Inversas Generalizadas

Departamento de Matemáticas, CSI/ITESM

15 de abril de 2009

Índice

11.1. Inversas generalizadas	1
11.2. Uso de la inversa generalizada	2
11.3. Método de cálculo	3
11.4. Algoritmo para una inversa generalizada	3
11.5. Todas las posibles soluciones	4
11.6. Inversa de Moore-Penrose	6

11.1. Inversas generalizadas

Una matriz inversa generalizada de una matriz \mathbf{A} $m \times n$ es una matriz $n \times m$ \mathbf{G} que cumple:

$$\mathbf{AGA} = \mathbf{A} \tag{1}$$

Ejemplo 1

Pruebe que para la matriz:

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 6 & 4 \end{array} \right]$$

dos inversas generalizadas son:

$$\mathbf{G}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{G}_2 = \begin{bmatrix} -42 & -1 \\ 5 & 3 \\ 2 & 2 \end{bmatrix}$$

Solución

Basta realizar los productos:

AGA

$$\mathbf{AG}_{1}\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \end{bmatrix}$$

Por tanto, G_1 sí es inversa generalizada de A Por otro lado,

$$\mathbf{AG}_2\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \end{bmatrix} \begin{bmatrix} -42 & -1 \\ 5 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \end{bmatrix}$$

Por tanto, G_2 sí es inversa generalizada de A_{\diamond}

Ejercicio 1

Pruebe que la inversa de Moore-Penrose es una inversa generalizada de A.

Sugerencia

 $\overline{\text{Sustituya } \mathbf{A}} = \mathbf{BF} \ \mathbf{y}$

$$\mathbf{G} = \mathbf{F}^T (\mathbf{B}^T \mathbf{B} \mathbf{F} \mathbf{F}^T)^{-1} \mathbf{B}^T$$

en $\mathbf{A} \mathbf{G} \mathbf{A}$.

Ejercicio 2

Suponga que G $(n \times m)$ es una inversa generalizada de A $(m \times n)$, entonces muestre que lo estambién

$$\mathbf{G}^* = \mathbf{G}\mathbf{A}\mathbf{G} + (\mathbf{I_{n\times n}} - \mathbf{G}\mathbf{A})\mathbf{T} + \mathbf{S}(\mathbf{I_{m\times m}} - \mathbf{A}\mathbf{G})$$

Para cualquiera que sean las matrices T y S de dimensiones adecuadas.

Sugerencia

 $\overline{\text{Calcule } \mathbf{AG}^*}\mathbf{A}$ desarrollando los productos.

Teorema 11.1

Si \mathbf{A} es una matriz cuadrada que posee inversa, entonces \mathbf{A}^{-1} es una inversa generalizada para \mathbf{A} .

Demostración

Se prueba directamente que $G = A^{-1}$ cumple A G A = A:

$$\mathbf{A}\mathbf{A}^{-1}\mathbf{A} = (\mathbf{A}\mathbf{A}^{-1})\mathbf{A} = \mathbf{I}\mathbf{A} = \mathbf{A}_{\diamond}$$

11.2. Uso de la inversa generalizada

El siguiente resultado indica cómo se relaciona este concepto con la solución de sistemas de ecuaciones lineales.

Teorema 11.2

Sea **A** una matriz $m \times n$, **G** una matriz $n \times m$ y p un número entero positivo. Entonces $\mathbf{X} = \mathbf{G}\mathbf{B}$ es una solución al sistema $\mathbf{A}\mathbf{X} = \mathbf{B}$ para cualquier matriz \mathbf{B} $m \times p$ para el cual es sistema es consistente si y sólo si \mathbf{G} es una inversa generalizada de \mathbf{A} .

