1 Prostori in preslikave

1.1 Topološki prostori

- 1. Topološki prostori
 - Definicija. Topologija. Odprte množice.
 - Opomba. Kako običajno preverimo aksiom T2?
 - Definicija. Topološki prostor.
 - **Definicija.** Finejša topologija. Grobejša topologija.
 - Primer. Naj bo (M, d) metrični prostor. Porojena (inducirana) topologija z metriko d. Evklidska topologija.
 - Definicija. Metrizabilen prostor.
 - Primer. Trivialna topologija. Diskretna topologija. Ali sta metrizabilna?
 - **Definicija.** Notranjost množice A.
 - Trditev. Čemu je enaka Int A (unija množic)?
 - Trditev. Čemu je enaka Int A (točke)?
 - Definicija. Zaprta množica.
 - Opomba. Kako vpeljemo topologijo z pomočjo zaprtih množic?
 - **Primer.** Topologija končnih komplementov. Ali so vse točke zaprte? Ali je metrizabilna?
 - **Definicija.** Zaprtje množice A.
 - Trditev. Čemu je enako Cl A (presek množic)?
 - Trditev. Čemu je enako Cl A (točke)?
 - **Primer.** Kakšna zvezna med $\overline{A \cup B}$ in $\overline{A} \cup \overline{B}$ ter med $\overline{A \cap B}$ in $\overline{A} \cap \overline{B}$?
 - Definicija. Mejna točka.
 - Definicija. Meja množice.
 - Trditev. Čemu je enaka Fr A (formula)?
 - Opomba. Ali je Fr A vedno zaprta množica?

Rezultati z vaj

- Topologija vsebovane točke. [2.3. naloga]
- Ali je presek poljubne družine topologij spet topologija? [2.5. naloga]

1.2 Zvezne preslikave

- 1. Slike in praslike
 - Definicija. Praslika. Slika.
 - Trditev. Monotonost slike in praslike.
 - Trditev. Praslika unije in preseka. Slika unije in preseka.
 - Opomba. Kadar slika ohranja preseke?
 - Trditev. Praslika komplementa.
 - Trditev. Praslika slike. Slika praslike.
- 2. Zvezne preslikave
 - Definicija. Zvezna preslikava.
 - **Primer.** Ali so zvezne:
 - Vse zvezne funkcije v smislu metričnih prostorov.
 - Funkcije v prostor s trivialno topologijo.

1.3 Homeomorfizmi 2

- Funkcije iz prostora z diskretno topologijo.
- Primer. Ugotovi:
 - Kadar je id : $(X, \mathcal{T}) \to (X, \mathcal{T}')$ zvezna?
 - Katere funkcije $f: (\mathbb{R}, \mathcal{T}_{kk}) \to (\mathbb{R}, \mathcal{T}_{evkl})$ so zvezne?
 - Naj bosta X, Y neskončni, d metrika na Y. Katere funkcije $f: (X, \mathcal{T}_{kk}) \to (Y, \mathcal{T}_d)$ so zvezne?
- Trditev. Kaj lahko povemo o kompozitumu zveznih preslikav?
- Trditev. 2 karakterizaciji zveznosti preslikave $f: X \to Y$.

