Analysis 2: Main Analysis with Unmatched and Matched Data

Fan Lu & Gento Kato

January 26, 2020

Analytical Strategy

Variables

- Outcome: Foreigner Suffrage (min 0, max 1)
- Mediator 1: (Objective) Political Knowledge (min = 0, max = 1)
- Mediator 2: Ideology (min 0 = left/liberal, max 1 = right/conservative)
- Mediator 3: LDP DPJ FT (min 0 = favor DPJ, max 1 = favor LDP)
- Mediator 4: Favorability of South Korea (min = 0, max = 1)
- Mediator 5: Favorability of China (min = 0, max = 1)
- Mediator 6: Favorability of USA (min = 0, max = 1)
- Mediator 7: Income (percentile, $\min = 0$, $\max = 1$)
- Independent Variable: University Education (0 = Junior College or Less, 1 = University or More)
- Moderator 1: Gender (0 = Female, 1 = Male), This means that all "base" coefficients are for female.
- Moderator 2: Age (by 10 years, centered at 20). Reasoning: Two trends may influence the role of university education. (1) There is an evident increase in number of university graduates over the years, especially among women. This trend may impies that university experience may be more gendered in the past than today. (2) There is a trend of "internationalization" in university education in recent days. Therefore, the diversifying and liberalizing effect of education may be stronger for younger generation.
- Control 1: Percent in life residing locally. More locally-identified individuals may dislike outsiders more.
- Control 2: (ZIP level) Residing in densely inhabited district (DID)
- Control 3: (ZIP level) Percent of foreigners in neighborhood (transformed by square root)
- Control 4: (ZIP level) Percent of university graduates in neighborhood (by 10 percent)
- Control 5: (Municipality level) Percent of residents residing in DID
- Control 6: (Municipality level) Percent of foreigners (transformed by square root)
- Control 7: (Municipality level) Percent of university graduates (by 10 percent)

Subset Data

Analysis is conducted on the following subset.

If age - years of local ZIP residence is 15 or smaller. 15 is the age of entering high school in Japan. Assuming that an individual is living in the local ZIP continuously, this condition implies that one spend significant time before college in the ZIP of current residence. This filters out the possibility that education changes attitudes through the movement in residence.

Modeling Strategy

All models are estimated by OLS. For outcome model, alternative model is estimated by the multinomial logit model, with 3 category DV (disagree, neither, agree), with disagree as a reference category.

Robustness Check (in this file)

SIFCCT has one special survey where they conducted a survey through mail. Mail survey contains identical set of variables as online survey. So I replicated the analysis with the mail survey.

Preparation

```
## Clean Up Space
rm(list=ls())
## Set Working Directory (Automatically) ##
require(rstudioapi); require(rprojroot)
if (rstudioapi::isAvailable()==TRUE) {
  setwd(dirname(rstudioapi::getActiveDocumentContext()$path));
}
projdir <- find_root(has_file("thisishome.txt"))</pre>
cat(paste("Working Directory Set to:\n",projdir))
## Working Directory Set to:
## /home/gentok/GoogleDrive/Projects/Fan-Gento-Lab/ForeignerJapan
setwd(projdir)
## Original Data
originaldir1a <- paste0(projdir, "/data/sifcct_zip_latest_v5.rds")
originaldir1b <- paste0(projdir, "/data/sifcct_zip_latest_panel_v5.rds")</pre>
original <- rbind(readRDS(originaldir1a),readRDS(originaldir1b))</pre>
## Matched/Unmatched Data Locations
datadir0 <- paste0(projdir, "/data/sifcct_unmatched_v5.rds")</pre>
datadir1 <- pasteO(projdir, "/data/sifcct_matched_1_all_v5.rds")</pre>
datadir2 <- paste0(projdir, "/data/sifcct_matched_2_all_v5.rds")</pre>
datadir3 <- paste0(projdir, "/data/sifcct_matched_3_all_v5.rds")</pre>
datadir4 <- pasteO(projdir, "/data/sifcct_matched_4_all_v5.rds")</pre>
datadir5 <- paste0(projdir, "/data/sifcct_matched_5_all_v5.rds")</pre>
## packages
require(sandwich)
require(lmtest)
require(MASS)
# devtools::install_qithub("tidyverse/qqplot2") # Need development version (as of Dec 31, 2019)
```

```
library(ggplot2)
require(texreg)
# require(nnet)
require(mlogit)
require(dfidx)
require(Formula)
## Formula (SIFCCT) ##
basemod0 <- formula( ~ edu2*male*agex + lvpr +</pre>
                        as.factor(wave)) # sifcct
basemodA <- formula( ~ edu2*male*agex + lvpr +</pre>
                        zip did + sqrt(c10 sreg fper) + I(c10 sreg edu ugsP/10) +
                        as.factor(wave)) # sifcct
basemodB <- formula( ~ edu2*male*agex + lvpr +</pre>
                        didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                        as.factor(wave)) # sifcct
basemodC <- formula( ~ edu2*male*agex + lvpr +</pre>
                        zip_did + sqrt(c10_sreg_fper) + I(c10_sreg_edu_ugsP/10) +
                        didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                        as.factor(wave)) # sifcct
## Formula (SIFCCT.mlogit) ##
outmod0.mlogit <- Formula(foreignsuff3x ~ 0 | edu2*male*agex + lvpr +
                            as.factor(wave)) # sifcct
outmodA.mlogit <- Formula(foreignsuff3x ~ 0 | edu2*male*agex + lvpr +
                            zip_did + sqrt(c10_sreg_fper) + I(c10_sreg_edu_ugsP/10) +
                            as.factor(wave)) # sifcct
outmodB.mlogit <- Formula(foreignsuff3x ~ 0 | edu2*male*agex + lvpr +
                            didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                            as.factor(wave)) # sifcct
outmodC.mlogit <- Formula(foreignsuff3x ~ 0 | edu2*male*agex + lvpr +
                            zip_did + sqrt(c10_sreg_fper) + I(c10_sreg_edu_ugsP/10) +
                            didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                            as.factor(wave)) # sifcct
## Variable Names ##
vnmap <- list("edu2" = "University education",</pre>
              "edu2 (1)" = "University education",
              "female" = "Gender (female)",
              "male" = "Gender (male)",
              "male (1)" = "Gender (male)",
              "age2" = "Age 50s or older",
              "agex" = "Age (by 10 years, centered at 45)",
              "edu2:female" = "University * Female",
              "edu2:male" = "University * Male",
              "edu2 (2)" = "University * Male",
              "edu2:age2" = "University * >=50s",
              "edu2:agex" = "University * Age",
              "edu2 (3)" = "University * Age",
              "edu2:female:age2" = "University * Female * >=50s",
```

```
"edu2:male:age2" = "University * Male * >=50s",
"edu2:female:agex" = "University * Female * Age",
"edu2:male:agex" = "University * Male * Age",
"edu2 (4)" = "University * Male * Age",
"female:age2" = "Female * >=50s",
"male:age2" = "Male * >=50s",
"female:agex" = "Female * Age",
"male:agex" = "Male * Age",
"male (2)" = "Male * Age",
"agecatMiddle Aged (40-50s)" = "Middle Aged (40-50s)",
"agecatElder (>=60s)" = "Elder (>=60s)",
"lvpr" = "% of Life Residing Locally (zip)",
"zip_did" = "DID residence (zip)",
"sqrt(c10_sreg_fper)" = "Foreigner % sqrt. (zip)",
"c10_sreg_edu_ugsP" = "University % (zip)",
"I(c10_sreg_edu_ugsP/10)" = "University % by 10% (zip)",
"didper" = "DID proportion (mun.)",
"sqrt(c10_mun_fper)" = "Foreigner % sqrt. (mun.)",
"I(c10_mun_edu_ugsP/10)" = "University % by 10% (mun.)",
"c10_mun_edu_ugsP" = "University % (mun.)")
```

With Unmatched Data

```
sifcct <- readRDS(datadir0)
sifcct$agex <- sifcct$age/10 - 4.5
sifcct$ldpdpjft <- original$ldpdpjft[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave
summary(sifcct$ldpdpjft)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.5000 0.5000 0.5676 0.6500 1.0000
sifcct$income <- original$income[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave))]
summary(sifcct$income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04098 0.18484 0.40915 0.48958 0.78565 0.97505</pre>
```

Outcome Model

```
coeftest(sOmo_1C,vcov.=vcovHC(sOmo_1C))[,4]),
omit.coef = "(wave)",stars = c(0.1,0.05,0.01,0.001), symbol = "+",
custom.coef.map = vnmap,
custom.model.names = c("Base","ZIP","Municipality","Full"))
```

```
##
ZIP
                                   Base
                                                               Municipality
## University education
                                     -0.0345 *
                                                   -0.0331 *
                                                                 -0.0325 *
                                                                                -0.0327 *
##
                                    (0.0136)
                                                   (0.0137)
                                                                 (0.0137)
                                                                                (0.0137)
## Gender (male)
                                     -0.1089 ***
                                                   -0.1094 ***
                                                                 -0.1096 ***
                                                                                -0.1097 ***
                                                                  (0.0108)
##
                                     (0.0108)
                                                   (0.0108)
                                                                                (0.0108)
## Age (by 10 years, centered at 45)
                                                                  0.0014
                                     0.0013
                                                    0.0014
                                                                                0.0013
##
                                     (0.0057)
                                                   (0.0057)
                                                                  (0.0057)
                                                                                (0.0057)
## University * Male
                                      0.0341 *
                                                    0.0340 *
                                                                  0.0343 *
                                                                                0.0343 *
##
                                     (0.0169)
                                                   (0.0170)
                                                                  (0.0170)
                                                                                (0.0170)
## University * Age
                                     -0.0149
                                                   -0.0150
                                                                  -0.0151
                                                                                -0.0149
                                                   (0.0092)
                                                                                (0.0092)
                                     (0.0092)
                                                                  (0.0092)
## University * Male * Age
                                      0.0150
                                                    0.0151
                                                                  0.0150
                                                                                0.0151
                                     (0.0118)
                                                   (0.0118)
                                                                  (0.0118)
                                                                                (0.0118)
                                      0.0107
                                                    0.0106
                                                                  0.0107
                                                                                0.0106
## Male * Age
##
                                     (0.0081)
                                                   (0.0081)
                                                                  (0.0081)
                                                                                (0.0081)
## % of Life Residing Locally (zip)
                                     -0.0356
                                                   -0.0359
                                                                  -0.0358
                                                                                -0.0358
                                     (0.0294)
                                                   (0.0295)
                                                                  (0.0295)
                                                                                (0.0296)
## DID residence (zip)
                                                    0.0065
                                                                                0.0110
                                                   (0.0092)
                                                                                (0.0113)
## Foreigner % sqrt. (zip)
                                                   -0.0151 *
                                                                                -0.0129
                                                    (0.0066)
                                                                                (0.0089)
## University % by 10% (zip)
                                                   -0.0013
                                                                                0.0004
                                                   (0.0051)
                                                                                (0.0073)
## DID proportion (mun.)
                                                                  -0.0029
                                                                                -0.0129
                                                                  (0.0162)
                                                                                (0.0198)
## Foreigner % sqrt. (mun.)
                                                                  -0.0150
                                                                                -0.0031
                                                                  (0.0093)
                                                                                (0.0124)
## University % by 10% (mun.)
                                                                  -0.0012
                                                                                -0.0012
                                                                  (0.0074)
                                                                                (0.0103)
## R^2
                                      0.0281
                                                    0.0288
                                                                  0.0285
                                                                                 0.0289
## Adj. R^2
                                      0.0246
                                                    0.0249
                                                                  0.0247
                                                                                0.0246
## Num. obs.
                                   7827
                                                 7827
                                                               7827
                                                                              7827
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
 if (gender=="Male") sifcct$gender <- sifcct$female</pre>
 if (gender=="Female") sifcct$gender <- sifcct$male</pre>
 sifcct$ageset <- (sifcct$age - ageset)/10</pre>
 if (sub==1) {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper) +
                 I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                 as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
```

```
subname = "Stayed"
  } else {
    modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                 data=sifcct[which(sifcct$age - sifcct$lvlen>=23),])
    subname = "Moved"
  }
 res <- c(gender,ageset,coef(modset)[2],</pre>
           coefci(modset, vcov.=vcovHC(modset), level = 0.95)[2,],
           coefci(modset, vcov.=vcovHC(modset), level = 0.90)[2,],
           coeftest(modset, vcov.=vcovHC(modset))[2,c(2,4)],
           subname)
  names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
 return(res)
}
outdt0 <- rbind(extout("Female",25),</pre>
                extout("Female",35),
                extout("Female",45),
                extout("Female",55),
                extout("Female",65),
                extout("Male",25),
                extout("Male",35),
                extout("Male",45),
                extout("Male",55),
                extout("Male",65))
outdt0 <- as.data.frame(outdt0)</pre>
for(i in 2:9) outdt0[,i] <- as.numeric(outdt0[,i])</pre>
outdt0$gender <- factor(outdt0$gender, levels=unique(outdt0$gender))</pre>
summary(outdt0)
##
       gender
                                                      lci95
                                                                          uci95
                                                                                               1ci90
                    age
                                  est
##
   Female:5
                     :25
                                   :-0.0625514
                                                  Min.
                                                         :-0.11568
                                                                      Min.
                                                                            :-0.009569
                                                                                          Min.
                                                                                                  :-0.1071
               Min.
                            Min.
##
    Male :5
               1st Qu.:35
                            1st Qu.:-0.0289301
                                                  1st Qu.:-0.05548
                                                                      1st Qu.:-0.002376
                                                                                          1st Qu.:-0.0512
##
               Median:45
                            Median :-0.0007147
                                                  Median :-0.03598
                                                                      Median : 0.024121
                                                                                          Median :-0.0302
##
                     :45
                            Mean
                                  :-0.0155266
                                                         :-0.04755
                                                                            : 0.016493
                                                                                          Mean
                                                                                                  :-0.0424
               Mean
                                                  Mean
                                                                      Mean
##
               3rd Qu.:55
                            3rd Qu.: 0.0015798
                                                  3rd Qu.:-0.02615
                                                                      3rd Qu.: 0.031033
                                                                                          3rd Qu.:-0.0216
##
                     :65
                            Max.
                                   : 0.0018743
                                                  Max.
                                                         :-0.01882
                                                                      Max.
                                                                            : 0.037822
                                                                                          Max.
                                                                                                  :-0.0155
               Max.
##
        uci90
                                                                   lv
                               se
                                                 p
                                                             Length:10
           :-0.017963
                               :0.01042
                                                  :0.01417
                        Min.
                                           Min.
  1st Qu.:-0.006646
                        1st Qu.:0.01297
                                           1st Qu.:0.05919
                                                             Class : character
## Median: 0.020491
                        Median :0.01579
                                           Median :0.87686
                                                             Mode : character
## Mean
          : 0.011344
                        Mean :0.01633
                                           Mean
                                                  :0.56376
## 3rd Qu.: 0.025778
                        3rd Qu.:0.01823
                                           3rd Qu.:0.90307
## Max.
          : 0.032042
                               :0.02710
                                                  :0.93969
                        Max.
                                           Max.
```

Outcome Model 2

```
## Living in Local ZIP since at least age 15 ##
```

```
# require(nnet)
\# s0mo2_10 <- multinom(update(foreignsuff3x ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen
\# sOmo2_1A <- multinom(update(foreignsuff3x ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen
\# s0mo2_1B <- multinom(update(foreignsuff3x ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen
\# sOmo2_1C <- multinom(update(foreignsuff3x ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen
sifcct.mlogit <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                       shape = "wide", choice = "foreignsuff3x")
# # levels(sifcct.mlogit$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
s0mo2_10 <- mlogit(outmod0.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s0mo2_1A <- mlogit(outmodA.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s0mo2_1B <- mlogit(outmodB.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s0mo2 1C <- mlogit(outmodC.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
screenreg(list(s0mo2_10,s0mo2_1A), digits = 4, #single.row = T,
          override.se = list(coeftest(s0mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_10))),2]
                              coeftest(s0mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_10))),2],
                              coeftest(s0mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_1A))),2]
                              coeftest(s0mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_1A))),2]),
          override.pvalues = list(coeftest(s0mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_10)
                                   coeftest(s0mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_10)))
                                   coeftest(s0mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_1A)
                                   coeftest(s0mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_1A)))
          beside = T,
          omit.coef = "(wave)", stars = c(0.1, 0.05, 0.01, 0.001), symbol = "+",
          custom.model.names = c("Base: Agree", "Base: Neither",
                                  "ZIP: Agree", "ZIP: Neither"),
          custom.coef.map = vnmap)
```

##				
##	Base: Agree	Base: Neither	ZIP: Agree	ZIP: Neither
## University education	-0.2366 ***	-0.5074 *	-0.2280 ***	-0.4878 *
##	(0.1019)	(0.1026)	(0.1029)	(0.1034)
## Gender (male)	-0.7822 ***	-0.7924 ***	-0.7867 ***	-0.8027 ***
##	(0.0815)	(0.0853)	(0.0817)	(0.0855)
## Age (by 10 years, centered at 45)	0.0267 +	-0.0845	0.0274 +	-0.0818
##	(0.0447)	(0.0464)	(0.0448)	(0.0464)
## University * Male	0.3166 *	0.3177 *	0.3170 *	0.3198 *
##	(0.1256)	(0.1270)	(0.1258)	(0.1272)
## University * Age	-0.1114	0.0384	-0.1120	0.0358
##	(0.0689)	(0.0701)	(0.0689)	(0.0701)
## University * Male * Age	0.0813	0.0493	0.0821	0.0522
##	(0.0877)	(0.0884)	(0.0877)	(0.0884)
## Male * Age	0.0955	-0.0154	0.0949	-0.0175
##	(0.0620)	(0.0634)	(0.0620)	(0.0634)
## % of Life Residing Locally (zip)	-0.1575	0.1758	-0.1588	0.1545
##	(0.2161)	(0.2144)	(0.2174)	(0.2153)
## DID residence (zip)			0.0404	0.0117
##			(0.0679)	(0.0677)
## Foreigner % sqrt. (zip)			-0.1095 *	-0.1045 *
##			(0.0477)	(0.0494)
## University % by 10% (zip)			-0.0057	-0.0319

```
##
                                                                    (0.0373)
                                                                                   (0.0370)
                                                  16612.6702
## AIC
                                   16612.6702
                                                                 16615.5868
                                                                                16615.5868
## Log Likelihood
                                   -8248.3351
                                                  -8248.3351
                                                                 -8243.7934
                                                                                -8243.7934
## Num. obs.
                                    7827
                                                   7827
                                                                  7827
                                                                                 7827
## K
                                       3
                                                      3
                                                                                   3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
screenreg(list(s0mo2_1B,s0mo2_1C), digits = 4, #single.row = T,
         override.se = list(coeftest(s0mo2_1B,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_1B))),2]
                           coeftest(s0mo2_1B,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_1B))),2],
                          coeftest(s0mo2_1C,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_1C))),2]
                           coeftest(s0mo2_1C,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_1C))),2]),
         override.pvalues = list(coeftest(s0mo2_1B,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_1B)
                               coeftest(s0mo2_1B,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_1B)))
                               coeftest(s0mo2_1C,vcov=sandwich)[grep(":Neither",names(coef(s0mo2_1C)
                               coeftest(s0mo2_1C,vcov=sandwich)[grep(":Agree",names(coef(s0mo2_1C)))
         beside = T,
         omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
         custom.coef.map = vnmap,
         custom.model.names = c("Mun.: Agree", "Mun.: Neither",
                              "Full: Agree", "Full: Neither"))
##
```

## ==============				
## ##	Mun.: Agree	Mun.: Neither	Full: Agree	Full: Neither
## University education	-0.2225 ***	-0.4957 *	-0.2250 ***	-0.4884 *
##	(0.1027)	(0.1033)	(0.1029)	(0.1036)
## Gender (male)	-0.7863 ***	-0.8100 ***	-0.7877 ***	-0.8149 ***
##	(0.0817)	(0.0857)	(0.0819)	(0.0857)
## Age (by 10 years, centered at 45)	0.0273 +	-0.0823	0.0267 +	-0.0816
##	(0.0448)	(0.0464)	(0.0448)	(0.0464)
## University * Male	0.3170 **	0.3288 *	0.3177 **	0.3265 *
##	(0.1257)	(0.1272)	(0.1258)	(0.1273)
## University * Age	-0.1124	0.0360	-0.1117	0.0359
##	(0.0689)	(0.0701)	(0.0689)	(0.0701)
## University * Male * Age	0.0807	0.0515	0.0818	0.0541
##	(0.0877)	(0.0884)	(0.0878)	(0.0884)
## Male * Age	0.0962	-0.0180	0.0953	-0.0205
##	(0.0621)	(0.0634)	(0.0622)	(0.0634)
## % of Life Residing Locally (zip)	-0.1593	0.1667	-0.1588	0.1554
##	(0.2175)	(0.2150)	(0.2178)	(0.2153)
## DID residence (zip)			0.0576 +	0.1353
##			(0.0821)	(0.0823)
## Foreigner % sqrt. (zip)			-0.0909 *	-0.1365
##			(0.0665)	(0.0678)
## University % by 10% (zip)			0.0115	-0.0661
##			(0.0530)	(0.0525)
## DID proportion (mun.)	0.0063 *	-0.2650	-0.0445 **	-0.3924
##	(0.1195)	(0.1198)	(0.1434)	(0.1455)
## Foreigner % sqrt. (mun.)	-0.1130	-0.0532 +	-0.0283	0.0716
##	(0.0671)	(0.0677)	(0.0917)	(0.0929)
## University % by 10% (mun.)	-0.0143	0.0418	-0.0233	0.1103

```
(0.0554)
##
                                                                                                                                                                                                                                                                                           (0.0540)
                                                                                                                                                                                                                                                                                                                                                                           (0.0759)
                                                                                                                                                                                                                                                                                                                                                                                                                                                           (0.0746)
## AIC
                                                                                                                                                                                           16614.2088
                                                                                                                                                                                                                                                                           16614.2088
                                                                                                                                                                                                                                                                                                                                                           16618.2864
                                                                                                                                                                                                                                                                                                                                                                                                                                          16618.2864
## Log Likelihood
                                                                                                                                                                                            -8243.1044
                                                                                                                                                                                                                                                                           -8243.1044
                                                                                                                                                                                                                                                                                                                                                           -8239.1432
                                                                                                                                                                                                                                                                                                                                                                                                                                           -8239.1432
## Num. obs.
                                                                                                                                                                                                 7827
                                                                                                                                                                                                                                                                                 7827
                                                                                                                                                                                                                                                                                                                                                                7827
                                                                                                                                                                                                                                                                                                                                                                                                                                                7827
## K
                                                                                                                                                                                                                                                                                               3
                                                                                                                                                                                                                                                                                                                                                                               3
                                                                                                                                                                                                                                                                                                                                                                                                                                                               3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
         if (gender=="Male") sifcct$gender <- sifcct$female</pre>
         if (gender=="Female") sifcct$gender <- sifcct$male</pre>
         sifcct$ageset <- (sifcct$age - ageset)/10</pre>
         if (sub==1) {
                    \# modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                                                                                                                                      I(c10\_sreg\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_fper) \ + \ 
                    #
                                                                                                                                      as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                            Hess = TRUE)
                   sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                                                          shape = "wide", choice = "foreignsuff3x")
                   # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")
                   modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                                                                                                                  I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                                                                                                                  as.factor(wave), data=sifcct.mlogit.tmp, reflevel = "Disagree")
                   subname = "Stayed"
         } else {
                    # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                                                            data=sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                            Hess = TRUE)
                   sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                                                          shape = "wide", choice = "foreignsuff3x")
                    # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree","Neither","Agree")</pre>
                   modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                                        data=sifcct.mlogit.tmp, reflevel = "Disagree")
                    subname = "Moved"
         }
         # modres <- extract(modset)</pre>
         # res <- c(gender,ageset,modres@coef[grep("^Agree: edu2$",modres@coef.names)],</pre>
                                                                modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.975)*modres@se[grep("^Agree")] - qnorm(0.975)*modres@se[grep("^Agree")] - qnorm(0.975)*modres@se[grep("Agree")] - qnorm(0.975)*modres@se[gree]] - qnorm(0.97
                                                                modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@se[grep(") agree | edu2\$", modres@se[gree | edu2\$",
          #
                                                               modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[grep(") edu2\$", mo
                                                               modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", edu2\$", modres@se[grep("^Agree: edu2\$", edu2\$"
                                                               modres@se[grep("^Agree: edu2$",modres@coef.names)],
                                                                modres@pvalues[grep("^Agree: edu2$",modres@coef.names)],
          #
                                                                subname)
         res <- c(gender, ageset, coef (modset)[3],
                                                      coefci(modset, vcov=sandwich, level = 0.95)[3,],
                                                       coefci(modset, vcov=sandwich, level = 0.90)[3,],
                                                      coeftest(modset, vcov=sandwich)[3,c(2,4)],
                                                       subname)
```

```
names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
  return(res)
}
outdt0m <- rbind(extout("Female",25,1),</pre>
                 extout("Female", 35,1),
                 extout("Female", 45,1),
                 extout("Female",55,1),
                 extout("Female",65,1),
                 extout("Male", 25, 1),
                 extout("Male", 35,1),
                 extout("Male", 45, 1),
                 extout("Male",55,1),
                 extout("Male",65,1))
outdt0m <- as.data.frame(outdt0m)</pre>
for(i in 2:9) outdt0m[,i] <- as.numeric(outdt0m[,i])</pre>
outdt0m$gender <- factor(outdt0m$gender, levels=unique(outdt0m$gender))
summary(outdt0m)
```

```
##
       gender
                                                     lci95
                                                                        uci95
                                                                                             lci90
                    age
                                  est
##
    Female:5
               Min.
                      :25
                             Min.
                                    :-0.44832
                                                Min.
                                                      :-0.84560
                                                                    Min.
                                                                           :-0.052650
                                                                                         Min.
                                                                                                :-0.78171
##
    Male :5
               1st Qu.:35
                             1st Qu.:-0.19705
                                                1st Qu.:-0.39904
                                                                    1st Qu.: 0.004953
                                                                                         1st Qu.:-0.36656
##
               Median:45
                             Median : 0.01565
                                                Median :-0.24651
                                                                    Median: 0.241227
                                                                                         Median :-0.20435
##
               Mean
                      :45
                             Mean
                                    :-0.06611
                                                Mean
                                                        :-0.30558
                                                                    Mean
                                                                           : 0.173355
                                                                                         Mean
                                                                                                :-0.26707
##
               3rd Qu.:55
                             3rd Qu.: 0.08526
                                                3rd Qu.:-0.11455
                                                                    3rd Qu.: 0.280028
                                                                                         3rd Qu.:-0.07653
##
               Max.
                      :65
                             Max.
                                    : 0.15257
                                                Max.
                                                        :-0.05757
                                                                    Max.
                                                                           : 0.422067
                                                                                         Max.
                                                                                                :-0.03340
##
        uci90
                                                                  lv
##
   Min.
           :-0.11494
                               :0.07668
                                                 :0.02017
                                                             Length:10
                       Min.
                                          Min.
    1st Qu.:-0.02753
                       1st Qu.:0.09837
                                          1st Qu.:0.07434
                                                             Class : character
  Median : 0.21494
                                          Median :0.24534
                       Median :0.11539
                                                             Mode :character
    Mean
          : 0.13485
                       Mean
                               :0.12216
                                          Mean
                                                 :0.33148
                                          3rd Qu.:0.43096
##
    3rd Qu.: 0.23890
                       3rd Qu.:0.13957
   Max.
           : 0.37873
                               :0.20266
                                                 :0.99087
                       Max.
                                          Max.
```

Mediator Models

Knowledge

```
omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
custom.coef.map = vnmap,
custom.model.names = c("Base","ZIP","Municipality","Full"))
```

```
ZIP
                                                            Municipality
                                                                         Full
                                 Base
## -----
                                                           ______
## University education
                                    0.1553 ***
                                                 0.1483 ***
                                                               0.1510 ***
                                                                            0.1486 ***
                                   (0.0125)
                                                 (0.0126)
                                                              (0.0126)
                                                                            (0.0126)
                                                 0.1857 ***
## Gender (male)
                                    0.1842 ***
                                                               0.1859 ***
                                                                            0.1867 ***
                                   (0.0100)
                                                 (0.0100)
                                                              (0.0100)
                                                                            (0.0100)
                                                               0.0540 ***
## Age (by 10 years, centered at 45)
                                                                            0.0537 ***
                                    0.0542 ***
                                                 0.0536 ***
                                   (0.0053)
                                                 (0.0053)
                                                              (0.0053)
                                                                            (0.0053)
##
                                   -0.0287 +
                                                 -0.0278 +
                                                              -0.0293 +
                                                                           -0.0285 +
## University * Male
                                   (0.0152)
                                                 (0.0152)
                                                              (0.0152)
                                                                            (0.0152)
## University * Age
                                   -0.0158 +
                                                 -0.0151 +
                                                              -0.0153 +
                                                                            -0.0151 +
                                   (0.0083)
                                                 (0.0083)
                                                              (0.0083)
                                                                            (0.0083)
## University * Male * Age
                                                 0.0048
                                                                            0.0044
                                    0.0054
                                                               0.0046
                                   (0.0104)
                                                 (0.0104)
                                                              (0.0104)
                                                                            (0.0104)
## Male * Age
                                    0.0020
                                                 0.0025
                                                               0.0025
                                                                            0.0028
                                   (0.0074)
                                                 (0.0074)
                                                              (0.0074)
                                                                            (0.0074)
##
## % of Life Residing Locally (zip)
                                   -0.1088 ***
                                                 -0.0984 ***
                                                              -0.0987 ***
                                                                            -0.0961 ***
                                   (0.0257)
                                                 (0.0257)
                                                              (0.0257)
                                                                            (0.0257)
## DID residence (zip)
                                                 -0.0117
                                                                            -0.0206 *
                                                 (0.0079)
                                                                            (0.0096)
## Foreigner % sqrt. (zip)
                                                 -0.0016
                                                                            0.0083
##
                                                 (0.0057)
                                                                            (0.0077)
## University % by 10% (zip)
                                                 0.0205 ***
                                                                            0.0178 **
                                                 (0.0043)
                                                                            (0.0061)
##
## DID proportion (mun.)
                                                               0.0052
                                                                            0.0256
                                                              (0.0137)
                                                                            (0.0167)
## Foreigner % sqrt. (mun.)
                                                              -0.0157 +
                                                                            -0.0228 *
                                                              (0.0081)
                                                                            (0.0107)
## University % by 10% (mun.)
                                                               0.0209 ***
                                                                            0.0032
                                                              (0.0062)
                                                                            (0.0084)
## R^2
                                    0.1892
                                                  0.1916
                                                               0.1912
                                                                            0.1924
## Adj. R^2
                                    0.1863
                                                  0.1884
                                                               0.1880
                                                                            0.1888
## Num. obs.
                                 7827
                                               7827
                                                            7827
                                                                          7827
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Ideology

‡ ‡	Base	ZIP	Municipality	Full
t University education	-0.0120	-0.0130	-0.0127	-0.0126
‡	(0.0083)	(0.0083)	(0.0083)	(0.0083)
Gender (male)	-0.0254 ***	-0.0251 ***	-0.0262 ***	-0.0260 **
‡	(0.0070)	(0.0070)	(0.0070)	(0.0070)
# Age (by 10 years, centered at 45)	-0.0052	-0.0053	-0.0051	-0.0053
‡	(0.0034)	(0.0034)	(0.0034)	(0.0034)
# University * Male	0.0147	0.0148	0.0154	0.0152
‡	(0.0107)	(0.0107)	(0.0107)	(0.0107)
# University * Age	-0.0046	-0.0044	-0.0046	-0.0044
‡	(0.0055)	(0.0055)	(0.0055)	(0.0055)
# University * Male * Age	0.0104	0.0103	0.0104	0.0102
‡	(0.0074)	(0.0074)	(0.0074)	(0.0074)
# Male * Age	-0.0003	-0.0002	-0.0004	-0.0003
‡	(0.0051)	(0.0051)	(0.0051)	(0.0051)
# % of Life Residing Locally (zip)	0.0190	0.0211	0.0215	0.0223
‡	(0.0183)	(0.0183)	(0.0183)	(0.0184)
DID residence (zip)		0.0014		0.0112
<u> </u>		(0.0060)		(0.0070)
Foreigner % sqrt. (zip)		-0.0040		-0.0008
‡		(0.0042)		(0.0057)
# University % by 10% (zip)		0.0033		0.0004
ŧ		(0.0033)		(0.0045)
DID proportion (mun.)			-0.0207 +	-0.0316 *
‡			(0.0107)	(0.0125)
Foreigner % sqrt. (mun.)			-0.0067	-0.0062
‡			(0.0060)	(0.0081)
University % by 10% (mun.)			0.0104 *	0.0100
‡			(0.0048)	(0.0064)
# # R^2	0.0054	0.0057	0.0063	0.0066
‡ Adj. R^2	0.0018	0.0017	0.0023	0.0023
* Num. obs.	7827	7827	7827	7827

LDP - DPJ FT

