

Student ID:
Family name:
Other names:
Desk number: Date:
Signature:

Examination in the School of Mathematical Sciences

Semester 1, 2017

107351 APP MTH 3021	Modelling with Ordinary Differential
	Equations III

Time for completing booklet: 120 mins (plus 10 mins reading time).

Question	N	Aarks
1	/13	
2	/18	
3	/20	
4	/19	
Total	/70	

Instructions to candidates

- Attempt all questions and write your answers in the space provided below that question.
- If there is insufficient space below a question, then use the space to the *right* of that question, indicating clearly which question you are answering.
- Only work written in this question and answer booklet will be marked.
- Examination materials must not be removed from the examination room.

Materials

• Calculators are not permitted.

Do not commence writing until instructed to do so.

13 Total	Question 1

Consider the ordinary differential equation

$$\frac{dx}{dt} = rx + \frac{1}{1+x} \quad \text{for} \quad x > -1, \tag{1}$$

	where r is a real positive parameter.
/1 mark	1(a) Determine the steady states of this equation.
/2 marks	1(b) Use your answer to 1(a) to determine the bifurcation value $r = \overline{r}$. Hence calculate the bifurcation point $x = \overline{x}$.

/4 marks

1(c) Perform a phase-line analysis for $r < \overline{r}, r = \overline{r}$ and $r > \overline{r}$. Include arrows to indicate the stability on the fixed points, and state the stability of the fixed points, explaining your reasoning.

/2 marks	1(d) State the type of bifurcation that occurs at $r = \overline{r}$, and give a reason.
/4 marks	1(e) Sketch the bifurcation diagram, marking the stable and unstable branches and the bifurcation point and value.

18 Total (

Question 2.

Consider the modified predator—prey system

$$\frac{dx}{dt} = x(1-x) - xy \tag{2a}$$

$$\frac{dy}{dt} = y\left(1 - \frac{y}{x}\right) \tag{2b}$$

for x > 0 and $y \ge 0$.

	γ 2(a) Interpret Eq. (2a) when $y = 0$.
/2 marks	
/ Z IIIai KS	
	2(b) In system (2a-b), which of x and y is the predator and
	2(b) In system (2a-b), which of x and y is the predator and which is the prov? Justify your answer
	2(b) In system (2a–b), which of x and y is the predator and which is the prey? Justify your answer.
	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.
/2 marks	which is the prey? Justify your answer.

	the two relevant fixed points.
/4 marks	

	Calculate the Jacobian of the system, and hence classify the two fixed points.
/5 marks	

				2	2(e	_	st	al	ole	e.	S	ke	etc	h	tŀ	ıe	tr	aj	ec	to	ry	ir	1 t	h	e I	ρh	as	e j	pla	an	е :	tic for	: a	'n
/5 marks	 	 	 	 																														
/ 3 11141 K3	 	 	 	 																														
	 	 	 	 									٠.			٠.		٠.	٠.															

20 Total

Question 3.

Consider the IVP

$$\frac{du}{dt} = \frac{-u}{\sqrt{t}} \quad \text{with} \quad u(1) = 0.5. \tag{3}$$

3(a) Express the IVP as an integral equation, and hence write down the associated Picard iteration scheme, including the value of the initial iterate $u^{(0)}$. Calculate the first iterate $u^{(1)}$.

/5 marks	 	• • • •	 	 	 	 	 	 • • • •	 	 • • • •	
	 		 	 	 	 	 	 • • • •	 	 • • • •	
	 		 	 	 	 	 	 	 	 • • •	
	 		 	 	 	 	 	 	 	 • • •	

3(b) Show that the function

$$f(u,t) = \frac{-u}{\sqrt{t}}$$

is Lipschitz continuous for $u \in \mathbb{R}$ and $t \in [0.25, 1.75]$, and determine the smallest Lipschitz constant on this domain.

/3 marks	
	<u> </u>
	3(c) Does a unique solution to IVP (3) exist for some interval of time following $t=1$? Justify your answer.
/3 marks	You do not need to calculate the time interval, and do not solve the IVP.

	3(d)	Can a unique solution be guaranteed if the initial condition is replaced by $u(0) = 1$? Explain your answer
/2 marks		
·		
	3(e)	Write down the forwards/explicit Euler method for the ODE in (3) , and state the local discretisation error as an order of the step size h .
/2 marks		

	3(f) Suppose Euler's method is used to solve IVP (3) for $t \in [1, 4]$. Calculate the interval(s) of step sizes h for which the method is stable.
/3 marks	You can quote results from lectures without proof.
	J
	3(g) Will the numerical solution convergence to the true solution as $h \to 0$? Justify your answer.
/2 marks	You can ignore round-off error.

19 Total

Question 4.

As in lectures, consider the second-order IVP

$$ml\frac{d^2\Theta}{d\tau^2} = -mg\sin\Theta \quad \text{with} \quad \Theta(0) = \alpha \quad \text{and} \quad \dot{\Theta}(0) = 0,$$
(4)

as a model of a simple pendulum.

4(a) Describe the ODE in terms of Newton's second law, and give a physical interpretation of the initial conditions.

You can add a schematic if this helps your explanation.

/2 marks	5	 • • •	 • • •	 	 	• • •	• • •	• • •	 	 	• • •	• • • •		 • • •	 	 •
	-	 • • •	 • • •	 • • •	 	• • •	• • •	• • •	 	 	• • •			 • • •	 	
		 • • •	 • • •	 • • •	 				 	 				 	 	
		 	 	 	 				 	 			. 	 	 . 	

	4(ow that by $P(4)$ becom-		$t = \tau/T$	for a	suitable sca	le T,
			$\frac{d^2\theta}{dt^2} + \sin\theta$	with	$\theta(0) = \alpha$	and	$\dot{\theta}(0) = 0,$	(5)
]	who	ere $\theta(t) = \Theta$	(τ) .				
/3 marks								
/ S IIIai KS]							
					• • • • • • • • • • • • • • • • • • • •			• • • •
					• • • • • • • • • • • • • • • • • • • •			• • • •
								• • • •
	4		plain the as ised to	$\operatorname{sumption}$	ons that a	llow IV	/P (5) to b	e lin-
			$\frac{d^2\theta}{dt^2} + \theta = 0$	with	$\theta(0) = \alpha$	and	$\dot{\theta}(0) = 0.$	(6)
/1 mark								

4(d) Derive the centred difference formula

$$y_n'' = \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} \tag{7}$$

	and find the order of the truncation error.
/5 marks	

	4(e) Determine the finite difference formula given by applying the centred difference formula (7) to IVP (6). Find the local and global discretisation errors.
/5 marks	
•	J
	4(f) Explain how the initial conditions are incorporated into the finite difference formula.
/3 marks	
/ o marks	l •••••••
	End of examination questions.