The Dynamics of Learning: A Random Matrix Approach ICML 2018, Stockholm, Sweden

Zhenyu Liao, Romain Couillet

L2S, CentraleSupélec, Université Paris-Saclay, France GSTATS IDEX DataScience Chair, GIPSA-lab, Université Grenoble-Alpes, France.

Outline

Motivation

- Problem Statement
- Main Results
- Summary

Motivation

About deep learning:

- Some known facts:
 - trained with backpropagation (gradient decent)
 - has achieved superhuman performance in many applications
 - ▶ highly over-parameterized, but some still generalize remarkably well in practice!
- and some (more) mysteries:
 - how do neural networks learn from training data? what features are learned?
 - why they generalize without overfitting? memorize or generalize?
 - can the network performance be guaranteed or ... even predicted?
 - ⇒ The learning dynamics of neural networks!

In particular: under so-called double asymptotic regime (RMT regime):

number of network parameters and number of data instances comparably large!

In this work:

A general RMT framework for studying learning dynamics of a single-layer network!

As a consequence, more insights on:

- random initialization of training
- overfitting in neural networks
- (explicit or implicit) regularization: early stopping, l_2 -penalization

Problem Setup

A toy model of binary classification:

Gaussian mixture data

Consider data \mathbf{x}_i drawn from a two-class Gaussian mixture model: for a=1,2

$$\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = (-1)^a \boldsymbol{\mu} + \mathbf{z}_i$$

with $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}_p, \mathbf{I}_p)$. With label $y_i = -1$ for \mathcal{C}_1 and +1 for \mathcal{C}_2 .

Objective: Learning dynamics

Gradient descent on loss $L(\mathbf{w}) = \frac{1}{2n} \|\mathbf{y}^\mathsf{T} - \mathbf{w}^\mathsf{T} \mathbf{X}\|^2$ with $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$. For small learning rate α , with continuous-time approximation:

$$\frac{d\mathbf{w}(t)}{dt} = -\alpha \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{\alpha}{n} \mathbf{X} \left(\mathbf{y} - \mathbf{X}^\mathsf{T} \mathbf{w}(t) \right)$$

of explicit solution $\mathbf{w}(t) = e^{-\frac{\alpha t}{n}\mathbf{X}\mathbf{X}^\mathsf{T}}\mathbf{w}_0 + \left(\mathbf{I}_p - e^{-\frac{\alpha t}{n}\mathbf{X}\mathbf{X}^\mathsf{T}}\right)(\mathbf{X}\mathbf{X}^\mathsf{T})^{-1}\mathbf{X}\mathbf{y}$ if $\mathbf{X}\mathbf{X}^\mathsf{T}$ invertible and \mathbf{w}_0 the initialization of gradient descent.

- projection of eigenvector weighted by $\exp(-\alpha t\lambda)$ of eigenvalue λ
- functional of sample covariance matrix $\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}$:

Random Matrix Theory is the answer!

Problem Setup

Objective: Test performance

Test performance for a new $\hat{\mathbf{x}}$:

$$P(\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}} > 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_1), \ P(\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}} < 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_2).$$

Since $\hat{\mathbf{x}}$ Gaussian and independent of $\mathbf{w}(t)$:

$$\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}} \sim \mathcal{N}(\pm \mathbf{w}(t)^{\mathsf{T}} \boldsymbol{\mu}, \|\mathbf{w}(t)\|^2)$$

$$\text{recall } \mathbf{w}(t) = e^{-\frac{\alpha t}{n}\mathbf{X}\mathbf{X}^\mathsf{T}}\mathbf{w}_0 + \left(\mathbf{I}_p - e^{-\frac{\alpha t}{n}\mathbf{X}\mathbf{X}^\mathsf{T}}\right)(\mathbf{X}\mathbf{X}^\mathsf{T})^{-1}\mathbf{X}\mathbf{y}.$$

With RMT:

- although X random: $\mathbf{w}(t)^\mathsf{T} \mu$ and $\|\mathbf{w}(t)\|^2$ have asymptotically deterministic behavior (only depends on data statistics and dimensions): the technique of deterministic equivalent
- \bullet Cauchy's integral formula to express the functional $\exp(\cdot)$ via contour integration
 - ⇒ Network performance at any time is in fact deterministic and predictable!

Proposed analysis framework

Resolvent and deterministic equivalents

Consider an $n \times n$ Hermitian random matrix M. Define its resolvent $\mathbf{Q}_{\mathbf{M}}(z)$, for $z \in \mathbb{C}$ not eigenvalue of \mathbf{M}

$$\mathbf{Q}_{\mathbf{M}}(z) = (\mathbf{M} - z\mathbf{I}_n)^{-1}.$$

For certain simple distributions of M, define a so-called deterministic equivalent \bar{Q}_M of Q_M : a deterministic matrix such that

- $\frac{1}{n} \operatorname{tr} (\mathbf{A} \mathbf{Q}_{\mathbf{M}}) \frac{1}{n} \operatorname{tr} (\mathbf{A} \bar{\mathbf{Q}}_{\mathbf{M}}) \to 0$
- $\mathbf{a}^{\mathsf{T}} \left(\mathbf{Q}_{\mathbf{M}} \bar{\mathbf{Q}}_{\mathbf{M}} \right) \mathbf{b} \to 0$

almost surely as $n \to \infty$, with $\mathbf{A}, \mathbf{a}, \mathbf{b}$ of bounded norm (operator and Euclidean).

 \Rightarrow Study $\bar{\mathbf{Q}}_{\mathbf{M}}$ instead of the random $\mathbf{Q}_{\mathbf{M}}$ for n large!

However, for more sophisticated functionals of M:

Cauchy's integral formula

Example: for $f(\mathbf{M}) = \mathbf{a}^{\mathsf{T}} e^{\mathbf{M}} \mathbf{b}$,

$$f(\mathbf{M}) = -\frac{1}{2\pi i} \oint_{\gamma} \exp(z) \mathbf{a}^{\mathsf{T}} \mathbf{Q}_{\mathbf{M}}(z) \mathbf{b} dz \approx -\frac{1}{2\pi i} \oint_{\gamma} \exp(z) \mathbf{a}^{\mathsf{T}} \bar{\mathbf{Q}}_{\mathbf{M}}(z) \mathbf{b} dz.$$

with γ a positively oriented path circling around all the eigenvalues of M.

Test performance

To evaluate test performance: $\mathbf{w}(t)^\mathsf{T} \hat{\mathbf{x}} \sim \mathcal{N}(\pm \mathbf{w}(t)^\mathsf{T} \boldsymbol{\mu}, \|\mathbf{w}(t)\|^2)$ with $\mathbf{w}(t) = e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^\mathsf{T}} \mathbf{w}_0 + \left(\mathbf{I}_p - e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^\mathsf{T}}\right) (\mathbf{X} \mathbf{X}^\mathsf{T})^{-1} \mathbf{X} \mathbf{y}$. For $\mathbf{w}(t)^\mathsf{T} \boldsymbol{\mu}$:

- $\begin{array}{l} \bullet \ \ {\bf Cauchy's \ integral \ formula: \ for \ } f_t(x) \equiv \exp(-\alpha t x), \\ \mu^{\sf T}{\bf w}(t) = -\frac{1}{2\pi i} \oint_{\gamma} \mu^{\sf T} \left(\frac{1}{n}{\bf X}{\bf X}^{\sf T} z{\bf I}_p\right)^{-1} \left(f_t(z){\bf w}_0 + \frac{1-f_t(z)}{z}\frac{1}{n}{\bf X}{\bf y}\right) dz. \end{array}$
- "replace" the random $\left(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}-z\mathbf{I}_{p}\right)^{-1}$ by its **deterministic equivalent**.

Theorem (Test Performance)

Let $p/n \to c \in (0,\infty)$ and the initialization \mathbf{w}_0 be a random vector with i.i.d. entries of zero mean, variance σ^2/p . Then, as $n \to \infty$, with probability one

$$P(\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}} > 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_1) - Q\left(\frac{E}{\sqrt{V}}\right) \to 0, \quad P(\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}} < 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_2) - Q\left(\frac{E}{\sqrt{V}}\right) \to 0$$

for
$$E \equiv -\frac{1}{2\pi i} \oint_{\gamma} \frac{1 - f_t(z)}{z} \frac{\|\mu\|^2 m(z) \ dz}{\left(\|\mu\|^2 + c\right) m(z) + 1}, \ V \equiv \frac{1}{2\pi i} \oint_{\gamma} \left[\frac{\frac{1}{z^2} (1 - f_t(z))^2}{\left(\|\mu\|^2 + c\right) m(z) + 1} - \sigma^2 f_t^2(z) m(z) \right] dz.$$

 γ a closed positively oriented path that contains all eigenvalues of $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$ and the origin, $Q(x)=\frac{1}{\sqrt{2\pi}}\int_{x}^{\infty}\exp(-u^{2}/2)du$ and m(z) given by the popular Marčenko–Pastur equation.

