(Loop Blocking) Analyzer Report

Introduction:

This report generated by CNN-EIA. The goal of this report is analysing the loop blocking of the given Machine Learning Model. The analysis was done on these inputs:

```
Memory Architecture:
```

```
mem_levels:
capacity:
                           [16.0, 16384.0, 536870912.0]
                           [0.05, 3.84, 200]
access_cost:
static_cost:
                           [0, 0, 0]
parallel_count:
                           [256, 1, 1]
mac_capacity:
                           0
parallel mode:
                           [1, 0, 0]
parallel cost:
                           [2]
capacity_scale:
                           [2, 2]
access cost scale:
                           [2, 1.25]
explore_points:
                           [5, 4]
precision:
                           16
array dim:
                           None
utilization_threshold:
                           0.0
replication:
                           True
invalid_underutilized:
                           True
                           [[0, 0, 0], [0, 0, 0], [0, 0, 0], [None, None, None]]
memory_partitions:
}
```

Layer Architecture:

```
fmap_width:
                          1
fmap_height:
                          1
input_fmap_channel:
                         500
output_fmap_channel:
                         250
window width:
                         1
window height:
                          1
                         16
batch size:
stride width:
                          1
stride height:
layer info:
                         [1, 1, 500, 250, 1, 1, 16, 1, 1]
layer_name:
                         mlp_fc3_batch16
}
```

Schedule Architecture:

```
{
schedule_hint:
{0: [[0, 3, 1], None, None], 1: [[2, 1, 3], None, None],
3: [[3, 1, 13], None, None], 4: [[4, None, 4], None,
None]}
partition_loops:
}
None
```

Glossary:

Cache Levels: (L0, L1, L2)
 The smallest index the nearest to CPU.

- Loop Names: (FX, FY, OX, OY, OC, IC, ON)

Analysis Output:

Map Configuration

Loop Blocking (factors):

MEM	L0	L1	L2
FX	3	1	1
FY	1	1	1
ОХ	1	1	1
OY	1	1	1
ОС	3	5	5
IC	1	1	500
ON	1	16	1

The factors of each loop for each cache.

Loop Partitioning (units):

МЕМ	LO	L1	L2	
FX	1	1	1	
FY	3	1	1	
ОХ	1	1	1	
OY	13	1	1	
ОС	4	1	1	
IC	1	1	1	
ON	1	1	1	

Take the processing elements from parallel memories.

Loop Ordering:

MEM	LO	L1	L2
FX	0	6	6
FY	1	6	6
ОХ	6	6	6
OY	2	6	6
OC	3	1	1
IC	6	6	0
ON	6	0	6

The order on each cache.

Schedule

The Best format for schedule found is:

```
MEM - L2:
    for ( OC, 5b, 1p )
        for ( IC, 500b, 1p )

MEM - L1:
    for ( OC, 5b, 1p )
        for ( ON, 16b, 1p )

MEM - L0:
    for ( OC, 3b, 4p )
        for ( OY, 1b, 13p )
        for ( FY, 1b, 3p )
        for ( FX, 3b, 1p )

spatially unrolled loops: (FX)(FY)(OY)(OC)
```

Cost

MEM ENERGY (PJ) L0 399800.0

L0-PARA 20050000.0

L1 16592640.0 L2 33800000.0 TOTAL 70842440.0