Quantum Key Distribution
No cloning theorem
Qubit Communication

ITIS 6260/8260 Quantum Computing

Lecture 6: non-cloning and quantum teleportation

Yongge Wang

UNC Charlotte, USA

March 12, 2019

Outline

- Quantum Key Distribution
 - Protocol
- No cloning theorem
 - No cloning theorem
- Qubit Communication
 - Teleportation
 - Superdense coding

Quantum Key Distribution

- Alice sends random sequence of 4 types of polarized photons over the quantum channel: horizontal $|0\rangle$, vertical $|1\rangle$, right-circular $(|0\rangle |1\rangle)/\sqrt{2}$, left-circular $(|0\rangle + |1\rangle)/\sqrt{2}$
- Bob randomly choose one of the following basis to measure each photon: $(|0\rangle, |1\rangle)$ or $((|0\rangle |1\rangle)/\sqrt{2}, (|0\rangle + |1\rangle)/\sqrt{2})$
- Bob tells Alice the bases he used over the public channel
- Alice informs Bob which bases were correct
- Alice and Bob discard the data from incorrectly measured photons
- The polarization data is converted to a bit string

Quantum Key Distribution

Non-cloning theorem

• Assume that a unitary transformation U can copy two pure states $|\phi\rangle$ and $|\psi\rangle$. Then

$$U(|\phi\rangle \otimes |0\rangle) = |\phi\rangle \otimes |\phi\rangle$$

$$U(|\psi\rangle \otimes |0\rangle) = |\psi\rangle \otimes |\psi\rangle$$

Taking the inner product of the two equations gives

$$\langle \psi | \phi \rangle \langle 0 | 0 \rangle = (\langle \psi | \phi \rangle)^2$$

- That is, $\langle \psi | \phi \rangle = 0$ or $\langle \psi | \phi \rangle = 1$
- Either $|\phi\rangle = |\psi\rangle$ or $|\phi\rangle$ and $|\psi\rangle$ are orthogonal
- Conclusion: unitary transmission can only clone orthogonal pure states

Quantum teleportation (1991)

- By the limitations of relativity, we can not send information faster than the speed of light
- Quantum teleportation shows that It is possible for Alice, with a pre-shared entanglement qubit with Bob, to transmit a qubit to Bob over a classical communication channel
- Indeed, it could be show that it is optimal to transmit a qubit using a preshared entangled qubit and two classicial bits

Quantum teleportation (high level protocol)

- Alice shares a Bell pair with Bob
- Alice has a qubit $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$
- Alice applies some transformation to $|\phi\rangle$ that entangles it with her half of the Bell pair
- Alice measures $|\phi\rangle$ and her half of the Bell pair and tells Bob (over phone) the measurement outcome
- Bob applies some transformation to his entangled qubit
- ullet By non-cloning theorem, only Bob has the qubit $|\phi
 angle$ at the end

Quantum teleportation (detailed protocol)

- Alice and Bob share a Bell pair: $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$
- Alice wants to send a qubit $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$. The total state starts as $(\alpha|0\rangle + \beta|1\rangle) \otimes \frac{|00\rangle + |11\rangle}{\sqrt{2}}$
- Alice applies a CNOT gate (with $|\phi\rangle$ as the control bit and her half of the Bell pair as target) to the total state to get

$$\frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|011\rangle + \beta|110\rangle + \beta|101\rangle)$$

• Alice Hadamards her $|\phi\rangle$ to get

$$\frac{1}{2} \left(\begin{array}{c} \alpha|000\rangle + \alpha|100\rangle + \alpha|011\rangle + \alpha|111\rangle \\ + \beta|010\rangle - \beta|110\rangle + \beta|001\rangle - \beta|101\rangle \end{array} \right)$$

Quantum teleportation (detailed protocol continued)

$$\frac{1}{2} \left(\begin{array}{c} \alpha|000\rangle + \alpha|100\rangle + \alpha|011\rangle + \alpha|111\rangle \\ + \beta|010\rangle - \beta|110\rangle + \beta|001\rangle - \beta|101\rangle \end{array} \right)$$

 This leads to the four possible scenarios (Alice sees top row, Bob's qubit in second row)

00	01	10	11
$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$

 The impact on Bob's qubit is instant. But before Bob learns Alice's measurement output, Bob only just has the maximally mixed state (by non-communication theorem)

Quantum teleportation (detailed protocol)

00	01	10	11
$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$

- Alice tells Bob her measurement output
- If the first bit sent by Alice is 1, then Bob applies

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

If the second bit sent by Alice is 1, then Bob applies

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• These transformation will bring Bob's qubit to the state $|\phi\rangle=\alpha|0\rangle+\beta|1\rangle$

- By contrast of tepeportation, we show that if Alice and Bob share a Bell pair: $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$, Alice can send two classical bits via one qubit
- First we note that Alice can get three different states by applying gates to her qubit

• applies
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 to get $\frac{|01\rangle + |10\rangle}{\sqrt{2}}$

• applies
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 to get $\frac{|00\rangle - |11\rangle}{\sqrt{2}}$

• applies
$$iY = ZX = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 to get $\frac{|01\rangle - |10\rangle}{\sqrt{2}}$

together with original Bell pair, these four states form an orthogonal basis

- Suppose Alice wants to send b₀b₁ to Bob. Then Alice applies the following gates and send her qubit to Bob
 - If b₀ = 1, applies NOT gate X
 - If $b_1 = 1$, applies phase gate Z
- Alice's transformation is equivalent to the unitary transformation

$$\frac{1}{\sqrt{2}} \left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array} \right)$$

After Alice applies the trandformation, we can distinguish the following four cases:

Alice classical bits	Alice qubits
00	$\frac{ 00\rangle+ 11\rangle}{\sqrt{2}}$
01	$\frac{ 00\rangle - 11\rangle}{\sqrt{2}}$
10	$\frac{ 01\rangle+ 10\rangle}{\sqrt{2}}$
11	$\frac{ 01\rangle - 10\rangle}{\sqrt{2}}$

In order for Bob to decode, he needs the inverse transformation

$$\frac{1}{\sqrt{2}} \left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0
\end{array} \right)$$

 This is equivalent to CNOT gate (Bob qubit control Alice qubit) and then Hadamard gate on Bob's qubit

We can distinguish the following four cases:

Bob receives	After CNOT	After Hadamard
$\frac{ 00\rangle+ 11\rangle}{\sqrt{2}}$	$ 0 angle\otimes + angle$	$ 0 angle\otimes 0 angle$
$\frac{ 01\rangle+ 10\rangle}{\sqrt{2}}$	$ 1\rangle\otimes + angle$	$ 1\rangle\otimes 0 angle$
$\frac{ 00\rangle - 11\rangle}{\sqrt{2}}$	$ 0 angle\otimes - angle$	0⟩⊗ 1⟩
$\frac{ 01\rangle- 10\rangle}{\sqrt{2}}$	$ 1 angle\otimes - angle$	1⟩⊗ 1⟩

Q&A?