

Practical Network Defense

Master's degree in Cybersecurity 2020-21

IPv6: addressing

Angelo Spognardi spognardi di.uniroma 1.it

Dipartimento di Informatica Sapienza Università di Roma

Material taken from Rick Graziani IPv6 courses

IPv6 Fundamentals: A Straightforward Approach to Understanding IPv6

- By Rick Graziani
- ISBN-10: 1-58714-313-5

IPv6 Fundamentals LiveLessons: A Straightforward Approach to Understanding IPv6

- By Rick Graziani
- ISBN-10: 1-58720-457-6

IPv6

- How many is 340 undecillion?
- 340 undecillion addresses is 10 nonillion addresses per person!
- Internet is a much different place and will continue to evolve:
 - Mobile devices
 - Video on demand
 - Internet of Everything
 - A critical part in how we "live, work, play, and learn".

10 nonillion

= 10,000,000,000,000,000,000,000,000,000

IPv6

- IPv6 is not just about more addresses:
 - Stateless autoconfiguration
 - End-to-end reachability without private addresses and NAT
 - Better support for mobility
 - Peer-to-peer networking easier to create and maintain, and services such as VoIP and Quality of Service (QoS) become more robust.

IPv6: A Brief History

- 1993, IETF announced a call for white papers with RFC 1550 *IP: Next Generation (IPng) White Paper Solicitation*.
- IETF chose Simple Internet Protocol Plus (SIPP) written by Steve Deering, Paul Francis, and Bob Hinden but changed the address size from 64 bits to 128 bits.
- 1995, IETF published RFC 1883 Internet Protocol, Version 6 (IPv6)
 Specification later obsoleted by RFC 2460 in 1998.

What About IPv5?

The ST packet header is not constrained to be compatible with the IP packet header, except for the IP Version Number (the first four bits) that is used to distinguish ST packets (IP Version 5) from IP packets (IP Version 4). The ST packets, or protocol data units (PDUs), can be encapsulated in IP either to provide connectivity (possibly with degraded service) across portions of an internet that do not provide support for ST, or to allow access to services such as security that are not provided directly by ST.

- In the late 1970s, a family of experimental protocols was developed intended to provide quality of service (QoS) for real-time multimedia applications such video and voice.
- Known as Internet Stream Protocol (ST) and later ST2 (RFC 1190 and RFC 1819).
- Although it was never known as IPv5, when encapsulated in IP, ST uses IP Protocol version 5.

The Need for IPv6

 We are running out of IPv4 address space.

Monday, January 31, 2011
 IANA allocated the last /8
 IPv4 address blocks to the RIRs.

 RIR's have very few, if any IPv4 address left.

 Many ISPs are severely limited and some have already run out.

Source: www.potaroo.net/tools/ipv4

Running Out of IPv4

WORLD INTERNET USAGE AND POPULATION STATISTICS JUNE 30, 2014 - Mid-Year Update

World Regions	Population (2014 Est.)	Internet Users Dec. 31, 2000	Internet Users Latest Data	Penetration (% Population)	Growth 2000-2014	Users % of Table
<u>Africa</u>	1,125,721,038	4,514,400	297,885,898	26.5 %	6,498.6 %	9.8 %
<u>Asia</u>	3,996,408,007	114,304,000	1,386,188,112	34.7 %	1,112.7 %	45.7 %
<u>Europe</u>	825,824,883	105,096,093	582,441,059	70.5 %	454.2 %	19.2 %
Middle East	231,588,580	3,284,800	111,809,510	48.3 %	3,303.8 %	3.7 %
North America	353,860,227	108,096,800	310,322,257	87.7 %	187.1 %	10.2 %
Latin America / Caribbean	612,279,181	18,068,919	320,312,562	52.3 %	1,672.7 %	10.5 %
Oceania / Australia	36,724,649	7,620,480	26,789,942	72.9 %	251.6 %	0.9 %
WORLD TOTAL	7,182,406,565	360,985,492	3,035,749,340	42.3 %	741.0 %	100.0 %

 The regions with the largest populations have the lowest percentages of people connected to the Internet

Graphic from Internet World Stats, www.internetworldstats.com/stats.htm

- NAT has been used to help "hide" customers and works for many client-initiated applications.
- However, NAT also creates some issues, like peer-to-peer networking and accessing our "hidden" systems from other networks.
- Using NAT to "hide" IPv6 networks has been the source of some debate.
- IETF continues to state that NAT is not a security feature.

