FORMAL LANGUAGES AND AUTOMATA HW-1

Asst. Prof. Dr. Osman Kaan EROL Asst. Prof. Dr. Tolga OVATMAN R.A. G. Selda UYANIK R.A. Mustafa ERSEN

- 1. You are asked to design a division circuit using ASM, that conforms with the following properties
 - a) Circuit starts operation by enabling ('1') a control bit S,
 - b) In the beginning of the operation two unsigned 8 bit numbers should be loaded to registers A and B; if B=0 an overflow flag should be set and the circuit should jump to the last step skipping division operation.
 - c) The circuit should perform A/B operation and store the result in C register and the remainder in D register,
 - d) After storing the results, the circuit should wait for the control bit S to be disabled ('0') and go back to starting state.

You should assume that an adder/subtractor and necessary number of registers are present. Registers have synchronous reset, increment and parallel loading capabilities.

In this context,

- a) Draw ASM flowchart
- b) Design control unit
- c) Design data processor. Also provide the boolean expressions that control the digital components in the system.
- 2. Reduce the states of the incompletely specified Mealy machine below and draw the state transition table of the reduced machine in Moore model.

	l ₁	l ₂	l ₃	I ₄	I ₅
Α	D-0	D-0	-	-	B-0
В	E-0	D-0	B-1	-	C-0
С	-	D-0	-	A-0	A-0
D	C-1	C-0	E-0	B-0	-
E	D-1	C-0	-	-	E-1

Submission Deadline: 7 March 2013

1) a)

$$\begin{split} L_A &= sT_0 + ET_3 & K_1 &= E'T_3 \\ L_B &= CIr_C = CIr_D = L_0 = sT_0 & K_2 = K_4 = T_2 \\ Inc_C &= ET_3 & K_3 = ET_3 \\ L_D &= E'T_3 & \\ L_E &= T_2 & \end{split}$$

2)

State dependency table:

		Α	В	C	D
	В	B-C D-E			
		D-E			
	С	A-B	A-C		
Ī	D	-	-	A-B	
	Ε	-	-	-	C-D

Relation graph (Complete cover):

Mealy model reduced machine:

		l ₁	l ₂	l ₃	I ₄	I ₅
S	51	S3-0	S2,S3-0	S1-1	S1-0	S1-0
S	52	S1,S2-1	S2-0	S3-0	S1-0	S1-0
9	53	S2-1	S1,S2-0	S3-0	S1-0	S3-1

Moore model reduced machine:

		l ₁	l ₂	l ₃	I ₄	I ₅	0
U	S1-0	Υ	W,Y	V	U	U	0
V	S1-1	Υ	W,Y	V	U	U	1
W	S2-0	V,X	W	Υ	U	U	0
X	S2-1	V,X	W	Υ	U	U	1
Υ	S3-0	Х	U,W	Υ	U	Z	0
Z	S3-1	Х	U,W	Υ	U	Z	1