Oblast a ořezávání dvourozměrných objektů Počítačová grafika

Mgr. Markéta Trnečková, Ph.D.

Palacký University, Olomouc

Oblast

- geometricky určená hranice
- hranice nakreslená v rastru

Hranice

paritní vyplňování; vnitřní vyplňování; obtočení bodu; více hranic

Řádkové vyplňování

Algoritmus - řádkový rozklad

- 1 Pro všechny hraniční úseky ověř:
 - 1 je-li vodorovná, vynechej ji (příp. vykresli)
 - 2 uprav orientaci shora dolů a zkrať ji zdola o 1 pixel
 - ${f 3}$ aktualizuj mezní souřadnice celé hranice y_{max} a y_{min}
- 2 Pro y od y_{min} do y_{max} proveď
 - f 1 nalezni průsečíky hraničních úseček s řádkem y
 - f 2 uspořádej všechny průsečíky podle souřadnic x
 - 3 vykresli úseky mezi lichými a sudými průsečíky
- 3 Vykresli hranici oblasti (je-li třeba)

Vyplňování trojúhelníka

Řádkové vyplňování se seznamem aktivních hran

Algoritmus

- 1 Vytvoř uspořádanou tabulku hran TH
- 2 Vytvoř prázdný seznam aktivních hran SAH
- ${f 3}$ Nastav y na první souřadnici y v TH
- 4 Dokud nejsou TH a SAH prázdné opakuj:
 - 1 Přesuň do SAH hrany z TH[y]
 - **2** Uspořádej SAH (bublinkovým tříděním) dle x
 - 3 Vykresli úseky mezi lichými a sudými hranami v SAH
 - 4 Zruš ze SAH hrany, jejichž $\Delta y = 0$
 - 5 Pro všechny záznamy hran v SAH proveď:
 - $1 \quad \Delta y = \Delta y 1$
 - $2 \quad x = x + \Delta x$
 - 6 Zvyš *y* o 1

Postup inverzního vyplňování

Šrafování

Šrafování

Šrafování

Vyplňování hranice v rastru

Rekurzivní semínkové vyplňování

UmístiSemínko(x,y)

- f 1 Pokud je bod [x,y] vnitřním bodem a dosud nebyl obarven, pak
 - 1 Obarvi bod [x, y]
 - 2 UmístiSemínko(x+1,y)
 - 3 UmístiSemínko(x-1,y)
 - 4 UmístiSemínko(x,y+1)
 - UmístiSemínko(x,y+1)

Řádkové semínkové vyplňování

VyplňÚsek (y, x_L, x_R)

- 1 Vyplň pixely v úseku od $[x_L,y]$ do $[x_R,y]$
- 2 V (horním) intervalu mezi $[x_L,y-1]$ a $[x_R,y-1]$ hledej souvislé vnitřní úseky. Pro každý i-tý úsek proveď:
 - VyplňÚsek $(y-1, x_{Li}, x_{Ri})$
- 3 V (dolním) intervalu mezi $[x_L,y+1]$ a $[x_R,y+1]$ hledej souvislé vnitřní úseky. Pro každý j-tý úsek proveď:
 - VyplňÚsek $(y+1, x_{Lj}, x_{Rj})$

Řádkové semínkové vyplňování

Test polohy bodu

Osově orientovaná hranice - Cohen-Sutherland

 $p_x < xw_{min} \dots vn\check{e}$

 $p_x > xw_{min} \dots uvnit\mathring{r}$

Test polohy bodu

Obecná hranice - Cyrus-Beck

rovnice přímky:
$$F(x,y): ax + by + c = 0$$

$$F(p_x, p_y) > 0 \dots \text{uvnit}$$

$$F(p_x, p_y) = 0 \dots$$
 na hranici

$$F(p_x,p_y)<0$$
 ...vně

ve vektorovém tvaru

$$\overrightarrow{n}$$
 ... normálový vektor směřující dovnitř oblasti

$$\overrightarrow{n}(P-F) > 0 \dots \text{uvnit}$$

$$\overrightarrow{n}(P-F)=0$$
 ... na hranici

$$\overrightarrow{n}(P-F) < 0 \dots \text{vn} \check{e}$$

Cohen-Sutherland

- $kod(P) \cup Kod(Q) = \emptyset$ úsečka je celá v okně
- $kod(P) \cap Kod(Q) \neq \emptyset$ úsečka je celá mimo
- $kod(P) \cap Kod(Q) = \emptyset$ úsečka prochází více oblastí

