CLAIMS

What is claimed is:

 1. A method compris 	ing
---	-----

- storing packet data within a storage element;
- maintaining a transmit count value of said storage element;
- 4 determining a release count value of said storage element;
- 5 comparing said transmit count value and said release count value; and
- de-allocating said storage element in response to comparing said transmit count
- 7 value and said release count value.
- 1 2. The method of claim 1, further comprising:
- 2 receiving a packet including said packet data; and
- allocating said storage element in response to receiving said packet.
- 1 3. The method of claim 1, further comprising transmitting said packet data from said
- 2 storage element.
- 1 4. The method of claim 3, wherein maintaining a transmit count value of said
- 2 storage element comprises:
- initializing said transmit count value; and
- 4 incrementing said transmit count value by one in response to transmitting said
- 5 packet data.
- 1 5. The method of claim 4, wherein comparing said transmit count value and said
- 2 release count value comprises determining whether said incremented transmit count value

- 3 is equal to said release count value, and de-allocating said storage element in response to
- 4 comparing said transmit count value and said release count value comprises de-allocating
- said storage element in response to a determination that said incremented transmit count
- 6 value is equal to said release count value.
- 1 6. The method of claim 4, wherein transmitting said packet data from said storage
- 2 element comprises transmitting said packet data from said storage element via a plurality
- 3 of output interfaces.
- 1 7. The method of claim 6, wherein transmitting said packet data from said storage
- 2 element via a plurality of output interfaces comprises transmitting said packet data from
- 3 said storage element via a plurality of line interfaces.
- 1 8. The method of claim 7, wherein transmitting said packet data from said storage
- 2 element via a plurality of line interfaces comprises transmitting said packet data from
 - said storage element via a line interface selected from the group consisting of: an
- 4 Ethernet interface, a Fast Ethernet interface, a Gigabit Ethernet interface, an OC-
- 5 48/STM-16 interface, an OC-12/STM-14 interface, an OC-3/STM-1 interface, an IF
- 6 Video interface, a DWDM interface, a DS-1 interface, a DS-3 interface, an E-1 interface,
- 7 and an E-3 interface.
- 1 9. The method of claim 6, said packet data including a packet header and a packet
- 2 body, wherein storing packet data within a storage element comprises:
- storing said packet body within a common storage element; storing a copy of said packet
- 4 header within a unique storage element for each of said plurality of output interfaces; and

- 5 associating each of said plurality of unique storage elements with said common storage
- 6 element.
- 1 10. The method of claim 9, wherein initializing said transmit count value comprises
- 2 setting said transmit count value of each of said plurality of unique storage elements
- 3 equal to one less than said release count value.
- 1 11. An apparatus comprising:
- an input module to store packet data within a storage element and to initialize a
- 3 transmit count value of said storage element;
- a processing element to determine a release count value of said storage element;
- a direct memory access controller to transmit said packet data from said storage
- 6 element; and
- a memory controller to increment said transmit count value by one in response to
- 8 a transmission of said packet data and to de-allocate said storage element in response to a
- 9 determination that said incremented transmit count value is equal to said release count
- 10 value.
- 1 12. The apparatus of claim 11, wherein said input module to store packet data within
- 2 a storage element and to initialize a transmit count value of said storage element
- 3 comprises an input module to receive a packet including said packet data and to allocate
- 4 said storage element for said packet including said packet data.
- 1 13. The apparatus of claim 11, wherein said direct memory access controller to
- 2 transmit said packet data from said storage element comprises a direct memory access

3

- 3 controller to transmit said packet data from said storage element via a plurality of output
- 4 interfaces.
- 1 14. The apparatus of claim 13, wherein said direct memory access controller to
- 2 transmit said packet data from said storage element via a plurality of output interfaces
- 3 comprises a direct memory access controller to transmit said packet data from said
- 4 storage element via a plurality of line interfaces.
- 1 15. The apparatus of claim 14, wherein said direct memory access controller to
- 2 transmit said packet data from said storage element via a plurality of line interfaces
 - comprises a direct memory access controller to transmit said packet data from said
 - storage element via a line interface selected from the group consisting of: an Ethernet
- 5 interface, a Fast Ethernet interface, a Gigabit Ethernet interface, an OC-48/STM-16
- interface, an OC-12/STM-14 interface, an OC-3/STM-1 interface, an IF Video interface,
 - a DWDM interface, a DS-1 interface, a DS-3 interface, an E-1 interface, and an E-3
- 8 interface.
- 1 16. The apparatus of claim 13, said packet data including a packet header and a
- 2 packet body, wherein:
- said input module to store packet data within a storage element and to initialize a
- 4 transmit count value of said storage element comprises an input module to store said
- 5 packet body within a common storage element; and
- said processing element to determine a release count value of said storage element
- 7 comprises a processing element to store a copy of said packet header within a unique

