Session 5: MapReduce – Graphs

Base on slides from Jimmy Lin

Today's Agenda

- Graph problems and representations
- Parallel breadth-first search
- PageRank
- Beyond PageRank and other graph algorithms
- Optimizing graph algorithms

What's a graph?

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Different types of graphs:
 - Directed vs. undirected edges
 - Presence or absence of cycles
- Graphs are everywhere:
 - Hyperlink structure of the web
 - Physical structure of computers on the Internet
 - Interstate highway system transportation
 - Social networks (and electronic social networks)

Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telco laying down fiber
- Finding Max Flow
 - Airline scheduling
- Identify "special" nodes and communities
 - Breaking up terrorist cells, spread of avian flu
- Bipartite matching
 - Monster.com, Match.com
- And of course... PageRank

Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

Representing Graphs

- \circ G = (V, E)
- Two common representations
 - Adjacency matrix
 - Adjacency list

Adjacency Matrices

Represent a graph as an $n \times n$ square matrix M

- n = |V|
- $M_{ij} = 1$ means a link from node *i* to *j*

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Adjacency Matrices: Critique

Advantages:

- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on outlinks and inlinks

• Disadvantages:

- Lots of zeros for sparse matrices
- Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Adjacency Lists: Critique

- Advantages:
 - Much more compact representation
 - Easy to compute over outlinks
- Disadvantages:
 - Much more difficult to compute over inlinks

Single-Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- First, a refresher: Dijkstra's Algorithm

```
1.Dijkstra(G, w, s)
2: d[s] \leftarrow 0
3: for all vertex v \in V do
4: d[v] \leftarrow \infty
5: Q \leftarrow \{V\}
6: while Q <> \emptyset do
7: u \leftarrow ExtractMin(Q)
8: for all vertex v \in u.AdjacencyList do
9: if d[v] > d[u] + w(u, v) then
10: d[v] \leftarrow d[u] + w(u, v)
```


Single-Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path (BFS)

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - Define: b is reachable from a if b is on adjacency list of aDISTANCETO(s) = 0
 - For all nodes p reachable from s, DISTANCETO(p) = 1
 - For all nodes n reachable from some other set of nodes M, DISTANCETO $(n) = 1 + \min(DISTANCETO(m), m \in M)$

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
 - Key: node *n*
 - Value: d (distance from start), adjacency list (nodes reachable from n)
 - Initialization: for all nodes except for start node, $d = \infty$

• Mapper:

- $\forall m \in \text{adjacency list: emit } (m, d + 1)$
- Remember to also emit distance to yourself

Sort/Shuffle

Groups distances by reachable nodes

Reducer:

- Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits (n, Node structure) as well
 - where Node= (Adjacency list, distance)

BFS Pseudo-Code

```
1: class Mapper.
       method Map(nid n, node N)
           d \leftarrow N.\text{Distance}
 3:
           Emit(nid n, N)
                                                               ▶ Pass along graph structure
           for all nodeid m \in N. Adjacency List do
               Emit(nid m, d+1)
                                                       ▶ Emit distances to reachable nodes
 6:
 1: class Reducer.
       method Reduce(nid m, [d_1, d_2, \ldots])
 2:
           d_{min} \leftarrow \infty
 3:
           M \leftarrow \emptyset
 4:
           for all d \in \text{counts } [d_1, d_2, \ldots] do
 5:
               if IsNode(d) then
 6:
                  M \leftarrow d

⊳ Recover graph structure

 7:
               else if d < d_{min} then
                                                                 8:
                  d_{min} \leftarrow d
 9:
           M.Distance \leftarrow d_{min}
                                                                  ▶ Update shortest distance
10:
           Emit(nid m, node M)
11:
```

Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path
- Now answer the question...
 - Six degrees of separation?
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At each step, only pursues edges from minimum-cost path inside frontier
- MapReduce explores all paths in parallel
 - Lots of "waste"
 - Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Single Source: Weighted Edges

- Now add positive weights to the edges
 - Why can't edge weights be negative?
- Simple change: add weight w for each edge in adjacency list
 - In mapper, emit $(m, d + w_p)$ instead of (m, d + 1) for each node m
- That's it?

```
1: class Mapper
       method Map(nid n, node N)
           d \leftarrow N.\text{Distance}
3:
           Emit(nid n, N)
                                                                 ▷ Pass along graph structure
4:
           for all nodeid m \in N. Adjacency List do
               Emit(nid m, d+1)
                                                         ▶ Emit distances to reachable nodes
1: class Reducer
        method Reduce(nid m, [d_1, d_2, \ldots])
           d_{min} \leftarrow \infty
           M \leftarrow \emptyset
           for all d \in \text{counts } [d_1, d_2, \ldots] do
               if IsNode(d) then
                   M \leftarrow d
                                                                    ▷ Recover graph structure
7:
                                                                   ▶ Look for shorter distance
               else if d < d_{min} then
                   d_{min} \leftarrow d
           M.Distance \leftarrow d_{min}
                                                                   ▶ Update shortest distance
10:
           Emit(nid m, node M)
11:
```

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path

Additional Complexities

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce

Social Search

- When searching, how to rank friends named "John"?
 - Assume undirected graphs
 - Rank matches by distance to user
- Naïve implementations:
 - Precompute all-pairs distances
 - Compute distances at query time
- Can we do better?

All-Pairs?

- Floyd-Warshall Algorithm: difficult to MapReduce-ify...
- Multiple-source shortest paths in MapReduce: run multiple parallel BFS simultaneously
 - Assume source nodes $\{s_0, s_1, \dots s_n\}$
 - Instead of emitting a single distance, emit an array of distances, with respect to each source
 - Reducer selects minimum for each element in array
- Open Does this scale?
 - What is the problem?

Landmark Approach (aka sketches)

- Select k seeds $\{s_0, s_1, ... s_k\}$
- Compute distances from seeds to every node:

```
A = [2, 1, 1]
B = [1, 1, 2]
C = [4, 3, 1]
D = [1, 2, 4]
```

- What can we conclude about distances?
- Insight: landmarks bound the maximum path length
- Lots of details:
 - How to more tightly bound distances
 - How to select landmarks
- Use multi-source parallel BFS implementation in MapReduce!

Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph

• Generic recipe:

- Represent graphs as adjacency lists
- Perform local computations in mapper
- Pass along partial results via outlinks, keyed by destination node
- Perform aggregation in reducer on inlinks to a node
- Iterate until convergence: controlled by external "driver"
- Don't forget to pass the graph structure between iterations

Random Walks Over the Web

- Random surfer model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
- PageRank
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages
- PageRank captures notions of page importance
 - Correspondence to human intuition?
 - One of thousands of features used in web search (query-independent)

PageRank: Defined

Given page x with inlinks $t_1...t_n$, where

- *C(t)* is the out-degree of *t*
- α is probability of random jump
- N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local
- Sketch of algorithm:
 - Start with seed PR_i values
 - Each page distributes PR_i "credit" to all pages it links to
 - Each target page adds up "credit" from multiple in-bound links to compute PR_{i+1}
 - Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
 - No random jump factor
 - No dangling nodes
- Then, factor in these complexities...
 - Why do we need the random jump?
 - Where do dangling nodes come from?

Sample PageRank Iteration (1)

Sample PageRank Iteration (2)

PageRank in MapReduce

PageRank Pseudo-Code

```
1: class Mapper
      method Map(nid n, node N)
          p \leftarrow N.PageRank/|N.AdjacencyList|
3:
          Emit(nid n, N)
                                                          ▶ Pass along graph structure
4:
          for all nodeid m \in N. Adjacency List do
5:
             Emit(nid m, p)
                                                  ▶ Pass PageRank mass to neighbors
6:
1: class Reducer
      method Reduce(nid m, [p_1, p_2, \ldots])
2:
          M \leftarrow \emptyset
3:
          for all p \in \text{counts } [p_1, p_2, \ldots] do
4:
             if IsNode(p) then
5:
                 M \leftarrow p

⊳ Recover graph structure

6:
             else
7:
                                            s \leftarrow s + p
8:
          M.PageRank \leftarrow s
9:
          Emit(nid m, node M)
10:
```

PageRank vs. BFS

	PageRank	BFS
Map	PR/N	d+1
Reduce	sum	min

Complete PageRank

- Two additional complexities
 - What is the proper treatment of dangling nodes?
 - How do we factor in the random jump factor?

Solution:

 Second pass to redistribute "missing PageRank mass" and account for random jumps

$$p' = \alpha \left(\frac{1}{N}\right) + (1 - \alpha)\left(\frac{m}{N} + p\right)$$

- p is PageRank value from before, p' is updated PageRank value
- N is the number of nodes in the graph
- m is the missing PageRank mass
- Additional optimization: make it a single pass!

PageRank Convergence

- Alternative convergence criteria
 - Iterate until PageRank values don't change
 - Iterate until PageRank rankings don't change
 - Fixed number of iterations
- Convergence for web graphs?
 - Not a straightforward question
- Watch out for link spam:
 - Link farms
 - Spider traps
 - ...

Beyond PageRank

- Variations of PageRank
 - Weighted edges
 - Personalized PageRank
- Variants on graph random walks
 - Hubs and authorities (HITS)
 - SALSA

Applications

- Static prior for web ranking
- Identification of "special nodes" in a network
- Link recommendation
- Additional feature in any machine learning problem

Other Classes of Graph Algorithms

- Subgraph pattern matching
- Computing simple graph statistics
 - Degree vertex distributions
- Computing more complex graph statistics
 - Clustering coefficients
 - Counting triangles (soon....)

General Issues for Graph Algorithms

- Sparse vs. dense graphs
- Graph topologies

MapReduce Sucks

- Java verbosity
- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration

MapReduce sucks at iterative algorithms

- Alternative programming models (later)
- Easy fixes (now)

In-Mapper Combining

- Use combiners
 - Perform local aggregation on map output
 - Downside: intermediate data is still materialized
- Better: in-mapper combining
 - Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
 - Downside: requires memory management

Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
 - E.g., communities in social networks
 - Better partitioning creates more opportunities for local aggregation
- Unfortunately, partitioning is hard!
 - Sometimes, chick-and-egg...
 - But cheap heuristics sometimes available
 - For webgraphs: range partition on domain-sorted URLs

Today's Agenda

- Graph problems and representations
- Parallel breadth-first search
- PageRank
- Beyond PageRank and other graph algorithms
- Optimizing graph algorithms