COURSE	COURSE NAME	L-T-P-C	YEAR OF
CODE			INTRODUCTION
EC207	LOGIC CIRCUIT DESIGN	3-0-0-3	2016

Prerequisite:Nil

Course objectives:

- To work with a positional number systems and numeric representations
- To introduce basic postulates of Boolean algebra and show the correlation between Boolean expression
- To outline the formal procedures for the analysis and design of combinational circuits and sequential circuits
- To study the fundamentals of HDL
- To design and implement combinational circuits using basic programmable blocks
- To design and implement synchronous sequential circuits

Syllabus:

Positional Number Systems, Boolean algebra, Combinational Logic, HDL concepts, Digital ICs, Programmable Logic Devices, Sequential Logic, Sequential Circuits

Expected outcome:

The student should able to:

- 1. Compare various positional number systems and binary codes
- 2. Apply Boolean algebra in logic circuit design
- 3. Design combinational and sequential circuits
- 4. Design and implement digital systems using basic programmable blocks
- 5. Formulate various digital systems using HDL

Text Books:

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill, 2003
- 2. John F Wakerly, Digital Design Principles and Practices, Pearson Prentice Hall, 2007

References:

- 1.Ronald J Tocci, Digital Systems, Pearson Education, 11th edition,2010
- 2. Thomas L Floyd, Digital Fundamentals, Pearson Education, 8th edition
- 2009 3. Moris Mano, Digital Design, Prentice Hall of India, 3rd edition, 2002
- 4.John M Yarbrough, Digital Logic Applications and Design, Cenage learning, 2009
- 5. David Money Harris, Sarah L Harris, Digital Design and Computer Architecture, Morgan Kaufmann Elsevier, 2009

Course Plan			
Modul e	Course content (42 hrs)	Hours	Sem. Exam Marks
I	Number systems- decimal, binary, octal, hexa decimal, base conversion 1's and 2's complement, signed number representation Binary arithmetic, binary subtraction using 2's complement Binary codes (grey, BCD and Excess-3), Error detection and correcting codes: Parity(odd, even), Hamming code (7,4), Alphanumeric codes: ASCII	2 2 2	15
II	Logic expressions, Boolean laws, Duality, De Morgan's law, Logic functions and gates Canonical forms: SOP, POS, Realisation of logic expressions using K-	2	15

map (2,3,4 variables)			
Design of combinational c	Design of combinational circuits – adder, subtractor, 4 bit		
· · · · · · · · · · · · · · · · · · ·	ler, MUX, DEMUX, Decoder,BCD to 7		
	r, Priority encoder, Comparator (2/3 bits)		
FIRS	ST INTERNAL EXAM		
	ogic descriptions using HDL, basics of	2	0
modeling (only for assigni			
	racteristics: Logic levels, propagation delay,	1	15
fan in, fan out, noise imm	unity, power dissipation, TTL subfamilies		
	e, open collector and tri-state),	2	
	NOT in CMOS, Comparison of logic		
	S) in terms of fan-in, fan-out, supply voltage,		
	oltage and current levels, power dissipation		
and noise margin			
	ces - ROM, PLA, PAL, implementation of	2	
simple circuits using PLA			
	flip flop (SR, JK, T, D), master slave JK FF,	3	15
	on table and characteristic equations		
	ronous counter design, mod N counters,	5	
random sequence generate			
	ND INTERNAL EXAM		
	SO, PISO, PIPO, Shift registers with parallel	3	20
LOAD/SHIFT			
	ng Counter and Johnson Counter	2	
	state machine ,notations, state diagram, state	3	
	tation table, state equations	3	20
	ram – up down counter, sequence detector	_	20
	rcuit design - State equivalence	2	
State reduction – equivale	nce classes, implication chart	2	
FNI	O SEMESTER EXAM		

Assignments:

- 1. Simple combinational circuit design using MUX, DEMUX, PLA & PAL
- 2. HDL simulation of circuits like simple ALU, up-down counter, linear feedback shift register, sequence generator

Question Paper Pattern (End Sem Exam)

Maximum Marks: 100 Time: 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark pattern is according to the syllabus with maximum 50 % for theory, derivation, proof and 50% for logical/numerical problems.