ml-balance

Data processing and analysis for the mediolateral balance project.

Pre-Processing

- 1. Place the mocap-generated data in the original_data/ directory.
- 2. Create a data/ directory parallel to original_data/.
- 3. Place the pre-processing/directory under original_data/.
- 4. Inside Main.m, modify the folder variable to initiate the data preprocessing process.
- 5. This process will copy all .forces files and process all .trc files, saving them as .csv files in the corresponding folder under data/.

Script

calculate_com/

The entry point for this section is Main.m within this folder.

- double_integration_com/
 - Calculate the center of mass using the double-integration method with .forces files using the function in get_double_com.m.
 - Use get_mass() to retrieve a subject's mass.
- kinematic_method_com
 - Calculate the center of mass using the kinematic method from .csv files via KinematicMethod.m.
 - Use importfile() to obtain a data table from a .csv file.
 - HJCEstimation.m calculates the trace of the hip joint center for a single trial.

calculate_attributes/

real_attributes() calculates various motion traces, such as pelvis and shoulder movement in the x direction, from single trial data.

theta_relative_regression/

- slope_from_trial() obtains the slope of theta_vert (trunk-pelvis relative angle) vs. theta_com from a single trial.
- slopes_from_person() retrieves the regression slopes from selected trials of a single subject.
- get_prediction() completes the calculation of both the old and new models.
- model_prediction() acts as an interface and performs preliminary calculations for get_prediction, which is used to calculate both old (90-degree assumption) and new (theta_relative or theta_z revised) predictions.

• theta_relative_regression() serves as a pure interface for model_prediction().

theta_z_prediction/

- Utilizes regression of theta_p (trunk-earth z angle) vs. theta_com, following the same structure as theta_relative_regression/.
- theta_z_regression() acts as a pure interface for model_prediction().

cross_validation/

The entry point for this section is Main.m within this folder.

- load_model() loads the trained model from models/ using a given sequence number.
- save_model() saves the trained model in models/.
- train_test_split() divides subjects into training and test groups; currently, the test group has only one subject.
- fit() employs the given subjects to train a second-order regression model.
- test() applies the model to calculate errors in shoulder and pelvis positions for each trial of a single subject.
- cross_validate() employs Leave-One-Out Cross-Validation (LOOCV) for a set of subjects and utilizes process_errors() to calculate errors, selecting the best model with minimal error.

generate_graph/

The entry point for this section is Main.m within this folder.

- Calvin_prediction/ contains the original code for generating comparison graphs created by Calvin.
- comparison_graph() generates comparison graphs for pelvis and shoulder positions for a specific trial.