Année Universitaire 2010-2011 1ère Année **Durée : 1h30.**

Devoir Surveillé Méthodes d'estimation

Exercice 1 Soit X une v.a. de loi Bernoulli de paramètre $\theta \in]0,1[$. On pose $\eta = \ln \frac{\theta}{1-\theta}$. Montrer, en reparamétrisant la loi de X par η , que cette loi appartient à une famille exponentielle canonique à un paramètre.

Exercice 2 Soit $\theta \in \mathbb{R}_+^*$ et une fonction $\phi :]\theta, \theta + 1[\to \mathbb{R}_+^*$ telle que $\int_{\theta}^{\theta+1} \phi(x) dx < \infty$. On considère un échantillon $\underline{X} = (X_1, \dots, X_n)$ issu d'une loi de probabilité de densité

$$f(x, \theta) = c(\theta)\phi(x) \mathbb{1}_{\theta,\theta+1}(x)$$

$$où c(\theta) = \left(\int_{\theta}^{\theta+1} \phi(x)dx\right)^{-1}.$$

Partie I (a) Calculer la fonction vraisemblance.

(b) En déduire l'expression d'une statistique exhaustive.

Partie II Dans cette partie, $\phi(x) = 1$ pour tout $x \in]\theta, \theta + 1[$.

- (a) Donner dans ce cas l'expression d'une statistique exhaustive qu'on désignera par T.
- (b) Montrer qu'il existe une application ψ non nulle telle que $E_{\theta}(\psi(T)) = 0$ pour tout $\theta > 0$.
- (c) T est-elle complète?

Exercice 3 Soit $\underline{X} = (X_1, \dots, X_n)$ un n-échantillon de loi de Poisson de paramètre $\theta > 0$. On considère \overline{X}_n la moyenne empirique associée à $\underline{X} = (X_1, \dots, X_n)$.

- 1. Montrer que la loi du modèle appartient à une famille exponentielle.
- 2. Calculer la fonction vraisemblance.
- 3. Calculer $E(n\overline{X}_n)^{1}$.
- 4. En déduire l'expression de l'EMV.
- 5. Retrouver le résultat de la question précédente en utilisant la fonction vraisemblance.

Exercice 4 Soit $\underline{X} = (X_1, \dots, X_n)$ un n-échantillon d'un variable aléatoire X de loi exponentielle de paramètre $1 + \theta$ où $\theta > 0$.

- 1. $Calculer^2 E(X^2)$.
- 2. En déduire, en utilisant la méthode des moments et la question précédente, un estimateur par la méthode des moments de θ .
- $3. \ (Facultatif) \ Quelle \ est \ la \ loi \ asymptotique \ de \ la \ loi \ de \ l'estimateur \ calcul\'e \ \grave{a} \ la \ question \ pr\'ec\'edente.$

^{1.} On admet que si X et Y sont deux v.a. indépendantes de lois de Poisson respectivement de paramètre μ et λ , alors X+Y est aussi de loi de Poisson $\mu+\lambda$

^{2.} Rappelons que $\int_0^\infty x^n e^{-x} dx = n!, \ \forall n \in \mathbb{N}.$

Corrigé de l'exercice 1
$$X \rightsquigarrow b(\theta)$$
 $\theta \in]0,1[$.

$$\eta = \ln \frac{\theta}{1 - \theta}.$$

$$P[X = x] = \theta^{x} (1 - \theta)^{1 - x} \mathbb{1}_{\{0,1\}} (x) \theta^{x} (1 - \theta)^{1 - x}$$

$$\mathcal{L}(\underline{x}, \theta) = \theta^{i=1} x_{i} \qquad n-\sum_{i=1}^{n} x_{i}$$

$$= \exp\left(\ln \theta \cdot \sum_{i=1}^{n} x_{i} + \ln (1-\theta) \cdot \left(n - \sum_{i=1}^{n} x_{i}\right)\right) \mathbb{1}_{\{0,1\}^{n}}(\underline{x})$$

$$= \exp\left(\ln \frac{\theta}{1-\theta} \sum_{i=1}^{n} x_{i} + n \ln (1-\theta)\right) \mathbb{1}_{\{0,1\}^{n}}(\underline{x})$$

$$= \exp\left(\eta \sum_{i=1}^{n} x_{i} + n \ln \left(\frac{\exp \eta}{1 + \exp \eta}\right)\right) \mathbb{1}_{\{0,1\}^{n}}(\underline{x})$$

