ルート系

箱

2023年8月29日

概要

ルート系の一般論についてまとめる。ルート系やそれに関連する概念を定義し、その基本的な性質を見たあと、ルート系の Dynkin 図形による分類について述べる。

目次

1	ルート系	2
1.1	鏡映	2
1.2	ルート系	3
1.3	部分ルート系	5
1.4	双対ルート系	6
1.5	ルート系の直和と既約分解	7
1.6	二つのルートの関係	9
1.7	被約ルート系への帰着	12
1.8	ルート系の基底	13
1.9	正ルート全体の集合の特徴付け	19
2	分類	20
2.1	Cartan 行列と Dynkin 図形	20
2.2	Dynkin 図形の分類	22
2.3	被約な既約ルート系の構成と分類	26
2.4	被約でない既約ルート系の構成と分類	29

記号と用語

• 本稿を通して, $\mathbb K$ を標数 0 の可換体とする.特に断らなければ,線型空間の係数体は $\mathbb K$ とする.

1 ルート系

1.1 鏡映

定義 1.1(鏡映) $n \ge 1$ を整数とし,V を n 次元 \mathbb{K} -線型空間とする.V から自身への線型写像であって,1 を重複度 n-1 の固有値とし,-1 を重複度 1 の固有値とするものを,V 上の鏡映(reflection)という.鏡映 s に対して,その固有値 1 の固有空間を鏡映面,固有値 -1 の固有空間を鏡映軸という.

V を有限次元 \mathbb{K} -線型空間とするとき, $\alpha \in V$ と $f \in V^*$ に対して,線型写像 $s_{\alpha,f} \colon V \to V$ を

$$s_{\alpha,f}(v) = v - f(v)\alpha \qquad (v \in V)$$

と定める. $f(\alpha)=2$ ならば、 $s_{\alpha,f}$ は $\operatorname{Ker} f$ を鏡映面、 $\operatorname{K} \alpha$ を鏡映軸とする鏡映である. 逆に、V 上の任意の鏡映は、このように書ける(ただし、 α と f の選び方には 1 次元分の自由度がある)。本節の以下の部分では、この記号 $s_{\alpha,f}$ を断りなく用いる。

命題 1.2 V を有限次元 K-線型空間,R をその有限部分集合とし,R は V を張るとする.線型同型写像 σ , $\tau\colon V\to V$ であって $\sigma^2=\tau^2=\mathrm{id}_V$ を満たすものについて,これらの固有値 -1 の固有空間が一致し,これらがともに R を安定にするならば, $\sigma=\tau$ である.

証明 σ と τ の共通の固有値 -1 の固有空間を, V^0 と置く. $v \in V$ とすると, $\sigma(v) - v$, $\tau(v) - v \in V^0$ より $\sigma\tau(v) - v = \sigma(\tau(v) - \sigma(v)) = \sigma((\tau(v) - v) - (\sigma(v) - v)) \in V^0$ であり, $\sigma\tau$ は V^0 上では恒等写像だから,任意の $n \in \mathbb{N}$ に対して

$$(\sigma\tau)^{n}(v) - v = \sum_{i=0}^{n-1} ((\sigma\tau)^{i+1}(v) - (\sigma\tau)^{i}(v))$$
$$= \sum_{i=0}^{n-1} (\sigma\tau)^{i}(\sigma\tau(v) - v)$$
$$= n(\sigma\tau(v) - v)$$

が成り立つ.一方で, $G=\{T\in GL(V)\mid T(R)=R\}$ は GL(V) の有限部分群であり,仮定より $\sigma\tau\in G$ だから, $\sigma\tau$ の位数は有限である.そのためには, $\sigma\tau(v)-v=0$ でなければならない.よって, $\sigma=\tau$ である. \Box

命題 1.3 V を有限次元 \mathbb{K} -線型空間とし, $\langle -,- \rangle$ をその上の非退化対称双線型形式とする.V 上の鏡映 s がこの形式を不変にし, $\alpha \in V \setminus \{0\}$ を $-\alpha$ に移すならば, $\langle \alpha,\alpha \rangle \neq 0$ かつ

$$s(v) = v - \frac{2\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \qquad (v \in V)$$

である. すなわち, $s = s_{\alpha,f}$ $(f \in V^*)$ と表すとき,

$$f = \frac{2\langle -, \alpha \rangle}{\langle \alpha, \alpha \rangle}$$

である.

証明 v を s の鏡映面上の点とすると

$$\langle \alpha, v \rangle = \langle \alpha, s(v) \rangle = \langle s(\alpha), v \rangle = -\langle \alpha, v \rangle$$

より $\langle \alpha, v \rangle = 0$ であり、 $\langle -, - \rangle$ に関する $\mathbb{K}\alpha$ の直交空間 $(\mathbb{K}\alpha)^{\perp}$ は $\dim V - 1$ 次元だから、s の鏡映面は $(\mathbb{K}\alpha)^{\perp}$ に等しい。 α は s の鏡映面上にはないから、 $\langle \alpha, \alpha \rangle \neq 0$ である。 $s_{\alpha,f}$ は、 α を $-\alpha$ に移し $(\mathbb{K}\alpha)^{\perp}$ の点は動か さないから、s に一致する.

命題 1.4 V を有限次元 \mathbb{K} -線型空間とする. 任意の $\alpha \in V$ と $f \in V^*$ に対して, $s_{\alpha,f}^* = s_{f,\alpha}$ である.

証明 任意の $g \in V^*$ と $v \in V$ に対して

$$s_{\alpha,f}^*(g)(v) = g(s_{\alpha,f}(v))$$

$$= g(v - f(v)\alpha)$$

$$= g(v) - f(v)g(\alpha)$$

$$= (g - g(\alpha)f)(v)$$

$$= s_{f,\alpha}(g)(v)$$

だから、 $s_{\alpha,f}^* = s_{f,\alpha}$ である.

1.2 ルート系

定義 1.5(ルート系) 有限次元 \mathbb{K} -線型空間 V 上のルート系(root system)とは,部分集合 $R \subseteq V$ であって,次の 3 条件 (RS1)–(RS3) を満たすものをいう.さらに,条件 (RS4) も満たすとき,そのルート系は被約 (reduced) であるという*1.

- (RS1) R は有限であり、0 を含まず、V を張る.
- (RS2) 任意の $\alpha \in R$ に対して、V 上の鏡映 s_{α} であって、 $s_{\alpha}(\alpha) = -\alpha$ かつ $s_{\alpha}(R) = R$ を満たすものが存在する。(((RS1) と命題 1.2 より、このような s_{α} は一意に定まり、したがって、 $s_{\alpha} = s_{\alpha,\alpha^{\vee}}$ となる $\alpha^{\vee} \in V^*$ も一意に定まる。以下、この記号を用いる。)
- (RS3) 任意の α , $\beta \in R$ に対して, $\alpha^{\vee}(\beta) \in \mathbb{Z}$ である.
- (RS4) $\alpha \in R$ $\alpha \notin R$ $\alpha \notin R$ $\alpha \notin R$ $\alpha \notin R$

 \mathbb{K} -線型空間 V の次元を、ルート系 R の階数 (rank) という. ルート系の各元を、ルート (root) という.

(RS2) における α^{\vee} を α の双対ルート(coroot)といい, s_{α} を α に関するルート鏡映(root reflection)という.ルート鏡映全体が生成する GL(V) の部分群を,ルート系 R の Weyl 群(Weyl group)といい,W(R) と書く.

以下,特に断らなくても,ルート α の双対ルートを α^{\vee} と書き, α に関するルート鏡映を s_{α} と書く.考えているルート系を明示したいときは,双対ルートを α_{R}^{\vee} ,ルート鏡映を s_{α}^{R} などとも書く.また, α , $\beta \in R$ に対して,

$$n(\beta, \alpha) = \alpha^{\vee}(\beta) \in \mathbb{Z}$$

^{*1} 被約ルート系のことを単にルート系と呼ぶことも多い.

と書き, これを Cartan 整数(Cartan integer)という. この記号を用いれば, ルート β を α に関するルート 鏡映で移した先は,

$$s_{\alpha}(\beta) = \beta - \alpha^{\vee}(\beta)\alpha = \beta - n(\beta, \alpha)\alpha$$

と書ける.

定義 1.6(ルート系の同型) $R_1,\,R_2$ を,それぞれ有限次元 \mathbb{K} -線型空間 $V_1,\,V_2$ 上のルート系とする.ルート 系 R_1 から R_2 への同型(isomorphism)とは,線型同型写像 $\Phi\colon V_1\to V_2$ であって, $\Phi(R_1)=R_2$ を満たす ものをいう.ルート系 R_1 から R_2 への同型が存在するとき,これらのルート系は同型(isomorphic)である という.

R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする。 \mathbb{K}' を \mathbb{K} の拡大体とすると,R は V の係数拡大 $V \otimes_{\mathbb{K}} \mathbb{K}'$ の部分集合ともみなせる。 このようにみなすと,明らかに,R は $V \otimes_{\mathbb{K}} \mathbb{K}'$ 上のルート系となる。 これを,ルート系の係数拡大という.

命題 1.7 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする. V の部分 \mathbb{Q} -線型空間 $V_{\mathbb{Q}}$ を

$$V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} R$$

と定めると、R は $V_{\mathbb{Q}}$ 上のルート系でもあり、包含写像 $V_{\mathbb{Q}} \to V$ が誘導する \mathbb{K} -線型写像 $i\colon V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{K} \to V$ は同型である(したがって、V 上のルート系 R は、 $V_{\mathbb{Q}}$ 上のルート系 R の \mathbb{K} への係数拡大とみなせる).

証明 $V_{\mathbb{Q}}$ と R が (RS1), (RS4) を満たすことは明らかである。また, $\alpha \in R$ とすると,V と R が (RS3) を満たすことより $\alpha^{\vee}(V_{\mathbb{Q}}) \subseteq \mathbb{Q}$ だから, $\alpha^{\vee}|_{V_{\mathbb{Q}}} \in (V_{\mathbb{Q}})^*$ であり, $s_{\alpha}|_{V_{\mathbb{Q}}}$ は $V_{\mathbb{Q}}$ 上の鏡映 $s_{\alpha,\alpha^{\vee}|_{V_{\mathbb{Q}}}}$ である.この鏡映は,明らかに (RS2),(RS3) の条件を満たす.よって,R は $V_{\mathbb{Q}}$ 上のルート系である.

包含写像 $V_{\mathbb Q} \to V$ が誘導する $\mathbb K$ -線型写像 $i\colon V_{\mathbb Q} \otimes_{\mathbb Q} \mathbb K \to V$ が同型であることを示す。まず, $V=\operatorname{span}_{\mathbb K} R$ だから,i は全射である.次に,i が単射であることを示す.そのためには,i の双対線型写像

$$i^* \colon V^* \to (V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{K})^* \cong (V_{\mathbb{Q}})^* \otimes_{\mathbb{Q}} \mathbb{K}$$

が全射であることをいえばよい. 各 $\alpha \in R$ に対して

$$i^*(\alpha^{\vee}) = \alpha^{\vee}|_{V_{\mathbb{O}}} \otimes 1$$

だから, $(V_{\mathbb{Q}})^* = \operatorname{span}_{\mathbb{Q}}\{\alpha^{\vee}|_{V_{\mathbb{Q}}} \mid \alpha \in R\}$ をいえばよい.以下,これを示す. $V_{\mathbb{Q}}$ 上の W(R)-不変な非退化対称双線型形式 $\langle -, - \rangle$ を一つ固定すると(任意にとった $V_{\mathbb{Q}}$ 上の内積を W(R) の作用に関して平均すればよい), $\alpha \in R$ に対して命題 1.3 より $\langle \alpha, \alpha \rangle \neq 0$ かつ

$$\alpha^{\vee}|_{V_{\mathbb{Q}}} = \frac{2\langle -, \alpha \rangle}{\langle \alpha, \alpha \rangle}$$

であり、これは $\langle -,-\rangle$ が定める \mathbb{Q} -線型同型 $V_{\mathbb{Q}}\cong (V_{\mathbb{Q}})^*$ を通して $2\alpha/\langle \alpha,\alpha\rangle\in V_{\mathbb{Q}}$ に対応する. $\alpha\in R$ が動くときこれら全体は $V_{\mathbb{Q}}$ を張るから、 $\alpha^\vee|_{V_{\mathbb{Q}}}$ の全体は $(V_{\mathbb{Q}})^*$ を張る. これで、主張が示された.

系 1.8 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする.

(1) V 上の $\operatorname{Aut}(R)$ -不変な非退化対称双線型形式 $\langle -, - \rangle \colon V \times V \to \mathbb{K}$ であって,任意の $v \in V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} R$ に対して $\langle v, v \rangle \in \mathbb{Q}_{>0}$ であるものが存在する.

(2) $\langle -,- \rangle$: $V \times V \to \mathbb{K}$ を V 上の W(R)-不変な非退化対称双線型形式とすると,任意のルート $\alpha,\beta \in R$ に対して, $\langle \alpha,\alpha \rangle \neq 0$ かつ

$$\alpha^{\vee} = \frac{2\langle -, \alpha \rangle}{\langle \alpha, \alpha \rangle}, \qquad n(\beta, \alpha) = \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}$$

である.

