

ЭТИКЕТКА

УП3.487.319 ЭТ

Микросхема интегральная 564 ИР13В

Функциональное назначение –

12-ти разрядный регистр последовательного приближения

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Асинхронный вход разрешения	9	Выход 6-го разряда	17	Выход 8-го разряда
2	Выход последовательных данных	10	Свободный	18	Выход 9-го разряда
3	Выход завершения преобразования	11	Последовательный вход ввода информации	19	Выход 10-го разряда
4	Выход 1-го разряда	12	Общий	20	Выход 11-го разряда
5	Выход 2-го разряда	13	Тактовый вход	21	Выход 12-го разряда («старший»)
6	Выход 3-го разряда	14	Стартовый вход	22	Свободный
7	Выход 4-го разряда	15	Свободный	23	Инверсный выход 12-го разряда
8	Выход 5-го разряда	16	Выход 7-го разряда	24	Питание, U _{u.n.}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25 \pm 10)$ °C)

Таблица 1

Наименование параметра, алинина намерания, раздим намерания	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение высокого уровня, В, при:			
$U_{CC} = 5.0 \text{ B}; I_H = -10 \text{ MKA}$	U _{он}	4,5	-
$U_{CC} = 10,0 \text{ B}; I_H = -10 \text{ MKA}$		9,0	-
$U_{CC} = 4.5 \text{ B}; I_H = -360 \text{ MKA}$		2,4	-
2. Выходное напряжение низкого уровня, В, при:			
$U_{CC} = 5.0 \text{ B}; I_H = 10 \text{ MKA}$	U_{OL}	-	0,5
$U_{CC} = 10.0 \text{ B}; I_H = 10 \text{ mKA}$		-	1,0
$U_{CC} = 4.5 \text{ B}; I_H = 360 \text{ MKA}$		-	0,4
3. Максимальное выходное напряжение низкого уровня, В, при:	* *		0.0
$U_{\rm CC} = 5.0 \text{B}$	U _{OL max}	-	0,8
$U_{CC} = 10,0 \text{ B}$		-	1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC} = 5.0 \text{ B}$	11	4,2	
$U_{CC} = 10.0 \text{ B}$	$ m U_{OHmin}$	9,0	-
		9,0	-
5. Входной ток высокого уровня, мкА, при: U _{CC} = 15,0 B; U _I = 15 B	I_{IH}	-	0,10
6. Входной ток низкого уровня, мкА, при:	I_{IL}	_	/-0,10/
$U_{CC} = 15,0 \text{ B}; U_I = 0 \text{ B}$	*IL		, 0,10,
7. Выходной ток низкого уровня, мА, при:			
$U_{CC} = 5.0 \text{ B}, U_{O} = 5 \text{ B}$	I_{OL}	1,75	-
$U_{CC} = 10,0 \text{ B}, U_0 = 10 \text{ B}$	JE JE	8,0	-

Продолжение таблицы 1					
1	2	3	4		
8. Выходной ток высокого уровня, мА, при:					
$U_{CC} = 5.0 \text{ B}, U_{O} = 0 \text{ B}$	I_{OH}	/-1,75/	-		
$U_{CC} = 10,0 \text{ B}, U_0 = 0 \text{ B}$		/-8,0/	-		
9. Ток потребления, мкА, при:	T		10,0		
$U_{CC} = 15,0 B$	I_{CC}	-	10,0		
10. Время задержки распространения при выключении, при включении (по					
асинхронному входу), нС, при:	t_{PLH} ,				
$U_{CC} = 5.0 \text{ B}; C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	350		
$U_{CC} = 10.0 \text{ B}; C_L = 50 \text{ m}\Phi$		-	150		
11. Время задержки распространения при выключении, при включении (от					
тактового входа до параллельного выхода данных), нС, при:	t_{PLH} ,				
$U_{CC} = 5.0 \text{ B}; C_L = 50 \text{ m}\Phi$	t_{PHL}	-	350		
$U_{CC} = 10.0 \text{ B}; C_L = 50 \text{ m}\Phi$		-	150		
12. Время задержки распространения при выключении, при включении (от					
тактового входа до последовательного выхода данных), нС, при:	t_{PLH} ,				
$U_{CC} = 5.0 \text{ B}; C_L = 50 \text{ m}\Phi$	t_{PHL}	-	325		
$U_{CC} = 10.0 \text{ B}; C_L = 50 \text{ m}\Phi$		-	125		
13. Время задержки распространения при выключении, при включении (от					
тактового входа до выхода завершения преобразования), нС, при:	t_{PLH} ,				
$U_{CC} = 5.0 \text{ B}; C_L = 50 \Pi \Phi$	t_{PHL}	-	350		
$U_{CC} = 10.0 \text{ B}; C_L = 50 \text{ m}\Phi$		-	150		
14. Максимальная тактовая частота, МГц, при:					
$U_{CC} = 5.0 \text{ B}; C_L = 50 \text{ n}\Phi$	f _{c max}	2,0	-		
$U_{CC} = 10.0 \text{ B}; C_L = 50 \text{ m}\Phi$	- man	5,0			

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

 золото
 г,

 серебро
 г,

в том числе:

золото г/мм

на 24 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- $2.1~{\rm M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{\rm u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{\rm ^{\circ}C}$ не менее $100000~{\rm u}$., а в облегченных режимах, которые приводят в ТУ, при $U_{\rm CC}=5$ В $\pm~10\%$ не менее $120000~{\rm u}$.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИР13В соответствуют техническим условиям бК0.347.064 ТУ25 и признаны годными для эксплуатации.

Приняты по (извещение, акт и др.)	от	
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка	произведена	(дата)
Приняты по	от(дата)	
Место для штампа ОТК		Место для штампа ВГ

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.