Demostración

Si G es la inversa generalizada de A y sea B una matriz para la cual el sistema se consistente y sea X_o una solución, vemos que GB también lo es:

$$A(GB) = AG(AX_0) = (AGA)X_0 = AX_0 = B$$

Por otro lado, suponga que GB es solución al sistema AX = B para todo B para el cual el sistema es consistente. En particular, para cada

$$\mathbf{B}_i = \mathbf{a}_i$$

de donde se obtiene:

$$A(Ga_i) = a_i$$

y por tanto, $\mathbf{AGA} = \mathbf{A}_{\diamond}$

Ejercicio 3

Suponga que el sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ es consistente. Pruebe que si \mathbf{G} es una inversa generalizada de \mathbf{A} entonces $\mathbf{G}\mathbf{b}$ es una solución al sistema.

Sugerencia

Como el sistema es consistente, existe un \mathbf{x}_0 tal que

$$\mathbf{A}\mathbf{x}_0 = \mathbf{b}$$
.

Premultiplique la relación anterior por $\mathbf{A}\mathbf{G}$ Utilice la propiedad de la inversa generalizada y de nuevo que $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$.

11.3. Método de cálculo

El siguiente resultado indica cómo se puede calcular una inversa generalizada de una matriz.

Teorema 11.3

Sea \mathbf{B} una matriz $m \times r$ de rango columna completo y \mathbf{F} una matriz $r \times n$ de rango renglón completo. Suponga que \mathbf{L} es una inversa izquierda para \mathbf{B} y que \mathbf{R} es una inversa derecha para \mathbf{F} . Entonces, $\mathbf{R}\mathbf{L}$ es una inversa generalizada para $\mathbf{B}\mathbf{F}$.

Demostración

Directamente comprobemos que cumple la definición de inversa generalizada:

$$(\mathbf{BF})(\mathbf{RL})(\mathbf{BF}) = \mathbf{B}(\mathbf{FR})(\mathbf{LB})\mathbf{F} = \mathbf{BIIF} = \mathbf{BF}_{\diamond}$$

Notación:

Una inversa generalizada de la matriz A se simbolizará por:

$$\mathbf{A}^{-}$$

y de acuerdo a la definición:

$$AA^{-}A = A$$

11.4. Algoritmo para una inversa generalizada

Una algoritmo para calcular la inversa generalizada a una matriz $m \times n$ **A** es:

- Encuentre una submatriz de **A** cuadrada de rango igual al de **A**. Denote por **W** a esta matriz. Una alternativa para determinarla consiste en:
 - aplicar rref a A para ubicar las posiciones de las columnas a conservar (las de los pivotes), y
 - \bullet aplicar rref a A' para ubicar las posiciones de los renglones a conservar (las de los pivotes).
- Invierta y transponga W.
- Regrese $(\mathbf{W}^{-1})'$ a **A** en las posiciones correspondientes. En los elementos restantes ponga ceros.
- Transponga la matriz resultante.

Ejemplo 2

Determine una inversa generalizada de:

$$\mathbf{A} = \begin{bmatrix} -6 & 2 & -2 & -3 \\ 3 & -1 & 5 & 2 \\ -3 & 1 & 3 & -1 \end{bmatrix}$$

Solución

Como

$$\mathbf{A} \to^{GJ} \begin{bmatrix} 1 & \frac{-1}{3} & 0 & \frac{11}{24} \\ 0 & 0 & 1 & \frac{1}{8} \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \mathbf{A'} \to^{GJ} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Entonces, son renglones independientes el 1 y el 2, y son dos columnas independientes la 1 y la 3. Tales renglones y columnas de **A** debemos conservar para formar **W**:

$$\mathbf{W} = \begin{bmatrix} -6 & -2 \\ 3 & 5 \end{bmatrix}, \ (\mathbf{W}^{-1})' = \begin{bmatrix} -\frac{5}{24} & \frac{1}{8} \\ -\frac{1}{12} & \frac{1}{4} \end{bmatrix}$$

Por tanto:

$$\mathbf{G}' = \begin{bmatrix} -\frac{5}{24} & 0 & \frac{1}{8} & 0 \\ -\frac{1}{12} & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \mathbf{G} = \begin{bmatrix} -\frac{5}{24} & -\frac{1}{12} & 0 \\ 0 & 0 & 0 \\ \frac{1}{8} & \frac{1}{4} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

