

Building the Solution

How? Formatting collection and retrieval uniformly

What? Type of data: a fully evolved EHR

Where? Site of the Collection: Any clinical site

When? Real-time (prospective>retrospective)

Who? Physician, physician extender, paramedical staff,

administrator/clerk

Why? Stated objectives supported by advanced metrics

The ideal EHR

Contains all the elements of a traditional medical record, in a traditional medical format.

All data fields, representing both structured and unstructured data, are extractable and accountable.

Personal Health Information is easily sanitized for data analytics.

The ideal EHR analytics tool

(How We Do It)

Mining from a specific EHR data base, using a generic template (design, matrix)

Identical method of aggregation, assembly and Bayesian analysis

Same access/usability at multiple sites

Example of Similarity Analytics

Includes patient features that may not ultimately be relevant determinants for outcomes

Similarity Analytics

WHAT ARE THE DRAWBACKS?

What qualifies as a feature?

How do the weights change across judgment contexts?

What determines the feature weights?

Behavioral and Brain Sciences

Bayesian Based Metrics

Allow for detection of nuances in a disease pattern/presentation.

HOW?

Application of such a tool have shown valid predictability with a short "ramp-up" period (number of cases required for validity) because of the number of data fields collected per encounter.

Bayesian Models

Designed to deal with uncertainty.

Transparency, so the model is easily interpreted.

Intuitive usage, which is attractive in complex modeling problems such as systematic review.

Bayesian Models

Probabilistic inference capability facilitates predictions about unobserved data that could allow for filling of data gaps.

Bayesian Networks and machine learning technology support complex optimizations.

AHIMA

 Use of the tool within standard clinical processes does not require additional personnel

One template multiple applications

Multiple management decisions