Intro Python, ML & file structure formats

Machine learning in a nutshell

Machine learning in a nutshell

Classification / Regression / Clustering

- Classify future observations
- Known classes

Predict continuous attribute

- No prior knowledge
- Discover patterns

Popular ML models

Neural Networks

input layer

hidden layer 1 hidden layer 2 hidden layer 3

output layer

Support Vector Machines

Support Vector Machines (SVM)

- In case of linearly separable data, an ML algorithm tries to find a decision boundary (by minimizing a classification error)
- In this case, how to choose best boundary?
- SVM
 - Finds the most optimal decision boundary by maximizing the distance from the nearest data points of all the classes: finds a hyperplane in N-dimensional space (N: number of features)

Neural networks

- Inspired by biological neurons
- Designed to recognise patterns
- Key components
 - o <u>Node</u>: represents an artificial neuron
 - Weight: importance of the node in the learning process
 - <u>Layer</u>: a set of nodes.
 - Input
 - Hidden: learns different aspects about the data by minimizing an error/cost function
 - Output
 - Activation function:
- Learning from sample observations by adjusting the weights to improve the accuracy of the result.
- Learning is done by minimizing the observed errors.

Images from [Ref]

Why Python?

- General purpose language
- Easy to use
- Popular in data science community
- Integrated packages: data processing, ML, data structure saving/loading

Jupyter notebook

Open-source web application to create live code, equations, visualizations and text [Ref]

The Lorenz Equations ¶

```
1 \begin{align}
2 \dot{x} & = \sigma(y-x) \\
3 \dot{y} & = \rho x - y - xz \\
4 \dot{z} & = -\beta z + xy
5 \end{align}
```

```
\dot{x} = \sigma(y - x)
\dot{y} = \rho x - y - xz
\dot{z} = -\beta z + xy
```


Numpy

Package for scientific computing with Python [Ref]

- a N-dimensional array manipulation
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities

uproot

- Reader/Writer of the ROOT file format using
 only Python and Numpy [Ref]
- No dependence on C++ ROOT
- Uses Numpy to cast blocks of data from the ROOT file as Numpy arrays.
- Designed to stream data into machine learning libraries in Python

File structures: Pickle, HDF5

Pickle

- Used to serialize¹/de-serialize python object structure (list, dict, etc..)
- Converts python object into character stream

HDF5

- Hierarchical Data Format (HDF)
- Supports large, complex, heterogeneous data

^[1] Serialization is the process of translating data structures or object state into a format that can be stored or transmitted and reconstructed later

Matplotlib

Plotting library [Ref]

Scikit learn (sklearn): ML

Library for data analysis and data mining

[Ref]

- What can we do with sklearn?
 - Data preprocessing
 - Classification
 - Regression
 - Clustering

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

0 ...

Installing packages : all in one Conda

Windows

- Download installer : https://docs.conda.io/en/latest/miniconda.html
- 2. Double-click the .exe file.

Linux

- Download installer : https://conda.io/miniconda.html
- 2. In your terminal: bash Miniconda3-latest-Linux-x86_64.sh

Questions?