UNIVERSIDADE DE COIMBRA

LEI – Redes de Comunicação

Projeto

Introdução

Este projeto foi desenvolvido no âmbito da cadeira de Redes de Comunicação e tem como objetivo promover a aquisição de conceitos de um largo espectro de conhecimento nas áreas das comunicações. Com este projeto pretende-se desenvolver uma aplicação que permita realizar comunicações utilizando TCP e UDP entre vários clientes e um servidor.

Opções tomadas na construção da solução

Foi decidido fazer as verificações da *CLI* no lado do cliente, uma vez que no enunciado do projeto não era indicado o modo de implementação da mesma. Após o utilizador fazer a autenticação, ao escolher o modo de comunicação fica bloqueado ao mesmo até fechar a aplicação. Na comunicação p2p, devido a não termos um método de armazenamento de portas pré-definido, foi criado um array de sockets, no qual guardamos o último porto associado ao IP do cliente. Foi implementada também memória partilhada no cliente, para fazer a comunicação entre o processo de envio e receção, uma vez que ao receber as informações (IP e porto) necessárias para a comunicação p2p, estas vão ser armazenadas num processo, mas são utilizadas no outro. As portas utilizadas para a ligação de clientes e admins são, respetivamente, 80 e 160.

Modo de funcionamento

Servidor

O servidor permite realizar conexões de depois tipos, TCP E UDP. Os parâmetros de entrada do servidor são, respetivamente, porto UDP, porto TCP e o nome do ficheiro de registos. Dado que é necessário que estas ligações estejam a ocorrer ao mesmo, foi necessário criar um processo para cada uma delas, através de um *fork()*. Após a abertura dos dois portos, é necessário verificar a existência do ficheiro de registos.

Ao receber uma ligação no porto TCP, o servidor cria um processo separado para o admin, de modo a permitir mais do que uma ligação ao mesmo tempo. O admin pode então enviar os comandos LIST, ADD, DEL e QUIT.

Já no lado do UDP, o servidor está pronto a receber mensagens que estão devidamente identificadas através de um prefixo, o qual distingue mensagens de login, cliente-servidor, obtenção de detalhes para p2p e endereços Multicast. Como estamos a trabalhar com UDP, não é possível garantir a entrega das mensagens aos clientes.

• Cliente

Ao iniciar o programa, o utilizador tem que fornecer dois argumentos: o IP que permite a ligação ao servidor, e o porto ao qual se quer conectar. Caso a ligação seja por UDP, é necessário autenticar-se. Em seguida é-lhe apresentado o menu de escolha de modo de ligação e as devidas permissões. Já se a ligação for por TCP, não é necessária a autenticação nem é apresentado nenhum menu, pois como é um admin, já sabe os comandos aos quais tem acesso.

Configurações dos Endereços IP

Tabela com todos os IPs das interfaces de cada router:

Routers

Interface	Endereço IPv4	Máscara	
Interface e0/0 do router R1	193.136.212.130	255.255.255.248 (29)	
Interface f1/0 do router R1	193.136.212.137	255.255.255.248 (29)	
Interface e0/0 do router R2	193.136.212.131	255.255.255.248 (29)	
Interface f1/0 do router R2	193.136.212.193	255.255.255.192 (26)	
Interface e0/0 do router R3	193.136.212.129	255.255.255.248 (29)	
Interface f1/0 do router R3	10.90.0.1	255.255.255.0 (24)	

Tabela com o IP do server:

Server		
	Endereco IPv4	
Endereco da Rede (CIDR)	10.90.0.0	
Mascara de Rede	255.255.255.0 (24)	
Endereco do <i>default gateway</i>	10.90.0.1	
Endereco IP	10.90.0.2	

Tabela com todos os IPs dos PCs:

PC1		PC3		
	Endereco IPv4		Endereco IPv4	
Endereco da Rede (CIDR)	193.136.212.136	Endereco da Rede (CIDR)	193.136.212.192	
Mascara de Rede	255.255.255.248 (29)	Mascara de Rede	255.255.255.192 (26)	
Endereco do <i>default gateway</i>	193.136.212.137	Endereco do <i>default gateway</i>	193.136.212.193	
Endereco IP	193.136.212.138	Endereco IP	193.136.212.194	
PC2		PC4		
	Endereco IPv4		Endereco IPv4	
Endereco da Rede (CIDR)	193.136.212.136	Endereco da Rede (CIDR)	193.136.212.192	
Mascara de Rede	255.255.255.248 (29)	Mascara de Rede	255.255.255.192 (26)	
Endereco do <i>default gateway</i>	193.136.212.137	Endereco do default gateway	193.136.212.193	
Endereco IP	193.136.212.139	Endereco IP	193.136.212.195	

Testes Efetuados

Para testar a ligação entre redes, fizemos alguns pings entre PCs e entre PCs e Servidor.

Utilizando o comando netcat, testamos o funcionamento da ligação entre PCs e o servidor, utilizando SNAT e DNAT.

Corremos o código disponibilizado em vários PCs de redes diferentes e no Servidor, em simultâneo, e, na troca de mensagens, não detetamos a ocorrência de problemas.