解析学および演習 B 演習問題 (第1回)

学生番号 名前

問題 1.1.

 $k,l\in\mathbb{N}$ に対して, 次の積分を計算せよ (計算過程をきちんと書くこと).

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) \cos(lx) \, dx, \qquad \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) \sin(lx) \, dx, \qquad \frac{1}{\sqrt{2}\pi} \int_{-\pi}^{\pi} \cos(kx) \, dx, \\
\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(kx) \sin(lx) \, dx, \qquad \frac{1}{\sqrt{2}\pi} \int_{-\pi}^{\pi} \sin(kx) \, dx, \qquad \frac{1}{2\pi} \int_{-\pi}^{\pi} dx$$

解析学および演習 B 演習問題 (第2回)

学生番号 名前

問題 2.1.

 $f(x) = x (-\pi < x < \pi)$ の Fourier 係数を求めよ (計算過程をきちんと書くこと).

問題 2.2.

 $f(x) = x^2 (-\pi < x < \pi)$ の Fourier 係数を求めよ (計算過程をきちんと書くこと).

解析学および演習B 演習問題 (第3回)

学生番号 名前

問題 3.1.

 $f(x) = x^3 (-\pi < x < \pi)$ の Fourier 係数を求めよ.

問題 3.2.

 $f(x) = |x| (-\pi < x < \pi)$ の Fourier 係数を求めよ.

解析学及び演習 B 演習問題 (第4回)

学生番号

名前

問題 4.1.

$$a \in \mathbb{R}$$
 に対して, $f(x) = \begin{cases} -1, & (-\pi < x < 0), \\ a, & (x = 0), \end{cases}$ のグラフを書け、つぎに、この関数 f の Fourier $1, & (0 \le x < \pi)$

係数 a_k, b_k を求めよ. 次に, Fourier 級数

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

cx = 0 を代入した値を求めて、級数が f(0) に一致するときの a の値を求めよ.

問題 4.2.

$$f(x) = e^x (-\pi < x < \pi)$$
 の Fourier 係数を求めよ.

解析学及び演習B 演習問題 (第5回)

学生番号 名前

問題 5.1.

 $\alpha>0$ とする. $|x|^{-\alpha}\in L^2(-\pi,\pi)$ となるため, $|x|^{-\alpha}\in L^2(-\pi,\pi)$ とならないための α の条件を求めよ.

解析学及び演習B 演習問題 (第6回)

学生番号

名前

問題 6.1.

関数 $f:(-\pi,\pi) \to \mathbb{R}$ の奇関数部分 f_{odd} , 偶関数部分 f_{even} をそれぞれ $x \in (-\pi,\pi)$ に対して

$$f_{\text{odd}}(x) := \frac{f(x) - f(-x)}{2}, \quad f_{\text{even}}(x) := \frac{f(x) + f(-x)}{2}$$

で定める.

- (1) $f_{\text{odd}} + f_{\text{even}} = f$ を示せ.
- (2) f_{odd} が奇関数であること, f_{even} が偶関数であることを示せ.

問題 6.2.

Euler の公式 $e^{i\theta} = \cos \theta + i \sin \theta \ (\theta \in \mathbb{R})$ と複素数における指数法則をみとめて次を示せ.

(1)
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
, $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$, $(\theta \in \mathbb{R})$

(2) $\cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1^2 \sin \theta_2$, $\sin(\theta_1 + \theta_2) = \sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2$ ($\theta_1, \theta_2 \in \mathbb{R}$)

解析学及び演習B 演習問題 (第7回)

学生番号

名前

問題 7.1.

 $\{f_k\}_{k=1}^\infty\subset L^2(-\pi,\pi)$ を $L^2(-\pi,\pi)$ 上の正規直交系とする. このとき, 任意の $f\in L^2(-\pi,\pi)$ と $N\in\mathbb{N}$ に対して

$$\sum_{k=1}^{N} |(f, f_k)_{L^2(-\pi, \pi)}|^2 \le ||f||_{L^2(-\pi, \pi)}^2$$

を示せ (ヒント:
$$\alpha_k := (f,f_k)_{L^2(-\pi,\pi)}$$
 とおいて、
$$\left\| f - \sum_{k=1}^N \alpha_k f_k \right\|_{L^2(-\pi,\pi)}^2 \geq 0 \ \text{を考える}).$$

解析学および演習 B レポート課題 (第8回)

問題 8.1.

