Aluno: André Luiz N. Carneiro RA: 92854

FUNDAÇÃO HERMÍNIO OMETTO

Atividade – Automação Industrial

Bruno Eduardo

ARARAS/SP

04/2021

1. Controle de trafego:

Deseja-se programar um controle de trafego para um túnel que só permite a passagem de um carro por vez. Conforme ilustração:

A prefeitura que encomendou o projeto tem os seguintes critérios:

Quando os sensores detectarem a presença do carro, um nível lógico alto (ON) será enviado ao seu respectivo dispositivo de atuação.

- a) Se não houver nenhum carro, a via B deverá ser liberada (sinal verde) e a via A bloqueada (sinal vermelho).
- b) Se o sensor detectar carro na via B, esta será liberada (sinal verde) e a via A bloqueada (sinal vermelho).
- c) Se o sensor detectar carro na via A, esta será liberada (sinal verde) e a via B bloqueada (sinal vermelho).
- d) Se ambos os sensores detectarem carros, a via A deverá ser liberada (sinal verde) e a via B bloqueada (sinal vermelho).

SPVA	SPVB	Funcionamento		
OFF	OFF	Caso não tenha nenhum carro, a via B terá o sinal verde ficando disponível e a via A bloqueada (sinal vermelho)		
OFF	ON	Se o sensor detectar o carro localizado na via B, esta será liberada (sinal verde) - Tendo a via A Bloqueada (sinal vermelho)		
ON	OFF	Caso o sensor detectar o carro na via A, esta será liberada (sinal verde) e consequentemente a via B sera bloqueada (sinal vermelho)		
ON	ON	Se os dois sensores detectarem os carros em ambas as vias, a via A será liberada (sinal verde) e a via B bloqueada (sinal vermelho)		

Com esses dados, podemos obter as seguintes tabelas verdades:

SPVA(AS)	SPVB(SB)	
0	0	
0	1	
1	0	
1	1	

Vermelho (VMA)	Verde A (VDA)	Vermelho B (VMB)	Verde B (VDB)
1	0	0	1
1	0	0	1
0	1	1	0
0	1	1	0

Com isso, extraímos as seguintes expressões lógicas:

$$VMA = VDB = (SA' \cdot SB') + (SA' \cdot SB)$$

$$VMB = VDA = (SA . SB') + (SA.SB)$$

Montando o circuito Lógico, temos:

Figura 1 - Circuito Lógico

Por fim, a programação Ladder:

Figura 2 - Programação Ladder