Convex Functions

Ye Shi

ShanghaiTech University

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Definition of Convex Function

A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be **convex** if the domain, **dom** f, is convex and for any $x, y \in \text{dom} f$ and $0 \le \theta \le 1$,

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) \le \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y})$$

- f is **strictly convex** if the inequality is strict for $0 < \theta < 1$
- f is **concave** if -f is convex

Examples on \mathbb{R}

Convex functions:

- \bullet affine: ax + b on \mathbb{R}
- powers of absolute value: $|x|^p$ on \mathbb{R} , for $p \ge 1$ (e.g., |x|)
- powers: x^p on \mathbb{R}_{++} , for $p \ge 1$ or $p \le 0$ (e.g., x^2)
- \bullet exponential: e^{ax} on \mathbb{R}
- negative entropy: $x \log x$ on \mathbb{R}_{++}

Concave functions:

- $affine: ax + b \text{ on } \mathbb{R}$
- powers: x^p on \mathbb{R}_{++} , for $0 \le p \le 1$
- $\log x$ on \mathbb{R}_{++}

Examples on \mathbb{R}^n

- Affine functions $f(x) = a^T x + b$ are convex and concave on \mathbb{R}^n
- Norms $\|x\|$ are convex on \mathbb{R}^n (e.g., $\|x\|_{\infty}, \|x\|_1, \|x\|_2$)
- Quadratic functions $f(x) = x^T P x + 2q^T x + r$ are convex \mathbb{R}^n if and only if $P \succeq 0$
- The geometric mean $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on \mathbb{R}^n_{++}
- The log-sum-exp $f(x) = \log \sum_i e^{x_i}$ is convex on \mathbb{R}^n (it can be used to approximate $\max_{i=1,\dots,n} x_i$)
- Quadratic over linear: $f(x,y) = x^T x/y$ is convex on $\mathbb{R}^n \times \mathbb{R}_{++}$

Examples on $\mathbb{R}^{n \times n}$

* Affine functions: (prove it!)

$$f(\boldsymbol{X}) = \text{Tr}(\boldsymbol{A}\boldsymbol{X}) + b$$

are convex and concave on $\mathbb{R}^{n \times n}$

Logarithmic determinant function: (prove it!)

$$f(X) = \operatorname{logdet}(X)$$

is concave on $\mathbb{S}^n = \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} \mid \boldsymbol{X} \succeq \boldsymbol{0} \})$

Maximum eigenvalue function: (prove it!)

$$f(\boldsymbol{x}) = \lambda_{\max}(\boldsymbol{X}) = \sup_{\boldsymbol{y} \neq \boldsymbol{0}} \frac{\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} \qquad \qquad \lambda = \frac{\boldsymbol{y}^T \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}}$$

$$\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{y} = \boldsymbol{y}^T \boldsymbol{\lambda} \boldsymbol{y} = \boldsymbol{\lambda} \boldsymbol{y}^T \boldsymbol{y} \Rightarrow \boldsymbol{\delta}$$

is convex on \mathbb{S}^n

Epigraph

ightharpoonup The **epigraph** of f if the set

epi
$$f = \{(\boldsymbol{x}, t) \in \mathbb{R}^{n+1} \mid \boldsymbol{x} \in \text{dom } f, \ f(\boldsymbol{x}) \le t\}$$

Relation between convexity in sets and convexity in functions: f is convex \iff epi f is convex

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Restriction of a Convex Function to a Line

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \longrightarrow \mathbb{R}$

$$g(t) = f(\mathbf{x} + t\mathbf{v}), \quad \text{dom } g = \{t \mid \mathbf{x} + t\mathbf{v} \in \text{dom } f\}$$

is convex for any $\boldsymbol{x} \in \mathrm{dom}\, f$, $\boldsymbol{v} \in \mathbb{R}^n$

- In words: a function is convex if and only if it is convex when restricted to an arbitrary line.
- Implication: we can check convexity of *f* by checking convexity of functions of one variable!
- Example: concavity of $logdet(\mathbf{X})$ follows from concavity of log(x)

Example

Example: concavity of logdet(X):

$$g(t) = \operatorname{logdet}(\boldsymbol{X} + t\boldsymbol{V}) = \operatorname{logdet}(\boldsymbol{X}) + \operatorname{logdet}(\boldsymbol{I} + t\boldsymbol{X}^{-1/2}\boldsymbol{V}\boldsymbol{X}^{-1/2})$$

$$= \operatorname{logdet}(\boldsymbol{X}) + \sum_{i \ge 1}^{n} \operatorname{log}(1 + t\lambda_i)$$

where λ_i 's are the eigenvalues of $\boldsymbol{X}^{-1/2}\boldsymbol{V}\boldsymbol{X}^{-1/2}$

The function g is concave in t for any choice of $X \succ 0$ and V; therefore, f is concave.

$$g(t) = \underbrace{\xi(\frac{\lambda i}{1 + t \lambda i})}_{i=1}$$

$$g(t) = \underbrace{\xi(\frac{\lambda i}{1 + t \lambda i})}_{i=1}$$

$$g(t) = \underbrace{\xi(\frac{\lambda i}{1 + t \lambda i})}_{i=1}$$

$$f(t) = \underbrace{\xi(\frac{\lambda i}{1 + t \lambda i})}_{i=1}$$

$$x+tv = x^{\frac{1}{2}}(1+tx^{\frac{1}{2}}vx^{\frac{1}{2}})x^{\frac{1}{2}}$$

$$\mathcal{D} \det(xY) = \det(x) \det(y)$$

$$2 = x^{\frac{1}{2}}vx^{\frac{1}{2}} = Q[\lambda, \lambda_n]Q^T, \quad \Theta \cdot Q = I$$

$$1+t\lambda = Q[1+t\lambda_n]Q^T$$

log let
$$(1+t^2) = \sum_{i=1}^{n} \log(1+t^2i)$$

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

First and Second Order Conditions I

Gradient (for differentiable *f*):

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_1} & \cdots & \frac{\partial f(\boldsymbol{x})}{\partial x_n} \end{bmatrix}^T \in \mathbb{R}^n$$

ightharpoonup Hessian (for twice differentiable f):

$$\nabla^2 f(\boldsymbol{x}) = \left(\frac{\partial^2 f(\boldsymbol{x})}{\partial x_i \partial x_j}\right)_{ij} \in \mathbb{R}^{n \times n}$$

Taylor series:

$$f(\boldsymbol{x} + \boldsymbol{\delta}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \boldsymbol{\delta} + \frac{1}{2} \boldsymbol{\delta}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{\delta} + o\left(\|\boldsymbol{\delta}\|^2\right)$$

First and Second Order Conditions II

First-order condition: a differentiable *f* with convex domain is convex if and only if

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}) \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \text{dom } f$$

$$f(y)$$

$$f(x) + \nabla f(x)^T (y - x)$$

$$(x, f(x))$$

- Interpretation: first-order approximation is a global under estimator
- Second-order condition: a twice differentiable *f* with convex domain is convex if and only if

$$\nabla^2 f(\boldsymbol{x}) \succeq \boldsymbol{0} \quad \forall \boldsymbol{x} \in \mathrm{dom}\, f$$

Convex conditions \emptyset $f(\theta x + (1-\theta)y) \in \theta f(x) + (1-\theta) f(y), \quad 0 \in \theta \in I, \quad \forall x.y.$ f(y) > f(x)+ of(x) (y-x), \(\forall x\), \(\forall y\) 3 \$\frac{1}{2}f(x) > 0. f(x) is twice differentiable $0 \Rightarrow 0 : \frac{0}{9} : f(x) > f(y) + \frac{f(\theta \times f(r\theta)y) - f(y)}{19}$ $= f(y) + \frac{f(y+\theta(x-y)) - f(y)}{\hat{}}$ $= f(y) + \frac{f(y+\theta(x-y)-f(y))}{\theta(x-y)}$ kin fax) > kin (\) => fex) > \text{of any (x-y)} $Z = \theta \chi + (I-\theta) \gamma$ \[
 \frac{1}{x} \frac{1}{x} \frac{1}{x} \frac{1}{x} \frac{1}{x}
 \]

$$\theta : \emptyset + (I-\theta) : \emptyset \Rightarrow \\
\theta f(x) + (I-\theta) f(y) > f(z) + x f(z) (\theta x + (I-\theta) y - z) \\
= f(z) \\
\emptyset \Rightarrow \emptyset : Taylor Series.

f(x+td) = f(x) + x f(x) td + \frac{1}{2} d \frac{1}{2} f(x) d + o(ntd ||^2)}

\text{2} \text{f(x) + x f(x) (y - x)}

\text{x+td}

f(x+td) = f(x) + \frac{1}{2} f(x) \text{td} \text{ d} \text{$$

 $\exists z \quad \forall x \cdot y .$ $\exists z \quad \forall x \cdot y .$ $\exists (y) = f(x) + \forall f(x) (y - x) + (y - x) \forall f(z) (y - x) .$ $Since \quad \forall f(z) > 0$ $\Rightarrow f(y) > f(x) + \forall f(x) (y - x) . \square$

Examples

Quadratic function: $f(x) = \frac{1}{2}x^T P x + q^T x + r \text{(with } P \in \mathbb{S}^n \text{)}$

$$abla f(oldsymbol{x}) = oldsymbol{P}oldsymbol{x} + oldsymbol{q}, \qquad
abla^2 f(oldsymbol{x}) = oldsymbol{P}$$

is convex if $P \succeq 0$.

Least-squares objective: $f(x) = \|Ax - b\|_2^2$

$$\nabla f(\boldsymbol{x}) = 2\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}), \qquad \nabla^2 f(\boldsymbol{x}) = 2\boldsymbol{A}^T\boldsymbol{A}$$

is convex.

Quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y & -x \end{bmatrix} \succeq \mathbf{0}$$

is convex for y > 0.

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Operations that Preserve Convexity I

How to establish the convexity of a given function?

- Applying the definition
- With first- or second-order conditions
- By restricting to a line
- Showing that the functions can be obtained from simple functions by operations that preserve convexity:
 - nonnegative weighted sum
 - composition with affine function (and other compositions)
 - pointwise maximum and supremum, minimization
 - perspective

noncomex fi-fz difference of comex.

Operations that Preserve Convexity II

- Nonnegative weighted sum: if f_1 , f_2 are convex, then $\alpha_1 f_1 + \alpha_2 f_2$ is convex, with $\alpha_1, \alpha_2 \geq 0$.
- Composition with affine functions: if f is convex, then f(Ax + b) is convex (e.g., ||y Ax|| is convex, $\log \det(I + HXH^T)$ is concave).
- Pointwise maximum: $f := \max\{f_1, \dots, f_m\}$ is convex, if f_1, \dots, f_m are convex

Example: sum of r largest components of $x \in \mathbb{R}^n$:

$$f(\mathbf{x}) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

where $x_{[i]}$ is the *i*th largest component of \boldsymbol{x} .

Proof:
$$f(\mathbf{x}) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} | 1 \le i_1 < i_2 < \dots < i_r \le n\}.$$

$$f(x) = \max \left\{ f(x), \dots, f_n(x) \right\}$$

$$f(\theta x + c \vdash \theta) y) = \max \left\{ f(\theta x + c \vdash \theta) y), \dots, f_{2}(\theta x + c \vdash \theta) y) \right\}$$

$$\leq \max \left\{ \theta f_{1}(x) + (l \vdash \theta) f(y), \dots, \theta f_{n}(x) + (l \vdash \theta) f_{n}(y) \right\}$$

$$\leq \theta \max \left\{ f(x), \dots, f_{n}(x) \right\} + (l \vdash \theta) \max \left\{ f(cy), \dots, f_{n}(y) \right\}$$

$$= \theta f(x) + (l \vdash \theta) f(y)$$

$$\square$$

Operations that Preserve Convexity III

Pointwise supremum: if f(x, y) is convex in x for each $y \in A$, then

$$g(\boldsymbol{x}) = \sup_{\boldsymbol{y} \in \mathcal{A}} f(\boldsymbol{x}, \boldsymbol{y})$$

is convex.

Example: distance to farthest point in a set *C*:

$$f(\boldsymbol{x}) = \sup_{\boldsymbol{y} \in C} \|\boldsymbol{x} - \boldsymbol{y}\|$$

Example: maximum eigenvalue of symmetric matrix: for $X \in \mathbb{S}^n$,

$$\lambda_{\max}(\boldsymbol{X}) = \sup_{oldsymbol{y}
eq oldsymbol{0}} rac{oldsymbol{y}^T oldsymbol{X} oldsymbol{y}}{oldsymbol{y}^T oldsymbol{y}}$$

Operations that Preserve Convexity IV

Composition with scalar functions: let $g: \mathbb{R}^n \longrightarrow \mathbb{R}$, $h: \mathbb{R} \longrightarrow \mathbb{R}$, then the function f(x) = h(g(x)) satisfies:

f(x) is convex if f(x) is convex if f(x) is convex if f(x) convex nonincreasing f(x) convex if f(x) convex nonincreasing

Minimization: if f(x, y) is convex in (x, y) and C is a convex set, then

$$g(\boldsymbol{x}) = \inf_{\boldsymbol{y} \in C} f(\boldsymbol{x}, \boldsymbol{y})$$

is convex (e.g., distance to a convex set).

Example: distance to a set *C*:

$$f(\boldsymbol{x}) = \inf_{\boldsymbol{y} \in C} \|\boldsymbol{x} - \boldsymbol{y}\|$$

ce to a convex set).
$$\frac{z}{z} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$C:$$

$$f(x) = \inf_{y \in C} ||x - y||$$

$$\int_{y \in C} ||x - y||$$

$$\int_{y \in C} ||x - y||$$

is convex if C is convex.

$$f(x) = h(g(x))$$

$$f(x) = h'(g(x)) \cdot g'(x)$$

$$f(x) = h'(g(x)) [g(x)]^2 + h'(g(x)) g'(x)$$

Operations that Preserve Convexity V

Perspective: if f(x) is convex, then its perspective

$$g(\boldsymbol{x},t) = tf(\boldsymbol{x}/t), \quad \text{dom } g = \{(\boldsymbol{x},t) \in \mathbb{R}^{n+1} | \boldsymbol{x}/t \in \text{dom } f, t > 0\}$$
 is convex.
$$+ (x/t)^{\mathsf{T}} \cdot (x/t) = \frac{x^{\mathsf{T}} x}{\mathsf{T}}$$

Example: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$ is convex; hence $g(\mathbf{x}, t) = \mathbf{x}^T \mathbf{x}/t$ is convex for t > 0.

Example: the negative logarithm $f(x) = -\log x$ is convex; hence the relative entropy function $g(x,t) = t \log t - t \log x$ is convex on \mathbb{R}^2_{++} .

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- 5 Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Quasi-Convexity Functions

A function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is quasi-convex if dom f is convex and the sublevel sets

$$S_{\alpha} = \{ \boldsymbol{x} \in \text{dom } f \mid f(\boldsymbol{x}) \le \alpha \}$$

are convex for all α .

f is quasiconcave if -f is quasiconvex.

Examples

- $\sqrt{|x|}$ is quasiconvex on $\mathbb R$
- $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^2_{++}
- the linear-fractional function

$$f(\boldsymbol{x}) = \frac{\boldsymbol{a}^T \boldsymbol{x} + b}{\boldsymbol{c}^T \boldsymbol{x} + d}, \qquad \text{dom } f = \{ \boldsymbol{x} \mid \boldsymbol{c}^T \boldsymbol{x} + d > 0 \}$$

is quasilinear

Log-Convexity

A positive function f is log-concave is $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

- f is log-convex if $\log f$ is convex.
- Example: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$ and log-concave for $a \geq 0$
- Example: many common probability densities are log-concave

Convexity w.r.t. Generalized Inequalities

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is K-convex if dom f is convex and for any $x, y \in \text{dom } f$ and $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \leq_K \theta f(x) + (1 - \theta)f(y)$$

Example: $f: \mathbb{S}^m \longrightarrow \mathbb{S}^m$, $f(X) = X^2$ is \mathbb{S}^m_+ -convex

Reference

Chapter 3 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.

Book:

Petersen, Kaare Brandt, and Michael Syskind Pedersen. "The matrix cookbook." Technical University of Denmark 7 (2008): 15.