J784S4, TDA4VH, TDA4AH, TDA4VP, TDA4AP, AM69 Power Estimation Tool User's Guide

TRUMENTS Abstract www.ti.com

1 Abstract

The Excel-based tool allows users to estimate their thermal power based upon specified loadings for different components (compute cores and peripherals) of the system-on-chip (SoC). The tool allows the user to prepopulate the various fields (which components are used, and utilization of the major components) from a set of representative use cases. This gives a starting point from which a new use case can be customized to judge the power and loadings of their own use case. The tool provides a breakdown of thermal power at the junction temperature (Tj) entered, and it also provides a table of power delivery network (PDN) currents computed for this defined use case at Tj = 125°C or 105°C.1

The tool gives two power estimates:

Thermal power estimate

The time constant for heating or cooling an SoC is on the order of seconds or minutes. Because this is the primary use for the tool, the loadings should represent the average activity over a duration of seconds or minutes.

Peak / PDN estimate

The time constant for peak current (power) is on the order of a microsecond. Though a use case (on average) may utilize a given component for say 70%, for windows of time that component will be at 100% utilization. The tool's calculation for Peak / Power Delivery Network (PDN) estimates automatically increases the loading on key intellectual property (IP) that is enabled in order to create the PDN requirements.

Table of Contents

1 Abstract	2
2 Contributions to Power	;
3 How to Use the Tool	
3.1 Use Case	
4 Results Sheet	
4.1 Some Specific Pre-loaded Use Case Results	
5 Revision History	

Trademarks

All trademarks are the property of their respective owners.

If the user selects a junction temperature less than or equal to 105°C, the Peak / PDN estimate is computed for 105°C. If the user-selected junction temperature is greater than 105°C, then the Peak / PDN estimate is carried out at 125°C.

Contributions to Power

2 Contributions to Power

The SoC power is typically considered to have two different components – dynamic power and leakage.²

- The dynamic power is computed based upon two numbers for the IP max power and idle power (both scaled to the voltage). The dynamic power is computed as the weighted average of the max and idle power: $P_{dvn} = P_{max} \times Utilization + P_{idle} \times (1-Utilization)$
 - For background: Dynamic power is typically computed as fCV². Consider a clock signal on a pcb that is driven from a CMOS output to a CMOS input. Dynamic power is computed based upon the (a) frequency of the signal – f; (b) the capacitance of the input load and the pcb trace capacitance – C; and (c) the voltage swing of the signal – V.
 - Within the tool, the user can select the frequency for some IP as well as the IP's utilization. The frequency and utilization are obviously linked: as the frequency decreases, the utilization will need to increase to maintain the same activity. Therefore, a function that requires 40% loading on an IP will have nearly the same power if the frequency is cut in half and the utilization doubles to 80%.
- The leakage power is computed based upon voltage, junction temperature, and manufacturing process variation. While the process and voltage have strong effects on the leakage power, the leakage power increases exponentially with T_i.
 - For background, a CMOS transistor is considered to have two states: (a) ON in which the channel between source and drain is conducting; and (b) OFF in which the channel is non-conductive between the source and the drain. Leakage power arises because the OFF state can allow a trickle of current to cross the channel.

SPRUJB1 - DECEMBER 2023

Submit Document Feedback

User's Guide

² There is a third component of the SoC power – that is, analog or bias currents. These currents are not considered in this tool because in almost all cases the power contributed from these sources is negligible to the overall power.

How to Use the Tool www.ti.com

3 How to Use the Tool

The tool has two pages:

1. Use Case (tab in the Excel workbook) contains many different components that the user can configure to represent their use case; the top portion of this worksheet is shown in Figure 3-1. (The individual largest contributors to the power are in column E.) This sheet also contains 4 buttons that initialize different phases of the estimate.

2. Results is a blank sheet into which the results are populated.

Figure 3-1. Top of Use Case Tab of AM69PowerEstimationTool

www.ti.com How to Use the Tool

Figure 3-2. Top of Results Tab of AM69PowerEstimationTool

3.1 Use Case

The use case page is shown in Figure 3-1. This sheet has 10 different sections that must be completed.

Core Processor Utilization:

This block allows the user to assign a utilization to each major core IP.

WKUP domain:

- SMS 0 Arm Cortex-M4F based Security Management Subsystem
- SA3SS 0 a collection of essential hardware accelerators supporting cryptography

MCU domain:

How to Use the Tool www.ti.com

Dual-R5F MCU Subsystem

Main domain:

- · 2x Quad-A72 MPU Subsystem
- 3x Dual-R5F MCU Subsystems
- 4x C71x DSP Subsystem that includes a Matrix Multiplication Accelerator (MMA)
- SA2 UL is a collection of hardware accelerators supporting cryptography
- 2x Vision Preprocessing Accelerator (VPAC)
- Depth and Motion Processing Accelerator (DMPAC)
- Graphics Processing Unit (GPU)
- · 2x Combination Video Encoder and Decoder

Key IP Frequency selection:

This block allows the user to select the frequency for the key blocks in the core utilization block (+DDR).

 One special note involves PLL25. Since the internal frequency of the PLL is limited to ~3GHz, the VPAC and DMPAC cannot simultaneously run at the highest frequency (720MHz and 520MHz, respectively) for both IPs from the same PLL.

Memory Interfaces:

The AM69x device has 4 Double Data Rate (DDR) SDRAM controllers and associated physical layer interfaces (PHYs) as well as a General-Purpose Memory Controller (GPMC) with Error Location Module (ELM).

PHYs:

The AM69x device has several PHYs; for the PHYs with multiple instances, in addition to the mode and the utilization, the user should also select how many of the instances are used:

- 3x Camera Stream Interface (CSI) 2.0 Receive PHYs each with 4 Lanes
- · 2x CSI2.0 Transmit PHYs each with 4 Lanes
 - 2x Display Subsystem Display Serial Interface (DSI) Transmit interface (using the CSI2.0 Tx PHY)
- 1x Multi Media Card Interface (MMC) for eMMC only
- 1x Universal Flash Storage PHY with 2 lanes
- 1x Universal Serial Bus (USB) 2.0 PHY

www.ti.com How to Use the Tool

High Speed Serial Interface:

There are four high speed serializing / deserializing (SerDes) interface on this device. Each SerDes has 4 lanes for which the mode, utilization and IP should be selected.

- The IP loading (utilization) is required to be configured in the IP Utilization for High Speed IO
- Because the SerDes constantly transmit (e.g. SGMII sends /I1/ and /I2/ ordered sets when not sending data), the utilization should likely be set to 100%.

IP Utilization for High Speed IO

The tool cannot determine the loading of the IP from the SerDes loading. Therefore, it is required that the user enter the IP loading in this table as well as entering the SerDes loading.

Environmental:

The environmental section allows the user to define junction temperature (T_j) , VDD_CPU_AVS voltage, VDD MCU voltage, the process corner, and a use case name and description.

- The PDN / Peak estimate will be run with Strong silicon and at either 105°C or 125°C; see Footnote 1.
- To save the use case, the user must supply a name for the use case.

LVCMOS IOs

Like the PHY section, the user enters Mode, utilization, and instances for each LVCMOS.

There is only one mode and utilization allowed per IP (customization is not supported since the corresponding IP blocks do not contribute significantly to the overall power). If a system uses multiple modes for an IP type, the highest power mode should be used.

Buttons:

How to Use the Tool www.ti.com

The buttons initialize different phases of the power estimation.

- Reset clears and resets the form as well as clearing Results
- Populate Use Case It is recommended to start any power estimate by using one of the pre-configured representative use cases. This helps to highlight how the tool can be used in a reasonable way (i.e., it is usually not appropriate to enter 100% for all of the IP on the SoC).
- · Calculate once the form is completed, calculate in order to populate data into Results
- Save current UC once the user gets a test case competed, it can be saved if a UC Name has been supplied. Once a use case is saved it will be part of the "Starting Use Case" list and be re-populated with the Populate use case button.

When each button is pushed, the cells underneath the button (H8:I11) record that it was started and then record when the step completes.

Starting Use Case:

This drop down selects the use case to pre-populate.

This set of use cases is supplemented when the user saves the current UC (with the buttons described above).

The pre-populated use cases are intended to provide TI-generated starting points for the customer's use case. In the final section of this user guide, some of the pre-populated use cases will be discussed.

4 Results Sheet

The Results sheet gives a lot of information based upon the use case entered.

Thermal power estimate:

- The primary output of the estimation is shown in cells A10 to D26; this table gives the total power of the device at various temperatures.
 - Because the leakage power is very nearly exponential, the leakage component can be interpolated between any two consecutive temperatures: P_{LKG}=10^{mT_j+b}
- Cells A1 to B8 contain reference information about the tool and the use case.
- Some users find it helpful to have the power breakdown by rail, and those results are provided in cell A30 to F114
- Cells H52 to J146 provide information utilization and frequencies -- on the use case estimated.
- Cells H22 to J49 show how the device's power domains have been configured.

Note

In the Environmental section of the Use Case tab, the user selects the voltage for configurable voltage domains. Within a voltage domain (e.g. VDD_CPU_AVS), some circuitry is placed within a power domain (e.g. C7x_0 and MMA are within PD_C7_0); the power domain can break the connection to the voltage domain if-and-only-if all of the IP within the power domain is unused. Circuitry within an off power domain, do not contribute power – leakage or dynamic – to the power budget. Within the power domain, IP is controlled by a local power sleep controller (LPSC) which controls the clock and reset to the IP. IP which is not clocked does not contribute dynamic power to the overall device power but it will contribute leakage power unless it resides in an unpowered power domain.

Note that a voltage domain typically has some IP that is within a power domain and other IP that is not within a power domain.

- When possible, the tool powers OFF the power domain; if the user wants to keep the domain ON, it is recommended to load IP utilization within the domain at 0.1%
- The user should configure their software to match the expectations defined in the power estimate.
- Cells H11 to I19 show a breakdown of power by block; this table shows that significant power is present in the back-plane of the device.

Peak / PDN power estimate:

- Cells M30 to R117 contain the by-rail Peak / PDN estimate; this estimate is derived from the entered use
 case.
 - Column U creates a label V_G1 through V_G18 (i.e. voltage group). These are just labels and can be modified by the user.
 - The same labels are present in cells N8 to N25; if the user modifies the labels in column U, the labels should also be modified in this range. Cells O2 to O19 sum the current for this voltage group.

4.1 Some Specific Pre-loaded Use Case Results

The three use cases below are intended to span the expected range of thermal power for this device; it is possible for a use case to fall outside of this range. (And the Peak / PDN power will certainly fall outside of this range.)

Table 4-1. 125°C Thermal Power

Use case	Leakage [mW]	Dynamic [mW]	Total [mW]
ARM only (x4)	9290	5700	14990
Superset	13910	29050	42960
Compute	13450	24110	37560

Results Sheet www.ti.com

Table 4-2. 105°C Thermal Power

Use case	Leakage [mW]	Dynamic [mW]	Total [mW]
ARM only (x4)	5650	5700	11350
Superset	8410	29050	37460
Compute	8150	24110	32260

Comments:

As noted, the exponential behavior of the leakage with junction temperature causes a significant decrease in leakage between 125°C and 105°C.

4.1.1 ARM Only (x4)

A minimum use case for this class of processors relies upon using the A72 cores and the PCle and ethernet switch; in this case, the A72 cores are reduced from 2GHz to 1GHz.

In this configuration, many of the power domains are disabled.

Table 4-3. ARM-only Power Domain States

PD State			
GP_CORE_CTL_wkup	ON		
GP_Core_CTL (CC)	ON		
GP_Core_CTL	ON		
PD_Pulsar_MCU	ON		
PD_C7_0	OFF		
PD_C7_1	OFF		
PD_A72_Cluster_0	ON		
PD_A72_0	ON		
PD_A72_1	ON		
PD_A72_Cluster_1	OFF		
PD_A72_4	OFF		
PD_A72_5	OFF		
PD_GPUCOM	OFF		
PD_C7_2	OFF		
PD_C7_3	OFF		
PD_Pulsar_0	OFF		
PD_decode	OFF		
PD_Pulsar_1	OFF		
PD_DMPAC	OFF		
PD_VPAC	OFF		
PD_A72_2	ON		
PD_A72_3	ON		
PD_A72_6	OFF		
PD_A72_7	OFF		
PD_VPAC2	OFF		
PD_encode2	OFF		
PD_Pulsar_2	OFF		

The device loading is shown in the following table.

Table 4-4. ARM-only Device Configuration

	<u> </u>	
Тј	125	
VDD_CORE_SRAM_Voltage	0.85	
VDD_CORE_Voltage	0.8	

Table 4-4. ARM-only Device Configuration (continued)

	4-4. ARM-only Device C	onfiguration (continued)
VDD_CPU_SRAM_Voltage	0.85	
VDD_CPU_Voltage	0.76	
VDD_MCU_SRAM_Voltage	0.85	
VDD_MCU_Voltage	0.85	
Process_Corner	strong	
UC_Description		
A72 CPU	70%	1000
A72 CPU	0%	1000
Pulsar Main	0%	1000
Pulsar Main	0%	1000
Pulsar Main	0%	1000
C711 512k 1.1	0%	1000
MMA2p1	0%	1000
C711 512k 1.1	0%	1000
MMA2p1	0%	1000
C711 512k 1.1	0%	1000
MMA2p1	0%	1000
C711 512k 1.1	0%	1000
MMA2p1	0%	1000
SMS	10%	333
Pulsar MCU	50%	1000
DSS7L_eDP_DSI	0%	600
GPU	0%	800
CSI_3RX_2TX	0%	720
DPHY 1.2 RX - 4L	0%	upls
DPHY 1.2 RX - 4L	0%	upls
DPHY 1.2 RX - 4L	0%	upls
DPHY 1.2 TX - 4L	0%	upls
DPHY 1.2 TX - 4L	0%	upls
DMPAC	0%	480
VPAC3	0%	720
VPAC3	0%	720
WAVE521CL Video Codec	0%	600
WAVE521CL Video Codec	0%	600
CPSW2X eAVB	0%	
CPSW9x eAVB	23%	
PCIE_G3 4L	0%	
PCIE_G3 4L	20%	
PCIE_G3 4L	0%	
PCIE_G3 4L	0%	
Hyperlink x2	0%	

Table 4-4. ARM-only Device Configuration (continued)			
USB3P0TCx1	0%		
EMMC 4	0%		
SDIO 1 bit	0%	unused	
EMMC 8	20%		
Arasan HS400 8 bit	20%	hs400	
UFSHCI21	0%		
MPHY - 2L	0%	sleep	
DDR 0	35%	1067	
LPDDR4-32 PHY 4267	39%	lpddr4_4267_32	
DDR 1	35%	1067	
LPDDR4-32 PHY 4267	39%	lpddr4_4267_32	
DDR 2	0%	1067	
LPDDR4-32 PHY 4267	0%	sleep	
DDR 3	0%	1067	
LPDDR4-32 PHY 4267	0%	sleep	
SerDes 10G Common	100%	1pll	
Lane 0	20%	8g	
Lane 1	20%	8g	
Lane 2	20%	8g	
Lane 3	20%	8g	
SerDes 10G Common	100%	2pll	
Lane 0	50%	5g	
Lane 1	50%	5g	
Lane 2	50%	1g	
Lane 3	50%	1g	
SerDes 10G Common	100%	1pll	
Lane 0	50%	1g	
Lane 1	50%	1g	
Lane 2	50%	1g	
Lane 3	50%	1g	
SerDes 10G Common	0%	suspend	
Lane 0	0%	disable	
Lane 1	0%	disable	
Lane 2	0%	disable	
Lane 3	0%	disable	

The thermal power for the device is shown in the following table.

