These are results from benchmark tests, and notes on how to reproduce all tests conducted for our ICLR 2024 submission for PopDescent.

Results:

Table 1: Benchmark comparison

Algorithm	Test Loss $\pm \sigma$	Train Loss $\pm \sigma$	Gradient Steps
F	MNIST Without I	Regularization	
Basic Grid Search	0.251 ± 0.010	0.037 ± 0.006	64,000
KT RandomSearch	0.277 ± 0.023	0.112 ± 0.034	46,800
ESGD	0.276 ± 0.009	0.114 ± 0.007	46,800
Population Descent	$\boldsymbol{0.249 \pm 0.020}$	0.124 ± 0.052	32,000
	FMNIST With Re	egularization	
Basic Grid Search	0.309 ± 0.009	0.251 ± 0.007	160,000
KT RandomSearch	0.400 ± 0.061	0.295 ± 0.077	46,800
Population Descent	$ \boxed{ 0.262 \pm 0.019 }$	0.152 ± 0.033	32,000
C	IFAR-10 Without	Regularization	
Basic Grid Search	1.176 ± 0.182	1.052 ± 0.250	19,200
KT RandomSearch	1.512 ± 0.275	1.343 ± 0.296	39,000
ESGD	0.998 ± 0.025	0.966 ± 0.033	93,750
Population Descent	0.863 ± 0.014	0.577 ± 0.060	25,600
	CIFAR-10 With R	egularization	
Basic Grid Search	0.970 ± 0.027	0.770 ± 0.043	96,000
KT RandomSearch	1.195 ± 0.209	1.030 ± 0.249	39,000
Population Descent	0.843 ± 0.030	0.555 ± 0.070	25,600
CI	FAR-100 Without	Regularization	
Basic Grid Search	3.433 ± 0.050	3.304 ± 0.041	32,000
KT RandomSearch	4.129 ± 0.601	4.004 ± 0.617	39,000
ESGD	2.876 ± 0.146	2.735 ± 0.157	156,250
Population Descent	2.555 ± 0.093	2.224 ± 0.193	32,000
CIFAR-100 With Regularization			
Basic Grid Search	2.598 ± 0.061	2.224 ± 0.079	160,000
KT RandomSearch	4.162 ± 0.514	4.094 ± 0.594	39,000
Population Descent	2.584 ± 0.109	$\boldsymbol{2.236 \pm 0.193}$	32,000

,

Benchmarks: All benchmark tests are run with the same parameters over 10 randomly selected seeds. We decide to train all methods until they converge, and this is how we choose how many iterations to run each of them for.

FMNIST:

PopDescent: All parameters are the same for the without/with regularization tests, except for changing the model by adding one l2 kernel regularizer to the second to last fully connected layer in the model with regularization.

Training Parameters:

i un uniceci și	
Population Size	5
Replaced Individuals (in m-elitist)	2
Iterations	50
Batches	128
Batch Size	64
lr	0.001
Regularization Rate (in model with regularization)	0.001
Optimizer	Adam

Randomization Parameters:

lr_constant	10**(random.normal(mu=-4, sigma=2))
regularization_constant	10**(random.normal(mu=0, sigma=2))
randomization_amount (amount to randomize model, changes based on model's performance)	1 - (2 / (2 + model loss))
Gaussian Noise for Model Weights (sum of current weights and noise)	noise = random.normal(mu=0, sigma=0.01)*randomization_amount
Gaussian Noise for lr_constant (product of current lr_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))
Gaussian Noise for regularization_rate (product of current regularization_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))

Basic Grid Search: All parameters are the same for the without/with regularization tests. Both without/with regularization tests use the model with 12 kernel regularization, but when training without regularization, the *Regularization Rates to Sample* is simply [0], meaning no regularization.

