Név:	
Kurzus kód:	Mérések napja, időpontja:

Óbudai Egyetem

Kandó Kálmán Villamosmérnöki Kar

Műszertechnikai és Automatizálási Intézet

MÉRÉSTECHNIKA LABORATÓRIUM 2/A

Budapest, 2014

A mérések fejlesztésében és összeállításában részt vettek

Markella Zsolt

Molnár Zsolt

Tényi V. Gusztáv

A kiadvány szerzői jogi védelem alatt áll, arról való másolat készítése csak az ÓE-KVK-MAI méréstechnika laboratóriumi kurzusát felvevő hallgatók számára engedélyezett.

Minden egyéb esetben – a szerzők előzetes írásbeli engedélye nélkül – a kiadvány másolása és jogosulatlan felhasználása bűncselekmény.

Tartalomjegyzék

12. sz. laboratóriumi mérés	3.	oldal
Teljesítmény mérés		
13. sz. laboratóriumi mérés	6.	oldal
Digitális oszcilloszkópos méréstechnika I.		
14. sz. laboratóriumi mérés	15.	oldal
Impedanciamérés I (Ellenállásmérés)		
15. sz. laboratóriumi mérés	21.	oldal
Frekvencia és időmérés		

Bevezetés

A méréstechnika laboratórium előző félévétől eltérően, ebben a félévben a korábban tanultak alapján már a mérést végző hallgató feladata lesz a mérési jegyzőkönyvek munkafüzetbe való elkészítése.

A munkafüzet vezetésének módja:

- A mérés előtt otthon elő kell készíteni a munkafüzetet.
- A mérés során az előkészített munkafüzetbe kell rögzíteni az adatokat.
- A mérés után a kiértékelés is a munkafüzetbe kell elkészíteni.

A mérés elvégzésének dokumentálásakor különleges gondot kell fordítani a mérés reprodukálhatóságára!

12. sz. Laboratóriumi mérés

1. A mérés célja:

A teljesítmény összetevőinek, jellemzőinek méréssel történő meghatározása. A mérés hibáinak meghatározása, figyelembevétele.

2. A méréshez szükséges elmélet:

Ajánlott témakörök:

Villamosságtan I.-II. 49203/I.-II. (Dr. Selmeczi-Schnöller) Méréstechnika jegyzet 1161 (Szerk. Dr. Horváth Elek) Példagyűjtemény

3. Mérési feladatok:

3.1.Az mérőpanelen található izzó teljesítmény-feszültség karakterisztikájának meghatározása! A teljesítménymérő használatának megismerése.

A teljesítmény számítása ill. mérése hibáinak meghatározása!

A mérés célja:

A mérőpanelen található 24 V, 60 W-os izzó a teljesítmény mérése teljesítménymérővel valamint teljesítmény-feszültség karakterisztikájának felvétele, váltakozó feszültségű táplálás esetén, 0 – 20 V tartományban 2 V-os lépésenként.

A mérendő objektum:

A feladat elvégzéséhez az 5. sz. mérőpanelon lévő elemek felhasználásával állítsa össze az alábbi kapcsolást:

Mérje meg az izzón átfolyó áramot, a rajta eső feszültséget, valamint a teljesítményt!

A megengedett áram és feszültség max. 2 A, vagy 20 V legyen!

ÜGYELJENEK ARRA, HOGY A TELJESÍTMÉNY MÉRŐ ÁRAM ÉS FESZÜLTSÉGTEKERCSÉT NE TERHELJÉK TÚL! A külső áram és feszültségmérővel mért adatok alapján kontrolálhatja a teljesítménymérő kapcsaira jutó jeleket!

Számolja ki és ábrázolja az izzó ellenállását a feszültség függvényében, valamit rajzolja fel a W mérővel mért teljesítmény jelleggörbéjét a feszültség függvényében! A legnagyobb mért érték esetén számítsa ki a V és az A mérő műszerrel mért adatokból számolt teljesítmények bizonytalanságát.

A rendszeres hibák kiszámításától eltekintünk!

3.2. Teljesítmény mérés ohmos-induktív terhelés esetén!

A mérendő objektum:

A feladat elvégzéséhez az 5. sz. mérőpanelon lévő elemek felhasználásával

állítsa össze az alábbi kapcsolást:

A mérést 5 és 10 V-os tápfeszültség esetén az induktivitás vasmagjának három lehetséges variációjában végezze el! (Vasmag nélkül, vasmaggal a mellékelt gumilapot a vasmag résében elhelyezve és nélküle.)

A külső áram és feszültségmérővel mért adatok és a teljesítmény mérővel mért hatásos teljesítményből határozza meg a meddő és látszólagos teljesítményeket és a terhelés fázisszögét, a kiszámolt adatokkal hasonlítsa össze a teljesítmény mérőről leolvasható adatokkal.

Rajzolja fel 10V-os tápfeszültség esetén a teljesítmények vektorábráját.

3.3. Pákatranszformátor kimeneti jellegörbéjének felvétele

Számítsa ki a mérőhelyen található 20~VA-s pákatranszformátor 24~V-s kimenetére vonatkozó névleges terhető áram és terhelő ellenállás értékét. Mérje meg a pákatranszformátor 24~V-s kimenetének üresjárási feszültségét! A mellékelt tolóellenállás felhasználásával állítsa be a névleges terhelő áramot és ismételje meg az előző mérést! A mért értékek alapján számítsa ki a feszültségesés illetve a teljesítmény veszteség értékét. A mérés eredményét ábrázolja U_{ki} , I_{ki} koordinátarendszerben.

