Introduction to Machine Learning

Perceptron

Guillaume Wisniewski guillaume.wisniewski@limsi.fr February 2017

Université Paris Sud — LIMSI

Supervised Classification

1

Our goal...

Classification

- $\mathcal{X} \to \text{set of all examples/observations}$ (in practice $\mathcal{X} = \mathbb{R}^n$)
- ullet $\mathcal{Y}
 ightarrow$ set of labels
- there is functional mapping between an observation and a label: given an observation, an expert (you?) can find the label
- finding the label of an observation = classify the observation
- ullet $\mathcal{Y}=$ discrete space (classification) or $\mathcal{Y}=\mathbb{R}^n$ (regression)

Formally, a classifier is :

$$f: \mathcal{X} \mapsto \mathcal{Y}$$
$$x \to y$$

2

Examples

Observations

Label

- 1. spam
- 2. not spam
- features: words, number of smiley, time-stamps, language, ...
- \Rightarrow binary classification

Example (2)

Observation

Labels

- basket
- football
- field hockey
- other
- \Rightarrow multi-class classification

• features : number of white pixel, number of red pixels, number of persons, ...

Example (3)

He reckons the current account deficit will narrow to only \$1.8 billion in September.

[NPHe] [VP reckons] [NPthe current account deficit] [VP will narrow] [PPto] [NPonly \$1.8 billion] [PPin] [NPSeptember.]

Sequence labeling (\simeq multi-class classification with a large set of labels = structure prediction)

Example (5) Comment va ton frère? τι κανει ο αδελφος σου; as many classes as there are possible sentences in Greek

Supervised Learning • f is not known • f can not be formally defined: fuzzy decision ⊕ many criteria must be considered • goal: learn/estimate/infer f from a set of labeled data • supervised learning: we know the label of all training examples Problematic • Find a function that can predict the label of 'most' examples from a finite set of examples

1. a set of labeled examples : $\left(\mathbf{x}^{(i)}, y^{(i)}\right)_{i=1}^{N}$ 2. an evaluation measure \Rightarrow to evaluate \ll progresses \gg 3. a class of hypotheses • \ll structure \gg of the program we want to learn • cf. inductive bias

Context

- goal: which of two classifiers is the best? (or the same classifier during training)
- need an automatic, quantitative metric
- main idea : compare the output of the program (i.e. predicted value) to the expected output

same as unit tes

10

Loss function (1)

- estimate the cost of a bad prediction
- formally : $\ell(\hat{y}, y^*)$: $\mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}$ where :
 - \hat{y} gold label (given by an oracle)
 - y* predicted label
- by definition : $\ell(y,y)=0$, the larger ℓ the worse the decision;
- regression : $\ell_{\text{RSE}} = (y^* \hat{y})^2$
- binary classification :

$$\ell_{0/1} = \mathbb{1}_{\hat{y}=y^*}$$

$$= \begin{cases} 1 & \text{if } \hat{y} \neq y^* \\ 0 & \text{otherwise} \end{cases}$$

11

Loss function (2)

- new task : detect if somebody is sick (binary classification)
- two kinds of error :
 - 1. false negative : 'miss' that the patient is sick
 - 2. false positive : predict somebody is sick when she is not
- case Nº1. is 'worst' than case Nº2... but $\ell^{0/1}$ is symmetric
- weighted loss :

predicted	gold	loss
positive	positive	0
	negative	γ_1
negative	positive	γ_2
	negative	0

 γ_1 and γ_2 are problem-dependent

12

Evaluation Principle

A classifier is evaluated by the mean of the loss function over a dataset :

$$\mathcal{E} = \frac{1}{n} \sum_{i} \ell\left(\hat{y}^{(i)}, y^{(i)*}\right)$$
$$= \frac{1}{n} \sum_{i} \ell\left(f(\mathbf{x}^{(i)}), y^{(i)*}\right)$$

• the smaller the *(error rate)*, the better the classifier

13

Different kind of errors

- training error :
 - estimated on the examples used for training
 - evaluate how well the classifier 'fit' the data
- test error :
 - estimated on an independent dataset
 - evaluate how well a the classifier will 'generalize'
 - "close" to the error we will achieve on any other dataset (cf. section on theoretical guarantees)

Linear classifiers

Warning

For the moment : only binary classification : $y=\pm 1$

Supervised classification framework

Building blocks of supervised classification

- 1. labeled examples;
- 2. loss function;
- 3. hypotheses class.

