

[Response rewritten]

I think I was too confusing, I apologize for that. Now I am trying to give a proper answer.

We know that median minimize the L_1 norm. The formula is

$$L_1 = rg \min_{y \in \mathbb{R}} \sum_{i=1}^n |x_i - y|$$

Also the mean minimize the L_2 norm. Again, the formula is

$$L_2 = rg \min_{y \in \mathbb{R}} \sum_{i=1}^n (x_i - y)^2$$

In plain English we say that the median minimize the sum of distances and the mean minimize the sum of squares of those distances. We note also that we are in \mathbb{R} .

My idea is that because we are in \mathbb{R} , the distance function can be any particular case of *p-norm*, the result would be the same. So I generalize by saying that the distance is *p-norm* (it might be any type of distance in fact) and to finish quicker we move to \mathbb{R}^m at the same time

$$L_1 = \argmin_{y \in \mathbb{R}^m} \sum_{i=1}^n |(\sum_{j=1}^m (x_{i,j}^p - y_j^p))^{\frac{1}{p}}| = \argmin_{y \in \mathbb{R}^m} \sum_{i=1}^n \|x_i - y\|_p$$

What is important here is that it does not matter what is the value for p, it will be an L_1 . [Note, as suggested by @amoeba, there are two norms, one inside another; the first one is L_1 applied on distances, and a nested one applied on the elements of the vectors in \mathbb{R}^m 1.

Going back to your original question, the *geometric median* is defined as the point in Euclidean space which minimize the sum of distances. I believe the reason for the word geometric comes from Euclidean space and Euclidean distance (which is $\|.\|_2$) and minimize the sum of distances (not the squares as in the case of an L_2 estimator), so

$$GM = L_1 = rg \min_{y \in \mathbb{R}^m} \sum_{i=1}^n \|x_i - y\|_2$$

As a final note we might choose to minimize:

- the sum of Manhattan distances (L₁ and ||. ||₁ as distance)
- the sum of squares of Manhattan distances (L_2 and $\|.\|_1$ as distance)
- · the sum of Euclidean distances (geometric median)
- the sum of squares of Euclidean distances (L_2 and $\|.\|_2$ as distance) and so on.

Share Cite Improve this answer Follow

edited Aug 27 '14 at 22:58

answered Aug 26 '14 at 6:27

6,190 🗐 24 🗐 44

1 First, all metrics by definition are non-negative so most of the absolute values are irrelevant. Second, this answer doesn't make any sense to me. Please see my addendum to the question for refutation. I am not the downvoter but I am very inclined to do so. – Fixed Point | Aug 26 '14 at 22:49 /

(You got in here too fast for me, Fixed!) I downvoted this reply because it confuses the issue. When an L_p norm is of concern, as is the case for the median, a Euclidean (L_2) norm is irrelevant. Although there appears to be a correct answer buried here, it is hard to find because of the references to Euclidean space. – whuber Φ Auq 26 '14 at 22:54

@whuber I don't agree with this comment. The norm is very relevant. In a dimension higher than one, the L_1 minimizer will be different than an L_2 minimizer which will be different than an L_3 minimizer... which will be different than an L_∞ minimizer. - Fixed Point Aug 26 '14 at 23:06

 \mathbb{C} whuber Repeating, in \mathbb{R} , all p-norms are equal so the univariate median minimizes L_1 and L_2 and all other L_p norms. The geometric median, which is one generalization of the univariate median to higher dimensions, minimizes L_2 distance which is also called the Euclidean distance. The geometric median does NOT minimize L_2 distance. Take a look at wikinedia or any of your favorite papers thooks talking about multivariate.

Linked

38 Is there an accepted definition for the median of a sample on the plane, or higher ordered spaces?

Related

- 9 Expression for the median of a sum of half-Cauchy random variables
- When to use sample median as an estimator for the median of a lognormal distribution?
- 6 Is the sample mean a better point estimate of the population median than the sample median?
- Why is the James-Stein estimator called a "shrinkage" estimator?
- 0 Why does the formula for the median assume continous classes (grouped data)?
- Proof that posterior median is the Bayes estimate of absolute loss?

Hot Network Questions

- Can you create a fake (malicious) Ubuntu iso
- What has the US and NATO done in Afghanistan for 20+ years?
- Continuity error in Jackson's The Fellowship of the
- Where does pseudo force act at?
- Take me off the endless email threads
- Why do non-LDS Christians accept the testimonies of the apostles but reject the testimonies of the 3 & 8 witnesses to the golden plates?
- Why is the "discount rate", charged to merchants in card transactions, called that?
- Can you say "bald hill" to mean a hill that has no
- How to align a set of equations with padding?
- ux What are pros/cons of using buttons instead of plain links to download a document
- Would interstellar space piracy be possible under these conditions?
- S Is there a microcontroller with zero interrupt jitter?
- III Is it normal for a full-time instructor to be required to be present physically on campus 40 hours a
- What is the meaning of 再 before adjectives?
- Is there a way to pause Stardew Valley in multiplayer?
- Why hard to do one-sided Wald test for multiple linear hypotheses?
- Exactly how smart are Demon Lords? Demogorgon in particular
- Exactly why does Starship need to be this big for interplanetary travel?
- The car plate problem: generate from AAA0001 to ZZZ9999 skipping the 0000
- Material in the properties of the properties

Email

Required, but never shown

f Sign up using Facebook