东南大学电工电子实验中心 实验报告

课程名称:	数字电路实验
◇ \ / 工 / / / •	X 1 'UM > 500

第 1 次实验

买	位名	游:	组合逻辑电路						
院	(}	系):	电气工程学	<u>院</u> 专	业: 电	气工程及其自动化			
姓		名:	王皓冬	学	号:_	16022627			
实	验	室: _	401	实验	俭组别: _				
同组	且人	.员:		实	脸时间 :				
证	之 点	法结.		宙门	函数师.				

一、实验目的

- 1、 认识数字集成电路,能识别各种类型的数字器件和封装
- 2、 掌握小规模组合逻辑和逻辑函数的工程设计方法
- 3、 掌握常用中规模组合逻辑器件的功能和使用方法
- 4、 学习查找器件资料,通过器件手册了解器件。
- 5、 了解面包板的基本结构、掌握面包板连接电路的基本方法和要求
- 6、 了解实验箱的基本结构,掌握实验箱电源、逻辑开关和 LED 电平指示的用法
- 7、 学习基本的数字电路的故障检查和排除方法

二、实验原理

1. 实验目的和要求

- 1.1 数值判别电路(只允许用与非门、非门设计电路)
- a) 用门电路设计一个组合逻辑电路,它接收一位 8421BCD 码 B3B2B1B0,仅当 2<B3B2B1B0<7 时输出 Y 才为 1
- b) 用门电路设计一个组合逻辑电路,它接收 4 位 2 进制数 B3B2B1B0,仅当 2<B3B2B1B0<7 时输出 Y 才为 1
- 1.2 用三种方案设计实现 3 位二进制原码转补码电路(3 位二进制数仅考虑 0 和负数,且已省去符号位)
- a) 全部用门电路实现
- b) 用数据选择器 74151+门电路实现
- c) 用三八译码器 74138+门电路实现
- 1.3 人类有四种血型: A、B、AB和0型。输血时,输血者与受血者必须符合下图的规定,否则有生命危险,利用数据选择器和最少数量的与非门,完成血型配对任务。

2. 实验原理

(部分原理图有误的修正后原理图部分见第4部分:实验记录)

2.1 数值判别电路

2.1.1 输入、输出信号编码

输入信号:用 B3、B2、B1、B0 分别对应输入 BCD 码与四位二进制数的每一位;输出信号:Y1 代表输入的 BCD 码是否处于区间(2,7),Y2 代表输入的四位二进制数是否处于区间(2,7),"1"处于,"0"不处于。BCD 码表示的输入,仅允许对应的整数值在10 以内时为有效输入,其余输入情况视为约束项。

2.1.2 列出真值表

根据题目要求,列出真值表表 1。

	输	输	出		
В3	B2	B1	В0	Y2	Y1
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	/
1	0	1	1	0	/
1	1	0	0	0	/
1	1	0	1	0	1
1	1	1	0	0	/
1	1	1	1	0	/

表 1 真值表

2.1.3 逻辑化简

根据真值表画出卡诺图,如图 1、图 2 所示,化简得到与或非表达式如式 (1)。由于器件数量有限,对 Y1 进行变换,使得其需要更少的与门。考虑到只有与非门器件,转化,得到与非表达式 (2)。

B1B0	00	01	11	10

B3B2				
00	0	0	1	0
01	1	1	0	1
11	0	0	0	0
10	0	0	0	0

图 1 Y2 卡诺图

B1B0 B3B2	00	01	11	10
00	0	0	71	0
01	1	1	0	1
11	×	×	×	×
10	0	0 /	Х	х

图 2 Y1 卡诺图

$$\begin{cases} Y_{1} = B_{3}'B_{2}'B_{1}B_{0} + B_{3}'B_{2}B_{1}B_{0}' + B_{3}'B_{2}B_{1}' \\ = B_{3}'B_{2}'(B_{1}B_{0} + (B_{1}B_{0})') \\ Y_{2} = B_{2}B_{1}' + B_{2}B_{0}' + B_{2}'B_{1}B_{0} \end{cases}$$

