- 1. (a) Since $A[1] \leq A[k]$ and $-B[1] \leq -B[k]$ for any k, A[1] B[1] is the minimum. Our algorithm can always output 1 for this problem. Thus, it runs in O(1) time.
 - (b) Let A[i] = 2i for all $i \in [1, n] \setminus \{z\}$, and let A[z] = 2i 1. Let further B[i] = 2(n i) for all $i \in [1, n]$. Note that A[z] + B[z] = 2n 1 is the minimum. Our algorithm needs to output z. z is some secret number kept in Alice's mind. For any algorithm \mathcal{A} , if \mathcal{A} has an access to A[i], then Alice says $z \neq i$. In this way, \mathcal{A} cannot figure out what z is before n 1 different A[i]'s are read. This requires $\Omega(n)$ time already.
- 2. We apply the substitution method to obtain upper bounds for the first two subproblems, and Master theorem for the last.
 - (a) We start by guessing that T(n) = O(S(n)) where

$$S(n) \le \begin{cases} S(n/3) + S(n/4) + cn & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

By the recursion-tree method,

$$S(n) \leq S(n/3) + S(n/4) + cn$$

$$\leq S(n/9) + S(n/12) + S(n/12) + S(n/16) + cn + 7cn/12$$

$$\leq \cdots$$

$$\leq cn[1 + 7/12 + (7/12)^2 + (7/12)^3 + \cdots]$$

$$\leq cn/(1 - 7/12)$$

$$= O(n)$$

To verify whether the guess T(n) = O(S(n)) = O(n) is correct, we appeal to the substitution method, as shown in Claim 1.

Claim 1. $T(n) \leq dn$ for any $n \geq 1$ where d is some positive constant.

Proof. We prove this claim by induction on n. Observe that $T(1), T(2), \ldots, T(n_0)$ are all constants if n_0 is a constant. If we set $d \geq \max\{T(1), T(2), \ldots, T(n_0)\}$, the induction base holds. Assume that $T(n) \geq dn$ for any n < k. For $n = k > n_0$, the recurrence relation gives that $T(k) \leq T(\lceil k/3 \rceil) + T(\lceil k/4 \rceil) + \alpha k \leq (7d/12 + \alpha)k + 2d$ for some constant $\alpha > 0$. We need

$$(7d/12 + \alpha)k + 2d \le kd \tag{1}$$

to complete the proof. EQ (1) holds by setting $d \geq 12\alpha$ and $k > n_0 = 6$. We are done.

(b) We guess that T(n) = O(n) because the recurrence relation of this subproblem is similar to that of subproblem (a).

Claim 2. $T(n) \leq dn$ for any $n \geq 1$ where d is some positive constant.

Proof. We prove this claim by induction on n. If n_0 is a constant, then $T(1), T(2), \ldots, T(n_0)$ are all constants. The induction base holds by setting $d \geq \max\{T(1), T(2), \ldots, T(n_0)\}$. Assume that $T(n) \leq dn$ for any n < k. For $n = k > n_0$, the recurrence relation yields that $T(k) \leq T(\lceil k/3 \rceil + 5) + T(\lceil k/4 \rceil + 7) + \beta k \leq (7d/12 + \beta)k + 14d$ for some constant $\beta > 0$. We require $(7d/12 + \beta)k + 14d \leq kd$ to complete the proof. We are done by setting $d \geq 12\beta$ and $k > n_0 = 42$.

(c) Because $f(n) \leq c \log n = O(n^{(\log_2 2) - \varepsilon})$, the first case of the Master theorem applies. We have T(n) = O(n).

If you have no idea why $\log n = O(n^{1-\varepsilon})$, you can prove it by induction or try to prove a stronger statement that $\log n = o(n^{1-\varepsilon})$. The latter approach requires

$$\lim_{n \to \infty} \frac{\log n}{n^{1-\varepsilon}} = \lim_{n \to \infty} \frac{1/n}{(1-\varepsilon)n^{-\varepsilon}}$$

$$= \lim_{n \to \infty} \frac{1}{(1-\varepsilon)n^{1-\varepsilon}}$$

$$= 0,$$

where the first equality is due to L'Hôpital's rule.

3. (a)

$$\overrightarrow{Ap} \times \overrightarrow{AB} = \begin{vmatrix} 3 & 2 \\ -1 & 1 \end{vmatrix} = 5 \ge 0.$$

$$\overrightarrow{Bp} \times \overrightarrow{BC} = \begin{vmatrix} 1 & 1 \\ -2 & -1 \end{vmatrix} = 1 \ge 0$$

$$\overrightarrow{Cp} \times \overrightarrow{CD} = \begin{vmatrix} 0 & -2 \\ -1 & -2 \end{vmatrix} = -2 < 0$$

$$\overrightarrow{Dp} \times \overrightarrow{DA} = \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 5 \ge 0$$

The sign of the above cross products implies that $p \notin Q$ and the convex hull of $Q \cup \{p\}$ is A - B - C - p - D - A.

(b)

$$\overrightarrow{Ap} \times \overrightarrow{AB} = \begin{vmatrix} 2 & 2 \\ -1 & 1 \end{vmatrix} = 4 \ge 0.$$

$$\overrightarrow{Bp} \times \overrightarrow{BC} = \begin{vmatrix} 0 & 1 \\ -2 & -1 \end{vmatrix} = 2 \ge 0$$

$$\overrightarrow{Cp} \times \overrightarrow{CD} = \begin{vmatrix} -1 & -2 \\ -1 & -2 \end{vmatrix} = 0 \ge 0$$

$$\overrightarrow{Dp} \times \overrightarrow{DA} = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 3 \ge 0$$

The sign of the above cross products implies that $p \in Q$.

4. (a) Algorithm 1 is the pseudocode. The initial call is $opt(n, n, sol[n][n] = \{\infty\})$

```
1 if sol[a][b] < \infty then
      \mathbf{2} return sol[a][b];
     3 end
      4 if (a,b) equals (1,1) then
           return sol[a][b] = A[1][1];
     6 end
     7 if a equals 1 then
           return sol[a][b] = A[a][b] + opt(a, b - 1, sol);
     9 end
    10 if b equals 1 then
           return sol[a][b] = A[a][b] + opt(a-1, b, sol);
    12 end
    13 return sol[a][b] = A[a][b] + min\{opt(a-1, b, sol), opt(a, b-1, sol)\};
                          Algorithm 1: opt(a, b, sol[n][n])
(b) Algorithm 2 is the pseudocode. The initial call is backtrack(n, n, sol[n][n] =
    \{\infty\})
     1 if (a, b) \neq (1, 1) then
            if a equals 1 then
     2
               backtrack(a, b - 1, sol);
     3
            end
      4
            if b equals 1 then
     \mathbf{5}
               backtrack(a-1, b, sol);
     6
            end
     7
            if a > 1 and b > 1 then
     8
               if sol[a][b] equals sol[a-1][b] + A[a][b] then
     9
                   backtrack(a-1, b, sol);
     10
               else
    11
                   backtrack(a, b - 1, sol);
    12
               end
    13
           end
    14
    15 end
    16 print (a,b);
    17 return;
                      Algorithm 2: backtrack(a, b, sol[n][n])
```

(c) The degenerate cases are ignored in this discussion for simplicity. The shortest monotonic path from (1,1) to (a,b) must visit either (a-1,b) or (a,b-1) right before it reaches (a,b). Hence, $opt(a,b) = \min\{opt(a-1,b), opt(a,b-1)\} + A[a][b]$, implying the correctness of opt and backtrack. opt(n,n) runs in $O(n^2)$ time

because there are $O(n^2)$ different subproblems and each needs O(1) time. backtrack(n, n) runs in O(n) time because it visits O(n) subproblems and each needs O(1) time.

5. (a) Let L_i be the collection of increasing subsequences of A[1..(i-1)] whose last element less than A[i]. Let $S_A[i]$ be the longest length among all subsequences in L_i . $S_A[1..n]$ can be obtained from the computation of the LIS of A[1..n]. Let R be the reverse of array A, i.e. R[i] = A[n-i] for each $i \in [1, n]$. Similarly, we can obtain $S_R[1..n]$ from the computation of the LIS of R[1..n]. The desired solution is

$$\max_{1 \le k \le n} S_A[k-1] + 1 + S_R[n-k],$$

which can be computed by a linear scan on arrays S_A and S_R . We define that $S_A[0] = S_R[0] = 0$.

