B. New Year Permutation

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

User ainta has a permutation $p_1, p_2, ..., p_n$. As the New Year is coming, he wants to make his permutation as pretty as possible.

Permutation $a_1, a_2, ..., a_n$ is *prettier* than permutation $b_1, b_2, ..., b_n$, if and only if there exists an integer k ($1 \le k \le n$) where $a_1 = b_1, a_2 = b_2, ..., a_{k-1} = b_{k-1}$ and $a_k < b_k$ all holds.

As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an $n \times n$ binary matrix A, user ainta can swap the values of p_i and p_j $(1 \le i, j \le n, i \ne j)$ if and only if $A_{i,j} = 1$.

Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

Input

The first line contains an integer n ($1 \le n \le 300$) — the size of the permutation p.

The second line contains n space-separated integers $p_1, p_2, ..., p_n$ — the permutation p that user ainta has. Each integer between 1 and n occurs exactly once in the given permutation.

Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of the i-th line $A_{i,j}$ is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i,j where $1 \le i \le n$, $A_{i,j} = A_{j,i}$ holds. Also, for all integers i where $1 \le i \le n$, $A_{i,j} = 0$ holds.

Output

In the first and only line, print *n* space-separated integers, describing the prettiest permutation that can be obtained.

Examples

1 2 3 4 5

```
input

5
4 2 1 5 3
00100
00011
10010
01101
01010

output
```

Note

In the first sample, the swap needed to obtain the prettiest permutation is: (p_1, p_7) .

In the second sample, the swaps needed to obtain the prettiest permutation is $(p_1, p_3), (p_4, p_5), (p_3, p_4)$.

A **permutation** p is a sequence of integers $p_1, p_2, ..., p_n$, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as p_i . The size of the permutation p is denoted as n.