

DOE/NASA/2593-79/8 NASA TM-79243

NASA-TM-79243 19800014288

LITERATURE SURVEY OF PROPERTIES OF SYNFUELS DERIVED FROM COAL

Thaine W. Reynolds, Richard W. Niedzwiecki, and John S. Clark
National Aeronautics and Space Administration
Lewis Research Center

MAY 2 15 0 English of the seat

February 1980

Prepared for

U.S. DEPARTMENT OF ENERGY Energy Technology Fossil Fuel Utilization Division

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

LITERATURE SURVEY OF PROPERTIES OF SYNFUELS DERIVED FROM COAL

Thaine W. Reynolds, Richard W. Niedzwiecki, and John S. Clark
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

February 1980

Work performed for U. S. DEPARTMENT OF ENERGY Energy Technology Fossil Fuel Utilization Division Washington, D. C. 20545 Under Interagency Agreement EF-77-A-01-2593

N80-22776#

SUMMARY

This report contains the interim results of a literature survey conducted by the NASA Lewis Research Center. The survey objective was to systematically assemble existing data on the physical, chemical, and elemental composition and structural characteristics of synthetic fuels (liquids and gas) derived from coal. Contained herein are literature survey results compiled to December 1977. The report includes the following:

- 1. A general description of fuel properties, with emphasis on those properties required for synfuels to be used in gas-turbine systems for industry and utilities
- 2. Descriptions of the four major concepts for converting coal into liquid fuels (i.e., solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction)
- 3. Data obtained from the literature on full-range syncrudes, various distillate cuts, and upgraded products for fuels derived by various processes including H-Coal, Synthoil, Solvent-Refined Coal, COED, Donor Solvent, Zinc Chloride Hydrocracking, Co-Steam, and Flash Pyrolysis (The data are segregated into tables according to the processes by which they were derived, and they are also tabulated by fuel type so that fuels of similar cut can be compared for the various processes.)
- 4. Data plots illustrating trends in the properties of fuels derived by several processes
- 5. A source list and bibliography on syncrude production and upgrading programs
- 6. A listing of some Federal energy contracts for coal-derived synthetic fuels production and upgrading programs

Since information on synfuels is not readily available in the literature, additional information sources were used in compiling the survey, such as monthly contractor reports from ongoing Department of Energy projects and private correspondence. These sources are noted in the data tables where applicable. Since information on these fuels continues to become available, the survey will be updated at the end of fiscal year 1979 to include this new information.

INTRODUCTION

This report evaluates, through a literature survey, the elemental composition, structures, and physical and chemical properties of coal-derived fuels being produced in Department of Energy pilot plant and upgrading programs. Fuel impurity character-

istics were tabulated for sodium, potassium, vanadium, lead, chlorides, sulfur, and such easily dissociated nitrogens as ammonia. The fuels that were investigated include low-Btu gas, heavy and light liquid distillates, and residual liquids. Fuels processed or characterized by NASA were not included within the scope of the effort.

Natural gas and no. 2 fuel oil have been used in ground-based gas turbines for industrial and utility applications. Because of the technology base developed through commercial and military research, these fuels are presently in wide use in open-cycle gas turbines for utility peaking service. Natural gas and no. 2 fuel oil are also used in combined gas-turbine/steam-turbine cycles for intermediate duty service. However, these clean fuels are becoming scarce and expensive and may not be available for future ground-based-turbine applications. Viable future fuels for ground-based gas turbines are heavy petroleum oils in the near term and fuels derived from coal in the future. Adapting gas-turbine technology for the use of coal-derived fuels requires the development of key capabilities.

To address this need, NASA and the ERDA Office of Fossil Energy began the Critical Research and Advanced Technology Support (CRT) project with the signing of Interagency Agreement EF-77-A-01-2593 on June 30, 1977. Upon creation of the Department of Energy on October 1, 1977, the project was assigned to the DOE Division of Power Systems, which was renamed the Fossil Fuel Utilization Division. The CRT project will provide a gas-turbine technical data base for the DOE Integrated Coal Conversion and Utilization Systems activities, which are aimed at developing improved central-station utility power-conversion systems that use coal and coal-derived fuels.

The technical objectives of the CRT project are

- (1) To develop combustor concepts that will fire coal-derived fuels in an environmentally acceptable manner
- (2) To develop a combustion and materials data base to aid in establishing fuel specifications for advanced, fuel-flexible, stationary power-conversion systems
- (3) To develop acceptable ceramic coatings for use with coal-derived fuels
- (4) To develop a corrosion data base for combustor and turbine materials exposed to combustion products of coal-derived fuels and to correlate the data in a corrosion-life prediction model
- (5) To study the trade-offs between various gas-turbine technologies, operating conditions, and component designs

The literature survey, which is the subject of this report, is being conducted under the combustion portion of the CRT project (item 1). Additional combustion efforts include analytical modeling to determine combustor parameters that affect the conversion of fuel-bound nitrogen into oxides of nitrogen (NO $_{\rm X}$); flame-tube experiments to evolve fundamental concepts for minimizing the conversion of fuel-bound nitrogen into NO $_{\rm X}$; and evaluation of experimental combustors with coal-derived fuels at simulated gas-

turbine-combustor operating conditions. Results of these combustion efforts will be reported in forthcoming publications.

In surveying the literature, it became apparent that sufficient information on coalderived fuels is not readily available. Thus, additional information sources were used in compiling the survey. These additional sources included monthly reports from ongoing DOE-sponsored projects and private correspondence. These sources are noted in the data tables where applicable. Since information on coal-derived fuels continues to become available, the survey will be updated to include additional data through fiscal year 1979.

DETAILS OF LITERATURE SURVEY

Since the emphasis of this survey is on fuels from those synthetic fuels processes that are furthest along in development, data on both the processes and the fuels are continually being generated and published in progress reports by the many contractors involved. Accordingly, no survey report can contain all the latest data on the fuels of most interest. However, this report should give the general status of characterization data available to December 1977 and the physical and chemical data needed for the CRT project but currently not being obtained.

This report is arranged in the following general format:

- (1) FUEL PROPERTIES This section includes a discussion of fuel properties of concern to the gas-turbine user and examples of the forms used to compile the data.
- (2) COAL LIQUEFACTION PROCESSES This section describes the four major processes for converting coal into liquid fuels.
- (3) FUEL PROPERTIES DATA This section contains physical and chemical fuel properties data, grouped by process.
- (4) DISCUSSION This section compares the properties of various coal-derived fuels. Also fuels from the different processes are grouped by distillate category.
- (5) CONTRACT NUMBERS This section includes a table of Federal energy contract numbers with author, company affiliation, and contract title. The contractor reports are included in the bibliography.
- (6) SOURCES OF FUEL PROPERTIES DATA This section contains a tabulation of references 1 to 32, from which the properties data were taken.
- (7) BIBLIOGRAPHY The bibliography lists the sources of the citations and all the published citations investigated in the literature study, by year of publication.

FUEL PROPERTIES

Examples of the fuel analysis sheets that were used to collect physical and chemical property data for coal-derived synthetic fuels are shown in table 1 for liquid fuels and in table 2 for low-Btu gases. The lists of properties in these tables were taken from a number of sources that recommended the appropriate fuel properties for applications of advanced gas-turbine systems.

Physical property data such as pourpoint, viscosity, and distillation range are important in determining the pumping, heating, and atomizing characteristics of the fuel. Chemical properties such as elemental composition and trace-metal analyses are important in determining the combustion, emissions, and corrosion characteristics of the fuel. An excellent discussion of the importance of many properties listed in tables 1 and 2 and the use of these fuels in gas-turbine combustion systems is contained in reference 27

Although it would be desirable to know values for all the listed properties for any given fuel, the current specifications placed upon gas-turbine fuels by users are much less comprehensive. Table 3, from reference 27, shows specifications for several types of liquid fuels for advanced gas-turbine industrial engines. The following comments on the importance of some of these specifications draw upon material contained in reference 27.

The ash and trace-metal contaminants, which are most likely to be concentrated in the higher boiling fractions during processing, can lead to turbine corrosion and deposits. Of the trace metals listed in table 1, the more critical ones appear to be vanadium, sodium, potassium, and lead.

Although no specifications are shown for the elemental compositions (C, H, N, S, O), the values of these are important in determining the combustion and emission characteristics of the fuel. Hydrogen content is a critical factor in controlling the smoke emission levels and the radiation properties of the gases in the combustor. The higher the hydrogen content of the fuel, the less tendency it has to smoke and the less tendency it has to radiate heat to the combustor walls. Fuel-bound nitrogen will contribute to the nitrogen oxide pollutant emissions, since varying amounts of fuel-bound nitrogen are converted to NO_X during the combustion process. Sulfur in fuel leads to sulfur oxides in combustion that, when combined with other trace metals, can corrode the turbine. Significant emission problems also occur with fuel-bound sulfur since it is totally converted to sulfur oxides in combustion.

The pourpoint and viscosity-temperature characteristics of the fuel are important in determining

- (1) The fuel heating that may be required to pump fuel through the system
- (2) The pump pressure requirements

(3) The fuel temperature required at the fuel nozzle for proper atomizing. (Maximum viscosities of 10 to 20 cS, depending on the fuel atomizer used, are set to obtain proper nozzle operation.)

The thermal stability of the fuel - which is the tendency to form deposits in fuel manifolds, fuel nozzles, and fuel heaters - is a most important property for the higher viscosity residual fuels. These fuels may require heating to high temperatures to meet the viscosity requirements.

Table 4, obtained from reference 27, shows some typical ranges of fuel properties applicable to current industrial gas-turbine systems.

COAL LIQUEFACTION PROCESSES

At least four major concepts have been developed for converting coal to liquids: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Each concept is discussed briefly here, and the status of the most important processes that use the concepts is summarized. The technology for coal liquefaction is reviewed in detail in references 33 and 34.

Solvent Extraction

Solvent extraction is a liquefaction process in which coal is mixed with a coalderived liquid containing relatively loosely bound hydrogen atoms. This liquid is usually called the recycle solvent. The solvent can transfer these loosely bound hydrogen atoms to the coal at temperatures to 500° C $(932^{\circ}$ F) and pressures to 275 atmospheres absolute. Heating breaks many of the physical interactions in the coal such as van der Waals forces and hydrogen bonding forces. Heating also breaks weak chemical bonds, and the solvent promotes hydrogen transfer to the broken bonds. Three processes have been developed for liquefaction of coal in the presence of a recycle solvent. In the first, the recycle solvent is hydrogenated in a separate step. In the second, hydrogen is added directly to the extraction vessel and the recycle solvent is not hydrogenated. In the third, hydrogen is added to the extraction vessel and the recycle solvent is also hydrogenated. The recycle solvent, usually an oil middle distillate of process-derived liquids, is continuously recovered and recycled to the extraction vessel. The ash in the extraction vessel often acts as a catalyst for the solvation process; its catalytic effectiveness depends on the coal properties.

Identified in these terms, the processes currently under development are

- (1) Consol Synthetic Fuel (CSF)
- (2) Solvent-Refined Coal (SRC)

- (3) Solvent-Refined Lignite (SRL)
- (4) Co-Steam
- (5) Exxon Donor Solvent (EDS)

Consol Synthetic Fuel. - The CSF process (ref. 34) is under development by the Conoco Coal Development Co. (formerly Consolidation Coal Co.). Bench-scale studies were started in 1963 with support from the Office of Coal Research (OCR). A 20-ton-per-day pilot plant was built at Cresap, West Virginia, to produce gasoline from coal. This activity was halted in 1970. Fluor Engineers and Constructors, Inc., has reactivated the plant, under DOE sponsorship, to produce clean boiler fuel and distillate rather than gasoline and to test critical liquefaction process components. Shakedown operations are scheduled to be completed in fiscal year 1978 and will be followed by test run operations and testing into fiscal year 1981 (ref. 35).

The extraction reactor used in the CSF process is a stirred tank that operates at 400° C (750° F) and 10 to 30 atmospheres absolute. The hydrotreater, to hydrogenate the recycle solvent, operates at 205 atmospheres absolute. A schematic diagram of the CSF process is shown in figure 1. The process yields about 63 percent fuel oil, 25 percent char, and a high-Btu gas.

Solvent-Refined Coal. - The SRC process (ref. 34) was started in 1962 under OCR sponsorship to study the feasibility of coal de-ashing. The initial contract culminated in a 50-pound-per-hour bench-scale unit. The Electric Power Research Institute (EPRI) and Southern Company Services collaborated on a 6-ton-per-day process development unit (PDU) at Wilsonville, Alabama. Success in the PDU led to design, construction, and operation of a 50-ton-per day pilot plant at Fort Lewis, Washington. The Pittsburgh & Midway Coal Co., a subsidiary of the Gulf Oil Corp., operates the pilot plant under DOE sponsorship. A run was completed in 1977 in which 3000 tons of fuel were produced. This fuel was successfully fired in a 22.5-megawatt boiler at the Georgia Power Co. with acceptable emissions. Current plans call for continued testing at both the Fort Lewis pilot plant and the Wilsonville PDU into fiscal year 1981 (ref. 35). Gulf Mineral Resources Co. has prepared a conceptual design of a 6000-ton-per-day model of a full-scale commercial plant. Similarly, Wheelabrator-Frye, Inc., has designed a 2000-ton-per-day unit for DOE.

The original SRC process (now known as SRC-I) converts high-sulfur, high-ash coal to a nearly ash-free, low-sulfur fuel that is solid at room temperatures. A schematic diagram of the SRC-I process is shown in figure 2. Typical product compositions of SRC-I and raw coal are shown in table 5.

The Fort Lewis pilot plant was modified in 1977 to permit recycling of unconverted coal and ash. This recycling resulted in increased hydrogen addition and a product stream with a fluidity about the same as that of a no. 6 oil. A schematic diagram of this processes, called SRC-II, is presented in figure 3. In this process the solidifica-

tion and solvent recovery unit is not required; the mineral residue slurry is used to produce the additional hydrogen required for the process.

The dissolver reactor in the SRC process - a vertical-tube, plug-flow reactor - operates at about 450° C (850° F) and 69 to 103 atmospheres absolute pressure. In the SRC-I process, about 1400 pounds of fuel are produced for each ton of coal (70 percent conversion efficiency by weight). Small amounts of high-Btu gas and light oil are also produced. In the SRC-II mode, the product streams include (based on weight percentage of coal): 40 to 50 percent residual oil, 6 to 12 percent fuel oil, and 2 to 5 percent naptha. Small amounts of lighter fractions are also produced. Thermal efficiencies for both SRC-II are essentially the same, about 70 percent.

Solvent-Refined Lignite. – The SRL process is being developed by the University of North Dakota under contract to DOE (ref. 34). The process is based on technology derived from both the SRC and Co-Steam processes. The SRL process uses synthesis gas (H_2 + CO) in place of the hydrogen used in the SRC process. A process diagram is shown in figure 4. A 0.5-ton-per-day PDU has been built in Grand Forks, North Dakota. Successful operation of this PDU could lead to a run with lignite in the SRC pilot plant at Fort Lewis, Washington.

<u>Co-Steam</u>. - The Co-Steam process is designed to convert low-ranking subbituminous coals, such as lignite, into a low-sulfur fuel oil by the noncatalytic reaction of a coal - recycle-oil slurry with carbon monoxide or synthesis gas (ref. 34). A schematic of the Co-Steam process is shown in figure 5. The stirred reactor operates at 425° C (800° F) and 275 atmospheres. The water required for the reaction is provided by the moisture contained in the low-rank coal. A 5-pound-per-hour continuous process development unit (PDU) is being built at the Grand Forks Energy Research Center, North Dakota. The PDU should be operating early in fiscal year 1979 and should continue through fiscal year 1982 (ref. 35).

Exxon Donor Solvent. - The EDS process (ref. 34) also liquifies coal in a hydrogen-donor recycle solvent. The recycle solvent is catalytically hydrogenated in a trickle-bed reactor at 260° to 450° C (500° to 850° F) and 80 to 210 atmospheres. A schematic diagram of the EDS process is shown in figure 6. Molecular hydrogen is also added to the liquefaction reactor, which operates at 425° to 480° C (800° to 900° F) and 100 to 140 atmospheres. Products are separated from heavy bottoms by flash distillation. The heavy bottoms are further processed by coking or gasification to produce additional liquids and hydrogen for the process. The process yields about 20 percent char, 54 percent oil, and about 25 percent gas. It is about 60 percent thermally efficient.

The EDS project was begun in 1966 entirely with Exxon funding. Through 1975, a 0.5-ton-per-day PDU operated successfully. With DOE and Exxon sharing the cost, a 250-ton-per-day pilot plant is being designed. Operation is scheduled to start in fiscal year 1980 (ref. 35).

Catalytic Liquefaction

Catalytic liquefaction processes use catalysts other than the mineral matter naturally occurring in ash - ferrous compounds such as ferrous sulfate, FeSO₄, NiClO₂, ZnCl₂, and SnCl₂ - to promote hydrogenation of the hydrogen-donor solvent. These processes have the advantage that a separate reactor to rehydrogenate the solvent is not required; catalyst deactivation and separation problems have been encountered, however.

Two main concepts are employed in catalytic liquefaction processes. In the first, the catalyst and the coal are in direct contact in the reactor, hydrogen gas is introduced, and rapid direct hydrogenation is achieved. Examples of these processes are the Bergius, University of Utah, Schroeder, and Liquid-Phase Zinc Chloride (Conoco). In the second concept, the coal and the catalyst are not in direct contact, but the suspended pelletized catalyst promotes hydrogenation of the carrier solvent, which in turn hydrogenates the coal. Examples of these concepts include H-Coal, Synthoil, Gulf-CCL, and CFFC.

<u>Processes with catalyst and coal in direct contact.</u> - A number of these processes have been developed. Some of the more familiar ones are described here.

Bergius: One of the pioneers in coal liquefaction, Bergius first converted coal into oil in 1913 (ref. 34). The process was developed commercially to produce chiefly gasoline. Fifteen plants were operated during World War II and supplied virtually all of Germany's aviation fuel requirements. Costs proved to be prohibitively high for this process, however; and thus none of those plants are now operating.

University of Utah: In the University of Utah process a ZnCl₂ catalyst and coal are fed into a preheater and then into the reactor. The high vapor pressure of the catalyst insures direct contact with the coal at reactor conditions. Very short residence times have been achieved. About 60 percent conversion to liquids and 10 percent conversion to gases have been achieved in a 50-pound-per-hour bench-scale PDU. Catalyst recovery remains a primary technical issue (ref. 34).

Schroeder: The Schroeder process is similar to the University of Utah process. The catalyst is ammonium molybdate; residence times are less than 30 seconds. Product yields are about 30 percent distillable liquid, 35 percent residual liquid, 5 percent char, and 30 percent gas. Bench-scale tests of this concept were completed in 1962.

Liquid-Phase Zinc Chlorode: The Liquid-Phase Zinc Chloride process, being developed by the Continental Oil Co., is designed to convert coal into distillates in the gasoline range by severe catalytic cracking under hydrogen pressure (ref. 34). Bench-scale tests were completed in 1977. A 1.2-ton-per-day PDU has been built by the Conoco Coal Development Co. at Library, Pennsylvania. Shakedown testing was scheduled to begin in fiscal year 1978 (ref. 35).

<u>Processes with coal and catalyst not in direct contact.</u> - These processes include H-Coal, Synthol, Gulf Catalytic Coal Liquids, and Clean Fuel from Coal.

H-Coal: The H-Coal process (fig. 7) is being developed by Hydrocarbon Research, Inc. (HRI) from their H-Oil process, which is used to hydrotreat heavy fuel oils (ref. 2). In the H-Coal process, coal suspended in a recycle solvent is brought into contact with a particulate catalyst in an ebullating-bed reactor (fig. 8). The amount of hydrogen can be varied to produce either a low-sulfur fuel oil or a synthetic crude oil. In the ebullating-bed reactor, which operates at 450° C (850° F) and 150 to 205 atmospheres, the coal and the solvent are forced to flow through the fluidized catalytic bed; both the coal and the solvent are hydrogenated in the reactor. The relative sizes of the catalyst and coal particles are such that the catalyst stays in the reactor. Since catalyst deactivation has been rapid, however, provision is included to withdraw and add catalyst continuously.

The H-Coal process yields about four barrels of oil per ton of coal (about 74 percent conversion efficiency by weight). About 5 percent char is also produced. A self-sufficient plant would be about 64 percent thermally efficient.

Since 1964, HRI has been developing the H-Coal process in a 25-pound-per-day bench-scale unit. The OCR and an industrial consortium funded the building of a 3-ton-per-day PDU. The experimental results and economic feasibility studies were used to complete a detailed design of a 600-ton-per-day pilot plant in 1977. Catlettsburg, Kentucky, has been selected as the location. Procurement and construction is in progress; operations should begin in fiscal year 1979 (ref. 35).

Synthoil: The Synthoil process (ref. 34) being developed by the DOE Pittsburgh Energy Research Center (PERC) reacts coal, recycle liquid, and hydrogen in a fixed-bed catalyst with high throughflow rates (fig. 9). Life of the fixed-bed catalyst has been a problem in tests to date. Product yield and thermal efficiencies are expected to be similar to those in the H-Coal process. The Synthoil process has been developed at PERC in a 5-pound-per-day PDU. Foster-Wheeler has been awarded a contract to design and build a 10-ton-per-day pilot plant at Bruceton, Pennsylvania; operation is expected to begin in fiscal year 1979.

Gulf Catalytic Coal Liquids: The CCL process is a proprietary coal liquefaction development of the Gulf Oil Corp. It is similar to the Synthoil process and features a fixed-bed catalyst in a radial-flow reactor. The catalyst is claimed to have good resistance to deposition, prolonged high activity, and tolerance to metallic compounds in the coal. Bench-scale tests led to a 10-ton-per-day pilot plant at Harmersville, Pennsylvania. Design studies for a demonstration plant are being made.

Clean Fuel from Coal: The CFFC process is being developed by C-E Lummus. The process includes catalytic hydrodesulfurization and dissolution, an anti-solvent-promoted gravity-settling technique, distillation, and product and antisolvent recovery.

C-E Lummus has several patents on the process and has developed it to the small-pilot-plant scale.

Pyrolysis

Pyrolysis, or carbonization, is one of the oldest techniques for obtaining liquids directly from coal. In pyrolysis, coal is heated without air or oxygen to obtain gases, liquid, and char. Pyrolytic processes typically convert about 50 percent of the coal to char, which does not presently have a ready market. Thus, these processes appear to be best suited to multiproduct plants that use char gasification to produce synthesis gas, hydrogen, or fuel gas. Pyrolytic processes include Lurgi-Ruhrgas, COED, Occidental, Toscoal, U.S. Steel Clean-Coke, and rapid hydrocarbonization.

Lurgi-Ruhrgas. - The low-pressure Lurgi-Ruhrgas pyrolytic process was developed for liquefaction of European brown coals and is the only commercialized pyrolytic process (ref. 34). A schematic diagram of the process is shown in figure 10. Pulverized coal is rapidly heated by direct contact with hot, recirculated, partially oxidized char particles. A portion of the carbonized char is withdrawn as product and the balance is rerouted to the entrained-flow reactor. Products of the process (by weight) are 50 percent char, about 18 percent liquids, and about 32 percent gases. A 1600-ton-perday plant was built in 1963 in Yugoslavia and is still operating.

COED. - The Char Oil Energy Development (COED) process (ref. 34) produces synthetic crude oil by pyrolysis of crushed coal in a series of fluidized beds. Agglomeration is prevented by operating at successively higher temperatures (fig. 11). The process has been under development by FMC Corp. since 1962. Successful operation of a 100-pound-per-hour PDU led to the design, construction, and operation of a pilot plant in Princeton, New Jersey. This plant processed 36 tons of coal per day from which it produced about 6 tons of oil, 18 tons of char, and 4 tons of gas. Design capacities were demonstrated in all parts of the pilot plant except the oil absorber tower. Pilot plant operations have been concluded and demonstrated plants have been designed.

Occidental. - The Occidental Research Corp. has been developing this pyrolytic process (ref. 34) since 1969 with its own funds. A 3.6-ton-per-day pilot plant in La Verne, California, has been operating since 1972. A 250-ton-per-day pilot plant is being designed. The process converts volatile bituminous coal to synthetic crude oil by entrained-flow, low-pressure pyrolysis (fig. 12) with very short residence times and rapid heating rates. The process stream leaves the reactor and passes through a cyclone for gas-solids separation and then to a gas-liquids collection station. The process yields about 57 percent char, 35 percent liquids, and 6 percent gas.

<u>Toscoal</u>. - The Toscoal process (fig 13) is an adaptation of the oil-shale retorting technology developed by Tosco. It produces 5 to 10 weight percent liquids, 5 to 10 per-

cent gas, and the balance char. This process has been demonstrated in a 25-ton-per-day pilot plant; larger scale testing is not believed to be necessary.

<u>U.S. Steel Clean-Coke</u>. - The U.S. Steel Clean-Coke process (fig. 14) is a combined pyrolytic and solvent extraction process. Gases, liquids, and metallurgical grade coke are produced. Operation of a 10-inch PDU is under way and design studies have begun for a 240-ton-per-day pilot plant.

