NASA CONTRACTOR REPORT

EVALUATION OF WET TANTALUM CAPACITORS
AFTER EXPOSURE TO EXTENDED PERIODS
OF RIPPLE CURRENT

Volume II

C. M. Ward

Prepared by
MARTIN MARIETTA AEROSPACE
DENVER DIVISION
Denver, Colo. 80201
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1975

			<u> </u>	
1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog	No.
NASA CR-2487			· · · · · · · · · · · · · · · · · · ·	
4. Title and Subtitle			5. Report Date	_
Evaluation of Wet Tantalum Capa		osure to	February 197	,
Extended Periods of Ripple Curre	ent Volume II		6. Performing Organiz	ation Code
7. Author(s)			8. Performing Organiza	ation Report No.
C. M. Ward			TN-3770201	•
			10. Work Unit No.	
Performing Organization Name and Address				
Martin Marietta Aerospace		<u> -</u>	11. Contract or Grant	No.
P.O. Box 179, Denver Division			NAS1-9000	
Denver, CO 80201			13. Type of Report an	d Pariod Coupred
12. Sponsoring Agency Name and Address			Contractor R	
National Aeronautics and Space A	dministration	<u> </u>	14. Sponsoring Agency	
Washington, D. C. 20546			,,,,,,	
15. Supplementary Notes		· · · · · · · · · · · · · · · · · · ·		
Topical report.				
16. Abstract	· · · · · · · · · · · · · · · · · · ·			
The application of tantalum capac current electrical stress, high te vibration and shock loads. The cany degradation if reliable perfor. A test program was established to under conditions accurately duplice electrical performance character characteristics of the internal sil current, and the existence of any	mperature durin apacitors must s mance is to be a concept evaluate both we cating actual Vik istics during ext ver migration as	g nonoperating times survive these severe chieved. vet-slug tantalum and ing applications. The ended periods of right a function of extensions of extensions.	es (sterilization) e environments of nd wet-foil capac cest results of the pple current, the ded periods of r	, and high without citors ne
This is Volume II of a two volume 1974 (CR - 2411).	document. The	e first volume was r	eleased in Marc	.h
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
wet-slug tantalum capacitors wet-foil tantalum capacitors		Unclassified -	Unlimited	
ripple test capacitor				
F. F. T.			STA	IR Category 10
19. Security Classif, (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassified		44	\$3.75

TABLE OF CONTENTS

			Page	
Table of List of List of	Table	5	iii iv v	
1.0	INTRO	DUCTION	1	
	1.1	Background	• 1	
	1.2	Test Objective	2	
	1.3	Summary	2	
2.0	SAMPL	E DESCRIPTIONS	3	
3.0	INTER	NAL SILVER ANALYSIS	4	
	3.1	Description of Test Article	4	
	3.2	Internal Chemistry	5	
	3.3	Test Techniques	9	
	3.4	Discussion	11	
4.0	DATA		15 thr	ru 33
5.0	РНОТО	GRAPHS	34 thr	ru 38

LIST OF TABLES

Table		Page
4.1	Silver Summary Pre-Ripple Testing	16
4.2	Silver Summary Post 300 Hr Ripple and Vibration	17
4.3	Silver Summary Post 1000 Hr Ripple and Vibration	18
4.4	Silver Summary Post 1500 Hr Ripple	20
4.5	Ripple Current Distributions Sink #1 -10	21
4.6	Ripple Current Distributions Sink #3 -10	22
4.7	Ripple Current Distributions Sink #4 -7	23
4.8	Ripple Current Distributions Sink #5 -7	24
4.9	Ripple Current Distributions Sink #7 -21	26
4.10	Ripple Current Distributions Sink #9 -24	28
4.11	Ripple Current Distributions Sink #11 -10 Old	29
4.12	Silver Summary -8 from Vibration Failure Analysis	.30
4.13	Vibration Analysis Summary -21	31
4.14	Inverter Samples ST90D-38A	32
4.15	ATM Capacitor Summary	33

LIST OF FIGURES

Figure		Page
1	Summary of Silver Content vs Total Ripple Amp Hours	14

1.0 INTRODUCTION

A wet tantalum capacitor test program was initiated by the Viking Project Office (VPO) - Langley Research Center (LRC) in 1973 to obtain additional information on characteristics of the wet tantalum capacitor (slug and foil types) in selected Viking ripple current applications. This test program was conducted jointly between Flight Instrument Division (FID) at LRC, and Martin Marietta Corporation (MMC). This report is Volume II of a two-volume set which reports the results of all testing. Volume II refers specifically to the silver migration analysis effort.

1.1 Background

In late 1972 NASA MSFC organized a team to investigate wet slug capacitor failures experienced in the Apollo Telescope Mount (ATM) system tests. Representatives from VPO and MMC were invited to participate in this investigation. Due to the similarity of ATM circuit applications in which the wet slug capacitor failed and Viking wet slug circuit applications, several concerns were identified relative to the wet slug capacitor in Viking applications. The concerns related specifically to the part were:

- A. The electrical performance characteristics of the Viking wet slug capacitor over extended periods of time in a ripple current application. This data is presented in Volume I.
- B. The possibility of a "memory" effect within a wet slug capacitor, i.e., a capacitor subjected to long-term operating conditions at a low dc bias level and subsequently failing to perform correctly at a dc bias level approaching or equal to the rated level due to the extended low level operating level. This data is presented in Volume I.
- C. The internal silver migration characteristics within the capacitor as a function of ripple current applications. This analysis is the subject of this volume.

The decision to acquire an insight into these concerns through additional testing of the wet tantalum capacitor was motivated by the following key factors:

- o Significant usage of the wet tantalum slug capacitor in the Viking Lander design: 118 circuit applications, 77 of these under some magnitude of ripple current.
- Very limited data and considerable theory and opinion in the aerospace industry on the application of wet tantalum capacitors (slug and foil) under extended time periods of ripple current.

1.2 Test Objective

The specific objective in the Volume II MMC portion of the wet tantalum capacitor test program is to conduct an internal analysis of wet slug capacitors selected from the test specimens utilized in the electrical performance testing for an evaluation of silver migration characteristics.

1.3 Summary

The major observations from the internal silver analysis are as follows:

- A. All wet tantalum capacitors contain some silver in the electrolyte and in the porous anode.
- B. The silver present in the capacitor in general exceeds that predicted by the solubility constant of the principal silver salt, silver sulfate Ag_2SO_4 .
- C. A constant positive dc bias on the anode will reduce the silver levels in the electrolyte.
- D. The Viking ripple levels did not generally raise the silver content. While some large increases were noted, they do not correlate well with the ripple current exposure.
- E. Capacitors with silver on the anode were indistinguishable electrically from other units.

2.0 SAMPLE DESCRIPTION

Samples were as follows:

- A. The main samples for this analysis primarily were General Electric MIL-C-39006 CLR65 style capacitors. These are non-solid electrolyte units with a porous tantalum anode procured in two sizes, Case II and III. There were 69 units in this group. Vibration failures were experienced on some of the test samples as noted in section 2.1, Volume I. During the analysis of these failures, seven case size I capacitors were analyzed and their data is also included.
- B. Two bathtub capacitors from MSC. One a failed unit and the other an unused stock unit. These units contained 16 capacitors, each in a parallel bank. These were approximately size II units.
- C. Ten ST90D-38A Sprague units from a long-term reliability test Titan Inverter, plus five identical lot date units from MMC stock. The application in this case involved a substantial ripple level.

3.0 INTERNAL SILVER ANALYSIS

3.1 Description of Test Article

The capacitors utilized in this testing program were General Electric wet slug tantalum capacitors in case sizes II and III. These were procured to the CSV39006 Drawing.

The heart of this component is a porous sintered tantalum anode. When a very thin insulating film is grown over the high surface area of the anode and contact is made using a conductive electrolyte, a capacitor with very high capacitance per unit volume/weight is possible. Anodes are produced by pressing a mixture of powdered high purity tantalum powder and an organic binder into a cylindrical shape and inserting a piece of tantalum wire into one end. The units are then prefired to drive off the binding agent in a vacuum oven. Sintering is done in a special furnace to fuse at their contact points all the grains of tantalum. This produces a porous slug with high surface area.

Numerous variables determine the degree and size of porosity achieved and desired. To achieve a given capacitance, voltage and anode size, the anodes are made using different grades of tantalum powder with differing particle size distributions; different sintering temperatures and time durations to vary the degree of sintering achieved, and finally, differing anode weights and press densities, and hence, size to vary the surface area achieved.

