IN THE CLAIMS:

- 1. (WITHDRAWN) A method of identifying a gene involved in cell proliferation comprising the steps of:
 - (a) exposing a fish to a mutagen;
 - (b) mating said fish with a wild-type fish to produce an F1 generation;
 - (c) exposing the eggs of said F1 generation to inactivated fish sperm to create haploid embryos; and
 - (d) screening said haploid embryos for cell proliferation defects wherein an embryo with cell proliferation defects harbors a mutant gene involved in cell proliferation.
 - 2. (WITHDRAWN) The method of claim 1, further comprising a steps of:
 - (e) mating the F1 generation with wild-type male fish to produce an F2 generation;
 - (f) raising said F2 generation to adulthood;
 - (g) mating a female member of the F2 generation with a male member of the F2 generation to produce F3 embryos;
 - (h) screening the F3 diploid embryos for cell proliferation defects wherein an embryo with cell proliferation defects harbors a mutant gene involved in cell proliferation.

- 3. (WITHDRAWN) The method of claim 1, wherein the fish in the step (a) is a male fish.
 - 4. (WITHDRAWN) The method of claim 1 wherein the fish is a zebrafish.
- 5. (WITHDRAWN) The method of claim 1, wherein the mutagen is an alkylating agent.
- 6. (WITHDRAWN) The method of claim 1 selected from a group consisting of ENU and MNU.
- 7. (WITHDRAWN) The method of claim 1 or 2 further comprising a step of positional cloning of a nucleic acid sequence of the mutant gene.
- 8. (WITHDRAWN) The method of claim 1 or 2, wherein the screening is performed using an antibody against a cell cycle component.
- 9. (WITHDRAWN) The method of claim 8, wherein the antibody is specific for a protein selected from the croup consisting of phospho-histone H3, phosphorylated MAP kinase, phosphorylated MEK-1, BM28, cyclin E, p53, Rb and PCNA.
- 10. (WITHDRAWN) The method of claim 1 or 2, wherein the screening is performed using nucleic acids recognizing cell cycle components.
- 11. (WITHDRAWN) The method of claim 9, wherein the nucleic acid is PCNA or cyclin b-1.
- 12. (WITHDRAWN) The method of claim 1 or 2, wherein the screening is performed using flow cytometry.
 - 13. (WITHDRAWN) The method of claim 1 or 2, wherein the screening is performed

B1264708.1

Application No. 09/758,007 Amendment dated May 19, 2003 Reply to Office Action of January 17, 2003

using apoptosis markers.

- 14. (WITHDRAWN) The method of claim 13, wherein the apoptosis marker is selected from the group consisting of Annexin V, TUNEL Stain, 7-amino-actinomycin D and Caspase substrates.
- 15. (WITHDRAWN) The method of claim 1 or 2, wherein the screening is preformed using BrdU staining.
- 16. (WITHDRAWN) The method of claim 1 or 2, wherein the screening is performed using an irradiation analysis.
- 17. (WITHDRAWN) The method of claim 1 or 2, further comprising a step of positional cloning of the gene involved in cell proliferation.
- 18. (CURRENTLY AMENDED) A method of identifying a gene involved in carcinogenesis comprising the steps of:
 - (a) exposing a fish to a mutagen;
 - (b) mating said fish with a wild-type fish to produce an F1 generation;
 - (c) exposing the eggs of said F1 generation to inactivated fish sperm to create haploid embryos; and
 - (d) screening said haploid embryos for cell proliferation defects wherein an embryo with cell proliferation defects harbors a mutant gene involved in cell proliferation;
 - (e) mating an F1 generation female of step (c) harboring a mutant gene involved in cell proliferation as determined in step (d) with a wild-type fish to produce an

Application No. 09/758,007 Amendment dated May 19, 2003 Reply to Office Action of January 17, 2003

F2 generation;

- (f) exposing a wild-type fish and a member of the F2 generation to a carcinogen; and
- (g) comparing the tumor formation in the wild-type and the member of the F2 generation fish wherein an accelerated tumor formation in the F2 generation fish indicates identifies a gene involved in carcinogenesis.
- 19. (ORIGINAL) The method of claim 18, wherein the fish is a zebrafish.
- 20. (ORIGINAL) The method of claim 18, further comprising a step of positional cloning of the gene involved in carcinogenesis.
- 21. (ORIGINAL) The method of claim 18, wherein the screening is performed using an antibody against a cell cycle component.
- 22. (ORIGINAL) The method of claim 21, wherein the antibody is specific for a protein selected from the croup consisting of phospho-histone H3, phosphorylated MAP kinase, phosphorylated MEK-1, BM28, cyclin E, p53, Rb and PCNA.
- 23. (ORIGINAL) The method of claim 18, wherein the screening is performed using nucleic acids recognizing cell cycle components.
- 24. (ORIGINAL) The method of claim 23, wherein the nucleic acid is PCNA or cyclin b-1.
- 25. (CURRENTLY AMENDED) The method of claim 18, wherein the screening is performed using flow cytometry wherein DNA in the haploid embryos is stained with a dye and separated according to their DNA content using flow cytometry wherein changes in the DNA content indicate a problem in cell proliferation.

Application No. 09/758,007 Amendment dated May 19, 2003 Reply to Office Action of January 17, 2003

- 26. (ORIGINAL) The method of claim 18, wherein the screening is performed using apoptosis markers.
- 27. (ORIGINAL) The method of claim 26, wherein the apoptosis marker is selected from the group consisting of Annexin V, TUNEL Stain, 7-amino-actinomycin D and Caspase substrates.
- 28. (ORIGINAL) The method of claim 18, wherein the screening is preformed using BrdU staining.
- 29. (CURRENTLY AMENDED) The method of claim 18, wherein the screening is performed using an irradiation analysis comprising the steps of irradiating the mutated embryos to cause a cell cycle arrest, staining the embryos with a cell proliferation marker and analyzing the amount of the marker post radiation wherein change in the post radiation marker staining compared to an irradiated non-mutant embryos indicates an abnormal cell proliferation in the mutant embryo.