13. sz. Laboratóriumi mérés

1. A mérés célja:

A digitális oszcilloszkóp kezelésének többlet funkcióinak elsajátítása, a kapott mérési eredmények kiértékeléséhez szükséges szemlélet kialakítása.

2. A méréshez szükséges elmélet:

Az előadáson elhangzottak és a Méréstechnika (szerk. Dr. Horváth Elek) c. jegyzet oszcilloszkópokról szóló része, különös tekintettel a digitális oszcilloszkópok témájára.

Ajánlott irodalom:

- A TDS1002 oszcilloszkóp gépkönyve (elérhető a laboratóriumban, vagy letölthető a http://www.tek.com oldalról)
- XYZs of Oscilloscopes (elméleti összefoglaló az oszcilloszkópok használatáról, a velük kapcsolatos fogalmakról, elérhető a laboratóriumban, vagy letölthető a http://www.tek.com oldalról)

Bevezetés

oszcilloszkópot Α TDS1002 forgatógombokkal nyomógombokkal kezelhetjük. A forgatógombok használata a eltér: teljesen körbe forognak, megszokottól mivel potenciométert vagy kapcsolót működtetünk velük, nincs szükség reteszelésre. A beállításokat nem az előlapi feliratokról, hanem a képernyőről olvashatjuk le. A legtöbb funkció menükből érhető el, egy részének nyomógombok megnyomásával indíthatunk el (állandó funkciójú gombok). A nyomógombok másik része (a képernyő mellettiek) a megnyitott menütől függően más-más feladatot kap (változó funkciójú gombok).

3. Mérési feladatok:

3.1. Vizsgálja meg a **csatorna-menük** beállítási lehetőségeit! Mivel a két csatorna (CH1 és CH2) menüje teljesen egyforma, ezért csak CH1 menürendszerét vizsgálja a {CH1 MENU} gomb (2)

megnyomása után. A változó funkciójú billentyűkkel (fentről lefelé) a következő beállításokat végezheti el:

- csatolás (Coupling), beállítható: DC, AC, Ground
- **sávkorlátozás** (BW Limit), beállítható: Off, On (20MHz). A kijelzés zaját csökkenti.
- **Volts/Div** forgatógomb (3) durva (Coarse) illetve finom (Fine) állítási lehetősége közötti átkapcsolás. Durva állásban az 1-2-5 szekvencia szerint változik a beállítás, ahogyan a hagyományos oszcilloszkópokon is. Finom állásban a beállítás legkisebb lépcsője 40µV-40mV (1X mérőfej-osztásnál), mely függ a beállított Volts/Div állástól.
- mérőfej-csillapítás beállítása (Probe), beállítható: 1X, 10X, 100X, 1000X. (Az 1X osztás a csillapítás nélküli átvitelt jelenti, a 10X osztású mérőfej esetén a bemeneti jel mérőcsúcstól az oszcilloszkóp BNC csatlakozójáig osztódik Ezutóbbi oszcilloszkóp tizedére le. azalapállapota.) képernyőn kijelzett érzékenység Α automatikusan követi a mérőfej csillapítását.
- csatorna invertálása (Invert), beállítható: On, Off.
- a) Próbálja ki a fenti beállítási lehetőségeket! Minden esetben figyelje meg, hogy a képernyőn látható státusz jelzések hogyan változnak a beállítások megváltozásakor! Jegyezze le az Ön által lényegesnek tartott kijelzéseket!
- b) Mérje meg, hogy 1V/Div és 10mV/Div állásban milyen finom-beállítási lépcsők vannak! Mi az oka a két finom-beállítási lépcső eltérésének és arányának?
- c) A **függőleges pozíció állítóval** (4) állítson be 100mV/Div érzékenység mellett +100mV, majd -150mV referencia-pozíciót! Figyelje meg a pozíció beállítás közben a képernyő legalsó sorában megjelenő információt! Milyen lépésekben állítható a pozíció? Miért nem lehet pontosan -150mV-ot beállítani?
- **3.2.** Vizsgálja meg a **horizontális menü** beállítási lehetőségeit! A horizontális menübe a {HORIZ MENU} (14) gombbal léphet. A változó funkciójú billentyűkkel (fentről lefelé) a következő beállításokat végezheti el:
 - sec/div beállító fő időalaphoz (Main) rendelése

- **sec/div** beállító **ablak-tartomány kijelöléshez** (Window Zone) rendelése
- **ablak** (Window) megtekintése
- **trigger gomb** (Trigger Knob) **trigger szint beállításhoz** (Level) vagy **késleltetés beállításhoz** (Holdoff) rendelése. Ez a mező jelzi a késleltetés aktuális értékét is.
- A Window üzemmód hasonlóan működik, mint analóg oszcilloszkópokon a kettős időalap. A kettős időalap használatával egy adott eltérítési sebesség mellet a jel egy részét más eltérítési sebességgel (időben elnyújtva) vizsgálhatjuk.
 - a) Adjon az oszcilloszkópra kb. 100kHz-es négyszögjelet (tetszőleges amplitúdóval és DC szinttel)! Az időalapot (Main) úgy állítsa be, hogy a képernyőn a négyszögjelnek kb. két periódusa látsszon! Az ablakot (Window Zone, amelyet két függőleges szaggatott vonal jelez) állítsa be úgy, hogy egy felvagy egy lefutó élet tartalmazzon, minél keskenyebbre állított ablaktartományban (0,2-0,5 osztás). Kapcsoljon át az ablak (Window) megjelenítésére! (Ekkor kinyújtva megjelenik a kiválasztott rész.) Rajzolja le az oszcilloszkóp képernyőjén látható ábrát az ablak-tartomány beállításakor, majd az ablak megjelenítésekor!
 - b) Figyelje meg a {sec/div} (7) kapcsolóval beállítható felbontás értékeket! A beállítható értékek nem a megszokott 1-2-5 szekvencia szerint, hanem 1-2,5-5 sorrendben változnak.
 - c) Kapcsolja a 3 vagy 3/A sz mérőpanel Q_B jelét a CH1 csatornára! Nyomja meg az {AUTOSET} gombot (18)! Mit tapasztal, a kijelzés értékelhető? A Holdoff segítségével állítsa meg a jelet! Rajzolja le a képernyőn látható jelet, jegyezze le a jel megállításához szükséges Holdoff értéket!
- **3.3.** A digitális oszcilloszkópoknál a mintavételezés és a mintáknak az adatgyűjtő memóriába írása folyamatosan történik. Ha az adatgyűjtő memória utolsó címére is került adat, a soron következő minta a memória első címén kerül eltárolásra (cirkuláris memória). Azt, hogy a begyűjtött mintákat fel kell-e dolgozni, és ki kell-e jelezni, az dönti el, hogy volt-e trigger esemény, amely meghatározza (a beállított triggerpozíció alapján) a kijelzőre kerülő mintasorozat elejét és végét.

A digitális oszcilloszkópoknál tisztáznunk kell a triggeresemény és adatayűités időtartamának egymáshoz képest való aztriggerelési elhelyezkedése szerinti mód felosztást. Utóriggerelésnek (posttrigger) nevezzük azt a triggerelési módot, amikor az adatgyűjtés a triggeresemény után következik (tehát a trigger megelőzi az adatgyűjtést, a triggeresemény megjelenítése a képernyő bal szélén történik, lásd a hagyományos oszcilloszkóp működését). Ilyenkor a triggeresemény előtt történtekről nincs információnk. **Előtriggerelésnek** (pretrigger) nevezzük azt a triggerelési módot, amikor az adatgyűjtés a triggeresemény előtt történik. Ilyenkor a triggeresemény az oszcilloszkóp képernyőjének jobb szélén helyezkedik el, a triggeresemény előtt történtekről egy teljes képernyőnyi információnk van. A harmadik a késleltetett utótriggerelés lehetősége, amikor a triggeresemény nem a képernyő bal szélén található, hanem attól jobbra. Például az 50%kal késleltetett utótrigger-esemény a képernyő közepén látható, az előtte és az utána történtekről is 5-5 osztásnyi (fél képernyőnyi) információnk van. Ez a beállítás a 0 triggerpozíció, a TDS1002 alaphelyzete.

- a) Vizsgálja meg a vízszintes pozíció állító {horizontal position} (6) működését, mely a trigger pozícióját állítja! Figyelje meg a beállítható tartományt! (-4 osztás ... +20ms/50ms/50s-ig, időalaptól függően) Mi a fizikai tartalma a 0, a +5 illetve a -1 osztásra állított triggerpozíciónak? Mire használható a triggerpozíció nagy tartományban való állíthatósága?
- b) Nullától eltérő triggerpozíció esetén vizsgálja meg a {set to zero} gomb (8) hatását! Milyen kellemetlenségtől óv meg minket ez a gomb? (Gondoljon arra, hogy ugyanaz a triggerpozíció más időalapnál máshova esik a képernyőn!)
- c) Mérje meg a 3. sz. vagy a 3/A sz. mérőpanel 1MHz, Q_A, Q_B, Q_C és Q_D kimeneteinek jelalakjait az oszcilloszkóp CH1 és CH2 csatornáján! Rajzolja le a jelalakokat fázishelyesen egymás alá! (Ezek a kimenetek egy 1MHz-es órajelről működtetett BCD osztó alsó 4 bitjének jelei.) Állítsa be az oszcilloszkóp vízszintes és függőleges érzékenységét úgy, hogy a Q_D jelnek egy periódusát lássa (a Q_D jelre triggereljen: {trig menu} (13), Source: CH1)!

A Q_D jel frekvenciája a legalacsonyabb, így biztosan álló jelet kapunk, ha ezt választjuk triggerforrásnak, míg ha egy magasabb frekvenciájú jelre (pl. 1MHz vagy Q_A) triggerelünk,

előfordulhat, hogy az alacsonyabb frekvenciájú jel fut a képernyőn. A következő ábrán láthatjuk, hogy a nagyobb frekvenciájú jel lehetséges triggerelési pontjainál az alacsonyabb frekvenciájú jelnek hol le-, hol pedig felfutó éle van. A két különböző fázisban egymásra rajzolódott alacsonyabb frekvenciájú jel kiértékelhetetlen. Ha viszont az alacsonyabb frekvenciájú jelre triggerelünk, annak lehetséges triggerelési pontjainál a nagyobb frekvenciájú jel felrajzolása is mindig fázishelyesen történik.

- d) A triggerpozíció állításával vizsgálja Q_D jelnek a képernyőn kívüli részeit! (Ez melyik triggerelési módnak felel meg?) Mennyi adatot lehet a képernyőn alapesetben nem megjelenített hullámformából megtekinteni?
- **3.4.** Fontos megjegyezni, hogy az analóg oszcilloszkópoktól eltérően (ahol minden esetben a képernyő bal szélén helyezkedik el a trigger esemény), itt a vízszintes pozíció állító gombbal {horizontal position} meghatározott triggerpozícióban lesz a trigger esemény ("O időpillanat").

Lépjen be a **trigger menübe** a {TRIG MENU} gomb (13) megnyomásával. A legfelső változó funkciójú billentyűvel a következő beállításokat végezheti el:

- **trigger típus kiválasztása** (Type), beállítható: élre triggerelés (Edge), video szinkronjelekre triggerelés (Video), impulzus-jellemzőkre triggerelés (Pulse)

A többi változó funkciójú billentyű a beállított trigger típustól függően a következő szerepet tölti be:

Éltrigger esetén:

- triggerforrás-választás (Source), beállítható: CH1, CH2, Ext, Ext/5, AC Line. Az Ext/5 állásban a külső triggerjel amplitúdója ötödére osztódik, a többi triggerforrás választási lehetőség analóg oszcilloszkópokon is megtalálható
- triggerelési **él** kiválasztása (Slope), beállítható: emelkedő (Rising) vagy lefutó (Falling) él
- triggerelési **üzemmód** (Mode), beállítható: automatikus indítás (Auto), normál indítás (Normal)
- triggerjel csatolásának beállítása (Coupling), beállítható: DC, zajelnyomás (Noise Reject, amikor a vizsgált jelre ülő nagyfrekvenciás zaj elnyomása történik), nagyfrekvenciás elnyomás (HF reject, a jelről a nagyfrekvenciás komponensek leválasztása történik), alacsonyfrekvenciás elnyomás (LF reject, az alacsonyfrekvenciás komponensek leválasztása történik), AC
- a) Tervezze meg a nagy- és a kisfrekvenciás elnyomás határfrekvenciájának mérését! Végezze el a mérést!

Videotrigger esetén:

- triggerforrás választás (Source), beállítható: CH1, CH2, Ext
- szinkronjel élének kiválasztása (Polarity), beállítható: felfutó él (Normal), lefutó él (Inverted)
- triggerelés módjának kiválasztása (Sync), beállítható: minden sorra (All Lines), adott sorra (Line Number, a sor számának kiválasztása a triggerszint állító gombbal történhet), páratlan illetve páros sorszámú félképre (Odd/Even Field), minden félképre (All Fields)
- videojel normájának kiválasztása (Standard), beállítható: NTSC, PAL/SECAM

Impulzus trigger esetén:

- triggerforrás választás (Source), beállítható: CH1, CH2, Ext, Ext/5 (lásd éltriggernél)
- összehasonlítás módjának megadása (When), beállítható: azonos (=), nem azonos (≠), kisebb mint (<), nagyobb mint
 (>)

- impulzusszélesség beállítása (Set Pulse Width), kiválasztva a triggerszint állító segítségével beállíthatjuk az alap impulzus szélességet, mellyel a mértet össze tudjuk hasonlítani
- belépés a 2. lapra (- more -)
 - impulzus polaritásának beállítása (Polarity), beállítható: pozitív (Positive), negatív (Negative)
 - triggerelési üzemmód (Mode), lásd éltrigger
 - triggerjel csatolásának beállítása (Coupling), lásd éltrigger

A **triggerelési szint** a {TRIGGER LEVEL} gomb (15) segítségével állítható, helyzete és értéke a képernyőn kijelzésre kerül.

A {SET TO 50%} gomb (12) megnyomásakor automatikusan a vizsgált jel amplitúdójának "közepére" kerül. (Vigyázat, az 50% a kiválasztott csatoláson áthaladt jelre vonatkozik!)

A {FORCE TRIGGER} (erőltetett trigger) gomb (11) segítségével az előkészített (jelenlegi) hullámalak felvételt lehet befejeztetni az oszcilloszkóppal (egyszeri jelfelvételnél és normál üzemmódban hasznos).

A {TRIG VIEW} gombbal (10) a triggerelési jelszűrés hatását lehet vizsgálni, megjeleníti a kondicionált trigger jelet.

- b) Adjon az oszcilloszkóp CH1 csatornájára kb. 1kHz-es szinuszos jelet! A triggerpozíció nullára állítása után jelenítsen meg a vizsgált jelből 1-2 periódust, és a triggerpozícióban állítsa be a jel következő fázishelyzetű pontjait (hozzávetőlegesen): 30°, 120°.
- c) Adjon az oszcilloszkóp CH1 csatornájára pontosan 1kHz-es négyszögjelet (a képernyő jobb alsó sarkában pontos információt kap a beállított frekvenciáról)! A képernyőn a ielnek kb. periódusa látsszon! Impulzus trigger kiválasztása mellett állapítsa feltételként meg, hogy impulzusszélesség-egyezést (=) kiválasztva, milyen határok fogadia e1 а pontosan 500 µs között félperiódusú négyszögjelet (impulzust) a triggerrendszer. Kiindulásként állítsunk be 500µs-os impulzusszélességet, pozitív polaritást normál üzemmódot. Azt, hogy az oszcilloszkóp triggerfeltételt teljesültnek tekinti, az fogja jelezni, hogy "élő" képet látunk, míg ha nincs triggeresemény, akkor a kirajzolt

jelalak "megáll", és elhalványodik. Finoman változtassuk a triggerfeltétel impulzusszélesség beállítását a kiindulási érték fölé, majd alá.

- **3.5.** A készülék **kibővített matematikai funkciókkal** rendelkezik. A matematikai menüt a {MATH MENU} gombbal (5) hívhatjuk elő. A legfelső változó funkciójú billentyűvel a következő funkciók között választhat:
 - **Művelet kiválasztása** (Operation), beállítható: összegzés (+), különbségképzés (-), FFT spektrum analízis (FFT)

A többi változó funkciójú billentyű a beállított matematikai művelettől függően a következő szerepet tölti be:

Összegzés esetén nincs egyéb választási lehetőség, mert csak kétcsatornás az oszcilloszkóp. Nagyobb csatornaszám esetén kiválasztható bármely csatornának bármely másik csatornával való összegzése.

Különbségképzés esetén:

- CH1-CH2 képzése
- CH2-CH1 képzése

FFT esetén:

- forrásválasztás (Source), beállítható: CH1, CH2
- ablakozás típusának kiválasztása (Window), beállítható: Hanning, Flattop, Rectangular (bővebben a 7. sz. mérésben)
- frekvencia-tartomány nagyítása (FFT Zoom), beállítható: x1, x2, x5, x10

Az FFT üzemmód csak elővigyázatosan használható, mert az átlapolódás miatt ál-spektrumvonalak (alias) keletkezhetnek.

3.6. A készülék alkalmas **automatikus gyorsmérések** elvégzésére. Egyszerre 5 mennyiség mérethető a készülékkel, tetszőleges csatornáról. Az automatikus gyorsmérések menüt a {MEASURE} gomb (24) megnyomásával hívhatjuk elő. Ekkor a képernyő jobb szélén feltűnik az öt forrás – mérendő mennyiség

páros. Bármelyiket kiválasztva a változó funkciójú billentyűkkel (fentről lefelé) a következő beállításokat végezheti el:

- **forrás** kiválasztása (Source), beállítható: CH1, CH2
- mérendő mennyiség kiválasztása (Type), beállítható: frekvencia (Freq), periódusidő (Period), egyszerű középérték (Mean), csúcstól-csúcsig érték (Pk-Pk), valódi effektív érték (az első teljes perióduson) (Cyc RMS), a teljes hullámalak minimális értéke (Min), a teljes hullámalak maximális értéke (Max), az első felfutási idő értéke 10% és 90% között (Rise Time), az első lefutási idő értéke 10% és 90% között (Fall Time), a hullámalak első felfutó és első lefutó élének 50%-os állapota között eltelt idő (Pos Width), a hullámalak első lefutó és első felfutó élének 50%-os állapota között eltelt idő (Neg Width), nincs mért mennyiség (None)

Ha a képernyőn nem látható a jelnek legalább egy teljes periódusa vagy amplitúdóban nem fér el a képernyőn, akkor néhány mennyiség nem mérhető. A mérendő jelalaknak (jelalak-részletnek) a képernyőt minél jobban ki kell töltenie a lehető legpontosabb mérés érdekében.

- a) Mérje meg egy 1kHz-es, 1V amplitúdójú, 1V DC ofszetű szinuszjel, és egy 10kHz-es 1V amplitúdójú, 100mV DC ofszetű négyszögjel jellemzőit. A mérési eredményeket vesse össze a függvénygenerátor skálájával, illetve a különféle jelalak-jellemezők kapcsolatáról tanultakkal (effektív érték, csúcsérték, középérték).
- b) Jegyezze le, milyen kijelzést tapasztal az egyes méréseknél, ha a képernyőn nem látszik a jelnek legalább egy teljes periódusa, vagy amplitúdóban "kilóg"!
- c) Mérje meg a fenti négyszögjel felfutási idejét! Először a négyszögjelnek kb. 4 periódusa látsszon a képernyőn, majd az időalap fokozatos csökkentésével, minden időalap értéknél jegyezze fel a mért felfutási időt! (Addig csökkentse az időalapot, amíg a képernyőn a teljes felfutás látszik!) Adjon magyarázatot az eltérő mérési eredményekre!

14. sz. Laboratóriumi mérés

1. A mérés célja:

Az ellenállás mérésére használatos néhány módszer alkalmazásának elsajátítása. Igen kis ellenállások nagypontosságú mérése.

A méréseknél előforduló mérési hibák meghatározása.

2. A méréshez szükséges elmélet:

Ajánlott témakörök:

Méréstechnika jegyzet (Szerk. Dr. Horváth Elek) Példagyűjtemény

Az ellenállás fogalma:

Az elektromosságban az ellenállással (mint modellel), az elemek veszteségét, ill. a villamos energia más energiává (mechanikai, hő) történő átalakítását jellemezzük.

Az ellenállásmérés fontosabb területei:

- az alkatrész paramétereinek meghatározása,
- a veszteség mértékének meghatározása,

Az ellenállásmérés módszereinek felépítése a mérési elvek szerint

- Áram és feszültségmérés módszer
- Soros ellenállásmérő
- Párhuzamos ellenállásmérő
- Feszültség összehasonlítás
- Áram összehasonlítás
- Hídmódszer: (Wheatstone ill. Thomson híd)

Az ellenállás bekötése szerint a mérés lehet:

- Kétvezetékes
- Négyvezetékes

3. Mérési feladatok:

3.1. Feszültség összehasonlító módszerrel határozza meg a 4. sz mérőpanelen található $R_7 \approx 10~\Omega$ és $R_4 \approx 82~\Omega$ névleges értékű ellenállások pontos értékét és bizonytalanságukat!

A mért és a számított eredményeket foglalja össze táblázatba. A méréseknél az elérhető legnagyobb pontosságra törekedjék!

a) A mérési kapcsolás:

A mérést a fenti kapcsolási rajz alapján végezze el!

Normáliának R_N a következő ellenállás használható: $R_6=10~\Omega\pm0.02\%$; 0,25W.

A mérés feltételei, határadatai:

A mérés nagyobb érzékenysége miatt célszerű ha, R_N ~ R_x.

Azért, hogy a mérőműszerek fogyasztása elhanyagolható legyen: $R_{\rm N}$, $R_{\rm x}$ « Rv .

Az áramgenerátoros meghajtást, a feszültségforrással sorba kötött, az áramkör többi ellenállásához képest nagy ellenállással - $R_{\rm G}$ - valósítjuk meg. (Válasszunk egy legalább 2 nagyságrenddel nagyobb $R_{\rm G}$ -t mint az $R_{\rm N}$, legyen $R_{\rm G}=R_1=1$ k $\Omega,\,0,25W)$

A mérési pont kijelölésénél vegye figyelembe, hogy a mérőáram ne melegítse a mérendő ellenállásokat! Ezért ezt célszerű a maximális áram harmada-tizede között megválasztani, a fenti szempontok, feltételek figyelembevételével. Tehát, határozza meg:

- a mérőáramot,
- az U_T tápfeszültséget és áramkorlátot!

Az ellenállások terhelhetősége: 0,25 W

 $U_N \sim U_x$ legyen, a mérőműszer méréshatárának közelében (a kisebb bizonytalanság miatt)

műszerek kiválasztása

A mérés adatainak kiértékeléséhez szükséges számítások, elemzések, szempontok:

A számított ellenállás:

$$R_{X} = R_{N} * \frac{U_{X}}{U_{N}}$$

Amennyiben az $R_N \sim R_x$ « Rv feltételek nem teljesülnek, akkor a mért feszültségeredményeket korrigálni kell.

A mérés eredő bizonytalansága (a legkedvezőtlenebb esetet feltételezve):

$$\pm \mathbf{h}_{Rx} = \pm (\ \mathbf{h}_{R_N} + \mathbf{h}_{U_N} + \mathbf{h}_{U_x} \), \ \text{ahol}$$

- h_{R_N} az ismert ellenállás relatív hibája,
- \mathbf{h}_{U_N} ill. \mathbf{h}_{U_x} az egyes ellenállásokon mért feszültségek bizonytalansága.

A számításokhoz segítséget az előző féléves 1-es és 2-es számú mérés útmutatójában talál!

3.2. Áramösszehasonlító módszerrel határozza meg a 4. sz mérőpanelen található $R_{15} \approx 100~k\Omega$ névleges értékű, valamint az R_{11} ismeretlen értékű ellenállásokat és bizonytalanságukat! A mért és a számított eredményeket foglalja össze táblázatba. A méréseknél az elérhető legnagyobb pontosságra törekedjék!

A mérendő objektum:

A mérést a fenti kapcsolási rajz alapján végezze!

Normáliának **külső** normálellenállás használható: 100 k Ω ± 0.02%; terhelhetősége 3 mA.

A mérés feltételei, határadatai:

A mérés nagyobb érzékenysége miatt célszerű ha, R_N ~ R_x.

Azért, hogy a mérőműszerek fogyasztása elhanyagolható legyen: R_{N} , R_{x} » R_{A} .

Határozza meg itt a maximális tápfeszültséget!

Megjegyzés:

A digitalis műszerek alsó méréshatáraiban az emelkedő belső ellenállások miatt, feltétlenül vizsgálja meg, hogy szükséges e korrekciót végezni!

A mérési pont kijelölésénél vegye figyelembe, hogy a mérőáram ne melegítse a mérendő ellenállásokat! Ezért ezt célszerű a maximális áram harmada-tizede között megválasztani, a fenti szempontok, feltételek figyelembevételével. Tehát, határozza meg:

- a mérőáramot,
- az U_T tápfeszültséget és áramkorlátot!

Az ellenállások terhelhetősége: 0,25 W

 $I_N \sim I_x$ legyen, a mérőműszer méréshatárának közelében (a kisebb bizonytalanság miatt)

műszerek kiválasztása

A mérés adatainak kiértékeléséhez szükséges számítások, elemzések, szempontok:

A számított ellenállás:

$$R_X = R_N * \frac{I_N}{I_X}$$

Amennyiben az $R_N \sim R_x \gg R_A$ feltételek nem teljesülnek, akkor a mért árameredményeket korrigálni kell.

A mérés eredő bizonytalansága (a legkedvezőtlenebb esetet feltételezve):

$$\pm h_{Rx} = \pm (h_{R_N} + h_{I_N} + h_{I_x})$$
, ahol

- h_{R_N} az ismert ellenállás relatív hibája,
- \mathbf{h}_{I_N} ill. \mathbf{h}_{I_x} az egyes ellenállásokon átfolyó áramok bizonytalansága.

3.3. Két- ill. négyvezetékes módszer segítségével határozza meg a 4. sz mérőpanelen található R3 \approx 0,5 Ω névleges értékű ellenállást! A mért és a számított eredményeket foglalja össze táblázatba A méréseknél az elérhető legnagyobb pontosságra törekedjék!

A mérendő objektum:

$$R_2 = 20\Omega, 20W$$

 $R_3 = 0.5\Omega, 5W$

2 vezetékes ellenállásmérés (V-A mérős módszer)

4 vezetékes ellenállásmérés

A mérés megkezdése előtt, a rendelkezésekre álló legpontosabb műszere segítségével mérje meg az R₃ értéket a közelebbi és a távolabbi kapcsokon is. Adjon magyarázatot a kapott eredményekre.

A méréseket a fenti kapcsolási rajzok alapján végezze! Mindkét kapcsolásnál rövid és hosszú (összefűzött 3db vezeték) mérőzsinórral is végezze el a mérést.

A mérési pont kijelölésénél vegye figyelembe, hogy a mérőáram ne melegítse a mérendő ellenállást! Tehát, határozza meg:

- a mérőáramot,
- az U_T tápfeszültséget és áramkorlátot!

Számítsa ki a két és a négy vezetékes mérési elrendezés esetén is a rövid, és a hosszú mérőzsinór esetén kapott mérési eredmények százalékos eltérését és ennek alapján értékelje a méréseket!

15. sz. Laboratóriumi mérés

1. A mérés célja:

Kapuzással és impulzusszámlálással dolgozó digitális frekvencia- és időmérő működési elvének és működésének modellen történő bemutatása az alapvető üzemmódokban. A kapcsolást alkotó áramkörök vizsgálata.

Mérések:

- Az aszinkron működésből eredő impulzusszámlálási hiba (±1) vizsgálata;
- Mérések frekvencia, periódusidő és időintervallum mérő üzemmódokban;
- -A legnagyobb mérési pontosság eléréséhez megfelelő üzemmód és méréshatár kiválasztása.

A mérés hozzájárul az oszcilloszkóp kezelési ismereteinek digitális áramkörök vizsgálatára történő bővítéséhez.

2. A méréshez szükséges elmélet:

Az előadáson elhangzottak és a méréstechnika jegyzet frekvencia- és időmérésről szóló fejezete.

Méréstechnika jegyzet (Szerk. Dr. Horváth Elek)

A 3. mérőpanel leírása

A mérőpanel két bemeneti csatornát (**CH1**, **CH2**), nagy-pontosságú alaposzcillátort (**CLK**), digitális frekvenciaosztókat (**%N1**, **%N2**), számlálót (**SZAML**), vezérlő egységet (**VEZ**) és átmeneti tárolóval (**REG**) egybeépített kijelzőblokkot (**KIJ**) tartalmaz. A bemeneti csatornákra adott tetszőleges időfüggvényű periodikus jelet a **KOMP1** és **KOMP2** komparátor digitális feldolgozásra alkalmas négyszögjellé alakítja. A **SZAML** számláló a t_k kapuidő alatt beérkező **IMP** impulzusokat megszámlálja, az eredmény a **load** jel hatására a **REG** tárolóba íródik át, ahol az újabb számlálás eredményének átírásáig megőrződik. Az átírás után az N_x a **SZAML** számláló tartalma a **reset** jelre törlődik. A **KIJ** kijelző a mindenkori tárolt értéket decimális számként jeleníti meg.

A mérőpanel általános blokkvázlata

Az előlap rajza

Az előlapi **MODE** kapcsolóval az alábbi üzemmódok választhatók ki:

- -**FREQ** frekvenciamérő,
- -**PER** periódusidőmérő,
- -AV. PER- átlag periódusidőmérő,
- -TIME- időkülönbségmérő

3.1. Az $\mathbf{N}_{\mathbf{X}}$ számláló számlálási bizonytalanságának mérése

Állítson be a függvénygenerátoron kb. 15Hz-es négyszög-jelet! Válasszon a mérőpanel frekvenciamérő üzemmódjában 10MHz-es méréshatárt és mérje meg a jel frekvenciáját!

a) Kétsugaras oszcilloszkóppal vizsgálja meg a **TK** és **IMP** jelet, vesse össze a **TK** időablakba eső **IMP** impulzusdarab-számot a kijelzőn leolvasható értékkel. Rajzolja fel léptékhelyesen a jellegzetes jelalakokat!

Az oszcilloszkópot a TK jelre indítsa, az ábrája akkor lesz jól kiértékelhető, ha az időablakba eső impulzusok olyan lassan mozognak jobbra, vagy balra a képernyőn, hogy a számolást kényelmesen el tudja végezni. Ehhez a 15 Hz környezetében finoman kell hangolni a jel frekvenciáját.

Az impulzusszámlálás hibája

b) Növelje a generátor frekvenciáját egy nagyságrenddel. Hogyan változik a panel kijelzője?

3.2. Közvetlen frekvenciamérés

Digitális frekvenciamérő elvi blokkvázlata és idődiagramjai

A mérőpanelre a mérendő jelet a **CH1** bemenetre kell csatlakoztatni. A bemeneti jelet a **KOMP1** komparátor (Ez megfelel az elvi blokkvázlat bemeneti fokozatának.) négyszögjellé alakítja. A komparátor komparálási szintje a **LEVEL**, hiszterézise a **SENSE** előlapi potenciométerrel állítható. A komparátor f_x ismeretlen frekvenciájú kimeneti jele a **KAPU IMP** bemenetére kerül. (Tehát a kapura rákerül az f_x ismeretlen frekvenciájú jel immár meredek felfutású négyszögjel jelalakkal.)

Az **CLK** alaposzcillátor (Ez megfelel az elvi blokkvázlat referencia oszcillátorának.) kvarc pontosságú stabil **1MHz** frekvenciájú kimeneti jele 10-es osztóelemekből (**1/10**) álló osztóláncra kerül. A T_k kapuidő képzéséhez szükséges megfelelő frekvenciájú leosztott jelet a **RANGE** előlapi kapcsoló választja ki. A számláló a T_k idő alatt beérkező impulzusokat számlálja. (Az elvi blokkvázlaton a kapu áramkör által a T_k kapuidő alatt átengedett f_x frekvenciájú impulzusokat az f_k jelöli, az f_k impuzuscsomagjaiban a számláló által megszámolt impulzusok száma az N_x .)

A számlálás eredménye: $N_{\mathbf{x}} = T_{\mathbf{k}} * f_{\mathbf{x}}$, ebből a mért frekvencia

$$f_{\mathbf{x}} = N_{\mathbf{x}}/T_{\mathbf{k}}$$
.

Figyelembe véve, hogy a **RANGE** kapcsolóval kiválasztott frekvencia $f_{\mathbf{R}}/N$, ahol N az addigi teljes osztás (annyiszor 10, ahány bekapcsolt osztóelem van),

$$T_{\mathbf{k}} = N/f_{\mathbf{R}}$$
, és ezzel $f_{\mathbf{x}} = f_{\mathbf{R}} * N_{\mathbf{x}}/N$.

