Exercise 1:

An MDP is given in the figure below, with x describing the states, u the actions, r the reward

and p additional transition probabilities. The discount factor to be considered is $\gamma=0.5$. For transitions where no reward is defined, assume r=0. Round your results to 3 decimal places.

a) Calculate the value function of all the states							

c) Based on the results in b), would a greedy policy pick action u_1 or u_2 in state x_2 ? For which reason?

d) If you derived an ϵ -greedy policy based on the Q function from b), with $\epsilon=0.2$, what would be the probability to pick u_2 in state x_2 ?