Elementární funkce

Exponenciální funkce

Exponenciální funkce jsou funkce typu a^x , kde exponent $x \in \mathbb{R}$ je proměnná a základ a je pevné kladné číslo různé od jedničky, tedy $a \in (0,1) \cup (1,\infty)$. Definičním oborem takových funkcí je celé \mathbb{R} a oborem hodnot $(0,\infty)$. Dále se budete setkávat s tzv. "přirozenou exponenciální funkcí" e^x se základem a = e, kde e je Eulerova konstanta, $e \doteq 2.7182818$. Místo e^x se někdy píše $\exp(x)$.

Poznámka:

Eulerovu konstantu lze definovat jako limitu:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Základní užitečné vzorce:

- $a^{x+0} = a^{0+x} = a^x \cdot a^0 = a^x$.
- $a^x \cdot a^{-x} = a^{x+(-x)} = a^0 = 1$,
- $(a^{\frac{1}{x}})^x = a^1 = a$,
- $\bullet \ a^{x+y} = a^x \cdot a^y,$
- $\bullet \ a^{x-y} = \frac{a^x}{a^y},$
- $\bullet \quad (a^x)^y = a^{xy},$
- $a^{\frac{x}{y}} = \sqrt[y]{a^x}$, kde $y \neq 0$,
- $1^x = 1$ je konstantní funkce a proto se nepovažuje v případě základu a = 1 za funkci exponenciální.

Obrázek 1: Exponenciální funkce a^x pro základy $a=\frac{1}{2}, a=\frac{2}{3}, a=\frac{3}{2}, a=2$ a a=e. Všimněte si symetrie grafů 2^x a $(\frac{1}{2})^x$ a dalších. Platí obecná symetrie grafů a^x a $(\frac{1}{a})^x=a^{-x}$.

Zkuste si načrtnout grafy funkcí e^x , e^{-x} , $-e^x$, $-e^{-x}$.

Logaritmické funkce

Jelikož exponenciální funkce a^x jsou pro základ $a \in (0,1)$ klesající a pro $a \in (1,\infty)$ rostoucí, tedy v obou případech funkce prostě, existují k nim funkce inversní zvané logaritmické. Graf logaritmické funkce $y = \log_a x$ je zrcadlově symetrický podle osy y = x ke grafu funkce a^x .

Nechť tedy $a \in \mathbb{R}, a > 0, a \neq 1$. Inversní funkce k funkci $f(x) = a^x$ se nazývá **logaritmická funkce o základu** a. Značí se $f(x) = \log_a(x)$ nebo bez závorek $\log_a x$. Definiční obor takových logaritmických funkcí je $D(f) = (0, \infty)$ a oborem hodnot je $(-\infty, \infty)$ a platí:

$$\log_a x = y \Leftrightarrow x = a^y$$
.

Přirozený logaritmus je logaritmus se základem a = e a značíme ho $\ln x = \log_e x$. Setkáte se také s **dekadickým logaritmem** se základem a = 10, který se často píše bez základu: $\log x = \log_{10} x$ a který je inversní funkcí k funkci 10^x .

Základní užitečné vzorce pro $a \in (0,1) \cup (1,\infty)$ a $x \in (0,\infty)$:

•
$$\log_e x = \ln x$$
, $\log_{10} x = \log x$,

•
$$\log_a(xy) = \log_a x + \log_a y$$
,

•
$$\log_a(\frac{x}{y}) = \log_a x - \log_a y$$
,

•
$$\log_a(x^p) = p \cdot \log_a x$$
,

•
$$\log_a(\sqrt[p]{x}) = \frac{1}{p} \cdot \log_a x$$
,

•
$$a^x = e^{x \ln a}$$
,

•
$$\log_b x = \log_a x \frac{\ln a}{\ln b}$$
,

•
$$a^x = e^{x \ln a}, b^x = (a^x)^{\frac{\ln b}{\ln a}},$$

•
$$\log_a x = \frac{\ln x}{\ln a}$$
,

•
$$e^{\ln(xy)} = xy = e^{\ln x} e^{\ln y} = e^{\ln x + \ln y}$$
.

•
$$e^{\ln(x/y)} = x/y = e^{\ln x}/e^{\ln y} = e^{\ln x - \ln y}$$

•
$$e^{\ln(x^p)} = x^p = (e^{\ln x})^p = e^{p \ln x}$$
,

•
$$e^{\ln(\sqrt[p]{x})} = \sqrt[p]{x} = x^{1/p} = (e^{\ln x})^{1/p} = e^{(1/p)\ln x}$$
.

Obrázek 2: Logaritmické funkce $\log_a x$ pro $a=\frac{1}{2}, a=\frac{2}{3}, a=\frac{3}{2}, a=2$. Všimněte si, že platí obecná zrcadlová symetrie podle osy c grafů $\log_a x$ a $\log_{1/a} x$.

Zkuste si načrtnout grafy funkcí $\log(x)$, $\log(-x)$, $-\log(x)$, $-\log(-x)$.

Obecná mocninná funkce

U exponenciálních funkcí byl pevný základ a exponentem byla proměnná. U mocninných funkcí je to přesně naopak. Mocninné funkce jsou definovány pro exponenty $p \in \mathbb{N}$ na celém \mathbb{R} a pro záporné celé exponenty na celém $\mathbb{R} \setminus \{0\}$.

Nechť tedy $p \in \mathbb{R}$. Funkce $f(x) = x^p$ je definována vztahem $x^p = e^{p \ln x}$ pro všechna kladná $x \in \mathbb{R}^+ = (0, \infty)$. Pro p > 0 máme $0^p = 0$. V případě celých exponentů $p \in \mathbb{Z}$ lze funkci rozšířit pro $x \in \mathbb{R} \setminus \{0\}$, navíc pokud $p \in \mathbb{N}$, funkce x^p je definována na celém \mathbb{R} .

Základní užitečné vzorce:

- $(xy)^p = x^p \cdot y^p$,
- $\left(\frac{x}{y}\right)^p = \frac{x^p}{y^p}$.

Obrázek 3: Mocninná funkce x^p pro $p=-1, p=0, p=\frac{1}{2}, p=1$ a p=2 na intervalu $(0,\infty)$. Zkuste si načrtnout grafy funkcí $x^1, x^{-1}, x^2, x^{-2}, -x^2, -x^{-2}$ na celém $\mathbb R$.

Goniometrické funkce

Připomeňme si pro začátek, co znáte ze střední školy. Goniometrické funkce se definovaly pro úhel α pravoúhlého trojúhelníku $\triangle ABC$ s úhlem α při vrcholu A, pravým úhlem při vrcholu C, odvěsnami a přeponou jako na obrázku.

- a) sin $\alpha = \frac{a}{c}$, tj. poměr délek protilehlé odvěsny ku přeponě,
- b) $\cos\alpha=\frac{b}{c},$ tj. poměr přilehlé odvěsny ku přeponě,
- c) t
g $\alpha=\frac{a}{b}$, tj. poměr poměr protilehlé odvěsny ku přilehlé odvěsně
- d) $\operatorname{cotg}\alpha=\frac{b}{a},$ tj. poměr p
oměr přilehlé odvěsny ku protilehlé odvěsně.

Obrázek 4: Značení trojúhelníku $\triangle ABC$.

Délka jednotkové kružnice je 2π . Každá chytřejší kalkulačka zvládne přepočítávat úhly na násobky radiánů, pokud byste ale o kalkulačku nedopatřením přišli, můžete využít následující: Délka jednotkové kružnice je 2π , tedy 180° odpovídá π radiánům. Přepočet velikosti úhlu v radiánech na stupně a opačně je tento:

$$x\left[\mathrm{radi\acute{a}n\mathring{u}}\right] = x \cdot \frac{180}{\pi} \left[\mathrm{stup\check{n}\mathring{u}}\right] \quad \text{a naopak} \quad x\left[\mathrm{stup\check{n}\mathring{u}}\right] = x \cdot \frac{\pi}{180} \left[\mathrm{radi\acute{a}n\mathring{u}}\right].$$

Zároveň je dobré umět převádět základní úhly ze stupňů na násobky radiánů a naopak pomocí následující tabulky.

Stupně	0°	30°	45°	60°	90°	180°	270°	360°	540°	720°
Radiány	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	π	$\frac{3}{2}\pi$	2π	3π	4π

Obrázek 5: Funkce $\sin x$, $\cos x$, $\operatorname{tg} x$, $\cot x$.

Goniometrické funkce jsou odvozeny z jednotkové kružnice k se středem v počátku O = [0,0], kde uvažujeme orientovaný úhel s počátečním ramenem \overrightarrow{OA} směřujícím proti směru hodinových ručiček a koncovým ramenem \overrightarrow{OB} , přičemž body A = [1,0] a B jsou průsečíky ramen s kružnicí k. Potom délka orientovaného úhlu AB určuje velikost úhlu x. Bod B má pak souřadnice $[\cos x, \sin x]$. Na vodorovné ose tedy odečítáme kosinus úhlu x a na svislé ose sinus úhlu x. Funkce tangens a kotangens jsou definovány jako podíly:

$$\operatorname{tg} x = \frac{\sin x}{\cos x}, \qquad \cot x = \frac{\cos x}{\sin x}.$$

Rozhodně byste si měli zapamatovat následující tabulku. Jedná se o hodnoty goniometrických funkcí pro základní nejčastěji používané úhly. Dobrou pomůckou je zapamatování si například hodnot funkcí sin x a tg x. Obě funkce jsou na intervalu $\langle 0, \frac{1}{2}\pi \rangle$, naproti tomu funkce $\cos x$ a cotg jsou na daném intervalu klesající a jejich hodnoty jsou v přesně obráceném pořadí.

x	0	$\frac{\pi}{6}$, 30°	$\frac{\pi}{4}$, 45°	$\frac{\pi}{3}$, 60°	$\frac{\pi}{2}$, 90°	$\left(0,\frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},\pi\right)$	$\left(\pi, \frac{3\pi}{2}\right)$	$\left(\frac{3\pi}{2}, 2\pi\right)$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	+ >	+ 🔀	- >	- >
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	+ >	- >	- 7	+ /
tg x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	+ 7	- 7	+ 7	- >
$\cot x$	∞	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	+ >	- >	+ >	- >

Obrázek 6: Průběh funkcí $\sin x$, $\cos x$.

Zde se hodí zmínit některé důležité vlastnosti, které byste měli znát.

a) Definiční obory:

$$D(\sin x) = (-\infty, \infty),$$

$$D(\cos x) = (-\infty, \infty),$$

$$D(\cos x) = (-\infty, \infty),$$

$$D(\cot x) = \bigcup_{k \in \mathbb{Z}} (k\pi, k\pi + \pi).$$

b) Obory hodnot:

$$H(\sin x) = H(\cos x) = \langle -1, 1 \rangle, \qquad H(\operatorname{tg} x) = H(\operatorname{cotg} x) = (-\infty, \infty).$$

c) Funkce $\sin x$, $\tan x$, $\cot x$ jsou **liché** a funkce $\cos x$ je **sudá**.

Obrázek 7: Průběh funkcí $\operatorname{tg} x, \operatorname{cotg} x$.

Užitečné vztahy:

•
$$\sin^2 x = (\sin x)^2,$$

•
$$\sin x = \cos(\frac{\pi}{2} - x),$$

•
$$\operatorname{tg} x = \operatorname{cotg}(\frac{\pi}{2} - x),$$

$$\bullet \quad \sin^2 x + \cos^2 x = 1,$$

•
$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$$
,

•
$$\sin(2x) = 2 \cdot \sin x \cdot \cos x$$
,

•
$$\sin^2 x = \frac{1}{2}(1 - \cos(2x)),$$

•
$$\sin u + \sin v = 2 \cdot \sin \frac{u+v}{2} \cdot \cos \frac{u-v}{2}$$
,
• $\sin u + \sin v = 2 \cdot \sin \frac{u+v}{2} \cdot \cos \frac{u-v}{2}$,
• $\cos u + \cos v = 2 \cdot \cos \frac{u+v}{2} \cdot \cos \frac{u-v}{2}$,
• $\cos u + \cos v = 2 \cdot \cos \frac{u+v}{2} \cdot \sin \frac{u-v}{2}$.

•
$$\sin u - \sin v = 2 \cdot \cos \frac{u+v}{2} \cdot \sin \frac{u-v}{2}$$
,

•
$$\sin x^2 = \sin(x^2),$$

•
$$\cos x = \sin(\frac{\pi}{2} - x),$$

•
$$\cot x = \operatorname{tg}(\frac{\pi}{2} - x),$$

•
$$\operatorname{tg} x \cdot \operatorname{cotg} x = 1$$
,

•
$$\cos(x \pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y$$
,

$$\bullet \quad \cos(2x) = \cos^2 x - \sin^2 x,$$

•
$$\cos^2 x = \frac{1}{2}(1 + \cos(2x)),$$

•
$$\cos u + \cos v = 2 \cdot \cos \frac{u+v}{2} \cdot \cos \frac{u-v}{2}$$
,

•
$$\cos u - \cos v = -2 \cdot \sin \frac{u+v}{2} \cdot \sin \frac{u-v}{2}$$

Zkuste si načrtnout grafy funkcí $\sin(\frac{1}{x}), x \cdot \sin(\frac{1}{x}), \sin(2x), \sin(\frac{x}{2}), \cos(2x), \cos(\frac{x}{2}).$

Cyklometrické funkce

Cyklometrické funkce jsou inversní funkce ke goniometrickým. Je potřeba mít na paměti, že goniometrické funkce jsou periodické, a tím pádem nejsou prosté. Proto při hledání inversní funkce musíte vždy určit takový interval, aby na něm byla goniometrická funkce prostá. Ze všech možných intervalů vybíráme intervaly nejblíže k nule, které obsahují kladná čísla, tedy:

- $\sin x$ je prostý z $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ na $\langle -1, 1 \rangle$, inversní funkcí je arcsin x,
- cos x je prostý z $(0, \pi)$ na (-1, 1), inversní funkcí je arccos x,
- tg x je prostý z $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ na $\langle -\infty, \infty \rangle$, inversní funkcí je arctg x,
- cot
gxje prostý z $\langle 0,\pi\rangle$ na $\langle -\infty,\infty\rangle,$ inversní funkcí je arc
cotgx.

Cyklometrické funkce jsou tedy definovány následovně:

- a) Funkce **arkus sinus** je inversní k funkci sinus na $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$, tj. pro $x \in \langle -1, 1 \rangle$ platí $\arcsin x = y$, pokud $\sin y = x$ a $y \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$.
- b) Funkce **arkus kosinus** je inversní k funkci kosinus na $\langle 0, \pi \rangle$, tj. pro $x \in \langle -1, 1 \rangle$ platí $\arccos x = y$, pokud $\cos y = x$ a $y \in \langle 0, \pi \rangle$.
- c) Funkce **arkus tangens** je inversní k funkci tangens na $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$, tj. pro $x \in \mathbb{R}$ platí arctg x = y, pokud tg y = x a $y \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$.
- d) Funkce **arkus kotangens** je inversní k funkci kotangens na $\langle 0, \pi \rangle$, tj. pro $x \in \mathbb{R}$ platí arccotg x = y, pokud cotg y = x a $y \in \langle 0, \pi \rangle$.

Obrázek 8: Průběh funkcí $\sin x, \cos x$ a k nim inversních funkcí $\arcsin x, \arccos x$.

Zde se hodí zmínit některé důležité vlastnosti, které byste měli znát.

x	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	(-1,1)
$\arcsin x$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	7
$\arccos x$	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	7

Obrázek 9: Průběh funkcí t
gx, cotgx a k nim inversních funkcí arct
gx, arccotgx.

x	$-\infty$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	$(-\infty,\infty)$
$\operatorname{arctg} x$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	7
$\operatorname{arccotg} x$	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	7

a) Definiční obory:

$$D(\arcsin x) = D(\arccos x) = \langle -1, 1 \rangle, \qquad D(\operatorname{arctg} x) = D(\operatorname{arccotg} x) = (-\infty, \infty).$$

b) Obory hodnot:

$$H(\arcsin x) = \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle \qquad H(\arccos x) = \langle 0, \pi \rangle,$$

$$H(\operatorname{arctg} x) = (-\frac{\pi}{2}, \frac{\pi}{2}), \qquad H(\operatorname{arccotg} x) = (0, \pi).$$

c) Funkce $\arcsin x$, $\arccos x$ jsou rostoucí a funkce $\arctan x$, $\operatorname{arccotg} x$ jsou klesající.

Hyperbolické funkce

Hyperbolické funkce mají velice podobné vlastnosti jako goniometrické funkce a mají některé aplikace v mechanice.

• Hyperbolický sinus $\sinh x$:

$$\sinh x = \frac{1}{2}(e^x - e^{-x}).$$

• Hyperbolický kosinus $\cosh x$:

$$\cosh x = \frac{1}{2}(e^x + e^{-x}).$$

• Hyperbolický tangens tgh x:

$$tgh x = \frac{\sinh x}{\cosh x}.$$

• Hyperbolický kotangens $\cot x$:

$$\operatorname{cotgh} x = \frac{\cosh x}{\sinh x}.$$

Obrázek 10: Průběh funkcí $\sinh x$, $\cosh x$, $\tanh x$, $\coth x$.

Zde se hodí zmínit některé důležité vlastnosti, které byste měli znát.

a) Definiční obory:

$$D(\sinh x) = \mathbb{R}$$
 $D(\cosh x) = \mathbb{R},$ $D(\coth x) = \mathbb{R} \setminus \{0\}.$

b) Obory hodnot:

$$H(\sinh x) = \mathbb{R},$$
 $H(\cosh x) = \langle 1, \infty \rangle,$
 $H(\tanh x) = (-1, 1),$ $H(\coth x) = (\infty, -1) \cup (1, \infty).$

c) Funkce $\sinh x$, $\tanh x$, $\coth x$ je sudá.

Transformace grafů funkcí

Měli byste znát nejenom elementární funkce ale i to, jak se mění jejich grafy při jednoduchých lineárních transformacích.

Záměna hodnoty funkce, tj. závisle proměnné y

Mějme funkci f(x) s definičním oborem $D(f) = \langle a, b \rangle$ a oborem hodnot $H(f) = \langle A, B \rangle$. Při následujících transformacích se mění **obor hodnot** a graf funkce.

- a) **Přičtení konstanty** f(x) + D Obor hodnot se posune o D. Pokud je tedy D > 0 graf se posune o D "nahoru", pokud záporné, pak o D "dolů".
- b) **Násobek konstanty** $C \cdot f(x)$ Pokud je C > 1 obor hodnot se C-krát "roztáhne" ve svislém směru. Pokud je 0 < C < 1, graf funkce se C-krát "stáhne". Analogicky, pokud je C < -1, graf se převrátí kolem osy x a |C|-krát se "roztáhne". Pokud je -1 < C < 0, graf se převrátí a |C|-krát se "stáhne".
- c) **Absolutní hodnota** |f(x)| Pokud má graf funkce záporné funkční hodnoty, daná část grafu se "překlopí" souměrně kolem osy x do kladných hodnot.
- d) **Maximum** $\max(f(x), g(x))$ Maximum dvou funkcí se stejným definičním oborem vybere z obou grafů vyšší funkční hodnoty.
- e) **Minimum** $\min(f(x), g(x))$ Minimum dvou funkcí se stejným definičním oborem vybere z obou grafů nižší funkční hodnoty.

Obrázek 11: Posunutí hodnot funkce a násobek hodnot funkce.

Obrázek 12: Funkce absolutní hodnota, minimum a maximum ze dvou funkcí.

Záměna argumentu funkce, tj. závislé proměnné \boldsymbol{x}

Mějme funkci f(x) s definičním oborem $D(f) = \langle a, b \rangle$ a oborem hodnot $H(f) = \langle A, B \rangle$. Při následujících lineárních transformacích se mění **definiční obor** a graf funkce.

- a) **Přičtení konstanty k argumentu** f(x+d) Definiční obor se posune o d doleva, pokud je d > 0. Pokud je d < 0, pak se posune o |d| doprava.
- b) **Násobek argumentu** $f(c \cdot x)$ Pokud je c > 1, graf se ve vodorovném směru c-krát "zúží", protože argument roste c-krát rychleji. Pokud je 0 < c < 1, funkce se c-krát "roztáhne". Analogicky, pokud je c < -1, graf se "otočí" kolem osy y a |c|-krát se "zúží". Pokud je -1 < c < 0, graf se "otočí" kolem osy y a |c|-krát se "zúží".
- c) **Absolutní hodnota argumentu** f(|x|) Pro kladná x se graf funkce nezmění. Pro záporná x se graf "překlopí" kolem osy y do kladné poloroviny.

Obrázek 13: Funkce f(x+d) s posunutým argumentem a f(cx) s vynásobeným argumentem.

Obrázek 14: Funkce f(|x|) s argumentem v absolutní hodnotě.