

SimVP: Simpler yet Better Video Prediction,

Z. Gao, C. Tan, L. Wu and S. Z. Li,

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Citations: 235

王少丰 2024-12-2

时空序列预测

时空序列预测是一个跨越空间和时间两个维度的预测问题,通常涉及预测某些时空数据,如交通流量、气象数据、环境监测数据等。在这一任务中,难点是在捕捉时间序列的变化的同时,还需要处理空间维度的依赖关系。

背景

归纳偏置(Inductive Bias)是指模型在学习过程中所依赖的先验假设或假定,这些假设帮助模型 更有效地学习数据的结构。不同的神经网络架构具有不同的归纳偏置,导致它们在处理不同类型数据 时表现出不同的优势和局限性

CNN

- 局部性(Locality): 图像中的某些特征是局部的、重复出现的
- 平移不变性(Translation Invariance):假设特征在图像中是平移不变的

RNN

- 时间顺序性(Temporal Ordering): RNN 假设数据具有时间或顺序依赖,即当前时刻的数据不仅与当前输入相关,还与先前时刻的数据有依赖关系。
- 时间不变性(Time Invariance):每个时间步上都使用相同的计算方式和参数。

ViT

• 每个局部区域(即图像块)都可能与其他局部区域之间存在全局依赖关系

背景

- 自回归模型(Non-Autoregressive Models, NAR)
 - 特点: 自回归模型在每个时间步的预测过程中都需要依赖之前的输出
 - 优点: 能够捕捉序列中元素之间的依赖关系,尤其是在长期依赖建模上表现优秀。
 - 缺点: 推理速度较慢,由于每个时间步都需要依赖前一步的输出,因此生成过程是递归的。
- 非自回归模型(Autoregressive Models, AR)
 - 特点: 不依赖于前一步的生成内容,因此可以并行生成整个序列或序列的部分内容
 - **优点**:生成速度更快,由于生成过程是并行的,非自回归模型能够在很短的时间内生成整个输出序列。
 - 缺点: 生成质量可能较差, 难以捕捉长距离依赖

在这之前,时空序列预测的研究大多是用CNN+RNN的自回归模型,比如经典的ConvLSTM,PredRNN+。但是这些CNN+RNN类模型,在性能上取得了显著的提升,但是模型的复杂性不断增加,同时对于它们在良好表现中的必要性仍然缺乏深入的理解。

因此,文章提出了一个问题:是否可以开发出一个更简单的模型,以提供更好的理解和性能?

模型架构

Global structure

整体架构,由Encoder,Translator和Decoder组成,其中

- Encoder用于提取空间特征
- Translator学习时间演化
- Decoder集成时空信息来预测未来帧

模型架构

Global structure

Encoder部分堆叠Ns个ConvNormReLU块(Conv2d + LayerNorm + LeakyReLU)来提取空间特征。

$$z_i = \sigma(\text{LayerNorm}(\text{Conv2d}(z_{i-1}))), 1 \le i \le N_s$$

Decoder部分堆叠*Ns*个*unConvNormReLU*块(*ConvTranspose2d* + *GroupNorm* + *LeakyReLU*)重建真实帧。

$$z_k = \sigma(\operatorname{GroupNorm}(\operatorname{unConv2d}(z_{k-1})))$$

Translator部分堆叠Nt个Inception模块来学习时间的演化

$$z_j = \operatorname{Inception}(z_{j-1}), N_s < j \le N_s + N_t$$

(a) Inception temporal module

表现/消耗

Performance comparision of various methods on Moving MNIST

Method	Conference	MSE SSIM		Github	
ConvLSTM [71]	(NIPS 2015)	103.3	0.707	PyTorch	
PredRNN [67]	(NIPS 2017)	56.8	0.867	PyTorch	
PredRNN-V2 [68]	(Arxiv 2021)	48.4	0.891	PyTorch	
CausalLSTM [65]	(ICML 2018)	46.5	0.898	Tensorflow	
MIM [69]	(CVPR 2019)	44.2	0.910	Tensorflow	
E3D-LSTM [66]	(ICLR 2018)	41.3	0.920	Tensorflow	
PhyDNet [18]	(CVPR 2020)	24.4	0.947	PyTorch	
CrevNet [73]	(ICLR 2020)	22.3	0.949	PyTorch	
SimVP	_	23.8	0.948	PyTorch	

Computation comparison on Moving MNIST, including memory overhead, per-frame FLOPs, and total training time.

Method	Memory	FLOPs	Training time	
ConvLSTM	1043MB	107.4G	_	
PredRNN	1666 MB	192.9 G	_	
CausalLSTM	2017 MB	106.8 G	_	
E3D-LSTM	2695 MB	381.3 G	_	
CrevNet *	224 MB	1.652 G	$\approx 10d$ (300k iters)	
PhyDNet *	200 MB	1.633 G	$\approx 10d$ (2k epochs)	
SimVP *	412 MB	1.676 G	$\approx 2d$ (2k epochs)	

实验结果

消融实验

Q1: 哪种架构设计在提高性能方面起着关键作用?

Q2: Conv kernel如何影响性能?

Q3: Enc、Translator和Dec分别扮演什么角色?

A1:group convolution > group normalization ≈ S-UNet ≈ T-UNet.

A2: 随着kernel大小的增加,可以看到显著的性能增益。SimVP选择多尺度核[3,5,7,11]。

A3:Translator重点放在预测对象的位置和内容上,Decoder负责优化前景对象的形状,Encoder通过空间 U-Net 连接的方式来消除背景误差。

		model 1	model 2	model 3	model 4	model 5	model 6	model 7	model 8	model 9	SimVP
Archi	S-UNet	-	✓	✓	✓	✓	✓	/	✓	✓	/
	T-UNet	✓	_	/	/	✓	/	/	/	/	1
A	#Groups	4	4	1	4	4	4	4	4	4	4
	Norm	G	G	G	В	G	G	G	G	G	G
Kernel	$(3) + c_t$	-	_	-	-	/	-	-	-	_	_
	$(5)+c_t$	-	-	-	-	-	/	-	-	-	-
	$(7)+c_t$	_	_	_	_	_	_	/	_	_	_
Ke	$(11)+c_t$	_		_	_	-	-	_	/	-	-
	$(11)+2c_t$	-	-	-	-	-	-	-	-	/	-
	$(3,5,7,11)+c_t$	/	/	/	/	_	-	-	-	_	1
[1]	Moving MNIST	41.7	41.5	44.8	41.0	58.9	51.1	49.1	46.3	44.8	41.7
MSE	TrafficBJ (×100)	43.5	41.5	44.5	44.3	43.5	44.0	43.3	42.3	42.3	42.0
~	Human3.6 (/10)	32.4	33.4	33.0	34.8	37.3	34.0	32.9	33.4	32.1	32.0
	Summary	1	1	+++	1	+++	+++	+++	++	1	

实验和可视化

实验和消融实验

- 实验:在四个数据集上与 HeteroFL, FjORD 进行 TOP-1 ACC 对比
- 消融实验:验证了 r_1 (基向量的维度)和 r_2 (基向量的个数)的影响