

DATASHEET

Серия MDV

MDV1000

Универсальные компактные DC/DC преобразователи

Описание

Сверхминиатюрные изолированные DC/DC модули электропитания

MDV для промышленной аппаратуры. При небольших габаритах ($168 \times 110 \times 16$ мм) максимальная выходная мощность модулей достигает 1000 Вт. При этом модули способны работать в широком диапазоне температур корпуса (до -60...+125°C).

Модули могут включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току, короткого замыкания, перегрева, могут включаться параллельно и последовательно по выходам. Отсутствие в схеме преобразователя оптронов позволяет модулю надежно функционировать в условиях воздействия ионизирующих излучений и высокой температуры в течение всего срока эксплуатации изделий.

Полимерная герметизирующая заливка обеспечивает надежную защиту от внешних воздействующих факторов и исключает повреждения преобразователя, вызванные вибрацией или попаданием грязи, влаги или соляного тумана.

Модули проходят специальные виды температурных и предельных испытаний, в том числе электротермотренировку с экстремальными режимами включения и выключения.

Особенности

- Гарантия 5 лет
- Выходной ток до 40 А
- Низкопрофильная 16 мм конструкция с цилиндрическими выводами
- Рабочая температура корпуса -60...+125°C
- Магнитная обратная связь без оптронов
- Защита от КЗ и перенапряжения, тепловая защита
- Дистанционное вкл/выкл
- Подстройка выходного напряжения
- Типовой КПД 89% при Ивых.=24 В
- Полимерная герметизирующая заливка

Соответствие стандартам

• Климатическое исполнение «В» по ГОСТ 15150

• Электромагнитная совместимость EN / ГОСТ 55022 / CISPR 22

• Стойкость к ВВФ 3У по ГОСТ 15150 • Проциости карлации

Прочность изоляции ГОСТ 12997Сопротивление изоляции ГОСТ 12997

■ Контроль стойкости к ВВФ
 ГОСТ 20.57.406, ГОСТ 20.57.416

• Надежность ГОСТ 25359

Описание серии MDV на сайте производителя: www.aedon.ru/catalog/dcdc/series/22

Отдел продаж 8 800 333 81 43

Техническая поддержка techsup@aedon.ru

3D модели

www.aedon.ru/content/catalog/docs/207/MDM1000V.zip

Информация для заказа

Для получения дополнительной информации обратитесь в отдел продаж

8 800 333 81 43 mail@aedon.ru

Выходная мощность и ток

Модель	MDV1000					
Мощность, Вт	960	1000				
Выходное напряжение, В	24	28	48			
Макс. выходной ток, А	40	35,7	20,8			

Индекс номинального входного напряжения*

Параметр	Индекс "V"	Индекс "D"
Номинальное входное напряжение, В	28	48
Диапазон входного напряжения, В	1736	3675
Переходное напряжение (1 с), В	1780	3684
Типовой КПД для Ивых.=24 В	88%	89%

^{*} Пульсации входного тока (10-10000 Гц) — 8% Uвх. ном.

Основные характеристики

Все характеристики приведены для НКУ, Uвх.ном., Iвых.ном., если не указано иначе. Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т. п.) приведена в технических условиях, а также в руководящих технических материалах на сайте www.aedon.ru в разделе «Документация».

Выходные характеристики

Параметр	Значение		
Подстройка выходного напряжения в однокан	альных модулях	5% Ивых. ном.	
Нестабильность выходного напряжения	При изменении входного напряжения (Uвх.минUвх.макс.)	макс ±2% Ивых. ном.	
	При изменении тока нагрузки (0,11ном1ном.)		
	Суммарная нестабильность	±6% Uвых. ном.	
Размах пульсаций (пик-пик)		<2% Uвых. ном.	
Максимальная ёмкость нагрузки 24 B 48 B		470 мкФ 220 мкФ	
Время включения (по команде)		<0,1 c	
Уровень срабатывания защиты от перегрузки*		<1,8 Рмакс.	
Защита от короткого замыкания*		автоматическое восстановление	
Защита от перенапряжения на выходе		1,5 Uном. для всех MDV	

^{*} Параметры являются справочными и не могут быть использованы при долговременной работе, превышении максимального выходного тока, при работе вне диапазона рабочих температур, при работе модуля с выходными напряжениями сверх диапазона регулировки.

Общие характеристики

Параметр		Значение	
Температура корпуса	Рабочая (естественная конвекция) — снижение мощности (естественная конвекция) — без снижения мощности с радиатором	-60+125 °C смотри график снижения мощности (пунктирная, штрихпунктирная кривая) смотри график снижения мощности (сплошная кривая)	
	Хранения	-60+125 °C	
Частота преобразования		130–150 κΓιμ	
Ёмкость изоляции (10 кГц)	вход/выход	1500 пФ	
Прочность изоляции (60 с)	вход/выход, вход/корпус, выход/корпус	~500 B	
Сопротивление изоляции @ =500 B	вход/выход, вход/корпус, выход/корпус	20 Мом	
Тепловое сопротивление корпуса	2,7 °C/Bτ		
Температура срабатывания тепловой защиты	118125 °C, защелкивание с автовосстановлением		
Дистанционное вкл/выкл	Выкл.: соединение выводов ВКЛ и −ВХ, I≤5 мА		
Устойчивость к вибрации, пыли и соляному туман	+		
Устойчивость к влаге (Токр.=25°C)	98%		
Типовой MTBF	2 000 000 ч		
Норма отказов	<0,05%		
Срок гарантии	5 лет		

Datasheet на MDV1000

Основные характеристики (продолжение)

Конструктивные параметры

Параметр	Значение
Материал корпуса	алюминий
Материал компаунда	эпоксидный
Материал выводов	оловянная бронза
Macca	не более 690 г
Температура пайки	260 °C @ 5 c

Топология

Рис. 1. Топология MDV1000.

