# DiGress: Discrete Denoising diffusion for graph generation

Tinglin Huang

#### Diffusion Model (1)

- Diffusion model is a powerful class of generative models
  - Generate new sample by recursively denoising a random sampled noise



# Diffusion Model (2)

• To learn how to generate the sample with denoising, one intuitive way is to train the model to recover the sample after adding noise



#### Diffusion Model (3)

- However, such a method suffers from several limitations
  - How to balance the weight of noise we add?
    - Model is hard to learn if the weight is too large; Otherwise, the task is too simple
  - There is a bias between training and inference
    - Training: denoise a sample conditional on the sample distribution p(x)
    - Inference: denoise a randomly sampled noise
- Diffusion model addresses these issues by denoising a trajectory of noised samples

#### Diffusion Model (4)

- Main idea
  - Add a sequence of noises to the data with a decreasing weight
    - Advantage: when  $t \to \infty$ , the noised sample doesn't depend on p(x)
    - x: original instance,  $n \sim N(0,1)$ : random noise,  $\alpha$ : weight  $x^t = \alpha^t x^{t-1} + (1-\alpha^t)n$



- Train the model by recovering sample at step t to step t-1
  - Advantage: offer a more stable and smooth training

#### Diffusion Model (5)

- Let's formulate the process
  - Sample an instance *x*
  - Create a sequence of noisy instances  $z^1, ..., z^T$ 
    - Markovian structure
    - $n^t$ : sampled noise at step t,  $\alpha^t$ : weight at step t  $z^{t+1} = \alpha^t z^t + (1 \alpha^t) n^t$
  - Train the model by learning the distribution  $p(z^{t-1}|z^t)$ 
    - Recovering the sample step by step
    - Predict t-step noised instance based on t-1-step noised instance
- Note:  $p(z^{t-1}|z^t)$  denotes the denoising distribution, and  $q(z^t|x)$  denotes the add-noise distribution

# Diffusion Model (6)

- Three properties required for diffusion model
  - 1) The generation of the noised sample  $q(z^t|x)$  should have a close-form formula that only depends on x,  $\alpha^t$ ,  $n^t$ 
    - So that we can directly generate  $z^t$  based on x
    - Enable a parallel training



# Diffusion Model (7)

- Three properties required for diffusion model
  - 2)  $p(z^{t-1}|z^t)$  should also have a close-form formula that depends on x
    - It can be used for loss function with the target of x



- 3)  $q(z^{\infty}|x)$  should not depend on x
  - We can generate the sample from the noise distribution (e.g., Gaussian distribution) during inference

#### Discrete diffusion model (1)

- 1) Consider the data point x that belongs to one of d classes
  - $x, z^t$  would be one-hot vectors
  - For example: Atom type (C, O, H, N) in molecule; Word in sequence
- ullet 2) Use transition matrix Q as the noise instead of Gaussian distribution
  - $Q \in \mathbb{R}^{N \times N}$ 
    - *N*: number of types
    - $Q_{ij}$ : the probability of jumping from type i to type j
  - Similar to the graph adjacent matrix
  - The process of add noise: randomly change the type according to probability  $q(z^t|z^{t-1}) = z^{t-1}Q^t$

# Discrete diffusion model (2)

- It can satisfy the three requirements for diffusion model
  - 1) The noise sample can be built by apply noise recursively

• 
$$q(z^t|x) = x\bar{Q}^t = xQ^1Q^2 \dots Q^t$$

- 2)  $p(z^{t-1}|z^t,x)$  can also be computed in closed-form
  - $p(z^{t-1}|z^t, x) \propto z^t(Q^t)' \odot x \bar{Q}^{t-1}$ 
    - $(\cdot)'$  denotes the transpose of Q
- 3) When  $t \to \infty$ ,  $q(z^t|x)$  converges to a noise distribution independently of x
  - Uniform distribution as noise distribution

• 
$$Q^t = \alpha^t I + (1 - \alpha^t) 1_N 1_N' / N$$

<sup>[1]</sup> Structured denoising diffusion models in discrete state-spaces

<sup>[2]</sup> Diffsound: Discrete diffusion model for text-to-sound generation

<sup>[3]</sup> Beyond in-place corruption: Insertion and deletion in denoising probabilistic models

