Modèles de survie multi-états appliqués aux cancers

Projet M2

Tuteurs : Adeline Leclercq Samson et Florent Chuffart

Diagne Marame, McKenna Kevin, Pittion Florence, Silvestre Théo, Wang Shuyu

Octobre 2021 - Février 2022

Tuteurs

Adeline Leclercq Samson

Florent Chuffart

"An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality." Liu J et coll. Cell. 2018

"An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality." Liu J et coll. Cell. 2018

► Identifier des modèles de survie

- ▶ Identifier des modèles de survie
- Outils disponibles implémentant ces modèles

- Identifier des modèles de survie
- Outils disponibles implémentant ces modèles
- Application jeu de données TCGA-CDR

- Identifier des modèles de survie
- Outils disponibles implémentant ces modèles
- ► Application jeu de données TCGA-CDR

Démarche

Données de Survie

PFI = Progression Free Interval, DSS = Disease Specific Survival

Covariable: stade du cancer

Hétérogénéité des cancers

temps (années)

Modèles multi-états

Nouvelles transitions

Modèles multi-états

▶ Le modèle utilise le processus $\{X_t\}_{t\in\mathbb{R}_+^*}$, $X_t\in S$, où S est un ensemble fini d'états.

Modèles multi-états

- ▶ Le modèle utilise le processus $\{X_t\}_{t\in\mathbb{R}_+^*}$, $X_t\in S$, où S est un ensemble fini d'états.
- ▶ Fonction d'intensités de transitions α_{ij} de l'état i à l'état j,

$$\alpha_{ij}(t) = \lim_{h \to 0} \frac{P(X_{t+h} = j \mid X_t = i)}{h}$$

Probabilités de transition

- Définir des intensités de transition constantes que l'on notera α_{01} , α_{02} et α_{12} .

- Définir des intensités de transition constantes que l'on notera α_{01} , α_{02} et α_{12} .
- 1. Tirer une réalisation T_1 selon la loi $min(X_1, X_2)$, $X_1 \sim \mathcal{E}(\alpha_{01})$ et $X_1 \sim \mathcal{E}(\alpha_{02})$.

- Définir des intensités de transition constantes que l'on notera α_{01} , α_{02} et α_{12} .
- 1. Tirer une réalisation T_1 selon la loi $min(X_1, X_2)$, $X_1 \sim \mathcal{E}(\alpha_{01})$ et $X_1 \sim \mathcal{E}(\alpha_{02})$.
- 2. Tirer une réalisation $B \sim \mathcal{B}\left(\frac{\alpha_{02}}{\alpha_{01} + \alpha_{02}}\right)$.

- Définir des intensités de transition constantes que l'on notera α_{01} , α_{02} et α_{12} .
- 1. Tirer une réalisation T_1 selon la loi $min(X_1, X_2)$, $X_1 \sim \mathcal{E}(\alpha_{01})$ et $X_1 \sim \mathcal{E}(\alpha_{02})$.
- 2. Tirer une réalisation $B \sim \mathcal{B}\left(\frac{\alpha_{02}}{\alpha_{01} + \alpha_{02}}\right)$.
- 3.1 Si B=0, une transition de 0 à 1 s'effectue au temps T_1 .

- Définir des intensités de transition constantes que l'on notera α_{01} , α_{02} et α_{12} .
- 1. Tirer une réalisation T_1 selon la loi $min(X_1, X_2)$, $X_1 \sim \mathcal{E}(\alpha_{01})$ et $X_1 \sim \mathcal{E}(\alpha_{02})$.
- 2. Tirer une réalisation $B \sim \mathcal{B}\left(\frac{\alpha_{02}}{\alpha_{01} + \alpha_{02}}\right)$.
- 3.1 Si B=0, une transition de 0 à 1 s'effectue au temps T_1 . 0.1 Tirer une réalisation $T_2 \sim \mathcal{E}(\alpha_{12})$.

- Définir des intensités de transition constantes que l'on notera α_{01} , α_{02} et α_{12} .
- 1. Tirer une réalisation T_1 selon la loi $min(X_1, X_2)$, $X_1 \sim \mathcal{E}(\alpha_{01})$ et $X_1 \sim \mathcal{E}(\alpha_{02})$.
- 2. Tirer une réalisation $B \sim \mathcal{B}\left(\frac{\alpha_{02}}{\alpha_{01} + \alpha_{02}}\right)$.
- 3.1 Si B=0, une transition de 0 à 1 s'effectue au temps T_1 . 0.1 Tirer une réalisation $T_2 \sim \mathcal{E}(\alpha_{12})$.
- 3.2 Si B=1, une transition de 0 à 2 s'effectue au temps T_1 .

- Définir des intensités de transition constantes que l'on notera α_{01} , α_{02} et α_{12} .
- 1. Tirer une réalisation T_1 selon la loi $min(X_1, X_2)$, $X_1 \sim \mathcal{E}(\alpha_{01})$ et $X_1 \sim \mathcal{E}(\alpha_{02})$.
- 2. Tirer une réalisation $B \sim \mathcal{B}\left(\frac{\alpha_{02}}{\alpha_{01} + \alpha_{02}}\right)$.
- 3.1 Si B=0, une transition de 0 à 1 s'effectue au temps T_1 . 0.1 Tirer une réalisation $T_2 \sim \mathcal{E}(\alpha_{12})$.
- 3.2 Si B=1, une transition de 0 à 2 s'effectue au temps T_1 .
 - 4. Réitérer l'algorithme suivant le nombre d'individus souhaité.

Intégration de covariables et packages

Modèles de Cox:

$$\alpha^{ij}(t,Z) = \alpha_0^{ij}(t) \exp\left(\sum_{k=1}^n \beta_k^{ij} Z_k\right)$$

Intégration de covariables et packages

▶ Modèles de Cox:

$$\alpha^{ij}(t,Z) = \alpha_0^{ij}(t) \exp\left(\sum_{k=1}^n \beta_k^{ij} Z_k\right)$$

Estimation des β^{ij} par maximum de vraisemblance.

Intégration de covariables et packages

Modèles de Cox:

$$\alpha^{ij}(t,Z) = \alpha_0^{ij}(t) \exp\left(\sum_{k=1}^n \beta_k^{ij} Z_k\right)$$

Estimation des β^{ij} par maximum de vraisemblance.

Deux packages: msm et mstate.

Effectifs

		BRCA		OV	
		réelles	simus	réelles	simus
T01	Censurées	943	956	192	195
	Non Censurées	98	85	349	346
T02	Censurées	1008	1005	490	494
	Non Censurées	33	36	51	47
T12	Censurées	995	1010	292	320
	Non Censurées	46	31	249	221

Table: Effectifs des censures

Comparaison des hazard ratios entre réelles et simulées

Comparaison des hazard ratios entre réelles et simulées

Comparaison des hazard ratios entre BRCA et OV

Analyse Sensibilité

Figure: Effet de la variation des intensités de transition pour les stade de cancer pour les 3 transitions sur la significativité des HR

Difficultés rencontrées

- La création de l'algorithme de simulations de données avec censures.
- Mise en place de tests pour les morceaux de codes implémentés.
- Évaluation de la robustesse des hypothèses du modèle sur les données.
- Utilisation du package msm.

Perspectives

- Analyse de sensibilité.
- ► Application shiny pour la visualisation.

Conclusion

- ► Multi-états donnent plus d'information que Cox
- ► Multi-états supposent des hypothèse plus fortes

Sources

- Data Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V; Cancer Genome Atlas Research Network, Hu H. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell. 2018 Apr 5;173(2):400-416.e11. doi: 10.1016/j.cell.2018.02.052. PMID: 29625055; PMCID: PMC6066282.
- Multi-State-Models Jason P. Fine Robert J. Gray, Theory and Method, A Proportional Hazards Model for the Subdistribution of a Competing Risk, Pages 496-509 — Received 01 Jul 1997, Published online: 17 Feb 2012
- Cox Model Meira-Machado L, de Uña-Alvarez J, Cadarso-Suárez C, Andersen PK. Multi-state models for the analysis of time-to-event data. Stat Methods Med Res. 2009;18(2):195-222. doi:10.1177/0962280208092301

