Selected Problems Chapter 5 Linear Algebra Done Right, Sheldon Axler, 3rd Edition

Mustaf Ahmed

August 16, 2021

Problem Example 5.8. Suppose $T \in \mathcal{L}(F^2)$ is defined by T(w,z) = (-z,w). Find the eigenvectors and eigenvalues of T if $F = \mathbb{R}$. Find the eigenvectors and eigenvalues of T if $F = \mathbb{C}$

Proof. Part(a).

Assume T has eigenvectors and eigenvalues with $F = \mathbb{R}$. The equation $\lambda(w, z) = (-z, w)$ holds and leads to the following system of equations:

$$\lambda w = -z$$
$$\lambda z = w.$$

Solving for λ , we have $\lambda^2 = -1$, which only has solutions in \mathbb{C} . This contradiction means T has no eigenvectors and eigenvalues.

Part(b).

In part(a), we showed that the eigenvalues of T must be in the complex numbers. The equation from part(a) $\lambda^2 = -1$ has the solutions $\lambda = i$ and $\lambda = -i$. The eigenvectors corresponding to $\lambda = i$ are of the form (w, -iw) for any $w \in \mathbb{C}$; the eigenvectors corresponding to $\lambda = -i$ are of the form (w, iw).

Problem Theorem 5.10 Linearly Independent Eigenvectors. Let $T \in \mathcal{L}(V)$. Suppose $(\lambda_1, \ldots, \lambda_n)$ are distinct eigenvalues of T, and (v_1, \ldots, v_n) are corresponding eigenvectors. Then (v_1, \ldots, v_n) is a linearly independent list.

Proof. For a contradiction, suppose (v_1, \ldots, v_n) is a linearly dependent list. Then choose $a_1, \ldots, a_n \in F$ where not all are zero such that $0 = a_1v_1 + \ldots + a_nv_n$. By the linear dependence lemma, choose the smallest j such that $v_j = \frac{a_1}{a_j}v_1 + \cdots + \frac{a_{j-1}}{a_j}v_{j-1}$. Applying T, we have

$$\lambda_j v_j = \frac{a_1 \lambda_1}{a_j} v_1 + \dots + \frac{a_{j-1} \lambda_{j-1}}{a_j} v_{j-1}.$$

Subtracting the left side, we have

$$0 = \frac{a_1(\lambda_1 - \lambda_j)}{a_j} v_1 + \dots + \frac{a_{j-1}(\lambda_{j-1} - \lambda_j)}{a_j} v_{j-1}.$$

Each $(\lambda_k - \lambda_j) \neq 0$ because the eigenvalues are distinct. Since we chose j to be the smallest such that the v_j is in the span of the preceding vectors, $a_k = 0$ for $k = 1, \ldots, j - 1$. Thus, $v_j = 0$, but that is a contradiction because v_j is an eigenvector.

Problem Theorem 5.13 Number of Eigenvalues. Suppose V is finite-dimensional. Then each operator on V has at most dim(V) distinct eigenvalues.

Proof. Let $T \in \mathcal{L}(V)$. Let $(\lambda_1, \ldots, \lambda_n)$ be a list of distinct eigenvalues in F, and let (u_1, \ldots, u_m) be a corresponding list of eigenvectors. By Theorem 5.10, (v_1, \ldots, v_n) is a linearly independent list. Choose a basis (v_1, \ldots, v_n) of V. By Theorem 2.23, $m \leq n = dim(V)$.

Problem 5.A.12. Define $T \in \mathcal{L}(P_4(\mathbb{R}))$ by

$$T(p(x)) = xp'(x)$$

for all $x \in \mathbb{R}$. Find all the eigenvalues and eigenvectors.

Eigenvalues. Let $p(x) = a_1 + a_2x + a_3x^2 + a_4x^3 + a_5x^4$. Assume $T(p(x)) = \lambda p(x)$ with $\lambda \in \mathbb{R}$. We have $\lambda p(x) = xp'(x)$, so

$$\lambda a_1 + (\lambda a_2 - a_2)x + \dots + (\lambda a_5 - a_5)x^4 = 0.$$

The list $(1, x, ..., x^4)$ is linearly independent in $P_4(\mathbb{R})$, which leads to $\lambda = 1$.

Eigenvectors. We have shown that all solution pairs must have $\lambda = 1$. Assume that T(p(x)) = 1p(x). We have

$$a_1 + (a_2 - a_2)x + \dots + (a_5 - a_5)x^4 = 0,$$

which means solutions are of the form $(0, a_2, \ldots, a_5)$ for $a_j \in \mathbb{R}$.