Hypotheses class

- decision rule: how to choose the label associated to an observation
- learning algorithm : choose one element in this class

15

Recall: decision tree & k-nn

Decision Tree

- make decision by considering a small number of features
- conjunction of features

k-nn

- many features but they are all considered equal
- curse of dimensionality

Neither of these two extremes is desirable

17

The class of linear function

Scoring function

$$F(x; w) = w \cdot x$$

- feature vector usually have a constant feature (bias)
- ullet function parametrized by a parameter vector ullet
- linear combination of features : each features has a weight describing its importance

Decision function

$$y^* = \operatorname{sign} F(\mathbf{x}; \mathbf{w}) = \begin{cases} 1 & \text{if } F(\mathbf{x}; \mathbf{w}) \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

18

16

Recall : dot product

• the dot product of $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$ is a real :

19

 $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i \times y_i$

• in python :

 $\operatorname{np.dot}(x, y)$ # x and y and numpy arrays $\operatorname{sum}(xx * yy \text{ for } xx, yy \text{ in } zip(x, y))$ # x and y are lists (same size

- interpretation : weighted sum
 - assume **x** is a binary vector (e.g. the i-th word is present or not)
 - $\bullet\ \ y_i$ quantifies the importance of the i-th word in the total score
 - ullet y_i 'small' \Rightarrow word has no impact on overall score
 - y_i 'large' \Rightarrow i-th word may change the sign!

Decision frontier

Definition

- characterize the class of functions
- = when the decision of the decision function changes

In our case...

$$F(x; \mathbf{w}) = 0$$

⇒ equation of an hyperplane = separating hyperplane

Perceptron

History (1)

- Rosenblatt, 1957
- goal = simulate visual capacity of human brain
- has motivated both learning algorithm & parametrization... not useful anymore

The perceptron is a machine!

Learning

Learning through error correcting (Rosenblatt, 57)

- for each example of the training set
- predict its label
- if the label is correct : do nothing
- if the label is not correct : correct parameters to predict the correct label

27

More formally

Require: a training set $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})_{i=1}^n$

- 1: **w** ← 0
- 2: while there are classification errors do
- for i = 1 to n do
- $y = \operatorname{sign} (\mathbf{w} \cdot \mathbf{x}^{(i)})$ if $y \neq y^{(i)}$ then 4:
- 5:
- $\mathbf{w} \leftarrow \mathbf{w} + y^{(i)} \cdot \mathbf{x}^{(i)}$
- end for
- 9: end while

Learning through error correcting

Update rule :

$$\mathbf{w_{t+1}} \leftarrow \mathbf{w_t} + \cdot \mathbf{y^{(\textit{i})}} \cdot \mathbf{x^{(\textit{i})}}$$

- only when an error occurs
- ullet let us assume that $y^{(i)}=1$ (same reasoning with $y^{(i)}=-1$)
 - the scoring function is negative, even though it should have been positive
 - should increase its « value » for the example at stake
- in practice :

$$F(\mathbf{x}; \mathbf{w}_{t+1}) - F(\mathbf{x}; \mathbf{w}_t) = \mathbf{x} \cdot \mathbf{w}_{t+1} - \mathbf{w}_t$$

$$= y^{(i)} \times \mathbf{x} \cdot \mathbf{x}$$

$$= y^{(i)} \times \underbrace{||\mathbf{x}||_2^2}_{\geq 0}$$

Theoretical results

- if the training set is linearly separable :
 - converges in a finite number of steps
 - no guarantee about the generalization error
- otherwise :
 - infinite loop
 - several tricks, no proof
- \bullet how to know if a training set is linearly separable? \Rightarrow you have to try!

Why does it work?

What we did...

 \bullet choose \boldsymbol{w} so that there is no error on the training set

What we are interested in...

• prediction quality on unknown examples?

Link?

30

Menu

- what to do with non-linearly separable datasets?
- stability issues

32

31

Improving the perceptron

What to do with non-linearly separable data?

- \bullet Heuristic to optimize $\ell^{0/1}$ on the train set
- $\bullet\,$ no theoretical guarantee on the CONVERGENCE (only for linearly separable dataset
- no guarantee on the generalization performance

Limits of the perceptron

Do we known anything about the generalization error ?

Thanks to Mathematics...

