EXERCICE 2C.1

Substituer à \mathcal{Z} sa valeur pour calculer l'aire d'un carré de côté \mathcal{Z} :

	$\mathcal L$	$\mathcal{A} = \mathcal{L} \times \mathcal{L}$	Résultat
a.	5 cm	<i>∞</i> 4 = 5 × 5	<i>∞</i> 4 = 25cm²
b.	3 cm	$\mathcal{A} =$	$\mathcal{A} =$
C.	9 cm	$\mathcal{A} =$	<i>∞ (</i> =
d.	4 cm	$\mathcal{A} =$	⊘ =
e.	2,5 cm	$\mathcal{A} =$	c≪=
f.	10 cm	$\mathcal{A}=$	⊘ =
g.	100 mm	$\mathcal{A} =$	$\mathcal{A} =$
h.	500 m	$\mathcal{A}=$	
i.	3,2 cm	$\mathcal{A}=$	$\mathcal{A}=$
j.	8,7 cm	$\mathcal{A}=$	$\mathcal{A}=$

EXERCICE 2C.2

- a. ABCD est un carré de côté 7,5 cm. Quel est son aire ?
- **b.** EFGH est un carré d'aire 4 cm². Quelle est la longueur d'un de ses côtés?
- **c.** IJKL est un carré d'aire 9 cm². Quelle est la longueur d'un de ses côtés ?
- d. PQRS est un carré d'aire 25 cm². Quelle est la longueur d'un de ses côtés ?

.....

EXERCICE 2C.3

Substituer à \mathcal{Z} et ℓ leurs valeurs pour calculer l'aire d'un rectangle de longueur \mathcal{L} et de largeur ℓ :

	\mathscr{L}	1	$\mathcal{A} = \mathcal{L} \times \ell$	Résultat
a.	5 cm	4 cm	≪ = 5 × 4	≪= 20cm²
b.	3 cm	2 cm	$\mathcal{A} =$	$\mathcal{A} =$
c.	8 cm	1 cm	$\mathcal{A} =$	
d.	9 cm	8 cm	$\mathcal{A} =$	$\mathcal{A} =$
e.	8 cm	4,5 cm	$\mathcal{A} =$	cA =
f.	6,5 cm	4 cm	$\mathcal{A} =$	$\mathcal{A} =$
g.	14 m	12 m	$\mathcal{A} =$	$\mathcal{A}=$
h.	12 dm	7 dm	$\mathcal{A} =$	
i.	120 mm	12 cm	$\mathcal{A} =$	⊘ =
j.	1 m	1 cm	$\mathcal{A}=$	$\mathcal{A} =$

EXERCICE 2C.4

- **a.** Un champ rectangulaire mesure 120 m de long pour 80 m de large. Quelle est son aire ?
- **b.** Un champ carré a pour côté 100 m. Quelle est son aire ?
- c. Calculer les périmètres des deux champs précédents.

EXERCICE 2C.5

Substituer à \mathcal{L} et ℓ leurs valeurs pour calculer l'aire d'un triangle rectangle dont les côtés de l'angle droit ont pour longueur \mathcal{L} et ℓ :

	\mathscr{L}	1	$\mathcal{A} = (\mathcal{L} \times \mathcal{L}).2$	Résultat
a.	5 cm	4 cm	<i>∞</i> = (5×4):2	
b.	3 cm	2 cm	$\mathcal{A} =$	⊙ =
c.	12 cm	1 cm	$\mathcal{A} =$	c≪=
d.	7 cm	8 cm	$\mathcal{A} =$	⊘ =
e.	7 cm	24 cm	$\mathcal{A}=$	$\mathcal{A}=$
f.	12 cm	5 cm	$\mathcal{A} =$	⊙ ∕ =
g.	8 m	6 m	$\mathcal{A} =$	cA=
h.	12 dm	7 dm	$\mathcal{A} =$	≪=
i.	120 mm	12 cm	A =	cA=
j.	1 m	1 cm	$\mathcal{A}=$	$\mathcal{A} =$

EXERCICE 2C.6

Calculer l'aire <u>réelle</u> de ces figures:

