R1.04 - Cours 1

Introduction, OS, Interfaces graphiques, Shell

Département Informatique

IUT2, UGA

2023/2024

Plan du cours

- Présentation de la ressource
- Moyens informatiques de l'IUT2
- OS et types d'OS
- Interfaces graphiques
- 5 Langage de commande (shell)
- Résumé

Plan du cours

- Présentation de la ressource
- 2 Moyens informatiques de l'IUT2
- OS et types d'OS
- Interfaces graphiques
- 5 Langage de commande (shell)
- 6 Résumé

Objectifs de la ressource R1.04 et de la SAÉ S1.03

Comprendre le rôle, les composants et le fonctionnement d'un système d'exploitation

- Caractéristiques, fonctionnalités et types d'un système d'exploitation
- Manipuler efficacement une interface graphique
- Utiliser un langage de commande
- Connaître les commandes les plus utiles
- Processus, fichiers, utilisateurs
- Réseau de l'IUT2 : architecture, protocoles utilisés
- Applications réseau indispensables
 - transferts et partages de fichiers
 - utilisation de machines à distance, ...
 - ...
- Installer un système sur une machine et le personnaliser

Mise en œuvre avec Linux

Modalités

- 6 semaines pour la ressource R1.04
 - cours : promo entière
 - TP: par 1/2 groupes, 1 étudiant par machine
- 1 semaine bloquée pour la SAÉ S1.03
 - cours
 - ateliers d'installation de Linux et d'outils de développement

Informations diverses

- Documents fournis
 - Transparents de cours
 - Sujets de TP
 - Disponibles en ligne sur l'intranet
- Bibliographie
 - Cf. intranet
 - Documentation intégrée au système, intranet, Web
- Évaluation
 - R1.04 : Mini QCM au début de chaque TP, contrôle sur machine
 - S1.03: rendus en ligne (Chamilo)
- Enseignants

Plan du cours

- Présentation de la ressource
- 2 Moyens informatiques de l'IUT2
- OS et types d'OS
- Interfaces graphiques
- 5 Langage de commande (shell)
- 6 Résumé

Machines accessibles aux étudiants

- Stations de travail sous Linux
 - $\bullet \sim 90$ machines, 6 salles
 - réservées au département info
- PC sous Windows
 - $\bullet~\sim$ 135 machines. 9 salles
 - pour tous les départements
- Ressources accessibles via le réseau
 - imprimantes
 - serveurs (fichiers, Web, intranets, SSH, SGBD, ...)
- La plupart des enseignements sont faits sur les stations Linux (programmation, bases de données, Web, ...)

Le réseau de l'IUT2

Comptes informatiques

- Compte = nom de login + mot de passe
- Respect de la charte
- Compte nécessaire pour utiliser toutes les ressources informatiques de l'UGA et de l'IUT2
 - postes de travail
 - messagerie
 - intranets
 - autres serveurs
 - ...

Espaces de stockage

Pour chaque étudiant

- répertoire personnel commun à toutes les stations Linux, limité à 1.5 Go
- attention : toutes vos données seront effacées en fin d'année (date exacte sur l'intranet, à noter sur vos agendas)
- répertoire personnel commun à tous les PC sous Windows, limité en taille
- une boîte de messagerie, limitée en taille
- ménage régulier nécessaire

Accès depuis l'extérieur de l'IUT2

- Services disponibles depuis tout ordinateur connecté à Internet
 - accès aux stations Linux
 - transferts de fichiers
 - messagerie
 - intranets
- Accès sécurisés par
 - protocoles SSH, SSL / TLS
 - login/mot de passe
- Méthodes et outils d'accès depuis l'extérieur présentés lors d'un prochain cours

Plan du cours

- Présentation de la ressource
- Moyens informatiques de l'IUT2
- 3 OS et types d'OS
- Interfaces graphiques
- 5 Langage de commande (shell)
- Résumé

Rôle du système d'exploitation

- Abréviations
 - Système d'exploitation : SE
 - Operating System : OS
- Le matériel fournit différentes ressources
 - calcul: CPU (processeur), GPU (processeur graphique)
 - mémoire : RAM (mémoire vive)
 - périphériques de stockage : SSD (mémoire flash), HDD (disque dur)
 - autres périphériques : clavier, souris, audio, réseau, ...
- Les programmes d'application (logiciels) utilisent ces ressources à travers le SF
- Le SE contrôle et partage l'emploi des ressources parmi les programmes d'application et les différents utilisateurs

Système d'exploitation

Types d'OS

- Par type de machine
 - Ordinateur (desktop, laptop): Linux, MacOS, Windows, ...
 - Mobile (téléphone, tablette): Android, iOS, ...
 - autres :
 - très grosses machines (super-calculateurs)
 - très petites machines (informatique embarquée, IoT)

Par usage

- Poste de travail :
 - Linux avec interface graphique, Windows (10, 11), MacOS
- Serveur:
 - Linux sans interface graphique, Windows Server (2016, 2022), Darwin. ...
- Par licence d'utilisation
 - OS libres : Linux, (Android), ...
 - OS propriétaires : Windows, MacOS/iOS, ...
- OS de niche
 - OS temps réel
 - OS distribués
 - OS pour équipements réseau
 - ...

