Aufgaben zu Beweismethoden

Direkter Beweis

A1: Zeige: Teilt t die natürlichen Zahlen a und b, dann teilt t auch deren Summe.

A2: Zeige: Es gibt unendlich viele Primzahlen.

A3: Zeige: Teilt t die natürlichen Zahlen a > b, so auch deren Differenz a - b.

A4: Beweise die folgenden Teilbarkeitsregeln. Alle Zahlen seien aus N.

a. Ist a ein Teiler von b, und teilt b wiederum c, so ist auch a ein Teiler von c.

b. Wenn gilt: a teilt c und b teilt d, dann teilt a \cdot b das Produkt c \cdot d.

c. Teilt t die Zahlen a und b, dann teilt t auch $m \cdot a + n \cdot b$.

A5: Stelle Vermutungen über Summen bzw. Produkte gerader und ungerader Zahlen auf (ob diese wieder gerade oder ungerade sind) und beweise sie anschließend.

A6: Zeige: Ist die Quersumme einer Zahl durch 3 (9) teilbar, dann ist auch die Zahl selbst durch 3 (9) teilbar. (Es genügt, die Beweisidee an einem Beispiel zu entwickeln.)

A7: Zeige: Die Gleichung $a \cdot x = b$ mit a, $b \in \mathbb{N}$ ist genau dann in \mathbb{N} lösbar, wenn b ein Vielfaches von a ist.

A8: Zeige: Für alle a, b > 0 gilt die Ungleichung $\frac{2}{\frac{1}{2} + \frac{1}{2}} \le \sqrt{ab}$

A9: Es sei $n \geq 2$ eine natürliche Zahl. Zeigen Sie: n ist genau dann ungerade, wenn sich n als Differenz von Quadraten zweier aufeinanderfolgender natürlicher Zahlen darstellen lässt.

Indirekter Beweis

A10: Beweise durch Kontraposition: Wenn n^2 gerade ist (für ein $n \in \mathbb{N}$), dann ist auch $n (1+2+...+n)^2=1^3+2^3+...+n^3$ gerade.

A11: Beweise durch Kontraposition, dass zwei aufeinanderfolgende natürliche Zahlen teilerfremd sind.

A12: Beweise durch Kontraposition, Ist eine Zahl gerade, so ist ihre letzte Ziffer (im Zehnersystem) gerade.

A13: Finde Beispiele für einen wahren Satz $A \Rightarrow B$, für den weder $\neg A \Rightarrow \neg B$ noch sein Kehrsatz $B \Rightarrow A$ wahr sind (warum ist eine der beiden Forderungen überflüssig?). Überzeuge dich zudem davon, dass die Kontraposition des Satzes wahr ist.

Widerspruchsbeweis

A14: Beweise durch Widerspruch, dass zwei aufeinanderfolgende natürliche Zahlen teilerfremd sind.

A15: Führe einen Widerspruchsbeweis, um die Ungleichung $2 \cdot \sqrt{ab} \le a + b$ zu beweisen.

A16: Beweise, dass $\sqrt{3}$ irrational ist (allgemeiner: \sqrt{p} für p prim).

A17: Beweise durch Widerspruch, dass es unendlich viele Primzahlen gibt.

Vollständige Induktion

A18: Für jedes $n \in \mathbb{N}$ gilt die arithmetische Summenformel: $1+2+3+...+n=\frac{1}{2}n(n+1).$

A19: Für jedes reelle x mit $0 \neq x > -1$ und alle $n \in \mathbb{N}, n \geq 2$ gilt die Bernoulli-Ungleichung

 $(1+x)^n > 1 + nx.$

A20: Für jedes $n \in \mathbb{N}$ ist 8 ein Teiler von $9^n - 1$.

A21: Jede natürliche Zahl n > 1 ist ein Produkt von Primzahlen.

A22: Für alle $n \in \mathbb{N}$ gelten die folgenden Summenformeln.

a. $1+4+7+\ldots+(3n-2)=\frac{1}{2}n(3n-1)$ b. $1+3+5+\ldots+(2n-1)=n^2$ c. $1^2+2^2+\ldots+n^2=\frac{1}{6}n(n+1)(2n+1)$ d. $1^3+2^3+\ldots+n^3=\frac{1}{4}n^2(n+1)^2$

Folgere aus d. und der arithmetischen Summenformel:

A23: Für $n \in \mathbb{N}$ und $1 \neq q \in \mathbb{R}$ gilt die geometrische Summenformel

 $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

A24: Beweise die folgenden Teilbarkeitsregeln.

a. 9 ist Teiler von $10^n - 1$ für alle $n \in \mathbb{N}$. (Wie sieht man das ohne Induktion?)

b. 6 ist ein Teiler von $n^3 - n$ für alle $n \in \mathbb{N}$ mit n > 2. Zerlege $n^3 - n$ in Linearfaktoren, um dies auch ohne vollständige Induktion einzusehen.

a. Leite die Funktion $f(x) = \frac{1}{x}$ ein paar Mal ab. Stelle eine Vermutung für die n-te

Ableitung $f^{(n)}(x)$ auf und beweise sie. b. Zeige, dass für die n-te Ableitung von $f(x)=\frac{1}{\sqrt{x}}, x>0$, gilt:

$$f^{(n)}(x) = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{(-2)^n \cdot \sqrt{x^{2n+1}}}$$

A26:

In einem Klassenzimmer befinden sich n Schüler, die sich alle mit Handschlag begrüßen. Zeige, dass dabei $\frac{1}{2}(n-1)\cdot n$ Handschläge stattfinden.

A27:

Zeige durch vollständige Induktion: Für alle $n\in\mathbb{N}, n\geq 2$ gilt: $\sum_{k=1}^{n-1}\frac{2k+1}{k^2(k+1)^2}=1-\frac{1}{n^2}.$

$$\sum_{k=1}^{n-1} \frac{2k+1}{k^2(k+1)^2} = 1 - \frac{1}{n^2}$$