Epimorphisms in certain varieties of partially ordered semigroups

AMS fall southeastern sectional meeting 5-6 October 2013, Louisville, USA

Sohail Nasir

Institute of Mathematics, University of Tartu, Estonia Department of Pure Mathematics, University of Waterloo, Canada

06 October 2013

• Let U be a subsemigroup of a semigroup S. Then $d \in S$ is said to be in the *dominion* of U if for every pair of semigroup homomorphisms $f,g:S\longrightarrow T$ with $f|_U=g|_U$ we have f(d)=g(d).

- Let U be a subsemigroup of a semigroup S. Then $d \in S$ is said to be in the *dominion* of U if for every pair of semigroup homomorphisms $f,g:S\longrightarrow T$ with $f|_U=g|_U$ we have f(d)=g(d).
- The set of all such elements of S is called the dominion of U is S, denoted by $dom_S(U)$. This is a subsemigroup of S.

- Let U be a subsemigroup of a semigroup S. Then $d \in S$ is said to be in the *dominion* of U if for every pair of semigroup homomorphisms $f,g:S\longrightarrow T$ with $f|_U=g|_U$ we have f(d)=g(d).
- The set of all such elements of S is called the dominion of U is S, denoted by $dom_S(U)$. This is a subsemigroup of S.
- Clearly $U \subseteq dom_S(U)$.

- Let U be a subsemigroup of a semigroup S. Then $d \in S$ is said to be in the *dominion* of U if for every pair of semigroup homomorphisms $f,g:S\longrightarrow T$ with $f|_U=g|_U$ we have f(d)=g(d).
- The set of all such elements of S is called the dominion of U is S, denoted by $dom_S(U)$. This is a subsemigroup of S.
- Clearly $U \subseteq dom_S(U)$.
- U is said to be *closed* in S if $dom_S(U) = U$. We term U absolutely closed if it is closed in all of its semigroup extensions.

• Dominions are related with epimorphisms; in that $f: S \longrightarrow T$ is an epimorphism iff $dom_T(\operatorname{Im} f) = T$.

- Dominions are related with epimorphisms; in that $f: S \longrightarrow T$ is an epimorphism iff $dom_T(\operatorname{Im} f) = T$.
- Consequently, a variety of semigroups is absolutely closed iff its epimorphisms are surjective.

In 1966 J.R. Isbell proved the following theorem.

Theorem

 $d \in dom_S(U)$ iff there exists a system of equalities (called a zigzag)

$$d = s_1 u_1$$
 $u_1 = v_1 t_1$
 $s_1 v_1 = s_2 u_2$ $u_2 t_1 = v_2 t_2$
 \vdots \vdots \vdots
 $s_{n-1} v_{n-1} = u_n$ $u_n t_{n-1} = d$

with $s_1, \ldots, s_{n-1}; t_1, \ldots, t_{n-1} \in S$, $u_1, \ldots, u_n; v_1, \ldots, v_{n-1} \in U$.

The aim of this talk is

• to present an analogous zigzag theorem for partially ordered semigroups, briefly posemigroups and

The aim of this talk is

- to present an analogous zigzag theorem for partially ordered semigroups, briefly posemigroups and
- ② discuss closure properties and epimorphisms in certain varieties of posemigroups.

• A partially ordered semigroup, briefly posemigroup, is a pair (S, \leq) comprising a semigroup S and a partial order \leq (on S) that is compatible with the binary operation, i.e. for all $s_1, s_2, t_1, t_2 \in S$,

$$(s_1 \leq t_1, s_2 \leq t_2) \Longrightarrow s_1 s_2 \leq t_1 t_2.$$

• A partially ordered semigroup, briefly posemigroup, is a pair (S, \leq) comprising a semigroup S and a partial order \leq (on S) that is compatible with the binary operation, i.e. for all $s_1, s_2, t_1, t_2 \in S$,

$$(s_1 \leq t_1, s_2 \leq t_2) \Longrightarrow s_1 s_2 \leq t_1 t_2.$$

• A posemigroup homomorphism $f:(S, \leq_S) \longrightarrow (T, \leq_T)$ is a monotone semigroup homomorphism.

• Let (U, \leq_U) be a subposemigroup of a posemigroup (S, \leq_S) . Then the subposemigroup

$$\{x \in S : \alpha, \beta : (S, \leq_S) \to (T, \leq_T), \ \alpha \mid_U = \beta \mid_U \Longrightarrow \alpha(x) = \beta(x)\}$$

is called the *dominion* of (U, \leq_U) in (S, \leq_S) , where α and β are posemigroup homomorphisms.

• Let (U, \leq_U) be a subposemigroup of a posemigroup (S, \leq_S) . Then the subposemigroup

$$\{x \in S : \alpha, \beta : (S, \leq_S) \to (T, \leq_T), \ \alpha \mid_U = \beta \mid_U \Longrightarrow \alpha(x) = \beta(x)\}$$

is called the *dominion* of (U, \leq_U) in (S, \leq_S) , where α and β are posemigroup homomorphisms.

