PCT/JPC3/06956

本 日 国 JAPAN **OFFICE** PATENT

02.06.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年11月 7日

出願番

Application Number:

特願2002-324278

REC'D 1 8 JUL 2003

[ST.10/C]:

[JP2002-324278]

WIPO **PCT**

人 出 Applicant(s):

HOYA株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 7月

符 許 庁 長 官 Commissioner, Japan Patent Office

BEST AVAILABLE COPY

出証特2003-3053108

【書類名】

特許願

【整理番号】

NP-1861

【提出日】

平成14年11月 7日

【あて先】

特許庁長官 殿

【国際特許分類】

G11B 5/00

【発明の名称】

情報記録媒体用基板並びに情報記録媒体およびその製造

方法

【請求項の数】

16

【発明者】

【住所又は居所】

東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内

【氏名】

池西 幹男

【発明者】

【住所又は居所】

東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内

【氏名】

鄒 学禄

【特許出願人】

【識別番号】

000113263

【氏名又は名称】

ホーヤ株式会社

【代表者】

鈴木 洋

【代理人】

【識別番号】

100080850

【弁理士】

【氏名又は名称】 中村 静男

【先の出願に基づく優先権主張】

【出願番号】

特願2002-161138

【出顧日】

. 平成14年 6月 3日

【手数料の表示】

【予納台帳番号】 006976

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9717248

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 情報記録媒体用基板並びに情報記録媒体およびその製造方法 【特許請求の範囲】

【請求項1】 アルカリ金属酸化物含有ガラスからなる情報記録媒体用基板において、前記ガラスの転移温度(Tg)が620℃以上であり、かつ温度80℃に保持された水中に24時間浸漬した際のアルカリ金属イオンの溶出量が、単位面積当たり0.2 μ モル/cm²以下であることを特徴とする情報記録媒体用基板。

【請求項2】 化学強化層が存在しない請求項1に記載の情報記録媒体用基板。

【請求項3】 アルカリ金属酸化物含有ガラスが、必須成分として SiO_2 、 Al_2O_3 、CaOおよび K_2O を含むものである請求項1または2に記載の情報記録媒体用基板。

【請求項4】 アルカリ金属酸化物含有ガラスが、モル%表示で、Si〇245~70%、A12〇3 1~15%(ただし、Si〇2とA12〇3の合計量が57~85%)、Ca〇 2~25%、Ba〇 0~15%、Mg〇 0~15%、Sr〇 0~15%、Zn〇 0~10%(ただし、Mg〇、Ca〇、Sr〇、Ba〇およびZn〇の合計量が2~30%)、K2〇 2~15%、Li2〇 0~8%、Na2〇 0~8%(ただし、K2〇、Li2〇およびNa2〇の合計量が2~15%)、Zr〇2 0~12%およびTi〇2 0~10%を含み、かつ上記成分の合計含有量が95%以上の組成を有する請求項3に記載の情報記録媒体用基板。

【請求項5】 表面に化学強化層が存在することを特徴とする請求項1に記載の情報記録媒体用基板。

【請求項6】 アルカリ金属酸化物含有ガラスが、必須成分として SiO_2 、 Al_2O_3 、CaO、 Na_2O および K_2O を含むものである請求項5に記載の情報記録媒体用基板。

【請求項7】 アルカリ金属酸化物含有ガラスが、モル%表示で、SiO $_2$ 47~70%、Al $_2$ O $_3$ 1~10%(ただし、SiO $_2$ とAl $_2$ O $_3$ の合

計量が57~80%)、CaO 2~25%、BaO 1~15%、Na₂O 1~8%、K₂O 2~15% (ただし、Na₂OとK₂Oの合計量が3~16%)、ZrO₂ 1~12%、MgO 0~10%、SrO 0~15%、ZnO 0~10% (ただし、MgO、CaO、SrO、BaOおよびZnOの合計量が3~30%)、TiO₂ 0~10%を含み、かつ上記成分の合計含有量が95%以上の組成を有する請求項6に記載の情報記録媒体用基板。

【請求項8】 Sb_2O_3 が添加されたアルカリ金属酸化物含有ガラスからなることを特徴とする請求項1ないし7のいずれか1項に記載の情報記録媒体用基板。

【請求項9】 アルカリ金属酸化物含有ガラスが、希土類元素を含まないものである請求項1ないし8のいずれか1項に記載の情報記録媒体用基板。

【請求項10】 アルカリ金属酸化物含有ガラスがTi〇₂を含まないことを特徴とする請求項1ないし9のいずれか1項に記載の情報記録媒体用基板。

【請求項11】 アルカリ金属酸化物含有ガラスの温度 $100\sim300$ ℃における平均線熱膨張係数 (α) が 70×10^{-7} / \bigcirc \bigcirc 以上である請求項1 ないし10 のいずれか1 項に記載の情報記録媒体用基板。

【請求項12】 アルカリ金属酸化物含有ガラスの比重が3.5以下である 請求項1ないし11のいずれか1項に記載の情報記録媒体用基板。

【請求項13】 垂直磁気記録方式の情報録媒体用であることを特徴とする 請求項1ないし12のいずれか1項に記載の情報記録媒体用基板。

【請求項14】 請求項1ないし13のいずれか1項に記載の情報記録媒体 用基板上に、情報記録層を有することを特徴とする情報記録媒体。

【請求項15】 垂直方式の磁気記録媒体である請求項14に記載の情報記録媒体。

【請求項16】 情報記録媒体用基板上に情報記録層の形成を含む工程を備えた情報記録媒体の製造方法において、前記基板に請求項1ないし13のいずれか1項に記載の情報記録媒体用基板を用い、前記工程中に前記基板を400~60℃に加熱することを特徴とする情報記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は耐熱性が高く、アルカリ金属酸化物を含有しながらもアルカリ金属イオンの溶出量が極めて低い情報記録媒体用基板、並びに前記基板を備えた情報記録媒体およびその製造方法に関する。特に、高温スパッタ機での垂直磁気記録方式用磁性膜の作製に好適な磁気記録媒体用基板、並びに磁気記録媒体およびその製造方法に関するものである。

[0002]

【従来の技術】

従来、磁気記録媒体用基板材料としては、アルミニウム、ガラス、セラミック スなどが用いられてきた。現在、サイズや用途に応じて主にアルミニウムとガラ スが実用化されている。その中でガラス基板は、表面欠陥が少なく、平滑性や表 面硬度が優れているため、その使用範囲が年々拡大してきている。磁気記録媒体 用基板として用いられるガラスとしては、イオン交換による化学強化ガラス、結 晶化ガラスなどが知られている。化学強化ガラスとしては、重量%表示で、Si $O_2:50\sim85\%$ 、 $A1_2O_3:0.5\sim14\%$ 、 $R_2O($ ただしRはアルカ リ金属イオン):10~32%、ZnO:1~15%、B2O3:1.1~14 %を含むガラスをアルカリイオンによるイオン交換法によってガラス基板の表面 に圧縮応力層を形成し、化学強化された磁気ディスク用ガラス基板が知られてい る (例えば特許文献 1 参照)。また、結晶化ガラスとしては、重量%表示で、 S iO₂:65~83%, Li₂O:8~13%, K₂O:0~7%, MgO:0 . 5~5%、ZnO:0~5%、PbO:0~5%、ただし、MgO+ZnO+ PbO: 0. 5~5%, P₂O₅: 1~4%, Al₂O₃: 0~7%, As₂O $_3$ + S b $_2$ O $_3$: O \sim 2 % を含み、主結晶として微細なL i $_2$ O · 2 S i O $_2$ 結 晶粒子を含む磁気ディスク用結晶化ガラス基板が知られている(例えば特許文献 2 参照)。

[0003]

しかしながら、近年ハードディスクに代表される磁気ディスクなどの情報記録 装置には記録の高密度化の進展にともなって、長手磁気記録方式から垂直磁気記

録方式への変換が求められている。長手磁気記録方式では、室温程度の熱によって磁区が容易に回転するため、記録密度が高くなると、書き込みができなくなり、書き込んだ情報が容易に失われることが指摘されている。このような現象は熱揺らぎの問題として知られ、長手磁気記録方式の障害になりつつある。そこで、長手磁気記録方式による熱揺らぎの問題に対処するため、垂直磁気記録方式が実用化に向けて近年活発に検討されている。

[0004]

この垂直磁気記録方式の膜構成としては、非磁性基板上に垂直磁気記録層を形成した単層膜、軟磁性層と磁気記録層を順次に積層した二層膜、並びに硬磁性層、軟磁性層および磁気記録層を順次に積層した三層膜などが知られている。その中で二層膜と三層膜は、単層膜よりも高記録密度化および磁気モーメントの安定維持に適しているので、実用化に向けた開発が近年盛んに行われている。そして、このような多層磁性膜垂直磁気記録媒体の特性を向上させるため、高温スパッタ機での成膜や成膜後の高温熱処理が必要とされている。

[0005]

しかし、これまで一般的に使用されてきたアルミニウム基板は、耐熱性が280℃以下と低い。また、従来の化学強化ガラス基板は通常の化学強化温度(350~420℃)範囲あるいはそれより高い温度で使用されると化学強化のためのイオン交換による表面応力が緩和され基板強度が急低下するので、通常化学強化ガラスは350℃以下の温度での使用が強要されている。しかしながら、垂直磁気記録方式においては、磁性膜の磁気特性を高めるため、400℃以上の高温スパッタ機での成膜あるいは積層した磁性膜を400℃以上の高温でアニールすることが求められている。したがって、このような高温では、現在市販されているアルミニウム基板や化学強化ガラス基板は、いずれも対応できないことは明らかであり、耐熱性の高いガラス基板が求められている。

[0006]

優れた耐熱性を得るために、これまで化学強化用ガラスでは必須成分であった アルカリ金属酸化物を用いないガラス材料も考えられるが、この場合、溶解時の 粘性が上昇して溶解性が低下するという問題が生じる。また、磁気ディスクをド

ライブ装置に組込む際、ディスクを固定するための金属固定具との熱膨張特性を 合わせるために、ガラス基板の熱膨張係数を大きくする必要があるが、アルカリ 金属酸化物を含まないガラスでは熱膨張係数を情報記録媒体用基板に求められる 範囲にすることが難しい。

[0007]

一方、ガラスの溶解性、熱膨張係数を良好なものとするためにアルカリ金属酸 化物を導入すると、ガラス基板からアルカリが溶出し、基板上に設けられている 情報記録層に悪影響を及ぼすという問題もある。

[0008]

以上、情報記録媒体用基板のガラス材料に求められる条件を総合すると次のようになる。

- ①高い耐熱性
- ②優れた溶解性
- ③低アルカリ溶出特性

[0009]

【特許文献1】

特開平1-239036号公報

【特許文献2】

米国特許第5391622号明細書

[0010]

【発明が解決しようとする課題】

本発明は、このような事情のもとで、前記の要求特性を満たす高耐熱性、低アルカリ溶出性などを備えたガラスからなる情報記録媒体用基板、並びに該基板を用いた情報記録媒体およびその製造方法、特に高温スパッタ機で垂直磁気記録方式用磁性膜の作製に好適な磁気記録媒体用基板、並びに磁気記録媒体およびその製造方法を提供することを目的とするものである。 /

[0011]

【課題を解決するための手段】

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、アルカリ金

属酸化物を含有し、かつある温度以上のガラス転移温度(Tg)を有すると共に、特定の条件で水中に浸漬した際のアルカリ金属イオンの溶出量がある値以下であるガラスからなる情報記録媒体用基板により、その目的を達成し得ることを見、出し、この知見に基づいて本発明を完成するに至った。

[0012]

すなわち、本発明は、

- (1) アルカリ金属酸化物含有ガラスからなる情報記録媒体用基板において、前記ガラスの転移温度(Tg)が620C以上であり、かつ温度80Cに保持された水中に24時間浸漬した際のアルカリ金属イオンの溶出量が、単位面積当たり0.2 μ モル/cm 2 以下であることを特徴とする情報記録媒体用基板、
 - (2) 化学強化層が存在しない上記(1) に記載の情報記録媒体用基板、
- (3)アルカリ金属酸化物含有ガラスが、必須成分として SiO_2 、 Al_2O_3 、CaOおよび K_2O を含むものである上記(1)または(2)に記載の情報記録媒体用基板。
- (4) アルカリ金属酸化物含有ガラスが、モル%表示で、Si〇₂ 45~70%、Al₂O₃ 1~15% (ただし、Si〇₂とAl₂O₃の合計量が57~85%)、CaO 2~25%、BaO 0~15%、MgO 0~15%、SrO 0~15%、ZnO 0~10% (ただし、MgO、CaO、SrO、BaOおよびZnOの合計量が2~30%)、K₂O 2~15%、Li₂O 0~8%、Na₂O 0~8% (ただし、K₂O、Li₂OおよびNa₂Oの合計量が2~15%)、ZrO₂ 0~12%およびTiO₂ 0~10%を含み、かつ上記成分の合計含有量が95%以上の組成を有する上記(3)に記載の情報記録媒体用基板、
- (5) 表面に化学強化層が存在することを特徴とする上記(1)に記載の情報記録媒体用基板、
- (6)アルカリ金属酸化物含有ガラスが、必須成分として SiO_2 、 Al_2O_3 、CaO、 Na_2O および K_2O を含むものである上記(5)に記載の情報記録媒体用基板、
 - (7) アルカリ金属酸化物含有ガラスが、モル%表示で、 SiO_2 47~70

- %、Al₂O₃ 1~10% (ただし、SiO₂とAl₂O₃の合計量が57~80%)、CaO 2~25%、BaO 1~15%、Na₂O 1~8%、K 2O 2~15% (ただし、Na₂OとK₂Oの合計量が3~16%)、ZrO 2 1~12%、MgO 0~10%、SrO 0~15%、ZnO 0~10 % (ただし、MgO、CaO、SrO、BaOおよびZnOの合計量が3~30 %)、TiO₂ 0~10%を含み、かつ上記成分の合計含有量が95%以上の 組成を有する上記(6)に記載の情報記録媒体用基板、
- (8) S b $_2$ O $_3$ が添加されたアルカリ金属酸化物含有ガラスからなることを特徴とする上記(1)ないし(7)のいずれか1 項に記載の情報記録媒体用基板、
- (9) アルカリ金属酸化物含有ガラスが、希土類元素を含まないものである上記(1) ないし(8) のいずれか1項に記載の情報記録媒体用基板、
- (10) アルカリ金属酸化物含有ガラスがTiO2を含まないことを特徴とする上記(1)ないし(9)のいずれか1項に記載の情報記録媒体用基板、
- (11) アルカリ金属酸化物含有ガラスの温度100~300 Cにおける平均線 熱膨張係数 (α) が 70×10^{-7} / C以上である上記 (1) ないし (10) の いずれか 1 項に記載の情報記録媒体用基板。
- (12) アルカリ金属酸化物含有ガラスの比重が3.5以下である上記(1)ないし(11) に記載の情報記録媒体用基板、
- (13)垂直磁気記録方式の情報録媒体用であることを特徴とする上記(1)ないし(12)のいずれか1項に記載の情報記録媒体用基板、
- (14)上記(1)ないし(13)のいずれか1項に記載の情報記録媒体用基板上に、情報記録層を有することを特徴とする情報記録媒体、
 - (15) 垂直方式の磁気記録媒体である上記(14) に記載の情報記録媒体、および
 - (16)情報記録媒体用基板上に情報記録層の形成を含む工程を備えた情報記録 媒体の製造方法において、前記基板に上記(1)ないし(13)のいずれか1項 に記載の情報記録媒体用基板を用い、前記工程中に前記基板を400~600℃ に加熱することを特徴とする情報記録媒体の製造方法、

を提供するものである。

[0013]

【発明の実施の形態】

本発明の情報記録媒体用基板は、従来のガラス基板の高平滑性、高平坦性などの優れた特性を維持しながらも、400~600℃の温度範囲での高温成膜に適し、400~600℃温度範囲での高温熱処理を行っても変形せず、さらに溶解性を損なわないためにアルカリ金属酸化物を含有しながらも、アルカリ金属イオンの溶出量(以下、アルカリ溶出量と称すことがある。)が極めて少ない非晶質性ガラスからなる基板である。上記高温熱処理を行っても基板が変形しないために、ガラス転移温度(Tg)が620℃以上、好ましくは650℃以上、より好ましくは680℃以上、さらに好ましくは700℃以上のガラスによって基板を構成する。該ガラスの転移温度の上限については特に制限はないが、通常900℃程度である。

[0014]

なお、後述する化学強化層が存在する情報記録媒体用基板の場合は、アルカリ金属化合物を含む溶融塩中にガラスを浸漬してイオン交換を行う。ガラス転移温度 (Tg) が著しく高いガラスを化学強化するには、溶融塩の温度も著しく高くしなければならない。そうすると溶融塩の分解が生じ、分解生成物によってガラス表面が侵食されることになる。このような侵食を防止する上から、化学強化層を有する基板の場合は、ガラス転移温度 (Tg) を800℃以下にすることが望ましい。

[0015]

本発明のガラス基板は、優れた溶解性を付与するために、アルカリ金属酸化物を含有するが、一方アルカリ溶出量は極めて少ないものである。このアルカリ溶出量は、温度80℃に保持された水中に24時間浸漬した際の単位面積当りの溶出量で示されるが、その値は0.2μモル/cm²以下(0.2×10⁻⁶モル/cm²以下)である。以上のような特性があいまって高記録密度化に適した情報記録媒体用基板が得られる。なお、前記アルカリ溶出量が0.2μモル/cm²より大きいと、基板の洗浄工程などにおいてガラス中のアルカリ金属が溶出して基板表面が荒れてしまい、研磨加工によって仕上げられた基板表面の平滑性が

損なわれる。また、情報記録層を形成した後、基板から析出するアルカリ金属によって情報記録層が侵蝕される問題も生じる。好ましいアルカリ溶出量は0.1 μ モル/ c m^2 以下、より好ましくは0.05 μ モル/ c m^2 以下である。

[0016]

なお、前記アルカリ溶出量は、以下に示す測定方法により求めた値である。 〈アルカリ金属イオンの溶出量(アルカリ溶出量)の測定方法〉

清浄な表面を有するガラス試料を密閉可能な容器に入れて秤量し、この質量を 質量Aとする。次に容器中にガラス試料が完全に浸漬するように70~75℃の 超純水を約20m1添加し、密閉した状態で容器内の温度が80℃に保たれる状 態で24時間放置する。その後、密閉状態の容器を秤量し、この質量を質量Bと する。その後、ガラス試料を取り出す。ガラス試料を浸漬していた水の質量は質 量Bから質量Aを差し引いたものである。次いで、ガラス試料を浸漬していた水 に溶出したアルカリ金属元素の濃度をICP-AES(バリアン製ICP発光分 光分析装置「VISTA AX」)を使用して測定する。アルカリ金属元素の濃 度と水の質量をもとに溶出したアルカリ金属元素の量を算出し、この値(モル表 示)をガラス試料の表面積で割ればアルカリの溶出量が求まる。なお、測定に当 たり、ガラス試料を浸漬する水の純度、容器の洗浄性、容器から水への溶出など 、測定精度低下の要因になる点に対し十分注意を払う必要がある。ガラス中に含 まれるアルカリ金属元素が複数種ある場合には、それぞれのアルカリ金属イオン の濃度から浸漬した水に含まれる各アルカリ金属イオンの量(モル表示)を測定 、算出し、その合計量をガラス試料の表面積で割った値をアルカリ金属イオンの 溶出量とする。

[0017]

本発明のガラス基板は、化学強化工程を省略できるという観点からは、化学強 化層が存在しないものが好ましい。本発明のガラス基板によれば化学強化しなく てもアルカリ溶出量を低レベルに抑えることができ、化学強化の工程を省くこと ができる。

[0018]

本発明のガラス基板は、高い機械強度を付与することにより基板破損を防止す

るという観点からは、化学強化層が存在するものが好ましい。

ガラス基板を構成するガラスとしては、必須成分として SiO_2 、 Al_2O_3 、CaOおよび K_2O を含むもの(以下、ガラス I という。)が好ましい。このような組成によれば高耐熱性、高膨張特性、低アルカリ溶出性、高ガラス安定性を兼ね備えた情報記録媒体用基板を得ることができる。

[0019]

さらに、上記組成のガラスIにおいて、好ましいガラスとしては、モル%表示で(以下、特記のない限りガラスの各成分の含有量はモル%表示とする。)、、SiO $_2$ 45~70%、A1 $_2$ O $_3$ 1~15%(ただし、SiO $_2$ とA1 $_2$ O $_3$ の合計量が57~85%)、CaO 2~25%、BaO 0~15%、MgO 0~15%、SrO 0~15%、ZnO 0~10%(ただし、MgO、CaO、SrO、BaOおよびZnOの合計量が2~30%)、K $_2$ O 2~15%、Li $_2$ O 0~8%、Na $_2$ O 0~8%(ただし、K $_2$ O、Li $_2$ OおよびNa $_2$ Oの合計量が2~15%)、ZrO $_2$ 0~12%およびTiO $_2$ 0~10%を含み、かつ上記成分の合計含有量が95%以上の組成を有するガラスを挙げることができる。

[0020]

以下、各成分の役割ならびに上記組成範囲について詳しく説明する。

 SiO_2 はガラスの網目構造を形成する主成分であり、その含有量が45%未満では、ガラスの耐久性が悪化してガラスが失透しやすくなる。一方、70%を超えると、ガラスのヤング率が小さくなる上、高温粘性が高くなるためにガラスが溶けにくくなる。したがって、 SiO_2 の含有量は $45\sim70\%$ の範囲にすることが好ましい。特に $50\sim67\%$ の範囲がより好ましい。

[0021]

Al₂O₃はガラスの耐久性や耐熱性の向上に大きく寄与する成分としても、SiO₂とともにガラス構造の安定化及びその剛性度を高める成分としても非常に重要である。しかし、その含有量が1%未満ではガラスからのアルカリの溶出を抑える効果が減少する傾向となり、耐久性のよいガラスを作りにくくなるのに対し、15%を超えて導入すると、ガラスの高温溶融性が悪化する傾向となるの

で、その含有量を1~15%にすることが好ましい。より好ましくは2~12% の範囲である。

[0022]

前記 SiO_2 と Al_2O_3 の合計含有量は $57\sim85$ %の範囲が好ましい。この合計含有量が57%未満ではガラスの耐久性が不十分となるおそれがある。より好ましい合計含有量は $57\sim79$ %の範囲である。

[0023]

MgO、CaO、ZnO、SrO、及びBaOはガラス溶解時の粘性を下げ、溶解を促進すると共にヤング率の上昇、熱膨張係数の増加に効果が大きい。しかしその合計含有量が30%を超えると、ガラスの耐久性が悪化する傾向となり、失透温度も高くなる傾向がある。

[0024]

CaOはヤング率や熱膨張の向上、溶解粘性の低粘性化に効果が大きく重要な成分である。しかし、CaOの導入量が2%未満ではその効果が薄く、25%を超えて導入すると、安定性が悪化する傾向になるため2~25%の範囲が好ましい。より好ましくは3~20%の範囲である。

[0025]

BaOは熱膨張の向上に寄与し、耐久性の向上にも効果があるが、過剰の導入では逆に耐久性が悪化する傾向がある。またBaOの導入により比重の上昇が大きいため0~15%の範囲が好ましい。より好ましくは0~14%である。

[0026]

その他のMgO、ZnO、SrOは合計量が好ましい範囲を超えない範囲で添加することでガラス構造の安定化、ヤング率、熱膨張の上昇に効果が期待できる。MgO、ZnO、SrOはこれらの一つを大量に導入するよりも、少量ずつ多種類の2価成分を導入することでより効果が大きくなるため、MgOを0~15%、SrOを0~15%、ZnOを0~10%の範囲にするのが好ましい。より好ましくは、MgOが0~10%、SrOが0~10%、ZnOが0~8%である。

[0027]

MgO、CaO、SrO、BaOおよびZnOの合計含有量は、前記の理由により、 $2\sim30\%$ の範囲が好ましく、より好ましくは $3\sim30\%$ 、さらに好ましくは $3\sim25\%$ の範囲である。

[0028]

 Li_2O 、 Na_2O 、 K_2O はガラス溶解時の粘性を下げ、溶解を促進するとともに、熱膨張を大きく上昇させる有用な成分である。しかし、その導入量が合計で15%を超えて多くなると、化学的耐久性が悪化するだけでなく、アルカリがガラス表面に多く析出するようになるため、磁性膜などの情報記録層を侵蝕してしまうおそれがある。またガラス転移温度が低下し必要な耐熱性が得られなくなる場合がある。その導入量が合計で2%より少なくなると、ガラスの溶解性が低下したり、所定の熱膨張特性を得にくくなる。

[0029]

 Li_2 Oは熱膨張の上昇とヤング率の上昇に効果が大きいが、ガラス表面への 析出の度合が大きいため $0\sim8$ %とするのが好ましい。より好ましくは $0\sim5$ % である。

[0030]

Na $_2$ Oは熱膨張の上昇に効果が大きいが K_2 Oほどではない。またガラス表面への析出の度合も大きいため $0\sim8$ %が好ましい。より好ましくは $0\sim5$ %である。

[0031]

K₂Oは熱膨張係数の上昇に効果が大きく、ガラス表面への析出の度合も小さいため重要な成分である。つまり、所望の熱膨張特性並びにガラス溶解性を付与しつつ、アルカリ溶出量を低レベルに抑える上から重要な成分である。しかし、大量の導入はガラスの耐久性を低下させ、ガラス転移温度の低下による耐熱性の悪化を引き起こすので2~15%の範囲にするのが好ましい。より好ましくは4~13%である。

[0032]

 K_2 O、Li $_2$ OおよびNa $_2$ Oの合計含有量は、前記の理由により、 $2\sim1$ 5%の範囲が好ましく、より好ましくは $4\sim1$ 2%の範囲である。ZrO $_2$ 、T

 iO_2 はガラスの化学的耐久性を向上させ、剛性度を高めるために導入される成分である。少量の ZrO_2 及び TiO_2 をガラスに添加すると、ガラスの耐久性も弾性率も脆さも改善されるが、比重が急増するし、より多く導入するとガラスの失透傾向が強くなる。

[0033]

Z r O $_2$ はその導入によりヤング率を上昇させる成分であるが、比重も大きくなるため、 $0\sim1~2$ %とするのが好ましく、 $0\sim1~0$ %とするのがより好ましい

[0034]

TiO₂はヤング率の上昇効果はZrO2より劣るが、比重の上昇はあまり大きくないため、0~10%とするのが好ましく、0~8%とするのがより好ましな。

[0035]

本発明のガラス基板を構成するガラスにおいては、希土類元素は任意成分として導入することができる。希土類元素はガラス基板の耐熱性、耐久性、弾性率を高める働きをするが、高価な原料でもある。希土類元素の有無によって、本発明のガラス基板をさらに2つの態様に分けることができる。

[0036]

一方の態様は、高耐熱性、高熱膨張特性、低アルカリ溶出特性を満足しつつ、低コストのガラス基板を提供可能な希土類元素を含有しないガラス基板であり、他方の態様は、高熱膨張特性、低アルカリ溶出特性を満足しつつ、より高い耐熱性、ヤング率、耐久性を付与可能な希土類元素を含有するガラス基板である。この態様においては導入する希土類元素は酸化物に換算して5%以下とすることが好ましく、より好ましくは3%以下である。

[0037]

上記希土類元素としては、Y、La、Gd、Yb、Pr、Sc、Sm、Tb、Dy、Nd、Eu、Ho、Er、Tm、Luを例示することができ、それら酸化物としては、Y $_2$ O $_3$ 、La $_2$ O $_3$ 、Gd $_2$ O $_3$ 、Yb $_2$ O $_3$ 、Pr $_2$ O $_3$ 、Sc $_2$ O $_3$ 、Sm $_2$ O $_3$ 、Tb $_2$ O $_3$ 、Dy $_2$ O $_3$ 、Nd $_2$ O $_3$ 、Eu $_2$ O $_3$ 、H

 \circ $_2$ \circ $_3$ 、 Er $_2$ \circ $_3$ 、 Tm $_2$ \circ $_3$ 、 Lu $_2$ \circ $_3$ を例示することができる。 【0038】

この希土類元素の酸化物としては、Y₂O₃が好ましく用いられる。該Y2O3を用いる場合、比重の上昇もあまり大きくなく、ヤング率の上昇効果も大きいが、ガラスの安定性の低下が著しいため、5%以下にするのが好ましく、3%以下とすることがより好ましい。

[0039]

