MODULE 2: Virtualization and Cloud Computing

Other types of virtualization

1. Storage virtualization

Storage virtualization is a system administration practice that allows decoupling the physical organization of the hardware from its logical representation. Using this technique, users do not have to be worried about the specific location of their data, which can be identified using a logical path. There are different techniques for storage virtualization, one of the most popular being network-based virtualization by means of *storage area networks* (*SANs*).

2. Network virtualization

Network virtualization combines hardware appliances and specific software for the creation and management of a virtual network. Network virtualization can aggregate different physical networks into a single logical network (*external* network virtualization) or provide network-like functionality to an operating system partition (*internal* network virtualization). The result of external network virtualization is generally a *virtual LAN (VLAN)*. A VLAN is an aggregation of hosts that communicate with each other as though they were located under the same

broadcasting domain. There are several options for implementing internal network virtualization: The guest can share the same net- work interface of the host and use Network Address Translation (NAT) to access the network; the virtual machine manager can emulate, and install on the host, an additional network device, together with the driver; or the guest can have a private network only with the guest.

3. Desktop virtualization

Desktop virtualization abstracts the desktop environment available on a personal computer in order to provide access to it using a client/server approach. Desktop virtualization provides the same out- come of hardware virtualization but serves a different purpose. Similarly to hardware virtualization, desktop virtualization makes accessible a different system as though it were natively installed on the host, but this system is remotely stored on a different host andaccessed through a network connection. Moreover, desktop virtualization addresses the problem of making the same desktop environment accessible from everywhere. The advantagesof desktop virtualization are high availability, persistence, accessibility, and ease of management. Infrastructures for desktop virtualization based on cloud computing solutions include Sun Virtual Desktop Infrastructure (VDI), Parallels Virtual Desktop Infrastructure (VDI), Citrix XenDesktop, and others.

4. Application server virtualization

Application server virtualization abstracts a collection of application servers that provide the same services as a single virtual application server by using load-balancing strategies and providing a high-availability infrastructure for the services hosted in the application server. This is a particular form of virtualization and serves the same purpose of storage virtualization: providing a better quality of service rather than emulating a different environment.

Virtualization and cloud computing

Virtualization plays an important role in cloud computing since it allows for the appropriate degree of customization, security, isolation, and manageability that are fundamental for delivering IT services on demand. Virtualization technologies are primarily used to offer configurable computing environments and storage.

Particularly important is the role of virtual computing environment and execution virtualization techniques. Among these, hardware and programming language virtualization are the techniques

adopted in cloud computing systems. Hardware virtualization is an enabling factor for solutions in the Infrastructure-as-a-Service (IaaS) market segment, while programming language virtualization is a technology leveraged in Platform-as-a-Service (PaaS) offerings. In both cases, the capability of offering a customizable and sandboxed environment constituted an attractive business opportunity for companies featuring a large computing infrastructure that was able to sustain and process huge workloads. Moreover, virtualization also allows isolation and a finer control, thus simplifying the leasing of services and their accountability on the vendor side.

Virtualization allows us to create isolated and controllable environments, it is possible to serve these environments with the same resource without them interfering with each other. If the underlying resources are capable enough, there will be no evidence of such sharing. It allows reducing the number of active resources by aggregating virtual machines over a smaller number of resources that become fully utilized. This practice is also known as server consolidation, while the movement of virtual machine instances is called virtual machine migration (see Figure 3.10). Because virtual machine instances are controllable environments, consolidation can be applied with a minimum impact, either by temporarily stopping its execution and moving its data to the new resources or by performing a finer control and moving the instance while it is running. This second techniques is known as live migration and in general is more complex to implement but more efficient since there is no disruption of the activity of the virtual machine instance

FIGURE 3.10

Live migration and server consolidation.

Pros and cons of virtualization

Advantages of virtualization

Managed execution and isolation are perhaps the most important advantages of virtualization. In the case of techniques supporting the creation of virtualized execution environments, these two characteristics allow building secure and controllable computing environments. A virtual execution environment can be configured as a sandbox, thus preventing any harmful operation to cross the borders of the virtual host. Moreover, allocation of resources and their partitioning among different guests is simplified, being the virtual host controlled by a program. This enables fine-tuning of resources, which is very important in a server consolidation scenario and is also a requirement for effective quality of service

Portability and self-containment also contribute to reducing the costs of maintenance, since the number of hosts is expected to be lower than the number of virtual machine instances. By means of virtualization it is possible to achieve a more efficient use of resources. Multiple systems can securely coexist and share the resources of the underlying host, without interfering with each other.

