PREDICTION OF MUSIC GENRES

Pere Arnau Alegre Andrés Jiménez González Victor Teixidó López Max Vives Ribera You Wu

INDEX

- Introduction
- Metadata
- Preprocessing
- Machine learning methods
 - Naïve-Bayes
 - o K-NN
 - Decision trees
 - Meta-learning methods
 - Support Vector Machines
- Comparison between models
- Conclusions

INTRODUCTION

We got our data by searching, in the kaggle website, classification datasets.

Music genres are a common interest among the members of the group.

METADATA

- Music genre: 'Electronic', 'Anime', 'Jazz', 'Alternative', 'Country',
 'Rap', 'Blues', 'Rock', 'Classical' and 'Hip-Hop'
- 5000 individuals
- 16 variables: artist_name, track_name, duration_s, key, mode, tempo, popularity, valence, acousticness, danceability, energy, instrumentalness, liveness, loudness, speechiness, music_genre.
- Common used features & Spotify features.

PREPROCESSING

For every variable, we checked for severe outliers, error and missings. We also performed a bit of profiling with our target variable.

Example: Variable **speechiness**

PREPROCESSING

We imputed missing values with an Iterative Imputer and we checked for consistency.

We determined multivariate outliers using Mahalanobis distance and we created a variable to tag them.

MACHINE LEARNING METHODS

- NAÏVE-BAYES
- K-NN
- DECISION TREES
- META-LEARNING ALGORITHMS
- SUPPORT VECTOR MACHINES

NAÏVE-BAYES

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

$$P(y|x1, x2, x3..xN) = \frac{P(x1|y).P(x2|y).P(x3|y)...P(xN|y).P(y)}{P(x1).P(x2).P(x3)...P(xN)}$$

NAÏVE-BAYES with multivariate outliers

NAÏVE-BAYES without multivariate outliers

NAÏVE-BAYES Conclusions

- Despite of being a very simple model and assuming a false hypothesis gets decent results.
- Is very influenced by outliers.

K-NN

Advantages:

- No training period
- Addition of new data without drawbacks
- Easy implementation

Disadvantages:

- Does not work well with large datasets
- Does not work well with high dimensions
- Feature scaling
- Sensitive to noisy data, missing values and outliers

K-NN with multivariate outliers

	precision	recall	f1-score	support	
Alternative	0.23	0.22	0.22	156	
Anime	0.46	0.30	0.36	145	
Blues	0.34	0.28	0.31	134	
Classical	0.73	0.81	0.77	149	
Country	0.25	0.58	0.35	128	
Electronic	0.47	0.36	0.40	160	
Hip-Hop	0.37	0.39	0.38	149	
Jazz	0.40	0.35	0.38	162	
Rap	0.34	0.36	0.35	154	
Rock	0.36	0.23	0.28	163	
accuracy			0.38	1500	
macro avg	0.39	0.39	0.38	1500	
weighted avg	0.40	0.38	0.38	1500	
Interval of	confidence:	(0.3576392	82378951,	0.40698172	923371395)
Accuracy: 0.	382				

K-NN without outliers

	precision	recall	f1-score	support
Alternative	0.25	0.28	0.26	140
Anime	0.46	0.39	0.42	139
Blues	0.34	0.24	0.28	144
Classical	0.74	0.83	0.78	123
Country	0.32	0.53	0.40	145
Electronic	0.46	0.37	0.41	150
Hip-Hop	0.40	0.40	0.40	146
Jazz	0.43	0.40	0.42	141
Rap	0.34	0.34	0.34	148
Rock	0.35	0.28	0.31	148
accuracy			0.40	1424
macro avg	0.41	0.41	0.40	1424
weighted avg	0.40	0.40	0.40	1424
Interval of o	onfidence: (0.3742716	86687884.	0.4255455517365586)

Finding best parameters to use

Parameters used in GridSearchCV:

- N_neighbors: list(range(1,30,2))
- Metric values: ('euclidean', 'manhattan', 'chebyshev', 'minkowski')
- Weight values: (distance, uniform)

Results:

• Best Params= {'metric': 'manhattan', 'n_neighbors': 7, 'weights': 'distance'}

Conclusions

		2.4			
	precision	recall	f1-score	support	
Alternative	0.25	0.28	0.26		
Anime	0.46	0.39	0.42	139	
Blues	0.34	0.24	0.28	144	
Classical	0.74	0.83	0.78	123	
Country	0.32	0.53	0.40	145	
Electronic	0.46	0.37	0.41	150	
Hip-Hop	0.40	0.40	0.40	146	
Jazz	0.43	0.40	0.42	141	
Rap	0.34	0.34	0.34	148	
Rock	0.35	0.28	0.31	148	
accuracy			0.40	1424	
macro avg	0.41	0.41	0.40	1424	
weighted avg	0.40	0.40	0.40	1424	
Interval of c	onfidence:	(0.3742716	86687884,	0.4255455517365586	5)
Accuracy: 0.3	99578651689	39325			

DECISION TREES

Decision Trees are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.

- Simple to understand and to interpret.
- The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.
- Decision-tree learners can create over-complex trees that do not generalize the data well → overfitting.
- Decision trees can be unstable because small variations in the data might result in a completely different tree being generated.

Model with or without outliers

Without outliers

Accuracy = 0.432

With outliers

Accuracy = 0.407

To reduce overfitting: Reduced the testing sample.

To achieve a readable tree: Added depth and impurity control.

	precision	recall	f1-score	support
Alternative	0.22	0.31	0.26	35
Anime	0.68	0.49	0.57	57
Blues	0.30	0.33	0.31	52
Classical	0.75	0.80	0.77	45
Country	0.29	0.51	0.37	39
Electronic	0.43	0.30	0.36	53
Hip-Hop	0.43	0.61	0.50	44
Jazz	0.52	0.26	0.35	57
Rap	0.33	0.10	0.16	48
Rock	0.39	0.58	0.46	45
accuracy			0.42	475
macro avg	0.43	0.43	0.41	475
weighted avg	0.45	0.42	0.41	475

	Feature	Importance
0	popularity	0.618
1	acousticness	0.192
2	speechiness	0.087
3	instrumentalness	0.062
4	danceability	0.041

Resulting decision tree

Example of usage

Conclusions

- Decision trees are a simple and understandable model with very simple rules to predict categories.
- Due to its ease of development, it can produce big problems like overfitting and low accuracy.
 Those can be fixed by tweaking some parameters like the maximum depth or the minimum impurity decrease.
- The low accuracy of our model was due to the lack of highly correlated variables with the music genre and to the fact that some genres had very similar features.

META-LEARNING ALGORITHMS

- Voting Scheme
- Bagging
- Random Forest
- Boosting

Voting Scheme

- Naïve Bayes, K-nn, Decision Tree
- Weighted Voting accuracy: 0.437
- Majority Voting accuracy: 0.428

Bagging

- Decision Tree with various n_estimators
- max_features = 1.0 (default)
 - Best accuracy: 0.537
- $max_features = 0.35$
 - Best accuracy: 0.504

Random Forest

- With different value of n_estimators
 - o Best accuracy: 0.552
- Extra Trees methods: accuracy 0.55

Boosting

- Ada Boost
 - max_depth = None: best accuracy 0.432
 - max_depth = 5: best accuracy 0.489
- Gradient Boosting
 - Best accuracy 0.544

Conclusion of Meta-learning methods

SUPPORT VECTOR MACHINES

Representation of the sample points in the space and separation of every 2 classes at maximum distance possible through a support-vector.

Vector is defined by the 2 closest points of each class.

Apply SVMs without outliers & with outliers.

SVMs without outliers

LINEAR KERNEL

Default Linear kernel accuracy: 0.49

Find best C value and use it!


```
Confusion matrix on test set:

[[37 2 1 0 12 9 10 5 5 12]
[ 2 51 9 15 4 7 0 1 0 3]
[ 1 11 43 2 13 7 1 11 0 6]
[ 1 3 3 71 1 2 0 4 0 1]
[ 7 4 10 0 44 3 4 7 2 17]
[ 11 10 6 2 6 50 3 5 0 3]
[ 8 0 0 0 4 0 35 3 36 10]
[ 4 4 12 6 9 14 2 40 1 4]
[ 9 0 0 0 2 0 40 0 33 17]
[ 11 1 0 0 6 1 2 2 11 62]]

Accuracy on test set: 0.4910432033719705

Best value of parameter C found: {'C': 10.0}

Number of supports: 3271 (
Prop. of supports: 0.8616965226554267
```

RBF KERNEL

Default RBF kernel accuracy: 0.508

Find best C and Gamma values and use them!


```
onfusion matrix on test set:
[[37 1 3 0 14 3 12 5 5 13]
[2 50 11 14 5 6 0 1 0 3]
[1 7 45 4 12 6 0 12 0 8]
[2 3 2 73 1 0 0 5 0 0]
[4 2 11 0 43 4 2 9 5 18]
[8 14 4 1 7 51 1 5 2 3]
[5 0 0 0 3 1 40 1 40 6]
[4 3 3 9 4 12 18 2 41 1 2]
[6 0 0 0 0 3 0 36 0 42 14]
[13 1 0 0 4 1 4 2 8 63]]
```

Accuracy on test set: 0.5110642781875658

Number of supports: 3179 (7892 of them have slacks)
Prop. of supports: 0.8374604847207587

Best combination of parameters found: {'C': 100000.0, 'gamma': 0.001}

Acc. 5-fold cross on train data= 0.5102714763543117

SVMs with outliers

LINEAR KERNEL

Default Linear kernel accuracy: 0.51

Find best C value and use it!


```
Confusion matrix on test set:
[[31 1 3 0 18 8 7 7 6 14]
[ 3 60 10 7 6 6 0 3 1 1]
[ 4 15 38 4 10 8 1 17 0 3]
[ 0 5 1 84 1 3 0 5 0 0]
[ 4 2 7 0 45 9 4 12 1 14]
[ 8 9 3 0 3 63 3 11 4 1]
[ 6 0 0 0 6 3 40 2 35 7]
[ 0 4 14 8 12 16 3 44 0 3]
[ 7 0 0 0 3 2 34 0 44 14]
[ 13 0 1 0 6 1 7 5 3 63]]

Accuracy on test set: 0.512

Best value of parameter C found: {'C': 100.0}
Number of supports: 3407 ( 9737 of them have slacks)
Prop. of supports: 0.8519629907476869
```

RBF KERNEL

Default RBF kernel accuracy: 0.503

Find best C and Gamma values and use them!

Best combination of parameters found: {'C': 100.0, 'gamma': 0.1}

Acc. 5-fold cross on train data= 0.5296357947434294

Conclusions of SVMs

Choosing the data set with outliers and RBF kernel is the best option.

Computation time little bit worse than Linear kernel but almost the same.

Accuracy has better results: 0.515.

Accuracy on test set: 0.515

Number of supports: 3271 (6537 of them have slacks) Prop. of supports: 0.8179544886221556

COMPARISON BETWEEN MODELS

Model	Accuracy	Precision	Recall	F1-Score
Naive Bayes	0.57	0.67	0.58	0.58
KNN	0.399	0.40	0.40	0.40
Decision Trees	0.423	0.43	0.43	0.41
Support Vector Machines	0.515	15	-	-
Voting scheme	0.437	1 1	-	-
Bagging	0.537	1 1	-	-
Random Forest	0.552	E	:-	
Boosting	0.544	-	-	-

CONCLUSIONS

- Preprocessing reduce dataset to 5.000 rows
- All methods results between 0.399 and 0.57
- Learn machine learning methods