

Concept Design

Group No. 12
Faculty of Technology and Bionics

Barteolla The Cocktail Mixer

Submitted by:

Kevin Ayebare, 29278 Electrical Engineering

Larissa Chifu Nchang, 30701 Industrial Engineering

Muhammad Murtaza Motiwala, 24476 Mechatronics Systems Engineering

Tinotenda Chadzinya Gurajena, 28030 Mechanical Engineering

Submission Date 5th December 2023

Statement of Originality

The students listed below solely wrote and produced this report themselves, and all the text passages and other content in the report represent their original work and references attached to the report.

Kleve, 05 December 2023

Kevin Ayebare Nchang Larissa Muhammad Murtaza Motiwala Tinotenda Chadzinya Gurajena

Project Supervisors:

Christian Berendonk, Thorsten Brandt, Alexander Gerber, Martin Hellwig, Fabrice Kirsch, Kai Masuch, Angelika Michel, Karsten Schacky, Dirk Untiedt, Andreas von Bubnoff

Executive Summary

Our report introduces Barteolla, the automated cocktail machine. Our machine elevates the mixology experience and effortlessly dispenses cocktails in a short amount of time. Our well-crafted programming code enables this machine to demonstrate compatibility with multiple ingredients, handling various alcoholic beverages and mixers, thereby removing the need for manual measurements. Selecting the favorite cocktail is a guick "Tap and swipe" thanks to the userfriendly seven-inch touchscreen display that facilitates seamless interaction between the user and the interface; this enhances accessibility. The in-built auto-clean function simplifies the cleanup process. This feature is automatically activated a few moments after dispensing each cocktail, offering consistent drink quality. Barteolla is engineered for time-efficient usage and precise dispensing of our cocktails by careful selection of pumps and motor drivers. As a result, each cocktail is perfectly mixed, eliminating overly concentrated or diluted drinks. In the unlikely case of any device malfunction, our cocktail machine features an "emergency stop" push button, a critical safety feature to halt operation guickly. Our target market for Barteolla is designed mainly for household usage and we intend to sell at least 1000 units in Germany, within its first year of launch.

Barteolla is a high-quality personal bartender machine, catering to both cocktail enthusiasts and casual drinkers. Its capability makes it a suitable addition to any home.

Keywords:

- -Multi-Ingredient Compatibility
- -Auto-Clean Function
- -User-Friendly Touchscreen Interface
- -Time Efficient
- -Precise Dispensing

Contents

Execu	utive Summary	iii
Conte	ents	iv
List o	of Figures	vi
List o	of Tables	vii
1 l	ntroduction	1
2 N	Marketing Plan	2
2.1	Market Analysis	2
2.2	Market size and share	2
2.3	Competitive Analysis	3
2.4	Planned Sales Volume	4
2	Sales structure 2.5.1 Phase 1: Initial Launch and Market Penetration (Months 1-4) 2.5.2 Phase 2: Growth and Market Expansion (Months 4-8) 2.5.3 Phase 3: Consolidation and Long-Term Strategy (Months 8-12)	5 5 5 5
2.6	Planned Market Price	6
2.7	Revenue Forecast	7
3 (Overall Product Concept	8
3.1	Requirement List	8
3.2	Material Considerations	8
3.3	Main Components List	9
3.4	Concept Idea Sketch	10
4 F	Functional structure	12
5 C	D-FMEA	13
6 F	Project Plan	19
6.1	Gantt Chart (Clickup App)	19
Miles	tone 2 – Product Design	25
7 F	Functional Principle	25
8 E	Electric Drives/Components.	37
9 (Circuit Diagram	40
9.1	Bill of Materials for Electrical components	42
10	Requirements Manual for "Buy" (CotS) Parts	44

17.1	Labour Cost	73
17	Cost Calculation	73
16.7	Value Chain	72
16.6	Final assembly	71
16.5	Assembly Lines	70
16.4	Factory Layout	70
16.3	List of employees	69
16.2	Capacity Calculation	65
16.1	Equipment Specification	64
16	Production Planning	64
15	Program flow chart	62
14	Technical Drawing	61
13	Bill Of Materials (BOM)	60
12	Make and Buy Decisions	55
11.9	Bottle Cog	54
11.8	'	53
11.7		53
11.6		52
11.5		52
11.4	Front Housing	50
11.3	Funnel shaped Mixer	50
11.2	Liquid Drip Tray	49
11.1	Bottle Adapters	49
11	Technology Selection for the "Make" Parts	48
10.10	DC/DC converter	47
10.9	Washers	47
10.8	Screws	46
10.7	Silicon tubes	46
10.6	LCD touchscreen	46
10.5	Emergency stop button	45
10.4	TB6600 Stepper Motor Driver	45
10.3	12 V Power Supply	45
10.2	Peristaltic Pumps	44
10.1	Arduino Mega board	44

17.2	Annual Operating Time	73
17.3	Machine Hourly Rate	73
17.4	Material Cost	75
17.5	Production Cost	75
17.6	Prime Cost	75

List of Figures

Figure 2.1 - Highlighting the significant potential market for automatic cocktail	
machine based on alcohol cosumption	
Figure 2.2 - Global market overview of cocktail machine market	
Figure 3.1 - Rough sketch for Barteolla Cocktail mixer, first angle projection w front, top and right-side view	
Figure 7.1 - Isometric View of the complete assembly with eight bottles	
Figure 7.2 - The section view for the complete assembly with major	
, , ,	26
Figure 7.3 - The screwed connection between back and front housing parts w	/ith
transition fit	
Figure 7.4 - The bottle holder and bottle adapter connection with the main	
housing with screws	27
Figure 7.5 - It represents bottle holder support structure, step size and even	
distribution of holes for the input adapter	27
Figure 7.6 - Highlighting the sliding mechanism for the drip tray	28
Figure 7.7 - Highlighting the clearance fit in sliding mechanism for the drip tra	ay
	28
Figure 7.8 - The screwed connection between front cover and sliding tray	
housing	28
Figure 7.9 - Screw connection for the front cover and back housing	29
Figure 7.10 - Section view showing input adapters, bottles and cog connection	n.
Figure 7.11 - Transition fit between cog and bottle input adapters	30
Figure 7.12 – Section view of the machine with back cover for the and	
highlighting screwed connection to the back housing part	
Figure 7.13 - Stop button mounted on the front housing part	32
Figure 7.14 - The connection between the back housing part with the on/off	
	33
Figure 7.15 - The figure shows the funnel connected with front housing part	
3	34
Figure 7.16 - The pump with the holder along with the stepping for easier pipe	
connectivity.	35
Figure 7.17 - The ventilation cutouts from back housing part for the power	
supply heat dissipation	35
Figure 7.18 - Power supply sliding in the lower part of the back assembly	
supported by rubber parts having adhesive connection with the base	36
Figure 7.19 - Silicon tubes connection from input adapters to the pumps and	
onwards to the funnel	36

Figure 9.1 - Schematic diagram for the Barteolla machine	
details and showing the isometric view of the part	49
Figure 11.2 - The drip tray cover explaining 3D printing direction	50
Figure 11.3 - Isometric view of the funnel showing the direction of the print	50
Figure 11.4 - Multiple views of the front housing part to show the details of the	
part	
Figure 11.5 - Isometric view of the part showing the print orientation and	
direction with support structure.	51
Figure 11.6 - Isometric view of the part highlighting the direction of build and	
highlighting the location where supports are needed	52
Figure 11.7 - Isometric view of the part highlighting the direction of the build a	
area that needs to be supported.	
Figure 11.8 - Isometric view showing the direction of the print for the drip tray.	
Figure 11.9 - Isometric view of the part highlighting the direction of printing an	
holes that need to be supported	
Figure 11.10 - Isometric view of the rubber cog highlighting the direction of	
build.	
Figure 13.1 - Complete Bill of Material for the assembly	
Figure 14.1 - Technical Drawing for the cocktail mixer assembly	
Figure 15.1 - Flowchart representation for main program	
• • • • • • • • • • • • • • • • • • • •	
Figure 15 Flowchart representation for emergency handling scenario	
Figure 15. – Left : Flowchart representation for cleaning cycle; Right : Flowchart representation for dispensing ingredients evels	
representation for dispensing ingredients cycle	
Figure 16.1 - Anycubic 3D printer used for manufacturing purposes (Anycubic	
Kobra 2 Max, n.d.)	
Figure 16.2 - Complete Factory layout	
Figure 16.3 - Value chain flow chart	12
List of Tables	
Table 2.1- Comparison between two major direct competitor profile, the	
pioneers in the cocktail mixer market	3
Table 2.2 – Total cost listing for all "buy-part" components and their respective	e
suppliers	
Table 3.1 –Mechanical Components part list with their respective part number	
and quantity	
Table 3.2 - Electrical Components part list with their respective part number a	
quantity	
Table 3.3 - Morphological box with different options and final decision	5
considered for this machine functions and feature	11
Table 5.1 - D - FMEA table providing complete detailed analysis	
Table 9.1 - Detailed BOM for the electrical components in the circuit diagram.	
Table 10.1 - Arduino Technical data from the datasheet	
Table 10.2 - Technical data from Peristaltic Pumps datasheet	
Table 10.3 - Technical data from power supply datasheet	
Table 10.4 - Technical data from Stepper Motor driver datasheet	
Table 10.5 - Technical data from emergency stop button datasheet	
Table 10.6 - Technical data from LCD touchscreen datasheet	
	16

Table 10.8 - Screw description based on specification and quantity	. 46
Table 10.9 - Technical data from DC/DC converter datasheet	. 47
Table 12.1 - Make and Buy decision for electrical components	. 55

1 Introduction

In congested environments, the bartending procedures are less effective, resulting in increased wait times. The cocktail making process is not just time-consuming; it demands a specific skill set and a consistent approach. The difficulties typically revolve around precise ingredient measurement, memorizing recipes, and mastering techniques. Today's world is getting more digitalized, so every designed object must be up-to-date, faster, and reliable. People tend to buy things that will solve their problems and are willing to pay more for things that work perfectly without their supervision due to the rising demand for convenience. Additionally, the demand for well-crafted cocktails has been on the rise. According to the report (Cocktail Mixers Market Trends Size Share Growth Report 2023-2030, 2023.), cocktail mixers are estimated to grow globally at a rate of 8.7% annually and a value of about 18.2\$ billion by 2030 with the dominant market in the USA, Canada, Mexico and Germany.

