Prueba Data Science

Iniciamos importando las librerias necesarias

```
In [1]:
         import pandas as pd
         import numpy as np
         from sklearn.preprocessing import StandardScaler
         from sklearn.cluster import KMeans
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
In [2]:
         datos = "sales data sample.xlsx"
        Importamos los datos
In [3]:
         det = pd.read_excel(datos, sheet_name="DetalleOrden", header=0)
         pro = pd.read_excel(datos, sheet_name="Producto", header=0)
         cli = pd.read excel(datos, sheet name="Cliente", header=0)
         orden = pd.read_excel(datos, sheet_name="Orden", header=0)
In [4]:
         print('Dimensiones DetalleOrden',det.shape)
         print('Dimensiones Producto',pro.shape)
         print('Dimensiones Cliente',cli.shape)
         print('Dimensiones Orden', orden.shape)
        Dimensiones DetalleOrden (2823, 8)
        Dimensiones Producto (109, 3)
        Dimensiones Cliente (92, 12)
        Dimensiones Orden (307, 7)
In [5]:
         det.head()
           ORDERNUMBER ID Cliente QUANTITYORDERED PRICEEACH ORDERLINENUMBER
                                                                                       SALES PRODUC
Out[5]:
                                                                                                   S1
        0
                    10107
                               C046
                                                    30
                                                             95.70
                                                                                   2 2871.00
                                                                                                   S1
                    10121
                               C068
                                                    34
                                                             81.35
                                                                                     2765.90
         2
                                                                                                   S1
                    10134
                               C048
                                                    41
                                                             94.74
                                                                                     3884.34
         3
                    10145
                               C087
                                                    45
                                                             83.26
                                                                                     3746.70
                                                                                                   Sí
                    10159
                               C024
                                                    49
                                                            100.00
                                                                                  14 5205.27
                                                                                                   Sí
In [6]:
         det.drop('ORDERLINENUMBER', axis=1, inplace=True)
In [7]:
         pro.head()
```

```
Out[7]:
              PRODUCTCODE PRODUCTLINE MSRP
          0
                    S10_1678
                                 Motorcycles
                                                95
           1
                    S10_1949
                                 Classic Cars
                                               214
          2
                    S10_2016
                                 Motorcycles
                                               118
          3
                    S10_4698
                                 Motorcycles
                                               193
                    S10_4757
                                 Classic Cars
                                               136
 In [8]:
            cli.head()
                                             PHONE ADDRESSLINE1 ADDRESSLINE2
 Out[8]:
              ID_Cliente
                         CUSTOMERNAME
                                                                                         CITY
                                                                                                STATE POSTAL
                                                         1 rue Alsace-
          0
                  C001
                             Alpha Cognac
                                           61.77.6555
                                                                                     Toulouse
                                                                                NaN
                                                                                                  NaN
                                                             Lorraine
                           Amica Models &
                                                011-
                                                           Via Monte
                  C002
           1
                                                                                NaN
                                                                                        Torino
                                                                                                  NaN
                                                            Bianco 34
                                      Co.
                                             4988555
                                   Anna's
                                                                                        North
          2
                  C003
                                           299368555 201 Miller Street
                                                                             Level 15
                                                                                                  NSW
                           Decorations, Ltd
                                                                                       Sydney
           3
                  C004
                          Atelier graphique
                                           40.32.2555
                                                        54, rue Royale
                                                                                NaN
                                                                                       Nantes
                                                                                                  NaN
                                Australian
                                               61-9-
                                                                                         Glen
           4
                  C005
                                                         7 Allen Street
                                                                                NaN
                                                                                               Victoria
                           Collectables, Ltd
                                           3844-6555
                                                                                       Waverly
 In [9]:
            cli.drop(['PHONE','ADDRESSLINE1','ADDRESSLINE2','CITY','STATE','POSTALCODE','TERRITORY'
In [10]:
           orden.head()
Out[10]:
              ORDERNUMBER
                                ORDERDATE DAY_ID
                                                    QTR_ID MONTH_ID YEAR_ID
                                                                                    STATUS
          0
                       10100
                               1/6/2003 0:00
                                                   6
                                                           1
                                                                              2003
                                                                                    Shipped
           1
                       10101
                               1/9/2003 0:00
                                                   9
                                                                              2003
                                                                                    Shipped
           2
                       10102 1/10/2003 0:00
                                                  10
                                                                              2003
                                                                                    Shipped
           3
                       10103
                              1/29/2003 0:00
                                                  29
                                                                              2003
                                                                                    Shipped
                       10104 1/31/2003 0:00
                                                  31
                                                                       1
                                                                              2003
                                                                                    Shipped
In [11]:
           orden.drop(['DAY ID','QTR ID','MONTH ID','YEAR ID'], axis=1, inplace=True)
In [12]:
           print('Tipos DetalleOrden',det.dtypes)
            print('Tipos Producto',pro.dtypes)
           print('Tipos Cliente',cli.dtypes)
           print('Tipos Orden', orden.dtypes)
```