```
s0mm03_10 <- lm(update(ldpdpjft ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s0mm03_1A <- lm(update(ldpdpjft ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s0mm03_1B <- lm(update(ldpdpjft ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
```

##

# #		ZIP	Municipality	Full
# University education	-0.0038	-0.0045	-0.0035	-0.0042
#	(0.0068)	(0.0069)	(0.0069)	(0.0069)
# Gender (male)	0.0220 ***	0.0222 ***	0.0216 ***	0.0220 ***
#	(0.0053)	(0.0054)	(0.0054)	(0.0054)
# Age (by 10 years, centered at 45)	-0.0020	-0.0020	-0.0019	-0.0022
#	(0.0028)	(0.0028)	(0.0028)	(0.0028)
# University * Male	0.0038	0.0039	0.0041	0.0041
#	(0.0085)	(0.0086)	(0.0086)	(0.0086)
# University * Age	-0.0057	-0.0057	-0.0058	-0.0057
#	(0.0046)	(0.0045)	(0.0046)	(0.0046)
# University * Male * Age	0.0062	0.0062	0.0064	0.0062
#	(0.0059)	(0.0059)	(0.0059)	(0.0059)
# Male * Age	-0.0135 ***	-0.0135 ***	-0.0137 ***	-0.0134 ***
#	(0.0041)	(0.0041)	(0.0041)	(0.0041)
# % of Life Residing Locally (zip)	0.0194	0.0199	0.0178	0.0192
#	(0.0142)	(0.0142)	(0.0142)	(0.0142)
# DID residence (zip)		-0.0024		0.0002
<u>-</u> #		(0.0046)		(0.0056)
# Foreigner % sqrt. (zip)		0.0042		0.0043
#		(0.0033)		(0.0044)
# University % by 10% (zip)		0.0012		0.0058 +
#		(0.0025)		(0.0035)
# DID proportion (mun.)			-0.0055	-0.0057
#			(0.0081)	(0.0098)
# Foreigner % sqrt. (mun.)			0.0059	0.0020
#			(0.0047)	(0.0062)
# University % by 10% (mun.)			-0.0019	-0.0078
#			(0.0038)	(0.0051)
# # R^2	0.0989	0.0991	0.0992	0.0996
# Adj. R^2	0.0956	0.0955	0.0956	0.0957
# Num. obs.	7827	7827	7827	7827

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1

Favorability of South Korea

```
sOmmO4_10 <- lm(update(familiarityFT_KOR ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm04_1A <- lm(update(familiarityFT_KOR ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
sOmmO4_1B <- lm(update(familiarityFT_KOR ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm04_1C <- lm(update(familiarityFT_KOR ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s0mm04_10,s0mm04_1A,s0mm04_1B,s0mm04_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s0mm04_10,vcov.=vcovHC(s0mm04_10))[,2],
                             coeftest(s0mm04_1A,vcov.=vcovHC(s0mm04_1A))[,2],
                             coeftest(s0mm04_1B,vcov.=vcovHC(s0mm04_1B))[,2],
                             coeftest(s0mm04_1C,vcov.=vcovHC(s0mm04_1C))[,2]),
         override.pvalues = list(coeftest(s0mm04_10,vcov.=vcovHC(s0mm04_10))[,4],
                                  coeftest(s0mm04_1A,vcov.=vcovHC(s0mm04_1A))[,4],
                                  coeftest(s0mm04_1B,vcov.=vcovHC(s0mm04_1B))[,4],
                                  coeftest(s0mm04_1C,vcov.=vcovHC(s0mm04_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

University education		Page	ZIP	Municipality	
Gender (male)			715	Municipality	
Gender (male)	University education	-0.0088	-0.0106	-0.0107	-0.0113
Age (by 10 years, centered at 45)		(0.0104)	(0.0105)	(0.0105)	(0.0105)
Age (by 10 years, centered at 45)	Gender (male)	-0.0580 ***	-0.0581 ***	-0.0578 ***	-0.0580 **
University * Male		•	(0.0083)	(0.0083)	
University * Male	Age (by 10 years, centered at 45)	0.0094 *	0.0094 *	0.0093 *	0.0096 *
University * Age		(0.0046)	(0.0046)	(0.0046)	(0.0046)
University * Age	University * Male	0.0153	0.0159	0.0155	0.0159
University * Male * Age		(0.0127)	(0.0127)	(0.0127)	(0.0127)
University * Male * Age	University * Age	-0.0141 +	-0.0141 *	-0.0140 +	-0.0142 *
Male * Age		(0.0072)	(0.0072)	(0.0072)	(0.0072)
Male * Age	University * Male * Age	0.0073	0.0073	0.0073	0.0075
(0.0063) (0.0063) (0.0063) (0.0063) (0.0063) % of Life Residing Locally (zip) -0.0103 -0.0087 -0.0088 -0.0096 (0.00227) (0.0227) (0.0227) (0.0227) DID residence (zip) -0.0109 -0.0127 (0.0068) (0.0082) Foreigner % sqrt. (zip) 0.0030 -0.0037 (0.0047) (0.0065) University % by 10% (zip) 0.0055 0.0023 (0.0038) (0.0053) DID proportion (mun.) -0.0084 0.0044 (0.0118) (0.0143) Foreigner % sqrt. (mun.) 0.0086 0.0124 (0.0068) (0.0092) University % by 10% (mun.) 0.0063 0.0042 (0.0056) (0.0076)		(0.0090)	(0.0090)	(0.0090)	(0.0090)
% of Life Residing Locally (zip) -0.0103 -0.0087 -0.0088 -0.0096 (0.0227) (0.0227) (0.0227) (0.0227) DID residence (zip) -0.0109 -0.0127 (0.0068) (0.0082) Foreigner % sqrt. (zip) 0.0030 -0.0037 (0.0047) (0.0065) University % by 10% (zip) 0.0055 0.0023 (0.0038) DID proportion (mun.) -0.0084 0.0044 (0.0118) (0.0143) Foreigner % sqrt. (mun.) 0.0086 0.0124 (0.0068) (0.0092) University % by 10% (mun.) 0.0063 0.0042 (0.0056) (0.0076)	Male * Age	0.0190 **	0.0190 **	0.0189 **	0.0188 **
(0.0227) (0.0227) (0.0227) (0.0227)	•	(0.0063)	(0.0063)	(0.0063)	(0.0063)
DID residence (zip) -0.0109 -0.0127 (0.0068) (0.0082) Foreigner % sqrt. (zip) 0.0030 -0.0037 (0.0047) (0.0065) University % by 10% (zip) 0.0055 0.0023 (0.0038) (0.0053) DID proportion (mun.) -0.0084 0.0044 (0.0118) (0.0143) Foreigner % sqrt. (mun.) 0.0086 0.0124 (0.0068) (0.0092) University % by 10% (mun.) 0.0063 0.0042 (0.0076) R^2 0.0740 0.0744 0.0744 0.0744	% of Life Residing Locally (zip)	-0.0103	-0.0087	-0.0088	-0.0096
Foreigner % sqrt. (zip)	Ç , , ,	(0.0227)	(0.0227)	(0.0227)	(0.0227)
Foreigner % sqrt. (zip) 0.0030 0.0037 (0.0047) 0.0055 University % by 10% (zip) 0.0055 0.0023 (0.0038) 0.0038) 0.0053) DID proportion (mun.) -0.0084 0.0044 (0.0118) 0.0044 (0.0118) 0.0086 0.0124 (0.0068) 0.0092) University % by 10% (mun.) 0.0063 0.0042 0.0056) 0.0076)	DID residence (zip)		-0.0109		-0.0127
University % by 10% (zip) 0.0055 0.0023 0.0038) 0.0055 0.0053) DID proportion (mun.) -0.0084 0.0118) 0.0118) 0.0044 (0.0118) 0.0086 0.0124 (0.0068) 0.0092) University % by 10% (mun.) 0.0063 0.0042 0.0056) R^2 0.0740 0.0744 0.0744	•		(0.0068)		(0.0082)
University % by 10% (zip) 0.0055 0.0023 0.0038) 0.0055 0.0053) DID proportion (mun.) -0.0084 0.0118) 0.0118) 0.0044 (0.0118) 0.0086 0.0124 (0.0068) 0.0092) University % by 10% (mun.) 0.0063 0.0042 0.0056) R^2 0.0740 0.0744 0.0744	Foreigner % sqrt. (zip)		0.0030		-0.0037
(0.0038)			(0.0047)		(0.0065)
DID proportion (mun.)	University % by 10% (zip)		0.0055		0.0023
DID proportion (mun.) -0.0084 0.0044 (0.0118) (0.0143) Foreigner % sqrt. (mun.) 0.0086 0.0124 (0.0068) (0.0092) University % by 10% (mun.) 0.0063 0.0042 (0.0056) (0.0076) R^2 0.0740 0.0744 0.0744 0.0747			(0.0038)		(0.0053)
(0.0118) (0.0143) Foreigner % sqrt. (mun.)	DID proportion (mun.)			-0.0084	0.0044
Foreigner % sqrt. (mun.) 0.0086 0.0124 (0.0068) (0.0092) University % by 10% (mun.) 0.0063 0.0042 (0.0056) (0.0076) R^2 0.0740 0.0744 0.0744	• •			(0.0118)	
University % by 10% (mun.) R^2 (0.0068) (0.0092) (0.0063	Foreigner % sart. (mun.)				0.0124
University % by 10% (mun.) 0.0063 0.0042 (0.0056) (0.0076)					
R^2 0.0740 0.0744 0.0744 0.0747	University % by 10% (mun.)				
R^2 0.0740 0.0744 0.0744 0.0747	· ·				
			0 0744	0 0744	0 0747
	Adj. R^2	0.0740	0.0744	0.0744	0.0747

Favorability of China

```
s0mm05_10 <- lm(update(familiarityFT_CHN ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm05_1A <- lm(update(familiarityFT_CHN ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm05 1B <- lm(update(familiarityFT CHN ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm05_1C <- lm(update(familiarityFT_CHN ~ ., basemodC), data=sifcct[which(sifcctsage - sifcctslvlen<=1
screenreg(list(s0mm05_10,s0mm05_1A,s0mm05_1B,s0mm05_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s0mm05_10,vcov.=vcovHC(s0mm05_10))[,2],
                             coeftest(s0mm05_1A,vcov.=vcovHC(s0mm05_1A))[,2],
                             coeftest(s0mm05_1B,vcov.=vcovHC(s0mm05_1B))[,2],
                             coeftest(s0mm05_1C,vcov.=vcovHC(s0mm05_1C))[,2]),
          override.pvalues = list(coeftest(s0mm05_10,vcov.=vcovHC(s0mm05_10))[,4],
                                  coeftest(s0mm05_1A,vcov.=vcovHC(s0mm05_1A))[,4],
                                  coeftest(s0mm05_1B,vcov.=vcovHC(s0mm05_1B))[,4],
                                  coeftest(s0mm05_1C,vcov.=vcovHC(s0mm05_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

##				
## ## ##	Base	ZIP	Municipality	Full
## ## University education	-0.0055	-0.0052	-0.0053	-0.0053
##	(0.0088)	(0.0089)	(0.0089)	(0.0089)
## Gender (male)	-0.0185 **	-0.0192 **	-0.0195 **	-0.0197 **
##	(0.0072)	(0.0072)	(0.0072)	(0.0072)
## Age (by 10 years, centered at 45)	-0.0051	-0.0049	-0.0050	-0.0049
##	(0.0041)	(0.0041)	(0.0041)	(0.0041)
## University * Male	0.0131	0.0136	0.0138	0.0139
##	(0.0108)	(0.0108)	(0.0108)	(0.0108)
## University * Age	-0.0122 *	-0.0124 *	-0.0124 *	-0.0124 *
##	(0.0062)	(0.0062)	(0.0062)	(0.0062)
## University * Male * Age	0.0043	0.0045	0.0045	0.0046
##	(0.0078)	(0.0078)	(0.0078)	(0.0078)
## Male * Age	0.0071	0.0070	0.0069	0.0068
##	(0.0056)	(0.0056)	(0.0056)	(0.0056)
## % of Life Residing Locally (zip)	-0.0446 *	-0.0454 *	-0.0449 *	-0.0456 *
##	(0.0195)	(0.0195)	(0.0195)	(0.0195)
## DID residence (zip)		-0.0060		-0.0006
##		(0.0058)		(0.0069)
## Foreigner % sqrt. (zip)		-0.0044		-0.0072
##		(0.0041)		(0.0056)
## University % by 10% (zip)		0.0008		-0.0009
##		(0.0032)		(0.0045)
## DID proportion (mun.)		,	-0.0182 +	-0.0173
##			(0.0102)	(0.0122)
## Foreigner % sqrt. (mun.)			-0.0008	0.0060
##			(0.0057)	(0.0077)
## University % by 10% (mun.)			0.0039	0.0050

```
##
                                             (0.0047)
                                                       (0.0065)
## R^2
                           0.0332
                                    0.0336
                                              0.0337
                                                       0.0339
## Adj. R^2
                           0.0298
                                    0.0297
                                              0.0298
                                                       0.0297
## Num. obs.
## -----
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Favorability of USA

```
s0mm06_10 <- lm(update(familiarityFT_USA ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm06_1A <- lm(update(familiarityFT_USA ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm06_1B <- lm(update(familiarityFT_USA ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s0mm06_1C <- lm(update(familiarityFT_USA ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s0mm06_10,s0mm06_1A,s0mm06_1B,s0mm06_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s0mm06_10,vcov.=vcovHC(s0mm06_10))[,2],
                             coeftest(s0mm06_1A,vcov.=vcovHC(s0mm06_1A))[,2],
                             coeftest(s0mm06_1B,vcov.=vcovHC(s0mm06_1B))[,2],
                             coeftest(s0mm06_1C,vcov.=vcovHC(s0mm06_1C))[,2]),
          override.pvalues = list(coeftest(s0mm06_10,vcov.=vcovHC(s0mm06_10))[,4],
                                  coeftest(s0mm06_1A,vcov.=vcovHC(s0mm06_1A))[,4],
                                  coeftest(s0mm06 1B,vcov.=vcovHC(s0mm06 1B))[,4],
                                  coeftest(s0mm06_1C,vcov.=vcovHC(s0mm06_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

##					
## ## ##		Base	ZIP	Municipality	Full
	University education	-0.0085	-0.0102	-0.0108	-0.0111
##		(0.0090)	(0.0091)	(0.0091)	(0.0091)
##	Gender (male)	0.0263 ***	0.0268 ***	0.0274 ***	0.0271 ***
##		(0.0073)	(0.0073)	(0.0073)	(0.0073)
##	Age (by 10 years, centered at 45)	0.0066 +	0.0064	0.0065 +	0.0067 +
##		(0.0039)	(0.0039)	(0.0039)	(0.0039)
##	University * Male	0.0211 +	0.0212 +	0.0207 +	0.0210 +
##		(0.0112)	(0.0112)	(0.0112)	(0.0112)
##	University * Age	-0.0136 *	-0.0133 *	-0.0133 *	-0.0134 *
##		(0.0061)	(0.0061)	(0.0061)	(0.0061)
##	University * Male * Age	0.0134 +	0.0133 +	0.0132 +	0.0135 +
##		(0.0078)	(0.0078)	(0.0078)	(0.0078)
##	Male * Age	0.0043	0.0044	0.0044	0.0042
##		(0.0055)	(0.0055)	(0.0055)	(0.0055)
##	% of Life Residing Locally (zip)	-0.0302	-0.0271	-0.0268	-0.0277
##		(0.0192)	(0.0193)	(0.0193)	(0.0194)
##	DID residence (zip)		-0.0002		-0.0048
##			(0.0060)		(0.0071)
##	Foreigner % sqrt. (zip)		-0.0032		-0.0100 +
##			(0.0042)		(0.0058)
##	University % by 10% (zip)		0.0054		0.0005
##			(0.0034)		(0.0048)
##	DID proportion (mun.)			0.0068	0.0121

```
##
                                                       (0.0107)
                                                                   (0.0127)
## Foreigner % sqrt. (mun.)
                                                       0.0018
                                                                   0.0113
                                                       (0.0060)
                                                                   (0.0080)
## University % by 10% (mun.)
                                                       0.0065
                                                                   0.0063
                                                       (0.0050)
                                                                   (0.0068)
## ----
                                0.0230
                                          0.0235
                                                       0.0238
                                                                   0.0243
                                          0.0196
## Adj. R^2
                                0.0195
                                                      0.0199
                                                                   0.0200
## Num. obs.
                             7827
                                         7827
                                                     7827
                                                                 7827
## -----
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Income

```
s0mm07_10 <- lm(update(income ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s0mm07_1A <- lm(update(income ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s0mm07_1B <- lm(update(income ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s0mm07_1C <- lm(update(income ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s0mm07_10,s0mm07_1A,s0mm07_1B,s0mm07_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s0mm07_10,vcov.=vcovHC(s0mm07_10))[,2],
                             coeftest(s0mm07_1A,vcov.=vcovHC(s0mm07_1A))[,2],
                             coeftest(s0mm07_1B,vcov.=vcovHC(s0mm07_1B))[,2],
                             coeftest(s0mm07_1C,vcov.=vcovHC(s0mm07_1C))[,2]),
          override.pvalues = list(coeftest(s0mm07 10,vcov.=vcovHC(s0mm07 10))[,4],
                                  coeftest(s0mm07_1A,vcov.=vcovHC(s0mm07_1A))[,4],
                                  coeftest(s0mm07_1B,vcov.=vcovHC(s0mm07_1B))[,4],
                                  coeftest(s0mm07 1C,vcov.=vcovHC(s0mm07 1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

** ## ==================================				
##	Base	ZIP	Municipality	Full
## ## University education	0.1449 ***	0.1313 ***	0.1328 ***	0.1294 ***
##	(0.0116)	(0.0117)	(0.0116)	(0.0117)
## Gender (male)	0.0169 +	0.0211 *	0.0197 *	0.0206 *
##	(0.0090)	(0.0090)	(0.0090)	(0.0090)
## Age (by 10 years, centered at 45)	0.0092 +	0.0077	0.0088 +	0.0082
##	(0.0050)	(0.0050)	(0.0050)	(0.0050)
# University * Male	-0.0295 *	-0.0289 *	-0.0296 *	-0.0287 *
#	(0.0143)	(0.0142)	(0.0142)	(0.0142)
# University * Age	-0.0014	0.0002	-0.0004	0.0000
#	(0.0081)	(0.0081)	(0.0081)	(0.0081)
# University * Male * Age	0.0153	0.0139	0.0147	0.0145
#	(0.0102)	(0.0102)	(0.0101)	(0.0102)
# Male * Age	-0.0088	-0.0077	-0.0087	-0.0084
##	(0.0069)	(0.0069)	(0.0069)	(0.0069)
# % of Life Residing Locally (zip)	-0.0650 **	-0.0450 +	-0.0508 *	-0.0470 +
#	(0.0250)	(0.0249)	(0.0250)	(0.0250)
# DID residence (zip)		-0.0102		-0.0087
#		(0.0075)		(0.0091)
## Foreigner % sqrt. (zip)		0.0107 *		-0.0076

```
##
                                                 (0.0054)
                                                                           (0.0070)
## University % by 10% (zip)
                                                 0.0348 ***
                                                                            0.0248 ***
                                                                           (0.0061)
                                                 (0.0042)
## DID proportion (mun.)
                                                              -0.0187
                                                                           -0.0088
##
                                                              (0.0133)
                                                                           (0.0159)
## Foreigner % sqrt. (mun.)
                                                               0.0265 ***
                                                                            0.0343 ***
                                                              (0.0075)
                                                                           (0.0098)
## University % by 10% (mun.)
                                                               0.0407 ***
                                                                            0.0166 +
##
                                                              (0.0062)
                                                                           (0.0087)
##
## R^2
                                    0.0562
                                                 0.0664
                                                               0.0662
                                                                            0.0685
## Adj. R^2
                                    0.0528
                                                               0.0625
                                                                            0.0644
                                                 0.0627
## Num. obs.
                                               7827
                                                            7827
                                                                         7827
                                 7827
## ------
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

With Matched Data (Without Distance Adjustment)

```
sifcct <- readRDS(datadir1)
sifcct$agex <- sifcct$age/10 - 4.5
sifcct$ldpdpjft <- original$ldpdpjft[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave
summary(sifcct$ldpdpjft)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.5000 0.5000 0.5689 0.6500 1.0000
sifcct$income <- original$income[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave))]
summary(sifcct$income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04098 0.18484 0.40915 0.48308 0.78565 0.97505</pre>
```

Outcome Model

```
## Living in Local ZIP since at least age 15 ##
s1mo_10 <- lm(update(foreignsuff ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s1mo_1A <- lm(update(foreignsuff ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s1mo_1B <- lm(update(foreignsuff ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s1mo_1C <- lm(update(foreignsuff ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
screenreg(list(s1mo_10,s1mo_1A,s1mo_1B,s1mo_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s1mo_10,vcov.=vcovHC(s1mo_10))[,2],
                              coeftest(s1mo 1A,vcov.=vcovHC(s1mo 1A))[,2],
                              coeftest(s1mo 1B,vcov.=vcovHC(s1mo 1B))[,2],
                              coeftest(s1mo_1C,vcov.=vcovHC(s1mo_1C))[,2]),
          override.pvalues = list(coeftest(s1mo_10,vcov.=vcovHC(s1mo_10))[,4],
                                   coeftest(s1mo_1A,vcov.=vcovHC(s1mo_1A))[,4],
                                   coeftest(s1mo_1B,vcov.=vcovHC(s1mo_1B))[,4],
                                   coeftest(s1mo_1C,vcov.=vcovHC(s1mo_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

```
##
                                   Base
                                                  ZIP
                                                               Municipality Full
## -----
## University education
                                     -0.0244
                                                    -0.0244
                                                                  -0.0244
                                                                                -0.0246
                                      (0.0173)
                                                    (0.0173)
                                                                  (0.0173)
                                                                                (0.0174)
## Gender (male)
                                     -0.1009 ***
                                                                                -0.1014 ***
                                                    -0.1011 ***
                                                                  -0.1014 ***
                                      (0.0146)
                                                    (0.0148)
                                                                  (0.0148)
                                                                                (0.0148)
## Age (by 10 years, centered at 45)
                                      0.0011
                                                    0.0010
                                                                  0.0012
                                                                                 0.0011
##
                                      (0.0086)
                                                    (0.0086)
                                                                  (0.0086)
                                                                                (0.0086)
## University * Male
                                      0.0255
                                                    0.0256
                                                                  0.0256
                                                                                0.0257
                                      (0.0215)
                                                    (0.0215)
                                                                  (0.0215)
                                                                                (0.0215)
## University * Age
                                      -0.0079
                                                    -0.0080
                                                                  -0.0080
                                                                                -0.0081
                                      (0.0123)
                                                    (0.0123)
                                                                  (0.0123)
                                                                                (0.0123)
## University * Male * Age
                                                                                 0.0073
                                      0.0071
                                                    0.0071
                                                                   0.0072
                                                                                (0.0155)
                                      (0.0155)
                                                    (0.0155)
                                                                  (0.0155)
## Male * Age
                                      0.0104
                                                    0.0105
                                                                   0.0102
                                                                                 0.0103
##
                                      (0.0107)
                                                    (0.0107)
                                                                  (0.0107)
                                                                                (0.0107)
## % of Life Residing Locally (zip)
                                      0.0388
                                                    0.0399
                                                                  0.0376
                                                                                 0.0373
                                      (0.0399)
                                                    (0.0400)
                                                                  (0.0401)
                                                                                (0.0401)
## DID residence (zip)
                                                    -0.0018
                                                                                 0.0037
##
                                                    (0.0121)
                                                                                (0.0153)
## Foreigner % sqrt. (zip)
                                                    -0.0076
                                                                                -0.0176
                                                    (0.0097)
                                                                                (0.0139)
##
## University % by 10% (zip)
                                                    0.0031
                                                                                 0.0054
##
                                                    (0.0076)
                                                                                (0.0108)
## DID proportion (mun.)
                                                                  -0.0112
                                                                                -0.0139
                                                                  (0.0213)
                                                                                (0.0269)
## Foreigner % sqrt. (mun.)
                                                                   0.0060
                                                                                 0.0223
                                                                  (0.0133)
                                                                                (0.0183)
## University % by 10% (mun.)
                                                                   0.0003
                                                                                -0.0040
                                                                  (0.0106)
                                                                                 (0.0147)
## R^2
                                      0.0233
                                                     0.0234
                                                                   0.0234
                                                                                 0.0239
                                      0.0173
## Adj. R^2
                                                    0.0168
                                                                 0.0168
                                                                                 0.0166
## Num. obs.
                                   4614
                                                  4614
                                                                4614
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
 if (gender=="Male") sifcct$gender <- sifcct$female</pre>
 if (gender=="Female") sifcct$gender <- sifcct$male</pre>
 sifcct$ageset <- (sifcct$age - ageset)/10</pre>
 if (sub==1) {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper) +
                  I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                  as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
   subname = "Stayed"
 } else {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                data=sifcct[which(sifcct$age - sifcct$lvlen>=23),])
   subname = "Moved"
 }
```

```
coefci(modset, vcov.=vcovHC(modset), level = 0.95)[2,],
           coefci(modset, vcov.=vcovHC(modset), level = 0.90)[2,],
           coeftest(modset, vcov.=vcovHC(modset))[2,c(2,4)],
  names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
  return(res)
}
outdt1 <- rbind(extout("Female",25),</pre>
                extout("Female",35),
                extout("Female",45),
                extout("Female",55),
                extout("Female",65),
                extout("Male",25),
                extout("Male",35),
                extout("Male",45),
                extout("Male",55),
                extout("Male",65))
outdt1 <- as.data.frame(outdt1)</pre>
for(i in 2:9) outdt1[,i] <- as.numeric(outdt1[,i])</pre>
outdt1$gender <- factor(outdt1$gender, levels=unique(outdt1$gender))</pre>
summary(outdt1)
##
                                                       lci95
                                                                                              lci90
       gender
                                  est
                                                                           uci95
                    age
##
    Female:5
               Min.
                      :25
                            Min.
                                    :-0.0408169
                                                  Min.
                                                          :-0.11169
                                                                      Min.
                                                                              :0.009489
                                                                                                  :-0.10029
                            1st Qu.:-0.0225509
                                                                                          1st Qu.:-0.05129
##
    Male :5
               1st Qu.:35
                                                   1st Qu.:-0.05718
                                                                      1st Qu.:0.019541
##
               Median:45
                            Median :-0.0043609
                                                   Median :-0.04639
                                                                      Median :0.030728
                                                                                          Median :-0.04028
##
                     :45
                                   :-0.0117065
                                                          :-0.05239
                                                                              :0.028973
                                                                                                  :-0.04584
               Mean
                            Mean
                                                   Mean
                                                                      Mean
                                                                                          Mean
##
               3rd Qu.:55
                             3rd Qu.: 0.0009743
                                                   3rd Qu.:-0.03342
                                                                      3rd Qu.:0.035295
                                                                                          3rd Qu.:-0.02789
                            Max. : 0.0027126
                                                                      Max. :0.047264
##
               Max.
                     :65
                                                  Max.
                                                          :-0.02371
                                                                                          Max.
                                                                                                 :-0.01971
##
        uci90
                             se
                                                                ٦v
                                               р
## Min.
           :0.00401
                     Min.
                              :0.01269
                                         Min.
                                               :0.1573 Length:10
```

Outcome Model 2

3rd Qu.:0.02869

1st Qu.:0.01205

:0.02243

:0.04010

Median :0.02423 Median :0.02002

##

Mean

Max.

1st Qu.:0.01586

Mean :0.02075

3rd Qu.:0.02274

Max. :0.03615

res <- c(gender,ageset,coef(modset)[2],

```
## Living in Local ZIP since at least age 15 ##

# require(nnet)
# s1mo2_10 <- multinom(update(foreignsuff3x ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen
# s1mo2_1A <- multinom(update(foreignsuff3x ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen
# s1mo2_1B <- multinom(update(foreignsuff3x ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen
# s1mo2_1C <- multinom(update(foreignsuff3x ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen
sifcct.mlogit <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
```

1st Qu.:0.2700

Median :0.8075

Mean :0.6334

3rd Qu.:0.9213

:0.9868

Max.

Class : character

Mode :character

```
shape = "wide", choice = "foreignsuff3x")
# # levels(sifcct.mloqit$idx$id2) <- c("Disagree", "Neither", "Agree")
s1mo2_10 <- mlogit(outmod0.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s1mo2_1A <- mlogit(outmodA.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s1mo2_1B <- mlogit(outmodB.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s1mo2_1C <- mlogit(outmodC.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
screenreg(list(s1mo2 10,s1mo2 1A), digits = 4, #single.row = T,
          override.se = list(coeftest(s1mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s1mo2_10))),2]
                              coeftest(s1mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s1mo2_10))),2],
                             coeftest(s1mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s1mo2_1A))),2]
                             coeftest(s1mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s1mo2_1A))),2]),
          override.pvalues = list(coeftest(s1mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s1mo2_10)
                                   coeftest(s1mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s1mo2_10)))
                                   coeftest(s1mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s1mo2_1A)
                                   coeftest(s1mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s1mo2_1A)))
          beside = T,
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.model.names = c("Base: Agree", "Base: Neither",
                                  "ZIP: Agree", "ZIP: Neither"),
          custom.coef.map = vnmap)
```

## ##	_	Base: Neither	ZIP: Agree	ZIP: Neither
	-0.1724 ***	-0.5601	-0.1723 ***	-0.5631
‡#	(0.1325)	(0.1357)	(0.1325)	(0.1358)
## Gender (male)	-0.7240 ***	-0.8545 ***	-0.7233 ***	-0.8804 ***
##	(0.1133)	(0.1196)	(0.1145)	(0.1207)
## Age (by 10 years, centered at 45)	0.0481	-0.0174	0.0472	-0.0094
##	(0.0664)	(0.0712)	(0.0668)	(0.0714)
## University * Male	0.2811 *	0.3444 +	0.2809 *	0.3476 +
##	(0.1612)	(0.1637)	(0.1613)	(0.1638)
## University * Age	-0.0851	0.0408	-0.0850	0.0378
##	(0.0922)	(0.0959)	(0.0922)	(0.0960)
## University * Male * Age	0.0497	0.0905	0.0495	0.0955
##	(0.1151)	(0.1174)	(0.1151)	(0.1175)
## Male * Age	0.0647	-0.0785	0.0654	-0.0853
##	(0.0817)	(0.0855)	(0.0820)	(0.0858)
## % of Life Residing Locally (zip)	0.3168 *	0.7419	0.3238 *	0.7359
##	(0.2992)	(0.2962)	(0.3000)	(0.2965)
## DID residence (zip)			0.0224	-0.0388
##			(0.0887)	(0.0886)
## Foreigner % sqrt. (zip)			-0.0319 +	-0.1246
##			(0.0689)	(0.0697)
## University % by 10% (zip)			0.0086	-0.0194
##			(0.0564)	(0.0555)
## ## AIC	9829.3582	9829.3582	9835.4466	9835.4466
## Log Likelihood	-4856.6791	-4856.6791	-4853.7233	-4853.7233
## Num. obs.	4614	4614	4614	4614
## K	3	3	3	3

## ## =================================				:========
##		Mun.: Neither	Full: Agree	Full: Neither
## University education	-0.1726 ***	-0.5611	-0.1731 ***	-0.5640
##	(0.1324)	(0.1357)	(0.1327)	(0.1359)
## Gender (male)	-0.7258 ***	-0.8742 ***	-0.7250 ***	-0.8874 ***
##	(0.1140)	(0.1207)	(0.1147)	(0.1210)
## Age (by 10 years, centered at 45)	0.0489	-0.0130	0.0477	-0.0085
##	(0.0666)	(0.0714)	(0.0669)	(0.0714)
## University * Male	0.2813 *	0.3462 +	0.2816 *	0.3487 +
##	(0.1611)	(0.1637)	(0.1614)	(0.1639)
## University * Age	-0.0853	0.0391	-0.0859	0.0364
##	(0.0921)	(0.0960)	(0.0922)	(0.0960)
## University * Male * Age	0.0503	0.0929	0.0513	0.0975
##	(0.1151)	(0.1175)	(0.1152)	(0.1175)
## Male * Age	0.0636	-0.0830	0.0635	-0.0877
##	(0.0819)	(0.0858)	(0.0822)	(0.0858)
## % of Life Residing Locally (zip)	0.3062 *	0.7404	0.3071 *	0.7308
##	(0.3006)	(0.2970)	(0.3006)	(0.2970)
## DID residence (zip)			0.0424	0.0972
##			(0.1095)	(0.1101)
## Foreigner % sqrt. (zip)			-0.0746 *	-0.2302
##			(0.0987)	(0.0995)
## University % by 10% (zip)			0.0352	-0.0685
##			(0.0787)	(0.0786)
## DID proportion (mun.)	-0.0010 *	-0.3243	-0.0408 *	-0.4089
##	(0.1578)	(0.1581)	(0.1931)	(0.1962)
## Foreigner % sqrt. (mun.)	0.0326	0.0049	0.1024	0.2154
##	(0.0967)	(0.0971)	(0.1335)	(0.1347)
## University % by 10% (mun.)	-0.0199	0.0559	-0.0491	0.1286
##	(0.0799)	(0.0783)	(0.1070)	(0.1078)
##				
## AIC	9835.3615	9835.3615	9839.8440	9839.8440
## Log Likelihood	-4853.6807	-4853.6807	-4849.9220	-4849.9220
## Num. obs.	4614	4614	4614	4614
## K	3	3	3	3
## ====================================		·	·	·

