

4

Chemical Bonding and Molecular Structure

Chemical Bond

The force of attraction which hold atoms together, molecule or ions within chemical species. It is always exothermic process.

Types of Intermolecular Forces

5. Ion-induced dipole

Force

Table: Relative strength of forces

Force	Relative strength	Interaction energy
Ion-ion (Cation-anion)	Very strong	Interaction energy ∝ r ⁻¹
Covalent bonds	Strong, (140–523 KJ/mole)	Interaction energy ∝ r ⁻¹
Ion-dipole	Moderate	Interaction energy ∝ r ⁻²
Hydrogen bond	Moderate to weak (10–100 kJ/mol)	Interaction energy ∝ r ⁻¹
Dipole-dipole	Weak (5–25 kJ/mol)	Interaction energy $\propto r^{-3}$ (for stationary polar molecules) Interaction energy $\propto r^{-6}$ (for rotating polar molecules)
London force or dispersion force	Very weak (0.05–20 kJ/mol)	Interaction energy ∝ r ⁻⁶

Hybridisation

Table : Hybridisation and geometry

S.No.	Type or orbital	No. of hybrid orbital	3D orientation	Example
1.	one s + one p	2; sp	Linear	BeH ₂ , BeCl ₂
2.	one s + two p	3; sp ²	Triangular	BCl ₃ , BF ₃
3.	one s + three p	4; sp ³	Tetrahedral	CH ₄ , CCl ₄
4.	one s + three p + one d	5; sp ³ d	Triangular bipyramidal	PCl ₅
5.	one s + three p + two d	6; sp ³ d ²	Octahedral	SF ₆
6.	one s + three p + three d	7; sp ³ d ³	Pentagonal bipyramidal	IF ₇

Type of Hybridisation & Possible Structure

Table: Hybridisation and Shape

Type of Hybridisation	No. of B.P.	No. of L.P.	Shape	Examples
1. sp-hybridisation	2	-	Linear	BeF ₂ , CO ₂ , CS ₂ , BeCl ₂
2. (a) sp ² -hybridisation	3	-	Trigonal planar	BF ₃ , AlCl ₃ , BeF ₃
(b) sp ² -hybridisation	2	1	V-shape, Angular	NO_2^-, SO_2, O_3
3. (a) sp³-hybridisation	4	0	Tetrahedral	CH ₄ , CCl ₄ , PCl ₄ ⁺ , ClO ₄ ⁻ , NH ₄ ⁺ , BF ₄ ⁻¹ , SO ₄ ⁻² , AlCl ₄ ⁻ ,
(b) sp ³ -hybridisation	3	1	Pyramidal	NH ₃ , PF ₃ , ClO ₃ ⁻ , H ₃ O ⁺ , PCl ₃ , XeO ₃ , N(CH ₃) ₃ , CH ₃ ⁻
(c) sp ³ -hybridisation	2	2	V-shape Angular	H ₂ O, H ₂ S, NH ₂ ⁻ , OF ₂ , Cl ₂ O ₂ , SF ₂ , I ₃ ⁺
			Tingulai	
4. (a) sp ³ d-hybridisation	5	_	Trigonal bipyramidal	PCl ₅ , SOF ₄ , AsF ₅
(b) sp ³ d-hybridisation	4	1	See-Saw,	SF ₄ , PF ₄ -, AsF ₄ -
			folded square distorted tetrahedral	SbF ₄ ⁻ , XeO ₂ F ₂
			almost T-shape	
(c) sp ³ d-hybridisation	3	2	Linear	ClF ₃ , ICl ₃
(d) sp ³ d-hybridisation	2	3		I ₃ ⁻ , Br ₃ ⁻ , ICl ₂ ⁻ , XeF ₂

Type of Hybridisation	No. of B.P.	No. of L.P.	Shape	Examples
5. (a) sp ³ d ² -hybridisation	6	-	Square bipyramidal/octahedral	PCl ₆ ⁻ , SF ₆
(b) sp ³ d ² -hybridisation	5	1	Square pyramidal/distorted octahedral Square planar	XeOF ₄ , ClF ₅ , SF ₅ ⁻ ,
(c) sp ³ d ² -hybridisation	4	2		XeF ₅ , XeF ₄
6. (a) sp ³ d ³ -hybridisation	7	_	Pentagonal bipyramidal	IF ₇
(b) sp ³ d ³ -hybridisation	6	1	Pentagonal pyramidal/ distorted octahedral/capped octahedral Pentagonal planar	XeF ₆
(c) sp ³ d ³ -hybridisation	5	2		XeF ₅

Molecular Orbital Theory

Formation of molecule or orbitals from atomic orbitals $(\psi_A \pm \psi_B)$

$$\psi_{MO} = \psi_A \pm \psi_B$$

 $\sigma = \psi_A + \psi_B \text{ (Bonding molecular orbital)}$

 $\sigma^* = \psi_A - \psi_B$ (Antibonding molecular orbital)

Relative energies of M.O having

Less than or equal to 14 electrons.

$$\begin{array}{l} \sigma 1_{S} < \sigma^{*}1_{S} < \sigma 2_{S} < \sigma^{*}2_{S} < \pi 2p_{_{X}} = \pi 2p_{_{y}} < \sigma 2p_{_{Z}} < [\pi^{*}2p_{_{X}}] \\ = \pi^{*}2p_{_{y}}] < \sigma^{*}2p_{_{Z}} \end{array}$$

For more than 14 electrons

$$\begin{split} &\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < [\pi 2p_x = \pi 2p_y] < [\pi^* 2p_x = \pi^* 2p_y] < [\pi^* 2p_x] < \sigma^* 2p_z \end{split}$$

Bond order

Bond order = $\frac{1}{2}$ [Number of bonding electrons - Number of antibonding electrons]

or,
$$=\frac{N_b - N_a}{2}$$

$$B.O \propto B.E \propto \frac{1}{B.L} \propto Stablity$$

Properties of Ionic Salt

General Properties

Hard, Solid, Brittle (strong electrostatic attraction between ions)

Non directional nature (ionic compound do not exhibit stereo isomerism)

Higher Melting Point / Boiling Point

Isomorphism: MgSO₄. 7H₂O; ZnSO₄. 7H₂O; FeSO₄. 7H₂O

Table: Hybridisation of following species in specified state

Species	Cationic part	Anionic part
PCl ₅	PCl ₄ + (sp ³)	$PCl_6^-(sp^3d^2)$
PBr ₅	PBr ₄ + (sp ³)	Br ⁻
XeF ₆	$XeF_5^+(sp^3d^2)$	F ⁻
N_2O_5	NO ₂ ⁺ (sp)	$NO_3^-(sp^2)$
I ₂ Cl ₆ (liquid)	ICl ₂ ⁺ (sp ³)	$ICl_4^-(sp^3d^2)$
$\mathrm{Cl_2O_6}$	$ClO_2^+(sp^2)$	ClO ₄ ⁻ (sp ³)
I ₂ (molten state)	$I_3^+(sp^3)$	$I_3^-(sp^3d)$

Table: Magnetic behaviour of odd electron species

	Hybridisation	Shape	Magnetic behaviour
NO ₂	sp ²	V shape	Para
ClO ₂	sp ²	V shape	Para
ClO ₃	sp ³	Pyramidal	Para
*CH ₃	sp ²	Trigonal planar	Para
°CH ₃ /°CHF ₂ /CH ₂ F	sp ³	Pyramidal	Para

Odd e⁻ species: Total number of electron or valence electron in odd number.