

NBSIR 86-3331

HVACSIM⁺ Building Systems and Equipment Simulation Program: Building Loads Calculation

Reference

NBS PUBLICATIONS

Cheol Park
Daniel R. Clark
George E. Kelly

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Building Technology Building Equipment Division Gaithersburg, MD 20899

February 1986

-QC 100 •U56

uildings and Community Systems tment of Energy

86-3331 1986

Engineering Laboratory tment of Defense

NBSIR 86-3331

HVACSIM* BUILDING SYSTEMS AND EQUIPMENT SIMULATION PROGRAM: BUILDING LOADS CALCULATION

00 100 U56 86-3331

Cheol Park Daniel R. Clark George E. Kelly

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Building Technology Building Equipment Division Gaithersburg, MD 20899

February 1986

Sponsored by:
Office of Buildings and Community Systems
U.S. Department of Energy

Naval Civil Engineering Laboratory U.S. Department of Defense

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

ABSTRACT

A non-proprietary building system simulation program called HVACSIM⁺, which stands for HVAC SIMulation PLUS other systems, has been developed at the National Bureau of Standards (NBS) in an effort to understand the dynamic interactions between a building shell, an HVAC system, and building controls. HVACSIM⁺ consists of a main simulation program, a library of HVAC system component models, a building shell model, and interactive front end input data generation programs.

The main simulation program employs a hierarchical, modular approach and advanced equation solving techniques to perform dynamic simulations of building/HVAC/control systems. In the building shell model, a fixed time step selected by the user is employed, while a variable time step approach is used in the HVAC and control systems portion of a simulation and the zone model.

This report presents the overall architecture of the HVACSIM⁺ program, algorithms used in the main simulation program, a brief discussion of the numerical methods used in solving a system of non-linear simultaneous equations, integrating stiff ordinary differential equations and interpolating data and descriptions of the building shell and zone models. Conduction transfer functions, weather data, and simulation procedure are also described. This report is the third document, which describes the building model, supplied with HVACSIM⁺.

Key words:

building dynamics; building simulation; building system modeling; computer simulation programs; control dynamics; dynamic modeling of building systems; dynamic performance of building systems; dynamic simulations; HVAC system simulations; HVACSIM

ACKNOWLEDGEMENTS

The authors are indebted to the Building Systems Division, U.S. Department of Energy, and the Naval Civil Engineering Laboratory, U.S. Department of Defense, for funding this project, and gratefully acknowledge Dr. C. Ray Hill for his original work of the main simulation program, MODSIM, during a year at NBS as a research associate, Mr. George N. Walton for his helpful suggestions, and Mr. William B. May, who directed the development of the front end program HVACGEN and provided hardware and software support for this project. Valuable contributions in developing HVACSIM⁺ were made by Mr. Scott Hildebrand, Mr. David Harris, Mr. Chris Rasmussen, and Mr. Juan Lopez, who were visiting workers at NBS. The authors thank Mrs. Janet I. Clark for typing this report.

DISCLAIMER

The program described in this report is furnished by the government and is accepted and used by any recipient with the express understanding that the United States Government makes no warranty, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the United States shall be under no liability what soever to any person by reason of any use made thereof. This program belongs to the government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other than a government program.

TABLE OF CONTENTS

ABST	RACT	iii
ACKN	OWLEDGMENTS	iv
DISC	LAIMER	iv
LIST	OF FIGURES	vii
1.	INTRODUCTION	1
2.	ARCHITECTURE OF HVACSIM ⁺	3
3.	MODULAR SIMULATION PROGRAM, MODSIM. 3.1 Hierarchical, Modular Approach	8 10 11 12
4.	NUMERICAL METHODS USED IN MODSIM	14 14 17 23
5.	BUILDING LOADS CALCULATION. 5.1 TYPE 50: Zone Envelope. 5.2 TYPE 51: Building Surface. 5.3 TYPE 52: Zone Model. 5.4 TYPE 53: Weather Input.	25 27 31 39 46
6.	UTILITY ROUTINES FOR BUILDING LOADS CALCULATION. 6.1 Properties of Moist Air. 6.2 Air Exchange Rate. 6.3 MRT View Factors. 6.4 Heat Transfer Coefficients.	48 48 49 49
7.	CONDUCTION TRANSFER FUNCTION CALCULATION	53 53 54 58 61

8.	WEAT 8.1 8.2	Wes	DATA ather Tape Reading Routine	64 64 65
9.	SIMU	LAT	ION PROCEDURE	73
	9.1		eprocessing - Input Data Generation	73
	9.2		nulation	76
	9.3		stprocessing - Output Data Analysis	76
10.	REFE NDIX		Short Descriptions of Functions and Subroutines in	77
			HVACSIM [†]	81
APPE	NDIX	В:	Worksheets for Data Entry for Type 50, 51, 52, and 53	94
APPE	NDIX	C:	Example 1 - One-Zone Building Model	98
APPE	NDIX	D:	Example 2 - Three-Zone Building Model	150

LIST OF FIGURES

Figure 1	Flow diagram of programs and data files of HVACSIM+	4
Figure 2	The structure of MODSIM	6
Figure 3	Hierarchical simulation setup	9
Figure 4	Simplified flow diagram for the iterative procedure in	
	solving simultaneous, nonlinear equations	18
Figure 5	Simplified flow chart of the algorithm for integration	
	of stiff ordinary differential equations	22
Figure 6	A multilayer construct	57

1. INTRODUCTION

Computer simulations have been a popular means of analyzing building energy use. Compared with experimental investigations, computer simulations do not require installation of various expensive instruments. Simple changes in input data to a simulation model can evaluate their impacts on the model.

In an effort to carry out simulation studies involving the dynamic interactions between a building shell, an HVAC system, and building controls, a non-proprietary building system simulation program called HVACSIM⁺ has been developed at the National Bureau of Standards (NBS). The program HVACSIM⁺, which stands for HVAC SIMulation PLUS other systems, is capable of modeling the HVAC (heating, ventilation, and air-conditioning) system plus HVAC controls, the building shell, the heating/cooling plant, and energy management and control systems (EMCS) algorithms. Although the current version of the HVACSIM⁺ has not implemented the EMCS algorithms yet, these may be added by a user interested in such applications, and familiar with Fortran programming.

The HVACSIM+ consists of a main simulation program, a library of HVAC system components models, a building shell model, and interactive front end data generation programs. The main program is called MODSIM and employs a hierarchical, modular approach and advanced equation solving techniques to perform dynamic simulations of building/HVAC/control systems. The modular approach is based upon the methodology used in the TRNSYS program [1]. In the building shell model, a fixed (but user selectable) time step method is used, while a variable time step approach is employed in the HVAC and control

systems portion and the zone model. This hybrid time step method is believed to be unique in the building systems programs.

The HVACSIM⁺ program has been developed primarily as a research tool for whole building system studies. Flexibility of the HVACSIM⁺ allows the simulation of HVAC components, control systems, the building shell, or any combination. The program is written in ANSI Standard Fortran 77. Fully structured programming makes the code relatively easy for programmers to understand and maintain.

Some important features of HVACSIM⁺ were previously introduced [2,3] and the results of some case studies were published [4,5]. A general overview of HVACSIM⁺ was also presented [6]. Documentation for HVACSIM⁺ consists primarily of three publications: a Reference Manual [7], a Users Guide [8], and this report. The building loads calculation routines are relatively recent additions to HVACSIM⁺, and as such are not described in the Reference Manual or the Users Guide. This report serves as reference manual and users guide for the building load portions of HVACSIM⁺. In addition, mathematical details of the numerical methods used in HVACSIM⁺ are presented. Sample simulations for building load calculations are appended.

2. ARCHITECTURE OF HVACSIM+

The various portions of HVACSIM⁺ can be divided into three categories: preprocessing, simulation, and postprocessing. Prior to performing a simulation, the data files for a particular building system simulation must be provided. This can be accomplished using programs in the preprocessing group. After a simulation, evaluation of outputs from the simulation is made using the postprocessing program.

Figure 1 shows a flow diagram of programs and data files comprising HVACSIM⁺. During the preprocessing, a work file for simulation is created by the interactive front end program, HVACGEN [8]. This work file is then converted into the model definition file by the program SLIMCON. The model definition file has the format which the main program MODSIM requires. The work file can be edited interactively by the HVACGEN program. In generating the simulation work file, HVACGEN employs a data file containing component model information.

When a building shell is involved in a simulation, data files of weather conditions and conduction transfer functions for multilayered constructs must also be created. The program RDTAPE reads a weather tape (SOLMET, TMY, TRY, or WYEC tape) or equivalent and selects a portion of the weather data that is of interest. The selected weather data is transformed into the proper input form for MODSIM by the program CRWDTA. If a weather tape is not available or information from a weather tape is missing, the CRWDTA program produces a design day weather data file.

Figure 1. Flow diagram of programs and data files of HVACSIM+

The conduction transfer functions of multilayered building constructs are generated by the CTFGEN program. Except for the front end routines of CTFGEN the main routines in CTFGEN are taken from the TARP program by Walton [9]. The thermal properties of building materials (thickness, thermal conductivity, density, specific heat, and thermal resistance) can be entered into the data bank by using CTFGEN and multilayered constructs can be formed interactively.

The MODSIM program is the heart of HVACSIM⁺. As shown in Figure 2, the MODSIM program consists of a main drive program and many subprograms for input/output operation, block and state variable status control, integration of stiff ordinary differential equations, solving of a system of simultaneous non-linear algebraic equations, component models of HVAC, controls, building model, and supporting utility.

The simulation program, MODSIM, calls the model definition, conduction transfer functions, weather, and boundary data files. The boundary data file can be created with a conventional editor. The state variables associated with this boundary data file are assigned when HVACGEN generates the work file for a particular simulation.

During the execution of MODSIM, simulation control input data can be entered interactively on a terminal. After a successful simulation, three data files are generated. These are the summary, raw output, and initialization data files. After renaming the initialization file as the input file to MODSIM, a

Figure 2. The structure of MODSIM

new simulation can be performed starting from the point where the previous simulation ended.

Postprocessing is necessary if graphical presentation of the raw outputs is desired. The program, SORTSB, sorts the raw output data. The outputs of these programs may then be used for plotting with a user-supplied graphic routine.

It should be noted that the architecture of HVACSIM+ had been changed after the overview paper [6] was presented.

3. MODULAR SIMULATION PROGRAM, MODSIM

MODSIM stands for MoDular SIMulation. Many ideas for the design of MoDSIM came from the TRNSYS program, which was developed at the University of Wisconsin Solar Energy Laboratory [1]. The original MODSIM was first written in Fortran IV by Hill [3]. Since then, MODSIM has been rewritten in structured Fortran 77 and modified significantly. Important features of the current MODSIM program are described below.

3.1 Hierarchical, Modular Approach

A hierarchical simulation setup data file (model definition file) is employed by MODSIM during a simulation. The hierarchical structure comprises superblocks, blocks, and units. As illustrated in Figure 3, a number of units (or a single unit) form a block, and a number of blocks (or a single block) make up a superblock. Superblocks (or a single superblock) comprise a simulation. Figure 3 shows a setup involving 8 units, 4 blocks, and 2 superblocks. Depending upon the status of the state variables in a block or superblock, a system of equations in a block or in a superblock are solved simultaneously. The coupling of superblocks is done weakly through the state variables. In the interest of economy the whole simulation made up of superblocks is not solved simultaneously.

Using a modular approach, a UNIT in MODSIM represents a component model of a HVAC system, controls, or a building shell component. Each physical component is modeled in the subroutine TYPEn, where n is the index number of the type

Figure 3. Hierarchical simulation setup

TYPEn subroutine if the same component model is used more than once. For example, if UNIT 2 and UNIT 4 in Figure 3 represent two different fans in the HVAC system, the same TYPEl subroutine for a fan (n=1) can be used in the simulation. Each subroutine of component model has inputs, outputs, parameters, and a workspace vector for saving intermediate results. The component model configuration data file, which is an input file to the HVACGEN program, contains information on the numbers of inputs, outputs, parameters, elements in the saved workspace vector, and a description of the inputs, outputs, and parameters.

Each UNIT has its distinct index number for input and output variables, and values of parameters. This information is transmitted to the corresponding TYPEn subroutine through arguments.

This hierarchical, modular approach provides great flexibility in setting up a simulation model. The actual breakdown of a building system into blocks and superblocks is left to the user and depends upon the nature of the system and the type of interactions among its various components. Proper 'blocking' produces good simulation results and reduces computational time. Improper 'blocking' of a simulation model can result in a poor simulation.

3.2 Controls of State Variables and Blocks

During a simulation, a large portion of time is spent in solving the system of simultaneous equations. Reduction of the number of equations solved

simultaneously in a block or a superblock can result in considerable computational savings. In MODSIM, when some of the state variables reach steady state, these variables are removed from the system of state variables that are solved simultaneously, and put aside (or 'frozen') until deviations from the steady-state values are encountered. The criterion for freezing a variable is chosen as

$$\left|\mathbf{x}_{n+1}-\mathbf{x}_{n}\right| \leq \frac{1}{2} \left[\mathbf{e}_{r} \left|\mathbf{x}_{n+1}\right| + \mathbf{e}_{a}\right],$$
 (3.1)

where x_{n+1} and x_n are the state variables at the current and the previous time, and e_r and e_a are the relative and the absolute error tolerance, respectively. These error tolerances must be specified when the simulation work file is created using HVACGEN.

Similarly, a block can be inactivated (or frozen) if all the input variables to the block are frozen. A block is marked active as soon as one of its block inputs becomes unfrozen. When a block is frozen, it is no longer necessary to monitor the frozen state variables in the block.

3.3 Hybrid Simulation Time Steps

The MODSIM program incorporates two different types of time steps. One of them is a fixed time step, and the other is a variable time step. The building shell model uses a user-selected fixed time interval because the building shell model needs the conduction transfer functions of building constructs which are calculated on the basis of uniformly distributed time

sampling. In addition, weather data is usually provided on the hourly basis.

Variable time steps are used for all other component models.

This multi-time step approach has its advantage in saving computation time. Many component models for HVAC and controls systems involve ordinary differential equations. When the system is unsteady, a large time step invites numerical instability. To prevent this instability, small time intervals are necessary at an initial startup of a simulation or during a period when sudden change occurs. After the system becomes stabilized, the use of short time step is no longer needed and is wasteful.

Each superblock in a simulation is an independent subsystem in the sense that it proceeds forward in time independently. The variable time step is determined for each superblock, excluding the superblock for the building shell, by the integration routine used to solve the systems of differential equations. The largest time step allowed in a superblock is, however, limited to the fixed time step used in the building shell model.

3.4 Time Dependent Boundary Conditions

A state variable which is external to the system being simulated can be designated as a boundary variable when the simulation work file is generated. The boundary variables may be constant or time dependent. Data at the boundary variables are stored in the boundary data file and read as the simulation progresses. Time intervals in this data file are not required to

be equal, since a third order Lagrangian interpolation method is used. Sometimes a change in a boundary variable may be discontinuous (e.g., set point change). In such cases, the integration routine of differential equations is reset at the time of discontinuity to bring the simulation time step to a minimum value. This kind of reset condition is signaled by including in the boundary data file two different data values of a boundary variable at a given time.

4. NUMERICAL METHODS IN MODSIM

The numerical methods employed in the MODSIM program involve techniques for solving systems of simultaneous nonlinear algebraic equations, integrating stiff ordinary differential equations, and interpolating data sampled in either a fixed period or variable time intervals. A large number of subprograms in the MODSIM are related to these numerical algorithms.

4.1 Nonlinear Equation Solver

The subroutine SNSQ with its associate subprograms is used in MODSIM. This routine is a part of the mathematical software package SNLSE in the CMLIB package, NBS [10], and was coded by Hiebert at Sandia National Laboratories by combining the HYBRD and HYBRDJ in the MINPACK code developed by Argonne National Laboratories [11]. The method used in the SNSQ program is based on Powell's hybrid method [12]. Minor modifications were made to the SNSQ routine to achieve better simulations with HVACSIM⁺.

A brief mathematical description of the SNSQ routine is presented following closely the approach used in the paper by Hiebert [11].

The system of nonlinear equations can be written in vector form as

$$\underline{f}(\underline{x}) = \underline{0} \tag{4.1}$$

where

$$\underline{\mathbf{f}} = [\mathbf{f}_1, \ \mathbf{f}_2, \dots, \mathbf{f}_n]^T, \ \underline{\mathbf{x}} = [\mathbf{x}_1, \ \mathbf{x}_2, \dots, \mathbf{x}_n]^T$$

$$(4.2)$$

Expanding f in a Taylor series, and neglecting the high order terms, the

linearized, approximate system becomes

$$\underline{\mathbf{f}}(\underline{\mathbf{x}}^*) \quad \underline{\mathbf{f}}(\mathbf{x}^k) + \mathbf{J}(\underline{\mathbf{x}}^k) \quad (\underline{\mathbf{x}}^* - \underline{\mathbf{x}}^k) \tag{4.3}$$

where $J(\underline{x}^k)$ is a Jacobian evaluated at \underline{x}^k .

If x* is the solution vector of the system, then

$$f(x^*) = 0.$$

The general iteration equation for given x near x becomes

$$\underline{\mathbf{x}}^{k+1} = \underline{\mathbf{x}}^k - \mathbf{J}^{-1}(\underline{\mathbf{x}}^k) \underline{\mathbf{f}}(\underline{\mathbf{x}}^k). \tag{4.4}$$

The Newton step of the nonlinear system, Ax, can be expressed as

$$\Delta x = x^{k+1} - x^{k} = -J^{-1}(x^{k}) f(x^{k})$$
(4.5)

In efforts to reduce the number of calculations involved with this approach, a quasi-Newton method is used in SNSQ. This method approximates the Jacobian using the Broyden's rank-one update [13] instead of calculating the full Jacobian at each iteration. The Jacobian is calculated at the starting point by either the user-supplied subroutine or a forward-difference approximation, but it is not recalculated until the rank-one method fails to give satisfactory progress. If B_k is the approximation of the Jacobian at the kth iteration, then the updated Jacobian [14] is

$$B_{k+1} = B_k - (B_k \underline{q}_k - \underline{v}_k) \underline{q}^T_k / \underline{q}^T_k \underline{q}_k, \tag{4.6}$$

where $\underline{q}_k = \underline{x}^{k+1} - \underline{x}^k$, $\underline{v}_k = \underline{f}(\underline{x}^{k+1}) - \underline{f}(\underline{x}^k)$, and $\underline{q}^T k$ is the transpose of \underline{q}_k . In the SNSQ routine, the inverse Broyden update is employed. With the inverse Broyden update method, the inverse of the approximate Jacobian, B_k^{-1} is stored and updated at each iteration.

The local convergence of the quasi-Newton method is superlinear, and required arithmetic operation per iteration is only $O(n^2)$, while the number of function evaluations per iteration is also only n. The shortcoming of the quasi-Newton method is that a good initial guess must be made for successful convergence. To improve this property, Powell [12] suggested a hybrid method.

The hybrid step is a combination of the quasi-Newton and gradient step. The gradient step is chosen to minimize the Euclidean norm of the residuals. The Gauss-Newton [15] and the steepest scaled gradient steps are actually incorporated in the SNSQ routine. The convergence test is successful so that $\underline{\mathbf{x}}^k$ is a solution vector if the following condition is satisfied:

$$||d_{\underline{k}}(\underline{\underline{x}}^{k+1} - \underline{\underline{x}}^{k})|| \le e_{\underline{t}}||d_{\underline{t}}\underline{\underline{x}}^{k}||$$
(4.7)

or if $\underline{f}(\underline{x}) = 0$. In the above equation, d_k is the diagonal component of the transformed Jacobian matrix using QR-factorization, e_t is the error tolerance usually specified by the user, and the double bars denote the norms. In HVACSIM⁺, the value of e_t is specified when the model definition file is created by the HVACGEN front-end program. Although the square-root of the machine precision [16] is recommended for the value of e_t in the SNSQ routine, the choice of the value depends upon the particular simulation setup and its initial values. As a rule of thumb, e_t may be greater than or equal to the sum of e_r and e_a .

The block/superblock structures, defined when a simulation setup is made, also strongly influence the convergence characteristics. Even though the use of hybrid step improves the convergence properties, making a good guess for

initial conditions is very important to ensure a successful simulation.

As an example, Figure 4 shows the simplified flow diagram for the iterative procedure when x_1 and x_2 are solved simultaneously and x_3 and x_4 remain constant at a time step. In the TYPE subroutines for two units in a block, x_1' and x_2' are determined using the function F_1 and F_2 , respectively. Residual functions can be written as

$$f_1(x_1, x_2, x_3, x_4) = x_1' - x_1 = F_1(x_2, x_3) - x_1$$

 $f_2(x_1, x_2, x_3, x_4) = x_2' - x_2 = F_2(x_1, x_4) - x_2$
(4.8)

These function vectors, f_1 and f_2 , and state variables, x_i , are entered into the equation solver. When the convergence criterion as given by equation (4.7) is met, the iteraction ceases, and the solutions x_1^* and x_2^* satisfy $f_1 = f_2 = 0$. After the solutions are obtained, the simulation time is increased by h, which is either variable time step or fixed.

4.2 Integration of Stiff Ordinary Differential Equations

The use of variable time step and variable order integration techniques to solve sets of differential equations can reduce the amount of computer time required for dynamic simulations significantly. The algorithm employed is the one developed by Brayton, Gustavson and Hachtel [17]. This is an extension of the famous Gear algorithm called DIFSUB [18], which uses the backward differential formulas associated with Nordsieck's method [19].

Figure 4. Simplified flow diagram for the iterative procedure in solving simultaneous, nonlinear equations

The discussion which follows will be highlighted information of the method by Brayton, et al [17]. Because a higher order ordinary differential equation can be transformed into a system of first-order differential equations, only integration of first order differential equations will be addressed.

A system of implicit differential algebraic equations can be expressed as

$$\underline{\mathbf{f}}(\mathbf{x},\dot{\mathbf{x}},\mathbf{t}) = 0 \tag{4.9}$$

where \underline{x} is a state variable vector which is a function of time, t, $\underline{\dot{x}}$ is a derivative of \underline{x} . If the solution vector $\underline{x}(t)$ of equation (4.9) had been obtained at previous discrete times, $t=t_n$, $t=t_{n-1}$,..., and $t=t_{n+1-k}$, then the solution \underline{x}_{n+1} at the current time, $t=t_{n+1}$, satisfies

$$\underline{f}(\underline{x}_{n+1}, \underline{\dot{x}}_{n+1}, t_{n+1}) = 0$$
 (4.10)

For stiff equations, the backward differentiation formula (BDF) approximates the present value \underline{x}_{n+1} at $t=t_{n+1}$ in terms of \underline{x}_{n+1} , and the k past values \underline{x}_n , \underline{x}_{n-1} ,..., \underline{x}_{n-k+1} . The k-th order backward differentiation formula is

where a_i are constants and h is the present step size $(t_{n+1}-t_n)$. Setting $g(\underline{x}_{n+1}) = \underline{\dot{x}}_{n+1}$, and substituting equation (4.11) into equation (4.10) yields a set of nonlinear algebraic equations of \underline{x}_{n+1} at time t_{n+1} . This system of

nonlinear equations can be solved by a nonlinear equation solver. In the MODSIM program, the previously described SNSQ routine is employed to solve the equations.

At the beginning of simulation, the initial values of \underline{x}_0 at t=0 is used with order k=1 for \underline{x}_1 . Knowing \underline{x}_0 and \underline{x}_1 , the new value \underline{x}_2 is computed using $\underline{k} \leq 2$, and so on. The maximum order of k has been limited to 6 since the order k seldom exceeds 6 in most applications.

As discussed already, the Newton method requires a reasonably good guess for the initial iteration. The predicted value of \underline{x}_{n+1} for the initial guess is formulated using the same regressor expression in equation (4.11).

$$\underline{x}^{P}_{n+1} = \sum_{i=1}^{k+1} \gamma_{i} \underline{x}_{n+1-i}$$
 (4.12)

where y; are constants.

For the k-th order backward differential formula, the local truncation error is given by

$$e_{tr} = E_k + O(h^{k+2})$$
 (4.13)

where

$$E_{k} = \frac{h}{t_{n+1} - t_{n-k}} \left(\underline{x}_{n+1} - \underline{x}_{n+1} \right)$$
 (4.14)

and the term $0(h^{k+2})$ represents higher-order terms in the step size of degrees

greater than or equal to k+2.

Although the algorithm for computation of α_i and γ_1 presented by Brayton, et al. is very complex, it was coded in MODSIM to improve computational efficiency. Chua and Lin [20] explained the variable step-size, variable-order algorithm in a much easier way to follow.

Figure 5 shows a simplified flow chart of the algorithm for integration of stiff ordinary differential equations which is implemented in MODSIM. In the TYPE subroutine, the derivative of state variable x at time $t=t_{n+1}$ is calculated. The difference between the derivative \dot{x}_{n+1} and the value of backward differential formula as formulated in equation (4.11) is denoted as g. The residual function is, in fact, a nonlinear algebraic equation given by

$$g = G(x_{n+1}) + \frac{1}{h} \sum_{i=0}^{k} \alpha_{i} \underline{x}_{n+1-i}$$
 (4.15)

When x_{n+1} is the solution of equation (4.15), g is zero. To find the solution at the present time, numerical iteration using the SNSQ routine is performed and convergence is checked. If the solution is converged close to the real solution, the iteraction is terminated and the truncation error of backward differential formula is computed and the order k and the step are determined. The selected step and order are rejected if the truncation error is too large. The strategy of selecting the order and step with the MODSIM is based on the

Figure 5. Simplified flow chart of the algorithm for integration of stiff ordinary differential equations

condition

$$\frac{E_{k}}{\frac{3h(e_{r}|x_{n+1}|^{+}e_{a})}{t_{f}-t_{i}}}$$
(4.16)

where t_i and t_f are the initial and final time considered in the integration using the backward differential formula. The time interval, t_f - t_i , must be provided as one of input values prior to simulation. This quantity is specified during the time when the simulation work file is generated.

4.3 Interpolation of Data

Lagrangian and spline interpolation techniques are used in the MODSIM program.

Interpolation of data points for the time dependent boundary variables is made
by using the 3rd order Lagrangian interpolation:

$$\mathbf{x}(\mathbf{t}) = \sum_{i=0}^{4} \begin{bmatrix} 4 & \mathbf{t} - \mathbf{t}_{i} \\ \mathbf{x}_{i} = 1 & \mathbf{t}_{i} - \mathbf{t}_{j} \end{bmatrix} \mathbf{x}_{i}$$

$$(4.17)$$

where x(t) is the interpolated state variable at time t, and $x_i = x(t_i)$.

For interpolating the hourly weather data, the computer program of the cubic spline interpolation by Ferziger [21] was implemented in MODSIM. The interpolation formula is

$$x(t) = \frac{x(t_i)(t_{i+1} - t)}{6} \left[\frac{(t_{i+1} - t)^2}{h_i} - h_i \right] + \frac{x(t_{i+1})(t - t_i)}{6} \left[\frac{(t - t_i)^2}{h_i} - h_i \right]$$

$$+ \frac{y_{i}(t_{i+1} - t)}{h_{i}} + \frac{y_{i+1}(t - t_{i})}{h_{i}}, t_{i-t-t_{i+1}}$$
(4.18)

where $y_i = x(t_i)$ for i=1, 2, ..., n, and $h_i = t_{i+1} - t_i$. The second derivatives $x''(t_i)$ and $x''(t_{i+1})$ for i=2, 3, ..., n-1 are found using the following set of equations for the second derivatives of x(t) at nodes

$$h_{i-1}x''(t_{i-1}) + 2(h_{i-1} + h_i) x''(t_i) + h_ix''(t_{i+1})$$

$$= 6 \left[\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}} \right], i=2, 3, ..., n-1$$
(4.19)

The coefficients of these sets of equations from a tridiagonal matrix, and the system can be solved for x'' (t_i), i=2,3,...,n-1 by using the Gaussian elimination method.

Two additional equations are determined from the end conditions. Ferziger's code uses the cantiler condition where

$$x''(t_1) = \lambda x''(t_2) \text{ and } x''(t_n) = \lambda x''(t_{n-1}), \tag{4.20}$$
 and $\lambda \epsilon [0,1]$.

In the MODSIM, 24 points of each component weather data (temperature, pressure, etc.) are read once each day, and the second derivatives of the variable are calculated using the set of equations as shown in equation (4.19). At a given time during the day, the interpolated value is evaluated using equation (4.20) with $\lambda = 1$.

5. BUILDING LOADS CALCULATION

In HVACSIM⁺, a building shell model and a building zone model are used for building thermal loads determination. These models were developed based on Kusuda [22] and Walton [9]. Previously the building shell model contained the zone model [6]. In this report, these models are distinguished. The building shell model utilizes a user-selected fixed time interval, while the zone model uses variable time intervals.

Models for building loads calculation include the effects of different kinds of building shell materials, air temperatures, the noisture content of the air, lighting, equipment, occupancy schedule, solar radiation, wind velocity, orientations of the exterior building surfaces, and the effect of shadowing. Since there are so many factors involved, some simplifying assumptions had to be made. The major assumptions in the current EVACSIM program include:

- (1) Uniform temperature distributions on a building surface (one dimensional heat transfer across a wall)
- (2) Uniform ground temperature distribution
- (3) No effects of wind direction, rain, and snow

The approach taken uses the standard response factor method to calculate the conductive heat transfer rates through the building shell. The conduction transfer functions are computed once and stored prior to a simulation. The same time interval used in the calculation of conduction transfer functions of building constructs is applied as the period during which the conductive heat

fluxes through the building surfaces are assumed to be invariant.

Primary routines for the building load determination are those dealing with the calculation of building surface temperatures and zone loads. Walls and zones are treated as component models, and are coded as TYPEn subroutines. Because of the use of the fixed time step, the units representing building surfaces must be in a superblock which is separate from those containing units which use a variable time step.

The zone model calculates indoor air dry-bulb temperature and humidity ratio on a variable time step basis and takes into account the dynamic operation of the HVAC system and its controls, and thermal loads.

The building shell model contains three TYPE subroutines (TYPE50, TYPE51, and TYPE53), and the building zone model is designated as TYPE52. In the following sections, details of these TYPE subroutines are described.

5.1 TYPE50: ZONE ENVELOPE

General Description

This subroutine combines information generated by the TYPE51 building surface model. Convective heat gain from building surfaces and mean radiant temperature are computed. Since this routine is a part of the building shell model, it must be in a superblock which takes a user-selected, fixed time step.

Nomenclature

- A_{s,i} area of the j-th building wall surface (m²)
- h_{is,c,j} convective heat transfer coefficient of the j-th building inner surface (W/m²K)
- h_{is,r,j} radiative heat transfer coefficient of the j-th building inner surface (W/m²K)
- I_{sol, i} total solar radiation influx (W/m²)
- N_s number of wall surfaces in a zone (-)
- $\dot{q}_{s1.r}$ short wave radiant heat flux from the sun and the lights (W/m²)
- Qsw.r short wave (visible) radiant heat gain from lights (W)
- Q_{1w,r} long wave (infrared) radiant heat gain from people and equipment (W)
- Qwall convective heat flow rate from building surfaces in a zone (W)
- T; zone air dry-bulb temperature (C)
- Tis, j surface temperature of the j-th inner wall (C)

zone mean radiant temperature (C) Tmr Sc.i shading coefficient of the j-th building wall (-) ais, j short wave absorptance of the j-th inner wall (-) transmittance of the j-th wall (-)

Mathematical Description

τs, j

Short wave radiant heat fluxes from the sun and the lights in a zone are evaluated by using the following expressions:

$$\dot{q}_{s1,r} = \frac{\sum_{j=1}^{N_s} A_{s,j} \tau_{s,j} S_{c,j} I_{so1,j} + \dot{q}_{sw,r}}{\sum_{j=1}^{N_s} A_{s,j} (\alpha_{is,j} + \tau_{s,j})}$$
(5.1)

Convective heat flow rate across the air film between the zone air and interior surface of the building shell is given by

$$\hat{Q}_{wal1} = \sum_{j=1}^{N_s} h_{is,c,j} A_{s,j} (T_{is,j} - T_i)$$
 (5.2)

The expression of mean radiation temperature is obtained from

$$T_{mr} = \frac{\sum_{j=1}^{N_s} h_{is,r,j} A_{s,j} T_{is,j} + \dot{Q}_{lw,r}}{\sum_{j=1}^{N_s} h_{is,r,j} A_{s,j}}$$
(5.3)

Configuration

Inputs		Description		
1	T _i	zone air dry-bulb temperature (C)		
2	Ò _{sw,r}	short wave radiant heat gain from lights (kW)		
3	ė _{1w, r}	long wave radiant heat gain from people and equipment		
		(kW)		
4	T _{is,1}	surface temperature of the 1st inner wall (C)		
5	T _{is,2}	surface temperature of the 2nd inner wall (C)		
6	T _{is,3}	surface temperature of the 3rd inner wall (C)		
7	T _{is,4}	surface temperature of the 4th inner wall (C)		
8	T _{is,5}	surface temperature of the 5th inner wall (C)		
9	T _{is,6}	surface temperature of the 6th inner wall (C)		
10	T _{is,7}	surface temperature of the 7th inner wall (C)		
11	T _{is,8}	surface temperature of the 8th inner wall (C)		
12	T _{is,9}	surface temperature of the 9th inner wall (C)		
13	$T_{is,10}$	surface temperature of the 10th inner wall (C)		
Outputs		Description		
1	Tmr	mean radiant temperature (C)		
2	\dot{Q}_{wall}	convective heat gain from building surfaces (kW)		
Parameters		Description		
1	IZN	identification number of zone (-), $1 \le IZN \le MAXZN$		
2	N _s	number of building surfaces in a zone (-), $1 \le N_s \le MAXNS$		

Note that variables which are not identified as inputs, outputs, or parameters, but used in the TYPE50 subroutine, appear in COMMON blocks. It should be noted that the unit for heat flow rates is kW for inputs and outputs, although the unit of W is used in the mathematical description.

In the current version of HVACSIM+, MAXZN = 6, and MAXNS = 10.

5.2 TYPE51: BUILDING SURFACE

General Description

This subroutine computes outer and inner surface temperatures of a building surface construct, and determines average solar flux on the outer surface. Because this TYPE51 subroutine is a part of the building shell model, it must be in a superblock which takes a user-selected, fixed time interval.

Nomenclature

angle factor between ground and surface (-) fsg angle factor between sky and surface (-) fss ground reflectivity (-) gr convective heat transfer coefficient of the j-th building inner his.c.i surface (W/m²K) radiative heat transfer coefficient of the j-th building inner his.r.i surface (W/m²K) convective plus radiative heat transfer coefficient of the j-th hos,j building outer surface (W/m²K) direct normal solar beam radiation (W/m²) Ih ground reflective radiation (W/m²) I total horizontal solar radiation (W/m²) Ih average solar radiation influx on the j-th surface (W/m²) I_{sol.i} diffuse (sky) solar radiation (W/m²) Is Nf order of conduction transfer function calculation (-) Nt number of conduction transfer function terms (-) current conductive heat flux at the inner surface (W/m2) qi,i,n

qo,j,n current conductive heat flux at the outer surface (W/m²) conductive heat flux at the inside of the j-th surface at the q'i,i present time due to past temperature history conductive heat flux at the outside of the j-th surface at the q'o.i present time (W/m²) short wave radiation heat flux from the sun and lights (W/m2) q_{s1,r} solar heat flux on the outside surface of the j-th construct (W/m2) qsol, o, j flux term related to overall conductance (-) R_{k.i} fraction of shadowed area to total exposed surface area (-) Sa T, zone air dry-bulb temperature (C) inside surface temperature of the j-th construct (C) Tis. i mean radiant temperature (C) Tmr To outside air dry-bulb temperature (C) outside surface temperature of the j-th construct (C) Tos.i overall conductance (W/m2K) V_i V_w wind speed (m/s) X-component of conduction transfer function at the m time steps X_{m,i} ago (W/m^2K) Y-component of conduction transfer function at the m time steps Y_{m.i} ago (W/m^2K) Z-component of conduction transfer function at the m time steps Z_{m,i} ago (W/m^2K)

X-component of conduction transfer function at the present time

X_{o,i}

 (W/m^2K)

- Y-component of conduction transfer function at the present time (W/m^2K)
- $Z_{o,j}$ Z-component of conduction transfer function at the present time (W/m^2K)
- ais, j radiation absorptance of the j-th inner surface (-)
- aos. i radiation absorptance of the j-th outer surface (-)
- β solar altitude angle (degrees)
- γ tilt angle (degrees)
- θ solar beam incident angle (degrees)
- ξ surface azimuth angle (degrees)
- solar azimuth angle from south (degrees)

Mathematical Description

Conductive heat flow through a multilayered construct has been solved successfully by the response factor method, in which the surface temperature of each homogeneous layer is represented by a series of pulse functions. Based on the response factor method, conduction transfer functions are calculated for a multilayered wall. A heat balance at the j-th interior surface is used to determine the interior surface temperature by [9]:

$$T_{is,j} = \frac{h_{is,c,j}T_{i} + h_{is,r,j}T_{mr} + \alpha_{is,j}\dot{q}_{sl,r} + \dot{q}'_{i,j} + Y_{o,j}T_{os,j}}{h_{is,c,j} + h_{is,r,j} + Z_{o,j}}$$
(5.4)

The current conductive heat flux at the inner surface is

$$\dot{q}_{i,j,n} = Y_{o,j} T_{os,j} - Z_{o,j} T_{is,j} + \dot{q}'_{i,j}$$
 (5.5)

where

$$\dot{q}'_{i,j} = \sum_{m=1}^{N_t} Y_{m,j} T_{os,j,n-m} - \sum_{m=1}^{N_t} Z_{m,j} T_{is,j,n-m} + \sum_{k=1}^{N_f} R_{k,j} \dot{q}_{i,j,n-k}$$
 (5.6)

In the equations above, the subscript n is the current time, while m denotes the past time. Note that the time interval is fixed. The flux, $R_{k,j}$, is related to the overall conductance, U_j , as

$$U_{j}(1-\sum_{k=1}^{N_{f}}R_{k,j}) = \sum_{m=0}^{N_{t}}X_{m,j} = \sum_{m=0}^{N_{t}}Y_{m,j} = \sum_{m=0}^{N_{t}}Z_{m,j}$$
 (5.7)

The values of $R_{k,j}$ and U_j as well as $X_{m,j}$, $Y_{m,j}$ and $Z_{m,j}$ are computed by the CTFGEN program.

