Metaheuristics

Community Detection

Jorik De Waen Jeroen Craps

The problem

Community

Finding a concrete definition of what a community is.

As well as quantifying how well a community structure is.

Graph

Dealing with the information that is available in the graph.

Understanding what is represented.

NP-Hard

Scaling to very large graphs.

Defining what a very large graph is and how we can tackle the problem scalably.

Solution

Reducing the search space

By reducing the amount of nodes and edges in the graph, we think that we can handle graphs, which were initially larger, in a comparable amount of time.

Challenges

Challenge 1

Challenge 2

Challenge 3

Wisely

By reducing the graph we will remove certain options. To goal is to make smart decisions on which options are being pruned.

Lossless or lossy

Preventing information loss. So that the important remains in the graph to do careful evaluation.

Efficiently

Low computational cost while achieving good results.

Preprocessing

Preprocessing Results

Dataset	Vertices	Edges
Karate	34	78
Football	115	616
Facebook	4039	88234
Power	4941	6594
Arxiv	18772	198110
Internet	22963	48436
Enron	36692	183831
Amazon	334863	925872
Youtube	1134890	2987624

Football	23	79,83%	124	79,94%
Facebook	1489	63,14%	12294	86,07%
Power	4457	9,80%	5685	13,78%
Arxiv	8276	55,91%	57735	70,86%
Internet	22375	2,56%	43329	10,54%
Enron	25910	29,39%	103476	43,71%
Amazon	226243	32,44%	521987	43,62%

% Change Vertices

30,00%

5,94%

Reduced #Edges

42

2669521

% Change Edges

46,67%

10,65%

Reduced #Vertices

24

1067530

Highly connected graphs are

more easily reduced!

Dataset

Karate

Youtube

Dataset	Time (s)
Karate	0,02
Football	0,03
Facebook	1,03
Power	0,14
Arxiv	4,49
Internet	1,72
Enron	7,61
Amazon	224,06
Youtube	591,44

Genetic Algorithm

Representation

Genetic Algorithm: Overview

Population lives on lattice:

Genetic Algorithm Operators

- 1. Randomly split or merge communities based on best neighbor
- 2. Hybrid crossover with best neighbor: 50% Uniform, 50% 1-point crossover
- 3. Adaptive Mutation: Mutation chance increase if best fitness stays steady
- 4. Self Learning (SL) Operator: Only for best few agents
 - Nested genetic algorithm
 - Smaller graph, populated by mutating agent
 - Very small genetic diversity: Exploitation instead of Exploration

Genetic Algorithm Results

Karate

Nodes: 34 (-30%) Edges: 78 (-46%)

- Self Learning (SL): long execution time
- Regular vs Reduces: Same execution time
- Baseline advantage to regular
- All good results, SL a bit higher

Football

Nodes: 115 (-80%) Edges: 616 (-80%)

- SL: long execution time
- In both cases: time advantage for reduced graph
- Reduced: slightly better without SL and baseline
- Regular: slightly better with SL

Facebook

Nodes: 4039 (-63%) Edges: 88 234 (-86%)

- SL becoming a problem
- Huge time advantage for reduced graph
- Better result for reduced graph (in shorter time!)
- Huge advantage for reduced graph in baseline

Power

Nodes: 4941 (-10%) Edges: 6594 (-14%)

- Large time advantage for reduced graph
- Similar results
- Slight baseline advantage for reduced graph

Arxiv

Nodes: 18 772 (-56%) Edges: 57 735 (-71%)

- Large time advantage for reduced graph
- Reduced graph scores much better, also in baseline
- Both cases: barely any improvements above baseline

Internet

Nodes: 22 963 (-3%) Edges: 48 436 (-11%)

Very little reduction: no real difference

Enron

Nodes: 25 910 (-29%) Edges: 183 831 (-44%)

- Advantage for reduced graph
- Practically all from baseline
- Genetic algorithm has become ineffective

Conclusion

Conclusions

- Preprocessing was very effective!
 - But it depends on the structure of the graph
 - Performs better as graphs become more connected
- Straightforward idea that can achieve significant improvements
- Implementation issue with Self Learning Operator
- Looks like it can be applied to other algorithms as well
 - How does this impact search for overlapping communities?