Structuring Machine Learning Projects

Machine Learning Strategies

Course 3 Week 2

Maryam Jameela

Agenda

- Error Analysis
- Mismatched training and dev/test set
- Learning from multiple tasks
- End to End Deep learning

Error Analysis

Look at dev examples to evaluate ideas

Should you try to make your cat classifier do better on dogs?

- Error analysis:

 Get ~100 mislabeled dev set examples.
 Count up how many are dogs.

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats
- Fix great cats (lions, panthers, etc..) being misrecognized

Improve performance on blurry images

	Image	Dog	Great Cats	Plury	Instyrum Comments
1	1	/			~ Pitbull
	2			/	~
	3		✓	~	Rainy day at 200
				:	
	% of total	8%	43.1	61.10	120%

Activata Widnews Ng
Go to Settings to activate Window

Incorrectly Labeled Data

Incorrectly labeled examples

DL algorithms are quite robust to random errors in the training set. Systematic errors

Activate Windows

Error analysis

	•				•						
	Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments					
1											
	98				\bigcirc	Labeler missed cat in background	\leftarrow				
	99		✓								
\downarrow	100				\bigcirc	Drawing of a cat; Not a real cat.	\leftarrow				
	% of total	8%	43%	61%	6%	V					
Overall dev set error 10%											
Errors due incorrect labels 0.6°/. O-6°/.											
Errors due to other causes 9.4% <											
						2 · l •/• Activate Will Go to Settings to					

Goal of dev set is to help you select between two classifiers A & B.

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got right as well as ones it got wrong.
- Train and dev/test data may now come from slightly different distributions.

Build your first system quickly and then iterate

Speech recognition example

- → Noisy background
 - → Café noise
 - → Car noise
- → Accented speech
- → Far from microphone
- Young children's speech
- → Stuttering uh, ah, um,...
- \rightarrow ...

- → Set up dev/test set and metric
 - Build initial system quickly
 - Use Bias/Variance analysis & Error analysis to prioritize next steps.

Andrew Ng

Training and Testing on different distribution..

Bias and Variance with mismatched data distribution

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training error 1./. 14.

Training-dev set: Same distribution as training set, but not used for training

Bias/variance on mismatched training and dev/test sets

Activate Windows
Go to Settings to activate Windows

Addressing data mismatched

Addressing data mismatch

 Carry out manual error analysis to try to understand difference between training and dev/test sets

 Make training data more similar; or collect more data similar to dev/test sets

Activate Windows
Go to Settings to activate Windows
Andrew Ng

Artificial data synthesis

Learning from multiple tasks

When transfer learning makes sense

Track from A -> B

- Task A and B have the same input x.
- You have a lot more data for $\underbrace{Task A}_{\uparrow}$ than $\underbrace{Task B}_{\land}$.
- Low level features from A could be helpful for learning B.

Activate Windows
Go to Settings to activate Window

Multitask Learning

Simplified autonomous driving example

Neural network architecture

When multi-task learning makes sense

- Training on a set of tasks that could benefit from having shared lower-level features.
- Usually: Amount of data you have for each task is quite 1,000

1,000

99,000

 Can train a big enough neural network to do well on all the tasks.

Andrew Ng

End to End Learning

What is end-to-end learning?

Speech recognition example

Activate Windows

Andrew Ng

Face recognition (moga (x) (x,y) 1 [Image courtesy of Baidu] Andrew Ng

Pros and Cons...

Pros and cons of end-to-end deep learning

Pros:

• Let the data speak X -> y -> Phonemes

· Less hand-designing of components needed

Cons:

May need large amount of data

Excludes potentially useful hand-designed components

Go to SAndrew NgWi