Tipos DetalleOrden ORDERNUMBER

int64

```
ID Cliente
                              object
          QUANTITYORDERED
                               int64
                             float64
         PRICEEACH
          SALES
                             float64
         PRODUCTCODE
                              object
         DEALSIZE
                              object
          dtype: object
          Tipos Producto PRODUCTCODE
                                         object
         PRODUCTLINE
                         object
                          int64
         MSRP
          dtype: object
         Tipos Cliente ID Cliente
                                         object
                          object
         CUSTOMERNAME
          COUNTRY
                          object
          dtype: object
          Tipos Orden ORDERNUMBER
                                       int64
         ORDERDATE
                         object
                         object
         STATUS
         dtype: object
In [13]:
          det['ORDERNUMBER'] = det['ORDERNUMBER'].astype(str)
In [14]:
          orden['ORDERNUMBER'] = orden['ORDERNUMBER'].astype(str)
In [15]:
          orden['ORDERDATE'] = pd.to datetime(orden['ORDERDATE'])
In [16]:
          print('Tipos DetalleOrden',det.dtypes)
          print('Tipos Producto',pro.dtypes)
           print('Tipos Cliente',cli.dtypes)
          print('Tipos Orden', orden.dtypes)
          Tipos DetalleOrden ORDERNUMBER
                                                  object
          ID Cliente
                              object
          QUANTITYORDERED
                               int64
         PRICEEACH
                             float64
                             float64
         SALES
         PRODUCTCODE
                              object
         DEALSIZE
                              object
         dtype: object
          Tipos Producto PRODUCTCODE
                                         object
          PRODUCTLINE
                         object
         MSRP
                          int64
          dtype: object
          Tipos Cliente ID Cliente
                                         object
          CUSTOMERNAME
                          object
          COUNTRY
                          object
         dtype: object
          Tipos Orden ORDERNUMBER
                                              object
         ORDERDATE
                         datetime64[ns]
         STATUS
                                 object
         dtype: object
In [17]:
          orden.head()
            ORDERNUMBER ORDERDATE STATUS
Out[17]:
          0
                     10100
                             2003-01-06 Shipped
```

```
ORDERNUMBER ORDERDATE STATUS
          1
                      10101
                              2003-01-09
                                        Shipped
          2
                      10102
                              2003-01-10
                                        Shipped
                              2003-01-29
          3
                      10103
                                        Shipped
                      10104
                              2003-01-31 Shipped
In [18]:
           df = pd.merge(det,cli,on='ID Cliente',how='outer')
           df = pd.merge(df,pro,on='PRODUCTCODE',how='outer')
           df = pd.merge(df,orden,on='ORDERNUMBER',how='outer')
           df.head()
Out[18]:
             ORDERNUMBER ID_Cliente QUANTITYORDERED
                                                          PRICEEACH
                                                                       SALES PRODUCTCODE DEALSIZE CI
          0
                      10107
                                 C046
                                                      30
                                                                95.70
                                                                      2871.00
                                                                                    S10_1678
                                                                                                 Small
          1
                      10107
                                 C046
                                                      39
                                                                99.91
                                                                      3896.49
                                                                                    S10 2016
                                                                                               Medium
          2
                      10107
                                 C046
                                                      27
                                                               100.00
                                                                      6065.55
                                                                                    S10_4698
                                                                                               Medium
          3
                      10107
                                 C046
                                                      21
                                                               100.00
                                                                      3036.60
                                                                                    S12_2823
                                                                                               Medium
                      10107
                                 C046
                                                      29
                                                                                    S18_2625
                                                                70.87
                                                                      2055.23
                                                                                                 Small
         Generamos el dataframe que usaremos para el analisis
In [19]:
           df.shape
          (2823, 13)
Out[19]:
In [20]:
           df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 2823 entries, 0 to 2822
          Data columns (total 13 columns):
           #
               Column
                                 Non-Null Count Dtype
               -----
           0
               ORDERNUMBER
                                 2823 non-null
                                                   object
           1
               ID Cliente
                                  2823 non-null
                                                   object
           2
               QUANTITYORDERED
                                 2823 non-null
                                                   int64
           3
               PRICEEACH
                                  2823 non-null
                                                   float64
           4
               SALES
                                  2823 non-null
                                                   float64
           5
               PRODUCTCODE
                                  2823 non-null
                                                   object
           6
               DEALSIZE
                                  2823 non-null
                                                   object
           7
               CUSTOMERNAME
                                  2823 non-null
                                                   object
           8
               COUNTRY
                                  2823 non-null
                                                   object
           9
               PRODUCTLINE
                                  2823 non-null
                                                   object
           10
               MSRP
                                  2823 non-null
                                                   int64
                                  2823 non-null
           11
               ORDERDATE
                                                   datetime64[ns]
           12
               STATUS
                                  2823 non-null
                                                   object
          dtypes: datetime64[ns](1), float64(2), int64(2), object(8)
          memory usage: 308.8+ KB
         Verificamos que no hay valores nulos, y que el Dtype es el correcto
```

```
In [21]: | df.describe(include='all')
```

