Divide and Conquer

Data Structures and Algorithms

Nanjing University, Fall 2021 郑朝栋

The **Divide-and-Conquer**Approach

- **Divide** the given problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively.
 - Or, use brute-force if a subproblem is small enough.
- **Combine** the solutions for the subproblems to obtain the solution for the original problem.

If you prefer some pseudocode...

Combine solutions of subproblems to get solution for original problem.

Conquer

- How to prove alg?
 - Use induction (of course...)
- Correctne if (I is small enough) solution = DirectSolve(I) else $\langle I_1, I_2, ..., I_k \rangle = DivideProblem(I)$ for (j=1 to k) $solution_i = Solve(I_i)$ solution $\stackrel{\checkmark}{=}$ Combine(solution₁,...,solution_k) return solution
- Induction basis: prove the algorithm can correctly solve small problem instances.
 - Prove DirectSolve is correct if $|I| \le c$.

Solve(I):

- Induction hypothesis: the algorithm can correctly solve any problem instance of size at most, say, *n*.
 - Solve is correct if $|I| \le n$.
- Inductive step: assuming induction hypothesis, prove the algorithm can correctly solve problem instance of size n+1.
 - Assume Solve is correct if |I| < n.

MergeSort

- An efficient divide-and-conquer algorithm for sorting.
- Invented by John von Neumann in the 1940s.

John von Neumann Dec 1903 - Feb 1957

Hungarian-American, mathematician, physicist, computer scientist, and polymath.

MergeSort

```
Divide-and-Conquer Templakte a size m
Solve(I):
if (I is small enough)
                                                                     sorted array
 solution = DirectSolve(I)
                                                                     and a size m'
else
                                                                     sorted array,
 \langle I_1, I_2, ..., I_k \rangle = DivideProblem(I)
                                                                      return a sorted
 for (i=1 \text{ to } k)
  solution_i = Solve(I_i)
                                                                     array of size
 solution = Combine(solution<sub>1</sub>,...,solution<sub>k</sub>)
                                                                     m+m' in
return solution
                                                                      O(m \times m')
```

```
MergeSort(A[1...n]):
    if (n==1)
    sol[1...n] = A[1...n]
    else
    solLeft[1...(n/2)] = MergeSort(A[1...(n/2)])
    solRright[1...(n/2)] = MergeSort(A[(n/2+1)...n])
    sol[1...n] = Merge(solLeft[1...(n/2)],solRight[1...(n/2)])
    return sol[1...n]
```

Sample execution of MergeSort

```
MergeSort(A[1...n]):
if (n==1)
  sol[1...n] = A[1...n]
else
  solLeft[1...(n/2)] = MergeSort(A[1...(n/2)])
  solRright[1...(n/2)] = MergeSort(A[(n/2+1)...n])
  sol[1...n] = Merge(solLeft[1...(n/2)],solRight[1...(n/2)])
return sol[1...n]
```


Correctness of MergeSort

Induction basis: MergeSort is correct when n = 1. **Induction hypothesis:** Assume MergeSort is correct if $n \le n'$.

Inductive step: MergeSort is correct when n = n' + 1.

The **Merge** Subroutine

- Merge two sorted lists L and R into a sorted whole S.
 - Scan L and R from left to right, let l_i and r_j be current elements in L and R respectively.
 - If $l_i \le r_j$ then append l_i to S and advance l_i (i.e., increase i).
 - If $l_i > r_j$ then append r_j to S and advance r_j (i.e., increase j).

1 2 4 5 6 7 8 9

and apply induction...

Runtime of this routine?

On input of size m and m', runtime is O(m + m').

```
MergeSort(A[1...n]):
if (n==1)
  sol[1...n] = A[1...n]
else
  solLeft[1...(n/2)] = MergeSort(A[1...(n/2)])
  solRright[1...(n/2)] = MergeSort(A[(n/2+1)...n])
  sol[1...n] = Merge(solLeft[1...(n/2)],solRight[1...(n/2)])
return sol[1...n]
```

- Let T(n) be the runtime of MergeSort on instance of size n.
- Clearly, $T(1) = c_1 = \Theta(1)$ for some constant c_1 .
- For larger n, $T(n) = 2 \cdot T(n/2) + c_2 \cdot n = 2T(n/2) + \Theta(n/2)$

A **recurrence** equation:

$$\begin{cases} T(1) = c_1 \\ T(n) = 2 \cdot T(n/2) + c_2 \cdot n \end{cases}$$

A recurrence equation:

$$\begin{cases} T(1) = c_1 \\ T(n) = 2 \cdot T(n/2) + c_2 \cdot n \end{cases}$$

Recursion tree

Iterative MergeSort

```
MergeSort(A[1...n]):
if (n==1)
  sol[1...n] = A[1...n]
else
  solLeft[1...(n/2)] = MergeSort(A[1...(n/2)])
  solRright[1...(n/2)] = MergeSort(A[(n/2+1)...n])
  sol[1...n] = Merge(solLeft[1...(n/2)],solRight[1...(n/2)])
return sol[1...n]
```

Any recursive algorithm can be converted into an iterative or we just simulate the **call stack**!

