f-Vectors of Triangulated Balls

Samuel Kolins

Cornell University

April 18, 2010

Background

Excluding Possible h-vectors: A Combinatorial Approach

- 3 Excluding Possible h-vectors: An Algebraic Approach
- 4 Constructions and a Conjecture for Dimension Five

f,h, and g vectors

Let Δ be a simplicial complex of dimension (d-1). The *face numbers* of Δ , denoted by $f_i(\Delta)$, are the number of *i*-dimensional faces of Δ .

The f-vector of Δ is the list of the face numbers, $f(\Delta) := (f_{-1}, f_0, f_1, \dots, f_{d-1})$.

f,h, and g vectors

Let Δ be a simplicial complex of dimension (d-1). The *face numbers* of Δ , denoted by $f_i(\Delta)$, are the number of *i*-dimensional faces of Δ .

The f-vector of Δ is the list of the face numbers, $f(\Delta) := (f_{-1}, f_0, f_1, \dots, f_{d-1})$.

The h-vector of Δ , $h(\Delta) = (h_0, h_1, \ldots, h_d)$ contains the same combinatorial information as the f-vector but is often easier to use. Its entries are defined from the face numbers by

$$\sum_{i=0}^{d} h_i x^i = \sum_{i=0}^{d} f_{i-1} x^i (1-x)^{d-i}$$

f,h, and g vectors

Let Δ be a simplicial complex of dimension (d-1). The *face numbers* of Δ , denoted by $f_i(\Delta)$, are the number of *i*-dimensional faces of Δ .

The f-vector of Δ is the list of the face numbers, $f(\Delta) := (f_{-1}, f_0, f_1, \dots, f_{d-1}).$

The h-vector of Δ , $h(\Delta) = (h_0, h_1, \ldots, h_d)$ contains the same combinatorial information as the f-vector but is often easier to use. Its entries are defined from the face numbers by

$$\sum_{i=0}^{d} h_i x^i = \sum_{i=0}^{d} f_{i-1} x^i (1-x)^{d-i}$$

Define $g_i(\Delta) := h_i(\Delta) - h_{i-1}(\Delta)$ (and $g_0 = 1$).

Homology Manifolds

A pure simplicial complex Δ of dimension (d-1) is a homology (d-1)-manifold if for every non-empty face $F \in \Delta$ the link of F has the same homology as the (d-1-|F|)-sphere or (d-1-|F|)-ball.

The boundary of a homology (d-1)-manifold Δ is defined to be $\partial \Delta := \{ F \in \Delta | H_{d-1-|F|}(F) = 0 \}.$

Homology Manifolds

A pure simplicial complex Δ of dimension (d-1) is a homology (d-1)-manifold if for every non-empty face $F \in \Delta$ the link of F has the same homology as the (d-1-|F|)-sphere or (d-1-|F|)-ball.

The boundary of a homology (d-1)-manifold Δ is defined to be $\partial \Delta := \{ F \in \Delta | H_{d-1-|F|}(F) = 0 \}.$

A homology (d-1)-sphere is a homology (d-1)-manifold with empty boundary and the same homology as the (d-1)-sphere.

A homology (d-1)-ball is an homology (d-1)-manifold with the same homology as the (d-1)-ball and boundary a homology (d-2)-sphere.

The g-conjecture

 (h_0, h_1, \ldots) is an M-vector if and only if it is the degree sequence of an order ideal of monomials.

 (h_0, h_1, \ldots) is an *M*-vector if $h_0 = 1$ and $0 \le h_{i+1} \le h_i^{\le i}$ for $i \ge 1$.

The g-conjecture

 $(h_0, h_1, ...)$ is an M-vector if and only if it is the degree sequence of an order ideal of monomials.

 (h_0, h_1, \ldots) is an M-vector if $h_0 = 1$ and $0 \le h_{i+1} \le h_i^{\le i}$ for $i \ge 1$.

Conjecture

(The g-Conjecture) An integer vector (h_0, h_1, \dots, h_d) with $h_0 = 1$ is the h-vector of a homology d-sphere if and only if

- **2** $(1, g_1, g_2, \dots, g_{|d/2|})$ is an M-vector, where $g_i = h_i h_{i-1}$.

The g-conjecture

 (h_0, h_1, \ldots) is an M-vector if and only if it is the degree sequence of an order ideal of monomials.

 (h_0, h_1, \ldots) is an M-vector if $h_0 = 1$ and $0 \le h_{i+1} \le h_i^{\le i}$ for $i \ge 1$.