Il s'agit d'une famille exponentielle à un paramètre sous forme canonique avec $T(\underline{X}) = \sum_{i=1}^{n} X_i$ $d(\eta) = \sum_{i=1}^{n} X_i$

$$n \ln \left(\frac{\exp \eta}{1 + \exp \eta} \right)$$
 $S(\underline{X}) = 0$ et $A = \{0, 1\}^n$ $indépendant de η .$

Corrigé de l'exercice
$$2 \theta > 0$$
 $\phi:]\theta, \theta + 1[\to \mathbb{R}^*_+ \int_{\theta}^{\theta+1} \phi(x) dx < \infty$ $f(x, \theta) = c(\theta)\phi(x)\mathbbm{1}_{]\theta, \theta+1[}(x)$ $où c(\theta) = \left(\int_{-1}^{\theta+1} \phi(x) dx\right)^{-1}$

Partie I (a)
$$\mathcal{L}(\underline{x}, \theta) = (c(\theta))^n \prod_{i=1}^n \phi(x_i) \mathbb{1}_{\{\min x_i > \theta\}} \mathbb{1}_{\{\max x_i < \theta + 1\}}$$
(b)

$$\mathcal{L}\left(\underline{x},\theta\right) = \left(c(\theta)\right)^n \prod_{i=1}^n \phi(x_i) \mathbb{1}_{\{\min x_i > \theta\}} \mathbb{1}_{\{\max x_i < \theta + 1\}} = g\left(T\left(\underline{x}\right),\theta\right) \cdot 1$$

Ainsi, d'après le théorème de factorisation, la statistique $T(\underline{X}) = (\min X_i, \max X_i)$ est une statistique exhaustive.

Partie II $\phi(x) = 1$ pour tout $x \in]\theta, \theta + 1[$.

On a alors
$$f(x, \theta) = c(\theta) \mathbb{1}_{]\theta, \theta+1[}(x) = \left(\int_{\theta}^{\theta+1} dx \right)^{-1} \mathbb{1}_{]\theta, \theta+1[}(x) = \mathbb{1}_{]\theta, \theta+1[}(x)$$

 $X \leadsto \mathcal{U}_{]\theta,\theta+1[}$

(a) $\mathcal{L}(\underline{x}, \theta) = \mathbb{1}_{\{\min x_i > \theta\}} \mathbb{1}_{\{\max x_i < \theta + 1\}}$ $T = T(X) = (\min X_i, \max X_i)$ est une statistique exhaustive pour le modèle.

(b) Considérons l'application $\psi : (a,b) \longmapsto b-a$ Soit la variable aléatoire Z définie par $Z = X - \theta$ $Z \leadsto \mathcal{U}_{0.0+1}$. La loi de Z est indépendante de θ .

Considérons maintenant l'application $\psi:(a,b)\longmapsto b-a$

 $\psi(T) = \max X_i - \min X_i = \max Z_i - \min Z_i.$

(c) On a alors $E_{\theta}(\psi(T)) = 0$ pour tout $\theta > 0$

T n'est donc pas complète puisque $E_{\theta}(\psi(T)) = 0$ pour tout $\theta > 0$ et ψ n'est pas l'application nulle.

Corrigé de l'exercice 3 $X \rightsquigarrow \mathcal{P}(\theta)$ $\theta >$

1.
$$f(x, \theta) = P[X = x] = \frac{\theta^{x_i}}{x_i!} \exp{-\theta} \ \mathbb{1}_{\mathbb{N}}(x)$$

$$f(x,\theta) = \exp(\ln \theta \cdot x - \theta - \ln(x!)) \mathbb{1}_{\mathbb{N}}(x)$$

Il s'agit bien d'une famille exponentielle à un paramètre avec t(x) = x $c(\theta) = \ln \theta$ $\delta(\theta) = -\theta$ $S(\underline{X}) = 0$ et $A = \mathbb{N}$ indépendant de θ .