Training Parameters:

Learning Rates to Sample	[0.01, 0.001, 0.0001, 0.00001, 0.000001]
Regularization Rates to Sample	[0.01, 0.001, 0.0001, 0.00001, 0.000001]
Iterations	100
Batches	128
Batch Size	64
Optimizer	Adam

KT RandomSearch: All parameters are the same for the without/with regularization tests, except for changing the model by adding one l2 kernel regularizer to the second to last fully connected layer in the model with regularization. We used Keras Tuner's RandomSearch implementation.

Training Parameters:

Range of Learning Rates to Sample (continuous)	[0.0001, 0.01]
Range of Regularization Rates to Sample	[0.00001, 0.1]
max_trials	25
executions_per_trial	2
train_epochs (with early stopping, patience=2; train over the whole train dataset)	20
Batch Size	64
Optimizer	Adam

ESGD: We used *tqch*'s open-source implementation of ESGD on https://github.com/tqch/esgd-ws.

n_population	5
sgds_per_gen	1

evos_per_gen	1
reproductive_factor	4
m_elite	3
mixing_number	3
optimizer_class	SGD (lr=0.001)
n_generations	10
batch_size	64

CIFAR-10/CIFAR-100: All parameters/models for CIFAR-10 and CIFAR-100 are the exact same.

PopDescent: All parameters are the same for the without/with regularization tests, except for changing the model by adding one l2 kernel regularizer to the second to last fully connected layer in the model with regularization.

Training Parameters:

5
2
20
128
64
0.001
0.001
Adam

Randomization Parameters:

lr_constant	10**(random.normal(mu=-4, sigma=2))
regularization_constant	10**(random.normal(mu=0, sigma=2))
randomization_amount (amount to randomize model, changes based on model's performance)	1 - (2 / (2 + model loss))

Gaussian Noise for Model Weights (sum of current weights and noise)	noise = random.normal(mu=0, sigma=0.01)*randomization_amount
Gaussian Noise for lr_constant (product of current lr_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))
Gaussian Noise for regularization_rate (product of current regularization_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))

Basic Grid Search: All parameters are the same for the without/with regularization tests. Both without/with regularization tests use the model with 12 kernel regularization, but when training without regularization, the *Regularization Rates to Sample* is simply [0], meaning no regularization.

Training Parameters:

Learning Rates to Sample	[0.01, 0.001, 0.0001, 0.00001, 0.000001]
Regularization Rates to Sample	[0.01, 0.001, 0.0001, 0.00001, 0.000001]
Iterations	30
Batches	128
Batch Size	64
Optimizer	Adam

KT RandomSearch: All parameters are the same for the without/with regularization tests, except for changing the model by adding one l2 kernel regularizer to the second to last fully connected layer in the model with regularization. We used Keras Tuner's RandomSearch implementation.

Range of Learning Rates to Sample (continuous)	[0.0001, 0.01]
Range of Regularization Rates to Sample	[0.00001, 0.1]
max_trials	25
executions_per_trial	2
train_epochs (with early stopping, patience=2; train over the whole train dataset)	20
Batch Size	64
Optimizer	Adam

ESGD: We used *tqch*'s open-source implementation of ESGD on https://github.com/tqch/esgd-ws.

Training Parameters:

Training Larameters.	
n_population	5
sgds_per_gen	1
evos_per_gen	1
reproductive_factor	4
m_elite	3
mixing_number	3
optimizer_class	SGD (lr=0.001)
n_generations	3
batch_size	8

Convergence Test: All convergence tests are run with the same parameters over 6 randomly selected seeds. All tests are run on the same model without regularization on the FMNIST dataset.

