In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Programs were mostly entered using punched cards or paper tape. Techniques like Code refactoring can enhance readability. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. It is usually easier to code in "high-level" languages than in "low-level" ones. Techniques like Code refactoring can enhance readability. Different programming languages support different styles of programming (called programming paradigms). Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Scripting and breakpointing is also part of this process. Programming languages are essential for software development. Different programming languages support different styles of programming (called programming paradigms).