A számlálás bizonytalansága ± 1 , mivel a $\pmb{T_k}$ kapuidő kezdete nincs szinkronban a mérendő $\pmb{f_x}$ frekvenciával.

A mérés h_{fx} relatív bizonytalansága:

$$\pm h_{fx} = \pm (h_{fR} + 1/N_x), \text{ ahol}$$

 $\pm h_{fR} = \pm 10^{-6}$ a kvarcoszcillátor bizonytalansága.

A mérőpanel blokkvázlata frekvenciamérő üzemmódban

Mérési feladat:

Oszcilloszkóp segítségével állítson be a függvénygenerátor kimenetén négyszögjelet, a pozitív szint 3 V, a negatív szint 0 V legyen!

- a) Állítson be a generátoron 10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz és 1 MHz frekvenciát csatlakoztassa a 3 számú mérőpanel CH1-es bemenetére és mérje meg a MODE kapcsoló FREQ állásában, a RANGE kapcsoló 10000kHz/ms állásban legyen!
- b) Határozza meg valamennyi mérésnél a frekvenciamérés hibáját az alábbi képletek alapján!

Használja az elméleti leírásban levezetett képletet:

$$\pm h_{fx} = \pm (h_{fR} + 1/N_x)$$
, ahol

 $\pm h_{\boldsymbol{fR}} = \pm 10^{-6}$ a kvarcoszcillátor bizonytalansága

 $N_{\boldsymbol{x}}$ a kijelzőn lévő számérték a tizedespont nélkül

Az eredményeket foglalja táblázatba és ábrázolja a frekvencia függvényében!

- c) Állítson be a generátoron 10 kHz frekvenciát és mérje meg a MODE kapcsoló FREQ állásában, a RANGE kapcsoló mindhárom állásban!
- d) Határozza meg a c pontban elvégzett mérésnél a frekvenciamérés hibáját és értékelje a kapott eredményeket!

3.3. Periódusidőmérésen alapuló frekvenciamérés

Periódusidőmérő üzemmód:

Digitális periódusmérő blokkvázlata

Mint a mérőpanel blokkvázlatán látható a $T_{\mathbf{k}}$ kapuidő a mérendő jelből közvetlenül áll elő a

$$T_k = T_x = 1/f_x$$

összefüggés alapján. A számlálandó **imp** impulzussorozat az f_R/N érték, ahol az N a méréshatártól függően 1 vagy 10 lehet. A számlálás eredménye:

$$N_x = T_k \frac{f_R}{N} = T_k \frac{f_R}{N}$$
, és ebből
 $T_x = N_x N \frac{1}{f_r}$

A 6 számjegyű kijelző miatt a T_x =100 ms (99.9999ms) méréshatárhoz N=0.1, vagy f_R =10MHz volna szükséges, amely nem valósítható meg, illetve nem áll rendelkezésre, ezért ebben a méréshatárban T_k képzésére az f_x /10 frekvenciájú leosztott jelet használjuk.

A mérés h_{Tx} bizonytalansága a vizsgált jel zajosságából és a komparálási bizonytalanságból eredő hatásokat elhanyagolva:

$$\pm h_{Tx} = \pm (h_{fR} + 1/N_x)$$

A mérőpanel blokkvázlata periódusidőmérő üzemmódban

Mérési feladat:

Oszcilloszkóp segítségével állítson be a függvénygenerátor kimenetén négyszögjelet, a pozitív szint 3 V, a negatív szint 0 V legyen!

- a) Állítson be a generátoron 1 Hz, 10 Hz, 100 Hz, 1 kHz, 10 kHz és 100 kHz frekvenciát csatlakoztassa a 3 számú mérőpanel CH1-es bemenetére és mérje meg a MODE kapcsoló PER állásában, a RANGE kapcsoló 1000kHz/ms állásban legyen!
- b) Határozza meg valamennyi mérésnél a periódusidőmérés hibáját az alábbi képletek alapján!

Használja az elméleti leírásban levezetett képletet:

$$\pm h_{Tx} = \pm (h_{fR} + 1/N_x), ahol$$

 $\pm h_{\mbox{\it fR}} = \pm 10^{-6}~a~kvarcoszcillátor~bizonytalansága$

 $N_{m{x}}$ a kijelzőn lévő számérték a tizedespont nélkül

Eltekintünk a triggerelés - a jel zajosságából származó - hibájától tekintettel arra, hogy négyszögjellel végezzük a mérést!

Az eredményeket foglalja táblázatba és ábrázolja a frekvencia függvényében!

- c) Állítson be a generátoron 10 Hz frekvenciát és mérje meg a MODE kapcsoló PER állásában, a RANGE kapcsoló mindhárom állásban!
- d) Határozza meg a c pontban elvégzett mérésnél a frekvenciamérés hibáját és értékelje a kapott eredményeket!

3.4. Időintervallum mérés

Oszcilloszkóp segítségével állítson be a függvénygenerátor kimenetén impulzus jelalakot, a pozitív szint 3 V, a negatív szint 0 V, a kitöltési tényező 60 % legyen! Az impulzus jelalak kiválasztása esetén az offset potencióméterrel lehet a jel kitöltési tényezőjét állítani.

- a) Állítson be a generátoron 1 kHz frekvenciát csatlakoztassa a 3 számú mérőpanel CH1-es bemenetére. Állítsa a MODE kapcsolót a TIME állásban, a RANGE kapcsolóval pedig állítsa be a maximális felbontást. Mérje meg az impulzus szélességet!
- b) Értékelje a mérés eredményét!