Institute for Systems and Applied Electronics

SUPSI

Progettazione di sistemi embedded

Ing. Stefano Guatieri Prof. Ivan Defilippis

presentazioni

Docente: Ing. Stefano Guatieri

Docente: Ing. Armando Rivero

SUPSI-DTI-ISEA

Stefano Guatieri stefano.guatieri@supsi.ch

Armando Rivero armando.rivero@supsi.ch

Organizzazione del corso

- Modalità: Istruzione (4 ore di lezioni settimanali)
- 2 ore di lezione
- 2 ore di laboratorio
- Discussioni e feedback durante le ore di lezione.
- Sviluppo di un piccolo progetto di un sistema embedded.
- Presenza verificata durante le 4 ore settimanali

Scopi del modulo

- Poter capire (analizzare) un embedded system
- Sapere come si può progettare e realizzare un embedded system
 - Valutare i requisiti e i vincoli (costi, ingombri, consumi...)
 - Valutare la suddivisione hardware/software
 - Saper sviluppare le componenti hardware (mancanti)
 - Saper sviluppare le componenti software (mancanti)
 - Assemblare il sistema
 - Testarlo
- Saper svolgere funzioni di supporto
 - Presentarlo (ad esempio vendita)

Parte 1: introduzione

Indice

- Definizione di sistema embedded
- Esempi di sistemi embedded
- Campi di applicazione dei sistemi embedded
- Caratteristiche funzionali e differenze con i computer
- Microprocessori e microcontrollori
- Microelettronica e legge di Moore
- Gerarchia HW/SW
- Classificazione secondo la funzionalità
- Sviluppo dei sistemi embedded e utensili

Prerogativa del corso

- La curiosità ci porta a conoscere di più, a capire di più. Per trovare come funziona un determinato oggetto.
- Ognuno può spingere lo sviluppo in una nuova dimensione
- Le opinioni sulla risoluzione dei problemi di ingegneria cambiano man mano che la tecnologia evolve.
- Ognuno ha la sua opinione. Non tutti la pensano allo stesso modo.

Nuovi design

- ogni nuovo sviluppo può essere visto dall'interno, normalmente da chi lo sviluppa o dall'esterno e normalmente è l'utilizzatore finale.
- Gli sviluppatori che riescono a porsi in un'ottica "esterna" normalmente sono quelli che ottengono i risultati migliori.
- Esaminiamo i dettagli di alto livello e poi passiamo a quelli inferiori.

Si potrebbe discutere con i nostri colleghi che stanno sviluppando l'interfaccia grafica per fare in modo che piaccia all'utente.

Domande da porsi

- È sempre bene porsi qualche domanda prima di iniziare a sviluppare:
- Cosa stiamo progettando?
- Come lo useranno le persone?
- Qual è il suo comportamento?
- Che effetto avrà sul suo funzionamento?
- Quali sono gli input?
- Quanto bene bisogna che svolga il suo lavoro? (quali sono i vincoli?)

Nuove sfide

- Con l'avanzare della tecnologia, siamo in grado di fare sempre di più.
- Dobbiamo disporre di strumenti che ci aiutano a capire la complessità dei progetti di oggi.
- Strumenti che aiutano a portare a termine il lavoro più rapidamente e in modo più efficiente.

liberiamo la nostra immaginazione e diventiamo gli ingegneri e scienziati di domani!

Avere competenze in sistemi embedded

- Per lavorare con i sistemi embedded bisogna sviluppare competenze multidisciplinari, in particolare nei settori:
 - hardware digitale design, architettura, schema funzionale (di quello che fa il sistema embedded)
 - software limiti, firmware -> legato all'hardware che si utilizza
 - networking connettività (prot. comunicazione), fisico (radiofrequenze)
 - Sicurezza dati sensibili (cryptare info), robusto
- Il campo dei sistemi embedded richiede abilità da molti campi diversi. Senza quelle abilità il sistema non può esistere.

