(d) Let $E = L^1([0,1] \times [-1,1])$ and consider the semigroup $(T(t))_{t \ge 0}$ defined as follows:

(3.3)
$$(T(t)f)(x,v) := \begin{cases} f(x-vt,v) & \text{for } 0 \le x-vt \le 1 \\ 0 & \text{otherwise} \end{cases}$$

 $(T(t))_{t\geq 0}$ is a positive semigroup on E and

$$D_{O} := \{ f \in C^{1}([0,1] \times [-1,1]) : f(0,v) = f_{X}(0,v) = 0 \text{ if } v \ge 0 , \\ f(1,v) = f_{X}(1,v) = 0 \text{ if } v \le 0 \}$$

is a core for its generator A (cf. A-I, Cor.1.34). We have

(3.4) (Af)
$$(x,v) = -v \cdot \frac{\partial f}{\partial x}(x,v)$$
 ($f \in D_O$).

The Laplace transform of (T(t)) is the resolvent of A . An explicit calculation yields:

$$(3.5) \quad (R(\lambda,A)f)(x,v) = \int_0^1 r_{\lambda}(x,x',v)f(x',v) \, dx' \quad (\lambda > 0)$$
 where $r_{\lambda}: [0,1] \times [0,1] \times [-1,1] \rightarrow \mathbb{R}$ is given by
$$r_{\lambda}(x,x',v) = \left\{ \begin{array}{cc} |v|^{-1} \exp(-\lambda(x-x')v^{-1}) & \text{if either } v > 0 \text{ and } x' \le x \\ \\ 0 & \text{otherwise} \end{array} \right.$$

Let $\sigma: [0,1] \times [-1,1] \to \mathbb{R}_+$ and $\kappa: [0,1] \times [-1,1] \times [-1,1] \to \mathbb{R}_+$ be measurable functions and consider the operators M and K given by

(3.6) Mf :=
$$\sigma f$$
 , Kf := $\int_{-1}^{1} \kappa(.,.,v') f(.,v') dv'$.

Then B := A - M + K with domain D(B) := D(A) is the generator of a positive semigroup.

Using Prop.3.3 we can prove the following irreducibility criterion for the semigroup $(S(t))_{t\geq 0}$ generated by B:

(3.7) If κ is strictly positive then (S(t))_{t\geq0} is irreducible.

Actually, in view of Prop.3.3 we have to show that a closed ideal which is invariant under $R(\lambda,A)$ and K has to be $\{0\}$ or E. We recall that closed ideals of E are uniquely determined (up to

sets of measure zero) by measurable subsets Y of $[0,1]\times[-1,1]$; i.e., every closed ideal has the form

 $I_v = \{f \in E : f \text{ vanishes (a.e.) on } [0,1] \times [-1,1] \setminus Y \}$.

Since we assumed that κ is strictly positive, I_Y is K-invariant if and only if $Y=X\times[-1,1]$ for some measurable set $X\subset[0,1]$. If we assume that X has positive measure and define $\alpha:=\sup\left\{x\in[0,1]:\int_0^X 1_X(s)\ ds=0\right\}$ and $\beta:=\inf\{x\in[0,1]:\int_X^1 1_X(s)\ ds=0\}$ then we have $\alpha<\beta$ and the support of the function $h:=R(\lambda,A)1_Y$