-2751-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2670

A DNA sequence (GASx971) was identified in *S.pyogenes* <SEQ ID 7839> which encodes the amino acid sequence <SEQ ID 7840>. Analysis of this protein sequence reveals the following:

```
Possible site: 28

>>> Seems to have a cleavable N-term signal seq.

10

---- Final Results ----

bacterial outside --- Certainty=0.3000(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 **Example 2671**

A DNA sequence (GASx972) was identified in *S.pyogenes* <SEQ ID 7841> which encodes the amino acid sequence <SEQ ID 7842>. Analysis of this protein sequence reveals the following:

```
Possible site: 46

25 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3226(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2672

35

A DNA sequence (GASx973) was identified in *S.pyogenes* <SEQ ID 7843> which encodes the amino acid sequence <SEQ ID 7844>. Analysis of this protein sequence reveals the following:

```
Possible site: 29

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1830(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

-2752-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 2673

A DNA sequence (GASx975) was identified in *S.pyogenes* <SEQ ID 7845> which encodes the amino acid sequence <SEQ ID 7846>. Analysis of this protein sequence reveals the following:

```
Possible site: 45

10 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4757 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:BAB07248 GB:AP001519 unknown [Bacillus halodurans]
20
         Identities = 46/134 (34%), Positives = 73/134 (54%)
        Query: 23 KOPODEKKYTDADVDAIIDKKFAKWKSEOEAEKSEAKKMAKMNEKEKADYEKOKLLDELO 82
                   K + E + + T + V + I + + A + + + E
                                                    EA+K+AKMN ++K +YE +KL E +
        Sbjct: 66 KPNKTERLFTOEEVNRIVKDRLARALKDKEEAIKEAEKLAKMNAEOKREYELEKLRRENE 125
25
        Query: 83 ELKNDKTRNELTAVARQMFAESEINVNDDVLGLVVTLDAEQTKANVTTLANAFAKVIADD 142
                   +LK + R EL A +M E+ I +DDVL VV DAEQT+ V T +
        Sbjct: 126 OLKKAOMRYELGREATKMLGEAGIMADDDVLSFVVRDDAEOTOEAVKTFISLVDKLADMR 185
30
        Query: 143 RKALVRQTTPSTGG 156
                    K ++
                            P
        Sbjct: 186 MKEKLKGRPPKKDG 199
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2674

35

A DNA sequence (GASx976) was identified in *S.pyogenes* <SEQ ID 7847> which encodes the amino acid sequence <SEQ ID 7848>. Analysis of this protein sequence reveals the following:

```
Possible site: 24

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2478 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
50 >GP:AAC79545 GB:U88974 ORF30 [Streptococcus thermophilus temperate bacteriophage 01205]
```

-2753-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2675

15

A DNA sequence (GASx978) was identified in *S.pyogenes* <SEQ ID 7849> which encodes the amino acid sequence <SEQ ID 7850>. Analysis of this protein sequence reveals the following:

```
Possible site: 60

>>> Seems to have no N-terminal signal sequence

20

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4238 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

25 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC79546 GB:U88974 ORF31 [Streptococcus thermophilus temperate
                   bacteriophage 01205]
         Identities = 195/343 (56%), Positives = 256/343 (73%), Gaps = 1/343 (0%)
30
                   MALIHEIITSENIKGFYNAKNENVENTLGEKAFPPKQOLGLKLSFIKGAAGKPVTLKAAA 60
                   M LI++ +T+ NI G++NA ENV +TLGE FP ++QLG KLS+IKGA+G+ V LKAAA
                   MGLIYDKVTASNIAGYFNALQENVSSTLGESIFPARKQLGTKLSYIKGASGQSVALKAAA 60
35
        Query: 61 FDTKVPLRDRMAVELIDEEMPFFKEAMLVKEADRQQLNMLAQTKNNELIDTILASIYNDQ 120
                   FDT V +RDR++ E+ DE+MPFFKEAMLVKE DRQQLN++ + N L++TI+A I+ND
        Sbjct: 61 FDTNVTIRDRVSAEMHDEQMPFFKEAMLVKENDRQQLNLVKDSGNAVLVNTIVAGIFNDN 120
        Query: 121 ATLIAGAKARLEAMRMEVLSKGKIHIQSNGVMKDIDYGLAEDQTTKPDAKWDSAGTATPL 180
40
                    TL+ GA+ARLEAMRM+VL+ GKI S+GV KDIDYG+ D +
         Sbjct: 121 LTLVNGARARLEAMRMQVLATGKIAFTSDGVNKDIDYGVKPDHKKQVSKSWAEPG-ATPL 179
        Query: 181 KDIEKAIEKMAERGFVPEAIIMNSKTFSLIKNAESTLDVVKPMAPNGAAVTKRDLNTYLE 240
                             E G PE +MN+KTF LI+ A ST+ V+KP+A +G+AVTK +L Y+
                    D+E AIE
45
         Sbict: 180 ADLEDAIETARELGLNPERAVMNAKTFGLIRKAASTVKVIKPLAGDGSAVTKAELENYIA 239
         Query: 241 DELQIKVILKDGMFVGDDGESRKYFPDGFATLVPNGNLGYTVFGTTPEQSDLLGGEATDA 300
                       + ++L++G + D GE K++PDG TL+PNG LG TVFGTTPE+SDL
         Sbjct: 240 DNFGVSIVLENGTYRNDKGEVSKFYPDGHLTLIPNGPLGNTVFGTTPEESDLFADNTVNA 299
50
         Query: 301 NVSIVETGIAITTTKTTDPVNVQTKVSMIALPSFERLEEVHII 343
                     V IV+ GIA+TTTKTTDPVNVQTKVSM+ALPSFERL++V+++
         Sbjct: 300 EVEIVDNGIAVTTTKTTDPVNVQTKVSMVALPSFERLDDVYML 342
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2754-

Example 2676

A DNA sequence (GASx979) was identified in *S.pyogenes* <SEQ ID 7851> which encodes the amino acid sequence <SEQ ID 7852>. Analysis of this protein sequence reveals the following:

```
Possible site: 46

5

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3319(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2677

A DNA sequence (GASx980) was identified in *S.pyogenes* <SEQ ID 7853> which encodes the amino acid sequence <SEQ ID 7854>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 55

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2385(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

30 The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC34404 GB:AF158600 gp113 [Streptococcus thermophilus bacteriophage Sfi11]

Identities = 53/109 (48%), Positives = 79/109 (71%), Gaps = 4/109 (3%)

Query: 11 IVKNVKLDLGIEDDNQDQLLEMLLNRITDHFKANYGVLEIDNAFSFVLEDCLIARFNRRG 70 +++NV +DL I DDN LL +LL RI +HFKA YGV E+D+ +F+ EDCL+ RFNRRG Sbjct: 9 VIQNVSVDLNINDDN---LLGILLERIVNHFKAEYGVDEVDDNLAFIFEDCLVKRFNRRG 65

Query: 71 SERAKTEEVEGHKTTYYDHLNEFEPYDAMIMAKLNLIKDKSRKGGLYFL 119 +E A++E ++GH +YYD+ NEF+PYD M+ +L ++++G + FL Sbjct: 66 AEGARSESIDGHSMSYYDNENEFDPYDNMLQ-RLYGTSGQAKEGEVLFL 113
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

45 Example 2678

50

A DNA sequence (GASx981) was identified in *S.pyogenes* <SEQ ID 7855> which encodes the amino acid sequence <SEQ ID 7856>. Analysis of this protein sequence reveals the following:

```
Possible site: 49

>>> Seems to have no N-terminal signal sequence
```

-2755-

```
---- Final Results ----

bacterial cytoplasm --- Certainty=0.5714 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA59188 GB:X84706 b3 [Bacteriophage B1]
Identities = 28/82 (34%), Positives = 49/82 (59%), Gaps = 2/82 (2%)

Query: 1 MRYADRVTFVKTT-DEQYNPDLGEYTHTEVISITKPCFVMDMGMEKSVQIFGDYQKDRKV 59
+RY D VTF+K + D Y+PDLGE+ E + D+G ++SV++FGD +K KV
Sbjct: 1 LRYLDEVTFIKESPDSHYDPDLGEWVEKEPTRTVFSANITDIGTDRSVEVFGDIKKGAKV 60

15 Query: 60 IYLKQPYT-KAFDYCEYEGRRY 80
+ + + DY E++ +++
Sbjct: 61 MRMMPLFNMPKYDYIEFDNKKW 82
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2679

5

A DNA sequence (GASx982) was identified in *S.pyogenes* <SEQ ID 7857> which encodes the amino acid sequence <SEQ ID 7858>. Analysis of this protein sequence reveals the following:

```
Possible site: 14

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2509(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2680

A DNA sequence (GASx983) was identified in *S.pyogenes* <SEQ ID 7859> which encodes the amino acid sequence <SEQ ID 7860>. Analysis of this protein sequence reveals the following:

```
Possible site: 45
```

-2756-

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3098(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
10
         >GP:AAA32612 GB:L31366 putative [Bacteriophage Tuc2009]
          Identities = 88/129 (68%), Positives = 108/129 (83%)
                   MIKTRDQSIFDEMFKRIQSLGFKVYDYKPMTEVPYPFVEMESTDAEYIPNKDDIKGSVEL 60
                   MIKTRDQSIFDE+FKRIQ+LG+ VYDYKPM EV YPFVE+E+T
                                                                 + NK DIKG+V L
15
         Sbjct: 1
                   MIKTRDOSIFDELFKRIQALGYTVYDYKPMNEVGYPFVELENTQTIHEANKTDIKGTVSL 60
         Query: 61 MLSVWGVQKKRKQVSDMASAIFSQALTVESSDVFRWSLNTRQSSIOMLDDTTTVTPLKRA 120
                    LSVWG+QKKRK+VSDMAS IF+QAL + ++D + W+LN++ S+IQMLDDTTT TPLKRA
         Sbjct: 61 SLSVWGLQKKRKEVSDMASNIFNQALNISATDGYSWALNSQASTIQMLDDTTTHTPLKRA 120
20
         Query: 121 IVTLRFNLR 129
                    ++ L F LR
         Sbjct: 121 LINLEFRLR 129
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2681

A DNA sequence (GASx984R) was identified in *S.pyogenes* <SEQ ID 7861> which encodes the amino acid sequence <SEQ ID 7862>. Analysis of this protein sequence reveals the following:

```
Possible site: 36

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.1736 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

40 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2682

A DNA sequence (GASx985) was identified in *S.pyogenes* <SEQ ID 7863> which encodes the amino acid sequence <SEQ ID 7864>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have no N-terminal signal sequence

50

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

-2757-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAA32613 GB:L31366 structural protein [Bacteriophage Tuc2009]
5
         Identities = 81/185 (43%), Positives = 111/185 (59%), Gaps = 22/185 (11%)
                   OLEAKOGIHSILLFRLLKEASSEAATKLAFOTEHEVGKSRDVDGOKTKDGIIOSVGALEY 63
                   +T, AKOG
                           ILL+RLL +A+ EAA KLAFOTEH K+RD + TKDG I S+ A+EY
        Sbjct: 3 ELTAKOGKDIILLYRLLSKATKEAAWKLAFOTEHSNEKTRDYNTTATKDGTIGSLAAIEY 62
10
        Query: 64 DFKATSILAKGDVLAAKLEKAMENGELVEIWDIDLEETSKNGDSDNKLANVWGIDKNGTN 123
                     ATSI A GD
                                 +++KA ++GE++++W+ID E
        Sbjct: 63 SLSATSIAANGDPHLDEMDKAFDDGEIIDVWEIDKAEKG----- 101
15
        Ouery: 124 RGNGKYLATYYOGYISSFSAKKNAEENIEIEMEFAINGVGOKGFATLTDAOKAAVOYAFK 183
                     +GKY A Y + Y++SFS + N+E+ +E+ +EF + G OKG ATLT+ O
        Sbjct: 102 -SDGKYKAKYLRAYLTSFSYEPNSEDALELSLEFGVFGKPQKGQATLTEEQANVVQYVFK 160
        Query: 184 DTTKG 188
20
                   DT G
        Sbjct: 161 DTVAG 165
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

25 Example 2683

A DNA sequence (GASx986) was identified in S.pyogenes <SEQ ID 7865> which encodes the amino acid sequence <SEQ ID 7866>. Analysis of this protein sequence reveals the following:

```
Possible site: 55
30
         >>> Seems to have no N-terminal signal sequence
         ---- Final Results ----
                       bacterial cytoplasm --- Certainty=0.2273 (Affirmative) < succ>
                        bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
35
                         bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA59192 GB:X84706 a2 [Bacteriophage B1]
40
         Identities = 54/111 (48%), Positives = 72/111 (64%), Gaps = 1/111 (0%)
        Query: 1 MQLEIKGKTHNVKFGTRFVAEMDKNHIAERQGFKFGAGLQSSV-PFLIDHSVVTLAEVIY 59
                   M+L IKGK + KFG +FV E+DKN + E+ G FG L + P L ++ TL+ V++
        Sbjct: 1 MELTIKGKOVHFKFGVKFVRELDKNLVIEQNGVSFGLALAVKIIPELEMANIATLSNVLF 60
45
        Ouery: 60 TGTITEPPRPSLNDIYDYIDEVEDIEKLFDDVLDELRQSNASKLFMAOVEK 110
                    G TE P+ S DI D+IDE EDIEKLFDDVL E+ +SN KL A++ K
        Sbjct: 61 LGNRTETPKLSQGDIDDFIDECEDIEKLFDDVLKEITESNTGKLIKAKMTK 111
```

50 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2684

A DNA sequence (GASx987) was identified in S.pyogenes <SEQ ID 7867> which encodes the amino acid sequence <SEQ ID 7868>. Analysis of this protein sequence reveals the following:

-2758-

```
Possible site: 36

>>> Seems to have no N-terminal signal sequence

5 ---- Final Results ----

bacterial cytoplasm --- Certainty=0.2735(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

10 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA59193 GB:X84706 c2 [Bacteriophage B1]
Identities = 40/111 (36%), Positives = 57/111 (51%), Gaps = 10/111 (9%)

Query: 2 IVLNCIRYLGMTDINEIGRLTLYEYDLLMTGKALAAVDESHKAHKQAWINHQVTATKLVG 61
+++ +R G+ D++ R+T+ EY + L +DE ++QAW N QV ATK G
Sbjct: 15 MMIRFLRCFGIQDLSVFERMTIREYSIRSIAFQLRTLDEEEFIYEQAWANWQVQATKQQG 74

Query: 62 GKKNKKEVPVYKKFKDFFD---YEEEIRKI-TQEIDEGYDKKGMDLLLKAN 108
K P+Y FK FFD E EI I + E D K +DL+ KAN
Sbjct: 75 KK------PLYPTFKKFFDKKKLENEILGIESPENKFKKDNKLIDLMKKAN 119
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

25 Example 2685

A DNA sequence (GASx989) was identified in *S.pyogenes* <SEQ ID 7869> which encodes the amino acid sequence <SEQ ID 7870>. Analysis of this protein sequence reveals the following:

```
Possible site: 60

30 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2869(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA66560 GB:X97918 gene 19.1 [Bacteriophage SPP1]
40
         Identities = 66/232 (28%), Positives = 106/232 (45%), Gaps = 12/232 (5%)
        Query: 38 FRTLTVSGRDVVDLEHQTTSVLGRNGEYFHNATVEVRKLEIKAKISGKDNKS-MRLQYEK 96
                       V GR V +E ++ G +G ++ R+LE+ A + G ++ +R + E
        Sbjct: 24 FLVQEVRGRSVYSIEMGKRTIAGVDGGVITTESLPARELEVDAIVFGDGTETDLRRRIEY 83
45
        Query: 97 LNKLIVSHNQVFLSFSDEPDRNYLGIFKSKDVPEEVSNEQIIGLTFICYNPFK----MS 151
                   LN L+
                            V ++FSDEP R Y G ++ +E
                                                         + L F C +P K
        Sbjct: 84 LNFLLHRDTDVPITFSDEPSRTYYGRYEFATEGDEKGGFHKVTLNFYCQDPLKYGPEVTT 143
50
        Query: 152 DVKTKKGTSIQNGGLFQTKPIITLNLSSPTKEIKLLHVESQKYIRLT----GTYTTDEIK 207
                                                          ++ G T D +
                         T ++N GL T P I S+ E ++ ++
                  DV T
        Sbjct: 144 DV-TTASTPVKNTGLAVTNPTIRCVFSTSATEYEMQLLDGSTVVKFLKVKYGFNTGDTLV 202
        Query: 208 IDMATGKITQNGRNILGDLDMINSRYFELLPGNNTLQCANAAITAEFREVYL 259
55
                         +T NG++I+ L +I S + +L P NT A
                                                            T FE +L
        Sbjct: 203 IDCHERSVTLNGQDIMPAL-LIQSDWIQLKPQVNTYLKATQPSTIVFTEKFL 253
```

-2759~

PCT/GB01/04789

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2686

5

A DNA sequence (GASx990) was identified in *S.pyogenes* <SEQ ID 7871> which encodes the amino acid sequence <SEQ ID 7872>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2861(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:BAB04681 GB:AP001510 unknown conserved protein in others
                   [Bacillus halodurans]
         Identities = 116/449 (25%), Positives = 198/449 (43%), Gaps = 79/449 (17%)
20
        Query: 2 IYLFDKLERLVATVG-TDDLLSWHFKVKNNDWDQASFEVPVDYDVEPFVYFGFFNYDPHQ 60
                  +++FD+ ++L+ T+ + L+ F+ + N
                                                  F ++ E +
        Sbjct: 4 LFIFDREDQLLTTLTESTGLVRALFREELNRVPNQPFAFTIEASSEEAKHV----IEEHQ 59
25
        Query: 61 ----KEDVFKLFKVIDYNLEDSKFYKG-----LDKAESDLDTIAIIKDKRFRQSSADA 109
                       KE +LF + + LED G + A +L I++
        Sbict: 60 VVFRDKEGDLRLFVIKE--LEDVDGLDGPOTTAICEPAFMELAEHMIVEQSVVNQPAHEA 117
        Query: 110 CIDGALEGTGYQVGKVEGITNVRTLSYYYISPRAALIKIVEAFNCEFNVRYTF-INNKIT 168
30
                   ++ AL+GT + G VE T + Y+S A+ I+ + +F TF N+IT
        Sbjct: 118 -LNVALQGTRW-TGSVEVNLGNATEHFSYVSAIEAVWNILVTWGGDFKDVVTFNAENRIT 175
        Query: 169 SRYIDLKKRFGKPTGKOFEHGNNLLKVVYEESTDDIVTCLIGRGKGEEIOHEEAEPKDVE 228
                              GK+FE +N+ + + VT L GRG
                  S I + +R G
35
        Sbjct: 176 SHQIKIVQRRGVDRGKRFEIDHNI-EQIERTILSYPVTALYGRGAS--LQGENGE----D 228
        Query: 229 GHLPQEERRQGYGRRIEFTDVVWSVEKGDPIDKPAGQNFVALDSAREEYGLSQNGELKHR 288
                         +F +V W G P+DKP GQ +V
                                                         A ++YG NG+L HR
                  G To
        Sbjct: 229 GSL-----DFGEVEWRKSAGAPVDKPKGQLWVGDPEALQKYGRKHNGQLLHR 275
40
        Query: 289 WGVFVNEEIEDKTELLKATWEELQRLSIPIRIYKAEILDIGPETWKGDSVAIIYDEVKIA 348
                   G+F N IED ELL+ TWE+LQ+ S P Y+ +
        Sbjct: 276 EGIFQNTNIEDPEELLEKTWEQLQKSSKPEVHYRLSVR------LFEHIS-- 319
45
        Query: 349 FETRVDEIDIDKLNFNRSVVTLGDYSVVQNR-----ESRSRKEAVQ-NMIDESLETITD 401
                              + +LGD ++ +R E +SR A++ +++D
        Sbjct: 320 -----GYEHEQASLGDTAIAIDRQFSRPIEIQSRIIAIEYDLVDIDGTGMVE 366
        Query: 402 LGMTFQEFLQGIEKRIETGKKEMEDNWRK 430
50
                         L G+++R+E +E+E N K
        Sbjct: 367 MGQFLS--LNGMDERLERIIEEIEKNQGK 393
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

55 Example 2687

A DNA sequence (GASx991) was identified in *S.pyogenes* <SEQ ID 7873> which encodes the amino acid sequence <SEQ ID 7874>. Analysis of this protein sequence reveals the following:

-2760-

```
Possible site: 50

>>> Seems to have no N-terminal signal sequence

5

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2584(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

10 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAA98101 GB:M19348 hyaluronidase [Streptococcus pyogenes phage
          Identities = 314/371 (84%), Positives = 338/371 (90%), Gaps = 1/371 (0%)
15
         Query: 1 MAENIPLRVQFKRMKAAEWASSDVVLLEGEIGFETDTGFAKFGDGQNTFSKLKYLTGPKG 60
                   M ENIPLRVOFKRM A EWA SDV+LLEGEIGFETDTGFAKFGDGONTFSKLKYLTGPKG
         Sbjct: 1 MTENIPLRVQFKRMSADEWARSDVILLEGEIGFETDTGFAKFGDGQNTFSKLKYLTGPKG 60
20
         Query: 61 PKGDTGLQGKTGGTGSRGPAGKPGTTDYDQLQNKPDLGAFAQKEETNSKITKLESSKADK 120
                    PKGDTGLQGKTGGTG RGPAGKPGTTDYDQLQNKPDLGAFAQKEETNSKITKLESSKADK
         Sbjct: 61 PKGDTGLQGKTGGTGPRGPAGKPGTTDYDQLQNKPDLGAFAQKEETNSKITKLESSKADK 120
         Query: 121 NAVYLKAESNAKLDEKLNLKGGVMTGQLQFKPN-SGIKPSSSVGGAINIDMSKSEGAAMV 179
25
                    +AVY KAES +LD+KL+L GG++TGQLQFKPN SGIKPSSSVGGAINIDMSKSEGAAMV
         Sbjct: 121 SAVYSKAESKIELDKKLSLTGGIVTGQLQFKPNKSGIKPSSSVGGAINIDMSKSEGAAMV 180
         Query: 180 MYTNKDTTDGPLMILRSNKDTFDQSVQFVDYKGTTNAVNIVMRQPTTPNFSSALNITSAN 239
                    MYTNKDTTDGPLMILRS+KDTFDQS QFVDY G TNAVNIVMRQP+ PNFSSALNITSAN
30
         Sbjct: 181 MYTNKDTTDGPLMILRSDKDTFDQSAQFVDYSGKTNAVNIVMRQPSAPNFSSALNITSAN 240
         Query: 240 EGGSAMQIRGVEKALGTLKITHENPSVDKEYDKNAAALSIDIVKKQKGGKGTAAQGIYIN 299
                    EGGSAMOIRGVEKALGTLKITHENP+V+ +YD+NAAALSIDIVKKOKGGKGTAAQGIYIN
         Sbjct: 241 EGGSAMQIRGVEKALGTLKITHENPNVEAKYDENAAALSIDIVKKQKGKGTAAQGIYIN 300
35
         Query: 300 STSGTTGKLLRIRNLNDDKFYVKPDGGFYAKETSQIDGNLKLKDPIANDHAATKAYVDGE 359
                    STSGT GK+LRIRN N+DKFYV PDGGF++ S + GNL +KDP + HAATK YVD +
         Sbjct: 301 STSGTAGKMLRIRNKNEDKFYVGPDGGFHSGANSTVAGNLTVKDPTSGKHAATKDYVDEK 360
40
         Query: 360 VEKLKALLAAK 370
                    + +LK L+ K
         Sbjct: 361 IAELKKLILKK 371
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2688

A DNA sequence (GASx993) was identified in *S.pyogenes* <SEQ ID 7875> which encodes the amino acid sequence <SEQ ID 7876>. Analysis of this protein sequence reveals the following:

```
Possible site: 29

50

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1358(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2761-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2689

A DNA sequence (GASx995) was identified in *S.pyogenes* <SEQ ID 7877> which encodes the amino acid sequence <SEQ ID 7878>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0855(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC34418 GB:AF158600 gp149 [Streptococcus thermophilus bacteriophage Sfil1]

Identities = 27/95 (28%), Positives = 50/95 (52%), Gaps = 2/95 (2%)

Query: 9 KYPQLDGTGAVASTHIIIAAEDGAVIPQLIKQDLTSTNDTEIIKAALEEFKKSEYVEIAM 68

K + D +GA +T +I+ DGA +P + + ++TE++K ALE + + + A

Sbjct: 26 KSKEYDASGAAYATKVILKNRDGAYVPVFLPVEKIDLSNTELLKEALEVIYQENFPQRAE 85

Query: 69 GEAVQKVDDLEKISQETAKTAKTAQTAAGLAKVSA 103

E ++D EKI + A + K +T A + + S+

Sbjct: 86 NEKFNELD--EKIKEYEALSKKATETIAKMEEASS 118
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2690

A DNA sequence (GASx996) was identified in *S.pyogenes* <SEQ ID 7879> which encodes the amino acid sequence <SEQ ID 7880>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

45 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2762-

Example 2691

A DNA sequence (GASx997) was identified in *S.pyogenes* <SEQ ID 7881> which encodes the amino acid sequence <SEQ ID 7882>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S.agalactiae.

15 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2692

A DNA sequence (GASx998R) was identified in *S.pyogenes* <SEQ ID 7883> which encodes the amino acid sequence <SEQ ID 7884>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have no N-terminal signal sequence
    INTEGRAL Likelihood = -9.87 Transmembrane 47 - 63 ( 41 - 72)

25

---- Final Results ----
    bacterial membrane --- Certainty=0.4949 (Affirmative) < succ>
    bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
    bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2693

A DNA sequence (GASx999) was identified in *S.pyogenes* <SEQ ID 7885> which encodes the amino acid sequence <SEQ ID 7886>. Analysis of this protein sequence reveals the following:

```
Possible site: 24

40 >>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2763-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2694

5

A DNA sequence (GASx1001) was identified in *S.pyogenes* <SEQ ID 7887> which encodes the amino acid sequence <SEQ ID 7888>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2695

A DNA sequence (GASx1002) was identified in *S.pyogenes* <SEQ ID 7889> which encodes the amino acid sequence <SEQ ID 7890>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein is similar to AF186180 from S.equi.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2696

A DNA sequence (GASx1003) was identified in *S.pyogenes* <SEQ ID 7891> which encodes the amino acid sequence <SEQ ID 7892>. Analysis of this protein sequence reveals the following:

```
40 Possible site: 32

>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

-2764-

Length = 236

No corresponding DNA sequence was identified in S. agalactiae.

>GP:AAF72809 GB:AF186180 SeeH [Streptococcus equi]

The protein is similar to SeeH from S.equi:

```
Identities = 233/236 (98%), Positives = 234/236 (98%)
 5
                  MRYNCRYSHIDKKIYSMIICLSFLLYSNVVQANSYNTTNRHNLESLYKHDSNLIEADSIK 60
                   MRYNCRYSHIDKKIYSMIICLSFLLYSNVVQANSYNTTNRHNLESLYKHDSNLIEADSIK
        Sbjct: 1
                 MRYNCRYSHIDKKIYSMIICLSFLLYSNVVQANSYNTTNRHNLESLYKHDSNLIEADSIK 60
10
        Query: 61 NSPDIVTSHMLKYSVKDKNLSVFFEKDWISQEFKDKEVDIYALSAQEVCECPGKRYEAFG 120
                   NSPDIVTSHMLKYSVKDKNLSVFFEKDWISQEFKDKEVDIYALSAQE CECPGKRYEAFG
        Sbjct: 61 NSPDIVTSHMLKYSVKDKNLSVFFEKDWISOEFKDKEVDIYALSAOEACECPGKRYEAFG 120
        Query: 121 GITLINSEKKEIKVPVNVWDKSKQQPPMFITVNKPKVTAQEVDIKVRKLLIKKYDIYNNR 180
15
                   GITLTNSEKKEIKVP+NVWDKSKQ PPMFITVNKPKVTAQEVDIKVRKLLIKKYDIYNNR
        Sbjct: 121 GITLTNSEKKEIKVPINVWDKSKQHPPMFITVNKPKVTAQEVDIKVRKLLIKKYDIYNNR 180
        Query: 181 EQKYSKGTVTLDLNSGKDIVFDLYYFGNGDFNSMLKIYSNNERIDSTQFHVDVSIS 236
                   EQKYSKGTVTLDLNSGKDIVFDLYYFGNGDFNSMLKIYSNNERIDSTOFHVDVSIS
20
        Sbjct: 181 EQKYSKGTVTLDLNSGKDIVFDLYYFGNGDFNSMLKIYSNNERIDSTQFHVDVSIS 236
     There is also homology to a S. aureus enterotoxin:
        >GP:AAA19777 GB:U11702 enterotoxin H [Staphylococcus aureus]
         Identities = 70/215 (32%), Positives = 108/215 (49%), Gaps = 19/215 (8%)
25
        Query: 27 SNVVQANSYNTTNRHNLESLYKHDSNLIEADSI-KNSPDIVTSHMLKYSVKDKNLSVFFE 85
                   +++ AN+Y N ++ KD EDI+N D
        Sbjct: 34 TDLALANAYGQYNHPFIKENIKSDEISGEKDLIFRNQGDSGNDLRVKFATAD----- 85
30
        Query: 86 KDWISQEFKDKEVDIYALSAQEVCECPGKRYEA--FGGITLINSEK--KEIKVPVNVWDK 141
                      ++Q+FK+K VDIY S CE + +GG TL NSEK +E + NVW
        Sbjct: 86 ---LAQKFKNKNVDIYGASFYYKCEKISENISECLYGGTTL-NSEKLAOERVIGANVWVD 141
        Query: 142 SKQQPPMFITVNKPKVTAQEVDIKVRKLLIKKYDIYNNREQKYSKGTVTLDLNSGKDIVF 201
35
                     Q+ I NK VT QE+DIK+RK+L KY IY ++ + SKG + D+ + +D F
        Sbjct: 142 GIQKETELIRTNKKNVTLQELDIKIRKILSDKYKIY-YKDSEISKGLIEFDMKTPRDYSF 200
        Query: 202 DLYYFGNGDFNSMLKIYSNNERIDSTQF-HVDVSI 235
                   D+Y + + KIY +N+ + S H+DV++
40
        Sbjct: 201 DIYDLKGENDYEIDKIYEDNKTLKSDDISHIDVNL 235
        >GP:AAC26661 GB:AF064774 extracellular enterotoxin type I precursor
                   [Staphylococcus aureus]
         Identities = 68/214 (31%), Positives = 109/214 (50%), Gaps = 27/214 (12%)
45
        Query: 42 NLESLY-KHDSNLIEADSIKNSPDIVTSHMLKYSVKDKNLSVFFEKDWIS-QEFKDKEVD 99
                   NL + Y KHD ++ + KN P ++ L++S +L + +W +FK K++D
        Sbjct: 32 NLRNFYTKHDYIDLKGVTDKNLP---IANOLEFSTGTNDL-ISESNNWDEISKFKGKKLD 87
50
        Query: 100 IYALSAQEVCECPGKRYEAFGGITLTNSEKKEI-KVPVNVWDKSKQQPPMF--ITVNKPK 156
                   I+ + C K +GG TL+ K+P+N+W K +
        Sbjct: 88 IFGIDYNGPC----KSKYMYGGATLSGQYLNSARKIPINLWVNGKHKTISTDKIATNKKL 143
        Query: 157 VTAQEVDIKVRKLLIKKYDIYNNRE-----QKYSKGTVTLDLNSGKDIVFD 202
55
                   VTAQE+D+K+R+ L ++Y+IY +
                                                          ++ G V IN+ K
        Sbjct: 144 VTAQEIDVKLRRYLQEEYNIYGHNNTGKGKEYGYKSKFYSGFNNGKVLFHLNNEKSFSYD 203
        Query: 203 LYYFGNGDFNSMLKIYSNNERIDSTOFHVDVSIS 236
                   L+Y G+G S LKIY +N+ I+S +FH+DV IS
60
        Sbjct: 204 LFYTGDGLPVSFLKIYEDNKIIESEKFHLDVEIS 237
        >GP:AAC28968 GB:U93688 enterotoxin [Staphylococcus aureus]
         Identities = 70/244 (28%), Positives = 127/244 (51%), Gaps = 27/244 (11%)
65
        Query: 12 KKIYSMIICLSFLLYSNVVQANSYNTTNRHNLESLYKHDSNLIEADSIKNSPDIVTSHML 71
```

-2765-

```
KK+ S+++ ++ ++
                                               NL + Y
                                                               +K++ D
        Sbjct: 2 KKLISILL-INIIILGVSNNASAQGDIGIDNLRNFYTK-KDFVDLKDVKDN-DTPIANQL 58
        Query: 72 KYSVKDKNLSVFFEKDWIS-QEFKDKEVDIYALSAQEVCECPGKRYEAFGGITLTNSE-K 129
 5
                   ++S + +L + KD+ FK K++D++ +S C +Y +GG+T TN
        Sbjct: 59 OFSNESYDL-ISESKDFNKFSNFKGKKLDVFGISYNGQCNT---KY-IYGGVTATNEYLD 113
        Query: 130 KEIKVPVNVW--DKSKQQPPMFITVNKPKVTAQEVDIKVRKLLIKKYDIYNNREQK---- 183
                      +P+N+W K
                                    ++ NK VTAQE+D+K+RK L ++Y+IY +
10
        Sbjct: 114 KSRNIPINIWINGNHKTISTNKVSTNKKLVTAQEIDVKLRKYLQEEYNIYGHNGTKKGEE 173
        Query: 184 -----YSKGTVTLDLNSGKDIVFDLYYFG-NGDFNSMLKIYSNNERIDSTOFHVD 232
                            ++ G VT LN+
                                            +DL+Y G +G S LKIY +N+ ++S +FH+D
        Sbjct: 174 YGHKSKFYSGFNIGKVTFHLNNNDTFSYDLFYTGDDGLPKSFLKIYEDNKTVESEKFHLD 233
15
        Query: 233 VSIS 236
                   V IS
        Sbjct: 234 VDIS 237
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2697

A DNA sequence (GASx1004R) was identified in *S.pyogenes* <SEQ ID 7893> which encodes the amino acid sequence <SEQ ID 7894>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2698

40 A DNA sequence (GASx1009) was identified in *S.pyogenes* <SEQ ID 7895> which encodes the amino acid sequence <SEQ ID 7896>. Analysis of this protein sequence reveals the following:

```
Possible site: 34

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.6391(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

50
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2766-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2699

5

A DNA sequence (GASx1011) was identified in *S.pyogenes* <SEQ ID 7897> which encodes the amino acid sequence <SEQ ID 7898>. Analysis of this protein sequence reveals the following:

```
Possible site: 50

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4528(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2700

A DNA sequence (GASx1024) was identified in *S.pyogenes* <SEQ ID 7899> which encodes the amino acid sequence <SEQ ID 7900>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

>>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2701

A DNA sequence (GASx1033) was identified in *S.pyogenes* <SEQ ID 7901> which encodes the amino acid sequence <SEQ ID 7902>. Analysis of this protein sequence reveals the following:

```
Possible site: 20

40 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1652(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2767-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2702

A DNA sequence (GASx1039) was identified in *S.pyogenes* <SEQ ID 7903> which encodes the amino acid sequence <SEQ ID 7904>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -1.06 Transmembrane 15 - 31 ( 15 - 31)

---- Final Results ----

bacterial membrane --- Certainty=0.1426(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2703

20

A DNA sequence (GASx1058) was identified in *S.pyogenes* <SEQ ID 7905> which encodes the amino acid sequence <SEQ ID 7906>. Analysis of this protein sequence reveals the following:

```
Possible site: 60

25

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.5484 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2704

A DNA sequence (GASx1077) was identified in *S.pyogenes* <SEQ ID 7907> which encodes the amino acid sequence <SEQ ID 7908>. Analysis of this protein sequence reveals the following:

```
40 Possible site: 31

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.4848 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2768-

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 2705

A DNA sequence (GASx1080) was identified in *S.pyogenes* <SEQ ID 7909> which encodes the amino acid sequence <SEQ ID 7910>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2706

25

A DNA sequence (GASx1081) was identified in *S.pyogenes* <SEQ ID 7911> which encodes the amino acid sequence <SEQ ID 7912>. Analysis of this protein sequence reveals the following:

```
Possible site: 34

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood =-13.00 Transmembrane 103 - 119 ( 91 - 129)

INTEGRAL Likelihood =-11.46 Transmembrane 208 - 224 ( 203 - 230)

INTEGRAL Likelihood = -8.28 Transmembrane 54 - 70 ( 46 - 71)

INTEGRAL Likelihood = -5.79 Transmembrane 160 - 176 ( 155 - 181)

INTEGRAL Likelihood = -4.25 Transmembrane 127 - 143 ( 125 - 149)

---- Final Results ----

bacterial membrane --- Certainty=0.6201(Affirmative) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2707

A DNA sequence (GASx1089) was identified in *S.pyogenes* <SEQ ID 7913> which encodes the amino acid sequence <SEQ ID 7914>. Analysis of this protein sequence reveals the following:

```
Possible site: 37
```

-2769-

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2999(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

10 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2708

A DNA sequence (GASx1109) was identified in *S.pyogenes* <SEQ ID 7915> which encodes the amino acid sequence <SEQ ID 7916>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have no N-terminal signal sequence

20

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1270(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

25 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2709

35

40

A DNA sequence (GASx1114R) was identified in *S.pyogenes* <SEQ ID 7917> which encodes the amino acid sequence <SEQ ID 7918>. Analysis of this protein sequence reveals the following:

```
Possible site: 19

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4021(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2770-

Example 2710

A DNA sequence (GASx1149) was identified in *S.pyogenes* <SEQ ID 7919> which encodes the amino acid sequence <SEQ ID 7920>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

15 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2711

A DNA sequence (GASx1150) was identified in *S.pyogenes* <SEQ ID 7921> which encodes the amino acid sequence <SEQ ID 7922>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

>>> Seems to have a cleavable N-term signal seq.

25

---- Final Results ----

bacterial outside --- Certainty=0.3000(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2712

A DNA sequence (GASx1160) was identified in *S.pyogenes* <SEQ ID 7923> which encodes the amino acid sequence <SEQ ID 7924>. Analysis of this protein sequence reveals the following:

```
Possible site: 17

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -3.19 Transmembrane 15 - 31 ( 15 - 31)

---- Final Results ----

bacterial membrane --- Certainty=0.2275 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2771-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2713

5

A DNA sequence (GASx1167) was identified in *S.pyogenes* <SEQ ID 7925> which encodes the amino acid sequence <SEQ ID 7926>. Analysis of this protein sequence reveals the following:

```
Possible site: 16

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1404(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAB99233 GB:U67563 oxaloacetate decarboxylase alpha chain (oadA)
                    [Methanococcus jannaschii]
          Identities = 250/453 (55%), Positives = 325/453 (71%), Gaps = 7/453 (1%)
20
        Ouerv: 13 VAITETVLRDGHOSLMATRLSIEDMLPVLTILDKIGYYSLECWGGATFDACIRFLNEDPW 72
                   V I +T RD QSL+ATR+ EDMLP+ +D++G+YS+E WGGATFDACIR+LNEDPW
         Sbjct: 2 VKIVDTTFRDAQQSLIATRMRTEDMLPIAEKMDEVGFYSMEVWGGATFDACIRYLNEDPW 61
25
        Query: 73 ERLRTLKKGLPNTRLQMLLRGQNLLGYRHYADDIVDKFISLSAQNGIDVFRIFDALNDPR 132
                   ERLR LKK + NT LOMLLRGONL+GYRHY DDIV+KF+ + +NGID+FRIFDALND R
         Sbjct: 62 ERLRALKKRIQNTPLOMLLRGQNLVGYRHYPDDIVEKFVIKAHENGIDIFRIFDALNDVR 121
         Query: 133 NIQQALRAVKKTGKEAQLCIAYTTSPVHTLNYYLSLVKELVEMGADSICIKDMAGILTPK 192
30
                   N++ A++ KK G E Q I YT SPVHT++ Y+ L K+L EMG DSICIKDMAG+LTP
         Sbjct: 122 NMETAIKTAKKVGAEVQGAICYTISPVHTIDQYVELAKKLEEMGCDSICIKDMAGLLTPY 181
         Query: 193 AAKELVSGIKAMTNLPLIVHTHATSGISOMTYLAAVEAGADRIDTALSPFSEGTSQPATE 252
                               +LP+ VH+H TSG++ MTYL +EAGAD +D A+SPF+ GTSQP TE
                      ELV +K
35
         Sbjct: 182 EGYELVKRLKEEISLPIDVHSHCTSGLAPMTYLKVIEAGADMVDCAISPFAMGTSQPPTE 241
         Query: 253 SMYLALKEASYDITLDETLLEQAANHLRQARQKYLADGILDPSLLFPDPRTLQYQVPGGM 312
                   S+ +ALK YD LD LL + ++ + R+KY + P
                                                                  D R T, YOVEGOM
         Sbict: 242 SIVVALKGTKYDTGLDLKLLNEIRDYFMKVREKYKM--LFSPISOIVDARVLVYOVPGGM 299
40
         Query: 313 LSNMLSQLKQANAESKLEEVLAEVPRVRKDLGYPPLVTPLSQMVGTQAAMNVILGKPYQM 372
                   LSN++SQLK+ A K EEVL E+PRVRKDLGYPPLVTP SQ+VGTQA +NV+ + Y++
         Sbjct: 300 LSNLVSQLKEQGALDKFEEVLQEIPRVRKDLGYPPLVTPTSQIVGTQAVLNVLTEERYKI 359
45
         Query: 373 VSKEIKQYLAGDYGKTPAPVNEDLKRSQI--GSAPVTTNRPADQLSPEFEVLK--AEVAD 428
                   ++ E+ Y+ G YGK PAP+N +L + + G P+T RPAD L PE+E +K AE
         Sbjct: 360 ITNEVVNYVKGFYGKPPAPINPELLKRVLDEGEKPITC-RPADLLPPEWEKVKKEAEEKG 418
         Query: 429 LAQTDEDVLTYALFPSVAKPFLTTKYQTDDVIK 461
50
                   + + +ED+LTYAL+P +A FL + + + + K
        Sbjct: 419 IVKKEEDILTYALYPQIAVKFLRGELKAEPIPK 451
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

55 Example 2714

A DNA sequence (GASx1168) was identified in *S.pyogenes* <SEQ ID 7927> which encodes the amino acid sequence <SEQ ID 7928>. Analysis of this protein sequence reveals the following:

-2772-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

15 Example 2715

A DNA sequence (GASx1170) was identified in *S.pyogenes* <SEQ ID 7929> which encodes the amino acid sequence <SEQ ID 7930>. Analysis of this protein sequence reveals the following:

```
Possible site: 51
```

```
20
         >>> Seems to have no N-terminal signal sequence
                      Likelihood = -7.06 Transmembrane 211 - 227 ( 208 - 238)
Likelihood = -5.84 Transmembrane 117 - 133 ( 110 - 136)
            INTEGRAL
           INTEGRAL
           INTEGRAL Likelihood = -5.36 Transmembrane 256 - 272 ( 253 - 274)
           INTEGRAL Likelihood = -4.67 Transmembrane 44 - 60 ( 41 - 64)
           INTEGRAL Likelihood = -4.19 Transmembrane 287 - 303 (287 - 306)
25
           INTEGRAL Likelihood = -3.77 Transmembrane 358 - 374 (357 - 375)
           INTEGRAL Likelihood = -2.18 Transmembrane 20 - 36 ( 16 - 38)
           INTEGRAL Likelihood = -0.85 Transmembrane 90 - 106 ( 90 - 106)
           INTEGRAL Likelihood = -0.53 Transmembrane 165 - 181 ( 164 - 181)
30
         ---- Final Results ----
                        bacterial membrane --- Certainty=0.3824 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                       bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
35
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA05140 GB:AJ002015 methylmalonyl-CoA decarboxylase,
                   beta-subunit [Propionigenium modestum]
40
          Identities = 231/395 (58%), Positives = 293/395 (73%), Gaps = 19/395 (4%)
        Query: 1
                   MLDVLNOMVOSSGLAHLTVNNLIMICLASFFLYLGIKKEYEPYLMVPIAFGILLVNLPMA 60
                             S+G L + ++IM+ +A FLYL I KE+EP L+VPI+FGILL NLP A
                   MT<sub>1</sub> +
        Sbjct: 1
                   MLOAILDFYHSTGFYGLNMGSIIMMLVACVFLYLAIAKEFEPLLLVPISFGILLTNLPFA 60
45
        Query: 61 GLMDHP-----ANG------NPGGLLYYLYKGTSLGIYPPLIFLCLGASTDFG 102
                   G+M P A+G PGGLLYYL++G LGI+PPLIFL +GA TDFG
        Sbjct: 61 GMMAEPLLEVHEKLSASGAHLYTAHTAEPGGLLYYLFQGDHLGIFPPLIFLGVGAMTDFG 120
50
        Query: 103 PLIANPKTILLGGAAQVGIFLAFFLAIMLGM-TPQEAASVGIIGGADGPTAIYVTTKLAP 161
                   PLI+NPK++LLG AAQ GIF+ FF AI G+ T QEAAS+GIIGGADGPTAI++++KLAP
         Sbjct: 121 PLISNPKSLLLGAAAQFGIFVTFFGAIASGLFTAQEAASIGIIGGADGPTAIFLSSKLAP 180
        Query: 162 DLLSTIALAAYSYMALVPIIQPPIIKLLTTKAERQVKMTQARTVSQKEKIIFPIMVTIFV 221
55
                    L+ IA+AAYSYMALVPIIQPPI+ LT++ ER++KM+Q R VS++EKIIFPI+VTI V
        Sbjct: 181 HLMGPIAVAAYSYMALVPIIQPPIMTALTSETERKIKMSQLRLVSKREKIIFPIVVTILV 240
        Ouery: 222 SLLVPSATTLVGCLMLGNLVREIKIVPKIVENLQQVVMFCITIIIGLTVGAKANGDLFLS 281
```

-2773-

```
SL+VP A TLVG LMLGNL RE +V ++ + + + + + ITI LG+TVGA A + FL
Sbjct: 241 SLIVPPAATLVGMLMLGNLFRECGVVGRLEDTAKNALINIITIFLGVTVGATATAEAFLK 300

Query: 282 ATTLKIIALGLIAFAAGTAGGVLMGKVMYYLSGNKVNPMIGAAGVSAVPMAARVVQKIGQ 341

TL I+ LG++AF GT GVL+ K M LS +NP++G+AGVSAVPMAARV Q +GQ
Sbjct: 301 VETLAILGLGIVAFGIGTGSGVLLAKFMNKLSKEPINPLLGSAGVSAVPMAARVSQVVGQ 360

Query: 342 EEDPSNFLLMHAMGPNVAGVIGSAIASGALLAFFG 376

+ DP+NFLLMHAMGPNVAGVIGSA+++G LL+ FG

Sbjct: 361 KADPTNFLLMHAMGPNVAGVIGSAVSAGVLLSLFG 395
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2716

A DNA sequence (GASx1171R) was identified in *S.pyogenes* <SEQ ID 7931> which encodes the amino acid sequence <SEQ ID 7932>. Analysis of this protein sequence reveals the following:

```
Possible site: 16

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0851(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAF93965 GB:AE004165 citG protein [Vibrio cholerae]
         Identities = 100/287 (34%), Positives = 154/287 (52%), Gaps = 12/287 (4%)
30
                   ISOLALKALLYEVSLSPKPGLVDRFDNGAHDDMSFITFIDSMIALSPFFOAYIETGFAYA 68
                   + LA A++ EV L+PKPGLVD +NGAH DM TFI S A++P+ +++ G+ A
         Sbjct: 32 VGHLAYHAMMLEVHLTPKPGLVDTANNGAHRDMDLNTFIASAEAIAPYLHSFVSAGWESA 91
35
         Query: 69 KEEPLILFNRLRQLGQKAEETMFCATQGINTHKGLNFSMALLLGATGAYLARTPHLMTDL 128
                         L + LR +G +AE+ MF ATOG+NTHKG+ F + L+ G+ G A
         Sbjct: 92 GNPAAOLLSALRPIGIEAEQAMFAATOGVNTHKGMIFILGLICGSVGWLKANO----- 144
         Query: 129 GRFSKEDTLAICRLVKPMTAHLIQTDLGHLNTKKEFTYGEQLFVTYGIKGPRGEASEGFT 188
40
                       K D I ++
                                      L+ +L
                                                  + T GE+++ YG+ G RGEA+ G
         Sbjct: 145 ---LKIDAQHIGETIRQACQFLVIDELKAKRDCEPETAGERIYRQYGLTGARGEAASGLA 201
         Ouerv: 189 TLTDHALPYFROMISON-DPETSOLRLLVYLMSIVEDGNI.HRGGIEAWKGVKAD-MRLL 246
                    + HALP ++ +++
                                      E +
                                            L+ LM+
                                                      D NL+ RGG+
45
         Sbjct: 202 MVMQHALPAYQACLTKGASTEQALWHTLLVLMANNNDSNLVSRGGLAGLHFVQEQAQQLL 261
         Query: 247 LQQDLSTTDLRLALSSYNQCLINQHLSPGGAADLLALTFYFAFLEKL 293
                           ++ AL++ + LI +HLSPGG+ADLLA T+
         Sbjct: 262 AKGGFLYQEIEQALTALDSVLIEKHLSPGGSADLLAATWLIYELVQL 308
50
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2717

55

A DNA sequence (GASx1172R) was identified in *S.pyogenes* <SEQ ID 7933> which encodes the amino acid sequence <SEQ ID 7934>. Analysis of this protein sequence reveals the following:

Possible site: 23

-2774-

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

5 bacterial cytoplasm --- Certainty=0.2501(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

10 The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAB12389 GB:Z99107 similar to transcriptional regulator (GntR
                   family) [Bacillus subtilis]
         Identities = 60/205 (29%), Positives = 99/205 (48%), Gaps = 3/205 (1%)
15
        Query: 19 PLKIAFYNALKKTIILRQIPVGSRINEKEFSIALNISRTPIRYALGLLSEEHLVEHIPKK 78
                   P + FYN LKK I
                                       G RINE + + + +SR+PIR A+ LL ++ L++
        Sbjct: 11 PYYLQFYNQLKKMIFNGTFKPGERINETQLAKSFGVSRSPIREAMRLLEKDGLLKADDRN 70
        Ouery: 79 GIIVKGVSIKDACEIFEIRKALETLATVQAMHLMTEEDFKVMHNLLEDCETFI--AEDDT 136
20
                   G + ++ KD EI++IR LE LA + EE+ ++
                                                             LE+ E I
        Sbjct: 71 GFSITSLTAKDVDEIYKIRIPLEQLAVELVIDEADEEELTILEKQLEETEKAIHNGTEDT 130
        Query: 137 NRILDNFNAFNNLIYSYSQMVRLKEIVTELQAYLVYFRKISISSVERRKRALSEHWMIYR 196
                     I N F+ L+ +S
                                      LK ++ + + + R ++ + R + L EH I+
        Sbjct: 131 EIIRLN-QKFHELLVDFSHNRHLKNLLEHVNDLIHFCRILNYTGDHRAETILREHRRIFE 189
25
        Ouery: 197 GMKNKDHEQITLITHEHLNSSLEFI 221
                                  HNE+
                    +K K+ E
        Sbjct: 190 EVKKKNKEAAKQHVLAHFNHDCEHL 214
30
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2718

Possible site: 16

A DNA sequence (GASx1173R) was identified in *S.pyogenes* <SEQ ID 7935> which encodes the amino acid sequence <SEQ ID 7936>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have a cleavable N-term signal seq.
           INTEGRAL Likelihood =-10.99 Transmembrane 450 - 466 (445 - 473)
40
                    Likelihood = -9.61 Transmembrane 33 - 49 ( 30 - 55)
           INTEGRAL
          INTEGRAL Likelihood = -8.55 Transmembrane 326 - 342 (321 - 346)
          INTEGRAL Likelihood = -7.01 Transmembrane 288 - 304 (286 - 311)
          INTEGRAL Likelihood = -6.79 Transmembrane 95 - 111 ( 88 - 114)
          INTEGRAL Likelihood = -4.99 Transmembrane 265 - 281 ( 264 - 285)
45
           INTEGRAL Likelihood = -4.62 Transmembrane 208 - 224 ( 204 - 228)
           INTEGRAL Likelihood = -3.13 Transmembrane 126 - 142 ( 126 - 145)
           INTEGRAL Likelihood = -2.81 Transmembrane 366 - 382 ( 365 - 383)
           INTEGRAL Likelihood = -2.34 Transmembrane 419 - 435 (417 - 438)
50
        ---- Final Results -----
                      bacterial membrane --- Certainty=0.5394 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

A related sequence was also identified in GAS <SEQ ID 9169> which encodes the amino acid sequence <SEQ ID 9170>. Analysis of this protein sequence reveals the following:

```
Possible cleavage site: 39
>>> Seems to have a cleavable N-term signal seq.
INTEGRAL Likelihood =-10.99 Transmembrane 443 - 459 ( 438 - 466)
```

-2775-

```
INTEGRAL
                        Likelihood = -8.55 Transmembrane 319 - 335 ( 314 - 339)
                        Likelihood = -7.01 Transmembrane 281 - 297 ( 279 - 304)
             INTEGRAL
                        Likelihood = -6.79 Transmembrane 88 - 104 ( 81 - 107)
             INTEGRAL
             INTEGRAL Likelihood = -4.99 Transmembrane 258 - 274 ( 257 - 278)
 5
             INTEGRAL Likelihood = -4.62 Transmembrane 201 - 217 ( 197 - 221)
             INTEGRAL Likelihood = -3.13 Transmembrane 119 - 135 ( 119 - 138)
                        Likelihood = -2.81 Transmembrane 359 - 375 (358 - 376)
             INTEGRAL
                        Likelihood = -2.34 Transmembrane 412 - 428 ( 410 - 431)
             INTEGRAL
10
        ---- Final Results
                      bacterial membrane --- Certainty=0.539 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAG08853 GB:AE004959 probable citrate transporter [Pseudomonas aeruginosa]
         Identities = 199/468 (42%), Positives = 296/468 (62%), Gaps = 41/468 (8%)
20
                   LLTMLAYAMIIVFMYVVMKKKMTPFTALVMIPLIMTIAVILTGSADFNADAKFVAFVGDG 68
                   +LT+LA+AM+ FM+++M K+++ AL+++P
                   MLTLLAFAMVATFMFLIMTKRLSALIALILVP-----IAFALIG 39
        Sbjct: 1
        Query: 69 GIAKDLTAIGPMVMYGINNTAKTGIMLLFAILFFSVMLDAGLFDPITEKMIRFAKGDPMK 128
25
                   G A L GPM++ GI A TG+ML+FAIL+F++M+D+GLFDP K++R KGDP+K
        Sbjct: 40 GFAAGL---GPMMLDGIRTLAPTGVMLMFAILYFAIMIDSGLFDPAVRKILRLVKGDPLK 96
        Query: 129 VLIATAVVAAAVSLNGDGTTTTLICCSAFLPIYKKLDMKIMNLGVLIILQNTIMNLLPWG 188
                   V + TA +A VSL+GDG+TT +IC +A LP+Y +L M + + LI+L + ++N+ PWG
30
        Sbjct: 97 VSLGTAALAMIVSLDGDGSTTYMICVAAVLPLYSRLGMSPLVMACLIMLSSGVLNMTPWG 156
        Query: 189 GPTARAMSVLGVGP-EILGYLAPGMILSLL--YVICWVAPSMGRKERARLGVIDL--SEE 243
                   GPTARA S L V P +I + P MI LL + I W+
                                                          G++ERARLG + L
        Sbjct: 157 GPTARAASALHVDPADIFVPMIPAMIAGLLAIFAIAWI---YGKRERARLGELHLPTDHE 213
35
        Query: 244 DMRQLTDITDPDTLFIRRPKNFVFNAILTIGLITWLVAGSFNKSIAMAPLLLFAVGTCIA 303
                                  RRPK FNAILT+ L+ L+AG
                                                           + M L + A G IA
                           P+
                   D+ +++
        Sbjct: 214 DLAEISVSQYPEA---RRPKLLWFNAILTVVLMATLIAGL----LPMPVLFMIAFG--IA 264
40
        Ouery: 304 LMVNYPVLKDQSKRIGDNAGDAVQVVILVFAAGIFMGLFQGSGMASALAQSFATIIPKQL 363
                   ++VNYP +++Q KRIG +A + + VV L+FAAG+F G+ G+GM A+++S
        Sbjct: 265 MIVNYPCIQEQKKRIGAHAENILAVVSLIFAAGVFTGILSGTGMVDAMSKSLLAVIPPAL 324
        Query: 364 AGFWGLVIALVSAPGTFFISNDGFYYGILPVLAEAGAEYGFSNMAMALASLMGQAFHLLS 423
45
                        + ALVS P TFF+SND FYYG+LP+L +A AEYG + + MA AS++GQ HLLS
        Sbjct: 325 GPYLATITALVSMPFTFFMSNDAFYYGVLPILTQAAAEYGITPVEMARASIVGQPVHLLS 384
         Query: 424 PLVAFIYLLLRLTGLDMGEWQKEAAKYALIIFVIFVVTIIAMGQMPLY 471
                        YLL+ L +D G+ Q+
                                           K+A+++ + + +G PL+
50
```

Sbjct: 385 PLVPSTYLLVGLAKIDFGDHQRFTLKWAVLVCLAILAMALLLGLFPLF 432

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2719

A DNA sequence (GASx1174) was identified in S.pyogenes <SEQ ID 7937> which encodes the amino acid 55 sequence <SEQ ID 7938>. Analysis of this protein sequence reveals the following:

```
Possible site: 57
         >>> Seems to have no N-terminal signal sequence
60
         ---- Final Results -----
```

-2776-

```
bacterial cytoplasm --- Certainty=0.3948(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

5 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2720

A DNA sequence (GASx1175) was identified in *S.pyogenes* <SEQ ID 7939> which encodes the amino acid sequence <SEQ ID 7940>. Analysis of this protein sequence reveals the following:

```
Possible site: 39

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3519(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

25 Example 2721

A DNA sequence (GASx1177) was identified in *S.pyogenes* <SEQ ID 7941> which encodes the amino acid sequence <SEQ ID 7942>. Analysis of this protein sequence reveals the following:

```
Possible site: 60
30
          >>> Seems to have an uncleavable N-term signal seq
              INTEGRAL Likelihood = -9.24 Transmembrane 115 - 131 ( 105 - 137)
INTEGRAL Likelihood = -8.92 Transmembrane 208 - 224 ( 204 - 238)
INTEGRAL Likelihood = -7.80 Transmembrane 282 - 298 ( 273 - 303)
                            Likelihood = -4.94 Transmembrane 85 - 101 ( 75 - 102)
              INTEGRAL
                            Likelihood = -4.04 Transmembrane 10 - 26 (
35
              INTEGRAL
                                                                                       3 - 32)
                            Likelihood = -3.61 Transmembrane 255 - 271 ( 253 - 271)
              INTEGRAL
          ---- Final Results ----
                            bacterial membrane --- Certainty=0.4694 (Affirmative) < succ>
40
                             bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                           bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

-2777-

PCT/GB01/04789

```
Query: 76 FGIGTELFPLLIFIGIGAMIDFGPLLQNPFMLLFGDAAQFGIFFVVVVAVLAGFDIKEAA 135
                   + I TE+ PLLIF+G+GA+ DF PLL NP L G AAQ GIF ++ A+ GF +EAA
        Sbjct: 58 YLIHTEIVPLLIFLGLGALTDFSPLLANPKTFLLGAAAQIGIFAALIAALFLGFTPQEAA 117
5
        Query: 136 SIGIIGAADGPTSIFVANQLAKDLIGPITVAAYSYMALVPIIQPFAIKLVTTKKERRIRM 195
                   SIGIIG ADGPT+I+ LA LL VAAYSYM+LVPIIOP IK +T+ +ER+I+M
        Sbjct: 118 SIGIIGGADGPTTIYTTILAPHLLAATAVAAYSYMSLVPIIQPPIIKALTSSRERKIKM 177
10
        Query: 196 TYKAENVSQMTKILFPIJITLVAGFIAPISLPLVGFLMFGNLLRECGVLDRLSQTAQNEL 255
                     + VS+ KILFPI +++GF+AP +LPLVG LM GNL RE GV DRL++ A EL
        Sbjct: 178 R-QLRIVSKKEKILFPIATIIISGFLAPKALPLVGMLMTGNLFRESGVTDRLAKGASEEL 236
        Query: 256 VNIISILIGLTISIKMQADLFLNVQTLLIIVFGLLAFIMDSIGGVMFAKFLNLFRKEKIN 315
15
                   +NI++I+LGL++ M+A+ FL +TLL++ G++AF + GGV+ AK +NLF KEKIN
         Sbjct: 237 MNIMTIILGLSVGSTMRAESFLTOKTLLVLALGVVAFAAATAGGVLLAKVMNLFLKEKIN 296
        Query: 316 PMIGAAGISAFPMSSRVIQKMATDEDPQNFILMYAVGANVSGQIASVIAGGLLL 369
                   PMIGAAG+SA PMS+RV+Q++A +EDP N ILM+A+G NV+G I S +A G+L+
20
        Sbict: 297 PMIGAAGVSAVPMSARVVORLAIEEDPHNHILMHAMGPNVAGVIGSAVAAGVLI 350
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2722

A DNA sequence (GASx1178) was identified in *S.pyogenes* <SEQ ID 7943> which encodes the amino acid sequence <SEQ ID 7944>. Analysis of this protein sequence reveals the following:

```
Possible site: 16

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -9.50 Transmembrane 21 - 37 ( 8 - 43)

---- Final Results ----

bacterial membrane --- Certainty=0.4800 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2723

A DNA sequence (GASx1179) was identified in *S.pyogenes* <SEQ ID 7945> which encodes the amino acid sequence <SEQ ID 7946>. Analysis of this protein sequence reveals the following:

```
Possible site: 60

45

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1906(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

-2778-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2724

Possible site: 16

A DNA sequence (GASx1181) was identified in *S.pyogenes* <SEQ ID 7947> which encodes the amino acid sequence <SEQ ID 7948>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -1.65 Transmembrane 74 - 90 ( 74 - 90)

---- Final Results ----

bacterial membrane --- Certainty=0.1659 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA71632 GB:Y10621 CILB, citryl-CoA lyase beta subunit
30
                    [Leuconostoc mesenteroides]
          Identities = 187/293 (63%), Positives = 237/293 (80%), Gaps = 1/293 (0%)
                   ERLRRTMMFVPGANAAMLRDAPLFGADSIMFDLEDSVSLKEKDTSRALVHFALKTFDYSS 61
                    ERLRRTMMFVPG N AM++DA +FGADSIMFDLED+VSL EKD++R LV+ AL+T DY S
35
                   ERLRRTMMFVPGNNPAMVKDAGIFGADSIMFDLEDAVSLAEKDSARYLVYEALQTVDYGS 63
         Sbjct: 4
        Query: 62 VETVVRVNGLDS-CGALDIEAVVLAGVNVIRLPKTETAQDIIDVEAVIERVERENSIEVG 120
                                     DI+A+V AG++VIRLPK ETA + ++E++I
                     E VVR+NGLD+
         Sbjct: 64 SELVVRINGLDTPFYKNDIKAMVKAGIDVIRLPKVETAAMMHELESLITDAEKEFGRPVG 123
40
         Query: 121 RTRMMAAIESAEGVLNAREIAKASKRLIGIALGAEDYVTNMKTRRYPDGQELFFARSMIL 180
                     T MMAAIESA GV+NA EIA AS R+IGIAL AEDY T+MKT RYPDGQEL +AR++IL
         Sbjct: 124 TTHMMAAIESALGVVNAVEIANASDRMIGIALSAEDYTTDMKTHRYPDGQELLYARNVIL 183
45
         Query: 181 HAARAAGIAAIDTVYSDVNNTEGFQNEVRMIKQLGFDGKSVINPRQIPLVNEIYTPTKKE 240
                    HAARAAGIAA DTV++++N+ EGF E ++I QLGFDGKS+INPRQI +VN++Y PT+KE
         Sbjct: 184 HAARAAGIAAFDTVFTNLNDEEGFYRETQLIHQLGFDGKSLINPRQIEMVNKVYAPTEKE 243
         Query: 241 IDHAKQVIWAIREAESKGSGVISLNGKMVDKPIVERAERVIALATAAGVLSEE 293
50
                    I++A+ VI AI EA+ KGSGVIS+NG+MVD+P+V RA+RV+ LA A ++ E
         Sbjct: 244 INNAQNVIAAIEEAKQKGSGVISMNGQMVDRPVVLRAQRVMKLANANHLVDSE 296
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2779-

Example 2725

A DNA sequence (GASx1182) was identified in *S.pyogenes* <SEQ ID 7949> which encodes the amino acid sequence <SEQ ID 7950>. Analysis of this protein sequence reveals the following:

```
Possible site: 55

5

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.3554(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA71633 GB:Y10621 CILA, citrate CoA-transferase alpha subunit
15
                    [Leuconostoc mesenteroides]
          Identities = 294/511 (57%), Positives = 378/511 (73%), Gaps = 7/511 (1%)
                   NKLGRDIPOPYADOY--GVFEGELANIKQYDESSRRIKPVKPGDSKLLGSVREAIEKTGL 61
         Ouerv: 4
20
                                                           G+SK+ S+ + + T L
                   NK+ D+P
                             +Q VFE
                                                    +++
                   NKVNIDVPDAILEQLDDSVFESTNYGNPEIQRVGPKVRATT-GESKVQSSIDDVLSNT-L 60
         Sbjct: 3
         Query: 62 TDGMTISFHHHFREGDFIMNMVLEEIAKMGIKNLSIAPSSIANV-HEPLIDHIKNGVVTN 120
                    DGMTISFHHHFREGDF+ N V+ +I MG +NL++APSS+ NV ++ +I+ IK GVVTN
25
         Sbjct: 61 KDGMTISFHHHFREGDFVFNKVMRKIIDMGYQNLTLAPSSLTNVMNDIVIEAIKKGVVTN 120
         Query: 121 ITSSGLRDKVGAAISEGLMENPVVIRSHGGRARAIASGDIHIDVAFLGAPSSDAYGNVNG 180
                   ITSSG+R +G A+S G+++NPV+ RSHG RARAI SG+I IDVAFLG P+SD GN NG
         Sbjct: 121 ITSSGMRGTLGDAVSHGILKNPVIFRSHGARARAIESGEIKIDVAFLGVPNSDEMGNANG 180
30
         Query: 181 TKGKATCGSLGYAMIDAKYADQVVILTDNLVPYPNTPISIPQTDVDYVVTVDAIGDPQGI 240
                     G A GSLGYA+IDA+YAD++V++TD ++PYPNTP SI QT VDYVV VD +GDP I
         Sbjct: 181 MNGDAAFGSLGYALIDAQYADKLVLITDTIMPYPNTPASIKQTQVDYVVKVDKVGDPDKI 240
35
         Ouery: 241 AKGATRFTKNPKELLIAEYAAKVITNSPYFKEGFSFQTGTGGASLAVTRFMREAMIKENI 300
                     GATRFTK+PKEL IA+
                                       VI NS YFK FSFOTG+GGA+LAVTRF+REAM+ +NI
         Sbict: 241 GSGATRFTKDPKELKIAKTVNDVIVNSKYFKNDFSFQTGSGGAALAVTRFLREAMMAQNI 300
         Query: 301 KASFALGGITNAMVELLEEELVEKILDVQDFDHPSAVSLGKHAEHYEIDANMYASPLSKG 360
40
                    ASFALGGIT
                               V+LL E LV +++DVQDFD +A S+
                                                             EIDA+ YA P +KG
         Sbjct: 301 MASFALGGITKPTVDLLNEGLVNRVMDVQDFDKGAASSMKLSPNQQEIDASWYADPANKG 360
         Query: 361 AVINQLDTCILSALEVDTNFNVNVMTGSDGVIRGASGGHCDTAFAAKMSLVISPLIRGRI 420
                   A++++LD ILSALEVDTNFNVNVM+GSDGVIRGA GGH D A AK++++ PL+RGRI
         Sbjct: 361 AMVDKLDVAILSALEVDTNFNVNVMSGSDGVIRGAIGGHQDAA-TAKLTIISVPLVRGRI 419
45
         Query: 421 PTFVDEVNTVITPGTSVDVIVTEVGIAINPNRQDLVDHFKSL-NVPQFSIEELKEKAYAI 479
                     T V +VNTVITPG S+DV+VTEVGIAINP R DLV+ K + +P +SIEEL++KA I
         Sbjct: 420 ATIVPKVNTVITPGDSIDVVVTEVGIAINPKRTDLVEQLKQVPGLPIYSIEELQQKAEKI 479
50
         Query: 480 VGTPERIQYGDKVVALIEYRDGSLMDVVYNV 510
                   VG P +++ D+VVA+ EYRDGS++D++ V
         Sbjct: 480 VGQPAPLKFTDRVVAVAEYRDGSVIDIIKEV 510
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2726

A DNA sequence (GASx1183) was identified in *S.pyogenes* <SEQ ID 7951> which encodes the amino acid sequence <SEQ ID 7952>. Analysis of this protein sequence reveals the following:

-2780-

10 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA71634 GB:Y10621 CILG, hypothetical protein [Leuconostoc
                   mesenteroides]
         Identities = 65/176 (36%), Positives = 97/176 (54%), Gaps = 3/176 (1%)
15
        Query: 21 DTYFSGEAIQLSDMLRAREERALRQLHLLKEYPEGSLLSVTMNIPGPIKTSPKLLEAFDI 80
                   D + GE + L +L RE R O L+ +P
                                                     + SV +N+PGPIKTSPKL F I
                   DYFEGGERLNLMOVLDNREWREKYOKOLMASFPTAVITSVKLNLPGPIKTSPKLQSVFQI 61
20
        Ouery: 81 VIKAIOTALADDKICYOLRLL-PTTGYEYYLITSLPSRDLKLKMIALETELPIGRLMDLD 139
                            D + I + + TG + + +TS + +K MI E
        Sbjct: 62 IINDLNPVFKDLQIIKEASFVDQITGPDIFFVTSGCLKLVKQIMITFEESHLLGRLLDLD 121
        Query: 140 VLVLQNDLPHSISRTVLGGSPRQCFICSKEAKVCGRLRKHSVEEMQTAISKLLHSF 195
25
                             +SR LG +PR+C +C K+AK C + HS+ E + I+K+LH+F
                       D
        Sbjct: 122 VMCONAD--KQLSREELGFAPRKCLLCGKDAKTCIKEGNHSLAEGYSQINKMLHNF 175
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 2727

A DNA sequence (GASx1184) was identified in *S.pyogenes* <SEQ ID 7953> which encodes the amino acid sequence <SEQ ID 7954>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAB99233 GB:U67563 oxaloacetate decarboxylase alpha chain (oadA)
45
                    [Methanococcus jannaschii]
         Identities = 245/441 (55%), Positives = 336/441 (75%), Gaps = 5/441 (1%)
        Query: 10 IRITETVLRDGQQSQIATRMTTKEMIPILETLDNAGYHALEMWGGATFDSCLRFLNEDPW 69
                   ++I +T RD QQS IATRM T++M+PI E +D G++++E+WGGATFD+C+R+LNEDPW
50
                   VKIVDTTFRDAQQSLIATRMRTEDMLPIAEKMDEVGFYSMEVWGGATFDACIRYLNEDPW 61
        Sbjct: 2
        Query: 70 ERLRAIRKAVKKTKLQMLLRGQNLLGYRNYADDVVRSFIQKSIENGIDIVRIFDALNDPR 129
                   ERLRA++K ++ T LOMLLRGONL+GYR+Y DD+V F+ K+ ENGIDI RIFDALND R
         Sbjct: 62 ERLRALKKRIONTPLOMLLRGONLVGYRHYPDDIVEKFVIKAHENGIDIFRIFDALNDVR 121
55
        Query: 130 NLQTAVSATKKFGGHAQVAISYTTSPVHTIDYFVELAKAYQAIGADSICIKDMAGVLTPE 189
                   N++TA+ KK G Q AI YT SPVHTID +VELAK + +G DSICIKDMAG+LTP
        Sbjct: 122 NMETAIKTAKKVGAEVQGAICYTISPVHTIDQYVELAKKLEEMGCDSICIKDMAGLLTPY 181
```

-2781-

```
Query: 190 IGYQLVKCIKENTTIPLEVHTHATSGISEMTYLKVAEAGADIIDTAISSFSGGTSQPATE 249
                     GY+LVK +KE ++P++VH+H TSG++ MTYLKV EAGAD++D AIS F+ GTSQP TE
         Sbjct: 182 EGYELVKRLKEEISLPIDVHSHCTSGLAPMTYLKVIEAGADMVDCAISPFAMGTSQPPTE 241
 5
         Query: 250 SMAIALTDLGFDTGLDMOEVAKVAEYFNTIRDHYREIGILNPKVKDTEPKTLIYOVPGGM 309
                             +DTGLD++ + ++ +YF +R+ Y+ + +P + + + L+YQVPGGM
         Sbjct: 242 SIVVALKGTKYDTGLDLKLLNEIRDYFMKVREKYKM--LFSPISQIVDARVLVYQVPGGM 299
10
         Query: 310 LSNLLSQLTEQGLTDKYEEVLAEVPKVRADLGYPPLVTPLSQMVGTQALMNIISGERYKV 369
                   LSNL+SOL EOG DK+EEVL E+P+VR DLGYPPLVTP SQ+VGTQA++N+++ ERYK+
         Sbjct: 300 LSNLVSQLKEQGALDKFEEVLQEIPRVRKDLGYPPLVTPTSQIVGTQAVLNVLTEERYKI 359
         Query: 370 VPNEIKDYVRGLYGQSPAPLAEGIKEKIIGD-EAVITCRPADLIEPQMIYLRDEIAP--Y 426
15
                    + NE+ +YV+G YG+ PAP+ + ++++ + E ITCRPADL+ P+
         Sbjct: 360 ITNEVVNYVKGFYGKPPAPINPELLKRVLDEGEKPITCRPADLLPPEWEKVKKEAEEKGI 419
         Query: 427 AHSEEDVLSYASFPQQARDFL 447
                      EED+L+YA +PO A FL
20
         Sbjct: 420 VKKEEDILTYALYPOIAVKFL 440
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2728

Possible site: 40

A DNA sequence (GASx1185R) was identified in *S.pyogenes* <SEQ ID 7955> which encodes the amino acid sequence <SEQ ID 7956>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

---- Final Results -----

bacterial cytoplasm --- Certainty=0.2497(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAF93960 GB:AE004165 citrate (pro-3S)-lyase ligase [Vibrio cholerae]
         Identities = 118/336 (35%), Positives = 183/336 (54%), Gaps = 5/336 (1%)
40
                   YTISKVFPSDKTTMASVKNLLHQEGIRLDAHLDYTCAIMNAQNDVIATGSYFGNSLRCLC 63
                           ++T + +K L Q + +D +++ +
                                                          N +IA G G+ L+ +
        Sbjct: 10 YTFSRVSTKNRTKLLOIKEFLCQHOLTVDDDVEHF-VVAYGTNQIIACGGIAGHVLKSIA 68
45
        Query: 64 VSSAYQGEGLLNRIVSHLIDEEYALGNYHLFVYTKTSSAAFFKDLGFTEIVHIDNHISFL 123
                   VS A OG G
                              ++++ L + Y +G + LF++TK ++ F+ GF + ++ HI+ L
        Sbjct: 69 VSPALQGTGFALKLMTELTNFAYEMGRFSLFLFTKPANIDLFRQCGFFLVDKVEPHIALL 128
        Query: 124 ENKKTGFQDYLMTLNKPEQTPGKVAAIVINANPFTLGHQFLVEKAARENDWVHLFMVSED 183
50
                           Y L
                                  + + K+ +IV+NANPFTLGHQ+L+E+A + DWVHLF+V +
        Sbjct: 129 ENSPNRLSVYCKQLQLLKMSGRKIGSIVMNANPFTLGHQYLIEQACEQCDWVHLFVVKAE 188
        Query: 184 RSLIPFSVRKRLIQEGLAHLDNVIYHETGPYLISQATFPAYFQKEDNDVIKSQALLDTAI 243
                        ++ R +I+ G HL N+ H
                                               Y+IS+ATFP+YF K+
                                                                V +S
        Sbjct: 189 NKDFSYADRMAMIKAGSKHLLNLTIHSGSDYIISRATFPSYFIKDQQVVNQSHTALDLSI 248
55
        Query: 244 FL-KIAQTLQITKRYVGEEPTSRVTAIYNEIM---AEQLQQAGILLDILPRKAINQQQDP 299
                   F IA L IT R+VG EP VT YN+ M
                                                      E+ A + ++ +
        Sbjct: 249 FRHSIAPALGITHRFVGSEPICTVTRHYNQAMRRWLEEAHDASAPIQVVEIERSQQASQP 308
60
        Query: 300 ISASTARQALKDNDWDLLAKLLPKTSLDYFCSLKAQ 335
```

-2782-

```
ISAS R LK + +A L+PKT+ Y C A+
Sbjct: 309 ISASRVRYLLKQFGFAAIADLVPKTTYSYLCQHYAE 344
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2729

5

A DNA sequence (GASx1187) was identified in *S.pyogenes* <SEQ ID 7957> which encodes the amino acid sequence <SEQ ID 7958>. Analysis of this protein sequence reveals the following:

```
Possible site: 30

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4790 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

20 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2730

A DNA sequence (GASx1188R) was identified in *S.pyogenes* <SEQ ID 7959> which encodes the amino acid sequence <SEQ ID 7960>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 21

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.3956 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

35 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2731

A DNA sequence (GASx1190) was identified in *S.pyogenes* <SEQ ID 7961> which encodes the amino acid sequence <SEQ ID 7962>. Analysis of this protein sequence reveals the following:

```
Possible site: 14

>>> Seems to have no N-terminal signal sequence

45

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1274 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2783-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2732

5

A DNA sequence (GASx1196R) was identified in *S.pyogenes* <SEQ ID 7963> which encodes the amino acid sequence <SEQ ID 7964>. Analysis of this protein sequence reveals the following:

```
Possible site: 33

>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2733

A DNA sequence (GASx1211) was identified in *S.pyogenes* <SEQ ID 7965> which encodes the amino acid sequence <SEQ ID 7966>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 15

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1850 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

35 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2734

A DNA sequence (GASx1219R) was identified in *S.pyogenes* <SEQ ID 7967> which encodes the amino acid sequence <SEQ ID 7968>. Analysis of this protein sequence reveals the following:

```
Possible site: 15

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2284 (Affirmative) < succ>
```

-2784-

```
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ> bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

5 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2735

A DNA sequence (GASx1225) was identified in *S.pyogenes* <SEQ ID 7969> which encodes the amino acid sequence <SEQ ID 7970>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2062 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

20 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2736

A DNA sequence (GASx1229) was identified in *S.pyogenes* <SEQ ID 7971> which encodes the amino acid sequence <SEQ ID 7972>. Analysis of this protein sequence reveals the following:

```
Possible site: 15

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2755(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

35
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

40 Example 2737

A DNA sequence (GASx1247R) was identified in *S.pyogenes* <SEQ ID 7973> which encodes the amino acid sequence <SEQ ID 7974>. Analysis of this protein sequence reveals the following:

```
Possible site: 31

45 >>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -6.32 Transmembrane 55 - 71 ( 53 - 81)
```

