

теплосчетчик-регистратор ВЗЛЕТ ТСР-М

исполнения **TCP-023**, **-023М**

инструкция по монтажу

В76.00-00.00-23 ИМ

Россия, Санкт-Петербург

Система менеджмента качества ЗАО «ВЗЛЕТ» соответствует требованиям ГОСТ Р ИСО 9001-2008 (сертификат соответствия № РОСС RU.ИС09.К00816) и международному стандарту ISO 9001:2008 (сертификат соответствия № RU-00816)

ЗАО «ВЗЛЕТ»

ул. Мастерская, 9, г. Санкт-Петербург, РОССИЯ, 190121 факс (812) 714-71-38 E-mail: mail@vzljot.ru

www.vzljot.ru

•	отдел информации	тел. (812) 714-81-23 тел. (812) 714-81-02
•	консультации по применению приборов и оборудования	тел. (812) 714-81-78 тел. (812) 714-81-28
•	консультации по вопросам эксплуатации приборов	тел. (812) 714-81-00
•	консультации по организации сервисного обслуживания и работе сервисных центров	тел. (812) 714-81-56

Головной сервисный центр ЗАО «ВЗЛЕТ» OOO «TEXCEPBIC»

ул. Трефолева, д. 4, корп.1, лит. Б, г. Санкт-Петербург, РОССИЯ, 198078

• поверка, гарантийный и послегарантийный ремонт приборов

тел. (812) 380-84-41 факс (812) 714-81-07 E-mail: ero@vzljot.ru

* * *

Учебный центр ЗАО «ВЗЛЕТ» проводит бесплатное обучение специалистов по вопросам монтажа и эксплуатации выпускаемых приборов тел. (812) 495-42-89 факс (812) 714-25-87

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	2
1. МЕРЫ БЕЗОПАСНОСТИ	
2. MOHTAЖ	
2.1. Общие требования	
2.2. Монтаж преобразователя расхода в трубопровод	
2.3. Монтаж преобразователя температуры в трубопровод	8
2.4. Монтаж преобразователя давления на трубопровод	10
2.5. Монтаж тепловычислителя	11
2.6. Электромонтаж теплосчетчика	11
3. ВВОД В ЭКСПЛУАТАЦИЮ	14
4. ДЕМОНТАЖ	15
ПРИЛОЖЕНИЕ А. Теплосчетчик исполнений ТСР-023, -023М	16
ПРИЛОЖЕНИЕ Б. Арматура для установки преобразователей температуры в трубопровод	27
ПРИЛОЖЕНИЕ В. Сборная конструкция для установки преобразователя давления типа СДВ-И-А на трубопровод	29
ПРИЛОЖЕНИЕ Г. Схемы обеспечения взрывозащиты	30

Настоящая инструкция определяет порядок монтажа, ввода в эксплуатацию и демонтажа на объекте (узле учета тепловой энергии) теплосчетчиков-регистраторов «ВЗЛЕТ ТСР-М» исполнений ТСР-023, -023М. Перед проведением работ необходимо ознакомиться с руководством по эксплуатации на теплосчетчик, а также с эксплуатационной документацией (ЭД) на устройства, входящие в состав теплосчетчика.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

ИВП - источник вторичного питания;

ПД - преобразователь давления;

ПР - преобразователь расхода;

ПТ - преобразователь температуры;

ПУЭ - «Правила устройства электроустановок»;

СЦ - сервисный центр; ТВ - тепловычислитель;

ТПС - термопреобразователь сопротивления;

ТСч - теплосчетчик;

ЭД - эксплуатационная документация.

ВНИМАНИЕ!

Изготовитель не несет гарантийных обязательств в отношении теплосчетчика (ТСч) при несоблюдении правил и требований, изложенных в настоящем документе, а также в случае, если с даты продажи до момента ввода ТСч в эксплуатацию истекло 6 месяцев.