Rapid hydrocarbonization. - Occidental Research Corp. is developing the Flash Pyrolysis process (rapid heating to high temperature with short residence times) on the PDU scale. The Rocketdyne Division of Rockwell International Corp. is developing a similar process except that pyrolysis is carried out in the presence of hydrogen. Both processes are in the early development stage.

Indirect Liquefaction

Indirect liquefaction processes first convert coal to synthesis gas (CO + $\rm H_2$) and then use the water-gas shift reaction and catalytic conversion to produce a wide range of liquids, mainly gasolines. Indirect liquefaction processes include Fischer-Tropsch, methanol synthesis, and methanol to gasoline.

<u>Fischer-Tropsch</u>. - In the Fischer-Tropsch process, gasification is done in commercially available reactors (e.g., Lurgi, Winkler, Koppers-Totzek, or Wellman-Galusha). In-situ gasification may also be used. The synthesis gas is converted to liquids over an iron or cobalt catalyst. Total-process thermal efficiencies are about 40 percent. A commercial unit at SASOL in South Africa produces about 2000 barrels of gasoline per day. A new facility is under construction in South Africa that will increase production to 40 000 barrels per day of gasoline and fuel oil, about 30 percent of that country's automobile fuel needs. The process was also used by Germany during World War II.

HRI, Inc., built a 7000-barrel-per-day unit in Brownville, Texas, in which natural gas was used as the feedstock. When natural gas prices increased, however, this plant became uneconomical and was shut down. There has been renewed interest in this process in this country, however; and several development efforts are under way.

Methanol synthesis. - Methanol synthesis occurs according to either

$$CO + H_2 \longrightarrow CH_3OH$$

or

$$CO_2 + 3H_2 \longrightarrow CH_3OH + H_2O$$

Various catalysts are used to promote the reactions. Several commercial-scale plants have been built abroad, and the technology is considered off the shelf.

Methanol to gasoline. - The Mobil Oil Co., with DOE support, is developing a process for the catalytic conversion of methanol to gasoline. This process is in the PDU development stage.

FUEL PROPERTIES DATA

The characterization data obtained from the surveyed literature have been tabulated on the fuel property forms (tables 1 and 2). The fuels are presented according to the process from which they were derived (e.g., H-Coal or Synthoil). Within any one process, characteristics have been tabulated for different boiling-range distillates, as well as for the total crude. For ease of referral to the data, the various distillate cuts have been put into three general categories: light distillates (naphtha, light oil, etc.), middle distillates (diesel fuels), and heavy distillates (heating oils and residual fuels).

All the fuel properties data surveyed are contained in this section. Tabulations are also indexed according to the sources from which the data were obtained.

Characterization data are presented in the following tables:

- (1) Data from H-Coal processes in table 6
- (2) Data from Synthoil processes in table 7
- (3) Data from SRC processes in table 8
- (4) Data from COED processes in table 9
- (5) Data from the Gulf Catalytic Coal Liquids process in table 10
- (6) Data from the Exxon Donor Solvent process in table 11
- (7) Data from the Zinc Chloride Hydrocracking process in table 12
- (8) Data from the Co-Steam Process in table 13
- (9) Data from the Flash Pyrolysis process in table 14
- (10) Data from a catalytic liquefaction process in table 15
- (11) Data from the Sea Coal process in table 16
- (12) Proposed specifications of a typical coal-derived liquid fuel in table 17
- (13) Low-Btu gas data in table 18

DISCUSSION

Liquid Fuels

This literature survey emphasizes those processes that are furthest along in development and are still active This criterion could probably have restricted the search to

the liquefaction processes of H-Coal, Synthoil, Solvent-Refined Coal, and Exxon Donor Solvent. However, it was felt that including data on other processes could be useful.

It is readily apparent from casual examination of tables 6 to 18 that many of the fuel properties data of interest to this survey have not been determined for the fuels produced to date. In a few specific instances, where the fuel characterization studies were of fuels for gas-turbine engines, many more relevant property data are available. Data of this type can be found in references 5, 13, and 32.

Some of the more important property data on liquid fuels have been summarized in table 19. Plots of these data are shown in figures 15 to 17. Although different boiling ranges of the fuels are shown in table 19, all the data available for each fuel are plotted, irrespective of the type of process or the type of distillate cut.

Figure 15 shows the general trend of increasing weight percentage of hydrogen with increasing API gravity of the product, regardless of the process by which it was produced. Data for only one fuel were significantly different from the general trend.

Figure 16 shows how the weight percentage of nitrogen varied with the weight percentage of hydrogen. As hydrogenation severity is increased in the fuel production process, the fuel-bound nitrogen is decreased, as would be expected, because some fuel-bound nitrogen is converted to ammonia (NH₃). The data for the Zinc Chloride Hydrocracking process (ref. 24), not plotted in figure 16, showed nitrogen levels significantly lower than that of any other process-derived fuel at comparable hydrogen levels. Nitrogen levels for the zinc-chloride-derived fuels were from 0.0018 to 0.0019 weight percent for hydrogen levels of 8.3 to 9.65 weight percent.

Figure 17 shows how heat of combustion varies with weight percentage of hydrogen for those few fuels for which such data were reported. Again, the trend is independent of the processing type.

Gaseous Fuels

The low-Btu gases proposed for use in ground-based power turbine systems would be produced by air-blown gasifiers. As such, they will contain a large percentage (\sim 50 vol %) of nitrogen, as well as some carbon dioxide ($\rm CO_2$) - neither of which contributes to the heating value of the gas mixture. The primary combustible gases from such a gasifier are hydrogen and carbon monoxide and a small amount of methane.

The heats of combustion of the most probable gases in the low-Btu mixtures are shown in the following table, which is a summary of the heat-of-combustion data in table 18. The gross volumetric heating values of hydrogen (H₂) and carbon monoxide (CO) are nearly identical, about 322 Btu per standard cubic foot. As a result, the heat-

Gas	Molecular weight	Heat of co	mbustion, /lb	Heat of combustion, Btu/std ft ³	
		Gross	Net	Gross	Net
H ₂ CO	2	60 958	51 571	322.5	272.9
cō	28	4 344	4 344	321.8	321.8
co_2	44	0	0	0	0
CH ₄	16	23 861	21 502	1010	910
$C_2^{\frac{3}{4}}$	30	22 304	20 416	1770	1620
N ₂	28	0	0	0	0

ing value of a low-Btu gas mixture can be estimated closely if the volume percentage of inert gases (N $_2$ and $\rm CO_2$) is known. Thus

Gross heat of combustion = 322 - 3.22 (vol % inerts), Btu/std ft³

A plot of this relationship is shown in figure 18. Also shown in this figure are some of the heat-of-combustion data from table 18.

Most of the references cited in table 18 give "typical" ranges of properties for these gases, rather than actual experimental data. In none of the references cited were there any data on the sulfur, alkali metals, or particulate contamination levels to be expected. These data would undoubtedly be controlled by the cleanup processes used, rather than by the gasifier type or the operating conditions.

CONTRACT CONDITIONS

Federal energy contract numbers relating to coal-derived synthetic fuels production and upgrading programs are listed in the following table:

Fossil energy contract FE -	Author	Company	Process and/or title		
628		PAMCO (Merriam, Ka.)	Pilot plant to produce low-Btu gas from coal		
1212	Jones, J F, et al	FMC Corp.	COED		
1514	Chamberlain, R. M., et al.	Westinghouse	Advanced coal gasification system for elec- tric power generation		
1521		Foster-Wheeler	Advanced coal gasification system for elec- tric power from coal		
1527		Bituminous Coal Research	Gas generator research and development with clean fuel gas		
1529		Atomics International	Molten-salt coal gasification pilot plant		
1534	Peters, Bruce	Dow Chemical	Chemicals from coal (characterization and hydroprocessing studies)		
1545	Patterson, R. C.	Combustion Engineering, Inc.	C-E low-Btu gasification of coal project· Phases I, II, and III		
17 30		IGT	Preparation of a coal conversion systems technical data book		
1743	Klunder, E. B., et al.	Conoco Coal Development Co.	Zinc Chloride Process; hydrocracking for distillate fuels		
2003	Greskovich, E. J.		Chemical characterization handling and re-		
2006	Wiser, W. H	Utah University	Applied Research and Evaluation of process concepts for gasification and liquefication of Western coals		
2010	de Rosset, et al.,	UOP, Inc.	Characterization of coal liquids		
2011	Crynes, B	Oklahoma State University	Catalysts for upgrading coal derivative liquids		
2028	Katzer, J P, et al	Deleware University	Kinetics and mechanisms of desulfurization and denitrogenation of coal-derived liquids		
2034	Berg, L, et al.	Montana State University	Catalytic hydrogenation of coal-derived liquids		
2244	Knell, E W., et al	Occidental Research Corp.	Flash pyrolysis coal liquefication process development		
2070	Lewis, H E., et al	Catalytic, Inc.	SRC process operation at Wilsonville, Ala		
2286			Preparation of a coal conversion system technical data book		
2292	Carlson, N	UTC	Combined-cycle system for low-Btu gas use		
2315	Sullivan, R F.	Chevron Research	Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes		
2353	Fant, B T	Exxon Research & Engineering	EDS coal liquefaction process development - Phase IIIa		

SOURCES OF FUEL PROPERTIES DATA

Fuel characterization data are listed, by process type, for the various distillate categories in the following table. Reference numbers in the table (1 to 32) refer to the literature where data applicable to this study were found.

The references were obtained from the extensive bibliography that follows it. Many of the citations in the bibliography repeat the data given in the references. Other citations contain no data relevant to this study. Also included in the bibliography is a list of sources.

Syncrude source	Full-range crude	Naphtha, light distillates, and light oil	Heavy naphtha, middle distillates, and wash solvent	Heavy distillates, fuel oil, and process solvent	Miscellaneous and other cuts		
	Reference numbers						
H-Coal	1, 5, 6, 7, 32, (a), (b)	1, 2, 4, 6, 32, (b)	1, 2, 4, 6, 32, (a), (b)	1, 2, 6, 32, (b), (c)	3, 5, (a), (d)		
Synthoil	5,8,9,10,12,13	10	3,10,12	3, 10, 12	8,11,12		
SRC		5, 16, 17, 32, (e)	(e)	3, 5, 14, 16, 17, 32	14,15,16,17,32,(e)		
COED	6,18,19,20				6,13,18,19		
Catalytic liquid (Gulf)	21,22				21		
Donor Solvent (Exxon)	23			23			
Zinc Chloride Hydrocracking	24				24		
Co-Steam	25						
Flash Pyrolysis	26						
Other liquids	13, (f)						
Low-Btu gases	27 to 37 and (g)						

^aMemo for record, John S Clark of NASA Lewis Research Center, July 19, 1977

bMeeting handout on H-Coal products for gas-turbine combined cycles, Paul H Kydd of General Electric, Schenectady, N Y , Jan. 9, 1976

^CLetter from G. R Fox of General Electric Research and Development Center to Lloyd I. Shure of NASA Lewis Research Center, Feb. 18, 1977.

d_{Memo} for record on trace element analyses of H-Coal hydroclone bottoms sample, Theodore S Mroz of NASA Lewis Research Center, Feb. 26, 1976

^eLetter from Robert G Sperhac of Pittsburgh & Midway Coal Mining Co to Thaine W. Reynolds of NASA Lewis Research Center, May 16, 1975.

fGoodwin, G. G. Amendment of Solicitation to Prospective Offerors, RFP-EF-77-R-01-2674, June 6, 1977 (Contracting Officer, ERDA)

gHiteshue, Raymond W; and Eisen, Fred Course notes from "Synthetic Fuels from Coal," Center for Professional Advancement, July 22-24, 1974

REFERENCES

- 1. Jewitt, Carlton H.; and Wilson, George D.: Comparative Characterization and Hydrotreating of Coal, Shale and Petroleum Liquid. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 785-792.
- 2. Peters, Bruce C.: Chemicals from Coal: Interim Report on H-Coal. FE-1534-48, U.S. Dept. of Energy, 1977.
- 3. deRossett, A. J.; et al.: Characterization of Coal Liquids. FE-2010-09, Energy Research and Development Admin., 1977.
- 4. Holmes, S. A.; et al.: Characterization of Coal Liquids Derived from the H-Coal Process. BERC/RI-76/10, Energy Research and Development Admin., 1976.
- 5. Callen, Robert B.; et al.: Upgrading Coal Liquids to Gas Turbine Fuels. 1. Analytical Characterization of Coal Liquids. Ind. Eng. Chem., Prod. Res. Dev., vol. 15, no. 4, 1976, pp. 222-233.
- 6. Shaw, Henry; Kalfadelis, Charles D.; and Jahnig, Charles E.: Evaluation of Methods to Produce Aviation Turbine Fuels from Synthetic Crude Oils - Phase I. GRU-1PEA-75, Exxon Research and Engineering Co., 1975. (AFAPL-TR-75-10, AD-A016456.)
- 7. Johnson, Clarence A.; Stotler, Harold H.; and Winter, Olaf: H-Coal Prototype Program. Paper 55C Symposium on Project Plants for Production of Clean Fuels from Coal. Nov. 11-15, 1973; 66th Annual Meeting, AIChE, Phil., Pa.
- 8. Schultz, Hyman; et al.: A Study of Some Trace Elements in the 1/2 Ton Per Day Synthoil Process Development Unit. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 588-592. (Also PERC/RI-77/2, 1977.)
- 9. Crynes, B. L.: Catalysts for Upgrading Coal-Derived Liquids. FE-2011-7, Energy Research and Development Admin., 1977.
- 10. Woodward, P. W.; et al.: Compositional Analyses of Synthoil from West Virginia Coal. BERC/RI-76/2, Energy Research and Development Admin., 1976.
- 11. Crynes, B. L.: Catalysts for Upgrading Coal-Derived Liquids. FE-2011-3, Energy Research and Development Admin., 1977.
- 12. Kalfadelis, Charles D.: Evaluation of Methods to Produce Aviation Turbine Fuels from Synthetic Crude Oils Phase II, Vol. 2. GRU-2PEA-76-VOL-2, Exxon Research and Engineering Co., 1976. (AFAPL-TR-75-10, Vol. 2, AD-A036190.)

- 13. Hardin, M. C.: Evaluation of Three Coal-Derived Liquid Fuels in a Standard T63 Combustor. Detroit Diesel Allison. RN-74-28, Nov. 14, 1974.
- 14. Fruchter, J. S.; et al.: High Precision Trace Element and Organic Constituent Analysis of Oil Shale and Solvent-Refined Coal Materials. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 793-807.
- 15. Lewis, H. E.; et al.: Solvent-Refined Coal (SRC) Process Operation of Solvent-Refined Coal Pilot Plant at Wilsonville, Alabama. FE-2270-10, Energy Research and Development Admin., 1977.
- 16. Schmid, B. K.; and Jackson, D. M.: The SRC-II Process. Pacific Chemical Engineering Congress, 2nd. Vol. 2. American Institute of Chemical Engineers, 1978, pp. 908-915.
- 17. Schmid, B. K.; and Jackson, D. M.: Recycle SRC Processing for Liquid and Solid Fuels. Paper Presented at Fourth Annual International Conference on Coal Gasification, Liquefaction, and Conversion to Electricity, Pittsburgh, Pa., Aug. 2-4, 1977.
- 18. Peters, Bruce C.: Chemicals from Coal. FE-1534-44, Energy Research and Development Admin., 1977.
- 19. Sturm, G. P., Jr.; et al.: Analyzing Syncrude from Western Kentucky Coal. BERC/RI-75/12, Energy Research and Development Admin., 1975.
- 20. Eisen, Fred S.: Preparation of Gas Turbine Engine Fuel from Synthetic Crude Oil Derived from Coal. Final Report, Sun Oil Co., Feb. 1975. (AD-A007923.)
- 21. Haebig, J. E.; Davis, B. E.; and Dzuna, E. R.: Preliminary Small-Scale Combustion Tests of Coal Liquids. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 203-214.
- 22. Ruberto, R. G.; et al.: Characterization of Synthetic Liquid Fuels. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 19, no. 2, 1974, pp. 258-290. (Also Shale Oil, Tar Sands, and Related Fuel Sources, F. Y. Teh, ed., Advances in Chemistry Series 151, American Chemical Society, 1976, pp. 28-47.)
- 23. Furlong, L. E.; et al.: The Exxon Donor Solvent Process. Chem. Eng. Prog., vol. 72, no. 8, Aug. 1976, pp. 69-75. (Also Coal Processing Technology. Vol. 3. American Institute of Chemical Engineers, 1977, pp. 145-151.)
- 24. Klunder, E. B.; et al.: Zinc Halide Hydrocracking Process for Distillate Fuels from Coal. FE-1743-37, Energy Research and Development Admin., 1977.

- 25. Appell, H. R.; Moroni, E. C.; and Miller, R. D.: Co-Steam Liquefaction of Lignite. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 58-65.
- 26. Knell, E. W.; et al.: Flash Pyrolysis Coal Liquefaction Process Development. FE-2244-8, Energy Research and Development Admin., 1977.
- 27. Foster, A. D.; Doering, H. von E.; and Hickey, J. W.: Fuel Flexibility in G.E. Gas Turbines. General Electric Report GER-2222L, 1977.
- 28. McCaleb, T. L.; and Chen, C. L.: Low Btu Gas as an Industrial Fuel. Chem. Eng. Prog., vol. 73, no. 6, June 1977, pp. 82-88.
- 29. Carlson, Nils G.: Development of High Temperature Subsystem Technology to a Technology Readiness State Phase I. Topical Report, Baseline Combined-Cycle System for Operation with Coal-Derived Gaseous Fuel. FE-2292-15, Energy Research and Development Admin., 1977.
- 30. Littlewood, Kenneth: Gasification: Theory and Application. Prog. Energy Combust. Sci., vol. 3, no. 1, 1977, pp. 35-71.
- 31. Pillsbury, P. W.; and Lin, S. S.: Advanced Coal Gasification System for Electric Power Generation. Development of Full-Size Gas Turbine Combustors Using Synthetic Low-Btu Fuel Gas at 350° F. FE-1514-52, Energy Research and Development Admin., 1976.
- 32. Stein, T. R.; et al.: Upgrading of Coal Liquids for Use as Power Generation Fuels. EPRI AF-444, Electric Power Research Inst., 1977.
- 33. Assessment of Technology for Liquefaction of Coal: Summary. FE-1216-2, U.S. Dept. of Energy, 1977.
- 34. Assessment of Technology for Liquefaction of Coal. FE-1216-3, U.S. Dept. of Energy, 1977.
- 35. Fossil Energy Research and Development Program of the U.S. Department of Energy, 1979. DOE/ET-0013 (78), U.S. Dept. of Energy, 1978.

BIBLIOGRAPHY

Bibliography Sources

Cavagnaro, Diane M.: Coal Gasification and Liquefaction Technology, Vol. 3, June 1976 - Apr. 1977, A Bibliography with Abstracts. NTIS/PS-77/0305, National Technical Information Service, 1977.

- Mathison, Ruby L., compiler: Synthetic Fuels Research, A Bibliography 1945-1976. Third ed., American Gas Association, 1977.
- ERDA Energy Research Abstracts.
- Coal Processing; Gasification, Liquefaction, Desulfurization: A Bibliography 1930-1974. TID-3349, U.S. Atom. Energy Comm., 1974.
- Coal Processing, Production, and Properties: A Bibliography; Citations. TID-3349-S1P1, Energy Research and Development Admin., 1976.
- Coal Processing, Production, and Properties: A Bibliography; Indexes. TID-3349-S1P2, Energy Research and Development Admin., 1976.

- Cabal, Albert V.; Voltz, Sterling E.; and Stein, Thomas R.: Upgrading Coal Liquids to Gas Turbine Fuels. 2. Compatibility of Coal Liquids with Petroleum Fuels. Ind. Eng Chem., Prod. Res. Dev., vol. 16, no. 1, Mar. 1977, pp. 58-61.
- Callen, R. B.; Simpson, C. A.; and Bendoraitis, J. G.: Analytical Characterization of Solvent-Refined Coal Comparison with Petroleum Residual. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 656-664.
- Carlson, Nils G.: Development of High-Temperature Subsystem Technology to a Technology Readiness State Phase I. Topical Report. Baseline Combined-Cycle System for Operation with Coal-Derived Gaseous Fuel. FE-2292-15, Energy Research and Development Admin., 1977.
- Clark, Bruce R.; Ho, C. H.; and Jones, A. Russell: Approaches to Chemical Class Analysis of Fossil Derived Materials. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 811-822. Technique is illustrated, but samples used are not identified; therefore, of no use in this project.
- Crynes, B. L.: Catalysts for Upgrading Coal-Derived Liquids. FE-2011-7, Energy Research and Development Admin., 1977. Progress summary table indicates characterization of synfuels; started early 1975
- deRosset, A. J.; et al.: Characterization of Coal Liquids. FE-2010-09, Energy Research and Development Admin., 1977.
- Fant, B. T: EDS Coal Liquefaction Process Development: Phase IIIA. FE-2353-1, Energy Research and Development Admin., 1977.

- Fruchter, J. S.; et al.: High Precision Trace Element and Organic Constituent Analysis of Oil Shale and Solvent-Refined Coal Materials. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 793-807.
- Jewitt, Carlton H.; and Wilson, George D.: Comparative Characterization and Hydrotreating of Coal, Shale and Petroleum Liquid. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 785-792.
- Klunder, E. B.; et al.: Zinc Halide Hydrocracking Process for Distillate Fuels from Coal. FE-1743-37, Energy Research and Development Admin., 1977.
- Knell, E. W.; et al.: Flash Pyrolysis Coal Liquefaction Process Development. FE-2244-8, Energy Research and Development Admin., 1977.
- Lewis, H. E.; et al.: Solvent Refined Coal (SRC) Process Operation of Solvent Refined Coal. FE-2270-10, Energy Research and Development Admin., 1977.
- Littlewood, Kenneth: Gasification: Theory and Application. Prog. Energy Combust. Sci., vol. 3, no. 1, 1977, pp. 35-71.
- McCaleb, T. L.; and Chen, C. L.: Low Btu Gas as an Industrial Fuel. Chem. Eng. Prog., vol. 73, no. 6, June 1977, pp. 82-88.
- Peters, Bruce C.: Chemicals from Coal. FMC Corp. COED Pyrolysis Process. FE-1534-44, Energy Research and Development Admin., 1977. Report contains data on hydrocracking, hydrotreating, and reforming of several fractions of the COED product.
- Peters, Bruce C.: Chemicals from Coal. FE-1534-46, Energy Research and Development Admin., 1977.
- Peters, Bruce C.: Chemicals from Coal: Interim Report for HRI H-Coal. FE-1534-48, Energy Research and Development Admin., 1977.
- Peters, Bruce C.: Chemicals from Coal: USBM Synthoil. FE-1534-49, Energy Research and Development Admin., 1977.
- Reuther, John A.: Kinetics of Heterogeneously Catalyzed Coal Hydroliquefaction. Ind. Eng. Chem., Process Des. Dev., vol. 16, no. 2, Apr. 1977, pp. 249-253. Pitts-burgh E.R.C., conditions aimed at Synthoil process.
- Schiller, Joseph E.: Composition of Coal Liquefaction Products. Hydrocarbon Process., vol. 56, no. 1, Jan. 1977, pp. 147-152.
- Schiller, Joseph E.: Analysis of Solvent-Refined Coal, Recycle Solvents, and Coal-Liquefaction Products. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 638-655.

- Schmid, B. K.; and Jackson, D. M.: The SRC-II Process. Second Pacific Chemical Engineering Congress. Vol. 2. American Institute of Chemical Engineers, 1978, pp. 908-915.
- Schultz, Hyman; et al.: A Study of Some Trace Elements in the 1/2 Ton Per Day Synthoil Process Development Unit. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 588-592. (Also PERC/RI-77/2, 1977.)
- Schwager, I.; Farmanian, P. A.; and Yen, T. F.: Structural Characterization of Coal Liquefaction Products by Proton and Carbon-13 Nuclear Magnetic Resonance. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 22, no. 2, Mar. 1977, pp. 677-683.
- Stein, Thomas R.; Voltz, Sterling E.; and Callen, Robert B.: Upgrading Coal Liquids to Gas Turbine Fuels. 3. Exploratory Process Studies. Ind. Eng. Chem., Prod Res. Dev., vol. 16, no. 1, Mar. 1977, pp. 61-68.
- Stein, Thomas R.; et al.: Upgrading of Coal Liquids for Use as Power Generation Fuels. EPRI AF-444, Electric Propulsion Research Inst., 1977.
- White, Philip C.: Fossil Energy Research Program of the Energy Research and Development Administration, FY 1978. ERDA-77-33, Energy Research and Development Admin, 1977.
- Low-Btu Coal Gasification. ERHQ-0015, Energy Research and Development Admin., 1977. Six projects employing low-Btu gasification of coal; no data on gas properties.
- Solvent Refined Coal (SRC) Process. FE-496-127, Energy Research and Development Admin., 1977.

- Alexander, W.; et al.: Chemical Characterization, Handling, and Refining of SRC to Liquid Fuels. Task 1 report. ERDA-76-68, Energy Research and Development Admin., 1976. A bibliography on liquefaction of coal, hydrotreating, hydrocracking, and analysis and properties of solvent-refined coal and similar materials from 1957 to 1975.
- Bendoraitis, J. G.; et al.: Upgrading of Coal Liquids for Use as Power Generation Fuels, Phase I. Mobil Research and Development Corp., 1976. (PB-252939/4.)
- Bendoraitis, J. G.; et al.: Upgrading of Coal Liquids for Use as Power Generation Fuels, Phase I. EPRI 361-1, Electric Power Research Institute, 1976.

