

Temperature Data Analysis Notebook

This notebook was created with the help of **Devra Al**

Few may presume that climate change statistics are dry; our dataset will show that the numbers tell a story full of surprises and predictions. If you find this notebook useful, please upvote it.

linkcode

Table of Contents

- 1. Data Loading
- 2. Data Cleaning and Preprocessing
- 3. Exploratory Data Analysis
- 4. Visualization and Analysis
- 5. Prediction and Model Building
- 6. Conclusion and Future Work

In [1]:

Import and setup libraries

import warnings

warnings.filterwarnings('ignore') import numpy as np import pandas as pd import matplotlib matplotlib.use('Agg') # Necessary backend setting import matplotlib.pyplot as plt plt.switch_backend('Agg') # switch backend if only plt imported import seaborn as sns sns.set(style='whitegrid', palette='muted', color_codes=True) from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score, mean_squared_error # Ensure inline plotting (Kaggle specific) %matplotlib inline # Set a random seed for reproducibility RANDOM_STATE = 42 print('Libraries imported and backend configured.') Libraries imported and backend configured. **Data Loading** In this section we load the temperature dataset. The data contains yearly records per country and features such as average temperature, CO2 emissions, sea level rise, rainfall, and more. Although the year is an integer, it represents a time component so it can be treated as a date-type feature when necessary.

In [2]:

Load the dataset

```
file_path = '/kaggle/input/temperature/temperature.csv'
try:
    df = pd.read_csv(file_path, encoding='ascii', delimiter=',')
    print('Data loaded successfully, sample records below:')
    display(df.head())
```

except Exception as error:

print('Error loading the dataset. Check file path or encoding settings.')
print(error)

Data loaded successfully, sample records below:

	Y e ar	Cou	Avg_Temp erature_d egC	CO2_Emission s_tons_per_ca pita	Sea_Lev el_Rise_ mm	Rainf all_m m	Popu latio n	Renewabl e_Energy_ pct	Extreme_W eather_Eve nts	Forest_ Area_p ct
0	2 0 0 6	UK	8.9	9.3	3.1	1441	5309 1123 0	20.4	14	59.8
1	2 0 1 9	USA	31.0	4.8	4.2	2407	1073 6434 4	49.2	8	31.0
2	2 0 1 4	Fran ce	33.9	2.8	2.2	1241	4411 0175 8	33.3	9	35.5
3	2 0 1 0	Arg enti na	5.9	1.8	3.2	1892	1069 6695 79	23.7	7	17.7
4	2 0	Ger man y	26.9	5.6	2.4	1743	1240 7917 5	12.5	4	17.4

Y e ar	Cou ntry	Avg_Temp erature_d egC	CO2_Emission s_tons_per_ca pita	Sea_Lev el_Rise_ mm	Rainf all_m m	•	Renewabl e_Energy_ pct	Extreme_W eather_Eve nts	Forest_ Area_p ct
0 7									

Data Cleaning and Preprocessing

We start by checking for missing values and potential data type issues. It is common for datasets to have imperfections and while the schema here is defined, errors may occur during the realization. Any necessary type conversions are done in this step. Enjoy the beauty of clean data.

```
In [3]:
# Basic data exploration
print('Dataset shape:', df.shape)
print('\nDataset info:')
df.info()
# Check for missing values
print('\nMissing values per column:')
print(df.isnull().sum())
# Handle missing values if any (using median imputation for numeric columns as an example)
numeric_cols = df.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
  if df[col].isnull().sum() > 0:
    median val = df[col].median()
    df[col].fillna(median val, inplace=True)
    print(f'Filled missing values in {col} with median value {median_val}')
# A quick check of data types
print('\nData types after cleaning:')
print(df.dtypes)
```

Dataset shape: (1000, 10) Dataset info: <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 10 columns): # Column Non-Null Count Dtype 0 Year 1000 non-null int64 1 Country 1000 non-null object 2 Avg_Temperature_degC 1000 non-null float64 3 CO2_Emissions_tons_per_capita 1000 non-null float64 4 Sea_Level_Rise_mm 1000 non-null float64 5 Rainfall_mm 1000 non-null int64 6 Population 1000 non-null int64 1000 non-null float64 7 Renewable_Energy_pct 1000 non-null int64 8 Extreme_Weather_Events 9 Forest Area pct 1000 non-null float64 dtypes: float64(5), int64(4), object(1) memory usage: 78.2+ KB Missing values per column: Year Country 0 Avg_Temperature_degC

CO2_Emissions_tons_per_capita 0

Sea_Level_Rise_mm

Rainfall mm

0

0

Population 0 Renewable_Energy_pct Extreme_Weather_Events 0 Forest_Area_pct 0 dtype: int64 Data types after cleaning: Year int64 Country object Avg_Temperature_degC float64 CO2_Emissions_tons_per_capita float64 Sea_Level_Rise_mm float64 Rainfall_mm int64 int64 Population Renewable_Energy_pct float64 int64 Extreme_Weather_Events float64 Forest_Area_pct dtype: object **Exploratory Data Analysis** Let us now dive into the numerical trends, distributions, and correlations present in our dataset. Notice how several features interact with one another: understanding these relationships will help us in building an effective predictor. In [4]: # Descriptive statistics print('Descriptive statistics for numerical features:') display(df.describe()) # Correlation analysis on numeric data numeric_df = df.select_dtypes(include=[np.number])

```
if numeric_df.shape[1] >= 4:
  plt.figure(figsize=(12, 10))
  corr = numeric_df.corr()
  sns.heatmap(corr, annot=True, cmap='coolwarm', fmt='.2f')
  plt.title('Correlation Heatmap of Numeric Features')
  plt.tight_layout()
  plt.show()
else:
  print('Not enough numeric columns for a correlation heatmap.')
# Pairplot for a subset of numeric columns to inspect bivariate relationships
sample_cols = [col for col in ['Year', 'Avg_Temperature_degC', 'CO2_Emissions_tons_per_capita',
                 'Sea_Level_Rise_mm', 'Rainfall_mm'] if col in numeric_df.columns]
if len(sample_cols) >= 2:
  sns.pairplot(df[sample_cols].dropna())
  plt.suptitle('Pairplot of Selected Numeric Features', y=1.02)
  plt.show()
else:
  print('Not enough variables for a meaningful pairplot.')
Descriptive statistics for numerical features:
```

	Year	Avg_Temp erature_d egC	CO2_Emission s_tons_per_ca pita	Sea_Lev el_Rise_ mm	Rainf all_m m	Popul ation	Renewabl e_Energy_ pct	Extreme_W eather_Eve nts	Forest_ Area_p ct
co un t	1000. 0000 00	1000.0000	1000.000000	1000.00 0000	1000. 0000 00	1.000 000e+ 03	1000.0000	1000.00000	1000.0 00000
m ea n	2011. 4320 00	19.883100	10.425800	3.00960 0	1738. 7610 00	7.053 830e+ 08	27.300500	7.291000	40.572 000

	Year	Avg_Temp erature_d egC	CO2_Emission s_tons_per_ca pita	Sea_Lev el_Rise_ mm	Rainf all_m m	Popul ation	Renewabl e_Energy_ pct	Extreme_W eather_Eve nts	Forest_ Area_p ct
st d	7.147 199	8.542897	5.614665	1.14608 1	708.9 7661 6	4.093 910e+ 08	12.970808	4.422655	17.398 998
mi n	2000. 0000 00	5.000000	0.500000	1.00000 0	501.0 0000 0	3.660 891e+ 06	5.100000	0.000000	10.100 000
25 %	2005. 0000 00	12.175000	5.575000	2.00000 0	1098. 7500 00	3.436 242e+ 08	16.100000	3.000000	25.600 000
50 %	2012. 0000 00	20.100000	10.700000	3.00000 0	1726. 0000 00	7.131 166e+ 08	27.150000	8.000000	41.150 000
75 %	2018. 0000 00	27.225000	15.400000	4.00000 0	2362. 5000 00	1.073 868e+ 09	38.925000	11.000000	55.800 000
m ax	2023. 0000 00	34.900000	20.000000	5.00000 0	2999. 0000 00	1.397 016e+ 09	50.000000	14.000000	70.000 000

Pairplot of Selected Numeric Features

Visualization and Analysis

Time to visualize categorical trends and distribution shapes. We apply several plot types: histograms for distribution, box plots for outlier detection, and count plots for categorical frequencies.

In [5]:

Histogram of Average Temperature

```
plt.figure(figsize=(8, 5))
sns.histplot(df['Avg_Temperature_degC'].dropna(), kde=True, color='skyblue')
plt.title('Distribution of Average Temperature (°C)')
plt.xlabel('Avg_Temperature_degC')
plt.ylabel('Count')
plt.tight_layout()
plt.show()
# Box Plot for Avg Temperature by Country
plt.figure(figsize=(12, 6))
sns.boxplot(x='Country', y='Avg_Temperature_degC', data=df)
plt.title('Average Temperature by Country')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# Count plot for Extreme Weather Events
plt.figure(figsize=(8, 5))
sns.countplot(x='Extreme_Weather_Events', data=df, palette='viridis')
plt.title('Count of Extreme Weather Events')
plt.xlabel('Number of Extreme Weather Events')
plt.tight layout()
plt.show()
# Grouped Barplot: Renewable Energy vs. Forest Area by Country (aggregated)
agg_df = df.groupby('Country')[['Renewable_Energy_pct', 'Forest_Area_pct']].mean().reset_index()
plt.figure(figsize=(12, 6))
sns.barplot(x='Country', y='Renewable Energy pct', data=agg df, color='teal', label='Renewable Energy (%)')
```

sns.barplot(x='Country', y='Forest_Area_pct', data=agg_df, color='salmon', label='Forest Area (%)')
plt.title('Average Renewable Energy and Forest Area Percentage by Country')
plt.xticks(rotation=45)
plt.legend()
plt.tight_layout()
plt.show()

Prediction and Model Building

In this section we build a simple predictor. Feeling ambitious, we model the average temperature using a selection of available features. We use a Linear Regression model and evaluate the performance using the R² score and RMSE. Occasionally, modeling surprises us if the signal is weak. The predictor might be improved with further feature engineering in future work.

In [6]:

Prepare data for prediction

target = 'Avg_Temperature_degC'

Choose features: excluding Country since it's categorical, although we could encode it

features = ['Year', 'CO2_Emissions_tons_per_capita', 'Sea_Level_Rise_mm',

'Rainfall_mm', 'Population', 'Renewable_Energy_pct',

'Extreme_Weather_Events', 'Forest_Area_pct']

Drop rows with missing target or features

model_df = df[features + [target]].dropna()

Define X and y

```
X = model_df[features]
y = model_df[target]
# Split into training and testing datasets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=RANDOM_STATE)
print('Data split into training and test sets.')
# Instantiate and train the Linear Regression model
Ir_model = LinearRegression()
lr_model.fit(X_train, y_train)
# Make predictions on the test set
y_pred = Ir_model.predict(X_test)
# Evaluate model performance
r2 = r2_score(y_test, y_pred)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print(f'Linear Regression R2 score: {r2:.3f}')
print(f'Linear Regression RMSE: {rmse:.3f}')
# Plot actual vs predicted values
plt.figure(figsize=(8, 5))
plt.scatter(y_test, y_pred, alpha=0.7, color='navy')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2)
plt.title('Actual vs Predicted Average Temperature')
plt.xlabel('Actual Temperature (°C)')
plt.ylabel('Predicted Temperature (°C)')
plt.tight layout()
```

plt.show()

Data split into training and test sets.

Linear Regression R² score: 0.006

Linear Regression RMSE: 8.298

Conclusion and Future Work

This notebook analyzed temperature data from multiple countries over the years. We explored data cleaning, performed several visualizations, and built a Linear Regression predictor to forecast average temperatures based on environmental indicators. Although the predictor provides a baseline performance, future work could include:

- More feature engineering (e.g., encoding country information, temporal trends analysis)
- Experimenting with advanced models such as Random Forests or Gradient Boosted Trees
- Incorporating more domain-specific metrics or external data sources

We hope you found this analysis engaging and insightful. Please upvote if you found it useful. Happy data exploring!