Relazione sulle attività di configurazione, attacco SSH e FTP in Kali Linux

Introduzione

L'obiettivo di questo esperimento è stato quello di testare la sicurezza di un sistema Kali Linux simulando un attacco di forza bruta su due protocolli di autenticazione: **SSH e FTP**. L'analisi è stata suddivisa in diverse fasi:

- Creazione di un utente standard su Kali Linux e attivazione del servizio SSH.
- 2. **Utilizzo di Hydra** per verificare la vulnerabilità delle credenziali SSH tramite un attacco brute-force.
- 3. **Utilizzo di wordlist per aumentare l'efficacia dell'attacco**, anziché provare una singola combinazione di username e password.
- 4. Estensione del test al servizio FTP, replicando lo stesso metodo.

L'installazione di alcuni strumenti, come Hydra e SecLists, è stata necessaria per eseguire le operazioni, ma non è stata un obiettivo in sé, bensì un mezzo per testare la robustezza del sistema.

1. Configurazione dell'utente e del servizio SSH

Il primo passo è stato creare un nuovo utente sul sistema Kali Linux con il comando:

```
sudo adduser test_user
```

Dopo aver specificato una password (**testpass**), il sistema ha chiesto di inserire altre informazioni come nome completo, stanza e numero di telefono, ma sono state lasciate vuote.

Successivamente, è stato avviato il servizio SSH con:

```
sudo service ssh start
```

Questa operazione ha reso disponibile l'accesso remoto tramite il protocollo SSH.

A questo punto, è stato tentato l'accesso alla macchina remota:

```
ssh test_user@192.168.50.100
```

Dopo aver accettato il fingerprint del server, la connessione è avvenuta con successo. Questo dimostra che **SSH era correttamente configurato e operativo**.

Un tentativo di accedere al file di configurazione SSH (/etc/ssh/sshd_config) ha generato un errore di **permission denied**, confermando che l'utente test_user non disponeva dei privilegi di amministratore.

2. Verifica della sicurezza di SSH tramite attacco brute-force

Per testare la resistenza dell'autenticazione SSH, è stato deciso di simulare un attacco di forza bruta con Hydra, un tool open-source usato nel penetration testing.

Installazione di Hydra

Per eseguire l'attacco, si è verificato che Hydra fosse installato:

```
sudo apt install hydra
```

Il sistema ha confermato che la versione più recente (9.5) era già presente.

Attacco iniziale con credenziali singole

Per testare se l'utente test_user fosse vulnerabile, è stato eseguito il comando:

```
hydra -l test_user -p testpass 192.168.50.100 -t 4 ssh
```

- -1 test_user: specifica il nome utente da provare.
- -p testpass: specifica la password da testare.
- 192.168.50.100: IP della macchina bersaglio.
- -t 4: esegue fino a 4 tentativi in parallelo.
- ssh: indica che l'attacco è rivolto al servizio SSH.

Il test ha confermato che l'autenticazione era vulnerabile, poiché Hydra ha individuato correttamente la combinazione test_user:testpass.

3. Utilizzo di wordlist per simulare un attacco più realistico

Dopo aver verificato che il sistema fosse vulnerabile a credenziali deboli, si è passati a un approccio più strutturato, utilizzando **liste di username e password** invece di una singola combinazione.

Inizialmente, il comando:

```
hydra -L username_list.txt -P password_list.txt 192.168.50.100 ssh -V
```

ha restituito un errore perché i file **username_list.txt** e **password_list.txt** non esistevano.

Per risolvere, sono stati creati manualmente:

```
echo "test_user" > username_list.txt
echo "testpass" > password_list.txt
```

Dopo aver verificato il contenuto con cat, l'attacco è stato rilanciato con:

```
hydra -L username_list.txt -P password_list.txt 192.168.50.100 ssh -V
```

Questa volta, l'attacco ha avuto successo, confermando che l'uso di wordlist può essere estremamente efficace nel crackare credenziali deboli.

4. Estensione dell'attacco al servizio FTP

Dopo aver dimostrato la vulnerabilità dell'accesso SSH, si è deciso di **testare anche FTP**, un protocollo spesso configurato con password deboli.

L'attacco è stato eseguito con:

```
hydra -L username_list.txt -P password_list.txt 192.168.50.100
-t 4 ftp -V
```

Risultato: Anche in questo caso, il tool ha trovato rapidamente la combinazione test_user:testpass, dimostrando che l'uso della stessa password su più servizi è una **grave vulnerabilità**.

5. Installazione di SecLists per migliorare i test

Per aumentare l'efficacia degli attacchi, è stato installato **SecLists**, una raccolta di **wordlist avanzate** utili per penetration testing:

```
sudo apt install seclists
```

Il download di circa **533 MB di dati** ha reso disponibile un'ampia gamma di credenziali predefinite, che possono essere usate per testare la sicurezza dei sistemi.

Conclusioni e contromisure

Questa serie di test ha dimostrato l'importanza di **adottare buone pratiche di sicurezza** per prevenire attacchi di forza bruta.

Le password semplici sono facilmente attaccabili:

- test_user:testpass è stato scoperto in pochi secondi.
- L'uso di password uniche e complesse è fondamentale.

Non usare le stesse credenziali su più servizi:

- SSH e FTP avevano la stessa password, facilitando il compromesso di entrambi.
- Ogni servizio dovrebbe avere credenziali **separate** e preferibilmente un'autenticazione più sicura.

Abilitare protezioni anti-brute-force come:

- Limitazione dell'accesso SSH solo da IP autorizzati.
- Autenticazione a chiave pubblica invece di password.

Utilizzare SecLists per migliorare i test di sicurezza:

- Wordlist avanzate permettono di individuare facilmente password comuni.
- È importante testare le configurazioni prima che lo facciano gli attaccanti.

Conclusione

L'esperimento ha evidenziato quanto sia facile compromettere un sistema con password deboli, e come strumenti come Hydra possano essere usati per identificare vulnerabilità in un ambiente di penetration testing etico.

La sicurezza non è solo una questione di configurazione, ma anche di buone pratiche nella gestione delle credenziali.

Se il test fosse stato eseguito su un'infrastruttura reale senza protezioni, l'intero sistema sarebbe stato a rischio in pochi minuti.

