凸透镜成像规律的严格证明

我们都知道,凸透镜有如下表的成像规律(应用略):

物距 (u)	像距 (v)	正倒	大小	虚实
u > 2f	f < v < 2f	倒立	缩小	实像
u = 2f	v = 2f	倒立	等大	实像
f < u < 2f	v > 2f	倒立	放大	实像
u = f				不成像
u < f	v > f	正立	放大	虚像

下面,我们把它抽象在一个平面中.如图1,坐标系的y轴代表凸透镜,x轴为凸 透镜的主光轴,点O是凸透镜的光心, F_1 , F_2 是凸透镜的两个焦点, G_1 , G_2 是凸透镜的两个二倍焦点处.

1 证明部分

首先,我们规定: $F_1(-f,0)$, $F_2(f,0)$, $G_1(-2f,0)$, $G_2(2f,0)$.

1.1 当 u > 2f 时的情况

如图 2, AB 是物体,且 A(m,0), B(m,n), B-M-B' 是平行于 x 轴的一条入射光线,交 y 轴于点 M(0,n), B-O-B' 是过光心的光线,两条光线交于点 B',得到点 A 的像 A' (注:上述点的坐标,在讨论其他情况时相同,后面不再说明).

由于
$$BM$$
和 MB' 都是直线,于是可设折线 $l_1: B-M-B': y = \begin{cases} n, & m \leq x < 0 \\ ax+b, & x \geq 0 \end{cases}$,则 $\begin{cases} b=n \\ af+b=0 \end{cases}$,解得 $\begin{cases} a=-\frac{n}{f} \\ b=n \end{cases}$

所以
$$l_1: y = \begin{cases} n, & m \leq x < 0 \\ -\frac{n}{f}x + n, & x \geq 0 \end{cases}$$
. 同理,设直线 $l_2: BB': y = ax + b$,则 $\begin{cases} am + b = n \\ b = 0 \end{cases}$,解得 $\begin{cases} a = \frac{n}{m}, \text{ 所以 } l_2: y = \frac{n}{m}x. \end{cases}$

由于
$$BM$$
和 MB' 都是直线,于是可设折线 l_1 : $B-M-B'$: $y=\begin{cases} n, & m \leqslant x < 0 \\ ax+b, & x \geqslant 0 \end{cases}$,则 $\begin{cases} b=n \\ af+b=0 \end{cases}$,解得 $\begin{cases} a=-\frac{n}{f} \\ b=n \end{cases}$ 所以 l_1 : $y=\begin{cases} n, & m \leqslant x < 0 \\ -\frac{n}{f}x+n, & x \geqslant 0 \end{cases}$ 。 同理,设直线 l_2 : BB' : $y=ax+b$,则 $\begin{cases} am+b=n \\ b=0 \end{cases}$,解得 $\begin{cases} a=\frac{n}{m} \\ b=0 \end{cases}$,所以 l_2 : $y=\frac{n}{m}x$. 由于点 B' 是 l_1 与 l_2 的交点,设 $B'(a,b)$,则 $\begin{cases} -\frac{n}{f}a+n=b \\ \frac{n}{m}a=b \end{cases}$,解得 $\begin{cases} a=\frac{mf}{m+f} \\ b=\frac{nf}{m+f} \end{cases}$,即 B' ($\frac{mf}{m+f}$, $\frac{nf}{m+f}$). 于是,我们提出下面

的命题: $\forall m \in (-\infty, -2f), x_{B'} \in (x_{F_2}, x_{G_2})$. 即如果 m < -2f < 0, 那么 $f < \frac{mf}{m+f} < 2f$.

由不等式的性质可知,
$$f < \frac{mf}{m+f} < 2f \Leftrightarrow 1 < \frac{m}{m+f} < 2 \Leftrightarrow \begin{cases} \frac{m}{m+f} > 1 \Leftrightarrow m < m+f \Leftrightarrow f > 0 \\ \frac{m}{m+f} < 2 \Leftrightarrow m > 2m+2f \Leftrightarrow m+2f < 0 \end{cases}$$
,上面二式显

然成立.

所以,f < v < 2f成立.

1.2 当 u=2f 时的情况

如图 3,点 A 与点 G_1 重合,所以此时 A(-2f,0),B(-2f,n). 由 1.1 可知, $B'\left(\frac{mf}{m+f},\frac{nf}{m+f}\right)$,令 m=-2f,代入得 B'(2f,-n),又 $G_2(2f,0)$,所以 v=2f 成立.

1.3 当f < u < 2f时的情况

如图 4,点 A 在线段 G_1F_1 上,由 1.1 可知, $B'\left(\frac{mf}{m+f},\frac{nf}{m+f}\right)$. 于是,我们提出下面的命题: $\forall m \in (-2f,-f),x_B \in (x_{G_2},+\infty)$. 即如果 -2f < m < -f < 0,那么 $\frac{mf}{m+f} > 2f$.

