글라이더 가속도 측정

조	3조						
조원	20215545 김윤진	20215692 김이찬	20216793 김준섭				
작성자		20216793 김준섭					

[1] 실험값

(1) 고체 시료 이름:(Cu(s))

ullet시료 막대의 길이: $L_0=708mm$

ullet선팽창계수 참값: $lpha_{(rac{an}{N})}=1.6 imes10^{-5}$ °C $^{-1}$

회	온도(°C)			다이얼 게이지 눈금(mm)			$\alpha(^{\circ}C^{-1})$	$\frac{\alpha_{\text{AL}} - \alpha}{-\infty} \times 100$
	T_i	T_f	ΔT	L_i	L_f	ΔL	<i>u</i> (<i>O</i>)	lpha참
시료를 가열하면서	22.9	98.0	75.1	0.00	0.95	0.95	1.79×10^{-5}	-12
시료를 식히면서	98.0	32.4	-65.6	0.95	0.17	-0.78	1.68×10^{-5}	-5
평균		\times	\times				1.73×10^{-5}	-8

(2) 고체 시료 이름:(Fe(s))

ullet시료 막대의 길이: $L_0=708mm$

ullet선팽창계수 참값: $lpha_{(rac{1}{48})}=1.2 imes10^{-5}$ °C $^{-1}$

회	<u>온도(</u> ℃)			다이얼 게이지 눈금(mm)			$\alpha(^{\circ}\mathrm{C}^{-1})$	$\frac{\alpha_{\text{RP}} - \alpha}{-\infty} \times 100$
	T_i	T_f	ΔT	L_i	L_{f}	ΔL	u(C)	lpha and $lpha$
시료를 가열하면서	24.5	97.4	72.9	0.00	0.62	0.62	1.20×10^{-5}	-0
시료를 식히면서	97.4	34.4	-63.0	0.62	0.07	-0.55	1.23×10^{-5}	-3
평균		\times	\times			\times	1.22×10^{-5}	-1

(3) 고체 시료 이름:(Al(s))

ullet시료 막대의 길이: $L_0=708mm$

ullet선팽창계수 참값: $lpha_{(rac{an}{N})}=2.4 imes10^{-5}$ °C $^{-1}$

회	온도(℃)			다이얼 게이지 눈금(mm)			$\alpha(^{\circ}\mathrm{C}^{-1})$	$\frac{lpha_{\mathtt{AB}}-lpha}{} imes 100$
	T_i	T_f	ΔT	L_i	L_f	ΔL	<i>a</i> (0)	lpha記
시료를 가열하면서	24.5	97.2	72.7	0.00	1.25	1.25	2.43×10^{-5}	-1
시료를 식히면서	97.2	35.0	-62.2	1.25	0.16	-1.09	2.48×10^{-5}	-3
평균	\times	$\overline{}$	\times	\times	\times	\times	2.45×10^{-5}	-2

[2] 결과 분석

① 모든 실험에서 $\frac{lpha_{lambda\!u}-lpha}{lpha_{lambda\!u}} imes 100$ 의 값이 음수

실험(1), 실험(2), 실험(3)에서의 $\frac{\alpha_{rak{ik}}-lpha}{lpha_{rak{ik}}} imes 100$ 값은 모두 음수인 상태이다. 즉 모

든 실험에서 선팽창계수 측정 시 참값 보다 크게 측정되었다는 것을 알 수 있다. 이때, 선팽창계수는 시료 길이의 변화에 비례하고 온도의 변화, 시료의 길이에 반비례한다. 따라서 이런 경우 온도 변화량의 측정이 작게 되었거나 시료의 길이가짧게 측정되었거나 시료 길이의 변화량이 길게 측정되었을 수 있다.

- ② *ΔT*와 *ΔL*의 상관관계 해당 실험에서 두 값은 양의 상관관계를 갖고 있다. 절댓값의 변화도 같은 경향성을 띠고 있으며, 그 값들의 부호 또한 같은 부호이다.
- ③ 실험 별 오차 비교 실험(1)의 평균 오차는 0.1℃⁻¹, 실험(2)의 평균 오차는 0.0℃⁻¹, 실험(3)의 평균 오차는 0.1℃⁻¹로 실험(2)가 가장 정확하게 진행되었다고 할 수 있다.
- ④ 선팽창계수의 오차와 선팽창계수 참값 간의 관계 선팽창계수의 참값은 Al(s)>Cu(s)>Fe(s) 순으로 크다. 또한 선팽창계수의 오차의 절댓값의 경우 Fe(s)>Al(s)>Cu(s) 순으로 크다. 따라서 위의 순서 중 어느 것도 경 향성이 맞지 않기 때문에 상관관계가 없다고 할 수 있다.

[3] 오차 논의 및 검토

- (1) 계기오차
 - ① 다이얼 게이지의 정확도가 떨어져 ΔL 이 실제 값보다 크게 측정되었을 수 있다.
 - ② 온도계의 정확도가 떨어져 ΔT 가 실제 값보다 작게 측정되었을 수 있다.
 - ③ 시료의 원래 길이를 줄자로 재는 것 보다 버니어 캘리퍼스와 같은 정밀 측정장치로 측정해야 한다.
- (2) 우연 오차

실험을 각 시료당 1회만 진행하였기 때문에 우연 오차가 발생할 수 있다.

(3) 환경 오차

해당 시료가 순물질인지 알 수 없다. 이에 따라 시료의 선팽창계수가 달라질 수 있다.

[4] 결론

해당 실험은 고체가 열에 의해 그 길이가 늘어나거나 줄어든다는 사실을 확인하고 이와 관련된 선팽창계수가 물질의 고유한 성질임을 이해하는 실험이다. 시료의 원래 길이를 기준으로 다이얼 게이지를 이용하여 길이를 측정하고 동시에 시료의 온도를 측정하여 두 값의 변화량을 통해 선팽창계수를 알아낼 수 있었다. 실험을 통해 선팽 창계수는 길이의 변화에 비례하고 시료 원 길이와 시료의 온도 변화에 반비례한다는 것을 알 수 있었다. 모든 실험에서 선팽창계수는 참값보다 더 큰 값이 나왔으며 이를 통해 길이와 온도의 측정에 있어 오차가 있을 수 있다는 것을 알 수 있었다. 또한 해당 실험 중 Cu(s)를 이용해 실험했을 때 오차가 가장 적었으며 Fe(s)로 실험했을 때 오차가 가장 컸다. 실험을 다회 진행하였다면 현재의 결과보다 더욱 정확한 결과가 나왔을 것이라고 생각한다.