TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	. Sample Area	1.000	sq	ft
Sample ID:	10	Filter Type:	47MM		
MAS Log Number:	M2140-10	Filter Area:	1.34E+009		
Sample Received:		Grid Openings:	10	-	
Sample Due Date:		Grids Examined:	2		
Tyne Analysis:	.DUST /	Avg Area of Grid:	8171		
Microscopist: 2/2	Plmit Oltem	Tot Area Examined:	81710		
Reviewed By:	H. hence F	Magnification:	15414X		
Client Proj/ref:	A8#120.18	Dilution Factor:	1:10		

		Area Examineu		SCIUCE	ures		
		< 5 um	>= 5 um	< 5 um	>= 5 um		
No.	Free Chrysotile Fibers: ~	16	1	2.624E+06	1.640E+05		
	of Chrysotile Bundles:	4	0	6.560E+05	0.000E+00		
	of Chrysotile Clusters:	1	0	1.640E+05	0.000E+00		
	of Chrysotile Matrices:	3	1	4.920E+05	1.640E+05		
No.	Free Amphibole Fibers:	0	0	0.000E+00	0.000E+00		
No.	of Amphibole Bundles:	0	0	0.000E+00	0.000E+00		
No.	of Amphibole Clusters:	. 0	0	0.000E+00	0.000E+00		
No.	of Amphibole Matrices:	0	0	0.000E+00	0.000E+00		

Total Asbestos Structures/1 sq ft (All) : 4.264E+06 Total Asbestos Structures/1 sq ft (>= 5 um): 3.280E+05

Comments:

र कर्नार स्था अस्तान है। असूनि स्थान

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Page: 1

Client LAW-Kennesaw Sam
Sample ID: 10 Filter
MAS Log Number: M2140-10 Filter
Sample Received: 01-12-89 Grid C
Sample Due Date: Grids
Type Analysis: DUST Avg Ar
Microscopist: Microscopist: Magnif
Client Proj/ref: A88120.18 Diluti

Sample Area 1.000 Filter Type: 47MM Filter Area: 1.34E+009 10 Grid Openings: Grids Examined: 2 Avg Area of Grid: 8171 Tot Area Examined: 81710 Magnification: 15414X Dilution Factor: 1:10

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
	4 1		£	1.50	0.10	
1	1-1	C	±	2.20	0.10	
2	• •	C.	f f f	2.80	0.10	
3	1-2	C	b	2.20	0.20	
4 5 6		C	D D	2.00	0.10	
5		C	f f			
		C		2.80	0.10	
7	1-3	C ~~	f f f	10.00	0.10	
8 9	1-4	C	Ĭ	2.50	0.10	
	•	C	. f	4.50	0.10	
10	1-5	C	· f	3.20	0.10	•
11 .		C	f	2.00	0.10	
12	2-1	C	f	1.00	0.10	
13	•	C	\mathbf{m}	5.00	0.70	
14		C	f .	1.00	0.15	
15		C	ъ	1.00	0.20	
16		C	b	1.00	0.20	
17		C	m	3.00	0.70	
18	2-2	C	b	2.50	0.60	•
19		C	f	1.10	0.10	
20		С	C	3.00	0.80	
21	2-3	С		2.30	0.15	
22	2-4	C	f f f	1.00	0.10	
23	2-5	c	f	1.90	0.15	
24		C.	. f	3.00	0.15	
25		c	m	1.50	. 0.30	
26		C	m	3.00	0.30	
20		•	411	5.00	~	

TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	Sample Area	1.000	sq	ft
Sample ID:	11	Filter Type:	47MM		
MAS Log Number:	M2140-11	Filter Area:	1.34E+009		
Sample Received:	01-12-89	Grid Openings:	1		
Sample Due Date:		Grids Examined:	1		
Type Analysis:	DUST	Avg Area of Grid:	8099		
Microscopist:	altama	Tot Area Examined:	8099		
Reviewed By:	<i>B</i> 1 1 - 1 - 1	Magnification:	15414X		
Client Proj/ref:	A88/120.18	Dilution Factor:	1:500		

Area Examined

Structures

		< 5 um	>= 5 um	< 5 um	>= 5 um
No.	Free Chrysotile Fibers:	67	32	5.543E+09	2.647E+09
No.	of Chrysotile Bundles:	4	5	3.309E+08	4.136E+08
	of Chrysotile Clusters:	2	3	1.655E+08	2.482E+08
No.	of Chrysotile Matrices:	5	6	4.136E+08	4.964E+08
No.	Free Amphibole Fibers:	0	0	0.000E+00	0,000E+00
No.	of Amphibole Bundles:	0	0	0.000E+00	0.000E+00
No.	of Amphibole Clusters:	0	0	0.000E+00	0,000E+00
	of Amphibole Matrices:	0	, O -	0.000E+00	0.000E+00

Total Asbestos Structures/1 sq ft (All) : 1.026E+10
Total Asbestos Structures/1 sq ft (>= 5 um): 3.805E+09

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Client LAW-Kennesaw Sample ID: 11 MAS Log Number: M2140-11 Sample Received: 01-12-89 Sample Due Date: Type Analysis: DUST, Microscopist: Light Client Proj/ref: A88/120.18	Sample Area Filter Type: Filter Area: Grid Openings: Grids Examined: Avg Area of Grid: Tot Area Examined: Magnification: Dilution Factor:	1.000 47MM 1.34E+009 1 1 8099 8099 15414X 1:500	sq	ft
--	---	---	----	----

	strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
	1	1-1	C	 f	1.00	0.10	
	2		c	f f f f f f	2.50	0.10	
	3		c	f	15.00	0.10	
	3 4		· c	f	18.00	0.10	
	5		C	£	3.00	0.10	
	5 6 7 8		C	f	3.50	0.10	
	7		C	f	2.20	0.10	
)	8		c ~	f	5.00	0.10	
	9		C	f	4.00	0.10	
	10		c	f	5.50	0.10	;
	11		C	f.	2.50	0.10	
	12		C	c '	6.00	3.50	
	13	•	C	£	2.50	0.10	
	14	•	c ·	f	2.00	0.10	
	15		c	m	8.00	6.50	
	16		C	£	2.20	0.10	
	17		C	f	3.80	0.10	
	18		C	f	2.00	0.10	
	19		C	m	5.00	0.10	
	20		C	f	2.80	0.10	
	21		C	£	3.50	0.10	
	22		c	f	2.20	0.10	
	23	·	С	f	7.50	0.10	
	24		С	f	3.50	0.10	
	25		C	f f f	4.80	0.10	
	26		C	f	12.00	0.10	
	27		c	b	2.80	0.30	
	28		C	f	4.20	0.10	
	29	·	С	m	8.00	2.50	
	30		c	f	4.50	0.10	
	31		C	b	8.50	0.20	
	32		C	f f	3.50	0.10	
	33		C		4.00	0.10	
	34		Ċ.	C	4.50	2.80	
	35		С	f	2.50	0.10	

Sample Due Date: Type Analysis: DUST Microscopist: Reviewed By: Grids Avg Ar Tot Ar Magnif	penings: 1 Examined: 1 ea of Grid: 8099 ea Examined: 8099 ication: 15414X on Factor: 1:500		
---	--	--	--

strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
36		·C	f	6.50	0.10	
37		C	f f f	2.50	0.10	
38		C	f	2.50	0.10	
39		C	£	3.50	0.10	
40		C	m	5.00	2.50	
41		C	f	2.50	0.10	
42		C	f	8.50	0.10	
43		c ~	f	5.50	0.10	
44		c	f	2.20	0.10	
45		C	ffffffffffffffffffffff	5.00	0.10	•
46		·C	f	7.50	0.10	
47		'c	f	1.00	0.10	
48		C	f	1.20	0.10	
49		C	f	7.00	0.10	
50		C	. f	2.50	0.10	
51		C	f	8.50	0.10	
52		C	f	6.80	0.10	
53		C	f	2.50	0.10	
54		C	f	8.00	0.10	
55	,	C	f	3.20	0.10	
56		C	f	3.50	0.10	
57		C	£	4.00	0.10~	
58		C	f	2.20	0.10	
59		C		4.20	0.10	
60		C	b	8.50	0.20	
61		C	m	7.00	2.50	•
62		c	f	4.80	0.10	:
63		C	f	1.50	0.10	,
64		· c	f	3.80	0.10	
65		C	f f f f	2.00	0.10	
66		C	f	9.00	0.10	
67		C	b	4.50	0.20	
68		C	þ	11.00	0.20	
69		C	£	4.20	0.10	
70		C	m	2.80	1.50	

Page: 3

Client	LAW-Kennesaw	Sample Area	1.000	sq ft
Sample ID:	11	Filter Type:	47MM	•
MAS Log Number:		Filter Area:	1.34E+009	
Sample Received:	01-12-89	Grid Openings:	1	
Sample Due Date:		Grids Examined:	1	
Type Analysis:	DUST ,	Avg Area of Grid:	8099	•
Microscopist:	altarno	Tot Area Examined:	8099	
Reviewed By:		Magnification:	15414X	
Reviewed By: Client Proj/ref:	A881/20.18	Dilution Factor:	1:500	

strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
71		C	f	2.50	0.10	
72		С	m .	4.50	3.50	
73		C	f	7.50	0.10	
74		C	£	7.20	0.10	
75		· c	£	2.20	0.10	
76		C	f	4.00	0.10	
77		C	b	11.50	0.20	
78		c ~	f	2.50	0.10	
79		C	f	2.50	0.10	
80		C	b	4.80	0.20	
81		C	f	5.50	0.10	÷
82		C ,	f	5.00	0.10	
83		C	m	4.00	3.80	
84		C	C	10.00	3.50	
85		C	f	5.00	0.10	
86		C	f	3.20	0.10	
87		C	f	12.00	0.10	
88		C	f	22.00	0.10	•
89		C	f	3.00	0.10	
90		C	f	5.50	0.10	
91		C	£	28.00	0.10	
92		C	f	12.00	0.10	
93		C	f	8.00	0.10	
94		C	f	4.00	0.10	
95		C	m	9.00	3.50	
96		C	f	3.00	0.10	
97		c ·	f	2.20	0.10	
98		C	C	7.50	3.50	
99		c	f	1.80	0.10	
100		C	f	2.50	0.10	
101		C	f	10.50	0.10	
102		c	m	3.80	3.00	
103		С	£	11.00	0.10	
104		C	f	4.50	0.10	
105		C	f	3.50	0.10	

Client Sample ID: MAS Log Number: Sample Received: Sample Due Date: Type Analysis: Microscopist: Previewed By:	DUST COHARMAN	Sample Area Filter Type: Filter Area: Grid Openings: Grids Examined: Avg Area of Grid: Tot Area Examined: Magnification:		sđ	ft
Reviewed By: Client Proj/ref:	A88120.18	Magnification:	15414X	*****	

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
106		c	f	7.50	0.10	
107		C	c	3.50	2.40	
108		C	m	3.00	2.50	
109		C	f	4.50	0.10	
110		C	þ	3.50	0.20	
111		C	£	2.50	0.10	
112		c ·	£	3.50	0.10	
113		C ~~	f	3.00	0.10	
114		C	f	4.00	0.10	
115		C	£	4.00	0.10	
116		C	f	8.00	0.10	
117		C	f	1.80	0.10	
118		C	£	6.00	0.10	
119		c	£	3.50	0.10	
120		C	b	5.00	0.30	
121		C	f	1.50	0.10	
122		C	f	1.80	0.10	
123		C ·	f	2.50	0.10	
124		C	f	2.80	0.10	

