

MEDICAL INSURANCE COST PREDICTION

AN EXPERIMENT WITH SUPERVISED MODELS VS. DEEP LEARNING IN THE HEALTHCARE INDUSTRY

- Predicting Health Insurance Costs based on individual information and health risks.
- Compare traditional Machine Learning approaches and Deep Learning to discover advantages and disadvantages.

ABOUT THE PROJECT

ABOUT THE DATA

- Health Insurance Cost dataset from Kaggle
- 2772 Observations, 7 Columns
- Pre-Cleaned (Null Values)

- age: Age of the beneficiary (numerical)
- **sex:** Gender of the individual (categorical: male/female)
- **bmi:** Body Mass Index, a measure of obesity (numerical)
- **children:** Number of dependents (numerical)
- **smoker:** Smoking status (categorical: yes/no)
- region: Residential area in the US (categorical: northeast, northwest, southeast, southwest)
- **charges:** The target variable representing medical insurance costs (numerical)

PROJECT STEPS

Data Cleaning and EDA

Model Building (3 Models)

Model Evaluation

MODEL BUILDING

Linear Regression Model

Basic Decisión Tree

Deep Learning (FFNN)

DATA PREPROCESSING

- Transformed all categorical variables (sex, smoker and region) into numeric vectors using One Hot Encoder.
- Scaled all numerical variables using StandardScaler()
- Separated the data into Train / Test with an 80 / 20 split.

```
# Define categorical and numerical columns
categorical_cols = ['sex', 'smoker', 'region']
numerical_cols = ['age', 'bmi', 'children']
```

```
# Define transformers
categorical_transformer = OneHotEncoder(drop='first') # Avoid multicollinearity
numerical_transformer = StandardScaler()
```

LINEAR REGRESSION MODEL

```
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error, mean absolute error
# Step 1: Initialize the model
linear model = LinearRegression()
# Step 2: Fit the model to the training data
linear model.fit(X train, y train)
# Step 3: Make predictions
y pred train = linear model.predict(X train)
y pred test = linear model.predict(X test)
# Step 4: Evaluate the model
mse train = mean squared error(y train, y pred train)
mse_test = mean_squared_error(y_test, y_pred_test)
mae train = mean absolute error(y train, y pred train)
mae_test = mean_absolute_error(y_test, y_pred_test)
print("Linear Regression Performance:")
print(f"Training MSE: {mse_train:.2f}, Testing MSE: {mse_test:.2f}")
print(f"Training MAE: {mae train:.2f}, Testing MAE: {mae test:.2f}")
```

Linear Regression Performance:

Training MSE: 36787517.08, Testing MSE: 36782736.31

Training MAE: 4131.50, Testing MAE: 4289.93

DECISION TREE MODEL

```
from sklearn.tree import DecisionTreeRegressor
# Step 1: Initialize the model
decision tree model = DecisionTreeRegressor(random state=52)
# Step 2: Fit the model to the training data
decision tree model.fit(X train, y train)
# Step 3: Make predictions
y pred train tree = decision tree model.predict(X train)
y pred test tree = decision tree model.predict(X test)
# Step 4: Evaluate the model
mse train tree = mean squared error(y train, y pred train tree)
mse test tree = mean squared error(y test, y_pred_test_tree)
```

Decision Tree Regression Performance:

Training MSE: 235756.72, Testing MSE: 11133363.29

Training MAE: 28.55, Testing MAE: 708.06

DEEP LEARNING (FEED FORWARD NEURAL NETWORK)

```
# Step 1: Initialize the model
model = Sequential()

# Input Layer
model.add(Dense(64, input_dim=X_train.shape[1], activation='relu'))

# Hidden Layers
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.2)) # Dropout to prevent overfitting
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2)) # Dropout to prevent overfitting

# Output Layer
model.add(Dense(1, activation='linear'))

# Step 2: Compile the model
model.compile(optimizer=Adam(), loss='mean_squared_error', metrics=['mean_absolute_error'])
```

Deep Learning Model Performance:

Training MSE: 20891014.00, Testing MSE: 22092010.00

Training MAE: 2482.16, Testing MAE: 2652.52

```
# Step 3: Train the model
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
history = model.fit(X_train, y_train, epochs=100, batch_size=16, validation_split=0.3, verbose=1, callbacks=[early_stopping]
```

Model	Training MSE	Testing MSE	Training MAE	Testing MAE
Linear Regression	3.67875e+07	3.67827e+07	4131.5	4289.93
Decision Tree Regression	235757	1.11334e+07	28.55	708.06
Deep Learning Model	2.0891e+07	2.2092e+07	2482.16	2652.52

MODEL EVALUATION

KEY INSIGHTS

- Linear Regression Simplicity
- Decision Tree Overfitting tendency
- Deep Learning Balance

FUTURE WORK

- Test on larger data (deep learning models tend to shine with larger data).
- Play more with other hyperparameters and additional features.
- Experiment with other DL architectures and Regularization Techniques

CONCLUSIONS AND SUGGESTIONS

THANK YOU

FIND THE FULL REPORT AND CODE ON GITHUB.