1. МЕРЫ БЕЗОПАСНОСТИ

- 1.1. К проведению работ по монтажу, пусконаладочным работам и демонтажу ТСч допускается персонал:
 - имеющий право на выполнение данного вида работ;
 - допущенный к проведению работ на электроустановках с напряжением до 1000 B;
 - знакомый с документацией на ТСч и вспомогательное оборудование, используемое при проведении работ.
- 1.2. При проведении работ с ТСч опасными факторами являются:
 - переменное напряжение (с действующим значением до 264 В частотой 50 Гц);
 - давление в трубопроводе (до 2,5 МПа);
 - температура теплоносителя / трубопровода (до 180 °C);
 - другие факторы, связанные со спецификой и профилем предприятия или объекта, где производится монтаж.
- 1.3. Перед проведением работ необходимо убедиться с помощью измерительного прибора, что на трубопроводе отсутствует опасное для жизни напряжение переменного или постоянного тока.
- 1.4. В процессе работ по монтажу, пусконаладке или демонтажу теплосчетчика запрещается:
 - производить подключения к прибору, переключения режимов или замену электрорадиоэлементов при включенном питании;
 - выполнять рабочие операции на участке трубопровода, находящегося под давлением;
 - использовать неисправные электрорадиоприборы, электроинструменты либо без подключения их корпусов к магистрали защитного заземления (зануления).
- 1.5. Перед тем, как подключить теплосчетчик к электрической сети питания необходимо корпуса составных частей соединить с магистралью защитного заземления (зануления).

ВНИМАНИЕ! Перед подключением к магистрали защитного заземления (зануления) необходимо убедиться в отсутствии на ней напряжения.

2. МОНТАЖ

2.1. Общие требования

- 2.1.1. Размещение составных частей теплосчетчика должно обеспечивать:
 - соответствие условиям монтажа и эксплуатации, изложенным в ЭД на составные части ТСч;
 - свободный доступ к тепловычислителю при его обслуживании и снятии показаний;
 - отсутствие сильного электромагнитного излучения, создаваемого, например, работающими электродвигателями или силовыми трансформаторами.

ВНИМАНИЕ! Не допускается монтаж составных частей ТСч в местах возможного затопления либо попадания капающей жидкости, а также открытых для прямого воздействия солнечных лучей на жидкокристаллический индикатор прибора.

- 2.1.2. Для монтажа ТСч на объекте необходимо:
 - наличие прямолинейных участков трубопровода необходимой длины до и после места установки преобразователей расхода (ПР);
 - наличие свободных участков на трубопроводах соответствующего внутреннего диаметра для установки преобразователей температуры (ПТ) либо расширителей для установки ПТ;
 - наличие свободных участков на трубопроводах для установки преобразователей давления;
 - наличие места для размещения тепловычислителя (ТВ) и, при необходимости, источника вторичного питания (ИВП) =24 В.
- 2.1.3. Транспортировка ТСч к месту монтажа должна осуществляться в заводской таре.

После транспортировки ТСч к месту установки при отрицательной температуре и внесения его в помещение с положительной температурой во избежание конденсации влаги необходимо выдержать ТСч в упаковке не менее 3-х часов.

2.2. Монтаж преобразователя расхода в трубопровод

Место установки ПР должно выбираться из следующих условий:

- ПР рекомендуется располагать в той части трубопровода, где пульсации и завихрения жидкости минимальные;
- до и после места установки ПР должны быть прямолинейные участки трубопровода требуемой длины без каких-либо элементов, возмущающих поток жидкости;
- внутренний канал ПР (при использовании ТСч в рабочем режиме) должен быть целиком заполнен жидкостью;
- в месте установки в трубопроводе не должен скапливаться воздух
 ПР не должен располагаться в самой высокой точке трубопровода, а также в трубопроводе с открытым концом; наиболее подходящее место для монтажа (при его наличии) нижний либо восходящий участок трубопровода (рис.1);
- давление теплоносителя в трубопроводе должно исключать газообразование;
- напряженность внешнего магнитного поля не должна превышать 40 A/м.

Рис. 1. Рекомендуемые места установки ПР.

Выбор места установки и монтаж ПР выполняется в соответствии с ЭД на данный тип расходомера.

2.3. Монтаж преобразователя температуры в трубопровод

- 2.3.1. Скорость потока теплоносителя в месте установки ПТ не должна превышать 4 м/с. Для использования ПТ при более высоких скоростях потока требуется применение защитной гильзы с соответствующими характеристиками.
- 2.3.2. ПТ в подающем и обратном трубопроводах должны быть смонтированы одинаковым образом: либо перпендикулярно к оси трубопровода, либо наклонно, либо в колено трубопровода. Рекомендуемые варианты монтажа ПТ приведены на рис.2. Для установки ПТ типа «ВЗЛЕТ ТПС», КТПТР поставляются штуцера одного из двух типов прямой или наклонный с размерами, указанными в Приложении Б.