TEM ASBESTOS ANALYSIS REPORT

Client I	LAW-Kennesaw	Sample Area	1.000	sq	ft
Sample ID:	12	Filter Type:	47MM		
MAS Log Number: 1		Filter Area:	1.34E+009		
Sample Received: (01-12-89	Grid Openings:	8		•
Sample Due Date:		Grids Examined:	2		
Type Analysis: I	DUST / . /	Avg Area of Grid:	8638		
Microscopist: 2/	Planeth	Tot Area Examined:	69104		
Reviewed By:	C. Schause-	Magnification:	15414X		
Reviewed By: Client Proj/ref: A	A88120.18	Dilution Factor:	1:200		

	Area Exa	amined	Struct	ures	
	< 5 um	>= 5 um	< 5 um	>= 5 um	
No. Free Chrysotile Fibers:	60	18	2.327E+08	6.981 E +07	
No. of Chrysotile Bundles:	5	2	1.939E+07	7.756E+06	
No. of Chrysotile Clusters:	3	0	1.163E+07	0.000E+00	
No. of Chrysotile Matrices:	11	1	4.266E+07	3.878E+06	
No. Free Amphibole Fibers:	0	0	0.000E+00	0.000E+00	
No. of Amphibole Bundles:	0	0	0.000E+00	0.000E+00	
No. of Amphibole Clusters:	0	0	0.000E+00	0.000E+00	
No. of Amphibole Matrices:	0	0	0.000E+00	0.000E+00	

Total Asbestos Structures/1 sq ft (All) : 3.878E+08 Total Asbestos Structures/1 sq ft (>= 5 um): 8.144E+07

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Page: 1

1.000 sq ft Sample Area Client · LAW-Kennesaw Filter Type: 47MM Sample ID: 12 Filter Area: 1.34E+009 MAS Log Number: M2140-12 Grid Openings: Sample Received: 01-12-89 Grids Examined: Sample Due Date: 2 Avg Area of Grid: 8638 Type Analysis: Tot Area Examined: 69104 Microscopist: 2 Magnification: 15414X Reviewed By: Client Proj/ref: A88120.18 Dilution Factor: 1:200

	strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
	1	1-1	C	b	1.70	0.15	
	2	- -	C	m	1.80	1.00	
	3		C	f	2.50	0.10	
	3 4		C	. f	1.80	0.10	
	5		C	£	5.00	0.10	
	5 6		С	· f	1.30	0.10	
	7		C	f	3.00	0.15	
ı	8		C	b	1.70	0.20	
	9		C	£	1.00	0.10	
	10		c	f	1.90	0.10	
	11	1-2	C		6.50	0.10	
	12		C	f f f f	2.00	0.10	
	13		C	f	1.30	0.10	
	14		C	f	24.00	0.10	
	15		C	f	1.00	0.10	
	16		C	m	4.00	1.00	
	17		C	f	4.00	0.20	
	18		C	f	4.50	0.10	
	19		C	£	6.50	0.10	
	20		C	£	32.00	0.10	
	21		C	m	1.00	0.30	
	22		C	m	4.50	1.50	
	23	1-3	C	f	1.00	0.10	
	24		C	f	0.80	0.05	
	25		C	, b	3.50	0.15	
	26		C	f	3.50	0.10	
	27		C	f	1.10	0.10	. :
	28	•	C	b	14.00	0.60	
	29 🐪		C	£	3.50	0.10	
	30		C	£	0.80	0.05	
	31	•	C	f	3.00	0.10	
	32		C	m	0.90	0.40	
	33		C	£	0.80	0.05	
	34		C	f	9.00	0.10	
	35		C	f	20.00	0.20	

Page: 2

sq ft 1.000 Sample Area Client LAW-Kennesaw Filter Type: 47MM Sample ID: 12 1.34E+009 MAS Log Number: M2140-12 Filter Area: Sample Received: 01-12-89 Grid Openings: 8 Grids Examined: 2 Sample Due Date: Avg Area of Grid: 8638 Type Analysis: Tot Area Examined: 69104 Microscopist: Magnification: Reviewed By: Oldfanac Client Proj/ref: A88120.18 15414X Dilution Factor: 1:200

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns
36		c	f	1.50	0.15
37		c	f f	1.20	0.10
38		c	b	4.50	0.40
39		c	f	5.10	0.10
40		c	£	1.00	0.05
41	1-4	C	f	4.50	0.20
42		C	· c	3.50	0.80
43		c 🐃 .	m	1.30	0.60
44		C ·	f	12.00	· 0.15
45		, c	m	2.00	0.60
46		c	f	6.00	0.20
47		C	c	2.00	0.60
48		С	f	0.80	0.10
49		C	f	9.00	0.20
50		С	f f f	1.90	0.15
51		С	f	1.40	0.15
52	1-5	C	f	0.80	0.10
53		С	f	1.20	0.10
54	*	С	b	1.20	0.20
55		С	C	1.50	0.30
56		С	£	0.80	0.10
57		C	£	30.00	0.15
58	2-1	C	f	1.30	0.10
59		С	f	4.00	0.15
60		C	f	1.80	0.10
61		C	f	1.20	0.15
62		c		1.90	0.10
63		C	f	40.00 .,	0.15
64 ·		C	f f f f	1.00	0.05
65		C	f	3.50	0.10
66	•	c	f	4.00	0.10
67		C	f	1.00	0.05
68		C	f f f	1.20	0.10
69		С	f	1.40	0.05
70		С	f	2.00	0.10

Client Sample ID: MAS Log Number: Sample Received: Sample Due Date:	01-12-89	Grid Openings: Grids Examined:	1.000 47MM 1.34E+009 8 2	sq	ft
	01-12-89		8		
Sample Due Date:		Grids Examined:	2		
Type Analysis:	_DUST	Avg Area of Grid:	8638	•	
Microscopist:	11. 1 Smith	Tot Area Examined:	69104		
Reviewed By:	alterna	Magnification:	15414X		
Reviewed By: Client Proj/ref:	A88120.18	Dilution Factor:	1:200		

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns
71	· 	C	f	6.00	0.10
72		c	f	3.50	0.10
73	•	C	f	1.50	0.10
74		C	f	1.50	0.20
75	2-2	C	£	2.20	0.10
76		c	f	0.80	0.10
77		C	f	1.20	0.10
78		C	f	0.90	0.10
79		C	: f	4.00	0.10
80		C	m	2.00	0.40
81		C	. b	5.50	0.30
82		C	' f	2.20	0.10
83	2-3	·C	m	2.00	0.30
84		C	£	0.80	0.10
85		C	m	1.20	0.05
86		C	· f	29.00	0.10
87		C.	f f f	2.50	0.10
88		C	f	8.50	0.20
89		C	f	2.10	0.15
90		C ·	f	2.20	0.20
91		C	f	1.90	0.10
92		C	f f f	1.00	0.10
93		C	f	1.50	0.10
94		C	£	1.00	0.10
95		C	f	1.00	0.10
96		C .	m	4.00	0.30
97	•	C	£	i.50	0.15
98		C	f	7.50	0.20
99		C ·	f	23.00	0.20
100		C	m	13.00	0.20

TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	Sample Area	1.000	sq	ft
Sample ID:	13	Filter Type:	47MM		
MAS Log Number:	M2140-13	Filter Area:	1.34E+009		
Sample Received:	01-12-89	Grid Openings:	5		
Sample Due Date:		Grids Examined:	2		
Type Analysis:	DUST	Avg Area of Grid:	8464		,
Microscopist:	alHarmon	Tot Area Examined:	42320		
		Magnification:	15414X		
Reviewed By: Client Proj/ref:	A88120.18	Dilution Factor:	1:200		

Area Examined

Structures

		< 5 um	>= 5 um	< 5 um	>= 5 um
No.	Free Chrysotile Fibers: ~	63	8	3.990E+08	5.066E+07
No.	of Chrysotile Bundles:	6	2	3.800E+07	1.267E+07
No.	of Chrysotile Clusters:	2	1 :	1.267E+07	6.333E+06
No.	of Chrysotile Matrices:	9	3	5.699E+07	1.900E+07
No.	Free Amphibole Fibers:	0	0	0.000E+00	0.000E+00
No.	of Amphibole Bundles:	0	0	0.000E+00	0.000E+00
No.	of Amphibole Clusters:	0	0	0.000E+00	0.000E+00
No.	of Amphibole Matrices:	0	0	0.000E+00	0.000E+00

Total Asbestos Structures/1 sq ft (All) : 5.953E+08 Total Asbestos Structures/1 sq ft (>= 5 um): 8.866E+07

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Client	LAW-Kennesaw	Sample Area	1.000	sq	ft
Sample ID:	13	Filter Type:	47MM		
MAS Log Number:	M2140-13	Filter Area:	1.34E+009		
Sample Received:	01-12-89	Grid Openings:	5		
Sample Due Date:		Grids Examined:	2 .		
Type Analysis:	DUST //	Avg Area of Grid:	8464		
Microscopist:	al Hassian	Tot Area Examined:	42320		
		Magnification:	15414X		
Reviewed By: Client Proj/ref:	A88120.18	Dilution Factor:	1:200		

strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
1	1-1	c	f	2.50	0.10	
1 2 3		C	f	6.50	0.10	
3		Ċ.	m	4.50	3.50	
		C	£	2.50	0.10	
5		C	f	1.80	0.10	
4 5 6		C	C	12.00	4.50	
7 ·		C	m ·	5.00	2.80	
7 · 8 9	1	c ~	f	1.50	0.10	
9		C	f f	1.20	0.10	
10		C;	m	2.80	1.60	
11		C	f	1.50	0.10	
12		c ·	m	4.50	3.80	
13		C	f	3.00	0.10	
14		C	f	1.80	0.10	
15		C	m	2.20	0.80	
16		C	m	5.00	3.80	
17		C	f	3.80	0.10	
18		C	f	1.50	0.10	
19		, c	f f f	2.50	0.10	
20		С	f	4.50	0.10	
21		C	m	18.00	9.50	•
22		C	f	1.50	0.10	
23		C	f	4.50	0.10	
24	•	C	f f f	1.00	0.10	
25	1-2	, c	f	2.50	0.10	
26		c	f	1.80	0.10	
27		c	£	2.50	0.10	
28		C	b	2.80	0.20	
29		C	b f f f	2.40	0 : 10	
30		C	f	2.20	0.10	
31		C	· f	3.50	0.10	
32		С	f	2.20	0.10	
33		C	b	3.00	0.10	
34	1-3	C	f	11.00	0.10	
35		С	f	2.80	0.10	

Client Sample ID: MAS Log Number: Sample Received: Sample Due Date: Type Analysis: Microscopist: Reviewed By:	DUST	Sample Area Filter Type: Filter Area: Grid Openings: Grids Examined: Avg Area of Grid: Tot Area Examined: Magnification:	15414X	sq	ft
Client Proj/ref:	A88120.18	Dilution Factor:	1:200		

strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
36		c	b	8.00	0.20	
37		C	f	6.00	0.10	
38		C	f	2.50	0.10	
39		С	£	2.80	0.10	
40		C	f ·	1.80	0.10	
41		C	. C	4.50	2.50	
42		· c	£	1.00	0.10	
43		c ~	f	1.20	0.10	
44		C	f	4.00	0.10	
45	:	C	m	3.50	3.00	
46	•	C	f f f	1.50	0.10	
47	•	С	f	3.00	0.10	
48		C		3.40	0.10	
49		С	þ	2.50	0.20	
50		C	f f	5.20	0.10	
51		C	f	1.20	0.10	
52		С	f	2.00	0.10	
53		C	f	2.20	0.10	
54		C	b	2.80	0.20	
55		C	m	4.50	2.50	
56	•	С	f	5.50	0.10	
5 7		C.	£	2.80	0.10.	
58		C	f	1.50	0.10	
59		С	f	2.60	0.10	
60		C	f	1.80	0.10	
61	2-1	C	f	1.50	0.10	
62		C	f f f f	3.50	0.10	
63	•	C	£	3.00		
64	•	C	f	3.80	0.10	
65		C	£	1.50	0.10	
66		C	, f	1.20	0.10	
67		C	f	3.00	0.10	
68		C	£	2.50	0.10	
69		C	C	4.50	2.50	
70		C	b	2.50	0.20	

Client Sample ID:	LAW-Kennesaw 13	Sample Area Filter Type:	1.000 47MM	sq	ft
MAS Log Number:		Filter Area:	1.34E+009		
Sample Received:	01-12-89	Grid Openings:	5		
Sample Due Date:		Grids Examined:	2		
Type Analysis:	DUST //	Avg Area of Grid:	8464		
Microscopist:	al Hayron	Tot Area Examined:			
Reviewed By:	Leant	Magnification:	15414X		
Reviewed By: Client Proj/ref:	A88/120.18	Dilution Factor:	1:200		

		Type	Structure	Length	Width	
Strc.	Grid Op	c,a	f,b,c,m	Microns	Microns	
71		C	f	3.50	0.10	
72		C	b	8.50	0.30	
73		C	m	3.20	1.50	
74	•	C	f	4.50	0.10	
75	2-2	C	£	1.20	0.10	
76		C	f	2.20	0.10	
·77		C ~	f	1.80	0.10	
78		c	f	2.00	0.10	
79		C	f	1.50	0.10	
80		·C	f	3.50	0.10	
81		C	b	3.50	0.40	
82		C	f	3.20	0.10	
83		C	f f f f f f f f	6.00	0.10	
84		C	f	2.20	0.10	
85		C	f	3.20	. 0.10	
86		C	f	1.00	0.10	
87	,	C	m	1.50	0.50	
88		C	f	12.00	0.10	
89		C	f	1.80	0.10	
90		C	f	3.50	0.10	
91		C	f	2.50	0.10	
92		C .	f f f f	7.50	0.10	
93		C	f	2.50	0.10	
94		C	m	3.50	2.00	

TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	Sample Area	1.000	sq	ft
Sample ID:	14	Filter Type:	47MM		
MAS Log Number:	M2140-14	Filter Area:	1.34E+009		
Sample Received:	01-12-89	Grid Openings:	10		
Sample Due Date:		Grids Examined:	2		
Type Analysis:	DUST,	Avg Area of Grid:	7965		
Microscopist:	aldanuon	Tot Area Examined:	79650		
		Magnification:	15414X		
Reviewed By: Client Proj/ref:	A88/120.18	Dilution Factor:	1:50		

Area Examined

Structures

	·	< 5 um	>= 5 um	< 5 um	>= 5 um	
No.	Free Chrysotile Fibers:~	38	16	3.196E+07	1.346E+07	
No.	of Chrysotile Bundles:	2	2	1.682E+06	1.682E+06	
No.	of Chrysotile Clusters:	2	1	1.682E+06	8.412E+05	
No.	of Chrysotile Matrices:	1	0	8.412E+05	0.000E+00	
						•
No.	Free Amphibole Fibers:	0	0	0.000E+00	0.000E+00	
No.	of Amphibole Bundles:	0	0	0.000E+00	0.000E+00	
No.	of Amphibole Clusters:	0	. 0	0.000E+00	0.000E+00	
	of Amphibole Matrices:	0	0	0.000E+00	0.000E+00	

Total Asbestos Structures/1 sq ft (All) : 5.215E+07 Total Asbestos Structures/1 sq ft (>= 5 um): 1.598E+07

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Client LAW-Kennesaw Sample ID: 14 MAS Log Number: M2140-14 Sample Received: 01-12-89 Sample Due Date: Type Analysis: DUST Microscopist: Client Proj/ref: A88120.18	Sample Area Filter Type: Filter Area: Grid Openings: Grids Examined: Avg Area of Grid: Tot Area Examined: Magnification: Dilution Factor:	1.000 47MM 1.34E+009 10 2 7965 79650 15414X 1:50	pa	ft
--	---	--	----	----

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
1	1-1	c	f	8.50	0.10	
1 2		C	f	1.20	0.10	
3		c	f	2.00	0.10	
4		c	f f	4.80	0.10	
5		C	f	2.50	0.10	
5 6		C	f	2.80	0.10	
7		c	£	8.50	0.10	
8	1-2	c	f f f f	2.00	0.10	
9		C	f	2.80	0.10	
10		C	f	5.50	0.10	
11		c	f	5.80	0.10	
12	1-3	c		2.50	0.10	
13	•	C	C	3.00	1.50	
14		C	m	3.80	2.50	
15		C	f	6.50	0.10	
16	1-4	C	f f f f f f f	2.50	0.10	
17		C	f	3.00	0.10	
18	•	C	f	1.20	0.10	
19		С	£	2.00	0.10	
20		C	f	2.50	0.10	
21		C	f	2.80	0.10	
22		C	f	1.80	0.10	
23	1- 5	Ç	f	2.00	0.10	-
24		C	f	1.00	0.10	
25		C	£	3.00	0.10	
26		C	f	2.50	0.10	
27		C	£	4.50	0.10	•
28		C	£	1.80	0.10	
29	2-1	C	f	7.50	0.10	
30		C	b	2.50	0.20	
31		C	þ	3.00	0.20	
32		C	þ	5.50	0.30	
33		С	f	3.50	0.10	
34		C	£	5.00	0.10	
35	2-2	C	£	8.00	0.10	

Client	LAW-Kennesaw	Sample Area	1.000	sq	ft
Sample ID:	14	Filter Type:	47MM		
MAS Log Number:	M2140-14	Filter Area:	1.34E+009		
Sample Received:	01-12-89	Grid Openings:	10		
Sample Due Date:		Grids Examined:	2		
Type Analysis:	DUST,	Avg Area of Grid:	7965		
	alderman	Tot Area Examined:	79650		
Reviewed By:	Melicinete	Magnification:	15414X		
Client Proj/ref:	A88,120.18	Dilution Factor:	1:50		

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Wiath Microns	
			~~~~~~			
36		c	C	4.00	2.00	
37		c	f	4.50	0.10	
38		c	f	2.00	0.10	
39		c	f	1.50	0.10	
40	2-3	С	f	6.00	0.10	
41		C	f	5.50	0.10	
42		C	fffffffffffffffffffffffffff	2.80	0.10	
43		c ~	£	2.20	0.10	
44	•	, <b>c</b>	f	4.50	0.10	
45	2-4	c	f	3.00	0.10	
46		c .	f	2.20	0.10	
47		c ,	f	6.50	0.10	
48		C	f	6.80	0.10	
49		C	f	2.80	0.10	
50		C	f	4.50	0.10	
<b>51</b> .	2-5	C	f	12.00	0.10	
52		C	f	2.50	0.10	
53		C	f	6.50	0.10	
54		c	` <b>f</b>	7.50	0.10	
<b>55</b> .		C	£	3.50	0.10	
56		C	f	2.20	0.10	
. <b>57</b>		C	f	6.00	0.10.	
58		C	£	2.20	0.10	
59		C	• <b>f</b>	4.00	0.10	
60		c	b	9.50	0.20	
61		<b>c</b>	c	11.00	7.00	
.62		, ' <b>C</b> ,	f	2.00	0.10	

#### TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	Sample Area	0.375	sq ft
Sample ID:	15	Filter Type:	47MM	
MAS Log Number:	M2140-15	Filter Area:	1.34E+009	
Sample Received:	01-12-89	Grid Openings:	2	
Sample Due Date:		Grids Examined:	2	_
Type Analysis:	DUST /	Avg Area of Grid:	8711	
Microscopist:	1. P. Smith	Tot Area Examined:	17422	
	al Harmon	Magnification:	15414X	
Client Proj/ref:	A88120.18	Dilution Factor:	1:1000	

Area	Examined	structures	

			< 5 um	>= 5 um	< 5 um	>= 5 um	
)	No. Free Ch	rysotile Fibers:	13	1	2.666E+09	2.051E+08	
		sotile Bundles:	0	0	0.000E+00	0.000E+00	
		sotile Clusters:	2	. 1	4.102E+08	2.051E+08	•
	No. of Chry	sotile Matrices:	27	49	5.538E+09	1.005E+10	
	_	•					
	No. Free Am	phibole Fibers:	0	0	0.000E+00	0.000E+00	
	No. of Amph	ibole Bundles:	0	. 0	0.000E+00	0.000E+00	
	No. of Amph	ibole Clusters:	0	, <b>O</b>	0.000E+00	0.000E+00	
	No. of Amph	ibole Matrices:	0	0	0.000E+00	0.000E+00	

Total Asbestos Structures/1 sq ft (All) : 1.907E+10 Total Asbestos Structures/1 sq ft (>= 5 um): 1.046E+10

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Page: 1

Client LAW-Kennesaw Sample Area 0.375 sq ft Filter Type: Sample ID: 15 47MM Filter Area: MAS Log Number: 1.34E+009 M2140-15 Grid Openings: 2 Sample Received: 01-12-89 Grids Examined: 2 Sample Due Date: Avg Area of Grid: 8711 Type Analysis: Tot Area Examined: 17422 Microscopist: Magnification: Reviewed By: Client Proj/ref: A88120.18 Dilution Factor: 1:1000

Strc.	Grid Op	Type c,a	f,b,c,m	Length Microns	Width Microns	
1	1-1	c	m	8.50	1.00	
	•	C	- m	7.00	0.70	
3		С	m	7.00	3.00	
2 3 4		C	m	12.00	0.60	
5 6		C	m	7.00	7.00	•
6		C	m	26.00	0.10	
7		c	· m	14.00	5.00	
8		C	m	8.50	1.00	
9	•	C	m	5.00	2.00	
10		, C	C	1.20	0.80	
11		C	f	3.50	0.10	
12		C	m	7.50	2.00	
13		C	m	3.50	2.00	
14		C	m	9.50	2.50	
15		C	m	30.00	7.00	
16		Ċ	m	3.50	1.00	
17		C	m	13.00	1.50	
18		C	m	28.00	0.60	
19		C	m	25.00	1.20	
20		C	m	14.00	7.00	
21	•	C	m	2.20	0.40	
22		C	m	5.00	1.00	
23		C	m	4.00	1.00	
24		C	m	10.00	1.00	
25		C	m	25.00	25.00	
26		C	f	7.00	0.20	
27		C	£	3.00	0.20	
28	•	C	m	18.00	6.00	
29		С	. <b>m</b>	5.00	1.00	
30		С	m	27.00	3.50	
31		C	m	1.50	0.30	
32		C	m	1.20	0.30	
33		C	m	4.00	1.00	
34		С	m	7.50	7.50	

20.00

4.00

35

Page: 2

sq ft Sample Area 0.375 Client LAW-Kennesaw Filter Type: 47MM Sample ID: Filter Area: 1.34E+009 MAS Log Number: M2140-15 Grid Openings: 2 Sample Received: 01-12-89 Grids Examined: 2 Sample Due Date: Avg Area of Grid: 8711 Tot Area Examined: 17422 Type Analysis: Microscopist: Magnification: 15414X Reviewed By: // / / / / Client Proj/ref: A88120.18 Dilution Factor: 1:1000

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
26			m	10.00	6.00	
36 37		c	m	4.00	1.00	
38		C	m ·	4.00	3.50	
38 39		C	m	2.00	1.00	
40		C	m	3.00	0.60	
41		C	m	14.00	7.00	
42		c	m	13.00	2.00	
42	,	a ~	m	21.00	3.50	
44		c	m	4.00	2.00	
45		c	m	1.30	0.30	
46		c	m	12.00	2.00	
47		c	m	4.00	3.50	
48		Ċ.	m	11.00	2.00	
49		c	m	10.00	2.00	
50	2-1	c	m	3.50	0.80	
51		c	m	9.50	2.00	
52		c	m	5.50	2.00	
53		c	m	10.50	2.00	
54		C	m	35.00	17.00	
55		C	f	1.10	0.10	
56		C	m	4.50	1.00	
57		C	m	7.00	3.50	
58		С	m	1.90	0.60	
59		C	C	4.00	0.15	
60		C	m	5.00	0.60	
61		c ·	m	16.00	5.00	
62		C	£	2.50	0.10	
63		C	f	1.20	0.10	
64		C	m	40.00	7.00	
65		C	m	4.00	1.00	
66		C	m	14.00	3.00	
67		C	f	1.90	0.10	
68		C		0.80	0.10	
69		C	m	7.00	0.60	

 $\mathbf{m}$ 

C

4.50

1.50

70

Page: 3

Client LAW-Kennesaw Sample Area 0.375 sq ft Sample ID: Filter Type: 15 47MM Filter Area: MAS Log Number: M2140-15 1.34E+009 Grid Openings: Sample Received: 01-12-89 2 Sample Due Date: Grids Examined: 2 Avg Area of Grid: Type Analysis: 8711 Tot Area Examined: 17422 Microscopist: Reviewed By: Magnification: 15414X Client Proj/ref: A88120.18 Dilution Factor: 1:1000

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
71		c	m	11.00	10.00	
72		C	f	2.00	0.10	
73		C	m	4.00	2.00	
74		C	m	1.00	0.20	
75		C	m	15.00	5.00	
76		C	m	3.50	2.50	
77		C	m	20.00	3.00	
78		c 📆	· <b>f</b>	0.80	0.10	
79		C	m	2.00	1.50	
80		C	m	4.00	0.40	
81		C	£	3.50	0.10	
82		С	C	7.00	2.00	
83		C	m	3.00	0.70	
84		C	f	0.80	0.10	
85		C	m	1.20	0.40	
86	•	C	m	20.00	7.00	
87		С	m	7.00	5.00	
88		C	m ·	8.00	2.00	
89		C	£	1.10	0.10	
90		С	m	16.00	0.40	
91		C	m	22.00	20.00	
92		С	· m	1.50	0.10	
93		C	f	0.80	0.10	

#### TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	Sample Area	1.000	sq ft
Sample ID:	16	Filter Type:	47MM	_
MAS Log Number:		Filter Area:	1.34E+009	
Sample Received:	01-12-89	Grid Openings:	10	
Sample Due Date:		Grids Examined:	2	
Type Analysis:	DUST,	Avg Area of Grid:	9248	
Type Analysis: Microscopist: Z	1. Symith	Tot Area Examined:	92480	
Reviewed By:	alterman	Magnification:	15414X	
Reviewed By: Client Proj/ref:	A88120.18	Dilution Factor:	1:50	

Area Examined

<	5	um	>=	5	um	<	5	um	>==	5	um

Structures

	•		•		
	Free Chrysotile Fibers: ~	25	2	1.811E+07	1.449E+06
No.	of Chrysotile Bundles:	5	1	3.622E+06	7.245E+05
	of Chrysotile Clusters:	1	0	7.245E+05	0.000E+00
No.	of Chrysotile Matrices:	3	2	2.173E+06	1.449E+06
					·
No.	Free Amphibole Fibers:	0	0	0.000E+00	0.000E+00
No.	of Amphibole Bundles:	0	0	0.000E+00	0.000E+00
No.	of Amphibole Clusters:	0	0	0.000E+00	0.000E+00
No.	of Amphibole Matrices:	0	0	0.000E+00	0.000E+00

Total Asbestos Structures/1 sq ft (All) : 2.825E+07 Total Asbestos Structures/1 sq ft (>= 5 um): 3.622E+06

^{*} The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.

^{* 0.000} display = Below Detection Limit

Page: 1

Client LAW-Kennesaw Sample Area 1.000 sq ft Filter Type: Filter Area: Sample ID: 16 47MM MAS Log Number: M2140-16 1.34E+009 Sample Received: 01-12-89 Grid Openings: 10 Sample Due Date: Grids Examined: 2 Type Analysis: Avg Area of Grid: 9248 Tot Area Examined: 92480 Microscopist: Magnification: Reviewed By: 15414X Client Proj/ref: A88120.18 Dilution Factor: 1:50

Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
1	1-1	c	m	14.00	1.00	
2	•	C	£	2.40	0.10	
1 2 3 4		C	f	1.40	0.10	
4		C	f f f f	0.60	0.05	
5 6		c	f	2.30	0.10	
	•	С	b	1.90	0.30	
7	1-2	C	f	1.40	0.10	
8		C ~	b	1.40	0.15	
9		c	f	1.50	0.10	:
10		C	b f f f	3.50	0.30	
11		C	f	1.30	0.10	
12	1-3	C	£	3.20	0.10	•
13		C		1.80	0.10	
14		C	, <b>b</b> ·	8.50	0.50	
15	1-4	C	m	3.80	1.60	
16		C	, <b>f</b>	1.40	0.15	
17		Ç	f	1.50	0.10	
18		C	£	3.40	0.10	
19		C	f	3.40	0.15	
20	1-5	C	f	1.60	0.10	
21		C	f	1.40	0.10	
22		C	f.	1.00	0.15.	
23	2-1	C	f	1.60	0.15	
24		C	f	1.60	0.20	
25	2-2	C	f f f f f f	2.80	0.15	
26		C	f	1.00	0.10	
27		C		1.00	0.10	
28		C	m	1.50	0.20	
29	2-3	C	b	2.50	0.30	
30		С	C	3.50	0.60	
31		C	f	4.30	0.10	
32		C	m	2.70	0.60	
33		C	f	3.50	0.15	
34		C	b	2.40	0.20	
35	2-5	C	m	6.00	1.40	

Client LAW-Kennesaw Sample ID: 16 MAS Log Number: M2140-16 Sample Received: 01-12-89 Sample Due Date: Type Analysis: DUST Microscopist: 20 Communications Reviewed By: 20 Communications	Sample Area Filter Type: Filter Area: Grid Openings: Grids Examined: Avg Area of Grid: Tot Area Examined: Magnification:	15414X	sq	ft
Reviewed By: Of fluxure Client Proj/ref: A88120.18	Dilution Factor:	1:50		

Strc.	Grid Op	Type c,a	f,b,c,m	Microns	Microns
36		C	£	5.50	0.10
37		Ç	b	3.50	0.15
38		С	f	4.00	0.10
39		C	£	26.00	0.10

#### TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	Sample Area	1.000	sq ft
Sample ID:	17	Filter Type:	47MM	
MAS Log Number:	M2140-17	Filter Area:	1.34E+009	
Sample Received:	01-12-89	Grid Openings:	10	
Sample Due Date:		Grids Examined:	2	
Type Analysis:	DUST . /	Avg Area of Grid:	8858	