<sup>[4]</sup> Argmax flows and multinomial diffusion: Learning categorical distributions

#### DiGress (1)

#### Notation

- a: number of node type, b: number of edge type, n: number of nodes
- $X \in \mathbb{R}^{n \times a}$ : One-hot encoding for all the nodes  $x_i$
- $E \in \mathbb{R}^{n \times n \times b}$ : One-hot encoding for all the edges  $e_{ij}$
- $G^t = (X^t, E^t)$ : Graph at step t

#### Contribution

- Adapt the discrete diffusion model to the graph generation problem
- Propose a noise model
- Extend the framework to a conditional generation method

#### DiGress (2)



- Innovation: diffuse separately on each node and edge feature
  - $Q_X^t \in \mathbb{R}^{a \times a}$  for node and  $Q_E^t \in \mathbb{R}^{b \times b}$  for edge
  - Adding noise to graph == Adding noise to node and edge
    - Step by step adding noise

$$q(G^t|G^{t-1}) = (X^tQ_X^t, E^tQ_E^t)$$

• Obtain the noise directly from G (Property 1)

$$q(G^t|G) = (X^t \overline{Q}_X^t, E^t \overline{Q}_E^t)$$

$$\overline{Q}_X^t = Q_X^1 \dots Q_X^t \quad \overline{Q}_E^t = Q_E^1 \dots Q_E^t$$

# DiGress: Training objective (1)

- Recall: training with denoising, i.e., predict  $p(z^{t-1}|z^t)$
- DiGress formulates it as the prediction over nodes and edges

$$p(G^{t-1}|G^t) = \prod_{1 \le i \le n} p(x_i^{t-1}|G^t) \prod_{1 \le i,j \le n} p(e_{ij}^{t-1}|G^t)$$

• For node, we can have

$$p(x_i^{t-1}|G^t) = \sum_{x} p(x_i^{t-1}|x_i = x, G^t)p(x_i = x|G^t)$$

For edge

$$p(e_{ij}^{t-1}|G^t) = \sum_{e} p(e_{ij}^{t-1}|e_{ij} = x, G^t)p(e_{ij} = x|G^t)$$

#### DiGress: Training objective (2)

- Recall:  $p(x^{t-1}|x^0, x^t) \propto x^t(Q^t)' \odot x^0 \overline{Q}^{t-1}$  (Property 2)
- We can have

$$p(x_i^{t-1}|G^t) = \sum_{x} p(x_i^{t-1}|x_i^0 = x_i G^t) p(x_i = x|G^t)$$

$$= \sum_{x} p(x_i^{t-1}|x_i^0 = x_i x_i^t) p(x_i^0 = x|G^t)$$
It is unknown:

This distribution is deterministic:

Can be replaced with above equation  $p(x^{t-1}|x^0, x^t)$ 

The distribution of  $x_i^0$  conditional on t-step noise samples

#### DiGress: Training objective (3)

- For training
  - 1) We generate noised sample  $G^t$  based on  $G^0$
  - 2) Train the model by predicting  $p(G^{t-1}|G^t)$ 
    - Predicting  $p(x_i^{t-1}|G^t)$  and  $p(e_{ij}^{t-1}|G^t)$  in DiGress

$$p(x_i^{t-1}|G^t) = \sum_{x} p(x_i^{t-1}|x_i^0 = x, x_i^t) p(x_i^0 = x|G^t)$$

$$p(e_{ij}^{t-1}|G^t) = \sum_{e} p(e_{ij}^{t-1}|e_{ij}^0 = e, e_{ij}^t) p(e_{ij}^0 = e|G^t)$$
Target: predict these two terms

Predict the original graph based on noised graph

$$p(e_{ij}^{t-1}|G^t) = \sum_{e} p(e_{ij}^{t-1}|e_{ij}^0 = e, e_{ij}^t) p(e_{ij}^0 = e|G^t)$$

#### DiGress: Training objective (4)

- For training
  - 1) We generate noised sample  $G^t$  based on  $G^0$
  - 2) Train the model by predicting the original node and edge type with  $G^t$ 
    - Cross-entropy loss



