(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-199898

(43)公開日 平成5年(1993)8月10日

(51)Int.Cl.⁵

識別配号

庁内整理番号

技術表示箇所

C 1 2 Q 1/68

A 8114-4B

C 1 2 M 1/00 9050-4B

審査請求 未請求 請求項の数8(全 23 頁)

(21)出願番号

特頭平3-241315

(22)出顧日

平成3年(1991)9月20日

(31)優先権主張番号 特顯平2-259011

(32)優先日

平 2 (1990) 9 月28日

(33)優先権主張国

日本 (JP)

(31)優先権主張番号 特願平3-90879

(32)優先日

平3(1991)4月22日

(33)優先権主張国

日本(JP) (31)優先権主張番号 特願平3-191868

(32)優先日

平3(1991)7月31日

(33)優先権主張国

日本 (JP)

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 橋本 幸二

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝給合研究所内

(72)発明者 三輪 桂子

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝給合研究所内

(72)発明者 石森 養雄

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝総合研究所内

(74)代理人 弁理士 鈴江 武彦

(54) 【発明の名称 】 遺伝子検出法

(57)【要約】

【構成】検出すべき目的遺伝子に対して相補的な塩基配 列を有する―本鎖の核酸プローブと、一本鎖に変性され た遺伝子サンプルとを反応させた後、遺伝子とハイブリ ダイズした核酸プローブを検出することによって目的遺 伝子の存在を確認する遺伝子検出法において、核酸プロ ープを電極表面に固定化し、二本鎖核酸に特異的に結合 しかつ電気化学的に活性な二本鎖認識体を核酸プローブ と遺伝子サンプルとの反応系に添加し、および電極を介 した電気化学的な測定により核酸プローブと目的遺伝子 との二本鎖核酸に結合した二本鎖認識体を検出し、これ により目的遺伝子とハイブリダイズした前記核酸プロー ブの存在を検出することを特徴とする。

【効果】放射性同位体を用いることがないので安全性お よび簡便性に優れ、さらに短時間で目的とする遺伝子の 有無を高感度に検出することができる。

【特許請求の範囲】

【請求項1】 検出すべき目的遺伝子に対して相補的な 塩基配列を有する一本鎖の核酸プローブと、一本鎖に変 性された遺伝子サンブルとを反応させた後、遺伝子とハ イブリダイズした前記核酸プローブを検出することによ って前記目的遺伝子の存在を確認する遺伝子検出法にお いて、

前記核酸プローブを電極表面に固定化して用いること と、

二本鎖核酸に特異的に結合し、かつ電気化学的に活性な 10 二本鎖認識体を、前記核酸プローブと遺伝子サンプルと の反応系に添加することと、

前記電極を介した電気化学的な測定により、前記核酸プ ローブと目的遺伝子との二本鎖核酸に結合した二本鎖認 識体を検出し、これにより目的遺伝子とハイブリダイズ した前記核酸プローブの存在を検出することを特徴とす る遺伝子検出法。

【請求項2】 電極表面に固定化された核酸プローブ と、一本鎖に変性された遺伝子サンプルとのハイブリダ イゼーションの際に、電極に電位を印加する請求項1記 20 載の遺伝子検出法。

【請求項3】 検出すべき目的遺伝子に対して相補的な 塩基配列を有する一本鎖の核酸プローブと、一本鎖に変 性された遺伝子サンプルとを反応させた後、遺伝子とハ イブリダイズした前記核酸プローブを検出することによ って前記目的遺伝子の存在を確認する遺伝子検出法にお いて、

前記核酸ブローブを光ファイバーに固定化して用いると 논논.

二本鎖核酸に特異的に結合し、かつ光化学的に活性な二 30 本鎖認識体を、前記核酸プローブと遺伝子サンブルとの 反応系に添加することと、

前記光ファイバーを介した光化学的な測定により、前記 核酸プローブと目的遺伝子との二本鎖核酸に結合した二 本鎖認識体を検出し、これにより目的遺伝子とハイブリ ダイズした前記核酸プローブの存在を検出することを特 徴とする遺伝子検出法。

【請求項4】 前記二本鎖認識体が挿入剤である請求項 1または3記載の遺伝子検出法。

【請求項5】 前記挿入剤が、電気的に可逆な酸化還元 40 反応を起とす金属を中心金属とする金属錯体であって、 該金属の酸化還元電位が核酸の酸化還元電位未満である か、もしくは核酸の酸化還元電位に重なることのない金 属錯体である請求項4記載の遺伝子検出方法。

【請求項6】 前記二本鎖認識体が、二本鎖核酸に特異 的に結合する生体高分子である請求項1または3記載の 遺伝子検出法。

【請求項7】 特定の塩基配列を有する遺伝子を検出す るための自動遺伝子検出装置であって、

定化した遺伝子検出センサと、

遺伝子検出センサを移動させるための移動手段と、

一本鎖に変性された遺伝子サンブルを含有する試料溶液 を貯留し、遺伝子サンブルと遺伝子センサの表面に固定 化された核酸プローブとのハイブリダイゼーションによ り遺伝子センサ上に二本鎖核酸を形成するための反応槽 ٤.

試料溶液の温度を制御する温度制御手段と、

遺伝子サンブルとのハイブリダイゼーションの後、遺伝 子センサを洗浄して未反応の遺伝子サンプルを除去する ための洗浄手段と、

二本鎖認識体を含有する溶液を貯留し、二本鎖認識体と 遺伝子センサ表面上に形成された二本鎖核酸とを反応さ せることにより二本鎖認識体を二本鎖核酸に結合させ、 結合した二本鎖認識体が生ずる電気化学的もしくは光学 的な信号を検出するための検出槽と、を具備する自動遺 伝子検出装置。

【請求項8】 遺伝子センサ表面上に形成された二本鎖 核酸を、遺伝子センサ表面上に固定化された核酸プロー ブと一本鎖遺伝子サンブルとに解離し、遺伝子サンブル を除去して遺伝子センサを再生するための解離手段をさ らに具備する請求項7記載の自動遺伝子検出装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、試料中に存在する特定 の遺伝子を特異的に検出するための遺伝子検出法および 遺伝子検出装置に関する。

[0002]

【従来の技術】遺伝子(DNA)に刻み込まれた遺伝情 報は、メッセンジャーRNAを介して蛋白質あるいは酵 素として表現される。との蛋白質や酵素の働きにより、 生命の維持に必要な様々な化合物の生合成および代謝が 行なわれる。とのように、遺伝子に支配された多様な物 質の動的平衡系として、生物が存在しているわけであ る。

【0003】ヒトの遺伝子の総数は5~10万といわれ ている。これら遺伝子の中に、例えば欠損や重複のよう な何等かの異常や変化が生じると、生成される蛋白質の 特性、種類および量などが変化し、結果として生体系の バランスが崩れて疾病を引き起こすことになる。従っ て、逆に病因となる既知の遺伝子を検出することによっ て、疾患の同定や予防が可能である。このような遺伝子 そのものに基づく診断は、近年の遺伝子工学の進歩によ って可能となったもので、遺伝子診断と呼ばれている。 従来の診断法と比較して、遺伝子診断には次のような幾 つかの特色がある。

【0004】遺伝子発現の機構を考えると、殆どの生化 学レベルでの変化に先行して、遺伝子上での変化が生じ ていることが推定される。従って、遺伝子変化の検出に 電極もしくは光ファイバーの表面上に核酸ブローブを固 50 よる遺伝子診断では、病気という表現型での変化に先だ

って、即ち、発症前や病気の潜伏期あるいは極めて初期 の段階で、診断や予測ができる。とれが第一の特色であ る。第二の特色は、生体内の細胞では遺伝子は全て同一 であるので、遺伝性の疾患に関する遺伝子診断法は、分 折する臓器や組織に依存しないことである。このこと は、特に胎児での診断では重要である。即ち、この特色 によって、妊婦から羊水を採取し、羊水中に浮遊してい る胎児の細胞を調べるだけで診断を行なうことが可能と なる。一般的な遺伝子診断法において、従来用いられて いる遺伝子検出法の手順を略記すれば次の通りである。 【0005】まず、試料から遺伝子を抽出し、必要があ れば適当な制限酵素で切断した後、電気泳動およびサザ ンプロットを行なう。次に、目的とする遺伝子に対して 相補的な塩基配列を有する核酸プローブ(通常は、放射 性同位元素でラベルされている)を、ブロットされた遺 伝子とハイブリダイスさせる。続いて、低温でX線フィ ルムに感光させることによりハイブリダイズされた核酸 プローブを検出し、目的とする遺伝子の存在を確認す る。

【0006】上記従来の検出法は、放射性同位元素を使 20 用するため診断場所が限定され、試薬の取扱いにも十分 注意しなければならない。この点を改善するために、放 射性同位元素に代わる安全なラベル剤の開発が進められ ており、例えばアビジン- ビオチン結合を利用する方 法、酵素や蛍光物質を使用する方法等、幾つかのブロー ブ検出方法が既に提案されている。しかし、これらは感 度の点で放射性同位元素を凌駕するまでには至っていな い。また、何れの方法も遺伝子検出までに少なくとも2 ~3日間を要し、測定操作もかなり繁雑かつ複雑である という問題がある。 一方、試料中に存在する特定の抗 30 原または抗体の定量分析には、一般にラジオイムノアッ セイ(以下、RIAと略記する)が用いられている。し かしながら、RIAでは前記の遺伝子診断方法と同様に 放射性同位体を用いるため、専用の機器を設置し、その 操作も資格を有するオペレータが行なわなければならな い。これに加えて廃棄物の処理等にも注意を必要とす る。また、その他の分析方法として、例えば免疫電気泳 動法が知られているが、との方法は測定に長時間を要す るうえ感度が低く、被検物質がどく微量にしか含まれて いない場合には適用することができない。

[0007]

【発明が解決しようとする課題】本発明は上記事情に鑑 みてなされたもので、その課題は、安全性および簡便性 に優れると共に、短時間で目的とする遺伝子の有無を高 感度に検出することができる遺伝子検出法を提供すると とにある。

【0008】また、本発明は、安全性および簡便性に優 れると共に、短時間で目的とする遺伝子の有無を高感度 に検出することができる遺伝子検出装置を提供すること をも課題とする。

[0009]

【課題を解決するための手段】本発明による遺伝子検出 法は、検出すべき目的遺伝子に対して相補的な塩基配列 を有する一本鎖の核酸プローブと、一本鎖に変性された 遺伝子サンプルとを反応させた後、遺伝子とハイブリダ イズされた前記核酸ブローブを検出することによって前 記目的遺伝子の存在を確認する遺伝子検出法において、 前記核酸プローブを電極表面、または光ファイバー先端 に固定化して用いることと、二本鎖核酸に特異的に結合 し、且つ電気化学的または光化学的に活性な二本鎖認識 体を、前記核酸プローブと遺伝子サンプルとの反応系に 添加することと、

【0010】前記電極または前記光ファイバを介した電 気化学的または光化学的な測定により、前記核酸プロー ブと目的遺伝子との二本鎖核酸に結合した二本鎖認識体 を検出することにより、目的遺伝子とハイブリダイズさ れた前記核酸ブローブの存在を検出することを特徴とす るものである。以下に本発明の詳細を説明する。

【0011】本発明において「二本鎖認識体」とは、二 本鎖の核酸を認識し、特異的に結合する物質を指す。そ のような物質としては、例えば、挿入剤、二本鎖核酸を 認識する生体高分子を挙げるととができる。

【0012】挿入剤(intercalating agents)と呼ばれる 物質は、二本鎖DNA等の二本鎖核酸に特異的に結合(i ntercalation) する特徴がある。これら挿入剤は何れも 分子中にフェニル基等の平板状挿入基を有し、該挿入基 が二本鎖核酸の塩基対と塩基対の間に介入することによ って、二本鎖核酸と結合する。挿入剤の多くは光学活性 物質であり、核酸の定性に用いられているものもある。 また、挿入剤の中には電極応答する物質もある。従っ て、光学的変化または電気化学的変化の測定によって、 二本鎖核酸に結合した挿入剤を検出することができる。 【0013】本発明で用いる電気化学的、光化学的に活 性な挿入剤は特に限定されるものではなく、例えばエチ ジュウム、エチジュウムプロマイド、アクリジン、アミ ノアクリジン、アクリジンオレンジ、プロフラビン、エ リブチシン、アクチノマイシンD、ドーノマイシン、マ イトマイシンC等を用いることができる。また、その他 の使用可能な挿入剤としては、特開昭62-282599 号公報 に記載されたものが挙げられる。

【0014】また、電極を用いて電気化学的変化を検出 する場合には、挿入剤として、上述の挿入剤自身が酸化 還元反応に対して可逆的である物質の他に、電気的に可 逆な酸化逗元反応を起こす物質を中心金属として含有す る金属錯体、すなわちメタロインターカレーターを用い るととができる。とのようなメタロインターカレーター としては、例えばトリス (フェナントロリン) 亜鉛錯 体、トリス (フェナントロリン) ルテニュウム錯体、ト リス (フェナントロリン) コバルト錯体、ジ (フェナン トロリン)亜鉛錯体、ジ(フェナントロリン)ルテニュ

ウム錯体、ジ(フェナントロリン)コバルト錯体、ビビリジンプラチナ錯体、タービリジンプラチナ錯体、フェナントロリンプラチナ錯体、トリス(ビビリジル)亜鉛錯体、トリス(ビビリジル)カバルト錯体、ジ(ビビリジル)亜鉛錯体、ジ(ビビリジル)ルテニュウム錯体、ジ(ビビリジル)亜鉛錯体、ジ(ビビリジル)ルテニュウム錯体、ジ(ビビリジル)コバルト錯体を挙げることができる。挿入剤はこれらに限定されるものではないが、錯体の中心金属もしくは挿入剤自身の酸化還元電位が核酸の酸化還元電位以上であったり、核酸の酸化還元電位に重なることのないも10のが望ましい。

【0015】とのような電気化学的に可逆である酸化還元反応を起こす挿入剤を用いることにより、酸化還元電流を繰り返して測定することが可能となる。したがって、電位走査を数回ないし数百回繰り返し、得られた信号の値を積算することにより信号の増幅を行なうことができ、その結果、より高感度の検出が可能となる。

【0016】さらに、電極を用いて遺伝子の検出を行なう場合には、電気化学発光を生じる挿入剤を利用することもできる。このような挿入剤は特に限定されるもので 20はなく、例えば、ルミノール、ルシゲニン、ビレン、ジフェニルアントラセンおよびルブレンを挙げることができる。これらの挿入剤による電気化学発光は、ホタルルシフェリン、デヒドロルシフェリンのようなルシフェリン誘導体、フェニルフェノール、クロロフェノールのようなフェノール類もしくはナフトール類のようなエンハンサーを用いることにより増強することが可能である。

