In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	CO	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2006-02-01 01:00:00	NaN	1.84	NaN	NaN	NaN	155.100006	490.100006	NaN	4.880000	97.
1	2006-02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000	25.
2	2006-02-01 01:00:00	NaN	1.25	NaN	NaN	NaN	66.800003	192.000000	NaN	4.430000	34.
3	2006-02-01 01:00:00	NaN	1.68	NaN	NaN	NaN	103.000000	407.799988	NaN	4.830000	28.
4	2006-02-01 01:00:00	NaN	1.31	NaN	NaN	NaN	105.400002	269.200012	NaN	6.990000	54.
230563	2006-05-01 00:00:00	5.88	0.83	6.23	NaN	0.20	112.500000	218.000000	NaN	24.389999	93.
230564	2006-05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000	29.
230565	2006-05-01 00:00:00	0.96	NaN	0.69	NaN	0.19	135.100006	179.199997	NaN	11.460000	64.
230566	2006-05-01 00:00:00	0.50	NaN	0.67	NaN	0.10	82.599998	105.599998	NaN	NaN	94.
230567	2006-05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000	52.

230568 rows × 17 columns

In [3]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 230568 entries, 0 to 230567
Data columns (total 17 columns):
Columns Non Null County Divisor

#	Column	Non-Null Count	Dtype					
0	date	230568 non-null	object					
1	BEN	73979 non-null	float64					
2	CO	211665 non-null	float64					
3	EBE	73948 non-null	float64					
4	MXY	33422 non-null	float64					
5	NMHC	90829 non-null	float64					
6	NO_2	228855 non-null	float64					
7	NOx	228855 non-null	float64					
8	OXY	33472 non-null	float64					
9	0_3	216511 non-null	float64					
10	PM10	227469 non-null	float64					
11	PM25	61758 non-null	float64					
12	PXY	33447 non-null	float64					
13	S0_2	229125 non-null	float64					
14	TCH	90887 non-null	float64					
15	TOL	73840 non-null	float64					
16	station	230568 non-null	int64					
dtyp	es: float	64(15), int64(1),	object(1)					
momony usago: 20 Or MP								

memory usage: 29.9+ MB

In [4]: b=a.fillna(value=124)

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	
0	2006-02-01 01:00:00	124.00	1.84	124.00	124.00	124.00	155.100006	490.100006	124.00	4.{
1	2006-02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.'
2	2006-02-01 01:00:00	124.00	1.25	124.00	124.00	124.00	66.800003	192.000000	124.00	4.4
3	2006-02-01 01:00:00	124.00	1.68	124.00	124.00	124.00	103.000000	407.799988	124.00	4.8
4	2006-02-01 01:00:00	124.00	1.31	124.00	124.00	124.00	105.400002	269.200012	124.00	6.9
230563	2006-05-01 00:00:00	5.88	0.83	6.23	124.00	0.20	112.500000	218.000000	124.00	24.3
230564	2006-05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.4
230565	2006-05-01 00:00:00	0.96	124.00	0.69	124.00	0.19	135.100006	179.199997	124.00	11.4
230566	2006-05-01 00:00:00	0.50	124.00	0.67	124.00	0.10	82.599998	105.599998	124.00	124.(
230567	2006-05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.7

