

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математической кибернетики

Стешин Семен Сергеевич

Khnum: быстрая open-source программа для расчета метаболических потоков с использованием ¹³С-углерода

Выпускная квалификационная работа

Научный руководитель: к.ф.м.н., доцент Шуплецов М. С.

Аннотация

В биологии и медицине важно определять скорости метаболических потоков внутри клетки. Мощный метод решения этой задачи — ¹³C-Metabolic Flux Analysis — анализ метаболических потоков с использованием ¹³C-углерода. В этом методе, исследователи проводят эксперимент и обрабатывают его результаты на компьютере. Для этого решают обратную задачу: подбирают такие параметры биологической системы, чтобы результат компьютерной симуляции совпал с экспериментальными данными. Проблема в том, что современные программы для анализа метаболических потоков либо имеют закрытый код и платны для коммерческого использования, либо написаны неэффективно, из-за чего вычисления могут занимать недели для одного эксперимента. В этой работе проведен краткий обзор метода, его математических моделей, его программных реализаций, написана эффективная открытая программа для решения задачи на языке C++ и проведено сравнение с существующими аналогами.

Оглавление

1	Вве	цение
	1.1	Мотивация
	1.2	¹³ C-Metabolic Flux Analysis
		1.2.1 Эксперимент
		1.2.2 Математическая модель
		1.2.3 Компьютерные программы
2	Осн	овные понятия
	2.1	Глоссарий
	2.2	Допущения
	2.3	Прямая симуляция
	2.4	Обратная задача
3	Пос	гановка задачи 10
4	Осн	овная часть
	4.1	Khnum
	4.2	Тестирование
	4.3	Бенчмаркинг
5	Пој	ученные результаты
		Дальнейшая работа

Введение

1.1 Мотивация

Рак — вторая по частоте причина смерти в мире[1]. Сто лет назад Отто Варбург заметил[2] особенность раковых клеток: они склонны производить энергию с помощью активного гликолиза, вместо более эффективного окислительного фосфорилирования. Знание этого позволило находить опухоли с помощью позитронно-эмиссионной томографии, а Варбурга наградили Нобелевской премией.

Диабетом болеет 8.8% людей в мире[3]. Почти 4 миллиона в год умирает из-за этой болезни. Лечения пока нет, но есть симптоматическая терапия инъекциями инсулина. Раньше его получали из поджелудочных желез свиней и коров, но препарат было сложно очистить, поэтому иногда случались аллергические реакции. Все изменилось в 1978 году, когда компания Genentech смогла создать генетически-модифицированную кишечную палочку, которая в ходе жизнедеятельности производила чистый человеческий инсулин[4]. Сейчас таким образом производят почти весь препарат.

В первом случае, открытие заключалось в изменении скорости химической реакции, протекающей внутри клетки. В случае с инсулином, решается задача метаболической инженерии — увеличить скорость синтеза инсулина, не убив кишечную палочку. В обоих случаях надо уметь измерять скорости внутриклеточных химических реакций — их называют потоками. Один из современных методов измерения потоков — ^{13}C -Metabolic Flux Analysis (далее MFA), что переводится как анализ метаболических потоков. Его применяют в исследованиях рака[5–11], в метаболической инженерии[12–14] и в других областях[15–17]. Этому методу посвящена наша работа.

1.2 ¹³C-Metabolic Flux Analysis

Введем основные понятия. Химические реакции, протекающие внутри клетки называют *метаболическими потоками*, а их реагенты — *метаболитами*. Задача состоит в определении скоростей внутриклеточных потоков.

Напрямую можно измерить только внешние потоки — например, с какой скоростью поглощается глюкоза или с какой скоростью выделяется CO_2 . Внутриклеточные потоки восстанавливают из «сцепленной» информации, полученной в эксперименте. В методе $^{13}\mathrm{C-MFA}$ для этого используется субстрат, у которого некоторые атомы углерода заменены на стабильный тяжелый изотоп $^{13}\mathrm{C}$, называемый mpeŭcepom . Этот субстрат скармливается колонии клеток, и тяжелый углерод распространяется по метаболитам в ходе химических реакций. То, как он распределится, зависит от скоростей потоков, поэтому узнав распределение, можно математическими методами восстановить значения метаболических потоков.