1.3 Homeomorfizmi

1. Homeomorfizmi

- **Definicija.** Homeomorfizem.
- Definicija. Homeomorfna prostora.
- Opomba. Ali je homeomorfizem ekvivalenčna relacija? Kako nam to pomaga?
- Definicija. Odprta preslikava. Zaprta preslikava.
- Trditev. 3 karakterizaciji homeomorfizma.
- **Primer.** Ali sta prostora $[0,1) \cup \{2\}$ in [0,1] homeomorfna? Ali inverz zvezne bijekcije vedno zvezen?
- **Primer.** Pokaži, da vsak interval (končen ali neskončen) homeomorfen enemu izmed [0,1], [0,1), (0,1).
- **Primer.** Pokaži, da intervali [0, 1], [0, 1), (0, 1) niso paroma homeomorfni.
- Kaj je najboljša izbira za homeomorfizem $(-1,1) \approx \mathbb{R}$?
- **Definicija.** Enotska n-krogla. Odprta enotska n-krogla. Enotska (n-1)-sfera.
- **Primer.** Kako lahko $(0,1) \approx \mathbb{R}$ posplošimo do homeomorfizma med odprto kroglo \mathring{B}^n in \mathbb{R}^n ?
- Primer. Zakaj sfera S^{n-1} v \mathbb{R}^n topološko bolj podobna \mathbb{R}^{n-1} kot \mathbb{R}^n ? Stereografska projekcija.
- Definicija. Mnogoterosti.
- **Primer.** Ali je $f:[0,2\pi]\to S^1,\ f(t)=e^{it}$ zvezna in bijektivna? Ali je zaprta? Kaj to pove o f^{-1} ?
- **Primer.** Ali je projekcija pr : $\mathbb{R}^2 \to \mathbb{R}$, pr(x,y) = x zaprta?
- **Definicija.** Topološka lastnost.
- Primer. Ali je omejenost in polnost topološka lastnost?
- Primer. Ali je možno, da $\mathbb{R} \approx \mathbb{R}^2$? Ali enak sklep deluje za \mathbb{R}^3 in \mathbb{R}^2 ?

1.4 Baze in predbaze

1. Baza

Naj bo (X, \mathcal{T}) topološki prostor.

- (*) **Definicija.** Lokalna baza okolic.
- **Zgled.** Lokalna baza $x \in X$ v metričnem prostoru (X, d).
- (*) **Definicija.** Baza topologije \mathcal{T} .
- Zgled.
 - Kaj je baza metričnega prostora?
 - Kaj je baza diskretnega prostora?

1.5 Podprostori 3

• Trditev. Kako iz baze pridemo do lokalne baze okolic za neko točko $x \in X$? Kako pa obrat?

- Trditev. Kaj lahko preverimo na bazi?
- **Zgled.** Ali je $f:S^1\to S^1\subseteq\mathbb{C}$ (enotska kompleksna števila), $f(z)=z^2$ odprta?
- (*) **Trditev.** Topologija, generirana z bazo.
- (*) **Definicija.** Produktna topologija.
- Opomba. Ali družina produktov baznih množic tudi generira produktno topologijo?
- Trditev. O projekcijah na produktne topologije.
- **Zgled.** Ali je projekcija zaprta?
- 2. Predbaza

Naj bo $\mathcal{P} \subseteq \mathcal{P}(X)$.

- (*) **Trditev.** Predbaza.
- **Zgled.** Predbaza produktne topologije.
- Trditev. Kaj lahko testiramo na predbazi?
- Trditev. Kdaj je $f: X \to X_1 \times ... \times X_n$ zvezna?
- **Definicija.** Kdaj je prostor 1-števen?
- **Zgled.** Ali so metrični prostori 1-števni?
- **Definicija.** Kdaj je prostor 2-števen?
- **Zgled.** Ali je \mathbb{R}^n 2-števen?
- Opomba. Ali je vsak 2-števen prostor tudi 1-števen? Ali je vsak 1-števen prostor tudi 2-števen?
- (*) **Definicija.** Povsod gosta podmnožica. Separabilni prostor.
- (*) **Trditev.** Ali 2-števnost implicira separabilnost?
- (*) Izrek. Kdaj je metrični prostor 2-števen?

1.5 Podprostori

- 1. Podprostori
 - Definicija. Inducirana topologija. Podprostor.
 - **Zgled.** Kakšno topologijo podeduje $\mathbb{N} \subseteq \mathbb{R}$? Ali je topologija na $\mathbb{Q} \subseteq \mathbb{R}$ diskretna? Kaj so podprostori prostorov z diskretno in s trivialno topologijo?
 - Trditev.
 - (a) Kako dobimo bazo/predbazo podprostora?
 - (b) Kaj so zaprti množici v podprostoru?
 - **Trditev.** Kdaj je odprta/zaprta množica v podprostoru odprta tudi v celotnem prostoru?
 - **Definicija.** Dedna lastnost.
 - **Zgled.** Ali je metrizabilnost dedna? Ali je separabilnost dedna?
- 2. Preslikavi na pokritjih

Naj bo $\{X_{\lambda}\}$ pokritje X.

