

Illustration of GA using GABLE

SIGGRAPH 2001, Course #53

Leo Dorst

University of Amsterdam
Amsterdam, The Netherlands
leo@science.uva.nl

Stephen Mann

University of Waterloo
Waterloo, ON, Canada
smann@cgl.uwaterloo.ca

DEMOvectors

Geometric Algebra

- The geometric product ab does it all
- Algebraically, it is
 - linear
 - associative
 - non-commutative
 - invertible
- We will visualize these properties

Properties

Geometry

$a \wedge b$ spanning

$a \cdot b$ complementation
perpendicularity

orthogonalization

rotation

Algebra

anti-commutation $\frac{1}{2}(ab - ba)$

commutation $\frac{1}{2}(ab + ba)$

invertibility

exponentiation

Derived products

- $x \cdot a =$ symmetric part of xa

$$x \cdot a \equiv \frac{1}{2}(xa + ax)$$

- $x \wedge a =$ anti-symmetric part of xa

$$x \wedge a \equiv \frac{1}{2}(xa - ax)$$

- Decomposition of geometric product

$$xa = x \cdot a + x \wedge a$$

Outer product: spanning

$$a \wedge b = -b \wedge a$$

- dimensionality
- attitude
- sense
- magnitude

DEMOouter

Outer product

- Given a , all x with same $x \wedge a$ are on a line
- Extension: $a \wedge b \wedge c$ is a volume
- Vectors, bivectors, trivectors, etc.

All elements of geometric algebra

- $\dim(A \wedge B) = \dim(A) + \dim(B)$
(but beware of overlap)

Inner product: perpendicularity

$$a \cdot b = b \cdot a$$

- $A \cdot B$ is part of B perpendicular to A

DEMOinner

- Given a , all x with same $x \cdot a$ are on a hyperplane
- $\dim(A \cdot B) = \dim(B) - \dim(A)$

Parallel Component

Consider $x = x_{\perp} + x_{\parallel}$ relative to some vector a

- Geometrically: x_{\parallel} is part of x parallel to a
- Classically: $x_{\parallel} \cdot a = x \cdot a$ and $x_{\parallel} \wedge a = 0$
- Geometric Algebra: add them and divide

$$x_{\parallel}a = x_{\parallel} \cdot a + x_{\parallel} \wedge a = x_{\parallel} \cdot a = x \cdot a$$

Solvable: $x_{\parallel} = (x \cdot a)/a$

Perpendicular Component

- Geometrically: x_{\perp} is part of x perpendicular to a
- Classically: $x_{\perp} \wedge a = x \wedge a$ and $x_{\perp} \cdot a = 0$
- Geometric Algebra: $x_{\perp}a = x \wedge a$

Solvable: $x_{\perp} = (x \wedge a)/a$

DEMOproj

Geometric Product is Invertible

- $xa = x \cdot a + x \wedge a$ is invertible

DEMOinvertible

$$x = (xa)/a = (x \cdot a)/a + (x \wedge a)/a$$

- Can divide by vectors, bivectors

Rotations

- Many ways to do rotations in geometric algebra
- Given x and plane I containing x (so $x \wedge I = 0$)
 - Rotate x in the plane
- Coordinate free view
 - $Rx = \text{bit of } x \text{ and bit of perpendicular to } x$
(amounts depend on rotation angle)

- Perpendicular to x in I plane (anti-clockwise) is

$$x \cdot I = xI = -Ix$$

DEMOrotdefinition

- Rotation as post-multiply:

$$Rx = x(\cos \phi) + (xI)(\sin \phi) = x(\cos \phi + I \sin \phi)$$

- Rotation as pre-multiply:

$$Rx = (\cos \phi) + (\sin \phi)(-Ix) = (\cos \phi - I \sin \phi)x$$

Complex Rotations

- Related to complex numbers

$$II = -1$$

but I has a geometrical meaning since $xI = -Ix$

- We can write $\boxed{\cos \phi + I \sin \phi = e^{I\phi}}$
- Each rotation plane has own bivector I
so many “complex numbers” in space
- Bivector basis ($\mathbf{i} = e_2 \wedge e_3$, $\mathbf{j} = e_3 \wedge e_1$, $\mathbf{k} = e_1 \wedge e_2$)

$$I = \alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$$

Rotations in 3D

- Pick rotation plane I and (possibly non-coplanar) vector x

$$x = x_{\perp} + x_{||}$$

Would like to get $R_{I\phi}x = x_{\perp} + R_{I\phi}x_{||}$.

