Erasmus School of Economics

Machine Learning

FEM31002

Introduction

Part 2

Ilker Birbil

birbil@ese.eur.nl

$$Y = f(X) + \epsilon$$
 approximation? $\hat{Y} = \hat{f}(X)$

Training Mean Square Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

 (x_0, y_0) : test data???

$$\mathbb{E}(Y - \hat{Y})^2 = (f(X) - \hat{f}(X))^2 + \operatorname{Var}(\epsilon)$$

overfitting

Zafus erasmus universiteit rotterdam

(source)

Expected **test** MSE:

$$\mathbb{E}(y_{0} - \hat{f}(x_{0}))^{2} = \mathbb{E}\left(\left(f(x_{0}) + \epsilon - \hat{f}(x_{0})\right)^{2}\right)$$

$$= \mathbb{E}\left(\left(f(x_{0})\right)^{2} + 2\epsilon f(x_{0}) + \epsilon^{2} - 2(f(x_{0}) + \epsilon)\hat{f}(x_{0}) + (\hat{f}(x_{0}))^{2}\right)$$

$$= \mathbb{E}\left(\left(f(x_{0})\right)^{2}\right) + 2\mathbb{E}\left(\epsilon f(x_{0})\right) - 2\mathbb{E}\left(f(x_{0})\hat{f}(x_{0})\right) + \mathbb{E}\left(\left(\hat{f}(x_{0})\right)^{2}\right) + \text{Var}(\epsilon)$$

$$= (f(x_{0}))^{2} - 2f(x_{0})\mathbb{E}\left(\hat{f}(x_{0})\right) + \mathbb{E}\left(\left(\hat{f}(x_{0})\right)^{2}\right) + \text{Var}(\epsilon) + \mathbb{E}\left(\hat{f}(x_{0})\right)^{2} - \mathbb{E}\left(\hat{f}(x_{0})\right)^{2}$$

$$= \mathbb{E}\left(\left(\hat{f}(x_{0})\right)^{2}\right) - \mathbb{E}\left(\hat{f}(x_{0})\right)^{2} + \left(\mathbb{E}(\hat{f}(x_{0})) - f(x_{0})\right)^{2} + \text{Var}(\epsilon)$$
variance bias

erasmus universiteit rotterdam

Expected **test** MSE:

$$\mathbb{E}(y_0 - \hat{f}(x_0))^2 = \dots$$

$$= \mathbb{E}\big((\hat{f}(x_0))^2\big) - \mathbb{E}\big(\hat{f}(x_0)\big)^2 + \big(\mathbb{E}(\hat{f}(x_0)) - f(x_0)\big)^2 + \operatorname{Var}(\epsilon)$$

$$= \operatorname{Var}(\hat{f}(x_0)) + \big(\operatorname{Bias}(\hat{f}(x_0))\big)^2 + \operatorname{Var}(\epsilon)$$

Roughly:

Variance 1

Bias \

Mean Squared Error

$$\mathbb{E}(y_0 - \hat{f}(x_0))^2 = \frac{\operatorname{Var}(\hat{f}(x_0)) + \left(\operatorname{Bias}(\hat{f}(x_0))\right)^2 + \operatorname{Var}(\epsilon)}{2}$$

(source)

2 afus ERASMUS UNIVERSITEIT ROTTERDAM

CLASSIFICATION

training data

$$\{(x_i,y_i):1,\ldots,n\}$$

Training Error Rate

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

 (x_0, y_0) : test data???

Confusion Matrix

		Predicted Class		
		-	+	Total
True Class	-	True Negative (TN)	False Positive (FP)	N
	+	False Negative (FN)	True Positive (TP)	P
	Total	N*	P*	

		Predicted Class		
		-	+	Total
True Class	-	TN	FP	N
	+	FN	TP	P
Class	Total	N*	P*	

Name	Defn.	Synonyms
False Positive Rate	FP/N	type I error, (1-specificity)
True Positive Rate	TP/P	(1-type II error), power, sensitivity, recall
Positive Pred. Value	TP/P*	precision, (1-false discovery proportion)
Negative Pred. Value	TN/N*	

K – Nearest Neighbors

2 afus erasmus universiteit rotterdam

$$K = 1$$

$$K = 100$$

 X_1

Voronoi Tessellation

Regression

X, Y random: f(X) = ?

$$\mathbb{E}((Y - f(X))^{2}) = \mathbb{E}(\mathbb{E}((Y - f(X))^{2} \mid X))$$

$$f(x) = \arg\min_{u} \underbrace{\mathbb{E}((Y - u)^{2} \mid X = x)}_{h(u)}$$

$$\frac{\partial h(u)}{\partial u} = 2u - 2\mathbb{E}(Y \mid X = x) = 0 \implies f(x) = \mathbb{E}(Y \mid X = x)$$

$$f(x_{0}) = \mathbb{E}(Y \mid X = x_{0})$$

$$\hat{f}(x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} y_i$$

K-NN approximation to regression

erasmus universiteit rotterdam

Classification

X, Y random: $\hat{Y}(X) = ?$

$$\mathbb{E}(I(Y \neq \hat{Y}(X))) = \mathbb{E}(\mathbb{E}(I(Y \neq \hat{Y}(X)) \mid X))$$

$$\hat{Y}(x) = \arg\min_{j} \ \mathbb{E}(I(Y \neq j) \mid X = x)$$

$$= \arg\min_{j} \ \sum_{k} I(k \neq j) \mathbb{P}(Y = k | X = x)$$

$$= \arg\min_{j} \ (1 - \mathbb{P}(Y = j | X = x))$$

$$= \arg\max_{j} \ \mathbb{P}(Y = j | X = x)$$

2 afus ERASMUS UNIVERSITEIT ROTTERDAM

Bayes Classifier

(source)

$$\hat{y}_0 = \arg\max_j \ \mathbb{P}(Y = j | X = x_0)$$

Bayes Error Rate

$$\mathbb{E}\left(1 - \max_{j} \ \mathbb{P}(Y = j|X)\right) = 1 - \mathbb{E}\left(\max_{j} \ \mathbb{P}(Y = j|X)\right)$$

