

MAE 5803 NONLINEAR CONTROL SYSTEMS

Nonlinear Systems Analysis and Stability

Yongki Go

Mechanical & Aerospace Engineering

Stability Concepts for Autonomous Systems

Equilibrium Points

- 4
- *Definition*: \mathbf{x}^* is an equilibrium point (or state) of system if once $\mathbf{x}(t) = \mathbf{x}^*$, it remains equal to \mathbf{x}^* for all future time
- Mathematically: for the system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
 - \rightarrow equilibrium point: $\dot{\mathbf{x}} = \mathbf{0} \rightarrow \mathbf{f}(\mathbf{x}^*) = \mathbf{0}$
- Nonlinear system may have several (or infinitely many) isolated equilibrium points
 - □ *Note*: in linear system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ with \mathbf{A} nonsingular, there is only a single isolated equilibrium point at $\mathbf{x} = \mathbf{0}$
- Transformation can often be done so that the origin $(\mathbf{x} = \mathbf{0})$ becomes one of the equilibrium points of interest

$$\mathbf{y} = \mathbf{x} - \mathbf{x}^*$$
 \longrightarrow $\mathbf{x} = \mathbf{y} + \mathbf{x}^*$ $\dot{\mathbf{y}} = \dot{\mathbf{x}}$ \longrightarrow $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y} + \mathbf{x}^*)$

Equilibrium point: $y = 0 \iff x = x^*$

Nominal Motion

- Nominal motion: solution $\mathbf{x}^*(t)$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ corresponding to initial condition $\mathbf{x}^*(0) = \mathbf{x}_0$
 - □ In practical problems, this solution often represents nominal or reference motion trajectory
 - □ Concept of nominal motion can be made equivalent to equilibrium point by looking at error variation about $\mathbf{x}^*(t)$

Stability Concepts (1)

• *Definition*: The equilibrium $\mathbf{x} = \mathbf{0}$ is (Lyapunov) stable if

$$\forall R > 0, \ \exists r > 0, || \mathbf{x}(0) || < r \implies \forall t \ge 0, \ || \mathbf{x}(t) || < R$$

$$\mathbf{x}(0) \in \mathbf{B}_r \qquad \mathbf{x}(t) \in \mathbf{B}_R$$

■ *Definition*: The equilibrium $\mathbf{x} = \mathbf{0}$ is asymptotically stable if it is stable and $\exists r > 0, ||\mathbf{x}(0)|| < r \implies \mathbf{x}(t) \rightarrow \mathbf{0}, t \rightarrow \infty$

- 1 asymptotically stable
- 2 marginally stable (Lyapunov stable but not asymptotically stable) 3 unstable

For asymptotic stability, \mathbf{B}_r is domain of attraction of the equilibrium point

Stability Concepts (2)

- *Definition*: The equilibrium $\mathbf{x} = \mathbf{0}$ is exponentially stable if inside \mathbf{B}_r , $\exists \alpha > 0$, $\exists \lambda > 0 \implies \forall t \geq 0$, $\parallel \mathbf{x}(t) \parallel \leq \alpha \parallel \mathbf{x}(0) \parallel e^{-\lambda t}$
 - \rightarrow λ is similar to *time constant* in linear system, indicating rate of exponential convergence

Example:
$$\dot{x} = -(1 + \sin^2 x)x$$

$$\int_{-\int_{0}^{t} (1 + \sin^2 x(\tau)) d\tau}^{t} d\tau$$
Solution: $x = x(0)e^{-0}$

 $|x(t)| \le |x(0)| e^{-t}$ exponentially stable with a rate of at least 1

Stability Concepts (3)

- Exponential stability implies asymptotic stability, but asymptotic stability does not imply exponential stability
- In the previous asymptotic or exponential stability, if it holds for any initial states $(r \to \infty \text{ or } \mathbf{B}_r \text{ has infinite radius})$
 - asymptotic or exponential stability in the large, or global asymptotic or exponential stability
- Discussion on stability of system is only relevant if it involves global asymptotic or exponential stability
- Global asymptotic or exponential stability is only relevant if there is only one equilibrium point
- For linear systems: all these stability definitions collapse into one → no differentiation needed

Lyapunov's Indirect Method (1)

- Local stability of nonlinear system can be determined based on its linearization about equilibrium point of interest
 - Nonlinear system should behave similarly to its linearized approximation in the small range of motions
 - → Lyapunov's indirect method or linearization method
- Linearization:

Nonlinear autonomous system: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ Taylor series expansion about $\mathbf{x} = \mathbf{0}$: $\dot{\mathbf{x}} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)_{\mathbf{x}=\mathbf{0}} \mathbf{x} + h.o.t.(\mathbf{x})$

