D-meson production in jets in pp and PbPb collisions with the CMS detector

Jing Wang on behalf of the CMS Collaboration

The 27th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions
14 - 19 May 2018
Lido di Venezia (Italy)

Phys. Lett. B 730 (2014) 243

- Enhancement of low p_T light hadrons at large angles about jets
 - Light hadron jet shape analysis

Phys. Lett. B 730 (2014) 243

- Enhancement of low p_T light hadrons at large angles about jets
 - Light hadron jet shape analysis
- How to explain
 - medium-induced gluon radiation?
 - medium response?
 - multiple scatterings?
 - **-**

Phys. Lett. B 730 (2014) 243

 D_0

Enhancement of low p_T light hadrons at large angles about jets

- → Light hadron jet shape analysis
- How to explain
 - medium-induced gluon radiation?
 - \rightarrow medium response? $m_c \gg T_{QGP}$
 - multiple scatterings?
 - →
- Vary mass of the associated hadrons!
 - → Heavy flavor

Even more ...

Production mechanism of charm

- The role of gluon splitting
- Recombination in the medium

Heavy quark behavior and interactions in the medium

- Energy loss
 - Inclusive measurements:
 - heavy-flavor hadrons spectra, azimuthal anisotropy, heavy flavor tag jets
 - Details on interaction of heavy quarks about jet directions
- Diffusion

Dataset and observables

- **Jet-triggered** events in **pp** (27.4 pb⁻¹) and **PbPb** (404 μb⁻¹) collisions at $\sqrt{s_{NN}}$ = **5.02 TeV** collected in 2015 with the CMS detector
- MinimumBias events are used for background subtraction
- Cross-checked with D-triggered events

Dataset and observables

• **Jet-triggered** events in **pp** (27.4 pb⁻¹) and **PbPb** (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ **TeV** collected in 2015 with the CMS detector

Angular distribution of D⁰ with respective to the jet axis:

$$\frac{1}{N_{JD}} \frac{dN_{JD}}{dr}$$

- The final distribution is normalized to unity in r < 0.3
- No p_T weight as light-hadron jet shape analysis

D and jets reconstruction and selections

• **Jet-triggered** events in **pp** (27.4 pb⁻¹) and **PbPb** (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ **TeV** collected in 2015 with the CMS detector

- ♦ D^0 → $K\pi$
- ❖ D⁰ vertex reconstruction
 - pairing two tracks
 - → kinematic fitter
- Topological selections
 - ⇒ Pointing angle (α) < ~0.04
 - → 3D decay length (d₀) normalized by its error > ~3
 - Secondary vertex prob > ~0.05
- ❖ |y□| < 2
 </p>
- ❖ Two p_T bins
 - → 4 < p_T^D < 20 GeV</p>
 - → $p_T^D > 20 \text{ GeV}$

D and jets reconstruction and selections

• **Jet-triggered** events in **pp** (27.4 pb⁻¹) and **PbPb** (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ **TeV** collected in 2015 with the CMS detector

- \bullet D⁰ \rightarrow K π
- ❖ D⁰ vertex reconstruction
 - pairing two tracks
 - → kinematic fitter
- Topological selections
 - ⇒ Pointing angle (α) < ~0.04
 - → 3D decay length (d₀) normalized by its error > ~3
 - → Secondary vertex prob > ~0.05
- ❖ |y□| < 2
 </p>
- Two p_T bins
 - → 4 < p_T^D < 20 GeV</p>
 - → $p_T^D > 20 \text{ GeV}$

Analysis strategy

- Reconstruct jets and D⁰ candidates
- Jet energy correction
- Pair selected D⁰ candidates with every selected jet in the same event
- Extract raw yield via fitting invariant mass in bins of r
- Correct acceptance and efficiency by simulations in bins of r
- Subtract background via event mixing technique
- Correct the resolution effect by the jet resolution from simulations

Raw Do yield extraction

Mass distributions fitted by

- Double gaussian (Signal)
- 3rd order polynomial (Combinatorial)
- Single gaussian (K-π swapped)
 - Candidates with wrong mass assignment

- Signal: jets and D⁰ mesons from the same hard scattering
- Background: fake jets, jets and D⁰ mesons in underlying events, ...

· Correlate Do mesons and jets in triggered events (raw) and MB events (bkg)

· Correlate D⁰ mesons and jets in triggered events (raw) and MB events (bkg)

Raw D

MB D

Raw jets

MB jets

· Correlate Do mesons and jets in triggered events (raw) and MB events (bkg)

· Correlate D⁰ mesons and jets in triggered events (raw) and MB events (bkg)

Background subtraction

- Signal = Raw Background
- Background contributions are much smaller than signal

Results

Low D p_T: $4 < p_T^D < 20 \text{ GeV/c}$

High D p_T : $p_T^D > 20$ GeV/c

- Low D p_T : reach maximum at 0.05 < r < 0.1
- High D p_T : fall rapidly as a function of r

Results

Low D p_T: $4 < p_T^D < 20 \text{ GeV/c}$

High D p_T : $p_T^D > 20 \text{ GeV/c}$

- predictions from PYTHIA 8
 - → Low D p_T: produce a wider radial profile than measurements
 - → High D p_T: agree with measurements

Results

Low D p_T: $4 < p_T^D < 20 \text{ GeV/c}$

27.4 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb) **CMS** $4 < p_{\tau}^{D} < 20 \text{ GeV/c}$ Preliminary $|y^D| < 2$ D^0 + jet Ip jet | > 60 GeV/c $l\eta^{jet}l < 1.6$ 10⊨ PbPb pp 10 PbPb / pp

High D p_T : $p_T^D > 20$ GeV/c

The ratio of PbPb over pp:

0.1

• Low D p_T : increases as a function of r

0.4

- → Hint that D⁰ are further from jet axis in PbPb than pp
- High D p_T: consistent with unity

0.3

Last slide

Summary

- First measurement of the radial profile of D⁰ mesons in jets in PbPb and pp
 - → Hint of wider D⁰ radial profile in PbPb collisions at 4 < p_T^D < 20 GeV/c</p>
 - → Ratio of PbPb/pp is consistent with unity at p_TD > 20 GeV/c
- Provides new experimental constraints on
 - heavy-flavor production
 - heavy quark energy loss and diffusion

The MIT group's work was supported by US DOE-NP

Back up

Thanks for your attention!

Raw Do yield extraction

Background subtraction

- Raw = signal + background
- Four correlations
 - → Raw jet + Raw D
 - → MB jet + Raw D
 - → Raw jet + MB D
 - → MB jet + MB D

Analysis strategy

D⁰ meson production

- $c \rightarrow D^0$: O(50%) of c cross-section
- $D^0 \rightarrow K\pi$: 3.93 ± 0.04%

Outlook

Outlook

- Higher statistics with 2018 PbPb data
- Centrality dependence of the radial profile of D⁰ mesons
- Fragmentation function of D⁰ mesons in jets