Segmenting and Clustering Neighborhoods in Toronto - Part 3

For this assignment, you will be required to explore and cluster the neighborhoods in Toronto.

- Step 1: Load the data to the dataframe
- Step 2: Process the data
 - 2.1. Ignore rows with a Borough that is "Not assigned"
 - 2.2. Combine neighborhoods that has the same postcode
 - 2.3. Name "Not assigned" neighbourhood after the Borough
- Step 3. Load and include the geospatial data

Result of Part 3: Visualize the data on map

- Vis 1: Show all the Boroughs and Neighbourhoods
- Vis 2: Show all Boroughs that contains the word "Toronto"
- · Vis 3: Show all the Boroughs

Step 1: Load the data to a dataframe

```
In [5]: #Load necessary libraries
    import pandas as pd
    import requests

In [6]: from bs4 import BeautifulSoup
    url="https://en.wikipedia.org/wiki/List_of postal_codes_of_Canada:_M"
    soup = BeautifulSoup(requests.get(url).text,'lxml')
    My_table = soup.find('table',{'class':'wikitable sortable'})

My_table
    table_rows = My_table.find_all('tr')

t=[]
    for tr in table_rows:
        td = tr.find_all('td')
        row = [tr.text.rstrip('\n') for tr in td]
        t.append(row)
    df=pd.DataTrame(t)

df.columns=['Postcode','Borough','Neighbourhood']

df.drop([0],axis=0,inplace=True)

df.reset_index()
    df.head()

Out[6]:
    Postcode Borough Neighbourhood
```

Postcode Borough Neighbourhood 1 M1A Not assigned Not assigned 2 M2A Not assigned Not assigned 3 M3A North York Parkwoods 4 M4A North York Victoria Village 5 M5A Downtown Toronto Harbourfront

A different way to load the table

► Click here to see...

Step 2. Process the data

2.1. Ignore rows with a Borough that is "Not assigned"

```
In [7]: df.drop(df[df['Borough'] == 'Not assigned'].index, inplace = True)
#re-index the dataframe
df = df.reset_index(drop=True)
df.head()
Out[7]:
```

Postcode Borough Neighbourhood 0 M3A North York Parkwoods 1 M4A North York Victoria Village 2 M5A Downtown Toronto Harbourfront

M5A Downtown Toronto

4 M6A North York Lawrence Heights

Regent Park

2.2. Combine neighborhoods that has the same postcode

```
In [8]: df_new = df.groupby("Postcode").agg(lambda x:', '.join(set(x)))
df_new = df_new.reset_index()
df_new.loc[51:55]
```

	Postcode	Borough	Neighbourhood
51	M4X	Downtown Toronto	St. James Town, Cabbagetown
52	M4Y	Downtown Toronto	Church and Wellesley
53	M5A	Downtown Toronto	Harbourfront, Regent Park
54	M5B	Downtown Toronto	Ryerson, Garden District
55	M5C	Downtown Toronto	St. James Town

```
In [9]: for index, row in df_new.iterrows():
    if df_new.loc[index, 'Neighbourhood'] == "Not assigned":
        df_new.loc[index, 'Neighbourhood'] = df_new.loc[index, 'Borough']
        print(index)

85
In [10]: df_new.shape
Out[10]: (103, 3)
```

Step 3. Load and include the geospatial data

```
In [11]: g_data = pd.read_csv("https://cocl.us/Geospatial_data")
g_data.head()
Out[11]:
              Postal Code Latitude Longitude
                   M1B 43.806686 -79.194353
                   M1C 43.784535 -79.160497
           2
                   M1E 43.763573 -79.188711
            3
                   M1G 43.770992 -79.216917
                M1H 43.773136 -79.239476
In [12]: df_g = df_new
df_g['Latitude'] = g_data['Latitude'].values
df_g['Longitude'] = g_data['Longitude'].values
df_g.head()
Out[12]:
           Postcode Borough
                                                  Neighbourhood Latitude Longitude
           0 M1B Scarborough
                                                Rouge, Malvern 43.806686 -79.194353
                 M1C Scarborough Rouge Hill, Port Union, Highland Creek 43.784535 -79.160497
           2 M1E Scarborough Guildwood, West Hill, Morningside 43.763573 -79.188711
           3 M1G Scarborough
                                                        Woburn 43.770992 -79.216917
                                                    Cedarbrae 43.773136 -79.239476
            4 M1H Scarborough
In [62]: df_g.shape
Out[62]: (103, 5)
```

Result of Part 3: Visualize the data on map

```
In [30]: |conda install -c conda-forge folium=0.5.0 --yes | import folium # plotting library | print('Folium installed')

Collecting package metadata: done | Solving environment: done | # All requested packages already installed.

Folium installed
```

Vis 1. Show all the Boroughs and Neighbourhoods

P.Ckering WAUCHAN MISSISSAUCA Like Christing

Vis 2: Show all Boroughs that contains the word "Toronto"

```
In [77]: df_toronto = df_g.set_index('Borough').filter(like='Toronto', axis=0)
df_toronto = df_toronto.reset_index()
df_toronto.head()
```

Leaflet (http://leafletjs.com)

Out[77]:

	Borough	Postcode	Neighbourhood	Latitude	Longitude
0	East Toronto	M4E	The Beaches	43.676357	-79.293031
	East Toronto	M4K	Riverdale, The Danforth West	43.679557	-79.352188
2	East Toronto	M4L	India Bazaar, The Beaches West	43.668999	-79.315572
3	East Toronto	M4M	Studio District	43.659526	-79.340923
4	Central Toronto	M4N	Lawrence Park	43.728020	-79.388790

```
In [84]: lat_center_t = df_toronto('Latitude').mean()
lon_center_t = df_toronto('Longitude').mean()

#Draw the map
mmp_toronto = folium.Map(location=[lat_center_t, lon_center_t], tiles='cartodbpositron', zoom_start=12)

# add markers to map
for lat, lng, borough, neighborhood, postcode in zip(df_toronto['Latitude'], df_toronto['Borough'], df_toronto['Neighborhood', df_toronto['Postcode']):
    label = '\{\}, \{\}, \{\}'.format(neighborhood, borough, postcode)
    label = '\{\}, \{\}, \{\}'.format(neighborhood, postcode)
    label = '\{\}, \{\}, \{\}'.format(neighborhood, postcode)
    label = '\{\}, \{\}, \{\}'.fo
```

Out[84]:

Leaflet (http://leafletjs.com)

Vis 3: Show all the Boroughs

```
In [96]: df_borough = df_g.groupby(['Borough'],as_index=False).mean()
    df_borough = df_borough.reset_index()
    df_borough.head()
```

Out[96]:

	index	Borough	Latitude	Longitude
0	0	Central Toronto	43.701980	-79.398954
1	1	Downtown Toronto	43.654169	-79.383665
2	2	East Toronto	43.669436	-79.324654
3	3	East York	43.700303	-79.335851
4	. 4	Etobicoke	43.660043	-79.542074

Out[100]:

