А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекция 8

8.1. Теорема Радона-Никодима

На прошлой лекции мы построили изометрический изоморфизм $(\ell^p)^* \cong \ell^q$, где числа $p,q \in (1,+\infty)$ связаны соотношением 1/p+1/q=1. Чтобы обобщить этот результат на случай пространств $L^p(X,\mu)$, нам понадобится один важный результат из теории меры — теорема Радона–Никодима. Эта теорема весьма часто используется в функциональном анализе, теории вероятностей и других науках, поэтому ее справедливо считают одной из центральных теорем теории меры.

Пусть X — множество и \mathscr{A} — алгебра его подмножеств.

Определение 8.1. Функция $\mu: \mathscr{A} \to \mathbb{C}$ называется мерой (или комплексной мерой), если для любого конечного набора попарно не пересекающихся множеств $A_1, \ldots, A_n \in \mathscr{A}$ выполнено равенство

$$\mu\Big(\bigsqcup_{i=1}^n A_i\Big) = \sum_{i=1}^n \mu(A_i).$$

Мера $\mu: \mathscr{A} \to \mathbb{C}$ называется σ -аддитивной, если для любого счетного набора попарно не пересекающихся множеств $A_1, A_2, \ldots \in \mathscr{A}$, такого, что $\bigsqcup_{i=1}^{\infty} A_i \in \mathscr{A}$, выполнено равенство

$$\mu\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i). \tag{8.1}$$

Замечание 8.1. Подчеркнем, что требование сходимости ряда в (8.1) входит в определение σ -аддитивной меры и не следует автоматически из того, что множества A_i попарно не пересекаются (в отличие от случая неотрицательных мер). Отметим также, что этот ряд сходится абсолютно, т.к. левая часть формулы (8.1) не зависит от нумерации множеств A_i .

Чтобы работать с комплексными мерами, удобно сопоставить каждой комплексной мере некоторую «обычную» (т.е. неотрицательную) меру, называемую ее вариацией.

Определение 8.2. Вариацией меры $\mu \colon \mathscr{A} \to \mathbb{C}$ называется функция $|\mu| \colon \mathscr{A} \to [0, +\infty]$, заданная формулой

$$|\mu|(A) = \sup \left\{ \sum_{i=1}^{n} |\mu(A_i)| : A = \bigsqcup_{i=1}^{n} A_i, \ A_i \in \mathscr{A} \right\}.$$

Доказательство следующего предложения — простое упражнение.

Предложение 8.1. Вариация меры μ сама является мерой на \mathscr{A} . Если мера μ σ -аддитивна, то такова же u $|\mu|$.

Лекция 8 53

Определение 8.3. Говорят, что мера μ на алгебре $\mathscr A$ имеет *ограниченную вариацию*, если $|\mu|(X) < \infty$.

Предложение 8.2. Если $\mathscr{A} - \sigma$ -алгебра, а $\mu \colon \mathscr{A} \to \mathbb{C} - \sigma$ -аддитивная мера, то μ имеет ограниченную вариацию.

Для доказательства нам понадобится следующая простая лемма.

Лемма 8.3. Для любого набора чисел $a_1, \ldots, a_n \in \mathbb{R}$ найдется такое подмножество $S \subset \{1, \ldots, n\}$, что

$$\left| \sum_{i \in S} a_i \right| \geqslant \frac{1}{2} \sum_{i=1}^n |a_i|.$$

Докажите эту лемму сами в качестве упражнения.

