# RAFAEL DESIDERIO

### Formação Acadêmica

Técnico em Logística Programação de Jogos Digitais Graduado em Analise e Desenvolvimento de Sistemas Pós Graduado MBA em Arquitetura de Software

### **Experiência Profissional**

10 anos na área de Tecnologia (T.I) Monitor de Laboratório Workshop em Eventos de Inovações Tecnológicas Analista de Infra Professor de graduação FIAP

profrafael.desiderio@fiap.com.br







# Conteúdo Programático (anual)

Programação Orientada a Objetos ☐ Diagrama de Classe (UML) ☐ Classes, Atributos, Tipos Primitivos e Operações ☐ Plataforma JAVA / IDE IntelliJ ☐ JAVA, Modelos, Pacotes ☐ Encapsulamento, Herança e Polimorfismo ☐ Vetor de Objetos ☐ Arrays/Collections Framework; ☐ Tratamentos de Erros/Exceções (Try / Catch) ☐ Design Pattern BackEnd □ JDBC ☐ Revisão de Todo o Conteúdo Programático



#### **DOMAIN DRIVEN DESIGN**

Prof. Rafael Desiderio

01 – ORIENTAÇÃO A OBJETOS



# O que é Programação Orientada à Objetos?

É um paradigma (modelo, padrão) de análise, projeto e programação de sistemas de informação, baseado na composição e interação entre diversas unidades de software chamadas de objetos;











**Portas** 



<u>Pneus</u>





#### Programação

É um método padronizado para **expressar instruções** para um computador através de uma **linguagem de programação**.

#### Linguagem de Programação

É um conjunto de regras sintáticas (gramática) e semânticas (significado) usadas para definir um programa de computador.

#### Objeto

Na programação orientada à objetos, um objeto representa uma entidade que pode ser física, conceitual ou de software.





Na imagem abaixo temos como exemplo uma cadeira gamer e uma bola de futebol, mas poderíamos utilizar como exemplo outros tipos destes mesmos objetos com características ou propriedades específicas.

#### Bola

```
Futebol (couro, redondo, 40cm diâmetro, branca, etc...);
Tênis (tecido, redonda, 5cm de diâmetro, amarela, etc...);
Ping-Pong (PVC, redonda, 1.5cm de diâmetro, branca, etc...);
Futebol Americano (couro, oval, 50cm de largura, marron, etc...);
```

#### Cadeira

```
Gamer (plástico, com rodas, couro sintético, magenta, com braço, etc...);
Praia (alumínio, pano, de deitar, etc...);
Escritório (ferro, estofado macio, preta, com braço, etc...);
Rodas (ferro, branca, com rodas, automática, manual, etc...);
```









Bola (Material, formato,cor,etc...)

Características ou Propriedades



material: couro; formato: redondo; tamanho: 40cm; cor: branca;

Cadeira (Material, formato ,cor ,etc...)

Características ou Propriedades



estofado: sintético;
estrutura: redondo;
Contém\_rodas: sim;
Contém\_braço: sim;
Cor: magenta;



# Vamos à prática

**Busque** ao menos **3 exemplos** do cotidiano e descreva as **propriedades** dos exemplos encontrados.

# Analogia com a Informática



#### Sistema de Caixa Eletrônico

- Objeto: Cliente
  - Nome
  - Endereço
  - CPF
  - RG
- Objeto: Conta Corrente
  - Agência
  - Número
  - Saldo
  - Cliente





# $F/\sqrt{P}$

#### Sistema de E-Commerce

- Objeto: Produto
  - Nome
  - Descrição
  - Valor
- Objeto: Estoque
  - Produto
  - Quantidade
  - Prazo de Validade
- Objeto: Cliente
  - Cadastro
  - Senha do Cadastro
  - Nome
  - Endereço
  - CPF
  - RG





# Classes





- As abstrações são representadas pelas classes;
- Uma classe deve conter apenas os elementos necessários para resolver um aspecto bem definido do sistema;
- A classe é uma descrição nomeada para um grupo de entidades (chamadas de objetos ou instancias de classe) que tem as mesmas características;

Cachorro
Tamanho
Raça
Nome
Latir()







- As características são os atributos (propriedades, campos de dados) e as operações (comportamentos, métodos, funções) que podem ser executadas nesses objetos;
- Em outros termos, uma classe descreve os serviços providos por seus objetos e quais informações eles podem armazenar;
- Na programação orientada a objetos a classe é a unidade básica de programação;
- Todos os programas são escritos como um conjunto de classes, e todos códigos que você escrever devem fazer parte de uma classe;

# O que é uma Classe?





## O que é uma Classe?



- Uma classe é a descrição de um conjunto de objetos que compartilham os mesmos atributos, operações, relações e semânticas;
  - Um objeto é uma instancia de uma classe;
- Uma classe é uma abstração, uma vez que:
  - Enfatiza características relevantes;
  - Suprime outras características;



### Exemplo de Classe



#### **Classe Curso**

#### **Propriedades**

Nome Local Dias oferecidos Carga horária Hora de início Hora de término



#### **Comportamentos**

Adicionar um aluno
Excluir um aluno
Obter lista de alunos
Verificar se está cheio



## Representação gráfica de uma Classe

- É possível representar graficamente uma classe através de um diagrama de classes (UML), este diagrama é um exemplo de uma representação da estrutura e relações das classes que servem de modelo para objetos;
- Uma classe é representada através de um retângulo com três compartimentos;







