#### Visualising and exploring methylation data

Sergio Martínez Cuesta sermarcue@gmail.com

**Employment disclosures:** 





Materials obtained from:



#### **Starting Data**

Read 1 Read 2 Read 3

Genome

L001\_bismark\_bt2\_pe.deduplicated.bam

```
CHG_OB_L001_bismark_bt2_pe.deduplicated.txt.gz
CHG_OT_L001_bismark_bt2_pe.deduplicated.txt.gz
CHH_OB_L001_bismark_bt2_pe.deduplicated.txt.gz
CHH_OT_L001_bismark_bt2_pe.deduplicated.txt.gz
CpG_OB_L001_bismark_bt2_pe.deduplicated.txt.gz
CpG_OT_L001_bismark_bt2_pe.deduplicated.txt.gz
```

L001\_bismark\_bt2\_pe.deduplicated.cov.gz

#### Decide early on which data to use

#### Methylation contexts

- CpG: Only generally relevant context for mammals
- CHG: Only known to be relevant in plants
- CHH: Generally unmethylated

#### Methylation strands

- CpG methylation is generally symmetric
- Normally makes sense to merge OT / OB strands

## Always start by looking at your data. Think about what you expect



### Try to understand anything unusual



Reduced Representation Library

### Try to understand anything unusual



Very messed up cDNA contaminated library

### Try to understand anything unusual



Around 600x average genome density

**Coverage Outliers** 

### **Coverage Outliers**



#### **Coverage Outliers**

- Normally the result of mis-mapping repetitive sequences not in the genome assembly
- Centromeric / telomeric sequences are common
- Can be a significant proportion of all data
- Can throw off calculations of overall methylation
- Should be flagged and hits in those regions ignored

### **Coverage Bias**

GC Content is most likely but others could exist





## Coverage bias can lead to apparent methylation bias



#### Quantitating your methylation data



#### Where to make measures

#### Per base

- Very large number of measures
- Poor accuracy for individual bases

#### Unbiased windows

- Tiled over whole genome
- Need to decide how they will be defined

#### Targeted regions

- Which regions
- What context

#### Accuracy and Power

Region A

50% Methylation



50% Methylation

- Variation in CpG density
- Variation in coverage depth

### Try to make comparable measures



- Observation level correlates with stability.
- Want to try to have similar amounts of data in each measurement window.
- Equalises noise for visualisation and power for analysis.

### **Unbiased Analysis**

- Fix the amount of data in each window
  - Fixed number of CpGs per window
  - Allow the resolution to vary



50 CpG window lengths

#### Targeted Quantitation

- Measure over features
  - CpG islands
    - Be careful where you get your locations
    - Try to fix sizes
  - Promoters
    - Should probably split into CpG island and non-CpG island
    - Try to fix sizes
  - Gene bodies
    - Filter by biotype to remove small RNA genes?

#### How to Quantitate methylation calls

Percentage methylation
 (Methylated calls / Total Calls) \* 100

```
O = meth
O O = unmeth
O
```

(6/10) \* 100 = 60% methylated

## Assigning a % methylation value to a region can be difficult.



Total methylated calls = 15 Total unmethylated calls = 10

Methylation level = (15/(15+10))\*100 = 60%

## You get different answers quantitating per base or per region



Percentage methylation from all calls independently = 46%

Percentage methylation from mean methylation per base = 80%

## Coverage differences can look like methylation differences



Common = 60% in both

## Coverage differences aren't just a theoretical concern – they affect real data



# Coverage differences aren't just a theoretical concern – they affect real data



#### Levels of Complexity

Percentage of all calls which are methylated

- Per base methylation, averaged over a region
  - Bases excluded because of low coverage

- As above, but requiring the same bases to be used in each sample
  - Doesn't scale well



### (Even) More Complex Methods

- Smoothing or regression of actual measures along a chromosome.
  - Aims to reduce noise from sampling variation
  - Relies on consistent linear patterns
- Imputation of missing values
  - Relies on consistent linear patterns
- Additional normalisation or correction
  - Will be discussed later...

### Visualisation and Exploration



### Use visualisation to understand the basic structure of your data before asking questions

#### Patterning

 What sorts of changes in methylation do I observe along a chromosome

#### Distributions

 What are the overall levels and distributions of methylation values in my samples

#### Relationships

 On a global scale what is the overall relationship between methylation levels in different conditions

## Visualise your quantitated data alongside the raw methylation calls.



## Different representations scale to different numbers of samples.





### Understand and compare your methylation distributions before formulating a question.



### Plotting comparisons will identify global differences which might be interesting



## Look at the data underneath and around potentially interesting points



## Different representations might make the picture clearer



## Different representations might make the picture clearer



## Large global changes might mean that local analysis is no longer relevant



### Small differences in distribution can be normalised to improve comparisons



### **Summary Visualisations**



#### **Trend Plots**

- Effects at individual loci can be subtle
- Want to find more generalised effect
- Collate information across whole genome
- Look at the general trends
- Relies on the effect being consistent

#### Trend plot considerations





How much context

Features to use

Fixed vs relative scale

How much context

### Clustering



### Clustering

#### Correlation Clustering

- Focusses on the differences between conditions
- Absolute values not important
- Look for similar trends
- Show median normalised values

#### Euclidean Clustering

- Focusses on absolute differences between conditions
- Look for similar levels
- Show raw values

### Clustering



### **Exploration Summary (1)**

- Look at the distribution of your raw reads/calls
  - Match expectations to the type of library

- Always start with an unbiased quantitation
  - Fix the amount of data in each window
  - Think about how to best quantitate

Check the quantitation matches the raw data

### **Exploration Summary (2)**

- Check the distributions of methylation values in your samples
- Directly compare your values to look for global differences
  - They might be the source of the interesting biology
  - Might spot small global differences which require normalisation
- Summarise trends around features
  - Might justify targeted quantitation