Considering this insight regarding the cocktail mixer market, it was challenging to develop an automatic cocktail mixer that can make at least six different cocktails, which is efficient, time-saving, and convenient. The following technological aspects are essential in the design phase:

- Ingredient dispensing mechanism with accuracy and speed.
- The mixing mechanism provides a layered cocktail.
- The touchscreen interacts with the users.
- The machine self-cleans itself after each dispensed drink, and it has a few detachable parts to clean precisely at the end of the day.

Our main objectives are:

- Maintain uniformity, consistency, and accuracy in cocktail recipes.
- Design a user-friendly interface, aesthetically pleasing automated cocktail mixer capable of preparing a variety of cocktails and fit in a home setting.
- Reduce the time and labour for mixing cocktails and accurately dispensing liquid ingredients.

The Automated cocktail mixer project is an exciting fusion of creativity and technology aiming to transform the cocktail preparation experience and provide a solution that is accessible and efficient. We look forward to embarking on this journey of exploration and innovation.

.

2 Marketing Plan

2.1 Market Analysis

Figure 2.1 - Highlighting the significant potential market for automatic cocktail machine based on alcohol cosumption

The rising popularity of cocktails aligns with evolving lifestyle trends, particularly among millennials and the post-millennial generation. During holiday seasons, the demand for cocktails surges and the most recent advancement in this sector is the automated cocktail machine, which simplifies the drink-making process with the press of a button. The market potential for such a product will be in countries with high alcohol intake and drinking capabilities.

According to Figure 2.1, Europe and Russia consume the highest amount of alcohol. The robust presence of alcohol-related traditions fosters a conducive atmosphere for the European market's interest and need for cocktail mixers.

2.2 Market size and share

The market size of cocktail mixers in 2021 was 8.6\$ million and is predicted to grow from 9.35\$ million in 2022 to 18.2\$ million by 2030. Our target market is aimed at household usage, like for home entertaining enthusiasts and busy individuals/working parents. The total population in Europe is 742 million, with 198 million households. Our product will be sold above average price, so we are considering the socio-economic status. The upper middle class is about 35%(259 million people). Narrowing our group further, we will target our first sales year to Germany before expanding into the European market.

The global overview of our cocktail machines is expected to grow annually at rate of 4% as seen on Figure 2.2 below. (Prime PRWire, 2023)

Figure 2.2 - Global market overview of cocktail machine market

2.3 Competitive Analysis

Our research analysis concludes, our direct competitors are the Bartesian automated cocktail mixer which was mentioned by Forbes(Bajarin, 2021). Bev by Black and Decker also qualifies for quality cocktail mixer products affecting the Cocktail Mixer market.

Direct Competitors							
		Bartesian	Black and Decker				
Company Highlights	Company profile	Founded 2014 in Chicago Illinois	Founded in 1910, in Maryland USA				
Market information	Target market	Residential use and busy professionals aged 21-50	Households and small parties				
	Market share	4%	5.83%				
	Marketing and strategy	Sponsorship + ads (google ads)	Organic traffic with millions of visitors per month				
Product	Products and	An automatic	An automatic				
information services		cocktail mixer using cocktail capsules	cocktail machine				
Pricing		369\$	300\$-399\$				
	Distribution	Direct and carefully	Direct on				
	channels chosen ass		website and				
		(Walmart)	other affiliates				
			(like Amazon)				

Table 2.1- Comparison between two major direct competitor profile, the pioneers in the cocktail mixer market

Based on the reviews and customer feedback on our two main competitors we could see that they faced clash backs on;

- Water Dispensing Issues:
 Several customers experienced problems with the water dispenser, causing issues in the mixing process.
- Reliability issue:
 Several customers reported issues with the machine's durability and reliability; problems such as white screen, leakage.
- Missing Pieces:
 Some customers reported devices with missing stabilizing parts, leading to an unstable unit highlighting potential quality control issues.
- Logistics and Customer Support issues:
 Few customers are facing slow shipping times and customer response times.

In order to improve the highlighted issues faced by our competitors, we will ensure to address them efficiently.

- Water Dispensing Solutions: Highlight any improvements to address water dispensing issues, emphasizing a smoother and more efficient mixing process.
- ➤ Value Proposition: Provide a clear value proposition in your marketing materials, addressing cost-effectiveness. Explain how the product offers value for its price and why it's a worthwhile investment.
- Address Build Quality: Invest in improving the build quality to ensure the product is durable and long-lasting.
- After purchasing our product, we will send a technician from our team to install the product This will be free of charge as a special give-back offer to our consumers.

2.4 Planned Sales Volume

Sales volume means the total number of units that our company sells over a specific time, and it is only recorded in our inventory account. Initially, we plan to start with Germany, and later we expand our operations globally. So, to shorten the selling cycle and reinvest back into the market, we plan target Cologne, North-Rhein Westphalia, the most populated city in Germany with about 18 million inhabitants. (Michael, 2023)

In the beginning phase of our product launch, we will produce 300 units and once our target of selling the first 300 units in 4 months is reached, we will start the production of the next set based on customer reviews and the demand. Our further production will depend upon the law of supply and demand. By maintaining a regular check and balance on the sales matrix and the defined Key Performance indexes like the Sales Qualified Leads, Sales cycle length and so on, will ensure the success of our product.

For the first year, we want to sell at least 1000 units of our products in Germany which can be achieved by faster shipping rates, faster customer response time, durability, and efficiency of our product.

We plan on going into the European market by our third year and becoming the best robotic bartender manufacturing company.

2.5 Sales structure

A sales plan is a strategic plan where we specify our sales goals, tactics, challenges, target market and steps we take to execute the plan.

2.5.1 Phase 1: Initial Launch and Market Penetration (Months 1-4)

The automated cocktail market is driven by the growing demand for convenience, precision, and versatility in cocktail preparation. As technology continues to advance, the market is likely to witness further growth and diversification. Our goal is to create cash flow and profitability by selling at least 300 units of our products and to acquire 100 new customers.

We will hire and train a sales team with expertise in our product and industry and keep an eye on our direct competitors' activities and adjust sales strategies as necessary. Then in the development and prototyping phase, we will launch our company website and start advertising our products digitally. For example, we will run google ads, social media marketing, email marketing, and customer outreach (Phone calls and direct visits). We plan on analyzing our sales performance, customer reviews, establishing Key Performance Indicators (KPI) to track the next sales period and also carrying out the SWOT Analysis to know the Strength, Weakness, Opportunities, Threats, Trends of our product.

2.5.2 Phase 2: Growth and Market Expansion (Months 4-8)

Now after penetrating the market, we are looking for ways to grow, so we improve lead conversion rate by developing more targeted sales messages and nurturing leads more effectively and implement a CRM system to better manage customer relationships. We plan on providing discounts or incentives to encourage more purchases and focus on retaining existing customers through loyalty programs or exceptional customer service.

2.5.3 Phase 3: Consolidation and Long-Term Strategy (Months 8-12)

We will continue to expand and target new markets in other regions by creating long-term sales strategies, including partnerships, collaborations, selling to wholesalers and retailers and exploring international markets. Then we will implement advanced analytics and reporting tools to make data-driven sales decisions. Also carrying out a SWOT analysis and investing in training and skill development for our sales team. Furthermore, we will make realistic long-term

sales goals and objectives based on the lesson learned from the first two sales periods.

2.6 Planned Market Price

The market price of our automated cocktail mixer is the price at which the quantity supplied equals to the quantity demanded. Since we are the manufacturers, a profit margin of 30-40% should be obtained. The range of prices for existing models is between 300€ to 600€. Price skimming (entering the market with the highest possible price and reduce as time goes) is a great option if we plan to release newer versions of our product frequently like Apple. But for now, we don't, and we will decide after our first sales period based on our customer reviews.

As manufacturers, we decided on the competitive based pricing system by setting our prices higher than our competitors based on the higher value of our products (enhanced features and expert customer service). Our product will be priced based on:

- The price of commercial-off-the-shelf (COTs) components.
- The cost of making parts.
- Production, manufacturing, and assembly costs.
- Labour costs.
- Cost of advertising and marketing.
- Location (rent) costs.
- Research and development costs.
- Profits.
- Overhead costs.