```
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
          if (gender=="Male") sifcct$gender <- sifcct$female</pre>
          if (gender=="Female") sifcct$gender <- sifcct$male</pre>
          sifcct$ageset <- (sifcct$age - ageset)/10</pre>
          if (sub==1) {
                      # modset <- multinom(foreignsuff3x \sim edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                                                                                                                                                I(c10\_sreg\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_edu\_ugsP/10) \ + \ didper \ + \ sqrt(c10\_mun\_fper) \ + \ I(c10\_mun\_fper) \ + \ 
                      #
                                                                                                                                                as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                                     Hess = TRUE)
                     sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                                                                      shape = "wide", choice = "foreignsuff3x")
                     # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
                    modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                                                                                                                           I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                                                                                                                          as.factor(wave), data=sifcct.mlogit.tmp, reflevel = "Disagree")
                     subname = "Stayed"
          } else {
                      # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                                                                      data=sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                      #
                                                                                                                                     Hess = TRUE)
                    sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                                                                     shape = "wide", choice = "foreignsuff3x")
                     # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
                    modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                                                data=sifcct.mlogit.tmp, reflevel = "Disagree")
                     subname = "Moved"
          }
          # modres <- extract(modset)</pre>
           # res <- c(gender,ageset,modres@coef[grep("^Agree: edu2$",modres@coef.names)],</pre>
                                                                     modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[gree] edu2\$", mo
           #
                                                                     modres@coef[qrep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[qrep("^Agree")] + qnorm(0.975)*modres@se[qrep("^Agree")] + qnorm(0.975)*modres@se[qrep("Agree")] + qnorm(0.975)*modres@se[qree")] + qnorm(0.975)*modres@se[qree") + qnorm(0.975)*modr
           #
                                                                     modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep(") agree: edu2\$", modres@se
                                                                     modres@coef[qrep("^Aqree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\psi ", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\psi ", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\psi ", modres@se[qrep(") Aqree: edu2\psi ", modres@se[qrep(") Aqree:
                                                                     modres@se[grep("^Agree: edu2$",modres@coef.names)],
           #
           #
                                                                     modres@pvalues[grep("^Agree: edu2$", modres@coef.names)],
                                                                     subname)
          res <- c(gender,ageset,coef(modset)[3],
                                                           coefci(modset, vcov=sandwich, level = 0.95)[3,],
                                                           coefci(modset, vcov=sandwich, level = 0.90)[3,],
                                                           coeftest(modset, vcov=sandwich)[3,c(2,4)],
                                                           subname)
          names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
          return(res)
}
```

```
outdt1m <- rbind(extout("Female",25,1),</pre>
                  extout("Female", 35,1),
                  extout("Female", 45,1),
                  extout("Female", 55,1),
                  extout("Female",65,1),
                  extout("Male", 25, 1),
                  extout("Male", 35, 1),
                  extout("Male", 45,1),
                  extout("Male",55,1),
                  extout("Male",65,1))
outdt1m <- as.data.frame(outdt1m)</pre>
for(i in 2:9) outdt1m[,i] <- as.numeric(outdt1m[,i])</pre>
outdt1m$gender <- factor(outdt1m$gender, levels=unique(outdt1m$gender))
summary(outdt1m)
##
       gender
                     age
                                   est
                                                      lci95
                                                                          uci95
                                                                                             1ci90
##
    Female:5
                Min.
                       :25
                                     :-0.34500
                                                  Min.
                                                          :-0.8983
                                                                     Min.
                                                                             :0.09325
                                                                                         Min.
                                                                                                :-0.80930
                             Min.
                              1st Qu.:-0.15165
                                                                      1st Qu.:0.16988
##
    Male:5
                1st Qu.:35
                                                  1st Qu.:-0.4163
                                                                                         1st Qu.:-0.37055
##
                Median:45
                             Median : 0.01901
                                                  Median :-0.3005
                                                                     Median :0.28825
                                                                                         Median :-0.25544
```

М

1

Μ

3

M

Mean

Max.

:-0.28956

:-0.04197

3rd Qu.:-0.10170

```
##
              Mean
                     :45
                           Mean
                                  :-0.03232
                                              Mean
                                                    :-0.3389
                                                                Mean
                                                                      :0.27422
##
              3rd Qu.:55
                           3rd Qu.: 0.09984
                                              3rd Qu.:-0.1441
                                                                3rd Qu.:0.34705
##
                     :65
                           Max.
                                 : 0.17770
                                              Max.
                                                    :-0.0708
                                                                Max.
                                                                     :0.50878
##
         se
                                           ٦v
                           р
##
          :0.09145
                     Min.
                            :0.1944
                                      Length:10
  Min.
                                      Class : character
##
   1st Qu.:0.11947
                     1st Qu.:0.2223
## Median :0.14669
                     Median :0.2641
                                      Mode : character
## Mean
         :0.15636
                     Mean :0.4153
                     3rd Qu.:0.4962
## 3rd Qu.:0.17432
## Max.
           :0.28222
                     Max.
                           :0.9943
```

Mediator Models

Knowledge

```
s1mm01_10 <- lm(update(knowledge ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s1mm01_1A <- lm(update(knowledge ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s1mm01_1B <- lm(update(knowledge ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s1mm01_1C <- lm(update(knowledge ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s1mm01_10,s1mm01_1A,s1mm01_1B,s1mm01_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s1mm01_10,vcov.=vcovHC(s1mm01_10))[,2],
                             coeftest(s1mm01_1A,vcov.=vcovHC(s1mm01_1A))[,2],
                             coeftest(s1mm01_1B,vcov.=vcovHC(s1mm01_1B))[,2],
                             coeftest(s1mm01_1C,vcov.=vcovHC(s1mm01_1C))[,2]),
          override.pvalues = list(coeftest(s1mm01_10,vcov.=vcovHC(s1mm01_10))[,4],
                                  coeftest(s1mm01_1A,vcov.=vcovHC(s1mm01_1A))[,4],
                                  coeftest(s1mm01_1B,vcov.=vcovHC(s1mm01_1B))[,4],
                                  coeftest(s1mm01 1C,vcov.=vcovHC(s1mm01 1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
## University education
                                          0.1490 ***
                                                          0.1492 ***
                                                                         0.1494 ***
                                                                                         0.1494 ***
                                         (0.0164)
                                                         (0.0164)
                                                                        (0.0164)
                                                                                        (0.0164)
## Gender (male)
                                          0.1902 ***
                                                          0.1952 ***
                                                                         0.1947 ***
                                                                                         0.1960 ***
##
                                         (0.0140)
                                                         (0.0141)
                                                                        (0.0141)
                                                                                        (0.0141)
## Age (by 10 years, centered at 45)
                                          0.0498 ***
                                                          0.0477 ***
                                                                         0.0482 ***
                                                                                         0.0476 ***
                                         (0.0080)
                                                         (0.0081)
                                                                        (0.0081)
                                                                                        (0.0081)
## University * Male
                                         -0.0377 +
                                                         -0.0380 +
                                                                        -0.0383 *
                                                                                        -0.0383 +
##
                                         (0.0195)
                                                         (0.0195)
                                                                        (0.0195)
                                                                                        (0.0195)
## University * Age
                                         -0.0069
                                                         -0.0064
                                                                        -0.0062
                                                                                        -0.0062
                                         (0.0112)
                                                         (0.0112)
                                                                        (0.0113)
                                                                                        (0.0113)
## University * Male * Age
                                         -0.0071
                                                         -0.0080
                                                                        -0.0083
                                                                                        -0.0084
                                         (0.0137)
                                                         (0.0137)
                                                                        (0.0137)
                                                                                        (0.0137)
                                          0.0104
## Male * Age
                                                          0.0123
                                                                         0.0122
                                                                                         0.0127
##
                                         (0.0099)
                                                         (0.0099)
                                                                        (0.0099)
                                                                                        (0.0099)
## % of Life Residing Locally (zip)
                                         -0.0913 *
                                                         -0.0852 *
                                                                        -0.0842 *
                                                                                        -0.0833 *
##
                                         (0.0355)
                                                         (0.0355)
                                                                        (0.0355)
                                                                                        (0.0356)
## DID residence (zip)
                                                          0.0068
                                                                                        -0.0024
##
                                                         (0.0104)
                                                                                        (0.0129)
## Foreigner % sqrt. (zip)
                                                         -0.0036
                                                                                         0.0043
##
                                                         (0.0085)
                                                                                        (0.0117)
## University % by 10% (zip)
                                                         0.0155 *
                                                                                         0.0125
                                                         (0.0066)
##
                                                                                        (0.0090)
## DID proportion (mun.)
                                                                         0.0227
                                                                                         0.0248
##
                                                                        (0.0183)
                                                                                        (0.0226)
## Foreigner % sqrt. (mun.)
                                                                        -0.0149
                                                                                        -0.0187
                                                                        (0.0116)
                                                                                        (0.0154)
## University % by 10% (mun.)
                                                                         0.0147
                                                                                         0.0031
                                                                        (0.0091)
                                                                                        (0.0120)
## R^2
                                          0.1853
                                                          0.1869
                                                                         0.1871
                                                                                         0.1875
## Adj. R^2
                                          0.1803
                                                          0.1814
                                                                         0.1816
                                                                                         0.1814
## Num. obs.
                                                                      4614
                                                                                      4614
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Ideology

```
##
##
##
                                        Base
                                                       7.TP
                                                                      Municipality Full
##
                                          -0.0228 *
                                                          -0.0228 *
                                                                         -0.0227 *
                                                                                        -0.0226 *
## University education
##
                                           (0.0103)
                                                          (0.0104)
                                                                         (0.0103)
                                                                                        (0.0104)
## Gender (male)
                                           -0.0282 **
                                                          -0.0273 **
                                                                         -0.0277 **
                                                                                        -0.0281 **
##
                                           (0.0091)
                                                          (0.0093)
                                                                         (0.0092)
                                                                                        (0.0093)
## Age (by 10 years, centered at 45)
                                           -0.0039
                                                          -0.0042
                                                                         -0.0043
                                                                                        -0.0041
                                           (0.0049)
                                                          (0.0050)
                                                                         (0.0050)
                                                                                        (0.0050)
## University * Male
                                           0.0315 *
                                                          0.0314 *
                                                                          0.0313 *
                                                                                        0.0313 *
##
                                           (0.0134)
                                                          (0.0134)
                                                                         (0.0134)
                                                                                        (0.0134)
                                                          -0.0004
                                                                         -0.0004
                                                                                        -0.0005
## University * Age
                                           -0.0005
                                           (0.0073)
                                                          (0.0073)
                                                                         (0.0073)
                                                                                        (0.0073)
## University * Male * Age
                                           0.0069
                                                           0.0068
                                                                          0.0065
                                                                                        0.0067
                                           (0.0097)
                                                          (0.0097)
                                                                         (0.0097)
                                                                                        (0.0097)
## Male * Age
                                           -0.0039
                                                          -0.0036
                                                                         -0.0033
                                                                                        -0.0037
                                                          (0.0066)
                                           (0.0065)
                                                                         (0.0066)
                                                                                        (0.0066)
## % of Life Residing Locally (zip)
                                           0.0110
                                                           0.0118
                                                                         0.0148
                                                                                        0.0161
                                           (0.0252)
                                                          (0.0252)
                                                                         (0.0252)
                                                                                        (0.0252)
##
## DID residence (zip)
                                                          0.0046
                                                                                        0.0148
                                                          (0.0079)
                                                                                        (0.0093)
## Foreigner % sqrt. (zip)
                                                           0.0014
                                                                                         0.0098
                                                          (0.0058)
                                                                                        (0.0080)
## University % by 10% (zip)
                                                          0.0010
                                                                                        -0.0052
##
                                                          (0.0048)
                                                                                        (0.0067)
## DID proportion (mun.)
                                                                         -0.0184
                                                                                        -0.0343 *
##
                                                                         (0.0143)
                                                                                        (0.0168)
## Foreigner % sqrt. (mun.)
                                                                         -0.0088
                                                                                        -0.0180
                                                                         (0.0085)
                                                                                        (0.0113)
## University % by 10% (mun.)
                                                                          0.0131 +
                                                                                         0.0176 +
                                                                         (0.0068)
                                                                                        (0.0091)
## R^2
                                            0.0069
                                                           0.0071
                                                                          0.0078
                                                                                         0.0089
## Adj. R^2
                                            0.0008
                                                           0.0003
                                                                          0.0011
                                                                                         0.0015
## Num. obs.
                                        4614
                                                        4614
                                                                       4614
                                                                                      4614
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

LDP - DPJ FT

	Base	ZIP	Municipality	Full
University education	-0.0111	-0.0111	-0.0112	-0.0111
	(0.0086)	(0.0087)	(0.0087)	(0.0087)
Gender (male)	0.0150 *	0.0152 *	0.0146 *	0.0148
	(0.0072)	(0.0073)	(0.0073)	(0.0073)
Age (by 10 years, centered at 45)	-0.0003	-0.0004	-0.0002	-0.0003
	(0.0040)	(0.0041)	(0.0041)	(0.0041)
University * Male	0.0129	0.0129	0.0129	0.0129
	(0.0108)	(0.0108)	(0.0108)	(0.0108)
University * Age	-0.0009	-0.0009	-0.0009	-0.0009
	(0.0060)	(0.0060)	(0.0060)	(0.0060)
University * Male * Age	-0.0006	-0.0005	-0.0005	-0.0005
	(0.0077)	(0.0077)	(0.0077)	(0.0077)
Male * Age	-0.0138 **	-0.0139 **	-0.0140 **	-0.0140
	(0.0053)	(0.0053)	(0.0053)	(0.0053)
% of Life Residing Locally (zip)	0.0046	0.0045	0.0052	0.0063
	(0.0196)	(0.0196)	(0.0197)	(0.0196)
DID residence (zip)		0.0067		0.0064
		(0.0060)		(0.0074)
Foreigner % sqrt. (zip)		0.0033		0.0123
		(0.0045)		(0.0067)
University % by 10% (zip)		-0.0024		-0.0000
		(0.0037)		(0.0051)
DID proportion (mun.)			0.0080	0.0005
			(0.0108)	(0.0130)
Foreigner % sqrt. (mun.)			-0.0061	-0.0174
-			(0.0066)	(0.0092)
University % by 10% (mun.)			-0.0022	-0.0026
			(0.0055)	(0.0073)
R^2	0.0958	0.0962	0.0960	0.0971
Adj. R^2	0.0902	0.0901	0.0899	0.0904
Num. obs.	4614	4614	4614	4614

Favorability of South Korea

```
s1mm04_10 <- lm(update(familiarityFT_KOR ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm04_1A <- lm(update(familiarityFT_KOR ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm04_1B <- lm(update(familiarityFT_KOR ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm04_1C <- lm(update(familiarityFT_KOR ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s1mm04_10,s1mm04_1A,s1mm04_1B,s1mm04_1C), digits = 4, #single.row = T,</pre>
```

*# *#	Base	ZIP	Municipality	Full
## ## University education	0.0001	0.0003	0.0004	0.0003
‡#	(0.0137)	(0.0137)	(0.0137)	(0.0137)
## Gender (male)	-0.0485 ***	-0.0455 ***	-0.0457 ***	-0.0453 ***
##	(0.0117)	(0.0118)	(0.0118)	(0.0118)
## Age (by 10 years, centered at 45)	0.0089	0.0076	0.0078	0.0075
±#	(0.0071)	(0.0071)	(0.0071)	(0.0071)
## University * Male	0.0050	0.0047	0.0046	0.0046
##	(0.0164)	(0.0164)	(0.0164)	(0.0164)
## University * Age	-0.0124	-0.0119	-0.0119	-0.0119
##	(0.0099)	(0.0099)	(0.0099)	(0.0099)
## University * Male * Age	0.0072	0.0064	0.0063	0.0063
##	(0.0120)	(0.0120)	(0.0120)	(0.0120)
## Male * Age	0.0201 *	0.0216 *	0.0214 *	0.0217 *
##	(0.0086)	(0.0086)	(0.0086)	(0.0086)
## % of Life Residing Locally (zip)	0.0159	0.0184	0.0177	0.0170
# #	(0.0311)	(0.0310)	(0.0311)	(0.0311)
## DID residence (zip)		-0.0134		-0.0068
# #		(0.0089)		(0.0110)
## Foreigner % sqrt. (zip)		0.0014		-0.0114
# #		(0.0068)		(0.0092)
## University % by 10% (zip)		0.0129 *		0.0062
##		(0.0058)		(0.0080)
## DID proportion (mun.)			-0.0285 +	-0.0207
# #			(0.0158)	(0.0194)
## Foreigner % sqrt. (mun.)			0.0138	0.0244 +
##			(0.0097)	(0.0130)
## University % by 10% (mun.)			0.0180 *	0.0127
## 			(0.0081)	(0.0109)
## ## R^2	0.0724	0.0736	0.0742	0.0747
## Adj. R^2	0.0668	0.0673	0.0679	0.0678
## Num. obs.	4614	4614	4614	4614

Favorability of China

```
s1mm05_10 <- lm(update(familiarityFT_CHN ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm05_1A <- lm(update(familiarityFT_CHN ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm05_1B <- lm(update(familiarityFT_CHN ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm05_1C <- lm(update(familiarityFT_CHN ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s1mm05_10,s1mm05_1A,s1mm05_1B,s1mm05_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s1mm05_10,vcov.=vcovHC(s1mm05_10))[,2],
                             coeftest(s1mm05_1A,vcov.=vcovHC(s1mm05_1A))[,2],
                             coeftest(s1mm05_1B,vcov.=vcovHC(s1mm05_1B))[,2],
                             coeftest(s1mm05_1C,vcov.=vcovHC(s1mm05_1C))[,2]),
         override.pvalues = list(coeftest(s1mm05_10,vcov.=vcovHC(s1mm05_10))[,4],
                                  coeftest(s1mm05_1A,vcov.=vcovHC(s1mm05_1A))[,4],
                                  coeftest(s1mm05_1B,vcov.=vcovHC(s1mm05_1B))[,4],
                                  coeftest(s1mm05_1C,vcov.=vcovHC(s1mm05_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

	Base	ZIP	Municipality	Full
<pre># # University education</pre>	0.0006	0.0006	0.0006	0.0006
	(0.0114)	(0.0114)	(0.0114)	(0.0114)
Gender (male)	-0.0076	-0.0081	-0.0086	-0.0088
	(0.0099)	(0.0100)	(0.0100)	(0.0100)
Age (by 10 years, centered at 45)	-0.0141 *	-0.0140 *	-0.0139 *	-0.0139
	(0.0062)	(0.0062)	(0.0062)	(0.0062)
University * Male	0.0028	0.0028	0.0028	0.0028
	(0.0138)	(0.0138)	(0.0138)	(0.0138)
University * Age	0.0057	0.0058	0.0057	0.0056
	(0.0084)	(0.0084)	(0.0084)	(0.0084)
University * Male * Age	-0.0147	-0.0148	-0.0147	-0.0146
	(0.0103)	(0.0103)	(0.0103)	(0.0103)
Male * Age	0.0170 *	0.0171 *	0.0169 *	0.0169
	(0.0074)	(0.0075)	(0.0075)	(0.0075)
% of Life Residing Locally (zip)	-0.0016	-0.0020	-0.0010	-0.0013
	(0.0259)	(0.0260)	(0.0260)	(0.0260)
DID residence (zip)		-0.0102		0.0009
		(0.0076)		(0.0091)
Foreigner % sqrt. (zip)		-0.0023		-0.0055
		(0.0061)		(0.0084)
University % by 10% (zip)		0.0023		-0.0007
		(0.0049)		(0.0067)
DID proportion (mun.)			-0.0334 *	-0.0340
			(0.0135)	(0.0162)
Foreigner % sqrt. (mun.)			0.0021	0.0071
			(0.0082)	(0.0111)
University % by 10% (mun.)			0.0089	0.0098
			(0.0069)	(0.0091)
R^2	0.0326	0.0330	0.0339	0.0340
Adj. R^2	0.0266	0.0265	0.0273	0.0268

Favorability of USA

```
s1mm06_10 <- lm(update(familiarityFT_USA ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm06_1A <- lm(update(familiarityFT_USA ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm06_1B <- lm(update(familiarityFT_USA ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s1mm06_1C <- lm(update(familiarityFT_USA ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s1mm06_10,s1mm06_1A,s1mm06_1B,s1mm06_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s1mm06_10,vcov.=vcovHC(s1mm06_10))[,2],
                             coeftest(s1mm06_1A,vcov.=vcovHC(s1mm06_1A))[,2],
                             coeftest(s1mm06_1B,vcov.=vcovHC(s1mm06_1B))[,2],
                             coeftest(s1mm06_1C,vcov.=vcovHC(s1mm06_1C))[,2]),
          override.pvalues = list(coeftest(s1mm06_10,vcov.=vcovHC(s1mm06_10))[,4],
                                  coeftest(s1mm06_1A,vcov.=vcovHC(s1mm06_1A))[,4],
                                  coeftest(s1mm06_1B,vcov.=vcovHC(s1mm06_1B))[,4],
                                  coeftest(s1mm06_1C,vcov.=vcovHC(s1mm06_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

# =====================================				
 #	Base	ZIP	Municipality	Full
# # University education	-0.0133	-0.0132	-0.0129	-0.0129
#	(0.0116)	(0.0116)	(0.0116)	(0.0116)
# Gender (male)	0.0261 **	0.0295 **	0.0309 **	0.0307 **
#	(0.0100)	(0.0101)	(0.0101)	(0.0101)
# Age (by 10 years, centered at 45)	0.0051	0.0038	0.0034	0.0035
#	(0.0060)	(0.0061)	(0.0061)	(0.0061)
# University * Male	0.0227	0.0225	0.0221	0.0222
#	(0.0142)	(0.0142)	(0.0142)	(0.0142)
# University * Age	-0.0121	-0.0118	-0.0114	-0.0114
#	(0.0084)	(0.0084)	(0.0084)	(0.0084)
# University * Male * Age	0.0136	0.0130	0.0124	0.0124
#	(0.0104)	(0.0104)	(0.0104)	(0.0104)
# Male * Age	0.0053	0.0066	0.0073	0.0072
<u> </u>	(0.0074)	(0.0074)	(0.0074)	(0.0074)
# % of Life Residing Locally (zip)	-0.0114	-0.0076	-0.0064	-0.0069
#	(0.0267)	(0.0268)	(0.0269)	(0.0269)
# DID residence (zip)		0.0040		-0.0003
#		(0.0080)		(0.0097)
# Foreigner % sqrt. (zip)		-0.0016		-0.0070
#		(0.0064)		(0.0088)
# University % by 10% (zip)		0.0100 +		-0.0013
#		(0.0052)		(0.0070)
# DID proportion (mun.)			0.0079	0.0088
#			(0.0146)	(0.0175)
# Foreigner % sqrt. (mun.)			-0.0007	0.0057
#			(0.0088)	(0.0117)
# University % by 10% (mun.)			0.0165 *	0.0180 +

```
##
                                          (0.0072)
                                                  (0.0094)
                                                   0.0257
## R^2
                         0.0228
                                  0.0242
                                           0.0255
## Adj. R^2
                         0.0168
                                 0.0176
                                          0.0189
                                                   0.0185
## Num. obs.
                       4614
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Income

```
s1mm07_10 <- lm(update(income ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s1mm07_1A <- lm(update(income ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s1mm07_1B <- lm(update(income ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s1mm07_1C <- lm(update(income ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s1mm07_10,s1mm07_1A,s1mm07_1B,s1mm07_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s1mm07_10,vcov.=vcovHC(s1mm07_10))[,2],
                             coeftest(s1mm07_1A,vcov.=vcovHC(s1mm07_1A))[,2],
                             coeftest(s1mm07_1B,vcov.=vcovHC(s1mm07_1B))[,2],
                             coeftest(s1mm07_1C,vcov.=vcovHC(s1mm07_1C))[,2]),
          override.pvalues = list(coeftest(s1mm07_10,vcov.=vcovHC(s1mm07_10))[,4],
                                  coeftest(s1mm07_1A,vcov.=vcovHC(s1mm07_1A))[,4],
                                  coeftest(s1mm07 1B,vcov.=vcovHC(s1mm07 1B))[,4],
                                  coeftest(s1mm07_1C,vcov.=vcovHC(s1mm07_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

## ## =================================				
## ##	Base	ZIP	Municipality	Full
## University education	0.1168 ***	0.1175 ***	0.1178 ***	0.1176 ***
##	(0.0152)	(0.0150)	(0.0151)	(0.0150)
## Gender (male)	-0.0063	0.0051	0.0040	0.0060
##	(0.0127)	(0.0127)	(0.0128)	(0.0128)
## Age (by 10 years, centered at 45)	0.0267 ***	0.0222 **	0.0231 **	0.0221 **
##	(0.0077)	(0.0077)	(0.0077)	(0.0078)
## University * Male	-0.0205	-0.0214	-0.0216	-0.0215
##	(0.0184)	(0.0182)	(0.0183)	(0.0182)
## University * Age	-0.0169	-0.0154	-0.0153	-0.0152
##	(0.0111)	(0.0110)	(0.0110)	(0.0110)
## University * Male * Age	0.0252 +	0.0227 +	0.0226 +	0.0225 +
##	(0.0136)	(0.0135)	(0.0135)	(0.0135)
## Male * Age	-0.0285 **	-0.0241 *	-0.0245 **	-0.0238 *
##	(0.0094)	(0.0094)	(0.0094)	(0.0094)
## % of Life Residing Locally (zip)	-0.0533	-0.0444	-0.0485	-0.0476
##	(0.0339)	(0.0337)	(0.0339)	(0.0338)
## DID residence (zip)		-0.0079		-0.0041
##		(0.0099)		(0.0121)
## Foreigner % sqrt. (zip)		0.0150 +		-0.0063
##		(0.0079)		(0.0102)
## University % by 10% (zip)		0.0324 ***		0.0227 *
##		(0.0063)		(0.0090)
## DID proportion (mun.)			-0.0168	-0.0122

```
(0.0175)
                                                               (0.0214)
## Foreigner % sqrt. (mun.)
                                                               0.0402 **
                                                    0.0341 **
                                                    (0.0109)
                                                               (0.0141)
## University % by 10% (mun.)
                                                    0.0357 ***
                                                               0.0151
                                                    (0.0088)
                                                               (0.0122)
## ----
                              0.0467
                                        0.0546
                                                   0.0552
                                                               0.0567
                                        0.0482
                                                   0.0488
## Adj. R^2
                              0.0409
                                                               0.0497
## Num. obs.
                            4614
                                       4614
                                                  4614
                                                             4614
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

With Matched Data (Lambda = 50 km)

```
sifcct <- readRDS(datadir2)
sifcct$agex <- sifcct$age/10 - 4.5
sifcct$ldpdpjft <- original$ldpdpjft[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave
summary(sifcct$ldpdpjft)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.5000 0.5000 0.5727 0.7000 1.0000
sifcct$income <- original$income[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave))]
summary(sifcct$income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04098 0.18484 0.40915 0.49906 0.78565 0.97505</pre>
```

Outcome Model

```
## Living in Local ZIP since at least age 15 ##
s2mo_10 <- lm(update(foreignsuff ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mo_1A <- lm(update(foreignsuff ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mo_1B <- lm(update(foreignsuff ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mo_1C <- lm(update(foreignsuff ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s2mo_10,s2mo_1A,s2mo_1B,s2mo_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s2mo_10,vcov.=vcovHC(s2mo_10))[,2],
                             coeftest(s2mo_1A,vcov.=vcovHC(s2mo_1A))[,2],
                              coeftest(s2mo_1B,vcov.=vcovHC(s2mo_1B))[,2],
                             coeftest(s2mo_1C,vcov.=vcovHC(s2mo_1C))[,2]),
          override.pvalues = list(coeftest(s2mo_10,vcov.=vcovHC(s2mo_10))[,4],
                                   coeftest(s2mo_1A,vcov.=vcovHC(s2mo_1A))[,4],
                                   coeftest(s2mo 1B,vcov.=vcovHC(s2mo 1B))[,4],
                                   coeftest(s2mo_1C,vcov.=vcovHC(s2mo_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
                                        (0.0262)
                                                       (0.0262)
                                                                       (0.0262)
                                                                                      (0.0263)
## Gender (male)
                                        -0.0791 ***
                                                       -0.0798 ***
                                                                       -0.0786 ***
                                                                                      -0.0794 ***
                                        (0.0223)
                                                                       (0.0224)
##
                                                       (0.0224)
                                                                                      (0.0225)
## Age (by 10 years, centered at 45)
                                                       -0.0182
                                                                                      -0.0182
                                        -0.0182
                                                                       -0.0183
                                        (0.0133)
                                                       (0.0133)
                                                                       (0.0133)
                                                                                      (0.0133)
## University * Male
                                        -0.0003
                                                       -0.0004
                                                                       -0.0004
                                                                                      -0.0006
                                        (0.0325)
                                                       (0.0325)
                                                                       (0.0325)
                                                                                      (0.0326)
## University * Age
                                        0.0020
                                                        0.0021
                                                                       0.0020
                                                                                      0.0022
##
                                        (0.0189)
                                                       (0.0190)
                                                                       (0.0190)
                                                                                      (0.0190)
## University * Male * Age
                                        -0.0063
                                                       -0.0063
                                                                       -0.0064
                                                                                      -0.0063
                                        (0.0237)
                                                       (0.0237)
                                                                       (0.0237)
                                                                                      (0.0238)
## Male * Age
                                         0.0276 +
                                                        0.0275 +
                                                                        0.0278 +
                                                                                       0.0275 +
                                        (0.0165)
                                                        (0.0165)
                                                                       (0.0165)
                                                                                      (0.0165)
##
## % of Life Residing Locally (zip)
                                         0.1409 *
                                                        0.1409 *
                                                                        0.1422 *
                                                                                       0.1402 *
                                        (0.0565)
                                                                       (0.0569)
                                                       (0.0569)
                                                                                      (0.0571)
## DID residence (zip)
                                                       -0.0043
                                                                                      -0.0063
##
                                                       (0.0220)
                                                                                      (0.0290)
## Foreigner % sqrt. (zip)
                                                       -0.0075
                                                                                      -0.0156
                                                       (0.0121)
                                                                                      (0.0176)
## University % by 10% (zip)
                                                        0.0003
                                                                                      -0.0065
                                                       (0.0096)
                                                                                      (0.0142)
## DID proportion (mun.)
                                                                       -0.0046
                                                                                      0.0020
                                                                                      (0.0459)
##
                                                                       (0.0349)
## Foreigner % sqrt. (mun.)
                                                                        0.0007
                                                                                      0.0149
                                                                       (0.0165)
                                                                                      (0.0230)
## University % by 10% (mun.)
                                                                        0.0049
                                                                                       0.0115
                                                                       (0.0130)
                                                                                      (0.0190)
## R^2
                                                        0.0273
                                                                                       0.0277
                                         0.0270
                                                                        0.0271
## Adj. R^2
                                         0.0140
                                                        0.0129
                                                                      0.0127
                                                                                       0.0119
## Num. obs.
                                      2122
                                                     2122
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
  if (gender=="Male") sifcct$gender <- sifcct$female</pre>
  if (gender=="Female") sifcct$gender <- sifcct$male</pre>
  sifcct$ageset <- (sifcct$age - ageset)/10</pre>
  if (sub==1) {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper) +</pre>
                   I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                   as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
   subname = "Stayed"
  } else {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                 data=sifcct[which(sifcct$age - sifcct$lvlen>=23),])
    subname = "Moved"
  }
  res <- c(gender,ageset,coef(modset)[2],</pre>
           coefci(modset, vcov.=vcovHC(modset), level = 0.95)[2,],
```

```
coefci(modset, vcov.=vcovHC(modset), level = 0.90)[2,],
            coeftest(modset, vcov.=vcovHC(modset))[2,c(2,4)],
            subname)
  names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
  return(res)
}
outdt2 <- rbind(extout("Female",25),</pre>
                 extout("Female",35),
                 extout("Female",45),
                 extout("Female",55),
                 extout("Female",65),
                 extout("Male",25),
                 extout("Male",35),
                 extout("Male",45),
                 extout("Male",55),
                 extout("Male",65))
outdt2 <- as.data.frame(outdt2)</pre>
for(i in 2:9) outdt2[,i] <- as.numeric(outdt2[,i])</pre>
outdt2$gender <- factor(outdt2$gender, levels=unique(outdt2$gender))</pre>
summary(outdt2)
```

```
##
      gender
                                                   lci95
                                                                     uci95
                                                                                       lci90
                   age
##
   Female:5
                                 :-8.498e-03
                                                      :-0.10424
                                                                        :0.03723
                                                                                          :-0.08671
              Min.
                     :25
                          Min.
                                               Min.
                                                                 Min.
                                                                                   Min.
##
   Male :5
              1st Qu.:35
                          1st Qu.:-3.556e-03
                                               1st Qu.:-0.07350
                                                                 1st Qu.:0.04632
                                                                                   1st Qu.:-0.06154
              Median:45
                          Median :-1.075e-06
                                               Median :-0.05546
                                                                 Median :0.05624
                                                                                   Median :-0.04625
##
##
              Mean
                    :45
                          Mean
                                 :-1.075e-06
                                               Mean
                                                      :-0.06187
                                                                 Mean
                                                                       :0.06187
                                                                                   Mean
                                                                                          :-0.05192
##
              3rd Qu.:55
                           3rd Qu.: 3.476e-03
                                               3rd Qu.:-0.04954
                                                                 3rd Qu.:0.07164
                                                                                   3rd Qu.:-0.04179
                   :65
##
                          Max. : 7.903e-03
                                               Max.
                                                      :-0.03782
                                                                 Max. :0.11363
                                                                                   Max.
                                                                                         :-0.03178
              Max.
       uci90
##
                                                           lv
                           se
                                            p
  Min.
          :0.03119 Min.
                            :0.01913
                                            :0.8096
                                                      Length:10
                                      Min.
  1st Qu.:0.03879
                    1st Qu.:0.02411
                                      1st Qu.:0.8607
                                                       Class :character
## Median :0.04653 Median :0.03010
                                     Median :0.9188
                                                       Mode :character
          :0.05192
                                             :0.9056
## Mean
                     Mean
                            :0.03155
                                      Mean
## 3rd Qu.:0.06091
                     3rd Qu.:0.03505
                                      3rd Qu.:0.9460
          :0.09611
                     Max. :0.05555
## Max.
                                      Max.
                                            :0.9910
```

