821. 60 Pim cosn x -?	Pim S	inhx	?		十十十
Yye P: too					
(sin nx, 4) =) 4(x) sin h	xdx	7	0 = (0	9)
no remed Turarea					
Anauorwico					
Pim cosnx = 0					4
Orber: lim cosnx = 0	> Piv	n Sin r) X =	0	100

Ha $(-\infty, +\infty)$, nosvoing $|\lambda(x)| \leq M \forall x \neq 0$ Toiga $|\varphi(x)| = |\varphi(0)| + |x| \lambda(x) |u|$: $\frac{a}{a^2 + x^2}, |\varphi| = a|\varphi(0)| \int_{-A}^{A} \frac{dx}{a^2 + x^2} + a \int_{-A}^{A} \frac{dx \cdot \lambda(x) x}{a^2 + x^2} = I_1 + I_2$ Touyeur aug pab-ba: $I_1 = \alpha \varphi(0) \cdot \frac{1}{\alpha} \operatorname{arctg} \frac{\chi}{\alpha} \Big|_{-A}^{A} = \varphi(0) \cdot 2 \operatorname{arctg} \frac{A}{\alpha} \rightarrow \pi \varphi(0), \alpha \rightarrow 0$ Дия ворого интеграна: $|I_2| \leq Ma \int \frac{|x| dx}{x^2 + a^2} = 2Ma \int \frac{x dx}{x^2 + a^2}$ = Maln(x2+a2)| = Maln (A2+a2) - 2Malna lim Ma $\ln(A+a)=0$ u $\lim_{a\to +0} a \ln a = 0$ $\lim_{a\to +0} \ln a \ln a = \lim_{a\to +0} \frac{1}{a} = \lim_{a\to +0} a = 0$ Theorems $\lim_{a\to +0} \lim_{a\to +0} \frac{1}{a} = \lim_{a\to +0} a = 0$ Breakux, Pim (α; φ) = π φ(0) = (πδ(x), φ) 8) Pim + Sin x = Ji S(x) Tyesto $\varphi \in D$, $\varphi(x) = 0$ bue experse [-A, A], A > 0.

Torga $\left(\frac{1}{x}\sin\frac{x}{a},\varphi\right)=\int\frac{\varphi(x)}{x}\sin\frac{x}{a}dx=$ $\int_{X}^{A} \sin \frac{x}{q} \cdot (\varphi(x) - \varphi(0)) dx + \int_{A}^{A} \varphi(0) \frac{1}{x} \sin \frac{x}{q} dx$ Ananourne no r. larpanna 14(x)-410) & C/x $\left|\int_{A}^{\pi} \frac{1}{x} \sin \frac{x}{\alpha} \left(\frac{\varphi(x) - \varphi(0)}{A} \right) dx \right| \leq \int_{A}^{\pi} \left| \frac{1}{x} \sin \frac{x}{\alpha} \right| \cdot \left| \frac{\varphi(x) - \varphi(0)}{A} \right| dx$ ≤ 2 · C | |sin x | d x = - 2 C a cos x | A = = 2a C (1 - cos A) T. K. $\cos \frac{A}{a}$ - ornareur. 9 yux, 0 1- $\cos \frac{A}{a}$ $\cos \frac{A}{a}$ ornareur. $\cos \frac{A}{a} = 0$ $\int_{-\pi}^{A} \frac{1}{x} \sin \frac{x}{a} \psi(0) dx = \psi(0) \cdot \int_{-\infty}^{+\infty} \frac{\sin \frac{x}{a}}{a} dx = \pi \psi(0)$ 3παναιν, (+ Sin α)

3παναιν, (+ Sin α)

3παναιν, (+ Sin α (+ 3in α (φ) = πφ(0) = (πδ(x), φ)

\$21 71			
Bornant	npough.	y = 0(x-x0)	$= \begin{cases} 1, & x \ge X_0 \\ 0, & x < X_0 \end{cases}$
(y', φ) z -	$(y, \varphi')^2$	- Θ(x-x _o) φ'd x	(2 -) 4 d X z
$= \varphi(x_0) =$	(S(x-xo),	as 8- qual	
Orber: C	(= S(x-x0)		

\$21.84
Dox- 16 vo ecem f- kyc. magkas ha Rop-uns,
muerous 6 7. X1, , X, pazpoeber 1 paga co exarkaciai
P1, P2,, Ph, ro f(x) = d f(x) + = Px S(x-xx)
Tyert 4 & D
$(3', \varphi) = -(3, \varphi') = -\int_{-\infty}^{\infty} f(x) \varphi'(x) dx$
T.K. & consumer to 3 [xo, xn.,]: Supp & U (xx) kon (xo, Xn.)
Jagodsies ream metrechaes na cequency no expression: $-\left(\int_{x_0}^{x} f(x) \varphi'(x) dx + \int_{x_1}^{x_2} f(x) \varphi'(x) dx + + \int_{x_1}^$
- () 1(×) 4 () () () () () () () () ()

$$= -\frac{1}{2} \int_{x_{r_0}} f(x) \varphi(x) \Big|_{X_{\kappa_{r_0}}} + \frac{1}{2} \int_{x_{r_0}} f(x) \varphi(x) dx = \frac{1}{2} \int_{x_{r_0}} \varphi(x) dx = \frac{1}{2}$$

fim x 3 8 \$ - (x2+32)2 8 \$ -Uz T2 cuequet, vo Pim 3 = I, S(x) & D. III. R. oneparop guapopeperus. 6 np be D'reenpepuber eau In-16 D, vou In- 36 40 T.r. 9-44 2 rennep gupp-un, 10 éé oбобия производная cobnagaer c обочной

(8 + x co s'x) 8(x) p(x) = e + x cosx Secronereno guapap. 44 (-00, +00) (pδ, φ) = (δ, pφ) = p(o) φ(o) = (p(o)δ, φ) Brearent ucx ogrece bupan. $1 \cdot \delta(x) = \delta(x)$ Harux δ) $\left(\frac{\sin x}{1+x^2} - \cosh x\right) \delta(x)$ Secretion (-00, +00) Horancem, rero (p8) = po + po: Vy ∈ P ((pδ), φ) = - (pδ, φ')=- (δ, pφ)= = - $(\delta, (p\varphi)' - p'\varphi) = -(\delta, (p\varphi)') + (\delta, p'\varphi) = (\delta, p\varphi) +$ +(p'd, q)=(pd+p'd, q) = (pd)=pd+p'd 3 nareur p(x) &'(x) = (p(0) & (x)) - p'(0) & (x) - p(0) & (x) us a) zamenoù p-p - p(0) 8(x) Orkyga ucx ogrece begrane = - S(x) + S(x)

6)
$$e^{2} \delta''(x) = (e^{2} \delta'', \varphi) = -(\delta', (e^{2} \varphi)') =$$
 $= -(\delta', 2 \times e^{2} \varphi) - (\delta', e^{2} \varphi') = (\delta, (2 \times e^{2} \varphi)') +$
 $+(\delta, (e^{2} \varphi')') = (\delta, 2e^{2} \varphi + 4 \times e^{2} \varphi + 2 \times e^{2} \varphi') +$
 $+(\delta, 2 \times e^{2} \varphi' + e^{2} \varphi'') = (\delta, (2e^{2} + 4 \times^{2}) \varphi) +$
 $+(\delta, 4 \times e^{2} \varphi') + (\delta, e^{2} \varphi'') = 2 \varphi(0) + 1 \varphi''(0) =$
 $= 2(\delta, \varphi) + (\delta, \varphi') = 2 \delta(x) + \delta''(x) =$