An electronics company periodically imports shipments of a certain large part used as a component in several of its products. The size of the shipment varies depending upon production schedules. For handling and distribution to assembly plants, shipments of size 250 thousand parts or less are sent to warehouse A; larger shipments are sent to warehouse B since this warehouse has specialised equipment that provides greater economies of scale for large shipments.

Coefficients ^a								
		Unstandardized Coefficients		Standardized Coefficients				
Model		В	Std. Error	Beta	t	Sig.		
1	(Constant)	8.782	1.116		7.868	.000		
	х	.007	.004	.481	1.552	.159		

a. Dependent Variable: y

Suppose that there are two linear regressions here (dropping ε as it is irrelevant to calculations):

$$\begin{cases} y = \beta_1 + \beta_2 x ; & x \le C \\ y = A + (\beta_2 + \beta_3) x ; & x > C \end{cases}$$

At point *C*:

$$\beta_1 + \beta_2 C = A + (\beta_2 + \beta_3)C$$

Simplify and find A

$$A = \beta_1 - \beta_3 C$$

Substitute for *A* in the equations, introducing a dummy variable *D*:

$$\begin{cases} y = \beta_1 + \beta_2 x ; & x \le C, D = 0 \\ y = (\beta_1 - \beta_3 C) + (\beta_2 + \beta_3) x ; & x > C, D = 1 \end{cases}$$

Now combine these two equations into one by the help of *D*:

$$y = \beta_1 + \beta_2 x + \beta_3 (x - C)D$$

A formulation called **Piecewise Regression**.

Back to the example:

*Shipment week 6.sav [DataSet2] - IBM SPSS Statistics Data Editor							
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze Dir	ect <u>M</u> arketing	Graphs Utilitie	es Add- <u>o</u> ns	
			ı 🎬 🖁		<u> </u>	5 E	
15:							
	у	х	x_250	D	Z	var	
1	11.95	225	-25	0	0		
2	10.80	350	100	1	100		
3	8.93	150	-100	0	0		
4	10.98	200	-50	0	0		
5	10.03	175	-75	0	0		
6	10.13	180	-70	0	0		
7	11.50	325	75	1	75		
8	12.00	290	40	1	40		
9	9.80	400	150	1	150		
10	7.97	125	-125	0	0		
11							
12							

Model Summary

				Std. Error of the
Model	R	R Square	Adjusted R Square	Estimate
1	.999ª	.998	.997	.07307

a. Predictors: (Constant), z, x

b. Dependent Variable: y

Coefficients^a

	Unstandardized Coefficients		Standardized Coefficients		
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	3.014	.140		21.490	.000
x	.040	.001	2.840	52.891	.000
z	061	.001	-2.516	-46.857	.000

a. Dependent Variable: y

Therefore, estimated equations are:

$$\begin{cases} \hat{y} = 3.014 + .040x ; & x \le 250 \\ \hat{y} = (3.014 - 250(-.061)) + (.040 - .061)x = 18.264 - .021x ; & x > 250 \end{cases}$$