【0017】電気化学発光によって生じた光学的な信号は、例えば、フォトンカウンタを用いて溶液から直接検出すればよい。また、電極の代わりに、光ファイバーの 30 先端に透明電極を形成することにより作成した光ファイバー電極を用いて間接的に検出することもできる。

【0018】電極反応または光学的な信号の変化は担体 表面でしか起こらないことから、未反応のブローブや未 反応の挿入剤を除去することなく非常に簡単に検出を行 なうこともできる。

【0019】なお、本発明において、核酸プローブと一本鎖遺伝子サンプルとの反応は、一般的に溶液中で行なわれる。その際、上記の挿入剤の存在下で核酸プローブと遺伝子サンプルとの反応を行なってもよく、また該反 40 応の終了後に挿入剤を添加しても良い。

【0020】上述のように、多くの挿入剤はそれ自体で 光学活性を有するか、または電極応答が可能な物質であ り、光学的または電気化学的な測定により直接測定を行 なことができる。このような挿入剤に、さらに直接もし くは間接的に信号を検出することが可能な物質を結合さ せ、挿入剤自信の信号と併せて測定することにより検出 の感度を高めることが可能である。

【0021】とのような直接もしくは間接的に信号を検 出することが可能な物質としては、例えば、ビオチン、 トリニトロベンゼンスルホン酸、ジニトロベンゼンスルホン酸等のハブテン、フルオレセインイソチオシアネート(FITC)、フィコシアニン、ローダミン等の蛍光物質、ルミノール、ルシゲニン、アクリジニウムエステル誘導体等の発光物質、フェロセン、ピオローゲン等の電極活性物質を挙げることができる。上記ハブテンのように直接信号を検出することができない物質を用いる場合には、酵素結合アビジンのような酵素結合抗ハブテン抗体を利用して酵素反応による物質の吸光、蛍光、発

光、消光、円偏光二色性、蛍光偏光のような光学的情報 を測定するか、もしくは電極活性を測定することにより 間接的に遺伝子の検出を行なう。

【0022】これらの物質は、通常、挿入剤1分子当たり1分子結合させるが、同種の物質を挿入剤1分子当たり複数分子結合させるととにより、さらに感度を高めることができる。

【0023】これとは別に、生体高分子の中には二本鎖核酸を認識して特異的に結合する物質が存在する。したがって、このような生体高分子もしくはこの生体高分子を認識する物質に、酵素、蛍光物質、発光物質のような標識物質を結合し、この標識物質に起因する電気化学的もしくは光学的な変化を測定して生体高分子の存在の有無を確認することにより二本鎖核酸を検出することが可能となる。

【0024】とのような生体高分子としては、抗DNA 抗体、クロ(Cro)タンパク質、cIリブレッサー、大 腸菌のCRP(cAMP受容タンパク質)、ラクトース オペロンリブレッサーのようなDNA結合タンパク質、 触媒活性が失活したRNaseHのような酵素を挙げるこ とができるが、これらに限定されるものではない。ま た、上記生体高分子は、生体由来であっても、合成によ り得られるものであっても良い。

【0025】上記生体高分子に結合させる標識剤としての酵素は特に限定されるものではなく、例えばアルカリホスファターゼ、ベルオキシダーゼを挙げることができる。【0026】上記生体高分子を用いて電気化学的変化を検出する場合には、例えば、NAD+/NAD+サイクルにおける NADH、カテコール/キノンサイクルにおけるキノンを利用することができる。すなわち、生体高分子に結合した酵素により生成した NADH もしくはキノンを電極自体で酸化もしくは還元し、その電気的変化を測定すれば良い。なお、このような電気化学的酸化還元反応に関わる物質は、これらに限定されるものではない。

【0027】上記生体高分子を用いて光学的変化を検出する場合には、生体高分子に酵素を結合し、化学発光基質を用いて酵素反応を行なうか、もしくは生体高分子に蛍光物質を結合してその蛍光を直接検出する。本発明で用いるととができる化学発光基質は特に限定されるものではなく、使用可能な化学発光基質としては、ルミノー

ル、イソルミノール、イソルミノール誘導体、アクリジ ニュウム誘導体を挙げることができる。化学発光基質を 使用する場合には、エンハンサーを用いて化学発光を増 強させるとともできる。とのエンハンサーとしては、特 に限定されるものではないが、例えばホタルルシフェリ ン、デヒドロルシフェリンのようなルシフェリン誘導 体、フェニルフェノール、クロロフェノールのようなフ ェノール類もしくはナフトール類を挙げることができ る。さらに、本発明で用いることができる蛍光物質は特 に限定されるものではなく、使用可能な蛍光物質として 10. しては、例えば、病原性ビブリオを挙げることができ は、フルオレセイン、ローダミン、フィコシアニンを挙 げることができる。

【0028】二本鎖認識体の添加量は特に限定されるも のではないが、効率の点からは形成された全ての二本鎖 に結合するに十分な量であることが好ましい。過剰に添 加して未反応のまま残存する二本鎖認識体は、測定の前 に洗浄除去する。

【0029】二本鎖認識体の添加量が少なく低濃度であ る場合には、二本鎖認識体が形成された二本鎖核酸と結 合した後には、系内に残存する未反応の二本鎖認識体の 量は極少量となる。すなわち、相対的に、二本鎖認識体 は担体上に濃縮された状態となる。とのような状態にお いては、核酸プローブと未反応の試料DNA、および形 成された二本鎖に結合していない遊離の二本鎖認識体と を洗浄除去することなく遺伝子の検出を行なうことがで き、ハイブリダイゼーションから目的遺伝子の検出まで 全ての反応を同一系内で連続的に行なうことが可能とな

【0030】本発明においては、使用する核酸プローブ を変えることにより種々の遺伝子の検出を行なうことが 30 できる。使用することができる核酸プローブの例として は、食品中に含まれる微生物、植物ウイルスもしくはウ イロイド、魚類に感染する病原性微生物もしくはウイル ス、人体に感染し、感染症等を引き起とす病原性微生物 もしくはウイルス、遺伝病の原因遺伝子、活性化プロト オンコジーン、またはミニサテライト塩基配列のそれぞ れの全体もしくはその一部の塩基配列に相補的な配列を 有するプローブを挙げることができる。

【0031】核酸プローブとして、食品中に含まれる微 生物の全体もしくはその一部の塩基配列に相補的な配列 40 を有するブローブを用いた場合には、食品中に含まれる **微生物の直接検出を行なうととができ、食品衛生検査が** 可能になる。とのような食品中に含まれる微生物として は、例えば、病原性の大腸菌、ブドウ球菌、サルモネラ 菌を挙げることができる。

【0032】核酸プローブとして、植物ウイルスもしく はウイロイドの一部の塩基配列に相補的な配列を有する プローブを用いた場合には、植物に感染した植物ウイル スもしくはウイロイドの検出を行なうことができ、農業

ウイルスもしくはウイロイドとしては、例えば、タバコ モザイクウイルス、カリフラワーモザイクウイルスを挙 げることができる。

【0033】核酸プローブとして魚類に感染する病原性 **微生物もしくはウイルスの全体あるいはその―部の塩基** 配列に相補的な配列を有するブローブを用いた場合に は、魚類に感染する病原性微生物もしくはウイルスの検 出を行なうことができ、水産分野における感染症診断が 可能になる。とのような魚類に感染する病原性微生物と

【0034】核酸プローブとして人体に感染し、感染症 等を引き起こす病原性微生物もしくはウイルスの全体あ るいはその一部の塩基配列に相補的な配列を有するブロ -ブを用いた場合には、感染症診断が可能になる。との ような人体に感染して感染症等を引き起こす病原性微生 物としては、例えば、病原性微生物であるストレプトコ ッカス、マイコプラズマ、クロストリジウム、クラミジ ア、サルモネラ、単純ヘルペス、サイトメガロウイルス を挙げることができる。

【0035】核酸プローブとして遺伝病の原因遺伝子の 全体もしくはその一部の塩基配列に相補的な配列を有す るプローブを用いた場合には、遺伝病の直接検定が可能 になる。とのような遺伝病の原因遺伝子としては、例え ば、アデノシンデアミナーゼ欠損症、鎌形赤血球貧血の 原因遺伝子を挙げることができる。

【0036】核酸プローブとして活性化プロトオンコジ -ンの全体もしくはその一部の塩基配列に相補的な配列 を有するプローブを用いた場合には、癌診断が可能にな る。このような活性化プロトオンコジーンとしては、例 えば、癌遺伝子データブック(渋谷正史、秀潤社)に記 載の癌遺伝子を挙げることができる。

【0037】核酸ブローブとしてミニサテライト塩基配 列の全体もしくはその―部の塩基配列に相補的な配列を 有するプローブを用いた場合には、遺伝学的研究、個人 識別、親子鑑定等に有用なDNAフィンガープリント法 を行なうことが可能になる。このようなミニサテライト 塩基配列としては、例えば、Myo配列、Alu配列、 Per-6配列、Per配列を挙げることができる。

【0038】本発明において用いられる核酸プローブの 長さは特に限定されるものではなく、数mer ないし数百 mer の一本鎖核酸を用いることができるが、S/N比を 上げて検出の精度を高めるためには、十数mer ないし数 十mer 程度の長さのものが好ましい。 これは、次のよう な理由によるものである。

【0039】上述のように、二本鎖認識体は二本鎖核酸 を認識して特異的に結合する物質である。しかしなが ら、二本鎖認識体は希に一本鎖核酸にも結合することが ある。すなわち、担体に固定化された未反応の核酸プロ 分野における感染症診断が可能になる。とのような植物 50 -ブにも結合する場合がある。とのような結合が起とる

とS/N比が低下し、検出の精度が悪化する。したがっ て、核酸ブローブの長さは、目的とする遺伝子配列を検 出するために最小限必要な長さに止めることが好まし 63.

【0040】遺伝子の検出は、上記二本鎖認識体のみな らず、核酸プローブを標識することによっても行なうと とができる。との場合、核酸プローブに標識される標識 剤は、二本鎖認識体と直接もしくは間接的に反応し、も しくはその相互作用により、そのいずれかが検出可能な 信号を生じるようなものであればどのような物質でもよ 10 い。換言すると、核酸プローブが一本鎖の状態にあると きには信号が発生することはなく、核酸プローブが目的 とする遺伝子と反応して二本鎖を形成し、さらにこの二 本鎖に二本鎖認識体が結合して初めて信号が発生するよ うな物質が標識剤として用いられる。遺伝子の検出は、 この標識剤と二本鎖認識体との反応により生じる信号を 測定することにより行なう。このような核酸ブローブの 標識剤は、用いられる二本鎖認識体により異なるが、例 えば、ローダミン、FITCのような蛍光物質、ルミノ -ル、アクリジニウムエステル誘導体のような発光物 質、酵素、酵素基質を挙げることができる。二本鎖認識 体としては、特に限定されるものではなく、上記のいず・ れの物質をも使用することができる。

【0041】本発明においては、核酸プローブを固定化 する担体として電極もしくは光ファイバーを用いている が、この他に信号の検出が可能な担体として、フォトダ イオード、サーミスタ、ISFET、MOSFET、ピ エゾ素子、表面弾性波素子、水晶発振器等を用いること もできる。

【0042】本発明で用いる電極は特に限定されるもの 30 ではなく、使用可能な電極としては、例えばグラファイ ト、グラシーカーボン、パイロリティックグラファイ ト、カーボンペースト、カーボンファイバーのような炭 素電極、白金、白金黒、金、パラジウム、ロジウムのよ うな貴金属電極、酸化チタン、酸化スズ、酸化マンガ ン、酸化鉛のような酸化物電極、Si、Ge、 ZnO、 CdS、 TiO. 、GaAsのような半導体電極、チタン等が挙げられ る。これらの電極は導電性高分子によって被覆しても良 く、これによって安定なプローブ固定化電極を調製する ことができる。また、単分子膜によって被覆することも できる。核酸プローブは、共有結合、イオン結合、物理 吸着等によって電極表面、光ファイバー等の担体上に固 定化するととができる。

【0043】共有結合による固定化としては、例えば、 担体表面を活性化し、その後、直接もしくは架橋剤を介 して間接的に核酸ブローブを固定化する方法、担体に固 定化する核酸プローブに活性型の官能基を導入して担体 に直接もしくは間接的に固定化する方法などを挙げると とができる。ととで、担体表面の活性化は、例えば、酸

膜で被覆することにより行なうことができる。また、使 用し得る架橋剤としては、臭化シアン、ァ- アミノプロ ピルトリエトキシシランのようなシランカップラー、カ ルボジイミド、塩化チオニル等を挙げることができる が、これらに限定されるものではない。さらに、核酸プ ローブに導入される官能基としては、例えばアミノ基、 カルボキシル基、ヒドロキシル基、カルボニル基、リン 酸基、アルデヒド基、およびメルカプト基を挙げること ができるが、これらに限定されるものではなく、その他 の反応性が高い官能基を用いることもできる。

【0044】担体表面を活性化するため表面を酸化する と、担体表面に酸化層が形成される。この酸化層を介し て核酸プローブと担体とが結合するのであるが、酸化層 の厚さを薄くすることにより遺伝子検出におけるS/N 比を向上させることができる。酸化層の厚さは、好まし くは 500A (オングストローム) 以下、より好ましくは 100A以下である。

【0045】核酸末端への官能基の導入は、酵素反応も しくはDNA合成機を用いて行なうことができる。酵素 反応において用いられる酵素としては、例えば、ターミ ナルデオキシヌクレオチジルトランスフェラーゼ、ポリ Aポリメラーゼ、ポリヌクレオチドカイネース、DNA ポリメラーゼ、ポリヌクレオチドアデニルトランスフェ ラーゼ、RNAリガーゼを挙げることができる。また、 ポリメラーゼチェインリアクション (PCR法)、ニッ クトランスレーション、ランダムプライマー法により官 能基を導入することもできる。官能基は、核酸のどの部 分に導入されてもよく、3'末端、5'末端もしくはランダ ムな位置に導入することができる。

【0046】官能基を導入した核酸プローブはそのまま 固定化反応により担体上に固定化することができる。し かしながら、核酸プローブは一本鎖核酸であるため、導 入した官能基ではなく核酸を構成するアミノ基が官能基 として機能する場合がある。すなわち、核酸を構成する アミノ基によってプローブが担体上に固定されてしま う。これは感度の低下を招き、好ましいものではない。 【0047】核酸プローブを構成するアミノ基による固 定化は、例えば、次のような方法により防ぐことができ る。まず、官能基を導入した核酸プローブを、とのプロ 一ブと相補的な配列を有するDNA鎖とアニーリングし て二本鎖とする。次いで、導入した官能基によりこの二 本鎖核酸を担体に固定化し、その後熱変性により一本鎖 の核酸にして官能基を導入していないDNA鎖を除去す る。熱変性の際の加熱温度は、通常、90~98℃である。 【0048】核酸プローブを固定化しようとする担体が 電極である場合には、物理吸着により、より簡単な操作 で効率よく核酸プローブを固定化することができる。電 極表面への核酸プローブの物理吸着は、例えば、次のよ うに行なうことができる。まず、電極表面を、超音波洗 化剤中における電解酸化、空気酸化、試薬酸化もしくは 50 浄器を用いて蒸留水およびアルコールで洗浄する。その

