## Estructures Algebraiques

# CINC CÈNTIMS D'ANELLS

### Mario VILAR

## 2 de gener de 2023

# Índex

| I  | Anells                                       | 2  |
|----|----------------------------------------------|----|
| 2  | Morfismes d'anells                           | 3  |
| 3  | Teorema d'isomorfia                          | 4  |
| 4  | Ideals primers i maximals                    | 9  |
| 5  | Cos de fraccions d'un domini                 | 7  |
| 6  | Divisibilitat                                | 8  |
| 7  | Dominis euclidians                           | 9  |
| 8  | Factorialitat en dominis d'ideals principals | 10 |
| 9  | Dominis de factorització única               | 10 |
| 10 | Factorialitat en un anell de polinomis       | I  |

I Anells

Anells

**Definició 1.1** (Anell). És un conjunt A no buit dotat de dues operacions internes, la suma i el producte, tals que:

- la suma és associativa, commutativa, amb element neutre o i oposat (és grup abelià amb la suma),
- el producte és associatiu ((ab)c = a(bc)) i distributiu (a(b+c) = ab + ac i (b+ca) = ba + ca) respecte de la suma.

**Definició 1.2** (Element invertible). Un element a d'un anell amb unitat A es diu invertible si té invers a A. Si a és element invertible de l'anell A es compleix  $ab = 0 \implies b = 0$ , ja que  $ab = 0 \implies a^{-1}(ab) = a^{-1} \cdot 0 = 0$ , i d'altra banda,  $a^{-1}(ab) = (a^{-1}a)b = 1 \cdot b = b$ .

$$A^* = \{ a \in A \mid a \text{ és invertible} \}, A^* \text{ és grup amb el producte d'} A.$$
 (1.1)

Es diu que  $A^*$  és grup multiplicatiu de l'anell A.

**Definició 1.3** (Subanell). Sigui A un anell. Un subanell d'A és un subconjunt no buit B d'A tal que:

- (B, +) és subgrup d'(A, +).
- B és tancat respecte del producte d'A:  $b, b' \in B \implies bb' \in B$ .

A partir d'ara, anell ≡ anell commutatiu i unitari

**Definició 1.4** (Divisor de zero). Un element a d'un anell A,  $a \neq o$ , es diu divisor de zero si existeix  $b \in A$ ,  $b \neq o$  tal que ab = o.

**Definició 1.5** (Domini d'integritat). Sigui A un anell. Diem que A és un domini d'integritat si no té divisors de zero. Si A és domini d'integritat i prenem  $a, b \in A$  tals que ab = 0, aleshores a = 0 o bé b = 0 (0, per contrarrecíproc,  $a \neq 0$ ,  $b \neq 0 \implies ab \neq 0$ ).

**Proposició 1.6.** Si A és domini d'integritat, aleshores A[X] és domini d'integritat.

**Definició 1.7** (Ideal). Donat un anell A, un ideal d'A és un subconjunt I d'A tal que

- I. (I, +) és subgrup d'(A, +).
- 2.  $\forall a \in A, \forall x \in I$ , aleshores  $ax \in I$ .

**Definició 1.8** (Domini d'ideals principals). Si A és domini d'integritat i tots els ideals d'A són principals, diem que A és un domini d'ideals principals (DIP).

**Proposició 1.9.** Si  $\mathbb{K}$  és cos, l'anell  $\mathbb{K}[X]$  és domini d'ideals principals.

Morfismes d'anells

**Definició 1.10** (Divisor). Si A és un anell, amb  $a, b \in A$ , diem que a divideix b si existeix  $c \in A$  tal que b = ac. Ho denotem per  $a \mid b$ . Clarament,  $a \mid b \iff b \in (a)$ .

**Definició 1.11** (Ideal suma). Donats dos ideals I, J de l'anell A, posem I + J el conjunt dels elements de l'anell A que són suma d'un element d'I i un element de J. Clarament, I + J és un ideal d'A i és l'ideal d'A generat pel conjunt  $I \cup J$ . Anomenem I + J l'ideal suma de I i J. Més generalment, si  $\{I_j\}_{j \in \mathcal{J}}$  és una família d'ideals d'A:

L'ideal suma 
$$\sum_{j \in \mathcal{J}} I_j$$
 és l'ideal generat per  $\bigcup_{j \in \mathcal{J}} I_j$ . (1.2)

**Definició 1.12** (Ideal producte). Donats dos ideals I, J de l'anell A, posem IJ el conjunt dels elements de l'anell A que són producte d'un element d'I i un element de J.

$$IJ = \{a_1b_1 + \dots + a_kb_k \mid k \in \mathbb{N}; a_i \in I, b_i \in J; 1 \le i \le k\}.$$
(1.3)

Anomenem IJ l'ideal producte de I i J. Més generalment, si  $I_1, \ldots, I_k$  són ideals d'A, posem  $I_1 \cdots I_k$  l'ideal generat pel conjunt dels elements de l'anell A que són producte d'un element d' $I_1$ , un element de  $I_2$ , i així fins un element d' $I_k$ . Diem que  $I_1 \cdots I_k$  és l'ideal producte dels ideals  $I_1, \ldots, I_k$ .