-2785-

```
INTEGRAL Likelihood = -6.00 Transmembrane 74 - 90 ( 72 - 95)
INTEGRAL Likelihood = -2.18 Transmembrane 95 - 111 ( 95 - 111)
INTEGRAL Likelihood = -1.54 Transmembrane 124 - 140 ( 123 - 141)

5 ---- Final Results ----
bacterial membrane --- Certainty=0.3527 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

10 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAB14326 GB:Z99116 ygjA [Bacillus subtilis]
         Identities = 97/306 (31%), Positives = 154/306 (49%)
15
                   RTLKMTLATIVAILIAYQLHLDYAMSAGIIALLSVLDTRKSSLVVARNRLLSFFLAFGIA 65
                   RT+K L T +AI I+ LHL
                                         SAGII +L + T+K SL + R + LA
        Sbict: 7
                  RTIKTALGTALAIYISQLLHLQNFASAGIITILCIQITQKRSLQASWARFWACCLAIAFS 66
        Ouery: 66 MMCFSLFGFTTVGFMCYLLIIIPLLYHFQIEAGLVPITVLVTHLIAKKSIALPILSNEFM 125
20
                    + F In G+
                                   TIT TP+
                                            +I G+V +V++ HL
        Sbjct: 67 YLFFELIGYHPFVIGALLLIFIPITVLLKINEGIVTSSVIILHLYMSGGITPTFIWNEVQ 126
        Query: 126 LFFVGTSVALLFNAYMGPQDQQIRYYHQKVESDLKGILYRFESFLLEGKGQNEGLLIKNL 185
                   L VG VALL N YM D+++ Y +K+E + I
                                                          E +LL G+
25
        Sbjct: 127 LITYGIGVALLMNLYMPSLDRKLIAYRKKIEDNFAVIFAEIERYLLTGEQDWSGKEIPET 186
        Query: 186 DKILDEALKLVYRERHNQLFQQTNYQVHYFEMRRQQNRLLGQMAINVNTLMRQSKESILL 245
                    +++ EA L YR+ N + + N HYF+MR +Q ++ ++
                                                               V ++
         Sbjct: 187 HOLITEAKNLAYRDVQNHILRYENLHYHYFKMREKQFEIIERLLPKVTSISITVDQGKMI 246
30
        Query: 246 SHLFHETACQLSEQNPALTLIDDIEQLLETFRHGDLPQTREEFERRAVLFQLLQDLERFI 305
                           + NA + + + + F
                      H+
                                                   LP TREEFE RA LF LL ++E+++
        Sbjct: 247 AEFIHDLREAIHPGNTAYKFLKRLADMRKEFEEMPLPATREEFEARAALFHLLGEMEQYL 306
35
        Query: 306 LLKVEF 311
                   ++K F
        Sbjct: 307 VIKSYF 312
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2738

A DNA sequence (GASx1261) was identified in *S.pyogenes* <SEQ ID 7975> which encodes the amino acid sequence <SEQ ID 7976>. Analysis of this protein sequence reveals the following:

```
Possible site: 15

45

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.6082(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2786-

Example 2739

A DNA sequence (GASx1262R) was identified in *S.pyogenes* <SEQ ID 7977> which encodes the amino acid sequence <SEQ ID 7978>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

15 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2740

A DNA sequence (GASx1265R) was identified in *S.pyogenes* <SEQ ID 7979> which encodes the amino acid sequence <SEQ ID 7980>. Analysis of this protein sequence reveals the following:

```
Possible site: 25

>>> Seems to have a cleavable N-term signal seq.

25

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

30 No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2741

35

A DNA sequence (GASx1270) was identified in *S.pyogenes* <SEQ ID 7981> which encodes the amino acid sequence <SEQ ID 7982>. Analysis of this protein sequence reveals the following:

```
Possible site: 36

>>> Seems to have no N-terminal signal sequence

40

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4063 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2787-

Example 2742

A DNA sequence (GASx1290R) was identified in *S.pyogenes* <SEQ ID 7983> which encodes the amino acid sequence <SEQ ID 7984>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S.agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAB88010 GB:L21856 MalA [Streptococcus pneumoniae]
         Identities = 66/237 (27%), Positives = 105/237 (43%), Gaps = 28/237 (11%)
20
        Query: 45 MIPVTLHYANMTTYPLERIVTKSLSPITDKTYQALTQGKIEKD---TFQGQSLIRRD--- 98
                                                           D
                                                              T+ G +
                   M+P+ + ++ TYPLE +
                                          P+TDK Q L++
        Sbjct: 1 MVPIAIQNSSQETYPLETFIDNVYEPLTDKVVQDLSEHATIVDGTLTYTGTASQAPSVVI 60
25
        Query: 99 GELVLAVLPTKVDLEQLASESTRQIIVTKKEWRFVTPDGKEL-RAHVRGQQQSLADLTTV 157
                      + LP + L
                                       T ++++K
                                                      + KEL R R O
        Sbjct: 61 GPSQIKELPKDLQLHF----DTNELVISK------ESKELTRISYRAIQ-----TEG 102
        Query: 158 KAVKDFVNQQWY---DSNKASVLGFLLLTFVLMVCVGTLIVIGLGAFFLTLTKRSRLFMI 214
30
                      KD + O +
                                  +N+ + FL+L
                                                + + IV
        Sbjct: 103 FKSKDSLTQAFIRLVPTNRVYISLFLVLGASFLFGLNFFIVSLGACLLLYITKKSRLFSF 162
        Query: 215 RNFSEGLGLMVNCLAWPSLLAIALSFFIODPVLIMNCOVFGTLLMLTWVFYKTOFRD 271
                   RFE
                           ++NCL P+L+ + L F Q+ ++ Q
                                                           +L L +FYKT FRD
35
        Sbjct: 163 RTFKECYHFILNCLGLPTLITLILGLFGQNMTTLITVQNILFVLYLVTIFYKTHFRD 219
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2743

40 A DNA sequence (GASx1294) was identified in *S.pyogenes* <SEQ ID 7985> which encodes the amino acid sequence <SEQ ID 7986>. Analysis of this protein sequence reveals the following:

```
Possible site: 18

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2104(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

50
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2788-

Example 2744

A DNA sequence (GASx1303R) was identified in *S.pyogenes* <SEQ ID 7987> which encodes the amino acid sequence <SEQ ID 7988>. Analysis of this protein sequence reveals the following:

```
Possible site: 38

5

Seems to have an uncleavable N-term signal seq
INTEGRAL Likelihood = -8.07 Transmembrane 13 - 29 ( 8 - 38)

---- Final Results ----

bacterial membrane --- Certainty=0.4227 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

15 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2745

20

A DNA sequence (GASx1307R) was identified in *S.pyogenes* <SEQ ID 7989> which encodes the amino acid sequence <SEQ ID 7990>. Analysis of this protein sequence reveals the following:

```
Possible site: 19

>>> Seems to have a cleavable N-term signal seq.

25

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

30 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2746

A DNA sequence (GASx1312R) was identified in *S.pyogenes* <SEQ ID 7991> which encodes the amino acid sequence <SEQ ID 7992>. Analysis of this protein sequence reveals the following:

```
Possible site: 21

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1996 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

45
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2789-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2747

A DNA sequence (GASx1316R) was identified in *S.pyogenes* <SEQ ID 7993> which encodes the amino acid sequence <SEQ ID 7994>. Analysis of this protein sequence reveals the following:

```
Possible site: 58

>>> Seems to have no N-terminal signal sequence

10

----- Final Results -----

bacterial cytoplasm --- Certainty=0.3504 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

15

RGD motif: 271-273

No corresponding DNA sequence was identified in S.agalactiae.
```

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC66321 GB:AE000792 outer surface protein, putative [Borrelia
                  burgdorferi]
20
         Identities = 127/365 (34%), Positives = 195/365 (52%), Gaps = 14/365 (3%)
        Query: 1 MVDLGFSLYPERYDVTKSKAYIDLCHSYGAKRLFMSLLQLAPADHQMFHCYAELIAYANQ 60
                  M ++G S+YP K Y++ +G ++F SLL + + F + EL++ AN+
        Sbjct: 1 MKEIGISIYPNVSPKNKIIKYLEKSAHFGFTQVFTSLLYI---NGNEFDIFKELLSIANK 57
25
        Query: 61 LGIRVIADVSPSFISQAGWSDQLIERA-----HAFGLAGLRLDEALPLAEIVTLTRNPF 114
                   G++ I DVSP + G +
                                                    G +RLD E +T N
        Sbjct: 58 NGMKPIIDVSPEIFKELGIDLSNLRNCPKLDYFKKLGAWAIRLDNTFTGIEESLMTFNDS 117
30
        Query: 115 GLKIELNMSTDKQLLMSLLATDAERSNIIGCHNFYPHEFTGLSWQHFKDMSRFYHEHDIE 174
                    LKI+LN+S + + +++ N++GCHNFYPH++TGLS FK+ ++ + I
        Sbjct: 118 DLKIOLNISNINKHIDTIMYFKPNIKNLLGCHNFYPHKYTGLSRNFFKETTKIFKHYSIP 177
        Query: 175 TAAFITAQSASE-GPWLLAEGLPTVEDHRHLPIGLQVELMKAIGTIDNILISNQFISEEE 233
35
                  TAAFI++ +A E EG+PT+E HR I Q + + G ID +LISN F SE E
        Sbjct: 178 TAAFISSNNAEECARGKEKEGVPTLESHRSKDIETQAKDLFKEG-IDTVLISNCFPSETE 236
        Query: 234 LAACTOALARPVTTIKVRPIIDLTEVEEQII-GYPHCYRGDVSDYVIRSTMPRLVYAQES 292
                  L ++ + R + +K D VE++II H RGD++ Y IRSTMPR+ Y +
40
        Sbjct: 237 LKKVSK-VNRNILELKADLNPDANSVEKEIILENLHFNRGDINSYRIRSTMPRVYYNNKK 295
        Query: 293 IAPRDOSKEVKRGSIIIDNDRYHRYKGELQIALKNFTVSSKANVVAEVREDYLSLLDDLR 352
                         E+K+G I+ID+ Y Y GELQIALK+ + NVV ++ D + LL+ +
        Sbjct: 296 F-PVHSPNEIKKGDILIDSSEYLGYTGELQIALKDTPNNGLVNVVGKIINDEIYLLEKIE 354
45
        Query: 353 PWOEF 357
                  PW++F
        Sbjct: 355 PWEKF 359
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2748

A DNA sequence (GASx1319) was identified in *S.pyogenes* <SEQ ID 7995> which encodes the amino acid sequence <SEQ ID 7996>. Analysis of this protein sequence reveals the following:

55 Possible site: 34

-2790-

```
>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -9.50 Transmembrane 127 - 143 ( 125 - 151)

INTEGRAL Likelihood = -7.43 Transmembrane 17 - 33 ( 15 - 36)

INTEGRAL Likelihood = -5.68 Transmembrane 39 - 55 ( 36 - 57)

INTEGRAL Likelihood = -1.86 Transmembrane 60 - 76 ( 59 - 77)

INTEGRAL Likelihood = -0.59 Transmembrane 85 - 101 ( 85 - 101)

---- Final Results ----

bacterial membrane --- Certainty=0.4800 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2749

A DNA sequence (GASx1320) was identified in *S.pyogenes* <SEQ ID 7997> which encodes the amino acid sequence <SEQ ID 7998>. Analysis of this protein sequence reveals the following:

30 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2750

A DNA sequence (GASx1321) was identified in *S.pyogenes* <SEQ ID 7999> which encodes the amino acid sequence <SEQ ID 8000>. Analysis of this protein sequence reveals the following:

```
Possible site: 29

>>> Seems to have an uncleavable N-term signal seq

40

---- Final Results ----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>

45
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2791-

Example 2751

A DNA sequence (GASx1329) was identified in *S.pyogenes* <SEQ ID 8001> which encodes the amino acid sequence <SEQ ID 8002>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

15 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2752

20

A DNA sequence (GASx1332R) was identified in *S.pyogenes* <SEQ ID 8003> which encodes the amino acid sequence <SEQ ID 8004>. Analysis of this protein sequence reveals the following:

```
Possible site: 37

>>> Seems to have an uncleavable N-term signal seq

25

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

30 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2753

A DNA sequence (GASx1333) was identified in *S.pyogenes* <SEQ ID 8005> which encodes the amino acid sequence <SEQ ID 8006>. Analysis of this protein sequence reveals the following:

```
Possible site: 29

>>> Seems to have an uncleavable N-term signal seq

40

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>

45
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2792-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2754

A DNA sequence (GASx1335R) was identified in *S.pyogenes* <SEQ ID 8007> which encodes the amino acid sequence <SEQ ID 8008>. Analysis of this protein sequence reveals the following:

```
Possible site: 37

>>> Seems to have an uncleavable N-term signal seq

10

---- Final Results ----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in *S. agalactiae*.

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2755

A DNA sequence (GASx1353) was identified in *S.pyogenes* <SEQ ID 8009> which encodes the amino acid sequence <SEQ ID 8010>. Analysis of this protein sequence reveals the following:

```
Possible site: 42

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -5.79 Transmembrane 241 - 257 ( 234 - 260)

INTEGRAL Likelihood = -5.15 Transmembrane 44 - 60 ( 43 - 65)

INTEGRAL Likelihood = -4.78 Transmembrane 74 - 90 ( 72 - 92)

---- Final Results ----

bacterial membrane --- Certainty=0.3314 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

50 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2793-

Example 2756

A DNA sequence (GASx1354R) was identified in *S.pyogenes* <SEQ ID 8011> which encodes the amino acid sequence <SEQ ID 8012>. Analysis of this protein sequence reveals the following:

```
Possible site: 55

>>> Seems to have a cleavable N-term signal seq.
INTEGRAL Likelihood = -3.45 Transmembrane 68 - 84 ( 65 - 86)

---- Final Results ----

bacterial membrane --- Certainty=0.2381(Affirmative) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

15 The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 2757

A DNA sequence (GASx1363R) was identified in *S.pyogenes* <SEQ ID 8013> which encodes the amino acid sequence <SEQ ID 8014>. Analysis of this protein sequence reveals the following:

```
Possible site: 21

35 >>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2758

50

A DNA sequence (GASx1367) was identified in *S.pyogenes* <SEQ ID 8015> which encodes the amino acid sequence <SEQ ID 8016>. Analysis of this protein sequence reveals the following:

```
Possible site: 31

>>> Seems to have an uncleavable N-term signal seq
```

-2794-

```
---- Final Results ----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

20 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2759

A DNA sequence (GASx1374R) was identified in *S.pyogenes* <SEQ ID 8017> which encodes the amino acid sequence <SEO ID 8018>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 39

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.2585(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

35 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2760

A DNA sequence (GASx1382R) was identified in *S.pyogenes* <SEQ ID 8019> which encodes the amino acid sequence <SEQ ID 8020>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

-2795-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2761

A DNA sequence (GASx1391R) was identified in *S.pyogenes* <SEQ ID 8021> which encodes the amino acid sequence <SEQ ID 8022>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

>>> May be a lipoprotein

---- Final Results ----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2762

A DNA sequence (GASx1404) was identified in *S.pyogenes* <SEQ ID 8023> which encodes the amino acid sequence <SEQ ID 8024>. Analysis of this protein sequence reveals the following:

```
Possible site: 32

25 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3046 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2763

35

A DNA sequence (GASx1412R) was identified in *S.pyogenes* <SEQ ID 8025> which encodes the amino acid sequence <SEQ ID 8026>. Analysis of this protein sequence reveals the following:

```
Possible site: 20

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1590(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

-2796-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 2764

A DNA sequence (GASx1414R) was identified in *S.pyogenes* <SEQ ID 8027> which encodes the amino acid sequence <SEQ ID 8028>. Analysis of this protein sequence reveals the following:

```
Possible site: 24

Note to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2816 (Affirmative) < successor s
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2765

A DNA sequence (GASx1416) was identified in *S.pyogenes* <SEQ ID 8029> which encodes the amino acid sequence <SEQ ID 8030>. Analysis of this protein sequence reveals the following:

```
Possible site: 34

25

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1744(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

35 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2766

A DNA sequence (GASx1417) was identified in *S.pyogenes* <SEQ ID 8031> which encodes the amino acid sequence <SEQ ID 8032>. Analysis of this protein sequence reveals the following:

```
40 Possible site: 13

>>> Seems to have no N-terminal signal sequence

---- Final Results ----
bacterial cytoplasm --- Certainty=0.3771(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
```

-2797-

```
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2767

A DNA sequence (GASx1419R) was identified in *S.pyogenes* <SEQ ID 8033> which encodes the amino acid sequence <SEQ ID 8034>. Analysis of this protein sequence reveals the following:

20 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2768

A DNA sequence (GASx1423) was identified in *S.pyogenes* <SEQ ID 8035> which encodes the amino acid sequence <SEQ ID 8036>. Analysis of this protein sequence reveals the following:

```
Possible site: 39

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -8.97 Transmembrane 30 - 46 ( 25 - 49)

INTEGRAL Likelihood = -7.80 Transmembrane 52 - 68 ( 50 - 72)

INTEGRAL Likelihood = -6.95 Transmembrane 129 - 145 ( 125 - 146)

----- Final Results ----

bacterial membrane --- Certainty=0.4588 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

40 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2769

A DNA sequence (GASx1426R) was identified in *S.pyogenes* <SEQ ID 8037> which encodes the amino acid sequence <SEQ ID 8038>. Analysis of this protein sequence reveals the following:

```
Possible site: 25
```

-2798-

```
>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -3.45 Transmembrane 36 - 52 ( 36 - 55)

---- Final Results ----

bacterial membrane --- Certainty=0.2381(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

10 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC39287 GB:AF115103 orf87 gp [Streptococcus thermophilus bacteriophage Sfi21]

Identities = 43/73 (58%), Positives = 61/73 (82%)

Query: 1 MINLKLRLQNKVTLMAILGAIFLLAQQLGIKLPSNIADIANTAVTLLVLLGVVTDPTTKG 60 MIN KLRLQNK TL+A++ A+FL+ QQ G+ +P+NI + NT V +LV+LG++TDPTTKG Sbjct: 8 MINFKLRLQNKATLVALISAVFLMLQQFGLHVPNNIQEGINTLVGILVILGIITDPTTKG 67

Query: 61 LSDSEQALTYHEP 73 ++DSE+AL+Y +P Sbjct: 68 IADSERALSYIQP 80
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2770

5

A DNA sequence (GASx1427R) was identified in *S.pyogenes* <SEQ ID 8039> which encodes the amino acid sequence <SEQ ID 8040>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in *S.agalactiae*.

40 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2771

A DNA sequence (GASx1428R) was identified in *S.pyogenes* <SEQ ID 8041> which encodes the amino acid sequence <SEQ ID 8042>. Analysis of this protein sequence reveals the following:

```
Possible site: 20

>>> Seems to have no N-terminal signal sequence

50

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1017 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2799-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2772

5

A DNA sequence (GASx1429R) was identified in *S.pyogenes* <SEQ ID 8043> which encodes the amino acid sequence <SEQ ID 8044>. Analysis of this protein sequence reveals the following:

```
Possible site: 46

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3097 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2773

A DNA sequence (GASx1431R) was identified in *S.pyogenes* <SEQ ID 8045> which encodes the amino acid sequence <SEQ ID 8046>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 50

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2584 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:AAA98101 GB:M19348 hyaluronidase [Streptococcus pyogenes phage
                    H4489A]
          Identities = 337/371 (90%), Positives = 351/371 (93%), Gaps = 1/371 (0%)
40
                  MAENIPLRVQFKRMKAAEWASSDVVLLEGEIGFETDTGFAKFGDGQNTFSKLKYLTGPKG 60
         Query: 1
                    M ENIPLRVQFKRM A EWA SDV+LLEGEIGFETDTGFAKFGDGQNTFSKLKYLTGPKG
        Sbjct: 1
                  MTENIPLRVQFKRMSADEWARSDVILLEGEIGFETDTGFAKFGDGQNTFSKLKYLTGPKG 60
        Query: 61 PKGDTGLQGKTGGTGSRGPAGKPGTTDYDQLQNKPDLGAFAQKEETNSKITKLESSKADK 120
45
                    PKGDTGLQGKTGGTG RGPAGKPGTTDYDQLQNKPDLGAFAQKEETNSKITKLESSKADK
         Sbjct: 61 PKGDTGLQGKTGGTGPRGPAGKPGTTDYDQLQNKPDLGAFAQKEETNSKITKLESSKADK 120
         Ouery: 121 NAVYLKAESNAKLDEKLNLKGGVMTGOLOFKPN-SGIKPSSSVGGAINIDMSKSEGAAMV 179
                    +AVY KAES +LD+KL+L GG++TGQLQFKPN SGIKPSSSVGGAINIDMSKSEGAAMV
50
         Sbjct: 121 SAVYSKAESKIELDKKLSLTGGIVTGQLQFKPNKSGIKPSSSVGGAINIDMSKSEGAAMV 180
```

-2800-

```
Query: 180 MYTNKDTTDGPLMILRSNKDTFDQSVQFVDYKGTTNAVNIVMRQPTTPNFSSALNITSAN 239
MYTNKDTTDGPLMILRS+KDTFDQS QFVDY G TNAVNIVMRQP+ PNFSSALNITSAN 240

5 Query: 240 EGGSAMQIRGVEKALGTLKITHENPSVDKEYDENAAALSIDIVKKQKGGKGTAAQGIYIN 299
EGGSAMQIRGVEKALGTLKITHENP+V+ +YDENAAALSIDIVKKQKGGKGTAAQGIYIN 300

Sbjct: 241 EGGSAMQIRGVEKALGTLKITHENPNVEAKYDENAAALSIDIVKKQKGGKGTAAQGIYIN 300

Query: 300 STSGTAGKMLRIRNKNKDKFYVGPDGDFWSCASSIVDGNLTVKDPTSGKHAATKDYVDEK 359
STSGTAGKMLRIRNKN+DKFYVGPDG F S A+S V GNLTVKDPTSGKHAATKDYVDEK 360

Query: 360 IAELKKLILKK 370
IAELKKLILKK

Sbjct: 361 IAELKKLILKK 371
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2774

A DNA sequence (GASx1438R) was identified in *S.pyogenes* <SEQ ID 8047> which encodes the amino acid sequence <SEO ID 8048>. Analysis of this protein sequence reveals the following:

```
Possible site: 55

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1892(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

A related DNA sequence <SEQ ID 10439> was identified in GBS which encodes amino acid sequence <SEQ ID 10440>.

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2775

50

A DNA sequence (GASx1442R) was identified in *S.pyogenes* <SEQ ID 8049> which encodes the amino acid sequence <SEQ ID 8050>. Analysis of this protein sequence reveals the following:

```
Possible site: 55

>>> Seems to have no N-terminal signal sequence
```

-2801-

```
---- Final Results ----

bacterial cytoplasm --- Certainty=0.1241(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

10 Example 2776

5

A DNA sequence (GASx1444R) was identified in *S.pyogenes* <SEQ ID 8051> which encodes the amino acid sequence <SEQ ID 8052>. Analysis of this protein sequence reveals the following:

```
Possible site: 42

15 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4547 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2777

A DNA sequence (GASx1447R) was identified in *S.pyogenes* <SEQ ID 8053> which encodes the amino acid sequence <SEQ ID 8054>. Analysis of this protein sequence reveals the following:

```
Possible site: 25

30

>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2778

A DNA sequence (GASx1448R) was identified in *S.pyogenes* <SEQ ID 8055> which encodes the amino acid sequence <SEQ ID 8056>. Analysis of this protein sequence reveals the following:

45 Possible site: 20

-2802-

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3221(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2779

A DNA sequence (GASx1449R) was identified in *S.pyogenes* <SEQ ID 8057> which encodes the amino acid sequence <SEQ ID 8058>. Analysis of this protein sequence reveals the following:

```
Possible site: 19

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.6356(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2780

Possible site: 13

30

A DNA sequence (GASx1453R) was identified in *S.pyogenes* <SEQ ID 8059> which encodes the amino acid sequence <SEQ ID 8060>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2869(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

40 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2781

A DNA sequence (GASx1455R) was identified in *S.pyogenes* <SEQ ID 8061> which encodes the amino acid sequence <SEQ ID 8062>. Analysis of this protein sequence reveals the following:

-2803-

```
Possible site: 40

>>> Seems to have no N-terminal signal sequence

5

----- Final Results ----

bacterial cytoplasm --- Certainty=0.1787(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

10 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAF43512 GB:AF145054 ORF19 [Streptococcus thermophilus
                   bacteriophage 7201]
         Identities = 47/126 (37%), Positives = 86/126 (67%), Gaps = 2/126 (1%)
15
        Query: 8
                  LKDLRNLDLYIASLIRRRDKIEASLL--SSPKWSSDKVNGGIKRKQDDVYVELIATAKDI 65
                   ++ ++ LD YI S I + ++E+ L +S +D V GG ++ +DD+YVELI
        Sbjct: 7
                   IOOIKALDRYIESOIEOIKRLESOALKVTSGSMHTDMVOGGKRKGKDDIYVELITAREEV 66
20
        Query: 66 EKKTAEAIRKQRELQNLIDSLENTDSQTILSMVYIDKMTRWQVIDELNCSESTYFRLLRV 125
                   E+ TAEAI+++ E + I ++E+ D++++L MVYID+++ WQ+ D++ S++TY+ LR
        Sbjct: 67 ERFTAEAIKQKLEFRRQIANIEDIDARSLLQMVYIDQLSIWQICDKMGISKATYYVKLRQ 126
        Query: 126 ATKELN 131
25
                   AKL+
        Sbict: 127 AEKYLD 132
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 2782

Possible site: 34

A DNA sequence (GASx1456R) was identified in *S.pyogenes* <SEQ ID 8063> which encodes the amino acid sequence <SEQ ID 8064>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2883 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:AAB18697 GB:U38906 ORF22 [Bacteriophage rlt]
45
         Identities = 78/207 (37%), Positives = 123/207 (58%), Gaps = 2/207 (0%)
        Query: 6
                   EIHRILGIDEVYKAPKRLTDILFDKDSREDIFRQFLKYETDVSYDWFMQYFEEEQADRKN 65
                                  R+ +++FDK RE+ + + L
                                                          D+ D+F YF
        Sbjct: 7
                   QFYDMLNVDEHMNFTNRIQELVFDKKGREEFYSKILNIHHDMGVDFFRDYFMAHSAVSA- 65
50
        Query: 66 KKQDFTPKSVSTLLSKIISGNQYYEVA-VGTGGILIQAWQEQRLNDSPFTYRPSKYWYHV 124
                   K Q +TP + L + ++ G+ ++ GTG ++IQ WQ+ R+N
                                                                 F Y PS YWY
        Sbjct: 66 KGQHYTPDELGKLTALLVGGSGGADLTGAGTGTLIIQKWQDDRMNTDFFNYLPSNYWYQA 125
55
        Query: 125 EELSDKAVPFLLFNMSIRGINGVVVHGDSLTRQVKNIYFLQNTKDDMLSFSDINVMPRTQ 184
                    ELSD+A+ FL+ +IRG+NGVV+HGD+L VK +YF+QN+ ++ + FS+INV+P ++
        Sbjct: 126 LELSDEAISFLIHAFAIRGMNGVVIHGDALEMAVKQVYFIQNSANNPIGFSEINVIPHSK 185
```

-2804-

```
Query: 185 DIEREFNVKEWIGDGIEHIENPLIEWI 211
D + EW IEHIE+ +WI
Sbjct: 186 DAMEFLGIHEWTEQAIEHIESKFPDWI 212
```

5 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2783

A DNA sequence (GASx1459R) was identified in *S.pyogenes* <SEQ ID 8065> which encodes the amino acid sequence <SEQ ID 8066>. Analysis of this protein sequence reveals the following:

20 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2784

A DNA sequence (GASx1460R) was identified in *S.pyogenes* <SEQ ID 8067> which encodes the amino acid sequence <SEQ ID 8068>. Analysis of this protein sequence reveals the following:

```
Possible site: 55

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3368 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

40 Example 2785

A DNA sequence (GASx1461R) was identified in *S.pyogenes* <SEQ ID 8069> which encodes the amino acid sequence <SEQ ID 8070>. Analysis of this protein sequence reveals the following:

```
Possible site: 61

45 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2834 (Affirmative) < succ>
```

-2805-

```
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ> bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

5 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2786

10

A DNA sequence (GASx1462R) was identified in *S.pyogenes* <SEQ ID 8071> which encodes the amino acid sequence <SEQ ID 8072>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have no N-terminal signal sequence

15

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3531(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

20 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2787

Possible site: 58

A DNA sequence (GASx1463R) was identified in *S.pyogenes* <SEQ ID 8073> which encodes the amino acid sequence <SEQ ID 8074>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2483 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:CAB14569 GB:Z99117 similar to phage-related protein [Bacillus subtilis]
         Identities = 98/252 (38%), Positives = 152/252 (59%), Gaps = 29/252 (11%)
40
        Query: 16 SPAVKNRIEQVVGARAEQFTTSLLSIISNNNLLAKATSESIMGAAMKAAVLNLPIEPSLG 75
                   SP+V R E+V+G RA QFT S+LS+ ++ +L K S++ +AM AA L+LPI+ +LG
        Sbjct: 33 SPSVIKRFEEVLGKRATQFTASILSLYNSEQMLQKTDPMSVISSAMVAATLDLPIDKNLG 92
45
        Query: 76 FAYVVPYNRNYKDGNRWITVNEAOFOIGYRGLIOLAQRSGQVRNIEHGIIYEEEFLGYDK 135
                   +A++VPY
                                       +AQFQ+GY+G IQLA R+GQ ++I
                                                                   I+E E
        Sbjct: 93 YAWIVPYG-----GKAQFQLGYKGYIQLALRTGQYKSINCIPIHEGELQKWNP 140
        Query: 136 IRGQLKLTGDYVDSGVVKGYFASLELISGFYKMIFWPKEKVYEHAKKYSKTFDKKTGDFK 195
50
                   + ++++ + +S V GY A ELI+GF K ++W K +V +H KK+SK+
        Sbjct: 141 LTEEIEIDFEKRESDAVIGYAAYFELINGFRKTVYWTKAQVEKHKKKFSKS-----DF- 193
```

-2806-

```
Query: 196 PGTPWATEFDPMAIKTLLKELLSKYAPLSVEMQDA-LEADNADSTIVIPKDVTPQETNSL 254
W ++D MA+KT+LK +LSK+ LSVEMQ A +E D I D+T + +S
Sbjct: 194 ---GWKNDWDAMALKTVLKAVLSKWGILSVEMQKAVIEEDETRERI----DITNEADSS- 245

Query: 255 DDLIGTQNEKKD 266
++I ++ KD
Sbjct: 246 -EIIDSEPSNKD 256
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2788

A DNA sequence (GASx1464R) was identified in *S.pyogenes* <SEQ ID 8075> which encodes the amino acid sequence <SEQ ID 8076>. Analysis of this protein sequence reveals the following:

```
Possible site: 30

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4258(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2789

25

30

A DNA sequence (GASx1465R) was identified in *S.pyogenes* <SEQ ID 8077> which encodes the amino acid sequence <SEQ ID 8078>. Analysis of this protein sequence reveals the following:

```
Possible site: 51

>>> Seems to have no N-terminal signal sequence

35

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2045 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

40 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2790

A DNA sequence (GASx1469R) was identified in *S.pyogenes* <SEQ ID 8079> which encodes the amino acid sequence <SEQ ID 8080>. Analysis of this protein sequence reveals the following:

```
Possible site: 19
```

-2807-

```
>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2791

A DNA sequence (GASx1470R) was identified in *S.pyogenes* <SEQ ID 8081> which encodes the amino acid sequence <SEQ ID 8082>. Analysis of this protein sequence reveals the following:

```
Possible site: 37

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3577 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

25 The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC98430 GB:L29324 excisionase [Streptococcus pneumoniae]
Identities = 23/56 (41%), Positives = 41/56 (73%)

Query: 23 KHLIQQWEGLTVATAKQWATEMRDHPDFKQFVLNPTHRIVFIDYKGFKLFVQWKSR 78

K ++++W+GL T +W EMR++ F +V+NPTH++VFI+ +GF+ F++WK +
Sbjct: 19 KGILKRWDGLNKYTLNRWIKEMRENRTFSMYVINPTHKLVFINLEGFESFLRWKQK 74
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2792

50

A DNA sequence (GASx1473) was identified in *S.pyogenes* <SEQ ID 8083> which encodes the amino acid sequence <SEQ ID 8084>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

40 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2725 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2808-

Example 2793

A DNA sequence (GASx1476) was identified in *S.pyogenes* <SEQ ID 8085> which encodes the amino acid sequence <SEQ ID 8086>. Analysis of this protein sequence reveals the following:

```
Possible site: 23

5

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1422(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2794

A DNA sequence (GASx1480R) was identified in *S.pyogenes* <SEQ ID 8087> which encodes the amino acid sequence <SEQ ID 8088>. Analysis of this protein sequence reveals the following:

30 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2795

A DNA sequence (GASx1489R) was identified in *S.pyogenes* <SEQ ID 8089> which encodes the amino acid sequence <SEQ ID 8090>. Analysis of this protein sequence reveals the following:

```
Possible site: 23

>>> Seems to have no N-terminal signal sequence

40

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2278(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

45
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2809-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2796

5

10

A DNA sequence (GASx1490R) was identified in *S.pyogenes* <SEQ ID 8091> which encodes the amino acid sequence <SEO ID 8092>:

SFITSVLAFRKLLKCEGIDLYLMYGDLMTCFEQLLTQLKDWTDVYFNYDESGYGRLRDQKAAQFFKKNGIAVHTYQDHYLHGSQEIINQSG QPYKVFTPYYRIWQNYPKETPIKVELSQGRWLNLETPDDVLRTVESFKDEKYQDVATFDEASKQLNRFIQDQLAAYHANRDFPAQLGTSRL SPFLRIGAIGIRTVYHAVRQAPNSLGQATFLKELAWRDFYNMVYVAYPDQKTQPIQKAFSQIEWVNNPDWFQLWKEGKTGYPIVDAAMLQL QKTGWMHNRLRMIVASFLTKDLLCDWRLGEQYFQQQLIDYDAASNIGGWQWAASTGTDAVPYFRIFNPVTQGKRFDPKGEFIKAYLPQLEH VPEKYLHEPWKMPKNLQESVSCIIGTDYPQPIVDHAKQREQAIAKYEWAKEKAKIE

Analysis of this protein sequence reveals the following:

```
Possible site: 33

>>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAA22361 GB:M94110 DNA photolyase [Bacillus firmus]
25
          Identities = 175/338 (51%), Positives = 228/338 (66%), Gaps = 6/338 (1%)
        Query: 145 EIINQSGQPYKVFTPYYRIWQNYPKETP--IKVELSQGRWLNLETPDDVLRTVES--FKD 200
                   +++ + G PYKVFTPYY+ W K TP IK ++ G
                                                               PD
         Sbjct: 2
                   OVLKKDGTPYKVFTPYYKAWAKERKRTPAVIKRDVLLGSVHKGTAPDREAETLFNNLIKK 61
30
        Query: 201 EKYQDVATFDE-ASKQLNRFIQDQLAAYHANRDFPAQLGTSRLSPFLRIGAIGIRTVY-H 258
                        A +E A K+L F + +L+ Y ANRDFP+ GTSRLSP+++ GA+ R++Y H
        Sbjct: 62 CSYDWSAIGEEHAIKRLQMFTKKRLSGYKANRDFPSITGTSRLSPYIKTGAVSSRSIYYH 121
35
        Query: 259 AVRQAPNSLGQATFLKELAWRDFYNMVYVAYPDQKTQPIQKAFSQIEWVNNPDWFQLWKE 318
                         +S
                               TFLKELAWRDFY MV+ PD K + I + + + W ++ D
        Sbjct: 122 ILNAEADSYSAETFLKELAWRDFYRMVHFYEPDCKDREIMEGYRELNWSHDODDLTSWKR 181
         Query: 319 GKTGYPIVDAAMLQLQKTGWMHNRLRMIVASFLTKDLLCDWRLGEQYFQQQLIDYDAASN 378
40
                   G+TG+PIVDA M QL GWMHNRLRMI ASFLTKDLL DWRLGE+YF++ LIDYD +SN
         Sbjct: 182 GETGFPIVDAGMRQLLNEGWMHNRLRMITASFLTKDLLIDWRLGERYFERMLIDYDPSSN 241
         Query: 379 IGGWQWAASTGTDAVPYFRIFNPVTQGKRFDPKGEFIKAYLPQLEHVPEKYLHEPWKMPK 438
                   IGGWQWAAS GTDAVPYFRIFNPVTQ KRFD G +I+ Y+P+L HVP+ Y+HEPWKM +
45
         Sbjct: 242 IGGWQWAASVGTDAVPYFRIFNPVTQSKRFDENGTYIRTYIPELNHVPDHYIHEPWKMSE 301
         Query: 439 NLQESVSCIIGTDYPQPIVDHAKQREQAIAKYEWAKEK 476
                          C + DYP PIVDH+KQR++A++ ++
         Sbjct: 302 EEQVKYKCRLDEDYPLPIVDHSKORKKALSFFKGDDEE 339
50
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2797

55

A DNA sequence (GASx1493R) was identified in *S.pyogenes* <SEQ ID 8093> which encodes the amino acid sequence <SEQ ID 8094>. Analysis of this protein sequence reveals the following:

-2810-

```
Possible site: 39

>>> Seems to have no N-terminal signal sequence

5

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2748(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

10 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2798

A DNA sequence (GASx1501R) was identified in *S.pyogenes* <SEQ ID 8095> which encodes the amino acid sequence <SEQ ID 8096>. Analysis of this protein sequence reveals the following:

```
Possible site: 31

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -7.27 Transmembrane 64 - 80 ( 53 - 83)

---- Final Results ----

bacterial membrane --- Certainty=0.3909(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC95443 GB:AF068901 YlmG [Streptococcus pneumoniae]

Identities = 35/81 (43%), Positives = 58/81 (71%)

Query: 1 MILLISILLELIKVYTYLLIAYALMSWFPGAYDSKIGRLISGIVEPILKPFRAFNLQFAG 60

MI ++ ++ + +Y+ +L+A+A+MSWFPGAY+S +GR I +V+P+L P + LQ AG

Sbjct: 1 MIFLIRMIYNAVDIYSLILVAFAVMSWFPGAYESSLGRWIVALVKPVLAPLQRLPLQIAG 60

Query: 61 LDFTIFVVIISLNFLAQVLVR 81

LD +++V I+ + FL + LVR

Sbjct: 61 LDLSVWVAIVLVRFLGENLVR 81
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2799

A DNA sequence (GASx1502) was identified in *S.pyogenes* <SEQ ID 8097> which encodes the amino acid sequence <SEQ ID 8098>. Analysis of this protein sequence reveals the following:

-2811-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2800

5

A DNA sequence (GASx1507) was identified in *S.pyogenes* <SEQ ID 8099> which encodes the amino acid sequence <SEQ ID 8100>. Analysis of this protein sequence reveals the following:

```
Possible site: 23

10

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0865 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

20 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2801

A DNA sequence (GASx1511R) was identified in *S.pyogenes* <SEQ ID 8101> which encodes the amino acid sequence <SEQ ID 8102>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

40 Example 2802

45

A DNA sequence (GASx1516R) was identified in *S.pyogenes* <SEQ ID 8103> which encodes the amino acid sequence <SEQ ID 8104>. Analysis of this protein sequence reveals the following:

```
Possible site: 42
>>> Seems to have no N-terminal signal sequence
```

-2812-

```
---- Final Results ----

bacterial cytoplasm --- Certainty=0.2729(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

25 Example 2803

5

A DNA sequence (GASx1517) was identified in *S.pyogenes* <SEQ ID 8105> which encodes the amino acid sequence <SEQ ID 8106>. Analysis of this protein sequence reveals the following:

```
Possible site: 46
30
        >>> Seems to have an uncleavable N-term signal seq
           INTEGRAL Likelihood = -6.32 Transmembrane 109 - 125 ( 106 - 126)
                    Likelihood = -5.26 Transmembrane 63 - 79 ( 61 - 81)
           INTEGRAL
           INTEGRAL Likelihood = -5.20 Transmembrane 154 - 170 (151 - 176)
           INTEGRAL Likelihood = -4.14 Transmembrane 189 - 205 ( 189 - 205)
35
           INTEGRAL Likelihood = -3.50 Transmembrane 130 - 146 ( 127 - 147)
           INTEGRAL
                    Likelihood = -2.92 Transmembrane 6 - 22 ( 1 - 24)
           INTEGRAL
                     Likelihood = -2.23 Transmembrane 83 - 99 ( 83 - 101)
        ---- Final Results ----
40
                      bacterial membrane --- Certainty=0.3527 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2813-

```
I++ H
Sbjct: 210 LIIIFSH 216
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2804

A DNA sequence (GASx1538R) was identified in *S.pyogenes* <SEQ ID 8107> which encodes the amino acid sequence <SEQ ID 8108>. Analysis of this protein sequence reveals the following:

```
Possible site: 15

10

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1186(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

20 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2805

A DNA sequence (GASx1539R) was identified in *S.pyogenes* <SEQ ID 8109> which encodes the amino acid sequence <SEQ ID 8110>. Analysis of this protein sequence reveals the following:

35 No corresponding DNA sequence was identified in *S.agalactiae*.

```
>GP:AAF31453 GB:AF221126 putative histidine kinase [Streptococcus pneumoniae]
         Identities = 141/301 (46%), Positives = 210/301 (68%), Gaps = 7/301 (2%)
40
                   MKRYPLLVQLISYVFVIVIALITTIGLLYYQTSSRNIRQLIERDTRQSIRQSSQFIDAYI 60
                   MKR LLV+++ +F++ + L+ +G YYQ+SS I IE +++ +I Q+S FI +YI
                  MKRSSLLVRMVISIFLVFLILLALVGTFYYQSSSSAIEATIEGNSQTTISQTSHFIQSYI 60
        Sbjct: 1
         Query: 61 KPLKETTSVLAKNTEIQAFASQIHQENDKQVLQLMKMVLATNSDLQAAVLVTKDGRTVST 120
45
                   K L+ T++ L + T++ A+A
                                         Q+ + + L
                                                       +L ++ DL+ VLVTK G+ +ST
         Sbjct: 61 KKLETTSTGLTQQTDVLAYAENPSQDKVEGIRDLFLTILKSDKDLKTVVLVTKSGQVIST 120
         Query: 121 NSQLTMKTSSDMMAEPWYKAAIDRQAMPILTPARQLSLSSKKEWVVSVTQEVVDRAGHNL 180
                    + + MKTSSDMMAE WY+ AI + AMP+LTPAR+
                                                          S +WV+SVTOE+VD G NL
         Sbjct: 121 DDSVQMKTSSDMMAEDWYQKAIHQGAMPVLTPARK----SDSQWVISVTQELVDAKGANL 176
50
         Query: 181 GVLRLDIAYPTIKASLDQLQLGRQGFAFIVNDKHEFVYHPKKSVYSSSKEMAAMKPYLAI 240
                    GVLRLDI+Y T++A L+OLOLG+OGFAFI+N+ HEFVYHP+ +VYSSS +M AMKPY+
```

-2814-

```
Sbjct: 177 GVLRLDISYETLEAYLNQLQLGQQGFAFIINENHEFVYHPQHTVYSSSSKMEAMKPYIDT 236

Query: 241 QNGYTKDKTSFVYQKLIPNSQWTLVGVASLDQLHRVQRQIFWSFSWNRASTLSDLWLCNCL 301

GYT S+V Q+ I + WT++GV+SL++L +V+ Q+ W+ ++++ L +C CL

5 Sbjct: 237 GQGYTPGHKSYVSQEKIAGTDWTVLGVSSLEKLDQVRSQLLWTL---LGASVTSLLVCLCL 294
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2806

A DNA sequence (GASx1542R) was identified in *S.pyogenes* <SEQ ID 8111> which encodes the amino acid sequence <SEQ ID 8112>. Analysis of this protein sequence reveals the following:

```
Possible site: 39

>>> May be a lipoprotein

----- Final Results -----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

40 Example 2807

A DNA sequence (GASx1543R) was identified in *S.pyogenes* <SEQ ID 8113> which encodes the amino acid sequence <SEQ ID 8114>. Analysis of this protein sequence reveals the following:

```
Possible site: 13
45
        >>> Seems to have a cleavable N-term signal seq.
           INTEGRAL Likelihood = -7.75 Transmembrane 171 - 187 ( 169 - 191)
                    Likelihood = -6.26 Transmembrane 205 - 221 ( 203 - 232)
           INTEGRAL
           INTEGRAL Likelihood = -5.73 Transmembrane 56 - 72 ( 54 - 81)
                     Likelihood = -5.36 Transmembrane 92 - 108 ( 91 - 113)
           INTEGRAL
50
                      Likelihood = -3.45 Transmembrane
                                                         20 - 36 ( 14 - 39)
           INTEGRAL
           INTEGRAL
                      Likelihood = -1.17 Transmembrane 147 - 163 ( 144 - 163)
        ---- Final Results ----
                       bacterial membrane --- Certainty=0.4100 (Affirmative) < succ>
55
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

-2815-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC23102 GB:U32823 cytochrome C-type biogenesis protein
5
                   [Haemophilus influenzae Rd]
         Identities = 106/224 (47%), Positives = 138/224 (61%), Gaps = 16/224 (7%)
                   VLMVSVFGAGLLSFFSPCIFPVLPVYLGILLDADDSKTITIFGKKLYWYGIVKTLAFIFG 65
        Query: 6
                   +L+ +VF AGL SF SPCIFP++P+Y GIL
                                                                    44 T FT G
10
        Sbjct: 6
                   LLIGTVFLAGLASFLSPCIFPIIPIYFGILSKG-----GKK----VLNTFLFILG 51
        Query: 66 LSTIFVILGYGAGFLGNILYAVWFRYLLGALVIILGIHQMGLITIKSLQFQKSLTFHNNK 125
                   LS FV LG+ GFLGNIL++ R + G +VIILGIHQ+G+ I L+ K +
        Sbjct: 52 LSLTFVSLGFSFGFLGNILFSNTTRIIAGVIVIILGIHQLGIFKIGLLERTKLVEIKTSG 111
15
        Ouery: 126 NRNGLFNAFILGLTFSFGWTPCVGPVLSSVLALVASGGNGAWQGGVLMIIYTLGLGIPFL 185
                       L AF+LGLTFS GWTPC+GP+L+SVLAL
                                                     G+ A G +M +Y LGL PF+
        Sbjct: 112 KSTAL-EAFVLGLTFSLGWTPCIGPILASVLALSGDEGS-ALYGASMMFVYVLGLATPFV 169
20
        Ouery: 186 LISFASGIVLKOFNKLKPHILLLKKVGGVLIIVMGILLMTGTLN 229
                   L SF S +LK+ L H+ K GG+LIIVMGILL+T
        Sbjct: 170 LFSFFSDSLLKRAKGLNKHLDKFKIGGGILIIVMGILLITNNFS 213
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2808

25

A DNA sequence (GASx1544) was identified in *S.pyogenes* <SEQ ID 8115> which encodes the amino acid sequence <SEQ ID 8116>. Analysis of this protein sequence reveals the following:

```
Possible site: 25

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1493 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

40 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2809

A DNA sequence (GASx1546R) was identified in *S.pyogenes* <SEQ ID 8117> which encodes the amino acid sequence <SEQ ID 8118>. Analysis of this protein sequence reveals the following:

```
Possible site: 46

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4658 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2816-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:BAB04061 GB:AP001508 unknown conserved protein in others
[Bacillus halodurans]

Identities = 48/89 (53%), Positives = 61/89 (67%)

Query: 1 MMVLVTYDVNTETPAGRKRLRHVAKLCVDYGQRVQNSVFECSVTPAEFVDIKHRLTQIID 60
M+VL+TYDV T + G KRLR VAK C +YGQRVQNSVFEC V + +K LT +ID

Sbjct: 1 MLVLITYDVQTSSMGGTKRLRKVAKACQNYGQRVQNSVFECIVDSTQLTSLKLELTSLID 60

Query: 61 EKTDSIRFYLLGKNWQRRVETLGRSDSYD 89
E+ DS+R Y LG N++ +VE +G S D

Sbjct: 61 EEKDSLRIYRLGNNYKTKVEHIGAKPSID 89
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2810

A DNA sequence (GASx1547R) was identified in *S.pyogenes* <SEQ ID 8119> which encodes the amino acid sequence <SEO ID 8120>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:BAB04060 GB:AP001508 unknown conserved protein in others
                    [Bacillus halodurans]
35
          Identities = 162/341 (47%), Positives = 231/341 (67%), Gaps = 1/341 (0%)
                  MKKILNTLYLTQEDFYVTKEGDNIVIKQEGKVLKRFPFRIIDGIVCFSYLGVSSALVKLC 60
                   MKKLLNTLY+TQ D Y++ +GDN+V+ +E + L R P
                                                          ++ IV F Y G S AL+ C
         Sbjct: 1 MKKLLNTLYVTQPDTYLSLDGDNVVLLKEQEKLGRLPLHNLEAIVGFGYT>FEATURESALMGYC 60
40
         Query: 61 TENQINLSFHTPQGRFCGRYIGSTNGNVLLRREHYRLSDRE-ESLEYAKRFILAKISNSR 119
                    E I+++F T GRF R +G + GNV+LR+ YR+S+ + ES + A+ FI K+ NS+
         Sbjct: 61 AERNISITFLTKNGRFLARVVGESRGNVVLRKTQYRISENDQESTKIARNFITGKVYNSK 120
45
         Ouery: 120 KYLLRFKRDHRQQIDTKLFEAVNDELIWALEMVQAADNKDSLRGIEGQAANQYFRIFNDL 179
                     L R R+H +++ + F+A + L ++ ++ D+ +SLRG EGQAA Y ++F+ +
         Sbjct: 121 WMLERMTREHPLRVNVEQFKATSQLLSVMMQEIRNCDSLESLRGWEGQAAINYNKVFDQM 180
         Query: 180 VLTDKKTFYFQGRSKRPPLDCVNALLSFGYSLLTFECQSALEAVGLDSYVGFFHTDRPGR 239
50
                   +L K+ F F GRS+RPP D VNA+LSF Y+LL + +ALE VGLD+YVGF H DRPGR
         Sbjct: 181 ILQQKEEFAFHGRSRRPPKDNVNAMLSFAYTLLANDVAAALETVGLDAYVGFMHQDRPGR 240
         Query: 240 ASLALDLVEEFRSYIVDRFVFSLINKGQLQKKHFEVKENGSILLTENGRAIFIDLWQKRK 299
                                                   F KENG++L+T+ R F+ WQ +K
                   ASLALDL+EE R
                                   DRFV SLIN+ ++
55
         Sbjct: 241 ASLALDIMEELRGLYADRFVLSLINRKEMTADGFYKKENGAVLMTDEARKTFLKAWQTKK 300
         Query: 300 HTEVEHPFTKEKVKLMLLPYVQAQLLAKAIRGDLESYPPFM 340
                     ++ HP+ EK+
                                  L+PYVOA LLA+ +RGDL+ YPPF+
         Sbjct: 301 QEKITHPYLGEKMSWGLVPYVQALLLARFLRGDLDEYPPFL 341
```

-2817-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2811

5 A DNA sequence (GASx1548R) was identified in *S.pyogenes* <SEQ ID 8121> which encodes the amino acid sequence <SEQ ID 8122>. Analysis of this protein sequence reveals the following:

```
Possible site: 49

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2247 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2812

A DNA sequence (GASx1549R) was identified in *S.pyogenes* <SEQ ID 8123> which encodes the amino acid sequence <SEQ ID 8124>. Analysis of this protein sequence reveals the following:

```
Possible site: 26

40 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1399 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:BAB04058 GB:AP001508 unknown conserved protein in others

[Bacillus halodurans]
Identities = 148/290 (51%), Positives = 190/290 (65%), Gaps = 19/290 (6%)

Query: 6 MLEHKIDFMVTLEVKEANANGDPLNGNMPRTDAKGYGVMSDVSIKRKIRNRLQDMGKSIF 65
```

-2818-

```
+L+HKIDF V L V +AN NGDPLNGN PR + G+G +SDV+IKRKIRNRL DM + IF
        Sbict: 3
                  ILDHKIDFAVILSVTKANPNGDPLNGNRPRONYDGHGEISDVAIKRKIRNRLLDMEEPIF 62
        Query: 66 VQANERIEDDFRSLEKRFSQH----FTAKTPDKEIEEKANAL---WFDVRAFGQVFTYLK 118
5
                   VQ+++R D F+SL R + K + ++E A
                                                              W DVR+FGOVF +
        Sbjct: 63 VQSDDRKADSFKSLRDRADSNPELAKMLKAKNASVDEFAKIACQEWMDVRSFGQVFAFKG 122
        Query: 119 K--SIGVRGPVSISMAKSLEPIVISSLQITRSTNGMEAKNNSGRSSDTMGTKHFVDYGVY 176
                     S+GVRGPVSI A S++PI I S QIT+S N + RSSDTMG KH VD+GVY
10
        Sbjct: 123 SNLSVGVRGPVSIHTATSIDPIDIVSTQITKSVNSVTGDK---RSSDTMGMKHRVDFGVY 179
        Query: 177 VLKGSINAYFAEKTGFSQEDAEAIKEVLVSLFENDASSARPEGSMRVCEVFWFTHSSKLG 236
                   V KGSIN AEKTGF+ EDAE IK L++LFEND+SSARP+GSM V +V+W+ HSSKLG
        Sbjct: 180 VFKGSINTQLAEKTGFTNEDAEKIKRALITLFENDSSSARPDGSMEVHKVYWWEHSSKLG 239
15
        Query: 237 NVSSARVFDLLEYHQSIEEKSTYDAYQIHLNQEKLAKYEAKGLTLEILEG 286
                     SSA+V L+
                                + ++D Y + L
                                                     YE GI +E+++G
        Sbjct: 240 QYSSAKVHRSLKIESKTDTPKSFDDYAVEL-----YELDGLGVEVIDG 282
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2813

A DNA sequence (GASx1550R) was identified in *S.pyogenes* <SEQ ID 8125> which encodes the amino acid sequence <SEQ ID 8126>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 43

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.2882(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:BAB04057 GB:AP001508 unknown [Bacillus halodurans]
         Identities = 176/671 (26%), Positives = 311/671 (46%), Gaps = 87/671 (12%)
                  MDFFTSLLKTYEKAELADLVDHQKR--NNEPVLLPIYHTSLKSNGKNIISVKLDKDGQFH 58
40
                  M + L +TYE A L + K+ + E LLPI HT+ ++
                                                              I V LD+DG F
        Sbjct: 1 MSWLLHLYETYE-ANLDQVGKTVKKGEDREYTLLPISHTTQNAH----IEVTLDEDGDFL 55
        Query: 59 KAEFMADKQMIIFPVTADSVARSGSHPAPHPLVDKFAYYSAEM----GQIQ-----YDS 108
                   +A+ + K+ + P T ++ +RSGS AP+PL DK +Y + +
                                                               G+I+
45
        Sbjct: 56 RAKALT-KESTLIPCTEEAASRSGSKVAPYPLHDKLSYVAGDFVKYGGKIKNQDDAPFDT 114
        Query: 109 FHKQLNNWID--YCEEGDVKKFLTFVQQFILKPEFLTLILDSLIGPDYQHNQLKVTFCDA 166
                   + K L W + Y E VK T++++ L + + L
                                                                  NO +
        Sbjct: 115 YIKNLGEWANSPYATE-KVKCIYTYLKKGRLIEDLVDAGVLKL----DENQQLIEKWEK 168
50
        Query: 167 TGKEKLIDLSACFLEFSIDQ-----FQGFKNESVSTF---KALHQSYISFVEANRENLG 217
                     +E L + A F + DQ
                                        F F ES+
                                                       K + S+ISF
        Sbjct: 169 RYEELLGEKPAIFSSGATDQASAFVRFNVFHPESIDDVWKDKEMFDSFISFYNDKLGEED 228
55
        Query: 218 ICNISGREEQLTDKH----RGLMGNAKIISVS-NKREAYKGRFREREDVFSVGYETSEKI 272
                   IC ++G
                            T++H R AK+IS + N ++GRF+ + + YE S+K
        Sbjct: 229 ICFVTGNRLPSTERHANKIRHAADKAKLISANDNSGFTFRGRFKTSREAVGISYEVSQKA 288
        Query: 273 HLMLKYLLENKNTSTWLGSSQYLINWFSDD-LTNDSRLDIVSPIFDDGLEEDDDDDTPPV 331
60
                  H LK+L+ ++ S + + W +D+ L + D V +
                                                                 E + D DT +
        Sbjct: 289 HNALKWLIHROSKSI---DDRVFLVWSNDNSLVPNPDEDAVDIMKHANRELERDPDTGQI 345
```

-2819-

```
Query: 332 ITLATEDNKRIGKSFIKGQKLFANDATY----YVAILNKTSNGRIALKYFRQLQASQLLT 387
                     A E K IG + +D Y ++ +L+ + GR+A+ Y+R L
        Sbjct: 346 F--AGEVKKAIGG------YRSDLNYQPEVHILVLDSATTGRMAVLYYRSLNKELYLN 395
 5
        Query: 388 NLNKWQETYSWESRSKFGKSRLRT----PTFHDILNVSYGVDRDRFLELDNDNFKSDOIO 443
                   L W ++ +WE R + + + P DI +YG
        Sbjct: 396 RLEAWHDSCAWEHRYRRDEKEFISFYGAPATKDIAFAAYGPRA-----SEKVIKDLME 448
10
        Ouery: 444 KLVASLIDGKPMPOSIVKKL---GNNVKERHRYRKHWYQVEQVCLAILHK---QMGEEFS 497
                  +++ ++DG+ +P+ IV+ +N R+ W + + A++ K + EE+
        Sbjct: 449 RMLPCIVDGRRVPKDIVRSAFQRASNPVSMERWE--WEKTLSITCALIRKMHIEQKEEWG 506
        Ouery: 498 PMLDHTNONRSYLFGRLLAIFELIETLRYGLDGNNNDRITNAERYWTAYTGOPTKLMMLL 557
15
                    LD ++ +RSYLFGRLLA+ +++E G G + R TNA RY +Y+ P +
        Sbjct: 507 VPLDKSSTDRSYLFGRLLAVADVLER---GALGKDETRATNAIRYMNSYSKNPGRTWKTI 563
        Ouery: 558 ENKIKPYEEPLKLNRRGSWMKLEKEKEEILELLNPLLETETMEKPLDYRFIFGYYAEKNY 617
                  + ++PY+
                           KL + ++ L K +EI + P +
                                                          PL +++ G+Y+++
20
        Sbjct: 564 QESLQPYQ--AKLGTKATY--LSKLVDEIGDQFEP---GDFNNNPLTEQYLLGFYSQRRE 616
        Query: 618 YYTKQNTEVTE 628
                   Y K+ E +
        Sbjct: 617 LYKKKEEETNQ 627
25
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2814

Possible site: 33

30

60

A DNA sequence (GASx1551R) was identified in *S.pyogenes* <SEQ ID 8127> which encodes the amino acid sequence <SEQ ID 8128>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3035(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

40 No corresponding DNA sequence was identified in *S.agalactiae*.

```
>GP:BAB04056 GB:AP001508 unknown [Bacillus halodurans]
         Identities = 90/218 (41%), Positives = 127/218 (57%), Gaps = 7/218 (3%)
45
        Query: 13 GQRALFTNPATKGGSERSSYSVPTRQALNGIVDAIYYKPTFTNIVTEVKVINQIQTELQG 72
                   G ALFT+P TK G E+ SYSVPT QAL GI ++IY+KPT ++ E++V+ IQ E +G
        Sbjct: 11 GDYALFTDPLTKIGGEKLSYSVPTYQALKGIAESIYWKPTIVFVIDELRVMKPIQMESKG 70
        Ouery: 73 VRALLHDYSADLSYVSYLSDVVYLIKFHFVWNEDRKDLNSDRLPAKHEAIMERSIRKGGR 132
50
                             L++ +YL DV Y +K HF +N R DL DR KH +I++RS++ GGR
                   VR + +
        Sbjct: 71 VRPIEYGGGNTLAHYTYLKDVHYQVKAHFEFNLHRPDLAFDRNEGKHYSILQRSLKAGGR 130
        Query: 133 RDVFLGTRECLGLVDDISQEEYETTVSYYNGV-NIDLGIMFHSFAYPKDK-KTPLKSYFT 190
                   RD+FLG REC G V
                                  + E+ + +Y+G
                                                      LG M H F YP + L
55
        Sbjct: 131 RDIFLGARECQGYV---APCEFGSGDGFYDGQGKYHLGTMVHGFNYPDETGQHQLDVRLW 187
        Query: 191 KTVMKNGVITFKAQSECDIVNTLSSYAFKA--PEEIKS 226
                     VM+NG I F
                                +C IV + K P+ ++S
        Sbjct: 188 SAVMENGYIQFPRPEDCPIVRPVKEMEPKIFNPDNVQS 225
```

-2820-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2815

5

A DNA sequence (GASx1552R) was identified in *S.pyogenes* <SEQ ID 8129> which encodes the amino acid sequence <SEQ ID 8130>. Analysis of this protein sequence reveals the following:

```
Possible site: 53

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2770 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:BAB04055 GB:AP001508 unknown conserved protein in others
                   [Bacillus halodurans]
         Identities = 252/836 (30%), Positives = 404/836 (48%), Gaps = 90/836 (10%)
20
                   MILAHYDCKKDKKQSLDEHLWHVACSSRQEASIIGQGDVLFLIGLYHDLGKADRTFQD-- 60
                               Q+L EHL V C +
                                              + + V L GL HDLGK
                   MYIAHIREVDKVIQTLKEHLCGVQCLAETFGAKLRLQHVAGLAGLLHDLGKYTNEFKDYI 60
        Sbjct: 1
25
        Query: 61 -----KLLNNPNRHVDHSYAGAKYLCSIIGPHLKNRGVDKNERMTFNEMVGYVISAHH 113
                                  VDHS AG + L +
                                                  L +R
                                                          +E++ E+VG I +HH
        Sbjct: 61 YKAVFEPELAEKKRGQVDHSTAGGRLLYQM----LHDRENSFHEKL-LAEVVGNAIISHH 115
        Query: 114 GMYDLCYYFDDAEYYGFNKFKNRINRDLDGYHYHEDIKGYALKLEKKLCDYGYK-DLREL 172
30
                              +Y
                                       N + R L +
                                                  +++ Y +E+ + ++L
        Sbjct: 116 SNLQ------DYISPTIESNFLTRVLE----KELPEYESAVERFFQEVMTEAELARY 162
        Ouery: 173 IDKAFDNYQQAMSSLNWQDKSEWDYYQSCMVRLYLSLLKNADILDTVNAYGLKISPMDKT 232
                                         Y SC++
                                                        +AD +T + +
                   + KA D +O + O
35
        Sbjct: 163 VAKAVDEIKOFTDNSPTQSFFLTKYIFSCLI------DADRTNT-RMFDEQAREEEPT 213
         Query: 233 ERSFLKHSYLAAIEQKYASFGQPNNQ---LNTIRTEIAERVKERGKRDSKGIYRLDLPTG 289
                                  AS + ++
                                              +N +R+ ++E+ +
                                                               R S GIY L +PTG
                         Υ +
         Sbjct: 214 QPQQLFEHYHQQLLNHLASLKESDSAQKPINVLRSAMSEQCESFAMRPS-GIYTLSIPTG 272
40
         Query: 290 AGKTNLSMRYAFHQLVHHDKSRFFYITPFLSVLEQNASEIRKVTGD-LGVLEHHSNVVKQ 348
                    GKT S+RYA
                                   ++K R YI PF +++EQNA E+R + GD +LEHHSNVV+
         Sbjct: 273 GGKTLASLRYALKHAQEYNKQRIIYIVPFTTIIEQNAQEVRNILGDDENILEHHSNVVED 332
45
         Query: 349 ANEDDDDKDSLLSA----YLSDSWDSQVVLTSMVQFFQTLFKTKSANLRRFSSLINSVV 403
                   + D+ +D +++ D+WD ++ T++VQF + + N RR +L +SV+
         Sbjct: 333 SENGDEQEDGVITKKERLRLARDNWDRPIIFTTLVQFLNVFYAKGNRNTRRLHNLSHSVL 392
         Ouery: 404 ILDEVQSLPIEVTTLFNLTMNFLNKVMDTTIVLCTATQPAYDSSEIDHRICYGGNLGELA 463
50
                   I DEVQ +P + +LFN +NFL +
                                              +I+LCTATQP ++ + H +
         Sbjct: 393 IFDEVQKVPTKCVSLFNEALNFLKEFAHCSILLCTATQPTLEN--VKHSLLKDRD----G 446
         Query: 464 EIVELTIEEKQIFSRTELRKFDDSDQKVHLTDVINLILGEE---NSVLAIFNTKKTVHNC 520
                   ETV+
                          E + F R E+ D +DQ +
                                                + + E
                                                              S L I NTKK V +
         Sbjct: 447 EIVQNLTEVSEAFKRVEI--LDKTDQPMTNERLAEWVRDEAPSWGSTLIILNTKKVVKDL 504
55
         Query: 521 YTMLKDMTDRPVYQLSTNMCAQHRLDLIAKIKTELQNNIPIICISTQLIEAGVDVDFHRV 580
                             PV+ LST+MCA HR D + +I+ L+ P IC++TQLIEAGVDV F V
         Sbjct: 505 YEKLEG-GPLPVFHLSTSMCAAHRKDQLDEIRALLKEGTPFICVTTQLIEAGVDVSFKCV 563
60
         Ouery: 581 IRSYSGIDSIVQAAGRCNREGKRDKGQVTLVNLTNEEENISRLTEIKTKKEATESILHKI 640
```

-2821-

```
TRS +G+DSI OAAGRCNR G+
                                           V +++ + EE +S+L EI+ +E ++L +
        Sbjct: 564 IRSLAGLDSIAQAAGRCNRHGEEOLQYVYVID--HAEETLSKLKEIEVGOEIAGNVLARF 621
        Query: 641 GSPIDISTLN-----RDFFEYYYANNQGLMDYPLED----NLSIYDYLSLNIYQTAN 688
 5
                      + N R++F YYY+ ++Y +++ + + N Y T
        Sbjct: 622 KKKAEKYEGNLLSQAAMREYFRYYYSKMDANLNYFVKEVDKDMTKLLMSHAVENSYVTYY 681
        Ouery: 689 KKFKGK----LKQAFKTAGAKMNLINNDMIGILVPYGEAEKKLAYLEELGVSHFLSAKD 743
                          L ++KTA +I+ + +VPYGE + +A L
                  +K G
10
        Sbjct: 682 QKNTGTHFPLLLNGSYKTAADHFRVIDQNTTSAIVPYGEGQDIIAQLN-----SGEW 733
        Query: 744 YQTIKSLLKELQPFTVNV--RENDPLFE--TTKSYLNGQILVLTSEYYDTERGVKY 795
                     + +LK+ O +TVN+ +E D L + +L+G + L +Y + GV +
        Sbjct: 734 VDDLSKVLKKAQQYTVNLYSQEIDQLKKEGAIVMHLDGMVYELKESWYSHQYGVDF 789
15
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2816

A DNA sequence (GASx1558) was identified in *S.pyogenes* <SEQ ID 8131> which encodes the amino acid sequence <SEQ ID 8132>. Analysis of this protein sequence reveals the following:

```
Possible site: 16

>>> Seems to have no N-terminal signal sequence

25

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1050(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

30 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2817

A DNA sequence (GASx1563) was identified in *S.pyogenes* <SEQ ID 8133> which encodes the amino acid sequence <SEQ ID 8134>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1872(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

45
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2822-

Example 2818

A DNA sequence (GASx1564R) was identified in *S.pyogenes* <SEQ ID 8135> which encodes the amino acid sequence <SEQ ID 8136>. Analysis of this protein sequence reveals the following:

```
Possible site: 32

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2173 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2819

A DNA sequence (GASx1566R) was identified in *S.pyogenes* <SEQ ID 8137> which encodes the amino acid sequence <SEQ ID 8138>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 43

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3486 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2820

30

A DNA sequence (GASx1568) was identified in *S.pyogenes* <SEQ ID 8139> which encodes the amino acid sequence <SEQ ID 8140>. Analysis of this protein sequence reveals the following:

```
Possible site: 26

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2711(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2823-

Example 2821

A DNA sequence (GASx1569) was identified in *S.pyogenes* <SEQ ID 8141> which encodes the amino acid sequence <SEQ ID 8142>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2822

A DNA sequence (GASx1576R) was identified in *S.pyogenes* <SEQ ID 8143> which encodes the amino acid sequence <SEQ ID 8144>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 28

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4042(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

30 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2823

35

A DNA sequence (GASx1577R) was identified in *S.pyogenes* <SEQ ID 8145> which encodes the amino acid sequence <SEQ ID 8146>. Analysis of this protein sequence reveals the following:

```
Possible site: 21

>>> Seems to have no N-terminal signal sequence

40

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3342(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

45 No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:BAB04515 GB:AP001509 unknown [Bacillus halodurans]
Identities = 36/104 (34%), Positives = 55/104 (52%)
```

-2824-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2824

25

A DNA sequence (GASx1578R) was identified in *S.pyogenes* <SEQ ID 8147> which encodes the amino acid sequence <SEQ ID 8148>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> May be a lipoprotein

----- Final Results -----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:BAB04515 GB:AP001509 unknown [Bacillus halodurans]
         Identities = 134/346 (38%), Positives = 206/346 (58%), Gaps = 10/346 (2%)
         Query: 21 AACESKSASKDSDVKLLMYQVGDKPDNFDELMTIANKRIKEKTGATVDLQYIGWGDWDDK 80
30
                   +A E+++
                             D VL Y+G
                                             + + +M N
                                                         +EK ATVDL+ + WG++D++
         Sbjct: 42 SAMETEATDLDH-VTLTWYMIGTPQPDLELVMEEVNAYTEEKINATVDLRMLDWGEYDER 100
        Query: 81 MSTIIASGENYDIAF----ANNYVVNAQKGAFADLTTLMPKYAKKTYKNLDPAYIKGNTI 136
                   M I SGE YDIAF
                                      ANNY +NA++GAF +L L+ ++ ++ + +DPA+++G +
35
         Sbjct: 101 MOVITTSGEAYDIAFTSSWANNYALNARRGAFLELNDLLDEHGQEMKELIDPAFLEGAQV 160
         Query: 137 DGKLYAFPVDANVYAQQMLSFNKELVDKYGLDISNIKSYADAENVLKQFHEKEPNTAAFA 196
                   DGKLYA P + V Q +LSFN ELV+K+ LD+S++ S AD E +L
                                                                    E+E +
         Sbjct: 161 DGKLYAVPTNKEVGQQAVLSFNNELVEKHNLDLSSVHSLADLEPLLAVIKEEESDVTPIA 220
40
         Query: 197 IGQVFSMSGDYDYPLTKTQPFAVKIDEGKPTIINQYEDESFKNNLRLMHKWYKEGLIPTD 256
                             +D L + PFA +++
                                                  +IN+YE++
                                                              T+ MH +YK+G I D
         Sbjct: 221 ---TFDAYLPFDSILQEEMPFAFRLEGNTNEVINKYEEDITMETLKTMHDYYKKGYIRPD 277
45
         Query: 257 AATNTEGYPLEGNTWFMREETQGPMDYGDTILTNAAGKDIVSRPLTKPLKTTSQAQMANF 316
                                WF+R+E P Y + I T AG +I +RPL +P
                   AAT+T+ +PLE
         Sbjct: 278 AATSTDSWPLETPNWFVRKELYQP--YAELIWTRTAGYEIATRPLHEPYIFNNSVTGSMQ 335
         Query: 317 VVSSVSKNKEKAVEVLSLLNSDPELLNGLVYGVEGKAWEKIGDKKI 362
50
                     +S+ SKN E+A+ L+LLNSDP L N L G+EG +E++ D
         Sbjct: 336 AISATSKNPERAMMFLNLLNSDPYLRNLLDKGIEGVHYEELEDGTI 381
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2825-

Example 2825

A DNA sequence (GASx1582) was identified in *S.pyogenes* <SEQ ID 8149> which encodes the amino acid sequence <SEQ ID 8150>. Analysis of this protein sequence reveals the following:

```
Possible site: 34

5

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0454(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2826

30

A DNA sequence (GASx1584R) was identified in *S.pyogenes* <SEQ ID 8151> which encodes the amino acid sequence <SEQ ID 8152>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 41

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3105(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

RGD motif: 3-5
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:AAG21428 GB:AF307332 meningioma-expressed antigen 5s splice
                   variant [Homo sapiens]
         Identities = 94/271 (34%), Positives = 148/271 (53%), Gaps = 14/271 (5%)
35
        Query: 120 GIIEGFYGTPWTREERLDCLRFIGNKRMNTYMYAPKDDDYQRKLWRDLYPEDWVTYFKEL 179
                   G++EGFYG PW E+R + R +
                                             +NTY+YAPKDD
                                                          R WR++Y +
        Sbjct: 63 GVVEGFYGRPWVMEQRKELFRRLQKWELNTYLYAPKDDYKHRMFWREMYSVEEAEQLMTL 122
40
        Query: 180 LAVAKEEGLDFWYMISPGLDFDYTKEADYQLLYQKLQQLLALGVCHFGLLLDDIDYQIVD 239
                                                               F LL DDID+ +
                   ++ A+E ++F Y ISPGLD ++ + L +KL Q+
                                                           G
        Sbjct: 123 ISAAREYEIEFIYAISPGLDITFSNPKEVSTLKRKLDQVSQFGCRSFALLFDDIDHNMCA 182
        Query: 240 AVERRFKKTAYAQAHLATEVHHFLNQQHAAPELVICPTE-----YDNHHDSIYLQELSE 293
45
                           A+AQ + E++ +L +
                                                   + CPTE
                                                             YN
                   A + F
        Sbjct: 183 ADKEVFSSFAHAQVSITNEIYQYLGEPET---FLFCPTEYCGTFCYPNVSQSPYLRTVGE 239
        Query: 294 RIPKEVAFFWTGPSTLASQISQADIETMAAVYQRPIIIWDNIPVNDYQKDPERLFLTPFA 353
                                         IE ++ + +R +IWDNI NDY D +RLFL P+
                          WTGP ++ +I
50
        Sbjct: 240 KLLPGIEVLWTGPKVVSKEIPVESIEEVSKIIKRAPVIWDNIHANDY--DQKRLFLGPYK 297
        Query: 354 NRSPFLCQPDYQVKGIVSNPMISWELSKLTL 384
                             ++KG+++NP +E + + +
        Sbict: 298 GRSTELIP---RLKGVLTNPNCEFEANYVAI 325
55
```

-2826-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2827

5

A DNA sequence (GASx1585R) was identified in *S.pyogenes* <SEQ ID 8153> which encodes the amino acid sequence <SEQ ID 8154>. Analysis of this protein sequence reveals the following:

```
Possible site: 24

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4469(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2828

Possible site: 47

A DNA sequence (GASx1587) was identified in *S.pyogenes* <SEQ ID 8155> which encodes the amino acid sequence <SEQ ID 8156>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3082(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:BAB04509 GB:AP001509 unknown conserved protein in others
                   [Bacillus halodurans]
35
         Identities = 221/425 (52%), Positives = 296/425 (69%), Gaps = 4/425 (0%)
        Query: 12 RPIPTSVSQFMAKVESLCGDQHPDWALNFKTSFTNTLETTLKTYEDGTSFLLTGDIPAMW 71
                   + IP S+ +A+V++ D L F+ F NT TT++ E GT F++TGDIPAMW
        Sbjct: 4 KKIPRSLQAIIAQVKAHYADDQELQTL-FEQCFLNTYLTTIQEDEQGT-FVVTGDIPAMW 61
40
        Query: 72 LRDSTAQMKPYLFLAKEDEEIRKIIAGLVKRQFRYICIDPYANAFNEEANEKGHQTDHTQ 131
                   LRDS+AQ++PYL + KED ++ ++I G+++RQ+RYI DPYANAFN+ AN++GHQ D T+
        Sbjct: 62 LRDSSAQVRPYLTVVKEDADMARMIKGVIERQWRYILHDPYANAFNQTANKQGHQQDRTE 121
45
        Query: 132 MNPWIWERKYEIDCLCYPIQLAYLLYRETGSTDQFNDDFHRGVELILDLWTVEQDH-AQS 190
                   M+P +WERKYE+D LCYPIOLAYL ++ TG + +E I +W +EODH A+S
        Sbjct: 122 MSPLVWERKYELDSLCYPIQLAYLYWKATGDDSVLQPTLKQVLETIYRIWKIEQDHEAKS 181
        Query: 191 PYLFERDTWRKEDTLTHAGKGSPVAPTGMTWSGFRPSDDACQYGYLIPSNMFAVVVLSYL 250
50
                    Y FERD R DTL GKG
                                         PTGMTWSGFRPSDDAC YGYLIP+NMFAVVV +Y
        Sbjct: 182 SYSFERDDCRVSDTLLRKGKGGYSVPTGMTWSGFRPSDDACLYGYLIPANMFAVVVSNYA 241
        Query: 251 EDLYNNLFHNEPVATRAKQLKEAIQSGIADHALVQNSKGETIYAYEVDGLGQFSIMDDAN 310
                               +A ++L+ I+ GI + + +
                                                          IY YE DG G+ ++MDDAN
                    +L
```

-2827-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2829

A DNA sequence (GASx1588) was identified in *S.pyogenes* <SEQ ID 8157> which encodes the amino acid sequence <SEQ ID 8158>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 21

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.5250 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

30 The protein has homology with the following sequences in the GENPEPT database:

```
>GP:BAB04508 GB:AP001509 unknown conserved protein in others
                   (divided) [Bacillus halodurans]
         Identities = 312/737 (42%), Positives = 426/737 (57%), Gaps = 21/737 (2%)
35
        Query: 123 FPDTFGNMGQTPQLMLKAGLQAAAFGRGIRPTGFNNQVDTSEKYSSQFSEISWQGPDNSR 182
                   FPDTFG GQ PQL+ +AG++AA FGRG+ PTGFNNQV
                                                          + YSS FSE+ W+ PD S+
        Sbjct: 4 FPDTFGIYGOAPOLLAOAGIRAAVFGRGVTPTGFNNOVOHDD-YSSPFSELIWEAPDGSO 62
        Query: 183 ILGLLFANWYSNGNEIPTTEAEARLFWDKKLADAERFASTKHLLMMNGCDHQPVQLDVTK 242
40
                   ++G+L ANWYSNGNEIPT E EA+ FW KKL DAERFAST LL MNGCDHQPVQ DVT+
        Sbjct: 63 VIGILLANWYSNGNEIPTDEDEAQTFWVKKLRDAERFASTSQLLFMNGCDHQPVQKDVTQ 122
        Query: 243 AIALANQLYPDYEFVHSCFEDYLADLADDLPENLSTVQGEITSQETDGWYTLANTASARI 302
                   AI +A L+PD F HS F DYL + ++LP+ L + GE+ +O+TDGW TL NTASARI
45
        Sbjct: 123 AIKVAETLFPDVAFKHSNFHDYLTQIKEELPKELQKITGELRNQKTDGWSTLVNTASARI 182
        Query: 303 YLKQANTRVSRQLENITEPLAAMAYEVTSTYPHDQLRYAWKTLMQNHPHDSICGCSVDSV 362
                   YLKQAN R
                               L N+ EP+ +
                                              + D Y WK LM+NHPHDSICGCS+D+V
        Sbjct: 183 YLKQANDRCQTLLTNVLEPMCLLV--ENKSLHRDFSEYYWKLLMENHPHDSICGCSIDAV 240
50
        Query: 363 HREMMTRFEKAYEVGHYLAKEAAKQIADAIDTRDFPMDSQPFVLFNTSGHSKTSVAELSL 422
                   HREM TRFEK
                                      E K+IA I+T
                                                       ++ P V+ T+G S
        Sbjct: 241 HREMKTRFEKVEAGATTFIAEQGKEIAAQINTLHDSEEAIPLVVLKINGTSGKRVVRHKV 300
55
        Query: 423 TWKKYHFGQRFPKEVYQEAQEYLARLSQSFQIIDTSGQVRPEAEILGTSIAFDYDLPKRS 482
                     KK +F +
                                 ++
                                     + L +
                                                 ++ +
        Sbjct: 301 AMKKIYFDEM----DFRHIPDRLKEIVMPTYRLEFPNKGSVPIEVQDAGVRFGYDLPRDG 356
        Query: 483 FREPYFAIKVRLRLPITLPAMSWKTLALKLG-----NETTPSETVSLYDDSNQCLENGF 536
60
                   FR PY+A
                               L+T S L+G
                                                        + T +
                                                                 + DS
```

Sbjct: 357 FRRPYYA----RELEVTFSYDSDLYLGYECGFLVPVEEKQTEARKELIGDPSMNTLENEA 412

PCT/GB01/04789

-2828-

```
Ouery: 537 LKVMIOTDGRLTITDKOSGLIYQDLLRFEDCGDIGNEYISRQPNHDQPFYADQGTIKLNI 596
                   +KVMI +G +I DK +G Y+ L +ED GDIGNEY+ + + + +
        Sbjct: 413 MKVMIHRNGSYSILDKTTGFEYRHLGIYEDVGDIGNEYMFKASSDGVRYTTEACEASIRI 472
5
        Query: 597 ISNTAQVAELEIQQTFAIPISADKLLQAEMEAVIDITERQARRSQEKAELTLTTLIRMEK 656
                   I N + A +EI OT ++P +AD+ L+ E E ++ +R+A RS+E+ ++TL T + +E+
        Sbjct: 473 IENNSLCATVEICOTLSVPAAADERLKEEOERLVWHPDRKAGRSKERTDITLRTELTLEQ 532
10
        Query: 657 NNPRLOFTTRFDNQMTNHRLRVLFPTHLKTDHHLADSIFETVKRPNHPDATFWKNPSNPQ 716
                            DN +HR+R LFP +H ADSI+E V+RPN PD W+NP+
        Sbjct: 533 GAKGLKVNVNIDNTAKDHRMRALFPVERARGNHYADSIYEIVERPNTPDPK-WQNPAFDH 591
        Ouery: 717 HOECFVSLFDGENGVTIGNYGLNEYEILPDTNTIAITLLRSVGEMGDWGYFPTPEAQCLG 776
15
                   H + VSL +GE G+TI GL+EYEI+ D +IA+TLLRSVGE+GDWG F TPEAQC G
        Sbjct: 592 HMQRLVSLDNGEYGLTIATKGLHEYEIVSD--SIAVTLLRSVGELGDWGLFETPEAQCFG 649
        Ouery: 777 KHSLSYSFESITKQTQFAS-YWRAQEGQVPVITTQTNQHEGTLAAEYSYLTGTNDQVALT 835
                                  A+ Y A + V QT Q G L
20
        Sbjct: 650 QNEAQFVLLPHKGDVLSANVYVAAYDDPVEPTVIQTEQSMGPLPHATNLFQWSGEGLVLT 709
        Query: 836 AFKRRLADNALITRSYN 852
                           +T R +N
                   AK +
        Sbjct: 710 ACKPTMDGRGMILRWFN 726
25
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2830