Outcome Model 2

```
s2mo2_1A <- mlogit(outmodA.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s2mo2_1B <- mlogit(outmodB.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
s2mo2_1C <- mlogit(outmodC.mlogit, data=sifcct.mlogit, reflevel="Disagree")</pre>
screenreg(list(s2mo2_10,s2mo2_1A), digits = 4, #single.row = T,
          override.se = list(coeftest(s2mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s2mo2_10))),2]
                             coeftest(s2mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s2mo2_10))),2],
                             coeftest(s2mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s2mo2_1A))),2]
                             coeftest(s2mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s2mo2_1A))),2]),
          override.pvalues = list(coeftest(s2mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s2mo2_10)
                                   coeftest(s2mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s2mo2_10)))
                                   coeftest(s2mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s2mo2_1A)
                                   coeftest(s2mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s2mo2_1A)))
          beside = T,
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.model.names = c("Base: Agree", "Base: Neither",
                                  "ZIP: Agree", "ZIP: Neither"),
          custom.coef.map = vnmap)
```

!# !#	Base: Agree	Base: Neither	ZIP: Agree	ZIP: Neither
## ## University education	0.0989	-0.1999	0.0993	-0.1995
##	(0.1916)	(0.1946)	(0.1917)	(0.1948)
## Gender (male)	-0.4693 ***	-0.6083 **	-0.4778 ***	-0.6287 **
# #	(0.1653)	(0.1712)	(0.1663)	(0.1718)
## Age (by 10 years, centered at 45)	-0.0959 *	-0.1872	-0.0942 +	-0.1827
##	(0.0946)	(0.1021)	(0.0949)	(0.1021)
## University * Male	-0.0509	0.2147	-0.0511	0.2155
##	(0.2352)	(0.2389)	(0.2353)	(0.2391)
## University * Age	0.0046	0.1977	0.0047	0.1970
##	(0.1350)	(0.1383)	(0.1352)	(0.1384)
## University * Male * Age	-0.0861	-0.0618	-0.0852	-0.0591
##	(0.1713)	(0.1716)	(0.1715)	(0.1717)
## Male * Age	0.2291	0.0407 +	0.2270	0.0350 +
##	(0.1202)	(0.1243)	(0.1206)	(0.1242)
## % of Life Residing Locally (zip)	1.0474	0.5444 *	1.0344	0.5287 *
##	(0.4092)	(0.4271)	(0.4117)	(0.4291)
## DID residence (zip)			-0.0402	0.0510
##			(0.1581)	(0.1557)
## Foreigner % sqrt. (zip)			-0.0439	-0.1049
##			(0.0842)	(0.0884)
## University % by 10% (zip)			-0.0137	-0.0595
## 			(0.0688)	(0.0691)
## ## AIC	4568.6683	4568.6683	4578.3252	4578.3252
## Log Likelihood	-2226.3341	-2226.3341	-2225.1626	-2225.1626
## Num. obs.	2122	2122	2122	2122
## K	3	3	3	3

##

: :	Mun.: Agree	Mun.: Neither	Full: Agree	Full: Neither
University education	0.0989	-0.2012	0.1005	-0.2006
	(0.1912)	(0.1946)	(0.1914)	(0.1948)
Gender (male)	-0.4690 ***	-0.6181 **	-0.4764 ***	-0.6312 **
	(0.1659)	(0.1715)	(0.1665)	(0.1722)
Age (by 10 years, centered at 45)	-0.0964 +	-0.1854	-0.0939 +	-0.1823
	(0.0946)	(0.1020)	(0.0950)	(0.1019)
University * Male	-0.0511	0.2174	-0.0535	0.2164
	(0.2350)	(0.2389)	(0.2352)	(0.2392)
University * Age	0.0044	0.1946	0.0049	0.1930
	(0.1347)	(0.1384)	(0.1348)	(0.1384)
University * Male * Age	-0.0855	-0.0612	-0.0839	-0.0574
	(0.1711)	(0.1718)	(0.1713)	(0.1719)
Male * Age	0.2299	0.0377 +	0.2276	0.0288 +
	(0.1203)	(0.1242)	(0.1209)	(0.1240)
% of Life Residing Locally (zip)	1.0590	0.5055 *	1.0391	0.4956 *
	(0.4108)	(0.4294)	(0.4122)	(0.4299)
DID residence (zip)			-0.0876	0.2819
- -			(0.2066)	(0.2009)
Foreigner % sqrt. (zip)			-0.0696 +	-0.2240
			(0.1177)	(0.1230)
University % by 10% (zip)			-0.0585	-0.1120
			(0.1000)	(0.1006)
DID proportion (mun.)	0.0156	-0.3117	0.1036 +	-0.5992
	(0.2568)	(0.2602)	(0.3337)	(0.3368)
Foreigner % sqrt. (mun.)	-0.0246	0.0533	0.0383	0.2607
	(0.1207)	(0.1208)	(0.1636)	(0.1673)
University % by 10% (mun.)	0.0147	0.0054	0.0717	0.1201
	(0.0947)	(0.0922)	(0.1363)	(0.1331)
AIC	 4578.2752	4578.2752	4583.8452	4583.8452
Log Likelihood	-2225.1376	-2225.1376	-2221.9226	-2221.9226
Num. obs.	2122	2122	2122	2122
K	3	3	3	3

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1

```
extout <- function(gender,ageset,sub=1) {</pre>
         if (gender=="Male") sifcct$gender <- sifcct$female</pre>
         if (gender=="Female") sifcct$gender <- sifcct$male</pre>
         sifcct$ageset <- (sifcct$age - ageset)/10</pre>
         if (sub==1) {
                  # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                                                                                                                         I(c10\_sreg\_edu\_ugsP/10) + didper + sqrt(c10\_mun\_fper) + I(c10\_mun\_edu\_ugsP/1)
                  #
                                                                                                                        as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                               Hess = TRUE)
                  sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                                           shape = "wide", choice = "foreignsuff3x")
                  # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
                 modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                                                                                                       I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                                                                                                       as.factor(wave), data=sifcct.mlogit.tmp, reflevel = "Disagree")
                  subname = "Stayed"
         } else {
                  # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lupr + as.factor(wave),</pre>
                                                                                                                data=sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                               Hess = TRUE)
                  sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                                          shape = "wide", choice = "foreignsuff3x")
                  # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
                 modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                              data=sifcct.mlogit.tmp, reflevel = "Disagree")
                  subname = "Moved"
         # modres <- extract(modset)</pre>
         # res <- c(gender,ageset,modres@coef[grep("^Agree: edu2$",modres@coef.names)],</pre>
                                                         modres@coef[qrep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.975)*modres@se[qrep("^Agree")] - qnorm(0.975)*modres@se[qrep("^Agree")] - qnorm(0.975)*modres@se[qrep("Agree")] - qnorm(0.975)*modres@se[qree")] - qnorm(0.975)*modres@se[qree") - qnorm(0.975)*modres@se[qree") - qnorm(0.9
         #
                                                         modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[gree] edu2\$", mo
                                                         modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[grep(", edu2\$", modres@se[grep(", edu2\$", modres@se[grep(", edu2\$", edu2\$", modres@se[grep(", edu2\$", edu2\$", modres@se[grep(", edu2\$", edu2\$", edu2\$", edu2\$", edu2\$", edu2\$", edu2\$", edu2*, edu2
                                                         modres@coef[qrep("^Aqree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\$", modres@se[qrep("^Aqree: edu2\$", edu2\$
         #
                                                         modres@se[grep("^Agree: edu2$",modres@coef.names)],
                                                         modres@pvalues[grep("^Agree: edu2$", modres@coef.names)],
                                                          subname)
         res <- c(gender,ageset,coef(modset)[3],
                                                  coefci(modset, vcov=sandwich, level = 0.95)[3,],
                                                  coefci(modset, vcov=sandwich, level = 0.90)[3,],
                                                 coeftest(modset, vcov=sandwich)[3,c(2,4)],
                                                 subname)
         names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
        return(res)
}
outdt2m <- rbind(extout("Female", 25,1),</pre>
```

```
extout("Female",35,1),
                  extout("Female", 45,1),
                 extout("Female",55,1),
                 extout("Female",65,1),
                 extout("Male", 25, 1),
                 extout("Male", 35, 1),
                 extout("Male", 45,1),
                 extout("Male",55,1),
                 extout("Male",65,1))
outdt2m <- as.data.frame(outdt2m)</pre>
for(i in 2:9) outdt2m[,i] <- as.numeric(outdt2m[,i])</pre>
outdt2m$gender <- factor(outdt2m$gender, levels=unique(outdt2m$gender))
summary(outdt2m)
                                                                                          1ci90
##
                                                     lci95
                                                                        uci95
       gender
                    age
                                  est
##
    Female:5
               Min.
                       :25
                             Min.
                                    :-0.11109
                                                 Min.
                                                        :-0.6837
                                                                    Min.
                                                                           :0.2952
                                                                                      Min.
                                                                                             :-0.5560
                                                                                                        Min
##
    Male:5
               1st Qu.:35
                             1st Qu.: 0.05790
                                                 1st Qu.:-0.4441
                                                                    1st Qu.:0.3826
                                                                                      1st Qu.:-0.3563
                                                                                                         1st
                             Median: 0.09806
                                                                    Median :0.4767
                                                                                      Median :-0.2634
##
               Median:45
                                                 Median :-0.3251
                                                                                                        Med
                       :45
                                                                                      Mean
                                                                                                        Mea
##
                                   : 0.07372
                                                       :-0.3763
                                                                                             :-0.3039
               Mean
                             Mean
                                                 Mean
                                                                    Mean
                                                                           :0.5237
##
               3rd Qu.:55
                             3rd Qu.: 0.10899
                                                 3rd Qu.:-0.2636
                                                                    3rd Qu.:0.6475
                                                                                      3rd Qu.:-0.2034
                                                                                                         3rd
##
               Max.
                      :65
                             Max. : 0.20497
                                                 Max.
                                                       :-0.2189
                                                                    Max.
                                                                           :0.9041
                                                                                      Max.
                                                                                             :-0.1634
                                                                                                        Max
##
                                             lv
          se
                            p
                             :0.4177
                                       Length:10
##
   Min.
           :0.1374
                     Min.
   1st Qu.:0.1769
                     1st Qu.:0.5982
                                       Class : character
                     Median :0.6784
                                       Mode :character
## Median :0.2176
## Mean
          :0.2295
                     Mean
                             :0.6538
## 3rd Qu.:0.2548
                     3rd Qu.:0.7301
```

Mediator Models

:0.4048

Max.

:0.8476

Knowledge

Max.

##

```
s2mm01_10 <- lm(update(knowledge ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm01_1A <- lm(update(knowledge ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm01_1B <- lm(update(knowledge ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm01_1C <- lm(update(knowledge ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s2mm01_10,s2mm01_1A,s2mm01_1B,s2mm01_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s2mm01_10,vcov.=vcovHC(s2mm01_10))[,2],
                              coeftest(s2mm01_1A,vcov.=vcovHC(s2mm01_1A))[,2],
                              coeftest(s2mm01_1B,vcov.=vcovHC(s2mm01_1B))[,2],
                              coeftest(s2mm01_1C,vcov.=vcovHC(s2mm01_1C))[,2]),
          override.pvalues = list(coeftest(s2mm01_10,vcov.=vcovHC(s2mm01_10))[,4],
                                   coeftest(s2mm01_1A,vcov.=vcovHC(s2mm01_1A))[,4],
                                   coeftest(s2mm01_1B,vcov.=vcovHC(s2mm01_1B))[,4],
                                   coeftest(s2mm01_1C,vcov.=vcovHC(s2mm01_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1, 0.05, 0.01, 0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
## University education
                                          0.1730 ***
                                                          0.1735 ***
                                                                         0.1733 ***
                                                                                         0.1736 ***
                                                                         (0.0241)
                                                                                        (0.0241)
##
                                         (0.0241)
                                                         (0.0241)
## Gender (male)
                                          0.2073 ***
                                                          0.2138 ***
                                                                         0.2104 ***
                                                                                         0.2143 ***
##
                                         (0.0209)
                                                         (0.0210)
                                                                         (0.0210)
                                                                                        (0.0211)
## Age (by 10 years, centered at 45)
                                          0.0504 ***
                                                          0.0478 ***
                                                                         0.0494 ***
                                                                                         0.0477 ***
                                                                         (0.0121)
                                         (0.0121)
                                                         (0.0121)
                                                                                        (0.0121)
##
## University * Male
                                         -0.0619 *
                                                         -0.0628 *
                                                                        -0.0627 *
                                                                                        -0.0630 *
##
                                         (0.0288)
                                                         (0.0288)
                                                                         (0.0288)
                                                                                        (0.0288)
## University * Age
                                         -0.0185
                                                         -0.0173
                                                                        -0.0179
                                                                                        -0.0170
##
                                         (0.0168)
                                                         (0.0168)
                                                                         (0.0168)
                                                                                        (0.0168)
## University * Male * Age
                                         -0.0188
                                                         -0.0196
                                                                         -0.0194
                                                                                        -0.0196
##
                                         (0.0207)
                                                         (0.0206)
                                                                         (0.0207)
                                                                                        (0.0207)
## Male * Age
                                          0.0220
                                                          0.0243
                                                                         0.0232
                                                                                         0.0247 +
##
                                         (0.0150)
                                                         (0.0150)
                                                                         (0.0150)
                                                                                        (0.0150)
## % of Life Residing Locally (zip)
                                         -0.1456 **
                                                         -0.1290 *
                                                                        -0.1322 **
                                                                                        -0.1277 *
                                         (0.0508)
                                                         (0.0504)
                                                                         (0.0505)
                                                                                        (0.0503)
## DID residence (zip)
                                                         -0.0104
                                                                                        -0.0265
                                                         (0.0177)
                                                                                        (0.0233)
## Foreigner % sqrt. (zip)
                                                         -0.0127
                                                                                        -0.0121
                                                         (0.0101)
                                                                                        (0.0133)
## University % by 10% (zip)
                                                          0.0320 ***
                                                                                         0.0319 **
                                                         (0.0083)
                                                                                        (0.0120)
## DID proportion (mun.)
                                                                                         0.0412
                                                                         0.0096
##
                                                                         (0.0291)
                                                                                        (0.0381)
## Foreigner % sqrt. (mun.)
                                                                        -0.0144
                                                                                        -0.0036
                                                                         (0.0142)
                                                                                        (0.0186)
## University % by 10% (mun.)
                                                                         0.0282 **
                                                                                        -0.0022
##
                                                                         (0.0105)
                                                                                        (0.0150)
## --
## R^2
                                          0.1963
                                                          0.2033
                                                                         0.2002
                                                                                         0.2038
## Adj. R^2
                                          0.1856
                                                          0.1915
                                                                         0.1884
                                                                                         0.1908
## Num. obs.
                                       2122
                                                       2122
                                                                      2122
                                                                                      2122
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Ideology

```
s2mm02_10 <- lm(update(ideology ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm02 1A <- lm(update(ideology ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm02_1B <- lm(update(ideology ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm02_1C <- lm(update(ideology ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s2mm02_10,s2mm02_1A,s2mm02_1B,s2mm02_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s2mm02 10,vcov.=vcovHC(s2mm02 10))[,2],
                              coeftest(s2mm02 1A,vcov.=vcovHC(s2mm02 1A))[,2],
                              coeftest(s2mm02 1B,vcov.=vcovHC(s2mm02 1B))[,2],
                              coeftest(s2mm02 1C,vcov.=vcovHC(s2mm02 1C))[,2]),
          override.pvalues = list(coeftest(s2mm02_10,vcov.=vcovHC(s2mm02_10))[,4],
                                   coeftest(s2mm02_1A,vcov.=vcovHC(s2mm02_1A))[,4],
                                   coeftest(s2mm02_1B,vcov.=vcovHC(s2mm02_1B))[,4],
                                   coeftest(s2mm02_1C,vcov.=vcovHC(s2mm02_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1, 0.05, 0.01, 0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

```
##
Base
                                                             Municipality Full
##
  University education
                                     -0.0237
                                                  -0.0237
                                                               -0.0237
                                                                            -0.0238
                                                  (0.0157)
                                                               (0.0156)
                                                                            (0.0156)
##
                                     (0.0157)
## Gender (male)
                                     -0.0396 **
                                                  -0.0396 **
                                                               -0.0415 **
                                                                            -0.0420 **
                                                                            (0.0136)
##
                                     (0.0135)
                                                  (0.0136)
                                                               (0.0135)
## Age (by 10 years, centered at 45)
                                     -0.0030
                                                  -0.0032
                                                               -0.0029
                                                                            -0.0025
##
                                     (0.0073)
                                                  (0.0073)
                                                               (0.0072)
                                                                            (0.0072)
##
  University * Male
                                      0.0271
                                                   0.0270
                                                                0.0271
                                                                             0.0272
##
                                     (0.0202)
                                                  (0.0202)
                                                               (0.0201)
                                                                            (0.0201)
## University * Age
                                                  -0.0099
                                                               -0.0102
                                     -0.0101
                                                                            -0.0105
##
                                     (0.0111)
                                                  (0.0111)
                                                               (0.0110)
                                                                            (0.0111)
## University * Male * Age
                                      0.0186
                                                   0.0184
                                                                0.0182
                                                                             0.0181
##
                                     (0.0146)
                                                  (0.0146)
                                                               (0.0145)
                                                                            (0.0145)
                                     -0.0082
                                                  -0.0078
                                                               -0.0083
                                                                            -0.0082
## Male * Age
                                     (0.0098)
                                                  (0.0097)
                                                               (0.0097)
                                                                            (0.0097)
##
## % of Life Residing Locally (zip)
                                      0.0402
                                                   0.0376
                                                                0.0419
                                                                             0.0410
                                     (0.0359)
                                                  (0.0361)
                                                               (0.0359)
                                                                            (0.0357)
## DID residence (zip)
                                                  -0.0290 *
                                                                            -0.0084
##
                                                  (0.0140)
                                                                            (0.0174)
## Foreigner % sqrt. (zip)
                                                   0.0021
                                                                             0.0222 *
##
                                                  (0.0076)
                                                                            (0.0110)
## University % by 10% (zip)
                                                   0.0050
                                                                            -0.0040
                                                  (0.0062)
                                                                            (0.0085)
## DID proportion (mun.)
                                                               -0.0618 **
                                                                            -0.0550 +
                                                               (0.0238)
                                                                            (0.0298)
## Foreigner % sqrt. (mun.)
                                                               -0.0197 +
                                                                            -0.0402 **
                                                               (0.0106)
                                                                            (0.0144)
## University % by 10% (mun.)
                                                                0.0170 *
                                                                             0.0202 +
                                                               (0.0084)
                                                                            (0.0115)
                                      0.0161
## R^2
                                                                             0.0254
                                                   0.0182
                                                                0.0230
## Adj. R^2
                                      0.0030
                                                   0.0036
                                                                0.0085
                                                                             0.0096
## Num. obs.
                                   2122
                                                2122
                                                             2122
                                                                          2122
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

LDP - DPJ FT

```
coeftest(s2mm03_1C,vcov.=vcovHC(s2mm03_1C))[,4]),
omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
custom.coef.map = vnmap,
custom.model.names = c("Base","ZIP","Municipality","Full"))
```

	Base	ZIP	Municipality	Full
University education	0.0010	0.0010	0.0010	0.0010
	(0.0135)	(0.0135)	(0.0135)	(0.0135
Gender (male)	0.0117	0.0112	0.0110	0.0109
	(0.0104)	(0.0104)	(0.0104)	(0.0105
Age (by 10 years, centered at 45)	0.0026	0.0027	0.0027	0.0028
	(0.0058)	(0.0058)	(0.0058)	(0.0058
University * Male	0.0137	0.0137	0.0138	0.0139
	(0.0166)	(0.0166)	(0.0166)	(0.0167
University * Age	0.0010	0.0009	0.0009	0.0008
-	(0.0094)	(0.0094)	(0.0094)	(0.0095
University * Male * Age	-0.0006	-0.0006	-0.0006	-0.0006
	(0.0120)	(0.0120)	(0.0120)	(0.0120
Male * Age	-0.0133 +	-0.0135 +	-0.0135 +	-0.0136
S	(0.0076)	(0.0076)	(0.0076)	(0.0077
% of Life Residing Locally (zip)	0.0124	0.0116	0.0106	0.0110
	(0.0270)	(0.0272)	(0.0272)	(0.0273
DID residence (zip)		0.0011		0.0086
-		(0.0112)		(0.0146
Foreigner % sqrt. (zip)		-0.0010		-0.0003
		(0.0057)		(0.0078
University % by 10% (zip)		-0.0021		-0.0006
		(0.0046)		(0.0066
DID proportion (mun.)			-0.0098	-0.0186
			(0.0180)	(0.023
Foreigner % sqrt. (mun.)			-0.0004	-0.000
1			(0.0085)	(0.0114
University % by 10% (mun.)			-0.0021	-0.001
			(0.0064)	(0.009)
n^o		0.0004	0.0000	0.000
R^2	0.0983	0.0984	0.0986	0.098
Adj. R^2	0.0862	0.0850	0.0852	0.084
Num. obs.	2122	2122	2122	2122

Favorability of South Korea

t t	Base	ZIP	Municipality	Full
University education	-0.0056	-0.0055	-0.0057	-0.0055
<u> </u>	(0.0197)	(0.0197)	(0.0197)	(0.0197)
Gender (male)	-0.0602 ***	-0.0604 ***	-0.0608 ***	-0.0601 **
ŧ	(0.0169)	(0.0170)	(0.0169)	(0.0170)
Age (by 10 years, centered at 45)	-0.0046	-0.0048	-0.0045	-0.0049
ŧ	(0.0104)	(0.0105)	(0.0105)	(0.0105)
University * Male	0.0097	0.0095	0.0098	0.0095
<u> </u>	(0.0240)	(0.0240)	(0.0240)	(0.0240)
University * Age	-0.0025	-0.0022	-0.0027	-0.0022
ŧ	(0.0145)	(0.0145)	(0.0145)	(0.0145)
University * Male * Age	0.0036	0.0034	0.0035	0.0035
ŧ	(0.0180)	(0.0180)	(0.0180)	(0.0180)
# Male * Age	0.0301 *	0.0304 *	0.0300 *	0.0304 *
!	(0.0128)	(0.0128)	(0.0129)	(0.0129)
* % of Life Residing Locally (zip)	0.0434	0.0426	0.0421	0.0417
ŧ	(0.0438)	(0.0439)	(0.0439)	(0.0440)
DID residence (zip)		-0.0215		-0.0218
<u> </u>		(0.0159)		(0.0204)
Foreigner % sqrt. (zip)		-0.0058		-0.0097
ŧ		(0.0086)		(0.0109)
University % by 10% (zip)		0.0048		0.0060
ŧ		(0.0071)		(0.0106)
DID proportion (mun.)			-0.0225	0.0012
ŧ -			(0.0264)	(0.0339)
Foreigner % sqrt. (mun.)			-0.0003	0.0083
ŧ			(0.0130)	(0.0166)
University % by 10% (mun.)			0.0031	-0.0025
!			(0.0097)	(0.0143)
# # R^2	0.0796	0.0808	0.0800	0.0810
Adj. R^2	0.0673	0.0672	0.0663	0.0660
Num. obs.	2122	2122	2122	2122

Favorability of China

##

##

# #	Base	ZIP	Municipality	Full
# # University education	0.0143	0.0144	0.0143	0.0144
#	(0.0161)	(0.0161)	(0.0161)	(0.0161)
# Gender (male)	-0.0049	-0.0065	-0.0067	-0.0070
#	(0.0139)	(0.0141)	(0.0140)	(0.0141)
# Age (by 10 years, centered at 45)	-0.0219 **	-0.0217 **	-0.0216 **	-0.0215 *
#	(0.0083)	(0.0083)	(0.0082)	(0.0083)
# University * Male	-0.0143	-0.0143	-0.0142	-0.0142
#	(0.0199)	(0.0199)	(0.0199)	(0.0199)
# University * Age	0.0042	0.0044	0.0042	0.0043
#	(0.0119)	(0.0119)	(0.0119)	(0.0119)
# University * Male * Age	-0.0143	-0.0141	-0.0143	-0.0142
#	(0.0147)	(0.0148)	(0.0147)	(0.0148)
# Male * Age	0.0209 *	0.0205 *	0.0207 *	0.0204 *
#	(0.0103)	(0.0104)	(0.0103)	(0.0104)
# % of Life Residing Locally (zip)	-0.0042	-0.0042	-0.0031	-0.0034
#	(0.0365)	(0.0367)	(0.0367)	(0.0367)
# DID residence (zip)		0.0026		0.0066
#		(0.0129)		(0.0163)
# Foreigner % sqrt. (zip)		-0.0141 *		-0.0084
#		(0.0071)		(0.0095)
# University % by 10% (zip)		-0.0028		-0.0028
#		(0.0061)		(0.0085)
# DID proportion (mun.)			-0.0033	-0.0098
#			(0.0221)	(0.0281)
# Foreigner % sqrt. (mun.)			-0.0190 +	-0.0112
#			(0.0099)	(0.0127)
# University % by 10% (mun.)			-0.0020	0.0010
#			(0.0082)	(0.0114)
# # R^2	0.0406	0.0424	0.0425	0.0428
# Adj. R^2	0.0278	0.0282	0.0283	0.0272
# Num. obs.	2122	2122	2122	2122

Favorability of USA

```
s2mm06_10 <- lm(update(familiarityFT_USA ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s2mm06_1A <- lm(update(familiarityFT_USA ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s2mm06\_1B \leftarrow lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifcct\$lvlen <= 1) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifcct\$age ~ sifccts]) + lm(update(familiarityFT\_USA ~., basemodB), data=sifcct[which(sifccts)]) + lm(update(familiarityFT\_USA ~., ba
s2mm06_1C <- lm(update(familiarityFT_USA ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s2mm06_10,s2mm06_1A,s2mm06_1B,s2mm06_1C), digits = 4, #single.row = T,
                            override.se = list(coeftest(s2mm06_10,vcov.=vcovHC(s2mm06_10))[,2],
                                                                                   coeftest(s2mm06_1A,vcov.=vcovHC(s2mm06_1A))[,2],
                                                                                   coeftest(s2mm06_1B,vcov.=vcovHC(s2mm06_1B))[,2],
                                                                                  coeftest(s2mm06_1C,vcov.=vcovHC(s2mm06_1C))[,2]),
                            override.pvalues = list(coeftest(s2mm06_10,vcov.=vcovHC(s2mm06_10))[,4],
                                                                                                 coeftest(s2mm06_1A,vcov.=vcovHC(s2mm06_1A))[,4],
                                                                                                 coeftest(s2mm06_1B,vcov.=vcovHC(s2mm06_1B))[,4],
                                                                                                 coeftest(s2mm06_1C,vcov.=vcovHC(s2mm06_1C))[,4]),
                            omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
                            custom.coef.map = vnmap,
                            custom.model.names = c("Base","ZIP","Municipality","Full"))
```

	Base	ZIP	Municipality	Full
University education	-0.0218	-0.0217	-0.0217	-0.0216
	(0.0175)	(0.0175)	(0.0175)	(0.0175)
Gender (male)	0.0195	0.0214	0.0219	0.0216
	(0.0147)	(0.0148)	(0.0147)	(0.0148)
Age (by 10 years, centered at 45)	0.0008	0.0000	0.0001	0.0001
	(0.0086)	(0.0086)	(0.0086)	(0.0086)
University * Male	0.0447 *	0.0445 *	0.0442 *	0.0441
	(0.0215)	(0.0215)	(0.0215)	(0.0215)
University * Age	-0.0093	-0.0089	-0.0090	-0.0088
	(0.0124)	(0.0124)	(0.0124)	(0.0124)
University * Male * Age	0.0176	0.0174	0.0173	0.0174
	(0.0155)	(0.0155)	(0.0155)	(0.0155)
Male * Age	0.0121	0.0128	0.0129	0.0128
	(0.0108)	(0.0108)	(0.0108)	(0.0108)
% of Life Residing Locally (zip)	0.0016	0.0065	0.0080	0.0069
	(0.0368)	(0.0370)	(0.0371)	(0.0372)
DID residence (zip)		-0.0026		-0.0085
		(0.0141)		(0.0175)
Foreigner % sqrt. (zip)		-0.0037		-0.0104
		(0.0086)		(0.0123)
University % by 10% (zip)		0.0093		-0.0021
		(0.0063)		(0.0091)
DID proportion (mun.)			0.0013	0.0105
			(0.0242)	(0.0300)
Foreigner % sqrt. (mun.)			0.0011	0.0104
			(0.0114)	(0.0155)
University % by 10% (mun.)			0.0169 +	0.0191
			(0.0088)	(0.0124)
R^2	0.0355	0.0367	0.0380	0.0387
Adj. R^2	0.0226	0.0224	0.0238	0.0231

Income

```
s2mm07_10 <- lm(update(income ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm07_1A <- lm(update(income ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s2mm07_1B <- lm(update(income ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
s2mm07_1C <- lm(update(income ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
screenreg(list(s2mm07_10,s2mm07_1A,s2mm07_1B,s2mm07_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s2mm07_10,vcov.=vcovHC(s2mm07_10))[,2],
                             coeftest(s2mm07 1A,vcov.=vcovHC(s2mm07 1A))[,2],
                             coeftest(s2mm07_1B,vcov.=vcovHC(s2mm07_1B))[,2],
                             coeftest(s2mm07_1C,vcov.=vcovHC(s2mm07_1C))[,2]),
          override.pvalues = list(coeftest(s2mm07_10,vcov.=vcovHC(s2mm07_10))[,4],
                                   coeftest(s2mm07_1A,vcov.=vcovHC(s2mm07_1A))[,4],
                                   coeftest(s2mm07_1B,vcov.=vcovHC(s2mm07_1B))[,4],
                                   coeftest(s2mm07_1C,vcov.=vcovHC(s2mm07_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

## ## =================================				
##	Base	ZIP	Municipality	Full
	0.1108 ***			
##	(0.0213)	(0.0211)	(0.0211)	(0.0211)
## Gender (male)	0.0083	0.0174	0.0153	0.0190
##	(0.0181)	(0.0181)	(0.0180)	(0.0181)
## Age (by 10 years, centered at 45)	0.0311 **	0.0281 *	0.0294 **	0.0278 *
##	(0.0111)	(0.0109)	(0.0110)	(0.0109)
## University * Male	-0.0188	-0.0197	-0.0198	-0.0201
##	(0.0265)	(0.0264)	(0.0263)	(0.0263)
## University * Age	-0.0316 *	-0.0306 +	-0.0312 *	-0.0303 +
##	(0.0158)	(0.0156)	(0.0156)	(0.0156)
## University * Male * Age	0.0347 +	0.0339 +	0.0342 +	0.0341 +
##	(0.0201)	(0.0199)	(0.0199)	(0.0199)
## Male * Age	-0.0401 **	-0.0373 **	-0.0385 **	-0.0374 **
##	(0.0140)	(0.0138)	(0.0138)	(0.0138)
## % of Life Residing Locally (zip)	-0.0132	0.0053	-0.0034	0.0017
##	(0.0469)	(0.0466)	(0.0470)	(0.0468)
## DID residence (zip)		-0.0035		-0.0081
##		(0.0176)		(0.0219)
## Foreigner % sqrt. (zip)		0.0053		-0.0184
##		(0.0097)		(0.0118)
## University % by 10% (zip)		0.0356 ***		0.0294 *
##		(0.0078)		(0.0116)
## DID proportion (mun.)			-0.0047	0.0083
##			(0.0298)	(0.0374)
## Foreigner % sqrt. (mun.)			0.0300 *	0.0468 **
##			(0.0137)	(0.0171)
## University % by 10% (mun.)			0.0367 ***	0.0090
· · · · · · · · · · · · · · · · · · ·				

```
(0.0106)
                                            (0.0156)
## -----
## R^2
                     0.0499
                             0.0602
                                    0.0593
                                            0.0636
## Adj. R^2
                     0.0372
                            0.0462
                                    0.0454
                                            0.0483
## Num. obs.
## -----
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

With Matched Data (Lambda = 100 km)

```
sifcct <- readRDS(datadir3)
sifcct$agex <- sifcct$age/10 - 4.5
sifcct$ldpdpjft <- original$ldpdpjft[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave
summary(sifcct$ldpdpjft)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.5000 0.5000 0.5720 0.6963 1.0000
sifcct$income <- original$income[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave))]
summary(sifcct$income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04098 0.18484 0.40915 0.49094 0.78565 0.97505</pre>
```

Outcome Model

```
## Living in Local ZIP since at least age 15 ##
s3mo_10 <- lm(update(foreignsuff ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mo_1A <- lm(update(foreignsuff ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mo_1B <- lm(update(foreignsuff ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mo_1C <- lm(update(foreignsuff ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s3mo_10,s3mo_1A,s3mo_1B,s3mo_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s3mo_10,vcov.=vcovHC(s3mo_10))[,2],
                             coeftest(s3mo_1A,vcov.=vcovHC(s3mo_1A))[,2],
                             coeftest(s3mo_1B,vcov.=vcovHC(s3mo_1B))[,2],
                             coeftest(s3mo_1C,vcov.=vcovHC(s3mo_1C))[,2]),
          override.pvalues = list(coeftest(s3mo 10,vcov.=vcovHC(s3mo 10))[,4],
                                  coeftest(s3mo 1A,vcov.=vcovHC(s3mo 1A))[,4],
                                  coeftest(s3mo_1B,vcov.=vcovHC(s3mo_1B))[,4],
                                  coeftest(s3mo_1C,vcov.=vcovHC(s3mo_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
                                    Base
                                                  ZIP
                                                                Municipality
                                                                             Full
## University education
                                     -0.0036
                                                   -0.0035
                                                                  -0.0036
                                                                                -0.0033
                                                   (0.0228)
                                     (0.0228)
                                                                  (0.0228)
                                                                                (0.0228)
## Gender (male)
                                     -0.0904 ***
                                                    -0.0921 ***
                                                                  -0.0896 ***
                                                                                -0.0911 ***
                                                                 (0.0193)
                                                   (0.0193)
                                                                                (0.0193)
##
                                      (0.0191)
## Age (by 10 years, centered at 45)
                                     -0.0035
                                                   -0.0032
                                                                 -0.0036
                                                                                -0.0035
```

