CIS 721 - Real-Time Systems Lecture 7: Response Time Analysis

Mitch Neilsen neilsen@ksu.edu

Outline

- Commonly Used Approaches For Real-Time Scheduling (Ch. 4)
 - Clock-Driven Scheduling (Ch. 5)
 - Priority-Driven Scheduling
 - Periodic Tasks (Ch. 6)
 - Utilization-Based Test
 - Response Time Analysis
 - Arbitrary Start Times
 - Aperiodic and Sporadic Tasks (Ch. 7)

Periodic Task Model

- Periodic task set: {T₁,, T_n}, each task consists of a set of jobs: T_i = {J_{i1}, J_{i2},}
- ϕ_i : phase of task T_i = time when its first job is released
- \mathbf{p}_i : period of T_i = inter-release time
- e_i or C_i: execution time of T_i
- u_i: utilization of task T_i is given by u_i = e_i / p_i
- D_i: (relative) deadline of T_i, typically D_i = p_i

Schedulability Analysis

Utilization-Based Tests

- Not exact (sufficient, but not necessary).
- Not applicable to more general task models.

Time-Based Tests (Response Time Analysis)

- Use analytic approach to predict worst-case response time of each task.
- Compare computed worst-case response times with deadlines.
- Exact (sufficient and necessary)

Time-Based Tests (Response Time Analysis)

 M. Joseph and P.K. Pandya, "Finding Response Times in a Real-Time System", The Computer Journal, Vol. 29, No. 5, pp. 390-395, 1986.

Tasl	k Pe	eriod	Deadline	Run-Time	Phase
$ au_{ m i}$		T_i	$\mathbf{D_i}$	$\mathbf{C_i}$	$\phi_{\mathbf{i}}$
A	(High Priority)	7	7	3	0
В		12	12	3	0
C	(Low Priority)	20	20	5	0

•
$$U = 3/7 + 3/12 + 5/20 = 13/14 \approx 0.93$$

- $U_{RM} = 3 (2^{1/3} 1) \approx 0.78$
- Since $U_{RM} < U \le 1.0$, no conclusion can be drawn using the Utilization-Based Test.

Response Time

- The **response time** (R_i) for task T_i is given by $R_i = e_i + l_i$ where:
 - e_i is the execution time of each job in T_i, and
 - I_i is the maximum interference caused by higher priority tasks in any interval [t, t + R_i).

Maximum Interference (I_i)

The maximum number of releases of task T_j in the time interval [t, t + R_i) is given by:

$$\left\lceil \frac{R_i}{p_j} \right\rceil$$

So, the interference caused by task T_j is

$$\left\lceil \frac{R_i}{p_j} \right\rceil * e_j$$

The maximum interference caused by all higher priority tasks is given by

$$I_i = \sum_{j \in hp(i)} \left| \frac{R_i}{p_j} \right| * e_j$$

where hp(i) = set of all tasks with priority greater than task T_i .

Response Time Analysis

The (worst-case) response time (w_i) for task T_i is given by the implicit equation:

$$R_i = e_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{p_j} \right\rceil * e_j$$

Which is solved by forming a recurrence relation:

$$w_i^{n+1} = e_i + \sum_{j \in hp(i)} \left\lceil \frac{w_i^n}{p_j} \right\rceil * e_j$$

$$w_i^0 = e_i$$

Solving Recurrence

The sequence
$$w_i^0, w_i^1, w_i^2, ..., w_i^n$$

is clearly non-decreasing:

- If $w_i^{n+1} = w_i^n$, then a fixed point (solution) has been found.
- If $w_i^{n+1} > D_i$, then no solution exists.

```
Algorithm
   Input: e_1,...,e_m, p_1,...,p_m, D_1,...,D_m
   Output: R_1, R_2, ..., R_m
   for i = 1 to m
      n = 0
      w_i^n = e_i
      loop
         w_i^{n+1} = e_i + \sum_{j \in hp(i)} \left\lceil \frac{w_i^n}{p_j} \right\rceil * e_j
          if w_i^{n+1} = w_i^n then
             R_i = w_i^n
              break out of loop { solution found }
          if w_i^{n+1} > D_i then
              break out of loop {no solution}
          n = n + 1
      end loop
   end for
```

