Architectures for Quality of Service

Emmanuel Lochin

ISAE-SUPAERO 2017

Slides from J. Kurose textbook

Improving QOS in IP Networks

Internet: best-effort network

Your ISP: network with QoS guarantees

- O RSVP: signaling for resource reservations
- O Differentiated Services: differential quarantees
- Integrated Services: firm guarantees
- simple model for sharing and congestion studies:

Quality of Service

- Beyond Best Effort
- Scheduling and Policing Mechanisms
- Integrated Services and Differentiated Services
- RSVP

Principles for QOS Guarantees

- Example: 1Mbps IP phone, FTP share 1.5 Mbps link.
 - o bursts of FTP can congest router, cause audio loss
 - want to give priority to audio over FTP

Principle 1

Packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

2

Principles for QOS Guarantees (more)

- what if applications misbehave (audio sends higher than declared rate)
 - opolicing: force source adherence to bandwidth allocations
- marking and policing at network edge:

Principle 2

Provide protection (isolation) for one class from others

Principles for QOS Guarantees (more)

 Allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn't use its allocation

Principle 3

5

While providing isolation, it is desirable to use resources as efficiently as possible

Principles for QOS Guarantees (more)

 Basic fact of life: can not support traffic demands beyond link capacity

Principle 4

Call Admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs

Summary of QoS Principles

Let's next look at mechanisms for achieving this

Quality of Service

- Beyond Best Effort
- Scheduling and Policing Mechanisms
- Integrated Services and Differentiated Services
- RSVP

Scheduling And Policing Mechanisms

- scheduling: choose next packet to send on link
- ☐ FIFO (first in first out) scheduling: send in order of arrival to queue
 - discard policy: if packet arrives to full queue: who to discard?
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

10

12

Scheduling Policies: more

Priority scheduling: transmit highest priority queued packet

- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc..

Scheduling Policies: still more

round robin scheduling:

multiple classes

11

cyclically scan class queues, serving one from each class (if available)

Scheduling Policies: still more

Weighted Fair Queuing:

- generalized Round Robin
- each class gets weighted amount of service in each cycle

13

15

Policing Mechanisms

Goal: limit traffic to not exceed declared parameters
Three common-used criteria:

- (Long term) Average Rate: how many pkts can be sent per unit time (in the long run)
 - or crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- Peak Rate: e.g., 6000 pkts per min. (ppm) avg.; 1500 ppm peak rate
- (Max.) Burst Size: max. number of pkts sent consecutively (with no intervening idle)

Policing Mechanisms

Token Bucket: limit input to specified Burst Size and

Average Rate

r tokens/sec

bucket holds up to
b tokens

packets

token

wait

to
network

- □ bucket can hold *b* tokens
- □ tokens generated at rate r token/sec unless bucket full
- over interval of length t: number of packets admitted less than or equal to (r.t + b)

Policing Mechanisms (more)

token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee!

16

Quality of Service

- Beyond Best Effort
- Scheduling and Policing Mechanisms
- Integrated Services and Differentiated Services
- RSVP

IETF Integrated Services

- architecture for providing QOS guarantees in IP networks for individual application sessions
- resource reservation: routers maintain state info (a la VC) of allocated resources, QoS reg's
- □ admit/deny new call setup requests:

Question: can newly arriving flow be admitted with performance guarantees while not violated QoS guarantees made to already admitted flows?

Intserv: QoS guarantee scenario

Call Admission

17

Arriving session must:

- declare its QOS requirement
 - R-spec: defines the QOS being requested
- characterize traffic it will send into network
 - T-spec: defines traffic characteristics
- signaling protocol: needed to carry R-spec and Tspec to routers (where reservation is required)
 - RSVP

Intserv QoS: Service models [rfc2211, rfc 2212]

Guaranteed service:

- worst case traffic arrival: leakybucket-policed source
- simple (mathematically provable) bound on delay [Parekh 1992, Cruz 1988]

Controlled load service:

"a quality of service closely approximating the QoS that same flow would receive from an unloaded network element."