- Definicija. Usklajena družina preslikav $(f_{\lambda}: X_{\lambda} \to Y)_{\lambda}$.
- (*) Lema. Recimo, da je $\{X_{\lambda}\}$ odprto pokritje. Kdaj je $A \subseteq X$ odprta?
- **Definicija.** LOkalno končno pokritje.
- (*) Lema. Recimo, da je $\{X_{\lambda}\}$ zaprto pokritje. Kdaj je $A \subseteq X$ zaprto?
- (*) Izrek. Kako dobimo zvezno preslikavo iz družine preslikav na nekem po-

1.5 Podprostori 4

kritju?

• (*) **Posledica.** Kako lahko preverimo zveznost $f: X \to Y$ z pokritji?

3. Vložitve

- Zgled. Ali imata $\mathbb N$ in $f_*(\mathbb N)\subseteq\mathbb R$ isto topologijo, če - f(n) = n; - f(0) = 0, $f(n) = \frac{1}{n}$. • **Definicija.** Vložitev.
- (*) **Trditev.** Naj bo $f: X \to Y$ injektivna. Kdaj je f vložitev?

Rezultati z vaj

- Ali so vse vektorski operaciji v evklidske topologiji zvezne? [3.2. naloga]
- Kako lahko gledamo na ravnino \mathbb{R}^2 ? [3.2. naloga]
- \bullet Ali so vse p-norme ekvivalentne med sabo? Kaj to pomeni o topologii oz. o konvergence zaporedij? [3.3. naloga]
- (?) Kam zvezna preslikava preslika konvergentna zaporedja? [3.4. naloga]
- Kaj lahko povemo o preslikavi $\mathbb{R}^n \to \mathbb{R}$, ki ima lokalni ekstrem? [3.5. naloga]

2 Topološke lastnosti

2.1 Ločljivost

Naj bo (X, \mathcal{T}) topološki prostor.

- 1. Hausdorffovi in Frechetovi prostori
 - **Definicija.** Kadar pravimo, da \mathcal{T} loči $A \subseteq X$ od $B \subseteq X$?
 - Definicija. Kadar pravimo, da \mathcal{T} ostro loči $A \subseteq X$ od $B \subseteq X$?
 - **Zgled.** Ali je trivialna topologija loči množice? Kaj pa diskretna?
 - **Zgled.** Kaj je zaprtje podmnožice $A \subseteq X$ v jeziku ločljivosti?
 - (*) **Definicija.** Hausdorffov prostor.
 - **Zgled.** Ali so Hausdorffovi:
 - Metrični prostori.
 - $-(X,\mathcal{T}_{kk}), X$ je neskončna.
 - (*) **Trditev.** 2 karakterizaciji Hausdorffovih prostorov.
 - (*) **Izrek.** Lastnosti Hausdorffovih prostorov:
 - (a) Kaj lahko povemo o končnih množicah?
 - (b) Koliko limit lahko ima zaporedje v Hausdorffovem prostoru?
 - (c) (*) Naj bosta $f, g: X \to Y^{\text{Haus}}$ preslikavi. Kaj lahko povemo o množici $\{x \in X \mid f(x) = g(x)\}$?
 - (d) (*) Naj bosta $f, g: X \to Y^{\text{Haus}}$ preslikavi. Kaj če se f, g ujemata na kakšne goste podmnožice $A \subseteq X$?
 - (e) (*) Kaj lahko povemo o grafu preslikave $f: X \to Y^{\text{Haus}}$?
 - (*) **Definicija.** Frechetov prostor.
 - **Zgled.** Ali so Hausdorffovi prostori Frechetovi? Ali je trivialen prostor Frechetov?
 - (*) **Trditev.** Karakterizacija Frechetova prostora (enojčki).
 - **Definicija.** Multiplikativna lastnost.
 - Trditev. Ali sta Hausdorffova in Frechetova lastnosti dedni in multiplkativni?
- 2. Regularnost in normalnost
 - (*) **Definicija.** Normalen prostor.
 - Zgled. V kakšni povezavi so normalnost, regularnost, Hausdorff in Frechet?
 - **Zgled.** Naj bo (X, \mathcal{T}) Hausdorffov in $\mathcal{T} \subseteq \mathcal{T}'$. Ali je (X, \mathcal{T}') Hausdorffov? Ali je Hausdorffova lastnost implicira regularnost?
 - (*) **Trditev.** Ali je vsak metričen prostor normalen?
 - (*) **Trditev.** Ali je normalnost dedna?
 - (*) **Definicija.** Regularen prostor.
 - **Opomba.** Ali je normalnost implicira regularnost?
 - Trditev. Ali je regularnost dedna?
- 3. Aksiomi ločljivosti
 - (*) **Definicija.** Aksiomi $T_0 T_4$.
 - (*) **Trditev.** Karakterizacija T_3 .
 - (*) **Trditev.** Karakterizacija T_4 .
 - (*) **Trditev.** Ali je T_3 multiplikativna?
 - Posledica. Ali je regularnost multiplikativna?
 - (*) **Izrek.** Izrek Tihonova.

