Math 425: Abstract Algebra I IATEXExamples

- First note that I made some vertical space above this using the command \vksip .25in Use this command liberally to help make your document readable.
- Math mode is generated with dollar signs. For example $a^2 + b^2 = c^2$. There is a difference between a and a.
- Centered equations can be made in many ways. Here are a few:
 - 1. Double dollar signs

$$a_1 + a_2 + \dots + a_n = 1$$

2. Square brackets

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

3. Equation environment - numbered (only use this if you're going to refer to this equation again)

$$x^{2} - 2 = (x - \sqrt{2})(x + \sqrt{2}) \tag{1}$$

4. Equation environment - unnumbered

$$2435 \equiv 11 \pmod{24}$$

5. Multiple lines with lined up equations

$$1+2+\cdots+n+n+1 = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2}$$

6. Multiple lines with explanations

$$(n+1)!$$
 = $n!(n+1)$ definition of factorial
 $\geq 2^n(n+1)$ inductive hypothesis
 $\geq 2^n \cdot 2$ assumption of $n \geq 3$
= 2^{n+1} exponent laws

• To write a proof use \begin{proof} and \end{proof}, and you will get something like this:

1

Proof. Let S be a set with binary operation *. Assume there is an identity element of * in S. Let $e_1, e_2 \in S$ be identity elements of S with respect to *. We want to show $e_1 = e_2$. Since e_1 is an identity element, we have

$$e_1 * e_2 = e_2$$
.

Similarly since e_2 is an identity element,

$$e_1 * e_2 = e_1.$$

Combining these two equations, we see

$$e_2 = e_1 * e_2 = e_1.$$

We conclude that if an identity exits with respect to a binary operation, then that identity is unique. \Box

• There are also examples in homework assignments. Please let me know if you have further questions.