AIRCRAFT ENGINES

MISE AU POINT MÉTHODE D'ANALYSE STATISTIQUE MULTIVARIÉE DES DONNÉES POUR IMPRESSION 3D/MIM

14/09/2016
Maoulida ABDOULLATUF

sommaire

Présentation Entreprise

Le procédé MIM

Objectifs du stage

Méthodes Statistiques

Les données

Résultats et interprétations

Conclusion

1.Présentation Entreprise 1.1. Safran

Groupe international de haute technologie

- 3 domaines d'activités :
 - > Sécurité
 - > Défense
 - > Aéronautique et Espace
- Chiffre d'Affaires 17,4 Milliards d'Euros en 2015
- ◆ Plus de 70 000 employés à travers le monde

1.Présentation Entreprise 1.2. Safran Aircraft Engines

Safran Aircraft Engines (anciennement SNECMA)

- Conçoit, développe, produit et commercialise, des moteurs pour avions civils et militaires et des moteurs spatiaux
- > 15 700 employés répartis sur 35 sites à travers le monde dont 11 en France (2015)

1.Présentation Entreprise 1.2. Safran Aircraft Engines

Site d'Evry-Corbeil

tournantes

> 30 km au sud de Paris

Usinage et assemblage de pièces et sous-ensembles

> 3 300 employés Safran AE Evry-Corbeil Division des Direction Direction de la Direction des Industrielle & moteurs Qualité Achats militaires Supply Chain Centres Division des Fabrication d'Excellence Movens Directe Industrielle - CEI Industriels Pièces Aubes de Chambres de Habillage et Aubes de Composites

équipements

turbine

SAFRAN

structures

compresseur

Présentation du procédé MIM (Metal Injection Molding)

Le Metal Injection Moulding consiste à injecter dans une presse un feedstock (= mélange de poudre métallique avec un liant (= polymère)) pour obtenir une pièce de forme (= pièce verte). Puis la pièce est déliantée (=pièce brune) et frittée.

Présentation du procédé MIM (Metal Injection Molding)

Le Metal Injection Moulding consiste à injecter dans une presse un feedstock (= mélange de poudre métallique avec un liant (= polymère)) pour obtenir une pièce de forme (= pièce verte). Puis la pièce est déliantée (=pièce brune) et frittée.

Objectifs du projet

Situation industrielle:

- L'objectif est de fabriquer une aube de turbine par le procédé MIM.
- Le procédé MIM est un procédé innovant avec beaucoup de paramètres non hiérarchisés.
- Pour garantir le rendement du moteur l'aube doit respecter la géométrie donnée au plan et cela impose de comprendre le rôle de chaque paramètre sur les caractéristiques géométriques.

Déploiement:

- Analyse statistique multi-variables des données de fabrication MIM :
 - Identifier les relations entre paramètres d'entrée et données de sortie
 - > Tendances multi-paramètres
 - Identifier les paramètres majeurs et paramètres redondants

Présentation des données

Procédé MIM: 57 paramètres identifiés

CrseComut CrseEqui **TpsInj Pcomut Paramètres** Mesure Injection dimensionnelle d'injection P1mntien **Fferm TpsDescen** Vitmntien tP2mntien

Aube de turbine: 63 mesures

Distance **ACR DefautForme YCR XCR EfCR EaCR ProfilCR**

EmCR

Beaucoup de production, peu de données

num_aub(▼	Tps_inj_d <mark>▼</mark> I	F_ferm (k <mark>▼</mark>	P1_mntie ▼	Tps_desc∈ <mark>▼</mark> \	/it_mntic <mark>▼</mark>	nbParametr eConf	103_Distanc e (cote HM)	XCR10	XCR30 ▼	XCR50 ▼	XCR70 ▼	XCR90	YCR10	YCR30
D24	1,66	2000	700	0,2		48	222,320	0,025	-0,143	-0,316	-0,457	-0,298	0,027	0,062
F26	1,84	2100	650	8	20			-0,052	0,064	0,157	0,279	0,154	0,075	0,747
F57	1,664	2100	1000	8	40	42	222,206	0,011	0,275	0,328	0,241	-0,030	0,037	0,835
F60	1,74	2100	1000	8	40	43	222,336	-0,027	0,230	0,319	0,340	0,069	0,057	1,177
F62	1,74	2100	1000	8	40	36	222,363	-0,002	0,147	0,135	0,148	0,022	0,071	0,879
F66	1,74	2100	1000	8	40	43	222,312	-0,018	0,181	0,201	0,190	-0,005	0,063	0,994
F85	1,74	2100	1000	8	40	33		-0,010	0,226	0,270	0,323	0,069	0,072	1,199
F87	1,74	2100	1000	8	40	32		-0,010	0,226	0,270	0,323	0,069	0,072	1,199
F88	1,74	2100	1000	8	40	34	222,399	0,003	0,200	0,236	0,306	0,112	0,075	1,058
F89	1,74	2100	1000	8	40	35	222,416	0,007	0,158	0,142	0,155	0,015	0,068	0,998
F91	1,74	2100	1000	8	40	38	222,504	-0,003	0,187	0,240	0,341	0,109	0,075	1,046
H12	1,74	2470	1000	8	20	45	222,748	-0,010	-0,048	-0,111	-0,172	-0,150	0,054	0,340
H13	1,74	2470	1000	8	20	43	222,736	-0,003	-0,025	-0,041	-0,102	-0,097	0,060	0,413
H14	1,79	2470	650	8	20	43	222,752	-0,043	-0,095	-0,100	-0,131	-0,099	0,055	0,436
H15	1,79	2470	650	8	20	44	222,842	-0,071	-0,285	-0,304	-0,267	-0,092	0,067	0,201
H52	1,76	2300	700	0,2	20	45	222,735	-0,134	-0,278	-0,241	-0,194	-0,104	0,076	0,282
H57	1,76	2300	900	0,2	20	42	222,771	-0,050	-0,246	-0,269	-0,276	-0,128	0,066	0,215
H66	1,76	2300	900	0,2	20	44	222,738	-0,032	-0,165	-0,154	-0,123	-0,046	0,057	0,270
H67	1,76	2300	900	0,2	20	38	222,779	-0,031	-0,172	-0,205	-0,207	-0,131	0,066	0,207
H68	1,76	2300	900	0,2	20	45	222,850	-0,054	-0,266	-0,311	-0,261	-0,092	0,066	0,024
indH14	1,79	2470	650	8	20	61	222,364	-0,043	-0,095	-0,100	-0,131	-0,099	0,055	0,000
:drien	4.70	2200	000	0.3	20	C1	222.264	0.000	0.000	0.000	0.000	0.100	0.000	0.000

Données incomplètes

- 11 pièces exploitables sur 321
- 70 paramètres retenus sur 95

Ajout de 9 individus\aubes en illustratif

Méthodes statistiques 1. ACP

Analyse en Composante Principale

- Principe :
 - Construire un système de représentation de dimension réduite et orthonormé tout en maximisant l'inertie du nuage de points

- Analogie avec une photographie :
 - > Meilleur angle de vue

Qui consiste à transformer des variables liée entre elles à des nouvelle variable dé-corélée....du pt de vu géo. Les para etant Représenté dans nouvel espace selon des direction d'inertie maximal. Du pt de vu stat. La recherche portant sur des axe indep expliquant au mieux la variance des donne

Méthodes statistiques 2.CAH

Classification Ascendante Hiérarchique

- Principe :
 - Mise en évidence de liens hiérarchiques entre individus ou groupes d'individus

Hiérarchie

Résultat et interprétation de l'ACP

- Le critère de « coude » nous conduit à retenir 2 axes expliquant 68,6% de l'inertie totale
- Pour avoir un peu plus d'inertie on retiendra 3 axes expliquant 80% de l'inertie totale

Biplot plan 1

- Le nuage bleu représente les familles de pièces F et H
- Le point violet représente l'individu parfait qui a été pris à la valeur nominale des cotes géométriques
- Mauvaise représentation de EaCR

Résultats et interprétation

- nuage des points 1er plan

 indParfaitmi et indParfaitM ont été créés avec les valeurs extrêmes des cotes géométriques

Biplot plan1-interprétation

- Le nuage bleu représente les familles de pièces F et H
- Le point violet représente l'individu parfait qui a été pris à la valeur nominale des cotes géométriques
- Mauvaise représentation de EaCR

Plan 2

- P1mntien est assez bien représenté
- Les autres paramètres ont été déjà interprété dans le plan 1

Plan 3

 Mauvaise représentation de toutes les paramètres d'entrée

Résultat et interprétation de la CAH

Selon le critère de Ward (critère par défaut) nous avons 7 classes.

indParfait et les individus H12,... j'ai donc fait un clustering selon le critere de ward ne donnant pas une conclusion claire

Résultat et interprétation de la CAH

La classe 2 est caractérisée par la force de fermeture:

Test de Fisher donne:

V. Test = 2.6 et P. value = 0.009

Puis j'ai réalisé une 2eme analyse plus restreint permettant de définir que le critère de caracteristique de cette classe est la force de fermeture.

___ Conclusion

- Apport pour l'entreprise :
- Montrer au spécialistes une vision globale de ces données qui va servir ensuite
- Elle a mis en place un processus de remontée de données
- Structuration des données
- Tendances sur les paramètres et préparation du travail à faire ensuite

___ Conclusion

- Apport pour l'étudiant:
- Fonctionnement d'une grande entreprise vu de l'intérieur
- Connaissance d'un procédé nouveau et de l'entreprise qui produit
- Approfondissement des connaissances en analyses de données
- Approfondissement de l'utilisation de « R »
- Application de la CAH sous « R »
- Découvrir des nouveaux packages comme « Factoextra » et « shiny »

AIRCRAFT ENGINES

MERCI DE VOTRE ATTENTION

SI VOUS AVEZ DES QUESTIONS

Soutenance stage de fin d'études 14/09/2016

Annexe

• <u>A à B</u>:

Injection dynamique: Mouvement de la vis jusqu' à la consigne: Course de commutation avec une vitesse donnée (vitesse d'injection dynamique).

Résultantes:

- Temps d'injection
- Pression à la commutation P
- <u>BàC:</u>

Phase de compactage: pilotage en pression,

Deux phases en générale: P à P1 puis P1 à P2 avec des temps de maintien