230568 rows × 17 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2006-02-01 01:00:00	124.00	1.84	124.00	124.000000	124.00	155.100006	490.100006	124.00	4.88	_
1	2006-02-01 01:00:00	1.68	1.01	2.38	6.360000	0.32	94.339996	229.699997	3.04	7.10	
2	2006-02-01 01:00:00	124.00	1.25	124.00	124.000000	124.00	66.800003	192.000000	124.00	4.43	
3	2006-02-01 01:00:00	124.00	1.68	124.00	124.000000	124.00	103.000000	407.799988	124.00	4.83	
4	2006-02-01 01:00:00	124.00	1.31	124.00	124.000000	124.00	105.400002	269.200012	124.00	6.99	
5	2006-02-01 01:00:00	9.41	1.69	9.98	19.959999	0.44	142.199997	453.500000	11.31	5.99	
6	2006-02-01 01:00:00	124.00	1.28	124.00	124.000000	0.57	94.320000	294.000000	124.00	6.77	
7	2006-02-01 01:00:00	0.27	1.51	0.28	124.000000	0.46	144.699997	385.299988	124.00	5.30	
8	2006-02-01 01:00:00	124.00	2.65	124.00	124.000000	124.00	197.100006	673.099976	124.00	2.64	1
9	2006-02-01 01:00:00	124.00	1.30	124.00	124.000000	124.00	130.899994	282.000000	124.00	5.14	
10	2006-02-01 01:00:00	124.00	1.48	124.00	124.000000	0.50	75.260002	248.899994	124.00	2.20	

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	124.00	1.84	124.00	124.000000	124.00	155.100006	490.100006	124.00	4.88
1	1.68	1.01	2.38	6.360000	0.32	94.339996	229.699997	3.04	7.10
2	124.00	1.25	124.00	124.000000	124.00	66.800003	192.000000	124.00	4.43
3	124.00	1.68	124.00	124.000000	124.00	103.000000	407.799988	124.00	4.83
4	124.00	1.31	124.00	124.000000	124.00	105.400002	269.200012	124.00	6.99
5	9.41	1.69	9.98	19.959999	0.44	142.199997	453.500000	11.31	5.99
6	124.00	1.28	124.00	124.000000	0.57	94.320000	294.000000	124.00	6.77
7	0.27	1.51	0.28	124.000000	0.46	144.699997	385.299988	124.00	5.30
8	124.00	2.65	124.00	124.000000	124.00	197.100006	673.099976	124.00	2.64
9	124.00	1.30	124.00	124.000000	124.00	130.899994	282.000000	124.00	5.14
10	124.00	1.48	124.00	124.000000	0.50	75.260002	248.899994	124.00	2.20

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
 Out[9]: <seaborn.axisgrid.PairGrid at 0x182812a9280>
            120 -
100 -
80 -
N 60 -
            2.50 -
2.25 -
2.00 -
8 <sub>1.75</sub> -
             1.50
             1.25
             120
100
             120
100
            200
180
                                                                                                   .
                        .
             120
100
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
In [11]: from sklearn.model_selection import train_test_split
In [12]: from sklearn.linear_model import LinearRegression
            lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
            -1.7053025658242404e-13
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                    Co-efficient
             BEN -5.592458e-17
                  2.145161e-13
             CO
             EBE -1.263043e-16
            MXY
                  2.236237e-16
           NMHC
                 2.732046e-16
            NO_2 -1.270519e-15
            NOx 1.000000e+00
            OXY 4.694919e-16
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x18288a9c790>
           450
           400
           350
           300
           250
           200
                 200
                          250
                                  300
                                          350
                                                   400
                                                           450
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9999995223798749
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9999994937723611
In [22]: a1=b.head(5000)
Out[22]:
                                              MXY
                                  CO
                     date
                            BEN
                                       EBE
                                                   NMHC
                                                              NO_2
                                                                          NOx
                                                                                 OXY O_3
                2006-02-01
                          124.00 1.84 124.00 124.00 124.00 155.100006 490.100006 124.00 4.88 97.
                  01:00:00
                2006-02-01
                            1.68 1.01
                                        2.38
                                              6.36
                                                     0.32
                                                           94.339996 229.699997
                                                                                 3.04 7.10 25.
                  01:00:00
                2006-02-01
                          124.00 1.25 124.00 124.00 124.00
                                                           66.800003 192.000000 124.00 4.43 34.
                  01:00:00
                2006-02-01
                          124.00 1.68 124.00 124.00 124.00 103.000000 407.799988 124.00 4.83
                  01:00:00
                2006-02-01
                          124.00 1.31 124.00 124.00 124.00 105.400002 269.200012 124.00 6.99 54.
                  01:00:00
                2006-02-09
           4995
                          124.00 1.52 124.00 124.00 124.00
                                                           92.889999 317.600006 124.00 4.27 40.
                  01:00:00
                2006-02-09
           4996
                          01:00:00
                2006-02-09
           4997
                            6.72 1.96
                                        7.57
                                             15.48
                                                     0.55 171.300003 544.700012
                                                                                 7.96 5.94 92.
                  01:00:00
                2006-02-09
           4998
                          124.00 1.43 124.00 124.00
                                                     0.67 108.199997
                                                                    353.799988 124.00 7.08 73.
                  01:00:00
                2006-02-09
           4999
                            0.35 1.60
                                       0.46 124.00
                                                     0.52 160.600006 438.299988 124.00 5.30 90.
                  01:00:00
          5000 rows × 17 columns
          e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
          f=e.iloc[:,0:14]
In [24]:
In [25]:
In [26]: logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
In [27]: from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
         [28079018]
In [30]: ___
Out[30]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
               28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
               28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
               28079026, 28079027, 28079035, 28079036, 28079038, 28079039,
               28079040, 28079099], dtype=int64)
In [31]:
Out[31]: 1.5038383254433008e-81
In [32]:
Out[32]: 3.4251164754248804e-124
In [33]:
Out[33]: 0.544666666666666
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[34]: ElasticNet()
In [35]:
        [-1.06766919e-04 -0.00000000e+00 -0.00000000e+00 4.70974802e-01
          5.23905245e-05 0.00000000e+00 1.00000687e+00 -4.57597899e-01]
In [36]:
         -1.6478928724587263
In [37]: | prediction=en.predict(x_test)
        0.9998250049427502
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
         Out[38]: RandomForestClassifier()
In [39]: parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]
```