本発明のガラス基板を構成するガラスは上記成分以外に、ガラスの溶解性、清 澄性、成形性などを改善するため、 As_2O_3 、 Sb_2O_3 、フッ化物、塩化物 、SO3を導入することができる。その導入量は、脱泡剤として用いられる適量 の範囲であればよいが、外割の合計量で2重量%以下の割合を目安とする。より 好ましくは1重量%以下である。S b ${}_2$ O ${}_3$ はA s ${}_2$ O ${}_3$ とともに上記他の脱泡 剤よりも脱泡効果が優れている。情報記録媒体用基板を構成するガラスでは、十 分な脱泡が行われていないとガラス中に微小な気泡が残ってしまう。このような ガラスの表面を研削、研磨するとガラス中に残存している気泡が表面に現れて、 研磨面に窪みが生じることになる。情報記録媒体用基板の表面には極めて高い平 滑性が求められており、このような気泡が残存するものは不良品になってしまう 。そのため、Sb $_2$ О $_3$ 及び/又はAs $_2$ О $_3$ を含むものが望ましい。その導入 量 (外割) はSb₂O₃とAs₂O₃の合計量で0~2重量%の範囲とするのが 好ましく、0.1~2重量%がより好ましく、0.1~1重量%の範囲がさらに 好ましい。しかし、環境への影響に配慮するという観点からは、As₂〇₃等の ヒ素化合物を用いないことが望ましい。したがって、 Sb_2O_3 のみを導入する ことがより一層好ましい。Sb₂〇₃のみを導入する場合の導入量は、外割で〇 ~ 2 重量%とするのが好ましく、0. $1\sim 2$ 重量%とすr のがより好ましく、0、 $1\sim1$ 重量%とするのがさらに好ましい。なお、 As_2O_3 や Sb_2O_3 を含 むガラスは、ガラス中の $A \times 2 \times 3 \times 5 \times 2 \times 3$ が錫などの溶融金属と反応して しまうため、フロート成形には適さない。したがって、情報記録媒体用基板はフ ロート成形法ではなく、プレス成形法を用いて作製することが望ましい。

[0040]

上記好ましい組成範囲において各成分のより好ましい範囲を任意に組合せてさらに好ましい組成範囲を選択することが可能であるが、中でも特に好ましい組成範囲は、 SiO_2 $50\sim6.7\%$ 、 Al_2O_3 $2\sim1.2\%$ (ただし、 SiO_2 $2 \times Al_2O_3$ の合計量が5.7~7.9%)、 $CaO_3 \sim 2.0\%$ 、 $BaO_3 \sim 2.0\%$ 0、 $Al_2O_3 \sim 2.0\%$ 0 $Al_2O_3 \sim 2.0\%$ 0

[0041]

なお、希土類元素を含まない態様においては、 SiO_2 、 Al_2O_3 、CaO、BaO、MgO、SrO、ZnO、 Li_2O 、 Na_2O 、 K_2O 、 ZrO_2 、 TiO_2 の合計含有量を100%とすることが好ましい。また、この組成に上記胞泡剤を添加してもよい。さらに、アルカリ溶出量を抑えつつ、優れた溶解性、耐熱性を得る上から、アルカリ金属酸化物をK2Oのみに限定することが望ましい。また、上記特性を得る上でK2OとBaOを共存させることも望ましい。特に好ましい組成は、 SiO_2 、 Al_2O_3 、MgO、CaO、BaO、 K_2O 、 ZrO_2 の合計含有量が100%のものであり、 SiO_2 、 Al_2O_3 、MgO、CaO、BaO、 K_2O 、CaO 、CaO

[0042]

希土類元素を含む態様においては、 SiO_2 、 Al_2O_3 、CaO、BaO、MgO、SrO、ZnO、 Li_2O 、 Na_2O 、 K_2O 、 ZrO_2 、 TiO_2 、 B_2O_3 、希土類元素酸化物の合計含有量を100%とすることが好ましい。中でも希土類元素酸化物の合計含有量を5%以下に抑えることが好ましい。このガラスにも胞泡剤として、 As_2O_3 、 Sb_2O_3 、7ッ化物、塩化物、 SO_3 を適量添加することができるが、その合計含有量は外割で2重量%以下を目安にすることが好ましく、1重量%以下にすることがさらに好ましい。なお、環境への

配慮から、As203などのヒ素化合物を使用しないことが望ましい。

[0043]

本発明のガラス基板を構成する、上記ガラス I を含むガラスにおいては、T i O $_2$ を含まないものが、基板表面のあれを低減する上から特に優れている。

なお、上記いずれの態様においてもガラスの溶解性は優れており、ガラス中に 未溶解物は認められず、また結晶粒子も認められない。すなわち非晶質性のガラ スであった。

[0044]

ガラスIは、化学強化層が存在しない情報記録媒体用基板材料としても、表面 に化学強化層が存在する情報記録媒体用基板材料としても好適なものであるが、 化学強化層が存在しない情報記録媒体用基板材料として特に好適なガラスである

[0045]

次に、表面に化学強化層が存在する情報記録媒体用基板材料として特別に好ま しいガラス(以下、ガラスIIという。)の組成について説明する。

ガラスIIは、必須成分として SiO_2 、 Al_2O_3 、CaO、 Na_2O および K_2O を含むアルカリ金属酸化物含有ガラスである。ガラスIIでは、ガラス中のNaイオンと溶融塩中のKイオンをイオン交換することにより、表面に化学強化層を形成する。そのため、 Na_2O を必須成分とする。

[0046]

ガラスIIにおいて、好ましいガラスとしては、モル%表示で、 SiO_2 4 7~70%、 $A1_2O_3$ 1~10% (ただし、 SiO_2 と $A1_2O_3$ の合計量が57~80%)、CaO 2~25%、BaO 1~15%、Na2O 1~8%、 K_2O 2~15% (ただし、 Na_2 Oと K_2 Oの合計量が3~16%)、 ZrO_2 1~12%、MgO 0~10%、SrO 0~15%、ZnO 0~10% (ただし、MgO、CaO、SrO、BaOおよびZnOの合計量が2~30%)、 TiO_2 0~10%を含み、かつ上記成分の合計含有量が95%以上の組成を有するガラスを挙げることができる。

[0047]

各成分の役割ならびに上記組成範囲の限定理由について詳しく説明するが、ガラスIと共通する点については上記説明内容と同じなので、省略する。

BaOは熱膨張の向上に寄与し、耐久性の向上にも効果があるので1%以上導入する。過剰の導入では逆に耐久性が悪化する傾向がある。またBaOの導入により比重の上昇が大きいため導入量は1~15%の範囲が好ましい。より好ましくは1~14%である。

[0048]

Na2O、K2Oはガラス熔解時の粘性を下げ、熔解を促進するとともに、熱膨張を大きく上昇させる有用な成分である。特に、Na2Oはイオン交換に利用され、ガラス中のナトリウムイオンはイオン交換により溶融塩中のカリウムイオンと置換されることで強化が行われる。しかし、Na2OとK2Oの導入量が合計で16%を超えて多くなると、化学的耐久性が悪化するだけでなく、アルカリがガラス表面に多く析出するようになるため、磁性膜などの情報記録層を侵食するおそれがある。またガラス転移温度が低下し必要な耐熱性が得られなくなる場合がある。その導入量が合計で3%より少なくなると、良好な化学強化がしにくくなったり、ガラスの熔解性が低下したり、所定の熱膨張特性を得にくくなる。したがって、その合計量は3~16%とするのが好ましく、4~12%とするのがより好ましい。

[0049]

Na $_2$ Oはガラス転移温度を低下させずに、化学強化を可能にするための重要な成分である。良好な化学強化を行うためには、その導入量を1%以上にするのが好ましい。また、Na $_2$ Oは熱膨張の上昇に効果が大きいがK $_2$ Oほどではない。またガラス表面への析出の度合も大きいため、その導入量は $1\sim8$ %が好ましい。より好ましくは $1\sim7$ %であり、さらに好ましくは $1\sim5$ %である。

[0050]

Li2Oは熱膨張の上昇とヤング率の上昇に効果が大きいが、ガラス表面への 析出の度合が大きく、少量の導入でもガラス転移温度を大きく下げる働きをする 。したがって、その導入量は3%以下に抑えることが好ましい。より好ましくは 1%以下、さらには、導入しないことが好ましい。

なお、他の成分については、上記成分の導入量、高ガラス転移温度の付与、化 学強化に対する適性、高温処理後の化学強化層緩和の低減などガラスの諸特性を 考慮して適正な組成範囲とした。

[0052]

上記化学強化用ガラスは上記成分以外に、ガラスの熔解性、清澄性、成形性などを改善するため、 As_2O_3 、 Sb_2O_3 、Zy化物、塩化物、 SO_3 を導入することができる。その導入量は、脱泡剤として用いられる適量の範囲であればよいが、外割の合計量で2重量%以下の割合を目安とする。この中で Sb_2O_3 と As_2O_3 の脱泡効果が高いので、ガラス中の気泡を排除する上から Sb_2O_3 及び/又は As_2O_3 の導入することが好ましく、その導入量は Sb_2O_3 と As_2O_3 の外割合計で $0\sim2$ 重量%の範囲が好ましく、 $0.1\sim2$ 重量%がより好ましく、 $0.1\sim2$ 重量%の範囲がさらに好ましい。しかし、環境への影響に配慮するという観点からは、 As_2O_3 等のヒ素化合物を用いないことが望ましい。したがって、 Sb_2O_3 のみを導入することがより一層好ましい。 Sb_2O_3 のみを導入する場合の導入量は、外割で $0\sim2$ 重量%とするのが好ましく、 $0.1\sim2$ 重量%とするのがより好ましく、 $0.1\sim2$ 重量%とするのがよりに好ましい。

[0053]

