Solución Test 3 Cálculo Integral Profesor Patricio Cumsille 25 de Mayo de 2016

P1. Determine el área del manto del sólido engendrado al rotar, en torno al eje OY, el trozo de la curva $y = \frac{x^2}{2}$ comprendido entre 0 y 1.

Solución: Como piden rotar en torno al eje OY, hay que ver la curva como una función de y, es decir, x = g(y), donde claramente $g(y) = \sqrt{2y}$ para y entre 0 y $\frac{1}{2}$. Luego, aplicando la fórmula del área del manto para un sólido de revolución obtenemos:

$$A = \int_0^{\frac{1}{2}} 2\pi g(y) \sqrt{1 + g'(y)^2} dy = 2\pi \int_0^{\frac{1}{2}} \sqrt{2y} \sqrt{1 + \left(\frac{1}{\sqrt{2y}}\right)^2} dy = 2\pi \int_0^{\frac{1}{2}} \sqrt{2y + 1} dy.$$

Luego, integrando obtenemos

$$A = 2\pi \int_0^{\frac{1}{2}} (2y+1)^{\frac{1}{2}} dy = 2\pi \frac{2}{3} \frac{1}{2} (2y+1)^{\frac{3}{2}} \Big|_0^{\frac{1}{2}} = \frac{2\pi}{3} \left(2^{\frac{3}{2}} - 1 \right) = \frac{2\pi}{3} \left(2\sqrt{2} - 1 \right) .$$

P2. Sea $f(x) = x\sqrt{1-x^2}$ y considere

$$R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le f(x)\}.$$

1. Encuentre el área de la región R.

Solución: Claramente R es la región encerrada por la curva y = f(x) y el eje OX entre x = 0 y x = 1. Luego, haciendo el cambio de variables $u = 1 - x^2$ tenemos que du = -2xdx y entonces:

$$A(R) = \int_0^1 f(x)dx = -\frac{1}{2} \int_1^0 \sqrt{u}du = \frac{1}{2} \left. \frac{2}{3} u^{\frac{3}{2}} \right|_0^1 = \frac{1}{3}.$$

2. Encuentre el volumen del sólido de revolución que se obtiene al rotar la región R en torno al eje OX.

Solución: Aplicando la fórmula del volumen de un sólido de revolución obtenido al rotar una región en torno al eje OX obtenemos:

$$V(R) = \pi \int_0^1 f(x)^2 dx = \pi \int_0^1 x^2 (1 - x^2) dx = \pi \left(\frac{x^3}{3} - \frac{x^5}{5} \right) \Big|_0^1 = \pi \left(\frac{1}{3} - \frac{1}{5} \right) = \frac{2\pi}{15}.$$

1

P3. Calcule el largo de la curva $c(t) = e^{-bt}$ para $t \in [0, 1]$.

Indicación: Para calcular la primitiva de $\sqrt{1+ae^{bt}}$ se sugiere hacer el cambio de variables $u=\sqrt{1+ae^{bt}}$.

Solución: Aplicando la fórmula del largo de una curva obtenemos:

$$L = \int_0^1 \sqrt{1 + (-be^{-bt})^2} dt = \int_0^1 \sqrt{1 + b^2 e^{-2bt}} dt.$$

Utilizando la indicación, al hacer el cambio de variables $u = \sqrt{1 + b^2 e^{-2bt}}$ tenemos que

$$du = \frac{1}{2} \left(1 + b^2 e^{-2bt} \right)^{-\frac{1}{2}} \left(-2b b^2 e^{-2bt} \right) dt = -b^3 e^{-2bt} \left(1 + b^2 e^{-2bt} \right)^{-\frac{1}{2}} dt.$$

Despejando e^{-2bt} de $u=\sqrt{1+b^2e^{-2bt}}$ y despejando dt de la igualdad anterior obtenemos:

$$e^{-2bt} = \frac{u^2 - 1}{b^2}$$
 y $dt = -\frac{\left(1 + b^2 e^{-2bt}\right)^{\frac{1}{2}}}{b^3 e^{-2bt}} du = -\frac{u}{b^3 \frac{u^2 - 1}{b^2}} du = -\frac{u}{b(u^2 - 1)} du$.

Luego, reemplazando u y dt tenemos:

$$\int \sqrt{1+b^2e^{-2bt}}dt = -\frac{1}{b}\int \frac{u^2}{u^2-1}du = -\frac{1}{b}\int \left(1+\frac{1}{u^2-1}\right)du = -\frac{1}{b}\left(u+\int \frac{1}{u^2-1}du\right). \tag{1}$$

Aplicando fracciones parciales para calcular la integral del lado derecho de la igualdad anterior, tenemos que:

$$\frac{1}{u^2 - 1} = \frac{A}{u + 1} + \frac{B}{u - 1} \Longrightarrow A(u - 1) + B(u + 1) = 1.$$

De la igualdad anterior sale que $A = -\frac{1}{2}$ y $B = \frac{1}{2}$. Luego,

$$\int \frac{1}{u^2 - 1} du = \frac{1}{2} \left(\int \frac{1}{u - 1} du - \int \frac{1}{u + 1} du \right) = \frac{1}{2} \left(\ln|u - 1| - \ln|u + 1| \right) + C = \frac{1}{2} \ln\left| \frac{u - 1}{u + 1} \right| + C.$$

Reemplazando la igualdad anterior en (1) y devolviendo el cambio de variables $u = \sqrt{1 + b^2 e^{-2bt}}$ llegamos a:

$$L = -\frac{1}{b} \left[\sqrt{1 + b^2 e^{-2bt}} + \frac{1}{2} \ln \left(\frac{\sqrt{1 + b^2 e^{-2bt}} - 1}{\sqrt{1 + b^2 e^{-2bt}} + 1} \right) \right]_0^1$$

$$= -\frac{1}{b} \left[\sqrt{1 + b^2 e^{-2b}} + \frac{1}{2} \ln \left(\frac{\sqrt{1 + b^2 e^{-2b}} - 1}{\sqrt{1 + b^2 e^{-2b}} + 1} \right) - \sqrt{1 + b^2} - \frac{1}{2} \ln \left(\frac{\sqrt{1 + b^2} - 1}{\sqrt{1 + b^2} + 1} \right) \right]$$

$$= \frac{1}{b} \left[\sqrt{1 + b^2} - \sqrt{1 + b^2 e^{-2b}} + \frac{1}{2} \ln \left(\frac{\sqrt{1 + b^2} - 1}{\sqrt{1 + b^2} + 1} \cdot \frac{\sqrt{1 + b^2 e^{-2b}} + 1}{\sqrt{1 + b^2 e^{-2b}} - 1} \right) \right].$$

Observación: Notar que L>0 como debe ser, ya que por un lado $\sqrt{1+b^2}>\sqrt{1+b^2e^{-2b}}$ y por otro lado el argumento del logaritmo natural es mayor que uno. Lo anterior se tiene gracias a que $e^{-2b}<1$ para todo b>0.