Формули по статистика

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

П	П)	77
Доверителен	Предположения	Интервал
интервал		
3α μ	$N(\mu,\sigma^2)$ или n голямо σ^2 известно	$\left[\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$
За µ	$N(\mu,\sigma^2)$ σ^2 неизвестно	$\left[\overline{x} - t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}, \overline{x} + t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}\right]$
Хипотези	Предположения	Критична област
$H_1: \mu > c$	$N(\mu,\sigma^2)$ или n голямо σ^2 известно	$z = \frac{\overline{x} - c}{\sigma} \sqrt{n} \ge z_{\alpha}$
$H_1: \mu > c$	$N(\mu,\sigma^2)$ σ^2 неизвестно	$t = \frac{\overline{x} - c}{s} \sqrt{n} \ge t_{\alpha, n-1}$
$H_1: \mu_X - \mu_Y > c$	$N(\mu_X, \sigma^2_X)$ $N(\mu_Y, \sigma^2_Y)$ σ^2_X, σ^2_Y известни	$2 - \frac{1}{\sqrt{\frac{\sigma^2 x}{n} + \frac{\sigma^2 y}{m}}} \ge 2\alpha$
$H_1: \mu_X - \mu_Y > c$	Големи обеми, Неизвестни дисперсии	$t = \frac{\overline{x} - \overline{y} - c}{\sqrt{\frac{s^2 x}{n} + \frac{s^2 y}{m}}} \ge z_{\alpha}$
$H_1: \mu_X - \mu_Y > c$	$N(\mu_X, \sigma^2_X)$ $N(\mu_Y, \sigma^2_Y)$ $\sigma^2_X = \sigma^2_Y$ неизвестни	$1 - \frac{1}{\sqrt{s_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \ge \iota_{\alpha, n+m-2}$
		$s_p^2 = \frac{(n-1)s^2_X + (m-1)s^2_Y}{n+m-2}$
$H_1: \mu_D = \mu_X - \mu_Y > c$	X и У нормални, зависими извадки	$t = \frac{\overline{d} - c}{s_d} \sqrt{n} \ge t_{\alpha, n-1}$
$H_1: p > p_0$	Ві(n,p) n голямо	$z = \frac{\frac{x}{n} - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} \ge z_\alpha$
$H_1: p_1 - p_2 > D_0$	$Bi(n, p_1)$ $Bi(m, p_2)$ n, m големи	$z = \frac{(\hat{p}_1 - \hat{p}_2) - D_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n - 1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{m - 1}}} \ge z_{\alpha}$
		$\hat{p}_1 = \frac{x}{n} \qquad \hat{p}_2 = \frac{y}{m}$