

仿 生 手 サ 伊 用 手 册

杭州友辉科技有限公司 2023年10月14日

前提说明

本手册为友辉科技出品的**仿生手掌**使用手册。温馨提示,使用控制板前,请 仔细阅读该手册,以免盲目使用导致控制板损坏。

用户收到产品时请及时对照发货清单检查配件是否齐全,以及快递运输过程中产品是否损坏等现象,如有问题请及时联系淘宝客服人员(注:自收到货起三日内没有反应问题,视为产品收货正常)。

学习资料将以百度云网盘链接形式发送

散件组装接线时请按照教程进行组装接线,因操作不正确导致产品损坏的,一切后果由自己承担!如有问题请及时联系客服或售后人员。我们提供全程有关产品技术支持(可通过电话/QQ/微信等)。

售后时间: 10: 00---21: 00 (周一到周六)

淘宝店铺	首页-友辉科技机器人商城-淘宝网 (taobao.com)		
友辉 B 站	友辉科技		
	淘宝旺旺/电话/QQ 群/微信群等		
售后途径	电话: 0571-86222021		
一	QQ 技术交流群: 853087228		
	微信群:淘宝联系我们客服,拉进对应的群聊。		

版权申明

本文由杭州友辉科技编写,受版权保护。未经许可,禁止以任何形式进行复制、修改、发布、传播或用于商业用途。

未经杭州友辉科技明确授权,禁止以任何形式复制、修改、发布、传播或用于商业用途。这包括但不限于将本文用于商业产品、销售、以及其他商业活动。

其他权利保留:杭州友辉科技保留有权对本版权说明进行修改和更新的权利。对于未涉及到的使用情况和授权请求,杭州友辉科技保留最终解释权。

目录

前	'提说明2
版	权申明2
目	录3
1.	产品介绍1
	1.1. 产品概述1
	1.2. 产品参数1
	1.2.1. 舵机参数1
2.	产品原理4
3.	软件总体流程图5
4.	仿生手掌控制板介绍6
	4.1. Stm32 核心板6
	4.2. Arduino 控制板
5.	仿生手掌接口与传感器11
6.	仿生手掌手柄功能介绍12
7.	仿生手掌传感器功能介绍12
8.	手套穿戴及校准方式13
9.	手套控制手掌的使用方式13
附	录14
	仿生手掌功能指令14
	舵机操作命令15

1. 产品介绍

1.1. 产品概述

仿生手掌由 Stm32 核心板/Arduino 作为控制板,配合舵机、传感器等外设进行控制。不仅可以与传感器配合实现相应功能,还可以通过 PS2 手柄控制、微信小程序控制以及仿生手套控制,可以实现多样化控制与多种功能的实现。

我司仿生手掌可提供遥控与传感器、微信小程序控制三种控制方式,同时仿生手掌可添加云台,实现手掌转动。

在进阶套餐中,仿生手掌将搭载传感器,超声波传感器、红外传感器、声音传感器,通过传感器的数据输入实现仿生手掌的控制,搭载的总线 MP3 模块可以进行语言播报。

此外通过 HC-12 无线通讯模块,可以实现仿生手套与手掌的同步控制。

1.2. 产品参数

1.2.1. 舵机参数

仿生手掌 Yhand-mini 使用手册

	NT1 + mand-mm K/11 / M		
扭力	20KG.cm (6.6V)		
线长	30cm		
转动角度	270°		
 转动速度	0.16sec/60 度(6V)		
齿轮齿数	25T		
舵机精度	0.24°		
控制方式	PWM 脉冲		
控制周期	20ms		
工作电压	6-8.4V		
脉冲范围	0.5ms-2.5ms		
空载电流	100mA		
信号线	电源负极 电源正极 一		
旧节线	电源负极 电源正极 信号线		
注意事项	舵机最大可承受电压 8.4V, 超过 8.4V 容易烧坏舵机		

手指舵机:

舵机样式	CUO HUA SERVO MADE IN CHINA
舵机型号	GH-MS90A
舵机重量	14g

2. 产品原理

仿生手掌由 Arduino UNO/STM32F103C8T6 控制舵机拉动连杆,以此模拟手掌动作。

- ◆ 当我们用**遥控手柄控制**时,手柄发送数据,手柄接收器接收数据后将数据又 发送至控制器,控制器对按键值进行比对,然后执行预命令中设定的动作。
- ❖ 当我们使用微信小程序控制时,需要使用到蓝牙模块,蓝牙模块可以接收手机蓝牙发送的数据,当我们在小程序中,按下功能按键,指令就通过蓝牙发送到了控制器当中。随后仿生手掌会做出相应动作。
- ❖ 当我们使用**仿生手套控制**时,需要在仿生手套和手掌控制器当中,同时接入 HC-12 无线通讯模块。仿生手套处的 HC-12 作为发送端,手掌的 HC-12 无 线通讯模块作为接收端。佩戴好手套并且校准完成后,手套通过将电位器数 值(我们在控制手套时,五个电位器数值会发生变化)转换成指令,或者是 对倾斜角传感器 ADX345DE 变化以此来发送指令,随后发送端(手套)将 指令发送至接受端(手掌),这样就实现了仿生手套对仿生手掌的控制。
- ❖ 当我们使用传感器进行控制时,传感器会通过检测的信号来触发仿生手掌的指令。利用传感器实现对仿生手掌的控制只需要有传感器即可,通过逻辑判断然后执行相关指令。

3. 软件总体流程图

仿生手掌的功能启动的本质就是发送指令,然后解析指令。通过既定的指 令调用功能。

当**仿生手掌**上电后,控制板开启初始化,在代码当中初始化了外设,包括 LED、蜂鸣器、存储器、串口、舵机、定时器、ps2 手柄、传感器。

宏定义设置了 ps2 手柄的按键表,当 ps2 手柄接收器接收到数据后,通过地址对照按键表以及摇杆值来转换成指令,以此控制手指舵机与底盘舵机。

当我们使用蓝牙小程序或者串口发送指令后,代码中会判断指令的第一位字符是什么,由此来判断串口模式。判断完模式后,就会解析指令执行相应动作。 各个指令可查看附录。

4. 仿生手掌控制板介绍

4.1. Stm32 核心板

STM32F103C8T6

4.1.1. 底板接口参数

【电源接线柱】:供电电压 6~8.4V,电源功率可根据舵机数量自行搭配,

一般电源额定电流输出能力要在 3A 以上。

【电源开关】: 通断电源的作用。

【KEY1/2】: 预留 2 路按键, 具体功能根据具体程序定义。

【传感器接口】: 6路传感器接口,接口电压可选择;和5V短接时,传感器接口电压为5V,和3V3短接时,传感器接口电压为3.3V,传感器接口有复位,具体复位可参考引脚映射表。

【红外接口】:可接入红外接收头,搭配红外遥控使用,可控制总线执行设备,或者作为其他触发源使用。

【蓝牙接口】: 可插入蓝牙模块, 作为输入指令信号。

【PWM 舵机接口】: PWM 舵机接口,可控制 6 路 PWM 舵机,该接口的电源取决于 PWM 舵机电源选择跳线帽的接法;和 5V 短接时,板子舵机接口使用 5V3A 的板载电源,当和 VIN 短接时,舵机接口电源和输入电源保持一致。

【蜂鸣器】:声音报警/提示作用。

【用户接口】:该接口配置了RX/TX/GND/5V,用于接无线同步模块或者二次开发时作为通信串口使用。

【手柄接口】:可搭配 6P 线接入 PS2 手柄接收器,搭配手柄遥控使用,可控制总线执行设备,或者作为其他触发源使用。

【总线舵机接口】: 主要接执行设备,如总线舵机,总线 MP3、总线马达等总线设备,理论接口上可串联 255 个设备,由于线的承载能力,建议每个端口串联不超过 5 个设备为宜;也可接总线通信设备,主要接 Arduino 拓展板、远程WIFI等用于给控制器输入指令的设备。

