Отчёт по лабораторной работе №1

НММбд-01-222

Батова Ирина Сергеевна

Содержание

1	Цель работы	6
2	Выполнение лабораторной работы	7
3	Домашнее задание	25
4	Вывод	28
5	Контрольные вопросы	29

Список иллюстраций

2.1	Скачивание VirtualBox	7
2.2	Установка VirtualBox	8
2.3	Завершение установки VirtualBox	8
2.4	Путь папки для машины	9
2.5	Имя виртуальной машины и тип операционной системы	10
2.6	Объем памяти	10
2.7	Создание нового виртуального жесткого диска	11
2.8	Указание типа подключения виртуального жесткого диска	11
2.9	Указание формата хранения виртуального жесткого диска	12
2.10	Указание имени и размера виртуального жесткого диска	12
2.11	Указание объема видеопамяти	13
	Скачивание образа операционной системы Fedora 36	14
2.13	Выбор в настройках в разделе «Носители» образа оптического диск	a 14
2.14	Добавление нового оптического диска	15
2.15	Выбор образа Fedora 36	15
2.16	Запуск установки Fedora 36	16
	Выбор языка	16
	Выбор раскладки клавиатуры	17
	Выбор часового пояса	17
2.20	Выбор устройства для установки операционной системы	18
	Установка Fedora 36	18
2.22	Перезапуск виртуальной машины	19
	Изъятие диска из привода	19
2.24	Продолжение настройки Fedora 36	20
	Указание логина	20
	Указание пароля	21
	Переключение на роль суперпользователя	21
	Обновление всех пакетов	21
	Установление программы	22
	Установление программного обеспечения	22
	Запуск таймера	22
	Отключение системы безопасности SELinux	22
	Запуск терминального мультиплексора tmux	23
	Установка пакета DKMS	23
	Подключение образа диска дополнений гостевой ОС	23
	Монтировка диска	23
	Установка драйверов	24

2.38	Настройки раскладки клавиатуры	24
3.1	Koмaндa 'dmesg'	25
3.2	Koмaндa 'dmesg less'	26
	Версия ядра	26
3.4	Частота процессора	26
3.5	Модель процессора	27
3.6	Объем доступной памяти	27
3.7	Тип обнаруженного гипервизора	27
3.8	Тип файловой системы корневого раздела и последовательность	
	монтирования файловых систем	27

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

Так как работать я буду на своей технике, сначала скачиваем VirtualBox (сайт https://www.virtualbox.org). Выбираем на сайте установку для Windows hosts (рис. 2.1).

Рис. 2.1: Скачивание VirtualBox

Выполняем установку VirtualBox (рис. 2.2, 2.3).

Рис. 2.2: Установка VirtualBox

Рис. 2.3: Завершение установки VirtualBox

На рабочем столе создаем папку с названием, соответствующим логину в дис-

плейном классе (isbatova) и переносим туда VirtualBox. Далее необходимо проверить, в нужном ли месте находится VirtualBox. Для этого открываем VirtualBox, нажимаем «Настройки» - «Общие». В пункте «Папке для машин по умолчанию» проверяем, верно ли указан путь до папки: C:/Users/isbatova/Desktop/isbatova (рис. 2.4).

Рис. 2.4: Путь папки для машины

Далее создаем виртуальную машину, для этого нужно нажать в VirtualBox «Машина» - «Создать». Как имя указываем логин в дисплейном классе (isbatova), опять проверяем путь для папки машины. Выбираем тип операционной системы – Linux, версия – Fedora (64-bit) (рис. 2.5).

Рис. 2.5: Имя виртуальной машины и тип операционной системы

Далее задаем объем оперативной памяти 2048 МБ (рис. 2.6).

Рис. 2.6: Объем памяти

Создаём новый виртуальный жесткий диск (рис. 2.7), выбираем тип файла (рис. 2.8), формат хранения – динамический виртуальный жесткий диск (рис. 2.9).