30

A DNA sequence (GASx1589R) was identified in S.pyogenes <SEQ ID 8159> which encodes the amino acid sequence <SEQ ID 8160>. Analysis of this protein sequence reveals the following:

```
Possible site: 31
```

```
>>> Seems to have a cleavable N-term signal seq.
                    Likelihood =-11.30 Transmembrane 203 - 219 ( 195 - 221)
35
           INTEGRAL Likelihood = -8.17 Transmembrane 61 - 77 ( 59 - 82)
           INTEGRAL Likelihood = -3.98 Transmembrane 107 - 123 ( 107 - 124)
           INTEGRAL Likelihood = -3.40 Transmembrane 39 - 55 ( 38 - 58)
           INTEGRAL
                    Likelihood = -2.34 Transmembrane 129 - 145 ( 126 - 145)
           INTEGRAL
                    Likelihood = -2.07 Transmembrane 89 - 105 ( 87 - 105)
40
        ---- Final Results ----
                      bacterial membrane --- Certainty=0.5522 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
45
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:CAC10175 GB:AJ278302 histidine kinase [Streptococcus pneumoniae]
         Identities = 114/432 (26%), Positives = 219/432 (50%), Gaps = 10/432 (2%)
50
        Ouerv: 21 LTLKLFSFVSAIPLRLKNIFYLSLSMVLFOVVFWAFFPDHFILDVVMLAOF---LFFALI 77
                   L++F V IL+IF L+L VVF
                                                        +++ V L+ F L+
        Sbjct: 16 LKIVIFFKVDGISLTFERIFKAFLFKILLAVVFGML---GYMVGNVYLSYFMEPLYGIGL 72
55
        Ouery: 78 ALYYGKSIKAKFLMFYAFFPLVSISLVKRFIVFFVMPLFGMPYSVVKHNTLLIYSITCFS 137
                       + + K L+FY FP++ ++L R + +FV+P G V + +
        Sbjct: 73 SFLLRELPKKLLLFYGLFPMILVNLFYRGVSYFVLPFLGQG-QVYDDYSFIWLCIIIFN 131
        Query: 138 IFLIYRCIQVFHFDFSTWRQYFQSHRASKLLVFTNSSMALYYLCVQGIDVMSPSLSGLAT 197
60
                             +DF++ R+ K L N M YYL +Q +
        Sbjct: 132 FFISLAFLKWLDYDFTSLRKGILDKDFOKSLTOINWIMGAYYLVIQNLSYFEYE-QGIQS 190
```

-2829-

```
Query: 198 TTARSIIVLFYFILFLTLLIHLERYVKQNSIEAIVQQKE--YRELINYSQHLGLLYQDIQ 255
                  TT R +I++FY + F+ ++ L+ Y+K E + Q+++ YRE+ YS+H+ LY++++
        Sbjct: 191 TTVRHLILVFYLLFFMGIIKKLDTYLKDKLHERLNQEQDLRYREMERYSRHIEELYKEVR 250
5
        Query: 256 ELRRLLTTVSSRLKIGIEONDISIVRLTYEGILNAEKNNAKDDRLDLTCLDKLQVEAIRH 315
                       T + + L++GIE+ D+ ++ Y+ +L +D++ DL L ++ A++
        Sbjct: 251 SFRHDYTNLLTSLRIGIEEEDMEQIKEIYDSVLKDSSEKLQDNKYDLGRLVNVRDRALKS 310
10
        Query: 316 IVLAKLIEAKNKKLKVEVSIPNCIATFFLEVVDFTKLLSFLLDNAIEMSLETKQPCLSIA 375
                   ++ K I+A++K + V +P I + ++DF ++S L DNAIE S+E QP +SIA
        Sbjct: 311 LLAGKFIKARDKNIVFNVEVPEEIQVEGVSLLDFLTVVSILCDNAIEASVEACQPHVSIA 370
        Ouery: 376 FLDONHKLVIVIOSSTKOGODDSOSVFAIPALKKRDDWOFDLRNVTTILNRYDYLTISSQ 435
15
                      + +I++S K+ D +F+ A K ++
                                                        L V I+ +
        Sbjct: 371 FFKNGAQETFIIENSIKEEGIDISEIFSFGASSKGEERGVGLYTVMKIVESHPNTSLNTT 430
        Query: 436 IHDGILTQLIEI 447
                     D + Q++ +
20
        Sbjct: 431 CQDHVFRQVLTV 442
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2831

Possible site: 25

A DNA sequence (GASx1593R) was identified in *S.pyogenes* <SEQ ID 8161> which encodes the amino acid sequence <SEQ ID 8162>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have an uncleavable N-term signal seq
INTEGRAL Likelihood = -1.28 Transmembrane 2 - 18 ( 1 - 18)

---- Final Results ----
bacterial membrane --- Certainty=0.1510(Affirmative) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2832

A DNA sequence (GASx1594) was identified in *S.pyogenes* <SEQ ID 8163> which encodes the amino acid sequence <SEQ ID 8164>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

-2830-

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

15 Example 2833

A DNA sequence (GASx1598) was identified in *S.pyogenes* <SEQ ID 8165> which encodes the amino acid sequence <SEQ ID 8166>. Analysis of this protein sequence reveals the following:

```
Possible site: 14

20 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2117(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2834

30

A DNA sequence (GASx1608) was identified in *S.pyogenes* <SEQ ID 8167> which encodes the amino acid sequence <SEQ ID 8168>. Analysis of this protein sequence reveals the following:

```
Possible site: 16

35

>>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2831-

Example 2835

A DNA sequence (GASx1619) was identified in *S.pyogenes* <SEQ ID 8169> which encodes the amino acid sequence <SEQ ID 8170>. Analysis of this protein sequence reveals the following:

```
Possible site: 36

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2916(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2836

A DNA sequence (GASx1621) was identified in *S.pyogenes* <SEQ ID 8171> which encodes the amino acid sequence <SEQ ID 8172>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 33

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1899(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

30 The protein has homology with the following sequences in the GENPEPT database:

```
alpha subunit [Escherichia coli]
          Identities = 110/211 (52%), Positives = 153/211 (72%)
                   KEITIKEAVAHVKDGDTIMVGGFMTNGTPEKLIDALVEKGVKDLTLICNDAGFPDKGVGK 66
35
                               +DG TIMVGGFM GTP +L++AL+E GV+DLTLI ND F D G+G
                   K + T + + A
         Sbjct: 4
                   KLMTLODATGFFRDGMTIMVGGFMGIGTPSRLVEALLESGVRDLTLIANDTAFVDTGIGP 63
         Query: 67 MVANKQFSTIIASHIGLNREAGRQMTEGETVIDLVPQGTLAERIRSGGFGLGGFLTPTGI 126
                            +IASHIG N E GR+M GE + LVPQGTL E+IR GG GLGGFLTPTG+
40
         Sbjct: 64 LIVNGRVRKVIASHIGTNPETGRRMISGEMDVVLVPQGTLIEQIRCGGAGLGGFLTPTGV 123
         Query: 127 GTEVAKGKEVITIDGKDYLLEKPLKADVALIFANKADKNGNLQYAGSENNFNHVMAANAK 186
                    GT V +GK+ +T+DGK +LLE+PL+AD+ALI A++ D GNL Y S NFN ++A A
         Sbjct: 124 GTVVEEGKQTLTLDGKTWLLERPLRADLALIRAHRCDTLGNLTYQLSARNFNPLIALAAD 183
45
         Query: 187 TTIVEAREIVDVGQMDPNFVHTPGIFVNYLV 217
                     T+VE E+V+ G++ P+ + TPG +++++
         Sbjct: 184 ITLVEPDELVETGELQPDHIVTPGAVIDHII 214
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

PCT/GB01/04789

-2832-

Example 2837

A DNA sequence (GASx1622) was identified in S.pvogenes <SEO ID 8173> which encodes the amino acid sequence <SEQ ID 8174>. Analysis of this protein sequence reveals the following:

```
Possible site: 44
 5
         >>> Seems to have no N-terminal signal sequence
         ---- Final Results ----
                       bacterial cytoplasm --- Certainty=0.4668 (Affirmative) < succ>
10
                        bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
                         bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
15
         >GP:AAD54948 GB:AF157306 acetoacetate:butyrate/acetate coenzyme A
                    transferase [Clostridium beijerinckii]
          Identities = 121/214 (56%), Positives = 161/214 (74%), Gaps = 5/214 (2%)
                   VLSKEEIQTRIAKRVAQELEHNTLVNLGIGLPTKVANYIPEGVTITLQSENGFVGLTGLT 66
         Query: 7
20
                              AKRVA+EL+ LVNLGIGLPT VANY+P+ + IT +SENG VG+
                   VILLER T
         Sbjct: 6 VLAKEII----AKRVAKELKKGQLVNLGIGLPTLVANYVPKEMNITFESENGMVGMAQMA 61
         Ouery: 67 DD-HYDPTIVNAGGQPVSIAPGGAFFDSSTSFGIIRGGHVAATVLGALQVDKEASIANYL 125
                         DP I+NAGG+ V++ P GAFFDSSTSF +IRGGHV
                                                             VLGAL+VD+E ++AN++
25
         Sbjct: 62 SSGENDPDIINAGGEYVTLLPQGAFFDSSTSFALIRGGHVDVAVLGALEVDEEGNLANWI 121
         Query: 126 IPGKMVPGMGGAMDLLVGAKKVIVAMEHTNKGKAKILDKCTLPLTAQNVVNLIITEMGVF 185
                    +P K+VPGMGGAMDL +GAKK+IVAM+HT KGK KI+ KCTLPLTA+ V+LI+TE+ V
         Sbjct: 122 VPNKIVPGMGGAMDLAIGAKKIIVAMQHTGKGKPKIVKKCTLPLTAKAQVDLIVTELCVI 181
30
         Query: 186 EYQDEGLCALEINPDYTFEDVQNVTEVTLIDKTN 219
                    + ++GL EI+ D T ++++ +T+ LI
         Sbjct: 182 DVTNDGLLFREIHKDTTIDEIKFLTDADLIIPDN 215
```

35 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2838

A DNA sequence (GASx1628R) was identified in S.pyogenes <SEQ ID 8175> which encodes the amino acid sequence <SEO ID 8176>. Analysis of this protein sequence reveals the following:

```
40
         Possible site: 17
         >>> Seems to have no N-terminal signal sequence
         ---- Final Results -----
45
                       bacterial cytoplasm --- Certainty=0.1243 (Affirmative) < succ>
                        bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
                         bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

50 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2833-

PCT/GB01/04789

Example 2839

A DNA sequence (GASx1639R) was identified in *S.pyogenes* <SEQ ID 8177> which encodes the amino acid sequence <SEQ ID 8178>. Analysis of this protein sequence reveals the following:

15 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2840

A DNA sequence (GASx1643) was identified in *S.pyogenes* <SEQ ID 8179> which encodes the amino acid sequence <SEQ ID 8180>. Analysis of this protein sequence reveals the following:

```
Possible site: 35

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0766 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

30
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2841

A DNA sequence (GASx1645R) was identified in *S.pyogenes* <SEQ ID 8181> which encodes the amino acid sequence <SEQ ID 8182>. Analysis of this protein sequence reveals the following:

```
Possible site: 18

40 >>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2834-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2842

A DNA sequence (GASx1649R) was identified in *S.pyogenes* <SEQ ID 8183> which encodes the amino acid sequence <SEQ ID 8184>. Analysis of this protein sequence reveals the following:

```
Possible site: 24

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0931(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2843

Possible site: 14

A DNA sequence (GASx1650) was identified in *S.pyogenes* <SEQ ID 8185> which encodes the amino acid sequence <SEQ ID 8186>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.5678 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2844

A DNA sequence (GASx1651R) was identified in *S.pyogenes* <SEQ ID 8187> which encodes the amino acid sequence <SEQ ID 8188>. Analysis of this protein sequence reveals the following:

```
Possible site: 40

40 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2761(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2835-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2845

5 A DNA sequence (GASx1667R) was identified in *S.pyogenes* <SEQ ID 8189> which encodes the amino acid sequence <SEQ ID 8190>. Analysis of this protein sequence reveals the following:

```
Possible site: 33

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2967 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2846

Possible site: 24

A DNA sequence (GASx1672) was identified in *S.pyogenes* <SEQ ID 8191> which encodes the amino acid sequence <SEQ ID 8192>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

35 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2847

A DNA sequence (GASx1673R) was identified in *S.pyogenes* <SEQ ID 8193> which encodes the amino acid sequence <SEQ ID 8194>. Analysis of this protein sequence reveals the following:

```
Possible site: 38

>>> Seems to have no N-terminal signal sequence
    INTEGRAL Likelihood = -8.86 Transmembrane 51 - 67 ( 47 - 75)
    INTEGRAL Likelihood = -5.20 Transmembrane 27 - 43 ( 24 - 45)
    INTEGRAL Likelihood = -3.66 Transmembrane 112 - 128 ( 112 - 131)
----- Final Results -----
```

-2836-

```
bacterial membrane --- Certainty=0.4545(Affirmative) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

5 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAF41294 GB:AE002440 conserved hypothetical protein [Neisseria
                   meningitidis MC58]
          Identities = 61/148 (41%), Positives = 96/148 (64%)
10
                   LKKSITNEKAILAQGGQEFGAQNTKFLTLLHIMIYVFAVIEALLKQIKFDGISFLGLLIM 60
                   L SI +EKA++A+G +++G N+ L +H + Y+ + L
                                                                  F+GIS +G L +
        Sbjct: 19 LAVSIKHEKALIAKGAKQYGKTNSTLLAAVHTLYYLACFVWVWLSDTAFNGISLIGTLTV 78
15
        Query: 61 LLSVAVLYEVTRILGDIWTVKLMLAKDHKYVDHWLFKTIKHPNYFLNIAPELVGIALLCH 120
                   + S +L + + LG+IWTVK+ + +H+
                                                    WLFKT +HPNYFLNI PEL+GIALLC
        Sbjct: 79 MASFVILSLIIKOLGEIWTVKIYILPNHQINRSWLFKTFRHPNYFLNIIPELIGIALLCQ 138
        Query: 121 AKITAMLLFPCYIVVIYLRIREENKLLA 148
20
                        ++ P Y++V++ RIR+E + +A
        Sbjct: 139 AWYVLLIGLPIYLLVLFKRIRQEEQAMA 166
```

A related GBS gene <SEQ ID 9009> and protein <SEQ ID 9010> were also identified. Analysis of this protein sequence reveals the following:

```
25
        Lipop: Possible site: -1
                                 Crend: 0
        McG: Discrim Score:
        GvH: Signal Score (-7.5): 0.14
             Possible site: 60
        >>> Seems to have a cleavable N-term signal seq.
30
        ALOM program count: 2 value: -8.23 threshold: 0.0
           INTEGRAL
                      Likelihood = -8.23 Transmembrane 69 - 85 (64 - 89)
           INTEGRAL
                      Likelihood = -3.29 Transmembrane 142 - 158 ( 140 - 159)
           PERIPHERAL Likelihood = 1.70
                                             123
         modified ALOM score: 2.15
35
        *** Reasoning Step: 3
        ---- Final Results ----
                       bacterial membrane --- Certainty=0.4291(Affirmative) < succ>
40
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

The protein has homology with the following sequences in the databases:

```
42.1/64.0% over 168aa
45
                                                                                 imported
          EGAD | 177248 | conserved hypothetical protein {Neisseria meningitidis} Insert characterized
          GP|7379797|emb|CAB84365.1||AL162755 putative integral membrane protein {Neisseria
         meningitidis | Insert characterized
           GP|7226121|gb|AAF41294.1||AE002440 conserved hypothetical protein {Neisseria meningitidis
50
         MC58} Insert characterized
           PIR F81147 F81147 probable integral membrane protein NMA1102 - Neisseria meningitidis
         (group B strain MD58, group A strain Z2491) Insert
         characterized
55
         ORF00432(301 - 807 of 1140)
         EGAD | 177248 | NMB0883 (1 - 169 of 169)
                                                     conserved hypothetical protein
         meningitidis}GP|7379797|emb|CAB84365.1||AL162755 putative integral membrane protein
         {Neisseria meningitidis}GP|7226121|gb|AAF41294.1||AE002440 conserved hypothetical protein
```

{Neisseria meningitidis MC58}PIR|F81147|F81147 probable integral membrane protein NMA1102

[imported] - Neisseria meningitidis (group B strain MD58, group A strain Z2491)
%Match = 19.0
%Identity = 42.0 %Similarity = 63.9
Matches = 71 Mismatches = 61 Conservative Sub.s = 37

-2837-

```
327
                                         357
                                                 387
                                                          417
       237
               267
                        297
       SSGEYHLLTSDHSLV*IGKAXX*LIXXXEFTMSIIIGLMAAMFIIRLAYLKLSIANEKALRKNGAKEYGVGVSKAITVLH
                                 ]::]: ::: ||||| :| :|| :||
                                                            5
                                 MTMILSILSLFFIIRLLFLAVSIKHEKALIAKGAKQYGKTNSTLLAAVH
                                        10
                                                20
                                                         30
               507
                        537
                                567
                                         597
                                                 627
                                                          657
                                                                  687
       477
       IIIYFSSVTEAILTKASFNFVSVIGLSLMIFSVFMLHTVTRLLGRIWTVKLMVDKNHQFVDHWLFRVVKHPNYFLNIAPE
10
                               :: | :| : : || || || || || : : || ||
                 1: :|| :|:||
                                                            TLYYLACFVWVWLSDTAFNGISLIGTLTVMASFVILSLIIKQLGEIWTVKIYILPNHQINRSWLFKTFRHPNYFLNIIPE
               60
                       70
                               80
                                        90
                                                100
                                                        110
                                                                 120
               747
                        777
                                807
       717
                                         837
                                                 867
                                                          897
                                                                  927
15
       : :
       LIGIALLCQAWYVLLIGLPIYLLVLFKRIRQEEQAMATLF
              140
                      150
```

20 Based on this analysis, it was predicted that these proteins and their epitopes could be useful antigens for vaccines or diagnostics.

Example 2848

A DNA sequence (GASx1674R) was identified in *S.pyogenes* <SEQ ID 8195> which encodes the amino acid sequence <SEQ ID 8196>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 23

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.3098 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

35 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2849

A DNA sequence (GASx1677R) was identified in *S.pyogenes* <SEQ ID 8197> which encodes the amino acid sequence <SEQ ID 8198>. Analysis of this protein sequence reveals the following:

Possible site: 33 >>> Seems to have no N-terminal signal sequence INTEGRAL Likelihood = -8.86 Transmembrane 254 - 270 (248 - 280) 45 INTEGRAL Likelihood = -7.01 Transmembrane 303 - 319 (296 - 322) Likelihood = -2.39 Transmembrane 74 - 90 (74 -INTEGRAL INTEGRAL Likelihood = -1.91 Transmembrane 201 - 217 (199 - 217) Likelihood = -1.91 INTEGRAL Transmembrane 223 - 239 (220 - 240) Likelihood = -1.65 118 - 134 (115 - 135) INTEGRAL Transmembrane 50 INTEGRAL Likelihood = -1.49Transmembrane 56 - 72 (55 -INTEGRAL Likelihood = -0.32 Transmembrane 13 -29 (13 ----- Final Results ---bacterial membrane --- Certainty=0.4545(Affirmative) < succ> 55 bacterial outside --- Certainty=0.0000 (Not Clear) < succ> bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>

-2838-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

PCT/GB01/04789

```
>GP:BAB05126 GB:AP001511 unknown conserved protein [Bacillus halodurans]
 5
         Identities = 249/534 (46%), Positives = 380/534 (70%)
        Query: 12 QDIAFHFFGGLGLFLFSIKYMGDGLQQAAGDKLRYYIDKYTSNPFFGILVGIAMSALIOS 71
                   O + F FFGGLG+FLF IKYMGDGLO+ AG++LR +DK+T+NP G+L GI ++ L+O+
                   OTLLFMFFGGLGIFLFGIKYMGDGLOKVAGERLRDLLDKFTTNPLMGVLAGIVVTVLLQT 65
10
        Query: 72 SSGVTVITVGLVSAGLLNLRQAIGIVMGANIGTTITSFLIGFKLGDYALPMIFIGAACLF 131
                   S+G TV+T+GLV+AG + L+QAIG++MGANIGTT+T+F+IG K+ +YALP+I +GAA +F
        Sbjct: 66 STGTTVLTIGLVNAGFMTLKQAIGVIMGANIGTTVTAFIIGIKISEYALPIIAVGAALIF 125
        Query: 132 FTSNKKLNNFGRIIFGVGGIFFSLNLMGDAMDPLKSVSAFQNYLATLGDKPFQGVFIGTA 191
15
                   F NKK+NN G++1FG G +F+ LN MG+ ++PL+ + AF + ++ + P GV IGT
        Sbjct: 126 FIKNKKVNNIGQVIFGFGTLFYGLNTMGEGLNPLRELQAFADLTVSMSENPLLGVLIGTI 185
        Query: 192 LTMLIQSSAAIIGILQGLFSGGLLTLQGAIPILLGSNIGTCITAVLAAIGSNIAAKRVAA 251
20
                    T +QSS+A IG+LQ L+ G + L A+P+L G NIGT ITAVLAAIG+++AAKR A
        Sbjct: 186 FTAAVQSSSASIGLLQQLYDQGAMDLFAALPVLFGDNIGTTITAVLAAIGASVAAKRAAL 245
        Query: 252 AHVLFNLIGTIIFMIILVPFTSLMLWLQSKLSLTPEMTIAFSHGSFNITNTILLIPFISL 311
                    HV+FNLIGTII +II++PFT + +L +L MTIAF+HG FN++NTI+ PFI +
25
        Sbjct: 246 THVIFNLIGTIIVLIIIIPFTHFIAYLAEVFALNRPMTIAFAHGIFNVSNTIIQFPFIGI 305
        Query: 312 LAMIVTRLIPGEDEVVKYEALYLDRLLITQAPSIALGNAHKELVHLASYAIQAFEASYSY 371
                   LA+IVT+L+PG+D ++Y+A +LD + +P+IALG A +E++ +A ++ +
         Sbjct: 306 LAIIVTKLVPGDDFYIEYKAKHLDPRFVGSSPAIALGQAKQEVLRMAEFSEKGLLEVSKY 365
30
         Query: 372 IMTADGKFGEKVKRYERAVDTIDEELTTYLVDISNEALSPSENEVLAGILDSSRDLERIG 431
                         K E ++E A++ +D ++T YL+ IS+ +LS ++++ ++D+ RD+ERIG
        Sbjct: 366 MENGQKKHAEMAVQFEDAINNLDRKITEYLISISSRSLSAQDSKMHGMLMDTVRDIERIG 425
35
         Query: 432 DHSESLGILIEGIISKQIGFSISARQELTEMYQLTHCLTLDAIRAIVDSDTDLAQTIVTR 491
                   DH E++ L + + ++ S A +L EM+ LTH +AI ++ D + A++++ +
         Sbjct: 426 DHIENIVELKDYQKANKVKISEKALHDLQEMFDLTHSTLTEAIMSLETGDLEAARSVIEK 485
         Ouery: 492 HKEIEEKERRLRKTHIKRLNCGECTAQAGINFIDIISHYTRITDHALNLAEKVL 545
40
                    + I++ ER+LRK HI R+N G CT AGI F+DI+S+ RI DH++N+AE V+
        Sbjct: 486 EEHIDQMERKLRKQHIIRVNEGNCTGAAGIVFVDIVSNLERIGDHSVNIAEAVI 539
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

45 Example 2850

A DNA sequence (GASx1678R) was identified in *S.pyogenes* <SEQ ID 8199> which encodes the amino acid sequence <SEQ ID 8200>. Analysis of this protein sequence reveals the following:

```
Possible site: 48

50 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2940(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2839-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2851

5

A DNA sequence (GASx1685R) was identified in *S.pyogenes* <SEQ ID 8201> which encodes the amino acid sequence <SEO ID 8202>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2852

A DNA sequence (GASx1695R) was identified in *S.pyogenes* <SEQ ID 8203> which encodes the amino acid sequence <SEQ ID 8204>. Analysis of this protein sequence reveals the following:

```
Possible site: 15

25 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1357 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2853

A DNA sequence (GASx1698) was identified in *S.pyogenes* <SEQ ID 8205> which encodes the amino acid sequence <SEQ ID 8206>. Analysis of this protein sequence reveals the following:

```
Possible site: 33

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1970 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2840-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2854

A DNA sequence (GASx1713) was identified in *S.pyogenes* <SEQ ID 8207> which encodes the amino acid sequence <SEQ ID 8208>. Analysis of this protein sequence reveals the following:

```
Possible site: 44

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3092(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2855

A DNA sequence (GASx1737) was identified in *S.pyogenes* <SEQ ID 8209> which encodes the amino acid sequence <SEQ ID 8210>. Analysis of this protein sequence reveals the following:

```
Possible site: 13

25 >>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.1878 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2856

35

A DNA sequence (GASx1748R) was identified in *S.pyogenes* <SEQ ID 8211> which encodes the amino acid sequence <SEQ ID 8212>. Analysis of this protein sequence reveals the following:

```
Possible site: 23

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2841(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

-2841-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 2857

A DNA sequence (GASx1750R) was identified in *S.pyogenes* <SEQ ID 8213> which encodes the amino acid sequence <SEQ ID 8214>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

20 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2858

A DNA sequence (GASx1754) was identified in *S.pyogenes* <SEQ ID 8215> which encodes the amino acid sequence <SEQ ID 8216>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 44

>>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

35 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2859

A DNA sequence (GASx1759) was identified in *S.pyogenes* <SEQ ID 8217> which encodes the amino acid sequence <SEQ ID 8218>. Analysis of this protein sequence reveals the following:

```
Possible site: 36

>>> Seems to have no N-terminal signal sequence

45

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1534(Affirmative) < succ>
```

-2842-

```
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ> bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

5 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2860

10

50

A DNA sequence (GASx1764R) was identified in *S.pyogenes* <SEQ ID 8219> which encodes the amino acid sequence <SEQ ID 8220>. Analysis of this protein sequence reveals the following:

```
Possible site: 29
        >>> Seems to have a cleavable N-term signal seq.
                     Likelihood = -6.74 Transmembrane 90 - 106 ( 87 - 121)
           INTEGRAL
15
                      Likelihood = -4.57 Transmembrane 210 - 226 ( 205 - 229)
           INTEGRAL
                     Likelihood = -4.19 Transmembrane 43 - 59 ( 42 - 62)
           INTEGRAL
                    Likelihood = -3.77 Transmembrane 137 - 153 ( 137 - 155)
           INTEGRAL
        ---- Final Results ----
20
                      bacterial membrane --- Certainty=0.3697 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

25 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2861

A DNA sequence (GASx1768R) was identified in *S.pyogenes* <SEQ ID 8221> which encodes the amino acid sequence <SEQ ID 8222>. Analysis of this protein sequence reveals the following:

```
Possible site: 17
        >>> Seems to have an uncleavable N-term signal seq
           INTEGRAL Likelihood =-12.37 Transmembrane
                                                        26 - 42 ( 17 -
35
                    Likelihood = -7.54 Transmembrane 53 - 69 ( 46 -
           INTEGRAL
           INTEGRAL Likelihood = -3.29 Transmembrane 209 - 225 ( 209 - 225)
           INTEGRAL Likelihood = -2.13 Transmembrane 82 - 98 (82 - 98)
           INTEGRAL Likelihood = -1.65 Transmembrane 9 - 25 ( 9 - 25)
           INTEGRAL Likelihood = -0.85 Transmembrane 117 - 133 ( 117 - 134)
40
        ---- Final Results ----
                      bacterial membrane --- Certainty=0.5946 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
45
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:AAB84959 GB:AE000829 conserved protein [Methanobacterium thermoautotrophicum]

Identities = 54/192 (28%), Positives = 90/192 (46%), Gaps = 6/192 (3%)
```

-2843-

```
TKLLLLVLANACFFFRVDGFLEFIIVIFLLLLLSALNKKKLA--FKLAVVYLLMIGLSVI 64
        Ouerv: 7
                             F D L I++
                                             L++
                                                    + A F ++ ++ L++I
                  +KL ++V A
        Sbjct: 32 SKLTVVVSATLLSTFISDLTLLIIMGVIFTALIAHSGSLRFAAPFLSFIILFWLVSLAII 91
 5
        Query: 65 PLSIFPSYLDHLLSFVSIAGRLVFPSLLAGLITIKTTTIYELVHGLRKWRFPEVWLLTLA 124
                        S H + F+S+ F AGL TT +L LR R P
        Sbjct: 92 MVL---SGNPHTMGFLSLFFARFFIISAAGLSFAFTTEPQKLAESLRSVRIPGEIVFTLT 148
        Query: 125 VMCRFIPMIRQECCVIHRSLKIRGIILTKWSILIRPKQYLEYLMVPLLLSLIRSSQELTI 184
10
                  V R+IP + E I SLK+R L+ SI+ RP L++P+++ ++ S E+ I
        Sbjct: 149 VALRYIPALAVEASSIWDSLKLR-TSLSGSSIIRRPSLLYRGLIIPMIIRTVKISDEVAI 207
        Query: 185 ASLTKGLAVNKG 196
                  A+ T+G
15
        Sbict: 208 AAETRGFNPREG 219
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2862

Possible site: 16

A DNA sequence (GASx1769R) was identified in *S.pyogenes* <SEQ ID 8223> which encodes the amino acid sequence <SEO ID 8224>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -7.32 Transmembrane 164 - 180 ( 158 - 186)

INTEGRAL Likelihood = -4.67 Transmembrane 85 - 101 ( 84 - 105)

INTEGRAL Likelihood = -3.03 Transmembrane 42 - 58 ( 42 - 61)

INTEGRAL Likelihood = -2.76 Transmembrane 118 - 134 ( 117 - 134)

INTEGRAL Likelihood = -2.07 Transmembrane 64 - 80 ( 64 - 82)

INTEGRAL Likelihood = -1.22 Transmembrane 18 - 34 ( 17 - 34)

----- Final Results -----

bacterial membrane --- Certainty=0.3930 (Affirmative) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2863

A DNA sequence (GASx1776R) was identified in *S.pyogenes* <SEQ ID 8225> which encodes the amino acid sequence <SEQ ID 8226>. Analysis of this protein sequence reveals the following:

```
Possible site: 21

5 Seems to have an uncleavable N-term signal seq
INTEGRAL Likelihood = -6.37 Transmembrane 4 - 20 ( 1 - 22)
INTEGRAL Likelihood = -0.43 Transmembrane 261 - 277 ( 261 - 278)

50 ---- Final Results ----
bacterial membrane --- Certainty=0.3548 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2844-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2864

Possible site: 24

A DNA sequence (GASx1777R) was identified in *S.pyogenes* <SEQ ID 8227> which encodes the amino acid sequence <SEQ ID 8228>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -8.17 Transmembrane 1217 -1233 (1215 -1235)

----- Final Results -----

bacterial membrane --- Certainty=0.4270 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAF53254 GB:AE003639 CG16974 gene product [Drosophila
20
                   melanogaster]
         Identities = 84/238 (35%), Positives = 133/238 (55%), Gaps = 10/238 (4%)
        Query: 516 LRLDHYELTDISLL--KHAKNITELHLDGNQITEIPKELFSQMKQLRFLNLRSNHLTYLD 573
                   L +
                        L++ SLL ++ K + ELHLD +++T +P+
                                                         ++ +LR LNL N LT L
25
        Sbjct: 232 LEMSGNRLSNCSLLNLQYMKQLQELHLDRSELTYLPQRFLGELSELRMLNLSQNLLTELP 291
        Query: 574 KDTFKSNAQLRELYLSSNFIHSLEGGLFQSLHHLEQLDLSKNRIGRLCDNPFEGLSRLTS 633
                   +D F
                         +L LYLS N + L LFQ+ L+ LDLS NR+
                                                                 DN F
        Sbjct: 292 RDIFVGALKLERLYLSGNRLSVLPFMLFQTAADLQVLDLSDNRLLSFPDNFFARNGQLRQ 351
30
        Query: 634 LGFAENSLEEIPEKALEPLTSLNFIDLSONNLALLP-KTIEKLRALSTIVASRNHITRID 692
                        N L+ I + +L L L +DLSQN+L+++ K E L L + S N++T +
        Sbjct: 352 LHLQRNQLKSIGKHSLYSLRELRQLDLSQNSLSVIDRKAFESLDHLLALNVSGNNLTLLS 411
35
        Query: 693 NISFKNLPKLSVLDLSTNEISNLPNGIFKQNNQL-----TKLDFFNNLLTQVEESV 743
                   +I F++L L LDLS N+ LP+G+F++ L T ++ F+N +++ +ES+
        Sbjct: 412 SIIFQSLHALRQLDLSRNQFKQLPSGLFQRQRSLVLLRIDETPIEQFSNWISRYDESL 469
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2865

A DNA sequence (GASx1778R) was identified in *S.pyogenes* <SEQ ID 8229> which encodes the amino acid sequence <SEQ ID 8230>. Analysis of this protein sequence reveals the following:

```
Possible site: 39

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1067(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2845-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2866

A DNA sequence (GASx1779) was identified in *S.pyogenes* <SEQ ID 8231> which encodes the amino acid sequence <SEQ ID 8232>. Analysis of this protein sequence reveals the following:

```
Possible site: 17

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1885 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2867

Possible site: 19

A DNA sequence (GASx1786R) was identified in *S.pyogenes* <SEQ ID 8233> which encodes the amino acid sequence <SEQ ID 8234>. Analysis of this protein sequence reveals the following:

```
25 >>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.0612(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2868

A DNA sequence (GASx1790) was identified in *S.pyogenes* <SEQ ID 8235> which encodes the amino acid sequence <SEQ ID 8236>. Analysis of this protein sequence reveals the following:

```
Possible site: 13

40

>>> Seems to have a cleavable N-term signal seq.

----- Final Results -----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

-2846-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 2869

A DNA sequence (GASx1791R) was identified in *S.pyogenes* <SEQ ID 8237> which encodes the amino acid sequence <SEQ ID 8238>. Analysis of this protein sequence reveals the following:

A related sequence was also identified in GAS <SEQ ID 9155> which encodes the amino acid sequence <SEQ ID 9156>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 25

>>> Seems to have a cleavable N-term signal seq.

----- Final Results -----

bacterial outside --- Certainty= 0.300(Affirmative) < succ>

bacterial membrane --- Certainty= 0.000(Not Clear) < succ>

bacterial cytoplasm --- Certainty= 0.000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
30
        >GP:AAA24923 GB:L06331 endoglycosidase [Chryseobacterium
                  meningosepticum]
         Identities = 105/322 (32%), Positives = 153/322 (46%), Gaps = 53/322 (16%)
        Query: 106 ADKQAQELAKMKIPEKIPMKPLHGSLYGGYFRTWHDKTSDPTEKDKVNSMGELPKEVDLA 165
35
                       ++ + + I K + GY+RTW D T + SM LP +D+
        Sbjct: 37 AQKSGVTVSAVNLSNLIAYKNSDHQISAGYYRTWRDSA---TASGNLPSMRWLPDSLDMV 93
        Query: 166 FIFHDWTKDYSLFWKELATKHVPKLNKQGTRVIRTIPWRFLAGGDNSGIAEDTSKYPNTP 225
                   +F D+T + +W L T +VP L+K+GT+VI T+ G NS
40
        Sbjct: 94 MVFPDYTPPENAYWNTLKTNYVPYLHKRGTKVIITL-----GDLNSA----TTTGGQDS 143
        Query: 226 EGNKALAKAIVDEYVYKYNLDGLDVDVEHDSIPKVDKKEDTAGVERSIQVFEEIGKLIGP 285
                   G + AK I D++V +YNLDG+D+D+E A + + + + K GP
        Sbjct: 144 IGYSSWAKGIYDKWVGEYNLDGIDIDIE-----SSPSGATLTKFVAATKALSKYFGP 195
45
        Ouery: 286 KGVDKSRLFIMDSTYMADKNP--LIERGAPYINLLLVQVYGSOGEKGGWEPVSNRPEKTM 343
                       + F+ D+ ++NP + AP N + +Q YG
        Sbjct: 196 KS-GTGKTFVYDT----NQNPTNFFIQTAPRYNYVFLQAYG------RSTTNL 237
50
        Query: 344 EERWQGYSKYIRPEQYMIGFSFYEENAQEGNLWYDINSRKDEDKANGINTDITGTRAERY 403
                        Y+ YI +Q++ GFSFYEEN GN W D+ + NG TG RA Y
        Sbjct: 238 TTVSGLYAPYISMKQFLPGFSFYEENGYPGNYWNDVRYPQ----NG----TG-RAYDY 286
        Query: 404 ARWQPKTGGVKGGIFSYAIDRD 425
55
                  ARWQP T G KGG+FSYAI+RD
        Sbjct: 287 ARWQPAT-GKKGGVFSYAIERD 307
```

-2847-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2870

5

A DNA sequence (GASx1803) was identified in *S.pyogenes* <SEQ ID 8239> which encodes the amino acid sequence <SEQ ID 8240>. Analysis of this protein sequence reveals the following:

```
Possible site: 20

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2099 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2871

Possible site: 54

A DNA sequence (GASx1806R) was identified in *S.pyogenes* <SEQ ID 8241> which encodes the amino acid sequence <SEQ ID 8242>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.2706(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAB16126 GB:Z99124 ribosomal protein S18 [Bacillus subtilis]
Identities = 51/77 (66%), Positives = 63/77 (81%)

Query: 1 MAQQRRGGFKRRKKVDFIAANKIEYVDYKDTELLSRFVSERGKILPRRVTGTSAKNQRKV 60
MA RRGG +R+KV + +N I ++DYKD +LL +FVSERGKILPRRVTGT+AK QRK+
Sbjct: 3 MAGGRRGGRAKRKVCYFTSNGITHIDYKDVDLLKKFVSERGKILPRRVTGTNAKYQRKL 62

Query: 61 TTAIKRARVMALMPYVN 77
T AIKRAR MAL+PYV+
Sbjct: 63 TAAIKRARQMALLPYVS 79
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2872

A DNA sequence (GASx1809R) was identified in *S.pyogenes* <SEQ ID 8243> which encodes the amino acid sequence <SEQ ID 8244>. Analysis of this protein sequence reveals the following:

```
Possible site: 60
```

-2848-

```
>>> Seems to have an uncleavable N-term signal seg
                      Likelihood = -7.59 Transmembrane
Likelihood = -6.42 Transmembrane
            INTEGRAL
                                                               70 - 86 ( 66 -
            INTEGRAL
                                                               13 - 29 (
                                                                           8 -
                                                                                  331
5
                       Likelihood = -5.68 Transmembrane 48 - 64 ( 43 -
            INTEGRAL
         ---- Final Results ----
                        bacterial membrane --- Certainty=0.4036 (Affirmative) < succ>
                         bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
10
                       bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2873

50

A DNA sequence (GASx1813R) was identified in *S.pyogenes* <SEQ ID 8245> which encodes the amino acid sequence <SEQ ID 8246>. Analysis of this protein sequence reveals the following:

```
Possible site: 56

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood =-10.51 Transmembrane 127 - 143 ( 113 - 147)

INTEGRAL Likelihood =-10.46 Transmembrane 151 - 167 ( 149 - 167)

INTEGRAL Likelihood = -4.41 Transmembrane 59 - 75 ( 57 - 77)

25

---- Final Results ----

bacterial membrane --- Certainty=0.5203 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAB98363 GB:U67490 lipoprotein B (lppB) [Methanococcus
                   jannaschii]
35
         Identities = 43/143 (30%), Positives = 68/143 (47%), Gaps = 7/143 (4%)
        Query: 25 LLNVLLKIITGVMY--ILYPSFLIFTLWQGMTFQLWLRLLIIPAVGFIALSYIRKRFDFP 82
                              Y I S +IF + +L L + + F +L Y+
                   + + ++ II+
        Sbjct: 181 IFDAIMPIISKTAYPLIAITSLIIFIKNRKFGMKLIFALFLAFMIAF-SLKYLVNE---P 236
40
        Query: 83 RPYEKWNIKPLIDKDTKGRSMPSRHVFSATMISMCLLRYYVYFGIVCLILSALLAICRVI 142
                                     S PS H A ++ LL Y
                           L+ +
                                                            GI+ L + ++A RV
        Sbjct: 237 RPYLVLDNVHLLCNEGNEPSFPSGHTTLAFTLATSLLFYSKKLGILFLSWAIIVAYSRVY 296
45
        Query: 143 AGIHYPKDVIVGYLIGLMLGLCL 165
                    G+HYP DV+ G +IG+ G CL
        Sbjct: 297 VGVHYPLDVLAGMIIGIFCG-CL 318
```

A related GBS gene <SEQ ID 9011> and protein <SEQ ID 9012> were also identified. Analysis of this protein sequence reveals the following:

```
Lipop: Possible site: -1 Crend: 9
McG: Discrim Score: 3.19
GvH: Signal Score (-7.5): -2.18
Possible site: 55
>>> Seems to have a cleavable N-term signal seq.
ALOM program count: 3 value: -11.78 threshold: 0.0
```

-2849-

```
INTEGRAL
                      Likelihood =-11.78
                                          Transmembrane 126 - 142 ( 112 - 147)
                      Likelihood =-11.30
                                          Transmembrane 150 - 166 ( 147 - 166)
           INTEGRAL
                      Likelihood = -4.41
                                                         58 - 74 ( 56 - 76)
           INTEGRAL
                                          Transmembrane
           PERIPHERAL Likelihood = 3.29
 5
         modified ALOM score: 2.86
        *** Reasoning Step: 3
        ---- Final Results ----
10
                      bacterial membrane --- Certainty=0.5713 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
     The protein has homology with the following sequences in the databases:
15
        ORF01020(472 - 792 of 1098)
        EGAD 44548 MJ0374 (213 - 318 of 330) conserved hypothetical protein {Methanococcus
        jannaschii) OMNI MJ0374 conserved hypothetical protein SP Q57819 Y374 METJA HYPOTHETICAL
        PROTEIN MJ0374. GP|1591081|gb|AAB98363.1||U67490 lipoprotein B (lppB) {Methanococcus
        jannaschii) PIR|F64346|F64346 hypothetical protein MJ0374 - Methanococcus jannaschii
20
        Match = 6.8
        %Identity = 30.8 %Similarity = 53.3
        Matches = 33 Mismatches = 49 Conservative Sub.s = 24
                  252
                           282
                                     312
                                               342
                                                        372
                                                                  402
25
        EGVTKYLRRNKHVKHFAYAPQNAGGSGATIVTLG*IMESYEQFYAKLSQPFRKSPQLIILLNFLLKIVTGMMYILYPSFL
        VIAWLSGIFEMHKLLFTVGTIIGRLPRFLAVAYFGDVLGNINRLSDINIYLFYLINSHYNYIFDAIMPIISKTAYPLIAI
                130
                          140
                                   150
                                             160
                                                                180
30
                                                                            672
        462
                  492
                            522
                                     552
                                               582
                                                        612
                                                                  642
        IFTLWQGMTFQLWLRLLIIPAVGFIALSYIRKRLDFPRPYEKWNIKPLIYKDTEGRSMPSRHVFSATMISMCLLRYYVYF
                    ::|: : |:
                                   :: :: |||| : {: :
                                                              1 11 1 1 :: 11 1
        TSLTIFIKNRKFGMKLTFALFLAFMIAFSLKYLVNEPRPYLVLDNVHLLCNEGNEPSFPSGHTTLAFTLATSLLFYSKKL
                                                      250
                                                                260
35
        702
                  732
                            762
                                     792
                                               822
                                                        852
                                                                  882
                                                                            912
        GIVCLILSVLLAICRVIAGIHYPKDVIVGYLIGLILGLCLFI*RVRSK*FQKQLDSCTIGLSLR*NGEKRWH*K*QMLHL
        GILFLSWAIIVAYSRVYVGVHYPLDVLAGMIIGIFCG-CLTRIDIYKLIDNI
40
                          300
                                   310
                                              320
```

Based on this analysis, it was predicted that these proteins and their epitopes could be useful antigens for vaccines or diagnostics.

Example 2874

A DNA sequence (GASx1815R) was identified in *S.pyogenes* <SEQ ID 8247> which encodes the amino acid sequence <SEQ ID 8248>. Analysis of this protein sequence reveals the following:

```
Possible site: 15

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0888(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2850-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2875

5

A DNA sequence (GASx1825R) was identified in *S.pyogenes* <SEQ ID 8249> which encodes the amino acid sequence <SEO ID 8250>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2876

A DNA sequence (GASx1832) was identified in *S.pyogenes* <SEQ ID 8251> which encodes the amino acid sequence <SEQ ID 8252>. Analysis of this protein sequence reveals the following:

```
Possible site: 26

25 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0918 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2877

A DNA sequence (GASx1836R) was identified in *S.pyogenes* <SEQ ID 8253> which encodes the amino acid sequence <SEQ ID 8254>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4084 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2851-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2878

A DNA sequence (GASx1864R) was identified in *S.pyogenes* <SEQ ID 8255> which encodes the amino acid sequence <SEQ ID 8256>. Analysis of this protein sequence reveals the following:

```
Possible site: 21

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.5280(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC36810 GB:L12244 ribosomal protein L28 [Bacillus subtilis]
Identities = 45/62 (72%), Positives = 52/62 (83%)

Query: 1 MAKVCYFTGRKTVSGNNRSHAMNQTKRTVKPNLQKVTILVDGKPKKVWASARALKSGKVE 60
MA+ C TG+KT +GNNRSHAMN +KRT NLQKV ILV+GKPKKV+ SARALKSGKVE
Sbjct: 1 MARKCVITGKKTTAGNNRSHAMNASKRTWGANLQKVRILVNGKPKKVYVSARALKSGKVE 60

Query: 61 RI 62
R+
Sbjct: 61 RV 62
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2879

30

A DNA sequence (GASx1869) was identified in *S.pyogenes* <SEQ ID 8257> which encodes the amino acid sequence <SEQ ID 8258>. Analysis of this protein sequence reveals the following:

```
Possible site: 19

35

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.1858(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2852-

PCT/GB01/04789

Example 2880

A DNA sequence (GASx1881) was identified in *S.pyogenes* <SEQ ID 8259> which encodes the amino acid sequence <SEQ ID 8260>. Analysis of this protein sequence reveals the following:

```
Possible site: 29

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2752 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

RGD motif 136-138
```

No corresponding DNA sequence was identified in S. agalactiae.

```
15
     The protein has homology with the following sequences in the GENPEPT database:
        >GP:AAF04356 GB:AF177167 type IC restriction subunit [Streptococcus thermophilus]
         Identities \approx 358/1047 (34%), Positives = 571/1047 (54%), Gaps = 91/1047 (8%)
        Query: 7
                    TELELEKELIHLLETGESOWTYRKELKTEDALWDNFFKILAONNTOYLNEEPLTASEKEO 66
20
                    +E +E + I +L E+OWTYR +LK+E+ALW NF
                                                         T_1 + N
                                                                 T. E+PI/T E +O
        Sbjct: 4
                    SEOMIENOFIQILSEKENOWTYRPDLKSEEALWQNFRSHLNRINLAVLGEQPLTDKEFKQ 63
                    IKNQLNFVNY--YEAAKWLAGENGIAKVQVQREDAKLGTIRLEVVKADNVAGGTSVYEIA 124
        Query: 67
                               + A++WL GENG+A++ ++RED K + LE + +++GGTS YE+
25
        Sbjct: 64
                    VKVEFSRLTGTPFLASQWLRGENGVAQILLEREDGK--RVTLEAFRNKDISGGTSSYEVV 121
        Query: 125 NQVAFSGSRDRRGDVTLLINGLPMIQIELKSQNHQ--CIEAFNQVKKYDKEGQFRGIFST 182
                           SR RGDV+LLINGLP+I IELK ++ + ++A+ Q+++Y ++G F+GI++T
        Sbjct: 122 HOVVPDSSRVDRGDVSLLINGLPIIHIELKKESAKDGFMQAYYQIQRYAEDGFFKGIYAT 181
30
        Query: 183 LQMFVVSNKTDTRYIAAAKENKLNP----NFLTQWVDQNNKPQKDLFAFAKEVLSIPRA 237
                                                  FL W ++N+
                                                                DLF F + VL IP A
                     O+ V+SNK DTRY A E+
        Sbict: 182
                    TOIMVISNKVDTRYFARPSEDTAEAYARMKKFLFNWRTEDNQTVSDLFDFTRTVLRIPDA 241
35
         Query: 238 HQMVMTYSVIDDDKKA---LILLRPYQIHAIEAVAEASRHRKSGYIWHTTGSGKTLTSYK 294
                    H+++ Y+++ DD+K
                                     L+ LRPYQIHAI + + + + G+IWH TGSGKT+TS+
        Sbjct: 242 HELISQYTILVDDQKNQKFLMALRPYQIHAIRKIRQKAAQHEGGFIWHATGSGKTITSFV 301
        Query: 295 VARNILQIP-AVEKSIFVIDRKDLDNQTASAFQSYA-----QNDIFD--VDETEDT 342
40
                              V++++ V+DR DLD OT F +A
                                                                +N + + +
                      + + 0
        Sbjct: 302 ATKLLAONAIGVDRTVMVVDRTDLDAOTODEFTKFASEYHTGQTTENSVANTLIVGIKNQ 361
        Query: 343 RQLIKNLESS--DRRVVVTTIQKLNAMISQMESYDTPKFKKLKERLAHLNVVFVVDECHR 400
                    +QL +NL SS + ++VTTIQKL+A +
                                                 +
                                                     K
                                                             E+L
                                                                   ++VF+VDE HR
45
        Sbjct: 362 KQLAQNLLSSKNNNTILVTTIQKLSAAMRSAQQESEEKGSNQFEKLRQEHIVFIVDEAHR 421
        Query: 401 AVTPERQRYLTNTFRNSRWYGFTGTPIFVENKRAQLGDLAQTTEQOYGKCLHOYTVKEAI 460
                    AV+ E + +
                                  NS W+G TGTPIF ENK+ + G A+TT QQYG LH YT+K A+
        Sbjct: 422 AVSDEEMKRIKKILPNSTWFGLTGTPIFEENKKQENGTFARTTSQQYGPLLHSYTIKNAM 481
50
        Query: 461 HDKAVLGFQVEYKTTIPD------MPEDS-----IPEEAYDHEEHMLAVLD 500
                     D AVLGFQVEY + I +
                                                   +P+D+
                                                              +P E Y+ +EH+ +L
         Sbjct: 482 DDGAVLGFQVEYHSLISEEDQEVIVTQLNKGKLPDDALQQEKLLPTELYETDEHIRTMLQ 541
55
        Query: 501 SIINQSR--KKLGFNNGIGQTFEGLLTVKSIARAQAYYDLMKKVKAGETDLVISKKVKEK 558
                            KK
                                  NG T +LT SIA+A+ Y ++K++K T L+ ++ E+
         Sbjct: 542 KIFNRRSVVKKFKVKNGF-PTMSAILTTHSIAQAKHIYRILKEMKDNGT-LLNGRQFDER 599
         Query: 559 L----PDFPKVAITYSITENDNASISRQDKMTKNLEDYNHLFGTNFTIDNLQGYNRDLND 614
60
                          DFP+VAIT+S +
                                             + D++ + +++Y F + D + YN+++N
         Sbjct: 600 HQLIDKDFPRVAITFSTNPDQLEKNEQDDELVEIMKEYEKQFDASPYQDE-KLYNQNINK 658
         Query: 615 RLARKKDKFKDRHEQLDLVIVVDRLLTGFDAPCLSTIFIDRQPMKPQHIIQAFSRTNRIF 674
```

-2853-

```
+ LD VIVVDRLLTGFD+P + T++IDR+ M Q ++QAFSRTNRI+
                   RLARKEKQYQSDGQWLDFVIVVDRLLTGFDSPTIQTLYIDRE-MNYQKLLQAFSRTNRIY 717
        Sbict: 659
        Query: 675
                   ESRKHYGQVVTFQTPLRFKEAVDKALSLYSNGGEN-DVLAP-SWEEEKARFFEKVTVLKN 732
5
                    + K G +V+F+ P +E V
                                            L+SN +NDLP +EEK FE T+ K
        Sbjct: 718
                   -TGKDSGLIVSFRKPFTMRENVRNTFRLFSNEKQNFDQLIPKEYEEVKKEFIECSTLYKQ 776
        Query: 733 IVPDPDAFPTIESAQTAFLKQYAKAFQAFDKLFASVQVYSDFNETLLSEVGLSDEVIDTY 792
                                  A + Y K +++ L + Q DF E SEV
10
        Sbict: 777
                   SEADLSDNPNDLKTMIAOVSAYOKLEKSYKALRSYDOYEEDFEE--FSEV---VEOLPOY 831
        Query: 793 KGTYQNVIAEIRKRRED-----DEAIPEINIDYELESVQMDDINYHYILTLIQAFVD 844
                   +G +N+ +I++ ED
                                           ++ + EI
                                                      +L + D ++ YI L++A
        Sbjct: 832
                   QGKTENIKTKIKEMIEDEGHPEEDFEKLLQEIAFSSQLNATHKDVVDSFYINQLLKAIQL 891
15
        Query: 845
                   OEOEALOERLNDNPMDOYIODLAKSNPAMADSLAELWODIOKEPKAYEGKSIVYELDNLI 904
                    E A+++
                              + + Q
                                       + K
                                              + D L
                                                       ++I
        Sbjct: 892 NEAGAVEK--FEKEIQQKDPQIQKMYHTLKDQLVNTTEEI-----DVAQLKETSI 939
20
        Query: 905 GDKIQRAIKHFADQWKADPDKLAFVATNYHSANSTKQVGMSTLKE-SLDYOAYKEKOGDS 963
                    ++IOR ++ A+++
                                     DЬ
                                            YS T
                                                           L +L + ++ K G+
        Sbjct: 940 ONEIQROLOKEAEEFGLSFDFLOSAMNEYQSDKKTIPYLTHLLDSMTLSKEEFEAKTGE- 998
        Query: 964 AMNKLKYKSQFERELVQFIRDQIQPLK 990
25
                      K + +++
                               E +Q
                                     +Q+Q K
        Sbjct: 999 ---KYRRRTKVLEERLQQNFEQLQKWK 1022
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 2881

Possible site: 39

A DNA sequence (GASx1882) was identified in *S.pyogenes* <SEQ ID 8261> which encodes the amino acid sequence <SEQ ID 8262>. Analysis of this protein sequence reveals the following:

```
35 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3653 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

40 bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

```
>GP:AAB53491 GB:U35629 unknown [Lactococcus lactis subsp. lactis]
45
         Identities = 141/241 (58%), Positives = 178/241 (73%)
                   KSKQPQYRFDGFEGEWEEKELGDIVQITMGQSPSSQNYTTNPSDYILVQGNADIKNGYVF 62
        Query: 3
                   K K P+ RF GF EWE ++LGD V+I MGOSP+S+NYT +P+DYILVOGNAD+KNG V
        Sbjct: 13 KKKVPELRFKGFTDEWELRKLGDEVRIVMGQSPNSENYTDDPNDYILVQGNADMKNGRVL 72
50
        Query: 63 PRVWTTQITKQADKGDIILSVRAPVGDVGKTNYHVIIGRGVAAIKGNEFIFQILKYLKEI 122
                   PRVWTTQ+TKQA+K D+ILSVRAPVGD+GKT Y V+IGRGVAAIKGNEFIFQ L +K
        Sbjct: 73 PRVWTTQVTKQAEKDDLILSVRAPVGDIGKTAYDVVIGRGVAAIKGNEFIFQNLGKMKSD 132
55
        Query: 123 GYWKRISTGSTFDSISSSDIKYAKIQIPSLPEQEAIGELFQMVDQLIQLQDQKLATLKEQ 182
                   GYW R STGSTF+SI+S+DIK A I +P++ EQ+ IG F+ +D I L +KL LKEQ
        Sbjct: 133 GYWTRYSTGSTFESINSTDIKEAIISVPAIEEQDKIGSFFKQLDNTIALHORKLDLLKEO 192
        Query: 183 KQTFLRKMFPAQGQKVPEIRLQGFKGEWEEKKLREVSTHRSGTAIEKYFDSEGEFKVISIG 243
60
                   K+ FL+KMFP G KVPE+R GF +WEE+KL +++ +G
        Sbjct: 193 KKGFLQKMFPKNGAKVPELRFAGFADDWEERKLGDITKISTGKLDANAMVENGKYDFYTSG 253
```

PCT/GB01/04789

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2854-

Example 2882

Possible site: 61

5 A DNA sequence (GASx1883) was identified in S.pyogenes <SEQ ID 8263> which encodes the amino acid sequence <SEQ ID 8264>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence
10
         ---- Final Results ----
                      bacterial cytoplasm --- Certainty=0.4318(Affirmative) < succ>
                       bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
                         bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
15
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAF04357 GB:AF177167 type IC modification subunit [Streptococcus thermophilus]
          Identities = 293/523 (56%), Positives = 377/523 (72%), Gaps = 6/523 (1%)
20
                   TSLRQALWHSADQLRGQMDANDYKNYLLGLIFYKHLSDKLLLAVCDNLEKHFNTFTEAQK 65
                   TSL Q LW SAD LRG+MDA++YKNYLLGLIFYK+LSDK L V +
         Sbjct: 3
                   TSLNOOLWASADILRGKMDASEYKNYLLGLIFYKYLSDKOLREVYEOENGKTDTFPERST 62
25
         Query: 66 I---FEDAYQDEGLKDDLISVVTGDLGYFIEPTLTFEKLIQDVYHNTFQLESLAQGFRDI 122
                       F + Y+++ KDDLI + GYFI+P F
                                                              + F L L GF ++
         Sbjct: 63 LYAGFMEWYEED--KDDLIENIQPRQGYFIQPDRLFYHYRIKADNYEFNLTDLQAGFNEL 120
         Query: 123 EQSGEDFENLFEDIDLYSKKLGSTPQKQNQTISNVMKTLNEIDFEAVDGDTLGDAYEYLI 182
30
                   E+ GE+F LF DIDL S KLGS O++N TI+ V++ L+EID
         Sbjct: 121 EROGEEFSGLFSDIDLNSTKLGSNAQORNVTITEVLRALDEIDLFEHNGDVIGDAYEYLI 180
         Query: 183 GEFASESGKKAGEFYTPQAVSHLMTQIVFLGREDQKGMTLYDPAMGSGSLLLNAKKYSNQ 242
                   G FA+ +GKKAGEFYTPQAVS +M++I +G+E +
                                                        +YDPAMGSGSL+LN ++Y
35
         Sbjct: 181 GMFAAGAGKKAGEFYTPQAVSRIMSEITSIGQESRVPFHIYDPAMGSGSLMLNIRRYLIH 240
         Query: 243 SDTVSYYGQEINTSTYNLARMNMMLHGVAIENQHLSNADTLDADWPTDEPINFDGVLMNP 302
                    + V Y+GOE+NT+T+NLARMN++LHGV E +L+N DTLDADWP++EP FD V+MNP
         Sbjct: 241 PNOVHYHGQELNTTTFNLARMNLILHGVDKERMNLNNGDTLDADWPSEEPYQFDSVVMNP 300
40
         Query: 303 PYSLKWSATAGFLTDPRFSSYGVLAPKSKADFAFLLHGFYHLKNTGTMAIVLPHGVLFRG 362
                   PYS KWSA FL+DPRF +G LAPKSKADFAFLLHGFYHLK +GTM IVLPHGVLFRG
         Sbjct: 301 PYSAKWSAADKFLSDPRFERFGKLAPKSKADFAFLLHGFYHLKESGTMGIVLPHGVLFRG 360
45
         Query: 363 AAEGKIRQKLLEQGAIDTIIGLPSNIFYNTSIPTTIIILKKNRTNKDVFFIDASKEFDKG 422
                    AEG IRQ LLE GAID +IGLP+NIF+ TSIPTT+IILKKNR+ +DV FIDAS++F+K
         Sbjct: 361 GAEGTIRQALLEMGAIDAVIGLPANIFFGTSIPTTVIILKKNRSRRDVLFIDASQDFEKQ 420
         Query: 423 KNQNTMTDNHIKKILDAYKSRDNSDKFSYLASFDEIIENDYNLNIPRYVDTFEEVPVKPL 482
50
                   KNQN + D HI KI+ YK R++ +++++ASFDEI END+NLNIPRYVDTFEE
         Sbjct: 421 KNONVLLDEHIDKIVSTYKKREDIERYAHVASFDEIQENDFNLNIPRYVDTFEEEEPVDL 480
         Query: 483 PELAKQLSDIDQEIAKTNAKLDQLMKQLVGTTKEAQDELDTFR 525
                         L I++E+ +
                                     L L+
                                                 ++E Q +++ R
55
         Sbjct: 481 VEVNTNLLKINEELVQQEQTLLSLINDF-SESEENQAMIESMR 522
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2855-

Example 2883

A DNA sequence (GASx1886R) was identified in *S.pyogenes* <SEQ ID 8265> which encodes the amino acid sequence <SEQ ID 8266>. Analysis of this protein sequence reveals the following:

```
Possible site: 59
5
        >>> Seems to have an uncleavable N-term signal seq
           INTEGRAL Likelihood = -8.17 Transmembrane 155 - 171 ( 147 - 173)
                    Likelihood = -7.22 Transmembrane 14 - 30 ( 11 - 33)
           INTEGRAL
          INTEGRAL Likelihood = -7.17 Transmembrane 182 - 198 (179 - 205)
10
           INTEGRAL Likelihood = -5.68 Transmembrane 132 - 148 ( 128 - 152)
           INTEGRAL Likelihood = -4.14 Transmembrane 46 - 62 ( 43 - 62)
           INTEGRAL Likelihood = -3.50 Transmembrane 73 - 89 ( 73 - 90)
           INTEGRAL Likelihood = -0.96 Transmembrane 95 - 111 ( 95 - 111)
15
        ---- Final Results ----
                      bacterial membrane --- Certainty=0.4270 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

20 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2884

A DNA sequence (GASx1890R) was identified in *S.pyogenes* <SEQ ID 8267> which encodes the amino acid sequence <SEQ ID 8268>. Analysis of this protein sequence reveals the following:

```
Possible site: 58

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4757 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

RGD motif 339-341
```

No corresponding DNA sequence was identified in S.agalactiae.

```
>GP:AAA62650 GB:L37110 clyM [Plasmid pAD1]
40
         Identities = 127/492 (25%), Positives = 230/492 (45%), Gaps = 30/492 (6%)
        Query: 46 KLFYSEFENQLFETIMFLSMKTLVLDINHFSKEIENK---SEAYEQYIQQ-IREENGIN 100
                             L + ++ L+ KTLVLD++ F K
                                                      K
                                                           S+ + Y+++
        Sbjct: 135 KEFIINLLENLTQELIHLTSKTLVLDLHTFKKNEPLKGNDSSKRFIYYLKKRFNSKKDII 194
45
        Query: 101 HFFDRYPYLLKQINKEVGLIEESYSLLFDRFLEDLSEIKSCFNI-SEPLSNVAFSLGDSH 159
                                       ++ + R EDL I++CFNI S L++++ S GDSH
                    F+ YP L++
                                  +
        Sbjct: 195 AFYTCYPELMRITVVRMRYFLDNTKQMLIRVTEDLPSIQNCFNIQSSELNSISESQGDSH 254
50
        Query: 160 SKKQTVVKIAFKE-KSVYYKPKSYHSHSILLELTSLLKSSNIPSFSLPKSLVKADYCWOL 218
                   S+ +TV + F + K + YKPK +S + L + L
                                                                + K + + Y ++
        Sbjct: 255 SRGKTVSTLTFSDGKKIVYKPK-INSENKLRDFFEFINKELEADIYIVKKVTRNTYFYEE 313
        Query: 219 GVAYTSSNK-DEVAKIYFKYGVLAAFSEIFSITDLHMENVIVSGGDLYLIDVETFFQRKL 277
55
                          N +EV K Y +YG L + +F++TDLH EN+I G
                                                                 +ID ETFFO+ +
        Sbjct: 314 YIDNIEINNIEEVKKYYERYGKLIGIAFLFNVTDLHYENIIAHGEYPVIIDNETFFOONI 373
```

```
Query: 278 NVQNQNFEGITVDTYQRIYETSLSNGLFP---VQFEKNSAPNVSGISRKGGKRQKGKYEL 334
                            TVD + ++ + GL P ++ ++ +S
                   ++ N
        Sbjct: 374 PIEFGN--SATVDAKYKYLDSIMVTGLVPYLAMKDKSDSKDEGVNLSALNFKEQSVPFKI 431
 5
        Query: 335 I---NKNRGDLKLVKVDYFQEDRFNIPTLNGKVVEPLDYANEIISGFRECYIFLLSQRSK 391
                         +++ + + N P +N + + + Y I++G + +
        Sbjct: 432 LKIKNTFTDEMRFEYQTHIMDTAKNTPIMNNEKISFISYEKYIVTGMKSILMKAKDSKKK 491
10
        Query: 392 IKEIV-EGFPELKSRVPFRNTSDYGKFLQASTNPKYLFS----EKKRKNLFSILYETKHI 446
                  I + L R R T Y L+ S +P + EK N+++ Y+ K +
        Sbjct: 492 ILAYINNNLONLIVRNVIRPTORYADMLEFSYHPNCFSNAIEREKVLHNMWAYPYKNKKV 551
        Query: 447 EHFIVDNEIKDLMNGDIP-YFSMDTRGNVYNSVGTLIGNLGDTTSL---FDSITILINDER 502
15
                         E DL++GDIP +++ ++ ++ S G L+ + ++L + I L DE
        Sbjct: 552 VHY----EFSDLIDGDIPIFYNNISKTSLIASDGCLVEDFYQESALNRCLNKINDLCDED 607
        Query: 503 LKFTCELLEIVL 514
                         LEI L
20
        Sbjct: 608 ISIQTVWLEIAL 619
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2885

A DNA sequence (GASx1891R) was identified in *S.pyogenes* <SEQ ID 8269> which encodes the amino acid sequence <SEQ ID 8270>. Analysis of this protein sequence reveals the following:

```
Possible site: 40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3487 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2886

A DNA sequence (GASx1901R) was identified in *S.pyogenes* <SEQ ID 8271> which encodes the amino acid sequence <SEQ ID 8272>. Analysis of this protein sequence reveals the following:

-2857-

```
bacterial outside --- Certainty=0.0000(Not Clear) < succ>bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

5 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2887

10

A DNA sequence (GASx1905R) was identified in *S.pyogenes* <SEQ ID 8273> which encodes the amino acid sequence <SEO ID 8274>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

25 Example 2888

A DNA sequence (GASx1911R) was identified in *S.pyogenes* <SEQ ID 8275> which encodes the amino acid sequence <SEQ ID 8276>. Analysis of this protein sequence reveals the following:

```
Possible site: 30
30
        >>> Seems to have no N-terminal signal sequence
           INTEGRAL Likelihood =-10.40 Transmembrane 27 - 43 ( 22 -
                      Likelihood = -9.82 Transmembrane 52 - 68 ( 50 - 74)
           INTEGRAL
                      Likelihood = -7.27 Transmembrane 113 - 129 ( 111 - 134)
           INTEGRAL
                      Likelihood = -1.97 Transmembrane 137 - 153 ( 135 - 153)
           INTEGRAL
35
        ---- Final Results ----
                       bacterial membrane --- Certainty=0.5161(Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
40
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2858-

Example 2889

A DNA sequence (GASx1915R) was identified in *S.pyogenes* <SEQ ID 8277> which encodes the amino acid sequence <SEQ ID 8278>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

15 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2890

20

A DNA sequence (GASx1918R) was identified in *S.pyogenes* <SEQ ID 8279> which encodes the amino acid sequence <SEQ ID 8280>. Analysis of this protein sequence reveals the following:

```
Possible site: 38

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -7.32 Transmembrane 40 - 56 ( 39 - 60)

---- Final Results ----

bacterial membrane --- Certainty=0.3930 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>

30
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2891

A DNA sequence (GASx1923R) was identified in *S.pyogenes* <SEQ ID 8281> which encodes the amino acid sequence <SEQ ID 8282>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2859-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2892

5

A DNA sequence (GASx1926) was identified in *S.pyogenes* <SEQ ID 8283> which encodes the amino acid sequence <SEQ ID 8284>. Analysis of this protein sequence reveals the following:

```
Possible site: 24

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2322(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2893

A DNA sequence (GASx1928R) was identified in *S.pyogenes* <SEQ ID 8285> which encodes the amino acid sequence <SEQ ID 8286>. Analysis of this protein sequence reveals the following:

```
Possible site: 13

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3395(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2894

A DNA sequence (GASx1929R) was identified in *S.pyogenes* <SEQ ID 8287> which encodes the amino acid sequence <SEQ ID 8288>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

-2860-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2895

A DNA sequence (GASx1931R) was identified in *S.pyogenes* <SEQ ID 8289> which encodes the amino acid sequence <SEQ ID 8290>. Analysis of this protein sequence reveals the following:

```
Possible site: 31

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0551(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2896

A DNA sequence (GASx1941R) was identified in *S.pyogenes* <SEQ ID 8291> which encodes the amino acid sequence <SEQ ID 8292>. Analysis of this protein sequence reveals the following:

```
Possible site: 16

25 >>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.2377 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2897

A DNA sequence (GASx1949) was identified in *S.pyogenes* <SEQ ID 8293> which encodes the amino acid sequence <SEQ ID 8294>. Analysis of this protein sequence reveals the following:

```
Possible site: 29

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0262(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

-2861-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 2898

A DNA sequence (GASx1951R) was identified in *S.pyogenes* <SEQ ID 8295> which encodes the amino acid sequence <SEQ ID 8296>. Analysis of this protein sequence reveals the following:

```
Possible site: 45

10 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1330 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2899

A DNA sequence (GASx1953) was identified in *S.pyogenes* <SEQ ID 8297> which encodes the amino acid sequence <SEQ ID 8298>. Analysis of this protein sequence reveals the following:

```
Possible site: 15

>>> Seems to have a cleavable N-term signal seq.

----- Final Results -----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2900

A DNA sequence (GASx1957) was identified in *S.pyogenes* <SEQ ID 8299> which encodes the amino acid sequence <SEQ ID 8300>. Analysis of this protein sequence reveals the following:

```
Possible site: 26

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2409(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

-2862-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 2901

A DNA sequence (GASx1969) was identified in *S.pyogenes* <SEQ ID 8301> which encodes the amino acid sequence <SEQ ID 8302>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2902

A DNA sequence (GASx1971R) was identified in *S.pyogenes* <SEQ ID 8303> which encodes the amino acid sequence <SEQ ID 8304>. Analysis of this protein sequence reveals the following:

```
Possible site: 21

25

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1545 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

35 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2903

A DNA sequence (GASx1973) was identified in *S.pyogenes* <SEQ ID 8305> which encodes the amino acid sequence <SEQ ID 8306>. Analysis of this protein sequence reveals the following:

```
40 Possible site: 49

>>> Seems to have no N-terminal signal sequence
    INTEGRAL Likelihood = -2.44 Transmembrane 31 - 47 ( 31 - 48)

45 ---- Final Results ----
    bacterial membrane --- Certainty=0.1977 (Affirmative) < succ>
    bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2863-

```
bacterial cytoplasm --- Certainty≈0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
5
         >GP:CAB51744 GB:AJ245405 speX [Streptococcus pyogenes]
          Identities = 236/256 (92%), Positives = 243/256 (94%)
                   MIJSFESVILKHNKIJTPEKRLFMKKTKLIFSFTSIFIAIISRPVFGLEVDNNSLLRNIY 62
                   MIISFESVILKHNKIITPEKRLFMKKTKLIFSFTSIFIAIISRPVFGLEVDNNSLLRNIY
10
         Sbjct: 1 MIISFESVILKHNKIITPEKRLFMKKTKLIFSFTSIFIAIISRPVFGLEVDNNSLLRNIY 60
         Query: 63 STIVYEYSDTVIDFKTSHNLVTKKLDVRDARDFFINSEMDEYAANDFKDGDKIAMFSVPF 122
                    STIVYEYSD VIDFKTSHNLVTKKLDVRDARDFFINSEMDEYAANDFK GDKIA+FSVPF
         Sbjct: 61 STIVYEYSDIVIDFKTSHNLVTKKLDVRDARDFFINSEMDEYAANDFKTGDKIAVFSVPF 120
15
         Ouery: 123 DWNYLSEGKVIAYTYGGMTPYOEEPMSKNIPVNLWINRKOIPVPYNOISTNKTTVTAOEI 182
                    DWNYLS+GKV AYTYGG+TPYQ+ K VNLWIN KQI VPYN+ISTNKTTVTAQEI
         Sbjct: 121 DWNYLSKGKVTAYTYGGITPYQKLQYLKISLVNLWINGKQISVPYNEISTNKTTVTAQEI 180
20
         Ouery: 183 DLKVRKFLISOHOLYSSGSSYKSGKLVFHTNDNSDKYSLDLFYVGYRDKESIFKVYKDNK 242
                    DLKVRKFLI+OHOLYSSGSSYKSG+LVFHTNDNSDKYS DLFYVGYRDKESIFKVYKDNK
         Sbict: 181 DLKVRKFLIAOHOLYSSGSSYKSGRLVFHTNDNSDKYSFDLFYVGYRDKESIFKVYKDNK 240
         Query: 243 SFNIDKIGHLDIEIDS 258
25
                    SFNIDKIGHLDIEIDS
         Sbjct: 241 SFNIDKIGHLDIEIDS 256
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 2904

Possible site: 53

A DNA sequence (GASx1974R) was identified in *S.pyogenes* <SEQ ID 8307> which encodes the amino acid sequence <SEQ ID 8308>. Analysis of this protein sequence reveals the following:

```
35 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2022(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2905

A DNA sequence (GASx1983) was identified in *S.pyogenes* <SEQ ID 8309> which encodes the amino acid sequence <SEQ ID 8310>. Analysis of this protein sequence reveals the following:

```
Possible site: 14
50
>>> Seems to have no N-terminal signal sequence
---- Final Results ----
```

-2864-

```
bacterial cytoplasm --- Certainty=0.0989(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

5 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2906

A DNA sequence (GASx1987) was identified in *S.pyogenes* <SEQ ID 8311> which encodes the amino acid sequence <SEQ ID 8312>. Analysis of this protein sequence reveals the following:

```
Possible site: 34

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2389(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

20
```

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2907

30

35

A DNA sequence (GASx1988) was identified in *S.pyogenes* <SEQ ID 8313> which encodes the amino acid sequence <SEQ ID 8314>. Analysis of this protein sequence reveals the following:

```
Possible site: 48

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.5904(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:BAB16031 GB:AB030747 transposase [Streptococcus pyogenes]
Identities = 22/24 (91%), Positives = 23/24 (95%)

40

Query: 1 LERLFGTAKEYHNLCYTREKGKSK 24
+ERLFGTAKEYHNL YTREKGKSK
Sbjct: 399 IERLFGTAKEYHNLRYTREKGKSK 422
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2865-

Example 2908

A DNA sequence (GASx1990R) was identified in *S.pyogenes* <SEQ ID 8315> which encodes the amino acid sequence <SEQ ID 8316>. Analysis of this protein sequence reveals the following:

```
Possible site: 32

>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2909

A DNA sequence (GASx1991) was identified in *S.pyogenes* <SEQ ID 8317> which encodes the amino acid sequence <SEQ ID 8318>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2910

A DNA sequence (GASx1994) was identified in *S.pyogenes* <SEQ ID 8319> which encodes the amino acid sequence <SEQ ID 8320>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2866-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2911

5

A DNA sequence (GASx1996) was identified in *S.pyogenes* <SEQ ID 8321> which encodes the amino acid sequence <SEQ ID 8322>. Analysis of this protein sequence reveals the following:

```
Possible site: 13

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1076 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2912

Possible site: 61

A DNA sequence (GASx1997R) was identified in *S.pyogenes* <SEQ ID 8323> which encodes the amino acid sequence <SEQ ID 8324>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -7.96 Transmembrane 53 - 69 ( 49 - 75)

INTEGRAL Likelihood = -2.34 Transmembrane 24 - 40 ( 24 - 43)

---- Final Results ----

bacterial membrane --- Certainty=0.4185 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2913

A DNA sequence (GASx2007R) was identified in *S.pyogenes* <SEQ ID 8325> which encodes the amino acid sequence <SEQ ID 8326>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

-2867-

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAB97959 GB:U96166 ATP-binding cassette lipoprotein
[Streptococcus cristatus]
Identities = 37/60 (61%), Positives = 42/60 (69%), Gaps = 1/60 (1%)

Query: 59 FLTACGTKKDSKKEEVKEIKMSDIKDDAVSKKTKVVDGEEVTEYTTKDGNVIQIPAGNEE 118
FL ACG+K KE + + K D K DAV +KTK VDG+EVTEYT DGNVIQIPA EE
Sbjct: 12 FLAACGSKNADNKE-ISDGKKVDFKKDAVDQKTKTVDGKEVTEYTMPDGNVIQIPADGEE 70
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2914

A DNA sequence (GASx2009) was identified in *S.pyogenes* <SEQ ID 8327> which encodes the amino acid sequence <SEQ ID 8328>. Analysis of this protein sequence reveals the following:

```
Possible site: 41

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1246(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

25 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2915

A DNA sequence (GASx2010) was identified in *S.pyogenes* <SEQ ID 8329> which encodes the amino acid sequence <SEQ ID 8330>. Analysis of this protein sequence reveals the following:

```
Possible site: 17

>>> Seems to have no N-terminal signal sequence

35

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2549 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

40 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2916

A DNA sequence (GASx2012R) was identified in *S.pyogenes* <SEQ ID 8331> which encodes the amino acid sequence <SEQ ID 8332>. Analysis of this protein sequence reveals the following:

```
Possible site: 28
```

-2868-

```
>>> Seems to have no N-terminal signal sequence

---- Final Results ----

5 bacterial cytoplasm --- Certainty=0.3307(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

10 The protein has homology with the following sequences in the GENPEPT database:

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2917

30

35

A DNA sequence (GASx2013R) was identified in *S.pyogenes* <SEQ ID 8333> which encodes the amino acid sequence <SEQ ID 8334>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2918

40 A DNA sequence (GASx2014R) was identified in *S.pyogenes* <SEQ ID 8335> which encodes the amino acid sequence <SEQ ID 8336>. Analysis of this protein sequence reveals the following:

```
Possible site: 44

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1392(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

50
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2869-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2919

5

A DNA sequence (GASx2015) was identified in *S.pyogenes* <SEQ ID 8337> which encodes the amino acid sequence <SEQ ID 8338>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2920

A DNA sequence (GASx2018) was identified in *S.pyogenes* <SEQ ID 8339> which encodes the amino acid sequence <SEQ ID 8340>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

35 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2921

A DNA sequence (GASx2019) was identified in *S.pyogenes* <SEQ ID 8341> which encodes the amino acid sequence <SEQ ID 8342>. Analysis of this protein sequence reveals the following:

```
40 Possible site: 26

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0669(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

-2870-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
SGP:AAC98898 GB:AF023179 low temperature requirement C protein
[Listeria monocytogenes]

Identities = 95/144 (65%), Positives = 117/144 (80%)

Query: 15 LAERGVSLEAIAELVLFLQNDYIPNLTMAECLESVEAVLAKREVQNAIITGVELDKLAEA 74
L ERGV ++ IAELVLFLQ Y P L + C ++VE VL KREVQNA++TG++LD +AE
Sbjct: 16 LIERGVEIDDIAELVLFLQQKYHPGLELDICRQNVEHVLRKREVQNAVLTGIQLDVMAEK 75

Query: 75 NQLSEPLLSILKTDQGLYGIDEILALSIVNLYGSIGFTNYGYLDKTKPGIVDKLNHKDGY 134
+L +PL +1+ D+GLYG+DEILALSIVN+YGSIGFTNYGY+DK KPGI+ KLN DG
Sbjct: 76 GELVQPLQNIISADEGLYGVDEILALSIVNVYGSIGFTNYGYIDKVKPGILAKLNEHDGI 135

Query: 135 SCHTFLDDIVSAIAAAAASRIAHN 158
+ HTFLDDIV AIAAAAAASR+AH+
Sbjct: 136 AVHTFLDDIVGAIAAAAASRLAHS 159
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2922

A DNA sequence (GASx2030) was identified in *S.pyogenes* <SEQ ID 8343> which encodes the amino acid sequence <SEQ ID 8344>. Analysis of this protein sequence reveals the following:

```
Possible site: 18

25

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0320(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2923

A DNA sequence (GASx2031) was identified in *S.pyogenes* <SEQ ID 8345> which encodes the amino acid sequence <SEQ ID 8346>. Analysis of this protein sequence reveals the following:

```
40 Possible site: 24

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.0583 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

50 The protein has no significant homology with any sequences in the GENPEPT database.

-2871-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2924

5

A DNA sequence (GASx2032R) was identified in *S.pyogenes* <SEQ ID 8347> which encodes the amino acid sequence <SEQ ID 8348>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

A related GBS gene <SEQ ID 8467> and protein <SEQ ID 8468> were also identified. Analysis of this protein sequence reveals the following:

```
Lipop: Possible site: -1
        McG: Discrim Score:
                               -11.19
        GvH: Signal Score (-7.5): -4.94
25
             Possible site: 49
        >>> Seems to have no N-terminal signal sequence
        ALOM program count: 1 value: -4.19 threshold: 0.0
                       Likelihood = -4.19 Transmembrane
                                                            25 - 41 ( 25 - 42)
           PERIPHERAL Likelihood = 13.26
30
         modified ALOM score:
                                1.34
        *** Reasoning Step: 3
         ---- Final Results ----
35
                       bacterial membrane --- Certainty=0.2678 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

The protein has homology with the following sequences in the databases:

```
40
         ORF01616(304 - 429 of 771)
         SP|006442|SECE STAAU(7
                                       48
                                            of
                                                  60)
                                                         PREPROTEIN
                                                                       TRANSLOCASE
                                                                                     SECE
                                                                                             SUBUNIT.
         GP|2078376|gb|AAB54017.1||U96619 SecE {Staphylococcus aureus}
         %Identity = 26.2 %Similarity = 57.1
45
        Matches = 11 Mismatches = 18 Conservative Sub.s = 13
                                                          249
                                                                              309
                  129
                            159
                                      189
                                                                    279
                                                219
         RIIQIMLK*HLWRRYGTKESKPSVYRMRKPKLLNRSK*HPQANTTRSK*IL*IL*EVYNTQRNALI*RNKLQKGELIMFV
50
                                                                                 MAKKESFF
                   369
                             399
                                       429
                                                 459
                                                           489
                                                                     519
                                                                                549
         KGIFQVLRDTTWPNRKQRWKDFISILEYTVFFTIVIY1FDKLLAAGVMDLINRF***IILDRNNPNP*ILLRVFCVENNI
               : |:|| ::: :| ::: :|| : |:|
55
         KGVKSEMEKTSWPTKEELFKYTVIVVSTVIFFLVFFYALDLGITALKNLLFG
                   20
                             30
                                                 50
                                       40
```

-2872-

SEQ ID 8468 (GBS396) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 83 (lane 9; MW 35kDa).

GBS396-GST was purified as shown in Figure 217, lane 8.

5 Example 2925

Possible site: 21

A DNA sequence (GASx2034R) was identified in *S.pyogenes* <SEQ ID 8349> which encodes the amino acid sequence <SEQ ID 8350>. Analysis of the protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2926

A DNA sequence (GASx2035) was identified in *S.pyogenes* <SEQ ID 8351> which encodes the amino acid sequence <SEQ ID 8352>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 39

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2928 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

35 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2927

A DNA sequence (GASx2042R) was identified in *S.pyogenes* <SEQ ID 8353> which encodes the amino acid sequence <SEQ ID 8354>. Analysis of this protein sequence reveals the following:

```
Possible site: 44

>>> Seems to have no N-terminal signal sequence

45

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2547 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
```

-2873-

```
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

5 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2928

A DNA sequence (GASx2043) was identified in *S.pyogenes* <SEQ ID 8355> which encodes the amino acid sequence <SEQ ID 8356>. Analysis of this protein sequence reveals the following:

```
Possible site: 26

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3289(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

20 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2929

A DNA sequence (GASx2049) was identified in *S.pyogenes* <SEQ ID 8357> which encodes the amino acid sequence <SEQ ID 8358>. Analysis of this protein sequence reveals the following:

```
Possible site: 13

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4014(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

35 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2930

40 A DNA sequence (GASx2052) was identified in *S.pyogenes* <SEQ ID 8359> which encodes the amino acid sequence <SEQ ID 8360>. Analysis of this protein sequence reveals the following:

```
Possible site: 40

>>> Seems to have a cleavable N-term signal seq.
45

---- Final Results ----
```

-2874-

```
bacterial outside --- Certainty=0.3000(Affirmative) < succ>bacterial membrane --- Certainty=0.0000(Not Clear) < succ>bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

5 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2931

Possible site: 32

A DNA sequence (GASx2055R) was identified in *S.pyogenes* <SEQ ID 8361> which encodes the amino acid sequence <SEQ ID 8362>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.3048(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

20
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:BAB05703 GB:AP001513 imidazolonepropionase
                    (imidazolone-5-propionate hydrolase) [Bacillus halodurans]
25
          Identities = 203/416 (48%), Positives = 278/416 (66%), Gaps = 4/416 (0%)
         Query: 11 DVLLTHFNOLFCLNDPGHPLTGOEMKKATIVEDGYIAIKDGLIVALGSGEPDAELVGTOT 70
                   D LL + QL + G P G+EM + ++E + I+DG + +G+
                  DTLLVNIGQLLPMESKG-PKRGKEMSELQLLEHAALGIRDGKVAFIGTMVEADTFTANQM 64
30
         Query: 71 IMRSYKGKIATPGIIDCHTHLVYGGSREHEFAKKLAGVSYLDILAQGGGILSTVRATRSA 130
                        +GK+ TPG++D HTHL++GGSREHE A K GV YL+IL GGGIL+TV ATR+A
         Sbjct: 65 I--DCQGKLVTPGLVDPHTHLIFGGSREHEMALKQQGVPYLEILKNGGGILATVEATRAA 122
35
         Query: 131 SFDNLYQKSKRLLDYMLLHGVTTVEAKSGYGLDWETEKRQLDVVAALEKDHPIDLVSTFM 190
                              L+ ML +GVTT+EAKSGYGLD ETE +OL
                   S + L K+
                                                              A+ + HPID+VSTF+
         Sbjct: 123 SEEELITKAICHLNRMLSYGVTTIEAKSGYGLDRETEWKOLRAAKAVGEOHPIDIVSTFL 182
         Ouery: 191 AAHAIPEEYKGNPKAYLDVIIKDMLPVVKEENLAEFCDIFCEKNVFTADESRYLLSKAKE 250
40
                    AHAIP ++ +P +LD + DML +KE+NLAEF DIF E VFT ++SR L KAKE
         Sbjct: 183 GAHAIPTSHRNDPDRFLDEMA-DMLGEIKEQNLAEFVDIFTETGVFTVEQSRTFLQKAKE 241
         Query: 251 MGFKLRIHADEIASIGGVDVAAELSAVSAEHLMMITDDGIAKLIGAGVIGNLLPATTFSL 310
                    GF L++HADEI +GG ++A EL A+SA+HL+ +D GI K+ AG I LLP TTF L
45
         Sbjct: 242 RGFGLKLHADEIDPLGGAELAGELGAISADHLVGASDQGIQKMAAAGTIACLLPGTTFYL 301
         Query: 311 MEDTYAPARKMIDAGMAITLSTDSNPGSCPTANMQFVMQLGCFMLRLTPIEVLNAVTINA 370
                    +DTYA AR MID G+A+T+STD NPGS PT N+Q +M +
                                                               L++TP E+ +AVT+N
         Sbjct: 302 GKDTYARARDMIDQGLAVTISTDFNPGSSPTENLQLIMSIAALRLKMTPEEIWHAVTVNG 361
50
         Query: 371 AYSVNRQERVGSLTVGKEADIAIFDAPNIDYPFYFFATNLIHQVYKKGQLTVDRGR 426
                   A+++ R + G L VG+ AD+ ++DA N Y Y + N +H V+KKG++ +R R
         Sbjct: 362 AHAIGRGDTAGQLAVGRAADVVVWDAKNYYYVPYHYGVNHVHSVWKKGEVVYERRR 417
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2875-

Example 2932

A DNA sequence (GASx2056) was identified in *S.pyogenes* <SEQ ID 8363> which encodes the amino acid sequence <SEQ ID 8364>. Analysis of this protein sequence reveals the following:

PCT/GB01/04789

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
15
        >GP:CAB61139 GB:AL132952 predicted using Genefinder~cDNA EST
                   yk155e6.3 comes from this gene~cDNA EST yk155e6.5 comes
                   from this gene-cDNA EST yk156d6.5 comes from this
                   gene~cDNA EST yk259b10.3 comes fr
          Identities = 302/649 (46%), Positives = 419/649 (64%), Gaps = 17/649 (2%)
20
        Query: 29 EGIRRAPDRGFRLTQAQTEIALKNALRYVPTKFHEEVIPEFLEELKTRGRIYGYRFRPKD 88
                   + + AP R
                             LTO + +A++NALRY+P + H + EF EEL T G IYGYRF P
        Sbjct: 85 KNVAHAPKRPCNLTQTEKMLAVRNALRYIPKEHHVLLATEFAEELNTYGHIYGYRFMPNF 144
25
        Query: 89 RIYGKPIDEYKGNCTAAKAMQVMIDNNLSFEIALYPYELVTYGETGSVCANWMQYCLIKK 148
                              +C A A+ +MI NNL +A +P ELVTYG G V +NW+Q+ L+ +
                    ++ P+ E
        Sbjct: 145 DLFAPPVSEIGAHCEQASAIILMILNNLDKRVAQFPQELVTYGGNGQVFSNWIQFRLVLR 204
        Query: 149 YLEVMTDEQTLVVESGHPVGLFKSKPEAPRVIITNGLLVGEYDNMKDWEIAEEMGVTNYG 208
30
                   YL MTD QTLV+ SGHP+GLF S P++PR+ +TNG+++ Y + ++
        Sbjct: 205 YLYTMTDHQTLVLYSGHPLGLFPSTPDSPRMTVTNGMMIPSYSTKELYDKYFALGVTQYG 264
        Query: 209 QMTAGGWMYIGPQGIVHGTFNTLLNAGRLKLGVADDGDLTGKLFISSGLGGMSGAQGKAA 268
                   OMTAG + YIGPOGIVHGT T+LNAGR ++G+
                                                       L GK+F+++GLGGMSGAO KAA
35
        Sbjct: 265 OMTAGSFCYIGPOGIVHGTTITVLNAGR-RMGL---DSLAGKVFVTAGLGGMSGAOPKAA 320
        Query: 269 EIAKAVAIIAEVDQSRIKTRHSQGWISQIAESPEEALQLAQKAIDAKESTSIAYHGNIVD 328
                   +IA + +IAE+ + + RH QGW+
                                              ++ EE + ++ + KE+ SI Y GN+VD
        Sbjct: 321 KIAGCIGVIAEISDTALLKRHQQGWLDVYSKDLEEIVNWIKEYREKKEAISIGYLGNVVD 380
40
        Query: 329 LLE-YVNDKQIHVDLLSDQTSCHNVYDGGYCPVGISFDERTRLLAEDKDTFHOMVDDTLA 387
                         + + V+L SDQTS HN + GG+ P G++F++ +++ D
                                                                   F ++V ++L
        Sbjct: 381 LWERLAEEPECLVELGSDQTSLHNPFLGGFYPAGLTFEQSNQMMTSDPVKFKKLVQNSLI 440
45
        Query: 388 RHFEAIKTLTENGTYFFDYGNAFMKSVYDSGITEISKNGRNDKDGFIWPSYVEDIMGPML 447
                      AI + G YF+DYGNAF+
                                            +G + ++ ++DK F +PSY++DIMG +
        Sbjct: 441 RQIAAIDKIAAKGMYFWDYGNAFLLECORAGANLLREDAQDDK-SFRYPSYMQDIMGD-I 498
        Query: 448 FDYGYGPFRWVCLSGNHDDLVATDKAAMEAIDPDR-----RYQDRDNYNWIRDAEKN 499
50
                   F G+GPFRWVC SG +DL TD+ A + ID + + Q DN WI +AEKN
        Sbjct: 499 FSMGFGPFRWVCTSGKPEDLRLTDQTACKIIDELKDTDVPEYVKQQYLDNKKWIEEAEKN 558
        Query: 500 QLVVGTQARILYQDCIGRVTIALKFNELVRKGKI-GPVMIGRDHHDVSGTDSPFRETSNI 558
                   +LVVG+QARILY D GRV +A FNELV+ GK+
                                                      ++I RDHHDVSGTDSPFRETSN+
55
        Sbjct: 559 KLVVGSQARILYSDRAGRVALASAFNELVKSGKVSAAIVISRDHHDVSGTDSPFRETSNV 618
        Query: 559 KDGSNVTCDMAVQCYAGNAARGMSLVALHNGGGTGIGKAINGGFGLVLDGSERIDEIIKS 618
                    DGS T DMAVQ G++ RG + VALHNGGG G G INGGFG+VLDGS
        Sbjct: 619 YDGSAFTADMAVQNCIGDSFRGATWVALHNGGGVGWGDVINGGFGIVLDGSSDAARRAEG 678
60
        Query: 619 AIAWDTMGGVARRNWARNEHAIETAIEYNRLHAGTDHITIPYLADDDLV 667
                           GV RR+W+ N A E AI+ +T+P AD++L+
                    + WD
        Sbjct: 679 MLNWDVPNGVTRRSWSGNAKAQE-AIQRAEKQVDGLRVTLPVEADEELL 726
```

-2876-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2933

A DNA sequence (GASx2057) was identified in *S.pyogenes* <SEQ ID 8365> which encodes the amino acid sequence <SEQ ID 8366>. Analysis of this protein sequence reveals the following:

```
Possible site: 44

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1887(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAD35925 GB:AE001751
                   formiminotransferase-
20
                   cyclodeaminase/formiminotetrahydrofolate cyclodeaminase,
                   putative [Thermotoga maritima]
          Identities = 160/296 (54%), Positives = 214/296 (72%), Gaps = 2/296 (0%)
         Ouerv: 3
                   KIVECIPNFSEGONOAVIDGLVATAKSIPGVTLLDYSSDASHNRSVFTLVGDDOSIOEAA 62
25
                                                V +LD+S DA HNRSV TLVG+ +++ A
                   K++E +PNFSEG+ + V++ +VA AK
         Sbjct: 2
                   KIJIESVPNFSEGRRKEVVEKIVAEAKKYDRVWVLDWSMDADHNRSVITLVGEPENLINAL 61
         Query: 63 FQLVKYASENIDMTKHHGEHPRMGATDVCPFVPIKDITTQECVEISKQVAERINRELGIP 122
                   F + K A+E ID+ H G+HPRMGA DV P VP+ + T +ECVE SK + RI ELGIP
30
         Sbjct: 62 FDMTKKAAELIDLRNHTGQHPRMGAADVIPLVPLYNTTMEECVEYSKILGRRIGEELGIP 121
         Query: 123 IFLYEDSATRPERONLAKVRKGQFEGMPEKLLEEDWAPDYGDRKIHPTAGVTAVGARMPL 182
                    ++LYE SATRPERONLA +RKG+FEG EK+ + W PD+G ++HPTAGVTAVGAR L
         Sbjct: 122 VYLYEKSATRPERQNLADIRKGEFEGFFEKIKDPLWKPDFGPDRVHPTAGVTAVGAREFL 181
35
         Query: 183 VAFNVNLDTDNIDIAHKIAKIIRGSGGGYKYCKAIGVMLEDRHIAQVSMNMVNFEKCSLY 242
                    +AFNVNL T ++ IA KIA+ IR S GG +Y KAIGV L+ R + QVS+N+ N +K LY
         Sbjct: 182 IAFNVNLGTRDVKIAEKIARAIRFSSGGLRYVKAIGVDLKGRGVVQVSINITNHKKTPLY 241
40
         Query: 243 RTFETIKFEARRYGVNVIGSEVIGLAPAKALIDVAEYYLQVEDFDYHKQILENHLL 298
                   R FE IK EA RYGV V+GSE++GL P ++L+
                                                     YYL+ +
                                                                  K+++E++LL
         Sbjct: 242 RVFELIKMEAERYGVPVLGSEIVGLFPLESLLKTVSYYLRTD--LNAKKVIESNLL 295
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2934

45

A DNA sequence (GASx2058) was identified in *S.pyogenes* <SEQ ID 8367> which encodes the amino acid sequence <SEQ ID 8368>. Analysis of this protein sequence reveals the following:

```
Possible site: 31

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2776 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2877-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAA62653 GB:L33465 methenyl tetrahydrofolate cyclohydrolase
5
                   [Methylobacterium extorquens]
         Identities = 79/198 (39%), Positives = 112/198 (55%)
                   SLTDFAKVLGSDAPAPGGGSAAALSGANGISLTKMVCELTLGKKKYADYODIITEIHAKS 66
                          L S AP PGGG AAA+SGA G +L MVC LT+GKKKY + + + ++ KS
10
        Sbjct: 6
                   TIETFLDGLASSAPTPGGGGAAAISGAMGAALVSMVCNLTIGKKKYVEVEADLMQVLEKS 65
        Ouery: 67 TALOASLLAAIDKDTEAFNLVSAVFDMPKETDEDKAARRTAMOKALKTAAOSPFEMMTLM 126
                     L+ +L I D EAF+ V + +PK TDE+KAAR +O+ALKTA
                                                                    P
        Sbjct: 66 EGLRTLTGMIADDVEAFDAVMGAYGLPKNTDEEKAARAAKIOEALKTATDVPLACCRVC 125
15
        Query: 127 VEALEITATAVGKSNTNAASDLGVAALNLKAGLQGAWLNVLINLSGIKDEDFVTDYRQKG 186
                             K N N SD GVA L+ AGL+ A LNV +N G+ D F + ++
        Sbjct: 126 REVIDLAEIVAEKGNLNVISDAGVAVLSAYAGLRSAALNVYVNAKGLDDRAFAEERLKEL 185
20
        Query: 187 QALLDKGCHLADDIYTKI 204
                   + LL + L + TY +
        Sbict: 186 EGLLAEAGALNERIYETV 203
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2935

A DNA sequence (GASx2061) was identified in *S.pyogenes* <SEQ ID 8369> which encodes the amino acid sequence <SEQ ID 8370>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

30

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3924 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

40 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2936

A DNA sequence (GASx2063) was identified in *S.pyogenes* <SEQ ID 8371> which encodes the amino acid sequence <SEQ ID 8372>. Analysis of this protein sequence reveals the following:

-2878-

```
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
5
        >GP:CAB15971 GB:Z99124 histidase [Bacillus subtilis]
         Identities = 236/477 (49%), Positives = 321/477 (66%), Gaps = 2/477 (0%)
        Query: 42 VINLDGESLTIEDVIAIARQGVACHIDDSAIEAVNASRKIVDDIVSEKRVVYGVTTGFGS 101
                   ++ LDG SLT DV + +++E V SR V+ IV +++ +YG+ TGFG
10
        Sbjct: 1 MVTLDGSSLTTADVARVLFDFEEAAASEESMERVKKSRAAVERIVRDEKTIYGINTGFGK 60
        Query: 102 LCNVSISPEDTVOLOENLIRTHASGFGDPLPEDAVRAIMLIRINSLVKGYSGIRLSTIEK 161
                     +V I ED+ LQ NLI +HA G GDP PE RA++L+R N+L+KG+SG+R
        Sbjct: 61 FSDVLIQKEDSAALQLNLILSHACGVGDPFPECVSRAMLLLRANALLKGFSGVRAELIEQ 120
15
        Query: 162 LLELLNKGVHPYIPEKGSLGASGDLAPLAHMVLPMLGLGKAYYKGELLSGQEALDKAGID 221
                   LL LNK VHP IP++GSLGASGDLAPL+H+ L ++G G+ +++GE +
        Sbjct: 121 LLAFLNKRVHPVIPOOGSLGASGDLAPLSHLALALIGQGEVFFEGERMPAMTGLKKAGIQ 180
20
        Query: 222 KISLAAKEGLALINGTTVLTAVGALATYDAIQLLKLSDLAGALSLEVHNGITSPFEENLH 281
                    ++L +KEGLALINGT +TA+G +A +A +L ++ +L++E GI F+E++H
        Sbjct: 181 PVTLTSKEGLALINGTQAMTAMGVVAYIEAEKLAYQTERIASLTIEGLQGIIDAFDEDIH 240
        Query: 282 TIRPQSGQLATARNIRNLLEGSQNTTVATQSRVQDPYTLRCMPQIHGASKDSIAYVKSKV 341
25
                          Q+ A IR L S TT + RVQD Y+LRC+PQ+HGA+ ++ YVK K+
        Sbjct: 241 LARGYQEQIDVAERIRFYLSDSGLTTSQGELRVQDAYSLRCIPQVHGATWQTLGYVKEKL 300
        Query: 342 DIEINSVTDNPIICKDG-HVISGGNFHGEPMAQPFDFLGIAISEIGNVSERRVERLVNSQ 400
                   +IE+N+ TDNP+I DG VISGGNFHG+P+A DFL IAISE+ N++ERR+ERLVN Q
30
        Sbjct: 301 EIEMNAATDNPLIFNDGDKVISGGNFHGQPIAFAMDFLKIAISELANIAERRIERLVNPQ 360
        Query: 401 LSKLPSFLVKYPGLNSGFMITQYACASLASENKVLAHPASVDSIPSCENQEDFVSMGTTA 460
                   L+ LP FL +PGL SG MI OYA ASL SENK LAHPASVDSIPS NOED VSMGT A
        Sbjct: 361 LNDLPPFLSPHPGLOSGAMIMQYAAASLVSENKTLAHPASVDSIPSSANQEDHVSMGTIA 420
35
        Query: 461 ARKAFEILKNSRRIVATEIMAACQALDLKPENHELGKGTKVAYDLFRKEVNFIEHDK 517
                   AR A++++ N+RR++A E + A QA++ + H
                                                       TK + RK V I+ D+
        Sbjct: 421 ARHAYQVIANTRRVIAIEAICALQAVEYRGIEH-AASYTKQLFQEMRKVVPSIQQDR 476
```

40 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2937

A DNA sequence (GASx2064) was identified in *S.pyogenes* <SEQ ID 8373> which encodes the amino acid sequence <SEQ ID 8374>. Analysis of this protein sequence reveals the following:

```
Possible site: 44

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4483 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

55 The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAG06563 GB:AE004741 probable arginase family protein
[Pseudomonas aeruginosa]

Identities = 99/275 (36%), Positives = 147/275 (53%), Gaps = 9/275 (3%)
```

PCT/GB01/04789

-2879-

```
Query: 53 LIGFKSDKGVYINNGRVGAVESPAAIRTQLAKFPWHLGNQVMVYDVGNIDGPNRSLEQLQ 112
                   L+GF SD+GV N GR GA P A+R LA WH G Q +YD G+I + LE Q
        Sbjct: 42 LLGFASDEGVRRNQGRQGARHGPPALRRALANLAWH-GEQA-IYDAGDIVAGD-DLEAAQ 98
5
        Ouery: 113 NSLSKAIKRMCDLNLKPIVLGGGHETAYGHYLGLRQSLSPSDDL---AVINMDAHFDLRP 169
                     ++ + +
                                + + LGGGHE AY + GL + LS + L
        Sbjct: 99 ECYAQRVADLLACGHRVVGLGGGHEIAYASFAGLARHLSRHERLPRIGIINFDAHFDLRH 158
10
        Ouery: 170 YDQTGPNSGTGFRQMFDDAVADKRLFKYFVLGIQEHNNNLFLFDFVAKSKGIQFLTGQDI 229
                       +SGT FRQ+ + A F Y LGI +N LFD A+ G+++L + +
        Sbict: 159 AERA--SSGTPFROIAELCOASDWPFAYCCLGISRLSNTAALFD-OAORLGVRYLLDROL 215
        Query: 230 YQMGHQKVCRAIDRFLEGQERVYLTIDMDCFSVGAAPGVSAIQSLGVDPNLAVLVLQHIA 289
15
                             +D FL+ + +YLT+ +D
                                                APGVSA + GV+ +
        Sbjct: 216 QPWNLERSEAFLDGFLQSVDHLYLTVCLDVLPAAQAPGVSAPSAHGVEMPVVEHLVRRAK 275
        Query: 290 ASGKLVGFDVVEVSPPHDIDNHTANLAATFIFYLV 324
                  ASGKL D+ E++P D D TA +AA + LV
20
        Sbjct: 276 ASGKLRLADIAELNPQLDSDQRTARIAARLVDSLV 310
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2938

Possible site: 27

A DNA sequence (GASx2065R) was identified in S.pyogenes <SEQ ID 8375> which encodes the amino 25 acid sequence <SEQ ID 8376>. Analysis of this protein sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence
30
            INTEGRAL
                       Likelihood = -0.37 Transmembrane 375 - 391 (375 - 392)
         ---- Final Results ----
                       bacterial membrane --- Certainty=0.1150 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
35
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAB37582 GB:AL035569 putative regulatory protein [Streptomyces
40
                   coelicolor A3(2)]
         Identities = 95/437 (21%), Positives = 177/437 (39%), Gaps = 28/437 (6%)
        Query: 271 EVGALLLIGDTGIGKRTLARQVLANQTQTFQIVTAKCFREEAMDSL--LPWRNILDGLGD 328
                   E ALLL G+ G+GK L + A + +V
                                                       E DL P+
45
        Sbjct: 95 EPQALLLGGEAGVGKTRLVEEFAAAADRRGAVVALGGCVEIGADGLPFAPFSTALRALRR 154
        Query: 329 LVIQNRLLTTKAWKAALKRCFP-VATIFQEDNNQPFIKDHTSLLVSFIVDILQHLAEIKA 387
                              + L R P +A
                                                     ++ + L:
        Spict: 155 HLPEELAAAAAGOEEELARLLPELAEGTPVTGGGRHDEESMARLFELTARLLERVAARHT 214
50
        Query: 388 LVILIEDCHWMDEDSLTLLQRVMNQLVHYPIAFVLT-----KHLGTTPEIGLCLNALM 440
                   +V+++ED HW D + L+ ++ L + + T
                                                                  PL L+L
        Sbjct: 215 VVLVLEDLHWADASTRHLIAYLLRTLRTGRLVVLATYRSDDIHRRHPLRPLLAE-LDRLR 273
55
        Query: 441 SQGRLESICLEPFNRQESLVYINSQLGSQPVTAEEMEHLYQASQGNPFFLSEYTQALLRH 500
                                     I L +P
                                                   +++ +++ S GN FF+ E
                   + RLE L FRE
        Spict: 274 TVRRLE---LGRFTRDEVGRQIAGILAHEP-DQLQVDEIFERSDGNAFFVEELAVA-ARV 328
        Query: 501 EKFVPLTPAIKAKLGLKLANLSSRDDALLNYLSCCRRPIPLNTLAQLMLLPLEEVIEMVD 560
60
                        LT +++ L +++ L
                                                            LA + L +++IE +
                                            + ++
        Sbjct: 329 GSCTGLTDSLRDLLLVRVEALPESAQRVARIVAEGGSTVEYRLLAAVARLAEDDLIEALR 388
```

-2880-

```
Query: 561 NLGHYYILVEESVGEEVLISFRQRIIQLYSYDRLSLSKRRLLHGQIAKRLEDLLPILTPS 620
+ + IL+ G+ FR +++ D L +R L+ +A+ L D P L P+
Sbjct: 389 SAVNANILLPAPDGDG--YRFRHSLVREAVGDDLLPGERSRLNRRYAEAL-DADPTLVPA 445

Query: 621 PHLLDDIAYHYQESRQVIKALEYNLNYLDATLPFQHELFPIYSKSIGSLEKSDRDHQRLM 680
+ +A ++ KAL LDA++ YS+ LE++ L
Sbjct: 446 AERVMRLASYWYHAHAPAKALP---AVLDASVEARRR--HAYSEQLRLLERA----MELW 496

Query: 681 EEQFDKIRQSIADLELT 697
+ D +R ++ ++ T
Sbjct: 497 DSAPDDVRATLRPVDCT 513
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2939

15

A DNA sequence (GASx2072) was identified in *S.pyogenes* <SEQ ID 8377> which encodes the amino acid sequence <SEQ ID 8378>. Analysis of this protein sequence reveals the following:

```
Possible site: 14

20

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.3702(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

30 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2940

A DNA sequence (GASx2074R) was identified in *S.pyogenes* <SEQ ID 8379> which encodes the amino acid sequence <SEQ ID 8380>. Analysis of this protein sequence reveals the following:

45 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2881-

Example 2941

A DNA sequence (GASx2075R) was identified in *S.pyogenes* <SEQ ID 8381> which encodes the amino acid sequence <SEQ ID 8382>. Analysis of this protein sequence reveals the following:

```
Possible site: 25

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3545(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2942

A DNA sequence (GASx2076R) was identified in *S.pyogenes* <SEQ ID 8383> which encodes the amino acid sequence <SEQ ID 8384>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 34

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2340(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

30 The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAC44494 GB:U44893 orf108; unknown function [Butyrivibrio fibrisolvens]

Identities = 42/75 (56%), Positives = 55/75 (73%)

35 Query: 1 LLKGTLRFGQLKSSIGSVSQKVLTAQLRAMEADGLVHREVYAEVPPRVEYSLTETGLSLA 60

LL RF +LK+++ +SQKVLT LR+ME DG++ R VY EVPPRVEYSL+E G S+

Sbjct: 31 LLVRPWRFNELKNNLEGISQKVLTDSLRSMEEDGIITRTVYPEVPPRVEYSLSELGESMR 90

Query: 61 PVIEAMSDWGQTYQE 75

P+I+AM WG Y+E

Sbjct: 91 PIIKAMEQWGTEYKE 105
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

45 Example 2943

A DNA sequence (GASx2097) was identified in *S.pyogenes* <SEQ ID 8385> which encodes the amino acid sequence <SEQ ID 8386>. Analysis of this protein sequence reveals the following:

```
Possible site: 40

50 >>> Seems to have no N-terminal signal sequence
INTEGRAL Likelihood = -3.40 Transmembrane 26 - 42 ( 23 - 44)
```

-2882-

```
---- Final Results ----

bacterial membrane --- Certainty=0.2359(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2944

5

A DNA sequence (GASx2098) was identified in *S.pyogenes* <SEQ ID 8387> which encodes the amino acid sequence <SEQ ID 8388>. Analysis of this protein sequence reveals the following:

```
Possible site: 20

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1385(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2945

A DNA sequence (GASx2100) was identified in *S.pyogenes* <SEQ ID 8389> which encodes the amino acid sequence <SEQ ID 8390>. Analysis of this protein sequence reveals the following:

```
30 Possible site: 23

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2138 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

40 The protein has homology with the following sequences in the GENPEPT database:

-2883-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2946

A DNA sequence (GASx2103) was identified in *S.pyogenes* <SEQ ID 8391> which encodes the amino acid sequence <SEQ ID 8392>. Analysis of this protein sequence reveals the following:

```
Possible site: 39

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3316(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

20 Example 2947

A DNA sequence (GASx2104) was identified in *S.pyogenes* <SEQ ID 8393> which encodes the amino acid sequence <SEQ ID 8394>. Analysis of this protein sequence reveals the following:

```
Possible site: 55

25 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4371(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2948

A DNA sequence (GASx2105) was identified in *S.pyogenes* <SEQ ID 8395> which encodes the amino acid sequence <SEQ ID 8396>. Analysis of this protein sequence reveals the following:

```
Possible site: 40

40

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2263 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2884-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2949

A DNA sequence (GASx2106) was identified in *S.pyogenes* <SEQ ID 8397> which encodes the amino acid sequence <SEQ ID 8398>. Analysis of this protein sequence reveals the following:

```
Possible site: 32

>>> Seems to have an uncleavable N-term signal seq

INTEGRAL Likelihood = -6.42 Transmembrane 9 - 25 ( 6 - 29)

---- Final Results ----

bacterial membrane --- Certainty=0.3569 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2950

20

A DNA sequence (GASx2107) was identified in *S.pyogenes* <SEQ ID 8399> which encodes the amino acid sequence <SEQ ID 8400>. Analysis of this protein sequence reveals the following:

```
Possible site: 25

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.1355 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

35 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2951

A DNA sequence (GASx2108) was identified in *S.pyogenes* <SEQ ID 8401> which encodes the amino acid sequence <SEQ ID 8402>. Analysis of this protein sequence reveals the following:

```
40 Possible site: 26

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.3050 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2885-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2952

5

A DNA sequence (GASx2109) was identified in *S.pyogenes* <SEQ ID 8403> which encodes the amino acid sequence <SEQ ID 8404>. Analysis of this protein sequence reveals the following:

```
Possible site: 13

10

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3628 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
20
         >GP:CAB46557 GB:AJ242479 putative replication protein [Streptococcus thermophilus]
         Identities = 143/242 (59%), Positives = 180/242 (74%), Gaps = 2/242 (0%)
         Query: 1 MAIYEARGFSSYLY--PYKGPLEPFDYIAQFRPLKPPEDIDIEEYKRTQAPYCLSGKVTA 58
                   MAIYE+RGF + L+ +PF ++A FRP+K P+ DI ++KR APYC+SG+V
25
         Sbjct: 1 MAIYESRGFGNILHLNNSNASKDPFKFVATFRPMKVPQGEDIADFKRYHAPYCISGEVKQ 60
         Query: 59 EKNGSYKRNNASLVYRDLIFLDYDEIETGVNLPKIVSQTLWEYSYIIYPTIKHTPEKPRY 118
                   +++G+YKRNNASL+YRDLIFLDYD++E + P+ VS L YSY+IYPTIKHT EKPRY
         Sbjct: 61 DEDGNYKRNNASLLYRDLIFLDYDKLEASTDFPRAVSNALNGYSYVIYPTIKHTAEKPRY 120
30
         Query: 119 RLVMKPSDVMTEATYKQVVKEIADKIGLPFDLASLTWSQLQGLPVTTGDPEDYQRYVNHG 178
                   RLV+KP+D M E TYK +EIADKIGLPFD +SLTWSQLQGLPVTTGDPE Y+R VN G
         Sbjct: 121 RLVVKPTDKMDEQTYKATAQEIADKIGLPFDDSSLTWSQLQGLPVTTGDPEKYERIVNRG 180
35
         Ouery: 179 LDYPVPKNGSTPNROVVTTYTPRPRSORSITMRVIDTLFNGFGNEGGRNVALTKFVGLLF 238
                           + +TPR +S+TMRV+DTL NGFG+EGGRN+ +T+FVGLL
         Sbjct: 181 RCYPVANPNTVKANHSPNYHTPRQSGDKSLTMRVVDTLLNGFGDEGGRNIEVTRFVGLLL 240
         Query: 239 NK 240
40
                   +K
         Sbjct: 241 SK 242
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

45 Example 2953

A DNA sequence (GASx2110) was identified in *S.pyogenes* <SEQ ID 8405> which encodes the amino acid sequence <SEQ ID 8406>. Analysis of this protein sequence reveals the following:

```
Possible site: 28

50 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.5215 (Affirmative) < succ>
```

-2886-

```
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ> bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

5 The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAB46558 GB:AJ242479 putative DNA primase [Streptococcus thermophilus]
         Identities = 274/548 (50%), Positives = 363/548 (66%), Gaps = 17/548 (3%)
                  DLKNLENEITEARE----NEDKYFSTFKGVRGQLIKECQEMKDEAFKIAYDGVMADSK 70
10
                   DL LE E E+++
                                       +ED Y TFK +R Q I
                                                          ++ K+ A++ YD M + K
                   DLTKLEEEYNESKKEASTLFDEDGYLKTFKDIRKQFINILEQKKEIAYQKGYDLYMNNPK 67
        Sbict: 8
        Query: 71 HLENVKAGRLTEVQHE-----ELAKEKGQEASEKALPKTPLGVAIMLKHYLRFIRVKP 123
                              E E
                                          E AK++G++A + A PKTPL A LK Y+RFIR++P
15
        Sbjct: 68 VLLKLAKAEKDEENGELIRKTVIEDAKKEGEKAKKNATPKTPLECAEFLKKYIRFIRIRP 127
        Query: 124 EAQGQKAPLYFFHPDHGVWLEDNEFLQDLISVIFPNATEKQAFDTLYKIARQSQLKEIQR 183
                             F
                                   G++LED+EFL DL+ I PN TE+
                                                             D LYKIA
        Sbjct: 128 KGKGRERLYTFTRQILGIYLEDDEFLHDLMVTIHPNNTERLGNDALYKIAHSVPLKDKQE 187
20
        Query: 184 EYTVIGNQLYNYKTGQFEELTPDITVTRKIKTGYNKKAKEPTIKGWKPTAWLLELFDGDA 243
                    Y V+G +LYN +TG+F + P I VTRK++ GYN A EP I GWKPT WL LF+GD
        Sbjct: 188 NYVVVGGELYNNETGEFTOFDPRIIVTRKVRMGYNPDATEPIIDGWKPTVWLKGLFNGDR 247
25
        Ouery: 244 ELYNLAIOIIKASITGOSLOKIFWLFGEGGTGKGTFOOLLINLVGMDNVASLKITELAKS 303
                   + Y+LAIQII+A+ITG++L+ IFWL+GEGGTGKGTFQ LL NLVG +NVAS KI + A
        Sbjct: 248 DSYDLAIQIIRATITGKTLENIFWLYGEGGTGKGTFQTLLENLVGSENVASFKI-DGASG 306
        Ouery: 304 RFTTSILLGKSIVIGDDIOKDAVIKDTSDIFSLATGDIMTIEDKGKRPYSIRLNMTVVQS 363
30
                   +F TSIL+GK++VIGDDIQKD VIKDTS +FSLATGD + IEDKGKRPY+ R MTVVQS
        Sbjct: 307 KFDTSILIGKTVVIGDDIQKDVVIKDTSVVFSLATGDPIRIEDKGKRPYTTRKRMTVVQS 366
        Query: 364 SNGLPRMNGDKSAIDRRFRILPFTKVFKGKPNKAIRNDYINRKEVLEYLLKLAIETPITD 423
                   SNG PRMN D+ AI+RRFR+L F+++ KGK +K I+NDY+ RKEVLEY +KLAIETP D
35
        Sbjct: 367 SNGFPRMNADQKAINRRFRVLTFSEL-KGKADKRIKNDYVGRKEVLEYFVKLAIETPFRD 425
        Query: 424 INPKASIEILEEHHKEMNPVIDFVSKFFTDE-LTSEFIPNSFVYHVWKGFLEYYDIKQ-I 481
                   +NP+ SIE L+E +KEMNPV DFV +FF DE +
                                                       ++PN +V+ +K + E
        Sbjct: 426 VNPQKSIEFLDEAYKEMNPVADFVDRFFNDEVIKCNYVPNGYVFECFKAYCEKNQNRNYF 485
40
        Query: 482 KSERGLHKEIKSNLPEGFEAGQKVIPVGRQLHTGFYPKEDLPLFASASYANGRASPEKRK 541
                    + R LHK+IK LP+ F
                                       + I G++ + F P
                                                           + +Y NGR
                                                                          E ++
        Sbjct: 486 LNSRTLHKQIKKILPKTFRPKEVTIKKGQKFYEEFNPHLVSNPWHFDAYDNGRNKKEDQQ 545
45
        Query: 542 KPKNERGY 549
                     K ERGY
        Sbjct: 546 DAKKERGY 553
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2954

50

A DNA sequence (GASx2111) was identified in *S.pyogenes* <SEQ ID 8407> which encodes the amino acid sequence <SEQ ID 8408>. Analysis of this protein sequence reveals the following:

```
Possible site: 41

55

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.0994 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2887-

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2955

5

A DNA sequence (GASx2112) was identified in *S.pyogenes* <SEQ ID 8409> which encodes the amino acid sequence <SEQ ID 8410>. Analysis of this protein sequence reveals the following:

```
Possible site: 54

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3058(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2956

A DNA sequence (GASx2114) was identified in *S.pyogenes* <SEQ ID 8411> which encodes the amino acid sequence <SEQ ID 8412>. Analysis of this protein sequence reveals the following:

```
25 Possible site: 37

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2815(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in *S.agalactiae*.

35 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2957

A DNA sequence (GASx2115R) was identified in *S.pyogenes* <SEQ ID 8413> which encodes the amino acid sequence <SEQ ID 8414>. Analysis of this protein sequence reveals the following:

```
Possible site: 27

>>> Seems to have an uncleavable N-term signal seq

45

---- Final Results ----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
```

-2888-

```
bacterial outside --- Certainty=0.0000(Not Clear) < succ>bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

5 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2958

A DNA sequence (GASx2116) was identified in *S.pyogenes* <SEQ ID 8415> which encodes the amino acid sequence <SEO ID 8416>. Analysis of this protein sequence reveals the following:

```
Possible site: 56

>>> Seems to have no N-terminal signal sequence

15

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4213 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

20 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2959

A DNA sequence (GASx2117) was identified in *S.pyogenes* <SEQ ID 8417> which encodes the amino acid sequence <SEQ ID 8418>. Analysis of this protein sequence reveals the following:

```
Possible site: 20

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3091(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

40 Example 2960

45

A DNA sequence (GASx2118) was identified in *S.pyogenes* <SEQ ID 8419> which encodes the amino acid sequence <SEQ ID 8420>. Analysis of this protein sequence reveals the following:

```
Possible site: 41
>>> Seems to have an uncleavable N-term signal seq
```

-2889-

```
---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

10 Example 2961

5

A DNA sequence (GASx2119) was identified in *S.pyogenes* <SEQ ID 8421> which encodes the amino acid sequence <SEQ ID 8422>. Analysis of this protein sequence reveals the following:

```
Possible site: 22

25 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2531(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
25 SGP:AAF63071 GB:AF158600 gp137 [Streptococcus thermophilus bacteriophage Sfil1]

Identities = 41/121 (33%), Positives = 65/121 (52%), Gaps = 3/121 (2%)

Query: 4 KNAIRKLKEFHRWQRIAN-SLDLTYTELYQFDIEYHPTRR--KHLEISRECALEELDAIR 60

K RKL+E+ RW+ IA+ S + T+ + F + +++ + R AL EL+AI

30 Sbjct: 13 KRCKRKLREYPRWREIAHDSAEQKITQEFTFMPRGGGVNKPVENIAVRRVDALNELEAIE 72

Query: 61 YAINQLSKVEYRQILIECYLISEEKTQQDIMEELNGSQSWYYESKKRALLEFVEFYRDGAL 121

A+N L + +YR+ILIE YL K I + + + + E ++L F E YRDG L

Sbjct: 73 QAVNGLYRPDYRRILIEKYLAYPPKPNWQIAQSIGFERTAFQELLNNSILAFAELYRDGRL 133
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2962

A DNA sequence (GASx2120) was identified in *S.pyogenes* <SEQ ID 8423> which encodes the amino acid sequence <SEQ ID 8424>. Analysis of this protein sequence reveals the following:

```
Possible site: 24

>>> Seems to have no N-terminal signal sequence

45

---- Final Results ----

bacterial cytoplasm --- Certainty=0.2666 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2890-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2963

5

A DNA sequence (GASx2121) was identified in *S.pyogenes* <SEQ ID 8425> which encodes the amino acid sequence <SEQ ID 8426>. Analysis of this protein sequence reveals the following:

```
Possible site: 30

>>> Seems to have a cleavable N-term signal seq.

10

---- Final Results ----

bacterial outside --- Certainty=0.3000(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2964

A DNA sequence (GASx2123R) was identified in *S.pyogenes* <SEQ ID 8427> which encodes the amino acid sequence <SEQ ID 8428>. Analysis of this protein sequence reveals the following:

```
Possible site: 21

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3441(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

35 Example 2965

A DNA sequence (GASx2132) was identified in *S.pyogenes* <SEQ ID 8429> which encodes the amino acid sequence <SEQ ID 8430>. Analysis of this protein sequence reveals the following:

```
Possible site: 31

40 >>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

-2891-

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2966

A DNA sequence (GASx2136) was identified in *S.pyogenes* <SEQ ID 8431> which encodes the amino acid sequence <SEQ ID 8432>. Analysis of this protein sequence reveals the following:

```
Possible site: 30

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -3.19 Transmembrane 57 - 73 ( 54 - 78)

---- Final Results ----

bacterial membrane --- Certainty=0.2275 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

30 Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2967

A DNA sequence (GASx2137) was identified in *S.pyogenes* <SEQ ID 8433> which encodes the amino acid sequence <SEQ ID 8434>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

45 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2892-

Example 2968

A DNA sequence (GASx2139) was identified in *S.pyogenes* <SEQ ID 8435> which encodes the amino acid sequence <SEQ ID 8436>. Analysis of this protein sequence reveals the following:

```
Possible site: 28

>>> Seems to have a cleavable N-term signal seq.
INTEGRAL Likelihood = -5.89 Transmembrane 63 - 79 ( 54 - 80)

---- Final Results ----

bacterial membrane --- Certainty=0.3357 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

15 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2969

A DNA sequence (GASx2141R) was identified in *S.pyogenes* <SEQ ID 8437> which encodes the amino acid sequence <SEQ ID 8438>. Analysis of this protein sequence reveals the following:

```
Possible site: 19

>>> Seems to have no N-terminal signal sequence

25

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4663 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

30 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2970

A DNA sequence (GASx2142) was identified in *S.pyogenes* <SEQ ID 8439> which encodes the amino acid sequence <SEQ ID 8440>. Analysis of this protein sequence reveals the following:

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

Possible site: 29 >>> Seems to have a cleavable N-term signal seq. 40 INTEGRAL Likelihood =-10.08 Transmembrane 143 - 159 (135 - 165) INTEGRAL Likelihood = -7.64 Transmembrane 53 - 69 (49 - 79) INTEGRAL Likelihood = -7.17 Transmembrane 252 - 268 (248 - 275) Likelihood = -6.74 Transmembrane 186 - 202 (183 - 208) INTEGRAL Likelihood = -5.63 Transmembrane 220 - 236 (218 - 240) TNTEGRAL 45 INTEGRAL Likelihood = -5.26 Transmembrane 116 - 132 (115 - 136) INTEGRAL Likelihood = -2.02 Transmembrane 85 - 101 (85 - 101) Likelihood = -0.64 Transmembrane 165 - 181 (165 - 181) INTEGRAL ---- Final Results ----50 bacterial membrane --- Certainty=0.5034 (Affirmative) < succ>

-2893-

```
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
5
        >GP:AAD35257 GB:AE001701 conserved hypothetical protein [Thermotoga maritima]
         Identities = 81/275 (29%), Positives = 137/275 (49%), Gaps = 29/275 (10%)
                  FKGMIIALGFILPGVSGGVLAAILGIYERMISFLAHMRDNFIENVLFFLPVGIG---GIL 65
                  F G+++ + ++PGVSGG +A ++G+YE++I + ++ +PVG G G+
10
        Sbict: 7
                  FSGVLMGIANVVPGVSGGTIAVLMGVYEKLIESVNSFFHGNSRSLKVLIPVGAGVLVGVF 66
        Query: 66 GIALFSFPVEFLLKHYQVSVLWGFAGAIVGTIPSLIKESTKQSQRDKADWLWLVLTFVIS 125
                  GIAF +E L YV + FGI IS+K TK+ K + + FV+
        Sbjct: 67 GIARF---LEIFLSKYPVPTHFFFLGLI---IVSFVK--TKEYFSIKP----VNIFFVLL 114
15
        Query: 126 GLGLYFLNDLIG--TLPANFLTFILAGALIALGVLVPGLSPSNLLLLILGLYGPMLIGFKS 183
                  G+ L F+ G T + +L G + A ++VPG+S S +LLI G+Y +L
        Sbjct: 115 GMFLIFMLHFSGETTAKESMFLLVLGGFVAATAMVVPGISGSLILLIFGVYDHVLYLVSH 174
20
        Query: 184 LDLLGTFLPIAIGGVLAILAFSKSMDYALQHHHSKVYHFIIGIVLSSTLLILIPNSSSPE 243
                  L ++G L +IG V IL K M++ L+ + Y FI G++L+S L ++P
        Sbjct: 175 L-IIGELLIFSIGVVAGILVSVKIMNFLLKRFREETYSFIGGMILAS-LYEVLPKKMNTN 232
        Query: 244 SISYSHAGILTWLMAFVLFALGIWLGLWMSQLEEK 278
25
                            L + + L + LG ++ +E+K
        Sbjct: 233 VV-----LPSVLSLVLSLTLGFFLLYIEKK 257
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 2971

A DNA sequence (GASx2143R) was identified in *S.pyogenes* <SEQ ID 8441> which encodes the amino acid sequence <SEQ ID 8442>. Analysis of this protein sequence reveals the following:

```
Possible site: 20

35 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3964(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
SGP:BAB05000 GB:AP001511 unknown conserved protein in others

[Bacillus halodurans]

Identities = 28/78 (35%), Positives = 37/78 (46%)

Query: 44 EVDKVFIVPLRQLLFTDPVYYRLEVTPIETTDFPFDRIRNGKYYQFSQEYRSIPFYENLE 103

EVD VF VP+ + P YR+ V FP +RI N YQ S + FY

Sbjct: 127 EVDHVFTVPIDHFISHPPEQYRINVHFEPGAGFPIERIANQSAYQKSTRQITESFYYYQS 186

Query: 104 ETIWGMTAQFTKCLTDIL 121

IWG+TA+ + + IL

Sbjct: 187 YVIWGLTAKILRHVITIL 204
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2894-

Example 2972

A DNA sequence (GASx2144R) was identified in *S.pyogenes* <SEQ ID 8443> which encodes the amino acid sequence <SEQ ID 8444>. Analysis of this protein sequence reveals the following:

```
Possible site: 17

5

>>> Seems to have no N-terminal signal sequence

----- Final Results -----

bacterial cytoplasm --- Certainty=0.4761(Affirmative) < succ>

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2973

A DNA sequence (GASx2145) was identified in *S.pyogenes* <SEQ ID 8445> which encodes the amino acid sequence <SEQ ID 8446>. Analysis of this protein sequence reveals the following:

30 No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA49519 GB:X69895 X [Bacillus sphaericus]
Identities = 40/97 (41%), Positives = 57/97 (58%), Gaps = 5/97 (5%)

Query: 10 IEFLILAIVEKNDSYGYDISQTIKLVAN----IKESTLYPILKKLEKAGFLTTYSQE-HQ 64
++ +IL ++ + D YGY+ISQ I N IKE+TLY + ++LEK + Y +
Sbjct: 11 LDSIILRLILEKDRYGYEISQEISNRTNNSFQIKEATLYAVFQRLEKKEVIEAYYGDVSD 70

Query: 65 GRKRKYYAVTSSGRAQLIFLKKEWQSYKFALDGIIEG 101
G KRKYY +TS G+A L L KEW K +D +EG
Sbjct: 71 GGKRKYYRITSLGKAYLSELVKEWAEVKEIDLFMEG 107
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

45 Example 2974

A DNA sequence (GASx2146) was identified in *S.pyogenes* <SEQ ID 8447> which encodes the amino acid sequence <SEQ ID 8448>. Analysis of this protein sequence reveals the following:

```
Possible site: 56

50 >>> Seems to have no N-terminal signal sequence
INTEGRAL Likelihood =-14.75 Transmembrane 97 - 113 ( 77 - 143)
```

-2895-

```
INTEGRAL Likelihood = -6.85 Transmembrane 116 - 132 ( 114 - 143)
INTEGRAL Likelihood = -5.68 Transmembrane 156 - 172 ( 149 - 175)
INTEGRAL Likelihood = -5.47 Transmembrane 79 - 95 ( 77 - 96)

5 ---- Final Results ----
bacterial membrane --- Certainty=0.6901(Affirmative) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

10 No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2975

55

A DNA sequence (GASx2147) was identified in *S.pyogenes* <SEQ ID 8449> which encodes the amino acid sequence <SEQ ID 8450>. Analysis of this protein sequence reveals the following:

```
Possible site: 31

>>> Seems to have an uncleavable N-term signal seq

INTEGRAL Likelihood = -7.11 Transmembrane 8 - 24 ( 6 - 30)

---- Final Results ----

bacterial membrane --- Certainty=0.3845 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:AAF04457 GB:AF078161 lacunin [Manduca sexta]
30
         Identities = 68/310 (21%), Positives = 117/310 (36%), Gaps = 12/310 (3%)
                   DIDSSASTITVETGPVQRPTVTYYTHPKLIDPIVTTVTGKTLSLSQTPKDVVITGGIEIL 114
        Query: 55
                   DI+ + ++ + E+ T++ T + TT T T +S T +
        Sbict: 1004 DIEGTTASGSTESTFTDETTMSKVTEESSVAEEETTKTTITEEVSGTSESASINSDKTTM 1063
35
        Query: 115 GFTLNNSRQEKNYRSIT--ITVPEKTSLNEVKASNVPHTTLSNLT--VODMQFDGNLTLL 170
                             IT +TV E+TS TT+S ++
        Sbjct: 1064 TTLSEDTGKTSVSEEITTEMTVTEETSETSPTEGTSDKTTMSTVSEETESSSVTEETTTE 1123
40
        Query: 171 HTKVKKATITGMLEATKSQLTNLELKADYSFSNLTDSSVE-NGTISLGNGQLTTKDTTLK 229
                    T V+ AT E T S T + ++ S +++ E T +
        Sbict: 1124 TTVVENATDISSTEVTASDKTTMTTMSEESEKTTEEATTEITVTKEVTESSSTETATSDK 1183
        Query: 230 AVNIQSLHPGGIE-AERTTLENVTFTVSKSKEEEENDYYDNDAIFTAHALTLKGTNTITG 288
45
                    ++ S G AE +T E VT T + EE
                                                             T+ +T+K T T
        Sbjct: 1184 TISTLSEETGKTSVAEESTTEKVTETTVTTMPEETGK-----TITSEEITIKTTVTEEP 1237
        Query: 289 GDIDVDITLTKAKAIAYRARTENGKVSLGSQLTPAKIGKESTSDVISYVAENKAATGNLT 348
                    D+
                        +T K A E GK S+ + T E++++ S A
50
        Sbjct: 1238 TDVGSSEAITSDKTTVSTASEETGKYSVSEEETVKTTVAEASTEPSSTEAITSDKTKMST 1297
        Query: 349 VNLNKGDITI 358
                   ++ G ++
        Sbjct: 1298 ISEETGKTSV 1307
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2896-

Example 2976

A DNA sequence (GASx2148R) was identified in *S.pyogenes* <SEQ ID 8451> which encodes the amino acid sequence <SEQ ID 8452>. Analysis of this protein sequence reveals the following:

```
Possible site: 28

5

>>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S.agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2977

A DNA sequence (GASx2160) was identified in *S.pyogenes* <SEQ ID 8453> which encodes the amino acid sequence <SEQ ID 8454>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 29

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.1630 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

30 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2978

A DNA sequence (GASx2170R) was identified in *S.pyogenes* <SEQ ID 8455> which encodes the amino acid sequence <SEQ ID 8456>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

-2897-

Example 2979

A DNA sequence (GASx2174) was identified in *S.pyogenes* <SEQ ID 8457> which encodes the amino acid sequence <SEQ ID 8458>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S.agalactiae.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2980

A DNA sequence (GASx2181R) was identified in *S.pyogenes* <SEQ ID 8459> which encodes the amino acid sequence <SEQ ID 8460>. Analysis of this protein sequence reveals the following:

```
20 Possible site: 24

>>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3751(Affirmative) < succ>
bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

30 The protein has no significant homology with any sequences in the GENPEPT database.

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2981

35

A DNA sequence (GASx2185R) was identified in *S.pyogenes* <SEQ ID 8461> which encodes the amino acid sequence <SEQ ID 8462>. Analysis of this protein sequence reveals the following:

No corresponding DNA sequence was identified in S. agalactiae.

The protein has no significant homology with any sequences in the GENPEPT database.

-2898-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2982

5

A DNA sequence (GASx2186R) was identified in *S.pyogenes* <SEQ ID 8463> which encodes the amino acid sequence <SEQ ID 8464>. Analysis of this protein sequence reveals the following:

```
Possible site: 61

>>> Seems to have no N-terminal signal sequence

10

---- Final Results ----

bacterial cytoplasm --- Certainty=0.4803 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

15 No corresponding DNA sequence was identified in *S.agalactiae*.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA78948 GB:Z17279 transposase [Streptococcus salivarius]
Identities = 48/77 (62%), Positives = 55/77 (71%), Gaps = 1/77 (1%)

Query: 1 VSMKPIDLSKMVSIRKRSKKVMKTNKKTLGKSIEERPEYINDRSEFGHWEIDLALGKKTK 60
+ +K IDL + V IRK+ K T KK LGKSIEERPE IN+RS FG WEID LG KT
Sbjct: 150 LEIKVIDLPRAVRIRKKFTKRPST-KKHLGKSIEERPEEINNRSRFGDWEIDSVLGGKTI 208

Query: 61 SEAVMLTLVERQTRYAL 77
E +LTLVERQTRYA+
Sbjct: 209 GEPSILTLVERQTRYAV 225
```

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 2983

A DNA sequence (GASx2187R) was identified in *S.pyogenes* <SEQ ID 8465> which encodes the amino acid sequence <SEQ ID 8466>. Analysis of this protein sequence reveals the following:

```
Possible site: 50

35 >>> Seems to have no N-terminal signal sequence

---- Final Results ----

bacterial cytoplasm --- Certainty=0.3287 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

No corresponding DNA sequence was identified in S. agalactiae.

The protein has homology with the following sequences in the GENPEPT database:

```
>GP:CAA78948 GB:Z17279 transposase [Streptococcus salivarius]

Identities = 48/87 (55%), Positives = 57/87 (65%)

Query: 1 MNMSNINSTRKSSYSHLSATERGEIAAYLKMGKKPVEIARLLGSHRSTICREIKRGSVDQ 60

MNMS ST SY HLS ERGEI AYL +G KP EIAR LG +RSTI REI RGS+ Q

Sbjct: 1 MNMSTNYSTTNQSYKHLSEAERGEIEAYLSVGLKPAEIARRLGRNRSTITREINRGSITQ 60

Query: 61 VKDKNGKQTFFNAYFADSRQRVYETNR 87

VK NG++ ++ Y+AD+ Y R

Sbjct: 61 VKKVNGQKVYYQHYYADAAHNRYRHAR 87
```

-2899-

Based on this analysis, it was predicted that this GAS-specific protein and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 2984

5

A DNA sequence <SEQ ID 9013> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9014>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1
                                  Crend: 3
        McG: Discrim Score:
                                10.50
         GvH: Signal Score (-7.5): -5.2
             Possible site: 40
10
         >>> Seems to have an uncleavable N-term signal seq
        ALOM program count: 4 value: -12.26 threshold: 0.0
           INTEGRAL
                       Likelihood =-12.26 Transmembrane
                                                           98 - 114 ( 94 - 116)
           INTEGRAL
                      Likelihood = -8.17 Transmembrane
                                                           5 - 21 ( 1 -
                       Likelihood = -6.95 Transmembrane
                                                            62 - 78 ( 57 -
           INTEGRAL
15
           INTEGRAL
                       Likelihood = -5.84 Transmembrane
                                                          37 - 53 ( 30 -
           PERIPHERAL Likelihood = 17.35
         modified ALOM score:
                                2.95
         *** Reasoning Step: 3
20
         ---- Final Results ----
                       bacterial membrane --- Certainty=0.5904 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
25
      The protein has homology with the following sequences in the databases:
         ORF01345(292 - 636 of 951)
         PIR G64646 G64646 (56 - 168 of 205) hypothetical protein HP1015 - Helicobacter pylori
         (strain 26695)
30
         Match = 4.4
         %Identity = 30.6 %Similarity = 54.1
        Matches = 34 Mismatches = 46 Conservative Sub.s = 26
                           147
                                     177
                                               207
                                                         237
                                                                  267
                                                                            297
                 117
35
         {\tt LSGMGATFVPQTLIHRYLDKECNVYHFHKNKLFSEYIMIYKKDVELSGIALLLYKAFLTK*FR*FY*KSVYFLPKSV*NR}
                               RYFLONIIHIHONKELOFIKKCLLGYFFAPLCGAILLVLFIVSSGAKSFQISNLFNN
                                       10
                                                 20
                                                          30
                                                                    40
                                                                              50
40
                                                          471
         327
                  357
                            381
                                      411
                                                441
                                                                    501
         PMIYKIIASLFLVLIPIFSOVL--VKIFKLKKFNIMFPDVAFPIFVFLIPLISSSLLKONLLPYYLILISLLAIGITI-~
                                :: |: :
                                            1:11:11:
                                                                     1
          : | :: | | | :
                         : :
         QLAYIVLLSLFLCALGFIAGAIGFYRLSKITRHLSFFENFAFSFLAVILCAILSYLV----PNASNALSLIGNGVSIFY
                   70
                             80
                                       90
                                                100
                                                          110
                                                                        120
                                                                                  130
45
                  579
                            606
                                      636
                                                666
                                                          696
                                                                    726
         549
                                                                             756
         --KLLRTKTLFSYKRFLKLFWRSGF-ILTFLFYLGLLVIIFIKVQ*KELDKLNCTPKVRQKI*RLGCFSDEIKL*R*TRN
                            : ||| :| | | | || |:
           LHKLYRELSLYTQERF----FLSGFRLLLFSFMLALLGILVQALVIIFLTTAVVLMCVALGFLARAFLNFSQVFLKA
50
                           150
                                               170
                                                         180
```

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2985

A DNA sequence <SEQ ID 9015> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9016>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1 Crend: 10
```

-2900-

```
GvH: Signal Score (-7.5): -2.08
              Possible site: 34
         >>> Seems to have a cleavable N-term signal seq.
 5
        ALOM program count: 0 value: 10.45 threshold: 0.0
           PERIPHERAL Likelihood = 10.45
          modified ALOM score: -2.59
         *** Reasoning Step: 3
10
         ---- Final Results ----
                        bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
                        bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
                       bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
15
      The protein has homology with the following sequences in the databases:
         43.9/72.0% over 56aa
                                                                              Streptococcus
        pneumoniae
20
           EGAD 7626 epua protein Insert characterized
           SP|Q03159|EPUA STRPN EPUA PROTEIN. Insert characterized
           GP 47373 emb CAA38133.1 X54225 7 kDa protein Insert characterized
           PIR S10640 S10640 epuA protein - Insert characterized
25
         ORF01809(331 - 501 of 801)
         EGAD 7626 7426 (8 - 64 of 64) epua protein {Streptococcus pneumoniae}SP Q03159 EPUA STRPN
                                                                          protein
                 PROTEIN.GP | 47373 | emb | CAA38133.1 | ] X54225
                                                                kDa
                                                                                       {Streptococcus
                                                           7
        pneumoniae}PIR|S10640|S10640 epuA protein - Streptococcus pneumoniae
         Match = 10.0
30
         %Identity = 43.9 %Similarity = 71.9
        Matches = 25 Mismatches = 16 Conservative Sub.s = 16
         171
                   201
                             231
                                       261
                                                 291
                                                           321
                                                                     351
                                                                               381
         RSCLLTYELVOL*SWOEWLRKGKO*LAN*PI*TVVIINSMKN*RLLVLILINV*VRRNMASSGWKYVLKOIGLIVLVILLA
35
                                                                         11:1:: 1:::1::1
                                                                 MKMNKKSSYVVKRLLLVIIVLILG
                                                                         10
                                                                                   20
```

501

A related DNA sequence <SEQ ID 10507> was identified in GBS which encodes amino acid sequence <SEQ ID 10508>.

531

LLFLAVGLMLGYSVFGDGEHAYSILSLDKWONIIGKFLGK*KEPL*VI*CL*WFPLRVNFSSRIIO*OKNKNK*OLRL*L

561

591

621

SEQ ID 9016 (GBS168) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 33 (lane 9; MW 7.6kDa) and in Figure 34 (lane 5; MW 7.6kDa). It was also expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 42 (lane 2; MW 32.6kDa).

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vacc

Example 2986

411

40

50

55

441

471

McG: Discrim Score:

13.20

A DNA sequence <SEQ ID 9017> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9018>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1 Crend: 8 McG: Discrim Score: -2.85
```

```
GvH: Signal Score (-7.5): -5.7
             Possible site: 21
        >>> Seems to have no N-terminal signal sequence
        ALOM program count: 0 value: 5.25 threshold: 0.0
 5
           PERIPHERAL Likelihood = 5.25
         modified ALOM score: -1.55
        *** Reasoning Step: 3
10
        ---- Final Results ----
                     bacterial cytoplasm --- Certainty=0.1210 (Affirmative) < succ>
                      bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
15
     The protein has homology with the following sequences in the databases:
        56.1/72.0% over 131aa
                                           Escherichia coli
          EGAD 40237 arsenate reductase Insert characterized
          SP|P52147|ARC2 ECOLI ARSENATE REDUCTASE (ARSENICAL PUMP MODIFIER). Edit characterized
20
          GP | 1061418 | gb | AAB09628.1 | | U38947 ArsC { Plasmid R46 } Insert characterized
        ORF00095(304 - 699 of 1008)
        EGAD 40237 42398(1 - 132 of 141) arsenate reductase {Escherichia coli} SP P52147 ARC2 ECOLI
        ARSENATE REDUCTASE (ARSENICAL PUMP MODIFIER). GP 1061418 gb AAB09628.1 U38947 Arsc
25
        {Plasmid R46}
        %Match = 22.0
        %Identity = 56.1 %Similarity = 72.0
        Matches = 74 Mismatches = 37 Conservative Sub.s = 21
30
        129
                 159
                          189
                                    219
                                             249
                                                       279
                                                                309
                                                                         339
        RIHSSLSL*PIFHRKRPYPSRAFRRYFSNSCG*LWC*YCDDWRELLAGLGINFYFLKTLVALKIERKMMEKIRIYHNPNC
                                                                        1 1 1 1 1 1 1 1 1 1 1 1 1
                                                                       MSNITIYHNPHC
                                                                               10
35
                 399
                          429
                                    459
                                             489
                                                       519
                                                                549
        GTSRNVLAIIRHCGIEPEIIYYLKTPPSRMELVELLLEMKLSARELLRTDVPAYEKFNLESSSVTDEEMIDAMIODPILI
        GTSRNTLEMIRNSGIEPTVILYLETPPSRDELLKLIADMGISVRALLRKNVEPYEELGLAEDKFTDDOLIDFMLOHPILI
40
                      30
                             40 50
                                                  60
                                                          70
        609
                 639
                          669
                                    699
                                             729
                                                     759
                                                               789
                                                                         819
        NRPIVVTSKGAKLCRPCEAILTILPVKMEKDFVKEDGQIIQSL*HIV**IMV*EVSK*HY*KKLMRLETFCKQKASQHQN
        45
        NRPIVVTPLGTKLCRPSEVVLDILPDAOKAAFTKEDGEKVVDDSGKRLK
                      110
```

SEQ ID 9018 (GBS45) was expressed in E.coli as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 8 (lane 4; MW 18,6kDa).

50 The GBS45-His fusion product was purified (Figure 97A; see also Figure 191, lane 5) and used to immunise mice (lane 1 product; 20µg/mouse). The resulting antiserum was used for Western blot (Figure 97B), FACS (Figure 97C), and in the in vivo passive protection assay (Table III). These tests confirm that the protein is immunoaccessible on GBS bacteria and that it is an effective protective immunogen.

130

Based on this analysis, it is predicted that this protein from S.agalactiae, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2987

55

A DNA sequence <SEQ ID 9019> was identified in S.agalactiae which encodes amino acid sequence <SEQ ID 9020>. Analysis of the amino acid sequence reveals the following:

-2902-

```
Lipop: Possible site: -1 Crend: 3
        McG: Discrim Score:
                                6.84
        GvH: Signal Score (-7.5): 2.98
             Possible site: 25
 5
         >>> Seems to have a cleavable N-term signal seq.
        ALOM program count: 0 value: 13.69 threshold:
           PERIPHERAL Likelihood = 13.69
         modified ALOM score: -3.24
10
         *** Reasoning Step: 3
         ---- Final Results ----
                        bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
                       bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
15
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear)
```

A DNA sequence <SEQ ID 10337> was identified in GBS which encodes amino acid sequence <SEQ ID 10338>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

SEQ ID 9020 (GBS55) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 17 (lane 7; MW 11.3kDa). It was also expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 33 (lane 5; MW 36.3kDa).

GBS55-GST was purified as shown in Figure 197, lane 5.

GBS671 was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 161 (lane 2-4; MW 12kDa) and in Figure 188 (lane 2; MW 12kDa). Purified protein is shown in Figure 242, lane 3.

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2988

20

25

30

A DNA sequence <SEQ ID 9021> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9022>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1
                                 Crend: 3
        McG: Discrim Score:
                              -14.35
        GvH: Signal Score (-7.5): -2.12
             Possible site: 44
35
        >>> Seems to have no N-terminal signal sequence
        ALOM program count: 4 value: -13.90 threshold: 0.0
                     Likelihood =-13.90 Transmembrane 101 - 117 ( 92 - 126)
           INTEGRAL
           INTEGRAL
                     Likelihood = -7.64 Transmembrane 130 - 146 (125 - 148)
           INTEGRAL Likelihood = -6.64 Transmembrane 24 - 40 ( 20 - 45)
40
           INTEGRAL Likelihood = -2.44 Transmembrane 55 - 71 ( 55 -
           PERIPHERAL Likelihood = 17.40
                                               2
         modified ALOM score:
                               3.28
        *** Reasoning Step: 3
45
        ---- Final Results -----
                      bacterial membrane --- Certainty=0.6562(Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
50
```

SEQ ID 9022 (GBS215) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 175 (lane 10: MW 45kDa).

-2903-

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2989

5

25

A DNA sequence <SEQ ID 9023> was identified in *S.agalactiae* which encodes amino acid sequence <SEO ID 9024>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1
                                 Crend: 0
        McG: Discrim Score:
        GvH: Signal Score (-7.5): -5.3
             Possible site: 61
10
        >>> Seems to have an uncleavable N-term signal seg
        ALOM program count: 2 value: -14.12 threshold: 0.0
                     Likelihood =-14.12 Transmembrane 13 - 29 (
           INTEGRAL
           INTEGRAL
                    Likelihood = -8.17 Transmembrane 44 - 60 (39 - 65)
           PERIPHERAL Likelihood = 39.00 29
15
         modified ALOM score:
                              3.32
        *** Reasoning Step: 3
        ---- Final Results ----
20
                      bacterial membrane --- Certainty=0.6647 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

SEQ ID 9024 (GBS217) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 85 (lane 2; MW 36.1kDa) and in Figure 156 (lane 1 & 3; MW 36kDa).

GBS217-GST was purified as shown in Figure 224, lane 5-6.

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2990

A DNA sequence <SEQ ID 9025> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9026>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1
                                 Crend: 10
        McG: Discrim Score:
                                8.20
        GvH: Signal Score (-7.5): -3.7
35
             Possible site: 33
        >>> Seems to have an uncleavable N-term signal seq
        ALOM program count: 4 value: -9.98 threshold: 0.0
           INTEGRAL Likelihood = -9.98 Transmembrane 22 - 38 ( 12 -
           INTEGRAL
                    Likelihood = -7.80 Transmembrane 61 - 77 ( 56 -
40
                    Likelihood = -5.20 Transmembrane 121 - 137 ( 117 - 148)
           INTEGRAL
           INTEGRAL
                     Likelihood = -2.97 Transmembrane 99 - 115 ( 98 - 119)
           PERIPHERAL Likelihood = 10.77
         modified ALOM score: 2.50
45
        *** Reasoning Step: 3
        ---- Final Results ----
                      bacterial membrane --- Certainty=0.4991(Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
50
                     bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

A related DNA sequence <SEQ ID 10701> was identified in GBS which encodes amino acid sequence <SEQ ID 10702>.

-2904-

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2991

5

25

A DNA sequence <SEQ ID 9027> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9028>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1 Crend: 7
        McG: Discrim Score:
                              10.61
        GvH: Signal Score (-7.5): -4.21
             Possible site: 51
10
        >>> Seems to have an uncleavable N-term signal seg
        ALOM program count: 3 value: -10.99 threshold: 0.0
           INTEGRAL Likelihood =-10.99 Transmembrane 38 - 54 ( 33 - 61)
           INTEGRAL Likelihood = -8.01 Transmembrane 5 - 21 ( 1 - 26)
           INTEGRAL Likelihood = -7.01 Transmembrane 65 - 81 ( 60 - 87)
15
           PERIPHERAL Likelihood = 13,85 99
         modified ALOM score: 2.70
        *** Reasoning Step: 3
20
        ---- Final Results ----
                      bacterial membrane --- Certainty=0.5394 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2992

A DNA sequence <SEQ ID 9029> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9030>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1
                                 Crend: 10
30
        McG: Discrim Score:
                              -21.39
        GvH: Signal Score (-7.5): -1.85
             Possible site: 57
        >>> Seems to have no N-terminal signal sequence
        ALOM program count: 1 value: -8.44 threshold: 0.0
35
           INTEGRAL Likelihood = -8.44 Transmembrane 38 - 54 ( 36 - 59)
           PERIPHERAL Likelihood = 19.10
                                            18
         modified ALOM score:
        *** Reasoning Step: 3
40
        ---- Final Results ----
                       bacterial membrane --- Certainty=0.4376 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2993

A DNA sequence <SEQ ID 9031> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9032>. Analysis of the amino acid sequence reveals the following:

```
50 Lipop Possible site: -1 Crend: 5
McG: Discrim Score: 12.87
GvH: Signal Score (-7.5): -3.57
Possible site: 41
```

-2905-

```
>>> Seems to have an uncleavable N-term signal seq
        ALOM program count: 4 value: -10.30 threshold: 0.0
           INTEGRAL
                      Likelihood =-10.30 Transmembrane 69 - 85 ( 63 - 98)
           INTEGRAL
                     Likelihood = -8.65 Transmembrane
                                                           4 - 20 ( 1 - 29)
 5
                     Likelihood = -2.07 Transmembrane 96 - 112 ( 95 - 118)
           PERIPHERAL Likelihood = 9.71
                                            113
         modified ALOM score: 2.56
         *** Reasoning Step: 3
10
         ---- Final Results ----
                       bacterial membrane --- Certainty=0.5118 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
15
      The protein has homology with the following sequences in the databases:
         20.1/50.5% over 114aa
                                                                           Streptococcus pneumoniae
          GP 9798572 BlpX protein Insert characterized
20
         ORF02100(316 - 660 of 999)
        GP|9798572|emb|CAC03527.1||AJ276410(9 - 123 of 132) BlpX protein {Streptococcus pneumoniae}
         Match = 5.0
         %Identity = 20.0 %Similarity = 50.4
25
        Matches = 23 Mismatches = 57 Conservative Sub.s = 35
         90
                  120
                           150
                                     180
                                               210
                                                         240
                                                                   270
                                                                            300
        \verb|LMSLF*DPQVSGEELDKFTVRLDSHRKSNSRG*NQLVIILRLYSQIN*REPNMLVGPFLNKGEHMTQDYICYL*SRGGED|
30
                                                                                    MEV
                            390
                                      420
                                                450
                                                          480
                                                                    510
        MHNILRFLGIVIISAVILFSIGSFYDLTLMKNILLICWSFLFDLLVFVFKQRQTTEVLTWYQVVKQFWLFIKCTILIPIL
         : |:: :: :|:|: :|: |:: |:: ||: :| ||:: :
                                                               : : : !: !!
35
        {\tt FNMKYRLFFVIFLSSVLDILLGTFLQISIVSIGWLVLYSGLFEAGVFLLANKGVAVKIKEVDIRNRFKFIFGKTLWFQIL}
                       20
                                 30
                                           40
                                                     50
                                                                        70
                                                               60
                            630
                                      660
                                                690
                                                          720
                                                                    750
         VAFIIMKGCLTSISDILIYFYLHLVVVYYTIGMILSLGRIISPEHSMFNKLRK*NELYLKFVFNRADLTICCLPCLS*FF
40
                    : || || |: :|: : :|| ::
                                                   :: : :
        LLIFLIIKLYLGLDARLILFYGHIFIVFNALMYLLSSSQVSLKKNKLSS
                      1.00
                                110
                                          120
```

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2994

45

A DNA sequence <SEQ ID 9033> was identified in *S. agalactiae* which encodes amino acid sequence <SEQ ID 9034>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1
                                Crend: 9
50
        McG: Discrim Score:
                                3.25
        GvH: Signal Score (-7.5): -3.39
             Possible site: 59
         >>> Seems to have an uncleavable N-term signal seq
        ALOM program count: 4 value: -6.64 threshold: 0.0
55
                       Likelihood = -6.64 Transmembrane
                                                          46 -
           INTEGRAL
                                                                62 ( 43 -
                                           Transmembrane
           INTEGRAL
                       Likelihood = -5.15
                                                          17 - 33 ( 15 -
           PERIPHERAL Likelihood = 11.03
         modified ALOM score:
                              1.83
60
        *** Reasoning Step: 3
         ---- Final Results ----
```

-2906-

```
bacterial membrane --- Certainty=0.3654(Affirmative) < succ> bacterial outside --- Certainty=0.0000(Not Clear) < succ> bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

5 The protein has homology with the following sequences in the databases:

```
35.5/63.8% over 127aa
                               OMNI NT01BS4455 | wall teichoic acid qlycosylation protein GtcA Insert characterized
10
                         ORF01715(343 - 750 of 1053)
                         OMNI NT01BS4455(58 - 185 of 187) wall teichoic acid glycosylation protein GtcA
                         Match = 8.0
                         %Identity = 35.5 %Similarity = 63.7
                         Matches = 44 Mismatches = 39 Conservative Sub.s = 35
15
                                                                                  270
                                                                                                              300
                                                                                                                                           330
                                                                                                                                                                                                    390
                         GN*ASRVV*NNLLSISQTKSKAKLMGDFLITLKHP*YNKNMVKLKSLLKKSIQNEVSLYLLFGLLTSLLYLV---IRQGI
                                                                                      :: | | :
                                                                                                                                                  ::
                                                                                                                                                                                   |: :|:: |::|::: :
                         \verb"PRRNHQTIICIGPASHLPQLF" RTLGIFYFRQRAREAKNFEKFFRKRGTSVKYREIIMYIIMGVFTTIVNIASFYILVEI
20
                                                                    20
                                                                                                30
                                                                                                                            40
                                                                                                                                                         50
                                                                                                                                                                                     60
                                                                                                                                                                                                                  70
                                                                                                                                                                                                                                              80
                                                     471
                                                                                  501
                                                                                                              531
                                                                                                                                           549
                                                                                                                                                                       579
                                                                                                                                                                                                    609
                                                                                                                                                                                                                                 639
                         FNFSODAPFSAIVANIIAILFAFFTNDRFVFKOTKIEOLORL----OTFVIARLGTLGLDLILAVIFVDOFPSIIGOFVO
                                          1 :: | |:::|||: || :||:| |
                                                                                                                                   -111
                                                                                                                                                                  1
                                                                                                                                                                         1::||:|| : :|:| ||
25
                         {\tt MNVDYKA--ATVAAWILSVLFAYITNKLYVFQQ-KTHDLQSLLKELTAFFSVRVLSLGIDLGMMIILVGQF-LSCALAR STATEMENT CONTROL FOR STA
                                                                      100
                                                                                                   110
                                                                                                                                   120
                                                                                                                                                               130
                                                                                                                                                                                           140
                                                                                                                                                                                                                        150
                                                     690
                                                                                                                                           780
                                                                                  720
                                                                                                              750
                                                                                                                                                                       810
                                                                                                                                                                                                    840
                                                                                                                                                                                                                                870
                         30
                                          -----NTNETLAKILDNAVIVVNYVASKWLVFKKTKEEGV
                                                           160
                                                                                        170
                                                                                                                    180
```

SEQ ID 9034 (GBS283) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 63 (lane 8; MW 67.6kDa).

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2995

A DNA sequence <SEQ ID 9035> was identified in *S.agalactiae* which encodes amino acid sequence 40 <SEQ ID 9036>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1
                                 Crend: 2
        SRCFLG: 0
        McG: Length of UR:
             Peak Value of UR:
                                3.86
45
             Net Charge of CR: 2
        McG: Discrim Score:
                               16.84
        GvH: Signal Score (-7.5): -4.38
             Possible site: 21
        >>> Seems to have an uncleavable N-term signal seg
50
        Amino Acid Composition: calculated from 1
        ALOM program count: 1 value: -12.37 threshold: 0.0
                     Likelihood =-12.37 Transmembrane
           INTEGRAL
                                                           7 - 23 (
           PERIPHERAL Likelihood = 12.84
         modified ALOM score:
                               2.97
55
        icm1 HYPID: 7 CFP: 0.595
        *** Reasoning Step: 3
        ---- Final Results ----
60
                       bacterial membrane --- Certainty=0.5946 (Affirmative) < succ>
```

-2907-

```
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

SEQ ID 9036 (GBS286) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 52 (lane 11; MW 16.4kDa). It was also expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 59 (lane 2; MW 41.3kDa) and in Figure 63 (lane 9; MW 41.4kDa).

The GBS286-GST fusion product was purified (Figure 210, lane 9; Figure 225, lane 9) and used to immunise mice. The resulting antiserum was used for FACS (Figure 274), which confirmed that the protein is immunoaccessible on GBS bacteria.

GBS668 was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 139 (lane 2-4; MW 43.5kDa) and in Figure 187 (lane 6; MW 43kDa). It was also expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 139 (lane 6 & 7; MW 18.6kDa) and in Figure 179 (lane 12; MW 19kDa).

GBS668-GST was purified as shown in Figure 237 (lane 10). GBS668-His was purified as shown in Figure 231 (lanes 5 & 6).

GBS673 was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 161 (lane 8-10; MW 17kDa) and in Figure 188 (lane 4; MW 17kDa). It was also expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 162 (lane 8; MW 41.5kDa) and in Figure 239 (lane 7; MW 41kDa). Purified GBS673-His is shown in Figure 242, lane 5. Purified GBS673-GST is shown in Figure 246, lane 2.

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2996

10

20

A DNA sequence <SEQ ID 9037> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9038>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1
                                  Crend: 6
        McG: Discrim Score:
                               -18.42
        GvH: Signal Score (-7.5): -6.16
30
             Possible site: 57
        >>> Seems to have no N-terminal signal sequence
        ALOM program count: 2 value: -8.49 threshold: 0.0
                      Likelihood = -8.49 Transmembrane 51 - 67 ( 44 -
           INTEGRAL
                                                          70 - 86 ( 68 -
                      Likelihood = -3.08 Transmembrane
           INTEGRAL
35
           PERIPHERAL Likelihood = 12.89
         modified ALOM score:
                               2.20
        *** Reasoning Step: 3
40
        ---- Final Results ----
                       bacterial membrane --- Certainty=0.4397(Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

SEQ ID 9038 (GBS386) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 70 (lane 2; MW 14kDa). It was also expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 72 (lane 8; MW 39.5kDa).

-2908-

GBS386-GST was purified as shown in Figure 213, lane 8.

Crend: 8

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2997

50

Lipop: Possible site: -1

5 A DNA sequence <SEQ ID 9039> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9040>. Analysis of the amino acid sequence reveals the following:

```
McG: Discrim Score:
                               -15.47
        GvH: Signal Score (-7.5): -6.21
10
             Possible site: 14
        >>> Seems to have no N-terminal signal sequence
                      count: 2 value: -3.61 threshold:
        ALOM program
                       Likelihood = -3.61 Transmembrane
           INTEGRAL
                                                            94 - 110 ( 94 - 111)
                       Likelihood = -1.70 Transmembrane
                                                            75 - 91 ( 75 - 91)
           INTEGRAL
15
           PERIPHERAL Likelihood = 5.94
                                              139
         modified ALOM score:
                                1.22
        *** Reasoning Step: 3
20
        ---- Final Results -----
                       bacterial membrane --- Certainty=0.2444 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
25
     The protein has homology with the following sequences in the databases:
        ORF01481(394 - 720 of 1065)
        GP|9657521|gb|AAF96047.1||AE004354(16 - 121 of 243) uridine phosphorylase {Vibrio cholerae}
        Match = 5.3
        %Identity = 28.0 %Similarity = 48.6
30
        Matches = 30 Mismatches = 54 Conservative Sub.s = 22
                  180
                            210
                                      240
                                                270
                                                          300
                                                                    330
                                                                              360
        V*KHMV*AI*YGNLP*KW*IVPLSIFIFANLTLPFKFH*VKIEKIFLTR**NIVN*GLKEMLMIINSFDNSRKAIINPED
35
                                                                                   MSIQ
        390
                  420
                            450
                                      480
                                                510
                                                          540
                                                                    570
                                                                              600
        INSPIKGFPKTVITCFARETFNRILEELPHREIARTSVANLEIPIYELEFKGQKIGFFNAYVGASACVAILEDIIVFGME
                   1: 1
                                               : :|| : : :|::
40
        PHIHVAOVAPRVVVCGEPNRANRIASLLNNAE---LVAENREYRLFSGEFEEOPITVCSTGIGAPSMIIAVEELARSGAK
                      20
                                30
                                             40
                                                       50
                                                                 60
                                                                           70
                                                                                    80
                            690
                                      720
                                                750
                                                          780
                                                                    810
        SLIVFGTCGVLDSSIEETSIIIPRSAIRDEGTSFHYSEASSEIAVNTNSIFLLCG*FRCRSMGSKIFRK*RGFRKER*NC
45
             1: 1: 11
                          : | :
                                 |:
        AIVRVGSAGAMQSEIGLGELILVEGAVRDEGGSKAYIGAAYPAYSSFELVVEMQRFLAEQSVPIHRGIVRSHDSFYTDEE
                        1.00
                                  110
                                            120
                                                      130
                                                                140
                                                                         150
                                                                                   160
```

SEQ ID 9040 (GBS388) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 70 (lane 3; MW 21kDa). It was also expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 72 (lane 9; MW 45.6kDa).

The GBS388-GST fusion product was purified (Figure 213, lane 10) and used to immunise mice. The resulting antiserum was used for FACS (Figure 311), which confirmed that the protein is immunoaccessible on GBS bacteria.

-2909-

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2998

5

A DNA sequence <SEQ ID 9041> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9042>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1
                                 Crend: 9
        McG: Discrim Score:
                               -11.81
        GvH: Signal Score (-7.5): -7.49
             Possible site: 25
10
        >>> Seems to have no N-terminal signal sequence
        ALOM program count: 1 value: -5.68 threshold:
                                                         0.0
                       Likelihood = -5.68 Transmembrane
                                                          78 - 94 ( 77 - 95)
           INTEGRAL
           PERIPHERAL Likelihood = 4.61
                                              134
         modified ALOM score:
                                1.64
15
         *** Reasoning Step: 3
         ---- Final Results ----
                       bacterial membrane --- Certainty=0.3272 (Affirmative) < succ>
20
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

The protein has homology with the following sequences in the databases:

```
ORF01912(307 - 720 of 1056)
25
        GP)3845252]gb|AAC71927.1|]AE001412(81 - 242 of 244) hypothetical protein {Plasmodium
        falciparum PIR D71608 D71608 hypothetical protein PFB0690w - malaria parasite (Plasmodium
         falciparum)
         Match = 4.0
         %Identity = 31.2 %Similarity = 53.5
30
        Matches = 45 Mismatches = 58 Conservative Sub.s = 32
         231
                  261
                            291
                                                348
                                                         378
                                                                   405
        KKGRFLIDLYCNVMNFKNSKIA*NQCFDV**RVVNHLLN-LSKENIAKIDFDFLNEALNA-NIRLKELVDELKISK----
                                           | | | : | :: : |: | | :
                                                                     :|| | | | ||
35
        KYNELQSLLSKEEEKYDFVKNELGDLQKQKDLLKWHLCNNIKKLSMKRSDYKFKTETKSKLESKLKSLKDMNKIHKFEHD
                     60
                                         80
                                                   90
                                                            100
                                                                     110
                                                                               120
         450
                  480
                            501
                                      531
                                                558
                                                         588
                                                                   618
         -----ELDSKGWSKKDSRTIKILYDGLINK---HIVSLDRADYNII-QVIPFANVHVLLFLIPERENSKNYRIY
40
                   11::1:
                                 1: ::: ]]]
                                             :: :: :: :
                                                                       1:11:1111
                                                                  -
         TLEELVHKMEQELETKMYIKND---IENIFNECINKKDEYLKDITQERISVFKERKKRQNQLQKLLLIMKQENNKNYNIN
                    140
                                 150
                                           160
                                                    170
                                                              180
                                                                        190
                                                                                  200
         648
                  672
                            693
                                      720
                                                750
                                                          780
                                                                   810
                                                                             840
45
        NYSDYEMELINE---DRQQFSKYET---VDL-DQLILVDIFNIDDYISSYLTI*DIENLDLGLLKLINYADNKSDRHILQT
                        :::[]
                                  :[[
                                           [::
         YLKKYESNLMNEINSYKNYKDFETKIAMDLIDDHSLNDLYVT
                       220
                                 230
                                           240
```

A related DNA sequence <SEQ ID 10589> was identified in GBS which encodes amino acid sequence <SEQ ID 10590>.

SEQ ID 9042 (GBS408) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 76 (lane 6; MW 20.4kDa). It was also expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 171 (lane 5; MW 45.3kDa).

55 GBS408-GST was purified as shown in Figure 218, lane 9.

-2910-

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 2999

Lipop: Possible site: -1

5

40

45

50

55

432

600

462

627

200

A DNA sequence <SEQ ID 9043> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9044>. Analysis of the amino acid sequence reveals the following:

Crend: 9

492

657

210

|:|:|:::: |::||||

522

687

]:: |] |: : |] |

570

220

```
McG: Discrim Score:
                                -9.62
        GvH: Signal Score (-7.5): -4.84
             Possible site: 61
10
         >>> Seems to have no N-terminal signal sequence
        ALOM program count: 2 value: -11.09 threshold:
                                                         0.0
                       Likelihood =-11.09 Transmembrane 45 - 61 ( 37 - 72)
           INTEGRAL
                       Likelihood = -8.60 Transmembrane 76 - 92 ( 70 -
           INTEGRAL
           PERIPHERAL Likelihood = 11.62
15
         modified ALOM score:
                                2.72
         *** Reasoning Step: 3
         ---- Final Results ----
20
                       bacterial membrane --- Certainty=0.5437(Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
      The protein has homology with the following sequences in the databases:
25
         ORF01977(442 - 627 of 948)
        EGAD 88220 96064 (204 - 583 of 751) hypothetical 848 kDa protein f23f125 in chromosome iii
         {Caenorhabditis elegans} SP|P46501|YLX5 CAEEL HYPOTHETICAL 84.8 KDA PROTEIN F23F12.5 IN
         CHROMOSOME III. GP 529214 gb AAA20607.1 Ul2965 F23F12.5 gene product {Caenorhabditis
         elegans}
30
         %Match = 4.6
         %Identity = 35.9 %Similarity = 59.4
        Matches = 23 Mismatches = 24 Conservative Sub.s = 15
                  222
                            252
                                      282
                                                312
                                                          342
                                                                    372
35
        DFVSSFFIS*SQTNYNRISFLLKLAKHQLECLNNVAQGLSV**YSSMKDYINRILHFIKEHMTYHVNFIDDFLDIKWEKV
        VTLSAYFPFTITVERYYAMNKSEKYEKMPIILGPLFVLFIVKLELKIKDKVTLFQVIVNFGVIFQIYKNETFSHGDVAFS
                                                       160
               120
                         130
                                   140
                                             1.50
                                                                 170
                                                                           180
                                                                                     190
```

552

717

------PAYKFITYTPTIVKNAL-QYIKKLKNV*NNKVICTLTLYQLCFRVFFHTKITKKDSYLTI

AGNFYLSOFVSGAVTAFAKIFVFLLDTYVPSFDRRRLHOYPOIAMILCYCVIMVLMILPESDCGSOGSRDLAIIIINIIG

580

SNIHLRFWTTIIAYLVIFILSISTVILNLVLLFQGFLTQNPIIYLLFFITLVCAFY------------------------

LYPPGTAEKVFTFYVVLFLINLLDVMFNLVLLQMSFLNTNRFHWLCFFLWQFALFFCCQQIFSIFYNFSPGLSCDD~~~~

230

11 1

SEQ ID 9044 (GBS411) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 78 (lane 2; MW 16kDa).

590

:| ||:

240

747

1:

600

250

260

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

-2911-

Example 3000

Lipop: Possible site: -1

A DNA sequence <SEQ ID 9045> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9046>. Analysis of the amino acid sequence reveals the following:

Crend: 6

```
5
        McG: Discrim Score:
                              -17.94
        GvH: Signal Score (-7.5): -4.63
             Possible site: 45
        >>> Seems to have no N-terminal signal sequence
        ALOM program count: 1 value: -6.10 threshold:
                                                        0.0
10
                      Likelihood = -6.10 Transmembrane
           INTEGRAL
                                                          31 - 47 ( 26 - 49)
           PERIPHERAL Likelihood = 15.33
                                               3
         modified ALOM score: 1.72
        *** Reasoning Step: 3
15
        ---- Final Results ----
                       bacterial membrane --- Certainty=0.3442 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
20
     The protein has homology with the following sequences in the databases:
        ORF01982 (313 - 501 of 801)
        GP|2444082|db|AAC79518.1||U88974(93 - 156 of 156) ORF2 {Streptococcus thermophilus
        temperate bacteriophage 01205} PIR T13290 | T13290 hypothetical protein 2 - Streptococcus
25
        phage phi-01205
        %Match = 11.5
        %Identity = 48.4 %Similarity = 59.4
        Matches = 31 Mismatches = 25 Conservative Sub.s = 7
30
                  204
                            234
                                     264
                                               294
                                                         324
        DVDQNIESHKLFKRHFV*RAILPQSKRK*EN**LCVISEPR*KLKSKLGELKMGFFAQRCPYCQSTKVQFMNQDRKGFNG
```

 ${\tt LLMFVGVALLFARLFWEI} KHPMTKEQKEQLKIERAKAKEEFRKSRNEFKKAMAEARAVKCPYCKSTDVEFMVQQRKSFSI$

CVGCIGFLIAWPF-LLLGLVGKKGKNNWHCTNCGRTFKTK*KSPTLKFCPRRA*GKF*YSKNLLFGRGFYHTYFNRK*GI

80

531

90

561

100

591

110

70

501

60

471

140

GKAAAGTIMTGGVGALAGFAGKKGKKEWHCKNCGAVFTTK

50

441

130

SEQ ID 9046 (GBS412) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 171 (lane 6; MW 36kDa). Purified GBS412-GST is shown in Figure 218, lane 10-11.

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3001

35

40

A DNA sequence <SEQ ID 9047> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9048>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1 Crend: 0

McG: Discrim Score: 3.67

GvH: Signal Score (-7.5): -3.62

Possible site: 41

>>> Seems to have an uncleavable N-term signal seq

ALOM program count: 5 value: -7.27 threshold: 0.0

INTEGRAL Likelihood = -7.27 Transmembrane 48 - 64 ( 32 - 68)

INTEGRAL Likelihood = -6.26 Transmembrane 87 - 103 ( 85 - 105)
```

-2912-

```
INTEGRAL
                      Likelihood = -6.21
                                          Transmembrane
                                                         29 - 45 ( 26 - 46)
           INTEGRAL
                      Likelihood = -3.29
                                           Transmembrane 110 - 126 ( 109 - 130)
                      Likelihood = -2.87
                                           Transmembrane
                                                           2 - 18 ( 1 - 18)
           INTEGRAL
           PERIPHERAL Likelihood = 4.24
 5
         modified ALOM score: 1.95
        *** Reasoning Step: 3
        ---- Final Results ----
10
                      bacterial membrane --- Certainty=0.3909 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
     The protein has homology with the following sequences in the databases:
15
        ORF01286(304 - 672 of 993)
        GP|8272442|dbj|BAA96471.1||AB036428(90 - 212 of 218) type IV prepilin peptidase homologue
        {Streptococcus mutans}
        %Match = 16.8
        %Identity = 46.3 %Similarity = 72.4
20
        Matches = 57 Mismatches = 34 Conservative Sub.s = 32
        102
                           162
                                     192
                                              222
                                                        252
                                                                  282
                  132
        *RRLPI*T*IPNFFKRFCTSNKTFIYEF*OKTIOFSRKSATAC*LSL*R*TDYL**KS*SLFYHFSNININYKKDFMIMS
25
        {\tt LGSFFGLVVDRYPQKSIIFPRSHCNKCYNCLTMRDLIPIFSRIINKNSCRFCGYPIPLRYSLVELLCGLISTGFALDLLT}
                                                              70
                           402
                                     432
                                              462
                                                        492
                                                                  522
        TIYFISLCMSFILSYYDIKYOEYPIFLWILFTISTIILTPITKVSIVLCLFGILAEVVDINIGSGDFLYLATIGLSLPLH
30
              TSQVCLLFMGVLLSLYDLQDQSYPLTLWIGFTFLLMFIYPLNLISLILFLFGIFAALKNINIGSGDFFYLATLALSLNLQ
                                                   140
                       110
                                120
                                          130
                                                             150
                                                                       160
        582
                  612
                            642
                                     672
                                               702
                                                        732
                                                                  762
                                                                           792
35
        OMLFIIQIGAWLGIIYCLVMRKMKKTIAFLPFLSIAYIIVTSYSLLF*SL*IIRKVIKLWVLVAFWIFRMTNCTTKINHG
        ]:::|||| : |||:| |: :| |: ||:||| : ::|:
        QIIWIIQIASLLGILYSLLFQKHKEPFAFVPFLFLGHLIIIFSHLI
```

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3002

A DNA sequence <SEQ ID 9049> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9050>. Analysis of the amino acid sequence reveals the following:

```
45
        Lipop: Possible site: -1
                                 Crend: 2
        McG: Discrim Score:
                               10.43
        GvH: Signal Score (-7.5): -4.39
             Possible site: 54
        >>> Seems to have an uncleavable N-term signal seq
50
        ALOM program count: 4 value: -10.30 threshold: 0.0
           INTEGRAL
                      Likelihood =-10.30 Transmembrane 62 - 78 ( 59 -
                      Likelihood = -6.10 Transmembrane
                                                         4 - 20 ( 1 -
           INTEGRAL
                                                                           22)
                      Likelihood = -4.25 Transmembrane 128 - 144 ( 123 - 145)
           TNTEGRAL
           INTEGRAL
                      Likelihood = -3.13 Transmembrane 88 - 104 ( 87 - 104)
           PERIPHERAL Likelihood = 2.01
55
                                            109
         modified ALOM score: 2.56
        *** Reasoning Step: 3
60
        ---- Final Results ----
                      bacterial membrane --- Certainty=0.5118 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2913-

```
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

The protein has homology with the following sequences in the databases:

```
SP|Q48729|LSPA LACLC(1 - 149 of 150) LIPOPROTEIN
                                                               SIGNAL PEPTIDASE (EC 3.4.23.36)
 5
         (PROLIPOPROTEIN SIGNAL PEPTIDASE) (SIGNAL PEPTIDASE II) (SPASE II).
        %Match = 16.3
        %Identity = 40.7 %Similarity = 66.0
        Matches = 61 Mismatches = 50 Conservative Sub.s = 38
10
                  210
                            240
                                     270
                                               300
                                                         330
        EWYHCYSIRRSSR*PNDLYQTKRS*FISDGFKICCCYGRVF*GI*FIGEVMRKIIIPIITILLIALDOLSKLWIVKHIEL
                                                         1:1:: :1 :: | ||: | |:| :|:|
                                                         MKKLLSLVIIVVGIIADQVFKNWVVANIQL
                                                                 10
                                                                          20
15
                  450
                            480
                                     510
                                                         570
                                                                  600
                                               540
                                                                            630
        NQIKEFIPNIVSLTYLRNYGAAFSILQNQQWLFTLITIFVVGVAIIYLMKHINGSYWLLISLTLIISGGLGNFIDRLRLG
           ]: |:::||||::| |||:| : |||:| ::| |: ||: ||:
                                                            ] : ||||:| |||:: |:| ]
        GDTKKIWPDVLSLTYIKNDGAAWSSFSGQQWFFLVLTPIVLIVALWFLWKK-MGQNWYFAGLTLIIAGALGNLLTRVRQG
20
                40
                          50
                                   60
                                             70
                                                       80
                                                                 90
                                                                          100
                  690
        660
                            720
                                     750
                                               780
                                                                            870
                                                         810
                                                                  840
        YVVDMVHLDFINFAIFNVADSYLTIGIICLMIALWKEESNGNHN*NSRS*AR*SFSG*F*TVA*SS**RN*KRDCVSKWT
                   25
        FVVDMFXNRIYDFPIFNIADILLSVGFVVLFIAILTDKETK
                120
                          130
                                   140
```

There is also homology to SEQ ID 7750.

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vacc

Example 3003

30

55

A DNA sequence <SEQ ID 9051> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9052>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1
                                   Crend: 7
35
        McG: Discrim Score:
                                13.24
        GvH: Signal Score (-7.5): -2.18
             Possible site: 19
         >>> Seems to have a cleavable N-term signal seq.
         ALOM program count: 0 value: 2.01 threshold: 0.0
40
           PERIPHERAL Likelihood = 2.01
         modified ALOM score: -0.90
         *** Reasoning Step: 3
45
         ---- Final Results -----
                        bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
                       bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
                       bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

The protein has no homology with any sequences in the databases.

SEQ ID 9052 (GBS138) was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 19 (lane 2; MW 15kDa)

GBS672 was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 161 (lane 5-7; MW 15kDa) and in Figure 188 (lane 3; MW 15kDa). Purified protein is shown in Figure 242, lane 4.

-2914-

PCT/GB01/04789

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3004

5

A DNA sequence <SEQ ID 9053> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9054>. Analysis of the amino acid sequence reveals the following:

```
Lipop: Possible site: -1
                                  Crend: 8
        McG: Discrim Score:
                               18.01
        GvH: Signal Score (-7.5): -2.35
             Possible site: 26
10
        >>> Seems to have a cleavable N-term signal seq.
        ALOM program count: 0 value: 14.80 threshold: 0.0
           PERIPHERAL Likelihood = 14.80
         modified ALOM score: -3.46
15
        *** Reasoning Step: 3
         ---- Final Results ----
                        bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
                       bacterial membrane --- Certainty=0.0000(Not Clear) < succ>
20
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

SEQ ID 9054 (GBS143) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 23 (lane 2; MW 33.5kDa).

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3005

A DNA sequence <SEQ ID 9055> was identified in *S.agalactiae* which encodes amino acid sequence <SEQ ID 9056>. Analysis of the amino acid sequence reveals the following:

```
Lipop Possible site: -1
                                 Crend: 0
30
        McG: Discrim Score:
                                 7.43
        GvH: Signal Score (-7.5): -6.25
             Possible site: 41
        >>> Seems to have an uncleavable N-term signal seg
        ALOM program count: 1 value: -10.77 threshold: 0.0
35
                      Likelihood =-10.77 Transmembrane
                                                            2 - 18 ( 1 - 20)
           INTEGRAL
           PERIPHERAL Likelihood = 5.14
         modified ALOM score:
                                2.65
        *** Reasoning Step: 3
40
        ---- Final Results ----
                       bacterial membrane --- Certainty=0.5310 (Affirmative) < succ>
                        bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                      bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

45 SEQ ID 9056 (GBS229) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 55 (lane 3; MW 35.9kDa).

GBS229-GST was purified as shown in Figure 206, lane 5.

Based on this analysis, it is predicted that this protein from *S.agalactiae*, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

-2915-

Example 3006

A DNA sequence <SEQ ID 9183> was identified in GAS which encodes amino acid sequence <SEQ ID 9184>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 29

5

>>> Seems to have a cleavable N-term signal seq.

----- Final Results -----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

15 **Example 3007**

A DNA sequence <SEQ ID 9185> was identified in GAS which encodes amino acid sequence <SEQ ID 9186>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 28

20 >>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3008

A DNA sequence <SEQ ID 9187> was identified in GAS which encodes amino acid sequence <SEQ ID 9188>. Analysis of the amino acid sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -1.70 Transmembrane 850 - 866 (850 - 866)

INTEGRAL Likelihood = -1.22 Transmembrane 15 - 31 (15 - 31)

---- Final Results ----

bacterial membrane --- Certainty=0.1680 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

45 Example 3009

50

A DNA sequence <SEQ ID 9189> was identified in GAS which encodes amino acid sequence <SEQ ID 9190>. Analysis of the amino acid sequence reveals the following:

```
LPXTG motif: 259-263

Possible site: 13
```

Possible site: 36

-2916-

```
>>> Seems to have no N-terminal signal sequence
INTEGRAL Likelihood = -3.93 Transmembrane 270 - 286 ( 268 - 288)

---- Final Results ----

bacterial membrane --- Certainty=0.2572(Affirmative) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3010

A DNA sequence <SEQ ID 9191> was identified in GAS which encodes amino acid sequence <SEQ ID 9192>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 21

>>> May be a lipoprotein

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

25 Example 3011

A DNA sequence <SEQ ID 9193> was identified in GAS which encodes amino acid sequence <SEQ ID 9194>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 29

30 >>> May be a lipoprotein

----- Final Results -----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3012

Possible site: 34

40 A DNA sequence <SEQ ID 9195> was identified in GAS which encodes amino acid sequence <SEQ ID 9196>. Analysis of the amino acid sequence reveals the following:

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

-2917-

Example 3013

A DNA sequence <SEQ ID 9197> was identified in GAS which encodes amino acid sequence <SEQ ID 9198>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 13

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -3.50 Transmembrane 346 - 362 (343 - 366)

INTEGRAL Likelihood = -2.97 Transmembrane 177 - 193 (176 - 195)

---- Final Results ----

bacterial membrane --- Certainty=0.2402 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3014

A DNA sequence <SEQ ID 9199> was identified in GAS which encodes amino acid sequence <SEQ ID 9200>. Analysis of the amino acid sequence reveals the following:

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

30 Example 3015

A DNA sequence <SEQ ID 9201> was identified in GAS which encodes amino acid sequence <SEQ ID 9202>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 33

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -6.00 Transmembrane 194 - 210 ( 192 - 214)

---- Final Results ----

bacterial membrane --- Certainty=0.3399 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>

LPXTG motif: 183-187
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3016

A DNA sequence <SEQ ID 9203> was identified in GAS which encodes amino acid sequence <SEQ ID 9204>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 32

50 >>> Seems to have an uncleavable N-term signal seq
INTEGRAL Likelihood =-11.25 Transmembrane 9 - 25 ( 4 - 28)
```

-2918-

```
---- Final Results ----

bacterial membrane --- Certainty=0.5501(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3017

5

25

A DNA sequence <SEQ ID 9205> was identified in GAS which encodes amino acid sequence <SEQ ID 9206>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 37

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -3.03 Transmembrane 462 - 478 ( 460 - 479)

INTEGRAL Likelihood = -0.90 Transmembrane 18 - 34 ( 18 - 34)

---- Final Results ----

bacterial membrane --- Certainty=0.2211(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>

LEXTG motif: 450-454
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3018

A DNA sequence <SEQ ID 9207> was identified in GAS which encodes amino acid sequence <SEQ ID 9208>. Analysis of the amino acid sequence reveals the following:

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

40 Example 3019

A DNA sequence <SEQ ID 9209> was identified in GAS which encodes amino acid sequence <SEQ ID 9210>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 28

>>> Seems to have no N-terminal signal sequence

45

INTEGRAL Likelihood = -1.38 Transmembrane 16 - 32 ( 16 - 32)

---- Final Results ----

bacterial membrane --- Certainty=0.1553 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

-2919-

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3020

5

15

A DNA sequence <SEQ ID 9211> was identified in GAS which encodes amino acid sequence <SEQ ID 9212>. Analysis of the amino acid sequence reveals the following:

```
Possible cleavage site: 24

>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty= 0.300(Affirmative) < succ>
bacterial membrane --- Certainty= 0.000(Not Clear) < succ>
bacterial cytoplasm --- Certainty= 0.000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3021

A DNA sequence <SEQ ID 9213> was identified in GAS which encodes amino acid sequence <SEQ ID 9214>. Analysis of the amino acid sequence reveals the following:

```
Possible cleavage site: 23

20 >>> May be a lipoprotein

----- Final Results ----

bacterial membrane --- Certainty= 0.000(Not Clear) < succ>

bacterial outside --- Certainty= 0.000(Not Clear) < succ>

bacterial cytoplasm --- Certainty= 0.000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3022

Possible site: 19

A DNA sequence <SEQ ID 9215> was identified in GAS which encodes amino acid sequence <SEQ ID 9216>. Analysis of the amino acid sequence reveals the following:

```
>>> Seems to have an uncleavable N-term signal seq
INTEGRAL Likelihood = -2.76 Transmembrane 3 - 19 ( 2 - 20)

----- Final Results -----

bacterial membrane --- Certainty=0.2105(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>

RGD motif: 396-398
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3023

A DNA sequence <SEQ ID 9217> was identified in GAS which encodes amino acid sequence <SEQ ID 9218>. Analysis of the amino acid sequence reveals the following:

-2920-

```
Possible site: 18

>>> Seems to have no N-terminal signal sequence
    INTEGRAL Likelihood = -0.80 Transmembrane 251 - 267 ( 251 - 267)

INTEGRAL Likelihood = -0.75 Transmembrane 179 - 195 ( 179 - 195)

---- Final Results ----
    bacterial membrane --- Certainty=0.1319(Affirmative) < succ>
    bacterial outside --- Certainty=0.0000(Not Clear) < succ>
    bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3024

Possible site: 39

Possible site: 52

A DNA sequence <SEQ ID 9219> was identified in GAS which encodes amino acid sequence <SEQ ID 9220>. Analysis of the amino acid sequence reveals the following:

```
>>> Seems to have no N-terminal signal sequence
INTEGRAL Likelihood = -1.22 Transmembrane 52 - 68 ( 51 - 68)

---- Final Results ----
bacterial membrane --- Certainty=0.1489 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3025

A DNA sequence <SEQ ID 9221> was identified in GAS which encodes amino acid sequence <SEQ ID 9222>. Analysis of the amino acid sequence reveals the following:

```
>>> Seems to have an uncleavable N-term signal seq

INTEGRAL Likelihood =-12.58 Transmembrane 39 - 55 ( 32 - 86)

INTEGRAL Likelihood = -9.55 Transmembrane 60 - 76 ( 56 - 86)

---- Final Results ----

bacterial membrane --- Certainty=0.6031(Affirmative) < succ>
bacterial outside --- Certainty=0.0000(Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

45 Example 3026

A DNA sequence <SEQ ID 9223> was identified in GAS which encodes amino acid sequence <SEQ ID 9224>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 18

>>> Seems to have an uncleavable N-term signal seq

50

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
```

-2921-

```
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

5 Example 3027

A DNA sequence <SEQ ID 9225> was identified in GAS which encodes amino acid sequence <SEQ ID 9226>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 26

>>> Seems to have an uncleavable N-term signal seq

10

---- Final Results ----

bacterial membrane --- Certainty=0.0000(Not Clear) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3028

20

35

A DNA sequence <SEQ ID 9227> was identified in GAS which encodes amino acid sequence <SEQ ID 9228>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 33

>>> Seems to have an uncleavable N-term signal seq

INTEGRAL Likelihood = -8.44 Transmembrane 18 - 34 ( 13 - 40)

INTEGRAL Likelihood = -7.86 Transmembrane 59 - 75 ( 54 - 79)

25

---- Final Results ----

bacterial membrane --- Certainty=0.4376 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>

30
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3029

A DNA sequence <SEQ ID 9229> was identified in GAS which encodes amino acid sequence <SEQ ID 9230>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 27

>>> Seems to have a cleavable N-term signal seq.

---- Final Results ----

bacterial outside --- Certainty=0.3000 (Affirmative) < succ>
bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3030

A DNA sequence <SEQ ID 9231> was identified in GAS which encodes amino acid sequence <SEQ ID 9232>. Analysis of the amino acid sequence reveals the following:

-2922-

```
Possible site: 24

>>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3031

A DNA sequence <SEQ ID 9233> was identified in GAS which encodes amino acid sequence <SEQ ID 9234>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 49

>>> Seems to have a cleavable N-term signal seq.
INTEGRAL Likelihood = -9.87 Transmembrane 58 - 74 ( 53 - 81)

---- Final Results ----

bacterial membrane --- Certainty=0.4949 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

25 Example 3032

A DNA sequence <SEQ ID 9235> was identified in GAS which encodes amino acid sequence <SEQ ID 9236>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 16

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -0.06 Transmembrane 92 - 108 ( 92 - 108)

---- Final Results ----

bacterial membrane --- Certainty=0.1022 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3033

40 A DNA sequence <SEQ ID 9237> was identified in GAS which encodes amino acid sequence <SEQ ID 9238>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 40

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -1.38 Transmembrane 18 - 34 ( 18 - 34)

---- Final Results ----

bacterial membrane --- Certainty=0.1553 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>

50
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

-2923-

Example 3034

A DNA sequence <SEQ ID 9239> was identified in GAS which encodes amino acid sequence <SEQ ID 9240>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 19

5 >>> Seems to have an uncleavable N-term signal seq

---- Final Results ----

bacterial membrane --- Certainty=0.0000 (Not Clear) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3035

A DNA sequence <SEQ ID 9241> was identified in GAS which encodes amino acid sequence <SEQ ID 9242>. Analysis of the amino acid sequence reveals the following:

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3036

35

A DNA sequence <SEQ ID 9243> was identified in GAS which encodes amino acid sequence <SEQ ID 9244>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 28

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -4.25 Transmembrane 113 - 129 ( 111 - 131)

---- Final Results ----

bacterial membrane --- Certainty=0.2699 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3037

A DNA sequence <SEQ ID 9245> was identified in GAS which encodes amino acid sequence <SEQ ID 9246>. Analysis of the amino acid sequence reveals the following:

-2924-

```
bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

5 Example 3038

A DNA sequence <SEQ ID 9247> was identified in GAS which encodes amino acid sequence <SEQ ID 9248>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 58

>>> Seems to have no N-terminal signal sequence

10

INTEGRAL Likelihood = -1.28 Transmembrane 130 - 146 ( 128 - 146)

---- Final Results ----

bacterial membrane --- Certainty=0.1510 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3039

A DNA sequence <SEQ ID 9249> was identified in GAS which encodes amino acid sequence <SEQ ID 9250>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 39

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -4.57 Transmembrane 74 - 90 ( 72 - 92)

INTEGRAL Likelihood = -3.13 Transmembrane 169 - 185 ( 166 - 185)

INTEGRAL Likelihood = -3.13 Transmembrane 28 - 44 ( 27 - 44)

----- Final Results ----

bacterial membrane --- Certainty=0.2826 (Affirmative) < succ>

bacterial outside --- Certainty=0.0000 (Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

35 Example 3040

A DNA sequence <SEQ ID 9251> was identified in GAS which encodes amino acid sequence <SEQ ID 9252>. Analysis of the amino acid sequence reveals the following:

```
Possible cleavage site: 56

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -12.21 Transmembrane 93 - 109 ( 87 - 114)

INTEGRAL Likelihood = -8.65 Transmembrane 227 - 243 ( 226 - 243)

---- Final Results ----

bacterial membrane --- Certainty=0.588(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein , and its epitopes, could be useful antigens for vaccines and/or diagnostics.

-2925-

Example 3041

A DNA sequence <SEQ ID 9253> was identified in GAS which encodes amino acid sequence <SEQ ID 9254>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 45

>>> Seems to have an uncleavable N-term signal seq

INTEGRAL Likelihood = -6.53 Transmembrane 73 - 89 ( 70 - 94)

INTEGRAL Likelihood = -4.41 Transmembrane 32 - 48 ( 30 - 51)

INTEGRAL Likelihood = -2.55 Transmembrane 10 - 26 ( 10 - 26)

INTEGRAL Likelihood = -2.39 Transmembrane 106 - 122 ( 104 - 123)

INTEGRAL Likelihood = -1.75 Transmembrane 153 - 169 ( 152 - 169)

----- Final Results ----

bacterial membrane --- Certainty=0.3612 (Affirmative) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3042

A DNA sequence <SEQ ID 9255> was identified in GAS which encodes amino acid sequence <SEQ ID 9256>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 44

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood =-11.68 Transmembrane 25 - 41 ( 15 - 46)

INTEGRAL Likelihood = -9.24 Transmembrane 255 - 271 ( 248 - 276)

INTEGRAL Likelihood = -7.59 Transmembrane 82 - 98 ( 79 - 100)

INTEGRAL Likelihood = -4.30 Transmembrane 115 - 131 ( 113 - 135)

INTEGRAL Likelihood = -0.11 Transmembrane 148 - 164 ( 148 - 164)

30 ----- Final Results ----

bacterial membrane --- Certainty=0.5670 (Affirmative) < succ>

bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

35 Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3043

A DNA sequence <SEQ ID 9257> was identified in GAS which encodes amino acid sequence <SEQ ID 9258>. Analysis of the amino acid sequence reveals the following:

```
40
             Possible site: 51
        >>> Seems to have no N-terminal signal sequence
           INTEGRAL Likelihood =-11.04 Transmembrane 137 - 153 ( 126 - 160)
           INTEGRAL Likelihood =-10.56 Transmembrane 36 - 52 ( 29 - 58)
           INTEGRAL Likelihood =-10.08 Transmembrane 407 - 423 (399 - 426)
45
           INTEGRAL Likelihood = -4.94 Transmembrane 230 - 246 ( 228 - 250)
           INTEGRAL Likelihood = -4.83 Transmembrane 79 - 95 ( 77 - 98)
           INTEGRAL Likelihood = -4.35 Transmembrane 202 - 218 ( 201 - 220)
           INTEGRAL Likelihood = -1.12 Transmembrane 293 - 309 (293 - 309)
50
        ---- Final Results -----
                      bacterial membrane --- Certainty=0.5416 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
                     bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

-2926-

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3044

5

A DNA sequence <SEQ ID 9259> was identified in GAS which encodes amino acid sequence <SEQ ID 9260>. Analysis of the amino acid sequence reveals the following:

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3045

A DNA sequence <SEQ ID 9261> was identified in GAS which encodes amino acid sequence <SEQ ID 9262>. Analysis of the amino acid sequence reveals the following:

```
20
             Possible site: 36
        >>> Seems to have no N-terminal signal sequence
           INTEGRAL Likelihood = -7.91 Transmembrane 238 - 254 ( 236 - 264)
                    Likelihood = -6.16
                                          Transmembrane
           TNTEGRAL
                                                         69 - 85 ( 65 - 89)
                      Likelihood = -6.00 Transmembrane 136 - 152 ( 134 - 155)
           INTEGRAL
25
           INTEGRAL Likelihood = -4.73 Transmembrane
                                                         29 - 45 ( 21 - 48)
           INTEGRAL Likelihood = -2.97 Transmembrane 194 - 210 (193 - 220)
        ---- Final Results ----
                      bacterial membrane --- Certainty≈0.4163 (Affirmative) < succ>
30
                       bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                     bacterial cytoplasm --- Certainty≈0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein , and its epitopes, could be useful antigens for vaccines and/or diagnostics.

35 Example 3046

A DNA sequence <SEQ ID 9263> was identified in GAS which encodes amino acid sequence <SEQ ID 9264>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 39

>>> Seems to have a cleavable N-term signal seq.

40

INTEGRAL Likelihood = -9.87 Transmembrane 574 - 590 ( 568 - 601)
INTEGRAL Likelihood = -9.18 Transmembrane 243 - 259 ( 238 - 262)
INTEGRAL Likelihood = -7.11 Transmembrane 66 - 82 ( 65 - 87)
INTEGRAL Likelihood = -1.28 Transmembrane 270 - 286 ( 270 - 287)

45

---- Final Results ----

bacterial membrane --- Certainty=0.4949 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

-2927-

Example 3047

A DNA sequence <SEQ ID 9265> was identified in GAS which encodes amino acid sequence <SEQ ID 9266>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 33
 5
        >>> Seems to have no N-terminal signal sequence
           INTEGRAL
                    Likelihood = -7.91 Transmembrane
                                                       98 - 114 ( 92 - 124)
           INTEGRAL Likelihood = -6.21 Transmembrane 19 - 35 ( 14 - 37)
           INTEGRAL Likelihood = -5.36 Transmembrane 170 - 186 ( 169 - 189)
           INTEGRAL Likelihood = -5.15 Transmembrane 147 - 163 ( 136 - 167)
10
           INTEGRAL Likelihood = -1.12 Transmembrane 77 - 93 ( 77 - 93)
        ---- Final Results ----
                      bacterial membrane --- Certainty=0.4163 (Affirmative) < succ>
                       bacterial outside --- Certainty=0.0000(Not Clear) < succ>
15
                     bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3048

A DNA sequence <SEQ ID 9267> was identified in GAS which encodes amino acid sequence <SEQ ID 9268>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 47
         >>> Seems to have no N-terminal signal sequence
            INTEGRAL Likelihood =-11.94 Transmembrane 27 - 43 ( 19 - 51)
INTEGRAL Likelihood = -4.83 Transmembrane 152 - 168 ( 151 - 171)
25
                        Likelihood = -4.09 Transmembrane 277 - 293 ( 276 - 294)
            INTEGRAL
                       Likelihood = -3.82 Transmembrane 195 - 211 ( 193 ~ 217)
            INTEGRAL
                        Likelihood = -2.50 Transmembrane 120 - 136 ( 120 - 137)
            INTEGRAL
                        Likelihood = -0.64 Transmembrane 81 - 97 ( 81 - 98)
            TNTEGRAL
30
         ---- Final Results ----
                         bacterial membrane --- Certainty=0.5776 (Affirmative) < succ>
                          bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
                        bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
35
```

Based on this analysis, it is predicted that this GAS protein , and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3049

40

A DNA sequence <SEQ ID 9269> was identified in GAS which encodes amino acid sequence <SEQ ID 9270>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 36

>>> Seems to have no N-terminal signal sequence

INTEGRAL Likelihood = -8.49 Transmembrane 27 - 43 ( 14 - 50)

INTEGRAL Likelihood = -8.17 Transmembrane 58 - 74 ( 52 - 79)

INTEGRAL Likelihood = -7.38 Transmembrane 165 - 181 ( 161 - 193)

INTEGRAL Likelihood = -3.66 Transmembrane 247 - 263 ( 246 - 270)

INTEGRAL Likelihood = -1.54 Transmembrane 134 - 150 ( 134 - 150)

----- Final Results ----

bacterial membrane --- Certainty=0.440 (Affirmative) < succ>
bacterial outside --- Certainty=0.0000 (Not Clear) < succ>
bacterial cytoplasm --- Certainty=0.0000 (Not Clear) < succ>
```

-2928-

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3050

5

A DNA sequence <SEQ ID 9271> was identified in GAS which encodes amino acid sequence <SEQ ID 9272>. Analysis of the amino acid sequence reveals the following:

```
Possible site: 55
         >>> Seems to have no N-terminal signal sequence
            INTEGRAL
                      Likelihood =-14.75 Transmembrane 389 - 405 ( 377 - 413)
            INTEGRAL Likelihood = -8.44 Transmembrane 31 - 47 ( 29 - 54)
10
            INTEGRAL Likelihood = -7.17 Transmembrane 181 - 197 ( 179 - 205)
            INTEGRAL Likelihood = -7.01 Transmembrane 339 - 355 ( 326 - 360)
            INTEGRAL Likelihood = -6.58 Transmembrane 105 - 121 ( 102 - 124)
            INTEGRAL Likelihood = -5.36 Transmembrane 225 - 241 ( 222 - 244)
                     Likelihood = -0.43 Transmembrane 139 - 155 ( 139 - 155)
Likelihood = -0.16 Transmembrane 283 - 299 ( 282 - 300)
            INTEGRAL
15
            INTEGRAL
         ---- Final Results ----
                        bacterial membrane --- Certainty=0.6901(Affirmative) < succ>
                         bacterial outside --- Certainty=0.0000(Not Clear) < succ>
20
                       bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3051

A DNA sequence <SEQ ID 9273> was identified in GAS which encodes amino acid sequence <SEQ ID 9274>. Analysis of the amino acid sequence reveals the following:

```
Possible cleavage site: 25

>>> Seems to have a cleavable N-term signal seq.

INTEGRAL Likelihood = -5.31 Transmembrane 155 - 171 ( 154 - 174)

INTEGRAL Likelihood = -3.50 Transmembrane 111 - 127 ( 110 - 128)

INTEGRAL Likelihood = -2.07 Transmembrane 80 - 96 ( 78 - 96)

INTEGRAL Likelihood = -0.90 Transmembrane 57 - 73 ( 57 - 74)

---- Final Results ----

bacterial membrane --- Certainty=0.312(Affirmative) < succ>

bacterial outside --- Certainty=0.0000(Not Clear) < succ>

bacterial cytoplasm --- Certainty=0.0000(Not Clear) < succ>
```

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3052

A DNA sequence <SEQ ID 9275> was identified in GAS which encodes amino acid sequence <SEQ ID 9276>. Analysis of the amino acid sequence reveals the following:

-2929-

PCT/GB01/04789

Based on this analysis, it is predicted that this GAS protein, and its epitopes, could be useful antigens for vaccines and/or diagnostics.

Example 3053

A DNA sequence <SEQ ID 8741> was identified in GBS which encodes amino acid sequence <SEQ ID 8742>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3054

5

A DNA sequence <SEQ ID 8685> was identified in GBS which encodes amino acid sequence <SEQ ID 8686>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3055

A DNA sequence <SEQ ID 10303> was identified in GBS which encodes amino acid sequence <SEQ ID 10304>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3056

A DNA sequence <SEQ ID 10305> was identified in GBS which encodes amino acid sequence <SEQ ID 10306>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

15 Example 3057

A DNA sequence <SEQ ID 10307> was identified in GBS which encodes amino acid sequence <SEQ ID 10308>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3058

A DNA sequence <SEQ ID 10309> was identified in GBS which encodes amino acid sequence <SEQ ID 10310>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3059

A DNA sequence <SEQ ID 10311> was identified in GBS which encodes amino acid sequence <SEQ ID 10312>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3060

A DNA sequence <SEQ ID 10313> was identified in GBS which encodes amino acid sequence <SEQ ID 10314>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3061

A DNA sequence <SEQ ID 10315> was identified in GBS which encodes amino acid sequence <SEQ ID 10316>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

30 Example 3062

A DNA sequence <SEQ ID 10317> was identified in GBS which encodes amino acid sequence <SEQ ID 10318>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3063

A repeated DNA sequence <SEQ ID 10319> was identified in GBS which encodes amino acid sequence <SEQ ID 10320>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2930-

Example 3064

A DNA sequence <SEQ ID 10321> was identified in GBS which encodes amino acid sequence <SEQ ID 10322>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3065

A DNA sequence <SEQ ID 10323> was identified in GBS which encodes amino acid sequence <SEQ ID 10324>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3066

A DNA sequence <SEQ ID 10325> was identified in GBS which encodes amino acid sequence <SEQ ID 10326>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3067

A DNA sequence <SEQ ID 10327> was identified in GBS which encodes amino acid sequence <SEQ ID 10328>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3068

A DNA sequence <SEQ ID 10329> was identified in GBS which encodes amino acid sequence <SEQ ID 10330>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3069

A DNA sequence <SEQ ID 10331> was identified in GBS which encodes amino acid sequence <SEQ ID 10332>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3070

A DNA sequence <SEQ ID 10333> was identified in GBS which encodes amino acid sequence <SEQ ID 10334>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3071

A DNA sequence <SEQ ID 10335> was identified in GBS which encodes amino acid sequence <SEQ ID 10336>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3072

A DNA sequence <SEQ ID 10339> was identified in GBS which encodes amino acid sequence <SEQ ID 10340>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3073

A DNA sequence <SEQ ID 10341> was identified in GBS which encodes amino acid sequence <SEQ ID 30 10342>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3074

A DNA sequence <SEQ ID 10343> was identified in GBS which encodes amino acid sequence <SEQ ID 10344>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3075

A DNA sequence <SEQ ID 10345> was identified in GBS which encodes amino acid sequence <SEQ ID 10346>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2931-

PCT/GB01/04789

Example 3076

A DNA sequence <SEQ ID 10347> was identified in GBS which encodes amino acid sequence <SEQ ID 10348>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3077

A DNA sequence <SEQ ID 10349> was identified in GBS which encodes amino acid sequence <SEQ ID 10350>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3078

A DNA sequence <SEQ ID 10351> was identified in GBS which encodes amino acid sequence <SEQ ID 10352>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3079

A DNA sequence <SEQ ID 10353> was identified in GBS which encodes amino acid sequence <SEQ ID 10354>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3080

A DNA sequence <SEQ ID 10355> was identified in GBS which encodes amino acid sequence <SEQ ID 10356>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3081

A DNA sequence <SEQ ID 10357> was identified in GBS which encodes amino acid sequence <SEQ ID 10358>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3082

A DNA sequence <SEQ ID 10359> was identified in GBS which encodes amino acid sequence <SEQ ID 10360>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3083

A DNA sequence <SEQ ID 10361> was identified in GBS which encodes amino acid sequence <SEQ ID 10362>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3084

A DNA sequence <SEQ ID 10363> was identified in GBS which encodes amino acid sequence <SEQ ID 10364>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3085

A DNA sequence <SEQ ID 10365> was identified in GBS which encodes amino acid sequence <SEQ ID 10366>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3086

A DNA sequence <SEQ ID 10367> was identified in GBS which encodes amino acid sequence <SEQ ID 10368>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3087

A DNA sequence <SEQ ID 10369> was identified in GBS which encodes amino acid sequence <SEQ ID 10370>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2932-

PCT/GB01/04789

Example 3088

A DNA sequence <SEQ ID 10371> was identified in GBS which encodes amino acid sequence <SEQ ID 10372>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3089

A DNA sequence <SEQ ID 10373> was identified in GBS which encodes amino acid sequence <SEQ ID 10374>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3090

A DNA sequence <SEQ ID 10375> was identified in GBS which encodes amino acid sequence <SEQ ID 10376>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3091

A DNA sequence <SEQ ID 10377> was identified in GBS which encodes amino acid sequence <SEQ ID 10378>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3092

A DNA sequence <SEQ ID 10379> was identified in GBS which encodes amino acid sequence <SEQ ID 10380>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3093

A DNA sequence <SEQ ID 10381> was identified in GBS which encodes amino acid sequence <SEQ ID 10382>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3094

A DNA sequence <SEQ ID 10383> was identified in GBS which encodes amino acid sequence <SEQ ID 10384>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3095

A DNA sequence <SEQ ID 10385> was identified in GBS which encodes amino acid sequence <SEQ ID 10386>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3096

A DNA sequence <SEQ ID 10387> was identified in GBS which encodes amino acid sequence <SEQ ID 10388>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3097

A DNA sequence <SEQ ID 10389> was identified in GBS which encodes amino acid sequence <SEQ ID 10390>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3098

A DNA sequence <SEQ ID 10391> was identified in GBS which encodes amino acid sequence <SEQ ID 10392>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3099

A DNA sequence <SEQ ID 10393> was identified in GBS which encodes amino acid sequence <SEQ ID 10394>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2933-

PCT/GB01/04789

Example 3100

A DNA sequence <SEQ ID 10395> was identified in GBS which encodes amino acid sequence <SEQ ID 10396>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3101

A DNA sequence <SEQ ID 10397> was identified in GBS which encodes amino acid sequence <SEQ ID 10398>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3102

A DNA sequence <SEQ ID 10399> was identified in GBS which encodes amino acid sequence <SEQ ID 10400>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3103

A DNA sequence <SEQ ID 10401> was identified in GBS which encodes amino acid sequence <SEQ ID 10402>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3104

A DNA sequence <SEQ ID 10403> was identified in GBS which encodes amino acid sequence <SEQ ID 10404>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3105

A DNA sequence <SEQ ID 10405> was identified in GBS which encodes amino acid sequence <SEQ ID 10406>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3106

A DNA sequence <SEQ ID 10407> was identified in GBS which encodes amino acid sequence <SEQ ID 10408>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3107

A DNA sequence <SEQ ID 10409> was identified in GBS which encodes amino acid sequence <SEQ ID 10410>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3108

A DNA sequence <SEQ ID 10411> was identified in GBS which encodes amino acid sequence <SEQ ID 10412>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3109

A DNA sequence <SEQ ID 10413> was identified in GBS which encodes amino acid sequence <SEQ ID 10414>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3110

A DNA sequence <SEQ ID 10415> was identified in GBS which encodes amino acid sequence <SEQ ID 10416>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3111

A DNA sequence <SEQ ID 10417> was identified in GBS which encodes amino acid sequence <SEQ ID 10418>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

PCT/GB01/04789

Example 3112

A DNA sequence <SEQ ID 10419> was identified in GBS which encodes amino acid sequence <SEQ ID 10420>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2934-

Example 3113

5 A DNA sequence <SEQ ID 10421> was identified in GBS which encodes amino acid sequence <SEO ID 10422>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3114

A DNA sequence <SEQ ID 10423> was identified in GBS which encodes amino acid sequence <SEQ ID 10424>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3115

A DNA sequence <SEO ID 10425> was identified in GBS which encodes amino acid sequence <SEO ID 10426>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3116

A DNA sequence <SEQ ID 10427> was identified in GBS which encodes amino acid sequence <SEQ ID 15 10428>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3117

A DNA sequence <SEQ ID 10429> was identified in GBS which encodes amino acid sequence <SEQ ID 10430>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3118

20 A DNA sequence <SEQ ID 10431> was identified in GBS which encodes amino acid sequence <SEQ ID 10432>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3119

A DNA sequence <SEQ ID 10433> was identified in GBS which encodes amino acid sequence <SEQ ID 10434>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3120

A DNA sequence <SEQ ID 10435> was identified in GBS which encodes amino acid sequence <SEQ ID 10436>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3121

A DNA sequence <SEQ ID 10437> was identified in GBS which encodes amino acid sequence <SEQ ID 30 10438>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3122

A DNA sequence <SEQ ID 10441> was identified in GBS which encodes amino acid sequence <SEQ ID 10442>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3123

35 A DNA sequence <SEQ ID 10443> was identified in GBS which encodes amino acid sequence <SEQ ID 10444>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2935-

Example 3124

A DNA sequence <SEQ ID 10445> was identified in GBS which encodes amino acid sequence <SEQ ID 10446>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3125

A DNA sequence <SEQ ID 10447> was identified in GBS which encodes amino acid sequence <SEQ ID 10448>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3126

A DNA sequence <SEQ ID 10449> was identified in GBS which encodes amino acid sequence <SEQ ID 10450>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3127

A DNA sequence <SEQ ID 10451> was identified in GBS which encodes amino acid sequence <SEQ ID 10452>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3128

A DNA sequence <SEQ ID 10453> was identified in GBS which encodes amino acid sequence <SEQ ID 10454>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3129

A DNA sequence <SEQ ID 10455> was identified in GBS which encodes amino acid sequence <SEQ ID 10456>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3130

A DNA sequence <SEQ ID 10457> was identified in GBS which encodes amino acid sequence <SEQ ID 10458>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. A related GBS nucleic acid sequence <SEQ ID 10907> which encodes amino acid sequence <SEQ ID 10908> was also identified.

Example 3131

A DNA sequence <SEQ ID 10459> was identified in GBS which encodes amino acid sequence <SEQ ID 10460>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3132

A DNA sequence <SEQ ID 10461> was identified in GBS which encodes amino acid sequence <SEQ ID 10462>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

30 Example 3133

A DNA sequence <SEQ ID 10463> was identified in GBS which encodes amino acid sequence <SEQ ID 10464>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3134

A DNA sequence <SEQ ID 10465> was identified in GBS which encodes amino acid sequence <SEQ ID 10466>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2936-

PCT/GB01/04789

Example 3135

A DNA sequence <SEQ ID 10467> was identified in GBS which encodes amino acid sequence <SEQ ID 10468>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3136

A DNA sequence <SEQ ID 10469> was identified in GBS which encodes amino acid sequence <SEQ ID 10470>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3137

A DNA sequence <SEQ ID 10471> was identified in GBS which encodes amino acid sequence <SEQ ID 10472>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3138

A DNA sequence <SEQ ID 10473> was identified in GBS which encodes amino acid sequence <SEQ ID 10474>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3139

A DNA sequence <SEQ ID 10475> was identified in GBS which encodes amino acid sequence <SEQ ID 10476>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3140

A DNA sequence <SEQ ID 10477> was identified in GBS which encodes amino acid sequence <SEQ ID 10478>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3141

A DNA sequence <SEQ ID 10479> was identified in GBS which encodes amino acid sequence <SEQ ID 10480>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3142

A DNA sequence <SEQ ID 10481> was identified in GBS which encodes amino acid sequence <SEQ ID 10482>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3143

A DNA sequence <SEQ ID 10483> was identified in GBS which encodes amino acid sequence <SEQ ID 10484>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3144

A DNA sequence <SEQ ID 10485> was identified in GBS which encodes amino acid sequence <SEQ ID 10486>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3145

A DNA sequence <SEQ ID 10487> was identified in GBS which encodes amino acid sequence <SEQ ID 10488>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3146

A DNA sequence <SEQ ID 10489> was identified in GBS which encodes amino acid sequence <SEQ ID 10490>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2937-

Example 3147

A DNA sequence <SEO ID 10491> was identified in GBS which encodes amino acid sequence <SEQ ID 10492>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3148

A DNA sequence <SEQ ID 10493> was identified in GBS which encodes amino acid sequence <SEQ ID 5 10494>, This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3149

A DNA sequence <SEO ID 10495> was identified in GBS which encodes amino acid sequence <SEQ ID 10496>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3150 10

A DNA sequence <SEQ ID 10497> was identified in GBS which encodes amino acid sequence <SEQ ID 10498>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3151

A DNA sequence <SEQ ID 10499> was identified in GBS which encodes amino acid sequence <SEQ ID 10500>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. 15

Example 3152

A DNA sequence <SEO ID 10501> was identified in GBS which encodes amino acid sequence <SEQ ID 10502>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3153

A DNA sequence <SEQ ID 10503> was identified in GBS which encodes amino acid sequence <SEQ ID 20 10504>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3154

A DNA sequence <SEQ ID 10505> was identified in GBS which encodes amino acid sequence <SEQ ID 10506>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3155

A DNA sequence <SEO ID 10509> was identified in GBS which encodes amino acid sequence <SEQ ID 10510>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3156

A DNA sequence <SEQ ID 10511> was identified in GBS which encodes amino acid sequence <SEQ ID 30 10512>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3157

A DNA sequence <SEO ID 10513> was identified in GBS which encodes amino acid sequence <SEQ ID 10514>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3158

35 A DNA sequence <SEQ ID 10515> was identified in GBS which encodes amino acid sequence <SEQ ID 10516>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3159

A DNA sequence <SEO ID 10517> was identified in GBS which encodes amino acid sequence <SEQ ID 10518>, This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2938-

Example 3160

A DNA sequence <SEQ ID 10519> was identified in GBS which encodes amino acid sequence <SEQ ID 10520>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3161

A DNA sequence <SEQ ID 10521> was identified in GBS which encodes amino acid sequence <SEQ ID 10522>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3162

A DNA sequence <SEQ ID 10523> was identified in GBS which encodes amino acid sequence <SEQ ID 10524>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3163

A DNA sequence <SEQ ID 10525> was identified in GBS which encodes amino acid sequence <SEQ ID 15 10526>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3164

A DNA sequence <SEO ID 10527> was identified in GBS which encodes amino acid sequence <SEQ ID 10528>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3165

A DNA sequence <SEQ ID 10529> was identified in GBS which encodes amino acid sequence <SEQ ID 20 10530>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3166

A DNA sequence <SEQ ID 10531> was identified in GBS which encodes amino acid sequence <SEQ ID 10532>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3167 25

A DNA sequence <SEO ID 10533> was identified in GBS which encodes amino acid sequence <SEQ ID 10534>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3168

A DNA sequence <SEQ ID 10535> was identified in GBS which encodes amino acid sequence <SEQ ID 10536>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. 30

Example 3169

A DNA sequence <SEQ ID 10537> was identified in GBS which encodes amino acid sequence <SEO ID 10538>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3170

A DNA sequence <SEQ ID 10539> was identified in GBS which encodes amino acid sequence <SEQ ID 35 10540>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2939-

Example 3171

A DNA sequence <SEQ ID 10541> was identified in GBS which encodes amino acid sequence <SEQ ID 10542>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3172

5 A DNA sequence <SEQ ID 10543> was identified in GBS which encodes amino acid sequence <SEQ ID 10544>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3173

A DNA sequence <SEQ ID 10545> was identified in GBS which encodes amino acid sequence <SEQ ID 10546>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

- SEQ ID 10546 (GBS665) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 137 (lane 8-10; MW 41kDa) and in Figure 187 (lane 5; MW 41kDa). It was also was expressed in *E.coli* as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 137 (lane 11 & 12; MW 16.1kDa), in Figure 141 (lane 4; MW 16kDa) and in Figure 179 (lane 6; MW 16kDa). Purified GBS665-GST is shown in Figure 243, lane 4.
- 15 GBS665-His was purified as shown in Figure 230, lane 7-8.

Example 3174

A DNA sequence <SEQ ID 10547> was identified in GBS which encodes amino acid sequence <SEQ ID 10548>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. A related GBS nucleic acid sequence <SEQ ID 10909> which encodes amino acid sequence <SEQ ID 10910> was also identified.

Example 3175

20

A DNA sequence <SEQ ID 10549> was identified in GBS which encodes amino acid sequence <SEQ ID 10550>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3176

A DNA sequence <SEQ ID 10551> was identified in GBS which encodes amino acid sequence <SEQ ID 10552>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3177

A DNA sequence <SEQ ID 10553> was identified in GBS which encodes amino acid sequence <SEQ ID 10554>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

30 Example 3178

A DNA sequence <SEQ ID 10555> was identified in GBS which encodes amino acid sequence <SEQ ID 10556>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3179

A DNA sequence <SEQ ID 10557> was identified in GBS which encodes amino acid sequence <SEQ ID 10558>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2940-

Example 3180

A DNA sequence <SEQ ID 10559> was identified in GBS which encodes amino acid sequence <SEQ ID 10560>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

PCT/GB01/04789

Example 3181

A DNA sequence <SEQ ID 10561> was identified in GBS which encodes amino acid sequence <SEQ ID 10562>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3182

A DNA sequence <SEQ ID 10563> was identified in GBS which encodes amino acid sequence <SEQ ID 10564>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3183

A DNA sequence <SEQ ID 10565> was identified in GBS which encodes amino acid sequence <SEQ ID 10566>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3184

A DNA sequence <SEQ ID 10567> was identified in GBS which encodes amino acid sequence <SEQ ID 10568>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3185

A DNA sequence <SEQ ID 10569> was identified in GBS which encodes amino acid sequence <SEQ ID 10570>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3186

A DNA sequence <SEQ ID 10571> was identified in GBS which encodes amino acid sequence <SEQ ID 10572>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3187

A DNA sequence <SEQ ID 10573> was identified in GBS which encodes amino acid sequence <SEQ ID 10574>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3188

A DNA sequence <SEQ ID 10575> was identified in GBS which encodes amino acid sequence <SEQ ID 10576>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3189

A DNA sequence <SEQ ID 10577> was identified in GBS which encodes amino acid sequence <SEQ ID 10578>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3190

A DNA sequence <SEQ ID 10579> was identified in GBS which encodes amino acid sequence <SEQ ID 10580>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3191

A DNA sequence <SEQ ID 10581> was identified in GBS which encodes amino acid sequence <SEQ ID 10582>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2941-

Example 3192

A DNA sequence <SEQ ID 10583> was identified in GBS which encodes amino acid sequence <SEQ ID 10584>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3193

A DNA sequence <SEQ ID 10585> was identified in GBS which encodes amino acid sequence <SEQ ID 10586>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3194

A DNA sequence <SEQ ID 10587> was identified in GBS which encodes amino acid sequence <SEQ ID 10588>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3195

A DNA sequence <SEQ ID 10591> was identified in GBS which encodes amino acid sequence <SEQ ID 10592>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3196

A DNA sequence <SEQ ID 10593> was identified in GBS which encodes amino acid sequence <SEQ ID 10594>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3197

A DNA sequence <SEQ ID 10595> was identified in GBS which encodes amino acid sequence <SEQ ID 10596>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3198

A DNA sequence <SEQ ID 10597> was identified in GBS which encodes amino acid sequence <SEQ ID 10598>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. A related GBS nucleic acid sequence <SEQ ID 10797> which encodes amino acid sequence <SEQ ID 10798> was also identified.

Example 3199

A DNA sequence <SEQ ID 10599> was identified in GBS which encodes amino acid sequence <SEQ ID 10600>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3200

A DNA sequence <SEQ ID 10601> was identified in GBS which encodes amino acid sequence <SEQ ID 10602>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

30 Example 3201

A DNA sequence <SEQ ID 10603> was identified in GBS which encodes amino acid sequence <SEQ ID 10604>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3202

A DNA sequence <SEQ ID 10605> was identified in GBS which encodes amino acid sequence <SEQ ID 10606>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2942-

Example 3203

A DNA sequence <SEQ ID 10607> was identified in GBS which encodes amino acid sequence <SEQ ID 10608>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3204

A DNA sequence <SEQ ID 10609> was identified in GBS which encodes amino acid sequence <SEQ ID 10610>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3205

A DNA sequence <SEQ ID 10611> was identified in GBS which encodes amino acid sequence <SEQ ID 10612>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3206

A DNA sequence <SEQ ID 10613> was identified in GBS which encodes amino acid sequence <SEQ ID 10614>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3207

A DNA sequence <SEQ ID 10615> was identified in GBS which encodes amino acid sequence <SEQ ID 10616>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3208

A DNA sequence <SEQ ID 10617> was identified in GBS which encodes amino acid sequence <SEQ ID 10618>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3209

A DNA sequence <SEQ ID 10619> was identified in GBS which encodes amino acid sequence <SEQ ID 10620>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3210

A DNA sequence <SEQ ID 10621> was identified in GBS which encodes amino acid sequence <SEQ ID 10622>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3211

A DNA sequence <SEQ ID 10623> was identified in GBS which encodes amino acid sequence <SEQ ID 10624>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3212

A DNA sequence <SEQ ID 10625> was identified in GBS which encodes amino acid sequence <SEQ ID 10626>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3213

A DNA sequence <SEQ ID 10627> was identified in GBS which encodes amino acid sequence <SEQ ID 10628>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3214

A DNA sequence <SEQ ID 10629> was identified in GBS which encodes amino acid sequence <SEQ ID 10630>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2943-

Example 3215

A DNA sequence <SEQ ID 10631> was identified in GBS which encodes amino acid sequence <SEQ ID 10632>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3216

A DNA sequence <SEQ ID 10633> was identified in GBS which encodes amino acid sequence <SEQ ID 10634>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. A related GBS nucleic acid sequence <SEQ ID 10939> which encodes amino acid sequence <SEQ ID 10940> was also identified.

SEQ ID 10634 (GBS675) was expressed in *E.coli* as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 162 (lane 14 & 15; MW 56kDa). It was also expressed in *E.coli* as a Hisfusion product. SDS-PAGE analysis of total cell extract is shown in Figure 163 (lane 2; MW 31kDa) and in Figure 188 (lane 5; MW 31kDa).

Purified GBS675-His is shown in Figure 240, lane 7-8.

Example 3217

A DNA sequence <SEQ ID 10635> was identified in GBS which encodes amino acid sequence <SEQ ID 10636>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3218

A DNA sequence <SEQ ID 10637> was identified in GBS which encodes amino acid sequence <SEQ ID 10638>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

20 Example 3219

A DNA sequence <SEQ ID 10639> was identified in GBS which encodes amino acid sequence <SEQ ID 10640>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3220

A DNA sequence <SEQ ID 10641> was identified in GBS which encodes amino acid sequence <SEQ ID 10642>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3221

A DNA sequence <SEQ ID 10643> was identified in GBS which encodes amino acid sequence <SEQ ID 10644>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3222

A DNA sequence <SEQ ID 10645> was identified in GBS which encodes amino acid sequence <SEQ ID 10646>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3223

A DNA sequence <SEQ ID 10647> was identified in GBS which encodes amino acid sequence <SEQ ID 10648>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

35 Example 3224

A DNA sequence <SEQ ID 10649> was identified in GBS which encodes amino acid sequence <SEQ ID 10650>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2944-

Example 3225

A DNA sequence <SEQ ID 10651> was identified in GBS which encodes amino acid sequence <SEQ ID 10652>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3226

A DNA sequence <SEQ ID 10653> was identified in GBS which encodes amino acid sequence <SEQ ID 10654>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3227

A DNA sequence <SEQ ID 10655> was identified in GBS which encodes amino acid sequence <SEQ ID 10656>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3228

A DNA sequence <SEQ ID 10657> was identified in GBS which encodes amino acid sequence <SEQ ID 10658>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3229

A DNA sequence <SEQ ID 10659> was identified in GBS which encodes amino acid sequence <SEQ ID 10660>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3230

A DNA sequence <SEQ ID 10661> was identified in GBS which encodes amino acid sequence <SEQ ID 10662>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3231

A DNA sequence <SEQ ID 10663> was identified in GBS which encodes amino acid sequence <SEQ ID 10664>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3232

25

A DNA sequence <SEQ ID 10665> was identified in GBS which encodes amino acid sequence <SEQ ID 10666>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. A related GBS nucleic acid sequence <SEQ ID 10917> which encodes amino acid sequence <SEQ ID 10918> was also identified.

A DNA sequence <SEQ ID 10667> was identified in GBS which encodes amino acid sequence <SEQ ID 10668>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3233

A DNA sequence <SEQ ID 10669> was identified in GBS which encodes amino acid sequence <SEQ ID 10670>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3234

A DNA sequence <SEQ ID 10671> was identified in GBS which encodes amino acid sequence <SEQ ID 10672>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

35 **Example 3235**

A DNA sequence <SEQ ID 10673> was identified in GBS which encodes amino acid sequence <SEQ ID 10674>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2945-

Example 3236

A DNA sequence <SEQ ID 10675> was identified in GBS which encodes amino acid sequence <SEQ ID 10676>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3237

A DNA sequence <SEQ ID 10677> was identified in GBS which encodes amino acid sequence <SEQ ID 5 10678>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3238

A DNA sequence <SEO ID 10679> was identified in GBS which encodes amino acid sequence <SEQ ID 10680>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3239 10

A DNA sequence <SEQ ID 10681> was identified in GBS which encodes amino acid sequence <SEQ ID 10682>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3240

A DNA sequence <SEQ ID 10683> was identified in GBS which encodes amino acid sequence <SEQ ID 10684>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. 15

Example 3241

A DNA sequence <SEO ID 10685> was identified in GBS which encodes amino acid sequence <SEQ ID 10686>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3242

A DNA sequence <SEQ ID 10687> was identified in GBS which encodes amino acid sequence <SEQ ID 20 10688>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3243

A DNA sequence <SEQ ID 10689> was identified in GBS which encodes amino acid sequence <SEQ ID 10690>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3244

30

A DNA sequence <SEO ID 10691> was identified in GBS which encodes amino acid sequence <SEQ ID 10692>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

SEO ID 10692 (GBS676) was expressed in E.coli as a GST-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 163 (lane 3-5; MW 66kDa) and in Figure 239 (lane 8; MW 66kDa). It was also expressed in E.coli as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 163 (lane 7 & 8; MW 41kDa) and in Figure 188 (lane 6; MW 41kDa). Purified GBS676-His is shown in Figure 240, lane 4-5. Purified GBS676-GST is shown in Figure 246, lanes 10 & 11.

Example 3245

A DNA sequence <SEQ ID 10693> was identified in GBS which encodes amino acid sequence <SEQ ID 10694>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. 35

Example 3246

A DNA sequence <SEQ ID 10695> was identified in GBS which encodes amino acid sequence <SEQ ID 10696>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3247

A DNA sequence <SEQ ID 10697> was identified in GBS which encodes amino acid sequence <SEQ ID 10698>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3248

A DNA sequence <SEQ ID 10699> was identified in GBS which encodes amino acid sequence <SEQ ID 10700>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3249

A DNA sequence <SEQ ID 10703> was identified in GBS which encodes amino acid sequence <SEQ ID 10704>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3250

A DNA sequence <SEQ ID 10705> was identified in GBS which encodes amino acid sequence <SEQ ID 10706>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3251

A DNA sequence <SEQ ID 10707> was identified in GBS which encodes amino acid sequence <SEQ ID 10708>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3252

A DNA sequence <SEQ ID 10709> was identified in GBS which encodes amino acid sequence <SEQ ID 10710>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. A related GBS nucleic acid sequence <SEQ ID 10803> which encodes amino acid sequence <SEQ ID 10804> was also identified.

Example 3253

A DNA sequence <SEQ ID 10711> was identified in GBS which encodes amino acid sequence <SEQ ID 10712>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. A related GBS nucleic acid sequence <SEQ ID 10913> which encodes amino acid sequence <SEQ ID 10914> was also identified.

Example 3254

A DNA sequence <SEQ ID 10713> was identified in GBS which encodes amino acid sequence <SEQ ID 10714>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3255

A DNA sequence <SEQ ID 10715> was identified in GBS which encodes amino acid sequence <SEQ ID 10716>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

35 Example 3256

A DNA sequence <SEQ ID 10717> was identified in GBS which encodes amino acid sequence <SEQ ID 10718>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2947-

Example 3257

A DNA sequence <SEO ID 10719> was identified in GBS which encodes amino acid sequence <SEO ID 10720>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3258

A DNA sequence <SEQ ID 10721> was identified in GBS which encodes amino acid sequence <SEQ ID 10722>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3259

A DNA sequence <SEQ ID 10723> was identified in GBS which encodes amino acid sequence <SEQ ID 10724>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3260

A DNA sequence <SEQ ID 10725> was identified in GBS which encodes amino acid sequence <SEQ ID 10726>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3261

A DNA sequence <SEQ ID 10727> was identified in GBS which encodes amino acid sequence <SEQ ID 15 10728>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3262

A DNA sequence <SEO ID 10729> was identified in GBS which encodes amino acid sequence <SEQ ID 10730>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

SEQ ID 10730 (GBS670) was expressed in E.coli as a GST-fusion product. SDS-PAGE analysis of total 20 cell extract is shown in Figure 140 (lane 2-4; MW 45.3kDa). It was also expressed in E.coli as a His-fusion product. SDS-PAGE analysis of total cell extract is shown in Figure 140 (lane 5-7; MW 20.4kDa) and in Figure 179 (lane 10; MW 20kDa).

GBS670-His was purified as shown in Figure 230, lane 9-10.

Example 3263

A DNA sequence <SEQ ID 10731> was identified in GBS which encodes amino acid sequence <SEQ ID 25 10732>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3264

A DNA sequence <SEO ID 10733> was identified in GBS which encodes amino acid sequence <SEQ ID 10734>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3265 30

A DNA sequence <SEQ ID 10735> was identified in GBS which encodes amino acid sequence <SEO ID 10736>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3266

A DNA sequence <SEO ID 10737> was identified in GBS which encodes amino acid sequence <SEO ID 10738>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. 35

-2948-

Example 3267

A DNA sequence <SEO ID 10739> was identified in GBS which encodes amino acid sequence <SEQ ID 10740>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3268

A DNA sequence <SEQ ID 10741> was identified in GBS which encodes amino acid sequence <SEQ ID 10742>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3269

A DNA sequence <SEQ ID 10743> was identified in GBS which encodes amino acid sequence <SEQ ID 10744>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3270 10

A DNA sequence <SEO ID 10745> was identified in GBS which encodes amino acid sequence <SEO ID 10746>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3271

A DNA sequence <SEQ ID 10747> was identified in GBS which encodes amino acid sequence <SEQ ID 15 10748>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3272

A DNA sequence <SEQ ID 10749> was identified in GBS which encodes amino acid sequence <SEQ ID 10750>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3273

20 A DNA sequence <SEQ ID 10751> was identified in GBS which encodes amino acid sequence <SEQ ID 10752>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3274

A DNA sequence <SEQ ID 10753> was identified in GBS which encodes amino acid sequence <SEQ ID 10754>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3275

A DNA sequence <SEQ ID 10755> was identified in GBS which encodes amino acid sequence <SEQ ID 10756>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3276

A DNA sequence <SEQ ID 10757> was identified in GBS which encodes amino acid sequence <SEQ ID 30 10758>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3277

A DNA sequence <SEQ ID 10759> was identified in GBS which encodes amino acid sequence <SEQ ID 10760>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3278

A DNA sequence <SEQ ID 10761> was identified in GBS which encodes amino acid sequence <SEQ ID 35 10762>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2949-

Example 3279

A DNA sequence <SEQ ID 10763> was identified in GBS which encodes amino acid sequence <SEQ ID 10764>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

PCT/GB01/04789

Example 3280

A DNA sequence <SEQ ID 10765> was identified in GBS which encodes amino acid sequence <SEQ ID 10766>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3281

A DNA sequence <SEQ ID 10767> was identified in GBS which encodes amino acid sequence <SEQ ID 10768>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3282

A DNA sequence <SEQ ID 10769> was identified in GBS which encodes amino acid sequence <SEQ ID 10770>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3283

A DNA sequence <SEQ ID 10771> was identified in GBS which encodes amino acid sequence <SEQ ID 10772>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3284

A repeated DNA sequence <SEQ ID 10791> was identified in GBS which encodes amino acid sequence <SEQ ID 10792>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3285

A DNA sequence <SEQ ID 10805> was identified in GBS which encodes amino acid sequence <SEQ ID 10806>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3286

A DNA sequence <SEQ ID 10807> was identified in GBS which encodes amino acid sequence <SEQ ID 10808>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3287

A DNA sequence <SEQ ID 10809> was identified in GBS which encodes amino acid sequence <SEQ ID 10810>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3288

A DNA sequence <SEQ ID 10811> was identified in GBS which encodes amino acid sequence <SEQ ID 10812>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3289

A DNA sequence <SEQ ID 10813> was identified in GBS which encodes amino acid sequence <SEQ ID 10814>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3290

A DNA sequence <SEQ ID 10815> was identified in GBS which encodes amino acid sequence <SEQ ID 10816>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2950-

Example 3291

A DNA sequence <SEQ ID 10817> was identified in GBS which encodes amino acid sequence <SEQ ID 10818>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3292

A DNA sequence <SEQ ID 10819> was identified in GBS which encodes amino acid sequence <SEQ ID 10820>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3293

A DNA sequence <SEQ ID 10821> was identified in GBS which encodes amino acid sequence <SEQ ID 10822>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3294

A DNA sequence <SEQ ID 10823> was identified in GBS which encodes amino acid sequence <SEQ ID 10824>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3295

A DNA sequence <SEQ ID 10825> was identified in GBS which encodes amino acid sequence <SEQ ID 10826>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3296

A DNA sequence <SEQ ID 10827> was identified in GBS which encodes amino acid sequence <SEQ ID 10828>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3297

A DNA sequence <SEQ ID 10829> was identified in GBS which encodes amino acid sequence <SEQ ID 10830>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3298

A DNA sequence <SEQ ID 10831> was identified in GBS which encodes amino acid sequence <SEQ ID 10832>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3299

A DNA sequence <SEQ ID 10833> was identified in GBS which encodes amino acid sequence <SEQ ID 10834>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3300

A DNA sequence <SEQ ID 10835> was identified in GBS which encodes amino acid sequence <SEQ ID 10836>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3301

A DNA sequence <SEQ ID 10837> was identified in GBS which encodes amino acid sequence <SEQ ID 10838>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3302

A DNA sequence <SEQ ID 10839> was identified in GBS which encodes amino acid sequence <SEQ ID 10840>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3303

A DNA sequence <SEQ ID 10841> was identified in GBS which encodes amino acid sequence <SEQ ID 10842>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2951-

Example 3304

A DNA sequence <SEQ ID 10843> was identified in GBS which encodes amino acid sequence <SEQ ID 5 10844>, This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3305

A DNA sequence <SEQ ID 10845> was identified in GBS which encodes amino acid sequence <SEQ ID 10846>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3306

A DNA sequence <SEQ ID 10847> was identified in GBS which encodes amino acid sequence <SEQ ID 10848>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3307

A DNA sequence <SEQ ID 10849> was identified in GBS which encodes amino acid sequence <SEQ ID 10850>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. 15

Example 3308

A DNA sequence <SEO ID 10851> was identified in GBS which encodes amino acid sequence <SEQ ID 10852>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3309

A DNA sequence <SEQ ID 10853> was identified in GBS which encodes amino acid sequence <SEQ ID 20 10854>. Related sequences are <SEQ ID 10855>, <SEQ ID 10856>, <SEQ ID 10857>, <SEQ ID 10858>, <SEQ ID 10859>, <SEQ ID 10860>, <SEQ ID 10861>, <SEQ ID 10862>, <SEQ ID 10863>, <SEQ ID 10864>, <SEO ID 10865> and <SEO ID 10866>. These proteins and their epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3310

A DNA sequence <SEQ ID 10867> was identified in GBS which encodes amino acid sequence <SEQ ID 10868>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3311

A DNA sequence <SEQ ID 10869> was identified in GBS which encodes amino acid sequence <SEQ ID 10870>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics. 30

Example 3312

A DNA sequence <SEQ ID 10871> was identified in GBS which encodes amino acid sequence <SEQ ID 10872>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3313

A DNA sequence <SEQ ID 10873> was identified in GBS which encodes amino acid sequence <SEQ ID 35 10874>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

-2952-

Example 3314

A DNA sequence <SEQ ID 10875> was identified in GBS which encodes amino acid sequence <SEQ ID 10876>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3315

A DNA sequence <SEQ ID 10877> was identified in GBS which encodes amino acid sequence <SEQ ID 10878>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3316

A DNA sequence <SEQ ID 10879> was identified in GBS which encodes amino acid sequence <SEQ ID 10880>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3317

A DNA sequence <SEQ ID 10881> was identified in GBS which encodes amino acid sequence <SEQ ID 10882>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3318

A DNA sequence <SEQ ID 10883> was identified in GBS which encodes amino acid sequence <SEQ ID 10884>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3319

A DNA sequence <SEQ ID 10885> was identified in GBS which encodes amino acid sequence <SEQ ID 10886>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3320

A DNA sequence <SEQ ID 10887> was identified in GBS which encodes amino acid sequence <SEQ ID 10888>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3321

A DNA sequence <SEQ ID 10889> was identified in GBS which encodes amino acid sequence <SEQ ID 10890>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

25 Example 3322

A DNA sequence <SEQ ID 10891> was identified in GBS which encodes amino acid sequence <SEQ ID 10892>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3323

A DNA sequence <SEQ ID 10893> was identified in GBS which encodes amino acid sequence <SEQ ID 10894>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3324

A DNA sequence <SEQ ID 10895> was identified in GBS which encodes amino acid sequence <SEQ ID 10896>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3325

A DNA sequence <SEQ ID 10897> was identified in GBS which encodes amino acid sequence <SEQ ID 10898>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3326

A DNA sequence <SEQ ID 10899> was identified in GBS which encodes amino acid sequence <SEQ ID 10900>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3327

A DNA sequence <SEQ ID 10901> was identified in GBS which encodes amino acid sequence <SEQ ID 10902>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

Example 3328

A DNA sequence <SEQ ID 10903> was identified in GBS which encodes amino acid sequence <SEQ ID 10904>. This protein and its epitopes could be useful antigens for vaccines and/or diagnostics.

10 Example 3329

Seven rRNA genes were identified in *S.agalactiae*. These are SEQ IDs 12018 to 12024. These rRNA genes are particularly useful for diagnostic purposes and for phlyogenetic studies. An alignment of the rRNA sequences is shown below:

	12023	TTTCGAGTCAAAGTCATCAGCGTT
15	12024	
	12019	TCCAATCATACTTAATTTCACTAATATCTGGATTTTGACATATTCAGTTAATTCT
	12021	ATCGAATTGAACGGACTCAATTTGGTTGTTATGTAATTTTACATAATCTATGATTTCT
	12020	
	12018	
20	12022	CTTCTTTGTTTTCTTTAGAGATATTAACTGTA
	12023	TACTGTTACGGCAGCAGTTCCAAGAGTTACTCCACTCACAAGGACTGCTGATAATATTCT
	12024	
	12019	TTTTCATGCTTTTTGAGATAAGCTACTTGTTCTTTTTTTT
25	12021	TGCTCATGCTCTTTGAGATAGGCTAATTGTTCTTTTTTTT
	12020	
	12018	
	12022	CCCACTTTGGGCGTTAAAATACCTAAAGTAGCCTTTATTAAAGTTGATTTAGCAGCCCCA
30	12023	TTTTTCATTTTATTAAACTACTCCTTTACGATAAGACATTAAATATTTTACCAAAA
	12024	
	12019	ACTGCTGACTGTTTGCTATTTTTTACTTCGTTTGACTGAC
	12021	ACTTCTGATTGCTTGCTATTTTTTACTTCGTTTGACTGAATTTTATGTTCACTATTCATT
	12020	
35	12018	CTTT-GATACAATATTATCAAAATTATTAA
	12022	TTTTCACCTGTTAAGGTAACAAACTCCCCACT-GTCTAAATGGTAATTAACCCCTTCCAG
	12023	AATTCACGAAATTATATTACGTCATTGTTACATTTATATTTGAAATCAACTATTTCTAAA
	12024	
40	12019	TGACAGCCTGCTAGTAACATCCCAATAATAGATATGGGAATTAACCATTTTACATATTTT
	12021	TGACAGCCTCCAAGTATCATCCCAAAAATTGATATGGGAATTAACCATTTTATATATTTT
	12020	~~
	12018	CGGTAAAGATATTGTTAAAGACCAAACTTGGATTATCAATCGTTATCAAGAAATTA
	12022	CA-CAGGATCGCTATCGTACTGAAAAGTAAGACCACTAACTGTAATATATCGCATGATTA
45		
	12023	TGAACCATAATCAAATCTAGAAAACGATAACCTTCTTCTATTCACTCTATCAATATA
	12024	
	12019	TTCAACATGCTCTTTTTCTTAGAAAATAAACTTCCCATGTCAAGTATCTAATAAAAATA
	12021	CTCATCATGTTCTCTTTTCTTAGAATATAAATTTTATATATCAAGTATATAATGAAATTA
50	12020	
	12018	TTAGTGATTTGTCTTTAGGAAGCACTATTGCAGAAGAAATTACTCG
	12022	CCCTTCTAATTCTCTAGAGAAAAGATCAAGAAAACGTTCTAAAACGACCTTTTCG
	12023	ATTACTCCATAGTGAAACTAAAAGAGAAATAAAAAAAGAGTATAATTACTCTTAAAATTA
55	12024	
	12019	ATTATTATTTACCAGTATGTTAAAACTAATATTAGTATAACAAA-TTTTCACGAGTTTAA

	12021	ACTATTATTCACCAACATTATAAAATTAATTTTAGTATAACAAAATTTTCACGTATTTTT
	12020	ATCAAAAAAACATGACCAGTATGAATTAAAGCAACGTATAATCAATGCCT
	12018	CTCTATAGAGCAGCTAGCTTCACTTCCCATAGAAAATAATCAGTTTTTAT-ATGAT
	12022	TCCTTTGAAAAATGATTTACTAATCTTCCGTAAACCCCTAACGTATTGTCATGATGATGT
5		
3	70000	
	12023	TAATATTTACGGAGAATAAGGGATTCGAACCCTTGCGCCAGTTACCCGACCTAACGATTT
	12024	
	12019	TTTTTTAGTCGTAACATATACACTGAAAAATCTTATTATTTTTATACTACCTATCTAT
	12021	ATAGTTTTAGTCTTAACATGTAAACAGAAAATC
10	12020	TAATGCGTAAAGGATACCAGTACGAAGATATC
10	12018	TGTTTTTTAGCAGCCGGTGAAGATAACAACGCAAAGTT
	12022	GTGTGTTCATCTGCAATGGGTTTAGCAAGTTCAGATAACTCAAAATA
	12023	AGCAAACCGTCCTCTTCAGCCTCTTGAGTAATTCTCCAAATTAATATTAATGGGCACG
15	12024	73041110000010110100010110100101010101010
15		
	12019	ATTCACAAACACTTTTATTACTTCAGAACCTATGACATTTAGGAGTCCTCTTTGAATTTC
	12021	ATTTGTATATTTTAAATGCCCTAATTAAATT
	12020	AAAAGTGCTTTAAGAGAATATTTATAAGAT
	12018	AGTTGCA-ACGTTTTTTAATCAAAATGACATTCCTGCAAGATATGTTCATCCAAACGA
20	12022	AGTAATACGAGCATCTTTAGAATCTTTATTCGCTTTCAACATATCCTGAGA-AATTAA
	12023	AGTGGACTCGAACCACCGACCTCACGCTTATCAGGCGTGCGCTCTAACCACCTGAGCTAC
	12024	
	12019	ATTTAAATGTTGAGTCTCCACTAACTCTTGAAAAATTTCCTTATTATTTCTGCTTGTTTT
25	12021	AATATTTATTATATA
	12020	AATAACTCTCAGACGATGTATT-TTACAGA
	12018	AGCAGGAATTATTGTAACTAAAGAACCATGTAATGCACGAATTATTCCAGGA
	12022	ACTTTTTACTGCTTTAGTTACAGCTGCCTGACTAATATTTAACTTCTTAGCTAAATCAGA
30	10000	
30	12023	GCGCCCAAGCAAATGCTTGGTTTTACTTTTATGTAAAGTAAGCGGGTGACGAGAATCGA-
	12024	
	12019	AAACCTTCTATAACGATTGCAATAATGAAAAACAAATATAAGTAATTTTCAGTAACTTTT
	12021	AATTCTTCTACAATGAAAAAAATAAATATATA-TTACAAGTAACATT-
	12020	AAATTATGATAAACTATAACAGACGTATAAATTGTAGAAAGTTG-
35	12018	AGTTATGATAAGATTGAGAACTTATGTCTATACAATGAGGTTCTTGTTATCCCT
55		
	12022	ATTTGTCAACTGCTCTTGTGATAAAAGCATCAGAATGTGTTCTTGCGTATTAGT
	10000	
	12023	-ACTCGCGACAACAGCTTGGAAGGCTGTAGTTTTACCACTAAACTACACCCGCTAAAAAC
4.0	12024	
40	12019	TCTCAAAATTACCAGCACAATACAAAAAAGACAAGGCTTCTAAACCTTGTCTTTATAAAT
	12021	TCACAATAAATTATCTAGTAGAAAAAAGACAAGGTTTAGAAACCTTGTCTTTATAAGT
	12020	GTAGGCTATGAGATTACCTAAAGAAGGCGACTTTATTACAATTCAAAGTTACAAAC
	12018	GGATTTTTTGGAGTCACAGAAGATAAC-CAAATTTGTACCTTTTCAAGA
15	12022	CAATTTAA-CATCACTTTGACAAGTACCAAACAATAATTCATGTTGATTTTCTGCTTTAA
45		
	12023	TTATATAATAAATGGCGCGAGACGGAATCGAACCGCCGACACATGGAGCTTCAATCCATT
	12024	
	12019	ATACCGGCGGCCGGGTCGAACCGGCACGTCCGTGAGGACACTGGATTTTGAGTCCAGCG
	12021	ATACCGGCCGGCTCGAACCGGCACGTCCGTGAGGACACTGGATTTTGAGTCCAGCG
50		
50	12020	ATGATGGTAGTTTACACCGAACTTGGCGTGACACCA-TGGTATTAAAAACAACCG
	12018	GGGGGATCTGACATTACTGGATCCCTAATTGCAGCAGGCATAAA
	12022	GCAAGATTTGAC-TCACTAAATGGTCTAATTTTTGTTCTAAAACTGTCATATA
	10000	
	12023	GCTCTACCAACTGAGCTACCGAGCCTATTGCGGGAGCAGGATTTGAACCTACGACCTTCG
55	12024	
	12019	CGTCTGCCAATTCCGCCACGCCGGCTATCTTAAAACTGGGGTAGCTGGATTCGA~~ACCA
	12021	CGTCTGCCAATTCCGCCACGCCGGCTATCTTAAAACTGGGGTAGCTGGATTCGAACCA
	12020	AAAATGCCCTCATTGGTGTTAATGATCATACTTTAGTAACAGAAAATGATGGTCG
60	12018	AGCAGACCT-TTATGAGAACTTCACAGATGTTGATGGTATATTTGCAGCACATCCA
60	12022	TACCT-CTT-TTTTGTTAACCAGTAAATTATATCACGAAGATATAGAAGAATCAATC
	12023	GGTTA-TGAGCCCGACGAGCTACCTAGCTGCTCCATCCCGCGATATCTTTAAA
	12024	
	12019	ACGCA-TGAGGGAGTCAAAGTCCCTTGCCTTACCGCTTGGCTATACCCCCATGA
65	12021	ACGCA-TGAGGGAGTCAAAGTCCCTTGCCTTACCGCTTGGCTATACCCCATGA
	12020	ACGCTGGGTGACACGAGAGCCTGCAATAGTATACTTTCATA
	12018	GGTGTAGTTAAGAACCCTCACGCTATCCCTGAGCTTACTTATA
	12022	GATAGGTGAAGAAGATAAAACCTTTTATCTCAACAACCTAACTTTATAAACTTCTT
	14044	

	12023	GGAGGATGTGGGATTCGAACCCACGCACGCTTTTACACGCCTGACGGTT
	12024	
	12019	AAAGGCGAGTGATGGGAATCGAACCCACGAATGTCAGAGCCACAATCTGATGTGT
5	12021 /	AAAGGCGAGTGATGGGAATCGAACCCACGAATGTCAGAGCCACAATCTGATGTGT
J	12020	AAAAATACTGGTTTAACATTATCGCTATGATACGT
		
	12018	AAGA~~~~~AATGCGTGAATTAGCCTATGCGGGTTTTTCGGTTT-TACATGATGAA-
	12022	AAAACCTTTCATACTATTAAAAACACGATCAGCTTTTTTTCTCTGTAG-AACACATTGAAA
10	12023 12024	${\tt TTCAAGACCGTTCCCTTCAGCCGGACTTGGGTAATCCTCCATATAACAAAAAATATGGAC}$
	12019	
		TAACCACTTCACCACACCCGCCATATTAGAAAAAACACGGGCAGTAGGAATCGAACCCAC
	12021	TAACCACTTCACCACACCCGCCATATTAGAAAAAACACGGGCAGTAGGAATCGAACCCAC
	12020	GAAACTGGTGTCTCCTACTATTGTAATCTAGCAAGTCCGTATATCTTGGACCC
15	12018	GCTTTACTTCCTGCCTATCGTGGCAGAATCCCTCTTGTTATTAAAAATAC
	12022	AAACAGTTGGTCCACTTCCTGTC-ATTAATGCAACATCGGCTCCAGAATTTAACATAC
	12023	CTTGTAGGACTCGAACCTACGACCGCTCGGTTATGAGCCGAGTGCTCTAACCAGTTGAGC
	12024	
20		
20	12019	ACTGAAGGTTTTGGAGACCTTAGTTCTACCTTTAAACTATGCCCGTTTACTATGGAGAGA
	12021	ACTGAAGGTTTTGGAGACCTTAGTTCTACCTTTAAACTATGCCCGTTTACTATGGAGAGA
	12020	TGAAGCACTCAAGTATATTGACTATGACCTTGATGTCAAAGTATTTGCAGATGGTGAA
	12018	AAATAATCCCCAACAGCCTGGTACAAAAATAGTTTTAAAGCATACTCGTAG-
	12022	GTTCTTTTATTGTACTTATAACTGGATTTTTAGTAATTGTAATATCCTCGAGTGAA
25		
	12023	TAAAGGTCCAAAGTCTCAATAAAATAAATAGCGGCGGAGGGGATCGAACCCCCGACCTCC
	12024	
	12019	GAGGGATTCGAACCCCGAACCCGAAGGAGCGGATTTACAGTCCGCCGCGTTTAGCCTCT
	12021	GAGGGATTCGAACCCCGAACCCGAGGGGGGTTTACAGTCCGCCGCGTTTAGCCTCT
30	12020	AAAAGACTACTAGATGTGGACGAATATGAACAGCATAAAGYTCAGATGAACTATCCTA
	12018	TAACATAGCAGTAACTGG-GATCGCTTCTGATAGCCGTTTTGCTAGCATAAACGTA
	12022	${\tt TTTCCCATAGATTTGACCATTAACTGATAATCTGATGACAAAATAGCAGACTTTAATAAA}$
25	12023	CGGGTATG-AACCGGACGCTCTAGCCAGCTGAGCTACACCGCCATAAAAATATATCCA
35	12024	
	12019	TCGCTATC-TCTCCTAAGGTATAAATGGCGCGAGACGGAATCGAACCGCCGACACATGGA
	12021	TCGCTATC-TCTCCTAAGGTATAAATGGCGCGAGACGGAATCGAACCGCCGACACATGGA
	12020	CCGATATT-GATTATATATAAGGAAAATGTAAAAATATTGGTAGAATGGATAAATGAG
	12018	TCTAAATACTTAATGAATAGAGAAGTAGGTTTCGGCCGAAAAGTACTACAA
40	12022	TCAATATCAACTCTACTTATAGACTTACAATCAATATCTCTAAAAATGGATTTAGTTGAA
10	22022	
	12023	TCGGGAAGACAGGATTCGAACCTGCGACACCTTGGTCCCAAACCAAGTACTCTACCAAGC
	12024	
	12019	GCTTCAATCCATTGCTCTACCAACTGAGCTACCGAGCCTATTGCGGGAGCAGGATTTGAA
45	12021	GCTTCAATCCATTGCTCTACCAACTGAGCTACCGAGCCTATTGCGGGAGCAGGATTTGAA
73		
	12020	AATAAAGGCCCCTTTTC-ATCATCATATATCAA-TATCTGGTATAAACGGTA
	12018	ATTTTAGAGGATTTAAATATTAGTTTTGAACATATGCCAACTGGCATAGATGAT
	12022	ATACCAAAATCCGGCTTAACCAGAACTATCCAACATGGTCTCAATGTCGGTAAGGGT
50	12023	TGAGCTACTTCCCGAAAAATATGCACCCTAGAGGAGTCGAACCTCTAACCGCCTGATT
	12024	
	12019	CCTACGACCTTCGGGTTATGAGCCCGACGAGCTACCTAGCTGCTCCATCCCGCGATAT
	12021	CCTACGACCTTCGGGTTATGAGCCCGACGAGCTACCTAGCTGCTCCATCCCGCGATAT
	12020	CCTTGAATTGAAAAAGCGCTAACTAAC-ACACTAAATAGTG-TGT
55	12018	CTATCCATTGTCTTACGTGAAAAAGAATTGACACCAATCAAAGAACAAGAAATC
	12022	TTAACAATTTCACCTTTACCTAATACTAACGAACATCCCCCACCAAGACAATAAGGAACA
	12023	CGTAGTCAGGTACTCTATCCAGTTGAGCTAAGGGTGCTAAATATTATATGCC
	12024	**************************************
60	12019	CTTTAAAGGAGGATGTGGGATTCGAACCCACGCACGCTTTTACACGCCTGACGGTTTT
00		
	12021	CTTTAAAGGAGGATGTGGGATTCGAACCCACGCACGCTTTTACACGCCTGACGGTTTT
	12020	TTTTATTAATATCAAATTTAATTACAATACTATTGCAAAAATATATACT
	12018	TTAAATTACCTAACTCGTAAACTAGAAGTAGATTACGTTGACATCCAA
	12022	TCACTACC-AATTTTAAAACCAATAGCAACCATTTCGTCATAGTCCATTTGAAGATTC
65		
	12023	GAGGACCGGAATCGAACCGGTACGATGTTTACCATCGCAGGATTTTAAGTCCTGTG
	12024	
	12019	CAAGACCGTTCCCTTCAGCCGGACTTGGGTAATCCTCCATATAACAAAAAATAGTCCGTA

	12021 12020 12018	CAAGACCGTTCCCTTCAGCCGGACTTGGGTAATCCTCCATATAACAAAAAATAGTCCGTA TAAAATAAAAAAAGTAGAAAGATCACTTTCTACTTTTTTAAGAATAGTCCGTA CACAATCTATCTACAATCGTAATTGTAGGTGAAA-ATATGAAAAGTCAGATTG
_	12022	CATAATCGATTAAGAGCTCTTATTGTAGCAGCAGCATCAGTAGAACCACCCCC
5		
	12023	CGTCTGCCAGTTCCGCCACCCCGGCCTCTAACAAGCGAACGACGGGGTTCGAACCCGCGA
	12024	
	12019	CGGGATTCGAACCCGTGTTACCGCCGTGAAAAGGCGGTGTCTTAACCCCTTGACCAACGG
	12021	CGGGATTCGAACCCGTGTTACCGCCGTGAAAAGGCGGTGTCTTAACCCCTTGACCAACGG
10	12020	CGGGATTCGAACCCGTGTTACCGCCGTGAAAAGGCGGTGTCTTAACCCCTTGACCAACGG
10		
	12018	GAGTCACTGCAACAGCGACACAAGCCTTATCAAGAGAAAAAATCAATAT
	12022	CAGTC-CTGCACAGACAGGAATGGATTTTTCTAATCTAAT
	12023	$\hbox{-}CCCTCACCTTGGCAAGGTGATGTTCTACCACTGAACTACGTTCGCACTAAAGAC$
15	12024	***************************************
	12019	-ACCATATTCTTGATGGGCACGAGTGGACTCGAACCACCGACCTCACGCTTATCAGGCGT
	12021	-ACCATATTCTTGATGGGCACGAGTGGACTCGAACCACCGACCTCACGCTTATCAGGCGT
	12020	-ACCATATTCTTGATGGGCACGAGTGGACTCGAACCACCGACCTCACGCTTATCAGGCGT
00	12018	CACCATGATATCACAAGGTTCAAGCGAAGTCTCCATTATGT
20	12022	CATATTGATTTTGATTATATCTGCAGCTTTAAACACATCATTATCATTATTTAAAGGCA
	12023	ACTATTATCCTATAAAATTGTAATGCCGGC
	12024	TATCCTATAAAATTGTAATGCCGGC
	12019	GCGCTCTAACCACCTGAGCTACGCGCCCAAAATAACTTCTAAAATTATAAAGTTAATGCC
25	12021	GCGCTCTAACCACCTGAGCTACGCGCCCAAGCTA
	12020	GCGCTCTAACCACCTGAGCTACGCGCCCAAGCTA
	12018	TCGTTATAAACAGTAAGGATGAAAAAAGAGCTAT
	12022	TTTTGCTACTATCAGAATCGATAACAATACAATCTTCCTT **
30		
	12023	TACATGACTTGAACACGCGACCCTCTGATTACAAATCAGATGCTCTACCAACTGAGC
	12024	TACATGACTTGAACACGCGACCCTCTGATTACAAATCAGATGCTCTACCAACTGAGC
	12019	GGCTACATGACTTGAACACGCGACCCTCTGATTACAAATCAGATGCTCTACCAACTGAGC
35	12021	TTGCTTGGTTTT-TACTTTCTTATAA
33	12020	TTGCTTGGTTTTTACTTTCTTATAAA
	12018	TAAAGCACTATATGAA-ACATTCTTCCAAAAATAGTACCTATTACACTACTTACAC
	12022	TAGCTCAGAAATGGTA-ACGTAGTCATTAAGATCAATACTAACCATAATCATAGCTAATT
		* *
40	10000	
40	12023	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
40	12023 12024	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
40		
40	12024	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
40	12024 12019	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
	12024 12019 12021 12020	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTCAGTAAAGCGGGTGACGAGAATCGAACTC
40	12024 12019 12021 12020 12018	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTCAGTAAAGCGGGTGACGAGAATCGAACTCCTTAGGACGA TATTAGATAGATAACAAATCGTCCTAAGTAAGCTTACTTAGGACGA
	12024 12019 12021 12020	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTCAGTAAAGCGGGTGACGAGAATCGAACTC
	12024 12019 12021 12020 12018	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTC
45	12024 12019 12021 12020 12018	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTC
	12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGACTCGAACTCC TAAAGCCGGGTGACGAGAATCGAACTCC TATTAGATAGATAACAAATCGTCCTAAGTAAGCTTACTTAGGACGA CATGATAACCATCGT-CACATCGTCCTTTAATATCTAAATTAAGTTTAGGACGA * ** * * * * GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC
45	12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGACTCGACTCGACTCGCCATTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTCG TATTAGATAGATAACAAATCGTCCTAAGTAAGCTTACTTAGGACGA CATGATAACCATCGT-CACATCGTCCTTTAATATCTAAATTAAGTTTGGCAGGA * ** * * * GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC
45	12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGACGAACTCGACTC
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGAATCGAACTC
45	12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGACGAACTCGACTC
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGAATCGAACTC
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTAATGCGGGTGACGAGAATCGAACTC
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTC TATTAGATAGATAACAAATCGTCCTAAGTAAGCTTACTTAGGACGA CATGATAACCATCGT-CACATCGTCCTTTAATATCTAAATCAAATTAAGTTTGGCAGGA * ** * * GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC GATCCTAAATCTGGTGCGTCTGCCAATTCCGCCACACCCGCATTTCTAAATGACCCGTAC
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTC
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12029 12019 12021	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12029 12019 12021	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45505560	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12022 12023 12024 12019	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12022 12023 12024 12019	TAAGCCGCAATCTACTAATGCGGTGAAGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGAATCGAACTC
45505560	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12022 12028 12024 12019 12021 12021 12020 12018 12022	TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGGACTTGAACCCCCACGCCGTTAAGCGCCAAGTAAAGCGGGTGACGAGAATCGAACTC
45505560	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12022 12023 12024 12019	TAAGCCGCAATCTACTAATGCGGGTGAAGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGACTTGAACCCCCACGCCGTTAAGCGCCA TAAGCCGGCAATCTACTAATGCGGGTGAAGGAATCGAACTC

	12019 12021	GTCTACGGTCCCGACGGGAATCGAACCCGCGATCTTCGCCGTGACAGGGCGACGTGATAA
	12020	
	12018	ATA-ATAATTCCAATAAAAAAAGGCTAACCAAAGTTAGTC
5		
3	12022	ATA-ATAATTCCAATAAAAAAAGGCTAACCAAAGTTAGTC *
	12023 12024	CCGCTACACTACGGGACCTATGGGAGTTAACGGGATCGAACCGCTGACCCTCTGCTTGTA
10	12019	CCGCTACACTACGGGACCTATGGGAGTTAACGGGATCGAACCGCTGACCCTCTGCTTGTA
10	12021	-CGCTTCTATGGGAGTTAACGGGATCGAACCGCTGACCCTCTGCTTGTA
	12021	
		-CGCTTCTATGGGAGTTAACGGGATCGAACCGCTGACCCTCTGCTTGTA
	12018	TCCCTTTATCTACTCCGCCAGTAGGACTCGAACCTACGACATCATGATTAAC
1.5	12022	TCCCTTTATCTACTCCGCCAGTAGGACTCGAACCTACGACATCATGATTAAC
15		* ** *** ** ** ** ** **
	12023	AGGCAGATGCT-CTCCCAGCTGAGCTAAACTCCCTTTGCTAAGCGACTACCTTATCTC
	12024	AGGCAGATGCT-CTCCCAGCTGAGCTAAACTCCCTTTGCTAAGCGACTACCTTATCTC
	12019	AGGCAGATGCT-CTCCCAGCTGAGCTAAACTCCCTTTGCTAAGCGACTACCTTATCTC
20	12021	AGGCAGATGCT-CTCCCAGCTGAGCTAAACTCCCTTTGCTAAGCGACTACCTTATCTC
	12020	AGGCAGATGCT-CTCCCAGCTGAGCTAAACTCCCTTTGCTAAGCGACTACCTTATCTC
	12018	AGTCATGCGCTACTACCAACTGAGCTATGGCGGATTATAGCTAAGCGACTACCTTATCTC
	12022	AGTCATGCGCTACTACCAACTGAGCTATGGCGGATTATAGCTAAGCGACTACCTTATCTC
	12022	** ** ** ** ** *** *******
25		
43	12023	ACAGGGGGCAACCCCCAACTACTTCCGGCGTTCTAGGGCTTAACTTCTGTGTTCGGCATG
	12024	ACAGGGGGCAACCCCCAACTACTTCCGGCGTTCTAGGGCTTAACTTCTGTGTTCGGCATG
	12019	ACAGGGGGCAACCCCCAACTACTTCCGGCGTTCTAGGGCTTAACTTCTGTGTTCGGCATG
2.0	12021	ACAGGGGGCAACCCCCAACTACTTCCGGCGTTCTAGGGCTTAACTTCTGTGTTCGGCATG
30	12020	ACAGGGGGCAACCCCCAACTACTTCCGGCGTTCTAGGGCTTAACTTCTGTGTTCGGCATG
	12018	ACAGGGGGCAACCCCCAACTACTTCCGGCGTTCTAGGGCTTAACTTCTGTGTTCGGCATG
	12022	ACAGGGGGCAACCCCCAACTACTTCCGGCGTTCTAGGGCTTAACTTCTGTGTTCGGCATG

35	12023	AGAACAGGTGTATCTCCTAGGCAATTATCACTTAACTATTGAGCCTTATTCACTCAAAAT
33		
	12024	AGAACAGGTGTATCTCCTAGGCAATTATCACTTAACTATTGAGCCTTATTCACTCAAAAT
	12019	AGAACAGGTGTATCTCCTAGGCAATTATCACTTAACTATTGAGCCTTATTCACTCAAAAT
	12021	AGAACAGGTGTATCTCCTAGGCAATTATCACTTAACTATTGAGCCTTATTCACTCAAAAT
40	12020	AGAACAGGTGTATCTCCTAGGCAATTATCACTTAACTATTGAGCCTTATTCACTCAAAAT
40	12018	AGAACAGGTGTATCTCCTAGGCAATTATCACTTAACTATTGAGCCTTATTCACTCAAAAT
	12022	AGAACAGGTGTATCTCCTAGGCAATTATCACTTAACTATTGAGCCTTATTCACTCAAAAT

	12023	TGAATATCTATAGTCTAACAAGAAACCGTAACGTTGTCAATATCTCTTTTTGGATAAGTC
45	12024	TGAATATCTATAGTCTAACAAGAAACCGTAACGTTGTCAATATCTCTTTTTGGATAAGTC
	12019	TGAATATCTATAGTCTAACAGAAACCGTAACGTTGTCAATATCTCTTTTTTGGATAAGTC
		TGAATATCTATAGTCTAACAAGAAACCGTAACGTTGTCAATATCTCTTTTTTGGATAAGTC
	12021	TGAATATCTATAGTCTAACAAGAAACCGTAACGTTGTCAATATCTCTTTTTGGATAAGTC
	12020	
50	12018	TGAATATCTATAGTCTAACAAGAAACCGTAACGTTGTCAATATCTCTTTTTGGATAAGTC
50	12022	TGAATATCTATAGTCTAACAAGAAACCGTAACGTTGTCAATATCTCTTTTTGGATAAGTC

	12023	CTCGAGCTATTAGTATTAGTCCGCTAAATGTGTCACCACAATTACACTCCTAACCTATCT
	12024	CTCGAGCTATTAGTATTAGTCCGCTAAATGTGTCACCACAATTACACTCCTAACCTATCT
55	12019	CTCGAGCTATTAGTATTAGTCCGCTAAATGTGTCACCACAATTACACTCCTAACCTATCT
55	12021	CTCGAGCTATTAGTATTAGTCCGCTAAATGTGTCACCACAATTACACTCCTAACCTATCT
		CTCGAGCTATTAGTATTAGTCCGCTAAATGTGTCACCACAATTACACTCCTAACCTATCT
	12020	
	12018	CTCGAGCTATTAGTATTAGTCCGCTAAATGTGTCACCACAAATTACACTCCTAACCTATCT
<i>(</i> 0	12022	CTCGAGCTATTAGTCTCGCTAAATGTGTCACCACAATTACACTCCTAACCTATCT
60		*******************
	12023	ACCTGATCATCTCTCAGGGCTCTTACTGATATAAAATCATGGGAAATCTCATCTTGAGGT
	12024	ACCTGATCATCTCTCAGGGCTCTTACTGATATAAAATCATGGGAAATCTCATCTTGAGGT
	12019	ACCTGATCATCTCTCAGGGCTCTTACTGATATAAAATCATGGGAAATCTCATCTTGAGGT
65	12019	ACCTGATCATCTCTCAGGGCTCTTACTGATATAAAATCATGGGAAATCTCATCTTGAGGT
05		ACCTGATCATCTCTCAGGGCTCTTACTGATATAAAATCATGGGAAATCTCATCTTGAGGT
	12020	
	12018	ACCTGATCATCTCTCAGGGCTCTTACTGATATAAAATCATGGGAAATCTCATCTTGAGGT
	12022	ACCTGATCATCTCTCAGGGCTCTTACTGATATAAAATCATGGGAAATCTCATCTTGAGGT

	12023	GCGCTTCGCACTTAGATGCTTTCAGCGCTTATCCCTTCCCTACATAGCTACCCAGCGATG
	12023	GGGCTTCGCACTTAGATGCTTTCAGCGCTTATCCCTTCCCTACATAGCTACCCAGCGATG
5	12024	GGGCTTCGCACTTAGATGCTTTCAGCGCTTATCCCTTCCCTACATAGCTACCCAGCGATG
J	12019	GGGCTTCGCACTTAGATGCTTTCAGCGCTTATCCCTTCCCTACATAGCTACCCAGCGATG
	12020	GGGCTTCGCACTTAGATGCTTTCAGCGCTTATCCCTTCCCTACATAGCTACCCAGCGATG
	12018	GGGCTTCGCACTTAGATGCTTTCAGCGCTTATCCCTTCCCTACATAGCTACCCAGCGATG
10	12022	GGGCTTCGCACTTAGATGCTTTCAGCGCTTATCCCTTCCCTACATAGCTACCCAGCGATG
10		**************************************
	12023	CCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCCACTCTGGTCCTCTCGTACTAGGA
	12024	CCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCCACTCTGGTCCTCTCGTACTAGGA
	12019	CCTTTGGCAAGACACTGGTACACCAGCGGTAAGTCCACTCTGGTCCTCTCGTACTAGGA
15	12021	CCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCCACTCTGGTCCTCTCGTACTAGGA
	12020	CCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCCACTCTGGTCCTCTCGTACTAGGA
	12018	CCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCCACTCTGGTCCTCTCGTACTAGGA
	12022	CCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCCACTCTGGTCCTCTGGTACTAGGA

20		
	12023	GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT
	12024	GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT
	12019	GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT
	12021	GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT
25	12020	GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT
23	12020	GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT
		GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT GCAGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGT
	12022	**************************************

30	10000	
30	12023	TCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTA
	12024	TCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTA
	12019	TCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTA
	12021	TCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTA
0.5	12020	TCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTA
35	12018	TCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTA
	12022	TCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTA

	12023	CAGCCCCAGGATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGTCGATGTGAACTC
40	12024	CAGCCCCAGGATGCGACGACCCCCCCAAACCTCCCCGTCGATGTGAACTC
	12019	CAGCCCCAGGATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGTCGATGTGAACTC
	12021	CAGCCCCAGGATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGTCGATGTGAACTC
	12020	CAGCCCCAGGATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGTCGATGTGAACTC
	12018	CAGCCCCAGGATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGTCGATGTGAACTC
45	12022	CAGCCCCAGGATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGTCGATGTGAACTC

	12023	TTGGGGGAGATAAGCCTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTC
	12024	TTGGGGGAGATAAGCCTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTC
50	12019	TTGGGGGAGATAAGCCTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTC
20	12021	TTGGGGGAGATAAGCCTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTC
	12021	TTGGGGGAGATAAGCCTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTC
	12018	TTGGGGGAGATAAGCCTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTC
<i>5 5</i>	12022	TTGGGGGAGATAAGCCTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTC
55		*******************
	12023	CATACGGAACCACCGGATCACTAAGCCCGACTTTCGTCCCTGCTCGAGTTGTAGCTCTCG
	12024	CATACGGAACCACCGGATCACTAAGCCCGACTTCGTCCCTGCTCGAGTTGTAGCTCTCG
	12019	CATACGGAACCACCGGATCACTAAGCCCGACTTCGTCCCTGCTCGAGTTGTAGCTCTCG
60	12021	CATACGGAACCACCGGATCACTAAGCCCGACTTTCGTCCCTGCTCGAGTTGTAGCTCTCG
	12020	CATACGGAACCACCGGATCACTAAGCCCGACTTCGTCCCTGCTCGAGTTGTAGCTCTCG
	12018	CATACGGAACCACCGGATCACTAAGCCCGACTTTCGTCCCTGCTCGAGTTGTAGCTCTCG
	12022	CATACGGAACCACCGGATCACTAAGCCCGACTTCGTCCCTGCTCGAGTTGTAGCTCTCG

65		
	12023	CAGTCAAGCTCCCTTATACCTTTACACTCTACGACTGATTTCCAACCAGTCTGAGGGAAC
	12024	CAGTCAAGCTCCCTTATACCTTTACACTCTACGACTGATTTCCAACCAGTCTGAGGGAAC
	12019	CAGTCAAGCTCCCTTATACCTTTACACTCTACGACTGATTTCCAACCAGTCTGAGGGAAC

WO 02/34771

-2959-

	12021	CAGTCAAGCTCCCTTATACCTTTACACTCTACGACTGATTTCCAACCAGTCTGAGGGAAC
	12020	CAGTCAAGCTCCCTTATACCTTTACACTCTACGACTGATTTCCAACCAGTCTGAGGGAAC
	12018	CAGTCAAGCTCCCTTATACCTTTACACTCTACGACTGATTTCCAACCAGTCTGAGGGAAC
	12022	CAGTCAAGCTCCCTTATACCTTTACACTCTACGACTGATTTCCAACCAGTCTGAGGGAAC
5		******************
	12023	CTTTGGGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCGTCAGAC
	12024	CTTTGGGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCGTCAGAC
1.0	12019	CTTTGGGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCGTCAGAC
10	12021	$\tt CTTTGGGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCGTCAGAC$
	12020	CTTTGGGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCAGTCAAACTGCCCGTCAGAC
	12018	CTTTGGGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCGTCAGAC
	12022	CTTTGGGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCCGTCAGAC
	12022	**************************************
15		
	12023	ACTGTCTCCGATAGGGATTGCCTATCTGGGTTAGAGTAGCCATAACACAAGGGTAGTATC
	12024	ACTGTCTCCGATAGGGATTGCCTATCTGGGTTAGAGTAGCCATAACACAAGGGTAGTATC
	12019	ACTGTCTCCGATAGGGATTGCCTATCTGGGTTAGAGTAGCCATAACACAAGGGTAGTATC
	12021	ACTGTCTCCGATAGGGATTGCCTATCTGGGTTAGAGTAGCCATAACACAAGGGTAGTATC
20		
20	12020	ACTGTCTCCGATAGGGATTGCCTATCTGGGTTAGAGTAGCCATAACACAAGGGTAGTATC
	12018	ACTGTCTCCGATAGGGATTGCCTATCTGGGTTAGAGTAGCCATAACACAAGGGTAGTATC
	12022	ACTGTCTCCGATAGGGATTGCCTATCTGGGTTAGAGTAGCCATAACACAAGGGTAGTATC

25	12023	CCAACAACGCCTCAAACGAAACTGGCGTCCCGTTATCATAGGCTCCTACCTA
25		
	12024	CCAACAACGCCTCAAACGAAACTGGCGTCCCGTTATCATAGGCTCCTACCTA
	12019	CCAACAACGCCTCAAACGAAACTGGCGTCCCGTTATCATAGGCTCCTACCTA
	12021	CCAACAACGCCTCAAACGAAACTGGCGTCCCGTTATCATAGGCTCCTACCTA
	12020	CCAACAACGCCTCAAACGAAACTGGCGTCCCGTTATCATAGGCTCCTACCTA
30	12018	CCAACAACGCCTCAAACGAAACTGGCGTCCCGTTATCATAGGCTCCTACCTA
	12022	CCAACAACGCCTCAAACGAAACTGGCGTCCCGTTATCATAGGCTCCTACCTA
	12022	**************************************
	12023	ATGTGGTACAGATACTCAATATCAAACTGCAGTAAAGCTCCATGGGGTCTTTCCGTCCTG
35	12024	ATGTGGTACAGATACTCAATATCAAACTGCAGTAAAGCTCCATGGGGTCTTTCCGTCCTG
	12019	ATGTGGTACAGATACTCAATATCAAACTGCAGTAAAGCTCCATGGGGTCTTTCCGTCCTG
	12021	ATGTGGTACAGATACTCAATATCAAACTGCAGTAAAGCTCCATGGGGTCTTTCCGTCCTG
	12020	ATGTGGTACAGATACTCAATATCAAACTGCAGTAAAGCTCCATGGGGTCTTTCCGTCCTG
40	12018	ATGTGGTACAGATACTCAATATCAAACTGCAGTAAAGCTCCATGGGGTCTTTCCGTCCTG
40	12022	ATGTGGTACAGATACTCAATATCAAACTGCAGTAAAGCTCCATGGGGTCTTTCCGTCCTG

	12023	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
	12023	
15	12024	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
45	12024 12019	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
45	12024	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
45	12024 12019	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
45	12024 12019 12021 12020	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
45	12024 12019 12021 12020 12018	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
45	12024 12019 12021 12020	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
	12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
	12024 12019 12021 12020 12018	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
	12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG
	12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50	12024 12019 12021 12020 12018 12022 12023 12024 12019	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCTTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCTTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55 60	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12023 12024 12019 12021	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55 60	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************
50 55 60	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12023 12024 12019 12021	TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG TCGCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGTTGAGACAG ********************************

	12023	CGCTAAGCACTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCACCCCCTATACATCATCT
	12024	CGCTAAGCACTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCACCCCCTATACATCATCT
_	12019	CGCTAAGCACTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCACCCCCTATACATCATCT
5	12021	CGCTAAGCACTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCACCCCCTATACATCATCT
	12020	CGCTAAGCACTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCACCCCCTATACATCATCT
	12018	CGCTAAGCACTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCACCCCCTATACATCATCT
	12022	CGCTAAGCACTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCACCCCCTATACATCATCT

10		
	12023	TACGATTTAGCAGAGAGCTGTGTTTTTGATAAACAGTTGCTTGGGCCTATTCACTGCGGC
	12024	TACGATTTAGCAGAGAGCTGTTTTTGATAAACAGTTGCTTGGGCCTATTCACTGCGGC
	12019	TACGATTTAGCAGAGCTGTGTTTTTGATAAACAGTTGCTTGGGCCTATTCACTGCGGC
	12021	TACGATTTAGCAGAGAGCTGTGTTTTTGATAAACAGTTGCTTGGGCCTATTCACTGCGGC
15	12020	TACGATTTAGCAGAGAGCTGTGTTTTTGATAAACAGTTGCTTGGGCCTATTCACTGCGGC
15		
	12018	TACGATTTAGCAGAGAGCTGTGTTTTTGATAAACAGTTGCTTGGGCCTATTCACTGCGGC
	12022	TACGATTTAGCAGAGCTGTGTTTTTTGATAAACAGTTGCTTGGGCCTATTCACTGCGGC

20	10003	
20	12023	TGATCTAAAATCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAGTTCCTTAA
	12024	TGATCTAAAATCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAGTTCCTTAA
	12019	TGATCTAAAATCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAGTTCCTTAA
	12021	TGATCTAAAATCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAGTTCCTTAA
0.5	12020	TGATCTAAAATCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAGTTCCTTAA
25	12018	TGATCTAAAATCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAGTTCCTTAA
	12022	TGATCTAAAATCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAGTTCCTTAA

	12023	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTA
30	12024	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTTGCGGTA
	12019	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTCTCGGTTTGCGGTA
	12021	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTA
	12020	CGAGAGTTCTCTCGCTCACMTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTA
	12018	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTA
35	12022	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTA
35	12022	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTA
35	12022	CGAGAGTTCTCTCGCTCACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTA ***********************************
35		*****************
35	12022	
35		*****************
	12023 12024	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
35 40	12023 12024 12019	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
	12023 12024 12019 12021	**************************************
	12023 12024 12019	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
	12023 12024 12019 12021	**************************************
	12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
40	12023 12024 12019 12021 12020	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
	12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
40	12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
40	12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC
40	12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40	12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40	12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGTACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGTACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGTACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGTACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGTACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGTACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGTACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCCGCTAGAAGCTTTTCTTGGCAGTTGACATCACTAACTTCGC *********************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTTTTTTT
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTTCTTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTATTCTTTGGCAGTTTTAACTACTAACTTCGCT CCGGTAGAGTATATGTATCGCTACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC ******************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTTTTTTT
40 45 50 55	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTTCTTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTATTCTTTGGCAGTTTTAACTACTAACTTCGCT CCGGTAGAGTATATGTATCGCTACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC ******************************
40 45 50	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTGTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTCTTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTTTTCTTTGGCAGTTGACATCACTAACTTCGC CGGGTAGAGTATATGTATCGCTAGAAGCTTATTCTTTGGCAGTTTTAACTACTAACTTCGCT CCGGTAGAGTATATGTATCGCTACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC TACTAAACTTCGCTCCTCGTCACAGCTCAATGTTAAAGATATAAGCATTTGACTCATATC ******************************
40 45 50 55	12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	**************************************

PCT/GB01/04789

-2961-

	12020	TCCATCACTATATACTCTAGTACAGGAATATCAACCTGTTGTCCATCGGATACACCTTTC
	12018	TCCATCACTATATACTCTAGTACAGGAATATCAACCTGTTGTCCATCGGATACACCTTTTC
	12022	TCCATCACTATATACTCTAGTACAGGAATATCAACCTGTTGTCCATCGGATACACCTTTC
	12022	**************************************
5		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
5		
	12023	GGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCTTCCCCTGGAAACCTTAGT
	12024	GGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCTTCCCCCTGGAAACCTTAGT
	12019	GGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCTTCCCCTGGAAACCTTAGT
	12021	GGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCTTCCCCTGGAAACCTTAGT
10	12020	GGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCTTCCCCTGGAAACCTTAGT
10		GGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCTTCCCCTGGAAACCTTAGT
	12018	
	12022	GGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCTTCCCCTGGAAACCTTAGT

4.0		
15	12023	CTTACGGTGGACAGGATTCTCACCTGTCTTGCGCTACTCATACCGGCATTCTCACTTCTA
	12024	CTTACGGTGGACAGGATTCTCACCTGTCTTGCGCTACTCATACCGGCATTCTCACTTCTA
	12019	CTTACGGTGGACAGGATTCTCACCTGTCTTGCGCTACTCATACCGGCATTCTCACTTCTA
	12021	CTTACGGTGGACAGGATTCTCACCTGTCTTGCGCTACTCATACCGGCATTCTCACTTCTA
	12020	CTTACGGTGGACAGGATTCTCACCTGTCTTGCGCTACTCATACCGGCATTCTCACTTCTA
20		
20	12018	CTTACGGTGGACAGGATTCTCACCTGTCTTGCGCTACTCATACCGGCATTCTCACTTCTA
	12022	CTTACGGTGGACAGGATTCTCACCTGTCTTGCGCTACTCATACCGGCATTCTCACTTCTA

	12023	TGCGTTCCAGCGCTCCTCACGGTACACCTTCTTCACACATAGAACGCTCTCCTACCATGA
25	12024	TGCGTTCCAGCGCTCCTCACGGTACACCTTCTTCACACATAGAACGCTCTCCTACCATGA
	12019	TGCGTTCCAGCGCTCCTCACGGTACACCTTCTTCACACATAGAACGCTCTCCTACCATGA
	12021	TGCGTTCCAGCGCTCCTCACGGTACACCTTCTTCACACATAGAACGCTCTCCTACCATGA
	12021	TGCGTTCCAGCGCTCCTCACGGTACACCTTCTTCACACATAGAACGCTCTCCTACCATGA
0.0	12018	TGCGTTCCAGCGCTCCTCACGGTACACCTTCTTCACACATAGAACGCTCTCCTACCATGA
30	12022	TGCGTTCCAGCGCTCCTCACGGTACACCTTCTTCACACATAGAACGCTCTCCTACCATGA

	12023	CACTTTTGTGTCATCCACAGCTTCGGTAATATGTTTTAGCCCCGGTACATTTTCGGCGCA
	12024	CACTTTTGTGTCATCCACAGCTTCGGTAATATGTTTTAGCCCCGGTACATTTTCGGCGCA
35	12019	CACTTTTGTGTCATCCACAGCTTCGGTAATATGTTTTAGCCCCGGTACATTTTCGGCGCA
	12021	CACTTTTGTGTCATCCACAGCTTCGGTAATATGTTTTAGCCCCGGTACATTTTCGGCGCA
	12020	CACTTTGTGTCATCCACAGCTTCGGTAATATGTTTTAGCCCCCGGTACATTTTCGGCGCA
	•	
	12018	CACTTTTGTGTCATCCACAGCTTCGGTAATATGTTTTAGCCCCCGGTACATTTTCGGCGCA
40	12022	CACTTTTGTGTCATCCACAGCTTCGGTAATATGTTTTAGCCCCGGTACATTTTCGGCGCA
40		***************
	12023	GGGTCACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAA
	12024	GGGTCACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAA
	12019	GGGTCACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAA
45	12021	GGGTCACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAA
	12020	GGGTCACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAA
	12018	GGGTCACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAA
	12022	GGGTCACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAA
50		**************
50		
	12023	CATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACATATATTTTGGGACCTT
	12024	CATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACATATATTTTGGGACCTT
	12019	CATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACATATATTTTGGGACCTT
	12021	CATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACATATATTTTGGGACCTT
55	12020	CATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACATATATTTTTGGGACCTT
55		
	12018	CATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACATATATTTTGGGACCTT
	12022	CATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACATATATTTTGGGACCTT

<i>(</i> 0		
60	12023	AGCTGGTGGTCTGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTG
	12024	AGCTGGTGGTCTGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTG
	12019	AGCTGGTGGTCTGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTG
	12021	AGCTGGTGGTCTGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTG
	12021	AGCTGGTCGTGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTG
65		AGCTGGTGGTCTGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTG
05	12018	: :
	12022	AGCTGGTGGTCTGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTG

	12023	CCGATTATATCTCGTTGGCATTCGGAGTTTATCTGAGATTGGTAATCCGGGATGGACCCC
		CCGATTATATCTCGTTGGCATTCGGAGTTTATCTGAGATTGGTAATCCGGGATGGACCCC
	12024	
	12019	CCGATTATATCTCGTTGGCATTCGGAGTTTATCTGAGATTGGTAATCCGGGATGGACCCC
	12021	CCGATTATATCTCGTTGGCATTCGGAGTTTATCTGAGATTGGTAATCCGGGATGGACCCC
5	12020	CCGATTATATCTCGTTGGCATTCGGAGTTTATCTGAGATTGGTAATCCGGGATGGACCCC
	12018	CCGATTATATCTCGTTGGCATTCGGAGTTTATCTGAGATTGGTAATCCGGGATGGACCCC
		CCGATTATATCTCGTTGGCATTCGGAGTTTATCTGAGATTGGTAATCCGGGATGGACCCC
	12022	

10	12023	TCACCCAAACAGTGCTCTACCTCCAAGAGACTTAACATCGACGCTAGCCCTAAAGCTATT
	12024	TCACCCAAACAGTGCTCTACCTCCAAGAGACTTAACATCGACGCTAGCCCTAAAGCTATT
	12019	TCACCCAAACAGTGCTCTACCTCCAAGAGACTTAACATCGACGCTAGCCCTAAAGCTATT
	12021	TCACCCAAACAGTGCTCTACCTCCAAGAGACTTAACATCGACGCTAGCCCTAAAGCTATT
	12020	TCACCCAAACAGTGCTCTACCTCCAAGAGACTTAACATCGACGCTAGCCCTAAAGCTATT
15	12018	TCACCCAAACAGTGCTCTACCTCCAAGAGACTTAACATCGACGCTAGCCCCTAAAGCTATT
	12022	TCACCCAAACAGTGCTCTACCTCCAAGAGACTTAACATCGACGCTAGCCCTAAAGCTATT
	12022	**************
	12023	TCGGAGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAAGTCATC
20	12024	TCGGAGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAAGTCATC
	12019	TCGGAGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAAGTCATC
	12021	TCGGAGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAAGTCATC
		TCGGAGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAAGTCATC
	12020	
	12018	TCGGAGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAAGTCATC
25	12022	TCGGAGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAAGTCATC

	12023	CAAGCACTTTTCAACGTGCCCTGGTTCGGTCCTCCAGTGAGTTTTACCTCACCTTCAACC
		CAAGCACTTTTCAACGTGCCCTGGTTCGGTCCTCCAGTGAGTTTTACCTCACCTTCAACC
20	12024	
30	12019	CAAGCACTTTTCAACGTGCCCTGGTTCGGTCCTCCAGTGAGTTTTACCTCACCTTCAACC
	12021	CAAGCACTTTTCAACGTGCCCTGGTTCGGTCCTCCAGTGAGTTTTACCTCACCTTCAACC
	12020	CAAGCACTTTTCAACGTGCCCTGGTTCGGTCCTCCAGTGAGTTTTACCTCACCTTCAACC
	12018	CAAGCACTTTTCAACGTGCCCTGGTTCGGTCCTCCAGTGAGTTTTACCTCACCTTCAACC
		CAAGCACTTTCAACGTGCCCTGGTTCGGTCCTCCAGTGAGTTTTACCTCACCTTCAACC
25	12022	
35		*************
		•
	12023	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
	12023 12024	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA
	12024	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
40	12024 12019	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
40	12024 12019 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
40	12024 12019	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
40	12024 12019 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
40	12024 12019 12021 12020	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
40	12024 12019 12021 12020 12018	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
	12024 12019 12021 12020 12018	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA
40	12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
	12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
	12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
	12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
	12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12019 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12019 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12019 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12019 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45 50 55	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12021	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45 50 55 60	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCCATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTACGTCCCTCCTCTCAACATAACAT
45 50 55 60	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12024 12019 12021 12020 12018 12022 12024 12019 12021 12020 12018 12022	TGCTCATGGTAGGTCACATGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************
45 50 55 60	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022	TGCTCATGGTAGGTCACATGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA ******************************
45505560	12024 12019 12021 12020 12018 12022 12023 12024 12019 12021 12020 12018 12022 12024 12019 12021 12020 12018 12022 12024 12019 12021 12020 12018 12022	TGCTCATGGTAGGTCACATGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA TGCTCATGGGTAGGTCACATGGTTTCGGGTCTACAACATGATACTATGACGCCCCTATTAA *****************************

WO 02/34771

-2963-

PCT/GB01/04789

	12018	CACGGTTTCAGGTTCTATTTCACTCCCCTCCCGGGGTGCTTTTCACCTTTCCCTCACGGT
	12022	CACGGTTTCAGGTTCTATTTCACTCCCCTCCCGGGGTGCTTTTCACCTTTCCCTCACGGT

5	10000	
5	12023	ACTGCTTCACTATCGGTCACTAGAGAGTATTTAGGGTTGGGAGATGGTCCTCCCAGATTC
	12024	ACTGGTTCACTATCGGTCACTAGAGAGTATTTAGGGTTGGGAGATGGTCCTCCCAGATTC
	12019	ACTGGTTCACTATCGGTCACTAGAGAGTATTTAGGGTTGGGAGATGGTCCTCCCAGATTC
	12021	ACTGGTTCACTATCGGTCACTAGAGAGTATTTAGGGTTGGGAGATGGTCCTCCCAGATTC
	12020	ACTGGTTCACTATCGGTCACTAGAGAGTATTTAGGGTTGGGAGATGGTCCTCCCAGATTC
10		
10	12018	ACTGGTTCACTATCGGTCACTAGAGAGTATTTAGGGTTGGGAGATGGTCCTCCCAGATTC
	12022	ACTGGTTCACTATCGGTCACTAGAGAGTATTTAGGGTTGGGAGATGGTCCTCCCAGATTC

	12023	CGACGAGATTTCGCGTGTCTCGCCGTACTCAGGATACTGCTAAGGTTAATCTATCATTTT
15		
13	12024	CGACGAGATTTCGCGTGTCTCGCCGTACTCAGGATACTGCTAAGGTTAATCTATCATTTT
	12019	CGACGAGATTTCGCGTGTCTCGCCGTACTCAGGATACTGCTAAGGTTAATCTATCATTTT
	12021	CGACGAGATTTCGCGTGTCTCGCCGTACTCAGGATACTGCTAAGGTTAATCTATCATTTT
	12020	CGACGAGATTTCGCGTGTCTCGCCGTACTCAGGATACTGCTAAGGTTAATCTATCATTTT
	12018	CGACGAGATTTCGCGTGTCTCGCCGTACTCAGGATACTGCTAAGGTTAATCTATCATTTT
20		
20	12022	CGACGAGATTTCGCGTGTCTCGCCGTACTCAGGATACTGCTAAGGTTAATCTATCATTTT

	12023	AAATACGAGGCTGTTACTCTCTTTGGCTTACCTTCCCAGGTAATTCTTCTATAATGATTA
	12024	AAATACGAGGCTGTTACTCTTTTGGCTTACCCTTCCCAGGTAATTCTTCTATAATGATTA
05		
25	12019	AAATACGAGGCTGTTACTCTCTTTGGCTTACCTTCCCAGGTAATTCTTCTATAATGATTA
	12021	AAATACGAGGCTGTTACTCTTTTGGCTTACCTTCCCAGGTAATTCTTCTATAATGATTA
	12020	AAATACGAGGCTGTTACTCTCTTTGGCTTACCTTCCCAGGTAATTCTTCTATAATGATTA
	12018	AAATACGAGGCTGTTACTCTCTTTGGCTTACCTTCCCAGGTAATTCTTCTATAATGATTA
		AAATACGAGGCTGTTACTCTCTTTGGCTTACCCTTCCCAGGTAATTCTTCTATAATGATTA
20	12022	
30		***************
	12023	ATCCTATATCGCAGTCCTACAACCCCGAAGTGTAAACACTTCGGTTTGCCCTCCTGCCGT
	12024	ATCCTATATCGCAGTCCTACAACCCCGAAGTGTAAACACTTCGGTTTGCCCTCCTGCCGT
	12019	ATCCTATATCGCAGTCCTACAACCCCGAAGTGTAAACACTTCGGTTTGCCCTCCTGCCGT
35		
33	12021	ATCCTATATCGCAGTCCTACAACCCCGAAGTGTAAACACTTCGGTTTGCCCTCCTGCCGT
	12020	ATCCTATATCGCAGTCCTACAACCCCGAAGTGTAAACACTTCGGTTTGCCCTCCTGCCGT
	12018	ATCCTATATCGCAGTCCTACAACCCCGAAGTGTAAACACTTCGGTTTGCCCTCCTGCCGT
	12022	ATCCTATATCGCAGTCCTACAACCCCGAAGTGTAAACACTTCGGTTTGCCCTCCTGCCGT

40		
40		
	12023	TTCGCTCGCCGCTACTAAGGCAATCGCTTTTGCTTTCTCTTCCTGCAGCTACTTAGATGT
	12024	TTCGCTCGCCGCTACTAAGGCAATCGCTTTTGCTTTCTCTTCCTGCAGCTACTTAGATGT
	12019	TTCGCTCGCCGCTACTAAGGCAATCGCTTTTGCTTTCTCTTCCTGCAGCTACTTAGATGT
	12021	TTCGCTCGCCGCTACTAAGGCAATCGCTTTTGCTTTCTCTTCCTGCAGCTACTTAGATGT
45		TTCGCTCGCCGCTACTAAGGCAATCGCTTTTGCTTTCTCTTCCTGCAGCTACTTAGATGT
45	12020	
	12018	TTCGCTCGCCGCTACTAAGGCAATCGCTTTTGCTTTCTCTTCCTGCAGCTACTTAGATGT
	12022	TTCGCTCGCCGCTACTAAGGCAATCGCTTTTGCTTTCTTT

50	12023	TTCAGTTCACTGCGTCTTCCTTCTCATATCCTTAACAGATATGGATACTAGTCATTAACT
50		
	12024	TTCAGTTCACTGCGTCTTCCTTCTCATATCCTTAACAGATATGGATACTAGTCATTAACT
	12019	TTCAGTTCACTGCGTCTTCCTTCTCATATCCTTAACAGATATGGATACTAGTCATTAACT
	12021	TTCAGTTCACTGCGTCTTCCTTCTCATATCCTTAACAGATATGGATACTAGTCATTAACT
	12020	TTCAGTTCACTGCGTCTTCCTTCTCATATCCTTAACAGATATGGATACTAGTCATTAACT
55		TTCAGTTCACTGCGTCTTCCTTCTCATATCCTTAACAGATATGGATACTAGTCATTAACT
33	12018	
	12022	TTCAGTTCACTGCGTCTTCCTTCATATCCTTAACAGATATGGATACTAGTCATTAACT

	12023	AGTGGGTTCCCCCATTCGGACATCTCTGGATCAGCGCTTACTTA
60		
60	12024	AGTGGGTTCCCCCATTCGGACATCTCTGGATCAGCCTTACTTA
	12019	AGTGGGTTCCCCCATTCGGACATCTCTGGATCAGCGCTTACTTA
	12021	AGTGGGTTCCCCCATTCGGACATCTCTGGATCAGCGCTTACTTA
	12020	AGTGGGTTCCCCCATTCGGACATCTCTGGATCAGCGCTTACTTA
15	12018	AGTGGGTTCCCCCATTCGGACATCTCTGGATCAGCGCTTACTTA
65	12022	AGTGGGTTCCCCCATTCGGACATCTCTGGATCAGCGCTTACTTA

	12023	TTCGTCGTTAGTCACGTCCTTCTTCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT

	12024	TTCGTCGTTAGTCACGTCCTTCTTCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT
	12019	TTCGTCGTTAGTCACGTCCTTCTTCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT
	12021	TTCGTCGTTAGTCACGTCCTTCTTCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT
	12020	TTCGTCGTTAGTCACGTCCTTCTTCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT
5	12018	TTCGTCGTTAGTCACGTCCTTCTTCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT
•	12022	TTCGTCGTTAGTCACGTCCTTCTTCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT
	12022	

	72022	ATTAACTTAACCTTATTAACCTAGTTTCTTTAAAACTAGAAAACTCATTAAATATTCACA
10	12023	
10	12024	ATTAACTTAACCTTATTAACCTAGTTTCTTTAAAACTAGAAAACTCATTAAATATTCACA
	12019	ATTAACTTAACCTTATTAACCTAGTTTCTTTAAAACTAGAAAACTCATTAAATATTCACA
	12021	ATTAACTTAACCTTATTAACCTAGTTTCTTTAAAACTAGAAAACTCATTAAATATTCACA
	12020	ATTAACTTAACCTTATTAACCTAGTTTCTTTAAAACTAGAAAACTCATTAAATATTCACA
		ATTAACTTAACCTTATTAACCTAGTTTCTTTAAAACTAGAAAACTCATTAAATATTCACA
1.5	12018	
15	12022	ATTAACTTAACCTTATTAACCTAGTTTCTTTAAAACTAGAAAACTCATTAAATATTCACA

	12023	GCGTTTTCGGTTTATTTTCTTGTTACTTTCTACAATCTATTTCTAGATCGTGGAATTTGA
	12024	GCGTTTTCGGTTTATTTTCTTGTTACTTTCTACAATCTATTTCTAGATCGTGGAATTTGA
20	12019	GCGTTTTCGGTTTATTTTCTTGTTACTTTCTACAATCTATTTCTAGATCGTGGAATTTGA
	12021	GCGTTTTCGGTTTATTTTCTTGTTACTTTCTACAATCTATTTCTAGATCGTGGAATTTGA
	12020	GCGTTTTCGGTTTATTTTCTTGTTACTTTCTACAATCTATTTCTAGATCGTGGAATTTGA
	12018	GCGTTTTCGGTTTATTTTCTTGTTACTTTCTTACAATCTATTTCTAGATCGTGGAATTTGA
	12022	GCGTTTTCGGTTTATTTTCTTGTTACTTTCTACAATCTATTTCTAGATCGTGGAATTTGA
25		*************
	10000	TATAGATATTCAATTTCAATGAACAATTTGAACCTTTCGATTCAATGGAGCCTAGCGGG
	12023	
	12024	TATAGATATTCAATTTCAATGAACAATTTGAACCTTTCGATTCAATGGAGCCTAGCGGG
	12019	TATAGATATTCAATTTCAATGAACAATTTGAACCTTTCGATTCAATGGAGCCTAGCGGG
30	12021	TATAGATATTCAATTTTCAATGAACAATTTGAACCTTTCGATTCAATGGAGCCTAGCGGG
	12020	TATAGATATTCAATTTCAATGAACAATTTGAACCTTTCGATTCAATGGAGCCTAGCGGG
		TATAGATATTCAATTTCAATGAACAATTTGAACCTTTCGATTCAATGGAGCCTAGCGGG
	12018	
	12022	TATAGATATTCAATTTCAATGAACAATTTGAACCTTTCGATTCAATGGAGCCTAGCGGG
0.5		****************
35		
	12023	ATCGAACCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCAGCTGAGCTAAGGCCCCA
	12024	ATCGAACCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCAGCTGAGCTAAGGCCCCA
	12019	ATCGAACCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCCAGCTGAGCTAAGGCCCCA
	12021	ATCGAACCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCAGCTGAGCTAAGGCCCCA
40		
40	12020	ATCGAACCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCAGCTGAGCTAAGGCCCCA
	12018	ATCGAACCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCAGCTGAGCTAAGGCCCCA
	12022	ATCGAACCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCAGCTGAGCTAAGGCCCCA

4.5		
45	12023	CAAGACCTCTCAAAACTAAACAAGACGCAAATGGCAGGTTTCCTTATCCTTAGAAAGGAG
	12024	CAAGACCTCTCAAAACTAAACAAGACGCAAATGGCAGGTTTCCTTATCCTTAGAAAGGAG
	12019	CAAGACCTCTCAAAACTAAACAAGACGCAAATGGCAGGTTTCCTTATCCTTAGAAAGGAG
	12021	CAAGACCTCTCAAAACTAAACAAGACGCAAATGGCAGGTTTCCTTATCCTTAGAAAGGAG
		
50	12020	CAAGACCTCTCAAAACTAAACAAGACGCAAATGGCAGGTTTCCTTATCCTTAGAAAGGAG
50	12018	CAAGACCTCTCAAAACTAAACAAGACGCAAATGGCAGGTTTCCTTATCCTTAGAAAGGAG
	12022	CAAGACCTCTCAAAACTAAACAAGACGCAAATGGCAGGTTTCCTTATCCTTAGAAAGGAG

	12023	GTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTAT
55	12024	GTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTAT
	12019	GTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTAT
		GTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTAT
	12021	
	12020	GTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTAT
	12018	GTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTAT
60	12022	GTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTAT
-		****************
	12023	CCCACCTTAGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTC
	12024	CCCACCTTAGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTC
65	12019	CCCACCTTAGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTC
0.5		CCCACCTTAGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAAACTC
	12021	
	12020	CCCACCTTAGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTC
	12018	CCCACCTTAGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTC

	12022	CCCACCTTAGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTC *****************************
	12023	TCGTGGTGTGACGGCCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT
5	12024	
J		TCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT
	12019	TCGTGGTGTGACGGGCGTGTGACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT
	12021	TCGTGGTGTGACGGGCGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT
	12020	TCGTGGTGTGACGGGCGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT
	12018	TCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT
10	12022	TCGTGGTGTGACGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGAT

	12023	CCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA
	12024	CCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA
15	12019	CCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA
	12021	CCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA
	12020	CCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA
	12018	CCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA
	12022	
20	12022	CCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGA ************************************
	12023	GATTGGCTTTAAGAGATTAGCTTGCCGTCACCGGCTTGCGACTCGTTGTACCAACCA
	12024	GATTGGCTTTAAGAGATTAGCTTGCCGTCACCGGCTTGCGACTCGTTGTACCAACCA
25	12019	GATTGGCTTTAAGAGATTAGCTTGCCGTCACCGGCTTGCGACTCGTTGTACCAACCA
25	12021	GATTGGCTTTAAGAGATTAGCTTGCCGTCACCGGCTTGCGACTCGTTGTACCAACCA
	12020	GATTGGCTTTAAGAGATTAGCTTGCCGTCACCGGCTTGCGACTCGTTGTACCAACCA
	12018	GATTGGCTTTAAGAGATTAGCTTGCCGTCACCGGCTTGCGACTCGTTGTACCAACCA
	12022	GATTGGCTTTAAGAGATTAGCTTGCCGTCACCGGCTTGCGACTCGTTGTACCAACCA

30		
	12023	TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCC
	12024	TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCC
	12019	TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCC
	12021	TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCC
35		
33	12020	TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCC
	12018	TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCC
	12022	TAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATTTGACGTCATCCCCACCTTCC ************************
40	12023	TCCGGTTTATTACCGGCAGTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATA
	12024	TCCGGTTTATTACCGGCAGTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATA
	12019	TCCGGTTTATTACCGGCAGTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATA
	12021	TCCGGTTTATTACCGGCAGTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATA
	12020	TCCGGTTTATTACCGGCAGTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATA
45	12018	TCCGGTTTATTACCGGCAGTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATA
.5	12022	TCCGGTTTATTACCGGCAGTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATA
	12022	**************************************
	12023	GGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA
50	12023	GGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA
50	12019	
		GGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA
	12021	GGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA
	12020	GGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA
	12018	GGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA
55	12022	GGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA ****************************
	12023	TGCACCACCTGTCACTTCTGCTCCGAAGAGAAAGCCTATCTCTAGGCCGGTCAGAAGGAT
	12024	TGCACCACCTGTCACTTCTGCTCCGAAGAGAAGCCTATCTCTAGGCCGGTCAGAAGGAT
60	12019	TGCACCACCTGTCACTTCTGCTCCGAAGAGAAAGCCTATCTCTAGGCCGGTCAGAAGGAT
	12021	TGCACCACCTGTCACTTCTGCTCCGAAGAGACCTATCTCTAGGCCGGTCAGAAGGAT
	12020	TGCACCACCTGCTCCGCTCCGAAGAGAAAGCCTATCTCTAGGCCGGTCAGAAGGAT
	12018	TGCACCACCTGTCACTTCTGCTCCGAAGAGGAAGCCTATCTCTAGGCCGGTCAGAAGGAT
	12018	
65	14044	TGCACCACCTGTCACTTCTGCTCCGAAGAGAAGCCTATCTCTAGGCCGGTCAGAAGGAT *******************************
	12023	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG
	12024	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG

	12019	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG
	12021	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG
	12020	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG
_	12018	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG
5	12022	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTG

	12023	TGCGGGCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT
	12024	TGCGGGCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT
10	12019	TGCGGGCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT
	12021	TGCGGGCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT
	12020	TGCGGGCCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT
		
	12018	TGCGGGCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT
	12022	TGCGGGCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAGT
15		*************
	10000	
	12023	GCTTAATGCGTTAGCTGCGGCACTAAGCCCCGGAAAGGGCCTAACACCTAGCACTCATCG
	12024	GCTTAATGCGTTAGCTGCGGCACTAAGCCCCGGAAAGGGCCTAACACCTAGCACTCATCG
	12019	GCTTAATGCGTTAGCTGCGGCACTAAGCCCCGGAAAGGGCCTAACACCTAGCACTCATCG
20	12021	GCTTAATGCGTTAGCTGCGGCACTAAGCCCCGGAAAGGGCCTAACACCTAGCACTCATCG
	12020	GCTTAATGCGTTAGCTGCGGCACTAAGCCCCCGGAAAGGGCCTAACACCTAGCACTCATCG
	12018	GCTTAATGCGTTAGCTGCGGCACTAAGCCCCGGAAAGGGCCTAACACCTAGCACTCATCG
	12022	GCTTAATGCGTTAGCTGCGGCACTAAGCCCCGGAAAGGGCCTAACACCTAGCACTCATCG
0.5		**************
25		
	12023	TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA
	12024	TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA
	12019	TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA
	12021	TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA
30	12020	TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA
20	12018	TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA
	12022	TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCA

35	10000	
33	12023	GCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCA
	12024	GCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCA
	12019	GCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCA
	12021	GCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCA
	12020	GCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCA
40	12018	GCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCA
	12022	GCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCA
	12022	************************************
	12023	TTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGCACTCAAGTCCTCCAGTTTCCA
45	12024	TTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGCACTCAAGTCCTCCAGTTTCCA
		TTTCACCGCTACACATGGAATTCCACTCTCCCCCTTCTGCACTCAAGTCCTCCAGTTTCCA
	12019	
	12021	TTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGCACTCAAGTCCTCCAGTTTCCA
	12020	TTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGCACTCAAGTCCTCCAGTTTCCA
	12018	TTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGCACTCAAGTCCTCCAGTTTCCA
50	12022	TTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGCACTCAAGTCCTCCAGTTTCCA

	12023	AAGCGTACAATGGTTAAGCCACTGCCTTTAACTTCAGACTTAAAGAACCGCCTGCGCTCG
	12024	AAGCGTACAATGGTTAAGCCACTGCCTTTAACTTCAGACTTAAAGAACCGCCTGCGCTCG
55	12019	AAGCGTACAATGGTTAAGCCACTGCCTTTAACTTCAGACTTAAAGAACCGCCTGCGCTCG
	12021	AAGCGTACAATGGTTAAGCCACTGCCTTTAACTTCAGACTTAAAGAACCGCCTGCGCTCG
	12020	AAGCGTACAATGGTTAAGCCACTGCCTTTAACTTCAGACTTAAAGAACCGCCTGCGCTCG
	12018	AAGCGTACAATGGTTAAGCCACTGCCTTTAACTTCAGACTTAAAGAACCGCCTGCGCTCG
	12022	AAGCGTACAATGGTTAAGCCACTGCCTTTAACTTCAGACTTAAAGAACCGCCTGCGCTCG
60		*****************
	12023	CTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACGTATTACCGCGGCTGCTGGCA
	12024	CTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACGTATTACCGCGGCTGCTGGCA
	12019	CTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACGTATTACCGCGGCTGCTGGCA
65	12021	CTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACGTATTACCGCGGCTGCTGGCA
	12020	$\tt CTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACGTATTACCGCGGGCTGCTGGCA$
	12018	CTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACGTATTACCGCGGCTGCTGGCA
	12018	CTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACGTATTACCGCGGCTGCTGGCA
	12022	~~ TIVOOCCOUSTUMMICOCOMPCOCTOCCOMPCTUCATUTIFICACACCIACCIACCIACCIACCIACCIACCIACCIAC

	12023	CGTAGTTAGCCGTCCCTTTCTGGTTAGTTACCGTCACTTGGTAGATTTTCCACTCCTACC
	12024	CGTAGTTAGCCGTCCCTTTCTGGTTAGTTACCGTCACTTGGTAGATTTTCCACTCCTACC
5	12019	CGTAGTTAGCCGTCCCTTTCTGGTTAGTTACCGTCACTTGGTAGATTTTCCACTCCTACC
-	12021	CGTAGTTAGCCGTCCCTTTCTGGTTAGTTACCGTCACTTGGTAGATTTTCCACTCCTACC
	12020	CGTAGTTAGCCGTCCCTTTCTGGTTAGTTACCGTCACTTGGTAGATTTTCCACTCCTACC
	12018	CGTAGTTAGCCGTCCCTTTCTGGTTAGTTACCGTCACTTGGTAGATTTTCCACTCCTACC
	12022	CGTAGTTAGCCGTCCCTTTCTGGTTAGTTACCGTCACTTGGTAGATTTTCCACTCCTACC
10		*****************
	12023	AACGTTCTTCTCTAACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCAC
	12024	AACGTTCTTCTCTAACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCAC
15	12019	AACGTTCTTCTCTAACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCAC
15	12021	AACGTTCTTCTCTAACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCAC
	12020	AACGTTCTTCTCTAACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCAC
	12018 12022	AACGTTCTTCTCTAACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCAC
	12022	**************************************
20		
20	12023	TGCTCGGTCAGACTTCCGTCCATTGCCGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC
	12024	TGCTCGGTCAGACTTCCGTCCATTGCCGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC
	12019	TGCTCGGTCAGACTTCCGTCCATTGCCGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC
	12021	TGCTCGGTCAGACTTCCGTCCATTGCCGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC
25	12020	${\tt TGCTCGGTCAGACTTCCGTCCATTGCCGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC}$
	12018	TGCTCGGTCAGACTTCCGTCCATTGCCGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC
	12022	TGCTCGGTCAGACTTCCGTCCATTGCCGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC

30	12023	TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCG
	12024	TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCG
	12019	TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCG
	12021	TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCG
	12020	TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCG
35	12018	TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCG
	12022	TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCG

	12023	CCTTGGTGAGCCTTTACCTCACCAACTAGCTAATACAACGCAGGTCCATCTCACAGTGAA
40	12024	CCTTGGTGAGCCTTTACCTCACCAACTAGCTAATACAACGCAGGTCCATCTCACAGTGAA
	12019	CCTTGGTGAGCCTTTACCTCACCAACTAGCTAATACAACGCAGGTCCATCTCACAGTGAA
	12021	CCTTGGTGAGCCTTTACCTCACCAACTAGCTAATACAACGCAGGTCCATCTCACAGTGAA
	12020	$\tt CCTTGGTGAGCCTTTACCTCACCAACTAGCTAATACAACGCAGGTCCATCTCACAGTGAA$
	12018	CCTTGGTGAGCCTTTACCTCACCAACTAGCTAATACAACGCAGGTCCATCTCACAGTGAA
45	12022	CCTTGGTGAGCCTTTACCTCACCAACTAGCTAATACAACGCAGGTCCATCTCACAGTGAA

	12023	GCAATTGCTCCTTTTAAATAACTAACATGTGTTAATTACTCTTATGCGGTATTAGCTATC
	12024	GCAATTGCTCCTTTTAAATAACTAACATGTGTTAATTACTCTTATGCGGTATTAGCTATC
50	12019	GCAATTGCTCCTTTTAAATAACTAACATGTGTTAATTACTCTTATGCGGTATTAGCTATC
	12021	${\tt GCAATTGCTCCTTTTAAATAACTAACATGTGTTAATTACTCTTATGCGGTATTAGCTATC}$
	12020	${\tt GCAATTGCTCCTTTTAAATAACTAACATGTGTTAATTACTCTTATGCGGTATTAGCTATC}$
	12018	GCAATTGCTCCTTTTAAATAACTAACATGTGTTAATTACTCTTATGCGGTATTAGCTATC
	12022	GCAATTGCTCCTTTTAAATAACTAACATGTGTTAATTACTCTTATGCGGTATTAGCTATC
55		***************
	12023	GTTTCCAATAGTTATCCCCCGCTATGAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC
	12024	GTTTCCAATAGTTATCCCCCGCTATGAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC
	12019	GTTTCCAATAGTTATCCCCCGCTATGAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC
60	12021	GTTTCCAATAGTTATCCCCCGCTATGAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC
	12020	GTTTCCAATAGTTATCCCCCGCTATGAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC
	12018	GTTTCCAATAGTTATCCCCCGCTATGAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC
	12022	GTTTCCAATAGTTATCCCCCGCTATGAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC
65		****************
05	12022	AACTCATCAGTCTAGTGTAAACACCAAACCTCAGCGTTCTACTTGCATGTATTAGGCACG
	12023 12024	AACTCATCAGTCTAGTGTAAACACCAAACCTCAGCGTTCTACTTGCATGTATTAGGCACG
	12019	AACTCATCAGTCTAGTGTAAACACCAAACCTCAGCGTTCTACTTGCATGTATTAGGCACG
	12017	