$$\begin{cases} Y_{1} = \overline{\overline{B}_{3}}\overline{\overline{B}_{2}B_{1}B_{0}} \cdot \overline{\overline{B}_{3}}\overline{\overline{B}_{2}}\overline{\overline{B}_{1}B_{0}} \\ Y_{2} = \overline{B_{2}}\overline{\overline{B}_{1}B_{0}} \cdot \overline{\overline{B}_{2}B_{1}B_{0}} \end{cases}$$

$$(1)$$

2.1.4 逻辑电路图

根据逻辑函数表达式(1),绘制出电路原理图如图 3、图 4 所示(反变量所需的非门未画出),其中输入信号的 原变量从实验箱上的逻辑电平开关获得,反变量需要另外接非门来实现.

图 3 BCD 码电路图

图 4 二进制码电路图

2.1.5 硬件连接示意图

图 5 BCD 码

图 6 二进制码

١

2.1.6 测试方案

4 个输入信号,用实验箱上的逻辑电平开关实现,1 个输出端连接到实验箱上的 LED,按照 真值表的要 求,拨动逻辑电平开关改变输入信号值,遍历 16 种输入组合,并观察输出信 号值,输出 LED 亮则输出为 1,灭则输出为 0,将测试结果填入表 2。

表 2

	输入			输	出	测试结果	
В3	B2	B1	В0	Y2	Y1	Y2	Y1
0	0	0	0	0	0		
0	0	0	1	0	0		
0	0	1	0	0	0		
0	0	1	1	1	1		
0	1	0	0	1	1		
0	1	0	1	1	1		
0	1	1	0	1	1		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	0	1	0	0		
1	0	1	0	0	/		
1	0	1	1	0	/		
1	1	0	0	0	/		
1	1	0	1	0	/		
1	1	1	0	0	/		
1	1	1	1	0	1		

2.2 三位二进制数原码转补码电路

2.2.1 输入、输出信号编码

输入信号:用 B2、B1、B0 分别对应输入三位二进制数的每一位;角标大者为高位。

输出信号:用 Y2、Y1、Y0 分别对应输入三位二进制数的每一位,角标大者为高位;"1"为真,

"0"为假。

2.2.2 列出真值表

根据题目要求,列出真值表。

真值表

输入			输出		
B2	B1	В0	Y2	Y1	Y0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

鉴于三个实验真值表相同,在此共用一套真值表。

2.2.3 全部用门电路实现

2.2.3.1 逻辑化简

根据真值表画出卡诺图,如图所示,化简得到与或非表达式如式 (1)。考虑到只有与非门器件,并且 Y2 可以化为同 z 或式,从而含有与 Y1 中共同含有的项,减少与非门的使用;转化,得到与非表达式(2)。

B1B0 B2	00	01	11	10
0	0		1	1
1	1	0	0	0

图 7 Y2 卡诺图

B1B0 B2	00	01	11	10
0	0	1	0	1
1	0	1	0	1

图 8 Y1 卡诺图

B1B0	00	01	11	10		
B2						
0	0	1	1	0		
1	0	1	1	0		
图 9 Y0 卡诺图						

 $\begin{cases} Y_2 = B_2 \overline{B}_1 \overline{B}_0 + \overline{B}_2 B_0 + \overline{B}_2 B_1 \\ Y_1 = \overline{B}_1 B_0 + B_1 \overline{B}_0 \\ Y_0 = B_0 \end{cases} \tag{1}$

$$\begin{cases} Y_2 = \overline{\overline{B_1}\overline{B_0}} \cdot \overline{\overline{B_2}}\overline{\overline{B_1}}\overline{\overline{B_0}} \\ Y_1 = \overline{\overline{B_1}\overline{B_0}} \cdot \overline{\overline{B_1}\overline{B_0}} \\ Y_0 = B_0 \end{cases} (2)$$

2.2.3.2 逻辑电路图

根据逻辑函数表达式(2),绘制出电路原理图如图所示(反变量所需的非门未画出),其中输入信号的原变量从实验箱上的逻辑电平开关获得,反变量需要另外接非门来实现.

