Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе №3

Дисциплина: Вычислительная математика Вариант №2

Выполнил студент гр. 3530901/90003		_ Бехтольд Ек.В.
	(подпись)	
Принял старший преподаватель	(подпись)	_ Цыган В.Н.
	«	2021 r

Санкт-Петербург 2021

Задание:

Привести дифференциальное уравнение: ty'-(t+1)y-2(t-1)y=0 к системе двух дифференциальных уравнений первого порядка.

Начальные условия: $y(t=1) = e^2$; $y'(t=1) = 2e^2$

Точное решение: $y(t) = e^{2t}$

Решить на интервале 1<= t <= 2

- 1) используя программу RKF45 с шагом печати $h_{print} = 0.1$ и выбранной погрешностью EPS в диапазоне 0.001 0.00001;
- 2) Используя метод Адамса 2-й степени точности;
- 3) используя метод Рунге-Кутты 3-й степени точности;
- 4) используя метод Рунге-Кутты 4-й степени точности.

Исследовать влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешностей решения заданного уравнения, для этого взять шаг вычисления h_{int} =(0.05, 0.025, 0.0125) .

Цель работы

Использовать в рабочих целях реализацию базовых подпрограмм, таких как RKF45, а также рассмотреть методы Адамса 2-й степени точности, Рунге-Кутты 3-й и 4-й степени точности.

Используемая среда разработки и язык программирования

Для решения поставленной задачи в качестве языка программирования был выбран язык Python, а среда разработки Pycharm Community Edition.

Ход выполнения работы

Сначала приведём дифференциальное уравнение: ty''-(t+1)y'-2(t-1)y=0 к системе двух диффернциальных уравнений первого порядка:

пусть $y_0 = y$, тогда $y_1 = y'$. После замены получим:

$$\begin{cases} y_0 = y_1 \\ ty'_1 - (t+1)y_1 - 2(t-1)y_0 = 0 \end{cases} \Rightarrow \begin{cases} y_0 = y_1 \\ y'_1 = \frac{((t+1)y_1 + 2(t-1)y_0)}{t} \end{cases}$$

После получения системы двух дифференциальных уравнений первого порядка необходимо составить программу, которая решает полученные функции указанными в задании методами.

С начала проведем вычисления, используя программу RKF45, используя библиотеку SciPy. Далее посчитаем то же самое остальными методами, которые были написаны самостоятельно. Метод Адамса для старта использует метод Рунге-Кутты 4 степени точности. Так как метод Адамса не самостартующий, для преодоления больших погрешностей, перед началом работы мы, с помощью функции RK4 просчитываем значения 2 точек левее точки старта и саму точку старта. Затем уже, на основании этих данных, вычисляются с большей точностью дальнейшие точки.

Расчетные соотношения для метода Адамса 2й степени точности:

$$x_n = x_{n-1} + \frac{h}{2} (3f(t_{n-1}, x_{n-1}) - f(t_{n-2}, x_{n-2}))$$

Для метода Рунге-Кутты 3-й степени точности:

$$k_{1} = hf(t_{n}, x_{n}); k_{2} = hf\left(t_{n} + \frac{h}{2}, x_{n} + \frac{k_{n}}{2}\right); x_{n+1} = x_{n} + \left(\frac{2k_{1} + 3k_{2} + 4k_{3}}{9}\right)$$

$$k_{3} = hf\left(t_{n} + \frac{3h}{4}, x_{n} + \frac{3k_{2}}{4}\right);$$

Для метода Рунге-Кутты 4-й степени точности:

$$k_{1} = hf(t_{n}, x_{n}); k_{2} = hf\left(t_{n} + \frac{h}{2}, x_{n} + \frac{k_{n}}{2}\right); x_{n+1} = x_{n} + \left(\frac{k_{1} + 2k_{2} + 2k_{3} + k_{4}}{6}\right)$$

$$k_{3} = hf\left(t_{n} + \frac{h}{2}, x_{n} + \frac{k_{2}}{2}\right); k_{4} = hf\left(t_{n} + h, x_{n} + k_{3}\right);$$

Составленная программа состоит из шести файлов: main.py, rkf45.py, Runge_Kutta3.py, Runge_Kutta4.py, Adams2.py и ExactSolution.py. Листинги программы приведен в конце отчета для подробного ознакомления. Вкратце о них можно сказать следующее.

