

Course > Week 3... > Proble... > Proble...

Problem Set 3

Problems 1-7 correspond to "Linear algebra I: basic notation and dot products"

Problem 1

1/1 point (graded)

A data set consists of 200 points in \mathbb{R}^{80} . If we store these in a matrix, with one point per row, what is the dimension of the matrix?

- 200 × 80 ✓
- 0.80×200
- 200×1
- 1 × 80

Submit

Problem 2

3/3 points (graded)

For
$$A=egin{pmatrix}1&2&3\\4&5&6\end{pmatrix}$$
 and $B=egin{pmatrix}-1&0&1\\1&-1&0\end{pmatrix}$, compute

a)
$$\pmb{A^T}=$$

\bigcirc	(4	5	6
	$\binom{1}{1}$	2	3 <i>]</i>

$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \checkmark$$

$$\begin{pmatrix} 6 & 3 \\ 5 & 2 \\ 4 & 1 \end{pmatrix}$$

b)
$$A+B=$$

$$egin{pmatrix} 2&2&4\4&6&6 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 2 \\ 5 & 5 & 6 \end{pmatrix}$$

$$\begin{pmatrix}
6 & 3 & 1 \\
2 & 4 & 7
\end{pmatrix}$$

c)
$$A-B=$$

$$\begin{array}{ccc} & \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Problem 3

2/2 points (graded)

Let
$$x = (1, 0, -1)$$
 and $y = (0, 1, -1)$.

a) What is $x \cdot y$?

b) What is the angle between these two vectors, in degrees (give a number in the range 0 to 180)?

Submit

Problem 4

2/2 points (graded)

For each pair of vectors below, say whether or not they are orthogonal.

a)
$$(1,3,0,1)$$
 and $(-1,-3,0,-1)$

not orthogonal 🔻 🗸

b) (1,3,0,1) and (1,3,0,-10)

orthogonal

Submit

Problem 5

1/1 point (graded)

Find the unit vector in the same direction as x = (1, 2, 3).

- (1,2,3)/6
- (1,2,3)/14
- $(1,2,3)/\sqrt{7}$
- $(1,2,3)/\sqrt{14}$

Submit

Problem 6

1/1 point (graded)

Find all unit vectors in \mathbb{R}^2 that are orthogonal to (1,1).

- $(1,1)/\sqrt{2}$ and $(-1,-1)/\sqrt{2}$
- (1,-1) and (-1,1)
- \square (1,1)/2 and (-1,-1)/2

 $ightharpoons (1,-1)/\sqrt{2}$ and $(-1,1)/\sqrt{2}$

Submit

Problem 7

1/1 point (graded)

How would you describe the set of all points $x \in \mathbb{R}^d$ with $x \cdot x = 25$? Select all that apply.

- The surface of a sphere that is centered at the origin, of radius 25.
- \square All points of ℓ_2 length 25.
- The surface of a sphere that is centered at the origin, of radius 5.

Submit

Problems 8-17 correspond to "Linear algebra II: matrix products and linear functions"

Problem 8

1/1 point (graded)

Which of the following is a linear function of $x \in \mathbb{R}^3$? Select all that apply.

$$\ \ \, x_1^2 + 3x_2 + x_3$$

Submit

Problem 9

1/1 point (graded)

True or false: the function $f(x)=2x_1-x_2+6x_3$ can be written as $w\cdot x$ for $x\in\mathbb{R}^3$, where w = (2, -1, 6).

Submit

Problem 10

3/3 points (graded)

Consider the linear function that is expressed by the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & -1 \end{pmatrix}$.

This function maps vectors in \mathbb{R}^p to \mathbb{R}^q .

a) What is p?

b) What is *q*?

c) Which of the following vectors are mapped to zero?

- (1,4,-1)
- (4,-2,1)

Submit

Problem 11

3/3 points (graded)

Compute the product: $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 0 & 1 \\ 2 & 6 & 0 \end{pmatrix}$:

$$= \left(egin{array}{ccc} 1 & a & 1 \ 14 & b & c \end{array}
ight)$$

a =

b =

c =5 5

Problem 12

Submit

4/4 points (graded)

For a certain pair of matrices A,B, the product AB has dimension 10 imes 20. Suppose Ahas **30** columns.

a) $A \in \mathbb{R}^{m imes n}$

m =

n =

b) $B \in \mathbb{R}^{r imes s}$

r =

s =

Submit

Problem 13

3/3 points (graded)

We have n data points $x^{(1)},\ldots,x^{(n)}\in\mathbb{R}^d$ and we store them in a matrix X, one point per row.