Benefits of IPv6

The benefits of IPv6 include:

- Larger address space
- Stateless autoconfiguration
- End-to-end reachability without private addresses and NAT
- Better mobility support
- Peer-to-peer networking easier to create and maintain, and services such as VoIP and Quality of Service (QoS) become more robust.
- The "killer application" for the Internet is the Internet itself.

Graphic from IPv6 Forum, www.ipv6ready.org

Hex and IPv6 Address Representation

The Beauty of Hexadecimal: 4 bits = 1 hex digit

		Binary			Binary
<u>Dec</u>	<u>Hex</u>	8421	Dec	<u>Hex</u>	8421
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	A	1010
3	3	0011	11	В	1011
4	4	0100	12	C	1100
5	5	0101	13	D	1101
6	6	0110	14	E	1110
7	7	0111	15	F	1111

2001:0DB8:AAAA:1111:0000:0000:0000:0100

IPv6 addresses are 128-bit addresses represented in:

- Hexadecimal: 1 hex digit = 4 bits
- Eight 16-bit segments or "hextets" (not a formal term) between 0000 and FFFF
- Separated by colons
- Reading and subnetting IPv6 is easier than IPv4.... Almost always!

Number of IPv6 Addresses

Number name Scientific Notation

Number of zeros

1,000

IPv4 4.3 billion 1 Thousand 10³

1 Million 10⁶

1 Septillion

1 Octillion

1 Nonillion

1 Decillion

1 Undecillion

1,000,000

1 Billion 10⁹ 1,000,000,000

1 Trillion 10¹² 1,000,000,000

1 Quadrillion 10¹⁵ 1,000,000,000,000

1 Quintillion 10¹⁸ 1,000,000,000,000,000

1 Sextillion 10²¹ 1,000,000,000,000,000,000

10²⁴ 1,000,000,000,000,000,000,000

10²⁷ 1,000,000,000,000,000,000,000,000

10³⁰ 1,000,000,000,000,000,000,000,000,000

340,282,366,920,938,463,463,374,607,431,768,211,456

10³³

10³⁶

IPv4 addresses:

4.3 billionIPv6 addresses:

340 undecillion

IPv6 340 undecillion

Two Rules for Compressing IPv6 Addresses Rule 1: Omitting Leading 0s

- Two rules for reducing the size of written IPv6 addresses.
- First rule: Leading zeroes in any 16-bit segment do not have to be written.
- *Only* leading 0s can be excluded, trailing 0s must be included.

```
2001 : ODB8 : O001 : 1000 : O000 : Oef0 : bc00
```

2001 : ODB8 : O10d : O00a : O0dd : c000 : e000 : 0001

2001 : ODB8 : 0000 : 0000 : 0000 : 0000 : 0500

Two Rules for Compressing IPv6 Addresses Rule 1: Omitting Leading 0s

- Two rules for reducing the size of written IPv6 addresses.
- **First rule:** Leading zeroes in any 16-bit segment do not have to be written.
- *Only* leading 0s can be excluded, trailing 0s must be included.

```
ODB8 : 0001 : 1000 : 0000 :
2001 :
                                   0000 : 0ef0 : bc00
                 1:
2001 :
        DB8
                     1000 :
                               0
                                           ef0 : bc00
2001 : ODB8 : O10d : O00a : O0dd : c000 : e000 : 0001
                            dd : c000 : e000 :
2001:
        DB8 :
               10d:
                        a :
              0000 : 0000 : 0000 :
                                   0000 :
2001 : ODB8 :
2001
        DB8
                 0
                        0
                               0
                                                   500
```


- The second rule can reduce this address even further:
- **Second rule:** Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented with a double colon (::).

2001 : ODB8 : 1000 : 0000 : 0000 : 0000 : 0000 : 0001

- The second rule can reduce this address even further:
- **Second rule:** Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented with a double colon (::).

Second rule

2001 : ODB8 : 1000 : 0000 : 0000 : 0000 : 0001 : 0001 : DB8 : 1000 : 1

- The second rule can reduce this address even further:
- **Second rule:** Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented with a double colon (::).

	Fi	rst rule —							Sec	ond rule)		F	irst rule	
2001	:	ODB8	:	1000	:	0000	•	0000	•	0000	•	0000	:	0001	
2001	:	DB8	:	1000	:								•	1	

• **Second rule:** Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented with a double colon (::).

	FII	rst rule —						5	Sec	ond rule)		F	irst rule	
2001	:	ODB8	•	1000	:	0000	:	0000	:	0000	•	0000	:	0001	
2001	•	DB8	•	1000	:								:	1	

2001:DB8:1000:1

If there are multiple possible reductions, RFC 5952 states that **the longest** string of zeroes must be replaced with the :: and if they are equal then only **the first string of 0's** should use the :: representation.

IPv6 Global Unicast Address

The equivalent of public IPv4 address

IPv6 Address Types

IPv6 does not have a "broadcast" address.

IPv6 Source and Destination Addresses

- IPv6 Source Always a unicast (linklocal or GUA)
- IPv6 Destination Unicast, multicast, or anycast.

Global Unicast Address

Global Unicast Address (GUA)

- 2000::/3 (First hextet: 2000::/3 to 3FFF::/3)
- Globally unique and routable
- Similar to public IPv4 addresses
- 2001:DB8::/32 RFC 2839 and RFC 6890 reserves this range of addresses for documentation
- These are the addresses we will be referring to the most.

Global Unicast Address Range

- Global Unicast Address (GUA)
 - 2000::/3
 - Range 2000::/64 thru 3fff:ffff:ffff::/64
 - 1/8th of IPv6 address space

IANA's allocation of IPv6 address space in 1/8th sections

The remaining portion of IPv6 address space are reserved by IETF for future use.

Global Unicast Address Range

	Global Routing Prefix	Subnet ID	Interface ID
00	Range: 2000::/64 thru	3fff:fff	:fff:fff::/64

• Except under very specific circumstances, all end users will have a global unicast address.

Global Unicast Address Range

	Global Routing Prefix	Subnet ID	Interface ID
001	Range: 2000::/64 thru	3fff.fff	·fff·fff·/64

- Except under very specific circumstances, all end users will have a global unicast address.
 - Note: A host (an interface) can potentially have multiple IPv6 addresses on the same or different networks.
- Terminology:
 - Prefix equivalent to the network address of an IPv4 address
 - Prefix length equivalent to subnet mask in IPv4
 - Interface ID equivalent to host portion of an IPv4 address

Parts of a Global Unicast Address

IPv6 Global Unicast Address

- 64-bit Interface ID = 18 quintillion (18,446,744,073,709,551,616) devices/subnet
- 16-bit Subnet ID (initially recommended) = 65,536 subnets

/64 Global Unicast Address and the 3-1-4 Rule

/64 Global Unicast Address and the 3-1-4 Rule

2001:0DB8:CAFE:0001:0000:0000:0000:0100/64

/64 Global Unicast Address and the 3-1-4 Rule

Subnetting IPv6

Can you count in hex?

Just increment by 1 in Hexadecimal

Global Routing Prefix

16-bit Fixed Subnet ID

/64

Interface ID

2001:0DB8:CAFE:0000::/64

2001:0DB8:CAFE:0001::/64

2001:0DB8:CAFE:0002::/64 ...

