Valószínűségszámítás

1. gyakorlat

Nemkin Viktória viktoria.nemkin@gmail.com

2015. szept. 9.

- 1.1 Legyen $A, B \in \Im$. Adja meg az A, B-t tartalmazó legszűkebb σ -algebrát! Fqy. I.2
- 1.2 Bizonyítsa be, hogy ha $\mathbf{P}(A)=0.9$ és $\mathbf{P}(B)=0.8$, akkor $\mathbf{P}(AB){\geq 0.7}$! Fqu. I.11
- 1.3 Igazolja, hogy tetszőleges A,B,C eseményekre $\mathbf{P}(AB) + \mathbf{P}(AC) \leq \mathbf{P}(A) + \mathbf{P}(BC)$! Fgy. I.94
- 1.4 a.) Bizonyítsa be, hogy minden $A, B \in \Im$ esetén $\mathbf{P}(AB)\mathbf{P}(\bar{A}\bar{B}) \leq \frac{1}{4}!$ b.) Mutassa meg, hogy tetszőleges A,B,C eseményekre $\mathbf{P}(AB) \mathbf{P}(AC) \leq \mathbf{P}(\bar{B}C + B\bar{C})!$ Fgy. I.6
- 1.5 A \mathcal{K} kísérlet abban áll, hogy véletlenszerűen kiválasztunk egy n elemű permutációt. Ezt megtehetjük pl. úgy, ha egy kalapból egymás után visszatevés nélkül kivesszük a számokat tartalmazó cédulákat. Jelentse A_{ij} azt az eseményt, amikor a kiválasztott permutációban az i-edik elem a j-edik helyen áll. Fejezze ki A_{ij} -k segítségével az alábbi eseményeket:

A: "az első elem a másodiktól balra áll",

B: "az első elem sorszáma legfeljebb j".

Fgy. I.12

- 1.6 Három kockával dobunk. A: "az összeg 7", B: "mindegyik páros", C: "van közöttük hármas". Számolja ki a ${\bf P}(A(B+\bar C))$ és ${\bf P}((A+C)\bar B)$ valószínűségeket! Fgy.~I.16
- 1.7 Az ötöslottó (90/5) esetében, melyik lottószám lesz a legnagyobb valószínűséggel a második legnagyobb kihúzott szám?

Fgy. I.17

1.8 Tekintsük az összes olyan n hosszúságú sorozatot, amelyek 0,1,2 számokból állnak. Határozzuk meg annak a valószínűségét, hogy egy véletlenül választott ilyen típusú sorozat:

A: 0-val kezdődik;

B: pont m+2 db 0-át tartalmaz, melyek közül kettő a sorozat végén van;

C: pont m db 1-est tartalmaz;

D: pont m_0 db 0-át, m_1 db 1-est és m_2 db 2-est tartalmaz.

Fgy. I.25

- 1.9 Legyen A az az esemény, hogy lottóhúzásnál mindegyik kihúzott szám nem nagyobb mint 50, és B pedig az az esemény, hogy mindegyik kihúzott szám páros. Számoljuk ki a $\mathbf{P}(A)$, $\mathbf{P}(B)$, $\mathbf{P}(AB)$, $\mathbf{P}(A+B)$ valószínűségeket! Fgy.~I.27
- 1.10~ Egy $10~{\rm cm}$ oldalhosszúságú négyzetrácsos hálózatra leejtünk egy $3~{\rm cm}$ átmérőjű köralakú pénzdarabot. Mennyi a valószínűsége, hogy a pénzdarab egy négyzet csúcsát fedi le?
- 1.11 A (0,2) és (0,3) szakaszokon választunk találomra egy-egy pontot, legyenek ezek x és y. Mennyi a valószínűsége, hogy az x, y és 1 hosszúságú szakaszokból szerkeszthető háromszög? Fgy.~I.38