MH1820 Introduction to Probability and Statistical Methods Tutorial 8 (Week 9)

Problem 1 (Joint PDF, Marginal PDF) Let $f(x,y) = (3/16)xy^2$, $0 \le x \le 2$, $0 \le y \le 2$, be the joint PDF of X and Y.

- (a) Find $f_X(x)$ and $f_Y(y)$, the marginal PDF of X and Y respectively.
- (b) Are the two random variables independent? As in the discrete case, two continuous-type random variables X and Y are independent provided $f(x,y) = f_X(x)f_Y(y)$.
- (c) Compute the mean μ_X and variance σ_X^2 of X.
- (d) Find $\mathbb{P}(X \leq Y)$.

Problem 2 (Joint PDF, Marginal PDF, Conditional PDF) Let f(x,y) = 1/40, $0 \le x \le 10$, $10 - x \le y \le 14 - x$ be the joint PDF of X and Y.

- (a) Sketch the region of the points (x,y) satisfying the inequalities $0 \le x \le 10$, and $10 x \le y \le 14 x$.
- (b) Find $f_X(x)$, the marginal PDF of X.
- (c) Determine h(y|x), the conditional PDF of Y, given that X = x.
- (d) Calculate $\mathbb{E}[Y|X=x]$, the conditional mean of Y, given that X=x.

Problem 3 (Conditional PDF, Conditional Expectation)

Let X and Y be continuous random variables with joint PDF

$$f(x,y) = \begin{cases} x + \frac{3}{2}y^2, & 0 \le x \le 1, \ 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the conditional PDF f(x|y) for all x, y.
- (b) Compute the conditional expectation E[X|Y=y] for all y.
- (c) Find the conditional probabilities (i) $P\left(X \leq \frac{1}{2}|Y = \frac{1}{2}\right)$ and (ii) $P\left(\frac{1}{4} \leq X \leq \frac{3}{4}|Y = \frac{1}{2}\right)$.

Problem 4 (Joint PDF, Marginal PDF, Conditional probability)

Let X and Y have the joint PDF f(x,y) = cx(1-y), 0 < y < 1, and 0 < x < 1-y, where c is a constant.

- (a) Determine c.
- (b) Compute $\mathbb{P}(Y < X \mid X \leq 1/4)$.

Answer Keys.

1(a) $f_X(x) = x/2$ for $0 \le x \le 2$, $f_Y(y) = \frac{3y^2}{8}$ for $0 \le y \le 2$ 1(b) Yes 1(c) $\mu_X = 4/3$, $\sigma_X^2 = 2/9$ 1(d) 3/5 2(b) $f_X(x) = \frac{1}{10}$ for $0 \le x \le 10$. 2(c) $h(y|x) = \frac{1}{4}$ for $10 - x \le y \le 14 - x$ 2(d) $\mu_{Y|x} = 12 - x$ for $0 \le x \le 10$. 3(a) $\frac{2x + 3y^2}{3y^2 + 1}$ 3(b) $\frac{9y^2 + 4}{6(3y^2 + 1)}$ 3(c) (i) 5/4 (ii) 1/2 4(a) $c = \frac{1}{8}$ 4(b) 29/93