Probabilité et Simulation

PolyTech INFO4 (Grenoble) - 2025-2026 - Practical Sessions

Last updated: 2025-09-11. Info: davide.legacci@univ-grenoble-alpes.fr

Contents

1. Theory recap 2025-09-12 - Probability on finite set	. 2
Bibliography	. 6

1. Theory recap 2025-09-12 - Probability on finite set

1.1. Probability space

- Random process: one random outcome out of finitely many
- Sample space $\Omega =$ finite set of all possible outcomes ω
- *Probability* on $\Omega = \text{set of weights } \mathbb{P}(\omega) \in \mathbb{R}$ on each $\omega \in \Omega$ such that
 - $\mathbb{P}(\omega) > 0 \forall \omega \in \Omega$
 - $ightharpoonup \sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$
- Event $A \subseteq \Omega = \text{subset of the sample space}$

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega) \tag{1}$$

- Complementary event $A^c = \Omega/A$ (pronounced "not A")
- "A and B" = $A \cap B$
- "A or B" = $A \cup B$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \tag{2}$$

• *indicator function* of event $A \subseteq \Omega$

$$\mathbb{1}_A:\Omega\to\mathbb{R},\quad \mathbb{1}_A(\omega)=\begin{cases} 1 \text{ if } \omega\in A\\ 0 \text{ if } \omega\notin A \end{cases} \tag{3}$$

- Denoted by |S| the *cardinality* of a set S
- Denoted by S^n the cartesian product of S with itself n times

$$S^{n} = S \times S \times ... \times S = \{(s_{1}, ..., s_{n}) : s_{i} \in S \text{ for all } i = 1, ..., n\}$$

$$\tag{4}$$

• Cardinality of cartesian product

$$|S^n| = |S|^n \tag{5}$$

1.2. Uniform probability

• Every outcome $\omega \in \Omega$ has the same weight

$$\mathbb{P}(\omega) = \frac{1}{|\Omega|} \tag{6}$$

• Uniform probability of the event $A \subseteq \Omega$

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega) = \sum_{\omega \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|}$$
 (7)

1.3. Counting

- Number of *permutations* of k elements:
 - Number of ways to order k elements
 - Only order matters

$$P_k = k! (8)$$

Permutation of 5 elements						
1	3	2	5	4		

- Number of *dispositions* of k elements out of n ($k \le n$):
 - Number of ways to *choose and order* k elements out of n
 - Order and elements matter
 - Number of injections : $\{1, ..., k\} \rightarrow \{1, ..., n\}$

$$D_{n,k} = \underbrace{n(n-1)...}_{k \text{ times}} = n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$$
(9)

Disposition of 3 elements out of 5

3 2 1	

- Number of *combinations* of k elements out of n ($k \le n$):
 - Number of ways to *choose* k elements out of n
 - Only elements matter
 - Number of subsets of cardinality k of a set of cardinality n
 - Number of dispositions modulo number of permutations

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \frac{n!}{k!(n-k)!} = \binom{n}{k} = \operatorname{choose}(n,k) \tag{10}$$

Combination of 3 elements out of 5

х	х	х
---	---	---

• Binomial theorem

$$(x+y)^{n} = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$
 (11)

Exercises

Exercise 1.1 (Handshakes and kisses)

There are f girls and g boys in a room. Boys exchange handshakes, girs exchange kisses, boys and girls exchange kisses. How many kisses in total?

The number of kisses exchanges among girls is the number of subsets of cardinality 2 of a set of cardinality f, that is $\binom{f}{2} = \frac{f(f-1)}{2}$. Or, think that each girl gives f-1 kisses, and one needs a factor of one half to avoid double counting.

For the number of kisses exchanged between boys and girls: the first girl gives g kisses, the second girl gives g kisses, and so on, so we have fg in total.

$$\text{number of kisses} = \frac{f(f-1)}{2} + fg \tag{12}$$

Exercise 1.2 (*Throwing a dice*) Throw a fair dice with f faces n times. What's the prob to never get the same result twice?

General strategy

- Identify sample space Ω (write in set-theoretic notation!) and its cardinality $|\Omega|$
- Identify event $A \subseteq \Omega$ (write in set-theoretic notation!) and its cardinality |A|
- Uniform probability? If so, use $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$

Let $\mathcal{N} = \{1,...,n\}$ and $\mathcal{F} = \{1,...,f\}$. The sample space is

$$\Omega = \{ \omega = (\omega_1, ..., \omega_n) : \omega_i \in \mathcal{F} \text{ for all } i \in \mathcal{N} \} = \mathcal{F}^n$$
(13)

with cardinality

$$|\Omega| = |\mathcal{F}^n| = |\mathcal{F}|^n = f^n \tag{14}$$

Endow the sample space with the uniform probability (since every outcome of the experiment is equiprobable).

The event we're looking at is

$$A = \left\{ \omega \in \Omega : \omega_i \neq \omega_j \text{ for all } i \neq j \in \mathcal{N} \right\}$$
 (15)

Clearly if n > f then $\mathbb{P}(A) = 0$. Let $n \leq f$. The (uniform) probability of the event A is $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$, with

|A| = # of ways to choose and order n elements out of f

$$=\underbrace{f(f-1)...}_{n} = f(f-1)...(f-n+1) = \frac{f!}{(f-n)!}$$
 (16)

$$\mathbb{P}(A) = \frac{f!}{f^n(f-n)!} \tag{17}$$

Exercise 1.3 (Birthday paradox) What is the probability that at least 2 people out of n have the same birthday? (Assume: uniform birth probability and year with y number of days).

Quick solution

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\underbrace{\text{no two people have the same birthday}}_{\text{Ex. 2}}\right)$$

$$= 1 - \underbrace{\frac{y!}{y^n(y-n)!}}$$
(18)

Formal solution Let $\mathcal{N}=\{1,...,n\}$ and $\mathcal{Y}=\{1,...,y\}$ with $n\leq y.$ The sample space is

$$\begin{split} \Omega &= \text{distributions of possible birthdays of } n \text{ people} \\ &= \{\omega = (\omega_1, ..., \omega_n) : \omega_i \in \mathcal{Y} \text{ for all } i \in \mathcal{N}\} = \mathcal{Y}^n \end{split} \tag{19}$$

where ω_i is the birthday of the *i*-th person. The cardinality of the sample space is

$$|\Omega| = |\mathcal{Y}^n| = |\mathcal{Y}|^n = y^n \tag{20}$$

The event we're looking at is

$$A = \left\{ \omega \in \Omega : \exists i \neq j \in \mathcal{N} : \omega_i = \omega_j \right\} \tag{21}$$

Note that this is the complementary event to the event defined in Equation 15 of Exercise 2. Thus we can compute its probability as

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c) \tag{22}$$

in agreement with Equation 18.

Figure 4: Birthday paradox probability. Code available.

Exercise 1.4 (Same birthday as the prof) What is the probability that at least 1 student out of n has the same birthday of the prof? (Assume: uniform birth probability and year with y number of days).

Quick solution

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\underbrace{\text{nobody has the prescribed birth date}}\right)$$

$$= 1 - \left(\frac{y-1}{y}\right)^n$$
 (23)

Formal solution 1 As above $\mathcal{N}=\{1,...,n\}$ and $\mathcal{Y}=\{1,...,y\}$ with $n\leq y$. The sample space is $\Omega=\mathcal{Y}^{n+1}$, that is the set of possible birthdays of n+1 people, the (n+1)-th being the prof. Its cardinality is $|\Omega|=y^{n+1}$. The event we're looking at is

$$A = \{ \omega \in \Omega : \exists i \in \mathcal{N} : \omega_i = \omega_{n+1} \}$$
 (24)

with complementary event

$$A^{c} = \{ \omega \in \Omega : \omega_{i} \neq \omega_{n+1} \forall i \in \mathcal{N} \}$$
 (25)

As usual $\mathbb{P}(A)=1-\mathbb{P}(A^c)=1-\frac{|A^c|}{|\Omega|},$ with

$$|A^c| = \underbrace{y}_{\text{prof}} \cdot \underbrace{(y-1)^n}_{\text{students}}$$
 (26)

So, $\mathbb{P}(A)=1-rac{y(y-1)^n}{y^{n+1}}=1-\left(rac{y-1}{y}
ight)^n$, in agreement with Equation 23.

Formal solution 2 Using the probability of the complementary event is often the smartest way to proceed, but for the sake of completeness let's see how to get the same result directly. Let A_j be the event "exactly j students out of n have the same birthday as the prof". The event we look at then is

$$A = \sqcup_{j \in \mathcal{N}} A_j \tag{27}$$

with probability (cf Equation 2)

$$\mathbb{P}(A) = \sum_{j \in \mathcal{N}} \mathbb{P}(A_j) = \frac{\sum_{j \in \mathcal{N}} |A_j|}{|\Omega|}$$
 (28)

The cardinality of A_i is

$$|A_{j}| = \underbrace{1...1}_{j \text{ times}} \cdot \underbrace{(y-1)...(y-1)}_{n-j \text{ times}} \cdot \underbrace{y}_{\text{prof}} \cdot \underbrace{\underbrace{\binom{n}{j}}_{\text{number of ways to choose } j \text{ elements out of } n}}_{\text{number of ways to choose } j \text{ elements out of } n$$

$$= y(y-1)^{n-j} \binom{n}{j}$$
(29)

By an application of the binomial theorem (Equation 11) and a short manipulation,

$$\sum_{i=1}^{n} |A_j| = y(y^n - (y-1)^n)$$
(30)

which leads back to Equation 23.

Bibliography