次の関数の組が $L^2(-\pi,\pi)$ における正規直交系であることを示せ.

$$\left\{\frac{1}{\sqrt{\pi}}\cos(kx), \frac{1}{\sqrt{\pi}}\sin(kx), \frac{1}{\sqrt{2\pi}}\right\}_{k=1}^{\infty}$$

問題 8.2.

 $f(x) = (a+1)x^3 + (b+1)x^4 (-\pi < x < \pi)$ の Fourier 係数を求めよ (計算過程をきちんと書くこと). なお, a, b はそれぞれ学生番号の 1 の位, 10 の位とする.

問題 8.3.

 $f(x) = |x|x (-\pi < x < \pi)$ の Fourier 係数を求めよ (計算過程をきちんと書くこと).

問題 8.4.

0 でない定数 $c \in \mathbb{R}$ に対して, $f(x) = e^{cx} (-\pi < x < \pi)$ の Fourier 係数を求めよ (計算過程をきちんと書くこと).

問題 8.5.

 $\alpha > 0$ に対して, $|x|^{-\alpha} \in L^2(-\pi,\pi)$ となるため/ならないための α の条件を求めよ.

 $1 \le p < \infty$ と可測集合 $I \subset \mathbb{R}$ に対して

$$L^p(I) := \left\{ f: I \to \mathbb{R}, \ \text{可測関数}, \ \int_I |f(x)|^p \, dx < \infty \right\}$$

で定める.

問題 8.6.

 $1 \le p < \infty$ と $\alpha > 0$ に対して, $|x|^{-\alpha} \in L^p(-1,1)$ となるため/ならないための α の条件を求めよ.

問題 8.7.

 $1 \le p < \infty$ と $\alpha > 0$ に対して, $|x|^{-\alpha} \in L^p(1,\infty)$ となるため/ならないための α の条件を求めよ.

問題 8.8.

 $1 \le p < \infty$ と $\alpha > 0$ に対して, $(1 + |x|)^{-\alpha} \in L^p(\mathbb{R})$ となるため/ならないための α の条件を求めよ.

解析学及び演習 B 演習問題

学生番号

名前

(第9回)

問題 9.1.

複素数値 L^2 空間 $L^2(-\pi,\pi;\mathbb{C})$ を

$$L^2(-\pi,\pi\,;\,\mathbb{C}):=\left\{f:(-\pi,\pi)\to\mathbb{C},\operatorname{Re} f,\operatorname{Im} f$$
 は可測関数, $\int_{-\pi}^\pi |f(x)|^2\,dx<\infty\right\}$

と定める. $f,g \in L^2(-\pi,\pi;\mathbb{C})$ に対して, f,g の $L^2(-\pi,\pi;\mathbb{C})$ 内積を

$$(f,g)_{L^2(-\pi,\pi\,;\,\mathbb{C})}:=\int_{-\pi}^{\pi}f(x)\overline{g(x)}\,dx$$

で定める.このとき, $\left\{\frac{1}{\sqrt{2\pi}}e^{ikx}\right\}_{k=-\infty}^{\infty}$ が $L^2(-\pi,\pi\,;\,\mathbb{C})$ の正規直交系となることを示せ.ただし, $i=\sqrt{-1}$ は虚数単位である.

解析学及び演習B 演習問題 (第10回)

学生番号 名前

問題 10.1.

次の Fourier 変換を求めよ.

(1)
$$f(x) = \begin{cases} 1 & a < x < t \\ 0 & それ以外 \end{cases}$$

(1)
$$f(x) = \begin{cases} 1 & a < x < b \\ 0 & それ以外 \end{cases}$$
(2) $k > 0$ に対して $f(x) = \begin{cases} e^{-kx} & x > 0 \\ 0 & x \le 0 \end{cases}$

解析学及び演習 B 演習問題 (第11回)

学生番号 名前

問題 11.1.