<ipython-input-21-174ba9bf1a5c>:1: FutureWarning: Treating datetime data as categorical
rather than numeric in `.describe` is deprecated and will be removed in a future version
of pandas. Specify `datetime_is_numeric=True` to silence this warning and adopt the futu
re behavior now.

df.describe(include='all')

Out[21]:		ORDERNUMBER	ID_Cliente	QUANTITYORDERED	PRICEEACH	SALES	PRODUCTCODE	D
	count	2823	2823	2823.000000	2823.000000	2823.000000	2823	
	unique	307	92	NaN	NaN	NaN	109	
	top	10159	C034	NaN	NaN	NaN	S18_3232	
	freq	18	259	NaN	NaN	NaN	52	
	first	NaN	NaN	NaN	NaN	NaN	NaN	
	last	NaN	NaN	NaN	NaN	NaN	NaN	
	mean	NaN	NaN	35.092809	83.658544	3553.889072	NaN	
	std	NaN	NaN	9.741443	20.174277	1841.865106	NaN	
	min	NaN	NaN	6.000000	26.880000	482.130000	NaN	
	25%	NaN	NaN	27.000000	68.860000	2203.430000	NaN	
	50%	NaN	NaN	35.000000	95.700000	3184.800000	NaN	
	75%	NaN	NaN	43.000000	100.000000	4508.000000	NaN	
	max	NaN	NaN	97.000000	100.000000	14082.800000	NaN	
	4							•

2. Segmentación de Clientes RFM

```
In [22]:
    dfRFM1 = df[['CUSTOMERNAME','ORDERNUMBER']].drop_duplicates(subset=['ORDERNUMBER'])
    dfRFM1 = dfRFM1.groupby('CUSTOMERNAME').count()
    dfRFM1.head()
```

Out[22]: ORDERNUMBER

CUSTOMERNAME	
AV Stores, Co.	3
Alpha Cognac	3
Amica Models & Co.	2
Anna's Decorations, Ltd	4
Atelier graphique	3

```
dfRFM2 = df[['CUSTOMERNAME','SALES']].groupby('CUSTOMERNAME').sum()
dfRFM2
```

Out[23]:

SALES

CUSTOMERNAME

AV Stores, Co. 157807.81

Alpha Cognac 70488.44

Amica Models & Co. 94117.26

Anna's Decorations, Ltd 153996.13

Atelier graphique 24179.96

... ...

