Lineare Algebra 1 Hausaufgabenblatt Nr. 2

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 30, 2023)

Problem 1. Gegeben sei die Relation $\sim\subseteq (\mathbb{R}^2\ \{0\})\times (\mathbb{R}^2\ \{O\})$ mit $x\sim y$ genau dann, wenn es eine Gerade $L\subseteq\mathbb{R}^2$ gibt, die 0, x und y enthält.

- (a) Bestimmen Sie alle $y \in \mathbb{R}^2 \setminus \{(0,0)\}$ mit $(0,1) \sim y$ bzw. $(1,0) \sim y$ und skizzieren Sie die beiden Mengen in einem geeigneten Koordinatensystem.
- (b) Begründen Sie, dass \sim eine Äquivalenzrelation ist.
- (c) Bleibt \sim auch dann eine Äquivalenzrelation, wenn man sie als Relation in \mathbb{R}^2 betrachtet?

Proof. (a) Eine Gerade hat den Form

$$\{(x_1,x_2)\in\mathbb{R}^2|a_1x_1+a_2x_2=b\}.$$

Weil (0,0) in der Gerade ist, gilt b = 0. Für die zwei Fälle:

- (i) (0,1) ist in der Gerade. Es gilt dann $a_2 = 0, a_1 \in \mathbb{R}$. Die Gleichung der Gerade ist dann $x_1 = 0$, oder alle Punkte des Forms $(0,y), y \in \mathbb{R}$.
- (ii) (1,0) ist in der Gerade. Es gilt dann $a_1=0, a_2\in\mathbb{R}$. Die Gerade enthält ähnlich alle Punkte des Forms $(x,0), x\in\mathbb{R}$.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) (i) $x \sim x$ (Reflexivität)

Es gibt immer eine Gerade zwischen 0 und x. Eine solche Gerade enthält x per Definition.

(ii) $x \sim y \iff y \sim x$ (Symmetrie)

Es gibt eine Gerade, die 0, x und y enthält. Deswegen gilt die beide Richtung der Implikationen.

(iii) $x \sim y$ und $y \sim z \implies x \sim z$ (Transitivität)

Es gibt eine Gerade zwischen 0, x und y, und eine Gerade zwischen 0, y und z. Weil die beide Geraden zwischen y geht, sind die Geraden gleich, und enthält x und z, daher $x \sim z$.

(c) Nein.
$$(1,0) \sim (0,0), (0,1) \sim (0,0)$$
, aber $(1,0) \sim (0,1)$ stimmt nicht.

Problem 2. Es sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $(x_1, x_2, x_3) \to (x_1, x_2)$, s die Spiegelung in \mathbb{R}^2 , $T: \mathbb{R}^2 \to \mathbb{R}^2$ die Translation um (1,0) und $em: \mathbb{R}^2 \to \mathbb{R}^3$ die Einbettung.

- (a) Bilden Sie die Verkettungen $f \circ em$, $em \circ f$, $s \circ f$, $T \circ s$, $s \circ T$ und $em \circ s$. Geben Sie dabei jeweils Argumentmenge, Zielmenge und Zuordnungsvorschrift an.
- (b) Untersuchen Sie die Funktionen aus der vorherigen Teilaufgabe auf Surjektivität, Injektivität bzw. Bijektivität.
- (c) Sei $F = em \circ T \circ s \circ f$. Bestimmen und skizzieren Sie das Bild bzw. Urbild von $[0,1] \times [-1,1] \times [0,2]$ unter F.

