MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

3^a Lista de Exercícios

Para entregar: exercícios 10, 12, 29, 30.

OBS.: Regras para ganhar a nota extra referente aos exercícios marcados com "BÔNUS": (1) a resolução deve redigida de forma clara e sem erros, e não há notas intermediárias; (2) a nota máxima a ser dada como bônus é 1,0 ponto na média do semestre; (3) os exercícios devem ser entregues no prazo para entrega da lista.

- 1-) Exercícios do capítulo 5 do Elonzinho.
- 2-) Toda coleção de abertos não-vazios, dois a dois disjuntos, é enumerável.
- **3-)** (a) O conjunto dos valores de aderência de uma seqüência é um conjunto fechado.
 - (b) Sejam $(x_n)_{n\in\mathbb{N}}$ uma sequiência de números reais e $X \doteq \{x_n : n \in \mathbb{N}\}$. Então $\overline{X} = X \cup \{x \in \mathbb{R} \mid x \text{ é valor de aderência de } (x_n)_{n\in\mathbb{N}}\}$.
- 4-) DEFINIÇÃO: Seja $X \subset \mathbb{R}$; uma $cis\~ao$ de X é um par de subconjuntos $A, B \subset X$ tal que: (i) $A \cup B = X$ e (ii) $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ (i.e. nenhum ponto de A é aderente a B e nenhum ponto de B é aderente a A; em particular, A e B são disjuntos). A cisão diz-se trivial se A ou B for vazio; $X \subset \mathbb{R}$ diz-se conexo se admitir apenas a cisão trivial (i.e. se (i) e (ii) acima implicarem $A = \emptyset$ ou $B = \emptyset$).

Mostre que todo intervalo real é conexo. SUGESTÃO: Está demonstrado no Elonzinho, mas tente um pouco antes de olhar a referida demonstração.

- 5-) Sejam F, G conjuntos fechados disjuntos tais que $F \cup G$ seja um intervalo fechado. Então $F = \emptyset$ ou $G = \emptyset$.
- 6-) Seja $E \subset \mathbb{R}$ enumerável. Mostre que existe uma seqüência cujo conjunto de valores de aderência é \overline{E} . Use este fato para mostrar que todo conjunto fechado $F \subset \mathbb{R}$ é o conjunto dos valores de aderência de alguma seqüência. Bônus: Vale 0,25 pontos na média do semestre.
- 7-) Sejam $X,Y\subset\mathbb{R}$. Mostre que $\overline{X\cup Y}=\overline{X}\cup\overline{Y}$ e $\overline{X\cap Y}\subset\overline{X}\cap\overline{Y}$. Dê um exemplo no qual a inclusão não se reduz a uma igualdade.
- 8-) Um conjunto não-vazio $X \subset \mathbb{R}$ é um intervalo se, e somente se, satisfaz a seguinte condição: $(\forall a, b \in X)$ $a < x < b \Rightarrow x \in X$.
- 9-) Um conjunto é denso em \mathbb{R} se, e somente se, o seu complementar tem interior vazio.

