Fourier Analysis

Delivered By

Md. Nuruzzaman

Assistant Professor Department of Mathematics Mawlana Bhashani Science and Technology Santosh, Tangail-1902

Mobile: 01740066434

Email: mnmath24@gmail.com

Outlines

- ☐ Fourier series
 - Periodic function
 - Piecewise continuous function
 - Fourier series
 - Half range Fourier series
 - Application of Fourier series to solve Boundary Value problems
- ☐ Fourier Integral and Fourier Transformation
 - Fourier Transformation and inverse Fourier Transformation
 - Application of Fourier Transform

Reference books

PERIODIC FUNCTIONS

A function f(x) is said to have a period P or to be periodic with period P if for all x, f(x+P)=f(x), where P is a positive constant. The least value of P>0 is called the least period or simply the period of f(x).

Example 1.

The function $\sin x$ has periods 2π , 4π , 6π , ..., since $\sin (x + 2\pi)$, $\sin (x + 4\pi)$, $\sin (x + 6\pi)$, ... all equal $\sin x$. However, 2π is the least period or the period of $\sin x$.

Example 2.

The period of $\sin nx$ or $\cos nx$, where n is a positive integer, is $2\pi/n$.

Example 3.

The period of $\tan x$ is π .

Example 4.

A constant has any positive number as a period.

Other examples of periodic functions are shown in the graphs of Fig. 2-1.

Fig. 2-1

Examples

Graph each of the following functions.

(a)
$$f(x) = \begin{cases} 3 & 0 < x < 5 \\ -3 & -5 < x < 0 \end{cases}$$
 Period = 10

Fig. 2-3

Since the period is 10, that portion of the graph in -5 < x < 5 (indicated heavy in Fig. 2-3 above) is extended periodically outside this range (indicated dashed). Note that f(x) is not defined at x = 0, 5, -5, 10, -10, 15, -15, etc. These values are the discontinuities of f(x).

$$(b) \quad f(x) = \begin{cases} \sin x & 0 \leq x \leq \pi \\ 0 & \pi < x < 2\pi \end{cases} \quad \text{Period} = 2\pi$$

Fig. 2-4

Refer to Fig. 2-4 above. Note that f(x) is defined for all x and is continuous everywhere.

(c)
$$f(x) = \begin{cases} 0 & 0 \le x < 2 \\ 1 & 2 \le x < 4 \end{cases}$$
 Period = 6 $0 = 4 \le x < 6$

Refer to Fig. 2-5 above. Note that f(x) is defined for all x and is discontinuous at $x = \pm 2, \pm 4, \pm 8, \pm 10, \pm 14, \ldots$

Fourier Series

DEFINITION OF FOURIER SERIES

Let f(x) be defined in the interval (-L, L) and determined outside of this interval by f(x+2L) = f(x), i.e. assume that f(x) has the period 2L. The Fourier series or Fourier expansion corresponding to f(x) is defined to be

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n \pi x}{L} + b_n \sin \frac{n \pi x}{L} \right) \tag{1}$$

where the Fourier coefficients an and bn are

$$\begin{cases} a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx \\ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx \end{cases}$$
 $n = 0, 1, 2, ...$ (2)

DIRICHLET CONDITIONS

Theorem 2-1: Suppose that

- (i) f(x) is defined and single-valued except possibly at a finite number of points in (-L, L)
- (ii) f(x) is periodic with period 2L
- (iii) f(x) and f'(x) are piecewise continuous in (-L, L)

Then the series (1) with coefficients (2) or (3) converges to

- (a) f(x) if x is a point of continuity
- (b) $\frac{f(x+0)+f(x-0)}{2}$ if x is a point of discontinuity

For a proof see Problems 2.18-2.23.

According to this result we can write

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) \tag{4}$$

at any point of continuity x. However, if x is a point of discontinuity, then the left side is replaced by $\frac{1}{2}[f(x+0)+f(x-0)]$, so that the series converges to the mean value of f(x+0) and f(x-0).

PIECEWISE CONTINUOUS FUNCTIONS

A function f(x) is said to be *piecewise continuous* in an interval if (i) the interval can be divided into a finite number of subintervals in each of which f(x) is continuous and (ii) the limits of f(x) as x approaches the endpoints of each subinterval are finite. Another way of stating this is to say that a piecewise continuous function is one that has at most a finite number of finite discontinuities. An example of a piecewise continuous function is shown in Fig. 2-2. The functions of Fig. 2-1(a) and (c) are piecewise continuous. The function of Fig. 2-1(b) is continuous.

