

Course > Week 7... > Compr... > Quiz 7

Quiz 7

Problem 1

1/1 point (graded)

Suppose we use a basis expansion $\Phi\left(x\right)$ for the purposes of getting a quadratic decision boundary. For two-dimensional data, we can do this by expanding to five features. What decision boundary is represented by $w\cdot\Phi\left(x\right)+b=0$ for w=(2,1,2,-1,0) and b=-1?

$$\bigcirc \, 2x_1^2 + x_2^2 + 2x_1 - x_2 - 1 = 0$$

$$\bigcirc \, 2x_1^2 + x_1 + 2x_2^2 - x_2 - 1 = 0$$

$$\bigcirc 2x_1 + x_2 + 2x_1^2 - x_2^2 - 1 = 0$$

$$igcirc 2x_1 + x_1^2 + 2x_2 - x_2^2 - 1 = 0$$

Submit

1 Answers are displayed within the problem

Problem 2

1/1 point (graded)

True or false: When using a basis expansion of $x\in\mathbb{R}^6$ to get a quadratic boundary, the expanded feature vector $\Phi\left(x\right)$ has 36 pairwise features of the form x_1x_6 or x_2x_4 .

Submit

1 Answers are displayed within the problem

Problem 3

1/1 point (graded)

We want to use basis expansion of two-dimensional inputs $x=(x_1,x_2)$ to get a quadratic boundary. If the target boundary is given by the equation $(x_1-2)^2+(x_2-1)^2=16$, what is the coefficient vector, w, and constant, b, such that the boundary has the form $w\cdot\Phi\left(x\right)+b=0$?

$$lackbox{0}{\circ} w = egin{pmatrix} -4 & -2 & 1 & 1 & 0 \end{pmatrix}$$
 , $b = -11$

$$\bigcirc w = egin{pmatrix} -4 & -2 & 1 & 1 & 0 \end{pmatrix}$$
 , $b = -16$

$$\bigcirc w = egin{pmatrix} 1 & 1 & -4 & -2 & 5 \end{pmatrix}$$
 , $b = -11$

$$\bigcirc w = egin{pmatrix} 1 & -2 & 1 & -11 & 0 \end{pmatrix}$$
 , $b = 16$

Submit

1 Answers are displayed within the problem

Problem 5

For 12-dimension getting a quadra	anal x , what is the dimension of the basis expansion $\Phi\left(x ight)$ that we use for atic boundary?
24	
<u></u>	
90	
144	
✓	
Submit	
vector, $lpha$, which	with n data points, each of d dimensions, what is the dimension of the is used in the dual form of the perceptron algorithm?
$\bigcirc d$	
$\bigcirc n$	
$igcup d^2$	
$\bigcap n^2$	
✓	
Submit	

1/1 point (graded)

Answers are displayed within the problem
Problem 7
1/1 point (graded)
Given vectors $v,w\in\mathbb{R}^d$, which of the following expressions can be used in place of $\Phi\left(v ight)\cdot\Phi\left(w ight)$, where Φ is the basis expansion used for a quadratic boundary?
$igcirc$ [Math Processing Error] $ w-v ^2$
$\bigcirc 1 + (v \cdot w)^2$
$\boxed{\bigcirc (1+v\cdot w)^2}$
$igcirclespin (1,v_1,v_2,\ldots,v_d)\cdot (1,w_1,w_2,\ldots,w_d)$
Submit
Answers are displayed within the problem
Problem 8
1/1 point (graded) Which vector are we solving for when using the dual form of the SVM?
$\bigcirc w$
lacktriangle
$\bigcirc x$

none of the above
Submit
✓ Correct (1/1 point)
Problem 9 1/1 point (graded)
Which expression(s) can be used to classify a new point with the kernel SVM? Select all that apply.
$ec{igstar} \operatorname{sign}\left(\sum_{i=1}^{n} lpha_{i} y^{(i)} \left(\Phi\left(x^{(i)} ight) \cdot \Phi\left(x ight) ight) + b ight)$
$igsqcup ext{sign} \left(\sum_{i=1}^n w \cdot \Phi \left(x^{(i)} ight) + b ight)$
$\operatorname{sign}\left(w\cdot\Phi\left(x ight)+b ight)$
$\operatorname{sign}\left(\sum_{i=1}^{n}\left(\Phi\left(x^{(i)} ight)\cdot\Phi\left(x ight) ight)+b ight)$
Submit
Answers are displayed within the problem
Problem 10
1/1 point (graded) If you are finding a degree 4 decision boundary and if $x\in\mathbb{R}^7$, then the term $x_1x_3x_4x_7^2$ is

part of the expanded feature vector, $\Phi\left(x\right)$.

True
False
✓
Submit
Answers are displayed within the problem
Problem 11
1/1 point (graded) Which is/are the correct kernel function(s), $k\left(x,z\right)$, that is used to find a degree 3 decision boundary? (Here Φ refers to the basis expansion for a degree-3 polynomial boundary.)
$igsqcup k\left(x,z ight) =x\cdot z$
$lacksquare k\left(x,z ight)=\left(1+x\cdot z ight)^{3}$
$igspace{ igspace{\begin{picture}(1,0) \put(0,0){\end{picture} }} k\left(x,z ight) = \Phi\left(x ight) \cdot \Phi\left(z ight) }$
$oxed{ \left[\left[\left[k\left(x,z ight) =\left(1+\Phi \left(x ight) \cdot \Phi \left(z ight) ight) ^{3} ight. }$
✓
Submit
Answers are displayed within the problem
Problem 12

1/1 point (graded)

than vectors that produce low values? More similar Less similar Not a measure of similarity Submit **1** Answers are displayed within the problem Problem 13 1/1 point (graded) True or false: Decision trees typically perform best when they are grown until the training error is 0%. True False Submit **1** Answers are displayed within the problem Problem 14

Overfitting the data with a decision tree will result in which of the following?

1/1 point (graded)

Vectors that produce high values with the kernel function are more similar or less similar

Training error going up		
✓ Training error going down		
✓ Test error going up		
Test error going down		
Submit		
Answers are displayed within the problem		
Problem 15 1/1 point (graded) True or false: When decision stumps are used as weak classifiers for AdaBoost, the final decision boundary is linear.		
True		
False		
Submit		
Answers are displayed within the problem		