2.2.3.3 硬件连接示意图

2.2.3.4 测试方案

3 个输入信号,用实验箱上的逻辑电平开关实现,3 个输出端连接到实验箱上的 LED,按照 真值表的要求,拨动逻辑电平开关改变输入信号值,遍历8 种输入组合,并观察输出信号值,输出 LED 亮则输出为1,灭则输出为0,将测试结果以对应补码数的形式填入下表。

表 3

	输入			输出		灯对应的补码
B2	B1	В0	Y2	Y1	Y0	
0	0	0	0	0	0	
0	0	1	1	1	1	
0	1	0	1	1	0	
0	1	1	1	0	1	
1	0	0	1	0	0	
1	0	1	0	1	1	
1	1	0	0	1	0	
1	1	1	0	0	1	

2.2.4 用数据选择器 74151+门电路实现

2. 2. 4. 1 逻辑化简

根据真值表写出逻辑函数的最小项之和形式,如式(1)。考虑到式 Y0=B0 可以直接从输入端接入,无需拆分为最小项,将其保留。

$$\begin{cases} Y_2 = \overline{B}_2 \overline{B}_1 B_0 + \overline{B}_2 B_1 \overline{B}_0 + \overline{B}_2 B_1 B_0 + B_2 \overline{B}_1 \overline{B}_0 = m_1 + m_2 + m_3 + m_4 \\ Y_1 = \overline{B}_2 \overline{B}_1 B_0 + \overline{B}_2 B_1 \overline{B}_0 + B_2 \overline{B}_1 B_0 + B_2 B_1 \overline{B}_0 = m_1 + m_2 + m_5 + m_6 \end{cases} (1)$$

$$Y_0 = B_0$$

画出 Y2、Y1 的卡诺图:

B1B0 B2	00	01	11	10
0	0	1	1	1
1	1	0	0	0

图 10 Y2 卡诺图

B1B0				10
B2	00	01	11	
0	0	1	0	1
1	0	1	0	1

图 11 Y1 卡诺图

2.2.4.2 逻辑电路图

根据式(1)绘制出电路原理图如图所示,其中输入信号的原变量从实验箱上的逻辑电平开关获得。

2.2.4.3 硬件连接示意图

2.2.4.4 测试方案

3 个输入信号,用实验箱上的逻辑电平开关实现,3 个输出端连接到实验箱上的 LED,按照 真值表的要求,拨动逻辑电平开关改变输入信号值,遍历 8 种输入组合,并观察输出信号值,输出 LED 亮则输出为 1,灭则输出为 0,将测试结果以对应补码数的形式填入下表。

输入		输出			灯对应的补码	
B2	B1	В0	Y2	Y1	Υ0	
0	0	0	0	0	0	
0	0	1	1	1	1	
0	1	0	1	1	0	
0	1	1	1	0	1	
1	0	0	1	0	0	
1	0	1	0	1	1	
1	1	0	0	1	0	
1	1	1	0	0	1	

2.2.5 用三八译码器 74138+门电路实现

2.2.5.1 逻辑化简

根据真值表写出逻辑函数的最小项之和形式,如式(1)。将最小项之和形式化为与非式,如式(2)。考虑到式 Y0=B0 可以直接从输入端接入,无需拆分为最小项,将其保留。

$$\begin{cases} Y_2 = \overline{B}_2 \overline{B}_1 B_0 + \overline{B}_2 B_1 \overline{B}_0 + \overline{B}_2 B_1 B_0 + B_2 \overline{B}_1 \overline{B}_0 = m_1 + m_2 + m_3 + m_4 \\ Y_1 = \overline{B}_2 \overline{B}_1 B_0 + \overline{B}_2 B_1 \overline{B}_0 + B_2 \overline{B}_1 B_0 + B_2 B_1 \overline{B}_0 = m_1 + m_2 + m_5 + m_6 \end{cases} (1)$$

