6) Résolution d'inéquations à l'aide d'un tableau de signes

<u>Règles</u>: Pour remplir un tableau de signes, on va utiliser la règle des signe. Celle-ci dit que la multiplication ou la division de **deux nombres de même signe donne un nombre positif**. Dans le cas contraire, le nombre résultat est négatif.

Cas d'un produit :

Méthode: Résoudre une inéquation en étudiant le signe d'un produit

Résoudre dans \mathbb{R} l'inéquation suivante : (3-6x)(x+2) > 0

→ Le signe de (3-6x)(x+2) dépend du signe de chaque facteur 3-6x et x+2.

On va donc utiliser la partie 5) pour dresser le tableau de signe de 3-6x et x+2. D'abord, on résout :

$$3-6x = 0$$
 $x + 2 = 0$
 $6x = 3$ $x = -2$
 $x = \frac{3}{6} = \frac{1}{2}$

Pour : 3 - 6x, a = -6 < 0 donc la fonction est décroissante et on aura + , - .

Pour : x + 2, a = 1 > 0 donc la fonction est croissante et on aura - , + .

→ On aura donc le tableau de signes ci-dessous :

x	$-\infty$	-2	$\frac{1}{2}$	$+\infty$
3-6x	+	-	+ 0	_
x + 2	_	0 -	+	+
(3-6x)(x+2)	_	0 -	+ 0	_

Conclusion:

On en déduit que (3-6x)(x+2)>0 si $-2< x<\frac{1}{2}$. L'ensemble des solutions de l'inéquation (3-6x)(x+2)>0 s'écrit : $S=\left]-2;\frac{1}{2}\right[$.

Exemple:

a.
$$(x - 3)(x - 1) \le 0$$

b.
$$(x - 9)(x - 5) < 0$$

c.
$$(2x + 4)(3x - 3) \ge 0$$

a.
$$(x-3)(x-1) \le 0$$

b. $(x-9)(x-5) < 0$
c. $(2x+4)(3x-3) \ge 0$
d. $(15-5x)(x+1)(x+2) > 0$

Cas d'un quotient :

Méthode : Résoudre une inéquation en étudiant le signe d'un quotient

Résoudre dans \mathbb{R} l'inéquation suivante : $\frac{2-6x}{2x-2} \le 0$.

- **Valeur interdite.** L'équation n'est pas définie lorsque 3x 2 = 0, donc $x = \frac{2}{3}$. Cette valeur est une valeur interdite.
- → Le signe de $\frac{2-6x}{3x-2}$ dépend du signe de 2-6x et de 3x-2.

On va donc utiliser la partie 5) pour dresser le tableau de signe de 3-6x et x+2.

D'abord, on résout :

$$2-6x = 0
6x = 2
x = $\frac{2}{6} = \frac{1}{3}$
$$3x - 2 = 0$$

$$3x = 2$$

$$x = \frac{2}{3}$$$$

Pour : 2 - 6x, a = -6 < 0 donc la fonction est décroissante et on aura + , - .

Pour : 3x - 2, a = 3 > 0 donc la fonction est croissante et on aura - , + .

On aura donc le tableau de signes suivant :

X	$-\infty$	$\frac{1}{3}$	6 2 - 6	$\frac{2}{3}$ $+\infty$
2-6x	+	0	_	-
3x - 2	_		- () +
$\frac{2-6x}{3x-2}$	_	0	+	_

On en déduit que $\frac{2-6x}{3x-2} \le 0$ si $x \le \frac{1}{3}$ ou si $x \ge \frac{2}{3}$. L'ensemble des solutions de

$$\text{l'inéquation } \frac{2-6x}{3x-2} \leq 0 \text{ s'écrit } : S = \left] -\infty; \frac{1}{3} \right] \cup \left] \frac{2}{3}; \infty \right[\ .$$

Exemple:

a.
$$\frac{2x+8}{x-9} > 0$$

b.
$$\frac{6x+1}{7-x} \ge 0$$

$$\mathbf{c.} \frac{x+5}{3x-5} \le 0$$

a.
$$\frac{2x+8}{x-9} > 0$$
 b. $\frac{6x+1}{7-x} \ge 0$ **c.** $\frac{x+5}{3x-5} \le 0$ **d.** $\frac{-2x-10}{4x-3x} \ge 0$

7) Cas avec factorisation

Méthode: Résoudre une inéquation grâce à une factorisation

Résoudre par le calcul dans \mathbb{R} l'inéquation suivante : $x^2 > 7$

Pour appliquer la méthode précédente, il faut trouver une expression factorisée...

$$x^2 > 7 \iff x^2 - 7 > 0 \iff x^2 - \sqrt{7}^2 > 0 \iff \left(x - \sqrt{7}\right)\left(x + \sqrt{7}\right) > 0$$

 \implies Le signe de $\left(x-\sqrt{7}\,\right)\left(x+\sqrt{7}\,\right)$ dépend du signe de chaque facteur, comme on a vu précédemment! La méthode est la même : à faire par vous-même.