Devoir maison n°7 : Autour de Farey

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Remarque:

L'addition des cancres et les déterminants de fractions sont dépendantes de l'écriture des fractions : par la suite, on suppose donc par défaut que toutes les fractions sont irréductibles.

Partie A - Somme des cancres dans \mathbb{Q}_+ .

Soient $x=\frac{a}{b},y=\frac{c}{d},z=\frac{e}{f}, \text{ avec } a,c,e\in\mathbb{N}, \text{ et } b,d,f\in\mathbb{N}^*.$

1)

$$x \oplus x = \frac{a}{b} \oplus \frac{a}{b} = \frac{2a}{2b} = \frac{a}{b}$$

Donc $x \oplus x = x$.

2)

$$x \oplus y = \frac{a+c}{b+d}$$
 et $y \oplus x = \frac{c+a}{d+b} = \frac{a+c}{b+d}$

 $x \oplus y = y \oplus x$ donc l'opération est commutative.

3) D'une part :

$$(x \oplus y) \oplus z = \left(\frac{a+c}{b+d}\right) \oplus \frac{e}{f} = \frac{a+c+e}{b+d+f}$$

Et d'autre part :

$$x \oplus (y \oplus z) = \frac{a}{b} \oplus \left(\frac{c+e}{d+f}\right) = \frac{a+c+e}{b+d+f}$$

1

 $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ donc l'opération est associative.

- **4)** Raisonnons par contraposée : Montrons que $(x \geqslant x \oplus y \lor x \oplus y \geqslant y) \Longrightarrow x \geqslant y$.
- Supposons $x \geqslant x \oplus y$:

$$x \geqslant x \oplus y \Longrightarrow \frac{a}{b} \geqslant \frac{a+c}{b+d}$$

$$\Longrightarrow \frac{ab+ad-ab-bc}{b(b+d)} \geqslant 0$$

$$\Longrightarrow ad-bc \geqslant 0 \quad \text{car } b(b+d) \in \mathbb{N}$$

$$\Longrightarrow \frac{a}{b} \geqslant \frac{c}{d}$$

$$\Longrightarrow x \geqslant y$$

• Supposons $x \oplus y \geqslant y$:

$$x \oplus y \geqslant y \Longrightarrow \frac{a+c}{b+d} \geqslant \frac{c}{d}$$

$$\Longrightarrow \frac{ad+cd-bc-cd}{d(b+d)} \geqslant 0$$

$$\Longrightarrow ad-bc \geqslant 0 \quad \text{car } d(b+d) \in \mathbb{N}$$

$$\Longrightarrow \frac{a}{b} \geqslant \frac{c}{d}$$

$$\Longrightarrow x \geqslant y$$

Nous avons montré que $(x \geqslant x \oplus y \lor x \oplus y \geqslant y) \Longrightarrow x \geqslant y$, et donc, par contraposée, que $x < y \Longrightarrow x < x \oplus y < y$.

Partie B - Déterminant de deux nombres de \mathbb{Q}_+ .

Nous reprenons x, y tels que dans la partie précédente.

- **1)** Montrons que : $x = y \iff \delta(x, y) = 0$.
- Supposons que x = y. Alors :

$$\delta(x,y) = \delta(x,x)$$

$$= ab - ba$$

$$= 0$$

• Supposons que $\delta(x,y)=0$. Alors :

$$ad - bc = 0$$

$$ad = bc$$

$$\frac{a}{b} = \frac{c}{d}$$

$$x = y$$

Nous avons donc montré que $x=y \Longleftrightarrow \delta(x,y)=0.$

2) D'une part :

$$\delta(y,x) = \begin{vmatrix} c & a \\ d & b \end{vmatrix} = bc - ad$$

D'autre part :

$$-\delta(x,y) = - \begin{vmatrix} a & c \\ b & d \end{vmatrix} = -ad + bc$$

Donc $\delta(y,x) = -\delta(x,y)$.

3)

$$\begin{aligned} x < y &\iff \frac{a}{b} < \frac{c}{d} \\ &\iff ad < bc \ \text{car} \ b, d > 0 \\ &\iff ad - bc < 0 \\ &\iff \delta(x,y) < 0 \\ &\iff \delta(x,y) \leqslant -1 \ \text{car} \ \delta(x,y) \in \mathbb{Z}. \end{aligned}$$

Donc $x < y \iff \delta(x, y) \leqslant -1$.