Рис. 2.7: Создание нового виртуального жесткого диска

Рис. 2.8: Указание типа подключения виртуального жесткого диска

Рис. 2.9: Указание формата хранения виртуального жесткого диска

Далее задаем размер диска (80 ГБ) и его расположение (рис. 2.10).

Рис. 2.10: Указание имени и размера виртуального жесткого диска

Далее необходимо увеличить доступный объем видеопамяти. Для этого нажимаем «Настройки» - «Дисплей» - «Экран» и вводим значение 128 МБ (рис. 2.11).

Рис. 2.11: Указание объема видеопамяти

Для дальнейшей работы в первую очередь нам необходимо скачать образ операционной системы Fedora. Ha caйте https://getfedora.org/ru/workstation/download/выбираем вариант «Fedora 36: x86_64 Live ISO-образ» (рис. 2.12).

Рис. 2.12: Скачивание образа операционной системы Fedora 36

После этого заходим в VirtualBox, нажимаем «Настройки» - «Носители». Добавляем новый оптический диск и выбираем скачанный образ Fedora 36 (рис. 2.13, рис. 2.14, (рис. 2.15).

Рис. 2.13: Выбор в настройках в разделе «Носители» образа оптического диска

Рис. 2.14: Добавление нового оптического диска

Рис. 2.15: Выбор образа Fedora 36

Далее нам нужно запустить машину – для этого нажимаем на кнопку «Запустить». Ждем, пока загрузится и в открывшемся окне выбираем «Install to Hard Drive» (рис. 2.16).

Рис. 2.16: Запуск установки Fedora 36

Начинаем настройку Fedora. Устанавливаем русский язык (рис. 2.17), английскую и русскую клавиатуру (рис. 2.18), часовой пояс Европа/Москва (рис. 2.19]).

Рис. 2.17: Выбор языка

Рис. 2.18: Выбор раскладки клавиатуры

Рис. 2.19: Выбор часового пояса

Место установки оставляем без изменений (рис. 2.20). Начинаем установку (рис. 2.21).

Рис. 2.20: Выбор устройства для установки операционной системы

Рис. 2.21: Установка Fedora 36

После загрузки нажимаем «Завершить установку». Далее нам нужно перезапустить машину, чтобы продолжить настройку. Для этого в верхнем меню выбираем «Машина» - «Перезапустить» (рис. 2.22). Во время перезапуска необходимо изъять образ диска из дисковода. Для этого выбираем «Устройства» - «Изъять диск из привода» (рис. 2.23).

Рис. 2.22: Перезапуск виртуальной машины

Рис. 2.23: Изъятие диска из привода

После того, как машина перезапустилась, продолжаем настройку (рис. 2.24).

Рис. 2.24: Продолжение настройки Fedora 36

Настраиваем машину. Указываем логин (рис. 2.25) и пароль (рис. 2.26).

Рис. 2.25: Указание логина

Рис. 2.26: Указание пароля

Машина готова к работе.

Переключаемся на роль супер-пользователя (рис. 2.27).

```
[isbatova@fedora ~]$ sudo -i
[sudo] пароль для_isbatova:
```

