Model representation

Model intuition

Products – Features (Input)

Prices – model parameters

Total cost - Output

 Linear dependency between products and the total cost.

500 **Housing Prices** X 400 (Portland, OR) 300 220 Price 200 (in 1000s 100 of dollars) 0 500 1000 1500 2000 2500 3000

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Size (feet²)

Predict real-valued output

Classification Problem

Predict discrete-valued output

Training set of housing prices (Portland, OR)

 $(x^i,y^i) - i^{th}$ training example

Size in feet ² (x)	Price (\$) in 1000's (y)
→ 2104	460
1416	232
1534	315
852	178
•••	•••

Notation:

$$\mathbf{m} = \text{Number of training examples}$$

 \mathbf{x}' s = "input" variable / features
 \mathbf{y}' s = "output" variable / "target" variable
 $\mathbf{x}^{(1)} = 2104$
 $\mathbf{x}^{(2)} = 1416$
 $\mathbf{y}^{(1)} = 460$

How do we represent h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h(x) = \theta_0 + \theta_1 x$$

$$X$$

Linear regression with one variable. Univariate linear regression.

Cost function

Training Set

	Size in feet ² (x)	Price (\$) in 1000's (y)
-	2104	460
	1416	232
	1534	315
	852	178
	•••	•••

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose
$$heta_0, heta_1$$
 so that $h_{ heta}(x)$ is close to y for our training examples (x,y)

minimize
$$\frac{1}{\theta_0} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

m - # of training examples

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost function or Squared error function

Cost function intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

Cost Function:

 θ_0, θ_1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

Simplified

$$h_{\theta}(x) = \theta_1 x \qquad \theta_0 = 0$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

 $\underset{\theta_1}{\text{minimize}} J(\theta_1)$

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

 $J(heta_1)$

(function of the parameter θ_1)

Andrew Ng

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(0.5) = \frac{1}{2m} \left[(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right] \approx 0.58$$

(function of the parameter θ_1)

$$\theta_1 = 0$$

Suppose we have a training set with m=3 examples, plotted below. Our hypothesis representation is $h_{\theta}(x) = \theta_1 x$, with parameter θ_1 . The cost function $J(\theta_1)$ is $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^i \right)^2$ What is J(0)?

01/6114/6

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(0) = \frac{1}{2m} \left[(0-1)^2 + (0-2)^2 + (0-3)^2 \right] \approx 2.3$$

Cost function intuition II

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$$

$h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x) 500 X 400 Price (\$) 300 in 1000's 200 $\theta_0 = 50$ $\theta_1 = 0.06$ 100 1000 2000 3000 Size in feet² (x) $h_{\theta}(x) = 50 + 0.06x$

 $J(\theta_0,\theta_1)$

(function of the parameters $heta_0, heta_1$)

cost function depends of one parameter

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

pretty close to the minimum

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$

$$\lim_{\theta_0,\theta_1} J(\theta_0,\theta_1) = \lim_{\theta_0,\theta_1} J(\theta_0,\theta_1) = \lim_{\theta_0,\theta_1} J(\theta_0,\theta_1,\theta_2,...,\theta_n) = \lim_{\theta_0,...\theta_n} J(\theta_0,\theta_1,\theta_2,...,\theta_n)$$

Outline:

- Start with some θ_0 , θ_1 $\frac{\sin \theta_0 = 0, \theta_1 = 0}{\sin \theta_0}$
- Keep changing $[\theta_0, \theta_1]$ to reduce $[J(\theta_0, \theta_1)]$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_{j} = \theta_{j} - 0 \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$
 (for $j = 0$ and $j = 1$) }
$$\{ \theta_{j} = \theta_{j} - \theta_{j} -$$

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

Suppose $\theta_0=1, \theta_1=2$, and we simultaneously update θ_0 and θ_1 using the rule: $\theta_i:=\theta_i+\sqrt{\theta_0\theta_1}$ (for j = 0 and j=1)

What are the resulting values of θ_0 and θ_1 ?

a)
$$\theta_0 = 1$$
, $\theta_1 = 2$

b)
$$\theta_0 = 1 + \sqrt{2}$$
, $\theta_1 = 2 + \sqrt{2}$

c)
$$\theta_0 = 2 + \sqrt{2}$$
, $\theta_1 = 1 + \sqrt{2}$

d)
$$\theta_0 = 1 + \sqrt{2}$$
, $\theta_1 = 2 + \sqrt{1 + \sqrt{2}}$

Gradient descent intuition

Gradient descent algorithm

$$\min_{\substack{J \ \text{simplier example}}} J\left(\theta_{\scriptscriptstyle 1}\right) \quad \theta_{\scriptscriptstyle 1} \in R$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Suppose θ_1 is at a local optimum of $J(\theta_1)$, such as shown in the figure. What will one step $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$ of gradient descent

do?

- a) Leave θ_1 unchanged
- b) Change θ_1 in a random direction
- c) Move θ_1 in the direction of the Global minimum of $J(\theta_1)$
- d) Decrease θ₁

current value of θ_1

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Linear regression with one variable

Gradient descent for linear regresion

Fundamentals of Machine Learning

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{i}} J(\theta_{0}, \theta_{1}) = \frac{\delta}{\delta \theta_{i}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} = \frac{\delta}{\delta \theta_{i}} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

Gradient descent algorithm

repeat until convergence

$$\frac{\mathcal{\delta}}{\mathcal{\delta}\theta_0}J(\theta_0,\theta_1)$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

$$rac{\delta}{\delta heta_{ ext{l}}}J(heta_{ ext{0}}, heta_{ ext{l}})$$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h(x) = 900 - 0.1 x$$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

$$\sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)$$

Which of the following are true statements? Select all that apply.

- a) To make gradient descent converge, we must slowly decrease α over time.
- b) Gradient descent is guaranteed to find the global minimum for any function $J(\theta_0, \theta_1)$.
- c) Gradient descent can converge even if α is kept fixed. (But α cannot be too large, or else it may fail to converge.)
- d) For the specific choice of cost function $J(\theta_0, \theta_1)$ used in linear regression, there are no local optima (other than the global optimum).