- a) True or false: $m{X}$ has dimension $m{d} imes m{n}$.
 - True
 - False
- b) True or false: X^TX has dimension d imes d.
 - True ✓
 - False
- c) Which of the following is a matrix with (i,j) entry $x^{(i)} \cdot x^{(j)}$?
 - \circ XX
 - $X^T X$
 - \bullet $XX^T \checkmark$
 - $X^T X^T$

Problem 14

1/1 point (graded)

Vector $oldsymbol{x}$ has length $oldsymbol{10}$. What is $oldsymbol{x^Txx^Txx^Tx^Tx}$?

1000000

1000000

Submit

Problem 15

5/5 points (graded)

Suppose
$$oldsymbol{x} = egin{pmatrix} 1 \ 3 \ 5 \end{pmatrix}$$
 .

a) What is $oldsymbol{x^T} oldsymbol{x}$?

35

35

b) What is xx^T ?

$$egin{aligned} xx^T = egin{pmatrix} 1 & a & b \ 3 & 9 & c \ 5 & 15 & d \end{pmatrix}$$

a =

3

Problem 16

1/1 point (graded)

Vectors $x,y\in\mathbb{R}^d$ both have length $\mathbf{2}$. If $x^Ty=\mathbf{2}$, what is the angle between x and y, in degrees (the answer is an integer in the range 0 to 180)?

Problem 17

2/2 points (graded)

The line shown below can be expressed in the form $w\cdot x=12$ for $x\in\mathbb{R}^2$. What is w?

$$\boldsymbol{w}=(w_1,w_2)$$

 $w_1 =$

 $w_2 =$

Submit

Problems 18-24 correspond to "Linear algebra III: square matrices as quadratic functions"

Problem 18

4/4 points (graded)

The quadratic function $f:\mathbb{R}^3 o \mathbb{R}$ given by

$$f(x) = 3x_1^2 + 2x_1x_2 - 4x_1x_3 + 6x_3^2$$

can be written in the form $oldsymbol{x^T} oldsymbol{Mx}$ for some $oldsymbol{ ext{symmetric}}$ matrix $oldsymbol{M}$. What are the missing entries in M?

$$M=\left(egin{array}{ccc} a&1&b\ 1&c&0\ -2&d&6 \end{array}
ight)$$

a =

b =

c =

d =

Problem 19

7/7 points (graded)

Answer the following questions about the quadratic function $f:\mathbb{R}^3 o \mathbb{R}$ associated with the matrices A.

- a) True or false: for $A=\operatorname{diag}(6,2,-1)$, $f(x_1,x_2,x_3)=6x_1^2+2x_2^2-x_3^2$.
- True
- False

b)
$$A=egin{pmatrix}1&2&4\2&-1&4\2&-2&1\end{pmatrix}$$

Find the coefficients for

$$f(x_1,x_2,x_3)=ax_1^2+bx_1x_2+cx_1x_3+dx_2^2+ex_2x_3+fx_3^2$$

a =

b =

c =

d =

-1

e =

f =

Submit

Problem 20

0/1 point (graded)

Which of the following matrices is necessarily symmetric? Select all that apply.

- $lacksquare AA^T$ for arbitrary matrix A.
- $lacksquare A^T A$ for arbitrary matrix A.
- $lacksquare A + A^T$ for arbitrary square matrix A.
- $ightharpoonup A A^T$ for arbitrary square matrix A.

×

Problem 21

2/2 points (graded)

Let A = diag(1, 2, 3, 4, 5, 6, 7, 8).

a) What is $|{m A}|$?

40320

40320

- b) True or false: $A^{-1} = \mathrm{diag}(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8})$
 - True
 - False

Submit

Problem 22

2/2 points (graded)

Vectors $u_1,\dots,u_d\in\mathbb{R}^d$ all have unit length and are orthogonal to each other. Let U be the $d \times d$ matrix whose rows are the u_i .

- a) What is UU^T ?
 - \circ U
 - \cup U^T
 - \cup U^{-1}

- b) What is U^{-1} ?
 - \circ U
 - \bullet $U^T \checkmark$
 - \cup U^{-1}
 - \circ I_d

Problem 23

1/1 point (graded)

Matrix $oldsymbol{A} = egin{pmatrix} 1 & 2 \ 3 & z \end{pmatrix}$ is singular. What is $oldsymbol{z}$?

Submit

Problem 24

0/1 point (graded)

The trace of a $d \times d$ matrix A is defined to be $tr(A) = \sum_{i=1}^d A_{ii}$. Which of the following statements is true, for arbitrary $d \times d$ matrices A, B? Select all that apply.

