Az informatika logikai alapjai 4. feladatsor

Logikailag ekvivalens formulák

Kettős tagadás törvénye: ¬¬A⇔A

Kommutativitás: A ∧ B⇔B ∧ A, A ∨ B⇔B ∨ A és A≡B⇔B≡A

Asszociatívitás: A∧(B∧C)⇔(A∧B)∧C, A∀(B∀C)⇔(A∀B)

VC és A≡(B≡C)⇔(A≡B)≡C

Idempotencia: A ∧ A⇔A és A ∨ A⇔A

Disztibutivitás:

○ AV(B∧C)⇔(AVB)∧(AVC)

A∧(B∨C)⇔(A∧B)∨(A∧C)

A∧(B∨A)⇔A és A∨(B∧A)⇔A

De Morgan:

Elnyelés:

 $\neg(A \land B) \Leftrightarrow \neg A \lor \neg B \text{ és } \neg(A \lor B) \Leftrightarrow \neg A \land \neg B$

(Aszalós László fóliái, kiemelések tőlem)

Logikailag ekvivalens formulák

•	Áthelyezési törvény:	(A∧B)⊃C⇔A⊃(B⊃C)	

- Ondisztributivitás: A⊃(B⊃C)⇔(A⊃B)⊃(A⊃C)
- Esetszétválasztás: (A ∨ B) ⊃ C⇔(A ⊃ C) ∧ (B ⊃ C)

Logikai műveletek egymással való kifejezhetősége

- A⊃B⇔¬(A∧¬B)
- A⊃B⇔(¬A∨B)
- A ∧ B⇔¬(A⊃¬B)
- A ∨ B ⇔ (¬A⊃B)
- A ∨ B ⇔¬(¬A ∧ ¬B)
- A∧B⇔¬(¬A∨¬B)
- $A \equiv B \Leftrightarrow (A \supset B) \land (B \supset A)$

8.I.5. Az

$$(1) \neg (X \land Y \supset Z \lor U) \quad (2) \neg X \lor \neg Y \lor Z \lor U \quad (3) X \land Y \land (\neg Z \lor \neg U)$$

formulákra mely állítások igazak? Válaszát röviden indokolja!

- (a) (1) és (2) ekvivalensek.
- (b) (1) és (3) ekvivalensek.
- (c) Páronként bármely kettő ekvivalens egymással.
- (d) Nincs a felsoroltak között ekvivalens pár.

8.I.6. Igazoljuk az ítéletlogikai ekvivalenciák segítségével, hogy az alábbi formulák logikai törvények!

(a)
$$\neg (X \supset Y) \supset X$$

(b)
$$(X \land Y) \supset (X \supset Y)$$

(c)
$$((X \supset Y) \supset X) \supset (X \lor Y)$$

hi ldret jegen endret egnetler viivelettel?

Igen: A hand vern nor omægåhen is degnedt. Példaul:

tejepsiih hi 1-4 mand sgitsetgivel:

· [A1B] (=> 77 (AAB) (=> 7 (A nand B)

(=) 7((A wand B) ∧ (A wand B)) (=)

(A rand B) hand (A rand B)

· 7A (=> 7 (A 1A) (=>) A wand A

Melyit lepon unient jeges?

A∧B⇔B∧A, A∨B⇔B∨A és A≡B⇔B≡A $A \land (B \land C) \Leftrightarrow (A \land B) \land C, A \lor (B \lor C) \Leftrightarrow (A \lor B)$ VC és A≡(B≡C)⇔(A≡B)≡C

A∧A⇔AésA∀A⇔A

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

 $A \land (B \lor A) \Leftrightarrow A \text{ és } A \lor (B \land A) \Leftrightarrow A$

¬(A∧B)⇔¬A∨¬B és ¬(A∨B)⇔¬A∧¬B

8.I.7. Vezessük be a következő jelölést (Peirce vonás):

$$A \circ B \leftrightharpoons \neg A \wedge \neg B$$
.

A bevezetett \circ összekötő jel neve "sem-sem", $A \circ B$ jelentése: "sem A, sem B". Fejezzük ki a \neg , \lor , \land logikai összekötő jeleket a \circ jel segítségével!