証明 (1) \mathbb{K} が \mathbb{R} の部分体である場合,任意に固定した V 上の内積を $\mathrm{Aut}(R)$ の作用に関して平均すれば, V 上の $\mathrm{Aut}(R)$ -不変な内積が得られる。 \mathbb{K} が一般の場合, $V_{\mathbb{Q}}$ 上の $\mathrm{Aut}(R)$ -不変な内積を一つとって係数拡大 すれば,条件を満たす V 上の非退化対称双線型形式が得られる.

(2) ルート鏡映 $s_{\alpha} = s_{\alpha,\alpha^{\vee}}$ は $\langle -, - \rangle$ を不変にし, α を $-\alpha$ に移すから,命題 1.3 より $\langle \alpha, \alpha \rangle \neq 0$ かつ $\alpha^{\vee} = 2\langle -, \alpha \rangle / \langle \alpha, \alpha \rangle$ である.また,これより, $n(\beta, \alpha) = \alpha^{\vee}(\beta) = 2\langle \beta, \alpha \rangle / \langle \alpha, \alpha \rangle$ である.

命題 1.7 より,有限次元 \mathbb{K} -線型空間 V 上のルート系 R は, $V_{\mathbb{Q}}=\operatorname{span}_{\mathbb{Q}}R$ 上のルート系とみなせ,これはさらに,係数拡大によって $V_{\mathbb{R}}=V_{\mathbb{Q}}\otimes_{\mathbb{Q}}\mathbb{R}$ 上のルート系ともみなせる.さらに,系 1.8 (1) より, $V_{\mathbb{R}}$ 上のW(R)-不変な内積が存在する.これらにより,ルート系の性質の証明の多くは, $\mathbb{K}=\mathbb{R}$ であり,W(R)-不変な内積が定まっている場合に帰着される.この論法は,本節の以下の部分でしばしば用いられる.

系 1.9 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする. $v \in V$ が任意の $\alpha \in R$ に対して $s_{\alpha}(v) = v$ を満たすならば、v = 0 である.

証明 系 1.8 (2) より、 $\operatorname{span}_{\mathbb{K}}\{\alpha^{\vee}\mid\alpha\in R\}=V^*$ である.よって、任意の $\alpha\in R$ に対して $s_{\alpha}(v)=v$ 、すな わち $\alpha^{\vee}(v)=0$ であるとすると、v=0 である.

R を有限次元 \mathbb{K} -線型空間 V 上のルート系とし,W(R)-不変な非退化対称双線型形式 $\langle -,- \rangle$: $V \times V \to \mathbb{K}$ を固定する.このとき,系 1.8 より,二つのルート α , $\beta \in R$ に対して

$$n(\alpha, \beta) = 0 \iff n(\beta, \alpha) = 0 \iff \langle \alpha, \beta \rangle = 0$$

である.そこで, $n(\alpha,\beta)=n(\beta,\alpha)=0$ であるとき, α と β は直交する(orthogonal)という.また,ルートの集合 A,B について,A に属する任意のルートと B に属する任意のルートが直交するとき,A と B は直交するという.

1.3 部分ルート系

命題 1.10 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする.部分線型空間 $V'\subseteq V$ と部分集合 $R'\subseteq R$ が, $R'=R\cap V'$ かつ $\operatorname{span}_{\mathbb{K}}R'=V'$ を満たすとする.

- (1) R' は V' 上のルート系であり,R が被約ならば R' も被約である.
- (2) $\alpha \in R'$ に対して、 $s_{\alpha}^{R'} = s_{\alpha}^{R}|_{V'}$ である($s_{\alpha}^{R'}$ 、 $s_{\alpha}^{R}|_{V'}$ は、それぞれルート系 R' 、R における α に関するルート鏡映を表す).
- (3) $\alpha \in R'$ に対して、 $\alpha_{R'}^{\vee} = \alpha_R^{\vee}|_{V'}$ である($\alpha_{R'}^{\vee}$, $\alpha_R^{\vee}|_{V'}$ は、それぞれルート系 R', R における α の双対ルートを表す).
- (4) V 上の W(R)-不変な非退化対称双線型形式 $\langle -,- \rangle$: $V \times V \to \mathbb{K}$ の V' への制限は,V' 上の W(R')-不変な非退化対称双線型形式である.

(5) 群準同型 ι : $W(R') \to W(R)$ であって,任意の $\alpha \in R'$ に対して $\iota(s_{\alpha}^{R'}) = s_{\alpha}^{R}$ であるものが一意に存在する.さらに,この ι は単射である.

証明 (1), (2) R' が (R1) を満たすことと,R が (R4) を満たすならば R' もそうであることは明らかである。 $\alpha \in R'$ とすると,任意の $v \in V'$ に対して $s_{\alpha}^{R}(v) = v - \alpha_{R}^{\vee}(v)\alpha \in V'$ だから,V' は s_{α}^{R} -安定である. したがって,制限 $s_{\alpha}^{R}|_{V'}$ は V' 上の鏡映となる. この鏡映は,明らかに (RS2),(RS3) の条件を満たす. よって,R' は V' 上のルート系であり,(2) が成り立つ.

- (3) (2) $\sharp h \ s_{\alpha}^{R'} = s_{\alpha}^{R}|_{V'} = s_{\alpha,\alpha_{P}|_{V'}} \ thb, \ \alpha_{R'}^{\vee} = \alpha_{R}^{\vee}|_{V'} \ thb.$
- (4) V 上の W(R)-不変な非退化対称双線型形式 $\langle -,-\rangle$ の V' への制限が W(R')-不変であることは,(2) から明らかである.次に, $v\in V'$ が任意の $w\in V'$ に対して $\langle v,w\rangle=0$ を満たすとする.すると,任意の $\alpha\in R'$ に対して

$$s_{\alpha}^{R'}(v) = s_{\alpha}^{R}(v) = v - \frac{2\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha = v$$

だから (系 1.8), 系 1.9 より v=0 である. よって, $\langle -,- \rangle$ は V' 上で非退化である.

(5) 条件を満たす ι の一意性は, $s_{\alpha}^{R'}$ の全体が W(R') を生成することから明らかである.条件を満たす ι の存在を示す.V 上の W(R)-不変な非退化対称双線型形式 $\langle -, - \rangle$ を一つ固定する.(4) で示したように, $\langle -, - \rangle$ は V' 上で非退化だから,これに関する V' の直交空間 V'^{\perp} は,V' の V における補空間である.した がって,単射群準同型 ι : $GL(V') \to GL(V)$ を, $\iota(T) = T \oplus \operatorname{id}_{V'^{\perp}}$ と定義できる.この ι は,明らかに,各 $\alpha \in R'$ に対して $s_{\alpha}^{R'}$ を s_{α}^{R} に移し,したがって,W(R') を W(R) の中に移す.

定義 1.11 (部分ルート系) 命題 1.10 の状況で, R' を R の部分ルート系 (root subsystem) という.

1.4 双対ルート系

補題 1.12 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする. $\alpha \in R$ と $t \in \operatorname{Aut}(R)$ に対して、

$$s_{t(\alpha)} = t s_{\alpha} t^{-1}, \qquad t(\alpha)^{\vee} = t^{*-1}(\alpha^{\vee})$$

である.

証明 $ts_{\alpha}t^{-1}$ は $t(\alpha)$ を $-t(\alpha)$ に移し R を安定にする鏡映だから,ルート鏡映の一意性より, $ts_{\alpha}t^{-1}=s_{t(\alpha)}$ である.また,

$$\begin{split} s_{t(\alpha)}(v) &= t s_{\alpha} t^{-1}(v) = t(t^{-1}(v) - \alpha^{\vee}(t^{-1}(v))\alpha) \\ &= v - \alpha^{\vee}(t^{-1}(v))t(\alpha) \\ &= v - t^{*-1}(\alpha^{\vee})(v)t(\alpha) \\ &= s_{t(\alpha),t^{*-1}(\alpha^{\vee})}(v) \end{split} \qquad (v \in V)$$

だから、 $t(\alpha)^{\vee} = t^{*-1}(\alpha^{\vee})$ である.

命題 1.13 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする.

(1) $R^{\vee}=\{\alpha^{\vee}\mid \alpha\in R\}$ は V^* 上のルート系であり,R が被約であることと R^{\vee} が被約であることとは同値である.

(2) 任意の $\alpha \in R$ に対して、 $s_{\alpha^{\vee}} = s_{\alpha}^* = s_{\alpha}^{*-1}$ である.

- (3) 任意の $\alpha \in R$ に対して、 $\alpha^{\vee\vee} = \alpha$ である.
- (4) GL(V) から $GL(V^*)$ への群同型 $t\mapsto t^{*-1}$ は,自己同型群 $\operatorname{Aut}(R)$ から $\operatorname{Aut}(R^\vee)$ への群同型を与え,Weyl 群 W(R) から $W(R^\vee)$ への群同型を与える.

証明 (1), (2), (3) 系 1.8 (2) より, R^{\vee} は (RS1) を満たし,R が (RS4) を満たすことと R^{\vee} が (RS4) を満たすこととは同値である.各 $\alpha^{\vee} \in R^{\vee}$ に対して, $\alpha^{\vee}(\alpha) = 2$ だから

$$s_{\alpha^{\vee}} = s_{\alpha^{\vee},\alpha} \colon V^* \to V^*, \quad f \mapsto f - f(\alpha)\alpha^{\vee}$$

は V^* 上の鏡映であり、 $s_{\alpha^\vee} = s_{\alpha}^* = s_{\alpha}^{*-1}$ である(命題 1.4)。 $\beta^\vee \in R^\vee$ に対して

$$s_{\alpha^{\vee}}(\beta^{\vee}) = s_{\alpha}^{*-1}(\beta^{\vee}) = s_{\alpha}(\beta)^{\vee} \in R^{\vee}$$

だから(最後の等号で補題 1.12 を用いた), $s_{\alpha^{\vee}}$ は (RS2) の条件を満たす.また,このとき $\alpha^{\vee\vee} = \alpha$ であり,任意の α^{\vee} , $\beta^{\vee} \in R^{\vee}$ に対して $\alpha^{\vee\vee}(\beta^{\vee}) = \beta^{\vee}(\alpha) \in \mathbb{Z}$ だから,(RS3) も満たされる.よって, R^{\vee} は V^{*} 上のルート系であり,(2),(3) が成り立つ.

(4) 補題 1.12 より, $t \in \operatorname{Aut}(R)$ ならば $t^{*-1} \in \operatorname{Aut}(R^{\vee})$ であり, (3) よりその逆も成り立つ. よって, 群同型 $t \mapsto t^{*-1}$ は, $\operatorname{Aut}(R)$ から $\operatorname{Aut}(R^{\vee})$ への群同型を与える. また, (2) よりこの群同型は s_{α} を $s_{\alpha^{\vee}}$ に移すから, W(R) から $W(R^{\vee})$ への群同型も与える.

定義 1.14(双対ルート系) 命題 1.13 の状況で、 R^{\vee} を R の双対ルート系(dual root system)という.

1.5 ルート系の直和と既約分解

命題 1.15 $(V_i)_{i\in I}$ を有限次元 \mathbb{K} -線型空間の有限族とし,各 $i\in I$ に対して R_i を V_i 上のルート系とする. $V=\bigoplus_{i\in I}V_i,\ R=\coprod_{i\in I}R_i\subseteq V$ と置く.

- (1) R は V 上のルート系であり、R が被約であることとすべての R_i が被約であることとは同値である.
- (2) $\alpha \in R_i$ に対して、ルート鏡映 s_{α}^R は、

$$s_{\alpha}^{R}(v) = \begin{cases} s_{\alpha}^{R_{i}}(v) & (v \in V_{i}) \\ v & (v \in V_{j}, j \neq i) \end{cases}$$

で与えられる $(s_{\alpha}^R, s_{\alpha}^{R_i})$ は、それぞれルート系 R, R における α に関するルート鏡映を表す).

(3) $\alpha \in R_i$ に対して、双対ルート α_R^{\vee} は、

$$\alpha_R^{\vee}(v) = \begin{cases} \alpha_{R_i}^{\vee}(v) & (v \in V_i) \\ 0 & (v \in V_j, \ j \neq i) \end{cases}$$

で与えられる $(\alpha_R^{\lor}, \alpha_R^{\lor}, \alpha_R^{\lor},$

証明 明らかである.

定義 1.16 (ルート系の直和) 命題 1.15 の状況で、R を $(R_i)_{i\in I}$ の直和 (direct sum) という.

R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする. V が部分線型空間の有限族 $(V_i)_{i\in I}$ に直和分解され,各 V_i 上にルート系 R_i があって $R=\bigcup_{i\in I}R_i$ となっていれば,R はルート系の有限族 $(R_i)_{i\in I}$ の直和と自然に同一視できる.このとき,R は $(R_i)_{i\in I}$ に**直和分解**されるという.

命題 1.17 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とし, $(R_i)_{i\in I}$ を R の有限分割とする.このとき,次の 3 条件は同値である.

- (a) $(R_i)_{i\in I}$ はルート系 R の直和分解である.
- (b) 各 $i \in I$ に対して $V_i = \operatorname{span}_{\mathbb{K}} R_i$ と置くと、 $\sum_{i \in I} V_i$ は直和である.
- (c) 任意の異なる $2 \pi i, j \in I$ に対して、 R_i と R_j は直交する.

証明 $(a) \Longrightarrow (b)$ 明らかである.

