La segmentation consiste à:

- Regrouper les pixels de l'image qui partagent une même propriété pour former des régions homogènes;
- Répartir l'ensemble de pixels de l'image en différents groupes;
- découper l'image en région. Une région est caractérisée par contours et par homogénéité (par exemple, même couleur);
- partitionner une image en un ensemble de régions connexes et disjointes;
- la recherche de zones de l'image possédant des attributs communs, comme la luminosité, la couleur ou plus rarement la texture.

Remarque: A chaque pixel d'une même région, on affecte la même valeur, qu'on appelle label ou étiquette.

A quoi ça sert?

- extraire des caractéristiques de forme, de position, de taille,...
- reconnaissance d'objets;
- Détection de zones d'intérêt;
- Recherche dans une base d'images, les images ressemblantes à une image initiale.

La segmentation est basée sur :

- Approche région: recherche des pixels semblables régions homogènes;
- Approche contours: recherche de pixels dissemblables \(\boxtriangleq\) contours entre les zones hétérogènes

Méthodes basées sur région

La segmentation en régions d'une image I, selon un prédicat P, est une partition $S = \{R_1, R_2, \dots, R_N\}$ tel que :

- $I = \bigcup_i R_i$; $i \in [1, N]$; % tout pixel appartient à une région.
- $R_i \cap R_j = 0$; $\forall i, j \in [1, N]$; % aucun pixel n'appartient à plus d'une région.
- R_i est connexe, $\forall i \in [1, N]$; % la proximité spatiale.
- $P(R_i)$ est vrai $\forall i \in [1, N]$; % cohérence de caractéristique de région.
- $P(R_i \cup R_j)$ est faux $\forall i \neq j$. % les régions sont disjointes.

Remarque: le prédicat P peut être : l'intensité de pixels, la valeur moyenne de l'intensité, la variance des intensités des pixels

Méthodes par seuillage

L'idée de ces méthodes est la segmentation de l'histogramme, isoler des pics entre deux vallées, pour définir les classes sur l'histogramme.

Le principe de ces méthodes

- Localisation sur l'histogramme d'un mode isolé;
- Détection de la zone correspondante par seuillage;

- Simple;
- Elles ne tiennent pas compte de la position des pixels;

Localisation d'un mode entre deux vallées

Image originale

image segmentée

Méthodes par classification

Elles supposent que chaque région forme un nuage de pixels dans l'espace de caractéristiques. Donc, l'idée est de diviser les pixels en K classes.

Le principe de la méthode K-means (la plus utilisée)

- Initialiser K centres de classes qui correspondent aux nombre de régions;
- Répéter jusqu'à convergence:
 - Affecter chaque pixel à la classe dont le centre leur est le plus proche;
 - Calculer les nouveaux centres de chaque classe;

Méthode par division et fusion de région

Elle consiste à diviser l'image en régions homogènes et regrouper ensuite les régions voisines homogènes.

Principe de la méthode

- Étape de division : diviser l'image de manière récursive en régions de tailles identiques lorsqu'un critère d'homogénéité n'est satisfait.
- Étape de fusion : après division, le regroupement de régions adjacentes homogènes semble nécessaire.

Division par Quad-tree

- la région initiale est l'image entière;
- Diviser la région de manière successive, en 4 régions carrées, tant que un critère d'd'homogénéité n'est pas satisfait.

Fusion des régions homogènes

- le point de départ est la division de l'image en régions homogènes;
- Fusionner tout couple de régions adjacentes qui vérifie un même critère d'homogénéité.

Image résultante après division

Image segmentée après fusion

Image originale

après division

après fusion

Image originale

Image segmentée

Remarque : la géométrie de découpage a une grande influence sur le résultat de la segmentation, la division en quad-tree fait apparaître des régions carrées.

Méthode par croissance de région

Elle fondée sur l'affectation de pixels voisins à une région en maintenant le prédicat d'homogénéité satisfait.

Principe de la méthode

- Commencer à partir d'un point germe (un pixel ou d'un groupe de pixels connexes);
- Étendre le germe en ajoutant les pixels du voisinage satisfaisant le critère d'homogénéité;

Image originale

Image segmentée

Méthodes basées sur les contours

L'idée est de rechercher dans l'image les contours afin de séparer les différentes régions.

Principe de la méthode

- Utilisation des méthodes de détection de contours (le gradient ou le laplacien de l'image.
- Utilisation des contours actifs;

Image originale

image segmentée

- Toutes les méthodes qui ont été présentées font une partition de l'image en régions.
- Qu'est ce qu'une bonne segmentation?
- Évaluer le résultat d'une segmentation n'est pas facile, il dépend de l'application, et de ce que l'on veut obtenir.
- Dans toutes les méthodes il y a des paramètres à fixer:
 - Seuil;
 - Critère;
 - Nombre de classes.

Les approches basées sur le seuillage / classification ne tiennent pas en compte la position spatiale des pixels et le nombre de classes doit être fixé;

Les approches de division&fusion et croissance de région prennent en compte la répartition spatiale des pixels.

Méthode	Avantages	Inconvénients
Division et fusion	méthode à la fois globale (lors du partage) et locale(lors de la fusion). Prend compte de l'information spatiale et l'information de similarité	découpage en régions moins fidèle à l'image originale.
Croissance de région	implémentation assez simple et assez rapide. Prend compte de l'information spatiale et l'information de similarité	influence du nombre et d'ordre de prise en compte de germes, choix critiques des valeurs de seuils.
Classification	Simple mais couteuse en temps Prend en compte seulement l'information de similarité	Nécessite de connaître le nombre de classes, sensible à l'initialisation.
Seuillage	simple et rapide Prend en compte seulement l'information de similarité	il faut connaître le nombre de classes, choix des seuils, pas d'information de connexité.
Contours (frontières)	Prend compte de l'information spatiale et l'information de similarité	Sensible au bruit, les contours détectés ne forment pas toujours des frontières fermées