

KAFKA CHALLENGE

Speicherung der aktuellen Trends auf Wikipedia und historischen Veränderungen von Themen mittels Apache Kafka.

Struktur

- 1. Einleitung
- 2. Methodik
- 3. Prototyp
- 4. Aspekte

EINLEITUNG

Herangehensweise

- Einlesen in Kafka (Container, Topics, Consumer, Producer)
- Erstelle Repository
- Erstelle Kafka Container und debugge mittels KafkaCat
- Erstelle MongoDB Container für die Datenbank
- Erstelle Python Application um Logik zu implementieren (erst lokal, später im Container)
- Größten Probleme:
 - Wie könnten Beispieldaten aussehen?
 - Historische Artikel auch speichern oder nur Anzahl Edits?

METHODIK

IDEE

Idee

Producer

- Prototyp: producer.ipynb um Beispiel-Datenpunkte zu erstellen

Consumer

- Prozessiere Daten alle 60 Sekunden
- Speichere historische Daten (neue und alte Artikel) in Datenbank Wikipedia_Historic
- Zähle globale und deutsche Edits und speiche in Datenbank Wikipedia_Trend
- Nutze MongoDB Datenbank und speichere Daten als JSON

PROTOTYP

ASPEKTE

Was wäre eine mögliche Datenbank zur Speicherung der Daten?

- MongoDB war eine schlechte Entscheidung:
 - Table-Based Struktur sinnvoller, da ich strukturelle Daten habe
 Strings, Integerer
 - Würde im Endeffekt einfach eine PostgreSQL Database nutzen
 - Möglicherweise Cassandra, wenn es NoSQL sein soll
 - Ein Data Warehouse (OLAP) anstelle eines DBMS (OLTP) könnte auch sinnvoll sein: Amazon Redshift, Bigquery, Microsoft Synapse

Welches Datenmodell wäre deiner Meinung nach sinnvoll zur Ablage der Events?

■ Relationales Datenmodell für PostgreSQL:

Welche Topics wären sinnvoll?

Multi-Topic Struktur	Single-Topic Struktur
Mehrere Topics können einen höheren Overhead verursachen → Mehrere Tabellen verwalten	Consumer muss zwischen den Wikipedia-Themen differenzieren
Wikipedia Artikel müssen bestimmten Topics zugeordnet werden	Hohes Datenaufkommen → Engpässe bei Verarbeitung wenn Partitionierung nicht richtig konfiguriert
Bessere Skalierung über Topics	Eine einzige Topic-Struktur vereinfacht die Konfiguration