Рис. 2.27: Переключение на роль суперпользователя

Обновляем все пакеты (рис. 2.28).

```
Copr repo for PyCharm owned by phracek
                                                  4.7 kB/s | 3.6 kB
                                                                         00:00
                                                              44 kB
Copr repo for PyCharm owned by phracek
                                                   34 kB/s |
                                                                         00:01
Fedora 36 - x86_64
                                                   33 kB/s |
                                                              19 kB
                                                                         00:00
Fedora 36 openh264 (From Cisco) - x86_64
                                                  3.6 kB/s |
                                                                         00:00
Fedora Modular 36 - x86_64
                                                   30 kB/s |
                                                              18 kB
                                                                         00:00
Fedora 36 - x86_64 - Updates
                                                  29 kB/s |
                                                              7.9 kB
                                                                         00:00
Fedora 36 - x86_64 - Updates
                                                  1.8 MB/s |
                                                              14 MB
                                                                         00:07
Fedora Modular 36 - x86_64 - Updates
                                                   25 kB/s |
                                                               16 kB
                                                                         00:00
Fedora Modular 36 - x86_64 - Updates
                                                  136 kB/s |
                                                              195 kB
                                                                         00:01
google-chrome
                                                              1.3 kB
                                                  4.8 kB/s |
                                                                         00:00
google-chrome
                                                  6.6 kB/s |
                                                              3.6 kB
                                                                         00:00
RPM Fusion for Fedora 36 - Nonfree - NVIDIA Dri 12 kB/s |
                                                              7.5 kB
                                                                         00:00
RPM Fusion for Fedora 36 - Nonfree - NVIDIA Dri 40 kB/s |
RPM Fusion for Fedora 36 - Nonfree - Steam 16 kB/s |
                                                              15 kB
                                                                         00:00
RPM Fusion for Fedora 36 - Nonfree - Steam
                                                              7.3 kB
                                                                         00:00
RPM Fusion for Fedora 36 - Nonfree - Steam
                                                  2.1 kB/s |
                                                              2.2 kB
                                                                         00:01
```

Рис. 2.28: Обновление всех пакетов

Далее устанавливаем программы для удобства работы в консоли (рис. 2.29).

```
[root@fedora ~]# dnf install tmux mc
Последняя проверка окончания срока действия метаданных: 0:28:36 назад, Пн 13 фев
_2023 22:22:01.
```

Рис. 2.29: Установление программы

После этого устанавливаем программное обеспечение и запускаем таймер (рис. 2.30, рис. 2.31).

Рис. 2.30: Установление программного обеспечения

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
```

Рис. 2.31: Запуск таймера

Далее заходим в файл /etc/selinux/config и заменяем значение на 'permissive', таким образом отключая систему безопасности SELinux (рис. 2.32).

```
#
SELINUX=permissive
# SELINUXTYPE= can take one of these three values:
```

Рис. 2.32: Отключение системы безопасности SELinux

После этого перезагружаем машину командой "reboot".

Следующим нашим шагом будет установка драйверов. Для этого запускаем терминальный мультиплексор tmux (рис. 2.33).

```
[isbatova@fedora ~]$ tmux
```

Рис. 2.33: Запуск терминального мультиплексора tmux

Вновь переключаемся на роль суперпользователя и устанавливаем пакет DKMS (рис. 2.34).

```
[isbatova@fedora ~]$ sudo -i
[sudo] пароль для isbatova:
[root@fedora ~]# dnf -y install dkms
```

Рис. 2.34: Установка пакета DKMS

После этого вверху нажимаем "Машина" -> "Подключить образ диска дополнений гостевой ОС" (рис. 2.35).

Рис. 2.35: Подключение образа диска дополнений гостевой ОС

Далее подмонтируем диск (рис. 2.36) и установим драйвера (рис. 2.37).

```
[root@fedora ~]# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
```

Рис. 2.36: Монтировка диска

```
[root@fedora ~]# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.2 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Removing installed version 7.0.2 of VirtualBox Guest Additions...
```

Рис. 2.37: Установка драйверов

После этого вновь перезагружаем машину с помощью команды "reboot". После входа вновь запускаем терминальный мультиплексор tmux и переключаемся на роль супер-пользователя. Далее вводим команду mc и редактируем файл /etc/X11/xorg.conf.d/00-keyboard.conf (рис. 2.38).

