Particle spectrograph

Wave operator and propagator

_																						
σ $ au_{1}^{+2}$	0	0 (0) $ -\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))} $	10	0 () $\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	$\sigma_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#2}$ $\sigma_{0^{-}}^{\#1}$	$+\frac{i}{(1+2)}$ $+\frac{i}{(1+2)}$ $+\frac{i}{(1+2)}$		$-\frac{i}{(1+i)}$	$ \tau_{0}^{\#1} $ $ \tau_{0}^{\#1} $ $ \tau_{0}^{2} k $ $ \tau_{2}^{2} k^{2} $ $ \tau_{3}^{2} k $ $ \tau_{4}^{2} k $ $ \tau_{4}^{2} k $ $ \tau_{5}^{2} k $ $ \tau_{5}^{2} k $ $ \tau_{7}^{2} k $ $ \tau_{7}^{2}$		$\sigma_0^{\#}$ 0 0 $\frac{1}{k^2 r_2}$		$\sigma_{2^{+}}^{\#1}$ † $\tau_{2^{+}}^{\#1}$ † $\sigma_{2^{-}}^{\#1}$ † $\sigma_{2^{-}}^{\#1}$	$\uparrow^{\alpha\beta}$		$\frac{(2)^{2}}{(2)^{2}} t_{1}$ $\frac{\sqrt{2} k}{(2)^{2} t_{1}}$	$-\frac{2i}{(1+2i)^2}$ $\frac{2i}{(1+2i)^2}$	$ \begin{array}{c} t^{\pm 1} \\ t^{\pm 1} \\ \alpha\beta \end{array} $ $ \begin{array}{c} \sqrt{2} k \\ 2k^{2})^{2} t_{1} \end{array} $ $ \begin{array}{c} t^{\pm 2} \\ k^{2})^{2} t_{1} \end{array} $	σ_2^{*}
$t_1^{\#1}$	0	0	0	0	0	0	0	J						k /2	-t1	2 .	L					
$\sigma_{1^-}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2 k^2) (3t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_3}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$\frac{i\sqrt{2} k(6k^2 r_5 + t_1 + 4t_3)}{(1+2k^2)^2 (3t_1t_3 + 2k^2 r_5 (t_1 + t_3))}$	$f_{1^-}^{\#2}$	0	0	0	$\frac{1}{3}$ \vec{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k\left(t_1+t_3\right)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$							
				$1+2k^{2}$	+2 k ²)		$i \sqrt{\frac{i}{+2k^2}}$	$f_{1^-}^{\#1}$	0	0	0	0	0	0	0							
$\sigma_{1^-\alpha}^{\#1}$		0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))} $ (1		$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))} - \frac{(1+2k^2)(3t_1t_3+2t_3)}{(1+2k^2)(3t_1t_3+2t_3)}$	$\omega_{1}^{\#1}$ $\omega_{1}^{\#2}$ $\omega_{1}^{\#2}$	0 0	0 0	0 0	$+t_1+4t_3$) $\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1-2t_3}{3\sqrt{2}}$ $\frac{t_1+t_3}{3}$	0 0	$t_1 - 2t_3$ $-\frac{1}{3}\bar{l}\sqrt{2}k(t_1 + t_3)$	$f_{2}^{\#}$	$\overset{*}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{$	3 <u>ii</u>	$ \begin{array}{ccc} t^{\pm 1} & \alpha \beta \\ t^{\pm 1} & 2 \\ t^{\pm 1} & \sqrt{2} \\ 0 \end{array} $	$f_{2}^{\#1}_{2+\alpha\beta}$ $-\frac{ikt_{1}}{\sqrt{2}}$ $k^{2}t_{1}$	$\omega_{2}^{\#1} \alpha$ 0 $\frac{t_{1}}{2}$	Έβχ
$\tau_1^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0					$\frac{1}{6} (6 k^2 r_5)$	1. 1. 3. 3.		$-\frac{1}{3}\bar{l}k(t_1$	$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 - t_1$	•	
$g_{\mathcal{R}}$	$\frac{1}{2}$	$\frac{+t_1}{t_1^2}$	$\frac{-kt_1)}{t_1^2}$					$f_{1}^{\#1}\alpha eta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	$f_{0}^{#2}$	0	0	0	0		
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	$\omega_{1}^{\#2}{}_{\alphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	$f_{0}^{\#1}$	$\sqrt{2} kt_3$	$2 k^2 t_3$	0	0		
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	$\omega_{0}^{\#1}$	t3 -Ñ	kt_3	0	0		
	$\sigma_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^-}^{\#1} +^\alpha$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} \dotplus^{\alpha}$	$t_1^{\#2} + ^{\alpha}$		$\omega_1^{#1} + \alpha \beta$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{\#1} \dagger^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{lpha}$	$f_{1}^{#2} + \alpha$	מ	$\omega_{0}^{\#1}$ †	$f_0^{#1} + \bar{I} \sqrt{2}$	$f_{0}^{#2} +$	$\omega_{0}^{\#1}\dagger$		

uge generators	Multiplicities	1	1	3	3	3	5	16
Source constraints/gauge generators	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} = 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0 \ \ 3$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0$	Total constraints:

 $4 r_2 \, \partial_\beta \omega_{\alpha\theta_l} \, \partial^\theta \omega^{\alpha\beta_l} + 4 \, r_2 \, \partial_\beta \omega_{l\theta\alpha} \, \partial^\theta \omega^{\alpha\beta_l} - 2 \, r_2 \, \partial_l \omega_{\alpha\beta\theta} \, \partial^\theta \omega^{\alpha\beta_l} + 2 \, r_2 \, \partial_\theta \omega_{\alpha\beta_l}$

 $6t_1\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha\prime} - 3t_1\partial_{\alpha}f_{\,\theta\prime}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\imath}f_{\,\alpha\theta}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\theta}f_{\,\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$

 $3t_1\partial_\theta f_{i\alpha}\partial^\theta f^{\alpha\prime} + 6t_1\ \omega_{\alpha\theta\prime}\ (\omega^{\alpha\prime\theta} + 2\,\partial^\theta f^{\alpha\prime}) + 8\,r_2\,\partial_\beta\omega_{\alpha\prime\theta}\,\partial^\theta\omega^{\alpha\beta\prime} -$

 $S == \iiint (\frac{1}{6} (2 \omega^{\alpha \prime} (t_1 \omega^{\theta}_{\prime \theta} - 2t_3 \omega^{\kappa}_{\prime \kappa}) + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}^{\alpha})$

 $4t_3 \partial_i f^{\alpha i} \partial_k f_{\alpha}^{\ \ k} - 8t_3 \partial^i f^{\alpha}_{\ \ \alpha} \partial_k f_{i}^{\ \ k} - 6r_5 \partial_\alpha \omega^{\alpha i \theta} \partial_k \omega_{i}^{\ \ k} + 12r_5 \partial^\theta \omega^{\alpha i}$

 $6r_5\partial_{lpha}\omega^{lphaert}\partial_{\kappa}\omega^{\ \ \ \ \ \ \ }_{ert}, -12r_5\partial_{eta}\omega^{lphaert}_{\ \ \ \ \ \ \ \ \ \ \ }_{lpha})][t,\, lpha,\, eta,\, z]\,dz\,dy\,dlpha'dt$

Massive and massless spectra

?
$$J^{P} = 1^{-}$$
?
?

?	Massive particle								
	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$							
	Polarisations:	3							
	Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$							
	Spin:	1							
	Parity:	Odd							

?
$$J^{P} = 0^{-}$$
?
?

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0 \&\& 0 < t_3 < -t_1$