```
##
                                          (0.0117)
                                                           (0.0118)
                                                                          (0.0117)
                                                                                          (0.0117)
                                           0.0053
                                                           0.0053
                                                                           0.0053
                                                                                           0.0049
## University * Male
                                                                          (0.0279)
##
                                          (0.0279)
                                                           (0.0279)
                                                                                          (0.0279)
## University * Age
                                          -0.0116
                                                          -0.0115
                                                                          -0.0117
                                                                                          -0.0113
                                          (0.0166)
                                                          (0.0166)
                                                                          (0.0166)
                                                                                          (0.0166)
## University * Male * Age
                                           0.0069
                                                           0.0070
                                                                           0.0070
                                                                                           0.0071
                                          (0.0206)
                                                          (0.0206)
                                                                          (0.0206)
                                                                                          (0.0206)
## Male * Age
                                           0.0150
                                                           0.0147
                                                                           0.0151
                                                                                           0.0148
##
                                          (0.0143)
                                                           (0.0143)
                                                                          (0.0143)
                                                                                          (0.0143)
## % of Life Residing Locally (zip)
                                           0.0113
                                                           0.0107
                                                                           0.0098
                                                                                           0.0089
                                          (0.0502)
                                                          (0.0503)
                                                                          (0.0503)
                                                                                          (0.0504)
## DID residence (zip)
                                                          -0.0062
                                                                                          -0.0063
                                                          (0.0163)
                                                                                          (0.0215)
## Foreigner % sqrt. (zip)
                                                          -0.0063
                                                                                          -0.0220
                                                                                          (0.0151)
                                                          (0.0105)
## University % by 10% (zip)
                                                          -0.0018
                                                                                          -0.0080
##
                                                          (0.0085)
                                                                                          (0.0119)
## DID proportion (mun.)
                                                                          -0.0090
                                                                                          -0.0008
                                                                          (0.0277)
                                                                                          (0.0364)
##
## Foreigner % sqrt. (mun.)
                                                                           0.0115
                                                                                           0.0309
##
                                                                          (0.0144)
                                                                                          (0.0199)
## University % by 10% (mun.)
                                                                                           0.0099
                                                                           0.0019
##
                                                                          (0.0120)
                                                                                          (0.0167)
                                                                           0.0238
## R^2
                                           0.0236
                                                           0.0239
                                                                                           0.0250
## Adj. R^2
                                           0.0142
                                                           0.0134
                                                                           0.0134
                                                                                           0.0135
## Num. obs.
                                        2928
                                                        2928
                                                                        2928
                                                                                        2928
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
  if (gender=="Male") sifcct$gender <- sifcct$female</pre>
  if (gender=="Female") sifcct$gender <- sifcct$male</pre>
  sifcct$ageset <- (sifcct$age - ageset)/10</pre>
  if (sub==1) {
    modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper) +
                    I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                    as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
    subname = "Stayed"
  } else {
    modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                  data=sifcct[which(sifcct$age - sifcct$lvlen>=23),])
    subname = "Moved"
  }
  res <- c(gender,ageset,coef(modset)[2],</pre>
           coefci(modset, vcov.=vcovHC(modset), level = 0.95)[2,],
           coefci(modset, vcov.=vcovHC(modset), level = 0.90)[2,],
           coeftest(modset, vcov.=vcovHC(modset))[2,c(2,4)],
           subname)
  names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
```

```
return(res)
}
outdt3 <- rbind(extout("Female",25),</pre>
                 extout("Female",35),
                 extout("Female",45),
                 extout("Female",55),
                 extout("Female",65),
                 extout("Male",25),
                 extout("Male",35),
                 extout("Male",45),
                 extout("Male",55),
                 extout("Male",65))
outdt3 <- as.data.frame(outdt3)</pre>
for(i in 2:9) outdt3[,i] <- as.numeric(outdt3[,i])</pre>
outdt3$gender <- factor(outdt3$gender, levels=unique(outdt3$gender))
summary(outdt3)
##
       gender
                                                        lci95
                                                                            uci95
                                                                                               1ci90
                     age
                                   est
##
                      :25
                                    :-0.0258961
                                                                               :0.03299
    Female:5
               Min.
                             \mathtt{Min}.
                                                   \mathtt{Min}.
                                                           :-0.12109
                                                                       Min.
                                                                                          Min.
                                                                                                  :-0.10578
##
   Male :5
               1st Qu.:35
                             1st Qu.:-0.0059760
                                                   1st Qu.:-0.05973
                                                                       1st Qu.:0.04259
                                                                                           1st Qu.:-0.05108
##
               Median:45
                             Median :-0.0005160
                                                   Median :-0.04479
                                                                       Median :0.04934
                                                                                          Median :-0.03698
##
                      :45
                             Mean
                                   :-0.0008406
                                                   Mean
                                                          :-0.05398
                                                                       Mean
                                                                             :0.05230
                                                                                          Mean
                                                                                                 :-0.04544
               Mean
##
               3rd Qu.:55
                             3rd Qu.: 0.0074766
                                                   3rd Qu.:-0.03542
                                                                       3rd Qu.:0.06410
                                                                                           3rd Qu.:-0.02824
##
               Max.
                     :65
                             Max. : 0.0193276
                                                   Max.
                                                           :-0.02978
                                                                       Max.
                                                                             :0.07801
                                                                                          Max.
                                                                                                 :-0.02473
        uci90
##
                             se
                                                                 lv
                                                p
```

:0.5184

:0.7501

:0.9202

1st Qu.:0.6766

Median :0.7537

3rd Qu.:0.8674

:0.01601

:0.02710

:0.04855

1st Qu.:0.02048

Median :0.02589

3rd Qu.:0.02983

Min.

Mean

Max.

Length:10

Class :character

Mode :character

Outcome Model 2

:0.02794

:0.04375

:0.06857

1st Qu.:0.03557

Median :0.04113

3rd Qu.:0.05105

Min.

Mean

Min.

Mean

Max.

##

##

##

##

```
##
  _______
##
                                                                ZIP: Agree
                                   Base: Agree
                                                 Base: Neither
                                                                               ZIP: Neither
                                      0.0261
                                                                    0.0267
  University education
                                                    -0.1785
                                                                                  -0.1773
                                     (0.1681)
                                                    (0.1710)
                                                                   (0.1681)
                                                                                  (0.1711)
## Gender (male)
                                     -0.5556 ***
                                                    -0.6127 ***
                                                                   -0.5734 ***
                                                                                  -0.6377 ***
##
                                      (0.1425)
                                                    (0.1472)
                                                                   (0.1438)
                                                                                  (0.1487)
  Age (by 10 years, centered at 45)
                                      0.0054 +
                                                    -0.1605
                                                                    0.0093 +
                                                                                  -0.1564
                                      (0.0845)
                                                    (0.0901)
                                                                   (0.0848)
                                                                                  (0.0902)
## University * Male
                                      0.0471
                                                     0.0755
                                                                    0.0469
                                                                                  0.0749
                                                    (0.2060)
                                                                                  (0.2062)
##
                                     (0.2035)
                                                                   (0.2035)
## University * Age
                                     -0.1011
                                                     0.1683
                                                                   -0.1009
                                                                                  0.1692
##
                                      (0.1193)
                                                    (0.1229)
                                                                   (0.1194)
                                                                                  (0.1229)
## University * Male * Age
                                      0.0565
                                                    -0.0801
                                                                    0.0576
                                                                                  -0.0777
##
                                                    (0.1507)
                                                                   (0.1483)
                                                                                  (0.1507)
                                      (0.1482)
                                      0.1096
                                                     0.0636
                                                                    0.1051
                                                                                  0.0573
## Male * Age
##
                                      (0.1037)
                                                    (0.1088)
                                                                   (0.1039)
                                                                                  (0.1089)
## % of Life Residing Locally (zip)
                                                     0.3394
                                      0.1253
                                                                    0.1109
                                                                                  0.3317
                                      (0.3529)
                                                    (0.3611)
                                                                   (0.3548)
                                                                                  (0.3621)
## DID residence (zip)
                                                                   -0.0143
                                                                                  0.0147
##
                                                                   (0.1187)
                                                                                  (0.1168)
## Foreigner % sqrt. (zip)
                                                                   -0.0456
                                                                                  -0.1101
                                                                   (0.0745)
                                                                                  (0.0764)
## University % by 10% (zip)
                                                                   -0.0364
                                                                                  -0.0488
                                                                   (0.0611)
                                                                                  (0.0611)
## AIC
                                    6261.3473
                                                  6261.3473
                                                                 6270.1191
                                                                                6270.1191
                                                 -3072.6736
                                                                -3071.0596
## Log Likelihood
                                   -3072.6736
                                                                               -3071.0596
                                    2928
## Num. obs.
                                                  2928
                                                                 2928
                                                                                2928
                                      3
                                                     3
                                                                    3
                                                                                   3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
screenreg(list(s3mo2_1B,s3mo2_1C), digits = 4, #single.row = T,
```

```
Mun.: Agree
                                                Mun.: Neither
                                                               Full: Agree
                                                                  0.0289
## University education
                                     0.0265
                                                   -0.1783
                                                                                -0.1762
                                     (0.1679)
                                                                  (0.1680)
##
                                                   (0.1709)
                                                                                (0.1711)
## Gender (male)
                                     -0.5535 ***
                                                   -0.6298 ***
                                                                  -0.5665 ***
                                                                                -0.6381 ***
##
                                     (0.1436)
                                                   (0.1481)
                                                                  (0.1440)
                                                                                (0.1488)
## Age (by 10 years, centered at 45)
                                     0.0053 +
                                                   -0.1572
                                                                  0.0072 +
                                                                                -0.1576
                                     (0.0848)
                                                   (0.0900)
                                                                  (0.0850)
                                                                                (0.0899)
## University * Male
                                     0.0464
                                                    0.0771
                                                                  0.0435
                                                                                 0.0744
##
                                     (0.2034)
                                                   (0.2061)
                                                                  (0.2036)
                                                                                (0.2062)
                                                    0.1661
                                                                  -0.0987
## University * Age
                                     -0.1011
                                                                                 0.1675
                                     (0.1192)
                                                   (0.1227)
                                                                  (0.1193)
                                                                                (0.1227)
## University * Male * Age
                                     0.0569
                                                   -0.0765
                                                                  0.0569
                                                                                -0.0726
                                     (0.1483)
                                                   (0.1505)
                                                                  (0.1484)
                                                                                (0.1506)
## Male * Age
                                     0.1095
                                                    0.0569
                                                                                 0.0509
                                                                  0.1071
                                     (0.1041)
                                                   (0.1088)
                                                                  (0.1043)
                                                                                (0.1087)
## % of Life Residing Locally (zip)
                                     0.1140
                                                    0.3153
                                                                  0.1038
                                                                                 0.3104
                                     (0.3550)
                                                   (0.3616)
                                                                  (0.3554)
                                                                                (0.3624)
## DID residence (zip)
                                                                  -0.0401
                                                                                 0.2221
                                                                  (0.1520)
                                                                                (0.1501)
## Foreigner % sqrt. (zip)
                                                                  -0.1295 *
                                                                                -0.2178
                                                                  (0.1026)
                                                                                (0.1127)
## University % by 10% (zip)
                                                                  -0.0722
                                                                                -0.0786
                                                                  (0.0857)
                                                                                (0.0846)
## DID proportion (mun.)
                                     0.0145 +
                                                   -0.3372
                                                                  0.0639 *
                                                                                -0.5536
##
                                     (0.2033)
                                                   (0.2049)
                                                                  (0.2587)
                                                                                (0.2630)
## Foreigner % sqrt. (mun.)
                                     0.0450
                                                    0.0562
                                                                  0.1593 +
                                                                                 0.2559
                                     (0.1056)
                                                   (0.1044)
                                                                  (0.1417)
                                                                                (0.1464)
## University % by 10% (mun.)
                                    -0.0174
                                                    0.0100
                                                                  0.0531
                                                                                 0.0929
                                     (0.0883)
                                                   (0.0860)
                                                                  (0.1217)
                                                                                (0.1176)
## -----
## ATC
                                   6268.8151
                                                 6268.8151
                                                                6272.9549
                                                                              6272.9549
## Log Likelihood
                                  -3070.4075
                                                -3070.4075
                                                               -3066.4775
                                                                             -3066.4775
## Num. obs.
                                   2928
                                                 2928
                                                                2928
                                                                              2928
## K
                                     3
                                                                  3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
 if (gender=="Male") sifcct$gender <- sifcct$female</pre>
 if (gender=="Female") sifcct$gender <- sifcct$male</pre>
 sifcct$ageset <- (sifcct$age - ageset)/10</pre>
```

```
if (sub==1) {
               # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                                                                                                  I(c10\_sreg\_edu\_ugsP/10) + didper + sqrt(c10\_mun\_fper) + I(c10\_mun\_edu\_ugsP/1)
                                                                                                  as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),],
                                                                                          Hess = TRUE)
              sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                shape = "wide", choice = "foreignsuff3x")
              # levels(sifcct.mloqit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")
              modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)</pre>
                                                                                   I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                                                                                   as.factor(wave), data=sifcct.mlogit.tmp, reflevel = "Disagree")
              subname = "Stayed"
       } else {
               # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lupr + as.factor(wave),</pre>
                                                                                           data=sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                          Hess = TRUE)
              sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                shape = "wide", choice = "foreignsuff3x")
              # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
              modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                            data=sifcct.mlogit.tmp, reflevel = "Disagree")
              subname = "Moved"
       }
       # modres <- extract(modset)</pre>
       # res <- c(qender,aqeset,modres@coef[grep("^Agree: edu2$",modres@coef.names)],</pre>
                                              modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[gree] edu2\$", mo
                                              modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[gree] edu2\$", mo
                                              modres@coef[qrep("^Aqree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[qrep("^Aqree: edu2\$", modres@se[qrep(") Aqree: edu2\$", modres@
                                              modres@se[grep("^Agree: edu2$",modres@coef.names)],
                                              modres@pvalues[grep("^Agree: edu2$",modres@coef.names)],
                                               subname)
       res <- c(gender,ageset,coef(modset)[3],
                                        coefci(modset, vcov=sandwich, level = 0.95)[3,],
                                        coefci(modset, vcov=sandwich, level = 0.90)[3,],
                                        coeftest(modset, vcov=sandwich)[3,c(2,4)],
                                        subname)
       names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
      return(res)
}
outdt3m <- rbind(extout("Female",25,1),</pre>
                                                             extout("Female", 35,1),
                                                             extout("Female", 45,1),
                                                             extout("Female",55,1),
                                                             extout("Female",65,1),
                                                             extout("Male", 25, 1),
                                                             extout("Male", 35, 1),
```

```
extout("Male",45,1),
                 extout("Male",55,1),
                 extout("Male",65,1))
outdt3m <- as.data.frame(outdt3m)</pre>
for(i in 2:9) outdt3m[,i] <- as.numeric(outdt3m[,i])</pre>
outdt3m$gender <- factor(outdt3m$gender, levels=unique(outdt3m$gender))
summary(outdt3m)
                                                                       uci95
##
                                                     lci95
                                                                                         1ci90
       gender
                    age
                                  est
               Min.
##
   Female:5
                      :25
                            \mathtt{Min}.
                                   :-0.168548
                                                 Min.
                                                        :-0.8702
                                                                   Min.
                                                                           :0.2972
                                                                                            :-0.7574
##
   Male:5
               1st Qu.:35
                            1st Qu.:-0.001217
                                                 1st Qu.:-0.3790
                                                                   1st Qu.:0.3685
                                                                                     1st Qu.:-0.3182
##
               Median:45
                            Median : 0.051454
                                                 Median :-0.2548
                                                                   Median :0.4169
                                                                                     Median :-0.1988
                                                                          :0.4399
##
                     :45
                            Mean : 0.050626
                                                        :-0.3386
                                                                                            :-0.2760
               Mean
                                                 Mean
                                                                   Mean
                                                                                     Mean
##
               3rd Qu.:55
                            3rd Qu.: 0.124254
                                                 3rd Qu.:-0.1912
                                                                   3rd Qu.:0.5094
                                                                                     3rd Qu.:-0.1362
                     :65
##
                            Max. : 0.226340
                                                 Max.
                                                      :-0.1525
                                                                                            :-0.1163
               Max.
                                                                   Max. :0.6690
                                                                                     Max.
##
          se
                                            lv
                           p
##
          :0.1147
                            :0.3161
                                      Length:10
   Min.
                     Min.
   1st Qu.:0.1524
                     1st Qu.:0.4542
                                      Class : character
  Median :0.1855
                     Median :0.5829
                                      Mode :character
  Mean
           :0.1985
                     Mean
                            :0.6250
##
   3rd Qu.:0.2237
                     3rd Qu.:0.8137
## Max.
           :0.3579
                     Max.
                            :0.9551
```

Mi:

15

Me

Ma

Mediator Models

Knowledge

```
s3mm01_10 <- lm(update(knowledge ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm01_1A <- lm(update(knowledge ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm01_1B <- lm(update(knowledge ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm01_1C <- lm(update(knowledge ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s3mm01_10,s3mm01_1A,s3mm01_1B,s3mm01_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s3mm01 10,vcov.=vcovHC(s3mm01 10))[,2],
                             coeftest(s3mm01 1A,vcov.=vcovHC(s3mm01 1A))[,2],
                             coeftest(s3mm01_1B,vcov.=vcovHC(s3mm01_1B))[,2],
                             coeftest(s3mm01_1C,vcov.=vcovHC(s3mm01_1C))[,2]),
          override.pvalues = list(coeftest(s3mm01_10,vcov.=vcovHC(s3mm01_10))[,4],
                                  coeftest(s3mm01_1A,vcov.=vcovHC(s3mm01_1A))[,4],
                                  coeftest(s3mm01_1B,vcov.=vcovHC(s3mm01_1B))[,4],
                                  coeftest(s3mm01_1C,vcov.=vcovHC(s3mm01_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
##
                                        Base
                                                        ZIP
                                                                        Municipality
## University education
                                           0.1695 ***
                                                           0.1697 ***
                                                                           0.1698 ***
                                                                                           0.1697 ***
                                          (0.0211)
                                                          (0.0211)
                                                                          (0.0211)
                                                                                           (0.0211)
##
## Gender (male)
                                           0.2011 ***
                                                           0.2078 ***
                                                                           0.2052 ***
                                                                                           0.2081 ***
##
                                          (0.0180)
                                                           (0.0182)
                                                                          (0.0181)
                                                                                           (0.0182)
## Age (by 10 years, centered at 45)
                                           0.0562 ***
                                                           0.0536 ***
                                                                           0.0549 ***
                                                                                           0.0536 ***
##
                                          (0.0107)
                                                          (0.0107)
                                                                          (0.0107)
                                                                                           (0.0108)
```

```
## University * Male
                                     -0.0448 +
                                                  -0.0451 +
                                                                -0.0453 +
                                                                              -0.0453 +
##
                                     (0.0248)
                                                   (0.0248)
                                                                (0.0248)
                                                                              (0.0248)
                                     -0.0197
                                                  -0.0190
## University * Age
                                                                -0.0192
                                                                              -0.0188
                                     (0.0147)
                                                  (0.0147)
                                                                (0.0147)
                                                                              (0.0147)
## University * Male * Age
                                     -0.0039
                                                  -0.0048
                                                                -0.0048
                                                                              -0.0052
##
                                     (0.0178)
                                                  (0.0178)
                                                                (0.0178)
                                                                              (0.0178)
## Male * Age
                                     0.0105
                                                   0.0129
                                                                 0.0123
                                                                               0.0135
##
                                     (0.0129)
                                                   (0.0130)
                                                                (0.0130)
                                                                              (0.0130)
## % of Life Residing Locally (zip)
                                     -0.1433 ***
                                                  -0.1301 **
                                                                -0.1323 **
                                                                              -0.1287 **
                                     (0.0429)
                                                  (0.0427)
                                                                (0.0428)
                                                                              (0.0427)
## DID residence (zip)
                                                  -0.0112
                                                                              -0.0261
##
                                                  (0.0135)
                                                                              (0.0176)
## Foreigner % sqrt. (zip)
                                                  -0.0056
                                                                              -0.0023
                                                  (0.0092)
                                                                              (0.0120)
## University % by 10% (zip)
                                                   0.0268 ***
                                                                               0.0256 **
                                                   (0.0072)
                                                                              (0.0098)
## DID proportion (mun.)
                                                                 0.0091
                                                                               0.0394
                                                                 (0.0228)
                                                                              (0.0296)
## Foreigner % sqrt. (mun.)
                                                                -0.0122
                                                                              -0.0102
                                                                (0.0128)
                                                                              (0.0163)
## University % by 10% (mun.)
                                                                 0.0236 *
                                                                              -0.0009
                                                                (0.0097)
                                                                              (0.0130)
## -----
## R^2
                                     0.2047
                                                   0.2089
                                                                 0.2074
                                                                               0.2096
## Adj. R^2
                                     0.1971
                                                   0.2005
                                                                 0.1989
                                                                               0.2003
## Num. obs.
                                   2928
                                                2928
                                                              2928
                                                                            2928
## ------
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Ideology

```
s3mm02_10 <- lm(update(ideology ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm02_1A <- lm(update(ideology ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm02_1B <- lm(update(ideology ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm02_1C <- lm(update(ideology ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s3mm02_10,s3mm02_1A,s3mm02_1B,s3mm02_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s3mm02_10,vcov.=vcovHC(s3mm02_10))[,2],
                             coeftest(s3mm02_1A,vcov.=vcovHC(s3mm02_1A))[,2],
                             coeftest(s3mm02 1B,vcov.=vcovHC(s3mm02 1B))[,2],
                             coeftest(s3mm02_1C,vcov.=vcovHC(s3mm02_1C))[,2]),
          override.pvalues = list(coeftest(s3mm02_10,vcov.=vcovHC(s3mm02_10))[,4],
                                  coeftest(s3mm02_1A,vcov.=vcovHC(s3mm02_1A))[,4],
                                  coeftest(s3mm02 1B,vcov.=vcovHC(s3mm02 1B))[,4],
                                  coeftest(s3mm02 1C,vcov.=vcovHC(s3mm02 1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
## Gender (male)
                                         -0.0313 **
                                                       -0.0311 **
                                                                      -0.0325 **
                                                                                    -0.0331 **
##
                                         (0.0117)
                                                       (0.0118)
                                                                      (0.0117)
                                                                                    (0.0118)
## Age (by 10 years, centered at 45)
                                         -0.0084
                                                       -0.0087
                                                                      -0.0086
                                                                                    -0.0079
                                                       (0.0066)
                                                                                    (0.0066)
                                         (0.0066)
                                                                      (0.0066)
## University * Male
                                          0.0213
                                                        0.0212
                                                                       0.0212
                                                                                     0.0215
##
                                         (0.0173)
                                                       (0.0173)
                                                                      (0.0172)
                                                                                    (0.0172)
## University * Age
                                         -0.0010
                                                       -0.0009
                                                                      -0.0009
                                                                                    -0.0013
                                                                      (0.0098)
                                                                                    (0.0098)
##
                                         (0.0098)
                                                       (0.0098)
## University * Male * Age
                                         0.0145
                                                        0.0145
                                                                       0.0143
                                                                                     0.0144
##
                                         (0.0127)
                                                       (0.0127)
                                                                      (0.0126)
                                                                                    (0.0126)
## Male * Age
                                         -0.0029
                                                       -0.0027
                                                                      -0.0028
                                                                                    -0.0031
                                                                      (0.0086)
##
                                         (0.0086)
                                                       (0.0086)
                                                                                    (0.0086)
## % of Life Residing Locally (zip)
                                          0.0295
                                                        0.0311
                                                                      0.0377
                                                                                     0.0365
                                                                                    (0.0311)
##
                                         (0.0312)
                                                       (0.0313)
                                                                      (0.0312)
## DID residence (zip)
                                                       -0.0063
                                                                                     0.0110
##
                                                       (0.0105)
                                                                                    (0.0127)
## Foreigner % sqrt. (zip)
                                                       -0.0035
                                                                                     0.0159 +
                                                       (0.0066)
                                                                                    (0.0092)
## University % by 10% (zip)
                                                        0.0034
                                                                                    -0.0071
                                                       (0.0054)
                                                                                    (0.0072)
## DID proportion (mun.)
                                                                      -0.0411 *
                                                                                    -0.0551 *
                                                                      (0.0188)
                                                                                    (0.0227)
## Foreigner % sqrt. (mun.)
                                                                      -0.0258 **
                                                                                    -0.0400 **
                                                                      (0.0093)
                                                                                    (0.0124)
## University % by 10% (mun.)
                                                                      0.0199 **
                                                                                     0.0263 **
                                                                      (0.0077)
                                                                                    (0.0101)
## -
## R^2
                                          0.0137
                                                        0.0141
                                                                       0.0200
                                                                                     0.0219
## Adj. R^2
                                          0.0042
                                                        0.0035
                                                                       0.0095
                                                                                     0.0104
## Num. obs.
                                       2928
                                                     2928
                                                                    2928
                                                                                  2928
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

LDP - DPJ FT

```
s3mm03_10 <- lm(update(ldpdpjft ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm03_1A <- lm(update(ldpdpjft ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm03_1B <- lm(update(ldpdpjft ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm03 1C <- lm(update(ldpdpjft ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s3mm03_10,s3mm03_1A,s3mm03_1B,s3mm03_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s3mm03 10,vcov.=vcovHC(s3mm03 10))[,2],
                             coeftest(s3mm03_1A,vcov.=vcovHC(s3mm03_1A))[,2],
                             coeftest(s3mm03 1B,vcov.=vcovHC(s3mm03 1B))[,2],
                             coeftest(s3mm03 1C,vcov.=vcovHC(s3mm03 1C))[,2]),
          override.pvalues = list(coeftest(s3mm03 10,vcov.=vcovHC(s3mm03 10))[,4],
                                  coeftest(s3mm03 1A,vcov.=vcovHC(s3mm03 1A))[,4],
                                  coeftest(s3mm03_1B,vcov.=vcovHC(s3mm03_1B))[,4],
                                  coeftest(s3mm03_1C,vcov.=vcovHC(s3mm03_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

##	Base	ZIP	Municipality	Full
## ## University education	-0.0064	-0.0065	-0.0065	-0.0066
##	(0.0117)	(0.0117)	(0.0117)	(0.0117)
## Gender (male)	0.0169 +	0.0169 +	0.0158 +	0.0162 -
##	(0.0092)	(0.0093)	(0.0093)	(0.0093)
## Age (by 10 years, centered at 45)	0.0021	0.0023	0.0023	0.0024
##	(0.0055)	(0.0055)	(0.0055)	(0.0055)
## University * Male	0.0166	0.0167	0.0167	0.0169
##	(0.0142)	(0.0142)	(0.0142)	(0.0142)
## University * Age	-0.0056	-0.0056	-0.0056	-0.0059
##	(0.0084)	(0.0084)	(0.0084)	(0.0084)
## University * Male * Age	0.0052	0.0053	0.0053	0.0054
##	(0.0104)	(0.0104)	(0.0104)	(0.0104)
## Male * Age	-0.0140 *	-0.0141 *	-0.0143 *	-0.0144 >
##	(0.0068)	(0.0068)	(0.0068)	(0.0068)
## % of Life Residing Locally (zip)	0.0200	0.0189	0.0194	0.0195
##	(0.0243)	(0.0243)	(0.0244)	(0.0244)
## DID residence (zip)		0.0030		0.0095
##		(0.0083)		(0.0108)
## Foreigner % sqrt. (zip)		0.0028		0.0096
##		(0.0053)		(0.0075)
## University % by 10% (zip)		-0.0019		0.0006
##		(0.0041)		(0.0057)
## DID proportion (mun.)			-0.0063	-0.0173
##			(0.0142)	(0.0184)
## Foreigner % sqrt. (mun.)			-0.0037	-0.0121
##			(0.0074)	(0.0101)
## University % by 10% (mun.)			-0.0018	-0.0025
## ##			(0.0060)	(0.0081)
## ## R^2	0.0962	0.0964	0.0966	0.0977
## Adj. R^2	0.0875	0.0868	0.0869	0.0871
## Num. obs.	2928	2928	2928	2928

Favorability of South Korea

```
custom.coef.map = vnmap,
custom.model.names = c("Base","ZIP","Municipality","Full"))
```

```
##
  ______
##
                                    Base
                                                  7.TP
                                                                Municipality
                                                                              Full
## University education
                                      0.0025
                                                     0.0026
                                                                   0.0025
                                                                                 0.0027
##
                                      (0.0172)
                                                    (0.0172)
                                                                  (0.0173)
                                                                                 (0.0172)
## Gender (male)
                                      -0.0555 ***
                                                    -0.0560 ***
                                                                  -0.0557 ***
                                                                                 -0.0559 ***
##
                                      (0.0147)
                                                    (0.0148)
                                                                  (0.0147)
                                                                                 (0.0148)
## Age (by 10 years, centered at 45)
                                      0.0037
                                                     0.0035
                                                                   0.0037
                                                                                 0.0035
                                      (0.0093)
                                                    (0.0093)
                                                                  (0.0093)
                                                                                 (0.0093)
##
## University * Male
                                      -0.0074
                                                    -0.0075
                                                                  -0.0074
                                                                                 -0.0076
##
                                      (0.0207)
                                                    (0.0207)
                                                                  (0.0207)
                                                                                 (0.0207)
## University * Age
                                      -0.0113
                                                    -0.0110
                                                                  -0.0113
                                                                                -0.0111
                                      (0.0128)
                                                    (0.0128)
                                                                  (0.0128)
                                                                                 (0.0128)
## University * Male * Age
                                      0.0071
                                                     0.0070
                                                                   0.0071
                                                                                 0.0073
##
                                      (0.0156)
                                                    (0.0156)
                                                                  (0.0156)
                                                                                 (0.0156)
## Male * Age
                                      0.0267 *
                                                     0.0267 *
                                                                   0.0266 *
                                                                                 0.0264 *
                                                    (0.0112)
                                                                  (0.0112)
                                                                                 (0.0113)
##
                                      (0.0112)
## % of Life Residing Locally (zip)
                                      0.0073
                                                     0.0095
                                                                   0.0083
                                                                                 0.0085
##
                                      (0.0377)
                                                    (0.0378)
                                                                  (0.0379)
                                                                                 (0.0379)
## DID residence (zip)
                                                    -0.0017
                                                                                 0.0079
##
                                                    (0.0120)
                                                                                 (0.0154)
## Foreigner % sqrt. (zip)
                                                    -0.0100
                                                                                 -0.0165 +
                                                    (0.0074)
                                                                                 (0.0095)
## University % by 10% (zip)
                                                     0.0021
                                                                                 -0.0013
##
                                                    (0.0064)
                                                                                 (0.0090)
## DID proportion (mun.)
                                                                  -0.0204
                                                                                 -0.0268
                                                                  (0.0205)
##
                                                                                 (0.0262)
## Foreigner % sqrt. (mun.)
                                                                  -0.0005
                                                                                 0.0146
                                                                  (0.0109)
                                                                                 (0.0141)
## University % by 10% (mun.)
                                                                   0.0063
                                                                                 0.0080
##
                                                                  (0.0090)
                                                                                 (0.0125)
## ----
## R^2
                                       0.0772
                                                     0.0778
                                                                   0.0775
                                                                                 0.0784
## Adj. R^2
                                      0.0683
                                                     0.0679
                                                                   0.0677
                                                                                 0.0676
                                    2928
## Num. obs.
                                                  2928
                                                                2928
                                                                               2928
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Favorability of China

	Base	ZIP	Municipality	Full
University education	0.0073	0.0075	0.0073	0.0075
·	(0.0142)	(0.0142)	(0.0142)	(0.0142)
Gender (male)	-0.0089	-0.0125	-0.0123	-0.0129
	(0.0123)	(0.0124)	(0.0124)	(0.0125)
Age (by 10 years, centered at 45)	-0.0196 *	-0.0191 *	-0.0189 *	-0.0190
	(0.0076)	(0.0076)	(0.0076)	(0.0076)
University * Male	0.0005	0.0004	0.0007	0.0005
·	(0.0172)	(0.0172)	(0.0172)	(0.0172)
University * Age	0.0001	0.0003	-0.0000	0.0001
	(0.0107)	(0.0107)	(0.0107)	(0.0107)
University * Male * Age	-0.0079	-0.0077	-0.0076	-0.0074
·	(0.0130)	(0.0130)	(0.0130)	(0.0131)
Male * Age	0.0212 *	0.0204 *	0.0203 *	0.0200
•	(0.0092)	(0.0092)	(0.0092)	(0.0092)
% of Life Residing Locally (zip)	-0.0195	-0.0203	-0.0202	-0.0205
, , <u>, , , , , , , , , , , , , , , , , </u>	(0.0320)	(0.0321)	(0.0321)	(0.0321)
DID residence (zip)		-0.0031		0.0068
•		(0.0100)		(0.0127)
Foreigner % sqrt. (zip)		-0.0166 **		-0.0148
		(0.0062)		(0.0081)
University % by 10% (zip)		-0.0052		-0.0043
• •		(0.0054)		(0.0073)
DID proportion (mun.)			-0.0208	-0.0267
• •			(0.0174)	(0.0219)
Foreigner % sqrt. (mun.)			-0.0149 +	-0.0015
1			(0.0085)	(0.0109)
University % by 10% (mun.)			-0.0038	0.0007
•			(0.0076)	(0.0101)
R^2	0.0374	0.0405	0.0401	0.0411
Adj. R^2	0.0281	0.0302	0.0298	0.0299
Num. obs.	2928	2928	2928	2928

Favorability of USA