Vida Sport, Ltd 117713.56

Vitachrome Inc. 88041.26

Volvo Model Replicas, Co 75754.88

West Coast Collectables Co. 46084.64

giftsbymail.co.uk 78240.84

92 rows × 1 columns

In [24]:

from datetime import date, timedelta
dfRFM3 = df[['CUSTOMERNAME','ORDERNUMBER', 'ORDERDATE']].drop_duplicates(subset=['ORDER
dfRFM3['RECENCIA'] = (pd.to_datetime('10/22/2005 0:00') - dfRFM3['ORDERDATE']).dt.days
dfRFM3

Out[24]:

	CUSTOMERNAME	ORDERNUMBER	ORDERDATE	RECENCIA
0	Land of Toys Inc.	10107	2003-02-24	971
8	Land of Toys Inc.	10329	2004-11-15	341
23	Reims Collectables	10121	2003-05-07	899
28	Lyon Souveniers	10134	2003-07-01	844
35	Toys4GrownUps.com	10145	2003-08-25	789
•••				
2812	Tokyo Collectables, Ltd	10408	2005-04-22	183
2813	Mini Gifts Distributors Ltd.	10368	2005-01-19	276
2818	Microscale Inc.	10242	2004-04-20	550
2819	Blauer See Auto, Co.	10323	2004-11-05	351
2821	Auto-Moto Classics Inc.	10290	2004-09-07	410

307 rows × 4 columns

```
In [25]: dfRFM3 = dfRFM3[['CUSTOMERNAME', 'RECENCIA']].groupby('CUSTOMERNAME').min()
    dfRFM3
```

Out[25]: RECENCIA

CUSTOMERNAME

COSTONIERITANIE	
AV Stores, Co.	339
Alpha Cognac	208
Amica Models & Co.	408
Anna's Decorations, Ltd	227
Atelier graphique	331
•••	
Vida Sport, Ltd	418
Vitachrome Inc.	351
Volvo Model Replicas, Co	337
West Coast Collectables Co.	632
giftsbymail.co.uk	355

92 rows × 1 columns

```
dfRFM = pd.merge(dfRFM1,dfRFM2,on='CUSTOMERNAME',how='outer')
    dfRFM = pd.merge(dfRFM,dfRFM3,on='CUSTOMERNAME',how='outer')
    dfRFM = dfRFM.rename(columns={'ORDERNUMBER':'FRECUENCIA','SALES':'VALOR_M'})
    dfRFM.head()
```

Out[27]: FRECUENCIA VALOR_M RECENCIA

CUSTOMERNAME

```
AV Stores, Co.
                                    3 157807.81
                                                         339
         Alpha Cognac
                                    3
                                        70488.44
                                                         208
   Amica Models & Co.
                                    2
                                        94117.26
                                                         408
Anna's Decorations, Ltd
                                       153996.13
                                                         227
     Atelier graphique
                                    3
                                        24179.96
                                                         331
```

```
r_rango = np.histogram_bin_edges([dfRFM['RECENCIA'].min(),dfRFM['RECENCIA'].max()], bin
f_rango = np.histogram_bin_edges([dfRFM['FRECUENCIA'].min(),dfRFM['FRECUENCIA'].max()],
m_rango = np.histogram_bin_edges([dfRFM['VALOR_M'].min(),dfRFM['VALOR_M'].max()], bins=
```

```
In [29]:
    dfRFM['F'] = 1
    dfRFM['M'] = 1
    dfRFM['R'] = 1
```

