Công suất của Nguồn điện, Máy thu điện

A. Phương pháp & Ví dụ

- 1. Công, công suất và hiệu suất của nguồn điện
- Công của nguồn điện: A = Elt.

$$P = \frac{A}{t} = EI.$$

- Công suất của nguồn điện:
- Hiệu suất của nguồn điện:

$$H\% = \frac{U}{E}.100\% = \frac{R}{R+r}.100\% = (1 - \frac{rI}{E}).100\%$$
.

(E, r là suất điện động và điện trở trong của nguồn; R là điện trở mạch ngoài).

- 2. Công, công suất và hiệu suất của máy thu điện
- Công tiêu thu của máy thu điên: A' = Ult = E'lt + r'l2t.
- Công suất tiêu thụ của máy thu điện:

$$P' = \frac{A'}{t} = UI = E'I + r'I^2.$$

- Hiệu suất của máy thu điện:

$$H'\% = \frac{E'}{U}.100\% = \frac{E'}{E' + rT}.100\% = (1 - \frac{rT}{U}).100\%$$

(E', r' là suất phản điện và điện trở trong của máy thu; R là điện trở mạch ngoài).

Ví dụ 1: Acquy có r = 0,08Ω. Khi dòng điện qua acquy là 4A, nó cung cấp cho mạch ngoài một công suất bằng 8W. Hỏi khi dòng điện qua acquy là 6A, nó cung cấp cho mạch ngoài công suất bao nhiều?

Hướng dẫn:

Hiệu điện thế mạch ngoài: U = E - rI.

Công suất cung cấp cho mạch ngoài: P = UI = (E - rI)I.

- + Với I = $4A \Rightarrow P = (E 0.08.4).4 = 8 \Rightarrow E = 2.32V.$
- + Với l' = $6A \Rightarrow P' = (2.32 0.08.6).6 = 11.04W$.

Vậy: Khi dòng điện qua acquy là 6A, nó cung cấp cho mạch ngoài công suất là P' = 11,04W.

Ví dụ 2: Điện trở R = 8 Ω mắc vào 2 cực một acquy có điện trở trong r = 1 Ω . Sau đó người ta mắc thêm điên trở R song song với điên trở cũ.

Hỏi công suất mạch ngoài tăng hay giảm bao nhiều lần?

Hướng dẫn:

$$I_1 = \frac{E}{R+r}$$

Cường độ dòng điện ban đầu trong mạch:

$$P_1 = RI_1^2 = \frac{RE^2}{(R+r)^2}$$

Công suất mạch ngoài:

$$I_2 = \frac{E}{\frac{R}{2} + r} = \frac{2E}{R + 2r}$$

Cường độ dòng điện sau khi mắc thêm R:

$$P_2 = \frac{R}{2}I_2^2 = \frac{R}{2}.\frac{4E^2}{(R+2r)^2}$$

Công suất mạch ngoài:

$$\Rightarrow \frac{P_2}{P_1} = \frac{2RE^2}{(R+2r)^2} \cdot \frac{(R+r)^2}{RE^2} = \frac{2(R+r)^2}{(R+2r)^2} = \frac{2.(8+1)^2}{(8+2)^2} = 1,62$$

Vậy công suất mạch ngoài tăng lên 1,62 lần

Ví dụ 3: Một động cơ điện mắc vào nguồn điện hiệu điện thế U không đổi. Cuộn dây của động cơ có điện trở R. Khi động cơ hoạt động, cường độ dòng điện chạy qua động cơ là I.

- a) Lập biểu thức tính công suất hữu ích của động cơ và suất phản điện xuất hiện trong động cơ.
- b) Tính I để công suất hữu ích đạt cực đại. Khi này, hiệu suất của động cơ là bao nhiêu? **Hướng dẫn:**
- a) Biểu thức tính công suất hữu ích của động cơ và suất phản điện xuất hiện trong động cơ

Công suất có ích của động cơ: $P = UI - RI^2$.

Suất phản điện của động cơ: $U = E + RI \Rightarrow E = U - RI$.

b) Tính I để công suất hữu ích đạt cực đại Công suất có ích:

$$P = RI^2 = R. \frac{U^2}{(R+r)^2} = \frac{U^2R}{(R+r)^2}$$

Theo bất đẳng thức Cô-si:

$$(R + r)^2 \ge 4Rr \Rightarrow P \le \frac{U^2R}{4Rr} = \frac{U^2}{4r}$$

Khi R = r thì công suất mạch ngoài cực đại:

$$P_{max} = \frac{U^2}{4r} \Rightarrow I = \frac{U}{R+r} = \frac{U}{2R}$$

Hiệu suất của động cơ:

$$H = \frac{R}{R+r} = \frac{R}{2R} = 0.5 = 50\%$$
.

$$I = \frac{U}{2R}$$

Vậy: Để công suất hữu ích đạt cực đại thì , lúc đó hiệu suất của động cơ là H = 50%.