2001:0DB8:CAFE:0009::/64

2001:0DB8:CAFE:000A::/64

3-1-4 Rule

Valid abbreviation is to remove the leading 0s:

2001:DB8:CAFE:1::/64

Static GUA Configuration


```
R1 (config) #interface gigabitethernet 0/0
R1 (config-if) #ipv6 address 2001:db8:cafe:1::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config) #interface gigabitethernet 0/1
R1 (config-if) #ipv6 address 2001:db8:cafe:2::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config) #interface serial 0/0/0
R1 (config-if) #ipv6 address 2001:db8:cafe:3::1/64
R1 (config-if) #no shutdown
R1 (config-if) #no shutdown
R1 (config-if) #no shutdown
R1 (config-if) #no shutdown
```


Link-local Unicast

IPv6 Address Types

IPv6 does not have a "broadcast" address.

Link-Local Unicast Address

- **IPv6 Source** Always a unicast
- IPv6 Destination Unicast, multicast, or anycast.
- Unicast, including a *link-local* address

Link-Local Unicast Address

- Used to communicate with other devices on the link.
- Are NOT routable off the link (network).
- Only have to be unique on the link.
- Not included in the IPv6 routing table.
- An IPv6 device must have at least a link-local address.

Link-Local Unicast Range

First 10 bits

Range: FE80: 1111 1110 1000 0000 :
FEBF: 1111 1110 1011 1111 : First hextet

- Link Network segment
- Link-local means, local to that link or network.

The remaining portion of IPv6 address space are reserved by IETF for future use.

Link-Local Unicast Address

First 10 bits

1111 1110 10xx xxxx

Remaining 54 bits

64-bit Interface ID

FE80::Interface ID

Link-local addresses are created

- Automatically :
 - FE80 (usually) First 10 bits
 - Interface ID
 - EUI-64 (Cisco routers)
 - Random 64 bits (many host operating systems)
- Static (manual) configuration Common practice for routers.

Modified EUI-64 Format (Extended Unique Identifier-64)

Verifying the PC's Link-Local Address

First 10 bits

1111 1110 10xx xxxx

Remaining 54 bits

64-bit Interface ID

EUI-64 or random 64-bit value

```
PC> ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
    Connection-specific DNS Suffix :
    Link-local IPv6 Address . . . : fe80::50a5:8a35:a5bb:66e1
    IPv4 Address . . . . . . . . : 192.168.1.101
    Subnet Mask . . . . . . . . : 255.255.255.0
    Default Gateway . . . . . : 192.168.1.1
```

 Many operating systems will use a random 64-bit Interface IDs for GUA and Link-Local IPv6 Addresses.

- Used as a source IPv6 address before a device gets one dynamically (SLAAC and DHCPv6).
 - Router's link-local address is used by devices as the default gateway.
- Routers exchange routing messages.
- Router use the link-local address as the next-hop address in the routing table: via link-local address.

will use your link-local as my default gateway,

SLAAC Stateless Address Autoconfiguration

ICMPv6 Neighbor Discover Protocol

ICMPv6 Neighbor Discovery defines 5 different packet types:

- Router Solicitation Message
- Router Advertisement Message
 Used with dynamic address allocation

- Neighbor Solicitation Message
- Neighbor Advertisement Message
 Used with address resolution (IPv4 ARP)

• Redirect Message
Similar to ICMPv4 redirect message
Router-to-Device messaging

See these processes with: R1# debug ipv6 nd

Address Resolution: IPv4 and IPv6

ARP Request: Broadcast

Address Resolution: IPv4 and IPv6

ARP Request: Broadcast

IPv6: ICMPv6 over IPv6 over Ethernet

NS: Solicited Node Multicast

NS: Multicast

Ethernet IPv6 Header ICMPv6: Neighbor Solicitation/Advertisement

Router Solicitation & Router Advertisement Messages

ICMPv6 Neighbor Discovery defines 5 different packet types:

- Router Solicitation Message
- Router Advertisement Message
 Used with dynamic address allocation

- Neighbor Solicitation Message
- Neighbor Advertisement Message
 Used with address resolution (IPv4 ARP)

• Redirect Message
Similar to ICMPv4 redirect message
Router-to-Device messaging

Dynamic IPv6 Address Allocation

Dynamic Address Allocation in IPv4

Dynamic Address Allocation in IPv6

Dynamic Address Allocation in IPv6

Router Advertisement: 3 Options

Option 1: SLAAC – No DHCPv6 (Default on Cisco routers)

"I'm everything you need (Prefix, Prefix-length, Default Gateway)"

Option 2: SLAAC + Stateless DHCPv6 for DNS address

"Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server." (DNS can be in RA)

Option 3: All addressing except default gateway use DHCPv6

"I can't help you. Ask a DHCPv6 server for all your information."

Option 1 and 2: Stateless Address Autoconfiguration

DHCPv6 Server does not maintain state of addresses

Option 3: Stateful Address Configuration

Address received from DHCPv6 Server

Router(config) # ipv6 unicast-routing

Option 1: SLAAC – No DHCPv6 (Default on Cisco routers)

"I'm everything you need (Prefix, Prefix-length, Default Gateway)"

Option 2: SLAAC + Stateless DHCPv6 for DNS address

"Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server." (DNS can be in RA)

Option 3: All addressing except default gateway use DHCPv6

"I can't help you. Ask a DHCPv6 server for all your information."

Obtaining an IPv6 Address Automatically

Obtaining an IPv6 Address Automatically

internet Protocol Version 6 (TCP/IPv6) Properties	000	Network Show All	Q
General		31017111	
You can get IPv6 settings assigned automatically if your network supports this capability Otherwise, you need to ask your network administrator for the appropriate IPv6 setting	ty.		Proxies Hardware
Obtain an IPv6 address automatically	, Key	Configure IPv4: Using DHCP	\$
Use the following IPv6 address:		IPv4 Address:	Renew DHCP Lease
IPv6 address:			Client ID: (If required)
Subnet prefix length:		Router:	(",
Default gateway:	Configure IPv4	I: Using DHCP	‡]
Obtain DNS server address automatically			H III UH III III
Use the following DNS server addresses:	IPv4 Address	5:	
Preferred DNS server:	nna 194 2 na		
Alternate DNS server:	Subnet Mask	c	DHCP Client ID
Validate settings upon exit	Adv Route	r: 02.44	
OK _			
	Configure IPv6	6: Automatically	A .
		*	nuter -

SLAAC: Stateless Address Autoconfiguration

2001:DB8:CAFE:1::/64

To: **FF02::1** (All-IPv6 devices)

From: FE80::1 (Link-local address)

Prefix: 2001:DB8:CAFE:1::

Prefix-length: /64

2

Prefix: 2001:DB8:CAFE:1::

Prefix-length: /64

Default Gateway: FE80::1

Global Unicast Address:

2001:DB8:CAFE:1: + Interface ID

Note: Domain name and DNS server list may be included if router (and end system) support RFC 6106 IPv6 RA Options for DNS Configuration.

3

EUI-64 Process or Random 64-bit value

SLAAC: Interface ID

Default OS behavior can be changed.

SLAAC: EUI-64 Option

2001:DB8:CAFE:1::/64

MAC: 00-19-D2-8C-E6-40

To: **FF02::1** (All-IPv6 devices)

From: FE80::1 (Link-local address)

Prefix: 2001:DB8:CAFE:1::

Prefix-length: /64

2

Prefix: 2001:DB8:CAFE:1::

Prefix-length: /64

Default Gateway: FE80::1

Global Unicast Address:

2001:DB8:CAFE:1: + Interface ID

Note: Domain name and DNS server list may be included if router (and end system) support RFC 6106 IPv6 RA Options for DNS

Configuration.

E 3

Process or Random 64 bit value

Modified EUI-64 Format (Extended Unique Identifier-64)

Verifying SLAAC on the PC Using EUI-64

A 64-bit Interface ID and the EUI-64 process accommodates:

- The IEEE specification for a 64-bit MAC address
- 64-bit boundary processing

SLAAC: Random 64-bit Interface ID

Verifying SLAAC on the PC Using Privacy Extension


```
PC-Windows7> ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
    IPv6 Address. . . . . . : 2001:db8:cafe:1:50a5:8a35:a5bb:66e1
    Link-local IPv6 Address . . : fe80::50a5:8a35:a5bb:66e1
    Default Gateway . . . . : fe80::1
```

Ensuring Unique Unicast Addresses

Global Unicast - 2001:db8:cafe:1:0219:d2ff:fe8c:e04c

Link-local - fe80::50a5:8a35:a5bb:66e1

Neighbor Solicitation

Not received = unique address Received = duplicate address

Neighbor Advertisement?

- SLAAC is stateless, no entity (DHCPv6 server) maintaining a state address-to-device mappings.
- How can we guarantee the address is unique?
- Duplicate Address Detection (DAD)
 - Once required for all unicast addresses (static or dynamic), RFC was updated that DAD is only recommended.
 - /64 Interface IDs!

DHCPv6 (Stateless vs Stateful)

DHCPv6

RA Message

Option 1 and 2: Stateless Address Autoconfiguration

DHCPv6 Server does not maintain state of addresses

Option 3: Stateful Address Configuration

Address received from DHCPv6 Server

Router(config) # ipv6 unicast-routing

Option 1: SLAAC – No DHCPv6 (Default on Cisco routers)

"I'm everything you need (Prefix, Prefix-length, Default Gateway)"

Option 2: SLAAC + Stateless DHCPv6 for DNS address

"Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server." (DNS can be in RA)

Option 3: All addressing except default gateway use DHCPv6

"I can't help you. Ask a DHCPv6 server for all your information."

RA Message

Option 1 and 2: Stateless Address Autoconfiguration

DHCPv6 Server does not maintain state of addresses

Option 3: Stateful Address Configuration

Address received from DHCPv6 Server

Router(config) # ipv6 unicast-routing

Option 1: SLAAC – No DHCPv6 (Default on Cisco routers)

"I'm everything you need (Prefix, Prefix-length, Default Gateway)"

Option 2: SLAAC + Stateless DHCPv6 for DNS address

"Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server." (DNS can be in RA)

Option 3: All addressing except default gateway use DHCPv6

"I can't help you. Ask a DHCPv6 server for all your information."

Router as a Stateless DHCPv6 Server

ICMPv6 Router Solicitation

1

2 ICMPv6 Router Advertisement

- Option 2: Stateless DHCPv6
- O Flag = 1, M Flag = 0

Note: Domain name and DNS server list may be included if router (and end system) support RFC 6106 IPv6 RA Options for DNS Configuration.

I created my own address (Stateless), and have the default gateway, but I need a DNS address...

INFORMATION REQUEST

To all DHCPv6 Servers

5

REPLY Unicast

ADVERTISE

Unicast

SLAAC for Addressing & DNS for Other Information

RA Message: Stateless DHCPv6
To: FF02::1 (All-IPv6 devices)
From: FE80::1 (Link-local address)
Prefix: 2001:DB8:CAFE:1::
Prefix-length: /64
Other Configuration Flag: 1

MAC: 00-19-D2-8C-E0-40

Prefix: 2001:DB8:CAFE:1::
Prefix-length: /64
Default Gateway: FE80::1
Global Unicast Address:

2001:DB8:CAFE:1: + Interface ID

RA Message

Option 1 and 2: Stateless Address Autoconfiguration

DHCPv6 Server does not maintain state of addresses

Option 3: Stateful Address Configuration

Address received from DHCPv6 Server

Router(config) # ipv6 unicast-routing

Option 1: SLAAC – No DHCPv6 (Default on Cisco routers)

"I'm everything you need (Prefix, Prefix-length, Default Gateway)"

Option 2: SLAAC + Stateless DHCPv6 for DNS address

"Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server." (DNS can be in RA)

Option 3: All addressing except default gateway use DHCPv6

"I can't help you. Ask a DHCPv6 server for all your information."

