# TDDl16 - Föreläsning 1

Introduktion och komplexitet

Filip Strömbäck



#### 1 Kursinformation

- 2 Varför DALG?
- 3 Algoritmer
- 4 Hur körs ett program Modell
- 5 Ordonotation Tillväxthastighet
- 6 Beräkna tidskomplexitet
- 7 Nästa gång



#### Resurser

• Kurshemsida: https://www.ida.liu.se/~TDDI16/

• Litteratur: OpenDSA, (Introduction to Algorithms)

Kursledare Filip Strömbäck

Assistenter Malte Nilsson

Edvin Dyremark

Alexander Engström

David Warnquist

Administratör Annelie Almquist



#### Examination

UPG1 Uppgifter i OpenDSA, 2hp (U, G)

LAB1 Laborationer, 2hp (U, G)

4 laborationsuppgifter

DAT1 Datortentamen, 2hp (U, 3, 4, 5) Frågor om användandet av datastrukturer

och algoritmer.

Extrauppgifter och deadline på laborationer ger upp till 10% bonus mot högre betyg.



# OpenDSA – Digital kursbok

- Digital kursbok med interaktiva övningar
- Logga in med LiU-id, dubbelkolla rubrik
- För att klara UPG1 ska ni innan kursens slut ha löst alla interaktiva övningar
- Avklarade kapitel markeras med en bock
- Klicka på ert namn för att kontrollera vad som är kvar



### Föreläsningar

- Fokus på hur info från OpenDSA kan användas
- Slides finns på kurshemsidan, men är inte tänkta att kunna läsas i isolation
- Efter varje föreläsning finns 2 extrauppgifter, ger extrapoäng på tentan
  - Relaterade till det som tagits upp
  - En enklare och en svårare
  - Löses individuellt
- Ställ hemskt gärna frågor!



#### Laborationer

- Parvis
- Anmälan sker i Webreg (länk på kurshemsidan)
  - 3 grupper: DI.A, DI.B, IP
  - Separata grupper f
     ör de som vill hitta labbpartner
- Innehåll:
  - 1. AVL-träd
  - 2. Hashning
  - 3. Ordkedjor
  - 4. Mönsterigenkänning
- Notera: Givna testfall är inte heltäckande. Skriv också egna testfall (med verktyg på kurshemsidan)



| Vecka | Fö                              | Lab  |
|-------|---------------------------------|------|
| 36    | Komplexitet, Linjära strukturer |      |
| 37    | Träd, AVL-träd                  | 1    |
| 38    | Hashning                        | 1    |
| 39    | Grafer och kortaste vägen       | 12   |
| 40    | Fler grafalgoritmer             | -23- |
| 41    | Sortering                       | 3-   |
| 42    | Mer sortering, beräkningsbarhet | 34   |
| 43    | Tentaförberedelse               | 4    |

Se kommentarer i TimeEdit för deadlines!



# Ändringar från förra året

- Reviderad labb 4.
- Reviderad formulering av sista frågan i labb 2.



- 1 Kursinformation
- 2 Varför DALG?
- 3 Algoritmer
- 4 Hur körs ett program Modell
- 5 Ordonotation Tillväxthastighet
- 6 Beräkna tidskomplexitet
- 7 Nästa gång



# Hur man löser alla problem enligt Richard Feynman:

- 1. Write down the problem
- 2. Think really hard
- 3. Write down the answer



# Hur man löser alla problem enligt Richard Feynman:

- 1. Write down the problem
- 2. Think really hard
- 3. Write down the answer

DALG hjälper oss med steg 2!



#### Liknelse

Du vill gräva en stor grop.

• Utan verktyg: 2 dagar

• Med spade: 5 timmar

Med grävskopa: 1 timme

• ...

Om du har tillgång till dynamit kan du dessutom lösa ett svårare problem: att gräva en "grop" i en bergshäll.



### I programmering...

Du vill lösa ett svårt problem.

- Utan DALG-kunskap: 1 månad
- Kan använda datastrukturer: 1 vecka
- Känner till lämpliga algoritmer: 1 dag

Om du dessutom vet hur verktygen fungerar, kan du anpassa dem så att du kan lösa mer komplicerade problem, och så att lösningen blir mer effektiv.



#### Varför DALG?

- Veta vilka verktyg som finns, och hur de fungerar
- Kunna använda verktygen som finns tillgängliga
  - ...för att kunna implementera lösningar smidigt
  - ...för att kunna uttrycka sig bättre
  - ...för att kunna resonera på en högre abstraktionsnivå
- Kunna välja rätt verktyg
  - Kunna analysera och värdera olika lösningar
- Kunna anpassa standardalgoritmer- eller datastrukturer så att de kan lösa ditt specifika problem.
- Känna till gränserna för vad som är möjligt att göra

För att effektivt kunna lösa svåra problem, eller problem med stora mängder data.



- l Kursinformatior
- 2 Varför DALG?
- 3 Algoritmer
- 4 Hur körs ett program Modell
- 5 Ordonotation Tillväxthastighet
- 6 Beräkna tidskomplexitet
- 7 Nästa gång





Specifikt



















# Algoritmanalys?

Det finns oftast flera olika algoritmer som löser ett givet problem. Vilken ska vi välja?



# Algoritmanalys?

Det finns oftast flera olika algoritmer som löser ett givet problem. Vilken ska vi välja?

- Den som är snabbast (den som alltid terminerar)
- Den som använder minst minne
- Den som kan köras parallellt
- Den som gör minst antal frågor till externa tjänster
- ..



### Algoritmanalys!

Exempel: Algoritm som räknar förekomster av olika tal i en array:

vector<int> count(const vector<int> &input, int max\_value)

```
count(\{1, 2, 1, 3\}, 4) \Rightarrow \{0, 2, 1, 1\}
```



```
A:
vector<int> solution_a(
    const vector<int> &input,
    int max_val)
{
    vector<int> result(max_val, 0);
    for (int i = 0; i < max_val; i++) {
        result[i] = std::count(input.begin(), input.end(), i);
    }
    return result;
}</pre>
```



### Vilken implementation är snabbast?

```
B:
vector<int> solution_b(
    const vector<int> &input,
    int max_val)
  vector<int> result(max_val, 0);
  for (int i = 0; i < input.size(); i++) {</pre>
    int value = input[i];
    result[value] += 1;
  return result;
```



# Kompilatoroptimeringar?

Med flagga -02 eller -03 kan vi be kompilatorn att optimera vår kod.

Hur påverkar det körtiden?

Varför behöver jag som programmerare tänka på att skriva effektiv kod när jag kan låta kompilatorn optimera den?



# Kompilatoroptimeringar?

Med flagga -02 eller -03 kan vi be kompilatorn att optimera vår kod.

Hur påverkar det körtiden?

Varför behöver jag som programmerare tänka på att skriva effektiv kod när jag kan låta kompilatorn optimera den?

⇒ Optimeringar i kompilatorn innebär bara att den spenderar mer tid på att generera bra maskinkod. Den ändrar (nästan) aldrig vilken algoritm som används, och hur data representeras!



### Vad händer för olika storlek på indata?





# Vad händer för olika storlek på indata?





#### Vad är intressant?

Tiden för **små** indata är oftast väldigt liten, knappt mätbar. Alltså:

- Vi är intresserade av vad som händer när indata växer – om jag lägger till ett till element, hur mycket dyrare blir det då?
- Vi vill kunna jämföra olika algoritmer
- Vi är intresserade av helheten

Vi behöver ett sätt att resonera om detta!



#### Vad är intressant?

Tiden för **små** indata är oftast väldigt liten, knappt mätbar. Alltså:

- Vi är intresserade av vad som händer när indata växer – om jag lägger till ett till element, hur mycket dyrare blir det då?
- Vi vill kunna jämföra olika algoritmer
- Vi är intresserade av helheten

Vi behöver ett sätt att resonera om detta!

Notera: Små fall kan också vara viktiga, men börja med en effektiv algoritm och optimera den vid behov.



- 1 Kursinformatior
- 2 Varför DALG?
- 3 Algoritme
- 4 Hur körs ett program Modell
- 5 Ordonotation Tillväxthastighet
- 6 Beräkna tidskomplexitet
- 7 Nästa gång



# Hur körs ett program?

Idé: räkna antalet "operationer" som krävs:

- Aritmetiska operationer
- Tilldelingar
- Läsning/skrivning av minnet
- ...

