

PLAN DE ACTIVIDADES DEL CURSO DE ELECTRÓNICA INDUSTRIAL APLICADA

Prof. Oscar NÚÑEZ Mori

INTRODUCCIÓN

En el presente curso se implementarán tres (3) proyectos electrónicos básicos, uno por unidad didáctica donde los alumnos pondrán en práctica los conocimientos teóricos adquiridos en el curso e implementados a nivel virtual en los simuladores de código abierto, llevándolos a la realidad. Para ello los alumnos usarán componentes y equipos electrónicos de fácil adquisición y bajo costo. De esta manera los estudiantes adquirirán el dominio del manejo práctico del hardware que utilizarán en circuitos y sistema eléctricos y electrónicos en su ámbito profesional.

OBJETIVOS

Unidad I: Proyecto de un Circuito Electrónico usado Componentes de

Electrónica de Potencia

Unidad II: Proyecto de un Sistema Electrónico usando Microcontroladores.

Unidad III: Proyecto de un Sistema Electrónico usando Tecnología PWM.

DESARROLLO

A continuación hacemos el listado de equipos básicos, herramientas y materiales de bajo costo a ser utilizados en todos los proyectos. luego veremos en detalle cada proyecto con su respectiva lista de componentes electrónicos.

EQUIPOS, HERRAMIENTAS Y MATERIALES

- 01. Multímetro Digital (Con Voltimetro, Amperimentro, Ohmimetro, Medidor de Semiconductores.)
- 02. Cautin de 30 Watts para uso electrónico.
- 03. Soporte para soldar con lupa y luz.
- 04. Desoldador.
- 05. Alicate tipo pinza para uso electrónico.
- 06. Alicate de Corte para uso electrónico.
- 07. Pelacables.
- 08. Protoboard. (2 unidades)
- 09. Cinta Aislante.
- 10. Cables sólidos de colores para uso electrónico.
- 11. Soldadura de Estaño con nucleo de Resina 60/40 para uso electrónico.
- 12. Tabla de madera tamaño A4.
- 13. Batería de 12 Voltios. (2 Unidades)
- 14. Batería de 1.5 Voltios Tipo D. (4 unidades)
- 15. Cable con un cocodrilo en cada punta (6 unidades; rojo, negro, blanco, Etc)
- 16. Placa de baquelita perforada.
- 17. Extensión eléctrica con Adaptador (para UNJ)
- 18. Cargador de Batería de 12 Voltios.
- 19. Alcohol isopropilico preferentemente o Alcohol del más alto grado 95 o 97 grados.
- 20. Estilete o Cutter
- 21. Borrador
- 22. Pistola con cartucho de silicona para bricolaje.
- 23. Limpiador de puntas para cautin (hilos metálicos)

CIRCUITOS PROPEDEUTICOS

El circuito de mando lo representa la malla de 5 Volt., que puede perfectamente ser excitado con 4 pilas de 1.5 volt y utiliza un Mosfet IRL510, con un VGS de hasta 10 V. los cuales no se debe sobrepasar pues se quemaría el MOSFET. Por lo que excitarlo con 5 a 7 voltios estará bien. El circuito de fuerza está representado por el Relay de 24 V. a 220 V. pero puede ser perfectamente un Contactor con características similares.

Circuito Switch con Mosfet

- 2 Baterías de 12 Voltios
- 4 pilas de 1.5 volt.
- 2 Resistencias de 3.3 Kohm
- 2 Resistencias de 100 Kohm
- 2 Resistencias de 2.2 Kohm
- 2 IRL510 (MOSFET Canal N) o equivalente
- 1 Led Rojo
- 1 diodo rectificador 1N4007
- 1 Relay de 24 volt. .a 220 volt.

A continuación una variante del circuito anterior usando un Transistor PNP de Control.

