APELLIDOS:	NOMBRE:		
DNI:	FIRMA:		

Normativa:

- La duración del examen es de 1h30min.
- Escriba el nombre y los apellidos en y firme en TODAS las hojas.
- DEBE responder en el espacio asignado.
- No se permiten calculadoras ni apuntes.
- Debe permanecer en silencio durante la realización del examen.
- No se puede abandonar el examen hasta que el profesor lo indique.
- Debe tener una identificación en la mesa a la vista del profesor (DNI, carnet UPV, tarjeta residente, etc.)
- **1.- (1 punto)** Dados los números enteros A=1001001 y B=0111011 representados en complemento a dos, realice las siguientes operaciones, **siempre en complemento a dos y con 7 bits**. No olvide indicar si se produce desbordamiento y justifique su respuesta.

A+B

Como el último y el penúltimo bit de acarreo son los dos 1, 1 xor 1 = 0, por lo que no hay desbordamiento y el resultado es: 0000100

B-A

Como el último acarreo es 0 y el penúltimo es 1, 0 xor 1 = 1, lo que indica que hay desbordamiento y no hay resultado.

2.- (1 punto) Dados los siguientes números enteros, represéntelos en el criterio indicado, utilizando siempre 7 bits

Entero	Signo y magnitud	Complemento a dos	Exceso 63
+45	0101101	0101101	1101100
-45	1101101	1010011	0010010

Puede realizar aquí las operaciones necesarias.

Para representar las cantidades deseadas en Signo y Magnitud, sólo hay que representar la magnitud o valor absoluto en binario natural con 6 bits, y añadir, a la izquierda, el bit de signo (0 positivo; 1 negativo)

Para representar las cantidades deseadas en Complemento a 2, se representa en primer lugar la magnitud en binario natural, y se le añade, a la izquierda, un cero. Si la cantidad a representar es positiva, el proceso a finalizado. Si por el contrario es negativa, es necesario aplicarle el complemento a 2 a la secuencia de bits.

Para representar las cantidades deseadas en exceso 63, símplemente sumamos 63 a dichas cantidades y representamos en binario natural.

APELLIDOS:	NOMBRE:	
DNI:	FIRMA:	

3.- (1 punto)) Represente el número -10,875 en el formato de simple precisión de IEEE754. Detalle todos los pasos realizados y exprese el resultado final en hexadecimal.

Convertimos a binario

$$10 = 1010_2$$

0,875 x 2 = 1,75 -> 0,75 x 2 = 1,5 -> 0,5 x 2 = 1,0

$$-10,875 = -1010,111_2$$

Representamos en coma flotante: $-1010,111 = -1010,111 \times 2^0$

Normalizamos la mantisa: $1010,111 \times 2^0 = 1,010111 \times 2^3$

Representamos el exponente en exceso 127 = 3 + 127 = 00000011 + 01111111 = 10000010

Signo = 1 (negativo)

Todo junto de la forma signo exp mantisa con bit implícito:

1 10000010 01011100000000000000000

4.- (1,5 puntos) Dado el circuito de la figura siguiente

Obtenga su diagrama de estados y calcule (a partir del diagrama de estados obtenido) la secuencia de valores de la salida S para la secuencia de valores en la entrada E: 0 - 0 - 1 - 1 - 0 teniendo en cuenta que el estado inicial del sistema es Q = 0.

Indique los pasos seguidos y detalle todas las tablas intermedias obtenidas para llegar al resultado.

Tablas de excitación y salida:

En primer lugar se obtienen las tablas de verdad de las funciones de excitación y salida del sistema, aplicando las combinaciones de valores en las entradas.

Función de excitación

Q	Е	D
0	0	1
0	1	1
1	0	1
1	1	0

Función de salida

Q	S
0 1	1 0

La función de excitación coincide con el estado siguiente ya que se trata de biestables D. Es sencillo obtener la tabla de estados (con los estados codificados, pues disponemos del valor de la variable de estado) sin más que transportar la información de los estados siguientes (en función de la entrada E) y salida para cada estado a una única fila de la tabla de estados.

