Introduction
 Polytypes
 Examples
 Introduction
 Polytypes
 Examples

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 <

Objectives

Polytype Semantics

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

	Use the Gen and	l Inst rules	to introduc	e polymorphic types.
--	-----------------	--------------	-------------	----------------------

- ightharpoonup Explain the \forall syntax in type signatures.
- Explain the type difference between let and function application.
- ▶ Draw some proof trees for polymorphically typed programs.

Introduction	Polytypes	Examples	Introduction	Polytypes	Examples
0●0	00 0000	000	00●	00 0000	000
					/

The Language

• We are going to type λ -calculus extended with let, if, arithmetic, and comparisons.

L ::=	$\lambda x.L$	abstractions
	LL	applications
	let x = L in L	let expressions
	if L then L else L fi	if expressions
	Ε	expressions
E ::=	X	variables
	n	integers
	Ь	booleans
	$E \oplus E$	integer operations
	$E \sim E$	integer comparisons
	E && E	boolean and
ĺ	E E	boolean or
		4 D > 4 D > 4 E > 4 E > 9 Q Q

Remember the Let Rule?

► Remember this rule for let :

$$\frac{\Gamma \vdash e_1 : \sigma \qquad \Gamma \cup [\mathtt{x} : \sigma] \vdash e_2 : \tau}{\Gamma \vdash \mathtt{let} \ \mathtt{x} = e_1 \ \mathtt{in} \ e_2 : \tau} \ \mathsf{Let}$$

▶ We cannot type check things like this:

let
$$f = \langle x \rangle x$$
 in $(f "hi", f 30)$

► What is the type of id here?

$$1$$
 id $x = x$

Type Variables in Rules

A monotype au can be a

- ► Type constant (e.g., Int , Bool , etc.)
- ▶ Instantiated type constructor (e.g., [Int], Int \rightarrow Int)
- ightharpoonup A type variable α

A polytype σ can be a

- ightharpoonup Monotype au
- ▶ Qualified type $\forall \alpha.\sigma$

```
1 {-# LANGUAGE ScopedTypeVariables #-}
2 id :: forall a . a -> a
3 id x = x
```

► The UniodeSyntax extension allows us to put \(\forall \) directly in the source code.

Monotypes and Polytypes

1 -- Some Haskell polytype functions

2 head :: forall a . [a] -> a
3 length :: forall a . [a] -> Int -- sortof

4 id :: forall a . a -> a

5 map :: forall a b . (a -> b) -> [a] -> [b] -- sortof

► In HASKELL, the forall part is **implicit at the top level!**

IIIIroductioii	rolytypes	Examples	IIIIroductioii	rolytypes
000	00	00	000	00
	●000	000		0000

Some Rules

► Monomorphic variable rule:

$$\overline{\ \ \, \Gamma \vdash \mathbf{x} : \tau} \ \mathsf{Var, if} \ \mathbf{x} : \tau \in \Gamma$$

► Polymorphic variable rule:

$$\frac{}{\Gamma \vdash \mathbf{x} : \sigma} \, \mathsf{Var, if} \, \mathbf{x} : \sigma \in \Gamma$$

► The function and application rules are the same as before.

$$\frac{\Gamma \vdash e_1 : \alpha_2 \to \alpha \qquad \Gamma \vdash e_2 : \alpha_2}{\Gamma \vdash e_1 e_2 : \alpha} \text{ App}$$

$$\frac{\Gamma \cup \{\mathbf{x}: \alpha_1\} \vdash \mathbf{e}: \alpha_2}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{e}: \alpha_1 \rightarrow \alpha_2} \ \mathsf{Abs}$$

Leveling Up Let

► Here is the old let rule again.

$$\frac{\Gamma \cup [\mathsf{x} : \tau_1] \vdash \mathsf{e}_2 : \tau_2 \qquad \Gamma \vdash \mathsf{e}_1 : \tau_1}{\Gamma \vdash \mathsf{let} \ \mathsf{x} = \mathsf{e}_1 \ \mathsf{in} \ \mathsf{e}_2 : \tau_2} \ \mathsf{LET}$$

► Here is our new one.

$$\frac{\Gamma \cup [\mathbf{x}:\sigma_1] \vdash \mathbf{e}_2 : \tau_2 \qquad \Gamma \vdash \mathbf{e}_1 : \sigma_1}{\Gamma \vdash \mathsf{let} \ \mathsf{x} = \mathbf{e}_1 \ \mathsf{in} \ \mathbf{e}_2 : \tau_2} \ \mathsf{Let}$$

• We can get σ' from $\forall \alpha. \sigma$ by consistently replacing a particular α with a monotype τ and $\frac{\Gamma \vdash \mathbf{e} : \sigma}{\Gamma \vdash \mathbf{e} : \forall \alpha. \sigma}$, where α is not free in Γ removing the quantifier.

