Modelo INIFAP-CECH para el cálculo de Horas Frío

Rolando Salazar

¹ Universidad de Sonora, Hermosillo, Sonora.

3 de mayo de 2019

n este reporte se resume la actividad 6 donde se calculan las Horas de Frio Efectivas del modelo de INIFAP-CECH para ser comparadas con las Horas de Frio del modelo de Utah.

1. Introducción

En esta actividad se realiza una comparación entre los modelos de Utah e INIFAP-CECH para estimar las horas de frio para que suceda el brote de un cultivo. Debido a que el modelo de Utah no se adapta bien a zonas donde se tienen inviernos débiles, se espera que el modelo de INIFAP-CECH ayude a los agricultores con su trabajo durante el periodo de Noviembre a Febrero, que es cuando se está en invierno en el estado de Sonora.

Los datos a analizar son obtenidos de una estación ubicada en un cultivo de Vid, en el km 41 de la carretera Hermosillo a Bahía de Kino.

2. Desarrollo de la actividad 6

2.1. Tablas de comparación entre los modelos

Antes de mostrar las gráficas, se exponen dos tablas con los datos de comparación entre ambos modelos.

	TEMP	TMIN	TMAX	HORA	DIA	MES	AÑO	UF24	HF	T>25	HFE	SHF
0	8.624000	6.096	29.58	0	1	11	2018	1.0	1	0	1	1
1	8.493333	6.096	29.58	1	1	11	2018	1.0	1	0	1	2
2	8.690000	6.096	29.58	2	1	11	2018	1.0	1	0	1	3
3	8.846667	6.096	29.58	3	1	11	2018	1.0	1	0	1	4
4	7.397500	6.096	29.58	4	1	11	2018	1.0	1	0	1	5
5	7.289833	6.096	29.58	5	1	11	2018	1.0	1	0	1	6
6	6.806833	6.096	29.58	6	1	11	2018	1.0	1	0	1	7
7	8.110167	6.096	29.58	7	1	11	2018	1.0	1	0	1	8
8	14.960000	6.096	29.58	8	1	11	2018	0.0	0	0	0	8
9	19.710000	6.096	29.58	9	1	11	2018	-1.0	0	0	0	8
10	22.396667	6.096	29.58	10	1	11	2018	-1.0	0	0	0	8
11	23.853333	6.096	29.58	11	1	11	2018	-1.0	0	0	0	8
12	25.125000	6.096	29.58	12	1	11	2018	-1.0	0	1	-1	7
13	26.520000	6.096	29.58	13	1	11	2018	-1.0	0	1	-1	6
14	27.380000	6.096	29.58	14	1	11	2018	-1.0	0	1	-1	5

Figura 1: Primeros 15 datos de la tabla de comparación de modelos.

	TEMP	TMIN	TMAX	HORA	DIA	MES	AÑO	UF24	HF	T>25	HFE	SHF
2608	20.065000	3.259	20.990	17	17	2	2019	-1.0	0	0	0	357
2609	18.021667	3.259	20.990	18	17	2	2019	-1.0	0	0	0	357
2610	15.321667	3.259	20.990	19	17	2	2019	0.0	0	0	0	357
2611	12.143333	3.259	20.990	20	17	2	2019	0.5	0	0	0	357
2612	10.508333	3.259	20.990	21	17	2	2019	0.5	0	0	0	357
2613	8.463333	3.259	20.990	22	17	2	2019	1.0	1	0	1	358
2614	7.385667	3.259	20.990	23	17	2	2019	1.0	1	0	1	359
2615	6.758167	3.243	7.028	0	18	2	2019	1.0	1	0	1	360
2616	5.966333	3.243	7.028	1	18	2	2019	1.0	1	0	1	361
2617	5.617833	3.243	7.028	2	18	2	2019	1.0	1	0	1	362
2618	5.426667	3.243	7.028	3	18	2	2019	1.0	1	0	1	363
2619	4.739833	3.243	7.028	4	18	2	2019	1.0	1	0	1	364
2620	4.157333	3.243	7.028	5	18	2	2019	1.0	1	0	1	365
2621	3.746500	3.243	7.028	6	18	2	2019	1.0	1	0	1	366
2622	3.418500	3.243	7.028	7	18	2	2019	1.0	1	0	1	367

Figura 2: Últimos 15 datos de la tabla de comparación de modelos.

2.2. Modelo de Utah

A continuación se muestra un gráfico con las Horas de Frio Acumuladas calculadas con el modelo te Utah.

Figura 3: Horas de Frio Acumuladas con el modelo de Utah.

2.3. Modelo de INIFAP-CECH

Luego, se muestra el gráfico de las Horas de Frio Efectivas Acumuladas por hora durante todo el periodo de estudio en el modelo de INIFAP-CECH.

Figura 4: Horas de Frio Efectivas Acumuladas con el modelo de INIFAP-CECH.

3. Conclusiones

Como se puede identificar a partir de las gráficas, en el modelo de Utah las horas de frio van a la baja, mientras que en el de INIFAP-CECH van a la alza, por lo que en éste último los cultivos si tienen las horas de frio que necesitan. Siendo así, el modelo de INIFAP-CECH resulta más preciso para zonas como las del estado de Sonora