Роботу виконала студентка

Національного університету «Одеська політехніка»

"Прикладної математики"

Матиченко А.Д.

Anastasita Matycheniko,

Anastasita Matycheniko,

Порівняти кластерізації 1 та 2 за допомогою точності, повноти та F-міри.

КЛАСТЕРІЗАЦІЯ 1

Полученные	T_1	T_2	T_3	$ C_i $
кластеры				
C_1	45	10	3	58
C_2	0	50	0	50
C_3	12	0	30	42
$ T_i $	57	60	33	n=150

КЛАСТЕРІЗАЦІЯ 2

Полученные	T_1	T_2	T_3	$ C_i $
кластеры				
C_1	40	10	0	50
C_2	5	44	0	49
C_3	12	6	0	18
$ T_i $	57	60	0	n=117

Використовуючи F-міру визначити у якої кластеризації якість вища.

Розв'язання

ЗНАЧЕННЯ ДЛЯ ПЕРШЕГО КЛАСТЕРА

	Точність	Повнота	Гармонічне середнє		
i	$P_r(C_i) = \frac{1}{ C_i } \max_{j=1,k} \{n_{ij}\}$	$R_c(C_i) = \frac{1}{ T_{j\text{max}} } \max_{j=1,k} \{n_{ij}\}$	$F(C_i) = \frac{2P_r(C_i)R_c(C_i)}{P_r(C_i) + R_c(C_i)}$		
1	$P_r(C_1) = \frac{1}{ C_1 } = \frac{45}{58} = 0.78$	$Rc(C_1) = \frac{1}{ T_{\text{1max}} } = \frac{45}{57} = 0.79$	$F(C_1) = \frac{2 \cdot 0.78 \cdot 0.79}{0.78 + 0.79} = 0.78$		
2	$P_r(C_2) = \frac{1}{ C_2 } = \frac{50}{50} = 1$	$Rc(C_2) = \frac{1}{ T_{2\text{max}} } = \frac{50}{60} = 0.84$	$F(C_2) = \frac{2 \cdot 1 \cdot 0.84}{1 + 0.84} = 0.91$		
3	$P_r(C_3) = \frac{1}{ C_3 } = \frac{30}{42} = 0.71$	$Rc(C_3) = \frac{1}{ T_{3\text{max}} } = \frac{30}{33} = 0.9$	$F(C_3) = \frac{2 \cdot 0.71 \cdot 0.9}{0.71 + 0.9} = 0.79$		
	$F = \frac{1}{r} \sum_{i=1}^{n} F(C_i) = \frac{1}{3} (0.78 + 0.91 + 0.79) = 0.83$				

ЗНАЧЕННЯ ДЛЯ ДРУГОГО КЛАСТЕРА

	Точність	Повнота	Гармонічне середнє	
i	$P_r(C_i) = \frac{1}{ C_i } \max_{j=1,k} \{n_{ij}\}$	1 3 1	$F(C_i) = \frac{2P_r(C_i)R_c(C_i)}{P_r(C_i) + R_c(C_i)}$	
1	$P_r(C_1) = \frac{1}{ C_1 } = \frac{40}{50} = 0.8$	$Rc(C_1) = \frac{1}{ T_{\text{1max}} } = \frac{40}{57} = 0.7$	$F(C_1) = \frac{2 \cdot 0.7 \cdot 0.8}{0.8 + 0.7} = 0.75$	
2	$P_r(C_2) = \frac{1}{ C_2 } = \frac{44}{49} = 0.89$	$Rc(C_2) = \frac{1}{ T_{2\text{max}} } = \frac{44}{60} = 0.74$	$F(C_2) = \frac{2 \cdot 0.89 \cdot 0.74}{0.89 + 0.74} = 0.8$	
3	$P_r(C_3) = \frac{1}{ C_3 } = \frac{12}{18} = 0.67$	$Rc(C_3) = \frac{1}{ T_{3\text{max}} } = 0$	$F(C_3) = \frac{2 \cdot 0.67 \cdot 0}{0.67 + 0} = 0$	
$F = \frac{1}{r} \sum_{i=1}^{n} F(C_i) = \frac{1}{3} (0.75 + 0.8 + 0) = 0.3125$				

Відповідь: Перша кластеризація за якістю краща, оскільки значення міри для неї вище.

Порівняти кластерізації за допомогою інформаційних показників.

КЛАСТЕРІЗАЦІЯ 1

Полученные	T_1	T_2	T_3	$ C_i $
кластеры				2
C_1	45	10	3	58
C_2	0	50	0	50
C_3	12	0	30	42
$ T_i $	57	60	33	n = 150

KJIA	СТЕРІЗАЦІЯ 2

Полученные	T_1	T_2	T_3	$ C_i $
кластеры		10)		
C_1	40	10	0	50
C_2	5	44	0	49
C_3	12	6	0	18
$ T_i $	57	60	0	n=117

Вираховуємо умовну ентропію, взаємну інформацію та нормалізовану взаємну інформацію. І потім порівнюємо умовну ентропію та взаємну нормалізовану інформацію.

