Q1: Are lake and terrestrial primary productivity coherent?

Jonathan Walter, Grace Wilkinson, Rachel Fleck, Michael Pace 4/17/2019

This document organizes for openness and reproducibility analyses of the temporal coherence of interannual variation in lake primary productivity with terrestrial primary productivity in the landscape surrounding the lake

Data import

```
Data produced in 'ms1_prep.Rmd' are loaded.
load("/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/RData files/ms1_analysis_inprogress1.RDat
any(sapply(analysislakes$lakedata, function(x){any(is.infinite(x))}))
## [1] FALSE
any(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## [1] TRUE
which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## 7545 7595 7790 7970 8271
     74
          75
               77
                    81
analysislakes$lakeinfo[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),]
        lagoslakeid
##
                            gnis_name nhd_lat nhd_long lake_area_ha
## 7445
               7545
                           Alton Pond 41.44294 -71.71835
                                                             17.843701
## 7495
               7595
                            Long Pond 41.41031 -71.55334
                                                             16.879950
## 7689
               7790
                        Watchaug Pond 41.38381 -71.69161
                                                            232.391660
## 7867
               7970
                          Yawgoo Pond 41.51113 -71.57300
                                                             60.724131
               8271 Meadow Brook Pond 41.44110 -71.69034
                                                              9.808244
## 8165
##
        lake_perim_meters nhd_ftype hu4_zoneid start
                                                       end
## 7445
                 3746.121
                                390
                                         HU4_10 1989 2010
## 7495
                 2751.178
                                390
                                         HU4_10
                                                1993 2010
## 7689
                 8397.096
                                390
                                         HU4_10
                                                 1989 2010
## 7867
                 3195.857
                                390
                                         HU4_10
                                                 1989 2010
## 8165
                 2030.864
                                390
                                         HU4_10
                                                 1989 2010
# image(accndvi)
# points(lakepts.prj[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),])
dbuff[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))]
```

analysislakes α lakeinfo<-analysislakes β lakeinfo[!sapply(analysislakes β lakedata, function(x){any(is.na(x) analysislakes β lakedata<-analysislakes β lakedata[!sapply(analysislakes β lakedata, function(x){any(is.na(x) analysislakes}

[1] 2500.000 2500.000 4939.589 2500.000 2500.000

```
source("~/GitHub/AquaTerrSynch/AnalysisCode/bandtest_coh.R")
tsranges<-rbind(c(2,4),c(4,Inf),c(2,Inf))
coh.chlaXaccndvi<-NULL
coh.chlaXmaxndvi<-NULL
for(lind in 1:length(analysislakes$lakedata)){
  lakedat.ii<-cleandat(analysislakes$lakedata[[lind]], as.numeric(colnames(analysislakes$lakedata[[lind
  chlaXaccndvi<-coh(lakedat.ii[1,], lakedat.ii[2,], as.numeric(colnames(analysislakes$lakedata[[lind]])
                    norm="powall", sigmethod="fast", nrand=10000)
  chlaXmaxndvi<-coh(lakedat.ii[1,], lakedat.ii[3,], as.numeric(colnames(analysislakes$lakedata[[lind]])</pre>
                    norm="powall", sigmethod="fast", nrand=10000)
  for(rind in 1:nrow(tsranges)){
    chlaXaccndvi<-bandtest.coh(chlaXaccndvi, tsranges[rind,])</pre>
    chlaXmaxndvi<-bandtest.coh(chlaXmaxndvi, tsranges[rind,])</pre>
  coh.chlaXaccndvi<-rbind(coh.chlaXaccndvi, c(t(as.matrix(chlaXaccndvi$bandp[,3:5]))))</pre>
  coh.chlaXmaxndvi<-rbind(coh.chlaXmaxndvi, c(t(as.matrix(chlaXmaxndvi$bandp[,3:5]))))</pre>
}
coh.chlaXaccndvi<-as.data.frame(coh.chlaXaccndvi)</pre>
coh.chlaXmaxndvi<-as.data.frame(coh.chlaXmaxndvi)</pre>
colnames(coh.chlaXaccndvi)<-paste0("accndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
colnames(coh.chlaXmaxndvi)<-paste0("maxndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
coh.chlaXaccndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
coh.chlaXmaxndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
#short timescales
hist(coh.chlaXaccndvi$accndvicoh.ts1)
```

Histogram of coh.chlaXaccndvi\$accndvicoh.ts1

hist(coh.chlaXmaxndvi\$maxndvicoh.ts1)

Histogram of coh.chlaXmaxndvi\$maxndvicoh.ts1

quantile(coh.chlaXaccndvi\$accndvip.ts1)

0% 25% 50% 75% 100% ## 0.00019998 0.25027497 0.46055394 0.69833017 0.99740026

```
quantile(coh.chlaXmaxndvismaxndvip.ts1)
                     25%
                                50%
                                            75%
## 0.00479952 0.26997300 0.52324768 0.78762124 0.97940206
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts1<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.06802721
sum(coh.chlaXmaxndvi$maxndvip.ts1<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.03401361
print(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvip$accndvip.ts1<alpha]/pi) #only pattern is that la
## [1] -0.69355770 0.97567765 0.84577293 -0.76068035 -0.10346014
## [6] 0.05131054 -0.60744627 -0.56248178 -0.15437429 -0.63997328
print(coh.chlaXmaxndvi$maxndviphi.ts1[coh.chlaXmaxndvi$maxndvip.ts1<alpha]/pi)</pre>
## [1] 0.3030499 0.1624359 -0.9406033 -0.5034587 -0.8338166
#long timescales
hist(coh.chlaXaccndvi$accndvicoh.ts2)
```

