Human Age Prediction Based on Real and Simulated RR Intervals using Temporal Convolutional Neural Networks and Gaussian Processes

Maximilian Pfundstein (maxpf364)

April 29, 2020

Linköpings University

Table of contents

- 1. Recap
- 2. Methods and Models
- 3. Results
- 4. Data Simulation
- 5. Status and Outlook

Recap

Recap — Age Prediction

Recap — Data Sets — Gdańsk

Master Thesis (732A64)

Recap — Data Sets — PhysioNet

Recap — Impurity and Padding

Methods and Models

Methods and Models — Methods

- complete and constant
 - 48 slices of around 5 minutes
- classification and regression
 - · classes have no order
- 33 features as used in a previous paper (hrvanalysis)

Methods and Models — Feature Based Models

- Naive Bayes
- Support Vector Machines
 - Hyperparameters
 - Classification: γ_C (kernel length scale), C_C (regularisation)
 - Regression: γ_R (kernel length scale), C_R (regularisation), ϵ_R (slack)
 - 5 fold cross-validation
- Random Forest
- XGBoost

Methods and Models — Convolution

2D Convolution

Input Filter Output

Methods and Models — LSTM

Long Short-Term Memory Cell

Master Thesis (732A64)

Methods and Models — DeepSleep

Methods and Models — DeepSleep

Master Thesis (732A64)

Results

Results — Gdańsk

Gdańsk	Naive Bayes	Random Forest	SVM	XGBoost	DeepSleep
Regression / Complete					
Training		57.64%	13.19%	32.64%	18.52%
Validation		37.3170	10.1570	02.0170	19.44%
Testing		27.03%	32.43%	29.73%	24.32%
Regression / Constant					
Training		71.35%	13.19%	24.35%	15.74%
Validation					11.11%
Testing		25.84%	32.43%	23.25%	29.73%
Classification / Complete					
Training	32.64%	100.00%	20.14%	100.00%	22.22%
Validation					13.89%
Testing	29.73%	32.43%	10.81%	27.03%	10.81%
Classification / Constant					
Training	21.53%	100.00%	18.75%	99.31%	22.22%
Validation					13.89%
Testing	27.03%	32.43%	5.41%	27.03%	10.81%

Results — Physionet

Physionet	Naive Bayes	Random Forest	SVM	XGBoost	DeepSleep
Regression / Complete					
Training		76.44%	40.20%	27.09%	25.36%
Validation		70.44%	40.20%	21.09%	29.87%
		35.48%	29.68%	38.71%	30.32%
Testing		33.40%	29.00%	30.7170	30.3270
Regression / Constant					
Training		78.64%	11.74%	27.62%	39.79%
Validation		70.0170	11	21.0270	42.20%
Testing		30.04%	29.03%	29.56%	32.90%
Classification / Complete					
Training	15.35%	99.78%	39.91%	99.78%	39.55%
Validation					37.66%
Testing	12.90%	29.03%	25.81%	27.10%	38.10%
Classification / Constant					
Training	13.62%	99.78%	27.55%	51.22%	39.38%
Validation					33.77%
Testing	12.65%	33.68%	28.13%	33.94%	42.58%

Results — Physionet

Data Simulation

Data Simulation — Gaussian Processes

A Gaussian Process is defined as

$$f(x) \sim \mathcal{GP}(m(x), k(\chi, \chi))$$
 (1)

The whole statistical model is then defined as

$$y = \mathcal{N}(f(x), \sigma_{\mathsf{noise}})$$
 (2)

Data Simulation — Gaussian Processes

The joint of observations and points to predict is defined as

$$\begin{bmatrix} y \\ f(x^*) \end{bmatrix} \sim \mathcal{N}\left(m(x), \begin{bmatrix} k(\chi, \chi) + \sigma_{\mathsf{noise}}^2 I & k(\chi, \chi^*) \\ k(\chi^*, \chi) & k(\chi^*, \chi^*) \end{bmatrix}\right)$$
(3)

Data Simulation — Gaussian Processes

Then we condition on the observations to obtain the predictive distribution

$$f(x^*)|\chi^*,\chi,f(x) \sim \mathcal{N}(\bar{f}_*,\operatorname{cov}(f_*))$$
 (4)

$$\bar{f}_* = k(\chi^*, \chi) \left(k(\chi, \chi) + \sigma_{\mathsf{noise}}^2 I \right)^{-1} y \tag{5}$$

$$cov(f_*) = k(\chi^*, \chi^*) - k(\chi^*, \chi) (k(\chi, \chi) + \sigma_{noise}^2 I)^{-1} k(\chi, \chi^*)$$
 (6)

Data Simulation — GP — Point Estimates

Optimise the log likelihood proportion, with respect to each parameter in $\boldsymbol{\theta}$

$$\mathcal{L}(y|X,\theta) \propto -\frac{1}{2}y^{T} \left(K_{\theta} + \sigma_{\mathsf{noise}}^{2}I\right)^{-1} y - \frac{1}{2} \log|K_{\theta} + \sigma_{\mathsf{noise}}^{2}I| \quad (7)$$

Data Simulation — GP — Point Estimates

Data Simulation — GP — Posterior Predictive Distribution

The posterior predictive distribution is given as

$$p(\tilde{y}|y) = \int_{\theta} p(\tilde{y}|\theta, y) p(\theta|y) d\theta \tag{8}$$

Update parameters for each slice, as

$$p(\theta|\chi_a,\chi_b) \propto p(\chi_b|\theta)p(\theta|\chi_a)$$
 (9)

Data Simulation — GP — Posterior Predictive Distribution

Data Simulation — GP — Posterior Predictive Distribution

Status and Outlook

Status and Outlook

- Bayesian simulation is currently running
- For comparison: point estimates
 - Numerical solution already implemented, but takes a lot of time
 - Maybe solving analytically
- Evaluate models on simulated data
- Analyse results

Appendix

References i