Està format pels elements de l'anell A que són sumes finites d'elements de la forma  $a_1 \cdots a_k$ , amb  $a_i \in I$  i  $1 \le i \le k$ . Clarament,  $I_1 \cdots I_k \subset I_1 \cap \cdots \cap I_k$ . Si I és un ideal, posarem  $I^k$  per denotar el producte de l'ideal I amb ell mateix k vegades.

**Proposició 1.13** (Anell quocient). Sigui A un anell i I un ideal d'aquest anell A. Aleshores, A/I és anell. En particular, direm que A/I és l'anell quocient d'A per I.

#### Proposició 1.14.

- 1. Si A és un anell de característica k, existeix un únic morfisme de  $\mathbb{Z}/(k)$  en A i aquest morfisme és un monomorfisme.
- 2. Si A és un anell i k un enter, k > 0, es compleix car  $A = k \iff k$  és el menor enter positiu tal que ka = 0, per a tot  $a \in A$ .
- 3. Si A és domini d'integritat, la característica de A és o bé o o bé un nombre primer.

### Morfismes d'anells

**Definició 2.1** (Morfisme d'anells). Si A, A' són anells, una aplicació  $f:A\longrightarrow A'$  és morfisme d'anells si compleix:

$$f(a+b) = f(a) + f(b) i f(ab) = f(a)f(b),$$
 (2.1)

Teorema d'isomorfia

per a tot parell d'elements a, b d'A, i  $f(i_A) = i_{A'}$ . Notem que si  $f: A \longrightarrow A'$  és morfisme d'anells, aleshores f és morfisme de grups d'(A, +) en (A', +).

**Definició 2.2** (Morfisme injectiu). Si  $f: A \longrightarrow A'$  és morfisme d'anells, el nucli de f és  $\ker(f) = \{a \in A \mid f(a) = o_{A'}\}$ ; és a dir, el nucli de f com a morfisme de grups. Tenim, doncs, que f és un morfisme injectiu si, i només si,  $\ker(f) = \{o_A\}$ .

**Proposició 2.3.** Si  $f: A \longrightarrow A'$  és morfisme d'anells,  $\ker(f)$  és ideal d'A i  $\operatorname{im}(f)$  és subanell d'A'.

# TEOREMA D'ISOMORFIA

**Definició 3.1** (f factoritza a través d'un anell quocient). Siguin A, A' anells,  $f:A\longrightarrow A'$  un morfisme d'anells, I un ideal d'A i  $\pi:A\longrightarrow A/I$  si existeix un morfisme d'anells  $\overline{f}:A/I\longrightarrow A'$  tal que  $f=\overline{f}\circ\pi$ , és a dir, que faci commutatiu el diagrama:



Figura 1: Diagrama de factorització a través del quocient

**Proposició 3.2.** Siguin A, A' anells,  $f:A \longrightarrow A'$  un morfisme d'anells, I un ideal propi d'A i  $\pi:A \longrightarrow A/I$  el morfisme de pas al quocient. Aleshores, f factoritza a través d'A/I si, i només si,  $I \subset \ker(f)$ .

*Demostració.* Hem de seguir la demostració que vam donar per a la factorització a través del quocient (per a grups), solament ens queda veure que, si existeix  $\overline{f}:A/I\longrightarrow A'$  tal que  $f=\overline{f}\circ\pi$ , aleshores  $\overline{f}$  és l'únic morfisme d'anells que compleix  $f=\overline{f}\circ\pi$ . Com  $\overline{f}([a])=f(a)$ , per a  $a\in A$ :

$$\overline{f}(\mathbf{I}_{A/I}) = \overline{f}([\mathbf{I}_A]) = f(\mathbf{I}_A) = \mathbf{I}_B \mathbf{i} \overline{f}([a][b]) = \overline{f}([ab]) = f(ab) = f(a)f(b) = \overline{f}([a])\overline{f}([b]). \quad (3.1)$$

Amb  $\overline{f}([1_A]) = 1_B$  hem trobat l'existència de neutre i  $\overline{f}([ab]) = \overline{f}([a])\overline{f}([b])$  tenim morfisme de grups.