後、電極を核酸ブローブを含有するリン酸級衝液(pH 7.0)に挿入して核酸ブローブを担体表面に吸着させる。この際、電極に 0~+ 1.0V、好ましくは 0~+ 0.1Vの範囲で電位を印加することにより、核酸ブローブの吸着を促進することができる。次に、核酸ブローブを吸着させた電極をヌクレオチド(ATP、CTP、GTP、TTP、dATP、dCTP、dGTP、dTTP等)溶液中に挿入し、好ましくは 0~+ 1.0Vの範囲で電位を印加しながら、電極表面をヌクレオチドで被覆する。これにより、試料核酸、二本鎖認識体等の電極表 10面への非特異的な吸着が抑制される。また、非特異的な吸着は、界面活性剤、脂肪酸、脂肪等によっても抑制可能である。

【0049】また、核酸ブローブは、酵素固定化の一手法として知られる包括法において使用される包括剤を用いて担体に固定化することもできる。本発明において使用し得る包括剤は特に限定されるものではないが、例えばポリ塩化ビニル、ポリアクリルアミドを挙げることができる。

【0050】さらに、核酸ブローブは膜を介して電極表 20面に固定化することもできる。この際用いられる膜としては、例えば、ポリアセチレン、ポリビロール、ポリチオフェン、ポリアニリンのような導電性高分子、ポリエチレン、ポリプロビレン、ポリビニルクロライド、ポリビニルアルコール、ポリメチルメタクリレート、ポリフッ化ビニリデン、セルロース、脂質膜を挙げることができる。また、LB膜のような単分子膜もしくは単分子膜が複数積層して多層を形成した膜を用いることもできる。核酸プローブの膜への固定化は、担体表面への固定化と同様の方法で行なうことができる。 30

【0051】共有結合により核酸プローブを膜に固定化する場合には、核酸プローブに官能基を導入する代わりに膜に官能基を導入してもよい。膜に導入される官能基としては、核酸プローブに導入される官能基と同様のものを用いることができる。このように膜に官能基を導入し、次いで核酸プローブを反応させて固定化することにより、核酸プローブに官能基を導入して固定化する場合よりも高い密度でブローブを固定化することができ、かつより安定な核酸プローブ固定化担体を得ることができる。

【0052】膜を介して核酸プローブを固定化する担体が電極である場合には、上述のようにブローブと検体試料とのハイブリダイゼーションを行ない、その前後における膜電位の変化を測定するととにより、目的とする遺伝子の存在の有無を検出するととができる。

【0053】核酸プローブを固定化した担体は、そのままでは試料核酸、二本鎖認識体等の非特異的な物理吸着 高度が生じやすい。これは、感度の低下を招く要因となる。 このような非特異的な吸着は、核酸プローブを固定化した後、担体表面を物理吸着もしくは化学結合により核酸 50 る。

で被覆することにより抑制することが可能である。

12

【0054】との際、担体表面を被覆する核酸としては、例えば、アデノシン、チミジン、グアノシン、シチジンのようなヌクレオシド、ウリジル酸、シチジル酸、アデニル酸、グアニル酸のようなヌクレオチド、合成オリゴヌクレオチド、サケ精子DNAのような天然DNAを挙げることができる。

【0055】また、担体表面を被覆する核酸の長さおよび配列は、担体表面に固定化されている核酸プローブと反応しない長さおよび配列であれば特に限定されるものではないが、 1~ 100 bp の一本鎖、もしくは二本鎖核酸が望ましい。

【0056】また、非特異的な吸着は、界面活性剤、脂肪酸、脂肪等の物質で被覆するととによっても抑制する ととが可能である。そのような物質としては、具体的に は、ステアリルアミン等を用いることができる。

【0057】本発明の遺伝子検出法においては、担体への核酸プローブの固定化は上記方法にのみ限定されるものではなく、一般にタンバク質等の生体高分子の固相への固定化に用いられている方法を広く用いることができる。

【0058】担体に固定化される核酸プローブの量は特に限定されるものではないが、固定化された核酸プローブの密度が高いほど検出の感度が高くなり、S/N比が向上する。固定化される核酸プローブの密度は、通常、平方cm当りアトモル(amol/cm²)のオーダー以上であり、好ましくは平方cm当りナノモル(nmol/cm²)のオーダー以上である。

【0059】担体、特に電極もしくは光ファイバー表面 に固定化された核酸プローブは、核酸の酸化還元電流も しくは光学的な信号、あるいは一本鎖の核酸に特異的に 結合する電気化学的もしくは光学的に活性な物質の酸化 還元電流もしくは光学的な信号を測定するととにより定 量することができる。すなわち、担体が電極である場合 には、例えばポテンショスタット、ファンクションジェ ネレータ、レコーダ、および計算機からなる測定システ ムを用いて、核酸もしくは挿入剤に由来する酸化還元電 流の計測を行ない、固定化核酸の定量を行なう。また、 担体が光ファイバーである場合には、核酸もしくは核酸 に結合した挿入剤に由来する光学信号である吸光度、蛍 光強度、発光、消光、円偏光二色性、蛍光偏光もしくは その他の光学的情報をそれぞれの信号に対応した測定装 置を用いて測定することにより、固定化核酸の定量を行 なう。核酸自体には活性がないため、従来行なわれてい る定量法は非常に繁雑なものであったが、この方法によ - れば担体表面に固定化された核酸を短時間で、簡便かつ 髙感度に定量することが可能となる。核酸由来の酸化還 元電流としては、アデニン、チミン、グアニンもしくは シトシンに由来する酸化還元電流を利用することができ

(8)

20

【0060】核酸プローブ固定化担体に振動子もしくは 回転体としての機能を持たせるととにより、担体表面近 傍における流体の流れを相対的に増大させることができ る。これにより、ハイブリダイゼーション反応の促進、 非特異的反応の抑制などが違成され、遺伝子検出の効率 を高めることが可能である。振動子としての機能は、例 えば、物理的な振動、超音波、電気的もしくは磁気的作 用を利用して担体に与えることができる。

【0061】検体試料には、例えば、末梢静脈血のような血液、白血球、血清、尿、黄便、精液、唾液、培養細胞、各種臓器細胞のような組織細胞、その他核酸を含有するものを用いる。検体試料からの核酸の抽出は従来法に準じて行なわれるが、上記二本鎖認識体を用いて以下の手順により抽出、精製するとともできる。

【0062】まず、二本鎖認識体を適当な担体上に固定化し、この担体を検体試料と混合する。次に検体試料中の細胞を破壊して核酸を遊離させ、この核酸と二本鎖認識体とを結合させる。その後、担体を検体試料から分離し、さらに二本鎖認識体に結合した核酸を担体から分離する。

【0063】 ことで用いられる担体は特に限定されるものではなく、例えば、ラテックス、ポリエチレン、ポリスチレン、ポリプロピレン等の高分子からなる担体、活性炭等の炭素系材料、金属粒子、セラミック、マグネタイト、サマリウム-コバルト、フェライト等の磁性体を挙げることができる。担体の形態も特に限定されるものではないが、粒径 0.1~ 1000 um、特には 1~ 1000 umの粒子であることが好ましい。

【0064】検体試料中の細胞の破壊は、常法により行なえばよく、例えば、振とう、超音波等の物理的作用を30外部から加えて担体を振動させて行なう。また、核酸抽出溶液を用いて、細胞から核酸を遊離させることもできる。核酸溶出溶液の例としては、SDS、Triton-X、Tween-20のような界面活性剤、サポニン、EDTA、プロテアーゼ等を含む溶液を挙げることができる。これらの溶液を用いて核酸を溶出する場合には、37℃以上の温度でインキュベートすることにより反応を促進することができる。

【0065】担体に固定化された二本鎖認識体と核酸とを結合させた後、適当な手段により検体試料から担体を40分離する。分離した担体は、まず洗浄液(低塩濃度)で洗浄して不要成分を除去し、次いで核酸溶出液(高塩濃度)で担体から溶液中に核酸を溶出する。二本鎖認識体として挿入剤を用いた場合には、核酸溶出液として非極性有機溶媒を用いる。担体として磁性粒子を用いた場合には、担体の振動および分離操作を外部からの磁気作用でより簡便かつ迅速に行なうことが可能となり、好都合である。

【0066】目的とする遺伝子の含有量が微量である場合には、公知の方法により遺伝子を増幅した後検出を行 50

なうともできる。遺伝子を増幅する方法としては、ポリメラーゼチェインリアクション(PCR)等の酵素を用いる方法が代表的なものである。とこで、遺伝子増幅法に用いられる酵素としては、例えば、DNAポリメラーゼ、TaqポリメラーゼのようなDNA依存型DNAボリメラーゼ、RNAポリメラーゼIのようなDNA依存型RNAポリメラーゼ、QBレブリカーゼのようなRNA依存型RNAポリメラーゼを挙げることができる。なかでも、Taqポリメラーゼを用いるPCR法は温度

を調節するだけで連続して増幅を繰り返すととができ、 非常に有用な方法である。

【0067】とのようにして得られたサンブル(核酸の 粗抽出液あるいは精製した核酸溶液)は、まず90~98 ℃、好ましくは95℃以上の温度で熱変性し、一本鎖核酸 を調製する。次いで、との一本鎖核酸溶液中に核酸ブロ ーブ固定化電極あるいは核酸プローブ固定化光ファイバ ーを挿入し、37~72℃の範囲でハイブリダイゼーション 反応を行なう。ハイブリダイゼーション反応の最適温度 は、用いるプローブの塩基配列、長さ等により異なる。

【0068】との場合のハイブリダイゼーション反応は固相での反応であるため、溶液中における反応よりも反応速度でやや劣る。しかしながら、核酸ブローブ固定化電極を用いる場合には、ハイブリダイゼーション反応前および/または反応時に電極表面に電位を印加しておくとによりハイブリダイゼーション反応を促進することができ、との問題を解決することが可能である。印加する電圧はブラス電位のみであるか、あるいはプラス電位とマイナス電位とを交互に印加することが好ましく、連続的に、もしくはパルスのように断続的に印加する。また、印加する電位は、0~± 2.0Vであることが好ましい

【0069】ハイブリダイゼーションの際に、核酸プローブに結合した目的遺伝子の他に、未反応の核酸が非特異的に電極表面に吸着することがある。これは、遺伝子検出のS/N比を劣化させる要因となる。核酸は、通常マイナスに荷電しているので、ハイブリダイゼーション終了後、電極にマイナスの電化を印加することにより非特異的に吸着している核酸を除去することができる。この際印加する電位は、0~2.0V、好ましくは0~1.5 Vであることが好ましい。

【0070】二本鎖認識体は、ハイブリダイゼーション 反応前に検体試料中に添加することもできるし、反応後 に添加することもできる。また、予め二本鎖認識体の溶 液を調製しておき、ハイブリダイゼーション終了後、核 酸プローブ固定化電極または光ファイバーをこの溶液に 挿入してもよい。二本鎖認識体にはブラスに荷電してい る物質が多いので、担体が電極である場合には、ブラス の電位を印加することにより担体への二本鎖認識体の非 特異的な吸着を抑制することができる。

【0071】電極反応は電極表面においてしか起とらな

いことから、ハイブリダイゼーションした場合にのみ、 二本鎖核酸に結合した挿入剤の電極応答が得られる。核 酸プローブ固定化電極を用いた場合には、ポテンショス タット、ファンクションジェネレータ、レコーダからな る測定システムを用いる。電位を挿入剤の酸化還元電位 前後に設定し電位を走査する。とのとき、酸化還元電流 を測定し検出遺伝子の定量を行なう。この電気化学的測 定は、被検溶液中または他の電解液中の何れで行なって も良い。また、親水性溶媒中または疎水性溶媒中で行な ってもよい。

【0072】核酸プローブ固定化光ファイバーを用いた 場合には吸光度、発光、蛍光、反射光、消光、円偏光二 色性、蛍光偏光などの光学的情報を測定することで検出 遺伝子の定量を行なう。

【0073】上述の核酸プローブ固定化電極もしくは核 酸プローブ固定化光ファイバーのように、信号検出機能 を有する担体に核酸プローブを固定化した装置は、遺伝 子検出センサとして有用である。これらの装置を、遺伝 子検出センサとして繰り返し使用するためには、測定後 に、固定化したプローブとハイブリダイズしたサンブル 20 を解離させなければならない。プローブからのサンブル の解離は、熱処理、アルカリ処理、酸処理、界面活性剤 処理、または超音波処理により行なうことができる。熱 処理は、98℃で 5分間処理してサンプルを変性させ、そ の後急冷すれば良い。アルカリ処理は、pH 8.5以上の緩 衝液もしくは強アルカリ液で処理することにより、また 酸処理は、pH 4.5以下の緩衝液もしくは強酸液で処理す ることにより行なうことができる。界面活性剤処理に使 用し得る界面活性剤は特に限定されるものではなく、例 えばSDS、トライトン -X、ツイ-ン20等のイオン性 30 もしくは中性界面活性剤を利用することができる。この 際の界面活性剤の濃度は、0.1%以上であることが望ま しい。超音波処理は、10 KHzないし 100 KHzの周波数で 数秒ないし数分間処理することにより行なうことができ る。本発明は、さらに、上述の遺伝子検出センサを用い た、特定の遺伝子配列を検出する自動遺伝子検出装置を 提供する。本発明による自動遺伝子検出装置は、電極も しくは光ファイバーの表面上に核酸プローブを固定化し た遺伝子検出センサと、遺伝子検出センサを移動させる ための移動手段と、

【0074】一本鎖に変性された遺伝子サンブルを含有 する試料溶液を貯留し、遺伝子サンプルと遺伝子センサ の表面に固定化された核酸プローブとのハイブリダイゼ -ションにより遺伝子センサ上に二本鎖核酸を形成する ための反応槽と、試料溶液の温度を制御する温度制御手 段と、遺伝子サンブルとのハイブリダイゼーションの 後、遺伝子センサを洗浄して未反応の遺伝子サンブルを 除去するための洗浄手段と、

【0075】二本鎖認識体を含有する溶液を貯留し、二 本鎖認識体と遺伝子センサ表面上に形成された二本鎖核 50

酸とを反応させることにより二本鎖認識体を二本鎖核酸 に結合させ、結合した二本鎖認識体が生ずる電気化学的 もしくは光学的な信号を検出するための検出槽とを具備 することを特徴とする。

【0076】本発明による自動遺伝子検出装置に用いら れる遺伝子センサとしては、前述の核酸プローブ固定化 電極もしくは光ファイバーのいずれをも好適に用いると とができる。との遺伝子センサには、例えばパドル状の 形状にして撹拌子の機能を持たせることができ、また、 温度センサの機能を持たせることも可能である。

