Notes: Anwani 10/2018

Kenneth Haynie, Jr2019-02-03

3 Spiking Neurons

3.1 Synapse

$$i(t) = w\alpha(t - t^f) \tag{1}$$

- i(t): analog current signal received by post-synaptic neuron; linear and time-invariant
- $w\alpha(t)$: transfer function
- w:
 - synaptic weight representing conductance across a synapse connecting two neurons
 - also known as the scaling factor
 - varies from synapse to synapse
 - can be positive or negative depending on "which the synapse is said to be excitatory or inhibitory respectively"
- $\alpha(t)$: post-synaptic current kernel; independent of synapse
- t^f : time at which pre-synaptic neuron issues a spike; firing time
- assume synaptic currents are independent of membrane or reversal potential of post-synaptic neuron

$$\alpha(t) = \left[\exp(-t/\tau_1) - \exp(-t/\tau_2)\right] u(t) \tag{2}$$

- $\tau_1 > \tau_2$
- τ_1 and τ_2 : unspecified in document
- u(t): Heaviside function; models the incoming spike

$$c_i(t) = \sum_f \alpha(t - t_f^i) = \sum_i \delta(t - t_f^i) * [e^{-t/\tau_1} - e^{-t/\tau_2}]$$
 (3)

- ullet i: represents specific synapse
- \bullet $t_f^i \colon$ $(most\ likely)$ pre-synaptic firing time of individual spikes across the specified synapse
- *t*: