Nome: Rogério Marcos Fernandes Neto NUSP: 10284632 Curso: Bacharelado em Ciência da Computação MAC0320 - Introdução à Teoria dos Grafos

LISTA 9

E34. Mostre que para todo par (k, l) tais que $1 \le k \le l$, existe um grafo G tal que $\kappa G = k$ e $\kappa'(G) = l$.

Solução:

Prova. Seja G_1 um grafo completo com 2l arestas. Seja G_2 o grafo composto por G_1 mais um conjunto S de k vértices, onde cada um dos k vértices possui um aresta que se conecta a cada um dos vértices de G_1 . Definimos G como sendo o grafo composto por G_2 mais um vértice v que possui l arestas que o conecta a vértices de S.

Temos que $\kappa(G)=k$. De fato, por construção, a única forma de tornarmos o grafo desconexo pela remoção de vértices é removendo completamente o conjunto S. Como |S|=k, segue que $\kappa(G)=k$. Temos que $\kappa'(G)=l$. De fato, por construção, a única forma de tornar esse grafo desconexo pela remoção de arestas é removendo as l arestas que conectam o vértice v à S. Portanto, $\kappa'(G)=l$.

E35. Seja G um grafo k-conexo e seja G' o grafo obtido de G acrescentando-se um novo vértice e arestas ligando esse vértice a todos os vértices de G. Prove que G' é (k+1)-conexo.

Solução:

Prova. Seja G um grafo k-conexo e seja G' o grafo obtido de G acrescentando-se um novo vértice v e arestas ligando esse vértice a todos os vértices de G.

Suponha, por absurdo, que exista um conjunto separador $S \in V(G')$ com k vértices e seja H := G' - S. Sabemos que S deve conter v, caso contrário, existe um caminho entre quaisquer dois vértices x e y de H dado por (x,v,y), e portanto S não seria separador. Sabemos que G' - v = G é conexo. Portanto S - v deve ser um conjunto separador para G' - v = G, mas |S - v| = k - 1, o que contraria nossa hipótese sobre G ser k-conexo. Portanto, G' é (k+1)-conexo.

E36. Prove que se G é um grafo bipartido k-regular conexo, então G é 2-conexo.

[Sugestão: Suponha que G tenha um vértice-de-corte x. Então $G = G_1 \cup G_2$, e $V(G_1) \cap V(G_2) = \{x\}$. Analise a quantidade de arestas em G_1 (lembrando que G é k-regular) e deduza - por essa análise - alguma informação sobre k relativamente a $g_{G_1}(x)$, d emodo a obter uma contradição.]

Solução:

Prova. Seja G um grafo com uma bipartição (X,Y), k-regular e conexo.

Suponha, por absurdo, que G possui um vértice de corte x. Sem perda de generalidade, suponha que $x \in X$. Então existem dois conjuntos G_1 e G_2 tais que $G_1 \cup G_2 = G$, e $V(G_1) \cap V(G_2) = \{x\}$. G_1 também deve ser bipartido. Seja (X_1, Y_1) a bipartição de G_1 , com $X_1 \subset X$ e $Y_1 \subset Y$. Note que devemos ter

$$g_{G_1}(x) < k \tag{1}$$

pois, caso contrário, x não seria um vértice de corte. Além disso, o número de arestas que partem de X_1 para Y_1 deve ser igual ao número de arestas que parte de Y_1 para X_1 . Como $x \in X_1$, então temos que

$$(|X_1| - 1)k + g_{G_1}(x) = |Y_1|k$$

 $g_{G_1}(x) = (|Y_1| - |X_1| + 1)k$

Note que devemos ter $|Y_1| - |X_1| + 1 \ge 1$, pois x é vértice de corte. Mas então temos que

$$g_{G_1}(x) \ge k \tag{2}$$

que, por (1), é um absurdo.

E37 Prove que se G é grafo k-conexo, e $k \ge 2$, então qualquer conjunto de k-vértices de G pertence a um mesmo circuito de G. Tal circuito pode conter outros vértices adicionais além dos k vértices fixados.)

Prova. Seja G=(V,A)um grafo k-conexo,com $k\geq 2.$ Seja $S\subset V$ um conjunto qualquer de k vértices.

Suponha, por absurdo, que não exista um circuito que contenha todos os vértices de S. Seja $C = (v_1, ..., v_m)$ um circuito que possui a maior quantidade de vértices de vértices de S. Defina $S_1 := S \cap C$ e $S_2 := S - S_1$. Devemos ter $|S_1| \ge 2$, pois como $k \ge 2$ então, pelo **corolário** 8.3 entre quaisquer dois vértices $u \in w$ de G existem pelo menos dois caminhos independentes $P_1 \in P_2$ que ligam u a w e portanto $P_1 \cdot P_2^{-1}$ é um circuito que possui dois vértices de S.

Seja x um vértice qualquer de S_2 e seja $W \subseteq C$ um conjunto de vértices de tamanho $l = |S_1|$ tal que cada caminho do leque x - W - como definido e provado existência em aula - contenha somente um vértice de C. Tal leque divide o circuito C em l+1 seções da forma (v_i, \ldots, v_j) onde v_i e v_j pertencem ao leque. Portanto, pelo princípio da casa dos pombos existe pelo menos uma seção $P = (v_i, \ldots, v_j)$ de C tal que $P \cap S_1 = \{v_i, v_j\}$ ou $P \cap S_1 = \emptyset$. Seja P_1 e P_2 os caminhos do leque que contém v_i e v_j respectivamente. Então $(v_1, \ldots, v_i) \cdot P_1 \cdot P_2^{-1} \cdot (v_j, \ldots, v_m)$ é um circuito e contém mais vértces de S do que C, o que é um absurdo. Portanto deve existir um circuito que contém todos os vértices de S.

E38. Seja G = (V, A) um grafo 2-conexo de ordem n, e sejam v_1, v_2 , vértices de G. Sejam n_1 e n_2 inteiros positivos tais que $n_1 + n_2 = n$. Mostrque existe uma partição de V em $V_1 \cup V_2$ com $|V_1| = n_1$ e $|V_2| = n_2$, tal que $G[V_i]$ é conexo, e $v_i \in V_i$ para i = 1, 2.

Prova. Seja G = (V, A) um grafo 2-conexo de ordem n e sejam n_1 e n_2 inteiros positivos tais que $n_1 + n_2 = n$.

Tome T uma arvore geradora de G e particione V em partes T_1 e T_2 com $V(T_1) = V_1$ e $V(T_2) = V_2$ tais que $v_1 \in V_1$ e $v_2 \in V_2$. Se $|V_1| = n_1$ então não há o que provar. Portanto, suponha sem perda de generalidade que $|V_1| > n_1$. Nesse caso, iremos aplicar um procedimento a fim de pegar vértices de V_2 e tranferí-los para V_1 .

Enquanto tivermos $|V_1| > n_1$ faça o seguinte:

1. Se existe uma folha v diferente de de T_1 vizinha de algum vértice de T_2 faça:

$$2. T_1 \leftarrow T_1 - v T_2 \leftarrow T_2 + v$$

- 3. senão faça:
- 4. Seja x um vértice de T_1 mais distante possível de v_1 que possui algum vizinho de T_2 . Sabemos que tal vértice existe e é distinto de v_1 pois, caso contrário, então v_1 seria de corte em G, o que contradiz a hipótese sobre G.
- 5. Tome x com raiz de T_1 . Como x não é folha, então x deve ter pelo menos duas subárvores distintas. Sabemos também que nenhuma dessas subárvores possui um vértice w que possui vizinhos em T_2 , pois, caso tivesse, contradiria a hipótese sobre x ser mais distante de v_1 .
- 6. Para cada subárvore T_{1_i} de x faça:
- 7. Se T_{1_i} não contém v_1 faça:
- 8. Tome o vértice u filho de x. Como u não possui vizinhos em T_2 (linha 5), então u possui vizinho em outra sub T_{1_j} .
- 9. Tome k um vértice vizinho de u em T_{1_i} .
- 10. $x \leftarrow x T_{1}$, $k \leftarrow k + T_{1}$ \triangleright Transfere a subárvore de x para k
- 11. $T_1 \leftarrow T_1 x$ $T_2 \leftarrow T_2 + x$

Ao fim da última iteração do laço da linha 9, x contém apenas uma subárvore: a que contém v_1 . Portanto, agora é possível transferi-lo para a árvore T_2 sem perder a conexidade. Repetindo esse procedimento até atingirmos $|V_1| = |n_1|$ conseguimos a árvore específicada no enunciado.