Corriging

Courtion I

$$f(x) = -4 \ln (x+5) - \frac{x^2}{x} + 5$$

A) down $f =]-5; +\infty L$

$$\lim_{X \to -5} \left(-\frac{\ln(x+5)}{-1} - \frac{x^2}{x^2} + 5 \right) = +\infty$$

$$\lim_{X \to -5} \left(-\frac{\ln(x+5)}{-1} - \frac{x^2}{x^2} + 5 \right) = -\infty$$

$$\lim_{X \to +\infty} \left(-\frac{\ln(x+5)}{-1} - \frac{x^2}{x^2} + 5 \right) = -\infty$$

$$\lim_{X \to +\infty} \left(-\frac{\ln(x+5)}{-1} - \frac{x^2}{x^2} + 5 \right) = -\infty$$

$$\lim_{X \to +\infty} \left(-\frac{\ln(x+5)}{-1} - \frac{x^2}{x^2} + 5 \right) = -\infty$$

$$\lim_{X \to +\infty} \left(-\frac{\ln(x+5)}{-1} - \frac{x^2}{x^2} + 5 \right) = -\infty$$

$$\lim_{X \to +\infty} \left(-\frac{\ln(x+5)}{-1} - \frac{x^2}{x^2} + 5 \right) = -\infty$$

$$\lim_{X \to +\infty} \left(-\frac{\ln(x+5)}{x} - \frac{x^2}{x^2} + \frac{x^2}{x^2} - \frac{x^2}{x^2} + \frac{x^2}{x^2} - \frac{x^2$$

$$\begin{array}{c|ccccc}
x & -5 & -4 & -3 & -1 & +\infty \\
f'' & + & + & 0 & - & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & + & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - & - \\
f'' & - & 0 & + & - & 0 & - \\
f'' & - & 0 & + & - & 0 & - \\
f'' & - &$$

air
$$A = [F(x)]_{-4}^{0} = 20 \ln 5 - \frac{76}{3}$$

$$\approx 6.86 \text{ cm}^{2}$$

Question 4

Mynu de
$$4 - e^{2x} \stackrel{?}{=} 0$$

(=) $4 > e^{2x}$

(=) $e^{\ln 4} > e^{2x}$

(=) $\ln 4 > 2x$

(=) $x < \ln k$

rique de
$$e^{-x+1}$$
 - $h^2 = 0$
 $e^{-x+1} \stackrel{?}{=} e^{\ln 2}$
 $e^{-x+1} \stackrel{?}{=} e^{\ln 2}$

$$\forall x \in \mathcal{D} = \int \frac{\ln x}{\ln 3} ; +\infty [,$$

$$x + \log (3^{x} - 2) = \log (225)$$

(=)
$$\log_3 3^{\times} + \log_3 (3^{\times} - 2) = \frac{\log_3 (225)}{2}$$

(=) $\log_3 3^{\times} (3^{\times} - 2) = \log_3 \sqrt{225}$
(=) $3^{2\times} - 2 \cdot 3^{\times} - 15 = 0$

pose 3 = y

$$y^2 - 2y - 15 = 0$$

$$\Delta = 64$$

$$3^{x} = 5$$
 on $3^{x} = -3$

$$X = log 5$$
 can $3^{\times} > 0$

$$X = \frac{l_{1}5}{l_{1}3} \in D$$

$$\beta^{\dagger} = \left\{ \frac{\ln 5}{\ln 3} \right\}$$

$$\lim_{X\to 0} (1-2x)^{\frac{5}{x}}$$

$$= \lim_{y \to 0} (\Lambda + y)^{\frac{-10}{y}}$$

$$= \lim_{\gamma \to 0} \left[\frac{1+\gamma}{\gamma} \right]^{-10} = e^{-10}$$

$$= \lim_{\gamma \to 0} \left[\frac{1+\gamma}{\gamma} \right]^{-10} = e^{-10}$$

4)
$$\forall x \in \mathbb{R}$$
, $h(x) = \lambda^{A-X} = e^{(A-X) \cdot \ln \lambda}$, $h'(x) = (-\ln \lambda) e^{(A-X) \cdot \ln \lambda}$

Question "

$$A) A) \frac{GX+A}{4X^{2}-4X+A} = \frac{A}{2X-A} + \frac{b}{(2X-A)^{2}}, \forall x \in \mathbb{R}-\frac{b}{a}$$

$$A = \frac{GX+A}{(2X-A)^{2}} = \frac{A(2X-A)+b}{(2X-A)^{2}}, \forall x \in \mathbb{R}-\frac{a}{a}$$

$$A = \frac{A}{(2X-A)^{2}} = \frac{A(2X-A)+b}{(2X-A)^{2}}, \forall x \in \mathbb{R}-\frac{a}{a}$$

$$A = \frac{A}{(2X-A)^{2}} = \frac{A}{(2X-A)^{2}} = \frac{A}{(2X-A)^{2}}$$

$$A = \frac{A}{(2X-A)^{2}} = \frac{A}{(2X-A)^{2}} = \frac{A}{(2X-A)^{2}} = \frac{A}{(2X-A)^{2}}$$

$$A = \frac{A}{(2X-A)^{2}} = \frac{A$$

b)
$$F(x) = \int f(x) dx = \int \left(\frac{3}{2x-n} + \frac{4}{(2x-n)^2}\right) dx$$