Histogram of coh.chlaXaccndvi\$accndvicoh.ts2

Histogram of coh.chlaXmaxndvi\$maxndvicoh.ts2

coh.chlaXmaxndvi\$maxndvicoh.ts2

```
quantile(coh.chlaXaccndvi$accndvip.ts2)
           0%
                                50%
##
                     25%
                                           75%
                                                      100%
## 0.00009999 0.20827917 0.48555144 0.75567443 0.97870213
quantile(coh.chlaXmaxndvi$maxndvip.ts2)
                     25%
                                50%
                                                      100%
## 0.00229977 0.17243276 0.43605639 0.76277372 0.99880012
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts2<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.1156463
sum(coh.chlaXmaxndvi$maxndvip.ts2<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.08843537
print(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<alpha]/pi)</pre>
        0.73992662 -0.90124264 0.53888310 0.27521830 -0.95606597
## [6] 0.52712388 0.66512195 -0.68599147 -0.91773670 -0.29662433
## [11] -0.10820287 -0.40541240 -0.22793834 -0.04840174 -0.57269988
## [16] -0.52827164 0.88106993
print(coh.chlaXmaxndvi$maxndviphi.ts2[coh.chlaXmaxndvi$maxndvip.ts2<alpha]/pi)</pre>
   [1] 0.70551340 -0.52165283 0.31832221 0.08039247 0.71001377
## [6] -0.31901830 0.06889035 0.75090709 -0.34232190 -0.47848554
## [11] 0.53740894 0.27725948 0.84338040
#all timescales
hist(coh.chlaXaccndvi$accndvicoh.ts3)
```

Histogram of coh.chlaXaccndvi\$accndvicoh.ts3

οσπ.σπαλασσπανιφασσπανισσπικο

hist(coh.chlaXmaxndvi\$maxndvicoh.ts3)

Histogram of coh.chlaXmaxndvi\$maxndvicoh.ts3

coh.chlaXmaxndvi\$maxndvicoh.ts3

quantile(coh.chlaXaccndvi\$accndvip.ts3)

