CSC209 Summer 2015 — Software Tools and Systems Programming

www.cdf.toronto.edu/~csc209h/summer/

Week 3 — May 28, 2015

Peter McCormick pdm@cs.toronto.edu

Some materials courtesy of Karen Reid

Announcements

- Assignment 1 has been posted
- Tutorial notes on <u>exploring with the shell</u> (from week 1)

Agenda

- C concepts: sizeof and address-of & operator
- The memory model of the machine
 - Processes and logical address spaces
- C address pointers
- C structures

Integer Ranges in C

Type	sizeof	Min	Max
unsigned char	1	0	255
signed char	1	-128	127
unsigned short	2	0	65535
signed short	2	-32768	32767
unsigned int	4	0	4294967295
signed int	4	-2147483648	2147483647
unsigned long	8	0	18446744073709551615
signed long	8	-9223372036854775808	9223372036854775807

- System memory is can be viewed as a sequence of bytes (8 bit values)
- Each location in that sequence (and thus its associated value) is assigned a unique address
- Each address is just a number:

A 32 bit address can give a unique address number to ~4 billion (2^32) different bytes
4294967296 bytes
~4294967 thousand bytes
~4295 million bytes
~4 billion bytes

aka ~4.29 gigabytes == 4 gibibytes (4x2^30)

- A 32-bit system can address, and thus is limited to, a maximum of 4GB of addressable system memory (RAM)
- A 64-bit system has a much higher limit (~16 billion GB worth of unique addresses, less usable in practise)
 - The CDF server Wolf is a 64-bit machine (with 64GB of physical RAM)
 - This is indicated by the string "x86_64" in the output of uname -m

- Java and Python hide (shield?) all of this from you
- C does not
- Requires maturity and diligence to handle properly

Processes & Memory

- Each process (a running program) on the system has its own isolated view of memory
- This sandbox is called a *logical* or *virtual address* space
- Logical addresses are mapped onto physical memory address by the operating system

Logical Address Space

264 **-1**

- Memory is just a sequence of bytes
- A memory location is identified by an address
- Code: machine instructions
- Static Data: global variables and constants
- Dynamic Data: space your program asks for at runtime
- Stack: local variables, function parameters and the call stack

Stack

Unused Logical Address Space

1

Dynamic Data

Static Data

Code

Logical address

Pointers

... many examples ...

Pointers & Arrays

```
ptr[i]
```

is equivalent to

```
*(ptr + i)
```

Pointers & Arrays

```
byte-address-of ptr[i]
==
(byte-address value of ptr) +
   (i * sizeof (*ptr))
```

Assignment 1

Assignment 1 Suggestions

- 1. Start now
- 2. Carefully read the assignment (ask questions now & come to office hours if you don't understand something)
- 3. Play with wc and tar on CDF
- 4. Checkout your SVN repository and add/commit empty versions of all 6 required files (across 2 directories)
- 5. Extract example from getopt(3) manage as your starting point for wc209.c
- 6. Turn your play experiences into test cases

manpage references

dirname(3)

command/function

section number

- 1. User commands
- 2. System calls
- 3. C library functions

... and more

wolf:~\$ man 3 dirname

http://man7.org/linux/man-pages/index.html

http://man7.org/linux/man-pages/man7/man-pages.7.html

vi in two minutes (1)

- vi is a text editing power tool
- Learning the basics will take only a moment and is an investment in your life/career
- Some variation of this editor will be available on practically all Unix systems (also, download <u>GVim</u> for Windows, or <u>MacVim</u> for OS X)
- Other editors (like Sublime) have Vi compatibility modes, so these skills are transferrable

vi in two minutes (2)

- Enter "vi filename" from the shell prompt to start editing filename
- Vi begins in Normal mode
- From Normal mode, type **i** to switch to *Insert mode*
 - Now type text normally and use the arrow keys to move around
 - Hit ESC to exit Insert mode and go back to Normal mode
- From Normal mode, type :w to save the file
 - Enter :q to quit
 - Enter:wq to save and quit
 - Enter:q! to quit without saving

vi in two minutes (3)

- Vi is a model editor
- Does a painter leave their paintbrush at rest on the canvas?
 - Why would your editor always be in the equivalent of Insert mode?
- Emacs is another popular and incredibly powerful editor you could check out (but I don't know anything about it)
- Learn more Normal mode commands
 - Very rich vocabulary of navigation and manipulation tools
- Ask me during lecture if you see me doing something and want to know what it was

Next Week

- Office hours on Tuesdays 2-4pm in BA3201
- Lecture: More on pointers, strings and the standard library

Labs

Last Name	Room	TA
A-H	BA2270	Daniel Kats
I-M	BA2240	Alexey Khrabrov
N-Z	BA2220	Michael Chiu Pan Zhang