DSC630

Xin Tang

Week 4 ALS dataset classification

Data description and Goal

This datasets contains the anonymized data of patients with ALS (amyotrophic lateral sclerosis), The goal is to use clustering skills to classify data and reveal patterns.

```
# import data and do basic exam
        import numpy as np
        import pandas as pd
        # Loading the data
        df = pd.read_csv("als_data.csv")
        # Check data load correctly
        print(df.head(2))
           ID Age_mean Albumin_max Albumin_median Albumin_min Albumin_range \
                                                             38.0
                     65
                                57.0
                                                40.5
                                                                        0.066202
           1
        1
                     48
                                45.0
                                                41.0
                                                             39.0
                                                                        0.010453
           ALSFRS slope ALSFRS Total max ALSFRS Total median ALSFRS Total min ... \
              -0.965608
        0
                                                          28.0
                                                                              22 ...
                                       30
        1
              -0.921717
                                       37
                                                          33.0
                                                                              21 ...
           Sodium_min Sodium_range SubjectID trunk_max trunk_median trunk_min \
                143.0
                           0.017422
        0
                                           533
                                                        8
                                                                    7.0
                                                                                 7
                           0.010453
                                           649
                                                        8
                                                                    7.0
                                                                                 5
        1
                136.0
           trunk_range Urine.Ph_max Urine.Ph_median
                                                       Urine.Ph min
              0.002646
                                 6.0
                                                  6.0
                                                                6.0
        1
              0.005386
                                 7.0
                                                  5.0
                                                                5.0
        [2 rows x 101 columns]
In [2]: ## Check unique values and validate if data is clean
        cols = df.columns
```

```
def Unique_Values():
             for i in np.arange(0,len(cols)):
                 print('There are {} of unique values in {} column out of {}'.format(df[cols[i]].nunique(), cols[i], len(df)))
         #print(Unique_Values())
         print('variables with NA values', df.isna().sum())
         variables with NA values ID
                                                     0
         Age_mean
         Albumin_max
                            0
         Albumin_median
                            0
         Albumin_min
                            0
         trunk_min
         trunk_range
         Urine.Ph_max
         Urine.Ph_median
                            0
         Urine.Ph_min
         Length: 101, dtype: int64
In [19]: # There are 2 columns are not relevant: 'ID' and 'SubjectID', remove them
         #df.drop(columns = ['SubjectID'])
         set = df.drop(['ID'], axis=1)
         set = set.drop(['SubjectID'], axis=1)
         print(set.head(2))
```

```
Age mean Albumin max Albumin median Albumin min Albumin range \
                             57.0
         0
                  65
                                             40.5
                                                          38.0
                                                                     0.066202
                             45.0
                                             41.0
         1
                  48
                                                          39.0
                                                                     0.010453
            ALSFRS_slope ALSFRS_Total_max ALSFRS_Total_median ALSFRS_Total_min \
               -0.965608
                                        30
                                                           28.0
                                                                               22
                                                           33.0
         1
               -0.921717
                                        37
                                                                               21
            ALSFRS_Total_range ... Sodium_median Sodium_min Sodium_range \
         0
                      0.021164 ...
                                             145.5
                                                         143.0
                                                                    0.017422
                                             138.0
         1
                      0.028725 ...
                                                         136.0
                                                                    0.010453
            trunk max trunk median trunk min trunk range Urine.Ph max \
                                                   0.002646
         0
                    8
                                7.0
                                             7
                                                                      6.0
         1
                    8
                                7.0
                                             5
                                                   0.005386
                                                                      7.0
            Urine.Ph_median Urine.Ph_min
         0
                        6.0
                                      6.0
                        5.0
         1
                                      5.0
         [2 rows x 99 columns]
In [41]: # normalization using standard scaler
         from sklearn.preprocessing import StandardScaler
         X = set.iloc[:].values
         sc = StandardScaler()
         newset =sc.fit transform(X)
        # Create a plot of the cluster silhouette score versus the number of clusters in a K-means cluster.
In [42]:
         from sklearn.cluster import KMeans
         from sklearn.metrics import silhouette_score
         #Suspend the warning
         import warnings
         warnings.filterwarnings('ignore')
         #create empyty list to hold coefficients for each K
         K coeff = []
         # calculate the coefficients for K=2 to 15
         for k in range(2,15):
             kmeans = KMeans(n_clusters =k)
             kmeans.fit(newset)
```

```
score = silhouette_score(newset, kmeans.labels_)
K_coeff.append(score)

In [43]: # Visualize the K and its coefficient
    import matplotlib.pyplot as plt

plt.style.use('fivethirtyeight')
plt.plot(range(2,15), K_coeff)

plt.xlabel("Number of Clusters")
plt.ylabel("Coefficients")
plt.title("K cluster coefficients")
plt.show()
```


looks 2 or 5 clusters have the best coefficient

```
In [49]: # Fit a K-means model to the data with the optimal number of clusters chosen, which is 2.
    kmeans = KMeans(n_clusters = 2, init = 'k-means++', random_state = 42)
    y_kmeans = kmeans.fit_predict(X)

Out[49]: array([1, 0, 1])

In [53]: # Fit a PCA transformation with two features to the scaled data.
    from sklearn.decomposition import PCA
    pca =PCA(n_components=2).fit_transform(X)
```

```
# Add the two components into data frame
set['PCA1'] = pca[:, 0]
set['PCA2'] = pca[:, 1]

In [58]: # Make a scatterplot of the PCA transformed data coloring each point by its cluster value.
import seaborn as sns

#sns.set(rc={'figure.figzie':(12,8)})
sns.scatterplot(data=set, x="PCA1", y="PCA2", hue = y_kmeans )

Out[58]: <Axes: xlabel='PCA1', ylabel='PCA2'>
```


Conclusion:

1. I has no knowledge on symptoms of a ALS so can not tell which variables (or symptoms) are more important.

- 2. This is a unsupervised learning, or classification
- 3. My analysis found it is best to categorized them into 2 groups, the 2 feature PCA also did a good job to classify the data.

Resource: The dataset is provided by Bellevue university for use in DSC630 class.

In []: