

Heart Disease Classification Using Neural Networks (AI) With Python and PyTorch

By: Khuram Chaudhary

Project Objective

- Develop a classification model which reads a dataset and predicts whether a patient presents heart disease or not.
- Split the dataset in order to assess the models performance.
- Explore, preprocess, and clean data to understand its features and prepare it for training and testing.
- •Utilize different architectures to optimize model performance on PyTorch to build a classification model.
- •Test and evaluate the models to report performance metrics (including Accuracy, Precision, Recall, AUC, and F1 Score).

Data Exploration

- Identified relevant characteristics and researched correlations to heart disease.
- Split data and analyzed target attribute statistics.
- Skewness of -0.1798 indicates a slight left skew, while kurtosis of -1.98 suggests a flatter distribution with thinner tails compared to normal.
- Correlation matrix suggests negative relationship between slope and oldpeak.

Data Preprocessing and Cleaning

- Searched for outliers within attributes relevant to heart health:
 - trestbps, chol, thalach, and oldpeak.
- Flagged outliers using the calculated thresholds: values below (Q1 1.5 * IQR) or above (Q3 + 1.5 * IQR).
- Filtered for and capped outliers to prevent unduly skew from our models.
- Applied one-hot encoding to categorical attributes (sex, cp, fbs, restecg, exang, slope, ca, thal) to maintain model integrity, as they are numerical but unordered.
- Used Min-Max scaling to normalize 'age' and 'ca' to preserve their original ranges.
- Used Z-score normalization for 'trestbps', 'chol', 'thalach', and 'oldpeak' to ensure consistency.
- Conducted feature selection by analyzing correlation between the features in our training data and the target variable.

Architecture of Neural Network

•Over 20 unique models were built, tested, and evaluated to ensure the highest performance metrics were achieved.

Original Approach (8 models):

Attribute	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
# of Hidden Layers	1	1	1	1	3	3	3	3
# of Layers	5	5	10	10	5	5	10	10
Activation Function	ReLu	Sigmoid	ReLu	Sigmoid	ReLu	Sigmoid	ReLu	Sigmoid
Epochs	100	100	500	500	100	100	500	500

- nn.Linear
- Learning Rate = 0.1
- Loss function = BCEWithLogitsLoss
- Optimizer = SGD

Architecture of Neural Network

Revised Simplistic Approach (multiple models):

- Base model:
 - nn.Linear
 - Learning Rate = 0.01
 - Loss function = BCEWithLogitsLoss
 - Optimizer = Adam
 - No activation function originally used

Tested Following Hyperparameters on Model:

- 0-5000 Epochs
- 1-5 Layers
- 6-101 neurons
- 6 different activation functions (ReLU, Tanh, LeakyReLU, ELU, Mixed, and Sigmoid) tested

Evaluation and Parameter sensitivity analysis

- •Despite trying a variety of hyperparameters, the values implemented between models were too similar to one another and with the Original Model approach, it had very low metrics (55% or less accuracy) and it did not perform as well as anticipated.
- The new simplistic approach used a wider variety of hyperparameters and was able to perform dramatically better than the original models.
 - •This new model performed about 150% better than the original approach.

Evaluation and Parameter sensitivity analysis

AccuracyPrecision

- AUC

Takeaways

- Our final result that the neural network achieved was positive and served and shows that the model is more linearly separable than expected.
- This is a good final model because it has high performance metrics and every hyperparameter that was implemented is there for a specific purpose.
- The model can be improved with more data to better train it and prevent any unintentional overfitting.
 - With a greater volume and variety of data, there is more information to gain from the model and more test cases that it can cover

Conclusion and Future Work

- Used Neural Networks and Deep Learning to build various models.
- Tested each model and identified optimal performance metrics:
 - The model with the highest performance metrics was the HeartDiseaseModel (Slide 8).
- Tested the models with a variety of different hyperparameters and activation functions like 'ReLU', 'Tanh', 'LeakyReLU', 'ELU', and 'Sigmoid':
 - With no activation function, the model acted like a linear regression model, which helped to capture the linear relationship between the inputs and target variable.
- In conclusion, this project was an excellent representation of the amount of testing and training required for creating an effective neural network.
 - This allowed for a wide variety of model architectures to be explored and increased the likelihood of the "best" model being selected to undergo the final implementation.

Thank You!