Tarea primera monitoría algebra abstracta

Rodrigo Castillo

20 de agosto de 2020

1. Principio de inducción fuerte:

1.1. Demostración:

Sea S el conjunto de todos los números naturales n con que cumplen que que la propiedad P(m) se cumple en todos los m menores que m (m < n). Ahora, por inducción sobre n tenemos que si $n \in S$ entonces P(m) se cumple para todo m < n por hipotesis de induccion tenemos que P(n) es verdadero, por lo tanto, cualquier numero m < n+1 también cumple la propiedad . por lo tanto $n+1 \in S$

2. si n es un natural que no es un cuadrado perfecto entonces \sqrt{n} es irracional.

sea n un natural que no es un cuadrado perfecto , luego no existe $m \in Z$ tal que $n = m^2$

supongamos que \sqrt{n} es racional, por lo tanto existen $a,b\in Z$ tales que $\sqrt{n}=\frac{a}{b}$ tales que a,b son coprimos y mcd(a,b)=1

por lo tanto $\frac{1}{n} = \frac{a^2}{b^2}$

Ahora veamos que a^2 y b^2 también son coprimos , por lo que por el teorema fundamental de la aritmetica y como consecuencia del lema de euclides, si existiera un primo que dividiera a a y a b entonces también dividiría a a^2 y a b^2 , pero supusimos que a^2 y b^2 eran coprimos, por lo que es una contradicción .

3. Utilice la fórmula de multiplicación entre números complejos en forma polar para encontrar los cuatros números complejos que satisfacen $x^4 = 1$

dibujo para entender un poco:

note que en la forma polar es mas fácil de ver la multiplicación de complejos, pues se suman sus angulos y se multiplican sus radios.

por lo tanto se tiene que:

$$r^4 = 1 \tag{1}$$

$$(\cos\theta\sin\theta)^4 = 1\tag{2}$$

$$\theta = \frac{n\pi}{2} \tag{3}$$

Figura 1: dibujo

3.1. solución

de la ecuacion $\theta=\frac{n\pi}{2}$ se obtienen 4 soluciones , cuando n=0 n=1 n=2 n=3

de los cuales se obtiene que $theta=0,\frac{\pi}{2},\pi,\frac{3\pi}{2}$ por lo que las 4 soluciones son 1,i,-1,-i

4. Demuestre que un polinomio a coeficientes reales de grado 2 o 3 es irreducible si y solo si no tiene ceros

⇒ contrarreciprocra

sea x un polinomio de grado 2 o 3 reducible, por lo que existen 2 polinomios b,c tales que tales que $b\times c=x$, también sabemos que uno de los dos polinomios b o c es de grado 1 .

sea b el polinomio de grado 1 , por el teorema del residuo sabemos que es de la forma a-k y y que la ecuación a-k=0 tiene solución, por lo tanto, k es diferente de 0

 \Leftarrow sea x un polinomio de grado 2 o 3 que tiene ceros , por lo tanto es de la forma $x^2 + c$ o $x^3 + c$ luego existe x - c tales que F(x - c) = 0 , por lo tanto los polinomios son reducibles

5. Demuestre directamente que $x^n - c^n$ es divisible por x - c para cualquier natural n . Deduzca de esto el teorema del residuo visto en clase.

esto por el teorema del residuo es trivial, sin embargo, en internet encontré esta formula

$$a^{n}+b^{n}=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^{2}-...-ab^{n-2}+b^{n-1})$$

$$a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+...+ab^{n-2}+b^{n-1})$$

acá ver que es divisible por x-c es fácil, pues, sea $k=(a^{n-1}-a^{n-2}b+...+b^{n-2}a+...+b^{n-1})$ se tiene que existe k tal que $(x-c)k=x^n-c^n$

ahora deducir el teorema del reciduo basta con dividir toda la expresión sobre x-c, por lo que quedaría que $\frac{x^n-c^n}{x-c}=\frac{x-c(k)}{x-c}$ y esa ecuación solamente tiene sentido cuando F(x-c)=0

6. sea m > 2 un entero, demuestre que hay m clases de equivalencia por la relacion ser congruente módulo m y que son exactamente las clases [0], [1], ..., [m-1]

induccion:

6.1. caso base

sea m=2, luego existe la clase de equivalencia [1],[2], sabemos que no existen mas clases de equivalencia pues suponer que existen mas clases de equivalencias es suponer que existe un número que es par e impar a la vez.

6.2. Caso inductivo

supongamos que para todo conjunto 0,1,2,3,4,5,6...n en los enteros se cumple que existen exactamente [0],[1],[2],...,[m-1] relaciones de equivalencia modulo m, por lo que $m\mid (n-k)$, note que por propiedades de la división, m no divide a (n+1)-k, por lo que en el conjunto 0,1,2,3,4,...,n+1 existen las clases de equivalencia [0],[1],...,[m], luego existen exactamente m clases de equivalencia.

7. aviso

(soy consciente de que las demostraciones están super enredadas y en algunos casos mal elaboradas, sin embargo prometo practicar mas ejercicios de demostraciones en el transcurso de esta semana)