D13 ¶

In [1]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset
 df

Out[2]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blc Press
-) 1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125
2	2 3	Male	28	Doctor	6.2	6	60	8	Normal	125
3	3 4	Male	28	Sales Representative	5.9	4	30	8	Obese	140
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140
372	2 373	Female	59	Nurse	8.1	9	75	3	Overweight	140
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140
374	rows × 1;	3 column	s							

374 rows × 13 columns

In [3]: df.head(10)

Out[3]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/8
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	140/90
6	7	Male	29	Teacher	6.3	6	40	7	Obese	140/90
7	8	Male	29	Doctor	7.8	7	75	6	Normal	120/8(
8	9	Male	29	Doctor	7.8	7	75	6	Normal	120/8(
9	10	Male	29	Doctor	7.8	7	75	6	Normal	120/8(
4										•

In [4]: | df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373
Data columns (total 13 columns):

	\	,	
#	Column	Non-Null Count	Dtype
0	Person ID	374 non-null	int64
1	Gender	374 non-null	object
2	Age	374 non-null	int64
3	Occupation	374 non-null	object
4	Sleep Duration	374 non-null	float64
5	Quality of Sleep	374 non-null	int64
6	Physical Activity Level	374 non-null	int64
7	Stress Level	374 non-null	int64
8	BMI Category	374 non-null	object
9	Blood Pressure	374 non-null	object
10	Heart Rate	374 non-null	int64
11	Daily Steps	374 non-null	int64
12	Sleep Disorder	374 non-null	object

dtypes: float64(1), int64(7), object(5)

memory usage: 38.1+ KB

```
In [5]: df.describe()
```

Out[5]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Da
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	37
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	681
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	161
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	300
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	560
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	700
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	800
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	1000

```
In [6]: df.columns
```

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x29bc7cc7880>


```
In [8]: sns.distplot(df["Heart Rate"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Heart Rate', ylabel='Density'>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>


```
In [14]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [15]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[15]: LinearRegression()

```
In [16]: print(lr.intercept_)
```

62.1764893326392

```
In [17]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[17]:

	00-emclent
Person ID	-0.039314
Age	0.544544
Sleep Duration	0.037423
Quality of Sleep	-1.483060
Physical Activity Level	0.143170
Stress Level	1.181992
Daily Steps	-0.001742

```
In [18]: prediction=lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x29bd106c7c0>

Co-efficient


```
In [19]: print(lr.score(x_test,y_test))
```

0.7370726621562377

```
In [20]: from sklearn.linear_model import Ridge,Lasso
```

```
In [21]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[21]: Ridge(alpha=10)

```
In [22]: rr.score(x_test,y_test)
```

Out[22]: 0.73806387225675

```
In [23]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[23]: Lasso(alpha=10)
In [24]: la.score(x_test,y_test)
Out[24]: 0.11165647371768561
In []:
```