Full proofs for the postulates of a rational consequence relation for datalog

Michael Harrison and Thomas Meyer

Centre for Artificial Intelligence Research, Department of Computer Science,
University of Cape Town
hrrmic014@myuct.ac.za and tmeyer@cs.uct.ac.za

Postulate 1 (Reflexivity)

$$\mathcal{K} \approx \beta \leadsto \beta$$

Reflexivity seems to be satisfied universally by any kind of reasoning that is based on some notion of consequence [1]. Our defeasible entailment check for the given defeasible rule is eventually reduced to a classical entailment check for a strict version of the rule, which will always be reflexive.

Proof:

1. In order for RationalClosure(\mathcal{K} , $\beta \leadsto \beta$) to terminate, we have to break out of the while loop on line 2 of Algorithm 3, so we will either have **Case 1** where $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \bot$ no longer holds or **Case 2** where $i_{\beta} \leq n$ is no longer true.

Case 1:

- 2. (a) Since $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \to \bot$, we must have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \beta$ by classical inference.
 - (b) Line 4 of Algorithm 3 will then return **True** for RationalClosure(\mathcal{K} , β), meaning $\mathcal{K} \approx \beta \leadsto \beta$ for this case.

Case 2:

- 3. (a) Since $i_{\beta} > n$, we will only be dealing with the classical portion of the datalog program. $\mathcal{SR} \models \beta \rightarrow \beta$ will hold by classical inference.
 - (b) Line 4 of Algorithm 3 will then return **True** for RationalClosure(\mathcal{K} , β), meaning $\mathcal{K} \approx \beta \leadsto \beta$ for this case.

Postulate 2 (Left Logical Equivalence)

$$\frac{\beta = \gamma, \ \mathcal{K} \bowtie \beta \leadsto \eta}{\mathcal{K} \bowtie \gamma \leadsto \eta}$$

Left Logical Equivalence expresses the requirement that logically equivalent formulas have exactly the same consequences [1]. Since $\beta \equiv \gamma$, Algorithm 3 will consider the same portion of the knowledge base for both β and γ where they are not exceptional. Since $\mathcal{K} \approx \beta \rightsquigarrow \eta$, we know that $\beta \rightarrow \eta$ holds for this portion of the knowledge base. Since $\beta \equiv \gamma$ and we are considering the same portion of the knowledge base, $\gamma \to \eta$ will hold. Algorithm 3 will, therefore, return **True** when checking $\mathcal{K} \approx \gamma \rightsquigarrow \eta$.

Proof:

- 1. Given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, RationalClosure($\mathcal{K}, \beta \rightsquigarrow \eta$) returns **True**.
- 2. In order for RationalClosure($\mathcal{K}, \beta \sim \eta$) to terminate, we have to break out of the while loop on line 2 of Algorithm 3, so we either have Case 1 where $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \bot$ no longer holds or **Case 2** where $i_{\beta} \leq n$ is no longer true.

Case 1:

- 3. (a) Since $\beta \equiv \gamma$, RationalClosure($\mathcal{K}, \gamma \leadsto \eta$) must give $\bigcup_{j=i_{\gamma}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \gamma \to \bot$ where $i_{\gamma} = i_{\beta}$ for which $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \to \bot$ in RationalClosure(\mathcal{K} ,

 - (b) Given K ≈ β ~ η, ∪_{j=iβ}^{j≤n} R_j ∪ SR ⊨ β ~ η must hold on line 4 of Algorithm 3 in RationalClosure(K, β ~ η).
 (c) ∪_{j=iβ}^{j≤n} R_j ∪ SR ≡ ∪_{j=iγ}^{j≤n} R_j ∪ SR and β ≡ γ, therefore ∪_{j=iγ}^{j≤n} R_j ∪ SR ⊨ γ ~ η must hold on line 4 of Algorithm 3, thus returning True for RationalClosure(K, γ, γ, γ) magning K by the strength for this case. RationalClosure($\mathcal{K}, \gamma \leadsto \eta$), meaning $\mathcal{K} \approx \gamma \leadsto \eta$ for this case.