В файле main.py расположены исходные условия (интервал интегрирования, начальные условия, шаг, приведенная система дифференциальных уравнений первого порядка) и функция вывода графиков и результатов в консоль.

В файле rkf45.py вычисляются значения функции с помощью библиотечной

реализации программы rkf45. Программа rkf45 с шагом печати h_print = 0.1 и погрешностью atol = 0.0001. Интегрирование осуществляется при помощи функции integrate.ode(), которая возвращает настраиваемый объект, при помощи которого можно решать произвольные системы вида y'=f(t,y). Этот объект можно настроить на использование методов Рунге-Кутта при помощи параметра "dopri5".

В файлах Runge_Kutta3.py, Runge_Kutta4.py представлены реализации соответствующих методов. Данные реализации имеют методы которые рассчитывают значения функции в соответствии с приведенными выше формулами. Эти методы на вход принимают систему ДУ, массив точек интегрирования и начальные условия.

В файле Adams2.py находится реализация метода Адамса степени точности. Суть методов Адамса в пошаговом вычислении значений решения y=y(t) дифференциального уравнения вида y'=f(t,y). Использование трёх точек $\{t_n,t_{n-1},t_{n-2}\}$ и полинома 2-й степени приведёт к формуле $x_n=x_{n-1}+\frac{h}{2}[3f(t_{n-1},x_{n-1})-f(t_{n-2},x_{n-2})]$. Данный метод имеет 2-ю степень точности и является явным. Методы Адамса не являются самостартующими, то есть они требуют для начала интегрирования специальных стартовых алгоритмов для расчета дополнительных начальных условий.

В двумерном массиве у хранятся значения функции у и производные у' . Чтобы вычислить начальные условия для «старта» метода Адамса, был использован метод Рунге-Кутты 4 степени. С его помощью были получены значения функции f в точках t=0.8 и t=0.9. Они были сохранены на нулевую и первую позицию массива у, на второй позиции - начальное условие для точки t=1.0. Затем была применена сама формула для вычисления интеграла. Значения в точках t=0.8 и t=0.9 не относятся к нужному промежутку решений [1;2], поэтому возвращается массив значений функции у со второго индекса.

В файле ExactSolution.py расположено точное решение данной системы дифференциальных уравнений для вычисления погрешности и возможности оценки качества решения каждого метода.

Результаты выполнения программы

При шаге интегрирования h = 0.1 наиболее точный результат, как и ожидалось дает метод Рунге-Кутты 4-5 порядка точности. Наихудший результат даёт метод Адамса 2 порядка.

Tab	ole of Values:				
t	Exact	RKF45	RK4	RK3	ADAMS
1.00	7.38905609893065	7.38905609893065	7.38905609893065	7.38905609893065	7.36926012471235
1.10	9.025013499434122	9.025013516869686	9.024993119233898	9.024500515493969	8.97507150911961
1.20	11.023176380641605	11.023176538875457	11.023126595832284	11.021923296256636	10.9306669493842
1.30	13.463738035001697	13.463738395525422	13.463646824149555	13.46144231916144	13.3123598832875
1.40	16.444646771097062	16.444647415729236	16.44449823101627	16.440908219135842	16.2130011533354
1.50	20.085536923187686	20.085537960060527	20.085310139363273	20.07982923830458	19.7456655110073
1.60	24.532530197109374	24.532531768309873	24.532197804218306	24.524164776382666	24.0480650489759
1.70	29.96410004739705	29.96410233870179	29.963626398072243	29.95217991355537	29.2879180125680
1.80	36.59823444367804	36.59823769693419	36.597573282605445	36.581595734422294	35.6694869114408
1.90	44.70118449330089	44.70118896468737	44.7002760073743	44.67832225697444	43.4415411836163
2.00	54.598150033144336	54.598155598718776	54.59691711540698	54.56712424985146	52.9070548475571
Tab	ble of Errors:				
	RKF45	RK4		RK3	ADAMS
Local E	Error: 1.743556410	360725e-08 2.03802	20022432363e-05 0.	0005129839401529779	0.04994199031450
Global	Error: 1.937042046	4071003e-05 0.00414	453067193089055 0.	1043203044531662	5.92527578791766

Рис. 1. Вычисленные значения функции с шагом печать h = 0.1.

