Après execution du code <u>KH-avec-graph.py</u> on obtient les graphiques suivants respectivement en $\bf t=0.45$, $\bf t=0.85$, $\bf t=1.05$, $\bf t=1.85$ (50 points, $\bf Lx=2$, $\bf Ly=1$, $\bf nu=1e-3$)

J'ai ensuite essayé de faire varier nu (t = 0.85):

nu = 1e-2

nu = 1e-3

nu = 1e-4

- -En ce qui concerne **la précision temporelle**, le Schéma d'Euler explicite est précis à l'ordre 1.
- **-La précision spatiale** est à l'ordre 2 ce que l'on peut vérifier avec le code <u>mms-avec-graph.py</u> (problème stationnaire) en modifiant le nombre de points (cf le graph ci-dessous) .

En effet si on note E1 l'erreur pour un hx donné on a E1 < C * hx². Soit E2 l'erreur pour hx = hx / 2 : E2 < C * $(hx/2)^2$ = C * hx^2 / 4 et donc E2 < E1/4 .

Calcul effectué avec un ryzen 5600g et 16gb de RAM 3200MHz et chronometrés à la main donc la précision n'est pas trés bonne pour un nombre de point petit

points	5	10	15	20	25	30	35	40	45	50	55	60	100
temps	<<1	0.5	1	>1	1.5	3	>3	7	10	15	21	30	193
(s) erreur	0.13	0.03	0.012	0.007	0.004	0.003	0.003	0.0017	0.0014	0.0011	0.0009	0.0007	0.0002

Par exemple 0.03 / 0.007 = 4.285... > 4

0.007 / 0.0017 = 4.117... > 4

- Le temps de calcul croit de plus en plus quand on rajoute des points (mms-avec-graph.py) .

- Pour illustrer la stabilité j'ai testé des CFL differentes et à partir d'un certain temps la solution numérique diverge pour si dt n'est pas assez petit :

dt = 0.25*hx**2/nu, problème instationnaire, stable

$$t = 5.2$$
 $t = 10$ $t = 12.5$

dt = hx/nu, problème instationnaire, instable

Enfin j'ai essayé d'implémenter le schéma d'Adams-Bashforth (explicite a deux pas et d'ordre 2) à la fois pour la discrétisation temporelle et pour les termes linéaires (Lu et Lv) dans le fichier mms_Adams-Bashforth.py mais le shéma ne converge pas.