Case 2:

- 4. (a) If $i_{\beta} > n$, then $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \equiv \emptyset$. (b) If $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} = \emptyset$ and given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, then $\mathcal{SR} \models \beta \rightarrow \eta$ must hold on line 4 of Algorithm 3.
 - (c) Since $\beta \equiv \gamma$, RationalClosure($\mathcal{K}, \gamma \rightsquigarrow \eta$) must not have any number i_{γ} for which $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \gamma \to \bot$ and $i_{\gamma} \leq n$, therefore $i_{\gamma} > n$. (d) If $i_{\gamma} > n$, then $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} = \emptyset$.

 - (e) If $SR \models \beta \rightarrow \eta$ and $\beta \equiv \gamma$, then $SR \models \gamma \rightarrow \eta$ must hold on line 4 of Algorithm 3, thus returning **True** for RationalClosure(\mathcal{K} , $\gamma \leadsto \eta$), meaning $\mathcal{K} \approx \gamma \rightsquigarrow \eta$ for this case.

Postulate 3 (Right Weakening)

$$\frac{\mathcal{K} \approx \beta \leadsto \eta, \ \models \eta \to \gamma}{\mathcal{K} \approx \beta \leadsto \gamma}$$

Right Weakening implies that we may replace logically equivalent formulas in the head of the rule [1]. The portion of the knowledge base that Algorithm 3 considers for both $\mathcal{K} \approx \beta \rightsquigarrow \eta$ and $\mathcal{K} \approx \beta \rightsquigarrow \gamma$ is the same due to exceptionality being determined by the body of a rule and these two rules have the same body. We know that $\beta \to \eta$ holds for this portion of the knowledge base and we know that $\beta \to \gamma$. Due to transitivity of strict (classical) implication, we know that $\beta \to \gamma$ will also hold for this portion of the knowledge base, so Algorithm 3 will return **True** when checking $\mathcal{K} \approx \beta \leadsto \gamma$.

Proof:

- 1. Given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, RationalClosure($\mathcal{K}, \beta \rightsquigarrow \eta$) returns **True**.
- 2. In order for RationalClosure(\mathcal{K} , $\beta \leadsto \eta$) to terminate, we have to break out of the while loop on line 2 of Algorithm 3, so we either have **Case 1** where $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \bot$ no longer holds or **Case 2** where $i_{\beta} \leq n$ is no longer true.

Case 1:

- 3. (a) Given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \eta$ must hold on line 4 of Algorithm 3 in RationalClosure($\mathcal{K}, \beta \rightsquigarrow \eta$).
 - (b) With $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \eta$ and given $\models \eta \rightarrow \gamma$, we will get $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \gamma$ due to the transitivity of strict datalog implication.
 - (c) Thus, $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \gamma$ will hold on line 4 of algorithm 3 in RationalClosure(\mathcal{K} , $\beta \rightsquigarrow \gamma$) and cause RationalClosure(\mathcal{K} , $\beta \rightsquigarrow \gamma$) to return **True**, meaning $\mathcal{K} \models \beta \rightsquigarrow \gamma$ for this case.

Case 2:

- 4. (a) If $i_{\beta} > n$, then $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \equiv \emptyset$.
 - (b) If $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \equiv \emptyset$ and given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, then $\mathcal{SR} \models \beta \rightarrow \eta$.
 - (c) With $S\mathcal{R} \models \beta \rightarrow \eta$ and given $\models \eta \rightarrow \gamma$, we will get $S\mathcal{R} \models \beta \rightarrow \gamma$ due to the transitivity of strict datalog implication.
 - (d) Thus, $\mathcal{SR} \models \beta \rightarrow \gamma$ will hold on line 4 of algorithm 3 in RationalClosure(\mathcal{K} , $\beta \rightsquigarrow \gamma$) and cause RationalClosure(\mathcal{K} , $\beta \rightsquigarrow \gamma$) to return **True**, meaning $\mathcal{K} \bowtie \beta \rightsquigarrow \gamma$ for this case.

