Photogeneration

Semiconductor material absorbs photons and converts into hole-electron pairs if

Photon energy $h_V > E_{gap}$ (*)

- Energy in excess of E_{gap} is converted to heat
- Photo-generated current I_0 is proportional to number of absorbed photons satisfying (*)

Charge separation

Electric field created by diode structure separates holes and electrons

Open circuit voltage $V_{\rm oc}$ depends on diode characteristic, $V_{\rm oc} < E_{\rm gap}/q$

Current source I_0 models photo-generated current

 I_0 is proportional to the *solar irradiance*, also called the "*insolation*":

 $I_0 = k$ (solar irradiance)

Solar irradiance is measured in W/m²

Diode models *p*–*n* junction

Diode *i*–*v* characteristic follows classical exponential diode equation:

$$I_d = I_{dss} (e^{\lambda V_d} - 1)$$

The diode current I_d causes the terminal current I_{pv} to be less than or equal to the photo-generated current I_0 .

Modeling nonidealities:

*R*₁: defects and other leakage current mechanisms,

 R_2 : contact resistance and other series resistances

Cell characteristic

Cell output power is $P_{pv} = I_{pv}V_{pv}$ At the maximum power point (MPP):

$$V_{pv} = V_{mp}$$
$$I_{pv} = I_{mp}$$

At the short circuit point:

$$I_{pv} = I_{sc} = I_0$$
$$P_{pv} = 0$$

At the open circuit point:

$$V_{pv} = V_{oc}$$
$$P_{pv} = 0$$

Series String of PV Cells to increase voltage

- To increase the voltage, cells are connected in series on *panels*, and panels are connected in series into *series strings*.
- All series-connected elements conduct the same current
- Problems when cells irradiance is not uniform

Bypass Diodes

Bypass diodes:

- Limit the voltage drop across reversebiased cells or strings of cells
- Reduce the power consumption of reverse-biased cells

Lab PV panel: SQ85-P

36 cells in series, arranged in two substrings of 18 cells, with 2 backplane diodes

Exp 1: Direct Energy Transfer

Lab deep-discharge lead-acid battery

Theory and modeling of batteries

Don't overcharge: this causes outgassing and can quickly ruin the battery

Don't discharge below 50% SOC: this reduces battery life

Battery state of charge (SOC) vs. terminal voltage

100% SOC	12.80 volts or greater
75% SOC	12.55 volts
50% SOC	12.20 volts
25% SOC	11.75 volts
0% SOC	10.50 volts ⊢

Exp 2-3: Maximum Power Point Tracking (MPPT)

- MPPT adjusts DC-DC converter conversion ratio $M(D) = V_{batt}/V_{pv}$ such that the PV panel operates at its maximum power point.
- The converter can step down the voltage and step up the current.
- Battery is charged with the maximum power available from the PV panel.