

Veritas AI: CIFAR 10 Image Classification

Team: Carlos Ojeda, Cody Kletter, Isha Goswami, Victoria Wahlig

Mentor: Chufan Gao

March 6, 2022

Motivation for Your Project

S - Situation

T - Task

A - Action

R - Result

How do we improve image recognition in the CIFAR-10 dataset?

A key component of self-driving systems is image recognition. The focus of the project is to develop a image recognition machine learning pipeline using the CIFAR-10 dataset. Each image belongs to one of 10 classes, and the model will label the image with its class.

Your Data

S - Situation

- T Task
- A Action
- R Result

- CIFAR-10 is the most frequently used dataset for object recognition
- It was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton
- The dataset was collected in 2009.
- The dataset contains color images that belong to 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck)
- There are 60,000 images 10 classes of 6,000

Exploratory Data Analysis

0----

S - Situation **T - Task**

A - Action

R - Result

We have 10 categories of images and averaged all images in each class:

10

20

10

15

Exploratory Data Analysis

S - Situation T - Task A - Action

R - Result

Exploratory Data Analysis

S - Situation

T - Task

A - Action

R - Result

We found the number of images in each class in the training set:

Category	airplane	automobile	bird	cat	deer	dog	frog	horse	ship	truck
Number of Images	4466	4464	4529	4538	4451	4504	4459	4513	4520	4556

Standard Deviation for each class:

Baseline Model and Results

S - Situation T - Task **A - Action** R - Result

Describe your baseline model:

- What algorithm did you use?
 - Logistic Regression and Multilayer Perceptron (MLP)
- How does it perform on **training / test** prediction/classification?
- they both had a accuracy rates of around 41%

Model Name	Train Accuracy	Test Accuracy		
Logistic Regression	0.428	0.402		
Multilayer Perceptron (MLP)	0.442	0.429		

MLP (Multilayer Perceptron)

Advanced Model and Results

S - Situation T - Task **A - Action** R - Result

Describe your advanced model:

- How did you think of improving of the baseline model?
 - Convolutional neural network
- How did you change your architecture or strategy?
 - We made the strategy to reduce overfitting to the data, this made the model to have more opportunity to learn instead of memorizing the data.
- What was the outcome? Did it perform better (**training / test** performance)?
 - Yes, accuracy rose from 40% up to 80%, which means it does 3 times less mistakes than before.

Advanced Model Architecture

Project Summary and Future Work

S - Situation T - Task A - Action R - Result

What was your best model?

- Our best model was a convolutional neural network
 - two convolutional layers with 32 filters
 - two convolutional layers with 64 filters
 - 30% dropout rate of neurons after each maxpool
 - 40% dropout rate of neurons at the end

How accurate was the model?

- Training accuracy: 89.5% accuracy
- Validation accuracy: 79.8% accuracy
- Test accuracy: 79% accuracy

Project Summary and Future Work

S - Situation T - Task A - Action R - Result

What did you learn from the model?

- Learned to build a full convolutional neural network and all the steps leading up to it
 - Understanding the situation and our data, doing exploratory data analysis, building a baseline model, building an advanced model
 - How to identify variables in the model that are lowering the test accuracy

If you had more time to improve the model, what would you do?

- Significant difference between training accuracy and testing accuracy, reduce overfitting
 - Epochs, batch size, number of convolutional layers, increasing dropout
- ResNet (gradients are better propagated)

Thank you for listening!

Any questions?