Table 4-5. ARM-only Thermal Power

Tj	Leakage [mW]	Dynamic [mW]	Total [mW]
125	9283	5698	14981
120	8247	5698	13945
115	7276	5698	12974
110	6427	5698	12125
105	5649	5698	11347
100	4955	5698	10653
95	4347	5698	10045
90	3808	5698	9506

Table 4-5. ARM-only Thermal Power (continued)

Tj	Leakage [mW]	Dynamic [mW]	Total [mW]
85	3330	5698	9028
80	2894	5698	8592
75	2519	5698	8217
50	1228	5698	6926
25	596	5698	6294
0	293	5698	5991
-20	193	5698	5891
-40	147	5698	5845

4.1.2 Superset

On the other end of the spectrum is a superset use case in which A72s, Pulsars, C71x and MMAs, GPU, DMPAC and VPAC are effectively maximized. In this example, the SerDes is also loaded.

In this configuration, none of the power domains are disabled.

Table 4-6. Superset Power Domain States

Table 4-6. Superset Power Domain States			
PD	State		
GP_CORE_CTL_wkup	ON		
GP_Core_CTL (CC)	ON		
GP_Core_CTL	ON		
PD_Pulsar_MCU	ON		
PD_C7_0	ON		
PD_C7_1	ON		
PD_A72_Cluster_0	ON		
PD_A72_0	ON		
PD_A72_1	ON		
PD_A72_Cluster_1	ON		
PD_A72_4	ON		
PD_A72_5	ON		
PD_GPUCOM	ON		
PD_C7_2	ON		
PD_C7_3	ON		
PD_Pulsar_0	ON		
PD_decode	ON		
PD_Pulsar_1	ON		
PD_DMPAC	ON		
PD_VPAC	ON		
PD_A72_2	ON		
PD_A72_3	ON		
PD_A72_6	ON		
PD_A72_7	ON		
PD_VPAC2	ON		
PD_encode2	ON		
PD_Pulsar_2	ON		

The device loading is shown in the following table.

Table 4-7. Superset Device Configuration

3		
Tj	125	

Table 4-7. Superset Device Configuration (continued)

	Y. Superset Device Configuration (configuration)	ontinued)
VDD_CORE_SRAM_Voltage	0.85	
VDD_CORE_Voltage	0.8	
VDD_CPU_SRAM_Voltage	0.85	
VDD_CPU_Voltage	0.76	
VDD_MCU_SRAM_Voltage	0.85	
VDD_MCU_Voltage	0.8	
Process_Corner	Strong	
UC_Description		
A72 CPU	90%	2000
A72 CPU	10%	2000
Pulsar Main	80%	1000
Pulsar Main	80%	1000
Pulsar Main	80%	1000
C711 512k 1.1	0%	1000
MMA2p1	100%	1000
C711 512k 1.1	0%	1000
MMA2p1	100%	1000
C711 512k 1.1	0%	1000
MMA2p1	100%	1000
C711 512k 1.1	20%	1000
MMA2p1	80%	1000
SMS	10%	333
Pulsar MCU	80%	1000
DSS7L_eDP_DSI	63%	600
GPU	100%	800
CSI_3RX_2TX	64%	720
DPHY 1.2 RX - 4L	80%	2p5g4l
DPHY 1.2 RX - 4L	80%	2p5g4l
DPHY 1.2 RX - 4L	80%	2p5g4l
DPHY 1.2 TX - 4L	80%	2p5g4l
DPHY 1.2 TX - 4L	0%	upls
DMPAC	79%	480
VPAC3	72%	720
VPAC3	83%	720
WAVE521CL Video Codec	75%	600
WAVE521CL Video Codec	75%	600
		000
CPSW2X eAVB	100%	
CPSW9x eAVB	50%	
PCIE_G3 4L	80%	
PCIE_G3 4L	80%	
PCIE_G3 4L	0%	

