PERCOBAAN 9. RANGKAIAN ARITMETIKA DIGITAL LANJUT

TUJUAN:

Setelah menyelesaikan percobaan ini mahasiswa diharapkan mampu

- Memahami prinsip kerja rangkaian aritmetika biner : multiplier, paraller Adder dan Parallel Subtractor
- Mendisain rangkaian multiplier, Parallel Adder dan Parallel Subtractor

PERALATAN:

- 1. Logic Circuit Trainer ITF-02 / DL-02
- 2. Oscilloscope

TEORI:

Rangkaian Aritmetika Lanjut meliputi : *Multiplier* (rangkaian Pengali), *Parallel Adder* dan *Parallel Subtractor*. Setelah mengetahui prinsip dasar dari Adder dan Subtractor, dapat dilanjutkan dengan membuat rangkaian Adder dan Subtractor untuk penjumlahan dan pengurangan lebih dari 1 bit.

1. MULTIPLIER

Rangkaian Multiplier terdiri dari dua blok input (yang masing-masing mewakili register yang akan dikalikan) serta satu blok output. Setiap blok dapat terdiri lebih dari 1 bit data. Bilangan yang dikalikan dan pengalinya, serta hasil kalinya berupa bilangan biner. Setelah didapatkan hasilnya, masing-masing bit outputnya dibuat dengan persamaan yang didapatkan dari K-Map. Blok Diagram dari rangkaian Multiplier ditunjukkan pada gambar 9-1.

Gambar 9-1. Rangkaian Multiplier 2 bit input

Tabel 9-1. Tabel Perkalian 2 bit biner

Input Desimal		Input Biner				Output Biner				Out Desimal
Α	В	A_1	A_0	B ₁	B_0	O_3	O_2	O ₁	O_0	0
0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	2	0	0	1	0	0	0	0	0	0
0	3	0	0	1	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
1	1	0	1	0	1	0	0	0	1	1
1	2	0	1	1	0	0	0	1	0	2
1	3	0	1	1	1	0	0	1	1	3
2	0	1	0	0	0	0	0	0	0	0
2	1	1	0	0	1	0	0	1	0	2
2	2	1	0	1	0	0	1	0	0	4
2	3	1	0	1	1	0	1	1	0	6
3	0	1	1	0	0	0	0	0	0	0
3	1	1	1	0	1	0	0	1	1	3
3	2	1	1	1	0	0	1	1	0	6
3	3	1	1	1	1	1	0	0	1	9

Setelah menggunakan K-Map didapatkan persamaan outputnya sebagai berikut :

$$O_{1} = \overline{A}_{1} A_{0} B_{1} B_{0}$$

$$O_{1} = \overline{A}_{1} A_{0} B_{1} + A_{0} B_{1} \overline{B}_{0} + A_{1} \overline{B}_{1} B_{0} + A_{1} \overline{A}_{0} B_{0}$$

$$O_2 = A_1 B_1 B_0 + A_1 A_0 B_1$$
 $O_0 = A_0 B_0$

2. PARALLEL ADDER

Rangkaian Parallel Adder adalah rangkaian penjumlah dari dua bilangan yang telah dikonversikan ke dalam bentuk biner. Anggap ada dua buah register A dan B, masing-masing register terdiri dari 4 bit biner : $A_3A_2A_1A_0$ dan $B_3B_2B_1B_0$. Penjumlahan dari kedua register itu dapat dinyatakan sebagai berikut :

$$\begin{array}{c} A_{3}A_{2}A_{1}A_{0} \\ B_{3}B_{2}B_{1}B_{0} + \\ C_{OUT}\sum_{3}\sum_{2}\sum_{1}\sum_{0} \end{array}$$

Rangkaian Parallel Adder dari persamaan di atas ditunjukkan pada gambar 9-2.

Gambar 9-2. Rangkaian Parallel Adder 4 bit

Rangkaian Parallel Adder terdiri dari Sebuah Half Adder (HA) pada *Least* Significant Bit (LSB) dari masing-masing input dan beberapa Full Adder pada bit-bit

PERCOBAAN 9. RANGKAIAN ARITMETIKA DIGITAL LANJUT berikutnya. Prinsip kerja dari Parallel Adder adalah sebagai berikut : penjumlahan dilakukan mulai dari LSB-nya. Jika hasil penjumlahan adalah bilangan desimal "2" atau lebih, maka bit kelebihannya disimpan pada C_{out} , sedangkan bit di bawahnya akan dikeluarkan pada Σ . Begitu seterusnya menuju ke *Most Significant Bit* (MSB)nya.

3. PARALLEL SUBTRACTOR

Rangkaian Parallel Subtractor merupakan modifikasi dari rangkaian Parallel Adder. Dengan mengimplementasikan prinsip 2's complement, rangkaian Parallel Subtractor akan bekerja seperti rangkaian Parallel Adder. Sebagai contoh, pengurangan 5 dengan 2 adalah sama dengan penjumlahan 5 dengan (-2). Proses pengurangan dua buah bilangan 4 bit biner dapat dinyatakan sebagai berikut:

$$\begin{array}{c} A_{3}A_{2}A_{1}A_{0} \\ -B_{3}B_{2}B_{1}B_{0} \\ C_{OUT}\sum_{3}\sum_{2}\sum_{1}\sum_{0} \end{array}$$

Dimana : -B₃B₂B₁B₀ artinya bilangan negatif dari B₃B₂B₁B₀ yang dilakukan dengan 2's *complement*. Jadi prinsip rangkaian subtractor adalah rangkaian Adder yang salah satu inputnya diubah menjadi negatif.

Dari rangkaian Parallel Subtractor pada gambar 9-3 dapat dilihat adanya Gerbang Ex-OR di masing-masing input Full-Adder nya. Rangkaian Ex-OR ini mendapat input dari SUB. Jika input SUB diberikan nilai "1" maka rangkaian Ex-OR mengubah input B menjadi kebalikannya dan bersamaan dengan itu input SUB tersebut juga dimasukkan ke C_{IN}, sehingga nilai input B menjadi *2's complement*-nya. Sedangkan jika input SUB diberi nilai "0" maka rangkaian tersebut menjadi rangkaian Adder.

PERCOBAAN 9. RANGKAIAN ARITMETIKA DIGITAL LANJUT

Gambar 9-3. Rangkaian Parallel Subtractor dari modifikasi Parallel Adder

PROSEDUR:

- Gambarkan rangkaian Multiplier 4 bit biner berdasarkan persamaan yang telah diberikan sebelumnya. Implementasikan rangkaian tersebut pada trainer ITF-02. Dapatkan Tabel Kebenarannya.
- 2. Buat rangkaian Parallel Adder 2 bit menggunakan trainer DL-2. Gunakan 1 buah rangkaian Half Adder dan 1 buah Full Adder. Dapatkan Tabel Kebenarannya.
- 3. Buat rangkaian Parallel Subtractor 2 bit menggunakan trainer DL-02. Gunakan 2 buah Full Adder dan 2 buah gerbang Ex-OR. Dapatkan Tabel Kebenarannya.

TUGAS:

- 1. Buat rangkaian Multiplier yang mengalikan 2 blok input. Input pertama terdiri dari 2 bit biner, sedangkan input kedua 1 bit biner. Dapatkan ouputnya dengan 3 bit biner. Gambarkan rangkaiannya berdasarkan persamaan yang didapatkan dari K-map.
- 2. Selesaikan bentuk penjumlahan dan pengurangan berikut ini dalam sistim biner :