<u>Last time</u>	if	X, Q are sets,	
		p : X to Q is a surjective map,	
		X has a topology,	

then the resulting quotient topology on Q is $\{U \text{ sub } Q \mid p^{-1}\}(U) \text{ is open in } X\}$

a <u>quotient space</u> of X is a topological space formed this way [how do they appear in practice?]

 \underline{Df} an equivalence relation on a set X is a rule \sim on elts of X^2 s.t., for all x, y, z,

I) $x \sim x$, for all x in X

II) if $x \sim y$, then $y \sim x$ III) if $x \sim y$ and $y \sim z$, then $x \sim z$ Fact if p: X to Q is a surjective map, then the rule ~ on X^2 def by

 $x \sim y$ iff p(x) = p(y)

is an equivalence relation

conversely, every equiv relation arises from a surjective map this way

 \underline{Ex} $X = R \times \{a, b\} = union of two copies of R <math>Y = X/\sim where \sim is this equiv. relation:$

 $(x, a) \sim (y, a) \text{ iff } x = y$ $(x, b) \sim (y, b) \text{ iff } x = y$ $(x, a) \sim (y, b) \text{ iff } x = y \neq 0$ [draw]

Y is not Hausdorff in the quotient top

[draw]

(Munkres §23)

Df a separation of X is a pair of disjoint nonempty opens U, V s.t. X = U cup V

we say that X is connected iff it has no separation i.e.

whenever X = U cup V for disjoint open U, V, we require either $U = \emptyset$ or $V = \emptyset$

Rem

if U, V form a separation then U, V are not just open, but closed

"clopen" = "both open and closed"

Ex

X = [0, 1/2) cup (1/2, 1] in the subsp top inherited from analytic R

U = [0, 1/2) and V = (1/2, 1] is a separation

Ex

Q in the subsp top inherited from R

for α irrational. $U = \{x \text{ in } Q \mid x < \alpha\},\$ $V = \{x \text{ in } Q \mid x > \alpha\}$ is a separation

Thm R in the analytic topology is connected

<u>Df</u> the maximal connected subspaces of X are called its <u>connected components</u>

[but the proof is hard]

Moral subspaces of connected spaces need not be connected

[but upshot:]

Thm if A is a connected subspace of X and U, V form a separation of X then either A sub U or A sub V

Pf if A cap U and A cap V both nonempty, then they form a separation of A so either A cap U = \varnothing or A cap V = \varnothing **Thm**

L) if X, X' are each connected, then so is $X \times X'$

2) if f: X to Y is cts and X is connected, then f(X) is connected as a subspace of Y

3) if A, A' sub X are connected and A cap $A' \neq \emptyset$, then A cup A' is connected

 $\underline{\mathsf{Ex}}$ observe: only one topology exists on \varnothing is \varnothing connected? yes!

Q is R^{ω} connected in the box topology? in the product topology?