

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

7. Регуляризация

Автор: Шевляков Артём Николаевич

Постановка проблемы

Проблема: большие по модулю веса

После обучения НС у нее могут оказаться астрономически большие (по абсолютной величине) веса.

Почему это плохо?

- Когда у функции $F_{NN}(x)$ большие веса w_i , предсказание НС становится неустойчивым. Небольшое изменение в значениях нецелевых признаков приводит к большому изменению предсказанного признака.
- (философский) большие числа сами по себе менее вероятны для описания природы, чем небольшие числа.
- если задача предсказания допускает несколько решений, то нужно выбирать максимально простое (см. следующий слайд).

Наиболее простая зависимость

Рассмотрим задачу предсказания:

Наиболее естественное решение – это построение НС с функцией $F_{NN}(x)$ =0, но неожиданно может натренироваться НС с функцией:

Номер курса, Х	Самооценка студента, Ү
1	0
2	0
3	0
4	0

НС со сложной зависимостью

Рассмотрим такую НС,

$$F_{NN}(x) = w_3 f(w_2 f(xw_1 + w_{01}) + w_{02}) + w_{03},$$

$$F_{NN}(x) = w_3 f(w_2 f(xw_1 + w_{01}) + w_{02}) + w_{03},$$

$$F_{NN}(x) = w_3 (w_2 (xw_1 + w_{01})^2 + w_{02})^2 + w_{03}$$

Натренируем НС на данных:

Χ	Υ
-2	0
-1	0
1	0
2	0

НС со сложной зависимостью

ГС по функции потерь получит следующие веса:

$$w_1 = w_2 = w_3 = 1, w_{01} = 0, w_{02} = -5/2, w_{03} = -9/4,$$

$$F_{NN}(x) = (x^2 - 5/2)^2 - 9/4 = x^4 - 5x^2 + 4 = (x^2 - 1)(x^2 - 4)$$

НС со сложной зависимостью

И мы получаем, что на ТВ НС дает абсолютно точные ответы.

Это произошло из-за того, что НС нашла слишком большие веса, по сравнению с нормальными (нулевыми) весами.

X	Υ
-2	0
-1	0
1	0
2	0

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

7. Регуляризация

Что делать?

Что делать?

Как запретить НС в процессе ГС получать слишком большие веса?

И главное не переусердствовать в этом! Возможно, в конкретной задаче большие веса действительно нужны.

1-й совет: ГС нужно начать с маленьких весов.

Для этого использовать:

- а) нормализацию данных;
- б) инициализацию Ксавье.

2-й совет: применить эту самую регуляризацию.

Регуляризация: неформально

Итак, нужно запретить НС искать слишком большие веса.

Это требование нужно вписать в функцию потерь. Но как?

Пусть L(w) – «обычная» функция потерь (то есть сумма квадратов ошибок).

Мы приделаем ей «хвост» и получим регуляризированную функцию потерь:

$$L_{reg}(w)=L(w)+C(w_1^2+...+w_k^2),$$

где C – некоторая **неотрицательная константа** (её надо самим выбрать), а в скобках стоит сумма квадратов всех весов (веса-связи и смещения) нашей HC. Затем мы как обычно ищем минимум функции $L_{reg}(w)$.

Смысл константы С

Константа С – это (простите за каламбур) вес весов нейронной сети.

Она отражает компромисс между двумя противоположными задачами:

- искать минимум «старой» функции потерь L(w);
- уменьшать веса сети.

Чем больше С, тем выше приоритет второй задачи.

Чем ближе к нулю С, тем выше приоритет первой задачи.

В частности, при C=0 мы получаем обычную процедуру тренировки HC.

Вспомним простенькую задачу. Натренировать НС для предсказания целевого признака Y по данным:

X	Υ
-1	1
0	0
1	1
2	4

Мы вычислили, что оптимальные веса равны $w_1 = w_0 = 1$.

В задаче минимизировалась функция потерь

$$L(w) = (-w_1 + w_0 - 1)^2 + (w_0 - 0)^2 + (w_1 + w_0 - 1)^2 + (2w_1 + w_0 - 4)^2$$

Теперь будем минимизировать функцию потерь

$$L_{reg}(w) = L(w) + C(w_1^2 + w_0^2) = (-w_1 + w_0 - 1)^2 + (w_0 - 0)^2 + (w_1 + w_0 - 1)^2 + (2w_1 + w_0 - 4)^2 + C(w_0^2 + w_1^2)$$

с помощью ГС (эта функция достаточная простая, у нее ровно один минимум). Получаем таблицу:

Константа С	Оптимальные значения весов
0	$w_1 = 1, w_0 = 1$
50	w_1 =0.14, w_0 =0.11
100	W_1 =0.07, W_0 =0.06
1000	w_1 =0.008, w_0 =0.006

Какое значение константы С самое лучшее?

Об этом будет рассказано в теме «Выбор оптимальных гиперпараметров».

Небольшой спойлер:

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

7. Регуляризация

Второй вид регуляризации

Вот это поворот!

Оказывается есть и другой вид регуляризации.

Ранее мы изучали регуляризированную функцию потерь

 $L_{reg}(w) = L(w) + C(w_1^2 + ... + w_k^2)$ – такой вид регуляризации называется

L2-регуляризацией.

Но можно составить такую функцию потерь: $L_{rea}(w)=L(w)+C(|w_1|+...+|w_k|)$ – это **L1-регуляризация.**

Посмотрим на примерах, в чем отличие L1- и L2-регуляризации.

Опять помучаем нашу простенькую задачу.

Натренировать НС для предсказания целевого признака Y по данным:

X	Υ
-1	1
0	0
1	1
2	4

«Обычная» функция потерь равна $L(w)=(-w_1+w_0-1)^2+(w_0-0)^2+(w_1+w_0-1)^2+(2w_1+w_0-4)^2$.

Теперь будем минимизировать функцию потерь

$$L_{reg}(w) = L(w) + C(|w_1| + |w_0|) = (-w_1 + w_0 - 1)^2 + (w_0 - 0)^2 + (w_1 + w_0 - 1)^2 + (2w_1 + w_0 - 4)^2 + \mathbf{C}(|w_1| + |w_0|)$$

с помощью ГС.

Получаем таблицу:

Константа С	Оптимальные значения весов
0	$w_1 = 1, w_0 = 1$
1	w_1 =0.95, w_0 =0.9
5	w_1 =0.75, w_0 =0.5

Константа С	Оптимальные значения весов
9	W_1 =0.55, W_0 =0.1
10	$w_1 = 0.5, w_0 = 0$
15	w_1 =0.08, w_0 =0
20	w_1 =0, w_0 =0

Сравнение двух типов регуляризации

L1- и L2-регуляризации по разному уменьшают величины весов HC.

- в L2-регуляризации с ростом константы С веса **плавно стремятся к нулю**;
- в L1-регуляризации с ростом константы С все **веса постепенно зануляются**.

Какой из двух типов регуляризации выбрать?

Это тоже гиперпараметр, см. главу «Выбор оптимальных гиперпараметров».

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

7. Регуляризация

Выводы

Выводы:

- Мы поняли, что нужно бороться с бесконтрольным возрастанием абсолютных значений весов НС.
- Наиболее естественный способ борьбы регуляризация.
- Есть два типа регуляризации, которые по-разному воздействуют на веса HC.