MySQL Project

Objective:

- The primary objective is to detect payment fraud through real-time monitoring of transactions and various metrics.
- We need to examine dataset with SQL and help understand past customers transactions and suggest new risk rules.

Fraudulent Transaction Detection Database

By Vedant Burande

MySQL Project

Q1. How many Unique Customers are there in the dataset?

• Input:

SELECT COUNT(DISTINCT customer_id) AS unique_customers FROM customer_data; SELECT DISTINCT customer_id AS unique_customers FROM customer_data;

Output:

	unique_customers
•	9372
	4805
	6218
	2034
	7591
	3186
	5642

Q2. Which customer have the highest & lowest account balance?

Input:

SELECT customer_id, account_balance
FROM customer_account_activity
WHERE account_balance = (SELECT max(account_balance) FROM customer_account_activity);
SELECT customer_id, account_balance
FROM customer_account_activity
WHERE account_balance = (SELECT min(account_balance) FROM customer_account_activity);

MySQL Project

Output:

Lowest-

	customer_id	account_balance
•	8950	376

Highest-

	customer_id	account_balance
•	2918	89012

Q3. What is the distribution of customer ages in the dataset?

• Input:

SELECT

CASE WHEN age between 18 AND 30 THEN '18-30' WHEN age between 31 AND 45 THEN '31-45' WHEN age between 46 AND 60 THEN '43-60'

ELSE '61+'

END AS age_group, COUNT(*) AS customer_count FROM customer_data GROUP BY age_group ORDER BY age_group;

	age_group	customer_count
•	18-30	35
	31-45	34
	43-60	36
	61+	10

MySQL Project

Q4. How many customer are engaged in suspicious activity?

• Input:

SELECT COUNT(DISTINCT customer_id) AS suspicious_transactions FROM customer_suspisious_activity WHERE suspisious_flag = '1';

• Output:

Q5. Top 5 merchants who have the Highest number of Transaction

• Input:

SELECT md.merchant_id, md.merchant_name, COUNT(*) AS transaction_count FROM merchant_data md INNER JOIN merchant_transaction_metadata mtm USING(merchant_id) GROUP BY merchant_id, merchant_name ORDER BY transaction_count DESC LIMIT 5;

	merchant_id	merchant_name	transaction_count
•	8765432	Tranquil Trinkets	24
	7890123	Enchanted Emporium	18
	8901234	Silk Street	16
	5432109	Ruby Ridge	14
	8765432	Noble Nectar	12

MySQL Project

Q6. What is the average transaction amount for each merchants transaction category?

• Input:

SELECT category, round(avg(transaction_amount),2) AS avg_transaction_amount FROM merchant_transaction_amount INNER JOIN merchant_transaction_category_labels USING(transaction_id) GROUP BY category;

	category	avg_transaction_amount
•	Board Games	615.80
	Travel Books	584.25
	Smartwatches	584.25
	Fitness Apparel	584.25
	Hobbies and Collectibles	584.25
	Bathroom Essentials	584.25
	Baby Products	584.25
	Groceries	584.25
	Hair Styling Tools	678.25
	Baby Gear	678.25
	Candles and Fragrances	678.25
	Clothing	678.25
	Bicycle Accessories	685.50
	Backpacks	774.00
	Swimwear	774.00
	Party Decorations	774.00
	Fashion Accessories	774.00
	Art Supplies	774.00
	Electronics	774.00
	Action Figures	651.86
	Audio Speakers	651.86
	Computer Accessories	651.86
	Personal Care	651.86
	Music and Instruments	651.86

MySQL Project

Q7. Top 5 customers having the highest total transaction amounts.

• Input:

SELECT cd.name, round(sum(amount),2) AS total_transaction_amount FROM customer_data cd INNER JOIN customer_transaction_records ctr USING (customer_id) GROUP BY cd.name ORDER BY total_transaction_amount DESC LIMIT 5;

Output:

	name	total_transaction_amount
•	Zoe Thompson	2818
	Amelia Hernandez	2183
	Christopher Davis	2015
	Evelyn Taylor	1614
	Emily Davis	1614

Q8. Which merchant have been associated with fradulent transactions?

• Input:

SELECT DISTINCT md.merchant_id, md.merchant_name FROM merchant_data md INNER JOIN merchant_transaction_metadata mtm USING (merchant_id) INNER JOIN fraud_indicator fi USING (transaction_id) WHERE fi.fraud_indicator = 1;

MySQL Project

• Output:

	merchant_id	merchant_name
•	1234567	Maple Goods
	9876543	Silk Haven
	4567890	Coastal Treasures
	7654321	Gem Emporium
	2345678	Horizon Crafts
	8765432	Urban Finds
	3456789	Velvet Bazaar
	6543210	Pinnade Traders
	8901234	Radiant Markets
	5678901	Ivy Luxe
	4321098	Sapphire Emporium
	2109876	Stellar Wares
	8765432	Rosewood Traders
	5432109	Azure Accents
	1234567	Golden Harvest
	8901234	Grand View
	4567890	Ethereal Treasures
	6789012	Harmony Haven
	3456789	Swift Commerce

Q9. How many fradulent transactions have occured in each category?

• Input:

SELECT category, COUNT(*) AS fradulent_transaction FROM merchant_transaction_category_labels INNER JOIN fraud_indicator fi USING (transaction_id) WHERE fi.fraud_indicator = 1 GROUP BY category;

MySQL Project

	category	fradulent_transaction
•	Bicycle Accessories	12
	Backpacks	5
	Swimwear	5
	Party Decorations	5
	Fashion Accessories	5
	Art Supplies	5
	Electronics	5
	Action Figures	3
	Audio Speakers	3
	Computer Accessories	3
	Personal Care	3
	Board Games	6
	Music and Instruments	3
	Home Decor	3
	Car Care Products	4
	Sleepwear	10
	Bakeware	4

Q10. Find the customers who have made transactions at multiple merchants AND display their names AND the number of unique merchants they have transacted with.

• Input:

SELECT cd.name AS customer_name, COUNT(DISTINCT md.merchant_id) AS unique_merchant
FROM customer_data cd INNER JOIN
customer_transaction_records ctr
USING (customer_id)
INNER JOIN merchant_transaction_metadata mtm USING (transaction_id)
INNER JOIN merchant_data md USING (merchant_id)
GROUP BY cd.name having unique_merchant >1;

MySQL Project

customer_name	unique_merchant
Benjamin Baker	6
Benjamin Hall	7
Caleb Davis	4
Caleb Turner	12
Carter Davis	8
Carter Robinson	6
Charlotte Harris	12
Charlotte Robinson	6
Chloe Bell	5
Chloe Parker	7
Christopher Davis	11
Daniel Bell	7
Daniel Martinez	12
Daniel White	7
David Martinez	7
David Miller	7

Q11. What is the average transaction amount for fraudulent transactions compared to non-fraudulent transactions?

• Input:

SELECT fi.fraud_indicator, round(avg(amount),2) AS average_transaction_amount FROM fraud_indicator fi INNER JOIN customer_transaction_records ctr USING (transaction_id) GROUP BY fraud_indicator;

Output:

	fraud_indicator	average_transaction_amount
•	0	631.23
	1	649.31

MySQL Project

Q12. Are there any regional patterns in fraudulent transactions?

• Input:

SELECT md.location, COUNT(*) AS fraudulent_transaction
FROM merchant_data md
INNER JOIN merchant_transaction_metadata mtm USING (merchant_id)
INNER JOIN fraud_indicator fi USING (transaction_id)
WHERE fraud_indicator = 1
GROUP BY md.location
ORDER BY fraudulent_transaction DESC;

	location	fraudulent_transaction
•	Memphis	116
	San Diego	95
	Nashville	95
	San Jose	93
	San Francisco	92
	Washington	89
	Denver	86
	San Antonio	84
	Charlotte	79
	Detroit	78
	Philadelphia	75
	Austin	74
	Chicago	70
	Phoenix	70
	Dallas	69
	Indianapolis	68
	Boston	67
	Columbus	66

MySQL Project

Project Resources:

- CSV Files Dataset Link: https://drive.google.com/
- SQL Database Link: https://vedantburande.github.io/
- GitHub Project Link: https://vedantburande.github.io/

Profile:

Portfolio: https://vedantburande.github.io/

• LinkedIn: https://www.linkedin.com/in/vedantburande/

• GitHub: https://github.com/VedantBurande

Contact: +91 97668 02199