Branton DeMoss

Summary

Interested in the intersection of classical planning with deep-learning based world modeling to build autonomous agents that can think ahead to act in the world.

 $branton.demoss@eng.ox.ac.uk\\ brantondemoss.com\\ +1-720-592-5911$

St Edmund Hall Queen's Lane, Oxford OX1 4AR, UK

Education

DPhil Candidate in Artificial Intelligence

2021-

University of Oxford

BA Mathematics and Physics University of Colorado Boulder 2014-18

Experience

Oxford Robotics Institute

2021-

Graduate Student Researcher

• Research in reinforcement learning, world modeling, and planning.

The Collaboratory

2020-

2020

Co-founder: Chief Science Officer

- Developed deep-learning based document embedder based on language and graph structure, and related algorithms for knowledge curation.
- Led product strategy, ML R&D, and customer-informed design.
- Admitted to Techstars class of 2021 (< 1% applicants admitted)

Comma.ai

ML Research Intern

- Extended vision module architecture and ported recurrent neural network for driving policy from Tensorflow to PyTorch.
- Studied effects of new stochastic dynamics model on driving policy quality.

Front Range Geosciences

2017-20

Research Scientist

- Developed convolutional neural network (CNN) to detect seismic first break events. System in production at multinational seismic exploration corporations.
- Incorporated differentiable Gaussian mixture models in deep learning system to model energy-time uncertainty in wavelet arrival.
- Developed Generative Adversarial Network (GAN) to pre-train CNN when supervisory targets unavailable.
- Wrote eikonal wave equation propagator (C++) for psuedo-structured 3D meshes for tomographic seismic imaging.

Center for Theory of Quantum Matter

2017

Research Assistant

Characterized quantum many-body localization (MBL) under Floquet conditions.

 $\begin{array}{l} \text{Mathematics Department, CU Boulder} \\ Research \ Assistant \end{array}$

2016

• Investigated knot-theoretic properties of topological quantum field theories.

High Enery Particle Physics Group, Physics Department, CU Boulder 2014-15 Research Assistant

• Characterized effects of beamline material geometry on particle correlation statistics for the Deep Underground Neutrino Experiment (DUNE).

Publications

Combining physics and deep learning to automatically pick first breaks in the Permian Basin

First International Meeting for Applied Geoscience & Energy

Ein Liebesbrief an KataGo 2020 Deutsche Go Zeitung, Ausgabe 4/2020

Love Letter to KataGo, or: 2020 Go AI Past, Present, and Future American Go E-Journal

DeepTrace: A breakthrough application of deep learning to automate first break picking
SEG 2019 Lenovo Thought Leadership Series

Topology and Knot Theory
Course notes for CU Boulder special topics course:

"Topology, Knot Theory, and their applications in Physics and Chemistry"

Secondary Particle Showers from Hadron Absorber Interactions 2016 Long Baseline Neutrino Facility (LBNF) / Deep Underground Neutrino Experiment (DUNE) Collaboration Documents

Awards

Research Studentship	Oxford, 2021
Stribic-Martin Scholarship	Boulder, 2017
UROP Fellowship	Boulder, 2017
Dawkins Fund Award	Oxford, 2016
Gilman Scholarship	Oxford, 2016
Esteemed Scholar Award	Boulder, 2014