1.2.1 Эксперимент

Хотя, текущая работа концентрируется на численном моделировании, опишем эксперимент[20, стр. 312]. Исследователь выращивает клетки на субстрате, содержащем 13 С-углерод (обычно это глюкоза). Когда трейсер распределится по биологической системе, изолируем некоторые метаболиты: например, аминокислоты, полученные гидролизацией белков. Эти метаболиты содержат разное количество меченных атомов и, поэтому отличаются по массе. Найдем долю молекул разной тяжести. «Взвешивать» молекулы можно с помощью газовой хроматографии, при этом для каждого метаболита на выходе получим так называемый $Mass\ Isotopomer\ Distribution\ (далее\ MID)$ — вектор $MID=[M_0,M_1,\ldots,M_n]$, где M_i — массовая доля метаболитов с i атомами трейсера и $\sum_{i=0}^n=1$. Набор таких векторов — это входные данные математической задачи. Подробные протоколы эксперимента можно найти в [21] для животных клеток и в [22] для растений.

проверить доступность субстратов угле-

рода

 $^{^{1}}$ На самом деле, использовать углерод не обязательно. В последнее время появились работы, использующие 15 N азот [18] или 34 S серу [19]. Эти стабильные изотопы позволяют исследовать метаболические пути, в которых нет углерода, однако, для большинства приложений хватает более доступных субстратов с меченным углеролом.

1.2.2 Математическая модель

Существуют разные подходы к вычислению метаболических потоков. Чаще всего задачу решают как обратную. Для этого создают математическую модель, предсказывающую распределение трейсера при заданных скоростях потока; пишут программу для симуляции, а затем решают задачу регрессии: подбирают такие значения потоков, при которых предсказанное распределение трейсера в симуляции совпадает с распределением, полученным в эксперименте.

На вход прямой симуляции подается

- Описание меченного субстрата (например, в каких позициях меченной глюкозы стояли тяжелые изотопы).
- Полная метаболическая карта клетки (набор химических реакций и их реагентов).
- Известные выходные метаболические потоки (например, скорость поглощения глюкозы).

На выходе получается MID вектор всех внутренних метаболитов. На вход задачи регрессии еще подается экспериментально измеренные MID и, возможно, какие-нибудь ограничения на потоки, известные из биологических соображений. Конечно, обратная задача может иметь несколько решений, поэтому результат должен проанализироваться биологом. Формальному объяснению этого параграфа посвящена вторая глава.

Историческая справка

Первую модель прямой симуляции составил Wolfgang Wiechert [23, 24] в 1997 году. Она использовала понятие изотопомера — это молекулы одного вещества, имеющие одинаковое количество атомов изотопов, вообще говоря в разных позициях. За два года автор разработал математически эквивалентную модель кумомеров [25, 26], которая быстрей расчитывалась на компьютере. В 2007 году Масіек R. Antoniewicz создал ЕМИмодель [37], которая остается самой популярной среди программных реализаций. Так же существуют прямые модели [27], вероятностные модели на основе Марковских цепей [28] и другие [29]. В этой работе подробно разбирается ЕМИ-модель.

Можно сослаться лучше?

1.2.3 Компьютерные программы

Существует несколько программ для MFA-расчетов.

13CFLUX2 — Самая известная программа для ¹³C-MFA. Имеет закрытый исходный код и платна для коммерческого использования. Для научных целей можно получить академическую лицензию, написав письмо в Германию[30].

Metran — Написана автором ЕМU-модели. Чтобы получить программу под академической лицензией надо написать письмо в МІТ.

OpenFlux(2) — Пакет для Matlab[31, 32].

FluxPyt — Пакет для Python[33].

вписать

Основные понятия

2.1 Глоссарий

Приведем определения терминов

 $^{13} C\text{-}Metabolic\ Flux\ Analysis}$ — Анализ метаболических потоков с использованием $^{13} C\text{-}yглерода.$

Метаболический поток — Внутриклеточная химическая реакция. Метаболит — Реагент метаболического потока.

2.2 Допущения

Математическая модель для MFA основывается на нескольких допущениях о биологической системе[23]:

1. Состояние системы можно представить в виде конечного множества однородных пулов. Каждому атому углерода внутриклеточного метаболита соответствует свой пул.

Пулы?