- Berg, L.; and McCandless, F. P.: Catalytic Hydrogenation of Coal-Derived Liquids. FE-2034-5, Energy Research and Development Admin., 1976.
- Callen, Robert B.; et al.: Upgrading Coal Liquids to Gas Turbine Fuels. I: Analytical Characterization of Coal Liquids. Ind. Eng. Chem., Prod. Res. Dev., vol. 15, no. 4, Dec. 1976, pp. 222-233.
- Chamberlin, R. M.; et al.: Advanced Coal Gasification Systems for Electric Power Generation. FE-1514-176, Energy Research and Development Admin., 1975.
- Chamberlin, R. M.; et al.: Advanced Coal Gasification System for Electric Power Generation. FE-1514-45, Energy Research and Development Admin., 1976.
- Crynes, B. C.: Catalysts for Upgrading Coal Derived Liquids. FE-2011-4, Qtly. Rep. Mar. 9 June 8; FE-2011-5, Qtly. Rep. June 9 Sept. 8; FE-2011-6, Qtly. Rep. Sept. 8 Dec. 9, Energy Research and Development Admin., 1976. (FE-2011-7, Qtly. Rep. Dec. 9, 1976 Mar. 8, 1977 is in 1977 citations.)
- deLooper, Harry; and Lehman, Leon M.: The Importance of the Kentucky H-Coal Pilot Plant. Paper presented at Fourth Energy Resource Conference, Lexington, Ky., Jan. 7-8, 1976.
- Dooley, J. E.; and Thompson, C. J.: Analysis of Liquids from Coal Conversion Processes. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 21, no. 5, Aug. 1976, pp. 243-251.
- Farcosiu, M.; Mitchell, T. O.; and Whitehurst, D. D.: Chemical Nature of Benzene Insoluble Components of Solvent Refined Coals. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 21, no. 7, Aug. 1976, pp. 11-26.
- Furlong, L. E.; et al.: The Exxon Donor Solvent Process. Chem. Eng. Prog., vol. 72, no. 8, Aug. 1976, pp. 69-75. (See also Neavel, R. C.: Liquifaction of Coal in Hydrogen-Donor and Non-Donor Vehicles. Fuel, vol. 55, no. 3, July 1976, pp. 237-242.)
- Greskovich, E. J.: Chemical Characterization, Handling and Refining of SRC to Liquid Fuels. FE-2003-12, Energy Research and Development Admin., 1976.
- Hamm, J. R.: Energy Conversion Alternatives Study (ECAS), Westinghouse Phase I., Vol. 3: Combustors, Furnaces and Low-Btu Gasifiers. (REPT-76-9E9-ECAS-RLV.3-VOL-3, Westinghouse Research Labs.; NASA Contract NAS3-19407.) NASA CR-134941-VOL-3, 1976. Information is presented on the design, performance, operating characteristics, and development status of coal preparation equipment, combustors, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment.

- The information was compiled for use by the various cycle concept leaders in testing the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.
- Holloway, P. H.; et al.: Chemical Studies on Synthoil Process. SAND-76-0644, Energy Research and Development Admin., 1976.
- Holmes, S. A.; et al.: Characterization of Coal Liquids Derived from H-Coal Process. BERC/RI-76/10, Energy Research and Development Admin., 1976. Analyses of overhead products from H-Coal in both the fuel oil and syncrude modes, from Illinois #6 coal.
- Johanson, Edwin: Solvent Refinery of Wyodak, Ill. #6 (Monterey Mine), and Black Mesa Coals. Vol. 2. NTIS PB-253531, 1976. The solvent refining of Wyodak coal containing 0.51 wt% organic sulfur was studied. Product distribution at each operating condition, hydrogen consumption, and elemental analyses of products and product fractions for S, N, C, and H are given. Results and product properties are correlated with operating conditions. The effect of startup solvent and recycle solvent coal conversion is evaluated.
- Kalfadelis, Charles D.: Evaluation of Methods to Produce Aviation Turbine Fuels from Synthetic Crude Oils Phase II, Vol. II. GRU-2PEA-76-VOL-2, Exxon Research and Engineering Co., 1976. (AFAPL-TR-75-10, Vol. II, AD-A036190.)
- Lanning, W. C.; and Thomason, C. J.: Alternative Liquid Fuels and the ERDA Program. ASME Paper 76-Pet-15, Sept. 1976. Composition and general character of fuel studies are summarized.
- Low, James Y. F.; et al.: Catalytic Hydrogenation of Solvent-Refined Lignite to Liquid Fuels. Energy Sources, vol. 3, no. 1, 1976, pp. 19-38.
- Mehta, A. K.: Mathematical Modelling of Chemical Processes for Low BTU/Gasification of Coal for Electric Power Generation. FE-1545-26, Energy Research and Development Admin., 1976
- Meyers, R. A.; et al.: Low Sulfur Coal Obtained by Chemical Desulfurization Followed by Liquefaction. Energy Sources, vol. 3, no. 1, 1976, pp. 13-18.
- Mullendore, A. W.; and Lieberman, M. L., eds.: Chemical Studies on Synthoil Process. SAND-76-0140, Energy Research and Development Admin., 1976.
- Peters, Bruce C.: Chemicals from Coal. FE-1534-33, Energy Research and Development Admin., 1976. Hydrocracking studies on Syntholl, H-Coal, and SRC material.

- Pillsbury, P. W.; and Lin, S. S.: Advanced Coal Gasification System for Electric Power Generation. Development of Full-size Gas Turbine Combustors using Synthetic Low-Btu Fuel Gas at 350° F. FE-1514-52, Energy Research and Development Admin., 1976.
- Schweighardt, Frank K.; Retcofsky, H. L.; and Friedel, Robert A.: Chromatographic and n.m.r. Analysis of Coal Liquefaction Products. Fuel, vol. 55, Oct. 1976, pp. 313-317. (Also appeared in NSF workshop in fundamental organic chemistry of coal, Knoxville, Tenn., July 17, 1975.)
- Sternberg, Heinz W.; Raymond, Raphael; and Schweighardt, Frank K.: The Nature of Coal Liquefaction Products. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 21, no, 1, Feb. 1976, pp. 198-209.
- Stewart, R. E. D.: Utilization of Low BTU Gas from In-Situ Coal Gasification for On-Site Power Generation. Proceedings of Second Annual Gasification Symposium, L. Z. Schuck, ed., Energy Research and Development Admin. and Morgantown Research Center, CONF-760817, MERC/SP-76/3, 1976, pp. 372-379.
- Sullivan, R. F.: Refining and Upgrading of Synfuels from Coal and Oil Shale by Advanced Catalytic Processes. FE-2315-4, Energy Research and Development Admin., 1976.
- Werner, K. G.; and Cavagnaro, D.: Coal Gasification and Liquefaction Technology. Vol. I, 1964-1973. A Bibliography with Abstracts. NTIS/PS-76/0390, Supersedes NTIS/PS-75/385, National Technical Information Service, 1976.
- Werner, K. G.; and Cavagnaro, D.: Coal Gasification and Liquefaction Technology. Vol. II, 1974 to May 1976. NTIS/PS-76/0391, Supersedes NTIS/PS-75/306 and COM-74-10967, National Technical Information Service, 1976. (Superseded by NTIS/PS-77/0305 See 1977 citations.)
- Woodword, P. W.; et al.: Compositional Analyses of Synthoil from West Virginia Coal. BERC/RI-76/2, Energy Research and Development Admin., 1976.
- Wooten, David L., et al.: Inferences Regarding the Nature of Solvent-Refined Coal (SRC). Fuel, vol. 55, no. 3, July 1976, pp. 224-226.
- Coal Gasification. ERDA-76-93-1, Energy Research and Development Admin., 1976.
- Coal Gasification. ERDA-76-93-2, Energy Research and Development Admin., 1976.
- Development Work for an Advanced Coal Gasification System for Electric Power from Coal Directed Toward a Commercial Gasification Generating Plant, Phase II. FE-1521-13, Energy Research and Development Admin., 1976.

- Gas Generator Research and Development Clean Fuel Gas. FE-1527-9, Energy Research and Development Admin., 1976.
- Handbook of Gasifiers and Gas Treatment Systems. FE-1772-11, Energy Research and Development Admin., 1976.
- Preparation of Coal Conversion Systems Technical Data Book. FE-1730-21, Energy Research and Development Admin., 1976.
- Preparation of Coal Conversion Systems Technical Data Book. FE-2286-4, Energy Research and Development Admin., 1976.
- Zinc Halide Hydrocracking Process for Distillate Fuels from Coal. FE-1743-16, Energy Research and Development Admin., 1976.

- Akhtar, Sayeed; et al.: Synthoil Process for Converting Coal to Nonpolluting Fuel Oil. Energy Commun., vol. 1, no. 1, 1975, pp. 21-36.
- Anderson, R. F.: Recycling Solvent Techniques for the SRC Process. Chem. Eng. Prog., vol. 71, no. 4, Apr. 1975, pp. 72-74.
- Anderson, R. F.; and Wright, C. H.: Coal Desulfurization in the Pittsburgh & Midway Solvent Refining Process. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 2-25.
- Appell, H. R.; Moroni, E. C.; and Miller, R. D.: Co-Steam Liquefaction of Lignite. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 58-65.
- Babu, S. P., ed.: Trace Elements in Fuels. Advances in Chemistry Series 141, American Chemical Society, 1975.
- Baldwin, R. M.; et al.: The Solvent Refined Coal Process. Chem. Eng. Prog., vol. 71, no. 4, Apr. 1975, pp. 70-71.
- Ban, Thomas E.: Conversion of Solid Fuels to Low-Btu Gas. Energy Sources, vol. 2, no. 1, 1975, pp. 11-31.
- Bendoraitis, J. G.; et al.: Upgrading of Coal Liquids for Use as Power Generation Fuels, Phase 1. ERPI-361-1, Electric Power Research Institute, 1976. (PB-252939/4.)
- Davison, W. Richard: Analyses of Electric Power Systems for the IGT Steam-Iron-Coal Gasification Process R75-952234-1, Sept. 22, 1975. Economic analysis. System uses producer gas available as byproduct of $\rm H_2$ plant

- Dooley, J. E.; et al.: Analyzing Syncrude from Utah Coal. BERC/RI-75/7, Energy Research and Development Admin., 1975.
- Fischer, J.; et al.: Physical Parameters in Synthoil Process. ANL-76-2, Argonne National Lab., 1975.
- Fu, Yuan C.; and Illig, Eugene G.: Catalytic Coal Liquefaction Using Synthesis Gas Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 47-57. (Also Ind. Eng. Chem., Process Des. Dev., vol. 15, no. 3, 1976, pp. 392-396.)
- Gasior, S. J.; et al.: Fluidized Bed Gasification of Various Coals. Chem. Eng. Prog., vol. 71, no. 4, Apr. 1975, pp. 89-92.
- Guerin, M. R.; et al.: Chemical Characterization of Coal Conversion Pilot Plant Materials. ERDA-92-Vol. 2, Energy Research and Development Admin., 1975, pp. 661-685.
- Haebig, J. E.; Davis, B. E.; and Dzuna, E. R.: Preliminary Small-Scale Combustion Tests of Coal Liquids. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 203-214.
- Handwerk, J. G.; et al.: Co-Steam Coal Liquefaction in a Batch Reactor. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 26-46.
- Holmgren, J. D.; and Salvador, L. A.: Low Btu Gas from the Westinghouse System. Chem. Eng. Prog., vol. 71, no. 4, Apr. 1975, pp. 87-88.
- Johanson, Edwin: Solvent Refining of Illinois No. 6 and Pittsburgh No. 8 Coals. EPRI-RP389-FR-VOL-1, Electric Propulsion Research Inst., 1975. (PB-243875.)
- Jones, J. F.; et al.: Char Oil Energy Development, Vol. I. FE-1212-T-9, Energy Research and Development Admin., 1975.
- Jones, J. F.; et al.: Char Oil Energy Development, Vol. II. FE-1212-T-10, Energy Research and Development Admin., 1975.
- Katzer, J. P.; et al.: Kinetics and Mechanisms of Desulfurization and Denitrogenation of Coal-Derived Liquids. FE-2028-1, Energy Research and Development Admin., 1975.
- Kydd, Paul H.: Conservation of Energy. Integrated Gasification Gas Turbine Cycles. Chem. Eng. Prog., vol. 71, no. 10, Oct. 1975, pp. 62-68.
- Laurendeau, N. M.: Theoretical and Practical Concepts Governing Production of Power Gas from Coal. CONF-750458-10, Energy Research and Development Admin., 1975.

- Loeding, J. W.: Recent Developments in Low-Btu Gasification. IGT Survey of Energy Developments, Apr. 1975, p. 59.
- Low, James Y. F.; et al.: Batch Autoclave Hydrogenation of Solvent Refined Lignite. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, pp. 122-141.
- Malone, H. P.: The Characterization and Upgrading of Coal Liquids to High Value Fuels and Chemicals. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 1, Apr. 1975, p. 142, Abstract only.
- Patterson, R. C.: C-E Low-Btu Gasification of Coal Project, Phases I, II, III. FE-1545-T-1, Energy Research and Development Admin., 1974 and FE-1545-T-2, Energy Research and Development Admin., 1975.
- Phinney, J. A: Coal Liquefaction at the Pilot Plant Level. Chem Eng. Prog, vol. 71, no. 4, Apr. 1975, pp. 65-67.
- Scheppele, Stuart E.: Mass Spectrometric Analytical Services and Research Activities to Support Coal-Liquid Characterization Research. BERC-0020-1, Energy Research and Development Admin., 1975; and BERC-0020-2, Energy Research and Development Admin., 1975.
- Schmid, B. K.: Status of the SRC Project. Chem. Eng. Prog., vol. 71, no. 4, Apr. 1975, pp. 75-78.
- Scott, C. D.; et al., compilers: Coal Conversion Process Development. ORNL-TM-4777, Energy Research and Development Admin., 1975, pp. 218-234. The coal conversion program is a relatively new effort directed initially at characterization of liquids and gases from coal conversion processes.
- Scotti, L. J.; et al.: The Project COED Pilot Plant. Chem. Eng. Prog., vol. 71, no. 4, Apr. 1975, pp. 61-62.
- Sharkey, A. G., Jr.; et al.: Mass Spectrometric Analysis of Streams from Coal Gasification and Liquefaction Processes. PERC/RI-75/5, Energy Research and Development Admin., 1975.
- Shaw, Henry; Kalfadelis, Charles D.; and Jahnig, Charles E.: Evaluation of Methods to Produce Aviation Turbine Fuels from Synthetic Crude Oils Phase I. GRU-1PEA-75, Exxon Research and Engineering Co., 1975. (AFAPL-TR-75-10, AD-A016456.)
- Sternberg, Heinz W.; Raymond, Raphael; and Akhtar, Sayeed: Synthoil Process and Product Analysis. Am. Chem. Soc., Div. Pet. Chem., Prepr., vol. 20, no. 3, Aug. 1975, pp. 711-719.

- Sturm, G. P., Jr.; et al.: Analyzing Syncrude from Western Kentucky Coal. BERC/RI-75/12, Energy Research and Development Admin., 1975.
- Waitzman, D. A.; et al.: Evaluation of Fixed-Bed, Low-Btu Coal Gasification Systems for Retrofitting Power Plants. EPRI-203-1, Electric Power Research Inst., 1975. (PB-241672.)
- White, J. W.; Sprague, R.; and McGrew, W., eds.: Second Clean Fuels from Coal Symposium. Institute of Gas Technology, 1975.
- White, Philip C.; Zahradnik, Raymond L.; and Vener, Raymond E.: Coal Gasification. Coal Conversion Systems Technical Data Book. ERDA-111-75/1, Energy Re-Search and Development Admin., 1975, pp. 89-91.
- White, P. C.: Coal Gasification. ERDA-76-30-2, Energy Research and Development Admin., 1975.
- Wolk, R. H.; Stewart, N. C.; and Silver, H. F.: Review of Desulfurization and Denitrogenation in Coal Liquefaction. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 20, no. 2, Apr. 1975, pp. 116-130.
- Wright, Charles H.: Sulfur and Nitrogen Balances in the Solvent Refined Coal Process. EPA/650/2-75/011, Environmental Protection Agency, 1975. (PB-243893.)
- Yavorsky, P. M.; et al.: The Synthoil Process Chem. Eng. Prog., vol. 71, no. 4, Apr. 1975, pp. 79-80.
- Applied Research and Evaluation of Process Concepts for Liquefaction and Gasification of Western Coals. FE-2006-1, Energy Research and Development Admin., 1975. Research results, including properties of coal conversion products, are reported.
- Fossil Fuel and Advanced Systems Division Research Progress Report. EPRI-FF-2, Electric Power Research Inst., 1975.
- GE Gives Details of Low Btu Gas Process. Chem. Eng. News, vol. 53, July 7, 1975, pp. 25-26.
- Molten-Salt Coal Gasification Process Pilot Plant. FE-1529-T-1, Energy Research and Development Admin., 1975.
- Solvent Refined Coal (SRC) Process. FE-496-109, Energy Research and Development Admin., 1975.

- Akhtar, Sayeed; Friedman, Sam; and Yavorsky, Paul M.: Process for Hydrodesulfurization of Coal in a Turbulent Flow, Fixed Bed Reactor. AIChE Symp. Ser., vol. 70, no. 137, 1974, pp. 106-113.
- Balzhiser, R. E.: Fossil Fuel and Advanced Systems Division Technical Progress Report. EPRI-FF-1, Electric Power Research Institute, 1974.
- Ban, Thomas E.: Conversion of Solid Fuels to Low Btu Gas. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 19, no. 1, Apr. 1974, pp. 79-98.
- Banchik, I. N.: Clean Energy from Coal. Energy Pipelines System, vol. 1, no. 2, Feb. 1974, pp. 31-34.
- Banchik, I. N.: Winkler Process for Production of Low-Btu Gas from Coal. Symposium Papers Clean Fuels from Coal, Institute of Gas Technology, 1973, pp. 163-178.
- Chan, F. K.: SASOL Type Process for Gasoline, Methanol, SNG, and Low Btu Gas from Coal. EPA-650/2-74-072, Environmental Protection Agency, 1974. (PB-237670.)
- Chopey, N. P.: Gas from Coal: An Update. Chem. Eng., vol. 81, no. 5, Mar. 1974, pp. 70-73.
- Crouch, W. B., et al.: Recent Experimental Results on Gasification Combustion of Low Btu Gas for Gas Turbines. Combustion, vol. 45, no 10, Apr. 1974. pp. 32-35.
- Dobner, S.; Gluckman, M. J.; and Squires, A. M.: Production of Low-Btu Gas from Coal in Combination with Advanced Power Cycles. AIChE Symp. Ser., vol. 70, no. 137, 1974, pp. 223-229.
- Eisen, Fred S.: Preparation of Gas Turbine Engine Fuel from Synthetic Crude Oil Derived from Coal. Final Rep., Sun Oil Co., Feb. 1975.
- Fortuin, J. B.; and Haag, D.: Total Energy by Gasification. Hydrocarbon Process., vol. 53, no. 8, Aug. 1974, pp. 85-88.
- Foster, A. D.; Doering, H. von E.; and Hickey, J. R.: Gas Turbine Fuels. General Electric GER-2222 (1972) and GER-2222-J (1974). The latter report also referenced in a Mobil R & D progress report "Fuel Flexibility in Heavy Duty Gas Turbines."
- Greene, M. I.; Scotti, L. J.; and Jones, J. F.: Low Sulfur Synthetic Crude Oil from Coal. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 19, no. 1, 1974, pp. 215-234.

- Hamshar, J. A.; Terzian, H. D.; and Scotti, L. J.: Clean Fuels from Coal by the COED Process. Environmental Aspects of Fuel Conversion Technology, Proc.,
 F. A. Ayer, compiler, Environmental Protection Agency, 1974, EPA-650/2-74-118, pp. 147-157.
- Hardin, M. C.; and Stettler, R. J.: Initial Evaluation of Coal-Derived Liquid Fuels in a Low Emission and a Conventional Turbine Combustor. General Electric Engineering Publication A-3161, Sept. 1974.
- Hardin, M. C.: Evaluation of Three Coal-Derived Liquid Fuels in a Standard T63 Combustor. Detroit Diesel Allison RN 74-28, Nov. 14, 1974.
- Huffman, E. L.: Solvent Refined Coal for Power Generation Presented at Ninth Intersociety Energy Conversion Engineering Conference, Aug. 26, 1974.
- Kamody, J. F.; and Farnsworth, J. F.: Gas from the Koppers-Totzek Process for Steam and Power Generation. Industrial Fuel Conference, CONF-7410146-11, 1974.
- Klinksiek, D. T.; and Hsieh, B. C. B.: Advanced-Cycle Power Via Coal Gasification. Proceedings of the American Power Conference, vol. 36, B. Haigh, ed., Illinois Institute of Technology, 1974, pp. 580-586.
- Magee, E. M.; Jahnig, C. E.; and Shaw, H.: Evaluation of Pollution Control in Fossil Fuel Conversion Processes. Gasification: Section I Koppers-Totzek Process. EPA-650/2-74-009A, Environmental Protection Agency, 1974. (PB-231675.)
- McCallister, R. A.; and Ashley, G.C.: Coal Gasification to Produce Low-Btu Fuel for Combined-Cycle Power Generation. Proceedings of the American Power Conference, vol. 36, B. Haigh, ed., Illinois Institute of Technology, 1974, pp. 292-299.
- Morton, Rogers C. B.: Coal Technology: Key to Clean Energy, Annual Report, 1973-1974. Office of Coal Research, 1974.
- Mudge, L. K.; Schiefelbein, G. F.: Li, C. T.; and Moore, R. H.: Gasification of Coal. NP-20191, Battelle Pacific Northwest Labs., 1974 Description of all fixed-bed, fluidized-bed, and entrained processes.
- O'Hara, J. B., et al.: Producing Clean Boiler Fuel from Coal Chem. Eng. Prog., vol. 70, no. 6, June 1974, p. 70-71.
- Ruberto, R. G.; et al.: Characterization of Synthetic Liquid Fuels Am Chem. Soc., Div. Fuel Chem., Prepr., vol. 19, no. 2, 1974, pp. 258-290.
- Schora, Frank C., Jr.; and Tarman, Paul B.: Solvent Refined Coal Process Including Recycle of Coal Minerals. U.S. Patent Appl. 446, 973, Mar. 4, 1974. (PB-230650.)

- Swansiger, J. T.; Dickson, F. E.; and Best, H. T.: Liquid Coal Compositional Analysis by Mass Spectrometry. Anal. Chem., vol. 46, no. 6, May 1974, pp. 730-734.
- Trilling, C. A.: Molten Salt Process for the Gasification of Coal. Materials Problems and Research Opportunities in Coal Conversion. Vol. II, CONF-740473-P2, Energy Research and Development Admin., 1974, pp. 215-235.
- Wen, C. Y.; et al.: Production of Low Btu Gas Involving Pyrolysis and Gasification. Adv. Chem. Ser. 131, 1974, pp. 9-28. (See also Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 18, no. 1, 1973, pp. 36-55.)
- Yavorsky, Paul M.; Akhtar, Sayeed; and Friedman, Sam: Process Developments: Fixed Bed Catalysis of Coal to Fuel Oil. AIChE Symp. Ser., vol. 70, no. 137, 1974, pp. 101-105.
- Evaluation of Coal-Gasification Technology. Part II. Low- and Intermediate-Btu Fuel Gases. NP-20080P2, National Research Council, National Academy of Engineering, 1974. Review with 48 references, recommendations for future work, and brief description of various processes.
- Evaluation of Coal Gasification Technology: Part 2. Low and Intermediate Btu Fuel Gases. OCR-74-INT-2, Office of Coal Research, Dept. of Interior, 1974. (PB-234042.)
- Gas Industry Research Plan American Gas Association, Jan. 1974, pp. 33-34, 98,99. Comments on low-Btu gas may be of interest.
- Low Btu Gasification of Coal for Electric Power Generation. OCR-83-INT-1, Office of Coal Research, Dept. of Interior, 1974. (PB-236972.)
- Pilot Plant to Produce Low Btu Gas from Coal. FE-628-T-2, Energy Research and Development Admin., 1974.
- Producer Gas from Coal. Compressed Air, vol. 79, no 10, Oct. 1974, pp. 16-17.

- Agosta, J.; et al.: Future of Low Btu Gas in Power Generation. Proceedings of American Power Conference, vol. 35, Illinois Institute of Technology, 1973, pp. 510-522. (See also CONF-730582.)
- Briggs, D. E.: Coal Gasification. NP-20097, Univ. Michigan, 1973. Review of coal gasification fundamentals including coal characteristics, coal processing, chemical reactions, and thermodynamics; low- and high-Btu gas production.