21

IETF Differentiated Services

Concerns with Intserv:

- Scalability: signaling, maintaining per-flow router state difficult with large number of flows
- Flexible Service Models: Intserv has only two classes.
 Also want "qualitative" service classes
 - "behaves like a wire"
 - orelative service distinction: Platinum, Gold, Silver

Diffserv approach:

- simple functions in network core, relatively complex functions at edge routers (or hosts)
- Do't define define service classes, provide functional components to build service classes

22

24

Diffserv Architecture

Edge router:

- per-flow traffic management
- marks packets as in-profile and out-profile

Core router:

- per class traffic management
- buffering and scheduling based on marking at edge
- preference given to in-profile packets
- Assured Forwarding

Edge-router Packet Marking

- profile: pre-negotiated rate A, bucket size B
- packet marking at edge based on per-flow profile

Possible usage of marking:

- class-based marking: packets of different classes marked differently
- intra-class marking: conforming portion of flow marked differently than non-conforming one

Classification and Conditioning

- packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6
- 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive
- 2 bits are currently unused

25

27

Forwarding (PHB)

- PHB result in a different observable (measurable) forwarding performance behavior
- PHB does not specify what mechanisms to use to ensure required PHB performance behavior
- Examples:
 - O Class A gets x% of outgoing link bandwidth over time intervals of a specified length
 - O Class A packets leave first before packets from class B

Classification and Conditioning

may be desirable to limit traffic injection rate of some class:

- user declares traffic profile (e.g., rate, burst size)
- □ traffic metered, shaped if non-conforming

Forwarding (PHB)

PHBs being developed:

- Expedited Forwarding: pkt departure rate of a class equals or exceeds specified rate
 - O logical link with a minimum guaranteed rate
- ☐ Assured Forwarding: 4 classes of traffic
 - each guaranteed minimum amount of bandwidth
 - each with three drop preference partitions

26

Quality of Service

- Beyond Best Effort
- Scheduling and Policing Mechanisms
- Integrated Services and Differentiated Services
- RSVP

Signaling in the Internet

connectionless
(stateless) forwarding
by IP routers

hest effort
service

no network
signaling protocols
in initial IP design

- New requirement: reserve resources along end-to-end path (end system, routers) for QoS for multimedia applications
- RSVP: Resource Reservation Protocol [RFC 2205]
 - " ... allow users to communicate requirements to network in robust and efficient way." i.e., signaling!
- earlier Internet Signaling protocol: ST-II [RFC 1819]

29

31

30

32

RSVP Design Goals

- accommodate heterogeneous receivers (different bandwidth along paths)
- accommodate different applications with different resource requirements
- make multicast a first class service, with adaptation to multicast group membership
- leverage existing multicast/unicast routing, with adaptation to changes in underlying unicast, multicast routes
- 5. control protocol overhead to grow (at worst) linear in # receivers
- 6. modular design for heterogeneous underlying technologies

RSVP: does not...

- specify how resources are to be reserved
 - rather: a mechanism for communicating needs
- determine routes packets will take
 - that's the job of routing protocols
 - signaling decoupled from routing
- interact with forwarding of packets
 - separation of control (signaling) and data (forwarding) planes

RSVP: overview of operation

- senders, receiver join a multicast group
 - done outside of RSVP
 - o senders need not join group
- sender-to-network signaling
 - o path message: make sender presence known to routers
 - opath teardown: delete sender's path state from routers
- receiver-to-network signaling
 - reservation message: reserve resources from sender(s) to receiver
 - reservation teardown: remove receiver reservations
- network-to-end-system signaling
 - o path error
 - reservation error

Path msgs: RSVP *sender-to-network* signaling

- path message contents:
 - o address: unicast destination, or multicast group
 - flowspec: bandwidth requirements spec.
 - filter flag: if yes, record identities of upstream senders (to allow packets filtering by source)
 - oprevious hop: upstream router/host ID
 - refresh time: time until this info times out
- path message: communicates sender info, and reversepath-to-sender routing info
 - later upstream forwarding of receiver reservations

Summary

- making the best of today's best effort service
- scheduling and policing mechanisms
- QoS architectures: Intserv, Diffserv
- □ signalling: RSVP

34