Quantum phase estimation -

An example from chemistry

January 3, 2021

prequisite: quantum circuits

- ▶ qubit: 2-level quantum system ($|0\rangle$, $|1\rangle$). quantum computer = n qubits.
- ▶ quantum circuit ≃ quantum program = list of quantum instructions/gates.
- ► The circuit above computes:

$$|\psi\rangle = V \cdot (W \otimes I) \cdot CNOT_{0 \to 1} \cdot (H \otimes I)|00\rangle$$

Note: "controlled-gates" means:

$q_0 = 0$ $q_1, 0 : q_1, 1$	$q_0 = 1$ $q_1, 0; q_1, 1$
$ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) $	(0)
(0)	\overline{U}

Quantum simulation: general motivation

- ▶ Efficient numerical simulation quantum phenomena on classical machines seems hard [1].
- ► Therefore quantum machines might be able to perform classically-intractable computation¹
- And in particular they should be good at simulating quantum phenomena (e.g simulating QCD, solving condensed-matter problems, computing molecular energies etc.)

 \rightarrow But in practice, how would that work ? What **quantum circuits** would I run on my hypothetical quantum computers to solve these problems ?

¹basic motivation behind quantum computing research

Quantum Simulation: more precisely

Most of the time in the potential applications I mentioned (particle phycics, condensed matter, chemistry), the computation consists in **diagonalizing Hamiltonians** and in particular find their **ground** state energy.

You will see in these practical quantum programming sessions the two main frameworks for doing so on a quantum computer:

- phase estimation (this week)
- variational algorithms (next week, in a slightly more "combinatorial optimization"-oriented context)

This week's answer: quantum phase estimation

With
$$|\psi\rangle$$
 eigenvector of U with eigenvalue $e^{-2i\pi\phi}$, $(U|\psi\rangle=e^{-2i\pi\phi}|\psi\rangle$, $0\leq\phi<1$)

The circuit above allows to compute the n_B most significant bits of ϕ in a **binary decomposition**.

Template for *all* quantum algorithms with **exponential speedup**, both in quantum simulation and other application contexts.

iterative quantum phase estimation: what we will use

for k in range(n_B , 0, -1)²:

- 1. compute $\phi_k = \sum_{l=k+1}^{n_B} \frac{b_l}{2^{l-k+1}}$
- 2. execute the following circuit:

$$|0\rangle - H - RZ(\phi_k) - H - meas. = b_k$$

$$n_S \quad \Big|\psi\rangle \Big\{ U^{2^{k-1}} \Big\} |\psi\rangle$$

With
$$H=rac{1}{\sqrt{2}}egin{pmatrix}1&1\\1&-1\end{pmatrix}$$
 and $RZ(\phi_k)=egin{pmatrix}1&0\\0&e^{i\phi_k}\end{pmatrix}$

²Python style

$$|0\rangle - H - RZ(\phi_k) - H - meas = b_k$$

$$n_S \uparrow |\psi\rangle \left\{ - U^{2^{k-1}} \right\} |\psi\rangle$$

Recall that $\phi=0.b_1\cdots b_{n_B}$ in binary decomposition and $\phi_k=\sum_{l=k+1}^{n_B}\frac{b_l}{2^{l-k+1}}=0.0b_{k+1}\cdots b_{n_B}.$

Evolution of the system:

$$\begin{split} &|0\rangle|\psi\rangle \underset{H}{\rightarrow} \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|\psi\rangle = \left(\frac{|0\rangle|\psi\rangle+|1\rangle|\psi\rangle}{\sqrt{2}}\right) \\ &\underset{\bullet - U}{\rightarrow} \left(\frac{|0\rangle|\psi\rangle+e^{-2i\pi\cdot2^{k-1}\phi}|1\rangle|\psi\rangle}{\sqrt{2}}\right) = \left(\frac{|0\rangle+e^{-2i\pi\cdot0.b_k\cdots b_{n_B}}|1\rangle}{\sqrt{2}}\right)|\psi\rangle \\ &\underset{RZ(\phi_k)}{\rightarrow} \left(\frac{|0\rangle+e^{-2i\pi\cdot0.b_k}|1\rangle}{\sqrt{2}}\right)|\psi\rangle = \left(\frac{|0\rangle+(-1)^{b_k}|1\rangle}{\sqrt{2}}\right)|\psi\rangle \underset{H}{\rightarrow} |b_k\rangle|\psi\rangle \end{split}$$

Our example: molecular ground state energy calculation

General problem: Given \mathcal{H} , electronic structure Hamiltonian of a molecule, we want to compute its ground state energy.

