```
In [1]: import warnings
# Ignore all warnings
warnings.filterwarnings("ignore")
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
```

RAIN PREDICTION

TABLE OF CONTENTS

- 1. IMPORTING LIBRARIES
- 2. LOADING DATA
- 3. DATA VISUALIZATION AND CLEANINGS
- 4. DATA PREPROCESSING
- 5. MODEL BUILDING
- 6. CONCLUSION
- 7. END

LIBRARIES

IMPORTING LIBRARIES

```
In [2]: import matplotlib.pyplot as plt
        import seaborn as sns
        import datetime
        from sklearn.preprocessing import LabelEncoder
        from sklearn import preprocessing
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
        import seaborn as sns
        from keras.layers import Dense, BatchNormalization, Dropout, LSTM
        from keras.models import Sequential
        from keras.utils import to_categorical
        from keras.optimizers import Adam
        from tensorflow.keras import regularizers
        from sklearn.metrics import precision_score, recall_score, confusion_matrix, classification_report, accuracy_score, f1
        from keras import callbacks
        np.random.seed(0)
```

LOADING DATA

LOADING DATA

In [3]: data = pd.read_csv("weatherAUS.csv")
 data.head()

Out[3]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	•••	Humidity9am	Н
	0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	W		71.0	
	1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW		44.0	
	2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	W		38.0	
	3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE		45.0	
	4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	ENE		82.0	

5 rows × 23 columns

About the data:

The dataset contains about 10 years of daily weather observations from different locations across Australia. Observations were drawn from numerous weather stations.

In this project, I will use this data to predict whether or not it will rain the next day. There are 23 attributes including the target variable "RainTomorrow", indicating whether or not it will rain the next day or not.

In [4]: data.info()

rain-prediction-ann 7/22/24, 7:48 PM

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 145460 entries, 0 to 145459

Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype						
0	Date	145460 non-null	object						
1	Location	145460 non-null	object						
2	MinTemp	143975 non-null	float64						
3	MaxTemp	144199 non-null	float64						
4	Rainfall	142199 non-null	float64						
5	Evaporation	82670 non-null	float64						
6	Sunshine	75625 non-null	float64						
7	WindGustDir	135134 non-null	object						
8	WindGustSpeed	135197 non-null	float64						
9	WindDir9am	134894 non-null	object						
10	WindDir3pm	141232 non-null	object						
11	WindSpeed9am	143693 non-null	float64						
12	WindSpeed3pm	142398 non-null	float64						
13	Humidity9am	142806 non-null	float64						
14	Humidity3pm	140953 non-null	float64						
15	Pressure9am	130395 non-null	float64						
16	Pressure3pm	130432 non-null	float64						
17	Cloud9am	89572 non-null	float64						
18	Cloud3pm	86102 non-null	float64						
19	Temp9am	143693 non-null	float64						
20	Temp3pm	141851 non-null	float64						
21	RainToday	142199 non-null	object						
22	RainTomorrow	142193 non-null	object						
types: float64(16), object(7)									

memory usage: 25.5+ MB

Points to notice:

- There are missing values in the dataset
- Dataset includes numeric and categorical values

DATA VISUALIZATION AND CLEANING

DATA VISUALIZATION AND CLEANING

Steps involves in this section:

- Count plot of target column
- Correlation amongst numeric attributes
- Parse Dates into datetime
- Encoding days and months as continuous cyclic features

```
In [5]: #first of all let us evaluate the target and find out if our data is imbalanced or not
cols= ["#C2C4E2","#EED4E5"]
sns.countplot(x= data["RainTomorrow"], palette= cols)
```

Out[5]: <AxesSubplot:xlabel='RainTomorrow', ylabel='count'>


```
In [6]: # Correlation amongst numeric attributes
    corrmat = data.corr()
    cmap = sns.diverging_palette(260,-10,s=50, l=75, n=6, as_cmap=True)
```

```
plt.subplots(figsize=(18,18))
sns.heatmap(corrmat,cmap= cmap,annot=True, square=True)

Out[6]: <AxesSubplot:>
```