【0077】遺伝子センサにより検出された電気化学的 もしくは光学的な信号は、直接もしくは適当な制御装置 を介して測定し、さらに計算機等を用いて解析すること ができる。

【0078】反応槽には一本鎖に変性された遺伝子サン ブルを含有する試料溶液が貯留される。この試料溶液と しては、被検細胞を破砕した後の核酸粗抽出液をそのま まか、あるいはこの核酸粗抽出液を精製した精製核酸抽 出液を用いればよい。このような核酸粗抽出液もしくは 精製核酸抽出液を調製することができる試料溶液調製装 置を反応槽に連結し、被検細胞からその場で調製した試 料溶液を反応槽に送ることもでき、その結果、被検細胞 からの遺伝子の検出を全自動的に行なうことが可能とな る。試料溶液調製装置は、例えばディスポーザブルなカ ートリッジタイプとし、測定終了後に新しいカートリッ ジに交換するようにしてもよい。着脱自在なカートリッ ジタイプを採用することにより、洗浄の手間をかけると となく、常に清浄な状態で試料溶液を調製するととが可 能となる。

【0079】本発明による自動遺伝子検出装置は、さら に、遺伝子センサ表面上に形成された二本鎖核酸を、遺 伝子センサ表面上に固定化された核酸プローブと一本鎖 遺伝子サンブルとに解離し、遺伝子サンブルを除去して 遺伝子センサを再生するための解離手段を具備すること ができる。このような解離手段を有することにより、遺 、伝子センサを繰り返し使用することが可能となり、検出 装置を自動化する上で非常に望ましい。本発明による自 動遺伝子検出装置において用いることができる解離手段 としては、上述の熱処理、アルカリ処理、酸処理、界面 40 活性剤処理、または超音波処理のいずれをも用いること ができる。

【0080】さらに、本発明による自動遺伝子検出装置 においては、異なる核酸プローブを固定化した複数の遺 伝子センサを用いることもできる。これら複数の遺伝子 センサの全てを同時に用いて複数の項目を同時に測定す ることも、また、いくつかの遺伝子センサを指定して検 出しようとする項目を選択して測定することもできる。 以下、本発明による自動遺伝子検出装置を用いた遺伝子 の検出方法を、図面を参照して説明する。

【0081】図1は、本発明による自動遺伝子検出装置

17

の一具体例を模式的に示す図である。との装置は、反応槽 2、検出槽 9をよび解離処理槽 11 の3 種類の槽を有している。反応槽 2は温度コントローラ 3に嵌合され、廃液タンク 10 に接続されており、さらに移動レール 4 により水平方向に移動可能となっている。反応槽 2は、移動レール 4上の所定の位置において遺伝子サンブル精製装置 1と接続する。遺伝子センサ 5は、移動装置 12 に固定されており、この移動装置 12 により各槽上方の所定の位置への水平移動および各槽の内部への上下移助が行なわれる。遺伝子センサ 5としては核酸ブローブ固 10 定化電極が用いられており、これにより検出された電気信号は、電気信号検出制御装置 6を介して計算機 7に入力され、信号の解析が行なわれる。

【0082】次に、この装置を用いた遺伝子検出方法に ついて説明する。まず、検出しようとする核酸を含む被 検細胞を遺伝子サンブル精製装置 1に入れ、一本鎖に変 性された遺伝子サンブルを含有する試料溶液を調製す る。調製した試料溶液を反応槽2に送り、その後、反応 槽 2を、移動レール 4上を所定の位置まで移動させる。 次に、遺伝子センサ 5を反応槽 2の上方に水平移動させ た後、反応槽 2内に移動させる。遺伝子センサ 5が反応 槽 2内の試料溶液中に浸漬した後、温度コントローラ 3 により試料溶液を適温に制御して、遺伝子センサ 5の表 面に固定されている核酸プローブと試料溶液に含有され る遺伝子サンブルとのハイブリダイゼーションを行な う。反応終了後、遺伝子センサ 5を試料溶液から引き上 げ、洗浄液タンク 8から送られる洗浄液により洗浄して 未反応の核酸プローブを除去した後、検出槽 9の上方に 水平移動させる。遺伝子センサ 5を引き上げた後の反応 槽 2は、再び遺伝子サンプル精製装置 1に接続する位置 30 に移動し、内部に貯留する試料溶液を廃液タンクに排出 する。検出槽 9上に移動した遺伝子センサ 5は、次いで 検出槽 9内部に移動する。検出槽 9の内部には二本鎖認 識体を含有する溶液が貯留されており、この二本鎖認識 体が、溶液中に浸漬した遺伝子センサ 5の表面に形成さ れた二本鎖核酸を認識して結合する。結合した二本鎖認 識体が発する電気化学的信号は、遺伝子センサ 5により 検出され、電気信号検出制御装置 6により制御された後 計算機 7亿入力されて解析される。測定後、遺伝子セン サ 5を検出槽 9から引き上げ、解離処理槽 11 内部に移 40 動させる。解離処理槽 11 では、遺伝子センサ 5の表面 上に形成された二本鎖の解離が行なわれ、遺伝子センサ 5が再生される。

【0083】前述の反応槽 2は必ずしも単一の槽に限られるものではなく、図2に示すように、複数の小槽 13 を組み合わせたものを用いることができる。このような反応槽と複数の遺伝子センサ 5を用いることにより、複数のサンブルを同時に測定することが可能となる。また、この際、それぞれ独立した、小槽 13 と同数の遺伝子サンブル精製装置 1を組み合わせて複数のサンブルを

同時に調製することにより、より効率よく測定を行なう ことができる。

【0084】また、未反応の核酸サンプルおよび二本鎖 認識体を除去することなく測定を行なうことも可能である。その際には、洗浄液タンク 8および検出槽 9は必要なく、測定までの全ての操作を反応槽 2中で行なう。

【0085】さらに、反応槽 2は、核酸ブローブ固定化担体を備えたディスポーザブルな反応セルとすることもできる。この反応セルは、その内部底面もしくは側面に核酸プローブ固定化担体を備えている。ここで用いられる固定化担体としては、上述のいずれの固定化担体をも使用することができるが、検出装置本体との接続を考慮すると、核酸ブローブ固定化電極であることが好ましい。固定化担体は、反応セルから分離可能であるように設置し、繰り返し用いるようにしてもよい。

【0086】との反応セルを用いた遺伝子の検出は次の通りに行なう。まず、検出しようとする核酸を含む試料溶液を反応セル内に入れ、セル全体を加熱して核酸を一本鎖に変性させる。次に、用いるブローブに応じた温度でアニーリングを行なって二本鎖を形成させた後、二本鎖認識体を添加し、それにより直接もしくは間接的に発生する信号を反応セルに設けられた担体を通して測定する。この場合には、反応セル自体が核酸ブローブ固定化担体を備えているので、上述の遺伝子センサを使用する必要はない。

【0087】との反応セルは、1回の測定を終える度に 検出装置より取り外して廃棄する。したがって、サンプ ル同志のクロスコンタミネーション、キャリーオーバー 等のない信頼性の高い遺伝子の検出が可能となる。ま た、反応セルを洗浄する必要がないので、より簡便に短 時間で測定を行なうことができる。

【0088】反応槽 2の温度を制御する温度コントロー - ラ 3は、図3に示すように、恒温槽21、この恒温槽21の 温度を制御するコントローラ22および試料溶液の温度を 測定する温度センサ23を具備している。図3において、 恒温槽21内に設置された反応槽 2は、上記の複数の小槽 13を組み合わせたものである。複数の小槽13のうちの1 つには、試料溶液と同じ組成を有する緩衝液が入れら れ、その液中に温度センサ23が挿入される。この緩衝液 の温度が試料溶液の温度として測定される。温度センサ 23はコントローラ22に接続しており、反応槽 2内の緩衝 液の温度を測定してその情報をコントローラ22に送る。 温度センサ23からの温度情報を受け取ったコントローラ 22は、その情報を演算処理し、試料溶液が常に所定の温 度を保つように恒温槽21の温度を制御する。との温度制 御は、± 0.5℃の範囲で行なわれることが好ましい。次 に、電気化学発光を利用する自動遺伝子検出装置の例を 説明する。

た、との際、それぞれ独立した、小槽 13 と同数の遺伝 【0089】図4は、電気化学発光を利用する自動遺伝子サンブル精製装置 1を組み合わせて複数のサンブルを 50 子検出装置を模式的に示す図である。との装置は、図1

に示す検出装置における反応槽および検出槽の両者の機 能を備えた反応セル 32 と、洗浄槽 42 とを有してい る。上述のように、電気化学発光を利用する場合には、 未反応の核酸プローブおよび未反応の挿入剤を除去する ことなく測定を行なうことができるので、独立した反応 槽および検出槽を具備する必要はない。反応セル 32 の 底面には核酸プローブ固定化電極 33 が設けられてい る。また、図1に示す検出装置の反応槽と同様に、温度 コントローラ 34 に嵌合されている。さらに、移動レー ル 35 により水平方向に移動可能であり、この移動レー ル 35 上の所定の位置において遺伝子サンプル精製装置 31 に接続する。参照電極 36 は光ファイバ37の端部と 共に、移動装置 12 に固定されている。この移動装置 1 2 により、参照電極 36 および光ファイバ 37 の各槽上 方への水平移動および各槽内部への上下移動が行なわれ る。参照電極 36 は、核酸プローブ固定化電極 33 と共 にファンクションジェネレータ/ポテンショスタット 3 8 に接続されている。とれらの電極間に印加する電圧の 制御は、計算機 39 により行なう。核酸プローブ固定化 電極 33 の表面で生じた電気化学発光は、光ファイバー 37 を介してフォトマル 40 に送られて増幅され、フォ トンカウンタ 41で計測される。測定結果は計算機 39 に入力され、解析される。

【0090】との装置を用いた遺伝子の検出は、次のよ うに行なう。まず、上述の図1に示す装置の場合と同様 に、検出しようとする核酸を含む被検細胞を遺伝子サン ブル精製装置 31 に入れて一本鎖に変性された遺伝子サ ンプルを含有する試料溶液を調製し、これを反応セル 3 2 に移す。次に、温度コントローラ 34 により試料溶液 を適温に制御して、核酸プローブ固定化電極 33 の表面 30 に固定されている核酸プローブと試料溶液中の遺伝子サ ンプルとのハイブリダイゼーションを行なう。との際、 試料溶液中に、電気化学発光を生ずる挿入剤を添加す る。挿入剤は、予め試料溶液中に添加しておくこともで きる。次いで、移動レール 35 を用いて反応セル 32 を 所定の位置まで移動させ、さらに、反応セル 32 の内部 に参照電極36 および光ファイバー 37 を移動させて試 料溶液中に浸漬する。その後、参照電極 36 と反応セル 32 内に設けられた核酸プローブ固定化電極 33 との間 に印加し、電気化学発光を行なう。電気化学発光により 40 生じた光は光ファイバー 37を介してフォトマル 40 に 導き、増幅した後フォトンカウンタ 41 において計測す る。計測の結果は計算機 39 に入力し、解析する。測定 後、参照電極 36 および光ファイバー 37 を反応セル 3 2 から引き上げ、洗浄槽 42 に移動して洗浄する。

【0091】上記検出方法においては、安全性および簡便性に優れ、かつ短時間で目的とする遺伝子の有無を高感度に検出することができる遺伝子検出法を提供することを目的として、挿入剤が発する電気化学的もしくは光学的な信号を検出することができる電極、光ファイバー

等の担体に核酸ブローブを固定化して遺伝子センサとして用いている。この目的は、核酸ブローブ固定化電極もしくは核酸プローブ固定化光ファイバーの代わりに、核酸ブローブを粒子表面に固定化した核酸ブローブ固定化粒子を用いることによっても違成される。すなわち、粒子表面において核酸ブローブと遺伝子サンブルとのハイブリダイゼーションにより二本鎖核酸を形成し、これに電気化学的もしくは光化学的に活性な二本鎖認識体を結合させて、検出器により二本鎖認識体を電気化学的もしくは光学的に検出すればよい。

【0092】核酸プローブを固定化する粒子は特に限定されるものではなく、例えば、ラテックスピーズ、ポリスチレンピーズ、ガラスピーズ、磁性体粒子等を挙げることができる。また、用いる粒子の直径は、 100A (オングストローム) ないし 1 mm程度の範囲にあることが好ましい。その他の条件は、上記核酸プローブ固定化電極もしくは光ファイバーを用いる場合の条件をそのまま適用することができる。

【0093】同様に、フィルター表面に核酸プローブを固定化した核酸プローブ固定化フィルターを用いて遺伝子の検出を行なうこともできる。この際用いられるフィルターは、少なくとも 100℃の温度で変性しない材質のものであれば特に限定されるものではなく、例えば、ニトロセルロースフィルターやナイロンフィルターのようなDNAのサザンブロッティングに通常用いられるフィルターを使用することができる。このフィルターへの核酸プローブの固定化には、担体への核酸プローブの固定化には、担体への核酸プローブの固定化方法として上に説明した方法をそのまま適用することができる。核酸プローブ固定化フィルターを用いた遺伝子の検出は、次のようにして行なうことができる。

【0094】まず、末梢静脈血、各種臓器細胞等の検体 試料から従来法に準じて核酸を抽出し、必要であれば精 製する。次に、得られた核酸試料を含有するハイブリダ イゼーション反応液を調製し、この反応液を核酸プロー ブ固定化フィルターを含む複数のフィルターからなる多 層構造のフィルタ-装置に添加し、サンブルをフィルタ -装置内部に浸透させる。とのハイブリダイゼーション 反応液中には、予め二本鎖認識体、特に直接もしくは間 接的な光学活性を有する二本鎖認識体を含有させてお く。反応液が十分に浸透した後、95°Cで核酸を熱変性し て一本鎖とし、さらに37~72℃で加熱して一本鎖核酸と フィルター表面上に固定化された核酸プローブとのハイ ブリダイゼーションを行なう。反応後、フィルター装置 から核酸プローブ固定化フィルターを取り外し、洗浄す る。核酸試料中に目的とする遺伝子が存在する場合に は、核酸プローブ固定化フィルター上に二本鎖が形成さ れ、この二本鎖核酸に二本鎖認識体が結合している。と の二本鎖認識体に起因する信号の変化を測定するととに 50 より目的遺伝子の定量を行なう。すなわち、二本鎖認識

