Листок 1. Линейные пространства

- ОПРЕДЕЛЕНИЕ 1. Линейным простраством (или векторным пространством) над множеством чисел \mathbb{F} (обычно под числами будут подразумеваться действительные числа \mathbb{R}) называется множество L с двумя операциями сложением (паре a,b элементов L ставится в соответствие элемент L, обозначаемый a+b) и умножением (паре λ из F, a из L ставится в соответствии элемент L, обозначаемый λa) удовлетворяющими следующим условиям (аксиомам):
 - 1. a + b = b + a;
 - 2. (a+b)+c=a+(b+c);
 - 3. существует такой элемент $0 \in L$, что a + 0 = a;
 - 4. $\forall a \; \exists b \; a+b=0$:
 - 5. $\lambda(\mu a) = (\lambda \mu)a$;
 - 6. $\lambda(a+b) = \lambda a + \lambda b$;
 - 7. $1 \cdot a = a$.

Элементы линейного пространства называют векторами. Линейное пространство, состоящее из одного элемента, обозначается 0.

- 101 Являются ли линейными пространствами а) многочлены с действительными коэффициентами? А многочлены степени $\leq n$? А степени > n? б) Многочлены от x, равные в точке x = 7 нулю? Единице? А многочлены, делящиеся на $x^2 + 3$? в) Бесконечные последовательности; ограниченные последовательности; неограниченные последовательности? г) Арифметические прогрессии? Геометрические прогрессии? д) Последовательности Фибоначчи (последовательности, удовлетворяющие условию $x_{n+2} = x_{n+1} + x_n$)? е) Ограниченные функции на отрезке [0;1]? ж*) \mathbb{C} над \mathbb{R} , \mathbb{R} над \mathbb{Q} , \mathbb{R} над \mathbb{C} ?
- Определение **2.** Линейным подпространством линейного пространства L называется непустое подмножество $L_1 \subset L$, удовлетворяющее условиям:
 - 1. $\forall x, y \in L_1 \ x + y \in L_1;$
 - 2. $\forall \lambda \in F \ \forall x \in L_1 \ \lambda x \in L_1$
- **1**⋄**2** Доказать, что линейное подпространство является линейным пространством (относительно тех же операций сложения и умножения на число).

- Определение **3.** Суммой линейных подпространств L_1 и L_2 линейного пространства L называется множество, обозначаемое $L_1 + L_2$ и состоящее из всех $x \in L$, представимых в виде x = y + z, где $y \in L_1$, $z \in L_2$.
- **1** \diamond **3** Пусть L_1 , L_2 линейные подпространства. Являются ли линейными подпространствами следующие множества? **a)** $L_1 + L_2$; **b)** $L_1 \cap L_2$?
- **1<4** Пусть L_1 , L_2 , L_3 линейные подпространства. Докажите, что **a)** L_1 + $0 = L_1 = L_1 + L_1$; **б)** $L_1 \cap L_3 + L_2 \cap L_3 \subset (L_1 + L_2) \cap L_3$; **в)** приведите пример ситуации, когда два пространства из предыдущего пункта не совпадают; **г)** $L_1 + (L_2 + L_3) = (L_1 + L_2) + L_3$?
- 1 \diamond 5 Найти суммы и пересечения: а) пространства четных и пространства нечетных функций на \mathbb{R} ; б) пространства функций на \mathbb{R} , равных нулю на множествах M_1 , M_2 ; \mathbf{s}^*) пространства многочленов, делящихся на фиксированные многочлены $p_1, p_2 \in \mathbb{R}[x]$.