Math 216A Homework 3

"... an arithmetic theory of algebraic varieties cannot but be a theory over arbitrary ground fields and not merely the complex numbers." Zariski (1950)

Work on the following exercises, and read §3 of Chapter 2 up through Example 3.2.6.

Ch 2: 2.3, 2.4* (this explains what is really going on in 2.1), 2.5, 2.6, 2.7, 2.8*, 2.9*, 2.11, 2.13*, 2.14 (you may skip (d)), 2.16 (can you formulate a good functoriality property of the isomorphism in (d)?; note that the natural map goes from A_f to $\Gamma(X_f, \mathcal{O}_{X_f})$), 2.17*, 2.18, 2.19. We will take up a better version of 2.15 in HW4.

For 2.3, prove that the map $j: X_{\text{red}} \to X$ is a closed immersion (i.e., $\mathcal{O}_X \to j_*\mathcal{O}_{X_{\text{red}}}$ is surjective) and also include the following:

2.3(d) If $f, g: X \to Y$ are morphisms of schemes with X reduced, f and g coincide on topological spaces, and $f^{\#}$, $g^{\#}$ induce the same ring maps $\kappa(f(x)) = \kappa(g(x)) \to \kappa(x)$ for all $x \in X$, then f = g.

For 2.4, conclude in particular that for any scheme X, there is a canonical morphism of schemes $X \to \operatorname{Spec}(\Gamma(X, \mathcal{O}_X))$, suitably functorial in X, and this is an isomorphism if and only if X is an affine scheme. (See Prop. 1.8.1 in the "Errata et addenda" list for EGA I at the end of EGA II for Tate's elegant generalization with X any locally ringed space.)

For 2.7, show also the somewhat more general statement that for a scheme X and $x \in X$ and a local ring (A, \mathfrak{m}) , there is a natural bijection between scheme morphisms $\operatorname{Spec}(A) \to X$ taking the closed point \mathfrak{m} to x and local maps $\mathcal{O}_{X,x} \to A$ (hint: reduce to the case where X is affine by checking that if an open set in $\operatorname{Spec}(A)$ contains the closed point, then it must be the whole space!). Also check functoriality in the pair (X,x) and the local ring A.

Extra 1. Show that if A and B are local algebras over a field k and their residue fields coincide with k then any k-algebra map $h: A \to B$ is automatically local (i.e., $h^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$). Deduce that if M and N are smooth manifolds and \mathfrak{O}_M and \mathfrak{O}_N are their respective sheaves of smooth \mathbf{R} -valued functions then any map $(f, f^{\#}): (M, \mathfrak{O}_M) \to (N, \mathfrak{O}_N)$ as ringed spaces of \mathbf{R} -algebras is automatically a map of locally ringed spaces, and moreover that $f^{\#}: \mathfrak{O}_N \to f_*(\mathfrak{O}_M)$ is automatically induced by composing smooth functions (on open subsets of N) with the map f on underlying topological spaces.

Extra 2. The following construction provides a sense of how to punch holes in a scheme and how to work with affine opens. Let A be a commutative ring, $X = \operatorname{Spec}(A)$, $U \subseteq X$ an open subset (given the induced scheme structure, as always). Define

$$S_U = \{ a \in A \mid a \notin \mathfrak{p} \text{ for all } \mathfrak{p} \in U \}.$$

Show that this is a multiplicative set and that the natural map $A \simeq \Gamma(X, \mathcal{O}_X) \to \Gamma(U, \mathcal{O}_X)$ sends S_U in $\Gamma(U, \mathcal{O}_X)^{\times}$, so we get a natural ring map $f_U : S_U^{-1}A \to \Gamma(U, \mathcal{O}_X)$ (an isomorphism when $U = \emptyset$ since $0 \in A = S_{\emptyset}$). If A is domain and $U \neq \emptyset$ prove this is injective, and if A is a principal ideal domain prove it is an isomorphism. Find a domain A and open U with f_U not an isomorphism (hint: for Dedekind A with $U = X - \{\mathfrak{p}\}$, relate this to \mathfrak{p} being torsion in the class group of A; do you know a Dedekind A whose class group is not a torsion group?).