- $x_{||}$ rotation:

either $e^{-I\phi}x_{||}$ or $x_{||}e^{I\phi}$ (or even $e^{-I\phi/2}x_{||}e^{I\phi/2}$)

- x_{\perp} rotation:

$$x_{\perp} e^{I\phi} = \underbrace{\cos \phi x_{\perp}}_{vector} + \underbrace{\sin \phi (x_{\perp} I)}_{trivector}$$

$$e^{-I\phi} x_{\perp} = \cos \phi x_{\perp} - \sin \phi (Ix_{\perp})$$

- Combines in just the right way so that

$$e^{-I\phi/2} x_{\perp} e^{I\phi/2} = x_{\perp}$$

- Bottom line:

$$e^{-I\phi/2} x e^{I\phi/2} = x_{\perp} + R_{I\phi} x_{||} = R_{I\phi} x$$

Rotors

DEMOrotor

- So $R_{-I\phi}x = e^{-I\phi/2}xe^{I\phi/2}$
- Further,

$$R_{-I\phi}X = e^{-I\phi/2}Xe^{I\phi/2} = RXR^{-1}$$

where X is any geometric object (vector, plane, volume, etc.)

- $R = e^{-I\phi/2}$ is called a *rotor*

$R^{-1} = e^{I\phi/2}$ is called the *inverse rotor*

Quaternions

- A rotor is a (unit) quaternion
- i, j, k are not complex numbers, they are
 - bivectors (not vectors!)
 - rotation operators for the coordinate planes
 - basis for planes of rotation
 - an intrinsic part of the algebra

Composing Rotations

Composition of rotations through multiplication

$$(R_2 \circ R_1)x = R_2(R_1xR_1^{-1})R_2^{-1} = (R_2R_1)x(R_2R_1)^{-1}$$

- R_2R_1 is again a rotor.

It represents the rotation $R_2 \circ R_1$

- Note: use geometric product to multiply rotors/quaternions

No new product is needed

Interpolation

From rotor R_A to rotor R_B in n similar steps:

$$R^n R_A = R_B \iff R = (R_B/R_A)^{1/n}$$

So

$$R = (e^{I\phi/2})^{1/n} = e^{I\phi/(2n)}$$

DEMOinterpolation

Illustration of GA using GABLE

SIGGRAPH 2001, Course #53

Leo Dorst

University of Amsterdam
Amsterdam, The Netherlands
leo@science.uva.nl

Stephen Mann

University of Waterloo
Waterloo, ON, Canada
smann@cgl.uwaterloo.ca

All you need is blades

- ‘Vector space model’: k -blades (made by ‘ \wedge ’) are quantitative oriented k -dimensional subspace elements
- But we would like to represent ‘offset’ subspaces.
- This leads to the *affine model* (for flat subspaces) and to the *homogeneous model* (spheres as subspaces).

Dualization

- \mathbf{I}_m is the *pseudoscalar* of m -space (highest order blade, volume element)
- A^* is part of \mathbf{I}_m -space perpendicular to A :

$$A^* \equiv A \cdot \mathbf{I}_m$$

- Example: bivector \mathbf{B} , then $\mathbf{B}^* = -\mathbf{n}$, normal vector

DEMOdual

Cross product and normal vectors

- Cross product in 3D dual of outer product:

$$a \times b \equiv -(a \wedge b) \cdot \mathbf{I}_3$$

- Under a linear transformation f

$$\begin{aligned} f(a \times b) &= \bar{f}^{-1}(a) \times \bar{f}^{-1}(b) \det f \\ f(a \wedge b) &= f(a) \wedge f(b) \end{aligned}$$

- Use \wedge instead of \times

Meet

- Intersection operation is ‘dual of spanning’ in their common space: $(A \cap B)^* = B^* \wedge A^*$. This gives

$$A \cap B = B^* \cdot A$$

- This is called the meet of A and B .

DEMOmeetplanes

- Well-known special case: meet of two planes in I_3 ,

$$\mathbf{A} \cap \mathbf{B} = \mathbf{B}^* \cdot \mathbf{A} = \mathbf{A}^* \times \mathbf{B}^* = \mathbf{n}_A \times \mathbf{n}_B$$

but above formula applies to *any* intersection.

