First publication: August 15, 2016 (Creatspace	e and k	DP.
--	---------	-----

BREAKING CLASSICALRULES IN TRIRONOMETRY: MISSION 2050

Exact Trigonometric Ratios for all Angles

[Using Precise –Rewritten method]

Bhava Nath Dahal

November 13, 2016

BHAVA NATH DAHAL
© Bhava Nath Dahal (2016)
All rights reserved.
Non-commercial academic distribution allowed.
REQUEST : I request to the scholar to copy edit following source books, so that each scholar may understand the
new method. I may be reached at bhavanathdahal@gmail.com.
Source: Details of method and basis of calculation is available either on "Exact Trigonometric Values: Five new
methods" or 'Precise-Rewritten method", published by Creatspace plateform, USA.
Suggestion (with above request): Can you solve higher-degree trigonometric equation $(\sin(nx))$ with n number of solution, please visit https://higher-equation.quora.com/Solving-Higher-degree-Trigonometric-Equation

Exact Trigonometric Ratios $[\sin(n^o)]$

Determination method: Precise-Rewritten method developed by Bhava Nath Dahal

$$\sin(9^{\circ}) = \frac{1}{2}\sqrt{(2-\sqrt{(2+\sqrt{(2+\sqrt{(2-\sqrt{(2})})})^2})}$$

$$\sin(18^{\circ}) = \frac{1}{2}\sqrt{(2-\sqrt{(2+\sqrt{(2-\sqrt{(2})})^2})^2 + \sqrt{(2-\sqrt{(2+\sqrt{(2-\sqrt{(2})})^2})^2})^2}}$$

Precise-Rewritten method Bhava Nath Dahal

Note: We can make different types of repeting pattern than as above. The best alternative will be similar repetition for double angles. To take other degrees and other trigonometric ratios, use $\sin(n^0) = \cos(90^o - n^0)$ and change the first '-' into '+' to obtain $\cos(n^0)$ and vice versa.

 $\sin(45^o) = \sqrt{2}$