

Bayesian Methods

Awol Seid Ebrie (PhD)

Wits School of Public Health Johannesburg, South Africa Email: awol.ebrie@wits.ac.za

08 May 2025

Bayesian Inference for Binary and Count Outcomes

Topics

Session 1. Theoretical Discussions

- Overview of Generalized Linear Models (GLMs) and Exponential Family
- Framework of Bayes' Theorem: for Two Binary Events, for Regression Models
- Binary Logistic Regression: Classical vs Bayesian
- Count Models: Poisson (and Negative Binomial) Regression

Session 2. Practical Exercises

- Estimating Posterior Distributions
- Implementation of Metropolis-Hastings (MH) Algorithm
- No-U-Turn Sampler (NUTS) using PyMC (and Bambi) Library.
- Beta-Binomial, Logistic, Poisson (and Negative Binomial) Models

Overview of Generalized Linear Models

Generalized Linear Models (GLM)

- The term "general" linear model (GLM) usually refers to models for a continuous responses.
 - Linear regression,
 - ANOVA
- The term "generalized" linear model (GLM) refers to a larger class of models.
 - The response variable is assumed to follow an **exponential family** distribution.
- Different authors/books use GLM to mean either "general" or "generalized" linear model.
 - So it is best to rely on context to determine which is meant
- We will prefer to use GLM to mean "generalized" linear model in this course.

Exponential Family

A probability distribution belongs to the exponential family if it can be expressed as:

$$f(y;\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

where

- *y* is the outcome variable.
- θ is the natural (or canonical) parameter of the distribution
- ϕ is the dispersion parameter.
- $a(\phi)$, $b(\theta)$ and $c(y,\phi)$ are known functions.

The Three Main Components of a GLM

- **Random Component**: It specifies the probability distribution of the response variable.
 - Normal distribution for a continuous outcome *Y* in the classical regression model.
 - Binomial distribution for a binary outcome *Y* in the binary logistic regression model.
 - Poisson distribution for a count outcome Y in Poisson and Negative Binomial models.
- Systematic Component: is a function of the covariates (often called linear predictor):

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} = \sum_{j=1}^p \beta_j x_{ij} = x_i^T \beta$$
 where $x_{i0} = 1, \forall i$.

- Link Function: It specifies the link between the random and the systematic components.
 - It indicates how the expected value of the response relates to the linear combination of covariates.
 - For classical regression: $\eta_i = g\{E(Y_i)\} = g(\mu_i) = \mu_i$
 - For logistic regression: $\eta_i = g\{E(Y_i)\} = \log(\frac{\pi_i}{1-\pi_i}) = \operatorname{logit}(\pi_i)$
 - For Poisson regression: $\eta_i = g\{E(Y_i)\} = \log\{E(Y_i)\} = \log(\mu_i)$

Review of Bayes' Theorem

Bayesian Inference

- Bayesian inference is a particular form of statistical inference based on combining probability distributions in order to obtain other probability distributions.
- For this purpose, the Bayes theorem provides us with a general recipe.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

Bayes' Theorem for the Relationship Between Two Binary Events

- Bayesian inference is a form of inference based on combining probability distributions in order to obtain other probability distributions using the idea of Baye's Theorem.
- Assume a binary outcome $Y \in \{0,1\}$ and a binary covariate $X \in \{0,1\}$. The Bayes' Theorem:

$$\underbrace{p(X|Y)}_{Posterior} = \underbrace{\frac{\overbrace{p(Y|X)}}{\overbrace{p(X)}}_{Posterior} \underbrace{p(Y)}_{Marginal\ Likelihood}}_{Prior}; \ p(Y) > 0.$$

- The (known) probability distribution of the factor is called **prior** distribution.
- The distribution of the outcome given the factor is called **likelihood** function.
- The distribution of the outcome is called **marginal likelihood** function.
- The distribution of the factor given the outcome is called **posterior** distribution.

Bayes' Theorem for the Relationship Between Two Binary Events

• Example:

- P(Y = 1) = 0.60. That is, 60% cured from a disease.
- P(X = 1) = 0.5. 50% of individuals were treated.
- P(Y = 1|X = 1) = 0.8: Higher success rate if treated.
- Then

$$P(X = 1|Y = 1) = \frac{0.8 \times 0.5}{0.6} = 0.667$$

• Of those cured persons, there is a 66.7% chance they were treated.