- (b) \Longrightarrow (a) $\sum_{i \in I} V_i$ が直和ならば、各 $i \in I$ に対して $R_i = R \cap V_i$ だから R_i は V_i 上のルート系であり (命題 1.10)、したがって $(R_i)_{i \in I}$ はルート系 R の直和分解である.
 - $(a) \Longrightarrow (c)$ ルート系の直和におけるルート鏡映の式から従う.
- $(c) \Longrightarrow (b)$ $\mathbb{K} = \mathbb{R}$ で V が W(R)-不変な内積 $\langle -, \rangle$ をもつ内積空間である場合に示せば十分である(命題 1.7,系 1.8). このとき,(c) が成り立つとすると,どの異なる二つの R_i も内積に関して直交するから, $(V_i)_{i \in I}$ は内積空間 V における直交族であり,したがって $\sum_{i \in I} V_i$ は直和である.

定義 1.18(既約ルート系) R を空でないルート系とする. R が「一つが R でその他がすべて \emptyset 」という形の 直和分解しかもたないとき,ルート系 R は既約(irreducible)であるという.そうでないとき,ルート系 R は可約(reducible)であるという.

ルート系の既約ルート系への直和分解を**既約分解**といい,既約分解に現れる既約ルート系のそれぞれを**既約成分**という.

命題 1.19 任意のルート系は、順序を除いて一意に既約分解される.

証明 R をルート系とする. R が可約である限り R は二つの空でないルート系 R' と R'' の直和に分解でき, R', R'' に対しても同じことがいえる. R は有限集合だから,この操作は有限回で終了する. よって, R の既 約分解は存在する.

 $(R_i)_{i\in I}$ と $(R'_j)_{j\in J}$ がともに R の既約分解であるとする.各 $i\in I$ と $j\in J$ に対して, $\{R_i\cap R'_j,R_i\setminus R'_j\}$ は R_i の直和分解だから, R_i の既約性より $R_i\cap R'_j=R_i$ または $R_i\setminus R'_j=R_i$,すなわち $R_i\supseteq R'_j$ または $R_i\cap R'_j=\emptyset$ である. R_i と R'_j を逆にしても同じことがいえるから,結局 $R_i=R'_j$ または $R_i\cap R'_j=\emptyset$ である.これが任意の $i\in I$ と $j\in J$ に対して成り立つから, $(R_i)_{i\in I}$ と $(R'_j)_{j\in J}$ は順序を除いて一致する.よって,R の既約分解は順序を除いて一意である.

命題 1.20 有限次元 丞-線型空間 ∨ 上のルート系 ⊗ に対して,次の ⊗ 条件は同値である.

- (a) R は既約である.
- (b) Weyl 群 W(R) の V 上の自然表現は既約である.

証明 R が空(したがってV=0) ならば、どちらの条件も成り立たない. 以下、R が空でない場合を考える.

(a) \Longrightarrow (b) 0 と V 以外の W(R)-安定部分線型空間 V_1 がとれたとする。 $\beta \in R \setminus V_1$ とすると, V_1 は s_{β} -安定だから,任意の $v \in V$ に対して $s_{\beta}(v) = v - \beta^{\vee}(v)\beta$ は V に属する。ところが, $v \in V$ かつ $\alpha \notin V$ だから,そのためには $\beta^{\vee}(v) = 0$ でなければならない。したがって, β^{\vee} は V_1 上で 0 となる。特に,任意の $\alpha \in R \cap V_1$ に対して $n(\alpha,\beta) = \beta^{\vee}(\alpha) = 0$ である。よって, $R \cap V_1$ と $R \setminus V_1$ は直交する。

 $V_1 \neq V$ かつ $\operatorname{span}_{\mathbb{K}} R = V$ だから,R は V_1 に含まれない. すなわち, $R \setminus V_1$ は空でない. また, $R \cap V_1$ が

空であるとすると, 前段の議論よりすべての α^{\vee} ($\alpha \in R$) が V_1 上で 0 であることになるが, これは $V_1 \neq 0$ に 反する (系 1.8 (2)). よって, $R \cap V_1$ は空でない. 以上より, R は可約である. 対偶をとれば, 主張が従う.

(b) \Longrightarrow (a) R が V_1 上の空でないルート系 R_1 と V_2 上の空でないルート系 R_2 に直和分解されるとすると、命題 1.15 より、 V_1 と V_2 は W(R)-安定である.対偶をとれば、主張が従う.

系 1.21 R を有限次元 \mathbb{K} -線型空間 V 上の既約ルート系とする. V 上の W(R)-不変な双線型形式は、スカラー倍を除いて一意である.

証明 V 上の W(R)-不変な双線型形式は,W(R) の自然表現からその反傾表現への同変作用素と同一視できる.よって,主張は,命題 1.20 と Schur の補題から従う.

注意 1.22 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とし, $\langle -, - \rangle$: $V \times V \to \mathbb{K}$ を W(R)-不変な非退化対称 双線型形式とする. $\alpha, \beta \in R$ を同じ既約成分に属する二つのルートとすると, $s \in W(R)$ を $s(\alpha)$ と β が直交 しないようにとれる(命題 1.20).このとき,

$$\frac{\langle \beta, \beta \rangle}{\langle \alpha, \alpha \rangle} = \frac{\langle \beta, \beta \rangle}{\langle s(\alpha), s(\alpha) \rangle} = \frac{n(\beta, s(\alpha))}{n(\alpha, s(\beta))} \in \mathbb{Q}_{>0}$$

であり、この値は $\langle -,-\rangle$ のとり方によらない.そこで、用語の濫用で、 $\mathbb{K}=\mathbb{R}$ とは限らない場合にも、 $\sqrt{\langle \beta,\beta\rangle/\langle \alpha,\alpha\rangle}$ を β の α に対するの長さの比という.

W(R)-不変な非退化対称双線型形式 $\langle -, - \rangle$ を,任意の $v \in V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} R$ に対して $\langle v, v \rangle \in \mathbb{Q}_{>0}$ であるようにとれば(系 1.8 (1)), $\langle -, - \rangle$ は $V_{\mathbb{Q}}$ 上の W(R)-不変な内積を定め,これはさらに,係数拡大によって $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes_{\mathbb{R}} \mathbb{R}$ 上の W(R)-不変な内積を定める.これにより,ルートの長さの比に関する議論は, $\mathbb{K} = \mathbb{R}$ の 場合に帰着できる.

1.6 二つのルートの関係

定理 1.23 R は有限次元実内積空間 V 上のルート系であり,その内積は W(R)-不変であるとする.二つのルート α , $\beta \in R$ であって $\|\alpha\| \le \|\beta\|$ を満たすものについて,次の表の (i)–(xi) のうちいずれかただ一つが成り立つ.さらに,V が被約ならば,次の表の (i)–(ix) のうちいずれかただ一つが成り立つ.

	$n(\alpha, \beta)$	$n(\beta, \alpha)$	$\ \beta\ /\ \alpha\ $	$\angle(\alpha,\beta)$
(i)	0	0	不定	90°
(ii)	1	1	1	60°
(iii)	-1	-1	1	120°
(iv)	1	2	$\sqrt{2}$	45°
(v)	-1	-2	$\sqrt{2}$	135°
(vi)	1	3	$\sqrt{3}$	30°
(vii)	-1	-3	$\sqrt{3}$	150°
(viii)	2	2	1	0°
(ix)	-2	-2	1	180°
(x)	1	4	2	0°
(xi)	-1	-4	2	180°

証明 $n(\alpha, \beta) = 2\langle \alpha, \beta \rangle / \langle \beta, \beta \rangle$ かつ $n(\beta, \alpha) = 2\langle \beta, \alpha \rangle / \langle \alpha, \alpha \rangle$ だから(系 1.8 (2)),

$$n(\alpha, \beta)n(\beta, \alpha) = \frac{4\langle \alpha, \beta \rangle^2}{\|\alpha\|^2 \|\beta\|^2} = 4(\cos \angle(\alpha, \beta))^2 \le 4$$

である. また, $n(\alpha, \beta) = 0$ と $n(\beta, \alpha) = 0$ とは同値であり, $n(\alpha, \beta)$, $n(\beta, \alpha) \neq 0$ ならば

$$\frac{n(\beta, \alpha)}{n(\alpha, \beta)} = \frac{\|\beta\|^2}{\|\alpha\|^2}$$

である. したがって、 $組(n(\alpha,\beta),n(\beta,\alpha))$ の可能性は、表に挙げたもので尽くされる.

(x) または (xi) の場合, $\beta=\pm 2\alpha$ となり被約性の条件 (RS4) に反するから,R が被約ならば,起こりうる可能性は (i)–(ix) に限られる.

注意 1.24 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とし、 α , $\beta \in R$ とする.

- (1) 定理 1.23 と命題 1.7, 系 1.8 (1) より, $\mathbb{K} = \mathbb{R}$ とは限らない場合にも, $n(\alpha, \beta)$ と $n(\beta, \alpha)$ の値の組み合わせは, 定理 1.23 の表の (i)–(xi)(R が被約ならば, (i)–(ix))のいずれかである. (i) 以外の場合には, β の α に対する長さの比は,表における「 $\|\beta\|/\|\alpha\|$ 」の値となる(系 1.27).
- (2) 用語の濫用で、 $\mathbb{K}=\mathbb{R}$ とは限らない場合にも、二つのルート α , $\beta\in R$ のなす角度 $\angle(\alpha,\beta)$ を、 $n(\alpha,\beta)$ と $n(\beta,\alpha)$ の値から定理 1.23 の表によって定義する.特に、 α と β が鋭角をなす、直交する、鈍角をなすとは、それぞれ $n(\beta,\alpha)>0$ 、 $n(\beta,\alpha)=0$ 、 $n(\beta,\alpha)<0$ であることをいう(「直交」については、1.2 節の最後に述べた定義と一致する).

系 1.25 ルート系 R の二つのルート α , β が線型従属ならば, β は $\pm \alpha/2$, $\pm \alpha$, $\pm 2\alpha$ のいずれかである. さらに,R が被約ならば, β は $\pm \alpha$ のいずれかである.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり,W(R)-不変な内積が定まっていると仮定する(命題 1.7,系 1.8 (1))。 この場合の主張は,定理 1.23 に含まれる.

系 1.26 ルート系 R の二つのルート α , β について, 次が成り立つ.

- (1) α と β が鋭角をなすならば、 $\beta \alpha \in R \cup \{0\}$ である.
- (2) α と β が鈍角をなすならば, $\beta + \alpha \in R \cup \{0\}$ である.

証明 (1) $\alpha \neq \beta$ かつ $n(\beta, \alpha) > 0$ ならば,定理 1.23 より $n(\beta, \alpha) = 1$ または $n(\alpha, \beta) = 1$ である.前者の場合 $\beta - \alpha = \beta - n(\beta, \alpha)\alpha = s_{\alpha}(\beta) \in R$ であり,後者の場合 $\alpha - \beta = \alpha - n(\alpha, \beta)\beta = s_{\beta}(\alpha) \in R$ だから,いずれにしても $\beta - \alpha \in R$ となる.

$$(2)$$
 $-\alpha$ と β に (1) を適用すればよい.

系 1.27 R をルート系とする. $\alpha, \beta \in R$ を同じ既約成分に属する二つのルートとすると, β の α に対する長さの比は, $1, \sqrt{2}, \sqrt{3}, 2$ (R が被約ならば, $1, \sqrt{2}, \sqrt{3}$) またはこれらの逆数のいずれかである.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり,W(R)-不変な内積が定まっていると仮定する(命題 1.7,系 1.8,注意 1.22)。 α と β は同じ既約成分に属するから, $s\in W(R)$ を $s(\alpha)$ と β が直交しないようにとれる(命題 1.20)。よって,定理 1.23 より, $\|\beta\|/\|\alpha\|=\|\beta\|/\|s(\alpha)\|$ は $1,\sqrt{2},\sqrt{3},2$ (R が被約ならば $1,\sqrt{2},\sqrt{3}$)またはこれらの逆数のいずれかに等しい.

命題 1.28 R をルート系とする.同じ既約成分に属する二つのルート α , $\beta \in R$ の長さが等しければ,これらは Weyl 群 W(R) の作用によって移り合う.

証明 α と β は同じ既約成分に属するから, $s \in W(R)$ を $s(\alpha)$ と β が直交しないようにとれる(命題 1.20). 必要ならば s を ss_{α} に置き換えることで, $s(\alpha)$ と β は鋭角または直角をなすとしてよい. α と β の(したがって, $s(\alpha)$ と β の)長さが等しいことより, $\angle(s(\alpha),\beta)$ は 0° または 60° である(定理 1.23,注意 1.24). 前者の場合, $s(\alpha) = \beta$ である.後者の場合, $\gamma = s(\alpha) - \beta \in R$ であり(系 1.26 (1)), $s_{\gamma}s(\alpha) = \beta$ となる. これで,主張が示された.

命題 1.29 R を有限次元 \mathbb{K} -線型空間 V 上のルート系, α , $\beta \in R$ を線型独立な二つのルートとし,

$$I_{\beta,\alpha} = \{ j \in \mathbb{Z} \mid \beta + j\alpha \in R \}$$

と置く.

- (1) $I_{\beta,\alpha}$ は、 $p, q \in \mathbb{Z}_{>0}$ を用いて $I_{\beta,\alpha} = [-q, p] \cap \mathbb{Z}$ と書ける.
- (2) (1) の p, q について, $p-q=-n(\beta,\alpha)$ である.
- (3) (1) の p, q について, $\gamma = \beta q\alpha$ と置くと, $p + q = -n(\gamma, \alpha)$ であり、これは 0, 1, 2, 3 のいずれかである.

証明 (1) $p = \max I_{\beta,\alpha}$, $-q = \min I_{\beta,\alpha}$ と置く.明らかに $0 \in I_{\beta,\alpha}$ だから, $p, q \in \mathbb{Z}_{\geq 0}$ である.もし $I_{\beta,\alpha} \neq [-q,p] \cap \mathbb{Z}$ であるとすると, $r,s \in I_{\beta,\alpha}$ をr < s かつ $r+1,s-1 \notin I_{\beta,\alpha}$ を満たすようにとれる.この r,s について,系 1.26 の対偶より

$$n(\beta + r\alpha, \alpha) \ge 0 \ge n(\beta + s\alpha, \alpha)$$

だが、一方で $n(\beta+j\alpha,\alpha)=n(\beta,\alpha)+jn(\alpha,\alpha)=n(\beta,\alpha)+2j$ は j に関して狭義単調増加だから、これは不可能である。よって、背理法より、 $I_{\beta,\alpha}=[-q,p]\cap\mathbb{Z}$ である。

- (2) ルート鏡映 s_{α} は $\beta+j\alpha$ を $\beta-(n(\beta,\alpha)+j)\alpha$ に移すから,写像 $j\mapsto -(n(\beta,\alpha)+j)$ は $I_{\beta,\alpha}=[-q,p]\cap\mathbb{Z}$ から自身への全単射である.よって, $p-q=-n(\beta,\alpha)$ である.
- (3) β の代わりに γ に対して (2) を適用すれば, $p+q=-n(\gamma,\alpha)$ を得る.また, α と γ は線型独立だから,定理 1.23 より $|n(\gamma,\alpha)|$ は 0,1,2,3 のいずれかである. $p+q\geq 0$ だから, $p+q=-n(\gamma,\alpha)$ は 0,1,2,3 のいずれかである.

命題 1.30 R をルート系とする.線型独立な二つのルート α , $\beta \in R$ が $\beta + \alpha \in R$ を満たすとして,p, $q \in \mathbb{Z}_{\geq 0}$ を命題 1.29 のとおりに定める.このとき, $\beta + \alpha$ の β に対する長さの比(α , β , $\alpha + \beta$ の中で直交する対はたかだか一つだから, β と $\beta + \alpha$ は R の同じ既約成分に属し,長さの比が定まる)は, $\sqrt{(q+1)/p}$ に等しい.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり,W(R)-不変な内積が定まっていると仮定する(命題 1.7,系 1.8 (1),系 1.27)。 $\gamma=\beta-q\alpha$ と置く.命題 1.29 と $\beta+\alpha\in R$ (すなわち $p\geq 1$) より, $p+q=-n(\gamma,\alpha)\in\{1,2,3\}$ である.以下,この値によって場合分けをする.

 $p+q=-n(\gamma,\alpha)=1$ ならば、(p,q)=(1,0)、 $\beta=\gamma$ である.この場合、 $s_{\alpha}(\gamma)=\gamma+\alpha$ だから、

$$\frac{\|\beta+\alpha\|}{\|\beta\|} = \frac{\|\gamma+\alpha\|}{\|\gamma\|} = 1 = \sqrt{\frac{q+1}{p}}$$

である.

 $p+q=-n(\gamma,\alpha)=2$ ならば、 $\|\gamma\|/\|\alpha\|=\sqrt{2}$ かつ $\angle(\alpha,\gamma)=135^\circ$ である(定理 1.23)。 (p,q)=(2,0) ならば、 $\beta=\gamma$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + \alpha\|}{\|\gamma\|} = \frac{1}{\sqrt{2}} = \sqrt{\frac{q+1}{p}}$$

である. (p,q)=(1,1) ならば, $\beta=\gamma+\alpha$ であり,

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + 2\alpha\|}{\|\gamma + \alpha\|} = \sqrt{2} = \sqrt{\frac{q+1}{p}}$$

である.

 $p+q=-n(\gamma,\alpha)=3$ ならば、 $\|\gamma\|/\|\alpha\|=\sqrt{3}$ かつ $\angle(\alpha,\gamma)=150^\circ$ である(定理 1.23)。 (p,q)=(3,0) ならば、 $\beta=\gamma$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + \alpha\|}{\|\gamma\|} = \frac{1}{\sqrt{3}} = \sqrt{\frac{q+1}{p}}$$

である. (p,q)=(2,1) ならば、 $\beta=\gamma+\alpha$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + 2\alpha\|}{\|\gamma + \alpha\|} = 1 = \sqrt{\frac{q+1}{p}}$$

である. (p,q)=(1,2) ならば、 $\beta=\gamma+2\alpha$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + 3\alpha\|}{\|\gamma + 2\alpha\|} = \sqrt{3} = \sqrt{\frac{q+1}{p}}$$

である.

以上で, すべての場合に主張が示された.

1.7 被約ルート系への帰着

定義 1.31 (割れないルート) R をルート系とする. ルート $\alpha \in R$ が割れない (indivisible) とは, $\alpha/2 \notin R$ であることをいう.

命題 1.32 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする. R' を,R の割れないルート全体のなす集合とする.

- (1) R' は V 上の被約ルート系であり、R が既約であることと R_0 が既約であることとは同値である.
- (2) $\alpha \in R'$ に対して、 $s_{\alpha}^{R'} = s_{\alpha}^{R}$ である($s_{\alpha}^{R'}$, s_{α}^{R} は、それぞれルート系 R', R における α に関するルート 鏡映を表す).
- (3) $\alpha \in R'$ に対して、 $\alpha_{R'}^{\lor} = \alpha_R^{\lor}$ である($\alpha_{R'}^{\lor}$ 、 α_R^{\lor} は、それぞれルート系 R'、R における α の双対ルートを表す).
- (4) W(R') = W(R) である.

証明 (1), (2) R' が (R1), (R4) を満たすことは明らかである. $\alpha \in R'$ とすると, s_{α}^{R} は R の自己同型だから,割れないルートを割れないルートに移す. したがって,鏡映 s_{α}^{R} は, (RS2), (RS3) の条件を満たす. よって, R' は V 上の被約ルート系であり, (3) が成り立つ.

 $V=V_1\oplus V_2$ を線型空間の直和分解とするとき, $R=(R\cap V_1)\sqcup (R\cap V_2)$ であることと $R'=(R'\cap V_1)\sqcup (R'\cap V_2)$ であることは同値であり,また,i=1,2 に対して, $R\cap V_i$ が空であることと $R'\cap V_i$ が空であることとは同値である.よって,R が既約であることと R' が既約であることとは同値である.

(3), (4) (2) から明らかである.

注意 1.33 命題 1.32 において, $R' = \{ \alpha \in R \mid \alpha/2 \notin R \}$ の代わりに $R'' = \{ \alpha \in R \mid 2\alpha \notin R \}$ を用いても,同じ主張が成り立つ.証明も,まったく同様にできる.

注意 1.34 命題 1.32 や注意 1.33 において、 $\operatorname{Aut}(R') = \operatorname{Aut}(R)$ や $\operatorname{Aut}(R'') = \operatorname{Aut}(R)$ は成り立たない。たとえば、 \mathbb{K}^2 の標準基底を (ϵ_1, ϵ_2) と書くと、 $R = \{\pm \epsilon_1, \pm 2\epsilon_1, \pm \epsilon_2\}$ は \mathbb{K}^2 上の(被約でない)ルート系であり、R の自己同型は恒等写像のみだが、 $R' = \{\pm \epsilon_1, \pm \epsilon_2\}$ や $R'' = \{\pm 2\epsilon_1, \pm \epsilon_2\}$ は恒等写像以外の自己同型をもつ。

次の定理により、被約でない既約ルート系の構成と分類は、被約なルート系の構成と分類に帰着される(2.4 節).

定理 1.35 R を有限次元 \mathbb{K} -線型空間 V 上の被約でない既約ルート系とする.

(1) R の各ルートの最短ルートに対する長さの比は、 $1, \sqrt{2}, 2$ のいずれかである.

以下、最短ルートに対する長さの比が $1, \sqrt{2}, 2$ であるようなルートの全体を、それぞれ A, B, C と置く.

- (2) $2A = C \ \text{\red} \ \delta$.
- (3) Aに属する異なる二つのルートは、直交する.
- (4) $R' = A \cup B$ と $R'' = B \cup C$ は、V 上の被約な既約ルート系である.
- 証明 (1) R の二つのルートの長さの比は、 $1,\sqrt{2},\sqrt{3},2$ またはこれらの逆数のいずれかである(系 1.27). 一方で,R は被約でないから,長さの比が 1:2 であるような二つのルートが存在する.以上から,主張が従う.
- $(2) \quad R \text{ は被約でないから}, \ \alpha, \ 2\alpha \in R \text{ を満たすルート} \ \alpha \text{ がとれ}, \ \alpha \in A \text{ かつ } 2\alpha \in C \text{ となる}. \ \beta \in A \text{ とすると}, \ s \in W(R) \text{ を} \ s(\alpha) = \beta \text{ となるようにとれるから} \ (命題 \ 1.28), \ 2\beta = s(2\alpha) \in C \text{ である}. \ 逆に, \ \gamma \in C \text{ とすると}, \ s \in W(R) \text{ を} \ s(2\alpha) = \gamma \text{ となるようにとれるから} \ (命題 \ 1.28), \ \gamma/2 = s(\alpha) \in A \text{ である}. \ \text{よって}, \ 2A = C \text{ である}.$
- (3) $\alpha, \beta \in A$ を異なる二つのルートとすると、(2) より $2\alpha \in C$ である. 2α と β の長さの比は 2:1 だから、定理 1.23 より、これらは直交する.よって、 α と β は直交する.
- (4) (2) より, $A \cup B = \{ \alpha \in R \mid \alpha/2 \notin R \}$, $B \cup C = \{ \alpha \in R \mid 2\alpha \notin R \}$ である.よって,主張は,命題 1.32 と注意 1.33 から従う.

1.8 ルート系の基底

定義 1.36(ルート系の基底) R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする. $B \subseteq R$ がルート系 R の基底(basis)であるとは、次の 2 条件を満たすことをいう.

(i) *B* は K-線型空間 *V* の基底である.

(ii) 任意の $\alpha \in R$ に対して, α を B の元の線型結合として書くときの係数は,「すべて 0 以上の整数である」か「すべて 0 以下の整数である」かのいずれかである.

R の基底 B を固定するとき,B の元を,単純ルート(simple root)という.ルートのうち,B の元の線型結合として書くときの係数がすべて 0 以上の整数であるものを B に関する正ルート(positive root)といい,すべて 0 以下の整数であるものを B に関する負ルート(negative root)という.B に関する正ルート,負ルートの全体を,それぞれ $R_+(B)$, $R_-(B)$ と書く.

定義から明らかに、ルート系の基底は、割れないルートのみからなる.

R をルート系とすると,R の自己同型は,基底を基底に移す.これにより,自己同型群 $\operatorname{Aut}(R)$ は(したがって Weyl 群 W(R) も),R の基底全体の集合に作用する.

命題 1.37 R をルート系とし,B をその基底とする.異なる二つの単純ルート α , $\beta \in B$ は,直角または鈍角をなす.

証明 基底の定義より $\beta-\alpha \notin R \cup \{0\}$ だから、主張は系 1.26 (1) の対偶から従う.

本小節の以下の部分では,R を有限次元 \mathbb{K} -線型空間 V 上のルート系とするとき, $\alpha \in R$ に関するルート鏡映の鏡映面を Π_{α} と書く.すなわち,

$$\Pi_{\alpha} = \operatorname{Ker} \alpha^{\vee} = \{ v \in V \mid \alpha^{\vee}(v) = 0 \}$$

である. $\langle -, - \rangle$ を V 上の W(R)-不変な非退化対称双線型形式とすると, $\langle \alpha, \alpha \rangle \neq 0$ かつ $\alpha^{\vee} = 2\langle -, \alpha \rangle / \langle \alpha, \alpha \rangle$ だから(系 1.8), Π_{α} はこの非退化対称双線型形式に関する $\mathbb{K}\alpha$ の直交空間となる.

定義 1.38(Weyl チャンバー) R を有限次元実線型空間 V 上のルート系とする. V の開集合 $V\setminus\bigcup_{\alpha\in R}\Pi_{\alpha}$ の各連結成分を,R の Weyl チャンバー(Weyl chamber)という.

R を有限次元実線型空間上のルート系とすると,R の自己同型は,Weyl チャンバーを Weyl チャンバーに移す.これにより,自己同型群 $\mathrm{Aut}(R)$ は(したがって Weyl 群 W(R) も),R の Weyl チャンバー全体の集合に作用する.

補題 1.39 実内積空間 V の元の族 $(v_i)_{i\in I}$ が 2 条件

- (i) ある $w \in V \setminus \{0\}$ が存在して、任意の $i \in I$ に対して $\langle v_i, w \rangle > 0$ となる.
- (ii) 任意の異なる $2 \pi i, j \in I$ に対して、 $\langle v_i, v_j \rangle \leq 0$ である.

を満たすならば、 $(v_i)_{i \in I}$ は線型独立である.