# DiGress: Training objective (5)

- Denoising network
  - Graph transformer network[1] equipped with FiLM[2]
  - Output the updated node and edge based on the input node and edge feature
  - Time step t is normalized and incorporated as a global feature inside y



- [1] A generalization of transformer networks to graphs
- [2] FiLM: Visual reasoning with a general conditioning layer

#### DiGress: Noise Model

- Uniform distribution is not applicable to graph
  - $Q^t = \alpha^t I + (1 \alpha^t) 1_N 1_N' / N$
  - Graphs are usually sparse, so edge type is far from uniform
- DiGress: Transition matrix is based on the frequency of node/edge types in training set
  - The prior distribution that is close to the true data distribution makes training easier
  - $m_X \in \mathbb{R}^{a \times 1}$ ,  $m_E \in \mathbb{R}^{b \times 1}$ : frequency vector

transition matrix: 
$$Q_X^t = \alpha^t I + (1-\alpha^t) 1_a m_X'$$
 
$$Q_E^t = \alpha^t I + (1-\alpha^t) 1_b m_E'$$



#### DiGress: Graph Generation

$$t = T$$

- Sample a random graph  $G^T$  based on  $m_X$ ,  $m_E$
- For t = T for 1 do
  - Predict the node distribution and edge distribution of  $G^0$ 
    - $p(x^0|G^t), p(e^0|G^t) = \text{Transformer}(G^t)$
  - Generate posterior node/edge distribution of the graph at t-1 step
    - $p(x_i^{t-1}|G^t) = \sum_x p(x_i^{t-1}|x_i^0 = x, x_i^t)p(x_i^0 = x|G^t)$
    - $p(e_{ij}^{t-1}|G^t) = \sum_{e} p(e_{ij}^{t-1}|e_{ij}^0 = e, e_{ij}^t) p(e_{ij}^0 = e|G^t)$
  - Sample graph at t-1 step
    - $G^{t-1} \sim \prod_{1 \le i \le n} p(x_i^{t-1}|G^t) \prod_{1 \le i,j \le n} p(e_{ij}^{t-1}|G^t)$

#### DiGress: Conditional Generation

- How to generate the graph conditional on a target property  $y_G$ 
  - E.g., molecular property
- Classifier guidance algorithm[1]
  - Additionally train a classifier  $g_{\eta}(G^t) = \hat{y}$
  - This regressor guides the unconditional diffusion model by modulating the predicted distribution at each sampling step

$$p(G^{t-1}|G^t) \Rightarrow p(G^{t-1}|G^t)p(y_G|G^{t-1})$$

#### Experiment: (1)

- Unconditional generation on non-molecule graph
  - Dataset:
    - 200 graphs sampled from SBM (200 nodes per graph)
    - 200 graphs sampled from planar graphs (64 nodes per graph)
  - Train the model on training set and compare the distribution between test set and the generated graphs
    - Degree distribution
    - Clustering coefficient
    - Orbit count

| Model           | Deg↓    | Clus ↓ | Orb↓ | V.U.N.↑     |
|-----------------|---------|--------|------|-------------|
| Stochastic bloc | k model |        |      |             |
| GraphRNN        | 6.9     | 1.7    | 3.1  | 5 %         |
| GRAN            | 14.1    | 1.7    | 2.1  | 25%         |
| GG-GAN          | 4.4     | 2.1    | 2.3  | 25%         |
| SPECTRE         | 1.9     | 1.6    | 1.6  | 53%         |
| ConGress        | 34.1    | 3.1    | 4.5  | 0%          |
| DiGress         | 1.6     | 1.5    | 1.7  | <b>74</b> % |
| Planar graphs   |         |        |      |             |
| GraphRNN        | 24.5    | 9.0    | 2508 | 0%          |
| GRAN            | 3.5     | 1.4    | 1.8  | 0%          |
| <b>SPECTRE</b>  | 2.5     | 2.5    | 2.4  | 25%         |
| ConGress        | 23.8    | 8.8    | 2590 | 0%          |
| DiGress         | 1.4     | 1.2    | 1.7  | 75%         |