Actually, usually ${\cal H}$ depends on some structural/geometric parameters. The purpose is then to compute a *ground state energy landscape* as a function of these parameters. May provide insight on reaction mechanisms 3 .

Our instance: H_2 and its dissociation curve. We will use data from [3], where they solve it on an actual small quantum chip.

³Potential futuristic applications: CO_2 capture [2], H_2O cracking...

We will therefore work with:

- $U = e^{-i\mathcal{H}dt}$, for some value of dt to be chosen.
- \blacktriangleright $|\psi\rangle$ the ground state of H, whose energy E we want to compute.
- we then have $U|\psi\rangle=e^{-iEdt}|\psi\rangle=e^{-2i\pi\frac{Edt}{2\pi}}$

Problem 1: the algorithm only allows us to compute $\phi = \frac{Edt}{2\pi} \mod [1] \ (\in [0,1])$

Following [4], we will use an interval guess $[E_{min}, E_{max}]$ for E. Then $\mathcal{H} \leftarrow \mathcal{H} - E_{min} \cdot I$ ensures E > 0 and choosing $dt = \frac{2\pi}{E_{max}}$ ensures $\frac{Edt}{2\pi} < 1$

Other problems

Problem 2 In general we do not have access to the ground state.

 \rightarrow use an **ansatz**⁴ with theoretical good overlap with ground state.

Problem 3 How do we implement $U^{2^k} = e^{-i\mathcal{H}2^k dt}$?

- ightarrow usually $\mathcal H$ comes as a sum of simpler terms $\sum_{l} \mathcal H_{l}$ (e.g Pauli products) for which $e^{-i\mathcal H_{l}dt}$ is simple to implement.
- → and use **Trotter's formula** [4]

$$e^{-i\left(\sum_{l}\mathcal{H}_{l}\right)dt}\simeq\left(\prod_{l}e^{-rac{i\mathcal{H}_{l}dt}{p}}
ight)^{p}$$

with p integer, as large as possible.

⁴easy-to-prepare approximation

- ▶ We will reproduce the curves from [3].
- In this example:
 - $n_S = 2$
 - \vdash $H(R) = g_0I + g_1ZI + g_2IZ + g_3ZZ + g_4YY + g_5XX^5$
 - ► The coefficients are stored in hamiltonian_data.json
- ► The purpose is to reproduce

FIG. 3. Computed H₂ energy curve and errors. (a) Ene

⁵This Hamiltonian is the output of (1) a conversion from an *electronic* structure Hamiltonian to a spin Hamiltonian expressed with Pauli matrices and (2) simplifications leveraging theoretical chemistry knowledge

The programming framework we will use: myqlm

What you need to know:

- quantum circuits are first written as Program and then exported as circuit.
- ► A **job** is created from a circuit and sent to a **qpu** (a simulator)
- ► **AbstractGates** allow to define custom parameterized gates. They will come handy in programming Hamiltonian simulation.
- QRoutines allow to program arbitrary parametrized sub-circuits, which are then pluggable anywhere into a larger circuit.
- see the minimal notebook and https://myqlm.github.io/ for more details

Simulating physics with computers.

Int. J. Theor. Phys, 21(6/7), 1982.

Vera von Burg, Guang Hao Low, Thomas Häner, Damian S Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer.

Quantum computing enhanced computational catalysis. *arXiv preprint arXiv:2007.14460*, 2020.

Peter JJ O'Malley, Ryan Babbush, Ian D Kivlichan, Jonathan Romero, Jarrod R McClean, Rami Barends, Julian Kelly, Pedram Roushan, Andrew Tranter, Nan Ding, et al. Scalable quantum simulation of molecular energies. *Physical Review X*, 6(3):031007, 2016.

James D Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum computers.

Molecular Physics, 109(5):735-750, 2011.