LE TRAITEMENT D'IMAGES

- IMPLÉMENTATION -

Jonathan Fabrizio
http://jo.fabrizio.free.fr

Implémentation

FASTER - FASTER - FASTER

Illustrations wikimedia.org

Introduction

Efficacité

- Taille des images
- Contrainte sur le temps de réponse
- Contrainte sur le matériel (téléphone...)

Solutions

- 1. Bien penser ses algorithmes (et ses structures de donnes)
- 2. Revoir son implémentation sur CPU
- 3. Éventuellement envisager une implémentation sur GPU

Introduction

Efficacité

- Taille des images
- Contrainte sur le temps de réponse
- Contrainte sur le matériel (téléphone...)

Solutions

- 1. Bien penser ses algorithmes (et ses structures de donnes)
- 2. Revoir son implémentation sur CPU
- 3. Éventuellement envisager une implémentation sur GPU

- Bien choisir les structures de données
 - Représentation des images
 - •
- Repenser les algorithmes
 - FFT
 - •

- Comment représenter une image
 - Matrice
 - Vecteur
 - Arbre/graph...
 - Max Tree, Min Tree
 - Tree of Shapes...
 - •
- Matrice, vecteur : bien respecter le cache de la machine !

- Comment représenter une image
 - Max Tree

Max-Tree correspondant

Comment représenter une image

Max Tree

Image

Max-Tree correspondant

- Comment représenter une image
 - Max Tree

- Comment représenter une image
 - Max Tree

- Exemple :
 - Calcul de l'ouverture ultime
 - Long dans le cas général
 - Solution : utilisation du max-tree

- Exemple :
 - Calcul de l'ouverture ultime

- Exemple :
 - Calcul de l'ouverture ultime

- Exemple :
 - Calcul de l'ouverture ultime

Exemple :

- Exemple :
 - Calcul de l'ouverture ultime
 - Résultats :

```
Format 128x128 256x256 512x512 1024x10242048x2048

Nb of pixels 16384 65536 262144 1048576 4194304

Time (ms) 0,18 2,39 12,01 52,04 235,53
```

 Un problème difficile à la base est rendu plus simple et plus rapide en changeant le codage de l'image.

- Remarque :
 - Calcul de l'ouverture ultime

 Calcul possible sur une partie de l'image (une branche de l'arbre)!

- Repenser les algorithmes
 - Exemple FFT
 - Implémentation des filtres
 - L'image intégrable

- Calcul rapide de la DFT
 - FFT (1965 Cooley et Tukey) (Gauss 1805??)

- Calcul rapide de la DFT
 - FFT (1965 Cooley et Tukey) (Gauss 1805??)
 - The DFT: $X(l) = \sum_{k=0}^{N-1} x(k)e^{\frac{-2j\pi kl}{N}}, l = 0, ..., N-1$
 - N complex mults, N-1 complex add pour chaque I.
 - O(N²)

Calcul rapide de la DFT

$$X(l) = \sum_{k=0}^{N-1} x(k)e^{\frac{-2 j \pi k l}{N}}, l = 0,..., N-1$$

Exploiter la symétrie

$$W_{N} = e^{\frac{-2j\pi}{N}}$$
 $W_{N}^{k(N-n)} = W_{N}^{-kn} = (W_{N}^{kn})^{*}$
 $(W_{N}^{k(n)} = 1)$
 $W_{N}^{k(n)} = W_{N}^{k(N+n)} = W_{N}^{(k+N)n}$

- Calcul rapide de la DFT
 - On suppose N = 2^m

$$X(l) = \sum_{k \text{ pair}} x(k) W_N^{lk} + \sum_{k \text{ impair}} x(k) W_N^{lk}$$

$$X(l) = \sum_{k=0}^{N/2-1} x(2k)e^{\frac{-2j\pi 2kl}{N}} + \sum_{k\neq 0}^{N/2-1} x(2k+1)e^{\frac{-2j\pi 2(k+1)l}{N}}$$

- Calcul rapide de la DFT
 - On suppose N = 2^m

$$X(l) = \sum_{k=0}^{N/2-1} x(2k)e^{\frac{-2j\pi 2kl}{N}} + \sum_{k=0}^{N/2-1} x(2k+1)e^{\frac{-2j\pi 2(k+1)l}{N}}$$

$$X(l) = \sum_{k=0}^{N/2-1} x(2k) W_N^{2kl} + \sum_{k=0}^{N/2-1} x(2k+1) W_N^{(2k+1)l}$$

- Calcul rapide de la DFT
 - On suppose N = 2^m

$$X(l) = \sum_{k=0}^{N/2-1} x(2k) W_N^{2kl} + \sum_{k=0}^{N/2-1} x(2k+1) W_N^{(2k+1)l}$$

$$X(l) = \sum_{k=0}^{N/2-1} x(2k)(W_N^2)^{kl} + W_N^l \sum_{k=0}^{N/2-1} x(2k+1)(W_N^2)^{kl} \qquad \qquad W_N^2 = W_{N/2}$$

$$W_N^2 = W_{N/2}$$

$$X(l) = \sum_{k=0}^{N/2-1} x(2k) e^{\frac{-2j\pi 2kl}{N}} + e^{\frac{-2j\pi 2kl}{N}} \sum_{k\neq 0} x(2k+1) e^{\frac{-2j\pi 2kl}{N}}$$

- Calcul rapide de la DFT
 - On suppose N = 2^m

$$X(l) = \sum_{k=0}^{N/2-1} x(2k) W_N^{2kl} + \sum_{k=0}^{N/2-1} x(2k+1) W_N^{(2k+1)l}$$

$$X(l) = \sum_{k=0}^{N/2-1} x(2k) W_{N/2}^{kl} + W_N^l \sum_{k=0}^{N/2-1} x(2k+1) W_{N/2}^{kl}$$

$$W_N^2 = W_{N/2}$$

$$X(l) = \sum_{k=0}^{N/2-1} x(2k)e^{\frac{-2j\pi 2kl}{N}} + e^{\frac{-2j\pi 2kl}{N}} \sum_{k=0}^{N/2-1} x(2k+1)e^{\frac{-2j\pi 2kl}{N}}$$

Calcul rapide de la DFT

$$X(l) = \sum_{k=0}^{N/2-1} x(2k) W_{N/2}^{kl} + W_N^l \sum_{k=0}^{N/2-1} x(2k+1) W_{N/2}^{kl}$$

 N/2 DFT des échantillons pairs, N/2 DFT des échantillons impairs.

$$X(l) = X_p(l) + W_N^l X_i(l)$$

Somme de deux DFTs de N/2 échantillons

Calcul rapide de la DFT

$$X(l) = X_p(l) + W_N^l X_i(l)$$

• 2(N/2)² + N multiplications

- Calcul rapide de la DFT
 - N/2, N/4, ..., N/2p=1

- 1:2 $(N/2)^2 + N = N^2/2 + N$
- 2:2 $(2(N/4)^2+N/2) + N = N^2/4+2N$
- •
- Nlog₂N

- Résultat :
 - DFT O(N²)
 - FFT O(N log₂ N)

L'image intégrable

L'image intégrable

Aire(ABCD) =

L'image intégrable

Aire(ABCD) = C - B - D + A

- Implémentation des filtres
 - Décomposition des convolutions (filtres séparables)
 - $-N \times N \rightarrow N + N$
 - Prise en compte des bordures ?