- Conn, A. L: Low Btu Gas for Power Plants (from High Sulfur Coal). Chem. Eng. Prog., vol. 69, no. 12, Dec. 1973, pp. 56-61.
- Cover, A. E.; Schreiner, W. C.; and Skaperdas, G. T.: Kellogg's Coal Gasification Process. Chem. Eng. Prog., vol. 69, no. 3, Mar. 1973, pp. 31-36. Eleven generally short articles on coal gasification. Complete manuscript can be ordered through AIChE. Most articles are not of interest to this project.
- Curran, G. P.; et al.: Production of Clean Fuel Gas from Bituminous Coal. EPA-650/2-73-049, Environmental Protection Agency, 1973. (PB-232695.)
- Loeding, J. W.; and Tsaros, C. L.: IGT U-Gas (Clean Utility Gas) Process. Symposium Papers Clean Fuels from Coal. Institute of Gas Technology, 1973, pp. 241-271.
- Johnson, C. A.; et al.: Present Status of the H-Coal Process. Symposium Papers Clean Fuels from Coal. Institute of Gas Technology, 1973, pp. 549-575.
- Johnson, C. A.; et al.: H-Coal: Conversion of Western Coals. AIME Trans., vol. 254, no. 3, Sept. 1973, pp. 235-238.
- Wen, C. Y.: Production of Electricity via Coal and Coal-Char Gasification. OCR-66-INT-3, Office of Coal Research, Dept. of Interior, 1973. (PB 235784.)
- Wen, C. Y.; et al.: Production of Low Btu Gas Involving Coal Pyrolysis and Gasification. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 18, no. 1, Apr. 1973, pp. 36-55.
- Coal Gasification for Electric Power Generation. Combustion, vol. 45, no. 5, Nov. 1973, pp. 6-12.
- Kentucky Coal Utilization Research Program. Project 3: Low Btu Gas and Solid Desulfurized Fuel. Ann. Rep. July 1, 1972-June 30, 1973, Kentucky Univ., Nov. 1973.

- Akhtar, Sayeed; Friedman, Sam; and Yavorsky, Paul M.: Low Sulfur Liquid Fuels from Coal. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 16, no. 1, Apr. 1972, pp. 1-12.
- Frank, M. E.; Rothman, S. N.; and Schmid, B. K.: Use of Refinery LP Model to Determine Value of Coal-Derived Liquids. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 16, no. 1, Apr. 1972, pp. 13-25.

- Goldman, G. K.: Liquid Fuels from Coal, 1972. Chemical Process Review, no. 57, 1972 Based on U.S. Patents since early 1940's
- Jones, John F.; et al.: Char Oil Energy Development. OCR-73-INT-1, Office of Coal Research, Dept. of Interior, 1972.

Citations from 1971

- Jacobs, Harry E.; Jones, J. F.; and Eddinger, R. T.: Hydrogenation of COED Process Coal-Derived Oils. Ind. Eng. Chem., Process Des. Dev., vol. 10, no. 4, Apr. 1971, pp. 558-562.
- Jones, John F.; et al.: Char Oil Energy Development. OCR-R/D-56, Office of Coal Research, Dept. of Interior, 1971.
- Karr, Clarence, Jr.; et al.: Liquid Fuels from Tars by Carbonization of Coals in Hydrogen Atmospheres. Ind. Eng. Chem., Prod. Res. Dev., vol. 10, no. 2, 1971, pp. 204-208.
- Seglin, L.; and Eddinger, R. T.: Synthetic Crude Oil from Coal. Kirk-Othmer Encyclopedia of Chemical Technology, Supplement Volume, 1971, pp. 178-198.
- Trujillo, Alfonso R.: Characterization of Coal Hydrogenation Products. Ph.D. Thesis, Univ. Utah, 1971.
- Economics of Generating Clean Fuel Gas from Coal Using an Air-Blown Two-Stage Gasifier. NP-20087, Office of Coal Research, Dept. of Interior, 1971. Low-Btu-gas version of Bi-Gas process using air at 300 psig.
- Estimation of Coal and Gas Properties for Gasification Design Calculations. OCR-22-INT-7, Office of Coal Research, Dept. of Interior, 1971. (PB-235370.)
- Project Gasoline Vol. 4, Book 3: Pilot Scale Development of the CSF Process. OCR-39-VOL-4-BK-3, Office of Coal Research, Dept. of Interior, 1971. (PB-234131.)

Citations from 1970

- Akhtar, S.; Friedman, S.; and Hiteshue, R. W.: Hydrogenation of Coal to Liquids on Fixed Beds of Silica-Promoted Cobalt Molybdate Catalyst. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 15, no. 4, Pt. 1, 1970, pp. 27-41.
- Hill, G. R.: Project Western Coal: Conversion of Coal into Liquid. OCR-18-F, Office of Coal Research, Dept. of Interior, 1970. (PB-234748.)

- House, W. T.: Catalytic Hydrocracking of Coal Liquids. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 15, no. 4, 1970, pp. 68-83.
- Karr, C., Jr.; et al.: Liquid Fuels from Tars by Carbonization of Coals in Hydrogen Atmospheres. Ind. Eng. Chem., Prod. Res. Dev., vol. 10, no. 2, 1971, pp. 204-208.
- Kawa, W.; Feldman, H. F.; and Hiteshue, R. W.: Hydrogenation of Asphaltene from Coal Using Halide Catalysts. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 14, no. 4, Pt. 1, 1970, pp. 19-26.
- Vestal, M. L.; Essenhigh, R. H.; and Johnston, W. H.: Hydrogen Processing of Coal and the Kinetics of Desulfurization. Am. Chem. Soc., Div. Fuel Chem., Prepr., vol. 14, no. 4, Pt. 2, 1970, pp. 84-100.
- Wise, Wendall H.; et al.: Catalytic Hydrogenation of Multi-Ring Aromatic Coal Tar Constituents. Ind. Eng. Chem., Prod. Res. Dev., vol. 9, no. 3, 1970, pp. 350-357.

Citations from 1969

- Aczel, T.; Foster, J. Q.; and Karchmer, J. H.: Characterization of Coal Liquifaction Products by High Resolution, Low Voltage Mass Spectrometry. Am. Chem. Soc., Div Fuel Chem., Prepr., vol. 13, no. 1, 1969, pp. 8-17.
- Brant, V. L.; and Schmid, B. K.: Pilot Plant for De-ashed Coal Production. Chem. Eng Prog., vol. 65, no. 12, Dec. 1969, pp. 55-60.
- Prasek, Karel; and Konrad, Bohumil: Calculation of Generator Gas Composition Formed by Pressure Gasification of Lignite. Plyn. (Czech), vol. 49, nos. 10-11, 1969, pp. 300-304. The method of Newton-Traustel is used to calculate the composition of gas formed from the pressure gasification of lignite.

Citation from 1968

Wu, W. R. K.; and Storch, H. H.: Hydrogenation of Coal and Tar. BM-B-633, Bureau of Mines, 1969. (PB-233396.)

Property	Test	Distrilate categories						
								-
		ļ						
Gravity, OAPI (specific)								
Boiling range								
Initial boiling point, OF								
5 %								
10 %								
20 %								
30 %								
40 %								
50 %								
60 %								
70 %								
80 %								
90 %								
95 %								
Final boiling point, OF								
Pour point, °F								
Flashpoint, ⁰ F		·						
Viscosity at OF								
at ^o F								
at ^o F						İ		
Ash, wt%								
Ash melt temperature, OF								
Heat of combustion, Btu/lb								
Carbon residue								
Carbon ramsbottom, wt%								
Thermal stability								
Electrical conductivity								
Water								
Sediment								
Neutrality								
Corrosion								

TABLE 2. - LOW-Btu-GAS PROPERTY FORM

	T			<u> </u>
Property				
		Ī_		
Composition, vol%:		-		
н ₂				
со				
co ₂				
н ₂ s		· · · · · · · · · · · · · · · · · · ·	-	
NH ₃			-	
CH ₄				
Other hydrocarbons				
N ₂				
cos				
Specific gravity				
Average molecular weight				······································
Heating value, Btu/ft ³ :			77	
Gross				-
Net				
Gross with CO_2 , H_2S , and NH_3 removed				
Net with CO2, H2S, and NH3 removed		······································		
Sulfur, ppm				
Alkali metals and sulfur, ppm				
Water, vol.%				
Solids, ppm				
Solids: particle size, µm				
Flammability limit ratio				
			· · · · · · · · · · · · · · · · · · ·	
				

TABLE 3 - LIQUID-FUELS PROPERTIES

[Data from ref 27]

Property	Test			Disti	llate categories		
		Light distillate	Heavy distillate	Crude and blended residuals	Heavy _residuals		
Gravity, OAPI (specific)	D-1298	Report	Report	0.96 max	0 96 max		
Boiling range	D-86						
Initial boiling point, ^O F						 	
5 %				<u></u>			
10 %						 	
20 %							
30 %			-				
40 %							
50 %							
60 %							
70 %							
80 %							
90 %		650 шах	Report				
95 %							
Final boiling point, Or							
Pour point, ^o F	D-97	0°-20°below sub	Report	Report	Report		
Flashpoint, ^O F	D-93	Report	Report	Report	Report		
Viscosity at 100°F, cS, min	D-445	0 5	1.8	1 8	1 8	 	
at 100°F, cS, max	D-445	5 8	30	160	900		
at 210°F, cS, max	D-445						
Ash, wt% max %	D-482	0 0050	0 0050	Report	Report		
Ash melt temperature, ^o F							
Heat of combustion, Btu/lb							
Carbon residue (10% bottoms max)	D-524	0 25					
Carbon ramsbottom, wt%	D-524	1 0	1.0	1.0	Report		
Thermal stability (tube no , max)	D-1661		2 0	2.0	2.0		
Electrical conductivity							
Water, vol % max	D-95	0 1	0 1	Report	0 1		
Sediment							
Neutrality							
Corrosion							

41	

						,	
Hydrocarbon type			_				
Saturates							
Olefins							
Aromatics, total							
Aromatics, polynuclear							
Luminometer number							
Analine point, ^O F							
H/C atom ratio							
Elemental analyses, wt%							
С							
н		Report	Report	Report	Report		
N			 	<u> </u>	<u> </u>		
s	D-129	Report	Report	Report	Report		
0		<u> </u>		i i i i i i i i i i i i i i i i i i i	Report		
Trace metal analyses, ppm						 	
V (max)		0.5	0.5	0,5	0 5		
Ni	_			0.5	 		
Na and K		1 0	1 0	1.0	1 0		
К		 		 	10		
Mg							
Ca		2 0	2 0	10.0	10 0		
Pb		1 0	1 0	1 0	1 0		
Cu			10	1	1 0		
Fe				-			
Si					 		
Zn				 	 	 	
Ва				-	-		
Mn					 		
Мо				 			
w					†		<u> </u>
Tı					 		
Water + sediment, vol % max	D-1796	0 1	0.1	1 0	1 0		
V treated, 3/1 wt% Mg/V				100 0	500 0		
Other trace metals, > 5 ppm		Report	Report	Report	Report		
Filterable dirt, 1/100 MI max.	D-2276	8 0	10 0	Report	Report		

TABLE 4 - TYPICAL PROPERTIES OF LIQUID FUELS

[Data from ref 27]

Property		Fue	l type	
	True di	stillates	Ash-bea	aring fuels
	Kerosene	No. 2 distillate	Blended residuals and crudes	Heavy residuals
Specific gravity at 100° F (38° C)	0.78 - 0.83	0.82 - 0.88	0.80 - 0.92	0.92 - 1.05
Viscosity at 100° F (38° C), cS	1 4 - 2 2	2 0 - 4.0	2 - 100	100 - 1800
Flashpoint, ^O F (^O C)	130 - 160 (55 - 70)	150 - 200 (55 - 95)	50 - 200 (10 - 95)	175 - 265 (80 - 130)
Pourpoint, ^o F (^o C)	-50 (-45)	-10 - 30 (-20 - 0)	15 - 110 (-10 - 45)	15 - 95 (-10 - 35)
Gross heating valve, kcal/kg (Btu/lb)	10 700 - 10 950 (19 300 - 19 700)	10 500 - 10 950 (19 000 - 19 600)	10 500 - 10 900 (19 000 - 19 400)	10 150 - 10 500 (18 300 - 18 900)
Filterable dirt, percent of maximum	0.002	0.005	0.05	0.2
Carbon residue, percent. 10 Percent bottoms 100 Percent bottoms	0.01 - 0.1	0.03 - 0.3	0 3 - 3	 2 - 10
Sulfur content, percent	0.01 - 0.1	0.1 - 0.8	0,2 - 3	0.5 - 4
Nitrogen content, percent	0.002 - 0 01	0.005 - 0.06	0.06 - 0.2	0.05 - 0.9
Hydrogen content, percent	12.8 - 14.5	12.2 - 13.2	12.0 - 13.2	10 - 12.5
Ash content, ppm. Fuel as delivered Inhibited	1 - 5	2 - 50 	25 - 200 	100 - 1000
Trace-metal contaminants, ppm				
Sodium plus potassium	0 - 0 5	0 - 1	1 – 100	1 - 350
Vanadium	0 - 0 1	0 - 0 1	0.1 - 80	5 - 400
Lead Calcium	0 - 0 5 0 - 1	0 - 1 0 - 2	0 - 1 0 - 10	0 - 25 0 - 50

TABLE 5. - TYPICAL PRODUCT COMPOSITION
FROM SOLVENT-REFINED-COAL PROCESS

Component	Raw coal	SRC product
	Typical a	nalysis, wt %
Carbon	70.7	88.2
Hydrogen	4.7	5,2
Nitrogen	1.1	1.5
Sulfur	3.4	1.2
Oxygen	10.3	3.4
Ash	7.1	.5
Moisture	2.7	0
	100.0	100.0
Volatile matter	38.7	36.5
Fixed carbon	51.5	63.0
Ash	7.1	.5
Moisture	2.7	0
	100.0	100.0
Heating value, Btu/lb	12 821	15 768

TABLE 6 - FUEL DATA FROM H-COAL PROCESS

(a) H-Coal from Illinois #6 coal (fuel oil mode), data from ref 1

Property	Test	Distillate categories						
		Full-range liquid	Naphtha	Middle distillate	Heavy distillate			
Gravity, OAPI (specific)		27 6	40 6	16 7	5 4			
Boiling range						ļ		
Initial boiling point, OF		180	196	452				
5 %			215	452	682			
10 %			228	452	688			
20 %			250	454	699			
30 %			270	470	706			
40 %			292	492	722			
50 %			312	514	737			
60 %			332	534	756			
70 %			350	570	783			
80 %		`	366	592	843			
90 %			380	616	896			
95 %			394	630	944			
Final boiling point, OF		>944		636				
Pour point, OF								
Flashpoint, ^O F								
Viscosity at OF								<u></u>
$_{ m at}$ $^{ m o}_{ m F}$								
$^{ m o}_{ m F}$								
Ash, wt%								<u> </u>
Ash melt temperature, ^o F								
Heat of combustion, Btu/lb								
Carbon residue								
Carbon ramsbottom, wt%								_
Thermal stability								
Electrical conductivity								
Water								
Sediment								
Neutrality								
Corrosion								

Hydrocarbon type	1			Τ	-T	1		
Saturates					 			
Olefins			70.3	+			 	
Aromatics, total		-	1 1	-	 			
Aromatics, polynuclear		 	28 6		-			
Luminometer number	 	 	ļ				 	
Analine point, ^o F					-		ļ	
H/C atom ratio	 				-			
Elemental analyses, wt%		 	-		 			
C		ļ	 					
		87 6						<u> </u>
н		7.4						
N		0.81	0 131	0.18	0.36			
s		0 47	0 18	0 0371	0 15			
0		1 93						T
Trace metal analyses, ppm							 	
v			0 2	0 2				
Nι		<u> </u>	0.2	0 2	0 2	 		
Na			0.2	0 2	0.2	 		
к					 	-	 	
Mg					 		 	
Ca		 				 	 	 -
Рь				 		 	 	<u> </u>
Cu			 			 	ļ	
Fe			 	 		-	ļ	
Sı			0 5	1 0	15 3	 		
Zn						 		ļ
Ba					 			<u> </u>
Mn		<u> </u>			-			
Мо		-	-	ļ	<u> </u>		ļ	
W		ļ						
T ₁	ļ <u>.</u>			ļ				
	ļ 							
					1			
	L							
								ــــــــــــــــــــــــــــــــــــــ

Property	Test			Distill	ate categories			
		Light distillate (LO-308)	Residual oil (400°F+, LO-347)	Heavy distillate (LO-317-1)				
Gravity, OAPI (specific)		19 0	2 0	1 9				
Boiling range								
Initial boiling point, ^O F		282	358	620				<u></u>
5 %								ļ
10 %		364	446	650				
20 %		396	490	662				ļ
30 %		418	536	674				
40 %		440	582	688				
50 %		458	620	702				
60 %		482	640	Cracked				
70 %		506	650					
80 %		540	Cracked					
90 %		570						
95 %								
Final boiling point, ^O F								
Pour point, ⁰ F		-50	25	50				
Flashpoint, ^O F		170	260	375				
Viscosity at 100°F, kin		2 47	272	177/179				
at 122°F, kin			100	67				
at 210°F, kin		0 99	8.8	7 2				
Ash, wt%		77	840	270/292				
Ash melt temperature, ^o F			Ī					
Heat of combustion, Btu/lb		18 415	17 415	17 420				
Carbon residue, wtZ		1 0	14 6	2 2				
Carbon ramsbottom, wt%								
Thermal stability, 350°F, 6 hr			Poor st.=3	ok st =15				
Electrical conductivity		1						
Water, percent		nil	0.09	0.11				
Sediment								
Neutrality								
Corrosion						- 11		
	, , , , , , , , , , , , , , , , , , , ,						-	

			1			-	1	
Hydrocarbon type			ļ <u>.</u>					
Saturates								
Olefins								
Aromatics, total								
Aromatics, polynuclear								
Luminometer number		-						
Analine point, ^o F						1		
H/C atom ratio		1 4	1 1	1 1				
Elemental analyses, wt%		·						
С								
н		10.34	8 0	8 1				
N		0.22	0 80	0 77				
s		0.16	0 23					
О		0.10	0 23	0.15				
Trace metal analyses, ppm	-			_				
v			 	 				
Nι	Ash composition	0 7	1 0	0 1, 0 6				
Na Na	-		-					
К		0 07	1.9, 2 5	1 0, 0.6				
Mg		0 12	4 5, 8.6	0 9,0 4,2 1				
Ca		0 5	4 0					
Pb		0 1	40 0	1.1				
Cu		0 03	0 06	Trace, 0 04	 			
Fe Fe	<u> </u>							
Si			130 0	ļ				
Zn			190 0					
Ba								
Mn				ļ				
Mo								
W 	<u> </u>		ļ					
Ti			40 0					
A1			60 0					
	,		<u></u>	<u></u>				

Property	Test		-	Distilla	te categories			
Troperty		Naphtha (IBP - 350°F, 19 8 wt%)	Middle distillate (350° - 550°F, 12 1 wt%)	Vac gas oil (450° - 800°F, 11 5 wt%)	Residual (800°F+, 56 6 wt%)			
Gravity, OAPI (specific)		44 9	25.9	7 9				
Boiling range							 	
Initial boiling point, OF		-50	217	434				
5 %								
10 %		170	366	552				ļ <u>.</u>
20 %		188	378	597				<u> </u>
30 %		217	395	627				
40 %		229	408	655				
50 %		256	417	675				
60 %		282	432	695				
70 %		306	449	716				
80 %		330	471	740				
90 %		353	500	767				
95 %								
Final boiling point, OF							<u> </u>	
Pour point, OF								
Flashpoint, ^O F								
Viscosity at OF								
at ^o F								
at ^o F								
Ash, wt%					25 3			
Ash melt temperature, ^o F					13 4 unrea	cted coal		
Heat of combustion, Btu/lb								
Carbon residue								
Carbon ramsbottom, wt%								
Thermal stability								
Electrical conductivity								
Water								
Sediment								
Neutrality								
Corrosion								

Analine point, °F H/C atom ratio Elemental analyses, wt% C 86 4 88 0 89 6 H 12 9 11 2 10 4 N 0 0047 0 044 0 0083 S 0 026 0 17 0 17 O 0 039 0 058 0 08	Hydrocarbon type						·
Aromatics, total Aromatics, polymelear Luminometer number Analine point, °F H/G atom ratio Elemental analyses, wt% C 85 4 88 0 89 5 H 12 9 11 2 10 4 N 0 047 0 044 0 0083 S 0 0 26 0 17 0 17 O 0 0 0 039 0 058 0 08 Trace metal analyses, ppm V Ni Na K K M G Ca Fe Fe Ss Ss Za Da Mn Mn Mo Mo Mo W	Saturates						
Aromatics, polynuclear Laminometer number Mailine point, °F H/C atom gatio Elemental analyses, wt% C 86 4 88 0 89 6 H 12 9 11 2 10 4 N 0 047 0 044 0 0083 S 0 25 0 17 0 17 O 0 0 3039 0 058 0 08 Trace metal analyses, ppm V Ni Na K Mg Ca Pb Ca Pb Sa Zn Ba Min Mo W Mo W Mo W Mo Mo Mo W Mo Mo	Olefins						
Luminometer number Analine point, °F Analine point, °F	Aromatics, total						
Andline point, ^o F II/C ator ratio Elemental analyses, wt% C 86 4 88 0 89 6	Aromatics, polynuclear					_	
H/C atom ratio Elemental analyses, wt% C	Luminometer number						
Elemental analyses, wt% C	Analine point, ^O F						
C	H/C atom ratio						
H	Elemental analyses, wt%						
H 12 9 11 2 10 4	С	86 4	88 0	89 6			
N	н	12 9					
S	N						
O 0 039 0 058 0 08	s	0 26					
Trace metal analyses, ppm V Ni Na K Mg Ca Pb Cu Fe Si Zn Ba Mn Mo Mo W	О	0 039					
N1 N2 N3 N4 N5 N6 N6 <td< td=""><td>Trace metal analyses, ppm</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Trace metal analyses, ppm						
Na	v						
Mg	Nı						
Mg	Na				 		
Ca Pb Cu Out Fe Out Si Out Zn Out Ba Out Mn Out Mo Out W Out	К						
Pb Cu	Mg						
Cu Fe Si Zn Ba Mn Mo W	Ca				-	_	
Fe Si Si <td< td=""><td>Pb</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Pb						
S1 Zn Zn Image: Control of the co	Cu						
Zn Ba Ba Sa Mn Sa Mo Sa W Sa	Fe						
Ba	Sı						
Mn Mo W	Zn						
Mo W	Ва						
w	Mn						
	Tı .						
				_			
					 <u> </u>		

Property	Test			Distill	ate categories		
Gravity, OAPI (specific)		-7 5					
Boiling range							
Initial boiling point, ^O F		400					
5 %					-		
10 %						ļ	
20 %							
30 %							
40 %							
50 %							
60 %							
70 %							
80 %							
90 %		_					
95 %							
Fmal boiling point, ⁰ F							
Pour point, ^o F		115					
Flashpoint, ^o F		350					
Viscosity at 200°F, cP		465					
at 300°F, cP		22 5					
at 400°F, cP		5 0					
Ash, wt%		0 2					
Ash melt temperature, ^o F		100 to 200 low	r than #6 coal	feed			
Heat of combustion, Btu/lb Higher		16 700					
Carbon residue, wt%		32 8					
Carbon ramsbottom, wt%							
Thermal stability (unstable above-)		200°F					
Electrical conductivity, ohms/cm		35 x 10 ⁹					
Water		None					
Sediment							
Neutrality		1					
Corrosion	1						
		<u> </u>				 	

Hydrocarbon type		I						
Saturates								
Olefins				<u> </u>				-
Aromatics, total			_		-			
Aromatics, polynuclear								
Luminometer number	 			-				
Analine point, ^o F								
H/C atom ratio	-					_ -		
		1.0						
Elemental analyses, wt%				•				
С н		88 2						
		7 36						
N		1 3		_				
S		0 48						
0		2 65						
Trace metal analyses, ppm								
v		2 0					_	
Nı								
Na		3 1						
К		1 7						
Mg		1_8						
Ca		1 5						
Pb		0 04						
Cu								_
Fe			,					
Sı								
Zn								
Ba								
Mn								
Мо				<u> </u>				
w					-			
Ti		-						
							-	
				· · · · · · · · · · · · · · · · · · ·	<u> </u>	L	L	

Property	Test			Distillate categories		
		Hydroclone underflow (#3296-87)	Hydroclone underflow filtrate (#3296-153)			
Gravity, OAPI (specific)		-16 5(1 2307)	17 7(1 2433)			
Boiling range	D-1160					
Initial boiling point, OF		466	493			
5 %		533	538			
10 %		560	567			
20 %		615	621			
30 %		690	680			
40 %		770	752			
50 %		876	822_			
60 %			910			
70 %						
80 %						
90 %					<u> </u>	
95 %						
Final boiling point, ^o F						
Pour point, OF (Softening point)		172	240			 -
Flashpoint, OF						 <u> </u>
Viscosity at 250°F, SFS		307 3	161 4			
at 300°F, SFS			154 1			
at ^o F						
Ash, wt%						
Ash melt temperature, ^o F						
Heat of combustion, Btu/lb						
Carbon residue (Conradson), wt%		39.43	33 2			
Carbon ramsbottom, wt%						
Thermal stability						
Electrical conductivity						
Water						
Sediment						
Neutrality						
Corrosion						

Hydrocarbon type	1				· ·			
Saturates								
Olefins								
Aromatics, total						<u> </u>		
Aromatics, polynuclear								<u></u>
Luminometer number	 							
Analine point, ^o F	 						<u> </u>	
H/C atom ratio	 							
Elemental analyses, wt%								
c		79 35	87 07			ļ		
Н				-				
N		6 35	6 96					
s		1 11	1 30					
0	-	1 43	0 66					
Trace metal analyses, ppm	-	3 92	4 38		-			
V								
Nı								
Na Na								
K	-		44			ļ		
Mg Ca			14					
Pb			40	-				
Cu								
Fe								-
			208					
Si .			24					
Zn	<u> </u>							
Ba								
Mn								
Mo	ļ							ļ
W								
T ₁	-		164					
Al			52			ļ		ļ
						ļ		
	-						·	
	<u>L. </u>				L			L

<203°C(397°F), >203°C(397°F), 35 6 percent 63 7 percent

13 0(0 979)

Distillate categories^a

Test

Total overhead

19 8 (0 935) | 32 3 (0 864)

Property

Gravity, OAPI (specific)

Neutrality Corrosion

							
Boiling range			<u> </u>				
Initial boiling point, OF							
5 %	ERDA	144	144	397			
10 %	routine method						
20 %	ME LINVU						
30 %					1		
40 %							
50 %							
60 %							
70 %							
80 %							
90 %					1		
95 %		687	397	687			
Final boiling point, OF							
Pour point, ⁰ r		<5	<5	<5			
Flashpoint, ⁰ F							
Viscosity at 77°F, Sus		38					
at 100°F, sus		35 (2 4cS)		39 (3 8cS)			
at 100°F, cS	D-445		1 08	3 87			
Ash, wt%							
Ash melt temperature, ^O F							_
Heat of combustion, Btu/lb							
Carbon residue (Conradson), wt%	524	0.8	0	2 33		_	
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							

								
Hydrocarbon type	\							
Saturates	<u> </u>	19 56	33.9	12.0				
Olefins	1	2.1	5.9					
Aromatics, total		52 94	34.2	78.0				
Aromatics, polynuclear		25 98	Trace	46 2				
Luminometer number								
Analine point, OF								
H/C atom ratio								
Elemental analyses, wt%							<u> </u>	
С								
н	_				 			
N	Kjeldahl	0 44	0 42	0.446	 		-	
s	D-129	0 21	0 13	0 29				
О		0 22	0 13	0 23	 			
Trace metal analyses, ppm				 	 			
v								
Nι					 			
Na					 			
К					 		 	
Mg					-			
Ca	<u> </u>	-						
Pb	<u> </u>				<u> </u>			
Cu					 			
Fe								
Sı								
Zn								
Ва								
Mn								
Мо								
w								
Tı -								

^aDistillate, 27 9 percent of crude.

TABLE 6 - Continued

(g) H-Coal syncrude mode, from Illinois #6 coal, data from ref 4

Property	Test			Distilla	ite categories ^b		
Loperty		Total	<197°C(387°F), 35 6 wt%	>197°C(387°F), 65 3 wt%			
		overhead	35 6 wt%	65 3 WE%			:
Gravity, OAPI (specific)		17 0(0 953)	34 7(0 838)	6 6(1 025)			
Boiling range		<u> </u>		<u> </u>		 	
Initial boiling point, ^O F		138	138	387		 	
5 %	ERDA		<u> </u>			 	
10 %	routine method		<u> </u>			 	
20 %						 	
30 %						 	
40 %						 	
50 %						 	
60 %							
70 %						 	
80 %						 	
90 %		795					
95 %						 	
Final boiling point, ^o F			387	795		 	ļ
Pour point, ^o F		<5	<5	<5		 	
Flashpoint, °F				<u></u>		 	
Viscosity at 77°F, SUS		59					
at 100°F, SUS		46		77		 	
at 100°F, cS	D-445	6 1	0 96	14 9			
Ash, wt%						 	
Ash melt temperature, ^o F							
Heat of combustion, Btu/lb						 	
Carbon residue (Conradson), wt%		2 3					
Carbon ramsbottom, wt%							
Thermal stability						 	
Electrical conductivity							
Water							
Sediment							<u> </u>
Neutrality						 	
Corrosion					<u></u>		<u> </u>

Hydrocarbon type								
Saturates		19 44	42 6	7 4				
Olefins			3.6	, 4				
Aromatics, total		1 24			<u> </u>			
	<u> </u>	51 13	31 4	80 9				
Aromatics, polynuclear		32 57	Trace	64 6				
Luminometer number								
Analine point, °F								
H/C atom ratio								
Elemental analyses, wt%								
С								
Н								
N	Kjeldahl	0 633	0 212	0 871				
S	D-129	0 27	0 06	0 35				
0								
Trace metal analyses, ppm								
v								
Nι								
Na								
к								
Mg								
Ca								
Pb		_						
Cu								
Fe								
Sı								
Zn								
Ва	<u> </u>	-				_		
Mn								
Мо			_		 		-	
w					<u> </u>			
T ₁				-	-		 	-
		-		<u> </u>	 			
		 	-		 	1	-	
			 	 	 		 	
		<u> </u>	 					
		i	1	l	<u> </u>	L	L	

bDistillate, 48 2 percent of crude

Property	Test			Distill	ate categories	 	
		Total crude	180° - 380°F	380° - 650°F	650° - 975°F		
Gravity, OAPI (specific)		6.4	38 6	14 0	-2 3		
Boiling range						 	
Initial boiling point, ^O F		180	180	372	639		
5 %			226	420	652		
10 %			248	440	670		
20 %			264	474	728		
30 %			280	500	737		
40 %			292	510	758	 	
50 %			306	530	799	~	
60 %			318	542	823		
70 %			330	568	840		
80 %			338	593	868		
90 %			364	616	932		
95 %			386	670	969		
Final boiling point, OF		975	445	680	975	 	
Pour point, OF		-5		-100	86		
Flashpoint, ^o F						 	
Viscosity at 100°F, sus		707 (155 cS)		41 (4 4 cS)			
at 210°F, SUS				36 (2 7 cS)	163 (36 cS)		
at ^o F							
Ash, wt%		0 03					
Ash melt temperature, ^o F							
Heat of combustion, Btu/lb							
Carbon residue							
Carbon ramsbottom, wt%					4 4		
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality							
Corrosion		1					

Saturates Olefans Aromatics, total, percent (Aspheltenes) Aromatics, polynuclear Laminometer number Analine point, ^o F Analine point, ^o F Befantia analyses, wi% C Befantia analyses, wi% C Befantia analyses, pom V Ni Na K Mg Ca Pb Cu Pe Sa Sa Za Mn Mo Mo W T1 Refractive index 12 92 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 2 62 3.07 3 7.58 3.0 3 90 0 3.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hydrocarbon type					T		1	Γ
Olefins	I .					 	 	·	
Aromatics, polynuclear Lununometer number Analine point, ^O F H/C atom ratio Elemental analyses, wt% C 88 3 83 6 88.3 90 0 II 8 19 12 41 9 73 7.58 1 N 0 81 0 19 0 42 1 101 1 S 0 22 0 24 0 18 0 22 0 O 1 35 0 26 0 94 1.20 Trace metal analyses, ppm V Ni Na K Mg Ca Pb Cu Fe Si Zn Ba Mn Mo Mo Mo W Ti							 	 	
Aromatics, polynuclear Luminometer number Analine point, °F H/C atom ratio Elemental analyses, wt% C 88 3 83 6 88.3 90 0 H 8 19 12 41 9 73 7.58 1 N 0 81 0 19 0 42 1 101 1 S 0 0 22 0 24 0 18 0 022 0 Trace metal analyses, ppm V Ni Na K Mg Ca Pb Cu Fe Si Zn Ba Mn Mo Mo W Ti	Aromatics, total, percent (Aspheltenes)		12 92		3 07	2 62	· · · · · · · · · · · · · · · · · · ·	 	
Luminometer number 86 Analine point, °F 86 H/C storn ratio 88 3 C 88 3 H 8 19 12 41 9 73 7,58 7,58 N 0 81 0 19 0 42 1 01 S 0 22 0 24 0 18 0 22 O 1 35 0 26 0 94 1,20 Trace metal analyses, ppm V Ni Na Na K Mg Na Na K Mg Na Na Ca Pb Pb Pb Pb Cu Fe Si Si Zn Ba Mn Mn M6 W Mn Mn M6 W Mn Mn	l i		12)2		3.07	2 62	 		
### H/C atom ratio Elemental analyses, wt%		-				-	 	 	
### H/C atom ratio Elemental analyses, wt%	Analine point, ^o F			86				<u> </u>	
C									
H	Elemental analyses, wt%								
H	c		88 3	83.6	88 3	90.0			
N	н				1				
S	N								
O 1 35 0 26 0 94 1.20	s							<u> </u>	
Trace metal analyses, ppm V Ni Na K Mg Ca Pb Cu Fe Si Zn Ba Mn Mo W Ti	0				i			ļ — —	
N1 Na K Mg Ca Pb Cu Fe Si Zn Ba Mn Mo W Ti	Trace metal analyses, ppm			0 20	0 34	1.20			
Na K Mg Ca Pb Cu Fe Si Zn Ba Mn Mo W Ti	v		, <u> </u>			 			
K Mg Ca Image: Ca control of the control of th	Nι						 		
Mg Ca Ca Description Pb Description Cu Description Fe Description Si Description Zn Description Ba Description Mn Description Mo Description Ti Description	Na					-			
Ca Pb Cu	к					 			
Pb Cu Fe Si Zn Ba Mn Mo W Ti	Mg		-				 		-
Cu	Ca					 	 		
Fe Si	Рь						 		
S1	Cu					 	 		
Zn Ba Mn Mo W T1	Fe						 		
Ba	S ₁								
Mn Mo W T1	Zn								
Mo W T1	Ba						-		
W T1	Mn					-	 		
	Мо					 	 -		-
	w				-	<u> </u>			
Refractive index 1 449 1 514 1 556	Т1								
	Refractive index			1 449	1 514	1 556		-	

Property	Test	Distillate categories						
Troperty		Samp1e J-8088	950°F- cut	950°F+ cut				
Gravity, OAPI (specific)								
Boiling range								
Initial boiling point, ^O F		482		950				
5 %								
10 %		569			ļ			
20 %		620						
30 %	_	667						
40 %		705	<u> </u>					
50 %		759			<u> </u>			
60 %		866	<u> </u>					
70 %		>963						
80 %				ļ				
90 %								
95 %					ļ		ļ	
Final boiling point, ^o F			950					
Pour point, °F		>115						
Flashpoint, OF		320						
Viscosity at 21°F, cS		318 3		ļ				_
at ^o F								
at ^o F								
Ash, wt%	D-482	0 02						
Ash melt temperature, ^o F								
Heat of combustion, Btu/lb		17 411						
Carbon residue (Conradson), wt%		17 3			<u> </u>			
Carbon ramsbottom, wt%				ļ				<u> </u>
Thermal stability				<u> </u>				<u> </u>
Electrical conductivity								
Water								
Sediment						ļ		
Neutrality							ļ	
Corrosion			_[<u> </u>			<u> </u>	l

Hydrocarbon type							T
Saturates							
Olefins							
Aromatics, total							
Aromatics, polynuclear							
Luminometer number							
Analine point, ^o F				i i			
H/C atom ratio							<u> </u>
Elemental analyses, wt%							
С	89 0	90.33	87.52				
н	7 94	8 85	6 26				
N	0 77	0 39	1 39				
S	0 42	0 19	0.95				
0	2.12	0 53	3 56				
Trace metal analyses, ppm							
v	3 0						
Nι	1 0						
Na	0 8						
К	0 4						
Mg	1 0						
Ca	8 0						
Рь	1 0						
Cu							
Fe	20 0						`
$\mathbf{S_1}$	2 0						
Zn							
Ва							
Mn							
Мо							
w							
T ₁	80 0						
A1	11 0						
					l		

Property	Test			Distilla	ate categories			
- 100-111/		Illinois	Geologic Inst		General Electric	Westinghouse	AFAPL	NASA
Gravity, OAPI (specific)			_					
Boiling range								
Initial boiling point, OF								
5 %								
10 %								
20 %						i		
30 %								
40 %				_				
50 %								
60 %								
70 %								
80 %								
90 %								
95 %								
Final boiling point, OF								
Pour point, ⁰ F								
Flashpoint, ^O F				-				
Viscosity at OF								
at ⁰ F								
at ^o F								
Ash, wt%								
Ash melt temperature, ^o F						1		
Heat of combustion, Btu/lb								
Carbon residue								
Carbon ramsbottom, wt%								
Thermal stability								
Electrical conductivity								
Water								
Sediment								
Neutrality								
Corrosion								

Hydrocarbon type	· · · · · · · · · · · · · · · · · · ·		I		1		T
Saturates							 -
Olefins					 	 	
Aromatics, total							
Aromatics, polynuclear			 	 	 	ļ	
Luminometer number			ļ		<u> </u>		
Analine point, ^o F				 			
H/C atom ratio				 			
Elemental analyses, wt%							-
C C							
н			 -				
N				<u> </u>			ļ. <u>. </u>
s				<u> </u>	 		
0							
Trace metal analyses, ppm	Neut A	V 7011					
V	neac A	X-ray	At abs				
	13 - 15	12.6		0.8	1 66		1.0
Nt V	18		9.08			10 0	
Na K	3 1			1 2	10.08		
<u> </u>	1 7	0.8		0 2	0 95		
Mg	1 8	<4_5	1 89		7.5	2.0	
Ca	1 49	2 3		ļ. <u> </u>	0 61		
Pb			0 12	0 04			
Cu			3 06			1 0	
Fe	12 1	4 1			35 8	8.0	
S ₁		5 0				2 0	
Zn	1 5		0 62				
Ba	0 8		ļ				
Mn	18						
Mo	<01						
W							
T1		2 4				2 0	
			<u> </u>				

CTotal of 52 trace elements listed in reference Trace elements in filter cake also listed in reference

Property	Test				late categories		
- 1000-0		Total	Initial/375°F	375° - 650°F	650° - 975°F		
Gravity, OAPI (specific)							
Boiling range							
Initial boiling point, ^O F				375	650		
5 %							
10 %							
20 %							
30 %							
40 %							
50 %							
60 %							
70 %							
80 %							
90 %							
95 %							
Final boiling point, OF		975	375	650	975		
Pour point, ^o F							
Flashpoint, ^o F							
Viscosity at OF							
at °F							
at °F							
Ash, wt%							
Ash melt temperature, ^o F					<u> </u>		
Heat of combustion, Btu/lb							
Carbon residue							
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality							
Corrosion							
·		<u> </u>					

Hydrocarbon type		1	T		T	 		Γ
Saturates								
Olefins					1 -			-
Aromatics, total								
Aromatics, polynuclear								
Luminometer number					 	· · · · · · · · · · · · · · · · · · ·		
Analine point, OF							-	
H/C atom ratio					 			
Elemental analyses, wt%								
С		87 3	84 5	88 8	89 4			
н		11 9	13 6	11 0	_			
N		0 1	0 1	0 1	10 2 0 1	 	-	
s		0 1	0 1	01	0 3	 		
0	-	0 6	1 7			 		
Trace metal analyses, ppm	-		 		 			
v					 			
Nι			_					
Na								
к					 			
Mg			<u> </u>				_	
Ca					 			
Pb					 			
Cu			··-					. <u> </u>
Fe								
$\mathbf{S_1}$					 			
Zn								
Ва								
Mn			-		-		_	
Мо	-					· -		
w				-	 			
Tı					 			
		 -						
		·						
	<u> </u>							
				<u> </u>	I	l	l	

Property	Test			Distilla	ite categories	 	
Loperty		Syncrude from Illinois coal	Low-sulfur fuel oil from Illinois coal	Syncrude from Wyodak coal			
Gravity, OAPI (specific)		15.0	4.4	26.8			
Boiling range						 	
Initial boiling point, ^O F		C ₄ +	C₄+	C∠+			
5 %							
10 %						 	
20 %							
30 %							
40 %							
50 %							
60 %							
70 %							
80 %							
90 %							
95 %							_
Final boiling point, OF							
Pour point, ^o F							
Flashpoint, ^O F							
Viscosity at OF							
at ^o F							
$_{ m at}$ $^{ m o}_{ m F}$							
Ash, wt%							
Ash melt temperature, ^O F							
Heat of combustion, Btu/lb							
Carbon residue							
Carbon ramsbottom, wt%							
Thermal stability	†						
Electrical conductivity							
Water	<u> </u>						
Sediment							
Neutrality					· · · · · · · · · · · · · · · · · · ·		
Corrosion							

~	
×	

	 			, ··· - · · · · · · · · · · · · · ·	 	
Hydrocarbon type					 	
Saturates						
Olefins	_					
Aromatics, total						
Aromatics, polynuclear						
Luminometer number						
Analine point, ^o F						
H/C atom ratio						
Elemental analyses, wt%					 	
С	Ò					
н	9 48	8 43	10 54		 	
И	0 68	1 05	0 64			
S	0 19	0 43	0 16			
0						
Trace metal analyses, ppm						
v						
Nι						
Na						
К					 	
Mg						
Ca			-			
Pb						
Cu						
Fe						
S ₁						
Zn						
Ва						
Mn						
Мо						
w				<u> </u>		
T ₁						
		j	<u> </u>			<u> </u>

Property	Test			Distill	ate categories		
-102219		Sample 76D-1117 (Fuel oil mode	Sample 76D-3521 (Syncrude mode)				
Gravity, OAPI (specific)							
Boiling range						 	
Initial boiling point, ^O F		271	270			 	
5 %		333	328			 	
10 %		349	346			 	
20 %		372	367			 	
30 %		397	396				
40 %		413	405			 	
50 %		441	433				
60 %		467	454				
70 %		498	489				
80 %		540	530				
90 %		626	590				
95 %		697	665				
Final boiling point, ⁰ F		885	942			 	
Pour point, ^o F						 	
Flashpoint, ^o F						 	
Viscosity at OF							
at ⁰ F							
at ^o F							
Ash, wt%							
Ash melt temperature, ^o F							
Heat of combustion, Btu/lb		_					
Carbon residue							
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality							
Corrosion							

Hydrocarbon type					
Saturates					
Olefins					
Aromatics, total					
Aromatics, polynuclear					
Luminometer number					
Analine point, ^O F					
H/C atom ratio					
Elemental analyses, wt%					
С [
н	10 14	9.80			
N	0.38	0 38			
s	0.11	0 13			
0	1 20	1 50			
Trace metal analyses, ppm					
l v	0 3	0 1			
Nι					
Na	0.6				
К	0 2				
Mg					
Ca	0.3				
Рь	4 7				
Cu					
Fe	40 0	12.3			
Sı					
Zn					
Ba					
Mn					
Мо					
w					
Ti	40.0				

TABLE 6 - Continued

(n) H-Coal Burning Star (fuel oil mode), data from ref 32

Property	Test		··	Distill	ate categories		
		Atmosphere overhead (76D-920)	Atmosphere overhead (76D-921)	Atmosphere bottoms (76D-922)			
Gravity, OAPI (specific)							
Boiling range							
Initial boiling point, ^O F		26	20	315			
5 %		160	170	369			
10 %		175	186	391	<u> </u>		
20 %		211	213	430			
30 %		262	264	457			
40 %		302	300	486			
50 %		336	332	516			
60 %		363	358	549			
√70 %		390	390	581			
80 %		409	409	629			
90 %		446	447	694			
95 %		474	475	740			
Final boiling point, OF		746	548	851			
Pour point, ^o F							
Flashpoint, OF					_		
Viscosity at OF							
at ^o F							
at ^o F							
Ash, wt%							
Ash melt temperature, OF							
Heat of combustion, Btu/lb							
Carbon residue							
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality						-	
Corrosion			<u> </u>				

Hydrocarbon type	1	T						
Saturates	<u> </u>	 	ļ	ļ	 			ļ
Olefins			 			<u> </u>		
		ļ						
Aromatics, total								
Aromatics, polynuclear								
Luminometer number								
Analine point, ^O F								
H/C atom ratio								
Elemental analyses, wt%								
С		86 97	87 19	88 67				
н		11.76	11.99	9 43				
N		0 20	0 20	0 42				
s		0 25	0 26	0 12				
0		1 00	1 00	1,20				
Trace metal analyses, ppm		1 00	1.00	1,20				
V								
Nι							-	
Na								
К								
Mg		 				-		
Ca								
Рь								
Cu								
Fe								
S ₁								
Zn								
Ва								
Mn								
Мо								
.W								
T ₁								
								

TABLE 6 - Concluded

(o) H-Coal Burning Star and Wyodak (syncrude mode), data from ref 32

Property	Test			Distilla	ite categories			
Troperty		Wyodak atmosphere overhead (76D-1033)	Burning Star atmosphere overhead (76D-3019)	Burning Star atmosphere bottoms (76D-2031/3021)				
Gravity, OAPI (specific)								
Boiling range		<u> </u>						
Initial boiling point, ^o F		61	71	275				
5 %		162	159	420				
10 %		177	192	440				
20 %		211	251	470		ļ <u> </u>		
30 %		249	300	494				
40 %		288	332	516				
50 %		328	361	533				
60 %		358	381	563				
70 %		394	402	588				
80 %		418	432	634		<u> </u>		
90 %		468	469	676				
95 %		499	507	722				
Final boiling point, ^O F		582	608	890				
Pour point, ⁰ F								
Flashpoint, ^O F								
Viscosity at Or							ļ <u> </u>	
at ^o F								
at °F								
Ash, wt%								
Ash melt temperature, ^o F								
Heat of combustion, Btu/lb								
Carbon residue						_		
Carbon ramsbottom, wt%								
Thermal stability								
Electrical conductivity								
Water						_		
Sediment								
Neutrality		 						
Corrosion			 					

Hydrocarbon type	1		r	т		,		
	<u> </u>	ļ	ļ	<u> </u>				
Saturates								
Olefins								
Aromatics, total								
Aromatics, polynuclear								
Luminometer number		<u> </u>						
Analine point, ^o F								
H/C atom ratio								
Elemental analyses, wt%								
С		88.01					-	
н		11 85	11 27	8_64				
N		0 13	0 44	0 41				
S		0 09	0 24	0 41				
0		0 90	1 40	1 10		 		
Trace metal analyses, ppm		3,0	1 40	1 10				
v			 		-		<u> </u>	
Nı					 -			
Na					 			
к		 	 	ļ				
Mg				 				
Ca			 	 				
Pb				ļ				
Cu								
Fe					 			
S ₁	<u> </u>							
Zn					<u> </u>			
Ba								
Mn								
Мо								
W	<u> </u>				-			
Ti								
L	L	<u> </u>						

Property	Test			Distill	ate categories		
		Gross liquified product	Centrifuged liquid product	Centrifuge residue			
Gravity, OAPI (specific)							
Boiling range							
Initial boiling point, OF						 	
5 %							
10 %							
20 %							
30 %						 	
40 %						 	
50 %						 	
60 %							
70 %						 	
80 %							
90 %							
95 %						 	
Final boiling point, OF			<u> </u>			<u> </u>	
Pour point, ^o F			<u> </u>			 	
Flashpoint, ^O F						 	
Viscosity at OF						 	
at ^o F						 	
at o _F						 	
Ash, wt%		2.7				 	
Ash melt temperature, ^o F		<u> </u>				 	
Heat of combustion, Btu/lb							
Carbon residue							
Carbon ramsbottom, wt%						 	
Thermal stability					ļ	 	
Electrical conductivity		ļ				 	
Water						 	
Sediment							
Neutrality							
Corrosion					<u> </u>	<u></u>	

Hydrocarbon type			1			I	
Saturates					 		
Olefins					 		
Aromatics, total							
Aromatics, polynuclear							
Luminometer number							
Analine point, OF					 		
H/C atom ratio							
Elemental analyses, wt%							
С							
н					 	· · · · · · · · · · · · · · · · · · ·	
N							
s		0 8		-			
0							
Trace metal analyses, ppm							
v					 		
Nı		10	6 6	54			
- Na							
К					 		
Mg							
Ca		-	-				
Pb		3.0	1.1	18			
Cu		6 7	2.7	45	 		
Fe		-					
S ₁							
Zn							
Ва							
Mn		31	11	180			
Мо							
w	<u> </u>						
Tı							
Cr		15	7.6	84			
Cd		0 19	0.077	1 0			

Property	Test		Distilla	te categories		
- 20020		4000-psi, 450°C process conditions				
Gravity, OAPI (specific)					 	
Boiling range			 		 	
Initial boiling point, ^o F		241	 			
5 %					 	
10 %		339	 	<u> </u>	 	
20 %		413	 		 	
30 %		500	 			
40 %		530			 	
50 %					 	
60 %						
70 %						
80 %						
90 %					 	
95 %						
Final boiling point, ⁰ F					 	
Pour point, ^o F					 	
Flashpoint, ^o F					 	
Viscosity at ^o F					 	<u> </u>
at ^o F			 			
at ^o F						
Ash, wt%		3 4				
Ash melt temperature, ^o F						
Heat of combustion, Btu/lb					 	
Carbon residue					 	
Carbon ramsbottom, wt%					 	
Thermal stability					 	
Electrical conductivity						
Water					 	
Sediment						
Neutrality						
Corrosion						

Hydrocarbon type	T		1		1	<u> </u>		Γ
Saturates								
Olefins								
Aromatics, total							<u> </u>	
Aromatics, polynuclear								
Luminometer number	<u> </u>		<u> </u>					
Analine point, ^o F								
H/C atom ratio								-
Elemental analyses, wt%	-							_
C C								
н		80.5						
		7 72						
N		1.190						
s		1.021						
0								
Trace metal analyses, ppm								
v								
Nι								
Na								
К								
Mg								
Ca								
Pb		-				<u> </u>		
Cu								
Fe								-
S_1								
Zn					-			
Ва								·· - · ·· ·
Mn								-
Мо								-
w		-						
Τι							,	
								-
						-	-	
,								
		· · · ·				-		
				L				

aReport includes tabulated data on percent S and N in products from many hydrogenation runs. Maximum hydrogenation pressure was only 1500 psi, so S and N reductions were not large. Typical percent reductions are (a) at 1 5 hr⁻¹. max. N reduction, 23 percent, max. S reduction, 74 percent, (b) at 3 hr⁻¹: max. N reduction, 44 percent; max S reduction, 98 percent.

Property	Test			Distill	ate categories	 	
		Centrifuged (3296-109)	Filtrate (3296-143)	Washed Filtrate (3296-147)	Upgraded distillate (3392-63(p48))		
Gravity, OAPI (specific)		-5 7 (1 1248)	-3.5 (1.1055)	-4 3 (1.1124)	9.5 (1 0035)		
Boiling range	D-1160						
Initial boiling point, ^o F		395	407	455	463		
5 %		470	480	519	543		
10 %		510	515	552	565		
20 %		579	518	606	603		
30 %		642	635	665	638	 	
40 %		700	697	730	670	 	
50 %		762	760	795	701	 <u> </u>	
60 %		845	842	865	735	 	
70 %		945	951	970	774	 	
80 %					812	 	
90 %					863		
95 %					901	 	
Final boiling point, OF					950	 	
Pour point, ^o F		_	70	75			
Flashpoint, ^O F						 	
Viscosity at 175 °F, cS		135				 	
at 210 °F, cS		43 65	34 25	56 20			
at 250 °F, cS		16 84	14 08	18 73		 	
Ash, wt%		1 40	0 02	0 015	0 06	 	
Ash melt temperature, ^o F						 	
Heat of combustion, Btu/lb							
Carbon residue					<u> </u>		
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity						 	
Water						 	
Sediment							
Neutrality							
Corrosion							

Hydrocarbon type				T = = =	1	
Saturates						
Olefins					,	
Aromatics, total			87.0	 		
Aromatics, polynuclear						
Luminometer number						
Analine point, ^O F						
H/C atom ratio						
Elemental analyses, wt%						
С	89.70	88 28	89 17			
н	7.58	7.42	9.77		 	
N	1 46	1 31	0.337			
S	0 55	0.56	0.02	 		
0	2 18	2.27	0.33			
Trace metal analyses, ppm						
v					-	
Nι					 	
Na		0 6			 	
К						-
Mg		<0.08				
Ca		<0.1		-		
Pb						
Cu						
Fe	·	4 8				
$\mathbf{S}_{\mathbf{I}}$		0 2	-		-	
Zn		 				·
Ва						
Mn		1				
Мо						
w						
T1		16 0				
C1	>670 0	<10 0				
						<u> </u>

Property	Test				ate categories	 	
		Total crude	<207°C(405° F) 4 4 percent of crude	207°-363° C (405°-685° F), 46 2 percent of crude	363°-531° C (685°-988° F), 27 3 percent of crude		
Gravity, OAPI (specific)		(1 081)	19 7 (0 936)	11 4 (0 990)	(1 109)		
Boiling range						 	
Initial boiling point, OF	Bureau of					 	
5 %	Mines routine	329	329	405	685	 	
10 %	method						
20 %							
30 %							
40 %							
50 %	-						
60 %		795 at 65%					
70 %							
80 %							
90 %				-			
95 %		-					
Final boiling point, OI	-		405	685	988		
Pour point, Or	D-97	40	<5	<5		 	
Flashpoint, ⁰ Γ							
Viscosity at 100 °F, SUS		2026	34	57			
at 100 °F, kin, eS		∿450	2 27	9.56			
at ^o F							
Ash, wt%						 	
Ash melt temperature, °F						<u> </u>	
Heat of combustion, Btu/lb							
Carbon residue (Conradson), wt%	D-524	11 2	1 29	2 33	7 42		
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality							
Corrosion							

Hydrocarbon type	1							
Saturates	<u> </u>		27.1					
Olefins		-	27 1	16	9.7		-	
Aromatics, total			3 2					
Aromatics, polynuclear			30 8	79 0	84 0			
Luminometer number			3 2	51,3	79.3			
Analine point, ^o F								
H/C atom ratio								
Elemental analyses, wt%						-		
C								
н								
N	74-17-17	0.706						
s	Kjeldahl	0 786	0 423	0 724	1.187			
0	D-129	0 42	0.20	0.30	0.44			
Trace metal analyses, ppm								
v								
Nı	-							
Na Na			-		-			
К								
Mg								
Ca								_
Рь	-							
Cu								
Fe					ļ			
Sı			-					
Zn								
Ba					<u> </u>			
Mn								
Mo								
w				,				
T1			-					
								
· · · · · · · · · · · · · · · · · · ·								
			-					
		·	l	<u></u>	<u> </u>	l	L	

Property	Test	_	Distilla	ite categories	 	
		4000-ps1, 450°C process conditions				
Gravity, OAPI (specific)			 		 	
Boiling range			 		 	
Initial boiling point, ^O F			 		 	
5 %			 			
10 %			 			
20 %						
30 %						
40 %						
50 %					 	
60 %					 	
70 %					 	
80 %						_
90 %						
95 %						_
Final boiling point, OF			 		 	
Pour point, OF					 	
Flashpoint, OF					 	
Viscosity at OF						
at ^o F					 	
at ^o F					 	
Ash, wt%						
Ash melt temperature, ^o F					 	
Heat of combustion, Btu/lb						
Carbon residue						
Carbon ramsbottom, wt%					 	
Thermal stability						
Electrical conductivity						
Water						
Sediment						
Neutrality	1					
Corrosion						

Hydrocarbon type			 	 				
1		ļ <u> </u>						
Saturates								
Olefins								
Aromatics, total								
Aromatics, polynuclear								
Luminometer number								
Analine point, ^O F								
H/C atom ratio								
Elemental analyses, wt%								
С		80 5					-	
Н		7 72						
N		1 205						
s		1 057		 	 			
0			 					
Trace metal analyses, ppm		 						
v								
Nι				ļ <u>.</u>				
Na		-						
K								
Mg								
Ca							_	
 -					<u></u>	-		
Cu								
Fe								
S_1								
Zn								
Ва								
Mn								
Мо					_			
w								
T1								
						 -		

bResults of hydrogenation runs at 500, 1000, and 1500 psi and 650°, 700°, and 800° F with CO-Mo catalyst. Max. N removal, 25 percent, Max S removal, 43 percent No data on products in this report

TABLE 7 - Continued (f) Synthoil (whole crude, 509°-650° F and 650°-698° F cuts, and residuals (698° F+)), data from ref 12°

Property	Test	1		Dıstıll	ate categories		, -	
- 10,000		Whole crude	509°-650° F cut	650°-698° F	Residuals (698° F +)			
Gravity, OAPI (specific)		5 9	15 9	9 4	-4 3			
Boiling range						· · · · · · · · · · · · · · · · · · ·	 	
Initial boiling point, OF		300	509	650	695			
5 %		440						
10 %		469						
20 %		521						
30 %		573					<u> </u>	
40 %		630						
50 %		688						
52 %		698						
70 %								
80 %								
90 %								
93 %					<u> </u>			<u> </u>
Final boiling point, OF			650	698				
Pour point, ^o F		25	-30	20	>120			ļ <u> </u>
Flashpoint, °F								ļ
Viscosity at 80°F, cS		1950		-	-			
at 100°F, cS		673	7 29	35 9	2132 at 175° F			
at 210°F, cS			1 85	3.91	359.1			ļ — —
Ash, wt%				ļ				ļ
Ash melt temperature, OF				ļ. <u> </u>				
Heat of combustion, Btu/lb				 	ļ <u> </u>			
Carbon residue				ļ				
Carbon ramsbottom, wt%					ļ	<u> </u>		
Thermal stability				ļ	ļ			
Electrical conductivity					<u> </u>			
Water					 	ļ	 	
Sediment Combined		0 05			<u> </u>			
Neutrality	D-664	0 36						
Corrosion								

							···	
Hydrocarbon type								
Saturates	_							
Olefins								
Aromatics, total								
Aromatics, polynuclear								
Luminometer number								
Analine point, OF			38	40				
H/C atom ratio						-		
Elemental analyses, wt%								
С								
н								
N		0 79	0 32	0 47	1 22			
S		0 22	0 14	0 12	0 31			
0								
Trace metal analyses, ppm								
v					7 5			
Nι					1.0			
Na								
К		-					İ	
Mg								
Ca								
Рь								
Cu								
Fe					419 0			
Sı								
Zn								
Ва								
Mn								
Мо								
w								
Tı								
	_							

CData on other cuts also contained in reference

Property		Sample				1	
	ľ	J-7992		!			
Gravity, OAPI (specific)		(1 10)					
		(1 10)					
Boiling range Initial boiling point, ^O F					 		
		341			 		
5 %						<u> </u>	
10 %		473			 		
20 %		534				-	
30 %		591			 		
40 %	<u></u>	654			 		
50 %		715					
60 %		800			 		
70 %		>890			 		
80 %					 		
90 %							
95 %							
Final boiling point, OF	-						
Pour point, OF		40					
Γlashpoint, ^O F	_	222					
Viscosity at 100°F, cS		2509			 		
at 210 °F, cS		28 6					
at $^{ m o}_{ m F}$							
Ash, wt%	D-482 _	0.68					
Ash melt temperature, °F					 		
Heat of combustion, Btu/lb		16 891					
Carbon residue (Conradson), wt%		18 9					
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment Combined, vol%		12					
Neutrality							
Corrosion							

Hydrocarbon type						
Saturates						
Olefins						
Aromatics, total						
Aromatics, polynuclear						
Luminometer number						
Analine point, ^o F				-		
H/C atom ratio						
Elemental analyses, wt%						
С	87 62					
н	7 97					
N	0 97					
S	0 43					
0	2 08					
Trace metal analyses, ppm						
v	2					
N ₁	1					
Na	79					
к	116					
Mg	33					
Ca	27					
Pb	5					
Cu						-
Fe	375				·	
Sı	1348					
Zn						
Ва						
Mn		-				
Мо						
w						
Tı	150					
A1	886					

Property	Test		Dist	ıllate categories		
		Synthoil				
]		1	
				<u> </u>		
Gravity, OAPI (specific)		4 0			 	
Boiling range					 	
Initial boiling point, OF						
5 %					 	
10 %		409			 	
20 %						
30 %						
40 %						
50 %		580			 	ļ
60 %						
70 %	<u>-,</u>				 	
80 %						
90 %		780				
95 %						
Final boiling point OF					 	<u> </u>
Pour point, Or		20			 	
Ilashpoint, °F						
Viscosity at 100°F, cs		143 5			 	
$_{ m at}$ $^{ m o}\Gamma$					 	
$^{ m o}_{\Gamma}$						
Ash, wt%		0 26				
Ash melt temperature, ^o F					 -	ļ
Heat of combustion, Btu/lb		17 245				
Carbon residue		10 2			 	
Carbon ramsbottom, wt%					 	
Thermal stability						ļ
Llectrical conductivity					 	
Water						
Sediment						
Neutrality						
Corrosion						

Hydrocarbon type						
Saturates						-
Olefins		 	-			
Aromatics, total	64					
Aromatics, polynuclear	22					
Luminometer number		 				
Analine point, °F	Too dark					
H/C atom ratio	1 26					_
Elemental analyses, wt%		 				
С						
н						
N	0 810	 				-
s	0 21	 				
0		 				
Trace metal analyses, ppm		 				
v	<4 8					
Nι						
Na	4 29	 				
К	1 01					
Mg	2 11					
Ca	3 35					
Рь	<0 48	 				
Cu		 				
Fe						
Sı		 				
Zn						
Ba		 				·· ·
Mn		 				
Мо			_			
w						
T ₁				 -		
						·· —
					·	
						

Test

Property

Distillate categories

Initial boiling point, °F 5 % 10 %		Solvent- refined coal	Light oil	Wash solvent	Process solvent		
Boling range Initial boling point, OF 5 5 10 \$	Gravity, OAPI (specific)						
Initial boiling point, °F 5 % 10 %	Boiling range					 	
10 %						 	
20 %	5 %						
S	10 %					 	
40 %	20 %					 	
50 %	30 %					 	
60 %	40 %						
70 %	50 %						
80 % 90 % 95 % 95 % 95 % 95 % 95 % 95 % 9	60 %					 	
90 % 95 % 95 % 95 % 95 % 95 % 95 % 95 %	70 %						
95 %	80 %						
Final boiling point, °Γ <td>90 %</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	90 %						
Pour point, °F	95 %					 	
Flashpoint, °F Viscosity at °F at °F at °F At °T Ash, wt% Ash melt temperature, °F Heat of combustion, Btu/lb Carbon residue Carbon ramsbottom, wt% Thermal stability Electrical conductivity Water Sediment Neutrality Neutrality Sediment Neutrality Sediment Neutrality Sediment Neutrality Sediment Neutrality Sediment Sedim	Final boiling point, OF						
Flashpoint, °F Viscosity at °F at °F at °F At °T Ash, wt% Ash melt temperature, °F Heat of combustion, Btu/lb Carbon residue Carbon ramsbottom, wt% Thermal stability Electrical conductivity Water Sediment Neutrality Neutrality Sediment Neutrality Sediment Neutrality Sediment Neutrality Sediment Neutrality Sediment Sedim	Pour point, OF						
Viscosity at or a	Flashpoint, OF						
at °Γ Ash, wt% Seal S							
Ash, wt% Ash melt temperature, °F Heat of combustion, Btu/lb Carbon residue Carbon ramsbottom, wt% Thermal stability Electrical conductivity Water Sediment Neutrality In the stable of	at ^o F						
Ash melt temperature, °F Heat of combustion, Btu/lb Carbon residue Carbon ramsbottom, wt% Thermal stability Electrical conductivity Water Sediment Neutrality Neutrality Seliment Selimen	at ο _Γ					 	
Heat of combustion, Btu/lb	Ash, wt%						
Heat of combustion, Btu/lb	Ash melt temperature, ^o F						
Carbon ramsbottom, wt% Thermal stability Electrical conductivity Water Sediment Neutrality Neutrality Self of the stability Self of the stability Sel	Heat of combustion, Btu/lb						
Thermal stability Electrical conductivity Water Sediment Neutrality In a stability In a	Carbon residue						
Electrical conductivity Water Sediment Neutrality Neutrology	Carbon ramsbottom, wt%					 	
Water Sediment Neutrality	Thermal stability						
Sediment Neutrality	Electrical conductivity						
Neutrality	Water						
	Sediment						
Corrosion	Neutrality						
	Corrosion					 	

Hydrocarbon type a			T	T		
Saturates						
Olefins						
Aromatics, total						
Aromatics, polynuclear						
Luminometer number						
Analine point, ^O F						-
H/C atom ratio						
Elemental analyses, wt%					_	
c						
Н						
N						
s						
0						
Trace metal analyses, ppm	NAA XRF			_		
v						
Nı	<6.0 2.1			·· 		
Na	8 8	-	1.7			
Ŕ						
Mg						
Ca						
РЬ	<1 0					
Cu	0 6					
Fe	270 300		14+/-1			-
Sı						
Zn	8 1 7 2		0 58+/-0 04			
Ва			0 301, 0 04			
Mn						
Мо						
W					-	
Tı						
Cr	7 5 6 0		0 044+/-0 009			
As	2 1 1 8		0 0013+/-0 001			
•		•				

^aSome analysis of hydrocarbon type citing ppm of individual constituents, but not in a manner that can be used to provide numbers in this table.

Property	Test			Distill	ate categories			
Tioperty		92 MB-1	92 MB-2	93 MB-1	93 MB-2			
Gravity, OAPI (specific)								
Boiling range								
Initial boiling point, ^O F						ļ		
5 %								
10 %						<u> </u>		
20 %								
30 %					<u> </u>			
40 %							ļ	
50 %						ļ		
60 %					<u> </u>			
70 %								
80 %								
90 %								
95 %							ļ	
Final boiling point, OF							.	<u> </u>
Pour point, °F						<u> </u>		
Flashpoint, OF							<u> </u>	
Viscosity at OF							ļ	
at °F							ļ	
at ^o F							<u> </u>	<u> </u>
Ash, wt%		0 19	0 31	0.39	0.25			
Ash melt temperature, OF (SRC melt temp		312	367	327	354		<u> </u>	
Heat of combustion, Btu/lb (unspec)		15 719	15 733	15 857	15 673			
Carbon residue								ļ
Carbon ramsbottom, wt%						ļ	ļ	ļ
Thermal stability								
Electrical conductivity						ļ		ļ
Water							<u> </u>	<u> </u>
Sediment								<u> </u>
Neutrality								
Corrosion								1

Hydrocarbon type	1						
Saturates							
Olefins	-						
Aromatics, total							
Aromatics, polynuclear							
Luminometer number							
Analine point, ^o F							
H/C atom ratio							
Elemental analyses, wt%							
С		87.12	87.48	86.62	86.29		
н		6 56	6 12	5 62	5 45		
N		1 87	1 89	1 91	1 95		
s		1 07	0 88	1 10	1.09		
О		3 19	3 32	4 36	4.97		-
Trace metal analyses, ppm							
v							
Nι							
Na							
К							
Mg							
Ca							
Pb							
Cu							
Fe							
Sı							
Zn							
Ва		-					
Mn							
Мо							
w							
Tı							
•							

^bConsiderable data on streams throughout the pilot plant. However, it is not apparent which are product output streams and which are internal streams only, other than the SRC products contained on this sheet

Property	Test		-	Distilla	ate categories	 	
Troperty		SRC solid	Light distillate	Distillate fuel oil			
Gravity, OAPI (specific)		-18 3	39	5 0			
Boiling range		_					
Initial boiling point, OF		800+	100	400			
5 %						 	
10 %							ļ
20 %						 	ļ
30 %						 	
40 %							
50 %						 	
60 %						 	
70 %							
80 %						 	
90 %							
95 %							
Final boiling point, ^O F			400	900			ļ
Pour point, OF							<u> </u>
Flashpoint, ^O F				168			
Viscosity at 100°F, SUS				50 (7 3 cS)		 	
at ^o F	_						
at ^o F						 	
Ash, wt%						 	ļ
Ash melt temperature, OF							
Heat of combustion, Btu/lb (higher)		16 000	19 048	17 300			
Carbon residue							
Carbon ramsbottom, wt%							
Thermal stability						 	
Electrical conductivity							
Water						 	
Sediment						 	
Neutrality						 	
Corrosion							<u> </u>

Hydrocarbon type								
Saturates						<u> </u>		
Olefins			-					
Aromatics, total								
Aromatics, polynuclear								
Luminometer number								
Analine point, ^o F								
H/C atom ratio								
Elemental analyses, wt%								
С			84.0	87.2				
н			11.5	7.9				
N		2 0	0 4	0.9				
s		0.8	0.2					
О		U.0	1	0.3				
Trace metal analyses, ppm			3.9	3.9				<u> </u>
v								
Nι								
Na								
К								
Mg					<u>. </u>			
Ca								
Pb								
Cu								
Fe					<u> </u>			
S ₁			-					
Zn		-						
Ва								
Mn								
Мо								
w		•						
Tı							-	
								<u> </u>
	·							

Property	Test			Distilla	ite categories		
Topolog		Filtered SRC	SRC filtrate ^b	Upgraded SRC ^C			
Gravity, OAPI (specific)		-5 8 (1 1257)	2 5 (1 0560)	9 6 (1 0028)		 	
Boiling range						 	
Initial boiling point, OF		400	385	433			
5 %		520	428	555		 	
10 %		550	435	600		<u> </u>	
20 %		585	450	660		 	
30 %		620	462	718			
40 %		652	475	780		 ļ	
50 %		685	498	850		 ļ.	
60 %		740	535	940		 	
70 %		825	600	_1000_at 65%		 <u> </u>	
80 %		1020	700			 	
90 %			875 at 89%			 	
95 %						 	
Final boiling point, ^o F						ļ	
Pour point, OF		50		55		 ļ	
Flashpoint, OF							
Viscosity at 100°F, SFS		884 (1900 cS)				 _	
at 210°F, cS		20 45		32 69			
at 250°F, cS				14 43			
Ash, wt%			0.02	0 001			
Ash melt temperature, ^O F							
Heat of combustion, Btu/lb						 	
Carbon residue (Conradson), wt%				16 31		 	
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity						<u> </u>	
Water							
Sediment							
Neutrality							
Corrosion							
5511551011							

Hydrocarbon type			
Saturates			
Olefins			
Aromatics, total			
1		91 7	
Aromatics, polynuclear			
Luminometer number			
Analine point, ⁰ F			
H/C atom ratio			
Elemental analyses, wt%			
c	86 77	90 85	
н	6 90	8 76	
N	1 28	0 548	
s	0 72	0.02	
0	3 81	0 02	
Trace metal analyses, ppm		0 02	
v			
Nι			
Na	0 08		
к	0 00		
$_{ m Mg}$			
Ca	0 4		
Pb	0 5		
Cu			
Fe			
Sı	1 8		
Zn	8 8		
Ba			
Mn			
Mo			
W			
T ₁			
	34 0		
A1	5.0		

^aContaining 65 percent process solvent (3296-19 p 57)

^bAs received (3296-95 p. 66).