Conjecture

(The g-Conjecture) An integer vector (h_0, h_1, \dots, h_d) with $h_0 = 1$ is the h-vector of a homology d-sphere if and only if

- $\bullet h_i = h_{d-i} \text{ for } 0 \le i \le \lfloor d/2 \rfloor$
- ② $(1, g_1, g_2, ..., g_{|d/2|})$ is an M-vector, where $g_i = h_i h_{i-1}$.

The g-conjecture is known to hold for boundaries of polytopes.

The initial part $(1, g_1, g_2)$ of the *g*-vector of a homology sphere is known to be a *M*-vector.

Generalized Dehn-Sommerville Equations

Theorem

(Generalized Dehn-Sommerville Equations, MacDonald '71) Let Δ be a (d-1)-dimensional homology manifold with boundary. Then

$$h_{d-i}(\Delta) - h_i(\Delta) = {d \choose i} (-1)^{d-1-i} \tilde{\chi}(|\Delta|) - g_i(\partial \Delta)$$

for all $0 \le i \le d$.

Generalized Dehn-Sommerville Equations

Theorem

(Generalized Dehn-Sommerville Equations, MacDonald '71) Let Δ be a (d-1)-dimensional homology manifold with boundary. Then

$$h_{d-i}(\Delta) - h_i(\Delta) = {d \choose i} (-1)^{d-1-i} \tilde{\chi}(|\Delta|) - g_i(\partial \Delta)$$

for all 0 < i < d.

If Δ is a (d-1) dimensional homology ball, this reduces to

$$h_i(\Delta) - h_{d-i}(\Delta) = g_i(\partial \Delta)$$

Conjectured Conditions on Homology Balls

Conjecture

If (h_0, \ldots, h_d) is the h-vector of homology (d-1)-ball and we take $h_i = 0$ for i > d then $(h_0 - h_{d+k}, h_1 - h_{d+k-1}, \ldots, h_m - h_{d+k-m})$ is an M-vector for $k = 0, \ldots, d+1$, $m = \lfloor (d+k-1)/2 \rfloor$.

Conjectured Conditions on Homology Balls

Conjecture

If (h_0, \ldots, h_d) is the h-vector of homology (d-1)-ball and we take $h_i = 0$ for i > d then $(h_0 - h_{d+k}, h_1 - h_{d+k-1}, \ldots, h_m - h_{d+k-m})$ is an M-vector for $k = 0, \ldots, d+1$, $m = \lfloor (d+k-1)/2 \rfloor$.

Billera and Lee ('81) conjectured that these conditions are sufficient for the h-vectors of homology (d-1)-balls.

The sufficiency part of this conjecture was verified in dimensions less than and equal to four by Lee and Schmidt ('09).

Outline

- Background
- 2 Excluding Possible h-vectors: A Combinatorial Approach
- 3 Excluding Possible h-vectors: An Algebraic Approach
- 4 Constructions and a Conjecture for Dimension Five

A Combinatorial Approach

Given an h-vector $(1, h_1, \ldots, h_d)$ and corresponding f-vector $(1, f_0, f_1, \ldots, f_{d-1})$ look at all of the graphs with f-vector $(1, f_0, f_1)$.

A Combinatorial Approach

Given an h-vector $(1, h_1, \ldots, h_d)$ and corresponding f-vector $(1, f_0, f_1, \ldots, f_{d-1})$ look at all of the graphs with f-vector $(1, f_0, f_1)$.

For each graph, compute the h-vector $(1, h_1, h_2, h_3')$ of (d-1)-skeleton of the flag complex induced by the graph (i.e. add in all possible triangles and compute the start of the h-vector as if your complex had dimension (d-1)).

A Combinatorial Approach

Given an h-vector $(1, h_1, \ldots, h_d)$ and corresponding f-vector $(1, f_0, f_1, \ldots, f_{d-1})$ look at all of the graphs with f-vector $(1, f_0, f_1)$.

For each graph, compute the h-vector $(1, h_1, h_2, h_3')$ of (d-1)-skeleton of the flag complex induced by the graph (i.e. add in all possible triangles and compute the start of the h-vector as if your complex had dimension (d-1)).

Since removing triangles from a complex Δ decreases $h_3(\Delta)$ and adding faces of dimension greater than two does not change $h_3(\Delta)$, in order for a graph to be the one skeleton of our complex we must have $h_3' \geq h_3$.

