Aluno: Data:

1a Questão) (1,5 ponto) Considere a seguinte sequencia de instruções, e assuma que estas sejam executadas em um pipeline com 5 estágios (BI(Busca), DI (Decodificação), EX (Execução) MEM (Memória) WB (Write-back))

Sequencia Instruções
add \$1, \$5, \$3
sw \$1, 0(\$2)
lw \$1, 4(\$2)
add \$5, \$5. \$1
sw \$1, 0 (\$2)

a) (0,5 ponto) Quais dependências são conflitos (hazards) que podem ser resolvidos com adiantamento? Quais dependências que são conflitos e irão provocar a parada (bolhas) na execução?

		1	2	3	4	5	6	7	8	10	11	12	13	14
add	\$1, \$5, \$3	ВІ	DI	EX		W								
sw	\$1, 0(\$2)		ВІ	DI	Χ	Х	EX	MEM						
lw	\$1, 4(\$2)			ВІ	Х	Х	DI	EX	MEM	I ^W				
add	\$5, \$5. \$1						BI	DI	Х	▼EX	MEM	W		
sw	\$1, 0 (\$2)							BI	Х	DI	EX	MEM		

add \$1, \$5, \$3
 Este conflito não pode ser resolvido com adiantamento. O adiantamento é realizado entre Rd de uma instrução a frente e RS e Rt de uma instrução anterior. (0.2 ponto)
 Iw \$1, 4(\$2)
 Se adiantamento precisa de uma bolha - 0.15. Sem adiantamento precisa de duas bolhas - 0.15. Se mencionar apenas que provoca bolhas (0,2)

add \$5, \$5. \$1

b) (0,5 ponto) Se não há adiantamento ou detecção de conflito, insira nops para assegura a execução correta e desenhe o diagrama de execução do pipeline para este código.

Sequencia Instruções
add \$1, \$5, \$3
NOP 0,15 ponto
NOP
sw \$1, 0(\$2)
lw \$1, 4(\$2)
NOP 0,15 ponto
NOP
add \$5, \$5. \$1
sw \$1, 0 (\$2)

1 NOP - 0.1
2 NOP - 0.15
1 NOOP Lugar errado 0.1 (descontar)
2 NOOP Lugar errado 0.15 (descontar)

Diagrama - 0,2 ponto

	1	2	3	4	5	6	7	8	10	11	12	13	14
add \$1, \$5, \$3	BI	DI	EX		W								
NOP		ВІ	DI										
NOP			BI	DI									
sw \$1, 0(\$2)				ВІ	DI	EX	MEM						
lw \$1, 4(\$2)					BI	DI	EX	MEM	WB				
NOP						ВІ	DI						
NOP							BI	DI					
add \$5, \$5. \$1								BI	DI	EX	MEM	W	
sw \$1, 0 (\$2)									ВІ	DI	EX	MEM	W

c) (0,5 ponto) Repita o item anterior, mas adicione nops somente quando um conflito não pode ser evitado por mudando ou rearranjando estas instruções. Você pode assumir o registrador \$S7 para guardar valores temporários em seu código modificado.

Criterios correção

- Substitui R7 no lugar certo 0.15
- Reduziu o numero de nops para 1 e colocou no lugar certo- 0,15 ponto
- Diagrama 0,2

	1	2	3	4	5	6	7	8	10	11	12	13	14
add \$1, \$5, \$3	ВІ	DI	EX		W								
lw \$7, 4(\$2)		ВІ	DI	EX	MEM	W							
NOP			ВІ	DI									
sw \$1, 0(\$2)				ВІ	DI	EX	MEM						
add \$5, \$5. \$7					BI	DI							
sw \$7, 0 (\$2)						ВІ	DI	EX	MEM				

ou

	1	2	3	4	5	6	7	8	10	11	12	13	14
add \$7, \$5, \$3	BI	DI	EX		W								
lw \$1, 4(\$2)		ВІ	DI	EX	MEM	W							
NOP			ВІ	DI									
sw \$7, 0(\$2)				ВІ	DI	EX	MEM						
add \$5, \$5. \$1					BI	DI							
sw \$1, 0 (\$2)						BI	DI	EX	MEM				

2a Questão) (1,0 Ponto) Considere o conjunto de instruções abaixo

				Lat	ência	
11	lw	F2	45(R3)		1	
12	div	F6	F6	F4	5	
13	mult	F0	F2	F4	4	
14	div	F8	F6	F2	5	
15	add	F6	F8	F2	1	
16	sub	F10	F0	F6	1	

a) (0,5 ponto) Identifique as situações de dependência (WAW, WAR, RAW) na seguinte sequência de código acima, do MIPS64:

WAW: I2 - I5, -- 0,05 ponto

WAR: I5 - I4, I5 - I2 -- 0,1 ponto

RAW: I3-I1, I4-I1, I5-I1, I4 - I2, I5-I4, I6-I2, I6 - I3, I6 - I5 - 0,40 ponto

b) (0,45 ponto) Apresente uma sequência de termino em ordem e outra em fora de ordem (que execute no menor tempo)

1 a 2 - 0.05 dependencia 0.05

3 a 4 - 0.1

Termino em ordem - 0,20- ponto (melhor resposta)

12	I1	I1	13		12	14	13			14	15	15	16	16			
outr	a pos	sibilio	dade	mas ı	usand	o um	tempo	mai	or								
11	I1	12	13				12	13	14	 			14	15	15	16	16
outr	a pos	sibilio	dade														
11	12	l1	13			12	I3	14		 		14	15	15	16	16	

Fora de ordem 0,25 ponto (melhor resposta)

11	I1	13	12		13		12	14			14	15	15	16	16
11	11	12	13	 		13	12	14	 	 	14	15	15	16	16

3a Questão) (1,5 ponto) Suponha que uma máquina foi melhorada fazendo com que todas as instruções de ponto flutuante executassem 5 vezes mais rápido.

a) (0,75 ponto) Se o tempo de execução de um certo benchmark antes da melhoria era de 10 segundos. Qual será o ganho (speedup) se metade deste tempo é gasto executando instruções de ponto flutuante?

$$T_{old} = 10$$

$$T_{new} = T_{old} * \left[(1 - fraction) + \frac{fraction}{speed\ up} \right]$$

$$T_{new} = T_{old} * \left[(1 - 0.5) + \frac{0.5}{5} \right]$$
 $T_{new} = T_{old} * [0.5 + 0.1]$
 $T_{new} = T_{old} * 0.6$
 $Speed_{up} = \frac{T_{old}}{T_{new}} = \frac{1}{0.6} = 1.66$

Se colocar 1,66 % ao invés de 166% - descontar - 0.05

b) (0,75 ponto) Suponha que devemos escolher um benchmark que demonstre a melhora na nova unidade de ponto flutuante. Deseja-se mostrar um ganho geral da ordem de 3. Considere um benchmark que roda em 100 segundos com o antigo hardware de ponto flutuante. Qual deve ser a proporção de operações de ponto flutuante nos programas deste benchmark de forma a se alcançar o ganho desejado?

$$\begin{split} T_{new} &= T_{old} * \left[(1 - fraction) + \frac{fraction}{speed_up} \right] \\ 1 &= \frac{T_{old}}{T_{new}} * \left[(1 - fraction) + \frac{fraction}{speed_up} \right] \end{split}$$

