CS & IT ENGINEERING

IPv4 Addressing

Lecture No-24

By- Ankit Doyla Sir

Topics to be Covered..

Problem Solving
On
Supernetting

Perform CIDR aggregation on the following addresses

1) NID must be contiguous (Truc) 57.6.96.0/21, HD=11bit

57.6.112.0/21, HID=11 bit 3) Total Size of substruct = all+all+all+all =4x2"=213

Supernulid = 1st IP Additess Always = 57.6.96.0

Total size of supernet = 2 3

HID=13bit, NID=32-13=19

Final Ans: 57 6.96.0/19

Perform CIDR aggregation on the following

194.24.0.0/19

- B 194.24.0.0/21
- C 194.24.0.0/20
- D 194.24.0.0/22

194.24.8.0|21

- (ontiguous (Touc)
- @ some size = 2" = No of n w's = 2=2' (T)
- 3 Total size of supernut = a"+2" = 2*2" = 212

Supermedid = 194 24.0.0

Total size of supermet = 211+211 = 212

HID=12 bit, NID=20 bit

- → 194.24.0.0 20 7- HID=12bit → 194.24.16.0 20 + HID=12bit
- 1 Contiguous (True)
- @ samesize= 212 & NO OF N/W's=2=21

Supernutid = 1942400

Total size of supernut = 213

HID=13bit, NID=32-13=19bit

Final Aus: 194.24.0.0/19

Consider routing table of an organization's router shown below:

Subnet number	Subnet Mask	Next Hop	
12.20.164.0	255.255.252.0	R1	
12.20.170.0	255.255.254.0	R2	
12.20.168.0	255.255.254.0	Interface 0	
12.20.166.0	255.255.254.0	Interface 1	
Default		R3	

Which of the following prefixes in CIDR notation can be collectively used to correctly aggregate all of the subnets in the routing table?

A the routing table: 12.20.164.0/21

B 12.20.164.0/22

C 12.20.168.0/22

D 12.20.164.0/20

Supernetting in Classfull addressing

```
N: 200.96.86.0
```

1 NID must be contiguous

- @ same size=28 = No. OF n/w's = 4=22
- 3) Total size of supernut = 28+28+28+28 = 210

Subernutting Not possible

1) NID must be contiguous (True)

- (2) samp size= 28 = No of n/w's=4=22 (T)

Supernutid = 198.47.32.0
Total size of supernut = 210
HID=10 bit, NID=32-10=22 bit

NID

Supernut Mask = 1111111.111111.111111.1111100.0000000 = 255.255.255.252.0

Supermet bit = 2

No of Networks that must be combined = 2 = 4

```
Closs-c
Default subnut Mask: 255.255.255.0
NID
HILL
NID
HILL
NID
HILL
NID
HILL
NID
```



```
128.56.24.0
128.56.25.0
128.56.26.0
128.56.27.0
         HID
   MID
Class-B
 NID HID
 16
```

We can't apply supernutting on single N/W


```
128.56.0.0
128.57.0.0
128.58.0.0
128.59.0.0
 Class-B
  NID
```

- 1) NID must be contiguous (True)
- (a) some size=216 & No. of n/w'x=4=22
- (3) Total size of supernut = 216+216+216+216 = 4*216 = 218

128.00111000.0000000.0000000 | 218 (True)

Remor HID

Supermetid = 198.56.0.0

Total size of supermet = 218

HID=18 bit, NID = 14 bit

Supernet Mask = 1111111.11111100.0000000.000000 = 255.252.0.0

Superind bits = 2 No of nlw's must be Combined = 2 = 4

Class-B

Default submit mask = 255.255.0.0

NID HIP

NID HIP

NID HIP

NID HIP

Subnet Mask	Supernet Mask
(1) No. of 1's in the subnet Mask either equal to NID bits or more than NID bits	(1) No. of 1's in the supernet mask always less than NID bits
(2) Subnet mask is applicable for single n/w or subnetting is Applicable For single n/w	(2) Supernet mask is applicable for two or more network or submitting is applicable for more network or more new more ne
(3) In subnetting we borrowed from Host ID	(3) In supernetting we borrowed from network-ID

Class-13: 255.255.0.0

Class-13: 255.255.0.0

Class-c: 255.255.255.0

owt so-

Address	class-A	Class-B	c (0 ss-c
255.0.0.0.8-1's	Subnet mask	Supernetmask	supernel mask
₹55.₹55.₹5₹.0+22	subrulmask	subrul mask	Supernitmask
255.255.0-24	subrul mask	Subnut mask	subnut mask
રે55 ને55 ને55 નેર4 →રૄ	subnut mask	subrut Mask	subnut mask