証明 $I', I'' \subseteq I$ を互いに交わらない有限部分集合とし、各 $i \in I'$ に対して $a_i \ge 0$ 、各 $j \in I''$ に対して $b_j \ge 0$ を任意にとる。もし $\sum_{i \in I'} a_i v_i = \sum_{j \in I''} b_j v_j$ ならば、これを v と置くと、条件 (ii) より

$$||v||^2 = \left\langle \sum_{i \in I'} a_i v_i, \sum_{j \in I''} b_j v_j \right\rangle = \sum_{i \in I', j \in I''} a_i b_j \langle v_i, v_j \rangle \le 0$$

だから,

$$\sum_{i \in I'} a_i v_i = \sum_{j \in I''} b_j v_j = v = 0$$

である.条件 (i) の $w \in V \setminus \{0\}$ と上式の各辺との内積をとれば, $a_i = 0$ および $b_j = 0$ を得る.よって, $(v_i)_{i \in I}$ は線型独立である.

定理 1.40 R を有限次元実線型空間 V 上のルート系とする.

(1) R の基底 B に対して、

$$C(B) = \{v \in V \mid$$
任意の $\alpha \in B$ に対して $\alpha^{\vee}(v) > 0\}$

は R の Weyl チャンバーである.

(2) R の Weyl チャンバー C に対して,

$$R_+(C)=\{lpha\in R\mid lpha^ee(C)\subseteq\mathbb{R}_{>0}\},$$

$$B(C)=\{lpha\in R_+(C)\mid lpha\ \mathrm{id}\ R_+(C)\ \mathrm{o}$$
重複を許す二つ以上の元の和としては書けない}

と定めると、B(C) は R の基底である.

(3) (1) と (2) の対応は互いに他の逆であり、R の基底と Weyl チャンバーとの間の一対一対応を与える. さらに、この対応は、自己同型群 $\operatorname{Aut}(R)$ の作用を保つ.

証明 V 上の W(R)-不変な内積 $\langle -, - \rangle$ を一つ固定する(系 1.8). $\alpha \in R$ と $v \in V$ に対して, $\alpha^{\vee}(v) = 2\langle v, \alpha \rangle / \langle \alpha, \alpha \rangle$ だから, $\alpha^{\vee}(v)$ と $\langle v, \alpha \rangle$ は同符号である.

(1) 内積を用いると,

$$C(B) = \{v \in V \mid$$
任意の $\alpha \in B$ に対して $\langle v, \alpha \rangle > 0\}$

と書ける. B は V の基底だから, C(B) は連結である. C(B) の元と B に関する正ルートとの内積は正であり, B に関する負ルートとの内積は負だから, C(B) は

$$V \setminus \bigcup_{\alpha \in R} \Pi_{\alpha} = \{ v \in V \mid$$
任意の $\alpha \in R$ に対して $\langle v, \alpha \rangle \neq 0 \}$

に含まれる。さらに、 $v' \in V \setminus \bigcup_{\alpha \in R} \Pi_{\alpha}$ が C(B) と同じ連結成分に含まれるならば、任意の $\alpha \in R$ に対して $\langle v', \alpha \rangle$ と $\langle v, \alpha \rangle$ ($v \in C(B)$) は同符号だから、 $v' \in C(B)$ である。よって、C(B) は $V \setminus \bigcup_{\alpha \in R} \Pi_{\alpha}$ の一つの 連結成分、すなわち Weyl チャンバーである。

(2) α^{\vee} の符号は各 Weyl チャンバー上で一定だから, $v_0 \in C$ を一つ固定すると

$$R_{+}(C) = \{ \alpha \in R \mid \langle v_0, \alpha \rangle > 0 \} \tag{*}$$

と書ける. $\alpha \in R_+(C)$ とすると、それが B(C) に属していない限り $\alpha = \alpha_1 + \dots + \alpha_k$ $(k \geq 2, \alpha_1, \dots, \alpha_k \in R_+(C))$ と分解でき、各 α_i に対しても同じことがいえる。各 i に対して $\langle v_0, \alpha_i \rangle < \langle v_0, \alpha \rangle$ だから、この操作は有限回で終了する。よって、 $R_+(C)$ に属するルートは、B(C) の元の 0 以上の整数を係数とする線型結合で書ける。 $R = R_+(C) \cup (-R_+(C))$ だから、残りのルートは、B(C) の元の 0 以下の整数を係数とする線型結合で書ける。

前段の結果から,B(C) が V を張ることもわかる.あとは,B(C) が線型独立であることを示せばよい.そのためには,B(C) が補題 1.39 の 2 条件を満たすことをいえばよい.条件 (i) は,(*) より満たされる.条件 (ii) が満たされないとすると,ある α , $\beta \in B(C)$ に対して $\langle \alpha, \beta \rangle \leq 0$ となるが,このとき系 1.26 より $\beta - \alpha \in R$ である.したがって, $\beta - \alpha$ または $\alpha - \beta$ が $R_+(C)$ に属することになるが,いずれにしても α , $\beta \in B(C)$ に矛盾する.よって,背理法より,条件 (ii) は満たされる.

(3) B を R の基底とすると、容易にわかるように $R_+(B) \subseteq R_+(C(B))$ だが、 $R_+(B)$ と $R_-(B) = -R_+(B)$, $R_+(C(B))$ と $-R_+(C(B))$ はともに R の分割を与えるから、 $R_+(B) = R_+(C(B))$ である.したがって、B(C(B)) は $R_+(B)$ の元のうち $R_+(B)$ の重複を許す二つ以上の元の和としては書けないもの全体だが、正ルートの定義よりこれは B に等しい.また,C を R の Weyl チャンバーとすると、容易にわかるように $C \subseteq C(B(C))$ であり,C と C(B(C)) はともに $V \setminus \bigcup_{\alpha \in R} \Pi_\alpha$ の連結成分だから C = C(B(C)) である.よって、(1) と (2) の対応は互いに他の逆であり,R の基底と Weyl チャンバーとの間の一対一対応を与える. $t \in \operatorname{Aut}(R)$ とすると,R の基底 B に対して、

$$C(t(B)) = \{v \in V \mid$$
任意の $\alpha \in B$ に対して $t(\alpha)^{\vee}(v) > 0\}$
= $\{v \in V \mid$ 任意の $\alpha \in B$ に対して $\alpha^{\vee}(t^{-1}(v)) > 0\}$
= $t(C(B))$

である (補題 1.12). よって、上記の対応は、自己同型群 $\mathrm{Aut}(R)$ の作用を保つ.

系 1.41 任意のルート系は, 基底をもつ.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ と仮定する(命題 1.7).このとき基底の存在は,定理 1.40 から従う. $\qquad \Box$

命題 1.42 R をルート系とし,B をその基底とする.正ルートの列 $\alpha_1,\ldots,\alpha_k\in R_+(B)$ $(k\geq 1)$ について,それらの和 $\alpha_1+\cdots+\alpha_k$ もルートならば, $\{1,\ldots,k\}$ 上の置換 π であって,すべての $1\leq i\leq k$ に対して $\alpha_{\pi(1)}+\cdots+\alpha_{\pi(i)}$ がルートであるものが存在する.

証明 k に関する帰納法で示す。 k=1 の場合は明らかである。 $k\geq 2$ とし,k-1 に対する主張は正しいとする。 $\beta=\alpha_1+\cdots+\alpha_k$ と置くと, $n(\alpha_1,\beta)+\cdots+n(\alpha_k,\beta)=n(\beta,\beta)=2$ だから, $n(\alpha_i,\beta)>0$ となる $1\leq i\leq k$ が存在する。この i について,系 1.26 (1) より, $\beta-\alpha_i\in R$ となる。そこで, α_i を除く k-1 個のルートに帰納法の仮定を適用すれば,k の場合の主張が示される。これで,帰納法が完成した.

R を有限次元 \mathbb{K} -線型空間 V 上のルート系,B をその基底(定理 1.47 (1) より存在する)とすると,R が生成する V の部分 \mathbb{Z} -加群 $\mathbb{Z}R$ は,B を基底とする格子 $\mathbb{Z}B$ に等しい.これを,ルート系 R のルート格子(root lattice)という.

系 1.43 ルート系 R から可換群 A への写像 $f: R \rightarrow A$ が 2 条件

- (i) 任意の $\alpha \in R$ に対して, $f(-\alpha) = f(\alpha)^{-1}$ である.
- (ii) 任意の α , β , $\alpha + \beta \in R$ に対して, $f(\alpha + \beta) = f(\alpha)f(\beta)$ である.

を満たすならば、f はルート格子 $\mathbb{Z}R$ から A への群準同型に一意に拡張される.

証明 B を R の基底とすると、ルート格子 $\mathbb{Z}R$ は B を基底とする格子だから、B 上で f に一致する群準同型 \widetilde{f} : $\mathbb{Z}R \to A$ が一意に存在する.これが f の拡張であることを示そう.条件 (ii) より、正ルート β に対して $\widetilde{f}(\beta) = f(\beta)$ を示せばよい.命題 1.42 より、単純ルートの列 $\alpha_1, \ldots, \alpha_k$ を、任意の $1 \leq i \leq k$ に対して $\alpha_1 + \cdots + \alpha_i$ がルートであり、かつ $\alpha_1 + \cdots + \alpha_k = \beta$ であるようにとれる.よって、条件 (ii) より

$$\widetilde{f}(\beta) = \widetilde{f}(\alpha_1) \cdots \widetilde{f}(\alpha_k) = f(\alpha_1) \cdots f(\alpha_k) = f(\beta)$$

である. これで、主張が示された.

次に、Weyl 群の基底全体の集合への作用を考える.

補題 1.44 R をルート系とし,B をその基底とする.単純ルート $\alpha \in B$ に関する鏡映 s_{α} は, $R_{+}(B)\setminus \mathbb{K}\alpha$ 上の置換を引き起こす.

証明 $\beta \in R_+(B) \setminus \mathbb{K}\alpha$ とする. $s_\alpha(\beta) \notin \mathbb{K}\alpha$ は明らかである. $\beta = \sum_{\gamma \in B} a_\gamma \gamma$ (各 a_γ は 0 以上の整数) と表すと,ある $\gamma \in B \setminus \{\alpha\}$ が存在して $a_\gamma > 0$ となる.ここで,

$$s_{\alpha}(\beta) = \sum_{\gamma \in B} a_{\gamma}(\gamma - n(\gamma, \alpha)\alpha) = \sum_{\gamma \in B} a_{\gamma}\gamma - \left(\sum_{\gamma \in B} n(\gamma, \alpha)\right)\alpha$$

だから、 $s_{\alpha}(\gamma)$ を B の元の線型結合で表すときの γ の係数も $a_{\gamma}>0$ である.これより、 $s_{\alpha}(\beta)\in R_{+}(B)$ である.よって、 s_{α} は、 $R_{+}(B)\setminus\mathbb{K}\alpha$ 上の置換を引き起こす.

系 1.45 R をルート系とし,B をその基底とする.B に関する正ルートであって割れないもの全体の和の 1/2 倍を ρ と置くと,任意の単純ルート $\alpha \in B$ に対して, $s_{\alpha}(\rho) = \rho - \alpha$ である.

証明 B に関する正ルートであって割れないもの全体の集合を、 $R_+(B)'$ と置く、 s_α は、 $R_+(B)\setminus \mathbb{K}\alpha$ 上の置換を引き起こし(補題 1.44)、割れないルートを割れないルートに移すから、 $R_+(B)'\setminus \{\alpha\}$ 上の置換を引き起こす、よって、

$$s_{\alpha}(\rho) = \frac{1}{2} \left(\sum_{\beta \in R_{+}(B)' \setminus \{\alpha\}} s_{\alpha}(\beta) + s_{\alpha}(\alpha) \right) = \frac{1}{2} \left(\sum_{\beta \in R_{+}(B)' \setminus \{\alpha\}} \beta - \alpha \right) = \rho - \alpha$$

である.

補題 1.46 R をルート系とし、B をその基底とする。 $s=s_{\alpha_1}\cdots s_{\alpha_k}$ $(k\geq 1,\ \alpha_1,\ldots,\alpha_k\in B)$ とし、s は k 個未満の $\{s_{\alpha}\mid \alpha\in B\}$ の元の合成としては書けないとする。 このとき、 $s(\alpha_k)$ は B に関する負ルートである。

証明 $s(\alpha_k) = -s_{\alpha_1} \cdots s_{\alpha_{k-1}}(\alpha_k)$ が正ルートであると仮定すると、 $s_{\alpha_1} \cdots s_{\alpha_{k-1}}(\alpha_k)$ は負ルートだから、 $1 \leq i \leq k-1$ を適当にとって、 $\beta = s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}}(\alpha_k)$ は負ルートだが $s_{\alpha_i}(\beta) = s_{\alpha_i} \cdots s_{\alpha_{k-1}}(\alpha_k)$ は正ルートであるようにできる.一方で、 s_{α_i} は $\mathbb{K}\alpha_i$ に属さない正ルートを正ルートに移す(補題 1.44). したがって、 $\beta \in \mathbb{K}\alpha_i$ でなければならないから、

$$s_{\alpha_i} = s_{\beta} = s_{s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}}(\alpha_k)} = s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}} s_{\alpha_k} s_{\alpha_{k-1}} \cdots s_{\alpha_{i+1}}$$

となり(補題 1.12), 移項すれば

$$s_{\alpha_i} \cdots s_{\alpha_k} = s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}}$$

を得る.これより $s=s_{\alpha_1}\cdots s_{\alpha_k}=s_{\alpha_1}\cdots s_{\alpha_{i-1}}s_{\alpha_{i+1}}\cdots s_{\alpha_{k-1}}$ となるが,これは k の最小性に矛盾する.よって,背理法より, $s(\alpha_k)$ は負ルートである.

