Measure Theory Homework

Terry Wu

- 1.3. g_1 is not an algebra. Take $A = (-\infty, -3) \cup (2, +\infty)$ which is in g_1 but $A^c = [-3, 2]$ which is not in g_1 . g_2 is an algebra and g_3 is σ -algebra.
- 1.7. By definition, \emptyset has to be in the algebra generated by a set X. And by the requirement of closed under complementary, X then has to be too. So the smallest algebra must be $\{\emptyset, X\}$. The largest algebra should be the one contains all possible subsets, which is the power set.
- 1.10. First of all, $\emptyset \in S_{\alpha}$ for all α because S_{α} is a σ -algebra. Suppose $A \in \sigma(g)$ then $A \in S_{\alpha}$ for all α , then $A^c \in S_{\alpha}$ for all α by definition. Thus $A^c \in \sigma(g)$. Similarly we could prove it is closed under countable unions.
- 1.22. Take $C = A^c \cap B$ then as $A \subset B$, $|C| \ge 0$. And we have $\mu(C \cup A) = \mu(B)$ which is $\mu(C) + \mu(A) = \mu(B)$, so $\mu(B) \mu(A) \ge 0$.

Define $F_n = \bigcup_{i=1}^n A_i$. It is easy to see that $F_n \subset F_{n+1}$. Therefore F_n is increasing. Also we know that $F_n \uparrow \bigcup_{i=1}^{+\infty} A_i$. Hence we have

$$\mu(\bigcup_{i=1}^{+\infty} A_i) = \lim_{n \to +\infty} \mu(F_n)$$

$$= \lim_{n \to +\infty} \mu(A_1 \cup A_2 \cup \dots \cup A_n)$$

$$\leq \lim_{n \to +\infty} \sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{+\infty} \mu(A_i).$$

1.23. Let $A = \emptyset$, then $A \cap B = \emptyset$, so $\lambda(A) = \mu(A \cap B) = 0$. Take A_1, A_2, \ldots to be mutually exclusive sets, then $\lambda(\cup_i A_i) = \mu((\cup_i A_i) \cap B)$ which is $\mu(\cup_i (A_i \cap B)) = 0$.

- (B)) = $\sum_{i} \mu(A_i \cap B) = \sum_{i} \lambda(A_i)$. So λ is a measure.
- 1.26. Note we have $A_i \downarrow \cap_i A_i = X$. We could write $A_{n_0} = X + \sum_{n=n_0}^{+\infty} (A_n A_{n+1})$. So we have $\mu(A_{n_0}) = \mu(X) + \sum_{n=n_0}^{+\infty} \mu(A_n A_{n+1})$ which completes the proof.
- 2.10. Because from the countable subadditivity of the outer measure we know that \geq holds. As \leq holds, the equal sign should also hold.
- 2.14. We know $o(\mathcal{O}) \subset \mathcal{M}$ from Caratheodory and construction of lebesgue measure as an infinite collection of the form (a, b] and $(-\infty, a]$ we know that $\sigma(\mathcal{A}) \subset \mathcal{M}$. If $o \in \sigma(\mathcal{O})$ then $o \in \sigma(\mathcal{A})$ therefore $o \in \mathcal{M}$.
- 3.1. Let a_i be a sequence of a countable set A then $A_i = (a_i 2^{-i-1}\epsilon, a_i + 2^{-i-1}\epsilon)$. So $A \subset \cup A_i$ and $\mu(\cup A_i) \leq 2^{-i}\epsilon = \epsilon$ which completes the proof.
- 3.7. Because they are complementary to each other so the condition could be replaced.
- 3.10. Let F(f(x),g(x))=f(x)+g(x) is countable. Then F is countable. Given condition 4 we know that f+g is measurable. Similarly by taking F(f(x),g(x))=f(x)g(x) we could prove that fg is measurable. As f and g are measurable, then $\{x\in X:\max(f,g)< a\}=\{x\in X:g< a\}\cap\{x\in X:g< a\}$. M is closed under intersection. Similarly we have $\{x\in X:\min(f,g)>a\}=\{x\in X:g>a\}\cup\{x\in X:g>a\}$. And finally as $\{x\in X:|f|>a\}=\{x\in X:f>a\}\cup\{x\in X:f<-a\}$ we could prove that |f| is measurable.
- 4.13. We know that $||f|| = f^+ + f^-$. As |f| < M we have $f^+ \le M$ and/or $-M < f^-$. Therefore $\int_E f^+ d\mu < \infty$ and $\int_E f^- d\mu < \infty$ which completes the

proof.

- 4.14. Suppose there exists a subset $A \subset E$ that f is not finite so $f = \infty$ on A. Therefore $\int_E f d\mu > \int_A f d\mu + \infty$ which contradicts.
- 4.15. Define s = g f so we have $s \ge 0$ and $\int_E s d\mu \ge 0$. Therefore we have $\int_E (g f) d\mu \ge 0$ which completes the proof.
- 4.16. From the question we know that $\int_E f^+ d\mu < \infty$ and $\int_E f^- d\mu < \infty$. As $A \subset E$, we have $\int_A f^+ d\mu < \infty$ and $\int_A f^- d\mu < \infty$. Therefore $f \in L^1(\mu, A)$.
- 4.21. Without loss, we could write $C = A \cap B^c$. So $\int_A f d\mu = \int_B f d\mu + \int_C f d\mu = \int_B f d\mu$ since $\mu(C) = 0$.