DoSA-3D User Manual

Voice Coil Motor Example

(Speaker, Auto-Focus, Linear Vibrator)

2022-06-30 zgitae@gmail.com

DoSA Structure

PC Requirement

> CPU: 4 Core and above

> RAM: 16GB and above

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Virtual Test

✓ Force : Magnetic force estimation

Work process

Product Design

Virtual Test

Analysis Model

Analysis Model

1. Shape Model

2. Product Specifications

A. Coil

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

B. Magnet

• Material : NdFeB 40

• Magnetization Direction: 90 (UP)

C. Power

• Voltage: 2.5V

(Example Files : DoSA-3D Install Directory > Samples > VCM)

New design

1. Toolbar > Click New button

2. Design Name: "VCM_01"

3. Shape File (STEP): Select VCM.step

[Cautions for the Shape Model]

DoSA-3D still has the following functional limitations.

- A. Shape constraint
 - Coil central axis must coincide with Y axis.
 - The current is always applied in cylindrical form. (Polygon coils can cause some differences)
- B. Limited number of parts
 - Actions only support one part.
 - Only one coil is supported.
- C. Drawing Guide
 - https://solenoid.or.kr/data/Drawing Guide ENG.pdf

New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.

New design

8. Check the design creation.

Parts Design

Add a coil

- 1. Toolbar > Click Coil button
- 2. Select "Coil" in the list box.
- 3. Click the OK button.

Coil design

Select the magnetic force calculation part

1. Input the coil instrumental specifications

✓ Moving Parts : MOVING

✓ Coil Wire Grade: Bonded_IEC_Grade_1B

✓ Inner Diameter: 3

✓ Outer Diameter: 3.73

✓ Coil Height: 1.18

✓ Copper Diameter: 0.045

✓ Horizontal Coefficient : 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

- 2. Calculate the coil specification
 - ✓ Click the "Coil Design" button
- 3. Check the coil specification

4	Common Fields	
	Node Name	Coil
4	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	MOVING
4	Calculated Fields	
	Coil Turns	126
	Coil Resistance [Ω]	15,74769
	Coil Layers	6
	Turns of One Layer	21
	<u> Nesign Fields (optio</u>	nal)
	Coil Wire Grade	Bonded_IEC_Grade_1B
	Inner Diameter [mm]	3
	Outer Diameter [mm]	3.73
		- -
	Coil Height [mm]	1,18
	Coil Height [mm] Copper Diameter [mm]	•
		•
	Copper Diameter [mm]	0,045
	Copper Diameter [mm] Wire Diameter [mm]	0,045 0,04953
	Copper Diameter [mm] Wire Diameter [mm] Coil Temperature [*C]	0, 045 0, 04953 20

3

Add a magnet

- 1. Toolbar > Click Magnet button
- 2. Select "Magnet" in the list box.
- 3. Click the OK button.

Magnet setting

- 1. Magnet Settings
 - ✓ Use default values

1

Node Name	Magnet
D	
Specification Fields	
Part Material	NdFeB_40
Hc	969969
3r	1,26497
Moving Parts	FIXED
Magnetization Fields	S
Rotation Axis	Z_AXIS
Rotation Angle	90
	lc Br Moving Parts Magnetization Fields Rotation Axis

[Ref.] Magnet magnetization

1. Understanding magnet magnetization direction

Magnet magnetization direction: X axis direction

• Rotation Axis: The axis of rotation of the X axis

• Rotation Angle : the angle the X axis rotates

 Magnetization Fie 	Magnetization Fields			
Rotation Axis	Z_AXIS			
Rotation Angle	90			

2. Magnetization direction setting

Rotation Axis : Y_Axis

Rotation Axis : Z_Axis

[Ref.] Magnetization Setting of Magnet

✓ Rotation Axis: Z_Axis

✓ Rotation Angle: 90

Rotation Axis: Z_Axis

✓ Rotation Axis : Y_Axis

✓ Rotation Angle: 45°, 135°, 225°, 315°

Rotation Axis: Y_Axis

Add a plate

- 1. Toolbar > Click Steel button
- 2. Select "Plate" in the list box.
- 3. Click the OK button.

Plate setting

1. Plate settings

✓ Part Material : SUS_430

[BH Curve]

1

Add a case

- 1. Toolbar > Click Steel button
- 2. Select "Case" in the list box.
- 3. Click the OK button.

Case setting

1. Case Setting

✓ Part Material : SUS_430

[BH Curve]

1

Virtual Test

Test of the magnetic force

1. Toolbar > Click Force Button

2. Force Test Name: "Force"

3. Click OK button

4. Setting of magnetic force test

✓ Voltage : 2.5

✓ B Rotation Angle : 45✓ B Vector Resolution : 80

✓ Mesh Size Percent: 7

5. Click "Force Test" Button

Run the virtual Test

- 6. Check the progress of magnetic force analysis.
- 7. Check the magnetic density and force. (The solving time is depend on you system specification)

Run the virtual Test

- 8. Check the full magnetic density.
- 9. Check the section magnetic density.

Tips

Open Design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.

Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org