TALESOVA TEOREMA

Ako paralelne prave a i b presecaju pravu p u tačkama A i B, a pravu q u tačkama A_1 i B_1 , i ako je S zajednička tačka pravih p i q, tada važi:

$$\frac{AA_1}{BB_1} = \frac{SA}{SB} = \frac{SA_1}{SB_1}$$

Na slici bi to izgledalo ovako:

Na osnosu Talesove teoreme možemo izvući jedan važan zaključak:

Ako dve proizvoljne prave p i q preseca niz paralelnih pravih, tako da su odsečci na jednoj pravoj jednaki među sobom, onda su i odsečci na drugoj pravoj međusobno jednaki:

Na **slici 1**. imamo niz paralelnih pravih koje prave jednake odsečke na Sp, to jest AB = BC = CD = DE. Onda su i odsečci, po Talesovoj teoremi, na Sq takodje jednaki : $A_1B_1 = B_1C_1 = C_1D_1 = D_1E_1$ (**slika 2**.)

Ovaj zaključak se direktno primenjuje kod podele duži na jednake delove .

Primer 1. Datu duž AB podeliti na pet jednakih delova.

<u>Rešenje</u>

Uzmemo proizvoljnu duž AB:

Iz tačke A nanesemo polupravu Ap (na bilo koju stranu) i na njoj proizvoljnim otvorom šestara nanesemo 5 jednakih duži.

Zadnju nanesenu crtku (podebljana na slici) , spojimo sa tačkom B.

Paralelno sa ovom pravom kroz crtice na Ap nanosimo prave:

Ovim je data duž podeljena na 5 jednakih delova.

Sličan postupak bi bio i da smo duž trebali podeliti na više delova...

Primer 2. Datu duž MN podeliti u razmeri 5:2.

Rešenje

Kad nam traže da duž podelimo u nekoj razmeri, mi najpre saberemo sve delove: 5+2=7. Dakle , kao da delimo duž na 7 jednakih delova:

Naneli smo polupravu *Mp* i na njoj proizvoljnim otvorom šestara naneli 7 jednakih duži. Spojićemo tačku N i zadnju crtku, a zatim idemo sa paralelnim pravama...

Dakle, podelili smo duž MN na 7 jednakih delova. Jednostavno prebrojimo 5 dela i tu stavimo tačku, recimo S.

Sigurni smo da važi: MS:SN = 5:2

Primer 3.

Date su proizvoljne duži a,b i c. Konstruisati duž x tako da važi: a:b=c:x

<u>Rešenje</u>

Kod ovakvih zadataka se direktno primenjuje Talesova teorema. Važno je da u proporciji x bude na zadnjem mestu, što je u ovom slučaju zadovoljeno(inače bi morali da pretumbamo proporciju i da napravimo da x bude na zadnjem mestu...)

Uzmimo najpre tri proizvoljne duži:

Nacrtamo proizvoljan konveksan (najbolje oštar) ugao pOq i nanesemo redom:

Na Op nanesemo duž a, na Oq nanesemo duž b, pa na Op u produžetku nanesemo duž c. Na ovaj način mi ustvari pratimo zadatu razmeru: a:b=c:x. Spojimo tačke gde se završavaju duži a i b jednom pravom i povučemo paralelu sa njom iz tačke gde se završava duž c. **Dobili smo traženu duž** x.

Primer 4. Date su proizvoljne duži a i b . Konstruisati sledeće duži:

i) $x = a \cdot b$

$$ii) x = \frac{a}{b}$$

iii)
$$x = a^2$$

Rešenje

i)
$$x = a \cdot b$$

Odavde moramo da napravimo proporciju, ali tako da x bude na zadnjem mestu.

kod x najpre dodamo 1 $x = a \cdot b$

 $1 \cdot x = a \cdot b$ x treba da je na zadnjem mestu, a to nam govori da je 1 na prvom

|1:a=b:x|

Iskoristili smo dakle osobinu proporcije da se množe spoljašnji sa spoljašnjim a unutrašnji sa unutrašnjim članovima proporcije. Dalje radimo kao i u prethodnom primeru:

Uzmemo proizvoljne duži a i b. Nanesemo jediničnu duž (recimo 1 cm ili koliko vi odaberete...) na polupravu Oq zatim duž a na polupravu Oq i nakraju duž b na polupravu Op, tamo gde se završava jedinična duž. (slika 1.)

Spojimo završetke *jedinične duži* i duži *a* jednom pravom.(slika 2.)

Povučemo paralelu sa ovom pravom ali tako da ona prolazi kroz završetak duži b. Na polupravi Oq smo dobili tu traženu duž x kojoj odgovara jednakost $x = a \cdot b$ (slika 3.)

ii)
$$x = \frac{a}{b}$$

Da napravimo proporciju u kojoj je x na zadnjem mestu...

$$x = \frac{a}{b}$$

$$\frac{x}{1} = \frac{a}{b} \to x \cdot b = 1 \cdot a \to \boxed{b : a = 1 : x}$$

iii)
$$x = a^2$$

Da napravimo proporciju u kojoj je x na zadnjem mestu...

$$x = a^{2}$$

$$1 \cdot x = a \cdot a$$

$$1 : a = a : x$$

Primer 5.

Data je prava i na njoj tačke A i B. Odrediti tačku P koja duž AB deli u razmeri dveju datih duži m i n.

<u>Rešenje</u>

Izaberemo najpre proizvoljne duži m i n.

Dalje nacrtamo pravu sa tačkama A i B.

Å B

Nacrtamo proizvoljnu polupravu Aa i na nju nanesemo dužinu *m*.

Dalje povučemo paralelu sa ovom polupravom kroz tačku B (slika 1.)

Na ovoj pravoj nanesemo dužine duži n (iz tačke B) na obe strane. Imamo dakle tačke N i N_1 . (slika 2.)

Spojimo tačke N i N_1 sa tačkom M i dobijamo mesta preseka sa pravom AB , to jest tačke P i P_1 .

Dakle dobili smo dva rešenja i oba su dobra , al se matematički kaže da tačka P deli duž AB unutrašnjom , a tačka P_1 spoljašnjom podelom u razmeri m:n.