Performance degradation

Performance is definitely one of the major concerns in using virtualization technology. Since virtualization interposes an abstraction layer between the guest and the host, the guest can experience increased latencies.

For instance, in the case of hardware virtualization, where the intermediate emulates a bare machine on top of which an entire system can be installed, the causes of performance degradation can be traced back to the overhead introduced by the following activities:

- Maintaining the status of virtual processors
- Support of privileged instructions (trap and simulate privileged instructions)
- Support of paging within VM
- Console functions

Furthermore, when hardware virtualization is realized through a program that is installed or executed on top of the host operating systems, a major source of performance degradation is represented by the fact that the virtual machine manager is executed and scheduled together with other applications, thus sharing with them the resources of the host.

Similar consideration can be made in the case of virtualization technologies at higher levels, such as in the case of programming language virtual machines (Java, .NET, and others). Binary translation and interpretation can slow down the execution of managed applications. Moreover, because their execution is filtered by the runtime environment, access to memory and other physical resources can represent sources of performance degradation.

These concerns are becoming less and less important thanks to technology advancements and the ever-increasing computational power available today. For example, specific techniques for hard- ware virtualization such as paravirtualization can increase the performance of the guest program by offloading most of its execution to the host without any change. In programming-level virtual machines such as the JVM or .NET, compilation to native code is offered as an option when perfor- mance is a serious concern.

Disadvantages:

Inefficiency and degraded user experience

Virtualization can sometime lead to an inefficient use of the host. In particular, some of the specific features of the host cannot be exposed by the abstraction layer and then become inaccessible. In the case of hardware virtualization, this could happen for device drivers: The virtual machine can sometime simply provide a default graphic card that maps only a subset of the features available in the host. In the case of programming-level virtual machines, some of the features of the underlying operating systems may become inaccessible unless specific libraries are used.

Security holes and new threats

Virtualization opens the door to a new and unexpected form of *phishing*. The capability of emulating a host in a completely transparent manner led the way to malicious programs that are designed to extract sensitive information from the guest.

In the case of hardware virtualization, malicious programs can preload themselves before the operating system and act as a thin virtual machine manager toward it. The operating system is then controlled and can be manipulated to extract sensitive information of interest to third parties.

Technology examples

Xen: paravirtualization

Xen is an open-source initiative implementing a virtualization platform based on paravirtualization. Initially developed by a group of researchers at the University of Cambridge in the United Kingdom, Xen now has a large open-source community backing it. . Xen-based technology is used for either desktop virtualization or server virtualization, and recently it has also been used to provide cloud computing solutions by means of Xen Cloud Platform (XCP).

Figure 2.11 describes the architecture of Xen and its mapping onto a classic x86 privilege model. A Xen-based system is managed by the Xen hypervisor, which runs in the highest

privileged mode and controls the access of guest operating system to the underlying hardware.

Figure 2.11 Xen architecture and guest OS management

Guest operating systems are executed within domains, which represent virtual machine instances. Moreover, specific control software, which has privileged access to the host and controls all the other guest operating systems, is executed in a special domain called Domain 0. This is the first one that is loaded once the virtual machine manager has completely booted, and it hosts a HyperText Transfer Protocol (HTTP) server that serves requests for virtual machine creation, con-figuration, and termination. This component constitutes the embryonic version of a distributed virtual machine manager, which is an essential component of cloud computing systems providing Infrastructure-as-a-Service (IaaS) solutions.

Many of the x86 implementations support four different security levels, called rings, where Ring 0 represent the level with the highest privileges and Ring 3 the level with the lowest ones.