Iterative **Merge**

MergeSort(A[1...n]):

```
if (n==1)
  sol[1...n] = A[1...n]
else
  solLeft[1...(n/2)] = MergeSort(A[1...(n/2)]
  solRright[1...(n/2)] = MergeSort(A[(n/2)])
  sol[1...n] = Merge(solLeft[1...(n/2)]),soll
  return sol[1...n]
```


MergeSortIter(A[1...n]):

Deque Q
for (i=1 to n)
Q.AddLast(A[i])
while (Q.Size()>1)
L=Q.RemoveFirst(),R=Q.RemoveFirst()
Q.AddLast(Merge(L,R))
return Q.RemoveFirst()

Do "merge" operation layer by layer!

Time complexity is again $\Theta(n \lg n)$.

- We all know how to do this, since primary school.
- This method can be extended to binary numbers.

How fast is this method?

- Consider multiplying two n digits binary numbers n = 100
- Assume single-digit operations takes unit time. \times 1101
 - Such as addition, multiplication.
- Total time complexity is $O(n^2)$.
- Can we do better, with divide-and-conquer? $\frac{110}{100}$ $\frac{12}{156}$

- Assume we want to multiply x and y, each having n bits.
- Split each of x and y into their left and right halves.

•
$$x = 2^{n/2} \cdot x_L + x_R$$
 and $y = 2^{n/2} \cdot y_L + y_R$

- $xy = 2^n \cdot x_L y_L + 2^{n/2} \cdot (x_L y_R + x_R y_L) + x_R y_R$
 - Only need four multiplications, instead of six.
- Apply above strategy recursively until n=1
- Recurrence: $T(n) = 4 \cdot T(n/2) + O(n)$
- Time complexity is $T(n) = O(n^2)$, we are not doing better!

- Can we do better than $O(n^2)$?
 - Even great minds once thought we can't.
 - E.g., Andrey Kolmogorov conjectured "no" in 196

- Yet, we can!
 - Anatoly Karatsuba, then a 23-year-old student, found an algorithm in one week!

Karatsuba's algorithm for

Integer Multiplication

FastMulti(x, y): if (x and y are both of 1 bit) return x*y xl, xr = most, least significant |x|/2 bits of x yl, yr = most, least significant |y|/2 bits of y z1 = FastMulti(xl,yl) z2 = FastMulti(xr,yr) z3 = FastMulti(xl+xr,yl+yr) return z1*(2^n)+(z3-z1-z2)*(2^(n/2))+z2

```
X_R y_R
```

- We only need three multiplications, instead of four!
- $T(n) = 3 \cdot T(n/2) + O(n)$
- $T(n) = O(n^{\lg 3}) = O(n^{1.59})$

- The story didn't end there...
 - Andrei Toom and Stephen Cook generalizer Karatsuba's idea:
 - $O(n^{1+1/(\lg k)})$ for any k, and the potential $O(\cdot)$ depends on k.
 - Arnold Schönhage and Volume Strassen uses FFT: $O(n \cdot \log n \cdot \log \log n)$
 - Finally in March 200 David Harvoy and Joric van dor

Integer Countiplication in time $O(n \log n)$

DAVID HARVEY AND JORIS VAN DER HOEVEN

ABSTRACT. We present an algorithm that computes the product of two n-bit integers in $O(n \log n)$ bit operations.

Matrix Multiplication

- Suppose we want to multiply two $n \times n$ matrices \boldsymbol{X} and \boldsymbol{Y} .
- The most straightforward method needs $\Theta(n^3)$ time.
- Matrix multiplication can be performed block-wise!

•
$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 and $Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$

•
$$XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

- Recurrence: $T(n) = 8 \cdot T(n/2) + \Theta(n^2)$
- $T(n) = \Theta(n^3)$, we are not doing better...

Strassen's algorithm for

Matrix Multiplication

- Multiply two $n \times n$ matrices $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix}$ and $\boldsymbol{Y} = \begin{bmatrix} \boldsymbol{E} & \boldsymbol{F} \\ \boldsymbol{G} & \boldsymbol{H} \end{bmatrix}$
- XY = $\begin{bmatrix} P_5 + P_4 P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 P_3 P_7 \end{bmatrix}$
- $P_1 = A(F H)$, $P_2 = (A + B)H$, $P_3 = (C + D)E$, $P_4 = D(G E)$
- $P_5 = (A + D)(E + H)$, $P_6 = (B D)(G + H)$, $P_7 = (A C)(E + F)$
- Recurrence: $T(n) = 7 \cdot T(n/2) + \Theta(n^2)$

Time complexity of Strassen's algorithm

Substitution method (or, guess and verify)