- Um atributo é o nome que se dá à propriedade de uma classe;
- O atributo descreve o tipo de valores que a propriedade possui;
  - Uma classe pode ter qualquer quantidade de atributos ou nenhum atributo;





# Operação / Métodos

- Operação é um serviço que pode ser solicitado a partir de um objeto para executar um comportamento. Uma operação tem uma assinatura, que pode restringir os parâmetros reais que são possíveis;
- Uma classe pode ter qualquer quantidade de operações ou nenhuma operação;







■ Nesse exemplo, a classe **Pessoa** possui os seguintes atributos e operações:

#### Pessoa

- nome : String

- genero : String

- idade : int

- casa : Casa

- carro : Carro

+ exibirDadosPessoais (): void

+ exibirPatrimonio () : void







A classe Pessoa pode gerar vários objetos:

#### Objeto #1

nome = "Caroline"

idade = 25

genero = "feminino"

casa =

carro =

exibirDadosPessoais()
exibirPatrimonio()



#### Objeto #2

nome = "Rafael"

idade = 38

genero = "masculino"

casa =

carro =

exibirDadosPessoais()
exibirPatrimonio()



#### Objeto #3

nome = "Fatima"

idade = 62

genero = "feminino"

casa =

carro = 🥾

exibirDadosPessoais()
exibirPatrimonio()





## Relação entre Classes e Objetos

- Uma classe é uma definição abstrata de um objeto;
  - Ela define a estrutura e comportamento de cada objeto da classe;
  - Ela serve como um **modelo** para a **criação de objetos**;
- Classes não são coleções de objetos;

#### Pessoa

nome : Stringgenero : String

- idade : int

- casa : Casa

carro : Carro

+ exibirDadosPessoais (): void

+ exibirPatrimonio () : void





# Relação entre Classes e Objetos



Atributos em classes e objetos:

#### Classe



#### Aluno

- nome : String

- endereco : String

- idMatricula : int

dataNascimento : Date

#### : Aluno

nome : José da Silva

endereco: Rua Esmeralda, 98

idMatricula: 97325

dataNascimento: 02/07/1990

**Objetos** 

#### : Aluno

nome : Maria Helena de Souza

endereco : Av. Paulista, 1432

idMatricula: 53479

dataNascimento: 17/10/1972





Um conjunto de Princípios (abstração, encapsulamento, herança e polimorfismo) guiando a construção do software, em conjunto com linguagens, banco de dados e outras ferramentas que suportam esses princípios. (Object Technology - A Manager's Guide, Taylor, 1997.)

- Vantagens da orientação à objetos:
  - Facilidades arquiteturais e reuso de código;
  - Reflete em modelos do mundo real;
  - Incentiva a estabilidade;
  - É adaptável à mudanças;







Um modelo é a simplificação da realidade;









É possível construir um prédio sem a maquete, as plantas, a estruturação total de elétrica, gás e hidráulica?

Sim é possível (hehe), mas NÃO faça isto!



# 

# Senão...













- A modelagem atinge quatro objetivos:
  - Ajuda a visualizar um sistema como deseja que ele seja;
  - Permite especificar a estrutura ou o comportamento de um sistema;
  - Disponibiliza um modelo que orienta na construção de um sistema;
  - Documenta as decisões realizadas;
- Os modelos de sistemas são construídos porque não é possível compreender o sistema em sua totalidade;
- Os modelos são construídos para melhor entendimento do sistema que esta sendo desenvolvido;

# A importância da modelagem







# Vamos à prática

### Faça a modelagem em diagrama de classe:

- Que tenha que ser realizado um cadastro de cliente em um sistema de compras e-commerce;
- Use abstração para identificar as classes, atributos e operações.



# Vamos à prática

### Montar as classes com os atributos definindo seus tipos:

- String para texto
- int para número inteiro
- double para número real
- boolean para verdadeiro/falso
- Date para data

# <u>Instalação do Java – IntelliJ IDEA Community Edition</u> (IDE)



- Faça o download do instalador IntelliJ IDEA Community Edition:
  - https://www.jetbrains.com/idea/download/?section=windows



• Instalar o IntelliJ:







- Faça o download do JDK
  - http://www.oracle.com/technetwork/java/javase/downloads/index.html
- Instalar JDK
  - Incluir na variável de ambiente Path: <diretorio\_do\_java>\bin
  - Onde **<diretorio\_do\_java>** é o diretório de instalação do JDK

Para facilitar a configuração da Variável de Ambiente após a instalação do JDK, vamos seguir um passo a passo de exemplo...







# Instalação do Java - JDK (passo a passo)

**1.** Clicar "Este computador" com o botão direito do mouse e ir em "Propriedades".



**2.** Abrirá a janela de configurações no canto direito, clique na opção "Configurações avançadas do sistema".





## Instalação do Java - JDK (passo a passo)

**3.** Na janela Propriedades do Sistema, vá na aba "avançado" e depois em "Variáveis de Ambiente".



**4.** Agora em Variáveis do Sistema, selecione o "Path" e em seguida clique no botão "Editar..."





# Instalação do Java - JDK (passo a passo)

Colar

**5.** Vá ao local onde foi instalado o JDK em seu computador, acesse a pasta "bin" e copie o caminho do Explorer conforme apresentado na ilustração abaixo.



**6.** Em "Editar a variável de ambiente", clique no botão "Novo", no primeiro espaço vazio abaixo, cole o caminho copiado no passo anterior, depois clique no botão "OK".





# **Copyright © 2024 Prof. Rafael Desiderio**

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito do Professor (autor).