 \Box $\operatorname{tr}(AB) = \operatorname{tr}(A)\operatorname{tr}(B)$.

Submit

Problems 25-27 correspond to "The multivariate Gaussian"

Problem 25

1/1 point (graded)

A spherical Gaussian has mean $\mu=(1,0,0)$. At which of the following points will the density be the same as at (1, 1, 0)? Select all that apply.

 \Box (1, 1, 1)

Submit

Problem 26

1/1 point (graded)

How many real-valued parameters are needed to specify a diagonal Gaussian in \mathbb{R}^d ?

- \circ d
- 2d
 ✓
- $\frac{1}{2}d^2$
- d^2

Problem 27

1/1 point (graded)

A set of random variables X_1, \ldots, X_d has the following properties:

$$E(X_i)=1$$
 for all i

 $E(X_iX_j)$ is $oldsymbol{2}$ whenever $oldsymbol{i}=oldsymbol{j}$, $oldsymbol{3}/2$ whenever $oldsymbol{i}-oldsymbol{j}=oldsymbol{1}$, and $oldsymbol{1}$ otherwise.

What multivariate Gaussian $N(\mu, \Sigma)$ would you fit to the d-dimensional distribution of $X=(X_1,\ldots,X_d)$? Just give μ and Σ in the specific case d=4.

$$\mu = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ and } \Sigma = \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 1 \end{pmatrix}$$

$$\mu = egin{pmatrix} 0 \ 0 \ 0 \ 0 \end{pmatrix}$$
 and $\Sigma = egin{pmatrix} 0 & 1 & rac{1}{2} & rac{1}{2} \ 1 & 0 & 1 & rac{1}{2} \ rac{1}{2} & 1 & 0 & 1 \ rac{1}{2} & rac{1}{2} & 1 & 0 \end{pmatrix}$

$$\mu = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ and } \Sigma = \begin{pmatrix} 1 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 1 \end{pmatrix} \checkmark$$

$$\mu = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ and } \Sigma = \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 1 \end{pmatrix}$$

Problems 28-29 correspond to "Gaussian generative models"

Problem 28

3/3 points (graded)

Suppose we solve a classification problem with $m{k}$ classes by using a Gaussian generative model in which the **j**th class is specified by parameters π_i, μ_i, Σ_i . In each of the following situations, say whether the decision boundary is linear, spherical, or other quadratic.

a) We compute the empirical covariance matrices of each of the $m{k}$ classes, and then set $\Sigma_1 = \Sigma_2 = \cdots = \Sigma_k$ to the **average** of these matrices.

linear

b) The covariance matrices Σ_j are all ${f diagonal}$, but no two of them are the same.

other quadratic

c) There are two classes (that is, $\pmb{k}=\pmb{2}$) and the covariance matrices $\pmb{\Sigma_1}$ and $\pmb{\Sigma_2}$ are multiples of the identity matrix.

spherical

Correct (3/3 points)

Problem 29

2/2 points (graded)

Consider a binary classification problem in which we fit a Gaussian to each class and find that they are both centered at the origin but different covariances: $\mu_1=\mu_2=0$ and $\Sigma_1 \neq \Sigma_2$. Derive the precise form of the **decision boundary**, that is, the points x for which the two classes are equally likely. You will find that it is

$$x^T (\Sigma_2^{-1} - \Sigma_1^{-1}) x = a \ln rac{|\Sigma_1|}{|\Sigma_2|} + b \ln rac{\pi_1}{\pi_2}.$$

What are \boldsymbol{a} and \boldsymbol{b} ?

1

b =

a =

-2

Submit

✓ Correct (2/2 points)

Problem 30 corresponds to "More generative modeling"

Problem 30

4/5 points (graded)

For each of the situations below, say which of the following distributions would be the best model for the data: Gaussian, gamma, beta, Poisson, or categorical.

a) You collect the number of airplane landings at Los Angeles International Airport during each one hour interval over the course of a week (thus, a total of 268 data points).

b) For your favorite sports team, you compute the fraction of games they won each year, during the period 1980-2015 (thus, a total of **36** data points).

c) Your local pet store has mammals, reptiles, birds, amphibians, and fish. You measure the fraction of each (thus, a total of five numbers).

d) You collect the pollution levels (positive real numbers reflecting concentrations of particulate matter) recorded in your city over the past year (thus, a total of 365 numbers).

e) Like (d), but instead you use the *log* of these values.

Partially correct (4/5 points)

© All Rights Reserved