Neural collaborative filtering

Xiangnan He et al.

2017 International World Wide Web Conference Committee

연세대학교 응용통계학과 한솔지

contents

- Historical Overview
 - Introduction to recommender system
 - Matrix Factorization
- Proposed methods
 - Neural Collaborative Filtering(NCF)
 - Generalized Matrix Factorization (GMF)
 - Multi-Layer Perceptron (MLP)
- Experiment
- Conclusion

Introduction to Recommender System

Matrix Factorization (MF)

- MF is a linear latent factor model
 - Learn latent vector for each user, item $: oldsymbol{v_u^U}$, $oldsymbol{v_i^I}$
 - Affinity between user 'u' a and item 'i' : $\hat{y}_{ui} = \langle v_u^U$, $v_i^I >$

User 'u' interacted with item 'i'

새로운 U_4 에 대해서

Limitation of Matrix Factorization

Inner product function can limit the expressiveness of MF model

$$\hat{y}_{u,i} = f(u,i|\mathbf{p}_u,\mathbf{q}_i) = \mathbf{p}_u\mathbf{q}_i^T = \sum_{k=1}^K p_{uk}q_{ki}$$

• Example :

$$sim(u1, u2) = 0.5$$

$$sim(u3, u1) = 0.4$$

 $sim(u3, u2) = 0.66$

(a) User-item matrix

(b) User latent space

Limitation of Matrix Factorization

• Inner product function can limit the expressiveness of MF model

$$\hat{y}_{u,i} = f(u,i|\mathbf{p}_u,\mathbf{q}_i) = \mathbf{p}_u\mathbf{q}_i^T = \sum_{k=1}^K p_{uk}q_{ki}$$

→ can incur a large ranking loss for MF

Solution

- 1) Using a large number of latent factors (overfitting)
- 2) Learning the interaction function from data (rather than the simple, fixed inner product)

Proposed methods

- A Neural Collaborative Filtering(NCF)
 - > learns the interaction function with a deep neural network.
- A NCF instance that generalizes the MF model (GMF).
- A NCF instance that models non-linearities with a multi-layer perceptron (MLP)
- A NCF instance NeuMF that fuses GMF and MLP.

Neural Collaborative Filtering(NCF)

- General Framework : $\hat{y}_{u,i} = f(p_u, q_i)$
 - NCF uses a multi-layer model to learn user-item interaction function

Generalized Matrix Factorization (GMF)

NCF can express and generalize MF

$$\hat{y}_{u,i} = f(p_u, q_i) = a_{out} \left(h^T \phi_1(p_u, q_i) \right)$$
 where $\phi_1(p_u, q_i) = p_u \odot q_i$

- 1) MF: If $a_{out} = identity function$ and $h^T = [1, ..., 1]_{1 \times k}$
- 2) GMF: if a_{out} : sigmoid function and $h^T = [h_1, ..., h_k]$

Multi-Layer Perceptron (MLP)

• More non-linearities to learn the interaction function! (concat + MLP)

• Layer 1
$$\mathbf{z}_1 = \phi_1(\mathbf{p}_u, \mathbf{q}_i) = \begin{bmatrix} \mathbf{p}_u \\ \mathbf{q}_i \end{bmatrix},$$

Other Layer

$$\phi_2(\mathbf{z}_1) = a_2(\mathbf{W}_2^T\mathbf{z}_1 + \mathbf{b}_2),$$

$$\phi_L(\mathbf{z}_{L-1}) = a_L(\mathbf{W}_L^T \mathbf{z}_{L-1} + \mathbf{b}_L),$$

$$\hat{y}_{ui} = \sigma(\mathbf{h}^T \phi_L(\mathbf{z}_{L-1})),$$

MF vs MLP

$$\widehat{y}_{u,i} = f(p_u, q_i)$$

MF: inner product

- → Latent factors are independent with each other
- → Good generalization ability for CF modelling

MLP: non-linear function

- → better representation ability
- → However, generalization ability is unknown!