体が光学活性を有している場合には、発光、蛍光、反射 光、蛍光偏光、消光、円偏光二色性等の光学的な信号の 変化を測定すればよい。

【0095】また、上記検出方法においては、担体上に 固定化された核酸プローブに結合した目的遺伝子を二本 鎖認識体を用いて検出しているが、目的遺伝子自体に標 識剤をラベルするととにより二本鎖認識体を用いずに検 出することも可能である。これは、例えば、検出の前処 理として検体試料中の目的遺伝子の増幅を行ない、その 際、増幅に使用されるプライマーもしくは原料ヌクレオ チドを上述の電極活性物質、光学活性物質のような標識 剤でラベルすればよい。これにより、増幅された遺伝子 には標識剤が取り込まれ、目的遺伝子それ自体が標識剤 でラベルされることになる。ここで用いられる標識剤は 特に限定されるものではなく、生体高分子および挿入剤 にさらに結合し得る標識剤として上に列挙した物質を用 いることができる。このような、それ自体標識剤でラベ ルされた遺伝子の検出は、二本鎖認識体を用いないこと 以外は、上述の検出方法と全く同様の方法で行なうこと

【0096】さらに、担体に固定化した第1のプローブ の他に第2のプローブを用いて、いわゆるサンドイッチ ハイプリダイゼーションを行なうことにより、二本鎖認 識体を用いることなく目的遺伝子の検出を行なうことが できる。すなわち、担体に固定化した第1のブローブと 目的遺伝子との第1のハイブリダイゼーションを行な い、次いで、標識剤でラベルした第2のプローブを添加 して担体上に固定化された目的遺伝子との第2のハイブ リダイゼーションを行ない、第2のプローブにラベルさ れた標識剤からの信号を検出すればよい。

【0097】ととで用いられる第2のプローブは、検出 しようとする目的遺伝子に相補的な塩基配列を有する核 酸であればどのようなものでもよく、目的遺伝子が第1 のブローブと相補的な塩基配列を複数有するのであれ ば、第1のプローブを第2のプローブとして使用すると ともできる。

【0098】第2のプローブにラベルする標識剤は特に 限定されるものではなく、生体高分子および挿入剤にさ らに結合し得る標識剤として上に列挙した物質を用いる ことができる。

【0099】との遺伝子検出方法は、担体に固定化され た第1のプローブと目的遺伝子とのハイブリダイゼーシ ョンまでは、上述の二本鎖認識体を用いる検出法と同様 に行なうととができる。第1のプローブと目的遺伝子と が結合した後、二本鎖認識体の代わりに第2のプローブ を添加し、第1のハイブリダイゼーションと同様の条件 の下で第2のハイブリダイゼーションを行なう。第2の プローブは、第1のハイブリダイゼーションを行なう前 に添加することもできる。第2のハイブリダイゼーショ ンが終了した後、第2のプローブに導入した標識剤に応 50 る。との結果から、RFLP等によるパターン解析を行

じた方法で遺伝子の検出を行なう。具体的には、二本鎖 核酸に結合した二本鎖認識体を検出する方法をそのまま 用いることができる。

【0100】ところで、遺伝病には、遺伝子において、 特定の塩基配列が欠如したり、複数の特定の塩基配列が 存在して初めて発現するような疾患が多数存在する。す なわち、遺伝病に関しては、核酸プローブを用いて直接 検出が可能な疾患は少数である。その結果、大多数の疾 患は制限酵素切断断片鎖長多型(RFLP)解析法を用 いて検出が行われている。このRFLP法はDNA断片 のパターンを解析する手法であり、DNA断片を分離す る操作が必要である。このDNA断片の分離には、現在 電気泳動のみが用いられているが、電気泳動を用いる方 法は操作が繁雑となり、しかも測定に長時間を要すると いう欠点が存在する。このようなDNA断片のパターン 解析を、この発明の遺伝子検出法を用いて、以下の手順 により、簡便かつ短時間で行なうことが可能である。

【0101】まず、生物試料からDNAを抽出した後、 適当な制限酵素で消化する。とこで用いられる制限酵素 は特に限定されるものではなく、RFLPにおいて通常 用いられる酵素を使用することができる。使用すること ができる制限酵素の例としては、Acc I、Ava I、BamH I、EcoR I、Hinc II 、Hind III、Pst I を挙げること ができる。

【0102】得られたDNA断片は、カラムクロマトグ ラフィ、高速液体クロマトグラフィ(HPLC)、キャ ピラリ電気泳動、ゲル電気泳動等により、分子量の差に 基づいて分離する。このような分離手段の例としては、 FPLC (ファルマシア社製)を挙げることができる。 DNA断片の分離は、DNA断片を、例えば90~98℃に 加熱して、一本鎖に変性した後に行なってもよい。

【0103】次に、分子量の差に基づいて分離したDN A断片と、核酸ブローブ固定化担体とのハイブリダイゼ -ションを行なう。とのハイブリダイゼ-ション反応 は、一定流速のフロー系で行なうか、もしくは一定量ず つ分取した画分において行なう。

【0104】ハイブリダイゼーションをフロー系で行な う場合には、移動相の温度、p H等をハイブリダイゼー ション反応に適した条件に設定する。ここで、移動相の 組成は特に限定されるものではないが、塩濃度が 0~1 M程度、p Hが中性領域、温度が37~72℃の範囲である ととが好ましい。二本鎖認識体はサンブル溶液中に添加 しておくことが好ましいが、ハイブリダイゼーションの 後、表面上に二本鎖が形成された担体を二本鎖認識体が 含まれる溶液中に挿入してもよい。二本鎖認識体は上述 のいずれのものをも使用することができ、特に限定され るものではない。フロー系においては、サンブル溶液の 導入から、二本鎖認識体に由来する直接的もしくは間接 的な信号が得られるまでの時間 (保持時間) を測定す

なうととができる。

【0105】また、画分を分取した後にハイブリダイゼ -ションを行なう場合には、各画分において核酸プロ-ブ固定化担体とのハイブリダイゼーションを行なった 後、画分中に二本鎖認識体を添加して二本鎖認識体に由 来する直接的もしくは間接的な信号の測定を行なう。信 号が得られた画分のフラクションナンバーから、RFL P等によるパターン解析を行なうことができる。

【0106】上述のように、この発明は特定の塩基配列 を有する遺伝子の存在の有無を検出するための方法であ 10 るが、この方法を利用すると、さらに特定の塩基配列を 有する遺伝子を分離することが可能となる。すなわち、 上記検出方法においては、目的遺伝子は核酸プローブと のハイブリダイゼーションにより担体上に固定化されて いるので、単に担体を検体から取り出すだけで検体から 目的遺伝子を分離することができる。したがって、担体 を取り出した後、適当な手段を用いて目的遺伝子を担体 から解離させることにより目的遺伝子のみを分離すると とが可能となる。

【0107】より詳細に説明すると、この遺伝子分離法 20 は、まず担体表面上に固定化される核酸プローブと目的 とする遺伝子とのハイブリダイゼーションを行なって二 本鎖核酸を形成させ、この二本鎖核酸に、予めもしくは ハイブリダイゼーションの後に添加された二本鎖認識体 を結合させた後、との二本鎖核酸に結合した二本鎖認識 体に由来する信号を検出して目的遺伝子の存在の有無を 確認する。次いで、目的遺伝子の存在が確認された担体 について、担体を検体から引き上げて目的遺伝子を検体 から分離し、さらに熱もしくはアルカリによって変性し て担体から目的遺伝子を解離させる。この遺伝子分離方 30 法においては、検体中の目的遺伝子の検出までは上述の 遺伝子検出方法と全く同様である。

【0108】担体から目的遺伝子を解離させるために は、バッファー中において95°C以上に加熱するか、もし くは水酸化ナトリウム等でアルカリ性にすればよい。と の操作により、目的とする遺伝子を一本鎖の形態で分離 したととになる。

【0109】とのようにして得られた遺伝子について、 酵素を用いて相補鎖合成し、二本鎖を形成するととがで きる。また、酵素を用いて増幅することにより、収量を 40 増大させることもできる。特に、PCR法によれば、収 量増大と同時に二本鎖を形成することが可能である。さ らに、二本鎖を形成した後リンカーを介してベクターに 組み込むととにより、効率的にかつ簡便に、目的とする 遺伝子をクローニングすることができる。

[0110]

【作用】本発明に係る遺伝子検出法では、二本鎖を形成 した核酸プローブと目的遺伝子との間に結合した二本鎖 認識体を、電気化学的あるいは光化学的な測定するだけ で目的遺伝子の定量を行なうことができる。また、放射 50

性同位元素を遺伝子ブローブのラベル剤として用いる従 来法と同程度の感度が得られる。しかも、放射性同位元 素を使用しないので、安全、簡便かつ短時間で、正確な 遺伝子の検出が可能になる。

24

【0111】また、本発明に係る遺伝子検出装置は、上 記遺伝子検出法に従って遺伝子の検出を行なう装置であ る。本装置は、放射性同位元素を遺伝子ブローブのラベ ル剤として用いる従来法と同程度の感度が得られ、ま た、放射性同位元素を使用しないので安全かつ簡便であ って、短時間で正確に遺伝子を検出することが可能であ る。さらに、全操作を自動的に行なうことができるの で、大量のサンブルを処理することができる。

[0112]

【実施例】以下に、本発明による遺伝子検出方法の実施 例を説明する。

実施例1:核酸プローブ固定化電極を用いた遺伝子の検

(1) Pt 電極表面への核酸プローブの固定化

【0113】白金電極を高温処理し、電極表面を空気酸 化した。次に、臭化シアン(CNBr)によって酸化被 膜の表面を活性化した後、熱変性した一本鎖核酸プロー ブ(v-mvc)溶液に浸すことによって固定化を行なっ

(2) 核酸プローブ固定化電極を用いた遺伝子の検出 【0 1 1 4】検体試料にはpuc 119 のPst I Siteに v-m yc断片を挿入したpVM 623 を使用した。pVM 623 をHind IIIで消化することでリニアにし、98℃で熱変性させ た。次に、核酸プローブ固定化電極を検体試料中に挿入 し、70℃で15分間インキュベートすることよってアニー リング反応を行なった。その際、二本鎖DNAに特異的 で且つ電気化学的に活性な挿入剤であるアクリジンオレ ンジを添加した。

【0115】アニーリング反応後に電極反応を行ない、 このとき流れる酸化還元電流を測定することによって検 体試料中に含まれるv-myc を定量した。その結果、v-my cをpgオーダーで検出することができた。

実施例2:核酸プローブ固定化光ファイバーを用いた遺 伝子検出

(1) 光ファイバーへの核酸プローブの固定化

【0116】光ファイバーの先端部分をシラン剤(γ-アミノプロビルトリエトキシシラン: ~-APTES) で処理 した後、グルタルアルデヒドを架橋剤として一本鎖核酸 プローブ(v-myc) を固定化した。

(2) 核酸プローブ固定化光ファイバーを用いた遺伝子検

【0117】検体材料にはpuc 119 のPst I siteにv-mv c 断片を挿入したpVM 623 を使用した。pVM 623 をHind IIIで消化することでリニアにし、98°Cで熱変性させ た。次に、核酸プローブ固定化光ファイバーを検体試料 中に挿入し、70℃で15分間インキュベートすることによ

り、アニーリング反応を行なった。その際、二本鎖のD NAに特異的であるアクリジンを添加した。

【0118】アニーリング反応の後、アクリジンの発する蛍光を測定することにより、検体試料中に含まれるv-mycを定量した。その結果、v-mycをpgオーダーで検出することができた。

実施例3:核酸プローブ固定化電極を用い、メタロインターカレーターを挿入剤とする遺伝子検出

【0119】検体試料にはpuC 119 のPst I Siteに v-m yc断片を挿入したpvM 623 を使用した。pvM 623 をHind 10 IIIで消化することでリニアにし、98℃で熱変性させた。次に、核酸プローブ固定化電極を検体試料中に挿入し、70℃で15分間インキュベートすることよってアニーリング反応を行なった。その際、二本鎖核酸に特異的で且つ電極活性を有する挿入剤であるトリス(1,10-フェナントロリン)コバルト(III)を添加した。

【0120】アニーリング反応後にサイクリックボルタンメトリを行ない、30回掃引することにより酸化還元電流値を積算した。その結果、v-mycをpgオーダーで検出することができた。

実施例4:核酸プローブ固定化光ファイバ電極を用い、 電気化学発光を利用した遺伝子検出

【0121】検体試料にはpLC 119 のPst I Sitek v-m yc断片を挿入したpVM 623 を使用した。pVM 623 をHind IIIで消化することでリニアにし、98°Cで熱変性させた。次に、核酸ブローブ(v-myc)固定化光ファイバ電極を検体試料中に挿入し、70°Cで15分間インキュベートすることよってアニーリング反応を行なった。その際、二本鎖核酸に特異的で且つ電気化学発光を生ずるルシゲンを添加した。

【0122】アニーリング反応後に電気化学的な反応を行ない、核酸プローブ固定化光ファイバ電極を通して発光を検出した。その結果、v-mycをpgオーダーで検出することができた。

実施例5:核酸ブローブ固定化電極を用い、抗DNA抗体を挿入剤とする遺伝子検出

(1) Pt電極表面への核酸プローブの固定化

【0123】白金電極を高温処理し、電極表面を空気酸化した。次に、臭化シアン(CNBr)によって酸化被膜の表面を活性化した後、熱変性した一本鎖核酸プローブ(v-myc)溶液に浸すことによって固定化を行なった。

(2) 核酸プローブ固定化電極を用いた遺伝子の検出 り表面を酸化した。次いで、【0124】検体試料にはpLC 119 のPst I Siteに v-m yc断片を挿入したpVM 623 を使用した。pVM 623 をHind において 120℃で30分間還統 た。次に、核酸プローブ固定化電極を検体試料中に挿入 デヒド溶液中で30分間反応を で、次に、核酸プローブ固定化電極を検体試料中に挿入 にの電極を、アミノ基を導入し、70℃で15分間インキュベートすることよってアニー リング反応を行なった。洗浄後、二本鎖核酸に特異的に 被中において室温で30分間反応を 50 ーブ固定化電極を作成した。

させ、さらに洗浄した後 NADP+溶液を添加した。アルカリホスファターゼは NADP+を加水分解してNAD+を生じる-

【0125】との NAD4 を、アルコールデヒドロゲナーゼおよびジアホラーゼを用いる系でNADHの酸化によって流れる電流を測定するととにより測定し、検体試料中に含まれる v-mycを測定した。その結果、v-myc をpgオーダーで検出するととができた。

実施例6:核酸プローブ固定化光ファイバを用い、抗D NA抗体を挿入剤とする遺伝子検出

(1) 光ファイバーへの核酸プローブの固定化 光ファイバーの先端部分をシラン剤(γ-APTES)で処理 した後、グルタルアルデヒドを架橋剤として一本鎖核酸 ブローブ (v-myc) を固定化した。

(2) 核酸ブローブ固定化光ファイバーを用いた遺伝子検出

【0126】検体材料にはpUC 119 のPst I siteにV-my c 断片を挿入したpVM 623 を使用した。pVM 623 をHind IIIで消化することでリニアにし、98°Cで熱変性させ