Fig. 2-2

The limit of f(x) from the right or the right-hand limit of f(x) is often denoted by $\lim_{\epsilon \to 0} f(x+\epsilon) = f(x+0)$, where $\epsilon > 0$. Similarly, the limit of f(x) from the left or the left-hand limit of f(x) is denoted by $\lim_{\epsilon \to 0} f(x-\epsilon) = f(x-0)$, where $\epsilon > 0$. The values f(x+0) and f(x-0) at the point x in Fig. 2-2 are as indicated. The fact that $\epsilon \to 0$ and $\epsilon > 0$ is sometimes indicated briefly by $\epsilon \to 0+$. Thus, for example, $\lim_{\epsilon \to 0+} f(x+\epsilon) = f(x+0)$, $\lim_{\epsilon \to 0+} f(x-\epsilon) = f(x-0)$.

2.2. Prove
$$\int_{-L}^{L} \sin \frac{k\pi x}{L} dx = \int_{-L}^{L} \cos \frac{k\pi x}{L} dx = 0$$
 if $k = 1, 2, 3, ...$

2.3. Prove (a)
$$\int_{-L}^{L} \cos \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx = \int_{-L}^{L} \sin \frac{m\pi x}{L} \sin \frac{n\pi x}{L} dx = \begin{cases} 0 & m \neq n \\ L & m = n \end{cases}$$
(b)
$$\int_{-L}^{L} \sin \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx = 0$$

where m and n can assume any of the values $1, 2, 3, \ldots$

See page 26(spiegel)

2.4. If the series
$$A + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n \pi x}{L} + b_n \sin \frac{n \pi x}{L} \right)$$
 converges uniformly to $f(x)$ in $(-L, L)$, show that for $n = 1, 2, 3, \ldots$,

(a)
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
, (b) $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$, (c) $A = \frac{a_0}{2}$.

(a) Multiplying
$$f(x) = A + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$
 (1)

by $\cos \frac{m\pi x}{L}$ and integrating from -L to L, using Problem 2.3, we have

$$\int_{-L}^{L} f(x) \cos \frac{m\pi x}{L} dx = A \int_{-L}^{L} \cos \frac{m\pi x}{L} dx + \sum_{n=1}^{\infty} \left\{ a_n \int_{-L}^{L} \cos \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx + b_n \int_{-L}^{L} \cos \frac{m\pi x}{L} \sin \frac{n\pi x}{L} dx \right\} = a_m L \quad \text{if} \quad m \neq 0$$
(2)

Thus $a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} dx$ if m = 1, 2, 3, ...

(b) Multiplying (1) by $\sin \frac{m\pi x}{L}$ and integrating from -L to L, using Problem 2.3, we have

$$\int_{-L}^{L} f(x) \sin \frac{m\pi x}{L} dx = A \int_{-L}^{L} \sin \frac{m\pi x}{L} dx$$

$$+ \sum_{n=1}^{\infty} \left\{ a_n \int_{-L}^{L} \sin \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx + b_n \int_{-L}^{L} \sin \frac{m\pi x}{L} \sin \frac{n\pi x}{L} dx \right\}$$

$$= b_m L$$

Thus $b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} dx$ if m = 1, 2, 3, ...

(c) Integration of (1) from -L to L, using Problem 2.2, gives

$$\int_{-L}^{L} f(x) dx = 2AL \quad \text{or} \quad A = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

Putting m=0 in the result of part (a), we find $a_0=\frac{1}{L}\int_{-L}^L f(x)\,dx$ and so $A=\frac{a_0}{2}$.

2.5. (a) Find the Fourier coefficients corresponding to the function

$$f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}$$
 Period = 10

- (b) Write the corresponding Fourier series.
- (c) How should f(x) be defined at x = -5, x = 0 and x = 5 in order that the Fourier series will converge to f(x) for $-5 \le x \le 5$?

The graph of f(x) is shown in Fig. 2-6 below.

