

Coronavirus disease (COVID-19) pandemic analysis

Data Preprocessing and Feature Engineering with PySpark

Instructor: Charles Tsang

Presenters: Junhao Wang, Fei Chen, Lingying Sun

Roadmap

Background

Data Preprocessing & Feature Engineering

Dataset Findings & Regression Model

Background:

The Coronavirus disease has had a profound effect on the world since December 2019. The virus is highly contagious and rapidly spreads through close contact via human-to-human trans-mission. As of October 28, 2020, there have been 43.7 million people infected throughout 219countries worldwide (World Health Organization).

Problem Statement:

To help control the pandemic, each country imposed strict regulations such as travel bans, mandatory masks, social distancing, etc. Each country's governmental policies have a different effect on the COVID-19 infection rate. The objective of this project is to build a model to predict future COVID-19 cases and deaths, which may help to control pandemic effectively.

Response Variables

Dependent Variables:

- Two-week cumulative cases after next week
- Two-week cumulative deaths after next week

Two-week cumulative Deaths after next week Two-week cumulative cases after next week 20000 Country Country 600000 17500 Australia Australia Brazil Brazil 15000 500000 India Spain 12500 400000 United States of America United States of America 10000 300000 7500 200000 5000 100000 2500 2020-03 2020-06 2020-01 2020-02 2020-03 2020-04 2020-06 2020-07 2020-01 2020-02 2020-07 2020-08 2020-09 2020-09 Date_reported Date reported

Explanatory Variables

Numerical Variables:

- Current Cumulative Cases
- Current Cumulative Deaths
- Daily Testing
- Total Existing Cases

Categorical Variables:

- Countries
- Travel Controls (0,1)
- Restaurant Restriction (0,1)
- School Closing (0,1,2,3)
- Workplace Closing (0,1,2,3)
- Public Events(0,1,2,3)
- Stay At Home Requirements(0,1,2,3)

Dataset Findings – Numerical Variables

Q Dataset Findings – Categorical Variables

Y-AXIS: Two-week cumulative cases after next week

Regression Model

Lasso Regression Model

$$\mathcal{L}_{reg} = RSS + \lambda \sum_{i=0}^{k} |\beta_i| = \sum_{i=1}^{k} [Y_i - \left(\beta_0 + \sum_{j=1}^{p} \beta_j x_{ij}\right)]^2 + \lambda \sum_{i=0}^{k} |\beta_i| , \lambda = 5$$

R-Square Measures

Cases prediction: 85.39

Deaths prediction: 60.99

Model Predictions (Example)

United States on September 23 rd	Predicted Cases	True Cases	Predicted Deaths	True Deaths
	454682	677593	9772	9464

Feature Importance Exploring Using Extra Trees Classifier

Thank You!

