Homework 1

Yuan Fang

September 12, 2022

Problem 1:

When $\alpha \to 0$, only the constant term is left in the equation and all nodes have the same centrality β .

As α increases, the centrality increases and eventually there is one point at which it diverges. It happens when

$$det(\mathbf{I} - \alpha \mathbf{A}) = 0$$

such that $(\mathbf{I} - \alpha \mathbf{A})$ is not invertible.

 $det(\mathbf{I} - \alpha \mathbf{A}) = 0 \Rightarrow det(\alpha^{-1}\mathbf{I} - \mathbf{A}) = 0 \Rightarrow \alpha^{-1} = \text{eigenvalues of the matrix } \mathbf{A}$

The smallest α to make $det(\mathbf{I} - \alpha \mathbf{A}) = 0$ is $\alpha = \frac{1}{\lambda_1}$, where λ_1 is the largest eigenvalue of the matrix \mathbf{A} .

Therefore, $0 < \alpha < \frac{1}{\lambda_1}$ guarantees the convergence of the Katz centrality. Beyond this point, there is little guidance for the value that α should take. In practice, most researchers employ values close to $\frac{1}{\lambda_1}$ to place maximum weight on the eigenvector term and smallest weight on the constant term.

Problem 2: $|N(v_i) \cap N(v_j)| = [A^T A]_{ij} = [A^2]_{ij} = \text{the number of walks of length 2 between } v_i \text{ and } v_j.$

Problem 3: Please see the pyt	hon script		
1 Toblem 3. Thease see the pyth	non script.		