Sintered anodes are placed in an electrolyte bath and voltage slowly applied, keeping below a certain voltage level to oxidize the tantalum into tantalum pentoxide (Ta205). The voltage is increased to the desired level and current allowed to flow until the Ta₂O₅ has formed to the point where insulation resistance on each unit is in the megohms and resultant leakage currents are in the order of pico amps. The resultant Ta₂O₅ film is quite thin, resulting in an optical thin film interference color which is characteristic of the forming voltage and temperature used. As the film is formed electrochemically it is very uniform in thickness and hence color providing a useful indicator of the surface conditions. Where the film is thin, a different color appears and provides an easy method to detect the location of "breakdown" or damage sites. The actual leakage on each sample varies constantly, due to an effect known as "sintillation", in which the film is dynamically reforming in minute locations. Over a long period of time the film becomes more stable and reformation sites less numerous, leading to a slow but steady reduction in the average leakage current.

The form of the grown film is amorphous. A crystalline form is possible but not desired, due to higher leakage currents inherent to the material. Crystalline areas are colorless due to the optical interference of the grain boundaries, and the phenomenon of crystalline oxide growth is known as "greyout". Oxide formation conditions of current density, electrolyte composition and temperature, are carefully controlled to prevent this crystalline growth.

Once the anodes are formed, a lot sample is placed in a test cell and the capacitance measured. Where capacitances are above the desired value, further oxide growth is accomplished at a higher voltage as a thicker film gives a lower capacitance due to C = $\frac{\varepsilon}{D}$. The ultimate properties of the capacitor are due to the quality of the film. Consequently, materials of the highest purity are used and careful control of cleanliness and process are essential.

Finished, formed anodes are then cleaned of the forming electrolyte and vacuum backfilled with a 30-40% solution by weight of sulfuric acid. Anodes are assembled into the case with a vibration containment Teflon spider on the base and a gelled 30-40% solution of sulfuric acid almost filling the remaining volume.

The case itself is made of fine Ag, approximately .020 inch thick. To increase the cathode surface area the interior of the case is etched and platinum black is electrochemically deposited on the inside.

Final assembly involves installation of a seal which prevents leakage of electrolyte from the anode area and from the case in general.

3.2 <u>Internal Chemistry</u>

The wet tantalum capacitor is basically a simple electrochemical cell. With a positive potential on the anode, electrons enter the electrolyte and form negative ions which migrate to the Ta_2O_5 surface charging that side of the capacitor. Where the conductivity of the Ta_2O_5 is high the negative ion gives up its electron and the oxygen present is used to oxidize tantalum to tantalum pentoxide which then further insulates the surface. In this manner the capacitor chemically builds up an insulative layer which reduces the leakage at a given voltage to a very low level. In an ideal system using a platinum cathode and pure water as an electrolyte, the two predominate reactions would be:

At the Cathode

$$2H_{2}O + 2e^{-} \rightarrow H_{2} + 20H^{-} @ -.8227V$$

At the Anode

$$5H_2O + 2Ta \rightarrow Ta_2O_5 + 10H^+ + 10e^-@ + .81V$$

In an actual capacitor with a silver case and a 30% $\rm H_2SO_4$ electrolyte the system becomes more complex.

The sulfuric acid acts to ensure that plenty of ions are present in the form of OH, H, and SO_4 , and very little H₂O exists. During a charging cycle with the anode positive the following reactions are most probable:

At the Cathode

At the Anode

$$H_2O + 2 \text{ Ta} \rightarrow \text{Ta}_2O_5 + 10\text{H}^+ + 10\text{e}^- \qquad @ +.81\text{V}$$
 $40\text{H}^- \rightarrow O_2 + 2\text{H}_2O + 4\text{e}^- \qquad @ -.401\text{V}$

Those reactions involving the highest positive potential are the most probable so at the case the first reaction to occur would be Ag + +e \rightarrow Ag, the next most likely being Ag₂SO₄ +2e \rightarrow 2 Ag + SO₄ . 2H⁺ + 2e \rightarrow H₂ can occur but at a much less likely level. High charging currents would create a voltage crowding and tend to promote the H₂ generation, however.

At the anode the tantalum reaction would predominate until no tantalum was available, at which point the net electrical leakage of the film would force the production of 0_2 .

For the case (cathode) silver reactions to occur there must be silver present in the electrolyte. An explanation for this silver presence lies in the discharge properties of the capacitor. During discharge the negative ions present at the tantalum oxide film must give up their electrons to the cathode. Here three possible reactions are:

$$Ag \sim Ag^{+} + e^{-}$$
 @ -.7991V
 $2 Ag + SO_{4}^{-} \sim Ag_{2}SO_{4} + 2e^{-}$ @ -.653V
 $H_{2} + 2OH^{-} \sim 2H_{2}O + 2e^{-}$ @ +.8227V

In both cases the silver reaction is to inject silver ions into the electrolyte. The hydrogen reaction is the most probable, but requires the presence of hydrogen. When insufficient hydrogen is available the silver reactions would be the next most probable ones. Again a rapid discharge would cause a voltage crowding effect and further promote silver injection into the electrolyte.

This analysis then indicates that a dynamic silver exchange is occurring during charge/discharge cycles, such as in a ripple condition, and that high charging and discharging currents, such as square wave ripple, promote the silver reactions.

There is no guarantee that from one cycle to the next the silver reactions would balance. It is quite probable that some silver ions diffuse away from the case and become unavailable for immediate replating thus forming the basis for the silver analyzed in this analysis.

As noted in the charging analysis, both ${\rm Ag}^+$ and ${\rm Ag}_2{\rm SO}_4$ can be formed. In the presence of sulfate ion these two materials interact to reduce the silver ion content by

$$2Ag^{+} + SO_{4}^{--} \implies Ag_{2}SO_{4}$$
 with a $K_{sp} = 1.2 \times 10^{-5}$ @ $25^{\circ}C$

The maximum ${\rm Ag}^+$ content of a 30% ${\rm H}_2{\rm SO}_4$ solution can be calculated as follows:

 $30\% \text{ H}_2\text{SO}_4$ froms a 3.7 molar solution

$$H_2SO_4 \rightarrow H^+ + HSO_4$$

$$H^+ = 3.7M$$

$$HSO_4 = 3.7M$$

$$HSO_4^- \rightarrow H^+ + SO_4^- \qquad K_{sp} = 1.2 \times 10^{-2} \text{ solving for } SO_4^-$$

$$\frac{\left[\text{H}^{+}\right] \text{SO}_{4}^{-1}}{\left[\text{HSO}_{4}^{-1}\right]} = 1.2 \times 10^{-2}$$

$$\frac{3.7M \cdot 10^{-7}}{3.7M} = 1.2 \times 10^{-7}$$

$$SO_4^{--}$$
 = 1.2 x 10⁻² M in a 30% H₂SO₄ solution

for
$$Ag_2SO_4 = 2A_g^+ + SO_4^-$$

$$Ag_2^+ = SO_4^- = 1.2 \times 10^{-5}$$

$$Ag_4^+ = \frac{1.2 \times 10^{-5}}{1.2 \times 10^{-2}} = 10^{-3}$$

$$Ag_4^+ = .032M$$

The atomic weight of silver is 108 gm/M so $3.5 \text{ gms Ag}^+/\text{L}$ is the maximum allowable.

For a GT3 capacitor of fill volume .033cc the maximum allowable silver ion content would be 114 µg. Any silver content above this value would require that silver be present in a compound form such as ${\rm Ag_2SO_4}$. Large crystals of ${\rm Ag_2SO_4}$ have been observed inside tantalum wet slug capacitors. Other forms, such as ${\rm Ag_2O}$, are possible, but were not observed in this testing.

Some implications can be drawn from the above analysis. First, silver would be expected in the electrolyte in either sulfate or ionic forms. Since some silver is diffusing away at an undetermined rate would anything limit the amount of silver present? In a properly biased condition a leakage current exists due to the conductivity of the ${\rm Ta}_2{\rm O}_5$ film and scintillation effects. This would act to create the equivalent of a constant charging condition which would promote the reduction of silver at the case and in a non-ripple condition would be expected to decrease the silver concentrations over a long period of time. A comparison of the -10 old and -8 old capacitors versus the new parts displays precisely this condition with the units having 2000 hours of burn-in being almost an order of magnitude lower in silver concentrations.

Some form of balance might be expected between leakage current, ripple current, and the silver concentrations. An attempt was made in the discussion section of this report to look for this, but no correlations were found.

Secondly, since hydrogen and oxygen are being produced by the reactions involved, what prevents the overpressuring of the case after extended periods of operation? An observed fact is that after 3000 hours of operation, capacitors in this testing program did not exhibit any evidence of internal pressure. It is believed that recombination of the oxygen and hydrogen is preventing this. In the case of a broken down dielectric, where high leakage currents are being exhibited, the amount of hydrogen and oxygen being generated may be sufficient that the release of energy occurring upon recombination is the factor which causes tantalum wet slug capacitors to violently explode.

A third implication from the analysis is that no way is apparent which would explain the formation of silver flowers on the anode due to ripple current. The electrochemistry of the anode in a properly biased condition would require that any silver in the area be converted to Ag^+ and the anode charge would repel these ions away. A possible explanation exists by considering what would happen if all potentials were removed from the capacitor by shorting it out and letting it sit. Since silver ions and $\mathrm{Ag}_2\mathrm{SO}_4$ are present in the electrolyte, there would be no factor on the anode which would prevent these materials from forming crystals on the case, in the electrolyte or on the anode. As there is no way of detecting silver flowers on the anode, there is no way to tell if the flowers existed on a particular anode prior to ripple testing and it is possible that silver flowers are primarily a shelf life phenomenon. Examination of the data will show that older parts which had just seen shelf storage displayed significantly greater probability of silver sulfate crystals and silver flowers on the anode and case.

In a reverse bias condition, silver on the anode is easily explained because not only is the situation similar to discharge, but the electron exchange at the anode surface is favoring conversion of silver ions into metallic silver. A silver plating bath for deposition on the anode has been formed.

3.3 Test Technique

The test technique employed on the majority of samples was as follows:

- A. \underline{X} -Ray in Two Perpendicular Axes .005 in. and .001 in. tungsten wire was used to establish exposure in hopes that silver flowers might be seen. None were observed.
- B. $\underline{\text{Visual Inspection}}$ Each sample was examined at 20X for external case anomalies and mechanical damage.
- C. <u>Seal Leakage</u> Phydrion 1.0 to 2.5 pH paper and deionized water were used to check for electrolyte leakage through the seal. A small strip of paper was dipped in the water and immediately applied to the seal surface. Minute traces of a strong acid led to an obvious red coloration on the strip. None of the ripple tested samples were observed to have seal leakage.
- D. <u>D.C. Leakage</u> Each sample was tested electrically for the DC leakage. Charging was from a Fluke Precision DC Power Supply through a one K series resistor. Leakage current was recorded using Viking rated voltage at 30 sec, 1 min, 1.5 min, 2, 3, 4, and 5 min. The recording of leakage was an attempt to see if leakage and healing rate could be used to detect potentially defective units. Throughout this portion of the test no significant changes were observed that could be attributed to the presence of silver.

- E. Open Case and Electrolyte Flush The opening method for the samples was of extreme importance because particles from the case would seriously disturb the silver content readings. Each sample was chucked up on a tooling lathe and a .016" deep cut made directly behind the spacer crimp. This cut did not penetrate the case and if it had, it would have hit the Teflon and not the cavity. The unit was then cleaned and the case flexed to crack the cut open and the case removed. Immediately upon opening, the case interior and the gel were inspected at up to 50%. As near as could be determined no opening silver from the case was getting into the cavity. Using deionized water all electrolyte and gel present was flushed into a clean flask. The anode was then examined and all adhering electrolyte also flushed into the flask. These became the samples for electrolyte analysis.
- F. Microscopic Examination All anodes were examined at 50X and 100X magnification for the presence of silver. A photograph was taken of all anodes which exhibited silver flowers.

The case was similarly examined and photographs made as required to show silver sulfate crystals and redeposited silver. Results of the visual exams are noted in the data sheets.

- G. Removal of the Anode The anode was carefully removed by cutting the tantalum tube weld and pushing the anode out of the seal. All anodes were submitted for analysis of the silver content within the slug.
- H. Wet Chemical Silver Analysis The electrolyte sample was prepared for analysis by adding 10 drops conc. H2SO4 and evaporating the solution to SO3 fumes on a hot plate. The residue was dissolved in 5 ml of 0.5 N H2SO4 and heated to a boil, then filtered and diluted to a standard volume ($\overline{10}$ or $\overline{100}$ ml) for analysis.

The tantalum slug was prepared for analysis by boiling the slug in 5 ml conc. HNO3 and 10 drops of conc. H2SO4. Boiling was continued until fumes of SO3 were visible. The residue and slug were cooled and silver salts were extracted from the slug with several warm 2 ml portions of 0.5 N $\rm H_2SO_4$. The extractant was diluted to a standard volume (10 or 100 ml) with 0.5 N $\rm H_2SO_4$ for analysis.

Silver was detected by a standard colorimetric analysis using a 0.001% dithiazone in CCl_4 solution. The absorption of the silver dithiazonate was analyzed on a dual beam Beckman DB-GT spectrophotometer at 495 mm. The samples were always run in duplicate and were compared daily with standards.

The analysis was carried out as follows: Ten milliliters of 0.5 N $\rm H_2SO_4$, two milliliters of sample, and five milliliters of dithiazone solution were added to a small separatory funnel and shaken for 30 seconds. The lower dithiazone layer was drained off and placed in a dry 1 cm quartz spectrophotometer cell. The sample was scanned from 530 to 480 mu and its absorbance was calculated at 495 mu and adjusted for the absorbance of a blank sample run over the same region. The amount of silver in the sample was calculated from the absorbance of the sample versus standard silver samples by a Beers law relationship.

To verify that all the silver was being analyzed in the anodes, some were completely crushed at the end of the analysis and re-analyzed. Residual silver was less than 1 μ gram.

The results of all the above testing are in the data sheets attached to this report.

3.4 Discussion

The data section of this report contains two summaries of the data derived during this testing. Documented in the first group is the silver visual and chemical data compared to the electrical parameters reported in Volume I and measured in the laboratory immediately prior to dissection. The Min-Max Ripple Test leakage values are somewhat perturbed by the vibration failures. It will be noted that most of the higher values occurred subsequent to vibration and that the lower value represents the more nominal reading for the test.

All silver levels are detailed in micrograms, being reported for both the anode and the electrolyte. Since the anode is highly porous, silver from the electrolyte contained in the anode is expected in the reported anode data. Consequently, silver levels measured on the anode are not necessarily from metallic silver flowers; a point verified by visual examinations of the anodes which disclosed very few visual silver flowers. In the entire ripple test only four anodes had visual levels of silver and their electrical data is indistinguishable from the rest of the samples in all but one case.

In most cases the anodes appeared normal. After vibration, some anodes displayed Teflon impressed into the base structure due to anode movement and one evidenced a slight crack. Insides of the silver cases routinely showed two distinct phenomena. First, many cases displayed redeposited silver on the surface of the platinum. These redepositions appeared as needles or sprays running parallel to the surface, loops outward from the surface and large patches up to .010 inch diameter. Electron beam microprobe found these redepositions to be primarily silver with few impurities, while microscopic exam showed a normal silver crystalline structure. The other case effect was exceedingly small transparent crystals which analyzed to be primarily silver and platinum. The crystal structure, while quite distinct, could not be related to any compounds and has been left unidentified. Laboratory investigations outside this report have occasionally shown this same effect and it does not appear to be related to ripple.

The silver sprays and redeposition are probably related to ripple as it is believed that silver is in a dynamic exchange into and out of solution due to current flow at the case. When silver replates on the case it would easily tend to form around existing silver particles and lead to large redeposited areas. These redepositions have been previously reported along with large silver sulfate crystals 1.

It was noted that some apparent correlation existed between the case silver redeposition, the electrolyte silver, and the ripple current exposures. The second group of data sheets is an effort to understand this correlation. ESR measurements from Volume I on individual devices were used to divide the applied ripple level between the individual capacitors on the basis of parallel resistance; these devices having been connected in parallel banks. A ripple level was thus calculated for each capacitor and multiplied by the exposure time to give an amp hour figure. The total amp hour figure was then compared to the measured total silver content (anode + electrolyte). Since the total amp hour figures vary greatly in some cases, a good sampling of conditions was obtained. The data for case size three capacitors is plotted in Figure #1. No obvious trends are apparent that would seem to relate to the ripple level. At any amp hour level where large silver contents were noted, another sample with nearly the same level can be found which has a very low content (-7's on sink #5 and -10's on sink #1). In general, the total silver levels did not deviate too significantly from the initial values.

Those units with high silver contents can not be clearly explained by the ripple current levels. This may be due to insufficient sample size to give meaningful data or the cause of high silver contents may lie somewhere other than just ripple current. The evidence does not show that the Viking ripple levels will in themselves lead to increased electrolyte silver contents or silver flowers on the anodes.

The principal salt detected in tantalum capacitors is silver sulfate Ag₂SO₄. It has a handbook solubility product ($K_{\rm Sp}$) of 1.2 x 10⁻⁵ at 25°C which is high enough to allow some silver to be dissolved in the electrolyte possibly explaining the existence of silver in all the tested units. A GT-3 size capacitor normally contains about .31 to .33 cc of a 30% sulfuric acid gelled electrolyte which, by the analysis presented in Section 3.2, could contain a maximum of 114 mg of silver in an ionic form.

This value is below the normally observed concentration of silver in the capacitors and would require that the additional silver be in a compound state. Some factor other than solubility may account for these increased levels.

W. J. Moore, Jr. and A. W.H. Smith, Ripple Current and Silver Migration in Non-Solid Electrolytic Sintered Anode Tantalum Capacitors, Proceedings 1972 of the 22nd Electronic Components Conference, Washington, D.C., May 15-17, 1970, pp 313-315.

One significant point is indicated by the silver data: Those units which saw no ripple, only DC bias have lower silver contents than parts out of stock. This could be predicted because without ripple injecting silver into the electrolyte the basic electrochemistry would tend to redeposit silver on the case by the action of the leakage current and negative polarity of the case. The best examples of this effect are the -10 and -8 old units which had seen 2000 hours of burn-in prior to inclusion in the ripple test program. After these units had been subjected to ripple, their silver concentrations returned to the apparent norm for their case size.

Outside of the specific samples from the ripple test program, other wet slug capacitors were analyzed for their silver contents. This data is presented in the data section for additional information and completeness, as these analyses were performed in support of this program.

The first of these additional samples are -8's which were used in the vibration failure analysis program. These are case size GT-1 and came directly from stock being similar to the units used in the memory test of Volume I.

The second group is comprised of -21 capacitors, case size GT-2, which were part of the vibration failure analysis and the ripple test program. Three samples were from VPO. Most of these samples had never seen ripple and yet displayed the case anomalies and silver on the anode.

The third group is comprised of MMC components from a Titan inverter which had undergone a long-term life test that applied substantial ripple levels to the components. The capacitors are Sprague 140 D non-hermetic units purchased under MMC specification ST90D-38A. Ten units from the inverter and five units from stock were analyzed. All are case size 3.

The final group is made up of two units from the Apollo Telescope Mount (ATM) Charger Battery Regulator Modules (CRBM's) which experienced failures thought to be due to silver growths on the anodes of wet tantalum capacitors caused by high ripple levels. Two General Electric SC155CN441MP3 capacitors assemblies were analyzed. On designated as the "B" group was a failed component and the other, designated "VS", was from stock. Each assembly is composed of 16 non-hermetic wet tantalum capacitors in a parallel bank. Both banks were dissected and examined with some units being returned to VPO for their analysis. The surprising data point from this analysis is that the good unused stock part shows more silver anomalies than the failed component. A complete report on the history of these parts is contained in an IBM, Federal Systems Division, Electronics Systems Center/Huntsville, Alabama report IBM No. 73W-00050, entitled: "Investigation of Tantalum Wet Slug Capacitor Failures in the Apollo Telescope Mount Charger Battery R gulator Modules," prepared under Skylab Contract NAS8-20899.

TOTAL SILVER CONTENT IN & 8

14

4.0 DATA

AG S	Summary Pre	Pre-Ripple Te	LAB.	DATA	SHEET	102 DA	ATE 4/18/73	Table 4.1	
			The second state of the se						
30.7	\	ATTA STATE OF	RITATO DE LA TORITO DEL TORITO DE LA TORITO DEL TORITO DE LA TORITO DEL TORITO DEL TORITO DEL TORITO DE LA TORITO DEL TORITO	2773	TATISTY.	7 to 15 17 17 17 17 17 17 17 17 17 17 17 17 17	A. T. T. T. C.	t _t t _t	
*	(tr) © Mn		ä		N s	VS V	<u>.</u>	
7238A		.1	231	105	No Anom.	No Ag	336		
7238A		.13	117	95	PT Sloppy		212		
7238A		.07	531	186	Ag on Cas	e No Ag	717		
7236A .		12	213	148	No Anom.	No Ag	361		
7236A		13	23	2	No Anom.	No Ag	25		
7236A .	٠	.12	250	75	No Anom.	No Ag	325		
7236A .	1	.022	38	14	No Anom.	- 1	52		
7236A .		.022	7.5	38	Agon Case	r.	113		
7236A .	•	.024	27	35	No Anom.	=	62		
7240C .		13	338	76	No Anom.	-	414		
7240C		.13	475	112	No Anom.	Ξ	587		
7240C		.17	429	112	No Anom.	-11	541		
7237A		.14	396	96	No Anom.	-	492		
7237A	1	.15	254	85	No Anom.		339		
7237A	Į	.13	433	135	No Anom.	п	569		
7220	- 1	.12	34	19	No Anom.	=	53		
7220	1	.3	57	27	Ag on Case	11 6	84		
7220		. 2	28	19		11	47		
7223A		80	17	18	11	=	35		
7223A		.05	11	3	No Anom.	=	14		
		. 02	10	4	Ag on Case	-	14		

זמטז ליי		\$\tau_{1,1} \tau_{1,1}																			
	4/18/73	Test #6	22 nA		21 nA	7 nA	7 nA		5 nA	•	15 nA	16 nA		19 nA	Not	Tested	Not Tested	Not Tested	1		
	DATE 4,	1.0	No Ag		No Ag	No Ag	No Ag		AG Flower		Ag on end	2 Ag	Flowers	No Ag	No Ag		oyed	No Ag			
*		TATISTA SA	PT Vari-	ations	No Anom.	No Anom.	PT Vari-	ations	PT-Ag Crys	tals-PT Variations	No Anom.	Ag Spots		No Anom.	PT-AG	Crystals	Destr	PT Vari-	ations		
		3. 2013s	33		126	155	98		265		229			107	61		53	78			
	Vib	THAT TO SE THE	114		168	323	302		570		430	832		262	64		86	4 46			
	Ripple & V	1.5 (1) JAJAJA ANTON JAJAJA	22nA-90nA		21nA-70nA	4nA-100uA	2nA- 90nA		2nA-40uA		13nA-23mA	13nA-15mA		14nA-27A	28nA-70uA		25nA-30uA	28nA-160n			
	Post 300 Hr	A CONTROLL	90.		.07	.1	.04		20uA-1.5	mîn.	3mA-30sec	1.8mA -	30 sec	.04	15 uA -	2 min	l Erratic	80.			
	Summary Po	* tarts	7236A #3		7236A #3	7240C #5	7240C #5		7240C #5		7238A #7	7238A #7		7238A #7	7220A #11		7220A #11	7220A #11			
	Ag	1/0	355		273	18	252		374		51	35		81	194		199	215			
	H H	ON HSAN	-10		-10	-7	-7		-7		-21	-21		-21	-10 old		-10 old	-10 old			

LAB DATA SHEET 102

Table 4.3

	ON HSAN	* ANTS	ATA SO BOOM	TS AT STATE TO STATE	ON ALLAND	34 31175 E	TATISTA PS AS	\$007 \$007 \$007 \$007 \$	100 th 10
	303	7239A #5	17	2nA-400nA	2500	415	Silver Sprays	No Ag	8 nA
+-	265		. 21	22nA-210nA	1893	401	1 bn	No Ag	8 nA
1	60.7						on End Cap		
 	320	7240C #\$	6.3/.12*	5nA-860nA	240	111	Vib Abrasion Marks	Teflon in Slug-No Ag	7 nA
t	264	7240C #5	76/37*	2nA- 18uA	55	37	Vib Abrasion Marks	Teflon in Slug-No Ag	7 na
1	061	7237A #9	.21	8nA- 80nA	172	55	No Anomalies	No Ag	30 nA
 	058	7237A #9	.19	9nA- 80nA	454	238	Spotty PT-No Ag	No Ag	36 nA
 	062	7237A #9	.16	6nA- 90nA	1289	298	No Anomalies	No Ag	26 nA
01d	210	7220A #11	2.0/.16*	9nA-150nA	111	55	Vib Abrasion Marks-Ag Sprays	Teflon in Slug-No Ag	Not Tested
01d	213	7220A #11	60.	30nA~ 90nA	41	51	Ag Spots	Fine Crack No Ag	Not Tested
-10 01d	220	7220A #11	.10	28nA-100nA	52	81	Ag-PT Crystals	No Ag	Not Tested
01d	222	7220A #11	15/13*	25nA- 2uA	141	61	Ag-PT Crystals	Teflon in Slug-No Ag	Not Tested
	107	7236A #1	.12	30nA-105nA	22	6	No Anomalies	No Ag	40 nA
	236	7236A #1	.11	31nA-140nA	2015	409	Ag Spray	No Ag	36 nA
	244	7236A #1	.083	29nA-125nA	2380	432	Ag Spray	No Ag	34 nA
			1			;	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	No Ac	19 nA

*Additional 5 minutes.

2054 300 414 413 VIS Table 4.3 (Cont) ηĄ пA n.A nA hA пA пA PA пA 32 40 20 20 20 19 28 TERSTA CA IDENT. Onts No Ag 4/18/73 TERISTA Ag Vib Marks-No No Anomalies No Anomalies DATE Ag Spray Ag Spray Ag Spray No Ag No Ag No Ag Op Office All ATT ATOMES ATTE 59 62 69 10 102 395 282 85 85 205 26 185 934 112 18 1700 322 Ψ Control of the state of the sta A TOWN WITH 20nA-75nA 20nA-80nA 90nA-28nA 65nA-28nA 90nA-20nA 70nA-19nA 80nA-2 nA 80nA-7 nA пA Summary Post 1000 Ripple (Continued) 80nA-7 What of the second .11 .12 .12 .15 .11 ηĄ -۲. ۲. * this #3 #3 ₩ ₩ #1₩5 7236A 7236A 7236A 7236A 7236A 7236A 7237A 7237A 1/5 AG 356 170 418 029 354 385 271 033 ON HSPOT TITLE -10 - 10 - 10 -10 -10 -10 -24 -24 -7

LAB DATA SHEET 102

Table 4.4

	\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}	Ψn ε	8 nA	1.4 uA	150 uA	8 nA	7 nA	6 nA	25 nA	18 nA	110 nA		20 nA				
IDENT.	1EST #6 405th	8 nA	11 nA	19 nA	15 nA	150 nA	10 nA	9 nA	20 nA	17 nA	18 nA		16 nA				
jed.	**************************************	Ag Flowers	No Ag	No Ag	No Ag	No Ag	No Ag	No Ag	No Ag	No Ag	No Ag		No Ag			:	
DATE	TAILS TO THE AD	Abrasion marks on Case	No Ag	Ag Sprays	Ag-PT Crystals	No Ag	Ag-PT Crystals Abrasion marks	No Ag	Abrasion marks No Ag	Small Ag crystals	Abrasion marks	No Ag	No Ag				
	SA SARIS	56	120	165	29	77	35 est	148	65	1.7	100		27				
	THAT TO A	168	229	853	181	203	73	311	98	65	154		62 est				
Hr Ripple	AN ALIA	1.1nA-14uA	80 nA- 2nA	14 nA- 1 mA	12 nA-500uA	8.4uA-1 nA	3 uA-3 nA	1.3 uA-1 nA	4 uA-15 nA	2.5uA-15 nA	100uA-14 nA		5.4uA-12 nA		100		
Post 1500	A THE CO.	90 mA	.12 uA	700 uA	760 uA	15	9.2	22	200	. 25	10		21				
AG Summary	** ***********************************	7240C #4	7240C #4	7238A #7	7238A #7	7240C #4	7240C #4	7240C 非4	7238A #7	7238A #7	7238A #7		7238A #7				
	in the second	77	104	09	39	101	980	082	260	011	980		023				
TITLE	· CAN HS MAT	-7	-7	-21	-21	-7	-7	-7	-21	-21	-21		-21				

a
8
-
_
)
ш
I
S
S
_
⋖
_
7
_
•
₹
A
•

DATE DENT.										Table 4.5
Tatherian 1.150		K.	IPPLE CURRENT DISTRII	SUTIONS	Sink #1	-10		ATE		IDENT.
Tardividual = 1.150A RNS Total AH										
Tat								Lin		
T at							:			GT-3
I at Total AH AH I at Total AH AH Total AH <										
.172 17.2 .170 33.9 .164 114 166 .168 16.8 .152 30.3 .160 112 159 .169 16.9 .157 31.5 .167 117 165 .169 16.9 .157 31.5 .161 113 163 .170 17.0 .157 31.5 .169 118 169 .171 17.1 .158 31.7 .168 118 166 .171 17.1 .158 31.7 .168 118 166 .141 14.1 .148 29.6 .151 106 137 .144 14.4 .164 32.8 .174 122 169 .140 14.0 .164 32.8 .174 122 169 .140 14.0 .164 32.8 .174 122 169 .140 14.0 .164 32.8 .141 99.0 140	s/N	I at 100 Hr	Total AH X100	1 at 300 Hr (+200)	AH X200		I at 1000 Hr (+700)	AH X1700	Total	Total Ag
168 16.8 .152 30.3 .160 112 159 .169 16.9 .157 31.5 .167 117 165 .169 16.9 .167 33.4 .161 113 165 .170 17.0 .157 31.5 .161 113 165 .170 17.0 .158 31.7 .168 118 166 .171 17.1 .173 .174 .166 137 166 137 .141 14.1 .148 29.6 .151 106 137 166 137 .144 14.4 .165 32.9 .164 115 162 169 169 140 160 140 160 160 170 160 160 170 160 160 170 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160	184	.172	17.2	.170	33.9		.164	114	166	
.169 16.9 1.67 31.5 1.67 11.7 165 .169 16.9 .167 33.4 .161 113 163 .170 17.0 .157 31.5 .130 91.2 140 .171 17.1 .158 31.7 .168 118 166 .141 14.1 .135 27.1 .137 96.0 137 .141 14.1 .148 29.6 .151 106 150 .144 14.4 .165 32.9 .164 115 162 .144 14.4 .165 32.9 .164 115 169 .140 14.0 .185 27.0 .141 99.0 140 .140 .140 .19.4 .089 62.5 95.9 .141 14.1 .151 30.3 .152 144 .143 .143 .169 .169 144 .141 .14.1 .14.1	188	.168		.152	30.3		.160	112	159	
.169 16.9 .167 33.4 .161 113 163 .170 17.0 .157 31.5 .130 91.2 140 .171 17.1 .158 31.7 .168 118 166 .141 14.1 .158 31.7 .168 137 166 .141 14.1 .158 27.1 .151 166 137 .144 14.4 .168 .169 .154 115 162 169 .140 14.0 .169 19.4 .089 62.5 95.9 140 .141 14.1 .151 30.3 .157 110 154 154 .142 14.2 .169 19.4 .089 62.5 95.9 140 .142 14.2 .169 19.4 .169 118 167 .143 .143 .170 34.0 .169 118 167 .141 14.1 .14.1 <td>189</td> <td>.169</td> <td>16.9</td> <td>.157</td> <td>31.5</td> <td></td> <td>.167</td> <td>117</td> <td>165</td> <td></td>	189	.169	16.9	.157	31.5		.167	117	165	
.170 17.0 .157 31.5 .130 91.2 140 .171 17.1 .158 31.7 .168 118 166 .141 14.1 .158 27.1 .168 118 166 .141 14.1 .135 27.1 .157 106 137 .144 14.4 .168 29.6 .151 106 150 .144 14.4 .165 32.9 .164 115 162 .140 14.0 .164 32.8 .174 122 169 .140 14.0 .097 19.4 .089 62.5 95.9 .141 14.1 .151 30.3 .127 88.9 133 .142 14.2 .169 .169 .169 169 164 .143 14.2 .149 29.9 .169 144 .141 14.1 .141 30.8 .163 163 .141	203	. 169		.167	33.4		.161	1.13	163	
171 17.1 1.58 31.7 168 118 166 166 170 .141 14.1 .135 27.1 .137 96.0 137 170 .144 14.4 .148 29.6 .151 106 150 150 .144 14.4 .165 32.9 .164 115 162 162 .143 14.0 .165 27.0 .141 99.0 140 160 .140 14.0 .097 19.4 .089 62.5 95.9 160 .141 14.1 .151 30.3 .127 88.9 133 160 .142 14.2 .151 30.3 .157 169 154 167 .143 14.3 .170 34.0 .169 118 167 .143 14.3 .154 30.8 .163 164 159 .143 14.3 .154 30.8 .169 169	207	.170	17.0	.157	31.5		.130	١٠)	140	
141 14.1 1.15 27.1 137 96.0 137 .141 14.1 .148 29.6 .151 106 150 .144 14.4 .165 32.9 .164 115 162 .143 14.0 .164 32.8 .164 165 169 .140 14.0 .135 27.0 .141 99.0 140 160 .140 14.0 .097 19.4 .089 62.5 95.9 133 .141 14.1 .151 30.3 .127 88.9 133 133 .142 14.1 .151 30.3 .159 .159 144 154 .143 14.3 .170 34.0 .169 .163 144 159 .141 14.1 .152 30.4 .163 .163 114 159 .143 14.3 .154 30.8 .169 .169 159 112	236	.171	17.1	.158	31.7		.168	118	166	2424
.141 14.1 1.48 29.6 .151 106 150 .144 14.4 .165 32.9 .164 115 162 .143 14.3 .164 32.8 .174 122 169 .140 14.0 .135 27.0 .141 99.0 140 .140 14.0 .097 19.4 .089 62.5 95.9 .141 14.1 .151 30.3 .127 88.9 133 .142 14.3 .170 34.0 .157 110 154 .143 14.3 .170 34.0 .163 114 159 .141 14.1 .154 30.8 .163 114 159 .143 14.3 .154 30.8 .163 159 159 .141 14.1 .151 30.3 .169 169 159 .143 14.1 30.3 .169 169 169 169	237	.141	14.1	.135	27.1		.137	0.96	137	
.144 14.4 .165 32.9 .164 115 162 162 .143 14.3 .164 32.8 .174 122 169 169 .140 14.0 .135 27.0 .141 99.0 140 160 140 .140 14.0 .097 19.4 .089 62.5 95.9 140 153 153 153 153 154	257	.141	14.1	.148	•		.151	106	150	
143 14.3 .164 32.8 .174 122 169 .169 .169 .169 .174 122 169 .140 .141 99.0 140 .140 .141 .141 .151 .164 .169 .169 .169 .169 .169 .169 .169 .169 .169 .160<	244	.144	14.4	.165	32.9		.164	115	162	2812
.140 14.0 .135 27.0 .141 99.0 140 .140 14.0 .097 19.4 .089 62.5 95.9 .141 14.1 .151 30.3 .127 88.9 133 .142 14.2 .149 29.9 .157 110 154 .143 14.1 .170 34.0 .169 118 167 .143 14.1 .152 30.4 .142 99.6 144 159 .143 14.1 .154 30.8 .163 114 159 112 .138 13.8 .13.8 .112 22.3 .109 76.9 112 112 .143 14.3 .154 30.9 .169 118 163 112	117	.143	14.3	.164	32.8		.174	122	169	
.140 14.0 .097 19.4 .089 62.5 95.9 .141 14.1 .151 30.3 .127 88.9 133 .142 14.2 .149 29.9 .157 110 154 .143 14.1 .152 30.4 .142 99.6 144 1 .141 14.1 .154 30.8 .163 114 159 159 .138 13.8 .112 22.3 .109 76.9 112 153 .143 14.3 .112 22.3 .169 153 112 .138 13.8 .112 22.3 .169 118 163 .143 14.3 .154 30.9 .169 118 163	111	.140	14.0	.135	27.0	-	.141	0.66	140	
.141 14.1 .151 30.3 .127 88.9 133 .142 14.2 .149 29.9 .157 110 154 .143 14.3 .170 34.0 .169 118 167 .141 14.1 .154 30.8 .163 114 159 .141 14.1 .151 30.3 .156 109 153 .138 13.8 .16.3 .169 .169 112 .169 .169 .163 .143 14.3 .164 30.9 .169 .169 .163 .163	107	.140	14.0	760.	19.4		.089	62.5		31
.142 14.2 .149 29.9 .157 110 154 .143 14.3 .170 34.0 .169 118 167 .141 14.1 .152 30.4 .163 114 159 .143 14.3 .154 30.8 .163 114 159 .138 13.8 .112 22.3 .109 76.9 112 .143 14.3 .154 30.9 .169 118 163	092	.141	14.1	.151	30.3		.127	88.9	133	
.143 14.3 .170 34.0 .169 118 167 .141 14.1 .152 30.4 .142 99.6 144 1 .143 14.3 .154 30.8 .163 114 159 .141 14.1 .151 30.3 .156 109 153 .138 13.8 .112 22.3 .109 76.9 112 .143 14.3 .154 30.9 .169 118 163	071	.142	14.2	.149	29.9		.157	110	154	
.141 14.1 .152 30.4 .142 99.6 144 1 .143 14.3 .154 30.8 .163 114 159 .141 14.1 .151 30.3 .156 109 153 .138 13.8 .112 22.3 .109 76.9 112 .143 14.3 .154 30.9 .169 118 163	690	.143	14.3	.170	34.0		.169	118	167	
.143 14.3 .154 30.8 .163 114 159 .141 14.1 .151 30.3 .156 109 153 .138 13.8 .112 22.3 .109 76.9 112 .143 14.3 .154 30.9 .169 118 163	170	.141	14.1	.152	30.4		.142	99.6	144	180
.141 14.1 .151 30.3 .156 109 153 .138 13.8 .112 22.3 .109 76.9 112 .143 14.3 .154 30.9 .169 118 163	171	. 143	14.3	.154	30.8		.163	114	159	
.138 13.8 .112 22.3 .109 76.9 112 .143 14.3 .154 30.9 .169 118 163	173	.141	14.1	.151	- 4		.156	109	153	
.143 14.3 .154 30.9 .	178	.138	13.8	.112	- 4		109	76.9	112	28
	181	. 143	14.3	.154	30.9 🕻		.169	118	163	

GT-3 Table 4.6 88 479 287 147 264 294 2095 DEN Ag I_{RMS} = .300A per device Total AH 90.6 86.2 296 303 318 346 271 314 232 312 307 303 $10~\mathrm{KH}_\mathrm{Z}$ 700 AH 149 208 210 192 220 217 217 212 223 252 DATE I at 1000 Hr .318 274 315 .213 310 .300 .302 .360 .311 .297 00 LAB. DATA SHEET - 10 100 us Sink #3 200 AH 53.8 9.49 64.3 63.7 56.0 57.2 62.1 6.09 53.1 60.7 63.1 60.1 € 9 → I at 300 Hr. 319 . 269 286 315 .265 .280 .323 304 .311 305 .321 300 RIPPLE CURRENT DISTRIBUTIONS 100 AH 30.2 30.6 25.6 30.2 30.2 30.7 29.8 30.8 30.5 29.9 30.5 30.9 I at 100 Hr. 298 256 302 302 302 .308 .305 .299 .306 305 309 307 <u>"</u> S/N338 358 356 355 309 308 278 385 354 302 271

	Ripple	ole Current	Distributions	Sir	Sink #4 -7		0	DATE		IDENT:	
				IRMS :=	= .170 per part	r part					
	1	Age Co.		100			807.	80			
S/N 1	I at 100 Hr	AH X 100 Hr	I at A 300 Hr X 20	Hr (%)	AH AH 200 Hr	\	I at 1000 Hr	AH X 700 Hr	Total		
117	.173	17.3	,166	9	33.2		.167	116.9	167.4		
113	.175	17.5	.181		36.2		.188	131.6	185.3		
108	.172	17.2	.188	8	37.6		.166	116.2	171.0	419	
104	.175	17.5	961.	9	39.2		.188	131.6	188.3	280	
101	.153	15.3	.118	8	23.6		.158	110.6	149.5	100 (e	(est)
980	.151	15.1	.145	5	29.0		.117	81.9	126.0		
085	.172	17.2	.161		32.2		.161	112.7	162.1	459	
082	.172	17.2	.173	3	34.6		.195	136.5	188.3		
079	.172	17.2	.172	2	34.4		.173	121.1	172.7		
075	.174	17.4	.189	6	37.8		.181	126.7	181.9		
072	.171	17.1	.165	5	33.0		.162	113.4	163.5		
070	.173	17.3	.174		34.8		.180	126.0	178.1		
790	.173	17.3	.167	7	33.4		.176	123.2	173.9		
770	.170	17.0	.164		32.8		.157	109.9	159.7	224	
039	.175	17.5	.191]	38.2		.182	127.4	183.1		
			-								
i.					-						
						-		_			

102
SHEET
ATA S
AD
LAB.
_

Table 4.8	IDENT.			Total Ag	478	351			2915		2294	92	400				1216				835			
				Total	82	272.7	283.1	275.4	294.4	281.8	283.2	260.9	6.48	290.5	273.7	286.6	290.7	267.0	273.5	258.6	57.7	288.0	254.2	283.7
	DATE		997.	AH X 700 Hr		193.2	198.8	191.8	207.2	194.6	199.5	181.3		205.8	192.5	202.3	205.8	186.2	193.9	177.8		204.4	178.5	201.6
				I at 1000 Hr		.276	.284	.274	.296	.278	.285	.259		.294	.275	.289	.294	.266	.277	.254		.292	.255	.288
	Sink #5 -7	I _{RMS} = .270A	095	X 200 Hr	55.0	52.8	57.4	57.0	58.0	58.0	56.2	52.4	58.0	57.8	54.4	57.0	58.0	54.2	52.4	54.2	34.4	56.0	49.0	55.0
	Distributions	н	897.	I at 300 Hr	.275	.264	.287	.285	.290	.290	.281	.262	.290	. 289	.272	.285	.290	.271	. 262	.271	.172	.280	.245	.275
	le Current		10	AH X 100 Hr	27.0	26.7	26.9	26.6	29.2	.29.2	27.5	27.2	26.9	26.9	26.8	27.3	26.9	26.6	27.2	26.6	23.3	27.6	26.7	27.1
	Ripple		100°C. 11.	I at 100 Hr	.270	.267	.269	.266	.292	.292	.275	.272	.269	.269	.268	.273	.269	.266	.272	.266	.233	.276	.267	.271
	TITLE			S/N	018	320	314	306	303	286	265	264	252	471	445	421	418	404	3900	377	374	367	353	357

Table 4.8 (cont)																
Table 4.		Total Ag	285.3	266.4	251.3	193.6	245.5		om en en	-		A Stances				
0 N E		х 700 нл	201.6	186.9	172.9	119.0										
		I at 1000 Hr	.288	.267	.247	.170	.234									
Sink #5 (Cont)		X 200 Hr	56.6	52.8	51.6	47.4	54.8									
Ripple Current Distributions		I at 300 Hr	.283	.264	.258	.237	.274									
onle Current		X 100 Hr	27.1	26.7	26.8	27.2	26.9									
Ri		I at 100 Hr	.271	.267	.268	.272	.269									
Ë		S/N	337	336	3310	331A	390A	•								

Table 4.9	Ag 163 369 1018 106 254 254 1800 est
Tab	Total AH 141.18 137.33 110.35 110.35 157.00 156.01 156.01 174.73 1174.73 113.42 1150.24 159.36 123.70 30.85
I RMS	1200 AH 109.16 109.71 85.31 130.47 123.94 123.94 119.19 119.19 119.19 136.18 136.18 130.16 89.74
DATE	1 at 1 0910
SHEET 102 -21 -21 -21 -21 -21 -21 -21	
Sink #7	200 AH 22.20 17.54 15.17 16.66 22.20 22.20 21.08 19.75 21.08 19.75 21.30 19.45 19.45 19.45 19.45 19.45 23.86 21.03
LAB.	1 at 300 Hr. .1110 .08769 .0758 .0833 .1110 .1104 .09876 .09876 .09876 .09876 .09876 .09876 .1165 .1165 .1193
CURRENT DISTRIBUTIONS	
CURRENT	9.82 10.08 9.87 9.87 9.87 9.84 9.74 9.74 9.90 9.74 9.90 9.74 9.92 9.82 9.82 9.82
RIPPLE	1 at 100 Hr. .0982 .0987 .0987 .0987 .0987 .0997 .0997 .0982 .0982 .0982 .0982 .0982
TITLE	S/N 021 021 021 093 081 081 081 081 081 081 081 081

LAB. DATA SHEET 102

					0							6					
IDENT.		Ag			210							629					
		Total AH	134.38	164.66	175.44	158.92	175.63	145.81	158.95	138.80	177.11	31.70					
DATE		1200 Hr.	103.26	136.18	138.25	128.47	144.29	117.90	130.47	107.44	145.45	1					
		I at 1500 Hr.	.0861	.11348	.11521	.10706	.12025	. 09825	. 10872	. 08953	.12120	1					
(Cont)																	
Sink #7 (Cont)		200 АН	21.30	18.66	23.79	20.81	21.42	18.27	18.66	21.42	21.64	21.70			-		
UTIONS		I at 300 Hr.	. 1065	.0933	.11897	. 1041	.1071	.0913	.0933	.1071	. 1082	. 1085					
NT DISTRIB								-									
RIPPLE CURRENT DISTRIBUTIONS		100 АН	9.82	9.82	13.40	9.64	9.92	9.64	9.82	9.94	10.02	10.00		_			
RII	·	1 at 100 Hr.	0982	0982	.1340	. 09635	.0992	. 0964	. 0982	.0994	.1002	86660.					
TITLE		S/N	034	033	039	041	042	040	047	027	050	051					

2
102
-
-
ш
ш
SHEET
$\overline{\mathbf{v}}$
••
4
-
AT
0
•
8
AB
_

10				Total Ag uG)2							7						7		7	7		
Table 4.10	IDENT.			Tot		692							227						197		407	1587		
		S		Total	247.1	258.0	254.9	251.9	253.9	257.7	257.0	255.0	215.8	252.6	250.0	257.0	253.6	254.7	245.9	245.8	238.6	255.0	250.7	245.5
	DATE	= .25A RMS	1057.13	AH X 700 Hr	172.9	180.6	178.5	176.4	177.8	180.6	179.9	179.9	148.4	178.5	176.4	179.9	177.8	178.5	171.5	172.9	164.5	179.9	173.6	171.5
701		LRMS	13	$\left(\begin{smallmatrix} \mathrm{I} & \mathtt{at} \\ 1000 & \mathrm{Hr} \end{smallmatrix}\right)$.247	.258	.255	.252	.254	.258	.257	.257	.212	.255	.252	.257	.254	.255	.245	.247	.235	.257	.248	.245
SHEEL	-24	:																						
B. UAIA	Sink #9		1057.13	X 200 Hr	49.8	52.0	51.4	50.8	51.2	51.8	51.8	49.8	42.6	49.2	48.8	51.8	51.0	51.4	49.4	47.8	49.2	49.8	51.8	49.2
LAB.	Distributions		7	I at 300 Hr	.249	.260	.257	.254	.256	.259	.259	.249	.213	.246	.244	.259	.255	.257	.247	.239	.246	.249	.259	.246
	Ripple Current		2.	AH X 100 Hr	24.4	25.4	25.0	24.7	24.9	25.3	25.3	25.3	24.8	24.9	24.8	25.3	24.8	24.8	25.0	25.1	24.9	25.3	25.3	24.8
	R:		ALC: 14	I at 100 Hr	.244	,254	.250	.247	.249	.253	.253	.253	.248	.249	. 248	.253	.248	.248	.250	.251	.249	.253	.253	. 248
	TITLE			s/n	064	058	056	054	053	059	090	03.5	061	065	028	031	034	030	029	. 032	033	062	990	027

			GT-3		- E																	
Table 4.11	IDENT.				Total Ag	92	125	189			133		124	166		195	202	139				
					Total AH	298.9	102.4	331.1	296.8	309.2	281.1	287.6	97.6	306.5	277.2	317.0	283.5	100.3				
	DATE			80	AH X 700 Hr	212.8		235.9	207.2	216.3	196.0	200.9		217.7	191.1	225.4	197.4					
				8. C. 17	I at 1000 Hr	.304		.337	. 296	309	.280	.287		.311	.273	,322	.282					
				00	AH X20 Hr		0*9						6.1					6.3				
	Sink #11			055.12	I at 320 Hrs	.292	.298	.335	.296	.314	.279	.283	.305	.317	.269	.315	.286	.313				
	ibutions	= .300A			AH X 200 Hr	57.4	65.0	65.6	59.8	62.6	56.8	59.0	59.6	57.8	57.4	59.6	56.0	63.4				
		TRMS			I at 200 Hr	.287	.325	.328	.299	.313	.284	.295	.298	.289	.287	.298	.280	.317				
	Ripple Current Distr	-10 Old		12/	AH X100 Hr	2.87	31,4	29.6	29.8	30.3	28.3	27.2	21.9	31.0	28.7	32.0	30.1	30.6				
	Rip	•		12. Tal.	I at 100 Hr	.287	.314	.296	.298	.303	.283	.277	.319	.310	, 287	.320	.301	.306				
	TITLE				s/n	213	194	218	203	195	220	205	215	210	207	211	222	199				

LAB. DATA SHEET 102

4.12																		
Table 4.							-											
												-						
DATE																		
		78																
vs.	:	Lensin Spis			No Ag	No Ag		No Ag	No Ag		No Ag		No Ag					
Failure		1878 5.7.7 S. 8.7.7 S. 7.7.7 S. 7.7	Ag-PT	Ag_2SO_4	No Ag	1 Ag	Spray	Ag-PT	l Ag Spray	Ag-PT	l Ag Spray	Ag-PT	I Ag Spray	Ag-PT				
the Vibration		S. S. A.	74		43	1		3	9†		5		19					
from		97470 8 W	138		58	23		29	346		65		No Data					
Summary -8		1,14 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uA .015		.01	.013		.016	.02		.02		.02					
Ag S			TIK		7236A				7236A		7236A		7236A					
TITLE	·		S/N 390		045	359	:	377	980		038		002					

Table 4.13	IDENT.				Ripple Test	Baseline	Units		Ripple	Test	Failures		Stock Failures	11	11 11		VPO Samples 7307A	11 11 11	11 11	
			Slug Vigual		R	Broken			tree			Tree	Hnd - OK			End - OK				
	DATE				OK	Corner E	OK		1000u tr		Ag Flowers	200u Ag	Broken E	OK	OK	Broken E	OK	OK	OK	
701			Case Visual			у	ers	Case			Spots			utline	Patterns	Patterns			Patterns	
SMEEL			8		OK	PT Sloppy	Ag Clusters	Top of C	0K		Many Ag	OK	OK	Spider Outline	Ag Spray	Many Ag	OK	OK	Ag Spray	
LAB. DAIA		:	St. Sails	gn	105	95	186		229			107	6	126	240	146	50	92	176	
LA	ary -21		o ok oth	gn	231	117	531		430		832	262				719	78	88	859	
	Analysis Summary		OF STATE OF) >	60V .lua	60V .13ua	60v .07		40V 3 ma		40V 1.8ma	40V .04ua	40V 20ua	40V 1.2ma	40V 2.5ma		.lua	.lua	.lua	
	Vibration Ana		97.5.98	S	2	2	2		2		2	2	2	2	2	2	2	2	2	
	Vib		The state of the s		2	Н	107		51		35	81	6	58	65	78	L2	L4	L6	
	TITLE		· ON 150 8	>	-21	-21	-21		-21		-21	-21	-21	-21	-21	-21	-21	-21	-21	

LAB. DATA SHEET 102

Table 4.14

1184 500 Two Ag spot on inpide of case electrolyte dry 124 454 One Ag spot on inpide of case	Ţ	Inverter	ter Samples		ST90D-38A		DATE	IDENT.
184 500 Two Ag spot on inhide of case-electrolyte 184 500 Two Ag spot on inhide of case " 186 425 Many Ag spots on inhide of case " 180 234 1 Ag spot on inhide of case " 180 234 1 Ag spot on inhide of case " 180 234 1 Ag spot on inhide of case " 180 342 1 Ag spot on inhide of case " 180 475 0K 184 500 NK 185 Spot on inhide of case " 186 572 Many Ag spots on side of case " 186 572 Many Ag spots on case 350 Nany Ag spots on case 360 368 Very small Ag spots on case 360 360 360 360 360 360 360 360 360 360				LDC 6821				
184 500 Two Ag spot on inside of case-electrolyte 500 Two Ag spot on inside of case "	974 TO 1773 PT	Tro the	1 × 0 0 \	37707387	3 8h 3 140	71107115		
1184 500 Two Ag spot on inside of case "" 724 454 One Ag spot on inside of case "" 1116 425 Many Ag spots on inside of case "" 780 234 1 Ag spot on inside of case "" 620 342 1 Ag spot on inside of case "" 926 500 1 Ag flower on Slug, Cu (Prbb) spot on slug on Spot on Slug, Cu (Prbb) spot on Slug,	?> ⇒	2>		ad in	, 8n			
724 454 One Ag spot on inside of case " 1116 425 Many Ag spots on inside of case " 780 234 1 Ag spt on inside of case " 620 342 1 Ag spt on inside of case " 620 342 1 Ag spt on inside of case " 926 500 1 Ag flower on Sleg, Cu (Prpb) spot on slug on the spot on the spot on side of case " 924 380 0K 646 454 Many Ag spots on side of case* " 860 500 Many Ag spots on case 860 500 Many Ag spots on case 860 500 Wany Ag spots on case 860 476 Many Ag spots on case 860 600 0K 860 600 Many Ag spots on case 860 700 Wany Ag spots on case 860 800 600 Many Ag spots on case 860 800 800 800 Many Ag spots on case 860 800 800 800 Many Ag spots on case 860 800 800 800 800 800 800 800 800 800	.14 None			1184	500	Ag spot on in	of case-electrolyte	:y
16	.155			724	454	Ag spot on	of case "	
80 234 1 Ag sp t on inside of case " 20 342 1 Ag sp t on inside of case " 26 500 1 Ag flower on Slug, Cu (Prpb) spot on slug of 475 0 0	.16			1116	425	Ag spots on	of case "	
26 500 1 Ag flower on Slig, Cu (Prbb) spot on slug 26 475 0K 24 380 0K 26 454 Many Ag spots on sase 26 572 Many Ag spots on case 27 368 Very small Ag spots on case 28 368 Very small Ag spots on case 29 368 Very small Ag spots on case 30 368 Very small Ag spots on case 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.			780	234	Ag spot on inside	case	_
26 500 1 Ag flower on Slug, Cu (Prbb) spot on slug 96 475 0K 6 24 380 0K 6 24 380 0K 6 26 454 Many Ag spots on sase 6 36 572 Many Ag spots on sase 6 50 500 Many Ag spots on sase 6 50 368 Very small Ag spots on case 6 40 500 0K 7 40 500 0K 7 40 500 0K 8 40 500 0K 8	.17			620	342	Ag spot on inside	case	
96 475 OK Asson OK 24 380 OK Asson Asson <td< td=""><td>.14</td><td></td><td></td><td>926</td><td>500</td><td>Ag flower on Slug,</td><td>(Prbb) spot on</td><td></td></td<>	.14			926	500	Ag flower on Slug,	(Prbb) spot on	
24 380 OK Anny Ag spots on side of case* " bamaged during opening - No Data **A feet of case* " **A feet of case* " 46 454 Many Ag spots on case **A feet of case 50 572 Many Ag spots on case **A feet of case 50 476 Many Ag spots on case **A feet of case 40 500 OK **A feet of case 40 500 **A feet of case **A feet of case 40 **A feet of case **A feet of case **A feet of c	.15			596	475	УО.		
Damaged during opening - No Data No Data 46 454 Many Ag spots on case 86 572 Many Ag spots on case 50 500 Many Ag spots on case 50 368 Very small Ag spots on case 40 500 0K in the spots. 10	.13			924	380	OK		
46 454 Many Ag spots on side of case* " 86 572 Many Ag spots on case 50 476 Many Ag spots on case 50 368 Very small Ag spots on case 40 500 OK in the spots.	.17			Damage	during	oN -		
36 572 Many Ag spots on case 50 500 Many Ag spots on case 50 476 Many Ag spots on case 50 368 Very small Ag spots on 10 500 OK	.13			979		Ag spots on	of case* "	
36 572 Many Ag spots on case 50 500 Many Ag spots on case 50 476 Many Ag spots on case 50 368 Very small Ag spots on 10 500 OK								
36 572 Many Ag spots on case 50 Many Ag spots on case 50 476 Many Ag spots on case 50 368 Very small Ag spots on 40 500 OK in the spots. In the spots.								
50 500 Many Ag spots on case 50 476 Many Ag spots on case 50 368 Very small Ag spots on 10 500 OK	+ 1 ua			286	572	Ag spots on p		
860 476 Many Ag spots on case 360 368 Very small Ag spots on 440 500 0K Ag in the spots.	.2 ua		1	860	500	Ag spots on		
360 368 Very small Ag spots on 440 500 OK Ag in the spots.	.3 ua			860	476	Ag spots on		
440 500 Ag in the spots.	<u>+</u> 3 ua			360	368	small Ag spors		
in the	.3 ua			677	200	ОК		
in the			L					
in the			l i					
	*Microprove displays metallic	metalli	ပ	in				

<u> </u>		-,-,-,,-						1	101		т.	able 4	1	
TITL	. E	ATM	Capaci	tor Su	mmary			DAT	E			DENT		
G	enera	l Elec	tric S	CL55CN	441MP	3								
	440	ufd -	100 VI	C LI	C 8-6	7								
			Si	lver A		is		Visua	1					
			1.0	\mathcal{I}^-		/		/	/	/	$\overline{/}$	$\overline{/}$		
		/ /	Tolate Mr		2 11°					. /				
SIA		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J 42	uA	/									
		1	1	 	And	de		Case			ļ			
VS1		458	262	.18	No	Ag	2 Sil	ver Re	depos	tion.	Areas	.,		
VS2	ļ	362	310	.1	11	11	3 S i 1	ver Ar	eas			-4-17-1-1-1-1		
VS3		444	310	.1	11	11	1 Sil	ver Ar	ea		ļ	·		
VS4		548	262	.14	11	11	Sever	al Sma	11 Sp	ts	ļ			
VS5		456	274	.8	11	11	11	11	11		ļ			.,
VS6		375	274	.11	11	11	11	1.1					······································	
VS7		285	285	.09	11	11	2 Ag	Areas						
VS10	ļ	360	322	.16	11	11	5 Are	as						
VS11		172	262	.12	11	11	3 Are	as						
VS12		402	286	.1	11	11	11 11						·	
VS13		724	262	.15	11	1,1	11 11				ļ	<u></u>		
VS14	<u> </u>	415	262	.12	11	11	1 Ag	Area			<u> </u>		<u> </u>	
VS15		388	273	.13	11	11	1 Ag	Area					,.,	
VS16		504	262	.13	11	11	5 Ag	Areas			<u> </u>			
		<u> </u>	<u> </u>											
B1		252	208	.2	11	11	OK						·	
В2		298	263	1.5	11	11	11							
В3		310	240	.17	11	11	11							
В6		228	263	1.1	11	11	11							
В7		183	153	.18	11	11	11							
в8		204	191	1.7	11	11	31							
В9		*41		14	Burnt	and								
		<u> </u>			Desti	oyed								
B10		2853	.63 mA	·63	11	††								-,
B11		297	*116	.28 uA	îf	11								
B12		286	274	.25	41	11								
B13		366		.16	of S	Ball lver	"						-1	
B14		303	218	.58	11	ti	''					 		
B15		232	156	3.4	11	11	11						, si - super /r sign - } - T -	
B16		286	286	.18	11	11	71							
	*Bu	mp Los	В								1			

5.0 PHOTOGRAPHS

Photo #1
Silver flower on S/N 374
-7. 300 hr. (140X) '

Photo #2
Silver area on bottom of Anode S/N 51. -21
300 hr. (70X)

Photo #3
Anode of S/N 35 showing
location of silver flower
-21. 300 hr. (8X)

Photo #4

Silver flower on S/N 35.

(280X)

Photo #5
Inside of case on S/N 194
showing crystals. (50X)

Photo #6
Magnified view on crystal from case of S/N 194.
These crystals were not identified; however, were comprised of Ag-PT. (140X)

Photo #7

Typical inside of case which displayed the silver redeposition.

S/N 78 -21.

Photo #8
Silver flower on S/N 44
-7. 1500 hr. (150X)