

CAMBRIDGE INSTITUTE OF TECHNOLOGY

K.R. PURAM, BENGALURU-560036.

Department of Basic Sciences

Preparatory Examination - Odd Semester 2018-19

Sub. Name: Calculus and Linear Algebra

Sub. Code: 18MAT11

Semester: I

Date: 07-01-2019

Time: 9:00 AM

Duration: 3 Hours

Max. Marks: 100

NOTE:

Answer five full questions, choosing one from each module, each full question carries maximum of 15 Marks.

Sl. No.	QUESTIONS	COs	RBT Levels	Marks
1	Module - I	COI	L1	06M
	a) Find the Pedal equation of the curve $\frac{2a}{r} = 1 + \cos \theta$.			
	b) Determine the center of curvature of the parabola $y^2 = 4ax$ at (x, y) . Also find the equation of the evolute of the given parabola.	COI	1.2	07M
	c) Determine the radius of curvature of the curve $y^2 = \frac{a^2(a-x)}{x}at(a,0)$.	CO1	L2	07M
	OR			
2	a) Find the Pedal equation of the curve $r = a \csc^2 \frac{\theta}{2}$.	COI	LI	06M
	b) Determine the angle of intersection between the curves $r'' = a'' (\sin n\theta + \cos n\theta)$ and $r'' = a'' \sin n\theta$.	COI	L2	07M
	c) Show that the square of radius of curvature of the curve $r(1-\cos\theta) = 2a$	COI	L2	07M
	varies as r^3 .			
3	Module - II		1-01	41.86
	a) Find the value of the indeterminate form $\lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x}$.	CO2	LI	06M
	b) If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$ prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.	CO2	L2	07M
	c) Determine the stationary values of $f(x, y, z) = x^2 y^3 z^4$ subject to the condition $x + y + z = 5$ using Lagrange's method of undetermined multipliers.	CO2	L2	07M

Page 1 of 3

-	and the same of th			
4	OR a) Express tan 'x in Maclaurin's series up to the terms containing fifth degree.	Con		000
	series of to the terms containing 11th degree.	CO2	D	06M
	b) Determine the total derivative of $u = \tan^{-1} \left(\frac{x}{y} \right)$ where $x = 2t$, $y = 1 - t^2$.	CO2	L2	07M
	c) Determine the maximum and minimum values of $\sin x \sin y + \sin(x+y)$.	CO2	L2	07M
5	Module - III	-	-	-
	a) Determine the value of $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$ by changing into polar coordinates.	соз	1.2	06M
	b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	CO3	L2	07M
	c) Use double integration to find the volume of a tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes.	CO3	L3	07M
	a b c			
	OR			
9	a) Determine the value of $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz dz dy dx.$	CO3	L2	06M
	b) Determine the value of $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$ by changing the order of integration.	CO3	L2	07M
	c) Use double integration to find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.	CO3	L3	07M
7	Module - IV			
	a) Find the general solution and singular solution of $xp^2 + px - py + 1 - y = 0$.	CO4	LI	06M
	b) A series circuit with resistance R, inductance L and electromotive force E is governed by the differential equation $L \frac{di}{dt} + Ri = E$, where L and R are	CO4	L2	07M
	constants and initially the current' i ' is zero. Determine the current at any time t.			
	c) Solve $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$.	CO4	L3	07M
-		-	-	Lamana

Page 2 of 3

	00	1	10000	
8	 a) Find the orthogonal trajectories of the family of curves x²/a² + y²/b²+λ = 1, where 'λ' being the parameter. b) If the temperature of air is 30°C and a metal ball cools from 100°C to 70°C in 15 minutes, determine the time taken by the metal ball to reach a temperature of 40°C? 	CO4	1.1	06M 07M
	c) Determine the general and singular solution of $(px-y)(x-py) = 2p$, by using the substitution $x^2 = X$ and $y^2 = Y$.	CO4	L3	07M
9	a) Test for consistency and hence find the solution for the system of linear equations $x + 2y + 3z = 14$; $4x + 5y + 7z = 35$; $3x + 3y + 4z = 8$.	CO5	LI	06M
	b) Determine the largest eigen value and the corresponding Eigen vector for the given matrix by Rayleigh power method, considering [1 0 0]' as an initial eigen vector(carry out 6 iterations): $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$	COS	L2	07M
	c) Solve the following system of equations using Gauss-Jordan method $x + 4y - z = -5$; $x + y - 6z = -12$; $3x - y - z = 4$.	CO5	L3	07M
10	OR a) Find the values of λ and μ for which the following system of equations has (i) no solution (ii) a unique solution and (ii) infinite number of solutions $x+y+z=6$; $x+2y+3z=10$; $x+2y+\lambda z=\mu$.	CO5	LI	06M
	b) Reduce the matrix $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$ into diagonal form.	CO5	L2	07M
	c) Find the solution for the given system of equations using Gauss-Seidel iterative method $2x-3y+20z=25$; $20x+y-2z=17$; $3x+20y-z=-18$.	COS	L3	07M

END