Multiclass Classification

Sergey Ivanov

Plan

- Presentation on Multiclass Classification
 - a. Error Rates and the Bayes Classifier
 - Gaussian and Linear Classifiers. Linear Discriminant Analysis. Logistic Regression;
 - Multi-class classification models and methods;
 - d. Multi-class strategies: one-versus-all, one-versus-one, error-correction-codes
- 2. Linear Classifiers and Multi-classification Tutorial
- 3. In-class exercise

References

- 1. Multilabel Classification format
- 2. <u>Classifier Comparison</u>
- 3. <u>LDA as dimensionality reduction</u>
- 4. LDA vs PCA
- 5. <u>Logistic Regression for 3 classes</u>
- 6. Linear models
- 7. LDA and QDA
- 8. Naive Regression
- 9. Cross Validation in Python

$$P(y \mid x_1, \dots, x_n) = \frac{P(y)P(x_1, \dots, x_n \mid y)}{P(x_1, \dots, x_n)}$$

$$P(y \mid x_1, ..., x_n) = \frac{P(y)P(x_1, ..., x_n \mid y)}{P(x_1, ..., x_n)}$$

$$P(y \mid x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, \dots, x_n)}$$

$$P(y \mid x_1, ..., x_n) = \frac{P(y)P(x_1, ..., x_n \mid y)}{P(x_1, ..., x_n)}$$

$$P(y \mid x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, ..., x_n)}$$

$$P(x_i|y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i|y)$$

$$P(y \mid x_1, \dots, x_n) = \frac{P(y)P(x_1, \dots, x_n \mid y)}{P(x_1, \dots, x_n)} \qquad P(x_i \mid y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i \mid y)$$

$$P(y \mid x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, ..., x_n)}$$

$$P(y \mid x_1, \dots, x_n) \propto P(y) \prod_i P(x_i \mid y)$$

$$P(y \mid x_1, \dots, x_n) = \frac{P(y)P(x_1, \dots, x_n \mid y)}{P(x_1, \dots, x_n)}$$

$$P(x_i \mid y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i \mid y)$$

$$P(y \mid x_1, \dots, x_n) = \frac{P(y)\prod_{i=1}^n P(x_i \mid y)}{P(x_1, \dots, x_n)}$$

$$P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^n P(x_i \mid y)$$

$$\hat{y} = \arg\max_{y} P(y) \prod_{i=1}^{n} P(x_i \mid y)$$

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

$$P(x_i \mid y) = P(i \mid y)x_i + (1 - P(i \mid y))(1 - x_i)$$

Pros:

- 1. Fast
- 2. Prevent curse of dimensionality
- Decent classifier for several tasks (e.g. text classification)
- 4. Inherently multiclass

Cons:

 Bad estimator of probabilities to the class.

$$P(y = k|X) = \frac{P(X|y = k)P(y = k)}{P(X)} = \frac{P(X|y = k)P(y = k)}{\sum_{l} P(X|y = l) \cdot P(y = l)}$$

$$P(y = k|X) = \frac{P(X|y = k)P(y = k)}{P(X)} = \frac{P(X|y = k)P(y = k)}{\sum_{l} P(X|y = l) \cdot P(y = l)}$$

$$p(X|y=k) = \frac{1}{(2\pi)^n |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu_k)^t \Sigma_k^{-1}(X-\mu_k)\right)$$

$$P(y = k|X) = \frac{P(X|y = k)P(y = k)}{P(X)} = \frac{P(X|y = k)P(y = k)}{\sum_{l} P(X|y = l) \cdot P(y = l)}$$

$$p(X|y=k) = \frac{1}{(2\pi)^n |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu_k)^t \Sigma_k^{-1}(X-\mu_k)\right)$$

- LDA = each class has the same covariance equals to averaged covariance of the classes
- QDA = each class has its own covariance

$$\Sigma_k = \Sigma$$

Pros:

- 1. Closed-Form solution
- 2. Inherently Multiclass
- No hyperparameters tuning
- Can be used as dimensionality reduction

Cons:

- Assume unimodal Gaussian distribution for each class
- 2. Cannot reduce dimensions to more than the number of classes.
- Not useful if "information" is in data variance instead of the mean of classes.

$$E(w, b) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \alpha R(w)$$

Loss functions L:

- · Hinge: (soft-margin) Support Vector Machines.
- Log: Logistic Regression.
- Least-Squares: Ridge Regression.
- Epsilon-Insensitive: (soft-margin) Support Vector Regression.

$$E(w, b) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \alpha R(w)$$

Regularization Term R:

- L2 norm: $R(w) := \frac{1}{2} \sum_{i=1}^{n} w_i^2$,
- L1 norm: $R(w) := \sum_{i=1}^n |w_i|$, which leads to sparse solutions.
- Elastic Net: $R(w):=\frac{\rho}{2}\sum_{i=1}^n w_i^2+(1-\rho)\sum_{i=1}^n |w_i|$, a convex combination of L2 and L1, where ρ is given by 1 11_ratio .