The cost of our buy components is seen from our table below.

		_		•	
	List of components	Quantity	Cost per unit (€)	Total (€)	Supplier (Brand)
1	TB6600 stepper motor drivers	8	9.99	79.92	Amazon.de
2	Arduino Mega board	1	42	42	Arduino official store
3	Peristaltic pumps	8	19.09	152.72	Alibaba.com
4	12V Power supply	1	23	23	Amazon.de
5	LCD touchscreen	1	46.32	46.32	Exp-tech.de
6	On/Off switch and power connector module	1	4.89	4.89	Conrad.de
7	Emergency stop button	1	10.30	10.30	Reichelt.de
8	Power supply cable	1	5.84	5.84	Amazon.de
9	Silicon tubes	4(meters)	3.7	14.8	Aliexpress.com
11	DC/DC converters	2	2.51	5.02	Reichelt.de
12	Electrical wiring	10(meters)	7.88	7.88	Amazon.de
Total cost:			392	2.69€	

Table 2.2 – Total cost listing for all "buy-part" components and their respective suppliers.

Our selling price of our mixer is set at 1,000€, thereby highlighting the superior quality our product and our eco-friendly packaging. Our profit margin will be 50€. Considering our buy parts to be 392.69€, it allows for additional variable costs, cost of production and per unit measurement of fixed costs to achieve a maximum allowed cost of 950€.

2.7 Revenue Forecast

Based on our market research, our target market will have a population of 18 million people and million households. So, during the first period, we have a targeted sales of 200 units. Assuming 40% of households buy our products, we are left with 3.4 million households. Our target sales volume for a year is 200 units for the first sales period,300 units for the second and 500 for the third making it 1000 units.

```
Future Sales Revenue = Sales price per unit * volume
= 1000 units x 990€ = 990,000€
Gross Profit = Sales Revenue - (Total cost per unit * sales volume)
990,000€ - (950€* 1000) = 40,000€
```

3 Overall Product Concept

Barteolla cocktail mixer, makes the process of combining different drinks easier and provides a vast variety of cocktail and drink options. Multiple possible design options were considered to develop an automatic cocktail maker, but considering different challenges and options, a top-down bottle orientation was selected for its benefits and premium look. The housing is made with steel to enhance the premium look for the machine, with removable tray made with plastic for easy cleaning and one push button operation for smooth user experience. The self-cleaning feature uses the water used as one of the inputs to the machine.

3.1 Requirement List

- High quality housing made of ABS plastic for lightweight design and durability.
- Most components are screwed together for easy assembling and disassembling.
- Seven-inch touch screen used for user interaction with Tap and Swipe feature to create quick drinks.
- Detachable drip tray for easy cleaning the overflow fluids.
- Self-cleaning mechanism, automatic cleaning process after each cocktail dispensed.
- Eight different input options to create unique cocktails.
- Using water bottle as one of the bottle inputs for self-cleaning mechanism.
- Rubber cog with self-closing mechanism suitable for upside down orientation and to prevent leakage.
- 220 240V power supply
- Ergonomic design should be considered in CAD modeling.
- Bottle holder should be in steps for better usability and ease to change bottle.
- The machine should have proper ventilation for airflow for electronic components.
- Device Dimensions: 400 mm x 400 mm x 500 mm
- Screen Dimensions: 7-inch screen 155 mm x 89 mm
- Glass Dimensions: 90 mm x 200 mm
- Standard 750ml Bottle Dimensions: (75 mm x 300 mm) (Derick, 2021)

3.2 Material Considerations

- ABS Plastic Housing
- Silicon Tube
- Market standard glass bottles

3.3 Main Components List

Table 3.1 – Mechanical Components part list with their respective part number and quantity

Part No.	Mechanical Components	ical Components Material	
1	Housing – Front	ABS Plastic	1
2	Housing – Front Cover	ABS Plastic	1
3	Housing – Back	ABS Plastic	1
4	Housing – Back Cover	ABS Plastic	1
5	Housing – Top Holder	ABS Plastic	1
6	Bottle input adapters	ABS Plastic	8
7	Funnel	ABS Plastic	1
8	Drip Tray Housing	ABS Plastic	1
9	Drip Tray Part	ABS Plastic	1
10	Drip Tray Cover	ABS Plastic	1
11	Cog	Rubber	8
12	Tubes	Silicon	16
13	Screws	Stainless Steel	76
14	Motor holder	Motor holder ABS Plastic	
24	Bottles	Glass	8

Table 3.2 - Electrical Components part list with their respective part number and quantity

Part No.	rt No. Electrical Components	
15	Arduino Mega board	1
16	On/Off Switch and power	1
	connector	
17	Peristaltic pumps	8
18	LCD touchscreen	1
19	19 TB6600 Stepper motor drivers	
20 Power supply		1
21	21 Power supply cable	
22	22 Emergency stop button	
23	DC/DC converters	2

3.4 Concept Idea Sketch

Figure 3.1 - Rough sketch for Barteolla Cocktail mixer, first angle projection with front, top and rightside view

Morphological box

Table 3.3 - Morphological box with different options and final decision considered for this machine functions and feature.

Category	Subcategory	Option 1	Option 2	Option 3
Design	Bottle	Sideways	Upright	Upside down
	Orientation	orientation	Straight	
	Water Source	Water	Water bottle	Water
		Dispenser	as input	connection
				from hose
	Material	Stainless Steel	Aluminium	ABS Plastic
	Machine Shape	Circular	Cube	Cuboid
	(Form factor)			
	User interface	Touchscreen	Screen with	Rotating dial
			button input	with buttons
	Bottle Inputs	7	8	10
Cleaning	Cleaning	One cleaning	Automatic	Manual
	Mechanism	button	Cleaning	cleaning
			after each	
			use	
	Detailed	Automatic	Manual	Both
	Cleaning			
	System			
Drinks	Bottle type	Large bottles	Custom	Market
			Designed	standard
	Bottle quantity	2	4	8
	with machine			
	Drink Cooling	Ice used by	Ice	Cooling coils
	system	customer	dispenser	
	Drink Process	Separate	Funnel with	
		dispenser for	all inputs	
		each input		
	Cocktail recipes	6	8	10
	variety			

4 Functional structure

Figure 4.1 - Complete functional structure diagram along with the flow lines.

Table 5.4.1 - D - FMEA table providing complete detailed analysis.

Compo nents	Function	Potential Failure Mode	Potential Effects of Failure Mode	E	Potenti al Causes	0 C C	Current Detectio n	D E T	R P N	Recomm ended action
Housing Steel	Holding bottles Housing the internal mechanism	No function: cannot hold the bottles. No function: cannot mount the internal mechanism	Cannot attach the bottles to the machine. Machine cannot be assembled and function	5	toleranc es when manufa	1	Failing to mount the bottles onto the housing. inside mechani sm failing to mount on the housing	1	5	High precision equipment must be used High precision equipment must be used
LCD touchscr een	To select which cocktail to make	No function: Pixel failure	Display screen not responding to touch	8	Physica I damage	1	Crack on the screen	1	8	Replace the display screen

Bottle input adapter	For connecting bottle to the machine	Under function: Leakage	Leaking of liquids and damaging electrical parts	2	e during installati on	1	No tight fitment to the bottles and to the machine	2	4	High quality and high strength material should be used Replace the adapters
Bottles	For storage of the liquids	No function: Breaking of the bottles	No liquids stored in the bottles to make the cocktails	2	Poor material quality used to make the bottles	2	Crack on the bottle and unable to store the liquid	1	4	Uses high quality bottles or replace the bottles
On/Off switch	To switch the machine on or off	No function: No response	Cannot switch on/off	1	wrong connect ions	1	Machine unable to start when switch is on	2	2	Replace the buttons or checking for wrong connectio ns

Emerge ncy Stop button	For emergency stop	No function: No response	Cannot stop the machine	1	wrong connect ions	1	Machine unable to stop	2	2	Replace the buttons or checking for wrong connectio ns
Silicon Tubes	For transporting the liquids	Under function: Leakage	Damage to inside parts and no liquids flowing	2	High flow pressur e Damag e on the tubes or poorquality tubes	1	Liquids escaping through the machine	2	4	High strength material should be used during manufact uring and pressure test before assembly
Arduino Mega board	To control the motor drivers and analyze input and output of display	Unintended function: Bugs in the Arduino code	Inaccurate cocktail mixing	8	Syntax errors in the code	2	Wrong cocktail produce d from the one selected	1	16	Lengthy code reviews and testing

					Rushed code testing		Unbalan ced cocktail mix produce d			
Peristalti c pumps	Suction of the liquid from the bottles to the mixing station	Under function: No liquid being pumped through the system	Suction speed of the liquid is low	7	Low current is getting to the motor	2	Emergen cy stop button signal is displaye d on the LCD	3	42	Crossche ck for improper connectio ns of wiring
		Over function: Too much liquid being pumped through the system	Suction speed of the liquid is too high	4	Defect on the motor	2	Smoke coming from the pump	8	64	Replace the pumps in case of defect detected
Funnel shaped Mixing station	For collection and mixing of the liquids	Under function: Leakage	Spillage of liquids inside of the machine	2	Loose sealing on the mixing station	1	Liquid found on machine floor and outside wall of the mixture	6	12	Repair will be done by our technician Replace the mixer

