Sécurité logicielle (HAI821I)

Master Informatique Département Informatique Faculté des Sciences de Montpellier Université de Montpellier

TD/TP N°1: Preuves en logique du premier ordre

Exercice 1 (Logique propositionnelle)

Démontrer les propositions suivantes dans LJ et LK :

- 1. $A \Rightarrow B \Rightarrow A$
- 2. $(A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow B) \Rightarrow A \Rightarrow C$
- 3. $A \wedge B \Rightarrow B$
- 4. $B \Rightarrow A \lor B$
- 5. $(A \lor B) \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C$
- 6. $A \Rightarrow \bot \Rightarrow \neg A$
- 7. $\perp \Rightarrow A$
- 8. $(A \Leftrightarrow B) \Rightarrow A \Rightarrow B$
- 9. $(A \Leftrightarrow B) \Rightarrow B \Rightarrow A$
- 10. $(A \Rightarrow B) \Rightarrow (B \Rightarrow A) \Rightarrow (A \Leftrightarrow B)$

Exercice 2 (Logique du premier ordre)

Démontrer les propositions suivantes dans LJ et LK (si la proposition n'admet pas de preuve intuitionniste, démontrer la proposition dans $\mathrm{LJ}_{(em)}$) :

- 1. $\forall x. P(x) \Rightarrow \exists y. P(y) \lor Q(y)$
- 2. $(\exists x. P(x) \lor Q(x)) \Rightarrow (\exists x. P(x)) \lor (\exists x. Q(x))$
- 3. $(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)$
- 4. $(\forall x. P(x) \land Q(x)) \Rightarrow (\forall x. P(x)) \land (\forall x. Q(x))$
- 5. $(\forall x. \neg P(x)) \Rightarrow \neg(\exists x. P(x))$
- 6. $\neg(\forall x.P(x)) \Rightarrow \exists x.\neg P(x)$

Exercice 3 (Preuves en Coq)

Démontrer les propositions des exercices 1 et 2 en Coq.

On rappelle que pour lancer Coq, il suffit de se mettre dans un terminal et de taper la commande coqide, qui lance l'IDE de Coq.

Exercice 4 (Preuves supplémentaires en Coq)

Démontrer les propositions suivantes en Coq (certaines preuves sont classiques) :

- 1. $(\exists x. \forall y. R(x,y)) \Rightarrow \forall y. \exists x. R(x,y)$
- 2. $(\forall x. \forall y. R(x,y)) \Rightarrow \forall x. \forall y. R(y,x)$
- 3. $(\exists x.\exists y.R(x,y)) \Rightarrow \exists y.\exists x.R(x,y)$
- 4. $(\exists x. \forall y. R(x,y)) \Rightarrow \forall y. \exists x. R(x,y)$
- 5. $\forall x. (\forall y. P(y) \Rightarrow P(x)) \Rightarrow (\exists y. P(y)) \Rightarrow P(x)$
- 6. $\exists x. P(x) \Rightarrow P(a) \land P(b)$
- 7. $\exists x. P(x) \Rightarrow P(a) \land P(b) \land P(c)$
- 8. $\exists x. P(x) \Rightarrow \forall y. P(y)$
- 9. $(\exists x. Q(a) \Rightarrow P(x)) \Rightarrow Q(a) \Rightarrow \exists x. P(x)$
- 10. $(Q(a) \Rightarrow \exists x. P(x)) \Rightarrow \exists x. Q(a) \Rightarrow P(x)$