MACHINE LEARNING

iii) Regression Options:

i) Classificationii) Clustering

a) 2 Only b) 1 and 2 c) 1 and 3

Q1 to Q11 have only one correct answer. Choose the correct option to answer your question.
1. Movie Recommendation systems are an example of:

	d) 2 and 3 ANS: D
i) Cla	ntiment Analysis is an example of: i) Regression ssification ustering iv) Reinforcement Options: a) 1 Only b) 1 and 2 c) 1 and 3 d) 1, 2 and 4 ANS: D
	3. Can decision trees be used for performing clustering?a) Trueb) FalseANS: A
	ich of the following is the most appropriate strategy for data cleaning before performing clustering analysis, less than desirable number of data points: i) Capping and flooring of variables ii) Removal of outliers Options: a) 1 only b) 2 only c) 1 and 2 d) None of the above ANS: A
	5. What is the minimum no. of variables/ features required to perform clustering? a) 0 b) 1 c) 2 d) 3 ANS: B
	6. For two runs of K-Mean clustering is it expected to get same clustering results?a) Yesb) NoANS: B
<-Mea	7. Is it possible that Assignment of observations to clusters does not change between successive iterations in ans? a) Yes b) No c) Can't say

d) None of these

ANS: A

ASSIGNMENT - 2 MACHINE LEARNING

- 8. Which of the following can act as possible termination conditions in K-Means? i) For a fixed number of iterations.
- ii) Assignment of observations to clusters does not change between iterations. Except for cases witha bad local minimum.
- iii) Centroids do not change between successive iterations.
 - iv) Terminate when RSS falls below a threshold. Options: a) 1, 3 and 4
 - b) 1, 2 and 3
 - c) 1, 2 and 4
 - d) All of the above

ANS: D

- 9. Which of the following algorithms is most sensitive to outliers?
- a) K-means clustering algorithm
- b) K-medians clustering algorithm
- c) K-modes clustering algorithm
- d) K-medoids clustering algorithm

ANS: A

- 10. How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model (Supervised Learning): i) Creating different models for different cluster groups.
- ii) Creating an input feature for cluster ids as an ordinal variable.
- iii) Creating an input feature for cluster centroids as a continuous variable.
 - iv) Creating an input feature for cluster size as a continuous variable. Options:
 - a) 1 only
 - b) 2 only
 - c) 3 and 4
 - d) All of the above

ANS: D

- 11. What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering algorithms for the same dataset?
 - a) Proximity function used
 - b) of data points used
 - c) of variables used
 - d) All of the above

ANS: D

Q12 to Q14 are subjective answers type questions, Answers them in their own words briefly

12. Is K sensitive to outliers?

ANS: The k means the clustering algorithm, which we can say yes it is sensitive to outliers because a mean is easily influenced by extreme values. K-medoids clustering is a variant of k means that is more robust to noises and outliers. Instead of using the mean point as the center of a cluster, k- medoids uses an actual point in the cluster to represent it. Medoid is the most centrally located object of the cluster, with minimum sum of distances to other points.

13. Why is K means better?

ANS: k means is better because as it includes many advantages points like:

- ----- it is relatively simple to implement
- ----it scales to large data sets
- -----guarantees convergence
- ----can warm start the positions of centroids
- -----easily adopts to new examples
- -----generalizes to clusters of different shapes and sizes, such as elliptical clusters

14. Is K means a deterministic algorithm?

ANS: No, the k means is not a deterministic algorithm. K means is consider in a non- deterministic algorithm which means running the same data many times gives the different results.