- 1 термопреобразователь сопротивления; 2 защитная гильза;
- 3 штуцер; 4 трубопровод; 5 теплоизоляция трубопровода;
- 6 теплоизоляция ПТ

Рис. 2. Способы установки ПТ.

2.3.3. Типоразмер ПТ (длина монтажной части) зависит от внутреннего диаметра трубопровода в месте установки ПТ и способа установки (перпендикулярно или наклонно).

Для выбора типоразмера ПТ «ВЗЛЕТ ТПС» или КТПТР-05, исходя из внутреннего диаметра трубопровода D_{BH} и условия погружения ПТ на глубину $(0,3-0,7)D_{BH}$ с учетом размеров поставляемых штуцеров, можно воспользоваться табл.1. Допускается осуществлять выбор типоразмера ПТ в соответствии с региональными или отраслевыми требованиями (нормативами).

Таблица 1

Длина монтажной части	Внутренний диаметр трубопровода, мм		
«ВЗЛЕТ ТПС», КТПТР-05, <i>I</i> , мм	прямой штуцер	наклонный штуцер	
70	60 – 170	40 – 105	
98	85 – 260	60 – 160	
133	120 – 380	85 – 240	
223	210 – 670	150 – 450	

Установка ПТ в трубопровод меньшего диаметра может осуществляться либо в колено, либо в специальный расширитель соответствующего типоразмера (Приложение Б).

2.3.4. Для исключения внесения возмущений в поток жидкости ПТ рекомендуется устанавливаться в трубопровод по направлению потока после соответствующего ПР.

Допускается установка ПТ до ПР по направлению потока, если при этом на входе ПР обеспечивается участок без каких-либо элементов, влияющих на структуру потока, длиной не менее, указанной в эксплуатационной документации на данный тип ПР.

- 2.3.5. Для монтажа ПТ в выбранном месте установки в стенке трубопровода делается отверстие:
 - под наклонный штуцер овальное с $D_{\text{мин}}$ = 18 мм и $D_{\text{макс}}$ = 25 мм (больший размер располагается вдоль оси трубопровода);
 - под прямой штуцер цилиндрическое диаметром 18 мм.

Штуцер приваривается к трубопроводу таким образом, чтобы отверстия в штуцере и стенке трубопровода были соосны. Наклонный штуцер приваривается в положении, обеспечивающем соответствующую ориентацию ПТ относительно потока жидкости.

ВНИМАНИЕ! При сварке необходимо исключить возможность повреждения внутренней резьбы штуцера.

Для установки ПТ типа «ВЗЛЕТ ТПС» или КТПТР в штуцер ввинчивается защитная гильза соответствующей длины, а уже в гильзу вворачивается ПТ. Для обеспечения герметичности соединений используются кольцевые уплотняющие прокладки.

С целью улучшения теплопередачи при установке ПТ типа «ВЗЛЕТ ТПС» или КТПТР рекомендуется заливать в защитные гильзы трансформаторное масло.

2.4. Монтаж преобразователя давления на трубопровод

- 2.4.1. Выбор места установки и монтаж осуществляется в соответствии с ЭД на данный тип преобразователя давления (ПД). Температура в месте размещения ПД не должна превышать значения, указанного в эксплуатационной документации на ПД. Не допускается также замерзание жидкости в канале передачи давления.
- 2.4.2. Для установки преобразователя давления на трубопровод может использоваться сборная конструкция (Приложение В), состоящая из патрубка, привариваемого к трубопроводу, шарового крана, трехходового крана и радиатора.

Шаровой кран используется для перекрытия канала, по которому давление от теплоносителя передается к ПД. Трехходовой кран применяется для стравливания газа, который может попасть в канал передачи давления. Радиатор позволяет снизить температуру жидкости до величины, допустимой для ПД.

