Cyclist-Bike-Share-Analysis

Sourabh Marne

2022-03-10

ASK PHASE

Q.1 What is the problem you are trying to solve?

Ans: Our main aim is to find marketing strategies to convert casual riders into annual members.

Q.2 How can your insights drive business decisions?

Ans: Our insights will help the marketing team increase the annual members.

PREPARE PHASE

- 1. The data is located in a kaggle dataset which is stored in csv files month by month.
- 2. The dataset contains entire population and there is no bias
- 3. The dataset ROCCCs as it is reliable, original, comprehensive, current and cited.

Loading the libraries

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5
                   v purrr
                            0.3.4
## v tibble 3.1.6
                   v dplyr
                            1.0.8
## v tidyr 1.2.0
                   v stringr 1.4.0
## v readr
           2.1.2
                   v forcats 0.5.1
## -- Conflicts ------tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
```

1. Tidyverse is used for data transformation.

2. Lubridate is used for working with dates and time efficiently.

PROCESS PHASE

Here we will prepare data for data analysis.

Reading the bikes data from all 12 months

```
df1 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202004-divvy-tripda
ta.csv")
df2 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202005-divvy-tripda
ta.csv")
df3 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202006-divvy-tripda
ta.csv")
df4 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202007-divvy-tripda
ta.csv")
df5 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202008-divvy-tripda
ta.csv")
df6 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202009-divvy-tripda
ta.csv")
df7 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202010-divvy-tripda
ta.csv")
df8 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202011-divvy-tripda
ta.csv")
df9 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202012-divvy-tripda
ta.csv")
df10 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202101-divvy-tripd
ata.csv")
df11 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202102-divvy-tripd
ata.csv")
df12 <- read.csv("C:/Users/hp/Desktop/Google Data Anlytics Capstone/CSV files/202103-divvy-tripd
ata.csv")
```

Binding all the dataframes together

```
rides <- rbind(df1,df2,df3,df4,df5,df6,df7,df8,df9,df10,df11,df12)
head(rides)
```

```
##
              ride_id rideable_type
                                              started at
                                                                    ended at
## 1 A847FADBBC638E45
                        docked bike 2020-04-26 17:45:14 2020-04-26 18:12:03
## 2 5405B80E996FF60D
                        docked bike 2020-04-17 17:08:54 2020-04-17 17:17:03
## 3 5DD24A79A4E006F4
                        docked bike 2020-04-01 17:54:13 2020-04-01 18:08:36
                        docked bike 2020-04-07 12:50:19 2020-04-07 13:02:31
## 4 2A59BBDF5CDBA725
## 5 27AD306C119C6158
                        docked bike 2020-04-18 10:22:59 2020-04-18 11:15:54
## 6 356216E875132F61
                        docked bike 2020-04-30 17:55:47 2020-04-30 18:01:11
##
                      start_station_name start_station_id
## 1
                             Eckhart Park
                                                        86
               Drake Ave & Fullerton Ave
## 2
                                                       503
                    McClurg Ct & Erie St
## 3
                                                       142
## 4
            California Ave & Division St
                                                       216
                    Rush St & Hubbard St
                                                       125
## 5
## 6 Mies van der Rohe Way & Chicago Ave
                                                       173
##
                end_station_name end_station_id start_lat start_lng end_lat
## 1 Lincoln Ave & Diversey Pkwy
                                                   41.8964
                                             152
                                                            -87.6610 41.9322
## 2
                 Kosciuszko Park
                                             499
                                                   41.9244
                                                            -87.7154 41.9306
     Indiana Ave & Roosevelt Rd
                                                   41.8945
## 3
                                             255
                                                            -87.6179 41.8679
## 4
          Wood St & Augusta Blvd
                                             657
                                                   41.9030 -87.6975 41.8992
## 5
     Sheridan Rd & Lawrence Ave
                                             323
                                                   41.8902 -87.6262 41.9695
## 6
         Streeter Dr & Grand Ave
                                              35
                                                   41.8969 -87.6217 41.8923
##
      end_lng member_casual
## 1 -87.6586
                     member
## 2 -87.7238
                     member
## 3 -87.6230
                     member
## 4 -87.6722
                     member
## 5 -87.6547
                     casual
## 6 -87.6120
                     member
```

Removing Duplicates

```
rides <- rides[!duplicated(rides$ride_id), ]
print(paste("Removed", nrow(rides) - nrow(rides), "duplicated rows"))</pre>
```

```
## [1] "Removed 0 duplicated rows"
```

Converting the "started at" and "ended at" columns from characters to Timestamps

```
rides$started_at <- lubridate::ymd_hms(rides$started_at)
rides$ended_at <- lubridate::ymd_hms(rides$ended_at)</pre>
```

Converting ride time in minutes

```
rides <- rides %>% mutate(ride_mins = as.numeric(rides$ended_at - rides$started_at) / 60)
summary(rides$ride_mins)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -29049.97 7.88 14.52 26.48 26.63 58720.03
```

Separating year and month

```
## [1] "2020 - 04 (Apr)" "2020 - 05 (May)" "2020 - 06 (Jun)" "2020 - 07 (Jul)"
## [5] "2020 - 08 (Aug)" "2020 - 09 (Sep)" "2020 - 10 (Oct)" "2020 - 11 (Nov)"
## [9] "2020 - 12 (Dec)" "2021 - 01 (Jan)" "2021 - 02 (Feb)" "2021 - 03 (Mar)"
## [13] "2021 - 04 (Apr)"
```

Extracting the week days

```
rides <- rides %>% mutate(weekday = paste(strftime(rides$ended_at, "%u"), "-", strftime(rides$en
ded_at, "%a")))
unique(rides$weekday)
```

```
## [1] "7 - Sun" "5 - Fri" "3 - Wed" "2 - Tue" "6 - Sat" "4 - Thu" "1 - Mon"
```

Extracting the ride hour

```
rides$hour <- lubridate::hour(rides$ended_at)
unique(rides$hour)</pre>
```

```
## [1] 18 17 13 11 14 10 15 16 3 12 9 8 20 19 21 23 7 22 6 1 5 0 2 4
```

ANALYZE PHASE

summary(rides)

```
##
      ride id
                        rideable_type
                                              started at
##
    Length: 3489539
                                                    :2020-04-01 00:00:30
                        Length: 3489539
                                            Min.
##
    Class :character
                        Class :character
                                            1st Ou.:2020-07-14 19:36:28
    Mode :character
                        Mode :character
##
                                            Median :2020-08-29 14:47:30
##
                                                    :2020-09-10 01:13:26
                                            Mean
##
                                            3rd Ou.:2020-10-20 18:07:35
##
                                            Max.
                                                    :2021-03-31 23:59:08
##
       ended at
                                    start station name start station id
##
##
    Min.
            :2020-04-01 00:10:45
                                    Length: 3489539
                                                        Length: 3489539
    1st Qu.:2020-07-14 20:11:10
                                    Class :character
##
                                                        Class :character
##
    Median :2020-08-29 15:18:24
                                    Mode :character
                                                        Mode :character
           :2020-09-10 01:39:55
##
    Mean
##
    3rd Ou.:2020-10-20 18:21:47
    Max.
            :2021-04-06 11:00:11
##
##
##
    end station name
                        end station id
                                              start lat
                                                               start lng
##
    Length: 3489539
                        Length: 3489539
                                            Min.
                                                    :41.64
                                                             Min.
                                                                     :-87.87
                        Class :character
                                            1st Qu.:41.88
##
    Class :character
                                                             1st Qu.:-87.66
    Mode
         :character
                        Mode
                              :character
                                            Median :41.90
                                                             Median :-87.64
##
##
                                            Mean
                                                    :41.90
                                                             Mean
                                                                     :-87.64
##
                                            3rd Qu.:41.93
                                                             3rd Qu.:-87.63
##
                                            Max.
                                                    :42.08
                                                             Max.
                                                                     :-87.52
##
##
       end lat
                        end lng
                                       member casual
                                                             ride mins
##
    Min.
            :41.54
                            :-88.07
                                       Length: 3489539
                                                                  :-29049.97
                     Min.
                                                           Min.
##
    1st Qu.:41.88
                     1st Qu.:-87.66
                                       Class :character
                                                           1st Qu.:
                                                                         7.88
##
    Median :41.90
                     Median :-87.64
                                       Mode :character
                                                           Median :
                                                                        14.52
           :41.90
##
    Mean
                     Mean
                            :-87.64
                                                           Mean
                                                                        26.48
    3rd Qu.:41.93
                     3rd Qu.:-87.63
                                                           3rd Qu.:
                                                                        26.63
##
##
    Max.
           :42.16
                     Max.
                            :-87.44
                                                           Max.
                                                                  : 58720.03
    NA's
                     NA's
##
           :4737
                            :4737
##
     year_month
                          weekday
                                                 hour
    Length: 3489539
                        Length: 3489539
                                                    : 0.00
##
                                            Min.
##
    Class :character
                        Class :character
                                            1st Qu.:12.00
##
    Mode
         :character
                        Mode :character
                                            Median :15.00
##
                                            Mean
                                                    :14.52
##
                                            3rd Qu.:18.00
##
                                                    :23.00
                                            Max.
##
```

Finding number of casuals vs number of annual members

Plotting number of casuals vs annuals

```
ggplot(rides, aes(member_casual, fill=member_casual)) + geom_bar() +
labs(x="Casuals vs Annual Members", title="Casuals vs Members Distribution")
```

Casuals vs Members Distribution

Monthly Distribution of the Data

```
## # A tibble: 13 x 6
                        count Percentage members p casual p `% Difference`
##
      year month
##
      <chr>>
                        <int>
                                    <dbl>
                                              <dbl>
                                                        <dbl>
                                                                       <dbl>
   1 2020 - 04 (Apr)
                        84744
                                 2.43
                                               72.1
                                                         27.9
                                                                       44.3
##
    2 2020 - 05 (May) 200306
                                 5.74
                                               56.6
                                                         43.4
                                                                       13.2
##
                                               54.9
    3 2020 - 06 (Jun) 342714
                                 9.82
                                                        45.1
                                                                        9.83
##
##
   4 2020 - 07 (Jul) 550894
                                15.8
                                               51.2
                                                        48.8
                                                                        2.38
                                                                        6.86
##
   5 2020 - 08 (Aug) 623009
                                17.9
                                               53.4
                                                        46.6
   6 2020 - 09 (Sep) 532975
                                               56.7
                                                        43.3
##
                                15.3
                                                                       13.4
##
    7 2020 - 10 (Oct) 388865
                                11.1
                                               62.7
                                                        37.3
                                                                       25.4
   8 2020 - 11 (Nov) 259716
                                 7.44
                                               66.1
                                                        33.9
                                                                       32.2
##
   9 2020 - 12 (Dec) 131364
                                               77.1
                                                         22.9
                                                                       54.2
##
                                 3.76
## 10 2021 - 01 (Jan)
                        96834
                                 2.77
                                               81.3
                                                        18.7
                                                                       62.6
## 11 2021 - 02 (Feb)
                       49622
                                 1.42
                                               79.6
                                                         20.4
                                                                       59.2
## 12 2021 - 03 (Mar) 228420
                                                                       26.4
                                 6.55
                                               63.2
                                                         36.8
## 13 2021 - 04 (Apr)
                           76
                                                         36.8
                                                                       26.3
                                 0.00218
                                               63.2
```

```
rides %>%
  ggplot(aes(year_month, fill=member_casual)) +
  geom_bar() +
  labs(x="Month", title="Chart 02 - Distribution by month") +
  coord_flip()
```


Insights:

- 1. There are more riders in 2020.
- 2. August has the biggest number of data points(18% of the dataset).
- 3. We have more members than riders in every month.

Let us observe how the temperature affects number of riders

```
data.frame(month, chicago_mean_temp) %>%
  ggplot(aes(x=month, y=chicago_mean_temp)) +
  labs(x="Month", y="Mean temperature", title="Mean temperature for Chicago (1991-2020)") + geom _col()
```

Mean temperature for Chicago (1991-2020)

- 1. As we can see the temperature highly affects the number of riders in every month
- 2. The colder the weather, the lesser the bike riders

Week Day Distribution

```
## # A tibble: 7 x 6
                      `%` members_p casual_p `% Difference`
##
     weekday count
                              <dbl>
     <chr>>
              <int> <dbl>
                                        <dbl>
                                                       <dbl>
##
## 1 1 - Mon 421946 12.1
                                63.6
                                         36.4
                                                    27.2
                                         33.9
## 2 2 - Tue 430569 12.3
                                66.1
                                                    32.3
## 3 3 - Wed 463746 13.3
                                65.9
                                         34.1
                                                    31.8
## 4 4 - Thu 465302 13.3
                                64.6
                                         35.4
                                                    29.1
## 5 5 - Fri 509224 14.6
                                60.1
                                         39.9
                                                    20.1
## 6 6 - Sat 660251 18.9
                               49.2
                                         50.8
                                                    -1.58
## 7 7 - Sun 538501 15.4
                                50.0
                                         50.0
                                                     0.00241
```

```
ggplot(rides, aes(weekday, fill=member_casual)) +
  geom_bar() +
  labs(x="Weekday", title="Distribution by weekday") +
  coord_flip()
```

Distribution by weekday

Insights:

- 1. The highest volume of riders is on weekends.
- 2. Saturday being the highest.
- 3. More casual riders are seen on weekends.

Hourly Distribution

```
## # A tibble: 24 x 6
                     `%` members_p casual_p `% Difference`
       hour count
##
##
      <int>
             <int> <dbl>
                             <dbl>
                                       <dbl>
                                                      <dbl>
##
   1
          0 41924 1.20
                              33.4
                                        66.6
                                                      -33.2
   2
          1 26372 0.756
                              29.5
                                        70.5
                                                      -41.1
##
##
          2 15386 0.441
                              27.5
                                        72.5
                                                      -45.1
##
   4
          3 9038 0.259
                              27.6
                                       72.4
                                                      -44.7
##
   5
          4 7391 0.212
                              41.3
                                        58.7
                                                      -17.5
   6
          5 17987 0.515
                              75.0
                                        25.0
                                                       50.0
##
   7
          6 56915 1.63
                              81.5
                                                       63.0
##
                                        18.5
##
   8
          7 106045 3.04
                              81.6
                                        18.4
                                                       63.2
##
   9
          8 133253 3.82
                              78.4
                                        21.6
                                                       56.8
          9 123699 3.54
                              72.0
                                        28.0
                                                       44.0
## 10
## # ... with 14 more rows
```

```
rides %>%
  ggplot(aes(hour, fill=member_casual)) +
  labs(x="Hour of the day", title="Hourly Distribution of the day") +geom_bar()
```

Hourly Distribution of the day

Insights:

- 1. There are more bikers in the afternoon.
- 2. There are more members in the morning from 5 am to 11 am.
- 3. There are more casuals in the afternoon from 11 pm to 4 am.

Weekends vs Mid Week Distribution

```
rides %>%
  mutate(type_of_weekday = ifelse(weekday == '6 - Sat' | weekday == '7 - Sun', 'weekend', 'midwe
ek')) %>%
  ggplot(aes(hour, fill=member_casual)) +
  labs(x="Hour of the day", title="Distribution by hour of the day in the midweek") +
  geom_bar() +
  facet_wrap(~ type_of_weekday)
```

Distribution by hour of the day in the midweek

Insights:

- 1. Weekends have mre casuals from 11 am to 6 pm.
- 2. There is huge rise in weekdays from 5 pm to 6 pm, then it drops.
- 3. On weekends there is smooth flow which rises in the afternoon.

Type of Rideable bikes

```
## # A tibble: 3 x 6
                              `%` members_p casual_p `% Difference`
     rideable_type
##
                      count
##
     <chr>>
                      <int> <dbl>
                                       <dbl>
                                                <dbl>
                                                                <dbl>
## 1 classic bike
                     319873 9.17
                                       77.9
                                                 22.1
                                                                 55.7
## 2 docked_bike
                   2558260 73.3
                                       56.4
                                                 43.6
                                                                 12.7
## 3 electric bike 611406 17.5
                                       60.3
                                                 39.7
                                                                 20.5
```

```
ggplot(rides, aes(rideable_type, fill=member_casual)) +
  labs(x="Rideable type", title="Distribution of types of bikes") + geom_bar() + coord_flip()
```

Distribution of types of bikes

Insights:

- 1. Docked bikes have highest volume of riders.
- 2. Members prefer the classic and electric bikes.

SHARE PHASE

Key Insights:

- 1. Members have the biggest proportion of the dataset than casuals.
- 2. There are more riders at the last semester of 2020. August recorded the biggest count of data points which was 18% of the dataset.
- 3. Temperature heavily influences the number of rides in each month.
- 4. Weekends have highest number of riders. There are more riders in the afternoon.

Members vs Casual Riders:

- 1. Members have highest volume of data, except for saturdays.
- 2. Weekends have more casuals than members.
- 3. There are more members in the morning from 5am to 11 am.
- 4. There are more casuals from 11pm to 4am.
- 5. There is an increase from 6am to 8am on weekdays for members. Next big rise is from 5pm to 6pm.
- 6. Members prefer classic bikes.
- 7. Casuals have more riding time than members.

Conclusion:

- 1. Bikes are used as an recreational activity on weekends.
- 2. Temperature affects the number of riders.
- 3. Members use bikes for daily activities like going to work.

ACT PHASE

Now the marketing teams can use these insights for increasing the number of members and converting casuals to annual members.