$$1 = 3 * \left[(1 - fraction) + \frac{fraction}{5} \right]$$

$$1 = 3 * \left[\frac{5 - 4 * fraction}{5} \right]$$

$$5 = 15 - 12 * fraction$$

$$fraction = \frac{10}{12} = 0.83$$

4a Questão) (2,0 ponto) Determine o número real de ciclos de clock para executar uma vez o trecho abaixo (do blez \$t1,end até uma instrução que salte para trás ou até a última instrução do trecho ser executada, o que acontecer primeiro). Suponha unidade de adiantamento capaz de adiantar dados da saída do terceiro estágio para a entrada do terceiro estágio, da saída do quarto estágio para a entrada do terceiro, e da saída do quarto estágio para a entrada do quarto estágio. Assuma também leitura após escrita no banco de registrador no mesmo ciclo e um preditor de saltos de 2 bits que inicialmente prevê salto não-realizado. O PC é escrito no quarto ciclo de relógio de cada instrução. Detalhe a execução no diagrama pipeline abaixo, indique todos os adiantamentos de dados que ocorrerem (se ocorrerem) e mostre as bolhas nas posições adequadas, caso estas existam. Os valores iniciais dos registradores pertinentes são: \$t0=0x10010000, \$t1=0x44 (=68 base 10), \$t2=0, \$t4=0, \$t3=0x100100AA Número de ciclos igual a ____14____

Critério correção

- cada adiantamento errado -0.1
- Se não seguir notação, considerar parcialmente o resultado (divide por o numero de instruções por 2)

Instrução	1	2.	3.	4.	5.	6.	7.	8.	9.	10	11	12	13	14	15	16	17	18	19
loop: blez \$t1,end	ВІ	DI	EX								ВІ	DI	EX						
sltiu \$t2 ,\$t1,65		BI	DI	EX		W													
bne \$t2,\$zero,nxt			ВІ	DI	▼EX														
sltiu \$t2 ,\$t1,91				BI	DI	EX	L	W											
beq <mark>\$t2</mark> ,\$zero,nxt					BI	DI	EX												
addiu \$t4,\$t4,1						BI	Di	EX		W									
nxt: addiu \$t0,\$t0,4							BI	DI	EX		W								
lw \$t1,0(\$t0)								BI		▼EX	М	W							
j loop									BI	DI									
end: sw \$t4,0(\$t3)										ВІ	F	F	F	F					

Se assumir que tanto bne, beq e J tem o PC atualizado somente no quarto estágio.

Instrução	1	2.	3.	4.	5.	6.	7.	8.	9.	10	11	12	13	14	15	16	17	18	19
Instrução	ļ !	۷.	ა.	4.	ე.	О.	7.	ο.	9.	10	11	12	13	14	15	10	17	10	19
	•																		
loop: blez \$t1,end	ВІ	DI	EX										BI						
sltiu \$t2 ,\$t1,65		BI	DI	EX		W													
bne \$t2,\$zero,nxt			BI	DI	▼EX														
sltiu \$t2,\$t1,91				ВІ	DI	EX		W											
beq \$t2,\$zero,nxt					BI	DI	EX												
addiu \$t4,\$t4,1						ВІ	Di	EX		W									
nxt: addiu \$t0,\$t0,4							ВІ	DI	EX		W								
lw \$t1,0(\$t0)								ВІ	DI	▼EX	М	W							
j loop									BI	DI									
end: sw \$t4,0(\$t3)										ВІ	F	F	F	F					

Convenções: X – bolha, F - flush do pipeline, -- para estágio não usado, ---> adiantamento ou leitura após escrita no mesmo ciclo. Estágios do pipeline: BI(Busca), DI (Decodificação), EX (Execução) MEM (Memória) WB (Writeback)

blez - Branch on less than or equal to zero addiu -- Add immediate unsigned sltiu -- Set on less than immediate unsigned tem 11 instruções

5a Questão) (2,0 ponto) Dado o trecho de programa abaixo, e assumindo uma implementação do MIPS com unidade de adiantamento, leitura após escrita no banco de registrador no mesmo ciclo e um preditor de saltos de 1 bit que inicialmente prevê salto não-realizado. O PC é escrito no quarto ciclo de relógio de cada instrução.

a) (1,6 ponto) Simule a execução completa do programa. Use o diagrama pipeline. Assuma para a simulação que a unidade de adiantamento é simples, ela pode apenas adiantar dados que já estejam no processador (na saída do estágio 3 ou do estágio 4) para a entrada da ULA. Ou seja, assuma que não é possível adiantar dados para o estágio 4.

Observe que será possível apenas realizar adiantamento para entrada da ULA.

Preditor 1 bit - Inicialmente salto não realizado (muda de estado se errar a predição)

9. clíclo - o preditor prevê que salto não será realizado salto

10. cíclo - comparação Rs x Rt - salta deve ser realizado, preditor muda de estado para salto realizado

11. cíclo - atualiza o PC,

12. cíclo - Flush em todas as instruções carregadas

19. ciclo - Preditor diz que salto realizado

20 cíclo - flush em todas as instruções carregadas, pois predito prediz salto

20. ciclo - Comparação Rs x RT, final do ciclo, verifica que salto não deve ser realizado salto

21. cíclo - PC atualizado

22. cíclo - flush em todas as instruções carregadas por erro do preditor

Pelo enunciado, não é possível adiantar algo que não seja para entrada da ULA. Somente \$t1 vai para ULA.

Instrução	1.	2.	3.	4.	5.	6.	7	8.	9.	10.	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
addi \$t4, \$zero, 2	BY	DI	EX		W					\$t4 =	0x0)2														
add \$t1, \$t2, \$t3		ВІ	DI	EX		w				\$t1 =	= 0x10	00+0x	100 =	0x20	00											
lw\$ <mark>:</mark> 3, 0x100(\$t1)			ВІ	DI	EX	М	W					0x10	00 + 0	x200 :	= 0x30	00, \$t	3=0x0	00								
sw \$t3, 0x200(\$t1)				ВІ	DI	X	X	EX	М				Mei	n [0x	400-0	0x403]= 0x	0000	0000							
subi \$t4, \$t4, 2					ВІ	X	X	DI	EX		W				\$t4	= 0x0	00									
beq \$t4, \$t3, root								ВІ	DI •	EX		\$64 GXGGG, \$11 GX2G								200						
addi \$t3, \$t3, 0x100									ВІ	DI	EX	F	F													
add \$t1, \$t2, \$t3												ВІ	DI	EX		W			\$t1 =	= 0x10	0+0x0	00 = 0	(100			
lw\$13, 0x100(\$t1)													ВІ	DI '	EX	М	W				\$t3	= 0x0	0A			
sw \$13, 0x200(\$t1)														ВІ	DI	X	ΧĄ	EX	М			Men	n [0x3	00-0x	303]=	0x00A
subi \$14, \$t4, 2															ВІ	X	X	DI	EX	М	w		\$t4	= 0x0	00	
beq \$14, \$t3, root																		ВІ	DI	EX		w				
addi \$t3, \$t3, 0x100																			ВІ	F	F	F	F	Salt	o (pre	editor)
add \$t1, \$t2, \$t3																				ВІ	DI	F	F	F		
lw\$t3, 0x100(\$t1)																					ВІ	F	F	F	F	
addi \$t3, \$t3, 0x100																						ВІ	DI	EX		W

Convenções: X – bolha, F - flush do pipeline, -- para estágio não usado, ---> adiantamento ou leitura após escrita no mesmo ciclo. Estágios do pipeline: BI(Busca), DI (Decodificação), EX (Execução) MEM (Memória) WB (Writeback)

16 linhas - cada linha correta 0,0875 (total 1,4)

2 adiantamento incorreto - 0.05

2 bolha - 0.1

não seguir notação - correção parcial (metade)

b) (0,3 ponto) No final do **sexto ciclo** de execução do trecho de programa, qual(ais) registradores estão sendo lidos e qual(ais) está(ão) sendo escrito(s) (lembre-se dos estágios em que estas operações ocorrem no pipeline!).

Lido da memória: \$t3 (0,15 ponto)

Escrito no banco de registrador: \$t1 (0,15 ponto)

c) (0,3 ponto) O que a unidade de adiantamento (forward) está fazendo durante o quarto ciclo de execução? Se algumas comparações estiverem sendo feitas, mencione-as.

Não está fazendo nenhum adiantamento (0,15 ponto).

Comparando os registradores-fonte da 2a instrução add \$t1, \$t2, \$t3 com os registradores-destino da 1a instrução da addi \$t4, \$zero, 2 (0,15 ponto)

6a Questão) (2,0 ponto) Assuma que o seguinte código é executado sobre um processador pipeline com 5 estágio, com adiantamento e um preditor de desvio.

add \$1 \$5, \$3
Label1:sw \$1, 0 (\$2)
add \$2, \$2, \$3
beq \$2, \$4, Label 1 // Não tomado
add \$5, \$5, \$1
sw \$1, 0 (\$2)

a) (0,75 ponto) Desenhe o diagrama de execução para este código, assumindo que **todo desvio é tomado** pelo preditor, que **não há unidade de adiantamento** e que o PC é escrito no terceiro ciclo de relógio de cada instrução em caso de desvio.

Preditor assume que desvio é tomado

~					ן ∟ַ	reuito	ı assu	пе ч	ie ues	SVIO E	tomat	<u></u>				
Instrução carregada i	ncorr	etame	ente					†		Ve	rifica	חוום למ	svio r	aão de	waira	
								-				-			vena	
								1		se	r toma	ido e t	omad	0		
Instrução	1.	2.	3.	4.	/ 5:	6.	7.	8 .	9.	‡ 0	11	12	13	14	15	16
add \$1 \$5, \$3	BI	DI	EX		W											
sw \$1 , 0 (\$2)		BI	DI	X	Χ	EX	7									
add \$2, \$2, \$3			BI	X	Χ	DI	EX	1	W							
beq \$2, \$4, Label 1						BI	DI I	X	×	ŧχ						
add \$5, \$5, \$1							BI	X	X	۴	F	F	F			
sw \$1, 0 (\$2)										BI	F	F	F	F		
add \$5, \$5, \$1											ВІ	DI	EX		W	
sw \$1, 0 (\$2)												ВІ	DI	EX	М	

cada instrução correta 0,75 / 8 considerou nop - descontar 0.1 erro o numero de bolhas 0.15 bolha lugar errado - 1 - 0.1, 2 -0.15 adiantamento 0.1

b) (0,75 ponto) Desenhe o diagrama de execução para este código, assumindo que um preditor de saltos de 2 bit que inicialmente **prevê salto realizado**, que há **unidade de adiantamento** e que o PC é escrito no terceiro ciclo de relógio de cada instrução em caso de desvio.

								Não pode ser resolvido via adiantamento									
Instrução	1.	2.			3.	4/	5.	6.	7.	8.	9.	10	11	12	13	14	15
add \$1 \$5, \$3	ВІ	DI	EX		W												
sw \$1 , 0 (\$2)		BI	DI	X	X	EX	М										
add \$2, \$2, \$3			ВІ	X	X	DI	EX	l	W								
beq \$2, \$4, Label 1						ВІ	DI	₹EX									
add \$5, \$5, \$1							ВІ	F	F	F	F						
sw \$1, 0 (\$2)								BI	F	F	F	F					
add \$5, \$5, \$1									BI	DI	EX		W				
sw \$1, 0 (\$2)										ВІ	DI	EX	М				

cada instrução 0,75/8 Não adicionou bolha - 0.1

c) (0,5 ponto) Qual é o speed-up alcançado pelo item b) em relação ao item a).

se utilizou valores correto, com diagrama incorreto, considerado 0,5

$$speed_up = \frac{16}{12} = 1.33$$