0% 25% 50% 75% 100% ## 0.0000999 0.20057994 0.47875212 0.71967803 0.98090191

```
quantile(coh.chlaXmaxndvismaxndvip.ts3)
                     25%
                                 50%
                                            75%
## 0.00359964 0.22062794 0.47805219 0.72887711 0.99270073
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts3<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.06122449
sum(coh.chlaXmaxndvi$maxndvip.ts3<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.04761905
print(coh.chlaXaccndvi$accndviphi.ts3[coh.chlaXaccndvi$accndvip.ts3<alpha]/pi)</pre>
## [1] 0.8639992 0.8479284 0.5604227 0.7201726 -0.3225463 -0.4610452
## [7] -0.3272096 -0.5351952 -0.2557062
print(coh.chlaXmaxndvi$maxndviphi.ts3[coh.chlaXmaxndvi$maxndvip.ts3<alpha]/pi)</pre>
## [1] 0.5354322 -0.5225891 0.5079395 0.3106531 -0.2093039 0.5093530
## [7] 0.8755260
#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag
#agriculture -- is 500m buffer best? Other options include 100m buffer (probably too small) and hu12 wa
pct.ag<-lagosne_select(table="buffer500m.lulc", vars=c("lagoslakeid", "buffer500m_nlcd2001_pct_82", "buff
pct.ag<-pct.ag[pct.ag$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,]
pct.ag.avg<-data.frame(lagoslakeid=pct.ag$lagoslakeid, pct.ag=rowMeans(pct.ag[,2:4]))</pre>
#depth
depth<-lagosne_select(table="lakes_limno", vars=c("lagoslakeid", "maxdepth"))</pre>
depth<-depth[depth$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,] #use max depth because it's mo
#qrowing season Chlorophyll-a
chla<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid","samplemonth","chla"))</pre>
chla<-chla[chla$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,]
gs.chla<-chla[chla$samplemonth %in% 5:9,]
avg.chla<-aggregate(chla ~ lagoslakeid, data=gs.chla, FUN=mean, na.rm=T)
#Chlorophyll-a TSI class
\#TSI(CHL) = 9.81 ln(CHL) + 30.6
tsi.chl<-data.frame(lagoslakeid=avg.chla$lagoslakeid, tsi=9.81 * log(avg.chla$chla) + 30.6)
tsi.chl$tsi.cat<-rep("lake",nrow(tsi.chl))</pre>
tsi.chl$tsi.cat[tsi.chl$tsi < 40]<-"oligotrophic"</pre>
tsi.chl$tsi.cat[tsi.chl$tsi >=40 & tsi.chl$tsi < 50]<-"mesotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=50 & tsi.chl$tsi < 70]<-"eutrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >= 70] <-"hypereutrophic"</pre>
#huc2 and huc4 watershed codes
huc_codes<-read.csv("/Users/jonathanwalter/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", colC
predictors<-analysislakes$lakeinfo</pre>
predictors$tslength<-predictors$end-predictors$start+1</pre>
predictors<-left_join(predictors, depth, by="lagoslakeid")</pre>
```

```
predictors<-left_join(predictors, pct.ag.avg, by="lagoslakeid")</pre>
predictors<-left_join(predictors, avg.chla, by="lagoslakeid")</pre>
predictors<-left_join(predictors, tsi.chl, by="lagoslakeid")</pre>
predictors<-left_join(predictors, huc_codes, by="hu4_zoneid")</pre>
## Warning: Column `hu4_zoneid` joining factor and character vector, coercing
## into character vector
modvars.accndvi<-left_join(predictors, coh.chlaXaccndvi, by="lagoslakeid")</pre>
modvars.accndvi$nhd_ftype<-factor(modvars.accndvi$nhd_ftype)</pre>
modvars.accndvi$tsi.cat<-factor(modvars.accndvi$tsi.cat)</pre>
modvars.accndvi$tslength<-modvars.accndvi$end-modvars.accndvi$start + 1
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$maxdepth),]</pre>
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$pct.ag),]</pre>
#short timescales
fm.coh.accndvi.st<-gls(accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat +
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(fm.coh.accndvi.st)
## Generalized least squares fit by REML
##
    Model: accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat + huc2_
##
    Data: modvars.accndvi
##
          AIC
                  BIC
                        logLik
##
     29.75993 80.9553 3.120035
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
        range
## 0.01020709
##
## Coefficients:
##
                              Value Std.Error t-value p-value
## (Intercept)
                        0.4272016 0.06975400 6.124403 0.0000
## maxdepth
                        -0.0007389 0.00133428 -0.553763 0.5807
                        0.0854864 0.21687431 0.394175 0.6941
## nhd_ftype436
## lake_area_ha
                        -0.0000001 0.00000189 -0.042118 0.9665
## pct.ag
                         -0.0030727 0.00188636 -1.628913 0.1058
## chla
                         -0.0000208 0.00299418 -0.006945 0.9945
## tsi.cathypereutrophic 0.1186269 0.21466462 0.552615 0.5815
## tsi.catmesotrophic 0.0096149 0.04944307 0.194463 0.8461
## tsi.catoligotrophic 0.0785448 0.05982687 1.312868 0.1916
## huc2_code02
                         -0.0802270 0.07432681 -1.079382 0.2825
## huc2_code04
                        0.0127429 0.05943050 0.214417 0.8306
## huc2_code07
                        -0.0609577 0.05423365 -1.123983 0.2631
                        -0.2498176 0.18847506 -1.325467 0.1874
## huc2_code08
                        -0.0660408 0.09570289 -0.690061 0.4914
## huc2_code09
## huc2 code10
                         0.0225775 0.07553533 0.298900 0.7655
                        -0.0780789 0.13847245 -0.563858 0.5738
## huc2_code11
##
## Correlation:
##
                         (Intr) mxdpth nh_436 lk_r_h pct.ag chla
## maxdepth
                         -0.322
```

```
## nhd ftvpe436
                        -0.017 -0.035
## lake_area_ha
                         0.170 -0.573 0.019
## pct.ag
                         0.133 -0.109 0.074 0.085
                        -0.641 0.207 0.036 -0.113 -0.238
## chla
## tsi.cathypereutrophic 0.454 -0.101 -0.385 0.048 -0.089 -0.752
## tsi.catmesotrophic
                        -0.582 0.005 0.032 -0.028 -0.132 0.673 -0.458
## tsi.catoligotrophic -0.524 -0.114 0.037 0.109 -0.097 0.642 -0.454
                        -0.290 -0.356 0.009 0.208 0.056 -0.156
## huc2_code02
                                                                   0.101
## huc2_code04
                        -0.519 0.047 -0.021 -0.130 -0.213 -0.017
                                                                   0.066
## huc2_code07
                        -0.527 -0.031 -0.011 0.022 -0.053 -0.118
                                                                   0.062
## huc2_code08
                        -0.058 -0.055 -0.008 0.013 0.044 -0.224
                        -0.308 -0.031 -0.017 0.028 -0.199 -0.014
## huc2_code09
                                                                   0.060
                        -0.272 -0.206 -0.012 0.065 -0.005 -0.307
                                                                   0.267
## huc2_code10
## huc2_code11
                        -0.207 -0.212 0.009 0.061 0.037 -0.047
                                                                   0.033
##
                        ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08 hc2_09
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
                         0.703
## huc2_code02
                        -0.083 0.048
## huc2_code04
                        -0.065 -0.137 0.498
## huc2_code07
                        -0.097 -0.088
                                      0.596 0.741
                        -0.083 -0.084
                                       0.206 0.204
                                                     0.252
## huc2_code08
## huc2_code09
                        -0.099 0.008
                                       0.352 0.447
                                                     0.469
                                                            0.127
                        -0.050 -0.032 0.516 0.515 0.606 0.257
## huc2_code10
                                                                   0.334
## huc2_code11
                         0.089 0.099 0.304 0.262 0.311 0.116
##
                        hc2_10
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2 code04
## huc2_code07
## huc2_code08
## huc2_code09
## huc2_code10
                          0.299
## huc2_code11
##
## Standardized residuals:
            Min
                            Q1
                                        Med
                                                       Q3
## -1.875885e+00 -6.542012e-01 -1.890345e-15 6.077325e-01 2.829310e+00
##
## Residual standard error: 0.1761937
## Degrees of freedom: 143 total; 127 residual
```

```
dredge.coh.accndvi.st<-dredge(fm.coh.accndvi.st, beta="sd") #intercept only is best model. Disappointin
## Warning in dredge(fm.coh.accndvi.st, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(fm.coh.accndvi.st, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.st))
## Global model call: gls(model = accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha +
       pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
       correlation = corExp(form = ~nhd_lat + nhd_long))
##
## Model selection table
      (Int)
                   chl
                                             pct.ag tsi.cat df logLik AICc
                              mxd nhd_fty
## 1 0.3886
                                                              3 42.097 -78.0
## 17 0.3879
                                                              4 41.425 -74.6
## 33 0.3976
                                                              4 37.268 -66.2
                                           -0.001869
## 65 0.3686
                                                           + 6 38.748 -64.9
## 2 0.3980 -0.0008757
                                                              4 36.539 -64.8
## 9 0.4009
                        -0.0006435
                                                              4 36.296 -64.3
     delta weight
## 1 0.00 0.845
## 17 3.46 0.150
## 33 11.77 0.002
## 65 13.14 0.001
## 2 13.23 0.001
## 9 13.72 0.001
## Models ranked by AICc(x)
fm.p.accndvi.st<-gls(accndvip.ts1 ~ tslength + maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + ts
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(fm.p.accndvi.st)
## Generalized least squares fit by REML
    Model: accndvip.ts1 ~ tslength + maxdepth + nhd_ftype + lake_area_ha +
##
                                                                               pct.ag + chla + tsi.ca
    Data: modvars.accndvi
##
##
         AIC
                  BIC
                          logLik
     162.5399 216.4293 -62.26995
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
        range
## 0.008615349
##
## Coefficients:
                              Value Std.Error
                                                t-value p-value
## (Intercept)
                         0.1269522 0.3023176 0.4199299 0.6753
## tslength
                         0.0128091 0.0131020 0.9776387 0.3301
## maxdepth
                         0.0009036 0.0021961 0.4114461 0.6814
## nhd_ftype436
                         0.3911038 0.3570238 1.0954558 0.2754
## lake_area_ha
                        -0.0000013 0.0000031 -0.4057159 0.6856
```

```
## pct.ag
                         0.0060254 0.0031045 1.9408788
                                                       0.0545
## chla
                         0.0032723 0.0049026 0.6674558
                                                       0.5057
## tsi.cathypereutrophic -0.5327321 0.3515321 -1.5154581
                                                       0.1322
## tsi.catmesotrophic
                        0.0946554 0.0809872 1.1687701
                                                       0.2447
## tsi.catoligotrophic
                        0.0666966 0.0977252 0.6824910
                                                       0.4962
## huc2 code02
                        0.0367639 0.1213500 0.3029576
                                                       0.7624
## huc2 code04
                       -0.0915190 0.0971452 -0.9420843
                                                       0.3480
## huc2_code07
                       -0.0137036 0.0883488 -0.1551082
                                                       0.8770
## huc2_code08
                        0.1379913 0.3100448 0.4450687
                                                       0.6570
## huc2_code09
                        0.0123327 0.1567862 0.0786597
                                                       0.9374
## huc2_code10
                       -0.1720022 0.1244802 -1.3817628
                                                       0.1695
                        0.0214742 0.2287625 0.0938711
## huc2_code11
                                                       0.9254
##
##
   Correlation:
##
                        (Intr) tslngt mxdpth nh_436 lk_r_h pct.ag chla
## tslength
                       -0.926
                       -0.007 -0.122
## maxdepth
## nhd_ftype436
                       -0.119 0.121 -0.049
## lake_area_ha
                        0.016 0.052 -0.574 0.025
## pct.ag
                        -0.062 0.120 -0.122 0.088
## chla
                       -0.182 -0.064 0.214 0.027 -0.116 -0.244
## tsi.cathypereutrophic 0.234 -0.069 -0.093 -0.390 0.044 -0.096 -0.744
                       -0.204 -0.017 0.009 0.029 -0.030 -0.133 0.672
## tsi.catmesotrophic
## tsi.catoligotrophic
                       -0.202 0.005 -0.112 0.037
                                                   0.108 -0.095
                                                                 0.641
## huc2 code02
                       -0.115 0.008 -0.355 0.009 0.209 0.057 -0.157
## huc2 code04
                       ## huc2_code07
                       -0.213 0.017 -0.034 -0.009
                                                   0.024 -0.050 -0.120
## huc2_code08
                        0.086 -0.116 -0.041 -0.022 0.007 0.030 -0.214
                       ## huc2_code09
## huc2_code10
                        0.026 -0.137 -0.187 -0.028 0.057 -0.021 -0.295
                        0.061 -0.149 -0.190 -0.010 0.053 0.018 -0.037
## huc2_code11
##
                       ts.cth ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08
## tslength
## maxdepth
## nhd ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
                        -0.455
## tsi.catoligotrophic
                        -0.453 0.703
## huc2_code02
                        0.101 -0.084 0.047
## huc2_code04
                        0.061 -0.066 -0.138 0.496
                        0.061 -0.098 -0.090 0.596 0.740
## huc2_code07
## huc2_code08
                        0.186 -0.081 -0.084 0.203
                                                   0.193
                                                          0.248
                        0.065 -0.099 0.007 0.349
                                                          0.465
## huc2_code09
                                                   0.438
                                                                 0.134
## huc2_code10
                        0.274 -0.047 -0.033 0.509
                                                   0.499
                                                          0.597
                                                                 0.268
## huc2_code11
                        0.043 0.090
                                     0.097 0.299
                                                   0.248
                                                          0.304
                                                                 0.131
##
                       hc2_09 hc2_10
## tslength
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
```

```
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2 code04
## huc2 code07
## huc2_code08
## huc2_code09
                          0.339
## huc2_code10
## huc2_code11
                          0.176 0.313
##
## Standardized residuals:
           Min
                                   Med
                                                           Max
## -1.94107750 -0.68067740 -0.01990797 0.84916917 1.74873566
##
## Residual standard error: 0.2879222
## Degrees of freedom: 143 total; 126 residual
dredge.p.accndvi.st<-dredge(fm.p.accndvi.st, beta="sd") #intercept only is best model. Disappointing.
## Warning in dredge(fm.p.accndvi.st, beta = "sd"): comparing models fitted by
## REML
## Warning in dredge(fm.p.accndvi.st, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.p.accndvi.st))
## Global model call: gls(model = accndvip.ts1 ~ tslength + maxdepth + nhd_ftype +
       lake_area_ha + pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
                                           tsl df logLik AICc delta weight
##
        (Int)
                 chl nhd_fty
                               pct.ag
## 1
      0.4872
                                                3 -25.632 57.4 0.00 0.762
## 17 0.4862
                                                4 -25.820 59.9 2.49 0.219
## 129 0.2987
                                      0.008592 4 -28.890 66.1 8.63 0.010
## 33 0.4698
                             0.003608
                                                4 -29.671 67.6 10.20 0.005
## 145 0.2919
                                      0.008850 5 -29.060 68.6 11.12 0.003
## 2
      0.4926 -5e-04
                                                4 -30.961 70.2 12.78 0.001
## Models ranked by AICc(x)
fm.phi.accndvi.st<-gls(cos(accndviphi.ts1) ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(fm.phi.accndvi.st)
## Generalized least squares fit by REML
     Model: cos(accndviphi.ts1) ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag +
##
                                                                                      chla + tsi.cat + 1
##
    Data: modvars.accndvi
##
          AIC
                   BIC
                          logLik
##
    379.8733 431.0687 -171.9367
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
```

```
Parameter estimate(s):
##
         range
## 0.0005117253
##
## Coefficients:
##
                             Value Std.Error
                                                 t-value p-value
## (Intercept)
                         0.0643578 0.2725684 0.2361163 0.8137
## maxdepth
                        -0.0063600 0.0052668 -1.2075571
                                                         0.2295
## nhd_ftype436
                        -1.1010917 0.8585645 -1.2824800
                                                         0.2020
## lake_area_ha
                         0.0000108 0.0000075 1.4430122
                                                         0.1515
## pct.ag
                         -0.0045016 0.0074632 -0.6031789
                                                         0.5475
## chla
                          0.0232531 0.0118538 1.9616640
                                                         0.0520
## tsi.cathypereutrophic -0.9112866 0.8494063 -1.0728513
                                                         0.2854
## tsi.catmesotrophic
                          0.3067180 0.1974672 1.5532608
## tsi.catoligotrophic
                          0.2490623 0.2362416 1.0542696
                                                         0.2938
## huc2_code02
                         -0.4354037 0.2921736 -1.4902225
                                                          0.1386
## huc2_code04
                        -0.4482296 0.2318423 -1.9333387
                                                         0.0554
## huc2 code07
                        -0.3268675 0.2102010 -1.5550233
## huc2_code08
                         0.1902009 0.7452006 0.2552345
                                                         0.7990
## huc2 code09
                         0.0523097 0.3767608 0.1388407
                                                         0.8898
## huc2_code10
                        -0.1565033 0.2967110 -0.5274604
                                                         0.5988
## huc2_code11
                        -0.0743011 0.5471063 -0.1358073 0.8922
##
##
   Correlation:
##
                         (Intr) mxdpth nh_436 lk_r_h pct.ag chla
## maxdepth
                         -0.319
                         -0.018 -0.034
## nhd_ftype436
## lake_area_ha
                         0.169 -0.572 0.019
## pct.ag
                          0.133 -0.109 0.074 0.085
                         -0.648 0.209 0.035 -0.114 -0.239
## chla
## tsi.cathypereutrophic 0.459 -0.103 -0.385 0.048 -0.088 -0.751
## tsi.catmesotrophic
                        -0.591 0.011 0.032 -0.032 -0.130 0.671 -0.455
## tsi.catoligotrophic
                        -0.530 -0.110
                                       0.037 0.106 -0.095 0.645 -0.456
## huc2_code02
                        -0.274 -0.366 0.009 0.213 0.059 -0.161
## huc2 code04
                        -0.504 0.038 -0.021 -0.127 -0.213 -0.022
                        -0.511 -0.042 -0.011 0.027 -0.049 -0.125
## huc2_code07
                                                                    0.065
## huc2 code08
                        -0.051 -0.058 -0.008 0.014 0.046 -0.225
## huc2_code09
                        -0.293 -0.038 -0.017 0.032 -0.199 -0.017
                                                                    0.061
                        -0.256 -0.214 -0.012  0.068 -0.002 -0.311
## huc2_code10
                        -0.200 -0.216  0.009  0.062  0.038 -0.048
## huc2_code11
                        ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08 hc2_09
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
                          0.702
## huc2_code02
                         -0.087 0.042
## huc2_code04
                        -0.067 -0.144 0.489
## huc2_code07
                        -0.102 -0.101 0.590 0.737
## huc2_code08
                        -0.082 -0.086 0.201 0.199 0.248
## huc2 code09
                        -0.103 0.004 0.344 0.438 0.460 0.122
```

```
## huc2_code10
                        -0.049 -0.037 0.508 0.506 0.598 0.253 0.324
## huc2_code11
                         0.089 0.097 0.299 0.256 0.306 0.114 0.162
##
                        hc2_10
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2_code04
## huc2_code07
## huc2_code08
## huc2_code09
## huc2_code10
## huc2_code11
                         0.295
##
## Standardized residuals:
##
            Min
                            Q1
                                        Med
                                                       QЗ
## -1.891458e+00 -8.586243e-01 -1.591653e-16 7.499843e-01 1.679299e+00
##
## Residual standard error: 0.6975283
## Degrees of freedom: 143 total; 127 residual
dredge.phi.accndvi.st<-dredge(fm.phi.accndvi.st, beta="sd") #intercept only is best model. Disappointin
## Warning in dredge(fm.phi.accndvi.st, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(fm.phi.accndvi.st, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.phi.accndvi.st))
## Global model call: gls(model = cos(accndviphi.ts1) ~ maxdepth + nhd_ftype + lake_area_ha +
      pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
##
         (Int)
                   chl nhd_fty tsi.cat df logLik AICc delta weight
## 17 0.03424
                             +
                                        4 -154.101 316.5 0.00 0.519
## 1
      0.02840
                                        3 -155.367 316.9 0.41 0.422
## 18 -0.09982 0.011900
                                        5 -155.828 322.1 5.60 0.032
## 81 0.10400
                                     + 7 -154.432 323.7 7.20 0.014
## 65 0.10400
                                     + 6 -156.166 324.9 8.46 0.008
## 2 -0.05062 0.007465
                                        4 -158.520 325.3 8.84 0.006
## Models ranked by AICc(x)
#long timescales
fm.coh.accndvi.lt<-gls(accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat +
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(fm.coh.accndvi.lt)
```

```
## Generalized least squares fit by REML
    Model: accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat + huc2_
##
##
    Data: modvars.accndvi
##
         AIC
                  BIC
                         logLik
##
    92.70797 143.9033 -28.35398
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
      range
## 0.0317292
##
## Coefficients:
                                                t-value p-value
##
                             Value Std.Error
## (Intercept)
                         0.6267287 0.09341037 6.709413 0.0000
## maxdepth
                        -0.0012909 0.00172968 -0.746341
                                                         0.4568
## nhd_ftype436
                         0.4738853 0.28283750 1.675469
                                                         0.0963
## lake_area_ha
                        -0.0000002 0.00000246 -0.099489
                                                         0.9209
## pct.ag
                         0.0026158 0.00246775 1.059978
                                                        0.2912
## chla
                         0.0009980 0.00388382 0.256965
                                                         0.7976
## tsi.cathypereutrophic -0.1490334 0.27994212 -0.532372 0.5954
## tsi.catmesotrophic -0.0075659 0.06213026 -0.121774
## tsi.catoligotrophic 0.0829907 0.07725160 1.074291
                                                         0.2847
## huc2 code02
                        -0.0449029 0.09934088 -0.452008
                                                         0.6520
## huc2_code04
                        -0.0477740 0.08075671 -0.591579
                                                        0.5552
## huc2 code07
                        -0.1425729 0.07506912 -1.899221
                                                         0.0598
## huc2_code08
                        0.2055679 0.24671465 0.833221
                                                         0.4063
## huc2_code09
                        -0.1816884 0.12854881 -1.413380
                                                         0.1600
                       -0.0876704 0.10094829 -0.868468
## huc2_code10
                                                        0.3868
## huc2_code11
                        0.0520844 0.18198034 0.286209 0.7752
##
## Correlation:
##
                        (Intr) mxdpth nh_436 lk_r_h pct.ag chla
## maxdepth
                        -0.297
## nhd_ftype436
                        -0.017 -0.036
## lake_area_ha
                         0.154 -0.570 0.020
## pct.ag
                         0.131 -0.106 0.075 0.085
## chla
                        -0.619 0.186 0.036 -0.101 -0.236
## tsi.cathypereutrophic 0.438 -0.085 -0.386 0.039 -0.089 -0.751
## tsi.catmesotrophic -0.563 -0.023 0.033 -0.009 -0.137 0.681 -0.467
## tsi.catoligotrophic -0.517 -0.130 0.037 0.115 -0.102 0.643 -0.454
## huc2_code02
                        -0.346 -0.339 0.009 0.198 0.051 -0.136 0.089
## huc2_code04
                        -0.561 0.047 -0.020 -0.127 -0.211 -0.005
                        -0.570 -0.024 -0.011 0.017 -0.065 -0.097
## huc2_code07
                                                                   0.045
## huc2_code08
                        -0.081 -0.051 -0.008 0.011 0.042 -0.221
                        -0.345 -0.024 -0.016  0.023 -0.196 -0.004
## huc2_code09
                                                                   0.053
## huc2_code10
                        -0.320 -0.195 -0.012 0.060 -0.009 -0.291
                                                                   0.255
## huc2_code11
                        -0.235 -0.210 0.009 0.061 0.034 -0.040 0.028
##
                       ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08 hc2_09
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
```

```
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
                         0.719
## huc2_code02
                        -0.055 0.068
## huc2_code04
                        -0.047 -0.102 0.527
                        -0.067 -0.053 0.611 0.750
## huc2 code07
## huc2 code08
                        -0.084 -0.078 0.219 0.219 0.262
                        -0.075 0.023 0.369 0.464 0.480 0.138
## huc2_code09
## huc2_code10
                        -0.042 -0.015 0.539 0.543 0.623 0.269 0.356
## huc2_code11
                        0.094 0.108 0.323 0.285 0.329 0.125 0.185
##
                        hc2_10
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2_code04
## huc2_code07
## huc2_code08
## huc2_code09
## huc2_code10
## huc2_code11
                          0.317
##
## Standardized residuals:
          Min
                                  Med
                                                           Max
## -2.24713790 -0.55609526 -0.07660139 0.62180817 1.84642434
## Residual standard error: 0.2297714
## Degrees of freedom: 143 total; 127 residual
dredge.coh.accndvi.lt<-dredge(fm.coh.accndvi.lt, beta="sd") #intercept only is best model. Disappointin
## Warning in dredge(fm.coh.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(fm.coh.accndvi.lt, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.lt))
## Global model call: gls(model = accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha +
       pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
##
## ---
## Model selection table
##
       (Int)
                  chl
                              mxd nhd_fty
                                           pct.ag df logLik AICc delta
## 1 0.5542
                                                   3 6.491 -6.8 0.00
## 17 0.5512
                                                   4 7.315 -6.3 0.47
## 33 0.5426
                                         0.002276 4 1.835 4.6 11.43
                                        + 0.001707 5 2.393 5.7 12.46
## 49 0.5428
```

```
## 2 0.5448 0.0008675
                                                   4 1.080 6.1 12.94
## 9 0.5693
                      -0.0007822
                                                   4 0.928 6.4 13.24
##
     weight
## 1
      0.556
## 17 0.439
## 33 0.002
## 49 0.001
## 2
      0.001
## 9
      0.001
## Models ranked by AICc(x)
fm.p.accndvi.lt<-gls(accndvip.ts2 ~ tslength + maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + ts
                      correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(fm.p.accndvi.lt)
## Generalized least squares fit by REML
    Model: accndvip.ts2 ~ tslength + maxdepth + nhd_ftype + lake_area_ha +
                                                                               pct.ag + chla + tsi.ca
##
    Data: modvars.accndvi
         AIC
                  BIC
##
                         logLik
    181.3168 235.2061 -71.65839
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
  Parameter estimate(s):
         range
## 0.0005203966
## Coefficients:
##
                             Value Std.Error
                                                t-value p-value
## (Intercept)
                         0.1703609 0.3227742 0.5278020 0.5986
## tslength
                         0.0013143 0.0139902 0.0939450 0.9253
## maxdepth
                         0.0023092 0.0023565 0.9799216 0.3290
## nhd_ftype436
                        -0.2740421 0.3839574 -0.7137305 0.4767
                         0.0000016 0.0000033 0.4962372
## lake_area_ha
                                                         0.6206
## pct.ag
                        -0.0014182 0.0033373 -0.4249647
                                                         0.6716
## chla
                         0.0072056 0.0052726 1.3666126
                                                         0.1742
## tsi.cathypereutrophic -0.6021940 0.3780162 -1.5930375 0.1137
## tsi.catmesotrophic
                         0.0407581 0.0876744 0.4648802 0.6428
## tsi.catoligotrophic
                         0.1091835 0.1048805 1.0410274 0.2999
## huc2_code02
                         0.0523082 0.1297168 0.4032496 0.6874
## huc2_code04
                         0.1540052 0.1031885 1.4924644 0.1381
## huc2_code07
                         0.1746925 0.0933342 1.8716870 0.0636
## huc2_code08
                        -0.0481973 0.3330675 -0.1447073 0.8852
## huc2_code09
                         0.2813430 0.1677966 1.6766905 0.0961
## huc2 code10
                         0.0961973 0.1329634 0.7234875 0.4707
## huc2_code11
                        -0.0703673 0.2455461 -0.2865749 0.7749
##
##
   Correlation:
##
                        (Intr) tslngt mxdpth nh_436 lk_r_h pct.ag chla
                        -0.927
## tslength
                        -0.004 -0.124
## maxdepth
                        -0.118 0.120 -0.049
## nhd_ftype436
                         0.015 0.052 -0.574 0.025
## lake_area_ha
## pct.ag
                        -0.061 0.120 -0.122 0.087 0.091
## chla
                        -0.185 -0.062  0.215  0.028 -0.117 -0.244
```

```
## tsi.cathypereutrophic 0.236 -0.070 -0.093 -0.390 0.045 -0.096 -0.744
## tsi.catmesotrophic
                        -0.209 -0.014 0.012 0.030 -0.033 -0.131 0.671
## tsi.catoligotrophic
                        -0.201 0.003 -0.109 0.037 0.106 -0.094 0.644
## huc2_code02
                               0.009 -0.364  0.010  0.213  0.060 -0.161
                        -0.111
## huc2_code04
                        -0.254
                               0.071 0.029 -0.012 -0.122 -0.203 -0.026
## huc2 code07
                        ## huc2 code08
                         0.088 -0.116 -0.043 -0.022 0.008 0.031 -0.215
## huc2_code09
                        -0.036 -0.080 -0.027 -0.026
                                                    0.028 -0.206 -0.012
## huc2_code10
                         0.031 -0.136 -0.194 -0.028
                                                    0.060 -0.018 -0.299
## huc2_code11
                        0.062 -0.147 -0.193 -0.009 0.054 0.020 -0.038
##
                        ts.cth ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08
## tslength
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
                        -0.453
## tsi.catoligotrophic
                        -0.455 0.702
## huc2_code02
                         0.103 -0.087 0.042
                         0.063 -0.067 -0.143 0.488
## huc2_code04
                         0.064 -0.102 -0.100 0.590
## huc2_code07
                                                    0.736
## huc2_code08
                         0.187 -0.080 -0.086 0.199
                                                    0.189
                                                           0.244
## huc2_code09
                         0.067 -0.102 0.003 0.342 0.430
                                                           0.457
                                                                  0.130
## huc2_code10
                         0.277 -0.047 -0.037 0.502 0.491
                                                           0.590
                                                                  0.265
                         0.043 0.090 0.096 0.294
                                                    0.243
## huc2_code11
                                                           0.300
                                                                  0.129
##
                        hc2_09 hc2_10
## tslength
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2_code04
## huc2_code07
## huc2 code08
## huc2_code09
## huc2_code10
                         0.331
                         0.171 0.309
## huc2_code11
## Standardized residuals:
##
          Min
                       Q1
                                  Med
                                              Q3
                                                         Max
## -1.77046431 -0.84318300 0.04109281
                                      0.78457936
                                                 1.70675570
##
## Residual standard error: 0.3096696
## Degrees of freedom: 143 total; 126 residual
dredge.p.accndvi.lt<-dredge(fm.p.accndvi.lt, beta="sd") #intercept only is best model. Disappointing.
## Warning in dredge(fm.p.accndvi.lt, beta = "sd"): comparing models fitted by
```

```
## REML
## Warning in dredge(fm.p.accndvi.lt, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.p.accndvi.lt))
## Global model call: gls(model = accndvip.ts2 ~ tslength + maxdepth + nhd_ftype +
       lake_area_ha + pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
       correlation = corExp(form = ~nhd_lat + nhd_long))
##
## ---
## Model selection table
        (Int)
                                                tsl df logLik AICc delta
##
                  mxd nhd_fty
                                   pct.ag