2.
$$\mathcal{L}(\underline{x}, \theta) = \prod_{i=1}^{n} f(x_i, \theta) = \exp\left(\ln \theta \cdot \sum_{i=1}^{n} x_i - n\theta - \sum_{i=1}^{n} \ln(x_i!)\right) \mathbb{1}_{\mathbb{N}^n}(\underline{x})$$

3.
$$E(n\overline{X}_n) = E\left(\sum_{i=1}^n X_i\right) = n\theta$$

4. Le modèle appartient à la famille exponentielle. $\Theta = \mathbb{R}_+^*$ est un ouvert. $T(\underline{X}) = \sum_{i=1}^n X_i$ est la statistique exhaustive. $c: \theta \longmapsto \ln \theta$ est injective et de classe C^2 et $d: \theta \longmapsto -n\theta$ est aussi de classe C^2 .

 $E(T(\underline{X})) = T(\underline{x}) \iff n\theta = \sum_{i=1}^{n} x_i \implies \widehat{\theta} = \overline{X}_n \text{ est l'estimateur du maximum de vraisemblance.}$

5.
$$l(\underline{x}, \theta) = \left(\ln \theta \cdot \sum_{i=1}^{n} x_i - n\theta - \sum_{i=1}^{n} \ln(x_i!)\right) \quad \mathbb{1}_{\mathbb{N}^n}(\underline{x})$$

$$\begin{cases} \frac{\partial l(\underline{x}, \theta)}{\partial \theta} = 0 \\ \frac{\partial^2 l(\underline{x}, \theta)}{\partial \theta^2} < 0 \end{cases} \iff \begin{cases} \frac{1}{\theta} \sum_{i=1}^{n} x_i - n = 0 \\ -\frac{1}{\theta^2} < 0 \end{cases} \iff \begin{cases} \theta = \frac{1}{n} \sum_{i=1}^{n} x_i \\ -\frac{1}{\theta^2} < 0 \end{cases}$$

On retrouve le même résultat.

Corrigé de l'exercice 4 $X \leadsto \mathcal{E}(1+\theta)$ $\theta > 0$.

1.
$$f(x,\theta) = \frac{1}{1+\theta} \exp - (1+\theta) x \mathbb{1}_{\{x>0\}}$$

$$E(X^2) = \int_0^{+\infty} \frac{x^2}{1+\theta} \exp(-(1+\theta)x) dx$$

Posons $u = (1 + \theta) x \Longrightarrow du = (1 + \theta) dx$

$$E(X^2) = \int_0^{+\infty} \frac{u^2}{(1+\theta)^4} \exp{-u} \ du = \frac{2!}{(1+\theta)^4} = \frac{2}{(1+\theta)^4}$$

2.
$$\phi(\theta) = \int_0^{+\infty} g(x) P(dx)$$
 avec $\phi: \theta \longmapsto \frac{2}{(1+\theta)^4}$ et $g: x \longmapsto x^2$

 ϕ est injective sur son ensemble image.

$$\theta = \phi^{-1} \left(\int_0^{+\infty} x^2 P(dx) \right)$$

$$\phi^{-1}(y) = \frac{2}{\sqrt[4]{y}} - 1$$

$$\theta = \frac{2}{\sqrt[4]{\int_0^{+\infty} x^2 P(dx)}} - 1 = \frac{2}{\sqrt[4]{E(X^2)}} - 1 = \frac{2}{\sqrt[4]{m_2}} - 1$$

Conclusion
$$\widehat{\theta} = \frac{2}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} X_i^2}} - 1$$

3. $\widehat{\theta}$ est un estimateur prior la méthode des moments et $\theta = h(m_2) = 2m_2^{-\frac{1}{4}} - 1$

 $h: m_2 \longmapsto \frac{2}{\sqrt[4]{m_2}} - 1$ h est au moins de classe \mathcal{C}^1 . $\widehat{\theta}$ est donc asymptotiquement normal et converge en loi vers $\mathcal{N}(\theta, \sigma_h^2)$ avec

$$\sigma_{h}^{2} = Var\left(\frac{\partial h\left(\theta\right)}{\partial m_{2}}X_{1}^{2}\right) = Var\left(-\frac{1}{2}m_{2}^{-\frac{5}{4}}X_{1}^{2}\right) = \frac{1}{4}m_{2}^{-\frac{5}{2}}Var\left(X^{2}\right)$$