On the outside surface, which is exposed to sunlight (IEXPOS=2), the outer surface temperature can be computed by:

$$T_{\text{os,j}} = \frac{h_{\text{os,j}} T_{\text{o}} + \dot{q}_{\text{sol,o,j}} + \dot{q}'_{\text{o,j}} + f_{1,j} f_{2,j}}{h_{\text{os,j}} + X_{\text{o,j}} - f_{1,j} Y_{\text{o,j}}}$$
(5.8)

where

$$f_{i,j} = \frac{Y_{0,j}}{h_{is,c,j} + h_{is,r,j} + Z_{0,j}}$$

$$f_{2,j} = h_{is,c,j}T_{i} + h_{is,r,j}T_{mr} + \alpha_{is,j} \dot{q}_{sl,r} + \dot{q}'_{i,j}$$

$$\dot{q}_{sol,0,j} = \alpha_{0s,j} I_{sol,j}$$
(5.9)

The current conductive heat flux at the outer surface is

$$\dot{q}_{0,j,n} = Y_{0,j} \quad T_{is,j} - X_{0,j} \quad T_{0s,j} + \dot{q}'_{0,j}$$
where

$$\dot{q}'_{o,j} = \sum_{m=1}^{N_t} Y_{m,j} T_{is,j,n-m} - \sum_{m=1}^{N_t} X_{m,j} T_{os,j,n-m} + \sum_{k=1}^{N_f} R_{k,j} \dot{q}_{o,j,n-k}$$
 (5.11)

When the outside surface is exposed to another zone or to ground (IEXPOS=1), the outside surface temperature is equal to the inside surface temperature in another zone for the same construct or to the ground temperature $(T_{os,j} = T_{osinf,j})$.

If a massive wall, which represents thermal mass, is within a zone (IEXPOS=0), both the inside and the outside surface temperatures are considered to be equal. The following expression can be used.

$$T_{is,j} = T_{os,j} = \frac{h_{is,c,j}T_{i} + h_{is,r,j}T_{mr} + \dot{q}_{sl,r} + \dot{q}'_{i,j}}{h_{is,c,j} + h_{is,r,j} + Z_{o,j} - Y_{o,j}}$$
(5.12)

Solar fluxes on the interior and exterior surfaces are evaluated based on either solar data from a weather tape or computation. When a surface has a surface azimuth angle, ξ , which is the angle from the south to the projection of normal to the surface onto the horizontal plane in clockwise direction, and a tilt angle, τ , which is the angle between the normal to the surface and the

normal to the horizontal plane, the cosine of incident angle of the sun's rays is expressed by

$$\cos\theta = \cos\beta \cos(\theta - \xi) \sin\gamma + \sin\beta \cos\gamma \tag{5.13}$$

where θ , \emptyset , and β are the incident angle, the solar azimuth angle from the south, and the solar altitude angle, respectively.

Defining the angle factor between ground and surface, f_{sg} , and that between sky and surface, f_{ss} , as

$$f_{Sg} = 0.5 (1 - \cos \gamma)$$
 (5.14)

$$f_{ss} = 0.5 (1 + \cos \gamma)$$
 (5.15)

the average solar radiation influx, I sol, on the j-th surface is given by

$$I_{sol,j} = I_b (1 - S_d) \cos\theta + I_s f_{ss} + I_g f_{sg}$$
 (5.16)

where I_b , I_s , and I_g are direct, diffusive, and ground reflective radiation. S_d is the shaded fraction of exposed outer surface.

The ground reflective radiation is dependent on ground reflection, g_r , and total solar radiation on a horizontal surface, I_h .

$$I_g = g_r I_h \tag{5.17}$$

Configuration

In	puts	Description		
1	Ti	zone air dry-bulb temperature (C)		
2	Tmr	mean radiant temperature (C)		
3	Tosinf,j	outer surface temperature of unexposed surface (C)		

shaded fraction of exposed outer surface (-), $0 \le S_{d} \le 1$ 4 Sa

Description Outputs

1 Tis,i inner surface temperature (C)

average solar radiation influx on the outer surface (W/m^2) 2 I_{sol,j}

Descriptions Parameters

identification number of zone (-), 1 < IZN < MAXZN IZN

identification number of surface (-), $1 \le j \le MAXNS$ 2 j

O if the wall construct is inside the zone IEXPOS 3

1 if the wall construct is between zones or exposed to ground

2 if the wall construct is exposed to sunlight

identification number of construct (-), 1 < ISTR < MAXSTR ISTR

surface area (m²)

surface azimuth angle, measured from south to the projection of 6 ξ normal to the surface onto the horizontal plane in clockwise

direction (degrees), $0 \le \xi \le 360$

tilt angle of the surface, measured from the normal to 7 Y the surface to the normal to the horizontal plane (degrees),

 $0 < \gamma < 180$

 $\gamma = 0$ for flat roof

 $\gamma = 180$ for floor

ground reflectivity (-), $0 \le g_{\tau} \le 1$

IROFS outside surface roughness index (-), 1 \(\) IROFS \(\) 6

1 --- stucco

- 2 --- brick, rough plaster
- 3 --- concrete
- 4 --- clear pine
- 5 --- smooth plaster
- 6 --- glass, paint or pine
- 10 $a_{os,j}$ solar absorptance of the outer surface (-), $0 \le a_{os,j} \le 1$
- 11 $\alpha_{is,j}$ short wave absorptance of the inner surface (-), $0 \le \alpha_{is,j} \le 1$
- 12 ϵ_j emissivity of the inner surface (-), $0 \le \epsilon_j \le 1$
- 13 $\tau_{s,j}$ transmittance of the glass window (-), $0 \le \tau_{s,j} \le 1$
 - $\tau_{s,i} = 0$ for opaque wall
- 14 S_c shading coefficient of glass window (-), $0 \le S_c \le 1$ $S_c = 0$ for opaque wall

Note that variables which are not identified as inputs, outputs, or parameters, but are used in the TYPE51 subroutine, appear in COMMON blocks.

In the current version of HVACSIM⁺, MAXZN = 6, MAXNS = 10, and MAXSTR = 10.

5.3 TYPE52: ZONE MODEL

General Description

In this TYPE52 subroutine, zone air temperature and humidity ratio are computed based on zone loads. Most of the zone loads except convective heat gain from building surfaces are internally determined in this subroutine. In fact, this zone model belongs to the building shell model. However, the zone model must be treated differently when the model definition file is created by HVACGEN because the zone model uses variable time steps.

thermal capacitance of air (kJ/K)

Nomenclature

Cair

air	
C _{fur}	effective thermal capacitance of furnishing (kJ/K)
C _{p,i}	specific heat of zone air (kJ/kgK)
C _{p,o}	specific heat of outdoor air (kJ/kgK)
C _{p,s}	specific heat of supply air (kJ/kgK)
e _m	air mass multiplier for moisture capacitance of zone (-)
f _c	ratio of convective heat to total sensible heat from lights (-)
f _{1w}	ratio of long wave radiative heat to total sensible heat from
	lights (-)
fsw	ratio of short wave radiative heat to total sensible heat
	from lights (-)
h _{fg}	latent heat of vaporization of water (kJ/kg)
Iair	air exchange rate (1/h)
m inf1	mass flow rate due to infiltration (kg/s)

```
m
                mass flow rate of supply air (kg/s)
N<sub>p</sub>
                number of people in the zone (-)
Qequip, c
                convective heat gain from equipment (kW)
Qequip, lat
                latent heat gain from equipment (kW)
Qequip, r
                radiant heat gain from equipment (kW)
                sensible heat gain or loss due to infiltration (kW)
Qinf1
Q<sub>1 ight, c</sub>
                convective heat gain from lighting (kW)
Qlight, r, w
                long wave radiative heat gain from lighting (kW)
Q<sub>1w.r</sub>
                long wave radiative heat gain in the zone (kW)
                convective heat gain from people (kW)
Qpeople, c
                latent heat gain from people (kW)
Qpeople, lat
Qpeople, r
                radiative heat gain from people (kW)
Q<sub>s</sub>
                sensible heat gain by supply air (kW)
Qsw,r
                short wave radiative heat gain (kW)
Qwall
                convective heat gain from building zone surfaces (kW)
                ratio of radiative heat to total sensible heat from equipment
re
                (-)
                ratio of radiative heat to total sensible heat from people (-)
r
                zone air dry-bulb temperature (C)
T_i
                outdoor air dry-bulb temperature (C)
To
T
                supply air dry-bulb temperature (C)
U<sub>e</sub>
                equipment utilization coefficient (-)
                lighting utilization coefficient (-)
Ulight
                volume of zone air (interior space of zone) (m<sup>3</sup>)
V;
```

We, lat latent heat gain from equipment (kW)

We.s sensible heat gain from equipment (kW)

W; humidity ratio of zone air (-)

Wlight sensible heat gain from lights (kW)

Wo humidity ratio of outside air (-)

Wp.lat latent heat gain from a person (kW)

W_{p. s} sensible heat gain from a person (kW)

Ws humidity ratio of supply air (-)

ρ_i density of zone air (kg/m³)

ρ_{inf1} density of infiltrated air (kg/m³)

Mathematical Description

Convective heat gains from people occupying the zone, from equipment such as typewriters, computers, coffee pots, copying machine, etc. and from lights are:

$$Q_{people,c} = (1 - r_p) N_p W_{p,s}$$
 (5.18)

$$\dot{Q}_{\text{equip,c}} = (1 - r_{\text{e}}) U_{\text{e}} W_{\text{e,s}}$$
 (5.19)

$$\dot{Q}_{1ight,c} = f_c U_{1ight} W_{1ight}$$
 (5.20)

Latent heat gains from people and equipment are also considered, while moisture absorptance and desorption by the building structure and interior furnishings are not explicitly included in the building zone model.

$$\dot{Q}_{people,1at} = N_p W_{p,1at}$$
 (5.21)

$$\dot{Q}_{\text{equip,1at}} = U_{\text{e}} W_{\text{e,1at}} \tag{5.22}$$

Long wave radiant heat gains from people, equipment, and lights, along with the radiative heat from building surfaces are used to obtain mean radiant temperature of the zone. The use of mean radiant temperature is much simpler than using detailed radiant heat-exchange between walls. Short wave radiation due to lights and the sun are not directly involved in the computation of the mean radiation temperature.

Long wave radiative heat gains from people, equipment, and lights, are

$$\dot{Q}_{people,r} = r_p N_p W_{p's} \tag{5.23}$$

$$\dot{Q}_{\text{equip,r}} = r_{\text{e}} U_{\text{e}} W_{\text{e,s}} \tag{5.24}$$

$$\dot{Q}_{1ight,r,1w} = f_{1w} U_{1ight} W_{1ight}$$
 (5.25)

Total long wave radiative heat gains are expressed as the sum of the above equations:

$$\dot{Q}_{1w,r} = \dot{Q}_{people,r} + \dot{Q}_{equip,r} + \dot{Q}_{light,r,1w}$$
 (5.26)

Short wave radiant heat gain from lighting is

$$\dot{Q}_{sw,r} = f_{sw}U_{1ight}W_{1ight}$$
 (5.27)

Sensible heat gain or loss due to infiltration is given by

$$\dot{Q}_{inf1} = \rho_{inf1} V_i I_{air} (C_{p,o} T_o - C_{p,i} T_i)$$
 (5.28)

The zone air temperature is obtained using

$$(C_{\text{fur}} + C_{\text{air}}) \frac{dT_{i}}{dt} = \dot{Q}_{s} + \dot{Q}_{\text{infl}} + \dot{Q}_{\text{wall}} + \dot{Q}_{\text{light,c}} + \dot{Q}_{\text{people,c}} + \dot{Q}_{\text{equip,c}}$$
(5.29)

Heat flow rate from building surfaces is computed by the shell model (TYPE50 and TYPE51).

The heat gain by supply air is expressed as

$$\dot{Q}_{s} = C_{p, s} \dot{m}_{s} (T_{s} - T_{i})$$
 (5.30)

Zone air humidity is calculated from the zone air moisture balance equation.

In terms of humidity ratio, W, the moisture content of zone air is expressed.

$$\rho_{i} V_{i} = \frac{dW_{i}}{dt} = (\dot{Q}_{people,1at} + \dot{Q}_{equip,1at})/h_{fg}$$

$$+ \dot{m}_{inf1} (W_{o} - W_{i}) + \dot{m}_{s} (W_{s} - W_{i})$$
(5.31)

where h_{fg} is latent heat of vaporization of water, which can be obtained from the fluid property library, and e_m is an air mass multiplier for moisture capacitance of zone. Outdoor humidity ratio, W_0 , comes from weather data.

Configuration

Inputs

1	P _{i,g}	gauge pressure of zone air (kPa)
2	Ti	zone air dry-bulb temperature (C)
3	Wi	humidity ratio of zone air (-)
4	P _{s,g}	gauge pressure of supply air (kPa)
5	m	mass flow rate of supply air (kg/s)

Description

supply air dry-bulb temperature (C)

W_s humidity ratio of supply air (-)

Q_{wall} convective heat flow rate from building surfaces (kW)

N_p number of persons in the zone (-)

U_e equipment utilization coefficient (-), 0 \leq U_e \leq 1

11 U_{light} lighting utilization coefficient (-), 0 \leq U_{light} \leq 1

Outputs Description

1 T; zone air dry-bulb temperature (C)

2 W; humidity ratio of zone air (C)

3 Q_{sw,r} short wave (visible) radiant internal gain from lights

(kW)

4 Q_{1w,r} long wave (thermal) radiant internal gain from people,

equipment, and lights (kW)

<u>Parameters</u> <u>Descriptions</u>

1 IZN identification number of zone (-), 1 ZIZN MAXZN

2 C_{fur} effective thermal capacitance of furnishing (kJ/K)

3 e_m air mass multiplier for moisture capacitance of zone (-)

4 V; volume of zone air (interior space of zone) (m³)

5 I_{s.air} standard air exchange rate (1/h)

6 Wp,s sensible heat gain from a person (kW)

7 Wp, lat latent heat gain from a person (kW)

8 Wlight heat gain due to lighting in the zone (kW)

9 LIGHT type of lighting

1 for fluorescent lights

2 for incandescent lights

10 We.s sensible heat gain due to equipment (kW)

11 We.lat latent heat gain due to equipment (kW)

12 re ratio of radiative heat to total sensible heat from

equipment (-), $0 \le r \le 1$

Note that the following constant values are assigned in the DATA statement in the TYPE 52 subroutine:

$$r_{p} = 0.7$$

for fluorescent lights, $f_c = 0.6$, $f_{1w} = 0.2$, and $f_{sw} = 0.2$

for incandescent lights, $f_c = 0.1$, $f_{1w} = 0.8$, and $f_{sw} = 0.1$

5.4 TYPE53: WEATHER INPUT

General Description

This TYPE53 subroutine places weather data read by the RDENV subroutine into the state vector. The inputs are really just for mnemonic purposes. The parameters are the indices of the variables. Input indices should always equal parameter values. This routine does nothing when the building shell model is not used, and is optional when the building shell model is used. One unit per simulation is sufficient, and it is recommended that the unit using the TYPE53 subroutine should be placed in the same superblock where the building shell portion is modeled (TYPE50 and TYPE51).

Configuration

In	puts	Description
1	T _o	outdoor air temperature (C)
2	Wo	outdoor air humidity ratio (-)
3	P _o	barometric pressure (kPa)
4	ı _b	direct normal solar beam radiation (W/m^2)
5	Is	diffuse (sky) solar radiation (W/m ²)
6	I _h	total horizontal solar radiation (W/m ²)

Outputs Description

none

Pa	rameters	Description
1	NTOA	index for To
2	NWOA	index for Wo
3	NPOA	index for Po
4	NDN	index for Ib
5	NSKY	index for Is
6	NHOR	index for Ih

6. UTILITY ROUTINES FOR BUILDING LOADS CALCULATION

The TYPE subroutines for building loads determination require routines for property of moist air, heat transfer coefficients, view factors, and air exchange rate. In addition, the building shell model needs weather data and conduction transfer functions of building constructs as mentioned previously (see Figure 1).

6.1 Properties of Moist Air

When humidity ratio of moist air, W_i is given, the specific heat of air, C_p, can be obtained from [23]

$$C_p = 1 + 1.805 \text{ W (kJ/kgK)}$$
 (6.1)

The density of moist air, p, can be computed by

$$\rho = \rho_{dry} (1+W) = \left[\frac{P - P_W}{R_a (T+273)} \right] (1+W) \qquad (kg/m^3)$$
 (6.2)

where W is humidity ratio, R_a is the gas constant for dry air (=0.287055 kJ/kgK), P is atmospheric pressure, and P_w is the vapor pressure which is given by

$$P_{W} = \frac{WP}{W + 0.62198}$$
 (kPa) (6.3)

Humidity ratio at saturation state can be determined from

$$W_{sat} = \frac{0.62198}{P - P_{sw}} \quad (-) \tag{6.4}$$

where P_{SW} is saturated vapor pressure (kPa) and can be computed by [24]

$$P_{sw} = 3.376 \text{ EXP} \left[15.463 - \frac{7284}{1.8T + 424} \right] \text{ (kPa)}$$
 (6.5)

The function CP contains the expressions for moist air.

6.2 Air Exchange Rate

The air exchange rate is calculated using wind speed, and the dry-bulb temperature difference between indoor and outdoor air [25].

$$I_{air} = I_{s,air} [0.15 + (0.013)(2.2369) V_w + (0.005)(1.8) | T_o - T_i |]/0.695$$
(6.6)

where $I_{s,air}$ and V_w are standard air exchange rate (1/h), and wind speed (m/s) respectively. Standard air exchange can be chosen one of the following values:

Living space - 1.5 for leaky building

1.0 for standard building

0.5 for moderately tight building

Attic space - 20.0 for mechanical ventilation

6.0 for natural ventilation

Crawl space - 3.0

The air exchange rate expression is in the CP function.

6.3 MRT View Factors

Radiation exchange between zone surfaces is obtained by using the mean radiant temperature network (MRTN) method introduced by Carroll [26]. Surfaces interact with a mean radiant temperature instead of directly with each other.

Because of it, the number of interactions is reduced from n^2 to n. The MRT network method includes a factor called 'MRT view factor' which is expressed by

$$F_{j} = \frac{1}{1 - \frac{A_{s,j} F_{j}}{\sum_{k=1}^{N_{s}} A_{s,k} F_{k}}}, j=1,2,...,N_{s}$$
(6.7)

where $A_{s,j}$ is the j-th surface area (m^2) , and N_s is the number of surfaces in the zone. This equation is solved iteratively. Maximum number of iterations is assigned to be 100 in DATA statement of the VIEW subroutine. The subroutine VIEW was written to compute the view factors based on the TARP package. The VIEW subroutine is called at the beginning of simulation, and the calculated view factors are stored for succeeding computations.

6.4 Heat Transfer Coefficients

The convective heat transfer coefficient of the j-th inner surface is obtained from one of the following expressions [9]:

$$h_{is,c,j} = \frac{9.482 \mid T_{i} - T_{is,j} \mid}{7.238 - \mid \cos \gamma \mid} \quad \text{if } T_{is,j} \geq T_{i}$$
 (6.8)

$$h_{is,c,j} = \frac{1.810 \mid T_{i} - T_{is,j} \mid}{1.382 + \mid \cos \gamma \mid} \quad \text{if } T_{is,j} \leq T_{i}$$
 (6.9)

where γ denotes the tilt angle of the surface from horizontal plane. The unit of heat transfer coefficients is watts/m²K.

Using view factors of surfaces which enclose the zone (see equation (6.7)), the radiant heat transfer coefficients are computed. For the j-th surface, the coefficient is

$$\frac{h_{is,r,j} = \frac{4\sigma(T_{is,j} + 273)}{\frac{1}{F_i} + \frac{1-\epsilon_j}{\epsilon_j}}$$
(6.10)

where σ is Stephan-Boltzmann's constant (=5.670X10⁻⁸watts/m²K⁴), F_j the view factor, and ϵ_j the emissivity.

The convective plus radiative heat transfer coefficient, $h_{os,j}$, is given in a simple expression as a function of wind speed, $V_w(m/s)$.

$$h_{os, i} = a_o + a_1 V_w + a_2 V_w^2$$
 (6.11)

in which a_o, a₁, and a₂ are coefficients which can be determined by the surface roughness index. Walton provided the values of these coefficients with respect to roughness index in his TARP reference manual [9]. The wind speed is the reported value without modification for surface height or orientation.

IROFS	ao	^a 1	a ₂
1	11.58	5.894	0.0
2	12.49	4.065	0.028
3	10.79	4.192	0.0
4	8.23	4.000	-0.057
5	10.22	3.100	0.0
6	8.23	3.330	-0.036

The function HISCF contains expressions for heat transfer coefficients.

7. CONDUCTION TRANSFER FUNCTION CALCULATION

Conduction transfer functions of walls, floors, roofs, and windows are required by the TYPE51 subroutine for a building shell modeling. The subroutine also needs a term related to conductive heat fluxes on both external and internal surfaces of constructs. The CTFGEN program calculates the conduction transfer functions and the flux transfer functions. In this section, the overview of CTFGEN and the methodology employed in CTFGEN for computing conduction transfer functions will be described.

7.1 Overview of CTFGEN

The CTFGEN program consists of two portions: the front end and the main routines. In the front end portion, inputs and output operations are handled, and in the main routine, conduction transfer functions and flux transfer functions are determined. Thermal properties of building materials (thickness, thermal conductivity, density, specific heat, and thermal resistance) are stored in a sequential access data file (THERM.DAT). By using CTFGEN, thermal properties of additional building materials can be added in the data file. User selected building materials can be composed to form a multilayered building construct (sometimes called construction), after selecting necessary thermal property data from a temporary, direct access file, which contains the same information in the sequential access file.

The main calculation routine was originated from TARP, (slightly modified from BLAST) and its calculation procedure is as follows:

- (1) Determine the upper and lower bounds for searching roots (poles) for residue calculation and determine the roots (SEARCH)
- (2) Calculate derivative matrices and total construct matrices, and obtain residue elements for non-zero poles (DER, MATRIX)
- (3) Calculate zero residue elements (ZERORE)
- (4) Compute response factors and determine high order conduction transfer functions (RFCOMP)
- (5) Check convergence. If not converged, reduce the increment for searching and go to step (1)
- (6) Calculate flux transfer functions

Since a discussion of the calculation procedure involves a lengthy mathematical description, only important expressions will be reviewed in this report. Further detailed information may be found in references [27, 28].

7.2 Heat Conduction of a Multilayered Construct

Equation for heat conduction for a one-dimensional heat flow in a homogeneous layer of building material is given by

$$k \frac{\partial^2 T(x,t)}{\partial x^2} = \rho C_p \frac{\partial T(x,t)}{\partial t}$$
 (7.1)

where T(x,t) is the temperature k, ρ , and C_p are thermal conductivity, density, and specific heat, respectively. The heat flux through the slab is

$$q(x,t) = -k \frac{\partial T(x,t)}{\partial x}$$
 (7.2)

Assuming that k, ρ , and C_p are constant and T(x,0)=0, and applying Laplace transform on the above equations, ordinary differential equations in terms of x and Laplace parameter s are obtained.

$$\frac{d^2T(x,s)}{dx^2} = \frac{s}{\alpha}T(x,s) \tag{7.3}$$

and

$$q(x,s) = -k \frac{dT(x,s)}{dx}$$
 (7.4)

where a is thermal diffusivity defined by k/ρC_p. Imposing boundary conditions on equations (7.3) and (7.4) such that

 $T_1(s) = T(0,s), T_2(s) = T(\ell,s), q_1(s) = q(0,s), and q_2(s) = q(\ell,s), where$ l is the thickness of the construct, a matrix expression is obtained.

$$\begin{bmatrix} T_1(s) \\ q_1(s) \end{bmatrix} = \begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix} \begin{bmatrix} T_2(s) \\ q_2(s) \end{bmatrix}$$
(7.5)

where
$$A(s) = \cosh (\ell \sqrt{\frac{s}{\alpha}})$$

$$B(s) = \frac{1}{k} \sqrt{\frac{\alpha}{s}} \sinh (\ell \sqrt{\frac{s}{\alpha}})$$

$$C(s) = k \sqrt{\frac{s}{\alpha}} \sinh (\ell \sqrt{\frac{s}{\alpha}})$$

$$D(s) = \cosh \left(\ell \sqrt{\frac{s}{a}} \right)$$

Since a multilayered construct also has the same form of transfer matrix.

(transmission matrix) as the single-layered construct, the total construct matrix for n layers becomes

$$\begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix} = \begin{bmatrix} A_1(s) & B_1(s) \\ C_1(s) & D_1(s) \end{bmatrix} \cdots \begin{bmatrix} A_n(s) & B_n(s) \\ C_n(s) & D_n(s) \end{bmatrix}$$
(7.6)

Equations (7.5) and (7.6) are coded in the subroutine MATRIX.

When the j-th layer of a multilayered construct has very low thermal capacitance, the transfer matrix of the j-th layer yields

$$\frac{1 \text{ im}}{C_{j} \to 0} \begin{bmatrix} A_{j}(s) & B_{j}(s) \\ C_{j}(s) & D_{j}(s) \end{bmatrix} = \begin{bmatrix} 1 & \frac{\ell_{j}}{k_{j}} \\ 0 & 1 \end{bmatrix}$$
(7.7)

Heat flux equations on the outer (j=1) and inner (j=n+1) surfaces of the multilayered construct can be expressed as

$$\begin{bmatrix} q_{o}(s) \\ q_{i}(s) \end{bmatrix} = \begin{bmatrix} \frac{D(s)}{B(s)} & -\frac{1}{B(s)} \\ \frac{1}{B(s)} & -\frac{A(s)}{B(s)} \end{bmatrix} \begin{bmatrix} T_{o}(s) \\ T_{i}(s) \end{bmatrix}$$

$$(7.8)$$

where $T_0(s) = T_1(s)$ and $T_i(s) = T_{n+1}(s)$.

With the sign convention for heat fluxes in the TARP program, the heat flux leaving the surface has a positive sense, as shown in Figure 6. Using this convention, equation (7.8) can be rewritten as

Figure 6. A multilayer construct

$$\begin{bmatrix} q_{o}(s) \\ q_{i}(s) \end{bmatrix} = \begin{bmatrix} -\frac{D(s)}{B(s)} & \frac{1}{B(s)} \\ \frac{1}{B(s)} & -\frac{A(s)}{B(s)} \end{bmatrix} \begin{bmatrix} T_{o}(s) \\ T_{i}(s) \end{bmatrix}$$

$$(7.9)$$

Heat flux equations in the time domain can be obtained by applying the inversion theorem of the Laplace transform to equation (7.9).

7.3 Response Factors

Assuming that the boundary temperature functions, $T_i(t)$ and $T_o(t)$, can be represented by a series of pulse functions with a uniform time interval, equation (7.9) can be written as

$$\begin{bmatrix} q_{o}(s) \\ q_{i}(s) \end{bmatrix} = P(s) \begin{bmatrix} -\frac{D(s)}{B(s)} & \frac{1}{B(s)} \\ \frac{1}{B(s)} - \frac{A(s)}{B(s)} \end{bmatrix} \begin{bmatrix} T_{o, t-m}(s) \\ T_{i, t-m}(s) \end{bmatrix}$$
(7.10)

where $m=0,1,2,...,\infty$, and P(s) is a pulse function in Laplace transform. The subscript t-m denotes the past time lagging m δ from the current time. The variable δ is sample time.

If the pulse function is represented by a triangular pulse with base of 2δ and unit height, and if response factors are defined as follows:

external response factor:
$$\overline{X}_m = L^{-1} \left[P(s) \frac{D(s)}{B(s)} \right] = 0,1,2...$$
 (7.11)

cross response factor:
$$\overline{Y}_m = L^{-1} \left[P(s) \frac{1}{B(s)} \right] m=0,1,2...$$
 (7.12)

internal response factor:
$$\overline{Z}_m = L^{-1} \left[P(s) \frac{A(s)}{B(s)} \right] m=0,1,2...$$
 (7.13)

then the heat fluxes can expressed in terms of response factors.

$$\begin{bmatrix} q_{o}(t) \\ q_{i}(t) \end{bmatrix} = \sum_{m=0}^{\infty} \begin{bmatrix} -\overline{X}_{m} & \overline{Y}_{m} \\ \overline{Y}_{m} - \overline{Z}_{m} \end{bmatrix} \begin{bmatrix} T_{o, t-m}(t) \\ T_{i, t-m}(t) \end{bmatrix}$$

$$(7.14)$$

Kusuda [27] and Hittle [28] described well the procedure for computing response factors in detail.

The general formula for inverting a Laplace transformed expression q(s) based on Cauchy's residue theorem is given by

$$q(t) = \frac{1}{2\pi i} \oint_C q(s) e^{st} ds = \sum_j Res(a_j)$$
 (7.15)

where t is time, and a_j is the j-th pole which is a root determined by setting the denominator of $q(s)e^{st}$ to be zero, i.e, B(s)=0.

A modified false position method is implemented for finding roots of an algebraic equation, and coded in the ILLINI subroutine. Improved root search

technique associated with the false position method was also used as suggested by Hittle and Bishop [29] in the subroutine SEARCH.

Generalized equation for response factors with roots β_j (j=1,2,..., ∞) is

$$\overline{F}_{m} = (-1)^{m} a_{m} \left[\frac{b_{mR(s)}}{B(s)} + \frac{R'(s)}{\delta B(s)} - \frac{R(s) B'(s)}{\delta [B(s)]^{2}} \right]_{s=0}$$
(7.16)

$$+ \sum_{j=1}^{\infty} \frac{R(s) e^{-(m+1)\delta\beta_{j}^{2}} (1 - c_{m}e^{\delta\beta_{j}^{2}})^{2}}{\delta\beta_{j}^{4}B'(s)} = -\beta_{j}^{2}$$

where R'(s) and B'(s) are derivatives of R(s) and B(s).

	a _m	b _m	c _m
m=0	1	1	0
m=1	1	0	2
m>1	0	0	1

F _m	R(s)	R'(s)
\bar{x}_{m}	D(s)	D'(s)
$\overline{\underline{Y}}_{\mathbf{m}}$	1	0
\overline{z}_{m}	A(s)	A'(s)

Total derivatives of A(s), B(s), and D(s) are evaluated by differentiating the total construct matrix with respect to Laplace parameter s.

$$\begin{bmatrix} A'(s) & B'(s) \\ C'(s) & D'(s) \end{bmatrix} = \frac{d}{ds} \begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix}$$
(7.17)

The subroutine DER computes the derivatives and the residue for non-zero poles, β_j^2 , which is shown as the second term of equation (7.16). A portion of zero residue (s=0) is calculated in the ZERORE subroutine, and its result is combined with that by the DER subroutine to form equation (7.16) in the subroutine RFCOMP.

An important property of response factors is

$$\left|\sum_{m=0}^{\infty} \overline{X}_{m}\right| = \left|\sum_{m=0}^{\infty} \overline{Y}_{m}\right| = \left|\sum_{m=0}^{\infty} \overline{Z}_{m}\right| = 0$$
 (7.18)

where U is the overall conductance represented by

$$U = \frac{1}{\sum_{i=1}^{n} \frac{\ell_{i}}{k_{i}}} = \frac{1}{\sum_{i=1}^{n} r_{i}}$$
 (7.19)

ri is the thermal resistance of the i-th layer.

7.4 Conduction Transfer Functions

As seen in equation (7.16), response factors when m>1 have the same form.

$$\overline{F}_{m} = \sum_{j=1}^{\infty} g_{j} \lambda_{j}^{m+1} , m \geq 1$$
 (7.20)

where
$$\lambda_j = e^{-\delta \beta_j^2}$$
 and $g_j = \frac{R(s) (1 - e^{\delta \beta_j^2})^2}{\delta \beta_j^4 B'(s)}$ $s = -\beta_j^2$

The subscript j is the index of the roots of B(s)=0, all of which are located on the negative real axis.

Based on equation (7.20), conduction transfer functions (CTF) are defined such that for j-th order

$$F_{i,o} = \overline{F}_{o} \tag{7.21}$$

$$F_{j,m} = F_{j-1,m} - \lambda_j F_{j-1,m-1}$$
 (7.22)

For internal, cross, and external conduction transfer functions, $F_{j,m}$ is replaced by $X_{j,m}$, $Y_{j,m}$, and $Z_{j,m}$, respectively. Calculation of high order conduction transfer functions continues starting from the first order (j=1) until the following condition is met:

$$| 1 - H_{k,m} | \langle \epsilon \ (m=1,2,...),$$
 (7.23)

where

$$H_{k,m} = \frac{\sum_{j=1}^{k} F_{j,m}}{k}$$

$$U \prod_{j=1}^{m} (1-\lambda_{j})$$

and ϵ is a small number.

When the convergence condition is satisfied, the resulting order is k. In

CTFGEN, the maximum order chosen is 5.

After computing CTF using equation (7.22), these CTF are again adjusted.

$$X_{m} = X_{k,m}/H_{k,m}$$

$$Y_{m} = Y_{k,m}/H_{k,m}$$

$$Z_{m} = Z_{k,m}/H_{k,m}$$
(7.24)

The X_m , Y_m , and Z_m for m=1,2,... are calculated for each construct and stored in an output data file (CTFDATA.DAT).

Conductive heat flux equation incorporating with CTF are then represented by

$$q_{i(t)} = \sum_{m=0}^{N_t} Y_m T_{o,t-m} - \sum_{m=0}^{N_t} Z_m T_{i,t-m} + \sum_{j=1}^{N_f} R_j q_{i,t-j}$$
 (7.25)

$$q_{o}(t) = \sum_{m=0}^{N_{t}} Y_{m} T_{i, t-m} - \sum_{m=0}^{N_{t}} X_{m} T_{o, t-m} = \sum_{j=1}^{N_{f}} R_{j} q_{o, t-j}$$
 (7.26)

where R_j is the flux-related variable (flux transfer function). For $N_f=5$, Peavy [30] presented R_j values in terms of λ_j . See the subroutine RFCOMP. Calculated values of R_j are also stored in the output data file to be called by the TYPE51 subroutine.

8. WEATHER DATA

When a simulation involves building thermal loads, weather data are required by MODSIM. The subroutine RDENV in MODSIM expects to read outside air drybulb temperature, humidity ratio, barometric pressure, wind speed, direct normal solar beam radiation, sky diffuse radiation, and total horizontal solar radiation for each hour. The hourly weather data are interpolated for a fraction of an hour by using the spline interpolating routine which was explained in the section 4.3.

The program RDTAPE reads a weather tape (see Figure 1) and writes the selected weather data on an output data file (WTPOUT.DAT). The weather data in the file are transformed into the proper input format required by RDENV by the program CRWDTA. If a weather tape or equivalent is not available or some information from a weather tape is missing, CRWDTA generates artificial data to fill missing portions.

8.1 Weather Tape Reading Routine

The program RDTAPE requires inputs for the type of weather tape, the weather station identification number, and the beginning and ending dates of selected weather information. The conventional data is converted into Julian day and positioning a tape is performed based on the Julian day.

Since, for simplicity, the effects of rain, snow, and wind direction are not considered in the current version of HVACSIM+, the subroutines for reading

tapes were simplified accordingly. RDTAPE is capable to read four kinds of tapes: 'NOAA SOLMET,' 'NOAA Typical Meteorological Year (TMY),' 'NOAA Test Reference Year (TRY),' and 'Weather Year for Energy Calculation (WYEC),' tapes. Most of the subroutines in RDTAPE are based on BLAST [31] and TARP.

8.2 Weather Data File Generation

The program CRWDTA allows several options. It can read the output of RDTAPE and rewrite the information in the format required by RDENV, dividing total horizontal solar radiation values into beam and diffuse components if necessary. Alternatively, it can generate smooth 'design day' solar radiation and temperature data for a clear or cloudy sky design day. The latitude, longitude, and time zone data must be entered at the beginning of data file generation by CRWDTA. The output data file of CRWDTA (WEATHER.DAT) contains month, day, hour, dry-bulb temperature (C), humidity ratio (-), barometric pressure (kPa), wind speed (m/s), direct beam solar radiation (W/m²), sky diffusive radiation (W/m²), and total horizontal radiation (W/m²).

