#### **Validation Accuracy**

1. Using 6400 examples with a mini batch of 16 using a learning rate of 0.1 and validation on 300 examples. Accuracy >=86%



2. Using 6400 examples with a mini batch of 32 using a learning rate of 0.1 and validation on 300 examples. Accuracy >=93%



3. Using 6400 examples with a mini batch of 64 using a learning rate of 0.1 and validation on 100 examples. Accuracy >=95%



4. Using 12800 examples with a mini batch of 128 using a learning rate of 0.2 and validation on 300 examples. Accuracy >= 96%



This is in accordance to what we know about stochastic gradient descent. Larger mini batches allow us to reduce the variance of the stochastic updates and converges quicker

Using MLP [784,30,10] on the entire training data and many epochs(50) gives us the same accuracy as LeNet-5 with very small number of training examples and total iterations. We can clearly see the superiority of LeNet-5 over the small MLP.



Accuracy using the Keras model.

Note: It's trained on all the training examples and accuracy is on the test set.

## **Training Accuracy**

1. Using 6400 examples with a mini batch of 16 using a learning rate of 0.1 and validation on 200 examples. Accuracy >=



2. Using 6400 examples with a mini batch of 32 using a learning rate of 0.1 and validation on 200 examples. Accuracy >= 95%



3. Using 6400 examples with a mini batch of 64 using a learning rate of 0.1 and validation on 200 examples. Accuracy >= 95%



4. Using 6400 examples with a mini batch of 128 using a learning rate of 0.1 and validation on 200 examples. Accuracy >= 97%



## **Number of Parameters in the Convolution and Fully Connected Layers**

Params in CONV : 6\*1\*5\*5 + 6 + 16\*6\*5\*5+16 = 2572Params in FC : 400\*120 + 120\*84 + 84\*10 = 58920

# **Time taken by Convolution and FC layers**

Forward Pass(2048 IMAGES):

Convolution layers: 0.0707539905561s

FC layers: 0.000273373210803s

Backward Pass(2048 IMAGES):

Convolution layers: 0.0229447189486s

FC layer: 0.000417098170146s

#### **t-SNE plots:**



t-SNE plot of features taken from the last fc layer. 1000 validation examples are used for this plot. It gives a very good clustering with very less training (1 epoch with batch size of 128 and number of training examples used is 6400)



t-SNE plot of features taken from the second(last) conv layer. 1000 validation examples are used for this plot. It gives a convincing clustering with very less training( 1 epoch with batch size of 128 and number of training examples used is 6400)