pfisso_main_newton:
$$g(x) = \frac{x}{2} + \frac{3}{2x}$$
 $f(x) = x^2 - 3$ $f'(x) = 2x$
 $m.d.$ Newton: $g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - 3}{2x} = \frac{x^2 + 3}{2x} = \frac{x}{2} + \frac{3}{2x}$
 $\alpha = \pm 13$ Radice di $f \equiv Punto fisso di g

CONSIDERIANO L'APPROSSIMAZIONE DI $\alpha = 15$
 $dom(g): R \setminus \{0\}; g(x) > 0 \le x > 0; g'(x) = \frac{1}{2} - \frac{3}{2x^2}$

[ASINTOTO VERTICALE: $x = 0$ $g'(x) = \frac{3}{2}$
 $g'(x) = \frac{1}{2}(\frac{x^2 - 3}{x^2}) > 0$ $g'(x) = \frac{1}{2}$
 $g'(x) = \frac{1}{2}(\frac{x^2 - 3}{x^2}) > 0$ $g'(x) = \frac{1}{2}$
 $g'(x) = \frac{1}{2}(\frac{x^2 - 3}{x^2}) > 0$ $g'(x) = \frac{1}{2}$
 $g'(x) = \frac{1}{2}(\frac{x^2 - 3}{x^2}) > 0$ $g'(x) = \frac{1}{2}$
 $g'(x) = \frac{1}{2}(\frac{x^2 - 3}{x^2}) > 0$ $g'(x) = \frac{1}{2}(\frac{x}{x^2}) = 0$

Printing: $g'(x) = \frac{1}{2}(\frac{x}{x^2}) = \frac{1}{2}(\frac{x}{x^2}) = 0$
 $g'(x) = \frac{1}{2}(\frac{x}{x^2}) = 0$ $g''(x) = \frac{1}{2}(\frac{x}{x^2}) = 0$
 $g'(x) = \frac{1}{2}(\frac{x}$$