Today's Topics

- Monte Carlo estimators for
 - Mean
 - Probability
 - Variance
- Monte Carlo termination criteria
- Bootstrapping

Reminder: MCS Steps

- 1. Define input polfs
- 2. Praw N random input samples; conduct deterministic simulation for each one
- 3. Analyze outputs

Main Idea for Today

Kun MCS compute estruates of probabilistic outpits (e.g. nean, war, probabilities) how and are those estimate

Estimator for the mean

Output y

mean
$$\mu_y$$

var G_y^2
 $\tilde{y}_y = \tilde{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$
 $\tilde{y}_i \sim N$
 $\tilde{y}_i \sim N$
 $\tilde{y}_i \sim N$
 $\tilde{y}_i \sim N$

"Inbiased extinates"

"Stacking"

"Stacking"

Estimating a probability

Estimating variance

Output y

Samples
$$\frac{3}{3}$$
 $\frac{3}{1}$ $\frac{1}{1}$ $\frac{1}{1$

Termination criteria for MCS

eg terminate surpling when error in estimating The mean is 1 (SS + han + E with 95% confidence Since $(\overline{y} - My) \sim N(0, \overline{0})$ then $P = \frac{200}{\sqrt{N}} \le \sqrt{1-My} \le 200$ $-) \text{ need } 20y \le E \longrightarrow N > 45y^2$

$$\frac{1}{2} = \frac{1 - P \cdot A \cdot 3}{P \cdot A \cdot 3} \approx \frac{4}{2^2} = \frac{1}{P \cdot A \cdot 3}$$

Estimating low-probability events

Often want
$$-\xi P\xi A\xi \leqslant (\hat{P}A - P\xi A\xi) \leq \xi P\xi A\xi$$
with some confidence level
$$e.g. 95\% confidence requires$$

$$\hat{P}\xi A\xi (1 - P\xi A\xi) \leqslant \xi^2 (P\xi A\xi)^2$$

$$N$$

MCS Challenge

- Write a code to carry out MCS for the blade heat transfer problem using the forward code blade1D.m
 - function [Ttbc, Tmh, Tmc, q] = blade1D(hgas, Tgas, ktbc, Ltbc, km, Lm, hcool, Tcool)
- Set the input PDF for L_{TBC} to be U(0.00025,0.00075)
- Use nominal values for other inputs:
 - hgas = 3000; % TBC-gas heat transfer coef. (W/(m^2 K))
 - Tgas = 1500; % Mixed gas temperature (K)
 - ktbc = 1; % TBC thermal conduct. (W/mK)
 - km = 20; % Metal thermal conduct. (W/mK)
 - Lm = 0.003; % Metal thickness (m)
 - hcool = 1000; % Coolant-metal heat transfer coef. (W/(m^2 K))
 - Tcool = 600; % Coolant temperature (K)
- Using N=1000 samples, generate output histograms. Estimate the mean value of T_{mh} and the probability that $T_{mh} > 1180$ K.
- Plot your mean and probability estimates on the class histograms

Class Histogram—Mean estimate

Class Histogram—Probability estimate

Bootstrapping

MIT OpenCourseWare http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.