1. Find the hit rates for each cache configurations.

Note: Here, for some reason, we wouldn't be able to to simulate the first configuration because mips doesn't support analysis of such cache size as we researched.

For each configuration with direct mapping:

Block Size	No. of Blocks	Cache Size	Hit Rate
4 B	512	2048 B	<%83
8 B	128	1024 B	%83
16 B	32	512 B	%91
32 B	16	512 B	%95
64 B	8	512 B	%97

Full Results:

Fully Associative:

For each configuration with fully Associative:

Block Size	No. of Blocks	Cache Size	Hit Rate
4 B	512	2048 B	<%83
8 B	128	1024 B	%83
16 B	32	512 B	%92
32 B	16	512 B	%96
64 B	8	512 B	%98

2. Which cache configuration yields the best performance?

Max Hit rate is fully associative with 8 blocks and 16 words(64 bytes) of block size as can be seen below with a hit rate of 98%.

Simula	te and illustra	te	data cache performar	nce
	Cach	e O	rganization	
Placement Policy F	ully Associative	•	Number of blocks	8 🔻
Block Replacement Police	LRU	-	Cache block size (words)	16
Set size (blocks)	8	•	Cache size (bytes)	512
	Cache	e Pe	rformance	
Memory Access Count	210	629	Cache Block Table	
Cache Hit Count	21	153	(block 0 at top)	
			= empty	
Cache Miss Count		476	= hit	
Cache Hit Rate	98%		= miss	

3. Does the largest cache always give the best result? Why or why not?

No. This is because of three crucial factors: latency, cache hit rate versus size, and replacement policies. Firstly, larger caches inherently have longer latency due to the physical distance the data must travel, which can slow down the CPU's access speed. This increased latency could offset the advantages provided by the increased storage capacity of a larger cache. Secondly, although an increase in cache size can initially improve the cache hit rate, there is a point of diminishing returns. Once the cache reaches a certain size, the hit rate no longer improves significantly. This happens because larger caches start holding data that is less likely to be accessed in the near future. Finally, the replacement policy, which determines what data to evict when the cache is full, greatly influences a cache's effectiveness. A larger cache with a poor

replacement policy might experience more cache misses than a smaller cache with a more effective policy. So, while a larger cache has its benefits, these must be balanced with considerations of latency, hit rates, and replacement policies for optimal performance.