Graphentheorie Tutorat – 3 Gruppe 3/6

Matthias Herrmann herrmanm@informatik.uni-freiburg.de

1a) – BFS

- \blacksquare BFS(s):
 - $Q \leftarrow new.Queue()$
 - Markiere Knoten s
 - *Q.enqueue(s)*
 - Solange not Q. empty():
 - $u \leftarrow Q.dequeue()$
 - Visit (*u*)
 - Für jeden adjazenten Knoten v von u:
 - Falls v nicht markiert ist dann:
 - Markiere v
 - Q.enqueue(v)

1a) – BFS

- \blacksquare *BFS*(s, target):
 - $Q \leftarrow new.Queue()$
 - Markiere Knoten s
 - *Q.enqueue(s)*
 - Solange not Q. empty():
 - $u \leftarrow Q.dequeue()$
 - Visit (*u*)
 - If u = target:
 - return True
 - Für jeden adjazenten Knoten v von u:
 - Falls v nicht markiert ist dann:
 - Markiere v
 - Q. enqueue(v)
 - return False

1b) – DFS

- \blacksquare *DFS_Visit(s)*:
 - $S \leftarrow new.Stack()$
 - $counter \leftarrow 1$
 - *S. push(s)*; Markiere *s*
 - $s.start \leftarrow counter; counter \leftarrow counter + 1$
 - $DFS_Visit(s)$
 - Solange not S. empty()
 - $u \leftarrow S.pop(); S.push(u)$
 - Falls ein nicht markierter adjazenter Knoten v von u existiert:
 - S.push(v); Markiere v
 - $DFS_Visit(v)$
 - $v.start \leftarrow counter; counter \leftarrow counter + 1$
 - Ansonsten:
 - $u \leftarrow S.pop()$
 - $u.end \leftarrow counter; counter \leftarrow +1$

1b) – DFS

- DFS_Visit(s, target):
 S ← new.Stack()
 counter ← 1
 - S. push(s); Markiere s
 - $s.start \leftarrow counter; counter \leftarrow counter + 1$
 - DFS_Visit(s, target)
 - Solange not S. empty()
 - $u \leftarrow S.pop(); S.push(u)$
 - If u == target:
 - return True
 - Falls ein nicht markierter adjazenter Knoten v von u existiert:
 - S.push(v); Markiere v
 - DFS_Visit(v, target)
 - $v.start \leftarrow counter; counter \leftarrow counter + 1$
 - Ansonsten:
 - $u \leftarrow S.pop()$
 - $u.end \leftarrow counter; counter \leftarrow +1$
- return False

2a) – Erreichbarkeit

- $V(G) := \{v_i | i \in \mathbb{N}_0\}$
- $E(G) := \{(v_2, v_0)\} \cup \{(v_1, v_i) | i \in \mathbb{N}_0 \setminus \{1, 0\}\}$

2a) – Erreichbarkeit

- $V(G) := \{v_i | i \in \mathbb{N}_0\}$
- $E(G) := \{(v_2, v_0)\} \cup \{(v_1, v_i) | i \in \mathbb{N}_0 \setminus \{1, 0\}\}$
- BFS(1,0):
 - Gehe zu 2
 - Dann 3
 - Dann 4 ...
 - => Terminiert nicht
- DFS(1,0):
 - Gehe zu 2
 - Dann 0
 - => Terminiert

2b) – Erreichbarkeit

- $V(F) \coloneqq \{v_i | i \in \mathbb{N}_0 \setminus \{0,1\}\}$
- $E(F) := \{(v_i, v_{i*2}) | i \in \mathbb{N}_0 \setminus \{0,1\}\} \cup \{(v_i, v_{i+1}) | i \in \mathbb{N}_0 \setminus \{1,0\}\}$

2b) – Erreichbarkeit

- $V(F) \coloneqq \{v_i | i \in \mathbb{N}_0 \setminus \{0,1\}\}$
- $E(F) := \{(v_i, v_{i*2}) | i \in \mathbb{N}_0 \setminus \{0,1\}\} \cup \{(v_i, v_{i+1}) | i \in \mathbb{N}_0 \setminus \{1,0\}\}$
- BFS(2,3):
 - Gehe zu 4
 - Dann 3
 - => Terminiert
- DFS(2,3):
 - Gehe zu 4
 - Dann 8
 - Dann ...
 - => Terminiert nicht

2b) – Erreichbarkeit

- $V(F) \coloneqq \{v_i | i \in \mathbb{N}_0 \setminus \{0,1\}\}$
- $E(F) := \{(v_i, v_{i*2}) | i \in \mathbb{N}_0 \setminus \{0,1\}\} \cup \{(v_i, v_{i+1}) | i \in \mathbb{N}_0 \setminus \{1,0\}\}$
- BFS(2,3):
 - Gehe zu 4
 - Dann 3
 - => Terminiert
- DFS(2,3):
 - Gehe zu 3
 - => Terminiert

3b) – Unerreichbarer Code

3b) – Unerreichbarer Code

3b) – Unerreichbarer Code

- Knoten die in $G \{v\}$ von r erreicht werden
- $S_A =$
- $S_B =$
- $S_C =$
- $S_D =$
- $S_E =$

- Knoten die in $G \{v\}$ von r erreicht werden
- $S_A = \{R\}$
- $S_B = \{R, A\}$
- $S_C = \{R, A, B, D, E\}$
- $S_D = \{R, A, B\}$
- $S_E = \{R, A, B, D\}$

- Knoten die in $G \{v\}$ von r erreicht werden
- $S_A = \{R\}$
- $S_B = \{R, A\}$
- $S_C = \{R, A, B, D, E\}$
- $S_D = \{R, A, B\}$
- $S_E = \{R, A, B, D\}$
- Knoten $V \{v\} S_v$:
 - A:
 - B:
 - C:
 - D:
 - E:

- Knoten die in $G \{v\}$ von r erreicht werden
- $S_A = \{R\}$
- $S_B = \{R, A\}$
- $S_C = \{R, A, B, D, E\}$
- $S_D = \{R, A, B\}$
- $S_E = \{R, A, B, D\}$
- Knoten $V \{v\} S_v$:
 - A: {*B*, *C*, *D*, *E*}
 - B: {*C*, *D*, *E*}
 - C: {}
 - D: {*C*, *E*}
 - E: {*C*}

- Knoten $V \{v\} S_v$:
 - A: {*B*, *C*, *D*, *E*}
 - B: {*C*, *D*, *E*}
 - C: {}
 - D: {*C*, *E*}
 - E: {*C*}
- Adjazenzmatrix (u dom v):

	R	Α	В	С	D	Е
R		1	1	1	1	1
Α			1	1	1	1
В				1	1	1
С						
D				1		1
Е				1		

3a) – Definitionserweiterung

- Dominanz:
 - *v dom w*, wenn:
 - Jeder Pfad in G von r nach w den Knoten v beinhaltet
 - *v idom w*, wenn:
 - (*v* dom *w*)
 - Es keinen Knoten u gibt mit (v dom u) und (u dom w)

3a) – Definitionserweiterung

Dominanz:

- *v dom w*, wenn:
 - Jeder Pfad in G von r nach w den Knoten v beinhaltet
 - Es existiert ein Pfad von r nach w in G
- *v idom w*, wenn:
 - (*v* dom *w*)
 - Es keinen Knoten u gibt mit (v dom u) und (u dom w)