【ISP接口】:下载 BOOT 时使用,一般使用不到,BOOT 只需要出厂烧录一次即可。

【USB接口】: 主要用于下载程序和上位机通信使用。

【存储芯片】: W25Q64 主要用于存储舵机动作组。

【复位按键】:按下时复位重启。

【工作绿灯】:控制板正常工作时,工作指示灯每秒闪烁一次,否则控制板 异常。

【电源红灯】:控制板供电时,电源灯亮起,不亮时异常。

4.1.2. STM32 引脚映射关系

PA8	KEY1	1 32	32		TXD3
PA8	IR 2	1000	31		RXD3
PB3	DJ0 3	2 31 30	30	SSA1	PA0
PB8	DJ1 4	174	29	SSD1	PA1
PB9	DJ2 5	4 29 5 28	28	SSA2	PA1
PB6	DJ3 6		27	SSD2	PA0
PB7	DJ4 7	6 27 7 26	26	SSA3	PA2
PB4	DJ5 8	133	25	SSD3	PB0
PB5	BEEP	8 25 9 24	24	SSA4	PA3
PA12	PS710	137656	23	SSD4	PB1
PA13	PS611	10 23	22	SSA5	PA4
PA14	PS212	11 22	21	SSD5	PA6
PA15	PS113	12 21	20	SSA6	PA5
PA11	KEY4	13 20	19	SSD6	PA7
GND	15 16	14 19 15 18	18 17	vc	C-3.3
GND	10	16 17	1/	VC	C-5.0

原理图可以在资料包的原理图中找到

4.2. Arduino 控制板

4.2.1. 接口参数

4.2.2. 接口介绍

【电源接线柱】:供电电压 6~8.4V,电源功率可根据舵机数量自行搭配,一般电源额定电流输出能力要在 3A 以上。

【电源开关】: 通断电源的作用。

【KEY1/2】: 预留 2 路按键, 具体功能根据具体程序定义。

【传感器接口】: 6路传感器接口,接口电压可选择;和5V短接时,传感器接口电压为5V,和3V3短接时,传感器接口电压为3.3V,传感器接口有复位,具体复位可参考引脚映射表。

【红外接口】:可接入红外接收头,搭配红外遥控使用,可控制总线执行设备,或者作为其他触发源使用。

【蓝牙接口】: 可插入蓝牙模块, 作为输入指令信号。

【PWM 舵机接口】: PWM 舵机接口,可控制 6 路 PWM 舵机,该接口的电源取决于 PWM 舵机电源选择跳线帽的接法;和 5V 短接时,板子舵机接口使用 5V3A 的板载电源,当和 VIN 短接时,舵机接口电源和输入电源保持一致。

【蜂鸣器】:声音报警/提示作用。

【用户接口】:该接口配置了 RX/TX/GND/5V,用于接无线同步模块或者 二次开发时作为通信串口使用。

【手柄接口】:可搭配 6P 线接入 PS2 手柄接收器,搭配手柄遥控使用,可控制总线执行设备,或者作为其他触发源使用。

【总线舵机接口】: 主要接执行设备,如总线舵机,总线 MP3、总线马达等总线设备,理论接口上可串联 255 个设备,由于线的承载能力,建议每个端口串联不超过 5 个设备为宜;也可接总线通信设备,主要接 Arduino 拓展板、远程 WIFI 等用于给控制器输入指令的设备。

【ISP接口】:下载 BOOT 时使用,一般使用不到,BOOT 只需要出厂烧录一次即可。

【USB接口】: 主要用于下载程序和上位机通信使用。

【存储芯片】: W25Q64 主要用于存储舵机动作组。

【复位按键】:按下时复位重启。

【MEGA328型】: 主控芯片,使用时版型选 Arduino Uno。

【工作绿灯】:控制板正常工作时,工作指示灯每秒闪烁一次,否则控制板异常。

【电源红灯】: 控制板供电时,电源灯亮起,不亮时异常。

4.2.3. 引脚映射关系

	P1			
A1 KEY11		32	TXD1 D1	
D2 IR 2	1 32 31	31	RXD1 D0	
D7 DJ0 3	3 30	30	SSA1 A6	
D3 DJ1 4	4 29	29	SSD1 A7	
D5 DJ2 5	5 28	28	SSA2 A0	
DJ3 6	6 27	27	SSD2 A3	
D9 DJ4 7	7 26	26	SSA3 A2	
D8 DJ5 8	8 25	25	SSD3 A1	
D4 BEEP 9	9 24	24	SSA4 A1	
D11 psCLK PS710	10 23	23	SSD4 D2	
A3 psATT PS611	11 22	22	SSA5 A3	
A0 psCMD PS212	12 21	21	SSD5 A0	
D12 psDAT PS113	13 20	20	SSA6 A4	
A2 KEY214	14 19	19	SSD6 A5	
GND 15	15 18	18	3V3	
GND: 16	16 17	17	5V0	
וויעאט	10 17		13 00	
YH-KAR_32P				