$$E(w,b) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \alpha R(w)$$

$$w \leftarrow w - \eta (\alpha \frac{\partial R(w)}{\partial w} + \frac{\partial L(w^T x_i + b, y_i)}{\partial w})$$

$$\eta^{(t)} = \frac{1}{\alpha(t_0 + t)}$$

$$E(w, b) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \alpha R(w)$$

$$w \leftarrow w - \eta (\alpha \frac{\partial R(w)}{\partial w} + \frac{\partial L(w^T x_i + b, y_i)}{\partial w})$$

$$\eta^{(t)} = \frac{1}{\alpha(t_0 + t)}$$

Practical Tips:

- Scale data so that each dimension has unit variance and zero mean. StandardScaler() in Python.
- Empirically, n_iter = np.ceil(10**6 / n)
- Averaged SGD works best with large number of features.
- After PCA, multiply training data by c such that L2 norm will be equals to 1.

Pros:

- 1. Fast
- 2. Ease of implementation
- 3. Sound theoretical results

Cons:

- 1. Hyperparameters tuning
- 2. Sensitive to feature scaling
- 3. Not multiclass

Multilabel and Multiclass classification

- Multiclass: classifying more than 2 classes. For example, classifying digits.
- **Multilabel**: assigning a set of topics to each sample. For example, assignment of topics to an article.
- Multioutput-multiclass: fixed number of output variables, each of which can take on arbitrary number of values. For example, predicting a fruit and its color, where each fruit can take on arbitrary set of values from {'blue', 'orange', 'green', 'white',...}.

Multilabel and Multiclass classification

- Inherent Multiclass: Naive Bayes,
 LDA/QDA, DT, Random Forest, kNN
- One-vs-Rest
- One-vs-One
- Error-Correcting Output Codes

One-vs-Rest (OVR)

Binary classification:

Multi-class classification:

One-vs-Rest (OVR)

One-vs-Rest (OVR)

Training: Fits one classifier per class against all other data as a negative class. In total K classifiers.

Prediction: applies K classifiers to a new data point. Selects the one that got a positive class. In case of ties, selects the class with highest confidence.

Pros:

- Efficient
- Interpretable

One-vs-One (OVO)

One-vs-One (OVO)

<u>Training:</u> Fits (K-1) classifier per class against each other class. In total K*(K-1)/2 classifiers.

Prediction: applies K*(K-1)/2 classifiers to a new data point. Selects the class that got the majority of votes ("+1"). In case of ties, selects the class with highest confidence.

Pros:

 Used for Kernel algorithms (e.g. "SVM").

Cons:

Not as fast as OVR

Error-Correcting Output Codes (ECOC)

Training: 1) Obtain a binary codeword for each class of length c. 2) Learn a separate binary classifier for each position of a codeword. In total, c classifiers.

Prediction: Apply c classifiers to a new data point and select the class closest to a datapoint by Hamming distance.

	Code Word									
Class	vl	hl	dl	cc	ol	or				
0	0	0	0	1	0	0				
1	1	0	0	0	0	0				
2	0	1	1	0	1	0				
3	0	0	0	0	1	0				
4	1	1	0	0	0	0				
5	1	1	0	0	1	0				
6	0	0	1	1	0	1				
7	0	0	1	0	0	0				
8	0	0	0	1	0	0				
9	0	0	1	1	0	0				

Column position	Abbreviation	Meaning					
1	vl	contains vertical line					
2	hl	contains horizontal line					
3	dl	contains diagonal line					
4	cc	contains closed curve					
5	ol	contains curve open to left					
6	or	contains curve open to right					

Error-Correcting Output Codes (ECOC)

How to obtain codewords?

- 1) Row separation
- 2) Column separation

Class	Code Word														
	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	0	0	0	0	1	0	1	0	0	1	1	0	1
1	0	0	1	1	1	1	0	1	0	1	1	0	0	1	0
2	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1
3	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1
4	1	1	1	0	1	0	1	1	0	0	1	0	0	0	1
5	0	1	0	0	1	1	0	1	1	1	0	0	0	0	1
6	1	0	1	1	1	0	0	0	0	1	0	1	0	0	1
7	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1
8	1	1	0	1	0	1	1	0	0	1	0	0	0	1	1
9	0	1	1	1	0	0	0	0	1	0	1	0	0	1	1

Pros:

Can be more correct than OVR

Multilabel and Multiclass classification

- Inherent Multiclass: Naive Bayes,
 LDA/QDA, DT, Random Forest, kNN
- One-vs-Rest
- One-vs-One
- Error-Correcting Output Codes