Postulate 4 (And)

$$\frac{\mathcal{K} \bowtie \beta \leadsto \gamma, \ \mathcal{K} \bowtie \beta \leadsto \eta}{\mathcal{K} \bowtie \beta \leadsto \gamma \land \eta}$$

And expresses the fact that the conjunction of two plausible consequences is also a plausible consequence [1]. The portion of the knowledge base that Algorithm 3 considers for $\mathcal{K} \approx \beta \rightsquigarrow \gamma$, $\mathcal{K} \approx \beta \rightsquigarrow \eta$, and $\mathcal{K} \approx \beta \rightsquigarrow \gamma \land \eta$ is the

M. Harrison and T. Meyer

same due to exceptionality being determined by the body of a rule and all of these rules having the same body. For this portion of the knowledge base, we know that both $\beta \to \gamma$ and $\beta \to \eta$. Due to classical conjunction introduction, $\beta \to \gamma \wedge \eta$ must also hold for this portion of the knowledge base. Algorithm 3 will, therefore, return **True** when checking $\mathcal{K} \approx \beta \rightsquigarrow \gamma \wedge \eta$.

Proof:

4

- 1. Given $\mathcal{K} \approx \beta \rightsquigarrow \gamma$ and $\mathcal{K} \approx \beta \rightsquigarrow \eta$, RationalClosure($\mathcal{K}, \beta \rightsquigarrow \gamma$) and RationalClosure($\mathcal{K}, \beta \leadsto \eta$) both return **True**.
- 2. In order for RationalClosure($\mathcal{K}, \beta \rightsquigarrow \gamma$) and RationalClosure($\mathcal{K}, \beta \rightsquigarrow \eta$) to terminate, we have to break out of the while loop on line 2 of Algorithm 3, so we either have Case 1 where $\bigcup_{j=i_{\beta}}^{j\leq n} \overline{R}_{j}^{j} \cup \mathcal{SR} \models \beta \to \bot$ no longer holds or Case 2 where $i_{\beta} \leq n$ is no longer true.

Case 1:

- 3. (a) Given $\mathcal{K} \approx \beta \rightsquigarrow \gamma$, $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \gamma$ must hold on line 4 of Algorithm 3 in RationalClosure($\mathcal{K}, \beta \rightsquigarrow \gamma$).
 - (b) Given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \eta$ must hold on line 4 of
 - (c) If we have $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \eta$ must nold on line 4 of the Algorithm 3 in Rational Closure $(\mathcal{K}, \beta \leadsto \eta)$.

 (c) If we have $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \gamma$ and $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \eta$, then $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \gamma \land \eta$ must hold due to classical conjunction introduction.
 - (d) If we have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \gamma \land \eta$ on line 4 of algorithm 3, then RationalClosure $(K, \beta \rightsquigarrow \gamma \land \eta)$ will return **True**, meaning $K \approx \beta \rightsquigarrow \gamma \land \eta$ for this case.

Case 2:

- 4. (a) If i_β > n, then ⋃_{j=i_β}^{j≤n} R̄_j = ∅.
 (b) If ⋃_{j=i_β}^{j≤n} R̄_j = ∅ and given K ⋈ β → γ, then SR ⋈ β → γ must hold on line 4 of Algorithm 3 in RationalClosure(K, β → γ).
 (c) If ⋃_{j=i_β}^{j≤n} R̄_j = ∅ and given K ⋈ β → η, then SR ⋈ β → η must hold on
 - line 4 of Algorithm 3 in RationalClosure($\mathcal{K}, \beta \rightsquigarrow \eta$).
 - (d) If we have $\mathcal{SR} \models \beta \rightarrow \gamma$ and $\mathcal{SR} \models \beta \rightarrow \eta$, then $\mathcal{SR} \models \beta \rightarrow \gamma \land \eta$ must hold due to classical conjunction introduction..
 - (e) If we have $\mathcal{SR} \models \beta \rightarrow \gamma \land \eta$ on line 4 of algorithm 3, then RationalClosure(\mathcal{K} , $\beta \sim \gamma \wedge \eta$) will return **True**, meaning $\mathcal{K} \approx \beta \sim \gamma \wedge \eta$ for this case.

Postulate 5 (Or)

$$\frac{\mathcal{K} \bowtie \beta \leadsto \eta, \ \mathcal{K} \bowtie \gamma \leadsto \eta}{\mathcal{K} \bowtie \beta \lor \gamma \leadsto \eta}$$

Or states that any formula that is, separately, a plausible consequence of two different formulas, should also be a plausible consequence of their disjunction [1]. For $\mathcal{K} \approx \beta \rightsquigarrow \eta$, Algorithm 3 considers the portion of the knowledge base where β is not exceptional. η classically follows for this portion of the knowledge base. For $\mathcal{K} \approx \gamma \sim \eta$, Algorithm 3 considers the portion of the knowledge base where γ is not exceptional. η classically follows for this portion of the knowledge base. When Algorithm 3 checks if $\mathcal{K} \approx \beta \vee \gamma \rightsquigarrow \eta$, it will consider the largest portion of the knowledge base where at least one of β or γ is no longer exceptional. We know that at the point where at least one of β or γ is no longer exceptional, η classically follows for this portion of the knowledge base. So we know that $\beta \vee \gamma \rightarrow \eta$ for this portion of the knowledge base. Algorithm 3 will, therefore, return **True** when checking $\mathcal{K} \approx \beta \vee \gamma \rightsquigarrow \eta$.

Proof:

- 1. Given $\mathcal{K} \approx \beta \rightsquigarrow \eta$ and $\mathcal{K} \approx \gamma \rightsquigarrow \eta$, RationalClosure $(\mathcal{K}, \beta \rightsquigarrow \eta)$ and RationalClosure($\mathcal{K}, \gamma \leadsto \eta$) both return **True**.
- 2. In order for both RationalClosure($\mathcal{K}, \beta \leadsto \eta$) and RationalClosure($\mathcal{K}, \gamma \leadsto \eta$) to terminate, both calls to Algorithm 3 need to break out of the while loop on line 2, so we can have 4 different cases. For Case 1 RationalClosure(\mathcal{K} , $\beta \sim \eta$) reaches a point where $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \bot$ no longer holds and Rational Closure($\mathcal{K}, \ \gamma \leadsto \eta$) reaches a point where $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models$ $\gamma \to \bot$ no longer holds. For Case 2 RationalClosure $(\mathcal{K}, \beta \stackrel{\prime}{\leadsto} \eta)$ reaches a point where $i_{\beta} \leq n$ is no longer true and RationalClosure($\mathcal{K}, \gamma \rightsquigarrow \eta$) reaches a point where $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \gamma \to \bot$ no longer holds. For **Case 3** RationalClosure $(\mathcal{K}, \beta \leadsto \eta)$ reaches a point where $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \bot$ no longer holds and RationalClosure($\mathcal{K}, \gamma \leadsto \eta$) reaches a point where $i_{\gamma} \leq n$ is no longer true. For Case 4 RationalClosure($\mathcal{K}, \beta \sim \eta$) reaches a point where $i_{\beta} \leq n$ is no longer true and RationalClosure($\mathcal{K}, \gamma \leadsto \eta$) reaches a point where $i_{\gamma} \leq n$ is no longer true.

Case 1:

- 3. (a) Given $\mathcal{K} \approx \beta \leadsto \eta$, we know that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \eta$ holds on line 4 of Algorithm 3 in RationalClosure($\mathcal{K}, \beta \leadsto \eta$).