- 2.4.3. Указанную конструкцию рекомендуется располагать вертикально таким образом, чтобы ПД располагался в верхней точке. Если это невозможно, то допускается располагать ее горизонтально с уклоном 1:10 к ПД. В этом случае в процессе эксплуатации необходимо контролировать отсутствие засорения канала передачи давления.
- 2.4.4. Для монтажа ПД на трубопроводе в месте установки патрубка делается отверстие диаметром 20 мм. Патрубок приваривается к трубопроводу таким образом, чтобы обеспечить соответствующую ориентацию в пространстве сборной конструкции, на которой устанавливается ПД.
- 2.4.5 .Перед установкой ПД на трубопровод необходимо продуть соединительную трубку, после чего канал передачи давления заполнить холодной водой. Не рекомендуется выполнять уплотнение резьбы штуцера ПД.

ВНИМАНИЕ! При подаче давления на ПД не допускать гидроударов. Скорость нарастания давления должна быть не более 10 % максимального рабочего давления за секунду.

После подачи давления рекомендуется стравить возможно имеющийся в канале передачи давления воздух с помощью трехходового крана.

2.5. Монтаж тепловычислителя

2.5.1. Крепежные элементы и установочные размеры тепловычислителя (ТВ), источника вторичного питания приведены в Приложении А.

При выборе места размещения ТВ, ИВП необходимо учитывать:

- длину кабелей связи TB ПР, TВ ПТ и ТВ ПД;
- длину кабеля связи ИВП ТВ, не превышающую 1,5 м.
- 2.5.2. Не допускается размещение ТВ, ИВП:
 - в помещении, где температура окружающего воздуха может выходить за пределы 5...50 °C, а влажность может быть выше 80 % при температуре ниже 35 °C;
 - вблизи источников тепла, например, горячих трубопроводов.

К месту размещения ТВ исполнения ТСРВ-023М должна быть проведена магистраль защитного заземления (зануления).

Освещение ТВ необязательно, т.к. его дисплей имеет собственную подсветку.

2.6. Электромонтаж теплосчетчика

- 2.6.1. Электрический монтаж преобразователей расхода
- 2.6.1.1. В качестве сигнального кабеля импульсного выхода ПР может использоваться любой двухжильный кабель с сечением жил не менее 0,35 мм². Допускается использовать кабель ШВВП 2×0,35 мм² или ШВП-2 2×0,35 мм². Возможно использование четырехпроводного кабеля МКВЭВ 4×0,2 мм², при этом рекомендуется попарное объединение проводов при заделке концов кабеля. Разделка и подключение экрана не требуется.

В случае подключения ПР к ТВ по импульсному выходу и выходу направления потока (реверсивное исполнение ПР) может использоваться кабель типа КММ $4\times0,35$ мм².

- 2.6.1.2. Для защиты от механических повреждений рекомендуется кабели размещать в металлорукавах, металлических либо пластиковых трубах (в том числе, гофрированных), коробах, лотках или кабельканалах. Допускается совместное размещение сигнальных кабелей и кабеля питания.
- 2.6.1.3. Подключение сигнальных кабелей ПР к ТВ производится в соответствии со схемой соединения (Приложение A).

Схемы подключения расходомеров фирмы «ВЗЛЕТ» к ТВ по импульсным входам также приведены в Приложении А.

- 2.6.2. Электрический монтаж преобразователей температуры
- 2.6.2.1. В качестве сигнального кабеля ПТ должен использоваться четырехжильный кабель в экране, сечение жил не менее 0,12 мм². Рекомендуется использовать кабель МКВЭВ 4×0,2 мм².
- 2.6.2.2. При подготовке к монтажу концы сигнальных кабелей должны разделываться в соответствии с ГОСТ 23587: освобождаться от изоляции на длину 5 мм и облуживаться.

К концам сигнальных кабелей, подключаемых к ПТ типа КТПТР-05, должны припаиваться наконечники под винт М4. При подключении к ПТ должны использоваться шайбы-«звездочки» или пружинные шайбы (гроверы).

Требования по монтажу сигнальных кабелей ПТ аналогичны требованиям по монтажу сигнальных кабелей ПР (п.2.6.1.2).

2.6.2.3. Подключение сигнальных кабелей ПТ к ТВ производить в соответствии со схемой соединения (Приложение A).

