PRML Chapter 1

1 例:多項式曲線フィッティング

実数値の入力変数 x を観測し、それを用いて実数値の目標変数 t を予測する回帰問題を考える。ただし、ここでは関数 $\sin(2\pi x)$ にガウス分布に従うランダムノイズを加えて生成した人工データを用いる。

訓練集合として、N 個の観測地 x を並べた ${m x}\equiv (x_1,\cdots,x_N)^T$ と、それぞれに対応する観測値 t を並べた ${m t}\equiv (t_1,\cdots,t_N)^T$ が与えられたとする。図 1.1 は、N=10 の場合の人工データの例である。

我々の目標は、この訓練集合を利用して、新たな入力変数 \hat{x} に対して目標変数 \hat{t} の値を予測することである。

図 1.1 N=10 個の訓練データの例

ここでは、以下のような多項式を用いてデータへのフィッティングを行うことにする。

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$
(1.1)

ただし、M は多項式の次数 (order) で、 x^j は x の j 乗を表す。多項式の係数 w_0, \cdots, w_M をまとめて w と書くことにする。多項式 y(x,w) は、x の非線形関数であるが、係数 w の線形関数であることに注意する。このような、未知パラメータに対して線形な関数は**線形モデル**と呼ばれる。

訓練データに多項式をあてはめることで係数の値を求める。これは、w を任意に固定したときの関数 y(x,w) と訓練集合のデータ点との間のずれを測る**誤差関数** (error function) の最小化で達成できる。ここでは、誤差関数として単純で広く用いられている**二乗和誤差** (sum-of-squares error) を用いる。式で書けば、

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$
(1.2)

となる。ただし、後で便利なように係数 1/2 をかけている。

このように、 $E(\boldsymbol{w})$ をできるだけ小さくするような \boldsymbol{w} を選ぶことで曲線当てはめ問題を解くことができる。 では、誤差関数を最小にする解 $\boldsymbol{w}^* = \{w_i\}$ を求める。誤差関数を最小にする解をもとめるには、 $E(\boldsymbol{w})$ を w_i について微分し、その微分がゼロになるような w_i を求めればよい。つまり、

$$\frac{\delta E}{\delta w_i} = 0 \tag{1.3}$$

を求める。はじめに、 $E(\boldsymbol{w})$ を w_i について微分する。

$$\frac{\delta E}{\delta w_i} = \frac{1}{2} \sum_{n=1}^{N} \left\{ 2 \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right) - x_n^i \right\}$$
$$= \sum_{n=1}^{N} \left(x_n^i \sum_{j=0}^{M} w_j x_n^j \right) - \sum_{n=1}^{N} t_n x_n^i$$

ここで、 $rac{\delta E}{\delta m_i}=0$ を求めるので、

$$\sum_{n=1}^{N} \left(x_n^i \sum_{j=0}^{M} w_j x_n^j \right) = \sum_{n=1}^{N} t_n x_n^i$$
 (1.4)

左辺を変形すると、

(左辺) =
$$\sum_{n=1}^{N} \left\{ x_n^i \left(w_0 x_n^0 + w_1 x_n^1 + \dots + w_M x_n^M \right) \right\}$$
=
$$\sum_{n=1}^{N} \left\{ w_0 x_n^{i+0} + w_1 x_n^{i+1} + \dots + w_M x_n^{i+M} \right\}$$
=
$$\sum_{n=1}^{N} \sum_{j=0}^{M} \left(w_j x_n^{i+j} \right)$$
=
$$\sum_{j=0}^{M} \left\{ \sum_{n=1}^{N} (x_n)^{i+j} \right\} w_j$$

また、

$$A_{ij} = \sum_{n=1}^{N} (x_n)^{i+j}, T_i = \sum_{n=1}^{N} t_n (x_n)^i$$
(1.5)

とおくと、

$$\sum_{j=0}^{M} A_{ij} w_j = T_i {1.6}$$

となる。これは線形方程式であり、これを解くことで、誤差関数を最小にする解 w^* を求めることができる。