Avere competenze in sistemi embedded

- Gli ingegneri informatici o elettronici che lavorano con sistemi embedded contribuiscono a tutti gli aspetti dello sviluppo:

 - progettazione
 - produzione
 - test
 - Marketing
- la robustezza di un device sta nel bagaglio di conoscenze teoriche e pratiche che il progettista ha acquisito nel tempo,

Introduzione ai sistemi embedded

- I sistemi embedded sono uno degli elementi fondamentali della tecnologia informatica odierna.
- Oggi il microprocessore e il suo software sono praticamente dentro tutto quello che tocchiamo.
- Abbiamo in tasca un computer più potente di quelli che i primi astronauti hanno portato nello spazio o che abbiamo inviato su Marte.
- Questa capacità offre a ingegneri, medici e molti altri, nuove libertà di mettere insieme in modo creativo sistemi sostanzialmente più complessi con nuove funzionalità.

Definizione Sistemi embedded

- A livello internazionale il campo dei sistemi embedded ha superato molte delle sue tradizionali descrizioni.
- Forse un modo semplice per definire il termine senza entrare nel tecnico è:

Un sistema embedded è un sistema computerizzato costruito appositamente per la sua applicazione.

- Il campo dei sistemi embedded è ampio e vario ed è difficile definirlo o descriverlo con precisione.
- Ricordiamoci che i sistemi embedded non sono un campo isolato. I sistemi embedded usano praticamente quasi tutte le discipline dell'ingegneria elettronica e informatica.

Che cosa è un sistema embedded

Alcune spiegazioni possono essere superate ed è importante poterne discutere in modo consapevole. Ecco alcune delle descrizioni più comuni di un sistema embedded:

I sistemi embedded sono più limitati in termini di funzionalità hardware e/o software rispetto ai PC.

- Ciò vale per un sottoinsieme dei sistemi embedded.
- Questa definizione è vera solo in parte oggi.
- Schede e software che si trovavano tipicamente nei PC del passato, sono state riconfezionate in progetti di sistemi embedded più complessi.

SUPSI

Che cosa è un sistema embedded

Il termine "limitazioni hardware" può significare limitazioni di:

- Elaborazione core clock piu basse rispetto a un pc
- Prestazioni
- consumo energetico
- memoria
- funzionalità hardware

- Nel software invece questo significa:
 - Applicazioni ridotte
 - nessun sistema operativo o un sistema operativo limitato
 - codice ad un livello di astrazione inferiore

Che cosa è un sistema embedded

Un'altra possibile definizione:

Un sistema embedded è progettato per svolgere una funzione dedicata.

- La maggior parte sono progettati principalmente per una funzione specifica.
- Tuttavia, ora vediamo dispositivi come i cellulari (o PDA, personal data assistant) che sono in grado di svolgere una varietà di funzioni primarie.
- i più recenti televisori digitali includono applicazioni interattive non correlate alla funzione "TV" ma altrettanto importanti, come e-mail, navigazione web e giochi.

Che cosa è un sistema embedded

Altra definizione:

Un sistema embedded è un sistema informatico con qualità e affidabilità superiori rispetto ad altri sistemi informatici.

- È vero per alcune famiglie. Ad esempio se il controllo del motore di un'auto si arresta in modo anomalo durante la guida o se un dispositivo medico ha dei malfunzionamenti durante un intervento.
- Tuttavia ci sono anche dispositivi embedded, come TV, cellulari in cui si verificano malfunzionamenti, ma non sono situazioni pericolose per la vita.

Discussioni sui sistemi embedded

• C'è qualche discussione sul fatto che i cellulari o i tablet non siano sistemi embedded. I sistemi che soddisfano alcune, ma non tutte le definizioni,

sono da ritenersi comunque sistemi embedded?

- Gli stessi ingegneri ritengono che i sistemi più complessi non dovrebbero essere definiti embedded.
- Se le definizioni tradizionali dovessero evolversi in un nuovo campo di sistemi informatici, si potranno scorporare dalla definizione classica.

Ma fino a che non succede per me rimangono tutti sistemi embedded

Sistemi embedded nel mercato

% Presence of Embedded System

Domain wise presence

VLSI – Very Large-Scale Integration

- Sono I componenti chiave, consentono che tutto ciò avvenga.
- con i VLSI pensiamo in termini di milioni di transistor raccolti in un unico circuito integrato.
- Quanto grande è very Large
 - SSI (small scale integration)
 - 7400 series, 10-100 transistors
 - MSI (medium scale)
 - o 74000 series 100-1000
 - o LSI 1,000-10,000 transistors
 - VLSI > 10,000 transistors
 - ULSI/SLSI (Not so popular)

 I sistemi embedded non sarebbero fattibili senza i VLSI, e i VLSI servirebbero a poco senza sistemi embedded. ntegrato

Descrizione di sistema embedded

 In molti casi, un sistema embedded è lui stesso una componente di un sistema più complesso (e.g. macchina per il caffè, centralina per l'automobile...)

301-31

Definizione tecnica

- Sistema complesso miniaturizzato che comprende:
 - Una CPU
 - o tutti i blocchi periferici necessari alla funzione da svolgere
- Caratteristiche:
 - Normalmente ha una sola funzione (e.g. telefonino, camera...)
 - Il computer è "nascosto all'utente"
 - Sempre più spesso a basso costo
 - Sempre più spesso a basso consumo -> Portabilità
- Può essere

componenti acquistabili

- Basato su componenti off-the-shelf
- Integrato ad-hoc in silicio ASSP, ASIC

hardware programmabile, collegamento fisico dei componenti

Basato su componenti configurabili (e.g. FPGA)

Tipi di sistemi embedded basati sulle performance del microcontrollore

- La classificazione è fatta basandosi su:
 - Funzione o funzionalità multiple del sistema
 - Performance e requisiti del sistema
 - Quanto e quanto potente hardware impiegano
 - Complessità del software che utilizza

SUPSI

Tipi di sistemi embedded basati sulle performance del microcontrollore

- Sistemi semplici
 - la maggior parte svolgono funzioni dedicate (o funzioni singole).
 - poche risorse hardware, in termini di capacità e risorse.
 - Software semplice, la maggior parte senza OS.
 - Sistemi basati su Microcontrollori.
 - Normalmente costi bassi.

Tipi di sistemi embedded basati sulle performance del microcontrollore

- Sistemi di media complessità
 - Svolgono più di una funzione.
 - Le risorse hardware che utilizzano sono di media grandezza.
 - Architettura software con OS minimi o senza OS, possono avere RTOS.
 - Sistemi basati su microcontrollori.
 - Possono utilizzare Architetture basate su SoC.

Tipi di sistemi embedded basati sulle performance del microcontrollore

- Media o alta complessità
 - Svolgono un grande numero di funzioni.
 - Utilizzano un grande numero di risorse hardware, anche configurabili.
 - Utilizzano sistemi operativi RTOS.
 - Normalmente usano Microprocessori.

Esempi di sistemi embedded sotto classificazione basato sulle performance

- Sistemi semplici
 - Orologi digitali semplici
 - Telecomandi
 - Macchine da lavare
 - Unità di controllo dei motori
- Sistemi di media complessità
 - Wifi router
 - Decoder (Set-top box)
 - Sistemi per il pagamento (POS)
 - Music player
- Sistemi di media alta complessità
 - Smart phones
 - Video gaming gadgets
 - Videocamere di fascia alta

Tipi di sistemi embedded basati sui requisiti funzionali

- Real-time, Standalone, Networked, mobile
- <u>Sistemi embedded real-time</u>
 - sviluppato per essere preciso nelle tempistiche di lavoro
 - questo sistema integrato in tempo reale è diviso in due tipi:
 - Sistemi embedded in soft real-time (il tempo/scadenza può non essere rigorosamente rispettato).
 - Sistemi embedded hard real-time (Il tempo/scadenza dell'attività è rigorosamente rispettato. L'attività deve essere completata in un intervallo di tempo.

