17 \times 5}$. Then $(A_{7 \times 11} (B_{11 \times 17} C_{17 \times 5})) = (A_{7 \times 11} Y_{11 \times 5})$.

We need 11*5*17 = 935 real number multiplications to compute $Y_{11 \times 5}$. We need 7*5*11 = 385 real number multiplications to compute $(A_{7 \times 11} Y_{17 \times 5})$. Thus, the total numbers of real number multiplications to compute $(A_{7 \times 11} (B_{11 \times 17} C_{17 \times 5}))$ is 1320 = 935 + 385.

Hence, in terms of counting the number of real number multiplications, $((A_{7 \times 11}B_{11 \times 17}) C_{17 \times 5})$ is more expensive than $(A_{7 \times 11}(B_{11 \times 17} C_{17 \times 5}))$.

-The question is how we multiply effectively the matrices $A_1, A_2, ...,$ and A_n of dimensions of $b_1 x b_2,$ $b_2 x b_3, ..., b_n x b_{n+1}$ respectively.

More information on this question can found at

https://en.wikipedia.org/wiki/Matrix_chain_multiplication