

Unidad V

Derivada

Objetivo

Introducir los conceptos elementales sobre los cambios infinitesimales de una función.

Conceptos necesarios para alcanzar los objetivos

Recta tangente - velocidad instantánea. Definición de derivada. Derivada de funciones elementales. Reglas de derivación. Regla de la cadena. Derivadas sucesivas. Relación entre continuidad y derivabilidad.

Ejercicio 1

Hallar, por definición, la derivada de las siguientes funciones:

$$1.1 f(x) = 4$$

1.2
$$f(x) = x^2$$

1.3
$$f(x) = \sqrt{x}$$

1.2
$$f(x) = x^2$$
 1.3 $f(x) = \sqrt{x}$ 1.4 $f(x) = x^2 + 1$

Ejercicio 2

Determine el signo de cada recta tangente a f(x):

Ejercicio 3

- a) De acuerdo a la función derivada hallada en 1.2 calcular:
- a.1 m = f'(0)
- a.2 m = f'(1)
- a.3 m = f'(-1)
- a.4 m = f'(2)
- a.5 m = f'(-2)
- b) Si (0,f(0)), (1,f(1)), (-1,f(-1)), (2,f(2)), (-2,f(-2)) son los puntos donde pasa tangente las rectas a f(x), cuyas pendientes fueron calculadas en a), se pide determinar la ecuación de cada recta tangente asociada a cada punto.
- c) Graficar en un mismo sistema de referencia, f(x), los puntos de tangencia y las rectas tangentes encontradas en b).

Ejercicio 4

Mediante el uso de la tabla y de las reglas de derivación, hallar la derivada de cada función dada a continuación:

4.1 $f(x) = x^{3/5}$

 $4.2 f(x) = 2x^8$

4.3 $f(x) = 6x^3 - 2x + 6$

 $4.4 \ f(x) = 2.cos(x)$

4.5 f(x) = sen(x) + 2.cos(x)

 $4.6 \ f(x) = e^{x} - 2ln(x)$

4.7 $f(x) = (x+1)^2$

 $4.8 \ f(x) = 4 + e^{x} - \frac{1}{x}$

Ejercicio 5

Mediante el uso de la tabla y reglas de derivación, hallar la derivada de cada función dada a continuación:

5.1 f(x) = x.sen(x)

5.2 f(x) = sen(x).cos(x)

 $5.3 \ f(x) = ln(x) \cdot e^{x} + 2x$

 $5.4 f(x) = 2.\cos(x) + x.\sqrt{x}$

 $5.5 \ f(x) = \frac{sen(x)}{x+1}$

 $5.7 \ f(x) = \frac{2.\cos(x) + x.\sqrt{x}}{\ln(x) - e^{x}}$

5.6 $f(x) = \frac{5 + e^x}{sen(x).ln(x)}$ 5.8 $f(x) = \frac{4 + e^x - \frac{1}{x}}{(x+1)^2}$

 $5.9 f(x) = arctg(x) + x^3$

- $5.10 \ f(x) = arcsen(x^2).cos(x)$
- $5.11 f(x) = \arccos(x^4) \operatorname{sen}(\ln(x))$
- $5.12 f(x) = arcsen(ln(x^2))$

Ejercicio 6

Hallar la ecuación de la recta tangente al gráfico de f(x) en el punto cuya abscisa es x_0 :

- 6.1 $f(x) = x^3 + 2$ $x_o = 1$; 6.2 $f(x) = 4e^x + x^2 + 3$ $x_o = 0$
- 6.3 $f(x) = \frac{x+3}{4x-18}$ $x_o = 7$; 6.4 $f(x) = 2.\cos(x)$ $x_o = \pi$

Ejercicio 7

Mediante el uso de la tabla y reglas de derivación, hallar la derivada de cada función dada a continuación:

7.1
$$f(x) = sen(x+1)$$
 7.2 $f(x) = [cos(x)]^2$ 7.3 $f(x) = ln(x^2 + 2x - 1)$ 7.4 $f(x) = (x+3)^3 . \sqrt{2-x}$ 7.5 $f(x) = \frac{sen(x+1)}{x+1}$ 7.6 $f(x) = \frac{5+e^{2x+3}}{sen(x^2)-ln(x+4)}$ 7.7 $f(x) = \frac{2.cos(sen(x)+3)}{ln(\sqrt{2-x}) \cdot e^x}$ 7.8 $f(x) = \frac{4+e^{x} - \frac{1}{x}}{(x+1)^2}$ 7.9 $f(x) = (\frac{sen(x+1)}{x+1})^3$ 7.10 $f(x) = ln(\frac{5+e^{2x+3}}{sen(x^2)-ln(x+4)})$ 7.11 $f(x) = \sqrt{\frac{2.cos(sen(x)+3)}{ln(\sqrt{2-x}) \cdot e^x}}$ 7.12 $f(x) = \frac{[cos(x)]^2}{ln(x^2+2x-1)}$

Ejercicio 8

Hallar la ecuación de la recta tangente al gráfico de f(x) en el punto cuya abscisa es x_o :

