Machine Learning 4771

Instructor: Tony Jebara

Topic 3

- Additive Models and Linear Regression
- Sinusoids and Radial Basis Functions
- Neural Networks and Nonlinear Regression
- Linear Neuron
- Logistic Neuron
- Gradient Descent

Sinusoidal Basis Functions

 More generally, we don't just have to deal with polynomials, use any set of basis fn's:

$$f(x;\theta) = \sum_{p=1}^{P} \theta_{p} \phi_{p}(x) + \theta_{0}$$

- These are generally called Additive Models
- •Regression adds linear combinations of the basis fn's
- •For example: Fourier (sinusoidal) basis $\varphi_{2k}\left(x_i\right) = \sin\left(kx_i\right) \quad \varphi_{2k+1}\left(x_i\right) = \cos\left(kx_i\right)$
- •Note, don't have to be a basis per se, usually subset

Radial Basis Functions

Can act as prototypes of the data itself

$$f(\mathbf{x}; \theta) = \sum_{k=1}^{N} \theta_k \exp\left(-\frac{1}{2\sigma^2} \left\| \mathbf{x} - \mathbf{x}_k \right\|^2\right) + \theta_0$$

•Parameter σ = standard deviation σ^2 = covariance

controls how wide bumps are what happens if too big/small?

Radial Basis Functions

Each training point leads to a bump function

$$f(\mathbf{x}; \theta) = \sum_{k=1}^{N} \theta_k \exp\left(-\frac{1}{2\sigma^2} \left\| \mathbf{x} - \mathbf{x}_k \right\|^2\right) + \theta_0$$

•Reuse solution from linear regression: $\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ •Can view the data instead as Q, a big matrix of size N x N

$$\mathbf{Q} = \begin{bmatrix} \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_3\right\|^2\right) \\ \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_3\right\|^2\right) \\ \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_3\right\|^2\right) \end{bmatrix}$$

•In this setting, X is invertible , solution is just $\theta^* = \mathbf{Q}^{-1}\mathbf{y}$

Crossvalidation

- •Try fitting with different sigma radial basis function widths
- •Select sigma which gives lowest $R_{test}(\theta^*)$

- Think of sigma as a measure of the simplicity of the model
- •Thinner RBFs are more flexible and complex

Regularized Risk Minimization

- Empirical Risk Minimization gave overfitting & underfitting
- We want to add a penalty for using too many theta values
- This gives us the Regularized Risk

$$R_{empirical} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \theta^T x_i)$$

$$R_{regularized} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \theta^T x_i) + \frac{\lambda}{2} \|\theta\|^2$$

Solution for Regularized Risk with Least Squares Loss:

$$\nabla_{\theta} R_{regularized} = 0 \implies \nabla_{\theta} \left(\frac{1}{2N} \| \mathbf{y} - \mathbf{X} \theta \|^{2} + \frac{\lambda}{2} \| \theta \|^{2} \right) = 0$$

$$\theta^{*} = \left(\mathbf{X}^{T} \mathbf{X} + \lambda I \right)^{-1} \mathbf{X}^{T} \mathbf{y}$$

Regularized Risk Minimization

- •Set P to 15 throughout. Try varying λ instead.
- •Minimize $R_{regularized}(\theta)$ to get θ^* , observe $R_{empirical}(\theta^*)$

Crossvalidation

- Try fitting with different lambda regularization levels
- •Select lambda which gives lowest $R_{test}(\theta^*)$

- Think of lambda as a measure of the simplicity of the model
- Models with low lambda are more flexible and complex

Beyond Linear (in θ) Regression

- •Simple linear regression case $f(\mathbf{x}; \theta) = \sum_{p=1}^{P} \theta_p x_p + \theta_0$
- •What is a more complicated function f(x) we could try?
- •Inspired by the brain, a neural network
- Can be seen as a function from inputs to outputs

•Smallest piece is a Neuron, a node in the network...

The Neuron as Regression

- •The McCullough-Pitts Neuron is a graphical representation of linear regression $f(\mathbf{x};\theta) = \sum_{p=1}^P \theta_p x_p + \theta_0$
- Edges multiply signal by scalar weight
- Nodes just sum inputs here
- •Parameters: $\theta_1 \dots \theta_P$ = weights

$$\theta_0 = \text{bias}$$

If neuron is linear function → like usual linear regression

Neuron for Basis Regression

- •Graphical representation of $f(\mathbf{x}; \theta) = \sum_{p=1}^{P} \theta_p \phi_p(\mathbf{x}) + \theta_0$
- •Edge multiply signal by scalar weight
- Nodes sum inputs or apply function to inputs
- •Parameters: $\theta_1 \dots \theta_P$ = weights θ_0 = bias

Logistic Neuron Output

•Another choice of last node is squashing function g().

$$f(\mathbf{x}; \theta) = \theta^T \mathbf{x}$$

Linear neuron

$$f(\mathbf{x}; \theta) = g(\theta^T \mathbf{x})$$
$$g(z) = (1 + \exp(-z))^{-1}$$

Logistic Neuron

•This squashing is called sigmoid or logistic function