

Mathematical Foundations for Data Science (Probability)

Probability Measures on Discrete Sample Spaces, Conditional Probability, Bayes' Theorem, Independence of Events, Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

17 August 2024

Probability Measures on Discrete Spaces

Discrete Sample Spaces

Let Ω be a non-empty, discrete (finite or countably infinite) sample space. Then, Ω may be represented as

$$\Omega = \{\omega_1, \omega_2, \ldots\}$$

In this case, we simply take $\mathscr{F}=2^{\Omega}$

Probability Assignment for Discrete Sample Spaces

Given (Ω, \mathscr{F}) , we define $\mathbb{P}: \mathscr{F} \to [0, 1]$ as

$$\mathbb{P}(\mathbf{A}) = \sum_{\omega \in \mathbf{A}} \mathbb{P}(\{\omega\}), \quad \mathbf{A} \in \mathscr{F},$$

while making sure that the assignment \mathbb{P} satisfies $\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1$.

•
$$\Omega = \{H, T\}, \quad \mathscr{F} = 2^{\Omega} = \left\{\emptyset, \Omega, \{H\}, \{T\}\right\}$$

•
$$\Omega = \{H, T\}, \quad \mathscr{F} = \mathbf{2}^{\Omega} = \left\{\emptyset, \Omega, \{H\}, \{T\}\right\}$$

$$\mathbb{P}(\{H\})=p=1-\mathbb{P}(\{T\}),\quad p\in[0,1]$$

$$ullet$$
 $\Omega=\mathbb{N},\quad \mathscr{F}=\mathbf{2}^{\Omega}$

•
$$\Omega = \{H, T\}, \quad \mathscr{F} = \mathbf{2}^{\Omega} = \left\{\emptyset, \Omega, \{H\}, \{T\}\right\}$$

$$\mathbb{P}(\{H\}) = p = 1 - \mathbb{P}(\{T\}), \quad p \in [0, 1]$$

•
$$\Omega = \mathbb{N}$$
, $\mathscr{F} = 2^{\Omega}$

$$\mathbb{P}(\{k\}) = \dots$$
 such that $\sum \mathbb{P}(\{k\}) = 1.$

•
$$\Omega = \{H, T\}, \quad \mathscr{F} = \mathbf{2}^{\Omega} = \left\{\emptyset, \Omega, \{H\}, \{T\}\right\}$$

$$\mathbb{P}(\{H\}) = p = 1 - \mathbb{P}(\{T\}), \quad p \in [0, 1]$$

•
$$\Omega = \mathbb{N}$$
, $\mathscr{F} = 2^{\Omega}$

$$\mathbb{P}(\{k\}) = \dots$$
 such that $\sum_{k=1}^{\infty} \mathbb{P}(\{k\}) = 1$.

-
$$\mathbb{P}(\{k\}) = p(1-p)^{k-1}$$
, $k \in \Omega$ $(p \in [0, 1], \text{Geometric measure})$

•
$$\Omega = \mathbb{N} \cup \{0\}, \quad \mathscr{F} = 2^{\Omega}$$

$$-\mathbb{P}(\{k\})=e^{-\lambda}\frac{\lambda^k}{k!},\quad k\in\Omega\quad (\lambda>0, \text{Poisson measure})$$

Conditional Probabilities

Conditional Probability Measure

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Conditional Probability

Given $B \in \mathscr{F}$ such that $\mathbb{P}(B) > 0$, define

$$\mathbb{P}_B:\mathscr{F} o [0,1] \qquad ext{via} \qquad \mathbb{P}_B(A)\coloneqq rac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}, \quad A\in \mathscr{F}.$$

Then, \mathbb{P}_B is a valid probability measure on (Ω, \mathscr{F}) , and is called the conditional probability measure conditioned on the event B.

Notation: $\mathbb{P}_B(A)$ is denoted more commonly as $\mathbb{P}(A|B)$.

\mathbb{P}_B is a Valid Probability Measure

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

•
$$\mathbb{P}_B(\emptyset) = 0$$

\mathbb{P}_B is a Valid Probability Measure

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

•
$$\mathbb{P}_B(\emptyset) = 0$$

•
$$\mathbb{P}_B(\Omega) = 1$$

\mathbb{P}_{B} is a Valid Probability Measure

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

• $\mathbb{P}_B(\emptyset) = 0$

• $\mathbb{P}_B(\Omega) = 1$

• For any mutually disjoint collection of sets $A_1, A_2, \ldots \in \mathscr{F}$,

$$\mathbb{P}_B\left(igcup_{i=1}^\infty A_i
ight) = \sum_{i=1}^\infty \mathbb{P}_B(A_i).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• Fix $B \in \mathscr{F}$ such that $0 < \mathbb{P}(B) < 1$. Then, for any $A \in \mathscr{F}$,

$$\mathbb{P}(A) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) + \mathbb{P}(A|B^c) \cdot \mathbb{P}(B^c).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• (Law of Total Probability) Let $B_1, B_2, \ldots \in \mathscr{F}$ be a partition of Ω , i.e., $B_i \cap B_j = \emptyset$ for all $i \neq j$, and $\bigcup_{i=1}^{\infty} B_i = \Omega$. Then, for any $A \in \mathscr{F}$,

$$\mathbb{P}(A) = \sum_{i=1}^{\infty} \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i).$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• (Bayes' Theorem) Let $B_1, B_2, \ldots \in \mathscr{F}$ be as before. For any $A \in \mathscr{F}$ such that $\mathbb{P}(A) > 0$,

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_{i=1}^{\infty} \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}.$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• (Decomposition Rule for Conditional Probabilities) Let $A_1, A_2, \ldots \in \mathscr{F}$. Then,

$$\mathbb{P}\left(igcap_{i=1}^{\infty}A_i
ight)=\mathbb{P}(A_1)\cdot\mathbb{P}(A_2|A_1)\cdot\mathbb{P}(A_3|A_1\cap A_2)\cdot\cdot\cdot \ =\mathbb{P}(A_1)\cdot\prod_{i=2}^{\infty}\mathbb{P}\left(A_iigg|igcap_{j=1}^{i-1}A_j
ight),$$

provided each of the conditional probabilities on the right-hand side is defined.

Independence

Independence of Events

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of Events)

Events $A, B \in \mathcal{F}$ are said to be independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

We write $A \perp \!\!\! \perp B$ as a shorthand notation to denote that A and B are independent.

Independence of Events

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of Events)

Events $A, B \in \mathscr{F}$ are said to be independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

We write $A \perp \!\!\! \perp B$ as a shorthand notation to denote that A and B are independent.

- The definition of independence does not involve conditional probabilities
- If $\mathbb{P}(B) > 0$, then

$$A \perp \!\!\! \perp B \iff \mathbb{P}(A|B) = \mathbb{P}(A).$$

Independence of Events

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of Events)

• Events $A_1, A_2, \ldots, A_n \in \mathscr{F}$ are said to be independent if for all $\mathcal{I}_0 \subseteq \{1, 2, \ldots, n\}$,

$$\mathbb{P}\left(igcap_{i\in\mathcal{I}_0}A_i
ight)=\prod_{i\in\mathcal{I}_0}\mathbb{P}(A_i).$$

• Let \mathcal{I} be an arbitrary index set. A collection of events $\{A_i : i \in \mathcal{I}\}$ is independent if for every finite subset $\mathcal{I}_0 \subseteq \mathcal{I}$, the collection of events $\{A_i : i \in \mathcal{I}_0\}$ is independent.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathscr{F} \qquad \forall x \in \mathbb{R}.$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathscr{F} \qquad \forall x \in \mathbb{R}.$$

Remarks:

A random variable is neither random nor a variable; it is a deterministic function

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathscr{F} \qquad \forall x \in \mathbb{R}.$$

- A random variable is neither random nor a variable; it is a deterministic function
- The definition of a random variable is closely tied to the underlying σ -algebra ${\mathscr F}$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathscr{F} \qquad \forall x \in \mathbb{R}.$$

- A random variable is neither random nor a variable; it is a deterministic function
- The definition of a random variable is closely tied to the underlying σ -algebra ${\mathscr F}$
- If X is a random variable with respect to \mathscr{F} , it is called an \mathscr{F} -measurable function

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathscr{F} \qquad \forall x \in \mathbb{R}.$$

- A random variable is neither random nor a variable; it is a deterministic function
- The definition of a random variable is closely tied to the underlying σ -algebra ${\mathscr F}$
- If X is a random variable with respect to \mathscr{F} , it is called an \mathscr{F} -measurable function
- ullet The definition of a random variable does not involve ${\mathbb P}$

•
$$\Omega=\{1,2,\ldots,6\}, \qquad \mathscr{F}=\left\{\emptyset,\Omega\right\}, \qquad X(\omega)=\omega$$
 Is X a random variable with respect to \mathscr{F} ?

•
$$\Omega = \{1, 2, \dots, 6\}, \qquad \mathscr{F} = \{\emptyset, \Omega\}, \qquad X(\omega) = \omega$$

Is X a random variable with respect to \mathscr{F} ?

• What functions X are random variables with respect to \mathscr{F} ?

• $\Omega = \{1, 2, 3, 4, 5\},$ $\mathscr{F} = \{\emptyset, \Omega, A, A^c\}$ for a fixed $A \subseteq \Omega$ What functions X are random variables with respect to \mathscr{F} ?

•
$$\Omega = \{1, 2, 3, 4, 5\}, \qquad \mathscr{F} = \sigma\left(\left\{\{1\}, \{2, 3\}\right\}\right)$$
What functions X are random variables with respect to

What functions X are random variables with respect to \mathscr{F} ?

ullet $\Omega=\mathbb{N}, \qquad \mathscr{F}=2^{\Omega}$

What functions X are random variables with respect to \mathscr{F} ?