

지상기기 상시감시 머신러닝서비스

김윤승 연구원

정형 데이터 학습예시

날짜	오늘날씨	오늘 중국 미세먼지 수치	오늘 온도	미세먼지 위험 여부
2019-3-1	흐림	299	10	0
2019-3-2	흐림	400	19	0
2019-3-3	맑음	99	10	X

오늘 날씨: 날씨가 맑을 경우, 미세먼지 위험이 없었다

오늘 중국 미세먼지 수치: 100 이하인 경우, 미세먼지 위험이 없었다

데이터가 행렬에 맞춰 규칙적으로 구성됨

PD 데이터 예시

모양이 제각각이다

PD발생시에 만들어 지기 때문에 균일하지 못하다.

정형데이터 학습에 적합하지 않다!

시각화이미지로 변환하면 어떨까?

 Name
 Name

 X
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 <t

 0
 1
 2
 ...
 1736
 1737
 1738

 X
 1.55
 1.55
 1.55
 ...
 358.73
 358.73
 358.73

 Y
 4.38
 5.79
 7.20
 ...
 4.38
 5.79
 7.20

이미지를 활용한 학습이 가능하다!

데이터 수는 각각 다르지만 산점도로 표시했을때 전체적인 모양으로 학습가능

PD분류 ^{알고리즘소개}

CNN

이미지인식에 유용한 딥러닝 알고리즘

합성곱 연산을 통해 이미지의 특징을 추출 차원을 축소시키며 연산을 줄인다 축소, 회전, 크롭 등 다양한 변화에도 안정적 학습해야할 가중치가 줄어들므로 빠른 학습가능

Architecture

What is "Filter"

RESNET

단점을 개선한 CNN 모델

ILSVRC 2015년 1등

Gradient vanishing 해결

잔차를 학습하는 방식

복잡하지 않은 구현방식

Bottleneck 방식

CNN vs RESNET

What is "bottleneck"

34 layers

PD 발생시 Bigdata Server Raw data Local Sensor Classification PD database **▼ 2 02** 4.24 5.65 7.06 8.47 9.88 11.29 ... 2.82 4.24 5.65 7.06 8.47 9.88 11.29 데이터 추출 70% 결측치처리 이상치처리 데이터표준화 22% 시각화 Refined data Manhole Surface!

구현예시

PD예측 데이터플로우

LSTM

이전 정보를 기억하는 딥러닝 알고리즘

현재 데이터를 연산할때 이전 데이터를 반영 비선형연산을 통해 기존 시계열 모델보다 정확함 Cell state를 통해 Long-term dependency 해결 LSTM 층을 겹겹히 쌓으며 더욱 견고한 예측 가능

Cell state

Architecture

Detail part

Stateful Stacked LSTM

상태유지 스택 순환신경망

LSTM 층을 쌓아올려 예측을 유연하게 만듬

상태유지를 통해 기존 학습정보를 유지함

적용 예시

다음날 예측 DATA

이틀 전 DATA

하루 전 DATA

당일 DATA