В теплосчетчике исполнений TCP-023, -023М на незадействованные контактные колодки тепловычислителя, предназначенные для подключения ПТ, устанавливаются перемычки, соединяющие контакты с наименованиями сигналов LEADxA, LEADxB и SHIELDx (рис.А.7). В случае подключения к теплосчетчику двух контролируемых теплосистем, в одной из которых организован теплоучет с автоматическим переключением алгоритмов расчета в отопительный / межотопительный сезон, и при отсутствии в другой контролируемой теплосистеме подключения ПТ к колодке XT2 (XT1) необходимо соединить перемычками контакты сигналов LEAD5A-LEAD5B (LEAD6A-LEAD6B).

При подключении ПТ ко входу, на котором установлена перемычка, соответствующая перемычка снимается.

После подключения кабелей связи участки трубопровода в месте установки ПТ и узлы установки ПТ теплоизолируются с помощью соответствующих материалов.

- 2.6.2.4. При монтаже ПТ в каналы измерения температуры с обеспечением взрывозащиты (Приложение Г) для связи ТПС и барьера искрозащиты БИ-003 должен использоваться экранированный кабель КИПВм 2×2×0,6. На зачищенные и облуженные концы жил и экрана кабеля должны быть надеты и обжаты наконечники из комплекта монтажных частей. Экран кабеля со стороны ТПС должен быть заизолирован.
 - 2.6.3. Электрический монтаж преобразователей давления
- 2.6.3.1. Для монтажа допускается использовать кабель МКВЭВ 2×0,35 мм². Требования по монтажу сигнальных кабелей ПД аналогичны требованиям по монтажу сигнальных кабелей ПР (п.2.6.1.2).
- 2.6.3.2. Не допускается соединение экрана кабеля связи ПД ТВ с корпусом ПД.

- 2.6.3.3. Электрическое подключение ПД с различным выходным током выполняется по соответствующей схеме соединения (Приложение A).
 - 2.6.4. ТВ теплосчетчика не имеют собственного выключателя питания, поэтому подключение их к сети рекомендуется выполнять через внешний выключатель.
 - 2.6.5. Кабели сигналов связи, интерфейса RS-232/RS-485 и сетевой кабель по возможности крепятся к стене. Требования по монтажу кабелей сигналов связи, интерфейса RS-232/RS-485 и сетевого кабеля аналогичны требованиям по монтажу сигнальных кабелей ПР (п.2.6.1.2).

Кабель связи без защиты в виде металлической трубы или металлорукава не рекомендуется прокладывать вдоль силовых кабелей другого оборудования на расстоянии менее 30 см. Допускается пересекать их под углом 90°.

Крепление кабелей к стене около ТВ может осуществляться при помощи монтажных скоб (рис.А.9).

ВНИМАНИЕ! Не допускается крепить кабели к трубопроводу с теплоносителем.

2.6.6. Необходимость защитного заземления тепловычислителя исполнения TCPB-023M определяется в соответствии с требованиями главы 1.7 «Правил устройства электроустановок» (ПУЭ) в зависимости от напряжения питания и условий размещения прибора.

При использовании ТСч для измерения параметров во взрывоопасной зоне заземление тепловычислителя исполнения TCPB-023M обязательно.

Защитное заземление, а также заземляющее устройство должны удовлетворять требованиям ПУЭ. Во избежание отказа прибора не допускается в качестве защитного заземления использовать систему заземления молниезащиты.

Заземляющий проводник, соединяющий клемму защитного заземления прибора с заземляющим устройством и выполняемый медным проводом без механической защиты, должны иметь сечение не менее 4 мм².

2.6.7. Комплект кабелей нужной длины может быть заказан на предприятии-изготовителе ТСч.

3. ВВОД В ЭКСПЛУАТАЦИЮ

- 3.1. Теплосчетчик можно включать в работу только после:
 - 30-минутного прогрева прибора;
 - 30-минутной промывки электромагнитных расходомеров потоком жидкости;
 - полного прекращения динамических гидравлических процессов в трубопроводе, связанных с регулированием потока теплоносителя (работы на трубопроводе со сливом теплоносителя, перекрытие потока теплоносителя и т.п.).
- 3.2. Перед вводом в эксплуатацию необходимо:
 - сконфигурировать прибор в соответствии со схемой учета (установить требуемый режим, ввести в ТСч параметры функционирования, проверить установки перемычек и т.д.) если он не был сконфигурирован при выпуске из производства;
 - перевести прибор в режим РАБОТА;
 - опломбировать составные части ТСч в соответствии с требованиями правил ввода узла учета в эксплуатацию.

