Линейный оператор

Пусть E, F - линейные нормированные пространства. Отображение A назовем отображением из E в F, если для A область определения $D(A) \subset E$, а множество значений $D(A) \subset F$. В таком случае пишем $A:D(A) \subset E \to F$.

Предположим, что пространства E, F оба вещественные, или оба комплексные. Отображение A из E в F называется линейным оператором, если:

- 1. D(A) линейное многообразие в E;
- 2. $A(\lambda x) = \lambda Ax$, где $x \in D(A)$ и λ число;
- 3. A(x + y) = Ax + Ay, где $x, y \in D(A)$.

Ограниченный линейный оператор

Линейный оператор $A:D(A)\subset E\to F$ называется ограниченным на D(A), если

$$(\exists C \ge 0)(\forall x \in D(A))[\|Ax\|_F \le C\|x\|_E].$$

Норма линейного ограниченного оператора

Пусть E, F - линейные нормированные пространства. Пусть Линейный оператор $A: D(A) \subset E \to F$ ограниченный на D(A). Тогда из (1.1) следует, что числовое множество

$$M = \left\{ \frac{\|Ax\|_F}{\|x\|_E} \mid (x \in D(A)) \land (x \neq \Theta) \right\}$$

ограничено сверху константой $C \geq 0$. Обозначим

$$||A|| = \sup M = \sup_{\substack{x \in D(A) \\ x \neq \Theta}} \frac{||Ax||_F}{||x||_E} \le C < \infty.$$

Величина ||A|| называется нормой оператора A на D(A).

L(E,F) множество всех линейных ограниченных операторов

Пусть E, F - линейные нормированные пространства, причем оба вещественные или оба комплексные. Через L(E, F) обозначим множество всех линейных ограниченных операторов $A: E \to F$. В случае F = E вместо L(E, E) пишут L(E).

Определим на множестве L(E,F) операции умножения на число и сложение. Считаем для числа λ и $A,B\in L(E,F)$ операторы λA и A+B такие, что для $x\in E$

$$(\lambda A)x = (\lambda)Ax, \quad (A+B)x = Ax + Bx.$$

Сильно фундаментальная последовательность Последовательность операторов $\{A_n\} \subset L(E,F)$ называется сильно фундаментальной, если для любого $x \in E$ последовательность $\{A_nx\} \subset F$ фундаментальна.

Сильно полное пространство Пространство L(E,F) называется сильно полным, если для всякой сильно фундаментальной последовательности $\{A_n\}\subset L(E,F)$ найдется оператор $A\subset L(E,F)$ такой, что $A_n\stackrel{\text{сильно}}{\longrightarrow} A$.

 \widetilde{A} Продолжение оператора по непрерывности на всё пространство Пусть E - линейное нормированное пространство и F банахово пространство. Линейный оператор $A:D(A)\subset E\to F$

ограничен на своей области определения D(A) и множество D(A) плотно в Е. Тогда существует оператор $\widetilde{A} \in L(E,F)$ такой, что:

1)
$$(\forall x \in D(A))[\widetilde{A}x = Ax],$$
 2) $\|\widetilde{A}\| = \|A\|$

Обратимый оператор Оператор A называется обратимым, если

$$(\forall y \in R(A))(\exists x \in D(A))$$
 единственный $)[Ax = y].$

Ядро оператора или нуль-многообразие

Для линейного оператора A определим множество

$$N(A) = \{ x \in D(A) \mid Ax = \Theta \}$$

называемое ядром или нуль-многообразием оператора A. Нетрудно видеть, что N(A) - линейное многообразие в пространстве E.

Непрерывно обратимый оператор

Оператор A называется непрерывно обратимым, если оператор A обратим и обратный $A^{-1} \in L(F, E)$.

Резолъвента оператора

Пусть E - комплексное линейное нормированное пространство и задан линейный оператор $A:D(A)\subset E\to E$. Для числа $\lambda\in\mathbb{C}^1$ рассмотрим оператор $A-\lambda I$. Если оператор $A-\lambda I$ непрерывно обратим, то есть существует обратный оператор $(A-\lambda I)^{-1}\in L(E)$, то оператор $(A-\lambda I)^{-1}=R(A,\lambda)$ называется резолъвентой оператора A, а соответствующее значение λ называется регулярным значением оператора A.

Спектр оператора

Множество всех регулярных значений оператора A обозначают $\rho(A)$. Множество чисел $\mathbb{C}^1 \backslash \rho(A) = \sigma(A)$ называется спектром оператора A.

Собственные значения оператора

Числа $\lambda \in \sigma(A)$ такие, что $N(A - \lambda I) \neq \{\Theta\}$ называются собственными значениями оператора A. Соответствующие элементы $x \in E(x \neq \Theta)$ такие, что $(A - \lambda I)x = \Theta$ или $Ax = \lambda x$, называются собственными элементами.

Замкнутый оператор

Пусть E, F - линейные нормированные пространства и линейный оператор $A: D(A) \subset E \to F$. Оператор A называется замкнутым, если

Оператор
$$A$$
 называется замкнутым, если
$$(\forall \{x_n\} \subset D(A)) \left[\left(x_n \underset{n \to \infty}{\longrightarrow} x_0 \right) \wedge \left(Ax_n \underset{n \to \infty}{\longrightarrow} y_0 \right) \Rightarrow (x_0 \in D(A)) \wedge (Ax_0 = y_0) \right].$$

График оператор

Пусть теперь задан линейный оператор $A:D(A)\subset E\to F.$ Определим в $E\times F$ множество

$$\Gamma(A) = \{(x, Ax) \mid x \in D(A)\} \subset E \times F$$

которое называется графиком оператора A. Легко проверить, что множество $\Gamma(A)$ есть линейное многообразие в $E \times F$.