Circuito Switch con MOSFET y BJT

- 2 Baterías de 12 Voltios
- 2 Resistencias de 10 Kohm
- 4 Resistencias de 200 Kohm
- 2 Resistencias de 2.2 Kohm
- 2 transistores 2N3906 (BJT PNP)
- 2 IRFZ44N (MOSFET Canal N) o equivalente
- lacktriangle
- 1 Led Rojo
- 2 diodo rectificador 1N4007
- 1 Relay de 24 volt. a 220 volt

UNIDAD I

1. PROYECTO DE UN CIRCUITO ELECTRÓNICO USANDO COMPONENTES DE ELECTRÓNICA DE POTENCIA

1.1. CONTROL ON/OFF DE MOTOR DC VOLTIOS MEDIANTE MOSFET DE POTENCIA

En el siguiente circuito basado en (Using FET's to Switch a load, 2015), podemos apreciar el control de encendido y apagado de un contactor trifásico de 24v en su bobina de control y tres polos a 30 amperios

- 1 transistor BC547 NPN
- 1 MOSFET Canal P, IRF4905
- Resistores de 220 ohm, 1 Kohm, 2 Kohm, 330 ohm
- 1 Diodo Zener de 10v., 1N4740
- 1 Diodo rectificador 1N4007
- 1 Diodo LED Rojo
- 1 Contactor 24v a 220v, 30amp, de 3 polos
- 1 switch tipo botón.

El circuito original lo podemos apreciar en la siguiente imagen

(Using FET's to Switch a load, 2015)

Este mismo circuito nos permite también controlar un motor DC de 24 v.

Basado en (Using FET's to Switch a load, 2015)

Lista de Componentes para su implementación

- 1 transistor BC547 NPN
- 1 MOSFET Canal P, IRF4905
- Resistores de 220 ohm, 1 Kohm, 2 Kohm, 330 ohm
- 1 Diodo Zener de 10v., 1N4740
- 1 Diodo rectificador 1N4007
- 1 Diodo LED Rojo
- -1 Motor de 24v.
- 1 switch tipo botón.

Una variante que nos protege la etapa de control ópticamente, en caso que deseemos usar una placa arduino Uno R3, se presenta a continuación.

Circuito con Optoacoplador, BJT y MOSFET

Basado en (Using FET's to Switch a load, 2015)

- 1 transistor BC547 NPN
- 1 MOSFET Canal P, IRF4905
- Optoacoplador 4N25 o CT817C
- Resistores de 220 ohm, 1 Kohm, 2 Kohm, 330 ohm, 5.6 Kohm
- 1 Diodo Zener de 10v., 1N4740
- 1 Diodo rectificador 1N4007

- 1 Diodo LED Rojo
- -1 Motor de 24v.
- 1 switch tipo botón.

Otra modificación que podríamos hacer se presenta en el siguiente circuito, el cual nos ahorraría usar un Transistor NPN.

Circuito con Optoacoplador, BJT, MOSFET Canal N y Diodo Zener

Basado en (Using FET's to Switch a load, 2015)

- 1 MOSFET Canal P, IRF4905
- Optoacoplador 4N25 o CT817C
- Resistores de 220 ohm, 1 Kohm, 2 Kohm, 1 transistor BC547 NPN 3.3 Kohm
- 1 Diodo Zener de 10v., 1N4740
- 1 Diodo rectificador 1N4007
- 1 Diodo LED Rojo
- -1 Motor de 24v.
- 1 switch tipo botón.

Pero si por alguna razón no podemos encontrar en el mercado un MOSFET de Canal N, podemos implementar el siguiente circuito adaptado de (Opto Couplers, s.f.).

Basado en (Opto Couplers, s.f.)

Lista de Componentes para su implementación

- 1 MOSFET Canal N, IRFZ48N
- Optoacoplador 4N25 o CT817C
- Resistores de 4.7 Kohm, 100 Kohm
- 2 Resistores de 1 Kohm
- 1 Diodo rectificador 1N4007
- 1 Diodo LED Rojo
- -1 Motor de 24v.
- 1 switch tipo botón.

Si por algún motivo no podemos conseguir el Optoacoplador 4N25 o el CTT817C, podemos usar el siguiente circuito:

- 1 MOSFET Canal N, IRFZ48N
- 1 Transistor BJT NPN, 2N2222A o equivalente.
- Resistores de 1 Kohm, 100 Kohm
- 2 Resistores de 4.7 Kohm
- 1 Diodo rectificador 1N4007
- 1 Diodo LED Rojo
- -1 Motor de 24v.
- 1 switch tipo botón.

Tomamos la idea de los circuitos anteriores, del siguiente circuito.

(Opto Couplers, s.f.)

