Note: This document is a part of the lectures given during the Jan-May 2020 Semester.

Definition:

Consider the binomial asset pricing model. Let $\{(X_n^1, X_n^2, \dots, X_n^K), n = 0, 1, \dots, N\}$ be a K-dimensional adapted process, *i.e.*, K one-dimensional adapted processes. If, for every n between 0 and N-1 and for every function $f(x^1, x^2, \dots, x^K)$, there is another function $g(x^1, x^2, \dots, x^K)$ (depending on n and f) such that,

$$\mathbb{E}_{n}\left[f\left(X_{n+1}^{1}, X_{n+1}^{2}, \dots, X_{n+1}^{K}\right)\right] = g\left(X_{n}^{1}, X_{n}^{2}, \dots, X_{n}^{K}\right),$$

we say that $\{(X_n^1, X_n^2, \dots, X_n^K), n = 0, 1, \dots, N\}$ is a K-dimensional Markov process.

Example:

In a N-period binomial model, consider the two-dimensional adapted process $\{(S_n, M_n), n = 0, 1, \dots, N\}$, where S_n is the stock price at time n and $M_n = \max_{0 \le k \le n} S_k$ is the stock price maximum-to-date. We show that this two-dimensional process is Markov. In order to do that, we define $Y = \frac{S_{n+1}}{S_n}$, which depends only on the (n+1)-th coin toss. Then

$$S_{n+1} = S_n Y$$

and

$$M_{n+1} = M_n \vee S_{n+1} = M_n \vee (S_n Y)$$
,

where $x \vee y = \max\{x,y\}$. We wish to compute

$$\mathbb{E}_{n}\left[f\left(S_{n+1},M_{n+1}\right)\right]=\mathbb{E}_{n}\left[f\left(S_{n}Y,M_{n}\vee\left(S_{n}Y\right)\right)\right].$$

Now, we replace S_n by a dummy variable s and replace M_n by a dummy variable m, to compute,

$$q(s,m) = \mathbb{E}f(sY, m \vee (sY)) = pf(us, m \vee (us)) + qf(ds, m \vee (ds)).$$

Then

$$\mathbb{E}_{n}\left[f\left(S_{n+1},M_{n+1}\right)\right]=g\left(S_{n},M_{n}\right).$$

Since we have obtained a formula for $\mathbb{E}_n [f(S_{n+1}, M_{n+1})]$ in which the only randomness enters through the random variables S_n and M_n , we conclude that the two-dimensional process is Markov.

Note that in this example, we have used the actual probability measure, but the same argument shows that $\{(S_n, M_n), n = 0, 1, ..., N\}$ is Markov under the risk-neutral probability measure $\widetilde{\mathbb{P}}$.

We conclude with one last theorem.

Theorem:

Let X_0, X_1, \ldots, X_N be a Markov process under the risk-neutral probability measure $\widetilde{\mathbb{P}}$ in the binomial model. Let $v_N(x)$ be a function of the dummy variable x, and consider a derivative security whose payoff at time N is $v_N(x_N)$. Then, for each n between 0 and N, the price V_n of this derivative security is some function v_n of X_n , *i.e.*,

$$V_n = v_n(X_n), \ n = 0, 1, \dots, N.$$

There is a recursive algorithm for computing v_n whose exact formula depends on the underlying Markov process X_0, X_1, \ldots, X_N . Analogous results hold if the underlying Markov process is multidimensional.