Fusion of GMF and MLP

- Neural Matrix Factorization (NeuMF)
 - GMF and MLP learn different sets of embeddings.

Experiment

Research questions

- 1) NCF outperform SOTA?
- 2) How does optimization framework work?
- 3) Are deeper layers of hidden units helpful?

Data sets

- 1) Movielens
- 2) Pinterest

Dataset	Interaction#	Item#	User#	Sparsity	
MovieLens	1,000,209	3,706	6,040	95.53%	
Pinterest	1,500,809	9,916	55,187	99.73%	

Evaluation protocols

- 1) Randomly samples 100 items
- 2) Ranking Evaluation Metrics
 - Hit Ratio (HR), Normalized Discounted Cumulative Gain (NDCG)

Experiment

Ranking Evaluation Metrics

1) Hit Ratio (HR)

$$HR = \frac{\left| U_{hit}^L \right|}{\left| U_{all} \right|}$$

where $|U_{hit}^L|$: # of users for which the correct answer is included in top L recomendation list, $|U_{all}|$: the total number of users in the test data set.

2) Normalized Discounted Cumulative Gain (NDCG)

$$NDCG(k) = \frac{DCG(k)}{IDCG(k)}$$

- $DCG = \sum_{i=1}^{k} \frac{G_i}{\log_2(i+1)}$, $IDCG = \sum_{i=1}^{|I(k)|} \frac{G_i}{\log_2(i+1)}$
- Where G_i: Gain for an item i (numerical ratings or binary in case of implicit data)
- k: a position k in the recommendation list, I(k): the ideal list of items up to position k

RQ(1) Performance comparison

- Baseline 방법들에 비해 NeuMF가 성능 좋음
- NCF 방법 중에서는 NeuMF > GMF ~= MLP 순으로 성능 보여짐

Figure 4: Performance of HR@10 and NDCG@10 w.r.t. the number of predictive factors on the two datasets.

Figure 5: Evaluation of Top-K item recommendation where K ranges from 1 to 10 on the two datasets.

RQ(2) Convergence Behavior

- Trade-off between representation ability and generalization ability
- NeuMF : 처음 10번 정도의 iteration 까지가 가장 효율적이고, 이후의 iteration은 데이터에 overfit

Figure 6: Training loss and recommendation performance of NCF methods w.r.t. the number of iterations on MovieLens (factors=8).

RQ(3) Is Deep Leaning Helpful?

- non-linearity 필요성
 - (동일한 모델 capability에서) MLP에서 non-linear layer의 개수를 늘리면, 성능이 더 좋아짐
 - 참고로 linear layer를 쌓는 것은 ReLu로 non-linear layer 쌓은 것보다 성능 안 좋음!

Table 3: HR@10 of MLP with different layers.

Factors	MLP-0	MLP-1	MLP-2	MLP-3	MLP-4		
MovieLens							
8	0.452	0.628	0.655	0.671	0.678		
16	0.454	0.663	0.674	0.684	0.690		
32	0.453	0.682	0.687	0.692	0.699		
64	0.453	0.687	0.696	0.702	0.707		
Pinterest							
8	0.275	0.848	0.855	0.859	0.862		
16	0.274	0.855	0.861	0.865	0.867		
32	0.273	0.861	0.863	0.868	0.867		
64	0.274	0.864	0.867	0.869	0.873		

Conclusion

- 기존 전통적인 collaborative filtering의 기본 구조 (user & item interaction 모델링)에 neural network 를 활용한 것
- Matrix factorization 의 한계를 지적하며, NN을 사용하여 user-item interaction의 구조를 linearity 에서 Non-linearity로 확장시킴
 - 기존 matrix factorization 의 generalized version
 - linear 커널 + non-linear 커널 → flexibility 증대
- 또한 collaborative filtering에서 Non-linearity의 필요성을 시사함