ENPH 257 Lab Report

Brunette, Jacob Fullerton, Dilyn Watt, Ryan Yao, Dickson

Instructor: Dr. Christopher Waltham

June 29, 2016

٨	bs	+ 2		_	۰
A	DS	tr	'n	Ci	Γ,

hello world

Introduction

1.1 Conduction

Heat diffusion due to conduction is given by the heat equation

$$\left(\frac{\partial}{\partial t}u(\mathbf{r},t)\right)_{\text{cond}} = \frac{k}{c\rho}\nabla^2 u(\mathbf{r},t),\tag{1.1}$$

where $u(\mathbf{r},t)$ is the temperature at position \mathbf{r} and time t, k is the thermal conductivity, c is the specific heat of the material, and ρ is the mass density of the material.

1.2 Convection

Power gain due to convection for a differential surface element at position \mathbf{r} may be approximated by

$$P_{\text{conv}}(\mathbf{r}, t) = -k_c \delta S(\mathbf{r}) \left(u(\mathbf{r}, t) - u_{\text{amb}} \right), \tag{1.2}$$

where k_c is the convection coefficient, $\delta S(\mathbf{r})$ is the differential surface element at \mathbf{r} , and $u_{\rm amb}$ is the ambient temperature of the surrounding fluid.

Now temperature change due to power for a differential mass element is given by

$$P = \frac{\partial}{\partial t}Q = c\rho \,\delta V \frac{\partial}{\partial t}u,\tag{1.3}$$

so the rate of change of temperature due to convection is given by

$$\left(\frac{\partial}{\partial t}u(\mathbf{r},t)\right)_{\text{conv}} = -\frac{k_c \,\delta S(\mathbf{r})}{c\rho \,\delta V(\mathbf{r})} \left(u(\mathbf{r},t) - u_{\text{amb}}\right). \tag{1.4}$$

1.3 Radiation

Power gain due to radiation for a differential surface element at position \mathbf{r} is given by Planck's Law to be

$$P_{\rm rad}(\mathbf{r},t) = -\epsilon \,\sigma \,\delta S(\mathbf{r}) \left(u(\mathbf{r},t)^4 - u_{\rm amb}^4 \right), \tag{1.5}$$

where ϵ is the emissivity and σ is the Stefan-Boltzmann constant.

Again from Equation (1.3), we can obtain the contribution to the rate of change of temperature due to radiation

$$\left(\frac{\partial}{\partial t}u(\mathbf{r},t)\right)_{\text{rad}} = -\frac{\epsilon \,\sigma \,\delta S(\mathbf{r})}{c\rho \,\delta V(\mathbf{r})} \left(u(\mathbf{r},t)^4 - u_{\text{amb}}^4\right). \tag{1.6}$$

1.4 Heat diffusion equation for a cylindrical rod

For a one-dimensional cylindrical rod of length L and radius R, the heat diffusion equation is

$$\frac{\partial}{\partial t}u(x,t) = \frac{1}{c\rho}\left(k\frac{\partial^2}{\partial x^2}u(x,t) - k_c\frac{\delta S(x)}{\delta V(x)}\left(u(x,t) - u_{\rm amb}\right) - \epsilon\,\sigma\frac{\delta S(x)}{\delta V(x)}\left(u(x,t)^4 - u_{\rm amb}^4\right) + \frac{P_{\rm in}(x,t)}{\delta V(x)}\right), \quad (1.7)$$

where $P_{\rm in}$ is the power input function.

Objective

Method

- 3.1 Experimental setup
- 3.1.1 Rod dimensions
- 3.1.2 Thermocouple circuit
- 3.2 Calibration
- 3.3 Data aquisition

Results

Simulation and optimization

5.1 One-dimensional explicit-step simulation

The following is the finite difference equation to simulate heat diffusion based on Equation (1.7) for a cylindrical rod of length L and radius R. Based on the formalism in Appendix A and supposing x points $\{x_i : i \in [0, X]\}$ and t points $\{t_n : n \in [0, T]\}$, the explicit finite difference form of Equation (1.7) is

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \delta t \left(\delta \mathbf{u}_{\text{cond}}^n + \delta \mathbf{u}_{\text{conv}}^n + \delta \mathbf{u}_{\text{rad}}^n + \delta \mathbf{u}_{\text{pow}}^n \right), \tag{5.1}$$

where

$$\begin{split} &(\delta \mathbf{u}_{\mathrm{cond}}^{n})_{i} = \frac{k}{c\rho} \cdot \frac{1}{\delta x^{2}} \cdot \begin{cases} \left(u_{1}^{n} - u_{0}^{n}\right), & i = 0 \\ \left(u_{X-1}^{n} - u_{X}^{n}\right), & i = X \\ \left(u_{1}^{n} - 2u_{i}^{n} + u_{i+1}^{n}\right), & \text{else} \end{cases} \\ &(\delta \mathbf{u}_{\mathrm{conv}}^{n})_{i} = -\frac{k_{c}}{c\rho} \cdot \frac{\delta S_{i}}{\delta V_{i}} \left(u_{i}^{n} - u_{\mathrm{amb}}\right) \\ &(\delta \mathbf{u}_{\mathrm{rad}}^{n})_{i} = -\frac{\epsilon \, \sigma}{c\rho} \cdot \frac{\delta S_{i}}{\delta V_{i}} \left(\left(u_{i}^{n}\right)^{4} - u_{\mathrm{amb}^{4}}\right) \\ &(\delta \mathbf{u}_{\mathrm{pow}}^{n})_{i} = \frac{P_{i}^{n}}{c\rho \, \delta V_{i}} \end{split}$$

