H.10: Solitonlösungen der Korteweg-de Vries-Gleichung

In diesem pdf-Dokument sind Videos eingebunden, diese werden von okular angezeigt. Sollte ihnen diese nicht angezeigt werden, haben wir die .mp4-Dateien auch nochmal separat angefügt.

In dieser Aufgabe untersuchen wir Lössungen der Korteweg-de Vries-Gleichung. Diese gelichung beschreibt die Ausbreitung von Wellen in Kanälen.

$$\frac{\partial}{\partial t}u(t,x) = 6u(t,x)\frac{\partial}{\partial x}u(t,x) - \frac{\partial^3}{\partial x^3}u(t,x)$$

Eine besonderer Satz Lössung sind die Solitonen. Diese beschreiben einzelne Wellen die sich mit konstanter geschwindigkeit bewegen ohne zu zerfliesen. Die anfangs bedingung:

$$u^{[N]}(0,x) = \frac{-N(N+1)}{\cosh^2(x)} \tag{1}$$

erzeugt N Solitonen die sich mit verschiedenen Geschwindigkeit ausbreiten.

H_{10.1}

Zunächst betrachten wir die Analytische Lösung zu $u^{[2]}$:

$$u^{[2]}(t,x) = -12\frac{3 + 4\cosh(2x - 8t) + \cosh(4x - 64t)}{\{3\cosh(x - 28t) + \cosh(3x - 36t)\}^2}$$

im Bereich $t \in [-1, 1]$. In Video 1 sieht mann das 2 Solitonen erzeugt werden. Um die geschwindigkeit der Solitonen zu bestimmen kann mann die Position bei t = 1 ablessen da beide Solitonen bei t = 0 bei t = 0 anfingen. Dabei ergibt sich:

$$v_1 = 3.45$$

 $v_2 = 16.27$

H_{10.2}

Nun Lössen wir $u^{[N]}$ numerisch. Datzu nutzen wir die Zeitdiskretisierung $t_n = n \cdot d$ mit der Zeitschrittweite d und die Ortsdiskretisierung $h_j = j \cdot h$ mit der Schrittweite h. Mit der

Abbildung 1: Hier ist $u^{[2]}(x)$ im Bereich von $t \in [-1, 1]$ dargestellt.

notation: $u_j^n = u(t_n, x_j)$ lassen sich die einzelnen Teile der partiellen Differentialgleichung schreiben als:

$$\begin{split} \frac{\partial}{\partial t}u(t,x)\bigg|_{t=t_{n},x=x_{j}} &= \frac{u_{j}^{n+1}-n_{j}^{n-1}}{2d} + O(d^{2}) \\ u(t,x)\frac{\partial}{\partial x}u(t,x)\bigg|_{t=t_{n},x=x_{j}} &= \frac{u_{j+1}^{n}+u_{j}^{n}+u_{j-1}^{n}}{3}\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2h} + O(h^{2}) \\ \frac{\partial^{3}}{\partial x^{3}}u(t,x)\bigg|_{t=t_{n},x=x_{j}} &= \frac{u_{j+2}^{n}-2u_{j+1}^{n}+2u_{j-1}^{n}-u_{j-2}^{n}}{2h^{3}} + O(h^{2}) \\ \Rightarrow \frac{u_{j}^{n+1}-u_{j}^{n-1}}{2d} &= 6u_{j}^{n}\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2h} - \frac{u_{j+2}^{n}-2u_{j+1}^{n}+2u_{j-1}^{n}-u_{j-2}^{n}}{2h^{3}} \\ \Rightarrow u_{j}^{n+1} &= 2d\left(6u_{j}^{n}\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2h} - \frac{u_{j+2}^{n}-2u_{j+1}^{n}+2u_{j-1}^{n}-u_{j-2}^{n}}{2h^{3}}\right) + u_{j}^{n-1} \end{split}$$

Mit anfangs schritt:

$$\frac{u_{j}^{1} - u_{j}^{0}}{d} = 6u_{j}^{0} \frac{u_{j+1}^{0} - u_{j-1}^{0}}{2h} - \frac{u_{j+2}^{0} - 2u_{j+1}^{0} + 2u_{j-1}^{0} - u_{j-2}^{0}}{2h^{3}}$$

$$\Rightarrow u_{j}^{1} = d\left(6u_{j}^{0} \frac{u_{j+1}^{0} - u_{j-1}^{0}}{2h} - \frac{u_{j+2}^{0} - 2u_{j+1}^{0} + 2u_{j-1}^{0} - u_{j-2}^{0}}{2h^{3}}\right) + u_{j}^{0}$$

können wir $u^{[N]}(t,x)$ Numerisch berechnen. In Abildung 2 haben wir für N=1,2 und h=0.05,0.1,0.2,0.4 die analytische mit der numerischen Lössung verglichen. Man sieht

Abbildung 2: Hier sind numerische und analytische Lösung $u^{[1]}(1,x)$ (oben) und $u^{[2]}(1,x)$ (unten) verglichen.

das diese kurven recht gut konvergieren. Nur h=0.4 konvergiert für N=2 nicht. Um diese Konvergenz genauer zu untersuchen haben wir für alle $d\in[3\cdot10^{-5},2.5\cdot10^{-4}]$ und alle $h\in[0.05,0.4]$ die Gesamtabweichung des numerischen Verfahren für $u^{[1]}$ und $u^{[2]}$ berechnent und in einer Heatmap geploted. Zusätzlich haben wir $d=\frac{1}{2.6}h^3$ geploted um zu zeigen dass das Verfahren für größere d nicht konvergiert. In abildung 3 sieht mann ausserdem das $u^{[2]}$ eine viel stärkere h Abhängigkeit hatt als $u^{[1]}$ wass man auch in Abildung 2 gesehen hatt.

H_{10.3}

Nun haben wir $u^{[3]}(t, x)$ numerisch in den Intervallen $t \in [0, 1]$ und $x \in [-5, 45]$ berechnet und in Video 4 dargestellt. Man sieht 3 Solitonen die unterschiedliche Geschwindigkeiten und Amplituden haben. Diese befinden sich alle bei t = 0 am ort x = 0.

H_{10.4}

Zuletzt betrachten wir Lösungen für $N \notin \mathbb{N}$. Wir haben die Lösungen für $N \in [1.0, 1.9]$ betrachtet und in Video 5 dargestellt. Mann sieht dass diese Anfangbedingungen keine perfekten Solitonen geben; Die resultierenden Kurven zerfliesen leicht und erzeugen hinter sich Wellen die auch positve Anteile haben. Trotzdem erkennt mann wie sich 2 immer besser Getrennte Wellen bilden.

Abbildung 3: Hier sind die Differenzen der numerischen und analytischen Lösung der DGL für N = 1 (oben) und N = 2 (unten) verglichen.

Abbildung 4: Hier ist $u^{[3]}(t, x)$ im Bereich von $t \in [0, 1]$ und $t \in [-5, 45]$ dargestellt.

Abbildung 5: Hier ist $u^{[N]}(t, x)$ für $N \in [1.0, 1.9]$ dargestellt.