대학원 신입생 세미나 HomeWork 1

2020-21030 통계학과 석사과정 김명동

April 11, 2020

1. 확률론 교과서(Probability Theory and Examples, Rick Durrett)에 나와있는 정리를 하나 골라서 정리 내용과 증명을 LaTeX으로 작성하고 pdf 파일을 생성하기

Definition 1. P is called π -system if $A,B \in P \Longrightarrow A \cap B \in P$

Definition 2. L is called λ -system if it satisfy following conditions

- 1. $\Omega \in L$
- 2. $A, B \in L, A \subset B \text{ then } B A \in L$
- 3. $A_n \nearrow A$, $A_n \in L$ then $A \in L$

Lemma 1 (Dynkin's π - λ Theorem).

If P is a π -system and L is a λ -system & $P \subset L \Longrightarrow \sigma(P) \subset L$

Theorem 1 (Theorem 2.1.7).

Suppose $\Lambda_1, \Lambda_2, ..., \Lambda_n$ are independent and each Λ_i is a π system. Then $\sigma(\Lambda_1), \sigma(\Lambda_2), ..., \sigma(\Lambda_n)$ are independent. $(\sigma(\Lambda_i))$ is the σ -algebra generated by Λ_i)

Proof. Let A_2, \ldots, A_n be sets with $A_i \in \Lambda_i$. Let $F = A_2 \cap \ldots \cap A_n$ and $L = \{A : P(A \cap F) = P(A)P(F)\}$

We want to show the set L is a λ -system.

- 1. $P(\Omega \cap F) = P(\Omega)P(F) \Longrightarrow \Omega \in \mathcal{L}$
- 2. Let $A, B \in \mathbb{L}$ with $A \subset B$ then $(B-A) \cap F = (B \cap F) (A \cap F)$

$$P((B-A)\cap F) = P(B\cap F) - P(A\cap F) = P(B)P(F) - P(A)P(F)$$

$$= (P(B)-P(A))P(F) = P(B-A)P(F)$$
(1)

$$P((B-A)\cap F) = P(B-A)P(F) \Longrightarrow B-A \in \mathcal{L}$$

3. let $B_k \in \mathcal{L}$ with $B_k \nearrow B$ and note that $(B_k \cap F) \nearrow (B \cap F)$ $P(B \cap F) = \lim_{k \to +\infty} P(B_k \cap F) = \lim_{k \to +\infty} P(B_k) P(F) = P(B) P(F) \Longrightarrow B \in \mathcal{L}$ Therefore, L is a λ -system.

Since $\Lambda_1, \Lambda_2, ..., \Lambda_n$ are independent, $\Lambda_1 \subset L$. Since Λ_1 is a π -system, by Dynkin's π - λ Theorem $\sigma(\Lambda_1) \subset L$

It follows that if
$$A_1 \in \sigma(\Lambda_1)$$
 and $A_i \in \Lambda_i$ $(2 \le i \le n)$ then $P(\bigcap_{i=1}^n A_i) = P(A_1)P(\bigcap_{i=2}^n A_i) = \prod_{i=1}^n P(A_i)$

Therefore, if Λ_1 , Λ_2 , ..., Λ_n are independent then $\sigma(\Lambda_1)$, Λ_2 , ..., Λ_n are independent. Applying above process to Λ_2 , ..., Λ_n , $\sigma(\Lambda_1)$, then we can show that $\sigma(\Lambda_1)$, $\sigma(\Lambda_2)$, Λ_3 , ..., Λ_n are independent. And after n iterations we have the desired result.

$$\sigma(\Lambda_1), \, \sigma(\Lambda_2), \, \dots \, , \sigma(\Lambda_n)$$
 are independent.