- **10-)** Defina a $dist \hat{a}ncia$ de um ponto $a \in \mathbb{R}$ a um conjunto não-vazio $X \subset \mathbb{R}$ por $d(a, X) \doteq \inf\{|x a| \mid x \in X\}$. Mostre que:
 - (a) $d(a, X) = 0 \Leftrightarrow a \in \overline{X};$
 - (b) Se $F \subset \mathbb{R}$ é fechado, então $(\forall a \in \mathbb{R}, \exists b \in F) d(a, F) = |b a|$.
- 11-) Se $X \subset \mathbb{R}$ é limitado superiormente, \overline{X} também o é. Além disso, sup $X = \sup \overline{X}$. Enuncie e prove um resultado análogo para inf.
- **12-)** Para todo $X \subset \mathbb{R}$, X' é fechado.
- 13-) Um número real a é ponto de acumulação de $X \subset \mathbb{R}$ se, e somente se, for ponto de acumulação de \overline{X} .
- **14-)** $(X \cup Y)' = X' \cup Y'$.
- 15-) Sejam $F \subset \mathbb{R}$ fechado e $x \in F$. Então x é ponto isolado de F se, e somente se, $F \setminus \{x\}$ é fechado.
- 16-) Um conjunto $F \subset \mathbb{R}$ diz-se perfeito se F = F' (i.e. F é um conjunto fechado sem pontos isolados). Mostre que um conjunto perfeito não-vazio não é enumerável.
 - SUGESTÃO: (a) Demonstre o seguinte lema: seja F = F' não-vazio; então, para todo $x \in F$, existe $F_x \subset F$ não-vazio, perfeito e limitado tal que $x \notin F_x$.
 - (b) Use o lema do item anterior e a mesma técnica que foi usada para demonstrar que \mathbb{R} não é enumerável. Se não conseguir demonstrar usando esta sugestão, veja a demonstração no Elonzão.
- 17-) Seja $F \subset \mathbb{R}$ fechado, infinito enumerável. Então F possui uma infinidade de pontos isolados. Bônus: VALE 0.25 PONTOS NA MÉDIA DO SEMESTRE.
- 18-) Todo número real é limite de uma sequência de números transcendentes dois a dois distintos.
- 19-) Um conjunto $X \subset \mathbb{R}$ diz-se discreto se todos os seus pontos forem isolados. Mostre que todo conjunto discreto é enumerável. Sugestão: Conforme demonstrado em aula, todo $X \subset \mathbb{R}$ possui um subconjunto enumerável denso em X.
- **20-)** Se $X \subset \mathbb{R}$ não é enumerável, então $X \cap X' \neq \emptyset$.
- **21-**) Seja $X \subset \mathbb{R}$ compacto e discreto (vide questão **19-**)). Então X é finito.
- **22-**) (TEOREMA DE LINDELÖF) Seja $X \subset \mathbb{R}$. Toda cobertura aberta de X possui uma subcobertura enumerável. Bônus: Vale 0,25 pontos na média do semestre.
- **23-**) DEFINIÇÃO: Sejam $X \subset \mathbb{R}$ um conjunto e $a \in \mathbb{R}$. Diz-se que a é um ponto de acumulação à direita de X se, para todo $\epsilon > 0$, o intervalo $(a, a + \epsilon)$ contém algum ponto de X. Isto é equivalente a uma das seguintes condições:
 - (a) a é ponto de acumulação (ordinário) de $X \cap [a, +\infty)$;
 - (b) existe uma sequência de elementos de X, $(x_n)_{n\in\mathbb{N}}$, tal que $(\forall n\in\mathbb{N})$ $x_n>a$ e tal que $x_n\to a$;
 - (c) para todo $\epsilon > 0$, o intervalo $(a, a + \epsilon)$ tem uma infinidade de pontos de X.

Analogamente se define um ponto de acumulação à esquerda de X.

NOTAÇÃO: $X'_{+} \doteq \{a \in \mathbb{R} \mid a \text{ ponto de acumulação à direita de } X\},$ $X'_{-} \doteq \{a \in \mathbb{R} \mid a \text{ ponto de acumulação à esquerda de } X\}.$

Dados $X \subset \mathbb{R}$ e $a \in \mathbb{R}$, diz-se que a é um ponto de acumulação bilateral de X se $a \in X'_+ \cap X'_-$ (i.e. se for ponto de acumulação à direita e à esquerda), e que a é um ponto de acumulação unilateral se $a \in X'_+ \setminus X'_-$ ou $a \in X'_- \setminus X'_+$ (i.e. se for ponto de acumulação à direita e não o for à esquerda, ou se for ponto de acumulação à esquerda e não o for à direita).

Seja $X \subset \mathbb{R}$. Mostre que, se todo ponto de acumulação de X é unilateral, então X é enumerável. Bônus: VALE 0.25 PONTOS NA MÉDIA DO SEMESTRE.

