

cloud-native software supply chain security: the hard truth

splunk>

Software Supply Chain

The software supply chain involves a multitude of tools and processes that enable software developers to write, build, and ship applications.

Melara & Bowman, 2022, Intel Labs

CNCF - SSC in a

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf

Stages of the SSC

Stages/Elements of the SSC

- Code
- Dependencies
- Build
- Artifacts & Distribution/Deployment
- (Runtime)

Stage: Code

code content

code management

Stage: Code - code content

- ☐ bugs
 - malicious code
 - license

solutions

- scanning

- testing

- policies

- manipulation

□ - theft

- deletion

solutions

🦰 - access **RBAC** Codeowners signatures MFA

💆 - repo

config

push policies

mandatory MFA for source code access

enforced commit message convention

packages, libraries, ...

Please use a Package Manager

Stage: Dependencies

- ☐ bugs
- malicious code
- license
- integrity

solutions

- scanning

- testing

🚗 - policies

- inventory

- signature

- SBOM

using a package manager

package usage policy in place

Stage: Build

Stage: Build

- - threats
 - ☐ build bugs

 - 🙆 malicious env

solutions

- dedicated env

zero trust

- single use env

- pipelines

{} - as code

? - reproducible

fully automated build

truly bitwise reproducible builds

Stage: Artifacts & Distribution/Deployment

CD¹ ... Continuous Delivery

CD² ... Continuous Deployment

Stage: Artifacts & Distribution/Deployment

- threats
 - □ theft / deletion
 - replacement
 - no transparency
 - updates

Solutions

repo

security

- signatures

🗐 - attestation

- SBOM

dedicated artifact management

create "extended" SBOM

Bottom Line Message

Software Supply Chain has multiple levels → very different threats �

Solutions / Mitigations on different levels of effort and complexity

in the real world

MBA Master thesis research, looking for a "somewhat complete" set of SSCS controls

literature input from..

- CIS Software Supply Chain Security Guide
- CNCF Software Supply Chain Best Practices
- OWASP SCVS Software Component Verification Standard
- SLSA Supply-chain Levels for Software Artifacts
- Microsoft Secure Supply Chain Consumption Framework
- DoD Enterprise DevSecOps Reference Design

Context

3 Implementation Groups

167 controls6 categories

83 questions 4 possible answers 30 companies (DACH)

Context

- IG 1
 - small company
 - o no sensitive data
- IG 2
 - middle size company
 - some sensitive data
- IG 3
 - enterprise
 - o highly sensitive data

Findings - Companies per IP

Findings - Using VCS

Findings - Implementing all IG1 controls

Findings - Implementing IG3 controls

- d only necessary for IG3 companies
- 25% definitely not implemented
- 1/3 implemented somewhere
- 🛂♂ > ⅓ unknown
 - no policy?
 - know how?

Findings - Controls vs Effort

Lessons Learned

G / company size
☐ Transparency

~25-50% of controls per group not implemented

scans, tests & checks 🂝 policies

Low hanging **to** not reaped

build, SBOM, attestation

automation is \(\) (laC, pipelines, testing, PaC, ...)

The Hard Truth

lots of information available

many simple controls not implemented

most complex controls not implemented

bigger company = less transparency/adaptation

Daniel Drack

Senior Dev Ops Engineer @ FullStackS

Organizer / Host CNCG Graz + KCD Austria

- BSC MA MBA
- CK{A/AD}, TFA, VA, GitLab, PSM I, Snyk
- daniel.drack@fullstacks.eu
- https://drackthor.me
- @DrackThor

Further Reading

Code:

- SAST
- (GitLab) Push Rules
- Codeowners
- <u>laC Scanning Tools</u>
- The Test Pyramid

Dependencies:

- SCA Tools
- SBOM Introduction
- Dependency Track

Build:

- Reproducible Builds
- Zero Trust Paradigm
- container based build

Artifacts, Distribution & Deployment:

- The Update Framework
- In-Toto Attestation
- Sigstore

used Literature (selection):

- CNCF Supply Chain Best Practices
- CIS Supply Chain Security Guide
- NIST SSDF
- SLSA
- OSSF S2C2F
- <u>OWASPASVS</u>
- SSA Secure Software Controls