^c3392-64 p. 79

Test			Distil	late categories			
	Light organic liquid (J-7951)	Recycle sol- vent (J-7950)					-
	(0.9182)	(1 039)					
					ļ		
	181	326					
	<u> </u>						
	284	398					
	325	405					
	335	434					
	348	454					
	365	492					
	375	526					
	397	566					
	407	595					
	415	657					
					-		
	561	877					
	65	45					
	90	205					
	1 441	5 88					
	0 647	1 464					
						ļ	
D-482	18	3			ļ		
					<u> </u>		
	17 226	16 715					
	0 01	0 08					
	0 03						
							<u> </u>
		Light organic liquid (J-7951) (0.9182) (0.9182) 181 284 325 335 348 365 375 397 407 415 561 65 90 1 441 0 647 D-482 18	Light organic liquid (J-7950) (0.9182) (1 039) (0.9182) (1 039) (1 05	Light organic liquid (J-7951) (0.9182) (1 039) (0.9182) (1 039) 181 326 284 398 325 405 335 434 348 454 365 492 375 526 397 566 407 595 415 657 561 877 65 45 90 205 1 441 5 88 0 647 1 464 D-482 18 3 17 226 16 715 0 01 0 08	Light organic liquid (J-7951) Recycle soluent (J-7950) (0.9182) (1 039) 181 326 284 398 325 405 335 434 348 454 365 492 375 526 397 566 407 595 415 657 561 877 65 45 99 205 1 441 5 88 0 647 1 464 D-482 18 3 17 226 16 715 0 01 0 08	Light organic (J-7951) vent (J-7950) (0.9182) (1 039) 181	Light organic liquid (J-7951) Recycle soltwent (J-7950) (0.9182) (1 039) 181 326 284 398 325 405 335 434 348 454 375 526 397 566 407 595 415 657 561 877 65 45 93 205 1 441 5 88 0 647 1 464 D-482 18 3 17 226 16 715 0 01 0 08

Hydrocarbon type	1	.	Ţ···	T	·		T
Saturates			+				
Olefins	-						-
Aromatics, total							
							
Aromatics, polynuclear							
Luminometer number							
Analine point, °F	_						
H/C atom ratio	-						
Elemental analyses, wt%			<u> </u>				
С	84_72	87 34					
Н	9 98	7 56					
N	0 23	0 59					
S	0 40	0 32					
0	5 00	4 05					
Trace metal analyses, ppm							
v	0.0	0					
Nι	1 2	0 3				-	
Na	1 9	16	1				
К	0 4	0 4					
Mg	0 1	0 2					
Ca	0.5	0 4					
Pb	0.9	0 3					
Cu							
Fe	17 9	4 4					
Sı	0	0					
Zn							
Ва							-
Mn				1			
Мо						-	
w			1				
T ₁	11 0	11 0		<u> </u>			
A1	0.6	1 5			<u> </u>		
			 			<u> </u>	
			-				
			1				
			1	L	L	i	l

(f) SRC products from Kentucky #9 coal, data from letter of May 16, 1975, to T W Reynolds, NASA Lewis Research Center, from Robert G Sperhac,
Pittsburgh & Midway Coal Mining Co

Property	Test			Distilla	ite categories		
- 1000117		Solvent- refined coal	Wash solvent	Light oil			
Gravity, OAPI (specific)			(0 984)	(0 934)			
Boiling range	D-86					 	
Initial boiling point, OF			383	155		 	
5 %			402	219		 	
10 %			408	280		 	
20 %			413	310		 	
30 %			417	322			
40 %			421	332			
50 %			425	342		 	
60 %			430	350		 	
70 %		-	436	357	_	 	
80 %			444	366		 	
90 %			455	380			
95 %			463	400			
Final boiling point, ⁰ F			482	402		 	
Pour point, OF, fusion point, oF		430					
Flashpoint, Or						 	
Viscosity at 77°F, cS				1 236			
at 100°F, cS			2 75	0 794			
at o _F							
Ash, wt%	_	0.3				 	
Ash melt temperature, ^o F							
Heat of combustion, Btu/lb							
Carbon residue							
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality	1						
Corrosion		1					

Hydrocarbon type		Ι	<u> </u>	<u> </u>	T	1		
Saturates								
Olefins					 	 		
Aromatics, total								
Aromatics, polynuclear								
Luminometer number	 							
Analine point, ^O F								
H/C atom ratio								
Elemental analyses, wt%								
c		87 1	86 2	02.7			 	
н		5 3	8 6	82 7				
N		2 2	06	10 1 0 6				
s		0 5	0 2			 		
0		4 4		0.3	-			
Trace metal analyses, ppm	 	4 4	4.4	6.4			-	
v								
Nι								
Na								
К								· · · · · · · · · · · · · · · ·
Mg								
Ca								
Pb								
Cu								
Fe								
Sı								
Zn								
Ba								
Mn		-						
Мо								
w								
T ₁								
						-		
				-				
					··			

Property	Test			Distill	ate categories		
		Light organic liquid (76D-1291)	Recycle solvent (76D-3019)	Recycle solvent (76D-1289)	Recycle solvent (76D-1290)		
Gravity, OAPI (specific)		(0 8470)	(1 0318)	(1 0333)	(1 0333)		
Boiling range							
Initial boiling point, OF		83	321	306	326		
5 %		149	361	373	367		
10 %		177	375	393	390		
20 %		213	400	409	403	_	
30 %		250	416	434	441		
40 %		284	443	453	470		
50 %		317	468	483	501		
60 %		339	498	510	550		
70 %		347	537	551	584		
80 %		384	586	594	667		
90 %		399	647	669	771		
93 %		420	688	724	859		
Final boiling point, OF	-	563	844	902	1007		
Pour point, OF							
Flashpoint, OF		18		180	182		
Viscosity at 100°F, cS			5 56	5.79	10.44		
at 210°F, cS			1 45	1 48	2 25		
$^{\rm o}{\rm F}$							
Ash, with, ppm	D-482		10	100	100		
Ash melt temperature, ^o F							
Heat of combustion, Btu/lb		18 148	16 826	16 921 _			
Carbon residue (Conradson), wt%			0.29	0.19	0.22		
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water		0		0	0		
Sediment							
Neutrality							
Corrosion				-			

Hydrocarbon type							-	_
Saturates		•						
Olefins								
Aromatics, total								-
Aromatics, polynuclear		·····						
Luminometer number								
Analine point, ^o F								
H/C atom ratio								
Elemental analyses, wt%								_
С		83 70	88,00	88.40				
н	1 1	11.33	7 65	7 43	8 78			
N		0_30	0.59	0.62	0.50			
s		0 60	0 41	0.37	0.35			
0		4 00	4 00	3 90	3.30			
Trace metal analyses, ppm					713 9			
v		0 2	0 2	0 9	4 0			
Nι		0	0.2	0	0			
Na		_0.4	0.3	0.4	- 0.4	-		
К		0.1	0 1	0.2	0.8			
Mg		0	0	0	0			
Ca		0.1	15.0	0.4	0.5			_
Pb		7 4	4.0	. 0	0.9			
Cu					0.7			
Fe			13.0	_ 31.0	56.0			
Sı		0	0	1.0	0			
Zn			, The state of the	1.11				
Ва							_	_
Mn								
Мо								
w								
Ti		10.0	9 6	20 0	0			
A1		0	1.0	1.0				
		-		- 110	J =			
]					

TABLE 8 - Concluded

(h) SRC (Wilsonville Process Solvent), data from ref 32

Property	Test		Distillate categories							
• •		Process	Hydropr	ocessed process	solvent					
		solvent (76D-1289)	J-8511	J-8512	J-8513					
Gravity, OAPI (specific)		5 3	13 0	19 5	23 4					
Boiling range					<u> </u>					
Initial boiling point, ^o F	D-2887	324	175	180	172					
5 %		375	303	216	207					
10 %		394	362	268	232			<u> </u>		
20 %										
30 %		446	413	402	387					
40 %							<u> </u>			
50 %		492	469	463	432					
60 %				_						
70 %		564	534	525	495					
80 %										
90 %		665	627	602	578					
95 °G		709	681	649_	630			<u> </u>		
Final boiling point, OF		872	857	818	814			ļ		
Pour point, ^o F							<u></u>			
Flashpoint, OF		180	87	48	62			<u> </u>		
Viscosity at 100 °F, cS		5 79	3 43	2 20	2 00					
at 210 $^{ m O}\Gamma$, cS		1 48	1 10	0 93	0 90					
at °F				1						
\sh, ut%										
Ash melt temperature, Or										
Heat of combustion, Btu/lb		16 921	17 728	18 572	18 903					
Carbon residuc						ļ				
Carbon ramsbottom, wt%			<u> </u>							
Thermal stability										
Llectrical conductivity					<u> </u>					
Water							_			
Sediment										
Neutrality										
Corrosion										

Hydrocarbon type						
Saturates						
Olefins						
Aromatics, tatal Carbon %	74	66	46	34		
Aromatics, polynuclear						
Luminometer number						
Analine point, ^o F			-			
H/C atom ratio	_					
Elemental analyses, wt%						
С						
н	7 43	8.88	10 32	10 99		
N	0,62	0.44	0.11	0_02		
s	 0 37	0 06	0.01	0.01		
0	3 90	2 40	0,60	0.20		
Trace metal analyses, ppm			****			
v	0 9	<0 1	0 2	<0 1		
Nı				\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		
Na	0 39	1 1	0 08	0 05		
К	0 19	0 22	0 03	0 01		
Mg						
Ca	0 35	0 23	0 12	0.12		
Pb	0 9	0.9	0 6	0 3		
Cu						
Fe	61 0	2 3	1 5	3 4		
S ₁						
Zn						
Ва						
Mn						
Мо						
w						
T ₁	20 0	1 0	1 0	1 0		
		<u></u>		<u> </u>	l	

	٠.	_	_
1	•	_	3
8	Ξ	•	•

Property	Test				ate categories		
-		Whole crude	Naphtha (22 4 percent)	Middle distillate (46 2 percent)	Gas oil (27 8 percent)		
Gravity, OAPI (specific)		23 1	44 5	20 7	12 0		
Boiling range						 	
Initial boiling point, OF	Simulated	97	97	364	217		
5 %	distillation						
10 %			144	434	663	 	
20 %			219	468	693		
30 %			230	499	712	 	
40 %			257	525	731		
50 %			280	555	750	 	
60 %			298	581	769	 	
70 %			325	611	790	 	
80 %			345	637	811	 <u></u>	
90 %		835	367	671	835	 	
95 %						 	
Final boiling point, OF						 	ļ
Pour point, OF						 	
Flashpoint, OF						 	
Viscosity at OF						 	
at ^o F							
$_{ m at}$ $^{ m o}_{\Gamma}$						 	
Ash, wt%							
Ash melt temperature, ^o F							.
Heat of combustion, Btu/lb						 	ļ
Carbon residue							
Carbon ramsbottom, wt%						 	
Thermal stability						 	
Electrical conductivity						 	
Water						 	
Sediment							
Neutrality							
Corrosion							

						,	
Hydrocarbon type							
Saturates							
Olefins							
Aromatics, total							
Aromatics, polynuclear							
Luminometer number							
Analine point, ^o F							
H/C atom ratio							
Elemental analyses, wt%							
С	88 1	86 6	88 3	89 0			
н	11 5	13 0	11 2	10 7			
N	0 125	0 056	0 16	0 09			
s	0 013	0 0049	0 0055	0 0090			
О	0 344	0 342	0 362	0 246			
Trace metal analyses, ppm							
v							
Ni	<0.5						
Na					 		
к							
Mg	<0.5						
Ca	10.3						
Рь	<0.5						
Cu	0 1			-		<u> </u>	
Fe	0 6		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·		 	
Sı Sı						<u> </u>	
Zn	<1 0					 	
Ва	10						
Mn	<0 2		1				
Мо	<0.1						
w							
T ₁	₅ 0 1			 	 		
Cr	<0 2						<u> </u>
Co	<0 1					 	
Sn	<0.5		1			<u> </u>	
Hg	<0.02						
						·	

^aReport contains detailed hydroprocessing data on COED fractions

Property	Test			Distilla	ate categories		
		Crude	Distillate (<205°C, 21 percent)	Distillate (205°-380°C, 54 2 percent)	Residuals (>380°C, 24 2 percent)		
Gravity, OAPI (specific)		24 8 (023)	40 4(823)	18 9 (941)	10 1 (999)		
Boiling range				<u></u>			
Initial boiling point, OF			123	236			
5 %	Percent	212	198	367			
10 %	12 2	302	214	415			
20 %	21 9	392	234	455			
30 %	28 3	437	250	492			
40 %	43 6	527	270	512			
50 %	54	437 at 40 mm	288	532			
60 %	63	482 at 90 mm	314	554			
70 %	73	527 at 40 mm	336	582			
80 %	82 5	572 at 40 mm	362	611			
90 %			400	646			
95 %			435	683			
Final boiling point, OF			495	706			
Pour point, ^o F		<5	<5	<5	80		
Flashpoint, ^O F						<u> </u>	
Viscosity at 77 °F, SUS		48					
at 100 °F, sus		43(~5 1 cS)					
at 100 °F, cS	445		0 89	4 51			
Ash, wt%			0	0 002	0		
Ash melt temperature, ⁰ F							
Heat of combustion, Btu/lb							ļ <u> </u>
Carbon residue (Conradson)	D-189			0.0	0.36		
Carbon ramsbottom, wt%		0					
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality, acid number	D-974		0 03	0 08	0 37		
Corrosion							

		T					
Hydrocarbon type							 <u> </u>
Saturates				25.6	23.4		 <u></u>
Olefins	_						 <u> </u>
Aromatics, total				74_4	76 6		
Aromatics, polynuclear				32 0	51 6		 <u> </u>
Luminometer number							
Analine point, ^O F							
H/C atom ratio							
Elemental analyses, wt%							
С			-				
н							
N		0 226	0 190	0 248	0 294		
s		0 08	0 05	0 04	0 01		
0							
Trace metal analyses, ppm							
v						-	
Nι							
Na							
К							
Mg							
Ca						-	
Pb							
Cu							
Fe							
Sı				-			
Zn							
Ba							
Mn						_	
Mo			-				
w		1					
Tı							<u> </u>
			·				

^bMore detailed hydrocarbon analysis contained in report

Property	Test		Distillate categories								
		Utah A-seam	Illinois #6 seam								
Gravity, OAPI (specific)		20	22								
Boiling range					_						
Initial boiling point, OF		280	190								
5 %											
10 %		430	273								
20 %											
30 %		530	390								
40 %		-									
50 %		660	518			[
60 %	-										
70 %		780	600								
80 %											
90 %		920	684								
95 %											
Final boiling point, ^o F		950	746								
Pour point, OF		60	0_								
Flashpoint, ^O F		75	60								
Viscosity at 100°F, cs		8	5								
$_{ m at}$ $^{ m o}_{ m F}$								<u> </u>			
${\mathfrak a}{\mathfrak t}$ ${}^{\mathsf o}{\mathfrak F}$											
Ash, wt%		<0 01	<0 01								
Ash melt temperature, ^O F											
Heat of combustion, Btu/lb											
Carbon residue (10% bottoms)			4 6								
Carbon ramsbottom, wt%											
Thermal stability											
Electrical conductivity											
Water, wt%		0 1	0 1								
Sediment											
Neutrality											
Corrosion											

Property	Test			Distill	ate categories			
Gravity, OAPI (specific)		18 4	22 5	11 2				
Boiling range								
Initial boiling point, OF		354	436	557				
5 %								
10 %		409	459	705				
20 %								
30 %								
40 %				.=-				
50 %								
60 %	-							
70 %							-	
80 %		<u> </u>		-				
90 %		780	586	870				
95 %		700	300	870	-			
Γinal boiling point, ^O Γ	<u> </u>		613					
Pour point, OF		25	-70	70				
Flashpoint, °F		160	215	400				
Viscosity at 100°F, SUS		52 5 (8 1 cS)	39 3 (3 9 cS)	400				
at ° _Γ			37 3 (3 7 607					
at ^o F								
Ash, wt%		0 007	0.0					
Ash melt temperature, ^o F	_							
Heat of combustion, Btu/lb				-		-		_
Carbon residue	D-189	0 4		1.13				
Carbon ramsbottom, wt%	2 207	" -						
Thermal stability	1			- -				
Electrical conductivity		<u> </u>		• • • • • • • • • • • • • • • • • • • •				
Water	<u> </u>	<u> </u>						
Sediment Combined		0 10 -						
Neutrality	_				 			
Corrosion								
L		L	J		l		L	

Hydrocarbon type Saturates Olefins Aromatics, total Aromatics, polynuclear			-	_	
Aromatics, total				 	
 	 				
 				 	
Luminometer number			-		
Analine point, ^O F					
H/C atom ratio					
Elemental analyses, wt%					
С					
н					
N					
s	0 16	0 004	0 07		
0					
Trace metal analyses, ppm					
v		•			
Nι					
Na					
К			_		
Mg			-		
Ca					
Pb					
Cu					
Fe					
Sı					
Zn					
Ва		-			
Mn					
Mo	 		<u> </u>	 	
w	:				
T ₁				 	

TABLE 9 - Continued

(e) COED fuel from Utah light and heavy coal, data from ref 13

Property	Test			Distil	late categories		
. ,		Utah light	Utah heavy				
					ļ	 	
Gravity, OAPI (specific)		41 9	22 5			 ļ	ļ
Boiling range						 <u> </u>	
Initial boiling point, OF		176	<300			 	
5 %						 	
10 %		215	314				
20 %		230	416				
30 %							
40 %							
50 %		287	552			 	
60 %							
70 %		352	680			 	
80 %						 	
90 %		439	736				
95 %						 	
Final boiling point, ⁰ F		545	849				
Pour point, ^o F		-65	60			 	
Flashpoint, ^O F		80	120				
Viscosity at 100°F, cS		0.94	6 82				
at ^o F							
at ^o F							
Ash, wt%		<0 01	<0 01				
Ash melt temperature, ^o F							
Heat of combustion, Btu/lb	Lower	18 356	18 020				
Carbon residue		0 05	1 46				
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality							
Corrosion							

Y 1	1						
Hydrocarbon type							
Saturates							
Olefins		_		<u> </u>			
Aromatics, total	32	45					
Aromatics, polynuclear	3	14					
Luminometer number							•
Analine point, ⁰ F	84 2	Too dark					
H/C atom ratio	1.86	1.61					
Elemental analyses, wt%							
С				<u> </u>			
н							
N	0 193	0 143					
s	<0 01	0 05					
О							
Trace metal analyses, ppm							
v	<6 1	<5 4					
Nı							
Na	0 92	6 13			-		
K	1 81	0.38					
Mg	2,68	3.21			-		
Ca	<0.61	28 3					
Pb	0 74	<0.54					
Cu	0 74	×0 34					
Fe					-		
Sı		-					
Zn							
Ba		 					
Mn		-			-		
Mo		 			-		
W				 	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Ti	-	 					
		-	 	-		-	
				 			
			-				
					 	 	
			<u> </u>	<u> </u>	J	L	L

	4			Distil	llate categories			
		Utah T-460A	W Kentucky T-460C					
Gravity, OAPI (specific)		19 0	22 3				 	
Boiling range	ĺ							
Initial boiling point, OF		198	148					
5 %		340	246					
10 %		412	287					
20 %		485	364			1		
30 %		510	420					
40 %		520	492					
50 %		635	537			1		
60 %		697	603				1	-
70 %		755	657			-	<u> </u>	
80 %		803	715	-				
90 %		860	782		 			
95 %		910	824		1		1	
Final boiling point, OF		950	844		 			
Pour point, ⁰ F		50	-15					
Flashpoint, ^o F		120	<70					
Viscosity at OF			1			<u> </u>		
at ^o F								
at ^o F								
Ash, wt%		-			 			
Ash melt temperature, ^o F								
Heat of combustion, Btu/lb						<u> </u>		
Carbon residue					 			
Carbon ramsbottom, wt%		0 83	0 37	_				
Thermal stability			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		 			
Electrical conductivity					 	<u> </u>		
Water			1		1	 		
Sediment					<u> </u>			
Neutrality		<u>.</u>	- 					
Corrosion					 			-

Hydrocarbon type

Property	Test			Distill	ate categories			
		Full-range Fl (Western subbituminous)	Full-range F2 (Bituminous, Pittsburgh seam)	Distillate D from F1				
Gravity, OAPI (specific)		7 0	10 4	14 0	•			
Boiling range								
Initial boiling point, OF				266				
5 %								
10 %								
20 %								
30 %								
40 %								
50 %			1					
60 %								
70 %								
80 %								
90 %					<u> </u>			
95 %								
Final boiling point, OF				688	_			
Pour point, ^o F								
Flashpoint, ^O F								
Viscosity at OF		In range of #4	or #5 fuel oils	In range				
at ^o F				of #2 fuel oil				
at ^o F								
Ash, wt%				0 0030		<u> </u>		
Ash melt temperature, ^o F								
Heat of combustion, Btu/lb	ĺ							
Carbon residue							_	
Carbon ramsbottom, wt%								
Thermal stability								
Electrical conductivity								
Water		1						
Sediment								
Neutrality					 			
Corrosion								

[Data from ref 23]

Property	Test			Distill	ate categories		
1100010		Heavy na	aphtha	Fuel	oil		
		Raw liquid	Hydrotreated liquid	Raw liquid	Hydrotreated liquid		
Gravity, OAPI (specific)		(0 87)	(0 80)	(1 08)	(1 01)		
Boiling range	Nominal	158 - 392	158 - 392	392 - 1000	392 - 1000	 	
Initial boiling point, OF						 	
5 %		_					
10 %		223	198	477	462		
20 %	15/5					 _	
30 %	Distillation						
40 %	D-2892					 	
50 %		356	315	694	657		
60 %							
70 %							
80 %							
90 %		390	360	811	774		
95 %							
I mal borling point, O1				<u> </u>		<u></u>	
Pour point, ^o F							
Γlashpoint, ^O Γ							
Viscosity at OF			_				
at °r							
at ^o I							
Ash, wt%							
Ash melt temperature, ⁰ F						 	
He it of combustion, Btu/lb	Higher	18 300	19 300	17 100	18 100		
Carbon residue							
Carbon ramsbottom, wt%						 	
Thermal stability						 	
Electrical conductivity						 	
Water							
Sediment							
Neutrality							
Corrosion							

Hydrocarbon type								
Saturates								
Olefins								
Aromatics, total							-	
Aromatics, polynuclear								
Luminometer number								
Analine point, ^O F	_							
H/C atom ratio		_						
Elemental analyses, wt%								
С		85 60	86.80	89.40	90 80			
Н		10 90	12 90	7.70	8 60			
N		0 21	0 06	0 66	0 24		•	
s		0 47	0 005	0 41	0 04			
О		2 82	0 23	1.83	0 32			
Trace metal analyses, ppm						-		
v								
Nι				-				
Na								
К								
Mg								
Ca								
Pb				-				-
Cu								
Fe		-						
$\mathbf{S_1}$								
Zn		-						
Ва					-			
Mn								
Мо								
w								
Tı			·					

Property	Test			Distill	ate categories			
		Tot	al distillates	D 25B	Tpp 2020t	Run 25B data	617° F - 887°F	
		Run 24	Run 26	Run 25B	157 - 392 F	F = 017 F	01, 1 = 00, 1	
Gravity, OAPI (specific)								
Boiling range								
Initial boiling point, ^O F				IBP	IBP	392	617	
5 %						_		
10 %				<u></u>				
20 %				·				
30 %								
40 %					_			
50 %						<u> </u>		
60 %								
70 %								
80 %						_		
90 %								
95 %								
Final boiling point, ^o F				887	392	617	887	
Pour point, ^o F								
Flashpoint, ^o F								
Viscosity at OF								
at °F								
at ^o F								
Ash, wt%								
Ash melt temperature, ⁰ F								
Heat of combustion, Btu/lb								
Carbon residue								
Carbon ramsbottom, wt%								
Thermal stability								
Electrical conductivity								
Water								
Sediment								
Neutrality								
Corrosion								

Hydrocarbon type			T				
Saturates				 			
Olefins			1		 	 	
Aromatics, total			·	 		 	
Aromatics, polynuclear		 	 				
Luminometer number					 		
Analine point, OF					 		
H/C atom ratio		 			+		
Elemental analyses, wt%				 		- 	 -
c	91 37	90 17	89 74	90 58	89 09	90.70	
Н					i — -	89 40	
N	8 48	8 58	8 65	8 33	9 65	8 98	
s	0 0020	0 0194	0 0023	0 0018	0 0025	0 0060	
	0 02	0 01	0 0	0 02	0_02	0 03	
Trace metal analyses, ppm	0 11	1_22	1 61	1 06	1 23	1 58	
V							
N ₁	·			ļ	 		
Na							<u> </u>
K		ļ			ļ		
			ļ		ļ. <u></u>		ļ
Mg							_
Ca		ļ					
Pb					<u> </u>		
Cu							
Fe							
Sı							
Zn							
Ba							
Mn							
Mo							
w		1					
Tı							
C1	161 0	40 0	98 0				
Yields, wt% C = 329° F	34 0	34 55	43_91				
Yields, wt% C - 329° F 5 - 887° F	18 0	20_57	21 13				
>887° F	3 14	9.60	9 60				
H ₂ O Gäses	15 69 8.86	11.85	10.94 7.14		ļ		
		1 20.03	1				<u> </u>

Test Ilth run Ilth run with aged lignite and H ₂ 0	
Boiling range	
Initial boiling point, OF 5 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 91 % Final boiling point, OF Pour point, OF Flashpoint, OF	
5 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 95 % Final boiling point, Or Pour point, OF Flashpoint, OF	
10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 91 % Pour point, OF Flashpoint, OF	
20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 95 % Final boiling point, Or Pour point, OF Flashpoint, OF	
30 % 40 % 50 % 60 % 70 % 80 % 90 % 91	
40 % 50 % 60 % 70 % 80 % 90 % 91	
50 % 60 % 70 % 80 % 90 % 95 % Final boiling point, Or Pour point, OF Flashpoint, OF	
60 % 70 % 80 % 90 % 95 % Final boiling point, OF Pour point, OF Flashpoint, OF	
70 % 80 % 90 % 95 % Final boiling point, ^O Γ Pour point, ^O F Flashpoint, ^O F	
80 % 90 % 95 % Final boiling point, Or Pour point, OF Flashpoint, OF	
90 % 95 % Final boiling point, ^O F Pour point, ^O F Flashpoint, ^O F	
95 % Final boiling point, ^O F Pour point, ^O F Flashpoint, ^O F	
Final boiling point, ^O F Pour point, ^O F Flashpoint, ^O F	
Pour point, ^o F Flashpoint, ^o F	
Flashpoint, ⁰ F	
Flashpoint, ⁰ F	
at 180°F, cS 46.8 110 1030	
at ^o F	
Ash, wt% 0.05 0.03 0.01	
Ash melt temperature, ^O F	
Heat of combustion, Btu/lb	
Carbon residue	
Carbon ramsbottom, wt%	
Thermal stability	
Electrical conductivity	
Water	
Sediment	
Neutrality	
Corrosion	

Hydrocarbon type	<u> </u>							
Saturates						<u> </u>		
Olefins								
Aromatics, total								
Aromatics, polynuclear	·							
Luminometer number								
Analine point, ^O F				· - · · - · · · - · · · · · · · · · · ·				
H/C atom ratio								
Elemental analyses, wt%				<u> </u>				
C	•							
н		88.6	89 8	89.5				
N N		7 1	6 8	6.6	 			
		1 1	1 1	1.1				
s		0.13	0 10	0 12				
0		3 0	3.2	2.6				
Trace metal analyses, ppm						-		
v								
Nι								
Na -								
К								
Mg								
Ca								
Pb								
Cu		·		-				
Fe								
Sı								
Zn								
Ва								
Mn								
Мо		·						
w								
T ₁								
							1	

^aTable 7 in reference Operating conditions 1 hr at 430°C and 3000 psig, synthesis gas at 1 1 (H₂O coal oil, 9 30 70)

126

Property	Test			Distil	ate categories		
Topolo		#3912 (startup, 95 5% oil)	#4008 (end of run, 61 9% oil)				
Gravity, OAPI (specific)							
Boiling range				_		 	
Initial boiling point, OF		406	411				
5 %							
10 %		495	540			<u> </u>	
20 %		525	595				
30 %		556	660				
40 %		593	710				
50 %		620	745				
60 %	-						
70 %				<u> </u>			
80 %							
90 %	-						
95 %							
Final boiling point, OF							
Pour point, ^o F							
Flashpoint, ^o F							
Viscosity at OF							
at °r							<u> </u>
at °r							
Ash, wt%		0.37	6.04				
Ash melt temperature, ^o r						<u> </u>	
Heat of combustion, Btu/Ib							
Carbon residue							
Carbon ramsbottom, wt%					<u> </u>		
Thermal stability							
Electrical conductivity					<u> </u>		
Water							
Sediment						<u> </u>	
Neutrality							
Corrosion							

