Introduction to Non-Linear Models

Máster Universitario en Ciencia de Datos - Métodos Avanzados en Aprendizaje Automático

Carlos María Alaíz Gudín

Escuela Politécnica Superior Universidad Autónoma de Madrid

Academic Year 2021/22

Contents

Introduction

@ Generalized Linear Models

3 Kernel Ridge Regression

Introduction

Limitation of the Linear Models

- Linear models are based on a strong assumption about the data:
 - Regression There is a linear relation between inputs and output. Classification The classes are linearly separable.
- If such a relation is real, they are a good choice.
- The expressivity of linear models is very limited.
- The number of degrees of freedom corresponds to the number of input features d (plus the bias).
 - They are complex enough if *d* is large, or if the number of samples *N* is small.
- In many situations their underlying assumption is not true, and their expressivity is not enough.

Notebook

Limitation of Linear Models: Regression Classification

Limitation of the Linear Models: Not Always Trivial

- It is not always easy to determine if linear models are appropriate or not for a particular dataset:
 - In a multidimensional context plotting the dataset is not enough.
 - Even if $N \gg d$, maybe there exists a linear relation (perhaps masked by the noise).
 - Even if $d \gg N$, maybe there is a lot of noise, and the effective dimension is small.
- It is always a good idea to start with a linear model and check the performance.

Notebook

Limitation of Linear Models: Not Always Trivial

Generalized Linear Models

Generalized Linear Models

Key Idea

- Instead of building the model over the original features, expand the data in a non-linear way.
- A non-linear mapping $\phi : \mathbb{R}^d \to \mathbb{R}^D$ is used.
- A linear model is built using as samples $\phi(\mathbf{x}_i)$ instead of \mathbf{x}_i .
- Formally, the model becomes:

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}) = \sum_{i=1}^{D} w_i \phi_i(\mathbf{x}),$$

with $\mathbf{w} \in \mathbb{R}^D$ and $\mathbf{x} \in \mathbb{R}^d$, and where $\phi_i : \mathbb{R}^d \to \mathbb{R}$ is the *i*-th component of the mapping ϕ .

Generalized Linear Models - Exercise

Given the following input data:

x_i
1 4

- Compute the extended features for the mapping: $\phi(x) = (x, x^2, \sqrt{x}).$
- Compute the output of a generalized linear model with the mapping above, and with weights $\{b = 0, w_1 = 1, w_2 = 1, w_3 = 2\}.$

Solution

Extended features and estimated output:

$\phi_1(x_i)$	$\phi_2(x_i)$	$\phi_3(x_i)$	y_i
1	1	1	4
4	16	2	24

Data Matrix and Optimization

• The data matrix becomes $\Phi \in \mathbb{R}^{N \times D}$:

$$\mathbf{\Phi} = \begin{pmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_D(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_D(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_D(\mathbf{x}_N) \end{pmatrix}.$$

• The resultant optimization problem is hence:

$$\min_{\mathbf{w} \in \mathbb{R}^D} \ \bigg\{ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi} \mathbf{w}\|_2^2 \bigg\},$$

with solution:

$$\mathbf{w}^{\star} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y}$$
.

• The mapping will be crucial for the performance of the model.

Feature Construction

• The features are carefully crafted by experts.

Advantages

- If there is expert knowledge, this approach can improve the performance.
- It does not depend (necessarily) on d or N, but on the nature of the problem.

Disadvantages

- It requires expert knowledge.
- It requires an intuition about the problem, which is difficult for d large.

Notebook

Generalized Linear Models: Feature Construction

Set of Basis Functions

• Another approach is to define a mapping general enough for any problem.

Advantages

- It is an automatic method.
- It does not require any expert knowledge or intuition.

Disadvantages

- The number of required basis functions grows rapidly due to the **curse of dimensionality**.
- It can generate a high redundancy.
- The resultant dimension D can be much larger than needed.