 (b) Given $\mathcal{K} \approx \gamma \leadsto \eta$, we know that $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \gamma \to \eta$ holds on line
 - 4 of Algorithm 3 in RationalClosure($\mathcal{K}, \gamma \leadsto \eta$).
 - (c) We now have 3 subcases. We have Case 1a where $i_{\beta} < i_{\gamma}$. We have Case 1b where $i_{\beta} > i_{\gamma}$. We have Case 1c where $i_{\beta} = i_{\gamma}$.

Case 1a:

(d) i. Since $i_{\beta} < i_{\gamma}$, RationalClosure($\mathcal{K}, \beta \vee \gamma \rightsquigarrow \eta$) will break out of the while loop on line 2 of Algorithm 3 at a point when $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models$ $\beta \vee \gamma \to \bot$ no longer holds.

ii. Since we know that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \eta$ holds, we then know that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \to \eta$ must hold on line 4 of Algorithm 3, thus returning **True** for RationalClosure(\mathcal{K} , $\beta \vee \gamma \leadsto \eta$), meaning $\mathcal{K} \models \beta \vee \gamma \leadsto \eta$ for this case.

Case 1b:

- (e) i. Since $i_{\beta} > i_{\gamma}$, RationalClosure(\mathcal{K} , $\beta \lor \gamma \leadsto \eta$) will break out of the while loop on line 2 of Algorithm 3 at the point when $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \lor \gamma \to \bot$ no longer holds.
 - ii. Since we know that $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \gamma \to \eta$ holds, we then know that $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \to \eta$ must hold on line 4 of Algorithm 3, thus returning **True** for RationalClosure(\mathcal{K} , $\beta \vee \gamma \to \eta$), meaning $\mathcal{K} \models \beta \vee \gamma \to \eta$ for this case.

Case 1c:

- (f) i. Since $i_{\beta} = i_{\gamma}$, we will have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \equiv \bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}}$, so RationalClosure(\mathcal{K} , $\beta \vee \gamma \rightsquigarrow \eta$) will break out of the while loop on line 2 of Algorithm 3 at a point when both $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \rightarrow \bot$ and $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \rightarrow \bot$ no longer hold.
 - $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \to \bot \text{ no longer hold.}$ ii. Since we know that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \eta \text{ and } \bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \gamma \to \eta \text{ both hold, we know that both } \bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \to \eta \text{ and } \bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \to \eta \text{ must hold on line 4 of Algorithm 3, thus returning$ **True** $for RationalClosure(<math>\mathcal{K}$, $\beta \vee \gamma \to \eta$), meaning $\mathcal{K} \models \beta \vee \gamma \to \eta$ for this case.

Case 2:

- 4. (a) Since $i_{\beta} > n$ and $i_{\gamma} \leq n$, it must be that $i_{\gamma} < i_{\beta}$, so RationalClosure(\mathcal{K} , $\beta \lor \gamma \leadsto \eta$) will break out of the while loop on line 2 of Algorithm 3 at the point when $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \lor \gamma \to \bot$ no longer holds.
 - (b) Given $\mathcal{K} \models \gamma \leadsto \eta$, we know that $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \gamma \to \eta$ holds on line 4 of Algorithm 3 in RationalClosure($\mathcal{K}, \gamma \leadsto \eta$). (c) Since $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \gamma \to \eta$, then $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \lor \gamma \to \eta$ must
 - (c) Since $\bigcup_{j=i_{\gamma}}^{j\leq n} \overline{R}_{j}^{\gamma} \cup \mathcal{SR} \models \gamma \to \eta$, then $\bigcup_{j=i_{\gamma}}^{j\leq n} \overline{R}_{j}^{\gamma} \cup \mathcal{SR} \models \beta \vee \gamma \to \eta$ must hold on line 4 of Algorithm 3, thus returning **True** for RationalClosure(\mathcal{K} , $\beta \vee \gamma \leadsto \eta$), meaning $\mathcal{K} \models \beta \vee \gamma \leadsto \eta$ for this case.