PopDescent:

Training Parameters

Population Size	5
Replaced Individuals (in m-elitist)	2
Iterations	115
Batches	128
Batch Size	64
lr	0.001
Optimizer	Adam

Randomization Parameters:

lr_constant	10**(random.normal(mu=-4, sigma=2))
randomization_amount (amount to randomize model, changes based on model's performance)	1 - (2 / (2 + model loss))
Gaussian Noise for Model Weights (sum of current weights and noise)	noise = random.normal(mu=0, sigma=0.01)*randomization_amount
Gaussian Noise for lr_constant (product of current lr_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))

Basic Grid Search:

Training Parameters

Learning Rates to Sample	[0.01, 0.001, 0.0001, 0.00001, 0.000001]
Regularization Rates to Sample	[0]
Iterations	100
Batches	128
Batch Size	64
Optimizer	Adam

KT RandomSearch:

Range of Learning Rates to Sample (continuous)	[0.0001, 0.01]
Range of Regularization Rates to Sample	[0.00001, 0.1]
max_trials	25
executions_per_trial	2
train_epochs (with early stopping, patience=2; train over the whole train dataset)	20
Batch Size	64
Optimizer	Adam

ESGD:

Training Parameters

n_population	5
sgds_per_gen	1
evos_per_gen	1
reproductive_factor	4
m_elite	3
mixing_number	3
optimizer_class	SGD (lr=0.001)
n_generations	15
batch_size	64

Ablation Study: To emphasize the differences of PopDescent's features, we train only on the first 10k images in the FMNIST dataset, and add 12 kernel regularization to every layer in the benchmark FMNIST model, initialized with a default value of 0.001 in each layer. All training parameters are the same in each of the four tests listed in the paper. We only change whether PopDescent's randomization scheme is on or off, with CV selection turned on, and using the model with regularization for the first two tests listed ("Ablation Study Over Randomization"). We only change the selection process when comparing without CV selection vs with CV selection, both on a model without regularization for the second two tests listed ("Ablation Study Over Cross-Validation Fitness").

Population Size	10
Replaced Individuals (in m-elitist)	5
Iterations	35
Batches	128
Batch Size	64
lr	0.001

Regularization Rate	0.001
Optimizer	Adam

Randomization Parameters:

lr_constant	10**(random.normal(mu=-4, sigma=2))
regularization_constant	10**(random.normal(mu=0, sigma=2))
randomization_amount (amount to randomize model, changes based on model's performance)	1 - (2 / (2 + model loss))
Gaussian Noise for Model Weights (sum of current weights and noise)	noise = random.normal(mu=0, sigma=0.01)*randomization_amount
Gaussian Noise for lr_constant (product of current lr_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))
Gaussian Noise for regularization_rate (product of current regularization_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))

Hyperparameter Sensitivity Study: We conduct this study on the

CIFAR-10 dataset, on the same model used in the CIFAR-10 benchmark tests without regularization. When testing for the effects of changing the number of iterations vs different learning rates, we keep everything constant, except for changing the hyperparameter we are testing by sampling each possibility in the arrays listed for that category.

Population Size	10
Replaced Individuals (in m-elitist)	5
Iterations	[10, 30, 50]
Batches	128
Batch Size	64
lr	[0.001, 0.01, 0.05]
Regularization Rate	0.001

Optimizer	Adam
-----------	------

Randomization Parameters:

lr_constant	10**(random.normal(mu=-4, sigma=2))
regularization_constant	10**(random.normal(mu=0, sigma=2))
randomization_amount (amount to randomize model, changes based on model's performance)	1 - (2 / (2 + model loss))
Gaussian Noise for Model Weights (sum of current weights and noise)	noise = random.normal(mu=0, sigma=0.01)*randomization_amount
Gaussian Noise for lr_constant (product of current lr_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))
Gaussian Noise for regularization_rate (product of current regularization_constant and noise)	2**(np.random.normal(mu=0, sigma=randomization_amount*15))

ESGD:

n_population	5
sgds_per_gen	1
evos_per_gen	1
reproductive_factor	4
m_elite	3
mixing_number	3
optimizer_class	SGD
learning_rate	[0.001, 0.01, 0.05]
n_generations	[1, 3, 5]
batch_size	8