MinTemp -	1	0.74	0.1	0.47	0.073	0.18	0.18	0.18	-0.23	0.0061	-0.45	-0.46	0.079	0.022	0.9	0.71
MaxTemp -	0.74	1	-0.075	0.59	0.47	0.068	0.014	0.05	-0.5	-0.51	-0.33	-0.43	-0.29	-0.28	0.89	0.98
Rainfall -	0.1	-0.075	1	-0.064	-0.23	0.13	0.087	0.058	0.22	0.26	-0.17	-0.13	0.2	0.17	0.011	-0.08
Evaporation -	0.47	0.59	-0.064	1	0.37	0.2	0.19	0.13	-0.5	-0.39	-0.27	-0.29	-0.18	-0.18	0.55	0.57
Sunshine -	0.073	0.47	-0.23	0.37	1	-0.035	0.0055	0.054	-0.49	-0.63	0.042	-0.02	-0.68	-0.7	0.29	0.49
WindGustSpeed -	0.18	0.068	0.13	0.2	-0.035	1	0.61	0.69	-0.22	-0.026	-0.46	-0.41	0.072	0.11	0.15	0.033
WindSpeed9am -	0.18	0.014	0.087	0.19	0.0055	0.61	1	0.52	-0.27	-0.032	-0.23	-0.18	0.025	0.055	0.13	0.0046
WindSpeed3pm -	0.18	0.05	0.058	0.13	0.054	0.69	0.52	1	-0.15	0.016	-0.3	-0.26	0.053	0.025	0.16	0.028
Humidity9am -	-0.23	-0.5	0.22	-0.5	-0.49	-0.22	-0.27	-0.15	1	0.67	0.14	0.19	0.45	0.36	-0.47	-0.5
Humidity3pm -	0.0061	-0.51	0.26	-0.39	-0.63	-0.026	-0.032	0.016	0.67	1	-0.028	0.052	0.52	0.52	-0.22	-0.56
Pressure9am -	-0.45	-0.33	-0.17	-0.27	0.042	-0.46	-0.23	-0.3	0.14	-0.028	1	0.96	-0.13	-0.15	-0.42	-0.29
Pressure3pm -	-0.46	-0.43	-0.13	-0.29	-0.02	-0.41	-0.18	-0.26	0.19	0.052	0.96	1	-0.061	-0.085	-0.47	-0.39
Cloud9am -	0.079	-0.29	0.2	-0.18	-0.68	0.072	0.025	0.053	0.45	0.52	-0.13	-0.061	1	0.6	-0.14	-0.3
Cloud3pm -	0.022	-0.28	0.17	-0.18	-0.7	0.11	0.055	0.025	0.36	0.52	-0.15	-0.085	0.6	1	-0.13	-0.32
Temp9am -	0.9	0.89	0.011	0.55	0.29	0.15	0.13	0.16	-0.47	-0.22	-0.42	-0.47	-0.14	-0.13	1	0.86
Temp3pm -	0.71	0.98	-0.08	0.57	0.49	0.033	0.0046	0.028	-0.5	-0.56	-0.29	-0.39	-0.3	-0.32	0.86	1

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

Now I will parse Dates into datetime.

My goal is to build an artificial neural network(ANN). I will encode dates appropriately, i.e. I prefer the months and days in a cyclic continuous feature. As, date and time are inherently cyclical. To let the ANN model know that a feature is cyclical I split it into periodic subsections. Namely, years, months and days. Now for each subsection, I create two new features, deriving a sine transform and cosine transform of the subsection feature.

```
#Parsing datetime
In [7]:
        #exploring the length of date objects
        lengths = data["Date"].str.len()
        lengths.value_counts()
              145460
Out[7]:
        Name: Date, dtype: int64
        #There don't seem to be any error in dates so parsing values into datetime
        data['Date'] = pd.to_datetime(data["Date"])
        #Creating a collumn of year
        data['year'] = data.Date.dt.year
        # function to encode datetime into cyclic parameters.
        #As I am planning to use this data in a neural network I prefer the months and days in a cyclic continuous feature.
        def encode(data, col, max val):
             data[col + '_sin'] = np.sin(2 * np.pi * data[col]/max_val)
             data[col + '_cos'] = np.cos(2 * np.pi * data[col]/max_val)
             return data
        data['month'] = data.Date.dt.month
        data = encode(data, 'month', 12)
        data['day'] = data.Date.dt.day
        data = encode(data, 'day', 31)
        data.head()
```

-0.6

Out[8]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	•••	Temp3pm	RainT
	0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	W		21.8	
	1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW		24.3	
	2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	W		23.2	
	3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE		26.5	
	4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	ENE		29.7	