$$Y_0 = B_0$$

$$\begin{cases} Y_2 = \overline{\overline{B}_2 \overline{B}_1 B_0} \cdot \overline{\overline{B}_2 B_1 \overline{B}_0} \cdot \overline{\overline{B}_2 B_1 \overline{B}_0} \cdot \overline{\overline{B}_2 B_1 \overline{B}_0} \cdot \overline{\overline{B}_2 \overline{B}_1 \overline{B}_0} \\ Y_1 = \overline{\overline{B}_2 \overline{B}_1 B_0} \cdot \overline{\overline{B}_2 B_1 \overline{B}_0} \cdot \overline{\overline{B}_2 \overline{B}_1 B_0} \cdot \overline{\overline{B}_2 B_1 \overline{B}_0} \\ Y_0 = B_0 \end{cases} (2)$$

2.2.5.2 逻辑电路图

根据逻辑函数表达式(2),绘制出电路原理图如图所示,其中输入信号的原变量从实验箱上的逻辑电平开关获得。

2.2.5.3 硬件连接示意图

2.2.5.4 测试方案

3 个输入信号,用实验箱上的逻辑电平开关实现,3 个输出端连接到实验箱上的 LED,按照 真值表的要求,拨动逻辑电平开关改变输入信号值,遍历8 种输入组合,并观察输出信号值,输出 LED 亮则输出为1,灭则输出为0,将测试结果以对应补码数的形式填入下表。

输入		输出			灯对应的补码	
B2	B1	В0	Y2	Y1	Υ0	
0	0	0	0	0	0	
0	0	1	1	1	1	
0	1	0	1	1	0	
0	1	1	1	0	1	
1	0	0	1	0	0	
1	0	1	0	1	1	
1	1	0	0	1	0	
1	1	1	0	0	1	

2.3 血型配对

2.3.1 输入、输出信号编码

输入信号:用 G2、G1 分别代表输血者血型"有 A"、"有 B",即 G1G2、G1′G2、G1′G2′、G1′G2′分别代表 AB 型血、A 型血、B 型血、O 型血;R2、R1 分别代表受血者血型"有 A"、"有 B",即 R1R2、R1′R2、R1′R2′、R1′R2′分别代表 AB 型血、A 型血、B 型血、O 型血。

输出信号:用S表征是否能输血;"0"为可以输血,"1"为不能输血。

2.3.2 列出真值表

根据题目要求,列出真值表。

真值表

	输	1.	输出	
输」	血者	受	位者 (1)	/
G1	G2	R1	R2	S
0	0	0	0	1
0	0	1	0	1
0	0	0	1	1
0	0	1	1	1
1	0	0	0	0
1	0	1	0	1
1	0	0	1	0
1	0	1	1	1
0	1	0	0	0
0	1	1	0	0
0	1	0	1	1
0	1	1	1	1
1	1	0	0	0
1	1	1	0	1
1	1	0	1	1
1	1	1	1	1

由于要求利用 4 选 1 数据选择器,用 R 变量降维:

输入				输	出
输〔	1 受		血者	/	
G1	G2	R1	R2	S	
0	0	0	0	1	1
0	0	1	0	1	
0	0	0	1	1	
0	0	1	1	1	
1	0	0	0	0	R1
1	0	1	0	1	
1	0	0	1	0	

1	0	1	1	1	
0	1	0	0	0	R2
0	1	1	0	0	
0	1	0	1	1	
0	1	1	1	1	
1	1	0	0	0	R1R2
1	1	1	0	0	
1	1	0	1	0	
1	1	1	1	1	

G1	G2	R1	S
0	0	0	1
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	R2
0	1	1	R2
1	1	0	0
1	1	1	R2

