Modélisation du réseau métabolique

Maxime CHAZALVIEL

1. Modèle jouet 1

A - Réseau

B - Matrice stœchiométrique

	R_ex_A	R1	R2	R3	R4	R5	R_OBJ
A	1	-1					
В		1	-1	-1			
C			1		-1		
D				1		-1	
OBJ					1	1	-1

C - Equation décrivant l'état d'équilibre

On n'observe aucun changement de la concentration après chaque réactions.

$$d[A]/dt = 0$$

$$d[A]/dt = VAex - V1 = 0$$

$$d[B]/dt = V1-(V2 + V3) = 0$$

$$d[C]/dt = V2 - V4 = 0$$

$$d[D]/dt = V3 - V5 = 0$$

$$d[OBJ]/dt = (V4 + V5)-VOBJ = 0$$

D - Maximisation V_OBJ

Maximize:

OBJ: (V4 + V5)-VOBJ

Subject to:

A: VAex - V1 = 0

B: V1-(V2 + V3) = 0

C: V2 - V4 = 0

D: V3 - V5 = 0

Bounds:

0 <= VexA <= 16

0 <= V1 <= 9

0 <= V2 <= 8

0 <= V3 <= 6

0 <= V4 <= 10

E - Valeur maximale de V_OBJ

$$MAX(V_OBJ)$$
 > $VAex - V1 = 0$ > $V1 = 9$ et $VAex = 9$

$$>$$
 V1-(V2 + V3) = 0 $>$ V1 = 9, V2 = 8 et V3 = 1

$$>$$
 V2 - V4 = 0 $>$ V2 = 8 et V4 = 8

$$>$$
 $(V4 + V5)-VOBJ = 0$ $>$ $VOBJ = V4 + V5 = 9$

F - Valeur maximale de V_OBJ si V5 = 0

$$Si V5 = 0$$
 > $V3 = 0$ > $V2MAX = 8$ > $V4 = 8$ et $VOBJMAX = 8$

2. Modèle jouet 2

a) Ajouter les réactions d'échange pour que l'état d'équilibre puisse être vérifié

veriii	le		
R1	A -> 2 B	0	10
R2	B+H -> 2 C	0	15
R3	2 C -> J	0	13
R4	K -> J	0	10
R5	3 J -> 2 L	0	20
R6	B -> 2 D + Q	0	8
R7	D -> M	0	5
R8	4 N -> L	0	9
R9	E -> F	0	10
R10	C -> D	0	10
R11	2 G + D -> 2 E	0	9
R12	E+ I -> H	0	4
R13	O + P -> N	0	10
R14	B -> J	-5	10
RA	Aex -> A	0	10
RF	F -> Fex	0	10
RI	lex -> I	0	4
RK	Kex -> K	0	10
RL	L -> Lex	0	9
RM	M -> Mex	0	5
RO	Oex -> 0	0	10
RP	Pex -> P	0	10
RQ	Q -> Qex	0	8
RG	Gex -> G	0	9

RG

B - Matrice stœchiométrique

	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R 1/1	ΡΔ	RF	RI	RK	RL	RM	RO	RP	RQ	RG
A	-1	11.2	NJ	117	NJ	10	11.7	100	K)	KIU	1/11	1112	1113	1/17	1	1(1	1/1	1/1/	KL	17171	NO	1/1	ΛŲ	NO
В	2	-1				-1								-1	1									
C		2	-2			1				-1				1										
						2	-1			1	-1													
E									-1		2	-1												
D E F G									1			1				-1								
G											-2													1
Н		-1										1												
I												-1					1							
J			1	1	-3									1										
K	•			-1														1						
L					2			1											-1					
M							1													-1				
N O								-4					1											
O													-1								1		<u> </u>	
P													-1									1	<u> </u>	
Q						1																	-1	
Aex															-1									
Fex																1							 	
Iex																	-1						 	
Kex																		-1	_					
Lex																			1					
Mex																				1	-			
Oex																					-1	- 1	 	
Pex																						-1	1	
Qex																							1	
Gex																								-1

