EE58 Lab si3g19

3.1 Light running test

Voltage increased to the maximum (from 0) as required

_ A	D	C	U	E	F	G	п		,	N.	L
voltage turned up to max											
No.	Voltmeter	Voltmete	Voltmete	Ammeter	Ammeter	Ammeter	UM1	UM2	UM3	Torque N	Speed rpm
1	2	1	2	0.014	0.05	0.009	0	-47.8	0.795	0.071	0
2	23	1	22	0.145	0.48	0.14	6	-47.8	0.892	0.071	0
3	44	1	44	0.286	0.96	0.289	24	-47.8	0.898	0.071	0
4	66	1	65	0.426	1.41	0.425	52	-47.8	0.903	0.082	0
5	88	1	86	0.568	1.89	0.563	92	-47.8	0.905	0.111	0
6	110	1	108	0.71	2.36	0.715	144	-47.8	0.905	0.111	0
7	130	1	128	0.461	1.47	0.445	108	-47.8	0.908	0.121	1996
8	130	1	128	0.461	1.47	0.445	108	-47.8	0.908	0.121	1996
9	151	1	149	0.371	1.14	0.354	100	-47.8	0.909	0.121	2407
10	173	1	172	0.323	0.95	0.305	100	-47.8	0.91	0.141	2603
11	195	1	193	0.293	0.82	0.276	101	-47.8	0.91	0.134	2710
12	216	1	214	0.278	0.73	0.263	107	-47.8	0.91	0.131	2779
13	237	1	236	0.27	0.66	0.258	115	-47.8	0.91	0.131	2827
14	257	1	257	0.272	0.6	0.26	125	-47.8	0.91	0.131	2857
15	279	1	277	0.282	0.55	0.26	138	-47.8	0.912	0.131	2886
16	299	1	297	0.287	0.51	0.268	151	-47.8	0.912	0.131	2905
17	321	1	318	0.301	0.48	0.275	169	-47.8	0.913	0.131	2919
18	321	1	318	0.301	0.48	0.275	169	-47.8	0.913	0.131	2919
19	342	1	339	0.315	0.45	0.291	189	-47.8	0.913	0.131	2934
20	342	1	339	0.315	0.45	0.291	189	-47.8	0.913	0.131	2934
21	363	1	360	0.33	0.42	0.309	211	-47.8	0.912	0.131	2944
22	383	1	381	0.35	0.4	0.328	237	-47.8	0.912	0.131	2952
23	405	1	403	0.375	0.39	0.35	268	-47.8	0.912	0.131	2959
24	415	1	412	0.394	0.37	0.36	285	-47.8	0.913	0.131	2964

