Classification

- Is a discrete categorization of an output variable, e.g. $y \in \{0, 1\}$
 - Can also have multiple classes, so some set $S \mid len(S) > 2$
- Linear regression -> threshold classifier output
 - E.g. if $h_{\theta}(x) \ge 0.5 \text{ do } y = 1 \text{ else } y = 0$
 - However is not effective when there are > 2 clusters -> DNU
- Classification y = 0 or y = 1
 - $-0 \le h_{\theta}(x) \le 1$
 - Binary classification
- bruh

- 514

Hypothesis Representation

- Need $0 \le h_{\theta}(x) \le 1$
- $h\theta_0(x) = g(\theta^T x)$ where $g = \frac{1}{1+e^{-z}}$ is the sigmoid = logistical function and $z = \theta^T x h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$
- Interpretation
 - $-h_{\theta}(x)$ is estimated probability that y=1 on input x
 - $-\ h_{\theta}(x) = P(y=1|x;\theta)$ is probability of y=1 given x parameterized by θ
 - * Due to total sum probability -> $P(y=0|x;\theta)=1-P(y=1|x;\theta)$

Decision Boundary

- Prediction boundary If $h_{\theta}(x) \ge 0.5$ do y = 1 else y = 0
 - Thus $y = 0 \implies \theta^T x < 0$ and $y = 1 \implies \theta^T x \ge 0$
 - Graph the equation $\theta_0 + \theta_1 x_1 + ... + \theta_n x_n \ge 0$ (higher order planes of \mathbb{R}^{n+1})
- Nonlinear decision boundaries
 - Have polynomial terms in features
 - Ex. $-1 + x_1^2 + x_2^2 \ge 0 \implies$ unit circle

Logistic cost function

$$\boxed{J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(\boldsymbol{x}^{(i)}\right), \boldsymbol{y}^{(i)}\right)}$$

- Setup/prime
 - Training set $S = \left\{ \left(x^{(1)}, y^{(1)}\right), \left(x^{(2)}, y^{(2)}\right), \cdots, \left(x^{(m)}, y^{(m)}\right) \right\}$
 - * m examples
 - A feature vector $x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$
 - $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$
- Cost $(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) y)^2$
 - Is non-convex many local extrema which may hinder gradient descent
- Cost function for logistic regression

$$\boxed{ \operatorname{Cost} \left(h_{\theta}(x), y \right) = \begin{cases} -\log \left(h_{\theta}(x) \right) \text{ if } y = 1 \\ -\log \left(1 - h_{\theta}(x) \right) \text{ if } y = 0 \end{cases} }$$

- Cost function behavior
 - Cost is 0 if $y = 1, h_{\theta}(x) = 1$
 - As $h_{\theta}(x) \to 0$, Cost $\to \infty$
 - If $h_{\theta}(x) = 0$ but y = 1, then learning algorithm penalized heavily

Simplified Cost Function

- Can rewrite cost function to be $\boxed{ \text{Cost}(h_{\theta}(x),y) = -y \log(h_{\theta}(x)) (1-y) \log(1-h_{\theta}(x)) } \\ \text{Vectorized } J(\theta) = \frac{1}{m} \cdot \left(-y^T \log(h) (1-y)^T \log(1-h) \right) \text{ where } h = g(X\theta)$
- Gradient descent algorithm
 - Simultaneous update and iterate $\theta_j \coloneqq \theta_j \alpha \sum_{i=1}^m \left(h_\theta\left(x^{(i)}\right) y^{(i)}\right) x_j^{(i)}$
 - Vectorized $\theta := \theta \frac{\alpha}{m} X^T (g(X\theta) \vec{y})$

Advanced optimization

- Optimization algorithm -> minimize $J(\theta)$
 - Need to compute $J(\theta)$ and $\frac{\partial}{\partial \theta_i} J(\theta)$
- Algorithms
 - Gradient descent
 - Conjugate gradient
 - BFGS
 - L-BFGS
 - Do not need to manually pick α for last 3 -> but more complex
- Use fminunc in Octave

```
options = optimset('GradObj', 'on', 'MaxIter', 100);
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);
```

- Function for cost function
 - function [jVal, gradient] = costFunction(theta)
 - Must return $J(\theta)$ and gradient

Multiclass Classification with Logistic Regression

- One-vs-all classification
 - Combine remaining classes to 1 class and compare with another -> multiple binary classifications
 - Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict probability that y=i
 - Pick class that maximizes $h \to \max_i h_{\theta}^{(i)}(x)$

Overfitting

- Underfitting high bias
 - Straight line fit biased to linear trend
 - Too little features n is small
- Overfitting high variance
 - Space of possible hypothesis too large, can't find a good hypothesis

- Too many features n too large
 - * Cannot generalize well to new examples
- Addressing overfitting
 - Reduce n select necessary ones and model a selection algorithm
 - Regularization keep features but reduce magnitude of values in θ
 - * Works well with lots of features

Regularization cost function

- Small values for parameters θ_j for $j \in [0, n]$
 - Simpler hypothesis
 - Less prone to overfitting
- Modify cost function to shrink parameters

$$\boxed{J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{i=1}^{n} \theta_j^2 \right]}$$

- Convention only regularize $\theta_1, \dots, \theta_n$ and ignore θ_0
- Regularization parameter λ controls tradeoff of small parameters and well-fitting
 - Therefore prevents overfitting
 - A large value highly reduces $\theta \to \vec{0}$ so $h_{\theta}(x) = \theta_0$ so a horizontal line is fitted
 - Important to choose

Regularized Linear Regression

• Gradient descent - separate terms in algorithm

$$\begin{aligned} & \theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_0^{(i)} \\ & \theta_j \coloneqq \theta_j - \alpha \left[\left(\frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \right) + \frac{\lambda}{m} \theta_j \right] \end{aligned}$$

- Update rule can be expressed as $\theta_j \coloneqq \theta_j \left(1 \alpha \frac{\lambda}{m}\right) \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta\left(x^{(i)}\right) y^{(i)}\right) x_j^{(i)}$
 - Term 1 $\alpha \frac{1}{m} < 1$ always so it reduces θ_j by some amount each update
 - Keeps 2nd term same as previously
- Normal equation

$$\theta = \begin{pmatrix} X^T X + \lambda \begin{bmatrix} 0 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix} \end{pmatrix}^{-1} X^T y$$

- Matrix L near λ is $n+1\times n+1$
 - Due to 0 as first element
- Given $\lambda > 0$
- If $m \leq n$ then $X^T X$ is noninvertible
 - Adding term λL makes $X^TX + \lambda L$ invertible

Regularized Logistic Regression

• Logistic growth prone to overfitting with many features (high n)

- Modify to use regularization $\text{ Add term } \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$ Treat θ_0 separately

$$J(\theta) = \left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta} \left(x^{(i)} \right) + \left(1 - y^{(i)} \right) \log 1 - h_{\theta} \left(x^{(i)} \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- Advanced optimization method
 - Octave has 1-indexed vectors

```
function [jval, gradient] = costFunction(theta)
  jval = [code to get J(theta)]
  gradient(1) = [partial respect to theta_0]
 gradient(n + 1) = [partial with respect to theta_n]
```