Exercice 1

Dans chaque cas, montrer que f est continue sur son ensemble de définition \mathcal{D}_f et déterminer si la fonction f est \mathcal{C}^1 ou non sur \mathcal{D}_f .

a)
$$f(x) = \begin{cases} x \ln x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$
, $\mathcal{D}_f = [0, +\infty[$

c)
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
, $\mathcal{D}_f = \mathbb{R}$

b)
$$f(x) = \begin{cases} e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ e^{1/x} & \text{si } x < 0 \end{cases}$$

d)
$$f(x) = |x| \ln(1+x)$$
, $\mathcal{D}_f =]-1; +\infty[$.

Exercice 2

Dans chaque cas déterminer la limite de f(x) lorsque x tend vers a à l'aide d'une dérivée connue :

a)
$$f(x) = \frac{3 - \sqrt{9 - 4x}}{x}$$
, $a = 0$

c)
$$f(x) = \frac{2^x - 4}{x - 2}$$
, $a = 2$

b)
$$f(x) = \frac{\cos(x)}{x - \frac{\pi}{2}}, \quad a = \frac{\pi}{2}$$

d)
$$f(x) = \frac{x-1}{8\arctan(x) - 2\pi}$$
, $a = 1$

Exercice 3

Dans chaque cas déterminer la limite de f(x) lorsque x tend vers a à l'aide d'un développement limité :

a)
$$f(x) = \frac{1 - e^{3x}}{2x}$$
, $a = 0$

d)
$$f(x) = \frac{\ln(x)}{3x - 3}$$
, $a = 1$

b)
$$f(x) = \frac{3 - \sqrt{9 - 4x}}{x}$$
, $a = 0$

e)
$$f(x) = \frac{e^{2x} - \cos(x)}{\sin(3x)}, a = 0$$

c)
$$f(x) = \frac{\cos(x)}{x - \frac{\pi}{2}}, \quad a = \frac{\pi}{2}$$

f)
$$f(x) = \left(\frac{\ln(1+x)}{\ln x}\right)^x$$
, $a = +\infty$

Exercice 4 -

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 - 1} - 2x$. À l'aide d'un développement limité, montrer que $\lim_{x \to +\infty} f(x) = 0$.

* Exercice 5

On considère la fonction f définie sur $[0; +\infty[$ par

$$f(x) = 2\sqrt{x^2 + 3x} - 3\sqrt[3]{x^3 - 4x^2} + \sqrt[4]{x^4 + 5x^3}$$

Déterminer la limite de f(x) lorsque x tend vers $+\infty$.

Exercice 6

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$$

- 1) Montrer que f est de classe \mathcal{C}^{∞} sur $]0; +\infty[$ et que pour tout $n \in \mathbb{N}$ et tout x > 0 on a $f^{(n)}(x) = e^{-1/x} P_n(1/x)$ où P_n est un polynôme de degré 2n.
- 2) Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

* * Exercice 7

Le but de cet exercice est de généraliser le théorème de Rolle : soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable sur \mathbb{R} . On suppose qu'il existe $\ell \in \mathbb{R}$ tel que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = \ell$. Montrer qu'il existe un réel c tel que f'(c) = 0.

* * Exercice 8

En utilisant le théorème de Rolle, montrer par récurrence sur $n \in \mathbb{N}$ qu'un polynôme non nul de degré n admet au plus n racines distinctes.

Exercice 9

Déterminer dans chaque cas un équivalent simple de u_n lorsque n tend vers $+\infty$.

- 1) $u_n = \sqrt{n^4 + 5n + 2} n^2$
- 2) $u_n = \ln(n^2 + 1) 2\ln(n + 5)$
- 3) $u_n = e^{1/n} \sqrt{1 + 1/3n}$

* * * Exercice 10

Soient f et g deux fonctions de classe \mathcal{C}^{∞} .

- 1) Montrer que pour tout $n \in \mathbb{N}$, $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$ (Formule de Leibniz)
- 2) **Application :** soient a et b deux réels. On considère la fonction φ définie sur \mathbb{R} par $\varphi(x) = (x-a)^n(x-b)^n$.
 - a) Calculer $\varphi^{(n)}(x)$
 - b) En considérant le cas a = b, en déduire $\sum_{k=0}^{n} (C_n^k)^2$.

Rappel: on note $C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Exercice 11

À l'aide du théorème des accroissements finis, démontrer les inégalités suivantes :

- a) $\forall x \in \mathbb{R}, \quad e^x \ge 1 + x$
- b) $\forall x \in]-1; +\infty[, \ln(1+x) \le x$
- c) $\forall x, y \in \mathbb{R}$, $|\sin y \sin x| \le |y x|$

Exercice 12 -

Le but de cet exercice est d'étudier la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}$.

On considère la fonction f définie sur l'intervalle [1;2] par $f(x) = \frac{x}{2} + \frac{1}{x}$.

- 1) Étudier les variations de f et montrer que pour tout $x \in [1;2]$ on a $f(x) \in [1;2]$.
- 2) Montrer que la suite (u_n) est bien définie et à valeurs dans [1;2].
- 3) Montrer que f est de classe C^2 et déterminer le maximum de |f'(x)| sur [1;2].
- 4) En déduire qu'il existe un réel $r \in [0; 1[$ tel que $\forall n \in \mathbb{N}, |u_{n+1} u_n| \leq r^n |u_1 u_0|$.
- 5) Montrer que la série de terme général $u_{n+1} u_n$ converge puis en déduire que la suite (u_n) converge.
- 6) Déterminer la limite de (u_n) .

* * Exercice 13

Le but de cet exercice est de généraliser le résultat de l'exercice précédent. Soit f une fonction définie et dérivable sur un intervalle [a;b] telle que

- $\forall x \in [a; b]$ on a $f(x) \in [a; b]$.
- Il existe un réel $r \in [0; 1[$ tel que $\forall x \in [a; b], |f'(x)| \le r$

Soit (u_n) une suite définie par $u_0 \in [a;b]$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1) Montrer que f admet un unique point fixe, c'est à dire un unique réel $\ell \in [a;b]$ tel que $f(\ell) = \ell$.
- 2) Montrer par récurrence que (u_n) est bien définie et à valeurs dans [a;b].
- 3) Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} \ell| \le r|u_n \ell|$
- 4) En déduire que pour tout $n \in \mathbb{N}$, $|u_n \ell| \le r^n |u_0 \ell|$.
- 5) En déduire que (u_n) converge vers ℓ .

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = 1 + \frac{1}{2}xe^{-x}$.

- 1) Montrer que f est de classe C^2 sur $[0; +\infty[$.
- 2) Montrer que l'intervalle $I = [1; +\infty[$ est stable par f.
- 3) Montrer que pour tout $x \in [0; +\infty[, |f'(x)| \le \frac{1}{2}]$
- 4) Prouver qu'il existe un unique réel $\alpha \in [1; +\infty[$ tel que $f(\alpha) = \alpha$.
- 5) On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Montrer que pour tout $n \in \mathbb{N}$, $|u_n - \alpha| \le \frac{1}{2^n} |u_0 - \alpha|$.
- 6) En déduire la limite de la suite (u_n) .