Fig. 2-6

(a) Period = 2L = 10 and L = 5. Choose the interval c to c + 2L as -5 to 5, so that c = -5. Then

$$a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{5} \int_{-5}^5 f(x) \cos \frac{n\pi x}{5} dx$$

$$= \frac{1}{5} \left\{ \int_{-5}^0 (0) \cos \frac{n\pi x}{5} dx + \int_0^5 (3) \cos \frac{n\pi x}{5} dx \right\} = \frac{3}{5} \int_0^5 \cos \frac{n\pi x}{5} dx$$

$$= \frac{3}{5} \left(\frac{5}{n\pi} \sin \frac{n\pi x}{5} \right) \Big|_0^5 = 0 \quad \text{if } n \neq 0$$

If
$$n=0$$
, $a_n=a_0=\frac{3}{5}\int_0^5\cos\frac{0\pi x}{5}\,dx=\frac{3}{5}\int_0^5\,dx=3$.

$$b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx = \frac{1}{5} \int_{-5}^5 f(x) \sin \frac{n\pi x}{5} dx$$

$$= \frac{1}{5} \left\{ \int_{-5}^0 (0) \sin \frac{n\pi x}{5} dx + \int_0^5 (3) \sin \frac{n\pi x}{5} dx \right\} = \frac{3}{5} \int_0^5 \sin \frac{n\pi x}{5} dx$$

$$= \frac{3}{5} \left(-\frac{5}{n\pi} \cos \frac{n\pi x}{5} \right) \Big|_0^5 = \frac{3(1 - \cos n\pi)}{n\pi}$$

(b) The corresponding Fourier series is

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) = \frac{3}{2} + \sum_{n=1}^{\infty} \frac{3(1 - \cos n\pi)}{n\pi} \sin \frac{n\pi x}{5}$$

$$= \frac{3}{2} + \frac{6}{\pi} \left(\sin \frac{\pi x}{5} + \frac{1}{3} \sin \frac{3\pi x}{5} + \frac{1}{5} \sin \frac{5\pi x}{5} + \cdots \right)$$

(c) Since f(x) satisfies the Dirichlet conditions, we can say that the series converges to f(x) at all points of continuity and to $\frac{f(x+0)+f(x-0)}{2}$ at points of discontinuity. At x=-5, 0 and 5, which are points of discontinuity, the series converges to (3+0)/2=3/2, as seen from the graph. The series will converge to f(x) for $-5 \le x \le 5$ if we redefine f(x) as follows:

$$f(x) = \begin{cases} 3/2 & x = -5 \\ 0 & -5 < x < 0 \\ 3/2 & x = 0 \\ 3 & 0 < x < 5 \\ 3/2 & x = 5 \end{cases}$$
 Period = 10

2.6. Expand $f(x) = x^2$, $0 < x < 2\pi$, in a Fourier series if the period is 2π . The graph of f(x) with period 2π is shown in Fig. 2-7.

Period =
$$2L = 2\pi$$
 and $L = \pi$. Choosing $c = 0$, we have

$$a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \cos nx \, dx$$

$$= \frac{1}{\pi} \left\{ (x^2) \left(\frac{\sin nx}{n} \right) - (2x) \left(\frac{-\cos nx}{n^2} \right) + 2 \left(\frac{-\sin nx}{n^3} \right) \right\} \Big|_0^{2\pi} = \frac{4}{n^2}, \quad n \neq 0$$

If
$$n=0$$
, $a_0=rac{1}{\pi}\int_0^{2\pi}\!\! x^2\,dx =rac{8\pi^2}{3}$.

$$b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \sin nx \, dx$$

$$= \frac{1}{\pi} \left\{ (x^2) \left(-\frac{\cos nx}{n} \right) - (2x) \left(-\frac{\sin nx}{n^2} \right) + (2) \left(\frac{\cos nx}{n^3} \right) \right\} \Big|_0^{2\pi} = \frac{-4\pi}{n}$$

Then
$$f(x) = x^2 = \frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \left(\frac{4}{n^2} \cos nx - \frac{4\pi}{n} \sin nx \right)$$
 for $0 < x < 2\pi$.

Example 1. Find the Fourier series representing

$$f(x) = x, \quad 0 < x < 2 \pi$$

and sketch its graph from $x = -4\pi$ to $x = 4\pi$.

▼

Example 2. Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expression of f(x).