- no connection between learning error and generalization error (for the perceptron)
- but, in practice : experimental estimation of the generalization
- use 3 independent datasets :
 - 1. training set : to estimate the parameters of the perceptron
 - 2. validation set : to monitor the generalization error
 - · regularly, compute the error on the validation set
 - keep the value of the parameters with the lowest error
 - 3. test set : to estimate the generalization error (can only be used

35

More formally

```
Require: a training set (\mathbf{x}^{(i)}, y^{(i)})_{i=1}^n, hyper-parameter
     MAX EPOCH
 1: \mathbf{w} \leftarrow \mathbf{0}
 2: for epoch = 1 to MAX_EPOCH do
        shuffle training set
 3:
        for i = 1 to n do
 4:
           y = sign(\mathbf{w} \cdot \mathbf{x}^{(i)})
 5:
           if y \neq y^{(i)} then
 6:
               \mathbf{w} \leftarrow \mathbf{w} + y^{(i)} \cdot \mathbf{x}^{(i)}
 8:
        compute error on validation set
11: end for
```

37

39

With a picture...

- epoch = iteration on the whole training set
- · learning curve
- You should NEVER draw this curve : use the test set only ONCE (here : pedagogical purpose)

Why does it work?

PAAAAARSKEUUUUU !!!

- unbiased estimation of the generalization error (see central limit theorem)
- error rate is a mean ⇒ can be estimated from a sample if this sample is large enough
- but : we need more labeled $\mathsf{data} + \mathsf{computational} \ \mathsf{cost}$ of evaluating the error

38

Stability issues

The problem

- 10,000 examples, after the 100-th we found 'good' parameters \rightarrow no errors on the following 9899-th examples...
- ullet error when predicting the label of the 10,000-th example \Rightarrow the update will 'destroy' parameters that we very good for 99.99% of the examples

Solution

- random.shuffle
- averaged perceptron

Voted Perceptron

Principe

- \bullet keep track of \boldsymbol{w} at each step
- consider one classifier for each value of w
- majority vote of all classifiers

Pros/cons

- theoretical results : generalization error of the voted perceptron is always lower than the one of the 'vanilla' perceptron
- cons : computational cost

Averaged Perceptron

- approximation of the voted perceptron
- instead of considering the last value of the parameter vector, we consider the mean of all the values it has taken during
- no more theoretical results, but works experimentally

Algorithm

Require: a training set $(\mathbf{x}^{(i)}, y^{(i)})_{i=1}^n$

- 2: **a** ← 0

3: while there are classification errors do

- for i = 1 to n do
 - $y = \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(i)}\right)$
- if $y \neq y^{(i)}$ then 6:
- $\mathbf{w} \leftarrow \mathbf{w} + y^{(i)} \cdot \mathbf{x}^{(i)}$

- end for
- 11: end while

42

Why does it work?

• 3 iterations of the training algorithm \Rightarrow 3 weights :

 $\begin{array}{c|c} \mathbf{w}^1 & \mathbf{x} \cdot \mathbf{w}^1 > 0 \\ \mathbf{w}^2 & \mathbf{x} \cdot \mathbf{w}^2 < 0 \\ \mathbf{w}^3 & \mathbf{x} \cdot \mathbf{w}^3 > 0 \\ \end{array}$

- ullet voted perceptron : \oplus (two votes versus one)
- average perceptron :

 $\mathbf{x} \cdot \mathbf{w}^{a} = \frac{1}{3} \times \left(\underbrace{\mathbf{x} \cdot \mathbf{w}^{1}}_{>0} + \underbrace{\mathbf{x} \cdot \mathbf{w}^{2}}_{<0} + \underbrace{\mathbf{x} \cdot \mathbf{w}^{3}}_{>0} \right)$ (2)

if $\mathbf{x}\cdot\mathbf{w}^2$ is not too 'large', the average score will be positive

43

44

41

Multi-class classification

The setting

- each observation x is associated to a label $y \in \mathcal{Y}$
- $\mathcal{Y} = \text{finite set of possible labels (in practice } [1, K])$ ($\mathcal{Y} = \text{can contain}$ up to several thousands labels)
- multi-class loss :

$$\ell^{\text{multi}}(y_1, y_2) = \begin{cases} 0 & \text{if } y_1 = y_2 \\ 1 & \text{otherwise} \end{cases}$$
 (3)

Decision function

1st formulation

- one weight vector for each class w_v
- decision :

$$y^* = \arg\max_{y \in \mathcal{Y}} \mathbf{x} \cdot \mathbf{w}_y \tag{4}$$

2nd formulation

- single weight vector w
- ullet a feature f is expanded into K features : f AND y

$$y^* = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \underbrace{\phi(\mathbf{x}, y)}_{\text{joint representation of } \mathbf{x} \text{and } y} \cdot \mathbf{w}$$
 (5)

