Real Analysis

Problem Set 3

May 21, 2021

I. Prove that $(a_n)_{n\in\mathbb{N}}$ converges if each a_n is:

(a)
$$\frac{1}{n}$$

(d)
$$\frac{pn+q}{rn+s}$$
 where $r \neq 0$

(g)
$$x^{\frac{1}{n}}$$
 where $x > 0$

(b)
$$\frac{1}{n^2 + 1}$$

(e)
$$\frac{pn+q}{n^2-101}$$

(h)
$$n^{\frac{1}{n}}$$

$$(c) \frac{6n+5}{n+1}$$

(f)
$$x^n$$
 where $x \in (0, 1)$

(i)
$$\frac{(-1)^n}{n}$$

2. Prove that $(a_n)_{n\in\mathbb{N}}$ does not converge, if each a_n is:

(a)
$$100 + (-1)^n$$

(b)
$$(1)^n \cdot n$$

3. Determine whether $(a_n)_{n\in\mathbb{N}}$ converges, if each a_n is:

(a)
$$\sin n$$

(c)
$$\frac{x}{n}$$
 where $x \in \mathbb{R}$

(e)
$$\frac{n^2}{n!}$$

(d)
$$\frac{n}{n+1}$$

(f)
$$\frac{k^n}{n!}$$
 where $k \in \mathbb{N}$

4. Let (a_n) , (b_n) be sequences which converge to $a, b \in \mathbb{R}$ respectively. Prove the following. (Use only the $\varepsilon - \delta$ definition please, for your own practice and internalization).

(a) If
$$a = 0$$
 then $(|a_n|)_{n \in \mathbb{N}}$ converges.

(d) If
$$a_n \neq 0 \forall n$$
 and $a \neq 0$ then $\frac{b_n}{a_n} \longrightarrow \frac{b}{a}$.

(b)
$$xa_n + yb_n \longrightarrow xa + yb \ \forall x, y \in \mathbb{R}$$
.

(e) If
$$a_n \ge 0 \forall n$$
 then $a \ge 0$.

(c)
$$a_n b_n \longrightarrow ab$$
.

(f) If
$$a_n \ge b_n \forall n \text{ then } a \ge b$$

5. For a sequence (a_n) show that $\lim_{n\to\infty} a_n = a \iff \lim_{n\to\infty} (a_n - a) = 0$.

6. Find a sequence (a_n) such that $(|a_n|)$ converges but a_n does not.

7. State and prove the Sandwich theorem.

8. Suppose (a_n) is a sequence such that $\lim_{n\to\infty} a_n \in \{\pm\infty\}$ and $a_n \neq 0 \forall n$. Show that $\frac{1}{a_n} \longrightarrow 0$.

9. Let (a_n) be a convergent sequence. Show that $\exists M > 0$ such that $|a_n| < M \forall n$.

io. Let $a_n = \frac{1}{n}$ for $n \in \mathbb{N}$. Define $s(n) = \sum_{i=1}^n a_i$ for $n \in \mathbb{N}$.

(a) Show that
$$s(2^n) \ge 1 + \frac{n}{2} \forall n \ge 0$$
.

(b) Show that the sequence S = (s(n)) does not converge.