$$= \frac{3}{2} \ln |2x-n| + (-2) \cdot \frac{1}{2x-n} + C$$
Determinous C ;

$$F(0) = 4$$

$$C \Rightarrow \frac{3}{2} \ln 1 - 2 \cdot \frac{1}{-1} + C = 4$$

$$C \Rightarrow C = 2$$

$$\forall x \in I =] - \infty; \frac{1}{2} [$$

$$F(x) = \frac{3}{2} \ln (1 - 2x) - \frac{2}{2x - 1} + 2$$

2)
$$\int \alpha r \sin(2x) dx$$

$$\int \alpha r \int \alpha r \sin(2x) dx$$

$$u(x) = \alpha r \sin(2x) \int \alpha'(x) = A$$

$$u'(x) = \frac{e}{\sqrt{\lambda - 4x^2}} \int \alpha'(x) = x$$

$$= X \cdot \operatorname{presin}(2x) - \int \frac{2x}{\sqrt{1 - 4x^2}} dx$$

$$= X \cdot \operatorname{presin}(2x) + \frac{1}{2} \int \frac{-9x}{2\sqrt{1 - 4x^2}} dx$$

$$= X \cdot \operatorname{presin}(2x) + \frac{1}{2} \sqrt{1 - 4x^2} + C$$

3)
$$V = \pi \int_{0}^{\frac{\pi}{4}} (1 + \tan x)^{2} dx$$

$$= \pi \cdot \int_{0}^{\frac{\pi}{4}} (1 + 2 \tan x + \tan^{2} x) dx$$

$$= \pi \cdot \int_{0}^{\frac{\pi}{4}} (1 + \tan^{2} x - 2 \frac{-\sin x}{\cos x}) dx$$

$$= \pi \cdot \left[tom x - 2 \cdot \ln |\cos x| \right]_{0}^{\frac{\pi}{4}}$$

$$= \pi \cdot \left[(1 - 2 \cdot \ln \frac{\sqrt{2}}{2}) - (0 - 2 \cdot \ln x) \right]$$

$$= \pi \cdot (1 + \ln z) \quad \text{M.V.}$$

Problème 1/200

Sections CetD repédage

Soit f(t) = 8·sin $\left[\frac{1}{12}(t-8,5)\right] + 21$ over $0 \le t \le 24$

1) a) à 2h30, la température est minimole. Sa valeur est de 13°C. à 14h30, la température est moscimole.

Sa valeur est de 29°C.

b) Il suffit de résondre graphiquement l'inéquation $f(t) \le 22$ (on bein algébriquement l'équation f(t) = 22)
On a $f(t) \le 22$ \Leftrightarrow $t \le t_1$ on $t > t_2$ over $t_1 = 8,38$ $t_2 \le 29,02$

On en déduit que la température ne dépasse pas 22°C pendant approximativement 13 heures.

c) La vitesse de croissance de la température est décrite por la dérivée première f'.

On détermine donc le moscimum de cette dernière en cherchant l'instant où la dérivée seconde f' s'annule et change de signe.

On résout f''(t)=0

(=> t=8,5 ou t=20,5

On en déduit le tableau suivant $\frac{t}{f'(t)} = \frac{0}{m} + \frac{29.5}{m} + \frac{24}{m}$ $f''(t) + 0 - 0 + \frac{1}{m}$

- d) ha température moyeune entre 6hos et 18hoo est égale à $\frac{1}{18-6} \int_{c}^{18} f(t) dt = 25,04^{\circ}C$
- 2) a) Soit g(t)=10 sin $\left[\frac{\pi}{12}(t-8,5)\right]+a+b$ avec $24 \le t \le 48$

Sour déterminer les constantes à et b, il suffit de résondre le système suivant

$$\begin{cases}
f(24) = g(24) \\
f'(24) = g'(24)
\end{cases}$$

alors on obtient que $a \stackrel{?}{=} 0,32$ $b \stackrel{?}{=} 14,94$

b) Représentation graphique des fonctions f et g:

Corrigé – Mathématiques II Problème V200 Sections C et D (2010)

Algebra Calc Other PrgmIO Clean Up				
■ 8 · sin $\left(\frac{\pi}{12}\right)$	(x - 8.5))+ 21	. → f(x)	Done	
•fMin(f(x),	x) 0 ≤ x ≤ 24		x = 2.5	
■f(2.5)			13.	
■ fMax(f(x),	x) 0 ≤ x ≤ 24		x = 14.5	
• f(14.5)			29.	
f(14.5)				
MAIN	RAD AUTO	FUNC 5/30		

F1 F2 F6 F6 R1gebra Calc Other PrgmIO Clean	Up		
$= \frac{1}{18 - 6} \cdot \int_{6}^{18} f(x) dx $ 25	0405		
■ $10 \cdot \sin\left(\frac{\pi}{12} \cdot (x - 8.5)\right) + a \cdot x + b \Rightarrow g(x)$	Done		
$= \frac{d}{dx}(g(x)) \Rightarrow d1g(x)$	Done		
<pre>solve(f(24) = g(24) and d1f(24) = d1g(24).</pre> a = .318747 and b = 14.9368			
) and d1f(24)=d1g(24),{a,	p>>		

