Next

Let β be the set of all infinite sequences over {0,1}. Show that β is uncountable using a proof by diagonalization.

Step-by-step solution

Step 1 of 3

Let \mathcal{B} be the set of all infinite sequences over $\{0,1\}$. Every element in \mathcal{B} is an infinite sequence $(a_1,a_2,a_3,...)_{\text{where}}$ $a_i \in \{0,1\}$. Assume \mathcal{B} is countable. Define a correspondence f between \mathcal{B} and $N = \{1,2,3,...\}$.

Comment

Step 2 of 3

Suppose, for $z \in N$, $f(z) = (a_{z_1}, a_{z_2}, a_{z_3}, ...)$ where a_{zi} is defined as the i^{th} bit in the z^{th} sequence. In other words,

z	f(z)	
1	$(a_{11}, a_{12}, a_{13}, a_{14}, a_{15},)$	
2	$(a_{21}, a_{22}, a_{23}, a_{24}, a_{25},)$	
3	$(a_{31}, a_{32}, a_{33}, a_{34}, a_{35},)$	
4	$(a_{41}, a_{42}, a_{43}, a_{41}, a_{45},)$	
:		

Comment

Step 3 of 3

Now, a sequence b is defined in such a way that $b = (b_1, b_2, b_3, ...)$ belongs to \mathcal{B} over $\{0,1\}_{\text{where }} b_i = 1 - a_{ii}$ for $i \in \mathbb{N}$. Consider the following example,

z	f(z)
1	(0,1,1,0,0,)
2	(1,0,1,0,1,)
3	(1,1,1,1,1,)
4	(1,0,0,1,0,)
:	:

The sequence b is computed as $b = (1 - a_{11}, 1 - a_{22}, 1 - a_{33}, 1 - a_{44}, ...) = (1,1,0,0,...)$. Therefore, $b \in \mathcal{B}$ is different from every sequence by minimum one bit. Thus, b is not equal to f(z) for any z. It is a contradiction that \mathcal{B} is uncountable.

Therefore, \mathcal{B} is uncountable.

Comment