20 た。次に、核酸ブローブ固定化光ファイバーを検体試料中に挿入し、70℃で15分間インキュベートすることにより、アニーリング反応を行なった。

【0127】アニーリング反応の後、洗浄し、二本鎖DNAに特異的に結合するベルオキシダーゼ結合抗DNA抗体を反応させた。その後、再び洗浄し、基質としてルミノールおよびエンハンサーとしてルシフェリンを用い、アルカリ水溶液中でH,O,と反応させた。これにより生ずる発光を測定することにより、検体試料中に含まれるv-mycを定量した。その結果、v-mycをpgオーダーで検出することができた。

参考例1: BPPG電極上の核酸プローブの定量

(1) アミノ基の核酸プローブへの導入

【0128】DNAラベリングキットである Chemiprobe を用いてラベルした発癌遺伝子v-myc (1.5 Kb) の 3 末端に、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いて(6-アミノヘキシル) dATPを導入した。

(2) 電極表面への核酸プローブの固定化

【0129】核酸を固定化するための電極としては、ベーサルプレインパイロリティックグラファイト(BPPG)を用いた。この電極を、10%硝酸、2.5%クロム酸カリウム溶液中において2.2Vで電気分解することにより表面を酸化した。次いで、表面酸化した電極を10% ャーアミノプロビルトリエトキシシランのトルエン溶液中において120℃で30分間還流することによりシラン化した。これをメタノールで洗浄した後、1%グルタルアルデヒド溶液中で30分間反応させ、再び洗浄した。次に、この電極を、アミノ基を導入した v-myc 1 ug/mlの溶液中において室温で30分間反応することにより核酸プロープ固定化電極を作成した

(3) 電極表面に固定された核酸ブローブの定量

【0130】作成した核酸プローブ固定化電極を用いて 1/15Mリン酸緩衝液(pH 7.0)中においてサイクリックボルタンメトリを行なった。その結果、酸化処理時間が10秒の電極にはアデニンに由来する 1μ Aの酸化電流が、また酸化処理時間が60秒の電極には 2μ Aの酸化電流がそれぞれ測定された。また、電極表面上の核酸固定化量を Chemiprobe キットで測定したところ、そのぞれ約0.1 pmol/cm²、0.2 pmol/cm²の核酸が固定化されていた。このことから、核酸に由来する酸化電流と固定 10化量との間に相関がみられ、核酸の電極反応から固定化された核酸プローブの定量が可能であることが示された。

参考例2:光ファイバ上の核酸プローブの定量

(1) アミノ基の核酸プローブへの導入

【0131】DNAラベリングキットである Chemiprobe を用いてラベルした発癌遺伝子v-myc(1.5 Kb)の 3 末端に、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いて(6-アミノヘキシル) d A T Pを導入した。

(2) 光ファイバへの核酸プローブの固定化

【0132】光ファイバの表面を、10% γ- アミノブロビルトリエトキシシランのトルエン溶液中において 120 ℃で30分間還流することによりシラン化した。これをメタノールで洗浄した後、 1% グルタルアルデヒド溶液中で30分間反応させ、再び洗浄した。次に、この光ファイバを、アミノ基を導入した v-myc 1 ug/mlの溶液中において室温で30分間反応することにより核酸ブローブ固定化光ファイバを作成した。

(3) 光ファイバ表面に固定された核酸プローブの定量【0133】作成した核酸プローブ固定化電極を用いて、1.0μ Mのアクリジンオレンジを含有する1/15M リン酸級衝液(pH 7.0)中において検出した結果、アクリジンオレンジに由来する蛍光を検出することができた。また、光ファイバ表面上の核酸固定化量を Chemiprobe キットで測定したところ、約0.1 pmol/cm² の核酸が固定化されていた。これにより、挿入剤の蛍光強度の測定によって核酸固定化量を容易に決定できることが示された。

実施例7:核酸プローブ固定化電極と核酸サンブルとの 40 ハイブリダイゼーションの促進

【0134】検体試料にはpuC 119 のPst I Siteに v-m yc断片を挿入したpvM 623 を使用した。pvM 623 をHind IIIで消化することでリニアにし、98℃で熱変性させた。次に、核酸プローブ固定化BPPG電極を検体試料中に挿入し、70℃で15分間インキュベートすることよってアニーリング反応を行なった。その際、電極に 0.1V (vs. SCE) の電位を印加した。

【0135】その後、二本鎖DNAに特異的で且つ電気 化学的に活性な挿入剤であるアクリジンオレンジを添加 50 して電極反応を行ない、このとき流れる酸化還元電流を 測定することによって検体試料中に含まれるv-myc を定

量した。その結果、v-mycをpgオーダーで検出することができた。また、従来30分程度必要であったハイブリダ

イゼーションの時間が10分程度に短縮できた。

実施例8:核酸プローブ固定化電極の再利用 (1) Pt電極表面への核酸プローブの固定化

【0136】白金電極を高温処理し、電極表面を空気酸化した。次に、臭化シアン(CNBr)によって酸化被膜の表面を活性化した後、熱変性した一本鎖核酸プローブ(v-myc)溶液に浸すととによって固定化を行なった。

(2) 核酸プローブ固定化電極を用いた遺伝子の検出 【0137】検体試料にはpuC 119 のPst I Siteに v-m yc断片を挿入したpvM 623 を使用した。pvM 623 をHind IIIで消化することでリニアにし、98℃で熱変性させ た。次に、核酸プローブ固定化電極を検体試料中に挿入 し、70℃で15分間インキュベートすることよってアニー リング反応を行なった。その際、二本鎖DNAに特異的 で且つ電気化学的に活性な挿入剤であるアクリジンオレ ンジを添加した。

【0138】アニーリング反応後に電極反応を行ない、 このとき流れる酸化還元電流を測定することによって検 体試料中に含まれるv-myc を定量した。その結果、v-my cをpaオーダーで検出することができた。

(3) 核酸プロープ固定化電極の再生

【0139】測定後の核酸プローブ固定化電極を98°Cで5分間加熱したところ、サンブルである pVM623 が核酸プローブ固定化電極表面から解離した。この再生電極は、その後少なくとも5回、繰り返して遺伝子の検出に利用できた。

実施例9:核酸プローブ固定化光ファイバの再生

- (1) 光ファイバーへの核酸プローブの固定化 光ファイバーの先端部分をシラン剤(ァ-APTES)で処理 した後、グルタルアルデヒドを架橋剤として一本鎖核酸 プローブ(v-myc) を固定化した。
- (2) 核酸プローブ固定化光ファイバーを用いた遺伝子検出

【0140】検体試料にはpuC 119 のPst I siteにv-my c 断片を挿入したpvM 623 を使用した。pvM 623 をHind IIIで消化することでリニアにし、98°Cで熱変性させた。次に、核酸ブローブ固定化光ファイバーを検体試料中に挿入し、70°Cで15分間インキュベートすることにより、アニーリング反応を行なった。その際、二本鎖のDNAに特異的であるアクリジンを添加した。

【0141】アニーリング反応の後、アクリジンの発する蛍光を測定することにより、検体試料中に含まれるv-mycを定量した。その結果、v-mycをpgオーダーで検出することができた。

50 (3) 核酸ブローブ固定化光ファイバの再生

28

【0142】測定後の核酸プローブ固定化光ファイバを 98℃で 5分間加熱して熱変性させたところ、サンブルで ある pMM623 が核酸プローブ固定化電極表面から解離し た。この再生光ファイバは、その後少なくとも5回、操 り返して遺伝子の検出に利用できた。

実施例10:核酸プローブ固定化電極を具備する遺伝子検 出装置を用いた遺伝子の検出

【0143】図1に示す自動遺伝子検出装置を用いて遺 伝子の検出を行なった。検体試料にはpUC 119 のPst I Siteに v-myc断片を挿入したpVM 623 を使用した。pVM 623 をHind IIIで消化することでリニアにし、98℃で熱 変性させた。次に、核酸プローブ固定化電極を検体試料 中に挿入し、70℃で15分間インキュベートすることよっ てアニーリング反応を行なった。その際、二本鎖DNA に特異的で且つ電気化学的に活性な挿入剤であるアクリ ジンオレンジを添加した。

【0144】アニーリング反応後に電極反応を行ない、 このとき流れる酸化還元電流を測定することによって検 体試料中に含まれるv-myc を定量した。その結果、v-my cをpgオーダーで検出することができた。また、全ての 操作を1時間以内で自動的に行なうことができた。

実施例11:核酸プローブ固定化光ファイバを具備する遺 伝子検出装置を用いた遺伝子の検出

【0145】図1に示す自動遺伝子検出装置において、 遺伝子センサ 5を光ファイバとし、電気信号検出制御装 置 6を蛍光検出器に変更して遺伝子の検出を行なった。 検体試料にはpUC 119 のPst I Siteに v-myc断片を挿入 したpVM 623 を使用した。pVM 623 をHind IIIで消化す ることでリニアにし、98℃で熱変性させた。次に、核酸 プローブ固定化光ファイバを検体試料中に挿入し、70°C 30 で15分間インキュベートすることよってアニーリング反 応を行なった。その際、二本鎖DNAに特異的で且つ電 気化学的に活性な挿入剤であるアクリジンオレンジを添 加した。

【0146】アニーリング反応後に電極反応を行ない、 このとき流れる酸化還元電流を測定することによって検

体試料中に含まれるv-myc を定量した。その結果、v-my cをpgオーダーで検出することができた。また、全ての 操作を1時間以内で自動的に行なうことができた。 参考例3:電気化学発光を利用する、核酸プローブ固定 40 化電極を具備する遺伝子検出装置を用いた遺伝子の検出 【0147】図4に示す自動遺伝子検出装置を用いて遺 伝子の検出を行なった。検体試料には、ヒト末梢血から 抽出したDNAに、puc 119 のPst I Siteに v-myd断片 を挿入したpVM 623 を混合したものを使用した。pVM 62 3 はHind IIIで消化することでリニアにした。核酸プロ ブ固定化BPPG電極を底面に有する反応セルを作成 し、この反応セルにサンブルを添加した後、98℃で 5分

間熱変性させた。次に、70°Cで15分間インキュベートす

本鎖DNAに特異的で且つ電気化学発光を生ずるルシゲ ニンを添加した。

【0148】アニーリング反応後に電気化学的な反応を 行ない、生じた発光をフォトカウンタで検出した。その 結果、 v-mycを pg のオーダーで検出できることが示さ れた。また、全ての操作を1時間以内で自動的に行なう ととができた。

参考例4:核酸プローブ固定化ラテックスピーズを用い た遺伝子の検出

(1) アミノ基の核酸プローブへの導入 発癌遺伝子 v-mycの 3 末端に、ターミナルデオキシヌ クレオチジルトランスフェラーゼを用いて (6-アミノヘ キシル) dATPを導入した。

(2) ラテックスピーズへの核酸プローブの固定化

【0149】粒径 1μmのラテックスピーズに、ジシク ロヘキシルカルボジイミドを架橋剤として一本鎖核酸プ ローブを固定化した。との核酸プローブ固定化ラテック スピーズをサンブル (v-mycを含む) 溶液中で98℃に加 熱して熱変性させた後、72℃で15分間ハイブリダイゼー ションを行なった。この溶液中にアクリジンオレンジ溶 液を添加して 1分間放置した後、7℃の洗浄液 (2×S SC、 0.1%SDS) で洗浄し、リン酸緩衝液中で蛍光 強度の測定を行なった。その結果、 pg オーダーの遺伝 子の検出が可能であった。

参考例5:核酸ブローブ固定化ラテックスピーズを用い た遺伝子の検出

(1) アミノ基の核酸プローブへの導入

発癌遺伝子 v-mycの 3´末端に、ターミナルデオキシヌ クレオチジルトランスフェラーゼを用いて(6-アミノへ キシル)dATPを導入した。

(2) ラテックスピーズへの核酸プローブの固定化

【0150】粒径 1μmのラテックスピーズに、ジシク ロヘキシルカルボジイミドを架橋剤として一本鎖核酸ブ ローブを固定化した。との核酸ブローブ固定化ラテック スピーズをサンプル(v-mycを含む)溶液中で98℃に加 熱して熱変性させた後、72℃で15分間ハイブリダイゼー ションを行なった。この溶液中にアクリジンオレンジ溶 液を添加して(終濃度 1μΜ) 1分間放置した後、溶液 中の挿入剤の酸化換言電流を測定した。その結果、 pq オーダーの遺伝子の検出が可能であった。

実施例12:直接もしくは間接的に信号を検出することが 可能な物質を結合させた挿入剤を用いた遺伝子の検出

(1) 核酸プロープ固定化電極の作製

【0151】まず、発癌遺伝子v-myc に対する合成オリ ゴヌクレオチドプローブ (20mer) の3'末端に、ターミ ナルデオキシヌクレオチジルトランスフェラーゼを用い て(6-アミノヘキシル) dATPを導入した。

【0152】これとは別に、ベーサルプレインパイロリ ティックグラファイト (BPPG) を10%硝酸および るととよってアニーリング反応を行なった。その際、二 50 2.5%クロム酸カリウムを含有する溶液中において 2.2

Vで電気分解することによりBPPG電極表面を酸化した。この電極を、さらに10% γ- アミノブロビルトリエトキシシランのアニリン溶液中において 120℃で30分間 還流することによりシラン化した。次いで、メタノールで洗浄し、 1% グルタルアルデヒド溶液中で30分間反応させた後洗浄した。

【0153】このBPPG電極を、アミノ基を導入した、v-myc に対する合成オリゴヌクレオチドプロープ1 ug/m1の溶液中において、室温で30分間反応させることにより核酸プローブ固定化電極を作製した。

(2) 核酸プローブ固定化電極を用いた遺伝子の検出 【0154】検体試料には、pUC 119 の Pst Iサイトに V-myc 断片を挿入した pVM623 を使用した。まず、この pVM623 を Hind III で消化してリニアにし、98℃で熱変性させた。次いで、核酸ブローブを固定化したBPP G電極を検体試料中に挿入し、70℃でインキュベートしてアニーリング反応を行なった。その後、フェロセンを 結合したアクリジンオレンジを最終的に 1μ Mの濃度となるように添加した。電極を洗浄した後、直接電極反応を行ない、この際に流れる酸化還元電流を測定して検体 20 試料中に含まれるV-myc を定量した。

【0155】検体試料中に目的とする遺伝子が存在しない場合にはフェロセンに由来する酸化還元電流は検出されなかったが、試料中に pVM623 が含まれる場合には酸化還元電流を検出することができ、最終的には v-mycをpgオーダーで検出することができた。また、B/F分離を行なう必要がないため、30分以内に検出を終了することができた。

実施例13: 直接もしくは間接的に信号を検出することが可能な物質を結合させた挿入剤を用いた遺伝子の検出【0156】まず、実施例12と同様の方法で核酸ブローブ固定化電極を作製した後、試料DNAの非特異的な吸着を抑制するために、ヌクレオチド(dATP、dCTP、dGTPおよびdTTP)の溶液に浸した。

