Mon 1 June

- first two MLP deadlines have passed
- Quiz feedback:
 - Quiz 1 median: 18.5/21
 - Quiz 2 median: 13/20
 - Still early in the term If you are ever below the median get help (friend, tutor, office hours, internet) right away
- Quiz 3 on Wed with review on Thurs. If there are no review guestions then we will start Week 3.
- Exam 1 on Friday
 - covers up to ∮3.1
 - syllabus-approved calculator (though you probably won't need any at all)
 - 50 min. Class will start 30 min late to enforce that timeframe.
- sub for Week 3

- \bullet Seeing $\epsilon \mathbf{s}$ and $\delta \mathbf{s}$ on a Graph
- Finding a Symmetric Interval
- Book Problems
- 3.1 Introducing the Derivative

Assume that f(x) exists for all x in some open interval (open means: neither of the endpoints not included) containing a, except possibly at a. "The limit of f(x) as x approaches a is L", i.e.,

$$\lim_{x \to a} f(x) = L,$$

means for any $\epsilon>0$ there exists $\delta>0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$.

Seeing ϵ s and δ s on a Graph

Question

Using the graph, for each $\epsilon>0,$ determine a value of $\delta>0$ to satisfy the statement

$$|f(x)-5|<\epsilon \quad \text{whenever} \\ 0<|x-3|<\delta.$$

- \bullet $\epsilon = 1$
- $\epsilon = 0.5$.

Seeing ϵ s and δ s on a Graph, cont.

When $\epsilon = 1$:

 $\ldots \delta = 2$

Seeing ϵ s and δ s on a Graph, cont.

When $\epsilon=0.5$:

 $\dots \delta = 1$

The ϵ s and δ s give a way to visualize computing the limit, and prove it exists. As the ϵ s get smaller and smaller, we want there to always be a δ . In this example,

$$\lim_{x \to 3} f(x) = 5.$$

Exercise

Using the graph, for each $\epsilon>0$, determine a value of $\delta>0$ to satisfy the statement

$$|f(x)-4|<\epsilon$$
 whenever

$$0 < |x - 2| < \delta.$$

- \bullet $\epsilon = 1$
- \bullet $\epsilon = 0.5$.

Finding a Symmetric Interval

Question

When finding an interval $(a - \delta, a + \delta)$ around the point a, what happens if you compute two different δ s?

Answer: To obtain a symmetric interval around a, use the smaller of the two δ s as your distance around a.

Exercise

The graph of f(x) shows

$$\lim_{x \to 2} f(x) = 3.$$

For $\epsilon=1,$ find the corresponding value of $\delta>0$ so that

$$|f(x)-3|<\epsilon \quad \text{whenever} \\ 0<|x-2|<\delta.$$

Exercise

Let $f(x) = x^2 - 4$. For $\epsilon = 1$, find a value for $\delta > 0$ so that

$$|f(x) - 12| < \epsilon$$
 whenever $0 < |x - 4| < \delta$.

In this example, $\lim_{x\to 4} f(x) = 12$.

2.7 Book Problems

1-7, 9-18

- ullet Seeing ϵ s and δ s on a Graph
- Finding a Symmetric Interval
 Book Problems
- $\oint 3.1$ Introducing the Derivative

ϕ 3.1 Introducing the Derivative

Recall from Ch 2: We said that the slope of the tangent line at a point is the limit of the slopes of the secant lines as the points get closer and closer.

- slope of secant line: $\frac{f(x) f(a)}{x a}$ (average rate of change)
- slope of tangent line: $\lim_{x \to a} \frac{f(x) f(a)}{x a}$ (instantaneous rate of change)

Example

Use the relationship between secant lines and tangent lines, specifically the slope of the tangent line, to find the equation of a line tangent to the curve $f(x) = x^2 + 2x + 2$ at the point P = (1,5).