Chương 2: ĐẠI SỐ BOOLE - CỔNG LOGIC

I. Cấu trúc đại số Boole:

Là cấu trúc đại số được định nghĩa trên 1 tập phần tử nhị phân $B = \{0, 1\}$ và các phép toán nhị phân: AND (.), OR (+), NOT (').

X	y	$x \cdot y (x AND y)$
0	0	0
0	1	0
1	0	0
1	1	1

X	y	x + y (x OR y)
0	0	0
0	1	1
1	0	1
1	1	1

X	x' (NOT x, \overline{x})
0	1
1	0

* Thứ tự phép toán: theo thứ tự dấu ngoặc (), NOT, AND, OR

1. Các tiên đề (Axioms):

a. Tính kín (Closure Property)

b. Phần tử đồng nhất (Identity Element):

$$x \cdot 1 = 1 \cdot x = x$$
$$x + 0 = 0 + x = x$$

c. Tính giao hoán (Commutative Property):

$$x \cdot y = y \cdot x$$
$$x + y = y + x$$

d. Tính phân bố (Distributive Property):

$$x.(y+z) = x.y + x.z$$

 $x+(y.z) = (x+y).(x+z)$

e. Phần tử bù (Complement Element):

$$x + \overline{x} = 1$$

$$x.\overline{x}=0$$

2. Các định lý cơ bản (Basic Theorems):

$$\overline{\overline{x}} = x$$

$$x + x = x$$
 $x \cdot x = x$

$$x \cdot x = x$$

$$x+1 = 1$$

$$x.0 = 0$$

d. Định lý 4: định lý hấp thu (Absorption)

$$x + x \cdot y = x$$

$$x \cdot (x + y) = x$$

e. Định lý 5: định lý kết hợp (Associative)

$$x + (y + z) = (x + y) + z$$
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

f. Định lý 6: định lý De Morgan

$$\overline{x + y} = \overline{x} \cdot \overline{y}$$
 $\overline{x \cdot y} = \overline{x} + \overline{y}$

$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

$$\overline{x_1 + x_2 + ... + x_n} = \overline{x_1} \cdot \overline{x_2} \cdot ... \overline{x_n}$$

$$\overline{\mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \cdot \cdot \mathbf{x}_n} = \overline{\mathbf{x}_1} + \overline{\mathbf{x}_2} + \cdot \cdot + \overline{\mathbf{x}_n} \quad 3$$

II. Hàm Boole (Boolean Function):

1. Định nghĩa:

* Hàm Boole là 1 biểu thức được tạo bởi các biến nhị phân và các phép toán nhị phân NOT, AND, OR.

$$F(x, y, z) = x \cdot y + \overline{x} \cdot \overline{y} \cdot z$$

- * Với giá trị cho trước của các biến, hàm Boole sẽ có giá trị là 0 hoặc 1.
- * Bảng giá trị:

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

2. Bù của 1 hàm:

- Sử dụng định lý De Morgan:

$$F = x \cdot y + \overline{x} \cdot \overline{y} \cdot z$$

$$\overline{F} = \overline{x \cdot y + \overline{x} \cdot \overline{y} \cdot z}$$

$$= (x \cdot y) \cdot (\overline{x} \cdot \overline{y} \cdot z)$$

$$\overline{F} = (\overline{x} + \overline{y}) \cdot (x + y + \overline{z})$$

- Lấy biểu thức đối ngẫu và lấy bù các biến:
 - * Tính đối ngẫu (Duality): Hai biểu thức được gọi là đối ngẫu của nhau khi ta thay phép toán AND bằng OR, phép toán OR bằng AND, 0 thành 1 và 1 thành 0.

$$F = x \cdot y + \overline{x} \cdot \overline{y} \cdot z$$

Lấy đối ngẫu: (x + y). $(\overline{x} + \overline{y} + z)$

Bù các biến: $\overline{F} = (\overline{x} + \overline{y}) \cdot (x + y + \overline{z})$

III. Dạng chính tắc và dạng chuẩn của hàm Boole:

- 1. Các tích chuẩn (minterm) và tổng chuẩn (Maxterm):
 - <u>Tích chuẩn (minterm)</u>: m_i ($0 \le i \le 2^n$ -1) là các số hạng tích (AND) của n biến mà hàm Boole phụ thuộc với quy ước biến đó có bù nếu nó là 0 và không bù nếu là 1.
 - $\underline{\textit{Tổng chuẩn (Maxterm):}}\ M_i\ (0 \le i \le 2^n\text{-}1)$ là các số hạng tổng (OR) của n biến mà hàm Boole phụ thuộc với quy ước biến đó có bù nếu nó là 1 và không bù nếu là 0.

хуг	minterm	Maxterm
0 0 0	$m_0 = \overline{x} \ \overline{y} \ \overline{z}$	$M_0 = x + y + z$
0 0 1	$m_1 = \overline{x} \overline{y} z$	$M_I = x + y + \overline{z}$
0 1 0	$m_2 = \overline{x} \ y \ \overline{z}$	$M_2 = x + \overline{y} + z$
0 1 1	$m_3 = \overline{x} \ y \ z$	$M_3 = x + \overline{y} + \overline{z}$
1 0 0	$m_4 = x \overline{y} \overline{z}$	$M_4 = \overline{x} + y + z$
1 0 1	$m_5 = x \overline{y} z$	$M_5 = \overline{x} + y + \overline{z}$
1 1 0	$m_6 = x \ y \ \overline{z}$	$M_6 = \overline{x} + \overline{y} + z$
1 1 1	$m_7 = x y z$	$M_7 = \overline{x} + \overline{y} + \overline{z}$

$$m_i = \overline{M_i}$$

6

2. Dạng chính tắc (Canonical Form):

a. Dạng chính tắc 1:

là dạng tổng của các tích chuẩn (minterm) làm cho hàm Boole có giá trị 1

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
-			

$$F(x, y, z) = \overline{x} \overline{y} z + \overline{x} y \overline{z} + x \overline{y} z + x y \overline{z} + x y z$$

$$= m_1 + m_2 + m_5 + m_6 + m_7$$

$$= \Sigma m(1, 2, 5, 6, 7)$$

$$= \Sigma (1, 2, 5, 6, 7)$$

$$F(x, y, z) = (x + y + z) (x + \overline{y} + \overline{z}) (\overline{x} + y + z)$$

$$= M_0 \cdot M_3 \cdot M_4$$

$$= \Pi M(0, 3, 4) = \Pi(0, 3, 4)$$

b. Dạng chính tắc 2:

là dạng tích của các tổng chuẩn (Maxterm) làm cho hàm Boole có giá trị 0

* Trường hợp hàm Boole tùy định (don't care):

Hàm Boole n biến có thể không được định nghĩa hết tất cả 2ⁿ tổ hợp của n biến phụ thuộc. Khi đó tại các tổ hợp không sử dụng này, hàm Boole sẽ nhận giá trị tùy định (don't care), nghĩa là hàm Boole có thể nhận giá tri 0 hoặc 1.

x y z	\mathbf{F}
0 0 0	X
0 0 1	1
0 1 0	1
0 1 1	0
1 0 0	0
1 0 1	1
1 1 0	1
1 1 1	X

$$F(x, y, z) = \Sigma(1, 2, 5, 6) + d(0, 7)$$
$$= \Pi(3, 4) \cdot D(0, 7)$$

3. Dạng chuẩn (Standard Form):

a. Dang chuẩn 1:

là dạng tổng các tích (S.O.P – Sum of Product)

$$F(x, y, z) = xy + z$$

$$= xy(\overline{z} + z) + (\overline{x} + x)(\overline{y} + y)z$$

$$= xy\overline{z} + xyz + \overline{x}\overline{y}z + \overline{x}yz + x\overline{y}z + xyz$$

$$= m_6 + m_7 + m_1 + m_5 + m_3$$

$$= \Sigma(1, 3, 5, 6, 7)$$

$$* F(x, y, z) = xy + z$$

$$= (x + z)(y + z)$$

$$= (x + \overline{y}y + z)(\overline{x}x + y + z)$$

$$= (x + \overline{y} + z)(x + y + z)(\overline{x} + y + z)(x + y + z)$$

$$= M_2 \cdot M_0 \cdot M_4$$

$$= \Pi(0, 2, 4)$$

b. Dạng chuẩn 2:

là dạng tích các tổng (P.O.S – Product of Sum)

$$F(x, y, z) = (x + \overline{z}) \overline{y}$$

$$* F(x, y, z) = (x + \overline{z}) \overline{y} = x \overline{y} + \overline{y} \overline{z}$$

$$= x \overline{y} (\overline{z} + z) + (\overline{x} + x) \overline{y} \overline{z}$$

$$= x \overline{y} \overline{z} + x \overline{y} z + \overline{x} \overline{y} \overline{z} + x \overline{y} \overline{z}$$

$$= m_4 + m_5 + m_0$$

$$= \Sigma(0, 4, 5)$$

$$* F(x, y, z) = (x + \overline{z}) \overline{y}$$

$$= (x + \overline{y} y + \overline{z}) (\overline{x} x + \overline{y} + \overline{z} z)$$

$$= (x + \overline{y} + \overline{z}) (x + y + \overline{z})$$

$$(\overline{x} + \overline{y} + \overline{z}) (x + y + \overline{z})$$

$$= M_3 \cdot M_1 \cdot M_7 \cdot M_6 \cdot M_2$$

$$= M(1, 2, 3, 6, 7)$$

15

V. Rút gọn hàm Boole:

Rút gọn (tối thiểu hóa) hàm Boole nghĩa là đưa hàm Boole về dạng biểu diễn đơn giản nhất, sao cho:

- Biểu thức có chứa ít nhất các thừa số và mỗi thừa số chứa ít nhất các biến.
- Mạch logic thực hiện có chứa ít nhất các vi mạch số.

1. Phương pháp đại số:

Dùng các định lý và tiên đề để rút gọn hàm.

$$F(A, B, C) = \Sigma(2, 3, 5, 6, 7)$$

$$= \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$= \overline{A}B(\overline{C} + C) + AC(\overline{B} + B) + AB(\overline{C} + C)$$

$$= \overline{A}B + AC + AB$$

$$= (\overline{A} + A)B + AC$$

$$= B + AC$$

2. Phương pháp bìa KARNAUGH:

a. Cách biểu diễn:

- Bìa K gồm các ô vuông, mỗi ô vuông biểu diễn cho tổ hợp n biến. Như vậy bìa K cho n biến sẽ có 2^n ô.
- Hai ô được gọi là kề cận nhau khi tổ hợp biến mà chúng biểu diễn chỉ khác nhau 1 biến.
- Trong ô sẽ ghi giá trị tương ứng của hàm Boole tại tổ hợp đó. $\mathring{\mathcal{O}}$ dạng chính tắc 1 thì đưa các giá trị 1 và X lên các ô, không đưa các giá trị 0. Ngược lại, dạng chính tắc 2 thì chỉ đưa giá trị 0 và X.

b. Rút gọn bìa Karnaugh:

* Nguyên tắc:

- Liên kết đôi: Khi liên kết (OR) hai ô có giá trị 1 (Ô_1) kề cận với nhau trên bìa K, ta sẽ được 1 số hạng tích mất đi 1 biến so với tích chuẩn (biến mất đi là biến khác nhau giữa 2 ô) Hoặc khi liên kết (AND) hai ô có giá trị 0 (Ô_0) kề cận với nhau trên bìa K, ta sẽ được 1 số hạng tổng mất đi 1 biến so với tổng chuẩn (biến mất đi là biến khác nhau giữa 2 ô).

19

- Liên kết 4: Tương tự như liên kết đôi khi liên kết 4 \hat{O}_1 hoặc 4 \hat{O}_0 kề cận với nhau, ta sẽ loại đi được 2 biến (2 biến khác nhau giữa 4 \hat{o})

