Déformation des éléments linéaires

Cas des pistes de ski

Ryan Delayat

Grenoble INP - Ensimag, INRIA encadré par Nolan Mestres, Joëlle Thollot et Romain Vergne

Février - Mai 2023

Introduction | Cartes et panoramas

Introduction | Plan des pistes

Introduction | Problématique

Organisation de la présentation

- 1. Analyse stylistique des pistes chez Novat
- 2. Déformation des éléments linéaires
- 3. Résultats, perspectives et conclusion

Style des pistes | Panorama Serre Chevalier

Piste verte

Piste bleue

Piste rouge

Piste noire

Style des pistes | Conclusions

Les pistes sont dessinées de la manière dont ont les skie

Paramètres:

- Forme des virages
- Amplitude

Déformation | Cas le plus simple

On suppose que l'on sait à quoi ressemble un virage

Fonction de déformation :

$$\gamma : [0,1] \to \mathbb{R}^2$$

 $\gamma(0) = \gamma(1) = (0,0)$

Assez régulière

Déformation | Cas le plus simple

Comment calcule-t-on la fonction de déformation à partir du virage?

Fonction de virage:

$$V:[0,1]\rightarrow\mathbb{R}^2$$

$$V(0)=(0,0),V(1)=(1,0)$$
 Assez régulière

À chaque virage on peut associer une fonction de déformation

Déformation | Cas général

Idée: Effectuer la déformation dans le repère local de la polyline

Déformation | Fonctions de virage

Comment déterminer de bonnes fonctions de virage?

Déformation | Prétraitement des données

Problèmes des données :

- Elles ne sont pas lisses
- Les points ne sont pas équidistants

Déformation | Prétraitement des données

Donnée brute

— Donnée lissée

Donnée ré-échantillonné

Déformation | Choix des zones à déformer

Déformation | Résumé du traitement

Résultats | Pistes de l'Alpe d'Huez

Résultats | Pistes de l'Alpe d'Huez

Résultats | Limitation et perspectives

Limitation:

- Choix des constantes difficile

Perspectives:

- Conserver la forme du graphe des pistes
- Prendre en compte la géométrie du terrain

Conclusion