5 rows × 30 columns

```
In [9]: # roughly a year's span section
section = data[:360]
tm = section["day"].plot(color="#C2C4E2")
tm.set_title("Distribution Of Days Over Year")
tm.set_ylabel("Days In month")
tm.set_xlabel("Days In Year")
Out[9]: Text(0.5, 0, 'Days In Year')
```


As expected, the "year" attribute of data repeats. However in this for the true cyclic nature is not presented in a continuous manner. Splitting months and days into Sine and cosine combination provides the cyclical continuous feature. This can be used as input features to ANN.

```
In [10]: cyclic_month = sns.scatterplot(x="month_sin",y="month_cos",data=data, color="#C2C4E2")
    cyclic_month.set_title("Cyclic Encoding of Month")
    cyclic_month.set_ylabel("Cosine Encoded Months")
    cyclic_month.set_xlabel("Sine Encoded Months")
```

Out[10]: Text(0.5, 0, 'Sine Encoded Months')


```
In [11]: cyclic_day = sns.scatterplot(x='day_sin',y='day_cos',data=data, color="#C2C4E2")
    cyclic_day.set_title("Cyclic Encoding of Day")
    cyclic_day.set_ylabel("Cosine Encoded Day")
    cyclic_day.set_xlabel("Sine Encoded Day")
```

Out[11]: Text(0.5, 0, 'Sine Encoded Day')

Next, I will deal with missing values in categorical and numeric attributes separately

Categorical variables

• Filling missing values with mode of the column value

```
In [12]: # Get list of categorical variables
s = (data.dtypes == "object")
object_cols = list(s[s].index)

print("Categorical variables:")
print(object_cols)

Categorical variables:
['Location', 'WindGustDir', 'WindDir9am', 'WindDir3pm', 'RainToday', 'RainTomorrow']
```

Numerical variables

• Filling missing values with median of the column value

```
In [15]: # Get list of neumeric variables
    t = (data.dtypes == "float64")
    num_cols = list(t[t].index)

    print("Neumeric variables:")
    print(num_cols)

Neumeric variables:
    ['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine', 'WindGustSpeed', 'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am', 'Temp3pm', 'month_sin', 'month_cos', 'day_sin', 'day_cos']

In [16]: # Missing values in numeric variables
    for i in num_cols:
        print(i, data[i].isnull().sum())
```

```
MinTemp 1485
         MaxTemp 1261
          Rainfall 3261
          Evaporation 62790
          Sunshine 69835
         WindGustSpeed 10263
         WindSpeed9am 1767
         WindSpeed3pm 3062
         Humidity9am 2654
         Humidity3pm 4507
         Pressure9am 15065
         Pressure3pm 15028
         Cloud9am 55888
         Cloud3pm 59358
         Temp9am 1767
         Temp3pm 3609
         month_sin 0
         month_cos 0
         day_sin 0
         day_cos 0
In [17]: # Filling missing values with median of the column in value
          for i in num_cols:
             data[i].fillna(data[i].median(), inplace=True)
          data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 145460 entries, 0 to 145459
         Data columns (total 30 columns):
             Column
                            Non-Null Count
                                             Dtype
             -----
                             _____
                                             _ _ _ _
              Date
          0
                            145460 non-null datetime64[ns]
              Location
                            145460 non-null object
             MinTemp
                            145460 non-null float64
          2
          3
             MaxTemp
                            145460 non-null float64
             Rainfall
                            145460 non-null float64
              Evaporation
                            145460 non-null float64
          6
             Sunshine
                            145460 non-null float64
             WindGustDir
                            145460 non-null object
             WindGustSpeed 145460 non-null float64
             WindDir9am
                            145460 non-null object
          9
          10 WindDir3pm
                            145460 non-null object
          11 WindSpeed9am
                            145460 non-null float64
          12 WindSpeed3pm
                            145460 non-null float64
          13 Humidity9am
                            145460 non-null float64
          14 Humidity3pm
                            145460 non-null float64
          15 Pressure9am
                            145460 non-null float64
          16 Pressure3pm
                            145460 non-null float64
          17 Cloud9am
                            145460 non-null float64
          18 Cloud3pm
                            145460 non-null float64
          19 Temp9am
                            145460 non-null float64
          20 Temp3pm
                            145460 non-null float64
          21 RainTodav
                            145460 non-null object
          22 RainTomorrow
                            145460 non-null object
          23 year
                            145460 non-null int64
          24 month
                            145460 non-null int64
          25 month sin
                            145460 non-null float64
          26 month cos
                            145460 non-null float64
          27 day
                            145460 non-null int64
          28 day_sin
                            145460 non-null float64
          29 day cos
                            145460 non-null float64
         dtypes: datetime64[ns](1), float64(20), int64(3), object(6)
         memory usage: 33.3+ MB
         #plotting a lineplot rainfall over years
In [18]:
         plt.figure(figsize=(12,8))
         Time_series=sns.lineplot(x=data['Date'].dt.year,y="Rainfall",data=data,color="#C2C4E2")
         Time_series.set_title("Rainfall Over Years")
         Time_series.set_ylabel("Rainfall")
         Time series.set xlabel("Years")
```

