Projet de Data Science (Openclassrooms PJ7) Réaliser des inexations automatiques d'images

L'enjeu

Réaliser un modèle capable de **prédire la race d'un chien** à partir d'une photo

Difficultés:

- 120 races différentes dont certaines se ressemblent beaucoup
- Forte variation intra classe des images: âge, pose, couleur, présence d'humains sur les photos et présence d'un décor de fond

1ère approche Machine learning classique

Algo. d'extraction de features et classifieur

2ème approche Deep learning

Réseau neuronal artificiel

Première partie du projet Approche machine learning classique

Démarche suivie

Formulation de l'objectif

Implémentation d'extraction SIFT avec clustering

Classifieur – 2 classes + tuning

Classifieur – 20 classes + tuning

Formulation de l'objectif

Approche supervisée

Multi classes (120 races dans le dataset)

1 classe par image

On mesurera les scores de **precision** et de **rappel** micro

Implémentation d'extraction SIFT avec clustering

(implémentation OpenCV)

Extraction des keypoints

Extraction des keypoints de chaque image

Conservation des P keypoints les plus importants

Calcul des descripteurs

Pour chaque point clé : calcul de 16 x 8 = **128 descripteurs SIFT**

Matrice des descripteurs

N : nombre d'images = Nombre de chiens par classe \mathbf{x} Nombre de classes

P : nombre de keypoints par image

		Feature 1		Feature 128
4	Image 1, Keypoint 1			
	Image 1, Keypoint 2			
	Image 1, Keypoint P			

	Image N, Keypoint P			
		Image 1, Keypoint 2 Image 1, Keypoint P	Image 1, Keypoint 1 Image 1, Keypoint 2 Image 1, Keypoint P	Image 1, Keypoint 1 Image 1, Keypoint 2 Image 1, Keypoint P

Clustering de la matrice des descripteurs

N : nombre d'images = Nombre de chiens par classe \mathbf{x} Nombre de classes

P : nombre de keypoints par image

Agrégation de la matrice des descripteurs

N nombre d'images = 3

P nombre de keypoints = 2

k nombre de clusters = 3

								K
		Cluster 1	Cluster 2	Cluster 3]			
	Image 1, Keypoint 1	1	0	0]			
	Image 1, Keypoint 2	0	0	1			Cluster 1	Cluster 2
	Image 2, Keypoint 1	1	0	0	· T	Image 1	1	0
$N \times P$		1	U	U U	N N	Image 2	2	n
	Image 2, Keypoint 2	1	0	0			2	
	Image 3, Keypoint 1	0	1	0	1	Image 3	0	1
	Image 3, Keypoint 2	0	0	1	,			
					_			

Cluster 3

Normalisation de la matrice des descripteurs

N nombre d'images = 3

P nombre de keypoints = 2

k nombre de clusters = 3

		k	
	Cluster 1	Cluster 2	Cluster 3
Image 1	1	0	1
Image 2	2	0	0
Image 3	0	1	1
		Image 1 1 1 1 mage 2 2	Image 1 1 0 Image 2 2 0

	Cluster 1	Cluster 2	Cluster 3
Image 1	1	0	1
Image 2	1	0	0
Image 3	0	0.5	0.5

Cette matrice servira d'entrée au classifieur

Analyse en composantes principales

Réduction de dimension avec PCA

Cercle des corrélations

Implémentation d'un modèle de classification :

Extractions SIFT + classifieur

1ère itération

Precision micro et recall micro:

⇒ training set :1

⇒ test set : 0.45 (avec DecisionTree classifier)

0.55 (avec Random Forest après GridSearch)

Les résultats ne sont pas meilleurs qu'un classifieur random (0.5)

2ème itération

En jaune ce qui a changé par rapport à l'itération précédente

Precision micro et recall micro:

- ⇒ training set :1
- \Rightarrow test set : 0.75 (avec DecisionTree classifier)
 - 0.75 (avec Random Forest)

Les résultats sont meilleurs

3ème itération

En jaune ce qui a changé par rapport à l'itération précédente

Les résultats sont 3 fois mieux qu'avec des features random

Analyse des erreurs du modèle

Matrice de confusion

Chihuahua

Great Pyrenees

Afghan hound

Silky Terrier

Standard poodle

Otterhound

