

Quantifying the HIV Reservoir with Dilution Assays and Deep Viral Sequencing

Brian Richardson

Motivation: Why Quantify the HIV Reservoir?

- For people living with HIV, antiretroviral therapies can help them achieve viral suppression
- Despite viral suppression, a reservoir of latently infected cells, which are undetectable by the immune system, remain
- The HIV reservoir is often measured in infectious units per million, or IUPM
- A barrier in HIV cure research is the need to reliably quantify the IUPM of the HIV reservoir

Quantitative Viral Outgrowth Assay

- One standard method for quantifying the HIV reservoir is a serial limiting dilution (SLD) assay called the Quantitative Viral Outgrowth Assay, or QVOA
- Cells are sampled from one individual into multiple wells
- The QVOA tests each well for the presence of at least one HIV-infected cell

Quantitative Viral Outgrowth Assay: Example

Quantitative Viral Outgrowth Assay: Inference

- latent cell counts $X_1, \ldots, X_M \sim \text{Poisson}(\Lambda)$
- observed indicators $W_j = 1(X_j > 0)$
- estimand: IUPM $\Lambda = E(X_j)$
- MLE for $\mathrm{E}(W_j) = 1 \exp(-\Lambda)$ is sample mean $\frac{M_P}{M}$
- MLE for Λ is then $\widehat{\Lambda} = -\log(1-\frac{M_P}{M})$

Ultra Deep Sequencing Assay

- The Ultra Deep Sequencing Assay, or UDSA, is a more sophisticated assay used in addition to the QVOA
 - typically applied to wells that the QVOA has identified as HIV-positive
 - tests for the presence of distinct viral lineages (DVLs)

Ultra Deep Sequencing Assay: Example

Inference about the IUPM

- Let λ_i be the **DVL-specific IUPM** for DVL i and $\lambda = (\lambda_1, \dots, \lambda_n)^T$
- Let $\Lambda = \sum_{i=1}^n \lambda_i$ be the **IUPM** (over all DVLs of HIV)
- Our goal is to estimate Λ with $\widehat{\Lambda} = \sum_{i=1}^n \widehat{\lambda}_i$
- ullet With no missing data, MLE for λ_i is $\widehat{\lambda_i} = -\log(1-rac{Y_i}{M})$
- Not so easy with missing data...

Inference about the IUPM

The observed-data likelihood is $L(\lambda|M_N, Y) =$

$$\underbrace{\left[\prod_{i=1}^{n}\left\{1-\exp(-\lambda_{i})\right\}^{Y_{i}}\exp(-\lambda_{i})^{M_{N}+m-Y_{i}}\right]}_{\text{complete data}}\underbrace{\left\{1-\exp\left(-\Lambda\right)\right\}^{M-(M_{N}+m)}}_{\text{missing data}}$$

- ullet Maximized numerically to get the MLE $\widehat{oldsymbol{\lambda}}$
- The MLE for the IUPM is $\widehat{\Lambda} = \sum_{i=1}^n \widehat{\lambda}_i$
- $oldsymbol{\widehat{\lambda}}$ (and thus $\widehat{\Lambda}$) is consistent and asymptotically normal

Bias Correction for Small Samples

- The MLE $\hat{\lambda}$ is **upwardly biased** in small samples (i.e., small M)
- A bias-corrected MLE $\widehat{\pmb{\lambda}}^*$ is adapted from Hashemi & Schneider PLoS ONE 2021
- $\widehat{\pmb{\lambda}}^* = \widehat{\pmb{\lambda}} B(\widehat{\pmb{\lambda}})$, where $B(\widehat{\pmb{\lambda}})$ is an estimate of the bias of $\widehat{\pmb{\lambda}}$
- This bias correction reduces the order of the bias from $\mathcal{O}(M^{-1})$ to $\mathcal{O}(M^{-2})$

Undetected Viral Lineages: Example

- Existing DVLs: n' = 5
- Detected DVLs:
 n = 3
- True IUPM: $\Lambda = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5$
- Estimated IUPM: $\widehat{\Lambda} = \widehat{\lambda}_1 + \widehat{\lambda}_2 + \widehat{\lambda}_3$

Undetected Viral Lineages: Problem

- Recall: $\widehat{\Lambda} = \widehat{\lambda}_1 + \cdots + \widehat{\lambda}_n$
- n is the number of **observed DVLs**. There may exist n' > n DVLs in the source population, leaving n' n DVLs **undetected**
- Then $\Lambda=\lambda_1+\cdots+\lambda_n+\lambda_{n+1}+\cdots+\lambda_{n'}$, which is greater than $\lambda_1+\cdots+\lambda_n$
- Does this mean $\widehat{\Lambda}$ is a poor estimator of Λ ?