If information on direct beam or sky diffuse radiation is missing from a weather tape (e.g., WYEC tape), the direct and diffuse radiation values are computed by the subroutine WTPINP in the CRWDTA program. In order to use the correlation, equation of time, E, declination angle, δ , extraterrestrial normal radiation intensity, $G_{0,n}$, are calculated using equations presented by Duffie and Beckman [32].

$$E = \frac{1}{60} [9.87 \sin(2B) - 7.53 \cos(B) - 1.5 \sin(B)] (h)$$
 (8.1)

$$\delta = 23.45 \sin \left[2\pi (284+n)/365 \right]$$
 (degrees) (8.2)

$$G_{o,n} = 1367 [1+0.033 \cos (2\pi n/365)] (W/m^2)$$
 (8.3)

where $B = 2\pi (n-81)/364$

n is the day of year, $1 \le n \le 365$

Sunrise time, tsr, and sunset time, tss, are

$$t_{ST} = \left(\frac{LONG}{15} - TZN\right) - E + 12\left(1 - \frac{\omega_S}{\pi}\right)$$
 (8.4)

$$t_{SS} = \left(\frac{LONG}{15} - TZN\right) - E + 12\left(1 + \frac{\omega_S}{\pi}\right)$$
 (8.5)

In the above equation, LONG is longitude angle in degrees, and $\omega_{_{S}}$ sunset hour angle given by

$$\omega_{S} = \cos^{-1} \left[-\tan(L)\tan(\delta) \right]$$
 (8.6)

where L is latitude angle in degrees. Time zone number, TZN, in the United States for standard time is 4 = Atlantic, 5 = Eastern, 6 = Central, 7 = Mountain, or 8 = Pacific.

When total horizontal radiation, Ih, is zero, direct beam and diffuse radiation values are also zero. The following discussion refers only to hours

with non-zero Ih.

Since solar radiation data are generally integrated energy or average power over a period of an hour, the program uses the solar hour angle half an hour ago to represent the average solar position for the hour. Exceptions occur for the two hours each day which include sunrise or sunset. In these cases, only time interval after sunrise and before sunset is considered. Denoting ω_1 and ω_2 as solar hour angle at the beginning time and the ending time, respectively, for the i-th hour of the day, these hour angle expressions are

$$\omega_1 = \frac{\pi}{12} \left[\max(t_{i-1}, t_{sr}) - 12 + E + TZN \right] - \frac{\pi}{180} LONG$$
 (8.7)

$$\omega_2 = \frac{\pi}{12} \left[\min(t_i, t_{ss}) - 12 + E + TZN \right] - \frac{\pi}{180} LONG$$
 (8.8)

The cosine of the solar zenith angle, Z, is calculated using the average of ω_1 and ω_2 .

$$\cos(Z) = \sin(\delta)\sin(L) + \cos(\delta)\cos(L)\cos[(\omega_1 + \omega_2)/2]$$
 (8.9)

Extraterrestrial horizontal radiation, I_0 , is a time averaged value for an hour from ω_1 to ω_2 .

$$I_{o} = \frac{12}{\pi} G_{o,n} \left\{ \cos(L) \cos(\delta) \left[\sin(\omega_{2}) - \sin(\omega_{1}) \right] + (\omega_{2} - \omega_{1}) \sin(L) \sin(\delta) \right\}$$
(8.10)

If direct beam radiation, I_b , is known and diffuse radiation, I_s , is missing, the value of I_s is obtained from

$$I_s = I_h - I_b \cos(Z) \tag{8.11}$$

If Is is known while Ib is not given, Ib is computed from

$$I_{h} = (I_{h} - I_{s})/\cos(Z)$$
 (8.12)

When both I_s and I_b are unknown, the estimation of I_s is made using the hourly diffuse correlation of Erbs, Klein, and Duffie [33].

$$\frac{I_s}{I_h} = 1.0 - 0.09 k_T \text{ for } 0 \le k_T \le 0.22$$
 (8.13)

= 0.9511 - 0.1604
$$k_T$$
 + 4.388 k_T^2 - 16.638 k_T^3 + 12.336 k_T^4 for 0.22 $\langle k_T \leq 0.80$

= 0.165 for 0.80 $\langle k_{T} \leq 1.0$

where k_T is the hourly clearness index given by

$$k_{\rm T} = I_{\rm h}/I_{\rm o} \tag{8.14}$$

With I_s obtained by equation (8.13), I_b is calculated using equation (8.12).

The weather tapes mentioned previously do not give humidity ratio but dew point temperature. The humidity ratio is determined using the dew point temperature. Refer to section 6.1 and the function WF.

The program CRWDTA generates smooth artificial design day weather data if a weather tape or equivalent data file is not available. Clear or cloudy sky design day data can be created after entering input data: initial day and month, number of days for which weather calculation will be made, barometric pressure, wind speed, relative humidity, minimum and maximum dry-bulb temperatures.

To create cloudy sky design day data (ISFLAG =3), a fixed value of daily clearness index, k_T , must be given. With this \overline{k}_T , hourly clearness index, k_T , at the i-th hour of day can be calculated from the following relation:

$$\mathbf{k}_{\mathrm{T}} = \overline{\mathbf{k}}_{\mathrm{T}} \left\{ a + b \cos \left[\left(\omega_{1} + \omega_{2} \right) / 2 \right] \right\}$$
 (8.15)

where $a = 0.409 + 0.5016 \sin(\omega_s - \pi/3)$

$$b = 0.6609 - 0.4767 \sin(\omega_s - \pi/3)$$

Total horizontal radiation, Ih, is then obtained.

$$I_{h} = k_{T}I_{o} \tag{8.16}$$

Knowing I_h , equations (8.11) and (8.12) give the values of I_s and I_b . See the subroutine SOLAR.

Clear sky design day data (ISFLAG=2) is generated by the subroutine SOLAR in CRWDTA. CRWDTA implements all three methods presented by Machler and Iqbal [34]. The method used by the program depends upon user's responses to questions asked when clear sky data generation is requested. Horizontal visibility, geographic correction factor, and precipitable water are involved.

Method 1 is the simplest method, which is a modification of the ASHRAE clear sky irradiation algorithm. When horizontal visibility is zero, the method 1 is used.

$$I_b = k_A A_m e^{-\alpha B_m}$$
 (8.16)

$$I_s = C_m I_h \tag{8.17}$$

where A_m , B_m , and C_m are apparent solar constant, exponential attenuation coefficient, and diffuse fraction factor, respectively. These are sets of twelve constants, one for each month. Machler and Iqbal presented modified values of A_m , B_m , and C_m . The variable α is defined by

$$\alpha = (P/P_0)/\cos(Z) \tag{8.18}$$

in which P, Po and Z are barometric pressure, standard atmospheric pressure (=101.3kPa) and zenith angle, respectively.

The correction factor for regional variation, k_A, is 'clearness number' listed in ASHRAE Handbook (e.g., 1981 Fundamentals, p. 27.8) [35].

Method 2 uses horizontal visibility at ground level as a parameter of atmospheric turbidity. If horizontal visibility is not zero, but precipitable atmospheric moisture is zero, the method 2 is used.

$$I_b = G_{o,n} \tau_a (0.775)^{f(0.5)}$$
 (8.19)

$$I_s = I_b (0.1 + 0.3/VIS)$$
 (8.20)

where f(x) is defined by a^{x} (i.e., $f(0.5)=a^{0.5}$), VIS is horizontal visibility at ground level in km, and τ_{a} is atmospheric transmittance.

$$\tau_a = (1 - 1.13 \text{ VIS}^{-0.57})^{f(0.85)}$$
 (8.21)

Method 3 is applied to modify the equation for I_b , if a non-zero value for precipitable water is given.

$$I_b = G_{o,n} \tau_a (0.775)^{f(0.5)} (1.0223 - 0.00149M)^{f(0.27)}$$
(8.22)

where M is the precipitable water in mm.

Approximated dry-bulb temperature calculation is made using empirical values shown in the table of ASHRAE Handbook [35] for summertime. For the i-th hour,

$$T_i = T_{max} - (T_{max} - T_{min}) \rho_i / 100$$
 (8.23)

where T_{max} , T_{min} , and ρ_i are design day maximum, minimum temperatures, and percentage of the daily range as empirical values. This temperature calculation is coded in the subroutine DB. Note that equation (8.23) is not valid for wintertime. Calculation procedure for wintertime temperature has not been implemented in CRW DTA.

Assuming constant relative humidity for a day, hourly humidity ratio is computed using the expressions in ASHRAE Handbook p. 6.4. The subroutine HUMIDY determines the hourly humidity ratio.

9. SIMULATION PROCEDURE

Generally, a computer simulation using HVACSIM+ involves three steps: preprocessing, simulation, and postprocessing.

9.1 Preprocessing - Input Data Generation

(1) Creation of Simulation Work File

The building load and the system component portions are considered as separate parts. The type description file (TYPAR.DAT) must be accessible by both HVACGEN and SLIMCON. See the Reference Manual [7] and the Users Guide [8] for details.

-----Building Load Component Portion----

- (i) Draw a sketch of the building to be simulated and divide the building shell into a number of zones as necessary.
- (ii) Make block diagrams for the building load components and assign a

 UNIT number to each component along with the proper TYPE number.
- (iii) Fill out all the required information on the worksheets, which are appended in APPENDIX B, for the building load components: TYPE50, TYPE51, TYPE52, and TYPE53.
- (iv) Execute the HVACGEN program. During the execution, enter necessary data which was prepared on the worksheets. Note that one of SUPERBLOCKS is reserved only for the zone envelope (TYPE50), the building surface (TYPE51), and the weather input (TYPE53). Zone

models (TYPE52) should reside in the other SUPERBLOCK or SUPERBLOCKS which may also contain the system component models.

---- System Component Portion -----

- (i) Draw a sketch of the building system to be simulated.
- (ii) Make block diagrams for system components which serve the zones, and assign a UNIT number to each component with a proper TYPE number.
- (iii) Fill out all the required information on the worksheets, which are appended in APPENDIX in reference [8], for the system components.
- (iv) Execute the HVACGEN program. Enter necessary information and edit the simulation work file if needed.
- (2) Creation of Model Definition File

After creating the simulation work file, the SLIMCON program can generate the model definition file (MODELDEF.DAT) for the MODSIM program from the simulation work file. Since it is very difficult to make any changes in the model definition file, any changes should be made in the simulation work file instead.

(3) Creation of Boundary Variable File

Any explicitly defined, indexed input or output variables in TYPEn subroutines can be boundary variables.

- (i) Edit the simulation work file to declare the boundary variables using the HVACGEN program.
- (ii) Make a boundary data file (BOUNDARY.DAT) using a user's editing program. The first column of the boundary variabe data file must

contain values of time (Time intervals need not be equal). For step changes, two sequential records should be entered having the same value of time but different values of a boundary variable.

(4) Creation of Conduction Transfer Function File

- (i) Find out what kind materials are used to form the building envelope element (wall, roof, ceiling, floor, partition, or window).
- (ii) Search the thermal property data bank of building materials

 (THERM.DAT) whether required data are available. If not, obtain
 thermal property data from other sources.
- (iii) Execute the CTFGEN program interactively to add thermal property data and/or obtain conduction transfer functions of the specific constructs. When a construct has very low thermal capacitance (C_p≈0), the value of thermal resistance must be specified. The output file of CTFGEN (CTFDATA.DAT) will be used by the RDENV subroutine of the MODSIM program.

(5) Creation of Weather Data File

- (i) Execute the RDTAPE program interactively to read weather information from a weather tape or equivalent.
- (ii) Using the output file of the RDTAPE program (WTPOUT.DAT), execute the CRWDTA program to create the weather data file (WEATHER.DAT) for the subroutine RDENV of the MODSIM program. If no weather tape data is accessible or for simplicity it is not desired to use a weather tape for simplicity, an artificial weather data file can be generated by the CRWDTA program.

9.2 Simulation

(1) Allocation of Output Files

The output files of the MODSIM program, MODSUM.DAT, MODOUT.DAT, and INITOUT.DAT, are automatically allocated on the computer disk storage spaces by the Fortran77 OPEN statements in the MODSIM.

(2) Execution of MODSIM

A simulation is performed by MODSIM using previously created data files. During the execution, some of the data can be monitored on the screen of a computer terminal. With the building model, a simulation involves two steps of execution. The first step is the initialization run for temperature and flux histories for computation of conductive heat transfer rates for a given period of time, usually 24 hours. The second step is the actual simulation.

(3) Continuation of Simulation

At the end of each run of MODSIM for a given period, the output file, INITOUT.DAT, is created. This file has all of the data which are needed to continue the simulation at the next time period. However, INITOUT.DAT must be renamed as INITINDAT before the next, continuing simulation is begun. Otherwise no continuation of the simulation is made.

9.3 Postprocessing - Output Data Analysis

Execution of the SORTSB program produces a sorted data file for a specific SUPERBLOCK from the MODOUT.DAT file. This step is necessary to generate an input file for a user-supplied plotting routine, if more than one SUPERBLOCK is associated.

10. REFERENCES

- [1] Klein, S.A., et al., 'TRNSYS, A Transient System Simulation Program,'
 Report 38-12, University of Wisconsin, Dec. 1983.
- [2] Kelly, G.E., Park, C., Clark, D.R., and May, W.B., 'HVACSIM', A Dynamic Building/HVAC/Control Systems Simulation Program,' Proc. of Workshop on HVAC Controls Modeling and Simulation, Georgia Inst. of Tech., Atlanta, GA, Feb. 2-3, 1984.
- [3] Hill, C.R., 'Simulation Techniques for Building Systems,' Proc. of Workshop on HVAC Controls Modeling and Simulation, Georgia Inst. of Tech., Atlanta, GA, Feb. 2-3, 1984.
- [4] Hill, C.R., 'Simulation of a Multizone Air Handler,' ASHRAE Trans., Vol. 91, Part 1, 1985.
- [5] Clark, D.R., Hurley, C.W., and Hill, C.R., 'Dynamic Models for HVAC System Components,' ASHRAE Trans. Vol. 91, Part 1, 1985.
- [6] Park, C., Clark, D.R., and Kelly, G.E., 'An Overview of HVACSIM+, A Dynamic Building/HVAC/Control Systems Simulation Program,' the 1st Annual Building Energy Simulation Conference, Seattle, WA, August 21-22, 1985.
- [7] Clark, D.R., 'HVACSIM⁺ Building Systems and Equipment Simulation Program
 Reference Manual,' NBSIR 84-2996, National Bureau of Standards, Jan.
 1985.
- [8] Clark, D.R., and May, W.R., Jr., 'HVACSIM⁺ Building Systems and Equipment Simulation Program Users Guide,' NBSIR 85-3243, National Bureau of Standards, Sept. 1985.

- [9] Walton, G.N., 'Thermal Analysis Research Program Reference Manual,' NBSIR 83-2655, National Bureau of Standards, March 1983.
- [10] NBS 'Guide to Available Mathematical Software (GAMS),' Center for Applied Math., National Bureau of Standards, Oct. 1981
- [11] Hiebert, K.L., 'An Evaluation of Mathematical Software that Solves

 Systems of Nonlinear Equations,' ACM Trans. Math. Software, Vol. 8, No.

 1, March 1982, pp. 5-20.
- [12] Powel 1, M.J.D., 'A Hybrid Method for Nonlinear Equations,' in Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, Ed., Gordon and Breach, London, 1970.
- [13] Broyden, C.G., 'A Class of Methods for Solving Nonlinear Simultaneous Equations,' Math. Comp., Vol. 19, 1965, pp. 577-593.
- [14] Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis,
 McGraw-Hill, 1978.
- [15] Dennis, J.E. and Schnabel, R.B., <u>Numerical Methods for Unconstrained</u>
 Optimization and Nonlinear Equations, Prentice-Hall, 1983.
- [16] Fox, P.A., Hall, A.D., and Schryer, N.L., 'Algorithm 528 Framework for a Portable Library [Z],' ACM Trans. on Math. Software, Vol. 4, No. 2, June 1978, pp. 177-188.
- [17] Brayton, R.K., Gustavson, F.G., and Hachtel, G.D., 'A New Efficient Algorithm for Solving Differential Algebraic Systems Using Implicit Backward Differential Formulas,' Proc. IEEE, Vol. 60, No. 1, Jan. 1972, pp. 98-108.
- [18] Gear, C.W., 'The Automatic Integration of Ordinary Differential Equations,' Comm. ACM, Vol. 14, March 1971, pp. 176-179.

- [19] Nordsieck, A., 'On Numerical Integration of Ordinary Differential Equations,' Math. Comp., Vol. 16, 1962, pp. 22-49.
- [20] Chua, L.O., and Lin, P., Computer-Aided Analysis of Electronic Circuits,

 Prentice-Hall, 1975.
- [21] Ferziger, J.H., Numerical Methods for Engineering Application, John Wiley, 1981.
- [22] Kusuda, T., 'NBSLD, The Computer Program for Heating and Cooling Loads in Building,' BSS 69, National Bureau of Standards, July 1976.
- [23] Threlekld, J.L., <u>Thermal Environmental Engineering</u>, 2nd ed., Prentice-Hall, 1970.
- [24] Brokaw, R.S., 'Calculation of Flue Losses for High-Efficiency Furnaces and Appliances,' ASHRAE J., Jan. 1979, pp.49-51.
- [25] Kusuda, T. and Saitch, T., 'Simplified Analysis Calculations for Residential Applications,' NBSIR 80-1961, National Bureau of Standards, July 1980.
- [26] Carroll, J.A., 'A Comparison of Radiant Interchange Algorithms,'
 ASME/SSEA Conf., April 1981.
- [27] Kusuda, T., 'Thermal Response Factors for Multilayer Structures of Various Heat Conduction Systems,' ASHRAE Trans., Vol. 75, 1969, pp. 246-270.
- [28] Hittle, D.C., 'Calculating Building Heating and Cooling Loads Using the Frequency Response of Multilayered Slabs,' Report CERL-TM-E-169, Construction Engineering Research Lab, 1981.

- [29] Hittle, D.C., and Bishop, R., 'An Improved Root-Finding Procedure for Use in Calculating Transient Heat Flow Through Multilayered Slabs,' Int. J. Heat and Mass Transfer, Vol. 26, No. 11, 1983, pp. 1685-1693.
- [30] Peavy, B.A., 'A Note on Response Factors and Conduction Transfer Functions,' ASHRAE Trans., Vol. 84, 1978, pp. 688-690.
- [31] Hittle, D.C., 'The Building Loads Analysis and System Thermodynamics (BLAST) Program, Version 2.0: User Manual,' Tech. Rep. E-153, Construction Engineering Research Laboratory, 1979.
- [32] Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal Processes,

 John Wiley, 1980.
- [33] Erbs, D.G., Klein, S.A., and Duffie, J.A., 'Estimation of Diffuse Radiation Fraction for Hourly, Daily, and Monthly Average Global Radiation,' Solar Energy Laboratory, University of Wisconsin, Madison, 1981.
- [34] Machler, M.A., and Iqbal, M. 'A Modification of the ASHRAE Clear Sky
 Irradiation Model,' ASHRAE Trans. Vol. 91, 1985.
- [35] ASHRAE, 1981 Fundamentals Handbook, ASHRAE, 1981.

APPENDIX A: Short Descriptions of Functions and Subroutines in HVACSIM+

(1) Primary Program of HVACSIM+ * Main Program

MODSIM - Modular simulation program

* Input/Output

(File : MODINO5)

(File : MODSIM5)

BLOCK DATA - Assignment of logical unit numbers to files, setting numerical values of typical properties of air and water, and giving label names

BOUNDS - Reading of time-dependent boundary variables, and interpolating them using the 3rd order Lagrangian interpolation

INDATA - Entering input data for a simulation on the console

OPNFIL - Opening of input and output files

RCONF - Reading of the model definition and the initialization files

REPORT - Generation of the report file at equal intervals

SUMARY - Writing of a summary of configurtion of simulation

VLAB - Returning labels and numbers

* Block and State Variable Status Control

(File : MODBLK5)

ASEMBL - Assembling of BLOCK inputs and outputs

BACTIV - Control of BLOCK activity

FRZVAR - Variable freezing

INPUTS - Assignment of state variables to inputs of UNIT

INSCAN - Scanning the inputs of SUPERBLOCKs to detect changes larger than the error tolerance

INTLIZ - Initialization of the simulation

OUTPUT - Storing of outputs from UNIT

RESTAT - Resetting of outputs of a BLOCK for unfrozen variables

UNFREZ - Checking for frozen variables

* Integration of Stiff Ordinary Differential Equations

(File : MODBDF5)

BAKDIF - Calculation of derivatives using backward difference formulars

CALN - Computation of the minimum time step

ECNTRL - Calculation of truncation errors and determination of time step and integration order

IPERM - Permutation of vectors

NORDER - Increasing or decreasing the order of integration

PREDIK - Calculation of predicted values for the next time step

RESET - Resetting the differential equation integrator

SAVECO - Saving and replacing coefficients

UPDATE - Updating coefficients for BAKDIF and PREDIK

* Routines needed for Solving a System of Equations

(File : MODEQT5)

BLOCK - Calculation of a new state vector by calling a BLOCK

FNC - Calculation of the residual functions for a BLOCK

SUPERB - Calculation of a new state vector by calling a SUPERBLOCK

SUPFNC - Calculation of the residual functions for a SUPERBLOCK

(File : SELECT5)

SELECT - Calling TYPEn subtoutines

* Nonlinear Algebraic Equation Solver

(File : SNSQA)

SNSQ - Finding a zero of a system of nonlinear functions

SNSQ1 - The same as SNSQ but called by the BLOCK subroutine

SNSQ2 - The abbreviated version of SNSQ

(File : SNSQB)

DOGLEG - Determination of the convex combination x of the Gauss-Newton and scaled gradient directions

ENORM - Calculation of the Euclidean norm of x

QFORM - Accumulation of orthogonal matrix Q from the computed QR factorization

QRFAC - QR factorization of a matrix using Householder transformations

R1MPYQ - Computation of A*Q for a given matrix A

RIUPDT - Determination of an orthogonal matrix Q

(File : SNSQC)

FDJAC1 - A forward difference approximation to the Jacobian matrix. Called by SNSQ.

FDJ AC2 - The same as FDJ AC1 except argument. Called by SNSQ1 and SNSQ2.

R1MACH - Machine-dependent constants for the local computer environment

* Models of HVAC Components and Controls

(File : TYPES)

TYPE1 - Fan and pump model

TYPE2 - Conduit (duct or pipe)

TYPE3 - Inlet conduit (duct or pipe)

TYPE4 - Flow merge

TYPE5 - Damper or valve

TYPE6 - Flow split

TYPE7 - Temperature sensor

TYPE8 - Proportional-Integral controller

TYPE9 - Linear valve with pneumatic actuator

TYPE10 - Hot water coil model

TYPE11 - Hot water to air heating coil

TYPE12 - Cooling or dehumidifying coil

TYPE13 - Three-way valve model

TYPE14 - Evaporative humidifier

TYPE15 - Room model with constant zone loads

TYPE16 - Sticky proportional controller

TYPE17 - Mixing dampers and merge

TYPE18 - Plenum

TYPE19 - Flow balance control

TYPE20 - High/low limit controller

TYPE21 - Clamped split

TYPE22 - Steam spray humidifier

TYPE23 - Steam nozzle

TYPE24 - Ideal gas nozzle

TYPE25 - Steam to air heating coil

TYPE26 - Control signal inverter

TYPE27 - Moist air flow merge

TYPE28 - Constant flow resistance

TYPE29 - Inlet constant flow resistance

* Building Loads Model components

(File : TYPESB)

TYPE50 - Zone envelope (Building Shell)

TYPE51 - Building surface (Building Shell)

TYPE52 - Zone model

- Weather input (Building Shell) TYPE53 * Supporting Utility for System Components (File : UTILITY) - Hysterisis of actuators HYSTER DELAY - Transport delays in ducting components - Coefficients for the polynomial of the efficiency of heat SUFED exchanger fin - Modified Bessel function BESI BESK - K Bessel function - Polynomial fitting POLFIT * Supporting Utility for Building Load Components (File : UTILITYB) CP - Specific heat of moist air, vapor pressure, air exchange rate, and humidity ratio at saturated state HISCF - Computation of convective heat transfer coefficient of the inner surface to the zone air, convective plus radiative heat transfer coefficient of the outer surface, and radiative heat transfer coefficient of the inner surface VIEW - View factors using MRT network method (File : RDENV) **RDENV** - Reading of weather data and conduction transfer functions. Interpolation of hourly data using the spline interpolation. SPLINE - The second derivatives for the spline interpolation SPEVAL - Interpolation by using the cubic spline method * Steam and Liquid Water Properties (File : WATPR) TSATS - Saturation temperature of steam vs. pressure

- Saturation pressure of steam vs. temperature

PSATS

VSATS - Saturation specific volume of steam vs. temperature and pressure

VSATW - Saturation specific volume of water vs. saturation temperature

HSATW - Saturation enthalpy of liquid water vs. saturation temperature

HFG - Latent heat of vaporization of water vs. saturation temperature

HSATS - Enthalpy of saturated steam vs. saturation temperature

SSATW - Saturation entropy of liquid water vs. saturation temperature

SSATS - Entropy of saturated steam vs. saturation temperature

VS - Specific volume of superheated steam vs. pressure and temperature

HS - Enthalpy of superheated steam vs. pressure and temperature

SS - Entropy of superheated steam vs. pressure and temperature

TPSS - Temperature of steam vs. pressure and entropy

CPS - Specific heat of steam at constant pressure vs. temperature

CVS - Specific heat of steam at constant volume vs. specific volume and temperature

VISSV - Dynamic viscosity of saturated vapor vs. pressure

VISSPH - Dynamic viscosity of superheated steam vs. temperature

STEAMK - Thermal conductivity of superheated steam vs. temperature

WREO - Density of water vs. temperature

WMU - Viscosity of water vs. temperature

WK - Thermal conductivity vs. temperature

WCP - Specific heat of water vs. temperature

* Air Properties

(File : AIRPR)

CPCVA - Specific heats of air at constant pressure and volume, and speed of sound in air

HA - Enthalpy of air vs. temperature

PHIA - Entropy of air vs. temperature

TPHIA - Temperature of air vs. entropy

VISCA - Dynamic viscosity of air vs. temperature

AKA - Thermal conductivity of air vs. temperature

* Refrigerant Properties

(File : REFRIGPR)

REFRIG - BLOCK DATA for coefficients of refrigerant equations

PSAT - Saturation pressure of refrigerant vs. temperature

TSAT - Saturation temperature of refrigerant vs. saturation pressure

TVSAT - Saturation temperature of refrigerant vs. saturation specific volume

PGAS - Pressure of refrigerant vs. specific volume and temperature

VGAS - Specific volume of refrigerant vs. pressure and temperature

HGAS - Enthalpy of refrigerant vs. pressure, specific volume, and temperature

SGAS - Entropy of refrigerant vs. specific volume and temperature

HPS - Enthalpy of refrigerant vs. pressure and entropy

TPH - Temperature of refrigerant vs. pressure and enthalpy

TVH - Temperature of refrigerant vs. specific volume and enthalpy

DHLAT - Latent heat of vaporization of refrigerant vs. pressure, specific volume, and temperature

RHOLIQ - Density of refrigerant vs. temperature

CV - Specific heat of refrigerant at constant volume vs. specific volume and temperature

CPCV - Specific heats of refrigerant at constant volume and pressure, and speed of sound in refrigerant vs. specific volume and temperature

(2) Conduction Transfer Function Calculation

(File : CTFGEN)

CTF - Main program to create the CTF data file (CTFDATA.DAT)

THERMP - Adding new data of thermal properties of building materials in the thermal property data file (THERM. DAT)

BANKTP - Making a temporary direct access file of the thermal property data

DER - Calculation of the total construct and total derivative matrices, and determination of residue elements for a non-zero root

DUMPRF - Printing description of conductive layers, values of roots, conduction transfer functions, and flux transfer functions

ERROR - Printing error messages

ILLINI - Computation of roots in the interval using modified false position method

INITRF - Calling subroutines related to calculation of conduction transfer functions

MATRIX - Evaluation of the conduction matrix for a multilayered slab

RCOMP - Computation of conduction transfer and flux transfer functions for multilayered constructs

SEARCH - Determination of the upper and lower bounds within which a root must exist.

ZERORE - Calculation of zero residue elements

(3) Weather Data

* Weather Tape Reading

(File : RDTAPE)

RDTAPE - Main program to read weather tapes

RDWTP - Positioning and checking weather tapes

RDSOLM - Reading of a NOAA SOLMET tape

RDTMY - Reading of a NOAA Typical Meteorological Year (TMY) tape

RDTRY - Reading of a NOAA Test Reference Year (TRY) tape

RDWYEC - Reading of Weather Year for Energy Calculations (WYEC) tape

WRTFIL - Writing output data (WTPOUT. DAT)

JDS - Evaluation of Julian date

* Weather Data File Generation

(File : CRWDTA)

CRWDTA - Main program to create the weather data file

WTPINP - Reading the output file of the RDTAPE program and computation of solar radiation data which are missed in the weather tape

WF - Humidity ratio vs. dew point temperature and pressure

SOLAR - Generation of artificial weather data of solar radiation

DB - Design day outdoor air dry-bulb temperature for summer

HUMIDY - Humidity ratio assuming constant relative humidity

COPYFL - Writing outputs on the weather data file (WEATHER.DAT)

(4) Front-End Program for Handling a Simulation Work File

* Main Module

(File : HVACGEN1)

HVACGE - Main program of the HVACGEN program

INFORM - BLOCK DATA containing the types of data and COMMON BLOCK information

DATAIN - Verification of input information

COPMOD - Input data processor

CHECK - Checking whether the parsed word is a number

REWORD - Checking whether the input is reserved word

REMAIN - Control of transfer to the requested module

HOLDIT - Producing a pause for acknowledgment of error display

SCROLL - Making a screen display paused when the screen is full

OKAY - Checking whether an existing value is acceptable

RITE - Displaying of console messages and menu

PROMPT - Providing the index labels corresponding to category numbers

* Create Module

(File : HVACGEN2)

CREATE - Control of transfer to the proper routine for create mode

CRUNIT - Creating a UNIT to be used in a work file

CRBLK - Creating a BLOCK to be used in a work file

CRSUP - Creating a SUPERBLOCK to be used in a work file

CRSIM - Calling CRSIM1, CRSIM2, CRSIM3, and CRSIM4 for SIMULATION setup

CRSIM1 - Entering the simulation title, and error tolerances

CRSIM2 - Entering initial values of state variables

CRSIM3 - Entering boundary information

CRSIM4 - Entering the information of reported variables

RECRT - Calling a proper module according to the entry of reserved words (ABORT, HELP, VIEW, EDIT, and TYPES)

TYPES - Listing the TYPEs avaiable in the TYPAR.DAT file

* File Control Module

(File : HVACGEN3)

FSAVE - Calling the routine for saving the created file for UNIT, BLOCK, SUPERBLOCK, or SIMULATION setup

READIN - Selecting the module for reading a file based on the file extension

OPNFIL - Entering the file name and opening the file

RDUNT - Reading the file of UNIT with the extention UNT

RDBLK - Reading the file of BLOCK with the extension BLK

- Reading the file of SIMULATION setup with the extension SIM RDS IM

SAVUNT - Writing information to the UNIT file

SAVBLK - Writing information to the BLOCK file

- Writing information to the SUPERBLOCK file SAVSUP

SAVSIM - Writing information to the SIMULATION file

TYPEIN - Creating a direct access file for TYPAR. DAT at the first call, and reading the information from the direct access file.

* View Module

(File : HV ACGEN4)

VIEW - Control of transfer to the proper routine for view mode

- Viewing the inputs, outputs, and parameters for the UNIT VEWUNT

VEWBLK - Viewing the information for the BLOCK

VEWSIM - Providing the menu for different view options

- Viewing of the structure of the SIMULATION setup STRUCT

VARVAL - Viewing of the initial values of state variables for inputs in

the SIUMULATION

BOUND - Viewing of the boundary information for the SIMULATION

RPTVAR - Viewing of the reported variables in the SIMULATION

ERROR - Viewing of the error tolerances, and the freezing and scan

options in the SIMULATION

REVEW - Directing to either HELP or ABORT mode

VEWALL - Viewing of all information in the SIMULATION

* Edit and Help Module

(File : HVACGEN5)

EDIT - Control of transfer to the proper routine for edit mode

EDUNT - Editing the information in the UNIT

EDSIM - Editing the information in the SIMULATION EDTITL - Editing the title

EDSTR - Calling the routines for editing the structure

EDVAL - Editing the initial values of state variables

EDBND - Calling the routines for editing the boundary information

INSERT - Entering the index of a boundary variable to the SIMULATION

DELETE - Deleting the index of a boundary variable from the SIMULATION

EDREP - Calling the routines for editing the information of reported variables

PRCHNG - Editing the reporting interval

RPINRT - Entering the index of a reported variable to the SIMULATION

RPDELT - Deleting the index of a reported variable from the SIMULATION

EDERR - Editing the error tolerances and the freezing and scan options

REEDT - Calling the help module

REEDIT - Calling the help module (similar to REEDT)

(File : HVACGEN6)

INSSIM - Calling the routine for inserting or replacing UNIT or BLOCK

INSUNT - Inserting a UNIT in the SIMULATION

INSCHK - Giving the number of UNITs in the BLOCK

INSBLK - Inserting a BLOCK in the SIMULATION

INCK2 - Giving the information of SUPERBLOCK and UNIT to the subroutine INSBLK

RECALC - Recalculation of the new position of the variables in the state vector after an insertion

TYPINF - Getting information of the input and output category indeces from the TYPAR.DAT file

REBND - Calculation of the new position in the state vector of the boundary variables

REREPT - Calculation of the new position in the state vector of the reported variables

DELSIM - Calling the routine for deleting a UNIT or BLOCK from a SIMULATION

DELUNT - Deleting a UNIT from the SIMULATION setup

DELBLK - Deleting a BLOCK from the SIMULATION setup

DELCHK - Checking the UNIT number to be deleted

DELCK2 - Checking the BLOCK number to be deleted

REPSIM - Calling the routine for replacing a UNIT in the SIUMULATION

REPUNT - Replacing a UNIT in the SIMULATION

HELP - Description of available commands in the HVACGEN program

EXTBLK - Saving the information in the BLOCK of the SIMULATION file in a BLOCK file

(5) Model Definition File Generation

(File: SLIMCON)

SIMCON - Main program of the SLIMCON program to generate a model definition file (MODELDEF.DAT) using a simulation work file with the extension SIM

FILEOP - Opening the input and output files

TYPAR - Getting information from the TYPAR. DAT file

REPORT - Displaying the configuration parameters along with the maximum values assigned

VARCHK - Checking whether any of the time-dependent boundary variables are solved simultaneously

OUTCHK - Checking if two or more outputs are assigned to a single state variable

TDBVIS - Finding the largest number of time-dependent boundary variables in any one SUPERBLOCK

(6) Sorting the Raw Data File

(File : SORTSB)

SORTSB - Program to sort the raw output data file (MODOUT.DAT) for each SUPERBLOCK to create a data file which can be used as an input data file to a user-supplied plotting routine

APPENDIX B: Worksheets for Data Entry for TYPE 50, 51, 52, and 53 **************** TYPE 50 ZONE ENVELOPE UNIT= INPUTS: TIA: Zone air dry-bulb temperature (C) -----T QISW: Internal (short wave) radiant gain from lights(kW)--O QILW: Internal (long wave) radiant gain (kW) -----Q TIS(1): surface temperature (C) -----T Inner Inner surface temperature (C) -----T TIS(2): Inner surface temperature (C) -----T TIS(3): Inner surface temperature (C) -----T TIS(4): TIS(5): Inner surface temperature (C) -----T Inner surface temperature (C) -----T TIS(6): TIS(7): surface temperature (C) -----T Inner surface temperature (C) -----T TIS(8): Inner TIS(9): Inner surface temperature (C) -----T TIS(10): surface temperature (C) -----T Inner OUTPUTS: TMR: Mean radiant temperature (C) -----T QWALL: Convective heat gain from building surfaces (kW) --- O PARAMETERS: 1 IZN: Identification number of zone -----2 NS: Number of surfaces of zone -----

NOTE: When the number of surfaces is less than 10, an index of the last surface may be used for the remaining temperature inputs.

TYPE 51 BUILDING SURFACE

UNIT=

INPUTS:

TIA: Indoor air dry-bulb temperature (C) -----T
TMR: Mean radiant temperature (C) -----T
TOSINF: Outer surface temperature of unexposed wall(C)----T
FSHADW: Shaded fraction of exposed outer surface (-) -----C

OUTPUTS:

TIS: Inner surface temperature (C) -----T SOLINT: Integrated solar flux incident on surface (W/m2) --- Q

PARAMETERS:

1 IZN: Identification number of zone -----2 ID: Identification number of surface ------3 IEXPSO: 0=W/in zone, 1=betw. zones, 2=exposed to sun (-) ---4 ISTR: Identification number of the construct ------Surface area (m2) -----6 ORIENT: Azimuth angle between normal to surface & south ----7 TILT: Tilt angle : flat roof=0, floor=180 (degree) -----Ground reflectivity (-) ------8 GRF: 9 IROFS: Outer surface roughness index [1,6] (-) ------Solar absorptance of the outer surface (-) ------10 ABSOS: Short wave absorptance of the inner surface -----11 ABSIS: 12 EMITIS: Emissivity of the inner surface (-) ------13 TRANSM: Transmittance of the glass window (-) ------14 SC: Shading coefficient of the glass window (-) ------

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

The surface roughness index, IROFS, is defined as follows:

- IROFS = 1 Stucco
 - 2 Brick, rough plaster
 - 3 Concrete
 - 4 Clear pine
 - 5 Smooth plaster
 - 6 Glass, paint on pine

TYPE 52 2	CONE MODEL	UNIT=
INPUTS:		
PIAG:	Gage pressure of zone air (kPa)	D
TIA:	Zone air dry-bulb temperature (C) -	T
VIA:	Humidiy ratio of zone air (-)	11
PSAG:	Gage pressure of supply air (kPa) -	
MSA:	Mass flow rate of supply air (kg/s)	м
TSA:	Supply air dry-bulb temperature (C)	
VSA:		
QWALL:	Humidity ratio of supply air (-) Convective heat gain from building	
NUMPEP:	-	
UTCEQP:	Number of people (occupant in the z Equipment utilization coeff. (-)	
UTCLIT:	Lighting utilization coeff. (-)	
OICLII:	Lighting utilization coeff. (-)	
OUTPUTS:		
TIA:	Zone air dry-bulb temperature [diff	eg] (C)T
WIA:	Humidiy ratio of zone air [diff. eq	•
QISV:	Internal (short wave) radiant gain	
QILW:	Internal (long wave) radiant gain (-
415*	internal (long wave) radiant gain (**,
PARAMETER:		
1 IZN:	Identification number of some	
2 CFUR:	Effective thermal capacitance of fu	
3 EFFMIA:	Air mass multiplier for some moistu	
4 VOLUME:	Volume of zone air (interior space	
5 SAIREX:	Std air exchange rate (0.5=tight,1.	
6 WPEPS:	Sensible heat gain from a person (k	
7 WPEPL:	Latent heat gain from a person (kW)	
8 WLIT:	Heat gain due to lighting in the zo	
9 LIGHT:	1 = Fluorescent, 2 = Incandescent -	
10 WEQPS:	Sensible heat gain due to equipment	
11 WEGPL:	Latent heat gain due to equipment (
12 REQP:	Radiative to sensible heat from equ	
12 REUP	nadiative to sensible near from equ	Thment (-/

****************** WEATHER INPUT TYPE 53 UNIT= INPUTS: Ambient (outdoor) air temperature (C)-----T TAMB: Outdoor air humidity ratio (-) ------H HUMRAT: Barometric pressure (kPa) -----P PBAR: IDN: Diffuse (sky) solar radiation (W/m2) ------Q ISKY: Total horizontal solar radiation (W/m2) ------Q IHOR: OUTPUTS: none PARAMETERS: 1 Index for ambient temperature (e.g. 5 if TAMB= T5) ------2 Index for outdoor air humidity ratio ------3 Index for barometric pressure -----4 Index for direct normal solar radiation -------

APPENDIX C: Example 1 One-zone Building Model

wasterniv c: raubie i oue-zoue anildiud wodel

A single-zone building model is simulated in this example, following the Simulation Procedure outlined in Chapter 9 of this report. The purpose of the example is to demonstrate how to use HVACSIM+ with the building loads model described in this report(see Figure 1). No system component is connected to the zone and no boundary variable is considered. Artificially generated weather data is used. Screen images of I/O operation during the executions of programs and all related data files are presented. Different results from the outputs of this example are anticipated when a computer with different values of machine precisions from those used in this example. See the function R1MACH in the file SNSQC.

The machine precisions used are:

R1MACH(1) = 5.3976E-79

R1MACH(2) = 7.2370E+75

R1MACH(3) = 5.9605E-8

R1MACH(4) = 9.5367E-7

A. Preprocessing - Input Data Generation (1) Creation of Simulation Work File

As shown in Figure C-1, the example model is an office module located on a floor (other than the top or ground floor) of a multi-story building. The building surfaces faced to the south are exposed to the sun, while other surfaces are unexposed, interior surfaces.

Figure C-2 is a simplified block diagram which shows the input-output connections of UNITS. Since UNIT 9 (Weather Input) has no direct connection to any UNIT, it is not shown here.

Figure C-1. A single-zone model

Figure C-2. Block diagram of the single-zone model

* Worksheets

ZONE ENVELOPE UNIT= / TYPE 50 INPUTS: TIA: Zone air dry-bulb temperature (C) -----T/ Internal (short wave) radiant gain from lights(kW)--Q/ QISW: QILW: Inner surface temperature (C) -----T2 TIS(1): Inner surface temperature (C) -----T3 TIS(2): Inner surface temperature (C) -----T4 TIS(3): TIS(4): Inner surface temperature (C) -----TS TIS(5): Inner surface temperature (C) -----T/2 Inner surface temperature (C) -----T7 TIS(6): TIS(7): Inner surface temperature (C) -----T& Inner surface temperature (C) -----T8 TIS(8): TIS(9): Inner surface temperature (C) -----T8 Inner surface temperature (C) -----T& TIS(10): OUTPUTS: TMR: Mean radiant temperature (C) -----T/O QWALL: Convective heat gain from building surfaces (kW) --- Q3 PARAMETERS: 1 IZN: Identification number of zone -----/ 2 NS: Number of surfaces of some ----- 7

NOTE: When the number of surfaces is less than 10, an index of the last surface may be used for the remaining temperature inputs. TYPE 51 BUILDING SURFACE Ceiling UNIT= 2

INPUTS:
TIA: Indoor air dry-bulb temperature (C) -----T/
TMR: Mean radiant temperature (C) -----T/O

TOSINF: Outer surface temperature of unexposed wall(C)-----T/
FSHADW: Shaded fraction of exposed outer surface (-) ------C/S

OUTPUTS:

TIS: Inner surface temperature (C) -----T4 SOLINT: Integrated solar flux incident on surface (W/m2) --- 00

PARAMETERS:

1	IZN:	Identification number of some/
2	ID:	Identification number of surface/
3	IEXPSO:	0=W/in zone, 1=betw. zones, 2=exposed to sun (-)/
4	ISTR:	Identification number of the construct/
5	AS:	Surface area (m2) 37.2
6	ORIENT:	Azimuth angle between normal to surface & south O
7	TILT:	Tilt angle: flat roof=0, floor=180 (degree) O
8	GRF:	Ground reflectivity (-)O
9	IROFS:	Outer surface roughness index [1,6] (-)
10	ABSOS:	Solar absorptance of the outer surface (-)
11	ABSIS:	Short wave absorptance of the inner surface O.6
12	EMITIS:	Emissivity of the inner surface (-) 0.9
13	TRANSM:	Transmittance of the glass window (-)
14	SC:	Shading coefficient of the glass window (-)O

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

The surface roughness index, IROFS, is defined as follows:

IROFS = 1 Stucco

- 2 Brick, rough plaster
- 3 Concrete
- 4 Clear pine
- 5 Smooth plaster
- 6 Glass, paint on pine

UNIT= 3 Floor BUILDING SURFACE TYPE 51 INPUTS: Indoor air dry-bulb temperature (C) -----T/ TIA: Mean radiant temperature (C) -----T/0 TMR: Outer surface temperature of unexposed wall(C)-----T9 TOSINF: Shaded fraction of exposed outer surface (-) -----C5 FSHADW: OUTPUTS: Inner surface temperature (C) -----T3 TIS: Integrated solar flux incident on surface (W/m2) --- Qo SOLINT: PARAMETERS: Identification number of some -----/ 1 IZN: 2 ID: Identification number of surface ----- 2 3 IEXPSO: 0=W/in some, 1=betw. somes, 2=exposed to sum (-) --- / 4 ISTR: Identification number of the construct -----2 Surface area (m2) ----- 37.2/ 5 AS: 6 ORIENT: Azimuth angle between normal to surface & south ---- o 7 TILT: Tilt angle : flat roof=0, floor=180 (degree) ----- 180 8 GRF: Ground reflectivity (-) ----- 0 Outer surface roughness index [1,6] (-) ------9 IROFS: Solar absorptance of the outer surface (-) ------ o 10 ABSOS: Short wave absorptance of the inner surface ----- 0.6 11 ABSIS:

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

The surface roughness index, IROFS, is defined as follows:

Transmittance of the glass window (-) ------

Shading coefficient of the glass window (-) ----- O

IROFS = 1 Stucco

13 TRANSM: 14 SC:

- 2 Brick, rough plaster
- 3 Concrete
- 4 Clear pine
- 5 Smooth plaster
- 6 Glass, paint on pine

West wall UNIT= 4 TYPE 51 BUILDING SURFACE INPUTS: Indoor air dry-bulb temperature (C) -----T / TIA: Mean radiant temperature (C) -----T10 TMR: Outer surface temperature of unexposed wall(C)----T 9 TOSINF: Shaded fraction of exposed outer surface (-) -----CS FSHADW: OUTPUTS: Inner surface temperature (C) -----T2 TIS: Integrated solar flux incident on surface (W/m2) --- Q O SOLINT: PARAMETERS: 1 IZN: Identification number of some -----/ 2 ID: Identification number of surface ----- 3 3 IEXPSO: 0=W/in zone, 1=betw. zones, 2=exposed to sun (-) --- / 4 ISTR: Identification number of the construct ----- 3 5 AS: Surface area (m2) -----24,4 6 ORIENT: Asimuth angle between normal to surface & south --- 90 7 TILT: Tilt angle: flat roof=0, floor=180 (degree) ------ 90 Ground reflectivity (-) ----- O 8 GRF: 9 IROFS: Outer surface roughness index [1,6] (-) ------------10 ABSOS: Solar absorptance of the outer surface (-) ------ O 11 ABSIS: Short wave absorptance of the inner surface ----- 06 12 EMITIS: Emissivity of the inner surface (-) ------ 0.9 13 TRANSM: Transmittance of the glass window (-) ------14 SC: Shading coefficient of the glass window (-) ----- O

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

The surface roughness index, IROFS, is defined as follows:

IROFS = 1 Stucco

- 2 Brick, rough plaster
- 3 Concrete
- 4 Clear pine
- 5 Smooth plaster
- 6 Glass, paint on pine

East Well UNIT = 5 TYPE 51 BUILDING SURFACE INPUTS: Indoor air dry-bulb temperature (C) -----T / TIA: Mean radiant temperature (C) -----T/0 TMR: Outer surface temperature of unexposed wall(C)-----T 9 TOSINF: Shaded fraction of exposed outer surface (-) -----C5 FSHADW: OUTPUTS: Inner surface temperature (C) -----T 5 TIS: Integrated solar flux incident on surface (W/m2) --- Q o SOLINT: PARAMETERS: Identification number of some ----- / 1 IZN: 2 ID: 3 IEXPSO: 0=W/in sone, 1=betw. sones, 2=exposed to sun (-) --- / Identification number of the construct ----- 3 4 ISTR: Surface area (m2) ----- 24.4 6 ORIENT: Asimuth angle between normal to surface & south ---- 2.70 7 TILT: 8 GRF: 9 IROFS: Outer surface roughness index [1,6] (-) ------ 0 10 ABSOS: Solar absorptance of the outer surface (-) ------11 ABSIS: Short wave absorptance of the inner surface ----- 0.6 12 EMITIS: Emissivity of the inner surface (-) ----- 0.9 13 TRANSM: Transmittance of the glass window (-) ------Shading coefficient of the glass window (-) ----- O 14 SC:

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

The surface roughness index, IROFS, is defined as follows:

IROFS = 1 Stucco

- 2 Brick, rough plaster
- 3 Concrete
- 4 Clear pine
- 5 Smooth plaster
- 6 Glass, paint on pine

UNIT= 6 North Wall TYPE 51 BUILDING SURFACE INPUTS: Indoor air dry-bulb temperature (C) -----T / TIA: Mean radiant temperature (C) -----T/0 TMR: Outer surface temperature of unexposed wall(C)----T 9 TOSINF: Shaded fraction of exposed outer surface (-) -----C 5 FSHADW: OUTPUTS: Inner surface temperature (C) -----T 7 TIS: Integrated solar flux incident on surface (W/m2) --- 0 SOLINT: PARAMETERS: 1 IZN: Identification number of some -----/ 2 ID: Identification number of surface ----- 5 3 IEXPSO: 0=W/in sone, 1=betw. sones, 2=exposed to sun (-) --- / 4 1STR: Identification number of the construct ----- 3 5 AS: Surface area (m2) ----- 24.4 6 ORIENT: Asimuth angle between normal to surface & south --- 180 Tilt angle : flat roof=0, floor=180 (degree) ----- 90 7 TILT: 8 GRF: Ground reflectivity (-) ----- 0 Outer surface roughness index [1,6] (-) -----------------9 IROFS: 10 ABSOS: Solar absorptance of the outer surface (-) ------ O

Short wave absorptance of the inner surface ----- 0.6

Transmittance of the glass window (-) ------

Shading coefficient of the glass window (-) ------ O

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

The surface roughness index, IROFS, is defined as follows:

IROFS = 1 Stucco

11 ABSIS:

13 TRANSM:

14 SC:

- 2 Brick, rough plaster
- 3 Concrete
- 4 Clear pine
- 5 Smooth plaster
- 6 Glass, paint on pine

UNIT= 7 TYPE 51 BUILDING SURFACE South Wall INPUTS: Indoor air dry-bulb temperature (C) -----T/ TIA: Mean radiant temperature (C) -----T/0 TMR: Outer surface temperature of unexposed wall(C)-----T6 TOSINF: Shaded fraction of exposed outer surface (-) -----C4 FSHADW: OUTPUTS: Inner surface temperature (C) ------T6TIS: Integrated solar flux incident on surface (W/m2) --- Q SOLINT: PARAMETERS: Identification number of some ----- / 1 IZN: 2 ID: Identification number of surface ----- 6 3 IEXPSO: 0=W/in zone, 1=betw. zones, 2=exposed to sun (-) --- 2 4 ISTR: Identification number of the construct ----- 4 Surface area (m2) ----- 18.4 5 AS: Azimuth angle between normal to surface & south ---- o 6 ORIENT: 7 TILT: Tilt angle: flat roof=0, floor=180 (degree) ------ 90 8 GRF: Solar absorptance of the outer surface (-) ----- 0.6 10 ABSOS: 11 ABSIS: Short wave absorptance of the inner surface ----- 0.6

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

Transmittance of the glass window (-) -------

Shading coefficient of the glass window (-) ----- O

The surface roughness index, IROFS, is defined as follows:

IROFS = 1 Stucco

13 TRANSM: 14 SC:

- 2 Brick, rough plaster
- 3 Concrete
- 4 Clear pine
- 5 Smooth plaster
- 6 Glass, paint on pine

South Window UNIT= & TYPE 51 BUILDING SURFACE INPUTS: Indoor air dry-bulb temperature (C) -----T / TIA: Mean radiant temperature (C) -----T/O TMR: Outer surface temperature of unexposed wall(C)----T & TOSINF: Shaded fraction of exposed outer surface (-) -----C 4 FSHADW: OUTPUTS: Inner surface temperature (C) -----T& TIS: Integrated solar flux incident on surface (W/m2) --- Q SOLINT: PARAMETERS: Identification number of zone -----/ 1 IZN: 2 ID: Identification number of surface ----- 7 3 IEXPSO: 0=W/in zone, 1=betw. zones, 2=exposed to sun (-) --- 2 4 ISTR: Identification number of the construct -----Surface area (m2) ----- 6.0 6 ORIENT: Azimuth angle between normal to surface & south ----7 TILT: Tilt angle : flat roof=0, floor=180 (degree) ------ 90 8 GRF: 9 IROFS: Outer surface roughness index [1,6] (-) -------6 10 ABSOS: Solar absorptance of the outer surface (-) -------11 ABSIS: Short wave absorptance of the inner surface ------14 SC: Shading coefficient of the glass window (-) ----- 0.pr

NOTE: If outer surface is exposed to outside air (IEXPOS=2), the index of TOSINF may be the same index of TIS.

The orintation angle of an west facing surface is 90 degrees, while an east facing surface is 270 degrees.

The surface roughness index, IROFS, is defined as follows:

- IROFS = 1 Stucco
 - 2 Brick, rough plaster
 - 3 Concrete
 - 4 Clear pine
 - 5 Smooth plaster
 - 6 Glass, paint on pine

UNIT= 9 TYPE 53 WEATHER INPUT INPUTS: Ambient (outdoor) air temperature (C)-----T/2 TAMB: HUMRAT: Outdoor air humidity ratio (-) -----H3 Barometric pressure (kPa) -----P3 PBAR: IDN: ISKY: Total horizontal solar radiation (W/m2) ------ 2 IHOR: OUTPUTS: none PARAMETERS: 1 Index for ambient temperature (e.g. 5 if TAMB= T5) -----/2 2 Index for outdoor air humidity ratio ----- 3 3 Index for barometric pressure ----- 3 4 Index for direct normal solar radiation ----- 6 5 Index for diffuse (sky) solar radiation ------ 7

.

TYPE 52	ZONE MODEL	UNIT= 10
INPUTS:		
PIAG:	Gage pressure	of sone air (kPa)P/
TIA:		ulb temperature (C)T/
WIA:		of sone air (-)H/
PSAG:		of supply air (kPa)P2
MSA:		of supply air (kg/s)M/
TSA:	Supply air dry	-bulb temperature (C)T//
WSA:		of supply air (-)H2
QWALL:	Convective hea	t gain from building surfaces (kW)Q3
NUMPEP:		le (occupant in the zone)C/
UTCEQP:		imation coeff. (-)C2
UTCLIT:	Lighting utili	mation coeff. (-)C3
OUTPUTS:		
TIA:		ulb temperature [diff. eq.] (C)T/
WIA:		of some air [diff. eq.]H/
QISW:		t wave) radiant gain from lights(kW)Q/
QILW:	Internal (long	wave) radiant gain (kW)
5151W5555		
PARAMETER 1 IZN:	•	
		number of sone/
2 CFUR:		mal capacitance of furnishing (kJ/K) - 200
3 EFFMIA	Air mass multi	plier for some moisture capacitance 4
4 VOLUME	: Volume of sone	air (interior space of zone) (m3) /48.84
5 SAIREX		ge rate (0.5=tight,1.0=std,1.5=leaky)- /.0
6 WPEPS:		gain from a person (kW) 0.07176
7 WPEPL:	_	in from a person (kW) 0.0454
8 WLIT:	-	to lighting in the some (kW)
9 LIGHT:		t, 2 = Incandescent/
10 WEQPS:		gain due to equipment (kW) 0.15
11 WEQPL:		in due to equipment (kW) 0.02
12 REQP:	Radiative to s	ensible heat from equipment (-) 0.3

* Initial Conditions of State Variables

P 1	Zone air pressure, gage		kPa
P 2	Supply air pressure, gage		kPa
P3	Barometric pressure of ambient air	101.3	kPa
	•		
M1	Supply air mass flow rate	0.0	kg/s
T1	Zone air dry-bulb temperature	20.0	C
T2	Inner surface temperature of west wall	20.0	C
T3	Inner surface temperature of floor	20.0	С
T4	Inner surface temperature of ceiling	20.0	С
T5	Inner surface temperature of east wall	20.0	С
T6	Inner surface temperature of south wall	20.0	C
T7	Inner surface temperature of north wall	20.0	С
T8	Inner surface temperature of south window	20.0	С
T9	Outer surface temperature of unexposed surfaces	20.0	С
T10	Mean radiant temperature	20.0	
T11	Supply air dry-bulb temperature	20.0	С
T12	Ambient temperature	20.0	С
C1	Number of people	1.0	
C 2	Equipment utilization coefficient	1.0	
C3	Light utilization coefficient	1.0	
C 4	Shaded fraction of exposed outer surface	0.0	
C 5	Shaded fraction of unexposed surfaces	1.0	
Q1	Short wave radiant heat gain	0.0	kW
Q2	Long wave radiant heat gain	0.0	
Q3	Convective heat gain from building surfaces	0.0	
04	Average solar radiation influx of window	0.0	
0.5	Average solar radiation influx of exposed wall	0.0	
0.6	Direct solar radiation	0.0	
Q.7	Diffuse solar radiation	0.0	
Q.8	Total horizontal solar radiation	0.0	
40	TOTAL HULLSUNGAL SUIGI FAGIATION	0.0	IC W
Н1	7 i- bomiditoti-	0.04	124
H2	Zone air humidity ratio	0.00	
H 2	Supply air humidity ratio	0.00	
n s	Ambient air humidity ratio	0.00	174

```
* Execution of HVACGEN
HVACGEN - Simulation GENeration Program
Version 1.8 (08-16 1985)
Choose from the list below:
CReate (SImulation, BLock, UNit)
EDit (SImulation, UNit)
VIew (SImulation, BLock, UNit)
HEIP
ENd
Selection ?
VI SI ONEZONE
 reading from work file....
 INITIALIZING TYPES INFORMATION...
 What part of the simulation would you like to view:
ALI the simulation information (for documentation)
 STructure (superblock, block, and unit Information)
VAriable initial values
 ERror tolerances, variable scan and freeze options
 Boundary variables
REported variables
 COntinue with the previous menu
AL
ONE ZONE MODEL
 SUPERBLOCK 1
      BLOCK 1
                      TYPE 50 - ZONE ENVELOPE
          UNIT 1
                      TYPE 51 - BUILDING SURFACE
          UNIT
          UNIT
                      TYPE 51 - BUILDING SURFACE
                3
                      TYPE 51 - BUILDING SURFACE
          UNIT
                      TYPE 51 - BUILDING SURFACE
          UNIT
          UNIT
                      TYPE 51 - BUILDING SURFACE
                      TYPE 51 - BUILDING SURFACE
          UNIT 7
          UNIT 8
                      TYPE 51 - BUILDING SURFACE
```

BLOCK 2

UNIT 9

TYPE 53 - WEATHER INPUT

```
SUPERBLOCK 2
    BLOCK 3
```

UNIT 10 TYPE 52 - ZONE MODEL

```
UNIT 1 TYPE 50
```

ZONE ENVELOPE

```
INPUTS:
```

TEMPERATURE 1 - TIA: Zone air dry-bulb temperature 1 - QISW: Internal (short wave) radiant gain 2 - QILW: Internal (long wave) radiant gain POWER

TEMPERATURE 2 - TIS(1): Inner surface temperature TEMPERATURE 3 - TIS(2): Inner surface temperature TEMPERATURE 4 - TIS(3): Inner surface temperature TEMPERATURE 5 - TIS(4): Inner surface temperature 6 - TIS(5): Inner surface temperature
7 - TIS(6): Inner surface temperature
8 - TIS(7): Inner surface temperature
8 - TIS(8): Inner surface temperature TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE 8 - TIS(9): Inner surface temperature TEMPERATURE TEMPERATURE 8 - TIS(10): Inner surface temperature

OUTPUTS: 2

TEMPERATURE 10 - TMR: Mean radiant temperature

3 - QWALL: Convective heat gain from surfaces

3 PARAMETERS:

1.00000 IZN: Identification number of sone 7.00000 NS: Number of surfaces of zone

UNIT 2 TYPE 51 BUILDING SURFACE

INPUTS:

TEMPERATURE 1 - TIA: Indoor air dry-bulb temperature

10 - TMR: Mean radiant temperature TEMPERATURE

9 - TOSINF: Outer surface temp. of unexposed wall TEMPERATURE CONTROL 5 - FSHADW: Shaded fraction of exposed surface

OUTPUTS: 2

TEMPERATURE 4 - TIS: Inner surface temperature

POWER 0 - SOLINT: Integrated solar influx on surface

3 PARAMETERS:

1.00000 IZN: Identification number of zone ID: Identification number of surface 1.00000

IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun 1.00000

ISTR: Identification number of the construct 1.00000

AS: Surface area (m2) 37.2100

0.000000 ORIENT: Asimuth angle of normal to surface & south 0.000000 TILT: Tilt angle: flat roof=0, floor=180 (degree)

0.000000 GRF: Ground reflectivity (-,
0.000000 IROFS: Outer surface roughness index: 1=stucco,...
0.000000 ABSOS: Solar absorptance of outer surface (-)

0.600000 ABSIS: Short wave absorptance of inner surface(-)
0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)

0.000000 SC: Shading coeff. of the glass window (-)

UNIT 3 TYPE 51 BUILDING SURFACE

0.900000

0.000000

0.000000

```
INPUTS:
      TEMPERATURE 1 - TIA: Indoor air dry-bulb temperature
TEMPERATURE 10 - TMR: Mean radiant temperature
TEMPERATURE 9 - TOSINF: Outer surface temp. of unexposed
                     9 - TOSINF: Outer surface temp. of unexposed wall
                      5 - FSHADW: Shaded fraction of exposed surface
      CONTROL
    OUTPUTS:
2
      TEMPERATURE
                      3 - TIS: Inner surface temperature
      POWER
                       0 - SOLINT: Integrated solar influx on surface
3
     PARAMETERS:
                    IZN: Identification number of zone
         1.00000
         2.00000
                    ID:
                            Identification number of surface
         1.00000
                    IEXPOS: 0=W/in xone, 1=betw.rones, 2=exposed to sun
         2.00000
                    ISTR: Identification number of the construct
         37.2100
                   AS: Surface area (m2)
        0.000000
                   ORIENT: Azimuth angle of normal to surface & south
         180.000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
                            Ground reflectivity (-)
        0.000000
                   GRF:
        0.000000
                    IROFS: Outer surface roughness index: 1=stucco,...
                    ABSOS: Solar absorptance of outer surface (-)
        0.000000
        0.600000
                   ABSIS: Short wave absorptance of inner surface(-)
        0.900000
                    EMITIS: Emissivity of the inner surface (-)
        0.000000 TRANSM: Transmittance of the glass window (-)
0.000000 SC: Shading coeff. of the glass window (-)
UNIT 4
            TYPE 51
BUILDING SURFACE
     INPUTS:
                    1 - TIA: Indoor air dry-bulb temperature
      TEMPERATURE
                     10 - TMR:
      TEMPERATURE
                                 Mean radiant temperature
                     9 - TOSINF: Outer surface temp. of unexposed wall
      TEMPERATURE
                      5 - FSHADW: Shaded fraction of exposed surface
      CONTROL
     OUTPUTS:
      TEMPERATURE 2 - TIS: Inner surface temperature
      POWER
                       0 - SOLINT: Integrated solar influx on surface
     PARAMETERS:
         1.00000
                    IZN: Identification number of some
                    ID: Identification number of surface
         3.00000
         1.00000
                     IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
         3.00000
                     ISTR: Identification number of the construct
         24.4000
                           Surface area (m2)
         90.0000
                     ORIENT: Azimuth angle of normal to surface & south
         90.0000
                     TILT: Tilt angle: flat roof=0, floor=180 (degree)
        0.000000
                   GRF: Ground reflectivity (-)
                    IROFS: Outer surface roughness index: 1=stucco,...
        0.000000
                    ABSOS: Solar absorptance of outer surface (-)
        0.000000
                   ABSIS: Short wave absorptance of inner surface(-)
        0.600000
```

EMITIS: Emissivity of the inner surface (-)

TRANSM: Transmittance of the glass window (-)

SC: Shading coeff. of the glass window (-)

UNIT 5 TYPE 51 BUILDING SURFACE

```
INPUTS:
         TEMPERATURE 1 - TIA: Indoor air dry-bulb temperature
TEMPERATURE 10 - TMR: Mean radiant temperature
         TEMPERATURE
         TEMPERATURE
                             9 - TOSINF: Outer surface temp. of unexposed wall
5 - FSHADW: Shaded fraction of exposed surface
         CONTROL
2
       OUTPUTS:
         TEMPERATURE 5 - TIS: Inner surface temperature
                              0 - SOLINT: integrated solar influx on surface
       PARAMETERS:
3
             1.00000 IZN: Identification number of zone
4.00000 ID: Identification number of surface
1.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
3.00000 ISTR: Identification number of the construct
           24.4000 AS: Surface area (m2)
270.000 ORIENT: Azimuth angle of normal to surface & south
90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
0.000000 GRF: Ground reflectivity (-)
           0.000000 IROFS: Outer surface roughness index: 1=stucco,...
0.000000 ABSOS: Solar absorptance of outer surface (-)
            0.000000
           0.600000
                          ABSIS: Short wave absorptance of inner surface(-)
           0.900000 EMITIS: Emissivity of the inner surface (-)
           0.000000 TRANSM: Transmittance of the glass window (-) 0.000000 SC: Shading coeff. of the glass window (-)
UNIT 6
                 TYPE 51
BUILDING SURFACE
       INPUTS:
        TEMPERATURE 1 - TIA: Indoor air dry-bulb temperature
         TEMPERATURE 10 - TMR: Mean radiant temperature
         TEMPERATURE
                             9 - TOSINF: Outer surface temp. of unexposed wall
         CONTROL
                              5 - FSHADW: Shaded fraction of exposed surface
       OUTPUTS:
        TEMPERATURE
                               7 - TIS: Inner surface temperature
                               0 - SOLINT: Integrated solar influx on surface
         POWER
3
       PARAMETERS:
             1.00000 IZM: Identification number of zone
             5.00000 ID: Identification number of surface
1.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
             3.00000
                           ISTR: Identification number of the construct
             24.4000 AS: Surface area (m2)
180.000 ORIENT: Azimuth angle of normal to surface & south
90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
            0.000000 GRF: Ground reflectivity (-)
            0.000000 IROFS: Outer surface roughness index: 1=stucco,...
0.000000 ABSOS: Solar absorptance of outer surface (-)
0.600000 ABSIS: Short wave absorptance of inner surface(-)
            0.900000 EMITIS: Emissivity of the inner surface (-)
            0.000000 TRANSM: Transmittance of the glass window (-) 0.000000 SC: Shading coeff. of the glass window (-)
```

...........

UNIT 7 TYPE 51 BUILDING SURFACE

```
INPUTS:
      TEMPERATURE 1 - TIA: Indoor air dry-bulb temperature
TEMPERATURE 10 - TMR: Mean radiant temperature
TEMPERATURE 6 - TOSINF: Outer surface temp. of unexposed wall
                       4 - FSHADW: Shaded fraction of exposed surface
       CONTROL
2
      OUTPUTS:
      TEMPERATURE
                        6 - TIS: Inner surface temperature
                        5 - SOLINT: Integrated solar influx on surface
3
     PARAMETERS:
                     IZN: Identification number of sone
ID: Identification number of surface
          1.00000
          6.00000
          2.00000
                      IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
                      ISTR: Identification number of the construct
AS: Surface area (m2)
          4.00000
          18.4000
         0.000000
                      ORIENT: Azimuth angle of normal to surface & south
          90.0000
                     TILT: Tilt angle: flat roof=0, floor=180 (degree)
                    GRF: Ground reflectivity (-)
IROFS: Outer surface roughness index: 1=stucco,...
         0.200000
          2.00000
         0.600000
                     ABSOS: Solar absorptance of outer surface (-)
                      ABSIS: Short wave absorptance of inner surface(-)
         0.600000
         0.900000
                      EMITIS: Emissivity of the inner surface (-)
         0.000000
                     TRANSM: Transmittance of the glass window (-)
         0.000000 SC: Shading coeff. of the glass window (-)
UNIT 8
            TYPE 51
BUILDING SURFACE
1
     INPUTS:
                     1 - TIA: Indoor air dry-bulb temperature
10 - TMR: Mean radiant temperature
      TEMPERATURE
      TEMPERATURE
                      8 - TOSINF: Outer surface temp. of unexposed wall
       TEMPERATURE
                        4 - FSHADW: Shaded fraction of exposed surface
       CONTROL
      OUTPUTS:
                      8 - TIS: Inner surface temperature
       TEMPERATURE
                        4 - SOLINT: Integrated solar influx on surface
       POWER
     PARAMETERS:
          1.00000
                      IZN:
                             Identification number of some
          7.00000
                      ID: Identification number of surface
          2.00000
                      IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
          5.00000
                      ISTR: Identification number of the construct
                      AS: Surface area (m2)
          6.00000
                      ORIENT: Asimuth angle of normal to surface & south
         0.000000
                     TILT: Tilt angle: flat roof=0, floor=180 (degree)
          90.0000
                             Ground reflectivity (-)
                      GRF:
         0.200000
          6.00000
                      IROFS: Outer surface roughness index: 1=stucco, .
```

ABSOS: Solar absorptance of outer surface (-)

TRANSM: Transmittance of the glass window (-)

SC: Shading coeff. of the glass window (-)

EMITIS: Emissivity of the inner surface (-)

ABSIS: Short wave absorptance of inner surface(-)

0.000000

0.000000

0.000000

0.950000

0.850000

```
UNIT 9 TYPE 53
WEATHER INPUT
```

```
1
      INPUTS:
        TEMPERATURE 12 - TAMB: Ambient (outdoor) air temperature (C)
        ABS. HUMIDITY 3 - HUMRAT: Outdoor air humidity ratio (-)
PRESSURE 3 - PBAR: Barometric pressure (kPa)
                            6 - IDN: Direct normal solar radiation (W/m2)
        POWER
                           7 - ISKY: Diffuse (sky) solar radiation (W/m2)
        POWER
                            8 - IHOR: Total horizontal solar radiation (W/m2)
        POWER
      OUTPUTS:
2
3
      PARAMETERS:
            12.0000 Index for ambient temperature (e.g. 5 if TAMB=T5)
            3.00000 Index for outdoor air humidity ratio
3.00000 Index for barometric pressure
6.00000 Index for direct normal solar radiation
7.00000 Index for diffuse (sky) solar radiation
            8.00000
                         Index for total horizontal solar radiation
  UNIT 10 TYPE 52
ZONE MODEL
       INPUTS:
1
        PRESSURE

1 - PIAG: Gage pressure of zone air

TEMPERATURE

1 - TIA: Zone air dry-bulb temperature

ABS. HUMIDITY

1 - WIA: Humidiy ratio of zone air

PRESSURE
                           2 - PSAG: Gage pressure of supply air
1 - MSA: Mass flow rate of supply air
        PRESSURE
        FLOW
        TEMPERATURE 11 - TSA: Supply air dry-bulb temperature

ABS. HUMIDITY 2 - WSA: Humidity ratio of supply air

POWER 3 - QWALL: Convective heat gain from surfaces
                          1 - NUMPEP: Number of people (occupant in the some)
        CONTROL
        CONTROL 2 - UTCEQP: Equipment utilization coefficien
CONTROL 3 - UTCLIT: Lighting utilization coefficient
                           2 - UTCEOP: Equipment utilization coefficient
2
       OUTPUTS:
                         1 - TIA: Zone air dry-bulb temp. [diff. eq.]
1 - WIA: Humidity ratio of zone air [diff. eq.]
1 - GISW: Internal (short wave) radiant gain
        TEMPERATURE
        ABS. HUMIDITY
        POWER
                            2 - QILW: Internal (long wave) radiant gain
        POWER
3
       PARAMETERS:
            1.00000
                         IZN:
                                  Identification number of sone
                        CFUR: Effective capacitance of furnishings (kJ/K)
            200.000
            4.00000 EFFMIA: Multiplier for some moisture capacitance(-)
                        VOLUME: Volume of some air (interior space ) (m3)
            148.840
           1.00000 SAIREX: Standard air exchange rate (1/h)
           0.717600E-01 WPEPS: Sensible heat gain from a person (kW)
           0.454000E-01 WPEPL: Latent heat gain from a person (kW)
           0.200000 WLIT: Heat gain due to lighting in the zone (kW)
            1.00000
                        LIGHT: 1 = Fluorescent, 2 = Incandescent (-)
           0.150000 WEQPS: Sensible heat gain due to equipment (kW)
           0.200000E-01 WEQPL: Latent heat gain due to equipment (kW)
           0.300000 REQP: Radiative to sensible heat from equipment(-)
```

```
Initial Variable Values:
PRESSURE
             1 -> 0.000000
                               (kPa)
             2 ->
                  0.000000
PRESSURE
                              (kPa)
            3 -> 101.300
1 -> 0.000000
PRESSURE
                              (kPa)
FLOW
TEMPERATURE 1 ->
TEMPERATURE 2 ->
                              (kg/s)
                    20.0000
                              (C)
                    20.0000
                              (C)
TEMPERATURE
             3 ->
                    20.0000
                              (C)
                    20.0000
TEMPERATURE
             4 ->
                               (C)
                    20.0000
             5 ->
TEMPERATURE
                              (C)
TEMPERATURE 6 ->
                    20.0000
                              (C)
                    20.0000
             7 ->
TEMPERATURE
                               (C)
             8 ->
TEMPERATURE
                              (C)
TEMPERATURE
             9 ->
                    20.0000
                              (C)
TEMPERATURE 10 -> TEMPERATURE 11 ->
                    20.0000
                               (C)
                    20.0000
                              (C)
TEMPERATURE 12 ->
                    20.0000
                              (C)
            1 ->
                    1.00000
CONTROL
                              (-)
CONTROL
                    1.00000
             2 ->
                              (-)
CONTROL
             3 ->
                     1.00000
                              (-)
CONTROL
             4 -> 0.000000
                               (-)
CONTROL
             5 ->
                    1.00000
                               (-)
             1 -> 0.000000
POWER
                              (kW)
POWER
             2 -> 0.000000
                              (kW)
                   0.000000
POWER
             3 ->
                             (kW)
             4 -> 0.000000
POWER
                              (kW)
POWER
             5 ->
                     0.000000
                              (kWA
             6 ->
POWER
                     0.000000
                              (kW)
             7 -> 0.000000
POWER
                              (kW)
POWER
             8 -> 0.000000
                              (kW)
ABS. HUMIDITY 1 -> 0.740000E-02(kg(water)/kg(air))
ABS. HUMIDITY 2 -> 0.740000E-02(kg(water)/kg(air))
ABS. HUMIDITY 3 ->
                     0.740000E-02(kg(water)/kg(air))
Simulation Error Tolerances:
      RTOLX = 0.100000E-03
                            ATOLX= 0.100000E-04
      XTOL= 0.200000E-03 TTIME= 1.00000
SUPERBLOCK 1
2 FREEZE OPTION 0 SCAN OPTION 0
SUPERBLOCK 2
3 FREEZE OPTION 0 SCAN OPTION 0
______
The following are Boundary Variables in the simulation:
The following are the reported variables:
SUPERBLOCK 1 REPORTING INTERVAL 3600.00
TEMPERATURE
TEMPERATURE
             3
TEMPERATURE
              4
TEMPERATURE
              5
```