Table 4-7. Superset Device Configuration (continued)

_	0%	
	J 70	
Hyperlink x2 0)%	
USB3P0TCx1 8	30%	
EMMC 4 0	0%	
SDIO 1 bit 0)%	unused
EMMC 8 5	50%	
Arasan HS400 8 bit 5	50%	hs400
UFSHCI21 0	0%	
MPHY - 2L 0	0%	sleep
DDR 0 4	10%	1067
LPDDR4-32 PHY 4267 4	14%	lpddr4_4267_32
DDR 1 4	10%	1067
LPDDR4-32 PHY 4267 4	14%	lpddr4_4267_32
DDR 2 4	10%	1067
LPDDR4-32 PHY 4267 4	14%	lpddr4_4267_32
DDR 3	10%	1067
LPDDR4-32 PHY 4267 4	14%	lpddr4_4267_32
SerDes 10G Common 1	100%	2pll
Lane 0 1	100%	8g
Lane 1 1	100%	8g
Lane 2 0	0%	disable
Lane 3	100%	5g
SerDes 10G Common 1	100%	1pll
Lane 0 1	100%	8g
Lane 1 1	100%	8g
Lane 2	100%	8g
Lane 3	100%	8g
SerDes 10G Common 1	100%	2pll
Lane 0 1	100%	10g
Lane 1 1	100%	3g
Lane 2	100%	3g
Lane 3	100%	3g
SerDes 10G Common 1	100%	1pll
Lane 0 6	66%	5g
Lane 1 6	66%	5g
Lane 2 6	66%	5g
Lane 3 6	66%	5g

The thermal power for the device is shown in the following table.

Table 4-8. Superset Thermal Power

Table 1 of Capeloot Inclination			
тј [С]	Leakage Power [mW]	Dynamic Power [mW]	Total Power [mW]
125	13910	29046	42956
120	12305	29046	41351
115	10853	29046	39899
110	9554	29046	38600
105	8404	29046	37450
100	7376	29046	36422

Results Sheet Www.ti.com

Table 4-8. Superset Thermal Power (continued)

Tj [C]	Leakage Power [mW]	Dynamic Power [mW]	Total Power [mW]
95	6440	29046	35486
90	5622	29046	34668
85	4894	29046	33940
80	4251	29046	33297
75	3690	29046	32736
50	1752	29046	30798
25	807	29046	29853
0	381	29046	29427
-20	228	29046	29274
-40	161	29046	29207

4.1.3 Compute

A use case representative of the vision analytics features of the device – camera input run through deep learning algorithms:

Again, in this configuration, none of the power domains are disabled.

Table 4-9. Compute Power Domain States

iubic + 0. Compute i	Ower Bolliam States
PD	State
GP_CORE_CTL_wkup	ON
GP_Core_CTL (CC)	ON
GP_Core_CTL	ON
PD_Pulsar_MCU	ON
PD_C7_0	ON
PD_C7_1	ON
PD_A72_Cluster_0	ON
PD_A72_0	ON
PD_A72_1	ON
PD_A72_Cluster_1	ON
PD_A72_4	ON
PD_A72_5	ON
PD_GPUCOM	OFF
PD_C7_2	ON
PD_C7_3	ON
PD_Pulsar_0	ON
PD_decode	ON
PD_Pulsar_1	ON
PD_DMPAC	OFF
PD_VPAC	ON
PD_A72_2	ON
PD_A72_3	ON
PD_A72_6	ON
PD_A72_7	ON
PD_VPAC2	ON
PD_encode2	OFF
PD_Pulsar_2	ON

The device loading is shown in the following table.