Undetected Viral Lineages: Solution

 Consider an augmented likelihood that accounts for possibly undetected DVLs

$$L'(\lambda'_1,\ldots,\lambda'_n,\lambda'_{n+1},\ldots,\lambda'_{n'}|M_N,Y_1,\ldots,Y_n,Y_{n+1}=0,\ldots,Y_{n'}=0)$$

- The maximizer $\widehat{\lambda}'$ of the augmented likelihood L' must satisfy $\widehat{\lambda}'_{n+1}=0,\ldots,\widehat{\lambda}'_{n'}=0$
- Thus, $\widehat{\Lambda} = \sum_{i=1}^n \widehat{\lambda}_i = \sum_{i=1}^{n'} \widehat{\lambda}_i'$
- The augmented likelihood L' and the original likelihood L lead to the same MLE $\widehat{\Lambda}$

Multiple Dilution Levels: Example

Extension to Multiple Dilution Levels

- Often, the QVOA and UDSA are applied to wells of multiple dilution levels
- Previous estimation methods can handle QVOA data from multiple dilutions or QVOA and UDSA data from one dilution level
- We proposed a more general estimator that can handle both
 - The bias-corrected MLE and the undetected DVL result extends to the multiple dilutions setting

Simulation Results

IUPM of $\Lambda=1$, single dilution level, and 75% of HIV-positive wells tested with UDSA

		MLE			Bias-Corrected MLE		
n'	M	Bias	ESE	СР	Bias	ESE	СР
12	12	0.04	0.33	0.94	-0.02	0.31	0.96
12	24	0.03	0.22	0.95	-0.01	0.21	0.96
18	12	0.05	0.32	0.94	-0.01	0.31	0.96
18	24	0.03	0.23	0.95	0.00	0.22	0.96

ESE: empirical standard error of $\widehat{\Lambda}$,

CP: empirical coverage probability of 95% confidence interval

Application to HIV Data

QVOA and UDSA data on individuals living with HIV and taking antiretroviral treatment were obtained from the UNC HIV Cure Center

- For each individual, cells were sampled into various wells at 3-4 distinct dilution levels and tested with the QVOA
- A subset of wells from one dilution level was deep-sequenced

Subject ID	$DLVs(\mathbf{n})$	Wells (M)	Positive Wells (M_P)	UDSA Wells (m)
C3	4	18, 6, 6	5, 0, 0	5, 0, 0
C8	26	36, 6, 6	22, 2, 1	22, 0, 0
C13	7	18, 6, 6, 6	16, 4, 3, 0	0, 4, 0, 0

Application to HIV Data

Method

- Without UDSA (Multiple Dilutions)
- With UDSA (Multiple Dilutions)
- With UDSA (Single Dilution)

Bias Correction

- MLE
- ▲ BC-MLE

Overdispersed Cell Counts: Problem

- Currently assuming latent cell counts are $X_i \sim \text{Poisson}(\lambda_i)$
- Allows inference on $\Lambda = \mathrm{E}(X_i)$ based on observed $W_i = 1(X_i > 0)$
- Poisson assumption based on the approximation to Binomial(n, p) with large n and small p.
- May be concern that Poisson assumptions doesn't hold
- Overdispersion: $Var(X_i) > E(X_i)$

Overdispersed Cell Counts: Example

Overdispersed Cell Counts: Solution

- Model X_i as negative binomial with mean parameter λ_i and dispersion parameter $\gamma \in [0, \infty)$
- $P(X_i > 0) = 1 (\gamma \lambda_i + 1)^{-1/\gamma}$
- When $\gamma = 0$, reduces to Poisson case
- With multiple dilution level data, λ , γ are identifiable
- Can estimate λ, γ
- Likelihood ratio test of overdispersion $H_0: \gamma = 0$
 - null parameter on boundary of parameter space
 - asymptotic null distribution is $0.5\chi_0^2 + 0.5\chi_1^2$

Imperfect Assays: Problem

- So far, we've assumed that the two assays (QVOA and UDSA) have perfect sensitivity and specificity
- Sensitivity: Probability of a positive result given the well is truly infected
- Specificity: Probability of a negative result given well is truly not infected
- Need to account for false positives and negatives in estimation of $\boldsymbol{\Lambda}$

Imperfect Assays: Example

Imperfect Assays: Simulation Results

(single dilution level, 90% sensitivity and specificity of both assays)

Want to Learn More?

Paper:

https://pubmed.ncbi.nlm.nih.gov/38364812/

R package: *P

www.https://github.com/sarahlotspeich/SLDeepAssay

Acknowledgements

- Co-authors: Sarah C. Lotspeich, Pedro L. Baldoni, Kimberly P. Enders and Michael G. Hudgens
- Our collaborators at the UNC Center for AIDS Research (CFAR)
- This research was supported by the following NIH grants
 - T32ES007018
 - P30AI50410
 - R37AI029168

Thank you! Any questions?

Brian Richardson

⊠: brichson@ad.unc.edu