定理 1.47 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする.

- (1) Weyl 群 W(R) は,R の基底全体の集合に自由かつ推移的に作用する.
- (2) B を R の基底とすると、W(R)B は R の割れないルート全体に等しい.
- (3) B を R の基底とすると、Weyl 群 W(R) は $\{s_{\alpha} \mid \alpha \in B\}$ によって生成される.

証明 一般性を失わず, $\mathbb{K} = \mathbb{R}$ であり,V に W(R)-不変な内積 $\langle -, - \rangle$ が定まっていると仮定する(命題 1.7,系 1.8)。R の基底 B を一つ固定し(系 1.41 より存在する), $\{s_{\alpha} \mid \alpha \in B\}$ が生成する W(R) の部分群を W'(R) と置く。まず (1), (2) で W(R) を W'(R) に置き換えた主張 (1'), (2') を示し,次に (2') を用いて (3) を示す。

(1') W'(R) の R の基底全体の集合への作用が推移的であることを示す。定理 1.40 より,W'(R) の R の Weyl チャンバー全体の集合への作用が推移的であることを示せばよい。 B に関する正ルートであって割れないもの全体の和の 1/2 倍を, ρ と置く。点 $v \in V \setminus \bigcup_{\alpha \in R} \Pi_{\alpha}$ を任意にとり,これに対して, $s \in W'(R)$ を $\langle s(v), \rho \rangle$ が最大となるようにとる。すると,任意の $\alpha \in B$ に対して,

$$\langle s(v), \rho \rangle \geq \langle s_{\alpha}s(v), \rho \rangle = \langle s(v), s_{\alpha}(\rho) \rangle = \langle s(v), \rho \rangle - \langle s(v), \alpha \rangle$$

(最後の等号で系 1.45 を用いた) より $\langle s(v),\alpha\rangle \geq 0$ であり、また $v\notin \Pi_{s^{-1}(\alpha)}$ より $\langle s(v),\alpha\rangle = \langle v,s^{-1}(\alpha)\rangle \neq 0$ だから、 $\langle s(v),\alpha\rangle > 0$ である. したがって、 $s(v)\in C(B)$ であり、これは v を含む Weyl チャンバーが s の作用で C(B) に移ることを意味する.よって、W'(R) の R の Weyl チャンバー全体の集合への作用は推移的である.

次に、W'(R) の R の基底全体の集合への作用が自由であることを示す。前段で推移性を示したから、 $s\in W'(R)\setminus\{1\}$ として $s(B)\neq B$ を示せば十分である。 $s=s_{\alpha_1}\cdots s_{\alpha_k}$ $(k\geq 1,\ \alpha_1,\ldots,\alpha_k\in B)$ と k が最小になる方法で表示すると、補題 1.46 より $s(\alpha_k)$ は負ルートだから、特に $s(B)\neq B$ である。これで、主張が示された。

(2') (1') より,R のすべての基底の合併が R の割れないルート全体に等しいことを示せばよい.R の基底の元がすべて割れないルートであることは,基底の定義から明らかである.任意の割れないルート $\alpha \in R$ が R のある基底に含まれることを示す.点 $v_0 \in V$ を

$$\langle v_0, \alpha \rangle = 0, \qquad \langle v_0, \beta \rangle \neq 0 \quad (\beta \in R \setminus \mathbb{R}\alpha)$$

となるようにとり、さらに $\epsilon > 0$ を十分小さくとって

$$\langle v_0 + \epsilon \alpha, \alpha \rangle > 0, \qquad |\langle v_0 + \epsilon \alpha, \beta \rangle| > \langle v_0 + \epsilon \alpha, \alpha \rangle \quad (\beta \in R \setminus \mathbb{R}\alpha)$$

が成り立つようにする。すると、 $v_0 + \epsilon \alpha \in V \setminus \bigcup_{\beta \in R} \operatorname{Ker} \Pi_{\beta}$ だから、 $v_0 + \epsilon \alpha$ を含む Weyl チャンバー C がとれる。以下、定理 1.40 の記号 $R_+(C)$ 、B(C) を用いる。 $\langle v_0 + \epsilon \alpha, \alpha \rangle > 0$ だから、 $\alpha \in R_+(C)$ である。また、 $\alpha = \beta_1 + \dots + \beta_k$ $(k \geq 1, \beta_1, \dots, \beta_k \in R_+(C))$ とすると、 $\langle v_0 + \epsilon \alpha, \alpha \rangle = \langle v_0 + \epsilon \alpha, \beta_1 \rangle + \dots + \langle v_0 + \epsilon \alpha, \beta_k \rangle$ だが、任意の $\beta \in R_+(C) \setminus \mathbb{R}\alpha$ に対して $\langle v_0 + \epsilon \alpha, \beta \rangle > \langle v_0 + \epsilon \alpha, \alpha \rangle$ だから、 $\beta_1, \dots, \beta_k \in R_+(C) \cap \mathbb{R}\alpha$ でなければならない。さらに、 α は割れないルートだから、k = 1 かつ $\beta_1 = \alpha$ でなければならない。よって、 $\alpha \in B(C)$ である。これで、主張が示された。

(3) 任意の割れないルート $\alpha \in R$ に対して,(2') よりある $t \in W'(R)$ が存在して $t(\alpha) \in B$ となり,このとき, $s_{\alpha} = t^{-1}s_{t(\alpha)}t \in W'(R)$ である(補題 1.12).よって,W'(R) = W(R) である.

系 1.48 R_1, R_2 をそれぞれ有限次元 \mathbb{K} -線型空間 V_1, V_2 上の被約ルート系とし, B_1, B_2 をそれぞれ R_1, R_2 の基底とする.全単射 $\phi: B_1 \to B_2$ が,任意の $\alpha, \beta \in B_1$ に対して $n(\phi(\beta), \phi(\alpha)) = n(\beta, \alpha)$ を満たすならば, ϕ はルート系 R_1 から R_2 への同型に一意に拡張される.

証明 $B_1,\,B_2$ はそれぞれ $V_1,\,V_2$ の基底だから, ϕ は線型同型写像 $\Phi\colon V_1 o V_2$ に一意に拡張される.仮定よ

り、 $\alpha, \beta \in B_1$ に対して

$$\begin{split} \varPhi(s_{\alpha}(\beta)) &= \varPhi(\beta - n(\beta, \alpha)\alpha) \\ &= \phi(\beta) - n(\beta, \alpha)\phi(\alpha) \\ &= \phi(\beta) - n(\phi(\beta), \phi(\alpha))\phi(\alpha) \\ &= s_{\phi(\alpha)}(\phi(\beta)) \end{split}$$

だから、 $\alpha \in B_1$ に対して

$$\Phi \circ s_{\alpha} = s_{\phi(\alpha)} \circ \Phi$$

である. したがって、線型同型写像 Φ を通して Weyl 群 $W(R_1)$ と $W(R_2)$ が対応するから(定理 1.40 (3))、定理 1.47 (2) と合わせて、

$$\Phi(R_1) = \Phi(W(R_1)B_1) = W(R_2)B_2 = R_2$$

を得る. よって, Φ はルート系 R_1 から R_2 への同型である.

命題 1.49 R をルート系とし、B をその基底とする.次の 2条件は同値である.

- (a) R は既約である.
- (b) $B \neq \emptyset$ であり、B を互いに直交する二つの空でない部分に分割することはできない.

証明 明らかに、 $R=\emptyset$ と $B=\emptyset$ とは同値である.以下、これ以外の場合を考える.

- (b) \Longrightarrow (a) 対偶を示す. R が可約であるとして、ルート系の直和分解 $R=R_1\sqcup R_2$ であって R_1 、 R_2 が空でないものをとる. i=1,2 に対して $B_i=B\cap R_i$ と置くと、これらは空でなく、 R_1 と R_2 は直交する(命題 1.17)から B_1 と B_2 も直交する.これで、主張の対偶が示された.
- (a) \Longrightarrow (b) 対偶を示す。B が互いに直交する二つの空でない部分 B_1 , B_2 に分割されているとする。 i=1,2 に対して $R_i=W(R)B_i\neq\emptyset$ と置く。すると,定理 1.47 (2) より $R=R_1\cup R_2$ である。また, $\alpha\in B_1$ に対して s_α は $\operatorname{span}_\mathbb{K} B_1$ を安定にし, $\beta\in B_2$ に対して s_β は $\operatorname{span}_\mathbb{K} B_1$ の点を動かさないから(B_1 と B_2 が直交することによる),定理 1.47 (3) と合わせて $R_1\subseteq\operatorname{span}_\mathbb{K} B_1$ を得る。同様に, $R_2\subseteq\operatorname{span}_\mathbb{K} B_2$ である。よって, $R=R_1\cup R_2$ はルート系の直和分解である。これで,主張の対偶が示された。

1.9 正ルート全体の集合の特徴付け

命題 1.50 R をルート系とする. 部分集合 $P \subseteq R$ に対して,次の 2 条件は同値である.

- (a) R の基底 B であって, $P = R_{+}(B)$ を満たすものが存在する.
- (b) $\alpha, \beta \in P$ かつ $\alpha + \beta \in R$ ならば $\alpha + \beta \in P$ であり, $P \succeq -P$ は R の分割を与える.

さらに、これらの条件の下で、条件 (a) の基底 B は一意に定まり、

 $B = \{ \alpha \in P \mid \alpha \text{ id } P \text{ の重複を許す二つ以上の元の和としては書けない} \}$

によって与えられる.

証明 $(a) \Longrightarrow (b)$ 基底の定義から明らかである.

(b) ⇒ (a) 基底 B を、 $\#(P \cap R_+(B))$ が最大となるようにとる。 $\alpha \in B$ が P に属さないと仮定すると、 $s_\alpha(\alpha) = -\alpha$ は $P \cap R_+(s_\alpha(B))$ に属する。次に、 $\beta \in P \cap R_+(B)$ を任意にとる。 α は割れないルートだか

ら $\beta \neq \alpha/2$ であり、また $\beta = 2\alpha$ とすると $-\alpha$, $2\alpha \in P$ より $\alpha = 2\alpha - \alpha \in P$ となって仮定に反するから、 $\beta \notin \mathbb{K}\alpha$ である(系 1.25). したがって、補題 1.44 より $s_{\alpha}(\beta) \in R_{+}(B)$ だから、 $\beta \in P \cap R_{+}(s_{\alpha}(B))$ である.以上より、 $\#(P \cap R_{+}(s_{\alpha}(B))) > \#(P \cap R_{+}(B))$ となるが、これは B のとり方に反する.よって、背理法より、 $B \subseteq P$ である.

 $B \subseteq P$ より $R_+(B) \subseteq P$ だが, $R_+(B)$ と $-R_+(B)$, P と -P はともに R の分割を与えるから, $R_+(B) = P$ が成り立つ. これで, 主張が示された.

最後の主張 基底の定義から明らかである.

加法群 A 上の半順序 \leq が平行移動不変であるとは,任意の a, b, c \in A に対して,a \leq b ならば a+c \leq b+c であることをいう. 容易に確かめられるように,平行移動不変な半順序 \leq について,a, b \geq 0 ならば a+b \geq 0 であり,また,a \geq 0 と -a \leq 0 とは同値である.

系 1.51 R を有限次元 \mathbb{K} -線型空間 V 上のルート系とする. \leq を V 上の平行移動不変な全順序とすると, R の基底 B であって, $R_+(B)=\{\alpha\in R\mid \alpha\geq 0\}$ を満たすものが一意に存在する.

証明 上記の注意と命題 1.50 から従う.

2 分類

2.1 Cartan 行列と Dynkin 図形

定義 2.1(Cartan 行列) R をルート系とし,B をその基底とする.行列 $(n(\beta,\alpha))_{(\beta,\alpha)\in B\times B}$ を,(R,B) の Cartan 行列(Cartan matrix)という.

命題 2.2 ルート系 R とその基底 B に対して,(R,B) の Cartan 行列は正則である.

証明 W(R)-不変な非退化対称双線型形式 $\langle -, - \rangle$ を固定すると, α , $\beta \in R$ に対して $n(\beta, \alpha) = 2\langle \beta, \alpha \rangle / \langle \alpha, \alpha \rangle$ である(系 1.8). B が V の基底であることより,行列 $(\langle \beta, \alpha \rangle)_{(\beta, \alpha) \in B \times B}$ は正則だから,Cartan 行列 $(n(\beta, \alpha))_{(\beta, \alpha) \in B \times B}$ も正則である.

Cartan 行列を視覚的に表すものとして、Dynkin 図形を導入する. そのための準備として、多重グラフに「不等号」を与えた「不等号付き多重グラフ」を定義する.

定義 2.3(不等号付き多重グラフ) 不等号付き多重グラフ *2 とは、次の 2 条件を満たす組 (Γ, c) をいう.

- (i) Γ は多重グラフである.
- (ii) c は, Γ において 2 重以上の辺で結ばれている 2 頂点の集合 $\{\alpha,\beta\}$ に対して, α と β のいずれかを対応させる写像である.

不等号付き多重グラフ (Γ,c) は,多重グラフ Γ を表す図において,2 重以上の辺に,c によって選ばれた頂点のほうが「大きい」とする不等号を書き込むことで表される.たとえば,頂点 α と β が Γ において 3 重辺で結ばれており, $c(\{\alpha,\beta\})=\beta$ であるとき,不等号付き多重グラフ (Γ,c) における頂点 α と β は,次のよう

^{*2} 本稿だけの用語である.

表 1 Dynkin 図形の辺と不等号

$n(\alpha, \beta)$	$n(\beta, \alpha)$	Dynkin 図形における頂点 α と β
0	0	$egin{array}{ccc} lpha & eta \ ullet & ullet \end{array}$
-1	-1	•—•
-1	-2	•—
-2	-1	•==
-1	-3	
-3	-1	

に表される.

R をルート系とし、B をその基底とする。異なる二つの単純ルート α 、 $\beta \in B$ に対して、 $(n(\alpha,\beta),n(\beta,\alpha))$ は (0,0)、(-1,-1)、(-1,-2)、(-2,-1)、(-1,-3)、(-3,-1) のいずれかだから(定理 1.23、命題 1.37)、 $n(\alpha,\beta)n(\beta,\alpha)$ は 0,1,2,3 のいずれかである。また、定理 1.23 と注意 1.24 (1) より、

$$\alpha \ \ \ \, \beta \ \ \, \dot{m}$$
直交しない $\iff n(\alpha,\beta)n(\beta,\alpha) \geq 1,$ $\alpha \ \ \ \, \beta \ \ \, \dot{m}$ 直交せず,異なる長さをもつ $\iff n(\alpha,\beta)n(\beta,\alpha) \geq 2$

である(「異なる長さをもつ」の意味については,系 1.27 を参照のこと).以上を踏まえて,次のように定義する.

定義 2.4(Dynkin 図形) ルート系 R とその基底 B に対して,次のように定まる不等号付きグラフ (Γ,c) を,(R,B) の Dynkin 図形(Dynkin diagram)という(表 1 も参照のこと).

- (i) Γ は,B を頂点集合とし,異なる二つの単純ルート α , $\beta \in B$ を $n(\alpha,\beta)n(\beta,\alpha)$ 本の辺で結んで得られる多重グラフである.
- (ii) c は, Γ において 2 重以上の辺で結ばれている 2 頂点の集合 $\{\alpha,\beta\}$ に対して, α と β のうち長いほうを対応させる写像である.

命題 2.5 ルート系 R とその基底 B に対して、次の 2 条件は同値である.

- (a) R は既約である.
- (b) (R, B) の Dynkin 図形は連結である.

証明 命題 1.49 のいいかえにすぎない.

定理 1.47 と系 1.48 より,被約なルート系の同型類は Cartan 行列の同型類と一対一に対応し,したがって,Dynkin 図形の同型類とも一対一に対応する.さらに,命題 2.5 より,その中で,被約な既約ルート系の同型類と連結 Dynkin 図形の同型類が一対一に対応する.よって,被約な既約ルート系を分類するためには,連結 Dynkin 図形としてありうるものを絞り込んだ上で,それらの連結 Dynkin 図形に対応する既約ルート系が構成できるかどうかを考えればよい.

2.2 Dynkin 図形の分類

R は有限次元実内積空間 V 上のルート系であり,その内積は W(R)-不変であるとする。 B を R の基底とすると,

- B は V の基底だから、特に線型独立である.
- 任意の $\alpha, \beta \in B$ に対して、 $\langle \alpha, \beta \rangle \leq 0$ である(命題 1.37).
- (R,B) の Dynkin 図形において, α と β を結ぶ辺の本数は

$$n(\alpha, \beta)n(\beta, \alpha) = \frac{2\langle \alpha, \beta \rangle}{\langle \beta, \beta \rangle} \cdot \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} = 4 \left\langle \frac{\alpha}{\|\alpha\|}, \frac{\beta}{\|\beta\|} \right\rangle^2$$

であり (系 1.8 (2)), これは 0, 1, 2, 3 のいずれかである (定理 1.23).

これを踏まえて、次のように定義する.

定義 2.6(許容可能なベクトルの集合) V を有限次元実内積空間とする. 単位ベクトルの集合 S が許容可能 (admissible) であるとは、次の 2 条件を満たすことをいう.

- (i) S は線型独立である.
- (ii) 任意の異なる $2 \pi v$, $w \in S$ に対して, $\langle v, w \rangle \leq 0$ かつ $4\langle v, w \rangle^2 \in \{0, 1, 2, 3\}$ である(あるいは同値だが、 $\angle(v, w) \in \{90^\circ, 120^\circ, 135^\circ, 150^\circ\}$ である).

定義 2.7 (許容可能な多重グラフ) 許容可能な単位ベクトルの集合 S に対して,多重グラフ $\Gamma(S)$ を,S を頂点集合とし,異なる 2 頂点 $v, w \in S$ が $4\langle v, w \rangle^2$ 本の辺で結ばれるものとして定める.多重グラフ Γ は,ある許容可能な単位ベクトルの集合 S に対する $\Gamma(S)$ に同型であるとき,許容可能(admissible)であるという.

注意 2.8 R を有限次元 \mathbb{K} -線型空間 V 上のルート系,B をその基底とし, (Γ,c) を (R,B) の Dynkin 図形とする。 R を有限次元実線型空間 $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$ $(V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} R)$ 上のルート系とみなし(命題 1.7), $V_{\mathbb{R}}$ 上のW(R)-不変な内積 $\langle -, - \rangle$ を固定する(系 1.8 (1)).このとき,

$$S = \left\{ \frac{\alpha}{\|\alpha\|} \mid \alpha \in B \right\}$$

は許容可能な単位ベクトルの集合であり、対応する多重グラフ $\Gamma(S)$ は Γ に等しい。よって、 Γ は許容可能である。

以下, 許容可能な連結多重グラフを分類する.

補題 2.9 許容可能な多重グラフは、(長さ3以上の) サイクルを含まない.

証明 S を許容可能な単位ベクトルの集合とし, $\Gamma(S)$ において $S_0\subseteq S$ がサイクルをなすとする。 $v,w\in S_0$ を異なる 2 頂点とすると $\langle v,w\rangle\leq 0$ だが, S_0 に属する頂点どうしを結ぶ辺は少なくとも $\#S_0$ 本あるから,このうち少なくとも $2\#S_0$ 組の (v,w) (順序を考慮するため 2 倍になる)に対して $\langle v,w\rangle\leq -1/2$ である。したがって,

$$\left\| \sum_{v \in S_0} v \right\|^2 = \#S_0 + \sum_{v, w \in S_0, \ v \neq w} \langle v, w \rangle \le \#S_0 + 2\#S_0 \cdot \left(-\frac{1}{2} \right) = 0$$

であり, $\sum_{v \in S_0} v = 0$ を得るが,これは S が線型独立であることに反する.よって,背理法より, $\Gamma(S)$ はサイクルを含まない.

補題 2.10 許容可能な多重グラフにおいて、各頂点の次数(その頂点から伸びている辺の本数)は 3 以下である.

証明 S を許容可能な単位ベクトルの集合とする. $v\in S$ とし, $\Gamma(S)$ において v と辺で結ばれている頂点全体の集合を S_v と置く.補題 2.9 より, S_v に属するどの 2 頂点も辺で結ばれていないから, S_v は正規直交系をなす.S が線型独立であることより $v\notin \operatorname{span}_{\mathbb{R}} S_v$ だから,

$$4\sum_{w \in S_n} \langle v, w \rangle^2 < 4||v||^2 = 4$$

である.頂点 v と w は $4\langle v,w\rangle^2$ 本の辺で結ばれているから,上式は,頂点 v の次数が 3 以下であることを示す.

補題 2.11 Γ を許容可能な多重グラフとする. v_0,\ldots,v_k $(k\in\mathbb{N})$ は Γ の異なる頂点の列であり,各 $1\leq i\leq k-1$ に対して, v_i は v_{i-1} および v_{i+1} とそれぞれちょうど 1 本の辺で結ばれ,それ以外の頂点とは 辺で結ばれていないとする.このとき, v_0,\ldots,v_k を一つの頂点に潰して得られる多重グラフ Γ' は,また許容可能である.

証明 Γ は,許容可能な単位ベクトルの集合 S に対応する多重グラフ $\Gamma(S)$ であるとしてよい. $v=v_0+\cdots+v_k$, $S'=(S\setminus\{v_0,\ldots,v_k\})\cup\{v\}$ と置く(S は線型独立だから, $v\notin S$ である).すると,

- S は線型独立だから、S' も線型独立である.
- ・ $\|v\|^2 = \sum_{0 \leq i,j \leq k} \langle v_i,v_j \rangle = k (k-1) = 1$ である.
- 任意の $w \in S' \setminus \{v\}$ について、仮定より $\langle v_i, w \rangle = 0$ $(1 \le i \le k-1)$ であり、補題 2.9 より $\langle v_0, w \rangle$ と $\langle v_k, w \rangle$ のうち少なくとも一方は 0 である.したがって、 $\langle v, w \rangle = \sum_{i=0}^k \langle v_k, w \rangle$ は 0 または $\langle v_0, w \rangle$ または $\langle v_k, w \rangle$ に等しく、いずれにしても $\langle v, w \rangle \le 0$ かつ $4\langle v, w \rangle^2 \in \{0, 1, 2, 3\}$ である.

よって,S' は許容可能な単位ベクトルの集合であり,対応する多重グラフ $\Gamma(S')$ は Γ' に同型である.よって, Γ' は許容可能である.

定理 2.12(許容可能な連結多重グラフの分類) 許容可能な連結多重グラフは,表 2 に挙げたもののいずれかただ一つに同型である.

証明 S を許容可能な単位ベクトルの集合とし, $\Gamma = \Gamma(S)$ と置く. Γ は連結であるとする.

- (I) Γ が 3 重辺をもつ場合、補題 2.10 より、 Γ は G_2 に同型である.
- (II) Γ が 3 重辺をもたず 2 重辺をもつ場合,2 重辺はただ一つであり,2 重辺の両端以外に次数 3 以上の頂点は存在しない(存在するとすると,補題 2.11 の操作により次数 4 以上の頂点を作ることができ,補題 2.10 に反する). したがって, Γ は次の形である($1 \le p \le q$).

表 2 許容可能な連結多重グラフの分類

型(lは頂点数)	多重グラフ
$A_l \ (l \ge 1)$	• • •
$B_l = C_l \ (l \ge 2)$	-
$D_l \ (l \ge 4)$	•
	•
E_{6}	• • • • •
E_{7}	• • • • • • • • • • • • • • • • • • • •
E_8	
F_4	• • • • • • • • • • • • • • • • • • • •
G_2	

ここで,

$$u = \sum_{i=1}^{p} i u_i, \qquad v = \sum_{i=1}^{q} i v_i$$

と置くと,

$$\|u\|^2 = \sum_{i=1}^p i^2 - \sum_{i=1}^{p-1} i(i+1) = \frac{p(p+1)}{2}, \qquad 同様に \|v\|^2 = \frac{q(q+1)}{2},$$

$$\langle u, v \rangle^2 = \frac{p^2 q^2}{2}$$

である. u と v が線型独立であることと Cauchy–Schwarz の不等式より $\langle u,v \rangle^2 < \|u\|^2 \|v\|^2$ だから,

$$\frac{p^2q^2}{2} < \frac{p(p+1)}{2} \cdot \frac{q(q+1)}{2}$$

である.これを整理すると pq < p+q+1 となり,これを満たす (p,q) は,(1,l-1) $(l \ge 2$ は任意),(2,2) のみである.それぞれの場合, Γ は $B_l = C_l$, F_4 に同型である.

(III) Γ が 1 重辺のみをもつ場合、次数 3 以上の頂点はたかだか一つである(二つ以上あるとすると、補題 2.11 の操作により次数 4 以上の頂点を作ることができ、補題 2.10 に反する). 次数 3 の頂点が存在しなければ、 Γ はある A_l ($l \ge 1$) に同型である.次数 3 の頂点が存在すれば、 Γ は次の形である($2 \le p \le q \le r$).

ここで,

$$u = \sum_{i=1}^{p-1} iu_i, \qquad v = \sum_{i=1}^{q-1} iv_i, \qquad w = \sum_{i=1}^{r-1} iw_i$$

と置くと、u, v, w は直交系であり、(II) と同じ計算により

$$||u||^2 = \frac{p(p-1)}{2}, \qquad ||v||^2 = \frac{q(q-1)}{2}, \qquad ||w||^2 = \frac{r(r-1)}{2},$$
$$\langle u, x \rangle^2 = \frac{(p-1)^2}{4}, \qquad \langle v, x \rangle^2 = \frac{(q-1)^2}{4}, \qquad \langle w, x \rangle^2 = \frac{(r-1)^2}{4}$$

を得る. したがって、 $x \notin \operatorname{span}_{\mathbb{R}}\{u,v,w\}$ と合わせて、

$$1 = ||x||^2 > \left\langle \frac{u}{||u||}, x \right\rangle^2 + \left\langle \frac{v}{||v||}, x \right\rangle^2 + \left\langle \frac{w}{||w||}, x \right\rangle^2$$

$$= \frac{(p-1)^2/4}{p(p-1)/2} + \frac{(q-1)^2/4}{q(q-1)/2} + \frac{(r-1)^2/4}{r(r-1)/2}$$

$$= \frac{1}{2} \left(3 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r} \right)$$

を得る. これを整理すると 1/p+1/q+1/r>1 となり、これを満たす (p,q,r) は、(2,2,l-2) $(l\geq 4$ は任意)、(2,3,3)、(2,3,4)、(2,3,5) のみである. それぞれの場合、 Γ は D_l 、 E_6 、 E_7 、 E_8 に同型である.