Table 4-10. Compute Device Configuration

Table 4-10. Compute Device Configuration			
Тј	125		
VDD_CORE_SRAM_Voltage	0.85		
VDD_CORE_Voltage	0.8		
VDD_CPU_SRAM_Voltage	0.85		
VDD_CPU_Voltage	0.76		
VDD_MCU_SRAM_Voltage	0.85		
VDD_MCU_Voltage	0.8		
Process_Corner	strong		
UC_Description			
A72 CPU	75%	2000	
A72 CPU	75%	2000	
A72 CPU	75%	2000	
A72 CPU	75%	2000	
A72 CPU	75%	2000	
A72 CPU	75%	2000	
A72 CPU	75%	2000	
A72 CPU	75%	2000	
Pulsar Main	80%	1000	
Pulsar Main	80%	1000	
Pulsar Main	80%	1000	
C711 512k 1.1	0%	1000	
MMA2p1	100%	1000	
C711 512k 1.1	0%	1000	
MMA2p1	100%	1000	
C711 512k 1.1	0%	1000	
MMA2p1	100%	1000	
C711 512k 1.1	0%	1000	
MMA2p1	100%	1000	
SMS	25%	333	
Pulsar MCU	80%	1000	
DSS7L_eDP_DSI	0%	600	
GPU	0%	800	
CSI_3RX_2TX	45%	720	
DPHY 1.2 RX - 4L	75%	2p5g4l	
DPHY 1.2 RX - 4L	75%	2p5g4l	
DPHY 1.2 RX - 4L	75%	2p5g4l	
DPHY 1.2 TX - 4L	0%	upls	
DPHY 1.2 TX - 4L	0%	upls	
DMPAC	0%	480	
VPAC3	60%	720	
VPAC3	60%	720	
WAVE521CL Video Codec	80%	600	
WAVE521CL Video Codec	0%	600	
CPSW2X eAVB	20%		
CPSW9x eAVB	0%		
PCIE_G3 4L	50%		
PCIE_G3 4L	0%		
<u>_</u>			

Table 4-10. Compute Device Configuration (continued)		
PCIE_G3 4L	0%	
PCIE_G3 4L	0%	
Hyperlink x2	0%	
USB3P0TCx1	0%	
EMMC 4	0%	
SDIO 1 bit	0%	unused
EMMC 8	0%	
Arasan HS400 8 bit	0%	off
UFSHCI21	0%	
MPHY - 2L	0%	sleep
DDR 0	50%	1067
LPDDR4-32 PHY 4267	55%	lpddr4_4267_32
DDR 1	50%	1067
LPDDR4-32 PHY 4267	55%	lpddr4_4267_32
DDR 2	50%	1067
LPDDR4-32 PHY 4267	55%	lpddr4_4267_32
DDR 3	0%	1067
LPDDR4-32 PHY 4267	0%	sleep
SerDes 10G Common	0%	suspend
Lane 0	0%	disable
Lane 1	0%	disable
Lane 2	0%	disable
Lane 3	0%	disable
SerDes 10G Common	100%	2pll
Lane 0	100%	8g
Lane 1	100%	8g
Lane 2	0%	disable
Lane 3	0%	disable
SerDes 10G Common	0%	suspend
Lane 0	0%	disable
Lane 1	0%	disable
Lane 2	0%	disable
Lane 3	0%	disable
SerDes 10G Common	0%	suspend
Lane 0	0%	disable
Lane 1	0%	disable
Lane 2	0%	disable
Lane 3	0%	disable

The thermal power for the device is shown in the following table.

Table 4-11. Compute Thermal Power

Table 4-11. Compute Thermal Tower			
тј [С]	Leakage Power [mW]	Dynamic Power [mW]	Total Power [mW]
125	13450	24107	37557
120	11905	24107	36012
115	10513	24107	34620
110	9254	24107	33361
105	8144	24107	32251

www.ti.com Revision History

Table 4-11. Compute Thermal Power (continued)

Tj [C]	Leakage Power [mW]	Dynamic Power [mW]	Total Power [mW]
100	7146	24107	31253
95	6250	24107	30357
90	5462	24107	29569
85	4760	24107	28867
80	4138	24107	28245
75	3591	24107	27698
50	1715	24107	25822
25	784	24107	24891
0	380	24107	24487
-20	226	24107	24333
-40	160	24107	24267

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
December 2023	*	Initial Release

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated