ey.jk Kinem i	atics:
$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$	$v_f^2 = v_i^2 + 2ax$
$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	$v(t) = v_0 + at$
dt dt²	
$a = \frac{dv}{dx} = \frac{d^2x}{dx}$	$v = \frac{dx}{dx}$
$a = \frac{1}{dt} = \frac{1}{dt^2}$	$v = \frac{1}{dt}$

Newton's Laws:
$\mathbf{I}: \sum \vec{\mathbf{F}} = 0 \iff \frac{d\vec{\mathbf{v}}}{dt} = 0$
$II: \vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt}$
(F = ma [if mass is const.])
II: $(v. m)$: $\vec{F} + \vec{v}_{rel} \frac{dm}{dt} = m \frac{d\vec{v}}{dt'}$
ejected/accreted mass is
part of the system

A = amp	
T = perio	$od = \frac{1}{f}$

Oscillations and SHM:

For small oscillations: $\sin(\theta) \cong \theta \cos(\theta) \cong 1 - \frac{\theta^2}{\alpha}$ SHM is undergone by a particle under F(x) = -kx

$f = \frac{\omega}{2\pi}$	$\omega = \sqrt{\frac{k}{m}}$
$v(t) = -A\omega \sin(\omega t + \varphi)$	$a = -\omega^2 A \sin(\omega t) = -\omega^2 y$
$E_{total} = KE + PE = \frac{1}{2}kA^2$	
[no damp.]	$\vec{a} + \omega^2 x = 0$
$x(t) = A\cos(\omega t + \varphi)$	$x(t) = \frac{v}{\omega} \sin(\omega t).$
$F_{damp} = -cv \rightarrow \lambda = \frac{c}{2m}$	$a + 2\lambda x + w_0^2 x = 0$
$m\lambda^{2} + c\lambda + k = \rightarrow$ $\rightarrow \lambda = \frac{-c \pm \sqrt{c^{2} - 4mk}}{2m}$	$y = Asin(\omega t) = Asin\left(\sqrt{\frac{k}{m}}t\right)$ [simple case]

	Over damped:	
if $c^2 - 4mk > 0 \rightarrow overdamped$		
$\lambda^2 > \omega_0^2$	$\omega_{\rm d} = \sqrt{\lambda^2 - \omega^2}$	

Under damped	:
if $c^2 - 4mk < 0 \rightarrow underdamped$	$\lambda^2 < \omega_0^2$
$X(t) = e^{-\lambda t}(A\cos(vdt) + B\sin(vdt))$	$\omega_{\rm d} = \sqrt{\omega_0^2 - \lambda^2}$

Critical	Damped:	
damn	$\lambda^2 = \omega_0^2$	

$c^2 - 4mk = 0 \rightarrow crit. damp$	$\lambda^2 = \omega_0^2$
$B^2 = 4km$	$B^2 = 4km$

Physical Pendulum:

 $\tau_{pivot} = \vec{r}_{S,cm} \times m\vec{g} = l_{cm}\hat{r} \times mg(\cos(\theta)\hat{r} - \sin(\theta)\hat{\theta}) = -l_{cm}mg\sin(\theta)\hat{k}$

$T = 2\pi \sqrt{\frac{I}{mgh}} [\text{ small amp.}]$	$\omega = \sqrt{\frac{\text{mgd}}{I}} \text{ [d=distance from pivot to cm]}$
$-mgl_{cm}\sin(\theta) = I_s \frac{d^2\theta}{dt^2}$	$\frac{d^2\theta}{dt^2} \cong -\frac{mgl_{cm}}{I_s} \theta$ [for small angles $\sin(\theta) \cong \theta$]
$\omega_0 = ang.f. = \sqrt{\frac{mgl_{cm}}{I_S}}$	$T = \frac{2\pi}{\omega_0} = \sqrt{\frac{l_{cm}}{g} + \frac{I_{cm}}{mgl_{cm}}}$

Circular Motion:

$v_{cm} = \omega r$	$F_{centripetal} = m\omega^2 R$
$v = \omega r$	$\omega = 2\pi f$
$\vec{L} = I\vec{\omega} = \vec{r} \times \vec{p}$	$L_{A} = \vec{r} \times m\vec{v}_{cm} + I_{cm}\omega_{0}$
di	
$\tau_{net\ ext.} = \frac{dL}{dt}$ To find direction	n of L, curl fingers and look at thumb
$E = \tau \theta \ [\theta = angle \ moved]$	$ au = I lpha \qquad au = FRsin(heta)$
$W = \int_{0}^{\theta_{2}} \tau d\theta$	$E_{rot.K} = \frac{1}{2}I\omega^2$

Varianon's theorem: the sum of torques due to several forces applied to a single point is equal to the torque due to the sum (resultant) of the forces.

Center of mass, Inertia:

 $X_{cm} = \frac{1}{M} \sum_{i=1}^{n} m_i x_i$ [For a system of particles]

$$X_{cm} = \frac{\int_0^{\text{end}} \text{m*position}}{\text{M}_{\text{total}}} = \frac{\int_0^{\text{end}} \text{x} \lambda(x) dx}{\text{M}_{\text{total}}} = \frac{\int_0^{\text{end}} \text{x} dm}{\text{M}_{\text{total}}}$$
$$I = \int_0^M x^2 dm = \int_0^M x^2 \lambda(x) dx \quad ; \quad v_{cm} = \frac{\sum mv}{M}$$

Parallel Axis: $I_A = I_{cm} + mr^2 [r = dist A \sim cm]$

<u>Perpendicular Axis:</u> $I_{A_z} = I_{A_y} + I_{A_x}$ [need xyz symmetry] If linear momentum is conserved, Center of Mass does not move relative to the system. The components of the system will rearrange to preserve CM

Work, Forces, Energy and Momentum:

Isolated system: collection of matter which does not interact with the rest of the universe at all.

Conservative force: Work done is independent of the path

$$F_{tension} = mg + ma = \frac{2m_1m_2}{m_1 + m_2}g$$
 [for 2 masses and pulley]

For massless string, tension is the same everywhere $W = \int F(x)dx = Fd\cos(\theta)$

Impulse:
$$\vec{J} = \int_{\Delta t} \vec{F} dt = \Delta \vec{p} = m \Delta \vec{v}$$

$\sum F_{which\ point\ to\ rot.center} = F_{centripetal} = \frac{mv^2}{R}$		
p = mv	$F_{friction} = \mu N$	$W_{total} = \Delta E_k$
$E_p = mgh$	$E_k = \frac{1}{2}mv^2 =$	$\frac{1}{2}kx^2$
P conserved if I	$F_{ext} = 0$ <u>L conserved</u> if the second conserved if the second conserved if the second conserved is the second conserved.	$\tau_{ext} = 0 \ [\circlearrowleft A]$

conserved if work=0 & ther	e's no non-conservative forces	S
Elastic (bounce)	Inelastic(stick together)	
E_k , p are conserved. Solving usually involves simultaneous equations with two variables.	p is conserved , but can't track the kinetic energy through the collision.	

<u>Proving F is conservative:</u> Find Curl, if curl=0, conservative

$$curl F = \begin{vmatrix} i & j & k \\ \frac{d}{dx} & \frac{d}{dy} & \frac{d}{dz} \\ F_x & F_y & F_z \end{vmatrix} = i \left(\frac{d}{dy} F_z - \frac{d}{dz} F_y \right) - j \left(\frac{d}{dx} F_z - \frac{d}{dz} F_x \right) + k \left(\frac{d}{dx} F_x - \frac{d}{dy} F_y \right)$$

If curl=0, $W = -\Delta E_n$ where ΔE_n is the change in the potential energy associated with the force. Negative because work done against a force field increases potential energy. Gravity, magnetic, electrostatic, spring forces are conservative. Friction is not.