8.1
$$f(x) = (x-1)^3 - 5$$
 $x_o = 1$
8.2 $f(x) = (x+2).e^{2x-6}$ $x_o = 3$
8.3 $f(x) = \frac{x+3}{(4x-1)^2}$ $x_o = 0$
8.4 $f(x) = \ln(\cos(x - \frac{\pi}{2}))$ $x_o = \frac{\pi}{2}$
8.5 $f(x) = \sin(\ln(x) + \frac{\pi}{6})$ $x_o = 1$
8.6 $f(x) = \ln(\cos(4x-3)) + 2x$ $x_o = \frac{3}{4}$
8.7 $f(x) = \frac{\cos(\ln(x))}{x+2}$ $x_o = 1$

Ejercicio 9

9.1 Hallar "k", que pertenece a reales, de modo que la recta tangente a

$$f(t) = 2kt \cos(t + \pi)$$

en $t_0 = \pi$ tenga pendiente igual a 6.

9.2 Hallar "a" que pertenece a reales, tal que $f(x) = \sqrt{x^2 + ax + 16}$ tal que la recta tangente a f(x) en $x_0 = 0$ sea paralela a la recta cuya ecuación es y=2x -16.

9.3 Sea $f(x) = x^3 - 2x^2 + 5$ hallar el punto de tangencia (x_o, y_o) entre f(x) y su recta tangente y = -x + 5.

Ejercicio 10

La siguiente gráfica corresponde a una función f(x) definida a trozos, se pide contestar las siguientes preguntas justificando la respuesta:

- a) f(x) ¿es derivable en x=-1?
- b) f(x) ¿es derivable en x=1?

- d) f(x) ¿es derivable en x=3?
- e) f(x) is es derivable en x=4?

Ejercicio 11

11.1 Dada

$$g(x) = \begin{cases} \frac{x^2 - 16}{\sqrt{3x + 4} - 4} & si \ x > 4 \\ 5x + \frac{3}{4} & si \ x \le 4 \end{cases}$$

- a) Determinar si g(x) resulta continua en x = 4
- b) Determinar si g(x) resulta derivable en x=4

11.2 Dada

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 3} - 2}{x - 1} & \text{si } x < 1\\ x^3 + 3x + 2 & \text{si } x \ge 1 \end{cases}$$

- a) Determinar si f(x) resulta continua en x=1
- b) Determinar si f(x) resulta derivable en x=1

$$f(x) = \begin{cases} (x-1)^2 + 2 & \text{si } x < 2\\ (x-3)^2 + 2 & \text{si } x \ge 2 \end{cases}$$

- a) Determinar si f(x) resulta continua en x=1
- b) Determinar si f(x) resulta derivable en x=1

Ejercicio 12

12.1 Dada

$$f(x) = \begin{cases} 4x^2 + 4x + m & si \ x \ge -2 \\ -12x - 24 & si \ x < -2 \end{cases}$$

- a) Determinar el valor de "m" que pertenece a reales de modo que f(x) resulte continua en x=-2.
- b) Para el valor de "m" hallado determine si f(x) resulta derivable en x=-2
- 12.2 Dada

$$f(x) = \begin{cases} e^x - m & \text{si } x \ge 0\\ x \cdot e^{-x^2} & \text{si } x < 0 \end{cases}$$

- a) Determinar el valor de "m" que pertenece a reales de modo que f(x) resulte continua en x=0.
- b) Para el valor de "m" hallado determine si f(x) resulta derivable en x=0.
- 12.3 Dada

$$f(x) = \begin{cases} e^{x-1} - 4r & \text{si } x \ge 1\\ (x-1)e^{-(x-1)^2} & \text{si } x < 1 \end{cases}$$

- a) Determinar el valor de "r" que pertenece a reales de modo que f(x) resulte continua en x=1.
- b) Para el valor de "r" hallado determine si f(x) resulta derivable en x=1.
- 12.4 Dada

$$f(x) = \begin{cases} x^2 - nx - 1 & \text{si } x \ge 3\\ 2x + \ln(x^2 - 8) & \text{si } x < 3 \end{cases}$$

- a) Determinar el valor de "n" que pertenece a reales de modo que f(x) resulte continua en x=3.
- b) Para el valor de "n" hallado determine si f(x) resulta derivable en x=3.

Integrador

Determine cuáles de las siguientes afirmaciones son verdaderas y cuales son falsas. En el caso que resulten falsas justifique el por qué.

- 1) Calcular la derivada por definición implica calcular un
- 3) La gráfica de una función posee infinitos puntos y en cada punto se asocia a una única recta.....

Determine cuáles de las siguientes afirmaciones son verdaderas y cuales son falsas. Justifique en todos los casos la elección escogida:

- i) Si f(x) es continua en x_o entonces f(x) también es derivable en x_o .
- ii) Si f(x) es derivable en x_0 entonces f(x) también es continua en x_0 .
- iii) Si f(x) no es continua en x_o entonces f(x) no es derivable en x_o .
- iv) Si f(x) no es derivable en x_o entonces f(x) no es continua en x_o .
- v) Que f(x) sea derivable en x_o no implica que f(x) sea continua en x_o .