Vi antar att alla "enkla" operationer tar lika lång tid



# Tidsåtgång – exempel

```
int a(int n) {
  return n * 2;
}
```



# Tidsåtgång – exempel

```
int a(int n) {
  return n * 2;
}
```

$$\Rightarrow t(n) = 2$$

```
int b(int n) {
   int result = 1;
   for (int i = 1; i < n; i++)
     result *= i;
   return result;
}</pre>
```



```
int b(int n) {
  int result = 1;
  for (int i = 1; i < n; i++)
    result *= i;
  return result;
}</pre>
```

$$\Rightarrow t(n) = 4 + 3n$$



```
int b(int n) {
  int result = 1;
  for (int i = 1; i < n; i++)
    result *= i * i;
  return result;
}</pre>
```



```
int b(int n) {
  int result = 1;
  for (int i = 1; i < n; i++)
    result *= i * i;
  return result;
}</pre>
```

$$\Rightarrow t(n) = 4 + 4n$$



- 1 Kursinformation
- 2 Varför DALG?
- 3 Algoritmer
- 4 Hur körs ett program Modell
- 5 Ordonotation Tillväxthastighet
- 6 Beräkna tidskomplexitet
- 7 Nästa gång



#### ldé

- Vi delar in funktioner i olika grupper, där varje grupp växer ungefär lika snabbt för stora n.
- För att veta vilka grupperna är behöver vi kunna jämföra funktioner. Vi säger att  $f(n) \in \mathcal{O}(g(n))$  omm det finns några  $0 \le c < \infty$  och  $0 \le n_0 < \infty$  så att  $f(n) \le cg(n)$  för alla  $n \ge n_0$ .
- Detta innebär att f(n) inte växer snabbare än g(n). Man kan tänka sig att  $f(n) \leq g(n)$  gäller för tillräckligt stora n (även om det inte riktigt stämmer).



#### 30



$$2n+2 \le c(n^2+1)$$
 för  $c=1$  och  $n \ge 3$ 

Alltså är 
$$2n+2\in\mathcal{O}(n^2+1)$$

Dock är 
$$n^2 + 1 \notin \mathcal{O}(2n+2)$$





$$n^2 \in \mathcal{O}(2n^2+2)$$
 (enkelt att se)

$$2n^2+2\in \mathcal{O}(n^2)$$
 gäller också. Hur?

Alltså: 
$$\mathcal{O}(n^2) = \mathcal{O}(2n^2+2)$$





$$n^2 \in \mathcal{O}(2n^2+2)$$
 (enkelt att se)

$$2n^2 + 2 \in \mathcal{O}(n^2)$$
 gäller också. Hur?

Alltså: 
$$\mathcal{O}(n^2) = \mathcal{O}(2n^2 + 2)$$





$$n^2 \in \mathcal{O}(2n^2 - 5n + 5)$$
 (enkelt att se)

$$2n^2-5n+5\in\mathcal{O}(n^2)$$
 gäller också. Hur?

Alltså: 
$$\mathcal{O}(2n^2 - 5n + 5) = \mathcal{O}(n^2)$$





$$n^2 \in \mathcal{O}(2n^2 - 5n + 5)$$
 (enkelt att se)

$$2n^2 - 5n + 5 \in \mathcal{O}(n^2)$$
 gäller också. Hur?

Alltså: 
$$\mathcal{O}(2n^2 - 5n + 5) = \mathcal{O}(n^2)$$



# Observationer – Regler

- I en summa av termer kan vi förenkla bort alla termer förutom den snabbast växande termen Ex:  $n^2 + n + 1 \in \mathcal{O}(n^2)$
- Konstanter, både konstanta termer (ex. n+5) och konstanter framför termer (ex. 5n) kan förenklas bort
- Om  $f(n) \in \mathcal{O}(g(n))$ , och  $g(n) \in \mathcal{O}(f(n))$  så är  $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$ . Då gäller även  $f(n) \in \Theta(g(n))$  samt  $g(n) \in \Theta(f(n))$ .
- Alltså kan vi representera våra olika "grupper" i form av den mest förenklade formeln



# Förenkling med regler

Med hjälp av observationerna kan vi enklare få en uppfattning om förhållandet mellan olika funktioner.