C - Equation décrivant l'état d'équilibre

On observe aucun changement de la concentration de A.

$$d[A]/dt = 0 -> d[A]/dt = VAex - V1 = 0$$

$$d[B]/dt = 2V1-(V2 + V6 + V14) = 0$$

$$d[C]/dt = 2V2 - V10 - V3 = 0$$

$$d[D]/dt = 2V6 - V10 - V7 - V11 = 0$$

$$d[E]/dt = 2V11 - V9 - V12 = 0$$

$$d[F]/dt = V9 - VF = 0$$

$$d[G]/dt = VG - 2V11 = 0$$

$$d[H]/dt = V12 - V2 = 0$$

$$d[I]/dt = VI - V12 = 0$$

$$d[J]/dt = V3 + V4 - 3V5 = 0$$

$$d[K]/dt = VK - V4 = 0$$

$$d[L]/dt = V8 + 2V5 - VL = 0$$

$$d[M]/dt = V7 - VM = 0$$

$$d[N]/dt = V13 - 4V8 = 0$$

$$d[O]/dt = VO - V13 = 0$$

$$d[P]/dt = VP - V13 = 0$$

$$d[Q]/dt = V6 - VQ = 0$$

D - Parmi ces 4 modes (distributions de flux), quels sont ceux qui vérifient l'état d'équilibre ?

M1: [R1 = 1; R6 = 1; R8 = 1; R13 = 2; R9 = 1]

Les valeurs non renseignées sont à 0.

Dans
$$d[A]/dt = 0 -> d[A]/dt = VAex - V1 = 0$$

Dans
$$d[B]/dt = 2V1-(V2 + V6 + V14) = 0$$

$$V6 = 1$$
 > $V2 + V14 = 1$

On modifie V6 pour laisser V2 et V14 à 0.

$$V6 = 2$$
 > $V2 = 0$ et $V14 = 0$

Dans
$$d[C]/dt = 2V2 - V10 - V3 = 0$$

$$= 0 - 0 - 0 = 0$$

$$d[D]/dt = 2V6 - V10 - V7 - V11 = 0$$

Ce mode ne vérifie donc pas l'état d'équilibre.

$$d[D]/dt = 4 - 4 = 0$$

Dans
$$d[E]/dt = 2V11 - V9 - V12 = 0$$

$$= 4 - 1 = 0$$
 Faux V9 $= 4$

$$d[E]/dt = 4 - 4$$

$$d[F]/dt = V9 - VF = 0$$

$$d[G]/dt = VG - 2V11 = 0$$

$$d[H]/dt = V12 - V2 = 0$$

$$= 0 - 0 = 0$$

$$d[I]/dt = VI - V12 = 0$$

$$d[J]/dt = V3 + V4 - 3V5 = 0$$

$$= 0 - 0 - 0 = 0$$

$$d[K]/dt = VK - V4 = 0$$

$$= 0 - 0 = 0$$

$$d[L]/dt = V8 + 2V5 - VL = 0$$

$$d[M]/dt = V7 - VM = 0$$

$$d[N]/dt = V13 - 4V8 = 0$$

$$d[O]/dt = VO - V13 = 0$$

$$d[P]/dt = VP - V13 = 0$$

$$d[Q]/dt = V6 - VQ = 0$$

$$M2 : [R1 = 1; R6 = 2; R7 = 2; R8 = 2]$$

Les valeurs non renseignées sont à 0.