WO 02/34771

-2968-

PCT/GB01/04789

	12021 12020 12018	AACTCATCAGTCTAGTGTAAACACCCAAACCTCAGCGTTCTACTTGCATGTATTAGGCACG AACTCATCAGTCTAGTGTAAACACCAAACCTCAGCGTTCTACTTGCATGTATTAGGCACG AACTCATCAGTCTAGTGTAAACACCCAAACCTCAGCGTTCTACTTGCATGTATTAGGCACG
5	12022	AACTCATCAGTCTAGTGTAAACACCAAACCTCAGCGTTCTACTTGCATGTATTAGGCACG
3		***************************************
	12023	CCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTCTCATTAAAAGTTTGAGCTTTGCTCTT
	12024	CCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTCTCATTAAAAGTTTGAGCTTTGCTCTT
10	12019	CCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTCTCATTAAAAGTTTGAGCTTTGCTCTT
10	12021	CCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTCTCATTAAAAGTTTGAGCTTTGCTCTT
	12020	CCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTCTCATTAAAAGTTTGAGCTTTGCTCTT
	12018	CCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTCTCATTAAAAGTTTGAGCTTTGCTCTT
	12022	CCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTCTCATTAAAAGTTTGAGCTTTGCTCTT
15		****************
15	12023	TTCTGTCTCGCTGACAGATTTATTGTTTTTT-GTCATTGACGGATTTACAATGTAAATCC
	12024	TTCTGTCTCGCTGACAGATTTATTGTTTTTTTTTCATTGACGGATTTACAATGTAAATCC
	12019	TTCTGTCTCGCTGACAGATTTATTGTTTTTT-GTCATTGACGGATTTACAATGTAAATCC
		TTCTGTCTCGCTGACAGATTTATTGTTTTTTTTTTCATTGACGGATTTACAATGTAAATCC
20	12021 12020	TTCTGTCTCGCTGACAGATTTATTGTTTTTTTTGTCATTGACGGATTTACAATGTAAATCC
20	12020	TTCTGTCTCGCTGACAGATTTATTGTTTTTT-GTCATTGACGGATTTACAATGTAAATCC
		TTCTGTCTCGCTGACAGATTTATTGTTTTTT-GTCATTGACGGATTTACAATGTAAATCC
	12022	**************************************
25	12023	ACCCTGCACATTCGTTCGTCTTGTTCAGTTTTCAAAGGTCTAATGATATATCATAAAAAT
	12024	ACCCTGCACATTCGTTCGTCTTGTTCAGTTTTCAAAGGTCTTTGCCTCTCTTGAGACAAC
	12019	ACCCTGCACATTCGTTCGTCTTGTTCAGTTTTCAAAGGTCTTTGCCTCTCTTGAGACAAC
	12021	ACCCTGCACATTCGTTCGTCTTGTTCAGTTTTCAAAGGTCTTTGCCTCTCTTGAGACAAC
	12020	ACCCTGCACATTCGTTCGTCTTGTTCAGTTTTCAAAGGTCTTTGCCTCTCTTGAGACAAC
30	12018	ACCCTGCACATTCGTTCATCTTGTTCAGTTTTCAAAGGTCTTTGCCTCTCTTGAGACAAC
	12022	ACCCTGCACATTCGTTCTTGTTCAGTTTTCAAAGGTCTTTGCCTCTCTGAGACAAC *******************************
	12023	ATATCCATCGGGAAGACAGGATTCGAACCTG-CGACACCTTGGTCCCAAACCAAGTACTC
35	12024	TTCTATATTCTAGCAAACTTATTCTGCTTTGTCAACTACTTTTTTTT
	12019	TTCTATATTCTAGCAAACTTATTCTGCTTTGTCAACTACTTT-TTTTAAGTTGTTAACTA
	12021	TTCTATATTCTAGCAAACTTATTCTGCTTTGTCAACTACTTT-TTTTAAGTTGTTAACTA
	12020	TTCTATATTCTAGCAAACTTATTCTGCTTTGTCAACTACTTT-TTTTAAGTTGTTAACTA
	12018	TTCTATATTCTAGCAAACTTATTCTGCTTTGTCAACTACTTT-TTTTAAGTTGTTTATAA
40	12022	TTCTATATTCTAGCAAACTTATTCTGCTTTGTCAACTACTTT-TTTTAAGTTGTTAACTA
		* * ** * *** ** ** * *
	12023	TACCAAGCTGA-GCTACT-TCCCGAAAAATATGCACCCTAGAGGAGTCGAAC
	12024	CGCGTTACTAGAA-GCTGCTCTCCGAGACAACTTATTCATTATACTAAATATTTCTACT
45	12019	CGCGCTAATAGAA-ACTGCTCTCTCGAGACAACTTATTCATTATACTAAATATTTCTACT
73	12019	CGCGCTAATAGAA-ACTGCTCTCTCGAGACAACTTATTTAGTTTACTACATCATCTCTTA
	12021	CGCGCTAATAGAA-ACTGCTCTCTCGAGACAACTTATTTAGTTTACATCATCATCTCTTA
	12018	AATGATAATACAATATTAGGTTCGCTTAAGAACTCATTTAGTATACTATAATTTTTTATT
	12013	CGCGCTAATAGAA-ACTGCTCTCTCGAGACAACTTATTTAGTTTACTACATCATCTCTTA
50	12022	* * * * * * * * * * * * * * * * * * *
	12023	CTCTAACCGCCTGATTCGTA-GTCAGGTACTCTATCCAGTTGAGCTAAG
	12024	TCCIGTCAATACTATTTTTGCATTTTTTCTTTTATTTTTAAA-AAGTTAATATTATTTAT
	12019	TCCTGTCAATACTATTTTTGTATTTTATAAATTTAGTAT-AGACATAACTATTCCTC
55	12021	CTTTGTCAACTCTTTTTTCATACT-TTTTCTACATTTTCTGA-AAATGTAGATCAGGCTC
	12020	CTTTGTCAACTCTTTTTTCATACT-TTTTCTACATTTTCTGA-AAATGTAGATAGAGCGC
	12018	TGTTGTCAATAGGTTTTAAAAAAATCTCAGAGAAAACCCTGAGATTTTT
	12022	CTTTGTCAACTCTTTTTTCATACT-TTTTCTACATTTTCTGAAAAAGTTTCCTGTTGGC
60		* * **
	12023	GGTGCTAAATATTATATGCCGAGGACCGGAATCGA
	12024	AGTAACTAACCTTCTATACTTGTTGA-ATGGATAGCATTTT
	12019	TATATTCAATTAAGAGAAATTATATAACCACTATTGAGAAATGTAGTCTA
	12021	AA-GCTTAACGATTCTTTTTAAAATCATTAAATTTTAAAACA
65	12021	AAGAAAAAAGAGTCTCACCTCTTTTATTTCTTAGTAACTACTACAAA
~~	12018	TAAATTATGTTACAAAGTTAATTTCCTTTAGCTTCAATTAAA
	12022	TAACACCAATAACATAGAGTTTAAAATTCCATACCTAAATTTATTTATTAGTAAAAA
	7747	* * OITHTHITTING TILL THE TILL

	70000	
	12023	ACCGGTACGATGTTTACC-ATCGCAGGATTTTAAGTCCTGTGCGTCTGCCAGTTCC
	12024	ACCGTTGTCATGTTCATA-~TTTCATCTTCTTAATTCACAAATTTAAACTTCATCTTC
_	12019	GCGATTAAATTCTTTGCTCATCGAA-AATATCCAATAAATATAATAATGCATAAAACG
5	12021	AATTTCAGACATGTTGCCAAA-GTTTTGATATTACTATAATATAGTTTG
	12020	TCTATTAGGATCGTTACCTTCAGAATAACTTTCAACACCCTCTATAGT-TGCAATTGT
	12018	CCTAGTTCGCCATCTTCACG-CTTGTAAAGGACATTTGTCGTATTATCTTCTGCATCT
	12022	AATAAAAGATGGGCTAGCCATCTTTTATAATATTTGTTTTTTATATTCTTCAGCTTCTTG
		* *
10		
	12023	G-CCACCCCGGCCTCTAACAAGCGAACGACGGGGTTCGAA-CCCGCGACCCT
	12024	A-TAAAAATACCCTTCAAATTTTATCTAAATTTGAAGGGTATTTGAAATTTATAAAGTT
	12019	C-CTGCTTACGAAATATAAACAAA-ATTGTTTGCATTTCGTAAACAAGCGTTACCTAT
1.5	12021	T-AGAGGAGAATAATATGGGCCAA-GAACCTATCATCGAATATCAAAATATCAA
15	12020	T-TTATGAACAGTTTTTCGCTCACTGTTACTCATAGGATCCATATGGTAAGGTTCATTAG
	12018	GTATAGATAAAGAAATCATGACCTAAAAGTTCCATTTGCAACAATGCTTCCTCAACAT
	12022	GGGTGTAGATAAAACAAA-ATGACCAGGGGTAATCTCGTGCATTTGACGTTCTTGTCCGT
20	12023	CACCTTGGCAAGGTGATGTTCTACCACTGAACTACGT-TCGCACTAAAGACACTATT-
	12024	CTTTAAAAATATATGATGACTTATTTTTTATCTTCTTCTTGCATTTTTTCTTCATTT
	12019	TTAACAATATATGATGAGTGTTCCCGCTGAGAATAATTCTCAGCGGTAGACCAGAGCT
	12021	TAAAGTGTATGGGGAAAATGTTGCGGTTGAAGACATTAACCTTAAAATTTACCC
25	12020	TCTCTAAAACACGCCTAGCTATTTTTTTAGAAAAATCAATTAAAGTTTCTGTAC
25	12018	CCATTGGTTTTAGATTAACATTCTTAGTACGTACAATT-CTTTGGCTTACTGCTTC
	12022	CTTGCTCAATAGCTGGATTATACGGCTGGTGAACACGTTGACGTTCACTCTCCGGATC
		*
	12023	
30	12024	CATCGTATGATAACGCTCTTGCTTTATCTTCATCATTTTCTGTCTCAGGCATTTTAC
	12019	AGACTAAGAATCGATTGATTCCATCATAACACTCAACAAAATTGATAAAAATTATAC
	12021	TGGTGATTTTGTTTGTTTCATCGGTACGAGTGGATCAGGTAAAACAACAT
	12020	GATGCTCAACGTAGTCATGGACATTAATGGATACTGAAAAACTCTTAGAAAAAGCGG
	12018	TTCATCTGGCTCAGCCTCAAATTCTGTTGTGAAAACTTGACTTGCTGGAATC
35	12022	TGGTTCTGGAATAGCTGATAATAGACTCTTCGTATAAGGGTGGATTGGATTGTTATAAAC
55	12022	TGGIICIGGAAIAGCIGAIAAIAGACICIICGIAIAAAGGIGGAIIGGAIIGIIAIAAAC
	10000	
	12023	
	12024	CTGTCTCAAAAATCGATTTAATCTGAGCAGCATCAAGAGTCTCATATTTTAAGAG
40	12019	TAATTCA-ATAATTGCCATTGGGGCAGCATCGCCACGGCGTGGTTCTGT-TTTAAGAA
40	12021	TAATGCGTATGGTTAACCATATGTTAAAACCAACAA-~ATGGTACTCTATTATTTAAGGG
	12020	TCATGAAGATAATTTTGTGCTAACAACTGCAACGATTTTAATACTTT-TCCATGAT
	12018	TTTTCACGATATTTTTTCGCAATTTTAGTTTTATT-TTTACGA-
	12022	ATCATCAGATGTTCCAACTTCTAACAGTTTCCCCCCAATGCATAACACC-GATACGAT
45	12023	
	12024	GGCTTCTGCAATTAATTTATGAGTATCACGGTTTTCGTTGATAATATCAGCTGCCTTA
	12019	TACGAGTGTATCCTCCGTTACGTTCAGCATAACGAGGTGCGATGTCGTC-AAAAAG
	12021	AAAAGATATTTCTACTATTAACCCCATTGAATTAAGACGCAGAATTGGATATG
50	12020	AACCAATGATGCGCCCAGCTTCTGGCGTTTCTATTTGGAGATTTATTT
50	12018	ATTTGACGCTCAATTTTATCAACAACTAAGTCAAT
	12022	CTGAAATGTATTTTACCATAGACAAATCATGTGCGATAAACAAATAAGTCAATCCTTG
	12023	
	12024	TTACGTGCTTCATTAAGAAGGTGACGAACTTCATCATCAATAAGTTGTGCAGTTTGAGCA
55	12019	TTTTTGAAGAGCTGTTGTTGATGTAT-ATTT-ATCAGAAGCTTCATCATAGTTTTCTGAT
	12021	TTATCCAAAACATTGGTTTAATGCCTCATATGACCATTTACGAAAATATAGTTCT-TGTA
	12020	TTGTCGTAGTTTCTATTGTTGCAT-CTAAATCCATCTCATAGATGATATTTTCA
	12018	TGACCCATACATATCTTGTGAAACATCTTCTGCTCGTAAAGTAATAGAATCTATTAAG
60	12022	TTCTCTTTGCAATTTTTGCATTAAATTAACAACTTGTGCTTGGATTGAAACATCTAAGGC
00		
	12023	
	12024	GAATATGATTTTTCAGGTGACATTTGACCAGCCATCATTGCGTGGTTGCCTTCGTATT
	12019	GCAATTTCATTACGTACATAAGCAGCAGCTTGACGACGAGCATGTAAATCACCACGTT
	12021	CCAAAATTATTGAAATGGTCAGAAGAAGCTAAAAGA-GCTAAAGCAAGGGAACTTATT
65	12020	${\tt ACGTATTTAGTCACCTGAGCAGCTGCTACTTCAATATTAGGAAGTAGGTCAATTTTTT}$
	12018	ATTGTTACTTCAACTTTTGCGGTCTTCTCTCTGTATACTTTGAGGTTGACTCT
	12022	AGATATTGGTTCATCAGCAATGATAAATTTAGGCTCTACTGCTAAAGCACGTGCAATCCC

-2970-

PCT/GB01/04789

	12023	~
	12024	GAACTGGTCCAAGTTTCTCGCTCATACCATATTCAGTTACCATAGCGCGGGCCATAGCAG
	12019	TACCTAGAGTAATCATTTTTCAACTGTTTTACGGATTTCTTTAGCACGTGCTTCAGTAG
	12021	AAATTAGTTGAATTACCCGAAGAA~TATTTGGATCGCTACCCTAGTGAGTTGTCTGGCGG
5		
J	12020	CAATAGCTTCACTTGTAGTTACAACGTTTTTTATCATCAATTTTTTGGAAGTTCTGGTTG
	12018	AGTATCTAATTCTTGTGCTTCATTAAAGTATTTTTCAACTTTAGAGAGTTTGGTC
	12022	GATACGTTGTCGTTGTCCACCTGAAAATTCATGCGGATAACGTGTTAAATGATCTTTATT
	12023	
10	12024	TGGCTTGTTCGAAGTCATTTGAGGCACCTGTTGTCTGAGCGTTGAAAATAATTTCTTCCG
	12019	TTACAATTGATTCGTTGATAAGAAGATCGGTTGTCAAATCACGAAGCATTGCCTTACG
	12021	TCAGCAACAACGTATCGGTGTCATTCGCGCTCTTGCAGCAGACCAAGATATTATTTTAAT
	12020	TGATACGTCTTCTTTTCAAGCGT-TTCATCAACCTCCTCTATATATTCTTCCACC
5	12018	TCAACATACTCACGAATAGCTTCTGTTACTTCGATGTTTTCACCACGAAT-ACT
5	12022	TAACCCTACAAGATCTAATAGGGCCTGAACTTTACTATCACGATCTGATTTTGATTTAGC
	12023	
	12024	CTACACGTCCTCCCATAAGACCTGCTAATTGCTCTTTCATATCATCTTTTGAAAGAAGCA
	12019	TTGTGAGCTAGTGCGTCCTAGTTTACGGTAAGCCATTATGTCCTCCTATTTTA
.0	12021	GGATGAGCCTTTTGGAGCTCTGGATCCTATTACTAGAGAAGGTATTCAAGACTTA
	12020	ACATCTACGCTAGACGGTACATTCTTAATATTTTTTTAACGCTACCGATTCA
	12018	GTATTTAATCATATGAGTACCTCTTTCTTGCGTTGTTAACGCTTTCTATACTCTTA
	12022	TAATTTATGTATATCTAAACCT-TCTGCTACGATATCACGAATCTTCATACGCCG
25	10000	
ر	12023	
	12024	TTTGATCTTCTTTAGGTAAAGCAATCATATATCCACCTGCACGACCACGTGGTACG
	12019	TTTATCGTTTTTTAATCCAAGACCTAGATCGGCAAGTTTGATTTTAACTTCTTCAA
	12021	GTCAAGTCTCTTCAGGAAGAAATGGGGAAAACTATCATCTTAGTTACT-CAT
	12020	TTAATATCAGTTACTTCGTCGGT-GATACCTTCTATTTCAACTTTTGCTG
0	12018	TTATAACC-GCTTTCATGAAAA
	12022	TTTAAGCTAGCCTGAGGATCCTGAAAAATCATCTGAGCGTCTTTACGAAAACTATGTAAT
	10000	
	12023	
_	12024	ATAGTAACTTTATGAACAACTCGCGCATTTGAAAGAATCAAACCGACAATTGTGTGCCCA
5	12019	GACTCTTACGTCCTAAGTTTCGGACTTTCATCATTTCAGGCTCAGTTTTTTCTG-TTAAA
	12021	GAT-ATGGATGAAGCCCTCAAGTTAGCAACAAAAATTATTGTTATGG-ACAAT
	12020	GCTTTTTACCAAAGCCCAAAAAACCTTTTTTCTCACGTGATACAACTTTTATATGTG
	12018	
0	12022	GCTTTACCTTTCAGATGTGAGATCACTTCTCCATTAAAGGTAATTTCTCCATCAGAAATA
10	12023	
	12024	GCTTCATGGTAAGCAACCATAGCTCTTTCTCTTTCAGAAATAGTACGATCTTTTTTAGAA
	12019	TCAAATACTGTATTAATTCCAGCACGTTTTAAACAGTTATATGAGCGCACTGACAAATCA
_	12021	GGTAAAATGGTCCAAGAAGGGACACCCAATGATCTCTTACATCATCCTGCTA
5	12020	CCCTCAATCGTGAAATGTTTAACTCTTGTAGTCCTTTTTCAATAGCTTCTTCTACAGTCG
	12018	* = = = = = = = = = = = = = = = = = = =
	12022	${\tt TCATAAAGTTTTAAAATTGAACGTCCAACGGTTGTCTTTCCTGATCCAGATTCCCCAACT}$
	12023	
0	12023	ር/ር አ ር ር አ ሊር ር አ እ ምምን ር አ ር ር ር ምምር ምምር ር ምምር እምር እ እ መእመር የመፈል እ ር ረ አ መረቱ እ መእ እ ረ መመመው መን
•		GGACCAGCAATTACACGGTCTTCTGCTTCATCAATATCTGAAGCATCAATAACTTTTTTA
	12019	AGTTCCTCAATTGTCCGGTCAAGCACTTTCTCATCGTTCACTTTCTCTGTTTCCTTCATT
	12021	
	12020	CTCCTGTAAATAACC
_	12018	
5	12022	AATCCAAACACTTCACCTTCATAAATGTCAAAACTAACATTATCAATTGCTCTCACTTCA
	12023	
	12024	TTTCGTCGCGCAGCAACTAAAGCAGCTTCATTGAGAACATTCTCCAAATCAGCACCAACA
_	12019	ACITCAGTTGCTTTAGCAACCTCTGTTAAATCAGTAAACAAGTTTAAGTGTTCAATTAAG
n.	12021	
0	12020	
0	12020	
0	12018	
0		TTAGCTTTTCCTTTATTGAAGGTCAAAGAAACATTTTTGACTTCAACTAATTTTTTTCGA
	12018 12022	
	12018 12022 12023	TTAGCTTTTCCTTTATTGAAGGTCAAAGAAACATTTTTGACTTCAACTAATTTTTTTCGA
	12018 12022 12023 12024	TTAGCTTTTCCTTTATTGAAGGTCAAAGAAACATTTTTTGACTTCAACTAATTTTTTTCGA
0 5	12018 12022 12023	

-2971-

It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

-2972-

TABLE I – THEROETICAL MOLECULAR WEIGHTS FOR GBS PROTEINS

GBS#	expected mol. weight (dalton)		
GB3#	GST-fusion	His-fusion	Native
1	78425	53460	49720
2	40035	15070	11330
3	90305	65340	61600
4	43115	18150	14410
5	158835	133870	130130
6	39265	14300	10560
7	44985	20020	16280
8	56315	31350	27610
9	50265	25300	21560
10	96465	71500	67760
11	91515	66550	62810
11d	85905	60940	57200
12	64455	39490	35750
13	40475	15510	11770
14	33325	8360	4620
15	44765	19800	16060
16	73475	48510	44770
17	46745	21780	18040
18	54335	29370	25630
19	46085	21120	17380
20	47625	22660	18920
21	56535	31570	27830
21 long	66435	41470	37730
22	60055	35090	31350
23	60165	35200	31460
24	58405	33440	29700
25	50265	25300	21560
26	118245	93280	89540
28	63795	38830	35090
29	50595	25630	21890
30	44215	19250	15510
31	63795	38830	
31d	58735	33770	35090
32	40585	15620	30030 11880
33	71495		
		46530	42790
34	69295	44330	40590
35	56535	31570	27830
36	59065	34100	30360
37	46965	22000	18260
38	61815	36850	33110
39	65225	40260	36520
41	75235	50270	46530
42	46745	21780	18040
43	58955	33990	30250
44	52355	27390	23650
45	43555	18590	14850
46	59835	34870	31130
47	84255	59290	55550
48	86455	61490	57750
48d	106695	81730	77990
49	59615	34650	30910
50	94155	69190	65450

51	47075	22110	18370
52	55435	30470	26730
53	110215	85250	81510
54	73365	48400	44660
55	36295	11330	7590
56	34865	9900	6160
57	51145	26180	22440
58	128805	103840	100100
59	99215	74250	70510
60	63575	38610	34870
61	68085	43120	39380
62	105485	80520	76780
63	64125	39160	35420
64	112745	87780	84040
65	72485	47520	43780
66	49715	24750	21010
67	120335	95370	91630
68	131225	106260	102520
68d	103065	78100	74360
69	53895	28930	25190
70	74465	49500	45760
70d	59725	34760	31020
71	56755	31790	28050
72	75565	50600	46860
73	72815	47850	44110
74	131225	106260	102520
74d	95475	70510	66770
75	114725	89760	86020
76	198875	173910	170170
77	78535	53570	49830
78	48835	23870	20130
79	58185	33220	29480
79d	50815	25850	22110
80	81835	56870	53130
81	89205	64240	60500
82	40475	15510	11770
83	62585	37620	33880
84	122645	97680	93940
85	70175	45210	41470
86	84035	59070	55330
87	44435	19470	15730
88	73365	48400	44660
89	143325	118360	114620
90	93495	68530	64790
91	88325	63360	59620
92	193595	168630	164890
93	95585	70620	66880
94	77435	52470	48730
95	60605	35640	31900
96	57195	32230	28490
97		113410	109670
	138375		
98	82055	57090	53350
99	60715	35750	32010
100	53015	28050	24310
101	59395	34430	30690
102	40695	15730	11990
103	56975	32010	28270

104	120005	95040	91300
105	179735	154770	151030
105dNterm	127265	102300	98560
105dCterm	81285	56320	52580
106	85795	60830	57090
107	89535	64570	60830
108	64565	39600	35860
109	75125	50160	46420
109d	70725	45760	42020
110	53895	28930	25190
111 / 190	60165	35200	31460
112	63905	38940	35200
113	59175	34210	30470
114	51915	26950	23210
115	98225	73260	69520
116	73475	48510	44770
117	47515	22550	18810
118	42235	17270	13530
119	109225	84260	80520
120	71385	46420	42680
121	65115	40150	36410
122	46855	21890	18150
123	68305	43340	39600
124	54115	29150	25410
125	57305	32340	28600
126	56865	31900	28160
127	80845	55880	52140
128	39925	14960	11220
129	43775	18810	15070
130	82275	57310	53570
130d	63245	38280	34540
131	89755	64790	61050
132	49055	24090	20350
133	54445	29480	25740
134	42015	17050	13310
135	65225	40260	36520
136	54885	29920	26180
137	63465	38500	34760
138	40145	15180	11440
139	38165	13200	9460
140	43445	18480	14740
141	49935	24970	21230
142	79745	54780	51040
143			
	33545	8580	4840
144 145	49165	24200	20460
146	63025	38060 82060	34320
147	107025	132000	78320
	156965		128260
148	41905	16940	13200
149	62365	37400	33660
150	54665	29700	25960
151	50412	25447	21707
151L	50045	25080	21340
152	45535	20570	16830
153	46965	22000	18260
154	101525	76560	72820
155	62585	37620	33880

156	61265	36300	32560
157 ⁻	74025	49060	45320
158	52025	27060	23320
159	41025	16060	12320
160	82825	57860	54120
161	95365	70400	66660
162	42015	17050	13310
163	69405	44440	40700
164	42345	17380	13640
165	43555	18590	14850
166	38055	13090	9350
167	50375	25410	21670
168	32555	7590	3850
169	43445	18480	14740
170	64015	39050	35310
170d	59945	34980	31240
1700	49825	24860	21120
172	62365	37400	33660
173	96795	71830	68090
174	45095	20130	16390
175	59175	34210	30470
176	55435	30470	26730
177	66215	41250	37510
178	62365	37400	33660
179	58515	33550	29810
180	37615	12650	8910
181	63685	38720	34980
182	90085	65120	61380
182d	87225	62260	58520
183	57855	32890	29150
184	46415	21450	17710
185	40695	15730	11990
186	85685	60720	56980
187	56205	31240	27500
188	61595	36630	32890
189	60165	35200	31460
191	116705	91740	88000
192	69625	44660	40920
193	98005	73040	69300
194	49385	24420	20680
195	81065	56100	52360
195L	147615	122650	118910
195L N-term	91405	66440	62700
196	69515	44550	40810
197	99325	74360	70620
198	73805	48840	45100
199	158285	133320	129580
200	132325	107360	103620
201	74538	49573	45833
202	157295	132330	128590
203	61705	36740	33000
204	39705	14740	11000
205	55985	31020	27280
206	56645	31680	27940
207	44765	19800	16060
208	59725	34760	31020
209	62145	37180	33440
	U4 17U	01.00	00-110

209d	56425	31460	27720
210	60935	35970	32230
210d	53675	28710	24970
211	64895	39930	36190
212	60825	35860	32120
213	45205	20240	16500
214	38935	13970	10230
215	45205	20240	16500
216	91515	66550	62810
217	36075	11110	7370
218	81065	56100	52360
219	56535	31570	27830
220	54555	29590	25850
220	50155	25190	21450
221	41465	16500	12760
222	47405	22440	18700
223	42895	17930	14190
224			
	45865	20900	17160
225	56645	31680	27940
226	44875	19910	16170
227	46195	21230	17490
228	46525	21560	17820
229	35855	10890	7150
230	51915	26950	23210
231	60935	35970	32230
231d	58735	33770	30030
232	41795	16830	13090
233	35635	10670	6930
234	43115	18150	14410
235	58295	33330	29590
235d	48395	23430	19690
236	46525	21560	17820
237	44215	19250	15510
238	59725	34760	31020
239	63905	38940	35200
240	51475	26510	22770
241	45095	20130	16390
242	43225	18260	14520
243	119455	94490	90750
244	48065	23100	19360
245	48615	23650	19910
246	49605	24640	20900
246d	45975	21010	17270
247	58955	33990	30250
248	92505	67540	63800
248d	70835	45870	42130
249	103835	78870	75130
250		111540	107800
	136505		
251	52135	27170	23430
252	51695	26730	22990
253	74245	49280	45540
254	59615	34650	30910
255	69075	44110	40370
256	47845	22880	19140
257	60495	35530	31790
258	67975	43010	39270
259	79415	54450	50710

260	48175	23210	19470
261	55765	30800	27060
262	75345	50380	46640
263	63465	38500	34760
264	47185	22220	18480
265	56315	31350	27610
266	51365	26400	22660
267	88655 50265	63690	59950 21560
268		25300	
269	60495	35530	31790
270	59285	34320	30580
271	56315	31350	27610
272	118355	93390	89650
272d	98885	73920	70180
273	70945	45980	42240
274	56205	31240	27500
275	47515	22550	18810
276	147945	122980	119240
277	87005	62040	58300
277d	75675	50710	46970
278	52245	27280	23540
279	79415	54450	50710
280	88655	63690	59950
281	74465	49500	45760
281d	71495	46530	42790
282	44765	19800	16060
283		20240	16500
284	67645	42680	38940
285	57525	32560	28820
286	41355	16390	12650
287	61045	36080	32340
287d	57085	32120	28380
288	53675	28710	24970
288d	51035	26070	22330
289	65005	40040	36300
289 long	71825	46860	43120
290	47405	22440	18700
291	63795	38830	35090
292	103505	78540	74800
293	115935	90970	87230
293d N-term	73805	48840	45100
293d C-term	70835	45870	42130
294	75785	50820	47080
295	89425	64460	60720
296	60385	35420	31680
297	100205	75240	71500
298			
298	54335	29370 37290	25630
	62255		33550
300	130895	105930	102190
301	54885	29920	26180
302	80075	55110	51370
303	53235	28270	24530
304	75125	50160	46420
305	78645	53680	49940
306	67975	43010	39270
307	86675	61710	57970
308	59285	34320	30580

309	62695	37730	33990
310	58845	33880	30140
311	76445	51480	47740
312	64785	39820	36080
313	65995	41030	37290
314	52135	27170	23430
315	51695	26730	22990
316	41795	16830	13090
317	179295	154330	150590
317d N-term	115935	90970	87230
317d C-term	92160	67402	63360
318	70065	45100	41360
319	61925	36960	33220
320	57965	33000	29260
321	83705	58740	55000
322	76628	51663	47923
323	86345	61380	57640
324	86345	61380	57640
325	82605	57640	53900
			62810
326	91515	66550	
326L	172695	147730	143990
326L N-term	113955	88990	85250
327	279175	254210	250470
327d N-term	139915	114950	111210
327d C-term	167965	143000	139260
328	97602	72637	68897
329	113955	88990	85250
330	83595	58630	54890
331	60825	35860	32120
332	75675	50710	46970
333	63465	38500	34760
333d	57965	33000	29260
334	38275	13310	9570
335	43555	18590	14850
336	67645	42680	38940
337	75235	50270	46530
338	54995	30030	26290
339	76665	51700	47960
339d	72925	47960	44220
340	86565	61600	57860
341	38385	13420	9680
342	61595	36630	32890
343	60385	35420	31680
344	55875	30910	27170
345	40585	15620	11880
346	53895	28930	25190
347	55325	30360	26620
348	58405	33440	29700
349	98335	73370	69630
350	53895	28930	25190
351	82165	57200	53460
352 352d	111315	86350	82610
352d	105485	80520	76780
353	55325	30360	26620
354	42345	17380	13640
355	52135	27170	23430
356	59065	34100	30360

257	ADDEE	15000	11550
357	40255	15290	11550 31790
358	60495	35530	50160
359	78865	53900	
360	73695	48730	44990
361	109005	84040	80300
362	125945	100980	97240
362d N-term	63355	38390	34650
362d C-term	91295	66330	62590
363	53125	28160	24420
364	75015	50050	46310
365	102075	77110	73370
366	68415	43450	39710
367	76885	51920	48180
368	44765	19800	16060
369	142115	117150	113410
370	94595	69630	65890
371	65555	40590	36850
372	55105	30140	26400
373	50265	25300	21560
374	57525	32560	28820
375	66875	41910	38170
376	48065	23100	19360
377	73805	48840	45100
378	58955	33990	30250
379	68855	43890	40150
380	47405	22440	18700
381	66875	41910	38170
382	50815	25850	22110
383	57085	32120	28380
384	77985	53020	49280
385	75675	50710	46970
386	39485	14520	10780
387	54555	29590	25850
388	45645	20680	16940
389	43005	18040	14300
390	62255	37290	33550
391	54775	29810	26070
392	71385	46420	42680
393	55765	30800	27060
394	59725	34760	31020
395	72375	47410	43670
396	34865	9900	6160
397	113625	88660	84920
397d	100865	3740	72160
398	56755	31790	28050
399		30470	26730
	55435		45430
400	74135	49170 34430	
401	59395		30690
402	78095	53130	49390
403	64455	39490	35750
404	61595	36630	32890
405	45975	21010	17270
406	36955	11990	8250
407	82715	57750	54010
407d	71715	46750	43010
408	45315	20350	16610
409	70395	45430	41690

409d	59600	34842	30800
410	62475	37510	33770
411	41355	16390	12650
412	35965	11000	7260
413	59175	34210	30470
414	50375	25410	21670
415	46195	21230	17490
416	42455	17490	13750
417	77985	53020	49280
418	42125	17160	13420
419	47515	22550	18810
420	67755	42790	39050
421	62915	37950	34210
422	60165	35200	31460
423	74245	49280	45540
424	89975	65010	61270
424	77325	52360	48620
425	116045	91080	87340
426	83815	58850	55110
427	41135	16170	12430
428	55325	30360	26620
429	59175	34210	30470
430	53785	28820	25080
431	54005	29040	25300
432	65665	40700	36960
433	40915	15950	12210
434	44545	19580	15840
642	91845	66880	63140
643	78975	54010	50270
644	49605	24640	20900
645	59725	34760	31020
646	61595	36630	32890
647	55875	30910	27170
648	59835	34870	31130
649	76115	51150	47410
650	51475	26510	22770
651	53345	28380	24640
652	49715	24750	21010
653	44655	19690	15950
654	51255	26290	22550
655	65995	41030	37290
656	57525	32560	28820
657	62805	37840	34100
658	60165	35200	31460
659	60275	35310	31570
660	71495	46530	42790
661	60605	35640	31900
662	62695	37730	33990
663	89535	64570	60830
664	45315	20350	16610
665		16170	12430
	41135		
666	47075	22110	18370
667	53162	28197	24457
668	43555	18590	14850
669	48505	23540	19800
670	45315	20350	16610
671	36940	12182	8140 _

672	40130	15372	11330
673	41450	16692	12650
674	45300	20542	16500
675	55970	31212	27170
676	65650	40892	36850
677	54320	29562	25520
678	77750	52992	48950
679	60480	35722	31680
680	64440	39682	35640
681	93040	68282	64240
682	84790	60032	55990
683	15950	44655	19690
684	11880	40585	15620
685	16280	44985	20020
686	21340	50045	25080
687	9350	38055	13090
689	55105	3740	26400

TABLE II – PRIMERS USED TO AMPLIFY GBSnnn PROTEINS

Forward primers begin 5'-GGGGACAAGTTTGTACAAAAAGCAGGC-3' and continue with the sequences indicated in the table below; reverse primers begin 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTT-3' and continue with the sequences indicated in the table. The primers for GBS1 are thus:

Fwd: GGGGACAAGTTTGTACAAAAAAGCAGGCTCTCAATCTCATATTGTTTCAG

Rev: GGGGACCACTTTGTACAAGAAAGCTGGGTTATTTTTAGACATCATAGACA

The full forward primer sequences are given in the sequence listing as SEQ IDs 10968-11492. The reverse primer sequences are SEQ IDs 11493-12017.

GBS	Forward	Reverse
1	TCTCAATCTCATATTGTTTCAG	ATTTTTAGACATCATAGACA
2	TCTAATTACATTATTACATTTTTG	GGGAATGCCTACAAA
3	TCTGATACTAGTTCAGGAATATC	TTTTTTACTATACTTTTTGT
4	TCTGATACAAGTGATAAGAATACT	TTCCTTTTTAGGCTTACT
5	TCTATTTTCTTCATAGTCCAC	ATTAGCTTCATTTGTCAG
6	TCTGAATGGGTGTTATTAACTC	AGTTTCTTCTTTAAAATCAT
7	TCTACAAATTCTTATTTTAGCAA	CTCTGAAGCTGTAAAACC
8	TCTGTATCAGTTCAGGCGT	TTTATCAATGTTTGAAACG
9	TCTGCTGCTCTAGGACAAC	TAGTAAATCAAGTTTTTGCA
10	TCTTTTGTTGTTGCCTTATT	ATCCCTTCTATTTTCGA
11	TCTCCACCTATGGAACGT	ATGTAGTGACGTTTCTGTG
11d	TCTCAGAAAGTCTATCGGG	ATGTAGTGACGTTTCTGTG
12	TCTAGTGAGAAGAAAGCAAAT	ATTGGGTGTAAGCATT
13	TCTTCTTGGAATTATTGGAG	CTTAACTCTACCCGTCC
14	TCTGCAATGATTGTAACCAT	TTTTCTCTTATTAAAGAATT
15	TCTGCATCTTATACCGTGAA	ATACCAGCCGTTACTATT
16	TCTGCCGAGAAGGATAAA	TTTAGCTGCTTTTTTAATG
17	TCTGTTTATAAAGTTATTCAAAA	AAATACTACATTTACAGGTG
18	TCTAAGCCTAACAGTCAACA	TTGGTTATTCTCCTTTAAT
19	TCTGATGATAACTTTGAAATGC	ATTATATTTTTGGATATTTC
20	TCTGCAGTGATTGCAAGTC	GGGCTTTTTCTTAAAAA
21	TGTGCTGCATCAAAC	GTTGGCATCCCTTTT
21 Long+A527	TGTGCTGCATCAAAC	CTTTTGATGGGATTGG

22	TGTACTAAACAAAGCCAG	TTGATTTAACGATTTGA
23	TGTCAATTAACCGATAC	TTTATCTCCTCTAAAATAATG
24	TGCTCAAATGATTCAT	CTTTGATAAGTCAGACCA
25	TCTAAAAGTTCACAAGTTACTACT	GTAACCCCAAGCTGAT
26	TCTAGTCATTATTCCATAAAATT	TGATTTTGCAATATCAA
28	TCTAATCATATGCTGATTGAG	TTTTTGTAATTTAAGTACTAA
29	TCAGTTTGGATGTTAAC	TTCTTTTATATTAAGAGCTT
30	TCAACAAATGCAGATG	ATTCGGATAAATGTAGC
31	TGTTTTGTCATTATTGATAG	TCCATTTTTATCCTCAC
31d	TCTCTAACTTGGTTTTTATTAGA	TCCATTTTTATCCTCAC
32	TCTGGTTTAAAAGTGACTGAA	ATGACCTCTACTTTCCA
33	TCTCATCATTTAGGTAAGGAA	CTTGTAATCACTTGGAC
34	TCTGTTAGTAATCGCTACAATC	ATTAATCATGGTATTGGT
35	TCTAATCAAGAAGTTTCAGC	CCATTGTGGAATATCA
36	TCTCGAGTTTTAGCGGATA	TTTGTAAAGCAGTTCTT
37		ATCATTCATATGATCTCTAGA
	TCTGTATTATTTTACCAATCACA	
38	TTAGGAGTGGTAGTTCAT	ATTTTGATTGATTCTACTC
39	TTTTTATTGTTAGC	TTTTGTTTTTTCAAATA
41	TCTGTTTATCTAGCGGTTAGA	ATCTTCAACGTCCTCC
42	TATAACAGTTTAGTTAGAAGTC	AAAGTCAAAGGAAACTT
43	TTTAAAGGGTTTACATATT	TTCTTTATCTAATTTATAATAG
44	TTTAATACAATTGGTCG	TTGCAATGTTTTTCT
45	TCTATGGAAAAAATTAGGATT	TAAACTTTGGATAATCTGT
46	TCTAGAGATGAGCAAGAAATA	GTTGAAATTTTGATATGA
47	TCTCAACAGATAGGTCTTTATAA	CTCCTTTACTATATAGCTAACT
48	TTTCTCTATAATTACTTCAAT	TTGTTTGTGAAGTAAAAC
49	TCTAATAAGGCATTATTAGAGG	TGATAATATCTCCATATTTT
50	TCTACACATTTAGTTGACTTAAC	GCATTGGCGCCATA
51	TCTAGTAAACAACACATTTATCTA	TTCTACACGACTTTTATTC
52	TCTCAAGAAACTCATCAGTTG	AAGACCTCCTCGAGAT
53	TCTGCAGAAGACATTGTTACA	TGTTTTTCTTTCTGTTG
54	TATAATTTTCGACTAATGA	TGGATTAGTTTGACCTG
55	TCTGACACAGTGTCTTATCCT	TTTATCGTAAGCACTTAGG
56	TCTGTGGAGCAAGTGGCCA	CTCCTTCCAGGCATCG
57	TCTCAAGAACTAAGTAACTTTGA	GTAAAAGTATCTTAAATAGTCA
58	TCTACTGAAACGTTTGAAGG	TGCCATTCCTCCTCT
59	TCTGATGAAGCAACAACTAA	TGTTACCTTTTTATTTTCT
60	TCTAATAAAGATAATCAAAAAACT	TTTTCATGCGATTGA
61	TGTTTCTTTTTTATTCCA	GAGACGTTTCTTATACCTT
62	TATTACTTTGATGGTAGTTT	TGTACCATATGTTCTCTCT
63	TCTGTTCAATCATTAGCAAA	AAAAGTTGGACTACTTTC
64	TTTAAAGGTAATAAGAAGTTG	TCGTTTTCCACCC
64d	TCTAGTCAAGTTGACTCTGTTA	TCGTTTTCCACCC
65	TCTCAAAACCAGGTGACTG	ATTTGGGTAAATATAGTAAA
66	TTAAGATTTTATAACAACGA	TTTACGACTAACCTCAAC
67	TCTAATGTTTTAGGGGAAA	AATTCCTTTTGGTGG
68	TCCCAAAAGACTTTTG	GGCAGAATACACCTTC
68d		GGCTGACGTCGACGCA
	TCCCAAAAGACTTTTG	
69	TCTAAAGTTTTAGCCTTTGA	AACTCTCTTAATATATTCTTCT
70	TOTA OTTA OTTA OTTA OTTA OTTA OTTA OTTA	GTCTTTTTCAATATTCTGT
70d	TCTACTAACTTATTGAGTAGAATCA	GTCTTTTTCAATATTCTGT
71	TGTAGCTCAAAATCTCAT	CTTCTCCTTAGGAGTAACG
72	TCTAGTTTATCTATTAAAGATGCC	ATTATTATCAATTAATAACTCTT
73	TCTATCAAAGAGGCGGTAA	GTCAAACATACTTCCAAA
74	TCTAAAGAGGATAAAAAGCTAG	TTTCGTCGTATAAGCA
74d	TCTAGTGTTTCAGGTAGTAGTG	TTTCGTCGTATAAGCA
75	TCTAAAAAATTAAAACACTCAA	TGTCCTCATTTTTCAG

76	TCTGATGAAGTTACAACTTCAG	AATACTTGCTGGAACAG
77	TTATTCCAAAGTAAAATAAA	GTCTTTCTTCAATTTTGG
78	TCTCATAACCATCACTCAGAACACATGT	GTCGTGATTTTTATGAGT
79	TCTCCCAAGAATAGGATAAA	CCCAAACTGGCATAAC
79d	TCTAGTCAGTATGAGTCACAGA	CCCAAACTGGCATAAC
80	TCTGCAGAAGTGTCACAAGA	TGAAGGACGTTTGTTG
81	TCTTTTGATGGATTTTT	TTTTTTAGTTTAAGGCTA
82	TCTACAAATGAAAAACGAAC	GTCCACCTTCCGAT
83	TCTGAAATTAAACTCAAAAATATT	AACATTGTTTTTCCTTTC
84	TCTCATACTCAAGAACACAAAA	ATGGTGATGACCT
85	TCTCCTAAGAAGAAATCAGATAC	ATTAACATTTTGAGGGT
86	TCTGCAGAACTAACTCTTTTAA	TTTTGCAAAATCAACA
87	TCTGCGGATACATAATAACTA	GAATAAATAACTGTATTTTT
88	TCTTACCAAAAATGACG	ATTTTCATTAATTTCCTCT
89	TCTGAAGAGCTTACCAAAAC	GATAGCTAATTGGTCTGT
90	TCTAGATATACAAATGGAAATTT	TAAAAGATGAGCTTCTCG
91	TCTAAAAAAGGACAAGTAAATG	AATTTCAATATAGCGACG
92	TCTGATTCTGTCATAAATAAGC	CTTGTTTGTCTTTACCTT
93	TCTGAATTTTCACGAGAAA	ATTATCCTTCAAAGCTG
94	TACCAATTAGGTAGCTATAA	TGTGTCATATAATGTAACCA
95	TCTGTTAATACAAAAACACTTCT	TGATCTTAATTTTCGAG
96	TCTGGTCAGTCTAAAAATGAAG	CCAAACAGGTTGATCT
97	TCTAGCCAGGAGGTATATG	ATTTACATCAGACTGTGAC
98	TCTGAAACTATTAATCCAGAAA	TTTATGGCCAATAACA
99	TCTACAAGTATGAACCATCAA	TTTTTAGTAGTTGTCAATT
100	TCTAAGGGGCCAAAAGTAG	GTAAGCTGAATTTTCGA
101	TCTATTACTTTAGAAAAATTTATAGA	ACGAGAGTGGTTATTGG
102	TCTGCCTTTTACTTTGGCA	TTTCTTCACTCTTTCTAGAG
103	TCTATTTTTCCTTGATCAT	CGGCCAGTTTTTCTT
104	TCTGGTGAAACCCAAGATA	AACACCTGGTGGGCGT
105	TTAACAATTCATGGACC	ACTATTTCTAATTGCTCTG
105d	TTAACAATTCATGGACC	TGGTCCCGGTGCGCCA
105d	TCTCAAGGACCTCCCGGTG	ACTATTTCTAATTGCTCTG
106	TCTCAAAATCAAAATTCACA	CTTAGCAGATTCATCCC
107	TCTCTGGAGCCTTTTATTT	TTTACTATTTGAAAATTGG
108	TCTGGTAATCGTTCAGATAAG	TTTCATAGGAACTTGTATT
109	TCTATCCAGCAGATCAACT	GTCCACACCTGCGACT
109d	TCTAAACGGGTTCGCTATG	GTCCACACCTGCGACT
110	TCTGTAAAATTAGTATTCGCAC	TTTACCTAAGTAATATTCTGA
111.19	TCTGTTAGCGTTGATAAGGC	TCCCCGTCTTTTTTGT
112	TCTACAATTAAAAATCTCACTG	GTCGTAATCATAAAAGCC
113	TCTAGTAAAATCAAAATTGTAACG	TTCATAACGAACCATAAC
114	TCTAATCTTTTAATTATGGGTT	TTTGAGTTCTAGCAACG
115	TTTCAATACTATTTAAAAGG	TTTTTATCTTCTTCTTGC
116	TCTACCGAGGAGCCATTAA	TTTTAAAACCTGGTAAAC
117	TCTGAACAATCACAAAAAACA	TCAGCTCGTACTGTTT
118	TCTATGGTGACGGTGCTGG	GTCCTCCTCAATTGGT
119	TCTAGTCAGCCGGTAGGGG	CTCTTTTATACGCGATG
120	TCTGGTGGAGCATTTGCTA	GTTATTTGCTCGTTGTT
121	TCTAATAAAGATAATCAAAAAACT	TTTCTCAAATGTTTTCAT
122	TCTGCTGCCACCAAGAAAG	TTTCAAATGATCTACAGC
123	TCTACAACAAATGTAATGGC	GGCTAGTGTCTGTCCG
124	TCAATGAATTTTTCATTT	ACCATCTATTTTTACCCC
125	TCTACAAAATATCAGCGAATG	AGAACCCGCACTCTCA
126	TCTACTAAGCAAGCAATGTC	GAACGCAACGGCTGCT
127	TCTACAAAAGAATATCAAAATTAT	TTTCATATCAAAAACTATCG
128	TCGACTAATTCGTTAAA	TTCTTTATCTCTTAATGCTT

129	TTTGAAATAGTATTGGAAA	CACAACAGTTATTTTTCA
130	TCTATATTTTCTATTTTTTATTATGT	AGGCCCTTCTGAGTAG
130d	TCTAAAAAACAACTTCACAAC	AGGCCCTTCTGAGTAG
131	TCTAAAACAGATATTGAAATAGC	AAATAATCCAATGGCTG
132	TCTATTAAATATTATCATTTGCA	CTTTTCAAGCTTTTTCC
133	TCTGCTTTACGGAACCTTG	AAAATGATCAGTTTGAGG
134	TCTACTATTTCTCAACAACAATAC	TTTTTGGCTTAAGAAAG
135	TCTGAAAAAAGAGTAGTTCAAC	CTTACGATACATTTTAAATTG
136	TCTAATCAATTATCAGAAATCA	TTCTTTTTTACTTTAGCG
137	TCTCAAGAGTATAAAACAAAAGAG	CCATTGCAATCCAGCA
138	TCTGCTGTATTTACACTCGTC	ATGTTTATGGCTTGCT
139	TCTGGCGGCAAGATAAAAT	TTTTTGATAAATCCCC
140	TCTGATGGGTTAAAGAATAATG	ATATGTGTATTCATCCTTT
141	TCTGATGGGTTAVAGATTACTG	TACTTCTATTTTTCCATCTG
142	TTCGAATTAAGAGAAAGA	GTAATGCAATAAATCAAAA
143	TCTAGCTTTTTAGTGATTTCA	GGATTTTAGTTTCGCA
144	TATACGCATAGTGGAAC	CCCATTGATTTCGCA
145	TCTGTTATTATCAGGGGCG	TACCTCTTTCAATACCAC
146	TCTGTTAGTCGTTCTCCGA	ATTACCGTTAGGTACTGTA
147	TCTGAGGAGCAAGAATTAAA	GGTATGGTTAACAGAATC
148	TCTATTCTAACAAAAGCAAGT	ATATACCCTAGACTTTTTGA
149	TCTAGTGGGCGTTCATGGA	AGGAGTTTTATTGATGATAT
150	TCTGATACCCCTAATCAACTA	AAATGATTGTGGAAAAA
151	TGCAGGAGCTGTCCGC	ATCAAAGAAGTTGACATTG
151 Long	TCTGTCCGCATTGGTAAAG	ATCAAAGAAGTTGACATTG
152	TCTAACTGCTTAGAAAATGAA	GTTAGATAAATTAACCAGTG
153	TCTAACAACTCCAGCA	CCCTTTGCTTCGTTGT
154	TCTGGAAAGGTCAGTGCAG	TTCCACAAGTCCGATT
155	TCTATTTTATTTTCAGATGAAC	TTGTTTGATTCGTCCT
156	TCTGCATCAGATGTTCAGA	ACTACCAAACTGCTGG
157	TCTAGTGACGTTGACAAATA	TTGTGTATTTTAGTTAGGT
158	TCTATGACCATTTACTTCAATA	GTGGATAAAATTCGAAA
159	TCTCAAACTATTTTGACGC	CAGACTGACTAGGAGCT
160	TCTGATGAATATCTACGTGTCG	GACTTGTAATTGATTCGC
161	TCTGATGAGGTGGACTATAACA	GAAGGCACCACCT
162	TCTATTTTCTTGCTCTTAGTTG	GTTGTATAGATGAGTTAATCTG
163	TCTGAAACTGTCATTCAACTTG	ACGGTTTTTAAAGAATG
164	TATTTTTAACAACAAAAA	TTTTTCTTTATCTTCTGTG
165	TCTCCAATTTTTATTGGTTT	CGATTTTGTAAGAGCTT
166	TCTGCATCTTATACCGTGAA	CGACGAAGCTATTTCT
167	TCTACAATTTATATTGCTTGG	TAAGGCTTGCATTTTG
168	TCTGTTGGATTGATGTTGG	TTTTCCTAAAAATTTTCC
169	TGGAAACAAATCACAG	GGCATCTCCTAGCTTT
170	TCTGCAATAGTTTTTACTTTTTT	TGATAAAGGTAGTTCTACAC
170d	TCTGGTTCTTATCATTTAACAA	TGATAAAGGTAGTTCTACAC
171	TCTGCTAGACCCAAACAGT	TTTTAGATGTTTTTGTGG
172	TACACTCATATTGTTGAAAA	ATGATTGATAATTTTAAGC
173	TCTAATAGTACTGAGACAAGTGC	TGCTTTTTGATATGCC
174	TCTGCTTATGTCGTCAATTT	TAAAATAAAGTTCAGAAAAG
175	TCTGATTACCTTCGTTTATC	TTTCTCCCTTGACTTC
176	TCTAAACATCCGATACTTAATG	CTTTTTCTCAGATGCTT
177	TCTAATTATCCTTTTGCGA	GACATTGAAACGGAAT
178	TCTGGACTACGCGGAGTAT	TTTTATCAATGATGTTGA
179	TCTGCTATTGGAGCAGCTG	CATATGACGCAAACGC
180	TCTGATAAAGAAGGGATAGAGG	AGCCTCTTTTCTTGTT
181	TCTAAAGAAAAATCACAAACTG	ACGATTATCAACAAAGTT
182	TCTCAAAATAATAAAAAAGTAAAA	CATTCTTTTAAATACAAATC

182d	TCTCAAAATAATAAAAAAGTAAAA	GGGTTTGAAAGTTTTC
183	TCAAATGGTCAATCTAGC	TTTAACTTTAATTACTGGAAT
184	TCTAAGGATTCAAAAATCCC	TTTTTTAATAAGCTTCGA
185	TCTGGGCAACCATCTACAT	TTTTTGTAAACTTCCTG
186	TCTCATTCACAGGATAGCA	CTTAGATACATTGTTTTTTC
187	TCTGGACGAGGAGAAGTATC	CTTTCTTTCTTACTTGC
188	TCACAATCTTCTCAAAA	TTTATTATTTTTAATACTTGAA
189	TCTGATAAGTCAGCAAACCC	CTTCAACTGTTGATAGAGC
191	TCTATCACGACATTACAGACT	TCCTTTAGCAGGAGCT
192	TCTAGATATTTAACTGCTGGT	GTTATACATGTTGTCTGAAG
193	TCTATAAAATATCAAGATGATTTT	CCAAATAATAACACGTTT
194	TTAGAAGTCAGAGAGCAG	GCTATCCCTTTCCAAT
195	TCTATTATGGAGACGGGTA	TGTATTTTTAATTTGTTTTC
195L	TCTTTGAATAATAAAGGTGTCG	TGTATTTTTAATTTGTTTTC
195LN	TCTTTGAATAATAAAGGTGTCG	CAAACTTTTAACATTTAATG
196	TCTATTTCCTCAAATTTTTACG	ATAGTGTAAGCTACCAGC
197	TCTAATTTTTATAAGCTCTTG	GTCATCATATTCCTGAAA
198	TCTGCGCTTAAAGAATTAA	TGTTCGGCGTAAGATT
199	TTTTTAAAAGAAATTGAAA	ATTGGTCATTTCTTGAG
200	TTTCGTAAATATAATTTTGA	AACAGATTTATTGGTTGG
201	TCTAGCGATACCTTTAATTTT	AGACTCATCAACTTTTTCT
202	TCTAGCGATACCTTTAATTTT	GAACCCTGAAGGGTAG
203	TGTGGTAAAACTGGACT	CCAATTGTATTTTCAAC
204	TCTAAGACAGGAGCACCCGT	ATTTATACTACCTGTTGAATC
205		
206	TGCGAGTCAATTGAGC TCTACAAATACTTTGAAAAAAGA	TTTAAATTTGTAGTCTTTAATA CTCTTTTACTTTTCCAAAA
207		
208	TCTAAAAACCCCCTACTCA	CCCTCCCTTAAGAGAA
208	TCTAAAAAGCGGCTAGTCA TCTGGACAAAAATCAAAAATA	TTGACGATTATTCTCACT
209 209d	TCTGGACAAAATCAAAAATA	TTTCGAATTATTGTGACT
210		GTATTGTTGCCTG
210d	TCTGGAGGAAAATTTCAGAA	TTTTTGATTTCCCTTTC
2100	TCTCCACATCCTCTC	TTTATAGTGTGTTTGCAA
212	TGTGGACATCGTGGTG TCTAAGACTAAAAAAATCATCA	TTTGCTAGGAACTTTGA
213		TGATTCAATTCCTTTTC TTTTTCCTCTACTTTCTTA
	TCTAAACACACCAGTAAAGAA	
214	TCTAAAAATAAAAAAATCTTATTT	TTTGCTCACCTCCACA
215	TTAATAAAAGGATTATTGTCA	CAATAACTTCTGTAAAATAAA
216	TCTGCTCGTTTAATACCACA	TTCACCCTTAAAATAATT
217	TCTAACACTAACATCCCTAGC	TGCATTTTTCCCTTCT
218	TCTAGAGGGAAGGTTATTTAC	CTCCAGTAAAGTATTAGTATTT
219	TCTATCAATAAAGTAACAGCTCA	GTGAGGTTTTGGTAATT
220	TCTAGAACACTATTTAGAATGATAT	TGCATATAAGTTTTTTAGC
220d	TACTATGCGAATCACAG	TGCATATAAGTTTTTTAGC
221	TCTAGTTTAGCATTGCAAAT	CTCATCTAAAGTGCTATCC
222	TCTACATTTTATAAAAAGACGG	CTCGTATTTAGGCAACT
223	TCTAAGAAAATACGAAGCTATAC	ATTGGATATGCCATAAA
224	TCTGGAGGAAATGAAATATTA	GACTTTTTGATGTTTACTTT
225	TCTGGTATGTCTAATAAGGAAAT_	TTCTTTACTATAAACATCTTCA
226	TCTAACAAACTTATTACAGAAAA	AGCATTTAAAGTTGAATGT
227	TCTGTTTCATATGAAAAAGTCC	GTTAGTCTCTTCAAGATCA
228	TCTAGTAGAGGTATTTTTTACAA	AAGACCTACCGCCCAA
229	TCTGAACGTCGGGTAAGTC	TACTTCTTTCTCTTTCAATT
230	TTTTTAATCGATTTTATTT	CTTAGTGTTCCGATATGA
231	TCATTAATTATTCTTACGGT	TCTTGTTTTAAGAGCAGA
231d	TCTTTATACGTTGTTAAACA	TCTTGTTTTAAGAGCAGA
232	TGGCTAAGTAAGCATGAG	ATCATGTTTTCCCTCAA
233	TTCCCAGCTAGCTGTC	ATCTGATATATCCGTTTTAT

234	TCTATAGAAATTGCTGTATTAATT	TTTTTGTCTCCTTTTTA
235	TCTATTCGATTTCTTATTCTTG	AAAGACACGATAAACATAAG
235d	TCTGACTCAACCACAGTCTC	AAAGACACGATAAACATAAG
236	TCTGCAGACCTTACAAGTCA	ATTTGCAACTTCTTGTATA
237	TCTATTGTATTTGCTATTGCA	TTTAAAAGTATCCTTAAATAAG
238	TCTGATATTTTTCAGCTATTGA	CTTCCTCCTCAATAGTTG
239	TCTGTTAGTGCTGCTATTGAA	TTCTCCTCCCCATTA
240	TCTAAGAAGCTTACTTTATTTG	ATCCAAACGAGTGAAAT
241	TCAAAAGGATATTCAAGA	AGGTGTTGTTGTATTTTC
242	TCTCATAATATATTAAGATTTTTAGG	CTTTCTAAGTTTATTAAACATA
243	TCTATTCTTGGTCAAGATGT	GGCATCTGTTACCTTG
244	TCTCATGAAAATGTTAAAAAAG	AAACAACTCCATTATTTTT
245	TCTAAGTCAACGGTAACAAA	TAAACGTTGAAGAGCAT
246	AGGAAACGTTTTTCCT	CTTATCATATCTTGTTAAATCA
246d	TCTAACCATAAGGGAAAAGTA	CTTATCATATCTTGTTAAATCA
247	TCTGCTAACCATTAATTGGT	TTGCCATGGGTTATAG
248	TCTTTGATGGTGTTATTC	AGAATTAAAATTTTCATGC
248d	TCTAAAACTTATTTGTCAAATG	AGAATTAAAATTTTCATGC
249	TGGGCTTACCATACTG	TTTTTTAGATGTTTTATGTG CTCTTTTACTTTAGCTTCA
250	TCTGGCCTTAATCTTAAGC	
251	TCTCAATATTTTTTGAAACAAG	TTTCAAACTCCAGCCA
252	TTTATTTCAGGTTATATCAA	GGAGTGCCTTTCTACT
253	TCTGAAAATTGGAAGTTTGC	TTCATATCGTAAAGCATC
254	TCTATTGAAAAGGGAGTTG	ATCGTCAACCTTAACG
255	TCTATTGTTGGTAGAGAAATCA	TTTTACTTGACGTCTCAC
256	TATCATGTAAAAATTGATCA	GTCTTCCATTAATATTCCC
257	TCTGATTTTTTATACAAAGGAGG	CCAATTATTTTGAAAGTTC
258	TCTGAACGTTATACAGATAAAATG	ATTTTTTGAATAATATAATCC
259	TCTCTTTCTCGTAAAAAAGAG	TTTATTATCAGAAAAGGC
260	TCTACTCTTGTCTTAGTTGTTTAT	ATTCAAAAAATTTTTCAA
261	TCTATAAAGAAAGCTGAAAATC	CGAAACGTCAGGTAAA
262	TCTATAAAAAATGCTATAGCATA	ACTTATTTTTGATAATATTTCTT
263	TCTCAGCCTTCTAAACTACTTC	ATCAGCATTTCTACGAA
264	TCTGATTTGTTTAGCATGTTG	ATGTAGACTCCTAATGATTT
265	TCTCTTGCTTCCCTGATTT	TTTACTGTTCCTTTCGC
266	TCTCATCAATCAAATCATTATC	GAGATTAATTTGATTATATTTT
267	TCTATCTTTATTATCGGACAA	AACATCATTTCCTCCC
268	TCTAAAGAATTTATTAAAGAATGG	GTTGATAGTTCCAAAACG
269	TCTGCAGATGATGGTGGTT	TAAATGTGTTCCTACTAAATT
270	TTAAATGATGCAATAACAA	CATCAATAGCCGAGCTG
271	TTGCTGGATTATCCTC	TTTATTTTCCAAATGACA
272	TCTGTATTTATGGCAAATAAGA	TTCACTCGGAGTTGGAG
272d	TCTATGAGTTCTCTGGAAGTT	TTCACTCGGAGTTGGAG
273	TCTGGTGTCCTCAACTCTG	AATGTAAATGACAAAGGTA
274	TCTGTTCATGATTTTGGTGA	GTTTTTTAATGGTTTGC
275	TCTGGGGTTTGGTTTTATA	TTTATCATAAGCATCTAGAC
276	TCTCAATCAGACATTAAAGCA	CTGATCTCTTGTTGATGC
277	TCTATTTGGAGGGGGAAA	AAGCAGGGAGCAATA
277d	TCTACCAAATTTGACTGGG	AAGCAGGGAGCAATA
278	TCTGTTACGTTTTTCTTAT	CTGAGCAACACCTGTC
279	TCTAAAAAGAAAGTTTAATTAGC	GGCAATTTTGTGGCAA
280	TTTGATTTTTTTAAGAAAA	TTGCTTAGTTAATGGCT
281	TCTAAGAAATTAATTATAGGTATTT	AGGCGTTGAATATAATTC
281d	TCTGGTTTTTCGTTTTTGA	AGGCGTTGAATATAATTC
282	TCTCTATTCTCAGATGAAACAA	CTTTTCAACTCCAAACA
283	TCTGTTAAATTAAAATCGTTACTG	GAGTTGTCTTTTTTGTC
284	TCTATGCAACGATTAGGAC	GCAATCACAATTGACAT

205	TTACCTCAAACCAAATC	CTTTCTCTCCTTCACTT
285 286	TTAGGTGAAAGCAAATC TCTGGAGGATTTTATATGAAAG	CTTTGTCTGCTTCACTT TTGTATCTTCTCCTGACC
287	TCTGGAGGATTTTATATGAAAG	TTGGTTAATCGTCTTG
		TTGGTTAATCGTCTTG
287d	TCTAAAAACTTTTAAAACTTTT	
288	TCTAAAAAGTTTTTAAAAGTTTT	TTTAGTTACTTTCATAAATGG
288d	TGGAATAATCATCAGTCA	TTTAGTTACTTTCATAAATGG
289	TCTCAATCTAAAGGGCAAA	ATATAATTCCTCTAAAACTAGC
289L	TCTCAATCTAAAGGGCAAA	CCACTTCAAATTAACTAAC
290	TATTACTTATCAAAAGAAAAGG	ATTCCTTGAACACGAA
291	TCTCAAGTATTAAATGACAATGG	GTGCCATTCATTCTCT
292	TTGAATCGTAAAAAAAGG	TTGTCCTGTGAACTGTG
293	TCTATGGGTCTAGCAACAA	AGGGTTTATTTGTTGAAG
293d N-term	TCTATGGGTCTAGCAACAA	TCCTGATTTATCCACTG
293d C-term	TCTGTTACAGCTAAACACGG	AGGGTTTATTTGTTGAAG
294	TCTGGTCATTTTAGTGAAAAA	CAAAATACCTAAGCTAGC
295	TCTAGCGACATAAAAATCAT	ACGAACTTCCATAACC
296	TCTAAAGGTATTATTTTAGCG	GGCTTCTCCAATCAAA
297	TCTATTCAGATTGGCAAATT	TTGAGTTAATGGATTGTT
298	TCTACTAAATTTATTGTTGATTCA	TAGCGTTATTTCACTGTG
299	TTTGAAATACTTAAACCTG	TTTCTCCGCCCAGTCA
300	TCTGCTTCTACAAATAATGTTTC	CCGTTTATTCTTTCTACTG
301	TCTGTAATTAATATTGAGCAAGC	CATATCTGTTGCATCAAT
302	TCTGAAATCAACACTGAAATAG	AACTGGCTTTTTAGTCAG
303	TCTACAAGGCATATAAAAATTTC	TTTATTATTTAATTCTTCAATA
304	TCTAACGAAATCAAATGCCC	GTCTTTTAGAGCATCGA
305	TCTGGACGAGTAATGAAAACA	CTCTCCTCTAAGACTTTCG
306	TCTGGGAAAAAAATTGTTTT	TCCTTTTGTTACTTTTGC
307	TCTAAATTTACAGAACTTAACTTAT	TTTATCGCCTTTGTTG
308	ATGACACAGATGAATTTTA	ATGTTCAGGTTCTCCG
309	TTGCAACTTGGAATTG	TTCCATTATCTTCAAGTTA
310	TCTGCTAAAGAGAGGGTAGAT	CTCTTCTTCATTTTTCTTA
311	TCAATTATTACTGATGTTTAC	TTTTTTTAAGTTGTAGAATG
312	TCTACTGCAACTAAACAACAT	GTTTTTTGATGCTTCTTG
313	TCTAAACGTATTGCTGTTTTA	TTTACTACTTTGGTTGGC
314	TCTAAATTTTATCTTGTTAGACAC	GTGTGTCATTTTGACCT
315	TCTATAGGGGATTATTCAGTAA	TCCTTCAAGATCATTTAA
316	TCTACTGAACGAACATTCGA	ACCTCCTTTTCTTTCATT
317	TCTAATAAGCCATATTCAATAG	ATCTTCTCCTAACTTACCC
317d N-term	TCTAATAAGCCATATTCAATAG	ACTAGCTAGATTCTTAACGC
317d C-term	TCTGACTTGAATGGCAATAT	ATCTTCTCCTAACTTACCC
318	TCTATTGATTTTATTATTCTATTG	GCCTCTTTCTCCAAAT
319	TTAAAACATTTTGGTAGTAA	ATGTCCTGTTATATCTTCTT
320	TCTACTATTTATGACCAAATTG	GCGTTGAATAATGGTT
321	TCTAAAAATAAAAAAGATCAGTT	TATTTCTTTAGTTTCTTCAA
322	TCTCAAGAAACAGATACGACG	TAATAAAAATTATATAAGAACCT
323	TCTGGTAATGAGTCAAAGAAC	TTCTGTCTTATAAGCATAAG
324	TCTGGAAGTAAATCAGCTTC	TTTTTATAAGCATAAG
325	TCTGCTTGGCAACTTGTTC	ATGAGACATAAGGATGTG
	The state of the s	
326	TCTGGCATCTCAGACTTACC TCTAAATTCAAATCTGGGG	GTTGGAGCTCCTACTG
326L	·	GTTGGAGCTCCTACTG
326L N-term	TCTAAATTCAAATCTGGGG	CATTTCTTTGGTTAAAGC
327	TCTGGAGGGAAAATGAATC	TATCTCGAGGGGCTATTTG
327d N-term	TCTGGAGGGAAAATGAATC	CTCTTCATCGACATAGTAA
327d C-term	TCTGGCAACTTCAAAGCAT	TATCTCGAGTGCTATTTG
328	TCTGACCAAGTCGGTGTCC	ATTTTACAGTAGTGGAGTTT
329	TCTAAATCAAAGACCTCTTCTA	TGTCCTCATTTTTCA
330	TCTAATAAACGCGTAAAAATC	TTTAACAGTACGAACACG

331	TCTACCAGAACAGTAGCAAT	CCCCTGTTTTTAAAAT
332	TCTACAAAAACCTGTTATTAA	ACCCTCATATGATTCC
333	TCTATTGATATACAAAAAATAAAA	TTTAAAATAATGATACATCTC
333d	TCTGGATCATTGAGGGCAA	TTTAAAATAATGATACATCTC
334	TCTAATTTAGTAAAAGTGAATAGTG	TAACCCCGTCTCAACA
335	TCTGAAGAAGAAAATATTTTGA	TATTTTCGTTTTCTCAAA
336	TCTCAGGTTGAAGTTGACTTA	TTTCTCCAAATAATCTCTC
337	TCTGAAACAGATTCGTTTGTA	CCTACTTTTAGTTTTAGAAGA
338	TCTGCTATAATAGACAAAAAG	GAAATCATAGCTTCCC
339	TCGAAACCGATTAAGAT	ACCTTTTACTTTTGGTAGT
339d	TCTCAAGTCATGCGCTATG	ACCTTTTACTTTTGGTAGT
340	TCTGGATTTCTCTATAATTACTTC	TTGTTTGTGAAGTAAAACG
341	TCTGGAAAACCATTGTTAAC	TAATTTAAAAATTGCATAAA
342	TCTCAGAAAATTGAAGGTATT	TTTCGTTACCATATCTAGA
343	TCTGAAATGCAAGTTCAAA	TAAATCATGGAAACTAGC
344	TCTGCACAACGCAGAATGT	AAAGCCCAACCTTCCG
345	TCTAAAAACCTGAATTGGG	GTTTCCACGTCCTTTC
346	TCTAATAAAATAGCTAATACAGAAG	AAGTTTATTCAAATCTGG
347	TCTATTGATATTCATTCTCATATC	AATGTAATGGTTTTTTAATA
348	TCTACTGGATCTAAAAAATTAGC	AGCTAAAATACCTAACCAG
349	TCTAAAGATCGCTTATATAATAAA	ATTTTTAAACGACTCAT
350	TCTGCAAAAGATATAATTAAGGTT	AGCGGAACGGTGAATA
351	TCAGAAGATCAAAAACA	ATAATCTAAACTATCAGCTCT
352	TCTACTTTTTTTAAAAAGCTAAA	ATCTCCTATTGTAATTTTGA
352d	TCTGGTACAGATAGTAAATTTGG	ATCTCCTATTGTAATTTTGA
353	TCTACAATGTTAAAAATTGAAA	CACCTCTTTTGTCAGA
354	TCTATTAAAGAACTAAAAGAATTT	TTTGTTAGCGAGTAAGTC
355	TCTCGCTCACTACCTT	TTTATCATCCTCCTTAATAA
356	TCTAAATTCTATATTATTGATGATG	AAACGTTTTACTCTGTAAAA
357	TTGGAACATTTTTATATTAT	AAATAAGAATGTTAAAAGAGC
358	TTTTATACAATTGAAGAGC	TTCCCCAAAAATTTCT
359	TCAAGAAATAATTACGGT	ACGCAGTCCCATTTTC
360	TCTATAATGAAGGCGGTCT	CTGGCATGAGGTCTCA
361	TCTAGCGTATATGTTAGTGGA	CCTTTTTCAATAATAGC
362	TCTACTAAACCACAGGGGG	ATCTTTAATCTTACCATCC
362d N-term	TCTACTAAACCACAGGGGG	TGCTGCTACTGCAATG
362 C-term	TCTGGTAATGAAGGAAATATCAC	ATCTTTAATCTTACCATCC
363	TCTCTCGAATTAAAAAATATTG	TAAATTCCTTTGTTGTAATA
364	TCTAACTATATGGGTATGGGC	ACCATCAGTTGTCACC
365	TCTGGAACTGCTACATATAGTAGG	TATTGACCAGTGCACG
366	TGGCTTGACATTATTTT	TTTTTTGAATTTGTAAAAG
367	TCTAAGAAATTAAAAATATTCCC	AGAGATTATTTTTATTTTAAAT
368	TCTAAAATCATTATTCAACGT	TTTATTTTTAGTATCTAAAACG
369	TCTAGTAGAATGATTCCAGG	TTTAGAAACTCCAAGTATCTC
370	TCTACCGAATTTAATGACG	GTTAATTTGACTATTGATATATT
371	TCTAAAGATAGATATTTTTAGCAG	TAAACTCTCAAAAGCTAAAC
372	TCAGAAAAATATTCCACT	ACGTTCTTCTCTGGCT
373	TCTGAAATTGGTCAGCAAA	ACTTAAATGGAACAACC
374	TCTAAGTTCGAAAATATAATATATG	TTTGCCTAAAAATTAGG
375	TCTGAAAAAGAAACTATTTTAAGT	GGCTTTCCTCCCTTCA
376	TCTAAAGAAAAGAAAAATTTGG	TTCATCTTTTTCAATATCA
377	TCTGGTAATAAACTGATGTATCA	GTGAGAGTGTCTTTGTTT
378	TCTGAAGATCAACTCACTATATTT	CAGATTTTTAGCTACTTGTC
379	TCTCAAATTACCCGAGAAG	TCTAGAGCGCTTTATAAG
380	TCTCTTAAAAGATTACTTACTGAAG	TTTTCTAATAGTTAGAAGCC
381	TCTCTTAAAAGATTACTTACTGAAG	TTTTAAATGTGCAGAGA
382	TCTATAAAGTTTAAATTATTTTTTAA	ATTTATAATTTCCTTGGG
302	IVIAIAAAIIAIIIIIAA	ATTIAIAATTOOTIGGG

383	TCTATTTTACAGACGAATATACTAT	TCTATAATATCTCTCTAAAGTGA
384	TCTAGAATAATTGTTGTCGG	CCTCGCTAACATATCAC
385	TCTAATGTAAAAAACGC	AGCTCTTACAGTCTTGC
386	TCTCTAGTATCAAAGGAGAAAGC	TTGTCTGAGTGACCAA
387	TCTGGTATGTTGTTAGCA	ATAATATGAAATATGTTGTTCA
388	TCTCTTATGATAATAAATTCATTCG	TCCGCAGAGTAAAAA
389	TCTATGAATAGTGAACATAAAATT	TTCATAAATGTGCCAA
390	TCTAGGGAAACTTACTGGA	TTCATCTCTGCTCACC
391	TCTAAAAAAGTCATCGATTTAA	TTCTCCTTCAGCTTTTA
392	TCTATTACATATGATTTCACAAG	GTCATTTTTCTAAAGTTTG
393	TCTAATAAATCTTGGTTGAGAA	TTTTTGTAGTTGTTTCAAT
394	TCTCCTATGTTGTCTGTTGG	TTTCATTAGATAACTATTCAGC
395	TCTACTTATCAAAAAACAGTTG	TATAGACTGAAGATAATTAATTAA
396	TTTGTCAAAGGGATTT	AAATCGATTAATCAAGTC
397	TCTAAATTATTTGATAAGTTTATAGA TCTAAAACTGCTACAGTTAG	TCTAAAGTAGTCCTTTAGACTA TCTAAAGTAGTCCTTTAGACTA
397d		
398	TATTTAGAACAATTAAAAGAGG	TTTGTCCATAATCATTTC
399	TCTAAAGTTTTAGTAGTTGATGAT	GGTAGATATGCCTAACATT
400	TCTAAAATAGTTGAAGGCG	GTTTCCTTCCAAAAA
401	TCTGGAATTGAATTTAAAAATG	TCCATGCTTAATAGCC
402	TCTGGAAAATATTTTGGTACAG	ATCTAAACCAATTTCTGTAC
403	TCTGAGGTTAGAATGGTAACTC	GTCCACAAAAACGTCT
404	TCTAAAATAGATGACCTAAGAAA	TAGATGTTCTACGGAGAA
405	TTGAAAATTCAGTATTATCA	AAAGATGGCAAGCCAT
406	TCTGATAAAAATAATTTAGAAGACT	TCTCTCCACACCATA
407	TCTAAAATTGACATGAGGAA	CTTACCTCCTGTGGCT
407d	TCTAAAATTGACATGAGGAA	CTTTTGTTGGTTACCTC
408	TCTAACCACTTACTTAACCTCA	TATTGTTAAATATGATGAAATG
409	TCTAAGGTAGTAGCTATTGAT	ATGATTATACAAATTGATTAAT
409d	TCTACTGAAGAGAAATCCT	ATGATTATACAAATTGATTAAT
410	TCTGCTTTATTATCAGTTATTGTC	TCCCTCTTCCTTGACA
411	TCTAAAGACTATATTAACAGAATATT	AACGTTTTTGAGCTTT
412	TCTGGATTTTTTGCACAGC	TTTTGTCTTAAACGTTCT
413	TCTATTGTTGGTGAACAAGA	TTTAGATAGTCTAGCCATTT
414	TTAAATCAATATTTTCTGC	ACGGCTTGGGGCAGAG
415	TCTGAGCGAATTCCTGTTC	TACCATTATCCGTGCT
416	TCTGAAGTCATTCGTGAACA	ACTATTAAACTCCAATGTTA
417	TCAAAACAATATGATTATATC	GCGCATTGTAACAAAT
418	TCTAGCAAGCCTAATGTTG	TTTTGGTAAAAGGTCTG
419	TCTGATTTAAATAATTACATCGC	TCCTGGAAAGTTCATC
420	TCTAAACGTGAATTACTACTCG	TAGTTTATCTAAAGCGTTC
421	TCTATACGCCAGTTTTTAAG	TTTATGTATAGAAACAGCAG
422	TTTTCGAGCGATTTTG	AATGTACATAACAATAGAGAGC
423	TCTGTAACCAAAGTTGAAGAG	CAACGATCCCAAGAAC
424	TCTATGAAAGATTTATTGAATG	GCCATTCTTACCTCCT
424d	TCTATGAAAGATTTTATTGAATG	ACGTTTTTCTGACCG
425	TCTATAGCCTTTAATAGTTTATTT	TATAAAATAAATTTGAAGATCT
425	TCTATAGCCTTTAATAGTTTATTT	ATCATCTTGTACCAACTC
427	TATTCTTTTGAAGAACTTTT	GCCAATAAATTCACGG
428	TCTATAAAAATTTTGATCCC	AGTCTGTTTTTTAACAAAAG
429	TCTAATCATTCCATTGAATC	TGGTTTTAGAACAACTTTA
430	TTACAAAAAAATATCGG	AATTAAGCTGAAAATGAC
431	TCTGCGGCTCAATTAGCTG	ATTATATTCTTTTAATTTGTCA
432	TCTCGTACCTTCAAACCAG	CTTACGACGTCCTGGA
433	TCTATTAAAGCAACTTTTACTC	GTGTGTCATGACTACTGTAC
434	TCAATTTTTCAGACAACA	TGAGTAGAGCACAAGC
642	TCTAGAAAACGTAATGATACATT	GAAACGAATACGTTCTT

-2990-

PCT/GB01/04789

643	TCTGATTGTCAAATTACACCA	ACTACCTACCGTTTTCAC
644		
	TCTATTTTCGTGGTGATAA	TTTGATGGTAACAGTCG
645	TTTTTAATATTGAATATCAC	AGAAAGGCGCTCTTCT
646	TCTAAGGGAGTCCAATATATG	TATCTTTAATAAAGCCCTA
647	TCTCGTCGCATGAATACCA	CATCCCATAAATTTGTT
648	TCTATAGAATTTTCAGGGC	CAAGACATTTCTTAAAGC
649	TCTGCTACTCACTCTAACTCAG	TTTTGTTTTAGCGATG
650	TGCTCTTCTTCAAATACT	TTTTAAACCATGCTGT
651	TCTCTAACACCATTTACAAAAG	TTTGTAAAGACCTTCTTT
652	TCTCAACAAGGTATTATGGATA	TTCCTCGTTTATTAATTT
653	TCTAAAATTTTAGGTACACCA	AAAGAAAAGATGTGCC
654	TCTGGAAAAATGGTTAAGAA	CTGTGCAGGCTCAAAT
655	TCTAAATTCGTCCGAACCGT	AATTGTCCAGTCTAAGTTA
656	TCTGGTCTTCCAACGCAGC	ATTTAGTGTTATTTCTCCTG
657	TGCTCAGGTAAAACAT	TTTTTTAAGTGATGAA
658	TCTGAAAGCAAATCTTTGC	CTTTGTCTGCTTCACTT
659	TGTGCTAATTGGATTG	TTTTGGGGTTACTTTAC
660	TGTGGAAATGTCGGAG	TTTTGCTGAAATAATGTT
661	TGTCAGTCAAACCACA	ATCATACGAATGCAAC
662	TCTGCTAGTTTTTATTTTTCC	TTTTCATATTTTTCAAA
663	TGTGGAAGTAAATCAGC	ATTATTTTTATAAGCATGTG
664	TCTGTTAAATTAAAATCGTTACTG	GAGTTGTCTTTTTTGTC
665	TCTATTGCTGGTCCTAGTG	GATAAGCACTTTCCTTAA
666	TTATTTTTTGGAAATTGG	GCCTAAAAACCAATCA
667	TCTGCTGTATTTACACTCGTC	ATGTTTATGGCTTGCT
668	TTTTATATGAAAGAACAACA	TTGTATCTTCTCCTGACC
669	TCAATTATTATTGGGTTAA	ATATACCCTAGACTTTTTGA
670	TCTCCTAAATTAACCCTAGTCT	GGCTTTAAAGTTCGATA
671	TCTAGTCTTGCGAAGGCAG	TTTATCGTAAGCACTTAGG
672	TCTGTATTTACACTCGTCTTACA	ATGTTTATGGCTTGCTT
673	TCTGGAGGATTTTATATGAAAG	TTGTATCTTCTCCTGACC
674	TCTGTTAAATTAAAATCGTTACTG	GAGTTGTCTTTTTTGTCT
675	TCTGGTTCATCAGACAACA	TTCAACTTGATTGCCA
676	TCTGTAGTTAAAGTTGGTATTAACG	TTTTGCAATTTTTGC
677	TCTGTATTAGAAGTACATGCTGA	TTTTGCAATTTTGC
678	TCTGAGACACCAGTAATGGC	TTTTTTAGCTAAGGCTG
679	TCTGCTAACAAGCAGGATC	TTTTGCTAAACCTTCTG
680	TCTAATAAGTCCAGTAACTCTAAG	ATTCATATTAACACGATGC
681	TCTGCTTTTGATGTAATTATGC	TTTGCGTTTTGGAGGG
682	TCTATTAACTATGAGGTTAAAGC	TGCACCTTGATGGCGA
683	TCTGTAATTGTTGAACTTAGTTTG	CCATAATATTTGATGCTG
684	TCTCTTAGGAAGTATAAGCAAA	TTCTAATCCTACAGCATG
685	TCTAAAATTTGTCTGGTTGG	AAAAATTCCTCCTAAATTAA
686	TCTGACTTTTATGATATCAATCTT	AAAGTTTTGACTATTACTGATAG
687	TATGCTATTATGCAAAAAG	TGGGGAGATAGTTATG
688	TCTGCAATCGTTTCAGCAG	TTGACAGAAAGCTAATTG