- (b) The longest bitonic subsequence can be decomposed into three parts, L, A[k], and R, where L is an IS of A[1..k-1] whose last element is less than A[k] and R is an DS of A[k+1..n] whose first element is less than A[k]. By our definition, the length of L is $S_A[k-1]$ and the length of R is length $S_R[n-k]$. If we try all possible $k \in [1,n]$, the return must be the length of the longest bitonic subsequence. The running time is thus $O(n \log n) + O(n \log n) + O(n \log n)$.
- 6. (a) Let T[1..n][0..m] satisfy that

$$T[i][j] = \left\{ \begin{array}{ll} 1 & \text{if there is a subset of } \{1,\dots,i\} \text{ whose weight is } j \\ 0 & \text{otherwise} \end{array} \right.$$

Algorithm 3 is the pseudocode.

```
1 T[1..n][0..m] \leftarrow \{0\};
 2 T[1][0] \leftarrow 1;
 3 if w_1 \leq m then
       T[1][w_1] \leftarrow 1;
 5 end
 6 for i \leftarrow 2 to n do
        for j \leftarrow 0 to m do
            if T[i-1][j] equals 1 then
 8
                T[i][j] \leftarrow 1;
 9
            end
10
            if j \ge w_i and T[i-1][j-w_i] equals 1 then
11
              T[i][j] \leftarrow 1;
12
13
            end
14
        end
15 end
16 return (T[n][k] equals 1) ? "Yes" : "No";
                        Algorithm 3: subsetsum(n, k)
```

(b) Let $S_{i,j}$ be the collection of all subsets $S \subseteq \{1, 2, ..., i\}$ that have weight $\sum_{i \in S} w_i = j$. Let Q[1..n][0..m] satisfy that $Q[i][j] = q > -\infty$ if $S_{i,j} \neq \emptyset$ or otherwise $Q[i][j] = -\infty$, where q is the maximum value $\sum_{i \in S} v_i$ among all $S \in S_{i,j}$. Algorithm 4 is the pseudocode.

```
1 Q[1..n][0..m] \leftarrow \{-\infty\};
 2 Q[1][0] \leftarrow 0;
 3 if w_1 \leq m then
        Q[1][w_1] \leftarrow v_1;
 5 end
 6 for i \leftarrow 2 to n do
        for j \leftarrow 0 to m do
            if j \ge w_i and Q[i-1][j-w_i] > -\infty then
 8
                Q[i][j] \leftarrow Q[i-1][j-w_i] + v_i;
 9
            end
10
            if Q[i-1][j] > -\infty and Q[i-1][j] > Q[i][j] then
11
                Q[i][j] \leftarrow Q[i-1][j];
12
            end
13
14
        end
15 end
16 opt \leftarrow -\infty;
17 for j \leftarrow 0 to m do
        if Q[n][j] > opt then
18
            opt \leftarrow Q[n][j];
19
        end
20
21 end
22 return opt;
```

Algorithm 4: knapsack(n)

(c) Initially, only $T[1][0] = T[1][w_1] = 1$. T[1][0] represents that \emptyset has weight 0 and $T[1][w_1]$ represents that $\{1\}$ has weight w_1 . For i > 1, we can say T[i][j] = 1 iff T[i-1][j] = 1 or $T[i-1][j-w_i] = 1$. Each of these two cases denotes whether the i-th stone is contained in the subset or not, respectively. If the i-th stone is not contained in the subset, we need a subset of $\{1, 2, \ldots, i-1\}$ of weight j. Otherwise, the i-th stone is contained in the subset, then we need a subset of $\{1, 2, \ldots, i-1\}$ of weight $j-w_i$. This relation explains why Algorithm 3 correctly solves subproblem (a). The running time of Algorithm 3 is dominated by the loops (Lines 6-15), which need O(nm) time.

Similar argument can applied to explain the correctness of Algorithm 4.