Санкт-Петербургский Государственный Университет Saint-Petersburg State University

ЛАБОРАТОРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ

ОТЧЕТ По лабораторной работе 7 «Принцип Сен-Венана»

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

 ${
m Caнкт-}\Pi{
m erepfypr}$ 2021

1 Цель работы

Принцип Сен-Венана - один из основополагающих принципов механики. Он не имеет строгого доказательства в общем виде, но подтверждается многочисленными экспериментами, а также решениями частных задач.

Принцип Сен-Венана позволяет принимать во внимание лишь равнодействующие внешних сил, не рассматривая особенности их приложения.

Цель работы заключается в иллюстрации принципа Сен-Венана.

2 Теоретическое исследование и Экспериментальная установка

Согласно принципу Сен-Венана, особенности приложения внешних сил, как правило, проявляются в непосредственной близости от места их приложения. Применительно к растянутому стержню эти особенности не превышают характерных размеров поперечного сечения.

Краевые особенности создаются путем различного раскроя концов резиновых полос. Различные устройства «законцовок» позволяют реализовать разные схемы передачи нагрузки на стержень и приложить три разные, но статически эквивалентные системы внешних сил. В первом случае (1, слева) н1, в центре) - сосредоточена в центре, в третьем (1, справа) - сосредоточена по краям.

Рис. 1: Демонстрационная модель М1

Демонстрационная модель состоит из 3 резиновых полос с отличающимися раскроями швов 1, поворотного устройства с эксцентричным влом 2, маховиками 3 и 4, хомутами 5. Также в нее входят силовой рамы 7, стойки 6, траверса 2, прижимные пластины 8 и элементы горизонтирования 9. В данной работе нагрузка осуществляется вращением маховиков 1 и 2 полных оборота.

3 Эксперимент

Замерили геометрические размеры трех лент : длину лент l , ширину лент d и среднее расстояние между линиями сетки h; также посчитали размеры области приложения нагрузки S – на первой ленте $S=d^2$, на второй ленте – $S=d^2$, на третьей ленте $S=2\cdot (d_3)^2$, где d_2 и d_3 ширины тонкой полосы 2 и 3 лент.

Величина	Значение			Размерность
	1	2	3	газмерность
l	460 ± 1	460 ± 1	460 ± 1	
d	56 ± 1	55 ± 1	55 ± 1	MM
h	9 ± 1	9 ± 1	9 ± 1	
S	2927 ± 116	625 ± 50	650 ± 72	MM^2

Таблица 1: Начальные данные

Растягивая ленты путем вращения эксцентричного вала за маховики, измерили среднее расстояние между линиями сетки h в центре лент и размеров области нагружения d и S – размеры области приложения нагрузки при 1 и 2 полных оборотах:

$N_{ar{o}}$	Величина	Значение			- Размерность
112		1	2	3	Тазмерность
1	d	52 ± 1	53 ± 1	53 ± 1	MM
	h	10 ± 1	10 ± 1	10 ± 1	
	S	2810 ± 106	485 ± 44	512 ± 72	${ m MM}^2$
2	d	50 ± 1	52 ± 1	52 ± 1	MM
	h	11 ± 1	11 ± 1	11 ± 1	
	S	2500 ± 100	400 ± 40	392 ± 56	$^{ m MM}^2$

Таблица 2: Экспериментальные данные.

Зарисовали картину деформирования делительных сетк вблизи вырезов после каждого оборота маховика:

Рис. 2: Вид полос при 1 обороте

Рис. 3: Вид полос при 2 оборотах

4 Вывод

В данной работе познакомились с работой принципа Сен-Венана и убедились в его экспериментальной справедливости. При растяжении эквивалентными силами лент с разными законцовками горизонтальные полосы влизи этих законцовок деформируются неодинаково.

Деформирование происходит только по краям полос и эти краевые особенности быстро затухают на длине, соответствующей характерному размеру поперечному сечения ленты.