

The quality of life in Italian Municipalities

STATISTICAL LEARNING

A project by Andrea Pio Cutrera

Municipalities in Italy

- Italy is a very heterogeneous country
- Fundamental political units have some similarities and much differences
- Some areas share economic and social characteristics
- other differs in natural and cultural resources

Quality of life

Is it possible to model this measure for the municipalities of Italy as a function of some features?

Data Understanding

Data sources:

- CIPU office of the "Department for the Programming and Coordination of Political Economy" for the Urban Index set of variables of 2015 (2011 data)
- Il Sole 24 Ore for the quality of life score of municipalities in Italy in 2011

35 variables

INDEPENDENT VARIABLES

- decennal change in resident population (1991- 2001 and 2001-2011
- human densisty
- private mobility
- oldness
- geen areas per capita
- incidence of young couples with children
- presence of university
- commuting for work or study
- economic dynamism
- compound index of tourism reception capability
- annual number of visitors in cultural places
- entertainment
- digital divide
- accessibility to train stations
- hospital seats for 10.000 inhabitants
- libraries for 10,000 inhabitants
- young people with risk of quitting secondary school
- unemployment

- economical hardship of families
- old people alone
- suicides
- crowded houses
- services at home
- share of foreign population
- Gini index of inequality
- ratio between occupied italian foreign citizens
- ratio between the share of occupied males and females
- agricultural land
- waste produced per capita
- slow mobility
- drinking water influed in the municipal net
- waste differentiation
- density of photovoltaic systems
- car classified as E5 and E6
- centres of excellence

Response Variable Quality of life

• Source: Il Sole 24 Ore

• Year: 2011

• Observations: 100 provinces

 Computed by taking into account many indexes measuring economy, health, crime, opportunities for free time, income and many more dimensions

Supervised Learning

STEPWISE MODEL SELECTION

Find the most important features to add to the null model

LINEAR REGRESSION

Create a model with the variables selected as a function which maps features to the response variable

K-NEAREST NEIGHBOURS

Create a model able to classify a municipality to the category of quality of life

- BIC information criterion selects the model with 5 variables
- All the variables are strongly statistically significative

lm(formula = life_quality ~ disoccupazione + auto_e5_e6 + occupazione_m_f + popolazione_straniera + visitatori_luoghi_cultura, data = dataset)

Residuals:

Min ЗQ 1Q Median Max -49.283 -13.903 -1.577 12.546 62.349

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                          5.811e+02 3.058e+01 19.004 < 2e-16 ***
disoccupazione
                         -2.955e+00 8.692e-01 -3.399 0.000993 ***
auto_e5_e6
                                                3.512 0.000686 ***
                          1.239e+00 3.529e-01
                         -7.955e+01 2.311e+01 -3.443 0.000862 ***
occupazione_m_f
popolazione_straniera
                          2.757e+00 8.022e-01
                                                 3.436 0.000880 ***
visitatori_luoghi_cultura 6.249e-06 2.311e-06
                                                 2.704 0.008140 **
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 23.31 on 94 degrees of freedom Multiple R-squared: 0.7738, Adjusted R-squared: 0.7618 F-statistic: 64.32 on 5 and 94 DF, p-value: < 2.2e-16

OLS model with 5 variables selected

Residuals are normally distributed

Square root of mean squared error

Definitely decreased with the forward search with respect to the full model from 30 to 22

Inference on the remaining municipalities

Model created on the provincial capital municipalities is used to make prediction for the response variable on the remaining observations

GEOGRAPHICAL AREAS

medium: from 401 to 480

3088 municipalities

Quality of life Category

2266 municipalities

high: from 481 to 500

very high: from 501 to 570

709 municipalities

RELATIVE FREQUENCIES OF
CATEGORIES AMONG GEOGRAPHICAL
AND REGIONAL AREAS

life low medium medium high high very_high very_high

K-Nearest Neighbor

CLASSIFICATION ALGORITHM

 REPEATED CROSS VALIDATION ON THE ENTIRE DATASET REVEALS THAT 11 IS THE BEST HYPERPARAMETER WHICH MAXIMIZES THE ACCURACY test_labels
knn.model low medium high very_high
low 386 12 0 0
medium 15 891 14 0
high 0 52 644 41
very_high 0 0 7 166

11-NN

CLASSIFICATION ALGORITHM

• ALMOST 94% OF ACCURACY ON THE TEST SET

Unsupervised Learning

PRINCIPAL COMPONENT ANALYSIS

To reduce dimensionality of our data matrix

K-MEANS CLUSTERING

Divide our observations into groups through a similarity principle

PCA

Reducing the dimensionality of our data is not an easy task. At least 5 dimensions should be retained to have a cumulative variance explained of 57%

ANALYSIS OF PRINCIPAL DIMENSIONS

ECONOMIC DIMENSION

- unemployment
- families in risk of hardship
- economic dynamism

SOCIAL-CULTURAL DIMENSION

- suicides
- presence of universities
- centres of excellence
- gini index of inequality

ANALYSIS OF PRINCIPAL DIMENSIONS

TRASPORTATION DIMENSION

slow mobility

DEMOGRAPHIC DIMENSION

- number of young couples with children
- change in resident population
- foreign population

GREEN DIMENSION

- urban waste per capita
- green areas per capita

4-Means clustering is the algorithm which minimize the within -cluster variation

K-Means Clustering

QUALITY OF LIFE IN MUNICIPALITIES IS AFFECTED:

- Negatively by unemployment
- Positvely by the number of cars classifieds E5-E6
- Negatively by the gender gap in occupation
- Positively by foreign population
- Positively by visitors of cultural places

HAVING ALL THESE INFORMATION FOR A MUNICIPALITY ALLOWS US TO **PREDICT**THE **SCORE IN QUALITY OF LIFE**

by means of the **OLS model** created

ALSO THE CATEGORY CAN BE PREDICTED by means of **11-NN mode**l created

Conclusions

AND MAIN FINDINGS

PCA REVEALS THAT OUR DATA ARE SPREAD ALONG THE FOLLOWING MAIN DIMENSIONS:

- Economic dimension
- Social-Cultural dimension
- Transportation dimension
- **Demographic** dimension
- Green dimension

K-MEANS REVEALS INSTEAD THE PRESENCE OF 4 CLUSTERS OF PROVINCIAL CAPITALS MUNICIPALITIES:

- Milan, Rome, Naples and Turin: the greatest cities
- Mostly cities of the North
- Mostly cities of the Centre
- Mostly cities of the South

Conclusions

AND MAIN FINDINGS

Thank you for your time

- Andrea Pio Cutrera
- 965591
- andrea.cutrera@studenti.unimi.it