Tema 4. La inferencia en el modelo de regresión

Gustavo A. García

ggarci24@eafit.edu.co

Econometría para la Toma de Decisiones

Maestría en Economía Aplicada

Escuela de Finanzas, Economía y Gobierno

Universidad EAFIT

Link slides en formato html

Link slides en formato PDF

En este tema

- Introducción
- Pruebas de hipótesis
- Intervalos de confianza
- La estrecha relación entre los intervalos de confianza y las pruebas de hipótesis
- Ejercicio aplicado en R

Lecturas

- Wooldridge, Jeffrey (2013). Introducción a la econometría. 5a edición, Cengage Learning. Cap.
- Gujarati, D. y Porter, D. (2010). *Econometría*. 5a edición, Mc Graw Hill. Cap. 5

Introducción

El modelo de RLS presenta la siguiente estructura:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

En la estimación de los parámetros del modelo tenemos

Parámetro	Estimador	Varianza estimada
eta_0	${\hat eta}_0 = ar Y - {\widehat eta}_1 \overline X$	$\hat{\sigma}_{\widehat{eta}_0}^2 = rac{\widehat{\sigma}_u^2 \sum X_i^2}{n \sum x_i^2}$
eta_1	$\hat{\beta}_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} = \frac{\sum x_i y_i}{\sum x_i^2}$	$\hat{\sigma}_{\hat{eta}_1}^2 = rac{\hat{\sigma}_u^2}{\sum x_i^2}$
σ_u^2	$\hat{\sigma}_u^2 = rac{\sum \hat{u}^2}{n-2}$	-

Introducción

- El método estadístico intenta decir cosas sobre los parámetros poblacionales con base en los estadísticos muestrales
- En el caso del modelo de RLS, consiste en decir algo acerca de eta_0 y eta_1 con base en \hat{eta}_0 y \hat{eta}_1
- ullet Lo anterior implica construir intervalos de confianza y pruebas de hipótesis para eta_0 y eta_1

- Ahora se quiere verificar estadísticamente una afirmación como la siguiente: $\beta_1=\beta_{10}$, esto es, verificar la hipótesis nula (H_0) : $H_0: \beta_1=\beta_{10}$
- En estadística las hipótesis se rechazan o no se rechazan
- Lo importante en la inferencia estadística es:
 - \circ suponer que H_0 es cierta
 - \circ encontrar la distribución muestral bajo H_0
 - \circ observar la realidad bajo el supuesto de H_0 cierta
 - \circ si lo observado es poco probable \Longrightarrow rechazar H_0 si lo observado es probable \Longrightarrow no rechazar H_0
- ullet En consecuencia, las hipótesis nulas (H_0) que se verifican son del tipo igualdad a, ya que es bajo este supuesto que se dan las distribuciones muestrales conocidas
- Cuando se esta bajo hipótesis nulas del tipo >, < o \neq se tienen otras distribuciones

Tenemos que el método estadístico de toma de decisiones implica:

• Formular una hipótesis nula (en términos de igualdad) y una hipótesis alternativa

$$H_0:eta_1=eta_{10}$$
 $H_A:~eta_1 ó $eta_1
eqeta_{10}$ ó $eta_1>eta_{10}$ ó $eta_1>eta_{10}$$

ullet Hay que encontrar la distribución muestral del estadígrafo apropiado, bajo H_0

Bajo
$$H_0 rac{\hat{eta}_1 - eta_{10}}{\hat{\sigma}_{\widehat{eta}_1}} \sim t_{N-2} ext{ gdl}$$

• Dado esto se define el nivel de significancia aceptable en la prueba (ϵ)

• No se debe olvidar que cualquier decisión que se tome se hace en condiciones de incertidumbre:

H ₀ Realidad Decisión	Cierta	Falsa
Rechaza	Error tipo I	Decisión correcta
No rechaza	Decisión correcta	Error tipo II

- ullet $Prob(\mathrm{Cometer\ error\ tipo\ I}) = \epsilon \Longrightarrow \mathsf{Nivel\ de\ significancia}$
- $1 Prob(ext{Cometer error tipo II}) \Longrightarrow ext{Potencia de la prueba}$

