

ETUDE THÉORIQUE DES EFFETS DE SOLVANT SUR LES GÉOMÉTRIES ET LES SPECTROSCOPIES DES COUMARINES

Pierre-François $Loos^1$ Julien $Preat^2$

¹Equipe de Chimie et Biochimie Théoriques Université Henri Poincaré - Nancy France

²Laboratoire de Chimie Théorique Appliquée Université Notre-Dame de la Paix - Namur Belgique

14 novembre 2005

Prise en compte des effets de solvant a :

- Modèle explicite
 - + Prise en compte des interactions spécifiques
 - Augmentation des degrés de liberté ⇒ Coûteux
 - Pas forcément parfait (modèle non polarisable)
- Modèle implicite
 - + Permet de moyenner implicitement les degrés de liberté du solvant
 - + Bon traitement des interactions électrostatiques (dominant dans la solvatation)
 - Manque la première couche de solvatation

• 5-Me

Introduction Système

- 6-Cl
- 7,8-diOH
- 6,7-diOH
- 6-NH₂

$M\acute{e}thodologie^a$

- Optimisation de géométrie
 - DFT : Fonctionnelle B3LYP
 - Base 6-311G(2d,2p)
- Calcul IR.
 - DFT : Fonctionnelle B3LYP
 - Base 6-311G(2d,2p)
- Calcul UV/TDDFT^a
 - DFT : Fonctionnelle B3LYP^b, O3LYP^c et PBE0^d
 - Base 6-311G(2d,2p) pour l'état fondamental et les états excités

^aE. Runge, E.K.U. Gross, *Phys. Rev. Lett.*, **52**, 997 (1984)

^bA.D. Becke, *Phys. Rev. A*, **38**, 3098 (1988); C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37, 785 (1988)

^cW.-M. Hoe, A.J. Cohen, N.C. Handy, Chem. Phys. Lett., **341**, 319 (2001)

^dC. Adamo, V. Barone, J. Chem. Phys., **110**, 6158 (1999)

$$\left(\mathcal{H}^o + rac{1}{2}V_R
ight)|\Psi
angle = E|\Psi
angle$$

- PCM (Polarizable Continuum Model)^a
 - Contribution électrostatique $\langle \Psi | \frac{1}{2} V_R | \Psi \rangle$ de façon numérique
 - Triangularisation de la cavité
 - Contribution non-électrostatique : Cavitation et Dispersion
- NCM^b
 - Contribution électrostatique de façon analytique
 - Developpement multipolaire multicentrique de la distribution de charges

 $[^]a \rm M.$ Cossi, V. Barone, J. Chem. Phys., 115, 4708 (2001); J. Tomasi et al., Adv. Quantum Chem., 32, 227 (1998)

 ^bD. Rinaldi, J.-L. Rivail, Theor. Chim. Acta, 32, 57 (1973);
 V. Dillet, D. Rinaldi, J.-L. Rivail, J. Chem. Phys., 98, 5034 (1994)

Etude de la réponse du modèle SCRF

- Molécule utilisée : 6-Cl
 - Type de solvant : EtOH ($\varepsilon = 24.55$) ou C_6H_6 ($\varepsilon = 2.25$) $\iff \varepsilon$

- Taille de la cavité ⇐⇒ α
 - Type de cavité : van der Waals
 - Rayon Bondia
- Termes non-électrostatiques
 - Dispersion
 - Cavitation
- ^aA. Bondi, J. Phys. Chem., **68**, 441 (1964)

(d) Longueur de liaison

Conclusion IR:

Conclusion IR

- Composantes électrostatiques quasi-identiques pour les deux modèles
- NCM plus sensible à la variaton de la taille de la cavité :
 - + Plage plus étendue \Longrightarrow calibration plus évidente
 - Modèle plus sensible aux variations
- Contributions non-électrostatiques de PCM varie linéairement avec α :
 - + Extrapolation possible si besoin de prise en compte
- Rôle important des termes non-électrostatiques de PCM:
 - $-\neq$ majeures entre ν_{CO} et d_{CO} proviennent de la dispersion et cavitation
 - Limite asymptotique \neq de celle du gaz \Longrightarrow soluté dans bulle de vide à l'intérieur du solvant
 - Problème mémoire pour les grosses cavités : discrétisation numérique de la surface PCM coûteuse ⇒ peut poser problème pour les anions

Calcul TDDFT dans EtOH:

- Influence du modèle SCRF:
 - Variation de la géométrie
 - Variation de réponse de la fonction d'onde à la perturbation
- Influence de la taille de la cavité
- Comparaison avec les valeurs $expérimentales^a$
- Temps CPU nécessaire

^aJ.G. Grasselli, The Atlas of Spectral Data and Physical Constants for Organic Compounds, CRC Press, Cleveland, OH (1973)

R.J Cave, K.Burke, E.W. Castner Jr., J. Phys. Chem. A. 106, 9294 (2002)

PCM(EtOH) UV TDDFT/6-311G(2d,2p)

Effet de la Géométrie

Comparaison des Modèles avec même Cavité

Comparaison aux Valeurs Expérimentales

Temps CPU du cycle SCF - PCM vs NCM - IBM64 RS6000

Conclusion UV

- Peu d'influence de la géométrie $\simeq 1-2$ nm batho-shift
- Modèle standard : effet bathochromique du solvant
 - PCM $\simeq 12 \text{ nm}$
 - NCM $\simeq 6$ nm
 - ⇒ Ecart quasi-systématique dû à la taille de la cavité
- PCM vs NCM
 - Modèle NCM standard : \simeq 6-7 nm
 - Même cavité : ≃ 1-2 nm
- Comparaison à l'expérience
 - Bon accord avec les résultats expérimentaux
- Temps CPU : $t_{CPU}(NCM) < t_{CPU}(PCM)$
 - Gain de $\simeq 15\%$ sur le cycle SCF