TAXONOMIC REPRESENTATION AND REASONING

DESCRIPTION LOGICS

Contents

- 1. Semantic Networks and Frames
- 2. Description Logics as concept descriptions
- 3. Correspondence with frame systems

Semantic networks

Networks

- associative (psycologic model: at a different level, but they relate to neural networks)
- causal (bayesian networks)
- semantic (Quinlan '68)
- language: graphs with different bindings and annotations
- semantics: subset of FOL (the declarative part) otherwise informal/procedural
- inference: specialized methods for visiting the graph

Inheritance networks

nodes = objetcs or classes

arcs = relations (in particular is - a, istance - of)

 $Cats \xrightarrow{Subset} Mammals$

 $fufi \xrightarrow{Member} Cats$

 $Cats \subseteq Mammals$

 $Cat \ is - a \ Mammal$

 $\forall x \ Cat(x) \rightarrow Mammal(x)$ Cat(fufi)

from the network I can infer that: fufi is a mammal

Semantic Networks

Relationships between objects of different classes.

Frames

Minsky 75: Everything that characterizes an objects belongs to a "frame".

A frame is a prototype of the class elements, but since frames are connected to form networks, a set of frames is very similar to a semantic network, with nodes having a richer structure.

- language: graph/OO specification
- semantics: part in FOL (plus procedural aspects)
- inference: search in ad-hoc representations (graphs)

Systems: KEE, KRSS, ...

Example of frame definition

Frame: Course in KB University

Superclasses:

Memberslot: ENROLLED

ValueClass: Stud

Cardinality.Min: 2

Cardinality.Max: 30

Memberslot: TAUGHTBY

ValueClass: (UNION Grad Prof)

Cardinality.Min: 1

Cardinality.Max: 1

Example of instance definition

rc Instance-of: AdvC in KB University

Memberslot: TAUGHTBY

ValueClass: nardi

Memberslot: ENROLLS

ValueClass: s1,s2

Common between semantic networks and frames

- ♦ node properties (own)
- \diamondsuit inherited properties (is a).
- \diamondsuit class descriptions and instances (instance of)
- ♦ default values and defeasible inheritance (*)

Additional features of frames

- ♦ Complex relationships between frames (slot values can be defined in terms of other frames)
- ♦ Logical operators in the slot definition
- ♦ Numerical restrictions
- Multiple inheritance
- \diamondsuit Procedural Attachments (if needed, if added)

Formal reasoning framework ightarrow Description Logics

Summarizing

Taxonomic representations are based on the idea of organizing knowledge in classes classes of objects:

- objects are characterized by their properties
- inheritance is key to the representation
- complex relations hold between objects

Taxonomic Knowledge Representation

- epistemological adequacy
- computational adequacy

Thesis

Taxonomic knowledge representations are **efficient** both epistemologically and computationally

An example

Relations in a network

- ISA: Mother ISA Female(inheritance)
- Role restrictions: Parent "A parent is a person having at least a child, and all his/her children are persons"

Deduction

Discovery of implicit relations: let Woman represent the female persons, we have that Mother ISA Woman

"Simple" inferences are simple to "see" in the network, but we need how the can be exactly computed.

The beginning ...

Brachman and Levesque's thesis

"There exists a fundamental tradeoff between the expressive power of a knowledge representation language and the complexity of reasoning in that language'

hHow to characterize the complexity of deduction?

Provide *formal definition* of the inference problem in order characterize its computational complexity.

Description Logics as a fragment of FOL

Description Logics (Terminological/Taxonomic/Concept)

The representation in logic of semantic networks and frames is relatively straightforward:

- classes or concepts are unary predicates
- relations between classes or roles are binary predicates

Logical reconstruction of networks

- Definition of a knowledge representation language to denote the network structures (abstract syntax, LISP-like syntax, natural language and graphical interfaces)
- Definition of the meaning of the expressions of the language (interpretation structures)
- Definition of the inference problem as logical consequence
- Definition of inference algorithms

Syntax

The basic step of the construction is the choice of two disjoint sets of symbols (alphabets) for *primitive* (atomic) concepts, and *primitive* (atomic) roles.

Terms are then defined using the alphabets by means of *constructors/operators*

Ex. conjunction operator, $C\sqcap D$, restricts the set to those individual objects belonging to both C and D.

Note: **no variables in the syntax**, the expressions implicitly characterise a set of individual objects (in this case the intersection)

LISP-like syntax (Classic) (AND Person Female)

Set constructors

- intersection $C \sqcap D$
- ullet union $C \sqcup D$
- ullet complement $\neg C$

"The persons that are not female" and "The set of either male or female"

Person $\sqcap \neg Female$ and Female \sqcup Male.

Female, Person, are atomic concepts.

Role restrictions

- universal role restriction, $\forall R.C$, requires that all those individual objects that are in the relation R belong to C. "individuals whose children are all female": \forall hasChild.Female
- existential role restriction, $\exists R.C$, requires the existence of an individual in the relation R that belongs to C. "individual with a female child": \exists hasChild.Female.

hasChild is an atomic role. The individual object corresponding to the second argument of a role is called **role filler**. the female children are role fillers.