**Teorema 3.3** (Primer teorema d'isomorfia per a anells). Si A, A' són anells i f:  $A \longrightarrow A'$  és un morfisme d'anells, aleshores f factoritza a través d' $A/\ker(f)$  i tenim  $f = i \circ \tilde{f} \circ \pi$ , amb  $\tilde{f}$  isomorfisme d'anells  $d'A/\ker(f)$  en  $\operatorname{im}(f)$ , i la inclusió d' $\operatorname{im}(f)$  en A',  $\pi: A \longrightarrow A/\ker(f)$  el morfisme de pas al quocient. Tenim, doncs, un diagrama commutatiu:



Figura 2: Diagrama commutatiu del primer teorema d'isomorfis per a anells

<u>Demostració</u>. La proposició anterior ens dona que existeix un morfisme d'anells  $\overline{f}:A/\ker(f)\longrightarrow A'$  tal que  $f=\overline{f}\circ\pi$ . A més,  $\overline{f}$  és injectiu, i im $(\overline{f})=\operatorname{im}(f)$ . Per tant,  $\overline{f}=i\circ \widetilde{f}$  amb  $\widetilde{f}:A/\ker(f)\longrightarrow \operatorname{im}(f)$  isomorfisme d'anells definit per  $\widetilde{f}([a])=\overline{f}([a])$ .

### IDEALS PRIMERS I MAXIMALS

**Definició 4.1** (Ideal primer). Sigui A un anell, un ideal I d'A es diu ideal primer si és ideal propi ( $I \neq A$ ) i es compleix el següent per a tot  $a, b \in A$ :  $ab \in I \implies a \in I$  o bé  $b \in I$ .

**Proposició 4.2.** Sigui I un ideal de l'anell A. Aleshores, I és primer si, i només si, A/I és domini d'integritat. Demostració. D'entrada, ja sabem que  $a \in I \iff [a] = [o]$ .

- $\Rightarrow$  Si [a][b] = [o], per definició de quocient tenim que [ab] = [o] i això implica que  $ab \in I$ . Per tant,  $a \in I$  o bé  $b \in I$ ; és a dir, [a] = [o] o bé [b] = [o].
- $\Leftarrow$  Sigui ara  $ab \in I$ . Aleshores, [ab] = [a][b] = [o] en A/I. Per tant, [a] = [o] (de manera que  $a \in I$ ) o bé [b] = [o] (de manera que  $b \in I$ ).

**Definició 4.3** (Ideal maximal). Un ideal I d'un anell A es diu maximal si és ideal propi i no existeix cap ideal J d'A tal que  $I \subseteq J \subseteq A$ . En altres paraules:

$$\begin{array}{c} I \subsetneq J \implies J = A \\ I \subset J \subsetneq A \implies J = I \end{array} \iff I \text{ \'es maximal.}$$

**Proposició 4.4.** Sigui I un ideal d'un anell A. Aleshores, I és maximal si, i només si, A/I és un cos. En particular, tot ideal maximal és primer.

Demostració.

Suposem I maximal. Sigui  $\overline{a} \in A/I$ , tal que  $\overline{a} \neq \overline{0}$ . Així,  $a \notin I$  i  $I \subsetneq I + (a) \subset A \implies I + (a) = A$  pel fet de ser I un ideal maximal. En particular, podem escriure I com una combinació lineal d'un element d'I i l'ideal generat per l'element a, (a):  $I = x + \lambda a$ , amb  $x \in I$ ,  $\lambda \in A$ . Prenent classes mòdul I, obtenim:

$$\bar{i} = \overline{x} + \overline{\lambda}\overline{a} \implies \bar{i} = \overline{a} \cdot \overline{\lambda} \implies \overline{\lambda} \text{ és invers d'}\overline{a} \text{ en } A/I.$$
 (4.2)

Estructures Algebraiques

Això passa perquè  $\overline{x} = \overline{0}$ , ja que  $x \in I$ . Per tant,  $\overline{a}$  és invertible i hem provat que tot element no nul d'A/I és invertible i, per tant, A/I és un cos.

Sigui, ara, A/I un  $\cos(I \subsetneq J)$  i J un ideal d'A tal que  $I \subsetneq J \subset A$ . Existeix  $a \in J$  amb  $a \notin I$  tal que  $\overline{a} \neq \overline{0}$  en A/I. Pel fet que A/I és un cos, existeix  $\overline{b} \in A/I$  tal que  $\overline{a}\overline{b} = \overline{1}$  ( $\overline{a}$  és invertible). Ens queda:

$$ab - i = x \iff i = ab - x \implies i \in J \implies J = A.$$
 (4.3)

Hem usat que  $x \in I$ ,  $I \subset J$  i  $ab - x \in J$ .

Sigui I un ideal maximal d'A. Com ja hem vist, se segueix que A/I és cos i, per tant, que A/I és domini d'integritat. Si A/I és domini d'integritat, I és primer.

**Lema 4.5** (Lema de Zorn). Sigui S un conjunt no buit ordenat inductivament. Aleshores, existeix un element maximal a S.

**Proposició 4.6.** Sigui A un anell i  $\mathfrak{a}$  un ideal propi d'A, és a dir, un ideal d'A different <math>d'A. Aleshores, existeix un ideal maximal d'A que conté  $\mathfrak{a}$ .

