6) Similitude plane directe

Toute transformation du plan d'écriture complexe $z' = az + b, a \in \mathbb{C} \setminus \mathbb{R}$ et $|a| \neq 1$ est une similitude plane directe. La similitude plane directe est souvent notée S

 λ , θ et Ω sont appelés les éléments caractéristiques de la similitude plane directe :

- Son rapport : $\lambda = |a|$
- Son angle : $\theta = \arg(a) [2\pi]$
- Son centre : son centre est Ω tel que $z_{\Omega} = \frac{b}{1-a}$.

On dit que S est la similitude directe de rapport λ , d'angle θ et de centre Ω .

Toute similitude plane directe z' = az + b de rapport λ , d'angle θ et de centre Ω s'écrit sous la forme :

$$z' = \lambda e^{i\theta} z + b$$

avec:

$$a = \lambda e^{i\theta}$$
 et $b = (1 - a)z_{\Omega}$

ec:
$$a=\lambda e^{i\theta} \quad \text{et} \quad b=(1-a)z_{\Omega}.$$
 $\textbf{\textit{D\'emonstration}}$ On a: $z'=az+b$ (1), $S(\Omega)=\Omega$ donc $z_{\Omega}=az_{\Omega}+b$ (2).

En faisant la différence de (1) et (2), on a :

$$z' - z_{\Omega} = a(z - z_{\Omega})$$
 donc $a = \frac{z' - z_{\Omega}}{z - z_{\Omega}}$.

$$\left| \frac{z' - z_{\Omega}}{z - z_{\Omega}} \right| = |a| = \lambda \quad (3),$$

$$\arg\left(\frac{z' - z_{\Omega}}{z - z_{\Omega}} \right) = \arg(a) = \theta \quad (4).$$

D'après (3) et (4), on a

$$\frac{z'-z_{\Omega}}{z-z_{\Omega}} = \lambda \times e^{i\theta} = \lambda e^{i\theta}.$$

$$\frac{z'-z_{\Omega}}{z-z_{\Omega}} = \lambda e^{i\theta} \quad \text{donc} \quad z'-z_{\Omega} = \lambda e^{i\theta}(z-z_{\Omega}).$$

Exemple

1) Soit la similitude directe S telle que

$$z_A - z_B = 2e^{i\frac{\pi}{4}}(z_C - z_B).$$

On a
$$S(C) = A$$
, $\lambda = 2$, $\theta = \frac{\pi}{4}$.

S est la similitude directe de rapport 2, d'angle $\frac{\pi}{4}$ et son centre est le point B.

2) Soit la similitude directe S telle que

$$z_E - z_D = 5e^{i\frac{2\pi}{3}}(z_F - z_D).$$

On a
$$S(F) = E$$
, $\lambda = 5$, $\theta = \frac{2\pi}{3}$.

S est la similitude directe de rapport 5, d'angle $\frac{2\pi}{3}$ et son centre est le point D.

6) Nature d'une similitude directe

- Translation: Si a=1, alors la similitude S est une translation de vecteur b. Son rapport est $\lambda=1$, son angle est $\theta=0$, et elle n'a pas de centre.
- Homothétie : Si $a \in \mathbb{R} \setminus \{0,1\}$, alors la similitude S est une homothétie de rapport k=a et de centre Ω tel que :

$$z_{\Omega} = \frac{b}{1 - a}.$$

Son rapport est $\lambda = |a|$, et son angle est :

angle est:
$$\theta = 0 \quad \text{si } k > 0, \quad \theta = \pi \quad \text{si } k < 0.$$

• Rotation : Si $a \in \mathbb{C} \setminus \mathbb{R}$ et |a| = 1, alors la similitude S est une rotation d'angle $\theta = \arg(a)$ et de centre Ω tel que :

$$z_{\Omega} = \frac{b}{1 - a}.$$

Son rapport est $\lambda = 1$ et son centre Ω est d'affixe :

$$\frac{b}{1-a}$$
.

