

Tìm kiếm có thông tin (Informed search)

Từ Minh Phương Bộ môn: khmt

Nội dung

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Mở rộng nút tốt nhất trước tiên

- (Best-first search)
- Ý tưởng:
 - Sử dụng hàm ước lượng f(n) cho mỗi nút: là ước lượng độ tốt của nút n
 - \rightarrow Mở rộng nút n có giá trị f(n) nhỏ nhất
- Triển khai thuật toán:
 Sắp xếp các nút cần mở rộng theo thứ tự tăng dần của hàm f (n)
- Các trường hợp riêng:
 - Tìm kiếm tham lam mở rộng nút tốt nhất trước (greedy best-first search)
 - $-A^*$

Romania with step costs in km

traight-line distance	
Bucharest	
rad	366
ucharest	0
raiova	160
obreta .	242
forie	161
agaras	176
agaras äurgiu	77
lirsova	151
asi	226
ugoj	244
[ehadia	241
eamt	234
)radea	380
itesti	10
limnicu V ilcea	193
ibiu	253
imisoara	329
rziceni	80
aslui	199
erind	374

Tìm kiếm tham lam mở rộng nút tốt nhất trước

- Sử dụng hàm f(n) = h(n) (heuristic)
- = ước lượng giá thành đường đi từ n tới đích
- Ví dụ., h_{SLD}(n) = đường chim bay từ n tới đích (Bucharest)
- Phương pháp này mở rộng nút trông có vẻ gần đích nhất

Đặc điểm

Đầy đủ? Không- có thể bị lặp, ví dụ, lasi
 → Neamt → lasi → Neamt →

•

- Thời gian? O(b^m), có thể nhanh hơn nhiều nếu có heuristic tốt
- Không gian? O(b^m) Lưu tất cả nút trong bộ nhớ
- Tối ưu? Không

Tìm kiếm tham lam không cho kết quả tối ưu

Thuật toán A*

- Khắc phục các nhược điểm của tìm kiếm tham lam
- Ý tưởng: không tiếp tục mở rộng các đường đi đang có giá thành lớn.
- Hàm đánh giá f(n) = g(n) + h(n)
- g(n) = giá thành đường đi từ nút xuất phát đến n
- h(n) = giá thành ước lượng từ <math>n tới đích
- f(n) = giá thành ước lượng từ nút xuất phát, qua n tới đích

A*: ví dụ

Thuật toán A*

```
A*(Q,S,G,P,c,h)
```

đầu vào: bài toán tìm kiếm

hàm heuristics h

đầu ra: đường tới nút đích

khởi tạo: tập các nút biên (nút mở) O = S

while (O không rỗng) do

- 1. Lấy nút n khỏi O sao cho f(n) là nhỏ nhất
- 2. **nếu** $n \in G$, **return** đường đi tới n
- 3. với mọi $m \in P(n)$
 - a) g(m) = g(n) + c(m,n)
 - b) f(m) = g(m) + h(m)
 - c) thêm m vào O cùng với giá trị f(m)

return không tìm được đường đi

A* có tối ưu không?

Chỉ tối ưu nếu thoả mãn điều kiện sau

Admissible heuristics

- Admissible = chấp nhận được
- Hàm heuristic h(n) được gọi là chấp nhận được nếu với mọi nút n, ta có h(n) ≤ h*(n), trong đó h*(n) là giá thành thực để đi từ n tới đích.
- Ví dụ : khoảng cách đường chim bay là hàm heuristics chấp nhận được
- Định lý: nếu h(n) chấp nhận được thì thuật toán A* tìm được kết quả tối ưu

Chứng minh tính tối ưu của A*

 giả sử nút đích không tối ưu G₂ đang nằm trong hàng đợi. Giả sử n là nút cũng đang nằm trong hàng đợi và n nằm trên đường đi ngắn nhất tới nút đích tối ưu G

•
$$f(G_2) = g(G_2)$$

•
$$g(G_2) > g(G)$$

•
$$f(G) = g(G)$$

•
$$f(G_2) > f(G)$$

$$vi h(G_2) = 0$$

vì G₂ không tối ưu

$$vi h(G) = 0$$

Chứng minh (tiếp theo)

 giả sử nút đích không tối ưu G₂ đang nằm trong hàng đợi. Giả sử n là nút cũng đang nằm trong hàng đợi và n nằm trên đường đi ngắn nhất tới nút đích tối ưu G

•
$$f(G_2)$$
 > $f(G)$

từ trang trước

vì h chấp nhận được

•
$$g(n) + h(n) \le g(n) + h^*(n)$$

•
$$f(n) \leq f(G)$$

•

Đặc điểm của A*

- Đầy đủ? Có (trừ khi có vô số nút với hàm f
 ≤ f(G))
- Thời gian? O(b^m). Có thể nhanh hơn nhiều nếu có heuristics tốt
- Bộ nhớ? cần lưu tất cả các nút -> O(b^m)
- Tối ưu? Có

Ví dụ heuristics chấp nhận được

- $h_1(n) = s\hat{o} \hat{o} dat sai ch\hat{o}$
- $h_2(n)$ = khoảng cách Manhattan

- $h_1(S) = ?$
- h₂(S) = ?

Ví dụ heuristics chấp nhận được

- $h_1(n) = s\hat{o} \hat{o} dat sai ch\hat{o}$
- $h_2(n)$ = khoảng cách Manhattan

- $h_1(S) = ?8$
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

Tính trội

Nếu h₂(n) ≥ h₁(n) với mọi n (cả hai hàm đều chấp nhận được)

thì h₂ trội hơn (tốt hơn) h₁

• h_2 cho phép tìm kiếm nhanh hơn

Tìm kiếm A* sâu dần (IDA*)

- 1. Tìm kiếm sâu (DFS), không mở rộng nút có f(n) > 0. Nếu tìm được đích thì dừng lại
- 2. Tìm kiếm sâu (DFS), không mở rộng nút có $f(n) > \alpha$. Nếu tìm được đích thì dừng lại
- 3. Tìm kiếm sâu (DFS), không mở rộng nút có $f(n) > 2 \alpha$. Nếu tìm được đích thì dừng lại
- 4.
- Tính chất của IDA*:
 - đầy đủ
 - tối ưu
 - yêu cầu bộ nhớ tuyến tính
 - độ phức tạp tính toán lớn hơn A*

Thuật toán: A*(Q, S, G, P, c, h)

- Đầu vào: bài toán tìm kiếm, hàm heuristic h
- Đầu ra: đường đi ngắn nhất từ nút xuất phát đến nút đích
- Khởi tạo: danh sách các nút biên (nút mở) $O \leftarrow S$ giá trị i = 0 là ngưỡng cho hàm f

While(1) do

- 1. while (O không rỗng) do
 - a) Lấy nút n từ đầu O
 - b) Nếu n thuộc G, return(đường đi tới n)
 - c) Với mọi $m \in P(n)$
 - i) g(m) = g(n) + c(m, n)
 - ii) f(m) = g(m) + h(m)
 - iii) If $f(m) \le i$ then Thêm m vào đầu O

2.
$$i \leftarrow i + \beta$$
, $O \leftarrow S$

WWW.PTIT.EDU.VN

