SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Examination

No.	SOLUTION
A1	С
A2	D
A3	C
A4	В
A5	D
B1a	$3\mathbf{A} + 2\mathbf{B}^{T} = 3 \begin{bmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ -3 & 4 & -1 \end{bmatrix} + 2 \begin{bmatrix} 7 & -3 & -1 \\ 9 & -5 & 1 \\ 15 & -11 & -1 \end{bmatrix}^{T}$ $= \begin{bmatrix} 6 & 3 & -3 \\ 9 & 3 & -6 \\ -9 & 12 & -3 \end{bmatrix} + \begin{bmatrix} 14 & 18 & 30 \\ -6 & -10 & -22 \\ -2 & 2 & -2 \end{bmatrix}$ $= \begin{bmatrix} 20 & 21 & 27 \\ 3 & -7 & -28 \\ -11 & 14 & -5 \end{bmatrix}$
B1b	$\mathbf{AB} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ -3 & 4 & -1 \end{bmatrix} \begin{bmatrix} 7 & -3 & -1 \\ 9 & -5 & 1 \\ 15 & -11 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} = 8\mathbf{I}$ $\mathbf{A}^{-1}\mathbf{AB} = 8\mathbf{A}^{-1}\mathbf{I}$ $\Rightarrow \mathbf{B} = 8\mathbf{A}^{-1}$
	$\therefore \mathbf{A}^{-1} = \frac{1}{8} \mathbf{B} = \frac{1}{8} \begin{bmatrix} 7 & -3 & -1 \\ 9 & -5 & 1 \\ 15 & -11 & -1 \end{bmatrix}$
B2a	$\mathbf{T}_{1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \mathbf{T}_{2} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ $\mathbf{C} = \mathbf{T}_{2} \mathbf{T}_{1} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$
B2b	$\mathbf{P'} = \mathbf{CP} = \begin{bmatrix} -1 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 0 \\ 3 & 6 \\ 1 & 1 \end{bmatrix}$

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Examination

B2c
$$\mathbf{T}_{1}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1} \mathbf{T}_{2}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$

B3a Convert to decimal:

$$5C.2A_{16} = 5 \times 16^{1} + 12 \times 16^{0} + 2 \times 16^{-1} + 10 \times 16^{-2}$$

= 92.1640625_{10}

Convert to binary:

$$5C.2A_{16} = (0101)(1100).(0010)(1010)_{2}$$

= 1011100.0010101,

B₃b

Integral part:					
16	26958				
16	1684	E			
16	105	4			
16	6	9			
	0	6			

Fractional part:					
16	0.15625				
16	0.5	2			
	0	8			

$$\therefore 26958.15625_{10} = 694E.28_{16}$$

B4a
$$U = \{0,1,2,3,4,5,6\}$$

$$A = \{1, 2, 3, 4\}$$

$$B = \{0, 1, 4\}$$

B4b
$$A - B = \{2, 3\}$$

$$A \cup \overline{B} = \{1, 2, 3, 4, 5, 6\}$$

B4c

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Examination

D.C.					
B5a	If you work hard and you do not get distracted, then you can finish the job.				
B5b	$\neg p \land q \land r$				
B5c	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
	T F F F T				
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
	F F T F T				
	F F F F T				
	$\therefore (p \land r) \Rightarrow (q \lor r)$ is a tautology .				
B6a	$ A_3 \cap A_5 = A_{15} = \left\lfloor \frac{5000}{15} \right\rfloor = 333$				
B6b	$ A_3 \cup A_5 = A_3 + A_5 - A_3 \cap A_5 = \left\lfloor \frac{5000}{3} \right\rfloor + \left\lfloor \frac{5000}{5} \right\rfloor - \left\lfloor \frac{5000}{15} \right\rfloor = 2333$				
В6с	$\left \overline{A_5 \cup A_{10}} \right = \left \overline{A_5} \right = U - A_5 = \left\lfloor \frac{5000}{1} \right\rfloor - \left\lfloor \frac{5000}{5} \right\rfloor = 4000$				
B6d	$\left A_5 \cap A_{10} \cap \overline{A_{12}} \right = \left A_{10} \cap \overline{A_{12}} \right = \left A_{10} \right - \left A_{60} \right = \left \frac{5000}{10} \right - \left \frac{5000}{60} \right = 417$				
B7a	$P(\text{chocolate}) = \frac{44 + 34}{200} = \frac{39}{100}$				
B7b	$P(\text{almond}) = \frac{44 + 28 + 26}{200} = \frac{49}{100}$				
В7с	$P(\text{strawberry} \cup \text{hazelnut}) = \frac{28 + 34 + 36 + 32}{200} = \frac{13}{20}$				
B7d	$P(\text{vanilla} \text{hazelnut}) = \frac{32}{34 + 36 + 32} = \frac{16}{51}$				

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Examination

x	у	z	f(x, y, z)
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Sum-of-products expression: $f(x, y, z) = xy\overline{z} + x\overline{y}z$

C1b

$$\overline{f(x,y,z)} = \overline{xyz + xyz}$$

$$= \overline{x(yz + yz)}$$

$$= \overline{x + yz + yz}$$

$$= \overline{x + (y + z)(y + z)}$$

$$= \overline{x + yy + yz + yz + zz}$$

$$= \overline{x + yz + yz}$$

C2a $| {}^{10}C_6 = 210$

C2b $^{5}C_{3} \times ^{5}C_{3} = 100$

C2c There are two possible cases:

Case 1: first and last bits are both '1'

Case 2: first and last bits are both '0'

 $\therefore {}^{8}C_{4} + {}^{8}C_{6} = 98$

C2d $\int 540_{10} = 1000011100_2$

For the decimal equivalent of the binary number to be greater than 540_{10} , only the first bit of the binary number must be '1'.

 $\therefore {}^{9}C_{5} = 126$

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Examination

Since
$$\tan \alpha = \frac{\text{opp}}{\text{adj}} = \frac{1}{p}$$
, we thus have $\sin \alpha = \frac{\text{opp}}{\text{hyp}} = \frac{1}{\sqrt{p^2 + 1}}$ and $\cos \alpha = \frac{\text{adj}}{\text{hyp}} = \frac{p}{\sqrt{p^2 + 1}}$.

$$\mathbf{T}_1 = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \end{bmatrix} = \frac{1}{\sqrt{p^2 + 1}} \begin{bmatrix} p & 1 \end{bmatrix}$$

$$\mathbf{T}_{1} = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} = \frac{1}{\sqrt{p^{2}+1}} \begin{bmatrix} p & 1 \\ -1 & p \end{bmatrix}$$

$$\mathbf{T}_2 = \begin{bmatrix} p & 0 \\ 0 & \frac{1}{p} \end{bmatrix}$$

$$\mathbf{T}_{3} = \begin{bmatrix} \cos(90^{\circ} - \alpha) & -\sin(90^{\circ} - \alpha) \\ \sin(90^{\circ} - \alpha) & \cos(90^{\circ} - \alpha) \end{bmatrix} = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix} = \frac{1}{\sqrt{p^{2} + 1}} \begin{bmatrix} 1 & -p \\ p & 1 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{T}_{3} \mathbf{T}_{2} \mathbf{T}_{1} = \frac{1}{p^{2} + 1} \begin{bmatrix} 1 & -p \\ p & 1 \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & \frac{1}{p} \end{bmatrix} \begin{bmatrix} p & 1 \\ -1 & p \end{bmatrix}$$

$$= \frac{1}{p^{2} + 1} \begin{bmatrix} p^{2} + 1 & 0 \\ p^{3} - \frac{1}{p} & p^{2} + 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ \frac{p^{4} - 1}{p(p^{2} + 1)} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{(p^{2} - 1)(p^{2} + 1)}{p(p^{2} + 1)} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{p^{2} - 1}{p} & 1 \end{bmatrix} \quad \text{(shown)}$$

C3b
$$\tan \alpha = \frac{1}{p} \Rightarrow p = \frac{1}{\tan 60^{\circ}} = \frac{1}{\sqrt{3}}$$

Shear factor =
$$p - \frac{1}{p} = \frac{1}{\sqrt{3}} - \sqrt{3} = -\frac{2}{\sqrt{3}}$$