Number theory

August 31, 2020

Problem 1. Let a, b, c be positive real numbers. Prove that

$$\frac{a^3}{b^2 + c^2} + \frac{b^3}{c^2 + a^2} + \frac{c^3}{a^2 + b^2} \ge \frac{a + b + c}{2}$$

Problem 2. It is known that positive integers a and b have different parity. Moreover, A and B are disjoint sets with $A \cup B = \mathbb{N}$. Prove that either A or B contains two numbers, difference of which is either a or b.

Problem 3. Let $n \geq 2$. Prove that there exist n distinct positive integers, so that sum of each two divides their product.

Problem 4. Let n > 0 and k > 2. Prove that $2^k - 1$ does not divide $2^n + 1$.

Problem 5. Prove that if m, n are distinct positive integers, then $2^{2^m} + 1$ and $2^{2^n} + 1$ are co-prime.

Problem 6. Find all positive numbers, which are co-prime with all the members of sequence $a_n = 2 \cdot 3^n + 4^n + 12^n - 1$.

Problem 7. a) There are 2n + 2 points on the plane, so that no three of them are collinear. Prove that there exists a line, which contains 2 of these points, and divides plane into two parts containing exactly n of these points.

b) There are 2n+3 points on the plane, so that no three of them are collinear, and no four of which do not lie on the same circle. Prove that there exists a circle, which contains 3 of these points, and divides plane into two parts containing exactly n of these points. c)

There are 4n red points on the plane, so that no three of them are collinear. Prove that it is possible to form n quadrilaterals (not necessarily convex), which do not intersect and have as their vertices the red points.