The differential volume at any point x_i is the same

$$\delta V_i = \pi R^2 \, \delta x.$$

The exposed surface is different at the ends, however, with

$$\delta S_i = 2\pi R \, \delta x + \begin{cases} \pi R^2, & i = 0 \text{ or } i = X \\ 0, & \text{else} \end{cases}$$

Finally power input occurs only at one end. It is assumed that power is a constant P_1 during heating and P_2 during cooling. Heating occurs until t_{stop} at which point cooling begins. Thus we have

$$P_i^n = \begin{cases} P_1, & t_0 < t_n < t_{\text{stop}} \\ P_2, & t_{\text{stop}} \le t_n \le t_T \end{cases}$$

5.2 Optimization of one-dimensional simulation

A numerical optimization routine was used to optimize thermodynamical parameters by repeatedly varying these parameters, running the one-dimensional simulation, and comparing the results to experimental data until optimal parameters were achieved. This optimization was run for each dataset. For each optimization, 67 positional points and a time step of .5 seconds were used.

5.3 High-level simulation

Analysis

Conclusion and Summary

Appendix A

Comparison of Finite Differencing Methods

The following are methods of finite differencing, demonstrated using the simple example of the one-dimensional heat conduction equation

$$\frac{\partial}{\partial t}u(x,t) = \alpha \frac{\partial^2}{\partial x^2}u(x,t). \tag{A.1}$$

A.1 Explicit method

Finite difference equation

In the explicit method for finite differencing, the temperature for each spatial point can be independently determined from the previous step. That is,

$$u_i^{n+1} = u_i^n + \alpha \cdot \frac{\delta t}{\delta x^2} \cdot \left(u_{i-1}^n - 2u_i^n + u_{i+1}^n \right), \tag{A.2}$$

where the superscript $n \in [0, T]$ signifies the step in time t_n and the subscript $i \in [0, X]$ represents the position x_i . δt and δx are the time steps in time and position respectively.

If we define

$$\zeta = \alpha \cdot \frac{\delta t}{\delta x^2},$$

then this can be written as a linear relationship

$$\mathbf{u}^{n+1} = \mathbf{D}\mathbf{u}^n,\tag{A.3}$$

where \mathbf{D} is the matrix defined by

$$\mathbf{D}_{ij} = \begin{cases} BC, & i = 0 \text{ or } i = X\\ \zeta, & 0 < i < X \text{ and } |i - j| = 1\\ 1 - 2\zeta, & 0 < i < X \text{ and } i - j = 0\\ 0, & \text{else} \end{cases}$$
(A.4)

The top and bottom rows (i=0 and i=X) are determined from boundary conditions. Note that as ζ approaches 0, **D** approaches the identity matrix. Thus ζ should be as small as possible for the best approximation. The condition for stability is

$$0 < \zeta < 1$$
.

Error in time

The explicit method uses a forward difference in time. The expression for the derivative approximation is derived from the power series expansion in δt

$$u(x,t+\delta t) = u(x,t) + \frac{\partial}{\partial t}u(x,t) \cdot \delta t + \frac{\partial^2}{\partial t^2}u(x,t) \cdot \frac{\delta t^2}{2!} + \dots$$
(A.5)

Thus we have an approximation for the time derivative

$$\frac{u(x,t+\delta t)-u(x,t)}{\delta t} = \frac{\partial}{\partial t}u(x,t) + O(\delta t). \tag{A.6}$$

The error in time due to this approximation is linear in δt .

Error in position

The explicit method uses a central second derivative in space. The expression for the second derivative approximation is derived from the power series expansion in δx .

$$u(x + \delta x, t) = u(x, t) + \frac{\partial}{\partial x}u(x, t) \cdot \delta x + \frac{\partial^2}{\partial x^2}u(x, t) \cdot \frac{\delta x^2}{2!} + \frac{\partial^3}{\partial x^3}u(x, t) \cdot \frac{\delta x^3}{3!} + \dots$$
 (A.7)

At $-\delta x$, this is

$$u(x - \delta x, t) = u(x, t) - \frac{\partial}{\partial x}u(x, t) \cdot \delta x + \frac{\partial^2}{\partial x^2}u(x, t) \cdot \frac{\delta x^2}{2!} - \frac{\partial^3}{\partial x^3}u(x, t) \cdot \frac{\delta x^3}{3!} + \dots$$

Thus the approximation for the second spatial derivative is

$$\frac{u(x-\delta x,t)-2u(x,t)+u(x+\delta x,t)}{\delta x^2} = \frac{\partial^2}{\partial x^2}u(x,t)+O(\delta x^2). \tag{A.8}$$

The error in position due to this approximation is quadratic in δx .

A.2 Implicit method

A.3 Crank-Nicolson method