```
Section "InputClass"
Identifier "system-keyboard"
MatchIsKeyboard "on"
Option "XkbLayout" "us,ru"
Option "XkbVariant" ",winkeys"
Option "XkbOptions" "grp:rctrl_toggle,compose:ralt,terminate:ctrl_alt_bk
```

Рис. 2.38: Настройки раскладки клавиатуры

После этого вновь перезагружаем машину. Так как имя пользователя и имя хоста удовлетворяют соглашению о наименовании, то ничего не меняем. Также установка программного обеспечения (pandoc и texlive) также были произведены в прошлом семестре.

3 Домашнее задание

С помощью команды 'dmesg' мы можем проанализировать последовательность загрузки системы (рис. 3.1).

Рис. 3.1: Команда 'dmesg'

При использовании команды 'dmesg | less' можем просмотреть вывод этой команды, получая отображение каждой новой команды посредством нажатия клавиши "Enter" (рис. 3.2).

Рис. 3.2: Koмaндa 'dmesg | less'

После этого с помощью команды "dmesg | grep -i 'Linux version'" узнаем версию ядра Linux. Как видно на рисунке, версия ядра у меня 6.1.10-200.fc37.x86_64 (рис. 3.3).

```
[isbatova@fedora ~]$ dmesg | grep -i 'Linux version'
[ 0.000000] Linux version 6.1.10-200.fc37.x86_64 (mockbuild@bkernel01.iad2.fe
doraproject.org) (gcc (GCC) 12.2.1 20221121 (Red Hat 12.2.1-4), GNU ld version 2
.38-25.fc37) #1 SMP PREEMPT_DYNAMIC Mon Feb 6 23:56:48 UTC 2023
```

Рис. 3.3: Версия ядра

Частоту процессора узнаем командой "dmesg | grep -i 'MHz'" (рис. 3.4). В данном случае она равна 2611.198.

```
[isbatova@fedora ~]$ dmesg | grep -i 'MHz'
[ 0.000008] tsc: Detected 2611.198 NHz processor
[ 3.734285] e1000 <u>0</u>000:00:03.0 eth0: (PCI:33NHz:32-bit) 08:00:27:99:92:81
```

Рис. 3.4: Частота процессора

Далее узнаем модель процессора командой "dmesg | grep -i 'CPU0'" (рис. 3.5). Моя модель - 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10GHz.

```
[isbatova@fedora ~]$ dmesg | grep -i 'CPU0'
[ 0.214653] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10GHz (family: 0x6, model: 0x8c, stepping: 0x1)
```

Рис. 3.5: Модель процессора

Далее выясняем объем доступной оперативной памяти командой "dmesg | grep -i 'Memory'" (рис. 3.6). В данном случае доступно 1977372K/2096696K.

Рис. 3.6: Объем доступной памяти

Далее узнаем тип обнаруженного гипервизора командой "dmesg | grep -i 'Hypervisor detected'" (рис. 3.7). В моем случае тип KVM.

```
[isbatova@fedora ~]$ dmesg | grep -i 'Hypervisor detected'
[ 0.000000] Hypervisor detected: KVM
[isbatova@fedora ~]$
```

Рис. 3.7: Тип обнаруженного гипервизора

Далее выясняем тип файловой системы корневого раздела и последовательность монтирования файловых систем командой "dmesg | grep -i 'Mount'" (рис. 3.8). Как видно на рисунке, тип файловой системы корневого раздела EXT-4.