Plastic Drip Tray	To dispose excess liquids from machine	No functions: Crack on tray	Leakage into making damaging electrical components	1	Damage during manufacturing or installation	1	Detected by observed	2	2	Use high strength material during manufacturing or replace the tray
12V Power Supply	To supply current to the machine	No function: Wrong wire size used for the cable	No current flow to the machine and machine not switching on	6	Mistakes made during the manufacturing	2	Quality control check	3	36	Replace the cable
DC/DC convertor	To step down the 12V input voltage to 8V and 5V.	Over function: Aging of capacitors at the output voltage.	Unstable output voltage to the electrical components	2	Thermal effects from the circuit beyond which the capacitors can handle	2	Random low and high brightness of the LCD display	3	12	Ensure proper selection of converter circuits that have capacitors with appropriate temperature settings.
TB6600 stepper motor drivers	To control the motor speed and supply the motors with power	Over function: The motor driver heats up	Innacurate volume of liquid pumped by the motor pump	4	Fluctuations in power supply voltage	2	Emergency stop button signal displayed on LCD screen	5	40	Ensure a stable power supply to the stepper motors

Under function: The motor driver does not function	No liquid is pumped through the pump	5	Undervoltage	5	Emergency stop button signal displayed on LCD screen	2	50	Ensure a proper wiring connection between the power supply and motor driver

6 Project Plan

Milestone	Starting Date	Deadline				
Concept Design	10 Oct 2023	07 November 2023				
Product Design	07 November 2023	05 December 2023				
Project Documentation	05 December 2023	16 January 2024				

6.1 Gantt Chart (Clickup App)

Figure 6. 1 - Gantt chart explaining the Project plan using Click up App online to collaborate and organise work.

Milestone 2 – Product Design

7 Functional Principle

Assembly with Back housing and Front housing

Back housing(3) and the Front housing(1) are the main housing assembly parts, the major parts of the machine structure. These parts are responsible for accommodating the funnel(7),tubes(12),motor pump holder(14),pumps(19),LCD touchscreen(18),power supply(21),emergency stop button(22) and the on/off button(16) .There is a transition fit where the back housing and the front housing joins. The two housing parts are further secured by screws.

Figure 7.1 - Isometric View of the complete assembly with eight bottles

The figure 7.1 highlights the importance of the main housing part and the outer view of the major assembly. Figure 7.2 emphasizes on the section view of the overall assembly.

Figure 7.2 - The section view for the complete assembly with major subcomponents.

Figure 7.3 - The screwed connection between back and front housing parts with transition fit.

Top holder housing and bottle adapter

The top holder part (5) is responsible for accommodating the bottle input adapters. It is mounted on top side of the back housing and front housing using screws. Figure 7.4 shows the top connection between the three parts along with bottle adapters.

Figure 7.4 - The bottle holder and bottle adapter connection with the main housing with screws.

The top holder (5) has a support structure with ribs to sustain the load added by eight input bottles(24). Figure 7.5 highlights the significant support structure and the holes for the input adapters(6) connection. The figure also highlights the step between every four input bottles for better visibility and easy handling for the user.

Figure 7.5 - It represents bottle holder support structure, step size and even distribution of holes for the input adapter

Drip tray housing, Drip tray part and Drip tray cover

The drip tray housing (8) holds the drip tray part (9) . There is clearance fit between the two allowing the the drip tray part to slide in and out the drip tray housing. The drip tray housing is mounted on the front cover(2) using screws. The drip tray cover(10) goes on top the drip tray part(9) and there is a clearance fit between them so the drip tray cover comes off with ease. The major purpose for the drip tray is to conveniently store the overflow liquid and user convenience. The sliding mechanism makes it easier for the user to manually clean the drip tray. The drip tray also stores the fluid discharged after the

autocleaning mechanism function operates. Figure 7.6 - 7.8 highlights the significant features of the drip tray subassembly.

Figure 7.6 - Highlighting the sliding mechanism for the drip tray

Figure 7.7 - Highlighting the clearance fit in sliding mechanism for the drip tray and drip tray housing

Figure 7.8 - The screwed connection between front cover and sliding tray housing

Front cover

It covers the front of the machine hiding the inside components. It is secured at the bottom with screws to the back housing(3).

Figure 7.9 - Screw connection for the front cover and back housing.

Bottle input adapters

They hold the bottles along with cog inside with transition fit to allow bottle and machine connection. They are mounted on top of the top holder(5) using screws. Figure 7.10 - 7.11 shows the connection between the bottle and input adapters. The bottles can easily be replaced after they are empty.

Figure 7.10 - Section view showing input adapters, bottles and cog connection.

Figure 7.11 - Transition fit between cog and bottle input adapters

Cog

It prevents the liquid from flow out of the bottle when being placed to the bottle input adapter. It is connected to be bottle using an interference fit so that it does not slide off. It also responsible for connecting the bottle to the bottle input adapter (6) using an transition fit. Figure 7.10 and 7.11 clearly shows the connection in the section view above.

Back cover

It covers the pumps which come out from the back housing. It has multiples holes on its design for ventilation purposes. It is mounted to the back housing using screws. Figure 7.2 shows the section view of the assembly housing with the pumps. Figure 7.12 shows the connection and the part design.

Figure 7.12 – Section view of the machine with back cover for the and highlighting screwed connection to the back housing part.

Emergency stop button and On/off button

The emergency stop button is for stopping the machine when there is a malfunction. It is mounted to the front housing part below the touchscreen using clip and has a clearance fit.

Figure 7.13 shows the connection for the mounting of stop button.

Figure 7.13 - Stop button mounted on the front housing part

The on/off button is responsible for switching the machine on and off. It is mounted to the back housing using clip and has snap in fit between them. Figure 7.14 shows the connection between the back housing and the on/off switch.

Figure 7.14 - The connection between the back housing part with the on/off switch.

Funnel

It acts as a collecting point for all the liquids and then dispenses them to the cocktail glass. It is mounted to the front housing using adhesive chemical connection. The support structure also holds the funnel shown in Figure 7.15. The value on the side is designed for water flow with pressure to clean the funnel. The funnel has seven inputs holes on the top which connects with the pumps via silicon tube and one input on the side to use water for cleaning purpose.

Figure 7.15 - The figure shows the funnel connected with front housing part along with adhesive connection.

Pump holder

It is designed to hold pumps. The pumps are mounted to it using screws. It has stepping for easy assembly of silicon tubes. It is also mounted to the back housing using screws. It makes the assembly process easier and quicker.

Figure 7.16 - The pump with the holder along with the stepping for easier pipe connectivity.

Figure 7.17 - The ventilation cutouts from back housing part for the power supply heat dissipation.

Figure 7.18 - Power supply sliding in the lower part of the back assembly supported by rubber parts having adhesive connection with the base.

Figure 7.19 - Silicon tubes connection from input adapters to the pumps and onwards to the funnel

Figure 7.19 shows the funnel connection to the output from the pumps and the connection between the bottle adapter output and input to the pumps. Pump motor is used to regulate the fluid flow for making the perfect cocktails.

8 Electric Drives/Components.

The calculations made are based on theoretical analysis and review of electrical component data sheets. Limitations such as lack of safety factor analysis are as a result of lack of feedback from consultation attempts to the manufacturers of the electrical components.

Total power consumed by the automated cocktail machine is the sum of the individual power consumption of the pumps, one running at a time, the arduino board and the LCD touchscreen.

Peristaltic pumps

Voltage: 12V

Current: 1A through each pump.

Power = 12V X 1A = 12W

Considering the peak efficiency of the pump of 90%,

Output Power = 12W X 90%

 $P_{pump} = 10.8W$

TB6600 Stepper Motor drivers

Operating voltage: 12V

Current: 2A through each stepper motor.

This current setting is configured on the dip switch to 2A because it is suitable for the numb that requires a current of 1A

for the pump that requires a current of 1A.

Power = Voltage x Current Power = 12V X 2A = 24W

Considering their efficiency of 80%:

Power = 24W X 80%

 $P_{driver} = 19.2W$

This power is sufficient to operate the pump that consumes 12W.

Arduino Mega board

Operating voltage: 8V

Recommended current per I/O pin: 20mA

Power = $8V \times 20mA$

 $P_{board} = 0.16W$

LCD touchscreen:

Operating voltage: 5V

Current: 1A

Power = 5V X 1A

 $P_{screen} = 5W$

DC/DC convertors:

Power consumption = Input power – Output power

Since both convertors draw 2A,

Power consumption = (Input voltage, $V_{in,}$ – Output voltage, V_{out}) x Current 8V voltage regulator DC/DC convertor:

 $V_{out} = 8V$

 $V_{in} = 12V$

Current = 2A

P = (12V - 8V) X 2A

= 8W

Considering its peak efficiency of 80%:

Power = 8W X 80%

 $P_{8V} = 6.4W$

This is sufficient to operate the Arduino mega board that consumes 0.16W of power.

