Problem Set 1 Sets and Functions

Paulo Fagandini

Sets

- 1. Consider sets A, B, and C. Using the definition of "subset" show that:
 - (a) $A \subseteq A$.

Solution: Note that $\forall x \in A$, we have that $x \in A$, and therefore $A \subseteq A$.

(b) If $A \subseteq B$, and $B \subseteq C$, then $A \subseteq C$.

Solution: If $A \subseteq B$, then $\forall x \in A$ we have that $x \in B$. Now, if $B \subseteq C$, then $\forall z \in B$, we have that $z \in C$, and as $x \in B$, then $x \in C$. Therefore $\forall x \in A$, $x \in C$, which means that $A \subseteq C$.

(c) If $A \subseteq B$, and $B \subseteq A$, then A = B.

Solution: First part, if $A \subseteq B$, then $\forall x \in A \Rightarrow x \in B$. Now as $B \subseteq A$ as well, then $\forall x \in B \Rightarrow x \in A$. Then $\forall x, x \in A \Leftrightarrow x \in B$, or A = B.

(d) $\emptyset \subseteq A$, and $A \subseteq \mathcal{U}$.

Solution: $\emptyset \subseteq A$ if $\forall z \in \emptyset \Rightarrow z \in A$. But there is no z in \emptyset , so $\forall z, z \in \emptyset$ is false, and by logic, false implies anything, in particular $z \in A$, and therefore $\emptyset \subseteq A$. Now, $A \subseteq \mathcal{U}$ implies that $\forall x \in A \Rightarrow x \in \mathcal{U}$. By definition \mathcal{U} contains all the elements, in particular x, so $A \subseteq \mathcal{U}$.

- 2. Consider the sets A, B, and C. Show that:
 - (a) $A \times \emptyset = \emptyset \times A = \emptyset$
 - (b) $A \times B = B \times A \Leftrightarrow A = B$
 - (c) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - (d) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 3. Consider sets A, B, and C. Show that:
 - (a) $A \cap B \subseteq A$
 - (b) $(A \cap B)^c = A^c \cup B^c$
 - (c) Is it true that if $A \cap B = \emptyset$, and $B \cap C = \emptyset$, then $A \cap C = \emptyset$?
 - (d) Find set A such that $A \subseteq A \times A$.
- 4. Given sets A and B, such that #A = m and #B = n,
 - (a) Find $\#(A \times B)$.

- (b) Find $\#(A^k)$.
- (c) Find $\#\mathcal{P}(A \times B)$.
- (d) Show that $\#(A \cup B) = \#A + \#B \#(A \cap B)$.

Real Numbers

- 5. Let $x, y \in \mathbb{R}$. Show that:
 - (a) $|x| \ge 0$
 - (b) $|x+y| \le |x| + |y|$
 - (c) $|x| |y| \le |x y|$
 - (d) |xy| = |x||y|
- 6. Solve the following inequalities,
 - (a) |x-3| < 9

Solution: $x \in (-6, 12)$

(b) $|x-1| + |x-2| \ge 1$

Solution: Given that $|\cdot| \geq 0$, we have that the left hand side $x \in (-\infty, 0] \cup [2, \infty)$, and the right hand side $x \in (-\infty, 1] \cup [3, \infty)$ So obviously for $x \in (-\infty, 1] \cup [2, \infty)$ satisfies the inequality. Note that for $x \in (1, 2)$ both inequalitie

- (c) |x-1|+|x+1|<2
- 7. Let $x, y \in \mathbb{R}$. Prove that:
 - (a) $max(x,y) = \frac{x+y+|y-x|}{2}$
 - (b) $min(x,y) = \frac{x+y-|y-x|}{2}$
- 8. Let S = [0, 1], interval, and $A_s = \left[0, \frac{1}{1+s}\right]$.
 - (a) Find $\bigcap_{s \in S} A_s$.
 - (b) Find $\bigcup_{s \in S} A_s$
- 9. Consider $x_0 \in \mathbb{R}$ and $\delta \in \mathbb{R}_{++}$. Let $A_{\delta} = \{x \in \mathbb{R} | |x x_0| \leq \delta\}$. Show that $\bigcap_{\delta > 0} A_{\delta} = \{x_0\}$
- 10. Show that $A \subseteq \mathbb{R}$ is bounded if and only if there is $c \in \mathbb{R}$ such that for any $x \in A$, $|a| \leq c$.
- 11. Find max(), min(), sup(), inf() if applicable for the following sets:
 - (a) $A = \{x \in \mathbb{R} | || |x + a| 2x \le 4\}$
 - (b) $A = \{x \in \mathbb{R} | x^2 3x + 2 \ge 0\}$
 - (c) $A = \{x \in \mathbb{R} | |x 2a| |x + a| > 12\}$

Functions

- 12. Consider $f, g: \mathbb{R} \to \mathbb{R}$, with $f(x) = x^2 4x + 3$ and $g(x) = e^{2x^2}$, find:
 - (a) f + 2g
 - (b) $f \circ g$
 - (c) $g \circ g$
 - (d) $\frac{f}{f \circ f}$
 - (e) $f \cdot g$
- 13. Show that, in general, $f \circ g \neq g \circ f$.
- 14. Let f(x) = ax + b, such that $f \circ f(x) = 4x + 3$. Find f(5).
- 15. Let f(x) = 7x + 2, find g(x) such that $f \circ g(x) = x$.
- 16. Show that $f: \mathbb{R} \to \mathbb{R}$, with $f(x) = e^x$ is injective but not bijective.
- 17. Given $\alpha > 0$, find if the function $f(x) = x^{\alpha}$ is injective, surjective or bijective.
- 18. Show that $f(x) = ax^2 + bx + c$ is not injective in \mathbb{R} .
- 19. Given $\alpha > 0$, show that $f(x) = x^{\alpha}$ is invertible in \mathbb{R}_{++} .
- 20. Find the isoquants at $y_0 > 0$ for the following functions:
 - (a) $f(x_1, x_2) = x_1^2 + x_2^2$.
 - (b) $f(x_1, x_2) = x_1^2 \cdot x_2^2$.
 - (c) $f(x_1, x_2) = \max\{x_1, x_2\}.$
- 21. Show that if f is strictly increasing or decreasing, it must be injective.
- 22. Provide a function that while being injective, is not strictly increasing or decreasing.
- 23. Show that if f and g are strictly increasing functions, then $f \circ g$ is also strictly increasing.
- 24. If $f: \mathbb{R} \to \mathbb{R}$ is strictly increasing and invertible, what can you say about the increasingness of f^{-1} ?
- 25. Show that if the real valued function f(x) is convex, then g = -f(x) is concave.
- 26. Show that if g > 0 and f is increasing then

$$\frac{f(x+h) - f(x)}{h} > 0$$

27. Given $f: \mathbb{R} \to \mathbb{R}$, and $A \subseteq \mathbb{R}$, define $f(A) := \{f(a) | a \in A\}$. Let $S = \sup(A)$. If f is strictly increasing, is it true that $f(S) = \sup(f(A))$?