LENGUAJE DE PROGRAMACIÓN

El Lenguaje de Programación para codificar la Tarjeta Arduino UNO R3 está fuera del alcance de este curso, pero se ha contemplado material de apoyo que puede ser descargado en los siguientes enlaces:

Núñez, O. (2024a). *Lenguaje INO*. https://www.academia.edu/114824113/LENGUAJE_INO

Núñéz, O. (2024b). *Displays con Arduino UNO R3*. https://www.academia.edu/114832827/DISPLAYs_con_ARDUINO_UNO_R3

Núñez, O (2024c). *Simulador de Circuitos SIMULIDE*. https://www.academia.edu/115083010/Simulador_de_Circuitos_SIMULIDE

Núñez, O (2024d). *El Simulador WOKWI*. https://www.academia.edu/115046523/El_Simulador_WOKWI

T817C

UNIDAD II

2. PROYECTO DE UN SISTEMA ELECTRÓNICO USANDO MICROCONTROLADORES

En el presente proyecto se utilizará la Tarjeta Arduino UNO R3, por su bajo costo y por poseer un Microcontrolador de 8 bits muy potente llamado ATMEGA328P como se aprecia en la siguiente imagen.

(Geek Factory, 2013-2023)

(Arduino, s.f.)

2.1. ARRANQUE SECUENCIAL DE MOTORES

En el siguiente circuito para la etapa de control en lugar de un PLC se está utilizando la Tarjeta Arduino Uno R3, la cual al ingresar el Código de Programación adecuado en su memoria interna permitirá prender con el botón **Start** los motores en forma secuencial y con el Botón **Stop** los apagará también secuencialmente. Se está trabajando con 24v. pues es un estándar industrial para los circuitos de mando en aplicaciones industriales.

CÓDIGO

```
ARRANQUE_TRES.ino
       // Autor. Oscar NÚÑEZ MORI. Jaén, 25-Junio-2024
       // Definir los pines de los pulsadores y Motores
   3
      const int Arranque = 2;
   4
      const int Parada
   5
       const int Motor01 = 14; // A0
       const int Motor02 = 15; // A1
   7
       const int Motor03 = 16; // A2
   8
   9
       void setup() {
  10
  11
         // Configurar pines de entrada y salida
  12
         pinMode(Arranque, INPUT);
  13
         pinMode(Parada,
                           INPUT);
  14
         pinMode(Motor01, OUTPUT);
         pinMode(Motor02, OUTPUT);
  15
         pinMode(Motor03, OUTPUT);
  16
  17
  18
       }
  19
```

```
void loop() {
20
21
22
     if( digitalRead(Arranque) ) {      // Prende motores secuencialmente
23
24
         digitalWrite(Motor01, HIGH); // Enciende Motor 01
25
         delay(3000); // Espera
26
27
        digitalWrite(Motor02, HIGH); // Enciende Motor 01
28
        delay(3000); // Espera
29
30
        digitalWrite(Motor03, HIGH); // Enciende Motor 01
31
        delay(3000); // Espera
32
33
34
     if( digitalRead(Parada) ) {
                                    // Apaga motores secuencialmente
35
36
        digitalWrite(Motor01, LOW); // Apaga Motor 01
37
        delay(3000); // Espera
38
        digitalWrite(Motor02, LOW); // Apaga Motor 01
39
40
        delay(2000); // Espera
41
42
        digitalWrite(Motor03, LOW); // Apaga Motor 01
43
        delay(3000); // Espera
44
45
46
47
```


Si cambiamos los Motores de 24 Voltios por Contactores trifásicos podremos arrancar motores trifásicos como se aprecia en el siguiente circuito usando el mismo código anterior.

- 2 Baterías de 12V.
- 6 pilas 1.5v.
- 1 Tarjeta o Placa Arduino UNO R3
- 3 MOSFETs Canal N, IRFZ48N o Equivalente
- 3 Transistor BJT NPN, 2N2222A o equivalente.
- 2 Resistores de 10 Kohm
- 3 Resistores de 1 Kohm
- 3 Resistores de 100 Kohm
- 6 Resistores de 4.7 Kohm
- 3 Diodo rectificador 1N4007 (1 Amperio) o 1N5408 (3 amperios)
- 3 Diodos LED Rojo
- 3 Motor de 24v.
- 3 Relés o Contactores de 24 Voltios
- 2 Pulsadores.

UNIDAD III

3. PROYECTO DE UN SISTEMA ELECTRÓNICO USANDO TECNOLOGÍA PWM

3.1. CIRCUITO ELECTRÓNICO CON PWM

El presente circuito permite controlar mediante un CI. 555 la Velocidad de un Motor de 24 voltios usando Pulsos Controlados (PWM) en su pin OUT mediante un Potenciómetro. El presente circuito permite controlar mediante un CI. 555 la Velocidad de un Motor de 24 voltios usando Pulsos Controlados (PWM) en su pin OUT mediante un Potenciómetro.

