DANIEL (DJ) STROUSE

5634 Frist Center Princeton University Princeton, NJ 08544 danieljstrouse@gmail.com www.djstrouse.com Born: Nov 24, 1987 in Elgin, IL Citizenship: USA Hometown: Newark, DE Last updated: Jan 14, 2014

Education

9/2017	PhD in Physics Princeton University, Princeton, NJ Advisor: William Bialek
9/2012	Master's of Philosophy (MPhil) in Engineering University of Cambridge, Cambridge, UK Advisor: Máté Lengyel

5/2011 B.A. Physics (magna cum laude), B.S. Mathematics (magna cum laude)

University of Southern California (USC), Los Angeles, CA

Research Interests

• Design principles of biological systems

- Inference and prediction in biological systems
- Quantitative approaches to cultural phenomena

Grants, Honors, & Awards

2013-2017	Hertz Foundation Fellowship
2012-2016	DoE Computational Sciences Graduate Fellowship (awarded in 2011)
2011-2012	Churchill Scholarship
2011	Hertz Foundation Fellowship Finalist
2011	NSF Graduate Research Fellowship (declined for DoE CSGF)
2011	USC Order of the Laurel and the Palm (highest honor bestowed upon graduating seniors)
2011	Rose Hills Undergraduate Summer Research Fellowship
2011	USC Provost Undergraduate Spring Research Fellowship
2010	Stanford Amgen Scholar (summer research fellowship)
2009	USC Provost Undergraduate Summer Research Fellowship
2008	USC Global Fellow (consulting internship in Shanghai, China)
2008	USC Stevens Global Impact Fellow (social entrepreneurship program in Karnataka, India)
2006-2010	USC Presidential Scholarship (half-tuition scholarship)
2006	Eagle Scout

Journal Publications

X. Wu, **DJ Strouse**, & B. Mel. *Optimizing online learning capacity in a biologically-inspired neural network.* (in preparation)

AM Childs & **DJ Strouse**. *Levinson's theorem for graphs*. Journal of Mathematical Physics. Aug 2011. [arxiv] [journal]

Posters

DJ Strouse, Balazs Ujfalussy, & Mate Lengyel. *Dendritic subunits: the crucial role of input statistics and a lack of two-layer behavior*. Computational and Systems Neuroscience (Cosyne). Salt Lake City, UT. February 2013.

DJ Strouse, Jakob Macke, Roman Shusterman, Dima Rinberg, & Elad Schneidman. *Behaviorally-locked structure in a sensory neural code*. Sensory Coding & Natural Environment (SCNE). Vienna, Austria. September 2012.

DJ Strouse & Mate Lengyel. *Hierarchical generalized linear models of dendritic integration and somatic membrane potential.* Computational and Systems Neuroscience (Cosyne). Salt Lake City, UT. February 2012.

Bartlett Mel, Xundong Wu, & **DJ Strouse**. *Optimizing online learning capacity in a biologically-inspired memory structure*. Computational and Systems Neuroscience (Cosyne). Salt Lake City, UT. February 2012.

Xundong Wu, **DJ Strouse**, & Bartlett Mel. *Optimizing online learning capacity in a biologically-inspired neural network*. Society for Neuroscience (SfN). Washington, DC. November 2011. [link]

Xundong Wu, **DJ Strouse**, & Bartlett Mel. *Optimizing online learning capacity in a biologically-inspired neural network.* Annual Joint Symposium On Neural Computation. San Diego, CA. June 2011.

DJ Strouse. *Reliable brains from unreliable neurons – the search for synfire chains in the brain.* Stanford Amgen Scholars Symposium. Palo Alto, CA. August 2010.

Talks	
8/2012	Advanced Course in Computational Neuroscience Symposium (Bedlewo, Poland) Title: Optimal dynamics for fast network responses
4/2012	Microsoft Research Cambridge, Machine Learning Group (Cambridge, UK) Title: The Information Bottleneck Method
8/2011	Methods in Computational Neuroscience Symposium (MBL, Woods Hole, MA) <i>Title: Sniff-modulations of the olfactory bulb vocabulary</i>
8/2010	Stanford Amgen Scholars Symposium (Palo Alto, CA) [link] Title: Reliable brains from unreliable neurons – the search for synfire chains in the brain
7/2010	Open Science Summit (University of California, Berkeley, CA) [link] Title: Open science is more than open publishing – meet CoLab
6/2010	Institute for Quantum Computing Colloquium (Waterloo, Ontario, Canada) [link] <i>Title: A Levinson's theorem for scattering on graphs</i>

Research Experience (*project/publication still in progress)¹

9/2011-8/2012*	Churchill Scholar (University of Cambridge, Cambridge, UK)
	Advisor: Máté Lengyel
	Project: Hierarchical linear-nonlinear cascade models of dendritic integration
	Summary: Developing a model of dendritic integration in single neurons based on hier-
	archical linear-nonlinear cascade models and applying the model to experimental data
	(from Tiago Branco, Michael Häusser, and Judit Makara) and compartmental model sim-
	ulations (from Balázs Ujfalussy) in order to infer the presence/absence and extent of local
	nonlinear computational abilities in dendrites
8/2011*	Methods in Computational Neuroscience Student (MBL, Woods Hole, MA)
	Advisors: Elad Schneidman, Jakob Macke
	Project: Behaviorally-locked structure in a sensory neural code
	Summary: Studying how sniffing modulates the typical patterns of neural activity in the

¹Additional information available at www.djstrouse.com.

	D) onouse Tuge o
	mouse olfactory bulb (using data from the lab of Dima Rinberg) in order to better understand olfactory neural coding, the significance of diverse sniffing behaviors, and to determine whether it is possible to infer features of the sniff from local neural activity (i.e. without an efference copy of the motor command)
8/2010-7/2011*	USC Provost Research Fellow (USC, Los Angeles, CA) Advisor: Bartlett Mel Project: Optimizing online learning capacity in a biologically-inspired neural network Summary: Investigated the optimal dendrite morphology for memory capacity of a network and how that optimal morphology varies with input density, correlations, and noise
7/2010-8/2010	Stanford Amgen Scholar (Stanford University, Palo Alto, CA) <i>Advisor:</i> Kwabena Boahen <i>Project:</i> Reliable brains from unreliable neurons – the search for synfire chains in the brain <i>Summary:</i> Developed mathematical models to study the development of "synfire chains" (network structures that increase the reliability of spatially and temporally patterned responses) in biologically plausible neural networks
6/2010-7/2010	Visiting Scholar (Institute for Quantum Computing, Waterloo, Ontario, Canada) <i>Advisor:</i> Andrew Childs <i>Project:</i> A Levinson's theorem for scattering on graphs <i>Summary:</i> Proved a theorem on the relationship between the bound and scattering eigenstates for quantum scattering on graphs, which may aid the design of new algorithms for quantum computers
8/2009-5/2010	Undergraduate Researcher (USC, Los Angeles, CA) Advisor: Ted Berger Project: Towards real-time simulations of neural synapses Summary: Investigated undesirable oscillations in the variable time step for the numerical integration method used in a neural synaptic modeling program developed by the Berger group and proposed and helped to implement an adaptive algorithm to speed up simulations
5/2009-7/2009	USC Provost Research Fellow (Institute for Scientific Interchange, Torino, Italy) Advisor: Paolo Zanardi Project: Statistical equilibration in the quantum world Summary: Investigated the nature of statistical equilibrium in quantum mechanics through quantum spin models
12/2008-5/2009	Undergraduate Researcher (USC, Los Angeles, CA) Advisor: Michael Arbib Project: SemRep – a model for relating attention and sentence formation Summary: Helped develop a cognitive model relating visual attention and sentence formation and conducted experiments on the relationship between eye movements and verbal scene descriptions to probe the model
Professional	
3/2013	Organizer, Computational and Systems Neuroscience (Cosyne) workshop on <i>Dendritic</i> computation in neural circuits
12/2009-4/2012	Co-Founder, CoLab, an online set of tools designed to promote open and massively collaborative science
Summer Schools	
	putational and Cognitive Neuroscience Summer School (CCNSS) Spring Harbor Asia, Beijing, China
0.42042	

Advanced Course in Computational Neuroscience (ACCN) FENS-IBRO European Neuroscience School Programme, Będlewo, Poland

8/2012

8/2011 Methods in Computational Neuroscience (MCN) summer course Marine Biological Laboratory (MBL), Woods Hole, MA

Other Skills & Information

COMP. LANGUAGES Python, Matlab, Mathematica

HUMAN LANGUAGES English (fluent), Mandarin (conversational), Spanish (conversational)

HOBBIES hiking, running, traveling, using the web to improve how science is done and shared