Stateful DHCPv6

I need to get all my addressing from DHCPv6, HOWEVER I will use the router as my default gateway.

2001:DB8:CAFE:2::/64

RA Message: Stateful DHCPv6

To: **FF02::1** (All-IPv6 devices)

From: FE80::1 (Link-local address)

Prefix: 2001:DB8:CAFE:2::

Prefix-length: /64

Managed Configuration Flag: 1

RA

2

Default Gateway: FE80::1

Global Unicast Address: DHCPv6

2001:DB8:CAFE:1:6909:cb1c:36a0:a595

DNS: 2001:DB8:CAFE:1::99

Domain name: cafe.com

DHCPv6 Prefix Delegation Process

DHCPv4 and Private Addresses for the Home

ISP only has to deliver a public IPv4 address for Home router interface.

DHCPv4 and Private Addresses for the Home

- ISP only has to deliver a public IPv4 address for Home router interface.
- DHCPv4 and RFC 1918 private address space is used for home network.

DHCPv4 and Private Addresses for the Home NAT HOME **G0/1** G0/1 **G0/0** ISP Public IPv4 Address DHCPv4 **Private IPv4 Address** DHCPv4 for the interface 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

- ISP only has to deliver a public IPv4 address for Home router interface.
- DHCPv4 and RFC 1918 private address space is used for home network.
- NAT is used for translation but has its drawbacks!

DHCPv4 and Private Addresses for the Home NAT HOME **G0/1** G0/1 **G0/0** ISP Public IPv4 Address DHCPv4 **Private IPv4 Address** DHCPv4 for the interface 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

- ISP only has to deliver a public IPv4 address for Home router interface.
- DHCPv4 and RFC 1918 private address space is used for home network.
- NAT is used for translation but has its drawbacks!
- No NAT between private-public IPv6 (always in debate)

• First, HOME's ISP facing interface needs an IPv6 address.

- First, HOME's ISP facing interface needs an IPv6 address.
- Similar to any IPv6 client it may dynamically get an address using:

- DHCPv6 (Stateful or Stateless)
 - First, HOME's ISP facing interface needs an IPv6 address.
 - Similar to any IPv6 client it may dynamically get an address using:
 - SLAAC Using prefix in RA

- DHCPv6 (Stateful or Stateless)
 - First, HOME's ISP facing interface needs an IPv6 address.
 - Similar to any IPv6 client it may dynamically get an address using:
 - SLAAC Using prefix in RA
 - Stateless DHCPv6 SLAAC but DHCPv6 for DNS address

- **DHCPv6 (Stateful or Stateless)**
 - First, HOME's ISP facing interface needs an IPv6 address.
 - Similar to any IPv6 client it may dynamically get an address using:
 - **SLAAC** Using prefix in RA
 - Stateless DHCPv6 SLAAC but DHCPv6 for DNS address
 - Stateful DHCPv6 Like DHCPv4

- First, HOME's ISP facing interface needs an IPv6 address.
- Similar to any IPv6 client it may dynamically get an address using:
 - SLAAC Using prefix in RA
 - Stateless DHCPv6 SLAAC but DHCPv6 for DNS address
 - Stateful DHCPv6 Like DHCPv4
- What about the address for the HOME LAN?

That's all for today

- Questions?
- See you in the lab
- References:
 - http://www.tcpipguide.com/free/t_InternetProtocolVersion 6IPv6IPNextGenerationIPng.htm
 - https://www.6diss.org/e-learning/
 - http://www.cabrillo.edu/~rgraziani/ipv6-presentations.htm
 - Book chapter 11 (even if quite obsoleted)