Homework 2

Name: 柯宇斌, ID: 2200013213

Problem 1 (10') . 设随机变量 X 的绝对值不大于 1, $P(X = -1) = \frac{1}{8}$, $P(X = 1) = \frac{1}{4}$, 在事件 $\{-1 < X < 1\}$ 出现的条件下,X 在 (-1,1) 内的任一子区间上取值的条件概率与该区间长度成正比. 试求:

(1) X 的分布函数 F(x).

(2)
$$P(X \le 0)$$
.

Answer.
$$(1)F(x) = \begin{cases} 0, x < -1 \\ \frac{7}{16} + \frac{5}{16}x, -1 \le x < 1 \\ 1, x \ge 1 \end{cases}$$

(2) 由定义,
$$P(X \le 0) = F(0) = \frac{6}{17}$$

Problem 2 (10') . 从 1,2,3,4,5 中任取三个数,按大小排列记为 $x_1 < x_2 < x_3$,令 $X = x_2$,试求: (1)X 的分布函数.

(2)
$$P(X < 2) \not \! D P(X > 4)$$
.

Answer. (1) 由定义, P(X=1) = P(X=5) = 0, $P(X=2) = P(X=4)\frac{3}{10}$, $P(X=3) = \frac{4}{10}$

所以,
$$F(X) = \begin{cases} 0, X < 2 \\ \frac{3}{10}, 2 \le X < 3 \\ \frac{7}{10}, 3 \le X < 4 \\ 1, X \ge 4 \end{cases}$$

$$(2)P(X<2) = 0, P(X>4) = 0$$

Problem 3 (10') . x 轴上有一质点,每经一个单位时间,它分别以概率 p 及 q = 1-p 向右或向左移动一格,若该质点在时刻 0 从原点出发,而且每次移动是相互独立的,x = -a 和 x = b 处各有一个吸收壁,求质点在 x = b 处被吸收的概率.

Answer. 我们用 P(i) 表示质点在 x=i 时,被 x=b 吸收的概率 P(i)=q*P(i-1)+p*P(i+1),且 P(b)=1, P(-a)=0.解得 $P(0)=\frac{m^a-1}{m^{b+a}-1}$

Problem 4 (10') . 若每条蚕的产卵数服从泊松分布,参数为 ,而每个卵变为成虫的概率为 p ,且各 卵是否变为成虫彼此独立,求每条蚕养活 k 只小蚕的概率

 \triangleleft

Answer.

$$P(X = k) = \sum_{i=k}^{+\infty} e^{-\lambda} \frac{\lambda^i}{i!} * \binom{i}{k} p^k (1-p)^{i-k}$$

$$= \sum_{i=k}^{+\infty} e^{-\lambda} \frac{\lambda^i}{k!(i-k)!} p^k (1-p)^{i-k}$$

$$= \frac{\lambda^k p^k}{k!} \sum_{j=0}^{+\infty} \frac{e^{-\lambda} \lambda^j}{j!} (1-p)^j$$
(1)

Problem 5 (10'). 一个工厂出产的产品中废品率为 0.005, 任意取来 1000 件, 解答以下问题:

- (1) 求其中至少有两件废品的概率.
- (2) 求其中不超过 5 件废品的概率.
- (3) 能以 90% 的概率希望废品件数不超过多少?

Answer. 可近似为泊松分布 $\lambda = 0.005$

$$(1)P(X \ge 2) = 1 - P(X = 0) - P(X = 1) = 1 - \frac{1+\lambda}{e^{\lambda}} = 1.24 * 10^{-5}$$

$$(2)P(X \le 5) = \frac{1 + \lambda + \frac{\lambda^2}{2} + \frac{\lambda^3}{6} + \frac{\lambda^4}{24} + \frac{\lambda^5}{120}}{e^{\lambda}} =$$

$$(3)P(X \ge m)$$

Problem 6 (10').设随机变量 X 与 Y 同分布,X 的密度函数 $f(x) = \begin{cases} \frac{3}{8}x^2, 0 < x < 2 \\ 0, \end{cases}$,已知事件 $A = \{X > a\}$ 与 $B = \{Y > a\}$ 相互独立,且 $P\{A \cup B\} = \frac{3}{4}$,求常数 a

Answer. 不难得知
$$P(A) = \frac{1}{2} F(x) = \frac{1}{8} x^3 (0 < x < 2)$$
 从而 $a = \sqrt[3]{4}$

Problem 7 (10') . 设随机变量 X 的密度函数为 $f(x) = \begin{cases} Ae^{-x}, x > 0 \\ 0, x \leq 0 \end{cases}$. 求出 A 并求以下 Y 的密度函数:

- (1) Y = 2X + 1.
- (2) $Y = e^X$.

