软件学院本科生 2020——2021 学年第 2 学期算法导论课程期末考试试卷 (B卷)

专业:

年级:

学号:

姓名:

成绩:

得分

一、选择题(本题共30分,每小题3分)

- 1. In terms of asymptotic analysis, which function grows the fastest ()
- A. 2n-3 B. 5^n C. $7n^2 + n$ D. $n^2 \log n$
- 2. Which of the following is not $O(n^2)$ ()
- A. 1500n + 12099 B. $n^{1.98}$ C. $2n^2$ D. $n^3 \cdot \sqrt{n}$
- 3. If m denotes the number of edges in a graph, and n denotes the number of nodes. The time complexity of Kruskal is (
- A. O(mn) B. O(mlogn) C. O(n+m) D. O(mlogm)
- 4. Which of the following problem cannot be solved by dynamic programming ()
- A. Knapsack Problem B. Stable Matching C. Segmented Least Squares D. Weighted Interval Schedule
- 5. Considering the following pairs of functions f(n), g(n), which pair of the functions satisfies that f(n) = O(g(n))

but
$$g(n) \neq O(f(n))$$
 ()

A.
$$f(n) = n^3, g(n) = n^2 \log(n^2)$$

B.
$$f(n) = \log n$$
, $g(n) = 7 \log n$

C.
$$f(n) = 10 \log \sqrt{n}$$
, $g(n) = \sqrt{n} + 10$

D.
$$f(n) = \log n + 1.001^n$$
, $g(n) = 1000 \log \sqrt{n}$

草 稿 区

Given a graph G, all its edges are positively weighted. Suppose that you change the length of every edge of G as follows. For which is every shortest path in G also the shortest path in G' ()

D. Take its square (平方) A. Add 17 B. Multiply by 17 C. Takes its cube (立方)

What is the length of the shortest path from A to G in the following graph (

B. 11 C. 12 D. 13 A. 10

The main difference between greedy algorithms and the dynamic programming is (

- A. Optimal substructure
- B. Greedy choice
- C. Construct optimal solution
- D. Define the optimal solution

What is the time complexity of the following code (

A. $O(\log n)$

B. $0(n^3)$

C. $O(n^{1/3})$

D. 0(n)

第2页,共7页

10. Consider the undirected graph below. Using Prim's algorithm to construct a minimum spanning tree starting from node A, which one of the following sequences of edges is a possible solution to construct the minimum spanning tree ()

- A. (E, G), (C, F), (F, G), (A, D), (A, B), (A, C)
- B. (A, D), (A, B), (A, C), (C, F), (G, E), (F, G)
- C. (A, B), (A, D), (D, F), (F, G), (G, E), (F, C)
- D. (A, D), (A, B), (D, F), (F, C), (F, G), (G, E)

得分

二、填空题(本题共20分,每空2分)

- 1. Rank the following functions: $\log n$, $3 \operatorname{nlog} \sqrt{n}$, $\sqrt{2n}$, $2 \operatorname{n!}$, 3^n , n^3 in ascending order in terms of computational complexity:
- 2. Using binary search to search for an element in a sorted list with n elements. In the best case, the running time is _____.

 In the worst case, the time complexity is _____.
- 3. The asymptotic expression Ω indicates _____. (上界/下界/紧的界)

4. Given sequence X = [B, C, A, D, B, C, D] and sequence Y = [A, C, B, A, B, D, C, D], please give one of the longest content of the long				
	subsequence of X and Y			
5.	The running time of the following code is			
	int i=0, k=0;			
	while(k <n) th="" {<=""></n)>			
	i++;			
	k+=i			
	}			
6	In the much law of antimal offline eachs, the shows stand in the eachs of size 5 are (a. a. d. h.), and the manying string			

- 6. In the problem of optimal offline cache, the chars stored in the cache of size 5 are {e, a, c, d, b}, and the required string is "abfcegedb". If we use the farthest-in-future algorithm, the char ejected from the cache at the first cache miss is______
- 7. The three basic methods for proving that the problem can be solved with a greedy algorithm are _______, and

得分

三、简答题(本题共20分)

1. The subset-sum problem can be described as: given a set of integers, is there a non-empty subset whose sum is zero? One algorithm able to solve it works as follows. Each possible combination of entries from the input set (treated as a list) is denoted as a binary number. For example, for the input set {1,2,-3,4,-2} we would utilize 5-digit binary numbers and the number 01001 would indicate a combination involving 2 and -2 (upon finding such a combination the algorithm would stop and return a positive answer). For an input set of size n, please give the asymptotic complexity of this algorithm and justify (证明) your answer. (本小题 10 分)

2. Table 1 shows men's preference ranking for women, and Table 2 shows women's preference ranking for men. After matching men and women, if man A and woman X are not matched, A prefers X than his assigned partner, and X prefers A than her assigned partner, we say (A, X) is an unstable pair and the matching is unstable. Please devise a stable matching method and describe the core idea in terms of pseudocode. (本小题 10 分)

Table 1
Men's preference list for women

1st	2nd	3rd
X	Y	Z
Y	X	Z
X	Y	Z
	X Y	X Y Y X

Table2
Women's preference list for men

_					
	1st	2nd	3rd		
X	В	A	С		
Y	A	В	С		
Z	A	В	С		

得分

四、综合题(本题共30分)(注:凡是要求设计算法的题目,请写出详细的伪代码)

1. In the interval scheduling problem, we are given n jobs, each of which has a starting time s and a finishing time f, and the goal is to find a maximum set of mutually compatible jobs (two jobs are compatible if they don't overlap). (本小题 12 分)

Please answer the following questions:

- (a) Design a greedy algorithm for the interval scheduling problem and give the pseudocode.
- (b) Assume that we are given 8 jobs with starting time and finishing time (s, t) being (0,2), (1,3), (8,9), (3,7), (7,8), (2,4), (6,9), (4,5). Use your algorithm to find a solution to this problem.

- 2. There is an array A which contains n integers $x_1, ..., x_n$. We need to find a non-empty contiguous subset T of A whose sum is maximized. For example, if A = [1, -2, 4, -2, 3], then T is [4, -2, 3] with a sum of 5. Design a dynamic programming algorithm that solves this problem. (本小题 18 分)
 - (a) Give your pseudocode and explain it.
 - (b) Analyze the time complexity.
 - (c) Assume A = [13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7], calculate its corresponding T and the maximized sum using your algorithm.