1 Impact Study of Flight Data Cutout

The experimental results is displayed as Table 1 below.

```
> library(xtable)
```

```
> myFile <- list.files(path = "/home/albert/simplifiedthesis/img",
```

> print(xtable(myTable[,1:8]), floating = FALSE)

	number_of_flights	arima	t1	t2	r_sqared	r_sqaured_adj	sigma.2	model_p_value
1	1	$\operatorname{arima}(12,0,2)$	0	0	0.35	-0.34	0.48	0.89
2	1	$\operatorname{arima}(12,0,4)$	0	0	0.87	0.67	0.24	0.01
3	1	$\operatorname{arima}(12,0,6)$	0	0	0.63	-0.12	0.44	0.64
4	3	$\operatorname{arima}(12,0,2)$	0	0	0.51	-0.01	0.42	0.52
5	3	$\operatorname{arima}(12,0,4)$	0	0	0.82	0.55	0.28	0.03
6	3	$\operatorname{arima}(12,0,6)$	0	0	0.72	0.17	0.38	0.35
7	4	$\operatorname{arima}(14,0,2)$	0	0	0.49	-0.25	0.47	0.78
8	4	$\operatorname{arima}(14,0,4)$	0	0	0.63	-0.10	0.44	0.63
9	4	$\operatorname{arima}(14,0,6)$	0	0	0.88	0.55	0.28	0.10

Table 1: Table of the results

⁺ pattern = ".csv", full.names = TRUE)

> myTable <- read.table(myFile[1], header = TRUE)</pre>

2 Visualization of Fit Goodness of ARIMA-LRM

Use r programming to execute the experimental design as shown as Table 1 above.

```
> filez <- list.files(path = "/home/albert/simplifiedthesis/img",</pre>
                       pattern = ".png", full.names = TRUE)
> for (i in 1:nrow(myTable)) {
          sca <- ifelse(i==1, 0.90, 0.90)
          cat("\\setkeys{Gin}{width=",sca,"\\textwidth}", sep="")
          AR1 <- substr(filez[i], 45, 46)
          MA1 <- substr(filez[i], 50, 50)
          Num1 <- substr(filez[i], 53, 53)</pre>
          t11 <- substr(filez[i], 62, 64)
          t21 <- substr(filez[i], 70, 72)
          cap <- paste("$data$=",Num1,"-Combined-Filights; $arima(",AR1,",0,",</pre>
                       MA1,")$; $t_1$=",t11, "; $t_2$=", t21, sep="")
          cat("\\begin{figure}[!h]")
          cat("\\begin{center}")
          cat("\include graphics{", filez[i], "}\n\n", sep="")
          cat("\\caption{", cap, "}", sep="")
          cat("\\label{fig:fig", i, "}",sep="")
          cat("\\end{center}")
          cat("\\end{figure}")
          cat("\\hfill \\break")
+ }
```

Linear Regression Model Based On arima(12,0,2)

Figure 1: data=1-Combined-Filights; $arima(12,0,2); t_1=000; t_2=000$

Linear Regression Model Based On arima(12,0,2)

Figure 2: data=3-Combined-Filights; $arima(12,0,2); t_1=000; t_2=000$

Linear Regression Model Based On arima(12,0,4)

Figure 3: data=1-Combined-Filights; $arima(12,0,4); t_1=000; t_2=000$

Linear Regression Model Based On arima(12,0,4)

Figure 4: data=3-Combined-Filights; $arima(12,0,4); t_1=000; t_2=000$

Linear Regression Model Based On arima(12,0,6)

Figure 5: data=1-Combined-Filights; arima(12,0,6); $t_1=000$; $t_2=000$

Linear Regression Model Based On arima(12,0,6)

Figure 6: data=3-Combined-Filights; $arima(12,0,6); t_1=000; t_2=000$

Linear Regression Model Based On arima(14,0,2)

Figure 7: data=4-Combined-Filights; $arima(14,0,2); t_1=000; t_2=000$

Linear Regression Model Based On arima(14,0,4)

Figure 8: data=4-Combined-Filights; $arima(14,0,4); t_1=000; t_2=000$

Linear Regression Model Based On arima(14,0,6)

Figure 9: data=4-Combined-Filights; arima(14,0,6); $t_1=000$; $t_2=000$