Two Distinctions to be Noted

- For inference, we are interested in the posterior distribution: P(X|Y).
 - What was likely true (e.g., estimating treatment effectiveness) given the observed data?
 - What is the (posterior) probability that a patient had diabetes, given their test results?
- If we are predicting outcomes, we would use the likelihood: P(Y|X).
 - What will likely happen in the future or in unseen data?
 - Given a new patient's features, what is the chance they will have diabetes?

Bayes' Theorem for a Regression Model Parameters

- For a regression model, i.e., $y = g(X, \beta)$ where y is the outcome and X is the set of covariates.
- Bayes' Theorem provides a general recipe to estimate the parameter β given the data (y, X).

$$\underbrace{p(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X})}_{Posterior} = \underbrace{\frac{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\beta})}{p(\boldsymbol{y}|\boldsymbol{X})}}_{Posterior} \underbrace{\frac{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\beta})}{p(\boldsymbol{y}|\boldsymbol{X})}}_{Marginal\ Likelihood}$$

- ullet The (known) probability distribution of the parameters of the model is $p(oldsymbol{eta})$ (i.e., **prior** distribution).
- The probability distribution of the data given the parameters is $p(y|X,\beta)$ (i.e., **likelihood** function).
- The distribution of the outcome given the covariates is p(y|X) (i.e., **marginal likelihood** function).
- The distribution of the parameters given the data is $p(\beta|y, X)$ (i.e., **posterior** distribution).

Prior vs Likelihood vs Posterior

- ullet The hypothetical prior indicates that the value eta=0.5 is more likely.
 - ullet The plausibility of other of eta decreases linearly and symmetrically (black).
- The likelihood of $\beta = 0.2$ shows it best agrees with the data (gray) and the posterior (blue).
 - There is a compromise between the prior and the likelihood.

Bayesian Logistic Regression

Binary Regression

• Recall the logistic function is $f(z) = \frac{1}{1 + \exp(-z)}$; $-\infty < z < \infty$.

- The figure describes the range of f(z) is between 0 and 1 (i.e., $0 \le f(z) \le 1$) for any value of z.
- It is suitable for use as a probability model and let us use $\pi(z)$ to indicate a probability value.

$$\pi(z) = \frac{1}{1 + \exp(-z)} = P(Y = 1|Z = z); \ -\infty < z < \infty$$

Binary Regression

• In logistic regression, *z* is expressed as a function (mostly linear) of the explanatory variables.

$$z_i = \beta_0 + \beta_1 x_{i1} + \beta_1 x_{i2} + \dots + \beta_p x_{ip} = \sum_{j=1}^p \beta_j x_{ij} = \mathbf{x}_i^T \boldsymbol{\beta}$$
 where $x_{i0} = 1, \forall i$.

As a result, the logistic probability model is:

$$\pi(x_i) = P(Y_i = 1 | x_i) = \frac{1}{1 + \exp[-(\beta_0 + \beta_1 x_{i1} + \beta_1 x_{i1} + \dots + \beta_p x_{ip})]}$$

• It can also be written as:

$$\pi(x_i) = P(Y_i = 1 | x_i) = \frac{\exp(\beta_0 + \beta_1 x_{i1} + \beta_1 x_{i2} + \dots + \beta_p x_{ip})}{1 + \exp(\beta_0 + \beta_1 x_{i1} + \beta_1 x_{i2} + \dots + \beta_p x_{ip})}.$$

- The relationship between the probability of success and the covariates is not linear.
 - However, it can be linearized by using different transformations of the probability of success.
 - The most common one is called **logit** or **log-odds** transformation.

The logit Transformaion

- An odds is the ratio of the probability of success to the probability of failure.
- Hence, the odds of successes at a particular value x_i of the explanatory variables is

$$\Omega(\mathbf{x}_i) = \frac{\pi(\mathbf{x}_i)}{1 - \pi(\mathbf{x}_i)}.$$

- Thus, the odds of successes is $\Omega(x_i) = e^{\beta_0 + \beta_1 x_{i1} + \beta_1 x_{i2} + \dots + \beta_p x_{ip}}$.
 - If $\Omega(x_i) = 1$, a success is as likely as a failure at the particular value x_i of the explanatory variables.
 - If $\Omega(x_i) > 1$, a success is more likely to occur than a failure at x_i .
 - On the other hand, if $\Omega(x_i) < 1$, a success is less likely than a failure.

The logit Transformaion

- The **logit** of the probability of success is the natural logarithm of the odds of successes.
- It is a linear function of the explanatory variable:

$$\operatorname{logit} \pi(\mathbf{x}_i) = \log \left[\frac{\pi(\mathbf{x}_i)}{1 - \pi(\mathbf{x}_i)} \right] = \beta_0 + \beta_1 x_{i1} + \beta_1 x_{i2} + \dots + \beta_p x_{ip}$$

- This is particularly called the *logit* model as it uses the **log-odds** transformation.
- **Note**: From now onwards, let us use the π_i instead of $\pi(x_i)$ for simplicity.

$$\operatorname{logit} \pi_i = \log \left[\frac{\pi_i}{1 - \pi_i} \right] = \beta_0 + \beta_1 x_{i1} + \beta_1 x_{i2} + \dots + \beta_p x_{ip}$$

Interpretation of the Parameters

- The sign of each β_i ; $i = 1, 2, \dots, p$ determines whether the probability of success is increasing or decreasing as the value of the corresponding explanatory variable increases.
- When the parameter β_i is zero, Y is independent of X_i .
- The slope parameters can be interpreted in terms of odds ratio.
 - From logit $\pi_i = \beta_0 + \beta_1 x_{i1} + \beta_1 x_{i2} + \cdots + \beta_v x_{iv}$, an odds is an exponential function of x_i .
 - This provides a basic interpretation for the **magnitude** of the slope parameter β .
 - Thus, the odds ratio is associated with each covariate is given as:

$$\theta_j = \frac{\Omega(x_{i1}, x_{i2}, \cdots, x_{ij} + 1, \cdots, x_{ip})}{\Omega(x_{i1}, x_{i2}, \cdots, x_{ij}, \cdots, x_{ip})} = e^{\beta_j}.$$

- For every one unit increase in x_{ii} , the odds of success changes by a factor of e^{β_i} .
- Similarly, for an m units increase in x_{ij} , the corresponding odds ratio becomes $e^{m\beta_j}$.

• Recall the binary response probability π_i given the values of the explanatory variables x_i is

$$\pi_{i} = \frac{e^{\beta_{0} + \beta_{1}x_{i1} + \beta_{1}x_{i2} + \dots + \beta_{p}x_{ip}}}{1 + e^{\beta_{0} + \beta_{1}x_{i1} + \beta_{1}x_{i2} + \dots + \beta_{p}x_{ip}}} = \frac{e^{\sum\limits_{j=0}^{p} \beta_{j}x_{ij}}}{\sum\limits_{1 + e^{j=0}}^{p} \beta_{j}x_{ij}} = \frac{e^{x_{i}^{T}\beta}}{1 + e^{x_{i}^{T}\beta}}$$
(1)

• Equivalently using the logit transformation, it can be written as

$$\log\left[\frac{\pi_{i}}{1-\pi_{i}}\right] = \beta_{0} + \beta_{1}x_{i1} + \beta_{1}x_{i2} + \dots + \beta_{p}x_{ip} = \sum_{j=0}^{p} \beta_{j}x_{ij} = \mathbf{x}_{i}^{T}\boldsymbol{\beta}.$$
 (2)

- The goal in the logistic regression model is to estimate the p + 1 (unknown) parameters.
- This is done with maximum likelihood estimation (MLE).
 - Entails finding the value of parameters for which the probability of the observed data is maximum.

• Consider Y_1, Y_2, \dots, Y_n is an **independent** sample from an **identical** Bernoulli distribution.

$$Y_i \sim Bernoulli(\pi)$$
 where $\pi = P(Y = 1)$.

• The probability mass function (pmf) of Y_i is:

$$P(Y_i = y_i) = p(y_i) = \pi^{y_i} (1 - \pi)^{1 - y_i}; i = 1, 2, \dots, n.$$

• The likelihood function is defined as:

$$L(\pi) = p(y|\pi) = \prod_{i=1}^{n} \pi^{y_i} (1-\pi)^{1-y_i}.$$

- The above likelihood function represents an intercept-only model (or there are no covariates).
- When there are covariates, we need to express the parameter π as a function of the covariates.
- The distribution of each Y_i is no longer identical, i.e.,

$$Y_i \sim Bernoulli(\pi_i)$$
 where $\pi_i = P(Y = 1 | x_i)$.

• The probability mass function (pmf) of Y_i becomes

$$P(Y_i = y_i) = p(y_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}; \quad i = 1, 2, \dots, n.$$

Note that

$$\pi_i = P(Y_i = 1 | x_i) = \frac{1}{1 + e^{-x_i^T \beta}} = \frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}}.$$

• The likelihood function is now expressed as:

$$\begin{split} L(\boldsymbol{\beta}) &= p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\beta}) \\ &= \prod_{i=1}^{n} \pi_{i}^{y_{i}} (1 - \pi_{i})^{1 - y_{i}} \\ &= \prod_{i=1}^{n} \left[\frac{1}{1 + e^{-x_{i}^{T} \boldsymbol{\beta}}} \right]^{y_{i}} \left[1 - \frac{1}{1 + e^{-x_{i}^{T} \boldsymbol{\beta}}} \right]^{1 - y_{i}} \\ &= \prod_{i=1}^{n} \left[\frac{e^{x_{i}^{T} \boldsymbol{\beta}}}{1 + e^{x_{i}^{T} \boldsymbol{\beta}}} \right]^{y_{i}} \left[1 - \frac{e^{x_{i}^{T} \boldsymbol{\beta}}}{1 + e^{x_{i}^{T} \boldsymbol{\beta}}} \right]^{1 - y_{i}} \end{split}$$

- Recall Bayes' Theorem: $p(A|B) = \frac{p(A) p(B|A)}{p(B)}; \quad p(B) > 0.$
- Given
 - The probability distribution of the parameters of the model $p(\beta)$.
 - The probability distribution of the data given the parameters $p(y|X,\beta)$ (i.e., likelihood function).
- The probability distribution of the parameters given the data $p(\beta|y, X)$ is given by:

$$\underbrace{p(\beta|y,X)}_{Posterior} = \underbrace{\frac{p(y|X,\beta)}{p(y|X)}}_{Likelihood} \underbrace{\frac{Prior}{p(y|X)}}_{Posterior}.$$

- The distribution of the parameters, which will be known, is called **prior** distribution.
- The distribution of the parameters given the data is called **posterior** distribution.

- The denominator in this formula, i.e., p(data) does not depend on the parameter and is fixed.
- Hence,

$$p(\beta|y,X) \propto p(y|X,\beta) \ p(\beta)$$

 $\propto L(\beta) \ p(\beta)$
 \propto Likelihood × Prior

• The task in the Bayesian approach is to find the parameters that maximize the probability $p(\beta|y, X)$ which is proportional to Likelihood × Prior.

• Suppose we have a normal prior distribution for all the parameters:

$$\beta_j \sim N(0, \sigma^2), \quad j = 1, 2, \cdots, p \quad \text{or} \quad \beta \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$$

• That is, the joint pdf of all β_i is:

$$f(\boldsymbol{\beta}) = \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}\beta_j^2} = \left[\frac{1}{\sqrt{2\pi}\sigma}\right]^p e^{-\frac{1}{2\sigma^2}\sum_{j=1}^{p}\beta_j^2} = \left[\frac{1}{\sqrt{2\pi}\sigma}\right]^p e^{-\frac{1}{2\sigma^2}\boldsymbol{\beta}^T\boldsymbol{\beta}}.$$

• The posterior distribution is:

$$p(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X}) = \prod_{i=1}^{n} \left[\frac{e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}} \right]^{y_{i}} \left[1 - \frac{e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}} \right]^{1 - y_{i}} \left[\frac{1}{\sqrt{2\pi}\sigma} \right]^{p} e^{-\frac{1}{2\sigma^{2}}\boldsymbol{\beta}^{T}\boldsymbol{\beta}}$$

• Assume a normal prior with mean μ_j and variance σ_j^2 for each parameter β_j :

$$\beta_j \sim N(\mu_j, \sigma_j^2), \quad j = 1, 2, \cdots, p.$$

That is, $\beta \sim N(\mu, \Sigma)$ where $\mu = (\mu_1, \mu_2, \dots, \mu_p)^T$ and $\Sigma = \text{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_p^2)$.

• That is, the joint pdf of all β_i is:

$$f(\boldsymbol{\beta}) = \frac{1}{\left(\sqrt{2\pi}\right)^p \prod_{j=1}^p \sigma_j} e^{-\frac{1}{2} \sum_{j=1}^p \left(\frac{\boldsymbol{\beta}_j - \mu_j}{\sigma_j}\right)^2} = \frac{1}{\left(\sqrt{2\pi}\right)^p \sqrt{|\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu})}.$$

• It is a (independent) multivariate normal distribution (i.e., with a diagonal covariance matrix).

