Chapter 2 Boolean Algebra and Logic Gates

Definitions

Theorems

Functions

Canonical and Standard Forms

Operations

Gates

Integrated Circuits

Mathematical Systems

- Mathematical systems can be defined with:
 - A set of elements containing a set of objects with common properties.
 - A set of operators that can be performed on any subset of the elements.
 - A set of axioms or postulates forming a basis from which we can deduce rules, theorems and properties of the system.

Set Notations

The following notations are being used in this class:

- $x \in S$ indicates that x is an element of the set S.
- $y \notin S$ indicates that y is not an element of the set S.
- A = {1, 2, 3, 4} indicates that set A exists with a finite number of elements (1, 2, 3, 4).

Basic Postulates

- The basic postulates of a mathematical system are:
 - Closure. A set S is closed w.r.t a binary operator if this operation only produces results that are within the set of elements defined by the system.
 - Associative Law. A binary operator is said to be associative when:

$$(x * y) * z = x * (y * z)$$

Commutative Law. A binary operator is said to be commutative when:

$$x + y = y + x$$

- Identity Element. A set is said to have an identity element with respect to a binary operation if there exists an element, e, that is a member of the set with the property:
 - » e * x = x * e = x for every element of the set
 - · Additive identity is 0 and multiplicative identity is 1
- Note: * + and . are binary operators

Basic Postulates

- Inverse. For a set with an identity element with respect to a binary operation, the set is said to have an inverse if for every element of the set the following property holds:

$$x + y = e$$

- The additive inverse of element a is -a and it defines subtraction, since a + (-a) = 0. Multiplicative inverse of a is 1/a and defines division, since $a \cdot 1/a = 1$
- Distributive Law. * is said to be distributive over . when

$$x * (y \cdot z) = (x * y) \cdot (x * z)$$

 Note: * + and . are binary operators. Binary operator + defines addition and binary operator . defines multiplication

Two-Valued Boolean Algebra

- Two-value Boolean algebra is defined by the:
 - The set of two elements B={0, 1}
 - The operators of AND (·) and OR (+)
 - Huntington Postulates are satisfied

Huntington Postulates

- Boolean algebra has the following postulates:
 - 1. Closure.
 - a) with respect to the binary operation OR (+)
 - b) with respect to the binary operation AND (·)
 - 2. Identity.
 - a) with respect to OR (+) is 0:

$$x + 0 = 0 + x = x$$
, for $x = 1$ or $x = 0$

b) with respect to AND (\cdot) is 1:

$$x \cdot 1 = 1 \cdot x = x$$
, for $x = 1$ or $x = 0$

- 3. Commutative Law.
 - a) With respect to OR (+):

$$x + y = y + x$$

b) With respect to AND (·):

$$x \cdot y = y \cdot x$$

Huntington Postulates Continued...

- Boolean algebra has the following postulates:
 - 4. Distributive Law.
 - a) with respect to the binary operation OR (+):

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

+ is distributive over .

b) with respect to the binary operation AND (·):

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

. is distributive over +

5. Complement.

a)
$$x + x' = 1$$
, for $x = 1$ or $x = 0$

b)
$$x \cdot x' = 0$$
, for $x = 1$ or $x = 0$

- 6. Membership.
 - **❖** There exists at least two elements, x and y, of the set such that $x \neq y$.

Notes on Huntington Postulates

- The associative law is not listed but it can be derived from the existing postulates for both operations.
- The distributive law of + over . i.e.,

$$X+(y . z) = (X + y) . (X + z)$$

is valid for Boolean algebra but not for ordinary algebra.

- Boolean algebra doesn't have inverses (additive or multiplicative) therefore there are no operations related to subtraction or division.
- Boolean algebra deals with only two elements, 0 and 1

Operator Tables

 A two-valued Boolean algebra is defined on a set of two elements B={0,1}, with rules for the two binary operators + and . as shown in the following operator tables:

AND Operation

X	y	ху
0	0	0
0	1	0
1	0	0
1	1	1

OR Operation

x	y	x+y
0	0	0
0	1	1
1	0	1
1	1	1

NOT Operation

\mathbf{x}	x'		
0	1		
1	0		

Proving the Distributive Law

x	y	Z	y + z	$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z})$	$\mathbf{x} \cdot \mathbf{y}$	$\mathbf{x} \cdot \mathbf{z}$	$(\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z})$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1