BE THE BABE WITH THE POWER*

*Not the power of Voodoo

EVERYTHING YOU LOOK AT IS A MODEL

HYPOTHESIS TESTING (WHAT ARE YOU MODELING?)

THE BALL IS RED

THE BALL IS NOT RED

SOMETIMES, YOU NEED TO TEST MANY HYPOTHESES

The ball is red

The ball is blue

The ball is green

The ball is purple

The ball is yellow

PICKING A TESTING FRAMEWORK (FILL IN THE BUBBLES WITH A #2 PENCIL)

WHAT STUDY DESIGN DO YOU NEED TO TEST THAT HYPOTHESIS?

• Cross-sectional

(Look at the population as a whole to find about about features)

• Case-control

(Enrich for a specific group and matched individuals)

Intervention

(Change what one group is doing, and leave the other alone)

• Cross-over design

(Use people as their own controls)

Survival

(What predicts some end point)

CASE-CONTROL

INTERVENTION STUDY

CROSS-OVER

Individual over Time

Wash out period

SURVIVAL

RANDOM AND REPRESENTATIVE

POPULATION: ALL THE MEMBERS OF A GROUP

OBSERVATION: SINGLE MEMBER OF THE GROUP

Population

Observation

POPULATION: ALL THE MEMBERS OF A GROUP

SAMPLE: A SUBSET OF THE MEMBERS OF A GROUP

RANDOM SAMPLING

SAMPLE: A SUBSET OF THE MEMBERS OF A GROUP

RANDOM SAMPLING

WHY DO YOU NEED A RANDOM SAMPLE?

WHY DO YOU NEED A RANDOM SAMPLE?

RANDOM SAMPLE

TheUpshot

THE 2016 RACE

How One 19-Year-Old Illinois Man Is Distorting National Polling Averages

Nate Cohn @Nate_Cohn OCT. 12, 2016

Problems oct. 13, 2016

505

There is a 19-year-old black man in Illinois who has no idea of the role he is playing in this election.

He is sure he is going to vote for Donald J. Trump.

And he has been held up as proof by conservatives — including outlets like Breitbart News and The New York Post — that Mr. Trump is excelling among black voters. He has even played a modest role in shifting entire polling aggregates, like the Real Clear Politics average, toward Mr. Trump.

How? He's a panelist on the U.S.C. Dornsife/Los Angeles Times Daybreak poll, which has emerged as the biggest polling outlier of the presidential campaign. Despite falling behind by double digits in some national surveys, Mr. Trump has generally led in the U.S.C./LAT poll. He held the lead for a

THE 2016 RACE
America's New Reporters of the Vote, and
How Pennsylvania Explains G.O.P.'s

2016 Senate Election Forecast AUG. 24, 2016

PULSE OF THE PEOPLE?
The Savvy Person's Guide to Reading the
Latest Polls OCT. 12, 2016

HYPOTHESIS TESTING (AND NOW FOR SOME MATH)

THE BALL IS RED

THE BALL IS NOT RED

HYPOTHESIS TEST OUTCOMES

	WE SAY "THE BALL IS RED"	WE SAY "THE BALL IS NOT RED"
THE BALL IS REALLY RED	True	False Negative
THE BALL IS NOT RED	False Positive	True

WHY SHOULD YOU CARE ABOUT ERRORS?

Type I error (false positive)

Type II error (false negative)

https://effectsizefaq.com/category/type-ii-error/

A MORE THEORETICAL EXAMPLE

H0: Red mean = Blue mean

H1: Red mean ≠ blue mean

HYPOTHESIS ABSTRACTION

H0: Red mean = Blue mean

H1: Red mean ≠ blue mean

HYPOTHESIS ABSTRACTION

H0: Red mean = Blue mean

H1: Red mean ≠ blue mean

^{*}This is a function of the sample size

NONCENTRALITY VS EFFECT SIZE

Noncentrality parameter is a function of sample size and the data

Effect size a property of the data

EFFECT SIZES

• Measure difference in your data

• Useful for comparison independent of sample size

Excellent for meta analysis

Associated with your test

SEEING EFFECT SIZES IN PCOA SPACE

Debelius et al (2016). Genome Biology. 17: 217

THE STATISTICAL TEST

- Calculate test statistic
- Compare to distribution
- 3. Get probability
- 4. Publish*

Random sample of 10 observations per group from red and blue

THE STATISTICAL TEST

- Calculate test statistic
- Compare to distribution
- 3. Get probability
- 4. Publish*

POWER = 1 - (TYPE II ERROR)

WHAT DOES POWER TELL YOU?

Power = Probability of finding a difference between your two groups as a function of sample size

- --> The relative scale of different effects
- --> How many samples per group you need to be sure of your results

WHAT DOES POWER TELL YOU?

Power = Probability of finding a difference between your two groups as a function of sample size

- --> The relative scale of different effects
- --> How many samples per group you need to be sure of your results

*CAVEATS

Some people use power to justify why they didn't see the difference they expected.

It's worth being wary.

High power doesn't necessarily mean biological significance

SOURCES OF VARIATION

Biological effect size

Host Body site

Host Age Geography

Long term diet

Orugs

Exercise

Short term perturbations

Technical Considerations

Protocol Storage

Bioinformatics

Processing location

Reagent lot

JW Debelius

WATCH FOR LITERATURE BIAS

Studies that find a difference get published

Studies with negative results don't.

Studies don't get repeated

http://digitalroam.typepad.com/digital_roam/2006/03/the_hole_story_.html

POWER FOR MICROBIOME DATA

- Two published methods directly address power:
 - La Rosa 2011 (Power for dirlict multinomial test)
 - Kelly 2015 (Power for permanova)

 Flemish Gut includes effect size discussion based on variance

WHERE TO GO?

```
Read this review:
   https://www.ncbi.nlm.nih.gov/pubmed/17944619
In Python:
   statsmodels.stats.power
Online:
   https://www.stat.ubc.ca/~rollin/stats/ssize/
```

http://www.sample-size.net/