Exercise Sheet 12

Discrete Mathematics, 2020.11.3

- 1. We call f a choice function of S if $f: S \to \bigcup S$ and $f(X) \in X$ for any $X \in S$. Thus, the axiom of choice actually says: if $\emptyset \notin S$ then S has at least a choice function. Now, please determine whether f is a choice function of S in the following examples. (If yes, you only need to say yes. If no, briefly explain why.)
 - a) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(\{0\}, 0), (\{1\}, 1), (\{2\}, 2)\}\}$
 - b) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(0,0), (1,1), (2,2)\}$
 - c) $S = \emptyset$, $f = \emptyset$
 - d) $S = \mathcal{P}(\mathbb{N}), f = \{(\{m \in \mathbb{N} \mid m \ge n\}, n) \mid n \in \mathbb{N}\}$
- 2. Suppose R is an equivalence relation on A. Prove that there exists an injection from $\{[a]_R \mid a \in A\}$ into A, based on the axiom of choice.