Hydrocarbon type								
Saturates						 		
Olefins	-		 		 	 		
Aromatics, total					 	 	·	
Aromatics, polynuclear						 		
Luminometer number		_			 			
Analine point, ^O F				 				
H/C atom ratio				 	 	 -		
Elemental analyses, wt%								
С		90 16	20.00					
н			80 90				_	
N		6 15	6.18					
s	-	1.13	1.43					
0	D- 1055	0 56	0 54					
Trace metal analyses, ppm	By difference	1 63	2 57					
v								
Nι								
Na								
к								
Mg	-							
Ca								
Pb	-							
Cu								
Fe								
Sı								
Zn								
Ва								
Mn								
Мо								
W	<u> </u>		-					
T ₁								
	 							
			· · · · · · · · · · · · · · · · · · ·					
								
	-							

Property	Test			Distilla	ate categories		
1.000.00		Pittsburgh seam	Wyoming Big Horn				
Gravity, OAPI (specific)							
Boiling range						 <u></u>	
Initial boiling point, ^O F		130	130				
5 %							
10 %							
3:8 % 25 2%		470					
x39xx 28 3%		-	470			 	
40 %						 	
50 %						 	
60 %						 	
70 %						 	
80 %							
90 %							
95 %					_	 	
Final boiling point, °F						 	
Pour point, OF						 	
Flashpoint, OF					<u> </u>		
Viscosity at OF							
at ^o F						 	
at °F							
Ash, wt%							
Ash melt temperature, ^o F						 	
Heat of combustion, Btu/lb							
Carbon residue	<u> </u>						
Carbon ramsbottom, wt%							
Thermal stability							
Electrical conductivity							
Water							
Sediment							
Neutrality							
Corrosion							

Hydrocarbon type a	< <u>470</u> > <u>470</u>	< <u>470</u> >470				<u> </u>	T
Saturates							
Olefins	14 2 1 8 0 2	14.0 3.6					 -
Aromatics, total		0 1					
Aromatics, polynuclear	10 8 36 2						
Luminometer number	30 3	49 3					
Analine point, ^o F							
H/C atom ratio						 	
Elemental analyses, wt%		 				-	
C					<u> </u>		
н	89 05	89 18	· · · · ·				
	8 18	8 97					
N	0 82	0 40					
S	0 17	0 04					ļ
0	1 47	1 03					
Trace metal analyses, ppm							
V			-	_			
Nι							
Na							
К							
Mg							
Ca					<u> </u>		
Pb						 -	
Cu		-	_				
Fe				 _	·		
Sı							
Zn					_		
Ва							
Mn							
Мо							
w							<u> </u>
T ₁							
							
							
a.,							

^aMore detailed analyses of various fractions contained in report

Property	Test		Distilla	ite categories	 	
		Sea Coal				:
Gravity, OAPI (specific)		18 4	 		 	
Boiling range					 	
Initial boiling point, OF		<300	 		 	
5 %						
10 %		<300			 	
20 %		318	 		 	
30 %			 		 	
40 %		460				
50 %			 		 	
60 %						
70 %		572			 	
80 %		,	 			
90 %		760				
95 %					 	
Final boiling point, ^o F		875	 		 	
Pour point, °F		55			 	
Flashpoint, ^o F		145			 <u> </u>	
Viscosity at 100 °F, cS		9 78				
at ^o F			 		 	
at ^o F					 	
Ash, wt%		0 02	 		 	
Ash melt temperature, ^O F						
Heat of combustion, Btu/lb	Lower	17 782			 	
Carbon residue		2 59			 	
Carbon ramsbottom, wt%			 		 	
Thermal stability			 			
Electrical conductivity					 	
Water					 	
Sediment			 			
Neutrality			 			
Corrosion				<u> </u>		

Hydrocarbon type					-		,
Saturates							
Olefins		_					
Aromatics, total							
Aromatics, polynuclear	47 0						
Luminometer number	12 0			<u> </u>			
Analine point, ^o F							
H/C atom ratio	Too dark						
Elemental analyses, wt%	1,52		 			_	
C C							
н				_			
N							
s	0 403						
0	0 02						
Trace metal analyses, ppm V							
	<5 3						
Nt							
Na	342 0						
К	2 49						
Mg	2.36						
Ca	12 7						
Pb	<0 53					_	
Cu						_	
Fe							
$\mathbf{S_1}$							
Zn							
Ва							
Mn						-	_
Мо							
w							
Tı							
						-	
	-						

[Data from ERDA RFP-EF-77-R-01-2674, June 6, 1977]

Property	Test	Distillate categories						
					; 1			
Gravity, OAPI (specific)		17 - 25						
Boiling range								
Initial boiling point, OF								
5 %								
10 %								
20 %								
30 %								
40 %	-	 						
50 %								
60 %		 						
70 %		-						
80 %								
90 %		+						
95 %		 						
Final boiling point, ^O F								
Pour point, ^o F		20 - 70		-				
Flashpoint, ^o F	- 							
Viscosity at 100 °F, cS		140 - 160				 		
_		10 - 20						
_							 	
Ash, wt%	_	0 01 - 0 07					<u> </u>	
Ash melt temperature, ^o F		1800 - 1900			 			
Heat of combustion, Btu/lb		^b 17 500 - 18 500				 		
Carbon residue	_	0 05 - 1 50				 	 	
Carbon ramsbottom, wt%					ļ			
Thermal stability					 			
Electrical conductivity								
Water		<0 1						
Sediment								
Neutrality						_	ļ	
Corrosion			İ		l		l	

Hydrocarbon type							
Saturates							
Olefins				-			
Aromatics, total	30 - 50						
Aromatics, polynuclear	30 - 30	-					
Luminometer number							
Analine point, ^O F							
H/C atom ratio	1.6 - 1.9	., .					<u> </u>
Elemental analyses, wt%	1.0 - 1.9						
C							
н							
N	01-08						
s	<0.9						
o	.0 9						
Trace metal analyses, ppm						-	
v							
Νι	0.1 - 0.20			 			
Na	0 2 - 0 3		<u> </u>				
К	1 3 - 2.5						
Mg	0 9 - 0 6			 			
Ca	1 - 10						
Pb							
Cu	01-2						
Fe	0 2 - 0 3				 		
Sı	3 - 5					 	
Zn	0 50 - 0 60						
Ba	1 - 2						ļ <u> </u>
Mn							
Мо		.,					-
w							
T ₁							<u> </u>
				<u> </u>		-	
			ļ			<u> </u>	ļ
							
	_l	<u> </u>	l	<u> </u>	<u> </u>	l	

^aRange of properties assumed to be after water-wash cleanup

bInconsistent with gravity range.

TABLE 18 - FUEL DATA FROM LOW-Btu GAS

(a) Low-Btu coal gas, data from ref 27, p 6

				
Property	Typical ranges			
Tioperty	ranges			
Composition, vol%				
н ₂	12 - 16			
co	2 - 32			
co_2	0 5 - 10			
H ₂ S	0 3 + 10			
NH ₃				
CH ₄	0.5. / 5			
Other hydrocarbons	0.5 - 4 5		<u> </u>	
			 	
N ₂	30 - 55			
cos			 	
Specific gravity	0.8 - 0.92			
Average molecular weight			ļ	
Heating value, Btu/ft ³				
Gross	110 - 165			
Net				
Gross with CO_2 , H_2S , and NH_3 removed				
Net with CO ₂ , H ₂ S, and NH ₃ removed				
Sulfur, ppm				
Alkalı metals and sulfur, ppm				
Water, vol %				
Solids, ppm				
Solids particle size, µm				
Flammability limit ratio				
	ــــــا	 		J

TABLE 18 - Continued

(b) Typical low-Btu gas, from air-blown gasifiers, data from ref 28

Property				
- 20,200				
Composition, vol%				
н ₂	17.0			
co	28.3			
co_2	4.5			
н ₂ s				
NH ₃				
СН ₄	3.0			
Other hydrocarbons		<u> </u>		
N ₂	47.2			
cos	- <u></u>			
Specific gravity		<u></u>		
Average molecular weight	<u> </u>			
Heating value, Btu/ft ³		<u> </u>	<u></u>	
Gross	176 0			
Net				
Gross with CO_2 , H_2S , and NH_3 removed				
Net with CO2, H2S, and NH3 removed				
Sulfur, ppm				
Alkalı metals and sulfur, ppm				
Water, vol. %				
Solids, ppm				
Solids particle size, μm				
Flammability limit ratio				
				<u> </u>

TABLE 18 - Continued

(c) Typical fixed-bed gasifier composition (raw gas out of gasifier); data from ERDA RFP-EF-77-R-01-2674, June 6, 1977

		Ţ		
Property				
Composition, vol%		ļ		
н ₂	19 93			
co	12.66			
co_2	13.75			
н ₂ s	0.57			
NH ₃	0.23			
CH ₄	4 58			
Other hydrocarbons	0.40			
N ₂	37.63			
cos	0 06			
Specific gravity				
Average molecular weight				
Heating value, Btu/ft ³				
Gross	163 8			·
Net			-	
Gross with ${ m CO}_2$, ${ m H}_2{ m S}$, and ${ m NH}_3$ removed				
Net with CO ₂ , H ₂ S, and NH ₃ removed				
Sulfur, ppm			-	
Alkalı metals and sulfur, ppm				
Water, vol. %				
Solids, ppm lb dust/lb gas	~0.049	,		
Solids particle size, μm	(a)			
Flammability limit ratio				
H ₂ O	10.19			

 $^{^{\}rm a}{\rm Less}$ than 5 percent of solids smaller than 2 $\mu{\rm m}.$

TABLE 18 - Continued

(d) Molten-salt gasification; data from ref 29

Property	Raw fuel gas (p.42)	Hot-wall gasification (p.35)	Cold-wall gasification (p.35)	Study assumption (Illinois #6 coal) (p.17)
Composition, vol%:				
н ₂	13.79	13.175-14.337	12.658-13.173	12.57
co	28.33	27.77-29.413	26.279-27.989	26.398
co ₂	3.08	1.735-2.667	2.599-3.217	3.322
н ₂ s	0.10	0.007-0.016	0,014-0,028	0.009
NН ₃				
СН ₄	1.50	1.518-2.028	1.266-2.037	1.850
Other hydrocarbons				
N ₂	50.85	50.848-51.905	51.991-52.868	53.01
cos		0.005-0.011	0.010-0.019	0.007
Specific gravity				
Average molecular weight				
Heating value, Btu/ft ³				
Gross				
Net		143.9-149.7	129.6-144.7	
Gross with ${ m CO}_2$, ${ m H}_2{ m S}$, and ${ m NH}_3$ removed				
Net with CO ₂ , H ₂ S, and NH ₃ removed				
Sulfur, ppm				
Alkalı metals and sulfur, ppm				
Water, vol.%	2.35	2.041-2.44	2.164-3.130	2.837
Solids, ppm				
Solids particle size, µm				
Flammability limit ratio				

TABLE 18 - Continued

(e) Typical gaseous fuels; data from ref 30

Property	Blast furnace gas	Producer gas (coke)	Producer gas (coal)	
Composition, vol%:				
н ₂	2.0	11.0	12.0	
co	27.0	29.0	29.0	
co ₂	11.0	5.0	4.0	
н ₂ s				
NH ₃				
CH ₄		0.5	2.6	
Other hydrocarbons			0.4	
N ₂	60.0	54.5	52.0	
cos				
Specific gravity				
Average molecular weight				
Heating value, Btu/ft ³ :				
Gross	91.2	131.5	166.4	
Net				
Gross with CO_2 , H_2S , and NH_3 removed				
Net with CO ₂ , H ₂ S, and NH ₃ removed				
Sulfur, ppm		-		
Alkali metals and sulfur, ppm				
Water, vol. %				
Solids, ppm	***			
Solids particle size, µm				
Flammability limit ratio				

TABLE 18. - Continued

(f) Data from ref 31

Property	Predicted range not yet verified by test of composition system	Range from tests		
Composition, vol%				
н ₂	14 - 17	11.17-23.5		
со	9 - 22	6.58-30.95	<u></u> .	
co_2	5 - 11	6.91-19.26		
н ₂ ѕ				
NH ₃		_		
CH ₄	3	1.49-3.66		
Other hydrocarbons				
N ₂	48 – 52	34.96-56.7		
cos				
Specific gravity				
Average molecular weight				
Heating value, Btu/ft ³ :				
Gross				
Net	100 - 135	90-197		
Gross with CO ₂ , H ₂ S, and NH ₃ removed				
Net with CO_2 , H_2S , and NH_3 removed				
Sulfur, ppm				
Alkali metals and sulfur, ppm				
Water, vol. %	9	0		
Solids, ppm				
Solids: particle size, µm				
Flammability limit ratio				

TABLE 18. - Concluded.

(g) Producer gas; data from course notes on "Synthetic Fuels from Coal," Center for Professional Advancement, July 22-24, 1974, p. 50

		· · · · · · · · · · · · · · · · · · ·		T
Property	Typical			
Composition, vol%				
н ₂	10 - 14	Ì		
co	26 - 32			
co ₂	2 - 5			
н ₂ s				
ин ₃				
СН ₄	2 - 3			
Other hydrocarbons	0.1 - 4.0			
N ₂	50 - 53			
cos		<u> </u>		
Specific gravity			<u> </u>	
Average molecular weight				
Heating value, Btu/ft ³ :				
Gross	158 - 170			
Net	150 - 160			
Gross with CO_2 , H_2S , and NH_3 removed				
Net with CO ₂ , H ₂ S, and NH ₃ removed				
Sulfur, ppm				
Alkalı metals and sulfur, ppm				
Water, vol. %				
Solids, ppm				
Solids: particle size, µm				
Flammability limit ratio				
0xygen	0.1 - 0.3			

TABLE 19. - SUMMARY OF LIQUID FUEL PROPERTIES

Boiling	Gra	vity	Elemental composition, wt %		Viscosii	y, cP	Heat of	Reference	
range, °F	API	Specific	н	N	S	at 100 ⁰ F	at 210 ⁰ F	combustion, Btu/lb	:
				H-Coal	process				
180 - >944	27.6		7.4	0.81	0.47				1
≥620	1.9		8,1	.77	.15	178	7.2	17 420	(a)
≥358	2.0		8.0	.80	.23	272	8.8	17 415	(a)
282 - 570 (90%)	19.0		10.34	22	.16	2.47	.99	18 415	(a)
-50 - 350	44.9		12.9	.047	.26				2
217 - 500	25.9		11.2	.0044	.17				2
434 - 767	7.9		10.4	.0083	. 17				2
400	-7.5		7.36	1.3	.48		(465 cP)	16 700	(b)
466 - >876	-16.5		6.35	1.11	1.43				3
493 - >910	-17.7		6.96	1 30	.66				3
144 - 689	19.8			.44	.21	2.4			4
144 - 397	32.3			.42	.13	1.08			l t
397 - 687	13.0			. 446	.29	3 87			
138 - 795	17.0			683	27	6.1			
138 - 387	37.4			.212	.06	96			
387 - 795	6.6			.871	. 35	14.9			♦
180 - 975	6.4		8.19	.81	.22	155			(c)
180 - 445	38,6		12.41	.19	.24				i i
372 - 680	14 0		9.73	.42	.18	4.45	2.7		
639 - 975	-2.3		7.58	1.01	.22		36		₩
482 - >963			7.94	.77	.42		318.3	17 411	5
<950			8.85	. 39	.19				5
≥950			6,26	1.30	.95				5
180 - 375			13.6	.1	.1				6
375 - 650			11.0	.1	.1				1
650 - 975			10.2	.1	.3				
180 - 975			11.9	.1	.1				. ♦
C ₄ + Liquids	15.0		9.48	.68	.19				7
C ₄ + Liquids	4.4		8.43	1.05	.43				7
C ₄ + Liquids	26.8		10.54	.64	.16				7
271 - 885			10.14	38	.11				32
270 - 942			9.80	.38	.13				1
26 - 746			11.76	20	.25				
26 - 746 20 - 548			11.76	.20	.25				
20 - 548 315 - 851			9.43	.42	12				
61 - 582			11.85		.09				
			1	.13	24				
71 - 808 275 - 890			11.27 8.64	.44 .41					. ↓
275 - 890			0.04	.41					7

^aLetter from G.R. Fox of General Electric Research and Development Center to Lloyd I. Shure of NASA Lewis Research Center, Feb. 18, 1977.

bMemo for record, John S. Clark of NASA Lewis Research Center, July 19, 1977.

 $^{^{\}mathrm{C}}$ Meeting handout on H-Coal products for gas-turbine combined cycles, Paul H. Kydd of General Electric Co., Schenectady, N.Y., Jan. 9, 1976

TABLE 19 - Continued

Boiling	Gravity		Elemental composition, wt %			Viscosity, cP		Heat of	Reference
range, °F	API	Specific	Н	N	S	at 100 ⁰ F	at 210 ⁰ F	combustion, Btu/lb	
Synthoil process									
241 - >>530			7 72	1.190	1 021				9
395 - >945	-5 7	1 125					43 65		3
407 - >951	-3 5	1 1055	7 58	1 46	55		34 25		
445 - >970	-4 3	1 1124	7 42	1 31	56		56 20		
463 - 950	95	1 0035	9 77	377	02				*
329 - >795	- 6	1.081		786	42	450			10
329 - 405	19 7	936		423	20	2 27			
405 - 685	11 4	950		724	30	9 56			
685 - 988	-39	1 109		1 187	44				7
(Full range)			7.72	1 205	1 057				11
300 - >698	5 9			79	22	673			12
>695	-4 3			1 22	31		359.1		1 1
509 - 650	15 9			32	14	7.23	1 85		
650 - 698	9 4			47	12	35 9	3 91		▼
341 - >890	-2.9	1 10	7 97	.97	43	2509	28 6	16 891	5
<409 - >780	40			81	21	143 5		17 245	13
				SRC I	process				
Solid m p 312			6 56	1 87	1 07			15 719	15
Solid mp 367			6 12	1 89	88			15 733	1
Solid mp 327			5 62	1 91	1 10			15 857	1
Solid mp 354			5 45	1 95	1 09			15 67 3	7
Solid 800+	-18 3			2 0	8			16 000	16,17
400 - 900	5 0		7 9	9	3	7 3		17 300	16,17
100 - 400	39 0		11 5	4	2			19 048	16,17
400 - >1020	-58		6 90	1 28	72	1900	20.45		3
385 - >875	2 5								3
433 - >1000	9 6		8 76	548	02		32 69		3
181 - 561	22 6	9182	9 98	23	40	1 441	647	17 226	5
326 - 877	4 69	1 039	7 56	59	32	5 88	1 464	16 715	5
383 - 482	12 3	984	8 6	6	2	2 75			(d)
155 - 402	20.0	934	10 1	6	3	.794			(d)
83 - 563	35 6	847	11 33	30	60			18 148	32
321 - 844	5 64	1 0318	7 65	59	41	5 56	1 45	16 826	
306 - 902	5 48	1 0333	7 43	62	.37	5 79	1 48	16 921	1
326 - 1007	5 48	1 0333	8 78	50	35	10 44	2 25		
324 - 872	5 3		7 43	62	37	5 79	1 48	16 921	<u> </u>

d_{Letter} from Robert G Sperhac of Pittsburgh & Midway Coal Mining Co to Thaine W Reynolds of NASA Lewis Research Center, May 16, 1975

TABLE 19 - Continued.

Boiling	Gravity		Elemental composition, wt %			Vis∞sity, cP		Heat of	Reference
range, o _F	API	Specific	Н	N	S	at 100 ⁰ F	at 210 ⁰ F	combustion, Btu/lb	
SRC process (Concluded)									
175 - 857	13,0		8,88	0.44	0.06	3.43	1.10	17 728	30
180 - 818	14.5		10 32	.11	.01	2.20	.93	18 572	30
172 - 814	23.4		10 99	02	01	2.00	90	18 903	30
				COED	rocess				
97 - 835	23.1		11.5	0.125	0,013				18
97 - >367	44.5		13.0	.056	0049				1
364 - >671	20 7		11.2	.16	0055				
217 - >835	12 0		10.7	.09	.0090				*
212 - >800	21.8			226	.08	5.1			19
123 - 499	40 4			.190	05	89			1
236 - 706	18.9			248	.04	4,51			
>716	10.1			. 294	.01				†
280 - 950	20		11.0	.2	1	8			6
190 - 746	22		10.9	.3	.1	5			1
354 - >780	18.4				.16	8.1			
436 - 613	22.5				.004	3.9			
557 - >870	11.2				.07				7
176 - 545	41.9			193	<.01	.94		18 356	13
<300 - 849	22.5			.143	.05	6.82		18 020	13
198 - 950	19.0		11.97	25	.18				20
148 - 844	22.3		12.13	.0388	.0271				20
			(Gulf Cataly	tic process				
	7.0		8.84	0.51	0.07				21
	10.4		9.44	.50					1
266 - 688	14.0		9.54	31	.04				
>130			8.97	40	.04				
>130			8.18	.82	.17				†
Exxon Donor Solvent process									
158 - 392	31.1	0.87	10.90	0.21	0.47			18 300	23
158 - 392	45.4	.80	12.90	.06	.005			19 300	1
392 - 1000	5	1.08	7.70	.66	41			17 100	
392 - 1000	8.6	1.01	8.60	24	.04			18 100	*

TABLE 19. - Concluded.

Boiling	Gravity		Elemental composition, wt %			Viscosity, cP		Heat of	Reference
range, °F	API	Specific	Н	N	S	at 100 ⁰ F	at 210 ⁰ F	combustion, Btu/lb	
ZnCl ₂ hydrocracking process									
180 - 887			8,65	0.0023	σ				24
180 - 392			8.33	.0018	.02				
392 - 617			9,65	.0025	.02				
617 - 887			8.98	.0060	.03				
C ₅ - >887			8 48	0020	.02				
C ₅ - >887			8 65	.0023	0				l
C ₅ - >887			8.58	.0194	.01				
	Co-Steam process								
			7.1	1.1	0.13			17 056	25
			6.8	1.1	.10			16 886	25
			6.6	1.1	.12			16 906	25
Flash Pyrolysis process									
406 - >620			6.15	1.13	0.56				26
411 - >745			6.18	1.43	.54				26
Sea Coal process									
<300 − 875	18.4			0.403	0.02	9.78		17 782	13

Figure 1. - Schematic of Consol Synthetic Fuel (CSF) process.

Figure 2. - Schematic of Solvent-Refined Coal (SRC) process.

Figure 3. - Schematic of modified SRC process for distillate product.

Figure 4. - Schematic of Solvent-Refined Lignite (SRL) process.

Figure 5. - Schematic of Co-Steam process.

Figure 6. - Schematic of Exxon Donor Solvent (EDS) process.

Figure 7. - Schematic of H-Coal process operated in syncrude mode.

Figure 8. - Ebullating-bed reactor.

Figure 9. - Schematic of Synthoil process.

Figure 10. - Schematic of Lurgi-Ruhrgas process.

Figure II. - Schematic of COED (FMC) process.

Figure 12. - Schematic of Occidental coal pyrolysis process.

Figure 13. - Schematic of Toscoal process.

Figure 14. - Schematic of U.S. Steel Clean-Coke process.

Figure 15. - Variation of hydrogen content of coal-derived fuels with API gravity.

Figure 16. - Relation of fuel-bound nitrogen and hydrogen levels in coal-derived fuels.

Figure 17. - Variation of heat of combustion of coal-derived fuels with hydrogen content.

Figure 18. - Variation of gross heating value of low-Btu gases with inert-gas content.

1 Report No NASA TM-79243	2 Government Access	ion No	3 Recipient's Catalog No							
4 Title and Subtitle LITERATURE SURVEY OF PR DERIVED FROM COAL	NFUELS	5 Report Date February 1980 6 Performing Organization Code								
7 Author(s) Thaine W. Reynolds, Richard V		8 Performing Organization Report No E-150 10 Work Unit No								
9 Performing Organization Name and Address National Aeronautics and Space Lewis Research Center Cleveland, Ohio 44135		11 Contract or Grant No 13 Type of Report and Period Covered Technical Memorandum 14 Sponsoring Agency Code Report No DOE/NASA/2593-79/8								
12 Sponsoring Agency Name and Address U.S. Department of Energy Fossil Fuel Utilization Division Washington, D.C. 20545										
Interim report. Prepared under Interagency Agreement EF-77-A-01-2593.										
This report is an interim literature survey of the properties of synfuels for ground-based gasturbine applications, compiled to December 1977. Four major concepts for converting coal into liquid fuels are described solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full-range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-Coal, Synthoil, Solvent-Refined Coal, COED, Donor Solvent, Zinc Chloride Hydrocracking, Co-Steam, and Flash Pyrolysis. Some typical ranges of data for coal-derived low-Btu gases are also presented										
17 Key Words (Suggested by Author(s)) Synfuels Coal Gas turbines Fuels	Synfuels Coal Gas turbines									
19 Security Classif (of this report) Unclassified				22 Price*						

