

电机与拖动课件之三

直流电机电力拖动

2.2他励直流电动机的机械特性 2.2.4 电力拖动系统稳定运行条件

▶ 处于某一转速下运行的电力拖动系统,由于受到某种扰动,导致系统的转速发生变化而离开原来的平衡状态,如果系统能在新的条件下达到新的平衡状态,或者当扰动消失后系统回到原来的转速下继续运行,则系统是稳定的,否则系统是不稳定的。

1.系统稳定运行分析

①在A点,系统平衡时: $T = T_{L}$

②扰动使转速有微小增量,由 ${\bf n}_A$ 上升 ${\bf n}_A'$, $T < T_{\rm L}$, 当扰动消失,系统减速, 回到A 点运行。

③扰动使转速有微小下降,由 \boldsymbol{n}_A 降到 \boldsymbol{n}_A'' , $T>T_L$,当扰动消失,系统加速,回到A 点运行。

1、系统稳定运行分析

①负载
$$T_L$$
 $\overset{\mathbf{突 \mathfrak{S}}}{\longrightarrow} T'_L$ $\longrightarrow T - T'_L = \frac{\mathrm{GD}^2}{375} \frac{\mathrm{d}n}{\mathrm{d}t} > 0$

$$\longrightarrow n \uparrow \longrightarrow E_a = C_e \Phi_N n \uparrow \longrightarrow I_a = (U_N - E_a) / R_a \downarrow$$

$$\longrightarrow T = C_T \Phi_N I_a \downarrow \longrightarrow T = T_L$$
 系统进入新的转速 n_A' 稳定运行

②负载
$$T_{\rm L}$$
 $\xrightarrow{\mathbb{R}_a}$ $T''_{\rm L}$ \longrightarrow $T - T''_{\rm L} = \frac{{
m GD}^2}{375} \frac{{
m d}n}{{
m d}t} < 0 \longrightarrow n \downarrow \longrightarrow E_{\rm a} = C_e \Phi_{\rm N} n \downarrow$

$$\longrightarrow I_{\rm a} = (U_{\rm N} - E_{\rm a})/R_{\rm a} \uparrow \longrightarrow T = C_T \Phi_{\rm N} I_{\rm a} \uparrow \longrightarrow T = T_{\rm L}''$$
 系统进入新的转速 n_A'' 稳定运行

2、系统不稳定运行

①负载
$$T_L \longrightarrow T'_L$$
 $T - T'_L = \frac{\text{GD}^2}{375} \frac{\text{d}n}{\text{d}t} > 0$ $n, I_a(T)$ 不能突变

$$\longrightarrow n \uparrow \longrightarrow T \uparrow \longrightarrow$$

 $\longrightarrow_n \uparrow \longrightarrow_T \uparrow \longrightarrow$ 系统转速由 n_B 无限制上升,系统不稳定。

②负载
$$T_L$$
 $\xrightarrow{\mathbb{N}}$ T_L''' \longrightarrow $T - T_L''' = \frac{\mathrm{GD}^2}{375} \frac{\mathrm{d}n}{\mathrm{d}t} < 0 \longrightarrow n \downarrow \longrightarrow T \downarrow$

系统转速由 n_R 一直下降到0,系统不稳定。

3、电力拖动系统稳定运行的充分必要条件

(1)必要条件: 电动机的机械特性与负载的转矩特性必须有交点,即存在

$$T = T_{\rm L}$$

(2)充分条件: 在交点处, 满足: $\frac{dT}{dn} < \frac{dT_L}{dn}$.

若dn>0, $dT< dT_{I}$, $T'< T_{I}$ '; 若dn<0, $dT> dT_{I}$, $T'>T_{I}$ '。

4、电力拖动系统稳定的判定方法

(1)做一条水平直线于工作点上方,分别与电动机机械特性和负载转矩特性相交。比较两个转矩的增量,若d $T < dT_1$, 则系统稳定。否则,系统不稳定。

(2)在工作点上方做一条水平直线,分别交T-n 曲线于A点, T_L -n 曲线于B点,A点在A点在A点在A点点,则系统稳定,否则, 系统不稳定。

思考题

小结

 n'_B n_B 稳定性分析 稳定运行条件 (1)必要条件: 电动机的机械特性与负载的转矩特性必须有交 充分必要条件 点,即存在 $T = T_{L}$ |B|

简便方法: A位于B左侧