Deduce that
$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$

(U.P. II Semester, Summer 2003)

Example 3. Find the Fourier series of the function

$$f(x) = \begin{cases} -1 & for & -\pi < x < -\frac{\pi}{2} \\ 0 & for & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ +1 & for & \frac{\pi}{2} < x < \pi. \end{cases}$$

Page 852, HK.DAS

2.34. Graph each of the following functions and find its corresponding Fourier series, using properties of even and odd functions wherever applicable.

(a)
$$f(x) = \begin{cases} 8 & 0 < x < 2 \\ -8 & 2 < x < 4 \end{cases}$$
 Period 4 (b) $f(x) = \begin{cases} -x & -4 \le x \le 0 \\ x & 0 \le x \le 4 \end{cases}$

(b)
$$f(x) = \begin{cases} -x & -4 \le x \le 0 \\ x & 0 \le x \le 4 \end{cases}$$
 Period 8

(c)
$$f(x) = 4x$$
, $0 < x < 10$, Period 10

(c)
$$f(x) = 4x$$
, $0 < x < 10$, Period 10 (d) $f(x) = \begin{cases} 2x & 0 \le x \le 3 \\ 0 & -3 < x < 0 \end{cases}$ Period 6

- 2.35. In each part of Problem 2.34, tell where the discontinuities of f(x) are located and to what value the series converges at these discontinuities.
- Expand $f(x) = \begin{cases} 2-x & 0 < x < 4 \\ x-6 & 4 < x < 8 \end{cases}$ in a Fourier series of period 8.

12.8 (a) EVEN FUNCTION

A function f(x) is said to be even (or symmetric) function if, f(-x) = f(x)

The graph of such a function is symmetrical with respect to y-axis [f(x)] axis. Here y-axis is a mirror for the reflection of the curve.

The area under such a curve from $-\pi$ to π is double the area from 0 to π .

$$\therefore \qquad \int_{-\pi}^{\pi} f(x) \, dx = 2 \int_{0}^{\pi} f(x) \, dx$$

(b) Odd Function

A function f(x) is called odd (or skew symmetric) function if

$$f(-x) = -f(x)$$

Here the area under the curve from $-\pi$ to π is zero.

$$\int_{-\pi}^{\pi} f(x) \, dx = 0$$

Expansion of an even function:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \, dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx$$

As f(x) and cos nx are both even functions.

 \therefore The product of f(x). $\cos nx$ is also an even function.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0$$

As $\sin nx$ is an odd function so f(x). $\sin nx$ is also an odd function. We need not to calculate b_n . It saves our labour a lot.

The series of the even function will contain only cosine terms.

Expansion of an odd function:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0 \quad [f(x), \cos nx] \sin nx dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

[f(x)]. sin nx is even function.]

The series of the odd function will contain only sine terms.

The function shown below is neither odd nor even so it contains both sine and cosine terms

2.10. If f(x) is even, show that (a) $a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n \pi x}{L} dx$, (b) $b_n = 0$.

(a)
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{L} \int_{-L}^{0} f(x) \cos \frac{n\pi x}{L} dx + \frac{1}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

Letting x = -u,

$$\frac{1}{L}\int_{-L}^{0} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{L}\int_{0}^{L} f(-u) \cos \left(\frac{-n\pi u}{L}\right) du = \frac{1}{L}\int_{0}^{L} f(u) \cos \frac{n\pi u}{L} du$$

since by definition of an even function f(-u) = f(u). Then

$$a_n = \frac{1}{L} \int_0^L f(u) \cos \frac{n\pi u}{L} du + \frac{1}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$

2.12. Expand f(x) = x, 0 < x < 2, in a half-range (a) sine series, (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in Fig. 2-12 below. This is sometimes called the odd extension of f(x). Then 2L = 4, L = 2.

Fig. 2-12

Thus
$$a_n = 0$$
 and

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx = \frac{2}{2} \int_0^2 x \sin \frac{n\pi x}{2} dx$$

$$= \left\{ (x) \left(\frac{-2}{n\pi} \cos \frac{n\pi x}{2} \right) - (1) \left(\frac{-4}{n^2 \pi^2} \sin \frac{n\pi x}{2} \right) \right\} \Big|_0^2 = \frac{-4}{n\pi} \cos n\pi$$

Then

$$f(x) = \sum_{n=1}^{\infty} \frac{-4}{n\pi} \cos n\pi \sin \frac{n\pi x}{2}$$

$$= \frac{4}{\pi} \left(\sin \frac{\pi x}{2} - \frac{1}{2} \sin \frac{2\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{2} - \cdots \right)$$

(b) Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 2-13 below. This is the even extension of f(x). Then 2L = 4, L = 2.