TEMPERATURE TEMPERATURE

TEMPERATURE

7

8

```
TEMPERATURE
             10
TEMPERATURE
             12
POWER
POWER
              7
POWER
POWER
              REPORTING INTERVAL 3600.00
SUPERBLOCK 2
TEMPERATURE
ABS. HUMIDITY 1
Selection ?
END
STOP
* File: ONEZONE.SIM (Simulation Work File)
ONE ZONE MODEL
  2
  2
  8
   50
  1
    1 2 2 3 4 5 6
  1
                             7
 10
   3
  0.100000E+01
               0.700000E+01
  2 51
   10
     0
  0.100000E+01 0.100000E+01 0.100000E+01 0.100000E+01
                                                     0.372100E+02
  0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00
                                                     0.000000E+00
  0.60000E+00
               0.90000E+00
                            0.000000E+00
                                        0.00000E+00
  3 51
  1 10 9 5
  0.100000E+01 0.200000E+01 0.100000E+01 0.200000E+01 0.372100E+02
  0.00000E+00 0.180000E+03 0.000000E+00 0.000000E+00 0.00000E+00
  0.60000E+00
               0.90000E+00
                            0.000000E+00
                                        0.000000E+00
  4 51
   10 9 5
  1
  0.100000E+01 0.300000E+01 0.100000E+01 0.300000E+01 0.244000E+02
  0.90000E+02 0.90000E+02 0.000000E+00 0.000000E+00 0.000000E+00
  0.600000E+00 0.900000E+00 0.000000E+00
                                        0.000000E+00
  5 51
   10 9 5
  1
  0.100000E+01 0.400000E+01 0.100000E+01 0.300000E+01 0.244000E+02
  0.270000E+03 0.900000E+02 0.000000E+00 0.000000E+00 0.00000E+0
  0.600000E+00
               0.90000E+00
                            0.00000E+00
                                        0.00000E+00
  6 51
    10 9 5
  1
  0.100000E+01 0.500000E+01 0.100000E+01 0.300000E+01 0.244000E+02
  0.180000E+03 0.900000E+02 0.000000E+00 0.000000E+00
                                                     0.00000E+00
  0.600000E+00 0.900000E+00 0.000000E+00 0.000000E+00
  7 51
  1 10 6 4
```

```
6 5
  0.100000E+01
               0.600000E+01
                                          0.400000E+01
                            0.200000E+01
                                                       0.184000E+02
  0.00000E+00
               0.900000E+02
                            0.200000E+00 0.20000E+01
                                                       0.600000E+00
               0.900000E+00
  0.60000E+00
                            0.000000E+00
                                          0.000000E+00
  8 51
  1 10
    4
  0.100000E+01
               0.700000E+01
                            0.200000E+01
                                          0.500000E+01
                                                       0.600000E+01
  0.00000E+00
               0.900000E+02 0.200000E+00 0.600000E+01
                                                       0.00000E+00
  0.00000E+00
               0.000000E+00
                             0.950000E+00
                                          0.850000E+00
  1
  9 53
              7
 12
    3 3 6
  0.120000E+02
               0.300000E+01
                            0.300000E+01
                                          0.600000E+01 0.700000E+01
  0.800000E+01
  1
  1
 10 52
           2 1 11 2 3 1 2 3
  1
     1
         1
     1
         1
            2
  0.100000E+01
               0.200000E+03
                             0.400000E+01
                                          0.148840E+03
                                                       0.100000E+01
  0.717600E-01
               0.454000E-01
                            0.200000E+00
                                          0.100000E+01
                                                       0.150000E+00
             0.300000E+00
  0.20000E-01
  0.00000E+00
               0.000000E+00
                             0.101300E+03
                                          0.00000E+00
                                                       0.200000E+02
               0.200000E+02
                                                       0.200000E+02
  0.200000E+02
                           0.200000E+02
                                          0.200000E+02
  0.200000E+02
                                                       0.200000E+02
               0.200000E+02
                            0.200000E+02
                                          0.200000E+02
                                                       0.00000E+00
  0.200000E+02
               0.100000E+01
                             0.100000E+01
                                          0.100000E+01
                                          0.000000E+00
                                                       0.000000E+00
  0.100000E+01
               0.00000E+00
                             0.00000E+00
  0.00000E+00
               0.000000E+00
                             0.00000E+00
                                          0.00000E+00
                                                       0.740000E-02
  0.740000E-02
               0.740000E-02
  0
      0.360000E+04
 13
      7 8 9 10
                  11 12 14 16 24 27 28
                                            29
  6
                                7
                                       7
                                            7
            3
               3
                      3 3
                             3
                                    7
  3
         3
                  3
                   7
                     8
                         10 12
                                  3
                                     6
                                        7
                                            8
  2
      3
        4
           5
                6
  2
      0.360000E+04
  5
     30
  3
      8
     1
  1
  0
      0
  0
2
      3 10
  2
      1
  3
      1 12
           5 0 0 8 3
 32
      2
 13
```

(2) Creation of Model Definition File

5

14 13 21

```
* Execution of SLIMCON
Simulation Work File to Model Definition File Converter
Version 2.1 (November 13, 1984)
Enter the simulation filename (Up to 8 characters) or carriage return to end.
ONEZONE
             2 superblocks in the simulation ..... MAXIMUM = 10 ( 20.0%)
             3 blocks in the simulation ...... MAX1MUM = 50 ( 6.0%)
             2 differential equations in the simulation MAXIMUM = 50 ( 4.0%)
           399 saved variables in the simulation ..... MAXIMUM =6000 ( 6.7%)
            8 units in a single block ...... MAXIMUM = 20 ( 40.0%)
             2 differential equations in one unit .... MAXIMUM = 10 ( 20.0%)
            13 inputs or outputs in a single unit .... MAXIMUM = 20 ( 65.0%)
            14 parameters in a single unit ...... MAXIMUM = 30 ( 46.7%)
             2 blocks in the largest superblock ..... MAXIMUM = 10 ( 20.0%)
             2 differential equations in one superblock MAXIMUM = 20 ( 10.0%)
            32 state variables in the simulation ..... MAXIMUM = 600 ( 5.3%)
            14 inputs or outputs in a single block .... MAXIMUM = 50 ( 28.0%)
           118 unit parameters in the simulation ..... MAXIMUM =1000 ( 11.8%)
             8 simultaneous equations in a single block MAXIMUM = 30 (26.7%)
             0 simultaneous equations in one superblock MAXIMUM = 20 ( 0.0%)
             0 time dependent boundary variables ..... MAXIMUM = 30 ( 0.0%)
             O boundary conditions in one superblock .. MAXIMUM = 20 ( 0.0%)
            13 reported variables in one superblock ... MAXIMUM = 30 ( 43.3%)
Model Definition File Complete
* File: ONEZONE.DAT ==> MODELDEF.DAT (Model Definition File)
ONE ZONE MODEL
 32 2
  2

      0.000000E+00
      0.000000E+00
      0.101300E+03
      0.000000E+00
      0.200000E+02

      0.200000E+02
      0.200000E+02
      0.200000E+02
      0.200000E+02
      0.200000E+02

  0.200000E+02 0.200000E+02 0.200000E+02 0.200000E+02
  0.200000E+02 0.100000E+01 0.100000E+01
                                            0.100000E+01 0.000000E+00
  0.100000E+01 0.000000E+00 0.000000E+00 0.000000E+00
                                                            0.000000E+00
  0.000000E+00 0.000000E+00
                               0.000000E+00 0.000000E+00 0.740000E-02
  0.740000E-02 0.740000E-02
     3 4 16 -1 -1 21 29
                                    4
         1
  8
      1
  0
  8
      0
          2
  1
     2
  3
          3 4 5 6
  1
      2
  9
 10
  50 51 51 51 51 51 51 51 53 52
            9
        4
  13
      4
                4 4 4 4 6 11
  5
     22 23 6 7 8 9 10 11 12 12 12 12
```

```
14
              21
  5
          13
  5
     14
          13
              21
  5
     14
          13
              21
  5
     14
          13
              21
  5
     14
         10
              20
  5
     14
          12
              20
     32
          3
              27
                       29
 16
                  28
      5
          30
               2
                    4
  1
                       15
                           31
                                24
                                    17
                                         18
                                             19
  2
      2
           2
               2
                    2
                        2
                            2
                                 2
                                     0
                                          4
 14
     24
  8
      0
  7
      0
      0
  6
  9
      0
      0
 11
 10
     26
 12
     25
  5
     30
          22
              23
  0
  0
  8
      7
               9
                  11
                       10
                           12
                                14
  0
  5
     30
  0
      ٥
           0
               0
                    0
                        0
                            0
                                 0
                                     0
                                          2
  0
  0
  0
  0
  0
  0
  0
  0
  1
      2
  5
     30
  1
      1
         58 115 172 229 286 343 400 400
  1
      3
              31
                  45 59
                          73
                              87 101 107
118 399
  0.100000E+01
                  0.700000E+01
                                   0.100000E+01
                                                    0.100000E+01
                                                                    0.100000E+01
                  0.372100E+02
  0.100000E+01
                                   0.00000E+00
                                                    0.00000E+00
                                                                    0.00000E+00
  0.00000E+00
                  0.00000E+00
                                   0.600000E+00
                                                    0.900000E+00
                                                                    0.000000E+00
  0.00000E+00
                  0.100000E+01
                                   0.200000E+01
                                                    0.100000E+01
                                                                    0.200000E+01
  0.372100E+02
                  0.00000E+00
                                   0.180000E+03
                                                    0.00000E+00
                                                                    0 000000E+00
  0.000000E+00
                  0.600000E+00
                                   0.900000E+00
                                                    0.000000E+00
                                                                    0.00000E+00
  0.100000E+01
                  0.300000E+01
                                   0.100000E+01
                                                    0.300000E+01
                                                                    0.244000E+02
  0.900000E+02
                  0.90000E+02
                                   0.00000E+00
                                                    0.00000E+00
                                                                    0.00000E+00
  0.600000E+00
                  0.900000E+00
                                   0.00000E+00
                                                    0.00000E+00
                                                                    0.100000E+01
  0.400000E+01
                  0.100000E+01
                                   0.300000E+01
                                                    0.244000E+02
                                                                    0 270000E+03
  0.900000E+02
                  0.00000E+00
                                   0.00000E+00
                                                    0.00000E+00
                                                                    0.600000E+00
  0.900000E+00
                  0.00000E+00
                                   0.00000E+00
                                                    0.100000E+01
                                                                    0.500000E+01
  0.100000E+01
                  0.30000E+01
                                   0.244000E+02
                                                    0.180000E+03
                                                                    0.900000E+02
  0.00000E+00
                                   0.00000E+00
                  0.00000E+00
                                                    0.600000E+00
                                                                    0.90000E+00
  0.000000E+00
                  0.00000E+00
                                   0.100000E+01
                                                    0.600000E+01
                                                                    0.200000E+01
. 0.400000E+01
                  0.184000E+02
                                   0.00000E+00
                                                    0.900000E+02
                                                                    0.20000E+00
  0.200000E+01
                                                   0.90000E+00
                  0.600000E+00
                                   0.600000E+00
                                                                    0 000000E+00
  0.00000E+00
                  0.100000E+01
                                   0.700000E+01
                                                   0.200000E+01
                                                                    0.500000E+01
  0.600000E+01
                  0.00000E+00
                                   0.900000E+02
                                                   0.200000E+00
                                                                    0.600000E+01
  0.000000E+00
                  0.00000E+00
                                   0.0000000+00
                                                   0.950000E+00
                                                                    0.850000E+00
  0.120000E+02
                  0.300000E+01
                                   0.300000E+01
                                                   0.600000E+01
                                                                    0 700000E+01
```

```
0.400000E+01
                                                    0.148840E+03
0.800000E+01 0.100000E+01
                          0.200000E+03
0.100000E+01 0.717600E-01 0.454000E-01 0.200000E+00 0.100000E+01
0.150000E+00 0.200000E-01 0.300000E+00
0
13
  2
             0.360000E+04
0.360000E+04
  7 8 9 10 11 12 14 16 24 27
                                     28
                                         29
6
3
    3
       3 3
             3
                3
                    3
                       3
                           3
                              7 7
                                      7
                                         7
                   8 10
2
       4 5
                7
                          12
                              3
                                     7
                                          8
    3
5
   30
3
    8
0.100000E-03 0.100000E-04
                          0.200000E-03 0.100000E+01
0
   0
0
    0
```

No file for boundary variables is created in this example. (4) Creation of Conduction Transfer Function File * Composition of constructs CONSTRUCT #1 (Ceiling) (Outside) Layer 1 Acoustic tile (47): [material I.D. # in THERM.DAT file) 2 Ceiling air space (46) Concrete, 4-in. (36) 3 Vinyle tile, 3/32-in. (48)* (Inside) * Data for vinyle tile should be added to THERM.DAT file. Vinyle tile L=0.002 m, k=0.27 W/mK, = 1552.2 kg/m3, Cp=1.004 KJ/kg-K CONSTRUCT #2 (Floor) (Outside) Vinyle tile, 3/32-in. Layer 1 (48)* ______ 2 Concrete, 4-in. (36) -----3 Ceiling air space (46) 4 (47) Acoustic tile (Inside) CONSTRUCT #3 (Interior Walls) (Outside) Layer 1 Plaster, 3/4-in. (43) -----2 (8) Air space ------(43) Plaster, 3/4-in. (Inside)

(3) Creation of Boundary Variable File

124

CONSTRUCT #4 (Exposed Wall)

```
(Outside)
             Face Brick, 4-in.
Layer 1
                                    (2)
    2
            Fiberglass insulation, R-11 (10)
                                      (8)
    3
            Plaster, 3/4-in.
                                      (43)
                  (Inside)
CONSTRUCT #5 (Exposed Glass Window)
                  (Outside)
        -----
            Glass, 3/32-in.
Layer 1
                                      (49) ×
    2
            Air space
                                      (8)
        -----
            Glass, 3/32-in.
                                     (49)*
        -----
                  (Inside)
   Data for glass: L=k=Cp=0 R=0.26 m2-K/W
* Execution of CTFGEN
         Enter your choice:
*********
A => Add thermal property data to the construction
    materials database (THERM.DAT)
B =) Print the contents of the data file THERM.DAT
    to Logical Unit 6
C =) Create a CTF data file
D => Change time interval in an existing CTF data file
E => END
**********
  YOU ARE NOW ADDING THERMAL PROPERTY DATA *
  INTO THE EXISTING FILE (THERM.DAT) *
  PLEASE ENTER YOUR DATA WITH CARE.
  METRIC UNITS MUST BE USED.
 *************
 Enter the name of the construction material
 (up to 60 characters)
Vinyle tile
  Thickness (meters) =
0.002
   Conductivity (W/m.C) =
   Density (kg/m**3) =
1552.2
   Specific heat (kJ/kg.C) =
```

```
1.004
   Thermal resistance (m**2.C/W) =
 IDATA = 48 LENGTH = 2.0E - 03 COND = 0.27
 DENS=1552.2 SPHT=1.004 RVAL=0.0
Do you want to continue? (N)
 Enter the name of the construction material
  (up to 60 characters)
Glass
   Thickness (meters) =
   Conductivity (W/m.C) =
   Density (kq/m**3) =
   Specific heat (kJ/kg.C) =
   Thermal resistance (m**2.C/W) =
0 2.6
 IDATA=49 LENGTH=0.0 COND=0.0
 DENS=0.0 SPHT=0.0 RVAL=0.26
Do you want to continue? (N)
-- END OF ADDITION ---
                Enter your choice:
**********
A => Add thermal property data to the construction
     materials database (THERM.DAT)
B => Print the contents of the data file THERM.DAT
     to Logical Unit 6
C => Create a CTF data file
D => Change time interval in an existing CTF data file
E => END
 Enter the name of the CTF Definition File,
 or carriage return for default name: CTFINPUT.DAT
 Enter the name of the CTF Output File,
 or carriage return for default name: CTFDATA.DAT
What kind of output do you want?
       for a very simple output,
 0 ==>
 1 ==>
       for a less simple output,
         for detailed output or
 2 == >
 3 == >
         for root search
What is the time interval for CTF calculation in s?
THIS CONSTRUCT ID NUMBER (ISTR) IS 1
How many layers in this construct? (max. = 10)
Enter the layer ID numbers with most outer layer first
47,46,36,48
ISTR: 1
NCTF: 4 NORD: 2
UVAL: 0.969606
CTFX: 2.99057, -3.713, 1.10035, -6.3286E-02, -3 55439E-05
CTFY: 9.44398E-03, 0.163193, 0.132975, 8.93878E-03, 5 09487E-05
CTFZ: 9.21826, -13.4813, 4.86344, -0.28575, -8 8593E-05
```

```
CTFQ: 0.735784, -6.02473E-02
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 2
How many layers in this construct? (max. = 10 )
Enter the layer ID numbers with most outer layer first
48,36,46,47
ISTR: 2
NCTF: 4 NORD: 2
UVAL: 0.969606
CTFX: 9.21826, -13.4813, 4.86344, -0.28575, -8.8593E-05
CTFY: 9.44398E-03, 0.163193, 0.132975, 8.93878E-03, 5.09487E-05
CTFZ: 2.99057, -3.713, 1.10035, -6.3286E-02, -3.55439E-05
CTFQ: 0.735784, -6.02473E-02
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 3
How many layers in this construct? (max. = 10 )
 Enter the layer ID numbers with most outer layer first
43,8,43
1STR: 3
NCTF: 1 NORD: 1
 UVAL: 4.71099
 CTFX: 11.6962, -6.9852
 CTFY: 3.82101, 0.88995
 CTFZ: 11.6962, -6.9852
 CTFQ: 6.21576E-06
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 4
How many layers in this construct? (max. = 10 )
 Enter the layer ID numbers with most outer layer first
2,10,8,43
 ISTR: 4
 NCTF: 3 NORD: 2
 UVAL: 0.691656
 CTFX: 31.2398, -37.7555, 6.8351, -3.14559E-02
 CTFY: 3.03452E-02, 0.199088, 5.80254E-02, 5.05029E-04
 CTFZ: 8.55491, -12.8833, 4.6573, -4.09825E-02
 CTFQ: 0.588904, -5.24332E-03
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 5
How many layers in this construct? (max. = 10 )
Enter the layer ID numbers with most outer layer first
49,8,49
 LAYER
                                 CP
                                          D
                                                   R
                L
                         K
                                                           RC
                       0.000
                                0.000
 Glass
              0.000
                                         0.000
                                                  0.260
                                                           0.000
                       0.000 0.000
 Air Space
             0.000
                                        0.000
                                                  0.160
                                                           0.000
 Glass
              0.000
                       0.000
                                0.000
                                         0.000
                                                  0.260
                                                           0.000
 SUMRC =
          0.00000 CND = 1.47059 TINC =
 NUMBER OF ROOTS = 7; SEARCH INCREMENT =0.020026
```

```
2 0.072309779
       0.111355003
   4
       0.120292539
   5
      0.136468904
        0.169175402
       0.216991657
 NUMBER OF RESPONSE FACTORS = 3; ORDER = 2
   N
           0 0
                      0 1
                                 0 2
                                            O 3
                                                        0 4
                                                                   0 5
                                                              31.239817
        31.239817
                  31.239817 31.239817
                                        31.239817 31.239817
        -19.358236 -37.473015 -37.755497 -37.755942 -37.756010 -37.756012
   1
                                                               6.835722
                                         6.835637 6.835720
   2.
        -4.728849
                    6.496254
                               6.835099
                    0.027286
   3
        -2.714793
                               -0.031456
                                           0.000000
                                                      0.000000
                                                                 0.000000
                                                      0.030345
        0.030345
                   0.030345
                               0.030345
                                          0.030345
                                                                0.030345
                                           0.199087

    0.199362
    0.177003

    0.059828
    0.058025
    0.058023
    0.058022

    0.000000
    0.000000
    0.000000

                                                      0.199087
                                                                0 199087
   1
        0.216958
                    0.199362
                                0.199088
   2
        0.185634
                                                                0.058022
        0.108688 0.001046
                                                                0.000000
   0
        8.554926
                   8.554926 8.554926 8.554926 8.554926 8.554926
        -7.845255 -12.805930 -12.883287 -12.883409 -12.883428 -12.883428
                                                    4.657519
        -0.007653
                    4.541511
                               4.657307
                                          4.657491
   2
                                                                4.657520
        -0.004354
                    0.000083
                               -0.040983
                                          0.000000
                                                     0.000000
                                                                0.000000
          0.588904 -0.005243 0.000000 0.000000 0.000000
** SEVERE RESPONSE FACTORS NOT COMPUTED (RESPNS)
ISTR: 5
NCTF: 0 NORD: 0
UVAL: 1.47059
CTFX: 1.47059
CTFY: 1.47059
CTFZ: 1.47059
CTFQ:
Do you want to continue? (N)
STOP ----- END OF CTF RUN -----
* File: THERM.DAT ( Thermal Property Data Bank for Building Materials)
1 Stucco/asbestos cement/wood siding plaster, 25.4-mm (1-in.)
0.0254 0.692 1858. 0.233 0.036 47.2 A1
 2 Facebrick (dense concrete), 101.6-mm (4-in.)
0.1016 1.298 2082. 0.256 0.078 211.4 A2
 3 Steel siding (aluminum or other lightweight cladding)
0.0015 44.99 7689. 0.116 0.000 11.7 A3
 4 Slag, membrane, 12.7-mm (0.5-in.)
0.0127 1.143 881. 0.465 0.011 11.2 A4
 5 Felt, 9.5-mm (0.375-in.)
0.0095 0.190 1121. 0.465 0.050 10.6 A5
 6 Finish
0.0127 0.415 1249. 0.302 0.031 15.9 A6
 7 Facebrick, 101.6-mm (4-in.)
0.1016 1.332 2002. 0.256 0.076 203.1 A7
8 Air Space Resistance
0.0000 0.000 0.0.000 0.160 0. B1
```

N

1

ROOT

0.024607256

```
9 Insulation, 25.4-mm (1-in.)
0.0254 0.043 32.0.233 0.585
                                 0.8 B2
10 Insulation, 50.8-mm (2-in.)
0.0508 0.043 32. 0.233 1.176
                                 1.6 B3
11 Insulation, 76.2-mm (3-in.)
0.0762 0.043 32. 0.233 1.766
                                 2.4 B4
12 Insulation, 25.4-mm (1-in.)
0.0254 0.043 91. 0.233 0.586
                                 2.3 B5
13 Insulation, 50.8-mm (2-in.)
0.0508 0.043 91. 0.233 1.176
                                 4.6 B6
14 Wood, 25.4-mm (1-in.)
0.0254 0.116 592. 0.699 0.209
                                15.0 B7
15 Wood, 63.5-mm (2.5-in.)
0.0635 0.116 592. 0.699 0.525
                                37.6 B8
16 Wood, 101.6-mm (4-in.)
0.1016 0.116 592. 0.699 0.838 60.0 B9
17 Wood, 50.8-mm (2-in.)
0.0508 0.116 592. 0.699 0.421 30.2 B10
18 Wood, 76.2-mm (3-in.)
0.0762 0.116 592. 0.699 0.631 45.2 B11
19 Insulation, 76.2-mm (3-in.)
0.0762 0.043 91. 0.233 1.761
20 Insulation, 101.6-mm (4-in.)
0.1016 0.043 91. 0.233 2.346
                                9.3 B13
21 Insulation, 127.0-mm (5-in.)
0.1270 0.043 91. 0.233 2.934 11.6 B14
22 Insulation, 152.4-mm (6-in.)
0.1524 0.043 91. 0.233 3.520 13.9 B15
23 Clay tile, 101.6-mm (4-in.)
0.1016 0.571 1121. 0.233 0.178 113.7 C1
24 Concrete block, l.w., 101.6-mm (4-in.)
0.1016 0.381 608. 0.233 0.266 62.0 C2
25 Concrete block, h.w., 101.6-mm (4-in.)
0.1016 0.813 977. 0.233 0.125 99.1 C3
26 Common brick, 101.6-mm (4-in.)
0.1016 0.727 1922. 0.233 0.139 195.3 C4
27 Concrete, 1.w., 101.6-mm (4-in.)
0.1016 1.730 2242. 0.233 0.059 227.5 C5
28 Clay tile, 203.2-mm (8-in.)
0.2032 0.571 1121. 0.233 0.356 227.9 C6
29 Concrete block, I.w., 203.2-mm (8-in.)
0.2032 0.571 608. 0.233 0.356 124.0 C7
30 Concrete block, h.w., 203.2-mm (8-in.)
0.2032 1.038 977. 0.233 0.195 198.7 C8
31 Common brick, 203.2-mm (8-in.)
0.2032 0.727 1922. 0.233 0.280 390.6 C9
32 Concrete, h.w., 203.2-mm (8-in.)
0.2032 1.730 2242. 0.233 0.117 455.9 C10
33 Concrete, h.w., 304.8-mm (12-in.)
0.3048 1.730 2242. 0.233 0.176 683.5 C11
34 Concrete, h.w., 50.8-mm (2-in.)
0.0508 1.730 2242. 0.233 0.029 114.2 C12
35 Concrete, h.w., 152.4-mm (6-in.)
0.1524 1.730 2242. 0.233 0.088 341.7 C13
36 Concrete, 1.w., 101.6-mm (4-in.)
0.1016 0.173 640. 0.233 0.586 64.9 C14
37 Concrete, 1.w., 152.4-mm (6-in.)
0.1524 0.173 640. 0.233 0.088 97.6 C15
38 Concrete, I.w., 203.2-mm (8-in.)
0.2032 0.173 640. 0.233 1.174 130.3 C16
```

```
39 Concrete block (filled insulation), 1.w., 203.2-mm (8-in.)
0.2032 0.138 288. 0.233 1.584 58.6 C17
40 Concrete block (filled insulation), 1.w., 203.2-mm (8-in.)
0.2032 0.588 849. 0.233 0.348 172.8 C18
41 Concrete block (filled insulation), 1.w., 304.8-mm (12-in.)
0.3048 0.138 304. 0.233 2.376 92.8 C19
42 Concrete block (filled insulation), 1.w, 304.8-mm (12-in.)
0.3048 0.675 897. 0.233 0.456 273.4 C20
43 Plaster/gypsum/similar finishing layer, 19.0-mm (0.75-in.)
0.0190 0.727 1601. 0.233 0.026 30.5 E1
44 Slag or stone, 12.7-mm (0.5-in.)
0.0127 1.436 881. 0.465 0.009 11.2 E2
45 Felt & membrane, 9.5-mm (0.375-in.)
0.0095 0.190 1121. 0.465 0.050 10.7 E3
46 Ceiling air space
0.0000 0.000 0. 0.000 0.176 0.0 E4
47 Acoustic tile
0.0159 0.061 480. 0.233 0.315 9.2 E5
48 Vinvle tile
0.0020 0.270 1552. 1.004 0.000 3.1 XXX
49 Glass
0.0000 0.000 0.0000 0.260 0.0 XXX
* File: CTFDATA.DAT (Conduction Transfer Function File)
______
   900.000
  1 4 2 0.969606
                           2.99057
             -3.71300
  0.944398E-02 0.163193
9.21826 -13.4813
0.735784 -0.602473E-01
  2 4 2 0.969606
                            4.86344 -0.285750 -0.885930E-04
   9.21826 -13.4813
  0.893878E-02 0 509487E-04
                           0.132975
                            1.10035
                                       -0.632860E-01 -0.355439E-04
  11.6962
              -6.98520
  3.82101 0.889950
11.6962 -6.98520
  0.621576E-05
   4 3 2 0.691656
   31.2398 -37.7555
                            6.83510 -0.314559E-01
  0.303452E-01 0.199088
                           0.580254E-01 0.505029E-03
  8.55491 -12.8833
                            4.65730 -0.409825E-01
              -0.524332E-02
  0.588904
  5 0 1
             1.47059
  1.47059
   1.47059
   1.47059
  0.000000
* File: CTFINPUT.DAT ( CTF Input Data File)
```

900.000 4 47 46 36 48 4 48 36 46 47 3 43 8 43 4 2 10 8 43 3 49 8 49

(5) Creation of Weather Data File -----* Execution of CRWDTA -----*********** CREATING A WEATHER DATA FILE × *********** Enter LATITUDE, LONGITUDE, and TIME ZONE: 38.85 77.03 Enter one of the following: 1 - to process the weather data in file WTPOUT.DAT (previously read from weather tape by program RDTAPE) 2 - to generate clear sky design data 3 - to generate cloudy sky design data Enter output file name (up to 12 characters) or carriage return for default name: WEATHER.DAT Enter initial day and month, and number of days for which weather calculations will be made: 7,7,2 Enter pressure (kPa), wind speed (m/s), and relative humidity (from 0.0 to 1.0): 101.3,0,0.8 Enter minimum and maximum temperatures: 20,30 Enter visibility (km); if value unknown use 0: Enter geographic correction factor [ASHRAE Fund. 1981, p.27.8]; if value unknown use 1: 1 STOP ---- END OF CREATING WEATHER FILE -----* File: WEATHER.DAT 77.03 5.00 2 7 7 38.85 0 0000 7 0.0 21.8000 0.0133 101.3000 0.0000 7 0.0000 0.0128 101.3000 0.0000 0.0000 0.0000 7 7 1.0 21.3000 7 2.0 20.8000 0.0124 101.3000 0.0000 0.0000 0 0000 7 0 0000 3.0 0.0000 0.0000 7 7 20.4000 0.0121 101.3000

0.0000 0.0000 0 0000 7 7 4.0 20.1000 0.0119 101.3000 0 0000 7 7 5.0 20.0000 0.0118 101.3000 0.0000 0.0000 7 0.0000 194.7809 26 8798 7 6.0 20.2000 0.0120 101.3000 20.7000 0.0000 582.1411 80 3355 25 7 7 7.0 0.0124 101.3000 0.0131 101.3000 0.0000 741.2583 102 2937 15 7 7 8.0 21.6000 0.0142 101.3000 0.0000 819.7222 113 1217 64 7 7 9.0 22.9000 79 7 10.0 0.0000 862 7646 119 0615 0.0156 101.3000 7 24.4000 26.1000 0.0000 886.6650 122 3598 7 7 11.0 0.0173 101.3000 0.0000 898.1992 123 9515 97 7 7 12.0 0.0190 101.3000 27.7000 0.0000 900 1130 124 2156 98 7 7 13.0 0.0205 101.3000 28.9000

0.0215 101.3000

0.0218 101.3000

7

7

7 14.0

7 15.0

29.7000

30.0000

0.0000 892 8298 123 2105

0.0000 874.6892 120 7071

9 4

8.5

	7	7	16.0	29.7000	0.0215	101.3000	0.0000	840.9761	116.0547	7 1
	7	7	17.0	29.0000	0.0206	101.3000	0.0000	780.5696	107.7136	53
	7	7	18.0	27.9000	0.0193	101.3000	0.0000	664.8452	91.7486	34
	7	7	19.0	26.6000	0.0178	101.3000	0.0000	403.6780	55.7076	13
	7	7	20.0	25.3000	0.0165	101.3000	0.0000	19.7814	2.7298	
	7	7	21.0	24.2000	0.0154	101.3000	0.0000	0.0000	0.0000	
	7	7	22.0	23.2000	0.0145	101.3000	0.0000	0.0000	0.0000	
	7	7	23.0	22.4000	0.0138	101.3000	0.0000	0.0000	0.0000	
	7	7	24.0	21.8000	0.0133	101.3000	0.0000	0.0000	0.0000	
	7	3	1.0	21.3000	0.0128	101.3000	0.0000	0.0000	0.0000	
	7	8	2.0	20.8000	0.0124	101.3000	0.0000	0.0000	0.0000	
	7	8	3.0	20.4000	0.0121	101.3000	0.0000	0.0000	0.0000	
	7	8	4.0	20.1000	0.0119	101.3000	0.0000	0.0000	0.0000	
	7	8	5.0	20.0000	0.0118	101.3000	0.0000	0.0000	0.0000	
	7	8	6.0	20.2000	0.0120	101.3000	0.0000	189.4358	26.1422	đ
	7	8	7.0	20.7000	0.0124	101.3000	0.0000	580.1848	80.0658	25
	7	B	3.0	21.6000	0.0131	101.3000	0.0000	740.4182	102.1777	45
	7	8	9.0	22.9000	0.0142	101.3000	0.0000	819.2832	113.0611	6 9
	7	8	10.0	24.4000	0.0156	101.3000	0.0000	842.5037	119.0255	79
	7	8	11.0	26.1000	0.0173	101.3000	0.0000	886.4949	122.3363	90
	7	B	12.0	27.7000	0.0190	101.3000	0.0000	898.0789	123.9349	97
	7	8	13.0	28.9000	0.0205	101.3000	0.0000	900.0195	124.2027	98
	7	8	14.0	29.7000	0.0215	101.3000	0.0000	892.7478	123.1792	94
	?	8	15.0	30.0000	0.0218	101.3000	0.0000	874.6021	120.6951	8.5
	7	8	16.0	29.7000	0.0215	101.3000	0.0000	840.8579	116.0384	71
	7	8	17.0	29.0000	0.0206	101.3000	0.0000	780.3618	107.6899	53
	7	8	18.0	27.9000	0.0193	101.3000	0.0000	664.3657	91.6825	33
	7	8	19.0	26.6000	0.0178	101.3000	0.0000	402.1970	55.5032	13
	7	3	20.0	25.3000	0.0165	101.3000	0.0000	19.1445	2.6419	
	7	8	21.0	24.2000	0.0154	101.3000	0.0000	0.0000	0.0000	
	7	8	22.0	23.2000	0.0145	101.3000	0.0006	0.0000	0.0000	
	7	8	23.0	22.4000	0.0138	101.3000	0.0000	0.0000	0.0000	
	7	8	29.0	21.8000	0.0133	101.3000	0.0000	0.0000	0.0000	
400	TOTAL						-			

NOTE: Data in columns from 1 to 80 are only shown here.

```
B. Simulation
(1) Allocation of Output Files
   The output files of the MODSIM program are automatically allocated.
    Default file names are MODSUM.DAT, MODOUT.DAT, and INITOUT.DAT.
(2) Execution of MODSIM for Initialization
    *************
              MODSIM
                         Version 5.0
    ************
  Enter MINIMUM TIME STEP, MAXIMUM TIME STEP, and SIMULATION STOPPING TIME:
1,1000,86400
   Is the Building Shell Model used? (N)
  Will the Initialization File be called? (N)
 Simulate Building Shell ONLY? (N)
   Only the superblock containing the building model will be called.
  What is the INDEX NUMBER of the SUPERBLOCK for the Building Shell?
1
  ISSHEL =1
  Enter the time of day (in hours after midnight)
  at which the simulation is to begin
  Use default file names for all files? (Y/N) (Y)
   Do you want Diagnostic Information to be written (N)?
  Would you like to monitor the Simulation on Screen? (N)
  Enter the INDEX NUMBER of the SUPERBLOCK to monitor
  or zero (0) to monitor all superblocks.
  --During the simulation, up to five State Variables can be viewed--
  Enter the NUMBER of STATE VARIABLES to be viewed.
5
  1 = PRES
  2 = FLOW
  3 = TEMP
  4 = CTRL
  5 = RVPS
  6 = ENRC
  7 = POWR
  8 = AHUM
  Enter the CATEGORY NUMBER (above) and INDEX NUMBER
  for each of the 5 variables to be viewed.
3,1
3,2
3,3
3,4
3,10
```

----- SIMULATION BEGINS -----

```
-- FIRST WEATHER DATA SET HAS BEEN READ
SB 1: TIME =1.0 NTIME =1 TSTEP =1.0 PSTEP=1000 0
20.0000 20.1286 20.1634 20.0601
SB 2: TIME =1.0 NTIME =2 TSTEP =1.0 PSTEP=5.37483
20.0007 20.1206 20.1634 20.0601
SB 1: TIME =900.0 NYIME =3 TSTEP =899.0 PSTEP=1000.0
  20.0007 20.1753 20.3496 20.2146
                                                 20.3603
SB 1: TIME =1800.0 NTIME =4 TSTEP =900.0 PSTEP=1000.0
  20.0007 20.2086 20.3931 20.2858
                                                20.4106
SB 1: TIME =2700.0 NTIME =5 TSTEP =900.0 PSTEP=1000.0
 20.0007 20.2298 20.4062
                                    20.3219
                                                 20.4387
SB 1: TIME = 3600.0 NYIME = 6 TSTEP = 900.0 PSTEP=1000.0
  20.0007 20.2432
                         20.4121 20.3429
                                                 20.4557
SB 1: TIME =4500.0 NTIME =7 TSTEP =900.0 PSTEP=1000.0
  20.0007 20.2516 20.4156 20.3566
                                                20.4666
SB 1: TIME =5400.0 NTIME =8 TSTEP =900.0 PSTEP=1000.0
 20.0007 29.2570
                         20.4178
                                    20.3662
                                                20.4736
SB 1: TIME =6300.0 NTIME =9 TSTEP =900.0 PSTEP=1000.0
  20.0007 20.2604
                         20.4193 20.3733
                                                 20.4780
SB 1: TIME =7200.0 NYIME =10 TSTEP =900.0 PSTEP=1000.0
  20.0007 20.2625 20.4201 20.3784
                                                 20.4806
SB 1: TIME =8100.0 NTIME =11 TSTEP =900.0 PSTEP=1000.0
 20.0007 20.2637 20.4204 20.3822
                                                 20.4819
SB 1: TIME = 9000.0 NYIME = 12 TSTEP = 900.0 PSTEP=1000.0
  20.0007 20.2662 20.4202 20.3848 20.4821
 ---- ( OUTPUTS FROM TIME=9900 TO 80100 ARE DELETED )----
 SE 1: TIME =81000.0 NTIME =92 TSTEP =900.0 PSTEF=1000.0
 20.0007 20.4094 20.6504 20.6317 20.7577
SB 1: TIME =81900.0 NEIME =93 TSTEP =900.0 PSTEP=1000.0
  20.0007 20.3949 20.6269 20.6050 20.7303
SB 1: TIME =82800.0 NTIME =94 TSYEP =900.0 PSYEP=1000.0
  20.0007 20.3820 20.6061 20.5819
                                                20.7060
SB 1: TIME =83700.0 NTIME =95 TSTEP =900.0 PSTEP=1000.0
 20.0007 20.3706 20.5872 20.5618 20.6843
SB 1: TIME =84600.0 NTIME =96 TSTEP =900.0 PSTEP=1000.0
  20.0007 20.3604 20.5713 20.5441
                                                 20.6648
SB 1: TIME =85500.0 HTIME =97 TSTEP =900.0 PSTEP=1000.0
 20.0007 20.3512 20.5566 20.5285
                                                20.6472
SB 1: TIME =86400.0 HTIME =98 TSTEP =900.0 PSTEP=1000.0
 20.0007 20.3429 20.5433 20.5147 20.6313
 ---- INITIALIZATION FILE HAS BEEN WRITTEN ----
STOP -----END OF SIMULATION -----
* File: MODSUM.DAT (for the initialization run)
```

**** PROGRAM MODSIM *****
a MODular SIMulation program

ONE ZONE MODEL

2 SUPERBLOCKS 3 BLOCKS 10 UNITS

32 STATE VARIABLES:

3 PRES 1 FLOW 12 TEMP 5 CTRL 8 POWR 3 AHUM

INITIAL STATE VECTOR:

PRES:

0.000000 0.000000 101.300

FLOW:

0.000000

TEMP:

 20.0000
 20.0000
 20.0000
 20.0000

 20.0000
 20.0000
 20.0000
 20.0000

20.0000 20.0000

CTRL:

1.00000 1.00000 1.00000 0.000000 1.00000

POWR:

AHUM:

7.399999E-03 7.399999E-03 7.399999E-03

O TIME DEPENDENT BOUNDARY VARIABLES:

ERROR TOLERANCES: RTOLX, ATOLX, XTOL, TTIME:

1.00000E-04 1.00000E-05 2.00000E-04 1.0000

**** SUPERBLOCK 1 ****

SUPERBLOCK SIMULTANEOUS EQUATION UNFREEZING OPTION, IFZOPT = 0 SUPERBLOCK INPUT SCAN OPTION, INSOPT = 0

13 REPORTED VARIABLES:

TEMP 2 TEMP 3 TEMP 4 TEMP 5 TEMP 6 TEMP 7 TEMP 8 TEMP 10
TEMP 12 POWR 3 POWR 6 POWR 7 POWR 8

O SIMULTANEOUS EQUATIONS; VARIABLES:

**** BLOCK 1 ****

8 SIMULTANEOUS EQUATIONS; VARIABLES:
TEMP 4 TEMP 3 TEMP 2 TEMP 5 TEMP 7 TEMP 6 TEMP 8 TEMP10

UNIT 1 TYPE 50

13 INPUTS:

TEMP 1 POWR 1 POWR 2 TEMP 2 TEMP 3 TEMP 4 TEMP 5 TEMP 6
TEMP 7 TEMP 8 TEMP 8 TEMP 8 TEMP 8

2 OUTPUTS:

TEMP10 POWR 3

PARAMETERS:

1.0000 7.0000

UNIT 2 TYPE 51

4 INPUTS:

TEMP 1 TEMP10 TEMP 9 CTRL 5

2 OUTPUTS:

TEMP 4 NULL 0

PARAMETERS:

 1.0000
 1.0000
 1.0000
 37.210

 0.00000
 0.00000
 0.00000
 0.00000

 0.60000
 0.70000
 0.00000
 0.00000

UNIT 3 TYPE 51

4 INPUTS:

TEMP 1 TEMP 10 TEMP 9 CTRL 5

2 OUTPUTS:

TEMP 3 NULL 0

PARAMETERS:

 1.0000
 2.0000
 1.0000
 2.0000
 37.210

 0.00000
 180.00
 0.00000
 0.00000
 0.00000

 0.60000
 0.90000
 0.00000
 0.00000

UNIT 4 TYPE 51

4 INPUTS:

TEMP 1 TEMP 10 TEMP 9 CTRL 5

2 OUTPUTS:

TEMP 2 NULL 0

PARAMETERS:

 1.0000
 3.0000
 1.0000
 3.0000
 24.400

 90.000
 90.000
 0.00000
 0.00000
 0.00000

 0.60000
 0.90000
 0.00000
 0.00000

UNIT 5 TYPE 51

4 INPUTS:

TEMP 1 TEMP 10 TEMP 9 CTRL 5

2 OUTPUTS:

TEMP 5 NULL 0

PARAMETERS:

 1.0000
 4.0000
 1.0000
 3.0009
 24.400

 270.00
 90.000
 0.00000
 0.00000
 0.00000

 0.60000
 0.90000
 0.00000
 0.00000

UNIT 6 TYPE 51

4 INPUTS:

TEMP 1 TEMP 10 TEMP 9 CTRL 5

2 OUTPUTS:

TEMP 7 NULL 0

PARAMETERS:

 1.0000
 5.0000
 1.0000
 3.0000
 24.400

 180.00
 90.000
 0.00000
 0.00000
 0.00000

 0.60000
 0.90000
 0.00000
 0.00000

UNIT 7 TYPE 51

4 INPUTS:

TEMP 1 TEMP 10 TEMP 6 CTRL 4

2 OUTPUTS:

TEMP 6 POWR 5

PARAMETERS:

 1.0000
 6.0000
 2.0000
 4.0000
 18.400

 0.00000
 90.000
 0.20000
 2.0000
 0.60000

 0.60000
 0.90000
 0.00000
 0.00000

UNIT 8 TYPE 51

4 INPUTS:

TEMP 1 TEMP 10 TEMP 8 CTRL 4

2 OUTPUTS:

TEMP 8 POWR 4

PARAMETERS:

 1.0000
 7.0000
 2.0000
 5.0000
 6.0000

 0.00000
 90.000
 0.20000
 6.0000
 0.00000

 0.00000
 0.00000
 0.95000
 0.85000

***** BLOCK 2 ****

O SIMULTANEOUS EQUATIONS; VARIABLES:

UNIT 9 TYPE 53

6 INPUTS:

TEMP12 AHUM 3 PRES 3 POWR 6 POWR 7 POWR 8

0 OUTPUTS:

PARAMETERS:

12.000 3.0000 3.0000 6.0000 7.0000 8.0000

***** SUPERBLOCK 2 ****

SUPERBLOCK SIMULTANEOUS EQUATION UNFREEZING OPTION, IFZOPT = 0
SUPERBLOCK INPUT SCAN OPTION, INSOPT = 0

2 REPORTED VARIABLES:

TEMP 1 AHUM 1

O SIMULTANEOUS EQUATIONS; VARIABLES:

**** BLOCK 3 ****

2 SIMULTANEOUS EQUATIONS; VARIABLES:

TEMP 1 AHUM 1

UNIT 10 TYPE 52

11 INPUTS:

PRES 1 TEMP 1 AHUM 1 PRES 2 FLOW 1 TEMP 11 AHUM 2 POWR 3

CTRL 1 CTRL 2 CTRL 3

4 OUTPUTS:

TEMP 1 AHUM 1 POWR 1 POWR 2

PARAMETERS:

1.0000 200.00 4.0000 148.84 1.0000 7.17600E-02 4.54000E-02 0.20000 1.0000 0.15000

2.00000E-02 0.30900

TMIN = 1.000 TMAX = 1000.000 TSTOP = 86400.000

BUILDING SHELL MODEL IN SUPERBLOCK 1: CONSTANT TIME STEP TSHELL = 900.00

WEATHER DATA: LATITUDE = 38.850 LONGITUDE = 77.030

STARTING DATE: 7 JUL.

SOURCE: CLEAR SKY DESIGN DAY METHOD

RERERERERE SUPERBLOCK 1 SEREERERE TIME= 3600.00 TEMP 2 TEMP 3 TEMP 4 TEMP 5 TEMP 6 TEMP 7 TEMP 8 TEMP 10 20.2 20.4 20.3 20.2 20.4 20.2 20.5 20.5 TEMP12 POWR 3 POWR 6 POWR 7 FOWR 8 21.3 4.711E-02 0.000 0.000 0.000 ARRESTANTA SUPERBLOCK 1 RESERVERS TIME = 7200.00 TEMP 4 TEMP 5 TEMP 6 TEMP 7 TEMP 8 TEMP10 TEMP 2 TEMP 3 20.3 20.5 20.3 20.4 20.4 20.3 20.5 20.5 TEMP12 POWR 0 3 FOWR 6 POWR 7 POWR 8 20.8 5.145E-02 0.000 0.000 0.000 ******** SUPERBLOCK 1 ******** TIME= 10800.00 TEMP 2 TEMP 3 TEMP 4 TEMP 5 TEMP 6 TEMP 7 TEMP 8 TEMP 10 20.3 20.4 20.3 20.5 20.3 20.4 20.5 TEMP12 POWR 3 POWR 6 POWR 7 POWR 8
20.4 5.097E-02 0.000 0.000 0.000

----- (OUTPUTS FROM TIME=14400 TO 79200 ARE DELETED)------

TEMP 2 TEMP 3 TEMP 4 TEMP 5 TEMP 6 TEMP 7 TEMP 8 TEMP 10 20.3 20.5 20.5 20.3 20.9 20.3 20.7 20.6

TEMP12 POWR 3 POWR 6 POWR 7 POWR 8 21.8 8.252E-02 0.000 0.000 0.000

* File: INITOUT.DAT => INITIN.DAT (Initialization File) 1.00 1000.00 86400.00 86400.00 32 399 0.000000 0.000000 0.000000 101.300 20.0007 20.5433 20.3429 20.5147 20.3472 20.7149 20.7106 20.0000 20.6313 20.0000 20.3471 1.00000 1.00000 1.00000 0.000000 21.8000 8.252382E-02 1.00000 4.000000E-02 0.135232 0.000000 0.000000 0.000000 0.000000 0.000000 7 400133E-03 7.399999E-03 1.330000E-02 -1 -1 -1 -1 1 1 -1 86400.0 20.5147 20.5285 20.5441 20.5618 20.0000 20.5819 20.0000 20.0000 20.0000 -0.260101 20.0000 -0.293930 -0.279144 0.562424 0.585342 0.611954 188.627 60.1801 0.000000 86400.0 20.5433 20.5566 20.5713 20.5877 20.6061 20.0000 20.0000 20.0000 20.0000 20.0000 -0.472382 -0.478424 -0.484512 0.587433 0.608215 0.632095 60.7750 184.759 0.000000 0.000000 0.000000 0 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0 000000 0.000000 86400 0 20.3429 20.3512 20.0000 -1 55827 20.0000 157 816 -1.59109 1.62202 1.66194 159.956 0.000000 0 000000 0.000000 86400.0 20.3472 20.3557 20 0000 20.0000 1 68301 -1.57761 -1.61086 1.64243 159.987 0.000000 0 000000 157.820 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0 000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0 000000

0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.600000
0.000000	0.000000	0.000000	0.000000	6.00000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	86900.0	20.3471
20.3555	20.0000	20.0000	-1.5771.7	-1.61057
1.64198	1.68248	159.987	157.029	0,000000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	6.000000	0.000000	0.000000
0.000000	0.000000	0.660000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.00000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	6.500000	0.600000	0.000000
86400.0	20.9149	20.9599	21.6094	21.0640
22.9142	23.1523	23.4117	23.6951	2.21538
2.42876	2.66360	13.9172	15.201"	16.6440
180.445	729.118	0.00000	0.000000	9.00000
0.000000	0.000000	0.000000	0.000000	0.90000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.00000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.900000
0.000000	0.000000	0.000000	0.000000	9.90000
0.000000	0.000000	0.000000	0.000000	0.0000,00
0.000000	0.000000	0.00000	0.000000	0.900000
0.000000	0.000000	86400.0	20.7106	21.6348
1.35913	0.000000	-1.35913	0.000000	9.00000
0.000000	0.000000	0.00000	0.000000	0.00000
0.000000	0.00000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.00000
0.000000	0.000000	0.000000	0.000000	1.700000
0.000000	0.000000	0.00000	0.000000	0.00000
0.000000	0.000000	0.00000	0.000001	9.00000
0.000000	0.000000	0.000000	0.00000	0.000000
0.000000	0.000000	0.00000	0.000000	0.000000
0.000000	0.000000	3.200050	0.990000	1.900000
0.000000	0.00000	0.00000	0.001900	

(3) Continuation of Simulation

```
* Execution of MODSIM for Simulation using the Initialization File
```

Enter MINIMUM TIME STEP, MAXIMUM TIME STEP, and SIMULATION STOPPING TIME: 1,1000,172800

Is the Building Shell Model usad? (N)

Y
Will the Initialization File ba called? (N)
Y

What is the INDEX NUMBER of the SUPERSLOCK for the Suilding Shell?

```
1
  ISSHEL = 1
 Enter the time of day (in hours after midnight)
 at which the simulation is to begin
 Use default file names for all files? (Y/N) (Y)
Enter the name of the Model Definition File,
or Carriage Return for default name: MODELDEF.DAT
Enter the name of the Boundary Variable File,
 or Carriage Return for default name: BOUNDARY.DAT
Enter the name of the Initial State File,
 or Carriage Return for default name: INITIN.DAT
Enter the name of the Final State File,
or Carriage Return for default name: INITOUT.DAT
Enter the name of the Output Data File,
or Carriage Return for default name: MODOUT.DAT
Enter the name of the Simulation Summary File,
 or Carriage Return for default name: MODSUM.DAT
MODSUM2.DAT
 Enter the name of the CTF File,
 or Carriage Return for default name: CTFDATA.DAT
Enter the name of the Weather Data File,
 or Carriage Return for default name: WEATHER.DAT
  Do you want Diagnostic Information to be written (N)?
N
 Would you like to monitor the Simulation on Screen? (N)
    ----- SIMULATION BEGINS -----
 -- FIRST WEATHER DATA SET HAS BEEN READ
  ---- INITIALIZATION FILE HAS BEEN WRITTEN ----
       -----END OF SIMULATION -----
* File: MODSUM2.DAT (for the second run)
          **** PROGRAM MODSIM ****
        a MODular SIMulation program
ONE ZONE MODEL
```

2 SUPERBLOCKS 3 BLOCKS 10 UNITS

32 STATE VARIABLES:

3 PRES . 1 FLOW 12 TEMP 5 CTRL 8 POWR 3 AHUM

INITIAL STATE VECTOR:

PRES:

0.000000 0.000000 101.300

FLOW:

0.000000

TEMP:

 20.0007
 20.3429
 20.5433
 20.5147
 20.3472

 20.9149
 20.3471
 20.7106
 20.0000
 20.6313

20.0000 21.8000

CTRL:

1.00000 1.00000 1.00000 0.000000 1.00000

POWR:

4.000000E-02 0.135232 8.252382E-02 0.000000 0.000000

0.000000 0.000000 0.000000

AHUM:

7.400133E-03 7.399999E-03 1.330000E-02

O TIME DEPENDENT BOUNDARY VARIABLES:

ERROR TOLERANCES: RTOLX, ATOLX, XTOL, TTIME:

1.00000E-04 1.00000E-05 2.00000E-04 1.0000

TMIN = 1.000 TMAX = 1000.000 TSTOP = 172800.000

BUILDING SHELL MODEL IN SUPERBLOCK 1: CONSTANT TIME STEP TSHELL = 900.00

WEATHER DATA: LATITUDE = 38.850 LONGITUDE = 77.030

STARTING DATE: 7 JUL.

SOURCE: CLEAR SKY DESIGN DAY METHOD

******* SUPERBLOCK 1 *******

TIME = 3600.00

TEMP 2 TEMP 3 TEMP 4 TEMP 5 TEMP 6 TEMP 7 TEMP 8 TEMP 10
20.7 21.0 20.9 20.7 21.3 20.7 21.1 21.0
TEMP 12 POWR 3 POWR 6 POWR 7 POWR 8
21.3 -0.183 0.000 0.000 0.000

******** SUPERBLOCK 2 ******

TIME= 3600.00

TEMP 1 AHUM 1

21.9 7.831E-63

******* SUPERBLOCK 1 *******

TIME = 7200.00

 TEMP 2
 TEMP 3
 TEMP 4
 TEMP 5
 TEMP 6
 TEMF 7
 TEMP 8
 TEMP 10

 20.8
 21.2
 21.1
 20.8
 21.4
 20.8
 21.2
 21.2

TEMP12 POWR 3 POWR 6 POWR 7 POWR 8 20.8 -0.224 0.000 0.000 0.000

******** SUPERBLOCK 2 ******

TIME= 7200.00 TEMP 1 AHUM 1

22.1 8.223E-03

-----(OUTPUTS FROM TIME=10800 TO 169200 ARE DELETED)-----

******* SUPERBLOCK 1 *******

TIME = 172800.00

TEMP 2 TEMP 3 TEMP 4 TEMP 5 TEMP 6 TEMP 7 TEMP 8 TEMP 10 21.1 21.7 21.7 21.2 22.1 21.2 21.8 21.6 TEMP12 POWR 3 POWR 6 POWR 7 POWR 8
21.8 -0.258 0.000 0.000 0.000

******** SUPERBLOCK 2 *******

TIME= 172800.00 TEMP 1 AHUM 1 22.6 1.820E-02

¥	File:	MODOUT.DAT	(for the second	run)

	-			
SUPERBLOCK 1	1.00			
20.2917	20.5139	20.5405	20.2846	21.1066
20.2843	21.0060	21.2797		8.404082E-02
0.000000		0.000000	20	
SUPERBLOCK 2	1.00			
20.0016	7.400267E-03			
SUPERBLOCK 2	5.00			
20.0054	7.400803E-03			
SUPERBLOCK 2	13.00			
20.0128	7.401876E-03			
SUPERBLOCK 2	29.00			
20.0277	7.404022E-03			
SUPERBLOCK 2	61.00			
20.0574	7.408317E-03			
SUPERBLOCK 2	125.00			
20.1168	7.416867E-03			
SUPERBLOCK 2	253.00			
20.2349	7.433806E-03			
SUPERBLOCK 2	509.00			
20:4688	7.467050E-03			
SUPERBLOCK 1	900.00			
20.5530	20.9868	20.8029	20.5515	21.2674
20.5513	21.2203	20.6367	21.6776	1.849874E-03
0.000000	0.000000	0.000000		
SUPERBLOCK 2	1021.00			
20.8193	7.531371E-03			
SUPERBLOCK 1	1800.00			
20.5248	20.7980	20.7678	20.5321	21.1843
20.5319	20.9597	20.8542	21.5535	-1.177248E-02
0.000000	0.000000	0.000000		
SUPERBLOCK 2	2021.00			
21.4451	7.649470E-03			
SUPERBLOCK 1	2700.00			
20.5797	20.8906	20.8064	20.5900	21.1941
20.5897	21.0495	20.9111	21.4276	-0 116937
0.000000	0.000000	0.000000		
SUPERBLOCK 2	3021.00			
21.7804	7.765420E-03			
SUPERBLOCK 1				V. V.
20.6530	21.0056	20.8754		21 2501
20.6655	21.1431	20.9923	21.3000	-0 182925
0.000000	0.00000	0.000000		

SUPERBLOCK 2				
21.9328	7.879067E~03			
SUPERBLOCK 1	4500.00		0.0 800/	24 2222
20.7129		20.9417	20.7276	21.3079
20.7271		21.0578	21.1710	-0.20/124
0.000000		0.000000		
SUPERBLOCK 2	5021.00 7.990129E-03			
22.0143 SUPERBLOCK 1	5400.00			
20.7564		20.9970	20.7721	21.3539
20.7364	21.2228	21.1055	21.0429	-0.216747
0.000000	0.000000	0.909000	21.0327	-0.210727
SUPERBLOCK 2	6021.00	0.202000		
22.0642	8.098528E-03			
SUPERBLOCK 1	6300.00			
20.7868		21.0412	20.8031	21.3862
20.8026	21.2357	21, 1394	20.9184	-9.221382
0.000000	0.000000	0.00000		
SUPERBLOCK 2	7021.00			
22.0962	8.204252E-03			
SUPERBLOCK 1	7200.00			
20.8078	21.2065	21.0757	20.8246	21.4067
20.8240	21.2395	21.1629	20.8000	-0.223880
0.000000	0.000000	0.000000		
SUPERBLOCK 2	8021.00			
22.1167	8.307319E-03			
SUPERBLOCK 1	8100.00			
20.8220	21.2247	21.1021	20.8391	21.4177
20.8384	21.2374	21.1788	20.6898	-0.225273
0.00000	0.000000	0.000000		
	9000.00			
20.8295	21.2332	21.1203	20.8466	21.4193
20.8460	21.2272	21.1866	20.5871	-0.223120
0.000000 SUPERBLOCK 2	0.000000	0.000000		
22.1346	8.407805E-03			
22.1340	0.40/0035-03			
(OUTP	UTS FROM TIME=9900	TO 171000 ARE	DELETED)	
SUPERBLOCK 2 1	71021 00			
	1.824518E-02			
SUPERBLOCK 1 1				
		21.7091	21.2018	22.2095
21.2008	21.8538			-0.263855
0.000000	0.000000	0.00000		
SUPERBLOCK 2 1				
22.6839	1.822144E-02			
SUPERBLOCK 1 1				
		21.6508	21.1542	
		21.6196	21.8000	-0.257617
	0.00000	0.000000		
SUPERBLOCK 2 1				
42.6373	1 . 8 2 0 2 2 5 E - 0 2			

C. Postprocessing - Output Data Analysis _____ * Execution of SORTSB -----Enter input file name MODOUT . DAT Enter output file name SORTSB.DAT Superblock # ? SUPERBLOCK 1 1.00 20.5139 20.2917 20.5405 20.2846 21.1066 20.2843 21.0060 21.2797 21.8000 8.404082E-02 0.000000 0.000000 0.000000 SUPERBLOCK 2 1.00 20.0016 7.400267E-03 SUPERBLOCK 2 5.00 Number of seconds per unit time? Extract another superblock? (N) STOP ---- END OF SORTSB ----* File: SORTSB.DAT (for SUPERBLOCK #1) -----0.277778E-03 20.2917 20.5139 20.5405 20.2846 21.2797 21.1066 20.2843 21.0060 21 8000 0.840408E-01 0.000000 0.000000 0.000000 0.250000 20.5530 20.9868 20.8029 20.5515 21.2674 20.5513 21.2203 20.6367 21.6776 0.184987E-02 0.000000 0.000000 0.000000 20.7678 0.500000 20.5248 20.7980 20 5321 21.1843 20.5319 20.9597 20.8542 21 5535 -0.117725E-01 0.000000 0.000000 0.000000 0.750000 20.5797 20.8906 20.8064 20 5900 21.1941 20.5897 21.0495 20.9111 21 4276 -0.116937 0.000000 0.000000 0.000000 1.00000 20.6530 21.0056 20.8754 20 6659 21.1431 21.3000 21.2501 20.6655 20.9923

 1.75000
 20.7868
 21.1799
 21.0412
 20.8031

 21.3862
 20.8026
 21.2357
 21.1394
 20.9184

 -0.221382
 0.000000
 0.000000
 0.000000

0.000000

21.0866

21.1954

0.000000

21.1417

21.2228

0.000000

-0.182925

1.25000

21.3079

-0.207124

1.50000

21.3539

-0.216749

0.000000

20.7129

20.7271

0.000000

20.7564

20.7715

0.000000

-----(OUTPUTS FROM TIME=2.00 HOUR TO 45.75 HOUR ARE DELETED)----

0.000000

20.9417

21.0578

0.000000

20.9970

0.000000

20 7276

21.1710

20 7721

21 0429

46.0000	21.5826	22.2978	22.3858	21.6182
23.1710	21.6167	22.5207	22.2371	23.2000
-0.300409	0.000000	0.000000	0.000000	
46.2500	21.4953	22.1766	22.2449	21.5287
22.9737	21.5273	22.3873	22.1180	22.9789
-0.291503	0.000000	0.000000	0.000000	
46.5000	21.4200	22.0715	22.1218	21.4517
22.8010	21.4504	22.2689	22.0144	22.7725
-0.283895	0.000000	0.000000	0.000000	
46.7500	21.3547	21.9798	22.0139	21.3847
22.6490	21.3835	22.1632	21.9239	22.5798
-0.277311	0.000000	0.000000	0.000000	
47.0000	21.2977	21.8994	21.9193	21.3263
22.5147	21.3251	22.0686	21.8445	22.4000
-0.271551	0.000000	0.000000	0.000000	
47.2500	21.2476	21.8284	21.8360	21.2750
22.3954	21.2739	21.9836	21.7744	22.2322
-0.266488	0.000000	0.000000	0.000000	
47.5000	21.2160	21.7894	21.7731	21.2427
22.3032	21.2416	21.9335	21.7279	22.0762
-0.281198	0.000000	0.000000	0.000000	
47.7500	21.1762	21.7274	21.7091	21.2018
22.2095	21.2008	21.8538	21.6709	21.9322
-0.263855	0.000000	0.000000	0.000000	
48.0000	21.1395	21.6742	21.6508	21.1642
22.1230	21.1632	21.7881	21.6196	21.8000
-0.257617	0.000000	0.000000	0.000000	

Figure C-3. Inner surface temperatures of the single-zone model

Figure C-4. Outdoor air, zone air, and mean radiant temperatures of the single-zone model

Figure C-5. Artificially generated solar radiation influxes

APPENDIX D: Example 2 Three-zone Building Model

A three-zone building model is simulated in this example, following the Simulation Procedure outlined in Chapter 9 of this report. The purpose of the example is to demonstrate how to use HVACSIM+ with a multizone building model. Selected data files are listed. The weather data file is created by using the weather tape information. The inlet temperature of the inlet duct is selected as a boundary variable. The machine precisons used in this example are the same as those used in Example 1.

A. Preprocessing - Input Data Generation (1) Creation of Simulation Work File

As shown in Figure D-1, the example model is a single-story building with three zones. A simple system (inlet duct-fan-duct) is connected to one of zones, Zone 3 (see Figure D-2).

Figure D-1. A three-zone model

Figure D-2. A simple system (fan and ducts) for Zone 3

* Initial Conditions of State Variables

P 1	Zone air pressure, gage (IZN=1)	0.0	k P a
P 2	Zone air pressure, gage (IZN=2)	0.0	kPa
P3	Zone air pressure, gage (IZN=3)	0.3	kPa
P 4	Supply air pressure, gage (IZN=1)	0.0	kPa
P 5	Supply air pressure, gage (IZN=2)		kPa
			kPa
P 6	Supply air pressure, gage (IZN=3)		
P7	Inlet pressure of the inlet duct		kPa
P 8	Outlet pressure of the inlet duct	-0.8	
P 9	Outlet pressure of the fan	1.0	kPa
P10	Outlet pressure of the exhaust duct	-0.5	kPa
P11 .	Outdoor air barometric pressure	0.0	kPa
M1	Supply air mass flow rate (IZN=1)	0 0	kg/s
MZ	Supply air mass flow rate (IZN=2)		kg/s
			_
M 3	Supply air mass flow rate (IZN=3)	2.5	kg/s
T1	Inner surface temp. of roof (IZN=1)	20.0	C
T 2	Inner surface temp. of floor	20.0	С
T3	Inner surface temp, of west wall	20.0	С
T4	Inner surface temp. of south wall	20.0	С
T5	Inner surface temp. of east wall	20.0	
T6	·	20.0	
	Inner surface temp. of north wall		
T7	Inner surface temp. of north window	20.0	
T8	Inner surface temp. of roof (IZN=2)	20.0	
T9	Inner surface temp, of floor	20.0	С
T10	Inner surface temp. of west wall	20.0	С
T11	Inner surface temp, of south wall	20 0	С
T12	Inner surface temp. of east wall	20.0	С
T13	Inner surface temp. of north wall	20.0	
T14	·	20.0	
	Inner surface temp. of roof (IZN=3)		
T15	Inner surface temp. of floor	20 0	
T16	Inner surface temp. of west wall	20 0	
T17	Inner surface temp. of south wall	20.0	
T18	Inner surface temp. of east wall	20.0	С
T19	Inner surface temp, of north wall	20.0	C
T20	Inner surface temp, of south window	20 0	С
T2 1	Ground temp.	15.0	С
T 2 2	Mean radiant temperature (IZN=1)	20.0	
T23		20.0	
	Mean radiant temperature (IZN=2)		
T 2 4	Mean radiant temperature (IZN=3)	20 0	
T25	Zone air dry-bulb temp. (IZN=1)	20.0	
T26	Zone air dry-bulb temp. (IZN=2)	20.0	
T27	Zone air dry-bulb temp. (IZN=3)	20 0	
T28	Supply air temp. (IZN=1)	20 0	C
T29	Supply air temp. (IZN=2)	20 0	С
T30	Supply air temp. (IZN=3)	20 0	С
T31	Inlet air temp. of the inlet duct (B.C.)	20.0	
T32	Outdoor air dry-bulb temp.	20.0	_
		20 0	_
T33	Outlet air temp, of the inlet duct	200	-
C 1	Number of people (IZN=1)	1 0	
C 2	Equipment utilization coefficient	1 0	
C 3	Light utilization coefficient	1 0	
C 4	Shaded fraction of outer surface	0 0	
C 5	Number of people (IZN=2)	1 0	

C 6	Equipment utilization coefficient	1.0
C 7	Light utilization coefficient	1.0
C 8	Shaded fraction of outer surface	0.0
C 9	Number of people (IZN=3)	1.0
C10	Equipment utilization coefficient	1.0
C 1 1	Light utilization coefficient	1.0
C 1 2	Shaded fraction of outer surface	0.0
R1	Fan roataional speed	60.0 rev/s
Q1	Convective heat gain from surfaces (IZN=1)	0.0 kW
Q2	Short wave radiant heat gain	0.0 kW
Q3	Long wave radiant heat gain	0.0 kW
Q4	Convective heat gain from surfaces (IZN=2)	0.0 kW
Q.5	Short wave radiant heat gain	0.0 kW
Q 6	Long wave radiant heat gain	0.0 kW
Q7	Convective heat gain from surfaces (IZN=3)	0.0 kW
0.8	Short wave radiant heat gain	0.0 kW
Q9	Long wave radiant heat gain	0.0 kW
Q10	Fan power consumption	0.0 kW
Q11	Direct solar radiation	0.0 kW
Q12	Diffuse solar radiation	0.0 kW
013	Total horizontal solar radiation	0.0 kW
H1	Zone air humidity ratio (IZN=1)	0.0074
H2	Zone air humidity ratio (IZN=2)	0.0074
Н3	Zone air humidity ratio (IZN=3)	0.0074
H4	Supply air humidity ratio (IZN=1)	0.0074
H5	Supply air humidity ratio (12N=2)	0.0074
H6	Supply air humidity ratio (12N=3)	0.0074
H7	Outdoor air humidity ratio	0.0

```
* Execution of HVACGEN
------
 HVACGEN - Simulation GENeration Program
 Version 1.8 (08-16 1985)
 Choose from the list below:
 CReate (Simulation, BLock, UNit)
 EDit (Slmulation, UNit)
 VIew (Simulation, Block, UNit)
 HElp
 ENd
Selection ?
VI
 View a:
 Simulation
 BLock
                                       AL
 UNit
 Enter Selection
SI
 Enter the filename (Maximum of 8 characters)
THRIZONE
 reading from work file....
 INITIALIZING TYPES INFORMATION ...
 What part of the simulation would you like to view:
 ALL the simulation information (for documentation)
 STructure (superblock, block, and unit Information)
 VAriable initial values
 ERror tolerances, variable scan and freeze options
 BOundary variables
 REported variables
 COntinue with the previous menu
AL
 THREE ZONE BUILDING MODEL -- A SINGLE STORY BUILDING
 SUPERBLOCK 1
      BLOCK 1
          UNIT 1 TYPE 50 - ZONE ENVELOPE
```

```
TYPE 51 - BUILDING SURFACE
         UNIT 2
                    TYPE 51 - BUILDING SURFACE
         UNIT 3
         UNIT 4
                    TYPE 51 - BUILDING SURFACE
         UNIT 5 TYPE 51 - BUILDING SURFACE UNIT 6 TYPE 51 - BUILDING SURFACE
                  TYPE 51 - BUILDING SURFACE
         UNIT 7
         UNIT 8 TYPE 51 - BUILDING SURFACE
     BLOCK 2
         UNIT 9
                    TYPE 50 - ZONE ENVELOPE
         UNIT 10 TYPE 51 - BUILDING SURFACE
UNIT 11 TYPE 51 - BUILDING SURFACE
UNIT 12 TYPE 51 - BUILDING SURFACE
         UNIT 13
                    TYPE 51 - BUILDING SURFACE
                   TYPE 51 - BUILDING SURFACE
         UNIT 14
         UNIT 15 TYPE 51 - BUILDING SURFACE
         UNIT 16 TYPE 51 - BUILDING SURFACE
     BLOCK 3
         UNIT 17 TYPE 50 - ZONE ENVELOPE
         UNIT 18
                    TYPE 51 - BUILDING SURFACE
         UNIT 19- TYPE 51 - BUILDING SURFACE UNIT 20 TYPE 51 - BUILDING SURFACE
         UNIT 21 TYPE 51 - BUILDING SURFACE
UNIT 22 TYPE 51 - BUILDING SURFACE
UNIT 23 TYPE 51 - BUILDING SURFACE
     BLOCK 4 .
         UNIT 31
                 TYPE 53 - WEATHER IMPUT
SUPERBLOCK 2
     BLOCK 5
         UNIT 24
                    TYPE 52 - ZONE MODEL
     BLOCK 6
         UNIT 25
                   TYPE 52 - ZONE MODEL
     BLOCK 7
         UNIT 26
                   TYPE 52 - ZONE MODEL
     BLOCK 8
        UNIT 27 - TYPE 3 - INLET CONDUIT (DUCT OF PIPE)
        UNIT 28
                    TYPE 1 - FAN OR PUMP
                     TYPE 2 - CONDUIT (BUCT OR PIPE)
        UNIT 29
        UNIT 30 TYPE 2 - CONDUIT (DUCT OR PIPE)
UNIT 1 TYPE 50
ZONE ENVELOPE
     INPUTS:
                      27 - TIA: Zone mir dry-bulb temperature
       TEMPERATURE
                       8 - OISW: Internal (short wave) radiant gain
       POWER
       POWER
                       9 - GILW: Internal (long wave) radiant gain
       TEMPERATURE 14 - TIS(1): Inner surface temperature
       TEMPERATURE 15 - TIS(2): Inner surface temperature TEMPERATURE 16 - TIS(3): Inner surface temperature
       TEMPERATURE
                      17 - TIS(4): Inner surface temperature
       TEMPERATURE
TEMPERATURE
                      18 - TIS(5): Inner surface temperature
                      19 - TIS(6): Inner surface temperature
       TEMPERATURE 20 - TIS(7): Inner surface temperature
       TEMPERATURE 20 - TIS(8): Inner surface temperature
       TEMPERATURE
                      20 - TIS(9): inner surface temperature
      TEMPERATURE 20 - TIS(10): Index surface temperature
```

2 OUTPUTS:

```
TEMPERATURE 24 - TMR: Mean radiant temperature
       POWER
                        7 - QWALL: Convective heat gain from surfaces
3 PARAMETERS:
                      IZN: Identification number of zone
NS: Number of surfaces of zone
         3.00000
          7.00000
-----
UNIT 2 TYPE 51
BUILDING SURFACE
     INPUTS:
       TEMPERATURE 27 - TIA: Indoor air dry-bulb temperature
TEMPERATURE 24 - TMR: Mean radiant temperature
TEMPERATURE 14 - TOSINF: Outer surface temp. of unexposed wall
CONTROL
       CONTROL
                       12 - FSHADW: Shaded fraction of exposed surface
2
     OUTPUTS:
       TEMPERATURE 14 - TIS: Inner surface temperature
       POWER
                        0 - SOLINT: Integrated solar influx on surface
3 PARAMETERS:
          3.00000
                     IZN:
                              Identification number of zone
          1.00000
                      ID:
                              Identification number of surface
          2.00000
                      IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
          1.00000
                     ISTR: Identification number of the construct
          37.2100
                     AS: Surface area (m2)
         0.000000 ORIENT: Azimuth angle of normal to surface & south 0.000000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
         0.200000
                      GRF:
                              Ground reflectivity (-)
          1.00000
                       IROFS: Outer surface roughness index: 1=stucco,...
         0.600000
                     ABSOS: Solar absorptance of outer surface (-)
         0 650000
                     ABSIS: Short wave absorptance of inner surface(-)
         0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
         0.000000
                     SC: Shading coeff. of the glass window (-)
------
UNIT 3 TYPE 51
BUILDING SURFACE
      INPUTS:
       TEMPERATURE 27 - TIA: Indoor air dry-bulb temperature
TEMPERATURE 24 - TMR: Mean radiant temperature
TEMPERATURE 21 - TOSINF: Outer surface temp. of unexposed wall
       CONTROL
                       12 - FSHADW: Shaded fraction of exposed surface
2
      OUTPUTS:
                       15 - TIS: Inner surface temperature
       TEMPERATURE
                        0 - SOLINT: Integrated solar influx on surface
      POWER
3
    PARAMETERS:
          3.00000
                     IZN:
                              Identification number of zone
          2.00000 ID: Identification number of surface
          1.00000 lEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
          2.00000 ISTR: Identification number of the construct
          37.2100 AS:
                              Surface area (m2)
         0.000000 ORIENT: Azimuth angle of normal to surface & south
         180.000 TILT: Tilt angle: flat roof=0, floor=180 (degree) 0.200000 GRF: Ground reflectivity (-)
```

```
0.000000
                              IROFS: Outer surface roughness index: 1=stucco,...
            0.000000 IROFS: Outer surface roughness index. l=studeo,...
0.000000 ABSOS: Solar absorptance of outer surface (-)
0.650000 ABSIS: Short wave absorptance of inner surface(-)
0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
0.000000 SC: Shading coeff. of the glass window (-)
UNIT 4 TYPE 51
BUILDING SURFACE
       INPUTS:
         TEMPERATURE
                              27 - TIA: Indoor air dry-bulb temperature
         TEMPERATURE 24 - TMR: Mean radiant temperature
         TEMPERATURE 16 - TOSINF: Outer surface temp. of unexposed wall
         CONTROL
                              12 - FSHADW: Shaded fraction of exposed surface
        OUTPUTS:
2
         TEMPERATURE 16 - TIS: Inner surface temperature
                                0 - SOLINT: Integrated solar influx on surface
         POWER
            3.00000 IZN: Identification number of some
3.00000 ID: Identification number of surface
2.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
3.00000 ISTR: Identification number of the construct
24.4000 AS: Surface area (m2)
3
     PARAMETERS:
            90.0000
                            ORIENT: Azimuth angle of normal to surface & south
            90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
0.200000 GRF: Ground reflectivity (-)
5.00000 IROFS: Outer surface roughness index: 1=stucco,...
0.400000 ABSOS: Solar absorptance of outer surface (-)
0.650000 ABSIS: Short wave absorptance of inner surface(-)
            0.900000
                             EMITIS: Emissivity of the inner surface (-)
            0.000000 TRANSM: Transmittance of the glass window (-) 0.000000 SC: Shading coeff. of the glass window (-)
**********
UNIT 5 TYPE 51
BUILDING SURFACE
       INPUTS:
         TEMPERATURE
                               27 - TIA: Indoor air dry-bulb temperature
         TEMPERATURE 24 - TMR: Mean radiant temperature
         TEMPERATURE 17 - TOSINF: Outer surface temp. of unexposed wall
                               12 - FSHADW: Shaded fraction of exposed surface
         CONTROL
2
        OUTPUTS:
         TEMPERATURE 17 - TIS: Inner surface temperature
                                0 - SOLINT: Integrated solar influx on surface
         POWER
3
       PARAMETERS:
                              IZN: Identification number of some
              3.00000
             4.00000 ID: Identification number of surface
2.00000 IEXPOS: 0=W/in sone, 1=betw.rones, 2=exposed to sun
3.00000 ISTR: Identification number of the construct
18.4000 AS: Surface area (m2)
0.000000 ORIENT: Aximuth angle of normal to surface & south
             0.000000
             90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree) 0.200000 GRF: Ground reflectivity (-)
```

```
5.00000
                          IROFS: Outer surface roughness index: 1=stucco,...
           0.400000
                        ABSOS: Solar absorptance of outer surface (-)
           0.650000 ABSIS: Short wave absorptance of inner surface(-)
0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
           0.000000
                         SC: Shading coeff. of the glass window (-)
 -----
UNIT 6 TYPE 51
BUILDING SURFACE
1
       INPUTS:
        TEMPERATURE
                          27 - TIA:
                                          Indoor air dry-bulb temperature
        TEMPERATURE 24 - TMR: Mean radiant temperature
TEMPERATURE 18 - TOSINF: Outer surface temp. of unexposed wall
CONTROL 12 - FSHADW: Shaded fraction of exposed surface
2
       OUTPUTS:
        TEMPERATURE 18 - TIS: Inner surface temperature
        POWER
                            0 - SOLINT: Integrated solar influx on surface
3
      PARAMETERS:
                        IZN:
            3.00000 IZN: Identification number of some 5.00000 ID: Identification number of surface
            2.00000
                         IEXPOS: 0=W/in sone, 1=betw.sones, 2=exposed to sun
                         ISTR: Identification number of the construct
AS: Surface area (m2)
            3.00000
                        AS:
            24.4000
           270.000 ORIENT: Azimuth angle of normal to surface & south 90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree) 0.200000 GRF: Ground reflectivity (-)
                        IROFS: Outer surface roughness index: 1=stucco,...
            5.00000
                        ABSOS: Solar absorptance of outer surface (-)
           0.400000
          0.650000 ABSIS: Short wave absorptance of inner surface(-)
0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
0.000000 SC: Shading coeff. of the glass window (-)
UNIT 7 TYPE 51
BUILDING SURFACE
       INPUTS:
        TEMPERATURE 27 - TIA: Indoor air dry-bulb temperature TEMPERATURE 24 - TMR: Mean radiant temperature
       TEMPERATURE
                          11 - TOSINF: Outer surface temp, of unexposed wall
      CONTROL
                           12 - FSHADW: Shaded fraction of exposed surface
2 OUTPUTS:
        TEMPERATURE
                          19 - TIS: Inner surface temperature
                           0 - SOLINT: Integrated solar influx on surface
        POWER
3
     PARAMETERS:
            3.00000
                         IZN:
                                   Identification number of some
                         ID:
            6.00000
                                    Identification number of surface
                        IEXPOS: 0=W/in zone, 1=betw.zones,-2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2)
            1.00000
            5.00000
            24.4000
           0.000000
                        ORIENT: Azimuth angle of normal to surface & south
           90.0000
                         TILT: Tilt angle: flat roof=0, floor=180 (degree)
```

GRF: Ground reflectivity (-)

0.200000

```
5.00000
                             IROFS: Outer surface roughness index: 1=stucco,...
                            ABSOS: Solar absorptance of outer surface (-)
             0.600000
             0.650000 ABSIS: Short wave absorptance of inner surface(-)
            0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
0.000000 SC: Shading coeff. of the glass window (-)
       UNIT 8 TYPE 51
BUILDING SURFACE
    INPUTS:
1
         TEMPERATURE 27 - TIA: Indoor air dry-bulb temperature
TEMPERATURE 24 - TMR: Mean radiant temperature
         TEMPERATURE 20 - TOSINF: Outer surface temp. of unexposed wall
         CONTROL 12 - FSHADW: Shaded fraction of exposed surface
2
        OUTPUTS:
        TEMPERATURE 20 - TIS: Inner surface temperature
        POWER
                                0 - SOLINT: Integrated solar influx on surface
3 PARAMETERS:
              3.00000 IZN: Identification number of some
7.00000 ID: Identification number of surface
2.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
        4.00000 ISTR: Identification number of the construct
6.00000 AS: Surface area (m2)
0.000000 ORIENT: Azimuth angle of normal to surface & south
90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
0.200000 GRF: Ground reflectivity (-)
             6.00000 IROFS: Outer surface roughness index: 1=stucco, ...
            0.000000 ABSOS: Solar absorptance of outer surface (-)
0.000000 ABSIS: Short wave absorptance of inner surface(-)
0.000000 EMITIS: Emissivity of the inner surface (-)
0.850000 TRANSM: Transmittance of the glass window (-)
0.800000 SC: Shading coeff. of the glass window (-)
UNIT 9 TYPE 50
ZONE ENVELOPE
        INPUTS:
         TEMPERATURE 25 - TIA: Zone air dry-bulb temperature
                                2 - QISW: Internal (short wave) radiant gain
         POWER
                                3 - QILW: Internal (long wave) radiant gain
          POWER
         TEMPERATURE 1 - TIS(1): Inner surface temperature
TEMPERATURE 2 - TIS(2): Inner surface temperature
TEMPERATURE 3 - TIS(3): Inner surface temperature
TEMPERATURE 4 - TIS(4): Inner surface temperature
                               5 - TIS(5): Inner surface temperature
         TEMPERATURE
         TEMPERATURE 6 - TIS(6): Inner surface temperature
TEMPERATURE 7 - TIS(7): Inner surface temperature
TEMPERATURE 7 - TIS(8): Inner surface temperature
TEMPERATURE 7 - TIS(9): Inner surface temperature
         TEMPERATURE 7 - TIS(10): Inner surface temperature
2
        OUTPUTS:
          TEMPERATURE 22 - TMR: Mean radiant temperature
          POWER
                                 1 - QWALL: Convective heat gain from surfaces
```

```
3 PARAMETERS:
         1.00000 IZN:
                           Identification number of some
         7.00000
                   NS:
                           Number of surfaces of zone
UNIT 10
            TYPE 51
BUILDING SURFACE
     INPUTS:
                    25 - TIA: Indoor air dry-bulb temperature
22 - TMR: Mean radiant temperature
      TEMPERATURE
      TEMPERATURE
                     1 - TOSINF: Outer surface temp. of unexposed wall
      TEMPERATURE
      CONTROL
                     4 - FSHADW: Shaded fraction of exposed surface
   OUTPUTS:
2
                     1 - TIS: Inner surface temperature
      TEMPERATURE
                     0 - SOLINT: Integrated solar influx on surface
      POWER
    PARAMETERS:
                   IZN: Identification number of sone
ID: Identification number of surface
         1.00000
         1.00000
                   IEXPOS: 0=W/in rone, 1=betw.rones, 2=exposed to sun
         2.00000
                   ISTR: Identification number of the construct
         1.00000
                    AS:
                            Surface area (m2)
         37.2100
                   ORIENT: Azimuth angle of normal to surface & south
        0.000000
                   TILT: Tilt angle: flat roof=0, floor=180 (degree)
GRF: Ground reflectivity (-)
        0.000000
        0.200000
        1.00000
                   IROFS: Outer surface roughness index: 1=stucco,...
        0.600000
                   ABSOS: Solar absorptance of outer surface (-)
        0.650000
                   ABSIS: Short wave absorptance of inner surface(-)
                   EMITIS: Emissivity of the inner surface (-)
        0.900000
        0.000000
                   TRANSM: Transmittance of the glass window (-)
                 SC: Shading coeff. of the glass window (-)
        0.000000
......
UNIT 11
            TYPE 51
BUILDING SURFACE
   . INPUTS:
      TEMPERATURE 25 - TIA: Indoor air dry-bulb temperature TEMPERATURE 22 - TMR: Mean radiant temperature
      TEMPERATURE
                    21 - TOSINF: Outer surface temp. of unexposed wall
                     4 - FSHADW: Shaded fraction of exposed surface
      CONTROL
     OUTPUTS:
2
                     2 - TIS: Inner surface temperature
      TEMPERATURE
      POWER
                       0 - SOLINT: Integrated solar influx on surface
    PARAMETERS:
                    IZN:
                           Identification number of some
         1.00000
                            Identification number of surface
         2.00000
                    ID:
         1.00000
                    IEXPOS: 0=W/in sone, 1=betw.sones, 2=exposed to sun
         2.00000
                    ISTR: Identification number of the construct
                    AS: Surface area (m2)
         37.2100
        0.000000
                    ORIENT: Asimuth angle of normal to-surface & south
         180.000
                   TILT: Tilt angle: flat roof=0, floor=180 (degree)
                    GRF: Ground reflectivity (-)
        0.000000
        0.000000
                   IROFS: Outer surface roughness index: 1=stucco, ....
        0.000000
                   ABSOS: Solar absorptance of outer surface (-)
```

0.650000 ABSIS: Short wave absorptance of inner surface(-)

```
0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
0.000000 SC: Shading coeff. of the glass window (-)
```

UNIT 12 TYPE 51 BUILDING SURFACE

INPUTS:

TEMPERATURE 25 - TIA: Indoor air dry-bulb temperature TEMPERATURE 22 - TMR: Mean radiant temperature

TEMPERATURE 3 - TOSINF: Outer surface temp. of unexposed wall

4 - FSHADW: Shaded fraction of exposed surface

OUTPUTS:

TEMPERATURE 3 - TIS: Inner surface temperature

0 - SOLINT: Integrated solar influx on surface

3 PARAMETERS:

> 1.00000 IZN: Identification number of some 3.00000 ID: Identification number of surface
> 2.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
> 3.00000 ISTR: Identification number of the construct

90.0000 ORIENT: Azimuth angle of normal to surface & south
90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
0.200000 GRF: Ground reflectivity (-)
5.00000 IROFS: Outer surface roughness index: 1=stucco,...
0.400000 ABSOS: Solar absorptance of outer surface (-)

0.650000 ABSIS: Short wave absorptance of inner surface(-)
0.900000 EMITIS: Emissivity of the inner surface (-) 0.650000

0.000000 TRANSM: Transmittance of the glass window (-)

0.000000 SC: Shading coeff. of the glass window (-)

UNIT 13 TYPE 51 BUILDING SURFACE

1 INPUTS:

TEMPERATURE 25 - TIA: Indoor air dry-bulb temperature TEMPERATURE 22 - TMR: Mean radiant temperature

TEMPERATURE 13 - TOSINF: Outer surface temp. of unemposed wall

4 - FSHADW: Shaded fraction of exposed surface CONTROL

OUTPUTS:

TEMPERATURE 4 - TIS: Inner surface temperature

0 - SOLINT: Integrated solar influe on surface POWER

3 PARAMETERS:

IZN: Identification number of some
ID: Identification number of surface 1.00000 4.00000

1.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun

5.00000 ISTR: Identification number of the construct 24.4000 AS: Surface area (m2)

180.000 ORIENT: Azimuth angle of normal to-surface & south 90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree) 0.200000 GRF: Ground reflectivity (-)

0.000000 IROFS: Outer surface roughness index: 1=stucco,...
0.000000 ABSOS: Solar absorptance of outer surface (+)

0.650000 ABSIS: Short wave absorptance of inner surface(-)

```
0.900000 EMITIS: Emissivity of the inner surface (-) 0.000000 TRANSM: Transmittance of the glass window (-)
        0.000000 SC: Shading coeff. of the glass window (-)
-----
UNIT 14 TYPE 51
BUILDING SURFACE
     INPUTS:
      TEMPERATURE 25 - TIA: Indoor air dry-bulb temperature TEMPERATURE 22 - TMR: Mean radiant temperature
                    5 - TOSINF: Outer surface temp. of unexposed wall
      TEMPERATURE
                     4 - FSHADW: Shaded fraction of exposed surface
      CONTROL
2
     OUTPUTS:
      TEMPERATURE
                    5 - TIS: Inner surface temperature
                      0 - SOLINT: Integrated solar influx on surface
    PARAMETERS:
3
                          Identification number of zone
                    IZN:
         1.00000
         5.00000
                   ID:
                           Identification number of surface
         2.00000
                   IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
         3.00000
                    ISTR: Identification number of the construct
         24.4000
                   AS: Surface area (m2)
         270.000
                   ORIENT: Azimuth angle of normal to surface & south
         90.0000
                    TILT: Tilt angle: flat roof=0, floor=180 (degree)
        0.200000
                   GRF: Ground reflectivity (-)
         5.00000
                   IROFS: Outer surface roughness index: 1=stucco,...
                   ABSOS: Solar absorptance of outer surface (-)
        0.400000
        0.650000
                   ABSIS: Short wave absorptance of inner surface(-)
        0.900000
                   EMITIS: Emissivity of the inner surface (-)
        0.000000
                    TRANSM: Transmittance of the glass window (-)
        0.00000
                   SC: Shading coeff. of the glass window (-)
_____
UNIT 15 TYPE 51
BUILDING SURFACE
1
     INPUTS:
      TEMPERATURE
                   25 - TIA: Indoor air dry-bulb temperature
                    22 - TMR:
                                Mean radiant temperature
      TEMPERATURE
      TEMPERATURE
                    6 - TOSINF: Outer surface temp. of unexposed wall
                     4 - FSHADW: Shaded fraction of exposed surface
      CONTROL
     OUTPUTS:
2
      TEMPERATURE
                    6 - TIS: Inner surface temperature
     POWER
                      0 - SOLINT: Integrated solar influx on surface
    PARAMETERS:
         1.00000
                    IZN:
                           Identification number of zone
         6.00000
                    ID: Identification number of surface
         2.00000
                   IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
         3.00000
                   ISTR: Identification number of the construct
                           Surface area (m2)
         18.4000
                   AS:
                    ORIENT: Azimuth angle of normal to-surface & south
         180.000
                   TILT: Tilt angle: flat roof=0, floor=180 (degree)
         90.0000
        0.200000
                          Ground reflectivity (-)
                   GRF:
         5.00000
                  IROFS: Outer surface roughness index: 1=stucco, ...
        0.400000
                  ABSOS: Solar absorptance of outer surface (-)
        0.650000 ABSIS: Short wave absorptance of inner surface(-)
```

0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
0.000000 SC: Shading coeff. of the glass window (-) 0.900000 EMITIS: Emissivity of the inner surface (-)

TYPE 51 BUILDING SURFACE

INPUTS:

TEMPERATURE 25 - TIA: Indoor air dry-bulb temperature TEMPERATURE 22 - TMR: Mean radiant temperature

7 - TOSINF: Outer surface temp. of unexposed wall TEMPERATURE

CONTROL 4 - FSHADW: Shaded fraction of exposed surface

OUTPUTS: 2

> 7 - TIS: Inner surface temperature TEMPERATURE

0 - SOLINT: Integrated solar influx on surface POWER

PARAMETERS: 3

> 1.00000 IZN: Identification number of zone

7.00000 ID: Identification number of surface
2.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to
4.00000 ISTR: Identification number of the construct IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun

6.00000 AS: Surface area (m2)

180.000 ORIENT: Asimuth angle of normal to surface & south 90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree)

TILT: Tilt angle: flat roof=0, floor=180 (degree)

GRF: Ground reflectivity (-) 0.200000

IROFS: Outer surface roughness index: 1=stucco,... 6.00000

0.000000 ABSOS: Solar absorptance of outer surface (-)

ABSIS: Short wave absorptance of inner surface(-) 0.000000

0.000000 EMITIS: Emissivity of the inner surface (-)

0.850000 TRANSM: Transmittance of the glass window (-) 0.800000 SC: Shading coeff. of the glass window (-)

UNIT 17 TYPE 50 ZONE ENVELOPE 1 INPUTS: TEMPERATURE 26 - TIA: Zone air dry-bulb temperature 5 - QISW: Internal (short wave) radiant gain 6 - QILW: Internal (long wave) radiant gain POWER POWER 8 - TIS(1): Inner surface temperature TEMPERATURE 9 - TIS(2): Inner surface temperature TEMPERATURE TEMPERATURE 10 - TIS(3): Inner surface temperature TEMPERATURE 11 - TIS(4): Inner surface temperature TEMPERATURE 12 - TIS(5): Inner surface temperature TEMPERATURE 13 - TIS(6): Inner surface temperature 13 - TIS(7): Inner surface temperature TEMPERATURE TEMPERATURE 13 - TIS(8): Inner surface temperature TEMPERATURE 13 - TIS(9): Inner surface temperature TEMPERATURE 13 - TIS(10): Inner surface temperature OUTPUTS: TEMPERATURE 23 - TMR: Mean radiant temperature 4 - QWALL: Convective heat gain from surfaces POWER 3 PARAMETERS: 2.00000 IZN: Identification number of zone Number of surfaces of zone 6.00000 NS: UNIT 18 TYPE 51 BUILDING SURFACE INPUTS: 26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature TEMPERATURE TEMPERATURE TEMPERATURE 4 - TOSINF: Outer surface temp. of unexposed wall CONTROL 8 - FSHADW: Shaded fraction of exposed surface 2 OUTPUTS: 13 - TIS: Inner surface temperature TEMPERATURE 0 - SOLINT: Integrated solar influx on surface POWER 3 PARAMETERS: IZN: Identification number of zone 2.00000 6.00000 ID: Identification number of surface 1.00000 IEXPOS: 0=W/in sone, 1=betw.sones, 2=exposed to sun ISTR: Identification number of the construct 5.00000 24.4000 AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south 0.000000 90.0000 TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-) 0.200000 0.000000 IROFS: Outer surface roughness index: 1=stucco,...

0.000000 SC: Shading coeff. of the glass window (-)

ABSOS: Solar absorptance of outer-surface (-)
ABSIS: Short wave absorptance of inner surface(-)

EMITIS: Emissivity of the inner surface (-)
TRANSM: Transmittance of the glass window (-)

0.000000

0.650000

0.000000

UNIT 19 TYPE 51 BUILDING SURFACE

```
INPUTS:
       TEMPERATURE 26 - TIA: Indoor air dry-bulb temperature TEMPERATURE 23 - TMR: Mean radiant temperature
        TEMPERATURE 12 - TOSINF: Outer surface temp. of unexposed wall
                          8 - FSHADW: Shaded fraction of exposed surface
        CONTROL
2
      OUTPUTS:
                        12 - TIS: Inner surface temperature
       TEMPERATURE
                           0 - SOLINT: Integrated solar influx on surface
        POWER
     PARAMETERS:
3
           2.00000
                        IZN: Identification number of zone
           5.00000
                        ID: Identification number of surface
           2.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun 3.00000 ISTR: Identification number of the construct
           24.4000
                                  Surface area (m2)
                        AS:
                       ORIENT: Azimuth angle of normal to surface & south
           270.000
                       TILT: Tilt angle: flat roof=0, floor=180 (degree)
           90.0000
          0.200000 GRF: Ground reflectivity (-)
5.00000 IROFS: Outer surface roughness index: 1=stucco,...
0.400000 ABSOS: Solar absorptance of outer surface (-)
          0.650000
                       ABSIS: Short wave absorptance of inner surface(-)
          0.900000 EMITIS: Emissivity of the inner surface (-)
0.000000 TRANSM: Transmittance of the glass window (-)
0.000000 SC: Shading coeff. of the glass window (-)
  ______
UNIT 20
               TYPE 51
BUILDING SURFACE
     INPUTS:
       TEMPERATURE 26 - TIA: Indoor air dry-bulb temperature TEMPERATURE 23 - TMR: Mean radiant temperature
       TEMPERATURE
                         19 - TOSINF: Outer surface temp. of unexposed wall
                          8 - FSHADW: Shaded fraction of exposed surface
        CONTROL
2
      OUTPUTS:
        TEMPERATURE 11 - TIS: Inner surface temperature
       POWER
                           0 - SOLINT: Integrated solar influx on surface
      PARAMETERS:
           2.00000
                        IZN:
                                  Identification number of zone
                        ID: Identification number of surface
            4.00000
           1.00000 IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun 5.00000 ISTR: Identification number of the construct
           24.4000
                        AS:
                                  Surface area (m2)
           180.000
                        ORIENT: Azimuth angle of normal to surface & south
                        TILT: Tilt angle: flat roof=0, floor=180 (degree)
           90.0000
                       GRF: Ground reflectivity (-)
IROFS: Outer surface roughness index: 1=stucco,...
ABSOS: Solar absorptance of outer-surface (-)
ABSIS: Short wave absorptance of inner surface(-)
          0.000000
          0.000000
          0.000000
          0.650000
          0.900000
                        EMITIS: Emissivity of the inner surface (-)
          0.000000
                        TRANSM: Transmittance of the glass window (-)
          0.000000 SC: Shading coeff. of the glass window (-)
```

	DING DUNINGS	
1	INPUTS:	
•	TEMPERATURE	26 - TIA: Indoor air dry-bulb temperature
	TEMPERATURE	23 - TMR: Mean radiant temperature
	TEMPERATURE	10 - TOSINF: Outer surface temp. of unexposed wall
	CONTROL	8 - FSHADW: Shaded fraction of exposed surface
	CONTROL	o - rankow: anaded traction of exposed surface
•	A11000 1100 A	
2	OUTPUTS:	10 mrd
	TEMPERATURE	10 - TIS: Inner surface temperature
	POWER	0 - SOLINT: Integrated solar influx on surface
	DIELWSMSE C.	
3	PARAMETERS:	7831
	2.00000	IZN: Identification number of zone ID: Identification number of surface
	2.00000	IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
	3.00000	ISTR: Identification number of the construct
	24.400 ₋ 0 90.0000	AS: Surface area (m2)
		ORIENT: Azimuth angle of normal to surface & south
	90.0000	TILT: Tilt angle: flat roof=0, floor=180 (degree)
	0.200000	GRF: Ground reflectivity (-)
	5.00000	IROFS: Outer surface roughness index: 1=stucco,
	0.400000	ABSOS: Solar absorptance of outer surface (-)
	0.650000	ABSIS: Short wave absorptance of inner surface(-)
	0.900000	EMITIS: Emissivity of the inner surface (-)
	0.00000	TRANSM: Transmittance of the glass window (-)
	0.00000	SC: Shading coeff. of the glass window (-)
UNIT	22 TYPE	51
	22 TYPE DING SURFACE	51
	DING SURFACE	
BUIL	DING SURFACE INPUTS: TEMPERATURE	26 - TIA: Indoor air dry-bulb temperature
BUIL	DING SURFACE INPUTS: TEMPERATURE TEMPERATURE	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature
BUIL	DING SURFACE INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall
BUIL	DING SURFACE INPUTS: TEMPERATURE TEMPERATURE	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature
BUIL	DING SURFACE INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall
BUIL	DING SURFACE INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS:	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface
BUIL	DING SURFACE INPUTS: TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature
BUIL	DING SURFACE INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS:	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature
BUIL	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS:	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 2.00000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 2.00000 1.00000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 1.00000 2.00000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 1.00000 2.00000 37.2100	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2)
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 1.00000 2.00000 37.2100 0.000000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of zone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 2.00000 1.000000 37.2100 0.000000 180.000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in sone, 1=betw.sones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree)
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 1.00000 2.00000 37.2100 0.000000 180.000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of zone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-)
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 1.00000 2.00000 37.2100 0.000000 180.000 0.000000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of zone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-) IROFS: Outer surface roughness index: 1=stucco,.
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS: 2.00000 1.00000 2.00000 37.2100 0.000000 180.000 0.000000 0.000000	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of zone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-) IROFS: Outer surface roughness index: 1=stucco,. ABSOS: Solar absorptance of outer-surface (-)
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS:	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-) IROFS: Outer surface roughness index: 1=stucco,. ABSOS: Solar absorptance of outer-surface (-) ABSIS: Short wave absorptance of inner surface(-)
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS:	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-) IROFS: Outer surface roughness index: 1=stucco, ABSOS: Solar absorptance of outer-surface (-) EMITIS: Emissivity of the inner surface (-)
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS:	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-) IROFS: Outer surface roughness index: 1=stucco, ABSOS: Solar absorptance of outer-surface (-) ABSIS: Short wave absorptance of inner surface(-) EMITIS: Emissivity of the inner surface (-) TRANSM: Transmittance of the glass window (-)
BUIL 1	INPUTS: TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE CONTROL OUTPUTS: TEMPERATURE POWER PARAMETERS:	26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature 21 - TOSINF: Outer surface temp. of unexposed wall 8 - FSHADW: Shaded fraction of exposed surface 9 - TIS: Inner surface temperature 0 - SOLINT: Integrated solar influx on surface IZN: Identification number of sone ID: Identification number of surface IEXPOS: 0=W/in zone, 1=betw.zones, 2=exposed to sun ISTR: Identification number of the construct AS: Surface area (m2) ORIENT: Azimuth angle of normal to surface & south TILT: Tilt angle: flat roof=0, floor=180 (degree) GRF: Ground reflectivity (-) IROFS: Outer surface roughness index: 1=stucco, ABSOS: Solar absorptance of outer-surface (-) EMITIS: Emissivity of the inner surface (-)

PRESSURE

```
INPUTS:
1
        TEMPERATURE 26 - TIA: Indoor air dry-bulb temperature 23 - TMR: Mean radiant temperature
                                         Indoor air dry-bulb temperature
       TEMPERATURE
        TEMPERATURE 8 - TOSINF: Outer surface temp. of unexposed wall
                           8 - FSHADW: Shaded fraction of exposed surface
       CONTROL
       OUTPUTS:
       TEMPERATURE 8 - TIS: Inner surface temperature
       POWER
                             0 - SOLINT: Integrated solar influx on surface
3
    PARAMETERS:
            2.00000
                        1 Z N :
                                  Identification number of some
            1.00000 ID: Identification number of surface
           2.00000 IEXPOS: 0=W/in rone, 1=betw.rones, 2=exposed to sun 1.00000 ISTR: Identification number of the construct 37.2100 AS: Surface area (m2) O.000000 ORIENT: Azimuth angle of normal to surface & south
          0.000000
          0.000000 TILT: Tilt angle: flat roof=0, floor=180 (degree)
0.200000 GRF: Ground reflectivity (-)
1.00000 IROFS: Outer surface roughness index: 1=stucco,...
0.600000 ABSOS: Solar absorptance of outer surface (-)
0.650000 ABSIS: Short wave absorptance of inner surface (-)
0.900000 EMITIS: Emissivity of the inner surface (-)
          0.000000
                        TRANSM: Transmittance of the glass window (-)
          0.000000 SC: Shading coeff. of the glass window (-)
  .....
UNIT 31 TYPE 53
WEATHER INPUT
1
     INPUTS:
       TEMPERATURE 32 - TAMB: Ambient (outdoor) air temperature (C)
       ABS. HUMIDITY 7 - HUMRAT: Outdoor air humidity ratio (-)
       PRESSURE 11 - PBAR: Barometric pressure (kPa)
                     11 - IDN: Direct normal solar radiation (W/m2)
       POWER
                    12 - ISKY: Diffuse (sky) solar radiation (W/m2)
13 - IHOR: Total horizontal solar radiation (W/m2)
        POWER
       POWER
2 OUTPUTS:
3
     PARAMETERS:
            32.0000 Index for ambient temperature (e.g. 5 if TAMB=T5)
            7.00000
                        Index for outdoor air humidity ratio
            11.0000 Index for barometric pressure
            11.0000 Index for direct normal solar radiation 12.0000 Index for diffuse (sky) solar radiation
                        Index for total horizontal solar radiation
UNIT 24
               TYPE 52
ZONE MODEL
      INPUTS:
```

167

PRESSURE 3 - PIAG: Gage pressure of zone air TEMPERATURE 27 - TIA: Zone air dry-bulb temperature

ABS. HUMIDITY 3 - WIA: Humidiy ratio of some air

```
6 - PSAG: Gage pressure of supply air
3 - MSA: Mass flow rate of supply air
       PRESSURE
       FLOW
       TEMPERATURE
                     30 - TSA:
                                  Supply air dry-bulb temperature
                      6 - WSA: Humidity ratio of supply air
       ABS. HUMIDITY
       POWER
                       7 - QWALL: Convective heat gain from surfaces
       CONTROL
                       9 - NUMPEP: Number of people (occupant in the zone)
       CONTROL
                      10 - UTCEQP: Equipment utilization coefficient
                       11 - UTCLIT: Lighting utilization coefficient
     OUTPUTS:
2
       TEMPERATURE 27 - TIA: Zone air dry-bulb temp. [diff. eq.]
ABS. HUMIDITY 3 - WIA: Humidity ratio of zone air [diff. eq.]
                       8 - QISW: Internal (short wave) radiant gain
       POWER
       POWER
                       9 - QILW: Internal (long wave) radiant gain
     PARAMETERS:
          3.00000
                     IZN:
                            Identification number of zone
                    CFUR: Effective capacitance of furnishings (kJ/K)
          400.000
          5.00000
                    EFFMIA: Multiplier for zone moisture capacitance(-)
                    VOLUME: Volume of some air (interior space ) (m3)
          148.840
          1.00000 SAIREX: Standard air exchange rate (1/h)
      0.717600E-01 WPEPS: Sensible heat gain from a person (kW)
         0.455000E-01 WPEPL: Latent heat gain from a person (kW)
         0.200000 WLIT: Heat gain due to lighting in the zone (kW)
         2.00000
                    LIGHT: 1 = Fluorescent, 2 = Incandescent (-)
        0.150000 WEQPS: Sensible heat gain due to equipment (kW)
         0.200000E-01 WEQPL: Latent heat gain due to equipment (kW)
         0.300000 REQP: Radiative to sensible heat from equipment(-)
UNIT 25
            TYPE 52
ZONE MODEL
     INPUTS:
      PRESSURE
                      1 - PIAG: Gage pressure of some air
      TEMPERATURE
                     25 - TIA: Zone air dry-bulb temperature
       ABS. HUMIDITY 1 - WIA: Humidiy ratio of some air
                      4 - PSAG: Gage pressure of supply air
      PRESSURE
                      1 - MSA: Mass flow rate of supply air
      FLOW
      TEMPERATURE 28 - TSA: Supply air dry-bulb temperature ABS. HUMIDITY 4 - WSA: Humidity ratio of supply air
      POWER
                      1 - QWALL: Convective heat gain from surfaces
       CONTROL
                       1 - NUMPEP: Number of people (occupant in the some)
       CONTROL
                      2 - UTCEOF: Equipment utilization coefficient
       CONTROL
                       3 - UTCLIT: Lighting utilization coefficient
     OUTPUTS:
      TEMPERATURE 25 - TlA: Zone air dry-bulb temp. [diff. eq.]
                                  Humidity ratio of zone air [diff eq ]
                      1 - WIA:
      ABS. HUMIDITY
                      2 - QISW: Internal (short wave) radiant gain
3 - QILW: Internal (long wave) radiant gain
      POWER
     PARAMETERS:
                   IZN: Identification number of some CFUR: Effective capacitance of furnishings (kJ/K)
          1.00000
         400.000
          5.00000
                    EFFMIA: Multiplier for zone moisture capacitance(-)
         148.840
                    VOLUME: Volume of zone air (interior space ) (m3)
         1.00000 SAIREX: Standard air exchange rate (1/h)
         0.717600E-01 WPEPS: Sensible heat gain from a person (kW)
```