11.5. Todas las posibles soluciones

Teorema 11.4

Todas las posibles soluciones de un sistema consistente:

$$Ax = b$$

pueden ser generadas de

$$\tilde{\mathbf{x}} = \mathbf{G}\mathbf{b} + (\mathbf{G}\mathbf{A} - \mathbf{I})\mathbf{z}$$

para una inversa generalizada G y un vector adecuado z

Demostración

Primeramente veamos que la fórmula genera efectivamente soluciones a Ax = b:

$$\begin{aligned} \mathbf{A}\tilde{\mathbf{x}} &= & \mathbf{A}\left(\mathbf{G}\mathbf{b} + \left(\mathbf{G}\mathbf{A} - \mathbf{I}\right)\mathbf{z}\right) \\ &= & \mathbf{A}\mathbf{G}\mathbf{b} + \left(\mathbf{A}\mathbf{G}\mathbf{A} - \mathbf{A}\mathbf{I}\right)\mathbf{z} \\ &= & \mathbf{A}\mathbf{G}\mathbf{b} = \mathbf{b} \end{aligned}$$

Por consiguiente, la fórmula para $\tilde{\mathbf{x}}$ genera soluciones al sistema de ecuaciones. Por otro lado, si $\dot{\mathbf{x}}$ es una solución cualquiera, se toma $\mathbf{z} = -\dot{\mathbf{x}}$ y se sustituye en $\tilde{\mathbf{x}}$:

$$\tilde{\mathbf{x}} = \mathbf{G}\mathbf{b} - (\mathbf{G}\mathbf{A} - \mathbf{I})\,\dot{\mathbf{x}} = \mathbf{G}\,(\mathbf{b} - \mathbf{A}\dot{\mathbf{x}}) + \dot{\mathbf{x}} = \dot{\mathbf{x}}_{\diamond}$$

Teorema 11.5

Todas las soluciones a $\mathbf{A}\mathbf{x} = \mathbf{b}$ para $\mathbf{b} \neq \mathbf{0}$ pueden ser generadas de $\mathbf{x} = \mathbf{G}\mathbf{b}$ usando todas las inversas generalizadas \mathbf{G} de \mathbf{A} .

Lema 11.6

Para todo vector \mathbf{z} y para todo vector \mathbf{b} no cero existe una matriz \mathbf{X} tal que $\mathbf{z} = \mathbf{X}\mathbf{b}$.

Tomar $X_{ij} = z_i/b_k$ para j = k y cero en otro caso $(b_k \neq 0)$.

Demostración

Sea $\tilde{\mathbf{x}}$ una solución a $\mathbf{A}\mathbf{x} = \mathbf{b}$, por consiguiente, existe una \mathbf{z} tal que:

$$\tilde{\mathbf{x}} = \mathbf{G}\mathbf{b} + (\mathbf{G}\mathbf{A} - \mathbf{I})\,\mathbf{z}.$$

Por el lema anterior, existe \mathbf{X} tal que $\mathbf{z} = -\mathbf{X}\mathbf{b}$ y sustituyendo en la fórmula anterior:

$$\begin{array}{lcl} \tilde{\mathbf{x}} & = & \mathbf{G}\mathbf{b} + (\mathbf{G}\mathbf{A} - \mathbf{I})\left(-\mathbf{X}\mathbf{b}\right) \\ & = & \left[\mathbf{G}\mathbf{A}\mathbf{G} + (\mathbf{I} - \mathbf{G}\mathbf{A})\mathbf{X} + (-\mathbf{G})(\mathbf{A}\mathbf{G} - \mathbf{I})\right]\mathbf{b} = \mathbf{G}^*\mathbf{b} \end{array} \right.$$

Ejemplo 3

Encuentre todas las soluciones al sistema

$$\begin{bmatrix} 5 & 2 & -1 & 2 \\ 2 & 2 & 3 & 1 \\ 1 & 1 & 4 & -1 \\ 2 & -1 & -3 & -1 \\ 3 & 0 & 1 & -2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 7 \\ 9 \\ 5 \\ -6 \\ -1 \end{bmatrix}$$

