Tailoring Word Alignments to Syntactic Machine Translation

John DeNero and Dan Klein

Presentation and paper: http://nlp.cs.berkeley.edu/pages/WordAligner.html

Tailoring Word Alignments to Syntactic Machine Translation

Setting:

Syntactic MT with tree transducers

Problem:

Alignment errors that contradict constituent structure impede the rule extraction process

Proposal:

Condition word alignment on syntactic structure

Source: Les emplois sont axés sur la carrière

Source: Les emplois sont axés sur la carrière

Gloss: The jobs are centered on the career


```
Source: Les emplois sont axés sur la carrière .

Gloss: The jobs are centered on the career .
```

Transducer rule:

(NP (DT The) (NNS jobs)) => Les emplois

Transducer rule:

(NP (DT The) (NNS jobs)) => Les emplois

Transducer rule: (ADJP (NN career) (VBN oriented)) => axés sure la carrière

http://nlp.cs.berkeley.edu/pages/WordAligner.html

S

Source: Gloss:

NP			ADJP				
Les	emplois	sont	axés	sur	la	carrière	
The	jobs	are	centered	on	the	career	

Transducer rule:

(S NP_1 (VP (VBP are) $ADJP_2$) (. .)) => NP_1 sont $ADJP_2$.

Extraction Procedure (Galley et al., '04 & '06)

http://nlp.cs.berkeley.edu/pages/WordAligner.html

Extraction Procedure

(Galley et al., '04 & '06)

I. Choose a constituent

Extraction Procedure (Galley et al., '04 & '06)

- I. Choose a constituent
- 2. Choose a region around constituent alignments

Les
emplois
sont
axés
sur
la
carrière

Extraction Procedure (Galley et al., '04 & '06)

- I. Choose a constituent
- 2. Choose a region around constituent alignments
- 3. Verify that alignment is consistent with region

Les
emplois
sont
axés
sur
la
carrière

Extraction Procedure

(Galley et al., '04 & '06)

- I. Choose a constituent
- 2. Choose a region around constituent alignments
- 3. Verify that alignment is consistent with region
- 4. Extract phrase:

(NN career) => carrière

Extraction Procedure

(Galley et al., '04 & '06)

- I. Choose a constituent
- 2. Choose a region around constituent alignments
- 3. Verify that alignment is consistent with region
- 4. Extract phrase:

(NN career) => carrière

Extraction Procedure (Galley et al., '04 & '06)

- I. Choose a constituent
- 2. Choose a region around constituent alignments
- 3. Verify that alignment is consistent with region
- 4. Extract phrase:

(VBN oriented) => axés sur

Extraction Procedure

(Galley et al., '04 & '06)

- I. Choose a constituent
- 2. Choose a region around constituent alignments
- 3. Verify that alignment is consistent with region
- 4. Extract phrase:

 $(ADJP NN_1 VBN_2) => VBN_2 Ia NN_1$

Net effect on extraction:

Net effect on extraction:

 2 instead of 7 recursive rules can be extracted

Net effect on extraction:

- 2 instead of 7 recursive rules can be extracted
- Smallest recursive rule that can be extracted:

Net effect on extraction:

- 2 instead of 7 recursive rules can be extracted
- Smallest recursive rule that can be extracted:

```
(S (NP (DT The) NNS<sub>2</sub>)

(VP VBP<sub>3</sub>

(ADJP NN<sub>4</sub> VBN<sub>5</sub>))

.6)

=> Les NNS<sub>2</sub> VBP<sub>3</sub> VBN<sub>5</sub> NN<sub>4</sub> .6
```


$$p(f, a|e) = \prod_{j} p(f_j|e_{a_j}) \cdot p(a_j|a_{j-1})$$

$$p(f, a|e) = \prod_{j} p(f_j|e_{a_j}) \cdot p(a_j|a_{j-1})$$

Les emplois sont axés sur la carrière

$$p(f, a|e) = \prod_{j} p(f_j|e_{a_j}) \cdot p(a_j|a_{j-1})$$

Les

emplois

Alignment Errors under the HMM Alignment Model

$$p(f, a|e) = \prod_{j} p(f_j|e_{a_j}) \cdot p(a_j|a_{j-1})$$

sur

axés

sont

carrière

la

Evaluation: Alignment Error Rate (AER)

Evaluation: Alignment Error Rate (AER)

Test Conditions

- Chinese-English from MT-Eval 02 test set
- 100k training sentences from FBIS
- Initialized with agreement training for Model I (Liang et al., 06)

Evaluation: Alignment Error Rate (AER)

Test Conditions

- Chinese-English from MT-Eval 02 test set
- 100k training sentences from FBIS
- Initialized with agreement training for Model I (Liang et al., 06)

Results

	Precision	Recall	AER
Classic HMM	81.6	78.8	19.8
Syntactic HMM	82.2	76.8	20.5
GIZA++	61.9	82.6	29.7

http://nlp.cs.berkeley.edu/pages/WordAligner.html

Evaluation: Unproductive Constituent Rates

http://nlp.cs.berkeley.edu/pages/WordAligner.html

Evaluation: Unproductive Constituent Rates

The Syntactic HMM Reduces the Frequency of Unproductive *Interior* Nodes by 13%

Decoding Heuristic: Competitive Thresholding

Only the maximum posterior in each row or column and its neighbors can be included in the alignment

The jobs are career oriented.

			Les
			emplois
			sont
			axés
			sur
			la
			carrière
			•

Decoding Heuristic: Competitive Thresholding

Decoding Heuristic: Competitive Thresholding

Decoding Heuristic: Competitive Thresholding

Decoding Heuristic: Competitive Thresholding

Evaluation: Unproductive Constituent Rates

- Classic HMM
- Syntactic HMM
- Syntactic HMM with Competitive Thresholding

Evaluation: Unproductive Constituent Rates

- Classic HMM
- Syntactic HMM
- Syntactic HMM with Competitive Thresholding

Rules extracted per sentence

Syntactic HMM + CT

Syntactic HMM

Classic HMM

Evaluation: Comparing Gold and Induced Rules

Evaluation Metric Idea:

Compare rules from gold alignments and induced alignments on both precision and recall.

Analog to the consistent phrase error rate (CPER) metric of Ayan & Dorr (06)

Evaluation: Comparing Gold and Induced Rules

Evaluation Metric Idea:

Compare rules from gold alignments and induced alignments on both precision and recall.

Analog to the consistent phrase error rate (CPER) metric of Ayan & Dorr (06)

Classic HMM
Syntactic HMM
Syntactic HMM + CT

Precision	Recall	FI
40.4	33.9	36.8
41.3	36.7	38.9
39.6	41.1	40.3

Evaluation: Comparing Gold and Induced Rules

Evaluation Metric Idea:

Compare rules from gold alignments and induced alignments on both precision and recall.

Analog to the consistent phrase error rate (CPER) metric of Ayan & Dorr (06)

	Precision	Recall	<u> </u>
Classic HMM	40.4	33.9	36.8
Syntactic HMM	41.3	36.7	38.9
Syntactic HMM + CT	39.6	41.1	40.3

FI Increase: 9.5% in Chinese; 18.7% in French

• Tree transducer extraction systems should be wary of constituent-violating alignment errors

- Tree transducer extraction systems should be wary of constituent-violating alignment errors
- Conditioning the HMM alignment model on a parse tree corrects some such errors

- Tree transducer extraction systems should be wary of constituent-violating alignment errors
- Conditioning the HMM alignment model on a parse tree corrects some such errors
- Decoding heuristics correct even more

- Tree transducer extraction systems should be wary of constituent-violating alignment errors
- Conditioning the HMM alignment model on a parse tree corrects some such errors
- Decoding heuristics correct even more
- The resulting rules are more faithful to the rule set that should be extracted

- Tree transducer extraction systems should be wary of constituent-violating alignment errors
- Conditioning the HMM alignment model on a parse tree corrects some such errors
- Decoding heuristics correct even more
- The resulting rules are more faithful to the rule set that should be extracted
- Future work: end-to-end translation (BLEU)

Coming 07/07: BerkeleyAligner Software Package

- Agreement training of IBM models, which reduces AER 32% relative to GIZA++ (Liang et al., 06)
- Syntactic distortion model (this paper)
- Posterior decoding heuristics (this paper)
- Evaluation code: searches for posterior thresholds, compares decoding methods, & tracks AER during training
- Easy integration with the Berkeley Parser
- Pure Java 1.5 will run on any platform

Check it out:

http://nlp.cs.berkeley.edu/pages/WordAligner.html

Thank You

denero@berkeley.edu