```
s3mm06_10 <- lm(update(familiarityFT_USA ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1 s3mm06_1A <- lm(update(familiarityFT_USA ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1 s3mm06_1B <- lm(update(familiarityFT_USA ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1 s3mm06_1C <- lm(update(familiarityFT_USA ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
```

##

# #	Base	ZIP	Municipality	Full
<pre># # University education</pre>	-0.0099	-0.0098	-0.0098	-0.0097
‡	(0.0147)	(0.0148)	(0.0147)	(0.0148)
# Gender (male)	0.0380 **	0.0382 **	0.0394 **	0.0382 **
‡	(0.0125)	(0.0126)	(0.0125)	(0.0126)
# Age (by 10 years, centered at 45)	0.0050	0.0047	0.0045	0.0048
‡ · · · · · · · · · · · · · · · · · · ·	(0.0078)	(0.0077)	(0.0077)	(0.0077)
# University * Male	0.0151	0.0150	0.0149	0.0147
‡	(0.0181)	(0.0181)	(0.0181)	(0.0181)
# University * Age	-0.0104	-0.0102	-0.0103	-0.0103
‡	(0.0108)	(0.0108)	(0.0108)	(0.0108)
# University * Male * Age	0.0189	0.0189	0.0187	0.0189
‡	(0.0134)	(0.0134)	(0.0133)	(0.0134)
# Male * Age	0.0038	0.0038	0.0043	0.0037
‡	(0.0095)	(0.0094)	(0.0094)	(0.0094)
# % of Life Residing Locally (zip)	-0.0320	-0.0298	-0.0276	-0.0287
‡	(0.0320)	(0.0322)	(0.0323)	(0.0323)
# DID residence (zip)		0.0080		0.0158
‡		(0.0108)		(0.0136)
# Foreigner % sqrt. (zip)		-0.0085		-0.0136
‡ · · ·		(0.0073)		(0.0098)
# University % by 10% (zip)		0.0009		-0.0105
‡		(0.0057)		(0.0078)
# DID proportion (mun.)			-0.0104	-0.0266
‡ ·			(0.0185)	(0.0231)
# Foreigner % sqrt. (mun.)			-0.0036	0.0087
‡			(0.0098)	(0.0128)
# University % by 10% (mun.)			0.0127	0.0231 *
‡			(0.0081)	(0.0109)
# # R^2	0.0285	0.0292	0.0295	0.0309
# Adj. R^2	0.0191	0.0188	0.0191	0.0195
# Num. obs.	2928	2928	2928	2928

Income

```
s3mm07_10 <- lm(update(income ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm07_1A <- lm(update(income ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm07_1B <- lm(update(income ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s3mm07_1C <- lm(update(income ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s3mm07_10,s3mm07_1A,s3mm07_1B,s3mm07_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s3mm07_10,vcov.=vcovHC(s3mm07_10))[,2],
                             coeftest(s3mm07_1A,vcov.=vcovHC(s3mm07_1A))[,2],
                             coeftest(s3mm07_1B,vcov.=vcovHC(s3mm07_1B))[,2],
                             coeftest(s3mm07_1C,vcov.=vcovHC(s3mm07_1C))[,2]),
          override.pvalues = list(coeftest(s3mm07_10,vcov.=vcovHC(s3mm07_10))[,4],
                                  coeftest(s3mm07_1A,vcov.=vcovHC(s3mm07_1A))[,4],
                                  coeftest(s3mm07_1B,vcov.=vcovHC(s3mm07_1B))[,4],
                                  coeftest(s3mm07_1C,vcov.=vcovHC(s3mm07_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

## ===================================				
## ===================================	Base	ZIP	Municipality	Full
## University education	0.1057 ***	0.1056 ***	0.1060 ***	0.1059 ***
##	(0.0191)	(0.0189)	(0.0189)	(0.0189)
## Gender (male)	-0.0033	0.0082	0.0055	0.0092
##	(0.0158)	(0.0157)	(0.0158)	(0.0158)
## Age (by 10 years, centered at 45)	0.0247 *	0.0212 *	0.0226 *	0.0210 *
##	(0.0099)	(0.0098)	(0.0098)	(0.0098)
## University * Male	0.0080	0.0078	0.0073	0.0074
##	(0.0231)	(0.0229)	(0.0229)	(0.0229)
## University * Age	-0.0251 +	-0.0245 +	-0.0247 +	-0.0244 +
##	(0.0144)	(0.0143)	(0.0143)	(0.0143)
## University * Male * Age	0.0404 *	0.0393 *	0.0395 *	0.0395 *
##	(0.0177)	(0.0175)	(0.0175)	(0.0175)
## Male * Age	-0.0340 **	-0.0306 *	-0.0314 **	-0.0306 *
##	(0.0121)	(0.0120)	(0.0120)	(0.0120)
## % of Life Residing Locally (zip)	-0.0618	-0.0455	-0.0516	-0.0472
##	(0.0413)	(0.0411)	(0.0414)	(0.0413)
## DID residence (zip)		-0.0009		0.0030
##		(0.0132)		(0.0162)
## Foreigner % sqrt. (zip)		0.0079		-0.0084
##		(0.0085)		(0.0105)
## University % by 10% (zip)		0.0349 ***		0.0269 **
##		(0.0068)		(0.0098)
## DID proportion (mun.)			-0.0135	-0.0127
##			(0.0229)	(0.0284)
## Foreigner % sqrt. (mun.)			0.0242 *	0.0325 *
##			(0.0119)	(0.0149)
## University % by 10% (mun.)			0.0396 ***	0.0144
## ##			(0.0097)	(0.0137)
## ## R^2	0.0543	0.0643	0.0630	0.0661
## Adj. R^2	0.0451	0.0543	0.0529	0.0551

With Matched Data (Lambda = 200 km)

```
sifcct <- readRDS(datadir4)
sifcct$agex <- sifcct$age/10 - 4.5
sifcct$ldpdpjft <- original$ldpdpjft[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave
summary(sifcct$ldpdpjft)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.5000 0.5000 0.5712 0.6937 1.0000
sifcct$income <- original$income[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave))]
summary(sifcct$income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04098 0.18484 0.40915 0.48581 0.78565 0.97505</pre>
```

Outcome Model

```
## Living in Local ZIP since at least age 15 ##
s4mo_10 <- lm(update(foreignsuff ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mo_1A <- lm(update(foreignsuff ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mo_1B <- lm(update(foreignsuff ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mo_1C <- lm(update(foreignsuff ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s4mo_10,s4mo_1A,s4mo_1B,s4mo_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s4mo_10,vcov.=vcovHC(s4mo_10))[,2],
                             coeftest(s4mo_1A,vcov.=vcovHC(s4mo_1A))[,2],
                             coeftest(s4mo_1B,vcov.=vcovHC(s4mo_1B))[,2],
                             coeftest(s4mo_1C,vcov.=vcovHC(s4mo_1C))[,2]),
          override.pvalues = list(coeftest(s4mo_10,vcov.=vcovHC(s4mo_10))[,4],
                                  coeftest(s4mo_1A,vcov.=vcovHC(s4mo_1A))[,4],
                                  coeftest(s4mo_1B,vcov.=vcovHC(s4mo_1B))[,4],
                                  coeftest(s4mo_1C,vcov.=vcovHC(s4mo_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
  _______
##
                                 Base
                                               ZIP
                                                            Municipality
                                                                          Full
## University education
                                   -0.0276
                                                 -0.0275
                                                              -0.0275
                                                                           -0.0275
##
                                   (0.0194)
                                                 (0.0194)
                                                              (0.0194)
                                                                           (0.0194)
## Gender (male)
                                   -0.0976 ***
                                                              -0.0967 ***
                                                                           -0.0975 ***
                                                 -0.0981 ***
                                   (0.0165)
                                                 (0.0166)
                                                              (0.0166)
                                                                           (0.0167)
## Age (by 10 years, centered at 45)
                                   -0.0054
                                                 -0.0052
                                                              -0.0056
                                                                           -0.0052
                                                 (0.0099)
                                                              (0.0099)
                                                                           (0.0099)
##
                                   (0.0099)
## University * Male
                                    0.0171
                                                 0.0171
                                                               0.0170
                                                                            0.0171
##
                                   (0.0239)
                                                 (0.0239)
                                                              (0.0239)
                                                                           (0.0239)
## University * Age
                                   -0.0121
                                                 -0.0121
                                                              -0.0120
                                                                           -0.0122
```

```
##
                                        (0.0141)
                                                       (0.0141)
                                                                      (0.0141)
                                                                                     (0.0141)
## University * Male * Age
                                        0.0107
                                                       0.0106
                                                                      0.0106
                                                                                     0.0109
##
                                        (0.0175)
                                                       (0.0176)
                                                                      (0.0175)
                                                                                     (0.0176)
## Male * Age
                                        0.0173
                                                       0.0171
                                                                      0.0174
                                                                                     0.0170
                                        (0.0122)
                                                       (0.0122)
                                                                      (0.0122)
                                                                                     (0.0122)
## % of Life Residing Locally (zip)
                                        0.0397
                                                       0.0389
                                                                      0.0376
                                                                                     0.0369
                                        (0.0438)
                                                                      (0.0439)
                                                                                     (0.0440)
                                                       (0.0439)
                                                                                    -0.0047
## DID residence (zip)
                                                      -0.0050
##
                                                       (0.0135)
                                                                                     (0.0173)
## Foreigner % sqrt. (zip)
                                                       0.0013
                                                                                    -0.0092
                                                       (0.0092)
                                                                                    (0.0126)
## University % by 10% (zip)
                                                      -0.0011
                                                                                    -0.0049
                                                       (0.0077)
                                                                                     (0.0107)
## DID proportion (mun.)
                                                                     -0.0074
                                                                                    -0.0025
                                                                      (0.0233)
                                                                                     (0.0298)
##
## Foreigner % sqrt. (mun.)
                                                                      0.0130
                                                                                     0.0214
##
                                                                      (0.0133)
                                                                                     (0.0176)
## University % by 10% (mun.)
                                                                      0.0014
                                                                                     0.0063
                                                                                     (0.0150)
##
                                                                      (0.0110)
## -----
          ._____
## R^2
                                        0.0267
                                                       0.0267
                                                                      0.0269
                                                                                     0.0272
## Adj. R^2
                                        0.0194
                                                       0.0187
                                                                      0.0189
                                                                                     0.0184
## Num. obs.
                                     3786
                                                    3786
                                                                   3786
                                                                                  3786
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
  if (gender=="Male") sifcct$gender <- sifcct$female</pre>
  if (gender=="Female") sifcct$gender <- sifcct$male</pre>
  sifcct$ageset <- (sifcct$age - ageset)/10</pre>
  if (sub==1) {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper) +</pre>
                   I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                   as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])</pre>
    subname = "Stayed"
  } else {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                data=sifcct[which(sifcct$age - sifcct$lvlen>=23),])
    subname = "Moved"
  }
 res <- c(gender,ageset,coef(modset)[2],</pre>
           coefci(modset, vcov.=vcovHC(modset), level = 0.95)[2,],
           coefci(modset, vcov.=vcovHC(modset), level = 0.90)[2,],
           coeftest(modset, vcov.=vcovHC(modset))[2,c(2,4)],
           subname)
  names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
  return(res)
```

```
lci90
       gender
                                                    lci95
                                                                       uci95
                   age
                                  :-0.051832
##
   Female:5
                     :25
                           Min.
                                               Min.
                                                       :-0.13185
                                                                  Min.
                                                                          :0.01050
                                                                                     Min.
                                                                                            :-0.11898
              Min.
   Male :5
              1st Qu.:35
                           1st Qu.:-0.024470
                                                1st Qu.:-0.06481
                                                                   1st Qu.:0.01777
                                                                                     1st Qu.:-0.05823
##
##
              Median:45
                           Median :-0.012352 Median :-0.05562
                                                                   Median :0.02388
                                                                                     Median : -0.04756
##
              Mean
                     :45
                           Mean
                                  :-0.018971
                                               Mean
                                                       :-0.06453
                                                                   Mean
                                                                          :0.02659
                                                                                     Mean
                                                                                            :-0.05720
##
                            3rd Qu.:-0.009471
                                                3rd Qu.:-0.04730
                                                                   3rd Qu.:0.03456
               3rd Qu.:55
                                                                                     3rd Qu.:-0.04172
##
              Max.
                    :65
                           Max.
                                   :-0.003189
                                               Max.
                                                       :-0.03787
                                                                   Max.
                                                                          :0.04764
                                                                                     Max.
                                                                                            :-0.03346
##
       uci90
                            se
                                                              lv
                                              p
          :0.00439
                    Min.
                            :0.01400
                                             :0.1560
                                                        Length:10
  Min.
                                       Min.
##
   1st Qu.:0.01303
                     1st Qu.:0.01769
                                       1st Qu.:0.2519
                                                         Class : character
## Median :0.01625
                     Median :0.02228
                                       Median :0.4805
                                                        Mode :character
## Mean
          :0.01926
                     Mean
                            :0.02324
                                       Mean
                                              :0.4748
   3rd Qu.:0.02641
                     3rd Qu.:0.02578
                                       3rd Qu.:0.6061
   Max.
           :0.03947
                     Max.
                           :0.04081
                                       Max.
                                              :0.9021
```

Outcome Model 2

```
## Living in Local ZIP since at least age 15 ##
# require(nnet)
\# s4mo2\_10 \leftarrow multinom(update(foreignsuff3x \sim ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen)]
\# s4mo2_1A <- multinom(update(foreignsuff3x ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen
 \# s4mo2\_1B \leftarrow multinom(update(foreignsuff3x \sim ., basemodB), data=sifcct[which(sifcct\$age - sifcct\$lvlender)] 
 \# s4mo2\_1C \gets multinom(update(foreignsuff3x ~ ., basemodC), data=sifcct[which(sifcct\$age - sifcct\$lvlender)] 
sifcct.mlogit <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                        shape = "wide", choice = "foreignsuff3x")
# # levels(sifcct.mlogit$idx$id2) <- c("Disagree", "Neither", "Agree")
s4mo2_10 <- mlogit(outmod0.mlogit, data=sifcct.mlogit, reflevel="Disagree")
s4mo2_1A <- mlogit(outmodA.mlogit, data=sifcct.mlogit, reflevel="Disagree")
s4mo2_1B <- mlogit(outmodB.mlogit, data=sifcct.mlogit, reflevel="Disagree")
s4mo2_1C <- mlogit(outmodC.mlogit, data=sifcct.mlogit, reflevel="Disagree")
screenreg(list(s4mo2_10,s4mo2_1A), digits = 4, #single.row = T,
          override.se = list(coeftest(s4mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s4mo2_10))),2]
                              coeftest(s4mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s4mo2_10))),2],
                              coeftest(s4mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s4mo2_1A))),2]
                              coeftest(s4mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s4mo2_1A))),2]),
```

```
##
  ______
##
                                   Base: Agree
                                                   Base: Neither
                                                                  ZIP: Agree
                                                                                 ZIP: Neither
                                      -0.1888 **
                                                      -0.3972
                                                                     -0.1890 **
                                                                                    -0.3981
  University education
                                      (0.1458)
                                                      (0.1477)
                                                                     (0.1457)
                                                                                    (0.1476)
  Gender (male)
                                      -0.6832 ***
                                                      -0.6968 ***
                                                                     -0.6887 ***
                                                                                    -0.7305 ***
##
                                      (0.1249)
                                                      (0.1282)
                                                                     (0.1259)
                                                                                    (0.1293)
                                                                     -0.0099 *
  Age (by 10 years, centered at 45)
                                      -0.0119 *
                                                      -0.1570
                                                                                    -0.1480
                                       (0.0746)
                                                      (0.0782)
                                                                     (0.0747)
                                                                                    (0.0782)
## University * Male
                                       0.2177
                                                      0.1554
                                                                      0.2180
                                                                                     0.1572
##
                                       (0.1776)
                                                      (0.1790)
                                                                     (0.1775)
                                                                                    (0.1790)
## University * Age
                                      -0.1163
                                                      0.1244
                                                                     -0.1166
                                                                                     0.1229
                                       (0.1046)
                                                      (0.1067)
                                                                     (0.1045)
                                                                                    (0.1067)
## University * Male * Age
                                       0.0695
                                                       0.0507
                                                                      0.0702
                                                                                     0.0551
                                                                                    (0.1308)
##
                                       (0.1292)
                                                      (0.1308)
                                                                     (0.1292)
## Male * Age
                                       0.1279
                                                      0.0490
                                                                      0.1258
                                                                                     0.0395
##
                                       (0.0909)
                                                      (0.0947)
                                                                     (0.0910)
                                                                                    (0.0947)
## % of Life Residing Locally (zip)
                                       0.4193
                                                      0.4131
                                                                      0.4113
                                                                                     0.3916
##
                                       (0.3162)
                                                      (0.3264)
                                                                                    (0.3268)
                                                                     (0.3176)
## DID residence (zip)
                                                                      0.0127
                                                                                    -0.0254
                                                                     (0.0979)
                                                                                    (0.0986)
## Foreigner % sqrt. (zip)
                                                                      0.0037
                                                                                    -0.0648
                                                                     (0.0669)
                                                                                    (0.0664)
## University % by 10% (zip)
                                                                     -0.0225
                                                                                    -0.0807
                                                                     (0.0561)
                                                                                    (0.0559)
##
## AIC
                                    8051.2164
                                                    8051.2164
                                                                   8058.2648
                                                                                  8058.2648
## Log Likelihood
                                    -3967.6082
                                                   -3967.6082
                                                                  -3965.1324
                                                                                 -3965.1324
                                                                   3786
## Num. obs.
                                     3786
                                                    3786
                                                                                  3786
                                       3
                                                       3
                                                                      3
                                                                                     3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
screenreg(list(s4mo2_1B,s4mo2_1C), digits = 4, #single.row = T,
         override.se = list(coeftest(s4mo2 1B,vcov=sandwich)[grep(":Neither",names(coef(s4mo2 1B))),2]
                           coeftest(s4mo2_1B,vcov=sandwich)[grep(":Agree",names(coef(s4mo2_1B))),2],
                           coeftest(s4mo2_1C,vcov=sandwich)[grep(":Neither",names(coef(s4mo2_1C))),2]
                           coeftest(s4mo2_1C,vcov=sandwich)[grep(":Agree",names(coef(s4mo2_1C))),2]),
         override.pvalues = list(coeftest(s4mo2_1B,vcov=sandwich)[grep(":Neither",names(coef(s4mo2_1B)
                                coeftest(s4mo2_1B,vcov=sandwich)[grep(":Agree",names(coef(s4mo2_1B)))
                                coeftest(s4mo2_1C,vcov=sandwich)[grep(":Neither",names(coef(s4mo2_1C))
                                coeftest(s4mo2_1C,vcov=sandwich)[grep(":Agree",names(coef(s4mo2_1C)))
```

beside = T,

```
##
Full: Agree
                                                Mun.: Neither
                                  Mun.: Agree
## -----
## University education
                                     -0.1879 **
                                                   -0.3970
                                                                  -0.1884 **
                                                                                -0.3978
##
                                    (0.1458)
                                                   (0.1477)
                                                                  (0.1457)
                                                                                (0.1478)
## Gender (male)
                                     -0.6754 ***
                                                   -0.7213 ***
                                                                  -0.6827 ***
                                                                                -0.7377 ***
                                                   (0.1292)
                                                                  (0.1260)
                                                                                (0.1297)
##
                                     (0.1255)
## Age (by 10 years, centered at 45)
                                    -0.0132 *
                                                   -0.1531
                                                                  -0.0101 *
                                                                                -0.1479
##
                                     (0.0747)
                                                   (0.0783)
                                                                  (0.0748)
                                                                                (0.0781)
## University * Male
                                     0.2165
                                                    0.1561
                                                                  0.2169
                                                                                 0.1575
##
                                     (0.1776)
                                                   (0.1790)
                                                                  (0.1775)
                                                                                (0.1791)
## University * Age
                                     -0.1149
                                                    0.1235
                                                                  -0.1161
                                                                                 0.1199
                                     (0.1045)
                                                   (0.1068)
                                                                  (0.1045)
                                                                                (0.1067)
## University * Male * Age
                                     0.0684
                                                    0.0527
                                                                  0.0705
                                                                                 0.0592
                                     (0.1293)
                                                   (0.1308)
                                                                  (0.1293)
                                                                                (0.1308)
                                                   0.0433
                                                                                 0.0365
## Male * Age
                                     0.1291
                                                                  0.1261
##
                                     (0.0911)
                                                   (0.0948)
                                                                  (0.0912)
                                                                                (0.0946)
## % of Life Residing Locally (zip)
                                     0.4073
                                                    0.3925
                                                                  0.4002
                                                                                 0.3790
                                     (0.3180)
                                                   (0.3265)
                                                                  (0.3185)
                                                                                (0.3269)
## DID residence (zip)
                                                                  -0.0199
                                                                                 0.1299
                                                                  (0.1209)
                                                                                (0.1247)
## Foreigner % sqrt. (zip)
                                                                  -0.0519
                                                                                -0.1288
                                                                  (0.0893)
                                                                                (0.0924)
## University % by 10% (zip)
                                                                  -0.0433
                                                                                -0.1078
                                                                  (0.0765)
                                                                                (0.0766)
## DID proportion (mun.)
                                     0.0658 +
                                                   -0.3159
                                                                  0.0865 *
                                                                                -0.4486
                                     (0.1721)
                                                   (0.1729)
                                                                  (0.2107)
                                                                                (0.2186)
## Foreigner % sqrt. (mun.)
                                     0.0609
                                                    0.0407
                                                                  0.1069
                                                                                 0.1577
                                     (0.0975)
                                                   (0.0964)
                                                                  (0.1287)
                                                                                (0.1299)
## University % by 10% (mun.)
                                    -0.0179
                                                   -0.0128
                                                                  0.0241
                                                                                 0.0937
                                     (0.0827)
                                                   (0.0799)
                                                                  (0.1100)
                                                                                (0.1079)
## AIC
                                   8054.9390
                                                 8054.9390
                                                                8062.5346
                                                                              8062.5346
## Log Likelihood
                                  -3963.4695
                                                 -3963.4695
                                                               -3961.2673
                                                                             -3961.2673
## Num. obs.
                                   3786
                                                 3786
                                                                3786
                                                                              3786
## K
                                                                  3
                                                                                 3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
 if (gender=="Male") sifcct$gender <- sifcct$female</pre>
 if (gender=="Female") sifcct$gender <- sifcct$male</pre>
 sifcct$ageset <- (sifcct$age - ageset)/10</pre>
 if (sub==1) {
   # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
                        I(c10\_sreg\_edu\_ugsP/10) + didper + sqrt(c10\_mun\_fper) + I(c10\_mun\_edu\_ugsP/1)
```

```
as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                       Hess = TRUE)
                   sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                                                                                                                                                   shape = "wide", choice = "foreignsuff3x")
                   # levels(sifcct.mloqit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")
                   modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)</pre>
                                                                                                             I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                                                                                                             as.factor(wave), data=sifcct.mlogit.tmp, reflevel = "Disagree")
                   subname = "Stayed"
         } else {
                   # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                                                       data=sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                      Hess = TRUE)
                   sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                                                   shape = "wide", choice = "foreignsuff3x")
                   # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
                   modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                                    data=sifcct.mlogit.tmp, reflevel = "Disagree")
                   subname = "Moved"
         }
         # modres <- extract(modset)</pre>
         # res <- c(gender,ageset,modres@coef[grep("^Agree: edu2$",modres@coef.names)],</pre>
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.975)*modres@se[grep("^Agree")] - qnorm(0.975)*modres@se[grep("^Agree")] - qnorm(0.975)*modres@se[grep("Agree")] - qnorm(0.975)*modres@se[gree]] - qnorm(0.97
          #
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree")] + qnorm(0.975)*modres@se[grep("^Agree")] + qnorm(0.975)*modres@se[grep("Agree")] + qnorm(0.975)*modres@se[gree]] + qnorm(0.97
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep(") agree: edu2\$", modres@s
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[grep(") edu2\$",
                                                             modres@se[grep("^Agree: edu2$",modres@coef.names)],
          #
                                                             modres@pvalues[grep("^Agree: edu2$", modres@coef.names)],
                                                             subname)
         res <- c(gender,ageset,coef(modset)[3],</pre>
                                                    coefci(modset, vcov=sandwich, level = 0.95)[3,],
                                                     coefci(modset, vcov=sandwich, level = 0.90)[3,],
                                                     coeftest(modset, vcov=sandwich)[3,c(2,4)],
                                                    subname)
         names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
         return(res)
}
outdt4m <- rbind(extout("Female",25,1),</pre>
                                                                                extout("Female", 35,1),
                                                                                 extout("Female", 45,1),
                                                                                 extout("Female",55,1),
                                                                                 extout("Female",65,1),
                                                                                extout("Male", 25, 1),
                                                                                extout("Male",35,1),
                                                                                 extout("Male", 45, 1),
                                                                                 extout("Male",55,1),
                                                                                 extout("Male",65,1))
```

```
outdt4m <- as.data.frame(outdt4m)</pre>
for(i in 2:9) outdt4m[,i] <- as.numeric(outdt4m[,i])</pre>
outdt4m$gender <- factor(outdt4m$gender, levels=unique(outdt4m$gender))
summary(outdt4m)
```

:-0.9264

:-0.3644

:-0.1376

Min

Med

Mea

3rd

Max

```
##
       gender
                                                    1ci95
                                                                      uci95
                                                                                        1ci90
                    age
##
   Female:5
                                   :-0.42059
                                                       :-1.0233
                                                                         :0.1014
                                                                                   Min.
               Min.
                      :25
                            Min.
                                               Min.
                                                                  Min.
##
   Male :5
               1st Qu.:35
                            1st Qu.:-0.15936
                                               1st Qu.:-0.4605
                                                                  1st Qu.:0.1873
                                                                                   1st Qu.:-0.4116
##
               Median:45
                            Median :-0.03978
                                               Median :-0.3487
                                                                  Median :0.2242
                                                                                   Median :-0.2949
##
               Mean
                      :45
                            Mean
                                  :-0.07992
                                               Mean
                                                     :-0.4190
                                                                  Mean
                                                                         :0.2591
                                                                                   Mean
##
               3rd Qu.:55
                            3rd Qu.: 0.04000
                                               3rd Qu.:-0.2502
                                                                  3rd Qu.:0.3178
                                                                                   3rd Qu.:-0.1962
                                 : 0.11967
                                                     :-0.1694
                                                                  Max. :0.4876
##
               Max.
                     :65
                            Max.
                                                                                   Max.
##
          se
                                           lv
           :0.1010
                            :0.1593
                                      Length:10
##
   Min.
                     Min.
                     1st Qu.:0.2828
##
   1st Qu.:0.1328
                                      Class : character
  Median :0.1618
                     Median :0.5881
                                      Mode :character
##
           :0.1729
                            :0.5449
  Mean
                     Mean
   3rd Qu.:0.1976
                     3rd Qu.:0.7635
```

Mediator Models

:0.3074

Max.

:0.8890

Knowledge

Max.

```
s4mm01_10 <- lm(update(knowledge ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm01_1A <- lm(update(knowledge ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm01_1B <- lm(update(knowledge ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm01_1C <- lm(update(knowledge ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s4mm01_10,s4mm01_1A,s4mm01_1B,s4mm01_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s4mm01_10,vcov.=vcovHC(s4mm01_10))[,2],
                             coeftest(s4mm01_1A,vcov.=vcovHC(s4mm01_1A))[,2],
                             coeftest(s4mm01_1B,vcov.=vcovHC(s4mm01_1B))[,2],
                             coeftest(s4mm01 1C,vcov.=vcovHC(s4mm01 1C))[,2]),
          override.pvalues = list(coeftest(s4mm01_10,vcov.=vcovHC(s4mm01_10))[,4],
                                  coeftest(s4mm01_1A,vcov.=vcovHC(s4mm01_1A))[,4],
                                  coeftest(s4mm01_1B,vcov.=vcovHC(s4mm01_1B))[,4],
                                  coeftest(s4mm01_1C,vcov.=vcovHC(s4mm01_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
##
                                                        ZIP
                                        Base
                                                                        Municipality
                                                                                        Full
## University education
                                           0.1616 ***
                                                           0.1615 ***
                                                                           0.1613 ***
                                                                                           0.1614 ***
##
                                          (0.0181)
                                                           (0.0180)
                                                                           (0.0181)
                                                                                           (0.0181)
## Gender (male)
                                           0.1914 ***
                                                           0.1972 ***
                                                                           0.1953 ***
                                                                                           0.1975 ***
##
                                          (0.0154)
                                                           (0.0156)
                                                                           (0.0155)
                                                                                           (0.0156)
                                           0.0567 ***
                                                           0.0547 ***
                                                                           0.0558 ***
                                                                                           0.0550 ***
## Age (by 10 years, centered at 45)
                                          (0.0092)
                                                          (0.0093)
                                                                           (0.0093)
                                                                                           (0.0093)
## University * Male
                                          -0.0389 +
                                                          -0.0390 +
                                                                          -0.0388 +
                                                                                          -0.0390 +
##
                                          (0.0214)
                                                           (0.0214)
                                                                           (0.0214)
                                                                                           (0.0214)
                                                                          -0.0137
## University * Age
                                          -0.0134
                                                          -0.0132
                                                                                          -0.0132
```

```
##
                                   (0.0127)
                                                (0.0126)
                                                             (0.0127)
                                                                          (0.0127)
                                                -0.0062
                                                             -0.0057
                                                                          -0.0064
## University * Male * Age
                                  -0.0057
##
                                   (0.0154)
                                                (0.0154)
                                                             (0.0154)
                                                                          (0.0154)
## Male * Age
                                   0.0047
                                                0.0066
                                                             0.0059
                                                                          0.0069
                                   (0.0112)
                                                (0.0112)
                                                             (0.0112)
                                                                          (0.0112)
## % of Life Residing Locally (zip)
                                   -0.1283 ***
                                                -0.1210 **
                                                             -0.1194 **
                                                                          -0.1175 **
                                   (0.0388)
                                                (0.0388)
                                                             (0.0388)
                                                                          (0.0388)
                                                                          -0.0177
## DID residence (zip)
                                                -0.0043
##
                                                (0.0113)
                                                                          (0.0143)
## Foreigner % sqrt. (zip)
                                                0.0020
                                                                          0.0113
                                                (0.0082)
                                                                          (0.0112)
## University % by 10% (zip)
                                                0.0198 **
                                                                          0.0155 +
                                                (0.0067)
                                                                          (0.0089)
## DID proportion (mun.)
                                                             0.0169
                                                                          0.0354
                                                             (0.0195)
##
                                                                          (0.0246)
## Foreigner % sqrt. (mun.)
                                                             -0.0139
                                                                          -0.0240
##
                                                             (0.0114)
                                                                          (0.0150)
## University % by 10% (mun.)
                                                             0.0206 *
                                                                          0.0056
                                                             (0.0091)
                                                                          (0.0119)
## R^2
                                   0.1951
                                                0.1974
                                                             0.1976
                                                                          0.1985
                                   0.1891
                                                0.1908
## Adj. R^2
                                                             0.1910
                                                                          0.1913
## Num. obs.
                                 3786
                                              3786
                                                           3786
                                                                        3786
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Ideology

```
s4mm02_10 <- lm(update(ideology ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm02_1A <- lm(update(ideology ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm02_1B <- lm(update(ideology ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm02_1C <- lm(update(ideology ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s4mm02_10,s4mm02_1A,s4mm02_1B,s4mm02_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s4mm02_10,vcov.=vcovHC(s4mm02_10))[,2],
                             coeftest(s4mm02_1A,vcov.=vcovHC(s4mm02_1A))[,2],
                             coeftest(s4mm02_1B,vcov.=vcovHC(s4mm02_1B))[,2],
                             coeftest(s4mm02_1C,vcov.=vcovHC(s4mm02_1C))[,2]),
          override.pvalues = list(coeftest(s4mm02_10,vcov.=vcovHC(s4mm02_10))[,4],
                                  coeftest(s4mm02 1A,vcov.=vcovHC(s4mm02 1A))[,4],
                                  coeftest(s4mm02_1B,vcov.=vcovHC(s4mm02_1B))[,4],
                                  coeftest(s4mm02 1C,vcov.=vcovHC(s4mm02 1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
  ______
                                         7.TP
                                                   Municipality Full
                              Base
## University education
                                -0.0088
                                          -0.0089
                                                     -0.0091
                                                                -0.0091
                                          (0.0114)
                                                                (0.0114)
                                (0.0114)
                                                     (0.0114)
## Gender (male)
                                -0.0206 *
                                          -0.0202 *
                                                     -0.0214 *
                                                                -0.0219 *
##
                                (0.0100)
                                          (0.0102)
                                                     (0.0101)
                                                                (0.0102)
                                -0.0093
## Age (by 10 years, centered at 45)
                                          -0.0097 +
                                                     -0.0094
                                                                -0.0092
```

