Prova di Comunicazioni Numeriche

22 Settembre 2022

Es. 1 - Sia dato il processo aleatorio Y(t) = X(t) + W(t), con $X(t) = A \sin(2\pi f_0 t)$, dove A e' una V.A. Gaussiana con valor medio nullo e varianza σ_A^2 , e con W(t) processo Gaussiano bianco con DSP $S_W(f) = \frac{N_0}{2}$. Si noti che W(t) e' indipendente da A. Calcolare: 1) il valor medio di Y(t) e 2) la autocorrelazione di Y(t). Dire inoltre se il processo aleatorio Y(t) e' stazionario in senso lato.

Es. 2 - In un sistema di comunicazione numerico QAM (Vedi Fig. 1 per la parte ricevente) il segnale trasmesso è $s(t) = \sum_k x_c[k] p(t-kT) \cdot \cos(2\pi f_0 t) - \sum_k x_s[k] p(t-kT) \cdot \sin(2\pi f_0 t)$, dove i simboli $x_c[k] \in A_s^c = \{-2,2\}$ e $x_s[k] \in A_s^s = \{-1,1\}$ sono indipendenti ed equiprobabili. L'impulso sagomatore $p(t) = B \sin c(Bt) \exp(-j\pi Bt) + \frac{B}{2} \sin c^2 \left(\frac{B}{2}t\right) \exp(j\pi Bt)$, $f_0 \gg B$ e $B = \frac{2}{T}$. Il canale di propagazione è ideale e la DSP del rumore in ingresso al ricevitore è bianco nella banda del segnale trasmesso con DSP pari a $\frac{N_0}{2}$. Il filtro in ricezione $h_r(t) = 2B \sin c(2Bt)$. Sia per il ramo in fase che per il ramo in quadratura la soglia di decisione è $\lambda = 0$. Calcolare: 1) L'energia media per simbolo trasmesso, 2) la potenza di rumore in uscita ai filtri in ricezione su entrambi i rami (in fase e quadratura, $P_{n_{uc}}$ e $P_{n_{us}}$) e 3) la probabilità di errore sul simbolo.

Fig.1