- 1. Пусть F некоторое поле и $A\subset F$ его подмножество мощности d+1. Докажите, что для произвольного многочлена $f(x)\in F[x]$ степени $\deg f\leq d$ коэффициент при мономе x^d в f(x) равен $\sum_{a\in A} \frac{f(a)}{\prod\limits_{b\in A\setminus\{a\}} (a-b)}.$
- 2. Пусть $A_1, A_2, \ldots, A_n \subset F$ подмножества размеров $|A_i| = d_i + 1, i \in \{1, 2, \ldots, n\}$. Рассмотрим многочлен f от n переменных x_1, x_2, \ldots, x_n такой, что для любого его монома $x^{k_1}x^{k_2}\ldots x^{k_n}$ с ненулевым коэффициентом либо $(k_1, k_2, \ldots, k_n) = (d_1, d_2, \ldots, d_n)$, либо найдётся индекс i такой, что $k_i < d_i$. Через $D(A_i, a_i)$ обозначим $\prod_{b \in A_i \setminus \{a_i\}} (a_i b)$. Докажите, что коэффициент

при мономе
$$x_1^{d_1}x_2^{d_2}\dots x_n^{d_n}$$
 в f равен $\sum_{a_1\in A_1,\dots,a_n\in A_n} \frac{f(a_1,\dots,a_n)}{D(A_1,a_1)\dots D(A_n,a_n)}.$

Combinatorial Nullstellensatz. Пусть $f \in F[x_1, x_2, ..., x_n]$. Если $\deg f = \sum_{i=1}^n d_i$ и коэффициент при мономе $x_1^{d_1} x^{d_2} ... x_n^{d_n}$ отличен от нуля, то для произвольных подмножеств $A_1, A_2, ..., A_n \subset F$ таких, что $|A_i| > d_i$, найдутся такие их элементы $a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n$, что $f(a_1, a_2, ..., a_n) \neq 0$.

- 3. В каждой вершине выпуклого 100-угольника написано по два различных числа. Докажите, что можно вычеркнуть по одному числу в каждой вершине так, чтобы оставшиеся числа в любых двух соседних вершинах были различными.
- 4. Для произвольных подмножеств $A, B \subset G$ аддитивной группы G через A+B обозначим $\{a+b\colon a\in A, b\in B\}$.
 - (a) (**Коши**–**Дэвенпорт**) Докажите, что для непустых подмножеств A и $B \subset \mathbb{Z}_p$, где p простое число, верно $|A+B| \geq \min(p,|A|+|B|-1)$.
 - (b) Докажите, что для произвольного простого числа $p \ge 23$ найдутся 5 целых чисел a_1, a_2, \ldots, a_5 таких, что $p \nmid a_i$, но $a_1^4 + a_2^4 + \ldots + a_5^4 : p$.
 - (c) Докажите, что для произвольных конечных непустых подмножеств A и $B \subset \mathbb{R}$ верно неравенство $|A+B| \geq |A|+|B|-1$, при этом равенство достигается тогда и только тогда, когда или |A|=1, или |B|=1, или элементы подмножеств A и B образуют арифметические прогрессии с одинаковой разностью.
- 5. Пусть $n \in \mathbb{N}$. Найдите минимальное количество плоскостей, объединение которых включает множество $\{(x,y,z)\colon x,y,z\in\{0,1,\dots,n\},x+y+z>>0\}$, состоящее из $(n+1)^3-1$ точки, но не содержит начало координат.

Домашнее задание

6. Пусть p – простое число. Для произвольного подмножества $A \subset \mathbb{Z}_p$ через A + A обозначим $\{a_1 + a_2 : a_1, a_2 \in A, a_1 \neq a_2\}$. Докажите, что

$$|A + A| \ge \min(p, 2|A| - 3).$$