Cours

Nature des nombres

Les nombres entiers

Définitions

- Les nombres entiers naturels sont les nombres entiers positifs.
- Les nombres entiers relatifs sont les nombres entiers positifs et les nombres entiers négatifs.

Exemples

- Les nombres tels que : 0 ; 1 ; 2 ; 3 sont des nombres entiers positifs.
- Les nombres tels que : -3; -2; -1; 0; 1; 2; 3 sont des nombres entiers relatifs.

Remarque: Tout entier naturel est un entier relatif, mais tout entier relatif n'est pas un entier naturel. Par exemple, -2 est un entier relatif, mais n'est pas un entier naturel.

Les nombres décimaux

Définition Un nombre décimal est un nombre qui peut s'écrire sous la forme d'un quotient d'un entier relatif par une puissance de 10.

Exemples

On peut écrire :
$$-0.18 = \frac{-18}{100} = \frac{-18}{10^2}$$
; $4 = \frac{4}{1} = \frac{4}{10^0}$ et $\frac{3}{25} = \frac{12}{100} = \frac{12}{10^2}$.

Donc les nombres -0.18; 4 et $\frac{3}{25}$ sont des nombres décimaux.

En revanche $\frac{8}{9}$ ne peut pas s'écrire sous la forme d'un quotient d'un entier relatif par une puissance de 10. $\frac{8}{9}$ n'est donc pas un nombre décimal.

Remarque: Tout entier relatif est un nombre décimal, mais tout nombre décimal n'est pas un entier relatif. Par exemple, $\frac{3}{10}$ est un nombre décimal, mais n'est pas un entier relatif.

3 Les nombres rationnels

Définition

Un nombre rationnel est un nombre qui peut s'écrire sous la forme d'un quotient de deux entiers relatifs.

Exemples

- $\triangleright \frac{8}{9}$; $\frac{-5}{7}$ et $\frac{1}{3}$ sont des nombres rationnels.
- ▶ On peut écrire : $-12.9 = \frac{-129}{10}$ et $8 = \frac{8}{1}$. Donc -12.9 et 8 sont des nombres rationnels.

Remarques:

- Tout nombre décimal est un nombre rationnel, mais tout nombre rationnel n'est pas un nombre décimal. Par exemple, $\frac{1}{6}$ est un nombre rationnel, mais n'est pas un nombre décimal.
- Il existe des nombres qui ne sont pas rationnels, comme $\sqrt{2}$ ou π . Ces nombres sont appelés des nombres irrationnels.

Exercice 83, page 24

Diviseurs, multiples et PGCD

1 Diviseurs et multiples

Définition Soient a et b deux nombres entiers relatifs, avec b non nul.

On dit que le nombre b est un diviseur du nombre a s'il existe un nombre entier n tel que: a = bn.

On dit aussi que **b** divise **a** ou que **a est un multiple de b**.

Exemples

 \triangleright 48 = 6 × 8. donc 8 et 6 sont des diviseurs de 48.

▶ $48 = (-2) \times (-24)$, donc -2 et -24 sont des diviseurs de 48.

Remarques :

- 1 est un diviseur de tous les nombres.
- Tout nombre entier non nul est un diviseur de 0.

b est un diviseur de a signifie que le quotient $\frac{a}{b}$ est un nombre entier.

Nombres premiers

Définition On dit qu'un nombre entier naturel est premier lorsqu'il possède exactement deux diviseurs positifs différents : 1 et lui-même.

Exemples

- Les seuls diviseurs positifs de 5 sont 1 et 5, donc 5 est un nombre premier.
- Les seuls diviseurs positifs de 31 sont 1 et 31, donc 31 est un nombre premier.

Remarque: 1 n'est pas un nombre premier car 1 n'admet qu'un seul diviseur positif égal à 1.

3 Plus grand diviseur commun à deux nombres entiers strictement positifs

Propriété Parmi tous les diviseurs communs à deux nombres entiers strictement positifs a et b, il en existe un qui est plus grand que tous les autres.

Le plus grand diviseur commun à a et b est noté : PGCD(a; b).

Exemples

► Trouver PGCD (48; 18).

Les diviseurs positifs de 48 sont :

1;2;3;4;6;8;12;16;24;48.

Les diviseurs positifs de 18 sont : 1 ; 2 ; 3 ; 6 ; 9 ; 18.

Les diviseurs communs à 48 et à 18 sont : 1 ; 2 ; 3 et 6.

Le plus grand diviseur commun à 48 et 18 est donc 6.

On écrit : PGCD(48; 18) = 6.

► Trouver PGCD(80; 76).

Les diviseurs positifs de 80 sont : 1 ; 2 ; 4 ; 5 ; 8 ; 10 ; 16 ; 20 ; 40 ; 80.

Les diviseurs positifs de 76 sont : 1; 2; 4; 19; 38; 76.

Les diviseurs communs à 80 et 76 sont : 1 ; 2 et 4.

Le plus grand diviseur commun à 80 et 76 est 4. On écrit PGCD(80; 76) = 4.

Un diviseur commun à a et à b est un nombre qui est à la fois un diviseur de a et un diviseur de b.

Cours

Propriétés

Ces propriétés justifient l'algorithme des différences

- Savoir-faire 1. page 15 et l'algorithme d'Euclide
- Savoir-faire 2, page 15.

Soient a et b deux nombres entiers strictement positifs (avec a > b) et soit r le reste de la division euclidienne de a par b.

- PGCD(a; b) = PGCD(b; a-b)
- PGCD(a; b) = PGCD(b; r)

Exemples

Soient a = 48 et b = 18. On a vu dans l'exemple précédent que PGCD(48; 18) = 6.

- a b = 30 et on a bien PGCD(30; 18) = 6.
- ▶ $48 = 18 \times 2 + 12$, donc le reste de la division euclidienne de 48 par 18 est 12, et on a bien PGCD(18; 12) = 6.

Remarques:

- Si a est un multiple de b, alors PGCD(a; b) = b.
- PGCD(a; a) = a.

Nombres premiers entre eux

Définition

On dit que deux nombres sont premiers entre eux lorsque leur plus grand diviseur commun est égal à 1.

Exemple

Les nombres 48 et 35 sont premiers entre eux.

En effet, les diviseurs positifs de 48 sont : 1;2;3;4;6;8;12;16;24;48 et les diviseurs positifs de 35 sont : 1; 5; 7; 35. Le plus grand diviseur commun à 48 et 35 est 1.

Définition

Soient deux nombres entiers strictement positifs a et b.

On dit que la fraction $\frac{a}{b}$ est **irréductible** lorsque a et b sont premiers entre eux.

On a vu précédemment que 48 et 35 étaient premiers entre eux, donc $\frac{48}{35}$ et $\frac{35}{48}$ sont deux fractions irréductibles.

Une fraction irréductible est une fraction qui ne peut plus être simplifiée.

Règle

Savoir-faire 3, page 16

Soient deux nombres entiers strictement positifs a et b.

Pour obtenir la fraction irréductible égale à la fraction $\frac{a}{b}$, il suffit de diviser a et b par leur plus grand diviseur commun.

On a vu précédemment que PGCD (48 ; 18) = 6. On a : $\frac{48}{18} = \frac{48 : 6}{18 \cdot 6} = \frac{8}{3}$

 $\frac{8}{3}$ est la fraction irréductible égale à $\frac{48}{18}$.