```
[isbatovaefedora -]$ dmesg | grep -i 'Mount'
[ 0.102438] Neunt-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
[ 0.102438] Neuntpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
[ 6.571066] systemd[1]: Set up automount proc-sys-fs-binfmt_misc.automount - Arbitrary Executable File Formats File System Automount Point.
[ 6.598715] systemd[1]: Nounting dev-hugepages.mount - PUSIX Message Queue File System...
[ 6.606381] systemd[1]: Nounting dev-mqueue.mount - POSIX Message Queue File System...
[ 6.603317] systemd[1]: Nounting sys-kernel-tbody_mount - Kernel Debug File System...
[ 6.603817] systemd[1]: Starting systemd-reacount-fs.service - Remount Noot and Kernel File Systems...
[ 6.607129] systemd[1]: Starting systemd-reacount-fs.service - Remount Noot and Kernel File Systems...
[ 6.6091303] systemd[1]: Nounted dev-hugepages.mount - POSIX Message Queue File System.
[ 6.691329] systemd[1]: Nounted sys-kernel-debug.mount - Rernel Debug File System.
[ 6.691329] systemd[1]: Nounted sys-kernel-debug.mount - Kernel Debug File System.
[ 6.7720877] EXT4-fs (sda2): mounted filesystem with ordered data mode. Quota mode: none.
```

Рис. 3.8: Тип файловой системы корневого раздела и последовательность монтирования файловых систем

4 Вывод

В данной работы мной были приобретены практические навыки установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.

5 Контрольные вопросы

- 1. Учетная запись пользователя содержит имя пользователя (user name), идентификационный номер пользователя (UID), идентификационный номер группы (GID), пароль (password), полное имя (full name), домашний каталог (home directory) и начальную оболочку (login shell).
- 2. Для получения справки по команде 'man [команда]'. Например, команда 'man cd' выдаст информацию о команде 'cd'.

Для перемещения по файловой системе используется команда 'cd [путь]'. Например, команда 'cd ~/work/study' осуществит переход в каталог study.

Для просмотра содержимого каталога используется команда 'ls [путь]'. Например, команда 'ls ~/work/study' выдаст содержимое каталог study. Данная команда может использоваться с разными опциями: 'ls [опция][путь]'.

Для определения объема каталога используется команда 'du [путь]'. Например, команда 'du ~/work/study' выведет объем каталога study. Данная команда может использоваться с разными опциями: 'du [опция][путь]'.

Для создания каталогов используется команда 'mkdir [путь]'. Например, команда 'mkdir ~/work/study' создаст цепочку подкаталогов, то есть в домашнем каталоге будет создан каталог work, а в каталоге work будет создан каталог study. Данная команда может использоваться с разными опциями: 'mkdir [опция][путь]'.

Для удаления каталогов или файлов используется команда 'rmdir[опция][путь]' или 'rm[опция][путь]'. Например, команда 'rm -r ~/work/study' удалит каталоги work и study. Данная команда может использоваться с разными опциями, в данном случае '-r' является опцией.

Для задания определенных прав на файл/каталог используется команда 'chmod [опция][путь]'. Например, команда 'chmod a-х text.txt' запретит выполнение файла "text.txt". Данная команда может использоваться с разными опциями, в данном случае 'a-х' является опцией.

Для просмотра истории команд используется команда 'history [опция]'. Например, команда 'history 3' позволит посмотреть последние три команды.

- 3. Файловая система это архитектура хранения данных в системе, в оперативной памяти и доступа к конфигурации ядра, инструмент, позволяющий ОС и программам обращаться к нужным файлами и работать с ними. Файловая система устанавливает правила эксплуатации и организацию данных на накопителе, экономя ресурсы операционной системы и программ. Файловая система Linux представляет собой пространства раздела диска, разбитой на блоки фиксированного размера. Всего существует несколько типов файловых систем. Приведем несколько примеров.
- EXT (а также EXT2, EXT3, EXT4) первая и стандартная файловая система Linux. Является наиболее стабильной и содержит больше всего функций.
- XFS высокопроизводительная 64-битная журналируемая файловая система. Изначально была рассчитана для использования на дисках большого объема.
- JFS также 64-битная журналируемая файловая система, созданная IBM. Всего существует два поколения JFS, однако в Linux используется файловая система только второго поколения.
- ZFS файловая система, разработанная для систем хранения данных. Главной особенностью этой файловой системы является отказоустойчивость.
- 4. Посмотреть, какие файловые системы подмонтированы в операционную систему, можно посмотреть командой 'findmnt'.
- 5. Перед остановкой процесса необходимо определить его PID. Для этого используем команды 'ps', которая выведет список активных процессов в си-

стеме и информацию о них, и 'grep', которая будет выполнять поиск по результатам команды ps. После определения PID процесса, мы используем команду 'kill' с параметров PID для "убийства" процесса. Помимо этой команды, можно использовать команду 'kilall' для "убийства" всех процессов, имеющих одно и то же имя, это может быть удобно, так как для этого нам не нужно знать PID всех процессов.