task3

ali ahmadi

question1) as we calculated in the class.....Rq=0.97 C/W

Rt=Rconv1+Rcond1+Rp+2(Rcond2)+Rconv1=6.8 C/W

As we have this formula.......Qt= $(T\infty_1-T\infty_2)/R_t=(20-10)/6.8=.014W$

question1 part 2) in the first stage im going to calculate the parallel R

 $1/R_p=2(1/R_p plaster)+1/R_pb=2(1/0.32/(0.22)(.015))+1/0.32/(0.72)(.0.22)=0.5465$

Rp=1/0.5465=1.82 C/W

RT=Rconv1+Rcondf+2(Rcondp)+Rp+Rconv2 = 1/h1A1 + Lf/AfKf + 2(Lp/ApKp) + Rp + 1/h2A2

 $=1/(10)(0.25)+0.03/(0.026)(0.25)+2(0.02/(0.22)(0.25))+1.82+1/(25)(.025)\\=0.4+4.61+0.072+1.82+0.1\\=7.002 \text{ C/W}$

 $Q_t = (T \infty_1 - T \infty_2)/R_t = (20-10)/7.002 = 1.42 W$

question2) based on the data which is available in the table:

	wood	insulation
outside air	0.03	0.03
wood bevel(13*200mm)	0.14	0.14
polywood	0.11	0.11
urethane rigif foam(90mm)	NO	(90/25)(.098)=3.528
wood studs(90mm)	0.63	NO

gypsum board(13 _{mm})	0.079	0.079
inside surface	0.12	0.12

R`wood= $0.03+0.14+0.11+0.63+0.079+0.12=1.109 \text{ m}^2\text{C/W}$

 $\textbf{R`insulation} = 0.03 + 0.14 + 0.11 + 3.528 + 0.079 + 0.12 = 4.007 \\ m^2 \\ C/W$