1.86	41.2643	9410861086	41.26439410	867181	41.264394015541	626 41.26	437082576027	41.2525769468987
1.87	42.0979	90164996965	42.09799016	505987	42.097990068943	545 42.09	796613560172	42.0857957120088
1.88	42.9484	2597876309	42.94842597	8828006	42.948425879642	9 42.94	840118216239	42.9358438139001
1.89	43.8160	4173557404	43.81604173	5641015	43.816041633302	36 43.81	6016150576985	43.8030611711970
1.90	44.7011	8449330089	44.70118449	336999	44.701184387790	86 44.76	115809817351	44.6877945681939
1.91	45.6042	0832084881	45.60420832	092009	45.604208212011	315 45.60	4181093300745	45.5903977935277
1.92	46.5254	74439789285	46.52547443	98628	46.525474327532	95 46.52	2544635696021	46.5112317816516
1.93	47.4653	51368853604	47.46535136	892942	47.465351253084	71 47.46	532240729928	47.4506647571659
1.94	48.4242	1507134526	48.42421507	142343	48.424214951967	706 48.42	418520702327	48.4090723820644
1.95	49.4024	4910553026	49.40244910	561086	49.402448982445	49 49.40	241831378542	49.3868379059547
1.96	50.4004	4477806558	50.40044477	8148675	50.400444651172	53 50.40	0041303361497	50.3843523193127
1.97	51.4186	0130052701	51.41860130	061267	51.418601169722	045 51.41	185685774447	51.4020145098325
1.98	52.4573	2594909914	52.45732594	9187435	52.457325814276	52.45	7292220800525	52.4402314219343
1.99	53.5170	3422749126	53.51703422	758225	53.517034088540	97 53.51	699946671699	53.4994182194940
2.00	54.5981	50033144336	54.59815003	3238106	54.598149889955	174 54.59	8114211943965	54.5799984518595
Ta	able of Err	ors:						
		RKF45		RK4		RK3		ADAMS
Local	Error:	1.296740492	7621828e-13	1.97699	63444105088e-10	4.9458074	408063274e-08	4.93991249097547
Global	Error:	2.708514301	730247e-09	4.13612	88012353725e-06	0.0010347	723008584315	0.5269978607
-								

Рис. 2. Вычисленные значения функции с шагом печать h = 0.01.

С уменьшением шага интегрирования мы можем наблюдать как повышается точность вычислений и уменьшается погрешность. (рис. 2-5).

```
1.30
      13.463738035001697 13.463738050827361 13.463731840766492 13.463427281404847 13.4273006973303
       14.879731724872844 14.87973174583232 14.87972373823644 14.879331050499259 14.83368291972736
     16.444646771097062 16.44464679809516 16.44463668355655 16.4441406993101
1.40
                                                                        16.3873703228199
1.45 18.174145369443075 18.17414540351814 18.174132827430096 18.173516162854213 18.1037917252565!
1.55 22.197951281441654 22.197951333412544 22.19793255840512 22.197011989355612 22.0948011768268:
     24.532530197109374 24.532530260266185 24.53250762384972 24.53139775023618 24.4090217549556
1.60
      27.11263892065792 27.11263899677867 27.112611894406353 27.111283080302687 26.96563495935769
       29.96410004739705 29.96410013851003
                                       29.964067881184317 29.962486350914524 29.7900291155135:
1.70
1.80 \qquad 36.59823444367804 \qquad 36.59823457203044 \qquad 36.59818954322325 \qquad 36.59598191138929 \qquad 36.3572880393279
1.85 40.44730436006745 40.447304511349635 40.44725163597533 40.44465934240373 40.16536865848349
     44.70118449330089 44.701184670916255 44.701122796573884 44.6980893499132 44.3723095552895
1.90
1.95
       49.40244910553026 49.40244931334445 49.40237713202523
                                                        49.3988384132124
                                                                         49.0198875556588
2.00
       54.598150033144336 54.59815027554484
                                       54.59806630364794 54.59394958633524 54.1542552112431
  Table of Errors:
               RKF45
                                   RK4
                                                      RK3
                                                                       ADAMS
Local Error: 7.847766880786367e-11 6.261657148343147e-07 3.1413899460375205e-05 0.00622325631841
Global Error: 1.464755396085593e-06 0.0005181692291778006 0.025995142229247037
                                                                            2.8110436727
```

Рис. 3. Вычисленные значения функции с шагом печать h = 0.05.

