

Transformaciones geométricas y registro

Unidad 3

BME423 · Procesamiento de imágenes médicas

Alejandro Veloz Ingeniería Biomédica

Transformación de coordenadas

(Ejemplo)

Transformación de coordenadas

(Ejemplo)

Algorithm:

- 1) For each (i, j) of J compute (i_0, j_0)
- 2) $J(i, j) = I(i_0, j_0)$

Transformación de coordenadas

(Ejemplo)

Algorithm:

- 1) For each (i, j) of J compute (i_0, j_0)
- 2) $J(i, j) = Interpolation[I(i_0, j_0)]$

Transformación de coordenadas

(Ejemplo)

Algorithm:

- 1) For each (i, j) of J compute (i_0, j_0)
- 2) $J(i, j) = Interpolation[I(i_0, j_0)]$

Transformación de coordenadas

(Ejemplo)

Transformación de coordenadas (Ejemplo)

$$i = i_0 - 1.25$$

$$j = j_0 - 2.75$$

Algorithm:

- 1) For each (i, j) of J compute (i_0, j_0)
- 2) $J(i, j) = Interpolation[I(i_0, j_0)]$

Bilinear interpolation

$$J(i, j) = Interpolation[I(i_0, j_0)]$$

 $J(i, j) = aI_1 + bI_2 + cI_3 + dI_4$

$$a+b+c+d = 1$$

Algorithm:

- 1) For each (i, j) of J compute (i_0, j_0)
- 2) $J(i, j) = Interpolation[I(i_0, j_0)]$

$$i_0 = i \cos \theta + j \sin \theta + a$$

$$j_0 = -i \sin \theta + j \cos \theta + b$$

Rotación

Traslación

Transformación de coordenadas

(Ejemplo)

Algorithm:

- 1) For each (i, j) of J compute (i_0, j_0)
- 2) $J(i, j) = Interpolation[I(i_0, j_0)]$

$$i_0 = i s \cos \theta + j s \sin \theta + a$$

 $j_0 = -i s \sin \theta + j s \cos \theta + b$

Rotación

Traslación

Escalamiento

Transformación de coordenadas

(Ejemplo)

En forma matricial:

$$M = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ b_{11} & b_{12} & b_{13} & b_{14} \\ c_{11} & c_{12} & c_{13} & c_{14} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = M \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Traslación

$$x' = x + t_x$$
$$y' = y + t_y$$
$$z' = z + t_z$$

En forma matricial:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ z + t_z \\ 1 \end{bmatrix}$$

Escalamiento

$$x' = s_x x$$
$$y' = s_y y$$
$$z' = s_z z$$

En forma matricial:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \\ s_z z \\ 1 \end{bmatrix}$$

Matrices de rotación

$$R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} R_y(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0\\ \sin \gamma & \cos \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Combinación de rotaciones

$$R_x(\alpha)R_y(\beta)R_z(\gamma)$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Point-based registration

 Implica identificar puntos correspondientes en las dos imágenes para derivar una transformación que las alinee. Ej. CT-MRI

 Requiere conocimiento experto para identificar puntos y puede resultar en errores grandes si los puntos se marcan de manera inexacta o si hay una distancia significativa entre ellos.

Surface-based registration

 Implica extraer iso-superficies de las imágenes y alinear estas superficies.

 Extraer automáticamente la misma superficie de ambas imágenes puede ser difícil, y el método puede no asegurar un buen ajuste lejos de la superficie.

Intensity-based registration

- Esta categoría incluye varios métodos que utilizan valores de intensidad para medir la calidad de la alineación.
- Suma de Diferencias Absolutas (SAD) $SAD(f,g) = \sum_{m=1}^{M} \sum_{n=1}^{N} |f_{mn} - g_{mn}|$
- Cross-correlation (CC) $CC(f,g) = \frac{\sum_{m,n} f_{mn}g_{mn}}{\sqrt{\sum_{m,n} f_{mn}^2 \cdot \sum_{m,n} g_{mn}^2}}$
- Suma de Diferencias al Cuadrado (SSD) $d_{SSD}(f,g) = \sum_{m,n} (f_{mn} g_{mn})^2$
- Mutual information MI(f,g) = H(f) + H(g) H(f,g), donde
 - H(f) and H(g) son las entropías marginales,
 - $H(f) = -\sum_{i} p(i) \log p(i)$, p(i) es la probabilidad del valor de intensidad i, y
 - $H(f,g) = -\sum_{i,j} p(i,j) \log p(i,j)$ es la entropía conjunta.

El proceso de registro

Modelo de Transformación: Define cómo se transforma una imagen para alinearse con otra (por ejemplo, traslación, rotación).

Función de Costo: Cuantifica la calidad de la alineación (por ejemplo, SAD, CC, SSD).

Optimización: Ajusta los parámetros de transformación para optimizar la función de costo, logrando así la mejor alineación posible.

$$\mathbf{m} = \operatorname*{arg\,min}_{\mathbf{m}} \ \{d(T(\mathbf{m})f,g)\} \quad \ \mathbf{0} \quad \ \mathbf{m} = \operatorname*{arg\,max}_{\mathbf{m}} \ \{d(T(\mathbf{m})f,g)\}$$

Ver Ejemplo

syn_registration_3d.ipynb

(Classroom - Librería Dipy)