► Type variables in the result that are free can be quantified.

Examples:

$$\begin{array}{l} \forall \alpha.\alpha \rightarrow \alpha \geq \mathtt{Int} \rightarrow \mathtt{Int} \\ \forall \alpha.\alpha \rightarrow \alpha \geq \mathtt{Bool} \rightarrow \mathtt{Bool} \\ \forall \alpha.\alpha \rightarrow \alpha \geq \forall \beta.\beta \rightarrow \beta \end{array}$$

► Nonexamples:

$$\begin{array}{l} \forall \alpha.\alpha \rightarrow \alpha \geq \mathtt{Int} \rightarrow \mathtt{Bool} \\ \forall \alpha.\alpha \rightarrow \alpha \geq \alpha \rightarrow \mathtt{Bool} \\ \forall \alpha.\alpha \rightarrow \alpha \geq \forall \beta.\beta \rightarrow \mathtt{Int} \end{array}$$

Polytypes

◆□▶◆□▶◆■▶◆■▶ ● 夕ぐ

		₹ % 9€
Introduction	Polytypes	Examples

Introduction

Examples

Example 1

Example:

Example:

Inst

Example 1

 $\frac{\Gamma \vdash \lambda x.x : \alpha \to \alpha}{\Gamma \vdash \lambda x.x : \forall \alpha.\alpha \to \alpha} \text{ Gen}$

 $\frac{\Gamma \vdash e : \sigma'}{\Gamma \vdash e : \sigma}$, when $\sigma' \geq \sigma$

 $\frac{\Gamma \vdash \mathit{id} : \forall \alpha.\alpha \to \alpha}{\Gamma \vdash \mathit{id} : \mathtt{Int} \ \to \mathtt{Int}} \, \mathsf{Inst}$

To prove:

Examples Introduction Polytypes Introduction Polytypes 000

Example 1

Example 2

To prove:

$$\overline{\Gamma \equiv \{\} \vdash \mathsf{let} \ f = \lambda \, \mathsf{x.x} \, \mathsf{in} \ f \colon \forall \alpha.\alpha \to \alpha} \, \mathsf{Let}$$

4□ > 4団 > 4 豆 > 4 豆 > 9 Q @

Introduction Polytypes

Examples

Introduction

Polytypes

Examples

Example 2

To prove:

$$\frac{ \frac{ \{x:\alpha\} \vdash x:\alpha}{\{\} \vdash \lambda x.x:\alpha \to \alpha} \mathsf{ABS} }{ \{\} \vdash \lambda x.x:\forall \alpha.\alpha \to \alpha} \mathsf{GEN} \quad \frac{ \{f:\forall \alpha.\alpha \to \alpha\} \vdash f:\forall \alpha.\alpha \to \alpha}{\{f:\forall \alpha.\alpha \to \alpha\} \vdash f:\forall \alpha.\alpha \to \alpha} \mathsf{LET} }$$

A Weird Thing about Let and Functions

- ▶ The two following expressions would seem to be equivalent, yes?
 - Expression 1:

let
$$f = \ x \rightarrow x$$
 in $(f "hi", f 10)$

Expression 2:

► Try this at home and see what happens!

 Introduction
 Polytypes
 Examples
 Introduction
 Polytypes
 Examples

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 <

What Happens ...

```
What's going on here?

1 Main> let f = \x -> x in (f "hi", f 10)
2 ("hi",10)
3 Main> (\f -> (f "hi", f 10)) (\x -> x)

4

5     No instance for (Num [Char]) arising from the literal '10'
6     In the first argument of 'f', namely '10'
7     In the expression: f 10
8     In the expression: (f "hi", f 10)
```

Type Checking the Troublemaker

- ► Add pairs to our list of type constructors.
- ► Type check this:

$$\frac{}{\{\} \vdash (\lambda \texttt{f}.(\texttt{f} "\textit{hi}",\texttt{f} \ 10)) \ (\lambda \texttt{x}.\texttt{x}\,) : (\texttt{String,Int})} \ \mathsf{App}$$

► And then type check this:

$$\{\} \vdash \mathsf{letf} = (\lambda \mathsf{x} . \mathsf{x}) \mathsf{in} (\mathsf{f} "hi", \mathsf{f} 3) : (\mathsf{String}, \mathsf{Int})$$
 Let

