CS738: Advanced Compiler Optimizations

Sparse Conditional Constant Propagation

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Sparse Simple Constant Propagation (SSC)

- ▶ Improved analysis time over Simple Constant Propagation
- ► Finds all simple constant
 - Same class as Simple Constant Propagation

Preparations for SSC Analysis

- ► Convert the program to SSA form
- ► One statement per basic block
- ► Add connections called *SSA edges*
 - Connect (unique) definition point of a variable to its use points
 - Same as def-use chains

SSC Algorithm: Initialization

- ► Evaluate expressions involving constants only and assign the value (*c*) to variable on LHS
- \blacktriangleright If expression can not be evaluated at compile time, assign \bot
- ► Else (for expression contains variables) assign ⊤
- lacktriangle Initialize worklist *WL* with SSA edges whose def is not \top
- ► Algorithm terminates when *WL* is empty

SSC Algorithm: Iterative Actions

- ► Take an SSA edge E out of WL
- ► Take meet of the value at def end and the use end of E for the variable defined at def end
- ► If the meet value is different from use value, replace the use by the meet
- ▶ Recompute the def *d* at the use end of *E*
- ► If the recomputed value is *lower* than the stored value, add all SSA edges originating at *d*

Meet for ϕ -function

$$V = \phi(V_1, V_2, \dots, V_k)$$

$$\Rightarrow$$
 ValueOf(v) = $v_1 \land v_2 \land ... \land v_n$

SSC Algorithm: Complexity

- ► Height of CP lattice = 2
- Each SSA edge is examined at most twice, for each lowering
- ▶ Theoritical size of SSA graph: $O(V \times E)$
- ▶ Practical size: linear in the program size

SSC: Practice Example ENTRY a = 2 b = 3 c1 = 4 c2 = 5 $c3 = \phi(c1, c2)$ EXIT

SSC: Practice Example

What if we change "c1 = 4" to "c1 = 5"?

Sparse Condtional Constant Propagation (SCC)

- ► Constant Propagation with *unreachable code elimination*
- ► Ignore definitions that reach a use via a non-executable edge

SCC Algorithm: Key Idea

$$\mathbf{v} = \phi(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$$

$$\Rightarrow$$
 ValueOf(v) = $\bigwedge_{i \in ExecutablePath} v$

We ignore paths that are not "yet" marked executable

SCC Algorithm: Preparations

- ► Two Worklists
 - ► Flow Worklist (*FWL*)
 - Worklist of flow graph edges
 - ► SSA Worklist (SWL)
 - Worlist of SSA graph edges
- Execution Halts when **both** worklists are empty
- Associate a flag, the *ExecutableFlag*, with every flow graph edge to control the evaluation of ϕ -function in the destination node

SCC Algorithm: Initialization

- ► Initialize *FWL* to contain edges leaving ENTRY node
- ► Initialize *SWL* to empty
- ► Each ExecutableFlag is false initially
- ► Each value is T initially (Optimistic)

SCC Algorithm: Iterations

- ► Remove an item from either worklist
- process the item (described next)

SCC Algorithm: Processing FWL Item

- ► Item is flow graph edge
- ▶ If ExecutableFlag is true, do nothing
- Otherwise
 - ► Mark the *ExecutableFlag* as true
 - **Visit-** ϕ for all ϕ -functions in the destination
 - ► If only one of the *ExecutableFlags* of incoming flow graph edges for dest is true (dest visted for the first time), then **VisitExpression** for all expressions in dest
 - ► If the dest contains only one outgoing flow graph edge, add that edge to *FWL*

SCC Algorithm: Processing SWL Item

- ▶ Item is SSA edge
- ▶ If dest is a ϕ -function, **Visit-** ϕ
- ▶ If dest is an expression and any of ExecutableFlags for the incoming flow graph edges of dest is true, perform VisitExpression

SCC Algorithm: Visit-*φ*

$$V = \phi(V_1, V_2, \dots, V_k)$$

- ▶ If i^{th} incoming edge's *ExecutableFlag* is true, $val_i = ValueOf(v_i)$ else $val_i = \top$
- ▶ ValueOf(v) = $\bigwedge_i val_i$

SCC Algorithm: VisitExpression

- Evaluate the expression using values of operands and rules for operators
- ▶ If the result is same as old, nothing to do
- Otherwise
 - ► If the expression is part of assignment, add all outgoing SSA edges to *SWL*
 - if the expression controls a conditional branch, then
 - \blacktriangleright if the result is \bot , add all outgoing flow edges to *FWL*
 - ▶ if the value is constant *c*, only the corresponding flow graph edge is added to *FWL*
 - Value can not be ⊤ (why?)

SCC Algorithm: Complexity

- ► Each SSA edge is examined twice
- ► Flow graph nodes are visited once for every incoming edge
- Complexity = O(# of SSA edges + # of flow graph edges)

SCC Algorithm: Correctness and Precision

- ► SCC is conservative
 - ► Never labels a variable value as a constant
- ► SCC is at least as powerful as Conditional Constant Propagation (CC)
 - Finds all constants as CC does
- ▶ PROOFs: In paper Constant propagation with conditional branches by Mark N. Wegman, F. Kenneth Zadeck, ACM TOPLAS 1991.