Basado en Поделкин Самоделкин (2016)

- 2 Baterías de 12V.
- 1 CI NE555
- 1 Transistor BJT NPN, BD237
- 1 Transistor BJT PNP, BD238
- 1 Transistor BJT NPN BC547
- 1 Transistor BJT PNP BC557
- 1 MOSFET Canal N, IRFZ48 o equivalente
- 2 Diodos de alta velocidad 1N4148
- 1 diodo rectificador 1N4007 (1 Amperio) o 1N5408 (3 Amperios)
- 2 Resistores de 10 Kohm

- 2 Resistores 1 Kohm
- 2 Condensadores electrolíticos 1uf 25v.
- 2 Condensadores Cerámicos de 0.1 uF.
- 1 Potenciometro de 10 Khm
- 1 Potenciomentro de 50 Khm

El circuito anterior se basó en el siguiente circuito.

ШИМ на ne 555 (Поделкин Самоделкин, 2016)

Si queremos que el circuito pueda invertir el giro del motor y controlar también su velocidad mediante la técnica de PWM se presenta el siguiente circuito.

Control PWM de Motor DC con Inversión de Giro.

Basado en (Portal Mecatrónica, 2020)

- 2 Baterías de 12V.
- 6 pilas de 1.5v.
- 4 Transistores BJT NPN, 2N2222A
- 2 MOSFETs Canal P, IRF4905
- 2 MOSFETS Canal N, IRLZ44N o IRL540
- 2 Resistores de 150 Ohm
- 4 Resistores de 10 Kohm
- 2 Resistores de 1 Kohm
- 4 Interruptores tipo Pulsador
- 4 diodos Rectificadores 1N4007 (1 Amperio) o 1N5408 (3 Amperios)
- -1 Motor de 24 V.

A continuación presentamos el circuito original que se usó en el diseño del circuito anterior

(Portal Mecatrónica, 2020)

Ahora si agregamos una Tarjeta Arduino UNO R3 y lo programamos obtendremos el siguiente circuito:

Control PWM Microprocesado de Motor DC

Basado en (Portal Mecatrónica, 2020)

- 2 Baterías de 12 V.
- 6 pilas de 1.5 V.
- 1 Tarjeta Arduino UNO R3
- 4 Transistores BJT NPN, 2N2222A
- 2 MOSFETs Canal P, IRF4905
- 2 MOSFETS Canal N, IRLZ44N o IRL540
- 2 Resistores de 150 Ohm
- 7 Resistores de 10 Kohm
- 2 Resistores de 1 Kohm
- 4 diodos Rectificadores 1N4007 (1 Amperio) o 1N5408 (3 Amperios)
- -1 Motor de 24 V.
- 3 pulsadores
- 1 Potenciómetro de 10 Kohm

CÓDIGO

```
VARIADOR-DE-VELOCIDAD.ino
       // Autor. Oscar NÚÑEZ MORI. Jaén, 25-Junio-2024
   2
       // Definir los pines de los pulsadores y Motores
       const int ArrangueHorario
   3
                                        = 15;
                                                // Pin Al
                                                            Analog
   4
       const int Parada
                                        = 16;
                                                // Pin A2
                                                            Analog
                                                // Pin A3
   5
       const int ArrangueAntiHorario
                                        = 17:
                                                            Analog
   6
       const int Velocidad
                                        = 18;
                                                // Pin A4
                                                            Analog
   7
       const int Switch01
                            = 4;
                                    // Pin 4
                                              Sw01 Digital
   8
       const int Switch02
                            = 2;
                                    // Pin 2
                                               Sw<sub>0</sub>2
   9
       const int Switch03 = 11;
                                    // Pin 11 PWM Sw03
       const int Switch04 = 9;
                                    // Pin 9 PWM SW04
  10
       // Variables
  11
  12
       int Memoria;
  13
       int Pwm;
```

```
14
15
     void setup() {
16
       // Configurar pines de entrada
17
       pinMode(ArranqueHorario,
18
                                      INPUT);
19
       pinMode(Parada,
                                      INPUT);
20
       pinMode(ArrangueAntiHorario, INPUT);
21
       pinMode(Velocidad,
                                      INPUT):
22
       // Configurar pines de salida
       pinMode(Switch01, OUTPUT);
23
24
       pinMode(Switch02, OUTPUT);
25
       pinMode(Switch03, OUTPUT);
26
       pinMode(Switch04, OUTPUT);
27
28
     }
```


