S&S Cheat Sheet

DTFT

Defining
$$\omega = \Omega T$$
 $X(j\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

Inverse DTFT

$$x[n] = rac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})^{j\omega n} \, dw$$

Magnitude and Phase

$$ig|X(e^{j\omega})ig| = \sqrt{[ext{Im}(X(e^{j\omega}))]^2 + [ext{Re}(X(e^{j\omega})]^2} \ phase X(e^{jw}) = ext{tan}^{-1}\left(rac{[ext{Im}(X(e^{j\omega}))]}{[ext{Re}(X(e^{j\omega})]}
ight)$$

Frequency Response

$$H(e^{j\omega})=rac{Y(e^{j\omega})}{X(e^{j\omega})}$$

CT → DT (Sampling)

$$\left|x[n]=x(t)
ight|_{t=nT}=x(nT)$$

DT → CT

$$h(t) = rac{1}{2\pi} \int_{-\pi/T}^{\pi/T} H(j\Omega) e^{j\Omega t} \, d\Omega = sinc\left(rac{t}{T}
ight), sinc(u) = rac{\sin(\pi u)}{\pi u}$$

Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$
 $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{j\omega n}, z = re^{j\omega}$ if $\left|X(e^{j\omega})
ight| o \infty$, DTFT does not exist $X(z)$ Converges When: $|X(z)| < \infty$

Zero : Values of z such that X(z)=0Poles: Values of z such that $X(z)=\pm\infty$

DTFT Existence Condition

$$\begin{aligned} |a| < 1 \\ if \, |z| > |a| \ \text{includes} \ |z| = 1, |a| < 1 \ \text{required} \end{aligned}$$

Causality

$$h[n] = 0, n < 0, \; \mathrm{ROC} \; \mathrm{include} \; \infty$$

Stability

$$\sum_{n=-\infty}^{\infty}|h[n]|<\infty$$

Inverse z transform

Inspection

$$X(z) = \frac{z}{2z - 1}$$

rewrite $z \to z^{-1}$
use table

Partial Function:

Case 1:

Mz^{-1} to
$$z$$

Set denominator = 0, then partial

Case 2:

$$M \geq N : ext{Long Division}$$
 $X(z) = B + rac{A_1}{1-0.5z^{-1}} + rac{A_2}{1-z^{-1}}$

Case 3:

M < N with multiple-order pole

$$X(z) = rac{4}{(1+z^{-1})(1-z^{-1})^2} = rac{A_1}{a+z^{-1}} + rac{C_1}{1-z^{-1}} + rac{C_2}{(1-z^{-1})^2}$$

Case 4:

$$egin{aligned} \mathrm{M} \, & \geq \, \mathrm{N} \, : \ X(z) = \sum_{l=0}^{M-N} B_l z^{-1} + \sum_{k=1, k
eq i}^N rac{A_k}{1 - c_k z^{-1}} + rac{\sum_{m=1}^s C_m}{(1 - c_i z^{-1})^m} \end{aligned}$$

Transfer Function of LTI

$$H(z)=rac{Y(z)}{X(z)}$$

Geometric Series formulas								
Interval	Sum	Condition	Interval	Sum	Condition			
Infinite	$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$	a <1	Finite on [1,N]	$\sum_{k=1}^{N} a^k = \frac{a(1 - a^{N+1})}{1 - a}$	None			
Finite on [0,N]	$\sum_{k=0}^{N} a^k = \frac{1 - a^{N+1}}{1 - a}$	None	Finite on [N ₁ ,N ₂]	$\sum_{k=N_1}^{N_2} a^k = \frac{a^{N_1} - a^{N_2 + 1}}{1 - a}$	None			
Infinite	$\sum_{k=1}^{\infty} a^k = \frac{a}{1-a}$	a <1	Finite on [1,N]	$\sum_{k=1}^{N} k = \frac{N(N+1)}{2}$	None			

■ Partial fractions.

f(x)	$A \perp B$
f(x-a)(x-b)	x-a $x-b$
	A B
$(x-a)^2$	$\sqrt{x-a}$ $\sqrt{(x-a)^2}$
f(x)	A $Bx+C$
$(x-a)(x^2+bx+c)$	${x-a} + {x^2+bx+c}$
f(x)	A B C
$\frac{\overline{(x-a)(x+d)^2}}{f(x)}$	${x-a} + {x+d} + {(x+d)^2}$
	$A \rightarrow B$
$(x+d)^2$	$x+d$ $(x+d)^2$
f(x)	A Bx+C
$\overline{(x-a)(x^2-b^2)}$	$\frac{1}{x+d} + \frac{1}{x^2-b^2}$
f(x)	Ax+B $Cx+D$
$(x^2-a)(x^2-b)$	$\frac{1}{x^2-a} + \frac{1}{x^2-b}$
f(x)	Ax+B $Cx+D$
$(x^2-a)^2$	$\frac{1}{x^2-a} + \frac{1}{(x^2-a)^2}$

Sequence	Transform	ROC
$\delta[n]$	1	All z
$\delta[n-m]$	z^{-m}	$ z > 0$, $m > 0$; $ z < \infty$, $m < 0$
	1	z > a
$a^n u[n]$	$\boxed{1 - az^{-1}}$	
	1	
$-a^n u[-n-1]$	$1 - az^{-1}$	z < a
	az^{-1}	
$na^nu[n]$	$\frac{\overline{(1-az^{-1})^2}}{az^{-1}}$	z > a
	az^{-1}	
$\left -na^nu[-n-1]\right $	$\overline{(1-az^{-1})^2}$	z < a
	$1 - a\cos(b)z^{-1}$	
$a^n \cos(bn)u[n]$	$1 - 2a\cos(b)z^{-1} + a^2z^{-2}$	z > a
	$a\sin(b)z^{-1}$	
$a^n \sin(bn)u[n]$	$\boxed{1 - 2a\cos(b)z^{-1} + a^2z^{-2}}$	z > a

Figure 1

$$y[n] = (x[n] + x[n] \otimes h_1[n]) \otimes h_2[n]$$

$$= (x[n] \otimes \delta[n] + x[n] \otimes h_1[n]) \otimes h_2[n]$$

$$= x[n] \otimes ([\delta[n] + h_1[n]]) \otimes h_2[n]$$