Nive Bayes

```
In [1]: import pandas as pd
    import matplotlib.pyplot as p
    from sklearn.model_selection import train_test_split
    from sklearn import metrics
    from sklearn.neural_network import MLPClassifier
```

In [2]: dataset = pd.read_csv('wifi_localization.csv', sep='\t', header=0)
 dataset

Out[2]:

	atb1	atb2	atb3	atb4	atb5	atr6	atb7	lable
0	-64	-56	-61	-66	-71	-82	-81	1
1	-68	-57	-61	-65	-71	-85	-85	1
2	-63	-60	-60	-67	-76	-85	-84	1
3	-61	-60	-68	-62	-77	-90	-80	1
4	-63	-65	-60	-63	-77	-81	-87	1
1995	-59	-59	-48	-66	-50	-86	-94	4
1996	-59	-56	-50	-62	-47	-87	-90	4
1997	-62	-59	-46	-65	-45	-87	-88	4
1998	-62	-58	-52	-61	-41	-90	-85	4
1999	-59	-50	-45	-60	-45	-88	-87	4

2000 rows × 8 columns

```
In [3]: #dataset.head()
         #dataset.shape
         #dataset.info()
         #print(dataset['t'])
         #y=(dataset['t'])
         #x=dataset[['a','b','c','d','e','f','g','h','i','j','k','l']]
         #print(x)
         #print(y)
         #dataset.hist(bins=50, figsize=(20,15))
         #p.show()
         train_set, test_set = train_test_split(dataset, test_size=0.2, random_state=40
         #train_set.shape
         #test set.shape
         #train set.head
         train_set_att = train_set.drop(['lable'], axis=1)
         train_set_t = train_set['lable']
         test_set_att = test_set.drop(['lable'], axis=1)
         test_set_t = test_set['lable']
         print("x_train: ",train_set_att.shape)
         print("x_test: ",test_set_att.shape)
print("y_train: ",train_set_t.shape)
         print("y_test: ",test_set_t.shape)
         from sklearn.naive_bayes import GaussianNB
         nb = GaussianNB()
         nb.fit(train_set_att, train_set_t)
         print("Naive Bayes test accuracy: ", nb.score(test_set_att,test_set_t ))
        x_train: (1600, 7)
        x_test: (400, 7)
        y_train: (1600,)
        y test: (400,)
```

Naive Bayes test accuracy: 0.9825