Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №11 "Исследование математической модели пьезоэлектрического исполнительного устройства" Вариант - 7

Выполнил				
			(qualitation, inc.)	
Проверил			(фамилия, и.о.)	(подпись)
1 11	20			20
	_ 20r.		Санкт-Петербург,	20г.
Работа выполнен		-		_
Дата защиты "	11	20	Γ.	

Задание

Цель работы

Целью работы является изучение математических моделей и исследование характеристик исолнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений, в данном случае биморфного пьезодвигателя.

Исходные данные

Таблица 1 – Исходные данные

1 ' '		/	$K_d, Hc/M$	T_u , mc	F_B, H
$3.2 \cdot 10^6$	0.025	6.5	$0.8 \cdot 10^2$	0.05	2

1 Исследование пьезодвигателя

Математическая модель пьезодвигателя имеет следующий вид:

$$x = \frac{1}{C_p} (K_0 U_p - K_d \dot{x} + F_B - m \ddot{x}). \tag{1}$$

По математической модели можно построить структурную схему пьезоэлектрического исполнительного устройства, где управление $\Pi Д$ осуществляется от внешнего устройства, которое представлено апериодическим звеном 1-го порядка:

$$W(s) = \frac{K_u}{T_u s + 1}. (2)$$

Структурная схема представлена на рисунке 1.

Рисунок 1 — Структурная схема пьезоэлектрического исполнительного устройства

Коэффициенты K_u , K_V , K_X , K_F выбираются таким образом, чтобы обеспечить соответствие максимального значения измеряемого сигнала уровню 10В на выходе измерительного устройства.

$$\begin{cases}
K_u = 30 \\
K_V = 1 \\
K_X = 3307 \\
K_F = 0.0066
\end{cases}$$
(3)

Промоделируем систему. Полученные данные представлены на рисунке 2.

Рисунок 2 — Переходные процессы

2 Исследование влияния массы нагрузки m на переходные процессы

Диапазон изменения нагрузки: $\mp 50\%$ от заданного значения. Графики переходных процессов представлены на рисунке 3, а данные, полученные при моделировании - в таблице 2.

Рисунок 3 — Переходные процессы при различных нагрузках m

Таблица 2 – Результаты моделирования

m, кг	x	$t_{\scriptscriptstyle \Pi}, c$	σ
0.0125	2.015	$2.114 \cdot 10^{-3}$	0.55
0.025	2.015	$1.78 \cdot 10^{-3}$	0.67
0.375	2.015	$7.37 \cdot 10^{-3}$	0.73

3 Исследование влияния T_u на переходные процессы

Переходные процессы при различных T_u представлены на рисунке 4, а полученные данные в таблице 3.

Рисунок 4 — Переходные процессы при различных T_u

Таблица 3 – Результаты моделирования

T_u , mc	x	$t_{\scriptscriptstyle \Pi}, c$	σ
0.1	2.015	$1.856 \cdot 10^{-3}$	0.38
0.2	2.015	$3.533 \cdot 10^{-3}$	0.1
0.3	2.015	$5.283 \cdot 10^{-3}$	0.024

Рассчитаем корни характеристического уравнения системы, передаточная функция которой:

$$W(s) = \frac{K_u(K_0 U_{Pm} + F_B)}{(T_u s + 1)(ms^2 + K_d s + Cp)}.$$
(4)

Результаты расчётов представлены в таблице 4.

Таблица 4 – Корни характеристического уравнения

T_u , mc	s_1	s_2	s_3
0.1	-10000	-1600+11200j	-1600-11200j
0.2	-5000	-1600+11200j	-1600-11200j
0.3	-3333	-1600+11200j	-1600-11200j

4 Исследование влияния возмущения F_B при изменении C_p

На рисунке 5 представлены графики переходных процессов при нулевом входном воздействии, внешнем возмущении и различных коэффициентах упругости.

Рисунок 5 — Переходные процессы при различных C_p и $F_B=2H$

Построим асимптотическую ЛАЧХ исполнительного устройства. Передаточная функция $\mathsf{И}\mathsf{Y}$:

$$W(s) = \frac{K_u(K_0 U_{Pm} + F_B)}{(T_u s + 1)(ms^2 + K_d s + Cp)}.$$
 (5)

Найдём сопрягающие частоты и соответствующие им амплитуды:

$$\omega_1 = \sqrt{\frac{m}{C_p}} = 11313.7 \ c^{-1}, \ L_1(\omega) = -34.76 \text{дБ},$$

$$\omega_2 = \frac{1}{T_u} = 20000 \ c^{-1}, \ L_2(\omega) = -44.55 \text{дБ}.$$
(6)

Составим асимптотическую ЛАЧХ ИУ, которая представлена на рисунке 6.

Рисунок 6 — Промоделированная и асимптотическая ЛАЧХ ИУ

Вывод

В лабораторной работе исследовалось исполнительное устройство на основе пьезодвигателя, его математическая модель, а также влияние изменения различных параметров (m, T_u, F_B, C_p) на вид переходных процессов.

При увеличении массы нагрузки увеличивается время переходного процесса, а также увеличением перерегулирования, что обусловлено снижением динамического усилия в пьезодвигателе.

При увеличении T_u увеличивается время переходных процессов с уменьшением перерегулирования, что легко объяснить более плавным и медленным управлением выполняющим устройством.

При увеличении коэффициента упругости для нулевого входного воздействия и заданном F_B уменьшается влияние внешних возмущений, а значит, ошибки.

Сравнение смоделированной и асимптотической ЛАЧХ показало, что расчёты оказались верными, а графоаналитический метод - очень даже актуальным.