Example – Rate-Monotonic Priorities

Task	Period	Run-Time	Worst-Case
			Response Time
$ au_{ m i}$	T_i	$\mathbf{C_i}$	$\mathbf{R_{i}}$
A (high)	7	3	3
В	12	3	6
C (low)	20	5	20

Gantt Chart

$$w_A^0 = e_A = 3$$

$$w_A^1 = e_A + \sum_{j \in hp(A)} \left\lceil \frac{w_A^0}{p_j} \right\rceil * e_j = 3 + 0 = 3$$

$$=> R_A = 3$$

$$w_B^0 = e_B = 3$$

$$w_B^1 = e_B + \sum_{j \in hp(B)} \left\lceil \frac{w_B^0}{p_j} \right\rceil * e_j = e_B + \left\lceil \frac{w_B^0}{p_A} \right\rceil * e_A = 3 + \left\lceil \frac{3}{7} \right\rceil * 3 = 6$$

$$w_B^2 = e_B + \sum_{j \in hp(B)} \left\lceil \frac{w_B^1}{p_j} \right\rceil * e_j = e_B + \left\lceil \frac{w_B^1}{p_A} \right\rceil * e_A = 3 + \left\lceil \frac{6}{7} \right\rceil * 3 = 6$$

$$=> R_B = 6$$

Example (cont.)

$$w_C^0 = e_C = 5$$

$$w_{C}^{1} = e_{C} + \sum_{j \in hp(C)} \left[\frac{w_{C}^{0}}{p_{j}} \right] * e_{j} = e_{C} + \left[\frac{w_{C}^{0}}{p_{A}} \right] * e_{A} + \left[\frac{w_{C}^{0}}{p_{B}} \right] * e_{B}$$

$$w_C^1 = 5 + \left\lceil \frac{5}{7} \right\rceil * 3 + \left\lceil \frac{5}{12} \right\rceil * 3 = 11$$

$$w_C^2 = e_C + \sum_{j \in hp(C)} \left\lceil \frac{w_C^1}{p_j} \right\rceil * e_j = e_C + \left\lceil \frac{w_C^1}{p_A} \right\rceil * e_A + \left\lceil \frac{w_C^1}{p_B} \right\rceil * e_B$$

$$w_C^2 = 5 + \left| \frac{11}{7} \right| * 3 + \left| \frac{11}{12} \right| * 3 = 14$$

$$w_C^3 = 5 + \left| \frac{14}{7} \right| * 3 + \left| \frac{14}{12} \right| * 3 = 17$$

$$w_C^4 = 5 + \left\lceil \frac{17}{7} \right\rceil * 3 + \left\lceil \frac{17}{12} \right\rceil * 3 = 20$$

$$w_C^5 = 5 + \left| \frac{20}{7} \right| * 3 + \left| \frac{20}{12} \right| * 3 = 20$$

$$=>R_{C}=20$$

Response Time Analysis

- For each task, T_i, compute worst-case response time (R_i).
- If $(R_i \le D_i)$ for each task T_i , then the task set is feasible (schedulable).
- Response Time Analysis is both necessary and sufficient.

Task	Period	Deadline	Run Time	Response Time
$ au_{ m i}$	$\mathbf{T_i}$	$\mathbf{D_i}$	C_{i}	R _i
A	20	5	3	3
В	15	7	3	6
C	10	10	4	10
D	20	20	3	20

Since ($R_i \le D_i$) for each task T_i , the task set is feasible (schedulable). Note: U = 3/20 + 3/15 + 4/10 + 3/20 = 0.9, so the Utilization-Based Test is inconclusive.

Time-Demand Analysis

- Compute total demand on processor time of job released at a critical instant and by higher-priority tasks as function of time from the critical instant.
- Check whether demand can be met before deadline.
- Determine whether T_i is schedulable:
 - Focus on a job in T_i , suppose release time is critical instant of T_i :
 - $w_i(t)$: Processor-time demand of this job and all higher-priority jobs released in (t_0, t) :

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] e_k$$

This job in T_i meets its deadline if, for some

$$t_1 \le D_t \le p_t$$
 : $w_t(t_1) \le t_1$

 If this does not hold, job cannot meet its deadline, and system of tasks is not schedulabe by given static-priority algorithm.

$$T_1 = (3, 1)$$
 $T_2 = (5, 1.5)$
 $T_3 = (7, 1.25)$
 $T_4 = (9, 0.5)$

$$T_1 = (3, 1)$$

 $T_2 = (5, 1.5)$
 $T_3 = (7, 1.25)$
 $T_4 = (9, 0.5)$

$$T_1 = (3, 1)$$

 $T_2 = (5, 1.5)$
 $T_3 = (7, 1.25)$
 $T_4 = (9, 0.5)$

Arbitrary Start Times (Phasing)

 N.C. Audsley, "Optimal Priority Assignment and Feasibility of Static Priority Tasks with Arbitrary Start Times", Tech. Report YCS 164, University of York, York, England, 1991.