5V voltage regulator DC/DC convertor:

 $V_{out} = 5V$

 $V_{in} = 12V$

Output current = 2A

Power = (12-5) V X 2A

= 14W

Considering its peak efficiency of 70%:

Power = 14W X 70%

 $P_{5V} = 9.8W$

This is sufficient to operate the LCD touchscreen that consumes 5W of power.

Total power the machine can consume, considering one pump, the LCD touchscreen and Arduino board is active is:

 $P_{total} = P_{board} + P_{screen} + P_{pump}$

 $P_{total} = 15.96W$

We have chosen a 12V 20A switching power supply to supply power to the machine and with the efficiency of the power supply rated at 80%,

The maximum power the power supply can draw is:

 $P_{supply} = (12V \times 20A) \times 80\%$

 $P_{supply} = 192W$

The power intakes of the motor driver and the two DC/DC convertors, connected to the power supply, is: 24W + 14W + 8W = 46W.

Hence the chosen power supply is suitable for the cocktail machine. It would only need to supply a current of 4A to 5A.

The total energy required to make a single cocktail and perform the selfcleaning function is computed in the calculations below:

Power consumed by the machine, Ptotal

 $P_{total} = P_{board} + P_{screen} + P_{pump}$

 $P_{total} = 15.96W$

Considering a random cocktail our machine can produce, this cocktail requires 3 ingredients hence 3 pumps are active, one at a time.

The time to make one cocktail is dependent on the flow rate of our pump which is 24 ounces/minute, and the range of volume of our cocktails is 6 to 10 ounces. 8 ounces is chosen for this time measurement.

Taking one ingredient to be 2.5 ounces,

24 ounces = 1 minute

 $2.5 \text{ ounces} = (1/24) \times 2.5$

= 0.1041667 minutes

This is about 6.25 seconds to dispense one ingredient.

Energy to dispense one ingredient = P_{total} x time

 $E = 15.96W \times 6.25 s$

E = 99.75Ws

Total energy for the whole cocktail = E X 3 ingredients

 $E_{cocktail} = 299.25 \text{ Ws}$

Additional energy for self-cleaning = $P_{total}x$ 10 seconds 10 seconds is a good time estimate to pump water in the mixing funnel and flush it completely.

 $E_{cleaning} = 15.96W X 10 seconds$ = 159.6Ws

The total energy required to make a single cocktail and perform the selfcleaning function:

 $E_{total} = E_{cocktail} + E_{cleaning}$

 $E_{total} = 299.25$ Ws + 159.6Ws = 458.85Ws

9 Circuit Diagram

Figure 9.1 - Schematic diagram for the Barteolla machine

9.1 Bill of Materials for Electrical components

Table 9.1 - Detailed BOM for the electrical components in the cocktail machine.

Doute	Value	Davisa	Doolsono	Description
Parts	Value	Device	Package	Description
D1, D2	1N5908	1N5908	C4111-15	DIODE
C1, C4	220uF	CPOL-EU085CS-1AR	085CS_1AR	POLARIZED CAPACITOR, European symbol
IC1, IC2	LM2496T	LM2596T	T05D	SIMPLE SWITCHER Step-Down Voltage Regulator
U1	ATMEGA2560AU	ATMEGA2560AU	TQFP100	Atmel 100-pin 8-bit uC
C2, C4	680uF	CPOL-EU085CS-1AR	085CS_1AR	POLARIZED CAPACITOR, European symbol
L1, L2	33uH	L-US0204V	0204V	INDUCTOR, American symbol
LT1	SKU12104	SKU12104	-	WAVESHARE LCD capacitive touchscreen
PS1	LED732	LED732	-	LEDMO 12 AC/DC power supply
CP1	501638	501638	-	IEC connector plug
ES1	TA_RKUV40	TA_RKUV40	-	Emergency stop button
TB1,TB2, TB3, TB4,	TB6600	TB6600	-	TB6600 stepper motor driver

TB5, TB6, TB7, TB8				
P1, P2, P3, P4, P5, P6, P7, P8	DP-520-48S	DP-520-48S	-	INTLLAB Peristaltic pump
Electric cables	-	-	-	High-purity solid tinned copper wires

10 Requirements Manual for "Buy" (CotS) Parts

10.1 Arduino Mega board

• Type: Arduino Mega 2560 R3

Table 10.1 - Arduino Technical data

Microcontroller	ATmega2560
Operating Voltage	8V
Input Voltage (recommended)	7-12V
Length	101.52 mm
Width	53.3 mm
Reason selected	This microcontroller has more digital I/O pins (54 available) than other microcontroller types and this can accommodate the 8 stepper motor drivers that take up a total of 24 digital I/O pins.

10.2 Peristaltic Pumps

• Type: INTLLAB Peristaltic dosing pump

Table 10.2 - Technical data for Peristaltic Pumps

Package dimensions	5.2 x 3.86 x 3.46 inches
Flow rate	600 - 710ml/min
Current	1A
Operating voltage	12 Volts
Efficiency	90%
Reason selected	The flow rate of these pumps is 600 – 710ml/minute and this is within our specification to make a cocktail in 60 seconds or less.

10.3 12 V Power Supply

• Type: LEDMO Switching Power Supply

Table 10.3 - Technical data for power supply

Dimensions	22.5 x12 x 6 cm
Current	20A
Operating voltage	12V
Wattage	240W
Efficiency	80%
Reason selected	Availability of three dedicated 12V DC outlets that is suitable to supply power to the LCD touchscreen, the Arduino and stepper motor drivers.

10.4TB6600 Stepper Motor Driver

• Type: Two phase hybrid stepper motor driver

Table 10.4 - Technical data for Stepper Motor driver

Dimensions	95 X 72 X 28mm
Voltage	9 - 42 V DC
Efficiency	80%
Reason selected	It is able to handle higher voltage levels from 9V up to 42V, and that is sufficient in our circuit since it is supplied with 12V input voltage.

10.5 Emergency stop button

• Type: Emergency stop button

Table 10.5 - Technical data for emergency stop button

Height	29.4 mm	
Depth	19.2 mm	
Mounting method	Front panel mounting	
	This button can be easily mounted at the front of the machine for easy visibility.	

10.6 LCD touchscreen

• Type: 7-inch HDMI LCD Capacitive Touchscreen

Table 10.6 - Technical data for LCD touchscreen

Product dimensions	16.65 x 12.46 x 1.84cm
Resolution	1024 x 600 pixels
Operating voltage	5V
Reason selected	The screen size is large enough to properly display all the features designed by the software team.

10.7 Silicon tubes

• Type: Food Grade Transparent Silicone Rubber Tube

Table 10.7 - Technical data for Silicon tubes

Size	9 x 12 mm	
Temperature	-60°C to +180°C	
Kind	Hose line	
Reason selected		

10.8 Screws

Table 10.8 - Screw description based on specification and quantity.

Туре		Length in mm	Supplier
ISO 1046-1 M4	x 2	6	Screwerk
ISO 1046-1 M5	x2	8	Screwerk
ISO 1046-1 M3	x16	10	Screwerk
ISO 1046-1 M3	х3	5	Screwerk
ISO 1046-1 M3	x24	4	Screwerk
ISO 1046-1 M5	x2	10	Screwerk
ISO 1046-1 M5	x4	8	Screwerk
ISO 1046-1 M4	x4	5	Screwerk
ISO 1046-1 M3	x4	12	Screwerk
ISO 1046-1 M4	x16	8	Screwerk

10.9 Washers

Type: ISO 10669-3.55

Amount: 12

Supplier: Screwerk

10.10 DC/DC converter

• Type: LM2596 step down converter

Table 10.9 - Technical data for DC/DC converter

Input voltage	4.75 - 24V
Output voltage	0.93 - 18V
Size/Dimensions	45 x 32 x 16 mm
Max. conversion efficiency	70 - 80%
Reason selected	Both the LCD touchscreen and the arduino board require lower voltages to operate and these high efficiency convertors ensure stable voltage supply to these parts.

11 Technology Selection for the "Make" Parts

We decided to buy all the electrical components, as determined by the "Make-or-Buy" selection. Therefore, we only include the technology and materials selection for making the parts of mechanical components in the following task.

Material: Acrylonitrile Butadiene Styrene (ABS Plastic)

3D printing.

Machine Used: FDM/FFF Printer

Why ABS Plastic?

Impact Resistance

Chemical Resistance

• Fully recyclable

Easy to Paint and Glue

• Excellent High and Low-Temperature Performance

Great Electrical Insulation Properties

Manufacturing Processes

Several criteria, including lead time, material qualities, cost concerns, and production volume, influence the choice of manufacturing process for plastics. Thermoplastics are favored due to their ability to undergo numerous cycles of melting and solidification. These materials are typically supplied in compact pellets, which can be melted to attain the desired shape through diverse manufacturing techniques. The process is reversible, ensuring that properties remain unchanged even after multiple treatments. Several manufacturing processes, including 3-D printing, CNC machining, vacuum forming, injection molding, extrusion, and blow molding, are available. Each of these methods offers distinct degrees of flexibility, leading to variations in both cost and production time.

3D Printing

3D printing uses a 3D CAD model to create a part layer by layer until the final product is manufactured. ABS plastic is one of the most common materials for 3-D printing due to its resistance to impact and high temperature.