Linearized approximation about $\mathbf{x} = \mathbf{0}$:

$$\dot{\mathbf{x}} = \mathbf{A} \mathbf{x}$$
 $\mathbf{A} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)_{\mathbf{x}=\mathbf{0}}^{\mathbf{x}=\mathbf{0}}$ Jacobian matrix of \mathbf{f} at $\mathbf{x} = \mathbf{0}$, eigenvalues: $\lambda_i(\mathbf{A})$, $i = 1, ..., n$

Lyapunov's Indirect Method (2)

In a system with control: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

Taylor series expansion about $\mathbf{x} = \mathbf{0}$ and $\mathbf{u} = \mathbf{0}$:

$$\dot{\mathbf{x}} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)_{\substack{\mathbf{x}=\mathbf{0},\\\mathbf{u}=\mathbf{0}}} \mathbf{x} + \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x}=\mathbf{0},\\\mathbf{u}=\mathbf{0}}} \mathbf{u} + h.o.t.(\mathbf{x}, \mathbf{u})$$

Linearized approximation about $\mathbf{x} = \mathbf{0}$ and $\mathbf{u} = \mathbf{0}$:

$$\dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} + \mathbf{B} \, \mathbf{u} \qquad \mathbf{A} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{x} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} = \mathbf{0}}} \quad \mathbf{B} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)_{\substack{\mathbf{u} = \mathbf{0}, \\ \mathbf{u} =$$

- Lyapunov's indirect method:
 - □ If Re{ $\lambda_i(\mathbf{A})$ } < 0 for all i, $\mathbf{x} = \mathbf{0}$ is locally asymptotically stable
 - □ If Re{ $\lambda_i(\mathbf{A})$ } > 0 for at least one i, $\mathbf{x} = \mathbf{0}$ is locally unstable
 - □ If Re{ $\lambda_i(\mathbf{A})$ } = 0 for at least one i, the local stability of $\mathbf{x} = \mathbf{0}$ cannot be concluded

Lyapunov's Direct Method (1)

- Lyapunov's direct method is generalization of concept of energy of system
 - Basic procedure: formulation of *scalar energy-like function* for the system and evaluation of its *time variation*
 - System with energy dissipation: stable
 - System with energy growth: unstable
- Definition: Scalar continuous function $V(\mathbf{x})$ is locally positive definite if $V(\mathbf{0}) = 0$ and $V(\mathbf{x}) > 0$ for $\mathbf{x} \neq \mathbf{0}$, $||\mathbf{x}|| < R$
 - $\neg V(\mathbf{x})$ is globally positive definite if $R \to \infty$

Lyapunov's Direct Method (2)

For $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, time derivative of V:

$$\dot{V} = \frac{dV(\mathbf{x})}{dt} = \frac{\partial V}{\partial \mathbf{x}} \dot{\mathbf{x}} = \frac{\partial V}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x})$$

Local stability theorem:

The equilibrium $\mathbf{x} = \mathbf{0}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is *stable* if $\exists V(\mathbf{x})$ such that in $||\mathbf{x}|| < R$:

- $V(\mathbf{x})$ is positive definite
- $V(\mathbf{x})$ negative semi-definite for any solution $\mathbf{x}(t)$
- If in the theorem above $\dot{V}(\mathbf{x})$ is negative definite in $\|\mathbf{x}\| < R$, then equilibrium $\mathbf{x} = \mathbf{0}$ is asymptotically stable

Lyapunov's Direct Method (3)

Global stability theorem:

The equilibrium $\mathbf{x} = \mathbf{0}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is *globally asymptotically stable* if $\exists V(\mathbf{x})$ such that:

- $V(\mathbf{x})$ is positive definite
- $V(\mathbf{x})$ is negative definite for any solution $\mathbf{x}(t)$
- $V(\mathbf{x}) \to \infty$ as $||\mathbf{x}|| \to \infty$ (radial unboundedness)
- Motivation for the radial unboundedness:

Radial unboundedness guarantees that V = constant corresponds to closed curves

Invariant Set

- Definition: A set G is invariant if once in it, the trajectory stays in it
- Examples of invariant set:
 - Equilibrium point
 - Domain of attraction of equilibrium point
 - Any trajectory of autonomous system
 - Limit cycles
- Invariant set idea can often be used to describe convergence to dynamic behaviors other than equilibrium points, e.g. convergence to limit cycle

Local Invariant Set

- tion of
- Local invariant set theorem: Let $V(\mathbf{x})$ be a scalar function of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with the following properties:
 - \square For some l > 0, the region Ω_l defined by $V(\mathbf{x}) < l$ is bounded
 - $\vec{V}(\mathbf{x}) \leq 0$ in Ω_l