The maximum angle before one of the items will begin sliding is called the angle of friction, defined as $tan(\theta) = \mu_s \left[\theta \ from \ h - tl\right]$

Variable mass:

Identify forces -> if no $F_{external}$ take the changing mass as part of the system. Calculate p(t) and $p(t + \Delta t)$

$$F_{ext} = rac{p(t + \Delta t) - p(t)}{\Delta t}$$
 [^will be in terms of dm and dt]

 $\overrightarrow{F_{ext}} + \overrightarrow{v}_{rel} \frac{dm}{dt} = m \frac{d\overrightarrow{v}}{dt}$, ejected/accreted mass is part of the

Could theoretically not have to use momentum, instead use classical f=ma, making it in the form $F + f_{thrust} = m(t)a$, $f_{thrust} = \vec{v}_{rel} \frac{dm}{dt}$

We can view rolling motion as a superposition of pure rotation and pure translation.

When an object is rolling on a plane without slipping, the point of contact of the object with the plane does not move.

$$\frac{dx}{dt} = v_{cm} = \omega R = \frac{d\theta}{dt} R$$
$$x = R\theta$$

Once an object starts rolling on a horizontal surface, there is no need for friction unless there is acceleration. You don't need friction for pure rolling without slipping to occur.

Mathematics:

Cross product:
$$\vec{u} \times \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

$$\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \cos\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\csc(\theta)}$$

$$\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \sin\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\sec(\theta)}$$

$$\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sin(\theta)}{\cos(\theta)} = \cot\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\cot(\theta)}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2} \qquad \qquad (uv)' = u'v + v'u$$

$$\vec{r} = dist. frm pt. which we mesur \tau frm to impct pt.$$

Tactic:

Most will be solved by Newton Laws, Conservation of P or L, or conservation of E. Newton's Laws hold everywhere unless the frame of reference moves. ODEs:

Integrating factor:

if
$$\frac{dy}{dx} + p(x)y = q(x)$$
, then :

$$e^{\int p(x)dx} = \int e^{\int p(x)dx} q(x)dx$$

$$y'_x = f(y) -> \int \frac{dy}{f(y)} + c$$

$$y'_x = f(x)g(y) -> \int \frac{dy}{g(y)} = \int f(x)dx + c$$

In terms of	$sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
$sin(\theta)$	$sin(\theta)$	$\pm\sqrt{1-\cos^2(\theta)}$	$tan(\theta)$
		= V	$\pm \frac{1}{\sqrt{1+\tan^2(\theta)}}$
$\cos(\theta)$	$=\pm\sqrt{1-\sin^2(\theta)}$	$\cos(\theta)$	1
	_		$\frac{1}{\sqrt{1+\tan^2(\theta)}}$
$tan(\theta)$	$\sin(\theta)$	$\sqrt{1-\cos^2(\theta)}$	$tan(\theta)$
	$\frac{1}{\sqrt{1-\sin^2(\theta)}}$	$\pm \frac{1}{\cos(\theta)}$	

$\sin(-\theta) = -\sin(\theta)$	$\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$	$\sin(\pi - \theta) = \sin(\theta)$
$\cos(-\theta) = \cos(\theta)$	$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$	$ cos(\pi - \theta) \\ = -\cos(\theta) $
$\tan(-\theta) = -\tan(\theta)$	$\tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta)$	$tan(\pi - \theta) \\ = -tan(\theta)$
$\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$	$ \sin(\theta + \pi) \\ = -\sin(\theta) $	$\sin(\theta + 2\pi) = \sin(\theta)$
$\cos\left(\theta + \frac{\pi}{2}\right) \\ = -\sin(\theta)$	$ cos(\theta + \pi) \\ = -cos(\theta) $	$ cos(\theta + 2\pi) \\ = cos(\theta) $

$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$	$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$	
$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta)$	$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$	
$-\sin(\alpha)\sin(\beta)$ $2\tan(\theta)$	$\sin^2(\theta) + \cos^2(\theta) = 1$	
$\sin(2\theta) = 2\sin(\theta)\cos(\theta) = \frac{2\tan(\theta)}{1 + \tan^2(\theta)}$	(0) 1 000 (0) 2	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\sin(\theta) =$	
$= 2\cos^2(\theta) - 1$	$\pm\sqrt{1-\cos^2(\theta)}$	
$=1-2\sin^2(\theta)$	Sign depends on	
(22)	quadrant of θ	
$\sin(3\theta) = -4\sin^3(\theta) + 3\sin(\theta)$	$\cos(\theta)$	
	$=\pm\sqrt{1-\sin^2(\theta)}$	
$\cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)$		
$\sin^2\left(\frac{\theta}{2}\right) = \frac{(1 - \cos(\theta))}{2}$		
$\cos^2\left(\frac{\theta}{2}\right) = (1 + \cos(\theta))$		
2		
$2\cos(\theta)\cos(\phi) = \cos(\theta - \phi) + \cos(\theta + \phi)$		
$2\sin(\theta)\sin(\phi) = \cos(\theta - \phi) - \cos(\theta + \phi)$		
$2\sin(\theta)\cos(\phi) = \sin(\theta + \phi) + \sin(\theta - \phi)$		
$2\cos(\theta)\sin(\phi) = \sin(\theta + \phi) - \sin(\theta - \phi)$		

$\frac{d}{dx}e^x = e^x$	$\frac{d}{dx}a^x = a^x \ln(a)$	
$\frac{d}{dx}x^x = x^x(1 + \ln(x))$	$\frac{d}{dx}\ln(x) = \frac{1}{x}$	
$\frac{d}{dx}\log_{a}(x) = \frac{1}{x\ln(a)}$	$\frac{d}{dx}\sin(x) = \cos(x)$	
$\frac{d}{dx}\cos(x) = -\sin(x)$	$\frac{d}{dx}\tan(x) = \sec^2(x) = \frac{1}{\cos^2(x)}$	
$\frac{d}{dx}\cot(x) = -\csc^2(x)$	$\frac{d}{dx}\csc(x) = -\csc(x)\cot(x)$	
$\int \frac{1}{x} dx = \ln x $	$\int lm(x) = \ln(x) - x$	
$\frac{d}{dx} \sec(x) = \sec(x)\tan(x)$		