Process:

- 1. Print setup: Print preparation software is used for orienting and laying out models within a printer's build volume, adding support structures (if needed), and slicing the supported model into layers.
- 2. Printing: The printing process depends on the type of 3D printing technology. For our parts Fused Deposition Moulding/Fused Filament Fabrication (FFF) is used which melts the plastic and then molds it to the desired shape.
- 3. Post-processing: Once the part is made, it is cleaned, washed, and treated additionally to maximize materials' physical properties.

Electroplating

Electroplating is a process that involves depositing a thin layer of metal onto the surface of a substrate, such as plastic, to provide a decorative or functional finish. The most common metal used for electroplating plastic to achieve a shiny look is chrome.

Process:

Ensure that the plastic object is clean and free of any contaminants, oils, or residues then we use acetone to clean the surface of the printed part. We add a base coat then later a conductive paint.

Then set up the electroplating tank and place the part inside the tank towards the anode. Turn on the current which causes metal to be attracted to the plastic surface.

Finally remove the part, wash and polish it.

11.1 Bottle Adapters

Material: Acrylonitrile Butadiene Styrene (ABS Plastic)

Manufacturing Process: 3D printing

3D Printing using FDM since the process delivers accurate dimensions and is efficient in mass production. Here molten filament is deposited on the build platform layer by layer to create our defined design. Supports here helps us create the overhang and small intricate features avoiding warping.

Figure 11.1 - Input Adapter part with 3D printing layer details, support structure details and showing the isometric view of the part .

11.2 Liquid Drip Tray

Material: ABS Plastic

Manufacturing Process: FDM – 3D printing

3D Printing using FDM because it's an efficient manufacturing method that provides precision, consistency, and cost-effectiveness, making it a preferred

choice to produce plastic trays, especially when high volumes and intricate designs are involved.

Figure 11.2 - The drip tray cover explaining 3D printing direction

11.3 Funnel shaped Mixer

Material: ABS Plastic

Manufacturing Process: 3D Printing

FDM is a widely used 3D printing method that deposits melted plastic layer by

layer to build up the object.

We will use this method because it is widely available, and most suitable for Abs plastic.

Figure 11.3 - Isometric view of the funnel showing the direction of the print

11.4 Front Housing

Material: ABS plastic

Manufacturing Process: 3D printing FFM

Fused Filament fabrication because our shape is complex and it allows us to produce our parts cost effectively. Here the printer's nozzle moves according to the design depositing molten ABS filament layer by layer to build up the object.

We make our material have a better surface finishing by using vaporsmoothing. We then use a copper paint and add acetone to the mixture and airbrush our print.

We will then add a metal coating by electroplating. Electroplating is depositing of dissolved ions of a metal unto another surface (in our case ABS plastic). The advantages of electroplating our housing is to make it look aesthetically pleasing with a shiny metallic look, resisting chemical damages and corrosion and it increases the strength of our material. Support structures help to create

Figure 11.4 - Multiple views of the front housing part to show the details of the part.

our holes and improve the accuracy of printing which will then be removed at the end.

Figure 11.5 - Isometric view of the part showing the print orientation and direction with support structure.

11.5 Housing Back

Material: ABS plastic

Manufacturing method: 3D printing using FFF

Layer Delamination can easily occur so the must be well heated. It's same

process with FDM just another name.

Figure 11.6 - Isometric view of the part highlighting the direction of build and highlighting the location where supports are needed.

11.6 Back Cover

Material: ABS Plastic

Method:3D Printing using FDM

Figure 11.7 - Isometric view of the part highlighting the direction of the build and area that needs to be supported.

11.7 Drip Tray part

Material: ABS plastic

Manufacturing method: 3D printing FDM

Figure 11.8 - Isometric view showing the direction of the print for the drip tray.

11.8Top bottle holder

Material: ABS Plastic

Manufacturing Method:3D printing FDM

Figure 11.9 - Isometric view of the part highlighting the direction of printing and holes that need to be supported.

11.9 Bottle Cog

Material: Rubber

Manufacturing method: 3D printing (FDM)

Figure 11.10 - Isometric view of the rubber cog highlighting the direction of build.

12 Make and Buy Decisions

This section explores the various components present in the Barteolla cocktail mixer. The components are listed in tables and categorized into "make" and "buy" groups. The fundamental approach is to incorporate numerous standard "off-the-shelf" components that are readily available, have consistent market prices, and are easily procured at competitive rates when purchased in large quantities. "Make" components are specifically crafted for the product and their production is optimized using lean manufacturing principles.

Table 12.1 - Make and Buy decision for electrical components

	Electrical Components				
Name of Part	Qty	Description	Make or buy decisi ons	Short Explanation/ Explanation	
Arduino Mega board	1	It is located at the bottom of the housing back. This microcontroller interprets data from the LCD screen. It controls the motor drivers that power the motor.	Buy	It is used to program electronic components. It is more cost effective to buy since our supplier has lower manufacturing costs due to the higher volume of production.	
TB6600 Stepper motors drivers	8	Located at the housing back of the machine, they control and supply power to the peristaltic pump motors.	Buy	These specific motor drivers have a microstepping feature that allows for smoother motion and precise control of the motor it drives.	
Peristaltic pumps	8	Lined up in the housing back, they pump liquid from	Buy	Due to tubing friction, pumps require high starting torques and this is an important factor for	

		the bottles to the mixing funnel.		selecting this pump because it has a high torque at low speeds.
12V Power supply	1	This is placed at the bottom of the housing. It converts AC input power into 12V DC power suitable for powering the LCD, Arduino and the motor drivers.	Buy	This power supply has 3 dedicated 12V DC outlets that is suitable to power the LCD screen, the Arduino and stepper motor drivers, with a good efficiency of 80%.
LCD Touchscr een	1	Located on the front housing, this is used as a touch interface by the user to select different cocktails and their respective levels of strength of alcohol in the cocktail.	Buy	Purchasing LCD touchscreens offers advantages in terms of quality, cost, time, and reliability. It allows our team to leverage the expertise of specialized manufacturers while concentrating efforts on other critical aspects of cocktail mixer production.
ON/OFF Power Button	1		Buy	It is an affordable, common electrical component that is used widely in the industry. Buying this part ensures better quality assurance.

DC/DC convertor s	2		Buy	It is relatively procurable on the market and it's high efficiency is very essential in stepping down the 12V voltage.
Emergenc y stop button	1	ST p p	Buy	The button can be easily located by the user. They are widely used in the market and its inexpensive part so saves us production time and overall manufacturing costs.

	Mechanical Components			
Name of Part	Qty	Description	Make or buy decisions	Short Explanation
Housing	1	Encloses all the components including the pumps, sensors and everything	Make	The shape of the housing and the measurement are customized and cannot be easily found in the market.
Bottle input adapters	8	Located at the top of the outer housing.It connects the bottles to the machine	Make	We can easily make this using injection molding since its not complex and we need it to match our overall specifications and goals.
Funnel shaped Mixer	1	Located inside the machine but attached to the housing by adhesive bonding.	Make	We need to bring our design to life and by using FDM, it will be cost efficient for us.
Silicon fluid tubes	16	Located used to take the drink from the bottle to the mixer	Buy	Silicon is very food safe and doesn't contain toxic BPAs and is also popular in the food industry

Liquid storage tray	1	Located at the bottom of the machine to collect the waste liquid	Make	thereby making it cheaper to buy this part due to manufacturing costs than to make. The dimensions and shape of the tray should be customized, so we need to manufacture them with our chosen design.
Plain washer	12	Used together with the screws to join part	Buy	They are widely used in the machinery market and can be purchased in large quantities at a cheap price.
Flat head Screws (M4 x 5,M8,M4)	61	Used in joining the different parts together.	Buy	They are widely used in the machinery market and can be purchased in large quantities at a cheap price.
Motor holders	2	Holds the Peristaltic pumps.	Make	The dimensions and shape of the motor holders should be customized, so we need to manufacture them with our chosen design to fit the pumps.
Bottles	8	For the drinks and are placed upside down on our	Buy	We buy standard bottles in the market. It is more cost effective to buy

	machines.		since our supplier has lower manufacturing costs due to higher volume of production.
--	-----------	--	--

Milestone 3 - Technical Documentation

13 Bill Of Materials (BOM)

Figure 13.1 - Complete Bill of Material for the assembly.

Electrical BOM (Section 9.1)

14 Technical Drawing

Figure 14.1 - Technical Drawing for the cocktail mixer assembly.

15 Program flow chart

Figure 14.1 - Flowchart representation for main program

Emergency handling

Figure 15.2 - Flowchart representation for emergency handling scenario

Figure 15.3 – **Left**: Flowchart representation for cleaning cycle; **Right**: Flowchart representation for dispensing ingredients cycle

16 Production Planning

Accurate production planning is essential to meet the anticipated demand while maintaining cost efficiency through effective procurement of materials and optimal allocation of machinery.

16.1 Equipment Specification

Supplier: Anycubic Price estimation: 520 € Raw material: ABS Plastic

Figure 16.1 - Anycubic 3D printer used for manufacturing purposes (Anycubic Kobra 2 Max, n.d.)

Table 16.1 - Technical Data for AnyCubic 3D Printer(Anycubic Kobra 2 Max, n.d.)

