Due Friday, January 6

- 1. (Ax 1.A.7) Show that for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$.
- 2. (Ax 1.A.11) Explain why there does not exist $\lambda \in \mathbb{C}$ such that

$$\lambda(2-3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i).$$

- 3. (Ax 1.B.4) The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in 1.19. Which one?
- 4. Let V be the set of positive real numbers. Prove that V is a vector space over $\mathbb R$ with "addition" defined by

$$x \boxplus y = xy$$
, for all $x, y \in V$

and scalar multiplication by

$$\lambda * x = x^{\lambda}$$
, for all $x \in V, \lambda \in \mathbb{R}$.

What is the zero vector?