

Comp9334

Student number: Z5085805

Student name: Sun YongXin

Report

System Design:

I design four modules in the fork-join system: Server, Processor, Working_Server, Working Processor.

Depicting the computer system which you will be simulating in this project. The system consists of a pre-procesor, m servers (labelled as Server 1, Server 2, ..., Server m in Figure 1) and a join point (which is shown as a triangle in Figure 1).

Figure 1: The multi-server system to be simulated in this project.

This fork-join system is mainly about how to handle the association between the pre-processor and several servers. Note that no matter the pre-processor or the servers, they are all based Fist-In-First-Server mode.

Therefore, there are based M/M/1 model.

The entry point of the client request to the system is the pre-processor. The pre-processor has a few functions:

tasks assigned to them by the pre-processor. Once a server has finished processing a sub-task, it will send the result to the join point. You may assume that it takes negligible time to send the results of the sub-tasks from the servers to the join point.

class Server:

I set up a class that have some information about this servers, (server name, arrival time about this departure, subtask_request, number_subtask). The programe (is_busy) record condition of server.

class Processor:

Same as the code class Server. Some details with Processor.

class Working_Server:

Include arrival next time of server. Easy compute.

class Working_Processor:

Include value of processor. Easy compute.

other:

The following is how get the service time.

$$f(t_s) = \begin{cases} 0 & \text{for } t_s < \frac{t_m}{n^{1.65}} \\ \frac{1}{n^{1.65k}} \frac{kt_m^k}{t_s^{k+1}} & \text{for } t_s \ge \frac{t_m}{n^{1.65}} \end{cases}$$
 (1)

where $t_m = 20 \frac{k-1}{k} \approx 10.3846$, k = 2.08 and n is the number of servers chosen to serve the client request. Note that with the above probability density function, t_s can only take values in the range $\left[\frac{t_m}{n^{1.65}}, \infty\right)$.

so, I design this following program:

```
def worktime(n):
    tm = 10.3846
    k = 2.08

sub_t = (tm ** k) / (n ** (1.65 * k))
    service_time_subtask = (sub_t / (1 - random.uniform(0,1))) ** (1 / k)

return service_time_subtask
```

How using the system:

```
DanielsdeMacBook-Pro:Desktop danielsapple$ python2.7 projectsyx.py
```

```
Tend is total serve time , set Tend = \blacksquare
```

Input Tend value

For example, Tend = 1000, if you want.

```
Selects n distinct servers out of m servers , set n =
```

Input n value, cannot out $1\sim10$.

For example, n = 5

Test No.

Input test number, record testing number, because code (random) produce different random number.

```
Then result is:
```

```
major_time: 997.373032247
major_time: 998.997316853
major_time: 999.177514513
major_time: 999.873381039
major_time: 1000.51181403
```

$$\frac{T(m+1) + T(m+2) + \dots + T(N)}{N - m}$$

Remove transient:

$$\hat{T} = \frac{\sum_{i=1}^{n} T(i)}{n}$$

Mean response time:

$$\hat{S} = \sqrt{\frac{\sum_{i=1}^{n} (\hat{T} - T(i))^2}{n-1}}$$

Standard deviation:

$$[\hat{T} - t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}, \hat{T} + t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}]$$

Confident interval:

And I make a graph that the mean response time changes based on the simulation for each n ($1\sim10$).

Then by looking at the graph, I find a stable state in this period. Because some graph's response time too longer, so I choose three shorter n to compare and analysis.

Choosing one steady state simulation time, and repeat the simulation time. Because the different random number, I try five times, and compute the mean response time, standard deviation and 95% confidence intervals.

Finally, the minimum response time of n is the result.

n	tend	Т	N	response
1	100000	855100923.1	49893	17138.69527
2	100000	38938269.66	75192	517.8512286
3	100000	2393290.575	74899	31.95357181
4	100000	1343438.576	75526	17.78776283
5	100000	815399.5355	75469	10.8044301
6	100000	803409.7731	75251	10.67639996
7	100000	715222.3656	75160	9.515997414
8	100000	557482.695	75420	7.391709029
9	100000	524090.2398	75277	6.9621563
10	100000	486734.7991	75502	6.446447759

$$T_{o}\!=\!(T_{tend=4500}^{o}\!-\!T_{tend=5500}^{o})\!/\!(\,N_{tend=4500}^{o}\!-\!N_{tend=5500}^{o})$$

$$T=(T1+T2+T3)/3$$

$$S=(T-T_1)**2+(T-T_2)**2+..+(T-T_0)**2$$

$$[T-4.303*(S/((3)**(1.0/2)),T+4.303*(S/((3)**(1.0/2)))]$$

when n = (1,2,3,4,5,6,7)The response time bigger, so I choose three smaller response time. Analysis three case, when n = 8,9,10.

We can find that the state is steady after Major_time=10000, I choose tend 45000 and 55000, repeat the simulation 3 times(same seed) with different random.