Machine Weight	21kg
Printing Volume	23.2gal./88.2L
Nozzle	≤500F/260°C
	ø 0.4mm (replaceable)
Printing Speed	500mm/s(Max.)
	300mm/s(Typ.)
X/Y-axis	Double Metal Spindle
Printing Platform	PEI Magnetic Spring Steel
	16.5x16.5in./420x420mm
Cooling Fan RPM	7000rpm/min
Printing Material	PLA/ABS/PETG/TPU
Machine Dimensions	29.1x28.9x25.1in./
	740*735*640 mm(HWD)

Printing Dimensions	19.7x16.5x16.5in./ 500x420x420 mm(HWD)
Hotbed temperature	≤194F/90°C
Zaxis	Double Motor Double Z-axis
Machine Leveling	New Anycubic LeviQ 2.0 Automatic Leveling System (49-point)
Control Panel	4.3" LCD Touch-Control Screen
Extruder	Anycubic Self-Developed Direct Extruder + Double Gears
Data Input	USB ports x 3

16.2 Capacity Calculation

Shift Model and Available Production Time

Table 16.2 - Capacity Calculation Analysis

Capacity Analysis	VALUE	UNIT
No. of days per year	365	days
Weekends and public holidays	115	days
Working days annually	250	days
Working time per shift	7.5	hrs
shifts per day	3	
Price per piece	990	€
Annual Sales target	1000	
Downtime Ratio	0.85	
Required time for one unit	5.6	hrs

Note: We work 5 days a week.

The main goal of the company is to achieve the annual revenue sales of 990,000 € set by the CEO and the board members of the company. To translate this target to a production plan, the calculation for the number of finished goods is done, which will be produced in the factory each year.

No. of units produced annually =
$$\frac{Target \, annual \, revenue}{product \, price}$$
$$= \frac{990000 \in}{990 \in}$$
$$= 1000 \, units$$

Consumer Takt Time

The Takt time is the required production duration to meet the customer demand. The aim here is to produce 1000 units in the first year. This is based

on the market research done in Milestone 1, which were 200 units in the initial launch phase.

No. of units produced per day
$$= \frac{No.of\ units\ produced\ daily}{annual\ working\ days}$$

$$= \frac{1000}{250}$$

$$= 4\ units\ per\ day$$

$$Takt\ time = \frac{total\ production\ time}{total\ units} = \frac{250\ days\ x\ 3\ shifts\ x\ 7.5\ hrs}{1000} = 5.6\ hrs$$

Actual Takt time = 5.6×0.85 (downtime ratio) = 4.76 hrs

We assume that some units will be discarded during the quality assurance cycle and the production and sales targets will not be achieved; therefore, some safety buffers will be kept which will increase our annual production to 1000 units.

Factory Working hours

The make parts are manufactured and transported between the machines on a lot size basis. The factory will be active for 24 hours per day, in three 8-hours shifts. Out of those 24 hours, 1.5 hours will be break time (30 minutes per shift) and daily 10 minutes will be taken for short staff meetings and briefings. Hence, the overall productive working hours will be 22 hours each day.

There are many advantages of 8-hour shift schedules, for both the employee and the employer. There's a likelihood of a reduction in staff accidents and/or errors due to the amount of rest time in between shifts. The disadvantage of this shift model is it requires up-front planning, but it pays eventually. Down times for each machine is specified as a general 5 -10% margin for maintenance, the planned production considers available time to allow for the margin. Daily production volume considers an extra of 10% from each part to be stored as spare parts.

•	Tahle	163_	Canacity	calculation	for make parts	
	ı avıc	10.3 -	Capacity	Calculation	IUI IIIane Dailo	

Item#	Part Name	Manufac turing Technolo gy	Productio n time per piece(min)	of units		Qty	Lot Size	Factory working time per day(min)	product
	Front	3D							30.00
1	Housing	Printing	1800	4	7200	1	1	1320	
									25.00
	Front	3D							
2	cover	Printing	1500	4	6000	1	1	1320	
	Back	3D							16.00
3	Housing	Printing	960	4	3840	1	1	1320	
									29.00
	Back	3D							
4	cover	Printing	1740	4	6960	1	1	1320	

									28.00
	Тор	3D							
5	holder	Printing	1680	4	6720	1	1	1320	
	Bottle	3D							1.25
6	adapter	Printing	75	4	300	1	1	1320	
		3D							2.00
7	Funnel	Printing	120	4	480	1	1	1320	
	Drip								2.08
	tray	3D							
8	Housing	Printing	125	4	500	1	1	1320	
	Drip	3D							0.75
9	tray part	Printing	45	4	180	1	1	1320	
	Drip								4.00
	Tray	3D							
10	cover	Printing	240	4	960	1	1	1320	
	Pump	3D							5.00
14	holder	Printing	300	4	1200	1	1	1320	
1,2,3,4,									0.01
5	Housing	Painting	0.33	4	1.32	1	10	1320	
Total					34341.32				

The time needed for 3D printing for the various parts is taken from a slicing software called Bambu lab which is compatible with our printer.

Number of Machines Needed

In reality, production processes do not have a 100% utilization of the production time, so a downtime ratio of 85% is used as seen on the capacity table above.

Actual time (hrs) = $5.6 \times 0.85 = 4.76 \text{ hrs}$

No. of machines = <u>Production time per day(min)</u> Factory working time per day(min)

Table 16.4 - Number of machines needed for production

Process	Machine	Tact time for a setup(hrs)	Processing time(hrs)	No of machines	Employees per machine
Part No. 1	3D Printer	4.76	30.00	6.0	1
Part No. 2	3D Printer	4.76	25.00	5.0	1
Part No. 3	3D Printer	4.76	16.00	4.0	1
Part No. 4	3D Printer	4.76	29.00	6.0	1
Part No. 5	3D Printer	4.76	28.00	6.0	1
Part No. 6,7,8,9,10,14	3D Printer	4.76	15.08	1.0	1
total				28.0	6

So we use 28 (3D Printers) + 1 setup (painting) = 29 machines. Total Staff = 6 + 1(painter) = 7 employees Daily Production staff = Total no. Of employees x Total no. Of shifts = 7 employees x 3 shifts = 21 daily production staff

Assembly Time Per Unit

Total units produced = 4 units

Total man-hours = 22 hours

Units per man-hour =
$$\frac{4 \text{ units}}{22 \text{ hours}}$$
 = 0.1818 units/man-hour

Time taken per unit =
$$\frac{60 \text{ mins}}{0.1818 \text{ units/man-hour}} = 330.03 \text{ mins/unit}$$

Overall Equipment Effectiveness (OEE)

Overall equipment efficiency (OEE) is a critical metric used to measure the effectiveness of manufacturing equipment or assets. It provides insights into how well machines are being utilized and identifies areas for improvement. OEE considers three key factors; Availability, Performance, Quality;

Relevant information for understanding the required capacity and efficiency achievement is further explained with the use of the following calculations.

OEE = Availability x Performance x Quality

- a. Availability: A = Available time, B = Scheduled time
- b. Performance: C= Ideal production rate ,D= Actual production time
- c. Quality: E= Total units, F= Good units

$$OEE = \frac{B}{A} \times \frac{D}{C} \times \frac{F}{E}$$

Scheduled production time = 24 hrs

Downtime(planned/unplanned) = 2 hrs.

Up time (available time) = (24-2hrs) = 22hrs

Availability =
$$\frac{B}{A} = \frac{22 \text{ hours}}{24 \text{ hours}} \times 100 = 91.67 \%$$

Actual production Rate =
$$\frac{4 \text{ units}}{22 \text{ hours}}$$
 = $0.1818 \frac{\text{unit}}{hr}$

Ideal production rate = 0.2

Performance =
$$\frac{D}{C} = \frac{0.1818}{0.2} \times 100 = 90.9 \%$$

Total number of units = 4 units

Number of good units = 3.8

Quality =
$$\frac{F}{E} = \frac{3.8 \text{ units}}{4 \text{ units}} \times 100 = 95\%$$

OEEE = 91.67 % x 90.9% x 95 % = 79.1 %

16.3 List of employees

Table 16.5 - Overall Employee Requirements

Position	Qualification	Number of employees	Salary per year(EUR)	Total amount per year(EUR)
Financial Manager	Accountant	1	31,000	31,000
IT Manager	Technicians in Field	1	40,000	40,000
Logistics Manager	Industrial Engineer	1	35,000	35,000
Maintenance manager	Mechanical Engineer	1	35,000	35,000
Plant Manager	Industrial Engineer	1	45,000	45,000
Production & Logistic Employees	Company training	21	27,000	189,000
Production Manager	Mechanical Engineer	1	45,000	45,000
Quality Assurance	Industrial Engineer	1	40,000	40,000
Cleaning Staff	Company training	2	25,000	50,000
Tota	Total (EUR)			846,000

16.4 Factory Layout

Figure 16.2 - Complete Factory layout

16.5 Assembly Lines

Assembly Lines maintaining lean manufacturing principles in mind leads to the division of the entire assembly process to 4 different subassemblies, and a final assembly.