Asignamos la evaluación para la Recencia, Frecuencia y Valor-Monetario

```
In [30]:
           for i in range(0,len(dfRFM)):
               if dfRFM.iloc[i,0] < f rango[1]:</pre>
                   dfRFM.iloc[i,3] = 1
               elif dfRFM.iloc[i,0] >= f rango[1] and dfRFM.iloc[i,0] < f rango[2]:</pre>
                   dfRFM.iloc[i,3] = 2
               elif dfRFM.iloc[i,0] >= f rango[2] and dfRFM.iloc[i,0] < f rango[3]:</pre>
                   dfRFM.iloc[i,3] = 3
               elif dfRFM.iloc[i,0] >= f_rango[3] and dfRFM.iloc[i,0] < f_rango[4]:</pre>
                   dfRFM.iloc[i,3] = 4
               elif dfRFM.iloc[i,0] >= f_rango[4]:
                   dfRFM.iloc[i,3] = 5
In [31]:
           for i in range(0,len(dfRFM)):
               if dfRFM.iloc[i,1] < m_rango[1]:</pre>
                   dfRFM.iloc[i,4] = 1
               elif dfRFM.iloc[i,1] >= m rango[1] and dfRFM.iloc[i,0] < m rango[2]:</pre>
                   dfRFM.iloc[i,4] = 2
               elif dfRFM.iloc[i,1] >= m_rango[2] and dfRFM.iloc[i,0] < m_rango[3]:</pre>
                   dfRFM.iloc[i,4] = 3
               elif dfRFM.iloc[i,1] >= m rango[3] and dfRFM.iloc[i,0] < m rango[4]:</pre>
                   dfRFM.iloc[i,4] = 4
               elif dfRFM.iloc[i,1] >= m_rango[4]:
                   dfRFM.iloc[i,4] = 5
In [32]:
           for i in range(0,len(dfRFM)):
               if dfRFM.iloc[i,2] < r_rango[1]:</pre>
                   dfRFM.iloc[i,5] = 5
               elif dfRFM.iloc[i,2] >= r_rango[1] and dfRFM.iloc[i,0] < r_rango[2]:</pre>
                   dfRFM.iloc[i,5] = 4
               elif dfRFM.iloc[i,2] >= r_rango[2] and dfRFM.iloc[i,0] < r_rango[3]:</pre>
                   dfRFM.iloc[i,5] = 3
               elif dfRFM.iloc[i,2] >= r rango[3] and dfRFM.iloc[i,0] < r rango[4]:</pre>
                   dfRFM.iloc[i,5] = 2
               elif dfRFM.iloc[i,2] >= r rango[4]:
                   dfRFM.iloc[i,5] = 1
In [33]:
           dfRFM.head(20)
Out[33]:
                                         FRECUENCIA VALOR_M RECENCIA F M R
                        CUSTOMERNAME
                                                  3 157807.81
                           AV Stores, Co.
                                                                     339 1 1
                           Alpha Cognac
                                                      70488.44
                                                  3
                                                                     208 1 1 5
                      Amica Models & Co.
                                                  2
                                                      94117.26
                                                                     408 1 1 4
```

4 153996.13

5 200995.41

24179.96

64591.46

3

227 1 1 5

331 1 1 4

166 1 1 5

327 1 2 4

Anna's Decorations, Ltd

Australian Collectables, Ltd

Australian Collectors, Co.

Atelier graphique

FRECUENCIA VALOR_M RECENCIA F M R

CUSTOMERNAME						
Australian Gift Network, Co	3	59469.12	262	1	1	4
Auto Assoc. & Cie.	2	64834.32	376	1	1	4
Auto Canal Petit	3	93170.66	198	1	1	5
Auto-Moto Classics Inc.	3	26479.26	323	1	1	4
Baane Mini Imports	4	116599.19	351	1	1	4
Bavarian Collectables Imports, Co.	1	34993.92	402	1	1	4
Blauer See Auto, Co.	4	85171.59	351	1	1	4
Boards & Toys Co.	2	9129.35	256	1	1	4
CAF Imports	2	49642.05	582	1	1	4
Cambridge Collectables Co.	2	36163.62	532	1	1	4
Canadian Gift Exchange Network	2	75238.92	365	1	1	4
Classic Gift Ideas, Inc	2	67506.97	373	1	1	4
Classic Legends Inc.	3	77795.20	335	1	1	4

```
In [34]: dfRFM['RMF'] = 1
```

Calsificamos en 5 categorias ('Potenciales', 'Leales', 'Derrochadores', 'Nuevos', 'Perdidos'), según los parametros indicados

```
In [36]: dfRFM.describe(include='all')
```

Out[36]:		FRECUENCIA	VALOR_M	RECENCIA	F	M	R	RMF
	count	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	92
	unique	NaN	NaN	NaN	NaN	NaN	NaN	2
	top	NaN	NaN	NaN	NaN	NaN	NaN	Nuevos
	freq	NaN	NaN	NaN	NaN	NaN	NaN	90

		FRECUENCIA	VALOR_M	RECENCIA	F			M		R RMF
	mean	3.336957	109050.313587	325.826087	1.076087	1	1.043	478	4.3152	17 NaN
	std	2.924986	110308.612808	131.420524	0.518529	().205	049	0.4671	48 NaN
	min	1.000000	9129.350000	144.000000	1.000000	1	1.000	0000	4.00000	00 NaN
	25%	2.000000	70129.432500	224.250000	1.000000	1	1.000	000	4.00000	00 NaN
	50%	3.000000	86522.610000	329.000000	1.000000	1	1.000	0000	4.00000	00 NaN
	75%	3.000000	120575.875000	373.250000	1.000000	1	1.000	0000	5.0000	00 NaN
	max	26.000000	912294.110000	652.000000	5.000000	2	2.000	0000	5.0000	00 NaN
n [37]:	dfRFM.h	nead()								
out[37]:			FRECUENCIA	VALOR_M	RECENCIA	F	М	R	RMF	
	CUS	STOMERNAME								
		AV Stores, Co.	3	157807.81	339	1	1	4	Nuevos	
		Alpha Cognac	3	70488.44	208	1	1	5	Nuevos	
	Amica	Models & Co.	2	94117.26	408	1	1	4	Nuevos	
	Anna's De	ecorations, Ltd	4	153996.13	227	1	1	5	Nuevos	
	Ate	elier graphique	3	24179.96	331	1	1	4	Nuevos	
n [38]:	dfRFM['	RMF'].unique	e()							
ut[38]:	array([ˈ	'Nuevos', 'L	eales'], dtyp	oe=object)						
n [39]:		CATEGORIA']	= dfRFM[' <mark>RMF</mark> ' = dfRFM['CAT)				
Out[39]:			FRECUENCIA	VALOR_M	RECENCIA	F	М	R	RMF	CATEGORI
	CUS	STOMERNAME								
		AV Stores, Co.	3	157807.81	339	1	1	4	Nuevos	
		Alpha Cognac	3	70488.44	208	1	1	5	Nuevos	
	Amica	Models & Co.	2	94117.26	408	1	1	4	Nuevos	
	Anna's De	ecorations, Ltd	4	153996.13	227	1	1	5	Nuevos	
	Ate	elier graphique	3	24179.96	331	1	1	4	Nuevos	
n [40]:	colors	= ['purple'	,'red','y','b	olue'.'gree	en'l					
	C01013	- [purple	, reu , y , t	rue , gree]					

Graficamos los segmentos

```
In [41]:
    k=5
    X = np.array(dfRFM[['FRECUENCIA','VALOR_M','RECENCIA']])
    cat = np.array(dfRFM['CATEGORIA'])
    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(1, 1, 1)
    for k, col in zip(range(k), colors):
        my_members = (cat == k)
        plt.scatter(X[my_members, 2], X[my_members, 1], s=X[my_members, 0]*50, c=col, mark

    plt.xlabel("R-Reciencia")
    plt.ylabel("M-Valor Monetario")
    plt.title('Segmentación RMF')
    plt.show()
```


Podemos observar que solo seasignaron los clientes en2 segmentos, se deben revisar los parametros para la clasificación

3. Realice la segmentación por Clustering

kmeans Clustering

```
In [42]: #Estandarizo los datos
X = StandardScaler().fit_transform(dfRFM[['FRECUENCIA','VALOR_M','RECENCIA']])
k = 5 #Decido 5 clusters para que la informacion se divida en la misma cantidad de segm
k_means = KMeans(init = "k-means++", n_clusters = k, n_init = 12)
k_means.fit(X)
```

```
X = np.array(dfRFM[['FRECUENCIA','VALOR_M','RECENCIA']]) # 'Desestandarizo' Los datos p
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(1, 1, 1)
for k, col in zip(range(k), colors):
    my_members = (k_means.labels_ == k)
    plt.scatter(X[my_members, 2], X[my_members, 1], s=X[my_members, 0]*50, c=col, marke

plt.xlabel("R-Reciencia")
plt.ylabel("M-Valor Monetario")
plt.title('Segmentación Kmeans')
plt.show()
```


Con el metodo de Kmeans podemos identificar claramente los 5 segmentos, y podemos ver la relación entre los clientes en cada segmento.

Consideramos que el metodo de Kmeans clustering realizó un mejor trabajo que el metodo RFM

4. Modelo de Sistema de Recomendación

Collaborative filtering-item based recommendation system

```
In [43]: df2 = df[['ID_Cliente','QUANTITYORDERED','SALES','PRODUCTCODE']]
In [44]: df2.head()
```

```
Out[44]:
              ID_Cliente QUANTITYORDERED
                                             SALES PRODUCTCODE
          0
                  C046
                                            2871.00
                                        30
                                                          S10_1678
           1
                  C046
                                        39
                                            3896.49
                                                          S10_2016
          2
                  C046
                                        27
                                            6065.55
                                                          S10_4698
                  C046
          3
                                        21
                                            3036.60
                                                          S12_2823
                                        29
           4
                  C046
                                            2055.23
                                                          S18_2625
In [45]:
           df2.describe()
```

```
SALES
Out[45]:
                  QUANTITYORDERED
                                        2823.000000
           count
                          2823.000000
                            35.092809
                                        3553.889072
           mean
             std
                             9.741443
                                        1841.865106
                             6.000000
                                         482.130000
             min
            25%
                            27.000000
                                        2203.430000
            50%
                            35.000000
                                        3184.800000
            75%
                            43.000000
                                        4508.000000
            max
                            97.000000 14082.800000
```

```
In [46]:
    sns.set(rc={'figure.figsize':(12,8)})
    fig, axs = plt.subplots(ncols=2)
    sns.boxplot(y="QUANTITYORDERED", data=df2, ax=axs[0])
    sns.boxplot(y="SALES", data=df2, ax=axs[1])
```

