

Reference Architecture Model for the Integration of Lab Robots

Ádám Wolf

Engineer, Digital Laboratory

Pharmaceutical Sciences, Sustainability & Technology

20.APR.2023

Agenda

- Robotized lab automation systems and their challenges
- The Laboratory Automation Plug & Play (LAPP) framework as a Reference Architecture Model
- Hierarchical decomposition of laboratory workflows
- Hierarchical decomposition
 Pick & place labware transfer activity
- Ontologies
 Pick & place labware transfer activity
- Position representations for mobile robots with the LAPP Digital Twin
- Control pyramid
 Reference architecture model

- Proof-of-concept studies
 Consortia & academia
- How we approach this at Takeda Our Global PoC project

Robotized lab automation systems and their challenges

3

Laboratory automation in R&D

High throughput

- Routine tests, repetitive workflows
- Highly customized purpose-made cells
- Set-up-and-leave / lights-out

High flexibility

- Dynamic workflows
- Stand-alone, often not robot-friendly devices
- Humans need to interface and connect these

Collaborative & mobile robotics

- Operate in human-designed (less-structured) environments
- Interface with modular and modular equipment
- Cooperative & collaborative operation

	Stationary robot	MoMa*	Human
Throughput	High	Low	Middle
Availability	High	Middle	Low
Flexibility	Low	High	High

^{*} Mobile manipulator robot

Mobile manipulators in laboratory automation

Usage

- Pick & place type sample transportation
- Standard objects
- Pre-defined hand-over positions

Anatomy

- Mobile base with simultaneous localization and mapping (SLAM)
 - cm accuracy
- Robot arm of 4-6 degrees-of-freedom (DoF)
- Fine-positioning system
 - Vision [13]
 - Mechanical probe
- Parallel gripper
 - Mostly for microplates [16]

Challenges

- Complex, multi-layer integration
- Many inter-connected components
- Many sources of errors

Omnidrive

KEVIN - Fraunhofer IPA

Small circular footprint

rectangular footprint

articulated arm

DoF

DoF (SCARA)

KUKA - Gearu

Differential drive

OMRON - Biosero

UniteLabs – Astech Projects

The Laboratory Automation Plug & Play (LAPP) framework

As a Reference Architecture Model

5

Standardization and plug & play integration for lab robots

The Laboratory Automation Plug & Play (LAPP) framework

A reference architecture model to provide a comprehensive integration framework

- Hierarchical decomposition of robotized lab workflows
- Multi-layer control architecture
- Device-centric information representation in the digital twin
 - Teaching positions for robot motions, expressed in a device-attached coordinate frame
- Communication protocols
 - SiLA for communication and control (scheduler → device, scheduler → robot)

TRL*	Description	Form
1-2	Scientific conceptualization	Concept papers
3-4	Academical and collaborative PoC's	University collaboration
5-7	Implementation	Global MoMa PoC
	Standardization, communication	SiLA

^{7 *} Technology readiness level

Hierarchical decomposition

of laboratory workflows

8

Hierarchical decomposition of lab workflows

Level nr	Level name	Description	Examples	
		Description	Liquid handling	Robotics
7	Service	The entirety of the laboratory's capabilities	High throughput and/or microscale services	
6	Procedure (Experiment / assay)	An experiment or assay	Chromatography run	
5		An elemental, device-level action item	Liquid transfer	Labware transfer
4	Subtask	An intermediary layer that represent parts of a task Accomplish minor landmarks	Aspirate	Pick, Place
3	IVIOTION SEGUENCE	The robot performs a sequence of motions. E.g., in order to approach a handover site	Approach well position	Move through sequence
2	Motion primitive	An elemental motion of a robot or other mechanism	Motion vector	Linear movement
1	ACTUATOR DRIMITIVE	An output excerpted by a certain actuator E.g., robot joint or pump	Pump control	Joint control

Pick & place labware transfer – Maintenance activities

cal activity decomposition

Pick & place labware transfer – Maintenance activities

Pick & place labware transfer - H

for mobile manipulators

Pick & place labware transfer – High-level activities

Pick & place labware transfer – High-level activities

Pick & place labware transfer - Hierarchical activity decomposition

Pick & place labware transfer – Low-level activities

Hierarchical decomposition

Pick & place labware transfer activity

Pick & place labware transfer – Pseudocode


```
# Indentation levels

Task
Subtask
MotionSequence
MotionPrimitive
ActuatorPrimitive

* Starred activities are specific for mobile manipulators
```

```
Decomposition of a pick-and-place labware transfer task of a mobile manipulator robot
             (station 1.device 1.site 1, station 2.device 1.site 1, DEEP96)
  PrepareForPick (self.site 1, DEEP96)
      *Undock (charger 1)
      *DriveToBaseWaypoint (station 1.baseWaypoint n) # Final baseWaypoint = station 1
      *Dock (station 1)
     MoveThroughSequence (station 1.device 1.site 1 safe) # Safe position
         MoveToArmWaypoint (station 1.device 1.site 1.armWaypoint 1, J)
             SetJoint (joint 1, <angle>)
             (\ldots)
             SetJoint (joint n, <angle>)
         MoveToArmWaypoint (station 1.device 1.site 1.armWaypoint n-1, J) # Safe position, aka. site approach
  Pick (station 1.device 1.site 1, DEEP96)
     MoveThroughSequence(station_1.device_1.site_1) # Handover position
         MoveToArmWaypoint (station 1.device 1.site 1.armWaypoint n, L) # Final armWaypoint = site 1
     MoveThroughSequence (manipulation-ready)
         MoveL (device 1.site-approach 1)
         MoveL (device 1.device-approach)
         MoveL (manipulation-ready)
      *Place (self.hotel.site 1, DEEP96)
  PrepareForPlace (self.site 1, DEEP96)
     *Undock (station 1)
      *DriveThroughSequence (station_2)
         *DriveToBaseWaypoint (station 1.baseWaypoint 1)
         *DriveToBaseWaypoint (station 1.baseWaypoint n) # Final baseWaypoint = station 2
      *Dock (station 2)
     *Pick (self.hotel.site 1, DEEP96)
     MoveThroughSequence(station 2.device 1.site 1 safe) # Safe position
         MoveToArmWaypoint (statIon 2.devIce 1.sIte 1.armWaypoint 1, J)
          MoveToArmWaypoint (station 1.device 1.site 1.armWaypoint n-1, J)
                                                                            # Safe position, aka. site approach
 Place (station 2.device 1.site 1, DEEP96)
     MoveThroughSequence (station 2.device 1.site 1) # Handover position
         MoveToArmWaypoint (station 2.device 1.site 1.armWaypoint n, L) # Final armWaypoint = site 1
     Release ()
     MoveThroughSequence (manipulation-ready)
         MoveL (device 1.site-approach 1)
         MoveL (device 1.device-approach)
         MoveL (manipulation-ready)
```

Ontologies

Pick & place labware transfer

Labware ontologies

Motivation

Represent robot-relevant information about the lab entities

The endeavor

- Lead by Mark Dörr, Uni Greifswald
- Part of the Bits in Bio / Bioprotocols / LAB-OP group
- An SRWG subgroup to focus on the robot-related aspects

Stack

- OWL / Python classes
- EMMO base ontology + extensions
- SiLA server for queries
- Dockerized

Next step

- Adapt to the concept and stack to device ontologies
- With that, implement the LAPP Digital Twin
- Encode site and marker positions

Position representations for mobile robots

with the LAPP Digital Twin

Position representations for mobile robots with the <u>LAPP</u> DT

- Top-down position definitions
- Stored in parent

Legend			
	Live, robot-level, not exposed towards SiLA		
	Stored in the LAPP DT Represented as high-level SiLA properties (references)		
	Transformation originates from inaccurate base odometry		
	Transformation originates from accurate sources robot kinematics marker detection positions stored in the digital twin		

Robot docked to station 1

Pick from station_1.device_1.site_1

Pick from station_1.device_1.site_1 → Labware in gripper

Place on on-board hotel

Switch to Station 2 → Undock, navigate and dock

Pick from on-board hotel → Labware in gripper

Place to station_2.device_1.site_1

Placed to station_2.device_1.site_1

Control pyramid

Reference architecture model

Layers and elements of the control architecture

Level nr	Level name	Layers of the control architecture	
7	Service	Lab management	
		Laboratory Information Management System (LIMS), Electronic Lab Notebook (ELN)	
6	Procedure	Automation scheduler	
6 (Experiment / ass		Laboratory Execution System (LES)	
5		Device-level control Dedicated PC	
4	Subtask		
3	Motion sequence		
2	Motion primitive	Embedded controller Microcontroller or Programmable Logic Controller (PLC)	
1	Actuator primitive		

Mobile manipulators in the lab

6) Automation scheduler

Proof-of-concept studies

Consortia & academia

Reference implementations – SiLA Hackathon

Reference implementations – TIAGo, Uni Óbuda, Panna Zsoldos

How we approach this at Takeda

Our network

GMS-GQ

CoP

<u>Takeda</u>

Exchange

R&D

Use-case specific

Pharm Sci

- PoC projects
- Use cases
- Development

<u>Academia</u>

Uni Óbuda

PhD

FH Technikum

- Teaching
- Prototyping services

TU Wien

Master supervision

Implementation Lab robotics Plug & Play Research & integration Development & Conceptualization standardization Co-development & Implementation Solution providers Co-development Device vendors **Integrators** SW vendors **Robot vendors**

Organizations

SiLA

- Membership
- WG lead

ISPE

Networking

Membership

Takeda's global MoMa PoC – Simulation

Acknowledgements

PhD Supervisors

Péter Galambos

Károly Széll

DigiLab, Takeda

Patricia Wildberger

Brian Parkinson

Project TIAGo

Panna Zsoldos

SiLA

Stefan Koch

Mark Dörr

Lukas Bromig

Georg Hinkel

SiLA Robotics Working Group

SiLA Board

EngRoTec

Omron

Biosero

PAL Robotics

Public LAPP project website

https://wlfdm.github.io/LAPP/

Thank you for your attention.

Better Health, Brighter Future

Literature

- (1) Wolf, Á; Wolton, D.; Trapl, J.; Janda, J.; Romeder-Finger, S.; Gattemig, T.; Farcet, J.-B.; Galambos, P.; Sź ell, K. Towards Robotic Laboratory Automation Plug & Play: The "LAPP" Framework. SLAS Technology 2021,
- (2) Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology 2020, 29, 36–52.
- (3) Erdős, G.; Paniti, I.; Tipary, B. Transformation of robotic workcells to digital twins. CIRP Annals 2020, 69, 149–152.
- (4) Tipary, B.; Erdős, G. Generic development methodology for flexible robotic pick-and-place workcells based on Digital Twin. Robotics and Computer-Integrated Manufactur-ing 2021, 71, 102140.
- (5) Tipary, B. Assembly plan calibration using sensor networks. Ph.D. thesis, 2022.
- (6) Bartley, B.; Beal, J.; Rogers, M.; Technologies, R. B. B. N.; Bryce, D.; Goldman, R. P. Building an Open Representation for Biological Protocols. [Preprint] 2022, 1.
- Chu, X. Automation Strategies for Sample Preparation in Life Science Applications. Ph.D. thesis, 2016.
- (8) Nagy, T. D.; Haidegger, T. A DVRK-based Framework for Surgical Subtask Automation. Acta Polytechnica Hungarica 2019, 16.
- (9) Vedula, S. S.; Malpani, A. O.; Tao, L.; Chen, G.; Gao, Y.; Poddar, P.; Ahmidi, N.; Paxton, C.; Vidal, R.; Khudanpur, S.; Hager, G. D.; Chen, C. C. G. Analysis of the structure of surgical activity for a suturing and knot-tying task. PLoS ONE 2016, 11.
- (10) Fleischer, H.; Thurow, K. Automation Solutions for Analytical Measurements: Concepts and Applications; John Wiley & Sons, 2017; p 272.
- (11) Fleischer, H.; Baumann, D.; Chu, X.; Roddelkopf, T.; Klos, M.; Thurow, K. Integration of Electronic Pipettes into a Dual-arm Robotic System for Automated Analytical Measurement Processes Behaviors. IEEE International Conference on Automation Science and Engineering 2018, 2018-Augus, 22–27.
- (12) Wolf, A.; Galambos, P.; Sz´ell, K. Device Integration Concepts in Laboratory Automation. INES 2020 IEEE 24th International Conference on Intelligent Engineering Systems, Proceedings. 2020; pp 171–177.
- (13) Garrido-Jurado, S.; Mu noz-Salinas, R.; Madrid-Cuevas, F. J.; Madrin-Jim enez, M. J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition 2014, 47, 2280–2292.
- (14) feature definitions/ch/unitelabs · master · SiLA2 / sila base · GitLab. https://gitlab.com/SiLA2/sila_base/-/tree/master/feature_definitions/ch/unitelabs.
- (15) (224) Webinar Kevin YouTube . https://www.youtube.com/watch?v=HfZCNi841Oo&t=27s.
- (16) ANSI/SLAS, ANSI SLAS 4-2004 (R2012): Microplate Standards, Well Positions. 2004,
- (17) SiLA2 / sila ros · GitLab. https://gitlab.com/SiLA2/sila ros
- (18) Details of the Asset Administration Shell. Part 1—The exchange of information between partners in the value chain of Industrie 4.0 (Version 1.0). [cited 2021 June 09]., https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2018-verwaltungsschale-imdetail.html.
- (19) Kim, D.; Oh, P. Y. Lab a utomation drones for mobile manipulation in high throughput systems. 2018 IEEE International Conference on Consumer Electronics, ICCE 2018-January, 1–5.
- (20) Pharmaceuticals & Biomedical Shadow Robot Company. https://www.shadowrobot.com/pharmaceuticals-biomedical/.
- (21) Vincze, M.; Bajones, M.; Suchi, M.; Wolf, D.; Weiss, A.; Fischinger, D.; Da La Puente, P. Learning and detecting objects with a mobile robot to assist older a dults in their homes. Lecture Notes in Bioinformatics) 2016, 9914 LNCS, 316–330.
- (22) Gomes, D. F.; Lin, Z.; Luo, S. GelTip: A finger-shaped optical tactile sensor for robotic manipulation. IEEE International Conference on Intelligent Robots and Systems 2020, 9903–9909.
- (23) Thalhammer, S.; Leitner, M.; Patten, T.; Vincze, M. Pyra Pose: Feature Pyramids for Fast and Accurate Object Pose Estimation under Domain Shift. 2021, 13909–13915.
- (24) abb-conversations.com/au/2020/09/robots-are-lending-a-hand-in-laboratories-worldwide-making-healthcare-and-handling-safer-and-more-productive/
- (25) bostondynamics.com/products/spot
- (26) shadowrobot.com
- (27) pollen-robotics.com
- D. Leidner, C. Borst and G. Hirzinger, "Things are made for what they are: Solving manipulation tasks by using functional object classes," 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), 2012, pp. 429-435, doi: 10.1109/HUMANOIDS.2012.6651555.
- (29) Schnicke, Frank, Thomas Kuhn, and Pablo Oliveira Antonino. "Enabling industry 4.0 service-oriented architecture through digital twins." European Conference on Software Architecture. Springer, Cham, 2020.