project-proposal.md 4/16/2023

Incompressible Fluid Simulation

Summary

A 3D fluid simulation using the Navier-Stokes equations to accurately simulate an incompressible fluid in a grid. This simulation can be tweaked for no additional cost to provide a 2D fluid simulation (by making the grid thickness 1). This simulation will be based off methods detailed in the paper "Real-Time Fluid Dynamics for Games" presented at the 2003 Game Developer's Conference by Jos Stam. These methods were subsequently used as part of 3DS max's MAYA animation toolset.

Tooling

- C# (For writing general / engine code)
- HLSL (For compute shaders, if necessary as part of optimisation)

Based off the C Programming Language, but for parallel compute on the GPU

- Unity (Window Management / Graphics API)
- ffmpeg (rendering videos / *.gif files)

Example Stakeholder

VFX Studio / Animator (friend)

Functions

- 1. Fluid Simulation
 - 1. Compute Simulation vector field
 - 1. Grid Depth
 - 2. Self-adevction
 - 3. Projection
 - 4. Diffusion
 - 5. Add Forces
 - 2. Compute Simulation densities
 - 1. Grid Depth
 - 2. Self-adevction
 - 3. Projection
 - 4. Diffusion
 - 5. Add Forces
 - 3. Particle Motion through vector field
 - 1. Render Particles as quads
 - 2. Render Particles as points
 - 3. Render Particles as meshes
- 2. On-The-Fly Rendering
 - 1. Render vector field to texture
 - 1. Render as colours

project-proposal.md 4/16/2023

- 2. Render as arrows
- 2. Render densities to texture
- 3. User Interaction
 - 1. Add density to simulation with mouse
 - 2. Add forces to simulation with mouse
 - 3. Place density sources in simuation
 - 4. Place force fields in simulation
 - 5. Place objects in simulation
 - 1. Place cubes
 - 2. STRETCH GOAL Place Meshes (.obj / .fbx)
 - 1. Cubic volume approximation
- 3. Export Simulation
 - 1. Render Simulation to *.gif file
 - 1. Setup ffmpeg to draw from image sequence
 - 2. run ffmpeg in background
 - 2. Render Simulation to *.mp4 file
 - 1. Setup ffmpeg to draw from image sequence
 - 2. run ffmpeg in background
 - 3. **STRETCH GOAL:** Export Simulation to mesh (.obj / .fbx)
- 4. GUI
 - 1. GUI for simulation parameters
 - 1. Grid Size
 - 2. Render Options
 - 3. Mouse Options
 - 1. Add Force / Density toggle
 - 2. Add Obstacle Toggle
 - 3. Add generator toggle
 - 4. 2D / 3D Toggle
 - 2. GUI for simulation save / load / export
 - 1. Render Size
 - 2. Render FPS
 - 3. GPU Hardware Acceleration for Video Encoding
 - 4. Load premade simulation file
 - 5. Save current simulation to file