La mecánica es

• Se formula el contraste

$$H_0:eta_1=eta_{10}$$
 $H_A:~~eta_1 ó $eta_1
eqeta_{10}$ ó $eta_1>eta_{10}$ ó $eta_1>eta_{10}$$

• Bajo H_0 cierto el estadístico de prueba (t_0) será:

$$t_0 = rac{\widehat{eta}_1 - eta_{10}}{\widehat{\sigma}_{\widehat{eta}_1}} \sim t_{N-2} ext{gdl}$$

• Se establece una regla de decisión en función de H_0 :

$$\circ \ \text{si } H_A: \beta_1 < \beta_{10} \Longrightarrow t_0 = \frac{\widehat{\beta}_1 - \beta_{10}}{\widehat{\sigma}_{\widehat{\beta}_1}} < -t_{N-2}(\epsilon) \Longrightarrow \text{Rechazo } H_0$$

$$\circ \ \text{si } H_A: \beta_1 \neq \beta_{10} \Longrightarrow |t_0| = \frac{\widehat{\beta}_1 - \beta_{10}}{\widehat{\sigma}_{\widehat{\beta}_1}} > t_{N-2}(\epsilon/2) \Longrightarrow \text{Rechazo } H_0$$

$$\circ \ \text{si } H_A: \beta_1 > \beta_{10} \Longrightarrow t_0 = \frac{\widehat{\beta}_1 - \beta_{10}}{\widehat{\sigma}_{\widehat{\beta}_1}} > t_{N-2}(\epsilon) \Longrightarrow \text{Rechazo } H_0$$

- ullet $p ext{-}value$: la probabilidad del límite derecho de H_0 bajo el supuesto de que es cierta
- ullet La regla es rechazar H_0 si

p-value
$$< \epsilon$$

Donde el $\emph{p-value}\ (t_0) = 2(1-F(|t_0|,m))$, m son los grados de libertad

• Gráficamente sería:

Nivel de significancia= ϵ =0.05

Nivel de significancia= ϵ =0.01

- En el nivel de significancia (ϵ) se tiene el número mágico del 5%
- ullet Si es del tipo $H_A:eta_1<eta_{10}$, se trata de una prueba con cola situada a la izquierda

Regla de decisión: rechazar H_0 al nivel de significancia ϵ si

$$t_0 < -t_{(N-2)}(\epsilon)$$

$$con \ t_0 = \frac{\widehat{\beta}_1 - \beta_{10}}{\widehat{\sigma}_{\widehat{\beta}_1}}$$

• Con el uso del *p-value*:

$$ext{p-value} = \int_{-\infty}^{t_0} t_{N-2} dt$$

Esto es exactamente el nivel marginal de significancia en el cual se puede rechazar H_0 . La regla de decisión sería:

Rechazar H_0 si *p-value* $< \epsilon$

ullet Si la hipótesis alternativa es del tipo $H_A:eta_1
eqeta_{10}$, se tiene una prueba de dos colas

Regla de decisión: rechazar H_0 al nivel de significancia ϵ si $|t_0|>t_{(N-2)}(\epsilon/2)$ con $t_0=\frac{\widehat{\beta}_1-\beta_{10}}{\widehat{\sigma}_{\widehat{\beta}_1}}$

• En términos del *p-value* la regla de decisión sería:

Rechazar H_0 si *p-value* $< \epsilon$

• Si la hipótesis alternativa es del tipo $H_A: eta_1>eta_{10}$, se tiene una prueba con cola a la derecha

Regla de decisión: rechazar H_0 al nivel de significancia ϵ si $t_0 > t_{(N-2)}(\epsilon)$ con $t_0 = \frac{\widehat{\beta}_1 - \beta_{10}}{\widehat{\sigma}_{\widehat{\beta}_1}}$

• En términos del *p-value* la regla de decisión sería:

Rechazar H_0 si $extit{p-value} < \epsilon$

Intervalos de confianza

Definición

- Es la probabilidad de que dos valores extremos contengan el parámetro desconocido
- Son unos límites probabilísticos que contienen al verdadero parámetro (en este caso β_1) con una probabilidad de $1-\epsilon$ (nivel de confianza)