```
##
                                          (0.0057)
                                                        (0.0058)
                                                                      (0.0057)
                                                                                     (0.0057)
## University * Male
                                           0.0132
                                                         0.0134
                                                                       0.0136
                                                                                      0.0136
##
                                          (0.0147)
                                                        (0.0147)
                                                                      (0.0147)
                                                                                     (0.0147)
## University * Age
                                           0.0031
                                                         0.0030
                                                                       0.0024
                                                                                      0.0022
##
                                          (0.0083)
                                                        (0.0083)
                                                                      (0.0083)
                                                                                     (0.0083)
## University * Male * Age
                                           0.0031
                                                         0.0032
                                                                                      0.0037
                                                                       0.0036
##
                                          (0.0109)
                                                        (0.0109)
                                                                      (0.0108)
                                                                                     (0.0108)
## Male * Age
                                           0.0021
                                                         0.0023
                                                                       0.0023
                                                                                      0.0020
##
                                          (0.0075)
                                                        (0.0075)
                                                                      (0.0075)
                                                                                     (0.0075)
## % of Life Residing Locally (zip)
                                           0.0186
                                                         0.0217
                                                                       0.0265
                                                                                      0.0260
                                           (0.0272)
                                                        (0.0272)
                                                                      (0.0272)
                                                                                     (0.0272)
## DID residence (zip)
                                                        -0.0031
                                                                                      0.0124
                                                        (0.0087)
                                                                                     (0.0104)
##
                                                                                      0.0015
## Foreigner % sqrt. (zip)
                                                        -0.0080
##
                                                        (0.0058)
                                                                                     (0.0077)
## University % by 10% (zip)
                                                         0.0052
                                                                                     -0.0044
##
                                                        (0.0049)
                                                                                     (0.0065)
## DID proportion (mun.)
                                                                      -0.0372 *
                                                                                     -0.0502 **
##
                                                                      (0.0157)
                                                                                     (0.0187)
## Foreigner % sqrt. (mun.)
                                                                      -0.0193 *
                                                                                     -0.0207 +
##
                                                                      (0.0084)
                                                                                     (0.0110)
## University % by 10% (mun.)
                                                                       0.0210 **
                                                                                      0.0252 **
                                                                      (0.0070)
                                                                                     (0.0092)
##
## R^2
                                           0.0082
                                                         0.0090
                                                                       0.0125
                                                                                      0.0129
## Adj. R^2
                                           0.0008
                                                         0.0008
                                                                       0.0044
                                                                                      0.0040
                                                      3786
## Num. obs.
                                        3786
                                                                    3786
                                                                                   3786
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

LDP - DPJ FT

```
s4mm03_10 <- lm(update(ldpdpjft ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm03_1A <- lm(update(ldpdpjft ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm03_1B <- lm(update(ldpdpjft ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm03_1C <- lm(update(ldpdpjft ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s4mm03_10,s4mm03_1A,s4mm03_1B,s4mm03_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s4mm03_10,vcov.=vcovHC(s4mm03_10))[,2],
                             coeftest(s4mm03 1A,vcov.=vcovHC(s4mm03 1A))[,2],
                             coeftest(s4mm03_1B,vcov.=vcovHC(s4mm03_1B))[,2],
                             coeftest(s4mm03 1C,vcov.=vcovHC(s4mm03 1C))[,2]),
          override.pvalues = list(coeftest(s4mm03_10,vcov.=vcovHC(s4mm03_10))[,4],
                                  coeftest(s4mm03_1A,vcov.=vcovHC(s4mm03_1A))[,4],
                                  coeftest(s4mm03 1B,vcov.=vcovHC(s4mm03 1B))[,4],
                                  coeftest(s4mm03 1C,vcov.=vcovHC(s4mm03 1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1, 0.05, 0.01, 0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
                                        (0.0096)
                                                      (0.0096)
                                                                     (0.0096)
                                                                                   (0.0096)
## Gender (male)
                                         0.0149 +
                                                       0.0150 +
                                                                     0.0143 +
                                                                                    0.0145 +
##
                                        (0.0079)
                                                      (0.0080)
                                                                     (0.0079)
                                                                                   (0.0080)
## Age (by 10 years, centered at 45)
                                         0.0012
                                                       0.0012
                                                                     0.0013
                                                                                   0.0013
##
                                        (0.0046)
                                                      (0.0046)
                                                                     (0.0046)
                                                                                   (0.0046)
## University * Male
                                                       0.0126
                                                                                   0.0126
                                         0.0126
                                                                     0.0126
##
                                        (0.0120)
                                                      (0.0120)
                                                                     (0.0120)
                                                                                   (0.0120)
## University * Age
                                        -0.0038
                                                      -0.0038
                                                                     -0.0039
                                                                                   -0.0039
##
                                        (0.0068)
                                                      (0.0068)
                                                                     (0.0068)
                                                                                   (0.0068)
## University * Male * Age
                                         0.0047
                                                       0.0047
                                                                     0.0048
                                                                                   0.0047
                                        (0.0087)
                                                      (0.0087)
                                                                     (0.0087)
                                                                                   (0.0087)
## Male * Age
                                        -0.0161 **
                                                      -0.0161 **
                                                                     -0.0162 **
                                                                                   -0.0161 **
                                        (0.0058)
                                                      (0.0058)
                                                                     (0.0058)
                                                                                   (0.0058)
##
## % of Life Residing Locally (zip)
                                         0.0261
                                                       0.0261
                                                                     0.0269
                                                                                    0.0271
##
                                        (0.0215)
                                                      (0.0215)
                                                                     (0.0216)
                                                                                   (0.0216)
## DID residence (zip)
                                                       0.0006
                                                                                    0.0046
##
                                                      (0.0069)
                                                                                   (0.0089)
## Foreigner % sqrt. (zip)
                                                       0.0006
                                                                                    0.0046
##
                                                      (0.0046)
                                                                                   (0.0064)
## University % by 10% (zip)
                                                       0.0001
                                                                                   0.0005
##
                                                      (0.0038)
                                                                                   (0.0051)
## DID proportion (mun.)
                                                                     -0.0065
                                                                                   -0.0114
##
                                                                     (0.0118)
                                                                                   (0.0152)
## Foreigner % sqrt. (mun.)
                                                                     -0.0035
                                                                                   -0.0078
##
                                                                     (0.0067)
                                                                                   (0.0090)
## University % by 10% (mun.)
                                                                     0.0016
                                                                                   0.0009
##
                                                                     (0.0056)
                                                                                   (0.0075)
## R^2
                                         0.0986
                                                       0.0986
                                                                     0.0987
                                                                                    0.0990
## Adj. R^2
                                         0.0918
                                                                                    0.0909
                                                       0.0911
                                                                     0.0913
## Num. obs.
                                      3786
                                                    3786
                                                                                 3786
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Favorability of South Korea

```
s4mm04_10 <- lm(update(familiarityFT_KOR ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s4mm04_1A <- lm(update(familiarityFT_KOR ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s4mm04_1B <- lm(update(familiarityFT_KOR ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s4mm04_1C <- lm(update(familiarityFT_KOR ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s4mm04_10,s4mm04_1A,s4mm04_1B,s4mm04_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s4mm04_10,vcov.=vcovHC(s4mm04_10))[,2],
                             coeftest(s4mm04_1A,vcov.=vcovHC(s4mm04_1A))[,2],
                             coeftest(s4mm04 1B,vcov.=vcovHC(s4mm04 1B))[,2],
                             coeftest(s4mm04 1C,vcov.=vcovHC(s4mm04 1C))[,2]),
          override.pvalues = list(coeftest(s4mm04 10,vcov.=vcovHC(s4mm04 10))[,4],
                                  coeftest(s4mm04_1A,vcov.=vcovHC(s4mm04_1A))[,4],
                                  coeftest(s4mm04_1B,vcov.=vcovHC(s4mm04_1B))[,4],
                                  coeftest(s4mm04_1C,vcov.=vcovHC(s4mm04_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

	Base	ZIP	Municipality	Full
University education	0.0024	0.0024	0.0024	0.0023
	(0.0148)	(0.0148)	(0.0148)	(0.0148)
Gender (male)	-0.0472 ***	-0.0465 ***	-0.0452 ***	-0.0461 **
	(0.0125)	(0.0126)	(0.0126)	(0.0127)
Age (by 10 years, centered at 45)	0.0001	-0.0001	-0.0003	-0.0000
	(0.0079)	(0.0079)	(0.0079)	(0.0079)
University * Male	-0.0067	-0.0067	-0.0068	-0.0067
	(0.0179)	(0.0179)	(0.0179)	(0.0179)
University * Age	0.0007	0.0008	0.0007	0.0005
	(0.0111)	(0.0111)	(0.0111)	(0.0111)
University * Male * Age	-0.0070	-0.0071	-0.0070	-0.0067
	(0.0134)	(0.0134)	(0.0134)	(0.0134)
Male * Age	0.0309 **	0.0311 **	0.0313 **	0.0310 **
	(0.0096)	(0.0096)	(0.0096)	(0.0096)
% of Life Residing Locally (zip)	0.0032	0.0037	0.0030	0.0023
	(0.0334)	(0.0334)	(0.0335)	(0.0335)
DID residence (zip)		-0.0010		0.0014
- -		(0.0100)		(0.0125)
Foreigner % sqrt. (zip)		0.0018		-0.0085
		(0.0067)		(0.0088)
University % by 10% (zip)		0.0019		-0.0052
		(0.0058)		(0.0079)
DID proportion (mun.)			-0.0088	-0.0101
			(0.0173)	(0.0216)
Foreigner % sqrt. (mun.)			0.0126	0.0204
			(0.0100)	(0.0131)
University % by 10% (mun.)			0.0083	0.0134
			(0.0084)	(0.0112)
R^2	0.0753	0.0754	0.0761	0.0764
Adj. R^2	0.0684	0.0677	0.0685	0.0680
Num. obs.	3786	3786	3786	3786

Favorability of China

```
omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
custom.coef.map = vnmap,
custom.model.names = c("Base","ZIP","Municipality","Full"))
```

#	Base	ZIP	Municipality	Full
# # University education	-0.0073	-0.0073	-0.0073	-0.0074
#	(0.0123)	(0.0123)	(0.0123)	(0.0123)
# Gender (male)	-0.0140	-0.0161	-0.0158	-0.0167
#	(0.0108)	(0.0110)	(0.0109)	(0.0110)
# Age (by 10 years, centered at 45)	-0.0159 *	-0.0154 *	-0.0155 *	-0.0153
#	(0.0067)	(0.0067)	(0.0067)	(0.0067)
# University * Male	0.0125	0.0127	0.0126	0.0127
#	(0.0150)	(0.0150)	(0.0150)	(0.0150)
# University * Age	-0.0011	-0.0013	-0.0012	-0.0015
#	(0.0092)	(0.0092)	(0.0092)	(0.0092)
# University * Male * Age	-0.0048	-0.0045	-0.0047	-0.0043
#	(0.0112)	(0.0112)	(0.0112)	(0.0112)
# Male * Age	0.0188 *	0.0182 *	0.0184 *	0.0180
#	(0.0081)	(0.0081)	(0.0081)	(0.0081)
# % of Life Residing Locally (zip)	-0.0056	-0.0061	-0.0053	-0.0060
#	(0.0281)	(0.0282)	(0.0282)	(0.0282)
# DID residence (zip)		0.0033		0.0108
#		(0.0084)		(0.0103)
# Foreigner % sqrt. (zip)		-0.0083		-0.0078
#		(0.0057)		(0.0076)
# University % by 10% (zip)		-0.0048		-0.0052
#		(0.0049)		(0.0065)
# DID proportion (mun.)			-0.0107	-0.0217
#			(0.0146)	(0.0180)
# Foreigner % sqrt. (mun.)			-0.0071	0.0000
#			(0.0079)	(0.0104)
# University % by 10% (mun.)			-0.0020	0.0032
#			(0.0070)	(0.0092)
# # R^2	0.0345	0.0353	0.0352	0.0357
# Adj. R^2	0.0273	0.0273	0.0272	0.0270
# Num. obs.	3786	3786	3786	3786

Favorability of USA

		ZIP	Municipality	Full
University education	-0.0085	-0.0085	-0.0085	-0.0086
•	(0.0125)	(0.0125)	(0.0125)	(0.0126)
Gender (male)	0.0340 **	0.0350 **	0.0362 **	0.0354 *
	(0.0110)	(0.0111)	(0.0110)	(0.0111)
Age (by 10 years, centered at 45)	0.0044	0.0040	0.0039	0.0042
	(0.0067)	(0.0067)	(0.0067)	(0.0067)
University * Male	0.0160	0.0160	0.0159	0.0160
	(0.0155)	(0.0155)	(0.0155)	(0.0155)
University * Age	-0.0095	-0.0095	-0.0096	-0.0098
	(0.0093)	(0.0093)	(0.0093)	(0.0093)
University * Male * Age	0.0175	0.0175	0.0175	0.0178
	(0.0115)	(0.0115)	(0.0115)	(0.0115)
Male * Age	0.0054	0.0057	0.0060	0.0056
•	(0.0082)	(0.0082)	(0.0082)	(0.0082)
% of Life Residing Locally (zip)	-0.0464 +	-0.0445	-0.0437	-0.0444
, , , , , , , , , , , , , , , , , , ,	(0.0281)	(0.0281)	(0.0282)	(0.0282)
DID residence (zip)		0.0038		0.0039
•		(0.0090)		(0.0111)
Foreigner % sqrt. (zip)		-0.0031		-0.0095
		(0.0063)		(0.0084)
University % by 10% (zip)		0.0034		-0.0053
3 44 3 44 1		(0.0051)		(0.0068)
DID proportion (mun.)			-0.0009	-0.0047
1 1			(0.0160)	(0.0197)
Foreigner % sqrt. (mun.)			0.0022	0.0109
8 7 7 7			(0.0088)	(0.0114)
University % by 10% (mun.)			0.0112	0.0165 +
·			(0.0076)	(0.0100)
R^2	0.0282	0.0285	0.0292	0.0297
Adj. R^2	0.0210	0.0205	0.0212	0.0209
Num. obs.	3786	3786	3786	3786

Income

```
s4mm07_10 <- lm(update(income ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm07_1A <- lm(update(income ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s4mm07_1B <- lm(update(income ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
```

	Base		Municipality	
University education			0.1048 ***	
	(0.0164)	(0.0162)	(0.0162)	(0.0162)
Gender (male)	-0.0020	0.0073	0.0059	0.0081
	(0.0135)	(0.0135)	(0.0135)	(0.0135)
Age (by 10 years, centered at 45)	0.0235 **	0.0205 *	0.0219 **	0.0206 *
	(0.0084)	(0.0083)	(0.0083)	(0.0083)
University * Male	0.0049	0.0046	0.0046	0.0046
•	(0.0199)	(0.0198)	(0.0198)	(0.0198)
University * Age	-0.0190	-0.0186	-0.0194	-0.0190
•	(0.0123)	(0.0122)	(0.0122)	(0.0122)
University * Male * Age	0.0313 *	0.0305 *	0.0313 *	0.0311 *
, c	(0.0151)	(0.0150)	(0.0150)	(0.0150)
Male * Age	-0.0273 **	-0.0243 *		-0.0245 *
	(0.0103)	(0.0102)	(0.0102)	(0.0102)
% of Life Residing Locally (zip)	-0.0897 *	-0.0788 *	-0.0838 *	-0.0814 *
	(0.0366)	(0.0366)	(0.0367)	(0.0367)
DID residence (zip)		-0.0066		-0.0023
1		(0.0108)		(0.0133)
Foreigner % sqrt. (zip)		0.0063		-0.0120
3 4 7 4 1 7		(0.0076)		(0.0095)
University % by 10% (zip)		0.0309 ***		0.0195 *
in the state of th		(0.0063)		(0.0088)
DID proportion (mun.)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0.0221	-0.0175
			(0.0192)	(0.0235)
Foreigner % sqrt. (mun.)			0.0247 *	0.0365 **
1010181101 // 24101 (mail)			(0.0109)	(0.0138)
University % by 10% (mun.)			0.0394 ***	
			(0.0090)	(0.0124)
R^2	0.0506		0.0583	0.0600
Adj. R^2	0.0435	0.0498		
Num. obs.	3786	3786	3786	3786

With Matched Data (Lambda = 350 km)

```
sifcct <- readRDS(datadir5)
sifcct$agex <- sifcct$age/10 - 4.5
sifcct$ldpdpjft <- original$ldpdpjft[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave
summary(sifcct$ldpdpjft)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.5000 0.5000 0.5701 0.6750 1.0000
sifcct$income <- original$income[match(paste(sifcct$id,sifcct$wave),paste(original$id,original$wave))]
summary(sifcct$income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04098 0.18484 0.40915 0.48501 0.78565 0.97505</pre>
```

Outcome Model

```
## Living in Local ZIP since at least age 15 ##
s5mo_10 <- lm(update(foreignsuff ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mo_1A <- lm(update(foreignsuff ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mo_1B <- lm(update(foreignsuff ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mo_1C <- lm(update(foreignsuff ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s5mo_10,s5mo_1A,s5mo_1B,s5mo_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mo_10,vcov.=vcovHC(s5mo_10))[,2],
                             coeftest(s5mo_1A,vcov.=vcovHC(s5mo_1A))[,2],
                             coeftest(s5mo_1B,vcov.=vcovHC(s5mo_1B))[,2],
                             coeftest(s5mo_1C,vcov.=vcovHC(s5mo_1C))[,2]),
          override.pvalues = list(coeftest(s5mo_10,vcov.=vcovHC(s5mo_10))[,4],
                                  coeftest(s5mo_1A,vcov.=vcovHC(s5mo_1A))[,4],
                                  coeftest(s5mo_1B,vcov.=vcovHC(s5mo_1B))[,4],
                                  coeftest(s5mo_1C,vcov.=vcovHC(s5mo_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

##				
## ============= ## ##	Base	ZIP	Municipality	Full
## ## University education	-0.0237	-0.0237	-0.0237	-0.0237
##	(0.0181)	(0.0181)	(0.0181)	(0.0181)
## Gender (male)	-0.0929 ***	-0.0949 ***	-0.0944 ***	-0.0947 ***
##	(0.0154)	(0.0155)	(0.0155)	(0.0156)
## Age (by 10 years, centered at 45)	-0.0025	-0.0019	-0.0021	-0.0020
##	(0.0092)	(0.0093)	(0.0093)	(0.0093)
## University * Male	0.0158	0.0158	0.0158	0.0158
##	(0.0223)	(0.0223)	(0.0223)	(0.0224)
## University * Age	-0.0074	-0.0074	-0.0073	-0.0073
*#	(0.0131)	(0.0131)	(0.0131)	(0.0132)
## University * Male * Age	0.0045	0.0045	0.0047	0.0047
##	(0.0163)	(0.0163)	(0.0163)	(0.0164)
## Male * Age	0.0130	0.0125	0.0124	0.0123

```
##
                                        (0.0114)
                                                        (0.0114)
                                                                       (0.0114)
                                                                                      (0.0114)
## % of Life Residing Locally (zip)
                                         0.0430
                                                        0.0409
                                                                       0.0395
                                                                                       0.0393
                                        (0.0407)
                                                        (0.0408)
                                                                       (0.0408)
                                                                                      (0.0408)
## DID residence (zip)
                                                       -0.0083
                                                                                      -0.0061
                                                        (0.0125)
                                                                                      (0.0157)
## Foreigner % sqrt. (zip)
                                                        0.0013
                                                                                      -0.0054
                                                        (0.0087)
                                                                                      (0.0117)
                                                                                      -0.0019
## University % by 10% (zip)
                                                       -0.0046
##
                                                        (0.0074)
                                                                                      (0.0102)
                                                                       -0.0110
                                                                                      -0.0047
## DID proportion (mun.)
                                                                       (0.0218)
                                                                                      (0.0273)
## Foreigner % sqrt. (mun.)
                                                                       0.0107
                                                                                       0.0158
                                                                       (0.0127)
                                                                                      (0.0167)
## University % by 10% (mun.)
                                                                       -0.0073
                                                                                      -0.0054
                                                                       (0.0106)
                                                                                      (0.0143)
##
                                         0.0218
                                                        0.0222
                                                                                       0.0224
## R^2
                                                                       0.0223
## Adj. R^2
                                         0.0154
                                                        0.0150
                                                                       0.0151
                                                                                       0.0146
                                      4280
                                                     4280
## Num. obs.
                                                                     4280
                                                                                    4280
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
  if (gender=="Male") sifcct$gender <- sifcct$female</pre>
  if (gender=="Female") sifcct$gender <- sifcct$male</pre>
  sifcct$ageset <- (sifcct$age - ageset)/10</pre>
  if (sub==1) {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper) +</pre>
                   I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                   as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
    subname = "Stayed"
  } else {
   modset <- lm(foreignsuff ~ edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                 data=sifcct[which(sifcct$age - sifcct$lvlen>=23),])
    subname = "Moved"
  }
 res <- c(gender,ageset,coef(modset)[2],</pre>
           coefci(modset, vcov.=vcovHC(modset), level = 0.95)[2,],
           coefci(modset, vcov.=vcovHC(modset), level = 0.90)[2,],
           coeftest(modset, vcov.=vcovHC(modset))[2,c(2,4)],
           subname)
  names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
  return(res)
}
outdt5 <- rbind(extout("Female",25),</pre>
                extout("Female",35),
                extout("Female",45),
```

```
uci95
                                                                                             lci90
##
       gender
                                                      1ci95
                    age
                                  est
##
    Female:5
                       :25
                                    :-0.038274
                                                  Min.
                                                         :-0.11295
                                                                      Min.
                                                                             :0.01172
                                                                                         Min.
                                                                                                :-0.10094
               Min.
                             Min.
                                                                      1st Qu.:0.01878
##
    Male:5
                             1st Qu.:-0.021901
                                                  1st Qu.:-0.05917
                                                                                         1st Qu.:-0.05303
               1st Qu.:35
##
               Median:45
                             Median :-0.011722
                                                  Median : -0.05309
                                                                      Median :0.02420
                                                                                         Median :-0.04661
##
               Mean
                       :45
                             Mean
                                    :-0.015805
                                                  Mean
                                                         :-0.05833
                                                                      Mean
                                                                              :0.02672
                                                                                         Mean
                                                                                                :-0.05149
                             3rd Qu.:-0.008209
                                                  3rd Qu.:-0.04414
##
               3rd Qu.:55
                                                                      3rd Qu.:0.03559
                                                                                         3rd Qu.:-0.03841
##
                       :65
                                    :-0.002781
                                                          :-0.03367
                                                                      Max.
                                                                              :0.04323
                                                                                                :-0.02952
               Max.
                             Max.
                                                  Max.
                                                                                         Max.
##
        uci90
                                                                  lv
                              se
##
    Min.
           :0.006024
                       Min.
                               :0.01315
                                           Min.
                                                  :0.1896
                                                            Length: 10
##
    1st Qu.:0.013199
                        1st Qu.:0.01651
                                           1st Qu.:0.3186
                                                            Class : character
  Median :0.019037
                       Median :0.02077
                                          Median :0.5364
                                                            Mode : character
## Mean
           :0.019884
                       Mean
                               :0.02169
                                          Mean
                                                  :0.5089
##
   3rd Qu.:0.025407
                        3rd Qu.:0.02407
                                           3rd Qu.:0.6743
   Max.
           :0.035831
                       Max.
                               :0.03809
                                          Max.
                                                  :0.9057
```

Outcome Model 2

```
## Living in Local ZIP since at least age 15 ##
# require(nnet)
\# s5mo2\_10 \leftarrow multinom(update(foreignsuff3x \sim ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen)]
\# s5mo2\_1A \leftarrow multinom(update(foreignsuff3x \sim ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen)]
\# s5mo2\_1B \leftarrow multinom(update(foreignsuff3x \sim ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlender])
\# s5mo2\_1C \leftarrow multinom(update(foreignsuff3x \sim ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen)]
sifcct.mlogit <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
                        shape = "wide", choice = "foreignsuff3x")
# # levels(sifcct.mlogit$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
s5mo2_10 <- mlogit(outmod0.mlogit, data=sifcct.mlogit, reflevel="Disagree")
s5mo2_1A <- mlogit(outmodA.mlogit, data=sifcct.mlogit, reflevel="Disagree")
s5mo2_1B <- mlogit(outmodB.mlogit, data=sifcct.mlogit, reflevel="Disagree")
s5mo2_1C <- mlogit(outmodC.mlogit, data=sifcct.mlogit, reflevel="Disagree")
screenreg(list(s5mo2_10,s5mo2_1A), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_10))),2]
                              coeftest(s5mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s5mo2_10))),2],
                              coeftest(s5mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_1A))),2]
                              coeftest(s5mo2_1A,vcov=sandwich)[grep(":Agree",names(coef(s5mo2_1A))),2]),
          override.pvalues = list(coeftest(s5mo2_10,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_10)
                                    coeftest(s5mo2_10,vcov=sandwich)[grep(":Agree",names(coef(s5mo2_10)))
                                    coeftest(s5mo2_1A,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_1A)
```

```
##
## University education
                                         -0.1550 **
                                                         -0.4082
                                                                        -0.1551 **
                                                                                         -0.4107
                                                         (0.1389)
                                                                         (0.1366)
                                                                                         (0.1389)
##
                                         (0.1366)
## Gender (male)
                                         -0.6468 ***
                                                         -0.7075 ***
                                                                        -0.6606 ***
                                                                                         -0.7540 ***
##
                                         (0.1168)
                                                         (0.1210)
                                                                         (0.1181)
                                                                                         (0.1223)
  Age (by 10 years, centered at 45)
                                         0.0063
                                                        -0.1007
                                                                         0.0110
                                                                                         -0.0893
##
                                         (0.0698)
                                                         (0.0734)
                                                                         (0.0699)
                                                                                         (0.0733)
## University * Male
                                         0.1901
                                                         0.2103
                                                                         0.1904
                                                                                         0.2135
##
                                         (0.1661)
                                                         (0.1683)
                                                                         (0.1661)
                                                                                         (0.1683)
## University * Age
                                         -0.0821
                                                         0.0909
                                                                        -0.0824
                                                                                         0.0888
##
                                         (0.0975)
                                                         (0.1003)
                                                                         (0.0974)
                                                                                         (0.1003)
## University * Male * Age
                                         0.0318
                                                         0.0526
                                                                          0.0323
                                                                                         0.0583
##
                                         (0.1205)
                                                         (0.1223)
                                                                         (0.1205)
                                                                                         (0.1223)
## Male * Age
                                         0.0976
                                                         -0.0059
                                                                         0.0935
                                                                                         -0.0172
##
                                         (0.0851)
                                                         (0.0884)
                                                                         (0.0852)
                                                                                         (0.0884)
## % of Life Residing Locally (zip)
                                         0.4482
                                                         0.2880
                                                                                         0.2727
                                                                         0.4317
                                         (0.2980)
                                                         (0.3080)
                                                                         (0.2990)
                                                                                         (0.3083)
## DID residence (zip)
                                                                        -0.0162
                                                                                         -0.0708
                                                                         (0.0908)
                                                                                         (0.0914)
##
## Foreigner % sqrt. (zip)
                                                                         0.0115 +
                                                                                         -0.1067
                                                                         (0.0642)
                                                                                         (0.0613)
## University % by 10% (zip)
                                                                        -0.0406
                                                                                         -0.0815
                                                                         (0.0534)
                                                                                         (0.0540)
##
## AIC
                                       9143.2694
                                                       9143.2694
                                                                      9144.8164
                                                                                       9144.8164
## Log Likelihood
                                      -4513.6347
                                                      -4513.6347
                                                                      -4508.4082
                                                                                      -4508.4082
                                       4280
                                                       4280
## Num. obs.
                                                                       4280
                                                                                       4280
                                         3
                                                          3
                                                                          3
                                                                                          3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
screenreg(list(s5mo2_1B,s5mo2_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mo2_1B,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_1B))),2]
                             coeftest(s5mo2_1B,vcov=sandwich)[grep(":Agree",names(coef(s5mo2_1B))),2],
                             coeftest(s5mo2_1C,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_1C))),2]
                             coeftest(s5mo2_1C,vcov=sandwich)[grep(":Agree",names(coef(s5mo2_1C))),2]),
          override.pvalues = list(coeftest(s5mo2_1B,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_1B)
                                 coeftest(s5mo2 1B,vcov=sandwich)[grep(":Agree",names(coef(s5mo2 1B)))
                                 coeftest(s5mo2_1C,vcov=sandwich)[grep(":Neither",names(coef(s5mo2_1C)
                                 coeftest(s5mo2_1C,vcov=sandwich)[grep(":Agree",names(coef(s5mo2_1C)))
         beside = T,
          omit.coef = "(wave)", stars = c(0.1, 0.05, 0.01, 0.001), symbol = "+",
          custom.coef.map = vnmap,
```

custom.model.names = c("Mun.: Agree", "Mun.: Neither",

"Full: Agree", "Full: Neither"))

```
##
                                      Mun.: Agree
                                                      Mun.: Neither
                                                                       Full: Agree
                                                                                       Full: Neither
##
## University education
                                         -0.1548 **
                                                          -0.4108
                                                                          -0.1550 **
                                                                                          -0.4126
##
                                         (0.1366)
                                                          (0.1389)
                                                                          (0.1365)
                                                                                           (0.1390)
## Gender (male)
                                                                                          -0.7656 ***
                                         -0.6567 ***
                                                          -0.7549 ***
                                                                          -0.6591 ***
##
                                          (0.1177)
                                                          (0.1222)
                                                                          (0.1183)
                                                                                           (0.1228)
## Age (by 10 years, centered at 45)
                                          0.0088
                                                          -0.0905
                                                                           0.0099
                                                                                          -0.0886
                                          (0.0699)
                                                          (0.0735)
                                                                          (0.0700)
                                                                                           (0.0733)
## University * Male
                                          0.1901
                                                          0.2139
                                                                           0.1901
                                                                                           0.2157
##
                                          (0.1662)
                                                          (0.1683)
                                                                          (0.1662)
                                                                                           (0.1683)
## University * Age
                                         -0.0812
                                                          0.0869
                                                                          -0.0813
                                                                                           0.0858
                                         (0.0975)
                                                          (0.1004)
                                                                          (0.0974)
                                                                                           (0.1003)
## University * Male * Age
                                          0.0323
                                                          0.0586
                                                                           0.0326
                                                                                           0.0640
                                         (0.1207)
                                                          (0.1223)
                                                                          (0.1206)
                                                                                           (0.1223)
## Male * Age
                                          0.0942
                                                          -0.0177
                                                                           0.0934
                                                                                          -0.0218
##
                                          (0.0852)
                                                          (0.0885)
                                                                          (0.0854)
                                                                                           (0.0885)
## % of Life Residing Locally (zip)
                                          0.4265
                                                          0.2673
                                                                           0.4233
                                                                                           0.2641
                                          (0.2991)
                                                          (0.3078)
                                                                                           (0.3080)
##
                                                                          (0.2991)
## DID residence (zip)
                                                                          -0.0164
                                                                                           0.0508
                                                                          (0.1107)
                                                                                           (0.1138)
## Foreigner % sqrt. (zip)
                                                                          -0.0075 +
                                                                                          -0.1494
                                                                          (0.0862)
                                                                                           (0.0826)
## University % by 10% (zip)
                                                                          -0.0153
                                                                                          -0.0517
##
                                                                          (0.0724)
                                                                                           (0.0735)
## DID proportion (mun.)
                                         -0.0013 +
                                                          -0.2928
                                                                           0.0153 +
                                                                                          -0.3395
##
                                         (0.1615)
                                                          (0.1616)
                                                                          (0.1959)
                                                                                           (0.2005)
## Foreigner % sqrt. (mun.)
                                          0.0453
                                                          -0.0150
                                                                           0.0513
                                                                                           0.1230
                                         (0.0925)
                                                          (0.0916)
                                                                          (0.1226)
                                                                                           (0.1215)
## University % by 10% (mun.)
                                         -0.0668
                                                          -0.0736
                                                                          -0.0528
                                                                                          -0.0206
                                          (0.0785)
                                                          (0.0771)
                                                                          (0.1036)
                                                                                           (0.1031)
## AIC
                                       9143.3037
                                                        9143.3037
                                                                        9151.4122
                                                                                        9151.4122
## Log Likelihood
                                      -4507.6518
                                                       -4507.6518
                                                                       -4505.7061
                                                                                       -4505.7061
                                       4280
                                                        4280
                                                                        4280
                                                                                        4280
## Num. obs.
                                          3
                                                           3
                                                                           3
                                                                                           3
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
extout <- function(gender,ageset,sub=1) {</pre>
  if (gender=="Male") sifcct$gender <- sifcct$female</pre>
  if (gender=="Female") sifcct$gender <- sifcct$male</pre>
  sifcct$ageset <- (sifcct$age - ageset)/10</pre>
  if (sub==1) {
    # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)
    #
                           I(c10\_sreg\_edu\_ugsP/10) + didper + sqrt(c10\_mun\_fper) + I(c10\_mun\_edu\_ugsP/1)
                           as.factor(wave), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
    #
                         Hess = TRUE)
    sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen<=15),],</pre>
```

```
shape = "wide", choice = "foreignsuff3x")
                   # levels(sifcct.mloqit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")
                  modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + zip_did + sqrt(c10_sreg_fper)</pre>
                                                                                                             I(c10_sreg_edu_ugsP/10) + didper + sqrt(c10_mun_fper) + I(c10_mun_edu_ugsP/10) +
                                                                                                            as.factor(wave), data=sifcct.mlogit.tmp, reflevel = "Disagree")
                   subname = "Stayed"
        } else {
                   # modset <- multinom(foreignsuff3x ~ edu2 * gender * ageset + lupr + as.factor(wave),</pre>
                                                                                                                      data=sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                      Hess = TRUE)
                   sifcct.mlogit.tmp <- dfidx(sifcct[which(sifcct$age - sifcct$lvlen>=23),],
                                                                                                                                                   shape = "wide", choice = "foreignsuff3x")
                   # levels(sifcct.mlogit.tmp$idx$id2) <- c("Disagree", "Neither", "Agree")</pre>
                  modset <- mlogit(foreignsuff3x ~ 0 | edu2 * gender * ageset + lvpr + as.factor(wave),</pre>
                                                                                                   data=sifcct.mlogit.tmp, reflevel = "Disagree")
                   subname = "Moved"
         }
         # modres <- extract(modset)</pre>
         # res <- c(qender,ageset,modres@coef[qrep("^Agree: edu2$",modres@coef.names)],</pre>
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.975)*modres@se[grep("^Agree = 0.975) + modres@se[grep("^Agree = 0.975) + modres@se[gree = 0.975] + modres@se[g
          #
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.975)*modres@se[grep("^Agree")] + qnorm(0.975)*modres@se[grep("^Agree")] + qnorm(0.975)*modres@se[grep("Agree")] + qnorm(0.975)*modres@se[gree]] + qnorm(0.97
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] - qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep("^Agree: edu2\$", modres@se[grep(") ed
          #
                                                             modres@coef[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@coef.names)] + qnorm(0.95)*modres@se[grep("^Agree: edu2\$", modres@se[grep(") agree: edu2\$", modres@s
          #
                                                             modres@se[grep("^Agree: edu2$",modres@coef.names)],
                                                             modres@pvalues[grep("^Agree: edu2$", modres@coef.names)],
         #
                                                             subname)
         res <- c(gender,ageset,coef(modset)[3],</pre>
                                                     coefci(modset, vcov=sandwich, level = 0.95)[3,],
                                                     coefci(modset, vcov=sandwich, level = 0.90)[3,],
                                                     coeftest(modset, vcov=sandwich)[3,c(2,4)],
                                                    subname)
         names(res) <- c("gender", "age", "est", "lci95", "uci95", "lci90", "uci90", "se", "p", "lv")</pre>
        return(res)
}
outdt5m <- rbind(extout("Female",25,1),</pre>
                                                                                extout("Female",35,1),
                                                                                extout("Female", 45,1),
                                                                                extout("Female",55,1),
                                                                                extout("Female",65,1),
                                                                                extout("Male", 25, 1),
                                                                                extout("Male", 35,1),
                                                                                extout("Male",45,1),
                                                                                extout("Male",55,1),
                                                                                extout("Male",65,1))
outdt5m <- as.data.frame(outdt5m)</pre>
for(i in 2:9) outdt5m[,i] <- as.numeric(outdt5m[,i])</pre>
outdt5m$gender <- factor(outdt5m$gender, levels=unique(outdt5m$gender))</pre>
```

