§ 10. Функциональные уравнения

809. Доказать, что единственная непрерывная функция f(x) (— $\infty < x < + \infty$), удовлетворяющая для всех вещественных значений x и y уравнению

$$f(x + y) = f(x) + f(y),$$
 (1)

есть линейная однородная f(x) = ax, где a = f(1) — произвольная константа.

810. Доказать, что монотонная функция f(x), удовлетворяющая уравнению (1), есть линейная однородная.

811. Доказать, что функция f(x), удовлетворяющая уравнению (1) и ограниченная в сколь угодно малом интервале (— ε , ε), есть линейная однородная.

812. Доказать, что единственная не равная нулю тождественно непрерывная функция f(x) (— $\infty < x < < + \infty$), удовлетворяющая для всех значений x и y уравнению

$$f(x+y)=f(x)f(y), \qquad (2)$$

есть показательная $f(x) = a^x$, где a = f(1) — положительная постоянная.

813. Доказать, что не равная нулю тождественно функция f(x), ограниченная в интервале $(0, \varepsilon)$ и удовлетворяющая уравнению (2), есть показательная.

814. Доказать, что единственная ие равная нулю тождественно непрерывная функция f(x) ($0 < x < + \infty$), удовлетворяющая для всех положительных значений x и y уравнению

$$f(xy) = f(x) + f(y),$$

есть логарифмическая $f(x) = \log_a x$, где a — положительная константа $(a \neq 1)$.

815. Доказать, что единственная не равная нулю тождественно непрерывная функция f(x) ($0 < x < +\infty$), удовлетворяющая для всех положительных значений x и y уравнению

$$f(xy) = f(x) f(y), \tag{3}$$

есть степенная $f(x) = x^a$, где a — постоянная.

816. Найти все непрерывные функции f(x) (— $\infty < x < +\infty$), удовлетворяющие для всех вещественных значений x и y уравнению (3).

817. Показать, что разрывная функция $f(x) = \operatorname{sgn} x$ удовлетворяет уравнению (3).