Finding MLEs (2)

- 1. Let $X_1, \ldots, X_n | \lambda \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\lambda)$, and let $Y_1, \ldots, Y_m | \lambda, \tau \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\tau \lambda)$, where the **X** data are independent of the **Y** data given $\boldsymbol{\theta} = (\lambda, \tau)$. Find the MLE for $\boldsymbol{\theta}$ using the data X_1, \ldots, X_n and Y_1, \ldots, Y_n . Don't be scared by the two sets of data. What does the likelihood for $\boldsymbol{\theta}$ look like?
- 2. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Unif}[\theta_1, \theta_2]$, where $-\infty < \theta_1 < \theta_2 < \infty$ are both unknown. Find an MLE of $\boldsymbol{\theta} = (\theta_1, \theta_2)$ if one exists. Note: the solution will rely less on Calculus and more on reasoning.