4. DOMAĆA ZADAĆA IZ MATEMATIKE 3R

Rok za predaju zadaće je četvrtak 23. studenog 2006.

1. Dokaži DeMorganovu formulu za skupove

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

2. Koja je od sljedećih funkcija injekcija, surjekcija, bijekcija:

a)
$$f: \mathbb{Z} \to \mathbb{N}$$
, $f(k) = k^2 + 1$,

b)
$$g: \mathbb{Z} \to 2\mathbb{Z}$$
, $g(k) = \begin{cases} 4k, & \text{za } k > 0 \\ 4|k| + 2, & \text{za } k \le 0, \end{cases}$

a)
$$f: \mathbb{Z} \to \mathbb{N}, \quad f(k) = k + 1,$$

b) $g: \mathbb{Z} \to 2\mathbb{Z}, \quad g(k) = \begin{cases} 4k, & \text{za } k > 0, \\ 4|k| + 2, & \text{za } k \leq 0, \end{cases}$
c) $h: \mathbb{N} \to \mathbb{Z}, \quad h(k) = \begin{cases} \frac{k}{2}, & \text{za } k \text{ paran}, \\ -\frac{k-1}{2}, & \text{za } k \text{ neparan}. \end{cases}$

Ovdje je $2\mathbb{Z}$ skup svih parnih cijelih brojeva.

3. Neka je A zadani neprazan skup i $f:A\to A$ neka funkcija. Definiramo relaciju ρ na A sa $x \rho y$ onda i samo onda ako je y = f(x). Za koje funkcije f je ρ relacija ekvivalencije?

4. Skup prirodnih brojeva koji pri dijeljenju s 3 daju ostatak 2 ekvipotentan je skupu $\{n \in \mathbb{N} \mid n \geq 100\}$. Dokaži!