Tabla de estados:

	Estado sigu		
Estado actual	Entr	Salida	
Q(t)	E = 0	E = 1	S
0 1	1 1	1 0	1 0

Otra posibilidad:

APELLIDOS:	NOMBRE:		
DNI:	FIRMA:		

Q(t)	Е	Q(t+1)	S(t)
0	0	1	1
0	1	1	1
1	0	1	0
1	1	0	0

Diagrama de estados:

A partir de la tabla anterior, y utilizando los valores de estado como nombres para los estados es sencillo derivar el diagrama de estados del sistema. A continuación se muestran los dos posibles diagramas de estado, utilizando vectores o ecuaciones booleanas.

Utilizando vectores

 $\begin{pmatrix} 0 & 1 & 1 \\ [1] & 1 & [0] \end{pmatrix}^0$

Utilizando ecuaciones

Salida del sistema para la secuencia de valores 0 - 0 - 1 - 1 - 0 en la entrada E:

Por último, a partir del estado inicial 0 (salida S = 1), se recorre el diagrama de estados empleando la secuencia de valores de la entrada E(0-0-1-1-0)

Este recorrido se puede representar, por ejemplo, en una tabla en la que se incluye el estado para facilitar su comprensión. A partir de un valor en el estado Q y un valor en la entrada E se determina el próximo valor del estado Q. Y cada valor de estado Q determina un valor en la salida S.

Con lo que se determina que la secuencia de valores de la salida S es: 1 (salida en el estado inicial cuando Q=0) – 0-0-1-0=0

- **5.- (1,5 puntos)** Obtenga el diagrama de estados de un autómata de Moore que responda a las siguientes especificaciones:
 - Entradas FP (freno pisado) y AA (activar sistema abs), ambas activas a nivel alto.
 - Salida S, activa a nivel alto.
 - Mientras ninguna de las entradas está activada, la salida debe ser 0 (desactivada).
 - Mientras la entrada FP esté activada pero no AA, la salida debe ser 1 (activada).
 - Mientras esté activada la entrada AA (independientemente de la activación de FP) la salida debe activarse y desactivarse de forma alternada, en ciclos de reloj consecutivos. El primer ciclo de reloj en el que la entrada AA esté activada debe producir la activación de la salida, el segundo su desactivación, el tercero su activación, etc.

Hay varias formas de abordar el problema, y cada una da lugar a un diagrama de estados diferente. Dado que no es necesario obtener un diagrama de estados con el número mínimo de estados, los diferentes diagramas son (todos ellos) representaciones válidas del sistema.

A - Solución con cuatro estados:

En primer lugar, a partir de una interpretación más o menos literal del enunciado se puede pensar que este sistema es un autómata con tres "modos" de funcionamiento:

- 1. Un modo de reposo en el que no hay ningún tipo de frenado, con la salida S desactivada. Este modo se puede representar por un único estado "reposo".
- 2. Un modo de funcionamiento con el tipo de frenado normal (sin abs), con la salida S activada. Este modo se puede representar por un único estado "frenado normal"
- 3. Un modo de funcionamiento con el tipo de frenado abs, con la salida S alternando entre los valores 0 y 1 ciclo a ciclo de reloj. Necesitamos dos estados para representar este modo de funcionamiento, el primero con la salida activada y el segundo con la salida desactivada.

Diagrama de estados:

Esta manera de entender el autómata da lugar al diagrama de estados (con cuatro estados) siguiente:

APELLIDOS:	NOMBRE:	
DNI:	FIRMA:	

B - Solución con tres estados:

En lugar de pensar en el sistema en los términos anteriores se puede plantear el diagrama con tres estados diferentes: reposo, frenado-con salida activada (sea por frenada normal o por abs) y frenado-con salida desactivada (solamente por abs).

Diagrama de estados:

En este caso el diagrama de estados queda:

C - Solución con dos estados:

Finalmente, también se puede pensar que el autómata sólo tiene dos estados, uno en el que la salida está desactivada y otro en el que la salida está activada. Respecto de la solución con cuatro estados, el primero correspondería tanto al estado de reposo y como al de frenado abs-salida desactivada, y el segundo al estado de frenado normal y también al de frenado abs-salida activada

Diagrama de estados:

En este caso el diagrama de estados queda muy simplificado aunque se complican las ecuaciones de las transiciones:

APELLIDOS:	NOMBRE:	
DNI:	FIRMA:	

A partir del siguiente código, escrito en ensamblador del MIPS R2000, responder a las siguientes preguntas.

```
.globl __start
.data 0x10000000
cadena: .asciiz "ONU"
          .ascii "."
caract:
.data 0x10001000
result:
          .space 6
.text 0x00400000
start:
     la $8, cadena
     la $9, caract
     lb $10,0($9)
     la $11, result
bucle:
     lb $12,0($8)
     beg $12,$0,fin
     sb $12,0($11)
     sb $10, 1($11)
     addi $8, $8, 1
     addi $11,$11,2
     j bucle
fin:
.end
```

6.- (0,5 puntos) Describir brevemente qué hace el programa anterior.