Case 3:

- 5. (a) Since $i_{\gamma} > n$ and $i_{\beta} \leq n$, it must be that $i_{\beta} < i_{\gamma}$, so RationalClosure(\mathcal{K} , $\beta \lor \gamma \leadsto \eta$) will break out of the while loop on line 2 of Algorithm 3 at the point when $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \lor \gamma \to \bot$ no longer holds.
 - (b) Given $\mathcal{K} \approx \beta \leadsto \eta$, we know that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \eta$ holds on line 4 of Algorithm 3 in RationalClosure($\mathcal{K}, \beta \leadsto \eta$).

(c) Since $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \eta$, then $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \vee \gamma \rightarrow \eta$ must hold on line 4 of Algorithm 3, thus returning **True** for RationalClosure(\mathcal{K} , $\beta \vee \gamma \sim \eta$), meaning $\mathcal{K} \approx \beta \vee \gamma \sim \eta$ for this case.

Case 4:

- 6. (a) Since $i_{\beta} > n$, then $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} = \emptyset$.
 - (b) If $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} = \emptyset$ and given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, then $\mathcal{SR} \models \beta \rightarrow \eta$ holds on line 4 of Algorithm 3.
 - (c) Since $i_{\gamma} > n$, then $\bigcup_{j=i_{\gamma}}^{j \le n} \overrightarrow{R_{j}} = \emptyset$.
 - (d) If $\bigcup_{j=i_{\gamma}}^{j\leq n} \overrightarrow{R_{j}} = \emptyset$ and given $\mathcal{K} \models \gamma \leadsto \eta$, then $\mathcal{SR} \models \gamma \to \eta$ holds on line 4 of Algorithm 3.
 - (e) Therefore $\mathcal{SR} \models \beta \lor \gamma \to \eta$ also holds on line 4 of Algorithm 3, thus returning **True** for RationalClosure($\mathcal{K}, \beta \lor \gamma \leadsto \eta$), meaning $\mathcal{K} \models \beta \lor \gamma \leadsto \eta$ for this case.

Postulate 6 (Cautious Monotonicity)

$$\frac{\mathcal{K} \bowtie \beta \leadsto \gamma, \ \mathcal{K} \bowtie \beta \leadsto \eta}{\mathcal{K} \bowtie \beta \land \gamma \leadsto \eta}$$

Cautious Monotonicity expresses that learning a new fact that could have been plausibly concluded should not invalidate previous conclusions [1]. For $\mathcal{K} \bowtie \beta \leadsto \gamma$ and $\mathcal{K} \bowtie \beta \leadsto \eta$, Algorithm 3 considers the portion of the knowledge base where β is not exceptional. We know that $\beta \to \gamma$ and $\beta \to \eta$ for this portion of the knowledge base. Since $\beta \to \gamma$, we know that $\beta \land \gamma$ will not be exceptional for this same portion of the knowledge base. Algorithm 3 will, therefore, consider this same portion of the knowledge base when checking $\mathcal{K} \bowtie \beta \land \gamma \leadsto \eta$. Since $\beta \to \eta$ for this portion of the knowledge base, $\beta \land \gamma \to \eta$ will also hold for this portion of the knowledge base due to classical monotonicity. Algorithm 3 will, therefore, return **True** when checking $\mathcal{K} \bowtie \beta \land \gamma \leadsto \eta$.

Proof:

- 1. Given $\mathcal{K} \approx \beta \rightsquigarrow \gamma$ and $\mathcal{K} \approx \beta \rightsquigarrow \eta$, RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \rightsquigarrow \gamma$) and RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \rightsquigarrow \eta$) both return **True**.
- 2. In order for RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \leadsto \gamma$) and RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \leadsto \eta$) to terminate, both calls to Algorithm 3 have to break out of the while loop on line 2, so we either have **Case 1** where $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \bot$ no longer holds or **Case 2** where $i_{\beta} \leq n$ is no longer true.

Case 1:

3. (a) Given $\mathcal{K} \models \beta \leadsto \gamma$, we know that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \gamma$ must hold on line 4 of Algorithm 3 in RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \leadsto \gamma$).

