# CS-224

(Computer Networks)

# <u>Assignment-3</u>

Name: Sravan K Suresh

Roll No: 22B3936

Instructor: Prof. Vinay Ribeiro



# Solution 1:

**a**)

```
sravan@DESKTOP-QQSR5LJ:~$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 172.29.13.127 netmask 255.255.240.0 broadcast 172.29.15.255
       inet6 fe80::215:5dff:fe33:3d00 prefixlen 64 scopeid 0x20<link>
       ether 00:15:5d:33:3d:00 txqueuelen 1000 (Ethernet)
       RX packets 778 bytes 827912 (827.9 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 318 bytes 68540 (68.5 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
sravan@DESKTOP-QQSR5LJ:~$
```

# Report

IPv4 address: 172.29.13.127 (32 bits)

**IPv6** address: fe80::215:5dff:fe33:3d00 (128 bits)

MAC address: 00:15:5d:33:3d:00 (48 bits)

MTU (Maximum Transmission Unit): 1500 bytes

Transmit Queue Length: 1000 packets

# b)

## Destination address: www.google.com

#### Traceroute from My machine

```
sravan@DESKTOP-QQSR5LJ: $ traceroute www.google.com
traceroute to www.google.com (142.250.192.36), 30 hops max, 60 byte packets
1 DESKTOP-QQSR5LJ.mshome.net (172.29.0.1) 0.238 ms 0.271 ms 0.219 ms
2 192.168.1.1 (192.168.1.1) 1.130 ms 0.955 ms *
3 10.3.200.250 (10.3.200.250) 1.109 ms 1.287 ms 1.280 ms
4 10.250.3.1 (10.250.3.1) 1.760 ms * *
5 * * 172.16.6.2 (172.16.6.2) 1.717 ms
6 * 172.16.5.1 (172.16.5.1) 1.016 ms 1.009 ms
7 10.250.201.2 (10.250.201.2) 1.023 ms 0.717 ms 0.902 ms
8 ifwb-201.iitb.ac.in (10.201.250.200) 0.691 ms 0.684 ms 0.679 ms
```

#### Traceroute from Hong Kong

#### Traceroute from New Delhi



#### Traceroute from New York

#### Traceroute from Rome



# **Traceroute from Sydney**



## REPORT

|                        | Own<br>Machine | Hong<br>Kong | New<br>Delhi | New<br>York | Rome  | Sydney |
|------------------------|----------------|--------------|--------------|-------------|-------|--------|
| No. of<br>Hops         | 8              | 9            | 8            | 7           | 7     | 8      |
| RTT (avg) in <b>µs</b> | 1027           | 2074         | 3409         | 2000        | 13167 | 3292   |
| DST IP                 | Different      |              |              |             |       |        |

#### Destination address: www.cnn.com

### Traceroute from My machine

```
sravan@DESKTOP-QQSR5LJ: $ traceroute www.cnn.com
traceroute to www.cnn.com (151.101.155.5), 30 hops max, 60 byte packets
1 DESKTOP-QQSR5LJ.mshome.net (172.29.0.1) 0.570 ms 0.515 ms 0.506 ms
2 192.168.1.1 (192.168.1.1) 1.196 ms 0.948 ms 0.941 ms
3 10.3.200.250 (10.3.200.250) 1.464 ms 1.458 ms 1.453 ms
4 10.250.3.1 (10.250.3.1) 2.004 ms 2.082 ms 1.989 ms
5 172.16.6.2 (172.16.6.2) 2.113 ms 2.284 ms 2.508 ms
6 172.16.5.1 (172.16.5.1) 1.363 ms 0.587 ms 0.581 ms
7 10.250.201.2 (10.250.201.2) 0.763 ms 1.244 ms 1.217 ms
8 ifwb-201.iitb.ac.in (10.201.250.200) 1.037 ms 1.030 ms 1.023 ms
```