El programa inserta el carácter '.' Entre cada uno de los caracteres de la cadena "ONU"

7.- (0,5 puntos) Indique el contenido del segmento de datos antes de iniciarse la ejecución, teniendo en cuenta que los datos se almacenan en formato "little endian". El contenido debe ponerse en hexadecimal para los datos numéricos por cada byte de memoria, y con los caracteres correspondientes en el caso de los datos alfabéticos.

31 24	23 16	15 8	7 0	Dirección
NULL	`U'	'N'	,0,	0x10000000
			` . /	0x10000004
0x00	0x00	0x00	0x00	0x10001000
		0x00	0x00	0x10001004

8.- (1 punto) Indique el contenido del segmento de datos después de finalizar la ejecución, teniendo en cuenta que los datos se almacenan en formato "little endian". El contenido debe ponerse en hexadecimal para los datos numéricos por cada byte de memoria, y con los caracteres correspondientes en el caso de los datos alfabéticos.

31		24	23		16	15		8	7		0	Dirección
	NULL			۱۵′			'N'			`O'		0x10000000
										١.,		0x10000004
	١.,			'N'			١.,			`O <i>'</i>		0x10001000
							١ , /			`U′		0x10001004
					•					•	·	

9.- (1 punto) Determinar el contenido de los siguientes registros cuando haya finalizado la ejecución del programa.

Registro	Contenido
\$8	0x10000003
\$9	0x10000004
\$10	• '
\$11	0x10001006
\$12	0x0000000

APELLIDOS:		NOMBRE:
DNI:	FIRMA:	
10 (1 punto) Codificar la instru	cción ab \$10	1/011)
"sb" es una instrucción de averiguar el valor de los orden.	tipo I. Por	lo que habrá que
La forma genérica de la ins Por lo que el valor de cada CO: código de operación de Codificado en 6 bits será rs: será el registro \$11. rt: será el registro \$10. desp: será 1. Codificado e	a campo será: e la instruco 101000 Codificado e Codificado e	ción "sb", que es 0x28. en 5 bits: 01011 en 5 bits: 01010
Poniendo los campos en el o	orden especif	ficado en el formato:
101000 01011 01010 000000	000000001	
Uniéndolo todo: 1010000101101010000000000	0000001	
Separando en grupos de 4 bi hexadecimal: 1010 0001 0110 1010 0000 A 1 6 A 0	0000 0000 000)1
Por lo que la respuesta es	: 0xA16A0001	

