AMENDMENTS TO THE CLAIMS

This listing of claims replaces any prior version of the claims in the application.

5 Claims 1-32 (cancelled).

> 33 (withdrawn): A pharmaceutical composition comprising at least one compound of the following structure

wherein R⁵ and R⁶ are each independently selected from the group consisting of OC(O)OCH₃, -OH, -SH, -NH₂,-OSO₃H, -OPO₃H, an ester, a

phosphoester, a phosphonoester, a sulfite ester, a sulfate ester, a thioester, an amide, a sulfonamide, an amino acid, an ether, a thioether, an acyl group, a carbonate, a carbamate, a sulfonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, an optionally substituted aryl moiety, an optionally substituted heterocycle, an optionally substituted heteroaryl moiety, an optionally substituted monosaccharide, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an oligonucleotide, a polymer, provided that at least one of R7 and R8

are OC(O)OCH₃; 20

10

15

wherein R⁷, R⁸, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ are each independently selected from the group consisting of -H, -OH, -SH, -NH₂,-OSO₃H, -OPO₃H, an ester, a phosphoester, a phosphonoester, a sulfite ester, a sulfate ester, a thioester, an amide, a sulfonamide, an amino acid, an ether, a thioether,

5

10

15

20

an acyl group, a carbonate, a carbamate, a sulfonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted aryl moiety, an optionally substituted heterocycle, an optionally substituted heterocycle, an optionally substituted heterocycle, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an oligonucleotide, a polymer and R⁷ and R⁸ together, R¹² and R¹³ together, R¹⁴ and R¹⁵ together, R¹⁶ and R¹⁷ together, and R¹⁸ and R¹⁹ together independently form a double bond to a moiety selected from the group consisting of =O, =S, =CH₂ and =NOH, provided that only one each of R¹² and R¹³ or R¹⁸ and R¹⁹ can independently be H;

wherein R^{24} and R^{25} are either H or CH_3 ; wherein the dotted line is an optional double bond; wherein the $OC(O)OCH_3$ at the 3 position is in either the α or β configuration;

and a pharmaceutically acceptable excipient.

34 (withdrawn): The pharmaceutical composition of claim 33, wherein said at least one compound has the following structure

wherein R⁷, R⁸, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ are each independently selected from the group consisting of -H, -OH, -SH, -NH₂,-OSO₃H, -OPO₃H, an ester, a phosphoester, a phosphonoester, a sulfite ester, a sulfate ester, a thioester, an amide, a sulfonamide, an amino acid, an ether, a thioether, an acyl group, a carbonate, a carbamate, a sulfonamide, a halogen, an optionally

5

10

15

20

substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, an optionally substituted aryl moiety, an optionally substituted heterocycle, an optionally substituted heterocycle, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an oligonucleotide, a polymer and R^7 and R^8 together, R^{12} and R^{13} together, R^{14} and R^{15} together, R^{16} and R^{17} together, and R^{18} and R^{19} together independently form a double bond to a moiety selected from the group consisting of =O, =S, =CH₂ and =NOH, provided that only one each of R^{12} and R^{13} or R^{18} and R^{19} can independently be H;

wherein R^{24} and R^{25} are either H or CH_3 ; wherein the dotted line is an optional double bond; wherein the $OC(O)OCH_3$ at the 3 position is in either the α or β configuration; and a pharmaceutically acceptable excipient.

35 (withdrawn): The pharmaceutical composition of claim 34, wherein said at least one compound has the following structure

wherein R⁷, R⁸, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ are each independently selected from the group consisting of -H, -OH, -SH, -NH₂,-OSO₃H, -OPO₃H, an ester, a phosphoester, a phosphonoester, a sulfite ester, a sulfate ester, a thioester, an amide, a sulfonamide, an amino acid, an ether, a thioether, an acyl group, a carbonate, a carbamate, a sulfonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkynyl group, an optionally substituted aryl moiety, an optionally substituted heterocycle,

5

10

15

20

an optionally substituted heteroaryl moiety, an optionally substituted monosaccharide, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an oligonucleotide, a polymer and R^7 and R^8 together, R^{12} and R^{13} together, R^{14} and R^{15} together, and R^{16} and R^{17} together independently form a double bond to a moiety selected from the group consisting of =O, =S, =CH₂ and =NOH, provided that only one of each of R^{12} and R^{13} can independently be H; wherein R^{24} and R^{25} are either H or CH₃; wherein the dotted line is an optional double bond; wherein the OC(O)OCH₃ at the 3 position is in either the α or β configuration; and a pharmaceutically acceptable excipient.

36 (withdrawn): The pharmaceutical composition of claim 35, wherein said at least one compound has the following structure

wherein R¹² and R¹³ are each independently selected from the group consisting of -H, -OH, -SH, -NH₂,-OSO₃H, -OPO₃H, an ester, a phosphoester, a phosphonoester, a sulfite ester, a sulfate ester, a thioester, an amide, a sulfonamide, an amino acid, an ether, a thioether, an acyl group, a carbonate, a carbamate, a sulfonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, an optionally substituted aryl moiety, an optionally substituted heterocycle, an optionally substituted heteroaryl moiety, an optionally substituted monosaccharide, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an oligonucleotide, a polymer and R¹² and R¹³ together form a double

bond to a moiety selected from the group consisting of =O, =S, =CH₂ and =NOH, provided that only one of R^{12} and R^{13} is H;

wherein R^{24} and R^{25} are either H or CH_3 ; wherein the dotted line is an optional double bond; wherein the $OC(O)OCH_3$ at the 3 position is in either the α or β configuration; and a pharmaceutically acceptable excipient.

37 (withdrawn): The pharmaceutical composition of claim 34, wherein said at least one compound has the following structure

10

15

20

5

wherein R⁷, R⁸, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ are each independently selected from the group consisting of -H, -OH, -SH, -NH₂,-OSO₃H, -OPO₃H, an ester, a phosphoester, a phosphonoester, a sulfite ester, a sulfate ester, a thioester, an amide, a sulfonamide, an amino acid, an ether, a thioether, an acyl group, a carbonate, a carbamate, a sulfonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted aryl moiety, an optionally substituted heterocycle, an optionally substituted heteroaryl moiety, an optionally substituted monosaccharide, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an oligonucleotide, a polymer and R⁷ and R⁸ together, R¹⁴ and R¹⁵ together, R¹⁶ and R¹⁷ together, and R¹⁸ and R¹⁹ together independently form a double bond to a moiety selected from the group consisting of =O, =S, =CH₂ and =NOH, provided that only one of each of R¹⁸ and R¹⁹ can be H;

wherein R^{24} and R^{25} are either H or CH_3 ; wherein the dotted line is an optional double bond; wherein the $OC(O)OCH_3$ at the 3 position is in either the α or β configuration; and a pharmaceutically acceptable excipient.

5

38 (withdrawn): The pharmaceutical composition of claim 37, wherein said at least one compound has the following structure

10

wherein R¹⁸ and R¹⁹ are each independently selected from the group consisting of -H, -OH, -SH, -NH₂,-OSO₃H, -OPO₃H, an ester, a phosphoester, a phosphonoester, a sulfite ester, a sulfate ester, a thioester, an amide, a sulfonamide, an amino acid, an ether, a thioether, an acyl group, a carbonate, a carbamate, a sulfonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted aryl moiety, an optionally substituted heterocycle, an optionally substituted heteroaryl moiety, an optionally substituted monosaccharide, an optionally substituted oligosaccharide, a nucleoside, a nucleotide, an oligonucleotide, a polymer and R¹⁸ and R¹⁹ together form a double bond to a moiety selected from the group consisting of =O, =S, =CH₂ and =NOH, provided that only one of R¹⁸ and R¹⁹ is -H;

20

15

wherein R²⁴ and R²⁵ are either H or CH₃; wherein the dotted line is an optional double bond; wherein the -OC(O)OCH₃ at the 3 position is in either the α or β configuration; and a pharmaceutically acceptable excipient.

39 (withdrawn): The pharmaceutical composition of claim 34, wherein said at least one compound has the following structure

and a pharmaceutically acceptable excipient.

Claims 40-55 (cancelled).

Claim 56 (currently amended): A method to treat androgen responsive prostate cancer or androgen responsive benign prostatic hyperplasia in a subject, or to ameliorate one or more symptoms thereof, comprising administering to the subject, or delivering to the subject's tissues an effective amount of a compound having the structure

wherein,

5

10

15

R⁵ and R⁶ independently are -H, a carbonate, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, a monosaccharide or an oligosaccharide, provided that R⁵ or R⁶ is a carbonate:

 R^{12} , R^{13} , R^{16} and R^{17} together or each independently are -H, -OR^{PR}, - SR^{PR} , -N(R^{PR})₂, -OSO₃H, -OPO₃H, =O, =S, =CH₂, =NOH, an ester, an amide, an

5

10

15

20

amino acid, a peptide, an ether, a thioether, an acyl group, a carbonate, a carbamate, a slufonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkenyl group or an optionally substituted alkynyl group; and

R¹⁸ and R¹⁹ together or each independently are -H, -OR^{PR}, -SR^{PR}, -N(R^{PR})₂, =O, =S, =CH₂, =NOH, an ester, -NH-C(O)-C1-50 organic moiety, an amino acid, a peptide, an ether, a thioether, a carbonate, a carbamate, an optionally substituted alkyl group, an optionally substituted alkynyl group, a monosaccharide, an oligosaccharide or a polymer, provided R¹⁸ or R¹⁹ is -OR^{PR}, -SR^{PR}, -N(R^{PR})₂, =O, =S, =NOH, an ester, -NH-C(O)-C1-50 organic moiety, an amino acid, a peptide, an ether, a thioether, a carbonate, a carbamate, a monosaccharide or an oligosaccharide; or an oligosaccharide; and

R²⁵ is -H or optionally substituted alkyl. alkyl; and R^{PR} independently are -H or a protecting group.

