Symbols

Sets

Name	Domains	Description
i	*	products
j	*	stages
k	*	potential number of parallel units

Parameters

Name	Domains	Description
h		horizon time (available time hrs)
q	i	demand of product i
alpha	j	cost coefficient for batch units
beta	j	cost exponent for batch units
coeff	k	represent number of parallel units
S	i, j	size factor for product i in stage j (kg per l)
t	i, j	processing time of product i in batch j (hrs)

Variables

Name	Domains	Description
y Y	k, j	binary variable denoting stage existence Boolean
V	j	volume of stage j (l)
b	i	batch size of product i (kg)
tl	i	cycle time of product i (hrs)
n	j	number of units in parallel stage j
cost	_	total cost of batch processing units (\$)

 $coeffval_{k,j} \geq 0, \quad \forall k, j$

Equations

Name	Domains	Description
vol	i, j	calculate volume of stage j
cycle	i, j	calculate cycle time of product i
time		time constraint
units	j	calculate number of processing units per stage
lim	j	limit selection to one number
obj		objective function definition

Equation Definitions

$$\mathbf{vol}_{i,j}$$

$$v_j \ge \log(s_{i,j}) + b_i$$
 $\forall i, j$

 $\mathbf{cycle}_{i,j}$

$$\mathbf{n}_j + \mathbf{tl}_i \ge \log(\mathbf{t}_{i,j})$$
 $\forall i, j$

time

$$\sum_{i} (q_i \cdot \exp((tl_i - b_i))) \le h$$

 \mathbf{units}_i

$$n_{j} = \sum_{k} (\operatorname{coeff}_{k} \cdot \operatorname{y}_{k,j})$$
 $n_{j} = \sum_{k} \operatorname{coeff} \operatorname{val}_{k,j}$

 \lim_{i}

$$\frac{\sum_{k} y_{k,j} - 1}{\sum_{k} Y_{k,j}} \qquad \frac{\vee}{k} Y_{k,j} \qquad \forall j$$

obj

$$\mathrm{cost} \geq \sum_{j} (\mathrm{alpha}_{j} \cdot \exp((\mathbf{n}_{j} + \mathrm{beta}_{j} \cdot \mathbf{v}_{j})))$$

 $v_j \ge 0 \ \forall j$ $b_i \ge 0 \ \forall i$

 $n_j \ge 0 \ \forall j$

 $\mathrm{tl}_i \geq 0 \ \forall i$

 $\mathbf{y}_{k,j} \in \{0,1\} \ \forall k,j \ \{\text{True,False}\}\$

Create the following disjunction:

$$\begin{bmatrix} Y_{k,j} \\ coeffval_{k,j} = coeff_k \end{bmatrix} \vee \begin{bmatrix} \neg Y_{k,j} \\ coeffval_{k,j} = 0 \end{bmatrix}, \forall k,j$$

*****CHECK GAMS CODE FOR DATA!!!!!!!! BESIDES, ADDITIONAL BOUNDS ARE DEFINED THERE!!!!!!!!!!

https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_batchdes.html