Indian Institute of Technology Hyderabad

Solutions to the Equation $0 \cdot x = const.$

ABHISHEK AGARWAL EP17BTECH11001

November 2019

1 Abstract

The basic motivation is to be able to write formally the solutions to the equation $0 \cdot x = a; a \in \mathbf{R}$. Clearly there isn't any solution for x where x is also a real number, Thus we proceed here step by step to define what kind of rules would allow us to write such solutions.

2 Axioms and Structure

We begin by declaring a new set T, which is a super set of R along with a new multiplication rule \times which is different from regular real multiplication (denoted as \cdot hereafter). Formally:

Axiom 1 There exists T such that $R \subset T$ and define $\times : R \times T \to R$, such that

- 1. $a \cdot (b \times x) = (a \cdot b) \times x$ where $a, b \in \mathbf{R}$ and $x \in \mathbf{T}$
- 2. For every equation $a \times x = b$ where $a, b \in \mathbf{R}$, there exists a unique $x \in \mathbf{T}$ which satisfies the equality.

Theorem 1 If $a \times x = a \times y$ where $a \in \mathbf{R}$ and $x, y \in \mathbf{T}$ then x = y.

The reason is simply that axiomatically we have assumed such equations to have a unique solution. This also suggests that all elements in T can be labelled by two real numbers.

Definition 1 For every x such that $a \times x = b$; where $a, b \in \mathbf{R}$, x is denoted by T(b, a).

Since $R \subseteq T$, $R \times R \subseteq R \times T$. Also note that \cdot is a binary relation from $R \times R$ to R. Thus if can preserve all the mappings \cdot defines and have \times behave the same way with some additional mappings, we can say that $\cdot \subseteq \times$. This allows us to rewrite the equation $0 \cdot x = a$; $a \in R$ as $0 \times x = a$; $a \in R$ & $x \in T$.

Corollary 1 $a \times T(b,c) = (a \cdot b)/c$ if $c \neq 0$.

Proof:

$$\begin{aligned} a \times T(b,c) &= ((a \cdot c)/c) \times T(b,c) & \text{if } \mathbf{c} \neq \mathbf{0} \\ &= (a/c) \cdot (c \times T(b,c)) & \text{if } \mathbf{c} \neq \mathbf{0} \\ &= (a/c) \cdot (b) & \textit{Def 1, if } \mathbf{c} \neq \mathbf{0} \\ &= (a \cdot b)/c & \text{if } \mathbf{c} \neq \mathbf{0} \end{aligned}$$

Theorem 2 Any Real Number $a = 1 \times T(a, 1)$.

Proof flows directly from Corollary 1.

Theorem 3 T(0, a) = T(0, b) where $a, b \in \mathbb{R}$ & $a, b \neq 0$.

Proof: Consider $a, b, r \in \mathbf{R}$

$$r \times T(0, a) = 0$$
 $Cor 1$, if $a \neq 0$
= $r \times T(0, b)$ $Cor 1$, if $b \neq 0$
 $\implies T(0, a) = T(0, b)$ $Th 1$, if $a, b \neq 0$

It is remarkable to know that T(0,r) is the same number for all values for $r \in \mathbb{R}$ except 0.

Axiom 2 Define a new relation, $\circ: T \times T \to T$ such that

$$(a \times T_1) \times T_2 = a \times (T_1 \circ T_2)$$
 where $a \in \mathbf{R} \& T_1, T_2 \in \mathbf{T}$

Theorem 4 The tuple (T, \circ) forms a group.

Proof:

- 1. Closure This is trivial since T is closed under \circ .
- 2. Associativity Consider $a \in \mathbf{R}$ and $T_1, T_2, T_3 \in \mathbf{T}$,

$$((a \times T_1) \times T_2) \times T_3 = ((a \times T_1) \times T_2) \times T_3$$

$$(a \times (T_1 \circ T_2)) \times T_3 = (a \times T_1) \times (T_2 \circ T_3)$$

$$a \times ((T_1 \circ T_2) \circ T_3) = a \times (T_1 \circ (T_2 \circ T_3))$$

$$(T_1 \circ T_2) \circ T_3 = T_1 \circ (T_2 \circ T_3)$$
Th 1

3. Existence of Identity Consider $b, a \in \mathbb{R}$ where $a \neq 0$ and $T_1, T(a, a) \in \mathbb{T}$

$$b \times (T_1 \circ T(a,a)) = (b \times T_1) \times T(a,a) \qquad Ax \ 2$$

$$= ((b \times T_1) \cdot a)/a \qquad Cor \ 1$$

$$= b \times T_1$$

$$\implies T_1 \circ T(a,a) = T_1 \qquad Th \ 1, \text{ if } a \neq 0$$

$$b \times (T(a,a) \circ T_1) = (b \times T(a,a)) \times T_1 \qquad Ax \ 2$$

$$= ((b \cdot a)/a) \times T_1 \qquad Cor \ 1$$

$$= b \times T_1$$

$$\implies T(a,a) \circ T_1 = T_1 \qquad Th \ 1, \text{ if } a \neq 0$$

Since T(a,a) acts as both left and right identity to T_1 and T_1 is any element in T, T(a,a) where $a \neq 0$ is the unique identity element in T. This also means that all equations of the form $a \times x = a$ where $a \in \mathbf{R}, a \neq 0$ have the same solution chosen arbitrarily as T(1,1) = I(Notation). It is interesting to note that if a = 0, then x can be any real number hence the solution becomes \mathbf{R} .

4. Existence of Inverse Consider $a, b \in \mathbb{R}$ and $T_1, T_2 \in \mathbb{T}$ such that

$$a \times T_1 = b \& b \times T_2 = a$$

$$\implies (a \times T_1) \times T_2 = b \times T_2 \& (b \times T_2) \times T_1 = a \times T_1$$

$$\implies (a \times T_1) \times T_2 = a \& (b \times T_2) \times T_1 = b$$

$$\implies a \times (T_1 \circ T_2) = a \& b \times (T_2 \circ T_1) = b \qquad Ax \ 2$$

$$\implies a \times (T_1 \circ T_2) = a \times I \& b \times (T_2 \circ T_1) = b \times I$$

$$\implies T_1 \circ T_2 = I \& T_2 \circ T_1 = I \qquad Th \ 1$$

Thus T_1 and T_2 are inverses of each other. In formal notation, $T_1 = T(b, a)$ and $T_2 = T(a, b)$. Hence for every $T(a, b) \in \mathbf{T}$ we have it's inverse T(b, a) such that $T(a, b) \circ T(b, a) = T(b, a) \circ T(a, b) = i$.

This completes our proof and thus Theorem 4 is proven.

3 Structure of T(a, b)

So far we already know three very important things about T:

- 1. Any real number r can be represented by as T(r,1) since $1 \times T(r,1) = r$
- 2. All T(0,a) are the same number (call it N for Null) (except when a=0) which has the property that multiplying it with all real numbers gives us 0
- 3. All T(a, a) are the same number which we call I (except when a = 0) which has the property that multiplying it with any real number leaves it unchanged.

These rules leave out the very mysterious T(0,0). So far if we let T(a,b)=a/b and let T(0,0) be undefined, we land back at the regular real multiplication. In essence the rules for T so far are the rules any multiplication system should to follow to imitate real multiplication anyway. We must in a way identify and re-establish all rules that do not break if we were to define a division by zero. This is exactly what we have done so far. The question of T(0,0) is a question of dividing by zero, which our rules are not strong enough to include so far and will be possibly for the near future.