8	storage element for each of said plurality of output interfaces, and to associate each o
9	said plurality of unique storage elements with said common storage element.
1	17. An apparatus comprising:
2	a first line card to transmit data to a communications network;
3	a line card interconnect coupled to said first line card; and
4	a second line card, coupled to said line card interconnect, to receive data from
5	communications network, said second line card including:
6	an input module to store packet data within a storage element and to
7	initialize a transmit count value of said storage element;
8	a processing element to determine a release count value of said storag
9	element;
10	a direct memory access controller to transmit said packet data from said
11	storage element; and
12	a memory controller to increment said transmit count value by one in
13	response to a transmission of said packet data and to de-allocate said storag
14	element in response to a determination that said incremented transmit count valu
15	is equal to said release count value.
1	18. The apparatus of claim 17, said second line card further including a line interfac
2	module to receive data from a communications network, wherein said input module to
3	store packet data within a storage element and to initialize a transmit count value of said
4	storage element comprises an input module to receive a packet including said packet dat
5	from said line interface module and to allocate said storage element for said nacke

including said packet data.

6

- 1 19. The apparatus of claim 17, said second line card further including a memory,
- 2 coupled to said memory controller, to store said a storage element.
- 1 20. The apparatus of claim 17, said second line card further including a line card
- 2 interconnect interface module having a plurality of output interfaces coupled to said line
- 3 card interconnect.
- 1 21. The apparatus of claim 20, wherein said direct memory access controller to
- 2 transmit said packet data from said storage element comprises a direct memory access
- 3 controller to transmit said packet data from said storage element to said line card
- 4 interconnect interface module.
- 1 22. The apparatus of claim 20, wherein said direct memory access controller to
- 2 transmit said packet data from said storage element comprises a direct memory access
- 3 controller to transmit said packet data from said storage element via said plurality of
- 4 output interfaces.
- 1 23. The apparatus of claim 22, said packet data including a packet header and a
- 2 packet body, wherein:
- said input module to store packet data within a storage element and to initialize a
- 4 transmit count value of said storage element comprises an input module to store said
- 5 packet body within a common storage element; and
- said processing element to determine a release count value of said storage element
- 7 comprises a processing element to store a copy of said packet header within a unique

8	storage element for each of said plurality of output interfaces, and to associate
9	each of said plurality of unique storage elements with said common storage element.
1	24. An apparatus comprising:
2	a first line card to receive data from a communications network;
3	a line card interconnect coupled to said first line card; and
4	a second line card, coupled to said line card interconnect, to transmit data to a
5	communications network, said second line card including:
6	an input module to store packet data within a storage element and to
7	initialize a transmit count value of said storage element;
8	a processing element to determine a release count value of said storage
9	element;
10	a direct memory access controller to transmit said packet data from said
11	storage element; and
12	a memory controller to increment said transmit count value by one in
13	response to a transmission of said packet data and to de-allocate said storage
14	element in response to a determination that said incremented transmit count value
15	is equal to said release count value.
1	25. The apparatus of claim 24, said second line card further including a line card
2	interconnect interface module coupled to said line card interconnect, wherein said input
3	module to store packet data within a storage element and to initialize a transmit count
4	value of said storage element comprises an input module to receive a packet including
5	said packet data from said line card interconnect interface module and to allocate said
6	storage element for said packet including said packet data.

- 1 26. The apparatus of claim 24, said second line card further including a memory,
- 2 coupled to said memory controller, to store said a storage element.
- 1 27. The apparatus of claim 24, said second line card further including a line interface
- 2 module having a plurality of output interfaces.
- 1 28. The apparatus of claim 27, wherein said direct memory access controller to
- 2 transmit said packet data from said storage element comprises a direct memory access
- 3 controller to transmit said packet data from said storage element via said plurality of
- 4 output interfaces.
- 1 29. The apparatus of claim 28, wherein said direct memory access controller to
- 2 transmit said packet data from said storage element via said plurality of output interfaces
- 3 comprises a direct memory access controller to transmit said packet data from said
 - storage element via a line interface selected from the group consisting of: an Ethernet
- 5 interface, a Fast Ethernet interface, a Gigabit Ethernet interface, an OC-48/STM-16
- 6 interface, an OC-12/STM-14 interface, an OC-3/STM-1 interface, an IF Video interface,
- a DWDM interface, a DS-1 interface, a DS-3 interface, an E-1 interface, and an E-3
- 8 interface.
- 1 30. The apparatus of claim 28, said packet data including a packet header and a
- 2 packet body, wherein:
- said input module to store packet data within a storage element and to initialize a
- 4 transmit count value of said storage element comprises an input module to store said
- 5 packet body within a common storage element; and

- said processing element to determine a release count value of said storage element comprises a processing element to store a copy of said packet header within a unique storage element for each of said plurality of output interfaces, and to associate each of
- 9 said plurality of unique storage elements with said common storage element.
- 1 31. A machine-readable medium that provides instructions, which when executed by
- 2 a set of one or more processors, cause said set of processors to perform operations
- 3 comprising:
- 4 storing packet data within a storage element;
- 5 maintaining a transmit count value of said storage element;
- determining a release count value of said storage element;
- comparing said transmit count value and said release count value; and
- de-allocating said storage element in response to comparing said transmit count
- 9 value and said release count value.
- 1 32. The machine-readable medium of claim 31, said operations further comprising:
- 2 receiving a packet including said packet data; and
- allocating said storage element in response to receiving said packet.
- 1 33. The machine-readable medium of claim 31, said operations further comprising
- 2 transmitting said packet data from said storage element.
- 1 34. The machine-readable medium of claim 33, wherein maintaining a transmit count
- value of said storage element comprises:
- 3 initializing said transmit count value; and

- incrementing said transmit count value by one in response to transmitting said packet data.
- 1 35. The machine-readable medium of claim 34, wherein comparing said transmit
- 2 count value and said release count value comprises determining whether said
- 3 incremented transmit count value is equal to said release count value, and de-allocating
- 4 said storage element in response to comparing said transmit count value and said release
- 5 count value comprises de-allocating said storage element in response to a determination
- 6 that said incremented transmit count value is equal to said release count value.
- 1 36. The machine-readable medium of claim 34, wherein transmitting said packet data
- 2 from said storage element comprises transmitting said packet data from said storage
- 3 element via a plurality of output interfaces.
- 1 37. The machine-readable medium of claim 36, wherein transmitting said packet data
- 2 from said storage element via a plurality of output interfaces comprises transmitting said
- packet data from said storage element via a plurality of line interfaces.
- 1 38. The machine-readable medium of claim 37, wherein transmitting said packet data
- 2 from said storage element via a plurality of line interfaces comprises transmitting said
- 3 packet data from said storage element via a line interface selected from the group
- 4 consisting of: an Ethernet interface, a Fast Ethernet interface, a Gigabit Ethernet
- 5 interface, an OC-48/STM-16 interface, an OC-12/STM-14 interface, an OC-3/STM-1
- 6 interface, an IF Video interface, a DWDM interface, a DS-1 interface, a DS-3 interface,
- 7 an E-1 interface, and an E-3 interface.

- 1 39. The machine-readable medium of claim 36, said packet data including a packet
- 2 header and a packet body, wherein storing packet data within a storage element
- 3 comprises:
- 4 storing said packet body within a common storage element;
- storing a copy of said packet header within a unique storage element for each of
- 6 said plurality of output interfaces; and
- associating each of said plurality of unique storage elements with said common
- 8 storage element.
- 1 40. The machine-readable medium of claim 39, wherein initializing said transmit
- 2 count value comprises setting said transmit count value of each of said plurality of unique
- 3 storage elements equal to one less than said release count value.