Claim 57 (previously presented): The method of claim 56, wherein the androgen responsive disease is androgen responsive prostate cancer.

Claim 58 (previously presented): The method of claim 57 wherein the compound has the structure

Claim 59. (previously presented): The method of claim 58 wherein

- (a) R^{18} is -OH, -O-C(O)-CH₃ or -O-C(O)-CH₂CH₃ and R^{19} is -H, -C=CH or -C=CCH₃, or R^{18} and R^{19} together are =O, =S or =NOH, or
- (b) R^{18} is -H, -C≡CH or -C≡CCH₃ and R^{19} is -OH, -O-C(O)-CH₃, -O-C(O)-CH₂CH₃.

5

10

Claim 60 (canceled).

Claim 61 (previously presented): The method of claim 59 wherein R^{12} and R^{13} independently or together are -H, -OH, -SH, -NH₂, =CH₂, =CHCH₃, =NOH, =NOC(O)CH₃, =O or =S.

Claim 62 (canceled).

Claim 63 (previously presented): The method of claim 59 wherein R¹⁶ and R¹⁷ independently or together are -H, -OH, -SH, =O, =S, -O-C(O)-CH₃ or -O-C(O)-OCH₃.

Claim 64 (previously presented): The method of claim 59 wherein R^5 or R^6 is -H, -CCH₃, -CH₃ or -C₂H₅.

20

Claim 65 (previously presented): The method of claim 64 wherein R²⁵ is - H, -CH₃, -CH₂OH, -CH₂OC(O)CH₃, -OC(O)CH₃ or -CH₂OC(O)OCH₃.

Claim 66 (canceled).

25

Claim 67 (previously presented): The method of claim 65 wherein R²⁵ is - CH₃.

Claim 68 (previously presented): The method of claim 67 wherein a double bond is present at the 1-2 and 5-6 positions.

Claim 69 (previously presented): The method of claim 67 wherein a double bond is present at the 5-6 position.

Claim 70 (new): A pharmaceutical formulation comprising one or more excipients and a compound having the structure

wherein,

5

10

15

20

R⁵ and R⁶ independently are -H, a carbonate, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, a monosaccharide or an oligosaccharide, provided that R⁵ or R⁶ is a carbonate;

R¹², R¹³, R¹⁶ and R¹⁷ together or each independently are -H, -OR^{PR}, -SR^{PR}, -N(R^{PR})₂, -OSO₃H, -OPO₃H, =O, =S, =CH₂, =NOH, an ester, an amide, an amino acid, a peptide, an ether, a thioether, an acyl group, a carbonate, a carbamate, a slufonamide, a halogen, an optionally substituted alkyl group, an optionally substituted alkynyl group; and

R¹⁸ and R¹⁹ together or each independently are -H, -OR^{PR}, -SR^{PR}, -N(R^{PR})₂, =O, =S, =CH₂, =NOH, an ester, -NH-C(O)-C1-50 organic moiety, an amino acid, a peptide, an ether, a thioether, a carbonate, a carbamate, an optionally substituted alkyl group, an optionally substituted alkynyl group, a monosaccharide, an oligosaccharide or a polymer, provided R¹⁸ or R¹⁹ is -OR^{PR}, -SR^{PR}, -N(R^{PR})₂, =O, =S, =NOH, an ester,

-NH-C(O)-C1-50 organic moiety, an amino acid, a peptide, an ether, a thioether, a carbonate, a carbamate, a monosaccharide or an oligosaccharide;

R²⁵ is -H or optionally substituted alkyl; and

RPR independently are -H or a protecting group.

5

71. (new): The formulation of claim 70 wherein R^{18} and R^{19} are =NOH.

72. (new): The formulation of claim 71 wherein the compound has the structure

$$R^{5}$$
 R^{6}
 R^{16}
 $R^{$

10

73 (new): The formulation of claim 72 wherein R⁶ is a carbonate.

74 (new): The formulation of claim 70 wherein R¹⁸ is -OH and R¹⁹ is -H, -

75 (new): The formulation of claim 74 wherein the compound has the structure

$$\mathbb{R}^{25}$$

$$\mathbb{R}^{16}$$

$$\mathbb{R}^{16}$$

$$\mathbb{R}^{16}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{19}$$

$$\mathbb{R}^{19}$$

$$\mathbb{R}^{19}$$

$$\mathbb{R}^{19}$$

$$\mathbb{R}^{19}$$

20

76 (new): The formulation of claim 74 wherein R⁶ is a carbonate.

77 (new): The formulation of claim 70 wherein R^{19} is -OH and R^{18} is -H, - CCH or -CCCH₃.

5

78 (new): The formulation of claim 77 wherein the compound has the structure

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{10}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{17}
 R^{17}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{19}

10

79 (new): The formulation of claim 78 wherein R⁶ is a carbonate.