#### Traceroute from Hong Kong





#### Traceroute from New York



| Нор | Time | Time | Time | Host name | IP address    |
|-----|------|------|------|-----------|---------------|
| 1   | 1    | 2    | 2    |           | 172.96.165.73 |
| 2   | 1    | 2    | 2    |           | 31.217.251.4  |
| 3   | 1    | 2    | 2    |           | 206.148.25.74 |
| 4   | 1    | 4    | - 1  |           | 38.32.103.97  |
| 5   | 7    | 2    | 2    |           | 154.54.47.121 |
| 6   | 5    | 2    | 2    |           | 154.54.0.142  |
| 7   | 1    | 3    | - 1  |           | 38.140.107.34 |
| 8   | 3    | 2    | 2    |           | 151.101.131.5 |

# **Traceroute from Sydney**



I want to test www.cnn.com from Sydney - Start-test

| Нор | Time | Time | Time | Host name         | IP address    |
|-----|------|------|------|-------------------|---------------|
| - 1 | 2    | - 1  | 2    |                   | 43.245.161.97 |
| 2   | 15   | 22   | 22   |                   | 103.76.165.42 |
| 3   | <1   | <1   | <1   |                   | 103.76.165.70 |
| 4   | 1    | 1    | <1   |                   | 45.127.172.2  |
| 5   |      |      |      | Request timed out |               |
| 6   | 1    | 1    | 1    |                   | 151.101.3.5   |

#### Traceroute from New Delhi



#### Traceroute from Rome



|                 | Own<br>Machine | Hong<br>Kong | New<br>Delhi | New<br>York | Rome | Sydney |
|-----------------|----------------|--------------|--------------|-------------|------|--------|
| No. of<br>Hops  | 8              | 9            | 8            | 8           | 5    | 6      |
| RTT (avg) in µs | 1220           | 63037        | 3381         | 2208        | 1444 | 4867   |
| DST IP          | Different      |              |              |             |      |        |

#### Destination address: www.iitd.ac.in

### Traceroute from My machine

```
sravan@DESKTOP-QQSR5LJ: $ traceroute www.iitd.ac.in
traceroute to www.iitd.ac.in (103.27.9.24), 30 hops max, 60 byte packets
1 DESKTOP-QQSR5LJ.mshome.net (172.29.0.1) 0.312 ms 0.267 ms 0.259 ms
2 192.168.1.1 (192.168.1.1) 0.922 ms 0.913 ms 0.904 ms
3 * * 10.3.200.250 (10.3.200.250) 1.331 ms
4 * 10.250.3.1 (10.250.3.1) 1.623 ms *
5 * 172.16.6.2 (172.16.6.2) 2.216 ms *
6 172.16.5.1 (172.16.5.1) 1.021 ms 0.766 ms 0.756 ms
7 10.250.201.2 (10.250.201.2) 0.708 ms 0.818 ms 0.792 ms
8 ifwb-201.iitb.ac.in (10.201.250.200) 0.788 ms 0.781 ms 0.773 ms
```

### Traceroute from Hong Kong

#### Traceroute from New Delhi



#### Traceroute from New York



| Нор | Time | Time | Time | Host name         | IP address      |  |
|-----|------|------|------|-------------------|-----------------|--|
| - 1 | 8    | <1   | <1   |                   | 172.96.165.73   |  |
| 2   | 8    | 1    | 81   |                   | 31.217.251.4    |  |
| 3   | 8    | <1   | <1   |                   | 206.148.25.74   |  |
| 4   | 8    | <1   | <1   |                   | 206.148.25.45   |  |
| 5   | 67   | 66   | 67   |                   | 206.148.26.6    |  |
| 6   | 67   | 66   | 67   |                   | 206.148.26.9    |  |
| 7.  | 68   | 67   | 68   |                   | 195.66.226.133  |  |
| 8   | 184  | 184  | 184  |                   | 103.198.140.212 |  |
| 9   | 188  | 187  | 187  |                   | 103.198.140.42  |  |
| 10  | 184  | 184  | 184  |                   | 103.198.140.212 |  |
| 11  | 184  | 184  | 201  |                   | 103.198.140.175 |  |
| 12  |      |      |      | Request timed out |                 |  |
| 13  |      |      |      | Request timed out |                 |  |
| 14  | 213  | 212  | 213  |                   | 136.232.148.178 |  |
| 15  |      |      |      | Request timed out |                 |  |
| 16  |      |      |      | Request timed out |                 |  |
| 17  |      |      |      | Request timed out |                 |  |
| 18  |      |      |      | Request timed out |                 |  |
| 19  | 218  | 218  | 218  |                   | 103.27.9.24     |  |
| 20  | 218  | 218  | 218  |                   | 103.27.9.24     |  |
| 21  | 217  | 218  | 218  |                   | 103.27.9.24     |  |