Sintaxis y tipo de las instrucciones

Sintaxis y tipo d	Formato	Descripción		
add rd, rs, rt	R	rd ← rs + rt		
addi rt, rs, inm	ı	rt ← rs + inm, el dato inmediato es de 16 bits y se extiende el signo		
sub rd, rs, rt	R	rd ← rs – rt		
mult rs, rt	R	Multiplica rs por rt dejando los 32 bits de mayor peso en el registro HI y		
marc 15, 1c	1.	los 32 bits de menor peso en LO		
div rs, rt	R	Divide rs entre rt dejando el cociente en el registro LO y el resto en el		
arv 15, 10		registro HI		
and rd, rs, rt	R	rd ← rs and rt, la operación lógica indicada se realiza bit a bit		
nor rd, rs, rt	R	rd ← rs nor rt		
xor rd, rs, rt	R	rd ← rs xor rt		
or rd, rs, rt	R	rd ← rs or rt		
andi rt, rs, inm	1	rt← rs and inm, dato inmediato de 16 bits que se extiende con 16 ceros		
ori rt, rs, inm	i	rt← rs or inm, dato inmediato de 16 bits que se extiende con 16 ceros		
xori rt, rs, inm	Ī	rt← rs xor inm, dato inmediato de 16 bits que se extiende con 16 ceros		
sll rd, rt, desp	R	rd← rt << desp, desplazamiento a izquierdas.		
	.,	Conforme desplaza se rellena con 0		
srl rd, rt, desp	R	rd← rt >> desp, desplazamiento a derechas		
		Conforme desplaza se rellena con 0		
sra rd, rt, desp	R	rd← rt >> desp, desplazamiento a derechas.		
		Conforme desplaza se extiende el bit de signo		
Sintaxis	Formato	Descripción		
lw rt, desp(rs)	1	rt ← M[desp+rs], (el desplazamiento, desp, es de 16 bits y se extiende		
		el signo), carga una palabra (32 bits)		
lh rt, desp(rs)	1	rt ← M[desp+rs], carga media palabra (16 bits) y extiende el signo		
lb rt, desp(rs)	1	rt ← M[desp+rs], carga un byte (8 bits) y extiende el signo		
sw rt, desp(rs)	I	M[desp+rs] ← rt		
sh rt, desp(rs)	I	M[desp+rs] ← rt, almacena la parte baja (16 bits) de rt en memoria		
sb rt, desp(rs)	1	M[desp+rs] ← rt, almacena el byte menos significativo de rt en memoria		
lui rt, inm	1	rt3116 ← inm, rt150 ←0		
Sintaxis	Formato	Descripción		
mfhi rd	R	rd ← HI		
mflo rd	R	rd ← LO		
mthi rs	R	HI ← rs		
mtlo rs	R	LO ← rs		
Sintaxis	Formato	Descripción		
slt rd, rs, rt	R	Si (rs < rt) entonces rd ← 1 si no rd ← 0		
slti rt, rs, inm	- 1	Si (rs < inm) entonces rt ← 1 si no rt ← 0		
Sintaxis	Formato	Descripción		
beq rs, rt,	1	Si (rs == rt) PC← etiqueta. Si se cumple la condición salta a la		
etiqueta		dirección etiqueta.		
bne rs, rt,	ı	Si (rs != rt) PC← etiqueta. Si se cumple la condición salta a la dirección		
etiqueta	·	etiqueta.		
Sintaxis	Formato	Descripción		
j etiqueta	J	PC← etiqueta, salta a la dirección etiqueta		
jal etiqueta	J	\$31← PC+4, PC← etiqueta, salta a la dirección etiqueta guardándose		
1	-	previamente la dirección de retorno en \$31		
jr rs	R	PC ← rs, salta a la dirección contenida en el registro rs		
3				

Codificación según el formato

_	6 b	oits	5	oits	5 b	its	5	bits	5 b	its		6 bits	
R:	С	0	ı	'S	r	t	ı	rd	Numo	desp	F	unción	
•	31	26	25	21	20	16	15	11	10	6	5		0
_	6 b	oits	5	bits	5 I	oits			1	6 bits			_
l:	С	0		rs		rt			De	sp/Inn	n		
•	31	26	25	21	20	16	15						0
	6 b	oits						26 bits					
J:	С	0						Destino					
	31	26	25										0

Códigos de operación y de función

Instrucción	CO
j	0x02
jal	0x03
beq	0x04
bne	0x05
addi	0x08
andi	0x0C
ori	0x0D
xori	0x0E
lui	0x0F
lb	0x20
lh	0x21
lw	0x23
	6 bits

Instrucción	CO
sb	0x28
sh	0x29
sw	0x2B
	6 bits

Instrucción	СО	Función
sll	0x00	0x00
srl	0x00	0x02
sra	0x00	0x03
jr	0x00	0x08
mfhi	0x00	0x10
	6 bits	6 bits

Instrucción	СО	Función
mthi	0x00	0x11
mflo	0x00	0x12
mtlo	0x00	0x13
mult	0x00	0x18
div	0x00	0x1A
add	0x00	0x20
sub	0x00	0x22
and	0x00	0x24
or	0x00	0x25
xor	0x00	0x26
nor	0x00	0x27
slt	0x00	0x2A
•	6 bits	6 bits

Convenio MIPS

Nombre	Ν°
\$zero	0
\$at	1
\$v0,\$v1	2,3
\$a0,,\$a3	4,,7

Nombre	N⁰
\$t0,,\$t7	8,, 15
\$s0,,\$s7	16,,23
\$t8,\$t,0	24,25
\$k0,\$k1	26,27

Nombre	No
\$gp	28
\$sp	29
\$fp	30
Śra	31