Out[18]: Text(0.5, 0, 'Years')

Rainfall Over Years


```
In [19]: #Evauating Wind gust speed over years
    colours = ["#D0DBEE", "#C2C4E2", "#EED4E5", "#D1E6DC", "#BDE2E2"]
    plt.figure(figsize=(12,8))
    Days_of_week=sns.barplot(x=data['Date'].dt.year,y="WindGustSpeed",data=data, ci =None,palette = colours)
    Days_of_week.set_title("Wind Gust Speed Over Years")
```

```
Days_of_week.set_ylabel("WindGustSpeed")
Days_of_week.set_xlabel("Year")
```

Out[19]: Text(0.5, 0, 'Year')

DATA PREPROCESSING

DATA PREPROCESSING

Steps involved in Data Preprocessing:

- Label encoding columns with categorical data
- Perform the scaling of the features
- Detecting outliers
- Dropping the outliers based on data analysis

Label encoding the catagorical varable

```
In [20]: # Apply label encoder to each column with categorical data
label_encoder = LabelEncoder()
for i in object_cols:
    data[i] = label_encoder.fit_transform(data[i])
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 145460 entries, 0 to 145459
         Data columns (total 30 columns):
             Column
                            Non-Null Count
                                            Dtvpe
             _____
                            _____
             Date
          0
                            145460 non-null datetime64[ns]
             Location
                            145460 non-null int32
             MinTemp
                            145460 non-null float64
          2
          3
             MaxTemp
                            145460 non-null float64
             Rainfall
                            145460 non-null float64
             Evaporation
                            145460 non-null float64
          6
             Sunshine
                            145460 non-null float64
          7
             WindGustDir
                            145460 non-null int32
             WindGustSpeed 145460 non-null float64
             WindDir9am
                            145460 non-null int32
          10 WindDir3pm
                            145460 non-null int32
          11 WindSpeed9am
                           145460 non-null float64
          12 WindSpeed3pm
                            145460 non-null float64
          13 Humidity9am
                            145460 non-null float64
          14 Humidity3pm
                            145460 non-null float64
          15 Pressure9am
                            145460 non-null float64
          16 Pressure3pm
                            145460 non-null float64
          17 Cloud9am
                            145460 non-null float64
          18 Cloud3pm
                            145460 non-null float64
          19 Temp9am
                            145460 non-null float64
          20 Temp3pm
                            145460 non-null float64
          21 RainTodav
                            145460 non-null int32
          22 RainTomorrow
                           145460 non-null int32
          23 year
                            145460 non-null int64
          24 month
                            145460 non-null int64
          25 month sin
                            145460 non-null float64
          26 month cos
                            145460 non-null float64
                            145460 non-null int64
          27 day
          28 day_sin
                            145460 non-null float64
          29 day cos
                            145460 non-null float64
         dtypes: datetime64[ns](1), float64(20), int32(6), int64(3)
         memory usage: 30.0 MB
         # Prepairing attributes of scale data
In [21]:
         features = data.drop(['RainTomorrow', 'Date','day', 'month'], axis=1) # dropping target and extra columns
         target = data['RainTomorrow']
         #Set up a standard scaler for the features
```

```
col_names = list(features.columns)
s_scaler = preprocessing.StandardScaler()
features = s_scaler.fit_transform(features)
features = pd.DataFrame(features, columns=col_names)

features.describe().T
```