Global	Error: 1.030873919	5608041e-07 6.4696	63356600819e-05 0.0	006480486576228017	1.3535401412
Local E	rror: 3.091837896	818106e-11 1.9403	83942411472e-08 1.9	436371978542866e-06	0.00077460303909
	RKF45	RK4		RK3	ADAMS
Tab	le of Errors:				
2.00	54.59815003314385	54.59815004183638	54.598144577803225	54.59760358706465	54.4854046518554
1.97	51.93536683483107	51.93536684289295	51.93536177528256	51.93486003406797	51.8307347271090
1.95	49.40244910552984	49.4024491130019	49.40244441614332	49.40197938279588	49.3054071914738
1.92	46.99306323157897	46.99306323849957	46.9930588882829	46.99262817570406	46.9031201490094
1.90	44.70118449330054	44.7011844997057	44.70118047349089	44.700781840110096	44.6178787484558
1.87	42.52108200006252	42.52108200598605	42.52107828251689	42.5207096237745	42.4439802232207
1.85	40.44730436006714	40.447304365540795	40.44730092486375	40.44696026517858	40.3759996602595
1.82	38.474666049031896	38.47466605408545	38.47466287747318	38.47434836266765	38.4087764623309
1.80	36.59823444367778	36.5982344483392	36.598231518218405	36.597941408375725	36.5374014698469
1.77	34.81331748760183	34.813317491897344	34.81331479178076	34.81304745451012	34.7572047101798
1.75	33.115451958692134	33.11545196264635	33.115449477068594	33.11520338115547	33.0637437438543
1.72	31.50039230874777	31.50039231238375	31.500390026840876	31.50016373626093	31.4527925785436
1.70	29.964100047396865	29.96410005073625	29.96409795162874	29.963890119904974	29.9203311232041
1.67	28.50273364376714	28.502733646830215	28.502731721409273	28.502541086293157	28.4625351560319
1.65	27.112638920657762	27.112638923463532	27.11263715978044	27.112462538238873	27.0757667812066

Рис. 4. Вычисленные значения функции с шагом печать h = 0.025.

1.85	40.44730436006714	40.4473043602458	40.447304140851	166 40.44726048025181	40.4294211103438
1.86	41.4712327448305	41.47123274501637	41.471232516759	66 41.471187092565685	41.452631053057
1.87	42.52108200006252	42.5210820002558	42.521081762828	99 42.521034513729305	42.5017369536677
1.89	43.59750831572322	43.59750831592429	43.597508069009	25 43.59745893171878	43.5773942012670
1.90	44.70118449330054	44.7011844935096	44.701184236778	317 44.70113314597721	44.6802747718937
1.91	45.83280036633317	45.8328003665505	45.832800099663	45.83274698793566	45.8110676483238
1.92	46.99306323157897	46.99306323180486	46.993062954413	46.99300775217972	46.970479250487
1.94	48.1826982910985	48.1826982913332	48.182698003076	21 48.18264063853112	48.1592338767765
1.95	49.40244910552984	49.4024491057737	49.402448806278	373 49.402389205320596	49.3780741565245
1.96	50.65307805883828	50.6530780590916	34 50.653077747974	50.65301583413549	50.6277615139345
1.97	51.93536683483107	51.9353668350942	1 51.935366511958	3236 51.93530220633244	51.9090766437505
1.99	53.25011690573524	53.25011690600849	53.250116570444	65 53.25004979161305	53.222819998967
2.00	54.59815003314385	54.5981500334275	55 54.598149685013	716 54.59808034896792	54.569812290881
2.01	55.98030878164376	55.98030878193829	55.980308420238	885 55.98023644030207	55.950895001802
Tabl	e of Errors:				
	RKF45	RI	(4	RK3	ADAMS
Local Er	ror: 4.92050844	5138694e-13 6.038	3369804173271e-10	1.2086842193781422e-07	9.65450032346382
Global E	rror: 6.87987977	6988673e-09 8.441	l397461922406e-06	0.0016896896782769844	0.6912935820

Рис. 5. Вычисленные значения функции с шагом печать h = 0.0125.

Рис. 6. График функции при h = 0.1.

Рис. 7. График функции при h = 0.01.