Let $\mathbf{R} \subset \Omega_l$ where $\dot{V}(\mathbf{x}) = 0$, and \mathbf{M} be the largest invariant set in \mathbf{R} , then all trajectories $\mathbf{x}(t)$ starting in Ω_l tends to \mathbf{M}

Note: Lyapunov local asymptotic stability theorem is a special case of local invariant set theorem, where **M** consists only of the origin

Global Invariant Set

- Global invariant set theorem: Let $V(\mathbf{x})$ be a scalar function of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with the following properties:
 - $\neg V(\mathbf{x}) \rightarrow \infty \text{ as } ||\mathbf{x}|| \rightarrow \infty$
 - $\vec{V}(\mathbf{x}) \leq 0$ over the whole state space
 - Let \mathbf{R} : $\dot{V}(\mathbf{x}) = 0$, and \mathbf{M} be the largest invariant set in \mathbf{R} , then all trajectories $\mathbf{x}(t)$ globally converge to \mathbf{M}
- Note: Lyapunov global asymptotic stability theorem is a special case of global invariant set theorem, where M is the origin

Analysis Based on Lyapunov's Direct Method

- Lyapunov stability analysis is applicable to all systems: linear or nonlinear
 - Lyapunov functions can be considered as common language between linear and nonlinear systems
- Key in analysis based on Lyapunov's direct method: finding Lyapunov function
 - Key question: how to find Lyapunov function for a specific problem
 - No general way of finding Lyapunov functions for nonlinear systems
 - □ For linear systems, Lyapunov functions can be found systematically

Symmetric Matrices and Positive Definiteness

- Square matrix **M** is *symmetric* if $\mathbf{M}^T = \mathbf{M}$
- Square matrix **M** is *skew-symmetric* if $\mathbf{M}^T = -\mathbf{M}$

$$\Rightarrow \forall \mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^T \mathbf{M} \mathbf{x} = 0$$

• For any square matrix **M**:

$$\mathbf{M} = \frac{\mathbf{M} + \mathbf{M}^{T}}{2} + \frac{\mathbf{M} - \mathbf{M}^{T}}{2}$$
symmetric skew-symmetric

$$\Rightarrow \forall \mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^T \mathbf{M} \mathbf{x} = \mathbf{x}^T \left(\frac{\mathbf{M} + \mathbf{M}^T}{2} \right) \mathbf{x}$$
general symmetric

- M is positive definite (M > 0) if $\forall x \neq 0$, $x^T M x > 0$
- M is positive semi-definite (M > 0) if $\forall x \neq 0$, $x^T M x \geq 0$ In considering positive-definiteness, without loss of generality, M can always be assumed symmetric

Lyapunov Functions for LTI Systems

- LTI system: $\dot{\mathbf{x}} = \mathbf{A} \mathbf{x}$
- Candidate Lyapunov function: $V = \mathbf{x}^T \mathbf{P} \mathbf{x}$; $\mathbf{P} = \mathbf{P}^T > \mathbf{0}$

$$\overrightarrow{V} = \dot{\mathbf{x}}^T \mathbf{P} \mathbf{x} + \mathbf{x}^T \mathbf{P} \dot{\mathbf{x}} = \mathbf{x}^T (\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A}) \mathbf{x}$$

- \rightarrow **Q** > **0** for asymptotically stable system
- For determining the Lyapunov function:
 - □ Start with $\mathbf{Q} > \mathbf{0}$
 - □ Solve **P** from Lyapunov equation $\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} = -\mathbf{Q}$
 - \Box Check whether P > 0

If P > 0, then the LTI system is globally asymptotically stable (necessary and sufficient condition)

Lyapunov Functions for Nonlinear Systems (1)

- There are mathematically-motivated techniques of construction Lyapunov functions, e.g.:
 - Krasovskii's method
 - Variable gradient method
 but their applicability to physical systems is often limited
- Elegant and powerful Lyapunov analysis, even for very complex systems, can often be done by properly exploiting system's physical properties and engineering insight
 - → Physically motivated Lyapunov functions
 - Concepts of energy is often useful for Lyapunov analysis
 - For mechanical systems: total mechanical energy (sum of kinetic and potential energy) is often a good Lyapunov function candidate

Lyapunov Functions for Nonlinear Systems (2)

Example: 2nd-order scalar systems

Analogy with linear mass-spring-damper systems is often used in Lyapunov analysis of 2nd-order nonlinear systems

Linear mass-spring-damper system:

EOM:
$$m\ddot{x} + c\dot{x} + kx = 0$$

Lyapunov function candidate based on total mechanical energy: $V = \frac{1}{2}m\dot{x}^2 + \int_{-\infty}^{x} k y dy$

$$T = \frac{1}{2}m\dot{x}^2 + \int_{0}^{\infty} k y dy$$

$$KE \qquad PE$$

2nd-order nonlinear system: $m\ddot{x} + b(\dot{x}) + c(x) = 0$

Often-used Lyapunov function: $V = \frac{1}{2}m\dot{x}^2 + \int_0^x c(y)dy$

Lyapunov Functions for Nonlinear Systems (3)

Example: A class of multivariable systems

Linear dynamical system: $M\ddot{q} + C\dot{q} + Kq = 0$

Energy-based Lyapunov function:
$$V = \frac{1}{2}\dot{\mathbf{q}}^T\mathbf{M}\dot{\mathbf{q}} + \frac{1}{2}\mathbf{q}^T\mathbf{K}\mathbf{q}$$

KE
PE

In similar fashion, for nonlinear dynamical systems:

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{K}(\mathbf{q}) = \mathbf{0}$$

Good Lyapunov function candidate:

$$V = \frac{1}{2}\dot{\mathbf{q}}^T \mathbf{M}(\mathbf{q})\dot{\mathbf{q}} + \frac{1}{2}\mathbf{K}^T(\mathbf{q})\mathbf{K}(\mathbf{q})$$

Control Design Using Lyapunov's Direct Method

- Two ways of using Lyapunov's direct method for designing a stable control system:
 - Hypothesize a control law, then find a Lyapunov function to justify it
 - The control law is stabilizing if Lyapunov function can be found
 - Hypothesize a Lyapunov function candidate, then find a control law to make this candidate a real Lyapunov function
- Performance is not clearly addressed

Stability Concepts for Non-Autonomous Systems

Equilibrium Points and Invariant Sets

- Many of the stability concepts for non-autonomous systems are similar to those of the autonomous systems
 - \Box Main difference: explicit dependence on initial time t_0
 - Uniformity concept
- *Definition*: \mathbf{x}^* is an equilibrium point (or state) of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$ if $\mathbf{f}(\mathbf{x}, t) \equiv \mathbf{0}$; $\forall t \geq t_0$
- Definition of invariant sets is the same as autonomous systems
 - □ For non-autonomous systems: trajectory $\mathbf{x}(t)$ is not an invariant set

Extension of Previous Stability Concepts

- *Definition*: The equilibrium $\mathbf{x} = \mathbf{0}$ is (Lyapunov) stable at t_0 if $\forall R > 0$, $\exists r(R, t_0) > 0$, $||\mathbf{x}(t_0)|| < r$ $\Rightarrow \forall t \ge t_0$, $||\mathbf{x}(t)|| < R$ $\mathbf{x}(t_0) \in \mathbf{B}_r$
- *Definition*: Equilibrium $\mathbf{x} = \mathbf{0}$ is asymptotically stable at t_0 if it is stable and $\exists r(t_0) > 0, ||\mathbf{x}(t_0)|| < r(t_0) \implies \mathbf{x}(t) \to \mathbf{0}, t \to \infty$ □ Domain of attraction \mathbf{B}_r is dependent on t_0
- *Definition*: The equilibrium $\mathbf{x} = \mathbf{0}$ is exponentially stable if inside \mathbf{B}_r , $\exists \alpha > 0$, $\exists \lambda > 0 \Rightarrow \forall t \geq t_0$, $||\mathbf{x}(t)|| \leq \alpha ||\mathbf{x}(t_0)|| e^{-\lambda(t-t_0)}$
- *Definition*: Equilibrium $\mathbf{x} = \mathbf{0}$ is globally asymptotically stable if $\forall \mathbf{x}(t_0) \Rightarrow \mathbf{x}(t) \rightarrow \mathbf{0}, t \rightarrow \infty$

Uniform Stability Concepts

- *Definition*: Equilibrium $\mathbf{x} = \mathbf{0}$ is locally *uniformly stable* if it is stable with r independent of t_0 , i.e. r = r(R)
- *Definition*: Equilibrium $\mathbf{x} = \mathbf{0}$ is locally uniformly asymptotically stable if it is uniformly stable and the domain of attraction \mathbf{B}_r is independent of t_0 , such that

$$\forall \mathbf{x}(t_0) \subset \mathbf{B}_r \implies \mathbf{x}(t) \to \mathbf{0}, \ t \to \infty$$

If in the definition above \mathbf{B}_r includes the whole state space, then the equilibrium is globally uniformly asymptotically stable

