MSBD5007 Optimization and Matrix Computation Homework 3

Due date: 30 March, Sunday

- 1. Determine the convexity of the following functions, where $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{X} \in \mathbb{S}^n_{++}$ (the set of symmetric positive definite matrices). Justify your answers.
 - (a) $f(\mathbf{x}) = \log(e^{x_1} + e^{x_2} + \dots + e^{x_n}).$
 - (b) $f(\mathbf{X}) = \log \det(\mathbf{X})$.
- 2. Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, with $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$, and the initial guess $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 - (a) Present the first two update iterations using the steepest descent algorithm.
 - (b) Present the first two update iterations using the conjugate gradient algorithm.
- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function. Suppose that for every $\boldsymbol{x} \in \mathbb{R}^n$, the eigenvalues of the Hessian matrix $\nabla^2 f(\boldsymbol{x})$ lie uniformly in the interval [m, M] with $0 < m \le M < \infty$. Prove that:
 - (a) The function f has a unique global minimizer x^* .
 - (b) For all $x \in \mathbb{R}^n$, the following inequality holds:

$$\frac{1}{2M} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{1}{2m} \|\nabla f(x)\|^2.$$

4. Consider the optimization problem $\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function. To develop a weighted gradient descent method, let $\boldsymbol{W} \in \mathbb{R}^{n \times n}$ be a symmetric positive definite (SPD) matrix. Denote by $\boldsymbol{W}^{\frac{1}{2}}$ the unique SPD square root of \boldsymbol{W} (i.e., $(\boldsymbol{W}^{\frac{1}{2}})^2 = \boldsymbol{W}$) and by $\boldsymbol{W}^{-\frac{1}{2}}$ its inverse. Given the current iterate $\boldsymbol{x}^{(k)}$, define the next iterate $\boldsymbol{x}^{(k+1)}$ as the solution of the following constrained optimization problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}^{(k)}) + \langle \nabla f(\boldsymbol{x}^{(k)}), \, \boldsymbol{x} - \boldsymbol{x}^{(k)} \rangle,$$
 subject to
$$\|\boldsymbol{W}^{\frac{1}{2}}(\boldsymbol{x} - \boldsymbol{x}^{(k)})\|_2 \le \alpha_k \, \|\boldsymbol{W}^{-\frac{1}{2}} \nabla f(\boldsymbol{x}^{(k)})\|_2,$$

where $\alpha_k > 0$ is a step-size parameter.

Answer the following questions:

- (a) Derive an explicit formula for $x^{(k+1)}$.
- (b) Prove that $\boldsymbol{x}^{(k+1)}$ is equivalently the unique minimizer of the unconstrained quadratic problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ f(\boldsymbol{x}^{(k)}) + \langle \nabla f(\boldsymbol{x}^{(k)}), \, \boldsymbol{x} - \boldsymbol{x}^{(k)} \rangle + \frac{1}{2\alpha_k} \| \boldsymbol{W}^{\frac{1}{2}}(\boldsymbol{x} - \boldsymbol{x}^{(k)}) \|_2^2 \right\}.$$