Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

18.xlsx

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 38 и 22.

Ответ: 10991026

2. Тип 18 № <u>39247</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. После каждого шага робота запас энергии изменяется по следующим правилам: если число в очередной клетке меньше, чем в предыдущей, запас увеличивается на величину этого числа, если больше — уменьшается на эту же величину.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

200	8	69	50
87	35	7	17
32	1	9	32
44	12	80	43

При указанных входных данных максимальное значение получается при движении по маршруту 200 + 87 + 35 + 7 - 9 - 80 + 43 = 283, а минимальное при движении по маршруту 200 + 8 - 69 + 7 - 17 - 32 - 43 = 54.

Ответ: Ответ: 2344&919

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 35 и 15.

Ответ: 1439681

4. Тип 18 № 63034

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число -1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Клетка, из которой робот не может сделать допустимого хода (справа и снизу находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке.

В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ: [______] Ответ: 161&746

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 35 и 15.

Ответ: 1276671

6. Тип 18 № <u>35476</u>

Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо, вниз или по диагонали вправо вниз. Выходить за пределы квадрата робот не может. Необходимо переместить робота в правый нижний угол так, чтобы сумма чисел в клетках, через которые прошёл робот (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

4	21	-36	11
37	-12	29	7
-30	24	-1	-5
8	-8	9	21

Для указанных входных данных ответом будет число 95 (робот проходит через клетки с числами 4, 37, 24, 9, 21).

Ответ: 820

7. Тип 18 № <u>59811</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 25). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Между соседними клетками квадрата могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Откройте файл. Определите максимальную денежную сумму, которую может собрать Робот, начиная в верхнем левом углу. В ответ запишите одно число — максимальную сумму, которую может собрать Робот.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Задание 18

Ответ: Ответ: 3110

Квадрат разлинован на $N \times N$ клеток ($1 \le N \le 30$). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: **вправо** или **вниз**. По команде **вправо** Робот перемещается в соседнюю правую клетку, по команде **вниз** — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.

В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

18.xlsx

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 38 и 22.

Ответ: 721640

9. Тип 18 № 27680

Квадрат разлинован на $N \times N$ клеток ($1 \le N \le 17$). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 35 и 15.

Ответ: 1271558

10. Тип 18 № <u>61364</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Некоторые клетки выделены тёмным фоном. В эти клетки роботу заходить нельзя.

Клетка, из которой робот не может сделать допустимого хода (справа и снизу находятся границы поля или запрещённые клетки), называется финальной.

На поле может быть несколько финальных клеток.

В начальный момент робот обладает запасом энергии, которая расходуется на движение по клеткам. Расход энергии на прохождение каждой клетки, включая стартовую и финальную, равен числу, записанному в этой клетке.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

В обоих заданиях энергии должно хватить и на прохождение финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:	
Ответ:	324&1481