Fig. 2-13

Thus
$$b_n = 0$$
,
$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{2} \int_0^2 x \cos \frac{n\pi x}{2} dx$$
$$= \left\{ (x) \left(\frac{2}{n\pi} \sin \frac{n\pi x}{2} \right) - (1) \left(\frac{-4}{n^2 \pi^2} \cos \frac{n\pi x}{2} \right) \right\} \Big|_0^2$$
$$= \frac{-4}{n^2 \pi^2} (\cos n\pi - 1) \quad \text{if } n \neq 0$$

If
$$n = 0$$
, $a_0 = \int_0^2 x \, dx = 2$.

Then
$$f(x) = 1 + \sum_{n=1}^{\infty} \frac{4}{n^2 \pi^2} (\cos n\pi - 1) \cos \frac{n\pi x}{2}$$
$$= 1 - \frac{8}{\pi^2} \left(\cos \frac{\pi x}{2} + \frac{1}{3^2} \cos \frac{3\pi x}{2} + \frac{1}{5^2} \cos \frac{5\pi x}{2} + \cdots \right)$$

It should be noted that although both series of (a) and (b) represent f(x) in the interval 0 < x < 2, the second series converges more rapidly.

2.11. Expand $f(x) = \sin x$, $0 < x < \pi$, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence we extend the definition of f(x) so that it becomes even (dashed part of Fig. 2-11). With this extension, f(x) is defined in an interval of length 2π . Taking the period as 2π , we have $2L = 2\pi$, so that $L = \pi$.

Fig. 2-11

By Problem 2.10, $b_n = 0$ and

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{\pi} \int_0^{\pi} \sin x \cos nx dx$$

$$= \frac{1}{\pi} \int_0^{\pi} \left\{ \sin (x + nx) + \sin (x - nx) \right\} dx = \frac{1}{\pi} \left\{ -\frac{\cos (n+1)x}{n+1} + \frac{\cos (n-1)x}{n-1} \right\} \Big|_0^{\pi}$$

$$= \frac{1}{\pi} \left\{ \frac{1 - \cos (n+1)\pi}{n+1} + \frac{\cos (n-1)\pi - 1}{n-1} \right\} = \frac{1}{\pi} \left\{ -\frac{1 + \cos n\pi}{n+1} - \frac{1 + \cos n\pi}{n-1} \right\}$$

$$= \frac{-2(1 + \cos n\pi)}{\pi (n^2 - 1)} \quad \text{if } n \neq 1$$

For
$$n = 1$$
, $a_1 = \frac{2}{\pi} \int_0^{\pi} \sin x \cos x \, dx = \frac{2}{\pi} \frac{\sin^2 x}{2} \Big|_0^{\pi} = 0$.

Then
$$f(x) = \frac{2}{\pi} - \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{(1 + \cos n\pi)}{n^2 - 1} \cos nx$$
$$= \frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos 2x}{2^2 - 1} + \frac{\cos 4x}{4^2 - 1} + \frac{\cos 6x}{6^2 - 1} + \cdots \right)$$

Example 8. Find the Fourier series expansion of the periodic function of period 2π

$$f(x) = x^2, -\pi \le x \le \pi$$

Hence, find the sum of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$

Page 862, HK.DAS

Example 9. Obtain a Fourier expression for

$$f(x) = x^3 \quad for \quad -\pi < x < \pi.$$

Page 863, HK.DAS

2.12. Expand f(x) = x, 0 < x < 2, in a half-range (a) sine series, (b) cosine series.

Page 32, Spiegel

v v

Example 10. Represent the following function by a Fourier sine series:

$$f(t) = \begin{cases} t, & 0 < t \le \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2} < t \le \pi \end{cases}$$

Page 864, HK.DAS

2.37. (a) Expand $f(x) = \cos x$, $0 < x < \pi$, in a Fourier sine series.

(b) How should f(x) be defined at x = 0 and $x = \pi$ so that the series will converge to f(x) for $0 \le x \le \pi$?

