PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

JUNIO - 2001

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora "en línea". No se admitirá el uso de memoria para texto, ni las prestaciones gráficas.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

PRUEBA A

PROBLEMAS

- 1°) a) Enunciar el teorema de Rouché-Fröbenius.
- b) Analizar, en función del parámetro α el sistema de ecuaciones $\begin{cases} x-2y-z=-1\\ ax-y+2z=2\\ x+2y+az=3 \end{cases}$
- c) Resolver el sistema cuando $\alpha=3$ y $\alpha=0.$
- 2°) Dos hermanos heredan una parcela que ha de repartirse. La parcela es la región limitada por la curva $y = \sqrt{x-1}$ y la recta $y = \frac{1}{2}(x-1)$.
- a) Calcular el área de la parcela.
- b) Deciden dividir la parcela en partes iguales, mediante una recta de la forma $y=\alpha$. Hallar el valor de $\alpha>0$.

CUESTIONES

1^a) Sea A una matriz cuadrada de orden 2 verificando $2 \cdot A^2 = A$. Calcular razonada-

mente los posibles valores de A.

2ª) Si \overrightarrow{u} y \overrightarrow{v} son vectores ortogonales y de módulo 1, hallar los posibles valores de α para los que los vectores $\overrightarrow{u} + a \cdot \overrightarrow{v}$ y $\overrightarrow{u} - a \cdot \overrightarrow{v}$ formen un ángulo de 60° .

3a) Calcular
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{\cos x - 1}.$$

4ª) Dados los puntos A(-5, -1), B(2, 4) y C(0, 2), y sea M el punto medio de BC. Calcular la ecuación de la circunferencia cuyo diámetro es el segmento AM.

PRUEBA B

PROBLEMAS

1°) La recta $r = \begin{cases} x = -2 + 3t \\ y = 4 - 2t \end{cases}$ corta al plano $\pi_1 = x - y - 2z = 1$ en el punto A, y al plano z = -6 + 5t

 $\pi_2 \equiv x + y - z = 0$ en el punto B. Sea O el origen de coordenadas.

- a) Hallar el ángulo entre los vectores \overrightarrow{OA} y \overrightarrow{OB} .
- b) Hallar el área del triángulo OAB.
- 2°) Dada la función $f(x) = ax + \frac{b}{x}$, siendo α y b constantes positivas, se pide:
- a) Demostrar que el mínimo valor de f(x) en $(0, +\infty)$ es $2\sqrt{ab}$.
- b) Deducir $2\sqrt{ab} < \frac{a+b}{2}$.
- c) Para $\alpha = 2$ y b = 8, hallar las asíntotas de la gráfica de f(x) en $(0, +\infty)$.

CUESTIONES

- 1^a) Encontrar todas las matrices $\begin{pmatrix} 1 & a \\ b & 1 \end{pmatrix}$ que verifican la igualdad $C \cdot \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} -5 & 3 \\ -8 & 6 \end{pmatrix} \cdot C$.
- 2^a) Calcular la distancia entre la recta $r = \frac{x-1}{2} = y-2 = \frac{z-1}{-1}$ y el plano $\pi = x-y+z+2=0$.
- 3^a) Calcular $I = \int (sen^3 x \cdot \cos^2 x) \cdot dx$.
- 4ª) ¿Se puede aplicar el teorema de Bolzano a la función $f(x) = \frac{1}{\cos x}$ en el intervalo $[0, \pi]$? Razona la respuesta.
