Mathematics II

Marcos Bujosa

Universidad Complutense de Madrid

21/01/2025

1/33

L-13

L-11 L-12

1 Highlights of Lesson 11

Highlights of Lesson 11

- Orthogonal vectors and subspaces
- Nullspace \perp row space

$$\mathcal{N}\left(\mathbf{A}\right)\perp\mathcal{C}\left(\mathbf{A}^{\intercal}\right)$$

• left nullspace ⊥ column space

$$\mathcal{N}\left(\mathbf{A}^{\intercal}\right)\perp\mathcal{C}\left(\mathbf{A}\right)$$

L-11 L-12 L-1

You can find the last version of these course materials at

https://mbujosab.github.io/MatematicasII/

Marcos Bujosa. Copyright © 2008–2025
Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0
Internacional. Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-sa/4.0/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1/33

L-11 L-12 L-13

2 Some definitions

• Dot product

$$\boldsymbol{a} \cdot \boldsymbol{b} = \sum_{i=1}^{n} a_i b_i$$

- ullet Length of a vector $\|a\| = \sqrt{a\cdot a}$
- $\boldsymbol{a} \cdot \boldsymbol{a} = \|\boldsymbol{a}\|^2.$
- ullet Unit vector: $\|oldsymbol{a}\| = 1$ $rac{1}{\|oldsymbol{x}\|} \cdot oldsymbol{x}$
- Orthogonal (perpendicular) vectors: $\mathbf{x} \cdot \mathbf{y} = 0$.

2/33 3/33

L-11 L-12 L-13

3 Orthogonal vectors

$$x \cdot y = 0 \iff x \perp y$$

Pythagoras Thm.:
$$m{x}\cdot m{y} = 0 \iff \|m{x}\|^2 + \|m{y}\|^2 = \|m{x}+m{y}\|^2$$
 $m{x}\cdot m{x} + m{y}\cdot m{y} = (m{x}+m{y})\cdot (m{x}+m{y}).$

L-11 L-12 L-13

5 Orthogonal subspaces

When subspace S is orthogonal to subspace T:

Every vector in ${\mathcal S}$ is orthogonal to every vector in ${\mathcal T}$

Are the plane of the blackboard and the floor orthogonal?

L-11 L-12 L-13

4 Squared length of a vector

$$\|oldsymbol{v}\|^2 = oldsymbol{v} \cdot oldsymbol{v}$$

$$oldsymbol{x} = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} \quad
ightarrow \quad \|oldsymbol{x}\|^2 = \qquad ; \qquad oldsymbol{y} = egin{pmatrix} 2 \ -1 \ 0 \end{pmatrix} \quad
ightarrow \quad \|oldsymbol{y}\|^2 = \qquad ;$$

Are these vectors orthogonal?

$$oldsymbol{x} + oldsymbol{y} = \left(egin{array}{c} \ \ \ \ \end{array}
ight); \qquad \|oldsymbol{x} + oldsymbol{y}\|^2 = \ \ \ \ \ ;$$

$$\begin{array}{ll} \text{(Pythagoras)} & \text{(Orthogonality)} \\ \boldsymbol{x} \cdot \boldsymbol{x} + \boldsymbol{y} \cdot \boldsymbol{y} = (\boldsymbol{x} + \boldsymbol{y}) \cdot (\boldsymbol{x} + \boldsymbol{y}) & \Longleftrightarrow & \boldsymbol{x} \cdot \boldsymbol{y} = 0. \end{array}$$

5 / 33

L-11 L-12 L-13

6 Nullspace orthogonal to row space

• $\mathcal{N}(\mathbf{A}) \perp \text{rows of } \mathbf{A}$

$$\mathbf{A}x = \mathbf{0} \implies \begin{pmatrix} (_{1}|\mathbf{A}) \cdot x \\ \vdots \\ (_{m}|\mathbf{A}) \cdot x \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $m{f \cdot}~~ \mathcal{N}\left(m{f A}
ight) \perp dm{f A}, \quad orall d \in \mathbb{R}^m ~~ ext{(any linear combination of the rows)}$ $m{x} \in \mathcal{N}\left(m{f A}
ight) ~~ \Rightarrow ~~ m{d}m{f A}m{x} = m{d}\cdotm{f 0} = 0.$

nullspace
$$\perp$$
 row space $\mathcal{N}\left(\mathbf{A}\right) \perp \mathcal{C}\left(\mathbf{A}^{\intercal}\right)$

Also:
$$x \mathbf{A} = \mathbf{0}$$
 \Rightarrow $\mathcal{N} \left(\mathbf{A}^{\intercal} \right) \perp \mathcal{C} \left(\mathbf{A} \right)$