4) D'une part :

$$\delta(x, x \oplus y) = \begin{vmatrix} a & a+c \\ b & b+d \end{vmatrix}$$

$$= a(b+d) - b(a+c)$$

$$= ab + ad - ab - bc$$

$$= ad - bc$$

$$= \delta(x, y)$$

D'autre part :

$$\delta(x \oplus y, y) = \begin{vmatrix} a+c & c \\ b+d & d \end{vmatrix}$$

$$= d(a+c) - c(b+d)$$

$$= ad + dc - cb - cd$$

$$= ad - bc$$

$$= \delta(x, y)$$

Donc $\delta(x,x\oplus y)=\delta(x\oplus y,y)=\delta(x,y).$

Partie C - Ensembles de Farey.

1)

$$\begin{split} F_5 &= \left\{ \frac{0}{1}; \, \frac{1}{5}; \, \frac{1}{4}; \, \frac{1}{3}; \, \frac{2}{5}; \, \frac{1}{2}; \, \frac{3}{5}; \, \frac{2}{3}; \, \frac{3}{4}; \, \frac{4}{5}; \, \frac{1}{1} \right\} \\ F_6 &= \left\{ \frac{0}{1}; \, \frac{1}{6}; \, \frac{1}{5}; \, \frac{1}{4}; \, \frac{1}{3}; \, \frac{2}{5}; \, \frac{1}{2}; \, \frac{3}{5}; \, \frac{2}{3}; \, \frac{3}{4}; \, \frac{4}{5}; \, \frac{5}{6}; \, \frac{1}{1} \right\} \\ F_7 &= \left\{ \frac{0}{1}; \, \frac{1}{7}; \, \frac{1}{6}; \, \frac{1}{5}; \, \frac{1}{4}; \, \frac{2}{7}; \, \frac{1}{3}; \, \frac{2}{5}; \, \frac{3}{7}; \, \frac{1}{2}; \, \frac{4}{7}; \, \frac{3}{5}; \, \frac{2}{3}; \, \frac{5}{7}; \, \frac{3}{4}; \, \frac{4}{5}; \, \frac{5}{6}; \, \frac{6}{7}; \, \frac{1}{1} \right\} \\ F_8 &= \left\{ \frac{0}{1}; \, \frac{1}{8}; \, \frac{1}{7}; \, \frac{1}{6}; \, \frac{1}{5}; \, \frac{1}{4}; \, \frac{2}{7}; \, \frac{1}{3}; \, \frac{3}{8}; \, \frac{2}{5}; \, \frac{3}{7}; \, \frac{1}{2}; \, \frac{4}{7}; \, \frac{3}{5}; \, \frac{5}{8}; \, \frac{2}{3}; \, \frac{5}{7}; \, \frac{3}{4}; \, \frac{4}{5}; \, \frac{5}{6}; \, \frac{6}{7}; \, \frac{7}{8}; \, \frac{1}{1} \right\} \end{split}$$

Tapé à la main par nos soins. Généré automatiquement par un algorithme qui est disponible dans le code du DM sur Github.

2) Si
$$\frac{m}{n} \in F_n$$
, alors $0 \le m \le n$ et $n \ge n - m \ge 0$. Donc $\frac{n-m}{n} \in F_n$.

Comme $n-(n-m)=m,\,\frac{m}{n}\in F_n$ si et seulement si $\frac{n-m}{n}\in F_n$, qui est son symétrique par rapport à leur moyenne $\frac{1}{2}$. Ce centre de symétrie ne dépend pas de m: on en conclut donc que $\frac{1}{2}$ est le centre de F_n pour $n\geq 2$.

3) Pas trouvé :/

- **4)** Notons pour $n \in \mathbb{N}^*$, P(n) l'assertion suivante : Si x < y sont deux fractions consécutives de F_n , alors :
- $\delta(x,y) = -1$
- La première fraction qui apparaît dans un $F_m, m > n$ est $x \oplus y$

Il s'agit de prouver par récurrence P(n) pour tout $n \in \mathbb{N}^*$.

- a) Initialisation : Les seules fractions de F_1 sont $\frac{0}{1}$ et $\frac{1}{1}$. On a bien $\delta\left(\frac{0}{1},\frac{1}{1}\right)=-1$ et la première fraction qui apparaît entre elles dans un F_m suivant est $\frac{1}{2}$ dans F_2 : or, $\frac{1}{2}=\frac{0}{1}\oplus\frac{1}{1}$. Donc P(1) est vraie.
 - **b)** Hérédité : On suppose par la suite P(n) pour $n \in \mathbb{N}^*$, et on prouve P(n+1).

On pose $x=\frac{a}{b}$ et $y=\frac{c}{d}$ deux fractions irréductibles et consécutives dans F_{n+1} . Par C.3, on sait que $x\in F_n$ ou $y\in F_n$.

$$\mathbf{1}^{\operatorname{er}} \operatorname{cas} : x \in F_n \text{ et } y \in F_n.$$

Comme x et y sont consécutives dans F_{n+1} , alors elles le sont aussi dans F_n , car $F_n\subseteq F_{n+1}$. Alors par l'hypothèse de récurrence, $\delta(x,y)=-1$. De plus, la première fraction qui apparaît entre x et y est $x\oplus y$ dans $F_m, m>n$. Mais x et y sont consécutives dans F_{n+1} , donc m>n+1. Ainsi, dans ce cas, P(n+1) est vérifiée.

 $\mathbf{2^e \ cas} : x \in F_n \ \text{et} \ y \in F_{n+1} \setminus F_n. \ \text{Posons} \ z \in F_n \ \text{la fraction successive de} \ x \ \text{dans} \ F_n.$

Par hypothèse de récurrence, comme y doit être la première fraction à s'être intercalée entre x et y, on doit avoir $y=x\oplus z$. De plus, on a $\delta(x,z)=-1$. On a donc

$$\delta(x,y) = \delta(x,x \oplus z) = \delta(x,z) = -1$$

Ce qui valide la première condition de P(n + 1).

Posons maintenant $t=\frac{r}{s}$ la première fraction irréductible à apparaître entre x et y dans un F_m pour m>n+1.

D'abord, on a les équivalences suivantes :

$$\begin{cases} \delta(t,x) \geq 1 & \text{B.2} \\ \delta(y,t) \geq 1 & \Longleftrightarrow \end{cases} \begin{cases} \delta(x,t) \leq -1 \\ \delta(t,y) \leq -1 \end{cases}$$

$$& \iff x < t < y$$

Comme t s'intercale entre x et y, $\delta(t,x)$ et $\delta(y,t)$ sont bien supérieurs ou égaux à 1.

Ensuite, on a:

$$\begin{split} a\delta(y,t) + c\delta(t,x) &= a(cs-dr) + c(br-as) \\ &= acs - acs + rbc - rad \\ &= r(bc-ad) \\ &= -r\delta(x,y) \\ &= r \end{split}$$

Similairement, on a:

$$\begin{split} b\delta(y,t) + d\delta(t,x) &= b(cs-dr) + d(br-as) \\ &= bdr - bdr + sbc - sad \\ &= s(bc-ad) \\ &= -s\delta(x,y) \\ &= s \end{split}$$

Si $\delta(t,x) \neq 1$ ou $\delta(t,y) \neq 1$, alors la fraction $t' = x \oplus y$ a un dénominateur s' = b + d < s. De plus, comme $\delta(x,y) = -1$, t' est irréductible. Donc t' s'intercale entre x et y strictement avant t, ce qui contredit la minimalité de t. Donc $\delta(x,t) = \delta(y,t) = 1$, et $t = x \oplus y$, ce qui conclut la preuve de la deuxième condition de P(n+1) dans ce cas.

3° et dernier cas : $x \in F_{n+1} \setminus F_n$ et $y \in F_n$.

D'une part, posons $z\in F_n$ la fraction précédant y dans F_n (qui existe bien car y>0). Par $P(n),\,x=z\oplus y$. Donc $\delta(x,y)=\delta(y\oplus z,y)=\delta(z,y)=-1$, où la dernière égalité vient de P(n).

D'autre part, F_{n+1} est symétrique par rapport à $\frac{1}{2}$. On pose donc $x'=\frac{b-a}{b}$ et $y'=\frac{d-c}{d}$. Alors $y'\in F_n$ et $x'\in F_{n+1}\setminus F_n$ sont consécutives dans F_{n+1} . La première fraction à apparaître entre y' et x' dans un $F_m, m>n+1$ est :

$$y' \oplus x' = \frac{b+d-(a+c)}{b+d}$$

Qui est le symétrique par rapport à $\frac{1}{2}$ de $\frac{a+c}{b+d}=x\oplus y$. Comme $y'\oplus x'$ est la première fraction à apparaître entre y' et x', par symétrie, $x\oplus y$ est nécessairement également la première à apparaître entre x et y, ce qui conclut ce cas.

<u>Conclusion</u>: Par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}^*$.

Partie D - Cercles de Ford.

1) Tangents à l'axe des abscisses.

Prouvons que tout cercle de Ford est tangent à l'axe des abscisses. Soit $\frac{a}{b}$ une fraction irréductible. Son cercle de Ford associé est de centre $\left(\frac{a}{b}, \frac{1}{2b^2}\right)$ et de rayon $\frac{1}{2b^2}$. Comme le rayon du cercle et son ordonnée sont égaux, tout cercle Ford est bien tangent à l'axe des abscisses.

2) Tangents entre eux quand consécutifs.

Nous allons raisonner par équivalence dans un repère orthonormé.

Soient α et β deux fractions consécutives de F_n tel que

$$\alpha = \frac{m}{a}$$
 et $\beta = \frac{n}{b}$

avec $m, n \in \mathbb{N}$, $a, b \in \mathbb{N}^*$ et $\alpha < \beta$.

D'après la propriété ci-dessus, les deux cercles de Ford C_{α} et C_{β} associés à α et β , de rayon respectif r_{α} et r_{β} , sont tangents à l'axe des abscisses. Les ordonnées y_{α} et y_{β} des centres de C_{α} et C_{β} est donc fixée, seules leurs abscisses x_{α} et x_{β} pourraient encore varier. La distance entre elles est notée D et comme $\alpha < \beta$, $D = x_{\beta} - x_{\alpha}$.

Soit le triangle vert tel que son hypothénuse relie les centres de C_{α} et C_{β} , et que ses côtés soient respectivement parallèle à l'abscisse et à l'ordonnée. Le triangle vert est donc un triangle rectangle.

Deux cercles sont tangents ssi il existe un unique point appartenant aux deux cercles, ssi la distance entre les deux centres est égale à la somme des deux rayons. L'hypothénuse du triangle rectangle vert relie justement les centres de C_{α} et C_{β} . Nous pouvons vérifier si l'hypothénuse mesure bien la somme des deux rayons en déterminant si le triangle ainsi formé est bien rectangle.

 C_{α} et C_{β} sont tangents ssi

$$D^{2} = (r_{\alpha} + r_{\beta})^{2} - (y_{\alpha} - y_{\beta})^{2}$$

$$D^{2} = \left(\frac{1}{2a^{2}} + \frac{1}{2b^{2}}\right)^{2} - \left(\frac{1}{2a^{2}} - \frac{1}{2b^{2}}\right)^{2}$$

$$D^{2} = \left(2\left(\frac{1}{2a^{2}}\right)\right)\left(2\left(\frac{1}{2b^{2}}\right)\right)$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

$$D^{2} = \left(\frac{1}{ab}\right)^{2} \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^{*}$$

Or $\delta(\alpha,\beta)$ est bien égal à –1 car α et β sont consécutives dans F_n . Par équivalence, C_α et C_β sont tangeants.

Nous avons prouvé que les cercles Ford associés à deux fractions consécutives de ${\cal F}_n$ sont tangeants entre eux.

Accessoirement nous avons aussi prouvé que deux cercles tangents entre eux et à l'abscisse sont des cercles de Ford associés à deux fractions consécutives de F_n .

Partie E - Approximation

1) a) Encadrement du nombre $\alpha=\frac{1}{\sqrt{2}}$

Etape	1	2	3	4	5	6
Valeur par défaut	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{7}{10}$	$\frac{12}{17}$
Valeur par excès	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{3}{4}$	$\frac{5}{7}$	$\frac{5}{7}$	$\frac{5}{7}$

Nous sommes paresseux donc ce tableau et les suivants sont bien entendu générés automatiquement par un algorithme de notre création fonctionnant pour n'importe quel nombre entre 0 et 1. Il est disponible dans le DM sur Github.

b) Meilleur encadrement

En poursuivant la méthode utilisée dans le tableau ci-dessus, nous pouvons obtenir un encadrement de α sur un dénominateur allant jusqu'à 100:

Etape	1	2	3	4	5	6	7	8	9	10
Valeur par défaut	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{7}{10}$	$\frac{12}{17}$	$\frac{12}{17}$	$\frac{12}{17}$	$\frac{41}{58}$	$\frac{70}{99}$
Valeur par excès	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{3}{4}$	$\frac{5}{7}$	<u>5</u>	$\frac{5}{7}$	$\frac{17}{24}$	$\frac{29}{41}$	$\frac{29}{41}$	$\frac{29}{41}$

2) Pas trouvé:/