Сервисные функции

Схемы подключения

Рис. 2. Типовая схема подключения для одноканального модуля.

ГОСТ 30429-96 кривая «3»	L1	синфазный дроссель		0,7 мГн			
	C3	керамический конденсатор	Входное напряжение	=28 B =48 B	4701000 мкФ 100220 мкФ		
ГОСТ 30429-96 кривая «2»	Модуль фильтра	модуль фильтрации серии М	Максимальный ток до 20 А, защита от перенапряжения и выбросов, вносимое затухание до 60 дБ.				
C1, C2, C6, C7		керамический конденсатор			1004700 пФ =500 В мин.		
C4		танталовый конденсатор	Входное =28 В напряжение =48 В		470–1000 мкФ 50 В 100–220 мкФ 100 В		
C5		танталовый конденсатор	Выходное =24 В напряжение =28 В =48 В		100 мкФ 47 мкФ 47 мкФ		

Datasheet на MDV1000

Сервисные функции (продолжение)

Дистанционное управление

Функция дистанционного ВКЛ/ВЫКЛ по команде позволяет управлять работой модуля с использованием механического реле (а), транзистора типа «разомкнутый коллектор» (б) или оптрона (в).

Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «-ВХ». При этом через ключ может протекать ток до 5 мА, а максимальное падение напряжения на ключе должно быть не более 1,1 В.

Включение модуля электропитания осуществляется размыканием ключа за время не более 5 мкс. В разомкнутом состоянии к ключу приложено напряжение около 5 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации дистанционного включения-выключения одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «-ВХ» и коммутирующий ключ.

Если функция дистанционного ВКЛ/ВЫКЛ не используется, вывод «ВКЛ» допускается оставить неподключенным или выкусить.

Рис. 3 (а). ВКЛ/ВЫКЛ с помощью реле.

Рис. 3 (6). ВКЛ/ВЫКЛ с помощью биполярного транзистора.

Рис. 3 (в). ВКЛ/ВЫКЛ с помощью оптрона.

Регулировка

Регулировка выходного напряжения модулей электропитания в диапазоне не менее ±5%, имеющим вывод «РЕГ», может осуществляться, например, путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения (a) или к выводу «+ВЫХ» для уменьшения выходного напряжения (б).

При использовании потенциометра R2 и внешних ограничивающих резисторов (R1, R3) возможно реализовать регулировку как в сторону увеличения, так и в сторону уменьшения (в).

В случае необходимости управления выходным напряжением модуля электропитания сигналом внешнего источника тока или напряжения, например, в микроконтроллерных автоматизированных системах управления с помощью сигнала ЦАП. внешний сигнал тока или напряжения необходимо подавать на вывод регулировки относительно вывод «-BЫХ», в соответствии с рисунками (г) и (д).

Номинал элементов цепи (а, б, в), величины тока (г) и напряжения (д) определяются эмпирически или расчетным способом, указанным в руководящих технических материалах на сайте www.aedon.ru.

Преобразователь

Рис 4 (а). Регулировка увеличением Ивых.

Преобразователь

Рис 4 (б). Регулировка снижением Ивых.

Преобразователь

Рис 4 (в). Регулировка потенциометром.

Преобразователь

Рис 4 (г). Регулировка источником тока.

Преобразователь

Рис 4 (д). Регулировка источником напряжения.

КПД

Зависимость КПД от нагрузки

Рис. 5. КПД MDV1000-1V28.

Снижение мощности в зависимости от температуры окружающей среды

Спадающие участки пунктирной и штрихпунктирной кривых соответствуют максимальной температуре корпуса. Выходная мощность модуля не должна превышать значений, ограниченных соответствующей кривой при заданной температуре окружающей среды.

Рис. 6. Тепловая кривая MDV1000.

Осциллограммы

Режимы и условия испытаний: Uвх.=28 B, Івых.=30 A, Uвых.=24 B, Свых.=100 мкФ, Токр.=25°C

Рис. 7 (а). Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка t=20 мс/дел.

Рис. 7 (б). Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий)— входное напряжение. Масштаб 20 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 20 В/дел. Развертка t=20 мс/дел.

Рис. 7 (в). Осциллограмма пульсаций выходного напряжения.

Масштаб 100 мВ/дел. Развертка 1 мкс/дел.

Метод измерения: см. БКЯЮ.436630.002 ЭВ ТУ.

Рис. 7 (г). Осцилограмма переходного отклонения выходного напряжения при изменении выходного тока.

Масштаб 2 В/дел.

Развертка t=20 мс/дел.

Диапазон изменения тока (10...100%) Іном.

Длительность фронта 500 мкс.

Габаритные схемы

Исполнение в усиленном корпусе с фланцами

Рис. 8. Модель с одним выходом.

Назначение выводов

Вывод #	1	2, 3, 19	4, 5, 20	6	7	8	9, 10, 11	12, 13, 14	15	16	17	18
Назначение	ВКЛ	-BX	+BX	КОРП	ДИАГ	+OC	+ВЫХ	-ВЫХ	-OC	УПР	ПАРАЛ	НЕ УСТ

Аксессуары

Радиатор охлаждения

Рис. 9. Радиатор охлаждения с продольными ребрами 168×125×45×6 мм (A×B×H×D).

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 8 800 333 81 43 Россия, 129626, Москва, пр-т Мира, 104 +7 499 450 29 05

Даташит распространяется на следующие модели: MDV1000-1V24; MDV1000-1V28; MDV1000-1V48; MDV1000-1D24; MDV1000-1D28; MDV1000-1D48.