Proof. (a) (i) $f \circ em$

Argumentmenge: \mathbb{R}^2

Zielmenge: \mathbb{R}^2

Zuordnungsvorschrift: $(x_1, x_2) \rightarrow (x_1, x_2) = \text{Id}_{\mathbb{R}^2}$

(ii) $em \cdot f$

Argumentmenge + Zielmenge: \mathbb{R}^3

Zuordnungsvorschrift: $(x_1, x_2, x_3) \rightarrow (x_1, x_2, 0)$

(iii) $s \cdot f$

Argumentmenge: \mathbb{R}^3

Zielmenge: \mathbb{R}^2

Zuordnungsvorschrift: $(x_1, x_2, x_3) \rightarrow (x_2, x_1)$

(iv) $em \circ s$

Argumentmenge: \mathbb{R}^2

Zielmenge: \mathbb{R}^3

Zuordnungsvorschrift: $(x_1, x_2) \rightarrow (x_2, x_1, 0)$

- (b) (i) $f \circ em$ Surjektive, injektiv und auch bijektiv
 - (ii) $em \circ f$ Injektiv, aber nicht surjektiv (und deswegen nicht Bijektiv)
 - (iii) $s \circ f$ Surjektive, aber nicht injektiv
 - (iv) $em \circ s$ Injektiv, aber nicht surjektiv

(c)

Bild: $[0,2] \times [0,1] \times \{0\}$

Urbild: $[0,1] \times [-2,0] \times \mathbb{R}$

Problem 3. Es sei M eine beliebige, nichtleere Menge und $f:M\to M$ eine Abbildung. Wir definieren induktiv $f^0:=id$ und für $k\in\mathbb{N}$ $f^k:=f\circ f^{k-1}$.

(a) Zeigen Sie: $f^{k+l} = f^k \circ f^l$ für alle $k, l \in \mathbb{N}_0$

- (b) Zeigen Sie: Gibt es $k_0 \in \mathbb{N} \cup \{0\}$ und $l \in \mathbb{N}$ mit $f^{k_0+l} = f^{k_0}$, dann gilt $f^{k+l} = f^k$ für alle $k \in \mathbb{N}_0$ mit $k \ge k_0$.
- (c) Geben Sie eine Funktion $f:\{1,2,3,4,5\} \to \{1,2,3,4,5\}$ an, für die $f^1 \neq f^3$, aber $f^{k+2} = f^k$ für alle $k \geq 2$ gilt. Begründen Sie, dass Ihre Funktion diese Eigenschaft hat.
- *Proof.* (a) Wir beweisen es per Induktion auf k. Für k=1 gilt es per Definition (es wird in der Frage gegeben). Jetzt nehme an, dass es für ein beliebige $k \in \mathbb{N}$ gilt.

Es gilt dann:

$$f^{(k+1)+l} = f \circ f^{k+l}$$

$$= f \circ f^k \circ f^l$$

$$= (f \circ f^k) \circ f^l$$

$$= f^{k+1} \circ f^l$$

Deswegen gilt es auch für k + 1, und daher für alle $k \in \mathbb{N}$.

(b) Sei $k = k_0 + k'$. Es gilt

$$f^{k+l} = f^{k_0 + k' + l} = f^{k_0} = f^{k_0 + k'} = f^k$$
.

(c) Sei f definiert durch

$$f(1) = 1$$

$$f(2) = 1$$

$$f(3) = 2$$

$$f(4) = 1$$

$$f(5) = 4$$

$$f^1 \neq f^3$$
, weil $f^1(3) \neq f^3(3)$. Aber $f^k(x) = 1 \forall k \in \{1, 2, 3, 4, 5\}$, $k \geq 2$. Daher ist $f^{k+2} = f^k$, $k \geq 2$.

Problem 4. Es seien M,N Mengen, m,n natürliche Zahlen und die Abbildungen $f: M \to \{1,2,3,\ldots,m\}, g: N \to \{1,2,3,\ldots,n\}$ bijektiv. Finden Sie eine natürliche Zahl k und eine bijektive Abbildung $F: M \times N \to \{1,2,3,\ldots,k\}$.

Proof. k = nm, und

$$F(a,b) = a + (b-1)m$$
.

Das ist bijektiv. Sei $x \in \{1, 2, ..., nm\}$. Es existiert eindeutige Zahlen $p, q \in \mathbb{N}$, so dass

$$x = pm + q, q < m.$$

Falls q=0, sei b=p, a=m. Sonst definiert man b=p+1, a=m. Per Definition ist $a\in\{1,2,3,\ldots,m\}$. Außerdem ist $1\leq b\leq n$, weil $p\leq k/m=n$ (n teilt k=mn).