

Sara Cardona Ejecución del informe

Juan López Realización del código

Moisés Arrieta
Ejecución del
informe

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

El algoritmo encuentra la ruta más corta desde un nodo llamado origen a todos los demás nodos de un grafo, produciendo un árbol de ruta más corta

Diseño de algoritmo de mejor ruta

implementamos una lista de adyacencia para los nodos únicos de origen y sus posibles destinos.

Complejidad del algoritmo

	Complejidad temporal	Complejidad de la memoria
Dijkstra algorithm	O(V ²)	O(V)
Dijkstra con cola de prioridad	O(E log V)	O(V)

Complejidad en tiempo y memoria de Dijkstra, la V representa los vertices o los nodos, en este caso las direcciones, y la E representa las aristas, quiere decir la ruta mas corta

