Binomial Probability Distribution Worked Example using Statistical Tables

www.Stats-Lab.com

http://bit.ly/StatsIntro

- Suppose 40% of employees in a large company favour unionisation.
- A poll of 10 employees in this company is taken.
- This poll can be considered as binomial experiment with n=10 and p=0.40.

Question 1

 What is the probability that 4 or more employees polled favour unionisation?

Solution

Binomial distribution with n=10 and p=0.4. Using Murdoch Barnes Table 1.

$$P(X \ge 4) = 0.6177$$

- Suppose 40% of employees in a large company favour unionisation.
- A poll of 10 employees in this company is taken.
- This poll can be considered as binomial experiment with n=10 and p=0.40.

Question 2

 What is the probability that less than 2 employees polled favour unionisation?

Solution

Binomial distribution with n=10 and p=0.4. Using Murdoch Barnes Table 1.

$$P(X < 2)$$

 $P(X < 2) = 1 - P(X \ge 2)$
 $= 1 - (0.9536)$
 $= 0.0464$

- Suppose 40% of employees in a large company favour unionisation.
- A poll of 10 employees in this company is taken.
- This poll can be considered as binomial experiment with n=10 and p=0.40.

Question 3

 What is the probability that exactly 5 employees polled favour unionisation?

Solution

Binomial distribution with n=10 and p=0.4. Using Murdoch Barnes Table 1.

$$P(X=5)$$

 $P(X=5) = P(X \ge 5) - P(X \ge 6)$
 $= 0.3669 - 0.1662$
 $= 0.2007$

- Suppose 40% of employees in a large company favour unionisation.
- A poll of 10 employees in this company is taken.
- This poll can be considered as binomial experiment with n=10 and p=0.40.

Question 4

What is the mean and variance for this distribution?

Solution

Binomial distribution with n=10 and p=0.4.

```
Mean = np

= 10\times0.4

= 4 employees

Variance = np(1-p)

= 10\times0.4\times0.6

= 2.4 employees
```

```
Solution
```

•

Using Murdoch Barnes Table 1

•

• 1)
$$P(X \ge 4) = 0.6177$$

•

• 2)
$$P(X < 2)$$
 $P(X < 2) = 1 - P(X \ge 2)$

$$= 1 - (0.9536)$$

•

• 3)
$$P(X=5)$$
 $P(X=5) = P(X \ge 5) - P(X \ge 6)$

$$= 0.3669 - 0.1662$$

•

• 4) mean =
$$np$$
 = 10×0.4 = **4 employees**

• Variance =
$$np(1-p) = 10 \times 0.4 \times 0.6$$
 = 2.4 employees