全国大学生数学竞赛数学竞赛非数学专业考试大纲

一、函数、极限、连续

- 1. 函数的概念及表示法、简单应用问题的函数关系的建立.
- 2. 函数的性质:有界性、单调性、周期性和奇偶性.
- 3. 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.
- 4. 数列极限与函数极限的定义及其性质、函数的左极限与右极限.
- 5. 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.
- 6. 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.
- 7. 函数的连续性(含左连续与右连续)、函数间断点的类型.
- 8. 连续函数的性质和初等函数的连续性.
- 9. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).

二、一元函数微分学

- 1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.
 - 2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.
 - 3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.
 - 4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的 n 阶导数.
 - 5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.
 - 6. 洛必达(L'Hospital)法则与求未定式极限.
- 7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.
 - 8. 函数最大值和最小值及其简单应用.
 - 9. 弧微分、曲率、曲率半径.

三、一元函数积分学

- 1. 原函数和不定积分的概念.
- 2. 不定积分的基本性质、基本积分公式.
- 3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、 牛顿-莱布尼茨(Newton-Leibniz)公式.

- 4. 不定积分和定积分的换元积分法与分部积分法.
- 5. 有理函数、三角函数的有理式和简单无理函数的积分.
- 6. 广义积分.
- 7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.

四. 常微分方程

- 1. 常微分方程的基本概念: 微分方程及其解、阶、通解、初始条件和特解等.
- 2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.
- 3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: $y^{(n)} = f(x)$, y'' = f(x, y'), y'' = f(y, y').
- 4. 线性微分方程解的性质及解的结构定理.
- 5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.
- 6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、 余弦函数,以及它们的和与积
- 7. 欧拉(Euler)方程.
- 8. 微分方程的简单应用

五、向量代数和空间解析几何

- 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.
- 2. 两向量垂直、平行的条件、两向量的夹角.
- 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.
- 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.
- 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和 点到直线的距离.
- 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.
- 7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.

六、多元函数微分学

1. 多元函数的概念、二元函数的几何意义.

- 2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.
- 3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.
- 4. 多元复合函数、隐函数的求导法.
- 5. 二阶偏导数、方向导数和梯度.
- 6. 空间曲线的切线和法平面、曲面的切平面和法线.
- 7. 二元函数的二阶泰勒公式.
- 8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.

七、多元函数积分学

- 1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).
- 2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.
- 3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.
- 4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.
- 5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.
- 6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)

八、无穷级数

- 1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.
- 2. 几何级数与 p 级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨 (Leibniz) 判别法.
- 3. 任意项级数的绝对收敛与条件收敛.
- 4. 函数项级数的收敛域与和函数的概念.
- 5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.
- 6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单 幂级数的和函数的求法.
- 7. 初等函数的幂级数展开式.
- 8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-1, 1]上的傅里叶级数、函数在[0,1]上的正弦级数和余弦级数.