

SF1518/19 Mästarprov 13: Strömkretsen

Hassan Al Noori

LC-circuit

▶ What is an LC-circuit?

Electronic article surveillance

▶ What is the current in the circuit?

- ▶ What is the current in the circuit?
- ▶ How is the current affected by the voltage?

- ▶ What is the current in the circuit?
- ▶ How is the current affected by the voltage?
- ▶ Prove E(t) is constant

- ▶ What is the current in the circuit?
- ▶ How is the current affected by the voltage?
- ▶ Prove E(t) is constant
- ► Truncation error

- ▶ What is the current in the circuit?
- ▶ How is the current affected by the voltage?
- ▶ Prove E(t) is constant
- ► Truncation error
- ► Fourier transform

- ▶ What is the current in the circuit?
- ▶ How is the current affected by the voltage?
- ightharpoonup Prove E(t) is constant
- ► Truncation error
- ► Fourier transform
- ▶ Voluntary part

Mathematical formulation

$$L = \frac{L_0}{1 + I^2} \qquad U = L \frac{dI}{dt}$$

$$I = -C \frac{dU}{dt} \qquad t = 0, \quad I = 0, \quad \frac{dI}{dt} = \frac{U_0}{L_0}$$

Mathematical formulation

$$\frac{d^2I}{dt^2} = \frac{2I}{1+I^2} \left(\frac{dI}{dt}\right)^2 - \frac{I\left(1+I^2\right)}{L_0C}$$

Mathematical formulation

$$\tilde{y}'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} y_2(t) \\ \frac{2y_1(t)y_2^2(t)}{1+y_1(t)^2} - \frac{y_1(t)(1+y_1(t)^2)}{L_0C} \end{bmatrix}$$

Numerical Methods - Runge Kutta 4

$$K_{1} = hf(x_{n}, y_{n})$$

$$K_{2} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2})$$

$$K_{3} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2})$$

$$K_{4} = hf(x_{n} + h, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4}) + O(h^{5})$$

$$\frac{dE}{dt} = \frac{d}{dt} \left(U(t)^2 - \log(1 + I(t)^2) \right)$$

$$=2\left(\frac{\frac{dI}{dt}\left(1+I(t)^2\left(\frac{d^2I}{dt^2}\right)-2I(t)\left(\frac{dI}{dt}\right)^2\right)}{\left(1+I(t)^2\right)^3}-\frac{I(t)\left(\frac{dI}{dt}\right)}{\left(1+I(t)^2\right)}\right)$$

$$\frac{dE}{dt} = (0 - 0)$$

$$=2\left(\underbrace{\frac{\frac{dI}{dt}\left(1+I(t)^{2}\left(\frac{d^{2}I}{dt^{2}}\right)-2I(t)\left(\frac{dI}{dt}\right)^{2}\right)}{\left(1+I(t)^{2}\right)^{3}}^{0}-\underbrace{\frac{I(t)\left(\frac{dI}{dt}\right)^{2}}{\left(1+I(t)^{2}\right)}^{0}}\right)$$

$U_0 = 240V$

Iteration	Period [seconds]	approx error $(E_n - E_{2n})$
1	6.2800000000000000e-03	2.0000000000000000e-05
2	6.2600000000000000e-03	1.00000000000000000e-05
3	6.2500000000000000e-03	5.0000000000000000e-06
4	6.2450000000000000e-03	5.0000000000000000e-06
5	6.2400000000000000e-03	1.2500000000000000e-06
6	6.238750000000000e-03	0
7	6.2387500000000000e-03	3.1250000000000000e-07
8	6.238437500000000e-03	3.1250000000000000e-07
9	6.238125000000000e-03	0
10	6.238125000000000e-03	3.9062000000000000e-08
11	6.238085937500000e-03	3.9063000000000000e-08
12	6.238046875000000e-03	9.76559999999999e-09
13	6.238037109375000e-03	4.8828000000000000e-09
14	6.238032226562000e-03	0
15	6.238032226562000e-03	2.4414000000000000e-09
16	6.238029785156000e-03	6.1035000000000000e-10
17	6.238029174805000e-03	NaN