0	n	tend	T	N	response
1	8	45000	319438.2923	35840	8.91289878
2	8	45000	216561.6641	31893	6.790256925
3	8	45000	297467.653	35317	8.422789393
1	8	55000	387001.7539	43793	8.837068799
2	8	55000	273054.4797	38884	7.022283707
3	8	55000	367267.5973	43206	8.500384143

$$T_{o}\!=\!(T_{tend=4500}^{o}\!-\!T_{tend=5500}^{o})/(\,N_{tend=4500}^{o}\!-\!N_{tend=5500}^{o})$$

T1=8.495342842

T2=8.080791813

T3=8.847755644

T=(T1+T2+T3)/3

=8.4746301

The sample mean of 3 replications = **8.4746301**

$$S = (((T-T_1)**2+(T-T_2)**2+..+(T-T_o)**2)/2)**(1.0/2)$$

=0.383901215

The sample standard deviation of 3 replications is 0.383901215

I want to compute the 95% confidence interval, a = 0.05

Since we did 3 independent experiments and want to 95% confidence interval, I use t(2,0.975)

From the t-distribution table, the value of t(9, 0.975) = 4.303,

therefore the 95% confidence interval:

 $T_{o}\!=\!(T_{tend=4500}^{o}\!-\!T_{tend=5500}^{o})/(\,N_{tend=4500}^{o}\!-\!N_{tend=5500}^{o})$

T1=8.084020056

T2=6.078238181

T3=7.56384522

T=(T1+T2+T3)/3

=7.242034486

The sample mean of 3 replications = 7.88646062

$$S = (((T-T_1)**2+(T-T_2)**2+..+(T-T_o)**2)/2)**(1.0/2)$$

=0.281735178

The sample standard deviation of 3 replications is **0.281735178**

I want to compute the 95% confidence interval, a = 0.05

Since we did 3 independent experiments and want to 95% confidence interval, I use t(2,0.975)

From the t-distribution table, the value of t(9, 0.975) = 4.303,

therefore the 95% confidence interval:

$$[T-4.303*(S/((3)**(1.0/2)),T+4.303*(S/((3)**(1.0/2)))$$

=[7.186535152, 8.586386088]

 $T_o\!=\!(T^o_{tend=4500}\!-\!T^o_{tend=5500})/(\,N^o_{tend=4500}\!-\!N^o_{tend=5500})$

T1=8.084020056

T2=6.078238181

T3=7.56384522

T=(T1+T2+T3)/3

=9.30803834

The sample mean of 3 replications = 9.30803834

$$S = (((T-T_1)**2+(T-T_2)**2+..+(T-T_o)**2)/2)**(1.0/2)$$

=4.300093143

The sample standard deviation of 3 replications is 4.300093143

I want to compute the 95% confidence interval, a = 0.05

Since we did 3 independent experiments and want to 95% confidence interval, I use t(2,0.975)

From the t-distribution table, the value of t(9, 0.975) = 4.303,

therefore the 95% confidence interval:

$$[T-4.303*(S/((3)**(1.0/2)), T+4.303*(S/((3)**(1.0/2)))$$

=[-1.374847355, 19.99092404]

Summary of Statistical Analysis:

n	confident interval	mean value of confident interval
1~7	bigger	bigger
8	[7.520889643, 9.428370556]	8.4746301
9	[4.656099931, 9.827969041]	7.242034486
10	[-1.374847355, 19.99092404]	9.30803834

The minimum response time of 9 is the result.

Data Support:

0	n		tend	Т		N	response	То	t	s	interval 1	interval 2
	1	8	45000		319438.2923	35840	8.91289878	8.4953	8.4746	0.3839	7.52088964	9.428370556
	2	8	45000		216561.6641	31893	6.790256925	8.0808				
	3	8	45000		297467.653	35317	8.422789393	8.8478				
	1	8	55000		387001.7539	43793	8.837068799					
	2	8	55000		273054.4797	38884	7.022283707					
	3	8	55000		367267.5973	43206	8.500384143					
0	n		tend	Т		N	response					
	1	9	45000		279332.4222	35620	7.842010729	8.084	7.8865	0.28174	7.18653515	8.586386088
	2	9	45000		280361.8722	35741	7.742499361	8.0115				
	3	9	45000		283746.2333	35530	7.986102823	7.5638				
	1	9	55000		344206.6831	43645	7.88650895					
	2	9	55000		344269.74	43718	7.78675913					
	3	9	55000		342895.5029	43350	7.909930863					
0	n		tend	Т		N	response					
	1	10	45000		263244.6877	35647	7.38476415	14.07	9.308	4.30009	-1.3748474	19.99092404
	2	10	45000		201596.1038	31678	6.363915139	5.7095				
	3	10	45000		238376.5859	35018	6.807258721	8.1445				
	1	10	55000		374778.9713	43574	8.600976989					
	2	10	55000		242241.7307	38797	6.243826345					
	3	10	55000		301642.9208	42786	7.050037883					