FIGURE 1

TPVgp38aa Yabagp38	1 TLKYCYTVTLKDNGLYDKVFYCHYN 25 1 MNKLILSLLGFVATCNCITLRYNYTVTVK-NGLYDGVFFDYYNDQLVTRI 49 **.* ****.* **** **. **	
TPVgp38aa Yabagp38	26 25 (SEQ ID NO: 1) 50 SYNHETKRGNVN 61 (SEQ ID NO: 2)	

FIGURE 2

YMTV partial gp38 gene (183 nucleotide):

5'
ATGAATAAGTTAATTTTATCGTTGTTGGGTTTTGTGGCAACTTGCAATTGTATAACCTTAAGATATAATTATACCGTTA
CGGTAAAGAATGGATTATACGACGGGGTATTTTTTGATTATTACAACGATCAGTTAGTAACGAGGATATCATAAATCA
TGAAACCAAACGAGGAAATGTAAAT (SEQ ID NO: 3)

YMTV partial gp38 gene (61 amino acid):

5'
MNKLILSLLGFVATCNCITLRYNYTVTVKNGLYDGVFFDYYNDQLVTRISYNHETKRGNVN (SEQ ID NO: 2)

MNKLILFSTIVAVCNCITLKYNYTVTLKDNGLYDGVFYDHYNDQLVTKISYNHETRHGNVNFRADWFKIS RSPHTPGNDYNFNFWYSLMKETLEEINKNDSTKTTSLSLITGCYETGLLFGSYGYVETANGPLARYHTGD KRFTKMTHKGFPKVGMLTVKNTLWKDVKTYLGGFEYMGCSLAILDYQKMAKGEIPKDTTPTVKVTGNELE DGNMTLECSVNSFYPPDVITKWIESEHFKGEYKYVNGRYYPEWGRKSDYEPGEPGFPWNIKKDKDANTYS LTDLVRTTSKMSSQLVCVVFHDTLEAQVYTCSEGCNGELYDHLYRKTEEGEGEEDEED*

Tana gp38:

AAGCTTCATGAATAAGTTAATATTATTTAGCACAATTGTAGCAGTTTGTAACT GCATAACTTTAAAATATAATTATACTGTTACGTTAAAAGATAATGGGTTATAC GATGGAGTATTTTACGATCATTACAACGATCAGTTAGTAACGAAAATATCAT ATAACCACGAAACTAGACACGGAAACGTAAATTTTAGGGCTGATTGGTTTAA TATTTCTAGGAGTCCCCACACGCCAGGTAACGATTACAACTTTAACTTTTGGT ATTCTTTAATGAAAGAAACTTTAGAAGAAATTAATAAAAACGATAGCACAAA AACTACTTCGCTTTCATTAATCACTGGGTGTTATGAAACAGGATTATTATTTG GTAGTTATGGGTATGTAGAAACGGCCAACGGACCGTTGGCCAGATACCATAC AGGAGATAAAAGGTTTACGAAAATGACACATAAAGGTTTTCCCAAGGTTGGA ATGTTAACTGTAAAAAACACTCTTTGGAAAGATGTAAAAACTTATCTAGGCG GTTTTGAATACATGGGATGTTCATTAGCTATTTTAGATTACCAAAAAATGGCT AAAGGTGAAATACCAAAAGATACAACACCTACAGTGAAAGTAACGGGTAAT GAGTTAGAAGATGGTAACATGACTCTTGAATGCAGTGTAAATTCATTTTACCC TCCTGACGTAATTACTAAGTGGATAGAAAGCGAACATTTTAAAGGTGAATAT AAATATGTTAACGGAAGATACTATCCAGAATGGGGGAGAAAATCCGATTATG AGCCAGGAGAGCCAGGTTTTCCATGGAATATTAAAAAAGATAAAGATGCAA ACACATATAGTTTAACAGATTTAGTACGTACAACATCAAAAATGAGTAGTCA ACTAGTATGTGTTTTCCATGACACTTTAGAAGCGCAAGTTTATACTTGTT CTGAAGGATGCAATGGAGAGCTATACGACCACCTATATAGAAAAAACAGA AGAAGGAGAAGGTGAAGAGGATGAAGAAGACGGAAACCCTCGAG

MDKLLLFSTIVAVCNCITLKYNYTVTLKDDGLYDGVFYDHYNDQLVTKISYNHETRHGNVNFRADWFNIS RSPHTPGNDYNFNFWYSLMKETLEEINKNDSTKTTSLSLITGCYETGLLFGSYGYVETANGPLARYHTGD KRFTKMTHKGFPKVGMLTVKNTLWKDVKAYLGGFEYMGCSLAILDYQKMAKGKIPKDTTPTVKVTGNELE DGNMTLECTVNSFYPPDVITKWIESEHFKGEYKYVNGRYYPEWGRKSNYEPGEPGFPWNIKKDKDANTYS LTDLVRTTSKMSSQPVCVVFHDTLEAQVYTCSEGCNGELYDHLYRKTEEGEGEEDEED*

FIG. 5

YLD gp38:

ATGGATAAGTTACTATTATTTAGCACAATTGTAGCAGTTTGTAACTGCATAAC TTTAAAATATAATTATACTGTTACGTTAAAAGATGATGGGTTATACGATGGAG TATTTTACGATCATTACAACGATCAGTTAGTGACGAAAATATCATATAACCAT GAAACTAGACACGGAAACGTAAATTTTAGGGCTGATTGGTTTAATATTTCTA GGAGTCCCCACACGCCAGGTAACGATTATAACTTTAACTTTTGGTATTCTTTA ATGAAAGAAACTTTAGAAGAAATTAATAAAAACGATAGCACAAAAACTACTT CGCTTTCATTAATCACTGGGTGTTATGAAACAGGATTATTATTTGGTAGTTAT GGGTATGTAGAAACGGCCAACGGGCCGTTGGCCAGATACCATACAGGAGAT AAAAGGTTTACGAAAATGACACATAAAGGTTTTCCCAAGGTTGGAATGTTAA CTGTAAAAAACACTCTTTGGAAAGATGTAAAAGCTTATTTAGGCGGTTTTTGA ATATATGGGATGTTCATTAGCTATTTTAGATTACCAAAAAATGGCTAAAGGTA AAATACCAAAAGATACAACACCTACAGTGAAAGTAACGGGTAATGAGTTAG AAGATGGTAACATGACTCTTGAATGCACTGTAAATTCATTTTACCCTCCTGAC GTAATTACTAAGTGGATAGAAAGCGAACATTTTAAAGGTGAATATAAATATG TTAACGGAAGATACTATCCAGAATGGGGGAGAAAATCCAATTATGAGCCAGG AGAGCCAGGTTTTCCATGGAATATCAAAAAAGATAAAGATGCAAATACATAT AGTTTAACAGATTTAGTACGTACAACATCAAAAATGAGTAGTCAACCAGTAT GTGTTGTTTTCCATGACACTTTAGAAGCGCAAGTTTATACTTGTTCTGAAGGA TGCAATGGAGAGCTATACGATCACCTATATAGAAAAACAGAAGAAGGG GAAGGTGAAGAGGATGAAGAAGACTGA

MITKAIVILSIITAYVDASAFLVYNYTYTLQDDNHRYDFEVTDYFNDILIKRLKLNSETGRPELRNEPPT WFNETKIRYYPKNNYNFMFWLNRMSETLDEINKLPETSNPYKTMSLTIGCTDLRQLQVNFGYVTVGGNIW TRFDPKNKRFSKVRSRTFPKVGMLTVKSQHWERVMEHLGSMVTLTCPFTADDYYKISKGYIDKPVKPTVT VTGIERGDNTTLICTFDNHYPSSVAVKWYNIEDFAPDYRYDPYVNELLPDTDYLPGEPGYPTITRRLGDK YLFTSSPRVMVPTIMSNRIACVGFHSTLEPSIYRCVNCSGPEPVLQYQGDRRNDLEDEED

Swinepox C1L

ATGATTACTAAAGCGATTGTGATATTGTCTATTATTACAGCATATGTAGATGC TTCCGCATTCTTAGTATACAATTATACATATACTTTACAAGATGATAATCATC GATATGACTTCGAAGTCACCGATTATTTTAATGATATACTAATAAAACGTTTA AAACTAAATAGCGAGACAGGAAGACCAGAATTAAGAAATGAACCACCAACA TGGTTTAATGAGACTAAGATTAGATATTATCCGAAAAATAATTATAATTTTAT GAAACGAGTAATCCTTACAAGACTATGTCCTTGACAATTGGATGTACTGATCT AAGACAACTTCAAGTAAATTTCGGTTATGTTACTGTAGGTGGTAATATATGGA CACGATTCGACCCCAAGAATAAACGCTTTAGTAAAGTTAGATCACGTACATT TCCAAAGGTAGGAATGTTAACTGTTAAATCACAACACTGGGAACGTGTTATG GAACATCTTGGATCAATGGTAACATTAACATGTCCGTTTACAGCGGATGATTA TTATAAAATTTCTAAGGGATATATAGATAAGCCAGTTAAGCCTACTGTTACAG TTACAGGAATTGAAAGAGGAGATAATACTACATTGATATGCACATTTGATAA TCATTATCCGTCGTCGCTCGTTAAATGGTATAACATCGAGGACTTTGCTC CGGACTATCGTTATGATCCGTACGTAAATGAATTGCTTCCTGATACGGACTAT CTACCGGGTGAACCAGGATATCCGACTATAACTAGGAGATTAGGTGATAAAT ATTTATTTACATCACCTAGGGTTATGGTACCAACTATCATGTCTAATAGA ATAGCATGTGTTGGATTTCATAGTACGTTAGAACCAAGCATATATAGATGTGT AAACTGCTCGGGACCTGAGCCTGTTTTACAATACCAGGGAGAT AGAAGGAATGACTTGGAGGATGAGGAGGATTAA

ClustalW Formatted Alignments

10	70 80 100 110	130 LFGSYGYVETANGPLARYHTGDKRFTKMTHKGFPKVGMLTVKNTLWKDVKTYLGG LFGSYGYVETANGPLARYHTGDKRFTKMTHKGFPKVGMLTVKNTLWKDVKTYLGG LFGSYGYVESSGGPLARYSTKMTHKGFPKVGMLTVKNTLWKDVKTYLGG LPGSYGYVESSGGPLARYSTKDKKFLKMTDKGFPKVGMLTVKNTLWKDVKAYLGG LPGSYGVVESSGGPLARYSTKNTKMTHKGFPKVGMLTVKNTLWKKDVKAYLGG LPGSYGVVESSGGPLARYSTKNTKKFLKMTDKGFPKVGMLTVKNTVKNTVGG	CS LAILDYQKMAKGEIPKDTTPTVKVTGNELEDGNMTLECSVNSFYPPDVITKWICLLAIFDYQKMAKGKIPKDTTPTVKVTGNELEDGNMTLECTVNSFYPPDVITKWICLLAIFDYQKMAKKGYNMIPSNVMPTVTGEELQDGNTTLECTVNSFYPPDVITKWICLLAIFDYQKMAKNNIPSNVMPTVTVTGEELQDGNTTLKCNVKSFYPPDVNITKWICLFTADDYVKISKGYTDVMITKWI	250 280 280 280 280 280 280 280 280 280 28	310 320 330 340 350 350 350 360 360 360 360 360 360 360 360 360 36
M N K L 1 L M N K L 1 L M N K L 1 L S M 1 T K A I V I	R H G N V N F R R H G N V N F R R H G N V N F R R R H G N V N S R R P E L R N E P	000>	7774	西	HHI
IPV ga38 26aa (pepilde) PV ga38 YLDV ga38 YMIV ga38 SPV_C1L	TPV gp38 26aa (pepilde) TPV gp38 YLDV gp38 YMTV gp38 SPV_C1L	TPV gp38 2800 (peptide) TPV gp38 YLDV gp38 YM1V gp38 SPV_C1L	TPV gp38 28aa (peplide) TPV gp38 YLDV gp38 YMIV gp38 SPV_C11	TPV gp38 2&co (pepilde) YLPV gp38 YMTV gp38 SPV_C1L	IPV gp38 2&aa (peptide) IPV gp38 YLDV gp38 YMIV gp38 SPV_C1L