Hinweis. Die Aufgaben sind aus Staatsexamina früherer Jahre entnommen. Die in Klammern angegebene Punktzahl ist die Punktzahl die damals erreicht werden konnte und ist nur zu Ihrer Orientierung angegeben.

Aufgabe 7.1 (F14T2A2). In einem kommutativen Ring R sei $r \in R$ die Summe zweier Quadrate, also $r = a^2 + b^2$ für geeignete $a, b \in R$. Zeigen Sie, daß dann auch 2r eine Summe zweier Quadrate ist. (8 Punkte)

Aufgabe 7.2 (F14T3A3). Wir betrachten die Teilmenge $R = \{a + bi\sqrt{2} \mid a, b \in \mathbb{Z}\}$ von \mathbb{C} .

- (a) Zeigen Sie, daß R ein Unterring von \mathbb{C} ist. (2 Punkte)
- (b) Beweisen Sie, daß R ein euklidischer Ring ist bezüglich der Normfunktion $d(\alpha) := |\alpha|^2$. (5 Punkte)
- (c) Geben Sie alle möglichen Faktorisierungen von $8-i\sqrt{2}$ in irreuzible Elemente von R an (bis auf Reihenfolge). (8 Punkte)

Aufgabe 7.3 (H14T3A4). Sei $\omega \in \mathbb{C} \setminus \mathbb{Q}$ mit $\omega^2 \in \mathbb{Z}$ gegeben. Zeigen Sie:

(a)
$$\mathbb{Z}[\omega] := \{a + b\omega \mid a, b \in \mathbb{Z}\}$$
 ist Unterring von \mathbb{C} . (2 Punkte)

(b) Für $z = a + b\omega \in \mathbb{Z}[\omega]$ sei $z^* = a - b\omega$. Dann ist die Normabbildung

$$N: \mathbb{Z}[\omega] \to \mathbb{Z}, z \mapsto zz^*$$

multiplikativ, d.h. für $z_1 z_2 \in \mathbb{Z}[\omega]$ gilt $N(z_1 z_2) = N(z_1)N(z_2)$. (2 Punkte)

- (c) Ein Element $z \in \mathbb{Z}[\omega]$ ist genau dann eine Einheit, wenn |N(z)| = 1 ist. (4 Punkte)
- (d) Der Ring $\mathbb{Z}[\sqrt{26}]$ besitzt unendlich viele Einheiten. (4 Punkte)

Aufgabe 7.4 (H04T2A2). Gegeben ist der Ring $R = \mathbb{Z} + \mathbb{Z}\sqrt{-3}$. Zeigen Sie:

- (a) ± 1 sind die einzigen Einheiten in R.
- (b) 2 ist ein irreduzibles Element in R aber kein Primelement.
- (c) R ist keine faktorieller Ring.

(6 Punkte)

Aufgabe 7.5 (H03T3A2). Sei R der Unterring des Matrizenringes $\mathbb{Q}^{2\times 2}$, der aus Matrizen $\begin{pmatrix} z & a \\ 0 & z \end{pmatrix}$ mit $z \in \mathbb{Z}$, $a \in \mathbb{Q}$ besteht.

(a) Zeigen Sie, dass jedes Primideal von R die Elemente

$$\left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array}\right) \quad \text{für } a \in \mathbb{Q}$$

enthält, und daß diese Elemente ein Ideal N von R bilden, fü das $R/N \cong \mathbb{Z}$ gilt.

(b) Bestimmen Sie alle Primideale von R.

(6 Punkte)