Рис. 8. Увеличенный фрагмент графика на рис. 6.

Рис. 9. Увеличенный фрагмент графика на рис. 7.

Рис. 10. Увеличенный фрагмент графика на рис. 6.

Из графиков видно что при большем шаге интегрирования мы ещё можем различить разные кривые, но с уменьшение шага кривые разных методов сливаются в одну и только при многократном увеличении масштаба видны различия.

Для исследования зависимости изменения локальной погрешности при изменении шага интегрирования, были построены таблицы. В таблице 1 представлены глобальные и локальные погрешности первого шага (для h_{int} ={0.1,0.05,0.025,0.0125}) для каждого из рассмотренных методов. В таблице 2

представлены соотношения локальных погрешностей первого шага каждого метода \mathbf{h}_{i} / \mathbf{h}_{i+1}

Таблица 1. Погрешности исследуемых методов.

h =	Погрешность	RKF45	RK4	RK3	ADAMS
0.1	Локальная	4.4943556e-08	2.038020e-05	5.129839e-04	0.04994199
	Глобальная	1.937042e-05	4.145306e-03	0.104320304	5.925275787
0.05	Локальная	6.847766e-10	6.261657e-07	3.141389e-05	0.006223256
	Глобальная	1.464755e-06	5.181692e-04	0.025995142	2.811043672
0.025	Локальная	1.091837e-11	1.940383e-08	1.943637e-06	7.746030e-04
	Глобальная	1.030873e-07	6.469663e-05	6.480486e-03	1.353540141
0.0125	Локальная	1.650508e-13	6.038369e-10	1.208684e-07	9.654500e-05
	Глобальная	6.879879e-09	8.441396e-06	1.689689e-03	0.691293582

Таблица 2. Соотношение локальных погрешностей на первом шаге.

	RKF45	RK4	RK3	ADAMS
$h_{0.1} / h_{0.05} =$	6.55E+01	3.25E+01	1.63E+01	8.03E+00
$h_{0.05} / h_{0.025} =$	6.27E+01	3.23E+01	1.62E+01	8.03E+00
$h_{0.25} / h_{0.0125} =$	6.62E+01	3.21E+01	1.61E+01	8.02E+00

RKF45 — метод пятого порядка точности, поэтому величина локальной погрешности пропорциональна h^6 , то есть если шаг уменьшается в 2 раза, то локальная погрешность уменьшается в $2^6 = 64$ раза. Из таблицы 2 следует, что при уменьшении шага интегрирования локальная погрешность становится примерно в 64 раза меньше.

Также стоит отметить, что если шаг интегрирования уменьшиться в 8 раз, то погрешность уменьшиться в $8^6 = 262144$ раза. При шаге интегрирования $h_{int} = 0.1$ локальная погрешность первого шага = 4.4943556e-08, при $h_{int} = 0.0125$ локальная погрешность первого шага = 1.650508e-13. Разделив погрешность шага 0.1 на погрешность шага 0.0125, получим: 272 301, примерно такой результат был ожидаем.

Runge Kutta 3 — метод третьего порядка точности, поэтому величина локальной погрешности пропорциональна h^4 , то есть если шаг уменьшается в 2 раза, то локальная погрешность уменьшается в 2^4 = 16 раз. Из таблицы 2 следует, что при уменьшении шага интегрирования локальная погрешность становится примерно в 16

раз меньше.

Если шаг интегрирования уменьшиться в 8 раз, то погрешность уменьшиться в 8^4 = 4096 раз. При шаге интегрирования h_{int} = 0.1 локальная погрешность первого шага = 5.129839e-04, при h_{int} = 0.0125 локальная погрешность первого шага = 1.208684e-07. Разделив погрешность шага 0.1 на погрешность шага 0.0125, получим: 4 244, примерно такой результат был ожидаем.

Продолжая рассуждения находим что метод Адамса второго порядка точность поэтому величина локальной погрешности пропорциональна h^3 , то есть если шаг уменьшается в 2 раза, то локальная погрешность уменьшается в $2^3 = 8$ раз. Метод Рунге-Кутты 4 - метод четвертого порядка точности, поэтому величина локальной погрешности пропорциональна h^5 , то есть если шаг уменьшается в 2 раза, то локальная погрешность уменьшается в $2^5 = 32$ раза.

Выводы

В ходе выполнения работы было проведенно исследование работы программы RKF45(в интерпретации библиотеки scipy для языка программирования Python), а также реализованы и исследованы методы Адамса 2 порядка и Рунге-Кутты 3 и 4 порядка точности.

С помощью указанных методов были вычислены значения заданного дифференциального уравнения на промежутке [1,2] и произведено сравнение полученных решений с точным.

Из исследования влияния шага интегрирования на

- 1. локальную погрешность, была получена пропорциональная зависимость локальной погрешности от шага интегрирования. Для программы:
 - •RKF45 это h⁶
 - •RK4 h⁵
 - •RK3 h⁴
 - •ADAMS2 h³
- 2. глобальную погрешность, можно сделать вывод, что при уменьшении шага интегрирования в два раза, погрешность уменьшается, но при этом растет количество вычислений.

```
from math import exp
import numpy
import matplotlib
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt
import Adams2
import Runge_Kutta3
import Runge_Kutta4
import rkf45
import ExactSolution
# исходные данные
a = 1
b = 2
h = 0.1
initialConditions = numpy.array([exp(2), exp(2) * 2])
# система двух дифференциальных уравнений первого порядка.
def originalFunction(t, y):
  dy = numpy.zeros(y.shape)
  dy[0] = y[1]
  dy[1] = ((t + 1) * y[1] + 2 * (t - 1) * y[0]) / t
  return dv
# вывод результатов на экран
def printResult():
  plt.title('Зеленый - exact; красный - rkf45, черный - rk4, желтый - rk3, ...')
  t, y exact = ExactSolution.pick step(a, b + h, step=h)
  plt.plot(t, y_exact, 'g--')
  y rkf45 = rkf45.rkf45(originalFunction, t, initialConditions)
  plt.plot(t, y_rkf45, 'r--')
  y_rk4 = Runge_Kutta4.rk4Values(originalFunction, t, initialConditions)
  plt.plot(t, y_rk4, 'k')
  v_rk3 = Runge_Kutta3.rk3Values(originalFunction, t, initialConditions)
  plt.plot(t, y rk3, 'y')
  y_adams = Adams2.adams2(originalFunction, t, initialConditions)
  plt.plot(t, y adams, 'm')
  plt.show()
  error_local_rkf45 = numpy.abs(y_rkf45 - y_exact)
  error_local_rk4 = numpy.abs(y_rk4 - y_exact)
  error local rk3 = numpv.abs(v rk3 - v exact)
  error local adams = numpy.abs(y adams - y exact)
  print('\tTable of Values: ')
  print('t\t\t\tExact\t\t\tRKF45\t\t\t\tRK4\t\t\t\tRK3\t\t\t\ADAMS')
  for it in range(0, len(t)):
    v_exact[it], v_rkf45[it], v_rk4[it], v_rk3[it], v_adams[it]))
  print('\tTable of Errors: ')
  print('\t\t\t\tRKF45\t\t\t\t\tRK4\t\t\t\t\t\tRK3\t\t\t\t\ADAMS')
  error_local_adams[1]))
  print('Global Error: \t {}\t {}\t {}\t\t {}\.format(error_local_rkf45.sum(), error_local_rk4.sum(),
                                error_local_rk3.sum(), error_local_adams.sum()))
if name == ' main ':
```

printResult()

Листинг 2. rkf45.py

```
import numpy
from scipy import integrate
  Программа rkf45 с шагом печати h_print = 0.1 и погрешностью atol = 0.0001.
  Интегрирование осуществляется при помощи функции integrate.ode(), которая возвращает
настраиваемый объект,
  при помощи которого можно решать произвольные системы вида у'= f(t,y). Этот объект можно
настроить на использование
  методов Рунге-Кутта при помощи параметра "dopri5".
def rkf45(function, arguments_T, initialConditions):
  r = integrate.ode(function)\
    .set integrator('dopri5', atol=0.0001)\
    .set_initial_value(initialConditions, arguments_T[0])
  y = numpy.zeros((len(arguments_T), len(initialConditions)))
  y[0] = initialConditions
  for it in range(1, len(arguments_T)):
    y[it] = r.integrate(arguments_T[it])
    if not r.successful():
      raise RuntimeError('Нельзя!!!')
  return y[:, 0]
```

Листинг 3. Runge_Kutta3.py

```
import numpy

def rk3(function, arguments_T, initialConditions):
    y = numpy.zeros((len(arguments_T), len(initialConditions)))
    y[0] = initialConditions
    h = arguments_T[1] - arguments_T[0]

for it in range(1, len(arguments_T)):
    k1 = function(arguments_T[it - 1], y[it - 1])
    k2 = function(arguments_T[it - 1] + 0.5 * h, y[it - 1] + 0.5 * h * k1)
    k3 = function(arguments_T[it - 1] + 3.0 * h / 4, y[it - 1] + 3.0 * h * k2 / 4)
    y[it] = y[it - 1] + h * (2 * k1 + 3 * k2 + 4 * k3) / 9.0
    return y

def rk3Values(function, arguments_T, initialConditions):
    y = rk3(function, arguments_T, initialConditions)
    return y[:, 0]
```

```
import numpy

def rk4(function, arguments_T, initialConditions):
    y = numpy.zeros((len(arguments_T), len(initialConditions)))
    y[0] = initialConditions
    h = arguments_T[1] - arguments_T[0]

for it in range(1, len(arguments_T)):
    k1 = function(arguments_T[it - 1], y[it - 1])
    k2 = function(arguments_T[it - 1] + 0.5 * h, y[it - 1] + 0.5 * h * k1)
    k3 = function(arguments_T[it - 1] + 0.5 * h, y[it - 1] + 0.5 * h * k2)
    k4 = function(arguments_T[it - 1] + h, y[it - 1] + h * k3)
    y[it] = y[it - 1] + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6.0
    return y

def rk4Values(function, arguments_T, initialConditions):
    y = rk4(function, arguments_T, initialConditions)
    return y[:, 0]
```

Листинг 5. Adams2.py

```
import numpy
import Runge Kutta4
  Метод Адамса 2 степени точности.
  Суть методов Адамса в пошаговом вычислении значений решения y = y(t)
  дифференциального уравнения вида y' = f(t, y). Использование трёх точек \{t \, n, t \, n-1, t \, n-2\}
  и полинома 2-й степени приведёт к формуле y[n] = y[n-1] + (h/2) * (3 * f(t[n-1], y[n-1]) - f(t[n-2], y[n-2])).
  Данный метод имеет 2-ю степень точности и является явным. Методы Адамса не являются
самостартующими,
  т. е. они требуют для начала интегрирования специальных стартовых алгоритмов для расчета
дополнительных начальных условий.
  В двумерном массиве У хранятся значения функции у и производные у'. Чтобы вычислить начальные
условия для «старта»
  метода Адамса, был использован метод Рунге-Кутты 4 степени. С его помощью были получены
значения функции f
  в точках 0.8 и 0.9. Они были сохранены на нулевую и первую позицию массива Y, на второй позиции -
начальное условие
  для точки 1.0. Затем была применена сама формула для вычисления интеграла. Значения в точках 0.8 и
0.9 не относятся
  к нужному промежутку решений [1;2], поэтому возвращается массив значений функции у со второго
индекса.
def adams2(function, arguments_T, initialConditions):
  length = len(arguments_T) + 2
  y = numpy.zeros((length, len(initialConditions)))
  h = arguments T[1] - arguments T[0]
  startPoints = Runge_Kutta4.rk4(function, [arguments_T[0], arguments_T[0] - h, arguments_T[0] - 2 * h],
                   initialConditions)
  v[0] = startPoints[2]
  v[1] = startPoints[1]
  v[2] = initialConditions
```

```
arguments\_T = numpy.append(arguments\_T, [2.1, 2.2]) for it in range(2, length): \\ y[it] = y[it - 1] + (h / 2) * (3 * function(arguments\_T[it - 1], y[it - 1]) - function(arguments\_T[it - 2], \\ y[it - 2])) return y[2:, 0]
```

Листинг 6. ExactSolution.py

```
import math
import numpy

"Touhoe решение: y(t) = e^2t "

def exact(t):
    y = numpy.zeros(len(t))
    for it in range(0, len(t)):
        y[it] = math.exp(2.0 * t[it])
    return y

# Функция pick_step возвращает массив точек t и точных значений в этих точках y(t)
def pick_step(a, b, step):
    t = numpy.arange(a, b, step)
    y = exact(t)
    return t, y
```