591AA 21/22 - ELENCO DEI PROBLEMI 8

Problema 1. Quali dei seguenti sono sistemi lineari:

- (a) $p \in \mathbb{R}[x]$ tali che p(1) = 1, p(2) = 2, p(3) = 3.
- (b) $p \in \mathbb{R}[x]$ tale che dp/dx + p(x) = x.
- (c) $p \in \mathbb{R}[x]$ tale che $(dp/dx)^2 + p(x) = x$

Problema 2.

- (a) Trova polinomi tali che p(-1) = 1, p(0) = 0, p(1) = 1.
- (b) Trova polinomi tali che p(x) + p(-x) = 1.

Problema 3. Sia $T = \{(1,1), (1,-1), (-1,1), (-1,-1)\}$. Trova tutte le funzioni da T a $\mathbb R$ tali che f(x,y) + f(-x,-y) = xy. [Qui stiamo usando il fatto che $(x,y) \in T \implies (-x,-y) \in T$].

Problema 4. Moltiplica le seguenti matrici e vettori.

$$\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 2 & 1 \\ 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Problema 5. Trasposizione di una matrice.

$$A = (a_{ij}) \implies A^t = (\alpha_{ij}), \quad \alpha_{ij} = a_{ji}$$

Per esempio

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}^t = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$

Trova tutte le matrici 2x2 tali che

$$A + A^t = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Problema 6. Scrivi i seguenti sistemi lineari in forma matriciale.

(a)
$$x + y + z = 1$$
, $x - 2y + 3z = 2$.

(b)
$$x + 2y + 3z = 6$$
, $3x + y + 2z = 6$, $x + y + z = 3$.

Problema 7. Scrivi le matrici aumentate per i sistemi lineari in Problema 6.

Problema 8. Trova i pivot delle seguenti matrici.

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 0 & 1 & 1
\end{pmatrix}, \qquad
\begin{pmatrix}
0 & 1 & -1 & 2 & 0 \\
0 & 0 & 0 & 5 & 2 \\
0 & 0 & 0 & 3 & 4
\end{pmatrix}$$

Problema 9. Risolvi i seguenti sistemi linear

$$\begin{pmatrix}
1 & -3 & -2 & | 6 \\
0 & 2 & 1 & | -4 \\
0 & 0 & 7 & | 14
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 & 0 & | & 0 \\
0 & 0 & 1 & 1 & | & 0
\end{pmatrix}$$