Tipi di sistemi embedded basati sui requisiti funzionali

- Sistemi embedded standalone
 - Sono sistemi indipendenti che non dipendono da un sistema host.
 - Prende l'input in forma digitale o analogica e fornisce l'output.
- Sistemi embedded in rete (Networked)
 - Sono collegati a una rete che può essere cablata o wireless forniscono l'output al dispositivo collegato.
 - Comunicano con il web server attraverso la rete.
- Sistemi embedded mobile
 - Sono piccoli e facili da usare e richiedono meno risorse.
 - Sono i sistemi embedded preferiti. Dal punto di vista della portabilità.

Caratteristiche di sistema embedded

- Un tipico sistema embedded è un sistema "reattivo":
 - reagisce all'ambiente tramite sensori
 - controlla l'ambiente tramite attuatori
- Il sistema embedded deve avere dei **requisiti che siano in linea con l'ambiente**.
- Esso usa una combinazione di hardware e software per rispondere ad eventi nell'ambiente, con determinati vincoli.
- Un sistema embedded pianificato per l'elaborazione di eventi, deve garantire le prestazioni per i casi peggiori.

Campi d'applicazione dei sistemi embedded

inpi d applicazione dei sistemi	ciliocadea
Market	Embedded Device
Automotive	Ignition system
	Engine control
	Brake system
Consumer electronics	Digital and analog televisions
	Set-top boxes (DVDs, cable boxes, etc.)
	Personal data assistants (PDAs)
	Kitchen appliances (refrigerators, toasters, microwave
	ovens)
	Toys/games
	Telephones/cell phones
	Cameras
	Global Positioning Systems (GPS)
Industrial control	Robotics and control systems (manufacturing)
Medical	Infusion pump
	Dialysis machines
	Prosthetic devices
	Cardiac monitors
Networking	Routers
	Hubs
	Gateways
Office automation	Photocopiers
	Printers
	Monitors
	Scanners
Aerospace	Satellites
	Telescopes
	Rockets

Esempio di sistema embedded

- Questa immagine mostra una implementazione di un "digital cell phone" (cellulare).
- Questo sistema embedded svolge una sola funzione, malgrado la presenza di una CPU riprogrammabile resterà sempre un sistema con un unico scopo: -Essere un cellulare-.
- I criteri adottati per sviluppare questi sistemi sono molto severe:
 - basso costo
 - basso consumo
 - dimensioni ridotte
 - massime performance

Proprietà di sistemi embedded: Real-Time

 Real-time: Spesso I sistemi embedded fanno parte di applicazioni time-critical, dove non è solo il corretto funzionamento ad essere importante ma anche un corretto timing.

Proprietà di sistemi embedded: Affidabilità

Affidabilità

- Spesso i sistemi embedded devono processare e comunicare informazioni timecritical da sottosistemi affidabili e autonomi.
- Sia la funzione che il timing sono importanti. (-> Real-time operating systems e scheduling).

Proprietà di sistemi embedded: Eterogeneità

Eterogeneità

- Molto spesso i sistemi embedded vengono progettati usando tante varietà di modelli di elaborazione.
- La loro implementazione consiste in vari componenti hardware e software sensori e attuatori (-> accesso alle risorse del sistema e sincronizzazione delle task).

Proprietà di sistemi embedded: Implementazione distribuita

Implementazione distribuita

- Le componenti di un sistema embedded scambiano molto spesso informazioni tramite un sottosistema di comunicazione.
- Utilizzano un protocollo specifico. (Task communication e I/O).

