

开源机器人项目 HANDS FREE

简介

理念:探索,成长,分享

HANDS FREE 是一个面向机器人研究、开发 的开源软硬件系统。她有完备与科学的框架, 以优秀的嵌入式系统框架为核心,精良的电路、 机械设计为支撑,帮您快速实现多种形态的机 器人。本系统包含机器人导航, SLAM, 计算 机视觉等模块,并拥有自己上层软件和调试系 统。她支持国外其他的开源项目,如ROS, MPRT, PIXHAWK等, 这一切都为您带来了无 比的便捷和快乐。

如果你觉得"哎呦不错"的话,就一起加入进来吧!!!

- (S) Sensing (感知、数据采集)
- (C) Computation (计算)
- (C) Communication (通讯)
- (E) Execution (执行)

Robotics = SC^{2E}

系统架构

Robotics = SC^{2E}

■基于ROS的机器人平台

- ■多传感器:立体视觉, Laser, RGB-D
- ■分布式架构设计
- ■全自主设计
- ■较为完整的开源机器人研究开发实验平台
- ■软硬件设计资料全部开源
- ■使用手册+HandsFree开源社区支持
- ■国内知名机器人社区ExBot合作开发完善

开源任务1: 多模态平台搭建

开发多种简易机器人平台用于不同的研究。搭建一个从机械,电路,嵌入 式到上层软件开发的复杂机器人系统实现框架并且和ROS紧密结合。

巴克

基隆/JiLong

云台+相机

图传

无人机系统

斯通/Stone

Plumbing

Tools

Capabilities

Ecosystem

开源任务2:硬件系统

主要任务搭建一个为各种机器人服务的硬件电路和电力供应系统,电路设计涵盖机器人主控制器,电机驱动,交互设备(射频通信,输入输出显示)等。同时为机器人需要的各种大电流设备提供可靠和一体化的电力方案,比如Kinect,激光雷达,PC,TK1,TX1等

硬件系统—主控

HANDSFREE的主控,集成了强大的STM32F407,以及多种传感器和控制接口,几乎可以适用于大部分常见的机器人模型。

板载传感器:

- •MPU6050 6轴运动处理 , 加速计陀螺仪。
- •MEAS MS5611高精度气压计。
- •3-轴数字罗盘IC HMC5883L

其他特征:

- •板载四个电机控制和编码接口
- •10路PWMIN(PWMOUT),支持SBUS,PPM
- •512KB EEPROM , 支持SD卡。
- •集成CP2102 , VP230 , 数字舵机控制器。
- •扩展接口 1xUSBTTL, 1xUSB, 3xUSART, 1xGPS, 1xIIC, 1xCAN, 1xSPI, SWD。
- •专用ADC芯片LM4030A,电压采样精度高。
- •板载5V,3A大电流,防反接,防过流,抵抗静电,支持多路USB和电源同时供电。

硬件系统—电源分配系统

Hands Free Power Manager附带多路开关和多种电源转换功能,满足机器人多样的电力需求。支持常用的TX1,TK1,MiniPC,树莓派,Kinect,HOKUYOU雷达等设备供电,同时还支持机器人的电机驱动,云台舵机,机械臂等结构的供电,还自带一个急停开关接口和一路急停电源输出。配合大容量电池可以为机器系统提供集成供电方案。

开源任务3:嵌入式软件系统

主要目的是搭建一个专门为机器人服务 的嵌入式跨平台软件框架,涵盖底层设备 驱动,算法库,通信与操作系统组件等

<mark>伺服设备</mark>:数模舵机,直流电机,三相电机,步进电机等。

传感器:加速计,陀螺仪,磁力计,超声,红外,GPS等。

IO设备:交互类的LCD,触摸屏,遥控器,蓝牙设备,EEPROM,SD卡等。

算法库:数学运算库,各种控制算法,运动学和动力学模型等。

操作系统组件:实时系统内核,文件系统,USB,TCP/IP等。

开源任务4:系统搭建和上层方案

HADNS FREE基于ROS来验证平台,开发一些应用。同时通过开放我们的方案和源码来促进社区交流,帮助新手入门。主要涉及到ROS的简单使用和编程,自主导航实现,使用仿真工具,使用开源包构建行为树实现一些小应用,机械臂抓取等

Navigation and SLAM

CV DEMO

Simulation_in_Gazebo

HANDS FREE的影响力

合作社区

HANDS FREE搭建了自己的网站,交流社区,淘宝店,Github等,希望帮助了更多机器人开发者。

寄语

机器人是多学科领域交叉的产物,几乎能涉及到所有的人类科学,综合性强度不言而喻,开源是未来毋庸置疑的趋势。以上是HANDS FREE 为构建机器人开源社区所做的一些努力,我们也希望有各种领域大神来帮助HANDS FREE, 因为它最终也会无私的回馈给你们。 "人生苦短,珍爱开源" 如果你乐意加入我们请通过最后一页PPT提供的途径联系我们。

同时我们也有自己的科研生活,有自己的团队宗旨:

以学习和科研为第一要义,对知识和技术的追求永无止境,不断创新,精益求精,提升自我;其次,尽能力承担一定的社会责任,重视分享,重视开源;最后,鼓励创造社会价值和财富以维持长期发展。

无人机研究组

HANDSFREE源于西北工业大学,这里介绍一下恩师,西北工业大学布树辉教授领导我们做的关 于无人机的研究工作,详细介绍请关注布老师的个人网站: http://www.adv-ci.com/

提出了一种基于图优化和Appearance-based SLAM方法,自适应影像地图生成方法。在研究算法的基 础上开发了多旋翼无人机系统,地面站软件,综合数据链路。国际上首次提出了基于SLAM的实时在线影 像地图,处理速度能够到达60Hz (980x540分辨率); SLAM系统的鲁棒性较国际上其他方法有较大的优势

Source code can be downloaded at: http://www.adv-ci.com/blog/projects/map2dfusion/

无人机研究组—实时定位与环境感知

为实现机器人、无人机在无GPS环境下的自主导航定位,提出了一种融合直接方法和基于特征点的 RGBD SLAM方法,与国际相关研究方法对比分析,能够得出本研究方法获得整体最优的精度,每帧图像处理时间为15ms,处于国际领先水平。

西工大图书馆

Sequence Name	SDTAM (Ours)			DVO [34]	Kinect	RGB-D	Volume
Sequence Ivame	Direct	Direct+KF	Direct+KF+Loop	D V O [34]	Fusion [29]	SLAM [25]	Fusion [36]
fr1/xyz	0.054	0.011	0.011	0.011	0.026	0.014	0.017
fr1/rpy	0.086	0.031	0.031	0.020	0.133	0.026	0.028
fr1/desk	0.055	0.018	0.018	0.021	0.057	0.023	0.037
fr1/desk2	0.117	0.043	0.043	0.046	0.420	0.043	0.071
fr1/room	0.305	0.205	0.084	0.053	0.313	0.084	0.075
fr1/plant	0.039	0.072	0.034	0.028	0.598	0.091	0.047
fr2/xyz	0.017	0.015	0.015	0.018	-	0.008	0.029
fr2/person	0.180	0.079	0.079	-	-	-	-
fr3/long	0.104	0.018	0.010	0.035	0.064	0.032	0.030
fr3/nst	0.045	0.020	0.013	0.018	-	0.017	0.031
fr3/far	0.010	0.009	0.009	0.017	-	_	-
$fr3/sit_xyz$	0.028	0.008	0.008	_	-	_	_
$fr3/sit_halfsph$	0.116	0.012	0.012	-	-	-	-
$fr3/walk_xyz$	1.436	0.011	0.011	-	-	-	-
$fr3/walk_halfsph$	0.649	0.060	0.060	-	-	-	-

ataset available at: <u>http://www.adv-ci.com/blog/source/npu-rgb-d-dataset/</u>

混合深度网络的场景解析

Method	Per-pixel accuracy (%)	Per-class accuracy (%)		
Liu et al. [52]	74.75	_		
Tighe et al. [36]	76.9	29.4		
Eigen et al. [53]	77.1	32.5		
Singh et al. [54]	79.2	33.8		
Farabet et al. [2]	78.5	29.6		
Pinheiro et al. [55]	77.7	29.8		
CNN	69.5	27.2		
CNN + CRF	72.8	28.7		
IEDNs	80.4	35.8		

问题

- ▶传统深度神经网络无显式的空间推理
- ▶网络层数多,网络设计、训练难度大

创新

- ▶提出混合深度网络
- ▶融合阶层式特征学习、结构学习

成果

- →研究方法提供了一种新的神经网络设计思路
- ▶能够应对复杂场景
- ▶在多个数据集上取得最高精度
- ≻该研究已在机器学习领域重要期刊PR在线发表。
- ➢获得面上项目一项,其他项目两项。

Low-level descriptors

Visual words

三维物体的深度学习

			Real	Synthetic
Participant	Method	F	Measure	F-Measure
Giachetti	APT†‡		0.534	0.733
Lai	HKS-TS-HC†‡		0.063	0.244
	SIHKS-H-HC†‡		0.038	0.089
C. Li	Spectral Geometry‡		0.204	0.828
Litman	supDLtrainR†		0.640	0.814
Pickup	Surface Area‡		0.301	0.759
Bu	3DDL‡		0.193	0.760

Table 2: Retrieval results for Task 2. The 1st, 2nd and 3rd highest scores of each column are highlighted. ‡ signifies the method is aware of the class size, other annotation as for Table 1.

问题

- ▶传统方法无法提取语义层面特征
- ▶三维形状分析无法直接使用深度学习

创新

- >提出中间层表达,将无序数据转换成图像
- >使用多模态学习,充分挖掘数据内在的非线性关系

成果

- ▶国际学术界首先将深度学习引入到三维形状的特征提取 , 为后续研究提供重要思路
- ▶该成果被领域顶级期刊IEEE TMM, IEEE MM等杂志收录
- ➢获得青年基金一项、其他项目两项
- ▶IEEE ICME, Shape Modeling International等录用为大会 宣读,得到了广泛的关注
- ▶参加SHREC 2014比赛, 取得了较好的成绩。
- ▶开源多模态深度学习的CUDA工具包

访问我们

最新资料和代码请到: https://github.com/HANDS-FREE

最全资料请去百度云: http://pan.baidu.com/s/1c201NC

HANDS FREE 网页介绍:

http://www.rosclub.cn/post-14.html

http://www.adv-ci.com/

HANDS FREE交流群: 521037187 (Hands Free Community)

HANDS FREE 主要开发维护人员来源:

西工大舞蹈机器人基地:

西工大智能系统实验室: http://www.adv-ci.com/

易科机器人: http://blog.exbot.net/

ROSClub: http://www.rosclub.cn/