 \exists hasChild.Person $\sqcap \forall$ hasChild.Person.

in the role restrictions there is another implicitly quantified variable: $\forall y.R(x,y) \rightarrow C(y)$

Number restrictions

number restrictions: denote sets of individuals with atleast/atmost the specified number of role fillers.

$$(\leqslant 3 \text{ hasChild})$$

"the individuals with at most three children"

$$(\leqslant 3 \text{ hasChild}) \sqcap (\geqslant 2 \text{ hasChild})$$

"the individuals with 2 or 3 children".

Constructors for role expressions

Role intersection: denotes the intersection of roles.

"has-Daughter": hasChild \sqcap hasFemaleRelative

Woman $\sqcap (\leq 2 \text{ (hasChild } \sqcap \text{ hasFemaleRelative)})$

"women with at most 2 daughters".

More role constructors later on.

Examples of concept expressions

- 1. Stud $\sqcap \neg \mathsf{Grad}$
- 2. Grad ⊔ Prof
- 3. Course $\sqcap \forall \mathsf{ENROLLED}.\mathsf{Grad} \sqcap$ $(\geq 2 \, \mathsf{ENROLLED}) \sqcap (\leq 20 \, \mathsf{ENROLLED})$
- 4. Course □ ∃ENROLLED.Grad□ ∃ENROLLED.UndGrad
- 5. PowerPlant \sqcap (\geq 1 LOC) \sqcap (\leq 1 LOC) \sqcap \forall LOC.NewYork \sqcap \exists FAIL.Mechanical

Correspondence with frame systems

Frame: AdvC in KB University

Superclasses: Course

Memberslot: ENROLLED

ValueClass: Grad

Cardinality.Min: 2

Cardinality.Max: 20

DL definition of AdvC:

Course $\sqcap \forall \mathsf{ENROLLED}.\mathsf{Grad} \sqcap$ ($\geq 2 \, \mathsf{ENROLLED}$) $\sqcap (\leq 20 \, \mathsf{ENROLLED})$

Syntax of concept expressions

```
C,D \longrightarrow A \mid (top)
T \mid (top)
L \mid (bottom)
C \sqcap D \mid (intersection)
C \sqcup D \mid (union)
\neg C \mid (complement)
\forall R.C \mid (universal quantif.)
\exists R.C \mid (existential quantif.)
(\geq n R) \mid (atleast num. restriction)
(\leq n R) \quad (atmost num. restriction)
```

Syntax of role expressions

$$R \longrightarrow P \mid$$
 (primitive role) $Q \sqcap R \mid$ (role conjunction)

Semantics

An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ is defined by:

- ullet a set $\Delta^{\mathcal{I}}$ (the *domain* di \mathcal{I})
- a function $\cdot^{\mathcal{I}}$ (the *interpretation function* of \mathcal{I}) mapping every concept in a subset of $\Delta^{\mathcal{I}}$ and every role in a subset of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

The domain can be infinite and the open world assumption makes description logics substantially different from data bases.

Semantics of concept expressions

Primitive concepts are subsets of the interpretation domain: $A \subset \Delta^{\mathcal{I}}$

$$\Box^{\mathcal{I}} = \{ \}
\Box^{\mathcal{I}} = \Delta^{\mathcal{I}}
(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}
(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}
(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}
(\forall R.C)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} \mid \forall b. (a,b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}} \}
(\exists R.C)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} \mid \exists b. (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}
(\geq n R)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} \mid |\{ b \in \Delta^{\mathcal{I}} \mid (a,b) \in R^{\mathcal{I}} \} | \geq n \}
(\leq n R)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} \mid |\{ b \in \Delta^{\mathcal{I}} \mid (a,b) \in R^{\mathcal{I}} \} | \leq n \}.$$

Semantics of role expressions

Primitive roles are pairs of elements of the interpretation domain $R \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

$$(Q \sqcap R)^{\mathcal{I}} = Q^{\mathcal{I}} \cap R^{\mathcal{I}}$$

Semantics of concepts

An interpretation $\mathcal I$ is a *model* of a concept C if $C^{\mathcal I}$ is non empty.

A concept is satisfiable if it has a model, unsatisfiable otherwise.

Semantics in FOL

C can be phrased as $\phi_C(x)$ such that for every interpretation \mathcal{I} the set of elements $\Delta^{\mathcal{I}}$ satisfying $\phi_C(x)$ coincides with $C^{\mathcal{I}}$:

$$\phi_{C \sqcap D}(y) = \phi_{C}(y) \land \phi_{D}(y)$$

$$\vdots$$

$$\phi_{\exists R \cdot C}(y) = \exists x \cdot R(y, x) \land \phi_{C}(x)$$

$$\phi_{\forall R \cdot C}(y) = \forall x \cdot R(y, x) \rightarrow \phi_{C}(x)$$

$$\phi_{(\geq n R)}(x) = \exists y_{1}, \dots, y_{n} \cdot R(x, y_{1}) \land \dots \land R(x, y_{n}) \land \bigwedge_{i \in \mathcal{I}} y_{i} \neq y_{j}$$

$$\phi_{(\leq n R)}(x) = \forall y_1, \dots, y_{n+1}. \ R(x, y_1) \land \dots \land R(x, y_{n+1}) \rightarrow \bigvee_{i < j} y_i = y_j.$$

Taxonomic reasoning

The main inference in DL is **subsumption**:

$$C \sqsubseteq D$$

D (the *subsumer*) is more general than (superset of) C (the *subsumee*).