Affine model

- The framework for ‘homogeneous coordinates’ and ‘Plücker coordinates’
- Get affine/homogeneous spaces by using one dimension for “point at zero”
 - **Point:** $P = e + \mathbf{p}$ such that $e \cdot \mathbf{p} = 0$
 - **Vector:** \mathbf{v} such that $e \cdot \mathbf{v} = 0$
 - **Tangent plane:** bivector \mathbf{B} such that $e \cdot \mathbf{B} = 0$

DEMOaffine

Affine representation

- **Line:** point P , point Q

$$L = P \wedge Q = (e + p) \wedge (e + q) = e \wedge (q - p) + (p \wedge q)$$

- **Line:** direction \mathbf{v} , point P

$$L = P \wedge \mathbf{v} = e\mathbf{v} + p \wedge \mathbf{v}$$

- **Plane:** ‘2-direction’ bivector \mathbf{B} , point P

$$\Pi = P \wedge \mathbf{B} = e\mathbf{B} + p \wedge \mathbf{B}$$

Composite objects: use ‘ \wedge ’, ‘ \cdot ’, ‘ \cap ’ and dual.

Plücker Revisited

	GA	Plücker
point	$p + e$	$(p, 1)$
line	$e \wedge (q - p) + p \wedge q$ $= (p - q)e + (p \times q)I_3$	$(p - q, p \times q)$
plane	$e B + p \wedge B$?
dual plane	$B^* - (p \cdot B^*)e$ $= -(n - (p \cdot n)e)$	$[n, -p \cdot n]$

GA ‘labels’ 1, e and I_3 determine multiplication and interpretation rules automatically

Affine representation: examples

- *Example 1:* Intersection of line $L = \mathbf{u}e + \mathbf{v}\mathbf{I}_3$ and (dual) plane $\Pi^* = \mathbf{n} - \delta e$ is:

$$\Pi \cap L = \Pi^* \cdot L = -(\mathbf{n} \cdot \mathbf{u})e - (\mathbf{v} \times \mathbf{n} - \delta \mathbf{u})$$

The ‘labels’ tell us that this is a *point* at location:

$$\frac{\mathbf{v} \times \mathbf{n} - \delta \mathbf{u}}{\mathbf{n} \cdot \mathbf{u}}$$

- *Example 2:* Distance of point P to plane Π^* :

$$\Pi \cap P = \Pi^* \cdot P = \delta - \mathbf{n} \cdot \mathbf{p}$$

Scalar outcome: oriented distance.

- *Example 3:* Intersecting lines

DEMOaffinemeeet

Homogeneous Model

- Points are vectors p, q
- Distances directly as $p \cdot q = -\frac{1}{2}(\mathbf{p} - \mathbf{q})^2$
- Special point at infinity e_∞ : $(e_\infty)^2 = 0$, $e_\infty \cdot p = 1$
- Altogether $(m + 2)$ -space representing E^m
- Blades represent k -spheres: 3-sphere $p \wedge q \wedge r \wedge s$
- Flats are spheres through infinity: line $e_\infty \wedge p \wedge q$
- Very compact intersections, reflections, etc.

Spheres and planes

- Sphere (c, ρ) is dually the vector $\sigma = c + \frac{1}{2}\rho^2 e_\infty$
- Plane (\mathbf{n}, δ) is $\pi = \mathbf{n} - \delta e_\infty$
- Sphere σ perpendicular to plane π obeys $\pi \cdot \sigma = 0$.
- Intersect two spheres:

$$\sigma_1 \wedge \sigma_2 = \underbrace{\frac{\sigma_1 \wedge \sigma_2}{\sigma_2 - \sigma_1}}_{perp. \ sphere} \wedge \underbrace{(\sigma_2 - \sigma_1)}_{int. \ plane}$$

- Reflect line ℓ in plane π : $-\pi \ell \pi$.

Computational issues

- Actual geometrical computations like Plücker coordinates, so rather efficient.
- However, potential basis for elements much bigger: 2^{n+2} for homogeneous model of n -space (i.e. 32 for 3-space).
- All products are *linear*, so expressible as matrix multiply: $a \wedge b \rightarrow [a^\wedge][b]$, for 32×32 matrices. Some reducing tricks possible (and so done in GABLE), but too expensive in time and space.
- Should make efficient coding of only the necessary elements involved in a computation. Gives Plücker efficiency for spheres.

GABLE is freeware

For a free copy of GABLE and a geometric algebra tutorial, see

<http://www.science.uva.nl/~leo/clifford/gable.html>

<http://www.cgl.uwaterloo.ca/~smann/GABLE/>