Not really understandable, nor interpretable. . .

Simplification: "break" the contour integration

Figure: Eigenvalue distribution of $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$ for $\boldsymbol{\mu}=[1.5;\mathbf{0}_{p-1}],\ p=512,\ n=1\,024$ and $c_1=c_2=1/2$.

"Main bulk" ($[\lambda_-, \lambda_+]$): sum of real line integrals; isolated eigenvalue (λ_s): residue theorem.

(Simplified) test performance

$$E = \int \frac{1 - f_t(x)}{x} \mu(dx), \ V = \frac{\|\mu\|^2 + c}{\|\mu\|^2} \int \frac{(1 - f_t(x))^2 \mu(dx)}{x^2} + \sigma^2 \int f_t^2(x) \nu(dx)$$

Discussions

(Simplified) test performance

$$E = \int \frac{1 - f_t(x)}{x} \mu(dx), \ V = \frac{\|\mu\|^2 + c}{\|\mu\|^2} \int \frac{(1 - f_t(x))^2 \mu(dx)}{x^2} + \sigma^2 \int f_t^2(x) \nu(dx)$$

where we recall $f_t(x) \equiv \exp(-\alpha tx)$ and the popular Marčenko–Pastur distribution

$$\nu(dx) \equiv \frac{\sqrt{(x-\lambda_-)^+(\lambda_+-x)^+}}{2\pi cx} dx + \left(1-\frac{1}{c}\right)^+ \delta(x) \text{ with } \lambda_- \equiv (1-\sqrt{c})^2, \ \lambda_+ \equiv (1+\sqrt{c})^2 \text{ and } \lambda_- \equiv (1-\sqrt{c})^2$$

$$\mu(dx) \equiv \frac{\sqrt{(x - \lambda_{-})^{+}(\lambda_{+} - x)^{+}}}{2\pi(\lambda_{s} - x)} dx + \frac{(\|\mu\|^{4} - c)^{+}}{\|\mu\|^{2}} \delta_{\lambda_{s}}(x)$$

with $\lambda_s = c + 1 + \|\mu\|^2 + c/\|\mu\|^2$.

Some remarks:

- **1** $\mu(dx)$: continuous distribution $[\lambda_-, \lambda_+]$ vs. Dirac measure at λ_s : comparable information!
- $\int \mu(dx) = \|\mu\|^2 \text{ together with Cauchy-Schwarz inequality:}$ $E^2 \leq \int \frac{(1-f_t(x))^2}{x^2} d\mu(x) \cdot \int d\mu(x) \leq \frac{\|\mu\|^4}{\|\mu\|^2 + c} V \text{, with equality if and only if the (initialization) variance } \sigma^2 = 0. \quad \Rightarrow \text{ in fact performance drop due to large } \sigma^2!$
- ⓐ How much we over-fit? As $t \to \infty$, the performance drop by a factor $\sqrt{1 \min(c, c^{-1})}$, with $p/n \to c \in (0, \infty)$.

Numerical validations

O.5 Simulation: training performance

× Theory: training performance

× Theory: training performance

O.3 Simulation: training performance

× Theory: generalization performance

Theory: generalization performance

0.1 0.1 0.2 0.3 300

Training time (t)

Figure: Training and generalization performance for MNIST data (number 1 and 7) with $n=p=784,\,c_1=c_2=1/2,\,\alpha=0.01$ and $\sigma^2=0.1.$ Results averaged over 100 runs.

Figure: Optimal performance and stopping time as function of σ^2 with c=1/2, $\|\mu\|^2=4$ and $\alpha=0.01$.

Summary

Take-away messages:

RMT framework to understand and predict learning dynamics:

Cauchy's integral formula + technique of deterministic equivalent

- easily extended to more elaborate data models: e.g., Gaussian mixture model with different means and covariances
- ullet a byproduct: choose the initialization variance σ^2 even smaller!

Thank you

Thank you!

Any question? Poster # 189!