

SPMS21081 - Cluster Algebras and Skein theory

Presented by Yu Xiaoming

Supervised by Assoc Prof Andrew James Kricker, Co-supervisor Mr. Wang Zhihao

1. Basic Concepts

(1). Skein algebra $\mathrm{Sk}_q(\Sigma)$ of a surface Σ with marked points is defined as

$$\operatorname{Sk}_q(\Sigma) \coloneqq \mathbb{Z}_q^{\operatorname{links}}/I$$

Here $\mathbb{Z}_q = \mathbb{Z}\left[q^{\pm\frac{1}{2}}\right]$, q is indeterminant, $\mathbb{Z}_q^{\mathrm{links}}$ is the free \mathbb{Z}_q module with equivalent class of links in Σ as basis, and I stands for the following four relations:

The Kauffman Skein Relation

The Value of the Unknot

The Boundary Skein Relation

The Value of A Contractible Arc

Figure 1. The Relation Set *I*

(2). Quantum cluster algebra consists of a quantum seed and mutation rule. It is the quantized version of cluster algebra (q = 1).

A quantum seed over a skew-field \mathcal{F} is a triple (B, Λ, M) , with B is extended skew-symmeterizable $N \times \text{ex}$ matrix $(\text{ex} \subset \{1, ..., N\})$, $\Lambda B = D\iota$ (D is a $N \times N$ diagonal matrix with $D_{ii} > 0$), and M satisfies

$$M: \mathbb{Z}^N \to \mathcal{F} \setminus \{0\}$$
 $M(\alpha)M(\beta) = q^{\frac{1}{2}\Lambda(\alpha,\beta)}M(\alpha+\beta)$

If we mutate the seed (B, Λ, M) at $i \in \text{ex to } (B', \Lambda', M')$ that are both in \mathcal{F} , there are 3 conditions for B', M' are as follows

$$B'_{jk} = \begin{cases} -B_{jk} & i = j \text{ or } i = k \\ B_{jk} + \frac{1}{2} (|B_{ji}| B_{ik} + B_{ji} |B_{ik}|) \text{ otherwise} \end{cases}$$

$$M'(e_i) = M\left(-e_i + \sum_{B_{ji}>0} B_{ji}e_j\right) + M\left(-e_i - \sum_{B_{ji}<0} B_{ji}e_j\right)$$

$$\alpha \in \mathbb{Z}^N$$
, $\alpha_i = 0 \Longrightarrow M(\alpha) = M'(\alpha)$

2. Quantum Trace Map

(1). Skein coordinate map with a given triangulation:

$$\varphi_{\Delta}: \operatorname{Sk}_{q}(\Sigma) \hookrightarrow \operatorname{Sk}_{q}(\Sigma)[\Delta^{-1}] \cong \mathfrak{X}(\Delta)$$

Here $\operatorname{Sk}_q(\Sigma)[\Delta^{-1}]$ is the localization of skein algebra with monomials in the triangulation as fractions, $\mathfrak{X}(\Delta)$ is called Muller Algebra, a quantum torus that satisfies $\mathbb{T}(P,q,X)$, where P is the vertex matrix. In the classical case, the image are called shear coordinates.

(2). Shear-to-skein map with a given triangulation:

$$\psi \colon \mathcal{Y}(\Delta) \to \mathfrak{X}(\Delta)$$

Here $\mathcal{Y}(\Delta) \coloneqq \mathbb{T}(Q^\circ, q^{-1}, Y)$ is called Chekhov-Fock Algebra, Q is the face matrix, Q° is the submatrix with inner edges. In the classical case, the image are the Penner coordinates.

(3). Quantum trace map with a given triangulation:

$$\kappa: \operatorname{Sk}_{a}^{\circ}(\Sigma) \to \mathcal{Y}^{\operatorname{bl}}$$

Here $\mathcal{Y}^{\mathrm{bl}}$ is a submodule of $\mathcal{Y}(\Delta)$ spanned by y^k , with $k \in \mathbb{Z}^{\Delta^{\circ}}$ such that $k(\tau) \coloneqq k(a) + k(b) + k(c)$ is even for all triangles in the triangulation, $\mathrm{Sk}_q^{\circ}(\Sigma)$ is the skein algebra of a surface with no punctures. Explicitly, $\kappa = \psi_{\Lambda}^{-1} \circ \varphi_{\Lambda}$.

3. The Case q = -1 and Representation Theory

Assumption: $\partial \Sigma = \emptyset$. Then the diagram below commutes $Sk_{-1}(\Sigma) \xrightarrow{T^{\omega}} Z(Sk_{\omega}(\Sigma)) \xrightarrow{\alpha_{\rho}} \mathbb{C}$

$$\mathfrak{X}_{\Sigma}(\mathrm{SL}_{2}(\mathbb{C}))$$

Here ω^2 is a root of unity such that $\omega^{2N} = 1$ for some odd integer N. $T^{\omega}[k] = T_N[k]$ is called Chebyshev homomorphism, T_N is the N^{th} Chebyshev polynomial.

For irreducible representation $\rho \colon \operatorname{Sk}_{\omega}(\Sigma) \to \operatorname{End}(V)$, by Schur's lemma, $\rho(x) = \alpha_{\rho}(x) \cdot \operatorname{Id}_{V}$.

 $\mathfrak{X}_{\Sigma}(\mathrm{SL}_2(\mathbb{C}))$ is the $\mathrm{SL}_2(\mathbb{C})$ character variety of Σ .

4. References:

1. G. Muller, Skein algebras and cluster algebra of marked surfaces, Preprint arXiv:1204.0020

2. T.T.Q.Le, Quantum Teichmuller Spaces and Quantum Trace Map, Preprint arXiv: 1511.06054

3. C. Frohman, J.K.Bartoszynska, T.T.Q.Le, Unicity for Representations of the Kauffman Bracket Skein Relation, Preprint arXiv: 1707.09234