Out[21]:

	count	mean	std	min	25%	50%	75%	max
Location	145460.0	-5.633017e-14	1.000003	-1.672228	-0.899139	0.014511	0.857881	1.701250
MinTemp	145460.0	-4.243854e-15	1.000003	-3.250525	-0.705659	-0.030170	0.723865	3.410112
MaxTemp	145460.0	6.513740e-16	1.000003	-3.952405	-0.735852	-0.086898	0.703133	3.510563
Rainfall	145460.0	9.152711e-15	1.000003	-0.275097	-0.275097	-0.275097	-0.203581	43.945571
Evaporation	145460.0	1.352327e-14	1.000003	-1.629472	-0.371139	-0.119472	0.006361	43.985108
Sunshine	145460.0	-4.338304e-15	1.000003	-2.897217	0.076188	0.148710	0.257494	2.360634
WindGustDir	145460.0	1.864381e-14	1.000003	-1.724209	-0.872075	0.193094	1.045228	1.471296
WindGustSpeed	145460.0	-1.167921e-14	1.000003	-2.588407	-0.683048	-0.073333	0.460168	7.243246
WindDir9am	145460.0	-7.433272e-15	1.000003	-1.550000	-0.885669	0.000105	0.885879	1.771653
WindDir3pm	145460.0	1.791486e-15	1.000003	-1.718521	-0.837098	0.044324	0.925747	1.586813
WindSpeed9am	145460.0	-3.422029e-14	1.000003	-1.583291	-0.793380	-0.116314	0.560752	13.086472
WindSpeed3pm	145460.0	1.618238e-14	1.000003	-2.141841	-0.650449	0.037886	0.611499	7.839016
Humidity9am	145460.0	-4.803490e-15	1.000003	-3.654212	-0.631189	0.058273	0.747734	1.649338
Humidity3pm	145460.0	-6.041889e-15	1.000003	-2.518329	-0.710918	0.021816	0.656852	2.366565
Pressure9am	145460.0	2.313398e-14	1.000003	-5.520544	-0.616005	-0.006653	0.617561	3.471111
Pressure3pm	145460.0	4.709575e-15	1.000003	-5.724832	-0.622769	-0.007520	0.622735	3.653960
Cloud9am	145460.0	-2.525820e-14	1.000003	-2.042425	-0.727490	0.149133	0.587445	1.902380
Cloud3pm	145460.0	4.796901e-15	1.000003	-2.235619	-0.336969	0.137693	0.612356	2.036343
Temp9am	145460.0	-3.332880e-15	1.000003	-3.750358	-0.726764	-0.044517	0.699753	3.599302
Temp3pm	145460.0	-2.901899e-15	1.000003	-3.951301	-0.725322	-0.083046	0.661411	3.653834
RainToday	145460.0	1.263303e-14	1.000003	-0.529795	-0.529795	-0.529795	-0.529795	1.887521
year	145460.0	1.663818e-14	1.000003	-2.273637	-0.697391	0.090732	0.878855	1.666978
month_sin	145460.0	1.478014e-15	1.000003	-1.434333	-0.725379	-0.016425	0.692529	1.401483
month_cos	145460.0	4.043483e-16	1.000003	-1.388032	-1.198979	0.023080	0.728636	1.434192
day_sin	145460.0	-6.534944e-18	1.000003	-1.403140	-1.019170	-0.003198	1.012774	1.396744