| Hop    | Time | Time | Time | Host name         | IP address      |  |
|--------|------|------|------|-------------------|-----------------|--|
| 1      | 1    | <1   | 1    |                   | 82.102.26.33    |  |
| 2      |      |      |      | Request timed out |                 |  |
| 3      | 1    | <1   | <1   |                   | 146.70.1.186    |  |
| 4      | 1    | <1   | 1    |                   | 62.115.166.252  |  |
| 5<br>6 | 9    | 7    | 8    |                   | 62.115.124.72   |  |
| 6      | 9    | 8    | 8    |                   | 62.115.155.139  |  |
| 7      | 107  | 107  | 107  |                   | 103.198.140.55  |  |
| 8      | 106  | 107  | 106  |                   | 103.198.140.177 |  |
| 9      |      |      | -    | Request timed out |                 |  |
| 10     | *    | *    | *    | Request timed out |                 |  |
| - 11   | 147  | 147  | 147  |                   | 136.232.148.178 |  |
| 12     |      |      |      | Request timed out |                 |  |
| 13     | +    | *    | *    | Request timed out |                 |  |
| 14     | *    | *    | *    | Request timed out |                 |  |
| 15     |      |      |      | Request timed out |                 |  |
| 16     | 138  | 139  | 138  |                   | 103.27.9.24     |  |
| 17     | 138  | 139  | 138  |                   | 103.27.9.24     |  |
| 18     | 137  | 138  | 137  |                   | 103.27.9.24     |  |

Traceroute from Rome

## **Traceroute from Sydney**



|        | Own     | Hong  | New   | New York | Rome   | Sydney |  |
|--------|---------|-------|-------|----------|--------|--------|--|
|        | Machine | Kong  | Delhi |          |        |        |  |
| No. of | 8       | 18    | 18    | 21       | 18     | 18     |  |
| Hops   |         |       |       |          |        | .0     |  |
| RTT    | 886     | 54333 | 4167  | 107178   | 77606  | 67533  |  |
| (avg)  |         | 0.000 | ,     |          | ,,,,,, | 0,000  |  |
| in µs  |         |       |       |          |        |        |  |
|        |         |       |       |          |        |        |  |
| DST IP | SAME    |       |       |          |        |        |  |

REPORT



#### **Observations:**

Different destination IP was observed for <a href="www.google.com">www.google.com</a> and <a href="www.cnn.com">www.cnn.com</a> as they have multiple servers at different continents whereas for <a href="www.iitd.ac.in">www.iitd.ac.in</a>, the destination IP was same from all locations (103, 27, 9, 24) as it has only one server.

c)

## Pinging server of India

Ping.eu Online Ping, Traceroute, DNS lookup, WHOIS, Port check, Reverse lookup, Proxy checker, Bandwidth meter, Network calculator, Network mask calculator, Country by IP, Unit converter Your IP is 110.224.125.4 Online service Ping Ping - Shows how long it takes for packets to reach host Enter code: KDAR IP address or host name: www.india.gov.in --- PING www.india.gov.in(2a02:2330:a:5::51c6:a5ca) 56 data bytes --64 bytes from 2a02:2330:a:5::51c6:a5ca: icmp\_seq=1 ttl=57 time=31.0 ms
64 bytes from 2a02:2330:a:5::51c6:a5ca: icmp\_seq=2 ttl=57 time=31.0 ms
64 bytes from 2a02:2330:a:5::51c6:a5ca: icmp\_seq=3 ttl=57 time=31.0 ms 64 bytes from 2a02:2330:a:5::51c6:a5ca: icmp\_seq=4 ttl=57 time=31.0 ms --- www.india.gov.in ping statistics --packets transmitted 4 received 0 % packet loss **3012** ms time --- Round Trip Time (rtt) --min **30.967** ms avg **30.975** ms max 30.982 ms

## Pinging server of Australia

Ping.eu Online Ping, Traceroute, DNS lookup, WHOIS, Port check, Reverse lookup, Proxy checker, Bandwidth meter, Network calculator, Network mask calculator, Country by IP, Unit converter



## Pinging server of Italy

Ping - Shows how long it takes for packets to reach host



## Pinging server of Nigeria

mdev **0.008** ms

Ping.eu Online Ping, Traceroute, DNS lookup, WHOIS, Port check, Reverse lookup, Proxy checker, Bandwidth meter, Network calculator, Network mask calculator, Country by IP, Unit converter



## Pinging server of USA



# Report

| Location           | India  | Australia | Italy  | Nigeria | USA    |
|--------------------|--------|-----------|--------|---------|--------|
| RTT (avg)<br>in ms | 30.975 | 34.853    | 29.717 | 127.279 | 34.761 |

# **Conclusion**

As farther the server geographically is, the greater is the observed Ping to the server.

# Solution 2:

**a**)





- \* Ro being the only neighbouring routes.
- \* R2-R6-R5: (2+1)= 3 < R2-R6-R7:=(2+2)=4
- \* Observing that Ra-Ro- Rs-Rg-R7: (2+1+4+2) = 9 > 1 remembered at step 3, :. R2-P6-P7:4
- \* Only way to leach R1 is win R5. · · R2-A6-P5-R1: (2+1+2) = 5.
- \* Only way to reach R3 is wa R7. 1. R2-R6-R7-R3: (2+2+2) = 6.
- \* R2-R6-R7-R8: (2+2+2) = 6 < R2-R6-R5-8:(2+1+4)=7. :. R2-R6-R7-R8 V

\* July way to leach By it wie kg. : Re-P6-R7-R8-R4: (2+0+2+2) = 8. All eight NODES revered. END .

| Name of Router | Shortest distance from R2 | Path           |
|----------------|---------------------------|----------------|
| R,             | 2+1+2 = 5                 | R2-R6-R5-R1    |
| R <sub>3</sub> | 2+2+2 = 6                 | R2-R6-R7-R3    |
| R <sub>4</sub> | 2+2+2+2 = 8               | Re-P8-Ry-R8-R4 |
| R <sub>5</sub> | 2+1 = 3                   | R2-R5-R5       |
| Re             | 2                         | Re-RE          |
| R <sub>7</sub> | 2+2 = 4                   | R2-R6-R7       |
| Rg             | 2+2+2 = 6                 | Re-R6-R7-R8    |



i] There are 2 NEXT\_HOP routers advertising their paths to AS2 for all BGP routers in AS1 to send to the destination prefix: 151. 128. 32. 0/24 (AS2):

R13 - [151. 128. 32. 0/24 AS2]

R14 - [151. 128. 32. 0/24 AS3-AS4-AS2]

Since the administrator of AS1 has set LOCAL\_PREF to the same value for all BGP routes, therefore we check which one has the shortest path:

- No. of AS for R13 is **3** (AS3-AS4-AS2)
- No. of AS for R14 is 1 (AS2)

Clearly, the path via R14 is the shortest path. Hence, all the BGP routers in AS1 choose R14 as their NEXT\_HOP router to send their packets to the destination prefix: 151. 128. 32. 0/24 (AS2).

ii] There are 2 NEXT\_HOP routers advertising their paths to AS3 for all BGP routers in AS1 to send to the destination prefix: 130. 12. 1. 0/24 (AS3):

R13 - [130. 12. 1. 0/24 AS2-AS4-AS3]

R14 - [130. 12. 1. 0/24 AS3]

Since the administrator of AS1 has set LOCAL\_PREF to the same value for all BGP routes, therefore we check which one has the shortest path:

- No. of AS for R13 is 1 (AS3)
- No. of AS for R14 is **3** (AS2-AS4-AS3)

Clearly, the path via R14 is the shortest path. Hence, all the BGP routers in AS1 choose R13 as their NEXT\_HOP router to send their packets to the destination prefix: 130. 12. 1. 0/24 (AS3).

iii] There are 2 NEXT\_HOP routers advertising their paths to AS4 for all BGP routers in AS1 to send to the destination prefix: 142. 13. 0. 0/16 (AS4):

R13 - [142. 13. 0. 0/24 AS2-AS4]

R14 - [142. 13. 0. 0/24 AS3-AS4]

Since the administrator of AS1 has set LOCAL\_PREF to the same value for all BGP routes, therefore we check which one has the shortest path:

- No. of AS for R13 is 2 (AS2-AS4)
- No. of AS for R14 is 2 (AS3-AS4)

Now that the paths are also of same distance and no MED value is assigned to either of them, we try applying the rule 'eBGP path over iBGP path':

- For R3, R13 is eBGP and R14 is iBGP. Therefore, R3 uses R13 as NEXT\_HOP router.
- For R4, R14 is eBGP and R13 is iBGP. Therefore, R4 uses R14 as NEXT\_HOP router.
- For R1 and R2, R13 and R14 both are iBGP, therefore we go for Hot-Potato Routing. So, the cost for R1 via R13 is (2+1+2+2) = 7 whereas via R14 is (2+4+2) = 8. Hence, R1 uses R13 as its NEXT\_HOP router. Similarly, the cost for R2 via R13 is (2+2+2) = 6 whereas via R14 is (2+1+4+2) = 9. Hence, R2 also uses R13 as its NEXT\_HOP router.

to be higher than that of R13, since the one with higher LOCAL\_PREF value will be always chosen irrespective of the other parameters. Therefore, we set the LOCAL\_PREF value for R14 to be higher than the LOCAL\_PREF value of R13 and thereafter, R14 will always be chosen as the NEXT\_HOP from AS1.

c)

i

Since R1 receives the packet, it is the one who encapsulates the packet P1. As predicted in part b) iii], since R1 had chosen R13 as its NEXT\_HOP router to send its packets to AS4, it will forward the encapsulated packet to R3. Since R3 would be now sending the packet to AS4, it will decapsulate the packet. Thus, P2 will have destination address as the IP address of R3.

# Structure:



The routers R5, R6 and R7 are in between R1 and R3. But as R5, R6 and R7 are NOT BGP speakers, they have IGP tables.

- Now, first the router R1 looks up the BGP table to identify the NEXT\_HOP.
- It then checks the IGP table to know the router nearest to the NEXT\_HOP (R3).
- After encapsulation of the packet by R1, the routers R5, R6 and R7 each look up the IGP table to find next routers on the path to R3.
- When the encapsulated packet reaches at the router R3, it decapsulates P2 and reads the destination and therefore searches the BGP table where it finds the next router to be R13.

# All Forwarding Tables used

| R1> BG    | P Table  | R1> IGI   | P Table  |
|-----------|----------|-----------|----------|
| IP Prefix | Exit     | DST. IP   | NEXT_HOP |
| 142.13/16 | R3       | R3        | R5       |
|           |          | 56 > 70   |          |
| R5> IG    | P Table  | R6> IGI   | Table    |
| DST. IP   | NEXT_HOP | DST. IP   | NEXT_HOP |
| R3        | R6       | R3        | R7       |
| R7> IG    | P Table  | R3> BGI   | P Table  |
| DST. IP   | NEXT_HOP | IP Prefix | NEXT_HOP |
| R3        | R3       | 142.13/16 | R13      |