Module-1 (Electronics Engg.)

B.Tech 1st Year (Sem)

TUTORIAL SHEET NO. 1

Q 1/A silicon wafer is 0.5 mm thick

- (a) A potential of 100mV is applied across the thickness, what is the electron drift velocity if their mobility is $0.2m^2/V$ -s.
- (b) How much time is required for an electron to move across the thickness?

Ans: $v_d = 40 \text{ m/s}$, $T = 12.5 \mu\text{-s}$ (hint: E=V/d)

Q 2. The motilities of free electrons and holes in a pure germanium are 0.38 and 0.18 m²/V-s. Find the value of intrinsic conductivity. Assume $n_i = 2.5 * 10^{19}$ / m³ at room temperature.

Ans: $\sigma_i = 2.24 \text{ S/m}$

O3. Find the intrinsic carrier concentration of germanium, if its intrinsic resistivity at 300K is 0.50 Ω-m. It is given that the electronic charge is 1.6 * 10^{-19} coulombs and that electrons and hole mobilities are 0.39 and 0.19 m²/V-sec respectively.

Ans: $n_1 = 2.155 * 10^{19} / m^3$.

Q 4/ Find the concentration of holes and electrons in a p-type germanium at 300K, if the conductivity is 100 (Ω-cm)⁻¹ Also find these values for N-type silicon. if the conductivity is 0.1 (Ω-cm)⁻¹. Given for germanium, $n_s = 2.5 * 10^{13}/cm^3$ $\mu_n = 3800 \text{ cm}^2/\text{V-sec}$; $\mu_p = 1800 \text{ cm}^2/\text{V-sec}$ and for silicon $n_s = 1.5 * 10^{10}/cm^3$; $\mu_n = 1300 \text{ cm}^2/\text{V-sec}$; $\mu_p = 500 \text{ cm}^2/\text{V-sec}$

Ans: for p-type $n = 1.8 * 10^9 / \text{cm}^3$, $p = 3.47 * 10^{17} / \text{cm}^3$, for n-type $n = 4.8 * 10^{14} / \text{cm}^3$, $p = 4.7 * 10^5 / \text{cm}^3$.

In a semiconductor at room temperature (300 °K), the intrinsic carrier concentration and resistivity are 1.5 *10¹⁶/ m and 2 * 10° Ω -m. It is converted to an extrinsic semiconductor with a doping concentration of 10²⁰ /m°. For the extrinsic semiconductor, calculate the minority carrier concentration and resistivity.

Ans: minority carrier concentration = $2.25 * 10^{12}$ atoms/m³, resistivity = 0.5998Ω -m.

O 6. In N-type Si bar which is 2 cm long and has a cross-section of 2 mm * 2 mm when a 1 V battery is connected across it, a current of 8mA flows. Find doping level and drift velocity. Given the 1300 cm/V-S

Ans: $N_D = 192 * 10^{13} / \text{cm}^3$, $V_d = 650 \text{ cm/sec}$.

Q 7. In a doped semiconductor, there are $4.52 * 10^{24}$ holes and $1.25 * 10^{14}$ electrons per cubic meter. What will be th carrier density in undoped specimen? Electron and hole mobilities are $0.38 \text{ m}^2/\text{V-s}$ and $0.18 \text{ m}^2/\text{V-s}$ respectively Calculate the conductivity of intrinsic and the doped semiconductors.

Ans:
$$\mathfrak{C} = 2.38 \cdot 10^{19} / \text{ m}^3$$
, $\mathfrak{C}_p = 2.14 \text{ S/m}$, $\sigma_p = 130 \text{ KS/m}$.