Microcontroller Project Functional Requirements

By: Justin Turcotte

Embedded Systems Project

April 12, 2019

Revision 3

Table of Contents

Change Log	3
January 27, 2019 – Revision 1	3
March 18, 2019 – Revision 2	3
April 12, 2019 – Revision 3	
Introduction	
Scope Statement	
Related Documents	
Configuration Options	4
Cost	
Functional Requirements	5
Interface Board	
User Input	5
Motor Control	5
Other	
Environmental & Regulatory Requirements	6
Reliability & Service	

Change Log

January 27, 2019 - Revision 1

- Introduction (Page 3)
 - o Updated introduction.
- Functional Requirements (Pages 5-6)
 - o Added Nucleo board requirements.
 - o Updated requirements for stepper motor driver.
 - o Updated requirements for RS232 driver.
 - o Updated requirements for CAN Bus driver.

March 18, 2019 – Revision 2

- Functional Requirements (Pages 5-6)
 - o Updated Nucleo Board requirements.
 - o Updated DC Power Supply.
 - o Removed microphone time constraint.
 - o Updated Stepper Motor.
 - o Made many changes to format.
 - o Added necessary sections

April 12, 2019 – Revision 3

- Functional Requirements (Pages 5-6)
 - Updated LCD
 - o Added Buzzer

Introduction

This project will result in a complete interface for a robot that will be remote controlled over WIFI from a Unix desktop PC. It will have video feed, audio feed, a CAN interface, RS232 communications, DC Motor drivers as well as encoders, A stepper moto, RC Servo motor and an LCD screen. It will be powered via a 12V battery.

Scope Statement

To design an interface board that will communicate between a Nucleo microprocessor and peripherals used to operate a robot. The Nucleo board will also communicate between the interface board and a Unix desktop PC.

Related Documents

- 1. Top File Block Diagram January, 2019.
- 2. Work Breakdown Structure January, 2019.
- 3. Altium PCB Design March, 2019.

Configuration Options

- 1. Board offers 12V, 5V and 3V3 options.
- 2. This system is intended for a specific purpose of utilizing a robot in ESE4 at Conestoga College. Usage outside this function does not guarantee performance.

Cost

On the next page there will be a copy of a Digi key order containing the necessary parts for this board. The cost is at the bottom and part numbers are also available.

Functional Requirements

Interface Board

- 1.1 Nucleo Board
 - a. $V_{OH} = 2.4V$ at minimum
 - b. $V_{OL} = 0.4V$ at maximum
 - c. $I_{IN} = 250$ mA maximum at $9V < V_{IN} <= 12V$
 - d. $I_{IN} = 450$ mA maximum at $7V < V_{IN} <= 9V$
 - e. $I_{IN} = 800$ mA maximum at $V_{IN} = 4V$
- 1.2 DC Power Supply
 - a. $V_{IN} = 2$ parallel 12V batteries
 - b. $V_{01} = 12V$
 - c. $V_{02} = 5V$
 - d. $I_0 = 2A$ maximum

User Input

- 2.1 Joystick Controller
 - a. Communication between host PC and robot via Wi-Fi will handle joystick input.
- 2.2 Video Display
 - a. Communication between host PC and robot via Wi-Fi will handle video display.

Motor Control

- 3.1 Motors (Stepper & DC Motor) DRV8847
 - a. $V_{VM} = 2.7V$ at minimum, 18V at maximum
 - b. $I_{VM} = 2.5 \text{mA}$ at maximum (2mA typical)
 - c. $V_{IN} = 5V$ maximum
 - d. Pins: IN1, IN2, IN3, IN4, NSLEEP, TRQ, SCL, SDA
 - i. $V_{IH} = 1.6V$ at minimum
 - ii. $V_{IL} = 0.6V$ at maximum
- 3.2 RC Servo
 - a. Needs a PWM capable input
 - i. Higher pulse rate will push camera one direction
 - ii. Lower pulse rate will push camera other direction
 - b. V + = 5V
 - c. V- = Ground
 - d. 100R resistor on signal line
- 3.3 Limit Switches
 - a. When pressed, signals servo is no longer able to turn in current direction.
 - b. Used to determine limits of RC Servo.
- 3.4 DC Motor Encoders
 - a. Will interface with the DC Motors to determine the current location of the motor.
 - b. An analog signal will be read from the encoders that will be converted to a digital number representing position.

Other

- 4.1 LCD Module
 - a. $V_{dd} = 5.5V$ recommended max (Will use 5V)
 - b. RW will be tied low. Permanent write only.
 - c. $V_{IH} = 2.2V$ at min, Vdd at max
 - d. $V_{IL} = 0.4V$ at max

- e. $I_{dd} = 1.1 mA$
- f. Will be used in 4-bit transfer mode. Specific initialization is required and found in the datasheet.
- 4.2 RS232 Driver MAX3232
 - a. $V_{CC} = 3.3V$ (Will be used due to logic compatibility with Nucleo)
 - i. 3V at minimum, 3.6V at maximum if
 - ii. $V_{IH} = 2V$ at minimum
 - iii. $V_{IL} = 0.8V$ at maximum
 - b. $V_{CC} = 5V$
 - i. 4.5V at minimum, 5.5V at maximum if $V_{CC} = 5V$
 - ii. $V_{IH} = 2.4V$ at minimum
 - iii. $V_{IL} = 0.8V$ at maximum
 - c. $I_{CC} = 1mA$ at maximum
 - d. V_I
- i. Driver Input Voltage = 0V at minimum, 5.5V at maximum
- ii. Receiver Input Voltage = -25V at minimum, 25V at maximum
- e. External Components
 - i. 5 100nF Capacitors
 - ii. 1 DP9 Connector
- 4.3 CAN Driver MCP2551
 - a. $V_{DD} = 7V$ at maximum (Will use 5V from Nucleo)
 - b. $I_{DD} = 75$ mA at maximum
 - c. $V_{TXD} = V_{RXD} = V_{REF} = V_{S} = -0.3V$ at minimum, $V_{DD} + 0.3V$ (5.3V in this project) at maximum
 - d. $V_{CANH} = V_{CANL} = -42V$ at minimum, 42V at maximum
 - e. External Components
 - i. 1 30pF Capacitor
 - ii. 1 100nF Capacitor
 - iii. 1 1uF Capacitor
 - iv. $2-62\Omega$ Resistor
 - v. $2 10k\Omega$ Resistors
 - vi. 2 1x2 Pin Junction
 - vii. 1 1x4 Pin Junction
- 4.4 Buzzer
 - a. Logic output of Nucleo is fine.
 - b. Signal needs a PWM capable pin to send different frequencies to the buzzer.

Environmental & Regulatory Requirements

- 1. The board will be properly destroyed at an authorized facility at end of life.
- 2. The board will be used in a laboratory/educational environment therefore waiving most regulations.

Reliability & Service

1. This board is not guaranteed to function as intended. It is use at your own risk.