Intro to Robotics

Lecture 5

Denavit-Hartenberg Convention

- Joint counts up from 1 at the base; axis counts up from 0
- Joint i connects link i 1 to link i
- Align the Z_i with joint i+1
- Base coordinate system: Z_0 axis align with joint 1, origin is at the base
- Origin of the coordinate system i:
 - intersection of the Z_i & Z_{i-1} or
 - the intersection of common normal between the Z_i & Z_{i-1} axes and the Z_i axis
- X_i axis:
 - $X_i = \pm (Z_{i-1} \times Z_i) / \|Z_{i-1} \times Z_i\|$ pointing from Z_{i-1} to Z_i , or
 - along the common normal between the Z_{i-1} & Z_i axes when they are parallel
- Y_i axis: $Y_i = +(Z_i \times X_i)/\|Z_i \times X_i\|$

Link and Joint Parameters

- Joint angle θ_i : the angle from X_{i-1} to X_i about the Z_{i-1}
- Joint distance d_i : the distance from X_{i-1} to X_i , as measured along Z_{i-1} . It could be negative
- Link length a_i : the distance from Z_{i-1} to Z_i , along X_i . It is always positive
- Link twist angle α_i : the angle from Z_{i-1} to Z_i about the X_i axis

The spherical wrist

* variable

3-link cylindrical manipulator

3

 d_{i}

 d_1

 d_2^*

 d_3^*

 θ_i

 θ_1^*

0

Link	a_i	α_i	d_i	θ_i
4	0	-90	0	$ heta_4^*$
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

Cylindrical robot with spherical wrist

* variable spherical wrist