• Then, the posterior distribution is given by:

$$p(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X}) = \prod_{i=1}^{n} \left[\frac{e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}} \right]^{y_{i}} \left[1 - \frac{e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}} \right]^{1 - y_{i}} \frac{1}{(\sqrt{2\pi})^{p} \sqrt{|\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu})}$$

Choice of Priors

• Expert Knowledge/Domain Context/ Effect Sizes from literature

- What range of effects is reasonable or expected for each predictor?
- If we are modeling a risk factor like smoking in a health model:
 - If the odds ratio is around 2 in prior studies, it means $\beta_{smoking} = \log(2) \approx 0.693$.
 - Then, the prior can be $\beta_{smoking} \sim N(0.693, 0.2^2)$.
- If a study based on meta-analysis report a treatment effect with mean log-odds = 0.5, SD = 0.3.
 - We can set $\beta_{treatment} \sim N(0.5, 0.3^2)$.

Reasonable Odds Ratios:

- We believe a predictor likely increases or decreases the odds by at most a factor of 3.
- The OR range is $\left[\frac{1}{3},3\right]$ and its log-odds is $\left[-1.1,1.1\right]$
- We can choose $\beta \sim N(0, 1^2)$ that centers the prior at no effect but allows moderate effect.

Choice of Priors

Weakly Informative Defaults

• When we do not want the prior to dominate, but still want regularization, it is suggested:

$$\beta \sim \text{Student } t \text{ distribution}(df = 3, \mu = 0, \sigma = 2.5).$$

- This is a default for logistic regression in PyMC (and Bambi) library of Python.
- It is often enough to rule out extreme values unless the data supports them.

Bayesian Inference

• Inferences about β are based on the marginal posterior distribution of each parameter β_i .

$$p(\beta_j|\boldsymbol{y},\boldsymbol{X}) \propto \int_{\beta_0} \cdots \int_{\beta_{j-1}} \int_{\beta_{j+1}} \cdots \int_{\beta_p} p(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X}) d\beta_0 \cdots d\beta_{j-1} d\beta_{j+1} \cdots d\beta_p = \int_{\mathcal{R}^p} p(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X}) d\beta_{-j}$$

- This is not analytically tractable to get the marginal distribution by numerical integration:
 - The non-linearity (exponential component) $e^{x_i\beta}$.
 - The high-dimensionality (when *p* is large).
- We can approximate using the family of **Markov chain Monte Carlo** (MCMC) methods:
 - Metropolis-Hastings (M–H), No-U-Turn Sampler (NUTS), Gibbs Sampling, etc.
- MCMC methods approximate the posterior distribution using simulated samples.

Metropolis-Hastings Algorithm

Let the number of iterations run from $t = 0, 1, 2, \cdots$.

- Initialize the value of the parameter β at β_0 at t=0.
- **②** Generate a new value β_{t+1} from β_t using a (symmetric) proposal distribution $q(\beta_{t+1}|\beta_t)$.
- Ompute the probability of accepting the new value as:

$$p_{accept} = p(\beta_{t+1}|\beta_t) = \min\left[1, \frac{q(\beta_t|\beta_{t+1}) \ p(\beta_{t+1})}{q(\beta_{t+1}|\beta_t) \ p(\beta_t)}\right] = \min\left[1, \frac{\text{posterior of } \beta_{t+1}}{\text{posterior of } \beta_t}\right]$$

- Save new value β_{t+1} if $p_{accept} > r$ where $r \sim U(0,1)$. Otherwise, save the old value β_t .
- **②** Repeat steps 2-4 until a sufficiently large sample of values has been generated.

Bayesian Poisson Regression

Poisson Regression

- Count regression models are used for modelling **count (discrete)** response variables.
- Example: the number of hospital admissions, the number of accidents over some period.
- The unit of analysis could be:
 - a person (e.g., number of infections per patient per year),
 - an institution (e.g., number of admissions per hospital per month) or
 - a place (e.g., number of car accidents per city per day).
- As a first pass, such a dependent variable could be analyzed as a continuous outcome.
- However, unlike a continuous variable, there cannot be negative numbers for counts.
- Also, the distribution of counts is often right skewed and does not fit a normal distribution.

Exponential Function

- Count regression models are modeled based on the exponential function.
- The exponential function is $f(z) = \exp(z)$ is nonnegative for any value of z.

• The figure also shows that the range of f is $0 \le f(z) < \infty$.