 count
 mean
 std
 min
 25%
 50%
 75%
 max

 day_cos
 145460.0
 -9.540621e-19
 1.000003
 -1.392587
 -1.055520
 -0.044639
 1.011221
 1.455246

```
In [22]: #Detecting outliers
    #looking at the scaled features
    colours = ["#DODBEE", "#C2C4E2", "#EED4E5", "#D1E6DC", "#BDE2E2"]
    plt.figure(figsize=(20,10))
    sns.boxenplot(data = features,palette = colours)
    plt.xticks(rotation=90)
    plt.show()
```



```
#full data for
In [23]:
         features["RainTomorrow"] = target
         #Dropping with outlier
         features = features[(features["MinTemp"]<2.3)&(features["MinTemp"]>-2.3)]
         features = features["MaxTemp"]<2.3)&(features["MaxTemp"]>-2)]
         features = features[(features["Rainfall"]<4.5)]</pre>
         features = features[(features["Evaporation"]<2.8)]</pre>
         features = features[(features["Sunshine"]<2.1)]</pre>
         features = features[(features["WindGustSpeed"]>-4)]
         features = features[(features["WindSpeed9am"]<4)]</pre>
         features = features[(features["WindSpeed3pm"]<2.5)]</pre>
         features = features[(features["Humidity9am"]>-3)]
         features = features[(features["Humidity3pm"]>-2.2)]
         features = features[(features["Pressure9am"] < 2)&(features["Pressure9am"] > -2.7)]
         features = features[(features["Pressure3pm"]< 2)&(features["Pressure3pm"]>-2.7)]
         features = features[(features["Cloud9am"]<1.8)]</pre>
         features = features[(features["Cloud3pm"]<2)]</pre>
         features = features[(features["Temp9am"]<2.3)&(features["Temp9am"]>-2)]
         features = features[(features["Temp3pm"]<2.3)&(features["Temp3pm"]>-2)]
         features.shape
         (127536, 27)
Out[23]:
In [24]: #looking at the scaled features without outliers
         plt.figure(figsize=(20,10))
         sns.boxenplot(data = features,palette = colours)
         plt.xticks(rotation=90)
         plt.show()
```


Looks Good. Up next is building artificial neural network.

MODEL BUILDING

MODEL BUILDING

In this project, we build an artificial neural network.

Following steps are involved in the model building

Assining X and y the status of attributes and tags

- Splitting test and training sets
- Initialising the neural network
- Defining by adding layers
- Compiling the neural network
- Train the neural network

```
In [25]: X = features.drop(["RainTomorrow"], axis=1)
          y = features["RainTomorrow"]
          # Splitting test and training sets
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
         X.shape
         (127536, 26)
Out[25]:
In [26]: #Early stopping
          early stopping = callbacks.EarlyStopping(
              min_delta=0.001, # minimium amount of change to count as an improvement
              patience=20, # how many epochs to wait before stopping
              restore best weights=True,
          # Initialising the NN
          model = Sequential()
          # Layers
          model.add(Dense(units = 32, kernel initializer = 'uniform', activation = 'relu', input dim = 26))
          model.add(Dense(units = 32, kernel_initializer = 'uniform', activation = 'relu'))
          model.add(Dense(units = 16, kernel_initializer = 'uniform', activation = 'relu'))
          model.add(Dropout(0.25))
          model.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))
          model.add(Dropout(0.5))
          model.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
          # Compiling the ANN
          opt = Adam(learning rate=0.00009)
          model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['accuracy'])
```

Train the ANN

history = model.fit(X_train, y_train, batch_size = 32, epochs = 150, callbacks=[early_stopping], validation_split=0.2)