Mixit pelda

Inclégi fluto ?.

$$(p \vee q) \wedge (\neg p \wedge \neg q)$$
 $(p \vee q) \wedge (\neg p \wedge \neg q)$
 $p \vee q, \neg p \wedge \neg q$
 $p \vee q, \neg p, \neg q$
 $p \vee q, \neg p, \neg q$
 $p, \neg p, \neg q$
 $p \vee q, \neg p, \neg q$

Zárt

Lu $\{p, \neg p, \neg q\}$

Ven $\{q, \neg p, \neg q\}$

Kiligishető, la {p,7p,7g} ven {q,7p,7g} hille githeto".

Milgen nalrailfor remint handmealther a failulai rout?

α	α_1	α_2	β	β_1	β_2
$\neg \neg A_1$ $A_1 \wedge A_2$ $\neg (A_1 \vee A_2)$ $\neg (A_1 \supset A_2)$	A_1 A_1 A_1 A_1	$\begin{matrix} A_2 \\ \neg A_2 \\ \neg A_2 \end{matrix}$	$ \begin{array}{c} \neg (B_1 \wedge B_2) \\ B_1 \vee B_2 \\ B_1 \supset B_2 \end{array} $	$\neg B_1$ B_1 $\neg B_1$	$ abla B_2 \\ B_2 \\ B_2 $

· [2] hipani semleit ereten bo'm' le Hii ha

Januahalment

· [2] hipani semleite ereten bleigartour. D'

alternati vai Wal ho'm' te Hii ha semle halvet

· A leveleret neloje li lhi Mangakasasaskiote (yi 6H/20it)

A ta'ble 'construcció ja peci relibre (algoritms)

hemenet: Ofemba, Kimmet: I nemark in (unide levele · Kerdella J-wer son grøter conisa ua, ciurije of y · Valamur eg l'unequem jelê et levelet U(l) a ciure semula halmar · Ha U(1) literailerenil all hor, jelihing weg. · Ha A & U(l) uen literal: - He A a tipumi famla, α1, α2 - is re Wel - He A B hipura fulla 1 T. e, 4(1) β₁, β₂ rejected. ((e)-{By, (e)-{B}y, (β₂}

A ta'ble 'construcció ja peci relibe (algoritms)

hemenet: Ofamea, Kimmenet: I nemark in Sabla · Kerdella J-wer son groter $(p \lor q) \land (\neg p \land \neg q)$ · Valar U(l) $p \lor q, \neg p \land \neg q$ I, jeli lyi 7 weg. $p \lor q, \neg p, \neg q$ $q, \neg p, \neg q$ He A B hipmin fully 1 T. e, 41 β1, β2 reinerbel U(R)- {B50 (1(l)-{Byu υ {β₂}

α	α_1	α_2	β	β_1	β_2
	A_1 A_1 A_1 A_1	$A_2 \\ \neg A_2 \\ \neg A_2$	$ \neg (B_1 \land B_2) \\ B_1 \lor B_2 \\ B_1 \supset B_2 $		

8.I.6. Igazoljuk az ítéletlegikai ekvivalenciák segítségével, hogy az alábbi formulák logikai törvények!

(c)
$$((X \supset Y) \supset X) \supset (X \lor Y)$$

Szemantikus tábla segítségével igazoljuk.

α	α_1	α_2	β	β_1	β_2
$\neg \neg A_1$ $A_1 \wedge A_2$ $\neg (A_1 \vee A_2)$ $\neg (A_1 \circ A_2)$	$A_1 \\ A_1 \\ \neg A_1 \\ A_1$	$A_2 \\ \neg A_2 \\ \neg A_2$	$ \begin{array}{c} \neg (B_1 \wedge B_2) \\ B_1 \vee B_2 \\ B_1 \supset B_2 \end{array} $	$\neg B_1$ B_1 $\neg B_1$	

7.I.23. Ellenőrizzük, hogy az alábbi következtetések helyesek-e!

(b) Premisszák:

Ha a 2 prímszám, akkor a 2 a legkisebb prímszám. Ha a 2 a legkisebb prímszám, akkor az 1 nem prímszám. Az 1 nem prímszám. Konklúzió:

Tehát a 2 prímszám.

7.I.21. Döntsük el, hogy az alábbi következményrelációk fennállnak-e!

(a)
$$X \supset \neg Y \models X \supset (Y \supset Z)$$

(b)
$$\neg X \lor Y$$
, $Z \supset \neg Y \models X \supset \neg Z$

(c)
$$(X \vee Y) \supset (Z \wedge U)$$
, $(U \vee V) \supset W \models X \supset W$

(d)
$$X \supset Y$$
, $\neg Z \supset \neg Y$, $\neg Z \lor \neg U \vDash U \supset \neg X$