

SOMATIVA

Disciplina:	Complexidade de Algoritmos	Ano/Semestre:	2024/1
Professor:	Edson Emílio Scalabrin	Metodologia:	PBL
Resultado de Aprendizagem:	RA1: Emprega técnicas de contagem, soma e prova matemática na análise de algoritmos interativos para problemas de computação, de acordo com o contexto de aplicação e preceitos éticos.		
Indicador de desempenho:	ID01: Contabiliza instruções de algoritmos. ID04: Aplica notação assintótica. ID05: Análise complexidade termos de pior caso, melhor caso e caso médio.		

Problema 01: Dado o algoritmo de ordenação por inserção a seguir:

```
INSERTION-SORT(A)
1 for j \leftarrow 2 to comprimento[A]
        do chave \leftarrow A[j]
2
3
          ▷ Inserir A[j] na sequência ordenada A[1.j-1].
4
          i \leftarrow j-1
5
          while i > 0 e A[i] > chave
6
              \operatorname{do} A[i+1] \leftarrow A[i]
7
                  i \leftarrow i - 1
8
          A[i+1] \leftarrow chave
```

O primeiro passo para analisar sua complexidade consiste na contagem do número de vezes que uma instrução é executada. Cada instrução tem um custo associado.

A contagem de cada instrução do algoritmo de ordenação por inserção se encontra a seguir.

INSERTION-SORT(A) custo vezes

1 for
$$j \leftarrow 2$$
 to comprimento[A] c_1 n

2 do chave $\leftarrow A[j]$ c_2 $n-1$

3 \triangleright Inserir $A[j]$ na sequência ordenada $A[1.j-1]$. 0 $n-1$

4 $i \leftarrow j-1$ c_4 $n-1$

5 while $i > 0$ e $A[i] > chave$ c_5 $\sum_{j=2}^{n} t_j$ 6 do $A[i+1] \leftarrow A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i \leftarrow i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] \leftarrow chave$ c_8 $n-1$

Por uma questão de simplificação,

$$S = \sum_{j=2}^{n} (t_j - 1)$$
, para $n = 4$ a somatório seria:
 $S = 1 + 2 + 3$

Sabe-se que a soma dos números inteiros positivos é dada pela fórmula F1 a seguir:

$$S = \sum_{i=1}^{n} i$$
 sua fórmula fechada é $F1 = \frac{n(n+1)}{2}$

Dado que T(n), abaixo, é a soma das instruções do algoritmo de ordenação por inserção, pode-se reescrever T(n) como um polinômio $an^2 + bn + c$, onde a, b e c constantes que, mais uma vez, dependem dos custos de instrução c_i .

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

Tomando como ponto de partida T(n), **pede-se para**:

- a) Rescrever T(n) na forma de $an^2 + bn + c$, para facilitar o processo vamos assumir o valor 1 para cada uma das constantes: C_1 , C_2 , ..., C_8
- b) Indicar a expressão que representa o MELHOR CASO
- c) Indicar a expressão que representa o PIOR CASO
- d) Verificar $f(n) = \Theta(n^2)$

Problema 02: Dado o algoritmo de *bolha*, escrito em Python, a seguir:

```
def troca(vetor, i, j):
                                  # C4.1
    aux = vetor[i]
                                  # C4.2
    vetor[i] = vetor[j]
                                  # C4.3
    vetor[j] = aux
def bolha(vetor):
    for i in range(0, len(vetor) - 1, 1):
                                                  # C1
        for j in range(i+1, len(vetor), 1):
                                                  # C2
            if vetor[ i ] > vetor[ j ]:
                                                  # C3
                                                  # C4
                troca(vetor, i, j)
X = [99, 88, 77, 66, 55, 44, 33, 22, 11]
bolha(X)
```

Pede-se para:

- a) realizar a contagem de cada instrução do algoritmo *bolha*, indicando a contagem para cada linha, associando aos custos C_1 , C_2 , ..., C_{10} . Nota: realize a contagem apenas sobre as instruções claramente executadas. Explique os casos não incluídos na contagem.
- b) expressar a soma T(n) das instruções do algoritmo de ordenação bolha, indicando cada parcela do somatório, associando cada parcela ao custo C_i.
- c) encontrar a forma fechada de T(n)
- d) Verificar $f(n) = \Theta(n^2)$

IMPORTANTE: para ambos problemas, a resolução de cada item solicitado deve ser mostrada de forma detalhada; não deixei nada como subentendido, ou seja, explique/explicite suas escolhas/hipóteses.