

Логические уравнения

12 марта 2013 г.

Повторим основные операции

Повторим таблицы истинности

Α	В	A & B
И	И	И
И	Л	Л
Л	И	Л
Л	Л	Л

Α	В	$A \vee B$
И	И	И
И	Л	И
Л	И	И
Л	Л	Л

- И & (И ∨ Л) = И
- И ∨ Л & И =

- И & (И ∨ Л) = И
- И ∨ Л & И = И

- И & (И ∨ Л) = И
- $\mathbb{N} \vee \mathbb{N} \otimes \mathbb{N} = \mathbb{N}$
- \bullet ¬ И & ¬Л \vee Л =

- И & (И ∨ Л) = И
- И ∨ Л & И = И
- ¬ И & ¬Л ∨ Л = Л

- И & (И ∨ Л) = И
- И ∨ Л & И = И
- ¬ И & ¬Л ∨ Л = Л
- ¬ И ∨ (¬Л ∨ Л & И) =

- И & (И ∨ Л) = И
- И ∨ Л & И = И
- \bullet \neg N & $\neg\mathsf{J}$ \lor J = J
- $\bullet \neg \mathsf{N} \lor (\neg \mathsf{J} \lor \mathsf{J} \& \mathsf{N}) = \mathsf{N}$

Правила де Моргана
$$\neg (A\&B) = \neg A\lor \neg B$$
 $\neg (A\lor B) = \neg A\& \neg B$

Правила де Моргана
$$\neg (A\&B) = \neg A\lor \neg B$$
 $\neg (A\lor B) = \neg A\& \neg B$

•
$$\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) =$$

•
$$\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) = \neg A \& B \& \neg C$$

Правила де Моргана
$$\neg (A\&B) = \neg A\lor \neg B$$
 $\neg (A\lorB) = \neg A\& \neg B$

- $\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) = \neg A \& B \& \neg C$
- $\neg (A \lor \neg (\neg B \lor C) =$

Правила де Моргана
$$\neg (A\&B) = \neg A\lor \neg B$$
 $\neg (A\lorB) = \neg A\& \neg B$

- $\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) = \neg A \& B \& \neg C$
- $\neg(A \lor \neg(\neg B \lor C) = \neg A \& \neg \neg(\neg B \lor C) =$

Правила де Моргана
$$\neg (A\&B) = \neg A\lor \neg B$$
 $\neg (A\lor B) = \neg A\& \neg B$

- $\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) = \neg A \& B \& \neg C$
- $\neg(A \lor \neg(\neg B \lor C) = \neg A \& \neg \neg(\neg B \lor C) = \neg A \& (\neg B \lor C) = \neg A$

Правила де Моргана
$$\neg (A\&B) = \neg A\lor \neg B$$
 $\neg (A\lor B) = \neg A\& \neg B$

- $\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) = \neg A \& B \& \neg C$
- Вспомним распределительный закон:

Распределительный
$$A\&(B\lor C) = (A\&B)\lor(A\&C)$$
 $A\lor(B\&C) = (A\lor B)\&(A\lor C)$

- $\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) = \neg A \& B \& \neg C$
- $\neg(A \lor \neg(\neg B \lor C) = \neg A \& \neg \neg(\neg B \lor C) = \neg A \& (\neg B \lor C) = \neg A$
- Вспомним распределительный закон:

Распределительный
$$A\&(B\lor C) = (A\&B)\lor(A\&C)$$
 $A\lor(B\&C) = (A\lor B)\&(A\lor C)$

- $\neg A \& \neg (\neg B \lor C) = \neg A \& (\neg \neg B \& \neg C) = \neg A \& B \& \neg C$
- Вспомним распределительный закон:

Распределительный
$$A\&(B\lor C) = (A\&B)\lor(A\&C)$$
 $A\lor(B\&C) = (A\lorB)\&(A\lor C)$

•
$$(\neg A \& \neg B) \lor (\neg A \& C) = \neg A \& \neg B \lor \neg A \& C$$

 Считая, что за символ ∧ обозначается конъюнкция, вычислите правильный ответ.

> А10. Укажите, какое логическое выражение равносильно выражению $A \land \neg (B \lor \neg C) \land \neg D$.

1)
$$A \wedge \neg B \wedge C \wedge \neg D$$

1)
$$A \wedge \neg B \wedge C \wedge \neg D$$
 3) $A \wedge (\neg B \vee \neg C) \wedge \neg D$

$$2) \quad A \lor \neg B \lor C \lor \neg I$$

2)
$$A \lor \neg B \lor C \lor \neg D$$
 4) $A \land \neg B \land \neg C \land \neg D$

- Считая, что за символ ∧ обозначается конъюнкция, вычислите правильный ответ.
- Правильный ответ: 1
 - А10. Укажите, какое логическое выражение равносильно выражению $A \land \neg (B \lor \neg C) \land \neg D$.

 - 1) $A \wedge \neg B \wedge C \wedge \neg D$ 3) $A \wedge (\neg B \vee \neg C) \wedge \neg D$

 - 2) $A \lor \neg B \lor C \lor \neg D$ 4) $A \land \neg B \land \neg C \land \neg D$

 Считая, что за символ ∧ обозначается конъюнкция, вычислите правильный ответ.

- **А10.** Укажите, какое логическое выражение равносильно выражению \neg (A \land \neg B \land C).
 - 1) $\neg A \lor \neg B \lor \neg C$
 - 2) $\neg A \wedge B \wedge \neg C$
 - 3) $\neg A \lor B \lor \neg C$
 - 4) $A \lor \neg B \lor C$

- Считая, что за символ ∧ обозначается конъюнкция, вычислите правильный ответ.
- Правильный ответ: 3
 - **А10.** Укажите, какое логическое выражение равносильно выражению \neg (A \land \neg B \land C).
 - 1) $\neg A \lor \neg B \lor \neg C$
 - 2) $\neg A \wedge B \wedge \neg C$
 - 3) $\neg A \lor B \lor \neg C$
 - 4) $A \lor \neg B \lor C$

ЕГЭ: таблицы истинности

- ullet Считая, что за символ \wedge обозначается конъюнкция, 1- истина, 0 — ложь, вычислите правильный ответ.
 - А9. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Y, Z.

Дан фрагмент таблицы истинности выражения F:

х	Y	Z	F
0	0	1	1
1	1	1	1
1	1	0	0

Какое выражение соответствует F?

$$X \wedge Y \wedge Z$$

1)
$$X \wedge Y \wedge Z$$
 3) $\neg X \wedge \neg Y \wedge Z$

2)
$$X \vee Y \vee \neg Z$$
 4) $\neg X \vee \neg Y \vee Z$

ЕГЭ: решение задачи

- Рассмотрим 1-ый вариант и подставим его в таблицу.
 - Если для всех трёх строк он подойдёт, то этот ответ и будет являться правильным.
 - Если хотя бы для одной строки 1-ый ответ не подходит, следовательно, это — неправильный ответ. В этом случае мы переходим ко второму варианту.
- Подставим 1-ый вариант в 1-ую строку:
- Л & Л & И должно равняться (согласно таблице) Истине.
- Однако: Л & Л & И = Л & И = Л.
- Таким образом, получаем противоречие. Следовательно, первый ответ заведомо неверный.
- Аналогично находим, что второй ответ не подходит к третьей строке, третий ответ не подходит ко второй строке.
 Следовательно, остаётся четвёртый.
- Подстановкой убеждаемся, что 4-ый ответ подходит во все строки.

Задача 2 на таблицу истинности

А9. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: X, Y, Z.

Дан фрагмент таблицы истинности выражения F:

Х	Y	Z	F
0	1	0	1
1	0	1	0
1	1	0	0

Какое выражение соответствует F?

- 1) $\neg X \wedge Y \wedge \neg Z$
- 2) $X \vee \neg Y \vee Z$
- 3) X ^ ¬ Y ^ Z
- 4) $\neg X \lor Y \lor \neg Z$

Импликация

Таблица истинности для конъюнкции

- Импликация ещё одна логическая операция, которая расшифровывается как следовательно.
- Обозначение: A => B. Выполняется **после** всех основных операций.

Α	В	A => B
И	И	И
И	Л	Л
Л	И	И
Л	Л	И

Правило импликации

Из лжи может следовать всё, что угодно.

$${N \& N => \Pi} = {N => \Pi = \Pi}$$

• Найти максимальное целое X, при котором истинно высказывание:

- Найти максимальное целое X, при котором истинно высказывание:
 - $(90 < X \cdot X) => (X < (X 1))$

- Найти максимальное целое X, при котором истинно высказывание:
 - $(90 < X \cdot X) => (X < (X 1))$
- Решение: Рассмотрим внимательно правую часть. Она всегда ложна, так как X всегда больше X-1.

- Найти максимальное целое X, при котором истинно высказывание:
 - $(90 < X \cdot X) => (X < (X 1))$
- Решение: Рассмотрим внимательно правую часть. Она всегда ложна, так как X всегда больше X-1.
- Следовательно, левая часть обязана быть тоже ложной, так как если бы она была истинной, то всё высказывание бы стало ложным (И=>Л=Л).

- Найти максимальное целое X, при котором истинно высказывание:
 - $(90 < X \cdot X) => (X < (X 1))$
- Решение: Рассмотрим внимательно правую часть. Она всегда ложна, так как X всегда больше X-1.
- Следовательно, левая часть обязана быть тоже ложной, так как если бы она была истинной, то всё высказывание бы стало ложным (И=>Л=Л).
- До каких пор 90 больше X²?

- Найти максимальное целое X, при котором истинно высказывание:
 - $(90 < X \cdot X) => (X < (X 1))$
- Решение: Рассмотрим внимательно правую часть. Она всегда ложна, так как X всегда больше X-1.
- Следовательно, левая часть обязана быть тоже ложной, так как если бы она была истинной, то всё высказывание бы стало ложным (И=>Л=Л).
- До каких пор 90 больше X²?
- ullet До 9 включительно, так как $10^2=100>90$.

- Найти максимальное целое X, при котором истинно высказывание:
 - $(90 < X \cdot X) => (X < (X 1))$
- Решение: Рассмотрим внимательно правую часть. Она всегда ложна, так как X всегда больше X-1.
- Следовательно, левая часть обязана быть тоже ложной, так как если бы она была истинной, то всё высказывание бы стало ложным (И=>Л=Л).
- До каких пор 90 больше X²?
- ullet До 9 включительно, так как $10^2=100>90$.
- При $X \ge 10$ левая часть станет истинной, а высказывание станет ложным.

- Найти максимальное целое X, при котором истинно высказывание:
 - $(90 < X \cdot X) => (X < (X 1))$
- Решение: Рассмотрим внимательно правую часть. Она всегда ложна, так как X всегда больше X-1.
- Следовательно, левая часть обязана быть тоже ложной, так как если бы она была истинной, то всё высказывание бы стало ложным (И=>Л=Л).
- До каких пор 90 больше X²?
- ullet До 9 включительно, так как $10^2=100>90$.
- При $X \ge 10$ левая часть станет истинной, а высказывание станет ложным.
- Следовательно, ответ: X = 9.

- ① Найдите максимальное положительное целое число X, при котором **истинно** высказывание:
 - $((X-1) < X) => (40 > X \cdot X)$
- ullet Найдите наименьшее целое положительное число X, при котором ложно высказывание:
 - $\neg (X \cdot X < 9) => (X > (X + 2))$
- ullet Найдите наименьшее целое положительное число X, при котором ложно высказывание:
 - $(4 > -(4 + X) \cdot X)) => (30 > X \cdot X)$