Example #1

If phasing (φ_i or O_i) is allowed to be greater than 0, then a Rate Monotonic (RM) priority assignment may not be optimal.

Task	Period	Deadline	Run-Time	Phase
$ au_{ ext{i}}$	$\mathbf{T_i}$	$\mathbf{D_i}$	$\mathbf{C_i}$	$\phi_{\mathbf{i}}$
τ_1	8	8	3	0
$ au_2$	12	12	1	10
$ au_3$	12	12	6	0

Example #1 (cont.)

Example #1b

Example #2

$\begin{array}{c} Task \\ \tau_i \end{array}$	Period T _i	Deadline D _i	Run-Time C _i	Phase φ _i
-	Priority) 4 Priority) 8	3 4	2 3	2

If phasing (φ_i) is allowed to be greater than 0, then a Deadline Monotonic (DM) priority assignment may not be optimal.

Example #3

Task	Period	Deadline	Run-Time	Phase
$ au_{ m i}$	$\mathbf{T_i}$	$\mathbf{D_i}$	$\mathbf{C_i}$	$\phi_{\mathbf{i}}$
τ ₁ (Low Pr	riority) 4	3	2	2
$ au_2^-$ (High P	riority) 8	4	3	0

Leung's Test

- J. Leung and J. Whitehead, "On the Complexity of Fixed Priority Scheduling of Periodic Real-Time Tasks", Performance Evaluation, 2(4):237-250, 1982.
- A task set is feasible if all deadlines are met in the interval [s, 2P) where
 - \square $s = \max \{ \varphi_1, \varphi_2, \dots, \varphi_n \}$
 - $\Box P = lcm \{ T_1, T_2, ..., T_n \}$
- Implicit assumption: s ≤ P

Simple Test

- Compute $P = lcm \{ T_1, T_2, ..., T_n \}$.
- Set $s = \max \{ \phi_1, \phi_2, ..., \phi_n \}$.
- If $(s \le P)$, set S = 0; otherwise, set $S = \lfloor s/P \rfloor P$.
- Construct a schedule for the interval [S, S + 2P).
- Check the schedule to see if all deadlines are met.

Example #4

Task	Period	Deadline	Run-Time	Phase
$ au_{\mathbf{i}}$	$\mathrm{T_{i}}$	$\mathbf{D_i}$	C_{i}	φ _i
$ au_1$	42	42	23	3
$ au_2$	147	147	34	66

- Since gcd(42, 147) = 21, P = lcm(42, 147) = 294.
- Also, s = 66, so S = 0.
- Check for missed deadlines in [0, 588).

Stress Program Input

```
/* audsley1.str: Example From Audsley's
Paper */
system
  node node 1
    processor proc 1
     periodic task 1
       period 42 deadline 42 offset 3
       priority 1
        [23, 23]
     endper
     periodic task 2
       period 147 deadline 147 offset 66
       priority 2
        [34,34]
     endper
    endpro
  endnod
endsys
```

Example: No Missed Deadlines

Example #5

Task	Period	Deadline	Run-Time	Phase
$ au_{ m i}$	$\mathbf{T_i}$	$\mathbf{D_i}$	$\mathbf{C_i}$	ϕ_{i}
τ_1	42	42	33	3
$ au_2^-$	147	147	31	66

Stress Program Input

```
/* audsley2.str: Example From Audsley's Paper */
system
  node node 1
    processor proc 1
     periodic task 1
       period 42 deadline 42 offset 3
       priority 1
        [33,33]
     endper
     periodic task 2
       period 147 deadline 147 offset 66
       priority 2
        [31,31]
     endper
    endpro
  endnod
endsys
```

Example: Missed Deadline

Summary

- Read Ch. 4-7 + Liu and Layland's paper.
- Homework #1.
- Homework #2.