L-11

7 The big picture: direct sum of orthogonal complements

$$egin{aligned} \mathcal{C}\left(\mathbf{A}^{\intercal}
ight) \perp \mathcal{N}\left(\mathbf{A}
ight) \ f \cdot x = y \mathbf{A} x = y \cdot \mathbf{0} \end{aligned}$$

$$\mathcal{C}\left(\mathbf{A}
ight) \perp \mathcal{N}\left(\mathbf{A}^{\intercal}
ight)$$
 $\mathbf{a}\cdot\mathbf{b} = \mathbf{a}\mathbf{A}\mathbf{x} = \mathbf{0}\cdot\mathbf{x}$

8/33

9/33

L-11 L-12

Questions of the Lecture 11

(L-11) QUESTION 1. Describe the set of vectors in \mathbb{R}^3 orthogonal to this one $\begin{pmatrix} 1\\3\\-1 \end{pmatrix}$ (Hefferon, 2008, exercise 2.15 from section II.2.)

 $\left(L\text{-}11\right)~Q\textsc{uestion}~2.$ Is there any vector perpendicular to itself?

 $\left(L\text{-}11\right)$ QUESTION 3. Find the length of each vector

(a)
$$\binom{1}{3}$$
.

(b)
$$\binom{-1}{2}$$

(c)
$$\begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
. (e) $\begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$

(Hefferon, 2008, exercise 2.11 from section II.2.)

(L-11) QUESTION 4. Find a unit vector with the same direction as ${m v}=(2,\,-1,\,0,\,4,\,-2).$

(L-11) QUESTION 5. Find k so that these two vectors are perpendicular.

8 Revisiting the Gaussian elimination

It's an algorithm to find a basis for the orthogonal complement Give me some vectors (I write them as rows of \mathbf{M}) and ...

$$\frac{\left[\mathbf{M} \right]}{\left[\mathbf{I} \right]} = \begin{bmatrix} 1 & -3 & 0 & -1 \\ 0 & -1 & 1 & 1 \\ 1 & -4 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\left[\begin{array}{c} (3)\mathbf{1} + \mathbf{2} \\ [(1)\mathbf{1} + 4] \\ [(1)\mathbf{2} + 3] \\ [(1)\mathbf{2} + 4] \\ \end{array} \right]} \xrightarrow{\left[\begin{array}{c} (1)\mathbf{1} + \mathbf{2} \\ [(1)\mathbf{1} + 4] \\ [(1)\mathbf{1} + 4] \\ \vdots \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 3 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{L} \\ \mathbf{E} \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{D} & \mathbf{N} \end{bmatrix}$$

Basis for the span of the given (row) vectors: \mathcal{V} Basis for orthogonal complement: \mathcal{V}^{\perp}

MN = 0

If you had given me $N_{|1}$ and $N_{|2}$, after Gaussian elimination would have obtained a basis for. . .

9/33

L-11 L-12 L-13

(Hefferon, 2008, exercise 2.14 from section II.2.)

(L-11) QUESTION 6. Construc a matrix with the required property or say why that is impossible:

- (a) Column space contains $\begin{pmatrix} 1\\2\\-3 \end{pmatrix}$ and $\begin{pmatrix} 2\\-3\\5 \end{pmatrix}$, nullspace contains $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$
- (b) Row space contains $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$, and nullspace contains $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- (c) $\mathbf{A}x = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ has a solution and $\mathbf{A}^{\mathsf{T}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
- (d) Every row is orthogonal to every column (A is not the zero matrix)
- (e) Columns add up to a column of zeros, rows add up to a row of 1's.

(Strang, 2003, exercise 3 from section 4.1.)

(L-11) QUESTION 7. If AB = 0, the columns of B are in the ______ of A. The rows of A are in the ______ of B. Why can't A and B be 3 by 3 matrices of rank 2? (Strang, 2003, exercise 4 from section 4.1.)

(L-11) QUESTION 8. Suppose that $u \cdot v = u \cdot w$ and $u \neq 0$. Must v = w?

(Hefferon, 2008, exercise 2.20 from section II.2.)

(L-11) Question 9.

- (a) If $\mathbf{A}x = \mathbf{b}$ has a solution and $\mathbf{A}^{\mathsf{T}}y = \mathbf{0}$, then y is perpendicular to
- (b) If $\mathbf{A}^\intercal y = c$ has a solution and $\mathbf{A} x = 0$, then x is perpendicular to _____.

(Strang, 2003, exercise 5 from section 4.1.)

(L-11) QUESTION 10. Demuestre, in \mathbb{R}^n , that if u and v are perpendicular then $||u+v||^2=||u||^2+||v||^2$.

(Hefferon, 2008, exercise 2.33 from section II.2.)

(L-11) QUESTION 11. Find a 1 by 3 matrix whose nullspace consists of all vectors in \mathbb{R}^3 such that $x_1+2x_2+4x_3=0$. Find a 3 by 3 matrix with that same nullspace. (Strang, 2006, exercise 9 from section 2.4.)

(L-11) QUESTION 12. Consider \mathbf{A} with exactly two special solutions for $x\mathbf{A}=\mathbf{0}$:

 $\boldsymbol{s}_1 = \begin{pmatrix} 3, & 1, & 0, & 0, \end{pmatrix}, \quad \text{and} \quad \boldsymbol{s}_2 = \begin{pmatrix} 6, & 0, & 2, & 1, \end{pmatrix}.$

- (a) Find the reduced row echelon form R of A.
- (b) What is the row space of A?
- (c) What is the complete solution to $x\mathbf{R} = (3, 6,)$?
- (d) Find a combination of rows 2, 3, 4 that equals $\acute{0}$. (Not OK to use $0(_{2|}\mathbf{A})+0(_{3|}\mathbf{A})+0(_{4|}\mathbf{A})$. The problem is to show that these rows are dependent.)

9/33

L-11 L-12 L-1

1 Highlights of Lesson 12

Highlights of Lesson 12

- From parametric to Cartesian (or implicit) equations
- Choosing a,omg parametric equations

L-11 L-12 L-1

(L-11) QUESTION 13. Suppose $\mathbf{A}x=b$ has a solution (maybe many solutions). It can be shown that any solution x of this system can be decomposed as the sum of two vectors $(x=x_r+x_n)$ where x_r is a combination of the rows of \mathbf{A} and x_n belongs to the solution set of $\mathbf{A}x=0$.

- (a) (0.5^{pts}) Prove that $\mathbf{A}(\boldsymbol{x}_r) = \boldsymbol{b}$.
- (b) (1^{pts}) Suppose that v_r is a linear combination of the rows of **A** and furthermore $\mathbf{A}(v_r) = \mathbf{b}$. What vector subspaces does the difference $(v_r x_r)$ belong to? Show that x_r and v_r are equal.
- (c) (1pts) Compute the solution $m{x}_r$ in the row space of this matrix ${\bf A}$, by solving for c and d

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 1 & -1 \end{array}\right] \boldsymbol{x}_r = \begin{pmatrix} 14 \\ 9 \end{pmatrix} \quad \text{with} \quad \boldsymbol{x}_r = c \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + d \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

9 / 33

L-11 L-12 L-13

2 Cartesian (implicit) and parametric equations of lines and planes

Cartesian (implicit) equations $\{x \in \mathbb{R}^n \mid \mathbf{A}x = \mathbf{b}\}$:

For example

$$\left\{ \boldsymbol{x} \in \mathbb{R}^3 \; \left| \; \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right. \right\} = \text{sol. set of} \; \left\{ \begin{matrix} x_1 - x_2 + x_3 = 1 \\ x_3 = 1 \end{matrix} \right.$$

Parametric equations:

for the above set

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1 : oldsymbol{x} = egin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + egin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} oldsymbol{p}
ight\}$$

In this case dimension 1 A line (there is only one parameter a) line

or

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1 : oldsymbol{x} = egin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + egin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} oldsymbol{p}
ight\}$$

or

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1 : oldsymbol{x} = egin{pmatrix} -1 \ -1 \ 1 \end{pmatrix} + egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} oldsymbol{p}
ight.
ight\}$$

12/33

L-11 L-12 L-13

or

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^2 : oldsymbol{x} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} + egin{bmatrix} 1 & -1 \ 1 & 0 \ 0 & 1 \end{bmatrix} oldsymbol{p}
ight\}$$

but also

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \mid \exists oldsymbol{p} \in \mathbb{R}^2 : oldsymbol{x} = egin{pmatrix} -1 \ -1 \ 1 \end{pmatrix} + egin{bmatrix} 1 & -1 \ 1 & 0 \ 0 & 1 \end{bmatrix} oldsymbol{p}
ight\}$$

L-11 L-12 L-13

3 Cartesian (implicit) and parametric equations of lines and planes

Cartesian (implicit) equations $\{x \in \mathbb{R}^n \mid \mathbf{A}x = \mathbf{b}\}$:

For example

$$\left\{ oldsymbol{x} \in \mathbb{R}^3 \mid \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} oldsymbol{x} = \left(1,\right) \right\} = \mathsf{sol.} \ \mathsf{set} \ \mathsf{of} \ \left\{ x_1 - x_2 + x_3 = 1 \right\}$$

Parametric equations:

for the above set

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \;\left|\; \exists oldsymbol{p} \in \mathbb{R}^2 : oldsymbol{x} = egin{bmatrix} 0 \ 0 \ 1 \end{pmatrix} + egin{bmatrix} 1 & -1 \ 1 & 0 \ 0 & 1 \end{bmatrix} oldsymbol{p}
ight\}$$

In this case dimension 2 plane

A plane (two parameters a and b)

13 / 33

L-11 L-12 L-13

4 From parametric to Cartesian equations

$$\mathcal{C}\left(\mathbf{A}^{\intercal}\right)\perp\mathcal{N}\left(\mathbf{A}\right)$$

Consider

$$H = \left\{ oldsymbol{x} \in \mathbb{R}^n \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^k : oldsymbol{x} = oldsymbol{s} + ig[oldsymbol{n}_1; \; \ldots \; oldsymbol{n}_k; ig] oldsymbol{p}
ight\}.$$

If we find **A** such that $\mathbf{A}n_i = \mathbf{0}$ then if $x \in H$

$$\mathbf{A}x = \mathbf{A}s + \underbrace{\mathbf{A}[n_1; \dots n_k;]}_{\mathbf{0}} p \quad \Rightarrow \quad \mathbf{A}x = b, \quad \text{where } \mathbf{b} = \mathbf{A}s.$$

Therefore

$$H = \{ oldsymbol{x} \in \mathbb{R}^n \mid \mathbf{A} oldsymbol{x} = oldsymbol{b} \}$$
 .

5 From the set of solution to a linear system

Find the implicit equations of the plane P parallel to the spam of (1, 2, 0, -2) and (0, 0, 1, 3), that goes through s = (1, 3, 1, 1).

$$P = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \middle| \exists a, b \in \mathbb{R} : \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 1 \end{pmatrix} + a \begin{pmatrix} 1 \\ 2 \\ 0 \\ -2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix} \right\}$$

$$=\left\{oldsymbol{x}\in\mathbb{R}^4\;\left|\;\existsoldsymbol{p}\in\mathbb{R}^2:oldsymbol{x}=egin{pmatrix}1\3\1\1\end{pmatrix}+egin{bmatrix}1&0\2&0\0&1\-2&3\end{bmatrix}oldsymbol{p}
ight\}$$

We need vectors perpendicular to (1, 2, 0, -2) and (0, 0, 1, 3)

16 / 33

7 A problem from Microeconomics

L-12

Solve Y in terms of X to get PPF

$$\begin{cases} X & = 4L_x \\ Y & = 3L_y \\ L_x + L_y = 80 \end{cases} \rightarrow \begin{cases} X & -4L_x = 0 \\ Y & -3L_y = 0 \\ L_x + L_y = 80 \end{cases}$$

("in terms of" X means X free)

$$\begin{bmatrix} 1 & 0 & -4 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 1 & -80 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} (4/1+3) \\ [(3/2+4)] \\ (3/2+4) \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} (4/1+3) \\ [(3/2+4)] \\ (3/2+4) \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} (-1)3+4] \\ [(80)3+5] \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} (-1)3+4] \\ [(80)3+5] \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 4 & -4 & 320 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} (-1)3+4] \\ [(80)3+5] \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 \\ \hline \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline \end{bmatrix}$$

L-11 L-12 L-1

6 From the set of solution to a linear system

$$x = (x, y, z, w,);$$
 $s = (1, 3, 1, 1,).$

$$\begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ \hline x & y & z & w \\ \hline 1 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{[(-2)\mathbf{T}+2]} \begin{bmatrix} [(-2)\mathbf{T}+2] \\ [(2)\mathbf{1}+4] \\ \hline \vdots \\ [(2)\mathbf{T}+2] \\ \hline 1 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{[(-3)\mathbf{3}+4]} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline x & y-2x & z & w+2x \\ \hline 1 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{[(-3)\mathbf{3}+4]} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline x & y-2x & z & w+2x-3z \\ \hline 1 & 1 & 1 & 0 \end{bmatrix}$$

So
$$\mathbf{A} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 2 & 0 & -3 & 1 \end{bmatrix}$$
; and then $\mathbf{A} \boldsymbol{x} = \begin{pmatrix} -2x + y \\ 2x + w - 3z \end{pmatrix}$ and $\boldsymbol{b} = \mathbf{A} \boldsymbol{s} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Hence $\begin{cases} -2x + y & = 1 \\ 2x & -3z + w = 0 \end{cases}$
$$P = \left\{ \boldsymbol{x} \in \mathbb{R}^4 \ \middle| \ \begin{bmatrix} -2 & 1 & 0 & 0 \\ 2 & 0 & -3 & 1 \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}.$$

17 / 33

L-11 L-12 L-13

8 Free variable

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 4 & -4 & 320 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 4 & 1 & 0 \\ \hline 0 & 1 & 0 & -3/4 & 240 \\ 0 & 0 & 1 & 1/4 & 0 \\ \hline 0 & 0 & 0 & -1/4 & 80 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix} \frac{X}{Y} \\ L_x \\ L_y \end{pmatrix} = \begin{pmatrix} 0 \\ 240 \\ 0 \\ 80 \end{pmatrix} + \frac{a}{\begin{pmatrix} 1 \\ -\frac{3}{4} \\ \frac{1}{4} \\ -\frac{1}{4} \end{pmatrix}} \ \Rightarrow \ a = X \quad \Rightarrow \quad \begin{pmatrix} X \\ Y \\ L_x \\ L_y \end{pmatrix} = \begin{pmatrix} X \\ \frac{240 - \frac{3}{4}X}{\frac{1}{4}X} \\ 80 - \frac{1}{4}X \end{pmatrix}$$

"in terms of" X

9 Free variables

$$\begin{cases} x + 2y - z + w = -1 \\ -x - 2y + 3z + 5w = -5 \\ -x - 2y - z - 7w = 7 \end{cases}$$

- 1. Solve in terms of y and w
- 2. Solve in terms of x and w
- 3. Solve in terms of x and z
- 4. Solve in terms of x and y

20 / 33

L-11 L-12 L-13

$$\begin{bmatrix} -2 & -4 & | & 4 \\ 1 & 0 & 0 & 0 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} \begin{cases} \frac{\tau}{[(4)1+2]} & 1 & 0 & | & 0 \\ \frac{-1}{2} & -2 & | & 2 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-4)1+3] \\ [(-4)1+3] \\ [(-4)1+3] \\ \hline \end{pmatrix}} \begin{bmatrix} 1 & 0 & | & 0 \\ \frac{-1}{2} & -2 & | & 2 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-1)2+3 \\ [(1)2+3] \\ [(1-3)2] \\ \hline \end{bmatrix}} \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & -\frac{1}{3} & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} \tau \\ 0 & 1 & | & 0 \\ 0 & -\frac{1}{3} & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} \tau \\ [(\frac{-1}{2})1] \\ [(4)1+2] \\ [(-4)1+3] \\ \hline \end{bmatrix} \xrightarrow{\begin{bmatrix} (-1)2+3 \\ [(-2)2+3] \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix}} \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & \frac{3}{4} & \frac{3}{2} & | & 0 \\ \frac{-1}{4} & -\frac{1}{2} & | & 1 \end{bmatrix}$$

L-11 L-12 L-13

$$\begin{bmatrix} 1 & 2 & -1 & 1 & | & -1 \\ -1 & -2 & 3 & 5 & | & -5 \\ -1 & -2 & -1 & -7 & 7 \\ \hline 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 6 & | & -6 \\ \hline -1 & 0 & -2 & -6 & | & 6 \\ \hline -1 & 0 & -2 & -6 & | & 6 \\ \hline 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

21 / 33

L-11 L-13

Questions of the Lecture 12

(L-12) Question 1.

- (a) Find a parametric representation for the line passing through the points ${m x}_P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ y ${m x}_Q = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.
- (b) Find a implicit representation for the same line.

(L-12) Question 2.

- (a) Find a parametric representation for the line passing through the points ${\bf x}_P=\begin{pmatrix}1,&-3,&1,\end{pmatrix}$ and ${\bf x}_O=\begin{pmatrix}-2,&4,&5,\end{pmatrix}$.
- (b) Find a implicit representation (Cartesian equations) for the same line.

(L-12) Question 3.

- (a) Parametric equation of a line parallel to 2x 3y = 5 that goes through (1,1).
- (b) Find a implicit representation for the line.

(L-12) Question 4.

- (a) Find parametric equations of the plane that goes through the point (0,1,1) and parallel to the vectors (0,1,2) and (1,1,0)
- (b) Write the implicit equation of the same plane.

(L-12) Question 5.

(a) Find a parametric equation of the plane through the point (2, 1, 3,) with normal vector (3, 1, 1,).

(b) Write the implicit equation of the same plane.

(L-12) QUESTION 6. Consider the system $\mathbf{A}x = \mathbf{b}$, where

$$\mathbf{A} = \left[\begin{array}{ccccc} 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right], \qquad \boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}.$$

- (a) (1^{pts}) Find the solution to the system.
- (b) $(0.5)^{\text{pts}}$ Explain why the solution set is a line in \mathbb{R}^5 . Find a direction vector (a vector parallel to the line) and any point on that line.
- (c) (1^{pts}) Find the set of vectors perpendicular to the solution set. Prove that set is a four dimensional subspace. Find a basis for that subspace.

22 / 33

L-13

L-11

2 Direct sum of subspaces

 \mathbb{R}^n is a *direct sum* of \mathcal{A} and \mathcal{B}

 ${\it Im}$ of ${\cal A}$ and ${\cal B}$ $({\mathbb R}^n={\cal A}\oplus{\cal B})$

if every $oldsymbol{x} \in \mathbb{R}^n$ has a **unique** representation $oldsymbol{x} = oldsymbol{a} + oldsymbol{b},$

with $oldsymbol{a} \in \mathcal{A}$ and $oldsymbol{b} \in \mathcal{B}$.

Example

$$\mathbb{R}^{n}=\mathcal{C}\left(\mathbf{A}^{\intercal}
ight)\oplus\mathcal{N}\left(\mathbf{A}
ight)$$

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 4 & 10 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & -2 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \text{Basis of } \mathbb{R}^3; \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}; \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}; \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

$$\forall \boldsymbol{x} \in \mathbb{R}^3, \ \exists c_1, c_2, c_3 \ \middle| \ \boldsymbol{x} = c_1 \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix} = \boldsymbol{a} + \boldsymbol{b}$$

where $a \in \mathcal{C}(\mathbf{A}^{\mathsf{T}})$ and $b \in \mathcal{N}(\mathbf{A})$.

Also
$$\mathbb{R}^m = \mathcal{C}\left(\mathbf{A}\right) \oplus \mathcal{N}\left(\mathbf{A}^\intercal
ight)$$

1 L-12

1 Highlights of Lesson 13

Highlights of Lesson 13

- Projections
- Projection matrices

3 The big picture: direct sum of orthogonal complements

$$\mathcal{C}\left(\mathbf{A}^{\intercal}\right)\perp\mathcal{N}\left(\mathbf{A}\right)$$

$$\mathcal{C}\left(\mathbf{A}\right) \perp \mathcal{N}\left(\mathbf{A}^{\intercal}\right)$$

$$f \cdot x = y \mathsf{A} x = y \cdot 0$$
 $y \cdot b = y \mathsf{A} x = 0 \cdot x$

L-13

23 / 33

L-13

L-11 L-12 L-13

4 Orthogonal Projection onto $C(\mathbf{A})$

Consider \mathbf{A} ; since $\mathbb{R}^m = \mathcal{C}\left(\mathbf{A}\right) \oplus \mathcal{N}\left(\mathbf{A}^\intercal\right)$, for any $m{y} \in \mathbb{R}^m$

$$y = \hat{y} + e;$$
 $(e = y - \hat{y})$

where

$$\widehat{m{y}}\in\mathcal{C}\left(m{A}
ight)$$
 and $m{e}\perp\widehat{m{y}}$, so $m{e}\in\mathcal{N}\left(m{A}^{\intercal}
ight).$

How to compute $\hat{y} \in C(\mathbf{A})$?

26 / 33

1.11

L-12

L-13

6 The solution to the normal equations (full column rank)

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\widehat{x} = \mathbf{A}^{\mathsf{T}}y$$
 (A is full column rank)

The solution

$$\hat{\boldsymbol{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\mathsf{-}1}\mathbf{A}^{\mathsf{T}}\boldsymbol{y}$$

The projection

$$\widehat{\boldsymbol{y}} = \mathbf{A}\widehat{\boldsymbol{x}} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\boldsymbol{y}$$

The projection matrix

$$\mathbf{P} = \mathbf{A} (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}}$$

$$\widehat{m{y}} = {\sf P} m{y}$$

P: Symetric and idempotent.

L-11 L-12 L-13

5 Normal equations

Consider \mathbf{A} . We want to find the descoposition

$$y = \hat{y} + e$$

where

$$\widehat{m{y}} \in \mathcal{C}\left(m{A}\right)$$
 and $\left(\widehat{m{y}} - m{y}\right) \in \mathcal{N}\left(m{A}^{\intercal}\right)$

Then

$$\mathbf{A}\widehat{oldsymbol{x}} = \widehat{oldsymbol{y}} \qquad \Leftrightarrow \qquad (\mathbf{A}\widehat{oldsymbol{x}} - oldsymbol{y}) \in \mathcal{N}\left(\mathbf{A}^{\intercal}\right)$$

Therefore

$$\mathbf{A}\widehat{x} = \widehat{y} \quad \Leftrightarrow \quad \mathbf{A}^{\mathsf{T}} \big(\mathbf{A}\widehat{x} - y \big) = \mathbf{0} \quad \Leftrightarrow \quad \big| \quad (\mathbf{A}^{\mathsf{T}}\mathbf{A})\widehat{x} = \mathbf{A}^{\mathsf{T}}y$$

Equivalent systems!
$$\Rightarrow \mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) \Rightarrow \operatorname{rg}(\mathbf{A}) = \operatorname{rg}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$$

unique solution \hat{x} if and only if **A** is full column rank

27 / 33

L-11 L-12 L-13

7 Projection matrix

$$\mathbf{P} = \mathbf{A} \big(\mathbf{A}^{\intercal} \mathbf{A} \big)^{-1} \mathbf{A}^{\intercal}$$

Projection **P**y is the point \hat{y} of \mathcal{C} (**A**) closest to y

Extreme cases:

- ullet If $oldsymbol{y} \in \mathcal{C}\left(oldsymbol{\mathsf{A}}
 ight)$ then $oldsymbol{\mathsf{P}}oldsymbol{y} =$
- If $\boldsymbol{y}\perp\mathcal{C}\left(\mathbf{A}\right)$ then $\mathbf{P}\boldsymbol{y}=$

8 Projection onto a line

I'd like to find the point \hat{y} on that line closest to y

$$\widehat{m{y}} \in \mathcal{C}\left(m{a}
ight]
ight) \quad oldsymbol{eta} = (m{y} - \widehat{m{y}}) \in \mathcal{N}\left(m{a}
ight]^\intercal
ight).$$

 \hat{y} is some multiple of a: $\hat{y} = [a](\hat{x}, y)$

How: $[a]^{\mathsf{T}}[a]\widehat{x} = [a]^{\mathsf{T}}y$

The solution $\widehat{m{x}} = ([m{a}]^{\intercal} [m{a}])^{-1} [m{a}]^{\intercal} m{y}$

The projection $\widehat{y} = [a]\widehat{x} = [a]([a]^{\mathsf{T}}[a])^{-1}[a]^{\mathsf{T}}y$

The projection matrix $P = [a]([a]^{\mathsf{T}}[a])^{-1}[a]^{\mathsf{T}}$

30 / 33

L-13

L-11

L-12

10 Normal equations

What's the projection of y onto the column space of $A = \begin{bmatrix} | & | & | \\ A_{|1} & A_{|2} & | & | \end{bmatrix}$?

"Find the right combination of the columns so $e \perp \mathcal{C}$ (A)"

$$e\perp\mathcal{C}\left(\mathsf{A}
ight) \ \ \Rightarrow \ \ e\in$$

$$\mathbf{A}^{\mathsf{T}}e = \mathbf{A}^{\mathsf{T}}(\boldsymbol{y} - \widehat{\boldsymbol{y}}) \quad = \quad \mathbf{A}^{\mathsf{T}}(\boldsymbol{y} - \mathbf{A}\widehat{\boldsymbol{x}}) = \mathbf{0} \quad \Leftrightarrow \quad \boxed{(\mathbf{A}^{\mathsf{T}}\mathbf{A})\widehat{\boldsymbol{x}} = \mathbf{A}^{\mathsf{T}}\boldsymbol{y}}$$

11 L-12

9 Projection onto a plane

Why project?

So we will solve

$$\mathbf{A}x = \Big(\mathrm{Proj.} \ \mathsf{of} \ y \ \mathsf{onto} \ \mathcal{C} \left(\mathbf{A} \right) \Big).$$

 $(y - \widehat{y}) = e \perp C(A)$... that's the crucial fact.

1

L-12

L-13

31 / 33

L-13

11 Two projections

 $m{y}$ has a component $\widehat{m{y}}$ in \mathcal{C} (A), and another component $m{e}$ in \mathcal{C} (A) $^{\perp}$.

$$egin{aligned} \widehat{m{y}} + m{e} &= m{y} \ \widehat{m{y}} &= \mathbf{P}m{y} \end{aligned} \qquad ext{projection onto } \mathcal{C}\left(\mathbf{A}
ight) \ m{e} &= (\mathbf{I} - \mathbf{P})m{y} \end{aligned}$$

1 L-12

(L-13) QUESTION 1. Project the first vector orthogonally into the line spanned by the second vector. Check that e is perpendicular to a. Find the projection matrix $\mathbf{P} = [a] ([a]^{\mathsf{T}} [a])^{-1} [a]^{\mathsf{T}}$ onto the line through each vector a. Verify in each case that $\mathbf{P}^2 = \mathbf{P}$. Multiply $\mathbf{P}b$ in each case to compute the projection \hat{b} .

(a)
$$\boldsymbol{b} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
; $\boldsymbol{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

(b)
$$b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}; a = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

(c)
$$b = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
; $a = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

(d)
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
; $\boldsymbol{a} = \begin{pmatrix} 3 \\ 3 \\ 12 \end{pmatrix}$.

(Hefferon, 2008, exercise 1.6 from section VI.1.)

(L-13) QUESTION 2. Project the vector orthogonally into the line.

$$\text{(a)} \, \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}, \quad \text{The line}: \, \left\{ \boldsymbol{v} \in \mathbb{R}^3 \, \left| \, \, \exists \boldsymbol{p} \in \mathbb{R}^1, \, \, \boldsymbol{v} = \left[\begin{array}{c} -3 \\ 1 \\ -3 \end{array} \right] \boldsymbol{p} \right\}.$$

(b)
$$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
, the line $y = 3x$.

33 / 33

L-13

(L-13) Question 6.

(a) Compute the projection matrices $\mathbf{P} = [a] ([a]^{\mathsf{T}} [a])^{-1} [a]^{\mathsf{T}}$ onto the lines through $a_1 = \begin{pmatrix} -1, & 2, & 2, \end{pmatrix}$ and $a_2 = \begin{pmatrix} 2, & 2, & -1, \end{pmatrix}$. Show that $a_1 \perp a_2$. Multiply those projection matrices and explain why their product $\mathbf{P}_1 \mathbf{P}_2$ is what it is.

(b) Project $b=\begin{pmatrix}1,&0,&0,\end{pmatrix}$ onto the lines through a_1 , and a_2 and also onto $a_3=\begin{pmatrix}2,&-1,&2,\end{pmatrix}$. Add up the three projections $\widehat{b_1}+\widehat{b_2}+\widehat{b_3}$.

(c) Find the projection matrix \mathbf{P}_3 onto $\mathcal{L}([a_3;]) = \mathcal{L}([(2, -1, 2,);])$. Verify that $\mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3 = \mathbf{I}$. The basis a_1 , a_2 , a_3 is orthogonal!

(Strang, 2003, exercise 5-7 from section 4.2.)

(L-13) QUESTION 7. Project b onto the column space of \mathbf{A} by solving $\mathbf{A}^{\mathsf{T}}\mathbf{A}\widehat{x} = \mathbf{A}^{\mathsf{T}}b$ and then computing $\widehat{b} = \mathbf{A}\widehat{x}$. Find $e = b - \widehat{b}$.

(c) Compute the projection matrices \mathbf{P}_1 and \mathbf{P}_2 onto the column spaces. Verify that $\mathbf{P}_1 b_1$ gives the first projection $\widehat{b_1}$. Also verify $(\mathbf{P}_2)^2 = \mathbf{P}_2$.

(Strang, 2003, exercise 11-12 from section 4.2.)

(L-13) QUESTION 3. Although pictures guided our development, we are not restricted to spaces that we can draw. In \mathbb{R}^4 project this vector into this line.

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix}; \quad \left\{ \boldsymbol{v} \in \mathbb{R}^4 \; \middle| \; \exists \boldsymbol{p} \in \mathbb{R}^1, \; \boldsymbol{v} = \left[\begin{array}{c} -1 \\ 1 \\ -1 \\ 1 \end{array} \right] \boldsymbol{p} \right\}.$$

(L-13) Question 4.

(a) Project the vector $m{b}=\begin{pmatrix}1,&1,\end{pmatrix}$ onto the lines through $m{a}_1=\begin{pmatrix}1,&0,\end{pmatrix}$ and $m{a}_2=\begin{pmatrix}1,&2,\end{pmatrix}$. Add the projections: $\widehat{m{b}_1}+\widehat{m{b}_2}$. The projections do not add to $m{b}$ because $m{a}_1$ and $m{a}_2$ are not orthogonal.

(b) The projection of \bar{b} onto the plane of a_1 and a_2 will equal b. Find $\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$ for $\mathbf{A} = [a_1; a_2;]$.

(Strang, 2003, exercise 8-9 from section 4.2.)

(L-13) Question 5.

(a) If $P^2 = P$ show that $(I - P)^2 = I - P$. When P projects onto the column space of A, (I - P) projects onto the _____.

(b) If $P^{T} = P$ show that $(I - P)^{T} = I - P$.

(Strang, 2003, exercise 17 from section 4.2.)

33 / 33

L-13

L-11 L-12 L-13

Hefferon, J. (2008). *Linear Algebra*. Jim Hefferon, Colchester, Vermont USA. This text is Free. URL

ftp://joshua.smcvt.edu/pub/hefferon/book/book.pdf

Strang, G. (2003). *Introduction to Linear Algebra*. Wellesley-Cambridge Press, Wellesley, Massachusetts. USA, third ed. ISBN 0-9614088-9-8.

Strang, G. (2006). *Linear algebra and its applications*. Thomson Learning, Inc., fourth ed. ISBN 0-03-010567-6.