2.2 Povezanost 6

Rezultati z vaj

• Ali je T_4 multiplikativna? Ali je normalnost multiplikativna?

2.2 Povezanost

Naj bo (X, \mathcal{T}) topološki prostor.

- 1. Povezanost
 - (*) **Definicija.** Nepovezan prostor.
 - (*) **Definicija.** Povezan prostor.
 - (*) **Trditev.** 3 karakterizacije nepovezanosti.
 - (*) Izrek. Karakterizacija povezanosti v \mathbb{R} .
 - (*) **Izrek.** Ali je povezanost topološka lastnost?
 - (*) Izrek. Lastnosti povezanosti:
 - (a) Kaj lahko povemo o uniji družine povezanih podmnožic v X, ki imajo neprazen presek?
 - (b) Ali je povezanost multiplikativna?
 - (c) Pot v X. Zadostni pogoj za povezanost prostora.
 - (d) Recimo, da je A povezan. Kaj lahko povemo o vsake množice B, za katero velja $A\subseteq B\subseteq \overline{A}$?
 - **Zgled.** Ali so povezane:
 - Vsaka konveksna podmnožica v \mathbb{R}^n .
 - Komplement končne množice v \mathbb{R}^n , n > 1.
 - Komplement števne množice v \mathbb{R}^n , n > 1.
 - **Zgled.** Ali je $\mathbb{R} \approx \mathbb{R}^n$, n > 1?
 - (*) Izrek. Izrek o vmesni vrednosti.
- 2. Povezanost s potmi
 - **Zgled.** Kaj je varšavski lok (oz. lok Sierpinskega)?
 - **Definicija.** Kadar rečemo, da je X povezan s potmi?
 - (*) **Trditev.** Zadostni pogoj za povezanost X.
- 3. Komponente
 - (*) **Definicija.** Komponenta točke $x \in X$.
 - (*) Izrek. Ali so komponente povezane? Ali so zaprte? Ali so maksimalne? Ali tvorijo particijo?
 - **Definicija.** Popolnoma nepovezan prostor.
 - **Zgled.** Ali je \mathbb{Q} popolnoma nepovezan?
 - Opomba. Kdaj so komponente odprte?
- 4. Lokalna povezanost
 - (*) **Definicija.** Lokalno povezan prostor.
 - **Zgled.** Ali je \mathbb{R}^n lokalno povezan? Ali so diskretni prostori lokalno povezani? Ali je varšavski lok lokalno povezan?
 - (*) **Trditev.** Kdaj je prostor lokalno povezan? Kaj lahko povemo o komponentah lokalno povezanega prostora?
- 5. Povezanost in povezanost s potmi
 - (*) **Definicija.** Komponente za povezanost s potmi. Lokalno s potmi povezan prostor.
 - Opomba. Ali so komponente za povezanost s potmi zaprte?

- (*) **Izrek.** Kdaj so komponente za povezanost sovpadajo s komponenti za povezanost s potmi?
- (*) **Posledica.** Kdaj so odprte podmnožice v \mathbb{R}^n povezane?