*Demostració.* Considerem el conjunt S dels ideals propis de l'anell A que contenen a, és a dir:

$$S = \{ I \mid \mathfrak{a} \subset I, I \text{ ideal propi d'} A \}. \tag{4.4}$$

El conjunt S és no buit, ja que conté l'ideal  $\mathfrak a$  i està ordenat per la inclusió. Volem veure que S està ordenat inductivament. Sigui T un subconjunt de S totalment ordenat, és a dir tal que per a tot parell  $I_1$ ,  $I_2$  d'elements de T, tenim  $I_1 \subset I_2$  o  $I_2 \subset I_1$ . Volem veure que T té cota superior, és a dir que existeix un ideal J propi de A contenint a tal que  $I \subset J$ , per a tot  $I \in T$ . Sigui J la reunió de tots els ideals de T, és a dir:

$$J = \bigcup_{I \in T} I \tag{4.5}$$

Vegem que *J* és ideal de A:

- I. Si  $a_1, a_2 \in J$ , tenim  $a_1 \in I_1, a_2 \in I_2$ , per certs elements  $I_1, I_2$  de T. Com T està totalment ordenat, podem comparar els ideals; tenim  $I_1 \subset I_2$  o  $I_2 \subset I_1$ , per tant:
  - $a_1, a_2 \in I_2$ , que implica  $a_1 a_2 \in I_2$ , o bé
  - $a_1, a_2 \in I_1$ , que implica  $a_1 a_2 \in I_1$ .
- 2. En qualsevol cas,  $a_1 a_2 \in J$ . Si  $a \in J$ ,  $b \in A$ , tenim  $a \in I$ , per un cert I de T; per tant,  $ba \in I \subset J$ . Clarament J conté  $\mathfrak{a}$ .

Vegem ara  $J \subseteq A$ , és a dir, que J és un ideal propi. Raonem per reducció a l'absurd: si fos J = A, tindríem  $I \in J$ , per tant  $I \in I$ , per a algun I de I, que donaria I = A, que contradiu la definició de I (el conjunt dels ideals propis també és propi). Hem provat doncs que I és cota superior de I.

Aplicant el lema de Zorn, obtenim que S té un element maximal, és a dir que A té un ideal propi M contenint  $\mathfrak{a}$  tal que si I és ideal propi de A i  $M \subset I$ , es té M = I. Per tant M és ideal maximal de A.

Corol·lari 4.7. Tot anell té al menys un ideal maximal.

5

# Cos de fraccions d'un domini

Sigui A un domini d'integritat. En el conjunt  $A \times (A \setminus \{o\})$ , definim  $(a,b) \sim (a',b') \iff ab' = a'b$ , on  $\sim$  és una relació d'equivalència. La prova que és, en efecte, d'equivalència, és prou senzilla. Solament indicarem la transitivitat:

$$(a,b) \sim (a',b') \iff ab' = a'b (a',b') \sim (a'',b'') \iff a'b'' = a''b'$$
 
$$\implies (ab'')b' = a'bb'' = a''b'b = (a''b)b' \implies ab'' = a''b \iff (a,b) \sim (a'',b'').$$
 (5.1)

en l'última implicació hem hagut d'usar que A és un domini d'integritat, ja que hem aplicat la propietat cancel·lativa.

**Definició 5.1** (Cos de fraccions d'A). Sigui  $\mathbb{K}(A)$  el conjunt quocient de  $A \times (A \setminus \{o\})$  per la relació d'equivalència  $\sim$ . Posem  $\frac{a}{b}$  la classe d'(a,b) de manera que:

$$\frac{a}{b} = \frac{a'}{b'} \iff ab' = a'b. \tag{5.2}$$

Volem definir a  $\mathbb{K}(A)$  una suma i un producte. Definim la suma per:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}. ag{5.3}$$

Volem veure que no depèn del representant. Si  $\frac{a}{b} = \frac{a'}{b'}$  i  $\frac{c}{d} = \frac{c'}{d'}$ , tenim que ab' = a'b i cd' = c'd; per tant, (ad + bc)b'd' = (a'd' + c'b')bd i

$$a'd'bd + c'b'bd = adb'd' + bb'cd' \implies \frac{ad + bc}{bd} = \frac{a'd' + b'c'}{b'd'}.$$
 (5.4)

Per a la suma tenim que el neutre és  $\frac{0}{b}$  i l'oposat,  $-\frac{a}{b} = \frac{-a}{b}$ . Per tant, la suma no depèn del representant i està ben definida. Pel que fa al producte, el definim per:

$$\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}.$$
 (5.5)