- 2. Наблюдаемая система должна находится в стационарном состоянии. Для этого экспериментаторы выжидают некоторое время, пока трейсер распространяется по системе. 1
- 3. Метаболическая карта должна быть полной. То есть для интересующих метаболических потоков должны быть известны все предшествующие химические реакции, и в них должна быть известна судьба каждого атома углерода.
- 4. Изотопические массовые эффекты несущественны. То есть химические реакции протекают одинаково как с 12 С, так и с 13 С. Это обычно верно, но массовые эффекты можно наблюдать в случае малых молекул типа CO_2 .

Заметим, что разным математическим моделям могут соответствовать разные допущения. Этот вопрос подробно разбирался в работе [36], там же формально был доказан изоморфизм нескольких популярных моделей.

Дописать после неформального введения

 $^{^{1}}$ В этой работе рассматривается только $Stationary\ MFA$, но существуют так же Non-Steady MFA[34], в котором в клеточной культуре делают несколько замеров, по-ка трейсер распределяется, и Dynamic MFA[35], в котором сами метаболические потоки меняются со временем. Эти модели не так развиты из-за своей вычислительной сложности.

Рис. 2.1: ЕМU-реакции. Источник[37]

2.3 Прямая симуляция

Опишем модель распространения трейсера ЕМU, предложенную Мачеком Антониевичем в 2007 году[37].

Пусть A — молекула. Любое непустое подмножество атомов углерода молекулы A будем называть $Elementary\ Metabolic\ Unit\ (далее\ EMU)$. Например, если A состоит из трех атомов углерода, обозначим через A_{13} EMU состоящий из первого и третьего атома углерода (на атомах углерода одной молекулы существует естественный порядок).

Будем рассматривать EMU-реакции. Всего можно выделить три типа: реакции конденсации(condensation), расщепления(cleavage) и унимолекулярная реакция(unimolecular). Для каждой реакции мы хотим понять, какое минимальное количество информации требуется, чтобы рассчитать MID продукта. Для всех реакций достаточно знать MID исходных веществ и тогда MID продукта рассчитывается по формалам с 2.1.

2.4 Обратная задача

Метод оптимизации.

Постановка задачи

- \bullet Написать программу для расчета $^{13}{
 m C-MFA}$ на языке C++.
- Провести тестирование, сравнить скорость работы с существующими аналогами.

Основная часть

4.1 Khnum

Программа написана так-то. В ней то-то.

4.2 Тестирование

Так убедился в корректности.

4.3 Бенчмаркинг

Во как быстро.

Полученные результаты

Кратко: написано, протестировано, замерено.

5.1 Дальнейшая работа

Че можно сделать

Литература

- [1] Всемирная Ассоциация Здравоохранения. Cancer [Электронный ресурс] URL: https://www.who.int/news-room/fact-sheets/detail/cancer (дата обращения: 12.03.2020)
- [2] Warburg O., Wind F., Negelein E. The metabolism of tumors in the body //The Journal of general physiology.— 1927. T. 8. $N_{\rm e}$. 6. C. 519.
- [3] Zimmet P. et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies //Nature Reviews Endocrinology. 2016. T. 12. \cancel{N} . 10. C. 616.
- [4] Cohen S. N. et al. Construction of biologically functional bacterial plasmids in vitro //Proceedings of the National Academy of Sciences. 1973. T. 70. N. 11. C. 3240—3244.
- [5] Metallo C. M., Walther J. L., Stephanopoulos G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells //Journal of biotechnology. 2009. T. 144. \mathbb{N}° . 3. C. 167—174.
- [6] Walther J. L. et al. Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells //Metabolic engineering. -2012.-T. 14. -N9. 2. -C. 162–171.
- [7] Hiller K., Metallo C. M. Profiling metabolic networks to study cancer metabolism //Current opinion in biotechnology. 2013. T. 24. N_2 . 1. C. 60–68.
- [8] Boroughs L. K., DeBerardinis R. J. Metabolic pathways promoting cancer cell survival and growth //Nature cell biology. 2015. T. 17. \mathbb{N} . 4. C. 351–359.