Ví dụ 4: Cho sơ đồ mạch điện như hình vẽ E = 12V, r = 2Ω

- a) Cho R = 10Ω . Tính công suất tỏa nhiệt trên R, công suất của nguồn; hiệu suất của nguồn.
- b) Tìm R để công suất trên R là lớn nhất? Tính công suất đó?
- c) Tính R để công suất tỏa nhiệt trên R là 16 W.

Hướng dẫn:

$$I = \frac{E}{R + r} = 1(A)$$

a) Ta có:

$$P_{R} = I^{2}R = \left(\frac{E}{R+r}\right)^{2}R = 10W$$

- + Công suất tỏa nhiệt trên R:
- + Công suất của nguồn: P_{nguon} = E.I = 12W

$$H = \frac{U}{E} = \frac{R}{R+r} = 83,33\%$$

- + Hiệu suất của nguồn:
- b) Ta có:

$$I = \frac{E}{R+r} \Rightarrow P = I^{2}R = \left(\frac{E}{R+r}\right)^{2}R = \left(\frac{E}{\sqrt{R} + \frac{r}{\sqrt{R}}}\right)^{2}$$

+ Theo cô-si ta có:

$$\left(\sqrt{R} + \frac{r}{\sqrt{R}}\right) \ge 2\sqrt{r} \Longrightarrow \left(\sqrt{R} + \frac{r}{\sqrt{R}}\right)_{min} = 2\sqrt{r}$$

$$\Rightarrow P_{R \text{ max}} = \frac{E^2}{4r} = 18W \Rightarrow R = r = 2\Omega$$

c) Ta có:

$$I = \frac{E}{R+r} \Rightarrow P = I^{2}R = \left(\frac{E}{R+r}\right)^{2}R \Leftrightarrow 16 = \left(\frac{12}{R+2}\right)^{2}R \Rightarrow \begin{cases} R = 4\Omega \\ R = 1\Omega \end{cases}$$

Ví dụ 5: Có mạch điện như hình vẽ. Nguồn điện có suất điện động E = 12V, điện trở trong $r = 1\Omega$. Điện trở $R_1 = 6\Omega$, $R_3 = 4\Omega$. Hỏi R_2 bằng bao nhiều để công suất trên R_2 lớn nhất. Tính công suất này.

Hướng dẫn:

+ Ta có:
$$U_{R_2}$$
 = U_{12} = IR_{12}

$$= \frac{E}{R_3 + \frac{R_1 R_2}{R_1 + R_2} + r} \frac{R_1 R_2}{R_1 + R_2}$$

$$\Rightarrow U_{R_2} = \frac{12}{4 + \frac{6R_2}{6 + R_2} + 1} \frac{6R_2}{6 + R_2} = \frac{12.6R_2}{11R_2 + 30}$$

+ Lai có:

$$P_{R_2} = I_2^2 R_2 = \frac{U_2^2}{R_2} = \left(\frac{12.6R_2}{11R_2 + 30}\right)^2 \frac{1}{R_2} = \frac{(12.6)^2 R_2}{(11R_2 + 30)^2}$$

$$\Rightarrow P_{R_2} = \frac{\left(12.6\right)^2}{\left(11\sqrt{R_2} + \frac{30}{\sqrt{R_2}}\right)^2}$$

+ Theo cô-si:

$$\left(11\sqrt{R_2} + \frac{30}{\sqrt{R_2}}\right) \ge 2\sqrt{11.30}$$

$$\Rightarrow \left(11\sqrt{R_2} + \frac{30}{\sqrt{R_2}}\right)_{\min} = 2\sqrt{11.30}$$

$$\Rightarrow P_{R_2} = \frac{12^2.6^2}{\left(2\sqrt{30.11}\right)^2}$$

$$11\sqrt{R_2} = \frac{30}{\sqrt{R_2}} \Rightarrow R_2 = \frac{30}{11}$$

+ Dấu "=" xảy ra khi:

B. Bài tập

Bài 1. Acquy (E,r) khi có dòng I_1 = 15A đi qua, công suất mạch ngoài là P_1 = 135W, khi I_2 = 6A, P_2 = 64,8W. Tìm E, r.

Lời giải:

Bài 1.

Hiệu điện thế mạch ngoài: U = E - rI.

