LAB #12 REPORT

NAME : 윤효정

ID: 2076281

1. Background

1) Binary to BCD

8bit의 2진수를 10진수로 변환해서 디스플레이에 보여야한다. 본 프로젝트에서 구현한 방법은 2진수를 백의 자리, 십의 자리, 일의 자리로 나눈 뒤 각 자리수를 따로 저장하는 것이다. 이를 위해 총 9번의 반복하는 알고리즘을 구현해야한다. (i = 반복 횟수)

먼저 기존에 받는 8 bit value [7:0], shift register [19:0]를 둔다. (i = 0)

그 뒤 기존 8 bit value를 shift register의 [7:0]에 먼저 넣어두고, 각 자리 수에서 움직인 5 이상이면 shift regishter에서 그냥 왼쪽(shift register[8]에서 [9])으로 움직이고, 아니면 해당 수를 추가하고 왼쪽으로 움직인다. (i<9 & i>0)

백의 자리인 hunreds[3:0], 십의 자리인 tens[3:0], 일의 자리인 ones[3:0]에 각 자리수를 저장한 뒤 output으로 diplay를 위한 모듈로 전달한다 (i==9)

2. Implementation & Discussion

각 역할을 담당하는 모듈들을 따로 작성한 뒤, top module에서 실행시킨다. 총 6개의 모듈과 1개의 top 모듈로 이루어져 있다. 이로 인해 각 작업들을 분리해서 관리할 수 있다. 모듈을 위해 FPGA에서 사용되는 부품은 8개의 Seven Segment display, 16개의 switch, 3개의 button, 1개의 clock, 1개의 reset 버튼이다.

1) Diagram

그림 1 Top 모듈 diagram

각각 8 bit 스위치에서 받은 2진수를 10진수로 바꾸는 Binary to BCD 모듈, 받은 수를 계산하는 Calculator 모듈, 계산된 값을 display에 띄워주는 Seven Segment Controller 모듈로 이루어져 있다.

그림 2 seven segment controller diamgram

위 모듈 중 Seven Segment Controller는 위와 같이 이루어져 있다. BCD controller 에서 각 자리 숫자를 BCD to cathode에 전달해서 나타날 숫자를, Anode Control에서 나타날 display 순서를 선택한다. system Clock에서 Refresh counter를 통해 display 에 나타나는 순서를 조절한다.

2) Clock divider

이 모듈에서 div_vlaue 값을 조절하면 System Clock의 Hz를 조절할 수 있다. 기본적으로 system clock은 100Mhz이고, 나누는 값을 조절하여 output으로 원하는 Hz를 내보내는 모듈이다.

3) Binary to BCD

1장에서 설명한 알고리즘의 실질적 구현 코드가 들어간다.

4) Seven Segment Controller

화면에 나타낼 숫자가 2.5ms 만큼 차이 나도록 clock divider의 나누는 값을 조절한다.

5) Calculator

각 버튼에 따라 덧셈, 뺄셈, 곱셈을 구현한다.

6) The reason I failed

시간 상의 문제로 Calculator 구현과 Display 화면에 띄우는 방법을 완벽하게 구현하지 못하였다. 이에 따라 가장 top 모듈 역시 미완성이 되었다. 또한 기존 다이어그램에서 8bit 씩 나누어 들어온 2개의 숫자는 받을 수 있지만, 이를 합친 수가 4개의 seven Segment Display를 넘어선 자릿수라면 나타낼 방법을 넣지 못했다. Seven Segement Controller에 추가로 구현하거나, 새로운 모듈을 만들어 결과 값을 표시하는 방법을 구현 해야한다. 만약 두 번째 방법으로 구현하게 된다면 default 값인 학번 역시 8자리이므로 해당 모듈에 구현한다.

3. Conclusion

lab5에서 배운 module instantiation을 활용한 것은 좋았으나, lab 9와 10에서 counter와 simple calculator를 활용할 수 있었다면 더 쉽게 해결했을 것이라는 아쉬움이 남았다. 또한 8bit의 이진수를 십진수로 바꾸어 Seven segment display에서 여러개의 숫자를 띄우는 것을 조절하는 것을 만드는 부분이 가장 어려웠다.

4. Reference

How to create an 8 bit counter on 7 segment Display? | Xilinx FPGA Programming Tutorials. (2018a). YouTube. Retrieved June 16, 2023, from https://www.youtube.com/watch?app=desktop&v=s4lPOQ1VAkU&list=PLqOe1_k mWOx0oLBHI8O8WNO0QRjU8nzDD&index=8.

How to create a Blinking LED on FPGA?: Xilinx FPGA Programming Tutorials. (2018a). YouTube. Retrieved June 16, 2023, from https://youtu.be/iei1EugtQvQ.

How to Create a 7 Segment Controller in Verilog?: Xilinx FPGA Programming Tutorials. (2018a). YouTube. Retrieved June 16, 2023, from https://youtu.be/v2CM8RaEeQU.

How to create a Binary to Binary Coded Decimal (BCD) converter?: Xilinx FPGA Programming Tutorials. (2018b). YouTube. Retrieved June 16, 2023, from https://youtu.be/2JJxeKe5e5o.

Wikipedia, W. (2022, December 22). *Double dabble*. Wikipedia. https://en.wikipedia.org/wiki/Double_dabble

YouTube. (2022). How to Create 7 Segment Controller in FPGA using Verilog? | FPGA Programming in Vivado| Nexys 4 FPGA. YouTube. Retrieved June 16, 2023, from https://www.youtube.com/watch?v=OlMYiGm_WX4.