Principal of Mathematical Induction (PMI) is equal to (nx(n+i))/2 1) Base Case -> It is the Smallest input value for which we already Know the am: Assumption > dets assume fromulae werk correctly for <u>m=K</u> 3) Seifwork -> Using the fact that formula works far n=k, we will try to proove that formula works for n=K+1 also

JOIN THE DARKSIDE

i.e. Sum of first K natural no. is equal to Kr(K+1) Selfwork , Product for n=141 Sum of first K+1 natural 10?? 4 Sun of first Knahmen. $=\frac{K\times(K+1)}{2}+(K+1)=)(K+1)\left[\frac{K}{2}+1\right]\rightarrow(K+1)(K+2)$

JOIN THE DARKSIDE

A child couldn't sleep, so her mother told a story about a little frog, who couldn't sleep, so the frog's mother told a story about a little bear, who couldn't sleep, so the bear's mother told a story about a little weasel ...who fell asleep.

...and the little bear fell asleep;

...and the little frog fell asleep;

...and the child fell asleep.

Recursion

-> It is a programming of math concept.

-> What is Recursion ??

Lor biggon 2006 lem.

Recension is a technique vous which me Solve bigger problems by calculating ans of Smaller Subfroblems. We generally denote the bigger foroblem as a feme, & some arguments, & then call the Same funci with diff. arguments denoting Smaller Subproblems. So we get the ars of Smaller Subproblem Se build the ans

Recossion is funct cally itself.

We to yo solve legger problems usery and of smaller

Subproblems

$$51 = 5x4x3x2x1$$

$$71 = 7x6x5x4x3x2x1$$

$$11 = 1$$

$$\eta \mid \rightarrow \eta \times (\eta - 1) \times (\eta - 2) \times (\eta - 3) \cdots - \alpha \times \gamma$$

De Cremen a value n, calculate 1! recursively Let's say f is a function which takes a value n as an argument & Can Calculate 1! $\int_{\mathcal{I}} \left(n \right) = \int_{\mathcal{I}} \left(n - 1 \right)$ if ('n==1) +1) Conde in plant

- 5 x 4! (K+1)!) ?? $51 = 5 \times 4 \times 3 \times 2 \times 1$ 41 = 4x 3 x 2x 1 31 = 3 x 2 x | # Base Case \Rightarrow for n==1 we already know that f(n) well be 1. # Assurption assume func' works correctly for some value $f(k) \rightarrow \mathcal{L}$ # Selfwark (n:10+1) > (K+1) (f(K)

(K+1)! » (K+1) r (k) r (k-1) ~---- 3x2+1 Cur alrealy ken (K1)) » (K1) x (K)!

f (s)

The mogie come with func!

	run			
		195	proless	
		30		
(od. 15	ran			RAM 7169h
	7001			
frogram in	2 Runy	state is	Poocers.	

Call Stack function fen () h y (0,50.1; 1/g (abc); function gen () fun (); Stack 9un(); James G In Stack frame you have Context abt. funct. (line 10, variables etc); Other areas whenever me call afunction from anywhere in the code, it adds a new entry in the call Stack called us Stack form Stacks > limen dala structur (mental model to store data in defferent fashion) in which we can add/ remove / get data from the hop any. x ~ X _ Scoled

Crimen a value n (tre inteper), calculate the ne fibonacci, recorsinely. ans -> 5 3, 5, 8, 13, Lm Jm Jm

Let's say me have a function f, that takes an argument n, & calculates in fibf(n) = f(n-i) (+) f(n-i)if (n:=0//n==7) refor nj assume ruf get this J value Cooccily Selfwikh from f.

Base Case if (n==i) return 0;

if (n==0) return 0; # assumption, \rightarrow Let's assume that the function works correctly for f(n-1) and f(n-2) $f(n-1) \longrightarrow (n-1)^{rel} fib$ f(n-2) -3 (1-2) the fib # Selfwork > add f(n-2)