Solución

Determinando una inversa generalizada de la matriz de coeficientes tenemos:

$$\mathbf{G} = \frac{1}{15} \begin{bmatrix} 5 & -9 & 8 & 0 & 0 \\ -5 & 21 & -17 & 0 & 0 \\ 0 & -3 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Por tanto, al sustituir en la fórmula de todas las soluciones

$$x = Gb + (GA - I)z$$

obtenemos:

$$\mathbf{x} = \frac{1}{15} \begin{bmatrix} 5 & -9 & 8 & 0 & 0 \\ -5 & 21 & -17 & 0 & 0 \\ 0 & -3 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 5 \\ -6 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & -7/15 \\ 0 & 0 & 0 & 28/15 \\ 0 & 0 & 0 & -9/15 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}$$

$$\mathbf{x} = \frac{1}{15} \begin{bmatrix} -6 - 7z_4 \\ 69 + 28z_4 \\ 3 - 9z_4 \\ -15z_4 \end{bmatrix}$$

Ejemplo 4

Encuentre todas las soluciones al sistema

$$\begin{bmatrix} 5 & 2 & -1 & 2 \\ 2 & 2 & 3 & 1 \\ 1 & 1 & 4 & -1 \\ 2 & -1 & -3 & -1 \\ 3 & 0 & 1 & -2 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 7 & 7 & -1 \\ 9 & 4 & 6 \\ 5 & 2 & 4 \\ -6 & 1 & -5 \\ -1 & 3 & -1 \end{bmatrix}$$

11.6. Inversa de Moore-Penrose

Definición

Sea \mathbf{A} una matriz cualquiera y $\mathbf{A} = \mathbf{BF}$ una factorización donde \mathbf{B} es de rango columna completo y \mathbf{F} es de rango renglón completo. La *inversa de Moore-Penrose* de \mathbf{A} es la matriz:

$$\mathbf{M} = \mathbf{F}^T (\mathbf{B}^T \mathbf{A} \mathbf{F}^T)^{-1} \mathbf{B}^T$$
 (3)

Se puede demostrar que M es la única matriz que cumple

- $\bullet \mathbf{AMA} = \mathbf{A}$
- $\bullet \mathbf{MAM} = \mathbf{M}$
- **AM** es simétrica.
- MA es simétrica.

Ejercicio 4

Sea \mathbf{A} una matriz cualquiera y $\mathbf{A} = \mathbf{BF}$ una factorización donde \mathbf{B} es de rango columna completo y \mathbf{F} es de rango renglón completo. Pruebe que la inverse a Moore-Penrose de \mathbf{A}

$$\mathbf{M} = \mathbf{F}^T (\mathbf{B}^T \mathbf{A} \mathbf{F}^T)^{-1} \mathbf{B}^T$$

satisface:

$$AMA = A$$

Sugerencia

En la expresión $\mathbf{A} \mathbf{M} \mathbf{A}$ sustituya $\mathbf{A} = \mathbf{B} \mathbf{F}$ y la matriz \mathbf{M} propuesta. El punto clave estará en la inversa de $\mathbf{B}^T \mathbf{B} \mathbf{F} \mathbf{F}^T$. Aquí conviene considerar a esta matriz como

$$\mathbf{B}^{T}\mathbf{B}\mathbf{F}\mathbf{F}^{T}=\left(\mathbf{B}^{T}\mathbf{B}\right)\left(\mathbf{F}\mathbf{F}^{T}\right)$$

Note que las matrices $\mathbf{B}^T\mathbf{B}$ y $\mathbf{F}\mathbf{F}^T$ son cuadradas de rango renglón y por tanto son invertibles y por tanto:

$$(\mathbf{B}^T \mathbf{B} \mathbf{F} \mathbf{F}^T)^{-1} = (\mathbf{F} \mathbf{F}^T)^{-1} (\mathbf{B}^T \mathbf{B})^{-1}$$

Proceda simplificando matrices con sus inversas.