上記好ましい組成範囲において各成分のより好ましい範囲を任意に組合せてさらに好ましい組成範囲を選択することが可能であるが、中でも一層好ましい組成範囲は、モル%表示で、SiO2 47~70%、Al2O3 1~10%(ただし、SiO2とAl2O3の合計量が57~80%)、CaO 2~25%、BaO 1~15%、Na2O 1~7%、K2O 2~15%(ただし、Na2OとK2Oの合計量が3~16%)、ZrO2 1~12%、MgO 0~10%、SrO 0~15%、ZnO 0~10%(ただし、MgO、CaO、SrO、BaOおよびZnOの合計量が3~30%)、TiO2 0~10%を含み、かつ上記成分の合計含有量が95%以上の組成であり、その中でより好ましい組成範囲は、Na2Oの含有量が1~5%のものであり、さらに好ましい組

成範囲は、ZrO2が1~10%のものである。

[0054]

特に好ましい組成範囲は、 SiO_2 $50\sim67%$ 、 $A1_2O_3$ $2\sim10%$ (ただし、 SiO_2 と $A1_2O_3$ の合計量が $57\sim79%$)、CaO $3\sim20%$ 、BaO $1\sim14%$ 、MgO $0\sim10%$ 、SrO $0\sim10%$ 、ZnO $0\sim8%$ (ただし、MgO、CaO、SrO、BaOおよび<math>ZnOの合計量が $3\sim30%$)、 Na_2O $1\sim5%$ 、 K_2O $4\sim13%$ (ただし、 Na_2O および K_2O の合計量が $4\sim12%$)、 ZrO_2 $1\sim10%$ 、 TiO_2 $0\sim8%$ であり、その中でもより一層好ましい組成範囲は、 ZrO_2 の含有量が $1\sim3%$ である。

[0055]

上記特に好ましい組成範囲において、MgO、CaO、SrO、BaOおよびZnOの合計量を3~25%とすることがさらに好ましい。

なお、希土類元素を含まない態様においては、 SiO_2 、 Al_2O_3 、CaO、BaO、MgO、SrO、ZnO、 Na_2O 、 K_2O 、 ZrO_2 の合計含有量を100%とすることが好ましい。また、この組成に上記胞泡剤を添加してもよい。アルカリ溶出量を抑えつつ、優れた熔解性、耐熱性を得る上から、アルカリ金属酸化物を Na_2O とK2Oに限定することが望ましい。さらに好ましい組成は、 SiO_2 、 Al_2O_3 、CaO、BaO、 Na_2O , K_2O 、 ZrO_2 の合計含有量が100%のもの、又は SiO_2 、 Al_2O_3 、CaO、BaO、 Na_2O , EaO0、EaO0、EaO0、EaO0、EaO0 、EaO0 EaO0 EaO

[0056]

希土類元素を含む態様においては、 SiO_2 、 Al_2O_3 、CaO、BaO、MgO、SrO、ZnO、 Li_2O 、 Na_2O 、 K_2O 、 ZrO_2 、 TiO_2 、 B_2O_3 、希土類元素酸化物の合計含有量を100%とすることが好ましい。中でも希土類元素酸化物の合計含有量を5%以下に抑えることが好ましい。

[0057]

ガラスIIにおいても TiO_2 を含まないものが、基板表面のあれを低減する上から特に優れている。

なお、ガラスIIも熔解性は優れており、ガラス中に未熔解物は認められず、 また結晶粒子も認められない。

[0058]

本発明のガラス基板は、上記高耐熱性と低アルカリ溶出性に加え、情報記録媒体用基板として好ましい熱膨張特性すなわち100~300 における平均線熱膨張係数 (α) が 70×10^{-7} / \mathbb{C} 以上という特性を兼ね備えることが好ましく、 80×10^{-7} / \mathbb{C} 以上という特性を兼ね備えることがより好ましい。該平均線熱膨張係数 (α) の上限は、通常 120×10^{-7} / \mathbb{C} 程度である。

[0059]

さらに比重が3.5以下のものが好ましい。比重3.5以下の基板を用いることにより媒体の回転時のトルクを低減することができる。比重3.2以下がより好ましい。また、情報記録媒体を高速回転させた際に高い安定性を得る上から高剛性を備えるもの、すなわちヤング率が72GPa以上のものが好ましい。さらに、耐失透性向上の面から、液相温度が1200℃以下であることが好ましく、1050℃以下であることがより好ましい。

[0060]

上述のように、本発明の情報記録媒体用ガラス基板は表面に化学強化層が存在 しないものおよび存在するものの両者を含むが、特に表面に化学強化層が存在す る情報記録媒体用基板について説明する。

[0061]

表面に化学強化層が存在する情報記録媒体用基板によれば、化学強化により高強度が付与されるので、基板の破損防止に有効である。さらに、上記基板に高温成膜、高温アニールなどの高温処理を施しても所要の強度を維持することができるとともに、前記高温処理時に急激な温度変化に晒しても基板の強度が高いため、破損しにくく、ハンドリングが容易になるという効果も得ることができる。

[0062]

上記基板としては、中心穴を有するディスク状のガラス又は中心穴のない円盤

状のガラスをアルカリ金属溶融塩、好ましくはカリウムを含む溶融塩(例えば硝酸カリウム溶融塩)に浸漬し、ガラス中のアルカリ金属イオン(特にガラス表面付近)と溶融塩中のアルカリ金属イオンをイオン交換してガラス表面に圧縮応力層を形成(化学強化)したものを例示できる。

[0063]

表面に化学強化層が存在する情報記録媒体用基板を構成するガラス材料としては、570℃で2時間加熱した後の曲げ強度が15kgf/mm²以上であるものが好ましく、17kgf/mm²以上であるものがより好ましく、20kgf/mm²以上であるものがさらに好ましい。上記範囲において、安定性が高いガラスを容易に得るには、上記曲げ強度を100kgf/mm²以下とすればよい。このような基板によれば、化学強化によって形成されたガラス表面付近の圧縮応力層の高温熱処理後の緩和が少ないため、加熱処理後も高い強度を維持し得るガラス製情報記録媒体用基板を提供することができる。なお、上記曲げ強度は、前記基板を測定試料とし、570℃で2時間加熱は、大気中で行う。

[0064]

さらに、表面に化学強化層が存在する情報記録媒体用基板を構成するガラス材料としては、前記ガラス材料の前記化学強化前の曲げ強度を f_b 、前記化学強化後に温度 $T[\mathbb{C}]$ (但し、Tは $20\sim570\mathbb{C}$ の任意の温度)に 2 時間保持した後の曲げ強度を f_T としたとき、(f_T-f_b)/ f_b の値が0.5以上であるものが好ましく、0.52以上であることがより好ましい。

[0065]

この条件によれば、情報記録層の形成や熱処理、例えば垂直磁気記録方式の情報記録媒体における情報記録層の形成や熱処理を行っても、十分な曲げ強度を有する情報記録媒体用基板を提供することができる。なお、上記温度Tにおける2時間の加熱は、大気中で行う。

[0066]

また、ガラスとしてより高い安定性を付与するとともにより良好な化学強化を可能にするという観点から、(\mathbf{f}_T - \mathbf{f}_b)/ \mathbf{f}_b の値を \mathbf{g} 以下にすることがより好ましい。(\mathbf{f}_T - \mathbf{f}_b)/ \mathbf{f}_b の値が所定値以上であるという判定は、曲げ

強度 f_b と化学強化後に570℃に2時間保持した基板の曲げ強度 f_{570} を測定して(f_{570} f_b) $/f_b$ の値を算出し、この値が前記所定値以上になっていることを確認することによって行ってもよい。また、(f_T f_b) $/f_b$ の値が所定値以下であるという判定は、曲げ強度 f_b と化学強化後に570℃に2時間保持した基板の曲げ強度 f_{570} を測定して(f_{570} f_b) $/f_b$ の値を算出し、この値が前記所定値以下になっていることを確認することによって行ってもよい。

[0067]

さらに、20°Cにおける曲げ強度 f_{20} に対し、(f_{20} $-f_{b}$)/ f_{b} の値 が 1以上であることが好ましく、 1. 2以上であることがより好ましい。また、 ガラスとしてより高い安定性を付与するとともにより良好な化学強化を可能にするという観点から、(f_{20} $-f_{b}$)/ f_{b} の値を 9以下にすることがより好ましい。

[0068]

なお、上記曲げ強度の評価を次のように行う。まず、情報記録媒体用基板を構成するガラス材料からなる40mm×10mm×1mmの薄板状試料を用い、30mmスパン、加重速度0.5mm/秒の3点曲げ試験により上記曲げ強度を測定する。なお、上記薄板状試料は端面(40mm×1mmの面と10mm×1mmの面の合計4面)及び主表面(40mm×10mmの表裏2面)が研磨されたものである。端面の研磨は光学研磨とすることが望ましく、主表面の研磨も光学研磨又は情報記録媒体用基板の主表面(情報記録層が形成されることになる面でもある)の研磨状態と同等とすることがより望ましい。

[0069]

上記表面に化学強化層が存在する情報記録媒体用基板を構成するガラスとしては、ガラスIあるいはガラスIIが好ましいが、ガラスIIが特に好ましい。

さらに、本発明の情報記録媒体用基板は、高ガラス転移温度、低アルカリ溶出性を備えているので、高温処理、例えば400~600℃という高温の熱処理を行って得られる情報記録媒体用の基板に好適である。特に、高温スパッタ、高温アニールなどを行う垂直磁気記録方式の情報記録媒体用の基板に好適である。

[0070]

次に、高耐熱性を備えるとともに、水に浸漬した後でも十分な平滑性が維持可能な情報記録媒体用基板について説明する。この基板を構成する非晶質性ガラスのガラス転移温度(Tg)も620℃以上、好ましくは650℃以上、より好ましくは680℃以上、さらに好ましくは700℃以上である。該ガラスの転移温度の上限については特に制限はないが、通常900℃程度であること、800℃以下にすることが望ましいことは先に説明したとおりである。この基板を構成するガラスの特徴は、アルカリ金属酸化物を含むとともに、TiO2を含まないことである。上記アルカリ金属酸化物は、Na2O及び/又はK2Oからなることが好ましく、Na2O及びK2Oからなることが好ましい。