## 1
       0.4720
                                                     3 -36.419 79.0 0.00
## 17 0.4753
                                                     4 -35.486 79.3 0.25
## 129 0.4527
                                          0.0008790 4 -39.873 88.0 9.03
## 145 0.4723
                                          0.0001351 5 -38.947 88.3 9.32
                                                     4 -41.173 90.6 11.62
      0.4342 0.002011
                               -0.0008419
                                                     4 -41.361 91.0 12.00
## 33 0.4759
##
      weight
## 1
       0.524
## 17
       0.462
## 129 0.006
## 145 0.005
## 9
       0.002
## 33
       0.001
## Models ranked by AICc(x)
fm.phi.accndvi.lt<-gls(cos(accndviphi.ts2) ~ maxdepth + nhd ftype + lake area ha + pct.ag + chla + tsi.
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(fm.phi.accndvi.lt)
## Generalized least squares fit by REML
     Model: cos(accndviphi.ts2) ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag +
##
                                                                                     chla + tsi.cat + 1
##
     Data: modvars.accndvi
          AIC
                   BIC
##
                          logLik
     376.0792 427.2746 -170.0396
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
        range
## 0.009545035
##
## Coefficients:
##
                              Value Std.Error
                                                 t-value p-value
                         -0.1507349 0.2724725 -0.5532113 0.5811
## (Intercept)
## maxdepth
                         0.0047576 0.0052142 0.9124475 0.3633
                         -0.3473762 0.8476126 -0.4098290 0.6826
## nhd_ftype436
## lake_area_ha
                         -0.0000054 0.0000074 -0.7386528 0.4615
## pct.ag
                         -0.0043727 0.0073719 -0.5931575
                                                          0.5541
## chla
                          0.0035586 0.0117019 0.3041060 0.7615
## tsi.cathypereutrophic 0.2139450 0.8388836 0.2550354 0.7991
                          0.1600129 0.1934211 0.8272776 0.4096
## tsi.catmesotrophic
```

```
## tsi.catoligotrophic
                        -0.1165299 0.2337879 -0.4984428 0.6190
                        -0.0664997 0.2903827 -0.2290071
## huc2_code02
                                                       0.8192
## huc2 code04
                         0.0667821 0.2320811 0.2877533
                                                        0.7740
## huc2_code07
                        -0.0286506 0.2116802 -0.1353487
                                                        0.8926
## huc2 code08
                        0.9902682 0.7365668 1.3444378
                                                        0.1812
## huc2 code09
                        0.2651725 0.3739325 0.7091454
                                                        0.4795
## huc2 code10
                        -0.0789391 0.2950886 -0.2675097
                                                        0.7895
## huc2_code11
                        0.9141921 0.5411328 1.6894044 0.0936
##
##
   Correlation:
##
                        (Intr) mxdpth nh_436 lk_r_h pct.ag chla
                                                                 ts.cth
                        -0.322
## maxdepth
## nhd_ftype436
                        -0.017 -0.035
## lake_area_ha
                         0.170 -0.573 0.019
                         0.133 -0.109 0.074 0.085
## pct.ag
## chla
                        -0.641 0.208 0.036 -0.113 -0.238
## tsi.cathypereutrophic 0.454 -0.102 -0.385 0.048 -0.089 -0.751
## tsi.catmesotrophic
                        -0.582 0.006
                                      0.032 -0.028 -0.132  0.673 -0.457
                        ## tsi.catoligotrophic
## huc2 code02
                        -0.289 -0.356 0.009 0.209 0.056 -0.156
## huc2_code04
                        -0.519 0.047 -0.021 -0.130 -0.213 -0.018 0.066
## huc2 code07
                        -0.526 -0.032 -0.011 0.022 -0.053 -0.119
## huc2_code08
                        -0.058 -0.055 -0.008 0.013 0.044 -0.224
                                                                 0.180
                       -0.307 -0.031 -0.017 0.029 -0.199 -0.014
## huc2 code09
                                                                 0.060
## huc2_code10
                       -0.271 -0.206 -0.012 0.065 -0.004 -0.307
                                                                 0.267
## huc2_code11
                       -0.207 -0.212 0.009 0.061 0.037 -0.047
##
                       ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08 hc2_09
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
                         0.703
## huc2_code02
                        -0.083 0.047
## huc2 code04
                        -0.065 -0.137 0.497
## huc2_code07
                        -0.097 -0.089 0.596 0.741
## huc2_code08
                        -0.083 -0.084
                                      0.205 0.204
                                                    0.252
## huc2_code09
                       -0.100 0.008 0.352 0.447 0.468
                                                          0.126
## huc2 code10
                       -0.049 -0.032 0.515 0.515 0.605 0.257
## huc2 code11
                        0.089 0.099 0.304 0.262 0.311 0.116 0.167
                       hc2_10
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2_code04
## huc2 code07
```

```
## huc2_code08
## huc2_code09
## huc2 code10
## huc2_code11
                          0.299
## Standardized residuals:
            Min
                            01
                                         Med
                                                        03
## -1.883535e+00 -8.895194e-01 -9.874969e-16 8.702264e-01 1.636105e+00
##
## Residual standard error: 0.6886215
## Degrees of freedom: 143 total; 127 residual
dredge.phi.accndvi.lt<-dredge(fm.phi.accndvi.lt, beta="sd") #intercept only is best model. Disappointin
## Warning in dredge(fm.phi.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(fm.phi.accndvi.lt, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.phi.accndvi.lt))
## Global model call: gls(model = cos(accndviphi.ts2) ~ maxdepth + nhd_ftype + lake_area_ha +
      pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
                     mxd nhd_fty
                                    pct.ag tsi.cat df
                                                        logLik AICc delta
##
          (Int)
## 1
      0.001102
                                                    3 -148.850 303.9 0.00
## 17 0.002009
                                                    4 -148.295 304.9 1.01
## 65 -0.010000
                                                    6 -149.564 311.7 7.87
## 81 -0.009983
                                                    7 -148.766 312.4 8.49
## 33 0.009313
                                 -0.001692
                                                    4 -153.003 314.3 10.42
## 9 -0.056060 0.003022
                                                    4 -153.194 314.7 10.81
##
      weight
## 1
      0.607
## 17 0.367
## 65 0.012
## 81 0.009
## 33 0.003
## 9
      0.003
## Models ranked by AICc(x)
```