- The substitution method:
 - Guess the form of the solution;
 - Use induction to find proper constants and prove the solution works.
- Recurrence: $T(n) = 7 \cdot T(n/2) + \Theta(n^2)$
- $T(n) = 7 \cdot T(n/2) + cn^2$, T(1) = c
- Let's guess $T(n) \le d \cdot n^{\lg 7} = O(n^{\lg 7})$
- Induction basis:
 - $T(1) = c \le d \cdot 1^{\lg 7}$, so long as $d \ge c$
- Inductive step:
 - $T(n) = 7 \cdot T(n/2) + cn^2 \le 7d \cdot (n/2)^{\lg 7} + cn^2 = dn^{\lg 7} + cn^2$

Time complexity of Strassen's algorithm

Substitution method (or, guess and verify)

- $T(n) = 7 \cdot T(n/2) + cn^2$, T(1) = c
- Guess $T(n) \le d \cdot n^{\lg 7} = O(n^{\lg 7})$ does not work out...
- $O(n^{\lg 7})$ is in fact the right answer...
 - So we add some lower order term (such as n^2) to our guess?
 - No, we should subtract some lower order term from our guess!
 - Subtraction gives us **stronger induction hypothesis** to work with!

Time complexity of Strassen's algorithm

Substitution method (or, guess and verify)

- $T(n) = 7 \cdot T(n/2) + cn^2$, T(1) = c
- Guess $T(n) \le d \cdot n^{\lg 7} = O(n^{\lg 7})$ does not work out...
- Guess $T(n) \le dn^{\lg 7} d'n^2 = O(n^{\lg 7})$

Induction basis:

• $T(1) = c \le d \cdot 1^{\lg 7} - d' \cdot 1^2$, so long as $d - d' \ge c$

Inductive step:

• $T(n) = 7 \cdot T(n/2) + cn^2 \le 7d \cdot (n/2)^{\lg 7} - 7d' \cdot (n/2)^2 + cn^2$ = $dn^{\lg 7} - (7d'/4 - c)n^2 \le dn^{\lg 7} - d'n^2$, so long as $3d'/4 \ge c$

The recurrence-tree method

- A great tool for solving divide-and-conquer recurrences.
 - Simple, pictorial, yet general.
- A recursion tree is a rooted tree with one node for each recursive subproblem.
- The **value of each node** is the time spent on that subproblem *excluding* recursive calls
- The **sum of all values** runtime of the algorithm.

The recurrence-tree method

- Typical divide-and-conquer approach:
 - Divide a size n problem into r subproblems each of size n/c, the cost for "divide" and "combine" is f(n).
 - Solve problem directly if $n \le n_0$ for some small constant n_0 .

•
$$T(n) = r \cdot T(n/c) + f(n), T(n_0) = c_0$$

• $T(n) = r \cdot T(n/c) + f(n), T(1) = f(1)$

The recurrence-tree method

- $T(n) = r \cdot T(n/c) + f(n), T(1) = f(1)$
- Total cost is $\sum_{i=0}^{L} r^i \cdot f(n/c^i)$, where $L = \log_c n$

Three common cases for the series:

- **Decreasing** (exponentially): T(n) = O(f(n))
 - Cost dominated by top level, such as T(n) = T(n/2) + n
- Equal: $T(n) = O(f(n) \cdot L) = O(f(n) \cdot \lg n)$
 - All levels have equal cost, such as T(n) = 2T(n/2) + n
- Increasing (exponentially): $T(n) = O(n^{\log_C r})$
 - Cost dominated by bottom level, such as T(n) = 4T(n/2) + n
 - $T(n) = O(r^{\log_C n}) = O(n^{\log_C r})$

The recurrence-tree method

Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- The Master Theorem does not cover all cases!
- Be careful what does, e.g., $f(n) = O(n^{\log_b a \epsilon})$, mean.
 - If a = b = 2 and $f(n) = n/\lg n$, case one does *not* apply!

The recurrence-tree method

•
$$T(n) = r \cdot T(n/c) + f(n), T(n_0) = c_0$$

- What if n/c is not an integer?
 - In MergeSort, $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n)$
 - Omitting ceiling/flooring usually does not affect asymptotic results.
- What if a subproblem's size is not "perfect"?
 - In FastMulti, $T(n) \le 3 \cdot T(\lceil n/2 \rceil + 1) + \Theta(n)$
 - Often they do not affect asymptotic results.
- What if subproblems are of different sizes?
 - E.g., $T(n) = T(n/3) + T(2n/3) + \Theta(n)$
 - Recurrence-tree can often give good intuition, then use substitution method to obtain the final result.

The divide-and-conquer approach

Summary

- Divide, Conquer (recursively or directly), and Combine.
- Same problem can be divided in different ways, leading to different algorithms with different performances!
 - MergeSort uses half-and-half split, how about 1-and-(n-1) split?
 - Another splitting method leads to QuickSort. (We'll learn it later...)
- Correctness of divide-and-conquer algorithms:
 - Use mathematical induction (of course...)
- Time complexity of divide-and-conquer algorithms:
 - Recursion-tree method (master theorem), substitution method

Reading

- [CLRS] Ch.2 (2.3), Ch.4
- [Erickson v1] Ch.1 (excluding 1.5 and 1.8)