Out[46]: <AxesSubplot:ylabel='SALES'>

Elegimos la cantidad comprada de cada producto por cliente como parametro de evaluación

In [47]: df2.drop('SALES',1, inplace=True)

C:\Users\CRISTIAN R\anaconda3\lib\site-packages\pandas\core\frame.py:4308: SettingWithCo
pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy return super().drop(

In [48]: pivot_table = df2.pivot_table(index = ["ID_Cliente"],columns = ["PRODUCTCODE"],values = pivot_table.head(10)

Out[48]: PRODUCTCODE S10_1678 S10_1949 S10_2016 S10_4698 S10_4757 S10_4962 S12_1099 S12_1108

ID_Cliente

С	001	NaN	NaN	NaN	NaN	24.0	NaN	NaN	NaN
С	002	NaN	34.0	NaN	NaN	NaN	NaN	NaN	46.0
С	003	NaN	24.0	NaN	NaN	NaN	36.0	30.0	NaN
С	004	NaN	NaN	39.0	NaN	NaN	NaN	NaN	NaN
С	005	NaN							
С	006	37.0	30.0	38.0	47.5	NaN	27.0	NaN	NaN
С	007	NaN	34.0	39.0	22.0	NaN	NaN	NaN	NaN
С	800	NaN	47.0	NaN	NaN	NaN	NaN	NaN	NaN
С	009	41.0	NaN	45.0	NaN	NaN	NaN	41.0	NaN

PRODUCTCODE S10_1678 S10_1949 S10_2016 S10_4698 S10_4757 S10_4962 S12_1099 S12_1108

ID_Cliente

C010 NaN NaN NaN NaN NaN NaN NaN

10 rows × 109 columns

←

Creamos la matriz de clientes, productos y evaluación de los productos

```
In [49]: pivot_table.shape
```

Out[49]: (92, 109)

```
def recomendacion(ID_PRODUCTO):
    item_comprado = pivot_table[ID_PRODUCTO]
    cor_otros_items = pivot_table.corrwith(item_comprado)# Encuentra la correlacion del
    cor_otros_items = cor_otros_items.sort_values(ascending=False)
    df = pd.merge(cor_otros_items.to_frame(),pro,on='PRODUCTCODE',how='outer')
    return df.iloc[0:4,[0,2,3]]
```

Definimos la función de recomendación, la cual recomienda 3 productos de acuerdo al ID de producto ingresado con base en la correlacion con los otros productos.

Out[51]: PRODUCTCODE QUANTITYORDERED

0	S10_1678	944
1	S10_1949	961
2	S10_2016	928
3	S10_4698	921
4	S10_4757	952

```
In [52]:
    p_mas_vendido = cant_productos['PRODUCTCODE'][cant_productos['QUANTITYORDERED']==cant_p
    p_menos_vendido = cant_productos['PRODUCTCODE'][cant_productos['QUANTITYORDERED']==cant_p
```

Recomendaciones para el producto más vendido

In [53]: recomendacion(p_mas_vendido)

Out[53]:		PRODUCTCODE	PRODUCTLINE	MSRP
	0	S18_3232	Classic Cars	169
	1	S10_1678	Motorcycles	95
	2	S10_1949	Classic Cars	214

	PRODUCTCODE	PRODUCTLINE	MSRP
3	S10_2016	Motorcycles	118

Recomendaciones para el producto menos vendido

In [54]:

recomendacion(p_menos_vendido)

\cap	+	Γр	и.	1 .
U	uц	LP	14.	

	PRODUCTCODE	PRODUCTLINE	MSRP
0	S18_4933	Classic Cars	71
1	S10_1678	Motorcycles	95
2	S10_1949	Classic Cars	214
3	S10_2016	Motorcycles	118