

Phase Field with SYCL vs MPI vs OpenCL

Basic Diffusion: CPU vs GPU

$$\frac{\partial \phi}{\partial t} = D\nabla^2 \phi$$

Execution time vs mesh size for Diffusion model run on multiple devices. For 2000 iterations

- NVIDIA CUDA Tesla
 V100-PCIE-32GB GPU
 (IITM aqua cluster)
- Intel(R) Xeon(R) Silver
 4110 CPU @ 2.10GHz
 (DevCloud)
- Intel(R) Core(TM)
 i5-8250U CPU @ 1.60GHz
 (My Laptop)

Isotropic Solidification: Local vs Global memory

Individual Execution time plots

Execution time vs local tile size for KobIso model run in Intel DevCloud (for 2000 iterations)

Isotropic Solidification: Results

Anisotropic Solidification : SYCL vs OpenCL vs MPI

$$\tau \frac{\partial \phi}{\partial t} = \frac{\partial}{\partial y} \left(\epsilon \frac{\partial \epsilon}{\partial \theta} \frac{\partial \phi}{\partial x} \right) - \frac{\partial}{\partial y} \left(\epsilon \frac{\partial \epsilon}{\partial \theta} \frac{\partial \phi}{\partial y} \right)$$
$$+ \nabla \cdot (\epsilon^2 \nabla \phi) + \phi (1 - \phi) (\phi - \frac{1}{2} + m)$$
$$\frac{\partial T}{\partial t} = \nabla^2 T + \kappa \frac{\partial \phi}{\partial t}$$

Execution time vs mesh size for KobAniso model run on my laptop (2000 iterations)

Anisotropic Solidification: Results

Anisotropic Solidification: Results

The Kim Kim Suzuki Model

The Mathematical Model

$$\begin{split} \frac{1}{M_{\phi}} \frac{\partial \phi}{\partial t} &= \nabla . (\epsilon_{\phi}^{2} \nabla \phi) + W g'(\phi) + h'(\phi) [f^{L}(c_{L}) - f^{S}(c_{S}) - (c_{L} - c_{S}) f_{c_{L}}^{L}(c_{L})] \\ \frac{\partial c_{1}}{\partial t} &= \nabla . ([1 - h_{d}(\phi)] D_{11}^{L} \nabla c_{1L}) + \nabla . (\frac{\epsilon_{\phi}}{\sqrt{2W}} (c_{iL} - c_{iS}) \frac{\partial \phi}{\partial t} \frac{\nabla \phi}{|\nabla \phi|}) \\ \frac{\partial T}{\partial t} &= \nabla^{2} T + \kappa \frac{\partial \phi}{\partial t} \end{split}$$

Phys. Rev. E 60, 7186 (1999) - Phase-field model for binary alloys

GE Functions

TABLE I. Thermophysical data for dilute Al-Si alloy.

D_S (m ² /s)	1×10^{-12}
$D_L \text{ (m}^2/\text{s)}$	3×10^{-9}
T_M (K)	933.6
V_m (m ³ /mole)	1.06×10^{-5}
σ (J/m ²)	0.093
$f^S V_m (J/mole)^a$	$G_{AI}^{0}(1-c) + G_{Si}^{0}c + RT[c \ln c + (1-c)\ln(1-c)]$
	$+A^{S}c(1-c)$
$f^L V_m (J/mole)^a$	$RT[c \ln c + (1-c)\ln(1-c)] + c(1-c)[A^{L} + B^{L}(1-2c)]$
	$+C^{L}(1-6c+6c^{2})$
$G_{\rm Al}^0$ (J/mole) ^a	-10792+11.56T
$G_{\rm Si}^0$ (J/mole) ^a	12.12 <i>T</i>
A ^S (J/mole) ^a	-200-7.594T
A^L (J/mole) ^a	-10695.4 - 1.823T
B^L (J/mole) ^a	-4274.5 - 3.044T
C^L (J/mole) ^a	670.7 - 0.460T
c_S^e	0.006387 (at 870 K)
c_L^e	0.07919 (at 870 K)
k^{e}	0.0807 (at 870 K)
m^e (K)	939.0 (at 870 K)

^aData from Ref. [27].

Phys. Rev. E 58, 3316 (1998) - Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys

Preliminary Results