Basis Functions: Polynomial Regression (I)

Example (Polynomial 1-Dimensional Regression)

- The mapping transforms the input $x \in \mathbb{R}$ to a polynomial of degree M, $\phi_i(x) = x^{i-1}$, for $i = 1, \dots, M+1$.
- The model becomes:

$$f(\mathbf{x}) = w_1 + w_2 x + w_3 x^2 + \dots + w_{M+1} x^M.$$

• The corresponding data matrix is the well-known Van der Monde matrix:

$$\mathbf{\Phi} = \mathbf{V} = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & \mathbf{x}_1^M \\ 1 & x_2 & x_2^2 & \dots & \mathbf{x}_2^M \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \dots & \mathbf{x}_N^M \end{pmatrix}.$$

• The optimum hyperplane is hence:

$$\mathbf{w}^{\star} = (\mathbf{V}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{V}^{\mathsf{T}}\mathbf{y}.$$

Basis Functions: Polynomial Basis

• Polynomial regression can be extended to multidimensional problems, using polynomial combinations of the original inputs up to order *M*.

Basis Functions: Polynomial Basis - Exercise

Exercise

Given the following input data:

x_i		
1		
2		
3		

• Compute the extended features for the polynomial basis of degree M = 3.

Solution

Extended features:

$\phi_1(x_i)$	$\phi_2(x_i)$	$\phi_3(x_i)$	$\phi_4(x_i)$
1	1	1	1
1	2	4	8
1	3	9	27

Basis Functions: Gaussian Basis

• The mapping is:

$$\phi_i(\mathbf{x}) = \exp\left(-\frac{\|\mathbf{x} - \boldsymbol{\mu}_i\|_2^2}{\sigma_i^2}\right),$$

with $\mu_i \in \mathbb{R}^d$ and $\sigma_i \in \mathbb{R}$.

• A Gaussian function is centred at μ_i with deviation σ_i .

Basis Functions: Gaussian Basis - Exercise

Exercise

Given the following input data:

x_i		
1		
2		
3		

• Compute the extended features for a Gaussian basis with three elements, with means $\mu_1 = 1$, $\mu_2 = 2$ and $\mu_3 = 3$, and deviation $\sigma_1 = \sigma_2 = \sigma_3 = 1$.

Solution

Extended features:

$\phi_1(x_i)$	$\phi_2(x_i)$	$\phi_3(x_i)$
1	0.37	0.02
0.37	1	0.37
0.02	0.37	1

Basis Functions: Sigmoidal Basis

The mapping is:

$$\phi_i(\mathbf{x}) = \frac{1}{1 + \exp(-(\mathbf{a}_i^\mathsf{T} \mathbf{x} - b_i))},$$

with $\mathbf{a}_i \in \mathbb{R}^d$ and $b_i \in \mathbb{R}$.

Basis Functions: Sigmoidal Basis - Exercise

Exercise

Given the following input data:

x_i	
1	
2	
3	

• Compute the extended features for a sigmoidal basis with three elements, with means $b_1 = 1$, $b_2 = 2$ and $b_3 = 3$, and coefficients $a_1 = a_2 = a_3 = 1$.

Solution

Extended features:

$\phi_1(x_i)$	$\phi_2(x_i)$	$\phi_3(x_i)$
0.5	0.27	0.12
0.73	0.5	0.27
0.88	0.73	0.5

Basis Functions: Conclusions

- There are many other choices of basis functions:
 - Fourier basis (sinusoidal functions).
 - Wavelets.
 - Spline basis (piecewise polynomials; usually of degree 3).
- In the end, they require a partition of the space.
 - Affordable for d small.
 - Prohibitive for *d* large.

Notebook

Generalized Linear Models: Sets of Basis Functions

Other Approaches

Adaptive Basis Functions

- The mapping is also learned.
- It is automatically adapted to the data.
- Example: Neural Networks.

Kernel Trick

• Maybe it is not necessary to know explicitly ϕ ...

Kernel Ridge Regression

The Model

Key Idea

• Ridge Regression applied over an extended feature space:

$$\min_{\mathbf{w} \in \mathbb{R}^D} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi} \mathbf{w}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2 \right\}.$$

- A particular case are the previous generalized linear models.
- Ridge Regression admits a dual formulation.
- It turns out that the solution can be expressed using only scalar products between the vectors.