[0071]

アルカリ金属酸化物を含むガラスからなる基板を用いた情報記録媒体は、先に説明したように基板中のアルカリ金属が情報記録層を含む薄膜層を侵蝕する問題があるので、表面付近のアルカリ金属イオンの濃度を低下させるため、基板を純水に浸漬させて基板表面のアルカリ金属イオンを純水中に溶出させる方法が考えられる。この方法はアルカリ溶出量が極めて少ないガラスに対しても有効である。その際、ガラス中にTiO2が含まれていると、ガラス表面から純水中に溶出しようとする微量のチタン成分とアルカリ金属が反応して難溶性の異物が生じ、ガラス表面に付着する。異物の付着は基板表面の平滑性を損なう原因となるので、このよう異物の発生を防止するべきである。そのため、上記基板を構成するガラスはTiO2を排除する。なお、前記ガラスとしては、ガラスIにおいてTiO2を含まないガラス又はガラスIIにおいてTiO2を含まないガラスが好ましい。また、前記ガラスからなる情報記録媒体用基板は化学強化層が存在するものであっても、化学強化層が存在しないものであってもよい。

[0072]

このようなガラスからなる基板を純水に浸漬して、表面付近のアルカリ金属イオンの濃度を減少させ、アルカリ溶出による情報記録層の侵蝕を低減することもできる。

[0073]

次に情報記録媒体用基板の製造方法について説明する。前記製法は適宜公知の 方法を用いることができる。例えば、高温溶融法すなわち所定の割合のガラス原 料を空気中か不活性ガス雰囲気で溶解し、バブリングや攪拌などによってガラス の均質化を行い、周知のプレス法、ダウンドーロ法及びフロート法により板ガラ スに成形され、その後、円形加工、芯抜き、内外円周面加工、研削、研磨などが 施され、所望のサイズ、形状の情報記録媒体用基板とされる。なお、研磨では研 磨材やダイヤモンドペレットによりラッピング及び酸化セリウムなどの研磨材に よるポリシング加工を行うことで、表面精度を例えば0.1~0.6 n m の範囲 にすることができる。加工後、基板表面は洗浄液により洗浄されるが、アルカリ 溶出量が極めて低レベルにあるため、洗浄によって基板表面の平滑性、清浄性が 損なわれることがない。また、清浄後の基板を大気中に曝してもアルカリ溶出に よる表面荒れは生じない。このように、本発明の情報記録媒体用基板によれば、 髙温熱処理に好適でアルカリ溶出の少ない基板を提供できる。例えば、この基板 を磁気記録媒体用基板として使用することにより、好適な垂直記録方式の磁気記 録媒体を提供することができ、従来の長手磁気記録方式の磁気記録媒体の面記録 密度100GBit/(2.5cm)²よりも高記録密度(例えば1TBit/ $(2.5cm)^2$ の磁気記録媒体を提供する道が開かれることになる。

[0074]

なお、化学強化層を形成する場合は、研削、研磨加工が施されたガラス基板を 前述のようにアルカリ金属イオン、好ましくはカリウムイオンを含む溶融塩に浸 漬する。

さらに、基板を純水に浸漬して基板表面付近のアルカリ金属イオンを減少させ、 る処理を行ってもよい。

[0075]

また、 ${\rm Sb}_2{\rm O}_3$ または ${\rm As}_2{\rm O}_3$ を含むガラス基板を作製するには、前述の理由により溶融ガラス、あるいは軟化状態にあるガラスをプレス成形する方法が好適であり、フロート成形は不適当である。

[0076]

次に、本発明の情報記録媒体およびその製造方法について説明する。

本発明の情報記録媒体は、前述の情報記録媒体用基板上に情報記録層を有するものである。前述のガラス基板を用いて磁気ディスクなどの情報記録媒体を作製するには、ガラス基板の上に順次、下地層、磁性層、保護層、潤滑層などを設ければよい。磁性層(情報記録層)としては特に限定されないが、例えば、Co-Cr系、Co-Cr-Pt系、Co-Ni-Cr系、Co-Ni-Pt系、Co-Ni-Cr系、Co-Ni-Pt系、Co-Ni-Cr-Pt系、及びCo-Cr-Ta系などの磁性層が好ましい。下地層としてはNi層、Ni-P層、Cr層などを採用できる。保護層としては、カーボン膜などが使用でき、潤滑層を形成するためにはパーフルオロポリエーテル系などの潤滑材を使用することができる。

[0077]

本発明の情報記録媒体用基板は特に、垂直磁気記録方式の磁気記録媒体に好適である。垂直磁気記録方式の磁気記録媒体における膜構成は、非磁性基板上に垂直磁気記録層を形成した単層膜、軟磁性層と磁気記録層を順次に積層した二層膜、及び硬磁性層、軟磁性層及び磁気記録層を順次に積層した三層膜などを好適なものとして例示できる。その中で二層膜と三層膜は単層膜よりも高記録密度化及び磁気モーメントの安定維持に適しているので好ましい。

[0078]

このような多層磁性膜垂直磁気記録媒体の特性を向上させるため、高温スパッタ機での成膜や成膜後の400~600℃での高温熱処理(アニール処理)が必要である。本発明の情報記録媒体用基板はガラス転移温度(Tg)が650℃以上のガラスからなるので、上記高温熱処理によっても基板が変形することなく優れた平坦性を保つことが可能である。また、基板のアルカリ溶出量が小さいので情報記録層などの成膜後も基板からのアルカリ金属析出によって基板上に形成された膜が侵蝕されるのを防止することができる。

[0079]

【実施例】

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの 例によってなんら限定されるものではない。

[0080]

実施例1~16及び比較例1

ガラスIに相当する表1~表3に示す組成のガラスが得られるように、出発原料として SiO_2 、 $A1_2O_3$ 、A1(OH) $_3$ 、MgO、Mg(OH) $_2$ 、Mg CO_3 、 $CaCO_3$ 、 $SrCO_3$ 、 $BaCO_3$ 、ZnO、 Li_2CO_3 、 Na_2CO_3 、 K_2CO_3 、 TiO_2 、 ZrO_2 などを用いて300~1500 g 秤量し、十分に混合して調合バッチと成し、これを白金坩堝に入れ、1400~16000°の温度で空気中約3~8時間ガラスの溶解を行った。溶解後、ガラス融液を $40\times40\times20$ mmカーボン金型に流し、ガラスの転移点温度まで放冷してから直ちにアニール炉にいれ、一時間保持した後、炉内で室温まで放冷した。得られたガラスは顕微鏡で観察できるほどの結晶が析出しなかった。また、得られたガラスは顕微鏡で観察できるほどの結晶が析出しなかった。また、得られたガラスは均質性が高く、未溶解物も認められず、高い溶解性を確認することができた。

[0081]

このようにして得られたガラスを、 $40\times20\times15$ mm、 50×20 mm、 $30\times30\times2$ mmに加工して、各物性評価用の試料を作製し、下記に示す方法に従って、各物性を測定した。結果を表 $1\sim$ 表3に示す。なお、実施例 $1\sim16$ のガラスにSb $_2$ O $_3$ を外割で0. 5重量%添加したガラスも作製し、表 $1\sim$ 表3に示された評価結果を同じ結果を得た。これらSb $_2$ O $_3$ が添加されたガラスを、顕微鏡を使用して観察したところ、ガラス中の気泡は皆無であった。

(1) ガラス転移温度 (Tg)

 $5 \text{ mm} \phi \times 20 \text{ mm}$ の試料について、リガク社製の熱機械分析装置(TMA8 140)を用いて+4 C/分の昇温速度で測定した。なお、標準試料としてはSiO2を用いた。なお、ガラス転移温度は、ガラスの粘度が $10^{13} \cdot 3^{13} \cdot 3^{13}$ d Pa \cdot s となる温度に相当する。

(2) 平均線熱膨張係数

100~300℃における平均線熱膨張係数を意味し、ガラス転移温度の測定 時に一緒に測定した。

(3) 比重

40×20×15mmの試料について、アルキメデス法により測定した。

(4) ヤング率

40×20×15mmの試料について、超音波法により測定した。

(5) アルカリ溶出量

エタノール浴にて超音波洗浄処理した30×30×2mmの試料を、予め酸洗 浄されたポリプロピレン製容器に入れ、明細書本文記載の方法に従って測定した

[0082]

【表1】

表1

				実 施	例			
ĺ	}	1 2 3 4 5 6						
			50	50	60	5.5	6 4	
	SiO ₂	50	10	10	5	5	3	
	Al ₂ O ₃	10	(60)	(60)	(65)	(60)	(67)	
	$(SiO_2+Al_2O_3)$	(60)	(60)	10	3	3	3	
	MgO	5		10	10	15	1 5	
ガ	CaO	20	20	10	3	3	3	
ラ	SrO		5	1.0	5	5	5	
ス組	ВаО	5	5	10	<u> </u>			
成	ZnO		1 - 2 >	(0.0)	(0.1)	(26)	(26)	
7	(RO)	(30)	(30)	(30)	(21)	(20)	(20)	
ール	Li ₂ O					 _		
%	Na ₂ O						7	
	K ₂ O	5	5	5	7	7	<u> </u>	
	(R' ₂ O)	(5)	(5)	(5)	(7)	(7)	(7)	
1	ZrO ₂			<u> </u>		7	<u> </u>	
	TiO ₂	5	5	5	7			
	合 計	100	100	100	100	100	100	
	転移温度(℃)	709	714	690	683	735	665	
	平均線熱膨張係数	82. 9	82.8	80.8	80.6	86.0	88.5	
物	1400 2009C1(~40 ⁻⁷ /9C)	02. 9	Q2. 0	00.0				
149	比 重	2.88	2. 98	3.02	2.84	3.03	2.80	
性	ヤング率 (GPa)	85.2	84.0	83.7	76.8	86.5	75.0	
	アルカリ溶出量 (μ ŧ//cm²)	0. 032	0. 029	0. 08	0.021	0.015	0. 115	