2.3 Kompaktnost

- 1. Kompaktnost
 - (*) **Definicija.** Kompakten prostor.
 - Trditev. Ali lahko testiramo kompaktnost na baze? Kako dokažemo kompaktnost podprostora?
 - **Zgled.** Ali je vsak končen prostor kompakten? Kompakten podprostor iz konvergentnega zaporedja. Ali so lahko neomejeni metrični prostori kompaktni?
 - (*) **Izrek.** Ali je zaprti intervali $[a, b] \subseteq \mathbb{R}$ kompaktni?
 - (*) **Izrek.** Kaj lahko povemo o vsake neskončne podmnožice kompaktnega prostora?
 - (*) Izrek. Ali je kompaktnost multiplikativna?
 - (*) Izrek. Bolzano-Weierstrassov izrek.
 - (*) **Trditev.** Kaj lahko povemo o vsaki kompaktni podmnožici metričnega prostora?
 - (*) Izrek.
 - (a) Ali je kompaktnost dedna?
 - (b) Kaj lahko povemo o Hausdorffovih prostorih (ločljivost)?
 - (c) Kaj lahko povemo o kompaktni podmnožici Hausdorffovega prostora?
 - (*) **Posledica.** Kaj lahko povemo o kompaktnih Hausdorffovih prostorih?
 - (*) **Izrek.** Kdaj so podmnožice \mathbb{R}^n kompaktne?
 - (*) **Zgled.** Ali je množica unitarnih matrik kompakten podprostor R^{n^2} ?
 - (*) **Trditev.** Opis kompaktnosti z zaprtimi množicami.
 - (*) **Posledica.** Cantorjev izrek.
 - (*) Izrek. Kaj lahko povemo o zvezni sliki kompakta?
 - (*) **Posledica.** Kaj lahko povemo o preslikavah iz kompakta v R?
 - (*) Lema. Lebesgueva lema.
 - (*) **Posledica.** Naj bosta X, Y metrična prostora. Kaj lahko povemo o preslikavi $f: X \to Y$, če je X kompakt?
 - (*) **Izrek.** Kaj lahko povemo o preslikavah iz kompakta v T₂ prostor?
- 2. Lokalna kompaktnost
 - (*) **Definicija.** Relativno kompaktna množica.
 - (*) **Definicija.** Lokalno kompakten prostor.
 - (*) Izrek. Opis lokalne kompaktnosti v T_2 prostorih. Ali je vsak kompakten Hausdorffov prostor lokalno kompakten?
 - **Zgled.** Ali so metrični prostori lokalno kompaktni? Kaj lahko povemo o odprtih prostorih lokalno kompaktnih prostorov?
 - (*) Izrek. Kaj lahko povemo o lokalno kompaktnih Hausdorffovih prostorih?
 - (*) Izrek. Bairov izrek za lokalno kompaktne podmnožice.

3 Prostori preslikav

- 1. Topologije na prostorih preslikav
 - Naj bosta X, Y topološka prostora
 - Množica vseh preslikav iz $A \subseteq X$ v $U \subseteq Y$.
 - (*) **Definicija.** Topologija konvergence po točkah.
 - (*) **Trditev.** O topologiji konvergence po točkah.
 - (*) **Definicija.** Kompaktno-odprta topologija. Prostor zveznih funkcij, opremljen z kompaktno-odprto topologijo.
 - (*) **Trditev.** Baza $\widehat{C}(X,Y)$, če je Y metričen prostor. Topologija enakomerne konvergence na kompaktih.
 - (*) Trditev. Kakšna poveza med Y in $\widehat{C}(X,Y)$.
 - (*) **Trditev.** Povezava ločljivostih lastnosti Y in $\widehat{C}(X,Y)$.
 - Kaj če je domena X diskreten prostor?
- 2. Preslikave na normalnih prostorih
 - Kaj so zvezne preslikave iz neskončne množice X z topologijo končnih komplementov v \mathbb{R} ?
 - (*) Izrek. Urisonova lema.
 - (*) Izrek. Urisonov metrizacijski izrek.
 - (*) **Posledica.** Čemu je ekvivalentna metrizabilnost v 2-števnih prostorih?
 - (*) **Izrek.** Tietzejev razširitveni izrek.
- 3. Stone-Weierstrassov izrek
 - (*) **Izrek.** Weierstrassov izrek.
 - (*) Izrek. Stone-Weierstrassov izrek.