Because of the structure of the x86 instruction set, some instructions allow code executing in Ring 3 to jump into Ring 0 (kernel mode). Such operation is performed at the hardware leveland therefore within a virtualized environment will result in a trap or silent fault, thus preventing

the normal operations of the guest operating system, since this is now running in Ring 1. This condition is generally triggered by a subset of the system calls. To avoid this situation, operating systems need to be changed in their implementation, and the sensitive system calls need to be reimplemented with hypercalls, which are specific calls exposed by the virtual machine interface of Xen. With the use of hypercalls, the Xen hypervisor is able to catch the execution of all the sensitive instructions, manage them, and return the control to the guest operating system by means of a supplied handler.

Paravirtualization needs the operating system codebase to be modified, and hence not all operating systems can be used as guests in a Xen-based environment. Open-source operating systems such as Linux can be easily modified, since their code is publicly available and Xen provides full support for their virtualization, whereas components of the Windows family are generally not supported by Xen unless hardware-assisted virtualization is available.

VMware: full virtualization: VMware's technology is based on the concept of *full virtualization*, where the underlying hardware is replicated and made available to the guest operating system, which runs unaware of such abstraction layers and does not need to be modified. VMware implements full virtualization either in the desktop environment, by means of *Type II* hypervisors, or in the server environment, by means of *Type I* hypervisors. In both cases, full virtualization is made possible by means of *direct execution* (for nonsensitive instructions) and *binary translation* (for sensitive instructions), thus allowing the virtualization of architecture such as x86.

A full virtualization reference model.

Web 2.0

The Web is the primary interface through which cloud computing delivers its services. At present, the Web encompasses a set of technologies and services that facilitate interactive information sharing, collaboration, user-centered design, and application composition. This evolution has transformed the Web into a rich platform for application development and is known as *Web 2.0*. This term captures a new way in which developers architect applications and

deliver services through the Internet and provides new experience for users of these applications and services.

Web 2.0 brings *interactivity* and *flexibility* into Web pages, providing enhanced user experience by gaining Web-based access to all the functions that are normally found in desktop applications. These capabilities are obtained by integrating a collection of standards and technologies such as *XML*, *Asynchronous JavaScript and XML* (*AJAX*), *Web Services*, and others.

Service-oriented computing

Service orientation is the core reference model for cloud computing systems. This approach adopts the concept of services as the main building blocks of application and system development. Service-oriented computing (SOC) supports the development of rapid, low-cost, flexible, interoperable, and evolvable applications and systems.

A *service* is an abstraction representing a self-describing and platform-agnostic component that can perform any function anything from a simple function to a complex business process. Virtually any piece of code that performs a task can be turned into a service and expose its functionalities through a network-accessible protocol. A service is supposed to be *loosely coupled*, *reusable*, *programming language independent*, and *location transparent*. Services are composed and aggregated into a *service-oriented architecture* (*SOA*). Service-oriented computing introduces and diffuses two important concepts, which are also fundamental to cloud computing: *quality of service* (*QoS*) and *Software-as-a-Service* (*SaaS*).

Quality of service (QoS) identifies a set of functional and nonfunctional attributes that can be used to evaluate the behavior of a service from different perspectives. These could be performance metrics such as response time, or security attributes, transactional integrity, reliability, scalability, and availability. QoS requirements are established between the client and the provider via an SLA that identifies the minimum values (or an acceptable range) for the QoS attributes that need to be satisfied upon the service call.

The concept of Software-as-a-Service introduces a new delivery model for applications. The term has been inherited from the world of application service providers (ASPs), which deliver

software services-based solutions across the wide area network from a central datacenter and make them available on a subscription or rental basis.

Utility-oriented computing

Utility computing is a vision of computing that defines a service-provisioning model for compute services in which resources such as storage, compute power, applications, and infrastructure are packaged and offered on a pay-per-use basis. The idea of providing computing as a *utility* like natural gas, water, power, and telephone connection has a long history but has become a reality today with the advent of cloud computing.

Building cloud computing environments

The creation of cloud computing environments encompasses both the development of applications and systems that leverage cloud computing solutions and the creation of frameworks, platforms, and infrastructures delivering cloud computing services.

Application development

Applications that leverage cloud computing benefit from its capability to dynamically scale on demand. One class of applications that takes the biggest advantage of this feature is that of *Web applications*. These applications are characterized by complex processes that are triggered by the interaction with users and develop through the interaction between several tiers behind the Web front end.