Hem de veure que no depèn del representant. En efecte, si  $\frac{a}{b} = \frac{a'}{b'}$  i  $\frac{c}{d} = \frac{c'}{d'}$ , tenim ab' = a'b o cd' = c'd i, per tant:

$$(ac)(b'd') = (ab')(cd') = (a'b)(c'd) = (a'c')(bd) \implies \frac{ac}{bd} = \frac{a'c'}{b'd'}.$$
 (5.6)

Clarament,  $\frac{1}{1}$  és el neutre pel producte. Per tant,  $\mathbb{K}(A)$  és anell amb aquestes suma i producte. Tot element no nul de  $\mathbb{K}(A)$  té inversa, ja que per a  $\frac{a}{b} \neq o_{\mathbb{K}_A}$  tenim que  $a \neq o$  i  $\frac{b}{a} \frac{a}{b} = \frac{ab}{ab} = I_{\mathbb{K}(A)}$ . Per tant,  $\mathbb{K}(A)$  és un cos que anomenem *cos de fraccions d'A*.

6 Divisibilitat

**Proposició 5.2.** Siguin A un domini d'integritat, L un cos i  $g:A \longrightarrow L$  un monomorfisme d'anells. Aleshores, existeix un únic monomorfisme de cossos  $h:\mathbb{K}(A) \longrightarrow L$  tal que  $g=h \circ i$ ; és a dir, tal que el diagrama:



Figura 3: Diagrama de 5.2

commuta.

<u>Demostració</u>. Si h ha de complir que  $g = h \circ i$ , ha de ser  $h(\frac{a}{1}) = h(i(a)) = g(a)$ , per a tot  $a \in A$ . Per tant, si  $b \in A \setminus \{o\}$ , ha de ser:

$$h\left(\frac{\mathbf{I}}{b}\right) = h\left(\left(\frac{b}{\mathbf{I}}\right)^{-1}\right) = g(b)^{-1}$$

$$h\left(\frac{a}{b}\right) = h\left(\frac{a}{\mathbf{I}} \cdot \frac{\mathbf{I}}{b}\right) = h\left(\frac{a}{\mathbf{I}}\right) \cdot h\left(\frac{\mathbf{I}}{b}\right) = g(a)g(b)^{-1},$$
(5.7)

de forma que h queda determinat per g. Per tant, si h existeix, és únic. Veiem ara que h, en efecte, existeix. Definim  $h(\frac{a}{b}) = g(a)g(b)^{-1}$ . Hem de veure que h està ben definit. Si tenim  $\frac{a}{b} = \frac{c}{d}$  a  $\mathbb{K}(A)$ , es compleix que ab = bc a A. Aleshores, com g és morfisme d'anells, tenim g(a)g(d) = g(b)g(c), que implica  $g(a)g(b)^{-1} = g(c)g(d)^{-1}$ , com volíem. Ara, és clar que com g és morfisme d'anells, h també. I com  $\mathbb{K}(A)$  és cos, h és injectiu.

# Divisibilitat

**Definició 6.1** (Elements associats). Dos elements a, b d'un anell A es diuen associats si existeix una unitat  $u \in A$  (element invertible) tal que b = ua. Posem  $a \sim b$  per indicar que a i b són associats. Clarament, la relació  $\sim$  és d'equivalència.

**Proposició 6.2.** Sigui A un anell,  $a, b \in A$ . Si més no un dels dos elements a, b és no divisor de zero, es compleix:

$$a \mid b i b \mid a \iff a \sim b.$$
 (6.1)

En particular, si A és domini d'integritat, aleshores es compleix l'equivalència per a tot parell d'elements  $a, b \in A$ .

**Definició 6.3** (Divisors propis). Si a és un element no nul d'un anell A, les unitats d'A i els elements associats d'a divideixen a. Direm divisors propis d'a els divisors d'a differents d'aquests.

Dominis euclidians 7-3

**Definició 6.4** (Element irreductible). Un element *a* no nul d'un domini d'integritat d'*A* s'anomena *irreductible* si no és una unitat i no té divisors propis. Un element *a* no nul i no unitat s'anomena compost si té divisors propis.

**Definició 6.5** (Màxim comú divisor). Siguin A un anell,  $a, b, d \in A$ . Diem que d és un màxim comú divisor d'a i b si se satisfan les dues propietats següents:

- a.  $d \mid a, d \mid b$  i
- 2. si  $c \in A$  satisfà que  $c \mid a$  i  $c \mid b$ , aleshores  $c \mid d$ .

El màxim comú divisor queda determinat tret d'associats.

**Definició 6.6** (Mínim comú múltiple). Siguin A un anell i  $a, b, m \in A$ . Diem que m és un màxim comú múltiple d'a i b si se satisfan les dues propietats següents:

- $a \mid m, b \mid m i$
- 2. si  $n \in A$  satisfà que  $a \mid n$  i  $b \mid n$ , aleshores  $m \mid n$ .

El mínim comú múltiple queda determinat tret d'associats.

### Dominis Euclidians

**Definició 7.1** (Domini euclidià). Sigui A un domini d'integritat. Direm que A és un domini euclidià si existeix una aplicació  $\delta: A \setminus \{o\} \longrightarrow \mathbb{N}$  tal que:

- 1. Si  $a, b \in A \setminus \{0\}$  i  $a \mid b$ , aleshores  $\delta(a) \leq \delta(b)$ .
- 2. Divisió entera respecte de  $\delta$ : Donats  $a, b \in A$ , amb  $b \neq o$ , existeixen  $q, r \in A$  tals que a = bq + r i  $\delta(r) < \delta(b)$ , sempre que  $r \neq o$  (si r = o, a = bq).

Si A és un domini euclidià i  $\delta:A\setminus\{0\}\longrightarrow\mathbb{N}$  és una aplicació que compleix ambdues propietats, direm que  $(A,\delta)$  és un domini euclidià.

Proposició 7.2. Tot domini euclidià és domini d'ideals principals.

*Demostració.* Sigui  $(A, \delta)$  un domini euclidià i I un ideal d'A. Vegem que I és un ideal principal. Com (o) = {o}, podem suposar  $I \neq$  (o). Sigui  $b \in I \setminus \{o\}$  amb  $\delta(b)$  mínim, és a dir,  $\delta(b) \leq \delta(x)$  per a tot  $x \in I \setminus \{o\}$ . Aleshores, és clar  $(b) \subset I$ . Vegem  $I \subset (b)$ : sigui  $a \in I$  i posem a = qb + r, amb  $\delta(r) < \delta(b)$ , si  $r \neq$  o. Com  $r = a - qb \in I$  ha de ser r = o per l'elecció de b. Per tant,  $a = qb \in (b)$ . ■

**Definició 7.3** (Norma euclidiana). Sigui A un anell. Una norma d'A és una aplicació  $N:A\longrightarrow \mathbb{Z}$  tal que compleix les següents propietats:

1. Si  $a \in A$ , N(a) = o si, i només si, a = o;

2. N(ab) = N(a)N(b) per a qualssevol elements a, b d'A.

Proposició 7.4. Sigui A un anell que té una norma N; aleshores:

- 1. A és domini d'integritat.
- 2.  $\delta: A \setminus \{0\} \longrightarrow \mathbb{N}$  definida per  $\delta(a) = |N(a)|$  compleix la primera propietat del domini euclidià.
- 3. N(I) = I.
- 4.  $u \in A^* \implies N(u) = \pm 1$ .

#### 8

#### FACTORIALITAT EN DOMINIS D'IDEALS PRINCIPALS

**Definició 8.1** (Element primer). Un element p d'un domini d'integritat A es diu primer si p és no nul i no unitat, i per a  $a, b \in A$  es compleix:

$$p \mid ab \implies p \mid a \circ b \circ p \mid b. \tag{8.1}$$

**Proposició 8.2.** En un domini d'integritat A, un element p no nul és primer si, i només si, l'ideal (p) és primer.

**Proposició 8.3.** En un domini d'integritat, tot element primer és irreductible. En un domini d'ideals principals, tot element irreductible és primer.

#### 9

#### Dominis de factorització única

**Definició 9.1** (Domini de factorització única). Un domini d'integritat *A* es diu *domini de factorització única* si es compleixen les dues propietats següents:

- 1. Per a tot element a no nul i no unitat d'A, existeixen elements irreductibles  $p_1, \ldots, p_r$  d'A tals que  $a = p_1 \cdots p_r$ .
- 2. Si  $p, p_1, \ldots, p_r$  són elements irreductibles d'A i  $p \mid p_1 \cdots p_r$ , aleshores p és associat amb algun  $p_i$ .

**Definició 9.2** (Domini de factorització). Si *A* és un domini d'integritat que compleix la primera propietat de la factorització única, direm simplement que és un *domini de factorització*.

**Observació 9.3.** Tenim que tot domini euclidià és un domini d'ideals principals. Al seu torn, tot domini d'ideals principals és domini de factorització única. Es dona, doncs, aquesta cadena d'equivalències.

**Proposició 9.4.** Sigui A un domini de factorització. Aleshores, A és domini de factorització única si, i només si, tot element irreductible d'A és primer.

io Mario Vilar

*Demostració.* Sigui A un domini de factorització única, p un element irreductible tal que  $p \mid ab$ . Anem a plantejar una sèrie de casos:

- Si a = 0, p | a, i si b = 0, p | b.
- Si A és unitat,  $p \mid b$  i, si b és unitat,  $p \mid a$ .

Si a i  $b \neq o$ , tals que a, b no són unitats, podem escriure a i b com  $a = p_1 \cdots p_r$  i  $b = q_1 \cdots q_s$  ( $p_1 \cdots p_r$  i  $q_1 \cdots q_s$  són irreductibles), respectivament. Aleshores, podem escriure  $p \mid ab$  com:

$$p \mid p_1 \cdots p_r q_1 \cdots q_s \implies \begin{cases} p \sim p_i \implies p \mid a \\ p \sim q_j \implies p \mid b \end{cases} \tag{9.1}$$

Suposem ara que tot irreductible d'A és primer  $p, p_1, \ldots, p_r$  irreductibles d'A i  $p \mid p_1 \cdots p_r$ . Com p és primer, en particular  $p \mid p_i$  per a cert  $i \in \{1, \ldots, r\}$  i  $p \sim p_i$ .

**Proposició 9.5.** Per a un nombre enter d lliure de quadrats, l'anell  $\mathbb{Z}[\sqrt{d}]$  és domini de factorització.

#### FACTORIALITAT EN UN ANELL DE POLINOMIS

Proposició 10.1. Sigui A un domini d'integritat. Les propietats següents són equivalents:

- 1. A és un cos.
- 2. A[X] és un domini euclidià.
- 3. A[X] és un domini d'ideals principals.

**Definició 10.2** (Contingut d'un polinomi). Sigui  $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in A[X]$  un polinomi amb coeficients en un domini de factorització única A. Anomenarem *contingut* de f un màxim comú divisor dels coeficients d'f. Denotem per c(f) el contingut de f. Tenim, doncs:

$$c(f) = \operatorname{mcd}(a_0, a_1, \dots, a_n). \tag{10.1}$$

Clarament, el contingut d'un polinomi d'A[X] queda determinat tret d'un factor d' $A^*$ .

**Definició 10.3** (Primitiu). Direm que f és primitiu si el seu contingut c(f) és una unitat.

**Definició 10.4** (Polinomi primitiu corresponent a f). Donat  $f \in A[X]$ , existeix clarament un polinomi primitiu  $f^*$  tal que  $f = c(f)f^*$ . El polinomi  $f^*$  és únic en el sentit següent: si  $f = c\tilde{f}$ , amb  $c \in A$  i  $\tilde{f}$  primitiu, aleshores  $c \sim c(f)$  i  $\tilde{f} \sim f^*$ . Direm que  $f^*$  és un polinomi primitiu corresponent a f.

**Proposició 10.5** (Lema de Gauss). Sigui A un domini de factorització única. Aleshores, en A[X] el producte de polinomis primitius és primitiu. Més generalment, si f,  $g \in A[X]$ ,  $c(fg) \sim c(f)c(g)$ .

*Demostració*. Sigui  $p \in A$  un element irreductible i considerem el morfisme d'anells:

$$\varphi: A[X] \longrightarrow (A/(p))[X]$$

$$\sum_{i=0}^{n} a_i X^i \longmapsto \sum_{i=0}^{n} \pi(a_i) X^i$$
(10.2)

on  $\pi$  és el morfisme de pas al quocient d'A en A/(p). El nucli d'aquest morfisme és el conjunt de polinomis on tots els seus coeficients cauen en la classe del zero, és a dir, que p divideix cadascun d'aquests elements i, en particular, divideix el seu contingut. En altres paraules, donat  $h \in A[X]$ ,  $\varphi(h) = o$  si, i només si  $p \mid c(h)$ . Siguin ara f, g dos elements d'A[X]. Com  $\varphi(fg) = \varphi(f)\varphi(g)$ , tenim  $\varphi(fg) = o$  si, i només si,  $\varphi(f) = o$  o bé  $\varphi(g) = o$ . Alternativament,  $fg \in \ker(\varphi)$  si, i només si,  $f \in \ker(\varphi)$  o bé  $g \in \ker(\varphi)$ . En més detall, com A és domini de factorització única, p és primer i, per tant, A/(p) és un domini d'integritat. Com A/(p) és un domini d'integritat, A/(p)[X] també ho és. Equivalentment, p és factor irreductible de c(fg) si, i només si, ho és de c(f) o bé de c(g).

Suposem f, g primitius, és a dir, tals que c(f) i c(g) són unitats. Suposem, al seu torn, c(fg) no unitats. Aleshores, p és irreductible i compleix que  $p \mid c(fg) \implies p \mid c(f)$  o bé  $p \mid c(g)$ . Arribem a contradicció, que ve de suposar f, g primitius. En general, posem  $f = c(f)f^*$ ,  $g = c(g)g^*$  tal que  $f^*$ ,  $g^*$  són primitius. Aleshores,  $fg = c(f)c(g)(f^*g^*)$  i  $f^*g^*$  és primitiu. Per tant,  $c(fg) \sim c(f)c(g)$ .

**Corol·lari 10.6.** Sigui A un domini de factorització única,  $\mathbb{K}$  el cos de fraccions d'A i  $f \in A[X]$  mònic. Si f = gh, amb  $g, h \in \mathbb{K}[X]$  mònics, aleshores  $g, h \in A[X]$ .

