

Faculty of Natural Sciences

Department : Mathematics and Statistics

Programme : B. Tech.
Semester/Batch : 3rd/2023

Course Code

Course Title : Engineering Mathematics – 3

Tutorial-3

Line and Double Integral

1. Evaluate $\int_{\mathcal{C}} (2 + x^2 y) \, ds$ where \mathcal{C} is the upper half of the circle $x^2 + y^2 = 1$.

- 2. Evaluate
 - I. $\int_C (xy^2) dx$
 - II. $\int_C (xy^2) \, dy$
 - III. $\int_C (xy^2) ds$ on the quarter the circle C defined by $x = 4\cos t$, $y = 4\sin t$, $0 \le t \le \frac{\pi}{2}$.
- 3. Evaluate $\int_C 4x \, dx + 2y \, dy$ where C is given by $x = y^3 + 1$ from the point (0, -1), to(9, 2).
- 4. Evaluate $\int_C y \sin z \, ds$ where C is the helix given by, $\vec{r}(t) = \cos t \, \hat{\imath} + \sin t \, \hat{\jmath} + t \hat{k}$, $0 \le t \le 2\pi$.
- 5. Evaluate the integral I along the circular arc C given by $x = \cos t$, $y = \sin t$, $0 \le t \le \frac{\pi}{2}$

$$I = \int_C 2xydx + (x^2 + y^2)dy.$$

- 6. Evaluate $\int_{\mathcal{C}} 4x^3 ds$ where \mathcal{C} is the line segment from (-2, -1) to (1,2).
- 7. Define work done along the curve C. Find the work done in moving particle in the force field $\vec{\mathrm{F}}=3x^2\hat{\mathrm{i}}+(2xz-y)\hat{\mathrm{j}}+z\hat{\mathrm{k}}$, over the curve defined by $x=t,y=\frac{t^2}{4}$, $z=\frac{3t^3}{8}$ in the interval $0\leq t\leq 1$.
- 8. Find the total work done in moving particle in a force field $\vec{F} = 3xy\hat{\imath} 5z\hat{\jmath} + 10x\hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$ and $z = t^3$ form t = 1 to t = 2.
- 9. If $\vec{F} = (3x^2 + 6y)\hat{\imath} 14yz\hat{\jmath} + 20xz^2\hat{k}$ evaluate $\int_c \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the curve c given by x = t; $y = t^2$; $z = t^3$.
- 10. If $\vec{F} = (5xy 6x^2)\hat{i} + (2y 4x)\hat{j}$ then evaluate $\int_c \vec{F} \cdot d\vec{r}$ where c is the curve $y = x^3$ from the point (1, 1) to the point (2, 8).
- 11. Find the total work done by a force $\overrightarrow{F} = xy\hat{\imath} + yz\hat{\jmath} + zx\hat{k}$ along the curve x = t; $y = t^2$; $z = t^3$ from t = -1 to t = 1.
- 12. Evaluate the following integral over the region $R = \{(x, y): 0 \le x \le 1, 0 \le y \le \ln 2\}$

$$\iint_{R} y e^{xy} \, dx dy.$$

13. Evaluate the double integral

$$\iint_{R} (x - 3y^2) dy dx \text{ where } R = \{0 \le x \le 2, 1 \le y \le 2\}$$

$$\iint_D (x+2y)dA$$
 over the region bounded by the parabola $y=2x^2$ and $y=1+x^2$

15. Evaluate following double integral

$$\iint_{\mathcal{D}} (e^{x+3y}) dA$$
 over the region bounded by $y=1$ and $y=2, y=x, y=-x+5$

By changing the order of integration evaluate 16.

(i)
$$\int_{x=1}^{2} \int_{2}^{4} (xy + e^{y}) dy dx$$

(ii)
$$\int_{y-}^{1} \int_{y}^{1} \sin(y^2) \, dy \, dx$$

(iii))
$$\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} dx dy$$

(ii)
$$\int_{x=}^{1} \int_{x}^{1} \sin(y^{2}) dy dx$$

(iii) $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} dx dy$
iv) $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} dx dy$

Convert the following double integrals into polar coordinates by showing the region of integration 17. and then evaluate

(i)
$$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$$

(ii)
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \sqrt{x^2 + y^2} \, dy \, dx$$

(iii)
$$\int_0^a \int_y^a \frac{x^2}{\sqrt{x^2 + y^2}} dx dy$$

ANSWERS:

1.
$$\frac{2(3\pi+1)}{3}$$

2. (a)
$$-64$$
 (b) 16π (c) $\frac{256}{3}$

(b)
$$16\pi$$

(c)
$$\frac{256}{3}$$

3.
$$I = 165$$

4.
$$\sqrt{2} \pi$$

5.
$$I = \frac{1}{2}$$

6.
$$I = -15\sqrt{2}$$

7. $W = \frac{141}{128}$
8. $W = 30$

7.
$$W = \frac{141}{128}$$

8.
$$W = 30$$

9.
$$W = \frac{10}{7}$$

10.
$$W = 3$$

11.
$$W = 5$$

12.
$$e^{ln2} - ln2 - 1$$

13.
$$I = -12$$

14.
$$I = \frac{32}{5}$$

14.
$$I = \frac{32}{5}$$

15. $I = \frac{e^9}{2} - \frac{e^8}{4} - \frac{e^7}{2} + \frac{e^4}{4}$

16. i)
$$I = \frac{9}{2} + e^4 - e^2$$
. ii) $I = \frac{1}{2}(1 - \cos(1))$. iii) $I = \frac{\pi a}{4}$ iv) $\frac{\pi a^3}{6}$

17. i)
$$I = \frac{\pi}{4}$$

17. i)
$$I = \frac{\pi}{4}$$
 ii) $\frac{\pi a^3}{3}$ iii) $\frac{a^3}{3} \log(\sqrt{2} + 1)$