Definición matemática

$$Prob\left[\widehat{eta}_1-\widehat{\sigma}_{\widehat{eta}_1}t_{N-2}(\epsilon/2)\leq eta_1\leq \widehat{eta}_1+\widehat{\sigma}_{\widehat{eta}_1}t_{N-2}(\epsilon/2)
ight]=1-\epsilon$$

Interpretación

- La probabilidad de que el intervalo que va desde $\widehat{\beta}_1 \widehat{\sigma}_{\widehat{\beta}_1} t_{N-2}(\epsilon/2)$ hasta $\widehat{\beta}_1 + \widehat{\sigma}_{\widehat{\beta}_1} t_{N-2}(\epsilon/2)$ contenga el verdadero valor de β_1 es $1-\epsilon$
- El intervalo de confianza $\widehat{eta}_1\pm\widehat{\sigma}_{\widehat{eta}_1}t_{N-2}(\epsilon/2)$ contiene a eta con una probabilidad de $1-\epsilon$
- ullet En el $(1-\epsilon)\%$ de los casos el intervalo contendrá el parámetro eta_1
- $IC_{(1-\epsilon)}(eta_1)=\widehat{eta}_1\pm\widehat{\sigma}_{\widehat{eta}_1}t_{N-2}(\epsilon/2)$ \\hspace*{1.67cm} = \small{Estimador} \pm Error de estimación (Valor t-student)}

La estrecha relación entre los intervalos de confianza y las pruebas de hipótesis

- Se rechaza la hipótesis nula $H_0: \beta_1=\beta_{10}$ a un nivel de significancia ϵ , cuando β_{10} cae por fuera del correspondiente $100(1-\epsilon)\%$ intervalo de confianza
- En nuestro ejemplo wage-educ, $\beta_{10}=0$ no cae dentro del intervalo de confianza del 95% (0.436, 0.645), y por tanto, usando este enfoque, nosotros de nuevo rechazamos $H_0:\beta_1=0$ a un nivel de significancia del 5%
- De hecho, se rechaza cualquier hipótesis nula donde eta_{10} no esta contenido en el intervalo de confianza (0.436, 0.645)
- Por otro lado, Si el IC(95%) contiene el cero, β_1 no es significativo al 5%

Se tiene una base de datos de corte transversal de 526 trabajadores correspondientes a 1976 para los Estados unidos. wage son los salarios en dólares por hora y educ los años de educación. Se desea estimar el siguiente modelo:

$$wage = \beta_0 + \beta_1 educ + u$$

```
library(haven); library(summarytools); library(Hmisc); library(tidyverse)
data <- read stata("http://fmwww.bc.edu/ec-p/data/wooldridge/wage1.dta")</pre>
# Descripción de la base de datos: http://fmwww.bc.edu/ec-p/data/wooldridge/wage1.des
names(data)
 [1] "wage"
                "educ"
                           "exper"
                                      "tenure"
                                                 "nonwhite" "female"
 [7] "married"
               "numdep"
                           "smsa"
                                      "northcen" "south"
                                                             "west"
                                                 "services" "profserv"
[13] "construc" "ndurman"
                           "trcommpu"
                                      "trade"
[19] "profocc" "clerocc" "servocc"
                                     "lwage"
                                                 "expersa" "tenursa"
descr(data[,c("educ","wage")], stats = "common", transpose = TRUE, headings = FALSE)
```

	Media	Dev.std.	Min	Mediana	Max	Num.Válido	Pct.Válido
educ	12.56	2.77	0.00	12.00	18.00	526.00	100.00
wage	5.90	3.69	0.53	4.65	24.98	526.00	100.00

```
st_options(lang = "es", footnote=NA, headings = FALSE)
print(dfSummary(data[,c("educ","wage")], valid.col = FALSE, silent=FALSE), method = "render", varnumbers=F)
```

