I-4 PRINCIPAL SERIES REPRESENTATIONS

Let V be a representation of G^F (over \mathbb{C}) How much of V is encoded in $\operatorname{End}_{G^F}(V)$?

 $\frac{T_{hm}}{\Gamma}$: The functor $\frac{G}{\Gamma}$ = $\frac{G}{\Gamma}$ = → Homar(VM)

induces an equivalence between:

- . the abelian (seminimple) subcategory of CG-mod openeated by direct summands of VEnd $F(V)^{op}$ -mod

If we write
$$V = \bigoplus_{E} V_{E}^{n_{E}}$$
 then $n_{E} = \dim_{End(v)} Hom_{GF}(V, V_{E})$
= $\dim_{End(v)} (End(v), E)$

$$V = \bigoplus_{E \in Ir Erd(v)} V_E$$

Corollary: Irreducible summands of IndBF (1BF)

List, Irreducible representations of IndBF (W)

2) Representations of the Hecke algebra

Generic Hecke algeba

$$DH_{x}(W) = \langle h_{w} | h_{w}h_{w'} = h_{ww'} \text{ if } l(ww') = l(w) + l(w') \rangle$$

$$h_{s}^{2} = (x-1)h_{s} + xh_{s}$$

algebra over C(12)

$$\chi = q$$
 $\chi = q$ $\chi =$

Thm: The specialization "q=1" induces a bijection

In
$$Y_{q}(W) \stackrel{1:1}{\longleftarrow} I_{r_{C}}W$$

S.t. $X_{q}(h_{w})_{q=1} = X(w)$.

 $Ex: T_w \mapsto q^{\ell(w)}$ is the q-deformation of 1_w $T_w \mapsto (-1)^{\ell(w)}$ ______ Sgn_w

Rmk: the bijection prexises the dimension of irreducible representations.

3) Unipotent principal series (recall that we assume W=W)

def: an irreducible character of GF is in the unipotent principal review if it is a constituent of Ind BF 1BF

(Note that it does not depend on the choice of BF)

By the previous results there is a bijection Irr (Inder 18F) Irw

Every unipotent principal series character is of the form $ext{ps}$ for some $x \in IrW$ and

$$\operatorname{Ind}_{B^F}^{G^F}(1_{B^F}) = \sum_{\chi \in IrW} \chi(1) e_{\chi}$$

4) Examples

a) G = SL W = 7/27/ has two irreducible representations

namely 1 w and sonw

since $\sum_{x \in P_1(\overline{R}_3)}$ is invarious under $SL_2(q)$ one of the irrep is $x \in P_1(\overline{R}_3)$ trivial, the other has dim = q+1-1=q

Actually 0,=1GF and dimpsgn=9

More generally, for a general finite reductive group we have $C_1 = 1_G F$ and $\dim_{Sgn} = g^{l(w_0)}$

Called the Steinbern character Stgr

b) $G=GL_3$, $W=U_3$ has 3 conjugacy classes hence 3 irreducible representations namely 1_W , sonward χ with $1^2+1^3+\chi(1)^2=|U_3|=6$ $\Rightarrow \chi$ has dimension 2

Ind $G^{F} = 1_{G^{F}} + St_{G^{F}} + 2_{Q^{A}}$ dum $1 + 2q + 2q^{2} + q^{3}$ $dim 1 \qquad dim q^{3}$

 \Rightarrow dim $e_x = q(q+1)$

Rmk: one can compute $\dim \rho_{\chi}$ inside $H_q(W)$ using Schurelements. Then $\dim \rho_{\chi}$ is a polynomial in q dividing $|G^F|$ as a polynomial.

c) G=GL, W= 2,

IrW ~ partitions of n

$$\chi_{\lambda} \leftarrow \lambda = (\lambda, \geq \lambda, \geq \dots \geq 0)$$
 with $\overline{\lambda}$;=n

with
$$\chi_{(n)} = 1_{\mathcal{L}_n}$$
 and $\chi_{(1^n)} = \operatorname{sgn}_{\mathcal{L}_n}$

=> unipotent principal sevies representations of $GL_n(q)$ are parametrized by partitions of $(2)_{\lambda}$ part of n

$$Ex: C(n) = |CL(q)| > C(1) = St CL(q) of dim q^{n(n-1)/2}$$

$$\frac{Rmk}{r}$$
: there is an explicit formula for $\dim \rho_{\lambda}$ which is a q-analogue of the hook length formula for $\dim \chi_{\lambda}$