【0157】検体試料には pUC 119の Pst Iサイトに v-myc断片を挿入した pVM 623を用いた。まず、この pVM 623を Hind III で消化してリニアとし、98°Cで熱変性させた。次いで、核酸ブローブを固定化した BPPG電極を検体試料中に挿入し、70°Cでインキュベートしてアニーリング反応を行なった。この際、電極に 0.1V (vs.SCE) の電位を印加した。

【0158】反応後、二本鎖核酸に特異的に結合し、かつ電極活性を有する挿入剤トリス(フェナントロリン)コバルト錯体を添加した。トリス(フェナントロリン)コバルト錯体が二本鎖核酸に結合した後、電極にマイナス電荷を印加して非特異的に結合している物質を除去した。その後、挿入剤の酸化還元電流を測定して検体試料中に含まれる v-mycを定量した。その結果、v-myc をpgオーダーで検出することができた。

実施例14:ルミノール結合核酸プローブ固定化光ファイー

バーを用いた遺伝子の検出

(1) ルミノール結合核酸ブローブ固定化光ファイバーの 作製

【0159】発癌遺伝子v-myc に対する合成オリゴヌクレオチドプローブ (20mer) の3'末端に、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いて (6-アミノヘキシル) dATPを導入した。この核酸プローブをルミノールで標識した後、物理吸着により光ファイバー上に固定化した。

10 (2) 核酸ブローブ固定化光ファイバーを用いた遺伝子の 検出

【0160】検体試料には pUC 119の PSt Iサイトに v-myc断片を挿入した pVM 623を使用した。この pVM 623を Hind III で消化してリニアにし、98°Cで熱変性させた。次いで、ルミノール結合核酸プローブ固定化光ファイバーを検体試料中に挿入し、55°Cでインキュベートしてアニーリング反応を行なった。この際、二本鎖核酸に特異的に結合するエチジウムブロマイドを添加した。これにより、エチジウムブロマイドが光ファイバー表面に濃縮される。その後、ルミノールをルシフェリンおよびH、O、で発光させ、それによりエチジウムブロマイドを励起させた。励起したエチジウムブロマイドから発生する蛍光を測定することにより、検体試料中に含まれる v-myc を定量した。その結果、v-myc をpgのオーダーで検出することができた。

実施例15:0-フェニレンジアミン結合核酸プローブ固定 化光ファイバーを用いた遺伝子の検出

(1) 0-フェニレンジアミン結合核酸プローブ固定化光ファイバーの作製

【0161】発癌遺伝子v-myc に対する合成オリゴヌクレオチドブローブ (20mer) の3'末端に、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いて (6-アミノヘキシル) dATPを導入した。この核酸ブローブをO-フェニレンジアミンで標識した後、物理吸着により光ファイバー上に固定化した。

(2) 核酸プローブ固定化光ファイバーを用いた遺伝子の 塩出

【0162】検体試料には pUC 119の Pst Iサイトに v myc断片を挿入した pVM 623を使用した。との pVM 623 を Hind III で消化してリニアにし、98℃で熱変性させた。次いで、0-フェニレンジアミン結合核酸プローブ固定化光ファイバーを検体試料中に挿入し、55℃でインキュベートしてアニーリング反応を行なった。反応後、アルカリホスファターゼ結合抗二本鎖DNA抗体を添加した。これにより、検体試料中に目的の遺伝子が存在する場合には抗体が光ファイバー表面に濃縮され、酵素反応が生じて 405nmにおける吸収が生じる。この 405nmにおける吸収を測定することにより検体試料中に含まれるvmyc を定量した。その結果、v-myc をpgのオーダーで50 検出することができた。

参考例6:核酸プローブに導入したアミノ基を介しての 電極表面への固定化

(1) アミノ基を導入した核酸プローブの調製

【0163】発癌遺伝子v-myc 約 1.0 Kb の断片の増幅 に使用される2つのプライマー(20mer)を、DNA合 成機(アプライドバイオシステム社製、PCR-MATE EP) を用いて合成した。さらに、その一方のブライマーの5' 末端に、アミノリンク2(アプライドバイオシステム社 製)を用いてアミノ基を導入した。

【0164】 この2つの合成プライマーを、それぞれ 1 10 00ug/m1の濃度で混合し、95℃で5分間処理した後37℃ で30分間処理することによりアニーリングを行ない、核 酸プローブを二本鎖とした。

(2) 核酸プローブの電極への固定化

【0165】固定化用の電極としては、ベーサルブレイ ンパイロリティックグラファイト (BPPG)を用い た。このBPPG電極を、10%硝酸および 2.5%クロム 酸カリウムを含有する溶液中において 2.2V で10秒間電 気分解することにより電極表面を酸化した。表面酸化し た電極を、10% 7- アミノプロピルトリエトキシシラン 20 のアニリン溶液中において 120℃で30分間還流すること によりシラン化した。シラン化した電極は、メタノール で洗浄した後、 1%グルタルアルデヒド溶液中において 30分間反応させ、さらに洗浄した。

【0166】 このBPPG電極を、(1) で調製した二本 鎖の核酸ブローブの 100ug/m7溶液中において室温で30 分間反応させて、電極表面に二本鎖核酸を固定化した。 その後、再び95°Cで 5分間処理して熱変性させ、官能基 が導入されていないDNA鎖を除去して核酸プローブ固 定化電極を作成した。

実施例16: 脂質膜を介して核酸プローブを固定化した電 極を用いた遺伝子の検出

(1) 核酸プローブ固定化電極の作製

【0167】まず、ベーサルプレインパイロリティック グラファイト (BPPG) 電極表面上にホスファチジル エタノールアミンを用いて脂質膜を調製した。これとは 別に、発癌遺伝子v-myc 1.5 Kbの3'末端に、ターミナル デオキシヌクレオチジルトランスフェラーゼを用いて (6-アミノヘキシル) dATPを導入した。

【0168】脂質膜で修飾したBPPG電極をグルタル アルデヒドで処理した後、アミノ基を導入したv-myc の 1 ug/m7溶液中において室温で30分間反応させてること により核酸プローブ固定化電極を作製した。

(2) 核酸プローブ固定化電極を用いた遺伝子の検出 検体試料には、 pUC 119の Pst Iサイトに発癌遺伝子vmyc (1.5 Kb)を挿入したブラスミド pVM 623を用い

【0169】この検体試料を95℃で熱変性し、次いで上 記(1) で作製した核酸プローブ固定化電極を挿入して55

ダイゼーション反応を開始する前から核酸プローブ固定 化電極における膜電位を連続して測定したところ、ハイ ブリダイゼーション反応の進行に従い膜電位に変化が見 られ、反応開始から約 2時間後に定常状態となった。と のように、膜を介して核酸プローブを固定化した電極を 用いた場合には、ハイブリダイゼーション反応のモニタ リングを行ないながら遺伝子の検出を行なうことが可能 となる。測定の結果、目的とする遺伝子をpgオーダー で検出することが可能であった。

34

実施例17: 合成オリゴヌクレオチドでブロッキングした 核酸プローブ固定化電極を用いた遺伝子の検出

(1) 核酸ブローブ固定化電極の作製

【0170】まず、発癌遺伝子v-myc に対する合成オリ ゴヌクレオチドプローブ (20mer) の3'末端に、ターミ ナルデオキシヌクレオチジルトランスフェラーゼを用い て(6-アミノヘキシル) d A T P を導入した。

【0171】 Cれとは別に、BPPG電極を10%硝酸お よび 2.5%クロム酸カリウムを含有する溶液中において 2.2Vで電気分解することにより表面を酸化した。次 に、表面酸化した電極を、10% γ- アミノブロビルトリ エトキシシランのアニリン溶液中において 120℃で30分 間還流するととによりシラン化した。シラン化した電極 は、メタノールで洗浄した後、 1%グルタルアルデヒド 溶液中において30分間反応させ、さらに洗浄した。次 に、この電極を、アミノ基を導入したプローブの 1ug/ ml溶液中において室温で30分間反応させることにより核 酸プローブ固定化電極を作製した。との核酸プローブ固 定化電極を、合成ヌクレオチド(20mer)溶液に浸し、 電極表面に合成ヌクレオチドを吸着させた。

(2) 核酸プロープ固定化電極を用いた遺伝子の検出

【0172】検体試料には pUC 119の Pst Iサイトに v -myc断片を挿入した pVM 623を使用した。まず、この p VM 623を、Hind IIIで消化してリニアにし、次いで98℃ で熱変性させた。次に、上記(1) で作製した核酸プロー ブ固定化BPPG電極を、熱変性した検体試料中に挿入 し、70℃でインキュベートすることによりアニーリング 反応を行なった。その後、二本鎖核酸に特異的に結合 し、かつ電極活性を有する挿入剤アクリジンオレンジを 添加して電極反応を行ない、この際に流れる酸化還元電 流を測定して検体試料中に含まれるv-myc を定量した。 その結果、v-myc をpgオーダーで検出することができ た。また、電極表面をブロッキングしていない電極と比 較してS/N比が向上していた。

実施例18:目的遺伝子の増幅とその検出

(1) 目的遺伝子の増幅

【0173】検体試料には pUC119 の Pst Iサイトに v -myc断片を挿入した pVM 623 (4.6 Kb) を用いた。との pVM 623を HindIIIで消化することによりリニアとし、 その後、濃度を1フェムトモル(10713 モル) に調整し °Cでハイブリダイゼ−ション反応を行なった。ハイブリ 50 た。との試料に対し、下記条件を 1 サイクルとするPC

Rを30回繰り返し、v-myc の 1 kb 断片を増幅した。

変性 : 94°C、 1分

プライマーのアニーリング:55℃、1分

DNA鎖の伸長 :72℃、1分

(2) 核酸プローブ固定化電極を用いた遺伝子の検出

【0174】PCRにより増幅した試料を98℃で熱変性 し、核酸プローブ固定化BPPG電極を検体試料中に挿 入した後、70℃で15分間インキュベートすることにより アニーリングを行なった。この際、検体試料中に、二本 鎖核酸に特異的であり、かつ電極活性を有する挿入剤で 10 あるアクリジンオレンジを添加した。この後、電極反応 を行ない、この際流れる酸化還元電流を測定することに より、検体試料中に含まれる v-mycを定量した。その結 果、v-myc 遺伝子の存在を確認することができた。

参考例7:目的遺伝子の増幅とその検出

(1) 目的遺伝子の増幅

【0175】検体試料には pUC119 の Pst Iサイトに v -myc断片を挿入した pVM 623 (4.6 Kb) を用いた。この pVM 623を HindIIIで消化することによりリニアとし、 その後、濃度を1 フェムトモル (10⁻¹ モル) に調整し 20 た。この試料に対し、下記条件を1サイクルとするPC Rを30回繰り返し、v-myc の 1 Kb 断片を増幅した。

変性

:94℃、1分

プライマーのアニーリング:55°C、1分

DNA鎖の伸長

:72℃、 1分

なお、プライマーには、予めビオチンで標識したものを 用いた。

(2) 核酸プローブ固定化光ファイバーを用いた遺伝子の 検出

【0176】PCRにより得られた試料を98°Cで熱変性 30 し、核酸ブローブ固定化光ファイバーを検体試料中に挿 入した後、70℃で15分間インキュベートすることにより アニーリングを行なった。次いで、アビジン結合西洋わ さびペルオキシダーゼを反応させた後洗浄し、発光基質 であるルミノール、H、O、およびエンハンサーをさら に添加して、その発光を光ファイバーを介して検出し た。その結果、v-myc遺伝子の存在を確認することがで きた。

実施例19:核酸プローブ固定化電極への核酸の非特異的 吸着を抑制した遺伝子検出

【0177】検体試料には pUC 119の Pst Iサイトに v -myc断片を挿入した pVM 623を使用した。まず、との検 体試料中の pVM 623を HindIIIで消化してリニアにし、 98°Cで熱変性させた。次いで、核酸プローブ固定化BP PG電極を検体試料に挿入し、70℃でインキュベートす ることによりアニーリングを行なった。アニーリングの 後、電極化 -1.5 V (vs.SCE) の電位を印加することに より電極表面に非特異的に物理吸着したDNAを脱着し

36

極活性を有する挿入剤アクリジンオレンジを添加し、電 極反応を行なった。とのとき流れる酸化還元電流を測定 し、検体試料中に含まれる v-mycを定量した。その結 果、v-myc をpgオーダーで検出することができ、検出 の際のS/N比も従来の結果よりも向上していた。 実施例20:核酸ブローブ固定化電極への核酸の非特異的

吸着を抑制した遺伝子検出

【0179】検体試料には pUC 119の Pst Iサイトに v -myc断片を挿入した pVM 623を使用した。まず、この検 体試料中の pVM 623を HindIIIで消化してリニアにし、 98°Cで熱変性させた。次に、v-myc に対して50%のホモ ロジーを有する核酸プローブ (20 mer) を固定化したB PPG電極と、v-myc に対する核酸プローブを固定化し たBPPG電極とを検体試料中に挿入し、70℃でインキ ュベートすることによりアニーリングを行なった。

【0180】次に、二本鎖核酸に特異的であり、かつ電 極活性を有する挿入剤アクリジンオレンジ添加し、電極 反応を行なった。このとき流れる酸化還元電流を測定 し、検体試料中に含まれる v-mycを定量した。

【0181】 この電極反応の後、電極に -1.0 V (vs.S (E) の電位を印加し、ホモロジーの低い試料核酸を解離 させた。次いで、上と同様にアクリジンオレンジを添加 して電極反応を行ない、その際流れる酸化還元電流を測 定した。その結果、挿入剤から検出される酸化還元電流 値は、ホモロジーが50%であるプローブを用いた場合に はホモロジーが 100%であるプローブを用いた場合の約 50%程度であった。したがって、この方法により、変異 した遺伝子の検出が可能であることが示された。

実施例21:核酸プローブ固定化電極を備えた、ディスポ ザブルな反応セルを用いた遺伝子の検出

(1) 核酸プローブ固定化電極を備えた反応セルの作製

【0182】まず、発癌遺伝子 v-myc (1.5 kb) の3'末 端に、ターミナルデオキシヌクレオチジルトランスフェ ラーゼを用いて、予め(6-アミノヘキシル)dATPを 導入した。

【0183】核酸プローブ固定化用の電極としては白金 電極を用いた。まず、この白金電極を、 180℃で12時間 加熱することにより電極表面を酸化した。次に、この電 極を10%ァ- アミノプロピルトリエトキシシランのアニ リン溶液中において 120°Cで30分間還流することにより シラン化して洗浄し、 1%グルタルアルデヒド溶液中で さらに30分間反応させて洗浄した。その後、この電極 を、アミノ基を導入した v-mycの1 ug/ml溶液中におい て室温で30分間反応させるととにより核酸プローブ固定 化電極を作製した。さらに、この核酸プローブ固定化電 極を底面に備えた反応セル (5× 5×10mm) を作製し