• We shall denote this set by $\widehat{dom}_S(U)$.

• A subposemigroup (U, \leq_U) of a posemigroup (S, \leq_S) will be termed closed if $\widehat{dom}_S(U) = U$.

- A subposemigroup (U, \leq_U) of a posemigroup (S, \leq_S) will be termed closed if $\widehat{dom}_S(U) = U$.
- (U, \leq_U) will be called absolutely closed if it is closed in all of its posemigroup extensions.

Zigzag theorem for posemigroups

Theorem

 $d \in \widehat{dom}_S(U)$ if and only if there exists a system of inequalities

$$\begin{array}{lll} d \leq s_{1}u_{1} & u_{1} \leq v_{1}t_{1} \\ s_{1}v_{1} \leq s_{2}u_{2} & u_{2}t_{1} \leq v_{2}t_{2} \\ \vdots & \vdots & \vdots \\ s_{n-1}v_{n-1} \leq u_{n} & u_{n}t_{n-1} \leq d \\ v_{n} \leq s_{n+1}u_{n+1} & d \leq v_{n}t_{n+1} \\ s_{n+1}v_{n+1} \leq s_{n+2}u_{n+2} & u_{n+1}t_{n+1} \leq v_{n+1}t_{n+2} \\ \vdots & \vdots & \vdots \\ s_{n+m}v_{n+m} \leq d & u_{n+m}t_{n+m} \leq v_{n+m} \end{array}$$

where $s_i, t_i \in S$ and $u_i, v_i \in U$.

• We can also treat a posemigroup (S, \leq) as a semigroup by disregarding the order. We shall then denote it simply by S.

- We can also treat a posemigroup (S, \leq) as a semigroup by disregarding the order. We shall then denote it simply by S.
- So, given a subposemigroup (U, \leq_U) of a posemigroup (S, \leq_S) , one may also consider the (algebraic) dominion $dom_S(U)$ of U in S.

- We can also treat a posemigroup (S, \leq) as a semigroup by disregarding the order. We shall then denote it simply by S.
- So, given a subposemigroup (U, \leq_U) of a posemigroup (S, \leq_S) , one may also consider the (algebraic) dominion $dom_S(U)$ of U in S.
- Because every equality in Isbell's zigzag can be treated as an inequality, one can easily write from a 'zigzag of equalities' a 'zigzag of inequalities'. We therefore have

$$d \in dom_S(U) \Longrightarrow d \in \widehat{dom}_S(U)$$
.

- We can also treat a posemigroup (S, \leq) as a semigroup by disregarding the order. We shall then denote it simply by S.
- So, given a subposemigroup (U, \leq_U) of a posemigroup (S, \leq_S) , one may also consider the (algebraic) dominion $dom_S(U)$ of U in S.
- Because every equality in Isbell's zigzag can be treated as an inequality, one can easily write from a 'zigzag of equalities' a 'zigzag of inequalities'. We therefore have

$$d \in dom_S(U) \Longrightarrow d \in \widehat{dom}_S(U)$$
.

• More precisely: $U \subseteq dom_S(U) \subseteq \widehat{dom}_S(U) \subseteq S$.

- We can also treat a posemigroup (S, \leq) as a semigroup by disregarding the order. We shall then denote it simply by S.
- So, given a subposemigroup (U, \leq_U) of a posemigroup (S, \leq_S) , one may also consider the (algebraic) dominion $dom_S(U)$ of U in S.
- Because every equality in Isbell's zigzag can be treated as an inequality, one can easily write from a 'zigzag of equalities' a 'zigzag of inequalities'. We therefore have

$$d \in dom_S(U) \Longrightarrow d \in \widehat{dom}_S(U)$$
.

- More precisely: $U \subseteq dom_S(U) \subseteq \widehat{dom}_S(U) \subseteq S$.
- So the closure of (U, \leq_U) in (S, \leq_S) implies the closure of U in S.

The closure properties

The following result tells that the converse of the above statement is also true.

• **Proposition** A subposemigroup (U, \leq_U) is closed in a posemigroup (S, \leq_S) if and only if U is such in S as a semigroup.

The closure properties

The following result tells that the converse of the above statement is also true.

- **Proposition** A subposemigroup (U, \leq_U) is closed in a posemigroup (S, \leq_S) if and only if U is such in S as a semigroup.
- Corollary A posemigroup (U, \leq) is absolutely closed if and only if it is such as a semigroup within the class of semigroups that qualify as posemigroup extensions of (U, \leq) , for certain compatible partial orders.

Recall that a semigroup S is called a right group if every equation ax = b with $a, b \in S$ has a unique solution in S.

Left groups are defined similarly

Theorem (Higgins)

The absolutely closed varieties of semigroups are exactly the varieties consisting entirely of semilattices of groups, or entirely of right groups or entirely of left groups.

