	**	INIABLES ALLA TONIAS CONTINOAS			
<u>NOTACIÓN</u>	<u>DENSIDAD</u>	<u>DISTRIBUCIÓN</u>	<u>ESPERANZA</u>	<u>VARIANZA</u>]
$X \sim U[a, b]$	$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{en otro caso} \end{cases}$	$F_X(x) = \begin{cases} 0, & x < a \\ \frac{a-b}{b-a}, a \le x \le b \\ 1, & x \ge b \end{cases}$	$E(X) = \frac{a+b}{2}$	$Var(X) = \frac{(b-a)^2}{12}$	L Se ri
<i>X∼N</i> [0,1]	PROP: $\Phi(-x) = 1 - \Phi(x)$	$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} * e^{(-\frac{1}{2}x^{2})} dt$	E(X) = 0	Var(X) = 1	c: N P
$X \sim N[\mu, \sigma]$	$\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma} * e^{\left(\frac{1}{2}\left(\left(\frac{x-\mu}{\sigma}\right)^2\right)\right)}$	$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} * e^{\left(-\frac{1}{2}\left(\left(\frac{x-\mu}{\sigma}\right)^{2}\right)\right)} dt$ $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right)$ $- \Phi\left(\frac{a-\mu}{\sigma}\right)$	$E(X) = \mu$	$Var(X) = \sigma^2$	De ne si
X~Cauchy[M	$f_X(x) = \frac{1}{\pi} \frac{b}{b^2 + (x - M)^2} \text{ con } b > 0 \text{ y}$	-	-	-	Er de
	$M \in \mathbb{R}$				Е

Lexes de Morgan

$$i) \left(\bigcup_{n=1}^{+\infty} A_n \right)^c = \bigcap_{n=1}^{+\infty} A_n$$

ii)
$$\left(\bigwedge_{n=1}^{\infty} A_n \right)^c = \bigcup_{n=1}^{\infty} A_n^c$$

Sean X_1,X_2,\ldots variables i.i.d. con esperanza $\mu=E\left(X_i\right)$ y varianza $\sigma^2=Var\left(X_i\right)$. Entonces, para todo $\epsilon>0$

$$P(|\overline{X}_n - \mu| < \epsilon) \to 1$$

cuando n tiende a infinito.

Notación: Escribiremos $\overline{X}_n \stackrel{P}{\to} \mu$ para indicar que \overline{X}_n está, con probabilidad muy alta, tan cerca de μ como queramos. a distribución exponencial

Decimos que una variable aleatoria T tiene distribución exponencial de tasa (o parámetro) $\lambda>0$, y lo notamos $T\sim \text{Exp}(\lambda)$, i T tiene densidad

$$p(t) = \begin{cases} \lambda e^{-\lambda t} & \text{si } t \ge 0, \\ 0 & \text{si } t < 0. \end{cases}$$

in la Figura 7 se muestra esta densidad para distintos valores

Si $T \sim \text{Exp}(\lambda)$, entonces

$$E(T) = \frac{1}{\lambda}$$
 y $Var(T) = \frac{1}{\lambda^2}$.

Def: X, Y con densidad conjunta, $f_X(x) > 0$

$$f_Y(y|X=x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

 $X \sim Expo[\lambda]$

$$\int f_Y(y|X=x)dy=1$$

$$P(Y > b \mid X = x) = 1 - \int_{0}^{b} f_{Y}(y \mid X = x) dx$$

 $Var(X) = \frac{1}{2}$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \sum_{x=i}^{n} x^{2} = \frac{n(n+1)(2n+1)}{6}$$

Series Geométricas:

$$\sum_{k}^{\infty} q^{n} = \frac{q^{k}}{1 - q}$$

Cambio de variable

si X v.a con densidad p(x) en el intervalo (a,b) si y es otra v.a entonces:

 $f_X(x) = \begin{cases} \lambda * e^{-\lambda x} si \ x \ge 0 \\ 0 si \ x < 0 \end{cases}$

$$\operatorname{si} g(Y) = X \ (e.g: Y = X^2 \to g(y) = \sqrt{y})$$

$$p_{y}(y) = \left| \frac{d}{dy} g(y) \right| \cdot p_{x}(g(y)) \quad en \ el \ intervalo \ (donde \ y = h(x). \ en \ el \ e. \ g: \ h(x) = x^{2}) \ h(a) \leq y \leq h(b)$$

$$y = \frac{d}{dy} g(y) \cdot p_{x}(g(y)) \quad en \ el \ intervalo \ (donde \ y = h(x). \ en \ el \ e. \ g: \ h(x) = x^{2}) \ h(a) \leq y \leq h(b)$$

$$y = \frac{d}{dy} g(y) \cdot p_{x}(g(y)) \quad en \ el \ intervalo \ (donde \ y = h(x). \ en \ el \ e. \ g: \ h(x) = x^{2}) \ h(a) \leq y \leq h(b)$$

$$y = \frac{d}{dy} g(y) \cdot p_{x}(g(y)) \quad en \ el \ intervalo \ (donde \ y = h(x). \ en \ el \ e. \ g: \ h(x) = x^{2}) \ h(a) \leq y \leq h(b)$$

$$y = \frac{d}{dy} \frac{dy}{dx} \cdot \frac{dy}{$$

 $E(X) = \frac{1}{3}$

Sea X una variable aleatoria con densidad $p_X(x)$ en el intervalo (a,b), e Y=g(X) con g es creciente o decreciente. Entonces Y toma valores entre g(a) y g(b), con densidad

$$p_Y(y) = \frac{1}{|dy/dx|} p_X(x) \text{ con } y = g(x).$$

Campana de Gauss

Teorema del límite central: Sea $X_1, X_2, ..., X_n$ un conjunto de variables aleatorias, independientes e idénticamente distribuidas con media μ y varianza σ2 distinta de cero. Sea

$$S_n = X_1 + \dots + X_n$$

$$\lim_{n \to \infty} \Pr\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right) = \Phi(z)$$

Sea X una variable de esperanza $\mu = E(X)$ y varianza $\sigma^2 =$ $Var\left(X\right) .$ Entonces, para todo $\epsilon >0$ vale que

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}.$$

Si $X_1, ..., X_n$ son independientes con $X_i \sim N(\mu_i, \sigma_i^2)$, entonces

$$X_1 + \cdots + X_n \sim N\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right).$$

X tiene distribución normal de parámetros μ y σ^2 si su densidad es igual a

$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Esto lo escribimos $X \sim N(u, \sigma^2)$.

INTEGRALES

$$\int \alpha u \, dx = \alpha \int u \, dx$$

$$\int \alpha u + \beta v \, dx = \alpha \int u \, dx + \beta \int v \, dx$$

$$\int u \cdot v' \, dx = u \cdot v - \int u' \cdot v \, dx \quad \text{(partes)} \quad \int f(x) \, dx = \int f(\varphi(t)) \varphi'(t) \, dt \quad \text{(cambio de variable)}$$

La densidad normal estándar es la función

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

definida para todo x real. Una variable aleatoria X tiene distribución normal estándar si es absolutamente continua y su densidad es φ . Escribimos $X \sim N(0,1)$.

Propiedades de la gaussiana:

- 1. $\phi(-a) = 1 \phi(a)$.
- 2.. Si $X \sim N(\mu, \sigma^2) \to F_X(x) = \phi\left(\frac{x-\mu}{\sigma}\right)$
- c se puede escribir como $N(a\mu_X + b\mu_Y + c, a^2\sigma_X^2 + b^2\sigma_Y^2)$

Permutaciones:					-1	7 7.		
$A_k^n = rac{n!}{(n-k)!}$			$X \sim Hip(N.K,n)$		$P_X(x) = rac{C_n^k * C_{n-x}^{N-k}}{C_n^N}$ Sin reposición.		N total; K rojas; N – k azules;	
$C_k^n = rac{n!}{k! (n-k)!}$ Probabilidad Total:		$X \sim Bin(n, p)$		Sin reposición. $f(x) = \binom{n}{x} * p^x * (1-p)^{n-x}$ Con reposición. $p = \frac{k}{n}$		Se tiran n veces, cuenta el número de éxitos		
$P(A) = P(A B) * P(B) + P(A B^{c}) * P(B^{c})$		$X \sim Poiss(\mu)$		$P_X(x) = \frac{\mu^x}{x!} * e^{-\mu}$		μ = "promedio por unidad de tiempo"		
		VA	RIABLES ALEATORIAS DIS	CRETAS				
VA	ESPERANZA	<u>VARIANZA</u>	Esperanza (Discret	as)	D/V V	Distribución	Conjunta	
X~Ber(p)	E(X) = p	Var(X) = p * (1 - p)	$E(X) = \sum_{x \in P} x * P(X = x)$		P(X = x, Y = y) (Tabla de distribución conjunta)			
$X \sim Geo(p)$	$E(X) = \frac{1}{p}$	$Var(X) = \frac{(1-p)}{p^2}$	$E(g(x)) = \sum_{x \in R_X} g(x) * P(X = x)$ Propiedades: $E(X + Y) = E(X) + E(Y)$ $E(c * X) = c * E(X)$		Si son independientes: $P(X=x \ , \ Y=y)=P(X=x)*P(Y=y) \qquad \forall \ x \in R_x \ , \forall \ y \in R_Y$ Esperanza en Distribución Conjunta:			
$X \sim Hip(N, K, n)$	$E(X) = \frac{n * K}{N}$	-						
$X \sim Bin(n, p)$	E(X) = n * p	Var(X) = n * p * (1 - p)			$- \left E(g(X,Y)) = \sum_{x \in P} \sum_{y \in P} g(x,y) * P(X=x,Y=y) \right $		y) * P(X = x, Y = y)	
$X \sim Poiss(\mu)$	$E(X) = \mu$	$Var(X) = \mu$	Si son independientes: E(X * Y) = E(X) *	$\mathbf{E}(\mathbf{y})$		$x \in R_X$ $y \in R_Y$		
Función de			VARIAN	ZA				
Probabilidad Puntual (Distribución o Cuantía):	ef:	$Var(X) = \sum_{x \in R_X} (x)$	$-E(x))^2 * p_X(x)$		Obs: Var = E	$(X) \\ ((X - E(X))^2$	Obs: Var(X) $= E(X^2) - [E(X)]^2$	
. —	ropiedades:				DESV	ÍO ESTANDAR	Si son independientes:	
$p_X(x) = P(X)$		Var(X+c)			σ	(X)	Var(X+Y)	
=x)		$Var(\alpha X) = Var(X)$			l	$\sqrt{Var(X)}$	= Var(X) + Var(Y)	
						V · · · · (· ·)		
			COVARIANZA					
DEF: $COV(X,Y) = E((X-E(X))(Y-E(Y)))$ Propiedades: $ 1) COV(X,X) = VAR(X) \qquad 4) COV(\alpha X,Y) = \alpha * COV(X,Y) \\ 2) COV(X,Y) = COV(Y,X) \qquad 5) COV(X,Y) = E(XY) - E(X) * E(Y) \\ 3) COV(X+Y,Z) = COV(X,Z) + \qquad 6) X \in Y \text{ independientes } \rightarrow COV(X,Y) = 0 \\ COV(Y,Z) $								
VARIABLES ALEATORIAS CONTINUAS								
	ón de Densidad:		Esperanza:	<u>Va</u>	rianza:	<u>Funcio</u>	ón de Distribución:	
1) $f(x) \ge 0$ 2) $\int_{\mathbb{R}} f = \int_{-\infty}^{+\infty} f(x) dx$	f(x)dx=1	E(X):	$= \int_{-\infty}^{+\infty} x * f(x) dx$	Var(X)	$-[E(X)]^2$	F_X	$(x) = P(X \le x)$	
3) $P(x \in I) = \int$	$f(x) dx \forall I \subset I$	D)	J-∞				$F_X(x) = \int_0^x f(t) dt$	
5, 1 (at = 1) j	1) (1)	E(g(x)):	$= \int_{-\infty}^{+\infty} g(x) * f(x) dx$	propiedad	en las mismas des que en las cretas.	f(t): función de	J −∞	
					D CONJUNTA		•	
$0 \le F_X(x) \le$	$1 \forall x \in \mathbb{R}$		erivada conjunta)		DEF: Derivadas			
F_X no decrec	iente	f ,	$f_{XY}(x,y) = \begin{cases} 0 & \text{si } (x,y) \notin \Omega \\ \frac{1}{\text{Área}(\Omega)} & \text{si } x \in \Omega \end{cases}$		$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$			
F_X continua	a la derecha - 1 lim E (r)	- o						
$\lim_{X \to +\infty} F_X(x) = 1 \mid \lim_{X \to -\infty} F_X(x) = 0$ $f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx$						$X_{XY}(x,y)ax$		
$P(a \le X \le b) = F_X(b) - F_X(a)$ $P((x, y) \in B)$			$(y) \in B$) = $\iint f_{xy}(x,y) dx dy$	$\in B$) = $\iint_B f_{XY}(x,y)dxdy$		PROP: $X \in Y \text{ independientes } \Leftrightarrow \mathbb{R}^2$		
			JJ /MI C / /					
$= \int_{a}^{b} f_{X}(t)dt$ PROP: $1) f(x,y) \ge 0 \ \forall$			$\geq 0 \ \forall \ (x,y) \in \mathbb{R}^2$		$f_{XY}(x,y) = f_X(x) * f_Y(y) \forall (x,y) \in \mathbb{R}^2$			
2) $\iint_{\mathbb{R}^2} f(x, y) \ge 0 \forall (x, y) \in \mathbb{R}$								
Mediana Tercer Cuartil Esperanza:								
$P(X \le x) = 0.5$) = 0.5	$P(X \le x) = 0.75$					
					$E(g(x,y)) = \iint_{\mathbb{R}^2} g(x,y) * f_{XY}(x,y) dx dy$			
						11€~		

Notación

 $X \sim Ber(p)$

 $X \sim Geo(p)$

V.A. DISCRETAS

Función de Probabilidad Puntual

 $P_X(x) = (1-p)^{1-x} * (p)^x$

 $P_X(x) = (1-p)^{x-1} * p$

 $R_X = \{1, 2, ...\}$

Descripción

Éxito-Fracaso

 $R_X = \{0,1\}$

Repetir hasta el éxito.

Propiedades de Conjuntos

 $P(A^{C}) = 1 - P(A)$ $P(A \cup B) = P(A) + P(B) - P(A)$

 $P(B \setminus A) = P(B) - P(A)$ $(A \cup B)^{c} = A^{c} \cap B^{c}$ $(A \cap B)^{c} = A^{c} \cup B^{c}$

Permutaciones:

Probabilidad Condicional:

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ Sucesos Independientes:

Bayes I:

 $P(A \cap B) = P(A) * P(B)$

 $P(B|A) = \frac{P(A|B) * P(B)}{-}$

P(A)