```
In [40]: from sklearn.model selection import GridSearchCV
                         grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                            param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                              'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                             'n_estimators': [10, 20, 30, 40, 50]},
                                                            scoring='accuracy')
In [41]:
Out[41]: 0.56600000000000001
In [42]:
In [43]: from sklearn.tree import plot_tree
                         plt.figure(figsize=(80,50))
Out[43]: [Text(2371.5, 2491.5, 'X[7] <= -0.802\ngini = 0.961\nsamples = 2212\nvalue =
                         [157, 121, 140, 146, 136, 141, 118, 122, 130, 110\n124, 158, 149, 148, 153, 1
                         31, 119, 131, 166, 136\n129, 136, 141, 120, 104, 134]'),
                           Text(1275.4285714285713, 2038.5, X[5] <= -0.21  = 0.749  = 33
                         7\nvalue = [0, 0, 0, 146, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 131, 0, 0, 1
                         29, 0, 0, 0, 0, 134]'),
                           Text(637.7142857142857, 1585.5, 'X[10] <= -2.382 \setminus gini = 0.644 \setminus samples = 14
                         4\nvalue = [0, 0, 0, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 125, 0, 0, 2
                         6, 0, 0, 0, 0, 49]'),
                           Text(318.85714285714283, 1132.5, 'X[12] <= -1.175\ngini = 0.498\nsamples = 9
                         0\nvalue = [0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 109, 0, 0, 1
                         5, 0, 0, 0, 0, 25]'),
                           Text(159.42857142857142, 679.5, 'X[8] <= 0.493 \setminus ini = 0.117 \setminus insamples = 12 \setminus insamples
                         0, 0, 0, 0]'),
                           Text(79.71428571428571, 226.5, 'gini = 0.278\nsamples = 5\nvalue = [0, 0, 0,
                         1, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 5, 0, 0, 0, 0]'),
                           Text(239.1428571428571, 226.5, 'gini = 0.0\nsamples = 7\nvalue = [0, 0, 0,
                         0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 10, 0, 0, 0, 0]'),
```

From this observation I had observe that the LASSO is a highest accuracy of 0.9999994937723611

```
In [ ]:
```