C is subsumed by D if $C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$ for every interpretation \mathcal{I}

Woman $\sqcap \exists hasChild.Female \sqsubseteq Parent$

Other reasoning problems

Concept satisfiability, equivalence and subsumption can be reduced to subsumption.

A complete analysis of the computational complexity of reasoning in different languages shows **sources** of complexity.

Main reasoning techniques:

- structural subsumption;
- tableaux

Knowledge Bases

Two components:

- intensional (TBOX)
- extensional (ABOX)

$$\Sigma = \langle \mathcal{T}, \mathcal{A} \rangle$$

 \mathcal{T} is a set of definitions: $C \equiv D$

 ${\cal A}$ is a set of assertions: C(a) P(a,b)

Terminologies

The TBOX is also called **terminology** and it includes **concept definitions**.

Woman \equiv Person \sqcap Female

Definitions are interpreted as logical equivalences and thus represent necessary and sufficient conditions, for the defined concept.

- one definition for every concept name
- acyclic definitions

TBOX reasoning

Classification, which allows to position a new concept definition in the taxonomy

In practice, the classification of C determines:

- ullet the most specific concepts subsuming C
- ullet the most general concepts that are subsumed by C

A TBOX: family

Woman \equiv Person \sqcap Female

 $\mathsf{Man} \equiv \mathsf{Person} \sqcap \neg \mathsf{Woman}$

Mother \equiv Woman $\sqcap \exists$ hasChild.Person

Father \equiv Man $\sqcap \exists$ hasChild.Person

Parent \equiv Father \sqcup Mother

GrandMother \equiv Mother $\sqcap \exists$ hasChild.Parent

MotherWithManyChildren \equiv Mother \sqcap (≥ 3 hasChild)

MotherWithoutDaughter \equiv Mother $\sqcap \forall$ hasChild. \neg Woman

Wife \equiv Woman $\sqcap \exists$ hasHusband.Man

The ABOX

The ABox includes the extensional knowledge:

Female \sqcap Person(ANNA)

hasChild(ANNA, JACOPO)

 \neg Female \sqcap Person(JACOPO)

hasChild(ANNA, MICHELA)

 $\mathsf{hasChild}(\mathsf{DANIELE},\mathsf{JACOPO})$

hasChild(DANIELE, MICHELA)

Semantics of the ABOX

- individual object interretation $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- **UNA**: Unique Name Assumption $a^{\mathcal{I}} \neq b^{\mathcal{I}}$

An assertion C(a) is satisfiable in \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$

An interpretation \mathcal{I} satisfies an ABOX if it satisfies all the assertions in the ABOX and it is called **model** of the ABOX.

In order to apply the constraints in the TBOX we must expand the concepts in the ABOX.

ABOX reasoning

- instance checking, checks whether an individual is an instance of the concept (fundamental)
 - $\mathcal{A} \models C(a)$ if every model of \mathcal{A} is also a model of C(a)
- knowledge base consistency, checks whether the KB admits a model
- realization, determines the most specific concept a given individual is an instance of
- retrieval, finds all the individuals that are instances of a given concept

ABOX reasoning requires a significant extension of the techniques for TBOX reasoning

A knowledge base (Σ_1): TBOX

A knowledge base (Σ_1): ABOX

```
Prof(bob), UndGrad(peter),
Stud(susy), Stud(mary), Bachelor(bs),
Course(cs1), Course(cs2), IntC(ee1),
TEACHES(bob, ee1), TEACHES(john, cs2),
TEACHES(john, cs1), DEGREE(mary, bs),
ENROLLED(cs1, susy), ENROLLED(cs1, mary),
ENROLLED(cs2, susy), ENROLLED(cs2, peter),
ENROLLED(ee1, peter)
```

Querying the knowledge base

The queries to a KB Σ are expressed as:

- YES C(a) is true in every model of Σ
- ullet NO C(a) is false in every model of Σ
- *UNKNOWN* otherwise.

Examples

```
1 \Sigma_1 \models \exists \mathsf{ENROLLED.Grad}(\mathsf{ee1}) ?
Answer: YES.
2 \Sigma_1 \models \mathsf{Grad} \sqcup \mathsf{Prof}(\mathsf{john}) ?
Answer: YES.
3 \Sigma_1 \models \forall \mathsf{TEACHES.IntC}(\mathsf{bob}) ?
Answer: UNKNOWN.
4 \Sigma_1 \models \exists \mathsf{TEACHES.IntC}(\mathsf{john}) ?
Answer: YES.
```

Open World semantics

Ontology Web Language

OWL is the standard language for representing ontologies.

- \Diamond Protege is a standard tool to define ontologies
- ♦ Different reasoners can be used within Protege.

Major impact of DL and ontologies: support for data integration