Dans d[A]/dt = 0 -> d[A]/dt = VAex - V1 = 0

Dans d[B]/dt = 2V1-(V2 + V6 + V14) = 0

V6 = 2 > V2=0 et V14 = 0

Dans d[C]/dt = 2V2 - V10 - V3 = 0

$$= 0 - 0 - 0 = 0$$

d[D]/dt = 2V6 - V10 - V7 - V11 = 0

$$= 4 - 0 - 0 - 0 = 0$$
 Faux > $V7 = 4$

Ce mode ne vérifie donc pas l'état d'équilibre.

$$d[D]/dt = 4 - 4 = 0$$

Dans d[E]/dt = 2V11 - V9 - V12 = 0

$$d[F]/dt = V9 - VF = 0 - 0 = 0$$

$$d[G]/dt = VG - 2V11 = 0 - 0 = 0$$

$$d[H]/dt = V12 - V2 = 0$$

$$= 0 - 0 = 0$$

$$d[I]/dt = VI - V12 = 0$$

$$= 0 - 0 = 0$$

$$d[J]/dt = V3 + V4 - 3V5 = 0$$

$$= 0 - 0 - 0 = 0$$

$$d[K]/dt = VK - V4 = 0$$

$$= 0 - 0 = 0$$

$$d[L]/dt = V8 + 2V5 - VL = 2 + 0 - VL = 0$$

$$d[M]/dt = V7 - VM = 0$$

$$d[N]/dt = V13 - 4V8 = V13 - 8 = 0$$

$$d[O]/dt = VO - V13 = 0$$

$$d[P]/dt = VP - V13 = 0$$

$$VP = 8$$

$$d[Q]/dt = V6 - VQ = 0$$

$$M2 : [R1 = 1; R6 = 2; R7 = 4; R8 = 2; V13 = 8]$$

M3 : [R1 = 1; R14 = 2; R5 = 1; R4 = 1]

Les valeurs non renseignées sont à 0.

Dans d[A]/dt = 0 -> d[A]/dt = VAex - V1 = 0

Dans d[B]
$$/dt = 2V1 - (V2 + V6 + V14) = 2 - 0 - 0 - 2 = 0$$

Dans
$$d[C]/dt = 2V2 - V10 - V3 = 0$$

$$d[D]/dt = 2V6 - V10 - V7 - V11 = 0$$

$$= 0 - 0 - 0 - 0 = 0$$

Dans
$$d[E]/dt = 2V11 - V9 - V12 = 0 - 0 - 0$$

$$d[F]/dt = V9 - VF = 0 - 0 = 0$$

$$d[G]/dt = VG - 2V11 = 0 - 0 = 0$$

$$d[H]/dt = V12 - V2 = 0$$

$$= 0 - 0 = 0$$

$$d[I]/dt = VI - V12 = 0$$

$$= 0 - 0 = 0$$

$$d[J]/dt = V3 + V4 - 3V5 = 0 + 1 - 3! = 0$$

Ce mode ne vérifie donc pas l'état d'équilibre.

$$\rightarrow$$
 V4 = 3

$$d[K]/dt = VK - V4 = 0$$

$$d[L]/dt = V8 + 2V5 - VL = 2 + 0 - VL = 0$$

$$d[M]/dt = V7 - VM = 0$$

$$VM = 0$$

$$d[N]/dt = V13 - 4V8 = 0 - 0 = 0$$

$$d[O]/dt = VO - V13 = 0$$

$$VO = 0$$

$$d[P]/dt = VP - V13 = 0$$

$$VP = 0$$

$$d[Q]/dt = V6 - VQ = 0$$

$$VQ = 0$$

$$M3 : [R1 = 1; R14 = 2; R5 = 1; R4 = 3]$$

M4 : [R4 = 3; R5 = 1; R13 = 4; R9 = 1]

Les valeurs non renseignées sont à 0.