- (b) Given $\mathcal{K} \approx \beta \leadsto \eta$, we know that $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_j} \cup \mathcal{SR} \models \beta \to \eta$ must hold on line 4 of Algorithm 3 in RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \leadsto \eta$).
- (c) Since we have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \gamma$, we equivalently have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \gamma$. Therefore $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \land \neg \gamma$ cannot hold, so the equivalent $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \wedge \gamma \to \bot$ will not hold on line 2 of Algorithm 3 in RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \wedge \gamma \leadsto \eta$).

 (d) Since $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \eta$, then $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \wedge \gamma \to \eta$ must hold by classical monotonicity on line 4 of Algorithm 3.

 (e) Since $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \wedge \gamma \to \eta$, then RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \wedge \gamma \leadsto \eta$).
- η) must return **True**, meaning $\mathcal{K} \approx \beta \wedge \gamma \rightsquigarrow \eta$ for this case.

Case 2:

- 4. (a) Since $i_{\beta} > n$, then $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} = \emptyset$.
 - (b) If $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} = \emptyset$ and given $\mathcal{K} \models \beta \leadsto \gamma$, then $\mathcal{SR} \models \beta \to \gamma$ holds on line
 - (c) If $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} = \emptyset$ and given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, then $\mathcal{SR} \models \beta \rightarrow \eta$ holds on line 4 of Algorithm 3.
 - (d) Since $\mathcal{SR} \models \beta \rightarrow \gamma$, we equivalently have $\mathcal{SR} \models \neg(\beta \land \neg \gamma)$. Therefore, $\mathcal{SR} \models \beta \land \neg \gamma$ cannot hold, so the equivalent $\mathcal{SR} \models \beta \land \gamma \rightarrow \bot$ does not hold on line 4 of Algorithm 3 in RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \wedge \gamma \leadsto \eta$).
 - (e) Since $\mathcal{SR} \models \beta \rightarrow \eta$, then $\mathcal{SR} \models \beta \land \gamma \rightarrow \eta$ must hold by classical monotonicity on line 4 of Algorithm 3.
 - (f) Since $SR \models \beta \land \gamma \rightarrow \eta$, then RationalClosure(R of K, $\beta \land \gamma \rightsquigarrow \eta$) must return **True**, meaning $\mathcal{K} \approx \beta \wedge \gamma \leadsto \eta$ for this case.

Postulate 7 (Rational Monotonicity)

$$\frac{\mathcal{K} \bowtie \beta \leadsto \eta, \ \mathcal{K} \not \bowtie \beta \leadsto \neg \gamma}{\mathcal{K} \bowtie \beta \land \gamma \leadsto \eta}$$

Rational Monotonicity expresses the fact that only the negation that only additional information that negates a previously drawn plausible conclusion should force us to withdraw that plausible conclusion [1]. For $\mathcal{K} \approx \beta \rightsquigarrow \eta$ and $\mathcal{K} \not\approx \beta \rightsquigarrow \neg \gamma$, Algorithm 3 considers the portion of the knowledge base where β is not exceptional. We know that $\beta \to \eta$ and that is is not the case that $\beta \to \neg \gamma$ for this portion of the knowledge base. We, therefore, know that $\beta \wedge \gamma$ will not be exceptional for this same portion of the knowledge base. Algorithm 3 will, therefore, consider this same portion of the knowledge base when checking $\mathcal{K} \approx \beta \wedge \gamma \rightsquigarrow \eta$. Since $\beta \to \eta$ for this portion of the knowledge base, $\beta \wedge \gamma \to \eta$ will also hold for this portion of the knowledge base due to classical monotonicity. Algorithm 3 will, therefore, return **True** when checking $\mathcal{K} \approx \beta \wedge \gamma \rightsquigarrow \eta$.

Proof:

- 1. Given $\mathcal{K} \approx \beta \rightsquigarrow \eta$, RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \rightsquigarrow \eta$) returns **True**.
- 2. Given $\mathcal{K} \not\approx \beta \rightsquigarrow \neg \gamma$, RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \rightsquigarrow \neg \gamma$) returns **False**.
- 3. In order for RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \rightsquigarrow \eta$) and RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \rightsquigarrow \neg \gamma$) to terminate, both calls to Algorithm 3 have to break out of the while loop on line 2, so we either have **Case 1** where $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \rightarrow \bot$ no longer holds or **Case 2** where $i_{\beta} \leq n$ is no longer true.

Case 1:

- 4. (a) Given $\mathcal{K} \models \beta \leadsto \eta$, we know that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \eta$ must hold on line 4 of Algorithm 3 in RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \rightsquigarrow \eta$).
 - (b) Given $\mathcal{K} \not\models \beta \leadsto \neg \gamma$, we know that $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \neg \gamma$ does not hold on line 4 of Algorithm 3 in RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \leadsto \eta$).
 - (c) In order to have $\mathcal{K} \approx \beta \wedge \gamma \rightsquigarrow \eta$, RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \wedge \gamma \rightsquigarrow \eta$)
 - must return **True**.
 (d) Since $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \to \bot$, we will have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \land \gamma \to \bot$ by classical monotonicity.
 - (e) Since we have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \land \gamma \to \bot$, RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \land \gamma \leadsto \eta$) will progress out of its while loop on line 2 of Algorithm 3. (f) Since $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \to \eta$ and $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \to \neg \gamma$, we can
 - have $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \wedge \gamma \rightarrow \eta$ by classical monotonicity.
 - (g) By having $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \models \beta \wedge \gamma \rightarrow \eta$ on line 4 of Algorithm 3, RationalClosure $(\mathcal{R} \text{ of } \mathcal{K}, \beta \wedge \gamma \rightsquigarrow \eta)$ will return **True**, thereby giving $\mathcal{K} \approx \beta \wedge \gamma \rightsquigarrow \eta$ for this case.

Case 2:

- 5. (a) Since $i_{\beta} > n$, then $\bigcup_{j=i_{\beta}}^{j \leq n} \overrightarrow{R}_{j}^{j} = \emptyset$.

 - (b) If $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} = \emptyset$ and given $\mathcal{K} \approx \beta \sim \eta$, then $\mathcal{SR} \models \beta \rightarrow \eta$. (c) If $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} = \emptyset$ and given $\mathcal{K} \not\approx \beta \sim \neg \gamma$, then $\mathcal{SR} \not\models \beta \rightarrow \neg \gamma$.
 - (d) Since there is no number $i_{\beta} \leq n$ such that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \to \bot$, there will be no number $i_{\beta} \leq n$ such that $\bigcup_{j=i_{\beta}}^{j\leq n} R_{j}^{\beta} \cup \mathcal{SR} \not\models \beta \wedge \gamma \to \bot$ due to classical monotonicity.
 - (e) Since there is no number $i_{\beta} \leq n$ such that $\bigcup_{j=i_{\beta}}^{j\leq n} \overrightarrow{R_{j}} \cup \mathcal{SR} \not\models \beta \land \gamma \to \bot$, we will have $i_{\beta} > n$, so RationalClosure(\mathcal{R} of \mathcal{K} , $\beta \wedge \gamma \sim \eta$) will progress out of its while loop on line 2 of Algorithm 3.
 - (f) Since $\mathcal{SR} \models \beta \rightarrow \eta$ and $\mathcal{SR} \not\models \beta \rightarrow \neg \gamma$, we can have $\mathcal{SR} \models \beta \land \gamma \rightarrow \eta$ by classical monotonicity.
 - (g) By having $\mathcal{SR} \models \beta \land \gamma \rightarrow \eta$ on line 4 of Algorithm 3, Rational Closure (\mathcal{R} of K, $\beta \wedge \gamma \rightsquigarrow \eta$) will return **True**, thereby giving $K \approx \beta \wedge \gamma \rightsquigarrow \eta$ for this case.

References

1. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)