Reply to Comment on the "Thermodynamic Trajectory of Enzyme Evolution"

Masato Kodaka

National Institute of Bioscience and Human-Technology, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan

Received: January 15, 1997

The comment made by Dunfold *et al.* concerns the interpretation of enzyme evolution.\(^1\) In the comment, they use threestep model (eq 7) instead of two-step model (eq 1) and conclude that eq 7 does not lead to diffusion-controlled reactions when k_2 is much smaller than $k_{-\text{diff}}$. This is the nature of things, because the turning point and the diffusion-controlled reaction appear when k_2 becomes much larger. It is true that the subsequent steps after formation of an encounter complex determine the ultimate speed and specificity, if $k_{-\text{diff}} \gg k_2$.

However, there is no earthly reason why k_2 should be much smaller than $k_{\rm -diff}$ in evolution of enzymes. It is more general to think that k_2 as well as k_3 increases with the evolution. Equations 8 and 9 do not hold any more, when k_2 becomes much larger. In our previous report, $k_{\rm cat}$ is not limited to $k_{\rm -1} \gg k_{\rm cat}$. Namely, the turning point and the diffusion-controlled area appear when the value of $k_{\rm cat}$ becomes comparable to $k_{\rm -1}$ and larger than $k_{\rm -1}$, respectively. In conclusion, when $\Delta G_{\rm cov}^{\dagger}$ decreases, there is a turning point, where specificity is the highest, and the diffusion-controlled area. However, as indicated by us in the previous paper, $k_{\rm cat} \gg k_{\rm cat$

References and Notes

(1) Kodaka, M.; Hase, A. J. Phys. Chem. 1995, 99, 10686.