Allowed Vertex Degree

Any vertex of degree less than (d-1) would not be contained in any facet of our complex.

Allowed Vertex Degree

Any vertex of degree less than (d-1) would not be contained in any facet of our complex.

If there was a vertex of degree (d-1) this vertex would be contained in exactly one facet.

Removing this facet from our homology ball would create a new homology ball with the same h-vector except with h_1 decreased by one.

In some cases, we know that this new h-vector can not be the h-vector of a homology ball

h-vectors Unobtainable with Homology Balls

Consider the vector (1, 4, 5, 7, 3, 2, 0).

Following the above procedure, the only possible one skeletons have a vertex of degree five.

However, if (1,3,5,7,3,2,0) was the h-vector of a homology ball the g-vector of the corresponding boundary sphere would be (1,1,2), contradicting a known part of the g-conjecture.

A General Counterexample to the Billera-Lee Conjecture

More generally, if x, y are integers with x > 4 and 1 < y < x then

$$(1, x, {x \choose 2}, {x+1 \choose 3} - 2, {x+1 \choose 3} - 2, \dots,$$

 ${x+1 \choose 3} - 2, {x \choose 2} - {y \choose 2} + 1, x - y, 0$

is not the h-vector of a homology ball.

This provides a counterexample to the Billera-Lee conjecture in dimensions five and higher.

Outline

- Background
- Excluding Possible h-vectors: A Combinatorial Approach
- 3 Excluding Possible h-vectors: An Algebraic Approach
- 4 Constructions and a Conjecture for Dimension Five

The Face Ring (Stanley-Reisner Ring)

Let k be an infinite field of arbitrary characteristic and $R = k[x_1, \ldots, x_n]$.

For a simplicial complex Δ on vertex set [n] the face ring (or Stanley-Reisner ring) is

$$k[\Delta] := R/I_{\Delta}$$

where

$$I_{\Delta} = (x_{i_1}x_{i_2}\cdots x_{i_k}: i_1 < i_2 < \cdots < i_k, \{i_1, i_2, \cdots, i_k\} \notin \Delta).$$

The Face Ring (Stanley-Reisner Ring)

Let k be an infinite field of arbitrary characteristic and $R = k[x_1, \ldots, x_n]$.

For a simplicial complex Δ on vertex set [n] the face ring (or Stanley-Reisner ring) is

$$k[\Delta] := R/I_{\Delta}$$

where

$$I_{\Delta} = (x_{i_1}x_{i_2}\cdots x_{i_k}: i_1 < i_2 < \cdots < i_k, \{i_1, i_2, \cdots, i_k\} \notin \Delta).$$

A linear system of parameters (l.s.o.p.) for $k[\Delta]$ is a collection of degree one elements $\theta_1, \ldots, \theta_d \in k[\Delta]$ such that $k[\Delta]/(\theta_1, \ldots, \theta_d)$ is finite dimensional over k.

Define $k(\Delta) := k[\Delta]/(\theta_1, \dots, \theta_d)$ for any l.s.o.p. $\theta_1, \dots, \theta_d$.

Minimal Free Resolutions

Let $S = k[\Delta]$ or $k(\Delta)$.

Thinking of S as an R-module the minimal free resolution of S has form

$$0 \to \bigoplus_{j} S[-j]^{\beta_{l,j}} \to \bigoplus_{j} S[-j]^{\beta_{l-1,j}} \to \cdots$$
$$\to \bigoplus_{j} S[-j]^{\beta_{1,j}} \to \bigoplus_{j} S[-j]^{\beta_{0,j}} \to S \to 0$$

The $\beta_{i,j}$ are called the *Betti numbers* of *S*.

Minimal Free Resolutions

Let $S = k[\Delta]$ or $k(\Delta)$.

Thinking of S as an R-module the minimal free resolution of S has form

$$0 \to \bigoplus_{j} S[-j]^{\beta_{l,j}} \to \bigoplus_{j} S[-j]^{\beta_{l-1,j}} \to \cdots$$
$$\to \bigoplus_{j} S[-j]^{\beta_{1,j}} \to \bigoplus_{j} S[-j]^{\beta_{0,j}} \to S \to 0$$

The $\beta_{i,j}$ are called the *Betti numbers* of *S*.

We can relate the Betti numbers of $k[\Delta]$ to the toplogy of Δ using Hochster's Formula:

$$eta_{i,j}(k[\Delta]) = \sum_{W \subset V, |W| = j} \dim_k(\tilde{H}_{j-i-1}(\Delta_W; k))$$

Showing that a Ball can be Split

Combining some results about linear systems of parameters with Hochster's formula and a homology result due to Hibi ('94) yields:

 $\beta_{n,n+1}(k(\Delta))$ is non-zero if and only if there exists a (d-2)-face of Δ whose removal splits Δ into two homology (d-1)-balls.

Showing that a Ball can be Split

Combining some results about linear systems of parameters with Hochster's formula and a homology result due to Hibi ('94) yields:

 $\beta_{n,n+1}(k(\Delta))$ is non-zero if and only if there exists a (d-2)-face of Δ whose removal splits Δ into two homology (d-1)-balls.

Using a cancellation result due to Peeva ('04), there are some vectors \mathbf{v} for which we can show that any simplicial complex Δ such that $h(\Delta) = \mathbf{v}$ must have $\beta_{n,n+1}(k(\Delta)) > 0$.

For some *h*-vectors, we can check that no such division exists.

Outline

- Background
- Excluding Possible h-vectors: A Combinatorial Approach
- 3 Excluding Possible h-vectors: An Algebraic Approach
- 4 Constructions and a Conjecture for Dimension Five

Construction

Theorem

Let (d-1) be even and let $(1, h_1, h_2, \dots, h_{d-1}, 0)$ satisfy the following conditions:

- $(1, h_1 1, h_2 h_1, \dots, h_{(d-3)/2} h_{(d-5)/2}, \max\{h_{(d-1)/2} h_{(d-3)/2}, 0\})$ is an M-vector.
- $(1, h_1 h_{d-1}, h_2 h_{d-2}, \dots, h_{(d-1)/2} h_{(d+1)/2})$ is an M-vector.
- $h_{(d+1)/2} \ge h_{(d+3)/2} \ge \cdots \ge h_{d-1}$.

Then there exists a (shellable) triangulated (d-1)-ball with h-vector $(1, h_1, h_2, \ldots, h_{d-1}, 0)$.

Construction

Theorem

Let (d-1) be even and let $(1, h_1, h_2, \dots, h_{d-1}, 0)$ satisfy the following conditions:

- $(1, h_1 1, h_2 h_1, \dots, h_{(d-3)/2} h_{(d-5)/2}, \max\{h_{(d-1)/2} h_{(d-3)/2}, 0\})$ is an M-vector.
- $(1, h_1 h_{d-1}, h_2 h_{d-2}, \dots, h_{(d-1)/2} h_{(d+1)/2})$ is an M-vector.
- $h_{(d+1)/2} \ge h_{(d+3)/2} \ge \cdots \ge h_{d-1}$.

Then there exists a (shellable) triangulated (d-1)-ball with h-vector $(1, h_1, h_2, \ldots, h_{d-1}, 0)$.

With this theorem we obtain all possible *h*-vectors for balls up to dimension four.

A Dimension Five Conjecture

Conjecture

A vector $h = (1, h_1, h_2, h_3, h_4, h_5, 0)$ is the h-vector of a five-ball if any only if there exists some integer m > 0 such that $h = (1, h_1 - m, h_2, h_3, h_4, h_5, 0)$ satisfies the conditions of the previous theorem.

A Dimension Five Conjecture

Conjecture

A vector $h = (1, h_1, h_2, h_3, h_4, h_5, 0)$ is the h-vector of a five-ball if any only if there exists some integer m > 0 such that $h = (1, h_1 - m, h_2, h_3, h_4, h_5, 0)$ satisfies the conditions of the previous theorem.

Using our construction and stacking new facets on the boundary of a ball we can construct five-balls with all of the *h*-vectors in our conjecture.

Using Betti number calculations, many of the 'small' h-vectors that do not satisfy this conjecture cannot be the h-vectors of five-balls.

References

- S. Kolins, f-Vectors of Triangulated Balls. arXiv:0912.2091v1, 2009.
- L. J. Billera and C. W. Lee, The numbers of faces of polytope pairs and unbounded polyhedra. European J. Combin. 2 (1981), 307–322.
- T. Hibi, Cohen-Macaulay types of Cohen-Macaulay complexes. J. Algebra 168 (1994), 780–797.
- C. W. Lee and L. Schmidt, On the numbers of faces of low-dimensional regular triangulations and shellable balls. Preprint, 2009.
- I. Peeva, Consecutive cancellations in Betti numbers. Proc. Amer. Math. Soc. 132 (2004), 3503–3507.