• Cas général : Si $a \in \mathbb{C} \setminus \mathbb{R}$ et $|a| \neq 1$, alors la similitude S est la composition d'une homothétie et d'une rotation de même centre.

$$S = h \circ r = r \circ h.$$

Avec:

Rotation de centre Ω et d'angle $\theta = \arg(a)$.

Homothétie de centre Ω et de rapport $\lambda = |a|$.

Son centre est donné par :

$$z_{\Omega} = \frac{b}{1 - a}.$$

Exercice d'application

1) Déterminer les éléments caractéristiques de la similitude plane directe S d'écriture complexe :

$$z' = (1+i)z - 2i.$$

2) Donner l'écriture complexe de la similitude plane directe de rapport 2, d'angle $-\frac{\pi}{3}$ et de centre Ω d'affixe 1+i.

8. Propriété

Une similitude plane directe est soit une translation, soit une homothétie, soit une rotation , soit une composition commutative de rotation et d'homothétie de même centre .

2

9. Détermination d'une similitude à partir de ses éléments caractéristiques

a) À partir de deux points et de leurs images

Soit la similitude plane directe S telle que S(A) = A' et S(B) = B'.

La similitude plane directe S est d'écriture complexe :

$$z' = az + b$$

avec

$$a = \frac{z_{A'} - z_{B'}}{z_A - z_B}$$
 et $b = z_{A'} - az_A$.

Démonstration

b) À partir de son centre, d'un point et son image

Soit la similitude plane directe S telle que S(A) = A' et $S(\Omega) = \Omega$.

La similitude plane directe S est d'écriture complexe :

$$z' = az + b$$

avec

$$a = \frac{z_{A'} - z_{\Omega}}{z_A - z_{\Omega}}$$
 et $b = z_{\Omega} - az_{\Omega}$.

Démonstration

Exercice d'application

Dans le plan rapporté au repère orthonormé $(O; \vec{i}; \vec{j})$ soient les points :

- a) Déterminer l'affixe de G, l'isobarycentre de A, B, C, D.
- b) Soit **R** la rotation de centre G et d'angle $+\frac{\pi}{2}$. Donner une écriture complexe de R. Déterminer : R(A), R(D), R(C) et R(B).

10. Similitude plane directe déterminée par son écriture complexe

Soit S l'application du plan dans lui-même d'écriture complexe :

$$z' = 3iz - 1 - 7i$$
.

- 1 Justifier que S est une similitude plane directe et préciser ses éléments caractéristiques.
- 2 Déterminer l'expression analytique de S.
- 3 Déterminer une équation de l'image par S de la droite (BC), B et C étant les points d'affixes respectives 2 et 3-i.
- 4 Déterminer une équation de (C'), image par S du cercle (C) d'équation :

$$(x-2)^2 + y^2 = 1.$$

Similitude plane directe déterminée par son expression analytique

Pour déterminer l'écriture complexe d'une application du plan dans lui-même d'expression analytique donnée, on peut procéder de la manière suivante :

- Écrire z' = x' + iy' et remplacer x' et y' en fonction de x et y.
- Remplacer x par $\frac{z+\bar{z}}{2}$, y par $\frac{z-\bar{z}}{2i}$ et développer l'expression obtenue en fonction de z et \bar{z} .

Exercice d'application

Soit S l'application du plan dans lui-même d'expression analytique :

$$\begin{cases} x' = x + y + 2 \\ y' = -x + y - 1 \end{cases}$$

- 1 Déterminer l'écriture complexe de S.
- 2 En déduire la nature et les éléments caractéristiques de S.

Propriété

Soit S la similitude plane directe de rapport k.

- La similitude plane directe S conserve : l'alignement, le parallélisme, l'orthogonalité, les angles orientés, les barycentres et le contact.
- La similitude plane directe S multiplie : les longueurs par k et les aires par k^2 .
- La similitude plane directe S transforme : les droites en droites, les demi-droites en demi-droites, les segments en segments et les cercles en cercles.

2