Ejercicio 5

Sea $\bf A$ una matriz cualquiera y $\bf A = \bf B \bf F$ una factorización donde $\bf B$ es de rango columna completo y $\bf F$ es de rango renglón completo. Pruebe que la inverse a Moore-Penrose de $\bf A$

$$\mathbf{M} = \mathbf{F}^T (\mathbf{B}^T \mathbf{A} \mathbf{F}^T)^{-1} \mathbf{B}^T$$

satisface:

$$MAM = M$$

Sugerencia

Vea la sugerencia al problema anterior.

Ejercicio 6

Sea \mathbf{A} una matriz cualquiera y $\mathbf{A} = \mathbf{BF}$ una factorización donde \mathbf{B} es de rango columna completo y \mathbf{F} es de rango renglón completo. Pruebe que la inverse a Moore-Penrose de \mathbf{A}

$$\mathbf{M} = \mathbf{F}^T (\mathbf{B}^T \mathbf{A} \mathbf{F}^T)^{-1} \mathbf{B}^T$$

prueba que la matriz $\mathbf{A} \mathbf{M}$ es simétrica.

Sugerencia

Tome su transpuesta y simplifique como se suguiere en problema previo.

Ejercicio 7

Sea \mathbf{A} una matriz cualquiera y $\mathbf{A} = \mathbf{BF}$ una factorización donde \mathbf{B} es de rango columna completo y \mathbf{F} es de rango renglón completo. Pruebe que si \mathbf{M} es la inversa a Moore-Penrose de \mathbf{A} :

$$\mathbf{M} = \mathbf{F}^T (\mathbf{B}^T \mathbf{A} \mathbf{F}^T)^{-1} \mathbf{B}^T$$

Entonces la matriz **M A** es simétrica.

Sugerencia

Vea la sugerencia del problema anterior.

Ejemplo 5

Determine la inversa de Moore-Penrose de la matriz A:

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & -1 & 1 \\ 0 & 2 & 2 & 2 \\ -1 & 4 & 5 & 3 \end{array} \right]$$

Solución:

Al aplicar eliminación gaussiana se obtiene:

$$\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]$$

Por consiguiente, la factorización $\mathbf{A} = \mathbf{BF}$ es:

$$\mathbf{A} = \mathbf{BF} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Recuerde que la matriz \mathbf{F} es la matriz reducida que se obtiene de \mathbf{A} , eliminando en el resultado los posibles renglones de ceros, mientras que \mathbf{B} es la matriz cuyas columnas son las columnas de \mathbf{A} que tienen las posiciones de los pivotes en \mathbf{F} . Por tanto,

$$\mathbf{B}^T \mathbf{A} \mathbf{F}^T = \left[\begin{array}{cc} 6 & -12 \\ -12 & 60 \end{array} \right]$$

De donde:

$$\mathbf{M} = \mathbf{F}^{T} (\mathbf{B}^{T} \mathbf{A} \mathbf{F}^{T})^{-1} \mathbf{B}^{T} = \begin{bmatrix} \frac{5}{18} & \frac{1}{9} & \frac{-1}{18} \\ \frac{1}{18} & \frac{1}{18} & \frac{1}{18} \\ \frac{-2}{9} & \frac{-1}{18} & \frac{1}{9} \\ \frac{1}{3} & \frac{1}{6} & 0 \end{bmatrix}$$

Ejercicio 5

Determine la inversa de Moore-Penrose de la matriz A:

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ -1 & 4 & 5 & 3 \end{array} \right]$$

Sugerencia

Siga el proceso del ejemplo de las notas.

