SS 2018 Marc Kegel

Kirby-Kalkül

Übungsblatt 10

Aufgabe 1.

Der **Eigenschaft-**R-**Satz** (bewiesen von David Gabai) besagt, dass falls man $S^1 \times S^2$ als 0-Chirurgie entlang eines Knotens K in S^3 erhalten kann, dann ist K der Unknoten.

(a) Zeigen Sie, dass jede 4-dimensionale Homologiesphäre mit einer Henkelzerlegung mit genau einem 2-Henkel und keinem 3-Henkel schon diffeomorph zu S^4 sein muss.

Die **verallgemeinerte Eigenschaft-**R-**Vermutung** besagt, dass jedes Chirurgie-Diagramm für $\#nS^1 \times S^2$ entlang einer n-Komponenten Verschlingung L in S^3 durch 2-Henkelbewegungen in die 0-gerahmte n-Komponenten Unverschlingung überführt werden kann.

- (b) Zeigen Sie, dass wenn die verallgemeinerte Eigenschaft-R-Vermutung wahr ist, jede 4-dimensionale Homologiespähre mit einer Henkelzerlegung ohne 3-Henkel schon diffeomorph zu S^4 ist.
- (c) Zeigen Sie, dass das Chirurgiediagramm aus Abbildung 1 durch 2-Henkelbewegungen in das Standardchiriurgiediagramm von $\#_2S^1 \times S^2$ umgeformt werden kann.
- (d) Zeigen Sie, dass alle Komponenten einer gerahmte n-Komponenten Verschlingung, die ein Chirurgiediagramm von $\#_n S^1 \times S^2$ repräsentiert, 0-gerahmt und algebraisch unverschlungen sein müssen.
- (e) **Bonusaufgabe:** Finden Sie eine komplett 3-dimensionale Aussage die äquivalent zu glatten 4-dimensionalen Poincaré-Vermutung ist.

Abbildung 1: Ein Chirurgiediagramm von $\#_2S^1 \times S^2$.

Aufgabe 2.

Der Knotenaußenraum eines Knotens K in M ist $M \setminus \nu K$. Zwei Knoten K_1 und K_2 in M heißen **äquivalent**, falls es einen Homöomorphismus von M gibt, der K_1 auf K_2 abbildet. Analog sind diese Begriffe für Verschlingungen definiert.

- (a) Isotope Knoten sind äquivalent. Auf der anderen Seite gibt es Knoten die äquivalent sind, aber nicht isotop.
- (b) Zwei äquivalente Verschlingungen haben homöomorphe Außenräume.
- (c) Es gibt nicht-äquivalente Verschlingungen in S^3 mit homö
omorphen Außenräumen.
- (d) Eine rationale Chirurgie entlang eines Knotens K in S^3 mit Chirurgiekoeffizient $r \in \mathbb{Q}$ heißt kosmetische Chirurgie, falls $S^3_K(r)$ wieder homöomorph zu S^3 ist. Beispiele von kosmetischen Chirurgien sind die Chirurgien entlang des Unknotens U mit Koeffizient von der Form 1/n. Ein tiefer Satz von Gordon und Luecke besagt, dass dies die einzigen kosmetischen Chirurgien in S^3 sind. (Diese Aussage müssen sich nicht beweisen.) Zeigen Sie, dass aus dem Satz von Gordon und Luecke folgt, dass Knoten mit homöomorphen Außenräumen schon äquivalent sind.

Aufgabe 3.

- (a) Jeder Knoten K in S^3 kann durch endlich viele Kreuzungswechsel in den Unknoten überführt werden.
- (b) Jeder Knoten K in S^3 besitzt eine Chirurgiebeschreibung vom Unknoten, d.h. ein Chirurgie-Diagramm im Komplement des Unknotens U in S^3 , dass wieder S^3 liefert aber den Unknoten U in K transformiert.
 - Hinweis: Überlegen Sie sich dazu, dass man einen Kreuzungswechsel durch eine Aufblasung oder einen Rolfsen-Twist realisieren kann.
- (c) Geben Sie explizite Chirurgiebeschreibungen des Kleeblattknotens und des Achterknotens an.

Aufgabe 4.

Welche Mannigfaltigkeit wird durch das Kirby-Diagramm in Abbildung 2 beschrieben?

Abbildung 2: Ein Kirby-Diagramm in der punktierten Kreisschreibweise.

Abgabe: Montag, 25.6.18 vor der Vorlesung.