RO=MgO+CaO+SrO+BaO+ZnO $R'_{2}O=Li_{2}O+Na_{2}O+K_{2}O$

[0083]

表2

		実 施 例					
		7	8	9	10	11	1 2
	SiO ₂	60	60	50	5 7	57	5 7
	A 1 2 O 3	5	5	1 2	5	5	5
1 F	(SiO ₂ +Al ₂ O ₃)	(65)	(65)	(62)	(62)	(62)	(62)
	MgO	3	3	5	3	3	3
1 #	CaO	1 5	15	1 3	15	13	13
ガラス組成	SrO		3	5	3	3	
スト	ВаО	5	5	5	5	5	8
器	ZnO	_	1				
1 1	(RO)	(23)	(26)	(28)	(26)	(24)	(24)
(£)	Li ₂ O	—					
ル%	Na ₂ O	_	_				
	K ₂ O	9	9	10	7	9	9
	(R' ₂ O)	(9)	(9)	(10)	(7)	(9)	(9)
	ZrO2	_			5	5	5
	TiO2	3	-				<u> </u>
	合 計	100	100	100	100	100	100
	転移温度(℃)	669	662	687	727	714	7 0 8
44-	平均線熱膨張係数 [100-300°C](x10 ⁻⁷ /°C)	90.7	96.5	94.9	88.0	87.6	89.7
物	比重	2.77	2.81	2.86	2.97	2.94	2.99
性	ヤング率 (GPa)	75.1	74.7	78.7	83.5	81.4	80.9
	アルカリ溶出量 (μtl/cm²)	0.021	0.065	0.041	0.018	0.014	0.013

RO = MgO + CaO + SrO + BaO + ZnO $R'_2O = Li_2O + Na_2O + K_2O$

[0084]

【表3】

表3

		実施例 比較例					
		13	14	15	16	11	
	SiO ₂	57	58	58	58	7 3	
- t	Al ₂ O ₃	5	5	7	5	0.6	
 	$(SiO_2+Al_2O_3)$	(62)	(63)	(65)	(63)	73.6	
F	MgO	1	11				
#	CaO	1 5	15	1 2	12	7	
ガラス組成	SrO						
[[]	ВаО	8	8	8	8		
根	ZnO				-	2	
1 1	(RO)	(24)	(24)	(20)	(20)		
(モル%)	Li ₂ O						
1 %	Na ₂ O	<u> </u>			-	9	
	K ₂ O	9	8	10	10	9	
1	(R' ₂ O)	(9)	(8)	(10)	(10)		
1	ZrO2	5	5	5	' 7		
Ì	TiO2				 -		
	合 計	100	100	100	100	1 = = 4	
	転移温度(℃)	715	7 1 6	7 1 6	745	554	
44	平均線熱膨張係数 [100-300°C](×10 ⁻⁷ /°C)	90.0	86.7	87.9	84.4		
物	比重	3.00	2.99	2.95		2.6	
性	ヤング率 (GPa)	80.8	80.9	78.6	81.0	7 9	
	アルカリ溶出量 (μŧl/cm²)	0.014	0.014	0.021	0.017	>0.2	

RO = MgO + CaO + SrO + BaO + ZnO $R'_2O = Li_2O + Na_2O + K_2O$

表 $1 \sim$ 表 3 から明らかなように、実施例 $1 \sim 1$ 6 に示したガラスの転移温度は 650 \mathbb{C} 以上と高く、 $100 \sim 300$ \mathbb{C} における平均線熱膨張係数は 80×10 $-7/\mathbb{C}$ 以上、アルカリ溶出量も 0.2μ モル/0 \mathbb{C} 以下であった。 さらにヤング率も 72 GP a 以上と高い剛性が得られている。

[0085]

以上のように各実施例のガラスの特性を測定した後、実施例 $1\sim1$ 6の各ガラスおよびそれらのガラスに Sb 2O 3 を外割で 0. 5 重量%添加したガラスが得られる均質化されたガラス融液をプレス成形型へ供給し、ディスク状のガラスを

プレス成形した。なお、プレス成形以外で、例えば、フロート成形法と呼ばれる方法を使って、ガラスディスクを成形してもよい。しかし、Sb2〇3を添加したガラスの場合には、フロート成形は不適当である。成形されたガラスディスクを徐冷した後、表面にラッピング加工を施こすとともに、中心孔や外径、端面などの加工を施した。次いで、主表面にさらにラッピング加工を施した後、研磨加工を施して平坦かつ平滑な面に仕上げた。このようにして得られた情報記録媒体用基板は洗浄液を用いて洗浄されるが、基板を構成するガラスのアルカリ溶出量が極めて低レベルなので洗浄時における基板の表面荒れを抑えることができた。洗浄後の各ガラス基板の主表面の中心線平均粗さRaは0.1~0.6nmであった。先に説明したように洗浄後の基板を純水の浸漬して基板表面のアルカリ金属イオン濃度を低減する処理を行ってもよい。

なお、ガラス基板の中心線平均粗さRaは、原子間力顕微鏡(AFM)にて測 定した。

[0086]

洗浄、乾燥したガラス基板を用いて垂直記録方式の磁気ディスクを作製した。 磁気記録層の形成において、軟磁性層と磁気記録層を順次に積層した二層膜、及 び硬磁性層、軟磁性層及び磁気記録層を順次に積層した三層膜の2つのタイプの 垂直記録方式の磁気ディスクを作製した。この工程中、磁気記録膜を400~6 00℃において高温熱処理したが、いずれの基板もガラス転移温度(Tg)が6 50℃以上の高耐熱性を有しているので、基板は変形せず高い平坦性を保ってい た。

[0087]

これに対し比較例のガラスからなる基板では転移温度が554℃と低く、磁気 記録基板の製造過程における磁気記録膜のスパッタ工程などでの高温処理によっ て基板が変形してしまうため垂直記録方式の磁気ディスク用基板として使用でき なかった。

[0088]

実施例17~25

次にガラスIIに相当する表4、5に示す実施例17~25のガラスが得られ

るように、出発原料としてSiO $_2$ 、Al $_2$ O $_3$ 、Al(OH) $_3$ 、CaCO $_3$ 、BaCO $_3$ 、Na $_2$ CO $_3$ 、K $_2$ CO $_3$ 、TiO $_2$ 、ZrO $_2$ などを用いてガラス原料を300~1500g秤量し、十分に混合して調合バッチと成し、これを白金坩堝に入れ、1400~1600℃の温度で空気中約3~8時間ガラスの熔解を行った。熔解後、ガラス融液を40×40×20mmカーボン金型に流し、ガラスの転移点温度まで放冷してから直ちにアニール炉にいれ、一時間保持した後、炉内で室温まで放冷した。得られたガラスは顕微鏡で観察したが、ガラス中に結晶粒子は認められなかった。また、得られたガラスは均質性が高く、未熔解物も認められず、高い熔解性を確認することができた。また、実施例17~25のガラスにSb $_2$ O $_3$ を外割で0.5重量%添加したガラスを作製した。Sb $_2$ O $_3$ を添加したガラスを、顕微鏡を使用して観察したところ、ガラス中の結晶粒子、未熔解物、気泡は皆無であった。

[0089]

このようにして得られたガラス試料のガラス転移温度、屈伏点、30~300 $^{\circ}$ における平均線膨張係数、100~300 における平均線膨張係数、比重、ヤング率、剛性率、ポアソン比、比弾性率、液相温度、化学強化を施す前の曲げ強度 f_0 、化学強化後の曲げ強度 f_1 、化学強化後にさらに 570 $^{\circ}$ で 2 時間大気中にて加熱した後の曲げ強度 f_2 を測定した。化学強化は試料を所定温度の硝酸カリウム溶融塩に所定時間浸漬することにより行った。各実施例の化学強化の条件ならびに特性をガラス組成とともに表 f_0 、 f_0

[0090]

各特性の測定方法は、実施例1~16におけるものと同じである。屈伏点、剛性率、ポアソン比、比弾性率、液相温度、曲げ強度の測定は次のようにして行った。

(6) 屈伏点

前記試料と同じガラスを $5 \text{ mm} \phi \times 2 \text{ 0 mm}$ の形状に加工し、リガク社製の熱機械分析装置(TMA8140)を用いて+4 C/分の昇温速度で測定した。な

お、標準試料としてはSiO2を用いた。

(7) 剛性率、ポアソン比

前記試料と同じガラスを40×20×15mmの形状の加工し、超音波法により測定した。

(8) 比弹性率

上記ヤング率と比重から(比弾性率=ヤング率/比重)の式により算出した。

(9) 液相温度

試料ガラスを蓋付き白金容器内に入れ、1500℃ですべて熔融させ、その後 所定の温度に設定された炉内で保持し、所定時間後に取り出しガラス内に生じた 結晶を光学顕微鏡により観察し、結晶が生じない最低温度を液相温度とした。

(10) 曲げ強度

40×10×1mmの薄板状に加工し、長端面(40mm×1mmの2面)に 丸め研磨を施し4つの端面と2つの主表面を研磨した試料を使用し、30mmスパン、加重速度0.5mm/秒の3点曲げ試験により曲げ強度を測定した。

[0091]