- (2) 核酸プローブ固定化電極を備えた反応セルを用いた 遺伝子の検出
- 【0178】次に、二本鎖核酸に特異的であり、かつ電 50 【0184】検体試料には、pUC 119 の Pst Iサイトに

v-myd断片を挿入した pVM 623 (4.6 kb) を Hind III で消化した断片を使用した。この断片を含む溶液を (1) で作製した反応セルに入れ、95℃で 5分間加熱して熱変性させた後、7℃で30分間アニーリングを行なった。反応終了後、トリス(1,10- フェナントロリン)オスミウムを反応セルに添加し、電極に電位を印加することにより生じる電気化学発光を測定した。その結果、 v-mycの検出がpgオーダーで可能であった。

実施例22:核酸プローブ固定化電極を備えた、ディスポーザブルな反応セルを用いた遺伝子の検出

(1) 核酸プローブ固定化電極を備えた反応セルの作製【0185】まず、発癌遺伝子 v-myc (1.5 kb) の3'末端に、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いて、予め(6-アミノヘキシル) d A T P を導入した。

【0186】核酸プローブ固定化用の電極としてはベーサルブレインパイロリティックグラファイト(BPPG)電極を用いた。まず、このBPPG電極を、10%硝酸および 2.5%クロム酸カリウム溶液中で 2.2Vで電気分解することにより電極表面を酸化した。次に、この電 20極を10% アーアミノブロビルトリエトキシシランのアニリン溶液中において 120℃で30分間還流することによりシラン化してメタノールで洗浄し、 1%グルタルアルデヒド溶液中でさらに30分間反応させて洗浄した。その後、この電極を、アミノ基を導入した v-mycの1 ug/ml溶液中において室温で30分間反応させることにより核酸プローブ固定化電極を作製した。さらに、この核酸プローブ固定化電極を作製した。さらに、この核酸プローブ固定化電極を底面に備えた反応セル(5×5×10mm)を作製した。

(2) 核酸プローブ固定化電極を備えた反応セルを用いた 30 遺伝子の検出

【0187】検体試料には、pUC 119 の Pst Iサイトに v-myc断片を挿入した pVM 623 (4.6 Kb) を Hind III で消化した断片を使用した。この断片を含む溶液を (1) で作製した反応セルに入れ、95℃で 5分間加熱して熱変性させた後、72℃で30分間アニーリングを行なった。反応終了後、トリス(1,10- フェナントロリン)コバルトを反応セルに添加し、サイクリックボルタンメトリーにより酸化還元電流を測定した。その結果、 v-mycの検出がpgオーダーで可能であった。

参考例8:サンドイッチハイブリダイゼーションを利用 した遺伝子の検出

(1) 第1の核酸プローブを固定化した電極の作成

【0188】まず、発癌遺伝子v-myc に対する合成オリゴヌクレオチドブローブ (20mer) を第1のブローブとし、その3'末端に、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いて (6-アミノヘキシル) dATPを導入した。

【0189】 これとは別に、BPPG電極を10%硝酸および 2.5% クロム酸カリウムを含有する溶液中において 50

2.2Vで電気分解するととにより表面を酸化した。次 に、表面酸化した電極を、10% γ - アミノブロビルトリ エトキシシランのアニリン溶液中において 120℃で30分間返流するととによりシラン化した。シラン化した電極 をメタノールで洗浄した後、 1% グルタルアルデヒド溶 液中において30分間反応させ、さらに洗浄した。

【0190】次に、この電極を、アミノ基を導入した第 1のプローブの 1ug/ml溶液中において室温で30分間反 応させることにより、第1核酸ブローブ固定化電極を作 10 製した。

【0191】との第1核酸プローブ固定化電極を、ヌクレオチド(dATP、dCTP、dGTPおよびdTTP)溶液に浸し、電極表面にヌクレオチドを吸着させてサンブルDNAの非特異的な吸着を抑制した。

(2) 第2の核酸プローブを用いた遺伝検出

【0192】検体試料には pUC119 の Pst Iサイトに v-myc断片を挿入した pVM623 の HindIII断片を用い、また第2の核酸プローブとしては pUC119 の Pst I断片を用いた。第2プローブは、ビオロゲンで標識した。

【0193】検体試料および第2ブローブを98℃で熱変性した後、(1)で作製した第1ブローブを固定化したBPPG電極を検体試料および第2ブローブを含有する溶液中に挿入し、次いで70℃でインキュベートすることによりアニーリングを行なった。との際、電極に 0.1V(vs.SCE)の電位を印加した。アニーリング終了後、電極にマイナス電位を印加して、電極に非特異的に吸着している物質を脱着した。その後、第2プローブに標識したピオロゲンの酸化還元電流を測定し、検体試料中に含まれる v-mycを定量した。その結果、v-myc をpgオーダーで検出することが可能であった。

実施例23:核酸ブローブ固定化電極を用いたRFLP解析による間接遺伝子検出法

核酸プローブ固定化電極を用いて、DNAフィンガーブリント法による個人識別を以下の通りに行なった。まず、ヒト末梢静脈血つから密度勾配遠心を用いて白血球を分離し、定法に従いDNAを分離した。次いで、このDNAを制限酵素 Hae IIIで消化した。

【0194】とれとは別に、BPPG電極に Myoプローブを固定化して核酸プローブ固定化電極を作製し、さらにこの電極を高速液体クロマトグラフィ(HPLC)のカラム出口に配置した。このHPLCにサンプルを導入することにより、電極表面に固定化されたブローブとホモロジーがある配列を有するDNAが電極表面に一時的に保持されて二本鎖を形成し、さらにこの二本鎖に挿入剤等の二本鎖認識体が結合することにより二本鎖認識体に由来する電気化学的な信号を測定をすることができる。得られた信号は特定のパターンを形成する。このパターンを解析することによりサンブルのパターニングを行なうことができる。

0 【0195】上述の断片化したDNAを95℃で熱変性す

30

tc.

40

ることにより一本鎖にし、その後総乳剤であるアクリジ ンオレンジと一緒に上記HPLCにかけ、DNAのパタ -ニングを行なった。との際、カラムは75℃に保温し た。

39

【0196】その結果、各々の被検者について、それぞ れ異なったパターンが示された。すなわち、との発明の 遺伝子検出法により、個人識別が可能であることが明確 に示された。

参考例9:核酸プローブ固定化電極を用いた遺伝子の分

【0197】モデル実験系として、大腸菌 JM 109 から 抽出した染色体DNA溶液(10ug/ml)中に HindIIIで リニアにした 1ug/mlの pVM 623 (pUC 119 に v-mycを 組み込んだもの)を混在させたものを使用し、v-myc 中 の配列 (5' TCCAGTTCCCGTGCCTGATC 3') をブローブとし て検出および分離を行なった。

(1) 核酸プローブ固定化BPPG電極の作製

【0198】まず、BPPG電極を、2.5%クロム酸カ リウム・10%硝酸溶液中において2.2Vで10秒間電気分 解することにより、電極表面を酸化した。次に、この電 20 極を10% ア- アミノプロピルトリエトキシシランのトル エン溶液中において 120℃で30分間還流することにより シラン処理を行なった。との処理により、電極表面にア ミノ基が導入されたことになる。その後、さらに、 1% グルアルアルデヒドを含む 1/15Mリン酸緩衝液 (pH 7.0) 中に室温で 1時間放置することによりアルデヒド 基を導入した。前述の合成プライマーを10mMリン酸緩 衝液中で10ug/mlとなるように調製し、アルデヒド処理 した電極を浸して室温で 1時間放置した。これにより電 極表面にブライマーが固定化された。

(2) 目的遺伝子の検出

【0199】大腸菌 JM 109 から抽出した染色体 DNA 溶液 (10ug/ml) 中に HindIIIでリニアにした 1ug/ml の pVM 623を混在させた試料溶液に、上記(1) で作製し た核酸プローブ固定化BPPG電極を挿入し、55°Cでハ イブリダイズさせた。その後、インターカレーターであ るアクリジンオレンジを 1μΜとなるように添加し、電 極応答を測定した。その結果、アクリジンオレンジに特 有のピークが得られ、電極表面において二本鎖が形成さ れているととが示された。

(3) 目的遺伝子の分離

【0200】電極を試料溶液から引き上げ、バッファー 中で95°Cに加熱することにより二本鎖を形成していた目 的遺伝子を解離させた。次いで、v-myc 中の配列5' TCC AGTTCCCGTGCCTGATC 3'および5' CCACTCCGAAGAAGAACAAG 3'をプライマーとしてPCRを行なった。pVM 623 にお ける、上記2種のプライマーと相補的な塩基配列の間の 長さは約 900b pである。PCRにより増幅された遺伝 子を電気泳動にかけたところ、 900b pのバンドが得ら れ、目的とする pVM 623が分離されたことが確認され

【0201】対照として、pUC 118 を目的遺伝子および pUC 118中の配列をPCRプライマーとして用いて同様 の操作を行なったが、相当箇所にバンドは検出されなか った。

参考例10:核酸プローブ固定化フィルターを用いた遺伝 子の検出

【0202】核酸プローブとしては発癌遺伝子 v-mycを 選択した。この v-mycにグルタルアルデヒドを介してア ミノアクリジンを結合し、さらに紫外線照射によりPV DFナイロンフィルターに固定化した。核酸プローブの 固定化後、1 mg/mlのATP溶液で処理することにより フィルター表面への非特異的な吸着を抑制した。

【0203】v-myc を含む試料溶液を98°Cに加熱して試 料を熱変性させ、次いで、上記フィルターの表面に固定 化された核酸プローブとのハイブリダイゼーションを刀 *Cで15分間行なった。反応終了後、72℃の洗浄液(2× SSC、 0.1%SDS) で洗浄し、フィルター表面にお ける吸光度の変化を測定した。目的とする遺伝子が試料 中に存在する場合には、吸光度の低下が観測された。測 定の結果、数十 pg オーダーの遺伝子の検出が可能であ った。

【0204】また、同様の処理の後、フィルター表面に おける蛍光強度の変化を測定した。その結果、目的とす る遺伝子が試料中に存在する場合には、蛍光強度の上昇 が観測された。測定の結果、数十 pg オーダーの遺伝子 の検出が可能であった。

参考例11: 二本鎖認識体固定化担体を用いた核酸の抽出 との例においては、担体として粒径10 um のマグネタイ ト粒子、二本鎖認識体としてアミノアクリジンを用い ۲c.

【0205】まず、マグネタイト粒子をPBSでよく洗 浄し、10% 3-アミノプロビルトリエトキシシランのト ルエン溶液中において 120℃で 2時間還流した後、メタ ノールで洗浄した。次に、 1%グルタルアルデヒド溶液 と反応させ、その後アミノアクリジンを固定化した。

【0206】サンプルにはヒト白血球を用いた。プラス チック容器内で白血球とアミノアクリジン固定化磁性粒 子とを混合し、ボルテックスミキサーで激しく振動させ るととにより細胞の破砕と担体への核酸の結合を同時に 行なった。その後、磁石を用いて外部から磁場をかける ことによりマグネタイト粒子を分離し、 200mMのNaC 1を含む 10 mMトリス緩衝液 (pH 7.0) で3回洗浄し た。洗浄した粒子は、70%エタノールに添加し、核酸の 溶出を行なった。

【0207】得られた核酸を 1%アガロースゲルを用い て電気泳動した結果、20 Kb 以上の核酸断片が得られた ことが明らかとなり、これらは制限酵素により切断可能 であった。また、全ての操作が 1時間以内に終了した。 実施例24:ステアリルアミンでブロッキングした核酸プ

ローブ固定化電極を用いた遺伝子の検出

(1) 核酸ブローブ固定化電極の作製

【0208】まず、発癌遺伝子v-myc に対する合成オリ ゴヌクレオチドプローブ (20mer) の3'末端に、ターミ ナルデオキシヌクレオチジルトランスフェラーゼを用い て(6-アミノヘキシル) dATPを導入した。

【0209】 これとは別に、BPPG電極を10% 硝酸お よび 2.5%クロム酸カリウムを含有する溶液中において 2.2Vで電気分解することにより表面を酸化した。次 に、表面酸化した電極を、10%γ- アミノブロピルトリ 10 エトキシシランのアニリン溶液中において 120°Cで30分 間還流することによりシラン化した。シラン化した電極 は、メタノールで洗浄した後、 1%グルタルアルデヒド 溶液中において30分間反応させ、さらに洗浄した。次 に、との電極を、アミノ基を導入したプローブの 1ug/ ml溶液中において室温で30分間反応させることにより核 酸ブローブ固定化電極を作製した。

【0210】との核酸プローブ固定化電極は、電極表面 への試料DNAの非特異的な吸着を抑制するために、ス テアリルアミン溶液に浸して表面にステアリルアミンを 20 吸着させた。

(2) 核酸プローブ固定化電極を用いた遺伝子の検出 【0211】検体試料には pUC 119の Pst Iサイトに v -myc断片を挿入した pVM 623を使用した。まず、この p VM 623を、Hind IIIで消化してリニアにし、次いで98℃ で熱変性させた。次に、上記(1)で作製した核酸プロー ブ固定化BPPG電極を、熱変性した検体試料中に挿入 し、70℃でインキュベートすることによりアニーリング 反応を行なった。その後、二本鎖核酸に特異的に結合 し、かつ電極活性を有する挿入剤アクリジンオレンジを 30 …ファンクションジェネレータ/ポテンショスタット、 添加して電極反応を行ない、この際に流れる酸化還元電 流を測定して検体試料中に含まれるv-mvc を定量した。*

*その結果、v-myc をpgオーダーで検出することができ た。また、電極表面をブロッキングしていない電極と比 較してS/N比が向上していた。

[0212]

【発明の効果】以上詳述したように、本発明によれば核 酸プローブを用いた遺伝子検出を簡便かつ短時間で行な うととができる。従って、本発明は遺伝子診断法や遺伝 子工学の分野等、特定の遺伝子を検出する際の方法とし て極めて有用である。

【0213】また、本発明による自動遺伝子検出装置を 用いることにより、上記方法による遺伝子検出を自動的 に行なうことができる。したがって、より簡便かつ短時 間に遺伝子の検出を行なうことができる。

【図面の簡単な説明】

【図1】本発明による自動遺伝子検出装置の一具体例を 模式的に示す図。

【図2】図1に示す自動遺伝子検出装置における反応槽 および遺伝子サンプル精製装置の他の態様を示す斜視 図.

【図3】図1に示す自動遺伝子検出装置における温度コ ントローラの一具体例を示す斜視図。

【図4】電気化学発光を利用する自動遺伝子検出装置の 具体例を模式的に示す図。

【符号の説明】

1、31…遺伝子サンプル精製装置、 2…反応槽、 3、34 …温度コントローラ、5…遺伝子センサ、 6…電気信号 検出制御装置、 7、39…計算機、9…検出槽、11…解離 処理層、12、43…移動装置、32…反応セル、33…核酸ブ ローブ固定化電極、36…参照電極、37…光ファイバ、38 40…フォトマル、41…フォトンカウンタ、42…洗浄槽

【図1】

【図2】

【図3】

[図4]