5. Konstruiraj bijekciju između skupa Z i skupa prirodnih brojeva koji pri dijeljenju s 3 daju ostatak 1.

6. Obrazloži je li skup svih polinoma stupnja ne većeg od 2 sa koeficijentima iz skupa Q prebrojiv ili neprebrojiv.

7. Dokaži da je skup racionalnih brojeva Q ekvipotentan skupu parnih cijelih brojeva.

8. Dokaži da za binomne koeficijente vrijedi:

$$\mathbf{a}$$

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1},$$

$$\binom{n+1}{k} = \frac{n+1}{n-k+1} \binom{n}{k},$$

$$\binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k}.$$

- 9. Na skupu Y svih nepraznih podskupova skupa $X = \{1, 2, 3, 4, 5\}$ zadana je relacija ekvivalencije ρ sa $A \rho B$ onda i samo onda ako postoji bijekcija $f: A \to B$. (a) Izračunaj $|Y/\rho|$ (kardinalni broj kvocjentnog skupa). (b) Ispiši sve elemente razreda $[\{1, 2\}]$.
- 10. Na skupu parnih cijelih brojeva $\{0, 2, 4, \dots, 200\}$ zadana je relacija ρ sa $x \rho y$ onda i samo onda ako je x y djeljiv s 5. (a) Dokaži da je ρ relacija ekvivalencije. (b) Koliko ima razreda ekvivalencije? (c) Nađi najmanji pozitivni element u razredu kojemu pripada broj 158.
- 11. Zadan je pravilni mnogokut s 20 vrhova. 7 njegovih vrhova obojano je u crveno, 4 u bijelo i 9 u plavo. Koliko ovaj mnogokut ima upisanih trokutova s jednobojnim vrhovima?
- 12. Telefonski broj je niz od 7 znamenaka iz skupa $\{0, 1, 2, ..., 9\}$ od kojih prva ne smije biti 0. (a) Koliko ima telefonskih brojeva čije su sve znamenke različite? (b) A koliko s barem dvije iste znamenke?
- 13. Iz snopa od 32 različite karte dijelimo po 4 karte svakom od troje ljudi. Na koliko načina to možemo učiniti?
- 14. Na koliko načina između 8 muškaraca i 8 žena možemo izabrati 4 (ravno-pravna) plesna para, ali tako da među njima nije jedan unaprijed određeni par?
- 15. Na šahovskom turniru sudjeluje 20 natjecatelja. Na koliko načina ih je moguće podijeliti u dvije (ravnopravne) skupine ako:
 - a) dva najbolja šahista moraju biti u različitim skupinama,
 - b) četiri najbolja šahista moraju biti dva i dva u različitim skupinama.
- 16. Na koliko načina možemo poredati p jedinica i q nula, uz uvjet p < q i ako jedinice ne smiju biti susjedne? Obrazloži odgovor!
- 17. S jedne strane pravokutnog stola s 2n stolica sjeda n žena i n muškaraca. (a) Na koliko načina oni mogu sjesti tako da nikoje dvije žene ne sjede jedna do druge? (b) Na koliko načina oni ovako mogu sjesti za okrugli stol s 2n stolica?
- 18. U hotel u jedno malo planinsko mjesto stiglo je n sudionika nekog savjetovanja. Sve sobe u hotelu su jednokrevetne i imaju krasan pogled na vrhove, ali ih samo b od ukupno n ima balkon. v sudionika savjetovanja su važne osobe i moraju dobiti sobu s balkonom. Među sudionicima savjetovanja je i s studenata kojima se trebaju dati sobe bez balkona. Ostale sudionike može se smjestiti bilo kako. Na koliko načina se mogu tako sudionici savjetovanja smjestiti u sobe, ako je $v \le b$ i $s \le n b$?
- 19. U automat se ubacuju kovanice od 1 i 2 kune. Na koliko načina možemo ubaciti n kuna $(n \ge 2)$ ako ubacimo točno k kovanica od 2 kune, $k \in \{0, 1, \dots, \lfloor \frac{n}{2} \rfloor\}$?
- **20.** U automat se ubacuju kovanice od 1 i 2 kune. Na koliko načina možemo ubaciti n kuna $(n \ge 2)$? Naputak: koristi rezultat prethodnog zadatka.

student		zadaci			student	zadaci			
1.	2	10	13	20	2.	5	9	13	20
3.	2	8	11	16	4.	3	8	12	18
5.	4	6	15	18	6.	4	8	15	18
7.	2	6	15	17	8.	2	10	15	18
9.	4	7	14	19	10.	5	6	14	19
11.	2	9	14	18	12.	3	8	13	20
13.	3	9	12	16	14.	1	6	13	19
15.	3	9	15	18	16.	2	9	13	19
17.	3	10	12	16	18.	5	7	15	18
19.	5	9	14	19	20.	1	6	14	17
21.	2	7	14	17	22.	3	7	14	18
23.	4	7	11	16	24.	4	9	12	17
25.	1	9	11	16	26.	1	10	13	19
27.	3	7	13	19	28.	4	10	15	18
29.	2	9	12	16	30.	1	8	14	17
31.	3	9	13	20	32.	4	7	15	18
33.	4	10	12	17	34.	5	6	11	17
35.	5	8	11	17	36.	2	7	13	19
37.	3	8	11	16	38.	5	7	11	17
39.	5	9	12	17	40.	1	7	12	20
41.	3	7	11	16	42.	1	8	12	19
43.	1	9	15	17	44.	2	7	12	20
45.	3	10	14	19	46.	5	10	13	20
47.	3	6	13	19	48.	4	8	11	17
49.	4	6	14	19	50.	1	7	15	17
51.	1	8	11	16	52.	3	10	15	18
53.	4	9	13	19	54.	1	10	12	16
55.	3	8	14	19	56.	5	6	15	18
57.	5	10	12	17	58.	1	6	12	20
59.	2	7	11	16	60.	3	6	14	18
61.	4	9	14	20	62.	2	6	12	20
63.	4	6	11	16	64.	4	10	14	20
65.	5	7	13	20	66.	5	10	15	19
67.	1	7	11	16	68.	2	8	13	20
69.	4	8	13	20	70.	2	10	12	16
71.	1	10	14	17	72.	5	8	15	18
73.	1	6	11	16	74.	2	8	15	18
75.	5	8	14	19	76.	1	9	13	20
77.	3	6	11	16	78.	4	9	15	18
79.	5	10	12	17	80.	2	6	11	16