Här kan vi se att  $n, n^2 \in \mathcal{O}(n^3)$ :





## Vanliga uttryck för tidskomplexitet





- 1 Kursinformation
- 2 Varför DALG?
- 3 Algoritmen
- 4 Hur körs ett program Modell
- 5 Ordonotation Tillväxthastighet
- 6 Beräkna tidskomplexitet
- 7 Nästa gång



#### ldé

- Vi vill "mäta" tiden det tar att köra en algoritm
- Vi såg att konstanter i uttryck inte spelar någon roll
- ⇒ Den exakta körtiden spelar ingen ingen roll, vi är bara intresserade av hur fort den växer
- ⇒ Vi kan anta att varje operation tar 1 tidsenhet



```
int a(int n) {
  return n * 2;
}
```

$$\Rightarrow t(n) = 2 \in \mathcal{O}(1)$$

```
int b(int n) {
  int result = 1;
  for (int i = 1; i < n; i++)
    result *= i;
  return result;
}</pre>
```

$$\Rightarrow t(n) = 4 + 3n \in \mathcal{O}(n)$$

```
int b(int n) {
  int result = 1;
  for (int i = 1; i < n; i++)
    result *= i * i;
  return result;
}</pre>
```

$$\Rightarrow t(n) = 4 + 4n \in \mathcal{O}(n)$$

```
int c(int n) {
  int sum = 0;
  for (int i = 0; i < n; i++)
    sum += b(i);
  return sum;
}</pre>
```



```
int c(int n) {
  int sum = 0;
  for (int i = 0; i < n; i++)
    sum += b(i);
  return sum;
}</pre>
```

$$\Rightarrow t(n) \in \mathcal{O}(n^2)$$

## Tidsåtgång

```
vector<int> solution_b(
    const vector<int> &input,
    int max_val)
{
   vector<int> result(max_val, 0);
   for (int i = 0; i < input.size(); i++) {
      int value = input[i];
      result[value] += 1;
   }
   return result;
}</pre>
```



# Tidsåtgång

```
vector<int> solution_b(
    const vector<int> &input,
    int max_val)
  vector<int> result(max_val, 0);
  for (int i = 0; i < input.size(); i++) {</pre>
    int value = input[i];
    result[value] += 1;
  return result;
\Rightarrow t(n) = ?
```



#### Vad är n?

- Beror på vad vi vill analysera
- Välj n som beskriver indata på lämpligt sätt
- Ibland behöver vi flera olika

#### Här:

- n storlek på array
- m maximalt värde
- I det här fallet är det inte orimligt att anta att  $n \approx m$ , men detta beror på innehållet i arrayen!



# Tidsåtgång

```
vector<int> solution_b(
    const vector<int> &input,
    int max_val)
{
   vector<int> result(max_val, 0);
   for (int i = 0; i < input.size(); i++) {
      int value = input[i];
      result[value] += 1;
   }
   return result;
}</pre>
```



```
vector<int> solution_b(
     const vector<int> &input,
     int max_val)
  vector<int> result(max_val, 0);
  for (int i = 0; i < input.size(); i++) {</pre>
     int value = input[i];
    result[value] += 1;
  return result;
\Rightarrow t(n,m) \in \mathcal{O}(n+m)
                                         Om n \approx m : \mathcal{O}(n)
```



```
vector<int> solution_a(
    const vector<int> &input,
    int max_val)
{
    vector<int> result(max_val, 0);
    for (int i = 0; i < max_val; i++) {
        result[i] = std::count(input.begin(), input.end(), i);
    }
    return result;
}</pre>
```



# Tidsåtgång

```
vector<int> solution_a(
     const vector<int> &input,
     int max_val)
  vector<int> result(max_val, 0);
  for (int i = 0; i < max_val; i++) {</pre>
    result[i] = std::count(input.begin(), input.end(), i);
  }
  return result;
\Rightarrow t(n,m) \in \mathcal{O}(nm)
                                        Om n \approx m : \mathcal{O}(n^2)
```



# Åter till mätdatan – Stämmer beräkningarna?





# Variation i endast en dimension (Lösning A)





# Variation i endast en dimension (Lösning B)





- 1 Kursinformation
- 2 Varför DALG?
- 3 Algoritmer
- 4 Hur körs ett program Modell
- 5 Ordonotation Tillväxthastighet
- 6 Beräkna tidskomplexitet
- 7 Nästa gång



# Nästa gång

Nu har vi grunderna för att analysera linjära strukturer!

- Abstrakta datatyper (ADT)
- Array, lista
- Analys av dessa (mer övning på tidskomplexitet, samt nya koncept)



# Extrauppgifter

- 272 (enkel)
   Övning på att använda systemet.
- 10340 (svårare)
   Tänk på tidskomplexiteten vid sökning i strängar!



Filip Strömbäck www.liu.se