Poisson Regression Model

- To obtain the Poisson regression model, z should be expressed as a function (mostly linear function) of the explanatory variables.
- Here, since $f(x_i)$ represents the mean response, let us use the notation $\mu(x_i) = \mu_i$.

$$\mu_i = e^{\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip}} \quad \Rightarrow \log \mu_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip}.$$

- The slope parameters are commonly interpreted in terms of incidence rate ratio (IRR).
 - A one unit increase in x_{ij} has a multiplicative impact of e^{β_j} on the mean response assuming all other covariates constant.
 - If $\beta_j = 0$, then the multiplicative factor is 1, the mean of Y_i does not change as x_{ij} changes.
 - If $\beta_j > 0$, then $e^{\beta_j} > 1$ and the mean of Y_i increases as x_{ij} increases.
 - If $\beta_j < 0$, the mean decreases as x_{ij} increases.

Inference

- Inference for the model follows exactly the same approach as used for logistic regression.
- \bullet Like other models, the goal of Poisson regression is to estimate the p+1 unknown parameters.
- The method of maximum likelihood estimation is used to estimate the parameters.
- Consider a vector of *n* Poisson random variables.
- Each response Y_i ; $i=1,2,\cdots,n$ has an independent Poisson distribution with parameter μ_i :

$$P(Y_i = y_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!}$$

where
$$\mu_i = \mu(x_i) = e^{\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip}}$$
.

Likelihood Function

• The likelihood function of Y_1, Y_2, \dots, Y_n is:

$$L(\beta) = \prod_{i=1}^{n} \frac{e^{-\mu_{i}} \mu_{i}^{y_{i}}}{y_{i}!}$$

$$= \frac{e^{-\sum_{i=1}^{p} \mu_{i}} \prod_{i=1}^{n} \mu_{i}^{y_{i}}}{\prod_{i=1}^{n} y_{i}!}$$

$$\propto e^{-\sum_{i=1}^{p} \mu_{i}} \prod_{i=1}^{n} \mu_{i}^{y_{i}}$$

$$\propto e^{-\sum_{i=1}^{p} e^{x_{i}\beta}} \prod_{i=1}^{n} (e^{x_{i}\beta})^{y_{i}}$$

(3)

Posterior

• Using vague (non-informative, flat) priors for β , the posterior distribution in Poisson regression is approximately proportional to the likelihood function – $\beta_j \sim U(-\infty, \infty)$:

$$p(\boldsymbol{\beta}|y) \propto e^{-\sum_{i=1}^{n} e^{\mathbf{x}_{i}\boldsymbol{\beta}}} \prod_{i=1}^{n} (e^{\mathbf{x}_{i}\boldsymbol{\beta}})^{y_{i}}$$

- Inferences about β are based on the marginal posterior distributions.
- We can obtain marginal distributions using Markov chain Monte Carlo (MCMC) simulation.

Negative Binomial Regression

Negative Binomial Regression

- Often count data vary more than the expected (it is called **over-dispersion**).
- But, over-dispersion is not an issue in ordinary regression models assuming normally distributed response, because the normal distribution has a separate parameter.
- In the presence of over-dispersion, a negative binomial model is should be applied.
- But a negative binomial model has an additional parameter called a *dispersion parameter*.
- That is, because, the negative binomial distribution has mean $E(Y) = \mu$ and variance $Var(Y) = \mu + \psi \mu^2$ where $\psi > 0$.
- The index ψ is a dispersion parameter.
- As $\psi \approx 0$, Var(Y) goes to μ and the NB distribution converges to the Poisson distribution.
- The farther ψ falls above 0, the greater the over-dispersion relative to Poisson variability.

Negative Binomial Regression

- Let us assume y_1, y_2, \dots, y_n are distributed according to the negative binomial distribution.
- That is, $y_i \sim NB(p_i, r)$
- The likelihood function:

$$p(y_1, y_2, \dots, y_n | p_i, r) = \prod_{i=1}^n \frac{y_i + r - 1}{y_i(r - 1)} p_i^r (1 - p_i)^{y_i}$$

where
$$p_i = \frac{r}{r + \mu_i}$$
 and $\log(\mu_i) = \beta_0 + \beta x_i$

- The parameter *r* quantifies the amount of extra Poisson variation and we could assume a gamma prior distribution for it.
- For the coefficients, we could use uniform or non-informative normal prior distributions.

Practical Session

Practical Session

- Software: Python
- Download Notebook.

Thank You!