Национальный исследовательский университет «МЭИ» Институт радиотехники и электроники им. В.А. Котельникова Кафедра электроники и наноэлектроники

Лабораторная работа № 4 по дисциплине «приборы и техника свч»

ИССЛЕДОВАНИЕ ГЕНЕРАТОРА НА ЛАВИННО-ПРОЛЕТНОМ ДИОДЕ

Группа: Эр-05М-23

Студент: Чушников Е.О

Беговаткин А.А.

Скороход Ю.И.

Крылов Б.В.

Сведе-Щвец С.В.

Преподаватель: Бодров В.Н.

Москва

2023

Цель работы: изучение характеристик, параметров устройства маломощного генератора СВЧ колебаний, построенного на базе волноводного резонатора и, включённого в него лавинно-пролетного диода (ЛПД), а также знакомство с СВЧ элементами измерительного волноводного тракта и аппаратурой, необходимой для выполнения работы.

Краткое теоретическое введение

Лавинно-пролетный диод (ЛПД), полупроводниковый диод с отрицательным дифференциальным сопротивлением в СВЧ-диапазоне, работающий при обратном смещении р — n-перехода в режиме лавинного нарастания (умножения) носителей заряда и их пролёта через полупроводниковую структуру. Возникновение отрицательного сопротивления в ЛПД связано с инерционностью развития лавины и конечным временем пролёта носителей заряда в области перехода, что приводит к появлению сдвига фаз между током и напряжением на выводах прибора. Существенным для работы ЛПД является выполнение примерного равенства между периодом СВЧ-колебаний (Т) и характерным временем пролёта носителей заряда τ (Т \approx τ).

При подаче постоянного обратного напряжения, равного напряжению пробоя, в ЛПД в результате ударной ионизации атомов кристаллической решётки полупроводника электронами, ускоренными внешним электрическим полем, происходит образование пар подвижных носителей заряда (электронов и дырок) в узкой области пространственного заряда вблизи р – п-перехода (область умножения). При воздействии на ЛПД СВЧ-составляющей электрического поля поток носителей заряда, вытекающий из области умножения, модулируется по плотности. Плотность носителей заряда в сгустке нарастает при положительном знаке напряжённости СВЧ-поля и достигает максимума в момент времени 0,5Т, когда это поле равно нулю. Т. о., большая часть носителей, инжектированных из области умножения в пролётную область (область дрейфа), попадает в тормозящее СВЧ-поле. Дрейфуя в ускоряющем постоян-

ном электрическое поле и тормозящем СВЧ-поле, носители заряда осуществляют преобразование энергии постоянного поля в энергию СВЧ-колебаний.

Рисунок 1 — Структура ЛПД(а), распределение напряженности электрического поля в структуре(б), ВАХ ЛПД(в)

Схема установки

Рисунок 2 – Схема установки

Результаты измерений

Напряжение на диоде, В	Ток на диоде, А	Генерируемая мощность, Вт
38.5	0.0056	10-5
38	0.0046	5*10 ⁻⁶
37	0.0036	10-6
36	0.0027	0
34	0.0007	0

Рисунок 3 — Зависимость тока от напряжения (сплошная линия) и зависимость мощности от напряжения (пунктирная линия)

Вывод: в ходе проведения лабораторной работы были изучены схема и принцип работы СВЧ генератора на основе ЛПД. Были измерены ток диода и генерируемая мощность от напряжения. Их зависимость соответствует теории, а именно то, что с ростом напряжения растет ток и выделяемая мощность. При измерении зависимости частоты от напряжения выяснилось, что повышение напряжение не приводило к изменению частоты и ее значения осталось постоянным на отметке 9750 МГц, скорее всего это связано с неисправностью диода. Так же было выяснено что с помощью рассогласователя можно регулировать частоту.