2.3.3 逻辑化简

根据真值表写出逻辑函数的最小项之和形式式(1),并利用卡诺图化简,得式(2)。

$$S = \sum m_i$$
, $i = 0,1,2,3,5,7,10,11,13,14,15$ (1)

G1G2 R1R2	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	1	1	0

$$S = G_1 \overline{R}_1 + G_2 \overline{R}_2 \quad (2)$$

根据降维后的真值表,转化为下式:

$$S = 1 \cdot \overline{G}_1 \overline{G}_2 + R_1 \cdot G_1 \overline{G}_2 + R_2 \cdot \overline{G}_1 G_2 + R_1 R_2 \cdot G_1 G_2 \quad (3)$$

2.3.4 逻辑电路图

根据式(3)绘制出电路原理图如图所示,其中输入信号的原变量从实验箱上的逻辑电平开关获得。

2.3.5 硬件连接示意图

2.3.6 测试方案

4个输入信号,用实验箱上的逻辑电平开关实现,1个输出端连接到实验箱上的 LED,按照 真值表的要求,拨动逻辑电平开关改变输入信号值,遍历 16 种输入组合,并观察输出信号值,输出 LED 亮则输出为 1,灭则输出为 0,将测试结果填入下表。

输入				输出	测试结果
输	输血者 受血者			/	/
G1	G2	R1	R2	S	/

0	0	0	0	1	
0	0	1	0	1	
0	0	0	1	1	
0	0	1	1	1	
1	0	0	0	0	
1	0	1	0	1	
1	0	0	1	0	
1	0	1	1	1	
0	1	0	0	0	
0	1	1	0	0	
0	1	0	1	1	
0	1	1	1	1	
1	1	0	0	0	
1	1	1	0	1	
1	1	0	1	1	
1	1	1	1	1	

3. 实验仪器

易派箱

4. **实验记录与结果分析**,记录实验具体步骤、原始数据、实验过程、

实验中遇到的故障现象、排除故障的过 程和方法等

4.1数值判别电路

4.1.1 实验步骤

4 个输入信号,用实验箱上的逻辑电平开关实现,1 个输出端连接到实验箱上的 LED,按照 真值表的要 求,拨动逻辑电平开关改变输入信号值,分别遍历 10 种、16 种输入组合,并 观察输出信号值,输出 LED 亮则输出为 1,灭则输出为 0,与真值表对比。

	输	输	出		
В3	B2	B1	В0	Y2	Y1
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	/
1	0	1	1	0	/
1	1	0	0	0	/
1	1	0	1	0	/
1	1	1	0	0	/
1	1	1	1	0	/

4.1.2 故障调试

实验中,发现接通电源后灯泡有微弱亮光。经万用表检验,发现输入端电压与输出端电压约为 2V,地线接触不良。

解决上述问题后,遍历输入组合。BCD 码电路结果与真值表相符,二进制码电路结果与真值 表不符。经检验电路原理图,发现二进制码电路图设计时未考虑非门的影响。重新设计电路 图如下:

对应的硬件连接示意图如下:

4.1.3 实验数据

修改电路后,遍历输入组合:

	输	· 入		输出		测试结果
В3	B2	B1	В0	Y2	Y1	Y2
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	1	1	1
0	1	0	1	1	1	1
0	1	1	0	1	1	1
0	1	1	1	0	0	0
1	0	0	0	0	0	0

1	0	0	1	0	0	0
1	0	1	0	0	/	0
1	0	1	1	0	/	0
1	1	0	0	0	/	0
1	1	0	1	0	/	0
1	1	1	0	0	/	0
1	1	1	1	0	/	0

实验结论与预期相符, 调试成功。

4.2 三位二进制数原码转补码

4.2.1 实验步骤

3 个输入信号,用实验箱上的逻辑电平开关实现,3 个输出端连接到实验箱上的 LED,按照 真值表的要求,拨动逻辑电平开关改变输入信号值,遍历8 种输入组合,并观察输出信号值,输出 LED 亮则输出为1,灭则输出为0,将测试结果与真值表对比。