Ejercicio 6

Determine la inversa de Moore-Penrose de la matriz:

$$\left[\begin{array}{cccc}
1 & 0 & 2 \\
2 & -1 & 5 \\
0 & 1 & -1 \\
1 & 3 & -1
\end{array}\right]$$

Teorema 11.7

Sean $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t$ soluciones a un sistema consistente $\mathbf{A}\mathbf{x} = \mathbf{b}$ con $\mathbf{b} \neq \mathbf{0}$. Entonces

$$\sum_{i=1}^{t} \lambda_i \mathbf{x}_i$$

es solución si y sólo si

$$\sum_{i=1}^{t} \lambda_i = 1$$

Demostración

 $\overline{\text{Definamos } \tilde{\mathbf{x}} = \sum_{i=1}^{t} \lambda_i \mathbf{x}_i, \text{ asi:}}$

$$\mathbf{A}\tilde{\mathbf{x}} = \mathbf{A}\left(\sum_{i=1}^t \lambda_i \mathbf{x}_i\right) = \sum_{i=1}^t \lambda_i \mathbf{A} \mathbf{x}_i = \sum_{i=1}^t \lambda_i \mathbf{b} = \left(\sum_{i=1}^t \lambda_i\right) \mathbf{b}$$

Por tanto, $\tilde{\mathbf{x}}$ es solución, es decir $\mathbf{A}\tilde{\mathbf{x}} = \mathbf{b}$, si y sólo si (recuerde que $\mathbf{b} \neq \mathbf{0}$)

$$\sum_{i=1}^{t} \lambda_i = 1_{\diamond}$$

Teorema 11.8

Sea **A** una matriz $m \times n$ con rango $r_{\mathbf{A}}$ entonces el sistema consistente: $\mathbf{A}\mathbf{x} = \mathbf{b}$ para $\mathbf{b} \neq \mathbf{0}$ tiene $n - r_{\mathbf{A}} + 1$ soluciones que forman un conjunto linealmente independiente.

Demostración

Hay $k = (n - r_{\mathbf{A}})$ soluciones linealmente independientes a $\mathbf{A}\mathbf{x} = \mathbf{0}$ digamos $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k$. Si \mathbf{x}_0 es una solución a $\mathbf{A}\mathbf{x} = \mathbf{b}$ defina $\mathbf{x}_i = \mathbf{x}_0 + \mathbf{z}_i$ para $i = 1, \dots, k$. Si el conjunto de formado por \mathbf{x}_i para $i = 0, 1, \dots, k$ fuera linealmente dependiente , y debido a que \mathbf{x}_0 no puede ser el vector cero pues $\mathbf{A}\mathbf{x}_0 = \mathbf{b} \neq \mathbf{0}$, debería haber un vector \mathbf{x}_j $(j \geq 1)$ que fuera combinación de los anteriores $\mathbf{x}_0, \dots \mathbf{x}_{j-1}$. Así

$$\mathbf{x}_j = \sum_{i=0}^{j-1} \lambda_i \mathbf{x}_i$$

Por consiguiente y por el lema anterior,

$$\sum_{i=0}^{j-1} \lambda_i = 1$$

Por lo que la suma anterior queda:

$$\mathbf{x}_j = \mathbf{x}_0 + \mathbf{z}_j = \sum_{i=0}^{j-1} \lambda_i \left(\mathbf{x}_0 + \mathbf{z}_i \right) = \sum_{i=0}^{j-1} \lambda_i \mathbf{x}_0 + \sum_{i=1}^{j-1} \lambda_i \mathbf{z}_i$$

De donde:

$$\mathbf{x}_0 + \mathbf{z}_j = \left(\sum_{i=0}^{j-1} \lambda_i\right) \mathbf{x}_0 + \sum_{i=1}^{j-1} \lambda_i \mathbf{z}_i = \mathbf{x}_0 + \sum_{i=1}^{j-1} \lambda_i \mathbf{z}_i$$

Y así cancelando \mathbf{x}_0 tenemos:

$$\mathbf{z}_j = \sum_{i=1}^{j-1} \lambda_i \mathbf{z}_i$$

lo cual dice que el conjunto $\mathbf{z}_1, \dots \mathbf{z}_k$ es linealmente dependiente. Lo cual es imposible.