**Definició 10.7** (Element irreductible, anell de polinomis). Sigui A un domini de factorització única. Un element d'A és element irreductible d'A[X] si, i només si, és element irreductible d'A (un element d'A[X] de grau positiu no pot dividir un element d'A).

**Proposició 10.8.** Sigui A un domini de factorització única i sigui  $f(X) \in A[X]$ . Les condicions següents són equivalents:

- 1. f(X) té grau positiu i és irreductible a A[X].
- 2.  $c(f) \sim I(f \text{ \'es primitiu}) i f(X) \text{ \'es irreductible a } \mathbb{K}[X].$

*Demostració*. Provarem la implicació cap a baix,  $\Rightarrow$ , i cap a dalt,  $\Leftarrow$ .

Suposem que f(X) té grau positiu i és irreductible a A[X]. Tot element irreductible d'A és irreductible a A[X]. La factorització  $f = c(f)f^*$ , amb  $f^*$  primitiu, és no trivial (sempre que c(f) no sigui una unitat). Com que f és irreductible, deduïm que c(f) és una unitat; és a dir,  $c(f) \sim 1$ . Per veure que f(X) és irreductible a  $\mathbb{K}[X]$ , posem f = gh, amb  $g, h \in \mathbb{K}[X]$  i gr(h) > 0. Volem veure que g ha de tenir grau zero i, per tant, ha de ser una unitat de  $\mathbb{K}[X]$ . Si a és denominador comú dels coeficients de g(X) i b dels de h(X), tenim que ag i bh són elements d'A[X] i abf = (ag)(bh) és una factorització d'abf en A[X]. Siguin  $g^*$ ,  $h^*$  els polinomis primitius corresponents a ag i bh:  $ag = c(ag)g^*$ 

i  $bh = c(bh)h^*$ . Aleshores:

$$ab \sim c(abf) = c((ag)(bh)) \sim c(ag)c(bh),$$
 (10.3)

pel lema de Gauss i, per tant,  $f = ug^*h^*$ , amb  $u \in A^*$ . Com f és irreductible a A[X] i  $h^*$  té grau positiu,  $g^*$  és una unitat d'A[X] i, per tant,  $g^* \in (A[X])^* = A^*$ . En conseqüència,  $g^*$  és de grau o i g és constant.

Esigui  $f \in A[X]$  amb  $c(f) \sim I$ , i suposem que f és irreductible a  $\mathbb{K}[X]$ . Posem f = gh, amb  $g, h \in A[X]$ , h de grau positiu. Com  $A[X] \subset \mathbb{K}[X]$ , g ha de tenir grau o i, així,  $g \in \mathbb{K} \cap A[X] = A$ . Ara, la relació  $I \sim c(f) \sim c(g)c(h) \sim g \cdot c(h)$  dona que  $g \in A^*$ . Per tant, f és irreductible a A[X].

**Lema 10.9.** Si  $p \in A$  és un primer en A, aleshores p també és un primer en A[X].

**Teorema 10.10.** Si A és un domini de factorització única, aleshores A[X] és un domini de factorització única.

Proposició 10.11 (Criteris d'irreductibilitat).

- I. Sigui  $f(X) \in A[X]$ ,  $f(X) = a_0 + a_1 X + \dots + a_n X^n$ . Si  $\frac{c}{d}$  és una arrel de f a  $\mathbb{K}$ , amb mcd(c, d) = 1, aleshores  $c \mid a_0$  i  $d \mid a_n$ .
- 2. Sigui  $f(X) \in A[X]$  un polinomi primitiu de grau 2 o 3. Aleshores, f(X) és irreductible si, i només si, no té cap arrel a  $\mathbb{K}$ .

**Proposició 10.12** (Criteri modular). Sigui  $f(X) = a_0 + a_1 X + \cdots + a_n X^n \in A[X]$ , primitiu, i suposem que existeix  $p \in A$ , irreductible, tal que  $p \nmid a_n$  i que el polinomi  $\overline{f}(X) = \overline{a_0} + \overline{a_1}X + \cdots + \overline{a_n}X^n \in (A/(p))[X]$  és irreductible (on  $\overline{a}$  indica la classe d'a  $\in A$  en el quocient A/(p) pel morfisme de pas al quocient  $\pi: A \longrightarrow A/(p)$ ). Aleshores, f és irreductible en A[X].

**Proposició 10.13 (**Criteri d'Eisenstein**).** Sigui  $f(X) = a_0 + a_1X + \cdots + a_nX^n \in A[X]$  primitiu i sigui  $p \in A$ , irreductible en A. Suposem que  $p \mid a_0, p \mid a_1, \ldots, p \mid a_{n-1}, p \mid a_n i p^2 \nmid a_0$ . Aleshores, f(X) és irreductible.

\_