Número:_____

Nota: cada resposta errada nas questões 1 a 6 desconta 0.33 valores

1.	[1,0 valores] - Considere o seguinte excerto de um programa escrito em <i>assembly</i> e a execunuma máquina com cache:						a executar		
	ciclo	movi addi cmpi	1 0(%ebx), % 1 \$10, 0(%ek 1 \$4, %ebx 1 \$0, %edx ciclo						
	Considere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) com seguintes valores: {-10, 30, 1024, -33, 0}. Note que o ciclo termina quando o val lido do array for 0. A frequência do relógio é de 2 GHz, o CPI _{CPU} é 2, a <i>miss rate</i> de instruçõ é de 3% e a de dados de 5%. Sabendo que o tempo de execução deste programa é de 15 ns, qual é a <i>miss penalty</i> (expressa em tempo)?								
			$mp_T = 150 \text{ ns}$			$mp_T = 50 \text{ ns}$			
			$mp_T = 200 \text{ ns}$			$mp_{T} = 100 \text{ ns}$			
2.	[1,0 valores] - Complete a afirmação abaixo : "A técnica de <i>pipelining,</i> relativamente a uma arquitectura sequencial de ciclo único, acele o desempenho de um processador pois						o, acelera		
			_	ção do CPI, uma o em cada ciclo.'	-	do que uma instrução	se		
resulta numa diminuição do número de instruções executadas, uma algumas instruções são internamente transformadas em NOPS"									
		resulta numa diminuição do período do relógio, uma vez que este deve ser apenas tão longo quanto o estágio mais demorado do <i>pipeline</i> ."							
		resulta num aumento da frequência devido a ciclos de <i>stalling</i> causados por dependências de dados e/ou controlo."							
3.									
	"O programa for (i=0; i <n; *="" 2;="" a="" a[i]="b[100*i]" de="" espacial<="" exibe="" explorar="" hierarquia="" i++)="" localidade="" memória="" permite="" pois="" td=""></n;>								
	Ш	nos acessos a i."							
		permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a a []."							
	permite explorar a hierarquia de memória pois exibe localidade temporal nos acessos a a []."								
		permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a b[]."							

4. [1,0 valores] - Quantos *bits* tem a *tag* de uma hierarquia de memória (S=1024, E=8, B=128, m=32)?

□ t= 15

□ t= 17

□ t= 10

□ t=12

5. [1,0 valores] - Considere um processador com um bloco de lógica combinatória que pode ser dividido em 4 blocos, cada com uma duração de 214, 283, 252 e 201 picosegundos. Com uma organização em pipeline de 4 estágios este processador permite um ciclo de relógio mínimo de 333 picosegundos. A frequência máxima da organização sequencial correspondente a esta lógica combinatória é de:

 \Box f = 2 GHz

6. [1,0 valores] – Considere o programa abaixo executado numa máquina com *pipeline* com 4 estágios idêntica à apresentada nas aulas (e representada na figura ao lado).

I1: mov \$10, %eax

12: sub \$5, %eax

I3: jz I1

I4: add \$10, %eax

Se esta máquina resolve todas as dependências (dados e controlo) recorrendo ao *stalling*, então o programa executa em:

 \Box f = 7 ciclos

 \Box f = 9 ciclos

 \Box f = 12 ciclos

7. [2.0 valores] A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços (m=4) de acesso à memória gerados por um determinado programa. As 3 colunas seguintes referem-se a um modo de mapeamento numa cache que usa o algoritmo de substituição LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão ou de um hit. Considere a cache inicialmente fria.

Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão
1			
13			
0			
6			
8			

- 8. [2.0 valores] Considere de novo a máquina e o programa apresentados na questão 6. Considere agora que esta máquina suporta:
 - . previsão estática de saltos, prevendo sempre os saltos condicionais como tomados;
 - . data forwarding, com reencaminhamento do registo WR para o estágio de Decode e da saída da ALU para o estágio de Decode isto é, idêntico ao modelo analisado nas aulas.

Preencha a tabela abaixo, indicando em cada ciclo do relógio qual a instrução em execução em cada estágio e assinalando a injecção de eventuais NOPs com um círculo.

1	2	3	4	5	6	7	8	9	10	11	12

Nome:	Número:	