Microscopist:	11.6. Smith	Tot Area Examined:	88580	
Reviewed By:	Clama	Magnification:	15414X	
Client Proj/ref:	A88120.18	Dilution Factor:	1:7	

Area Examined

Structures

		< 5 um	>= 5 um	< 5 um	>= 5 um
No.	Free Chrysotile Fibers:	1	O	1.009E+05	0.000E+00
No.	of Chrysotile Bundles:	;0	1	0.000E+00	1.009E+05
	of Chrysotile Clusters:	0	0	0.000E+00	0.000E+00
No.	of Chrysotile Matrices:	.0	1	0.000E+00	1.009E+05
	_	•			

No. of Ch No. of Ch No. Free Amphibole Fibers: 0.000E+00 0.000E+00 0 0 No. of Amphibole Bundles: 0.000E+00 0.000E+00 0 0 No. of Amphibole Clusters: 0.000E+00 0.000E+00 0 0 No. of Amphibole Matrices: 0.000E+00 0.000E+00 0 0

Total Asbestos Structures/1 sq ft (All) : 3.026E+05 Total Asbestos Structures/1 sq ft (>= 5 um): 2.017E+05

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Page: 1

Client LAW-Kennesaw Sample Area 1.000 sq ft Sample ID: 17 Filter Type: 47MM MAS Log Number: Filter Area: M2140-17 1.34E+009 Sample Received: 01-12-89 Grid Openings: 10 Sample Due Date: Grids Examined: 2 Avg Area of Grid: Type Analysis: 8858 Microscopist: Tot Area Examined: 88580 Reviewed By: Magnification: 15414X Client Proj/ref: A88120.18 Dilution Factor: 1:7

Strc.	Grid Op	Type c,a 	Structure f,b,c,m	Length Microns	Width Microns
1	1-2	c	b	17.00	1.40
2	2-3	c	m ·	5.00	0.30
3	2-4	C	f	3.50	0.20

#### TEM ASBESTOS ANALYSIS REPORT

Client	LAW-Kennesaw	Sample Area	1.000	sq	ft
Sample ID:	18	Filter Type:	47MM	_	
MAS Log Number:	M2140-18	Filter Area:	1.34E+009		
Sample Received:	01-12-89	Grid Openings:	10		
Sample Due Date:		Grids Examined:	2		
Type Analysis:	DUST	Avg Area of Grid:	8418		
Microscopist:	1 Smilh	Tot Area Examined:	84180		
		Magnification:	15414X		
Reviewed By: Client Proj/ref:	A88120.18	Dilution Factor:	1:50		

## Area Examined Structures

>= 5 um

< 5 um

>= 5 um

		·				
	Free Chrysotile Fibers:	9	0	7.163E+06	0.000E+00	
No.	of Chrysotile Bundles:	1	0	7.959E+05	0.000E+00	
No.	of Chrysotile Clusters:	0	0	0.000E+00	0.000E+00	
No.	of Chrysotile Matrices:	0	0	0.000E+00	0.000E+00	
No.	Free Amphibole Fibers:	0	0	0.000E+00	0.000E+00	
No.	of Amphibole Bundles:	0	0	0.000E+00	0.000E+00	
	of Amphibole Clusters:	0	. 0	0.000E+00	0.000E+00	
No.	of Amphibole Matrices:	0	0	0.000E+00	0.000E+00	

< 5 um

Total Asbestos Structures/1 sq ft (All) : 7.959E+06 Total Asbestos Structures/1 sq ft (>= 5 um): 0.000E+00

- * The Detection Limit is calculated on the probability of analyzing one asbestos fiber or structure in the total area examined.
- * 0.000 display = Below Detection Limit

Microscopist:	DUST Smile	Grids Examined: Avg Area of Grid: Tot Area Examined: Magnification:	15414X	sq ft
Client Proj/ref:	A88120.18	Dilution Factor:	1:50	

	Strc.	Grid Op	Type c,a	Structure f,b,c,m	Length Microns	Width Microns	
	1	1-1	C	£	1.90	0.10	
	2	1-2	C	f	2.20	0.10	
	3	1-3	c	f	1.60	0.10	
	4	1-5	C	b ·	1.90	0.30	
	5	2-1	C	f	1.00	0.10	
	6	2-3	, c	£	1.40	0.10	
	7		c	· <b>f</b>	4.30	0.15	
ļ	8	2-4	C	f	3.00	0.10	
	9		C	£	0.60	0.10	
	10	2-5	C	£	1.50	0.10	



#### CHAIN-OF-CUSTODY

1
Company: Law Ussac MAS Job No: 142140
Contact: Brien frutherland Date: 1-12-89
Contact: Sur Frugues Date: 12 5
Phone No: 812-3201 Client P.O.: ASS-120.18
TYPE OF ANALYSIS
TEM ( ) Lovel I ( ) LEVEL II ( ) AHERA ( ) WATER ( ) BULK ( )
OTHER:Requested T.A.T.:
Due Date:
Sample Number(s): 2200 Bldg 2600 bldg
1) graff. 11) 4th Il.
2) 9 KM A. 12) 4 M Fl.
3) bon Al 13) Frd A
4) 6th A. 14) 3rd H
5) 5H. H. 15) Basement
6) Shell. 16) Basement
7) HM H. 17) St Fl.
8) 3rd H 18) Sew Clev
9) Int I
10) Mun dellar : 20)
Samples Received By: Phillip Date: 2-1/2-89
Condition of Samples: OK
Sample Preparation: 9 Anoth Fto Chan Date: 7-30-90
Sample Analysis: Date:
Report(s) Sent By: Mailed   P. Nahls Date: 10/1/90
Sample(s) Shipped By: among of or land P. Fling Date: 5-16-91
Samples Received By Client:  Date Received By Client:  (Dlease sign and return to MAS upon Norms Centric 2000)

COPY



## CHAIN-OF-CUSTODY

	_
Company: Low assoc MAS Job No:	M 2140
Company: What What MAS JOB NO:	19
Contact: Bush Southerland Date: 1-1-	2-81
Phone No: <u>\$12-3277</u> Client P.O.:_	AS8-120.18
TYPE OF ANALYSIS	
TEM ( ) Level I ( ) LEVEL II ( ) A WATER ( ) DUST ( ) BULK ( )	HERA ( )
OTHER: Requested T.A	T.:
Due Date:	· · · · · · · · · · · · · · · · · · ·
Sample Number(s): 2200 Bldg 2600 B	lfg
1) quit. 11) 4+a H.	
2) 9 KM ff. 12) 4 th Fl.	
3) 6 m A 13) Frd H	
1 21 11	
4) 6th 4. 14) 3rd Fl	·
51 5H. H. 151 Basemen	<i>F</i>
6) Shell. 16) Basem	ent-
7) 4th H. 17) St H.	
8) 3rd H 18) Sew C	lev.
9) Int Il	
10) Min dollar 20)	
Samples Received By: Phillip	Date: # - 1/2 - 89
Condition of Samples:	35 // A
Sample Preparation: C. Arrah H. C. Car I	Date: 7-30-90
	ate: 8-25-90, 8-24-90)
	Date: 9.24.95
	Date:
Samples Received By Client:  Date Received By Client:	3597 Parkway Lane • Suite 250 Normss Georgia 3999
	INDICADES FINANCIALINA

	<u> </u>	1	1	1	Case	01-0	)1139  0	9-AN  -0	1C  00	Doc				iled :	10/24  N	4/05  -	Pag	ge 32	of 90				
							Main Lobby	2nd Floor	3rd Floor	Ath Hoor	5th Floor	5 th Floor	क्स प्रकर	Coth Floor	9th Floor	9th Floor	te Sample Location	rioo daara	рате	JOB NUMBER	JOB NAME	,	
							农	88	农	R	农	B	贸	<b>W</b>	W.	(X)	Inft.	COLLECTION	12/	188 -	Centruly	•	•
-							*									व्यायकः	Date		19/88	A88-120.18	xy Centra		
:							<					· ·				MAS	LAW ASSOC LAB	FIRST T			er 2200 Bldg		
:							4								-	11/12/81	Date Log In	TRANSFER		•			
-							+								-	7.BE	Init.						CHAIN OF
																	Trans. To						CHAIN OF CUSTODY SHEET
-																	Mode Trans.	SECOND T	c	<del>.</del>	0	TRANSF	SHEET
																	Date	TRANSFER	Transferred	Į.	0. / A.	TRANSFER REGILECTED BY	
-	,																Recd. By		°C	/ 60	4W) 4550514160	STED BY	
<u>.                                    </u>					·												TRANS TO		Materials Analyticat		12.4Tm	Ŋ	Page
																	Mode Trans.	THIRD TRANSFER	Mody		به از	\ \ \	ef.
1																	Date	ANSFER	111/		<u> </u>	) F	-
																	lnit.	:	5 // (ca. >	ļ	\{		l
										-													

Case 01-01139-AMC Doc 10687-3 Filed 10/24/05 Page 34 of 90

# DUST SAMPLES 2200 BUILDING CENTURY CENTER IV LAI POJECT NUMBER 1188-2120.18

	SAMPLE NUMBER	LOCATION/DESCRIPTON	SAMPLE AREA
	<u> </u>	Carpet Sample, Suite 90, File Storage Room Floor	12" X 12"
	1/2	Dust Sample, Suite 90, File Storage Room Shelves	12" X 12"
	3/	Carpet Sample, Suite, 660 Paper Storage Room	12" X 12"
	<b>○</b> ⁴ .	Dust Sample, Suite 650, Top of Kitchenette Capinets	12" X 12"
	5_/	Carpet Samy 0, 5th Floor/Lobby Entrance to en's Bathroom	6 . 24"
	6/	Dust Sample Suite 532, Top of Brown Phone Switching Box	5" X 24" \
	2/	Dust Sample, 4th Floor Air Handler, Horizontal Surface above Intake Filters	4" X
D	8/	Dust Sample, 3rd Floor Air Handler, Horizontal Surface above Intake Filters	4" X 24"
	9'	Dust Sample, Suite 220, Top of Isotec Switchbox	12" X 12"
		Carpet Sample, First Floor, Intersection of Elevator Lobby and Main Tobby	12" X 12"
		and rean oppy	

^{*} NOTE: All samples taken @ liters/minum for 60 seconds.

## DUSTISAMPLES. 2600 BUILDING CENTURY CENTER IV LAI PROJECT NUMBER 1188-2120.18

	•	
Sample Number	Location/Description	Sample Area
1	Dust Sample, Fourth Floor South Center Room, Back of Ceiling Tile	12" X 12"
2	Dust Sample, Fourth Floor Air Handler Room, Top of Duct	12" X 12"
3	Dust Sample, Third Floor Air Handler Room, Top of Duct	12" x 12"
<b>4</b>	Carpet Sample, Suit: 275, Left Rear Corner	12" X 12"
5	Dust Sample, Basement Mechanical Room, Top of Breaker Box	3" X 18" .
6	Carpet Sample, Basement Mechanical Room Office, Behind Door	12" X 12
7 .	Carpet Sample, 1st Floor Lobby, West Side base of Steps	12" X 12"
8	Carpet Sample, Service Elevator, left Front Corner	12" X 12"

NOTE: All samples taken @ 2 liters/minutes for 60 seconds.



PREPPED DUST SAMPLE CASSETTE LABELS:

MAS JOB NUMBER:	M 2140
CLIENT JOB NUMBE	R:
	•
SAMPLE NUMBER:	LABEL:
	A88-120.18 12-19-88 Engr: BS Fdow: 2 lpm
	Pump # 7725 T= 60 secs. Somple #1,
	2200 Bldg.
22	A88-120.18 12-19-88 Engr: BS Flow: 21pm
•	Pump # 7725 T= 60secs. Somple # 2, 2200 Bldg.
3	A88-120.18 12-19-88 Engr. BS Flow: 21pm
	Pump # 7725 T= 60secs. Sample #3,
	2200 Bedy
4.	A88-120.18 12-19-88 Eng. BS Flow: 21pm
	Pump #: 7725 T=60 sec. Sample #4, 2200 Bldg
<b>s</b> .	A88-120.18 12-19-88 Eng. B.S. Flow: 2 lpm
	Pump# 7725 T=60 sec. Sample # 5, 2200 Bldg.
6	A88-120.18 12-19-88 Engr. BS Flow: 2 lpm
	Pump # 7725 T = 60 sec Sample # 6, 2200 Bldg.
.7	A88-120.18 12-19-88 Comp. BS Flow: 2lpm
	Pu # 77775 T= 10 10 10 10 10 10 10 10 10 10 10 10 10
g.	Pump # 7725 T= 60 per Somple #7, 2200 Bldg.
	A88-120.18 12-19-88 Engr. BS Flow: alph
q	Pomp # 7725 T= 60 secs Somple #8, 2200 Blog.
	A88-120.18 12-19-88 Eng. B8 Flow: 2lpm
10	Pump # 7725 T=60sec Jumple #9, 2200 Blog.
10.	A88-120.18 12-19-88 Engr. BS Flow: 21pm
	Pump #7725 Dample # 10, 2200 Bldg.
11	A88-120.18 12-19-88 Engr. BS Flow: 2 lpm
-	Pump# 7725 T= 60 pec Sample # 1, 2600 Bldg.
•	$\theta$



PREPPED DUST SAMPLE CASSETTE LABELS:

MAS JOB NUMBER:	<u>M 2140</u>
CLIENT JOB NUMBER:	
SAMPLE NUMBER:	LABEL:
12 A88	-120.18 12-19-88 Eng. B.S. flow outpm
- Tun	p # 7725 T= 60 sec Souple # 2, 2600 Bldg,
13 A88	-120.18 12-19-88 Eng. B.S. Flow 2 lpm p # 7725 T= 60 sec Jonple # 2, 2000 Bldg, -120.18 12-19-88 : Engr. BS Flow: 2 lpm
- Pun	p#7725 Sample # 3, 2600 Bldg.
14 A88	120.18 12-19-88 Engr. BS Flow: 21pm
Pum	+ 1725 T= 60 sec. Sample #4, 2600 Bldy.
15 A88-	120.18 12-19-88 Eng. BS Flow: 2 lpm
P.,	# 7725 T= 60 sus Somple #5, 2600 Bldg
11 /40	120 19 12 12 16 C 08: 31 2: 28
	-120.18. 12-19-88 Cry. BS Flow: 2 p
- Thing	# 77.25 T= 60 sec Songle #6, 2600 Bldg 120.18 12-19-88 Engr. BS 7-low: 2 lpn
17 A88-	120.18 12-19-88 cmg. 55 7200: dlpn
Pum	0 # 7725 T= 60 sei domple # 7, 2600 Bld
18 A88 -	120.18 12-19-88 Engr. BS Flow: 2 lpm
- Pum	p # 7725 T= 60 sec Jample # 8, 2600 Bldg.
<u>.</u> .	
•	•
	10-78-

1

,	ř		•			· · ·		•
				0.5m	H June	Sept va	THE STREET	A CHIEW
			725	0.7~	11	Mag 12400	加工打	11-0+REW
			1000	- m	11	Solve V	Marie	O/-CHICW
			لاً الم	DILO	1	lken	BANK	6-011cm
	·		52	0.5.0	11	Conce	Sign Color	2- OHEW
			rsı	2 7	11	box	(A)	M2140 - 7
			92 E	الله الله	1.1	llows /	24	9-9-18-M
		-	long	Ind	1.1	Bres	5420	S- CHIEW
			L.	O.Ind		Con	645	A- OFFEW
			10nd	In	17	Macs	64	2- OHRW
	خست		Lyon	Sml	11	Mars	att.	E~ OHICM
	100ml		10.1	Ind	= 574	none and	Jun J	1- OHIEW
COMMENTS	TOTAL SUSPENSION VOLUME	VOLUME FILTERED NO. 3	VOLUME FILTERED NO. 2	VOLUME FILTERED NO. 1	FILTER TYPE	CLIENT I.D. #	CLIE	LAB l.D. #
MT-003	PREP SOP #;						•	
A. May 15 Afreide	PREP TECH: "		•					DATE DUE:
			ı		TSUG		ES:	TYPE OF SAMPLES:
7-31-40 (11-18)			•	<u> </u>	OHICM	_	H	PROJECT NUMBER:
7-30-90 (1-10)	DATE OF PREP:		هن	c/Kennessen	Ten Rossoc /			PROJECT NAME:

1	-		1				
			D				
				-			
8 w 81 D-5, D-15	<u>( </u>				MCE Imm	-Lab Blank	
			20ml	23	-	1	M245 -13
			152	2 ml		1 Stylloon	11-04/EU
			ROW	2 2	=	Boxemon	91- OTIEW
			Sul	0.52	1	S Rosement	SI- ONIEW
			રું	25%	1.	WILL MAN	hI- ahrew
	100ml		25	0,5,0	W.CE (L)www	37 Man del	M2140-13
COMMENTS	TOTAL SUSPENSION VOLUME	FILTERED NO. 3	FILTERED NO. 2	FILTERED NO. 1	FILTER	CLIENT I.D. #	LAB I.D. #
	rner 30r #. [1]]~(C)						
<b>かい</b>	BBEB 800 #:						
F. TOm G. Agent	PREP TECH: 3	·				*	DATE DUE:
					DUST	is:	TYPE OF SAMPLES:
7-31-40 (11-18)			•	-	<i>जमाद्</i> ष	<b></b>	PROJECT NUMBER:
7-30-90 (1-10)	DATE OF PREP:		(Leurenaux)	1	Land Canoc		PROJECT NAME:
7-30-90 (1-10)	DATE OF BRED		-		2	•	

Cheparin

and the same of th	A Company	
TERIALS ANALYTICAL SERVICES, INC.  DUST SHEET		PAGE# EST
Client: Law Assoc.   Kenne SAW	Accelerating Voltage:	100 KV
Sample ID: No./	Indicated Mag: Screen Mag:	20 KX -25KX- 154/4/X -20KX-
MAS Job Number: M 2/40  Date Sample Analyzed: 90 Aug 90	Microscope Number: Filter Type: Filter Size:	2 3 4 MCE PC, Other = 25mm, 37mm, 47mm
Number of Openings/Grids Counted: 10.1.2	. Filter Pore Size (um):	0:22
Grid Accepted, 600X: Yes No 4%	Grid Opening:	1) 88-/ um × 87.6 ui
Analyst: 2. Smith.		2) 93.7 um × 89.6 ur
Dilution Factor: 1: 0.0676.667 44	<b>.</b> .	
Calculating Results For Verbal Issue:		•
ffective Filter Area:	(A)	37
Number of Grid Openings Examined:	(B) <u>/0</u>	·
Average Grid Opening Area in sq. mm:	(c) <u>0.00805</u>	7
Volume of Liquid Filtered in ml:	(D) <u>15</u>	1. No.
Area Sampled in Sq. Ft.:	(E)/	
Number of Asbestos Structures Counted:	(F) <u>18</u>	
STRUCTURES PER SQ. FT. FORMULA:		
A 100 * 1 B * C D = E	* .F = (asbestos	structures per sq. ft.)
Calculations:	*	. :
1339 • 100 • 1	* 18 =	1,994×15

Case 01-01139-AMC Doc 10687-3 Filed 10/24/05 Page 41 of 90
PAGE # 212

MAS JOB NUMBER:

STR.	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH	CC	NFIRMATIC	N
#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
1/_	1-1	$\mathcal{C}$	F	2.5	012	1	V	VPO.
2		0	F	2.3	0.2	$\nu$	V	V
3		C	F	2.0	0.2	V		<u></u>
4		C	<i></i>	1.0	0.15	V	~	~
5	1-2	C	M	3	12	V	V	2
6		C		/	115	2/		2
7	1-3	C	<i>j</i> =	715	0:3	V	V	V
ġ	1-4	<u>c</u>	F	1.5	.0.15	V	<i>V</i> .	
9	1-5	C	<i>j=</i>	1	0.15		1/	1,
10	2-1	C	F	1.5	0.15	V.	V	V Po
11	2-2	C	M	1.8	0.15	1		V
12		C	11	3.6	0.2	~	<i></i>	1
13		C	M	2.3	0115	~	~	v
14		· C	M	23.6	0.15	V:	~	1-
	2-3	·C	F	2.5	0-15		1	1
16		<u></u>	j <del>-</del>	45	0.5	·	1	<i>F</i>
17	2.4		M	2	0,2	~	-	1
18	2.5	0	F	3	0.2	V	1	<i></i>
		Sines	•					
						•		
					, , , , , , , , , , , , , , , , , , , ,			
	·					•		
					<u> </u>			
V								
	<u></u>			l	l		<del></del> _	·

1





MATERIALS ANALYTICAL SERVICES, INC.  DUST SHEET		PAGE # //
Client: LAW ASSOC KENNESAW	Accelerating Voltage:	100 KV
Sample ID: # 2	Indicated Mag: Screen Mag:	20 -25KX A 15414 20KX WR
MAS Job Number: M 2/40-2	Microscope Number: Filter Type:	2 3 MCE PC, Other =_
Date Sample Analyzed: 24 - Aug - 90	Filter Size:	25mm, 37mm, (47r
Number of Openings/Grids Counted: 10.1 2	, Filter Pore Size (um):	0-22
Grid Accepted, 600X: Yes No 390	Grid Opening:	1) 94.2 um × 93.7
Analyst: Grant / Grant / Color	armon	2) 92 um × 92
Dilution Factor: 1: 50	· ·	
Calculating Results For Verbal Issue:		•
Effective Filter Area:	(A)	9
Number of Grid Openings Examined:	(B)	•
Average Grid Opening Area in sq. mm:	(c) <u>0.008</u>	645
Volume of Liquid Filtered in ml:	(D)	•
Area Sampled in Sq. Ft.:	(E)/	
Number of Asbestos Structures Counted:	(F) 30	• •
•		
STRUCTURES PER SQ. FT. FORMULA:	•	
A 100 *	1 * F = (asbestos str	ructures per sq. ft.)
	*	
Calculations:	•	
	i - 30 = 21	323410 7
10 0:008645 2	7	

Case 01-01139-AMC Doc 10687-3 Filed 10/24/05 Page 45 of 90

CLIENT: WALL ASSOC! KENTESAW

PAGE # __________

MAS JOB NUMBER:

M 2140-2

4	STR.	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH		NFIRMATIO	
7	#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
1		/-/	C	F	/	15	V	<u></u>	,
	2		.C.	M	3.5	0.3	/	<i>'</i>	P.O.
	3	1-2	>DC	B	1	0.15	/	V	L
	4	1-3	- 6	<i></i>	1.8	0.15	1/	~	,
			- C	F	7	0.15-			1
	6	1-4	C	J=	1.2	0.1	V	<i>.</i> ·	
	フ			/=	1.2	0.2	2	<i>L</i>	<u></u>
	8		<u></u>	É	1.5	0.15	4	1/	1-
	9		C	F	2.5	0.2		~	2
	10		C	F	6-0	<i>0-Z</i>	1	1-	4
	//	1-5	C	M	115	0.15	~	1	P.0
	12		C	<i></i>	/	0.15	V_	1	<u> </u>
	13		C	1=	1.5	0.15	V	2/	1,
	14	2~1	C	F-	1.8	01)			
	15			F	20	01)			
	16	<b>ス-2</b>		£	2.5	011			
	17	スープ	<u> </u>	F	800	01/		-	
	18		<u> </u>	£	1.0	011			
-	19			<u>C</u>	515	2,2			
	20			B	40	012			PO
	2)			f	4.8	011			
	22			5	1210	011			-
ļ	23	2-4	$\mathcal{L}$	F	1,5	01/			
	24		<u>C</u>	£	4.0	011			
	25		$\mathcal{C}$	F	2.2	01)			
	26	2-5	C	£	3.8	01]			
	37		<u></u>	F	215	01)	•		
À	28		<u></u>	B	615	012			
	29			C	310	215			
	30		C	В	3.8	014	-		PO









		A Section of the sect	PAGE #/ . 15
	MATERIALS ANALYTICAL SERVICES, INC.  DUST SHEET		7.13
	Client: LAW ASSOC/ KENNESAW	Accelerating Voltage:	100 KV
	Sample ID: #3	Indicated Mag: Screen Mag:	20 -85KX AK 15414 20KX
	MAS Job Number: M 2/40 3	mior occopo managem	2 3 4 CE PC, Other =
	Date Sample Analyzed: 24 - Aug - 90		5mm, 37mm, <u>(47mm</u>
	Number of Openings/Grids Counted: 10.1.2	Filter Pore Size (um):	0.22
	Grid Accepted, 600X: Yes No 3%	Grid Opening: 1	93 um x 90
	Analyst: W.P. Smil only al Harm	<u>2</u>	88 um × 90
	Dilution Factor: 1: 15:0		
•	Calculating Results For Verbal Issue:		
	Effective Filter Area: (A	1739	
	Number of Grid Openings Examined: (B	10	·
	Average Grid Opening Area in sq. mm: (C	0.0081	45
	Volume of Liquid Filtered in ml: (D	)	
	Area Sampled in Sq. Ft.: (E	)	
	Number of Asbestos Structures Counted: (F	9/	<u> </u>
	STRUCTURES PER SQ. FT. FORMULA:		
	A 100 * 1	_ * F = (asbestos stru	actures per sq. ft.)
		<b>3. V</b>	. :
	Calculations:		
	/339 • 100 • 1	- 9/ = 11	19/X10 <b>8</b>
	10 0:008145 1 1	<del></del>	

Case 01-01139-AMC Doc 10687-3 Filed 10/24/05 Page 51 of 90

CLIENT: LAW ASSOC. /Kennessu

PAGE# 215

MAS JOB NUMBER:

M21403

# SQUARE# C,A F,B,C,M,N MICRONS MICRONS MORPH, SAED, EDS.	STR.	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH		NFIRMATIO	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	SQUARE#						SAED.	
3	/	1-/		M	3	0.2	<i>y</i>	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		C	M	/	0.15	V	V	<del> </del>
5			C	J=	1.2	0.2	2/	V	~
6	4		0	E	1.1	0115	~	2	~
6	5			F	14	0.15	· ~		2-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		C	F	0.9	0.15	~	-	- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7			F	20	0.15	1/	11	1-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		0	F	0.9	0.15	V	V	<del></del>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9		C	$\mathcal{B}$	0.9	0-4	V	~	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		C	F	3.6	0.2	~	2	<b>}</b>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/	1-2	<u></u>	F	6.0	01)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12		· C	F		011			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13			£	2.5	01)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		. <u>C</u>	£	0.8	01/			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	. 15		·	F	1,5	0.1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14			£	1,2	011			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17		Ċ	£	.510	011			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	1-3	_	£	110	011			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19		<u> </u>	£	2.8	011			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		U	F	1,5	01/		·	PO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21		_	B	2.8	016			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22			f	1	ľ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23		C	4	1,5	011			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21/		<u></u>	F	615				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	1-4	<u> </u>	f	617				
27 C F 215 011	2/0			F		1			
28 C F 3,5 011	27		C	f	1	011	•		
29 C F 415 011 -	28		_	F		7 /			
	<b>- 1</b>		C	F		<del></del>		-	
30 C F 115 011 - PO	30		C	F	115			-	PO

CLIENT: LAW ASSOC / KENNESOW

PAGE# 315.

MAS JOB NUMBER:

M 2140-3

STR.	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH		NFIRMATIO	
#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
31	CONT			410	118		<del></del>	
32		<u></u>	<i>F</i>	1.0	011			
3,3		<u> </u>	<u>£</u>	2.0	01)			
34		<u> </u>	C	315	2.5			
35		<u></u>	F	1,5	01)			
36		<u> </u>	<u>f</u>	412	011			
37			B	615	0,2			
38		<u> </u>	f	1.2:	01)	-		·
39			£	215	011			
40	<u> </u>	<u> </u>	4	2.0	011			PD
41	1-5	C	J	5,5	410	2		
42			5	316	011			•
43			+	8,5	011			
144		·	F	4,2	011			
45	,		F	2.0	011			
44			F	410	01/			-
47		<u></u>	f	. 3, 2	011			·
48		<u></u>	F	810	01/			·
49	·	C	f	2,2	011	-		
50		د	f	2,5	811			PO
51		C	F	スルス	011			
52		<u></u>	4	12.0	011			
53	a-/	C	£	1.5	011			
54		<u>C</u>	4	418	011			
55		<u> </u>	F	510	011			
56		C	f	115	01/	• • • • • • • • • • • • • • • • • • • •		
57	2-2	C	f	7.2	119	•		
58			F	112	011		/	
59		2	F	115	011			
40		C_	F	310	011			PO

CLIENT: LAW ASSOC/KENNESOW

PAGE # 415

MAS JOB NUMBER:

M 2/4/2-3

	STR,	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH		NFIRMATIC	
	#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
	6/	COUT	<u> </u>	4	3.0	01/			
	62		<u></u>	C	315	1.8	-		
_	63			B	115	0,2			
	69	2-3	د	F	ス・ス	011			
	65			B	415	0,2			
	66		ے	M	312	2.8	-		
_	67			. M	215	2.0			
	68			f	1,5	.01)			
	49	. <u> </u>	C	C	510	3.8			
	20			£	アルス	011			PD
<u> </u>	2/			B	118	0.2			
	<i>う</i> み	2-4		F	615	01/			: •
	73		<u></u>	f	ルブ	011			
<b>(II</b> )	14		·	£.	6.8	01/			
	75		<u> </u>	£	115	011			
	76			F	ス・ム	011			`
	77		<u>_</u>	f	.3.2	011		·	
	18		C	£	2.8	011	)		
	75		<u></u>	£	2-2	01)			
	80		$\subset$	M	3,8	3.0			00
	8/		C	Ŧ.	415	011			
	82		<u></u>	C	2.0	1.0			
	83	2-5	$\subset$	£	315	011			
	84		<u></u>	f	100	01/			
_	85		<u></u>	£	1,2	011			
	84		C	M	415	2.5			
	87		<u>C</u>	4	2.0	011	`		
	88		C	f	510	01)			
	89		<u> </u>	5	315	011			
	20		<u>C</u>	Ć	4.0	1,5		/	AD AN

Case 01-01139-AMC Doc 10687-3 Filed 10/24/05 Page 54 of 90

CLIENT:

- HN +SSOC/ KENNESAW.

PAGE# 515

MAS JOB NUMBER:

M 2140-3

STR.	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH	CC	NFIRMATIC	N
#	SQUARE#	TYPE C, A	STRUCTURE F, B, C, M, N	LENGTH MICRONS	<u>WIDTH</u> MICRONS	MORPH.	SAED.	EDS.
9/	2-5	<u></u>	F	115	01)			
<del></del>								
					<del></del>			
			<u> </u>					
				·				
	:							
				•				
		•						
		•						
						•		
		-			······································			
				•				
	-							<del></del>
			•					
					; 			
								-
		<del></del>				. •		
	<u>-</u>		•			•		<del></del>
			·					
					-			



















		•	
MATERIALS ANALYTICAL SERVICES, INC.  DUST SHEET		PAGE # _ / . /	<u>ح</u>
Client: ++w ASSOC/ KENNESAW	Accelerating Voltage:	100 KV	
Sample ID:	Indicated Mag: Screen Mag:	20 25KX ## 15414 20KX	
MAS Job Number: M 2/40-4	Microscope Number; Filter Type:	1 2 3 4 MCE, PC, Other =	
Date Sample Analyzed: 8 - 27 - 50	Filter Size:	25mm, 37mm, (47mm)	_
Number of Openings/Grids Counted: 101 2	, Filter Pore Size (um):	0122	<u>.                                    </u>
Grid Accepted, 600X: Yes No 10 70	Grid Opening:	1) 88 um x 89	!
Analyst: afflumon		2) 90 um x 2/	
Dilution Factor: 1: 5:0			
Calculating Results For Verbal Issue:			
Effective Filter Area:	(A)/33	9	
Number of Grid Openings Examined:	(B)/	<i>.</i>	
Average Grid Opening Area in sq. mm:	(C) 01008	011	
Volume of Liquid Filtered in ml:	(D)	<u> </u>	
Area Sampled in Sq. Ft.:	(E)/	•	
Number of Asbestos Structures Counted:	(F)	· · · · · · · · · · · · · · · · · · ·	•
STRUCTURES PER SQ. FT. FORMULA:			•
A * 100 *	1 * F = (asbestos	structures per sq. ft.)	
Calculations:			۶-
1339 - 100	1 * 3 = 2	• 507X10 6	

CLIENT: LAW ASSOC/ KENNESOW

PAGE # 212

M-2140-4

STR.	GRID#	TYPE	STRUCTURE	<u>LENGTH</u>	WIDTH		NFIRMATION	<u>NC</u>
#	SQUARE#	TYPE C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS
	1-1		NSD					
	1-2		NSD					
	1-3		NSD					
	1-4		150					
	1-5		N30		_			<u></u>
	2-1.		NSD		· ·			
	2-2		NSD	·				
<del></del>	2-3		N50					
	2~4	A		1,8	011		168	PO
_2_		<u>C_</u>	£	6.8	01)			PZ
	2-5	۷.	F	4,2	01			
			<u>[</u>					
<u> </u>								<del></del>
								1
								,
							•	
								<u>.</u>
		<u> </u>						
			,					
								<u> </u>
			•			. ,		<u> </u>
							<u> </u>	
								<u> </u>





		· ·
MATERIALS ANALYTICAL SERVICES, INC.  DUST SHEET		PAGE#/. / . / .
Client: LAW ASSOC / KECKESA	Accelerating Voltage:	100 KV
Sample ID: 5	Indicated Mag: Screen Mag:	20 25KX Ath 15414 20KX
MAS Job Number: M 2/40-5	Microscope Number: Filter Type:	2 3 4 MCE, PC, Other =
Date Sample Analyzed: 8-27-52	7 Filter Size:	25mm, 37mm, 47mm
Number of Openings/Grids Counted: 101 2	Filter Pore Size (um):	0122
Grid Accepted, 600X: (Yes) No 590	Grid Opening:	1) 90 um x 90
Analyst: af Hairmon		2) 9/ um × 50
Dilution Factor: 1: 4		
Calculating Results For Verbal Issue:		
Effective Filter Area:	(A)	39
Number of Grid Openings Examined:	(B)/	<i>D</i>
Average Grid Opening Area in sq. mm:	(C) 01008	145
Volume of Liquid Filtered in ml:	(D) 25	<del>-</del>
Area Sampled in Sq. Ft.:	(E)	
Number of Asbestos Structures Counted:	(f)	
STRUCTURES PER SQ. FT. FORMULA:		
A * 100 * D	1 * F = (asbestos s	structures per sq. ft.)
Calculations:		
/339 • 100 •	1 - /) = /	.118×104
10 01008145. 25		

MW ASSOC/ KENNESAW

PAGE # 212

MAS JOB NUMBER: M- 2140 - 5

WYZ JOR V	IUMBER.	M- 2770		•			•	
STR.	GRID#	TYPE	STRUCTURE	LENGTH	<u>WIDTH</u>		NFIRMATIO	
#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
	1-1	d	£	1,2	01/			PO
ン		U	<u>f</u>	115	011			-
3		C	F	415	011	,		
4		_	£	2.5	01	-		
5	1-2	d	£	1,8.	011			<u> </u>
6	1-3	C	F	7.0	01)			,
2		U	<b>B</b>	618	012			
•	1-4		N5D					
	1-5		NSD		·			
8	スー/	· C	4	3,5	01)			
9		J	f	3.8	011			
10	2-2	$\mathcal{C}$	4	2-8	011			PO
11		$\overline{c}$	4	1.5	01)			
<u> </u>	2-3	0	4	2.5	01)			
13		C	f	218	01/			·
7	2-4	!	NGD	·				
14	2-5	. C	f	31.6	011	-		
15		C	4	7.2	011			,
		. C_	£	2,5	011			
11/2		0	B	4,5	012			
			•					
<del></del>		<u></u>	-		· <u>·········</u>	-		
					<del></del> .			
······································				_ · · <u>. · · · · · · · · · · · · · · · · </u>				
						1	l <u></u>	<u></u>





## Case 01-01139-AMC Doc 10687-3 Filed 10/24/05 Page 72 of 90

£9.L			•	•				
DUPLICATE	: ///		REPLICATE:		<b>-</b>	PAGE#	_/1	
MAS JOB N	UMBER:	M 2/	40-5	25 ml hlilutai	# of GO/grids counted: Ave. grid opening:	10	12	
E:	09=52=7	DT-9	0 : .	<u>.</u>		<u>0392</u>	sq. !	
ANALYST:	Orig: AA		<i>B5</i>		Grid opening: 1) 937um 2) 93-7um	X X	93.7	um um

747761011	Orig. N /Y		0.5	•		21,90-7 0	- ^ /	27 UIII
STR.	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH	CC	NFIRMATI	ON
#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
	1-/		NSD					
/	1-2	C	M	1.7.	03	V	· v	P.O.
2		C	<i>/=</i>	8.	0.1	$\nu$	v	
2 3 4	1-3	C	<i>F</i>	2.6	0.1	2-	2	
4		0	<i>j=</i>	1.4	0.1	~	~	
	1-4		1452			<u> </u>		
5	1-5	<u></u>	M	110	0.5	V	~	
6		$\mathcal{C}$	m	2.8	0-7	1-	-	
7		<u>c</u>	F	1.1	0.05	1	1	
8	2-1	C	F	0.9	0.05	1/	1	
02	2-2	<u> </u>	F	2.4	0.1	1-	2	
10.		A	F	3.7	0.3		187	P.O-
1/_	:	C	<i>J=</i>	2	0.1	V	V	P.O-
12	2-3	0	M	2.9	0.9	V	~	
	2-4		N5D					
	2-5		NSD					]
					·			
·								
	·							
		·						
						. ,		
					•		-	
				-				,
					······································			
						-		



\$1



(3.7







PAGE# /,

MATERIALS ANALYTICAL SERVICES, INC.

DUST SHEET		·
Client: LAW ASSOC/ KENNESAW	Accelerating Voltage:	100 KV
Sample ID: #6	Indicated Mag: Screen Mag:	20 -25KX A 15414 20KX W
MAS Job Number: <u>M 2/40 - 6</u>	Microscope Number: Type: MCE	2 3 PC, Other =
Date Sample Analyzed: with 15 - sug90.	Filter Size: 25mm	, 37mm, <u>(47</u>
Number of Openings/Grids Counted: 10.1 2	Filter Pore Size (um):	0.22
Grid Accepted, 600X: Yes No 6%	Grid Opening: 1) 90	0-/ um x 892
Analyst: 2/P. Smit / al Harnon	2) 6	92 um x 89
Dilution Factor: 1: -500		
Calculating Results For Verbal Issue:		
Effective Filter Area:	(A) 1739	
Number of Grid Openings Examined:	(B) 1 <i>b</i>	·
Average Grid Opening Area in sq. mm:	(c) 0:00 8130	7
Volume of Liquid Filtered in mi:	(D) <u>0.2,</u>	<u> </u>
Area Sampled in Sq. Ft.:	(E) <u>0,833</u>	
Number of Asbestos Structures Counted:	(F) <u> </u>	
STRUCTURES PER SQ. FT. FORMULA:		
A * 100 * D	1 * F = (asbestos structure	s per sq. ft.)
Calculations:		
1339 - 100 -	1 ・ スス = 2,175	112 8
10 0008130 012 6	718]}	

LOW ASSOC. | KENNESAW)
BER: M-2140-6

PAGE# 2 12

AS JOB NUMBER:

U	AG JOB NO	·	M- 217		· ·		<b></b>		
	STR.	GRID# SQUARE#	TYPE	STRUCTURE	LENGTH MICRONS	WIDTH MICRONS	MORPH.	NFIRMATI	
	#	<u> </u>	C, A	F, B, C, M, N				SAED.	EDS.
-		1-1	C	F_	2	0.3	<u> </u>	<u> </u>	P.O.
-			_ C	<i></i>	2.4	0.2	V	<i>F</i>	~
		1-2	<u> </u>	· M	1.8	0.2	<u></u>	<u> </u>	<i>V</i>
	4		C	M	3	0.15	レ	2	V
_	5	-/-3	<u> </u>	M	1./	0.15	V	1	V
	_6		C	M	2.5	0.15	V	1	<i>\\</i>
	_7	1-4	C	F	8	0.2	V	4	V
	8	1	_ C	F	17	0.2	V	V	V
	9		$\mathcal{C}$	M	/	0.15	V	V	Po
	10	·	_C	F	1.8	0.2	L	V	V
			$\mathcal{C}$	M	3	0.3	L	<i>~</i>	V
	12_	1-5	C	F	4	0.7	v	V	$\nu$
		2-1		w5D	· 			·	
<u></u>	13	2-2		4	3.0	011			
	14	·			3.2	012			
<u> </u>	15			M	5.0	415			
	16		<u> </u>	f	2.0	011			
	17	2-3		F	11.0	011			
	18			4	6.0	011			
	19			£	4,2	01/			
	20	2-4		n	4.0	3,5			10
	21			<u></u>	2.8	011			
	_ スス			n	4,2	3.8		/	
		2.5		2517			_		·
	· .						. ,		
								· · · · · · · · · · · · · · · · · · ·	·
						·			·
								·	
				, , ,		· ·			
		<del></del>							
	<del></del> -	<u></u>	l					····	l







MATERIALS ANALYTICAL SERVICES, INC.  DUST SHEET		PAGE #
Client: LAW ASSOC/KENNESTO	Accelerating Voltage:	100 KV
Sample ID: 7	Indicated Mag: Screen Mag:	20 25KX 15414 20KX
MAS Job Number: <u>M 2/40 - 7</u>	Microscope Number: Filter Type:	2 3 4 MCE, PC, Other =
Date Sample Analyzed: 8 - 28 - 90	Filter Size:	25mm, 37mm, 47mm
Number of Openings/Grids Counted: ////	, Filter Pore Size (um):	0.22
Grid Accepted, 600X: Yes No 10%	Grid Opening:	1) 88 um x 87
Analyst: af Harmon		2) um x
Dilution Factor: 1: 5:0		
Calculating Results For Verbal Issue:		•
Effective Filter Area:	(A) 133°	7
Number of Grid Openings Examined:	(B)	•
Average Grid Opening Area in sq. mm:	(C) 01007	1656
Volume of Liquid Filtered in ml:	(D)	2
Area Sampled in Sq. Ft.:	(E) 0146	2
Number of Asbestos Structures Counted:	(F) 9/	
STRUCTURES PER SQ. FT. FORMULA:		,
A * 100 *	1 * F = (asbestos s	tructures per sq. ft.)
B C D	E	
Calculations:		
		193 x 129
	F(0)000000	

CLIENT:

LAW 4550C/ KEMESOW

PAGE # 2 15

MAS JOB NUMBER: M- 2/40 - 7

WAS JOR NO		M- 2/70	<u> </u>	• • .			•	
STR.	GRID#	TYPE	STRUCTURE	<u>LENGTH</u>	WIDTH		NFIRMATIO	
#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
/	1-1		<u>£</u>	3,5	011			PD
ス			£	310	01/			•
.3		<u>_</u>	7	1,5	011			
4/		<u></u>	<u></u>	2,5	1,5	-		· · · · · · · · · · · · · · · · · · ·
5		<u> </u>	M	4.8.	1.0			
6			M	510	315			<u>-</u>
7			C	315	2.8			
8		<u> </u>	· KJ	515	4.8	-		
9		<u> </u>	F	410	01)			
10	•		B	5510	012			10
1/		<u>_</u>	£	315	011			
12.		_	f	4,5	011			
13		C	F	2.2	011			
14		C.	£	1500	01/			
15			£	415	011			. · ·.
16		C	F.	3,5	Dil			
17		<u> </u>	£	3,8	011			
18		0	£	: 115	011			<u> </u>
19		C	Ť.	515	011			
20		C	£	2-8	011			PO
2)		· (	F	1.8	011			·
22_		_	f.	4,0	01/			
23		_	F	1,2	01)			
24		<i>C</i>	F	315	011	-		
25		C	F	3,2	011			<u> </u>
2/	·		5	2.2	011	-		· .
27		C	F	3,6	011			
28		U	f	110	011			
29		٥.	4	115	01)			A =
30		C	F	215	011			PD

CLIENT: LAW ASSOC/KENNESOW

PAGE # 315

MAS JOB NUMBER:

M- 2140-7

	STR.	1 0010 4 1			T		·		
	#	GRID# SQUARE#	TYPE	STRUCTURE	LENGTH	WIDTH MICRONS	MORPH.	NFIRMATI	
	·····	JC!	C, A	F, B, C, M, N	MICRONS		MURPH.	SAED.	EDS.
-		CONT	<u> </u>	£	1.0	01)			<u>.                                    </u>
<u> </u>	<u> 3ス</u>			チ	2.8	011			
	33.			£	4,0	011	, سبس		
	34		C	f	1,5	011			
	35		C	£	2.0	01/			
	36		C	£	ス・ス	01)			
	アフ		_	f	カス	011		-	
	38		<u> </u>	L	2-8	01)	سسنو	• ••••	
	38 39			B	2,5	012			
	40		<	F	2,2	011			PO
	41		$\subset$	f	415	011			
	42			£	515	011			
4	43		C	f.	2.8	011			
	44		_	£	1,0	01)		-	
	45		C	F	3,5	011	-	•	
	4/1		C	S	7.8	011			
	47		C	Ć	315	2,4	-	<u></u>	
	48			C	415	3,8			
	49		C	F	12.0	011	-		
	50		<u> </u>	£.	2,2	011			PD
	5/		C	£	2.8	011			
	52	<u> </u>	<u>_</u>	M	410	315			
	53		C	4	415	011			
	54		<u> </u>	f	2,0	011			
	55		C	f	112	011			
	56	·	<u>_</u>	F	2.8	01)			
	57		<u></u>	F	2,0	011			
	58		C	F	2,5	011			
	59		4	F	815	011			
	60		C	f	610	011			190

CLIENT: _____ ASSOC/KENNESOW

MAS JOB NUMBER:

M-2140-7

		•						•	
	STR.	GRID#	TYPE	STRUCTURE	LENGTH	WIDTH		NFIRMATIC	
	#	SQUARE#	C, A	F, B, C, M, N	MICRONS	MICRONS	MORPH.	SAED.	EDS.
-	61	CONT		C	11.0	4.0			
	62		_	<u>£</u>	4,0	01)	•		
	63		$\subset$	<u>£</u>	1.8	01)			
	64		<u>C</u>	<u>C</u>	815	316	•		
- {	65		۷_	£	ルス.	01)			
	66	-	_	F	2.0	011			
	62		C	f	615	011			
	68		<u></u>	f	ルス	011	•		
	10 9		$\subset$	£	2.0	01/			
	70	•	<u>_</u>	7	3.0	01)	-		PO
	71		J	F	312	011			
	72				11:0	3,8			
	73		<u></u>	f.	018	011			
	74		C.	M	20	2-2	-		
	75		0	f	410	011			
	76		A	4	1,4	01/			
	22		P	£	2.8	01/			
ſ	78			£	1,5	01/			
	79		. C_	£	1,2	91)			
	80		J	B	815	013			PO
	81		$\subset$	M	7,5	0,8			
	メン		Ŋ	-ct	1,5	011			
	83		P.	F	1810	011		-	• 
	84		<u></u>	÷	418	011			
	85		0	F	1,5	011			
	86		<u></u>	F	4,6	011			
	87		<u></u>	4	1,2	011			
	88		_	$\mathcal{B}$	115	012			
	89		C	f	1,8	011			
	90		<u>C</u>	千	410	01/	-		PO
ι	- 1	I				·	·		

·CLIENT:

LAW ASSOC/KENNESON

PAGE # 515

		M- 2141		LENCTH	WIDTH		NFIRMATIC	)N
STR.	GRID#	TYPE	STRUCTURE F, B, C, M, N	LENGTH MICRONS	MICRONS	MORPH.	SAED.	EDS.
#	SQUARE#	C, A						
91	CONT		<u>f</u>	<b>ス・</b> ス	01)			
i								•
								·
······································					·			
·					·			
								· · · · · · · · · · · · · · · · · · ·
	<u> </u>							
	• !							<u></u>
								,
								<u> </u>
				1	,			
<del>:</del>								-
·						<u> </u>		
				·				
								<u></u>
			•					
		· · · · · · · · · · · · · · · · · · ·			<u> </u>			
					<u> </u>	1	·	
		,				<u>                                     </u>		
			-					
								<del> </del>
						<u> </u>		ļ
				:				:
		· · · · · · · · · · · · · · · · · · ·						
						<del> </del>	<u> </u>	
	*						<u> </u>	
		·						}
					<u> </u>			
		<u> </u>				<u> </u>		<del> </del>
· 	•	:						<u> </u>