Plan du cours

- Présentation de la ressource
- 2 Moyens informatiques de l'IUT2
- OS et types d'OS
- Interfaces graphiques
- 5 Langage de commande (shell)
- Résumé

Interface graphique utilisateur

- On peut travailler sur un système Linux
 - une console en mode texte + shell
 - une console en mode graphique + une interface graphique
- On parle aussi de «bureau» (desktop)
- Interface Homme Machine (IHM) Graphical User Interface (GUI)

Composants d'un bureau

- Un bureau est composé de bibliothèques et d'applications
- Les bibliothèques graphiques définissent
 - un ensemble d'objets graphiques (widgets):
 boutons, menus, barres de défilement, listes déroulantes, icônes, ...
 - l'aspect et le comportement de ces objets (look & feel)
- Applications dans un bureau complet
 - gestionnaire de fenêtres ou «compositeur»
 - gestionnaire du fond du bureau (fond d'écran, icônes, ...)
 - gestionnaire de tableaux de bord
 - gestionnaire de fichiers
 - ...
- Repose sur un système graphique
 - X Window System (ou X11 ou Xorg) : système historique
 - Wayland : nouveau système en cours de diffusion

Exemples d'interfaces graphiques

- KDE/Plasma 5
 - utilisé lors de l'atelier Linux
 - simple au premier abord, très riche quand on en a besoin
- GNOME 3
 - minimal, peu configurable
- MATE, Cinnamon
 - les héritiers de GNOME 2
 - pour ceux qui trouvent GNOME 3 trop minimal
- XFce, LXDE, LXQt
 - moins gourmands en ressources
 - adaptés aux mini-machines
- Autres
 - Budgie, Deepin, ...
 - simples gestionnaires de fenêtres

Le modèle client/serveur de X11

- Les applications graphiques sont clientes d'un logiciel serveur qui tourne sur une console graphique (le serveur X11/Xorg)
- Elles envoient au serveur des ordres graphiques que le serveur traduit en commandes pour le GPU

Architecture de Wayland

Le gestionnaire de fenêtres ou compositeur

- C'est un composant essentiel d'un bureau
- Gestionnaire de fenêtres (Window Manager)
 - fenêtres rectangulaires, pas d'effets graphiques
 - sollicite peu le GPU (pourrait aussi tourner sur CPU)
- Compositeur
 - effets graphiques complexes
 - utilisation d'un GPU obligatoire
- Son rôle
 - gérer les fenêtres sur l'écran
 - permettre les manipulations par l'utilisateur : position, taille, avant-plan, arrière-plan, réduction, ...
 - placer autour d'une fenêtre un habillage spécifique (look) qui permet de manipuler la fenêtre
 - définir le comportement des fenêtres (feel)
 boutons de manipulation, dynamique de déplacement, ...
- La plupart des gestionnaires de fenêtres sont paramétrables
 - thèmes graphiques (skins)
 - comportement

Quelques gestionnaires de fenêtres

- Kwin
 - gestionnaire de fenêtres et compositeur de KDE/Plasma
 - effets graphiques intégrés
- Metacity
 - gestionnaire de fenêtres par défaut de GNOME 2
 - utilisé par GNOME 3 en mode « flashback »
- Xfwm
 - gestionnaire de fenêtres de Xfce
- Compiz
 - 1er compositeur
 - peut être utilisé avec MATE
- OpenBox, WindowMaker, IceWM, AfterStep, Ion, Blackbox, Enlightenment, Sawfish, ...
 - gestionnaires de fenêtres indépendants d'un bureau
 - peu gourmands en ressources

Architecture logicielle simplifiée de KDE

Architecture logicielle de GNOME 3

Source: projet GNOME

Plan du cours

- Présentation de la ressource
- Moyens informatiques de l'IUT2
- OS et types d'OS
- Interfaces graphiques
- 5 Langage de commande (shell)
- 6 Résumé

Shell: introduction

- shell = interpréteur de commandes
- Intermédiaire (shell = coquille)
 entre l'utilisateur et le système d'exploitation
- Commandes permettant de piloter tous les aspects du système :
 - fichiers
 - processus
 - réseau
 - périphériques
 - **.**..
- Exemples de commandes :
 - ls
 - ps
 - who

Shell: utilité immédiate

Un shell permet de :

- Gagner du temps par rapport à l'utilisation d'une interface graphique
 - manipuler d'un grand nombre de fichiers
 - naviguer dans une arborescence complexe et profonde
 - ...
- Accéder à tous les logiciels du système
 - < 10% accessibles par les menus
- Écrire des scripts
- ...

Shell: utilité plus générale

- Le shell est un outils très puissant
 - combinaison de commandes simples
 - → tâches complexes
 - automatisation de tâches répétitives
 - ...
- Un shell est présent dans tous les systèmes
 - Unix/Linux : nombreux shells disponibles
 - MacOS: un système Unix en fait, même shell que Linux
 - Windows: cmd.exe, PowerShell, shells Linux
- Aller au-delà de la simple utilisation d'un système
 - administration système (parcours B)
 - résolution de problèmes
 - ...

Shell: 2 types de commandes

Commandes externes (au shell)

- tous les logiciels disponibles sur le système
 - logiciels système Linux
 - compilateurs
 - éditeurs, IDE
 - applications diverses
- le shell sert de lanceur
- o commandes indépendantes du type de shell utilisé

Commandes internes

- commandes propres au shell, exécutées par le shell lui-même
- leur exécution ne nécessite pas le lancement d'un autre logiciel que le shell
- certaines peuvent varier d'un shell à l'autre
- exemples:cd, alias, ...

Shell: 2 modes d'utilisation

Mode interactif

- taper une commande au clavier
- valider avec la touche "Entrée"
- le shell interprète la commande immédiatement

Mode script

- écrire une suite de commandes dans un fichier texte
- lancer l'exécution du fichier
- le shell exécute automatiquement le contenu du fichier ligne par ligne (comme un programme Java)

Shell: logiciels

- Plusieurs shells existent
 - Bourne Shell (sh): shell historique (Steve Bourne, 1978)
 - Korn Shell (ksh): sur certains systèmes Unix propriétaires
 - C-Shell (csh): syntaxe proche du langage C
 - Bourne Again Shell (bash) : version améliorée de sh
 - Debian Almquist Shell (dash): version rapide et légère de sh, shell utilisé par défaut pour /bin/sh (shell utilisé par les scripts du système)
 - TENEX Shell (tcsh): version améliorée de csh
 - Z Shell (zsh): très riche
 - ...
- Différences
 - fonctionnalités
 - syntaxe de leur langage interne
 - convivialité de leur "interface utilisateur" (facilité avec laquelle l'utilisateur peut taper/éditer une commande en mode interactif)
- En TP, nous utilisons le shell bash (shell par défaut dans la plupart des systèmes Linux)

Syntaxe d'une ligne de commande

- Syntaxe identique en mode interactif ou dans un fichier de commandes (script)
- Composition :
 - un logiciel
 - un espace
 - ses éventuels arguments (paramètres), séparés par des espaces
 - un caractère de fin de ligne
- Exemple de commande
 - ls -1 -a

 logiciel argument 1 argument 2 Entrée/fin de ligne
- → Résultat
 - 1s: liste les fichiers
 - -1: en format long
 - -a: y compris les fichiers cachés
 - pas d'autre argument : liste le répertoire courant

Autres exemples de commandes

- date
 Affiche la date et l'heure
- man LOGICIEL
 Affiche des informations (le manuel) sur le logiciel dont le nom est passé en paramètre
- cat FICHIER
 Affiche le contenu d'un fichier (convient pour du texte)
- ...

Énormément de logiciels disponibles en ligne de commande

- ullet ~ 5000 sur les stations Linux de l'IUT2
- > 10000 sur un système Linux très complet

Interface de la ligne de commande du shell

On peut:

- éditer la ligne en cours de saisie :
 - ---- flèches gauche et droite, BackSpace, Suppr
- relancer une commande précédente sans avoir à la retaper :
 - → flèches bas et haut, commande history
- copier du texte n'importe où :
 - → bouton de gauche de la souris (1, 2 ou 3 clics)
- coller du texte dans la ligne de commande, à l'emplacement du curseur
 - (et pas ailleurs!, la position du pointeur importe peu):
 - → bouton du milieu de la souris
- compléter automatiquement un nom de commande ou un nom de fichier :
 - \longrightarrow touche tabulation
- interrompre une commande :
 - \longrightarrow touches Ctrl-c
- effacer l'écran :
 - \longrightarrow touches Ctrl-1

Sensibilité à la casse

- Les systèmes Unix (et donc Linux) sont sensibles à la casse
- Ils font la différence entre minuscules et majuscules pour
 - les logiciels et commandes
 - les noms de fichiers
 - tout ce qui porte un nom
- Il faut donc respecter la casse dans le *shell*!
 - Les logiciels et commandes usuelles sont en minuscules

Plan du cours

- Résumé

Résumé

- Ressource importante comme prérequis pour les autres ressources
- Nombreux moyens informatiques reste à savoir les utiliser efficacement!
- Respecter : la charte, les quotas, ...
- Avec Linux on a la liberté
- Sous Linux on a le choix
- Apprendre à se servir d'un shell est indispensable