Primal Problem

• The standard Ridge Regression solution can be used to solve the optimization problem:

$$\mathbf{w}^{\star} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi} + \gamma \mathbf{I})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y}.$$

- Procedure:
 - **1** Define the mapping $\phi : \mathbb{R}^d \to \mathbb{R}^D$.
 - 2 Transform the data matrix explicitly from $\mathbf{X} \in \mathbb{R}^{N \times d}$ to $\mathbf{\Phi} \in \mathbb{R}^{N \times D}$.
 - 3 Solve the standard Ridge Regression problem by inverting a $D \times D$ matrix.
 - 4 Predict using $(\mathbf{w}^*)^\mathsf{T} \phi(\mathbf{x})$.
- An alternative solution can be derived thanks to a constrained formulation of the problem and the Lagrangian Duality.

Lagrangian Duality: Convexity (I)

Convex Function

- Convex functions are specially suited for optimization.
- Formally, a real function f is called **convex** if its domain is a convex set (i.e. the line segment joining two points of the set belongs to the set), and $\forall \mathbf{x}, \mathbf{x}'$ and $\forall t \in [0, 1]$,

$$f(t\mathbf{x} + (1-t)\mathbf{x}') \le tf(\mathbf{x}) + (1-t)f(\mathbf{x}').$$

Conceptually, the line segment joining two points of the graph of f lies above or on the graph.

 $\langle x \rangle$

Non-convex function.

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22 19/3

Lagrangian Duality: Convexity (II)

Proposition (Local Minima of Convex Functions)

Any local minimum of a convex function is a global minimum.

Proof.

- \bullet Let **x** be a local minimum of f, and let **x**' be any other point on the domain of f.
- 2 Since **x** is a local minimum, there exists $t \in [0, 1]$ such that:

$$f(\mathbf{x}) \le f(t\mathbf{x} + (1-t)\mathbf{x}').$$

3 Hence, using the convexity:

$$f(\mathbf{x}) \le f(t\mathbf{x} + (1 - t)\mathbf{x}')$$

$$\Rightarrow \qquad f(\mathbf{x}) \le tf(\mathbf{x}) + (1 - t)f(\mathbf{x}')$$

$$\Rightarrow \qquad (1 - t)f(\mathbf{x}) \le (1 - t)f(\mathbf{x}')$$

$$\Rightarrow \qquad f(\mathbf{x}) \le f(\mathbf{x}').$$

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22

Lagrangian Duality: Convex Programming (I)

Definition (Convex Programming)

The standard formulation of a **Convex Programming (CP)** problem is:

$$\min_{\mathbf{x}} \{f(\mathbf{x})\}
\text{s.t.} \begin{cases} g_i(\mathbf{x}) \leq 0, \\ h_j(\mathbf{x}) = 0. \end{cases}$$

- $f(\mathbf{x})$ is the **convex** objective function.
- $g_i(\mathbf{x})$ are the **convex** inequality constrains.
- $h_i(\mathbf{x})$ are the **linear** equality constrains.

Lagrangian Duality: Convex Programming (II)

Definition (Quadratic Programming)

The standard formulation of a **Quadratic Programming** (**QP**) problem is:

$$\min_{\mathbf{x}} \{\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x})\}$$
s.t.
$$\begin{cases} g_i(\mathbf{x}) \leq 0, \\ h_j(\mathbf{x}) = 0. \end{cases}$$

- **Q** is a **positive semidefinite** matrix.
- $g_i(\mathbf{x})$ are **linear** inequality constrains.
- $h_j(\mathbf{x})$ are **linear** equality constrains.

Lagrangian Duality: The Dual Problem (I)

$$\min_{\mathbf{x}} \{f(\mathbf{x})\} \text{ s.t. } \begin{cases} g_i(\mathbf{x}) \leq 0, \\ h_j(\mathbf{x}) = 0. \end{cases}$$

Lagrangian

$$\mathcal{L}(\mathbf{x}; \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{j} \beta_{j} h_{j}(\mathbf{x}).$$

Saddle-Point Problem

$$\min_{\mathbf{x}} \left\{ \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \left\{ \mathcal{L}(\mathbf{x}; \boldsymbol{\alpha}, \boldsymbol{\beta}) \right\} \text{ s.t. } \boldsymbol{\alpha} \geq \mathbf{0} \right\}.$$