4. ДЕМОНТАЖ

Демонтаж ПР, ПТ, ПД и ТВ для отправки в поверку или ремонт проводится в нижеуказанном порядке.

- 4.1. Обесточить цепь напряжения питания ТВ. Отключить кабель питания ТВ от сети или ИВП.
- 4.2. Для демонтажа ПР необходимо отключить питание, перекрыть движение жидкости в месте установки, убедиться в полном снятии давления в трубопроводе и слить жидкость. Отсоединить сигнальные кабели от ТВ и ПР.

Демонтаж ПР выполняется в соответствии с ЭД на ПР.

После демонтажа необходимо очистить внутренний канал ПР от остатков теплоносителя и отложений, образовавшихся в процессе эксплуатации.

- 4.3. Извлечь ПТ из защитных гильз и отключить кабель связи ПТ-ТВ, промаркировав концы в соответствии со схемой соединения ТСч.
- 4.4. Перекрыть канал передачи давления на ПД с помощью шарового крана. Демонтаж ПД должен производиться только после сброса давления в линии передачи до атмосферного с помощью трехходового крана.

Отключить и промаркировать сигнальные провода.

- 4.5. Для демонтажа ТВ необходимо:
 - отвернуть винты на лицевой панели;
 - отсоединить модуль (субблок) обработки данных от модуля коммутации;
 - отстыковать кабели и упаковать модуль (субблок) обработки данных для транспортировки.

ПРИЛОЖЕНИЕ А. Теплосчетчик исполнений ТСР-023, -023М

вид спереди

- * справочный размер
 - 1 дисплей индикатора; 2 клавиатура; 3 модуль обработки данных; 4 модуль коммутации; 5 разъем RS-232; 6 заглушка мембранная.
- а) исполнение ТСРВ-023

Рис. А.1.Тепловычислитель.

вид спереди

* - справочный размер

1 — дисплей индикатора; 2 — клавиатура; 3 — модуль вычислителя; 4 — модуль измерителя; 5 — модуль коммутации; 6 — субблок обработки данных; 7 — заглушка мембранная; 8 — разъем RS-232; 9 — клемма заземления (зануления).

б) исполнение TCPB-023M

Рис. А.1. Тепловычислитель.

1 — предохранитель; 2 — разъем подключения кабеля питания =24 В; 3 — разъем модуля Ethernet; 4 — разъем подключения шлейфа связи с внешним разъемом RS-232; 5 — контактные пары для установки режима работы дискретного выхода; 6 — разъем дискретного выхода; 7, 8 — контактные пары для установки режима управления ТВ ЈЗ и Ј4 соответственно; 9 — разъем подключения кабеля связи RS-485; 10 — разъемы для подключения шлейфов связи с модулем коммутации.

Рис. А.2. Вид сзади модуля (субблока) обработки данных.

Наименование выхода	Обозначение выходных сигналов	Обозначение контактов (контактных пар)
	RXD	1
	RTS	2
RS-232	TXD	3
	CTS	4
	GND	7
Дискретный выход	TSOUT +/-	J1, J2
	GND	-
RS-485	A / Data-	-
	B / Data+	-

ПРИМЕЧАНИЕ. К внутреннему разъему RS-232 подключается кабель от внешнего разъема RS-232, расположенного на модуле коммутации.

Рис.А.3. Обозначение выходных сигналов модуля RS-232 / RS-485 / дискретный выход.

а) разъем DB9 интерфейса RS-232 на корпусе модуля коммутации

б) разъем RS-232, подключаемый к модулю RS-232 / RS-485 / дискретный выход

Рис.А.4. Разъемы кабеля интерфейса RS-232.

Рис.А.5. Обозначение коммутационных элементов модуля Ethernet.

а) вид и нумерация контактов разъема RJ45

	Контакты		
	Цепь Разъем модуля Ethernet	Разъем RJ45	
Цепь		подключение к сети	подключение
			к персональному
			компьютеру
TX+	1	1	3
TX-	2	2	6
RX+	3	3	1
RX-	4	6	2

б) таблица коммутации сигналов в кабеле связи с сетью и кабеле связи с ΠK .

Рис.А.6. Разъем RJ45 кабеля интерфейса Ethernet.