次の Fourier 変換を求めよ.

(1)
$$f(x) = \begin{cases} x & 0 < x < a \\ 0 & それ以外 \end{cases}$$
(2) $f(x) = \begin{cases} |x| & -1 < x < 1 \\ 0 & それ以外 \end{cases}$

解析学及び演習B 演習問題 (第12回)

学生番号 名前

問題 12.1.

次の Fourier 変換を求めよ.

(1)
$$f(x) = \begin{cases} x^2 & 0 < x < a \\ 0 & それ以外 \end{cases}$$
(2) $f(x) = \begin{cases} e^x & x < 0 \\ e^{-x} & x > 0 \end{cases}$

(2)
$$f(x) = \begin{cases} e^x & x < 0 \\ e^{-x} & x > 0 \end{cases}$$

解析学および演習 B レポート課題 (第13回)

問題 13.1.

$$k > 0$$
 に対して $f(x) = \begin{cases} e^{-kx} & x > 0 \\ 0 & x \le 0 \end{cases}$ とおく.

- (1) *f* の Fourier 変換を求めよ.
- (2) $e^{-2\pi i x \xi} = \cos(2\pi x \xi) i \sin(2\pi x \xi)$ に注意して

$$\int_0^\infty e^{-kx} \cos(2\pi x \xi) \, dx, \qquad \int_0^\infty e^{-kx} \sin(2\pi x \xi) \, dx$$

を求めよ.

(3) $l \in \mathbb{R}$ に対して

$$\int_0^\infty e^{-kx} \cos(lx) \, dx, \qquad \int_0^\infty e^{-kx} \sin(lx) \, dx$$

を求めよ (ヒント: $2\pi\xi = l$ により, ξ を定めると...).

問題 13.2.

次の関数の Fourier 変換を求めよ.

- (1) k > 0 に対して $f(x) = e^{-k|x|}$ ($x \in \mathbb{R}$).
- (2) k > 0 に対して $f(x) = xe^{-k|x|}$ ($x \in \mathbb{R}$).

問題 13.3.

 $h \in \mathbb{R}, \lambda > 0$ に対して、平行移動作用素 τ_h とスケール変換 δ_λ を $f : \mathbb{R} \to \mathbb{C}$ に対してそれぞれ

$$(\tau_h f)(x) := f(x - h), \qquad (\delta_{\lambda} f)(x) := f(x/\lambda)$$

で定める. このとき, $f \in L^1(\mathbb{R})$, $\xi \in \mathbb{R}$ に対して

$$\widehat{(\tau_h f)}(\xi) = e^{-2\pi i \xi h} \widehat{f}(\xi), \quad \widehat{(\delta_\lambda f)}(\xi) = \lambda \widehat{f}(\lambda \xi)$$

が成り立つことを示せ.

問題 13.4.

A を実係数 3 次対称行列とする. このとき, ある正定数 C>0 が存在して, すべての $\vec{x} \in \mathbb{R}^3$ に対して $|A\vec{x}| \le C|\vec{x}|$ とできることを示せ. (ヒント: A の固有値を重複を込めて $\lambda_1, \lambda_2, \lambda_3$ とし, 対応する正規直交化した固有ベクトルを $\vec{e}_1, \vec{e}_2, \vec{e}_3$ とおく. $\vec{e}_1, \vec{e}_2, \vec{e}_3$ が \mathbb{R}^3 の基底になることを用いて, $|A\vec{x}|^2$ と $|\vec{x}|^2$ を計算してみよ.)

問題 13.5.

一次元熱方程式の初期値問題

(H)
$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x) & t > 0, \ x \in \mathbb{R} \\ u(0,x) = u_0(x) & x \in \mathbb{R} \end{cases}$$

を考える. $u = u(t,x): [0,\infty) \times \mathbb{R} \to \mathbb{R}$ は未知関数, $u_0 = u_0(x): \mathbb{R} \to \mathbb{R}$ は与えられた関数である. 講義ノート §3.6 の前半の議論をもとにして, 形式的に熱方程式 (H) の解 u(t,x) を導け.