סיבוכיות- תרגול 5

<u>הסבר אינטואיטיבי (לא פורמלי):</u> במחלקה NP נמצאות בעיות מהצורה "קיים", ובמחלקה conp נמצאות בעיות מהצורה "לכל" (=לא קיים). כלומר, ב-NP יש בעיות כך שקלט בשפה אם ורק אם **קיימת** לכך הוכחה קצרה, וב-conp יש בעיות שקלט בשפה אם ורק אם **לא קיימת** לכך הפרכה קצרה.

:אם $S \in NP$ אם $S \in NP$

- 1) לקלטים בשפה קיימת הוכחה קצרה.
- 2) לקלטים שלא בשפה לא קיימת הוכחה.

.VC = $\{(G,k) \mid k \geq T$ בוגמה: פיסוי קודקודים ביסוי קודקודים ב-G ביסוי קודקודים ב-G ביסוי

:אם $S \in \text{coNP}$ אם

- 1) לקלטים בשפה לא קיימת הפרכה.
- 2) לקלטים שלא בשפה קיימת הפרכה קצרה.

 $.\overline{\text{VC}} = \{(G, k) \mid k <$ בגודל ב-Gכל כיסוי קודקודים ב-Gכל כיסוי קודקודים ב-

[התרגול מתחיל מפה]

<u>תזכורת:</u>

MIN-VC = $\{(G,k)\mid k$ בגודל G-ב בגודל המינימלי ב-G-ביסוי הקודקודים המינימלי ב-G-בגודל בים ב-G-קיים ב-G-ביסוי קודקודים בגודל באודל בים ליסוי קודקודים ב-G-בגודל בים ליסוי ליסו

לבד לא מספיק (כי לא ברור איך להגדיר הוכחה לכך שכל כיסוי קודקודים בגודל $(k \leq k)$, ו-CONP לבד לא מספיק (כי לא ברור איך להגדיר הפרכה לכך שקיים כיסוי קודקודים בגודל $(k \leq k)$.]

-ש כך V אם קיימים פולינום p ואלגוריתם פולינומי $S \in \Sigma_k$

$$x \in S \Leftrightarrow \exists y_1 \forall y_2 \exists y_3, \dots Qy_k, \forall i | y_i | \leq p(|x|), V(x, y_1, y_2, \dots y_k) = 1$$

. כאשר E=Q אם k אי-זוגי, ו- $\forall=0$ אם k זוגי

-ש כך שוודא פולינומי p ומוודא פולינומי $S \in \Pi_k$ לפי זה, $\Pi_k = \mathrm{co}\Sigma_k$ -בדרה:

$$x \in S \Leftrightarrow \forall y_1 \exists y_2 \forall y_3, \dots Qy_k, \forall i | y_i | \le p(|x|), V(x, y_1, y_2, \dots y_k) = 1$$

.כאשר $\forall Q = \emptyset$ אם k אי-זוגי, ו- $\exists Q = \emptyset$ אם k זוגי.

תכונות מיידיות:

- $\Pi_1 = \text{coNP} . \Sigma_1 = \text{NP} . \Sigma_0 = \Pi_0 = \text{P} : 1$. 1
 - $\Sigma_k \subseteq \Sigma_{k+1}$.2
 - $\Sigma_k \subseteq \Pi_{k+1}$.3
 - $.\Pi_k \subseteq \Sigma_{k+1}$.4

.PH = $\bigcup_{k=0}^{\infty} \Sigma_k$ ההיררכיה הפולינומית מוגדרת ע"י ההיררכיה

.(מוכל ממש) $\Sigma_k \subset \Sigma_{k+1}$ מתקיים $k \geq 0$ מלומר, כלומר, כלומר, משערים שזו אכן היררכיה.

 Π_2 - הוכיחו כי השפה הבאה שייכת ל

.MIN-CNF = $\{\phi \mid (\phi - + \phi)\}$ השקולה ל-CNF מינימלית (לא קיימת נוסחה קצרה יותר בצורת ϕ)

באים: הבאים התנאים התנאים ש'ם $\phi \in \mathsf{MIN-CNF}$

- .CNF בצורת ϕ .1
- $\phi(v) \neq \phi'(v)$ אז קיימת השמת אמת (כך ש-CNF). לכל לכל לכל (שר אם און איימת השמת אמת (בצורת 1,0).