定理 2.13(連結 Dynkin 図形の分類) 許容可能な連結多重グラフは,表 3 に挙げたもののいずれかただ一つ に同型である.

証明 (Γ,c) を連結 Dynkin 図形とすると, Γ は許容可能な連結多重グラフである(注意 2.8).許容可能な連結多重グラフ Γ は定理 2.12 で分類されており,対応する c としてありうるものは,同型を除いて,表 3 に挙げたもので尽くされる.よって,連結 Dynkin 図形は,表 3 に挙げたもののいずれかただ一つに同型である.

表 3 に従って、 A_l $(l \ge 1)$, B_l $(l \ge 2)$, C_l $(l \ge 3)$, D_l $(l \ge 4)$, E_6 , E_7 , E_8 , E_4 , E_6 型の Dynkin 図形を定める。便宜上, A_1 型を B_1 , C_1 型, B_2 型を C_2 型, A_1 型の二つの直和を D_2 型, A_3 型を D_3 型ともいう。 A_l $(l \ge 1)$, B_l $(l \ge 1)$, C_l $(l \ge 1)$, D_l $(l \ge 2)$, E_6 , E_7 , E_8 , E_4 , E_9 型のルート系とは,被約なルート系であって,対応する型の Dynkin 図形をもつものをいう。これらは, D_2 型のルート系を除いては,既約である.

表 3 連結 Dynkin 図形の分類

型(1は頂点数)	Dynkin 図形
$A_l \ (l \ge 1)$	• • •
$B_l \ (l \ge 2)$	•—•
$C_l \ (l \ge 3)$	• • • • • • • • • • • • • • • • • • • •
$D_l \ (l \ge 4)$	
E_{6}	
E_{7}	• • • • • • • • • • • • • • • • • • • •
E_8	
F_4	• • •
G_2	

2.3 被約な既約ルート系の構成と分類

本節では,定理 2.13 で示した連結 Dynkin 図形に対応する被約な既約ルート系を,具体的に構成する.以下, \mathbb{K}^n の標準基底を $(\epsilon_1,\dots,\epsilon_n)$ と書く.構成は, \mathbb{K}^n あるいはその部分線型空間上で行い,標準的な対称双線型形式 $(\sum_{i=1}^n a_i \epsilon_i, \sum_{i=1}^n b_i \epsilon_i) \mapsto \sum_{i=1}^n a_i b_i$ が Weyl 群 W(R) に関して不変となるようにする.

A_l 型 ($l \ge 1$) の既約ルート系

$$V = \{\sum_{i=1}^{l+1} t_i \epsilon_i \in \mathbb{K}^{l+1} \mid t_i \in \mathbb{K}, \ \sum_{i=1}^{l+1} t_i = 0 \}$$
 の部分集合

$$R = \{ \pm (\epsilon_i - \epsilon_j) \mid 1 \le i < j \le l+1 \}$$

は、l(l+1) 個のルートからなる V 上のルート系である. R は、 A_l 型の既約ルート系である. 実際、

$$\alpha_i = \epsilon_i - \epsilon_{i+1} \qquad (1 \le i \le l)$$

と置くと、 $B = \{\alpha_1, \dots, \alpha_n\}$ は R の基底であり、対応する Dynkin 図形は

である.

B_l 型 ($l \ge 1$) の既約ルート系

 $V = \mathbb{K}^l$ の部分集合

$$R = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \} \cup \{ \pm \epsilon_i \mid 1 \le i \le l \}$$

は、 $2l^2$ 個のルートからなる V 上のルート系である。R は、 B_l 型の既約ルート系である。実際、

$$\alpha_i = \epsilon_i - \epsilon_{i+1} \quad (1 \le i \le l-1), \qquad \alpha_l = \epsilon_l$$

と置くと、 $B = \{\alpha_1, \dots, \alpha_n\}$ は R の基底であり、対応する Dynkin 図形は

である.

C_l 型 ($l \ge 1$) の既約ルート系

 $V = \mathbb{K}^l$ の部分集合

$$R = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 < i < j < l \} \cup \{ \pm 2\epsilon_i \mid 1 < i < l \}$$

は、 $2l^2$ 個のルートからなる V 上のルート系である。R は、 C_l 型の既約ルート系である。実際、

$$\alpha_i = \epsilon_i - \epsilon_{i+1} \quad (1 \le i \le l-1), \qquad \alpha_l = 2\epsilon_l$$

と置くと、 $B = \{\alpha_1, \dots, \alpha_n\}$ は R の基底であり、対応する Dynkin 図形は

$$\alpha_1$$
 α_2 α_{l-2} α_{l-1} α_2

である.

D_l 型 ($l \geq 2$) の (既約) ルート系

 $V = \mathbb{K}^l$ の部分集合

$$R = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \}$$

は,2l(l-1) 個のルートからなる V 上のルート系である.R は, D_l 型の($l \geq 3$ ならば既約)ルート系である.実際,

$$\alpha_i = \epsilon_i - \epsilon_{i+1} \quad (1 \le i \le l-1), \qquad \alpha_l = \epsilon_{l-1} + \epsilon_l$$

と置くと、 $B = \{\alpha_1, \dots, \alpha_n\}$ は R の基底であり、対応する Dynkin 図形は

である.

E₆型の既約ルート系

 $V = \{\sum_{i=1}^8 t_i \epsilon_i \in \mathbb{K}^8 \mid t_i \in \mathbb{K}, \ t_6 + t_8 = t_7 + t_8 = 0\}$ の部分集合

$$R = \{ \pm (\pm \epsilon_i + \epsilon_j) \mid 1 \le i < j \le 5 \}$$

$$\cup \left\{ \pm \frac{1}{2} \left(\sum_{i=1}^{5} (-1)^{\nu(i)} \epsilon_i - \epsilon_6 - \epsilon_7 + \epsilon_8 \right) \mid \nu(i) \in \{0, 1\}, \sum_{i=1}^{5} \nu(i) \in 2\mathbb{Z} \right\}$$

は、72 個のルートからなる V 上のルート系である。R は、 E_6 型の既約ルート系である。実際、

$$\alpha_1 = \frac{1}{2}(\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8),$$

$$\alpha_2 = \epsilon_1 + \epsilon_2, \quad \alpha_3 = \epsilon_2 - \epsilon_1, \quad \alpha_4 = \epsilon_3 - \epsilon_2, \quad \alpha_5 = \epsilon_4 - \epsilon_3, \quad \alpha_6 = \epsilon_5 - \epsilon_4$$

と置くと、 $B = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$ は R の基底であり、対応する Dynkin 図形は

である.

E7型の既約ルート系

 $V = \{\sum_{i=1}^{8} t_i \epsilon_i \in \mathbb{K}^8 \mid t_i \in \mathbb{K}, \ t_7 + t_8 = 0\}$ の部分集合

$$R = \{ \pm (\pm \epsilon_i + \epsilon_j) \mid 1 \le i < j \le 6 \} \cup \{ \pm (-\epsilon_7 + \epsilon_8) \}$$

$$\cup \left\{ \pm \frac{1}{2} \left(\sum_{i=1}^{6} (-1)^{\nu(i)} \epsilon_i - \epsilon_7 + \epsilon_8 \right) \mid \nu(i) \in \{0, 1\}, \sum_{i=1}^{6} \nu(i) \in 2\mathbb{Z} + 1 \right\}$$

は、126 個のルートからなる V 上のルート系である。R は、 E_7 型の既約ルート系である。実際、

$$\alpha_1 = \frac{1}{2} (\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8),$$

$$\alpha_2 = \epsilon_1 + \epsilon_2, \quad \alpha_3 = \epsilon_2 - \epsilon_1, \quad \alpha_4 = \epsilon_3 - \epsilon_2, \quad \alpha_5 = \epsilon_4 - \epsilon_3, \quad \alpha_6 = \epsilon_5 - \epsilon_4, \quad \alpha_7 = \epsilon_6 - \epsilon_5$$

と置くと、 $B = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\}$ は R の基底であり、対応する Dynkin 図形は

である.

E₈型の既約ルート系

 $V=\mathbb{K}^8$ の部分集合

$$R = \{ \pm (\pm \epsilon_i + \epsilon_j) \mid 1 \le i < j \le 8 \}$$

$$\cup \left\{ \pm \frac{1}{2} \left(\sum_{i=1}^{7} (-1)^{\nu(i)} \epsilon_i + \epsilon_8 \right) \mid \nu(i) \in \{0, 1\}, \sum_{i=1}^{7} \nu(i) \in 2\mathbb{Z} \right\}$$

は、240 個のルートからなる V 上のルート系である。R は、 E_8 型の既約ルート系である。実際、

$$\begin{split} &\alpha_1 = \frac{1}{2}(\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8), \\ &\alpha_2 = \epsilon_1 + \epsilon_2, \quad \alpha_3 = \epsilon_2 - \epsilon_1, \quad \alpha_4 = \epsilon_3 - \epsilon_2, \quad \alpha_5 = \epsilon_4 - \epsilon_3, \\ &\alpha_6 = \epsilon_5 - \epsilon_4, \quad \alpha_7 = \epsilon_6 - \epsilon_5, \quad \alpha_8 = \epsilon_7 - \epsilon_6 \end{split}$$

と置くと、 $B = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8\}$ は R の基底であり、対応する Dynkin 図形は

である.

F4型の既約ルート系

 $V=\mathbb{K}^4$ の部分集合

$$R = \{ \pm \epsilon_i \mid 1 \le i \le 4 \} \cup \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le 4 \} \cup \left\{ \pm \frac{1}{2} (\epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4) \right\}$$

は、48 個のルートからなる V 上のルート系である。R は、 F_4 型の既約ルート系である。実際、

$$\alpha_1 = \epsilon_2 - \epsilon_3, \quad \alpha_2 = \epsilon_3 - \epsilon_4, \quad \alpha_3 = \epsilon_4, \quad \alpha_4 = \frac{1}{2}(\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4)$$

と置くと、 $B = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ は R の基底であり、対応する Dynkin 図形は

である.

G₂型の既約ルート系

$$V = \{\sum_{i=1}^{3} t_i \epsilon_i \in \mathbb{K}^3 \mid t_i \in \mathbb{K}, t_1 + t_2 + t_3 = 0\}$$
 の部分集合

$$R = \{ \pm(\epsilon_1 - \epsilon_2), \pm(-\epsilon_1 + \epsilon_3), \pm(-\epsilon_2 + \epsilon_3), \pm(-2\epsilon_1 + \epsilon_2 + \epsilon_3), \pm(\epsilon_1 - 2\epsilon_2 + \epsilon_3), \pm(-\epsilon_1 - \epsilon_2 + 2\epsilon_3) \}$$

は、12 個のルートからなる V 上のルート系である。R は、 G_2 型の既約ルート系である。実際、

$$\alpha_1 = \epsilon_1 - \epsilon_2, \qquad \alpha_2 = -2\epsilon_1 + \epsilon_2 + \epsilon_3$$

と置くと、 $B = \{\alpha_1, \alpha_2\}$ は R の基底であり、対応する Dynkin 図形は

である.

2.4 被約でない既約ルート系の構成と分類

R を被約でない既約ルート系とすると、定理 1.35 より、

- (1) R の各ルートの最短ルートに対する長さの比は $1, \sqrt{2}, 2$ のいずれかであり、
- それぞれの比をもつルートの全体をA, B, Cと置くと、
 - (2) 2A = C であり,
 - (3) Aに属する異なる二つのルートは直交し、

(4) $R' = A \cup B$ と $R'' = B \cup C$ は V 上の被約な既約ルート系である.

長さの比の条件と (3), (4) より, $R'=A\cup B$ は, B_l 型 $(l\geq 1)$ の既約ルート系でなければならない.したがって,R は,線型同型を除いて, \mathbb{K}^l の部分集合

$$\{\pm(\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l\} \cup \{\pm\epsilon_i, \pm 2\epsilon_i \mid 1 \le i \le l\}$$

と同一視できる.

逆に,R を上記の $V = \mathbb{K}^l$ の部分集合と定めると,容易に確かめられるように,これは V 上の 2l(l+1) 個のルートからなる被約でないルート系である.さらに,割れないルートの全体

$$R' = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \} \cup \{ \pm \epsilon_i \mid 1 \le i \le l \}$$

は B_l 型の既約ルート系だから,R も既約である(命題 1.32 (1)).なお, $R'' = \{\alpha \in R \mid 2\alpha \notin R\}$ (注意 1.33)は

$$R'' = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \} \cup \{ \pm 2\epsilon_i \mid 1 \le i \le l \}$$

となり、これは C_l 型の既約ルート系である.

以上より、各整数 $l \ge 1$ に対して、階数 l の被約でない既約ルート系が同型を除いて一意に存在する.これ を、 \mathbf{BC}_l 型のルート系という.

参考文献

- [1] N. Bourbaki, Elements of Mathematics, Lie Groups and Lie Algebras, Chapters 4-6, Springer, 2002.
- [2] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972.