トップハットビーム整形メタサーフェスの開発 Development of top hat shaping metasurface for visible light

東京農工大学大学院 岩見研究室 山田 遼太

研究背景

- ロトップハット ビーム
- ✓ 強度が均一な照射光
- ✓ 光センサやレーザ加工、イメージング の性能向上に有効

Alexander Laskin et al., SPE (2013)

- ロトップハット ビーム整形手法
- ✓ 屈折型光学素子

✓ 回折光学素子(DOE)

薄型化・低難度加工の両方を実現したビーム整形素子が求められている。

研究目的

ロメタサーフェス

- 誘電体の柱状構造の配列からなる
- 柱で光の進み(位相)を自在に制御
- あらゆる光学機能を実現可能
- 超薄型かつ加工が容易

■トップハットビーム整形メタサーフェス

設計

□柱の寸法決定

- 材料:窒化シリコン(Si₃N₄)
- 有限要素法を用いた位相遅延量と透過率の計算 高さhを1500 nmとして柱の幅dを変化

計算結果から柱の寸法を決定

✓ 高さ h: 1500 nm

✓ ピッチ *p* : 340 nm

✓ 幅 *d* : 80 ~ 225 nm

□ メタサーフェスの設計

メタサーフェスのCADデータを作成

設計したメタサーフェスの電磁場解析

ビーム整形機能を持ったメタサーフェスの設計に成功

□ 製作手順

(a) SiNを製膜したガラス基板

(b) 電子線描画

(c) クロム蒸着

EBレジスト (250 nm)

SiN柱

(d) レジスト除去

□ 製作結果

メタサーフェスの製作に成功

完成したメタサーフェス

電子顕微鏡画像

評価・まとめ

□成果

- トップハットビーム整形メタサーフェスの製作
- メタサーフェスによる均一強度な透過光パターンを確認

□今後の展望

■ 0次光の低減に向けた微細構造の最適化を行う。