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22

Lagrangian Duality: The Dual Problem (II)

• Focusing on the inner maximization problem:

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{j} \beta_{j} h_{j}(\mathbf{x}) \right\} \text{ s.t. } \boldsymbol{\alpha} \geq \mathbf{0}.$$

• The problem is separable.

$$\max_{\alpha_i \ge 0} \{\alpha_i g_i(\mathbf{x})\} = \begin{cases} 0 & \text{if } g_i(\mathbf{x}) \le 0, \\ \infty & \text{if } g_i(\mathbf{x}) > 0. \end{cases}$$

$$\max_{\beta_i} \{\beta_j h_j(\mathbf{x})\} = \begin{cases} 0 & \text{if } h_j(\mathbf{x}) = 0, \\ \infty & \text{if } h_i(\mathbf{x}) \ne 0. \end{cases}$$

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{j} \beta_{j} h_{j}(\mathbf{x}) \right\} \text{ s.t. } \boldsymbol{\alpha} \geq \mathbf{0} = \begin{cases} f(\mathbf{x}) & \text{if } g_{i}(\mathbf{x}) \leq 0 \text{ and } h_{j}(\mathbf{x}) = 0, \\ \infty & \text{otherwise.} \end{cases}$$

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22 24/3

Lagrangian Duality: The Dual Problem (III)

• Therefore, the saddle-point problem is equivalent to the original one:

$$\min_{\mathbf{x}} \ \left\{ \max_{\boldsymbol{\alpha},\boldsymbol{\beta}} \ \left\{ \mathcal{L}(\mathbf{x};\boldsymbol{\alpha},\boldsymbol{\beta}) \right\} \ \text{s.t.} \ \boldsymbol{\alpha} \geq \mathbf{0} \right\} \equiv \min_{\mathbf{x}} \ \left\{ f(\mathbf{x}) \right\} \ \text{s.t.} \ \left\{ \begin{array}{l} g_i(\mathbf{x}) \leq 0, \\ h_j(\mathbf{x}) = 0. \end{array} \right.$$

• Furthermore, the order of the problems can be inverted:

$$\min_{x} \ \left\{ \max_{\alpha,\beta} \ \left\{ \mathcal{L}(x;\alpha,\beta) \right\} \ \text{s.t.} \ \alpha \geq 0 \right\} \equiv \max_{\alpha,\beta} \ \left\{ \min_{x} \ \left\{ \mathcal{L}(x;\alpha,\beta) \right\} \right\} \ \text{s.t.} \ \alpha \geq 0.$$

• The dual function is defined as:

$$\mathcal{D}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\mathbf{x}} \ \{\mathcal{L}(\mathbf{x}; \boldsymbol{\alpha}, \boldsymbol{\beta})\}.$$

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22

Lagrangian Duality: The Dual Problem (IV)

Dual Problem

$$\max_{\alpha, \beta} \ \{ \mathcal{D}(\alpha, \beta) \} \ \text{s.t.} \ \alpha \geq 0.$$

- Both problems are equivalent if strong duality holds.
- In that case, the duality gap (different between the optimum of both problems) is zero.
- Sufficient conditions:
 - The primal problem is strictly feasible.
 - The constraints are linear.

Dual Problem: Lagrangian Duality (I)

- The Lagrangian duality can be used to get an alternative problem for Kernel Ridge Regression.
- The starting point is a constrained formulation of the original problem:

$$\min_{\mathbf{w} \in \mathbb{R}^D} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi} \mathbf{w}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2 \right\} \equiv \min_{\substack{\mathbf{w} \in \mathbb{R}^D \\ \mathbf{e} \in \mathbb{R}^N}} \left\{ \frac{1}{2\gamma} \sum_{i=1}^N e_i^2 + \frac{1}{2} \|\mathbf{w}\|_2^2 \right\} \text{ s.t. } e_i = y_i - \mathbf{w}^\mathsf{T} \boldsymbol{\phi}(\mathbf{x}_i).$$

• This constrained problem can be rewritten using the Lagrangian:

$$\mathcal{L}(\mathbf{w}, \mathbf{e}; \boldsymbol{\alpha}) = \frac{1}{2\gamma} \sum_{i=1}^{N} e_i^2 + \frac{1}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^{N} \alpha_i (y_i - \mathbf{w}^\mathsf{T} \boldsymbol{\phi}(\mathbf{x}_i) - e_i).$$

• The saddle-point problem is:

$$\min_{\substack{\mathbf{w} \in \mathbb{R}^D \\ \mathbf{e} \in \mathbb{R}^N}} \left\{ \max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \left\{ \mathcal{L}(\mathbf{w}, \mathbf{e}; \boldsymbol{\alpha}) \right\} \right\} \equiv \max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \left\{ \min_{\substack{\mathbf{w} \in \mathbb{R}^D \\ \mathbf{e} \in \mathbb{R}^N}} \left\{ \mathcal{L}(\mathbf{w}, \mathbf{e}; \boldsymbol{\alpha}) \right\} \right\}.$$

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22 27/3

Dual Problem: Lagrangian Duality (II)

• Solving the inner problem (taking derivatives with respect to \mathbf{w} and e_i) leads to:

$$\frac{\partial}{\partial e_i} \mathcal{L}(\mathbf{w}, \mathbf{e}; \boldsymbol{\alpha}) = \frac{1}{\gamma} e_i - \alpha_i = 0 \implies e_i = \gamma \alpha_i;$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{e}; \boldsymbol{\alpha}) = \mathbf{w} - \sum_{i=1}^{N} \alpha_i \phi(\mathbf{x}_i) = 0 \implies \mathbf{w} = \sum_{i=1}^{N} \alpha_i \phi(\mathbf{x}_i).$$

• Substituting back leads to the dual problem:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \ \{ \mathcal{D}(\boldsymbol{\alpha}) \} = \max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \ \bigg\{ -\frac{\gamma}{2} \|\boldsymbol{\alpha}\|_2^2 - \frac{1}{2} \boldsymbol{\alpha}^\intercal \boldsymbol{\Phi} \boldsymbol{\Phi}^\intercal \boldsymbol{\alpha} + \boldsymbol{\alpha}^\intercal \mathbf{y} \bigg\}.$$

• The solution is hence:

$$\left. \nabla_{\boldsymbol{\alpha}} \mathcal{D}(\boldsymbol{\alpha}) \right|_{\boldsymbol{\alpha}^{\star}} = -\gamma \boldsymbol{\alpha}^{\star} - \boldsymbol{\Phi} \boldsymbol{\Phi}^{\intercal} \boldsymbol{\alpha}^{\star} + \mathbf{y} = 0 \implies \boxed{\boldsymbol{\alpha}^{\star} = (\boldsymbol{\Phi} \boldsymbol{\Phi}^{\intercal} + \gamma \mathbf{I}_{N})^{-1} \mathbf{y}}.$$

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22

Dual Problem: Procedure

• The dual formulation leads to an alternative approach.

Procedure:

- **1** Define the mapping $\phi : \mathbb{R}^d \to \mathbb{R}^D$.
- Transform the data matrix explicitly from $\mathbf{X} \in \mathbb{R}^{N \times d}$ to $\mathbf{\Phi} \in \mathbb{R}^{N \times D}$.
- Solve the dual Ridge Regression problem by inverting an $N \times N$ matrix as $\alpha^* = (\Phi \Phi^{\mathsf{T}} + \gamma \mathbf{I}_N)^{-1} \mathbf{y}$.
- **4** Recompose $\mathbf{w}^* = \mathbf{\Phi}^\mathsf{T} \boldsymbol{\alpha}^*$.
- **6** Predict using $(\mathbf{w}^*)^\mathsf{T} \phi(\mathbf{x})$.

Notebook

Kernel Ridge Regression: Ridge Regression vs. Kernel Ridge Regression

The Kernel Trick (I)

The solution of the dual problem is:

$$\boldsymbol{\alpha}^{\star} = (\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}} + \gamma \mathbf{I}_{N})^{-1} \mathbf{y}.$$

- The data only appears as $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}} \in \mathbb{R}^{N \times N}$, with $k_{i,j} = \mathcal{K}(\mathbf{x}_i, \mathbf{x}_i) = \boldsymbol{\phi}(\mathbf{x}_i)^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_i)$.
- The function $\mathcal{K}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is known as the **kernel function**.
- The kernel function computes the inner product in a certain Hilbert space.
- It can be defined directly, without a explicit form for ϕ .

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22

The Kernel Trick (II)

• The primal hyperplane can be recovered as:

$$\mathbf{w}^{\star} = \mathbf{\Phi}^{\intercal} \boldsymbol{\alpha}^{\star} = \sum_{i=1}^{N} \alpha_{i}^{\star} \boldsymbol{\phi}(\mathbf{x}_{i}).$$

• The prediction is hence:

$$f(\mathbf{x}) = (\mathbf{w}^{\star})^{\mathsf{T}} \phi(\mathbf{x}) = \sum_{i=1}^{N} \alpha_{i}^{\star} \phi(\mathbf{x}_{i})^{\mathsf{T}} \phi(\mathbf{x}) = \sum_{i=1}^{N} \alpha_{i}^{\star} \mathcal{K}(\mathbf{x}_{i}, \mathbf{x}).$$

- There is no need to compute explicitly w^* .
- Moreover, there is no need to know ϕ as long as \mathcal{K} is known.

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22

The Kernel Trick: Kernel Ridge Regression

- Procedure:
 - **1** Define the kernel function $\mathcal{K}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.
 - 2 Solve the dual Ridge Regression problem by inverting an $N \times N$ matrix.
 - 3 Predict using $\sum_{i=1}^{N} \alpha_i^{\star} \mathcal{K}(\mathbf{x}_i, \mathbf{x})$.
- Computing K has to be efficient, and it should not require to apply the mapping explicitly.

Building Kernel Functions

- A kernel function $\mathcal{K}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a symmetric, positive definite function.
- Given two kernels $\mathcal{K}_1(\mathbf{x}, \mathbf{x}')$ and $\mathcal{K}_2(\mathbf{x}, \mathbf{x}')$, and $c \in \mathbb{R}$, the following new kernels can be defined:
 - $\mathcal{K}_1(\mathbf{x},\mathbf{x}')+c$.
 - $c\mathcal{K}_1(\mathbf{x}, \mathbf{x}')$, for c > 0.
 - $\mathcal{K}_1(\mathbf{x},\mathbf{x}') + \mathcal{K}_2(\mathbf{x},\mathbf{x}')$.
 - $\mathcal{K}_1(\mathbf{x},\mathbf{x}')\mathcal{K}_2(\mathbf{x},\mathbf{x}')$.
- Examples of kernels:

Linear
$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathsf{T}} \mathbf{x}'; \, \mathcal{K}(\mathbf{x}, \mathbf{x}') = c + \mathbf{x}^{\mathsf{T}} \mathbf{x}'; \, \mathcal{K}(\mathbf{x}, \mathbf{x}') = (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}' - \boldsymbol{\mu}).$$
Polynomial (degree d) $\mathcal{K}(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathsf{T}} \mathbf{x}' + c)^d$.

Gaussian (RBF)
$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|_2^2)$$
.
Exponential $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|_2)$.

- There are many more: Gamma Exponential, Sigmoidal, Matérn, Periodic Kernel...
- The kernel (and its hyper-parameters) has to be carefully selected.

C. M. Alaíz (EPS-UAM) Non-Linear Models - Introduction Academic Year 2021/22

Notebook

Kernel Ridge Regression: Polynomial Kernel RBF Kernel

Introduction to Non-Linear Models

Carlos María Alaíz Gudín

Introduction
Limitation of the Linear Models

Generalized Linear Models

Definition Optimization Selecting the Mapping

Kernel Ridge Regression

Definition Optimization Lagrangian Duality The Kernel Trick

Additional Material - Alternative Derivation for KRR Dual Problem

Dual Problem: Matrix Identity (I)

• There is an additional derivation of the Kernel Ridge Regression dual problem, based on the following matrix identity that allows to rewrite the solution:

$$(\mathbf{P}^{-1} + \mathbf{B}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{B})^{-1} \mathbf{B}^{\mathsf{T}} \mathbf{R}^{-1} = \mathbf{P} \mathbf{B}^{\mathsf{T}} (\mathbf{B} \mathbf{P} \mathbf{B}^{\mathsf{T}} + \mathbf{R})^{-1}.$$

• In particular, this identity can be applied to the expression $\mathbf{w}^* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi} + \gamma \mathbf{I})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{y}$:

$$\begin{split} \left(\mathbf{P}^{-1} + \mathbf{B}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{B}\right)^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{R}^{-1} &= \mathbf{P}\mathbf{B}^{\mathsf{T}}(\mathbf{B}\mathbf{P}\mathbf{B}^{\mathsf{T}} + \mathbf{R})^{-1} \\ \mathbf{P} &= \gamma^{-1}\mathbf{I}_{D} \\ & \Longrightarrow \left(\gamma\mathbf{I}_{D} + \mathbf{B}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{B}\right)^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{R}^{-1} = \gamma^{-1}\mathbf{I}_{D}\mathbf{B}^{\mathsf{T}}\left(\mathbf{B}\gamma^{-1}\mathbf{I}_{D}\mathbf{B}^{\mathsf{T}} + \mathbf{R}\right)^{-1} \\ \mathbf{R} &= \gamma\mathbf{I}_{N} \\ & \Longrightarrow \left(\gamma\mathbf{I}_{D} + \mathbf{B}^{\mathsf{T}}\gamma^{-1}\mathbf{I}_{N}\mathbf{B}\right)^{-1}\mathbf{B}^{\mathsf{T}}\gamma^{-1}\mathbf{I}_{N} = \gamma^{-1}\mathbf{I}_{D}\mathbf{B}^{\mathsf{T}}\left(\mathbf{B}\gamma^{-1}\mathbf{I}_{D}\mathbf{B}^{\mathsf{T}} + \gamma\mathbf{I}_{N}\right)^{-1} \\ \mathbf{B} &= \gamma^{\frac{1}{2}}\mathbf{\Phi} \\ & \Longrightarrow \left(\gamma\mathbf{I}_{D} + \gamma^{\frac{1}{2}}\mathbf{\Phi}^{\mathsf{T}}\gamma^{-1}\mathbf{I}_{N}\gamma^{\frac{1}{2}}\mathbf{\Phi}\right)^{-1}\gamma^{\frac{1}{2}}\mathbf{\Phi}^{\mathsf{T}}\gamma^{-1}\mathbf{I}_{N} = \gamma^{-1}\mathbf{I}_{D}\gamma^{\frac{1}{2}}\mathbf{\Phi}^{\mathsf{T}}\left(\gamma^{\frac{1}{2}}\mathbf{\Phi}\gamma^{-1}\mathbf{I}_{D}\gamma^{\frac{1}{2}}\mathbf{\Phi}^{\mathsf{T}} + \gamma\mathbf{I}_{N}\right)^{-1} \\ & \Longrightarrow \gamma^{-\frac{1}{2}}(\gamma\mathbf{I}_{D} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}} = \gamma^{-\frac{1}{2}}\mathbf{\Phi}^{\mathsf{T}}(\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}} + \gamma\mathbf{I}_{N})^{-1} \\ & \Longrightarrow \mathbf{w}^{\star} = (\gamma\mathbf{I}_{D} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y} = \mathbf{\Phi}^{\mathsf{T}}(\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}} + \gamma\mathbf{I}_{N})^{-1}\mathbf{y}. \end{split}$$

Dual Problem: Matrix Identity (II)

• Therefore, there is an equivalent solution for \mathbf{w}^* :

$$\mathbf{w}^{\star} = \mathbf{\Phi}^{\mathsf{T}} \boldsymbol{\alpha}^{\star} = \sum_{i=1}^{N} \alpha_{i}^{\star} \boldsymbol{\phi}(\mathbf{x}_{i}),$$

based on the dual coefficients $\alpha^* \in \mathbb{R}^N$.

The optimum dual coefficients are computed as:

$$\boldsymbol{lpha}^{\star} = (\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}} + \gamma \mathbf{I}_N)^{-1} \mathbf{y}$$

• This result is exactly the one obtained using Lagrangian duality.

