Topic: Error or remainder of a series

Question: Estimate the remainder of the series using the first three terms.

$$\sum_{n=1}^{\infty} \frac{1}{3n^2 + 1}$$

Answer choices:

A
$$R_3 \le 0.0333$$

B
$$R_3 \le 0.3000$$

C
$$R_3 \le 0.2500$$

D
$$R_3 \le 0.3333$$

Solution: D

To find the remainder of the series, we'll need to

Estimate the total sum by calculating a partial sum for the series.

Use the **comparison test** to say whether the series converges or diverges.

Use the integral test to solve for the remainder.

The first thing we need to do is to find the sum of the first three terms s_3 of our original series a_n .

$$n = 1$$

$$a_1 = \frac{1}{3(1)^2 + 1}$$

$$a_1 = \frac{1}{4}$$

$$n = 2$$

$$a_2 = \frac{1}{3(2)^2 + 1}$$

$$a_2 = \frac{1}{13}$$

$$n = 3$$

$$a_3 = \frac{1}{3(3)^2 + 1}$$

$$a_3 = \frac{1}{28}$$

The sum of the first three terms of the series a_n is

$$s_3 = \frac{1}{4} + \frac{1}{13} + \frac{1}{28}$$

$$s_3 = 0.2500 + 0.0769 + 0.0357$$

$$s_3 = 0.3626$$

Since we've rounded our decimals, we'll say

$$s_3 \approx 0.3626$$

Next, we need to use the comparison test to figure out whether a_n converges or diverges. We will need to create a similar but simpler comparison series b_n . We can use the same numerator in b_n as the numerator from a_n , since it's already simple. For the denominator, we can use n^2 , since it's the element of the denominator that has the most impact on the series. The comparison series b_n will be

$$b_n = \frac{1}{n^2}$$

The comparison series b_n is a p-series where p=2. The p-series test tells us that the series

will converge when p > 1

will diverge when $p \le 1$

Since p = 2, we know that b_n converges.

To use the comparison test to show that a_n also converges, we have to show that $0 \le a_n \le b_n$. We'll find some of the first few values of the comparison series b_n and compare them to a_n . Let's use n = 1, 2, 3.

$$n = 1$$

$$b_1 = \frac{1}{(1)^2}$$

$$b_1 = 1$$

$$n = 2$$

$$b_2 = \frac{1}{(2)^2}$$

$$b_2 = \frac{1}{4}$$

$$n = 3$$

$$b_3 = \frac{1}{(3)^2}$$

$$b_3 = \frac{1}{9}$$

Looking at these three terms, we can see that all of our answers have $b_n > a_n$ as well as $a_n > 0$. Since we have verified $0 \le a_n \le b_n$, we can state that a_n converges.

Now that we know that the series converges, we'll use the integral test to find the remainder of the series a_n after the first three terms, R_3 . We'll call the remainder of the comparison series b_n after the first three terms, T_3 . Since we know that $0 \le a_n \le b_n$, and that a_n and b_n converge, we can say that $R_3 \le T_3$, which will be less than the total area under b_n .

$$R_3 \le T_3 \le \int_3^\infty b_n \ dx = \int_3^\infty f(x) \ dx$$

$$R_3 \le T_3 \le \int_3^\infty b_n \ dx = \int_3^\infty \frac{1}{x^2} \ dx$$

$$R_3 \le T_3 \le \int_3^\infty b_n \ dx = \int_3^\infty x^{-2} \ dx$$

$$R_3 \le \frac{x^{-1}}{-1} \bigg|_3^{\infty}$$

$$R_3 \le \lim_{b \to \infty} \frac{x^{-1}}{-1} \bigg|_3^b$$

$$R_3 \le \lim_{b \to \infty} -\frac{1}{x} \bigg|_3^b$$

$$R_3 \le \lim_{b \to \infty} -\frac{1}{b} - \left(-\frac{1}{3}\right)$$

$$R_3 \le \lim_{b \to \infty} -\frac{1}{b} + \frac{1}{3}$$

$$R_3 \le -\frac{1}{\infty} + \frac{1}{3}$$

$$R_3 \le 0 + \frac{1}{3}$$

$$R_3 \le \frac{1}{3}$$

$$R_3 \le 0.3333$$

The third partial sum of the series a_n is $s_3 \approx 0.3626$, with error $R_3 \leq 0.3333$.

Topic: Error or remainder of a series

Question: Estimate the remainder of the series using the first five terms.

$$\sum_{n=1}^{\infty} \frac{n}{5n^4 + 2}$$

Answer choices:

A
$$R_5 \le 0.0800$$

B
$$R_5 \le 0.2500$$

C
$$R_5 \le 0.0200$$

D
$$R_5 \le 0.2000$$

Solution: C

To find the remainder of the series, we'll need to

Estimate the total sum by calculating a partial sum for the series.

Use the **comparison test** to say whether the series converges or diverges.

Use the integral test to solve for the remainder.

The first thing we need to do is to find the sum of the first five terms s_5 of our original series a_n .

$$n = 1$$

$$a_1 = \frac{(1)}{5(1)^4 + 2}$$

$$a_1 = \frac{1}{7}$$

$$n = 2$$

$$a_2 = \frac{(2)}{5(2)^4 + 2}$$

$$a_2 = \frac{1}{41}$$

$$n = 3$$

$$a_3 = \frac{(3)}{5(3)^4 + 2}$$

$$a_3 = \frac{3}{407}$$

$$n = 4$$

$$a_4 = \frac{(4)}{5(4)^4 + 2}$$

$$a_4 = \frac{2}{641}$$

$$n = 5$$

$$a_5 = \frac{(5)}{5(5)^4 + 2}$$

$$a_5 = \frac{5}{3,127}$$

The sum of the first five terms of the series a_n is

$$s_5 = \frac{1}{7} + \frac{1}{41} + \frac{3}{407} + \frac{2}{641} + \frac{5}{3127}$$

$$s_5 = 0.1429 + 0.0244 + 0.0074 + 0.0031 + 0.0016$$

$$s_5 = 0.1794$$

Since we've rounded our decimals, we'll say

$$s_5 \approx 0.1794$$

Next, we need to use the comparison test to figure out whether a_n converges or diverges. We will need to create a similar but simpler comparison series b_n . We can use the same numerator in b_n as the numerator from a_n , since it's already pretty simple. For the denominator, we can use n^4 , since it's the element of the denominator that has the most impact on the series. The comparison series b_n will be

$$b_n = \frac{n}{n^4}$$

$$b_n = \frac{1}{n^3}$$

The comparison series b_n is a p-series where p=3. The p-series test tells us that the series

will converge when p > 1

will diverge when $p \le 1$

Since p = 3, we know that b_n converges.

To use the comparison test to show that a_n also converges, we have to show that $0 \le a_n \le b_n$. We'll find some of the first few values of the comparison series b_n and compare them to a_n . Let's use n = 1, 2, 3.

$$n = 1$$
 $b_1 = \frac{1}{(1)^3}$ $b_1 = 1$ $n = 2$ $b_2 = \frac{1}{(2)^3}$ $b_2 = \frac{1}{8}$ $b_3 = \frac{1}{(3)^3}$ $b_3 = \frac{1}{27}$

Looking at these three terms, we can see that all of our answers have $b_n > a_n$ as well as $a_n > 0$. Since we have verified $0 \le a_n \le b_n$, we can state that a_n converges.

Now that we know that the series converges, we'll use the integral test to find the remainder of the series a_n after the first five terms, R_5 . We'll call the remainder of the comparison series b_n after the first five terms, T_5 . Since we know that $0 \le a_n \le b_n$, and that a_n and b_n converge, we can say that $R_5 \le T_5$, which will be less than the total area under b_n .

$$R_5 \le T_5 \le \int_5^\infty b_n \ dx = \int_5^\infty f(x) \ dx$$

$$R_5 \le T_5 \le \int_5^\infty b_n \ dx = \int_5^\infty \frac{1}{x^3} \ dx$$

$$R_5 \le T_5 \le \int_5^\infty b_n \ dx = \int_5^\infty x^{-3} \ dx$$

$$R_5 \le \frac{x^{-2}}{-2} \bigg|_5^{\infty}$$

$$R_5 \le \lim_{b \to \infty} \frac{x^{-2}}{-2} \bigg|_5^b$$

$$R_5 \le \lim_{b \to \infty} -\frac{1}{2x^2} \bigg|_5^b$$

$$R_5 \le \lim_{b \to \infty} -\frac{1}{2(b)^2} - \left[-\frac{1}{2(5)^2} \right]$$

$$R_5 \le \lim_{b \to \infty} -\frac{1}{2b^2} + \frac{1}{50}$$

$$R_5 \le -\frac{1}{\infty} + \frac{1}{50}$$

$$R_5 \le 0 + \frac{1}{50}$$

$$R_5 \le \frac{1}{50}$$

$$R_5 \le 0.0200$$

The fifth partial sum of the series a_n is $s_5 \approx 0.1794$, with error $R_5 \leq 0.0200$.

Topic: Error or remainder of a series

Question: Estimate the remainder of the series using the first seven terms.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^4 + 1}}$$

Answer choices:

A
$$R_7 \le 0.1429$$

B
$$R_7 \le 0.0204$$

C
$$R_7 \le 0.2858$$

D
$$R_7 \le 0.0408$$

Solution: A

To find the remainder of the series, we'll need to

Estimate the total sum by calculating a partial sum for the series.

Use the **comparison test** to say whether the series converges or diverges.

Use the integral test to solve for the remainder.

The first thing we need to do is to find the sum of the first seven terms s_7 of our original series a_n .

$$n = 1$$

$$a_1 = \frac{1}{\sqrt{2(1)^4 + 1}}$$

$$a_1 = \frac{1}{\sqrt{3}}$$

$$n = 2$$

$$a_2 = \frac{1}{\sqrt{2(2)^4 + 1}}$$

$$a_2 = \frac{1}{\sqrt{33}}$$

$$n = 3$$

$$a_3 = \frac{1}{\sqrt{2(3)^4 + 1}}$$

$$a_3 = \frac{1}{\sqrt{163}}$$

$$n = 4$$

$$a_4 = \frac{1}{\sqrt{2(4)^4 + 1}}$$

$$a_4 = \frac{1}{\sqrt{513}}$$

$$n = 5$$

$$a_5 = \frac{1}{\sqrt{2(5)^4 + 1}}$$

$$a_5 = \frac{1}{\sqrt{1,251}}$$

$$n = 6$$

$$a_6 = \frac{1}{\sqrt{2(6)^4 + 1}}$$

$$a_6 = \frac{1}{\sqrt{2,593}}$$

$$n = 7$$
 $a_7 = \frac{1}{\sqrt{2(7)^4 + 1}}$ $a_7 = \frac{1}{\sqrt{4,803}}$

The sum of the first seven terms of the series a_n is

$$s_7 = \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{33}} + \frac{1}{\sqrt{163}} + \frac{1}{\sqrt{513}} + \frac{1}{\sqrt{1,251}} + \frac{1}{\sqrt{2,593}} + \frac{1}{\sqrt{4,803}}$$

$$s_7 = 0.5774 + 0.1741 + 0.0783 + 0.0442 + 0.0283 + 0.0196 + 0.0144$$

$$s_7 = 0.9363$$

Since we've rounded our decimals, we'll say

$$s_7 \approx 0.9363$$

Next, we need to use the comparison test to figure out whether a_n converges or diverges. We will need to create a similar but simpler comparison series b_n . We can use the same numerator in b_n as the numerator from a_n , since it's already simple. For the denominator, we can use n^2 (the square root of n^4), since it's the element of the denominator that has the most impact on the series. The comparison series b_n will be

$$b_n = \frac{1}{n^2}$$

The comparison series b_n is a p-series where p=2. The p-series test tells us that the series

will converge when p > 1

will diverge when $p \le 1$

Since p = 2, we know that b_n converges.

To use the comparison test to show that a_n also converges, we have to show that $0 \le a_n \le b_n$. We'll find some of the first few values of the comparison series b_n and compare them to a_n . Let's use n = 1, 2, 3.

$$n = 1$$

$$b_1 = \frac{1}{1^2}$$

$$b_1 = 1$$

$$n = 2$$

$$b_2 = \frac{1}{2^2}$$

$$b_2 = \frac{1}{4}$$

$$n = 3$$

$$b_3 = \frac{1}{32}$$

$$b_3 = \frac{1}{9}$$

Looking at these three terms, we can see that all of our answers have $b_n > a_n$ as well as $a_n > 0$. Since we have verified $0 \le a_n \le b_n$, we can state that a_n converges.

Now that we know that the series converges, we'll use the integral test to find the remainder of the series a_n after the first seven terms, R_7 . We'll call the remainder of the comparison series b_n after the first seven terms, T_7 . Since we know that $0 \le a_n \le b_n$, and that a_n and b_n converge, we can say that $R_7 \le T_7$, which will be less than the total area under b_n .

$$R_7 \le T_7 \le \int_7^\infty b_n \ dx = \int_7^\infty f(x) \ dx$$

$$R_7 \le T_7 \le \int_7^\infty b_n \ dx = \int_7^\infty \frac{1}{x^2} \ dx$$

$$R_7 \le T_7 \le \int_7^\infty b_n \ dx = \int_7^\infty x^{-2} \ dx$$

$$R_7 \le \frac{x^{-1}}{-1} \bigg|_7^{\infty}$$

$$R_7 \le -\frac{1}{x} \Big|_{7}^{\infty}$$

$$R_7 \le \lim_{b \to \infty} -\frac{1}{x} \bigg|_{7}^{b}$$

$$R_7 \le \lim_{b \to \infty} -\frac{1}{b} - \left(-\frac{1}{7}\right)$$

$$R_7 \le -\frac{1}{\infty} + \frac{1}{7}$$

$$R_7 \le 0 + \frac{1}{7}$$

$$R_7 \le \frac{1}{7}$$

$$R_7 \le 0.1429$$

The seventh partial sum of the series a_n is $s_7 \approx 0.9363$, with error $R_7 \leq 0.1429$.