How neural networks work

Brandon Rohrer

A four pixel camera

Categorize images

vertical

diagonal

Categorize images solid vertical diagonal horizontal

Categorize images

solid

vertical

diagonal

Categorize images

solid

vertical

diagonal

Simple rules can't do it

solid

vertical

diagonal

Simple rules can't do it

solid

Input neurons

Pixel brightness

Input vector

Receptive fields

A neuron

Sum all the inputs

Weights

Weights

Weights

Squash the result

No matter what you start with, the answer stays between -1 and 1.

Squash the result

Weighted sum-and-squash neuron

Make lots of neurons, identical except for weights

To keep our picture clear, weights will either be 1.0 (white)

-1.0 (black) or 0.0 (missing)

Receptive fields get more complex

Receptive fields get more complex

Receptive fields get more complex

Repeat for additional layers

Receptive fields get still more complex

truth 0.

solid

0.

vertical

0.

diagonal

horizontal

-.75

0.

.75

0.

-.25

1.

-.75

error .5

truth 0.

answer .5

solid

.75

0.

.75

vertical

.25

0.

-.25

horizontal

3.25

1.75

-.75

Learn all the weights: Gradient descent

Learn all the weights: Gradient descent

Learn all the weights: Gradient descent

Numerically calculating the gradient is expensive

Numerically calculating the gradient is very expensive

Calculate the gradient (slope) directly

slope = change in error change in weight

slope

change in error

change in weight

slope

= change in error

change in weight

You have to know your error function. For example:

You have to know your error function. For example:

You have to know your error function. For example:

$$y = x * W_1$$

$$y = x * w_1$$

$$\frac{\partial y}{\partial w_1} = x$$

$$y = x * W_1$$

$$\frac{\partial y}{\partial W_1} = x$$

$$e = y * W_2$$

$$\frac{\partial e}{\partial y} = W_2$$

$$y = x * W_1$$

$$\frac{\partial y}{\partial W_1} = x$$

$$e = y * W_2$$

$$\frac{\partial e}{\partial y} = W_2$$

$$e = x * W_1 * W_2$$

$$\frac{\partial e}{\partial W_1} = x * W_2$$

$$y = x * W_{1}$$

$$\frac{\partial y}{\partial W_{1}} = X$$

$$e = y * W_{2}$$

$$\frac{\partial e}{\partial y} = W_{2}$$

$$\frac{\partial e}{\partial W_{1}} = x * W_{1} * W_{2}$$

$$\frac{\partial e}{\partial W_{1}} = x * W_{2}$$

$$y = x * W_{1}$$

$$\frac{\partial y}{\partial W_{1}} = x$$

$$e = y * W_{2}$$

$$\frac{\partial e}{\partial y} = W_{2}$$

$$\frac{\partial e}{\partial W_{1}} = x * W_{2}$$

$$\frac{\partial e}{\partial W_{1}} = x * W_{2}$$

$$\frac{\partial e}{\partial W_{1}} = \frac{\partial y}{\partial W_{1}} * \frac{\partial e}{\partial y}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{*}{\partial a} \frac{\partial b}{\partial b} * \frac{\partial c}{\partial c} * \frac{\partial d}{\partial x} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial err}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{*}{\partial a} \frac{\partial b}{\partial c} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{*}{\partial a} \frac{\partial b}{\partial c} \frac{*}{\partial c} \frac{\partial d}{\partial c} \frac{*}{\partial c} \frac{*}{\partial c} \frac{\partial z}{\partial c} \frac{\partial z}{\partial c} \frac{*}{\partial c} \frac{\partial z}{\partial c} \frac{*}{\partial c} \frac{\partial z}{\partial c} \frac{\partial z}{\partial c} \frac{*}{\partial c} \frac{\partial z}{\partial c} \frac{*}{\partial c} \frac{\partial z}{\partial c} \frac{\partial z}{\partial c} \frac{*}{\partial c} \frac{\partial z}{\partial c} \frac{\partial z}{$$

$$\frac{\partial \text{err}}{\partial a} = \frac{\partial z}{\partial a} * \frac{\partial \text{err}}{\partial z}$$

$$z = a+b+c+d+...$$

$$\frac{\partial \text{err}}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial \text{err}}{\partial b}$$

$$b = 1 \over 1 + e^{-a}$$

$$\frac{\partial err}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial err}{\partial b}$$

$$b = \frac{1}{1 + e^{-a}}$$
$$= \sigma(a)$$

$$\frac{\partial err}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial err}{\partial b}$$

$$\frac{\partial err}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial err}{\partial b}$$

$$b = 1
1 + e^{-a}
= \sigma(a)$$

Because math is beautiful / dumb luck:

$$\frac{\partial b}{\partial a} = \sigma(a) * (1 - \sigma(a))$$

Backpropagation challenge: ReLU

Backpropagation challenge: ReLU

$$\frac{\partial err}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial err}{\partial b}$$

$$b = a, a > 0$$

= 0, otherwise

Backpropagation challenge: ReLU

$$\frac{\partial err}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial err}{\partial b}$$

b = a, a > 0
= 0, otherwise
$$\frac{\partial b}{\partial a} = 1, a > 0$$
$$0, otherwise$$

Advanced topics

Bias neurons

Dropout

Backpropagation details

Andrej Karpathy's Stanford CS231 lecture

Backpropagation gotchas

Andrej Karpathy's article "Yes you should understand backprop"

Tips and tricks

Nikolas Markou's article "The Black Magic of Deep Learning"

Data Science and Robots Blog

For more How it Works:

How Deep Learning works

How Convolutional Neural Networks work

How Bayes Law works

How data science works

How linear regression works

These slides