Summer ML Triggers

Week 3 Report

Russell Zhang dg22882@bristol.ac.uk

Supervisor Dr Sudarshan Paramesvaran

Particle Physics Laboratory

Tables

- 1 Paper Reading
 - Construct Graph-based Dataset

- ParticleNetLite++
- 2 Next Week plans

Part 1 Paper Reading

ParticleNet: Jet Tagging via Particle Clouds

Content:

- This paper represented jet as particle clouds instead of image-based or particle-based. And model jet events as point clouds which widely used in spatial dataset. Then the author implement Dynamic Graph Convolutional Neural Network (DGNN) for graph-based dataset and achieved better accuracy than CNN.
- I will use elements of our own dataset to introduce both the theoritical and computer-based content of this paper. Also, I will customize our own neural networks ParticleNetLite++.

Represent as a particle cloud?

pseudorapidity-azimuth space

offer sufficient background to represent event as a graph

iversity of RISTOL

Construct Graph-based Dataset

```
[b' Particle, fUniqueID'
b' Particle, fBits'.
b' Particle, PID'.
b' Particle. Status',
b' Particle, IsPU'.
b' Particle, M1'.
b' Particle, M2'.
b' Particle, D1'.
b' Particle, D2'.
b' Particle, Charge'.
h' Particle Mass'.
h' Particle, E'.
b' Particle, Px'.
b' Particle. Py'.
b' Particle, Pz'.
b' Particle, P'
h' Particle, PT'
b' Particle, Eta
b'Particle, Phi'
h' Particle. Rapidity',
b'Particle, T'.
b'Particle, X'.
h' Particle V'
b'Particle, Z']
```

Converting dataset

First, to facilitate comparison with CNN, we select three elements ϕ , η , pT from our delphes dataset.

Then, we can define two inputs of Neural Network:

Coordinates: (ϕ, η)

Features: (ϕ, η, pT)

Construct Graph Dataset

Each of three elements ϕ , η , pT has 1000 events and each event contains different numbers of information which represents particles. (Notice: The number N is not identical.)

Construct Graph Dataset

Event as a Set

- An event is a set of particles in the space.
- Particle clouds are generally created by clustering a large number of particles measured by the particle detectors.

Point cloud vs Particle cloud

- Point cloud
 - points are intrinsically unordered
 - primary information:
 - 3D coordinates in the xyz space

Particle cloud

- particles are intrinsically unordered
- primary information:
 - 2D coordinates in the η - ϕ space
- but also additional "features":
 - energy/momenta
 - charge/particle type
 - track quality/impact parameters/etc.

EdgeConv

K-Nearest-Neighbors

 Goal: To make every particle and his k neighbors as a graph.

EdgeConv

K-Nearest-Neighbors

 Goal: To make every particle and his k neighbors as a graph.

EdgeConv

 Use particle features to update the edge features

EdgeConv

Use edge features to update particle features

$$egin{aligned} oldsymbol{x}_i' &= igsqcup_{j=1}^k oldsymbol{h_{\Theta}}(oldsymbol{x}_i, oldsymbol{x}_{i_j}) \ oldsymbol{x}_{j_{i,j}} & oldsymbol{e}_{ij_{i,j}} & oldsymbol{e}_{ij_{i,j}} \ oldsymbol{x}_{j_{i,j}} & oldsymbol{e}_{ij_{i,j}} \ oldsymbol{x}_{j_{i,j}} & oldsymbol{e}_{ij_{i,j}} \ oldsymbol{x}_{j_{i,j}} \ oldsymbol{x}_{j_{i,j}} \ oldsymbol{e}_{ij_{i,j}} \ oldsymbol{x}_{j_{i,j}} \ oldsymbol{e}_{ij_{i,j}} \ oldsymbol{x}_{j_{i,j}} \ oldsymbol{e}_{ij_{i,j}} \ oldsymbol{e}_{ij_{i,j}}$$

EdgeConv

Updated Dataset

EdgeConv

Skip Connect

With the deepening of the number of deep network layers:

- gradient disappearance,
- gradient explosion,
- overfitting
- consumption of computing resources.

Why Dynamic?

pseudorapidity-azimuth space

Euclidean space

Global Pooling

With Global pooling reduces the dimensionality from 3D to 1D.

(phi, eta, pT)

Therefore Global pooling outputs 1 response for every feature map. This can be the maximum or the average or whatever other pooling operation you use.

(sum, median, mean, average. maximum, operation)

Tasks

- Implement code of ParticleNetLite++
- Perform experiments
- Set up testing standards and visualise
- Reparameterization