

Exchange statistics in time-resolved anyon collisions in the fractional quantum Hall effect

Sushanth Varada[†], Christian Spånslätt, Matteo Acciai, Janine Splettstößer ণ varada@chalmers.se

KU LEUVEN

What are anyons?

Anyons are quasiparticles that exist in 2+1 dimensions and obey exchange statistics intermediate between bosons and fermions.

 Exchanging two identical particles twice is equivalent to encircling one another

$$\psi(x_1, x_2) \to e^{i\theta} \psi(x_2, x_1) \to e^{2i\theta} \psi(x_1, x_2)$$

 Winding loop can be topologically deformed to a point in 3D as if particles never moved

$$\theta = 0$$
 → Bosons $\theta = \pi$ → Fermions

 Interchanging two particles is non-trivial in 2D¹ $\psi(x_1, x_2) \rightarrow e^{2im\theta} \psi(x_1, x_2) \quad m \rightarrow number\ of\ windings$ $Any \theta \rightarrow Anyons^2$ obeying Fractional Statistics

Fractional quantum Hall (FQH) is a phase of matter hosting anyons³.

Conclusions

- The conventional zero-frequency HOM noise measurements do not capture the universal exchange phase heta of anyons
- Braiding subprocesses between injected and QPC-excited anyons dominate over the direct collision between injected anyons, making information about θ inaccessible

Outlook:

- Exploring finite frequency noise offers a potential avenue to access information about the exchange phase
- Alternative two-particle interferometers^{6,7} provide a promising approach to investigating fractional statistics

Hong-Ou-Mandel (HOM) effect

Partition or Shot noise $\langle \Delta N_1 \Delta N_2 \rangle$, arises from the random distribution of a stream of indistinguishable particles into transmitted and reflected signals⁴.

 Detectors always measure a particle at $au_d=0$, suppressing fluctuations $\Delta N_{1,2} = 0$, due to Pauli Exclusion $\cdot \langle \Delta N_1 \Delta N_2 \rangle = 0 \rightarrow \text{Uncorrelation}$

S= Sources, D = Detectors

Bosons

 Detectors measure 0 or 2 particles at $au_d = 0$, enhancing fluctuations $\Delta N_{1/2} = \pm 1$, due to bosonic bunching $\stackrel{>}{>}$ 0.5 $\cdot \langle \Delta N_1 \Delta N_2 \rangle = -1 \rightarrow \text{Anticorrelation}$

Can HOM for anyons probe Fractional Statistics?

Exchange phase erasure in anyonic HOM

We analyze an FQH setup^A in the Laughlin sequence with filling factor $v = \frac{1}{2n+1}$, $n \in \mathbb{Z}^+$

- · Time-resolved anyon sources are modeled using an auxiliary state with quasiparticle creation operators acting on the system's ground state $|\varphi\rangle_{HOM} = \psi_u^{\dagger}(t_u) \psi_d^{\dagger}(t_d)|0\rangle$
- The injection of anyons generates a tunneling current of quasiparticles at the QPC:

 $I_{\mathrm{T}}(t,\tau_d) = 4q\nu\gamma\sin(2\pi\delta)\sin(2\theta)\Theta(t)\left[\mathcal{B}\left(e^{-2\pi\mathrm{T}(t)},2\delta,1-4\delta\right) - \Theta(t-|\tau_d|)\mathcal{B}\left(e^{-2\pi\mathrm{T}(t-|\tau_d|)},2\delta,1-4\delta\right)\right]$

- θ > Statistical exchange/braiding phase, $\tau_d = t_d t_u$ > Injection time delay, T > Temperature, δ - Scaling dimension of quasiparticles excited at the QPC, $\mathcal{B}(x,a,b)$ - Incomplete Beta function, $q \rightarrow$ Charge of electron, $\gamma \rightarrow$ Prefactor dependent on energy cut-off, tunneling amplitude, T, δ
- · We compute the zero-frequency HOM noise and normalize it with Hanbury Brown -Twiss (HBT) noise, which refers to fluctuations observed for a single particle injection

$$R\left(\frac{\tau_{d}}{T_{0}}\right) = \frac{S^{HOM} - S^{eq}}{S_{R}^{HBT} + S_{L}^{HBT} - 2S^{eq}} = \left(\frac{\cos(2\theta) - 1}{\cos(2\theta) - 1}\right) \frac{1}{2} \left[1 + \frac{\int_{0}^{|\tau_{d}|} dt \,\mathcal{B}\left(e^{2\pi T(t - |\tau_{d}|)}, 2\delta, 1 - 4\delta\right) - \int_{-\infty}^{0} dt \,\mathcal{B}\left(e^{2\pi T(t - |\tau_{d}|)}, 2\delta, 1 - 4\delta\right)}{\int_{-\infty}^{0} dt \,\mathcal{B}\left(e^{2\pi T(t)}, 2\delta, 1 - 4\delta\right)}\right]$$

 $R\left(\frac{\tau_d}{T_0}\right) = J(\delta, \tau_d, T)$ Information about the exchange phase θ is erased from the HOM noise!!

The HOM noise dip's characteristics probe the non-universal scaling dimension δ , which governs the time correlations of tunneling or thermal quasiparticles excited at the QPC.

Interpretation: Rewrite the HOM noise as interference terms⁵ by introducing the tunneling operator \hat{A} :

$$S_{\rm HOM}(t,t') = 4 {\rm q}^2 {\rm v}^2 \gamma \int_{-\infty}^{\infty} {\rm d}t \int_{-\infty}^{\infty} {\rm d}t' \; (||t,\tau_d\rangle_+ + |t',\tau_d\rangle_+|^2 + ||t,\tau_d\rangle_- + |t',\tau_d\rangle_-|^2); \;\; {}_{\pm} \langle t,0 \; |t',0 \; \rangle_{\mp} = S_{eq}$$

 $||t,\tau_d\rangle_+ + |t',\tau_d\rangle_+|^2$ Braiding in the upper edge, $||t,\tau_d\rangle_- + |t',\tau_d\rangle_-|^2$ Braiding in the lower edge Indicates dominant braiding subprocesses^B that negate each other erasing $\theta!!$

References

¹J. M. Leinaas, J. Myrheim: Nuovo Cim. B 37, 1 (1977)

²F. Wilczek, Phys. Rev. Lett. 49, 957 (1982)

³L. Saminadayar et al. Phys. Rev. Lett. 79, (1997) ⁴Hong, Ou, Mandel, PRL 59, 2044 (1987)

⁵H.S. Sim et al. Phys. Rev. Lett. 123, (2019)

⁶J. Nakamura et al., Nat. Phys. 16, 931 (2020) ⁷Bartolomei et al., Science 368, 173–177 (2020)