Dans
$$d[A]/dt = 0 -> d[A]/dt = VAex - V1 = 0$$

$$VAex = 0$$

Dans d[B]
$$/dt = 2V1 - (V2 + V6 + V14) = 0 - 0 - 0 - 0 = 0$$

Dans
$$d[C]/dt = 2V2 - V10 - V3 = 0$$

$$= 0 - 0 - 0 = 0$$

$$d[D]/dt = 2V6 - V10 - V7 - V11 = 0$$

$$= 0 - 0 - 0 - 0 = 0$$

Dans
$$d[E]/dt = 2V11 - V9 - V12 = 0 - 1 - 0! = 0$$

Ce mode ne vérifie donc pas l'état d'équilibre.

$$d[F]/dt = V9 - VF = 0$$

$$d[G]/dt = VG - 2V11 = 0 - 0 = 0$$

$$d[H]/dt = V12 - V2 = 0$$

$$= 0 - 0 = 0$$

$$d[I]/dt = VI - V12 = 0$$

$$= 0 - 0 = 0$$

$$d[J]/dt = V3 + V4 - 3V5 = 0 + 3 - 3 = 0$$

$$d[K]/dt = VK - V4 = 0$$

$$d[L]/dt = V8 + 2V5 - VL = 0 + 2 - VL = 0$$

$$d[M]/dt = V7 - VM = 0$$

$$VM = 0$$

$$d[N]/dt = V13 - 4V8 = 4 - 0! = 0$$

$$d[O]/dt = VO - V13 = 0$$

$$d[P]/dt = VP - V13 = 0$$

$$d[Q]/dt = V6 - VQ = 0$$

$$VQ = 0$$

F - Calculer la valeur maximale de R7

Max R7 = 5

G - Analyse de variabilité des flux avec comme fonction objective R7

Flux Variability Analysis

Réseau avec le style "flux" (1.9_b) (M_5_b)

Quelle est la ou les réactions dont la valeur de flux est la plus contrainte ? Les reactions dont la valeur de flux est la plus contrainte sont :

R7 : minflux=5 et maxflux=5

R8: minflux=0 et maxflux=2,5

Quelle est la ou les réactions qui sont réversibles dans ces conditions ?

La reaction qui est reversible dans ces conditions est R14 avec minflux=-5 et maxflux=10

3. Modèle métabolique d'Escherichia coli

A - MetExplore → **Computational analysis** → **Flux Balance Analysis**

B - Combien de réactions d'échange permettent d'entrer dans le système ? Il y a 22 réactions d'échange permettant d'entrer dans le système (Exchange in).

C - Combien de réactions ne peuvent porter aucun flux, quelque soient les contraintes ?

Il y a 991 réactions qui ne peuvent porter aucun flux.

D - Combien le réseau contient-il de métabolites "impasses" (dead-end metabolites) ?

Le réseau contient 118 « orphan metabolites ».

E - Calculez le taux de croissance optimal (production de biomasse) avec les valeurs par défaut.

Valeur optimale de la fonction objective 0.917246.

F - En gardant les contraintes par défaut, dites si la souche est capable de pousser sans oxygène.

Avec pour fonction objective 0 il n'y a pas de biomasse produite.

La souche n'est pas capable de pousser sans oxygène.

G - Quel est l'effet d'une augmentation de l'oxygène sur la croissance ? Représentez le sous la forme

H – Représentation d'une analyse de variabilité des flux en ne sélectionnant que les réactions de la glycolyse et de la voie des pentose phosphate.

I - Même opération, en désactivant l'entrée de glucose et en activant l'entrée de fructose avec la même valeur (-11).

J-

Réactions activées en utilisant du fructose à la place du glucose :

- R_phosphoenolpyruvate_synthase
- R_hexokinase__D_glucoseATP_
- R_glucose_6_phosphate_phosphatase
- R fructose bisphosphatase
- R_6_phosphogluconate_dehydratase
- R_2_dehydro_3_deoxy_phosphogluconate_aldolase

Réactions désactivées :

Aucune sauf la réaction d'échange de glucose.

Réactions dont la valeur de flux devient contrainte :

Aucune, toutes les réactions qui étaient contraintes dans la condition substrat=glucose ne le sont plus dans la condition substrat=fructose.