1.4 当 u = f 时的情况

如图 5,点 A 与点 F_1 重合,所以此时 A(-f,0),B(-f,n). 由 1.1 可知, $l_1: y = -\frac{n}{f}x + n$, $l_2: y = \frac{n}{m}x$,令 m = -f,代 入得 $l_1: y = -\frac{n}{f}x + n$, $l_2: y = -\frac{n}{f}x$. 可以发现, l_1 与 l_2 的斜率都是 $-\frac{n}{f}$,所以 l_1, l_2 与 x 轴的夹角都是 $\arctan\left(-\frac{n}{f}\right)$. 所 以 l_1 // l_2 . 由此得出,此时点 B' 不存在; l_1 与 l_2 之间的距离不变,因此光斑的大小也不变.

1.5 当 0 < u < f 时的情况

如图 6,点 A 在线段 OF_1 上,由 1.1 可知, $B'\left(\frac{mf}{m+f}, \frac{nf}{m+f}\right)$. 于是,我们提出下面的命题: $\forall m \in (-f,0), x_B \in (-\infty, -f)$. 即如果 -f < m < 0,那么 $\frac{mf}{m+f} < m$.

综上所述,凸透镜成像规律证毕.

2 其它问题

对于凸透镜的成像,还有一些问题需要研究,接下来我们逐一地探讨.

2.1 光斑面积的变化

(1) 当u > f时,光斑的面积S有什么变化?

这里光斑的面积是指直线 $l: x = k(k \ge m)$ 在光线上的圆形截面的面积.

当
$$m \le k < 0$$
 时, l_1 和 l_2 与 l 的交点分别为 (k,n) 和 $\left(k,\frac{nk}{m}\right)$,所以 $S = \pi \left(\frac{n-\frac{nk}{m}}{2}\right)^2 = \frac{\pi n^2(m-k)^2}{4m^2}$;当 $k \ge 0$ 时, l_1 和 l_2 与 l 的交点分别为 $\left(k,-\frac{nk}{f}+n\right)$ 和 $\left(k,\frac{nk}{m}\right)$,所以 $S = \pi \left(\frac{\left|-\frac{nk}{f}+n-\frac{nk}{m}\right|}{2}\right)^2 = \frac{\pi(mnk+nkf-mnf)^2}{4f^2m^2}$. 综上所述,可以得出结论: $S = \begin{cases} \frac{\pi n^2(m-k)^2}{4m^2}, & m \le k < 0 \\ \frac{\pi n^2(mk+kf-mf)^2}{4f^2m^2}, & k \ge 0 \end{cases}$. 当 $k = m$ 或 $k = \frac{mf}{m+f}$ 时, S 有最小值 0 ;当 $k = 0$ 时, S 有最大值 $\frac{\pi n^2}{4}$.

特别地, 当
$$u=v=2f$$
 时, $m=-2f$ 时, $S=\begin{cases} \frac{\pi n^2(-2f-k)^2}{4(-2f)^2} &=\frac{\pi n^2(k+2f)^2}{16f^2}, \ m\leqslant k<0\\ \frac{\pi n^2(-2fk+kf+2f^2)^2}{4f^2(-2f)^2} &=\frac{\pi n^2(k-2f)^2}{16f^2}, \ k\geqslant 0 \end{cases}$

(2) 当u = f时,光斑的面积S有什么变化?

由 1.4 可知,
$$l_1$$
: $y = -\frac{n}{f}x + n$, l_2 : $y = -\frac{n}{f}x$.
$$l_1, l_2 = l \text{ 的交点分别为}\left(k, -\frac{nk}{f} + n\right), \left(k, -\frac{nk}{f}\right), \text{则 } S = \pi \left[\frac{\left(-\frac{nk}{f} + n\right) - \left(-\frac{nk}{f}\right)}{2}\right]^2 = \frac{\pi n^2}{4}.$$

(3) 当 0 < u < f 时,光斑的面积 S 有什么变化?

这里光斑的面积是指直线 $l: x = k(k \ge m)$ 在光线(包括光线的反向延长线)上的圆形截面的面积. 由 (1) 知,此时 $S = \frac{\pi n^2 (mk + kf - mf)^2}{4f^2 m^2}$.

2.2 直线的夹角

(1) 1 与 2 的夹角

设
$$l_1$$
 与 l_2 的夹角为 $\theta(u \neq f)$. 由 1.1 知 $B'(\frac{mf}{m+f}, \frac{nf}{m+f})$, $M(0,n)$. 则 $OM = n$, $OB' = \sqrt{\left(\frac{mf}{m+f}\right)^2 + \left(\frac{nf}{m+f}\right)^2} = \frac{f}{m+f}\sqrt{m^2+n^2}$, $B'M = \sqrt{\left(\frac{mf}{m+f}\right)^2 + \left(\frac{nf}{m+f} - n\right)^2} = \frac{m}{m+f}\sqrt{f^2+n^2}$. 在 $\triangle OB'M$ 中,由余弦定理,有
$$\cos\theta = \frac{OB'^2 + B'M^2 - OM^2}{2 \cdot OB' \cdot B'M} = \frac{\frac{f^2}{(m+f)^2}(m^2+n^2) + \frac{m^2}{(m+f)}(f^2+n^2) - n^2}{2 \cdot \frac{f}{m+f}\sqrt{m^2+n^2} \cdot \frac{m}{m+f}\sqrt{f^2+n^2}} = \frac{\sqrt{(mf-n^2)(m^2+n^2)(f^2+n^2)}}{(m^2+n^2)(f^2+n^2)}$$
. 则 $\theta = \arccos\frac{\sqrt{(mf-n^2)(m^2+n^2)(f^2+n^2)}}{(m^2+n^2)(f^2+n^2)}$.

(2) 入射光线与折射光线的夹角

如图 7, 折线 B-N-B' 是一条光线, 其中, 点 $N(0,t)(t \in (0,n])$ 在线段 $OM \perp BN$ 是入射光线, NB' 是折射光线.

设 BN与 NB' 的夹角为 θ . 仿照 (1) 的方法,不难得到 $BB' = \frac{m}{m+f} \sqrt{m^2 + n^2}$, $BN = \sqrt{m^2 + (n-t)^2}$, $NB' = \frac{\sqrt{m^2 f^2 + (tm + tf - nf)^2}}{m+f}$,则由余弦定理,有 $\theta = \arccos \frac{BN^2 + NB'^2 - BB'^2}{2 \cdot BN \cdot NB'} = \arccos \frac{m^2 + (n-t)^2 + \frac{m^2 f^2 + (tm + tf - nf)^2}{(m+f)} - \frac{m^2 (m^2 + n^2)}{(m+f)^2}}{2 \cdot \sqrt{m^2 + (n-t)^2} \cdot \frac{\sqrt{m^2 f^2 + (tm + tf - nf)^2}}{m+f}}$ $= \arccos \frac{fm^3 + f^2m^2 + f^2n^2 + f^2t^2 + m^2t^2 + (fn - mt)(mn - 2ft) - 3fmnt}{(m+f)\sqrt{(m^2 + n^2 - 2nt + t^2)(f^2m^2 + f^2n^2 + f^2t^2 + m^2t^2 - 2f^2nt + 2fmt^2 - 2fmnt)}}.$ 特别地,当 t = n,即点 M与点 N重合时, $\theta = \angle BMB' = \arccos \frac{f\sqrt{f^2 + n^2}}{f^2 + m^2}$.

2.3 虚像的成像位置

我们在物理课上知道,当0 < u < f时,虚像一定比物更远离凸透镜,但是虚像与焦点以及二倍焦点处的位置关系是不定的.下面,我们来讨论 $\frac{mf}{m+f}$ 与-f,-2f的大小关系.

当 $-f \le \frac{mf}{m+f} < 0$ 时,解得 $-\frac{f}{2} \le m < 0$;当 $-2f \le \frac{mf}{m+f} < -f$ 时,解得 $-\frac{2}{3}f \le m < -\frac{f}{2}$;当 $\frac{mf}{m+f} < -2f$ 时,解得 $-\frac{2}{3}f$.

综上,
$$\frac{mf}{m+f} \in \begin{cases} [-f,0), & m \in \left[-\frac{f}{2},0\right), & A' \stackrel{\cdot}{\to} OF_1 \stackrel{\cdot}{\bot} \\ [-2f,-f), & m \in \left[-\frac{2}{3}f,-\frac{f}{2}\right), & A' \stackrel{\cdot}{\to} F_1G_1 \stackrel{\cdot}{\bot} \\ (-\infty,-2f), & m \in \left(-\infty,-\frac{2}{3}f\right), & A' \stackrel{\cdot}{\to} G_1 \stackrel{\cdot}{\to} 0 \end{cases}$$

2.4 透镜成像公式

在光学中,透镜的物距、像距与焦距满足 $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$. 我们研究的薄透镜满足这一规律. 下面是证明过程.

由
$$1.1$$
 知 , $u=-x_A=-m$, $v=x_{A'}=\frac{mf}{m+f}$. 则 $\frac{1}{u}+\frac{1}{v}=-\frac{1}{m}+\frac{m+f}{mf}=\frac{-f+m+f}{mf}=\frac{1}{f}$,证毕 .

至此(1.1-2.4),我们对凸透镜成像规律已经给出了证明,并解决了一些问题.

3 注

- (1) 此问题在2021.11.30提出,在2021.12.5被完全证明;
- (2) 编辑软件:EduEditer;
- (3)字数统计: 3029字(1.1-2.4).