Module 2 answer key

By Zachary Taylor and Nadia Kotova

- 1. Prove Proposition 4: If (x_n) is a Cauchy sequence and there is a subsequence (x_{n_k}) that converges to $x \in \mathbb{R}$, then (x_n) converges to x as well. **Solution:** Assume that there exists a subsequence (x_{n_k}) of (x_n) such that $(x_{n_k}) \to x$. Take $\varepsilon > 0$ and choose N big enough so that $|x_{n_k} x| < \varepsilon$ and $|x_n x_m| < \varepsilon$ for $n_k, n, m > N$. Now, take n > N and $n_k > n > N$ and get $|x_n x| \le |x_n x_{n_k}| + |x_{n_k} x| < 2\varepsilon$, hence, $(x_n) \to x$.
- 2. Verify that open intervals (a, b) are indeed open according to this definition. Do the same for $(a, +\infty)$. **Solution:** Pick arbitrary $x \in (a, b)$. Let $\epsilon = \min\{(x - a), (b - x)\}$. Then for any $y \in B_{\epsilon}(x)$, we have y > a and y < b. For (a, ∞) , pick $\epsilon = x - a$.
- 3. The (arbitrary) union of open sets is open. The intersection of finitely many open sets is open. Prove this. What about arbitrary intersections of open sets?
 - **Solution:** (a) Consider a union $S = \bigcup_{i=1}^{n} s_i$, where n may equal ∞ . If $x \in S$, then $x \in s_i$ for at least some particular i. Then, there exists an epsilon ball around x that is in the same s_i (because s_i is open) and consequently also in S.
 - (b) Consider an intersection $S = \bigcap_{i=1}^m s_i$, where $m \neq \infty$. Take $x \in S$. It's true that $\forall i, x \in s_i$. Since s_i is open, there exists ϵ_i such that $B_{\epsilon_i}(x)$ is in s_i . Take $\epsilon = \min_i \{\epsilon_1, \epsilon_2, ..., \epsilon_m\}$, it exists because we looking the interection of a finite number of open sets. Notice that $B_{\epsilon}(x) \subseteq B\epsilon_i(x) \subseteq s_i$ for all i. Therefore, $B_{\epsilon}(x)$ lies in the intersection S. Hence, S is open. (c) This does not hold for the intersection of an infinite number of open sets. Consider $\bigcap_{i=1}^{\infty} (-\frac{1}{i}, 1) = [0, 1)$.
- 4. Prove that the closed interval [a,b] is indeed closed. (Feel free to use Exercise 2.) Solution: We know that the complement, $(-\infty,a) \cup (b,\infty)$ is the union
- 5. The arbitrary intersection of closed sets is closed. The union of finitely many closed sets is closed. Prove this. What about arbitrary unions of

Solution: By DeMorgan's laws, this follows from exercise 4. (a) Take the arbitrary intersection of closed sets s_i indexed by i. Denote $\bar{s_i}$ to be a complement of s_i . Because s_i is closed, $\bar{s_i}$ is open. Take $S = \bigcap s_i$.

closed sets?

of two open sets and therefore open.

 $^{^1}Hint:$ Recall De Morgan's laws.

Its complement by De Morgan's law is $\bar{S} = \bigcup_i \bar{s}_i$ is open because it is the union of open sets. Therefore, S is closed by definition of a closed set.

- (b) Take the union of finitely many closed sets: $S = \bigcup_{i=1}^{m} s_i$. Its complement:
- $\bar{S} = \bigcap_{i}^{m} \bar{s_i}$. The intersection of finitely many open sets is open. Hence, S is closed.
- (c) Consider $\bigcup_{i} \left[\frac{1}{i}, +\infty \right) = (0, +\infty)$
- 6. Give an example of open cover that does not admit a finite subcover for $(0,1] \subset \mathbb{R}$ (which is not closed) and for $[0,+\infty)$ (which is not bounded).

Solution: Consider the examples $(0,1] \subseteq \bigcup_{i=1}^{\infty} (\frac{1}{i},2) = (0,2)$ and $[0,+\infty) \subseteq \bigcup_{i=1}^{\infty} (-1,i) = (-1,\infty)$.

7. Suppose S has an isolated point—for example, $S = \{1\} \cup [2,3]$. What functions are continuous at 1?

Solution: Every function is continuous at 1. Consider any sequence that converges to $x_0=1$ in the domain S. Picking $0<\epsilon<1$, by definition there exists N such that for all n>N $|x_n-1|<\epsilon<1$. Hence, $x_n=1$ for all n>N, since x_n has to belong to S and be no further away from $x_0=1$ than $\epsilon<1$. Hence, for n>N $f(x_n)=f(1)$ and, therefore, converges to 1.

8. Prove Proposition $\ref{eq:continuity}$ using $\varepsilon\text{-}\delta$ definition of continuity.

Solution: Since g is continuous at $f(x_0)$, then $\forall \epsilon > 0$ there exists $\delta_1 > 0$ such that:

$$|f(x)-f(x_0)|<\delta_1\Rightarrow |g(f(x))-g(f(x_0))|<\epsilon$$

Since f is continuous at x_0 , then for $\delta_1 > 0$ there exists $\delta > 0$ such that:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \delta_1$$

Together the above two lines imply that $\forall \epsilon > 0$ there exists $\delta > 0$ such that:

$$|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\delta_1 \Rightarrow |g(f(x))-g(f(x_0))|<\epsilon$$

9. Let f and g be continuous at x_0 . Prove or disprove: $\max(f,g)$ is continuous at x_0 .²

Solution: True; $\max\{f(x), g(x)\} = \frac{1}{2} (f(x) + g(x)) + \frac{1}{2} |f(x) - g(x)|$. Note that these are all continues functions, and the sum of continuous functions is continuous.

² Hint: $\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$

- 10. Prove or disprove: $f: S \to \mathbb{R}$ is continuous at x_0 if and only if for every monotonic sequence (z_n) in S converging to x_0 , $\lim_n f(z_n) = f(x_0)$. Solution:
 - (a) Take any sequence (z_n) that converges to x_0 , then take any subsequence of (z_n) , let's call it (z_{n_k}) , then (z_{n_k}) has a monotone subsequence $(z_{n_{k_l}})$ such that $f(z_{n_{k_l}})$ converges to $f(x_0)$. Consider $f(z_n)$ for any sequence z_n converging to x_0 , for any subsequence $f(z_{n_k})$, it has a subsubsequence $f(z_{n_{k_l}})$ that converges to $f(x_0)$. Now we can use the lemma in the hint which gives us that $f(z_n)$ converges to $f(x_0)$.
 - (b) If $f: S \to \mathbb{R}$ is continuous at x_0 , then for every monotonic sequence z_n in S, $\lim f(z_n) = f(x_0)$. This holds trivially because in fact $\lim f(z_n) = f(x_0)$ for every sequence z_n in S, monotonic or not.
- 11. Prove or disprove: The extreme value theorem still holds if f is defined on (a, b).

Solution: False. Take, for example, any function f such that $\lim_{x\to b^-} f(x) = +\infty$

12. Prove or disprove: The extreme value theorem still holds if f is defined on (a, b) and we add the assumption that f is bounded.

Solution: False. Take any continuous and strictly increasing function, the maximum of it does not exist on (a,b).

³ Hint: the following Lemma could be useful: (x_n) converges to x if and only if for every subsequence x_{n_k} there exists sub-subsequence $x_{n_{k_l}}$ that converges to x. Proving this Lemma is a good exercise in itself.