TABLE III - RESULTS FOR in vivo GBS CHALLENGE

GBS#	% survival	
	Pre-immune	Post-immune
1	18.7	22.2
4gst	19.4	37.2
4his	25.0	75.0
8	14.3	42.1
10	29.1	36.0
15	30.0	60.9

GBS#	% survival	
	Pre-immune	Post-immune
110	11.1	30.0
113	17.6	29.4
114	40.0	52.2
117	27.8	36.8
119	36.4	52.2
139	23.1	26.7

33.3 29.4	53.8
29.4	E0.0
	50.0
5.9	10.0
36.8	63.1
38.5	41.4
28.6	85.7
20.0	25.0
0.0	17.6
26.7	37.5
20.0	25.0
14.2	17.3
23.8	29.2
22.7	44.0
50.0	52.9
33.3	55.6
6.7	11.8
15.8	36.4
21.4	42.9
3.7	23.3
23.5	27.8
13.3	26.7
28.6	39.1
38.8	56.5
33.3	37.5
30.8	62.5
14.3	22.7
25.0	30.0
16.7	23.1
5.9	11.1
26.9	42.9
16.7	52.9
10.0	18.2
	36.8 38.5 28.6 20.0 0.0 26.7 20.0 14.2 23.8 22.7 50.0 33.3 6.7 15.8 21.4 3.7 23.5 13.3 28.6 38.8 33.3 30.8 14.3 25.0 16.7 5.9 26.9 16.7

150	21.6	44.4
153	25.0	30.0
155	22.6	36.8
157	14.3	31.8
158	22.6	40.0
163	29.6	37.9
164	25.0	43.8
173	17.9	38.7
176	20.0	38.9
177	21.7	33.3
181	5.0	21.7
186	41.2	52.6
188	11.8	23.5
189	21.4	31.6
195	32.1	64.7
206	33.3	50.0
211	30.8	33.3
232	50.0	57.1
233	34.8	55.2
236	57.1	70.6
243	46.7	52.9
263	15.4	35.7
273	61.5	75.0
276	23.8	44.4
296	25.0	28.6
297	13.3	23.5
298	20.0	22.2
302	30.0	52.2
304	33.3	40.9
305	42.1	70.0
316	38.5	42.9
318	7.1	15.8

TABLE IV – COMPARISON OF GBSnnn NUMBERING AND SEQ ID NUMBER

GBS numbering	Sequence listing
GBS1	SEQ ID 3532 & 8736
GBS2	SEQ ID 4530 & 8818
GBS3	SEQ ID 6266 & 8958
GBS4	SEQ ID 2 & 8786
GBS5	SEQ ID 2598 & 8674
GBS6	SEQ ID 398 & 8496
GBS7	SEQ ID 8790 & 9798
GBS8	SEQ ID 8694
GBS9	SEQ ID 4540 & 8822
GBS10	SEQ ID 8718
GBS11	SEQ ID 5884 & 8930
GBS12	SEQ ID 8764 & 9692
GBS13	SEQ ID 8484
GBS14	SEQ ID 5406 & 8892
GBS15	SEQ ID 4 & 8710
GBS16	SEQ ID 944 & 8538
GBS17	SEQ ID 1770 & 8602
GBS18	SEQ ID 6860 & 9002
GBS19	SEQ ID 4422 & 8812
GBS20	SEQ ID 308 & 8488
GBS21	SEQ ID 8762

GBS numbering	Sequence listing
GBS345	SEQ ID 2442
GBS346	SEQ ID 2768
GBS347	SEQ ID 2766
GBS348	SEQ ID 8658
GBS349	SEQ ID 2360
GBS350	SEQ ID 8698
GBS351	SEQ ID 2970
GBS352	SEQ ID 8692
GBS353	SEQ ID 3454
GBS354	SEQ ID 8754
GBS355	SEQ ID 8752
GBS356	SEQ ID 8724
GBS357	SEQ ID 8720
GBS358	SEQ ID 3184
GBS359	SEQ ID 3948
GBS360	SEQ ID 3926
GBS361	SEQ ID 8770
GBS362	SEQ ID 8768
GBS363	SEQ ID 3816
GBS364	SEQ ID 1452
GBS365	SEQ ID 1398

CDCCC	CEO ID 0504
GBS22	SEQ ID 8584
GBS23 GBS24	SEQ ID 8512
	SEQ ID 1694 & 8598
GBS25	SEQ ID 3180 & 8714
GBS26	SEQ ID 8820
GBS27	SEQ ID 8774
GBS28	SEQ ID 8738
GBS29	SEQ ID 8744
GBS30	SEQ ID 8860
GBS31	SEQ ID 8702
GBS32	SEQ ID 8910 & 10142
GBS33	SEQ ID 5734 & 8912
GBS34	SEQ ID 5750 & 8916
GBS35	SEQ ID 8908
GBS36	SEQ ID 8542
GBS37	SEQ ID 8564
GBS38	SEQ ID 2122 & 8642
GBS39	SEQ ID 8480
GBS40	SEQ ID 8654
GBS41	SEQ ID 1176 & 8562
GBS42	SEQ ID 4856 & 8850
GBS43	SEQ ID 672 & 8520
GBS44	SEQ ID 9000
GBS45	SEQ ID 9018
GBS46	SEQ ID 1834 & 8608
GBS47	SEQ ID 8588
GBS48	SEQ ID 8594 & 8596
GBS49	SEQ ID 8494 & 9490
GBS50	SEQ ID 1236 & 8566
GBS51	SEQ ID 5410
GBS52	SEQ ID 3920
GBS53	SEQ ID 8586
GBS54	SEQ ID 3442
GBS55	SEQ ID 9020 & 10338
GBS56	SEQ ID 2510 & 8668
GBS57	SEQ ID 8854
GBS58	SEQ ID 8664
GBS59	SEQ ID 3744
GBS60	SEQ ID 8760
GBS61	SEQ ID 8776
GBS62	
GBS63	SEQ ID 2244 SEQ ID 390
GBS64	SEQ ID 374
GBS65	SEQ ID 8544
GBS66	SEQ ID 3028
GBS67	SEQ ID 3746
GBS68	SEQ ID 4012
GBS69	SEQ ID 4916
GBS70	SEQ ID 3718
GBS71	SEQ ID 8906
GBS72	SEQ ID 1348
GBS73	SEQ ID 220
GBS74	SEQ ID 5872
GBS75	SEQ ID 8926
GBS76	SEQ ID 5862
GBS77	SEQ ID 3256
GBS78	SEQ ID 3262
GBS79	SEQ ID 3264
GBS80	SEQ ID 8780
	•

GBS366	SEQ ID 8574
GBS367	SEQ ID 1340
GBS368	SEQ ID 1598
GBS369	SEQ ID 4822
GBS370	SEQ ID 8844
GBS371	SEQ ID 4926
GBS372	SEQ ID 4956
GBS373	SEQ ID 5062
GBS374	SEQ ID 8878
GBS375	SEQ ID 326
GBS376	SEQ ID 5380
GBS377	SEQ ID 5468
GBS378	SEQ ID 5570
GBS379	SEQ ID 8918
GBS380	SEQ ID 156
GBS381	SEQ ID 8934
GBS382	SEQ ID 8610
GBS383	SEQ ID 4738
GBS384	SEQ ID 8836
GBS385	SEQ ID 1094
GBS386	SEQ ID 9038
GB\$387	SEQ ID 8558
GB\$388	SEQ ID 9040
GB\$389	SEQ ID 8516
GBS390	SEQ ID 8952
GBS391	SEQ ID 8522
GBS392	SEQ ID 6220
GBS393	SEQ ID 8966
GBS394 GBS395	SEQ ID 8960 SEQ ID 6276
GBS393	SEQ ID 8468
GBS397	SEQ ID 6262
GBS398	SEQ ID 8806
GBS399	SEQ ID 1960
GBS400	SEQ ID 3154
GBS401	SEQ ID 3170
GBS402	SEQ ID 4236
GBS403	SEQ ID 8798
GBS404	SEQ ID 8800
GBS405	SEQ ID 8508
GBS406	SEQ ID 8506
GBS407	SEQ ID 6484
GBS408	SEQ ID 9042
GBS409	SEQ ID 6678
GBS410	SEQ ID 4064
GBS411	SEQ ID 9044
GBS412	SEQ ID 9046
GBS413	SEQ ID 272
GBS414	SEQ ID 8946
GBS415	SEQ ID 8944
GBS416	SEQ ID 6044
GBS417	SEQ ID 1874
GBS418	SEQ ID 5146
GBS419	SEQ ID 2638
GBS420	SEQ ID 2104
GBS421	SEQ ID 2108
GBS422	SEQ ID 714
GBS423	SEQ ID 6884
GBS424	SEQ ID 4874

GBS81	SEQ ID 2706
GBS82	SEQ ID 2898
GBS83	SEQ ID 8772
GBS84	SEQ ID 4182
GBS85	SEQ ID 216
	SEQ ID 2978
GBS86	
GBS87	SEQ ID 3452
GBS88	SEQ ID 5694
GBS89	SEQ ID 2682
GBS90	SEQ ID 8476
GBS91	SEQ ID 8938
GBS92	SEQ ID 8964 & 10238
GBS93	SEQ ID 2848
GBS94	SEQ ID 1592
GBS95	SEQ ID 2224
	SEQ ID 2130
GBS96	
GBS97	SEQ ID 800
GBS98	SEQ ID 8746
GBS99	SEQ ID 4240
GBS100	SEQ ID 8782
GBS101	SEQ ID 6902
GBS102	SEQ ID 6894
GBS103	SEQ ID 6
GBS104	SEQ ID 8778
GBS105	SEQ ID 1400
	SEQ ID 1400 SEQ ID 8502
GBS106	
GBS107	SEQ ID 6026
GBS108	SEQ ID 8532
GBS109	SEQ ID 4116
GBS110	SEQ ID 6832
GBS111	SEQ ID 8842
GBS112	SEQ ID 8904
GBS113	SEQ ID 300
GBS114	SEQ ID 8968
GBS115	SEQ ID 5164
GBS116	SEQ ID 5152
GBS117	SEQ ID 8962
GBS118	SEQ ID 2508
GBS119	SEQ ID 8814
GBS120	SEQ ID 8874
GBS121	SEQ ID 3826
GBS122	SEQ ID 9006
GBS123	SEQ ID 6310
GBS124	SEQ ID 260
GBS125	SEQ ID 3872
GBS126	SEQ ID 6736
GBS127	SEQ ID 8816
GBS128	SEQ ID 752
GBS129	SEQ ID 8990
GBS130	SEQ ID 9004
GBS131	SEQ ID 6198
GBS132	SEQ ID 8730
GBS133	SEQ ID 474
GBS134	SEQ ID 9008
GBS135	SEQ ID 8882
GBS136	SEQ ID 1188
GBS137	SEQ ID 3960
GBS138	SEQ ID 9052
GBS139	SEQ ID 884

GBS425	SEQ ID 3978
GBS426	SEQ ID 3976
GBS427	SEQ ID 6958
GBS428	SEQ ID 3398
GBS429	SEQ ID 3402
GBS430	SEQ ID 8840
GBS431	SEQ ID 8902
GBS432	SEQ ID 8534
GBS433	SEQ ID 2558
GBS434	SEQ ID 8590
GBS435	SEQ ID 484
GBS436	SEQ ID 8472
GBS437	SEQ ID 466
GBS438	SEQ ID 362
GBS439	SEQ ID 900
GBS440	SEQ ID 8536
GBS441	SEQ ID 936
GBS442	SEQ ID 940
GBS443	SEQ ID 998
GBS444	SEQ ID 1776
GBS445	SEQ ID 8634
GBS446	SEQ ID 2048
GBS447	SEQ ID 1654
GBS448	SEQ ID 8592
GBS449	SEQ ID 1634
GB\$450	SEQ ID 1630
GBS451	SEQ ID 2098
GBS452	SEQ ID 2062
GBS453	SEQ ID 8636
GBS454	SEQ ID 1734
GBS455	SEQ ID 1690
GBS456	SEQ ID 1684
GB\$457	SEQ ID 8656
GBS458	SEQ ID 8650
GBS459	SEQ ID 2152
GBS460	SEQ ID 2148
GBS461	SEQ ID 2394
GBS462	SEQ ID 2778
GBS463	SEQ ID 8688
GBS464	SEQ ID 8684
GBS465	SEQ ID 8682
GBS466	SEQ ID 2694
GBS467	SEQ ID 2350
GBS468	SEQ ID 8660
GBS469	SEQ ID 2998
GBS470	SEQ ID 2988
GBS471	SEQ ID 2924
GBS472	SEQ ID 2910
GBS473	SEQ ID 2882
GBS474	SEQ ID 2878
GBS475	SEQ ID 2856
GBS476	SEQ ID 8690
GBS477	SEQ ID 3112
GBS478	SEQ ID 3432
GBS479	SEQ ID 3460
GBS480	SEQ ID 3504
GBS481	SEQ ID 8734
GBS482	SEQ ID 8740
GBS483	SEQ ID 3606

GBS140	SEQ ID 8632
GBS141	SEQ ID 1768
GBS142	SEQ ID 8600
GBS143	SEQ ID 9054
GBS144	SEQ ID 2238
GBS145	SEQ ID 8700
GBS146	SEQ ID 8696
GBS147	SEQ ID 8526
GBS148	SEQ ID 9010
GBS149	SEQ ID 8732
GBS150	SEQ ID 3736
GBS151	SEQ ID 3188
GBS152	SEQ ID 3952
GBS153	SEQ ID 3904
GBS154	SEQ ID 4024
GBS155	SEQ ID 8796
GBS156	SEQ ID 4646
GBS150	SEQ ID 4812
GBS158	SEQ ID 5504
GBS159	SEQ ID 8628
GBS160	SEQ ID 8924
GBS161	SEQ ID 8922
GBS162	SEQ ID 168
GBS163	SEQ ID 224
GBS164	SEQ ID 1102
GBS165	SEQ ID 3672
GBS166	SEQ ID 8712
GBS167	SEQ ID 4214
GBS168	SEQ ID 9016
GBS169	SEQ ID 4346
GBS170	SEQ ID 8982
GBS171	SEQ ID 6720
GBS172	SEQ ID 6704
GBS173	SEQ ID 8788
GBS174	SEQ ID 6150
GBS175	SEQ ID 62
GBS176	SEQ ID 8478
GBS177	SEQ ID 8876
GBS178	SEQ ID 6078
GBS179	SEQ ID 8848
GBS180	SEQ ID 3062
GBS181	SEQ ID 1924
GBS182	SEQ ID 3774
GBS183	SEQ ID 4796
GBS184	SEQ ID 1978
GBS185	SEQ ID 1976
GBS186	SEQ ID 1040 SEQ ID 8470
GBS186 GBS187	
	SEQ ID 844
GBS188	SEQ ID 3410
GBS189	SEQ ID 6986
GBS190	SEQ ID 8842
GBS191	SEQ ID 1814
GBS192	SEQ ID 8618
GBS193	SEQ ID 2382
GBS194	SEQ ID 3912
GBS195	SEQ ID 8
GBS196	SEQ ID 4944
GBS197	SEQ ID 5486
GBS198	SEQ ID 8896

GBS484	SEQ ID 3562
GBS485	SEQ ID 3552
GBS486	SEQ ID 3762
GBS487	SEQ ID 3756
GBS488	SEQ ID 3732
GBS489	SEQ ID 3730
GBS490	SEQ ID 3704
GBS491	SEQ ID 3698
GBS492	SEQ ID 3252
GBS493	SEQ ID 3244
GBS494	SEQ ID 3238
GBS495	SEQ ID 8722
GBS495 GBS496	SEQ ID 8716
GBS490 GBS497	SEQ ID 3876
GBS498	SEQ ID 3858
	SEQ ID 8758
GBS499	
GBS500_	SEQ ID 4022
GBS501	SEQ ID 4106
GBS502	SEQ ID 1406
GBS503	SEQ ID 8580
GBS504	SEQ ID 4578
GBS505	SEQ ID 4566
GBS506	SEQ ID 8832
GBS507	SEQ ID 8830
GBS508	SEQ ID 4644
GBS509	SEQ ID 8828
GBS510	SEQ ID 8826
GBS511	SEQ ID 4892
GBS512	SEQ ID 4970
GBS513	SEQ ID 4974
GBS514	SEQ ID 8862
GBS515	SEQ ID 8864
GBS516	SEQ ID 8866
GBS517	SEQ ID 8868
GBS518	SEQ ID 9012
GBS519	SEQ ID 5068
GBS520	SEQ ID 8870
GBS521	SEQ ID 5228
GBS522	SEQ ID 322
GBS523	SEQ ID 8492
GBS524	SEQ ID 8894
GBS525	SEQ ID 5430
GBS526	SEQ ID 5414
GBS527	SEQ ID 5524
GBS528	SEQ ID 8898
GBS529	SEQ ID 5670
GBS530	SEQ ID 5630
GBS531	SEQ ID 5588
GBS532	SEQ ID 1324
GBS533	SEQ ID 8914
GBS534	SEQ ID 8550
	SEQ ID 8568
GBS535	
GBS536	SEQ ID 1288
GBS537	SEQ ID 5798
GBS538	SEQ ID 8920
GBS539	SEQ ID 158
GBS540	SEQ ID 8482
GBS541	SEQ ID 184
GBS542	SEQ ID 9048

GBS199	SEQ ID 1162
GBS200	SEQ ID 8936
GBS201	SEQ ID 4550
GBS202	SEQ ID 8666
GBS203	SEQ ID 6478
GBS204	SEQ ID 1996
GBS205	SEQ ID 18
GBS206	SEQ ID 8552
GBS207	SEQ ID 3822
GBS208	SEQ ID 3916
GBS209	SEQ ID 3918
GBS210	SEQ ID 3738
GBS211	SEQ ID 4680
GBS212	SEQ ID 8750
GBS213	SEQ ID 8500
GBS214	SEQ ID 8498
GBS215	SEQ ID 9022
GBS216	SEQ ID 8606
GBS217	SEQ ID 9024
GBS218	SEQ ID 8652
GBS219	SEQ ID 8646
GBS220	SEQ ID 2730
GBS221	SEQ ID 9028
GBS222	SEQ ID 3842
GBS223	SEQ ID 8794
GBS224	SEQ ID 9026
GBS225	SEQ ID 8834
GBS226	SEQ ID 4966
GBS227	SEQ ID 5030
GBS228	
	SEQ ID 5050
GBS229	SEQ ID 9056
GBS230	SEQ ID 1296
GBS231	SEQ ID 5810
GBS232	SEQ ID 5830
GBS233	SEQ ID 4722
GBS234	SEQ ID 1106
GBS235	SEQ ID 8560
GBS236	SEQ ID 6162
GBS237	SEQ ID 8706
GBS238	SEQ ID 4246
GBS239	SEQ ID 8980
GBS240	SEQ ID 8986
GBS241	SEQ ID 9030
GBS242	SEQ ID 9032
GBS243	SEQ ID 8678
GBS244	SEQ ID 6554
GBS245	SEQ ID 8994
GBS246	SEQ ID 6864
GBS247	SEQ ID 8856
GBS248	SEQ ID 454
GBS249	SEQ ID 8620
GBS249 GBS250	
	SEQ ID 8634
GBS251	SEQ ID 2258
GBS252	SEQ ID 8648
GBS253	SEQ ID 2526
GBS254	SEQ ID 2710
GBS255	SEQ ID 2966
GBS256	SEQ ID 3424
GBS257	SEQ ID 3550

GBS543	SEQ ID 8932
GBS544	SEQ ID 5880
GBS545	SEQ ID 44
GBS546	SEQ ID 9014
GBS547	SEQ ID 12
GBS548	SEQ ID 8614
GBS549	SEQ ID 8612
GBS550	SEQ ID 4720
GBS551	SEQ ID 4710
GBS552	SEQ ID 1086
GB\$553	SEQ ID 1088
GBS554	SEQ ID 1138
GBS555	SEQ ID 8748
GBS556	SEQ ID 5968
GBS557	SEQ ID 774
GBS558	SEQ ID 1192
GBS559	SEQ ID 1196
GBS560	SEQ ID 1268
GBS561	SEQ ID 8518
GBS562	SEQ ID 8676
GBS563	SEQ ID 2296
GBS564	SEQ ID 2300
GBS565	
GBS566	SEQ ID 8950 SEQ ID 694
GBS567 GBS568	SEQ ID 680
	SEQ ID 6300
GBS569	SEQ ID 8956
GBS570	SEQ ID 8972
GBS571 GBS572	SEQ ID 8970
GBS573	SEQ ID 3300
GBS574	SEQ ID 3304
GBS575	SEQ ID 8726
GBS576	SEQ ID 8810 SEQ ID 4418
GBS576	
GBS578	SEQ ID 8808
	SEQ ID 4382
GBS579	SEQ ID 4378
GBS580	SEQ ID 1932
GBS581	SEQ ID 8622
GBS582	SEQ ID 8624
GBS583	SEQ ID 1962
GBS584	SEQ ID 8708
GBS585	SEQ ID 8672
GBS586	SEQ ID 6444
GBS587	SEQ ID 8976
GBS588	SEQ ID 8804
GBS589	SEQ ID 8514
GBS590	SEQ ID 8510
GBS591	SEQ ID 630
GBS592	SEQ ID 8504
GBS593	SEQ ID 514
GBS594	SEQ ID 8978
GBS595	SEQ ID 6738
GBS596	SEQ ID 6712
GBS597	SEQ ID 6686
GBS598	SEQ ID 6674
GBS599	SEQ ID 6662
GBS600	SEQ ID 8988
GBS601	SEQ ID 8578

0.000.00	
GBS258	SEQ ID 3752
GBS259	SEQ ID 8756
GBS260	SEQ ID 4162
GBS261	SEQ ID 1530
GBS262	SEQ ID 8572
GBS263	SEQ ID 1616
GBS264	SEQ ID 8824
GBS265	SEQ ID 4554
GBS266	SEQ ID 4652
GBS267	SEQ ID 4980
GBS268	SEQ ID 5038
GBS269	SEQ ID 5534
GBS270	SEQ ID 1998
GBS271	SEQ ID 8570
GBS272	SEQ ID 22
GBS273	SEQ ID 5994
GBS274	SEQ ID 774
GBS275	SEQ ID 2308
GBS276	SEQ ID 8942
GBS277	SEQ ID 8954
GBS278	SEQ ID 8524
GBS279	SEQ ID 6292
GBS280	SEQ ID 6254
GBS281	SEQ ID 4458
GBS282	SEQ ID 4444
GBS283	SEQ ID 9034
GBS284	SEQ ID 6456 & 8974
GBS285	SEQ ID 8802
GBS286	SEQ ID 9036
GB\$287	SEQ ID 5354
GB\$288	SEQ ID 5374
GB\$289	SEQ ID 8616
GBS290	SEQ ID 8680
GBS291	SEQ ID 8530
GB\$292	SEQ ID 8998
GBS293	SEQ ID 8582
GBS294	SEQ ID 8604
GBS295	SEQ ID 2722
GBS296	SEQ ID 2658
GBS297	SEQ ID 3024
GBS298	SEQ ID 8704
GBS299	SEQ ID 3268
GBS300	SEQ ID 4170
GBS301	SEQ ID 8576
GBS301	SEQ ID 8670
GBS302 GBS303	SEQ ID 8570
GBS304	SEQ ID 5846
GBS305	SEQ ID 208
GBS306	SEQ ID 212
GBS307	SEQ ID 8992
GBS308	SEQ ID 8880
GBS309	SEQ ID 3386
GBS310	SEQ ID 286
GBS311	SEQ ID 3964
GBS312	SEQ ID 4660
GBS313	SEQ ID 4090
GBS313	SEQ ID 4090
	SEQ ID 4090 SEQ ID 8556
GBS313 GBS314	SEQ ID 4090

GBS602	SEQ ID 8948
GBS603	SEQ ID 6132
GBS604	SEQ ID 5282
GBS605	SEQ ID 5302
GBS606	SEQ ID 8884
GB\$607	SEQ ID 5314
GBS608	SEQ ID 8886
GBS609	SEQ ID 8888
GBS610	SEQ ID 8890
GBS611	SEQ ID 6028
GBS612	SEQ ID 8474
GBS613	SEQ ID 5092
GBS614	SEQ ID 8872
GBS615	SEQ ID 6052
GBS616	SEQ ID 8940
GBS617	SEQ ID 1824
GBS618	SEQ ID 6600
GBS619	SEQ ID 6608
GBS620	SEQ ID 6620
GBS621	SEQ ID 864
GBS622	SEQ ID 8640
GBS623	SEQ ID 8996
GBS624	SEQ ID 9050
GBS625	SEQ ID 2812
GBS626	SEQ ID 8858
GBS627	SEQ ID 8852
GBS628	SEQ ID 8784
GB\$629	SEQ ID 6950
GBS630	SEQ ID 4502
GBS631	SEQ ID 4492
GBS632	SEQ ID 4488
GBS633	SEQ ID 8728
GBS634	SEQ ID 3066
GBS635	SEQ ID 8838
GBS636	SEQ ID 4772
GBS637	SEQ ID 8626
GBS638	SEQ ID 8984
GBS639	SEQ ID 8546
GBS640	SEQ ID 6780
GBS641	SEQ ID 900
GBS642	1312
GBS643	1772
GBS644	1956
GBS645	2726
GBS646	3348
GBS647	3770
GBS648	4934
GBS649	5076
	5446
GBS650	
GBS651	5602
GBS652	5610
GBS653	5760
GBS654	6096
GBS655	6656
GBS656	9324
GBS657	10782
GBS658	8802
GBS659	9344
GBS660	9410

GBS317 SEQ ID 4210 GBS318 SEQ ID 8548 GBS319 SEQ ID 892 GBS320 SEQ ID 916 GBS321 SEQ ID 8846 GBS322 SEQ ID 8540 GBS323 SEQ ID 2102 GBS324 SEQ ID 8490 GBS325 SEQ ID 8900 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 892 GBS331 SEQ ID 922 GBS332 SEQ ID 1786 GBS333 SEQ ID 1786 GBS334 SEQ ID 1782 GBS335 SEQ ID 1782 GBS336 SEQ ID 1866 GBS337 SEQ ID 2010 GBS338 SEQ ID 2080 GBS339 SEQ ID 2080 GBS341 SEQ ID 2266 GBS342 SEQ ID 266 GBS344 SEQ ID 8644 GBS344 SEQ ID 8662		
GBS319 SEQ ID 892 GBS320 SEQ ID 916 GBS321 SEQ ID 8846 GBS322 SEQ ID 8540 GBS323 SEQ ID 2102 GBS324 SEQ ID 8490 GBS325 SEQ ID 8630 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 8792 GBS331 SEQ ID 1786 GBS332 SEQ ID 1786 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1784 GBS336 SEQ ID 1782 GBS337 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS339 SEQ ID 2010 GBS339 SEQ ID 2080 GBS341 SEQ ID 2280 GBS341 SEQ ID 2266 GBS342 SEQ ID 2266 GBS343 SEQ ID 2266	GBS317	SEQ ID 4210
GBS320 SEQ ID 916 GBS321 SEQ ID 8846 GBS322 SEQ ID 8540 GBS323 SEQ ID 2102 GBS324 SEQ ID 8490 GBS325 SEQ ID 8900 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 8792 GBS331 SEQ ID 1784 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1784 GBS336 SEQ ID 1782 GBS337 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS339 SEQ ID 2010 GBS339 SEQ ID 2080 GBS340 SEQ ID 2894 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 2666 GBS343 SEQ ID 2666	GBS318	SEQ ID 8548
GBS321 SEQ ID 8846 GBS322 SEQ ID 8540 GBS323 SEQ ID 2102 GBS324 SEQ ID 8490 GBS325 SEQ ID 8900 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 8792 GBS331 SEQ ID 1004 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1786 GBS335 SEQ ID 1784 GBS336 SEQ ID 1782 GBS337 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 2010 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 2666	GBS319	SEQ ID 892
GBS322 SEQ ID 8540 GBS323 SEQ ID 2102 GBS324 SEQ ID 8490 GBS325 SEQ ID 8900 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1786 GBS335 SEQ ID 1782 GBS336 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 1886 GBS338 SEQ ID 1886 GBS339 SEQ ID 2010 GBS338 SEQ ID 2010 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 2666	GBS320	SEQ ID 916
GBS323 SEQ ID 2102 GBS324 SEQ ID 8490 GBS325 SEQ ID 8900 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1786 GBS335 SEQ ID 1784 GBS336 SEQ ID 1782 GBS337 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 2666	GBS321	SEQ ID 8846
GBS324 SEQ ID 8490 GBS325 SEQ ID 8900 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1784 GBS336 SEQ ID 1782 GBS337 SEQ ID 1782 GBS338 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS322	SEQ ID 8540
GBS325 SEQ ID 8900 GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1786 GBS335 SEQ ID 1784 GBS336 SEQ ID 1782 GBS336 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 2666	GBS323	SEQ ID 2102
GBS326 SEQ ID 8630 GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 2010 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS324	SEQ ID 8490
GBS327 SEQ ID 5856 GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1782 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 2010 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS325	SEQ ID 8900
GBS328 SEQ ID 6016 GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS326	SEQ ID 8630
GBS329 SEQ ID 8928 GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 2080 GBS340 SEQ ID 2080 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 266	GBS327	SEQ ID 5856
GBS330 SEQ ID 8792 GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 2080 GBS340 SEQ ID 2080 GBS341 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS328	SEQ ID 6016
GBS331 SEQ ID 922 GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 2010 GBS338 SEQ ID 2080 GBS340 SEQ ID 2080 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS329	SEQ ID 8928
GBS332 SEQ ID 1004 GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS330	SEQ ID 8792
GBS333 SEQ ID 1786 GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS331	SEQ ID 922
GBS334 SEQ ID 1784 GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS332	SEQ ID 1004
GBS335 SEQ ID 1782 GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS333	SEQ ID 1786
GBS336 SEQ ID 1886 GBS337 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS334	SEQ ID 1784
GBS337 SEQ ID 2010 GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS335	SEQ ID 1782
GBS338 SEQ ID 8638 GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS336	SEQ ID 1886
GBS339 SEQ ID 2080 GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS337	SEQ ID 2010
GBS340 SEQ ID 8594 & 8596 GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS338	SEQ ID 8638
GBS341 SEQ ID 2280 GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS339	SEQ ID 2080
GBS342 SEQ ID 2266 GBS343 SEQ ID 8644	GBS340	SEQ ID 8594 & 8596
GBS343 SEQ ID 8644	GBS341	SEQ ID 2280
	GBS342	SEQ ID 2266
GBS344 SEQ ID 8662	GBS343	SEQ ID 8644
323377 324 D002	GBS344	SEQ ID 8662

GBS661	9428
GBS662	9286
GBS663	9294
GBS664	9034
GBS665	10546
GBS666	10610
GBS667	9052
GBS668	9036
GBS669	9010
GBS670	10730
GBS671	9020
GBS672	9052
GBS673	9036
GBS674	9034
GBS675	10634
GBS676	10692
GB\$677	10746
GBS678	9330
GBS679	9404
GBS680	6668
GBS681	4264
GBS682	6762
GB\$683	9290
GBS684	9614
GBS685	10454
GBS686	2774
GBS687	4620
GB\$688	10224

TABLE V - NUCLEOTIDES DELETED IN EXPRESSION OF GBSnnn PROTEINS

GBS	Deleted nucleotides
11d	1-153
31d	1-129
64d	1-165
68d	2029-2796
70d	1-402
74d	1-975
79d	1-201
105dN	2689-4119
105dC	1-2688
105d	1-2688
109d	1-120
130d	1-518
170d	1-111
182d	1596-1674
195C	1-1710
195N	1711-3243
209d	757-912
210d	1-99 & 777-879
220d	1-120
231d	1-54
235d	1-270
246d	1-75
248d	1-591

GBS	Deleted nucleotides
272d	1-531
277d	1-318
281d	1-54
287d	1-108
288d	1-72
293C	1-1229
293N	1230-2379
317N	1729-4107
317C	1-2379
326N	1707-2652
326dN	2326-3927
327N	3034-6831
327C	1-3033
333d	1-150
339d	1-111
352d	1-158
362N	1707-2652
362C	1-1706
397d	1-348
399d	1-111
407d	1174-1473
409d	1-297
424d	1327-1671

TABLE VI – PREDICTED FUNCTIONS FOR CERTAIN SEQ IDs

SEQ ID	Function
6	manganese ABC transporter, ATP-binding protein (psaB)
12	iron (chelated) ABC transporter, permease protein (psaC)
18	peptidyl-prolyl cis-trans isomerase, cyclophilin-type
26	chorismate binding enzyme (pabB)
30	probable transposase (insertion sequence IS861)
42	peptidase, M20/M25/M40 family
44	drug transporter
50	ribosomal protein L11 (rplK)
54	ribosomal protein L1 (rplA)
62	peptide ABC transporter, permease protein
66	peptide ABC transporter, permease protein
78	uridylate kinase (pyrH)
84	ribosome recycling factor (frr)
104	PhoH family protein (phoH)
110	MutT/nudix family protein superfamily
116	tetracenomycin polyketide synthesis O-methyltransferase TcmP
134	phosphopantetheine adenylyltransferase (coaD)
140	PDZ domain protein
144	5-nucleotidase family protein
156	VanZF-related protein
158	ABC transporter, ATP-binding/permease protein
162	ABC transporter, ATP-binding/permease protein
168	BioY family protein
180	acetyl-CoA acetyltransferase
188	endonuclease III (nth)
196	glucokinase (gki)
200	rhodanese family protein
204	elongation factor Tu family protein (typA)
212	UDP-N-acetylglucosamineN-acetylmuramyl-(pentapeptide) pyrophosphoryl-
216	cell division protein DivIB
220	cell division protein FtsA (ftsA)
224	cell division protein FtsZ (ftsZ)
236	ylmH protein (ylmH)
240	cell division protein DivIVA (divIVA)
244	isoleucyl-tRNA synthetase (ileS)
252	MutT/nudix family protein
256	ATP-dependent Clp protease, ATP-binding subunit ClpE (clpE)
268	methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cycloh
274	exodeoxyribonuclease VII, large subunit (xseA)
278	exodeoxyribonuclease VII, small subunit (xseB)
282	geranyltranstransferase (ispA)
286	hemolysin A
290	transcriptional repressor
296	DNA repair protein RecN (recN)
300	degV family protein (degV)
322	peptide ABC transporter, permease protein (oppC)
326	peptide ABC transporter, ATP-binding protein (oppD)
328	peptide ABC transporter, ATP-binding protein (oppF)
348	4-diphosphocytidyl-2C-methyl-D-erythritol kinase (ispE)
352	adc operon repressor AdcR (adcR)
356 370	zinc ABC transporter, ATP-binding protein (adcC)
3/11	tyrosyl-tRNA synthetase (tyrS)
	nonicillia biadina nucleia 4D (abs 4D)
374 378	penicillin-binding protein 1B (pbp1B) DNA-directed RNA polymerase, beta subunit (rpoB)

406 acetate kinase (ackA) 410 transcriptional regulator 418 pyrroline-6-carboxylate reductase (proC) 422 glutamyl-aminopeptidase (pepA) 432 thioredoxin family protein 436 tRNA binding domain protein (pheT) 437 methyltransferase 448 single-strand DNA-binding protein, authentic point mutation (ssbB) 449 single-strand DNA-binding protein, authentic point mutation (ssbB) 450 GAF domain protein (lytS) 451 GAF domain protein (lytS) 452 (BB protein (lytB) 453 (BB protein (lytB) 454 oligopeptide ABC transporter, permease protein 455 (BB protein (lytB) 456 (Brg B protein (lytB) 457 (BB protein (lytB) 458 (BB protein (lytB) 459 (BB protein (lytB) 450 (BB protein (lytB) 451 (BB protein (lytB) 452 (BB protein (lytB) 453 (BB protein (lytB) 454 (BB protein (lytB) 455 (BB protein (lytB) 456 (BB protein (lytB) 457 (BB protein (lytB) 458 (BB protein (lytB) 459 (BB protein (lytB) 450 (BB protein (lytB) 450 (BB protein (lytB) 451 (BB protein (lytB) 452 (BB protein (lytB) 453 (BB protein (lytB) 454 (BB protein (lytB) 455 (BB protein (lytB) 456 (BB protein (lytB) 457 (BB protein (lytB) 458 (BB protein (lytB) 459 (BB protein (lytB) 450 (BB protein (lytB) 450 (BB protein (lytB) 451 (BB protein (lytB) 452 (BB protein (lytB) 453 (BB protein (lytB) 454 (BB protein (lytB) 455 (BB protein (lytB) 456 (BB protein (lytB) 457 (BB protein (lytB) 458 (BB protein (lytB) 459 (BB protein (lytB) 450 (BB protein (lytB) 450 (BB protein (lytB) 451 (BB protein (lytB) 452 (BB protein (lytB) 453 (BB protein (lytB) 454 (BB protein (lytB) 455 (BB protein (lytB) 456 (BB protein (lytB) 457 (BB protein (lytB) 458 (BB protein (lytB) 459 (BB protein (lytB) 450 (BB protein (lytB) 450 (BB protein (lytB) 451 (BB protein (lytB) 452 (BB protein (lytB) 453 (BB protein (lytB) 454 (BB protein (lytB) 455 (BB protein (lytB) 455 (BB protein (lytB) 456 (BB protein (lytB) 457 (BB protein (lytB) 458 (BB protein (lytB) 459 (BB protein (lytB) 450 (BB protein (lytB	000	Lin Ould / JIA
418 pyrroline-5-carboxylate reductase (proC) 422 glutarmyl-aminopeptidase (pepA) 432 thioredoxin family protein 433 tRNA binding domain protein (pheT) 440 methyltransferase 441 single-strand DNA-binding protein, authentic point mutation (ssbB) 442 single-strand DNA-binding protein, authentic point mutation (ssbB) 443 GRA domain protein (lytS) 466 lrgB protein (lrgB) 474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein (ppF) 478 peptide ABC transporter, ATP-binding protein (ppF) 489 peptide ABC transporter, ATP-binding protein (ppF) 480 peptide ABC transporter, ATP-binding protein (ppF) 481 peptide ABC transporter, ATP-binding protein (ppF) 482 protein (pp f) 483 alpha amylase family protein (treC) 484 pr S system, IBC components (treB) 485 alpha amylase family protein (treC) 486 transcriptional regulator, BglG family 487 transcriptional regulator, BglG family 488 pr f f f f f f f f f f f f f f f f f f	390	competence protein CgIA (cgIA)
412 glutamyl-aminopeptidase (pepA) 422 glutamyl-aminopeptidase (pepA) 433 thioredoxin family protein 436 tRNA binding domain protein (pheT) 437 methyltransferase 448 single-strand DNA-binding protein, authentic point mutation (ssbB) 438 GAF domain protein (lytS) 439 light protein (rigB) 440 methyltransferase 441 oligopeptide ABC transporter, permease protein 442 peptide ABC transporter, ATP-binding protein 443 peptide ABC transporter, ATP-binding protein 444 peptide ABC transporter, ATP-binding protein 445 peptide ABC transporter, ATP-binding protein 446 peptide ABC transporter, ATP-binding protein 447 peptide ABC transporter, ATP-binding protein 448 plapa amylase family protein (reC) 449 transcriptional regulator, BglG family 450 transcriptional regulator, BglG family 451 transcriptional regulator, BglG family 452 transcriptional regulator, BglG family 453 ribosomal protein StS (rpsO) 454 price system, IIC component 455 price system, IIC component 456 peptide ABC transporter, ATP-binding protein 457 ribosomal protein StS (rpsO) 458 ribosomal protein StS (rpsO) 459 ribosomal protein StS (rpsO) 450 cysteinyl-tRNA synthetase (cysS) 450 ribosomal protein StS (rpsO) 451 ribosomal protein StS (rpsO) 452 ribosomal protein StS (rpsO) 453 ribosomal protein StS (rpsO) 454 peptide ABC transporter 455 peptide ABC transporter 456 peptide ABC transporter 457 ribosomal protein StS (rpsO) 458 recombination protein 458 transcriptional regulator 459 recombination protein 460 transcriptional regulator 461 peptide ABC transporter, permease protein (opuBB) 462 transcriptional regulator 463 letin, alpha subunit precursor 464 acetyltransferase, GNAT family 466 acetyltransferase, GNAT family 467 acetyltransferase, GNAT family 468 acetyltransferase, GNAT family 479 acetyltransferase, GNAT family 470 acetyltransferase, GNAT family 471 angesium transporter, Cort Amily 472 valy-IRNA synthetase (vals) 473 acetyltransferase, GNAT family 474 alcohol dehydrogenase, zinc-containing 475 acetyltransferase, GNAT family 476 alcohol dehydrogenase,		
432 glutamyl-aminopeptidase (pepA) 432 thioredoxin family protein 433 tRNA binding domain protein (pheT) 440 methyltransferase 442 single-strand DNA-binding protein, authentic point mutation (ssbB) 454 GAF domain protein (hyls) 466 lrgB protein (lrgB) 474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein (oppF) 478 oligopeptide ABC transporter, ATP-binding protein (oppF) 489 peptide ABC transporter, ATP-binding protein (oppF) 480 peptide ABC transporter, ATP-binding protein (oppF) 481 pris system, IlbBC components (treB) 482 alpha amylase family protein (treC) 483 transcriptional regulator, BgIG family 484 pris system, IlB component 485 pris system, IlB component 486 pris system, IlC component 487 pris system, IlC component 488 transketolase, N-terminal subunit (tktA) 489 ribosomal protein S15 (fpsO) 480 cysteinyl-RNA synthetase (cysS) 480 ribosomal protein S15 (psO) 480 cysteinyl-RNA synthetase (cysS) 480 transcriptional regulator 480 pris protein (degV) 480 ribosomal protein (degV) 481 ribosomal protein (degV) 482 ribosomal protein (degV) 483 ribosomal protein (degV) 484 ribosomal protein (degV) 485 ribosomal protein (degV) 486 ribosomal protein (degV) 487 ribosomal protein (degV) 488 ribosomal protein (degV) 489 ribosomal protein (degV) 480 ribosomal protein (degV) 480 ribosomal protein (degV) 481 ribosomal protein (degV) 482 ribosomal protein (degV) 483 ribosomal protein (degV) 484 ribosomal protein (degV) 485 ribosomal protein (degV) 486 ribosomal protein (degV) 487 ribosomal protein (degV) 489 ribosomal protein (degV) 480 ribosomal protein (degV) 480 ribosomal protein (degV) 480 ribosomal p		
432 thioredoxin family protein 436 tRNA binding domain protein (pheT) 440 methyltransferase 442 single-strand DNA-binding protein, authentic point mutation (ssbB) 454 GAF domain protein (lyS) 466 lrgB protein (lrgB) 474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein (popF) 484 PTS system, IIABC components (treB) 485 alpha amylase family protein (treC) 486 lapha amylase family protein (treC) 487 transcriptional regulator, BgIG family 488 prise system, IIB component 489 pTS system, IIB component 480 peptide ABC transporter, BgIG family 480 pTS system, IIB component 481 pTS system, IIB component 482 pTS system, IIB component 483 pricosomal protein S15 (rpsC) 484 pTS system, IIB component 485 pTS pricosomal protein S15 (rpsC) 486 pTS		<u> </u>
440 methyltransferase 442 single-strand DNA-binding protein, authentic point mutation (ssbB) 443 GAF domain protein (lyts) 446 Irgs protein (lrgB) 466 Irgs protein (lrgB) 474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein 477 peptide ABC transporter, ATP-binding protein 478 peptide ABC transporter, ATP-binding protein (oppF) 489 peptide ABC transporter, ATP-binding protein (oppF) 480 peptide ABC transporter, ATP-binding protein (oppF) 481 PTS system, IIABC components (treB) 482 alpha amylase family protein (treC) 483 transcriptional regulator, BgIG family 506 transcriptional regulator, BgIG family 507 protein (opp) 508 pris system, IIB component 518 transketolase, N-terminal subunit (tktA) 519 ribosomal protein S15 (rpsC) 528 ribosomal protein S15 (rpsC) 530 roysteinyl-IRNA synthetase (cysS) 540 pey family protein (degV) 551 ribosomal protein S16 (rpsC) 552 ribosomal protein S9 (rpsC) 553 recombination protein 554 pey family protein (degV) 555 integrase, phage family 556 transcriptional regulator 557 recombination protein 558 transcriptional regulator 559 transcriptional regulator 560 transcriptional regulator 561 pey family protein (degV) 562 pey family protein (opuBB) 563 transcriptional regulator 564 active family 565 transcriptional regulator 566 transcriptional regulator 567 lectin, alpha subunit precursor 568 transcriptional regulator 569 transcriptional regulator. 570 acetyltransferase, GNAT family 571 acetyltransferase, GNAT family 572 ribusorate reflux protein, DrrB family 573 acetyltransferase, GNAT family 574 magnesium transporter efflux protein, DrrB family 575 variansferase, GNAT family 576 remainsferase, GNAT family 577 remainsferase, GNAT family 578 oxidoreductase, aloh/keto reductase family 579 acetyl-rRNA synthetase (vals) 570 acetyl-rRNA synthetase (vals) 571 aciton efflux system protein 572 ribosomal protein (refl) 573 acovadipate enoi-lactone hydrolase/4-carboxymuconolactone decarboxylas 574 elaA protein (refl) 575 RNA methyltransferase, TrmA		
440 methyltransferase 442 single-strand DNA-binding protein, authentic point mutation (ssbB) 464 GAF domain protein (lyts) 466 Irgs protein (lrgB) 474 olligopeptide ABC transporter, permease protein 475 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein 481 peptide ABC transporter, ATP-binding protein (popF) 482 PTS system, IIABC components (lreB) 483 alpha amylase family protein (lreC) 494 transcriptional regulator, BgIG family 506 transporter algulator, BgIG family 507 pTS system, IIC component 518 pTS system, IIC component 519 pTS system, IIC component 519 pTS system, IIC component 510 pts system, IIC component 510 pts system, IIC component 511 pts ansketolase, N-terminal subunit (ltkA) 512 ribosomal protein S15 (rpsO) 514 pts system, IIC component 515 pts pts system, IIC component 516 pts system, IIC component 517 pts system, IIC component 518 transketolase, N-terminal subunit (ltkA) 519 ribosomal protein S15 (rpsO) 540 cysteinyl-IRNA synthetase (cysS) 551 pts RNA methyltransferase, TrmH family, group 3 562 pegy family protein (degv) 572 ribosomal protein S9 (psI) 573 ribosomal protein S9 (psI) 574 ribosomal protein S9 (psI) 575 integrase, phage family 580 transcriptional regulator 580 transcriptional regulator 581 ranscriptional regulator 582 glycine betaine/L-proline transport ATP binding subunit (proV) 683 transcriptional regulator 684 acetyltransferase, GNAT family 686 acetyltransferase, GNAT family 687 transcriptional regulator 688 acetyltransferase, GNAT family 689 is1381, transporter efflux protein, DrB family 680 is1381, transporter efflux protein, DrB family 680 acetyltransferase, GNAT family 681 pts defined protein protein 682 pts defined protein protein 683 acetyltransferase, gnAT family 684 alcohol dehydrogenase,		
442 single-strand DNA-binding protein, authentic point mutation (ssbB) 454 GAF domain protein (ht/s) 466 Irg protein (lrgB) 474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein (oppF) 484 PTS system, IIABC components (freB) 485 alpha amylase family protein (freC) 494 transcriptional regulator, BgIG family 506 transporter and protein (freC) 495 transcriptional regulator, BgIG family 507 pTS system, IIB component 514 PTS system, IIC component 515 transketolase, N-terminal subunit (lktA) 528 ribosomal protein S15 (fpsO) 546 cysteinyl-IRNA synthetase (cysS) 554 RNA methyltransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein (degV) 573 ribosomal protein (degV) 576 integrase, phage family 580 transcriptional regulator 580 recombination protein 640 amino acid ABC transporter, permease protein (opuBB) 641 glycine betainel'. profile transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 655 transcriptional regulator 666 acelytransferase, GNAT family 670 acelytransferase, GNAT family 671 transcriptional regulator, telf family domain protein 672 acelytransferase, GNAT family 673 acelytransferase, GNAT family 674 transcriptional regulator, telf family domain protein 675 acelytransferase, GNAT family 676 transcriptional regulator, telf family domain protein 677 acelytransferase, GNAT family 678 transcriptional regulator, telf family domain protein 679 acelytransferase, GNAT family 670 acelytransferase, GNAT family 671 acelytransferase, GNAT family 672 acelytransferase, GNAT family 673 acelytransferase, GNAT family 674 acid ordinal system protein 775 baction efflux system protein 776 pacentining 7777 acid ordinal system protein 778 oxidoreductase, alon/keto reductase family 779 accombination oxidoreductase, alon/keto reductase, alpha subunit (nrdE) 779 navoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 779 alox protein (rdI) 780 RNA methytransferase, TrmA famil	436	tRNA binding domain protein (pheT)
454 GAF domain protein (tyts) 466 IrgB protein (tytg) 474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein (ppF) 484 PTS system, IIABC components (treB) 488 alpha amylase family protein (treC) 494 transcriptional regulator, BgIG family 506 transporter, BgIG family 508 PTS system, IIB component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsC) 546 cysteiny-IRNA synthetase (cysS) 557 RNA methyltransferase, TrmH family, group 3 569 DegV family protein (degV) 570 integrase, phage family 580 transcriptional regulator regulator recombination protein 580 transcriptional regulator MutR 580 transcriptional regulator (transcriptional regulator) 581 transcriptional regulator MutR 582 divine betaine/L-proline transport ATP binding subunit (proV) 583 dectyltransferase, GNAT family 584 acetyltransferase, GNAT family 585 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 587 acetyltransferase, GNAT family 580 Is1381, transposae OrfA/OrfB, truncation 581 transcriptional regulator, telt family domain protein 584 acetyltransferase, GNAT family 585 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 587 acetyltransferase, GNAT family 580 acetyltransferase, GNAT family 581 acetyltransferase, GNAT family 582 acetyltransferase, GNAT family 583 acetyltransferase, GNAT family 584 acetyltransferase, GNAT family 585 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 587 acetyltransferase, GNAT family 588 acetyltransferase, GNAT family 589 acetyltransferase, GNAT family 580 acetyltransferase, GNAT family 580 acetyltransferase, GNAT family 580 acetyltransferase, GN	440	
454 GAF domain protein (tyts) 466 IrgB protein (tytg) 474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein (ppF) 484 PTS system, IIABC components (treB) 488 alpha amylase family protein (treC) 494 transcriptional regulator, BgIG family 506 transporter, BgIG family 508 PTS system, IIB component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsC) 546 cysteiny-IRNA synthetase (cysS) 557 RNA methyltransferase, TrmH family, group 3 569 DegV family protein (degV) 570 integrase, phage family 580 transcriptional regulator regulator recombination protein 580 transcriptional regulator MutR 580 transcriptional regulator (transcriptional regulator) 581 transcriptional regulator MutR 582 divine betaine/L-proline transport ATP binding subunit (proV) 583 dectyltransferase, GNAT family 584 acetyltransferase, GNAT family 585 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 587 acetyltransferase, GNAT family 580 Is1381, transposae OrfA/OrfB, truncation 581 transcriptional regulator, telt family domain protein 584 acetyltransferase, GNAT family 585 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 587 acetyltransferase, GNAT family 580 acetyltransferase, GNAT family 581 acetyltransferase, GNAT family 582 acetyltransferase, GNAT family 583 acetyltransferase, GNAT family 584 acetyltransferase, GNAT family 585 acetyltransferase, GNAT family 586 acetyltransferase, GNAT family 587 acetyltransferase, GNAT family 588 acetyltransferase, GNAT family 589 acetyltransferase, GNAT family 580 acetyltransferase, GNAT family 580 acetyltransferase, GNAT family 580 acetyltransferase, GN	442	single-strand DNA-binding protein, authentic point mutation (ssbB)
474 oligopeptide ABC transporter, permease protein 476 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein (oppF) 484 PTS system, IIABC components (treB) 488 alpha amylase family protein (treC) 494 transcriptional regulator, BgIG family 506 transcriptional regulator, BgIG family 508 PTS system, IIB component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsO) 546 cysteinyl-RNA synthetase (cysS) 554 RNA methyltransferase, TrmH family, group 3 562 Degy family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator MuRR 580 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 665 transcriptional regulator 666 acetyltransferase, GNAT family 676 acetyltransferase, GNAT family 676 transcriptional regulator 670 acetyltransferase, GNAT family 671 transcriptional regulator 672 transcriptional regulator 673 acetyltransferase, GNAT family 674 magnesium transporter, permease protein 675 transcriptional regulator 676 acetyltransferase, GNAT family 677 transcriptional regulator 678 acetyltransferase, GNAT family 679 transcriptional regulator 680 ABC transporter efflux protein, DrrB family 670 transcriptional regulator, tetR family domain protein 671 magnesium transporter, CorA family 672 valy-HrNA synthetase (valS) 673 acetyltransferase, GNAT family 674 magnesium transporter, CorA family 675 DNA-damage-inducible protein J 676 acid protein conditions and protein family 677 cation efflux system protein 678 DNA-damage-inducible protein J 679 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 680 ribonucleoside-diphosphate reductase family 681 RNA methyltransferase, TrmA family 682 RNA methyltransferase, TrmA family	454	
476 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein (oppF) 484 PTS system, IIABC components (freB) 488 alpha amylase family protein (treC) 494 transcriptional regulator, BgIG family 506 transcriptional regulator, BgIG family 507 pTS system, IIB component 508 PTS system, IIB component 509 pTS system, IIB component 510 pTS system, IIC component 511 pTS system, IIC component 512 pTS system, IIC component 513 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 540 pSt NA methyltransferase, TrmH family, group 3 540 pegy family protein (degV) 541 ribosomal protein S9 (rpsi) 542 pegy family protein (degV) 543 ribosomal protein S9 (rpsi) 544 ranscriptional regulator 546 recombination protein 540 transcriptional regulator MutR 540 mile and a protein sporter, permease protein (opuBB) 541 quicine betainell-proline transport ATP binding subunit (proV) 542 lectin, alpha subunit precursor 543 lectin, alpha subunit precursor 544 lectin, alpha subunit precursor 545 lectin, alpha subunit precursor 546 acetyltransferase, GNAT family 547 acetyltransferase, GNAT family 548 acetyltransferase, GNAT family 559 ranscriptional regulator regulator 560 acetyltransferase, GNAT family 561 ranscriptional regulator protein, DrrB family 562 transcriptional regulator protein, DrrB family 563 ranscriptional regulator, reft family 564 acetyltransferase, GNAT family 565 ranscriptional regulator, reft family 566 acetyltransferase, GNAT family 570 acetyltransferase, GNAT family 571 magnesium transporter, OrfA family 572 valy-tRNA synthetase (valS) 573 acetyltransferase, GNAT family 574 alcohol dehydrogenase, zinc-containing 575 DNA-damage-inducible protein J 576 cation efflux system protein 5776 potentian dehydrogenase, zinc-containing 5777 alcohol dehydrogenase, zinc-containing 578 alcohol dehydrogenase, zinc-containing 588 ruf di protein (rufl) 588 ruf drotein (rufl) 589 RNA methyltransferase, TrmA family 580 RRA Mathyltransferase, TrmA family	466	IrgB protein (IrgB)
476 peptide ABC transporter, ATP-binding protein 480 peptide ABC transporter, ATP-binding protein (oppF) 484 PTS system, IIABC components (freB) 488 alpha amylase family protein (treC) 494 transcriptional regulator, BgIG family 506 transcriptional regulator, BgIG family 507 pTS system, IIB component 508 PTS system, IIB component 509 pTS system, IIB component 510 pTS system, IIC component 511 pTS system, IIC component 512 pTS system, IIC component 513 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 540 pSt NA methyltransferase, TrmH family, group 3 540 pegy family protein (degV) 541 ribosomal protein S9 (rpsi) 542 pegy family protein (degV) 543 ribosomal protein S9 (rpsi) 544 ranscriptional regulator 546 recombination protein 540 transcriptional regulator MutR 540 mile and a protein sporter, permease protein (opuBB) 541 quicine betainell-proline transport ATP binding subunit (proV) 542 lectin, alpha subunit precursor 543 lectin, alpha subunit precursor 544 lectin, alpha subunit precursor 545 lectin, alpha subunit precursor 546 acetyltransferase, GNAT family 547 acetyltransferase, GNAT family 548 acetyltransferase, GNAT family 559 ranscriptional regulator regulator 560 acetyltransferase, GNAT family 561 ranscriptional regulator protein, DrrB family 562 transcriptional regulator protein, DrrB family 563 ranscriptional regulator, reft family 564 acetyltransferase, GNAT family 565 ranscriptional regulator, reft family 566 acetyltransferase, GNAT family 570 acetyltransferase, GNAT family 571 magnesium transporter, OrfA family 572 valy-tRNA synthetase (valS) 573 acetyltransferase, GNAT family 574 alcohol dehydrogenase, zinc-containing 575 DNA-damage-inducible protein J 576 cation efflux system protein 5776 potentian dehydrogenase, zinc-containing 5777 alcohol dehydrogenase, zinc-containing 578 alcohol dehydrogenase, zinc-containing 588 ruf di protein (rufl) 588 ruf drotein (rufl) 589 RNA methyltransferase, TrmA family 580 RRA Mathyltransferase, TrmA family	474	oligopeptide ABC transporter, permease protein
480 peptide ABC transporter, ATP-binding protein (oppF) 484 PTS system, IIABC components (freB) 495 transcriptional regulator, BgIG family 506 transcriptional regulator, BgIG family 507 transcriptional regulator, BgIG family 508 PTS system, IIB component 519 PTS system, IIC component 510 PTS system, IIC component 510 transcriptional protein St5 (rpsO) 528 ribosomal protein St5 (rpsO) 540 cysteinyl-RNA synthetase (cysS) 541 RNA methyltransferase, TrmH family, group 3 542 DegV family protein (degV) 543 ribosomal protein S9 (rpsI) 544 Integrase, phage family 545 transcriptional regulator 546 recombination protein 547 recombination protein 548 transcriptional regulator MutR 540 damino acid ABC transporter, permease protein (opuBB) 541 quipcine betaine/L-proline transport ATP binding subunit (proV) 542 lectin, alpha subunit precursor 543 reascriptional regulator 544 acetyltransferase, GNAT family 545 dacetyltransferase, GNAT family domain protein 546 acetyltransferase, GNAT family domain protein 547 acetyltransferase, GNAT family 548 ABC transcriptional regulator, teIR family domain protein 549 magnesium transporter offitux protein, DrnB family 540 ranscriptional regulator, teIR family domain protein 541 magnesium transporter, CorA family 542 ransferase, GNAT family 543 acetyltransferase, GNAT family 544 methyltransferase, GNAT family 545 methyltransferase, GNAT family 546 methyltransferase, GNAT family 547 methyltransferase, GNAT family 548 methyltransferase, GNAT family 549 acetyltransferase, GNAT family 540 methyltransferase, GNAT family 541 methyltransferase, GNAT family 542 ranscriptional regulator, teIR family 543 acetyltransferase, GNAT family 544 methyltransferase, GNAT family 545 acetyltransferase, GNAT family 546 methyltransferase, GNAT family 547 acidon efflux system protein 548 pNA-damage-inducible protein J 549 acetyltransferase, GNAT family 540 acetyltransferase, GNAT family 541 acidon delphydrogenase, zinc-containing 542 acetyltransferase, GNAT family 543 alcohol delphydrogenase, zinc-containing 544 a	476	peptide ABC transporter, ATP-binding protein
484 PTS system, IIABC components (freB) 488 alpha amylase family protein (freC) 494 transcriptional regulator, BgIG family 506 transcriptional regulator, BgIG family 508 PTS system, IIB component 514 PTS system, IIB component 514 PTS system, IIC component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsC) 546 cysteinyl-IRNA synthetase (cysS) 554 RNA methyttransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 580 transcriptional regulator MutR 681 transcriptional regulator MutR 682 transcriptional regulator MutR 683 transporter 684 amino acid ABC transporter, permease protein (opuBB) 684 glycine betaine/L-proline transport ATP binding subunit (proV) 685 lectin, alpha subunit precursor 686 racetyltransferase, GNAT family 686 acetyltransferase, GNAT family 686 acetyltransferase, GNAT family 686 acetyltransferase, GNAT family 687 acetyltransferase, GNAT family 688 acetyltransferase, GNAT family 689 IS1381, transposase OrtA/OrtB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Glo/Idhr/MocA family 719 vally-IRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 754 DNA-damage-inducible protein J 747 cation efflux system protein 748 alcohol dehydrogenase, zinc-containing 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 775 oxidoreductase, aldo/keto reductase family 808 alcohol dehydrogenase, zinc-containing 809 alcohol dehydrogenase, zinc-containing 800 alcohol dehydrogenase, zinc-containing 801 alcohol dehydrogenase, zinc-containing 802 alcohol dehydrogenase, zinc-containing 803 alcohol dehydrogenase, zinc-containing 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 805 ribonucleoside reductases 806 rid protein (elaA) 807 Rid protein (elaA) 808 Rid Rid protein (elaA) 809 Rid Rid protein (elaA) 809 Rid Rid protein (elaA) 809 Rid Rid protein (elaA) 800 Rid Rid Rid Protein (elaA) 801 Rid Rid Rid Rid Rid Rid Rid Rid	480	
488 alpha amylase family protein (treC) 494 transcriptional regulator, BglG family 506 transcriptional regulator, BglG family 508 PTS system, IIB component 514 PTS system, IIB component 514 PTS system, IIC component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsC) 546 cysteinyl-IRNA synthetase (cysS) 554 RNA methyttransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 596 recombination protein 628 transcriptional regulator 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betainer/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 665 transcriptional regulator 666 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 676 transcriptional regulator, tetR family domain protein 680 ABC transporter filtus protein, DrrB family 680 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, GNAT family 719 acetyltransferase, GNAT family 710 sidoreductase, GNAT family 711 oxidoreductase, GNAT family 712 valyl-IRNA synthetase (valS) 720 acetyltransferase, GNAT family 731 acetyltransferase, GNAT family 742 responsible transcriptional regulator, tetR family domain protein 744 methyltransferase 755 bacteriophage L54a, integrase 756 DNA-damage-inducible protein J 777 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 808 alcetriophage L54a, integrase 759 DNA-damage-inducible protein J 779 cation efflux system protein 779 sidoreductase, aldo/keto reductase family 809 alcohol dehydrogenase, zinc-containing 800 and protein (rndl) 812 Ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 813 RNA methyltransferase, TrmA family 828 RNA methyltransferase, TrmA family 829 RNA methyltransferase, TrmA family 820 RNA methyltransferase, TrmA family	484	
494 transcriptional regulator, BgIG family 506 transcriptional regulator, BgIG family 508 PTS system, IIB component 514 PTS system, IIC component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 554 RNA methyltransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 596 recombination protein 626 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 gjycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 670 acetyltransferase, GNAT family 670 acetyltransferase, GNAT family 670 transcriptional regulator, telt family domain protein 680 ABC transporter efflux protein, DrnB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Glo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase 754 DNA-damage-inducible protein J 775 cation efflux system protein 776 acion efflux system protein 7777 cation efflux system protein 778 oxidoreductase, aldoketo reductase family 780 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 780 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 780 nrd protein (nrdI) 8812 Ribonucleoside reductases 883 RNA methyltransferase, TrmA family 883 RRA methyltransferase, TrmA family		
506 transcriptional regulator, BgIG family 508 PTS system, IIB component 514 PTS system, IIB component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 554 RNA methyltransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 580 recombination protein 680 transcriptional regulator recombination protein 681 transcriptional regulator MutR 630 transporter 684 amino acid ABC transporter, permease protein (opuBB) 685 glycine betaine/L-proline transport ATP binding subunit (proV) 686 lectin, alpha subunit precursor 687 transcriptional regulator 688 acetyltransferase, GNAT family 689 acetyltransferase, GNAT family (rimJ) 680 acetyltransferase, GNAT family domain protein 680 ABC transporter efflux protein, DrB family 680 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 740 methyltransferase 751 DNA-damage-inducible protein J 741 cation efflux system protein 742 retion efflux system protein 753 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 755 bacteriophage L54a, integrase 756 DNA-damage-inducible protein J 757 acidon efflux system protein 758 bacteriophage L54a, integrase 759 bacteriophage L54a, integrase 750 DNA-damage-inducible protein J 771 cation efflux system protein 772 cation efflux system protein 773 acoxadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 774 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 775 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 776 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 777 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 778 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 779 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 780 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 780 ribonucleoside-diphosphate-red		<u> </u>
508 PTS system, IIB component 514 PTS system, IIC component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 554 RNA methyltransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 626 transcriptional regulator 626 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 665 transcriptional regulator 666 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family domain protein 680 ABC transporter efflux protein, DrrB family 680 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 775 cation efflux system protein 776 oxidoreductase, Glo/keto reductase family 777 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 780 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 820 RecX family protein		
514 PTS system, IIC component 518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein S15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 554 RNA methyltransferase, TrmH family, group 3 552 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 573 integrase, phage family 580 transcriptional regulator 586 recombination protein 580 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 670 transcriptional regulator, tetR family domain protein 680 ABC transporter efflux protein, DrrB family 676 transcriptional regulator, tetR family domain protein 680 ABC transporter efflux protein, DrrB family 671 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase 750 bacteriophage L54a, integrase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 774 cation efflux system protein 775 oxidoreductase, aldo/keto reductase family 776 not oxidoreductase, aldo/keto reductase family 777 acidon efflux system protein 778 oxidoreductase, aldo/keto reductase family 780 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 781 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 782 RNA methyltransferase, TrmA family 783 RNA methyltransferase, TrmA family 784 RRNA methyltransferase, TrmA family 785 RNA methyltransferase, TrmA family 786 RNA methyltransferase, TrmA family 787 RecX family protein		
518 transketolase, N-terminal subunit (tktA) 528 ribosomal protein \$15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 554 RNA methyltransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein \$9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 580 recombination protein 628 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposae OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase 750 bacteriophage L54a, integrase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 774 cation efflux system protein 775 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 780 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 784 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 788 RNA methyltransferase, TrmA family 789 RRNA methyltransferase, TrmA family 780 RNA methyltransferase, TrmA family 781 RNA methyltransferase, TrmA family 782 RecX family protein		
528 ribosomal protein S15 (rpsO) 546 cysteinyl-tRNA synthetase (cysS) 554 RNA methyttransferase, TrmH family, group 3 562 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 596 recombination protein 626 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfAOrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, GNAT family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 780 alcohol dehydrogenses, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas ribonucleotide reductases 804 ribonucleotide reductases 804 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
546 cysteinyl-IRNA synthetase (cysS) 554 RNA methyltransferase, TrmA family, group 3 562 DegV family protein (degV) 572 ribosomal protein S9 (rpsI) 576 integrase, phage family 580 transcriptional regulator 580 recombination protein 581 transcriptional regulator 582 transcriptional regulator MutR 583 transcriptional regulator MutR 684 transporter 685 def transporter 686 amino acid ABC transporter, permease protein (opuBB) 686 lectin, alpha subunit precursor 687 transcriptional regulator 688 acetyltransferase, GNAT family 689 acetyltransferase, GNAT family (rimJ) 680 ABC transporter efflux protein, DrrB family 680 ransporter efflux protein, DrrB family 680 ABC transporter efflux protein Drate family 680 ABC transporter, CorA family 680 ABC transporter efflux protein J 680 ABC transporter efflux protein Pydralase/A-carboxymuconolactone decarboxylas 680 ABC transporter enol-lactone hydrolase/A-carboxymuconolactone decarboxylas 681 Ribonucleotide reductases 682 BRNA methyltransferase, TrmA family 683 RecX family protein		
554 RNA methyltransferase, TrmH family, group 3 562 Degy family protein (degV) 572 ribosomal protein S9 (rpsl) 576 integrase, phage family 580 transcriptional regulator 596 recombination protein 626 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 665 transcriptional regulator 666 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 667 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family omain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfAVOrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, GG/Idh/MocA family 719 valyl-iRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 780 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolasel/4-carboxymuconolactone decarboxylas 780 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 781 Ribonucleotide reductases 782 RNA methyltransferase, TrmA family 783 RNA methyltransferase, TrmA family 784 RRNA RNA methyltransferase, TrmA family 785 RRNA methyltransferase, TrmA family 786 RNA methyltransferase, TrmA family 787 RRNA RNA methyltransferase, TrmA family		
562 DegV family protein (degV) 572 ribosomal protein S9 (rpsl) 576 integrase, phage family 580 transcriptional regulator 596 recombination protein 626 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 670 acetyltransferase, GNAT family domain protein 680 ABC transporter efflux protein, DrrB family 680 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, GFO/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 752 cation efflux system protein 753 acetyltransferase 754 DNA-damage-inducible protein J 755 cation efflux system protein 765 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 760 nrdl protein (nrdl) 771 RNA RNA methyltransferase, TrmA family 782 RecX family protein		
572 ribosomal protein S9 (rpsl) 576 integrase, phage family 580 transcriptional regulator 596 recombination protein 626 transcriptional regulator MutR 630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 670 acetyltransferase, GNAT family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 780 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 780 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 781 RNA methyltransferase, TrmA family 782 RecX family protein		<u> </u>
integrase, phage family transcriptional regulator recombination protein transcriptional regulator MutR transcriptional regulator MutR transporter du amino acid ABC transporter, permease protein (opuBB) dupine betaine/L-proline transport ATP binding subunit (proV) lectin, alpha subunit precursor transcriptional regulator decentral acetyltransferase, GNAT family decentral acetyltransferase, GNAT family (rimJ) droughtransferase, GNAT family (rimJ) droughtransferase, GNAT family domain protein droughtransferase, GNAT family portein, DrrB family dego Is1381, transposase OrfA/OrfB, truncation magnesium transporter, CorA family valy-IrRNA synthetase (valS) decentral acetyltransferase, GNAT family dego acetyltransferase, GNAT family dego Is1381, transposase OrfA/OrfB, truncation dego ABC transporter efflux protein, DrrB family dego Is1381, transposase OrfA/OrfB, truncation dego Is1381, transcriptional regulator, teltR family dego Is138		
transcriptional regulator fecombination protein franscriptional regulator MutR fransporter		
recombination protein transcriptional regulator MutR transporter amino acid ABC transporter, permease protein (opuBB) edu amino acid ABC transporter, permease protein (opuBB) edu glycine betaine/L-proline transport ATP binding subunit (proV) electin, alpha subunit precursor edu transcriptional regulator edu acetyltransferase, GNAT family edu acetyltransferase, GNAT family (rimJ) edu acetyltransferase, GNAT family domain protein edu ABC transporter efflux protein, DrrB family edu IS1381, transposase OrfA/OrfB, truncation magnesium transporter, CorA family edu oxidoreductase, Gfo/idh/MocA family edu oxidoreductase, Gfo/idh/MocA family edu oxidoreductase, Gfo/idh/MocA family edu oxidoreductase, GNAT family edu methyltransferase edu oxidoreductase, GNAT family edu oxidoreductase, GNAT family edu oxidoreductase, aldo/keto reductase family edu oxidoreductase, aldo/keto reductase, alpha subunit (nrdE) edu oxidoreductase reductases edu ribonucleoside-diphosphate reductase, alpha subunit (nrdE) edu oxidoreductase edu oxidoreductases edu elaA protein (elaA) edu oxidoreductases elaA protein (elaA) edu oxidoreductase elaA protein (elaA) edu oxidoreductase		
transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 670 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/ldh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 riborucleoside-diphosphate reductase, alpha subunit (nrdE) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		<u> </u>
630 transporter 640 amino acid ABC transporter, permease protein (opuBB) 642 glycine betainer/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family 670 acetyltransferase, GNAT family (rimJ) 671 transcriptional regulator, tetR family domain protein 680 ABC transporter efflux protein, DrrB family 680 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 riborucleoside-diphosphate reductase, alpha subunit (nrdE) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
amino acid ABC transporter, permease protein (opuBB) glycine betaine/L-proline transport ATP binding subunit (proV) lectin, alpha subunit precursor transcriptional regulator acetyltransferase, GNAT family acetyltransferase, GNAT family fro acetyltransferase, GNAT family acetyltransferase, GNAT family fro acetyltransporter efflux protein, DrrB family fro acetyltransporter, CorA family fro acetyltransporter, CorA family fro acetyltransferase, Gfo/idh/MocA family fro acetyltransferase, GNAT family fro acetyltransferase, GNAT family fro acetyltransferase fro bacteriophage L54a, integrase fro bacteriophage L54a, integrase fro bacteriophage L54a, integrase fro acetyltransferase, aldo/keto reductase family alcohol dehydrogenase, zinc-containing fro acoxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas fronucleoside-diphosphate reductase, alpha subunit (nrdE) frol protein (nrdl) frol protein (rdl) frol protein (elaA)		
glycine betaine/L-proline transport ATP binding subunit (proV) 654 lectin, alpha subunit precursor 662 transcriptional regulator 664 acetyltransferase, GNAT family 666 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family (rimJ) 676 transcriptional regulator, tetR family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
lectin, alpha subunit precursor transcriptional regulator acetyltransferase, GNAT family acetyltransferase, GNAT family (rimJ) acetyltransferase, GNAT family (rimJ) acetyltransferase, GNAT family (rimJ) acetyltransferase, GNAT family acetyltransferase, GNAT family by acetyltransferase, GNAT family acetyltransferase, GNAT family by als1381, transporter efflux protein, DrrB family by als1381, transposase OrfA/OrfB, truncation acetyltransferase, Gro/Idh/MocA family by acetyltransferase, GNAT family acetyltransferase, GNAT family acetyltransferase, GNAT family acetyltransferase bacteriophage L54a, integrase bacteriophage L54a, integ		
fece transcriptional regulator fece acetyltransferase, GNAT family fece acetyltransferase, GNAT family (rimJ) fece acetyltransferase, GNAT family (rimJ) fece acetyltransferase, GNAT family fece transcriptional regulator, tetR family domain protein fece ABC transporter efflux protein, DrrB family fece IS1381, transposase OrfA/OrfB, truncation fece IS138		
acetyltransferase, GNAT family 666 acetyltransferase, GNAT family (rimJ) 670 acetyltransferase, GNAT family (rimJ) 676 transcriptional regulator, tetR family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 772 cation efflux system protein 773 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 780 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		<u> </u>
acetyltransferase, GNAT family (rimJ) acetyltransferase, GNAT family branscriptional regulator, tetR family domain protein ABC transporter efflux protein, DrrB family Branscriptional regulator, tetR family domain protein ABC transporter efflux protein, DrrB family Branscriptional regulator, tetR family Branscriptional regulato		<u> </u>
670 acetyltransferase, GNAT family 676 transcriptional regulator, tetR family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 772 cation efflux system protein 773 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 805 nrdl protein (nrdl) 810 Ribonucleotide reductases 811 Ribonucleotide reductases 812 elaA protein (elaA) 812 Ribonucleotine (elaA) 813 RecX family protein		<u> </u>
676 transcriptional regulator, tetR family domain protein 680 ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
ABC transporter efflux protein, DrrB family 690 IS1381, transposase OrfA/OrfB, truncation 714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 751 DNA-damage-inducible protein J 772 cation efflux system protein 773 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
IS1381, transposase OrfA/OrfB, truncation magnesium transporter, CorA family oxidoreductase, Gfo/Idh/MocA family valyI-tRNA synthetase (valS) acetyltransferase, GNAT family methyltransferase bacteriophage L54a, integrase DNA-damage-inducible protein J cation efflux system protein oxidoreductase, aldo/keto reductase family alcohol dehydrogenase, zinc-containing socoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas ribonucleoside-diphosphate reductase, alpha subunit (nrdE) nrdl protein (nrdl) Ribonucleotide reductases elaA protein (elaA) RRA methyltransferase, TrmA family RecX family protein		
714 magnesium transporter, CorA family 718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		<u> </u>
718 oxidoreductase, Gfo/Idh/MocA family 722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
722 valyl-tRNA synthetase (valS) 730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		<u> </u>
730 acetyltransferase, GNAT family 746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
746 methyltransferase 750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
750 bacteriophage L54a, integrase 754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
754 DNA-damage-inducible protein J 774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
774 cation efflux system protein 778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
778 oxidoreductase, aldo/keto reductase family 784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		<u> </u>
784 alcohol dehydrogenase, zinc-containing 790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		<u> </u>
790 3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylas 804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdI protein (nrdI) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
804 ribonucleoside-diphosphate reductase, alpha subunit (nrdE) 808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
808 nrdl protein (nrdl) 812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
812 Ribonucleotide reductases 824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
824 elaA protein (elaA) 828 RNA methyltransferase, TrmA family 832 RecX family protein		
828 RNA methyltransferase, TrmA family 832 RecX family protein		<u> </u>
832 RecX family protein		
0.40	832	RecX family protein
840 -identity (jag)	840	-identity (jag)

044	1 :- 00 ID- /
844 856	membrane protein, 60 kDa (yidC) UTP-glucose-1-phosphate uridylyltransferase (galU)
	
864	rhomboid family protein
884	MORN motif family
892	transcriptional regulator
896	adenylosuccinate lyase (purB)
908	phosphoribosylaminoimidazole carboxylase, catalytic subunit (purE)
912	phosphoribosylamineglycine ligase (purD)
916	phosphosugar-binding transcriptional regulator
920	acetyl xylan esterase
922	ROK family protein (gki)
926	N-acetylneuraminate lyase (nanA)
936	sugar ABC transporter, permease protein
940	sugar ABC transporter, permease protein (msmF)
952	LysM domain protein, authentic frameshift
956	zoocin A endopeptidase
958	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydr
962	acetyltransferase, GNAT family family
964	phosphoribosylglycinamide formyltransferase (purN)
968	phosphoribosylformylglycinamidine cyclo-ligase (purM)
972	amidophosphoribosyltransferase (purF)
980	phosphoribosylformylglycinamidine synthase
984	phosphoribosylaminoimidazole-succinocarboxamide synthase (purC)
1042	oligoendopeptidase F (pepF)
1060	ebsC protein
1068	hydrolase, haloacid dehalogenase-like family
1076	riboflavin synthase, beta subunit (ribH)
1082	riboflavin biosynthesis protein RibD (ribD)
1086	Mn2+/Fe2+ transporter, NRAMP family
1094 1116	peptidase, U32 family
1130	HPr(Ser) kinase/phosphatase (hprK) oxidoreductase
1148	signal recognition particle-docking protein FtsY (ftsY)
1152	Cof family protein
1156	Cof family protein
1172	vicX protein (vicX)
1176	sensory box sensor histidine kinase (vicK)
1180	DNA-binding response regulator (vicR)
1184	amino acid ABC transporter, ATP-binding protein
1188	amino acid ABC transporter, amino acid-binding protein (fliY)
1192	amino acid ABC transporter, permease protein
1196	amino acid ABC transporter, permease protein
1208	DNA-binding response regulator (vicR)
1210	threonyl-tRNA synthetase (thrS)
1214	glycosyl transferase, group 1
1218	glycosyl transferase, group 1 (cpoA)
1222	alpha-amylase (amy)
1230	proline dipeptidase (pepQ)
1238	haloacid dehalogenase-like hydrolase superfamily
1244	mannonate dehydratase (uxuA)
1248	glucuronate isomerase
1254	transcriptional regulator, GntR family
1268	sodiumgalactoside symporter family protein
1270	D-isomer specific 2-hydroxyacid dehydrogenase family protein
1282	transcriptional regulator, LysR family
1290	ABC transporter, ATP-binding protein (potA)
1296	DedA family protein
1296 1308	DedA family protein MutT/nudix family protein family