Linear Regression

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

Gross of movie Budget of movie

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta_1 = 1.5$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta_1 = 1.5$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million $\beta_1 = 1.5$ $\beta_1 = 0.1$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta_0 = 1.5$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million $\beta_1 = 1.5$ $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta = 1.5$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million
 $\beta_1 = 1.5$
 $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$eta_0 = 80$$
 million $eta_0 = 0$ $eta_0 = 120$ million $eta_0 = 30$ million $eta_1 = 0.5$ $eta_1 = 1.5$ $eta_1 = 0.1$ $eta_1 = 2$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$eta_0 = 80$$
 million $eta_0 = 0$ $eta_0 = 120$ million $eta_0 = 30$ million $eta_1 = 0.5$ $eta_1 = 1.5$ $eta_1 = 0.1$ $eta_1 = 2$

$$y_{\beta}(x_{obs}^{(0)}) - y_{obs}^{(0)}$$

$$y_{\beta}(x_{obs}^{(1)}) - y_{obs}^{(1)}$$

$$y_{\beta}(x_{obs}^{(2)}) - y_{obs}^{(2)}$$

$$y_{\beta}(x_{obs}^{(3)}) - y_{obs}^{(3)}$$

Predicted value by model – Observed value $\beta 0 = 80M$, $\beta 1 = 0.5$

Predicted value by model – Observed value $\beta 0 = 80M$, $\beta 1 = 0.5$

$$y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)}$$

Predicted value by model – Observed value $\beta 0 = 80M$, $\beta 1 = 0.5$

$$(\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)}$$

Predicted value by model – Observed value $\beta 0 = 80M$, $\beta 1 = 0.5$

$$\sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

Predicted value by model – Observed value $\beta 0 = 80M$, $\beta 1 = 0.5$

$$\min_{\beta_0,\beta_1} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

Cost function

Takes a model (specific parameter values), returns score

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

Cost function

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$
Lower for better fits

$$J(oldsymbol{eta}_0,oldsymbol{eta}_1)$$

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta_0 = 1.5$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million $\beta_1 = 1.5$ $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta = 1.5$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million $\beta_1 = 1.5$ $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

import statsmodels.formula.api as sm
linmodel = sm.OLS(Y, X).fit()

$$\beta_0 = 94.68$$
 million $\beta_1 = 0.1$

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\beta_0 = 94.68$$
 million $\beta_1 = 0.1$

$$\beta_1 = 0.1$$

Multiple Linear Regression

DATA SCIENCE BOOTCAMP

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

$$\min J(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4)$$

to find the best fitting model

Polynomial regression

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

Polynomial regression

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

Polynomial regression

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Other functional forms log

$$y_{\beta}(x) = \beta_0 + \beta_1 \log(x)$$

Other functional forms square root

$$y_{\beta}(x) = \beta_0 + \beta_1 \sqrt{x}$$

Possible to combine variables

$$y_{\beta}(x) = \beta_0 + \beta_1 \exp(x_1) + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 \log(x_3)$$

Possible to combine variables

$$y_{\beta}(x) = \beta_0 + \beta_1 \exp(x_1) + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 \log(x_3)$$

Interactions

(example: existence of both genres has an each extra effect, different than the sum of each)

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 \exp(x_1) + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 \log(x_3)$$

Linear Regression is not "linear" because we're fitting "a line."

We also fit many other forms.

It's "linear" because the features are combined in a linear fashion ($\Sigma \beta_i f(x_i)$).

Linear

$$y_{\beta}(x) = \beta_0 + \beta_1 \exp(x_1) + \beta_2 x_2^{-1}$$

Nonlinear

$$y_{\beta}(x) = \beta_0 + \beta_1 e^{\beta_2 x_1} + \frac{\beta_3 x_2}{(1 + \beta_4 x_2)}$$

How to choose functional forms to try? Check one on one relationship of variable with outcome

How to choose functional forms to try? Check one on one relationship of variable with outcome

$$y_{\beta}(x) = \beta_0 + \beta_1 \log(x)$$

How to choose functional forms to try? Check one on one relationship of variable with outcome

$$\log(y_{\beta}(x)) = \beta_0 + \beta_1 x$$

Data Science Killer #1: Overfitting

What is Overfitting?

When I fit too closely to my training set

Why is this bad?

Because my model won't generalize well to future data!

What is Overfitting?

Regression

What is Overfitting?

What is Underfitting?

When I don't have a complex enough model to model my data.

Why is this bad?

Because we are losing information!

What is Underfitting/Overfitting?

Regression

Regularization

While awarding goodness of fit, penalize model complexity Why not do that while we are fitting?

Cost function

Takes a model (specific parameter values), returns a score

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta = 1.5$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million $\beta_1 = 1.5$ $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

Cost function

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

Lower for better fits

Cost function Add a penalty for the size of each parameter!

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Low: good fit High: bad fit

High: complex model

Low: simple model

Diagnostics to detect under/overfitting

Underfitting

 $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$

J = V. High + Low

Just Right

 $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$

J = Low + Low

Overfitting

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

J = Low + V. High

Ridge Regression

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Just Right
$$J = Low + Low$$

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Just Right
$$J = Low + Low$$

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$\stackrel{\approx 0}{\downarrow} \qquad \stackrel{\approx 0}{\downarrow}$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Overfitting

$$J = V$$
. High + Medium $J = Low + V$ High

$$J = Low + V High$$

J = Low + VVVHigh

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Just Right
$$J = Low + Tiny$$

Overfitting
$$J = Low + Tiny$$

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Error vs. regularization λ

Ridge Regularization (L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Ridge Regularization (L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Lasso Regularization (L1)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{K} \left| \beta_j \right|$$

Ridge Regularization (L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Lasso Regularization (L1)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \left| \beta_j \right|$$

Elastic Net (L1 + L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda_1 \sum_{j=1}^{k} \left| \beta_j \right| + \lambda_2 \sum_{j=1}^{k} \beta_j^2$$

My model is not awesome enough.

What do I do?

Try these and check test error (and AIC,BIC,etc.) again:

Use a smaller set of features

Regularization: Increase/decrease λ

Try adding polynomials

Check functional forms for each feature

Try including other features

Use more data (bigger training set)