CONTROLE N°2: 22 OCTOBRE 2015

Documents et tous types d'appareils électroniques non autorisés. Durée : 1h30.

Exercice 1. (4 pts)

Soit l'application $f: V \subset \mathbb{R}^n \to \mathbb{R}^p$, et soit $a \in V$.

- 1.1 Quand dit-on que f est différentiable au point a ?
- 1.2 Montrer que si f est différentiable au point a, alors f est continue au point a.
- 1.3 Soit $v \in \mathbb{R}^n$. Rappeler la définition de la dérivée partielle de f au point a suivant la direction v.
- 1.4 L'existence des dérivées partielles de f au point a suivant toutes les directions v, entraı̂ne-t-elle la différentiabilité de f au point a ?

Exercice 2. (4 pts)

Etudier la nature de l'intégrale : $I = \int_0^{+\infty} \sin(t^2) dt$.

Exercice 3. (4 pts)

On pose I=[0,1] et $E=\mathcal{C}(I,\mathbb{R})$ l'espace vectoriel des fonctions continues de I dans \mathbb{R} . On munit l'espace E des normes $\mathcal{N}_1=\|.\|_1$ et $\mathcal{N}_\infty=\|.\|_\infty$ et on considère la suite $(f_n)_{n\in\mathbb{N}^*}$ de fonctions de E définie pour tout $n\in\mathbb{N}^*$ et tout $t\in I$ par :

$$\begin{cases} f_n(0) = n ; \\ f_n(t) = 0 \text{ pour } t \ge \frac{1}{n^2}; \\ f_n \text{ affine sur } \left[0, \frac{1}{n^2}\right]. \end{cases}$$

- 1.1 Déterminer $||f_n||_1$ et $||f_n||_{\infty}$.
- 1.2 En déduire que la suite $(f_n)_n$ converge vers 0_E pour $\|.\|_1$ et diverge pour $\|.\|_{\infty}$.
- 1.3 Ces normes sont-elles équivalentes sur *E* ? Justifiez clairement votre réponse.

Exercice 4. (4 pts)

La partie $A=\{(x,y,z)\in\mathbb{R}^3, 0< x^2+2y^2+3z^2\leq 4\}$ est-elle ouverte, fermée ou ni l'un ni l'autre dans \mathbb{R}^3 ? Justifiez clairement votre réponse.

Exercice 5. (4 pts)

Soit la fonction f définie sur \mathbb{R}^2 par $f(x,y) = \frac{x^3y^2\cos(x^5-y^2)}{x^4+y^4}$.

- 4.1 Donner le domaine de définition de f.
- 4.2 Etudier la limite de f lorsque $(x, y) \rightarrow (0,0)$.