Sistemas de Numeración

Descomponer un número por el peso de cada dígito.

```
9 \times 10^{0} = 9 \text{ Unidad}

4 \times 10^{1} = 40 \text{ Decena}

3 \times 10^{2} = 300 \text{ Centena}

1 \times 10^{3} = 1000 \text{ Unidad de Mil}
```

El decimal es un sistema de numeración <u>posicional</u>

Posee diez <u>símbolos</u> o <u>unidades</u> que representan diez cantidades distintas

Al agotarse los símbolos, se agrega una columna a la izquierda del número

El <u>peso</u> de cada símbolo depende de la <u>posición</u> en la que se encuentre.

10 es la <u>base</u> del sistema

Generalizando la descomposición...

$$9 \times 10^{0} = 9$$
 $4 \times 10^{1} = 40$
 $3 \times 10^{2} = 300$
 $1 \times 10^{3} = 1000$

Peso = Unidad x Base Posición

Sistema de Numeración Binario

0 1 10	Qué pasa si tengo solamente dos símbolos, "1" y "0"?
100	Qué pasa cuando se me agotan
101	los símbolos disponibles?
110	-
111	
1000	Y así sucesivamente
1001	
1010	
1011	
1100	
1101	
1110	
1111	
10000	
10001	
	1 10 10 101 100 111 1000 1011 1100 1111 10000

Sistema de Numeración Binario

0 1 2 3	0000 0001 0010 0011	Este sistema de numeración se llama <u>binario</u>
4	0100	Es <u>posicional</u> al igual que el
5	0101	sistema decimal.
6	0110	Sistema decimal.
7	0111	Cada címbolo o unidad
8	1000	Cada <u>símbolo</u> o <u>unidad</u>
9	1001	representa una cantidad.
10	1010	
11	1011	La <u>posición</u> del símbolo define el
12	1100	peso de cada columna
13	1101	poso de cada coramina
14	1110	
15	1111	10 es la <u>base</u> del sistema.
16		(no es "diez"! es " uno-cero ")
17		

$$6_{10} = 0110_{2}$$

Peso = Unidad x Base

$$0 \times 2^{0} = 0$$
 $1 \times 2^{1} = 2$
 $1 \times 2^{2} = 4$
 $0 \times 2^{3} = 0$

$$0+4+2+0 = 6$$

Entonces, cuánto "pesa" cada columna en binario?

27	26	2 ⁵	24	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1
Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)

Un número binario de <u>8 bits</u> es la definición de <u>1 byte</u>

Cual es el rango de un número binario?

Mínimo valor: 0 en todas las columnas

Máximo valor: 1 en todas las columnas

8 bits	1 byte	0 255
16 bits	2 bytes	0 65,535
32 bits	4 bytes	0 4,294,967,296

 $0 \sim 2^{n}-1$

donde n es el número de dígitos o bits del número.

* válido sólo para números positivos

Como pasar de <u>binario a decimal</u> y vice-versa?

Ejemplo: representar 11001010b en decimal.

128	64	32	16	8	4	2	1
1	1	0	0	1	0	1	0

$$128+64+8+2 = 202$$

Ejemplo: representar 97d en binario.

128	64	32	16	8	4	2	1
0	1	1	0	0	0	0	1

$$64+32+1 = 97$$

Si necesito números más grandes... agrego más bits!

Y los números signados?

En binario <u>no existe signo negativo.</u> El signo se representa con el bit <u>más significativo</u>.

S	26	25	24	23	22	21	20
	64	32	16	8	4	2	1
Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)

Si S=0 es positivo, si S=1 es negativo.

Cómo se conoce el valor decimal un número signado? Si es positivo, se hace <u>igual que un número no signado</u>.

Si es negativo, se utiliza el **CA2 (Complemento A 2)**

Ejemplo: representar -97d en binario signado

$$97_{10} = 01100001_{2}$$
=> CA1 = 10011110
=> CA2 = + 1

= 10011111_{2} = -97_{10}

El CA2 es el "equivalente binario" a multiplicar por -1

Y el rango de un número signado?

Puedo representar la misma <u>cantidad de números</u> (2ⁿ), pero en un <u>intervalo diferente</u>.

No signado : $0 \dots 2^{n}-1$

Signado: $-2^{n-1} \dots 2^{n-1}-1$

8 bits	1 byte	0 255	-128 127
16 bits	2 bytes	0 65,535	-32,768 32,767
32 bits	4 bytes	0 4,294,967,296	-2,147,483,648 2,147,483,647
1 bit		0 1	-1 0

Como sé si un número binario es signado o no?

No lo sé. Alguien me lo tiene que decir.

Al lenguaje C también.

Suma binaria

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

Ejemplo

Resta binaria

Se computa como una suma de el minuendo más el CA2 del sustraendo (o bien: sumar el sustraendo x -1)

Ejemplo

$$01001110$$
 78
 $+10010010$ -110
 $--- 11100000$ -32

Multiplicación y división

Multiplicar x BASEⁿ = Deplazar \underline{n} posiciones a la $\underline{izquierda}$.

Dividir $x BASE^n$ = Desplazar \underline{n} posiciones a la $\underline{derecha}$.

Válido para todos los sistemas de numeración posicionales.

Sistema de Numeración Octal

<u>DEC</u>	<u>BIN</u>	<u>OCT</u>
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	10
9	1001	11
10	1010	12
11	1011	13
12	1100	14
13	1101	15
14	1110	16
15	1111	17
16	10000	20
17	10001	21

El Octal es un sistema de numeración <u>posicional de base 8</u>

Cumple con todas las reglas simbólicas y aritméticas anteriormente mencionadas

Como su base es 2³, la conversión con el sistema binario es muy simple, <u>agrupando de a 3 bits</u>

10 es la <u>base</u> del sistema

Sistema de Numeración Octal

<u>DEC</u>	BIN	<u>OCT</u>
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	10
9	1001	11
10	1010	12
11	1011	13
12	1100	14
13	1101	15
14	1110	16
15	1111	17
16	10000	20
17	10001	21

Ejemplo

Convertir de binario a octal

Sistema de Numeración Hexadecimal

<u>DEC</u>	<u>BIN</u>	<u>OCT</u>	<u>HEX</u>	
0	0000	0	0	Hexadecimal es un sistema de
1	0001	1	1	numeración <u>posicional de base 16</u>
2	0010	2	2	numeración <u>posicional de base ro</u>
3	0011	3	3	
4	0100	4	4	
5	0101	5	5	Cumple con todas las reglas
6	0110	6	6	simbólicas y aritméticas
7	0111	7	7	anteriormente mencionadas
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	Como su base es 24, la conversión
11	1011	13	В	con el sistema binario es muy
12	1100	14	C	simple, <u>agrupando de a 4 bits</u>
13	1101	15	D	
14	1110	16	$\mathbf E$	
15	1111	17	F	10 es la <u>base</u> del sistema
16	10000	20	10	10 69 19 mase del sistema
17	10001	21	11	

Sistema de Numeración Hexadecimal

<u>DEC</u>	<u>BIN</u>	<u>OCT</u>	<u>HEX</u>	
0	0000	0	0	Ejemplo
1	0001	1	1	
2	0010	2	2	Convertir de binario
3	0011	3	3	a hexadecimal
4	0100	4	4	a nexadecimai
5	0101	5	5	
6	0110	6	6	
7	0111	7	7	1011001101110
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	1 6 E
11	1011	13	В	
12	1100	14	C	
13	1101	15	D	166E
14	1110	16	${f E}$	100L ₁₆
15	1111	17	${f F}$	10
16	10000	20	10	
17	10001	21	11	

La base es distinta El número es el mismo

1011001101110

13156₈

166E₁₆

5742

En lenguaje C

int n;

n = 013156;

 $n=0\times166e;$

n=5742;

