Some Uses of R at USDA NASS

Nathan B. Cruze nathan.cruze@nass.usda.gov

United States Department of Agriculture National Agricultural Statistics Service (NASS)

EPA R Users Group Workshop Washington, DC September 11, 2017

Me and My Agency

About me

- Mathematical statistician
- Research and Development Division, Sampling and Estimation Research Section
- Day-to-day applied research activities often begin with R

About USDA NASS

- Conducts Census of Agriculture every 5 years
- Conducts over 400 surveys annually
- Primarily a SAS shop

Project I: Iterative Sequential Regression (ISR)

NASS conducts Agricultural Resource Management Survey (ARMS) in collaboration with USDA's Economic Research Service

Main Idea: Proposed ISR imputation methodology improves distributional characteristics and helps preserve relationships in the data

- Data augmentation and fully conditional specification
- Bayesian technique implemented through Gibbs sampling

Development involved multiple stakeholders and extended parallel testing

Project I: Iterative Sequential Regression (ISR)

Project I: Iterative Sequential Regression (ISR)

Development and testing resulted in the R scripts used in practice

Conditional mean imputation 'module' replaced with ISR module

- ▶ ISR machine imputation performed on a separate Linux box
 - Interaction with existing infrastructure
 - Written in R and C code
 - File input-output with SAS interface
- ► ISR output subsequently loaded for editing

R has been used to execute ISR imputation in production of ARMS Phase III estimates for the past three years

Basic Mapping: Corn for Grain

Annual program: 41 states (production of grain)

► Speculative region: 10 states

Yield forecasts: August-November, January (final)

Basic Mapping: Soybeans

Annual program: 31 states

▶ Speculative region: 11 states

Yield forecasts: August-November, January (final)

Basic Mapping: Upland Cotton

► Annual program: 17 states

► Speculative region: 6 states

► Yield forecasts: August-January, May (final)

Basic Mapping: Winter Wheat

► Annual program: 42 states

► Speculative region: 10 states

Yield forecasts: May-September (final)

Official NASS crop yield forecasts in Crop Production Report represent consensus of NASS Agricultural Statistics Board (ASB)

Main Idea: Develop Bayesian hierarchical models to produce one-number forecasts

- Synthesize several survey estimates
- Produce measures of uncertainty
- ▶ Gibbs sampler used to obtain Monte Carlo estimates
- Currently we support speculative regions and member states

Use in Production: Research staff members have used R as a 'conduit' to execute a Gibbs sampler

- ▶ R calls C code for corn and soybean yield models (2011) and winter wheat yield models (2015)
- ▶ R calls JAGS for new upland cotton yield models (2017)
- Modeled estimates are provided to Agricultural Statistics Board for their deliberations

Visualizing the sequence of model-based forecasts versus NASS official statistics

Visualizing a model-based 'rule-of-thumb' for the combination of several disparate estimates

NASS adopted dual system estimation (DSE) approach in 2012 Census of Agriculture–applied DSE in other surveys

Main Ideas:

- ► DSE weights help adjust for undercoverage, nonresponse, misclassification
- ▶ Desire integer weights-consistent totals
- Desire estimates that satisfy many calibration targets
- Integer Calibration (INCA) improves rounding of weights and satisfaction of multiple targets

Previous approach:

INCA:

INCA was developed in R and the 'INCA' package exists on CRAN. DSE with INCA was executed in R for the the 2015 Local Foods Survey.

INCA weights are 'closer' to (more highly correlated with) original DSE weights

INCA weights ensure that estimated totals miss fewer calibration targets

Additional Production and Research Projects in R

R in Production

- 1. Small area models for cash rental rates (2013)
- 2. Quarterly model-based estimates of cattle inventory
- 3. Simulated annealing for substratification of primary sampling units in June Area Survey

R in Research and Development

- 1. Quarterly model-based estimates of hog inventory
- 2. Small area crop acreage, yield, and production estimates

References

- Cruze, N. B. (2016). A Bayesian hierarchical model for combining several crop yield indications. In JSM Proceedings, Survey Research Methods Section. Alexandria, VA: American Statistical Association.
- Miller, D., Dau, A., and Lisic, J. (2015). Comparison of modern imputation methodologies on complex data from agricultural operations. In Proceedings of the 2015 FCSM Research Conference [online, accessed 10-sept-2017]. https://www.nass.usda.gov/Education_and_Outreach/Reports, _Presentations_and_Conferences/reports/conferences/FCSM/D1_Miller_2015FCSM.pdf.
- Nandram, B., Berg, E., and Barboza, W. (2014). A hierarchical Bayesian model for forecasting state-level corn yield. *Environmental and Ecological Statistics*, 21(3):507–530.
- Sartore, L., Toppin, K., and Spiegelman, C. (2016). Integer programming for calibration. In Presentations of 2016 Federal CASIC Workshops [online, accessed 10-sept-2017].
 - https://www.census.gov/fedcasic/fc2016/ppt/1_5_Integer.pdf.
- Wang, J. C., Holan, S. H., Nandram, B., Barboza, W., Toto, C., and Anderson, E. (2012). A Bayesian approach to estimating agricultural yield based on multiple repeated surveys. *Journal of Agricultural, Biological, and Environmental Statistics*, 17(1):84–106.