Santander

Customer
Transaction
Prediction

Hello!

Shruti Bajpai

Alexandra Ionascu

Laura El Aoufir

1. Buisness Problem

Company overview

- Spanish multinational financial services company
- Madrid and Santander,Spain
- ➤ 16th largest banking institution in the world

Data Science Objective

Classification, Supervised Learning

_

Identify which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

Experiment overview

2. Data Exploration

Data Exploration

Shape

200k rows, 202 columns Data types

All numerical data

NAs

No missing values

Data

Standardized

In [12]:	train.	describe()								
	executed in 1.82s, finished 23:05:14 2021-04-18									
Out[12]:		target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7
	count	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000
	mean	0.100490	10.679914	-1.627622	10.715192	6.796529	11.078333	-5.065317	5.408949	16.545850
	std	0.300653	3.040051	4.050044	2.640894	2.043319	1.623150	7.863267	0.866607	3.418076
	min	0.000000	0.408400	-15.043400	2.117100	-0.040200	5.074800	-32.562600	2.347300	5.349700
	25%	0.000000	8.453850	-4.740025	8.722475	5.254075	9.883175	-11.200350	4.767700	13.943800
	50%	0.000000	10.524750	-1.608050	10.580000	6.825000	11.108250	-4.833150	5.385100	16.456800
	75%	0.000000	12.758200	1.358625	12.516700	8.324100	12.261125	0.924800	6.003000	19.102900
	max	1.000000	20.315000	10.376800	19.353000	13.188300	16.671400	17.251600	8.447700	27.691800

3. Feature Selection

Pearson Correlation

Selection Criteria: P-Value < 0.05

200 features

181 features

```
var_0 - p-value = 7.6429054662627255e-121 - selected : 1
var_1 - p-value = 2.6993783820423167e-111 - selected : 1
var_2 - p-value = 5.020262235878718e-137 - selected : 1
var_3 - p-value = 1.307363971085223e-06 - selected : 1
var_4 - p-value = 1.026604141928873e-06 - selected : 1
var_5 - p-value = 5.1233323926587986e-43 - selected : 1
var_6 - p-value = 8.783748987303271e-195 - selected : 1
var_7 - p-value = 0.17147548510010868 - selected : 0
var_8 - p-value = 1.6177855821477955e-18 - selected : 1
var_9 - p-value = 9.427348235719134e-82 - selected : 1
var_10 - p-value = 0.347537734860646 - selected : 0
var_11 - p-value = 1.7088149397247163e-24 - selected : 1
var_12 - p-value = 5.700002761674831e-214 - selected : 1
var_13 - p-value = 2.946740027734695e-135 - selected : 1
```

Least Absolute Shrinkage & Selection Operator (LASSO)

200 features

97 features

Methodology Comparison

Pearson Correlation

- Quick Analysis & Computation
- User can optimize selection of variables based on parameters; no such saturation exists

Lasso Regression

- Quick Analysis & Computation
- Selects at most *n* variables before it saturates
- Can eliminate variables that might increase the chances of higher prediction rates

	logistic	tree	boosted Tree
Accuracy	0.910100	0.835325	0.900375
AUC	0.846233	0.570302	0.831891

4. Oversampling

The algorithm creates new synthetic records between the real minority records

4. Modeling, Evaluation, Hyparameter Tuning

ValidationQuickly assess models

performance

K-fold CV Check consistency Grid Search on DT

Model is fast to
train

Modeling + Experimental setup

Logistic Regression

Frained on data with oversampling

KAGGLE AUC Score: 0.77

Metric Evaluation (Test_Split)	Score
AUC	0.8779
Accuracy	0.7988
KFOLD	0.798, 0.811, 0.795, 0.797, 0.796

Modeling + Experimental setup

Decision Tree

- Hyperparameter Training: Grid Search on the max depth of the tree, using 5 folds
- Frained on data with oversampling
- **KAGGLE AUC Score: 0.56**

Metric Evaluation (Test_Split)	Score
AUC	0.56
Accuracy	0.833
KFOLD	0.548, 0.553, 0.553, 0.553, 0.550

Modeling + Experimental setup

Gradient Boosting

KAGGLE AUC Score: 0.8318

Metric Evaluation (Test_Split)	Score
AUC	0.83
Accuracy	0.90
KFOLD	0.818, 0.829, 0.821, 0.821, 0.815

Leaderboard position = 6756 / 8751

Best models


```
logistic_cv ---mean 0.856 ---stddev 0.006 ---variance 3e-05 tree_cv ---mean 0.549 ---stddev 0.005 ---variance 2e-05 boostedTree_cv ---mean 0.821 ---stddev 0.005 ---variance 2e-05
```

thanks!

Any questions?

