

¹Department of Mathematics, University of Pittsburgh ²Center for the Neural Basis of Cognition, Pittsburgh ³Department of Mathematics, University of Utah

gregoryhandy@pitt.edu

BACKGROUND:

Astrocytes are glial cells that e.g., buffer and recycle neurotransmitters, and exhibit calcium transients

The level of astrocyte ensheathment can influence the duration of receptor activation on the postsynaptic terminal

METHODS:

We considered two layer spiking networks

Synaptic input currents: $I_j(t) = R_j(t) + F_j(t)$ Recurrent input:

$$R_{j}(t) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} \sum_{spikes} J^{jk} \cdot \eta^{jk} (t - t_{i})$$

$$\eta^{jk}(t) = \frac{1}{\tau^{jk}} \exp(-t/\tau^{jk}) \cdot H(t)$$

Known result: allowing for fast excitatory synaptic currents can lead to excessive synchrony

Question: How will the network behave in the presence of strong heterogeneity introduced by astrocytes that decreases both J^{jk} and τ^{jk} ?

Two key parameters: Probability of ensheathment and strength of ensheathment

Investigating the ability of astrocytes to drive neural network synchrony

Gregory Handy^{1,2} and Alla Borisyuk³

Astrocytes can make individual synapses weaker and faster,

increasing the tendency of correlated behavior in networks

Wain a

Want to see these networks in action? Scan here!

Non-spatial Network

Astrocytes can push networks into synchronous behavior

Parameter sweep reveals **bistability**: same network, different initial conditions, different results

Spatial Network

Astrocytes can modulate spatial correlations created by differences in the spatial projection widths of recurrent and feedforward layers

- [1] G Handy, SD Lawley, A Borisyuk 2019, Phys Rev E, 99.
- [2] C Börgers, N Kopell 2005, Neural Comp., 17
- [3] R Rosenbaum et al. 2017, Nat. Neurosci, 20(1).

- The NSF-DMS-1853673 for their financial support.

[4] Huang et al. 2019, Neuron, 101.