Math 69: Logic Winter '23

Homework assigned January 20, 2023

Prof. Marcia Groszek

Student: Amittai Siavava

ghgh

Problem 7.

Write down 4 sentences for a language $\mathfrak L$ such that any structure $\mathfrak U=\langle X,\leq \rangle$ is a linear ordering if and only if it satisfies those four sentences.

$$\forall x \ Pxx \qquad \qquad \text{(reflexive)}$$

$$\forall x \ \forall y \ ((Pxy \land Pyx) \rightarrow (x = y)) \qquad \text{(antisymmetric)}$$

$$\forall x \ \forall y \ \forall z \ ((Pxy \land Pyz) \rightarrow Pxz) \qquad \text{(transitive)}$$

$$\forall x \ \forall y \ (Pxy \lor Pyx) \qquad \text{(total)}$$

Amittai, S Math 69: Logic

Problem 9.

Suppose that X is a set and \leq is a preordering of X. Define a new binary relation on X by

$$x \equiv y \leftrightarrow (x \le y \land y \le x).$$

Show that \equiv is an equivalence relation on X, that \leq induces a well-defined relation on equivalence classes, and that this induced relation is a partial ordering of X/\equiv .

Claim 9.1. \equiv is an equivalence relation on X.

Proof. We need to show that \equiv is reflexive, transitive, and symmetric.

Reflexivity: $x \le x$ for all $x \in X$, so $x \equiv x$, so the equivalence relation is reflexive.

Transitivity: For $x, y, z \in X$, suppose $x \equiv y$ and $y \equiv z$, then:

$$x \equiv y \iff (x \le y \land y \le x) \tag{9.2}$$

$$y \equiv z \iff (y \le z \land z \le y) \tag{9.3}$$

$$?? \land ?? \leftrightarrow (x \le z \land z \le x) \leftrightarrow (x \equiv z)$$

Symmetry: For $x, y \in X$, suppose $x \equiv y$, then:

$$x \equiv y \leftrightarrow (x \le y \land y \le x)$$

$$\leftrightarrow$$
 $(y \le x \land x \le y)$

$$\leftrightarrow$$
 $(y \equiv x)$

Amittai, S Math 69: Logic

Claim 9.4. \leq induces a well-defined relation on equivalence classes.

Proof. Let $x, y \in X$ such that $x \equiv y$. Take any $z \in X$ without loss of generality. If $z \equiv x$, then $z \equiv y$ since $x \equiv y$. On the other hand, suppose $z \not\equiv y$. Then it may not be the case that $z \equiv x$, as that would imply that $x \equiv y$ (since $z \equiv x$ and $x \equiv y$). This implies that, for any $z \in X$, either (1) $z \equiv x$, and $z \equiv x_i$ for all $x_i \equiv x$, or (2) $z \not\equiv x$, and $z \not\equiv x_i$ for all $x_i \equiv x$. Therefore, \le induces a well-defined relation on equivalence classes.

Claim 9.5. The induced relation is a partial ordering of X/\equiv .

Proof. We need to show that \equiv is reflexive, transitive, and antisymmetric when applied to equivalence classes of x.

Reflexivity: Suppose [x] and [y] are equivalence classes on X. Suppose $[x] \equiv [y]$. Then $x_i \equiv y_j$ for all $x_i \in [x]$ and $y_j \in [y]$. Since \equiv is symmetric when applied to members of X, $y_j \equiv x_i$ for all $x_i \in [x]$ and $y_j \in [y]$, so $[x] \equiv [y]$ implies $[y] \equiv [x]$.

Transitivity: Suppose $[x] \equiv [y]$ and $[y] \equiv [z]$. Then $x_i \equiv y_j$ for all $x_i \in [x]$ and $y_j \in [y]$, and $y_j \equiv z_k$ for all $y_j \in [y]$ and $z_k \in [z]$, since \equiv is transitive when applied to members of X. Therefore, $x_i \equiv z_k$ for all $x_i \in [x]$ and $z_k \in [z]$, so $[x] \equiv [z]$.

Antisymmetry: Suppose $[x] \equiv [y]$ and $[y] \equiv [x]$. As we saw in the proof to claim ??, this implies that every $x_i \in [x]$ is equivalent to every $y_j \in [y]$, so everything in [x] is in the equivalence class of everything in [y], which is only possible if [x] = [y].

Amittai, S Math 69: Logic

Problem 11.

Define the notion of isomorphism between two equivalence relations

$$\mathfrak{A} = \overrightarrow{X}, \overrightarrow{\equiv}_X \text{ and } \mathfrak{B} = \overrightarrow{Y}, \overrightarrow{\equiv}_Y.$$

Let $f: X \to Y$ be a function. We say that f is an isomorphism between $\mathfrak A$ and $\mathfrak B$ if f is a bijection and if $f(\alpha) \equiv_Y f(\beta)$ whenever $\alpha \equiv_X \beta$. For instance, take $x \in X$, suppose $f(x) = y \in Y$. If f is an isomorphism, then f maps every element in the equivalence class [x] to some element in the equivalence class [y].