UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

Tjaša Vrhovnik Fareyevo zaporedje in Riemannova hipoteza

Delo diplomskega seminarja

Mentor: izr. prof. dr. Aleš Vavpetič

Kazalo

1. Uvod	4
2. Fareyevo zaporedje	4
2.1. Zgodovina Fareyevega zaporedja	4
2.2. O Fareyevem zaporedju	6
2.3. Dolžina Fareyevega zaporedja	8
3. Fordovi krogi	9
3.1. Fordovi sosedi	11
3.2. Posplošeni Fordovi krogi	14
3.3. Fordove krogle	14
3.4. Möbiusove transformacije na Fordovih krogih	15
4. Riemannova hipoteza	18
4.1. Praštevila in Riemannova zeta funkcija	18
4.2. Ekvivalentne trditve	21
4.3. Fareyevo zaporedje in Riemannova hipoteza	22
Slovar strokovnih izrazov	28
Literatura	28

Fareyevo zaporedje in Riemannova hipoteza

Povzetek

The Farey Sequence and The Riemann Hypothesis ${\bf ABSTRACT}$

Math. Subj. Class. (2010): 11B57, 11M26, 51N20

Ključne besede: Fareyevo zaporedje, Fordov krog, zeta funkcija, Riemannova

hipoteza

Keywords: Farey sequence, Ford circle, zeta function, Riemann hypothesis

Zgodovina Fareyevega zaporedja sega v London 18. stoletja. Med letoma 1704 in 1841 je izhajal letni zbornik *The Ladies Diary: or, the Woman's Almanack*, ki je povezoval ljubitelje matematičnih ugank. Bralce so namreč nagovarjali k pošiljanju in reševanju aritmetičnih problemov, ki so bili v zborniku objavljeni. Leta 1747 se je pojavilo naslednje vprašanje: Najti je potrebno število ulomkov različnih vrednosti, manjših od 1, katerih imenovalec ni večji od 100. Odziv je bil precejšen, saj so se z iskanjem rešitve ukvarjali tako javnost kot pomembni matematiki tiste dobe. To je vodilo v razvoj Fareyevega zaporedja, ki ima nekaj presenetljivih lastnosti in uporabo na različnih področjih matematike.

Delo diplomskega seminarja je sestavljeno iz treh večjih enot. V prvi bomo predstavili zgodovinski pregled, definicijo, lastnosti in ocenili dolžino Fareyevega zaporedja. V drugem razdelku se bomo posvetili geometrijski interpretaciji zaporedja – Fordovim krogom – in opazili, da imajo lastnosti zaporedja tudi geometrijski pomen. Navedli bomo nekaj posplošitev Fordovih krogov ter si ogledali njihovo predstavitev z uporabo algebre in kompleksne analize. V zadnjem delu bomo obravnavali znamenit matematični problem, Riemannovo hipotezo. Opisali bomo povezavo Riemannove hipoteze s Fareyevim zaporedjem in dokazali njeno ekvivalenčno trditev.

2. Fareyevo zaporedje

2.1. **Zgodovina Fareyevega zaporedja.** Vrnimo se k v uvodu omenjeni nalogi o številu ulomkov različnih vrednosti, manjših od 1, z imenovalci kvečjemu 100. Prvi odgovor na članek je bila tabela ulomkov z imenovalci manjšimi od 10, nato pa še dve tabeli z rezultatoma 3055 in 4851. Leta 1751 je R. Flitcon objavil pravilni odgovor 3003, kateremu je dodal tudi opis postopka. Preden ga razložimo, si oglejmo Eulerjevo funkcijo in njene lastnosti, ki nas bo pripeljala do rešitve.

Definicija 2.1. Preslikava $\varphi \colon \mathbb{N} \to \mathbb{N}$, ki za vsako naravno število n prešteje števila, manjša od n, ki so n tuja, se imenuje $Eulerjeva\ funkcija\ \varphi$.

Trditev 2.2. Če sta k in l tuji si števili, velja $\varphi(kl) = \varphi(k)\varphi(l)$, torej je Eulerjeva funkcija multiplikativna.

Dokaz. V dokazu multiplikativnosti si bomo pomagali z lastnostmi grup. Naj \mathbb{Z}_k^* označuje grupo vseh obrnljivih elementov grupe \mathbb{Z}_k . Vemo, da so obrnljivi elementi grupe \mathbb{Z}_k tista števila iz množice $\{0, 1, \ldots, k-1\}$, ki so tuja k, zato je $|\mathbb{Z}_k^*| = \varphi(k)$. Dobimo zvezi

$$|\mathbb{Z}_{kl}^*| = \varphi(kl),$$

$$|\mathbb{Z}_k^*||\mathbb{Z}_l^*| = \varphi(k)\varphi(l).$$

Znano je, da je preslikava $\psi \colon \mathbb{Z}_{kl}^* \to \mathbb{Z}_k^* \times \mathbb{Z}_l^*$ za tuji naravni števili k in l izomorfizem grup. Ker je moč kartezičnega produkta dveh množic enaka produktu njunih moči, sledi

$$\varphi(kl) = |\mathbb{Z}_{kl}^*| = |\mathbb{Z}_k^*||\mathbb{Z}_l^*| = \varphi(k)\varphi(l),$$

s čimer je multiplikativnost dokazana.

Trditev 2.3. Vrednost Eulerjeve funkcije je enaka

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right),$$

kjer so p prafaktorji števila n.

Dokaz. Zapišimo n kot produkt prafaktorjev, $n = \prod_{i=1}^m p_i^{r_i}$, kjer so $r_i \in \mathbb{N}$ in p_i praštevila. Funkcija $\varphi(p^r)$ prešteje vsa števila, manjša od p^r , ki so tuja p^r . To so natanko tista, ki niso deljiva s praštevilom p. Večkratnikov p med števili $1, 2, \ldots, p^r - 1$ je toliko kot večkratnikov p med števili $1, 2, \ldots, p^r$, teh pa je $\frac{p^r}{p} = p^{r-1}$. Torej je

$$\varphi(p^r) = (p^r - 1) - (p^{r-1} - 1) = p^r - p^{r-1} = p^r \left(1 - \frac{1}{p}\right).$$

Z upoštevanjem multiplikativnosti funkcije φ dobimo

$$\varphi(n) = \varphi\left(\prod_{i=1}^{m} p_i^{r_i}\right) = \prod_{i=1}^{m} \varphi(p_i^{r_i}) = \prod_{i=1}^{m} p_i^{r_i} \left(1 - \frac{1}{p_i}\right)$$
$$= \prod_{i=1}^{m} p_i^{r_i} \times \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right) = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right) = n \prod_{p|n} \left(1 - \frac{1}{p}\right),$$

kar smo želeli dokazati.

Trditev 2.4. Obstajajo 3003 racionalna števila $\frac{p}{q}$, za katera velja $0 < \frac{p}{q} < 1$ ter je $q \le 100$.

Namesto formalnega dokaza trditve bomo predstavili Flitconovo rešitev. Sledili bomo [1, poglavje 1.2]. Naredimo tabelo s tremi stolpci in 99 vrsticami. V prvi stolpec vsake vrstice napišemo po eno izmed naravnih števil od 2 do 100. V drugi stolpec posamezne vrstice zapišemo naravno število iz prvega stolpca kot produkt prafaktorjev, v tretji stolpec pa vrednost $\varphi(n)$. Pomagamo si s trditvama 2.2 in 2.3. Vsota vrednosti v tretjem stolpcu nam da število iskanih ulomkov. Res, vsak $\varphi(n)$ nam pove število okrajšanih ulomkov med 0 in 1 z imenovalcem n, vsota vrednosti Eulerjeve funkcije $\varphi(n)$ za vsa števila n med 2 in 100 pa število vseh okrajšanih ulomkov med 0 in 1 z imenovalci med 2 in 100.

Neodvisno od Flitconove rešitve je francoski matematik Charles Haros leta 1802 sestavil enak seznam ulomkov, vendar na precej bolj zanesljiv način. Haros se dela ni lotil z željo po reševanju aritmetične naloge, pač pa je pisal tabele za pretvarjanje med ulomki in decimalnim zapisom ter obratno. V Franciji so namreč v času revolucije konec 18. stoletja uvajali nov metrični sistem, ki je med drugim zahteval uporabo decimalnega zapisa. Tabele so bile objavljene v časniku Journal de l'Ecole Polytechnique, primerom ter algoritmom za pretvarjanje pa so bile dodane skice dokazov in nekatere lastnosti zaporedja ulomkov, ki so kasneje postali znani pod imenom Fareyevo zaporedje.

Posebej zanimiva je zgodba o pivovarju in ljubiteljskemu matematiku Henryju Goodwynu. Čeprav ni imel formalne izobrazbe, se je navduševal nad znanostjo in tehniko, sestavljal različne tabele in računal, kako izboljšati svoje poslovanje. Po upokojitvi se je vse bolj posvečal matematiki – tako je med letoma 1816 in 1823 objavil več člankov s tabelami okrajšanih ulomkov. Njegovo delo sta opazila znameniti francoski matematik Augustin Louis Cauchy in John Farey, geolog, po komer se obravnavano zaporedje okrajšanih ulomkov imenuje. Vemo, da je Cauchy prispeval nekaj dokazov lastnosti Fareyevega zaporedja, v nasprotju pa ostaja neznano, ali sta Goodwyn in Farey zaporedje in nekatere njegove lastnosti odkrila neodvisno od Harosa, bodisi sta vedela za njegove ugotovitve. Farey je najverjetneje na podlagi

 $^{^1}$ Čeprav Flitcon ne omenja Eulerjeve funkcije φ , je uporabil njene lastnosti v svoji matematično manj formalni metodi.

Goodwynovih tabel maja 1816 v pismu časopisu The Philosophical Magazine and Journal z naslovom On a curious Property of vulgar Fractions predstavil medianto, najpomembnejšo lastnost zaporedja. Ceprav zaporedje morda neupravičeno nosi ime Johna Fareya, pa ne smemo spregledati njegovega prispevka k raziskovanju matematike v glasbi, vzorcev, astronomije in seveda geologije. Zgodovina je povzeta po 4, poglavje 2.

2.2. O Fareyevem zaporedju. Motivacijo za razvoj Fareyevega zaporedja smo si ogledali v prejšnjem razdelku. Sedaj bomo zaporedje korektno definirali in izpeljali njegove lastnosti.

Definicija 2.5. Fareyevo zaporedje reda n oz. n-to Fareyevo zaporedje je množica racionalnih števil $\frac{p}{q}$ urejenih po velikosti, kjer sta p in q tuji si števili, ter velja $0 \le p \le q \le n$. Označimo ga z F_n .

Ekvivalentno, F_n vsebuje vse okrajšane ulomke med 0 in 1 z imenovalci, kvečjemu enakimi n.

Primer 2.6. Poglejmo si prvih nekaj Fareyevih zapredij.

Finder 2.0. Foglef most priviline Raj Pareyevin zapredij.
$$F_1 = \left\{ \frac{0}{1}, \frac{1}{1} \right\},$$

$$F_2 = \left\{ \frac{0}{1}, \frac{1}{2}, \frac{1}{1} \right\},$$

$$F_3 = \left\{ \frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1} \right\},$$

$$F_4 = \left\{ \frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1} \right\},$$

$$F_5 = \left\{ \frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1} \right\}.$$

Opomba 2.7. Če pogoj $0 \le p \le q \le n$ v definiciji 2.5 omilimo v pogoj $0 \le p, q \le n$, okrajšane ulomke z intervala [0,1] razširimo na interval $[0,\infty)$. V primeru, ko za p in q dovoljujemo tudi negativna cela števila, dobimo okrajšane ulomke na celotni realni osi.

V zgornjih primerih opazimo, da za vsaka sosednja člena Fareyevega zaporedja velja naslednje. Ce števec prvega ulomka množimo z imenovalcem drugega in nato vlogi ulomkov zamenjamo, je razlika obeh produktov po absolutni vrednosti enaka 1. To se bo izkazalo za pomembno opazko, zato vpeljemo pojem, ki sledi.

Definicija 2.8. Sosednja člena v Farevevem zaporedju imenujemo Fareveva soseda.

Definicija 2.9. Naj bosta $\frac{a}{b}$ in $\frac{c}{d}$ sosednja člena nekega Fareyevega zaporedja. Člen

$$\frac{a+c}{b+d}$$

imenujemo medianta.

Trditev 2.10. Za medianto okrajšanih ulomkov $\frac{a}{b} < \frac{c}{d}$ velja $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$.

Dokaz. Poračunajmo razliki med členoma

$$\frac{a+c}{b+d} - \frac{a}{b} = \frac{ab+bc-ab-ad}{b(b+d)} = \frac{bc-ad}{b(b+d)} > 0$$

in

$$\frac{c}{d} - \frac{a+c}{b+d} = \frac{bc+cd-ad-cd}{d(b+d)} = \frac{bc-ad}{d(b+d)} > 0.$$

Obe neenakosti sledita iz dejstva, da je $\frac{a}{b} < \frac{c}{d}$, kjer so $a, b, c, d \in \mathbb{N}$, zato je ad < bc. Zveza torej velja.

Kako dobimo člen Fareyevega zaporedja reda (n+1)? Označimo iskani okrajšan ulomek s $\frac{k}{n+1}$. Seveda sta $k, n \in \mathbb{N}, k < n+1$ tuji si števili. Zato obstajata enolično določeni naravni števili a < b, da velja a(n+1) - bk = 1. S preoblikovanjem zadnje enakosti dobimo zvezo a(n+1-b)-b(k-a)=1, kar pomeni, da sta si tudi naravni števili k-a in n+1-b tuji. Brez škode za splošnost naj bo k-a < n+1-b. Zato lahko tvorimo okrajšan ulomek $\frac{k-a}{n+1-b}$, ki pripada nekemu Fareyevemu zaporedju. Prav tako je okrajšan ulomek $\frac{a}{b}$ element nekega Fareyevega zaporedja. Sedaj prepišimo ulomek $\frac{k}{n+1}$ v $\frac{a+(k-a)}{b+(n+1-b)}$, kar pa je medianta ulomkov $\frac{a}{b}$ in $\frac{k-a}{n+1-b}$. Dokazali smo naslednjo lema.

Lema 2.11. Dano naj bo Fareyevo zaporedje. Elemente zaporedja višjega reda dobimo z računanjem mediant elementov danega zaporedja.

Trditev 2.12 (Lastnost Fareyevih sosedov). Naj velja $0 \le \frac{a}{b} < \frac{c}{d} \le 1$. Ulomka $\frac{a}{b}$ in $\frac{c}{d}$ sta Fareyeva soseda v nekem Fareyevem zaporeju natanko tedaj, ko velja bc - ad = 1.

 $Dokaz. \ (\Rightarrow) \ Dokaz \ bo potekal z indukcijo na n. Za \ n=1 \ je \ F_n=\{\frac{0}{1},\frac{1}{1}\},\ bc-ad=1$ $1 \cdot 1 - 0 \cdot 1 = 1$, zato osnovni korak velja. Po indukcijski predpostavki za zaporedje $F_n = \{\dots \frac{a}{b}, \frac{c}{d} \dots\}$ velja bc - ad = 1. Dokažimo, da velja tudi za F_{n+1} . Vemo, da nove člene zaporedja dobimo z računanjem mediant. Če je b+d>n+1, potem $\frac{a+c}{b+d}\notin F_{n+1}$ in je $F_{n+1} = \{\dots \frac{a}{b}, \frac{c}{d} \dots\}$ ter po indukcijski predpostavki bc - ad = 1. Če je b + d < dn+1, je $\frac{a+c}{b+d}$ že nek člen v zaporedju F_n in uporabimo indukcijsko predpostavko. Preostane še možnost b+d=n+1. Po lema 2.11 je edina možnost za člen med elementoma $\frac{a}{b}$ in $\frac{c}{d}$ njuna medianta $\frac{a+c}{b+d}$, ki pa je tudi edini nov člen v opazovanem delu zaporedja. To je zato oblike $F_{n+1} = \{\dots \frac{a}{b}, \frac{a+c}{b+d}, \frac{c}{d}\dots\}$ in b(a+c) - a(b+d) =ba + bc - ab - ad = bc - ad = 1, kjer smo v zadnji enakosti uporabili indukcijsko predpostavko. Podobno je (b+d)c - (a+c)d = bc + dc - ad - cd = bc - ad = 1. Indukcijski korak je s tem končan. Torej sklep velja za vsa Fareyeva zaporedja.

 (\Leftarrow) Obratno, naj bodo $\frac{a}{b}$, $\frac{p}{a}$ in $\frac{c}{d}$ členi poljubnega Fareyevega zaporedja, za katere velja $\frac{a}{b} < \frac{p}{a} < \frac{c}{d}$ in bp - aq = qc - pd = 1. S preureditvijo te enakosti dobimo

$$bp + pd = aq + qc,$$

$$p(b+d) = q(a+c),$$

$$\frac{p}{q} = \frac{a+c}{b+d}.$$

 $\frac{p}{q} = \frac{a+c}{b+d}.$ Vidimo, da je $\frac{p}{q}$ medianta ulomkov $\frac{a}{b}$ in $\frac{c}{d}$, od tod pa sledi, da sta $\frac{a}{b}$ in $\frac{p}{q}$ ter $\frac{p}{q}$ in $\frac{c}{d}$ Fareyeva soseda.

Lema 2.13. Medianta je okrajšan ulomek.

Dokaz. Naj za $\frac{a}{b} < \frac{c}{d}$ velja bc - ad = 1. Dokazati želimo, da je $\frac{a+c}{b+d}$ okrajšan ulomek, z drugimi besedami, da sta si števili a+c in b+d tuji. Če preoblikujemo zgornjo enakost, dobimo

$$1 = bc - ad = ba + bc - ab - ad = b(a + c) - a(b + d),$$

kar pomeni, da b+d in a+c nimata skupnega faktorja. Ulomek $\frac{a+c}{b+d}$ je torej okrajšan.

Opomba 2.14. Medianta $\frac{a+c}{b+d}$ je enolično določena z ulomkoma $\frac{a}{b}$ in $\frac{c}{d}$. To imenujemo lastnost mediante.

2.3. **Dolžina Fareyevega zaporedja.** Flitconova metoda za izračun števila okrajšanih ulomkov nas pripelje do naslednje rekurzivne formule dolžine Fareyevega zaporedja.

Trditev 2.15. Naj bo φ Eulerjeva funkcija. Dolžina Fareyevega zaporedja reda n je

$$|F_n| = |F_{n-1}| + \varphi(n).$$

Opomba 2.16. Z upoštevanjem vrednosti $|F_1| = 2$ iz trditve 2.15 sledi

$$|F_n| = \sum_{i=1}^n \varphi(i) + 1.$$

Trditev 2.17. Asimptotično se dolžina Fareyevega zaporedja obnaša kot

$$|F_n| \sim \frac{3n^2}{\pi^2}.$$

Opomba 2.18. Simbol \sim v trditvi 2.17 označuje asimptotično ekvivalentno obnašanje dveh funkcij. Po definiciji za funkciji f(x) in g(x) velja $f(x) \sim g(x)$ natanko tedaj, ko je $\lim_{x\to\infty}\frac{f(x)}{g(x)}=1$.

Preden dokažemo zgornjo trditev, definirajmo naslednjo oznako in dve funkciji, ki jih bomo v dokazu potrebovali.

Definicija 2.19 (Notacija mali o). Funkcija f pripada razredu o(g), če absolutna vrednost funkcije f raste počasneje od funkcije g, ko gre x proti ∞ .

Natančneje, f(x) = o(g(x)), ko $x \to \infty$, če za vsak $\epsilon > 0$ obstaja vrednost x_0 , da za vsak $x \ge x_0$ velja $|f(x)| \le \epsilon \cdot g(x)$.

Definicija 2.20. Preslikava $\mu \colon \mathbb{N} \to \mathbb{N}$, definirana kot

$$\mu(n) = \left\{ \begin{array}{c} 0 \quad ; \ n \ \text{je deljiv s kvadratom praštevila} \\ (-1)^p \quad ; \ n \ \text{je produkt} \ p \ \text{različnih praštevil,} \end{array} \right.$$

se imenuje Möbiusova² funkcija.

Primer 2.21. Izračunajmo vrednosti Möbiusove funkcije za nekaj naravnih števil.

$$\mu(1) = 1,$$

$$\mu(2) = (-1)^{1} = -1 = \mu(3),$$

$$\mu(4) = \mu(2^{2}) = 0,$$

$$\mu(6) = \mu(2 \cdot 3) = (-1)^{2} = 1,$$

$$\mu(8) = \mu(2 \cdot 2^{2}) = 0,$$

$$\mu(18) = \mu(2 \cdot 3^{2}) = 0.$$

Definicija 2.22. Riemannova zeta funkcija je za $s \in \mathbb{C} \setminus \{1\}$ definirana kot

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

 \Diamond

Sedaj lahko dokažemo trditev 2.17. Dokaz sledi [5, poglavje 18.5, str. 268].

Dokaz. Asimptotično obnašanje bomo izračunali s pomočjo ocene vrednosti vsote $\sum_{i=1}^{n} \varphi(i)$. Spomnimo se, da je

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = n - \sum_{p} \frac{n}{p} + \sum_{p} \frac{n}{pp'} - \cdots,$$

 $^{^{2}}$ August Ferdinand Möbius, 17. 11. 1790 – 26. 9. 1868, nemški matematik in astronom.

kjer so p, p' praštevilski delitelji števila n. Z upoštevanjem Möbiusove funkcije je zadnja vsota enaka

$$\varphi(n) = n \sum_{d|n} \frac{\mu(d)}{d}.$$

Sedaj računajmo vsoto

$$\sum_{i=1}^{n} \varphi(i) = \sum_{i=1}^{n} i \sum_{d|i} \frac{\mu(d)}{d} = \sum_{dd' \leq n} d' \mu(d) = \sum_{d=1}^{n} \mu(d) \sum_{d'=1}^{\left\lfloor \frac{n}{d} \right\rfloor} d'$$

$$= \frac{1}{2} \sum_{d=1}^{n} \mu(d) \left(\left\lfloor \frac{n}{d} \right\rfloor^{2} + \left\lfloor \frac{n}{d} \right\rfloor \right) = \frac{1}{2} \sum_{d=1}^{n} \mu(d) \left(\frac{n^{2}}{d^{2}} + o\left(\frac{n}{d}\right) \right)$$

$$= \frac{1}{2} n^{2} \sum_{d=1}^{n} \frac{\mu(d)}{d^{2}} + o\left(n \sum_{d=1}^{n} \frac{1}{d}\right)$$

$$\stackrel{(1)}{=} \frac{1}{2} n^{2} \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}} - \frac{1}{2} n^{2} \sum_{d=n+1}^{\infty} \frac{\mu(d)}{d^{2}} + o(n \ln n)$$

$$= \frac{1}{2} n^{2} \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}} + o\left(n \sum_{d=n+1}^{\infty} \frac{1}{d^{2}}\right) + o(n \ln n)$$

$$\stackrel{(2)}{=} \frac{n^{2}}{2\zeta(2)} + o(n) + o(n \ln n) \stackrel{(3)}{=} \frac{3n^{2}}{\pi^{2}} + o(n \ln n).$$

V enakosti (1) smo zadnji sumand ocenili navzgor s pomočjo Taylorjevega razvoja funkcije ln kot

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}.$$

V enakosti (2) smo uporabili naslednjo oceno:

$$n^2 \sum_{d=n+1}^{\infty} \frac{1}{d^2} \le n^2 \sum_{d=n+1}^{\infty} \frac{1}{d(d-1)} = n^2 \sum_{d=n+1}^{\infty} \left(-\frac{1}{d} + \frac{1}{d-1} \right) = n^2 \frac{1}{n} = n.$$

V enakosti (3) smo za izračun funkcije $\zeta(2)$ uporabili znano vrednost

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Po opombi 2.16 iz izraza (1) sledi, da je $|F_n| = \frac{3n^2}{\pi^2} + o(n \ln n) \sim \frac{3n^2}{\pi^2}$.

3. Fordovi krogi

V tem poglavju bomo definirali Fordove kroge, ki so tesno povezani s Fareyevim zaporedjem. Večino lastnosti bomo dokazali z uporabo elementarnih geometrijskih sredstev in v analognih trditvah tistim iz prejšnjega poglavja prepoznali geometrijski pomen. Na kratko si bomo ogledali Fordove krogle – Fordove kroge v treh dimenzijah. V zadnjem razdelku bomo z algebraičnim znanjem na drugačen način dokazali eno od lastnosti Fordovih krogov. Ideje poglavja so povzete po [1, poglavje 4] in[3].

Definicija 3.1. Naj bosta p in q tuji si števili v množici celih števil. $Fordov^3$ krog $C(\frac{p}{q})$ je krog v zgornji polravnini, ki se abscisne osi dotika v točki $\frac{p}{q}$, njegov polmer pa meri $\frac{1}{2q^2}$.

Ker so Fordovi krogi definirani za vsak okrajšan ulomek, lahko poljubnemu racionalnemu številu enolično priredimo Fordov krog. Iz analize vemo, da je množica racionalnih števil gosta podmnožica množice realnih števil, abscisna os pa je geometrijska predstavitev le-te. Zato poljubno majhen interval na abscisni osi vsebuje neskončno mnogo dotikališč Fordovih krogov.

Zaradi simetrije je Fordove kroge dovolj obravnavati na intervalu [0, 1], obenem pa se zavedati, da jih lahko induktivno razširimo na celotno realno os.

Opomba 3.2. Iz definicije zaradi pogoja o tujosti števil p in q neposredno sledi, da je množica Fordovih krogov v bijekciji s Fareyevim zapredjem.

Oglejmo si konstrukcijo pravokotnega trikotnika, določenega s parom Fordovih krogov, ki bo ključna pri dokazovanju trditev v tem poglavju. Izberimo okrajšana ulomka $\frac{a}{b}$ in $\frac{c}{d}$, za katera velja $\frac{a}{b} < \frac{c}{d}$, ter jima priredimo ustrezna Fordova kroga. Naj bosta A središče Fordovega kroga $C(\frac{a}{b})$ in B središče Fordovega kroga $C(\frac{c}{d})$. Če je b < d, kar pomeni, da je polmer kroga $C(\frac{a}{b})$ večji od polmera $C(\frac{c}{d})$, točko C določimo kot presečišče navpične premice skozi točko A z vodoravno premico skozi točko B. Sicer je b > d, točka C pa presečišče navpične premice skozi točko B z vodoravno premico skozi točko A. Povežimo središči obeh krogov. Točki D in E naj bosta presečišči daljice AB s Fordovima krogoma $C(\frac{a}{b})$ in $C(\frac{c}{d})$.

Vemo, da se kroga dotikata abscisne osi zaporedoma v točkah $\frac{a}{b}$ in $\frac{c}{d}$, njuna polmera pa merita $\frac{1}{2b^2}$ in $\frac{1}{2d^2}$. Od tod lahko izračunamo razdalje |AB|, |AC| in |BC|. Po konstrukciji je trikotnik ABC pravokoten s pravim kotom v oglišču C, zato velja Pitagorov izrek

(2)
$$|AB|^2 = |AC|^2 + |BC|^2.$$

Opomba 3.3. V konstrukciji smo brez škode za splošnost predpostavili zvezo $\frac{a}{b} < \frac{c}{d}$. Če v splošnem primeru ta ne velja, zamenjamo vlogi ulomkov in postopamo na enak način kot v zgoraj opisanem primeru.

Trditev 3.4. Fordova kroga, ki pripadata različnima okrajšanima ulomkoma, sta bodisi tangentna bodisi disjunktna.

Dokaz. Konstruirajmo pravokotni trikotnik, kot je opisano zgoraj in zapišimo Pitagorov izrek iz enačbe (2). Če dolžine izrazimo z a, b, c in d, dobimo enakost

$$|AB|^{2} = \left(\left|\frac{1}{2b^{2}} - \frac{1}{2d^{2}}\right|\right)^{2} + \left(\left|\frac{c}{d} - \frac{a}{b}\right|\right)^{2}$$

$$= \frac{1}{4b^{4}} - \frac{1}{2b^{2}d^{2}} + \frac{1}{4d^{4}} + \left(\frac{bc - ad}{bd}\right)^{2}$$

$$= \left(\frac{1}{2b^{2}} + \frac{1}{2d^{2}}\right)^{2} - \frac{1}{b^{2}d^{2}} + \frac{(bc - ad)^{2}}{b^{2}d^{2}}$$

$$= (|AD| + |EB|)^{2} + \frac{(bc - ad)^{2} - 1}{b^{2}d^{2}}.$$
(3)

 $^{^3}$ Lester Randolph Ford Sr., 25. 10. 1886 - 11. 11. 1967, ameriški matematik.

Če je |bc-ad|>1, je $|AB|^2>(|AD|+|EB|)^2$, zato je |AB|>|AD|+|EB| in Fordova kroga $C(\frac{a}{b})$ in $C(\frac{c}{d})$ sta disjunktna.

Če je |bc - ad| = 1, je $|AB|^2 = (|AD| + |EB|)^2$, zato je |AB| = |AD| + |EB| in Fordova kroga $C(\frac{a}{b})$ in $C(\frac{c}{d})$ sta tangentna.

Če je |bc - ad| < 1, je |bc - ad| = 0, saj smo v množici celih števil. Sledi $\frac{a}{b} = \frac{c}{d}$, kar vodi v protislovje s predpostavko trditve.

3.1. **Fordovi sosedi.** Za tangentne Fordove kroge veljata naslednji lastnosti, ki lastnosti Fareyevih sosedov preneseta v jezik geometrije.

Trditev 3.5 (Lastnost Fordovih sosedov). Fordova kroga $C(\frac{a}{b})$ in $C(\frac{c}{d})$ sta tangentna natanko tedaj, ko velja |bc - ad| = 1.

Dokaz. Ponovno konstruirajmo pravokotni trikotnik kot v prejšnjem razdelku. Implikacijo v levo smo že izpeljali, zato si oglejmo še implikacijo v desno.

Denimo, da sta Fordova kroga $C(\frac{a}{b})$ in $C(\frac{c}{d})$ tangentna. Potem za pravokotni trikotnik, ki ga določata, velja Pitagorov izrek

$$|AC|^2 + |BC|^2 = |AB|^2$$

oziroma

$$\left(\left|\frac{1}{2b^2} - \frac{1}{2d^2}\right|\right)^2 + \left(\left|\frac{c}{d} - \frac{a}{b}\right|\right)^2 = \left(\frac{1}{2b^2} + \frac{1}{2d^2}\right)^2.$$

Ko odpravimo oklepaje, opazimo, da se nekateri členi odštejejo. Nato odpravimo ulomke in dobljeno enakost poenostavimo.

$$\frac{1}{4b^4} - \frac{1}{2b^2d^2} + \frac{1}{4d^4} + \frac{c^2}{d^2} - \frac{2ac}{bd} + \frac{a^2}{b^2} = \frac{1}{4b^4} + \frac{1}{2b^2d^2} + \frac{1}{4d^4},$$

$$b^2c^2 - 2abcd + a^2d^2 = 1,$$

$$(bc - ad)^2 = 1,$$

$$|bc - ad| = 1.$$

Trditev je s tem dokazana.

Definicija 3.6. Tangentna Fordova kroga imenujemo Fordova soseda.

Trditev 3.7 (Lastnost mediante za Fordove kroge). Naj bosta $C(\frac{a}{b})$ in $C(\frac{c}{d})$ Fordova soseda. Tedaj obstaja enolično določen Fordov krog $C(\frac{a+c}{b+d})$ in je tangenten na izbrana kroga. Imenujemo ga medianta Fordovih krogov.

Dokaz. Po definiciji Fordovih krogov vemo, da sta $\frac{a}{b}$ in $\frac{c}{d}$ okrajšana ulomka in zaradi tangentnosti Fareyeva soseda v nekem Fareyevem zaporedju (razširjenem na celotno realno os). Po lema 2.13 je njuna medianta $\frac{a+c}{b+d}$ tudi okrajšan ulomek, torej obstaja natanko en Fordov krog $C(\frac{a+c}{b+d})$.

Dokažimo še, da je $C(\frac{a+c}{b+d})$ tangenten na izbrana kroga. Ker sta $C(\frac{a}{b})$ in $C(\frac{c}{d})$ Fordova soseda, velja zveza |bc-ad|=1. Če jo nekoliko preoblikujemo, dobimo

$$|bc - ad| = |bc - ad + cd - cd| = |(b+d)c - (a+c)d| = 1,$$

od koder sledi, da sta Fordova kroga $C(\frac{a+c}{b+d})$ in $C(\frac{c}{d})$ tangentna. Podobno

$$|bc - ad| = |bc - ad + ab - ab| = |(a+c)b - (b+d)a| = 1$$

pomeni, da sta Fordova kroga C $(\frac{a}{b})$ in C $(\frac{a+c}{b+d})$ tangentna.

Naslednji izrek pove, kako konstruiramo množico vseh Fordovih sosedov danega Fordovega kroga. Izrek in dokaz sledita [3, trditev 3].

Izrek 3.8. Naj bosta kroga $C(\frac{p}{q})$ in $C(\frac{p}{Q})$ Fordova soseda. Vse Fordove sosede Fordovega kroga $C(\frac{p}{q})$ lahko zapišemo v obliki $C(\frac{P_n}{Q_n})$, kjer je $\frac{P_n}{Q_n} = \frac{P + np}{Q + nq}$ in n preteče vsa cela števila.

Dokaz. Najprej dokažimo, da sta Fordova kroga $C(\frac{p}{q})$ in $C(\frac{P_n}{Q_n})$ res Fordova soseda. Računajmo

$$|qP_n - pQ_n| = |q(P + np) - p(Q + nq)| = |qP + qnp - pQ - pnq| = |qP - pQ| = 1.$$

Zadnja enakost velja po predpostavki, da sta $C(\frac{p}{q})$ in $C(\frac{P}{Q})$ Fordova soseda. Sedaj preverimo, če obstajajo še Fordovi sosedi, ki niso zgornje oblike. Opazovali bomo zaporedje Fordovih krogov $\mathcal{M} = \{C(\frac{P_n}{Q_n}); n \in \mathbb{Z}\}$. Iz računa

$$|Q_{n}P_{n+1} - P_{n}Q_{n+1}| = |(Q + nq)(P + (n+1)p) - (P + np)(Q + (n+1)q)|$$

$$= |QP + (n+1)Qp + nPq + n(n+1)pq$$

$$- PQ - (n+1)Pq - npQ - n(n+1)pq|$$

$$= |Qp - pQ|$$

$$= 1$$
(4)

sledi, da sta zaporedna elementa zaporedja \mathcal{M} Fordova soseda. Ulomek $\frac{P_n}{Q_n}$, ki predstavlja Fordov krog $\mathcal{C}(\frac{P_n}{Q_n}),$ lahko zapišemo kot

$$\frac{P_n}{Q_n} = \frac{P + np}{Q + nq} = \frac{Pq + npq}{q(Q + nq)} = \frac{Pq + npq + pQ - pQ}{q(Q + nq)} \\
= \frac{p(Q + nq) + (Pq - pQ)}{q(Q + nq)} = \frac{p}{q} + \frac{Pq - pQ}{q(Q + nq)} \\
= \frac{p}{q} \pm \frac{1}{q(Q + nq)} = \frac{p}{q} \pm \frac{1}{q^2 \left(n + \frac{Q}{q}\right)}.$$
(5)

V limiti, ko gre n preko vseh meja, gre $\frac{P_n}{Q_n}$ proti $\frac{p}{q}$. Ugotovili smo, da Fordovi krogi oblike $C(\frac{P_n}{Q_n})$ geometrijsko tvorijo obroč okroli Fordovega kroga $C(\frac{p}{q})$. Z njim so namreč vsi tangentni, prav tako pa so tangentni tudi na svojega predhodnika in naslednika v zaporedju \mathcal{M} . Njihova dotikališča z abscisno osjo konvergirajo proti točki $\frac{p}{q}$, ki je dotikališče danega Fordovega kroga $C(\frac{p}{q})$, zaradi medsebojne tangentnosti pa so njihovi polmeri vse manjši. Zato ne obstaja Fordov krog, tangenten na $C(\frac{p}{q})$, ki ni zgornje oblike in ne seka katerega izmed krogov iz zaporedja \mathcal{M} .

V prejšnjem razdelku smo konstruirali pravokotni trikotnik, določen s središčema tangentnih Fordovih krogov in presečiščem premic skozi središči. Spomnimo se znane definicije iz teorije števil, ki izhaja iz evklidske geometrije.

Definicija 3.9. Trojica naravnih števil (a,b,c), za katero velja $a^2+b^2=c^2$, se imenuje $pitagorejska\ trojica^4$. Pitagorejska trojica je primitivna, če števila a,b, in cnimajo skupnega faktorja.

⁴Pojem pitagorejska trojica nosi ime slavnega starogrškega matematika Pitagore (okoli 570 pr. n. št. – 495 pr. n. št.), ki ga poznamo predvsem po Pitagorovem izreku.

Trditev 3.10. Pravokotna trikotnika, ki pripadata poljubnima paroma Fordovih sosedov, določata različni primitivni pitagorejski trojici.

Dokaz. Naj bosta $C(\frac{a}{b})$ in $C(\frac{c}{d})$ ter $C(\frac{a'}{b'})$ in $C(\frac{c'}{d'})$ poljubna različna para Fordovih sosedov. Brez škode za splošnost naj velja $\frac{a}{b} < \frac{c}{d}$ in $\frac{a'}{b'} < \frac{c'}{d'}$. Naj prvemu paru Fordovih sosedov pripada pravokotni trikotnik ABC, drugemu paru pa pravokotni trikotnik A'B'C'. Dokazati želimo, da si trikotnika nista podobna.

Pa denimo, da sta si trikotnika ABC in A'B'C' podobna. Tedaj obstaja tako naravno število $\lambda \neq 1$, da za dolžine stranic obeh pravokotnih trikotnikov veljajo naslednje zveze:

(6)
$$\frac{1}{2b^2} - \frac{1}{2d^2} = \lambda \left(\frac{1}{2b'^2} - \frac{1}{2d'^2} \right),$$

(7)
$$\frac{1}{2b^2} + \frac{1}{2d^2} = \lambda \left(\frac{1}{2b'^2} + \frac{1}{2d'^2} \right),$$

(8)
$$\frac{c}{d} - \frac{a}{b} = \lambda \left(\frac{c'}{d'} - \frac{a'}{b'} \right).$$

Če seštejemo enačbi (6) in (7), dobimo

(9)
$$\frac{1}{b^2} = \lambda \frac{1}{b'^2},$$
$$b'^2 = \lambda b^2,$$
$$b' = \sqrt{\lambda}b.$$

Enačbo (8) lahko poenostavimo, saj gre za para Fordovih sosedov. Velja

(10)
$$\frac{1}{bd} = \frac{bc - ad}{bd} = \frac{c}{d} - \frac{a}{b} = \lambda \left(\frac{c'}{d'} - \frac{a'}{b'}\right) = \lambda \frac{b'c' - a'd'}{b'd'} = \lambda \frac{1}{b'd'}.$$

Iz enakosti (9) in (10) sledi

$$\frac{1}{bd} = \lambda \frac{1}{\sqrt{\lambda}bd'},$$

$$\frac{1}{d} = \frac{\sqrt{\lambda}}{d'},$$

$$d' = \sqrt{\lambda}d.$$

Nazadnje še v pogoj za tangentnost Fordovih krogov $C(\frac{a'}{b'})$ in $C(\frac{c'}{d'})$ vstavimo zvezi (9) in (11), kar nam da

$$b'c' - a'd' = 1,$$

$$\sqrt{\lambda}bc' - a'\sqrt{\lambda}d = 1,$$

$$\sqrt{\lambda}(bc' - a'd) = 1.$$
(12)

To pa je možno le tedaj, ko je $\lambda=1$. Prispeli smo do protislovja, kar pomeni, da si trikotnika nista podobna. Zakaj so pitagorejske trojice primitivne? Če so dolžine stranic posameznega pravokotnega trikotnika paroma tuja si cela števila, že določajo primitivno pitagorejsko trojico. Če imajo ta cela števila skupni celoštevilski faktor, jih z njim delimo (to geometrijsko pomeni, da konstruiramo podobni trikotnik), kar nam da primitivno pitagorejsko trojico. Če pa so dolžine stranic racionalna števila,

jih pomnožimo z najmanjšim skupnim večkratnikom njihovih imenovalcev in dobimo enega izmed zgornjih primerov. □

- 3.2. **Posplošeni Fordovi krogi.** V prejšnjem razdelku smo se ukvarjali s Fordovimi krogi, ki so bili enolično določeni z racionalnim številom. Natančneje, za dan okrajšan ulomek $\frac{p}{q}$ smo konstruirali Fordov krog na zgornji polravnini evklidske ravnine, ki se abscisne osi dotika v točki $\frac{p}{q}$, njegov polmer pa meri $\frac{1}{2q^2}$. Nadaljujemo lahko s splošnejšimi Fordovimi krogi, ki so definirani na povsem enak način, le da imajo polmer enak $\frac{1}{2hq^2}$, pri čemer je h poljubno realno število. Imenujemo jih tudi Speiserjevi⁵ krogi. Če izberemo h=1, dobimo običajne Fordove kroge.
- 3.3. Fordove krogle. V tem razdelku bomo sledili [3, poglavje 8]. Tokrat naj bosta števili p in q elementa množice Gaussovih celih števil, ki je definirana kot $\mathbb{Z}[i] = \{a+bi; a,b \in \mathbb{Z}\}$. Zapišimo p = p'+ip'' in q = q'+iq'', kjer so $p',p'',q',q'' \in \mathbb{Z}$. Definirajmo ulomek

(13)
$$\frac{p}{q} = \frac{p' + ip''}{q' + iq''} = \frac{(p' + ip'')(q' - iq'')}{(q' + iq'')(q' - iq'')} = \frac{p'q' + p''q''}{q'^2 + q''^2} + i\frac{p''q' - p'q''}{q'^2 + q''^2},$$

ki pripada kompleksnim številom, in ga okrajšajmo. Geometrijsko predstavlja točko v Gaussovi xy-ravnini z realno in imaginarno komponento. Gaussovo ravnino postavimo v prostor, določen z osjo z, pravokotno na Gaussovo ravnino, in opazujmo podprostor, ki pripada pozitivnim vrednostim na z-osi. Analogno Fordovim krogom v ravnini pridemo do naslednjega pojma.

Definicija 3.11. Fordova krogla $S(\frac{p}{q})$, kjer je $\frac{p}{q}$ okrajšan ulomek v množici kompleksnih števil, je krogla v zgornjem polprostoru, definiranem kot zgoraj, ki se xy-ravnine dotika v točki, določeni s $\frac{p}{q}$, njen polmer pa meri $\frac{1}{2|q|^2}$.

Na analogen način trditvam, ki opisujejo lastnosti Fordovih krogov, lahko izpeljemo in dokažemo lastnosti Fordovih krogel. Omenimo le nekatere izmed njih.

Poljubno majhen zaprt pravokotnik v xy-ravnini vsebuje neskončno mnogo dotikališč Fordovih krogel.

Spomnimo se konstrukcije pravokotnega trikotnika, določenega z dvema Fordovima krogoma. Naj točki $\frac{p}{q}$ in $\frac{P}{Q}$ določata Fordovi krogli ter konstruirajmo pravokotni trikotnik ABC kot prej. Iz zveze

$$|AB|^2 = \left| \frac{P}{Q} - \frac{p}{q} \right|^2 + \left| \frac{1}{2|Q|^2} - \frac{1}{2|q|^2} \right|^2 = \frac{|Pq - pQ|^2 - 1}{|Q|^2|q|^2} + (|AD| + |EB|)^2$$

sledi: če je |Pq - pQ| > 1, je |AB| > |AD| + |EB| in krogli sta disjunktni; sicer je |Pq - pQ| = 1, zato je |AB| = |AD| + |EB| in krogli sta tangentni.

Naj bosta $S(\frac{p}{q})$ in $S(\frac{P}{Q})$ tangentni Fordovi krogli. Kot prej tangentne Fordove krogle na kroglo $S(\frac{p}{q})$ konstruiramo s pomočjo formule

(14)
$$\frac{P_n}{Q_n} = \frac{P + np}{Q + nq},$$

le da tokrat n pripada množici Gaussovih celih števil. Nadalje nas zanima, koliko Fordovih krogel je tangentnih na kroglo $S(\frac{P_n}{Q_n})$. Uporabimo pogoj za tangentnost,

 $^{^5}$ Andreas Speiser, 10. 6. 1885 – 12. 10. 1970, švicarski matematik, ki se je ukvarjal s teorijo števil in teorijo grup.

ki smo ga izpeljali. Računajmo

$$|P_{n}Q_{m} - P_{m}Q_{n}| = |(P + np)(Q + mq) - (P + mp)(Q + nq)|$$

$$= |PQ + mPq + npQ + mnpq - PQ - nqP - mpQ - mnpq|$$

$$= |Pq - pQ||m - n| = 1.$$
(15)

Sledi, da je |m-n|=1, torej je razlika $m-n \in \{1,-1,i,-i\}$. Ugotovili smo, da je vsaka Fordova krogla, ki je tangentna na dano Fordovo kroglo, tangentna še na štiri druge Fordove krogle. Velja, da so te edine tangentne krogle.

3.4. Möbiusove transformacije na Fordovih krogih. Do sedaj smo Fordove kroge obravnavali s pomočjo geometrijskih sredstev. V tem razdelku si bomo z algebro pomagali do nekaterih že znanih rezultatov o Fordovih krogih. Geometrijske objekte si bomo predstavljali v kompleksni ravnini, torej bo točka s koordinatama (x, y) opisana s kompleksnim številom z = x + iy.

Najprej se spomnimo naslednjega pojma iz kompleksne analize.

Definicija 3.12. Preslikava $f: \mathbb{CP}^1 \to \mathbb{CP}^1$, definirana s predpisom $f(z) = \frac{az+c}{bz+d}$, kjer so $a, b, c, d \in \mathbb{C}$ in $ad - bc \neq 0$, se imenuje Möbiusova transformacija.

Opomba 3.13. Simbol \mathbb{CP}^1 označuje $Riemannovo\ sfero$, to je kompaktifikacijo kompleksne ravnine z eno točko, kar zapišemo kot $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$.

Opomba 3.14. Števila a, b, c, d lahko pomnožimo s poljubnim neničelnim kompleksnim številom, zato lahko predpostavimo, da je ad - bc = 1.

V našem primeru bo dovolj obravnavati le $a, b, c, d \in \mathbb{Z}$.

Möbiusova transformacija je meromorfna in bijektivna preslikava z inverzom, ki je spet take oblike, identična preslikava id(z)=z je Möbiusova transformacija, prav tako je kompozitum Möbiusovih transformacij Möbiusova transformacija. Množica takih preslikav tako tvori grupo za kompozitum. Preslikavo f lahko zapišemo v matrični obliki

$$\mathbf{A} = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right],$$

kjer so $a, b, c, d \in \mathbb{Z}$. Ker velja ad - bc = 1, je matrika $A \in SL_2(\mathbb{Z})$. Zato bomo Möbiusove transformacije predstavljali s splošno linearno grupo $SL_2(\mathbb{Z})$.

Pri izpeljavi rezultatov o Fordovih krogih je ključen pojem, ki ga v algebri pogosto uporabljamo.

Definicija 3.15. Delovanje grupe G na množico M je taka preslikava $\circ: G \times M \to M$, za katero velja:

- (1) $e \circ \alpha = \alpha$ za vsak $\alpha \in M$, kjer je e enota grupe G,
- (2) $g \circ (h \circ \alpha) = (gh) \circ \alpha$ za vsak $\alpha \in M$ in vsaka $g, h \in G$.

Ekvivalentno, delovanje grupe G na množico M je homomorfizem iz grupe G v grupo permutacij množice M.

Primer 3.16. Naj bo G grupa permutacij n elementov, torej $G = S_n$, M pa naj bo množica $M = \{1, 2, ..., n\}$. Delovanje grupe G na množico M je preslikava $\circ: G \times M \to M$ s predpisom $(\pi, \alpha) \mapsto \pi(\alpha) = \pi \circ \alpha$.

Definicija 3.17. Fordov krog $C(\frac{1}{0})$, katerega polmer je neskončen, je premica $\mathbb{R} + i$.

Izrek 3.18. Möbiusova transformacija slika Fordove kroge v Fordove kroge.

Dokaz. Naj bo Möbiusova transformacija dana z matriko

$$\mathbf{A} = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right] \in SL_2(\mathbb{Z}).$$

Vemo, da tovrstna preslikava slika premice in krožnice v premice in krožnice. Ideja dokaza je pokazati, da grupa $SL_2(\mathbb{Z})$ deluje na množico Fordovih krogov.

S krajšim računom se lahko prepričamo, da je grupa $SL_2(\mathbb{Z})$ generirana z matrikama $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ in $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. To pomeni, da je vsako Möbiusovo transformacijo moč zapisati kot kompozitum preslikav $z\mapsto z+1$ in $z\mapsto -\frac{1}{z}$, ki ustrezata generatorjema. Trdimo, da Möbiusova transformacija preslika Fordov krog z intervala [0,1] v Fordov krog z intervala [n,n+1], kjer n pripada množici celih števil.

Preslikava $z \mapsto z + 1$ je translacija, zato zgornje očitno velja.

Kaj pa preslikava $z\mapsto -\frac{1}{z}$? Najprej si oglejmo splošen primer. Naj bo original Fordov krog s polmerom r in središčem v α , predstavljen z enačbo $|z-\alpha|=r$. Prepišimo enačbo v

(16)
$$(z - \alpha)(\bar{z} - \bar{\alpha}) = r^2,$$
$$z\bar{z} - \alpha\bar{z} - \bar{\alpha}z + \alpha\bar{\alpha} - r^2 = 0$$

in označimo $R=\alpha\bar{\alpha}-r^2$. Polmer lahko izrazimo kot $r=\sqrt{|\alpha|^2-R}$. Preslikajmo original s preslikavo $z\mapsto -\frac{1}{z}$. Enačba slike se glasi

(17)
$$\left(-\frac{1}{z}\right)\left(-\frac{1}{\bar{z}}\right) + \alpha \frac{1}{\bar{z}} + \bar{\alpha} \frac{1}{z} + R = 0,$$
$$1 + \alpha z + \bar{\alpha}\bar{z} + Rz\bar{z} = 0,$$
$$z\bar{z} + \frac{\bar{\alpha}}{R}\bar{z} + \frac{\alpha}{R}z + \frac{1}{R} = 0.$$

Sedaj vzemimo Fordov krog C $(\frac{p}{q})$. Njegov polmer meri $\frac{1}{2q^2}$, središče pa je v točki $\frac{p}{q}+i\frac{1}{2q^2}$. Izračunajmo

$$R = \alpha \bar{\alpha} - r^2 = \left(\frac{p}{q} + i\frac{1}{2q^2}\right) \left(\frac{p}{q} - i\frac{1}{2q^2}\right) - \frac{1}{4q^4} = \frac{p^2}{q^2} + \frac{1}{4q^4} - \frac{1}{4q^4} = \frac{p^2}{q^2}$$

in preverimo, da je slika izbranega Fordovega kroga tudi Fordov krog. Res, središče slike je po enačbi (17) v točki

(18)
$$-\frac{\bar{\alpha}}{R} = -\frac{\frac{p}{q} - i\frac{1}{2q^2}}{\frac{p^2}{q^2}} = -\frac{q}{p} + i\frac{1}{2p^2},$$

polmer pa meri

(19)
$$\sqrt{\left|-\frac{\bar{\alpha}}{R}\right|^2 - \frac{1}{R}} = \sqrt{\frac{\bar{\alpha}}{R}} \frac{\alpha}{R} - \frac{1}{R} = \frac{1}{R} \sqrt{|\alpha|^2 - R} = \frac{1}{R} \frac{1}{2q^2} = \frac{q^2}{2p^2q^2} = \frac{1}{2p^2}.$$

Dokazali smo, da preslikavi, ki generirata grupo Möbiusovih transformacij, Fordov krog preslikata v Fordov krog z intervala [n, n+1], kjer je $n \in \mathbb{Z}$. Da dobimo Fordov krog z intervala [0, 1], moramo prvotno preslikavo komponirati z n translacijami v levo (za -1). Ker identiteta slika Fordov krog vase in je kompozitum Möbiusovih transformacij dobro definiran, grupa $SL_2(\mathbb{Z})$ res deluje na množico Fordovih krogov.

Lema 3.19. Dana naj bosta Fordova kroga $C(\frac{e}{f})$ in $C(\frac{g}{h})$. Möbiusova transformacija, ki deluje na množico Fordovih krogov, ohranja |eh - fg|.

Dokaz. Kot v definiciji 3.12 zapišimo Möbiusovo transformacijo v obliki $f(z) = \frac{az+c}{bz+d}$, kjer so $a,b,c,d \in \mathbb{Z}$ in velja ad-bc=1. Vzemimo Fordova kroga $C(\frac{e}{f})$ in $C(\frac{g}{h})$ in poglejmo, kam se preslikata. Ker velja izrek 3.18 in je Fordov krog enolično določen s točko, v kateri se dotika realne osi v kompleksni ravnini, je dovolj poznati sliko te točke. Izračunajmo

 $f\left(\frac{e}{f}\right) = \frac{a\frac{e}{f} + c}{b\frac{e}{f} + d} = \frac{ae + cf}{be + df},$

od koder sledi, da se Fordov krog C($\frac{e}{f})$ preslika v Fordov krog C($\frac{ae+cf}{be+df}).$ Podobno,

$$f\left(\frac{g}{h}\right) = \frac{a\frac{g}{h} + c}{b\frac{g}{h} + d} = \frac{ag + ch}{bg + dh},$$

in $C(\frac{g}{h})$ se preslika v $C(\frac{ag+ch}{bg+dh})$. Označimo e'=ae+cf, f'=be+df, g'=ag+ch in h'=bg+dh. Računajmo

$$e'h' - f'g' = (ae + cf)(bg + dh) - (be + df)(ag + ch) = (ad - bc)(eh - fg),$$

katerega absolutna vrednost je enaka

$$|e'h' - f'g'| = |ad - bc||eh - fg| = |eh - fg|,$$

s čimer smo dokazali želeno enakost.

Iz zgornjega neposredno sledi naslednja ugotovitev.

Posledica 3.20. Dana naj bosta Fordova kroga $C(\frac{e}{f})$ in $C(\frac{g}{h})$. Möbiusova transformacija, ki deluje na množico Fordovih krogov, ohranja |eh - fg| = 1.

Sedaj bomo s pomočjo orodij, ki smo jih obravnavali v tem razdelku, ponovno dokazali že znano lastnost mediante za Fordove kroge.

Dokaz lastnosti mediante za Fordove kroge z Möbiusovimi transformacijami. Kroga $C(\frac{r}{s})$ in $C(\frac{p}{q})$ naj bosta Fordova soseda. Trdimo, da je kandidat $C(\frac{r+p}{s+q})$ medianta izbranih Fordovih krogov.

Vzemimo točke v presečiščih teh treh krogov. Vemo, da za točke α , β , γ obstaja Möbiusova transformacija, ki jih preslika v poljubne točke λ , μ , ν . Torej obstaja Möbiusova transformacija M_1 , ki izbrane točke v presečiščih preslika v točke i, $\frac{1}{2} + \frac{1}{2}i$, 1 + i. Ker Möbiusova transformacija slika Fordove kroge v Fordove kroge, mi pa poznamo sliki dveh točk na vsakem izmed krogov $C(\frac{r}{s})$, $C(\frac{p}{q})$ in $C(\frac{r+p}{s+q})$, poznamo slike vseh treh Fordovih krogov. Te pa so točno $C(\frac{1}{0})$, $C(\frac{0}{1})$ in $C(\frac{1}{1})$.

Sedaj bomo konstruirali zaporedje Möbiusovih transformacij (ki je prav tako Möbiusova transformacija). Začnimo s Fordovima sosedoma $C(\frac{r}{s})$ in $C(\frac{p}{q})$. Preslikava M_1 ju preslika v Fordova kroga $C(\frac{1}{0})$ in $C(\frac{0}{1})$ z medianto, Fordovim krogom, $C(\frac{1}{1})$. Kot v prvem delu dokaza izberimo tri točke v presečiščih in jih preslikajmo. Obstaja Möbiusova transformacija M_2 , ki Fordove kroge $C(\frac{1}{0})$, $C(\frac{0}{1})$ in $C(\frac{1}{1})$ zaporedoma preslika v Fordove kroge $C(\frac{a}{b})$ in $C(\frac{c}{d})$ in $C(\frac{a+c}{b+d})$. Nadaljujemo s transformacijo M_3 , ki slednje preslika po vrsti v Fordove kroge $C(\frac{1}{0})$, $C(\frac{0}{1})$ in $C(\frac{1}{1})$, in končajmo s transformacijo M_4 , ki le-te preslika v Fordove kroge $C(\frac{r+p}{s})$, $C(\frac{p}{q})$ in $C(\frac{r+p}{s+q})$.

Vse zgornje preslikave so Möbiusove transformacije, ki ohranjajo medianto Fordovih krogov (saj velja posledica 3.20 ter je $C(\frac{1}{1})$ medianta $C(\frac{1}{0})$ in $C(\frac{0}{1})$), zato tudi

kompozitum $M_4 \circ M_3 \circ M_2 \circ M_1$ ohranja medianto. Sledi, da je naš kandidat $C(\frac{r+p}{s+q})$ res medianta. Z drugimi besedami, za poljubna Fordova soseda obstaja enolično določen Fordov krog, ki je tangenten na oba.

4. Riemannova hipoteza

Riemannova hipoteza, znana tudi kot 8. Hilberov problem⁶, je eno najbolj slavnih, še vedno nerešenih matematičnih vprašanj. Ime je dobila po nemškem matematiku Bernhardu Riemannu (17. 9. 1826 - 20. 7. 1866), ki jo je formuliral med preučavenjem lastnosti velikih praštevil. Domnevo je leta 1859 zapisal v članku $\ddot{U}ber\ die\ Anzahl\ der\ Primzahlen\ unter\ einer\ gegebenen\ Grösse$. Na le osmih straneh je postavil temelje teorije, s katero se matematiki ukvarjajo vse od takrat in ima pomembne aplikacije na raznovrstnih področjih.

Riemann je izhajal iz Eulerjeve trditve, da vsota obratnih vrednosti praštevil divergira. Od tod je sklepal, da so praštevila gostejša podmnožica množice celih števil kot kvadrati celih števil (vedel je, da vrsta $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergira). Vendar Euler in Riemann nista bila edina, ki so ju zanimala praštevila. Gauss je v 90-ih letih 18. stoletja na podlagi tabelaričnih izračunov domneval, da gostost praštevil lahko približno ocenimo s funkcijo $1/\log x$. Nekaj let za njim je Legendre na isto vprašanje odgovoril z oceno $1/(a\log x + b)$, konstanti a in b pa empirično določil. Funkcijo, ki šteje praštevila, manjša od danega števila, označimo s π . Izrek o praštevilih trdi, da je

(20)
$$\pi(x) \sim \frac{x}{\log x}.$$

Relativno napako med $\int_2^x \frac{dt}{\log t}$ in $\pi(x)$ je v sredini 19. stoletja izračunal Chebyshev, šele nekaj desetletij kasneje pa so Hadamard, von Mangoldt in de la Vallée Poussin dokazali izrek o praštevilih in nekaj sorodnih trditev. Zdi se, da nas vse vodijo k Riemannovi domnevi, ob kateri je avtor zapisal, da se mu zdi precej verjetno, da je pravilna, vendar dokaza zanjo ne pozna. Sledila je vrsta neuspešnih dokazov v prid hipotezi, ki vključujejo različna področja matematike, v želji po rešitvi problema pa je nastalo tudi več ekvivalentnih formualcij hipoteze. Čeprav večina matematikov Riemannu pritrjuje, obstajajo študije, ki razlagajo argumente proti njeni pravilnosti. Zgodovina je povzeta po [2, poglavje 1.1].

4.1. **Praštevila in Riemannova zeta funkcija.** Praštevila so poznali že v Stari Grčiji, od kođer prihaja tudi naslednji izrek.

Izrek 4.1 (Evklid). Praštevil je neskončno mnogo.

Dokazov tega fundamentalnega izreka je veliko, velja pa omeniti Evklidovo idejo dokazovanja s protislovjem, ki jo pogosto uporabljamo še danes.

V 1. polovici 18. stoletja je Euler definiral realno funkcijo zeta s predpisom

$$\zeta\colon\mathbb{R}\to\mathbb{R},$$

(21)
$$\zeta(n) = \sum_{r=1}^{\infty} \frac{1}{r^n}.$$

⁶Nemški matematik David Hilbert je l. 1900 objavil seznam 23 nerešenih matematičnih problemov, za katere je menil, da bodo pomembno vplivali na razvoj matematike 20. stoletja.

Za n=1 je enaka harmonični vrsti, ki divergira; za n>1 pa dobimo konvergentno vrsto. Funkcija zeta je povezana s praštevili preko naslednje formule, ki jo je Euler objavil leta 1737 v knjigi $Variae\ observationes\ circa\ series\ infinitas.$

Izrek 4.2 (Eulerjeva produktna formula). Naj bo $n \in \mathbb{N}$ in $p \in \mathbb{P}$. Tedaj velja

(22)
$$\sum_{n} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - p^{-s}}.$$

Dokaz. Zapišimo predpis za funkcijo zeta. V naslednjem koraku funkcijo zeta pomnožimo z $\frac{1}{2^s}$ ter dobljeno enakost odštejemo od prve enakosti. S tem odpadejo vsi členi s faktorjem 2. Ta dva koraka ponavljamo: enakost na trenutnem koraku pomnožimo z drugim sumandom na desni strani enakosti, nato pa predzadnji vrstici odštejemo zadnjo vrstico.

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \cdots,$$

$$\frac{1}{2^s} \zeta(s) = \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{6^s} + \frac{1}{8^s} + \frac{1}{10^s} + \cdots,$$

$$\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \cdots,$$

$$\frac{1}{3^s} \left(1 - \frac{1}{2^s}\right) \zeta(s) = \frac{1}{3^s} + \frac{1}{9^s} + \frac{1}{15^s} + \frac{1}{21^s} + \frac{1}{27^s} + \cdots,$$

$$\left(1 - \frac{1}{3^s}\right) \left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{11^s} + \frac{1}{13^s} + \cdots$$

Opazimo, da smo vselej množili z ulomki oblike $\frac{1}{p^s}$, kjer p pripada množici praštevil. Dobimo enakost

$$\cdots \left(1 - \frac{1}{13^s}\right) \left(1 - \frac{1}{11^s}\right) \left(1 - \frac{1}{7^s}\right) \left(1 - \frac{1}{5^s}\right) \left(1 - \frac{1}{3^s}\right) \left(1 - \frac{1}{2^s}\right) \zeta(s) = 1,$$

od koder lahko izrazimo

$$\zeta(s) = \frac{1}{\left(1 - \frac{1}{2^s}\right)\left(1 - \frac{1}{3^s}\right)\left(1 - \frac{1}{5^s}\right)\left(1 - \frac{1}{7^s}\right)\left(1 - \frac{1}{11^s}\right)} \cdots = \prod_p \frac{1}{1 - p^{-s}},$$

kar smo želeli pokazati.

V dokazu smo sledili [7].

V 19. stoletju so začeli računati s kompleksnimi števili, tako je Riemann leta 1859 razširil Eulerjevo definicijo funkcije zeta. Riemannova zeta funkcija množico $\mathbb{C}\setminus\{1\}$ preslika na množico \mathbb{C} in je definirana v definiciji 2.22.

Opomba 4.3. V izreku 4.2 nismo povedali, kateri množici pripada spremenljivka s. Euler je formulo namreč formuliral za celoštevilske s, Riemann pa je z razširitvijo funkcije zeta dokazal, da enakost velja za vse s, za katere velja Re(s) > 1.

Zanimajo nas ničle Riemannove zeta funkcije. Na polravnini Re(s)>1 se funkcija ujema s $\prod_p \frac{1}{1-p^{-s}}$. Ker so vsi faktorji $\frac{1}{1-p^{-s}}\neq 0$ in je $\lim_{p\to\infty} \frac{1}{1-p^{-s}}=1$, je na tej polravnini $\prod_p \frac{1}{1-p^{-s}}\neq 0$. To pomeni, da Riemannova zeta funkcija nima ničel za Re(s)>1.

Kako je z ničlami na polravnini Re(s) < 0? Pomagali si bomo z Bernoullijevimi števili [6, poglavje 3]. Naj bo $|z| < 2\pi$. $Bernoullijeva^7$ števila B_k definiramo preko funkcije

(23)
$$G(z) = \frac{z}{e^z - 1} = \sum_{k=0}^{\infty} B_k \frac{z^k}{k!}.$$

Najprej za občutek izračunajmo prvih nekaj Bernoullijevih števil. Funkcijo G lahko razvijemo v Taylorjevo vrsto okoli ničle in dobimo

$$G(z) = \left(1 + \frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \cdots\right)^{-1}.$$

Iščemo polinom⁸ $p(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \cdots$, za katerega bo veljalo

$$\left(1 + \frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \cdots\right) p(z) = 1.$$

Z rekurzivnim računanjem koeficientov pri potencah z dobimo koeficiente polinoma: $a_0 = 1$, $a_1 = -\frac{1}{2}$, $a_2 = \frac{1}{12}$, $a_3 = 0$, $a_4 = -\frac{1}{720}$ itd. Od tod preberemo prvih nekaj Bernoullijevih števil: $B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -\frac{1}{30}$. Več o njih nam pove naslednja lema.

Lema 4.4. Naj bo $k \in \mathbb{N}$. Za Bernoullijeva števila velja $B_{2k+1} = 0$.

Dokaz. Spomnimo se funkcije G, podane z zvezo (23). Trdimo, da je soda. Oglejmo si novo funkcijo

(24)
$$G(z) + \frac{z}{2} = \frac{z}{2} \left(\frac{2}{e^z - 1} + 1 \right) = \frac{z}{2} \frac{e^z + 1}{e^z - 1} = \frac{z}{2} \frac{e^{z/2} + e^{-z/2}}{e^{z/2} - e^{-z/2}} = \frac{z}{2} \coth \frac{z}{2}.$$

Zapisali smo jo kot produkt dveh lihih funkcij, kar je soda funkcija. Upoštevamo, da je $B_1 = -\frac{1}{2}$. Oboje skupaj nam pove, da so koeficienti funkcije G pri lihih potencah stopnje vsaj 3 enaki 0, s tem pa vsa števila B_{2k+1} za $k \geq 1$.

Tudi za Bernoullijeva števila B_{2k} obstaja formula, ki pa ni preprosta. Za nas so pomembna tista z lihimi indeksi, saj so povezana z Riemannovo zeta funkcijo, ki je podrobno obravnavana v [2, poglavje 1.5]. Naj bo $n \in \{0, 1, 2...\}$. Potem velja

(25)
$$\zeta(-n) = (-1)^n \frac{B_{n+1}}{n+1}.$$

Ker so za sode n vrednosti $B_{n+1} = 0$, je $\zeta(s) = 0$ za $s \in \{-2, -4, -6...\}$. To pa so tudi edine ničle na opazovani polravnini. Imenujemo jih trivialne ničle Riemannove zeta funkcije. Ostal je še pas 0 < Re(s) < 1, o ničlah na njem pa govori naslednji izrek.

Izrek 4.5 (Riemannova hipoteza). Vse netrivialne ničle Riemannove zeta funkcije ležijo na premici $s = \frac{1}{2} + it$.

 $^{^7}$ Jacob Bernoulli, 27. 12. 1654 – 16. 8. 1705, rojen v družini znamenitih švicarskih matematikov. Med drugim mu pripisujemo odkritje konstante e.

⁸Polinom ni najbolj korektno poimenovanje, saj nima končne stopnje.

4.2. Ekvivalentne trditve. Obstaja več ekvivalentnih formulacij Riemannove hipoteze. Dokazali bomo eno izmed njih, ki vključuje Fareyevo zaporedje. Pred tem se spomnimo Möbiusove funkcije, ki smo jo srečali v definiciji 2.20. Z njo je povezana naslednja funkcija.

Definicija 4.6. Za $n \in \mathbb{N}$ je Mertensova⁹ funkcija definirana s predpisom

(26)
$$M(n) = \sum_{k \le n} \mu(k).$$

Primer 4.7. Izračunajmo nekaj vrednosti Mertensove funkcije.

$$M(2) = \mu(1) + \mu(2) = 1 - 1 = 0,$$

$$M(3) = \mu(1) + \mu(2) + \mu(3) = 1 - 1 - 1 = -1,$$

$$M(6) = \mu(1) + \mu(2) + \mu(3) + \mu(4) + \mu(5) + \mu(6) = 1 - 1 - 1 + 0 - 1 + 1 = -1.$$
 \diamondsuit

Opazimo, da Mertensova funkcija raste počasi, saj se njena vrednost v vsakem naslednjem naravnem številu spremeni kvečjemu za ± 1 . Za vsako naravno število nvelja |M(n)| < n.

Naslednjo trditev, ki jo bomo navedli brez dokaza, je leta 1912 dokazal Litllewood¹⁰. Njeno bistvo je, da Riemannovo hipotezo lahko prevedemo na ekvivalentno trditev, ki opisuje rast Mertensove funkcije. Več podrobnosti o njej si bralec lahko prebere v [2, poglavje 12.1]. Oglejmo si le idejo za formulacijo trditve. Če faktorje v Eulerjevi produktni formuli pomnožimo, dobimo na polravnini $\{Re(s) > 1\}$ izražavo $\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$. Po nekaj korakih pridemo do zveze $\frac{1}{\zeta(s)} = s \int_0^{\infty} M(x) x^{-s-1} dx$. Ker je $|M(x)| \leq x$, je $\lim_{x \to \infty} x^{-s} M(x) = 0$ na polravnini $\{Re(s) > 1\}$ in integral $\int_0^{\infty} M(x) x^{-s-1} dx$ na tej polravnini konvergira. Če obstaja tako pozitivno število a, da funkcija M(x) raste počasneje od funkcije x^a , potem zgornji integral konvergira na polravnini $\{Re(a-s)<0\}=\{Re(s)>a\}$. To pomeni, da je funkcija $\frac{1}{\zeta(s)}$ na tej polravnini analitična. Vendar obstajajo ničle funkcije $\zeta(s)$ na premici $s=\frac{1}{2}+it$, torej ima na tej premici funkcija $\frac{1}{\zeta(s)}$ singularnosti. Od tod sledi, da za poljuben $0 < a < \frac{1}{2}$ ne velja $M(x) = o(x^a)$. Velja celo več.

Trditev 4.8. Za vsak $\epsilon > 0$ velja $M(n) = o(n^{1/2+\epsilon})$ natanko tedaj, ko velja Riemannova hipoteza.

Pred drugo ekvivalenco Riemannove hipoteze potrebujemo definicijo, ki sledi.

Definicija 4.9. Naj bosta L(n) dolžina Fareyevega zaporedja reda n in r_v njegov v-ti element. Definiramo razliko

(27)
$$\delta_v = r_v - v/L(n).$$

Primer 4.10. Vzemimo Fareyevo zaporedje reda 4 in poglejmo nekaj razlik.

$$F_4 = \left\{ \frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1} \right\},\$$

$$L(4) = 7,$$

Find 4.10. Vzemimo 178
$$F_4 = \left\{ \frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1} \right\},$$

$$L(4) = 7,$$

$$\delta_1 = \frac{0}{1} - \frac{1}{7} = -\frac{1}{7},$$

$$\delta_2 = \frac{1}{4} - \frac{2}{7} = -\frac{1}{28},$$

$$\delta_7 = \frac{1}{1} - \frac{7}{7} = 0.$$

Trditev 4.11 (Franel – Landau, 1924). Za vsak $\epsilon > 0$ velja $\sum_{v=1}^{L(n)} |\delta_v| = o(n^{1/2+\epsilon})$ natanko tedaj, ko velja Riemannova hipoteza.

 $^{^9}$ Franz Mertens, 20. 3. 1840 - 5. 3. 1927, poljski matematik.

 $^{^{10} {\}rm John}$ Edensor Littlewood, 9. 6. 1885 – 6. 9. 1977, angleški matematik.

Dokaz zgornje trditve izpustimo. Pač pa bomo v nadaljevanju dokazali povezavo med navedenima ekvivalenčnima formulacijama Riemannove hipoteze, ki jo lahko združimo v izrek.

Izrek 4.12. Naj bo $\varepsilon > 0$. $\sum_{v=1}^{L(n)} |\delta_v| = o(n^{1/2+\varepsilon})$ velja tedaj in le tedaj, ko velja $M(n) = o(n^{1/2+\varepsilon})$.

4.3. Fareyevo zaporedje in Riemannova hipoteza. V tem razdelku bomo dokazali glavni izrek 4.12, ki Riemannovo hipotezo poveže s Fareyevim zaporedjem. Najprej bomo dokazali lemo, ki bo ključ do dokaza izreka. Še prej pa se spomnimo Eulerjeve produktne formule ter Fourierovih transformacij.

Trditev 4.13 (Möbiusova inverzija). Möbiusova inverzija je inverzna Fourierova transformacija Eulerjeve produktne formule $\zeta(s) \prod_{p} (1-p^{-s}) = 1$. Izraža se s formulo

(28)
$$g(x) = \sum_{n=1}^{\infty} f(nx) \iff f(x) = \sum_{n=1}^{\infty} \mu(n)g(nx),$$

pri čemer sta vrsti $\sum_{n=1}^{\infty} f(nx)$ in $\sum_{n=1}^{\infty} g(nx)$ absolutno konvergentni. Formulo lahko zapišemo v ekvivalentni obliki

(29)
$$g(x) = \sum_{n=1}^{\infty} f\left(\frac{x}{n}\right) \Longleftrightarrow f(x) = \sum_{n=1}^{\infty} \mu(n)g\left(\frac{x}{n}\right).$$

Trditev navajamo brez izpeljave – ta se nahaja v [2, poglavje 10.9]. Möbiusovo inverzijo bomo namreč potrebovali le v enem koraku dokaza napovedane leme, kjer bomo uporabili ekvivalenco (29).

Lema 4.14. Realna funkcija f naj bo definirana na intervalu [0,1]. Naj bodo r_v elementi Fareyevega zaporedja reda n, $r_0 = 0$ in $r_{L(n)} = 1^{11}$. Tedaj velja enakos t^{12}

(30)
$$\sum_{v=1}^{L(n)} f(r_v) = \sum_{k=1}^{\infty} \sum_{j=1}^{k} f\left(\frac{j}{k}\right) M\left(\frac{n}{k}\right).$$

Dokaz. Funkcijo $D: \mathbb{R} \to \{0,1\}$ definirajmo s predpisom

(31)
$$D(n) = \begin{cases} 1 & \text{\'e } n \ge 1 \\ 0 & \text{\'e } n < 1 \end{cases}.$$

Spomnimo se definicije Mertensove funkcije in upoštevajmo predpis (31). Dobimo

$$M(n) = \sum_{x \le n} \mu(x) = \sum_{x=1}^{\infty} \mu(x) D\left(\frac{n}{x}\right),$$

Möbiusova inverzija pa nam da ekvivalenco

$$M(n) = \sum_{x=1}^{\infty} \mu(x) D\left(\frac{n}{x}\right) \Longleftrightarrow D(n) = \sum_{x=1}^{\infty} M\left(\frac{n}{x}\right).$$

Naj bosta p in q tuji števili in $0 , z drugimi besedami, ulomek <math>\frac{p}{q}$ ustreza nekemu elementu r_v Fareyevega zaporedja F_n . Primerjali bomo koeficiente pri $f(\frac{p}{q})$

 $^{^{11}}$ Zgolj zaradi preglednejšega zapisa bomo za potrebe dokaza v tem razdelku Fareyevo zaporedje F_n opazovali od neničelnega člena dalje. Tako bo element r_v zdaj predstavljal element r_{v+1} v običajni notaciji, vrednost L(n) pa se bo zmanjšala za 1.

¹²Vsota na desni strani je končna, saj je za k > n vrednost $M(\frac{n}{k}) = 0$.

na levi in desni strani enakosti (30). Ker je $f(\frac{p}{q}) = f(\frac{2p}{2q}) = f(\frac{3p}{3q}) = \cdots$, je koeficient na desni strani enak

$$M\left(\frac{n}{q}\right) + M\left(\frac{n}{2q}\right) + M\left(\frac{n}{3q}\right) + \dots = \sum_{l=1}^{\infty} M\left(\frac{n}{ql}\right)$$
$$= D\left(\frac{n}{q}\right) = \begin{cases} 1 & \text{\'et } n \ge q \\ 0 & \text{\'et } n < q \end{cases}.$$

To pa je ravno koeficient pri $f(r_v)$ na levi strani. Lema zato res drži.

4.3.1. Dokaz implikacije v desno izreka 4.12. Naj bo $\varepsilon > 0$. Naj bo $u \in [0,1]$ in definirajmo funkcijo $f(u) = e^{2\pi i u}$. Uporabimo lema 4.14 in funkcijo vstavimo v enakost (30); dobimo

(32)
$$\sum_{v=1}^{L(n)} e^{2\pi i r_v} = \sum_{k=1}^{\infty} \sum_{j=1}^{k} e^{2\pi i \frac{j}{k}} M\left(\frac{n}{k}\right).$$

Vemo, da je $\sum_{j=1}^k e^{2\pi i \frac{j}{k}} = 0$ za $k \ge 2$, za k = 1 pa se vsota poenostavi v $e^{2\pi i} = 1$. Enakost (32) zato prepišemo v

$$M(n) = \sum_{v=1}^{L(n)} e^{2\pi i r_v} = \sum_{v=1}^{L(n)} e^{2\pi i \left(\frac{v}{L(n)} + \delta_v\right)} = \sum_{v=1}^{L(n)} e^{\frac{2\pi i v}{L(n)}} \left(e^{2\pi i \delta_v} - 1\right) + \sum_{v=1}^{L(n)} e^{\frac{2\pi i v}{L(n)}}.$$

Ker je L(n) > 1, je zadnji sumand enak 0. Sedaj ocenimo absolutno vrednost zgornjega izraza:

$$|M(n)| \le \sum_{v=1}^{L(n)} \left| e^{\frac{2\pi i v}{L(n)}} \right| \left| e^{2\pi i \delta_v} - 1 \right| = \sum_{v=1}^{L(n)} \left| e^{2\pi i \delta_v} - 1 \right| = \sum_{v=1}^{L(n)} \left| e^{\pi i \delta_v} \right| \left| e^{\pi i \delta_v} - e^{-\pi i \delta_v} \right|$$

$$= 2 \sum_{v=1}^{L(n)} \left| \sin \left(\pi \delta_v \right) \right| \le 2 \sum_{v=1}^{L(n)} \left| \delta_v \right| \pi = 2\pi \sum_{v=1}^{L(n)} \left| \delta_v \right|$$

$$\le 2\pi K(\varepsilon) n^{1/2 + \varepsilon} = K'(\varepsilon) n^{1/2 + \varepsilon}.$$

V zadnji neenakosti smo uporabili predpostavko $\sum_{v=1}^{L(n)} |\delta_v| = o(n^{1/2+\varepsilon})$, kar je ekvivalentno $\sum_{v=1}^{L(n)} |\delta_v| \leq K(\varepsilon) n^{1/2+\varepsilon}$ za neko konstano K, ki je odvisna od ε . Od tod sledi, da je $M(n) = o(n^{1/2+\varepsilon})$, kar smo želeli pokazati.

4.3.2. Bernoullijevi polinomi. Preden se lotimo dokazovanja obratne implikacije, potrebujemo nekaj novih pojmov. Navedli bomo le najpomembnejše rezultate, ki jih bomo v dokazu potrebovali. Izpeljave niso pretežke, vendar jih bomo tokrat izpustili, saj bi precej povečale obseg dela. Povzeti so po [2, poglavje 6.2].

Definicija 4.15. Naj bo $n \in \mathbb{N} \cup \{0\}$. n-ti Bernoullijev polinom B_n je polinom stopnje n, ki ustreza zvezi

(33)
$$\int_{x}^{x+1} B_n(t)dt = x^n.$$

Primer 4.16. Zapišimo nekaj Bernoullijevih polinomov najnižjih stopenj. Izračunali smo jih tako, da smo zapisali polinom $B_n(t) = a_0 + a_1 t + \cdots + a_n t^n$ in rekurzivno računali koeficiente pri potencah x v enakosti (33).

$$B_0(x) = 1,$$

$$B_1(x) = x - \frac{1}{2},$$

$$B_2(x) = x^2 - x + \frac{1}{6},$$

$$B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x.$$

Definicija 4.17. Naj bo B_n n-ti Bernoullijev polinom. Pripadajoča funkcija $\bar{B_n}$ je definirana kot $\bar{B_n}(x) = B_n(x - \lfloor x \rfloor)$.

Opomba 4.18. Iz definicije sledi, da je $\bar{B_n}$ periodična funkcija s periodo 1.

Primer 4.19. Funkcijo
$$\bar{B}_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$$
 bomo potrebovali v dokazu.

Trditev 4.20. Naj bo $k \in \mathbb{N}$. Tedaj je

(34)
$$B_n(ku) = k^{n-1} \left(B_n(u) + B_n \left(u + \frac{1}{k} \right) + \dots + B_n \left(u + \frac{k-1}{k} \right) \right).$$

Dokaz. Dokaz za k=2se nahaja v [2, poglavje 6.2, str. 102 – 103]. Za splošen k je dokaz analogen. $\hfill\Box$

4.3.3. Dokaz implikacije v levo izreka 4.12. Spomnimo se funkcije $\bar{B}_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$ in enačbe (34). Izberimo n=1. Funkcija \bar{B}_1 je periodična s periodo 1, zato je za x=ku dovolj obravnavati vrednosti $0 \le u \le \frac{1}{k}$. Za te vrednosti pa se \bar{B}_1 ujema s funkcijo B_1 . Enačba (34) zato dobi obliko

(35)
$$\bar{B}_{1}(ku) = \bar{B}_{1}(u) + \bar{B}_{1}\left(u + \frac{1}{k}\right) + \dots + \bar{B}_{1}\left(u + \frac{k-1}{k}\right)$$
$$= \bar{B}_{1}\left(u + \frac{1}{k}\right) + \bar{B}_{1}\left(u + \frac{2}{k}\right) + \dots + \bar{B}_{1}\left(u+1\right).$$

Ključni korak dokaza je, da v enakost iz leme 4.14 vstavimo funkcijo \bar{B}_1 , pri čemer uporabimo zvezo (35). Označimo

(36)
$$G(u) = \sum_{v=1}^{L(n)} \bar{B}_1(u+r_v) = \sum_{k=1}^{\infty} \sum_{j=1}^k \bar{B}_1\left(u+\frac{j}{k}\right) M\left(\frac{n}{k}\right) = \sum_{k=1}^{\infty} \bar{B}_1(ku) M\left(\frac{n}{k}\right)$$

in dobimo dva izraza za funkcijo G. Izračunali bomo integral

$$(37) I = \int_0^1 G(u)^2 du.$$

1. primer: $G(u) = \sum_{v=1}^{L(n)} \bar{B}_1(u+r_v)$. Oglejmo si, kakšna je funkcija G. Razpišimo zgornjo zvezo:

(38)
$$G(u) = \sum_{v=1}^{L(n)} \bar{B}_1(u + r_v) = \sum_{v=1}^{L(n)} \left(u + r_v - \lfloor u + r_v \rfloor - \frac{1}{2} \right)$$
$$= L(n)u + \sum_{v=1}^{L(n)} r_v - \sum_{v=1}^{L(n)} \lfloor u + r_v \rfloor - \frac{L(n)}{2},$$

in opazujmo člen s spodnjim celim delom. Ker so členi Fareyevega zaporedja razen $r_{L(n)}=1$ simetrično razporejeni okrog vrednosti $\frac{1}{2}$, lahko zapišemo $\sum_{v=1}^{L(n)} \lfloor u+r_v \rfloor=1$

 $\sum_{v=1}^{L(n)} \lfloor u+1-r_v \rfloor$. Za $u \in [0,1]$ zavzame $\lfloor u+1-r_v \rfloor$ le celi števili 0 in 1, slednje je le v primeru, ko je $u=r_v$. Zato je

$$\sum_{v=1}^{L(n)} \lfloor u + 1 - r_v \rfloor = \begin{cases} 1 & \text{\'e } u = r_v \\ 0 & \text{sicer} \end{cases},$$

kar pomeni, da ima funkcija G, evaluirana v elementih Fareyevega zaporedja, skok za -1. Med Fareyevima sosedoma, torej na intervalu $[r_{v-1}, r_v]$, je G linearna funkcija spremenljivke u s koeficientom L(n). Zaradi simetrije členov Fareyevega zaporedja velja še $\sum_{v=1}^{L(n)-1} \bar{B}_1(r_v) = 0$. Od tod izračunamo desno limito funkcije G v točki 0,

$$\lim_{u \to 0} G(u) = \lim_{u \to 0} \bar{B}_1(u+1) = -\frac{1}{2}.$$

Funkcija G se zato na intervalu $[r_{v-1}, r_v]$ izraža s predpisom

$$G(u) = L(n)u - v - \frac{1}{2}.$$

Izrazimo še

$$L(n)r_v = L(n)\left(r_v - \frac{v}{L(n)} + \frac{v}{L(n)}\right) = L(n)\delta_v + v,$$

$$L(n)r_v - v + \frac{1}{2} = L(n)\delta_v + \frac{1}{2}, L(n)r_{v-1} - v + \frac{1}{2} = L(n)\delta_{v-1} - \frac{1}{2}.$$

Sedaj lahko izračunamo integral

$$I \stackrel{(1)}{=} \sum_{v=1}^{L(n)} \int_{r_{v-1}}^{r_v} \left(L(n)u - v - \frac{1}{2} + 1 \right)^2 du$$

$$= \sum_{v=1}^{L(n)} \frac{(L(n)u - v + \frac{1}{2})^3}{3L(n)} \Big|_{r_{v-1}}^{r_v}$$

$$= \frac{1}{3L(n)} \sum_{v=1}^{L(n)} \left(\left(L(n)\delta_v + \frac{1}{2} \right)^3 - \left(L(n)\delta_{v-1} - \frac{1}{2} \right)^3 \right)$$

$$\stackrel{(2)}{=} \frac{1}{3L(n)} \sum_{v=1}^{L(n)} \left(\left(L(n)\delta_v + \frac{1}{2} \right)^3 - \left(L(n)\delta_v - \frac{1}{2} \right)^3 \right)$$

$$= \frac{1}{3L(n)} \sum_{v=1}^{L(n)} \left(3 (L(n)\delta_v)^2 + \frac{1}{4} \right)$$

$$= L(n) \sum_{v=1}^{L(n)} \delta_v^2 + \frac{1}{12L(n)} L(n)$$

$$= L(n) \sum_{v=1}^{L(n)} \delta_v^2 + \frac{1}{12}.$$

$$(39)$$

Zaradi privzetka, da je $r_0 = 0$ in $r_{L(n)} = 1$, enakost (1) res drži. V enakosti (2) smo upoštevali, da je $\delta_{L(n)} = 0$ in $L(n)\delta_0 - \frac{1}{2} = L(n)\delta_{L(n)} - \frac{1}{2}$.

2. primer: $G(u) = \sum_{k=1}^{\infty} \bar{B}_1(ku) M\left(\frac{n}{k}\right)$. Računajmo integral

$$I = \int_0^1 \left(\sum_{k=1}^\infty \bar{B}_1(ku) M\left(\frac{n}{k}\right) \right)^2 du$$

$$= \int_0^1 \sum_{a=1}^\infty \sum_{b=1}^\infty \bar{B}_1(au) \bar{B}_1(bu) M\left(\frac{n}{a}\right) M\left(\frac{n}{b}\right) du$$

$$= \sum_{a=1}^\infty \sum_{b=1}^\infty M\left(\frac{n}{a}\right) M\left(\frac{n}{b}\right) \int_0^1 \bar{B}_1(au) \bar{B}_1(bu) du,$$

$$(40)$$

in označimo $I_{ab} = \int_0^1 \bar{B}_1(au)\bar{B}_1(bu)du$. Vrednost tega integrala bomo izračunali v treh korakih.

Naj bo b = 1. Tedaj je

$$I_{a1} = \int_{0}^{1} \bar{B}_{1}(au)\bar{B}_{1}(u)du \stackrel{(1)}{=} \frac{1}{a} \int_{0}^{a} \bar{B}_{1}(v)\bar{B}_{1}\left(\frac{v}{a}\right)dv$$

$$\stackrel{(2)}{=} \frac{1}{a} \sum_{k=0}^{a-1} \int_{0}^{1} \bar{B}_{1}(k+t)\bar{B}_{1}\left(\frac{k}{a} + \frac{t}{a}\right)dt$$

$$\stackrel{(3)}{=} \frac{1}{a} \int_{0}^{1} \bar{B}_{1}(t)\bar{B}_{1}\left(a\frac{t}{a}\right)dt \stackrel{(4)}{=} \frac{1}{a} \int_{0}^{1} \left(t - \frac{1}{2}\right)^{2} dt$$

$$= \frac{1}{3a} \left(t - \frac{1}{2}\right)^{3} \Big|_{0}^{1} = \frac{1}{12a}.$$

$$(41)$$

V enakostih (1) in (2) smo zaporedoma uvedli novi spremenljivki v = au in v = k+t. V enakosti (3) smo upoštevali periodičnost funkcije \bar{B}_1 in zvezo (35). V enakosti (4) smo uporabili dejstvo, da na intervalu [0,1] velja $\bar{B}_1(t) = t - \frac{1}{2}$.

Oglejmo si primer, ko sta a in b tuji si števili.

$$I_{ab} = \int_{0}^{1} \bar{B}_{1}(au)\bar{B}_{1}(bu)du = \frac{1}{a} \int_{0}^{a} \bar{B}_{1}(v)\bar{B}_{1}\left(\frac{bv}{a}\right)dv$$

$$= \frac{1}{a} \sum_{k=0}^{a-1} \int_{0}^{1} \bar{B}_{1}(k+t)\bar{B}_{1}\left(\frac{bk}{a} + \frac{bt}{a}\right)dt$$

$$\stackrel{(5)}{=} \frac{1}{a} \int_{0}^{1} \bar{B}_{1}(t)\bar{B}_{1}\left(a\frac{bt}{a}\right)dt = \frac{1}{a}I_{1b} = \frac{1}{12ab}$$

$$(42)$$

V enakosti (5) smo upoštevili, da vrednosti $\frac{bk}{a}$ za $k \in \{0, 1 \dots a-1\}$ pretečejo vse vrednosti iz množice $\{0, \frac{1}{a} \dots \frac{a-1}{a}\}$.

Naj bo sedaj c največji skupni delitelj a in b. Zapišimo $a = c\alpha$ in $b = c\beta$ (seveda sta α in β tuji si števili).

$$I_{ab} = \int_0^1 \bar{B}_1(c\alpha u)\bar{B}_1(c\beta u)du \stackrel{(6)}{=} \frac{1}{c} \int_0^c \bar{B}_1(\alpha t)\bar{B}_1(\beta t)dt$$

$$\stackrel{(7)}{=} I_{\alpha\beta} = \frac{1}{12\alpha\beta} = \frac{c^2}{12ab}$$

V enakosti (6) smo uvedli novo spremenljivko t = cu. Enakost (7) sledi iz računa

$$\int_{k}^{k+1} \bar{B}_{1}(\alpha t) \bar{B}_{1}(\beta t) dt = \int_{0}^{1} \bar{B}_{1}(\alpha s + \alpha k) \bar{B}_{1}(\beta s + \beta k) ds$$
$$= \int_{0}^{1} \bar{B}_{1}(\alpha s) \bar{B}_{1}(\beta s) ds = I_{\alpha\beta}.$$

Izračunano vrednost integrala I_{ab} vstavimo v enakost (40) in dobimo

(44)
$$I = \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} M\left(\frac{n}{a}\right) M\left(\frac{n}{b}\right) \frac{c^2}{12ab},$$

kjer je c največji skupni delitelj a in b.

Naj bo $\epsilon > 0$. Predpostavljamo, da je $M(n) = o(n^{1/2+\epsilon})$, kar pomeni, da obstaja taka konstanta C, odvisna od ϵ , da za poljuben n velja $M(n) < C(\epsilon)n^{1/2+\epsilon}$. Če to uporabimo v enačbi (44), dobimo

$$I < \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} C(\epsilon)^{2} \left(\frac{n}{a}\right)^{1/2+\epsilon} \left(\frac{n}{b}\right)^{1/2+\epsilon} \frac{c^{2}}{12ab}$$

$$= n^{1+2\epsilon} \frac{C(\epsilon)^{2}}{12} \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \frac{c^{2}}{a^{3/2+\epsilon}b^{3/2+\epsilon}}$$

$$= n^{1+2\epsilon} \frac{C(\epsilon)^{2}}{12} \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \frac{c^{2}}{\alpha^{3/2+\epsilon}\beta^{3/2+\epsilon}c^{3+2\epsilon}}$$

$$\stackrel{(8)}{<} n^{1+2\epsilon} K_{1}(\epsilon) \sum_{\alpha=1}^{\infty} \sum_{\beta=1}^{\infty} \sum_{c=1}^{\infty} \frac{1}{\alpha^{3/2}\beta^{3/2}c^{1+2\epsilon}}$$

$$= K_{2}(\epsilon) n^{1+2\epsilon}.$$
(45)

V neenakosti (8) smo vsoto po tujih si številih α in β zamenjali z vsoto po vseh vrednostih α in β .

Enakost (39) implicira

$$I = L(n) \sum_{v=1}^{L(n)} \delta_v^2 + \frac{1}{12} < K_2(\epsilon) n^{1+2\epsilon},$$

od koder sledi

$$\sum_{v=1}^{L(n)} \delta_v^2 < K_3(\epsilon) n^{1+2\epsilon}.$$

Cauchy-Schwarzova neenakost nam da končno oceno

$$\sum_{v=1}^{L(n)} |\delta_v| = \left| \sum_{v=1}^{L(n)} (\pm 1) \delta_v \right| \le \sqrt{\sum_{v=1}^{L(n)} (\pm 1)^2} \sqrt{\sum_{v=1}^{L(n)} \delta_v^2} = L(n)^{1/2} \sqrt{\sum_{v=1}^{L(n)} \delta_v^2} < K(\epsilon) n^{1+2\epsilon},$$

kar dokazuje obratno implikacijo.

SLOVAR STROKOVNIH IZRAZOV

Bernoulli ~ number Bernoullijevo število; ~ polynomial Bernoullijev polinom Euler product formula Eulerjeva produktna formula – povezuje Riemannovo zeta funkcijo s praštevili

Farey neighbour Fareyev sosed – Fareyeva soseda sta sosednja elementa Fareyevega zaporedja

Ford neighbour Fordov sosed – Fordova soseda sta tangentna Fordova kroga group action delovanje grupe – delovanje grupe G na množico M je homomorfizem iz grupe G v grupo permutacij množice M

little-o notation notacija mali o – f(x) = o(g(x)), če absolutna vrednost funkcije f raste počasneje od funkcije g, ko $x \to \infty$

mediant medianta; ~ property lastnost mediante – lastnost mediante velja za Fareyevo zaporedje in Fordove kroge

Mertens function Mertensova funkcija

Möbius function Möbiusova funkcija

Riemann zeta function Riemannova zeta funkcija – Riemannova hipoteza govori o ničlah te funkcije

LITERATURA

- [1] J. Ainsworth, M. Dawson, J. Pianta in J. Warwick, *The Farey sequence*, diplomsko delo, School of Mathematics, University of Edinburgh, 2012; dostopno tudi na https://www.maths.ed.ac.uk/~v1ranick/fareyproject.pdf.
- [2] H. M. Edwards, Riemann's zeta function, Academic Press, Inc., New York, 1974.
- [3] L. R. Ford, *Fractions*, v: The American Mathematical Monthly (ur. E. J. Moulton) **45**, Mathematical Association of America, 1938, str. 586–601.
- [4] S. B. Guthery, A motif of mathematics, Docent Press, Boston, 2011; dostopno tudi na https://www.maths.ed.ac.uk/~v1ranick/papers/farey.pdf.
- [5] G. H. Hardy in E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford University Press, Oxford, 1960.
- [6] P. Sebah in X. Gourdon, *Introduction on Bernoulli's numbers*, verzija 12. 6. 2002, [ogled 20. 7. 2019], dostopno na http://math.ucr.edu/~res/math153/s12/bernoulli-numbers.pdf.
- [7] J. Veisdal, The Riemann hypothesis, explained, verzija 21. 8. 2016, [ogled 30. 4. 2019], dostopno na https://medium.com/cantors-paradise/the-riemann-hypothesis-explained-fa01c1f75d3f.