HPC4M assignment 3

Filippo Zanetti

Exercise 2

I implemented the code such that:

- If nproc = N, every processor computes exactly one row of the result.
- If $\mathtt{nproc} > N$, the last $\mathtt{nproc} N$ processors are left without doing anything.
- If nproc < N, then each processor computes int(N/nproc) + 1 rows of matrix A; the result is then collected and only the first N rows of the result are considered.

The result, for N=5 and $\mathtt{nproc}=3$ is the following

Proc 0 . Rows:				
350	360	330	260	150
900	920	840	660	380
Proc 2 . Rows:				
3750	3800	3450	2700	1550
5100	5160	4680	3660	2100
Proc 1 . Rows:				
1650	1680	1530	1200	690
2600	2640	2400	1880	1080
Time = 1.76260	00000000000	E-002		
A * B =				
350	360	330	260	150
900	920	840	660	380
1650	1680	1530	1200	690
2600	2640	2400	1880	1080
3750	3800	3450	2700	1550

Exercise 3

I implemented three codes for this exercise:

- A serial code, which does not use parallelization
- A parallel code that splits the domain into vertical strips; each strip considers int(N/nproc) columns of the discretization, where N is the number of grid points per dimension.
- A parallel code that splits the domain into squares; I find the largest square smaller than \mathtt{nproc} , i.e. $\mathtt{nsq}^2 = \mathtt{int}(\sqrt{\mathtt{nproc}})$. The last $\mathtt{nproc} \mathtt{nsq}^2$ processors are left idle, while the first ones actively compute the integral, each one working on a square with $\mathtt{int}(N/\mathtt{nsq})$ discretization points for each dimension.

I used the simple 2D trapezoidal rule: on each rectangular element of the discretization, the integral is approximated as $\Delta x \Delta y/4 \cdot (f(a) + f(b) + f(c) + f(d))$, where a,b,c,d represent the four vertexes.

I used as parameters a=b=20. Using the serial code, the results are the following

```
2 subdivisions, error: 0.546E+04
     4 subdivisions, error: 0.567E+04
     8 subdivisions, error: 0.575E+04
   16 subdivisions, error: 0.126E+04
   32 subdivisions, error: 0.659E+03
   64 subdivisions, error: 0.445E+03
  128 subdivisions, error: 0.623E+03
  256 subdivisions, error: 0.104E+02
  512 subdivisions, error: 0.224E+01
 1024 subdivisions, error: 0.541E+00
 2048 subdivisions, error: 0.134E+00
 4096 subdivisions, error: 0.335E-01
 8192 subdivisions, error: 0.837E-02
 16384 subdivisions, error: 0.209E-02
 32768 subdivisions, error: 0.523E-03
65536 subdivisions, error: 0.130E-03
131072 subdivisions, error: 0.331E-04
```

I chose to use $N^* = 100000$ subdivisions per side, which ensures a sufficiently small error. Using the serial code and N^* , the computational time is 136.38 seconds.

Now, we can compare the computational times using N^* subdivisions and a variable number of processors. We also compare the approach using strips and squares.

Table 1: Computational time using a variable number of processors, in the case with strips and squares parallelization ${\bf r}$

nproc	Time(s)		
	strips	squares	
2	71.47	-	
4	36.06	35.04	
8	17.98	-	
9	15.97	15.79	
12	11.99	-	
16	9.27	8.92	
25	6.75	6.74	
36	3.99	3.94	

Figure 1: Computational time against number of processors for the parallel code using strips ${\bf r}$