Uniform asymptotic stability \longrightarrow asymptotic stability

Positive Definite and Decrescent Functions

- Definition: Scalar continuous function $V(\mathbf{x}, t)$ is locally positive definite if $V(\mathbf{0}, t) = 0$ and $\exists V_0(\mathbf{x}) > 0$ such that $\forall t \geq t_0, V(\mathbf{x}, t) \geq V_0(\mathbf{x})$
 - □ *Time-variant function* is locally positive definite if it dominates a positive-definite *time-invariant function*
- *Definition*: Scalar continuous function $V(\mathbf{x}, t)$ is *decrescent* if $V(\mathbf{0}, t) = 0$ and $\exists V_l(\mathbf{x}) > 0$ such that $\forall t \geq t_0, V(\mathbf{x}, t) \leq V_l(\mathbf{x})$
 - Decrescent function is dominated by a positive-definite timeinvariant function

Lyapunov Theorems for Non-Autonomous Systems

- Local stability theorem:
 - The equilibrium $\mathbf{x} = \mathbf{0}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$ is *stable* if $\exists V(\mathbf{x}, t)$ such that in $||\mathbf{x}|| < R$:
 - $V(\mathbf{x},t)$ is positive definite
 - $\dot{V}(\mathbf{x},t)$ is negative semi-definite
- If in the definition above $\dot{V}(\mathbf{x},t)$ is negative definite, $\mathbf{x} = \mathbf{0}$ is asymptotically stable
- If furthermore $V(\mathbf{x}, t)$ is decrescent, then $\mathbf{x} = \mathbf{0}$ is uniformly asymptotically stable
- If furthermore $V(\mathbf{x}, t)$ is radially unbounded, then $\mathbf{x} = \mathbf{0}$ is globally uniformly asymptotically stable

Lyapunov Analysis for LTV Systems

- LTV system: $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}$
- Sufficient condition for stability:
 - $\dot{\mathbf{x}} = \mathbf{A}(t) \mathbf{x}$ is asymptotically stable if $\exists \lambda > 0, \forall i, \forall t \geq 0, \lambda_i (\mathbf{A}(t) + \mathbf{A}^T(t)) \leq -\lambda$
- Using Lyapunov function: $V = \mathbf{x}^T \mathbf{x}$

$$\dot{\mathbf{V}} = \dot{\mathbf{x}}^T \mathbf{x} + \mathbf{x}^T \dot{\mathbf{x}} = \mathbf{x}^T (\mathbf{A}(t) + \mathbf{A}^T(t)) \mathbf{x}$$

If
$$\lambda_i(\mathbf{A}(t) + \mathbf{A}^T(t)) \le -\lambda$$
, then
$$\dot{V} = \mathbf{x}^T(\mathbf{A}(t) + \mathbf{A}^T(t))\mathbf{x} \le -\lambda \mathbf{x}^T \mathbf{x} = -\lambda V$$

$$\rightarrow \forall t \geq 0, \quad 0 \leq V(t) \leq V(0)e^{-\lambda t}$$

 \rightarrow $\mathbf{x}(t) \rightarrow \mathbf{0}$ exponentially

Barbalat's Lemma

- Some facts about differentiable function f(t):

Example:
$$f(t) = \sin(\log t) \implies \dot{f}(t) = \frac{\cos(\log t)}{t} \to 0 \text{ as } t \to \infty$$

Example:
$$f(t) = e^{-t} \sin(e^{2t}) \to 0 \implies \dot{f}(t) \to \infty \text{ as } t \to \infty$$

- □ If f is lower bounded and decreasing ($\dot{f} \le 0$), then it is converges to a limit
 - \mathbf{f} may not go to zero
- Barbalat's lemma: If f o finite limit as $t o \infty$ and \dot{f} is continuous (\ddot{f} is bounded), then $\dot{f}(t) o 0$ as $t o \infty$

Lyapunov-Like Analysis Using Barbalat's Lemma

- Lyapunov-like lemma: If $V(\mathbf{x}, t)$ satisfies the following:
 - $\nabla V(\mathbf{x}, t)$ is lower bounded $(V(\mathbf{x}, t) \ge 0)$
 - $\vec{V}(\mathbf{x},t) \leq 0$
 - □ $\dot{V}(\mathbf{x},t)$ is uniformly continuous ($\ddot{V}(\mathbf{x},t)$ is bounded) then $\dot{V}(\mathbf{x},t) \to 0$ as $t \to \infty$
- The same challenge as in Lyapunov analysis: proper choice of V
- Application in control: choose u to shape V to make V useful
 - \supset Variables to converge should be contained in V

