Homework 1: Linkage Analysis

Lorenzo Hess

2025-02-03

Contents

1	Assumptions	2
2	Free-Body Diagrams	2
3	1	2
	3.1 Forces and Moments	2
	3.2 Mass Calculations	2
	3.3 Mass Moment of Inertia Calculations	2
	3.4 Kinematics Equations	2
	3.4.1 Position	2
	3.4.2 Velocity	2
	3.4.3 Acceleration	3
	3.5 Accelerations at CMs	3
4	Results	3
	4.1 First Position	3
	4.1.1 Joint Forces and Torques	3
	4.1.2 Postion, Velocity, and Acceleration	3
	4.1.3 Masses and Mass Moments of Inertia	3
	4.2 Plots	3
	4.3 Comparison with PMKS+	3
5	MATLAB Code	3
6	Discussion	3

7 References 3

1 Assumptions

1. Steady-state rate of 7450 parts in seven hours

2 Free-Body Diagrams

3 Statics and Dynamics Equations

- 3.1 Forces and Moments
- 3.2 Mass Calculations
- 3.3 Mass Moment of Inertia Calculations
- 3.4 Kinematics Equations
- 3.4.1 Position
- 3.4.2 Velocity

To solve the angular velocities, we require the steady-state crank angular velocity, ω_1 . With a part per hour rate of 7450 parts per seven hours, we can compute:

$$\dot{p} = \frac{7450 \text{part}}{7 \text{hr}} = 0.29 \frac{\text{part}}{\text{sec}}$$

$$p^{-1} = 3.38 \frac{\mathrm{s}}{\mathrm{part}}$$

By inspection of the PMKS+ model, we see that the output link completes one cycle at the same rate as the input link. Thus:

$$\omega_1 = \omega_5$$

The output link delivers one part per revolution, so the output link angular velocity is:

$$\omega_5 = \frac{2\pi}{p^{-1}} \cdot 1 \text{ part}$$

$$\Rightarrow \omega_1 = 21.25 \text{rad/s}$$

- 3.4.3 Acceleration
- 3.5 Accelerations at CMs
- 4 Results
- 4.1 First Position
- 4.1.1 Joint Forces and Torques
- 4.1.2 Postion, Velocity, and Acceleration
- 4.1.3 Masses and Mass Moments of Inertia
- 4.2 Plots
- 4.3 Comparison with PMKS+
- 5 MATLAB Code
- 6 Discussion
- 7 References