Variable	Estadísticas / Valores	Frec. (% sobre válidos)	Gráfico	Perdidos
educ [numeric]	Media (d-s): 12.6 (2.8) min < mediana < max: 0 < 12 < 18 RI (CV): 2 (0.2)	18 valores distintos		0 (0.0%)
wage [numeric]	Media (d-s): 5.9 (3.7) min < mediana < max: 0.5 < 4.7 < 25 RI (CV): 3.6 (0.6)	241 valores distintos		0 (0.0%)

```
# Correlaciones
cor(data[,c("wage","educ")])
                   educ
         wage
wage 1.0000000 0.4059033
educ 0.4059033 1.0000000
# Correlaciones con significancia estadística
rcorr(as.matrix(data[,c("wage","educ")]))
    wage educ
wage 1.00 0.41
educ 0.41 1.00
n= 526
    wage educ
wage
educ 0
```

```
# Densidades de los salarios
ggplot(data, aes(x=wage)) +
geom_density(fill="lightblue")
```



```
# Densidades de los salarios por género
data <- data |> mutate(sex = case_when(female==1~"F", female==0~"M"))
ggplot(data, aes(x=wage, fill=sex)) + geom_density(alpha=0.3) +
   scale_fill_manual(name="Género", labels = c("Mujer", "Hombre"),values=c("red","blue")) + labs(x= "Salario", y="Densidad")
```

plot(data\$wage~data\$educ)


```
ggplot(data, aes(x=educ, y=wage)) +
  geom_point()
```



```
ggplot(data, aes(x=educ, y=wage)) +
  geom_point(alpha=0.5, color="red", size=2) + geom_smooth(formula=y~x, method=lm, linetype="dashed", color="blue") +
  labs(x= "Educación", y="Salario hora") + scale_x_continuous(breaks = seq(0, 18, by = 2))
```



```
# El modelo de regresión
modelo <- lm(wage~educ, data=data)</pre>
summary(modelo)
Call:
lm(formula = wage ~ educ, data = data)
Residuals:
           1Q Median
   Min
                                Max
-5.3396 -2.1501 -0.9674 1.1921 16.6085
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.90485 0.68497 -1.321 0.187
           educ
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.378 on 524 degrees of freedom
Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632
F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16
# Intervalos de confianza
confint(modelo, level = 0.95)
               2.5 % 97.5 %
(Intercept) -2.2504719 0.4407687
educ
           0.4367534 0.6459651
```

```
freq(data$female, headings = F)
```

El modelo de regresión para muieres

```
Frec. % Válido % Válido acu. % Total % Total acu.
    0
         274
                  52.09
                                 52.09
                                           52.09
                                                         52.09
                                                        100.00
   1
         252
                  47.91
                                100.00
                                           47.91
 <NA>
           0
                                           0.00
                                                        100.00
                                                        100.00
Total
         526
                 100.00
                                100.00
                                          100.00
```

```
summarv(modelo f)
Call:
lm(formula = wage ~ educ, data = subset(data, female == 1))
Residuals:
            10 Median
   Min
                            30
-3.9137 - 1.3212 - 0.6352 0.6474 14.4654
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.99803
                       0.72851 -1.37 0.172
educ
            0.45348
                       0.05799 7.82 1.48e-13 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.272 on 250 degrees of freedom
Multiple R-squared: 0.1965, Adjusted R-squared: 0.1933
F-statistic: 61.15 on 1 and 250 DF, p-value: 1.482e-13
```

modelo f <- lm(wage~educ, data=subset(data,female==1))</pre>

```
modelo m <- lm(wage~educ, data=subset(data,female==0))</pre>
summarv(modelo m)
Call:
lm(formula = wage ~ educ, data = subset(data, female == 0))
Residuals:
   Min
            10 Median
                            30
-6.1611 -2.7532 -0.7192 1.7725 15.5258
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20050
                       1.01646 0.197 0.844
educ
            0.53948
                       0.07739 6.971 2.38e-11 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.84 on 272 degrees of freedom
Multiple R-squared: 0.1516, Adjusted R-squared: 0.1485
F-statistic: 48.6 on 1 and 272 DF, p-value: 2.378e-11
```

El modelo de regresión para hombres