5. 仿生手掌接口与传感器

用户收到的仿生手掌无论是什么套餐都是已经组装完毕的。

6. 仿生手掌手柄功能介绍

手柄在控制时,需要注意手柄的红绿灯模式,在红灯模式下,手柄按键控制 仿生手掌六个舵机的转动,摇杆则没有控制功能。STM32 在绿灯模式下(arduino 核心板没有红绿灯模式),手柄按键与摇杆可以执行相应的动作指令。仿生手套 在出厂时自带一套动作组,绿灯模式下会自动调用执行。

关于控制方法可观看视频

7. 仿生手掌传感器功能介绍

进阶套件在初级套件的基础上,又加入了传感器元件,有红外传感器/声音传感器/超声波传感器/总线 MP3 模块。

红外传感器和**声音传感器**的功能在开启后,通过触发的电平信号来执行动作组,红外触发会报数,声音触发会开启手势舞蹈,同时 MP3 模块也会播放音乐。

超声波传感器可以实现对手掌闭合张开的控制,当距离近时就闭合,距离远则张开。

总线 MP3 模块用于播放音频, 音频文件放置在模块的 SD 卡中。

关于控制方法可观看视频

8. 手套穿戴及校准方式

在使用手套前,需要先进行手动校准,手套需要校准两次,第一次为握紧时的校准,第二次为完全张开手的校准。需要注意的是,**绑带必须全部束紧**,不然在握紧与闭合时就不能完全控制拉杆拉动电位器,从而也会导致校准不准确,后续控制效果也不理想。

详细内容也可查看手套的配套手册。

9. 手套控制手掌的使用方式

仿生手套通过 HC-12 无线通讯模块进行对手掌的无线控制。手套的电位器在我们握紧张开手时,它的数值会产生变化,在程序当中,我们将电位器的数值转换为了控制手掌的指令,然后通过手套端的 HC-12 发送至手掌端的 HC-12 进行接收,然后手掌的控制器进行解析,之后就可以执行相应动作。

手套还搭载了倾斜角传感器,通过这个传感器,我们就可以做到控制手掌云台的转动。

手套除校准按键外还有一个模式按键,按下模式按键,总共有三种模式,会 在石头、剪刀、布三个动作进行切换。

视频链接:

附录

仿生手掌功能指令

指令内容
\$DBT:3,1!
\$DBT:4,1!
\$DBT:5,2!
\$DBT:6,2!
\$DBT:7,3!
\$DBT:8,3!
\$DBT:9,4!
\$DBT:10,4!
\$DBT:11,5!
\$DBT:12,5!
\$DBT:14,6!
\$DBT:15,7!

舵机操作命令

序号	舵机操作指令	指令解释	备注
	#IndexPpwmTtime!	单个舵机指令, Index 为 3 位, 000-254; pwm 为	
1		4位,0500-2500; time 为 4位,0000-9999,单	
		位毫秒,总共15位数据,不足的位数补0	
2	{#000P1500T1000!#001P	多个舵机指令,将多个单舵机指令放在一起,用	
2	0900T1000!}	{ }封起来即可	
3	\$DGS:0!	调用动作 G0000, 前提是动作 G0000 已经存储	
	\$DGT:0-10,1!	调用动作 G0000~G0010 组 1 次, 若为 0 次则代	前提是
4		表循环执行	动作已
			存储
5	#005PSCK+010!	设置 5 号舵机的偏差为 10,偏差最大绝对值 100	
6	\$DST!	所有舵机停止在当前位置	
7	\$DST:x!	x 号舵机停止在当前位置	