表4

		実施例 17	実施例 18	実施例 19	実施例 20	実施例 21
	SiO2	63.0	63.0	63.0	63.0	63.0
1	Al ₂ O ₃	4.0	4.0	4.0	4.0	4.0
ガ	CaO	13.0	13.0	13.0	13.0	13.0
ガラス組成	BaO	3.0	3.0	3.0	3.0	3.0
絈	CaO+BaO	16.0	16.0	16.0	16.0	16.0
成	Na ₂ O	4.0	4.0	4.0	4.0	4.0
E	K ₂ O	5.0	5.0	5.0	5.0	5.0
レレ	Na ₂ O+K ₂ O	9.0	9.0	9.0	9.0	9.0
%	TiO ₂	4.0	4.0	4.0	4.0	4.0
\smile	ZrO2	4.0	4.0	4.0	4.0	4.0
	合計	100	100	100	100	100
	ラス転移温度[℃]	669	669	669	669	669
	屈伏点[℃]	746	746	746	746	746
	アルカリ溶出量 [μモル/cm ²]	0.015	0.014	0.015	0.018	0.020
3 る	0~300℃におけ 平均線膨張係数[× 0 ⁻⁷ K ⁻¹]	79.5	79.5	79.5	79.5	79.5
け	00~300℃にお る平均線膨張係数 <10 ⁻⁷ K ⁻¹]		83.3	83.3	83.3	83.3
 	比重	2.79	2.79	2.79	2.79	2.79
_	ヤング率[GPa]	82.7	82.7	82.7	82.7	82.7
_	剛性率[GPa]	33.4	33.4	33.4	33.4	33.4
-	ポアソン比	0.24	0.24	0.24	0.24	.0.24
1	弹性率[×10 ⁶ Nmkg]	29.6	29.6	29.6	29.6	29.6
۲	液相温度[℃]	1050 以下	1050 以下	1050 以下		
	イオン交換温度[℃]	400	420	450	470	500
7	オン交換時間[時間]	3	3	3	3	3
	化学強化前f。	12.0	12.0	12.0	12.0	12.0
曲げ強度「はまれ」」	化学強化後 f 20	28.4	30.7	37.2	40.9	45.3
k g f	570℃で2時間 加熱後f ₅₇₀	18.6	22.3	24.5	25.9	31.1
HH	$(f_{570}-f_b)/f_b$	0.550	0.858	1.04	1.16	1.59
	$(f_{20}-f_b)/f_b$	1.37	1.56	2.10	2.41	2.78

[0092]

【表5】

表5

	T	実施例 22	実施例 23	実施例 24	実施例 25
	SiO ₂	63	63	64	65
ŀ	Al ₂ O ₃	4	5	5	5
ガー	CaO	13	12	13	12
ガラ	BaO	3	3	3	4
ス組	CaO+BaO	16	15	16	16
成	Na ₂ O	5	5	4	4
£	K ₂ O	5	5	6	6
レル	Na ₂ O+K ₂ O	10	10	10	10
%	TiO2	3	3		
	ZrO ₂	4	4	4	4
	合計	100	100	100	100
	ガラス転移温度[℃]	653	660	661	661
:	屈伏点[℃]	734	737	739	743
	アルカリ溶出量 [μモル/cm²]	0.025	0.014	0.010	0.010
平	0~300℃における 均線膨張係数[×10 ⁻⁷	84	83	79	78
1 る ³		87	86	83	82
	<u>比重</u>	2.78	2.78	2.76	2.77
	ヤング率[GPa]	82.3	82.3	81.5	79.9
	剛性率[GPa]	33.2	82.2	33	32.3
	ポアソン比	0.238	0.237	0.24	0.24
	弾性率[×10 ⁶ Nm/g]	29.6	29.6	29.6	28.8
<u> </u>	液相温度[°C]	1050以下	1050 以下	1050 以下	1050 以下
-	イオン交換温度[℃]	420	420	420	420
	イオン交換時間[時間]	3	3	3	3
	化学強化前f _b	11.0	11.0	12.0	13.0
世げ発展		32.0	33.2	29.5	30.1
行発度[18年17	570℃で2時間か 熱後f ₅₇₀	16.5	19.3	20.1	21.0
n	$(f_{570}-f_b)/f_b$	0.50	0.75	0.67	0.62
-	$\frac{2}{(f_{20}-f_b)/f_b}$	1.9	2.02	1.46	1.32

[0093]

[0094]

次に、表4及び表5に示したガラス材料を今度は、外径65.0mm、中心穴内径20.0mm、厚み0.635mmのディスク状基板に加工した。これらのディスク状基板はともに主表面には平坦、平滑化の研磨加工が施されており、主表面以外の表面にも強度低下の原因となる微細な傷などがないよう研磨を施し、平滑な面とした後、基板の洗浄を行って清浄な状態の情報記録媒体用基板を得る。なお、最終工程において、先に説明したように基板を純水に浸漬して基板表面のアルカリ金属イオン濃度の低減を行ってもよい。

[0095]

実施例17~25およびSb₂O₃を添加したガラスよりなる各ディスク状ガラス基板は、公称2.5インチの情報記録媒体用基板として適しており、特に化学強化を施したものは、高耐熱性および高強度を備えた基板として、磁気記録媒体用基板、特に垂直記録方式の磁気記録媒体用基板として好適である。

[0096]

上記各ディスク状基板は、均質化されたガラス融液をプレス成形型へ供給し、 ディスク状のガラスを円盤状のガラス成形体にプレス成形、徐冷し、得られたガ ラス成形体に研削、研磨などの機械加工を施した後、化学強化して作る。なお、 上記ガラス成形体を作る方法としてはプレス成形以外で、例えば、フロート成形 法と呼ばれる方法を使って、薄板ガラスを成形し、この薄板ガラスを円盤状に加

工するようにしてもよい。しかし、Sb₂〇₃を添加したガラスでは、フロート成形は不適当である。このようにして得られる情報記録媒体用基板は洗浄液を用いて洗浄されるが、基板を構成するガラスのアルカリ溶出量が極めて低レベルなので洗浄時における基板の表面荒れを抑えることができる。洗浄後の各ガラス基板の主表面の中心線平均粗さRaはO.1~O.6 nmであった。

なお、ガラス基板の中心線平均粗さRaは、原子間力顕微鏡(AFM)にて測 定した。

[0097]

実施例26

洗浄、乾燥したガラス基板を用いて垂直記録方式の磁気ディスクを作製した。磁気記録層の形成において、軟磁性層と磁気記録層を順次に積層した二層膜、及び硬磁性層、軟磁性層及び磁気記録層を順次に積層した三層膜の2つのタイプの垂直記録方式の磁気ディスクを作製した。この工程中、磁気記録膜を400~60℃において高温熱処理したが、いずれの基板もガラス転移温度(Tg)が620℃以上の高耐熱性を有しているので、基板は変形せず高い平坦性を保っていた。

[0098]

このように、本発明のガラス基板はガラス転移温度が高いので、磁気記録媒体 特性向上のための高温処理、高温スパッタ機での磁気膜作成に適している。また 、アルカリ金属を含むガラス基板を用いたにもかかわらず、情報記録層の形成後 も、基板中からのアルカリ析出による悪影響は見られなかった。

[0099]

なお、上記実施例では磁気記録媒体を例に説明したが、その他の情報記録媒体 用基板ならびに情報記録媒体、例えば、光記録方式や光磁気記録方式のものでも 同様に良好な結果を得ることができる。

[0100]

【発明の効果】

本発明の情報記録媒体用基板によれば、ガラス転移温度(Tg)が620 $\mathbb C$ 以上であり、かつアルカリ溶出量が0. $2 \, \mu$ モル $/ \, c \, m^2$ 以下と極めて少ないので

、情報記録層形成時の高温熱処理時の基板変形を抑制し、基板の平坦性を維持することができるとともに、アルカリ溶出による基板表面の平滑性低下や情報記録層への影響を抑制することができる。したがって、本発明の情報記録媒体用基板は、高記録密度の情報記録媒体、例えば垂直記録方式の磁気記録媒体等に好適に用いることができる。

[0101]

また、本発明の情報記録媒体用基板によれば、100~300℃における平均 線熱膨張係数を70×10-7/℃以上とすることができ、この基板を用いた情報 記録媒体をドライブ装置に組込む際、固定金具との熱膨張特性を合わせることが 可能になる。

[0102]

さらに、本発明の情報記録媒体用基板によれば、高耐熱性、低アルカリ溶出性 を兼備しつつ比重を3.5以下にできるので、駆動のトルクを低減可能な情報記 録媒体を提供することができる。

本発明の情報記録媒体は情報記録層の面からも、基板の平坦性、平滑性の面からも高記録密度化が可能であり、さらに、基板からのアルカリ金属析出による情報記録層の侵蝕も防止できるので、長期にわたり安定して使用することができる。

【書類名】 要約書

【要約】

【課題】 高耐熱性および低アルカリ溶出性を備えたガラスからなる情報記録媒体用基板、特に高温スパッタ機で垂直磁気記録方式用磁性膜の作製に好適な磁気記録媒体用基板、並びに情報記録媒体およびその製造方法を提供する。

【解決手段】 アルカリ金属酸化物含有ガラスからなる情報記録媒体用基板において、前記ガラスの転移温度(Tg)が620 C以上であり、かつ温度80 C に保持された水中に24 時間浸漬した際のアルカリ金属イオンの溶出量が、単位面積当たり 0.2μ モル/ cm^2 以下である情報記録媒体用基板、並びに該基板上に情報記録層を有する情報記録媒体およびその製造方法である。

【選択図】 なし

識別番号

[000113263]

1. 変更年月日 1990年 8月16日

[変更理由] 新規登録

住 所 東京都新宿区中落合2丁目7番5号

氏 名 ホーヤ株式会社

2. 変更年月日 2002年12月10日

[変更理由] 名称変更

住 所 東京都新宿区中落合2丁目7番5号

氏 名 HOYA株式会社