Subassembly 1-Back Housing

The Back sub assembly consist of the following steps;

Table 16.6 - Steps to assemble Back Subassembly

Operation sequence	Time to assemble (s)
1)Pumps(8) are mounted on pump	360
holders and screwed to the back	
base.	
2)Stepper Motor drivers(8) screwed	180
to the back housing and connected	
to the pumps.	
3)Arduino Mega Board is connected	30
to power supply, stepper motors and	
screwed to back housing	
(later connected to LCD screen in	
final assembly)	
4) Install the ON/OFF button	15

5) Power Supply holders are glued to the back housing base so that the Power supply can be placed and held firmly.	60
6)Screw the back cover	30
Total Time to Complete (TTC)	675

Subassembly 2 - Front housing

Table 16.7 - Steps to assemble Front Subassembly

Operation sequence	Time to assemble (s)
1)Screen is screwed to the front	60
housing	
2)Emergency Stop button is mounted	30
3)Funnel is mounted on the funnel	60
holder in the housing	
Total Time to Complete (TTC)	150

Subassembly 3 – Front Cover

Table 16.8 - Steps to assemble Front Cover and Drip tray

Operation sequence	Time to assemble (s)
1) Drip Tray Housing is mounted on	30
the Front Cover using screws.	
2)Drip Tray slides into the Drip tray	30
housing.	
Total Time to Complete (TTC)	60s

Subassembly 4 -Top Holder

Table 16.9 - Steps to assemble Top Holder and Bottle Adapter

Operation sequence	Time to assemble (s)
1)Bottle adapters(8) are partially	60
screwed on the top holder and tubes	
pass through them into the bottles	

16.6 Final assembly

The final assembly consist of connecting the 4 subassemblies (Back Housing, Front housing, Front Cover, Top Holder) together along with tubes that run from funnel to pumps to the bottle adapters mounted on top holder. The electronic connection for LCD Touchscreen and Emergency Stop button is also done to the Arduino Mega Board and power supply. In the end the Top Holder partial screws are tightened when all subcomponents are properly connected. This subassembly runs on a standard rolling production line.

TTC

Back housing + Front Housing + Front Cover + Top Holder + transport + final assembly = 675s + 150s + 60s + 40s + 240s + 245s = 1410s

Required assembly time =
$$\frac{1000 \, pieces}{5500 \, hours}$$
 =18.2pcs/hour

The assembly time is reasonable and can be managed with the different subassemblies and workers. 4 Workers will be used for assembly out of the 6 workers, while the remaining 2 will change the 3D printed parts when we are done from the machine.

16.7 Value Chain

The value chain is a series of steps that a company takes to create, deliver, and support its products or services.

Figure 16.3 - Value chain flow chart

17 Cost Calculation

The manufacturing cost is the sum of costs of all resources, which is consumed during the process generation of a product.

17.1 Labour Cost

The direct labor cost of our product per year will be 846000€ per year according to Table16.5 above.

Table 17.1 - Material cost

Factors	Cost
Wages	14€ per hour
Interest	5%
Depreciation	Fully depreciated over 10 years
Space costs	5€/m² per month
Electricity cost	
Maintenance and repairs	5% of the machine value
Tools and supplies	Varies as per machine
Marketing and Sales Overhead	15%
Remaining production overheads	8%
Administration Overheads	10%
Material Overheads	5%

17.2 Annual Operating Time

For the 3D Printers:

22 hours (3 shift) x 5 days a week x 49 weeks a year = 5390 hours per year

For the Painting machine:

2 hours x 5 days a week x 49 weeks a year = 490 hours per year

Note:2 week has been reserved for vacation and 1 week makes up for public holidays when the production process will be completely shut down.

17.3 Machine Hourly Rate

3D Printers = 28 x 520€ = 14,560€ Painting Set up = 30,000€

Table 17.2 – Electricity consumption for complete Machine setup

Machine	Power Consumption per year	€/kWh	Cost
3D Printer (28 printer)	0.4kW x 5390= 2156kWh	0.40	862.4€ x 28= 24147.2€

Painting Robot	15kW x 490hrs	0.40	2940€
sprayer setup	=7350kWh		

Table 17.3 - Space costing of every machine

Machine	Area in m ²	Cost per m ² per year	Total cost
3D Printer(x28 printer)	28 x 2m ² = 56	5 € x 12= 60€	3360€
Painting Robot sprayer setup	15	5€ x 12= 60€	900€

Table 17.4 - Labour cost of every machine

Machine	Average annual wage per person	% of time Assistance	Total Cost
3D Printer(x28 printer)	27000€	10	2700€
Painting Robot sprayer setup	27000€	15	4050€

Machine Hourly Rate = Machine Dependent Overheads/ Annual Operating hours

Table 17.5 - Machine Hourly rate for all machines

	3D Printer	Robot paint sprayer
Space cost	3360€	900€
Electricity cost	24147.2€	2940€
Maintenance cost (5%)	728€	1500
Tool cost	1064€	1500€
Annual	1456€	3000€
Depreciation(10%)		
Interest(5%)	728€	1500€
Labor Cost	2700€	4050€
Machine dependent overheads	34183.2€	15390
Annual operating hours	5390 hours	490 hours
Machine Hourly Rate	6.34€	31.4€

17.4 Material Cost

Table 17.6 - Material Costing for raw materials used

	ABS Plastic	Paint	
Price per unit	0.40€/kg	51€/kg	
Weight of the product	5 kg	1kg	
Material overhead(5%)	0.1€	2.55€	
Total cost	2.1€	53.55€	

17.5 Production Cost

As calculated previously, the manufacturing time of 1complete unit of the cocktail machine is 5.6hours.

- Direct production cost of 1 unit
 - 5.6 hours x14€ = 78.4€
- Machine Dependent Overhead cost:

Production time in hours x (Sum of hourly rate of all machines)

- Remaining Production Overhead cost:
 - 8 % of the (Direct production Cost + Machine dependent cost)

Total Production cost

Direct production Cost + Machine dependent cost + Remaining Overhead 78.4€ + € + 211.3€ + 23.1€ = 312.8 €

17.6 Prime Cost

Price for all the buy parts per unit of the product = 392 €

Manufacturing cost per unit:

Manufacturing cost = Total Material Cost per unit + Production Cost + Buy Parts price

Administrative cost per unit:

Administrative Cost = 10 % of the Manufacturing cost=0.10 x 760.45€ = 76.04€

Marketing and Sales cost per unit:

Manufacturing Cost = 15 % of the Manufacturing cost = 0.15 x 760.45€ = 114.07€

Total Prime cost of unit of Shade Pro:

Prime cost = Marketing Cost + Manufacturing Cost per unit + Administrative Cost = 114.07€ + 760.45€ + 76.04€ = 950.56€

Therefore, the cost to make produce one unit of cocktail mixer is 950.56€

List of References

Arduino® MEGA 2560 Rev3. (n.d.).

Bajarin, T. (2021). *Automated Cocktail System Pours Its Way To Success*. https://www.forbes.com/sites/timbajarin/2021/04/08/automated-cocktail-system-pours-its-way-to-success/?sh=7f1583e36728

Cocktail Mixers Market Trends Size Share Growth Report 2023-2030. (2023). https://www.datamintelligence.com/research-report/cocktail-mixers-market

Derick. (2021). Wine Bottle - Standard (750 mL) Dimensions & Drawings | Dimensions.com. https://www.dimensions.com/element/wine-bottle-750-ml-standard

Michael. (2023). The state of North Rhine Westphalia | Vacation rental cologne. https://www.ferienwohnung-

koeln.com/en/Bundesland/Nordrhein/Westfalen

Prime PRWire. (2023). Commercial Cocktail Machine Market Analysis report with a CAGR of 4% gives detailed information on Technology Functions, Growth, Share, Trends forecasted till2023 - 2030. - Benzinga.

https://www.benzinga.com/pressreleases/23/08/33688042/comme rcial-cocktail-machine-market-analysis-report-with-a-cagr-of-4-gives-detailed-information-on-t

	Buy part References
10.6	Waveshare 7 Inch HDMI LCD 1024×600 with IPS capacitive touch screen for
	Raspberry Pi (exp-tech.de)
10.3	LEDMO Switching Power Supply 12 V 20 A 240 W AC/DC Power Supply Adapter
	Transformer, Switching Converter AC 100 V / 240 V-DC-12 V for LED Strip Lights Power
	Supply Switching Mode 20 A Power Converter : Amazon.de: DIY & Tools
10.5	TA RKUV 40: Emergency stop button, mounting Ø: 16.2 mm at reichelt elektronik
10.1	Arduino Mega 2560 Rev3 — Arduino Official Store
10.4	https://www.amazon.de/Twotrees-Stepper-Driver-TB6600-
	Control/dp/B07SQPHHJM/ref=sr_1_1_sspa?keywords=tb6600&qid=1700757679&sr=8-
	1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
10.2	https://www.amazon.de/-/en/INTLLAB-DP-520-48S-Peristaltic-Corrosion-
	Resistant/dp/B082K6CYV1?th=1
10.7	https://de.aliexpress.com/i/4001283598865.html
10.10	https://www.reichelt.de/dk/en/developer-boards-voltage-regulator-dc-dc-converter-
	<u>lm2596-debo-dcdc-down-1-p282577.html?PROVID=2788&&r=1</u>