```
summary(outdt5m)
##
                                                      lci95
                                                                         uci95
                                                                                           1ci90
       gender
                     age
                                   est
##
    Female:5
               Min.
                       :25
                             Min.
                                     :-0.31747
                                                         :-0.8854
                                                                     Min.
                                                                            :0.1175
                                                                                       Min.
                                                                                              :-0.7940
                                                                                                          Min
    Male :5
                1st Qu.:35
                             1st Qu.:-0.13464
                                                 1st Qu.:-0.4166
                                                                     1st Qu.:0.1904
                                                                                       1st Qu.:-0.3708
                                                                                                          1st
##
               Median:45
                             Median :-0.03787
                                                 Median :-0.3459
                                                                     Median :0.2358
                                                                                       Median :-0.2956
                                                                                                          Med
##
               Mean
                       :45
                             Mean
                                     :-0.05990
                                                 Mean
                                                         :-0.3777
                                                                     Mean
                                                                            :0.2578
                                                                                       Mean
                                                                                              :-0.3265
                                                                                                          Mea
##
               3rd Qu.:55
                             3rd Qu.: 0.02825
                                                  3rd Qu.:-0.2163
                                                                     3rd Qu.:0.3065
                                                                                       3rd Qu.:-0.1660
                                                                                                          3rd
##
                                                                            :0.4741
                                                                                       Max.
               Max.
                       :65
                             Max.
                                     : 0.13251
                                                 Max.
                                                         :-0.1508
                                                                    Max.
                                                                                              :-0.1161
                                                                                                          Max
##
          se
                                              ٦٧
                                         Length:10
##
   Min.
           :0.09486
                       Min.
                              :0.2465
    1st Qu.:0.12395
                       1st Qu.:0.3166
                                         Class : character
   Median :0.15161
                       Median :0.5324
                                         Mode :character
##
    Mean
           :0.16207
                              :0.5586
                       Mean
                       3rd Qu.:0.7095
##
    3rd Qu.:0.18444
    Max.
           :0.28966
                       Max.
                              :0.9679
```

Mediator Models

Knowledge

```
s5mm01_10 <- lm(update(knowledge ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm01_1A <- lm(update(knowledge ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm01_1B <- lm(update(knowledge ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm01_1C <- lm(update(knowledge ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s5mm01_10,s5mm01_1A,s5mm01_1B,s5mm01_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mm01_10,vcov.=vcovHC(s5mm01_10))[,2],
                             coeftest(s5mm01_1A,vcov.=vcovHC(s5mm01_1A))[,2],
                             coeftest(s5mm01_1B,vcov.=vcovHC(s5mm01_1B))[,2],
                             coeftest(s5mm01_1C,vcov.=vcovHC(s5mm01_1C))[,2]),
          override.pvalues = list(coeftest(s5mm01_10,vcov.=vcovHC(s5mm01_10))[,4],
                                  coeftest(s5mm01_1A,vcov.=vcovHC(s5mm01_1A))[,4],
                                  coeftest(s5mm01 1B,vcov.=vcovHC(s5mm01 1B))[,4],
                                  coeftest(s5mm01 1C,vcov.=vcovHC(s5mm01 1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
##
##
                                         Base
                                                         ZIP
                                                                         Municipality
                                                                                         Full
                                                                                            0.1549 ***
  University education
                                            0.1548 ***
                                                            0.1548 ***
                                                                            0.1547 ***
##
                                           (0.0167)
                                                           (0.0167)
                                                                           (0.0167)
                                                                                            (0.0167)
## Gender (male)
                                            0.1915 ***
                                                            0.1979 ***
                                                                            0.1958 ***
                                                                                            0.1985 ***
##
                                           (0.0142)
                                                           (0.0143)
                                                                           (0.0143)
                                                                                            (0.0143)
  Age (by 10 years, centered at 45)
                                            0.0573 ***
                                                            0.0553 ***
                                                                            0.0562 ***
                                                                                            0.0554 ***
                                           (0.0084)
                                                           (0.0084)
                                                                           (0.0084)
                                                                                            (0.0084)
## University * Male
                                           -0.0347 +
                                                           -0.0350 +
                                                                           -0.0348 +
                                                                                            -0.0351 +
                                           (0.0199)
                                                           (0.0199)
                                                                           (0.0199)
##
                                                                                            (0.0199)
## University * Age
                                           -0.0190
                                                           -0.0188
                                                                           -0.0192
                                                                                           -0.0188
                                                           (0.0117)
                                                                           (0.0117)
                                                                                            (0.0117)
##
                                           (0.0117)
## University * Male * Age
                                           -0.0001
                                                           -0.0006
                                                                           -0.0004
                                                                                           -0.0013
##
                                           (0.0143)
                                                                                            (0.0143)
                                                           (0.0143)
                                                                           (0.0142)
```

```
## Male * Age
                                      0.0045
                                                    0.0065
                                                                  0.0059
                                                                                0.0069
                                                                  (0.0103)
                                                                                (0.0103)
##
                                     (0.0103)
                                                    (0.0103)
## % of Life Residing Locally (zip)
                                     -0.1315 ***
                                                   -0.1257 ***
                                                                 -0.1242 ***
                                                                               -0.1231 ***
                                     (0.0362)
                                                   (0.0362)
                                                                 (0.0362)
                                                                                (0.0362)
## DID residence (zip)
                                                   -0.0138
                                                                                -0.0246 +
##
                                                   (0.0105)
                                                                                (0.0131)
## Foreigner % sqrt. (zip)
                                                    0.0064
                                                                                0.0167
##
                                                    (0.0077)
                                                                                (0.0107)
## University % by 10% (zip)
                                                    0.0212 ***
                                                                                0.0153 +
##
                                                   (0.0064)
                                                                                (0.0085)
## DID proportion (mun.)
                                                                  0.0036
                                                                                0.0284
##
                                                                  (0.0183)
                                                                                (0.0229)
## Foreigner % sqrt. (mun.)
                                                                 -0.0113
                                                                               -0.0265 +
                                                                  (0.0108)
                                                                                (0.0144)
                                                                  0.0241 **
## University % by 10% (mun.)
                                                                                0.0092
##
                                                                  (0.0087)
                                                                                (0.0113)
## ---
## R^2
                                      0.1951
                                                    0.1975
                                                                  0.1973
                                                                                0.1987
## Adj. R^2
                                      0.1898
                                                    0.1917
                                                                  0.1915
                                                                                0.1923
## Num. obs.
                                   4280
                                                 4280
                                                               4280
                                                                              4280
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Ideology

```
s5mm02_10 <- lm(update(ideology ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm02_1A <- lm(update(ideology ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm02_1B <- lm(update(ideology ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm02_1C <- lm(update(ideology ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s5mm02_10,s5mm02_1A,s5mm02_1B,s5mm02_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mm02_10,vcov.=vcovHC(s5mm02_10))[,2],
                             coeftest(s5mm02_1A,vcov.=vcovHC(s5mm02_1A))[,2],
                             coeftest(s5mm02_1B,vcov.=vcovHC(s5mm02_1B))[,2],
                             coeftest(s5mm02_1C,vcov.=vcovHC(s5mm02_1C))[,2]),
          override.pvalues = list(coeftest(s5mm02_10,vcov.=vcovHC(s5mm02_10))[,4],
                                  coeftest(s5mm02_1A,vcov.=vcovHC(s5mm02_1A))[,4],
                                  coeftest(s5mm02_1B,vcov.=vcovHC(s5mm02_1B))[,4],
                                  coeftest(s5mm02_1C,vcov.=vcovHC(s5mm02_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1, 0.05, 0.01, 0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

```
ZIP
                           Base
                                              Municipality
                                                        Full
  ______
## University education
                             -0.0043
                                      -0.0045
                                                -0.0046
                                                           -0.0048
##
                             (0.0105)
                                      (0.0105)
                                                (0.0105)
                                                           (0.0105)
## Gender (male)
                             -0.0223 *
                                      -0.0212 *
                                                -0.0232 *
                                                           -0.0235 *
                             (0.0093)
                                                           (0.0094)
##
                                      (0.0094)
                                                (0.0093)
## Age (by 10 years, centered at 45)
                             -0.0095 +
                                      -0.0101 +
                                                -0.0094 +
                                                           -0.0095 +
                             (0.0052)
                                       (0.0052)
                                                (0.0052)
                                                           (0.0052)
##
## University * Male
                             0.0162
                                       0.0164
                                                0.0166
                                                           0.0167
##
                             (0.0136)
                                      (0.0136)
                                                (0.0136)
                                                           (0.0136)
```

```
## University * Age
                                    0.0028
                                                0.0027
                                                            0.0020
                                                                         0.0017
                                               (0.0077)
                                                           (0.0077)
                                                                        (0.0077)
##
                                    (0.0077)
## University * Male * Age
                                    0.0033
                                                0.0035
                                                            0.0038
                                                                         0.0041
                                    (0.0101)
                                               (0.0101)
                                                           (0.0100)
                                                                        (0.0100)
## Male * Age
                                    0.0017
                                                0.0022
                                                            0.0018
                                                                         0.0016
                                    (0.0068)
##
                                               (0.0068)
                                                           (0.0068)
                                                                        (0.0068)
## % of Life Residing Locally (zip)
                                                                         0.0261
                                    0.0191
                                                0.0231
                                                            0.0257
                                    (0.0253)
                                               (0.0253)
                                                           (0.0253)
                                                                        (0.0253)
## DID residence (zip)
                                               -0.0013
                                                                         0.0166 +
##
                                               (0.0081)
                                                                        (0.0096)
## Foreigner % sqrt. (zip)
                                               -0.0101 +
                                                                        -0.0047
                                               (0.0055)
                                                                        (0.0074)
## University % by 10% (zip)
                                                0.0077 +
                                                                        -0.0007
                                               (0.0046)
                                                                        (0.0061)
## DID proportion (mun.)
                                                           -0.0414 **
                                                                        -0.0580 ***
                                                           (0.0145)
                                                                        (0.0172)
## Foreigner % sqrt. (mun.)
                                                           -0.0160 *
                                                                        -0.0117
                                                           (0.0080)
                                                                        (0.0105)
## University % by 10% (mun.)
                                                            0.0230 ***
                                                                         0.0240 **
                                                           (0.0068)
                                                                        (0.0088)
## -----
                                    0.0087
                                                0.0101
                                                            0.0129
                                                                         0.0137
## Adj. R^2
                                    0.0022
                                                0.0028
                                                            0.0057
                                                                         0.0058
## Num. obs.
                                  4280
                                             4280
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

LDP - DPJ FT

```
s5mm03_10 <- lm(update(ldpdpjft ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm03_1A <- lm(update(ldpdpjft ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm03_1B <- lm(update(ldpdpjft ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
s5mm03_1C <- lm(update(ldpdpjft ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=15),])
screenreg(list(s5mm03_10,s5mm03_1A,s5mm03_1B,s5mm03_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mm03_10,vcov.=vcovHC(s5mm03_10))[,2],
                             coeftest(s5mm03_1A,vcov.=vcovHC(s5mm03_1A))[,2],
                             coeftest(s5mm03_1B,vcov.=vcovHC(s5mm03_1B))[,2],
                             coeftest(s5mm03_1C,vcov.=vcovHC(s5mm03_1C))[,2]),
          override.pvalues = list(coeftest(s5mm03 10,vcov.=vcovHC(s5mm03 10))[,4],
                                  coeftest(s5mm03_1A,vcov.=vcovHC(s5mm03_1A))[,4],
                                  coeftest(s5mm03 1B,vcov.=vcovHC(s5mm03 1B))[,4],
                                  coeftest(s5mm03_1C,vcov.=vcovHC(s5mm03_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base", "ZIP", "Municipality", "Full"))
```

##					
##		=========	========	=========	=========
##		Base	ZIP	Municipality	Full
##					
##	University education	-0.0097	-0.0097	-0.0098	-0.0098
##		(0.0091)	(0.0091)	(0.0091)	(0.0091)
##	Gender (male)	0.0106	0.0112	0.0105	0.0107
##		(0.0075)	(0.0076)	(0.0076)	(0.0076)

```
## Age (by 10 years, centered at 45)
                                           -0.0009
                                                          -0.0011
                                                                         -0.0009
                                                                                        -0.0009
##
                                           (0.0044)
                                                          (0.0044)
                                                                         (0.0044)
                                                                                        (0.0044)
                                                           0.0194 +
                                                                                        0.0195 +
## University * Male
                                           0.0194 +
                                                                         0.0195 +
##
                                           (0.0113)
                                                          (0.0113)
                                                                         (0.0113)
                                                                                        (0.0113)
## University * Age
                                           -0.0053
                                                          -0.0053
                                                                         -0.0054
                                                                                        -0.0055
##
                                           (0.0065)
                                                          (0.0065)
                                                                                        (0.0066)
                                                                         (0.0066)
## University * Male * Age
                                           0.0080
                                                           0.0079
                                                                         0.0080
                                                                                        0.0080
##
                                           (0.0082)
                                                          (0.0082)
                                                                         (0.0083)
                                                                                        (0.0083)
## Male * Age
                                           -0.0150 **
                                                          -0.0148 **
                                                                         -0.0150 **
                                                                                        -0.0149 **
##
                                           (0.0056)
                                                          (0.0056)
                                                                         (0.0056)
                                                                                        (0.0056)
## % of Life Residing Locally (zip)
                                           0.0133
                                                           0.0137
                                                                         0.0141
                                                                                        0.0143
##
                                           (0.0201)
                                                          (0.0202)
                                                                         (0.0202)
                                                                                        (0.0202)
## DID residence (zip)
                                                           0.0021
                                                                                        0.0055
                                                                                        (0.0081)
##
                                                          (0.0064)
## Foreigner % sqrt. (zip)
                                                           0.0007
                                                                                        0.0032
                                                          (0.0044)
                                                                                        (0.0059)
##
## University % by 10% (zip)
                                                          0.0010
                                                                                        0.0011
                                                          (0.0037)
                                                                                        (0.0050)
## DID proportion (mun.)
                                                                         -0.0045
                                                                                        -0.0102
                                                                         (0.0111)
                                                                                        (0.0140)
## Foreigner % sqrt. (mun.)
                                                                         -0.0017
                                                                                        -0.0047
##
                                                                         (0.0064)
                                                                                        (0.0085)
## University % by 10% (mun.)
                                                                          0.0025
                                                                                        0.0015
                                                                         (0.0054)
                                                                                        (0.0072)
## R^2
                                            0.0981
                                                           0.0982
                                                                          0.0982
                                                                                         0.0984
## Adj. R^2
                                            0.0921
                                                           0.0916
                                                                          0.0916
                                                                                         0.0912
## Num. obs.
                                        4280
                                                       4280
                                                                      4280
                                                                                     4280
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Favorability of South Korea

```
s5mm04_10 <- lm(update(familiarityFT_KOR ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s5mm04_1A <- lm(update(familiarityFT_KOR ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s5mm04_1B <- lm(update(familiarityFT_KOR ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s5mm04_1C <- lm(update(familiarityFT_KOR ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s5mm04_10,s5mm04_1A,s5mm04_1B,s5mm04_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mm04 10,vcov.=vcovHC(s5mm04 10))[,2],
                             coeftest(s5mm04_1A,vcov.=vcovHC(s5mm04_1A))[,2],
                             coeftest(s5mm04 1B,vcov.=vcovHC(s5mm04 1B))[,2],
                             coeftest(s5mm04_1C,vcov.=vcovHC(s5mm04_1C))[,2]),
          override.pvalues = list(coeftest(s5mm04_10,vcov.=vcovHC(s5mm04_10))[,4],
                                  coeftest(s5mm04 1A,vcov.=vcovHC(s5mm04 1A))[,4],
                                  coeftest(s5mm04 1B,vcov.=vcovHC(s5mm04 1B))[,4],
                                  coeftest(s5mm04_1C,vcov.=vcovHC(s5mm04_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

```
## University education
                                          -0.0007
                                                          -0.0007
                                                                           -0.0007
                                                                                          -0.0007
##
                                          (0.0141)
                                                           (0.0141)
                                                                           (0.0141)
                                                                                           (0.0141)
                                                                           -0.0439 ***
## Gender (male)
                                          -0.0460 ***
                                                          -0.0454 ***
                                                                                          -0.0448 ***
##
                                                           (0.0119)
                                                                           (0.0119)
                                          (0.0118)
                                                                                           (0.0120)
## Age (by 10 years, centered at 45)
                                          -0.0017
                                                          -0.0018
                                                                          -0.0021
                                                                                          -0.0018
                                          (0.0074)
                                                           (0.0075)
                                                                           (0.0075)
                                                                                           (0.0075)
##
## University * Male
                                          -0.0047
                                                          -0.0048
                                                                          -0.0048
                                                                                          -0.0048
                                                           (0.0170)
##
                                          (0.0170)
                                                                           (0.0170)
                                                                                           (0.0170)
## University * Age
                                          -0.0005
                                                          -0.0005
                                                                          -0.0005
                                                                                          -0.0005
##
                                          (0.0105)
                                                           (0.0105)
                                                                           (0.0105)
                                                                                           (0.0105)
## University * Male * Age
                                          -0.0053
                                                          -0.0054
                                                                           -0.0054
                                                                                          -0.0052
##
                                          (0.0127)
                                                           (0.0127)
                                                                           (0.0127)
                                                                                           (0.0127)
## Male * Age
                                           0.0294 **
                                                           0.0295 **
                                                                           0.0298 ***
                                                                                           0.0294 **
##
                                          (0.0090)
                                                           (0.0090)
                                                                           (0.0090)
                                                                                           (0.0090)
## % of Life Residing Locally (zip)
                                           0.0130
                                                           0.0131
                                                                           0.0131
                                                                                           0.0125
##
                                           (0.0317)
                                                           (0.0317)
                                                                           (0.0318)
                                                                                           (0.0318)
## DID residence (zip)
                                                          -0.0019
                                                                                          -0.0022
                                                           (0.0092)
                                                                                           (0.0115)
## Foreigner % sqrt. (zip)
                                                           0.0022
                                                                                          -0.0063
                                                           (0.0064)
                                                                                           (0.0085)
## University % by 10% (zip)
                                                           0.0014
                                                                                          -0.0057
                                                           (0.0056)
##
                                                                                           (0.0076)
## DID proportion (mun.)
                                                                          -0.0046
                                                                                          -0.0024
##
                                                                           (0.0162)
                                                                                           (0.0200)
## Foreigner % sqrt. (mun.)
                                                                           0.0103
                                                                                           0.0161
                                                                           (0.0095)
                                                                                           (0.0126)
## University % by 10% (mun.)
                                                                           0.0072
                                                                                           0.0127
##
                                                                           (0.0081)
                                                                                           (0.0107)
## --
## R^2
                                           0.0753
                                                           0.0753
                                                                           0.0759
                                                                                            0.0762
## Adj. R^2
                                           0.0692
                                                           0.0686
                                                                           0.0691
                                                                                            0.0688
## Num. obs.
                                        4280
                                                        4280
                                                                        4280
                                                                                        4280
## ===========
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Favorability of China

```
s5mm05_10 <- lm(update(familiarityFT_CHN ~ ., basemod0), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s5mm05 1A <- lm(update(familiarityFT CHN ~ ., basemodA), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s5mm05_1B <- lm(update(familiarityFT_CHN ~ ., basemodB), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
s5mm05_1C <- lm(update(familiarityFT_CHN ~ ., basemodC), data=sifcct[which(sifcct$age - sifcct$lvlen<=1
screenreg(list(s5mm05_10,s5mm05_1A,s5mm05_1B,s5mm05_1C), digits = 4, #single.row = T,
          override.se = list(coeftest(s5mm05 10,vcov.=vcovHC(s5mm05 10))[,2],
                             coeftest(s5mm05 1A,vcov.=vcovHC(s5mm05 1A))[,2],
                             coeftest(s5mm05 1B,vcov.=vcovHC(s5mm05 1B))[,2],
                             coeftest(s5mm05 1C,vcov.=vcovHC(s5mm05 1C))[,2]),
          override.pvalues = list(coeftest(s5mm05_10,vcov.=vcovHC(s5mm05_10))[,4],
                                  coeftest(s5mm05_1A,vcov.=vcovHC(s5mm05_1A))[,4],
                                  coeftest(s5mm05_1B,vcov.=vcovHC(s5mm05_1B))[,4],
                                  coeftest(s5mm05_1C,vcov.=vcovHC(s5mm05_1C))[,4]),
          omit.coef = "(wave)", stars = c(0.1, 0.05, 0.01, 0.001), symbol = "+",
          custom.coef.map = vnmap,
          custom.model.names = c("Base","ZIP","Municipality","Full"))
```

```
##
  ______
                                   Base
                                                              Municipality Full
##
  University education
                                      0.0020
                                                   0.0020
                                                                 0.0019
                                                                              0.0018
                                     (0.0116)
                                                   (0.0116)
                                                                (0.0116)
                                                                             (0.0116)
##
## Gender (male)
                                     -0.0062
                                                   -0.0089
                                                                -0.0086
                                                                             -0.0098
##
                                     (0.0101)
                                                   (0.0102)
                                                                (0.0102)
                                                                             (0.0102)
## Age (by 10 years, centered at 45)
                                     -0.0184 **
                                                   -0.0177 **
                                                                -0.0179 **
                                                                             -0.0175 **
##
                                     (0.0062)
                                                   (0.0062)
                                                                (0.0062)
                                                                             (0.0062)
##
  University * Male
                                      0.0009
                                                   0.0010
                                                                 0.0011
                                                                              0.0012
##
                                     (0.0141)
                                                   (0.0142)
                                                                (0.0142)
                                                                             (0.0141)
## University * Age
                                      0.0050
                                                   0.0049
                                                                 0.0047
                                                                              0.0045
                                                                             (0.0086)
##
                                     (0.0086)
                                                   (0.0086)
                                                                (0.0086)
## University * Male * Age
                                     -0.0093
                                                   -0.0090
                                                                -0.0090
                                                                             -0.0086
                                     (0.0106)
                                                   (0.0106)
                                                                (0.0106)
                                                                             (0.0106)
##
                                      0.0190 *
## Male * Age
                                                   0.0183 *
                                                                0.0185 *
                                                                              0.0180 *
                                     (0.0075)
                                                   (0.0075)
                                                                (0.0075)
                                                                             (0.0076)
##
## % of Life Residing Locally (zip)
                                     -0.0047
                                                   -0.0059
                                                                -0.0049
                                                                             -0.0055
                                      (0.0265)
                                                   (0.0265)
                                                                (0.0265)
                                                                             (0.0265)
## DID residence (zip)
                                                   -0.0002
                                                                              0.0086
##
                                                   (0.0078)
                                                                             (0.0094)
## Foreigner % sqrt. (zip)
                                                   -0.0063
                                                                             -0.0071
##
                                                   (0.0055)
                                                                             (0.0074)
## University % by 10% (zip)
                                                  -0.0059
                                                                             -0.0072
                                                   (0.0047)
                                                                             (0.0063)
## DID proportion (mun.)
                                                                -0.0180
                                                                             -0.0267
##
                                                                (0.0138)
                                                                             (0.0166)
## Foreigner % sqrt. (mun.)
                                                                -0.0036
                                                                              0.0028
                                                                (0.0076)
                                                                             (0.0101)
##
## University % by 10% (mun.)
                                                                -0.0012
                                                                              0.0057
##
                                                                (0.0068)
                                                                             (0.0089)
## R^2
                                      0.0349
                                                   0.0357
                                                                 0.0358
                                                                              0.0363
                                                   0.0287
## Adj. R^2
                                      0.0285
                                                                 0.0288
                                                                              0.0286
## Num. obs.
                                   4280
                                                 4280
                                                              4280
                                                                           4280
## *** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1
```

Favorability of USA

```
coeftest(s5mm06_1C,vcov.=vcovHC(s5mm06_1C))[,4]),
omit.coef = "(wave)", stars = c(0.1,0.05,0.01,0.001), symbol = "+",
custom.coef.map = vnmap,
custom.model.names = c("Base","ZIP","Municipality","Full"))
```

: :	Base	ZIP	Municipality	Full
University education	-0.0081	-0.0082	-0.0081	-0.0082
	(0.0117)	(0.0117)	(0.0117)	(0.0117)
Gender (male)	0.0332 **	0.0344 ***	0.0357 ***	0.0349 *
	(0.0101)	(0.0102)	(0.0102)	(0.0102)
Age (by 10 years, centered at 45)	0.0024	0.0019	0.0018	0.0020
	(0.0060)	(0.0060)	(0.0060)	(0.0061)
: University * Male	0.0135	0.0135	0.0134	0.0135
	(0.0144)	(0.0144)	(0.0144)	(0.0145)
: University * Age	-0.0078	-0.0078	-0.0078	-0.0078
:	(0.0086)	(0.0086)	(0.0086)	(0.0086)
: University * Male * Age	0.0130	0.0130	0.0128	0.0131
	(0.0106)	(0.0106)	(0.0106)	(0.0106)
: Male * Age	0.0056	0.0060	0.0063	0.0060
	(0.0075)	(0.0075)	(0.0075)	(0.0075)
% of Life Residing Locally (zip)	-0.0282	-0.0261	-0.0256	-0.0260
	(0.0266)	(0.0267)	(0.0267)	(0.0268)
DID residence (zip)		0.0028		0.0008
- :		(0.0082)		(0.0100)
Foreigner % sqrt. (zip)		-0.0031		-0.0080
		(0.0058)		(0.0077)
University % by 10% (zip)		0.0042		-0.0040
		(0.0049)		(0.0065)
DID proportion (mun.)			0.0026	0.0019
			(0.0149)	(0.0181)
Foreigner % sqrt. (mun.)			0.0001	0.0075
<u> </u>			(0.0083)	(0.0107)
University % by 10% (mun.)			0.0108	0.0147
			(0.0073)	(0.0094)
: : R^2	0.0255	0.0258	0.0265	0.0269
Adj. R^2	0.0191	0.0187	0.0194	0.0203
Num. obs.	4280	4280	4280	4280

Income

	Base	ZIP	Municipality	Full
University education	0.1107 ***	0.1107 ***	0.1108 ***	0.1107 ***
	(0.0154)	(0.0153)	(0.0153)	(0.0153)
Gender (male)	-0.0049	0.0054	0.0043	0.0068
	(0.0126)	(0.0127)	(0.0127)	(0.0127)
Age (by 10 years, centered at 45)	0.0237 **	0.0205 **	0.0217 **	0.0204 **
	(0.0079)	(0.0078)	(0.0078)	(0.0078)
University * Male	-0.0060	-0.0063	-0.0065	-0.0064
	(0.0187)	(0.0186)	(0.0186)	(0.0186)
University * Age	-0.0170	-0.0167	-0.0168	-0.0166
	(0.0115)	(0.0114)	(0.0114)	(0.0114)
University * Male * Age	0.0271 +	0.0264 +	0.0267 +	0.0269 +
· · · · · · · · · · · · · · · · · · ·	(0.0141)	(0.0140)	(0.0139)	(0.0140)
Male * Age	-0.0263 **	-0.0233 *	-0.0242 *	-0.0235 *
_	(0.0096)	(0.0095)	(0.0095)	(0.0095)
% of Life Residing Locally (zip)	-0.0872 *	-0.0775 *	-0.0827 *	-0.0800 *
-	(0.0343)	(0.0343)	(0.0344)	(0.0344)
DID residence (zip)		-0.0061		-0.0067
-		(0.0101)		(0.0124)
Foreigner % sqrt. (zip)		0.0061		-0.0148 +
		(0.0071)		(0.0090)
University % by 10% (zip)		0.0312 ***		0.0198 *
		(0.0060)		(0.0084)
DID proportion (mun.)			-0.0118	-0.0032
• •			(0.0180)	(0.0221)
Foreigner % sqrt. (mun.)			0.0269 **	0.0414 **
8 4 1 4 1			(0.0103)	(0.0131)
University % by 10% (mun.)			0.0369 ***	0.0190
			(0.0087)	(0.0119)
R^2	0.0496	0.0565	0.0577	0.0596
Adj. R^2	0.0434	0.0496	0.0508	0.0521
Num. obs.	4280	4280	4280	4280

Organizing Outcomes

OLS

```
outdt0$data <- "Unmatched"</pre>
outdt1$data <- "Matched without \nDistance Adj."</pre>
outdt2$data <- "Matched with \nLambda = 50km"
outdt3$data <- "Matched with \nLambda = 100km"
outdt4$data <- "Matched with \nLambda = 200km"
outdt5$data <- "Matched with \nLambda = 350km"
visdt <- rbind(outdt0,outdt1,outdt2,outdt3,outdt4,outdt5)</pre>
visdt$data <- factor(visdt$data, levels = c("Unmatched",</pre>
                                              "Matched without \nDistance Adj.",
                                              "Matched with \nLambda = 350km",
                                              "Matched with \nLambda = 200km",
                                              "Matched with \nLambda = 100km",
                                              "Matched with \nLambda = 50km"))
visdt$pstar <- factor(ifelse(visdt$p>=.1,"n.s.",ifelse(visdt$p>=.05,"p<.1","p<.05")),</pre>
                       levels = c("p<.05","p<.1","n.s."))
saveRDS(visdt, paste0(projdir, "/out/visdt.rds"))
```

Multinomial Logit

```
outdt0m$data <- "Unmatched"</pre>
outdt1m$data <- "Matched without \nDistance Adj."
outdt2m$data <- "Matched with \nLambda = 50km"
outdt3m$data <- "Matched with \nLambda = 100km"
outdt4m$data <- "Matched with \nLambda = 200km"
outdt5m$data <- "Matched with \nLambda = 350km"
visdtm <- rbind(outdt0m,outdt1m,outdt2m,outdt3m,outdt4m,outdt5m)</pre>
visdtm$data <- factor(visdtm$data, levels = c("Unmatched",</pre>
                                                "Matched without \nDistance Adj.",
                                                "Matched with \nLambda = 350km",
                                                "Matched with \nLambda = 200km",
                                                "Matched with \nLambda = 100km",
                                                "Matched with \nLambda = 50km"))
visdtm$pstar <- factor(ifelse(visdtm$p>=.1,"n.s.",ifelse(visdtm$p>=.05,"p<.1","p<.05")),</pre>
                        levels = c("p<.05","p<.1","n.s."))
saveRDS(visdtm, paste0(projdir, "/out/visdtm.rds"))
```

Combining OLS and Multinomial Logit

```
visdt$method = "OLS"
visdtm$method = "Multinomial Logit\nAgree vs. Disagree"
visdtall <- rbind(visdt,visdtm)
visdtall$method <- factor(visdtall$method, levels = unique(visdtall$method))
colnames(visdtall)</pre>
```

```
## [1] "gender" "age" "est" "lci95" "lci95" "lci90" "uci90" "se" "p" "lv" "data ## [13] "method"
```

Including Mail

```
visdt_mail_ols <- readRDS(paste0(projdir, "/out/visdt_mail_ols.rds"))</pre>
visdt mail ols$method <- "OLS"</pre>
visdt_mail_multinom <- readRDS(paste0(projdir, "/out/visdt_mail_multinom.rds"))</pre>
visdt_mail_multinom$method <- "Multinomial Logit\nAgree vs. Disagree"</pre>
visdt_mail <- rbind(visdt_mail_ols,visdt_mail_multinom)</pre>
visdt mail$1ci95 <- NA
visdt_mail$uci95 <- NA</pre>
visdt_mail$lci90 <- NA</pre>
visdt_mail$uci90 <- NA</pre>
colnames(visdt_mail)
                                                                                                "lv"
                                                                                       "p"
## [1] "gender" "age"
                            "est"
                                      "lci95" "uci95"
                                                         "lci90"
                                                                   "uci90"
                                                                                                          "data
## [13] "method"
visdtall <- rbind(visdtall, visdt_mail)</pre>
visdtall$data <- factor(visdtall$data, levels = unique(visdtall$data))</pre>
table(visdtall$data)
##
##
                           Unmatched Matched without \nDistance Adj.
                                                                           Matched with \n = 50km
##
##
     Matched with \n ambda = 100km
                                        Matched with \n ambda = 200km
                                                                           Matched with \n ambda = 350km
                                                                                                        20
##
                                  20
                                                                     20
##
                             Mail-in
##
```

Save Image

```
save.image(file=paste0(projdir,"/out/heavy/analysis_2_matched_v5.RData"))
```

saveRDS(visdtall, paste0(projdir, "/out/visdtall.rds"))