Розв'язок

1. Визначимо інформаційні показники кластеризації один. Спочатку обчислимо умовну ентропію:

$$H(T \mid C) = -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log_2 \frac{p_{ij}}{p_{c_i}}$$
, $p_{ij} = \frac{n_{ij}}{n}$ за допомогою наступного коду:

```
temp=[]
result=0
for i in range(3):
    for j in range(3):
        if arr[i,j]==0:
            continue
    else:
```

2. Взаємна інформація для кластеризації 1:

$$H(T) = -\sum_{j=1}^{k} P_{T_j} \log_2 P_{T_j} = 1.54, I(C,T) = H(T) - H(T \mid C) = 0.6 - 0.41 = 0.93$$
 3a

допомогою наступного коду знайдемо:

```
result=0
i=0
for j in range(3):
    result+=arr[3,j]/arr[3,3]*np.log2((arr[3,j]/arr[3,3]))
    print(arr[3,j]/arr[3,3]*np.log2((arr[3,j]/arr[3,3])))
    i=i+1
print(result-res)
```

3. Нормалізована взаємна інформація $NMI(C,T) = \sqrt{H(C) \cdot H(T)} = 0.6$,

```
H(C) = H(C_1,...,C_k) = -\sum_{I=1}^K P_{C_I} \log_2 P_{C_I} = 1.57 за допомогою наступного коду
```

знайдемо:

```
C=0
for i in range(3):
    C+=arr[i,3]/arr[3,3]*np.log2(arr[i,3]/arr[3,3])
C=abs(C)
NMI=I/np.sqrt(abs(result)*C)
```

Аналогічно проробимо все це ж для другого кластеру. Запишемо результати у таблицю.

	Перший кластер	Другий
H(T C)	0.6	0.71
H(T)	1.54	0
I(C,T)	0.93	0
H(C)	1.57	1.46
NMI(C,T)	0.6	0

Порівняємо отримані показники.

Кластеризація	H(T C)	NMI(C,T)
1	0.6	0.6
2	0.71	

Кластеризація 1 краще ніж 2, так як у неї вища нормалізація і менша умовна ентропія.

Порівняти кластерізації 1 та 2 із попереднього завдання за допомогою попарних показників.

КЛАСТЕРІЗАЦІЯ 1

Полученные	T_1	T_2	T_3	$ C_i $
кластеры				
C_1	45	10	3	58
C_2	0	50	0	50
C_3	12	0	30	42
$ T_i $	57	60	33	n=150

КЛАСТЕРІЗАЦІЯ 2

Полученные	T_1	T_2	T_3	$ C_i $
кластеры				
C_1	40	10	0	50
C_2	5	44	0	49
C_3	12	6	0	18
$ T_i $	57	60	0	n=117

Розв'язання

ДЛЯ ПЕРШОГО КЛАСТЕРУ

ДЛЯ ПЕРШОГО КЛАСТЕ
$$TP = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{n_{ij}(n_{ij}-1)}{2} = \frac{45 \cdot 44}{2} + \frac{10 \cdot 9}{2} + \frac{3 \cdot 2}{2} + \frac{50 \cdot 49}{2} + \frac{12 \cdot 11}{2} + \frac{30 \cdot 29}{2} = 2764$$

$$FN = \sum_{j=1}^{k} \frac{m_{j}(m_{j}-1)}{2} - TP = \frac{57(57-1)}{2} + \frac{60(60-1)}{2} + \frac{33(33-1)}{2} - 2764 = 1110$$

$$FP = \sum_{i=1}^{r} \frac{n_{i}(n_{i}-1)}{2} - TP = \frac{58(58-1)}{2} + \frac{50(50-1)}{2} + \frac{42(42-1)}{2} - TP = 975$$

$$TN = N - TP - FP - FN = \frac{n(n-1)}{2} - TP - FP - FN = \frac{150(150-1)}{2} - 2764 - 1110 - 975 = 6326$$

$$Jaccard = \frac{TP}{TP + FP + FN} = \frac{2764}{2764 + 975 + 1110} = \frac{2764}{4849} = 0.57$$

$$FM = \frac{TP}{\sqrt{(TP+FN)(TP+FP)}} = \frac{2764}{\sqrt{(2764+1110)(2764+975)}} = 0.73$$

ДЛЯ ДРУГОГО КЛАСТЕРУ

$$TP = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{n_{ij} \left(n_{ij} - 1 \right)}{2} = \frac{40 \cdot 39}{2} + \frac{10 \cdot 9}{2} + \frac{5 \cdot 4}{2} + \frac{44 \cdot 43}{2} + \frac{12 \cdot 11}{2} + \frac{6 \cdot 5}{2} = 1796$$

$$FN = \sum_{j=1}^{k} \frac{m_j (m_j - 1)}{2} - TP = \frac{57(57 - 1)}{2} + \frac{60(60 - 1)}{2} - 1796 = 1570$$

$$FP = \sum_{i=1}^{r} \frac{n_i (n_i - 1)}{2} - TP = \frac{50(50 - 1)}{2} + \frac{49(49 - 1)}{2} + \frac{18(18 - 1)}{2} - TP = 2338 - 1796 = 542$$

$$TN = N - TP - FP - FN = \frac{n(n-1)}{2} - TP - FP - FN = \frac{117(117-1)}{2} - 2764 - 1110 - 975 = 4701$$

$$Jaccard = \frac{TP}{TP + FP + FN} = \frac{1796}{1796 + 1570 + 542} = 0.46$$

$$Jaccard = \frac{TP}{TP + FP + FN} = \frac{1796}{1796 + 1570 + 542} = 0.46$$

$$FM = \frac{TP}{\sqrt{(TP+FN)(TP+FP)}} = \frac{1796}{\sqrt{(1796+1570)(1796+542)}} = 0.65$$

Відповідь: характеристичні значення для першого кластеру більші, тому має більш високу якість кластерізації. Anasta