Concurrency

Lecture #3 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

October 28, 2008

Overview Lecture #3

- ⇒ Concurrency
 - The interleaving paradigm
 - Communication principles
 - Shared variable "communication"
 - Handshaking
 - Synchronous communication
 - Channel systems
 - The state-space explosion problem

Concurrent systems

- Transition systems
 - suited for modeling sequential data-dependent systems
 - and for modeling sequential hardware circuits
- How about concurrent systems?
 - multi-threading
 - distributed algorithms and communication protocols
- Can we model:
 - multi-threading with shared variables?
 - synchronous communication?
 - synchronous composition of hardware?

Interleaving

- Abstract from decomposition of system in components
- Actions of independent components are merged or "interleaved"
 - a single processor is available
 - on which the actions of the processes are interlocked
- No assumptions are made on the order of processes
 - possible orders for non-terminating independent processes P and Q:

assumption: there is a scheduler with an a priori unknown strategy

Interleaving

Justification for interleaving:

the effect of concurrently executed, independent actions α and β equals the effect when α and β are successively executed in arbitrary order

Symbolically this is stated as:

$$\textit{Effect}(\alpha \mid\mid \beta, \eta) = \textit{Effect}((\alpha; \beta) + (\beta; \alpha), \eta)$$

- ||| stands for the (binary) interleaving operator
- ";" stands for sequential execution, and "+" for non-deterministic choice

Interleaving

$$\underbrace{x := x + 1}_{=\alpha} \parallel \underbrace{y := y - 2}_{=\beta}$$

Interleaving of transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$ i=1, 2, be two transition systems Transition system

$$TS_1 \mid \mid \mid TS_2 = (S_1 \times S_2, Act_1 \uplus Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1,s_2\rangle)=L_1(s_1)\cup L_2(s_2)$ and the transition relation \to is defined by the rules:

$$rac{s_1 \stackrel{lpha}{\longrightarrow}_1 s_1'}{\langle s_1, s_2
angle \stackrel{lpha}{\longrightarrow} \langle s_1', s_2
angle} \quad ext{and} \quad rac{s_2 \stackrel{lpha}{\longrightarrow}_2 s_2'}{\langle s_1, s_2
angle \stackrel{lpha}{\longrightarrow} \langle s_1, s_2'
angle}$$

What are program graphs?

A program graph PG over a set Var of typed variables is a tuple

$$(Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$$
 where

- Loc is a set of *locations* with initial locations $Loc_0 \subseteq Loc$
- Effect: Act × Eval(Var) → Eval(Var) is the effect function
- $\longrightarrow \subseteq Loc \times \underbrace{Cond(Var)}_{Boolean \ conditions \ over \ Var} \times Act \times Loc, \ transition \ relation$
- $g_0 \in Cond(Var)$ is the initial *condition*.

Beverage vending machine

```
• Loc = \{ start, select \}  with Loc_0 = \{ start \}
```

- $Act = \{ bget, sget, coin, ret_coin, refill \}$
- $Var = \{ nsprite, nbeer \}$ with domain $\{ 0, 1, \dots, max \}$

• $g_0 = (nsprite = max \land nbeer = max)$

From program graphs to transition systems

- Basic strategy: unfolding
 - state = location (current control) ℓ + data valuation η
 - initial state = initial location satisfying the initial condition g_0
- Propositions and labeling
 - propositions: "at ℓ " and " $x \in D$ " for $D \subseteq dom(x)$
 - $\langle \ell, \eta \rangle$ is labeled with "at ℓ " and all conditions that hold in η
- if $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle$

Transition systems for program graphs

The transition system TS(PG) of the program graph

$$PG = (Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$$

over a set *Var* of variables is the tuple $(S, Act, \longrightarrow, I, AP, L)$ where

- $S = Loc \times Eval(Var)$
- $\longrightarrow \subseteq S \times Act \times S$ is defined by the rule: $\frac{\ell \xrightarrow{g:\alpha} \ell' \land \eta \models g}{\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle}$
- $I = \{\langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0 \}$
- $AP = Loc \cup Cond(Var)$ and $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}.$

Interleaving of program graphs

For program graphs PG_1 (on Var_1) and PG_2 (on Var_2) without shared variables, i.e., $Var_1 \cap Var_2 = \emptyset$,

$$TS(PG_1) \mid \mid \mid TS(PG_2)$$

faithfully describes the concurrent behavior of PG_1 and PG_2

what if they have variables in common?

Shared variable communication

$$\underline{x := 2 \cdot x} \ || \ \underline{x := x + 1}$$
 with initially $x = 3$ action β

 $\langle x=6, x=4 \rangle$ is an *inconsistent* state!

 \Rightarrow no faithful model of the concurrent execution of α and β

Modeling concurrent program graphs

• If PG_1 and PG_2 share no variables:

$$TS(PG_1) \mid \mid \mid TS(PG_2)$$

- interleaving of transition systems
- If PG_1 and PG_2 share some variables:

$$TS(PG_1 \mid\mid\mid PG_2)$$

- interleaving of program graphs
- In general: $TS(PG_1) \mid \mid \mid TS(PG_2) \neq TS(PG_1 \mid \mid \mid PG_2)$

Interleaving of program graphs

Let $PG_i = (Loc_i, Act_i, Effect_i, \longrightarrow_i, Loc_{0,i}, g_{0,i})$ over variables Var_i .

Program graph $PG_1 \mid \mid PG_2$ over $Var_1 \cup Var_2$ is defined by:

$$(\textit{Loc}_1 \times \textit{Loc}_2, \textit{Act}_1 \uplus \textit{Act}_2, \textit{Effect}, \longrightarrow, \textit{Loc}_{0,1} \times \textit{Loc}_{0,2}, g_{0,1} \land g_{0,2})$$

where — is defined by the inference rules:

$$\frac{\ell_1 \xrightarrow{g:\alpha}_1 \ell_1'}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha}_{} \langle \ell_1', \ell_2 \rangle} \quad \text{and} \quad \frac{\ell_2 \xrightarrow{g:\alpha}_{} 2 \ell_2'}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha}_{} \langle \ell_1, \ell_2' \rangle}$$

and $\textit{Effect}(\alpha, \eta) = \textit{Effect}_i(\alpha, \eta) \text{ if } \alpha \in \textit{Act}_i.$

Example

$$\underbrace{x := 2 \cdot x}_{\text{action } \alpha} \ || \ \underbrace{x := x + 1}_{\text{action } \beta} \quad \text{with initially } x = 3$$

note that $TS(PG_1) \mid \mid \mid TS(PG_2) \neq TS(PG_1 \mid \mid \mid PG_2)$

On atomicity

$$\underbrace{x := x+1; y := 2x+1; z := y \text{ div } x}_{\text{non-atomic}} \ ||| \ x := 0$$

Possible execution fragment:

$$\langle x=11\rangle \xrightarrow{x:=x+1} \langle x=12\rangle \xrightarrow{y:=2x+1} \langle x=12\rangle \xrightarrow{x:=0} \langle x=0\rangle \xrightarrow{z:=y/x} \dagger \dots$$

$$\underbrace{\langle x:=x+1; y:=2x+1; z:=y \text{ div } x\rangle}_{\text{atomic}} \mid \mid \mid x:=0$$

Either the left process or the right process is completed first:

$$\langle x=11\rangle \xrightarrow{x:=x+1} \langle x=12\rangle \xrightarrow{y:=2x+1} \langle x=12\rangle \xrightarrow{z:=y/x} \langle x=12\rangle \xrightarrow{x:=0} \langle x=0\rangle$$

Peterson's mutual exclusion algorithm

```
P_1 loop forever  \vdots \qquad \qquad (\text{* non-critical actions *}) \\ \langle b_1 := \text{true}; \, x := 2 \rangle; \qquad \qquad (\text{* request *}) \\ \text{wait until } (x = 1 \ \lor \ \lnot b_2) \\ \text{do critical section od} \\ b_1 := \text{false} \qquad \qquad (\text{* release *}) \\ \vdots \qquad \qquad (\text{* non-critical actions *}) \\ \text{end loop}
```

 b_i is true if and only if process P_i is waiting or in critical section if both processes want to enter their critical section, x decides who gets access

Banking system

Person Left behaves as follows:

Person Right behaves as follows:

```
egin{aligned} 	extbf{while} 	ext{ true } \{ & \dots & \dots & \dots \\ nc: & \langle b_1, x = 	ext{true}, 2; 
angle \\ 	extbf{wt}: & 	ext{wait until}(x == 1 \mid \mid \neg b_2) \, \{ \\ cs: & \dots & \text{@account} \dots \} \\ b_1 = 	ext{false}; & \dots & \dots & \dots \\ \} \end{aligned}
```

```
egin{array}{ll} 	extbf{while} 	ext{ true } \{ & \dots & \dots & \dots \\ nc: & \langle b_2, x = 	ext{true}, 1; 
angle \\ 	ext{wt}: & 	ext{wait until}(x == 2 \mid \mid \neg b_1) \, \{ \\ 	ext{cs}: & \dots & \text{@account} \dots \} \\ & b_2 = 	ext{false}; & \dots & \dots & \dots \\ \} \end{array}
```

Can we guarantee that only one person at a time has access to the bank account?

Program graph representation

Is the banking system safe?

Manually inspect whether two may have access to the account simultaneously:No

Banking system with non-atomic assignment

Person Left behaves as follows:

Person Right behaves as follows:

 $egin{array}{ll} extbf{while} ext{ true } \{ & \dots & \dots & \dots \\ nc: & x=1; \\ rq: & b_2= ext{true}; \\ ext{wt:} & ext{wait until}(x==2\mid\mid \neg\,b_1)\,\{ \\ ext{cs:} & \dots & ext{@account}\dots \} \\ b_2= ext{false}; & \dots & \dots & \dots \\ \} \end{array}$

On atomicity again

Assume that the location inbetween the assignments x := ... and $b_i :=$ true in program graph PG_i is called rq_i . Possible state sequence:

$$\langle nc_1, nc_2, x=1, b_1= {\sf false}, b_2= {\sf false} \rangle$$
 $\langle nc_1, rq_2, x=1, b_1= {\sf false}, b_2= {\sf false} \rangle$
 $\langle rq_1, rq_2, x=2, b_1= {\sf false}, b_2= {\sf false} \rangle$
 $\langle wt_1, rq_2, x=2, b_1= {\sf true}, b_2= {\sf false} \rangle$
 $\langle cs_1, rq_2, x=2, b_1= {\sf true}, b_2= {\sf false} \rangle$
 $\langle cs_1, wt_2, x=2, b_1= {\sf true}, b_2= {\sf true} \rangle$
 $\langle cs_1, cs_2, x=2, b_1= {\sf true}, b_2= {\sf true} \rangle$!

violation of the mutual exclusion property

Parallelism and handshaking

- Concurrent processes run truly in parallel
- To obtain cooperation, some interaction mechanism is needed
- If processes are distributed there is no shared memory
- ⇒ Message passing
 - synchronous message passing (= handshaking)
 - asynchronous message passing (= channel communication)

Handshaking

- Concurrent processes interact by synchronous message passing
 - processes execute synchronized actions together
 - that is, in interaction both processes need to participate at the same time
 - the interacting processes "shake hands"
- Abstract from information that is exchanged
- *H* is a set of *handshake actions*
 - actions outside H are independent and are interleaved
 - actions in H need to be synchronized

Handshaking

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i), i=1, 2 \text{ and } H \subseteq Act_1 \cap Act_2$

$$TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

•
$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle}$$
 $\frac{s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle}$ interleaving for $\alpha \notin H$

 $\text{note that } \mathit{TS}_1 \parallel_{H} \mathit{TS}_2 = \mathit{TS}_2 \parallel_{H} \mathit{TS}_1 \text{ but } (\mathit{TS}_1 \parallel_{H_1} \mathit{TS}_2) \parallel_{H_2} \mathit{TS}_3 \neq \mathit{TS}_1 \parallel_{H_1} (\mathit{TS}_2 \parallel_{H_2} \mathit{TS}_3)$

A booking system

BCR || BP || Printer

 \parallel is a shorthand for \parallel_H with $H = \textit{Act}_1 \cap \textit{Act}_2$

The parallel composition

Pairwise handshaking

 $TS_1 | \dots | TS_n \text{ for } H_{i,j} = Act_i \cap Act_j \text{ with } H_{i,j} \cap Act_k = \emptyset \text{ for } k \notin \{i, j\}$

State space of $TS_1 || ... || TS_n$ is the Cartesian product of those of TS_i

• for $\alpha \in \mathit{Act}_i \setminus \left(\bigcup_{\substack{0 < j \leqslant n \\ i \neq j}} H_{i,j}\right)$ and $0 < i \leqslant n$:

$$\frac{s_i \xrightarrow{\alpha}_i s_i'}{\langle s_1, \dots, s_i, \dots, s_n \rangle \xrightarrow{\alpha}_i \langle s_1, \dots, s_i', \dots s_n \rangle}$$

• for $\alpha \in H_{i,j}$ and $0 < i < j \leqslant n$:

$$\frac{s_i \xrightarrow{\alpha}_i s'_i \land s_j \xrightarrow{\alpha}_j s'_j}{\langle s_1, \dots, s_i, \dots, s_j, \dots, s_n \rangle \xrightarrow{\alpha}_i \langle s_1, \dots, s'_i, \dots, s'_j, \dots, s_n \rangle}$$

Synchronous parallelism

Let $TS_i = (S_i, Act, \rightarrow_i, I_i, AP_i, L_i)$ and $Act \times Act \rightarrow Act, (\alpha, \beta) \rightarrow \alpha * \beta$

$$TS_1 \otimes TS_2 = (S_1 \times S_2, Act, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

with L as defined before and \rightarrow is defined by the following rule:

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1 \land s_2 \xrightarrow{\beta}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha * \beta} \langle s'_1, s'_2 \rangle}$$

typically used for synchronous hardware circuits, cf. next example

 TS_1 :

 $TS_2:$

 $TS_1 \otimes TS_2$:

