Introduction to Audio Data

What is an Audio Signal?

Any vibrating body produces a sound wave

Parameters of Audio Signal

• Amplitude: Maximum Displacement of a particle from rest position

Parameters of Audio Signal

• Cycle: One Complete Upward and Downward movement

Parameters of Audio Signal

• **Frequency:** How fast a signal is changing over time?

Different Types of Signals

Digital Signal: Discrete and Finite

Different Types of Signals

• Analog Signal: Continuous and Infinite

Converting Analog to Digital Signal

• Sampling: Conversion of Analog to Digital Signal

Converting Analog to Digital Signal

• Sampling Rate: Number of Samples per Second

Audio Representation: Time Domain

Time Domain: Amplitude vs Time

Audio Representation: Spectrogram

 Spectrogram: Every point represents an amplitude of a frequency at particular time

Formulating the Problem

Thank You

