## VARIATIONS D'UNE FONCTION

#### **OBJECTIFS** 3

- Connaître les notions de (dé)croissance, monotonie et extrema d'une fonction définie sur un intervalle. Savoir les repérer graphiquement et les relier à un tableau de variations.
- Pour une fonction affine, connaître le lien entre ses variations et le signe de son coefficient directeur.
- Connaître les variations des fonctions usuelles.

## **Variations**

## 1. Croissance, décroissance



#### EXEMPLE 💡

La fonction f est décroissante sur  $[0;1] \cup [3;4]$ , et croissante sur [1;3]. On peut regrouper cela dans le tableau de variations ci-dessous.

| Valeur de x       | 0 | 1     | 3     | 4   |
|-------------------|---|-------|-------|-----|
| Variations de $f$ | 2 | → 0 — | → 1 — | → 0 |



#### EXERCICE 1

On a tracé la courbe représentative d'une fonction f ci-contre.

1. Dresser son tableau de variations sur l'intervalle [-2;2].





### 2. Extrema



#### INFORMATION 4

Ainsi, le maximum de f est la plus grande valeur atteinte par cette fonction sur I; et le minimum de f est la plus petite valeur atteinte par cette fonction sur I.

#### EXERCICE 2

Déterminer le maximum de la fonction f de l'exercice précédent sur [-2;2]. . . .

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/variations-fonctions/#correction-2.

# II Fonctions usuelles

## 1. Fonctions affines



#### EXERCICE 3

Établir le tableau de variations de la fonction  $f: x \mapsto 5(x-1)$  sur [1;10].



## 2. Fonctions carré, cube, racine carrée, inverse



EXERCICE 4

**1.** Déterminer les variations de la fonction f définie sur  $\mathbb{R}$  par  $f(x) = 2x^3 - 4$ .

**2.** Même question pour la fonction g définie sur  $[0; +\infty[$  par  $g(x) = -3\sqrt{x} + 1.$ 



#### **EXERCICE 5**

L'objectif de cet exercice est de démontrer que la fonction racine carrée est croissante. Soient x et y deux nombres positifs tels que  $x \le y$ . Il s'agit de montrer que  $\sqrt{x} \le \sqrt{y}$ .

1. Démontrer que  $\sqrt{y} - \sqrt{x} = \frac{y-x}{\sqrt{x} + \sqrt{y}}$ .

2. Que peut-on dire du signe de y-x? Et du signe de  $\sqrt{x}+\sqrt{y}$ ?

3. Montrer que  $\sqrt{y}-\sqrt{x}\geq 0$ , puis conclure.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/variations-fonctions/#correction-5.