Definitionen für Espresso:

Ein <u>Doppelbit</u> ist ein Tupel aus 2 Bits und kann folgende Werte annehmen:

00 : **Inv** (= Invalid)

01 : **Zero** 10 : **One**

11 : **DC** (= Don't Care)

Sei f eine Funktion von n Variablen, dann ist ein <u>Cube</u> C_f von f ein Tupel aus n Doppelbits, von welchen keines **Inv** sein darf.

Eine Menge S aus Cubes heißt Set. $S_1 \circ S_2$ bedeutet hier die Konkatenation zweier Sets.

Eine Belegung ordnet jeder Eingangsvariable einen Wert aus {**Zero**, **One**} zu. Eine Belegung einer Funktion f von n Variablen ist folglich durch ein Tupel B_f aus n Doppelbits, die entweder **Zero** oder **One** sein dürfen, vollständig spezifiziert.

Interpretation: Ein Cube C_f beschreibt/spezifiziert eine "rechteckige" Teilmenge M aus der Menge aller Belegungen von f geschrieben $M(C_f)$. Spezifiziere C_1 eine Menge M_1 und C_2 eine Menge M_2 , dann spezifiziert das Set $S = C_1 \circ C_2$ die Menge $M_1 \cup M_2$ oder anders geschrieben: $M(C_1 \circ C_2) = M(C_1) \cup M(C_2)$

Überdeckung (Coverage): Spezifiziere S_1 die Menge M_1 und S_2 die Menge M_2 , dann gilt S_1 covers S_2 , wenn $M_2 \subseteq M_1$: S_1 covers $S_2 \Rightarrow M(S_2) \subseteq M(S_1)$

Eine zweistufige, logische Funktion f aus n Variablen wird spezifiziert durch drei Sets ON_f , DC_f , OFF_f . Für alle Belegungen B_f : ON_f covers B_f wertet f zu **One** aus, für alle B_f : OFF_f covers B_f wertet f zu **Zero** aus. Für DC_f kann die entsprechende Bildmenge frei gewählt werden, um einen hohen Grad der Optimierung zu erreichen.

 $ON_f \circ DC_f \circ OFF_f$ spezifizieren zusammen die Menge aller möglichen Belegungen von f.

Bitoperatoren: and, or, not sind Operatoren auf Cubes [...]

Bedeutung der and-Operation: $M(C_1 \text{ and } C_2) = M(C_1) \cap M(C_2)$

Bedeutung der or-Operation: Spezifiziere C_1 die Menge M_1 und C_2 die Menge M_2 , dann spezifiziert C_1 or C_2 die kleinste "rechteckige" Hülle $M_3: M_1 \subseteq M_3 \land M_2 \subseteq M_3$. (Hier genauere Definition)

Enthällt ein Cube das Doppelbit **Inv**, so spezifiziert er die leere Menge: $Inv \in C \Rightarrow M(C) = \{\}$

Prüfen, ob Cube Teil eines Sets ist

Spezifiziere ein Cube C die Menge M. Eine Belegung B <u>erfüllt</u> C genau dann, wenn $B \in M(C) \iff \mathbf{Inv} \notin B$ and C

Ein Cube U wird von einem Set S überdeckt (gecovert) wenn das Hinzufügen von U zu S keine Auswirkung auf die durch S spezifizierte Menge hat: S covers $U \Leftrightarrow M(S)=M(S \circ U)$

Daraus folgt, dass es eine Teilmenge $S' \subseteq S$ geben muss, sodass:

```
(\not\exists C \in S' : \mathbf{Inv} \in C) \land (\exists C_1 ... C_m \in S' : \mathbf{M}(C_1 \text{ and } U \circ ... \circ C_m \text{ and } U) = \mathbf{M}(U))
```

Das Ausschließen von **Inv** ist keine Notwendigkeit für die Richtigkeit der zweiten Teilaussage, reduziert im Folgenden aber den Rechenaufwand.

Es gilt:

$$M(C_1 \text{ or } C_2) = M(C_1 \circ C_2) \Leftrightarrow M(C_1 \circ C_2) = |M(C_1)| + |M(C_2)| - |M(C_1 \text{ and } C_2)| = |M(C_1 \text{ or } C_2)|$$
 wobei |M| die Kardinalität der Menge M ist.

Das heißt, das Zusammenfassen von zwei Cubes mit der or-Operation ist nur dann möglich, wenn das Ergebnis genau so viele Belegungen abdeckt, wie das Set aus beiden Cubes.

Die Berechnung der Kardinalität eines beliebigen Sets S wird schnell zu einem schwierigen Problem. Es sei denn: $\sharp C_1, C_2 \in S$: $\mathbf{Inv} \notin (C_1 \text{ and } C_2) \leftarrow \mathbf{Es}$ gibt keine Überlappung zwischen den Cubes im Set

Annahme: Es existiert zu jedem Set S ein hinreichend speichereffizientes Set \bar{S} , welches die letztere Bedingung erfüllt (intersect-free ist). Wie ein solches Set generiert werden kann später.

Anhand dieses Sets kann effizient überprüft werden, ob ein Cube vollständig im Ursprünglichen On+Dc-Set ist:

$$O\overline{nD}c$$
 covers $U \Leftrightarrow \exists C_1...C_m \in O\overline{nD}c : |M(U)| = |M(C_1 \text{ and } U)| + ... + |M(C_m \text{ and } U)|$

Presto-Algorithmus

Dieser Algogithmus überprüft (relativ) effizent, ob ein Cube U von einem (beliebigen) Set S gecovert wird.

Dazu wird für jeden cube $C \in S$ geprüft, ob dieser eine Schnittmenge mit U hat:

- Wenn diese Schnittmenge gleich U ist, so ist U vollständig von C gecovert → gebe **true** zurück
- Wenn kein C ∈ S eine Schnittmenge mit U hat, gebe **false** zurück
- Wenn mind. ein C eine Schnittmenge mit U hat, aber U von keinem C vollständig gecovert wird, teile U in zwei Hälften:
 - ∘ wähle eine Variable v, die in U = DC ist, aber in U and $C \neq DC$ ist.
 - \circ Erstelle U*, U** = U
 - Setze v in U* auf **ONE**
 - Setze v in U** auf **ZERO**

Rufe den Test rekursiv auf:

• Wenn S U* und U** covert, gebe **true** zurück, sonst **false**.

Nach dem gleichen Prinzip kann eine add-Methode für ein Set \bar{S} implementiert werden, die nur diejenigen Teile eines Cubes U zu S hinzufügt, die nicht vom aktuellen \bar{S} gecovert werden:

- Füge U zu \bar{S} hinzu, wenn kein $C \in \bar{S}$ eine Schnittmenge mit U hat
- breche ab, wenn ein $C \in \bar{S}$ U vollständig covert
- sonst: teile U in zwei Hälften und rufe add rekursiv auf

Complementation

Für den Expansions-Check ist es schneller zu prüfen, ob ein Cube eine Überschneidung mit dem off-Set hat, als zu testen, ob on+dc-Set den Cube vollständig covern. Dazu muss jedoch das off-Set berechnet werden (Das Complement der Funktion gebildet werden).

Hierzu kann wieder der Presto-Algorithmus verwendet werden:

- Erstelle leeres off-Set
- Erstelle einen Cube C, in dem alle Variablen **DC** sind (tautology)
- Wende das add-Prinzip zum Erstellen des intersect-freien Sets an: Füge nur diejenigen Teile von U zu S hinzu, die nicht vom on+dc-Set gecovert werden.