Project Sigma

Algebraic Geometry

Reference & Exercise

Yunhai Xiang

May 18, 2021

Contents

1 Affine Algebraic Sets

5

CONTENTS 4

Chapter 1

Affine Algebraic Sets

Problem 1.0.1. List all points in $V = \mathcal{V}(\{Y - X^2, X - Y^2\})$.

Proof. Since $V = \{(x,y) : y = x^2, x = y^2\}$, we have $x = y^2 = (x^2)^2 = x^4$ if $(x,y) \in V$. By solving $x^4 - x = 0$ we have that $x \in \{0,1,w,w^2\}$ where $w = e^{2\pi i/3}$. If x = 0, then y = 0, if x = 1 then y = 1. We can easily verify that $y = x^2$ and $x = y^2$ in these cases. If x = w then $y = x^2 = w^2$, then we can verify $x = w = w^4 = y^2$. If $x = w^2$, then $y = x^2 = w^4 = w$, and we can verify $x = w^2 = y^2$. Therefore $V = \{(0,0), (1,1), (w,w^2), (w^2,w)\}$. □

Problem 1.0.2. Show that $W = \{(t, t^2, t^3) : t \in \mathbb{C}\}$ is an algebraic set.

Proof. Consider $V = \mathcal{V}(\{Y - X^2, Z - X^3\})$. For $(x, y, z) \in V$, we have $y - x^2 = 0$ and $z - x^3 = 0$, so $y = x^2$ and $z = x^3$, therefore $(x, y, z) = (x, x^2, x^3) \in W$. Conversely, let $(x, y, z) = (t, t^2, t^3) \in W$, then $y - x^2 = t^2 - t^2 = 0$ and $z - x^3 = t^3 - t^3 = 0$, hence $(x, y, z) \in V$. Thus V = W. □

Problem 1.0.3. Suppose that C is an affine plane curve and L is a line with $L \not\subseteq C$. Suppose that $C = \mathcal{V}(\{F\})$ where $F \in \mathbf{C}[X,Y]$ a polynomial of degree n. Show that $L \cap C$ is a finite set of no more than n points.

Proof. Suppose that $(x,y) \in L \cap C$, since L is a line, we have y = mx + c for some m,c, therefore F(x,mx+c) = 0. We note that deg $F(x,mx+c) \leq n$ since mx+c has degree 1. By the fundamental theorem of algebra, we have F(x,mx+c) = 0 has at most n solutions. Hence $L \cap C$ is a finite set of no more than n points.

Problem 1.0.4. Show that $\mathcal{V}((Y-X^2))$ is irreducible, and that $\mathcal{I}(\mathcal{V}((Y-X^2)))=(Y-X^2)$.

Proof. We will show that $(Y - X^2)$ is prime. Consider $\varphi : \mathbf{C}[X,Y] \to \mathbf{C}[X]$ given by $X \mapsto X$ and $Y \mapsto X^2$ extended to the whole ring, then φ is a homomorphism and $\mathrm{Ker}(\varphi) = (Y - X^2)$. Hence by the first isomorphism theorem, we have $\mathbf{C}[X,Y]/(Y - X^2) \cong \mathbf{C}[X]$ is an integral domain, hence $(Y - X^2)$ is prime. Since prime ideals are radical ideals, we have $\mathcal{I}(\mathcal{V}((Y - X^2))) = (Y - X^2)$. \square

Problem 1.0.6. Let *I* be a proper ideal of the commutative ring *R*, and let $\pi : R \to R/I$ be the natural homomorphism.

- (a) For every ideal J' of R/I, show that $J = \pi^{-1}[J']$ is an ideal of R containing I, and for every ideal containing I, the set $J' = \pi(J)$ is an ideal of R/I
- (b) Show that J' is a radical/prime/maximal ideal iff J is.
- (c) Show that J' is finitely generated if J is. Conclude that R/I is noetherian if R is, and that every ring of the form $\mathbb{C}[X_1, \dots, X_n]/I$ is noetherian.

Proof.

(a) Let J' be an ideal of R/I and $J = \pi^{-1}[J']$. If $a \in I$, then $\pi(a) = a + I = 0 + I \in J'$ since J' is an ideal, hence $a \in J$. Thus J contains I. Let $a,b \in J$, then $\pi(a),\pi(b) \in J'$, so $\pi(a-b) = \pi(a) - \pi(b) \in J'$, so $a-b \in J$ as well. Similarly, for $r \in R$ and $a \in J$, we have $\pi(a) \in J'$, so $\pi(ra) = \pi(r)\pi(a) \in J'$ since J' is an ideal, thus $ra \in J$. Hence J is an ideal containing I.

Now, let J be an ideal of R containing I, and let $J' = \pi[J]$. Let $a, b \in J'$, then $a = \pi(x)$ and $b = \pi(y)$ for some $x, y \in J$, thus $a - b = \pi(x) - \pi(y) = \pi(x - y)$. Since J is an ideal, we have $x - y \in J$, so $a - b \in J'$. Similarly, for $r' = r + I \in R/I$ and for $a \in J'$, we have $a = \pi(x) = x + I$ for some $x \in J$, so $r'a = (r + I)(x + I) = rx + I = \pi(rx)$. Since J is an ideal, we have $rx \in J$, so $r'a \in J'$. Hence J' is an ideal.

(b)

(c)