微分積分学 A 期末試験問題

2015年7月23日第2時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること.

問題 1 は全員が答えよ. 問題 2 以降については, 2 題以上を選択して答えよ.

問題 1.

次の各問いに答えよ. ただし、答えのみを書くこと.

- (1) $\arcsin(\sin(3\pi))$ を求めよ.
- $(2) \arccos(\cos(-\pi))$ を求めよ.
- (3) 極限 $\lim_{x\to 2} \frac{2x^2 5x + 2}{x^2 4}$ を求めよ.
- (4) 極限 $\lim_{x\to 2} \frac{\sqrt{x+7}-3}{x-2}$ を求めよ.
- (5) 極限 $\lim_{x\to 0} \frac{\sin 4x}{3x}$ を求めよ.
- (6) 極限 $\lim_{x\to 0} \frac{x^2}{1-\cos x}$ を求めよ.
- (7) 関数 $f:(-1,1)\to\mathbb{R}$ で、左極限 $\lim_{x\to 0-0}f(x)$ と右極限 $\lim_{x\to 0+0}f(x)$ は存在するが、極限 $\lim_{x\to 0}f(x)$ が存在しない例をあげよ.
- (8) 実数列 $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること、すなわち、 $\lim_{n \to \infty} a_n = a$ の ε -N 論法による定義を答えよ.
- (9) 実数列 $\{a_n\}_{n=1}^{\infty}$ が $-\infty$ に発散すること, すなわち, $\lim_{n\to\infty} a_n = -\infty$ の ε -N 論法による定義を答えよ.
- $(10) f: (-1, \infty) \setminus \{0\} \to \mathbb{R} \ \texttt{Lts}.$
 - (a) $A \in \mathbb{R}$ に対して, $\lim_{x\to 0} f(x) = A$ であることの ε - δ 論法を用いた 定義を答えよ
 - (b) $A \in \mathbb{R}$ に対して, $\lim_{x \to \infty} f(x) = A$ であることの ε - δ 論法を用いた 定義を答えよ.
 - (c) $\lim_{x\to 0-0}f(x)=\infty$ であることの ε - δ 論法を用いた定義を答えよ.
- (11) $I \subset \mathbb{R}, f: I \to \mathbb{R}$ とする.
 - (a) $x_0 \in I$ に対して, f が $x = x_0$ で連続であることの ε - δ 論法を用いた定義を答えよ.
 - (b) f が I 上連続であることの定義を ε - δ 論法を用いて答えよ.
 - (c) f が I 上一様連続であることの定義を答えよ.

- (12) (0,1) 上の連続な関数 $f:(0,1) \to \mathbb{R}$ で, (0,1) 上連続かつ有界だが、最小値が存在しない例をあげよ.
- (13) \mathbb{R} 上の連続な関数 $f: \mathbb{R} \to \mathbb{R}$ で、 \mathbb{R} 上一様連続となる例をあげよ.
- (14) $\mathbb R$ 上の連続な関数 $f:\mathbb R\to\mathbb R$ で, $\mathbb R$ 上一様連続にならない例をあげよ.
- (15) $f:[0,1] \to \mathbb{R}$ を連続な関数とする.
 - (a) f(0) < f(1) とする. 中間値の定理を述べよ.
 - (b) Weierstrass の定理で、最大値に関する主張を sup を用いて述べよ.

以下余白 計算用紙として使ってよい.

問題 1の略解

(1) 0
(2)
$$\frac{\pi}{3}$$

(3) $\frac{3}{4}$
(4) $\frac{1}{6}$
(5) $\frac{4}{3}$
(6) 2
(7) $f(x) = \begin{cases} 1 & x \le 0 \\ -1 & x > 0 \end{cases}$
(12) $f(x) = x & (x \in (0, 1))$
(13) $f(x) = x & (x \in \mathbb{R})$
(14) $f(x) = x^2 & (x \in \mathbb{R})$

(8), (9), (10), (11), (15) は講義ノート等を参考にすること.

問題 2.

関数 $f: \mathbb{R} \to \mathbb{R}$ は $x \to 0$ のときに $A \in \mathbb{R}$ に収束するとする. このとき, $\lim_{x \to 0} |f(x)| = |A|$ となることを ε - δ 論法を用いて示せ.

問題 3.

 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して, $f(x) := 3x^2 - 2x - 7$ で定義する. $\lim_{x \to -1} f(x)$ を求めて, ε - δ 論法による証明を与えよ.

問題 4.

 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ が $x_0 \in \mathbb{R}$ で連続であれば, f+g も $x_0 \in \mathbb{R}$ で連続となることを ε - δ 論法を用いて示せ.

問題 5.

 $f:(0,1) \to \mathbb{R}$ は、ある定数 L>0 が存在して、任意の $x,x'\in(0,1)$ に対して

$$|f(x) - f(x')| \le L|x - x'|^{\frac{1}{2}}$$

をみたすとする (このとき, f は (0,1) 上 $\frac{1}{2}$ -Hölder 連続であるという). このとき, f は (0,1) 上一様連続であることを示せ. なお, どこで Hölder 連続であることを用いたのかをわかるように証明を書くこと.

以下余白 計算用紙として使ってよい.