Cyrus-Beck

parametrická rovnice přímky: $P(+) = P_1 + (P_2 - P_1)t$ $\overrightarrow{n}(P(t) - F) < 0 \dots$ vně $\overrightarrow{n}(P(t) - F) = 0 \dots$ na hranici $\overrightarrow{n}(P(t) - F) > 0 \dots$ uvnitř průsečík: $t = \frac{\overrightarrow{n}(P_1 - F)}{\overrightarrow{n}(P_2 - P_1)}$

Cyrus-Beck

Inicializace: $t_l = 0$, $t_u = 1$, $\overrightarrow{d} = P(1) - P(0)$

Pro všechny hranice i s vnitřní normálou $\overrightarrow{n_i}$ dělej:

- $\begin{array}{c} \bullet \ \ \text{Pokud} \ \overrightarrow{d} \ \overrightarrow{n_i} \neq 0 \\ \text{pak} \ t = -(\overrightarrow{w_i} \overrightarrow{n_i})/\overrightarrow{d} \ \overrightarrow{n_i}; \end{array}$
 - Pokud $(\overrightarrow{d}\overrightarrow{n_i}>0)\&(t\leq 1)$ pak $t_l=\max(t,t_l)$. . . oprav průsečík t_l
 - Pokud $(\overrightarrow{d} \overrightarrow{n_i} < 0) \& (t \ge 1)$ pak $t_u = min(t, t_u)$. . . oprav průsečík t_u
- Pokud $\overrightarrow{w_i}\overrightarrow{n_i}<0$ Ukonči výpočet ... úsečka je zredukována na bod mimo okno Pokud $t_l< t_u$ pak OřezanáÚsečka $(P(t_l),P(t_u))$... jinak úsečka leží mimo okno

Ořezání polygonů

Ořezání polygonů

Ořezání polygonů

Inicializuj bod $S=[x_s,y_s]$ souřadnicemi posledníhoo vrcholu polygonu Pro vrcholy $P_i=[x_{P_i},y_{P_i}]$ $(i=1,\ldots,n)$ ořezávaného polygonu postupně proveď:

- Pokud $x_{P_i} > xw_{min}$
 - \blacksquare pak Pokud $x_s > xw_{min}$
 - Přidej P_i další hranici k ořezání (1.)
 - jinak Vypočti průsečík I jako $[xw_{min}, y_S + (xw_{min} x_S) \frac{y_{P_i} y_S}{x_{P_i} x_S}]$ Předej I další hranici k ořezání (2.) Předej P_i další hranici k ořezání
- jinak Pokud $x_S>xw_{min}$ pak Vypočti průsečík I jako $[xw_{min},y_S+(xw_{min}-x_S)\frac{y_{P_i}-y_S}{x_{P_i}-x_S}]$ Předej I další hranici k ořezání (4.)
- \blacksquare Aktualizuj S jako P_i

Algoritmus Weiler-Atherton

Algoritmus Weiler-Atherton

P: seznam vrcholů polygonu

W: seznam vrcholů okna

H: seznam průsečíků

- Do H ulož průsečíky mezi hranicemi polygonu a okna průsečíky zařaď mezi vrcholy v seznamech P a W a propoj obousměrnými ukazateli
- 2 Dokud H není prázdný opakuj
 - Vyjmi průsečík ze seznamu H
 - Podle zvolení orientace přejdi do seznamu P nebo W
 - Dokud není uzavřen tak návratem do výchozího průsečíku opakuj
 Výstup vrcholu nebo průsečíku ze seznamu (P nebo W) do nalezení dalšího průsečíku
 Přejdi do druhého seznamu (P nebo W)