TOPOLOGÍA I. Examen del Tema 3

- Grado en Matemáticas - Curso 2011/12

Nombre:

Razonar todas las respuestas

- 1. Estudiar si las siguientes afirmaciones son ciertas.
 - (a) $(\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R})$ es homeomorfo a \mathbb{R}^2 .
 - (b) En un espacio (X, τ) , si $A \subset X$ es conexo, también lo es $\overset{\circ}{A}$.
- 2. En la recta de Sorgenfrey (\mathbb{R}, τ_S) , estudiar si [0, 1] es conexo y si es compacto.
- 3. Sea $(\mathbb{N}, \tau = \{A_n; n \in \mathbb{N}\}) \cup \{\emptyset, \mathbb{N}\}$, con $A_n = \{1, \dots, n\}$. Estudiar qué subconjuntos son conexos y cuáles son compactos.
- 4. Sea $O=(0,0), p_n=(1,\frac{1}{n}), n\in\mathbb{N}$ y $X=\{(1,0)\}\cup_{n=1}^{\infty}[O,p_n]$. Estudiar si es conexo y si es compacto.

Soluciones

1. (a) No son homeomorfos. Supongamos que f es un homeomorfismo entre $X = (\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R})$ e $Y = \mathbb{R}^2$. Entonces $f : X - \{(0,0)\} \to Y - \{f(0,0)\}$ es un homeomorfismo. Sin embargo el dominio no es conexo pues

$$\{(X-\{(0,0)\})\cap\{(x,y)\in\mathbb{R}^2;x+y>0\},(X-\{(0,0)\})\cap\{(x,y)\in\mathbb{R}^2;x+y<0\}\}$$

es una partición no trivial del espacio. Por otro lado, $Y - \{f(0,0)\}$ es conexo (es homeomorfo a $\mathbb{S}^1 \times \mathbb{R}$, que lo es).

(b) No es cierto. En \mathbb{R}^2 consideramos $A = \overline{B_1(-1,0)} \cup \overline{B_1(1,0)}$. Este conjunto es conexo pues $B_1(\pm 1,0)$ es un convexo, su adherencia es conexa y $\overline{B_1(-1,0)} \cap \overline{B_1(1,0)} = \{(0,0)\}$. Sin embargo $\stackrel{\circ}{A} = B_1(-1,0) \cup B_1(1,0)$, que no es conexo pues

$$\mathring{A} = (\mathring{A} \cap \{(x,y) \in \mathbb{R}^2; x > 0\}) \cup (\mathring{A} \cap \{(x,y) \in \mathbb{R}^2; x < 0\})$$

es una partición por abiertos no trivial.

2. El conjunto [0,1] no es conexo, pues $[0,1]=[0,1/2)\cup[1/2,1]$ es una partición no trivial por abiertos (el conjunto [1/2,1] es abierto en [0,1] pues $[1/2,1]=[1/2,\infty)\cap[0,1]$).

El conjunto [0, 1] no es compacto, pues

$$[0,1] \subset \bigcup_{n \in \mathbb{N}} [0,1-\frac{1}{n}) \cup [1,2)$$

y si hubiera un subrecubrimiento finito (en el cual necesariamente estaría a [1,2) pues es el único abierto que contiene a x=1), se tendría

$$[0,1] \subset \cup_{i=1}^m [0,1-\frac{1}{n_i}) \cup [1,2) = [0,1-\frac{1}{k}) \cup [1,2) \quad k = \max\{n_i; 1 \leq i \leq m\}$$

lo cual no es posible.

3. Todo subconjunto B de \mathbb{N} es conexo. Sea $m = \min(B)$ (que siempre existe). Como $A_n \cap B$ es vacío o contiene a m, entonces dos abiertos relativos de B y no triviales siempre se intersecan, probando que B es conexo.

Tomamos $B \subset \bigcup_n A_n$. Si el espacio es compacto, existe un subrecubrimiento finito: $B \subset A_{n_1} \cup \ldots \cup A_{n_m}$, pero la unión de la izquierda es A_k , con $k = \max\{n_i; 1 \leq i \leq m\}$. En particular, B es finito. Y como todo conjunto finito es compacto, se tiene que los únicos compactos de \mathbb{N} son los conjuntos finitos.

4. Cada segmento es conexo y la intersección de todos es O. Por tanto $\bigcup_{n=1}^{\infty} [O, p_n]$ es conexo. Por otro lado, $(1,0) \in \overline{\bigcup_{n=1}^{\infty} [O, p_n]}$ pues $p_n \to (1,0)$. Como al añadir puntos adherentes a un conjunto conexo sigue siendo conexo, nuestro espacio es conexo.

El conjunto no es cerrado, luego no es compacto (es evidente que el espacio está acotado: $|p| \leq 2$, para todo $p \in X$). Concretamente, $\overline{X} = X \cup ([O, (1, 0)]$. Ya que sólo hay que probar que no es cerrado, observemos que $(\frac{1}{2}, 0)$ es adherente ya que si llamamos $q_n = (\frac{1}{2}, \frac{1}{2n}) \in [O, p_n]$, entonces $q_n \to (\frac{1}{2}, 0)$ y $(\frac{1}{2}, 0) \notin X$.