Назначение контактных колодок:

- XP1-XP3 разъемы подключения шлейфов связи с модулем обработки данных:
- XT1-XT5 («ПТ1...ПТ6») контактные колодки подключения кабелей связи с преобразователями температуры;
- XT6-XT8 («ПД1...ПД6») контактные колодки подключения кабелей связи с преобразователями давления;
- XT9, XT10 («Питание =24В») контактные колодки подключения внешнего кабеля питания =24В, а также кабеля питания модуля обработки;
- XT10 («DIR1») контактная колодка подключения сигнала направление потока ПР реверсивного исполнения;
- XT11-XT14 («ПР1...ПР6») контактные колодки подключения кабелей связи с преобразователями расхода;
- XT11-XT14 («Питание расходомеров =24В») контактные колодки для подключения кабелей питания расходомеров;
- J1/J2, J3/J4, J5/J6, J7/J8, J9/J10, J11/J12 контактные пары для установки режима работы входного каскада импульсно-частотного входа I1, I2, I3, I4, I5, I6 соответственно;
- J13-J18 контактные пары для установки режима работы входного каскада логического входа DIR1.

Рис. А.7. Вид платы коммутации.

* - справочный размер

1 – DIN-рейка; 2 – кронштейн; 3 – модуль коммутации.

Рис. А.8. Вид ТВ с кронштейнами для крепления на DIN-рейке 35/7,5.

* - справочный размер

Рис. А.9. Скобы монтажные для крепления кабелей связи.

Рис. А.10. Схема подключения тепловычислителя.

- для исполнения ЭРСВ-310

- для исполнений ЭРСВ-х10, -х30, -х40, -х50

- для исполнений ЭРСВ-4x0(5x0)M

- для исполнений ЭРСВ-4xx(5xx)Л, -4xx(5xx)Ф

Рис.А.11. Схемы подключения расходомеров электромагнитных «ВЗЛЕТ ЭР» к ТВ.

а) расходомера ультразвукового «ВЗЛЕТ РС»

- для исполнений УРСВ-020, -022, -040

- для исполнений УРСВ-5хх
- б) расходомеров ультразвуковых УРСВ «ВЗЛЕТ МР»

Рис.А.12. Схемы подключения расходомеров ультразвуковых фирмы «ВЗЛЕТ» к ТВ.

Рис.А.13. Трехпроводная схема подключения ПД различных типов с выходным током 0-5 (0-20) мА.

Рис.А.14. Четырехпроводная схема подключения ПД различных типов с выходным током 0-5 (0-20) мА.

ИП – источник питания

Рис.А.15. Четырехпроводная схема подключения ПД различных типов с выходным током 0-5 (0-20) мА к тепловычислителю при работе с внешними источниками питания, рассчитанными на подключение двух ПД.

ПРИЛОЖЕНИЕ Б. Арматура для установки преобразователей температуры в трубопровод

^{* -} справочный размер

1 – расширитель; 2 – штуцер для установки ПТ.

D_v	D, мм	L, MM	Масса, кг
50	57	200	1,4
40	45	200	1,4
32	38	185	1,3

Рис. Б.1. Расширитель для установки преобразователя температуры в трубопровод малого диаметра.

а) прямой

- б) наклонный
- * справочный размер

Рис. Б.2. Штуцеры для монтажа ПТ типа «ВЗЛЕТ ТПС», КТПТР на трубопроводе.

ПРИЛОЖЕНИЕ В. Сборная конструкция для установки преобразователя давления типа СДВ-И-А на трубопровод

1 — преобразователь давления; 2 — радиатор охлаждения; 3 — трехходовой кран; 4 — шаровой кран; 5 — угольник; 6 — патрубок; 7 — рабочий трубопровод; 8 — разъем кабеля связи.

ПРИЛОЖЕНИЕ Г. Схемы обеспечения взрывозащиты

БИ — блок искрозащитный; БИ-003 — барьер искробезопасности ООО «НПК Ленпромавтоматика»; ВП — вторичный преобразователь; ИУ — измерительный участок; ПП1,2 — первичный преобразователь; ПЭА — преобразователь электроакустический; ТПС — термопреобразователь сопротивления; УК — устройство коммутационное.

Рис. Г.1. Структурная схема теплосчетчика с обеспечением взрывозащиты каналов расхода и температуры.

Рис. Г.2. Схема подключения ТПС через барьер искробезопасности.

im_tsrm.023x_doc1.4