Ва	Basic Forms		
$\int x^n dx = \frac{1}{n+1} x^{n+1},$	$\int u dv = uv - \int v du$		
11.1			
$n \neq -1$ $\int \frac{1}{x} dx = \ln x $	$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b $		
Integrals of	Rational Functions		
$\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$	$\int \frac{1}{1+y^2} dx = \tan^{-1} x$		
$\int \frac{(x+a)^2}{(x+a)^n} \frac{x+a}{dx} = \frac{(x+a)^{n+1}}{n+1}, n \neq -1$	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$		
7.11			
$\int x(x+a)^n dx = \frac{(x+a)^{n+1}((n+1)x-1)}{(n+1)(n+2)}$	$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln a^2 + x^2 $		
$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2} x^2 - \frac{1}{2} a^2 \ln a^2 + x $	$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a}$		
$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2} x^2 - \frac{1}{2} a^2 \ln a^2 + x $ $\int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$ $\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln ax^2 + bx + c $ $c = \frac{1}{a} \frac{1}{a} \tan^{-1} \frac{2ax + b}{a}$	$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a}$ $\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, a \neq b$		
$\int \frac{x}{1-x^2} dx = \frac{1}{x} \ln ax^2 + bx $	$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln a+x $		
$c \mid -\frac{b}{a\sqrt{4ac-b^2}} \tan^{-1} \frac{2ax+b}{\sqrt{4ac-b^2}}$	(x+a) ²		
Integr	als with Roots		
$\frac{c_1 - \frac{1}{a\sqrt{4ac-b^2}} \tan \frac{1}{\sqrt{4ac-b^2}}}{\frac{1}{\sqrt{x-a}} dx = \frac{2}{3}(x-a)^{3/2}}$	$\int \sqrt{\frac{x}{a+x}} dx = \sqrt{x(a+x)} - a\ln[\sqrt{x} + \sqrt{x+a}]$		
$\int \frac{1}{\sqrt{x \pm a}} \ dx = 2\sqrt{x \pm a}$	$\int x\sqrt{ax+b} \ dx = \frac{2}{15a^2}(-2b^2 + abx +$		
. 1	$3a^2x^2)\sqrt{ax+b}$		
$\int \frac{1}{\sqrt{a-x}} \ dx = -2\sqrt{a-x}$	$\int \sqrt{x(ax+b)} \ dx = \frac{1}{4a^{3/2}} [(2ax + \frac{1}{4a^{3/2}})]$		
(2b 2x)	$b)\sqrt{ax(ax+b)} - b^{2}\ln a\sqrt{x} + \sqrt{a(ax+b)} $ $\int \sqrt{x^{3}(ax+b)} \ dx = \left[\frac{b}{12a} - \frac{b^{2}}{8a^{2}x} + \frac{b^{2}}{a^{2}x^{2}} + \frac{b^{2}}{$		
$\int \sqrt{ax+b} \ dx = \left(\frac{2b}{3a} + \frac{2x}{3}\right) \sqrt{ax+b}$	$\int \sqrt{x^3(ax+b)} dx = \left \frac{1}{12a} - \frac{1}{8a^2x} + \frac{x}{3} \right \sqrt{x^3(ax+b)} + \frac{b^3}{8a^{5/2}} \ln a\sqrt{x} + \sqrt{a(ax+b)} $		
$\int (ax+b)^{3/2} dx = \frac{2}{5a} (ax+b)^{5/2}$	$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{11}{2} \left[\frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} x \sqrt{x^2 \pm a^2} + \frac{1}{2} x $		
$\int (ax + b)^{5/2} \ ax = \frac{1}{5a} (ax + b)^{5/2}$	$\int \sqrt{x^2 \pm a^2} \ ax = \frac{1}{2}x\sqrt{x^2 \pm a^2} \pm \frac{1}{2}a^2 \ln \left x + \sqrt{x^2 \pm a^2} \right $		
$\int \frac{x}{\sqrt{x+a}} dx = \frac{2}{3}(x \mp 2a)\sqrt{x \pm a}$	$\int \sqrt{a^2 - x^2} \ dx = \frac{1}{2} x \sqrt{a^2 - x^2} +$		
$\sqrt{x\pm a}$ 3			
$\int \sqrt{\frac{x}{a-x}} \ dx = -\sqrt{x(a-x)} -$	$\frac{\frac{1}{2}a^2\tan^{-1}\frac{x}{\sqrt{a^2-x^2}}}{\int x\sqrt{x^2\pm a^2} dx = \frac{1}{3}(x^2\pm a^2)^{3/2}}$		
$a \tan^{-1} \frac{\sqrt{x(a-x)}}{x-a}$			
$\int \frac{1}{\sqrt{x^2 \pm a^2}} \frac{dx}{dx} = \ln\left x + \sqrt{x^2 \pm a^2}\right $ $\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2}$	$\int \frac{1}{\sqrt{a^2 - x^2}} \ dx = \sin^{-1} \frac{x}{a}$		
$\int \frac{x}{\sqrt{x^2 \pm a^2}} \ dx = \sqrt{x^2 \pm a^2}$	$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2}$		
$\int \frac{x^2}{\sqrt{x^2 \pm a^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \mp$	$\int \sqrt{ax^2 + bx + c} \ dx =$		
$\frac{1}{2}a^2\ln\left x+\sqrt{x^2\pm a^2}\right $	$\frac{\frac{b+2ax}{4a}\sqrt{ax^2+bx+c}+\frac{4ac-b^2}{8a^{3/2}}\ln 2ax+b+2\sqrt{a(ax^2+bx^2c)} }{2\sqrt{a(ax^2+bx^2c)}}$		
$\int \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{\sqrt{a}} \ln 2ax + b +$	$\frac{2\sqrt{a(ax^2 + bx + c)} }{\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a}\sqrt{ax^2 + bx + c} - \frac{1}{a}\sqrt{ax^2 + bx + c}}$		
$2\sqrt{a(ax^2+bx+c)}$	$\frac{b}{2a^{3/2}} \ln 2ax + b + 2\sqrt{a(ax^2 + bx + c)} $		
$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 + x^2}}$			
Integrals with Exponentials			
$\int e^{ax} dx = \frac{1}{2}e^{ax}$	$\int xe^x dx = (x-1)e^x$		
a			