Доказательство предложения 8.2. Разберем сначала случай, когда мера μ вещественна. Предположим, что $|\mu|(X) = \infty$. Тогда для любого C > 0 существует разбиение $X = \bigsqcup_{i=1}^n X_i$, где $X_i \in \mathscr{A}$, такое, что

$$\sum_{i=1}^{n} |\mu(X_i)| \geqslant C.$$

Зафиксируем такое разбиение для константы $C = 2(|\mu(X)| + 1)$. Согласно лемме 8.3, найдется такое подмножество $S \subset \{1, \dots, n\}$, что

$$\left|\mu\left(\bigcup_{i\in S}X_i\right)\right| = \left|\sum_{i\in S}\mu(X_i)\right| \geqslant \frac{C}{2} \geqslant 1.$$
(8.2)

Положим $A = \bigcup_{i \in S} X_i$ и $B = X \setminus A$. С учетом (8.2) получаем оценку

$$|\mu(B)| = |\mu(X) - \mu(A)| \ge |\mu(A)| - |\mu(X)| \ge \frac{C}{2} - |\mu(X)| = 1.$$

Итак, мы построили такое разбиение $X = A \sqcup B$, что $|\mu(A)| \geqslant 1$ и $|\mu(B)| \geqslant 1$. Из предположения $|\mu|(X) = \infty$ следует, что либо $|\mu|(A) = \infty$, либо $|\mu|(B) = \infty$. Будем считать, что $|\mu|(B) = \infty$, и применим к множеству B ту же процедуру, что была проделана выше для всего множества X. Получим разбиение $B = A_1 \sqcup B_1$, в котором $|\mu(A_1)| \geqslant 1$ и $|\mu|(B_1) = \infty$. Далее проделаем то же самое для множества B_1 , и т.д. B итоге получим бесконечную последовательность попарно не пересекающихся множеств $A_1, A_2, \ldots \in \mathscr{A}$, в которой $|\mu(A_i)| \geqslant 1$ для всех i. Следовательно, ряд $\sum_i \mu(A_i)$ расходится, что противоречит σ -аддитивности меры μ . Таким образом, для вещественных мер предложение доказано.

Если μ — комплексная мера, то представим ее в виде $\mu = \mu_1 + i\mu_2$, где μ_1, μ_2 — ее вещественная и мнимая части. Очевидно, μ_1 и μ_2 также являются σ -аддитивными мерами на $\mathscr A$ и по доказанному выше имеют ограниченную вариацию. Но из определения вариации меры легко следует, что $|\mu| \leqslant |\mu_1| + |\mu_2|$; следовательно, μ также имеет ограниченную вариацию.

Обсудим теперь одну конструкцию комплексных мер. Пусть $\mathscr{A} - \sigma$ -алгебра подмножеств множества X и $\mu \colon \mathscr{A} \to [0, +\infty] - \sigma$ -аддитивная мера. Возьмем какую-нибудь μ -интегрируемую функцию $\rho \colon X \to \mathbb{C}$ и определим функцию $\rho \colon \mu \colon \mathscr{A} \to \mathbb{C}$, полагая

$$(\rho \cdot \mu)(A) = \int_{A} \rho(x) \, d\mu(x) \qquad (A \in \mathscr{A}).$$

Из свойств интеграла Лебега немедленно следует, что $\rho \cdot \mu$ — комплексная мера на \mathscr{A} . Легко проверить (проверьте!), что если ρ_1, ρ_2 — μ -интегрируемые функции на X и $\rho_1 \cdot \mu = \rho_2 \cdot \mu$, то $\rho_1 = \rho_2 \mu$ -п.в. Следовательно, функция ρ определена мерой $\nu = \rho \cdot \mu$ однозначно с точностью до равенства μ -п.в. Эта функция называется *плотностью* меры ν относительно μ .

Отметим следующее очевидное свойство меры $\rho \cdot \mu$: если $\mu(A) = 0$ для некоторого $A \in \mathcal{A}$, то и $(\rho \cdot \mu)(A) = 0$. У этого свойства есть специальное название:

Определение 8.4. Пусть $\mu \colon \mathscr{A} \to [0, +\infty]$ и $\nu \colon \mathscr{A} \to \mathbb{C} - \sigma$ -аддитивные меры. Говорят, что мера ν абсолютно непрерывна относительно μ (и пишут $\nu \ll \mu$), если из условия $\mu(A) = 0, \ A \in \mathscr{A}$ следует, что $\nu(A) = 0$.

Наблюдение 8.4. Из определения вариации меры легко следует, что $\nu \ll \mu$ тогда и только тогда, когда $|\nu| \ll \mu$.

Из сказанного выше видно, что если мера ν имеет плотность относительно μ , то она абсолютно непрерывна относительно μ . Теорема Радона–Никодима утверждает, что верно и обратное.

Теорема 8.5 (Радон, Никодим). Пусть $\mathscr{A} - \sigma$ -алгебра подмножеств множества $X, \mu \colon \mathscr{A} \to [0, +\infty]$ и $\nu \colon \mathscr{A} \to \mathbb{C} - \sigma$ -аддитивные меры, причем μ σ -конечна. Тогда следующие утверждения эквивалентны:

- (i) $\nu \ll \mu$;
- (ii) $\nu = \rho \cdot \mu$ для некоторой μ -интегрируемой функции $\rho \colon X \to \mathbb{C}$.

Для доказательства нам понадобится следующая лемма.

Лемма 8.6. Пусть $\mu \colon \mathscr{A} \to [0, +\infty) - \sigma$ -аддитивная мера, $\rho \colon \mathscr{A} \to [0, +\infty) - \mu$ -интегрируемая функция. Положим $\nu = \rho \cdot \mu$. Тогда следующие свойства \mathscr{A} -измеримой функции $f \colon X \to \mathbb{C}$ эквивалентны:

- (i) $f \nu$ -интегрируема;
- (ii) $f\rho \mu$ -интегрируема.

Если эти свойства выполнены, то

$$\int_{X} f(x) \, d\nu(x) = \int_{X} f(x) \rho(x) \, d\mu(x). \tag{8.3}$$

Схема доказательства. Для характеристических функций $f = \chi_A$ (где $A \in \mathscr{A}$) и их линейных комбинаций (так называемых простых функций) равенство (8.3) очевидно. Если $f \geqslant 0$, то f является поточечным пределом неубывающей последовательности простых функций (докажите!), и как эквивалентность условий (i) и (ii), так и равенство (8.3) доказываются с помощью теоремы о монотонной сходимости. Общий случай сводится к предыдущему с помощью разложения $f = (f_1 - f_2) + i(f_3 - f_4)$, где $f_k \geqslant 0$. \square

Лекция 8 55

Доказательство теоремы 8.5. Доказательство проведем в несколько шагов.

Случай 1: предположим, что обе меры μ и ν неотрицательны и конечны, и положим $\lambda = \mu + \nu$. Легко проверить (проверьте!), что всякая \mathscr{A} -измеримая λ -интегрируемая функция $f: X \to \mathbb{C}$ μ -интегрируема, и $\int_X |f| \, d\mu \leqslant \int_X |f| \, d\lambda$. В частности, это верно для любой функции $f \in L^2(X, \lambda)$, которая λ -интегрируема ввиду конечности λ . Следовательно, определен линейный функционал

$$F \colon L^2(X,\lambda) \to \mathbb{C}, \quad F(f) = \int_X f(x) \, d\mu(x).$$

Используя сделанное выше наблюдение и неравенство Коши–Буняковского–Шварца, заключаем, что для любой $f \in L^2(X,\mu)$ справедливы неравенства

$$|F(f)| \le \int_X |f| \, d\mu \le \int_X |f| \, d\lambda \le \lambda(X)^{1/2} ||f||_{L^2(X,\lambda)}.$$

Следовательно, функционал F ограничен, и в силу теоремы Рисса существует такая функция $\psi \in L^2(X, \lambda)$, что

$$\int_X f \, d\mu = \int_X f \psi \, d\lambda \quad (f \in L^2(X, \lambda)).$$

Подставляя сюда $f=\chi_A$ (где $A\in\mathscr{A}$), заключаем, что

$$\mu = \psi \cdot \lambda, \quad \nu = \lambda - \mu = (1 - \psi) \cdot \lambda.$$
 (8.4)

Отсюда и из неотрицательности мер μ и ν легко следует (убедитесь!), что $\psi \geqslant 0$ λ -п.в. и $1-\psi \geqslant 0$ λ -п.в.

Формулы (8.4) наводят на мысль, что искомая плотность меры ν относительно μ — это функция $(1-\psi)/\psi$. Докажем это. Во-первых, добьемся того, чтобы эта функция была всюду определена. Для этого рассмотрим множество $E=\{x\in X:\psi(x)=0\}$. Из (8.4) следует, что $\mu(E)=\int_E\psi\,d\lambda=0$. С учетом условия $\nu\ll\mu$ получаем отсюда, что $\nu(E)=0$, а значит, и $\lambda(E)=0$. Таким образом, $\psi>0$ λ -п.в. Переопределив ψ на E (например, положив ее равной 1 на E), мы добьемся того, что $\psi>0$ всюду на X; соотношения (8.4) при этом сохранятся.

Положим теперь $\rho=(1-\psi)/\psi$. Функция $\rho\psi=1-\psi$ λ -интегрируема, поэтому, в силу (8.4) и леммы 8.6, функция ρ μ -интегрируема, и для любого $A\in\mathscr{A}$ справедливы равенства

$$\int_{A} \rho \, d\mu = \int_{A} \rho \psi \, d\lambda = \int_{A} (1 - \psi) \, d\lambda = \nu(A).$$

Следовательно, $\nu = \rho \cdot \mu$, как и требовалось.

Случай 2: пусть теперь мера μ σ -конечна, а ν по-прежнему неотрицательна. Представим X в виде $X=\bigcup_n X_n$, где $\{X_n\}_{n\in\mathbb{N}}$ — возрастающая последовательность множеств из \mathscr{A} , для которых $\mu(X_n)<\infty$. Применяя разобранный выше случай 1, для каждого n получаем μ -интегрируемую функцию $\rho_n\colon X_n\to [0,+\infty)$, такую, что для любого $A\in\mathscr{A}$, $A\subseteq X_n$ справедливо равенство $\nu(A)=\int_A \rho_n\,d\mu$. Поскольку это же равенство выполнено и для функции ρ_{n+1} вместо ρ_n , мы заключаем, что $\rho_{n+1}|_{X_n}=\rho_n$ μ -п.в. Следовательно, определена функция $\rho\colon X\to [0,+\infty)$, для каждого n удовлетворяющая условию $\rho|_{X_n}=\rho_n$ μ -п.в. Заметим, что $\sup_n\int_{X_n}\rho\,d\mu=\sup_n\nu(X_n)\leqslant\nu(X)<\infty$,

поэтому ρ μ -интегрируема на X. Остается заметить, что любого $A \in \mathscr{A}$ справедливы равенства

$$(\rho \cdot \mu)(A) = \lim_{n \to \infty} (\rho \cdot \mu)(A \cap X_n) = \lim_{n \to \infty} \nu(A \cap X_n) = \nu(A),$$

т.е. $\nu = \rho \cdot \mu$, как и требовалось.

Случай 3: пусть теперь мера ν вещественна. Представим ее в виде $\nu=\nu_1-\nu_2$, где $\nu_1=|\nu|$ и $\nu_2=|\nu|-\nu$. Меры ν_1 и ν_2 неотрицательны и абсолютно непрерывны относительно μ , поэтому, согласно разобранному выше случаю 2, они имеют вид $\nu_k=\rho_k\cdot\mu$ (k=1,2) для некоторых μ -интегрируемых функций ρ_k на X. Следовательно, $\nu=(\rho_1-\rho_2)\cdot\mu$.

Случай 4 (общий). Запишем меру ν в виде $\nu = \nu_1 + i\nu_2$, где ν_1 и ν_2 — ее действительная и мнимая части. Меры ν_1 и ν_2 вещественны и абсолютно непрерывны относительно μ , поэтому, согласно разобранному выше случаю 3, они имеют вид $\nu_k = \rho_k \cdot \mu \ (k=1,2)$ для некоторых μ -интегрируемых функций ρ_k на X. Следовательно, $\nu = (\rho_1 + i\rho_2) \cdot \mu$.

С помощью теоремы Радона—Никодима нетрудно описать пространство, сопряженное к $L^p(X,\mu)$. Следующая теорема обобщает предложение 7.4.

Теорема 8.7. Пусть (X,μ) — пространство с мерой, $p,q \in (1,+\infty)$ и 1/p+1/q=1. Существует изометрический изоморфизм $L^q(X,\mu) \to (L^p(X,\mu))^*$, переводящий кажедую функцию $g \in L^q(X,\mu)$ в функционал $\varphi_g \in (L^p(X,\mu))^*$, действующий по правилу

$$\varphi_g(f) = \int_X f(x)g(x) \, d\mu(x) \qquad (f \in L^p(X,\mu)). \tag{8.5}$$

Схема доказательства. То, что сопоставление $g\mapsto \varphi_g$ действительно является линейным отображением из $L^q(X,\mu)$ в $(L^p(X,\mu))^*$, не увеличивающим норму, проверяется так же, как в доказательстве предложения 7.4. Для доказательства его инъективности достаточно взять $f=\chi_A$, где $A\subseteq X$ — измеримое множество конечной меры. Чтобы доказать сюръективность этого отображения, предположим, что $\mu(X)<\infty$, и для произвольного $\varphi\in (L^p(X,\mu))^*$ определим комплексную меру ν формулой $\nu(A)=\varphi(\chi_A)$. Легко проверяется, что ν — σ -аддитивная мера, и что $\nu\ll\mu$. По теореме Радона-Никодима, $\nu=g\cdot\mu$ для некоторой $g\in L^1(X,\mu)$. Иначе говоря, для $f=\chi_A$ справедлива формула

$$\varphi(f) = \int_X f(x)g(x) d\mu(x). \tag{8.6}$$

В случае σ -конечной меры μ существование такой функции g (уже не обязательно интегрируемой!) легко сводится к только что разобранному случаю с помощью подходящего исчерпания $X = \bigcup_n X_n$ множествами X_n конечной меры.

Остается проверить, что $g \in L^q(X,\mu)$, что формула (8.6) справедлива для всех $f \in L^p(X,\mu)$, и что $\|g\| = \|\varphi\|$. Это делается в два этапа. Сначала формула (8.6) проверяется в предположении, что f ограничена и сосредоточена на множестве конечной меры; для этого следует использовать подходящую теорему о предельном переходе. Затем нужно подставить в (8.6) вместо f функцию $g_n = (|g|^q/g)\chi_{A_n}$, где $A_n = \{x : 0 < |g(x)| \le n\} \cap X_n$. Дальнейшие рассуждения — те же, что в доказательстве предложения 7.4.

Упражнение 8.1. Постройте изометрический изоморфизм $(L^1(X,\mu))^* \cong L^\infty(X,\mu)$, где (X,μ) — пространство с мерой.

Лекция 8 57

Замечание 8.2. Напомним (см. лекцию 1), что все пространства с мерой, которые мы рассматриваем, по умолчанию предполагаются σ -конечными. Можно, однако, показать, что теорема 8.7 сохраняет силу для произвольных пространств с мерой; одна из возникающих при этом тонкостей — проверить, что функция g измерима. Что же касается теоремы Радона—Никодима и упражнения 8.1, то в их формулировках σ -конечность меры μ существенна (попробуйте привести соответствующие контрпримеры).