#### Experiment: (2)

- Unconditional generation on QM9 dataset
  - 100k molecules for training, 20k for validation and 13k for evaluating likelihood on a test set
  - Metric
    - NLL: Negative log-likelihood
    - Valid: Validity (measured by RDKit sanitization)
    - Unique: Uniqueness

| Method          | NLL                        | Valid                        | Unique                       | Training time (h) |
|-----------------|----------------------------|------------------------------|------------------------------|-------------------|
| Dataset         | _                          | 99.3                         | 100                          | _                 |
| Set2GraphVAE    | _                          | 59.9                         | 93.8                         | _                 |
| SPECTRE         | _                          | 87.3                         | 35.7                         | _                 |
| GraphNVP        | _                          | 83.1                         | 99.2                         | _                 |
| GDSS            | _                          | 95.7                         | <b>98.5</b>                  | _                 |
| ConGress (ours) | _                          | $98.9 {\scriptstyle \pm .1}$ | $96.8 {\scriptstyle \pm .2}$ | 7.2               |
| DiGress (ours)  | $69.6{\scriptstyle\pm1.5}$ | $99.0 {\pm}.1$               | $96.2 {\scriptstyle \pm .1}$ | 1.0               |

#### Experiment: (3)

- Conditional generation on QM9
  - Test set construction
    - Sample 100 molecules from the test set and retrieve their dipole moment  $\mu$  and the highest occupied molecular orbit (HOMO)
  - Generate 10 molecules with DiGress conditional on μ, HOMO
  - Evaluation
    - For each generated molecule, use RdKit to produce conformer
    - Then use Psi4 to estimate the values of μ and HOMO
    - Report the MSE between the targets and the estimated values

| Target             | $\mu$                            | НОМО | $\mu$ & HOMO                  |
|--------------------|----------------------------------|------|-------------------------------|
| Uncondit. Guidance | $1.71 {\pm}.04 \\ 0.81 {\pm}.04$ |      | $1.34 \pm .01 \ 0.87 \pm .03$ |

#### Experiment: (4)

- Conditional generation on molecule dataset MOSES and GuacaMol
  - DiGress does not yet match the performance of SMILES and fragment-based methods

| Model           | Class         | Val ↑ | Unique↑ | Novel† | Filters† | FCD↓ | SNN↑ | Scaf↑ |
|-----------------|---------------|-------|---------|--------|----------|------|------|-------|
| VAE             | <b>SMILES</b> | 97.7  | 99.8    | 69.5   | 99.7     | 0.57 | 0.58 | 5.9   |
| JT-VAE          | Fragment      | 100   | 100     | 99.9   | 97.8     | 1.00 | 0.53 | 10    |
| GraphINVENT     | Autoreg.      | 96.4  | 99.8    | _      | 95.0     | 1.22 | 0.54 | 12.7  |
| ConGress (ours) | One-shot      | 83.4  | 99.9    | 96.4   | 94.8     | 1.48 | 0.50 | 16.4  |
| DiGress (ours)  | One-shot      | 85.7  | 100     | 95.0   | 97.1     | 1.19 | 0.52 | 14.8  |

| Model                            | Class                                      | Valid↑                     | Unique↑                   | Novel†                     | KL div↑                      | FCD†                      |
|----------------------------------|--------------------------------------------|----------------------------|---------------------------|----------------------------|------------------------------|---------------------------|
| LSTM NAGVAE MCTS ConGress (ours) | Smiles<br>One-shot<br>One-shot<br>One-shot | 95.9<br>92.9<br>100<br>0.1 | 100<br>95.5<br>100<br>100 | 91.2<br>100<br>95.4<br>100 | 99.1<br>38.4<br>82.2<br>36.1 | 91.3<br>0.9<br>1.5<br>0.0 |
| DiGress (ours)                   | One-shot                                   | 85.2                       | 100                       | 99.9                       | 92.9                         | 68.0                      |

#### **DiGress**

- Adapt the unconditional/conditional discrete diffusion model to graph generation problem
  - Separate the diffusion on each node and edge feature
- Propose an effective noise model for graph
  - Based on the frequency of node and graph types
- Use a Transformer model as the denoising model
- Evaluate the performance on 5 benchmark datasets