Công suất mạch ngoài: $P = UI = (E - rI).I = EI - rI^2$.

$$\begin{cases} 135 = E.15 - r.15^2 \\ 64.8 = E.6 - r.6^2 \end{cases}$$

Ta có:

$$\Leftrightarrow \begin{cases} 15E - 25r = 135 \\ 6E - 36r = 64,8 \end{cases} \Rightarrow E = 12V; r = 0,2\Omega.$$

Vây: E = 12V; r = 0.2Ω.

Bài 2.

- a) Mạch kín gồm acquy E = 2,2V cung cấp điện năng cho điện trở mạch ngoài $R = 0,5\Omega$. Hiệu suất của acquy H = 65%. Tính cường độ dòng điện trong mạch.
- b) Khi điện trở mạch ngoài thay đổi từ R_1 = 3Ω đến R_2 = $10,5\Omega$ thì hiệu suất của acquy tăng gấp đôi. Tính điện trở trong của acquy.

Lời giải:

Bài 2.

a) Cường độ dòng điện trong mạch

$$H = \frac{RI^2}{EI} = \frac{RI}{E} = 0.65$$

Ta có: Hiệu suất của ac quy là:

$$\Rightarrow$$
 I = $\frac{0,65E}{R} = \frac{0,65.2,2}{0.5} = 2,86A$

Vậy: Cường độ dòng điện trong mạch là I = 2,86A.

b) Điện trở trong của acquy

$$H_1 = \frac{R_1 I_1}{E} = \frac{R_1 E}{E(R_1 + r)} = \frac{R_1}{R_1 + r}$$

Khi R = R₁ thì

$$H_2 = \frac{R_2}{R_2 + r} \Rightarrow \frac{H_2}{H_1} = \frac{R_2}{R_1} \cdot \frac{R_1 + r}{R_2 + r} = 2$$

Khi R = R_2 thì

$$\Leftrightarrow \frac{10,5}{3} \cdot \frac{3+r}{10,5+r} = 2 \Leftrightarrow \frac{3+r}{10,5+r} = \frac{4}{7}$$

$$\Leftrightarrow$$
 21 + 7r = 42 + 4r \Rightarrow r = 7

Vậy: Điện trở trong của acquy là r = 7.

Bài 3. Có mạch điện như hình vẽ. Nguồn điện có suất điện động E = 24V, điện trở trong r = 6Ω. Điện trở $R_1 = 4Ω$. Hỏi giá trị của biến trở R có giá trị bằng bao nhiêu để:

- a) Công suất mạch ngoài lớn nhất. Tính công suất của nguồn khi đó.
- b) Công suất trên R lớn nhất. Tính công suất này.

Lời giải:

Bài 3.

a) Gọi RN là tổng trở mạch ngoài

$$I = \frac{E}{R_N + r} \Longrightarrow P_N = I^2 R_N$$

+ Ta có:

$$= \left(\frac{E}{R_N + r}\right)^2 R_N = \left(\frac{E}{\sqrt{R_N} + \frac{r}{\sqrt{R_N}}}\right)^2$$

$$\left(\sqrt{R_N} + \frac{r}{\sqrt{R_N}}\right) \ge 2\sqrt{r} \Rightarrow \left(\sqrt{R_N} + \frac{r}{\sqrt{R_N}}\right)_{min} = 2\sqrt{r}$$

+ Theo cô-si ta có:

$$\Rightarrow P_{\mathrm{N}\,\text{max}} = \frac{E^2}{4r} = 24\,\mathrm{W}$$

+ Dấu "=" xảy ra khi R_N = r = $6\Omega \Leftrightarrow R_1$ + R = $6\Omega \Rightarrow R$ = 2Ω

$$I = \frac{E}{R + R_1 + r} \Longrightarrow P_R = I^2 R$$

b) Ta có:

$$= \left(\frac{E}{R + R_1 + r}\right)^2 R = \left(\frac{E}{\sqrt{R} + \frac{R_1 + r}{\sqrt{R}}}\right)^2$$
$$\left(\sqrt{R} + \frac{R_1 + r}{\sqrt{R}}\right) \ge 2\sqrt{R_1 + r}$$

+ Theo cô-si ta có:

$$\Rightarrow \left(\sqrt{R} + \frac{R_1 + r}{\sqrt{R}}\right)_{min} = 2\sqrt{R_1 + r} \implies P_{Rmax} = \frac{E^2}{4(R_1 + r)} = 14,4W$$

+ Dấu "=" xảy ra khi R = R_1 + r = 10Ω

Bài 4. Có mạch điện như hình vẽ. Nguồn điện có suất điện động E = 12V và có điện trở trong $r = 0,5 \Omega$. Các điện trở mạch ngoài $R_2 = 6\Omega$, $R_3 = 12\Omega$. Điện trở R_1 có giá trị thay đổi từ 0 đến vô cùng. Điện trở ampe kế không đáng kể.

Điều chỉnh R_1 = 1,5 Ω . Tìm số chỉ của ampe kế và cường độ dòng điện qua các điện trở. Tính công suất tỏa nhiệt của mạch ngoài, hiệu suất của nguồn điện.

Điều chỉnh R₁ có giá trị bằng bao nhiêu thì công suất trên R₁ đạt giá trị cực đại, tính giá trị cực đai đó.

Lời giải:

Bài 4.

a) Khi R = $1,5\Omega$.

$$R_{23} = \frac{R_2.R_3}{R_2 + R_3} = \frac{6.12}{6 + 12} = 4\Omega$$

- + Ta có:
- + Điện trở tương đương của mạch: $R = R_1 + R_{23} = 1.5 + 4 = 5.5\Omega$
- + Dòng điện trong mạch chính:

$$I = \frac{E}{R+r} = \frac{12}{5.5+0.5} = 2A \implies I_A = I = I_1 = 2A$$

+ Hiệu điện thế U_{23} : U_{23} = $I_{23}R_{23}$ = 2.4 = 8V \Rightarrow U_2 = U_3 = U_{23} = 8V

$$I_2 = \frac{U_2}{R_2} = \frac{8}{6} = \frac{4}{3} A$$

+ Dòng điện qua R₂:

$$I_3 = \frac{U_3}{R_3} = \frac{8}{12} = \frac{2}{3}A$$

+ Dòng điện qua R₃:

+ Công suất tỏa nhiệt mạch ngoài: P = I2R = 22.5,5 = 22W

$$H = \frac{U}{E} = \frac{I.R}{E} = \frac{2.5, 5}{12} = 91,67\%$$

+ Hiệu suất của nguồn:

$$P_{R1} = I^2 R_1 = \left(\frac{E}{R+r}\right)^2 R_1$$

b) Ta có:

$$\left(\frac{12}{R_1 + 4 + 0.5}\right)^2 R_1 = \left(\frac{12}{\sqrt{R_1} + \frac{4.5}{\sqrt{R_1}}}\right)^2$$

$$\left(\sqrt{R_1} + \frac{4.5}{\sqrt{R_1}}\right) \ge 2\sqrt{4.5}$$

+ Theo cô-si:

$$\Rightarrow \left(\sqrt{R_1} + \frac{4,5}{\sqrt{R_1}}\right)_{min} = 2\sqrt{4,5} \quad \Rightarrow P_{\text{R1-max}} = \left(\frac{12}{2\sqrt{4,5}}\right)^2 = 8W$$

$$\sqrt{R_1} = \frac{4.5}{\sqrt{R_1}} \Longrightarrow R_1 = 4.5\Omega$$

Dấu "=" xảy ra khi và chỉ khi:

Bài 5. Cho mạch điện như hình: E = 12V, $r = 1 \Omega$; Đèn D_1 có ghi 6V - 3W, đèn D_2 có ghi 3V - 6W.

- a) Tính R₁ và R₂, biết rằng hai đèn đều sáng bình thường.
- b) Tính công suất tiêu thụ trên R₁ và trên R₂.

Lời giải:

Bài 5.

+ Vì các đèn đều sáng bình thường nên:

$$\begin{cases} U_1 = U_{d1} = 6V; I_{d1} = \frac{P_{d1}}{U_{d1}} = 0, 5(A) \\ U_2 = U_{d2} = 3V; I_{d2} = \frac{P_{d2}}{U_{d2}} = 2(A) \end{cases}$$

+ Ta có: $U_{AB} = U_1 + U_2 = 9 \text{ V}$

$$I = \frac{E}{R_N + r} \Longrightarrow I.R_N + I.r = E$$

+ Định luật ôm cho mạch kín:

$$\Leftrightarrow$$
 $U_{AB} + I.r = E \Rightarrow I = \frac{E - U_{AB}}{r} = 3(A)$

+ Dòng điện qua R_1 là: I_1 = $I - I_{d1}$ = 2,5 A

$$\Rightarrow R_1 = \frac{U_1}{I_1} = 2,4\Omega$$

+ Dòng điện qua R_2 là: $I_2 = I - I_{d2} = 1$ A

$$\Rightarrow R_2 = \frac{U_2}{I_2} = 3\Omega$$

b) Công suất tỏa nhiệt trên R_1 : $P_1 = I_{21}R_1 = 15W$

+ Công suất tỏa nhiệt trên R_2 : $P_2 = I_2 R_2 = 3W$

Bài 6. Có mạch điện như hình vẽ. Nguồn điện có suất điện điện E = 24V, điện trở trong r = 1Ω . Trên các bóng đèn có ghi: θ_1 (12V-6W), θ_2 (12V – 12W), điện trở R = 3Ω .

