Program Structures & Algorithms Spring 2023 Assignment No. 3

Name: Srikanth Nandikonda

NUID: 002737724

TASK:

1)Implement three method of Timer class

2)Implement Insertion Sort

3)Benchmarking for insertion sort

Unit Test Case:

Conclusion

- In case of ordered arrays, the time taken by the algorithm is less compared to other cases as the elements are in a sorted order and the number of operations needed to sort the array is less.
- In the case of random arrays, the time taken by the algorithm increases as the number of elements in the array increases and this is close to the $T = aN^{1.777}$
- In the case of partially sorted arrays, the time taken is intermediate between the ordered and reversed arrays as the elements are partially sorted, and the number of operations needed to sort the array is intermediate. T = aN^{1.777}
- In the case of reversed arrays, the time taken by the algorithm is highest as the elements are in the reverse order and the number of operations needed to sort the array is highest. This is close to the N2 time complexity. $T = aN^{1.9034}$

Ordered < Partial-ordered < Random < Reverse order

Evidence

Following data is collected after calling Insertion sort method by varying array size from 500 and doubling the array size till 32000. Mean time is calculated after running 50 times.

1) Elements of the array in Random way

N	059 673
1000 1.849216 9.966 0.88691375 0.1450 2000 5.642682 10.966 2.496381047 1.6094 4000 36.45145 11.966 5.187904141 2.6915 8000 99.77173 12.966 6.640559156 1.452 16000 410.5017 13.966 8.681244407 2.0406 32000 1864.819 14.966 10.86481998 2.1835 Random Array	673
2000 5.642682 10.966 2.496381047 1.6094 4000 36.45145 11.966 5.187904141 2.6915 8000 99.77173 12.966 6.640559156 1.452 16000 410.5017 13.966 8.681244407 2.0406 32000 1864.819 14.966 10.86481998 2.1835 Random Array	673
4000 36.45145 11.966 5.187904141 2.6915 8000 99.77173 12.966 6.640559156 1.452 16000 410.5017 13.966 8.681244407 2.0406 32000 1864.819 14.966 10.86481998 2.1835 Random Array	
8000 99.77173 12.966 6.640559156 1.452 16000 410.5017 13.966 8.681244407 2.0406 32000 1864.819 14.966 10.86481998 2.1835 Random Array	231
16000 410.5017 13.966 8.681244407 2.0406 32000 1864.819 14.966 10.86481998 2.1835 Random Array 14 12 y = 1.9034x - 1.6649	
32000 1864.819 14.966 10.86481998 2.1835 Random Array 14 12 y = 1.9034x - 1.6649	655
Random Array 14 12 y = 1.9034x - 1.6649	853
14 — y = 1.9034x - 1.6649	756
12 y = 1.9034x - 1.6649	
y = 1.9034x - 1.6649 - •	
10	
(E) 8	
<u>ā</u> 6	
4 —————————————————————————————————————	
2	
0 8.966 9.966 10.966 11.966 12.966 13.966 14.96	

Ig(T) vs Ig(N) graph

lg(N)

Equation

lg(T) = 1.777lg(N) - 2.086

Equivalent

 $T = aN^{1.777}$

2) Elements of the array in partial ordered way

Partially Ordered									
N	~	T	▼ lg	g(N)	~	lg(T)	•	Log Ratic 🔻	
	500	1.0649	38	8.96	66	0.090769	44		
	1000	2.3968	80	9.96	66	1.2611143	44	1.1703449	
	2000	4.5826	80	10.96	66	2.1961688	82	0.9350545	
	4000	25.403	78	11.96	66	4.666971	39	2.4708025	
	8000	141.94	92	12.96	66	7.1492305	83	2.4822592	
	16000	298.55	02	13.96	66	8.2218299	47	1.0725994	
	32000	1336.7	59	14.96	66	10.384524	16	2.1626942	

Ig(T) vs Ig(N) graph

Equation

$$lg(T) = 1.777lg(N) - 2.255$$

Equivalent

$$T = aN^{1.777}$$

3) Elements of the array in reverse ordered way

		Reve	erse Ord	dered	
N ¬	T	▼ lg(N)	-	lg(T) ▼	Log Ratic 💌
50	0 1.5170	74	8.966	0.601291459	
100	0 4.2816	578	9.966	2.098176303	1.4968848
200	0 13.071	.04	10.966	3.708301808	1.6101255
400	0 60.579	67	11.966	5.920761719	2.2124599
800	0 194.52	.32	12.966	7.603798153	1.6830364
1600	0 845.38	887	13.966	9.723470971	2.1196728
3200	0 4050.6	524	14.966	11.98392849	2.2604575

Ig(T) vs Ig(N) graph

Equation

lg(T) = 1.9034lg(N) - 1.6649

Equivalent

 $T = aN^{1.9034}$