In [2]:

```
import pandas as pd
import numpy as np
import matplotlib as pl
import seaborn as sns
```

In [3]:

df = pd.read_csv("/home/anaconda_user/Downloads/Dataset/iris.csv")
df

Out[3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa
10	5.4	3.7	1.5	0.2	setosa
11	4.8	3.4	1.6	0.2	setosa
12	4.8	3.0	1.4	0.1	setosa
13	4.3	3.0	1.1	0.1	setosa
14	5.8	4.0	1.2	0.2	setosa
15	5.7	4.4	1.5	0.4	setosa
16	5.4	3.9	1.3	0.4	setosa
17	5.1	3.5	1.4	0.3	setosa
18	5.7	3.8	1.7	0.3	setosa
19	5.1	3.8	1.5	0.3	setosa
20	5.4	3.4	1.7	0.2	setosa
21	5.1	3.7	1.5	0.4	setosa
22	4.6	3.6	1.0	0.2	setosa
23	5.1	3.3	1.7	0.5	setosa
24	4.8	3.4	1.9	0.2	setosa
25	5.0	3.0	1.6	0.2	setosa
26	5.0	3.4	1.6	0.4	setosa
27	5.2	3.5	1.5	0.2	setosa
28	5.2	3.4	1.4	0.2	setosa
29	4.7	3.2	1.6	0.2	setosa
120	6.9	3.2	5.7	2.3	virginica
121	5.6	2.8	4.9	2.0	virginica
122	7.7	2.8	6.7	2.0	virginica
123	6.3	2.7	4.9	1.8	virginica
124	6.7	3.3	5.7	2.1	virginica
125	7.2	3.2	6.0	1.8	virginica
126	6.2	2.8	4.8	1.8	virginica
127	6.1	3.0	4.9	1.8	virginica
128	6.4	2.8	5.6	2.1	virginica
129	7.2	3.0	5.8	1.6	virginica
130	7.4	2.8	6.1	1.9	virginica
131	7.9	3.8	6.4	2.0	virginica

132	6.4	2.8	5.6	2.2	virginica
133	6.3	2.8	5.1	1.5	virginica
134	6.1	2.6	5.6	1.4	virginica
135	7.7	3.0	6.1	2.3	virginica
136	6.3	3.4	5.6	2.4	virginica
137	6.4	3.1	5.5	1.8	virginica
138	6.0	3.0	4.8	1.8	virginica
139	6.9	3.1	5.4	2.1	virginica
140	6.7	3.1	5.6	2.4	virginica
141	6.9	3.1	5.1	2.3	virginica
142	5.8	2.7	5.1	1.9	virginica
143	6.8	3.2	5.9	2.3	virginica
144	6.7	3.3	5.7	2.5	virginica
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [4]:
```

```
df.shape
```

Out[4]:

(150, 5)

In [5]:

```
df.columns
```

Out[5]:

In [6]:

```
df.dtypes
```

Out[6]:

sepal_length float64
sepal_width float64
petal_length float64
petal_width float64
species object
dtype: object

In [7]:

```
df.describe()
```

Out[7]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [9]:

df.isnull().sum()

memory usage: 5.9+ KB

Out[9]:

sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

In [10]:

X = df.iloc[:,[0,1,2,3]]
X

Out[10]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2
15	5.7	4.4	1.5	0.4
16	5.4	3.9	1.3	0.4
17	5.1	3.5	1.4	0.3
18	5.7	3.8	1.7	0.3
19	5.1	3.8	1.5	0.3
20	5.4	3.4	1.7	0.2
21	5.1	3.7	1.5	0.4
22	4.6	3.6	1.0	0.2
23	5.1	3.3	1.7	0.5
24	4.8	3.4	1.9	0.2
25	5.0	3.0	1.6	0.2
26	5.0	3.4	1.6	0.4
27	5.2	3.5	1.5	0.2
28	5.2	3.4	1.4	0.2
29	4.7	3.2	1.6	0.2

120	6.9	3.2	5.7	2.3
121	5.6	2.8	4.9	2.0
122	7.7	2.8	6.7	2.0
123	6.3	2.7	4.9	1.8
124	6.7	3.3	5.7	2.1
125	7.2	3.2	6.0	1.8
126	6.2	2.8	4.8	1.8
127	6.1	3.0	4.9	1.8
128	6.4	2.8	5.6	2.1
129	7.2	3.0	5.8	1.6
130	7.4	2.8	6.1	1.9
131	7.9	3.8	6.4	2.0
132	6.4	2.8	5.6	2.2
133	6.3	2.8	5.1	1.5
134	6.1	2.6	5.6	1.4
135	7.7	3.0	6.1	2.3
136	6.3	3.4	5.6	2.4
137	6.4	3.1	5.5	1.8
138	6.0	3.0	4.8	1.8
139	6.9	3.1	5.4	2.1
140	6.7	3.1	5.6	2.4
141	6.9	3.1	5.1	2.3
142	5.8	2.7	5.1	1.9
143	6.8	3.2	5.9	2.3
144	6.7	3.3	5.7	2.5
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [11]:

```
Y = df.iloc[:,4]
```

```
Out[11]:
0
          setosa
1
          setosa
2
          setosa
3
          setosa
4
          setosa
5
          setosa
6
          setosa
7
          setosa
8
          setosa
9
          setosa
10
          setosa
11
          setosa
12
          setosa
13
          setosa
14
          setosa
15
          setosa
16
          setosa
17
          setosa
18
          setosa
19
          setosa
20
          setosa
21
          setosa
22
          setosa
23
          setosa
24
          setosa
25
          setosa
26
          setosa
27
          setosa
28
          setosa
29
          setosa
120
       virginica
       virginica
121
122
       virginica
123
       virginica
124
       virginica
125
       virginica
126
       virginica
       virginica
127
128
       virginica
129
       virginica
130
       virginica
131
       virginica
       virginica
132
133
       virginica
134
       virginica
135
       virginica
136
       virginica
137
       virginica
138
       virginica
139
       virginica
140
       virginica
141
       virginica
142
       virginica
143
       virginica
144
       virginica
145
       virginica
146
       virginica
147
       virginica
148
       virginica
149
       virginica
Name: species, Length: 150, dtype: object
In [12]:
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
In [13]:
X_train , X_test, Y_train , Y_test = train_test_split(X,Y,test_size = 0.25)
In [14]:
```

from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()

```
In [15]:
X_train = sc_X.fit_transform(X_train)
X_{\text{test}} = sc_{X}.fit_{\text{transform}}(X_{\text{test}})
In [16]:
Classifier = GaussianNB()
Classifier.fit(X_train, Y_train)
Out[16]:
GaussianNB(priors=None)
In [17]:
Y pred = Classifier.predict(X test)
In [19]:
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(Y_test, Y_pred)*100
accuracy
Out[19]:
92.10526315789474
In [18]:
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_test,Y_pred)
In [22]:
cm
Out[22]:
In [23]:
TP = cm[0,[0]]
print(TP)
[15]
In [36]:
TN = cm[[[1],[2]],[1,2]]
print(TN)
[[ 9 2]
 [ 0 11]]
In [26]:
FP = cm[[1,2],0]
print(FP)
[0 0]
In [25]:
FN = cm[0,[1,2]]
print(FN)
[1 0]
In [37]:
accuracy = (TP+TN)/(TP+TN+FP+FN)
print(accuracy)
[[0.96 1.
 [0.9375 1.
               ]]
```

```
In [38]:
error_rate =(FP+FN)/(TP+TN+FP+FN)
print(error_rate)
        0.
[[0.04
[0.0625 0.
               ]]
In [39]:
precision = TP/(TP+FP)
print(precision)
[1. 1.]
In [40]:
Recall = (TP/(TP+FN))
print(Recall)
[0.9375 1.
             ]
In [42]:
specificity = (TN/(TN+FP))
print(specificity)
[[ 1. 1.]
[nan 1.]]
/home/anaconda_user/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: i
nvalid value encountered in true divide
  """Entry point for launching an IPython kernel.
In [48]:
data = [[5.4,3.9,1.7,0.4]]
spec = Classifier.predict(data)
spec
Out[48]:
array(['virginica'], dtype='<U10')</pre>
In [45]:
import pickle
In [46]:
pickle.dump(Classifier, open('Classifier.pkl','wb'))
In [49]:
pickled_model = pickle.load(open('Classifier.pkl','rb'))
data = [[5.4,3.9,1.7,0.4]]
pickled model.predict(data)
Out[49]:
```

array(['virginica'], dtype='<U10')</pre>