

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Bookmarks

Unit 0: Overview

- EntranceSurvey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- ▼ Unit 5: Continuous random variables

Unit overview

Lec. 8: Probability density functions

Exercises 8 due Mar 16, 2016 at 23:59 UT

Lec. 9: Conditioning on an event; Multiple r.v.'s

Exercises 9 due Mar 16, 2016 at 23:59 UT Unit 5: Continuous random variables > Lec. 8: Probability density functions > Lec 8
Probability density functions vertical4

■ Bookmark

Exercise: Exponential CDF

(2/2 points)

Let \boldsymbol{X} be an exponential random variable with parameter 2.

Find the CDF of X. Express your answer in terms of x using standard notation . Use 'e' for the base of the natural logarithm (e.g., enter $e^{(-3*x)}$ for e^{-3x}).

a) For
$$x \leq 0$$
, $F_X(x) = \begin{bmatrix} 0 \end{bmatrix}$ Answer: 0

b) For
$$x>0$$
, $F_X(x)=igg[$ 1-e^(-2*x) $igg \checkmark$

Answer: $1-e^{(-2*x)}$

Answer:

a) Since $oldsymbol{X}$ is a nonnegative random variable,

$$F_X(x) = \mathbf{P}(X \le x) = 0$$
 for $x \le 0$.

b) We have seen that for an exponential random variable with parameter λ and for any a>0, we have $\mathbf{P}(X\geq a)=e^{-\lambda a}$. Therefore,

$$F_X(x) = \mathbf{P}(X \le x) = 1 - \mathbf{P}(X \ge x) = 1 - e^{-\lambda x} = 1 - e^{-2x}.$$

You have used 1 of 2 submissions

Lec. 10: Conditioning on a random variable; Independence; Bayes' rule Exercises 10 due Mar

16, 2016 at 23:59 UT 🗗

Standard normal table

Solved problems

Problem Set 5 Problem Set 5 due Mar 16, 2016 at 23:59 UT 🗹

Unit summary

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