2.38. (a) Expand in a Fourier series $f(x) = \cos x$, $0 < x < \pi$, if the period is π ; and (b) compare with the result of Problem 2.37, explaining the similarities and differences if any.

2.39. Expand $f(x) = \begin{cases} x & 0 < x < 4 \\ 8 - x & 4 < x < 8 \end{cases}$ in a series of (a) sines, (b) cosines.

2.40. Prove that for $0 \le x \le \pi$,

(a)
$$x(\pi-x) = \frac{\pi^2}{6} - \left(\frac{\cos 2x}{1^2} + \frac{\cos 4x}{2^2} + \frac{\cos 6x}{3^2} + \cdots\right)$$

(b) $x(\pi-x) = \frac{8}{\pi} \left(\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \cdots \right)$

Obtain a Fourier series to represent the function

$$f(x) = |x| \quad \text{for} -\pi < x < \pi$$

and hence deduce
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Ans.
$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$$

Example 12. A periodic function of period 4 is defined as

$$f(x) = |x|, -2 < x < 2.$$

Find its Fourier series expansion.

PARSEVAL'S IDENTITY

2.13. Assuming that the Fourier series corresponding to f(x) converges uniformly to f(x) in (-L, L), prove Parseval's identity

$$\frac{1}{L}\int_{-L}^{L} \{f(x)\}^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

where the integral is assumed to exist.

If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$, then multiplying by f(x) and integrating term by term from -L to L (which is justified since the series is uniformly convergent), we obtain

$$\int_{-L}^{L} \{f(x)\}^{2} dx = \frac{a_{0}}{2} \int_{-L}^{L} f(x) dx + \sum_{n=1}^{\infty} \left\{ a_{n} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx + b_{n} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx \right\}$$

$$= \frac{a_{0}^{2}}{2} L + L \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$$
(1)

where we have used the results

$$\int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = La_{n}, \qquad \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx = Lb_{n}, \qquad \int_{-L}^{L} f(x) dx = La_{0} \qquad (2)$$

obtained from the Fourier coefficients.

The required result follows on dividing both sides of (1) by L. Parseval's identity is valid under less restrictive conditions than imposed here. In Chapter 3 we shall discuss the significance of Parseval's identity in connection with generalizations of Fourier series known as orthonormal series.

Example 20. By using the sine series for f(x) = 1 in $0 < x < \pi$ show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Solution. sine series is $f(x) = \sum b_n \sin nx$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} (1) \sin nx \, dx = \frac{2}{\pi} \left(\frac{-\cos nx}{n} \right)_0^{\pi} = \frac{-2}{n\pi} [\cos n\pi - 1] = \frac{-2}{n\pi} [(-1)^n - 1]$$

$$= \frac{2}{n\pi} \qquad \text{if } n \text{ is odd.}$$

$$= 0 \qquad \text{if n is even}$$

Then, the sine series is

$$1 = \frac{4}{\pi}\sin x + \frac{4}{3\pi}\sin 3x + \frac{4}{5\pi}\sin 5x + \frac{4}{7\pi}\sin 7x + \dots$$

$$\int_{0}^{c} [f(x)^{2} dx = \frac{c}{2} [b_{1}^{2} + b_{2}^{2} + b_{3}^{2} + b_{4}^{2} + b_{5}^{2} + \dots]]$$

$$\int_{0}^{\pi} (1)^{2} dx = \frac{\pi}{2} \left[\left(\frac{4}{\pi} \right)^{2} + \left(\frac{4}{3\pi} \right)^{2} + \left(\frac{4}{5\pi} \right)^{2} + \left(\frac{4}{7\pi} \right)^{2} + \dots \right]$$

$$[x]_{0}^{\pi} = \left(\frac{\pi}{2} \right) \left(\frac{16}{\pi^{2}} \right) \left[1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots \right]$$

$$\pi = \frac{\pi}{2} \left(\frac{16}{\pi^{2}} \right) \left[1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots \right]$$

$$\frac{\pi^{2}}{8} = 1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots$$

Proved.

Example 21. If
$$f(x) = \begin{cases} \pi x & , & 0 < x < 1 \\ \pi(2-x) & , & 1 < x < 2 \end{cases}$$

using half range cosine series, show that $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$