Epoch 1/150	
•	- 8s 2ms/step - accuracy: 0.7821 - loss: 0.5654 - val_accuracy: 0.7860 - val_loss: 0.3927
Epoch 2/150	
2551/2551	- 6s 2ms/step - accuracy: 0.7842 - loss: 0.4150 - val_accuracy: 0.7860 - val_loss: 0.3878
Epoch 3/150	
2551/2551	- 6s 2ms/step - accuracy: 0.7852 - loss: 0.4112 - val_accuracy: 0.7860 - val_loss: 0.3841
Epoch 4/150	
	- 6s 2ms/step - accuracy: 0.7820 - loss: 0.4118 - val_accuracy: 0.7860 - val_loss: 0.3821
Epoch 5/150	
	- 6s 2ms/step - accuracy: 0.7847 - loss: 0.4058 - val_accuracy: 0.7860 - val_loss: 0.3805
Epoch 6/150	
	- 6s 2ms/step - accuracy: 0.7861 - loss: 0.4017 - val_accuracy: 0.8433 - val_loss: 0.3792
Epoch 7/150	6- 2/
	- 6s 2ms/step - accuracy: 0.8420 - loss: 0.3998 - val_accuracy: 0.8435 - val_loss: 0.3775
Epoch 8/150	- Co 2mg/ston
2551/2551 ———————————————————————————————————	- 6s 2ms/step - accuracy: 0.8405 - loss: 0.3978 - val_accuracy: 0.8440 - val_loss: 0.3765
•	- 6s 2ms/step - accuracy: 0.8409 - loss: 0.4007 - val_accuracy: 0.8430 - val_loss: 0.3757
Epoch 10/150	03 2m3/3ccp accuracy. 0.0403 1033. 0.4007 var_accuracy. 0.0430 var_1033. 0.3737
·	- 6s 2ms/step - accuracy: 0.8395 - loss: 0.4003 - val accuracy: 0.8444 - val loss: 0.3748
Epoch 11/150	25 2m3/3ccp
•	- 6s 2ms/step - accuracy: 0.8418 - loss: 0.3967 - val_accuracy: 0.8444 - val_loss: 0.3741
Epoch 12/150	
2551/2551	- 6s 2ms/step - accuracy: 0.8414 - loss: 0.4011 - val_accuracy: 0.8449 - val_loss: 0.3733
Epoch 13/150	
2551/2551	- 6s 2ms/step - accuracy: 0.8440 - loss: 0.3999 - val_accuracy: 0.8446 - val_loss: 0.3729
Epoch 14/150	
	- 5s 2ms/step - accuracy: 0.8427 - loss: 0.3977 - val_accuracy: 0.8448 - val_loss: 0.3723
Epoch 15/150	
	- 5s 2ms/step - accuracy: 0.8434 - loss: 0.3988 - val_accuracy: 0.8450 - val_loss: 0.3717
Epoch 16/150	
	- 5s 2ms/step - accuracy: 0.8419 - loss: 0.3972 - val_accuracy: 0.8449 - val_loss: 0.3710
Epoch 17/150	Fo 2mg/ston
	- 5s 2ms/step - accuracy: 0.8438 - loss: 0.3943 - val_accuracy: 0.8446 - val_loss: 0.3706
Epoch 18/150 2551/2551 ———————————————————————————————————	- 5s 2ms/step - accuracy: 0.8442 - loss: 0.3950 - val_accuracy: 0.8447 - val_loss: 0.3702
Epoch 19/150	33 2m3/3tep - accuracy. 0.0442 - 1033. 0.3330 - var_accuracy. 0.0447 - var_1033. 0.3702
	- 5s 2ms/step - accuracy: 0.8407 - loss: 0.3968 - val_accuracy: 0.8446 - val_loss: 0.3700
Epoch 20/150	22
2551/2551 —————	- 5s 2ms/step - accuracy: 0.8447 - loss: 0.3945 - val_accuracy: 0.8450 - val_loss: 0.3695
Epoch 21/150	
2551/2551	- 5s 2ms/step - accuracy: 0.8430 - loss: 0.3942 - val_accuracy: 0.8453 - val_loss: 0.3692
Epoch 22/150	
2551/2551	- 5s 2ms/step - accuracy: 0.8434 - loss: 0.3931 - val_accuracy: 0.8455 - val_loss: 0.3690
Epoch 23/150	

		rain-prediction-ann		
	- 5s 2ms/step - accuracy:	0.8438 - loss:	0.3924 - val_accuracy:	0.8449 - val_loss: 0.3693
Epoch 24/150				
	- 6s 2ms/step - accuracy:	0.8414 - loss:	0.3965 - val_accuracy:	0.8446 - val_loss: 0.3692
Epoch 25/150				
2551/2551	- 5s 2ms/step - accuracy:	0.8417 - loss:	0.3952 - val_accuracy:	0.8450 - val_loss: 0.3686
Epoch 26/150				
	- 5s 2ms/step - accuracy:	0.8457 - loss:	0.3892 - val_accuracy:	0.8442 - val_loss: 0.3686
Epoch 27/150				
	• 5s 2ms/step - accuracy:	0.8435 - loss:	0.3957 - val_accuracy:	0.8443 - val_loss: 0.3685
Epoch 28/150				
	<pre>- 5s 2ms/step - accuracy:</pre>	0.8447 - loss:	0.3944 - val_accuracy:	0.8445 - val_loss: 0.3680
Epoch 29/150				
	- 5s 2ms/step - accuracy:	0.8460 - loss:	0.3889 - val_accuracy:	0.8441 - val_loss: 0.3678
Epoch 30/150				
	- 6s 2ms/step - accuracy:	0.8452 - loss:	0.3914 - val_accuracy:	0.8447 - val_loss: 0.3681
Epoch 31/150	60 200 / 0400	0.0425 1	0.2020]	0.0444
	• 65 2ms/step - accuracy:	0.8435 - 10SS:	0.3939 - Val_accuracy:	0.8441 - val_loss: 0.3682
Epoch 32/150	66 2mg/ston	0.0445 1	0.2051	0.0446 val lass. 0.3691
2551/2551 ———————————————————————————————————	• 65 Zms/step - accuracy:	0.8445 - 1055:	6.3951 - Val_accuracy:	0.8446 - val_loss: 0.3681
•	65 2ms/sten - accuracy:	0 8/28 - loss:	0 3926 - val accuracy:	0.8449 - val_loss: 0.3680
Epoch 34/150	os zms/step - accuracy.	0.0420 - 1033.	0.3920 - Val_accuracy.	0.0443 - Val_1033. 0.3080
•	6s 2ms/sten - accuracy:	0 8397 - loss:	0 3984 - val accuracy:	0.8447 - val_loss: 0.3676
Epoch 35/150	23 Ziii3, Seep accuracy.	0.0337 1033.	var_accal acy.	0.0447
•	- 6s 2ms/step - accuracy:	0.8428 - loss:	0.3949 - val accuracy:	0.8447 - val_loss: 0.3675
Epoch 36/150				
•	- 6s 2ms/step - accuracy:	0.8435 - loss:	0.3955 - val accuracy:	0.8450 - val_loss: 0.3676
Epoch 37/150	, ,		_ ,	_
2551/2551	5s 2ms/step - accuracy:	0.8445 - loss:	0.3932 - val_accuracy:	0.8440 - val_loss: 0.3680
Epoch 38/150				
2551/2551	- 6s 2ms/step - accuracy:	0.8432 - loss:	0.3927 - val_accuracy:	0.8445 - val_loss: 0.3679
Epoch 39/150				
2551/2551	- 6s 2ms/step - accuracy:	0.8466 - loss:	0.3874 - val_accuracy:	0.8443 - val_loss: 0.3674
Epoch 40/150				
2551/2551	- 6s 2ms/step - accuracy:	0.8438 - loss:	0.3916 - val_accuracy:	0.8440 - val_loss: 0.3674
Epoch 41/150		_	_	
	- 5s 2ms/step - accuracy:	0.8441 - loss:	0.3900 - val_accuracy:	0.8446 - val_loss: 0.3673
Epoch 42/150				
	- 5s 2ms/step - accuracy:	0.8433 - loss:	0.3933 - val_accuracy:	0.8442 - val_loss: 0.3674
Epoch 43/150	For 2mg/ston	0.0433 1	0.2027	0.0442 val lass. 0.2677
	- 55 zms/step - accuracy:	v.8432 - 10SS:	0.392/ - val_accuracy:	0.8443 - val_loss: 0.3677
Epoch 44/150	- Es 2ms/ston accuracy	0 0/151 10000	0 2027 val accuracy:	0.8444 - val_loss: 0.3676
2551/2551 ———————————————————————————————————	- 33 Zms/step - accuracy:	0.0431 - 1088;	6.3331 - AaT accougch:	0.0444 - Val_1055: 0.36/6
•	- 5s 2ms/sten - accuracy:	0 8444 - loss.	0 3877 - val accuracy:	0.8444 - val_loss: 0.3674
	23 Zm3/3cep - accuracy.	0.0 111 - 1035.	0.30// - var_acculacy.	0.0 111 - Vai_1033. 0.30/4

Plotting training and validation loss over epochs

```
In [27]: history_df = pd.DataFrame(history.history)

plt.plot(history_df.loc[:, ['loss']], "#BDE2E2", label='Training loss')
plt.plot(history_df.loc[:, ['val_loss']], "#C2C4E2", label='Validation loss')
plt.title('Training and Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(loc="best")

plt.show()
```


Plotting training and validation accuracy over epochs

```
In [28]: history_df = pd.DataFrame(history.history)

plt.plot(history_df.loc[:, ['accuracy']], "#BDE2E2", label='Training accuracy')
plt.plot(history_df.loc[:, ['val_accuracy']], "#C2C4E2", label='Validation accuracy')

plt.title('Training and Validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```


CONCLUSION

CONCLUSIONS

Concluding the model with:

- Testing on the test set
- Evaluating the confusion matrix
- Evaluating the classification report

In [31]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support	
0	0.88	0.94	0.91	20110	
1	0.69	0.51	0.59	5398	
accuracy macro avg	0.78	0.72	0.85 0.75	25508 25508	
weighted avg	0.84	0.85	0.84	25508	

In []:

In []: