Algebra und Diskrete Mathematik Übungsblatt 10

Beispiele 408, 422, 437, 442, 458, 474, 476

Aufgabe 408. Untersuchen Sie, ob die folgende Struktur ein Ring, Integritätsring bzw. Körper ist:

 $M = \mathbb{Q}[\sqrt{7}] = \{a + b\sqrt{7} \mid a, b \in \mathbb{Q}\}$ mit der Addition und Multiplikation aus \mathbb{R} .

Lösung.

Addition

Abgeschlossenheit

$$(w+x\cdot\sqrt{7})+(y+z\cdot\sqrt{7})=(w+y)+((x+z)\cdot\sqrt{7})$$

 $w+y\in\mathbb{Q}, x+z\in\mathbb{Q}\Longrightarrow \text{abgeschlossen}$

Assoziativität

$$a \circ (b \circ c) = (a \circ b) \circ c$$
$$a = (u + v \cdot \sqrt{7})$$
$$b = (w + x \cdot \sqrt{7})$$
$$c = (y + z \cdot \sqrt{7})$$

$$(u+v\cdot\sqrt{7}) + ((w+x\cdot\sqrt{7}) + (y+z\cdot\sqrt{7})) = ((u+v\cdot\sqrt{7}) + (w+x\cdot\sqrt{7})) + (y+z\cdot\sqrt{7}) + (u+w+y) + (v+x+z)\cdot\sqrt{7} = (u+w+y) + (v+x+z)\cdot\sqrt{7}$$

 \Longrightarrow assoziativ

Neutrales Element

$$e = 0 + 0 \cdot \sqrt{7} = 0$$

Inverses Element

$$(x+y\cdot\sqrt{7})^{-1} = (-x) + (-y)\cdot\sqrt{7}$$

Kommutativität

Gegeben durch die Kommutativität der Addition und Multiplikation.

Aufgabe 422. Sei $\langle R, +, \cdot \rangle$ ein Ring. Man zeige, dass dann auch $R \times R$ mit den Operationen

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b) \cdot (c,d) = (a \cdot c, b \cdot d)$$

ein Ring ist.

Lösung.

Aufgabe 437. Man untersuche das Polynom $x^2 + x + 1$ auf Irreduzibilität a) über \mathbb{Q} , b) über \mathbb{Z}_3 .

Lösung.

Aufgabe 442. Man zeige, dass die folgende algebraische Struktur ein Verband ist. Ist dieser distributiv oder eine Boolsche Algebra?

- (a) $(\mathbf{P}(A), \cap, \cup)$
- (b) $(\{X \subseteq \mathbb{N} \mid X \text{ ist endlich oder } \mathbb{N} \setminus X \text{ ist endlich}\}, \cap, \cup)$

Lösung.

Aufgabe 458. Untersuchen Sie, ob W Teilraum des Vektorraums \mathbb{R}^3 über \mathbb{R} ist und beschreiben Sie die Menge W geometrisch:

$$W = \{(x, y, z) \mid x + y + z \ge 0\}$$

Lösung.

Aufgabe 474. Zeigen Sie: Die Menge aller Polynome $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ vom Grad kleiner gleich 4 mit Koeffizienten a_i aus \mathbb{Q} bildet mit der üblichen Addition und dem üblichen Produkt mit einem Skalar einen Vektorraum über \mathbb{Q} .

Lösung.

Aufgabe 476. Bestimmen Sie den kleinsten Teilraum des Vektorraumes aus 474) der die Polynome $x - x^2$ und $x + x^3$ enthält.

Lösung.