Rotor resistance decreased to 0

reduce	r to zero				•	-			,	K	_
No.		tei Voltmete	Voltmete	Ammeter	Ammeter	Ammeter	UM1	UM2	UM3	Torque N	Speed rpm
	1 4:	15 1	412	0.394	0.38	0.36	285	-47.8	0.913	0.131	2965
	2 4:	14 1	412	0.395	0.37	0.36	285	-47.8	0.913	0.131	2965
	3 4:	14 1	412	0.396	0.36	0.359	285	-47.8	0.914	0.131	2965
	4 4:	14 1	412	0.395	0.37	0.36	285	-47.8	0.913	0.131	2965
	5 4:	14 1	412	0.393	0.37	0.36	285	-47.8	0.913	0.131	2965
	6 4:	14 1	412	0.393	0.37	0.36	285	-47.8	0.913	0.131	2965
	7 4:	14 1	412	0.393	0.35	0.36	285	-47.8	0.913	0.131	2965
	8 4:	14 1	411	0.393	0.38	0.359	284	-47.8	0.913	0.131	2965
	9 4:	14 1	412	0.393	0.36	0.36	284	-47.8	0.913	0.131	2965
	10 4:	14 1	412	0.393	0.36	0.36	284	-47.8	0.913	0.131	2965
	11 4:	14 1	412	0.393	0.36	0.36	284	-47.8	0.913	0.131	2965
	12 4:	14 1	411	0.392	0.36	0.359	284	-47.8	0.913	0.131	2965
	13 4:	14 1	412	0.391	0.36	0.36	284	-47.8	0.913	0.131	2965
	14 4:	14 1	412	0.391	0.36	0.36	284	-47.8	0.913	0.131	2965
	15 4:	14 1	412	0.391	0.36	0.361	284	-47.8	0.913	0.131	2965
	16 4:	14 1	412	0.391	0.36	0.361	284	-47.8	0.913	0.131	2965
	17 4:	15 1	412	0.391	0.37	0.36	284	-47.8	0.913	0.131	2965
	18 4:	15 1	412	0.39	0.38	0.36	284	-47.8	0.913	0.133	2965
	19 4:	15 1	412	0.393	0.36	0.361	285	-47.8	0.913	0.134	2965
	20 4:	15 1	412	0.393	0.36	0.361	285	-47.8	0.913	0.134	2965
	21 4:	15 1	412	0.392	0.36	0.361	285	-47.8	0.913	0.135	2965
	22 4:	14 1	412	0.393	0.36	0.361	285	-47.8	0.913	0.135	2965
:	23 4:	14 1	412	0.392	0.38	0.36	284	-47.8	0.913	0.14	2964
	24 4:	15 1	413	0.392	0.38	0.361	285	-47.8	0.913	0.139	2965
	25 4:	15 1	413	0.391	0.37	0.36	284	-47.8	0.913	0.14	2965
:	26 4:	15 1	412	0.392	0.36	0.36	285	-47.8	0.913	0.141	2965
:	27 4:	15 1	412	0.394	0.36	0.361	286	-47.8	0.913	0.141	2965
:	28 4:	15 1	412	0.394	0.36	0.361	286	-47.8	0.913	0.141	2965
:	29 4:	15 1	412	0.393	0.38	0.36	285	-47.8	0.913	0.141	2965
	30 4:	15 1	412	0.393	0.38	0.36	285	-47.8	0.913	0.141	2965
	31 4:	15 1	412	0.394	0.36	0.359	285	-47.8	0.913	0.141	2965
	32 4:	l4 1	412	0.394	0.37		284	-47.8	0.913		2964

Torque was increased gradually, not allowing the machine to reduce speed below 2000rpm.

А	D	C	U	E	г	U	п	1	J	N	L
reduce to	rque										
No.	Voltmete	Voltmete	Voltmete	Ammeter	Ammeter	Ammeter	UM1	UM2	UM3	Torque Nr	Speed rpr
1	415	1	411	0.393	0.37	0.358	284	-47.8	0.914	0.141	2965
2	414	1	412	0.398	0.41	0.364	288	-47.8	0.913	0.172	2964
3	414	1	412	0.406	0.5	0.372	294	-47.8	0.913	0.207	2942
4	414	1	411	0.422	0.62	0.39	307	-47.8	0.913	0.291	2920
5	414	1	412	0.441	0.75	0.407	321	-47.8	0.913	0.365	2900
6	414	1	412	0.46	0.88	0.428	336	-47.8	0.912	0.441	2880
7	414	1	412	0.482	0.99	0.452	353	-47.8	0.912	0.516	2857
8	414	1	411	0.506	1.1	0.475	370	-47.8	0.912	0.591	2835
9	414	1	411	0.534	1.22	0.501	391	-47.8	0.912	0.664	2813
10	414	1	412	0.563	1.36	0.531	413	-47.8	0.911	0.744	2790
11	414	1	411	0.592	1.48	0.56	435	-47.8	0.911	0.819	2766
12	414	1	411	0.647	1.72	0.619	477	-47.8	0.911	0.961	2718
13	414	1	411	0.672	1.8	0.644	496	-47.8	0.911	1.018	2699
14	413	1	411	0.706	1.93	0.68	522	-47.8	0.91	1.092	2667
15	413	1	411	0.733	2.04	0.704	542	-47.8	0.91	1.155	2655
16	414	1	410	0.773	2.18	0.747	572	-47.8	0.91	1.242	2611
17	413	1	411	0.806	2.32	0.779	597	-47.8	0.91	1.312	2578
18	413	1	410	0.858	2.48	0.826	634	-47.8	0.91	1.399	2534
19	413	1	410	0.883	2.59	0.857	654	-47.8	0.91	1.459	2509
20	413	1	410	0.938	2.77	0.915	697	-47.8	0.91	1.575	2468
21	413	1	410	0.979	2.93	0.957	728	-47.8	0.91	1.658	2422
22	413	1	410	1.011	3.1	0.991	753	-47.8	0.91	1.754	2384
23	413	1	411	1.068	3.29	1.055	799	-47.8	0.909	1.85	2279
24	414	1	410	1.072	3.38	1.058	802	-47.8	0.909	1.887	2286
25	413	1	411	1.101	3.6	1.093	826	-47.8	0.909	2.005	2202
26	413	1	411	1.104	3.62	1.093	827	-47.8	0.909	2.009	2179

3.2 Locked rotor test

Using the allen key, the rotor was locked. The rotor resistance was set to zero and the circuit was shorted as before for 3.1 The input voltage was gradually decreased, and readings were taken, but stopping once the rated current (I2) reached 1.0amp.

Here are the readings below.

No.	Voltmeter	Voltmete	Voltmeter	Ammeter	Ammeter	Ammeter	UM1	UM2	UM3	Torque Nr	Speed rpm
1	2	1	2	0.013	0.03	0.009	0	-47.8	0.801	0.111	0
2	3	1	2	0.022	0.06	0.015	0	-47.8	0.834	0.106	0
3	7	1	6	0.042	0.13	0.037	1	-47.8	0.86	0.103	0
4	11	1	10	0.068	0.21	0.06	1	-47.8	0.88	0.102	0
5	13	1	12	0.078	0.24	0.072	2	-47.8	0.883	0.103	0
6	18	1	17	0.118	0.34	0.106	4	-47.8	0.895	0.102	0
7	21	1	20	0.127	0.4	0.12	5	-47.8	0.892	0.103	0
8	24	1	23	0.156	0.46	0.139	7	-47.8	0.897	0.103	0
9	28	1	27	0.171	0.56	0.166	9	-47.8	0.896	0.104	0
10	30	1	29	0.181	0.58	0.174	10	-47.8	0.897	0.104	0
11	32	1	31	0.208	0.64	0.203	12	-47.8	0.898	0.105	0
12	35	1	34	0.217	0.7	0.21	14	-47.8	0.899	0.106	0
13	40	1	39	0.257	0.79	0.248	19	-47.8	0.901	0.108	0
14	43	1	42	0.278	0.85	0.274	22	-47.8	0.901	0.109	0
15	46	1	45	0.298	0.93	0.289	25	-47.8	0.902	0.11	0
16	48	1	47	0.299	0.96	0.289	26	-47.8	0.902	0.11	0
17	49	1	48	0.302	0.98	0.292	27	-47.8	0.902	0.11	0
18	51	1	50	0.315	1.02	0.308	30	-47.8	0.902	0.11	0

And the graphs created using these results:

Stator current against voltage has a linear trend, the same as the light running test. Therefore, stator current is directly proportional to current.

Power against current has an exponential shape.

Power factor against current also has a slight logarithmic shape.

3.3 load test

With resistance at zero and the circuit short-circuiting, having the variable supply control around 90% gave the stator voltage of 380V. Torque was increased gradually, therefore readings at speeds between 3000-2000rpm were measured. Here are the results measured:

No.	Voltmeter	Voltmeter	Voltmete	Ammeter	Ammeter	Ammeter	UM1	UM2	UM3	Torque Nm	Speed rpm	rad/secon	P=Tω	P=I1V1	o/n / i/n	slip efficie
	1 383	23	382		0.39	0.326				0.118					0.274706	
	2 384	1	381		0.4	0.325	91		0.354	0.124					0.288757	
	3 383	1	379		0.56	0.342				0.209			63.84271		0.456688	
	4 382	1	382		0.68	0.362				0.287					0.593355	
	5 382	1	381		0.86	0.407			0.541	0.383			114,2667		0.690826	
	6 384	1	381		0.97	0.407			0.623	0.447					0.779066	
	7 383	1	381		1.24	0.459	254		0.698						0.829086	
	8 382	1	381	0.493	1.25	0.482			0.681	0.62					0.960141	
	9 383	1	380	0.538	1.35	0.506	285	-64.5	0.712	0.712	2755				0.996894	
1	.0 383	1	378	0.595	1.55	0.557	322	-69.6	0.731	0.779		283.7905	221.0728	227.885	0.970107	0.0967
1	.1 383	1	380	0.58	1.58	0.556	323	-59.7	0.741	0.829	2710	283.7905	235.2624	222.14	1.059072	0.0967
1	.2 383	1	380	0.649	1.83	0.61	364	-58	0.756	0.928	2656	278.1357	258.1099	248.567	1.038392	0.1147
1	.3 383	1	378	0.712	1.95	0.681	410	-55.7	0.771	1.014	2605	272.795	276.6141	272.696	1.014368	0.1317
1	.4 381	1	381	0.717	2.08	0.69	419	-71.3	0.779	1.076	2591	271.3289	291.9499	273.177	1.068721	0.1363
1	.5 382	1	382	0.754	2.21	0.717	444	-54.5	0.787	1.168	2569	269.0251	314.2213	288.028	1.09094	0.1437
1	.6 382	1	380	0.816	2.41	0.783	485	-74.6	0.793	1.257	2511	262.9513	330.5298	311.712	1.060369	0.163
1	.7 383	1	381	0.859	2.55	0.83	527	-71.3	0.812	1.324	2467	258.3436	342.047	328.997	1.039666	0.1777
1	.8 382	1	381	0.887	2.66	0.86	541	-51.5	0.808	1.39	2429	254.3643	353.5664	338.834	1.04348	0.1903
1	.9 382	1	380	0.909	2.77	0.877	549	-51.2	0.802	1.487	2411	252.4793	375.4368	347.238	1.081209	0.1963
2	.0 382	1	380	0.962	2.93	0.934	590	-50.6	0.812	1.525	2360	247.1386	376.8864	367.484	1.025586	0.2133
2	1 383	1	378	1.027	3.18	1.021	640	-57.2	0.817	1.649	2259	236.5619	390.0906	393.341	0.991736	0.247
2	2 382	1	380	1.051	3.3	1.042	653	-55.5	0.816	1.702	2239	234.4675	399.0637	401.482	0.993977	0.2537
2	382	1	379	1.081	3.5	1.067	677	-48.6	0.824	1.787	2173	227.556	406.6426	412.942	0.984745	0.2757
2	4 383	1	379	1.125	3.84	1.119	716	-79.2	0.834	1.918	2020	211.5339	405.722	430.875	0.941624	0.3267
2	.5 382	1	378	1.137	3.88	1.116	711	-48.6	0.826	1.916	2000	209.4395	401.2861	434.334	0.923911	0.3333

Firstly, I converted rpm to rad/s (by using Rad/s = RPM * 6.283185307 / 60)

Then using P=T ω , to work out the mechanical output power, T being the mechanical torque (Nm), and ω being the rotor speed in rad/s. Using P=I*V to work out the input power, and as a result working out the motor efficiency by doing the (P=T ω)/(P=I*V) which is the output power/input power.

The slip efficiency being (3000-speed in rpm)/3000.

Output power against slip: logarithmic trend, or exponential

Power factor against slip: logarithmic trend or exponential

Torque against slip: slightly linear and slightly exponential.

Efficiency against slip: slightly logarithmic/ exponential also.

At max efficiency (1.09) slip is 0.144.