	输入		输出		
B2	B1	В0	Y2	Y1	Y0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

4.2.2 故障调试

数据选择器、三八译码器实现的电路结果与真值表相符,与非门电路与真值表不符。经检验电路图,发现同样是因为电路原理图设计时没有考虑非门的影响。重新设计电路图如下:

对应的硬件连接示意图如下:

4.2.3 实验数据

修正电路图后,遍历8种输入:

输入				输出		灯对应的补码
B2	B1	В0	Y2	Y1	Y0	/
0	0	0	0	0	0	000
0	0	1	1	1	1	111
0	1	0	1	1	0	110
0	1	1	1	0	1	101
1	0	0	1	0	0	100
1	0	1	0	1	1	011
1	1	0	0	1	0	010
1	1	1	0	0	1	001

实验结果与预期相符,调试成功。

4.3 血型配对

4.3.1 实验步骤

4 个输入信号,用实验箱上的逻辑电平开关实现,1 个输出端连接到实验箱上的 LED,按照 真值表的要求,拨动逻辑电平开关改变输入信号值,遍历 16 种输入组合,并观察输出信号值,输出 LED 亮则输出为 1,灭则输出为 0,将测试结果与真值表对比。

	输	输出		
输血	山者	受重	山者	/
G1	G2	R1	R2	S
0	0	0	0	1
0	0	1	0	1
0	0	0	1	1
0	0	1	1	1
1	0	0	0	0
1	0	1	0	1
1	0	0	1	0
1	0	1	1	1
0	1	0	0	0
0	1	1	0	0
0	1	0	1	1
0	1	1	1	1
1	1	0	0	0
1	1	1	0	1
1	1	0	1	1
1	1	1	1	1

4.3.2 故障调试

由于 mooc 中要求的用半片选择器,原变量降 2 维的电路实验与结论不符,重新对变量降维如下:

G1	G2	R1	s
0	0	0	1
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	R2
0	1	1	R2
1	1	0	0
1	1	1	R2

电路原理图设计:

对应的硬件连接示意图:

4.3.3 实验数据

修改电路图后,遍历 16 种输入组合:

	翰	入	输出	测试结果	
辅	输血者		泊者	/	/
G1	G2	R1	R2	S	/
0	0	0	0	1	1
0	0	1	0	1	1
0	0	0	1	1	1
0	0	1	1	1	1
1	0	0	0	0	0
1	0	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
0	1	0	1	1	1
0	1	1	1	1	1
1	1	0	0	0	0
1	1	1	0	1	1
1	1	0	1	1	1

_	_	_	_	_	_
1	1 1	I 1	1 1	l 1	1
-	-	_	-	-	_

实验结果与预期相符,调试成功。

5. 实验小结

本次实验分两周, 其实完成得不是很好。

首先是 week6 的三个实验任务:由于不知道反变量该怎么获取,最开始我忽略了反变量,把原变量当作反变量接入电路中,导致后两个实验均失败。同时,由于对实操不太熟悉,在课前没有自己调试电路,在课上调试的时候,对于接触不良的部分花了太多时间调试。最后,对于器材方面,我并没有使用异或门 7486,导致电路图相应变复杂了许多。所以,week6 的任务我花了很长时间重新设计电路并搭接,week6 的任务对我来说更是一种熟悉电路实操的任务。

对于 week7 任务,有了 week6 中的经验,week7 的任务变得比较容易,电路搭接也快了许多。缺陷是,对于血型判断的实验,虽然修改电路原理图后调试成功了,但并没有找出原电路图的错因。在 week7 的任务中的一大收获也包括了电路搭接的标准化,以及如何合理分配引脚,增强硬件连接图的可读性与美观性。

6. 实验思考题

无

7. 参考资料

《数字逻辑电路 A 教学计划 2023》