

Convolutional Matrix Factorization for Document Context-Aware Recommendation

Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, Hwanjo Yu

Proceedings of the 10th ACM Conference on Recommender
Systems
September, 2016

Introducción

Introducción

Problema

- Calidad de recomendaciones es mermada por la baja densidad de datos
- Creación de sistemas híbridos que incorporen información contextual (contenido: descripción de ítems)
- Modelo BoW posee limitaciones inherentes al modelo

Propuesta

- modelo de recomendación basado en contexto utilizando ConvMF
- ConvMF = CNN + PMF

Redes Neuronales Convolucionales

Introducción

Redes Neuronales Convolucionales

Pooling

Modelo probabilístico de ConvMF

- Probabilistic Matrix Factorization (PMF)
- Sea $R \in \mathbb{R}^{N \times M}$ matriz de ratings
- Con N usuarios y M ítems
- ullet Se desea encontrar $U \in \mathbb{R}^{k imes N}$ y $V \in \mathbb{R}^{k imes M}$ tal que

$$R \approx U^T V$$

Factorización Matricial Probabílistica

Modelo de regresión lineal con ruido Gaussiano

$$r_{ui} = u_i^T v_j + \varepsilon$$

Distribución condicional sobre los ratings observados

$$p(R|U, V, \sigma^2) = \prod_{i}^{N} \prod_{j}^{M} N(r_{ij}|u_i^T v_j, \sigma^2)^{I_{ij}}$$

Factorización Matricial Probabílistica

 Se asigna modelo gaussiano de media cero a distribuciones de probabilidad a priori

$$p(U|\sigma_U^2) = \prod_{i=1}^N \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}), \qquad p(V|\sigma_V^2) = \prod_{j=1}^M \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

Factorización Matricial Probabílistica

 Se asigna modelo gaussiano de media cero a distribuciones de probabilidad a priori

$$p(U|\sigma_U^2) = \prod_{i=1}^N \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}), \qquad p(V|\sigma_V^2) = \prod_{j=1}^M \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

Modelo latente de ítems

- Es generado a partir de variables
 - 1. Pesos de la CNN
 - 2. Representación *X_j* del documento asociado ítem *j*
 - 3. Ruido gaussiano: ε

Modelo latente de ítems

$$v_{j} = cnn(W, X_{j}) + \epsilon_{j}$$

$$\epsilon_{j} \sim N(0, \sigma_{V}^{2}I)$$

$$p(W|\sigma_{W}^{2}) = \prod_{k} N(w_{k}|0, \sigma_{W}^{2})$$

$$\downarrow$$

$$p(U|\sigma_{U}^{2}) = \prod_{i=1}^{N} \mathcal{N}(U_{i}|0, \sigma_{U}^{2}\mathbf{I}), \quad p(V|W, X, \sigma_{V}^{2}) = \prod_{i=1}^{M} N(v_{j}|cnn(W, X_{j}), \sigma_{V}^{2}I)$$

Arquitectura de CNN

Embedding Layer

- Entrada: documento crudo
- Salida: secuencia de embeddings de palabra
- Inicialización: aleatoria o modelo tipo GloVe

$$D = \left[\begin{array}{ccccc} & | & | & | \\ \cdots & w_{i-1} & w_i & w_{i+1} & \cdots \\ & | & | & | \end{array} \right]$$

Convolution Layer

- ullet Extracción de características contextuales $c_i^j \in \mathbb{R}$
- Ponderados por pesos compartidos $W_c^j \in \mathbb{R}^{p \times ws}$
- Función de activación: ReLU

$$c_i^j = f(W_c^j * D_{(:,i:(i+ws-1))} + b_c^j)$$

Convolution Layer

• Vector de características contextuales $c^j \in \mathbb{R}^{l-ws+1}$ para el documento W^j_c

$$c^{j} = [c_{1}^{j}, c_{2}^{j}, \ldots, c_{i}^{j}, \ldots, c_{l-ws+1}^{j}]$$

 Se utilizan múltiples pesos compartidos para extraer más de un tipo de características contextuales: j = 1, 2, 3 ... nc

Pooling Layer

- Extracción de características representativas
- Construcción de vector de tamaño fijo
- Max-pooling

$$d_f = [\max(c^1), \max(c^2), \dots, \max(c^j), \dots, \max(c^{n_c})]$$

Output Layer

- Proyección de vector df a espacio k-dimensional
- Generación de vector latente de documento

$$s = \tanh(W_{f_2}\{\tanh(W_{f_1}d_f + b_{f_1})\} + b_{f_2})$$

• Con $W_{f_1} \in \mathbb{R}^{f \times n_c}, W_{f_2} \in \mathbb{R}^{k \times f}$

Experimentos

Dataset

- Amazon y MovieLens 1m y 10m de ratings (más IMDb)
- Largo máximo de documentos: 300
- Eliminación de stop-words
- Cálculo de tf-idf y eliminación de frecuencias mayores a 0.5
- Tamaño de vocabulario: 8000 palabras

Competidores

- Probabilistic Matrix Factorization (PMF)
- Collaborative Topic Regression (CTR)
- Collaborative Deep Learning (CDL)
- Convolutional Matrix Factorization (ConvMF)
- Convolutional Matrix Factorization con embedding pre-entrenado (ConvMF+)

Detalles de implementación

- Vectores latentes de palabras de dimensión 200
- Múltiples tamaños de ventana en capa convolucional: 3,
 4, y 5
- 100 pesos compartidos por tamaño de ventana
- Se utiliza dropout en vez de regularizador

Test RMSE

Model	Dataset					
	ML-1m	ML-10m	AIV			
PMF	0.8971	0.8311	1.4118			
CTR	0.8969	0.8275	1.5496			
CDL	0.8879	0.8186	1.3594			
ConvMF	0.8531	0.7958	1.1337			
ConvMF+	0.8549	0.7930	1.1279			
Improve	3.92%	2.79%	16.60%			

Dataset	# users	# items	# ratings	density	
ML-1m	6,040	3,544	993,482	4.641%	
ML-10m	69,878	10,073	9,945,875	1.413%	
AIV	29,757	15,149	135,188	0.030%	

Experimentos

Análisis de densidad de dataset

,.	Ratio of training set to the entire dataset (density)						
Model	20% (0.93%)	30% (1.39%)	40% (1.86%)	50% (2.32%)	60% (2.78%)	70% (3.25%)	80% (3.71%)
PMF	1.0168	0.9711	0.9497	0.9354	0.9197	0.9083	0.8971
CTR	1.0124	0.9685	0.9481	0.9337	0.9194	0.9089	0.8969
CDL	1.0044	0.9639	0.9377	0.9211	0.9068	0.8970	0.8879
ConvMF	0.9745	0.9330	0.9063	0.8897	0.8726	0.8676	0.8531
Improve	2.98%	3.20%	3.36%	3.41%	3.77%	3.27%	3.92%

[1] D. Kim, C. Park, J. Oh, S. Lee, H. Yu, Convolutional Matrix Factorization for Document Context-Aware Recommendation, in Proceedings of the 10th ACM Conference on Recommender Systems, 2016.

- [2] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in Neural Information Processing Systems, volume 20, 2008.
- [3] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), 2005.