$$(3) Y = X^2.$$

Answer. $F(X) = A - Ae^{-x}(x > 0)$. $\mbox{th} F(+\infty) = 1 \mbox{ ff } A = 1$.

$$(1)F_1(x) = F(\frac{x-1}{2}) = \begin{cases} 0, x \le 1\\ 1 - e^{-\frac{x-1}{2}}, x > 1 \end{cases}$$

$$(2)F_2(x) = F(\ln x) = \begin{cases} 0, x \le 1 \\ 1 - \frac{1}{x}, x > 1 \end{cases}$$

$$(3)F_3(x) = F(\sqrt{x}) = \begin{cases} 0, x \le 0 \\ 1 - e^{-\sqrt{x}}, x > 0 \end{cases}$$

Problem 8 (10') . 设随机变量
$$X$$
 的概率密度为 $F(x) = \begin{cases} \frac{1}{9}x^2, 0 < x < 3 \\ 0, \end{cases}$ 令随机变量 $Y = \begin{cases} 2, X \le 1 \\ X, 1 < X < 2, \\ 1, X \ge 2 \end{cases}$

(1) 求 Y 的分布函数.

(2) 求概率
$$P\{X \leq Y\}$$

Answer. (1) 不难有
$$F(Y) = \begin{cases} 0, X < 1 \\ \frac{5}{9}, X = 1 \\ \frac{8}{9}, 1 < X < 2 \\ 1, X \ge 2 \end{cases}$$
 (2) $P(X \le Y) = P(0 \le X < 2) = \frac{4}{9}$

Problem 9 (10') . 设 N 是正整数, X 服从 $[0, N^2]$ 的均匀分布.

- (1) 求 \sqrt{X} 的密度函数.
- (2) 求 $[\sqrt{X}]$ 的分布列,这里 [x] 表示不超过 x 的最大整数.
- (3) 求 \sqrt{X} $[\sqrt{X}]$ 的分布函数.

Answer.
$$(1)f(x) = \begin{cases} \frac{2x}{N^2}, 0 < x < N \\ 0, \end{cases}$$

(2) 取值为 $0,1,2,\ldots,N$

$$P(X = i) = \frac{2i+1}{N^2}(i = 0, 1..., N-1), P(X = N) = 0$$

$$(3)F(x) = \begin{cases} 0, x < 0 \\ Nx^2 + N(N-1)x, 0 \le x < 1 \\ 1, x > 1 \end{cases}$$

Problem 10 (10') \cdot (1) 利用课上讲的证明"二项分布的极限是泊松分布"的办法,论证几何分布的极限和指数分布的关系。".

(2) 利用课上讲的证明"二项分布的极限是泊松分布"的办法,论证负二项分布的极限和伽马分布的关系(这里负二项分布的参数 r 限制为整数). ■

Answer. (1) 将单位时间 n 等分, 每次实验成功的概率为 $\frac{\lambda}{n}$, 耗时 $\frac{1}{n}$. 则第一次试验成功的时间满足几何分布. 我们有

$$P(X = \frac{i}{n}) = \lim_{n \to +\infty} \frac{\lambda}{n} (1 - \frac{\lambda}{n})^{i-1}$$

$$= \lim_{n \to +\infty} \frac{\lambda}{n} (1 - \frac{\lambda}{n})^{\frac{n}{\lambda} * \frac{\lambda}{n} * (i-1)}$$

$$= \lim_{n \to +\infty} \lambda e^{-\frac{\lambda}{n} * i}$$
(2)

这正是指数分布

(2) 将单位时间 n 等分, 每次实验成功的概率为 $\frac{\lambda}{n}$, 耗时 $\frac{1}{n}$. 则第 r 次试验成功时失败的时间满足负二项分布 $NB(r,\frac{\lambda}{n})$. 我们有

$$P(X = \frac{i}{n}) = \lim_{n \to +\infty} {i + r - 1 \choose r - 1} (\frac{\lambda}{n})^r (1 - \frac{\lambda}{n})^i$$

$$= \frac{\lambda^r}{(r - 1)!} \lim_{n \to +\infty} \frac{(i + r - 1)!}{i!} (\frac{1}{n})^r (1 - \frac{\lambda}{n})^{\frac{n}{\lambda} * \frac{\lambda}{n} * i}$$

$$= \frac{\lambda^r}{(r - 1)!} \lim_{n \to +\infty} (\frac{i}{n})^{r - 1} \frac{(i + r - 1)!}{i! * i^{r - 1}} (\frac{1}{n}) e^{-\frac{\lambda}{n} * i}$$

$$= \frac{\lambda^r}{(r - 1)!} (\frac{i}{n})^{r - 1} e^{-\frac{\lambda}{n} * i}$$
(3)