נגדיר מוודא V המקבל (ϕ,ϕ',v) ומחזיר 1 אמ"ם מתקיימים שני התנאים הנ"ל. $|\phi'|$ ו- $|\psi'|$ חסומים ע"י $|\phi|$, וכל הבדיקות מתבצעות בזמן פולינומי. לכן Π_2 MIN-CNF $\in \Pi_2$

<u>מכונות עם גישת אורקל</u>

היא מ"ט בעלת סרט נוסף המכונה "סרט אורקל". M^A (מסומנת M^A) היא מ"ט בעלת סרט נוסף המכונה "סרט אורקל". $x\in A$ המכונה יכולה לכתוב על סרט האורקל מחרוזת x ולקבל תוך צעד אחד תשובה האם

B אם קיימת מ"ט דטר' פולינומית עם גישת אורקל לשפה $A \in P^B$ אם קיימת מ"ט A בעית הכרעה. נאמר כי A אם קיימת מ"ט ל"ד פולינומית עם גישת אורקל לשפה A המכריעה את A. נאמר כי $A \in NP^B$ אם קיימת מ"ט ל"ד פולינומית עם גישת אורקל לשפה

 $A \leq_T^p B \Longleftrightarrow A \in P^B$ מתקיים A, B מרעה בעיות הכרעה

 $.NP^C = \bigcup_{A \in \mathcal{C}} P^A$ ו ו- $P^C = \bigcup_{A \in \mathcal{C}} P^A$ ו ו- $P^C = \bigcup_{A \in \mathcal{C}} P^A$ ו ו-

 $\Sigma_{k+1} = NP^{\Sigma_k}$ מתקיים $k \geq 0$ לכל לכל

בעזרת מכונת אורקל ל"ד. MIN-CNF $\in \Pi_2$ הוכיחו כי

פתרון: צריך להראות כי M עם גישת אורקל . כלומר, שקיימת שפה $A\in NP$ ומ"ט ל"ד M עם גישת אורקל . $MIN\text{-}CNF\in \Sigma_2=NP^{NP}$ ל-A המכריעה את MIN-CNF

(אם הן לא NOT-EQUI $\in NP$ כי NOT-EQ = $\{(\phi_1,\phi_2)\mid \phi_2\}$ אם הן לא השפה ϕ_1 לא שקולה ל- ϕ_1 אם הן לא ϕ_2 כעת, נגדיר את המכונה ϕ_1 כך ש- $\phi_2(v)\neq \phi_2(v)$. כעת, נגדיר את המכונה

$:M^{\text{NOT-EQ}}(\phi)$

- .1 אם ϕ לא בצורת CNF, החזר 1
- ϕ -בצורת CNF קצרה יותר מ ϕ' נחש באופן ל"ד נוסחה ϕ'
 - .0 החזר $(\phi, \phi') \in NOT-EQ$.3
 - .4 החזר 1.

 ϕ' ואז האלגוריתם יחזיר 1, או שקיימת נוסחה קצרה יותר CNF נכונות: אם ϕ , או ש- ϕ לא בצורת CNF ואז האלגוריתם יחזיר 1, או שקיימת נוסחה קצרה יותר ϕ , המכונה ϕ , המכונה ϕ , ϕ ועבור חישוב המנחש את ϕ' , תחזיר 1. אם ϕ , המכונה ϕ , המכונה ϕ , המכונה ϕ , המכריעה את ϕ ϕ ולכן ϕ . ϕ ϕ מכריעה את ϕ ϕ ϕ ϕ .

 $S \in P^{\bar{S}}$ מתקיים מתקיים כי לכל בעית הכרעה מתקיים מרגיל:

שאילתא x, תבצע שאילתא S. המכונה תקבל קלט x, תבצע שאילתא פתרון: נראה מ"ט דטר' פולינומית עם גישת אורקל ל \bar{S} המכריעה את $z\in S$ ותחזיר תשובה הפוכה.

 $P^S = P^{ar{S}}$ מתקיים מתקיים בעית הכרעה מתרגיל:

פתרון: תהי $S'\in P^S$. כלומר, קיימת מ"ט דטר' פולינומית M עם גישת אורקל ל- $S'\in P^S$ מכריעה את S' נראה מ"ט דטר' פולינומית M' עם גישת אורקל ל- \bar{S} המכריעה את S' תפעל בדיוק כמו S', ובכל פעם ש-S' מבצעת שאילתא לאורקל, S' תבצע בדיוק אותה שאילתא ואז תהפוך את תשובת האורקל. מכיוון ש-S' שקולה לתשובת האורקל ל-S'. לכן S' עובדת בדיוק כמו S' ולכן מכריעה את S'.

 $P^S=P^{ar{S}}$ אין ולכן $P^{ar{S}}=P^{ar{S}}=P^S$, ולכן ומכאן גם ש-