OBJ

```
29
     void loop() {
30
31
      if( analogRead(ArrangueHorario) ) { //
32
33
         delay(100);
         digitalWrite(Switch02, LOW);
34
                                          //
         digitalWrite(Switch04, LOW);
35
                                          //
36
         delay(1000); //spera
         digitalWrite(Switch01, HIGH);
37
                                          //
         digitalWrite(Switch03, HIGH);
38
                                          //
39
         delay(100);// Espera
40
41
         while(1){
42
          Memoria = analogRead(Velocidad);
          Pwm = map(Memoria, 0, 1023, 0, 255);
43
          analogWrite(Switch03, Pwm);
44
          if( analogRead(Parada) ) {
45
46
             delay(100);// Espera
             digitalWrite(Switch01, LOW);
47
                                             //
             digitalWrite(Switch02, LOW);
48
                                             //
49
             digitalWrite(Switch03, LOW);
                                             //
             digitalWrite(Switch04, LOW);
50
                                             //
             delay(100);// Espera
51
52
             break;
53
54
55
56
      }
```

```
57
58
      if( analogRead(ArrangueAntiHorario) ) { //
59
         delay(100);// Espera
60
         digitalWrite(Switch01, LOW);
                                          //
         digitalWrite(Switch03, LOW);
61
                                          //
62
         delay(1000); //spera
         digitalWrite(Switch02, HIGH);
63
                                          //
         digitalWrite(Switch04, HIGH);
64
                                          //
65
         delay(100);// Espera
66
         while(1){
           Memoria = analogRead(Velocidad);
67
           Pwm = map(Memoria, 0, 1023, 0, 255);
68
69
           analogWrite(Switch04, Pwm);
           if( analogRead(Parada) ) {
70
             delay(100);// Espera
71
72
             digitalWrite(Switch01, LOW);
                                             //
             digitalWrite(Switch02, LOW);
73
                                             //
74
             digitalWrite(Switch03, LOW);
                                             //
75
             digitalWrite(Switch04, LOW);
                                             //
76
             delay(100);// Espera
77
             break;
78
79
80
      }
81
82
      if( analogRead(Parada) ) { //
         delay(100);// Espera
83
84
         digitalWrite(Switch01, LOW);
                                         //
         digitalWrite(Switch02, LOW);
85
                                         //
         digitalWrite(Switch03, LOW);
86
                                         //
87
         digitalWrite(Switch04, LOW);
                                         //
88
         delay(100);// Espera
      }
89
90
91
92
```


REFERENCIAS

Inventables (s.f.). Cómo conectar un Mosfet de Potencia a un Microcontrolador. https://www.inventable.eu/como-conectar-un-mosfet-a-un-microcontrolador/

Inventables (2017, Set 4). Los diodos 1N4000 y 1N5400. https://www.inventable.eu/2017/09/04/los-diodos-1n4000/

Orendain, S. (2020, Ago 18). ¿Cómo funciona un Diodo Zener? https://circuitoslistos.com/como-funciona-un-diodo-zener/

Llamas, L. (2016). *Controlar grandes cargas con Arduino y transistor MOSFET*. https://www.luisllamas.es/arduino-transistor-mosfet/

Using FET's to Switch a load (2015. Dic 29). Using FET's to Switch a load (2015. Dic 29). https://arduinodiy.wordpress.com/2015/12/29/using-fets-to-switch-a-load/

Geek Factory (2013-2023). *Alimentar el Arduino: La guía definitiva*. https://www.geekfactory.mx/tutoriales-arduino/alimentar-el-arduino-la-guia-definitiva/

Portal Mecatrónica (2020). *Puente H con Transistores E-Mosfet* [Video]. YouTube https://www.youtube.com/watch?v=85jYQuPLHDY

Поделкин Cамоделкин (2016, Jul 30). ШИМ на ne 555 [Video]. YouTube. https://www.youtube.com/watch?v=SH4dEL0gAlY https://radiokot.ru/lab/hardwork/67/04.jpg

Opto Couplers (s.f.).

https://www.talkingelectronics.com/ChipDataEbook-ld/html/OptoList.html#Works

Arduino (s.f.). Full Pinout.

https://content.arduino.cc/assets/A000066-full-pinout.pdf