Introdução à Inferência e Distribuição Amostral

Prof. Me. Lineu Alberto Cavazani de Freitas

Departamento de Estatística Laboratório de Estatística e Geoinformação

Associe as colunas:

- 1) População.
- 2) Amostra.
- 3) Inferência.
- 4) Parâmetro.
- 5) Estimador.
- 6) Estimativa pontual.
- 7) Estimativa intervalar.
- 8) Distribuição amostral.

- () Ramo da Estatística que tem como objetivo estudar a população por meio de evidências fornecidas por uma amostra.
- () Conjunto de todos os elementos que compartilham alguma característica comum que temos interesse em estudar.
- () Um único valor numérico como candidato para o parâmetro de interesse.
- () Intervalo conjunto de valores "plausíveis" para o parâmetro de interesse.
- () Cálculo efetuado com os elementos da amostra com a finalidade de representar (estimar) um parâmetro na população.
- () Subconjunto da população.
- () Uma medida numérica que descreve alguma característica da população.
- () Distribuição de probabilidades de estimativas.

Associe as colunas:

- 1) População.
- 2) Amostra.
- 3) Inferência.
- 4) Parâmetro.
- 5) Estimador.
- 6) Estimativa pontual.
- 7) Estimativa intervalar.
- 8) Distribuição amostral.

- (3) Ramo da Estatística que tem como objetivo estudar a população por meio de evidências fornecidas por uma amostra.
- (1) Conjunto de todos os elementos que compartilham alguma característica comum que temos interesse em estudar.
- (6) Um único valor numérico como candidato para o parâmetro de interesse.
- (7) Intervalo conjunto de valores "plausíveis" para o parâmetro de interesse.
- (5) Cálculo efetuado com os elementos da amostra com a finalidade de representar (estimar) um parâmetro na população.
- (2) Subconjunto da população.
- (4) Uma medida numérica que descreve alguma característica da população.
- (8) Distribuição de probabilidades de estimativas.

Considere que existe interesse em avaliar a eficácia de determinada vacina. Para isso foi delineado um estudo em que aplicou-se a vacina à um grupo de indivíduos. Cada indivíduo, após um teste específico, foi classificado como "imunizado" ou "não imunizado".

- a) Qual é a população de interesse?
- b) Qual é a amostra?
- c) Qual é o parâmetro de interesse?
- d) Qual o estimador para esse parâmetro?
- e) O que seria uma estimativa neste problema?
- f) Qual é a distribuição amostral do estimador?

Considere que existe interesse em avaliar a eficácia de determinada vacina. Para isso foi delineado um estudo em que aplicou-se a vacina à um grupo de indivíduos. Cada indivíduo, após um teste específico, foi classificado como "imunizado" ou "não imunizado".

- a) Qual é a população de interesse?
 - Indivíduos que tomaram/tomarão a vacina.
- b) Oual é a amostra?
 - Subconjunto dos indivíduos sujeitos à vacina.
- c) Qual é o parâmetro de interesse?
 - Proporção de imunizados.
- d) Qual o estimador para esse parâmetro?
 - Y: 1 se imunizado, o se não imunizado.
 - $\hat{p} = \frac{\sum Y}{n}$.
- e) O que seria uma estimativa neste problema?
 - Um valor observado de proporção em uma amostra.
- f) Qual é a distribuição amostral do estimador?
 - Pelo teorema do limite central: $\hat{p} \sim N(\mu = p; \sigma^2 = \sqrt{p(1-p)}/n)$

Um experimento genético envolve uma população de moscas de frutas que consiste em 1 macho (Mike) e 3 fêmeas, chamadas Ana, Bárbara e Cristina. Suponha que duas moscas de frutas sejam selecionadas aleatoriamente *com reposição*.

- a) Liste todas as possíveis amostras de tamanho 2.
- b) Para cada amostra calcule a proporção de fêmeas.
- c) Construa a distribuição amostral da proporção de fêmeas.
- d) Encontre a média da distribuição amostral.
- e) Compare a média da distribuição amostral com a verdadeira proporção de fêmeas na população.

Exercício 3 M: Mike; A: Ana; B: Bárbara; C: Cristina.

Pares	Proporções	
MM	0.0	
MA	0.5	
MB	0.5	
MC	0.5	
AM	0.5	
AA	1.0	
AB	1.0	
AC	1.0	
BM	0.5	
BA	1.0	
BB	1.0	
BC	1.0	
CM	0.5	
CA	1.0	
СВ	1.0	
CC	1.0	

p	0	0.5	1	
Prob.	0.0625	0.3750	0.5625	

$$E(\hat{p}) = 0.75$$

$$p = 3/4 = 0.75$$