Statistical Tests (2) MAE301 Applied Experimental Statistics

Yi Ren, Yabin Liao

School for Engineering of Matter, Transport Energy Arizona State University

September 15, 2015

Outline

Distribution of sample variance

Summary

Appendix

distribution of sample variance

$$E(s^2) = 6^2$$

Similar to the sample mean, the sample variance

$$\underbrace{S^{2}}_{n-1} = \underbrace{\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}_{n-1} \tag{1}$$

is also a random variable.

The sample distribution of the variance S^2 will be used in learning about the population variance σ^2 .

If S^2 is the variance of a random sample of size n taken from a normal population having the variance σ^2 , then the statistic

$$\chi^2 = \underbrace{\left(n-1\right)S^2}_{\sigma^2} \underbrace{\left(\sum_{i=1}^n \underbrace{(X_i)^2}_{\sigma^2}\right)^2}_{I}$$
 (2)

has a chi-squared distribution with $\nu=n-1$ degrees of freedom.

chi-squared distribution

The chi-squared distribution random variable χ^2 has probability density function

$$f(\chi^{2}) = \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} (\chi^{2})^{\nu/2 - 1} e^{-\chi^{2}/2}, & \chi^{2} > 0\\ 0, & \text{elsewhere} \end{cases}$$
(3)

where ν is the degrees of freedom (a positive integer) and the gamma function

$$\Gamma(\nu/2) = \int_0^\infty u^{\nu/2 - 1} e^{-u} du \tag{4}$$

The mean and variance of chi-square distribution are $\mu = \nu$, $\sigma^2 = 2\nu$.

chi-squared distribution

Similar to T statistic, it is customary to let χ^2_{α} represent the χ^2 value above which we find an area (or upper-tail probability) of α .

If the sample mean and variance are obtained from 8 measurements. Calculate $\chi^2_{0.95}$ and $\chi^2_{0.05}$.

Inference on the population variance

95% of a chi-square distribution lies between $\chi^2_{0.975}$ and $\chi^2_{0.025}$

A value falling to the right of $\chi^2_{0.025}$ is not likely to occur unless our assumed value of σ^2 is too small.

A value falling to the left of $\chi^2_{0.975}$ is not likely to occur unless our assumed value of σ^2 is too large.

exercise

A manufacturer of car batteries guarantees that this batteries will last, on the average, 3 years with a standard deviation of 1 year. Assume that the battery lifetime follows a normal distribution.

If five of these batteries have lifetime of 1.9, 2.4, 3.0, 3.5, and 4.2 years, is the manufacturer still convinced that his batteries have a standard deviation of 1 year?

F-distribution

Previously we have discussed situations where two means are compared (two-sample z-test or t-test). For many applications, variability is equally important and the F-distribution can be used to compare variances of two or more populations.

Consider the case where we take samples of size n_1 and n_2 respectively, from either a single population or two populations. We determine the variances from the samples and then find the ratio s_1^2/s_2^2 . If we did this for a very large number of pairs of samples, the ratios would form a distribution known as the F distribution.

F-distribution definition

The statistic F is defined to be the ratio of two independent chi-square random variables, each divided by its number of degrees of freedom

$$F = \frac{U/\nu_1}{V/\nu_2} \tag{5}$$

where U and V are independent random variables having chi-squared distribution with ν_1 and ν_2 degrees of freedom, respectively.

The probability density function of F statistic is

$$h(f) = \begin{cases} \frac{\Gamma((\nu_1 + \nu_2)/2)(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)} \frac{f^{\nu_1/2 - 1}}{(1 + \nu_1 f/\nu_2)^{(\nu_1 + \nu_2)/2}}, & f > 0\\ 0, & f \le 0 \end{cases}$$
(6)

F-distribution curve

 $\underline{f_{\alpha}}$ is the f-value above which we find an area equal to α :

$$P(F > f_{\alpha}) = \boxed{\alpha} \tag{7}$$

In addition, the *f*-value has property $f_{1-\alpha}(\nu_1, \nu_2) = 1/f_{\alpha}(\nu_2, \nu_1)$.

F-distribution with two sample variances

Suppose that random samples of size n_1 and n_2 are selected from two normal populations with variance σ_1^2 and σ_2^2 , respectively. The following random variables in terms of the sample variances S_1^2 and S_2^2 :

 $U = \underbrace{\left((n_1 - 1)S_1^2}_{\sigma_1^2}, \right) \qquad V = \underbrace{\left((n_2 - 1)S_2^2}_{\sigma_2^2} \right)$ (8)

have chi-squared distributions with $v_1 = n_1 - 1$ and $v_2 = n_2 - 1$ degrees of freedom.

This results in the F-distribution for the sample variances

$$F = \frac{U/\nu_1}{V/\nu_2} = \frac{\sigma_2^2 \S_1^2}{\sigma_1^2 \S_2^2}$$
 (9)

exercise

Consider the following measurements of the heat producing capacity of the coal produced by two mines (in millions of calories per ton):

Do the measurements support the statement that the two population variances are equal?

summary of the class

 $\sim \chi^2$ statistic (for one sample variance) and F statistic (for comparison between two sample variances)

Python code for demos in the class

```
# chi-square distribution
from scipy.stats import chi2
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)
df = 10
x = np.linspace(chi2.ppf(0.0001, df),chi2.ppf(0.9999, df), 100)
ax.plot(x, chi2.pdf(x, df),'r-', lw=5, alpha=0.6, label='chi2 pdf')

# chi-square test
from scipy.stats import chi2
import matplotlib.pyplot as plt
sigma = 1.0
x = [1.9, 2.4, 3.0, 3.5, 4.2]
s = np.std(x, ddof=1)
chisquare = (len(x)-1)*s**2/sigma**2
chi2.cdf(chisquare,len(x)-1)
```

Python code for demos in the class

```
# f distribution
from scipy.stats import f
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)
df1 = 20
df2 = 10
x = np.linspace(f.ppf(0.0001, df1, df2), f.ppf(0.9999, df1, df2), 100)
ax.plot(x, f.pdf(x, df1, df2), 'r-', lw=5, alpha=0.6, label='f pdf')
# f test
from scipy.stats import f
sample1 = [8260,8130,8350,8070,8340]
sample2 = [7950,7890,7900,8140,7920,7840]
xbar1 = np.mean(sample1)
s1 = np.std(sample1,ddof=1)
df1 = len(sample1)-1
xbar2 = np.mean(sample2)
s2 = np.std(sample2,ddof=1)
df2 = len(sample2)-1
F = s1**2/s2**2
f.cdf(F,df1,df2)
```