Các bóng đèn sáng như thế nào? Tính cường độ dòng điện qua các bóng đèn. Tính công suất tiêu thụ của mạch điện và hiệu suất của nguồn điện.

Lời giải:

Bài 6.

$$\begin{cases} R_1 = \frac{U_1^2}{P_1} = 24\Omega \\ R_2 = \frac{U_2^2}{P_2} = 12\Omega \end{cases}$$

Điện trở của các bóng đèn

$$R_{td} = R + \frac{R_1 \cdot R_2}{R_1 + R_2} = 11\Omega$$

+ Tổng trở mạch ngoài:

$$I = \frac{E}{R_{td} + r} = 2(A)$$

+ Dòng điện trong mạch chính:

$$= I \left(\frac{R_1 R_2}{R_1 + R_2} \right) = 16(V)$$

+ Ta có: $U_1 = U_2 = U_{12} = I.R_{12}$

+ Cường độ dòng điện qua các bóng đèn:

$$I_1 = \frac{U_1}{R_1} = \frac{2}{3}(A) \equiv 0,67(A) \implies I_2 = I - I_1 = \frac{4}{3}(A) \approx 1,33(A)$$

+ Cường độ dòng điện định mức của mỗi bóng đèn:

$$\begin{cases} I_{d1} = \frac{P_1}{U_1} = 0, 5(A) < I_1 \\ I_{d2} = \frac{P_2}{U_2} = 1(A) < I_2 \end{cases}$$

Vậy các đèn sáng hơn mức bình thường \Rightarrow đèn dễ cháy

- b) Công suất tiêu thụ của mạch điện là công suất tiêu thụ ở mạch ngoài nên ta có: $P_{nqoai}=I^2R_{td}=2^2.11=44W$
 - + Hiệu điện thế hai đầu cực của nguồn: U = E It = 24 2 = 22V

$$H = \frac{U}{E} = \frac{22}{24}.100\% = 91,67\%$$

+ Hiệu suất của nguồn:

Bài 7. Nguồn E = 6V, $r = 2\Omega$ cung cấp cho điện trở mạch ngoài công suất P = 4W.

- a) Tìm R.
- b) Giả sử lúc đầu mạch ngoài là điện trở R_1 = 0,5 Ω . Mắc thêm vào mạch ngoài điện trở R_2 thì công suất tiêu thụ mạch ngoài không đổi. Hỏi R_2 nối tiếp hay song song R_1 và có giá tri bao nhiêu?

Lời giải:

a) Tìm R

Công suất mạch ngoài: $P = UI = (E - rI)I = EI - rI^2$

$$\Rightarrow \begin{bmatrix} I = 2A \\ I = 1A \end{bmatrix}$$

 $\Leftrightarrow 4 = 6I - 2I^2 \Leftrightarrow I^2 - 3I + 2 = 0$

Mặt khác: P = RI2

$$P = RI^2 \implies R = \frac{P}{I^2}$$

+ Với I = 2A

$$\Rightarrow$$
 R = $\frac{4}{2^2}$ = 1Ω

Vậy: R = 4Ω hoặc R = 1Ω.

b) Cách mắc R₂ với R₁

Công suất tiêu thụ mạch ngoài:

$$\Rightarrow$$
 R = $\frac{4}{1^2}$ = 4Ω

Gọi R_3 là điện trở tương đương của R_1 và R_2 , ta có: P1 = P3.

$$\begin{split} P &= RI^2 = R(\frac{E}{R+r})^2 = \frac{E^2}{(\frac{R}{\sqrt{R}} + \frac{r}{\sqrt{R}})^2} = \frac{E^2}{(\sqrt{R} + \frac{r}{\sqrt{R}})^2} \\ \Leftrightarrow \frac{E^2}{(\sqrt{R_1} + \frac{r}{\sqrt{R_1}})^2} = \frac{E^2}{(\sqrt{R_3} + \frac{r}{\sqrt{R_3}})^2} \\ \Leftrightarrow R_1 - R_3 = r^2 \cdot \frac{R_1 - R_3}{R_1 R_2} \end{split}$$

Vậy: Phải mắc R_2 nối tiếp R_1 và R_2 = R_3 - R_1 = 8 - 0,5 = 7,5 Ω .