Quasi-Fermi Levels

Quasi-Fermi levels are conceptual constructs, defined energy levels that can be used in conjunction with the energy band diagram to specify the carrier concentrations inside a semiconductor under nonequilibrium conditions.

RECALL $n = n_i e^{\frac{E_F - E_{f_i}}{kT}}$ $p = n_i e^{\frac{E_{f_i} - E_F}{kT}}$

- Two energies, E_{fc} , the quasi Fermi level for electrons, & E_{fv} , the quasi-Fermi level for holes
- These energies are related to the nonequilibrium carrier concentrations in the same way E_f is related to the equilibrium carrier concentrations

101

Example Problem

A uniformly donor-doped silicon wafer maintained at room temperature is suddenly illuminated with light at time t = 0. Assuming $N_D=10^{15}~cm^{-3}$, $\tau_p=10^{-6}sec$, and a light induced creation of 10^{17} EHPs/s, throughout the semiconductor, determine $\Delta p_n(t)$ for t>0.