- [9] Dong W., Keibler M. A., Stephanopoulos G. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis //Metabolic engineering. 2017. T. 43. C. 113–124.
- [10] Antoniewicz M. R. A guide to 13 C metabolic flux analysis for the cancer biologist //Experimental & molecular medicine. 2018. T. 50. \mathbb{N}_{2} . 4. C. 1–13.
- [11] Badur M. G., Metallo C. M. Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease //Metabolic engineering. 2018. T. 45. C. 95–108.
- [12] Nakahigashi K. et al. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism //Molecular systems biology. 2009. T. 5. $N_{\rm e}$. 1.
- [13] Crown S. B., Long C. P., Antoniewicz M. R. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli //Metabolic engineering. 2015. T. 28. C. 151–158.
- [14] Long C. P. et al. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli //Nature communications. 2017. T. 8. N. 1. C. 1–8.
- [15] Wahrheit J., Nicolae A., Heinzle E. Eukaryotic metabolism: measuring compartment fluxes //Biotechnology journal. — 2011. — T. 6. — №. 9. — C. 1071–1085.
- [16] Metallo C. M., Vander Heiden M. G. Understanding metabolic regulation and its influence on cell physiology //Molecular cell. 2013. T. 49. N. 3. C. 388-398.
- [17] Dieuaide-Noubhani M., Alonso A. P. (ed.). Plant metabolic flux analysis: methods and protocols. Humana Press, 2014.
- [18] Nilsson R., Jain M. Simultaneous tracing of carbon and nitrogen isotopes in human cells //Molecular BioSystems. — 2016. — T. 12. — №. 6. — C. 1929–1937.

- [19] Krömer J. O. et al. Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains //Journal of bacteriology. 2006. T. 188. №. 2. C. 609–618.
- [20] Systems Metabolic Engineering. Methods and Protocols. // Под ред. Alper, Hal S. 1 изд. Humana Press, 2013. 474 с.
- [21] (ed.). Metabolic flux analysis: methods and protocols. // Под ред. Krömer J. O., Nielsen L. K., Blank L. M. 1 изд. Humana Press, 2014. 329 с.
- [22] Plant metabolic flux analysis: methods and protocols. // Под ред. Dieuaide-Noubhani M., Alonso A.P. 1 изд. Humana Press, 2014. 366 с.
- [23] Wiechert W., de Graaf A. A. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments //Biotechnology and bioengineering. — 1997. — T. 55. — №. 1. — C. 101–117.
- [24] Wiechert W. et al. Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis //Biotechnology and bioengineering. 1997. T. 55. \mathbb{N}° . 1. C. 118–135.
- [25] Wiechert W. et al. Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems //Biotechnology and bioengineering. 1999. T. 66. N_2 . 2. C. 69–85.
- [26] Möllney M. et al. Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments //Biotechnology and bioengineering. 1999. T. 66. №. 2. C. 86—103.
- [27] Rantanen A. et al. Algorithms for 13C metabolic flux analysis. 2006.
- [28] Huo Y., Ji P. Continuous-Time Markov Chain-Based Flux Analysis in Metabolism //Journal of Computational Biology. — 2014. — T. 21. — № 9. — C. 691-698.

- [29] Srour O., Young J. D., Eldar Y. C. Fluxomers: a new approach for 13 C metabolic flux analysis //BMC systems biology. 2011. T. 5. \mathbb{N}_{-} 1. C. 129.
- [30] Weitzel M. et al. 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis //Bioinformatics. 2013. T. 29. N_2 . 1. C. 143–145.
- [31] Quek L. E. et al. OpenFLUX: efficient modelling software for 13 C-based metabolic flux analysis //Microbial cell factories. — 2009. — T. 8. — №. 1. — C. 25.
- [32] Shupletsov M. S. et al. OpenFLUX2: 13 C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments //Microbial cell factories. 2014. T. 13. \mathbb{N} . 1. C. 152.
- [33] Desai T. S., Srivastava S. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses //PeerJ. 2018. T. 6. C. e4716.
- [34] Wiechert W., Nöh K. Isotopically non-stationary metabolic flux analysis: complex yet highly informative //Current opinion in biotechnology. -2013. T. 24. No. 6. C. 979–986.
- [35] Leighty R. W., Antoniewicz M. R. Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state //Metabolic engineering. 2011. T. 13. N. 6. C. 745–755.
- [36] Borkum M. I. et al. Modeling framework for isotopic labeling of heteronuclear moieties //Journal of cheminformatics. 2017. T. 9. \mathbb{N}^{0} . 1. C. 1–11.
- [37] Antoniewicz M. R., Kelleher J. K., Stephanopoulos G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions //Metabolic engineering. 2007 T. 9. №. 1. C. 68–86.