第二章 关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 *关系演算
- 2.6 小结

2.4 关系代数

- 关系代数是一种抽象的查询语言,它用对关系的运算来表达查询
- •关系代数
 - ▶运算对象是关系
 - ▶运算结果亦为关系
 - ▶ 关系代数的运算符有两类:集合运算符和专门的关系运算符
- ●传统的集合运算是从关系的"水平"方向即行的角度进行
- 专门的关系运算不仅涉及行而且涉及列

2.4 关系代数 (续)

表2.4-2.5 关系代数与条件表达式运算符

运算符		含义	运算符		含义
集合运算符	U -	并 差 交 广义笛卡尔积	比较运算符	> ∧	大于等于 大于等于 小于等于 等于 不等于

2.4 关系代数 (续)

表2.4-2.5 关系代数与条件表达式运算符

运算符		含义	运第	直符	含义
算符 专门的关系运	σ π ÷ 🔀	选 投 除 连 接	逻辑运算符	Γ < >	非与或

2.4 关系代数

- 2.4.1 传统的集合运算
- 2.4.2 专门的关系运算

(1) 并 (Union)

- ●R和S
 - \rightarrow 具有相同的目n(即两个关系都有n个属性)
 - >相应的属性取自同一个域

$R \cup S$

▶仍为n目关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

(1) 并(续)

R

			$\mathbf{p} + \mathbf{c}$		
Α	В	С	$R \cup S$		
a1	b1	c1	Α	В	С
a1	b2	c2	a1	b1	c1
a2	b2	c1	a1	b2	c2
			1		
\boldsymbol{S}			a2	b2	c1
A	В	C	a1	b3	c2
a1	b2	c2			
a1	b 3	c2 /			
a2	b2	c1 /			

(2) 差 (Difference)

- ●R和S
 - ▶具有相同的目n
 - >相应的属性取自同一个域

 $\bullet R - S$

并不要求S是R的子集

 \triangleright 仍为n目关系,由属于R而不属于S的所有元组组成

$$R - S = \{ t | t \in R \land t \notin S \}$$

(2) 差(续)

R

			D C		
A	В	С	R-S		
_ a1	b1	c1	Α	В	С
a1	b2	c2	a1	b1	c1 ¦
_a2	b2	c1			'
		\			
\boldsymbol{S}					
Α	В	С			
a1	b2	c2 /			
a1	b3	c2			
_a2	b2	c1			

(3) 交 (Intersection)

- ●R和S
 - ▶具有相同的目n
 - >相应的属性取自同一个域

- $-R\cap S$
 - ▶仍为n目关系,由既属于R又属于S的元组组成 $R \cap S = \{ t | t \in R \land t \in S \}$ $R \cap S = R (R S)$

(3) 交 (Intersection) (续)

_	_
7	
	~
	м.
-	

			$R \cap S$		
Α	В	С	K I I S		
a1	b1	c1	Α	В	С
a1	b2	c2	a1	b2	c2
a2	b2	c1	a2	b2	c1
			/ UZ	N Z	
S					
S A	В	C			
	B b2	C c2			
Α					

(4) 笛卡儿积 (Cartesian Product)

●严格地讲应该是广义的笛卡儿积(Extended Cartesian Product)

 $\bullet R: n$ 目关系, k_1 个元组

 $\bullet S: m$ 目关系, k_2 个元组

- $\bullet R \times S$
 - \triangleright 列: (n+m) 列元组的集合
 - ✓元组的前n列是关系R的一个元组
 - ✓后m列是关系S的一个元组
 - \succ 行: $k_1 \times k_2$ 个元组
 - $\checkmark R \times S = \{ \overrightarrow{t_r} \overrightarrow{t_s} | t_r \in R \land t_s \in S \}$

(4) 笛卡儿积 (续)

R

Α	В	С
a1	b1	c1
a1	b2	c2
a2	b2	c1

S

Α	В	С
a1	b2	c2
a1	b3	c2
a2	b2	c1

 $R \times S$

R.A	R.B	R.C	S.A	S.B	S.C
a1	b1	c1	a1	b2	c2
a1	b1	c1	a1	b3	c2
a1	b1	c1	a2	b2	c1
a1	b2	c2	a1	b2	c2
a1	b2	c2	a1	b 3	c2
a1	b2	c2	a2	b2	c1
a2	b2	c1	a1	b2	c2
a2	b2	c1	a1	b3	c2
a2	b2	c1	a2	b2	c1

2.4 关系代数

- 2.4.1 传统的集合运算
- 2.4.2 专门的关系运算

2.4.2 专门的关系运算

先引入几个记号

 $(1) R, t \in R, t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

 $t \in R$ 表示t是R的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], \overline{A}

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_1, A_2, ..., A_n$ 中的一部分,则A称为属性列或属性组。

 $t[A]=(t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

 \overline{A} 则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。

例子

• 例:

关系R(学号,姓名,性别,年龄,所在系)

$$(3)$$
 $t_r t_s$

R为n目关系,S为m目关系。

 $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

 $t_r t_s$ 是一个n + m列的元组,前n个分量为R中的

一个n元组,后m个分量为S中的一个m元组。

例:元组的连接

学生 R (学号, 姓名, 性别, 专业号, 年龄) 专业S (专业号, 专业名)

	学号	姓名	性别	专业号	年龄	<u> </u>	专业号		专业名	
	801	张三	女	01	19		01		信息	 $t_{\rm s}$
	802	李四	男	01	20		02		数学	
	803	王五	男	01	20		į			
t_r	804	赵六	女		20	ļ	03 /		计算机	
	805	钱七	男	02	19					
		,							,	
	$t_r t_s$		804	赵六	女	02	20	01	信息	
				. – – – – –						

(4) 象集 Z_x

给定一个关系R(X, Z),X和Z为属性组。

当t[X]=x时,x在R中的象集(Images Set)为:

 $Z_{x} = \{t[Z] | t \in R, t[X] = x\}$

它表示R中属性组X上值为x的诸元组在Z上分量的 集合

R

x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

象集举例

 $\bullet x_1$ 在R中的象集

$$Z_{x1} = \{Z_1, Z_2, Z_3\},$$

 $-x_2$ 在R中的象集

$$Z_{x2} = \{Z_2, Z_3\},$$

 $\bullet x_3$ 在R中的象集

$$Z_{x3} = \{Z_1, Z_3\}$$

- 1) 选择
- 2) 投影
- 3) 连接
- 4) 除运算

学生-课程数据库:

学生关系Student、课程关系Course和选修关系SC

P52

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

(a)

Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

1) 选择 (Selection)

- ●选择又称为限制(Restriction)
- ●选择运算符的含义
 - ▶在关系R中选择满足给定条件的诸元组

$$\sigma_{F}(R) = \{t | t \in R \land F(t) = '\dot{\underline{A}}'\}$$

- ▶F: 选择条件,是一个逻辑表达式,取值为"真"或"假"
 - \checkmark 基本形式为: $X_1\theta Y_1$
 - **√**θ表示比较运算符,它可以是>,≥,<,≤,=或<>
 - \checkmark 例子—— $F: X_1\theta Y_1 \wedge X_2\theta Y_2 \vee (\neg X_3\theta Y_3):$

选择年龄大于15岁的男性同学和年龄不等于17岁的女性同学 (age>15 \(\rightarrow\)Ssex='男')\(\rightarrow\) (age<>17 \(\rightarrow\)Ssex='女')

1)选择(续)

•选择运算是从关系R中选取使逻辑表达式F为真的元组,是从行的角度进行的运算

1) 选择(续)

[例2.4-1] 查询信息系(IS系)全体学生。

$$\sigma_{Sdept = 'IS'}(Student)$$

结果:

Sno	Sname	Ssex	Sage	Sdept
20121512	张立	男	19	IS
5				

[例2.4-2] 查询信息系(IS系)且性别为男性的全体学生。

$$\sigma_{Ssex=', NSdept = 'IS'}$$
 (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
20121512	张立	男	19	IS
5				

1)选择(续)

[例2.5] 查询年龄小于20岁的学生。

$$\sigma_{Sage\,<\,20}(Student)$$

结果:

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女	19	IS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

2) 投影 (Projection)

● 从R中选择出若干属性列组成新的关系

$$\Pi_A(R) = \{ t[A] \mid t \in R \}$$
 $A: R$ 中的属性列

● 投影操作主要是从列的角度进行运算

投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组(避免重复行)

2) 投影(续)

[例2.6] 查询学生的姓名和所在系。

即求Student关系上学生姓名和所在系两个属性上的投影

 $\prod_{Sname,Sdept}(Student)$

结果:

Sname	Sdept
李勇	CS
刘晨	CS
王敏	MA
张立	IS

如果原Student表中有两位同学都叫李勇,但学号不一样,且都来自CS系,请问该题的结果还是原答案么?

2) 投影(续)

[例2.7] 查询学生关系Student中都有哪些系。

 $\Pi_{Sdept}(Student)$

结果:

Sdept
CS
IS
MA

3) 连接(Join)

- ●连接也称为θ连接
- ●连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组 $R \stackrel{\bowtie}{A\theta B} S = \{ \stackrel{t_r t_s}{t_r} | t_r \in R \land t_s \in S \land t_r[A]\theta t_s[B] \}$

- \checkmark A和B: 分别为R和S上列数相等且可比的属性组
- ✓ θ: 比较运算符
- ▶连接运算从R和S的广义笛卡尔积R×S中选取A属性组 (R关系)上的值与B属性组(S关系)上的值满足比较 关系θ的元组

3) 连接(续)

- ●两类常用连接运算
 - ▶等值连接 (equijoin)
 - ●θ为"="的连接运算称为等值连接
 - •从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组,即等值连接为:

$$R \underset{A=B}{\bowtie} S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

3) 连接(续)

- ▶自然连接(Natural join)
 - ●定义: 自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组
 - 产在结果中把重复的属性列去掉
 - ●自然连接的含义

R和S具有相同的属性组B,U为R和S的全体属性集合 $R \bowtie S = \{ \widehat{t_r t_s} [U-B] \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$

3) 连接(续)

一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

[例2.8] 关系R和关系S 如下所示:

 \boldsymbol{R}

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b 4	12

S

В	E
b1	3
b2	7
b3	10
b3	2
b5	2

一般连接 $R \underset{C \le E}{\bowtie} S$ 的结果如下:

Α	R.B	С	S.B	E
a1	b1	5	b2	7
a1	b1	5	b3	10
a1	b2	6	b2	7
a1	b2	6	b3	10
a2	b3	8	b3	10

等值连接 $R \bowtie S$ 的结果如下: R.B=S.B

Α	R.B	С	S.B	E
a1	b1	5	b1	3
a1	b2	6	b2	7
a2	b3	8	b3	10
a2	b3	8	b3	2

自然连接 $R \bowtie S$ 的结果如下:

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2

- ●悬浮元组(Dangling tuple)
 - ▶两个关系*R*和*S*在做自然连接时,关系*R*中某些元组有可能在*S*中不存在公共属性上值相等的元组,从而造成*R*中这些元组在操作时被舍弃了,这些被舍弃的元组称为悬浮元组。

- ●外连接(Outer Join)
 - ▶如果把悬浮元组也保存在结果关系中,而在其他 属性上填空值(Null),就叫做**外连接**
 - ➤左外连接(LEFT OUTER JOIN或LEFT JOIN)
 - ✓只保留左边关系R中的悬浮元组
 - ▶右外连接(RIGHT OUTER JOIN或RIGHT JOIN)
 - ✓只保留右边关系S中的悬浮元组

下图是例2.8中关系*R*和关系*S*的外连接

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
a2	b4	12	NULL
NULL	b5	NULL	2

图(b)是例2.8中关系R和关系S的左外连接,图(c)是右外连接

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b 3	8	2
a2	b4	12	NULL

图(b) 左外连接

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
NULL	b5	NULL	2

图(c) 右外链接

4)除(Division)

要求:给定关系R(X, Y)和S(Y, Z),其中X, Y, Z为属性组。

R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。

R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列上的投影:

元组在X上分量值x的象集Y,包含 S在Y上投影的集合。

$$R \div S = \{t_r[X] \mid t_r \in R \land \prod_Y (S) \subseteq Y_X \}$$

 Y_x : x在R中的象集, $x = t_r[X]$

R中,给定x,所有可能出现的y的集合

S中,所有可能出现的y的集合

4) 除(续)

[例2.9]

7	Γ	T
4	٦	٢
L	. 1	1

A	(B)	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	\boldsymbol{b}_2	c_3
a_4	b_6	c_6
a_2	\boldsymbol{b}_2	c_3
a_1	b_2^-	c_1

B	C) D
b_1	c_2	$\mid d_1 \mid$
b_2	c_1	d_1
b_2	c_3	d_2

R(X, Y)和S(Y, Z)在本例中什么是Y?

$$R \div S = ?$$

分析:

```
在关系R中,A可以取四个值\{a_1, a_2, a_3, a_4\} a_1的象集为\{(b_1, c_2), (b_2, c_3), (b_2, c_1)\} a_2的象集为\{(b_3, c_7), (b_2, c_3)\} a_3的象集为\{(b_4, c_6)\} a_4的象集为\{(b_6, c_6)\} S在(B, C)上的投影为
```

$$\{(b_1, c_2), (b_2, c_1), (b_2, c_3)\}$$

只有 a_1 的象集包含了S在(B, C)属性组上的投影

所以
$$R \div S = \{a_1\}$$

思考: 1. 如果
$$a_1$$
的象集为 $\{(b_1, c_2), (b_2, c_3), (b_2, c_1), (b_4, c_6)\},$ 该题结果变化么?还是 a_1 么?

2. S中可不可以没有属性Z?

除的另一个例子

Α	В	С	D	Е
a1	b1	5	d1	3
a1	b1	5	d2	7
a1	b2	5	d3	10
a2	b3	5	d3	2
a4	b5	6	d2	7
a4	b5	6	d3	10
a4	b5	6	d3	2
a6	b6	6	d5	2

什么是Y?

除的另一个例子(续)

 $(\underline{\mathbf{A}},\underline{\mathbf{B}})$ (C

(C, D, E)

Α	В	С	D	Е
a1	b1	5	d1	3
a1	b1	5	d2	7
a1	b2	5	d3	10
a2	b3	5	d3	2
a4	b5	6	d2	7
a4	b5	6	d3	10
a4	b5	6	d3	2
a6	b6	6	d5	2

(a1,b1)的象集 ——

С	D	E
5	d1	3
5	d2	7

(a1,b2)的象集 -

С	D	Ш
5	d3	10

(a4,b5)的象集 ——

(a2, b3),

(a6, b6)的象集?

С	D	Е
6	d2	7
6	d3	10
6	d3	2

A	В	С	D	Е
a1	b1	5	d1	3
a1	b1	5	d2	7
a1	b2	5	d3	10
a2	b3	5	d3	2
a4	b5	6	d2	7
a4	b5	6	d3	10
a4	b5	6	d3	2
a6	b6	6	d5	2

R上分量值X 的象集 Y_x 包含S在Y上的投影

С	D	E	П		(a4	,b5)
6	d2	7	fa	=	A	В
6	d3	10	fb		a4	b5
6	d3	2	fc			

除运算(续)

●除操作是同时从行和列角度进行运算

综合举例

以学生-课程数据库为例

[例2.10] 查询至少选修1号课程和3号课程的学生号码。

首先建立一个临时关系K:

Cno	
1	
3	

然后求: $\prod_{\text{Sno,Cno}}(SC) \div K$

综合举例(续)

[例2.10]续

$$\prod_{Sno,Cno}(SC)$$

201215121象集{1, 2, 3}

201215122象集{2, 3}

$$K = \{1, 3\}$$

于是:

$$\prod_{\text{Sno,Cno}} (\text{SC}) \div K = \{201215121\}$$

Sno	Cno
201215121	1
201215121	2
201215121	3
201215122	2
201215122	3

综合举例(续)

[例2.11] 查询选修了2号课程的学生的学号。P52 图2.4

$$\prod_{Sno}(\sigma_{Cno=2}(SC))=\{201215121, 201215122\}$$

[例2.12] 查询至少选修了一门其直接先行课为5号课程的学生姓名

$$\prod_{Sname} (\sigma_{Cpno='5}, (Course) \bowtie SC \bowtie \prod_{Sno,Sname} (Student))$$

或
$$\prod_{Sname} (\sigma_{Cpno='5'}(Course \bowtie SC \bowtie Student))$$

或
$$\prod_{Sname} (\prod_{Sno} (\sigma_{Cpno='5'}(Course) \bowtie SC) \bowtie \prod_{Sno,Sname} (Student))$$

[例2.13] 查询选修了全部课程的学生号码和姓名。

$$\prod_{Sno,Cno}(SC) \div \prod_{Cno}(Course) \bowtie \prod_{Sno,Sname}(Student)$$

课堂练习

●查询选修了全部直接先行课为6号课程的学生 姓名

$$\prod_{\text{Sname}} ((\prod_{\text{Sno,Cno}} (SC) \div \prod_{\text{Cno}} (\sigma_{\text{Cpno='6'}}(\text{Course}))) \bowtie \text{Student})$$

小结

- 关系代数运算
 - > 关系代数运算
 - ✓并、差、交、笛卡尔积、投影、选择、连接、除
 - **基本运算**
 - ✓并、差、笛卡尔积、投影、选择
 - 交、连接、除
 - ✓可以用5种基本运算来表达
 - ✓ 引进它们并不增加语言的能力,但可以简化表达

- 关系代数表达式
 - > 关系代数运算经有限次复合后形成的式子

- •典型关系代数语言
 - ➤ ISBL (Information System Base Language)
 - ✓由IBM United Kingdom研究中心研制
 - ✓用于PRTV(Peterlee Relational Test Vehicle)实验系统

第二章 关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 *关系演算
- 2.6 小结

2.6 小结

- 关系数据库系统是目前使用最广泛的数据库系统
- ●关系数据库系统与非关系数据库系统的区别:
 - ▶关系系统只有"表"这一种数据结构
 - ▶非关系数据库系统还有其他数据结构,以及对这些数据结构的操作

- 关系数据结构
 - > 关系
 - ✓域
 - ✓笛卡尔积
 - ✓关系
 - 关系,属性,元组
 - 候选码, 主码, 主属性
 - •基本关系的性质
 - > 关系模式
 - > 关系数据库
 - > 关系模型的存储结构

- 关系操作
 - ▶查询
 - ✓选择、投影、连接、除、并、交、差
 - > 数据更新
 - ✓插入、删除、修改

- 关系的完整性约束
 - >实体完整性
 - > 参照完整性
 - ✓ 外码
 - 》用户定义的完整性

- 关系数据语言
 - > 关系代数语言
 - > 关系演算语言
 - ✓元组关系演算语言 ALPHA
 - ✓域关系演算语言 QBE