Folha 4: Soluções

2. (a)
$$xy' - y = 0$$
; (b) $y'' = 0$; (c) $xy' - y \ln(y) = 0$.

$$3. \quad y''' + y' = 0.$$

4. (a)
$$y = C_1 x - \sin x + C_2$$
, $C_1, C_2 \in \mathbb{R}$.

5. (a)
$$y = \ln(\arctan x) + C$$
, $C \in \mathbb{R}$;

(b)
$$y = \frac{x}{2}\sqrt{1 - x^2} + \frac{1}{2} \arcsin x + C, \quad C \in \mathbb{R};$$

(c)
$$y = \frac{x^3}{3} + \arctan x + C$$
, $C \in \mathbb{R}$.

6. (a)
$$x^2 + y^2 = C$$
, $C \in \mathbb{R}$;

(b)
$$y = Cx$$
, $C \in \mathbb{R}$ (compare com o ex. 2(a));

(c)
$$\frac{x}{t} = C e^{-\frac{1}{x} - \frac{1}{t}}, \quad C \in \mathbb{R};$$

(d)
$$y = \frac{1}{\ln|x^2 - 1| - C}, C \in \mathbb{R};$$

7. (a)
$$y = \frac{1}{x+1}$$
; (b) $y = -1 + 2e^{2-\sqrt{4+x^2}}$; (c) $y^3 = 4(1+x^3)$.
8. (a) $\ln|y| - \frac{x^2}{2y^2} = C$, $C \in \mathbb{R}$ $(y = 0 \text{ é solução singular})$.

8. (a)
$$\ln |y| - \frac{x^2}{2y^2} = C$$
, $C \in \mathbb{R}$ $(y = 0 \text{ \'e solução singular})$.

(b)
$$y = x e^{Ky}$$
, $x > 0$, $K \in \mathbb{R}$.

9. (b)
$$y = x e^{Cx}$$
, $x > 0$, $C \in \mathbb{R}$.

10. (a)
$$\operatorname{arctg}\left(\frac{y-1}{x-2}\right) = \frac{1}{2}\ln\left(1+\left(\frac{y-1}{x-2}\right)^2\right) = \ln|x-2|, \quad C \in \mathbb{R}.$$

(b)
$$(y-x)^2 + 4y = C$$
, $C \in \mathbb{R}$.

11.
$$|(a)| x^2 + x \operatorname{sen} y = C, \quad C \in \mathbb{R};$$

(b)
$$x^2 + y^2 + 2xe^y - 2yx^2 = C$$
, $C \in \mathbb{R}$;

(c)
$$y = \frac{C - 3x^2}{\ln|x| - 2}$$
, $C \in \mathbb{R}$.

12.
$$x + e^{-x} \operatorname{sen} y = C$$
, $C \in \mathbb{R}$ (um fator integrante é $\mu(x, y) = e^{-x} \cos y$).

13. (a)
$$x + y^2 = Cy$$
, $C \in \mathbb{R}$ (um fator integrante é $\mu(y) = y^{-2}$);

(b)
$$yx^2 - \frac{x^5}{5} = C$$
, $C \in \mathbb{R}$ (um fator integrante é $\mu(x) = x$, $x > 0$).

14. (a)
$$y = \frac{2}{5}\cos x + \frac{1}{5}\sin x + Ce^{-2x}, \quad C \in \mathbb{R};$$

(b)
$$y = -1 + C e^{-\frac{1}{2x^2}}, \quad x \neq 0, \quad C \in \mathbb{R};$$

(c)
$$y = (C+x)\sqrt{x^2+1}$$
, $C \in \mathbb{R}$.

15. Comece por verificar que a solução geral possui a forma $y = \frac{1}{x} + \frac{C}{x^2}$, $C \in \mathbb{R}$.

16. (a)
$$y = \frac{1}{1 + Cx + \ln x}$$
, $x > 0$, $C \in \mathbb{R}$ $(y = 0 \text{ é solução singular})$.

(b)
$$y^4 = \frac{x^2}{C - 4x^5}$$
, $C \in \mathbb{R}$ $(y = 0 \text{ \'e solução singular})$.

17. (a)
$$y = \frac{x^4}{2} + K x^2$$
, $K \in \mathbb{R}$;

(b)
$$y = \frac{x}{2} \csc x - \frac{\cos x}{2} + K \csc x$$
, $K \in \mathbb{R}$.

18. (a)
$$y = Kx^2$$
 $(K \neq 0)$;

(b)
$$y = Ke^x$$
 $(K \neq 0);$

(c)
$$x^2 - y^2 = K$$
 $(K \neq 0)$.

19. (a)
$$y = C_1 e^{-x} + \frac{\sin x}{2} - \frac{\cos x}{2};$$

(b)
$$y = C_1 e^x + C_2 e^{-x} + \cos x$$
;

(c)
$$y = C_1 e^x + C_2 e^{-2x} + 3x$$
;

(d)
$$y = \left(C_1 + C_2 x + \frac{x^3}{6}\right) e^{2x};$$

(e)
$$y = C_1 + (C_2 - x) e^{-x}$$
;

(f)
$$y = C_1 \operatorname{sen}(2x) + C_2 \cos(2x) - \frac{1}{4} \cos(2x) \ln |\sec(2x) + \operatorname{tg}(2x)|;$$

(g)
$$y = C_1 + C_2 \cos x + C_3 \sin x - \frac{x}{2} \sin x;$$

(h)
$$y = C_1 \operatorname{sen}(3x) + C_2 \cos(3x) + \frac{\operatorname{sen} x}{8} - \frac{e^{-x}}{10}$$

 $(C_1, C_2, C_3$ são constantes reais arbitrárias).

20.
$$y = \frac{3}{4}(x - \pi) e^{2(\pi - x)} + \frac{\sin(2x)}{8}$$
.

21.
$$y = 1 + e^{-\operatorname{sen} x}, \quad x \in \mathbb{R}.$$

22. (a)
$$y = \frac{K}{(x^2 + 1)^2}$$
, $K \in \mathbb{R}$;

(b)
$$y = C_1 \cos x + C_2 \sin x + x \cos x$$
, $C_1, C_2 \in \mathbb{R}$;

(c)
$$y = C e^{\operatorname{arctg} x}, \quad C \in \mathbb{R};$$

(d)
$$y = C_1 + C_2 \cos(2x) + C_3 \sin(2x) + \frac{1}{3} \sin x$$
, $C_1, C_2 \in \mathbb{R}$;

(e)
$$y = K e^{x^3} - \frac{1}{3}, \quad K \in \mathbb{R};$$

(f)
$$y = C_1 e^{-2x} + (C_2 + C_3 x + 2x^2) e^x$$
, $C_1, C_2, C_3 \in \mathbb{R}$.

23.
$$y = Cx^2 + x^3 + K$$
, $C, K \in \mathbb{R}$.

$$24.$$
 (a) $-$

(b)
$$y = C_1 x + C_2 e^x$$
, $C_1, C_2 \in \mathbb{R}$.

(c)
$$y = C_1 x + C_2 e^x + x^2$$
, $C_1, C_2 \in \mathbb{R}$.