The Mathematics of Signal Processing

STEVEN B. DAMELIN Georgia Southern University

WILLARD MILLER, JR. University of Minnesota

Contents

Prefe	ace	page xi
Intro	oduction	1
Nori	med vector spaces	3
1.1	Definitions	4
1.2	Inner products and norms	10
1.3	Finite-dimensional ℓ_p spaces	14
1.4	Digging deeper: completion of inner product spaces	20
1.5	Hilbert spaces, L_2 and ℓ_2	25
1.6	Orthogonal projections, Gram-Schmidt	
	orthogonalization	39
1.7	Linear operators and matrices, LS approximations	46
1.8	Additional exercises	64
Anal	lytic tools	73
2.1	Improper integrals	73
2.2	The gamma functions and beta functions	78
2.3	The sinc function and its improper relatives	79
2.4	Infinite products	83
2.5	Additional exercises	86
Four	ier series	92
3.1	Definitions, real Fourier series and complex Fourier	
	series	92
3.2	Examples	96
3.3	Intervals of varying length, odd and even functions	97
3.4	Convergence results	99
3.5	More on pointwise convergence, Gibbs phenomena	107
3.6	Further properties of Fourier series	113

Contents

	3.7	Digging deeper: arithmetic summability and Fejér's			
		theorem	116		
	3.8	Additional exercises	123		
4	\mathbf{The}	Fourier transform	127		
	4.1	Fourier transforms as integrals	127		
	4.2	The transform as a limit of Fourier series	129		
	4.3	L_2 convergence of the Fourier transform	135		
	4.4	The Riemann–Lebesgue lemma and pointwise			
		convergence	140		
	4.5	Relations between Fourier series and integrals: sampling	146		
	4.6	Fourier series and Fourier integrals: periodization	152		
	4.7	The Fourier integral and the uncertainty principle	154		
	4.8	Digging deeper	157		
	4.9	Additional exercises	161		
5	Con	npressive sampling	164		
	5.1	Introduction	164		
	5.2	Algebraic theory of compressive sampling	168		
	5.3	Analytic theory of compressive sampling	172		
	5.4	Probabilistic theory of compressive sampling	183		
	5.5	Discussion and practical implementation	201		
	5.6	Additional exercises	206		
6	Disc	Discrete transforms 2			
	6.1	Z transforms	208		
	6.2	Inverse Z transforms	211		
	6.3	Difference equations	213		
	6.4	Discrete Fourier transform and relations to Fourier			
		series	214		
	6.5	Fast Fourier transform (FFT)	222		
	6.6	Approximation to the Fourier transform	223		
	6.7	Additional exercises	224		
7	\mathbf{Line}	ear filters	230		
	7.1	Discrete linear filters	230		
	7.2	Continuous filters	233		
	7.3	Discrete filters in the frequency domain	235		
	7.4	Other operations on discrete signals	238		
	7.5	Additional exercises	240		
8	\mathbf{Win}	Windowed Fourier and continuous			
	wave	elet transforms. Frames	242		
	8.1	The windowed Fourier transform	243		

Contents	ix

	8.2	Bases and frames, windowed frames	251	
	8.3	Affine frames	268	
	8.4	Additional exercises	270	
9	Multiresolution analysis			
	9.1	Haar wavelets	272	
	9.2	The multiresolution structure	284	
	9.3	Filter banks and reconstruction of signals	296	
	9.4	The unitary two-channel filter bank system	304	
	9.5	A perfect reconstruction filter bank with $N=1$	306	
	9.6	Perfect reconstruction for two-channel filter banks	307	
	9.7	Halfband filters and spectral factorization	309	
	9.8	Maxflat filters	312	
	9.9	Low pass iteration and the cascade algorithm	317	
	9.10	Scaling functions by recursion: dyadic points	320	
	9.11	The cascade algorithm in the frequency domain	329	
	9.12	Some technical results	332	
	9.13	Additional exercises	335	
10	Discrete wavelet theory			
	10.1	L_2 convergence	345	
	10.2	Accuracy of approximation	354	
	10.3	Smoothness of scaling functions and wavelets	359	
	10.4	Additional exercises	365	
11	Biorthogonal filters and wavelets			
	11.1	Resumé of basic facts on biorthogonal filters	367	
	11.2	Biorthogonal wavelets: multiresolution structure	370	
	11.3	Splines	382	
	11.4	Generalizations of filter banks and wavelets	390	
	11.5	Finite length signals	395	
	11.6	Circulant matrices	397	
	11.7	Additional exercises	400	
12	Parsimonious representation of data			
	12.1	The nature of digital images	402	
	12.2	Pattern recognition and clustering	418	
	12.3	Image representation of data	426	
	12.4	Image compression	429	
	12.5	Additional exercises	433	
	Refer	rences	437	
	Index		443	