- **24-**) As seguintes afirmações a respeito de um conjunto $X \subset \mathbb{R}$ são equivalentes:
 - (a) X é limitado;
 - (b) Todo subconjunto infinito de X possui ponto de acumulação (que pode não pertencer a X);
 - (c) Toda sequência de pontos de X possui uma subsequência convergente (cujo limite pode não estar em X).
- **25-**) DEFINIÇÃO: Seja $A \subset \mathbb{R}$ um conjunto limitado. Define-se o $di \hat{a}metro$ de A por: diam $A \doteq \sup\{|x-y|: x,y \in A\}$. Sejam $X \subset \mathbb{R}$ e $(A_{\lambda})_{\lambda \in L}$ uma cobertura aberta de X. Um número real $\delta > 0$ chama-se um $n \hat{a}mero$ de Lebesgue para a cobertura $(A_{\lambda})_{\lambda \in L}$ de X se , para todo subconjunto $I \subset X$ com diâmetro menor ou igual a δ , existe $\lambda \in L$ tal que $I \subset A_{\lambda}$.

Seja $X \subset \mathbb{R}$ compacto. Mostre que toda cobertura aberta $(A_{\lambda})_{\lambda \in L}$ admite um número de Lebesgue. Bônus: VALE 0,25 PONTOS NA MÉDIA DO SEMESTRE.

- **26-)** Seja $[a,b] \subset \mathbb{R}$ e $(A_{\lambda})_{{\lambda}\in L}$ uma cobertura aberta de [a,b]. Mostre que é possível decompor [a,b] em um número finito de intervalos justapostos, de modo que cada um deles esteja contido em algum A_{λ} . Mostre ainda que estes intervalos podem ser tomados todos com o mesmo comprimento. SUGESTÃO: Use a questão anterior.
- 27-) (TEOREMA DE BAIRE) Seja $(F_n)_{n\in\mathbb{N}}$ uma família de subconjuntos de \mathbb{R} , tal que $(\forall n \in \mathbb{N})$ F_n é fechado e tem interior vazio. Então $S \doteq \cup_{n\in\mathbb{N}} F_n$ tem interior vazio. SUGESTÃO: Pela questão 9-), é equivalente mostrar que a intersecção dos complementares dos F_n 's é densa em \mathbb{R} ; imite a demonstração que fizemos para mostrar que \mathbb{R} não é enumerável. Bônus: VALE 0,25 PONTOS NA MÉDIA DO SEMESTRE.
- **28-)** O conjunto $\mathbb{R} \setminus \mathbb{Q}$ dos números irracionais não pode ser expresso como reunião enumerável de fechados. SUGESTÃO: Use a questão anterior.
- 29-) Seja $X \subset \mathbb{R}$. Uma função $f: X \to \mathbb{R}$ diz-se localmente limitada se, para cada $x \in X$, existe um intervalo aberto I_x contendo x tal que $f|_{I_x \cap X}$ é limitada (i.e. se f for limitada numa vizinhança aberta de cada ponto de X). Mostre que, se X é compacto, toda função $f: X \to \mathbb{R}$ localmente limitada é limitada. Sugestão: propriedade de Borel-Lebesgue.
- **30-)** Se $X \subset \mathbb{R}$ é não-enumerável, X' também o é.
- **31-**) DEFINIÇÃO: Sejam $X \subset \mathbb{R}$ e $a \in \mathbb{R}$. Diz-se que a é um ponto de condensação de X se todo intervalo aberto de centro a contiver uma infinidade não-enumerável de pontos de X.

Sejam $F \subset \mathbb{R}$ fechado e F_0 o conjunto dos pontos de condensação de F. Mostre que F_0 é um conjunto perfeito (vide questão **16-)**) e que $F \setminus F_0$ é enumerável. Conclua daí o teorema de Bendixon: todo fechado da reta é a reunião de um conjunto perfeito com um conjunto enumerável.

Bônus: vale 0,25 pontos na média do semestre.

32-) Seja K o conjunto de Cantor (vide definição no Elonzinho ou Elonzão). Dado $\epsilon > 0$, mostre que existem intervalos abertos $(\forall i \in \{1, ..., n\})$ $J_i = (a_i, b_i)$ tais que $K \subset \bigcup_{i=1}^n J_i$ e $\sum_{i=1}^n (b_i - a_i) < \epsilon$.