Blatt 4

Hannah Rotgeri Lena Olbrich

25. Mai 2020

Aufgabe 1

- a) Wurde implementiert und erfolgreich getestet.
- c) Wurde implementiert, jedoch nicht erfolgreich getestet.
- d) Wurde implementiert, jedoch nicht erfolgreich getestet.

Abbildung 1: Ergebnis der Testdatei.

Aufgabe 6: Gleichverteilung

Zur Erzeugung der Zufallszahlen, die der entsprechenden Verteilung folgen, wird die Methode der Transformation der Gleichverteilung aus der Vorleusung verwendet. Dazu wird analog des Bespiels auf Folie 23 vorgegangen.

a) Exponential verteilung

Normieren: 1 =
$$N\cdot\int_0^\infty exp(-t/\tau)dt=[-N\tau exp(-t/\tau)]_0^\infty=N\tau\to N=1/\tau$$

Fläche bis Zufallsvariable:
$$A(t) = \int_0^t exp(-t/\tau)dt = -\tau \cdot exp(-t/\tau) + \tau$$

Normierte Fläche: $r(t) = A(t) \cdot N = 1 - exp(-t/\tau)$

Invertierung: $t(r) = -\tau \cdot ln(1-r)$ \to Formel zu Erzeugung der gesuchten Zufallszahlen \to im Code implementiert

b) Potenzverteilung mit negativem Index

Normieren:
$$1 = N \cdot \int_{x_{min}}^{x_{max}} x^{-n} dx = [N \cdot \frac{x^{1-n}}{1-n}]_{x_{min}}^{x_{max}} = \frac{N}{1-n} (x_{max}^{1-n} - x_{min}^{1-n}) \rightarrow N = \frac{1-n}{x_{max}^{1-n} - x_{min}^{1-n}}$$

Fläche bis Zufallsvariable:
$$A(x) = \int_{x_{min}}^{x} x^{-n} dx = \frac{x^{1-n} - x_{min}^{1-n}}{1-n}$$

Normierte Fläche:
$$r(x) = A(x) \cdot N = \frac{x^{1-n} - x_{min}^{1-n}}{x_{max}^{1-n} - x_{min}^{1-n}}$$

Invertierung: $x(r)=(r\cdot(x_{max}^{1-n}-x_{min}^{1-n})+x_{min}^{1-n})^{1/(1-n)}\to$ Formel zu Erzeugung der gesuchten Zufallszahlen \to im Code implementiert (Da $n\geq 2$ kann es zu keinen Problemen beim "äußeren Exponenten"kommen.)

c) Cauchy-Verteilung

Normieren:
$$1 = \int_{-\infty}^{\infty} \frac{1}{\pi \cdot (1+x)} dx = \left[\frac{arctan(x)}{\pi}\right]_{-\infty}^{\infty} = 1 \rightarrow \text{Normiert}$$

Fläche bis Zufallsvariable:
$$r(x)=\int_{-\infty}^x \frac{1}{\pi\cdot(1+x)}dx=[\frac{\arctan(x)}{\pi}]_{-\infty}^x=\frac{\arctan(x)}{\pi}+\frac{1}{2}$$

Invertierung: $x(r) = tan(\pi \cdot (r-0.5)) \rightarrow$ Formel zu Erzeugung der gesuchten Zufallszahlen \rightarrow im Code implementiert

Führt man die auf dem Blatt angegebene Testdatei aus, gibt es keine Fehlermeldung und die in Abbildung 1 dargestellten Plots werden erstellt. Es zeigt sich, dass die Zufallszahlen den vorgegebenen Verteilungen entsprechen und dass die Laufzeiten in der Größenordung der Referenzzeiten liegen.

Abbildung 2: Ergebnis der Testdatei.