Another class of applications that can potentially gain considerable advantage by leveraging cloud computing is represented by *resource-intensive applications*. These can be either data-intensive or compute-intensive applications. In both cases, considerable amounts of resources are required to complete execution in a reasonable timeframe. It is worth noticing that these large amounts of resources are not needed constantly or for a long duration.

Infrastructure and system development

Distributed computing, virtualization, service orientation, and Web 2.0 form the core technologies enabling the provisioning of cloud services from anywhere on the globe. Developing applications and systems that leverage the cloud requires knowledge across all these technologies.

Infrastructure-as-a-Service solutions provide the capabilities to add and remove resources, but it

is up to those who deploy systems on this scalable infrastructure to make use of such opportunities with wisdom and effectiveness. Platform-as-a-Service solutions embed into their core offering algorithms and rules that control the provisioning process and the lease of resources. These can be either completely transparent to developers or subject to fine control. Web 2.0 technologies constitute the interface through which cloud computing services are delivered, managed, and provisioned. Besides the interaction with rich interfaces through the Web browser, Web services have become the primary access point to cloud computing systems from a programmatic standpoint. Service orientation is the underlying paradigm that defines thearchitecture of a cloud computing system.

Virtualization is another element that plays a fundamental role in cloud computing. This technology is a core feature of the infrastructure used by cloud providers.

Computing platforms and technologies

Amazon web services (AWS)

AWS offers comprehensive cloud IaaS services ranging from virtual compute, storage, and networking to complete computing stacks. AWS is mostly known for its compute and storage-on-demand services, namely *Elastic Compute Cloud (EC2)* and *Simple Storage Service (S3)*. EC2 provides users with customizable virtual hardware that can be used as the base infrastructure for deploying computing systems on the cloud. It is possible to choose from a large variety of virtual hardware configurations, including GPU and cluster instances. S3 is organized into buckets; these are containers of objects that are stored in binary form. Users can store objects of any size, from simple files to entire disk images, and have them accessible from everywhere.

Google AppEngine

Google AppEngine is a scalable runtime environment mostly devoted to executing Web applications. AppEngine provides both a secure execution environment and a collection of services that simplify the development of scalable and high-performance Web applications. These services include in-memory caching, scalable data store, job queues, messaging, and cron tasks. Developers can build and test applications on their own machines using the AppEngine software development kit (SDK), which replicates the production runtime environment and helps test and profile applications. Once development is complete, developers can easily migrate their application to AppEngine, and make the application available to the

world. The languages currently supported are Python, Java.

Microsoft Azure

Microsoft Azure is a cloud operating system and a platform for developing applications in the cloud. It provides a scalable runtime environment for Web applications and distributed applications in general. Applications in Azure are organized around the concept of roles. Currently, there are three types of role: *Web role*, *worker role*, and *virtual machine role*. The Web role is designed to host a Web application, the worker role is a more generic container of applications and can be used to perform workload processing, and the virtual machine role provides a virtual environment in which the computing stack can be fully customized, including the operating systems.

Hadoop

Apache Hadoop is an open-source framework that is suited for processing large data sets on commodity hardware. Yahoo!, the sponsor of the Apache Hadoop project, has put considerable effort into transforming the project into an enterprise-ready cloud computing platform for data processing. Hadoop is an integral part of the Yahoo! cloud infrastructure and supports several business processes of the company. Currently, Yahoo! manages the largest Hadoop cluster in the world.

Force.com and Salesforce.com

Force.com is a cloud computing platform for developing social enterprise applications. Force.com allows developers to create applications by composing ready-to-use blocks; a complete set of components supporting all the activities of an enterprise are available. The Force.com platform is completely hosted on the cloud and provides complete access to its functionalities and those implemented in the hosted applications through Web services technologies.

Manjrasoft Aneka

Manjrasoft Aneka is a cloud application platform for rapid creation of scalable applications and their deployment on various types of clouds in a seamless and elastic manner. It supports a collection of programming abstractions for developing applications and a distributed runtime environment that can be deployed on heterogeneous hardware (clusters, networked desktop

computers, and cloud resources).

These platforms are key examples of technologies available for cloud computing. They mostly fall into the three major market segments identified in the reference model: *Infrastructure-as-a- Service*, *Platform-as-a-Service*, and *Software-as-a-Service*.