Unit 061 System of Linear Differential Equations

Slide 01: In this unit, we will apply what we have studied on the eigenvalues of a matrix to solving a system of linear differential equations.

Slide 02: There are many applied problems where several quantities that we are interested in studying are varying continuously in time. These quantities are inter-related and these relationships can be represented by a system of linear differential equations like the one shown here. The quantities are represented by y_1 , y_2 and so on. Here you see that the first equation relates the first order derivative of y_1 as a function of y_1 , y_2 and so on till y_n .

(#)

We can represent the first derivatives of y_1, y_2 and so on till y_n as a matrix,

(#)

while y_1, y_2 and so on can also be represented as a matrix.

Slide 03: These variables y_1 to y_n are assumed to be differentiable functions of t. (#)

It is easy to see that the system of differential equations that we have can be represented efficiently using matrix multiplication. We first have the matrix of derivatives on the left

(#)

which is equal to a square matrix containing the coefficients of the system premultiplied to the column matrix containing the variables y_1 to y_n .

(#)

This matrix equation can be represented as Y' = AY. How do we go about solving such a system?

Slide 04: Let us consider the simplest case where n = 1. This means that there is only one variable y, whose first derivative with respect to t is some scalar multiple of y(t) itself.

(#)

A simple result from Calculus tells us that $y(t) = ce^{at}$ where c is a constant will be a solution to this differential equation since

(#)

differentiating y with respect to t gives us $y'(t) = cae^{at}$ which is equal to ay(t).

(#)

If we extend this to the case where we have more than just one variable, suppose we let \mathbf{Y} to be the following column matrix, where each component is some constant multiplied to $e^{\lambda t}$,

(#)

we can represent \boldsymbol{Y} simply as $e^{\lambda t}$ times of a column matrix \boldsymbol{x} .

(#)

Let us see if the column matrix Y is a solution to the matrix equation Y' = AY.

Slide 05: With our choice of Y, since x is a column matrix of constants, (#)

it is easy to see that Y' is just λ times $e^{\lambda t}$ times of x.

(#)

Now if we choose λ to be an eigenvalue of \boldsymbol{A} and \boldsymbol{x} be an eigenvector of \boldsymbol{A} associated with the eigenvalue λ , then we will have $\boldsymbol{A}\boldsymbol{x}=\lambda\boldsymbol{x}$.

(#)

Now if we multiply \boldsymbol{A} on both sides of the equation $\boldsymbol{Y} = e^{\lambda t} \boldsymbol{x}$, we have $\boldsymbol{A} \boldsymbol{Y} = e^{\lambda t} \boldsymbol{A} \boldsymbol{x}$

which in turn is equal to $e^{\lambda t} \lambda x$

(#)

which can be easily seen to be

(#)

the derivative Y'.

(#)

Thus our choice of $\mathbf{Y} = e^{\lambda t} \mathbf{x}$ is indeed a solution to the system of linear differential equation $\mathbf{Y'} = \mathbf{AY}$.

Slide 06: So what happens when we have more than one solution arising from different eigenvalues of A? For example, if x_1 is an eigenvector of A associated with the eigenvalue λ_1 , then we have seen that $Y_1 = e^{\lambda_1 t} x_1$ will be a solution to the system Y' = AY.

(#)

Similarly, if x_2 is another eigenvector of A associated with another eigenvalue λ_2 , then we will have another solution $y_2 = e^{\lambda_2 t} x_2$.

(#)

What about any linear combination of Y_1 and Y_2 ?

(#)

For any real numbers k_1 and k_2 , will $k_1 \mathbf{Y_1} + k_2 \mathbf{Y_2}$ also be a solution to the system $\mathbf{Y'} = \mathbf{AY}$?

Slide 07: Let's differentiate this linear combination of Y_1 and Y_2 .

(#)

We know that this gives us k_1 times the derivative of Y_1 plus k_2 times the derivative of Y_2 .

(#)

Now since Y_1 and Y_2 are both solutions to the system, we have Y_1' equal to AY_1 and Y_2' equal to AY_2 .

(#)

Factorising \boldsymbol{A} from the two terms, we have the following.

(#)

Notice that we have arrived at the conclusion that the derivative of $k_1 Y_1 + k_2 Y_2$ is equal to the pre-multiplication of A to this linear combination.

(#)

This implies that $k_1 Y_1 + k_2 Y_2$ is also a solution to the system Y' = AY.

(#)

Generalising this beyond taking linear combinations of two solutions, we now see that if Y_1 to Y_n are n solutions to the system, then any linear combination of these n solutions will also be a solution.

Slide 08: We have seen that the solution set to the system Y' = AY has the same closure property as subspaces that we are familiar with. Indeed, this solution set is a subspace of the vector space that contains all continuous vector-valued functions.

Slide 09: Let us conclude this unit with a few remarks. Recall that we wish to solve a system of linear differential equations Y' = AY. Let S be the solution set of this system.

(#)

It can shown that there always exists a fundamental set of solutions to the system.

(#)

If A is a square matrix of order n, then this fundamental set will contain n linearly independent functions. Note that in this case, the vectors are functions and not Euclidean vectors that we have mostly seen so far.

(#)

Every solution in the set S is expressed uniquely as a linear combination of these n functions in the fundamental set.

(#)

Thus, this fundamental set of solutions is precisely a basis for the solution space of the system of linear differential equations.

Slide 10: As we have a basis containing n linearly independent functions, the dimension of the solution space S is n.

(#)

When we are given a specific vector \mathbf{Y}_0 , this will allow us to identify the unique solution \mathbf{Y} from the solution space S that satisfies $\mathbf{Y}' = \mathbf{A}\mathbf{Y}$ and the initial value $\mathbf{Y}(0)$ equal to the specified vector. This class of problems are known as initial value problems and we will see some examples in subsequent units.

Slide 11: To summarise this unit,

(#)

We introduced a simple system of linear differential equations that is represented by the matrix equation Y' = AY.

(#)

Using our understanding of eigenvalues and eigenvectors, we saw how the solution set of the system can be constructed.

(#)

When \boldsymbol{A} is a square matrix of order n, this solution set is a n-dimensional vector space of functions.