

Transforming Manhattan Distance

Nathan Chen

USACO Feb 2020: Triangles

Feb 2020 - Triangles

- Given a 300x300 grid with some points filled in
- Define "distance" to be $|x_1-x_2| + |y_1-y_2|$
- Count the number of equilateral triangles using points on the grid

SAMPLE INPUT:

ے *

*.

*

* . .

SAMPLE OUTPUT:

• The distance between (x_1, y_1) and (x_2, y_2) is $|x_1 - x_2| + |y_1 - y_2|$

AlphaStar Academy

Example:

Distance between (1, 3) and (2, 1)

$$= 2 + 1$$

Cool Property: Transformation

- Manhattan distance is the sum of the differences in x and y coordinate
- After transforming $(x,y) \rightarrow (x-y, x+y)$, Manhattan distance is the maximum of the difference in x or y coordinate

Cool Property: Transform points $(x,y) \rightarrow (x-y,x+y)$

$$(1, 3) \rightarrow (-2, 4)$$

 $(2, 1) \rightarrow (1, 3)$

Manhattan distance $= \max(|4 - 3|, |-2 - 1|)$ = 3

• The distance between (x_1, y_1) and (x_2, y_2) is $|x_1 - x_2| + |y_1 - y_2|$

- The distance between (x_1, y_1) and (x_2, y_2) is $|x_1 x_2| + |y_1 y_2|$
- Get rid of the absolute values:
 - $|x_1 x_2| + |y_1 y_2|$ is the same as the maximum of these four cases:
 - $(x_1 x_2) + (y_1 y_2)$
 - $(x_1 x_2) (y_1 y_2)$
 - $-(x_1 x_2) + (y_1 y_2)$
 - $-(x_1 x_2) (y_1 y_2)$

- The distance between (x_1, y_1) and (x_2, y_2) is $|x_1 x_2| + |y_1 y_2|$
- Get rid of the absolute values:
 - $|x_1 x_2| + |y_1 y_2|$ is the same as the maximum of these four cases:

- The distance between (x_1, y_1) and (x_2, y_2) is $|x_1 x_2| + |y_1 y_2|$
- Get rid of the absolute values:
 - $|x_1 x_2| + |y_1 y_2|$ is the same as the maximum of these four cases:

- Let $P_1 = x_1 y_1$ and $Q_1 = x_1 + y_1$
- Let $P_2 = x_2 y_2$ and $Q_2 = x_2 + y_2$

- The distance between (x_1, y_1) and (x_2, y_2) is $|x_1 x_2| + |y_1 y_2|$
- Get rid of the absolute values:
 - $|x_1 x_2| + |y_1 y_2|$ is the same as the maximum of these four cases

• Let
$$P_1 = x_1 - y_1$$
 and $Q_1 = x_1 + y_1$

 $P_1 + P_2$

• Let
$$P_2 = x_2 - y_2$$
 and $Q_2 = x_2 + y_2$

- The distance between (x_1, y_1) and (x_2, y_2) is $|x_1 x_2| + |y_1 y_2|$
- Get rid of the absolute values:

$$|x_1 - x_2| + |y_1 - y_2|$$
 is the same as the maximum of these four cases = $\max(|P_1 - P_2|, |Q_1 - Q_2|)$

• Let
$$P_1 = x_1 - y_1$$
 and $Q_1 = x_1 + y_1$

 $P_1 + P_2$

• Let
$$P_2 = x_2 - y_2$$
 and $Q_2 = x_2 + y_2$

The Transformation

- Let $P_1 = x_1 y_1$ and $Q_1 = x_1 + y_1$
- Let $P_2 = x_2 y_2$ and $Q_2 = x_2 + y_2$
- Thus, if we transform points from $(x, y) \rightarrow (x-y, x+y)$, the Manhattan Distance is now equal to the largest difference in P-coordinate or Q-coordinate

What does it look like?

- $(x, y) \rightarrow (x-y, x+y)$ can also be visualized on the complex plane:
 - o (x, y) is x+yi
 - $(x+yi)^*(1+i) = (x-y)+(x+y)i$
 - Multiplying by (1+i) is the same transformation!

 Multiplying by (1+i) is the same as rotating by 45 degrees counterclockwise and scaling by sqrt(2)

Back to USACO "Triangles"

 Imagine we've already applied the transformation; then the distance from a fixed point to each other point looks like this:

3	3	3	3	3	3	3
3	2	2	2	2	2	3
3	2	1	1	1	2	3
3	2	1	•	1	2	3
3	2	1	1	1	2	3
3	2	2	2	2	2	3
3	3	3	3	3	3	3

USACO "Triangles"

So, given two fixed points, which points are equidistant to both?

When two cells overlap, if they aren't the same color, then darken it:

3	3	3	3	3	3	3		
3	3	23	23	32	3	33	3	
3	32	<u>1</u> 2	2	12		3	3	
3	3	21	10	1	2	32	3	
3	3	2 <u>1</u>	1	10	2	32	3	
3	32		21	21	2	3	3	
3	ആ	3 2	32	3	3	3	3	
	3	3	3	3	3	3	3	

Another case

	3	3	3	3	3	3	3
	3	2					3
3	3	3	31	3	31	3 ₂	3
3	3	22	21		21	3 2	3
3	23	12	11	11	2	3 ²	3
3	3	2		2		32	3
3	3	3	3	3	23	33	3
3	2	2	2	2	2	3	
3	3	3	3	3	3	3	

The observation!

- Given two fixed points, the points that are equidistant to both fixed points lie on a line with slope = -1, 0, 1, or vertical line
- Thus, all equilateral triangles contain a vertical, horizontal, or a 45 degree line!