$U_0 = 1200V$

Iteration	Period [seconds]	approx error $(E_n - E_{2n})$
1	5.240000000000000e-03	0
2	5.240000000000000e-03	2.0000000000000005e-05
3	5.230000000000000e-03	0
4	5.2200000000000000e-03	2.499999999999898e-06
5	5.2200000000000000e-03	2.499999999999898e-06
6	5.218750000000000e-03	0
7	5.218125000000000e-03	6.250000000001914e-07
8	5.2175000000000000e-03	0
9	5.217343750000000e-03	7.812500000007813e-08
10	5.217265625000000e-03	7.812499999964445e-08
11	5.217226562500000e-03	1.953125000012795e-08
12	5.217207031250000e-03	0
13	5.217207031250000e-03	9.765625000063977e-09
14	5.217197265625000e-03	2.441406000107393e-09
15	5.217194824219000e-03	1.220703000053697e-09
16	5.217193603516000e-03	0
17	5.217193603516000e-03	NaN

$U_0 = 2400V$

Iteration	Period [seconds]	approx error $(E_n - E_{2n})$
1	3.1200000000000000e-03	0
2	3.1200000000000000e-03	2.0000000000000005e-05
3	3.1000000000000000e-03	0
4	3.1000000000000000e-03	2.499999999999898e-06
5	3.0975000000000000e-03	2.499999999999898e-06
6	3.0950000000000000e-03	0
7	3.0950000000000000e-03	6.250000000001914e-07
8	3.0943750000000000e-03	0
9	3.0943750000000000e-03	7.812500000007813e-08
10	3.094296875000000e-03	7.812499999964445e-08
11	3.094218750000000e-03	1.953125000012795e-08
12	3.094199218750000e-03	0
13	3.094199218750000e-03	9.765625000063977e-09
14	3.094189453125000e-03	2.441406000107393e-09
15	3.094187011719000e-03	1.220703000053697e-09
16	3.094185791016000e-03	0
17	3.094185791016000e-03	NaN

Fourier analysis

$$I(t) = a_1 sin(\omega t) + a_2 sin(2\omega t) + a_3 sin(3\omega t) + \cdots, \qquad \omega = 2\pi/T$$

$$a_k = \frac{2}{T} \int_0^T I(t) \sin(k\omega t) dt, \quad k = 1, 2, 3....$$

$U_0 = 240V$

$U_0 = 1200V$

$U_0 = 2400V$

$$I_{max} := 10$$

$$I_{max} := 10$$

$$I_{\alpha} = max \left\{ I(U_0^*, L_0) : U_0 \in]240, 2400[, L_0 \in \mathbb{R} \right\}$$

$$I_{max} := 10$$

$$I_{\alpha} = max \{ I(U_0^*, L_0) : U_0 \in]240, 2400[, L_0 \in \mathbb{R} \}$$

$$g(U_0^*, L_0) = 0 = I_{max} - I_{\alpha}$$

$$I_{max} := 10$$

$$I_{\alpha} = max \{ I(U_0^*, L_0) : U_0 \in]240, 2400[, L_0 \in \mathbb{R} \}$$

$$g(U_0^*, L_0) = 0 = I_{max} - I_{\alpha}$$

▶ Bisection method

$$U = L\frac{dI}{dt} \qquad I = -C\frac{dU}{dt} \qquad L = \frac{L_0}{1 + I^2}$$

$$\tilde{y}' = \begin{bmatrix} \frac{dI}{dt} \\ \frac{dU}{dt} \end{bmatrix} = \begin{bmatrix} \frac{1+I^2}{L_0}U \\ \frac{dI}{dt} \end{bmatrix}$$

Thanks

github - haaln

mail - hassanan@kth.se