 A class of posemigroups is called a variety (of posemigroups) if it is closed under taking products (endowed with componentwise order), homomorphic images (where of course we are only considering the monotone semigroup homomorphisms) and subposemigroups.

- A class of posemigroups is called a variety (of posemigroups) if it is closed under taking products (endowed with componentwise order), homomorphic images (where of course we are only considering the monotone semigroup homomorphisms) and subposemigroups.
- It is also possible to describe posemigroup varieties alternatively with the help of inequalities using a Birkhoff type characterization.

- A class of posemigroups is called a variety (of posemigroups) if it is closed under taking products (endowed with componentwise order), homomorphic images (where of course we are only considering the monotone semigroup homomorphisms) and subposemigroups.
- It is also possible to describe posemigroup varieties alternatively with the help of inequalities using a Birkhoff type characterization.
- Example The class of all bounded posemigroups is a variety of posemigroups defined by $\{(xy)z=x(yz)\}\cup\{x\leq a\ (b\leq x)\}$. Also, if $\mathcal V$ is a class of posemigroups that forms a variety of semigroups (if the orders are disregarded), then the subclass $\mathcal V'$ of all bounded posemigroups in $\mathcal V$ is a variety of posemigroups defined by the identities of $\mathcal V$ and the inequality(s) $x\leq a\ (b\leq x)$, provided $\mathcal V'$ is non-empty.

From the above corollary, viz,

• Corollary A posemigroup (U, \leq) is absolutely closed if and only if it is such as a semigroup within the class of semigroups that qualify as posemigroup extensions of (U, \leq) , for certain compatible partial orders,

and Higgins' theorem we obtian the following result.

From the above corollary, viz,

- Corollary A posemigroup (U, \leq) is absolutely closed if and only if it is such as a semigroup within the class of semigroups that qualify as posemigroup extensions of (U, \leq) , for certain compatible partial orders,
 - and Higgins' theorem we obtian the following result.
- Corollary Any variety $\mathcal V$ of posemigroups obtained by endowing a subclass of a class of semigroups of Higgins' theorem with compatible orders will be absolutely closed (in order theoretic sense).

• **Example** The class of all semilattices with natural orders forms an absolutely closed variety of posemigroups. The assertion also remains true if we substitute all the orders by their duals.

- **Example** The class of all semilattices with natural orders forms an absolutely closed variety of posemigroups. The assertion also remains true if we substitute all the orders by their duals.
- Example The classes of bounded posemigroups that are right groups or left groups or semilattices of groups are absolutely closed (in ordered context).

- **Example** The class of all semilattices with natural orders forms an absolutely closed variety of posemigroups. The assertion also remains true if we substitute all the orders by their duals.
- **Example** The classes of bounded posemigroups that are right groups or left groups or semilattices of groups are absolutely closed (in ordered context).
- Question Are there any (order theoretic) varieties of absolutely closed posemigroups other then those of the above corollary? Especially are there any order theoretic varieties 'bigger' than those of Higgins'.

• A posemigroup homomorphism $f:(S, \leq_S) \longrightarrow (T, \leq_T)$ is termed an *epimorphism* if it is right cancellative in the usual sense of category theory, i.e. for any pair of posemigroup homomorphisms $g, h: T \longrightarrow W, g \circ f = h \circ f \Longrightarrow g = h.$

- A posemigroup homomorphism $f:(S, \leq_S) \longrightarrow (T, \leq_T)$ is termed an *epimorphism* if it is right cancellative in the usual sense of category theory, i.e. for any pair of posemigroup homomorphisms $g, h: T \longrightarrow W$, $g \circ f = h \circ f \Longrightarrow g = h$.
- And of course for posemigroups also, $f:(S, \leq_S) \longrightarrow (T, \leq_T)$ is an epimorphism iff $\widehat{dom}_T(\operatorname{Im} f) = (T, \leq_T)$.

• **Proposition** Let $\mathcal V$ be a variety of absolutely closed semigroups. Let $\mathcal V'$ be the variety of posemigroups obtained by equipping members of $\mathcal V$ with all or some of their compatible orders. Then a posemigroup homomorphism f is epi in $\mathcal V$ iff it is such in $\mathcal V'$.

Question Given that $f: S \longrightarrow T$ is not epi in a class C of semigroups (where C is different from the varieties of Higgins' theorem), how (and when) can we find \leq_S and \leq_T so that $f: (S, \leq_S) \longrightarrow (T, \leq_T)$ is an epimorphism of posemigroups?

Acknowledgement and References

This talk was based on my recent work with Dr. Lauri Tart and on the following articles.

- [1] Sohail Nasir: Zigzag theorem for partially ordered monoids. To appear in Comm. Algebra.
- [2] Sohail Nasir: Absolute closure for pomonoids. Submitted.

I am also thankful to Professor Ross Willard for his valuable suggestions.

THANK YOU