0.454000E-01 WPEPL: Latent heat gain from a person (kW)

```
0.200000 WLIT: Heat gain due to lighting in the zone (kW)
                     LIGHT: 1 = Fluorescent, 2 = Incandescent (-)
         2.00000
         0.150000 WEQPS: Sensible heat gain due to equipment (kW)
         0.200000E-01 WEQPL: Latent heat gain due to equipment (kW)
         0.300000 REQP: Radiative to sensible heat from equipment(-)
-----
UNIT 26 TYPE 52
ZONE MODEL
1
     INPUTS:
      PRESSURE 2 - PIAG: Gage pressure of zone air
TEMPERATURE 26 - TIA: Zone air dry-bulb temperature
ABS. HUMIDITY 2 - WIA: Humidiy ratio of zone air
      PRESSURE
       PRESSURE
                        5 - PSAG: Gage pressure of supply air
                       2 - MSA: Mass flow rate of supply air
       FLOW
      TEMPERATURE 29 - TSA: Supply air dry-bulb temperature ABS. HUMIDITY 5 - WSA: Humidity ratio of supply air
                        4 - QWALL: Convective heat gain from surfaces
       POWER
                       5 - NUMPEP: Number of people (occupant in the zone)
       CONTROL
       CONTROL
                       6 - UTCEQP: Equipment utilization coefficient
       CONTROL
                       7 - UTCLIT: Lighting utilization coefficient
2
    OUTPUTS:
      TEMPERATURE 26 - TIA: Zone air dry-bulb temp. [diff. eq.] ABS. HUMIDITY 2 - WIA: Humidity ratio of zone air [diff. eq.]
                       5 - QISW: Internal (short wave) radiant gain
6 - QILW: Internal (long wave) radiant gain
       POWER
      POWER
    PARAMETERS:
3
          2.00000 IZN: Identification number of zone
          400.000
                     CFUR: Effective capacitance of furnishings (kJ/K)
          5.00000
                     EFFMIA: Multiplier for zone moisture capacitance(-)
         148.840 VOLUME: Volume of some air (interior spa
1.00000 SAIREX: Standard air exchange rate (1/h)
                     VOLUME: Volume of some air (interior space ) (m3)
         0.717600E-01 WPEPS: Sensible heat gain from a person (kW)
         0.454000E-01 WPEPL: Latent heat gain from a person (kW)
                    WLIT: Heat gain due to lighting in the zone (kW)
         0.200000
                     LIGHT: 1 = Fluorescent, 2 = Incandescent (-)
         2.00000 LIGHT: 1 = Fluorescent, 2 = Incandescent (-)
0.150000 WEQPS: Sensible heat gain due to equipment (kW)
         0.200000E-01 WEQPL: Latent heat gain due to equipment (kW)
         0.300000 REQP: Radiative to sensible heat from equipment(-)
UNIT 27 TYPE 3
INLET CONDUIT (DUCT OR PIPE)
1
      INPUTS:
      PRESSURE
                    7 - INLET FLUID PRESSURE
                       8 - OUTLET FLUID PRESSURE
      PRESSURE
       TEMPERATURE 31 - INLET FLUID TEMPERATURE
      TEMPERATURE 32 - AMBIENT AIR TEMPERATURE
      TEMPERATURE
                      33 - OUTLET FLUID TEMPERATURE (SAME AS FIRST OUTPUT)
2
     OUTPUTS:
      TEMPERATURE
                      33 - OUTLET FLUID TEMPERATURE (SAME AS FIFTH INPUT)
      FLOW
                        3 - FLUID MASS FLOW RATE
3 PARAMETERS:
         0.000000 INSIDE HEAT TRANSFER COEFFICIENT X AREA (KW/C)
```

```
0.000000 OUTSIDE HEAT TRANSFER COEFFICIENT X AREA (KW/C)
                   THERMAL CAPACITANCE OF CONDUIT MATERIAL (KJ/C)
        0.000000
        0.000000
                  VOLUME (M3)
                  FLOW RESISTANCE [0.001/(KG M)]
        0.125000
                  HEIGHT OF OUTLET ABOVE INLET (M)
        0.000000
        1.00000 MODE: 2=WATER, 1=AIR, NEG.=DETAILED, POS.=SIMPLE DYNAMI
UNIT 28
           TYPE 1
FAN OR PUMP
    INPUTS:
                    3 - MASS FLOW RATE OF FLUID
                  9 - OUTLET PRESSURE
      PRESSURE
      RVPS
                     1 - FAN OR PUMP ROTATIONAL SPEED
      TEMPERATURE
                   33 - INLET FLUID TEMPERATURE
    OUTPUTS:
2
     PRESSURE
                    8 - INLET PRESSURE
     TEMPERATURE 30 - OUTLET FLUID TEMPERATURE
                    10 - POWER CONSUMPTION
     POWER
3
    PARAMETERS:
        3.64000
                  1ST PRESSURE COEFFICIENT
       0.801000
                  2ND PRESSURE COEFFICIENT
       -0.190000 3RD PRESSURE COEFFICIENT
       -0.444000E-02 4TH PRESSURE COEFFICIENT
        0.000000 5TH PRESSURE COEFFICIENT
        0.000000
                  1ST EFFICIENCY COEFFICIENT
        0.564000 2ND EFFICIENCY COEFFICIENT
       -0.862000E-01 3RD EFFICIENCY COEFFICIENT
        0.000000 4TH EFFICIENCY COEFFICIENT
                  5TH EFFICIENCY COEFFICIENT
        0.000000
                  DIAMETER (M)
        0.336500
        1.00000
                  MODE: AIR=1, WATER=2
UNIT 29 TYPE 2
CONDUIT (DUCT OR PIPE)
1
    INPUTS:
                    3 - FLUID MASS FLOW RATE
      FLOW
      PRESSURE
                    6 - OUTLET PRESSURE
      TEMPERATURE
                   30 - FLUID INLET TEMPERATURE
      TEMPERATURE
                   32 - AMBIENT TEMPERATURE
      TEMPERATURE
                   30 - OUTLET FLUID TEMPERATURE (SAME AS FIRST OUTPUT)
2
    OUTPUTS:
      TEMPERATURE
                    0 - OUTLET FLUID TEMPERATURE (SAME AS FIFTH INPUT)
     PRESSURE
                    9 - INLET PRESSURE
    PARAMETERS:
        0.000000
                  INSIDE HEAT TRANSFER COEFFICIENT X AREA (KW/C)
                  OUTSIDE HEAT TRANSFER COEFFICIENT X AREA (KW/C)
        0.000000
                   THERMAL CAPACITANCE OF CONDUIT MATERIAL (KJ/C)
        0.000000
        0.000000
                   VOLUME (M3)
                  FLOW RESISTANCE [0.001/(KG M)]
        0.125000
        0.000000
                  HEIGHT OF OUTLET ABOVE INLET (M)
```

170

1.00000 MODE: 2=WATER, 1=AIR, NEG.=DETAILED, POS.=SIMPLE DYNAMI

TEMPERATURE

TEMPERATURE

TEMPERATURE

TEMPERATURE

TEMPERATURE

TEMPERATURE

15 ->

16 ->

17 ->

18 ->

20 ->

19 ->

20.0000

20.0000 (C)

20.0000

20.0000

20.0000

20.0000

```
1
     INPUTS:
      FLOW
                     3 - FLUID MASS FLOW RATE
                   10 - OUTLET PRESSURE
      PRESSURE
      TEMPERATURE
                   27 - FLUID INLET TEMPERATURE
      TEMPERATURE
                   32 - AMBIENT TEMPERATURE
      TEMPERATURE
                    27 - OUTLET FLUID TEMPERATURE (SAME AS FIRST OUTPUT)
2
     OUTPUTS:
                    0 - OUTLET FLUID TEMPERATURE (SAME AS FIFTH INPUT)
      TEMPERATURE
     PRESSURE
                    3 - INLET PRESSURE
    PARAMETERS:
3
        0.000000
                  INSIDE HEAT TRANSFER COEFFICIENT X AREA (KW/C)
        0.000000
                   OUTSIDE HEAT TRANSFER COEFFICIENT X AREA (KW/C)
        0.00000
                  THERMAL CAPACITANCE OF CONDUIT MATERIAL (KJ/C)
        0.000000
                  VOLUME (M3)
                  FLOW RESISTANCE [0.001/(KG M)]
        0.125000
                  HEIGHT OF OUTLET ABOVE INLET (M)
        0.000000
                  MODE: 2=WATER, 1=AIR, NEG.=DETAILED, POS.=SIMPLE DYNAMI
        1.00000
................
Initial Variable Values:
PRESSURE
             1 -> 0.000000 (kPa)
             2 -> 0.000000
PRESSURE
                               (kRa)
             3 -> 0.300000 (kPa)
PRESSURE
             4 ->
                   0.000000 (kPa)
PRESSURE
PRESSURE
             5 -> 0.000000 (kPa)
             6 -> 0.500000 (kPa)
PRESSURE
             7 ->
PRESSURE
                    0.000000
                             (kPa)
             8 -> -0.800000 (kPa)
PRESSURE
             9 ->
PRESSURE
                     1.00000 (kPa)
            10 -> -0.500000 (kPa)
PRESSURE
PRESSURE
            11 -> 0.000000 (kPa)
             1 -> 0.000000 (kg/s)
2 -> 0.000000 (kg/s)
3 -> 2.49683 (kg/s)
FLOW
FLOW
FLOW
TEMPERATURE
             1 ->
                     20.0000 (C)
            2 ->
                  20.0000
                               (C)
TEMPERATURE
TEMPERATURE
            3 ->
                    20.0000
                               (C)
                    20.0000 (C)
20.0000 (C)
            4 ->
TEMPERATURE
                    20.0000
            5 ->
TEMPERATURE
TEMPERATURE
             6 ->
                     20.0000
                               (C)
             7 ->
TEMPERATURE
                      20.0000
                               (C)
             8 ->
TEMPERATURE
                      20.0000
                               (C)
TEMPERATURE
             9 ->
                     20.0000
                               (C)
            10 -> 20.0000
TEMPERATURE
                               (C)
                             (C)
            11 ->
TEMPERATURE
                      20.0000
TEMPERATURE
            12 ->
                     20.0000
                               (C)
             13 ->
TEMPERATURE
                      20.0000
                               (C)
TEMPERATURE
            14 ->
                     20.0000 (C)
```

(C)

(C)

(C)

(C)

```
TEMPERATURE 21 ->
                    15.0000
                              (C)
TEMPERATURE 22 ->
TEMPERATURE 23 ->
                     20.0000
                              (C)
                    20.0000
                              (C)
TEMPERATURE 24 ->
TEMPERATURE 25 ->
                    20.0000
                              (C)
                    20.0000
                              (C)
TEMPERATURE
           26 ->
                    20.0000
                              (C)
TEMPERATURE
            27 ->
                     20.0000
                              (C)
TEMPERATURE 28 ->
TEMPERATURE 29 ->
                  20.0000
                               (C)
                    20.0000
                              (C)
TEMPERATURE 30 -> 20.0000
                              (C)
TEMPERATURE 31 -> 20.0000
                               (C)
TEMPERATURE
            32 ->
                    20.0000
                              (C)
            33 ->
TEMPERATURE
                    20.0000
                              (C)
             1 ->
CONTROL
                     1.00000
                               ( - )
CONTROL
             2 ->
                    1.00000
                              ( - )
            3 -> 1.00000 (-)
4 -> 0.000000 (-)
CONTROL
                              ( - )
CONTROL
            5 ->
CONTROL
                   1.00000 (-)
CONTROL
            6 ->
                    1.00000
                              ( - )
            -7 ->
CONTROL
                     1.00000
                               ( - )
            8 -> 0.000000
CONTROL
                              ( - )
            9 -> 1.00000
CONTROL
                              ( - )
          10 ->
                              (-)
CONTROL
                    1.00000
CONTROL
            11 ->
                    1.00000
                               ( - )
           12 ->
                     0.000000
CONTROL
                              (-)
            1 ->
                    60.0000
RVPS
                              (rev/s)
POWER
             1 ->
                    0.000000
                               (kW)
POWER
            2 -> 0.000000
                              (kW)
            3 -> 0.000000
POWER
                              (kW)
             4 -> 0.000000
POWER
                              (kW)
POWER
            5 -> 0.000000
                              (kW)
            6 ->
POWER
                    0.000000
                              (kW)
             7 ->
POWER
                    0.000000
                              (kW)
            8 ->
                    0.000000
POWER
                              (kW)
            9 -> 0.000000
POWER
                              (kW)
            10 -> 0.000000
POWER
                              (kW)
POWER
                    0.000000
            11 ->
                              (kW)
POWER
            12 ->
                   0.000000
                              (kW)
            13 ->
POWER
                   0.000000
                              (kW)
ABS. HUMIDITY 1 -> 0.740000E-03(kg(water)/kg(air))
ABS. HUMIDITY 2 -> 0.740000E-03(kg(water)/kg(air))
ABS. HUMIDITY 3 -> 0.740000E-03(kg(water)/kg(air))
ABS. HUMIDITY 4 -> 0.740000E-03(kg(water)/kg(air))
ABS. HUMIDITY 5 -> 0.740000E-03(kg(water)/kg(air))
ABS. HUMIDITY 6 ->
                   0.740000E-03(kg(water)/kg(air))
ABS. HUMIDITY 7 -> 0.000000 (kg(water)/kg(air))
Simulation Error Tolerances:
      RTOLX= 0.500000E-02 ATOLX= 0.100000E-05
      XTOL = 0.500000E - 03
                            TTIME = 10.0000
SUPERBLOCK 1
2 FREEZE OPTION 0 SCAN OPTION 0
SUPERBLOCK 2
      FREEZE OPTION 0 SCAN OPTION 0
                         ------
The following are Boundary Variables in the simulation:
```

```
TEMPERATURE 31
```

Selection ?

END STOP

The following are the reported variables:

SUPERBLOCK 1		REPORTING	INTERVAL	3600.00
TEMPERATURE	1			
TEMPERATURE	2			
TEMPERATURE	3			
TEMPERATURE	4			
TEMPERATURE	5			
TEMPERATURE	6			
TEMPERATURE	7			
TEMPERATURE	8			
TEMPERATURE	14			
TEMPERATURE	32			
POWER	1			
POWER	4			
POWER	7			
POWER	11			
POWER	12			
POWER	13			
SUPERBLOCK 2		REPORTING	INTERVAL	3600.00
TEMPERATURE	25			
TEMPERATURE	26			
TEMPERATURE	27			
TEMPERATURE	3 0			
TEMPERATURE	3 1			
ABS. HUMIDITY	1			
ABS. HUMIDITY	2			
ABS. HUMIDITY	3			

(2) Creation of Model Definition File

* Execution of SLIMCON

Simulation Work File to Model Definition File Converter Version 2.1 (November 13, 1984)

Enter the simulation filename (Up to 8 characters) or carriage return to end. THRIZONE

2	superblocks in the simulation	MUMIKAM	= 10	(20.0%)
8	blocks in the simulation	MUMIXAM	= 50	(16.0%)
6	differential equations in the simulation	MAXIMUM	= 50	(12.0%)
1173	saved variables in the simulation	MAXIMUM	= 60000	(19.6%)
3 1	units in the simulation	MAXIMUM	= 200	(15.5%)
8	units in a single block	MAXIMUM	= 20	(40.0%)
2	differential equations in one unit	MAXIMUM	= 10	(20.0%)
1 3	inputs or outputs in a single unit	MAXIMUM	= 20	(65.0%)
14	parameters in a single unit	MAXIMUM	= 30	(46.7%)
4	blocks in the largest superblock	MUMIXAM	= 10	(40.0%)
6	differential equations in one superblock	MUMIXAM	= 20	(30 0%)
8 0	state variables in the simulation	MAXIMUM	= 600	(13.3%)
14	inputs or outputs in a single block	MUMIKAM	= 50	(28.0%)
361	unit parameters in the simulation	MAXIMUM	= 1 0 0 0	(36.1%)
8	simultaneous equations in a single block	MAXIMUM	= 30	(26.7%)
	simultaneous equations in one superblock				
1	time dependent boundary variables	MUMIXAM	= 30	(3.3%)
1	boundary conditions in one superblock	MAXIMUM	= 20	(5 0%)
16	reported variables in one superblock	MUMIKAM	= 30	(53.3%)

(3) Creation of Boundary Variable File

* File: BOUNDARY.DAT ______ 0 20.0 31800 20.0 32000 20.0 32200 20.0 32400 20.0 32400 15.0 32600 15.0 32800 15.0 33000 15.0 60600 15.0 60800 15.0 61000 15.0 61200 15.0 61200 20.0 61400 20.0 61600 20.0 61800 20.0 118200 20.0 118400 20.0 118600 20.0 118800 20.0 118800 15.0 119000 15.0 119200 15.0 119400 15.0 147000 15.0 147200 15.0 147400 15.0 147600 15.0 147600 20.0 147800 20.0 148000 20.0 148200 20.0 204600 20.0 204800 20.0 205000 20.0 205200 20.0 205200 15.0 205400 15.0 205600 15.0 205800 15.0 233400 15.0 233600 15.0 233800 15.0 15.0 234000 234000 20.0 234200 20.0 234400 20.0 234600 20.0

	ion of constructs	
CONSTRUCT	#1 (Ceiling)	
	(Outside)	
Layer 1	Slag, 1/2-in.	(44): [material I.D. # in THERM.DAT file]
2	Felt, 3/8-in.	(45)
3	Concrete, 4-in.	(36)
4	Insulation, 4-in.	(20)
5	Ceiling air space	(46)
6	Acoustic tile	(47)
	(Inside)	
CONSTRUCT	#2 (Floor)	
	(Outside)	
Layer 1	Concrete, l.w., 4-in.	(36)
2	Vinyle tile, 3.32-in.	(48)
	(Inside)	
CONSTRUCT	#3 (Interior Walls)	
	Same as Example 1	
CONSTRUCT	#4 (Exposed Wall)	
	Same as Example 1	
CONSTRUCT	#5 (Exposed Glass Window)	
	Same as Example 1	

(4) Creation of Conduction Transfer Function File

```
* Execution of CTFGEN
______
```

Enter your choice:

- A => Add thermal property data to the construction materials database (THERM.DAT)
- B => Print the contents of the data file THERM.DAT to Logical Unit 6
- C => Create a CTF data file
- D => Change time interval in an existing CTF data file
- E => END

Enter the name of the CTF Definition File, or carriage return for default name: CTFINPUT.DAT

Enter the name of the CTF Output File, or carriage return for default name: CTFDATA.DAT

```
What kind of output do you want?
0 ==> for a very simple output,
 1 ==> for a less simple output,
 2 ==> for detailed output
 3 ==> for root search
```

What is the time interval for CTF calculation in s? 900

THIS CONSTRUCT ID NUMBER (ISTR) IS How many layers in this construct? (max. = 10)

Enter the layer ID numbers with most outer layer first 44,45,36,20,46,47

LAYER	L	K	CP	D	R	RC
Slag or st	0.013	1.436	0.465	881.000	0.009	6.783
Felt & mem	0.010	0.190	0.465	1121.000	0.050	15.735
Concrete,	0.102	0.173	0.233	640.000	0.586	94.328
Insulation	0.102	0.043	0.233	91.000	2.346	71.344
Ceiling ai	0.000	0.000	0.000	0.000	0.176	0.000
Acoustic t	0.016	0.061	0.233	480.000	0.315	21.529

SUMRC = 209.71966 CND = 0.29023 TINC = 900.00

NUMBER OF RESPONSE FACTORS = 6; ORDER = 3

N	0 0	0 1	0 2	О 3	0 4	0 5
0	14.557249	14.557249	14.557249	14.557249	14.557249	14 557240
						14.557249
1	-11.701724	-23.404494	-28.110588	-30.256600	-30.524282	-30.636338
2	-0.807326	8.599849	16.166097	20.310126	20.866491	21.101454
3	-0.404115	0.244905	-2.535270	-4.918456	-5.291923	-5.452545
4	-0.279811	0.045063	-0.034110	0.339636	0.430078	0.470813
5	-0.214535	0.010408	-0.004160	0.000869	-0.005377	-0.008687
6	-0.169705	0.002763	-0.000602	0.000012	0.000000	0.000000

```
0
           0.000001
                        0.000001
                                     0.000001
                                                  0.000001
                                                              0.000001
                                                                           0.000001
    1
           0.001435
                        0.001434
                                     0.001433
                                                  0.001433
                                                              0.001433
                                                                           0.001433
    2
           0.015018
                        0.013864
                                     0.013401
                                                  0.013190
                                                              0.013163
                                                                           0.013152
    3
           0.033322
                        0.021249
                                     0.016767
                                                  0.014791
                                                              0.014549
                                                                           0.014447
    4
           0.039358
                        0.012570
                                     0.005701
                                                  0.003229
                                                              0.002957
                                                                           0.002845
    5
           0.036730
                        0.005089
                                     0.001025
                                                  0.000185
                                                              0.000126
                                                                           0.000103
    6
           0.031329
                        0.001801
                                     0.000156
                                                  0.000005
                                                              0.000000
                                                                           0.00000
    0
           2.456216
                        2.456216
                                     2.456216
                                                  2.456216
                                                              2.456216
                                                                           2.456216
    1
          -1.908972
                       -3.883557
                                    -4.677607
                                                -5.039699
                                                             -5.084865
                                                                          -5.103772
    2
          -0.143329
                        1.391319
                                     2.646803
                                                  3.336370
                                                              3.429041
                                                                           3.468182
    3
          -0.047651
                        0.067573
                                    -0.382215
                                                 -0.772404
                                                              -0.833754
                                                                          -0.860149
    4
          -0.020781
                        0.017526
                                    -0.004319
                                                  0.052027
                                                                           0.072648
                                                              0.066230
    5
                                                  0.000320
                                                                          -0.001147
          -0.011357
                        0.005349
                                    -0.000317
                                                             -0.000637
    6
          -0.007443
                        0.001688
                                    -0.000042
                                                  0.000005
                                                               0.000000
                                                                           0.000000
          1.274614
    3
                       -0.426060
                                     0.038313
                                                  0.000000
                                                              0.000000
ISTR: 1
NCTF: 6 NORD: 3
UVAL: 0.290227
CTFX: 14.5573, -30.2568, 20.3102, -4.91848, 0.339638, 8.68591E-04,
1.171E-05
CTFY: 1.18807E-06, 1.43323E-03, 1.31896E-02, 1.47913E-02,
                                                                  3.22913E-03,
1.8491E-04, 5.0123E-06
CTF2: 2.45622, -5.03971, 3.33638, -0.772406, 5.2027E-02,
                                                                  3.19892E-04,
4.97476E-06
                 -0.42606, 3.83128E-02
CTFQ: 1.27461,
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 2
How many layers in this construct? (max. = 10 )
Enter the layer ID numbers with most outer layer first
36,48
 LAYER
                                                                RC
                 L
                           K
                                   CP
                                              D
                                                        R
                                                      0.586
Concrete.
               0.102
                         0.173
                                   0.233 640.000
                                                              94.328
                         0.270
                                   1.004 1552.000
Vinyle til
               0.002
                                                      0.000
                                                               4.805
SUMRC = '99.13220 CND = 1.68155 TINC = 900.00
 NUMBER OF RESPONSE FACTORS = 3;
                                      ORDER = 2
                                                   0 3
                                                                0 4
                                                                             0 5
   N
             0 0
                          0 1
                                       0 2
                                                              6.041242
                                                                           6.041242
    0
                                                  6.041242
           6.041242
                        6.041242
                                     6.041242
                                                                          -5.937137
    1
                                                -5.937136
                                                             -5.937137
          -3.530460
                       -5.812812
                                    -5.936175
    2
          -0.522149
                        0.811642
                                     0.930340
                                                  0.931285
                                                              0.931286
                                                                           0.931286
                                                              0.000000
                                                                           0.000000
    3
          -0.191197
                        8 6 0 6 0 0 . 0
                                    -0.010506
                                                 0.000000
                                                              0.122326
                                                                           0 122326
    0
           0.122326
                        0.122326
                                     0.122326
                                                 0.122326
                                                                           0.707016
                                     0.707035
                                                 0.707016
                                                              0.707016
    1
           0.755747
                        0.709533
    2
                                                              0.193360
                                                                           0 193360
           0.493480
                        0.207962
                                     0.193473
                                                 0.193361
                                                                           0 000000
    3
           0.192747
                        0.006313
                                     0.002066
                                                 0.000000
                                                              0.000000
    0
           9.218291
                        9.218291
                                     9.218291
                                                 9.218291
                                                              9.218291
                                                                           9 218291
    1
          -6.686454
                     -10.169080
                                  -10.357318
                                               -10.358785
                                                            -10.358787
                                                                         -10.358787
                                                                          2.199544
                                                              2.199544
    2
                        1.990241
                                     2.197894
                                                 2.199543
          -0.535869
                                   -0.033965
                                                                           0 000000
                                                 0.000000
                                                              0.000000
    3
          -0.195773
                        0.006676
```

```
0.398215 -0.007715 0.000000 0.000000
ISTR: 2
NCTF: 3 NORD: 2
UVAL: 1.68155
CTFX: 6.04124, -5.93617, 0.93034, -1.05061E-02
CTFY: 0.122326, 0.707036, 0.193473, 2.06644E-03
CTFZ: 9.21829, -10.3573, 2.19789, -3.39653E-02
CTFQ: 0.398215, -7.71461E-03
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 3
How many layers in this construct? (max. = 10)
Enter the layer ID numbers with most outer layer first
43,8,43
                                                      RC
 LAYER
               L
                      K
                              CP
                                       D
                                              R
Plaster/gy
                     0.727
                             0.233 1601.000
                                            0.026
                                                     13.610
            0.019
                                                     0.000
            0.000
                    0.000
                             0.000 0.000
                                             0.160
Air Space
                     0.727
                             0.233 1601.000
                                             0.026
Plaster/qy
            0.019
                                                    13.610
SUMRC = 27.22012 CND = 4.71099 TINC = 900.00
 NUMBER OF RESPONSE FACTORS = 1; ORDER = 1
   N
           0 0
                      0 1
                                0 2
                                           0 3
                                                       0 4
                                                                  0 5
        11.696103 11.696103 11.696103
                                          0.000000
                                                     0.000000
                                                                0.000000
        -6.985093 -6.985166
                              0.000000
                                          0.000000
                                                     0.000000
                                                                0.000000
   1
        3.820999
                   3.820999
                              3.820999
                                          0.000000
                                                     0.000000
                                                                0.000000
                                          0.000000
   1
        0.889971
                   0.889947
                              0.000000
                                                     0.000000
                                                                0.000000
        11.696103 11.696103 11.696103 0.000000
                                                     0.000000
                                                                0.000000
   0
   1
        -6.985093 -6.985166
                              0.000000
                                         0.000000
                                                     0.000000
                                                                0.000000
   1
        0.000006 0.000000
                              0.000000
                                         0.000000
                                                     0.000000
ISTR: 3
NCTF: 1 NORD: 1
UVAL: 4.71099
CTFX: 11.6962, -6.9852
CTFY: 3.82101, 0.88995
CTFZ: 11.6962, -6.9852
CTFQ: 6.21576E-06
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 4
How many layers in this construct? (max. = 10 )
Enter the layer ID numbers with most outer layer first
2,10,8,43
 LAYER
                      K
                              CP
                                                R
                                                      RC
              L
                                       D
            0.102
                    1.298
                             0.256 2082.000
                                             0.078
                                                     65.105
 Facebrick
            0.051 0.043
 Insulation
                                             1.176
                             0.233 32.000
                                                     21.154
            0.000
                    0.000
                             0.000
                                      0.000
                                             0.160
                                                     0.000
Air Space
                                             0.026
Plaster/gy
                     0.727
                             0.233 1601.000
            0.019
                                                    13.610
 SUMRC = 99.86891 CND = 0.69166 TINC = 900.00
```

0.000000

```
0 0
                                                           0 4
                                                                        0 5
   N
                        0 1
                                    0 2
                                                0 3
   0
         31.239817
                     31.239817
                               31.239817
                                             31.239817
                                                         31.239817
                                                                    31.239817
                    -37.473015
   1
        -19.358236
                                -37.755497 -37.755942 -37.756010 -37.756012
                                              6.835637
                                                          6.835720
   2
         -4.728849
                      6.496254
                                  6.835099
                                                                      6.835722
   3
         -2.714793
                      0.027286
                                 -0.031456
                                              0.000000
                                                          0.000000
                                                                      0.000000
                                  0.030345
   0
          0.030345
                      0.030345
                                              0.030345
                                                          0.030345
                                                                      0.030345
          0.216958
                      0.199362
                                  0.199088
                                              0.199087
                                                          0.199087
                                                                      0.199087
   1
   2
                      0.059828
                                                          0.058022
                                                                      0.058022
          0.185634
                                  0.058025
                                              0.058023
                      0.001046
                                              0.000000
                                                          0.000000
                                                                      0.000000
   3
          0.108688
                                  0.000505
         8.554926
    0
                      8.554926
                                  8.554926
                                              8.554926
                                                          8.554926
                                                                      8.554926
    1
         -7.845255 -12.805930 -12.883287 -12.883409 -12.883428 -12.883428
    2
         -0.007653
                      4.541511
                                  4.657307
                                              4.657491
                                                          4.657519
                                                                      4.657520
         -0.004354
                      0.000083
                                 -0.040983
                                              0.000000
                                                          0.000000
                                                                      0.000000
    3
         0.588904
                    -0.005243
    2
                                  0.000000
                                              0.000000
                                                          0.000000
 ISTR: 4
NCTF: 3 NORD: 2
UVAL: 0.691656
CTFX: 31.2398, -37.7555, 6.8351, -3.14559E-02
CTFY: 3.03452E-02, 0.199088, 5.80254E-02, 5.05029E-04
CTFZ: 8.55491, -12.8833, 4.6573, -4.09825E-02
CTFQ: 0.588904, -5.24332E-03
Do you want to continue? (N)
THIS CONSTRUCT ID NUMBER (ISTR) IS 5
How many layers in this construct? (max. = 10)
Enter the layer ID numbers with most outer layer first
49,8,49
                                                   R
                                                            RC
 LAYER
                L
                         K
                                 CP
                                           D
Glass
              0.000
                       0.000
                                0.000
                                         0.000
                                                  0.260
                                                           0.000
              0.000
                       0.000
                                0.000
                                         0.000
                                                  0.160
                                                           0.000
Air Space
                       0.000
                                         0.000
                                                  0.260
                                                           0.000
              0.000
                                0.000
Glass
          0.00000 CND = 1.47059 TINC = 900.00
SUMRC =
                                                            RC
 LAYER
                L
                         K
                                 CP
                                           D
                                                    R
                                                           0.000
                                                  0.260
Glass
              0.000
                       0.000
                                0.000
                                         0.000
Air Space
              0.000
                       0.000
                                0.000
                                         0.000
                                                  0.160
                                                           0.000
                                         0.000
                                                  0.260
                                                           0.000
              0.000
                       0.000
                                0.000
Glass
          0.00000 CND = 1.47059 TINC = 900.00
SUMRC =
 NUMBER OF ROOTS = 7: SEARCH INCREMENT = 0.020026
            ROOT
   N
```

1 0.024607256 2 0.072309779 3 0.111355003 4 0.120292539 5 0.136468904 6 0.169175402 7 0.216991657

```
NUMBER OF RESPONSE FACTORS = 3; ORDER = 2
                      0 1 0 2 0 3 0 4 0 5
     0 0
       31,239817 31,239817 31,239817 31,239817 31,239817 31,239817
       -19.358236 -37.473015 -37.755497 -37.755942 -37.756010 -37.756012
   1
                   6.496254
                               6.835099 6.835637 6.835720
                                                                6.835722
   2
        -4.728849
                                          0.000000
   3
        -2.714793
                    0.027286 -0.031456
                                                     0.000000
                                                                 0.000000
   0
                                          0.030345
                                                     0.030345
                                                                0.030345
         0.030345
                    0.030345
                               0.030345
                                                     0.199087
   1
                    0.199362
                               0.199088
                                          0.199087
                                                                0.199087
        0.216958

    0.185634
    0.059828
    0.058025
    0.058023

    0.108688
    0.001046
    0.000505
    0.000000

   2
                               0.058025 0.058023 0.058022
                                                                0.058022
   3
                                                      0.000000 0.000000
   0
                    8.554926
                               8.554926
                                          8.554926
                                                     8.554926
                                                                8.554926
         8.554926
   1
       -7.845255 -12.805930 -12.883287 -12.883409 -12.883428 -12.883428

    -0.007653
    4.541511
    4.657307
    4.657491

    -0.004354
    0.000083
    -0.040983
    0.000000

   2
                                                     4.657519
                                                                4.657520
   3
                                                      0.000000
                                                                  0.000000
        0.588904 -0.005243
   2
                               0.000000
                                          0.000000
                                                     0.000000
** SEVERE RESPONSE FACTORS NOT COMPUTED (RESPNS)
 ISTR: 5
NCTF: 0 NORD: 0
UVAL: 1.47059
CTFX: 1.47059
CTFY: 1.47059
CTFZ: 1.47059
CTFQ:
Do you want to continue? (N)
STOP ----- END OF CTF RUN -----
* File: CTFDATA.DAT (Conduction Transfer Function File)
   900.000
   1 6 3 0.290227
   14.5573 -30.2568 20.3102 -4.91848 0.339638
  0.868591E-03
                0.117100E-04
  0.118807E-05 0.143323E-02 0.131896E-01 0.147913E-01 0.322913E-02
  0.184910E-03 0.501230E-05
               -5.03971
   2.45622
                              3.33638 -0.772406 0.520270E-01
  0.319892E-03 0.497476E-05
   1.27461
               -0.426060 0.383128E-01
   2 3 2
              1.68155
               -5.93617
   6.04124
                             0.930340
                                          -0.105061E-01
```

0.193473 0.122326 0.707036 0.206644E-02 2.19789 9.21829 -10.3573 -0.339653E-01 0.398215 -0.771461E-02 3 1 1 4.71099 11.6962 -6.98520 3.82101 0.889950 11.6962 -6.98520 0.621576E-05 4 3 2 0.691656 6.83510 -0.314559E-01 31.2398 -37.7555 0.303452E-01 0.199088 0.580254E-01 0.505029E-03 4.65730 8.55491 -0.409825E-01 -12.8833 0.588904 -0.524332E-02 5 0 1 1.47059

- 1.47059
- 1.47059
- 0.000000

* File: CTFINPUT.DAT (CTF Input Data File)

900.000

6 44 45 36 20 46 47

2 36 48

3 43 8 43

4 2 10 8 43

3 49 8 49

_____ * Execution of RDTAPE Enter Input File name up to 12 characters ---WYEC67.DAT What is the type of weather tape? Enter 1 for (TRY), 2 (TMY), 3 (SOLMET), 4 (WYEC) Where is the weather station? Enter station ID number Enter the year (4 digits) Type the start date: Month, Day Type the stop date: Month, Day 7,9 --- The first day of the weather tape ----STTN=93734 WYR=1960 WMO=6 WDY=2 ---- The start day -----STTN=93734 WYR=1961 WMO=7 WDY=7 ----- The stop day -----STTN=93734 WYR=1961 WMO=7 WDY=9 3 DAYS WRITTEN ON THE OUTPUT FILE STOP ---- NORMAL END OF JOB -----* File: WYEC67.DAT ------(From July 7 to July 9) $9\,3\,7\,3\,4\,0\,8\,0\,0\,7\,2\,0\,6\,8\,1\,6\,0\,0\,0\,8\,2\,9\,9\,3\,0\,0\,5\,0\,5\,3\,0\,4\,0\,0\,0\,8\,8\,8\,8\,0\,5\,0\,0\,0\,7\,7\,7\,0\,5\,0\,0\,0\,7\,7\,7\,0\,2\,9\,8$

(5) Creation of Weather Data File

93734073070068160006298800707201600077707000777070007779999	19610707229
93734072070069180005298700706201101302907000777070007779999	19610707239
93734071070069180005298600603201103302606000777060007779999	19610708009
93734070069068230004298500802201101302603089888080007779999	19610708019
93734069068067230005298400501302605988805000777050007779999	19610708029
93734068067066230004298310301302602888803000777030007779999	19610708039
93734067066066250004298310404200400077704000777040007779999	19610708049
93734067066065340004298410400200404716004000777040007770000	19610708050
93734066065065340005298511008200504716010000777100007770035	19610708060
93734068067066340005298610402200802716004000777040007770168	19610708070
93734071068067320005298720601200805301806000777060007770347	19610708080
93734073070068020006298720303201800077703000777030007770502	19610708090
93734076071068020005298720303401900077703000777030007770632	19610708100
93734078071068000000298600302403001716003008888030007770732	19610708110
93734081069062340008298600202405500077702000777020007770784	19610708120
93734081064053320011298600202405500077702000777020007770781	19610708130
93734081065055340010298500200405002716002000777020007770705	19610708140
93734080067059340010298500501404502716003028888050007770591	19610708150
93734079065056340011298500707888800077707000777070007770326	19610708160
93734078064055360011298600702716005988807000777070007770391	19610708170
93734078064055320012298600702716005988807000777070007770247	19610708180
93734074063055320012298900707988800077707000777070007770073	19610708190
93734070060052320012298900701715007988807000777070007770000	19610708200
93734068059052320007299200808988800077708000777080007779999	19610708219
93734067058052320008299300404888800077704000777040007779999	19610708229
93734066059053320009299300303888800077703000777030007779999	19610708239
93734065058053320007299300301708002888803000777030007779999	19610709009
93734064058053320005299300201708001888802000777020007779999	19610709019
93734063057053340006299200000888800077700000777000007779999	19610709029
937340590560543600082992000007770007770000777000007779999	19610709039
93734059056054360007299300000077700077700000777000007779999	19610709049
937340590560543400062994000007770007770000777000007770000	19610709050
93734061058055340006299600000777000777000077700007770060	19610709060
9373406606005636000929970000007770007770000777000007770209	19610709070
93734067061057340008299800000708000077700000777000007770369	19610709080
9373407006205734000829980000007770007770000777000007770518	19610709090
93734072063058360007299900101403300077701000777010007770665	19610709100
93734075065059360006299900303403800077703000777030007770765	19610709110
93734077065058360008299800606405000077706000777060007770822	19610709120
93734077065057360012299700808404800077708000777080007770833	19610709130
93734078065056290009299700606405500077706000777060007770662	19610709140
93734080066057320007299500707405000077707000777070007770556	19610709150
93734077064056020009299500707405000077707000777070007770450	19610709160
93734078064055360009299500503405002708005000777050007770149	19610709170
93734077061050340008299600402405002708004000777040007770190	19610709180
93734075062053340008299700602405004708006000777060007770062	19610709190
93734071060052020007299900808710000077708000777080007770000	19610709200
93734069059052360004300100600504006710006000777060007779999	19610709219
93734070061054320012300200303711000077703000777030007779999	19610709229
93734066058051340010300200303711000077703000777030007779999	19610709239

* File: WTPOUT.DAT

			_							
STTN	YR	MO	DAY	HR	DB	DP	P	WS	CC	IZER
					(C)	(C)	(kPa)	(m/s)		(V/n
93734	1961	7	7	1	21.67	18.3	101.7	2.1	10	-1000_0
93734	1961	7	7	2	20.56	17.8	101.6	2 . 1	10	-1000 0
93734	1961	7	7	3	20.56	19.4	101.7	3.1	10	-1000 0
93734	1961	7	7	4	20.56	19.4	101.7	0 = 0	10	-1000 0

93734 1961	7	7	5	20.00	18.9	101.7	3.1	10	-1000.0
93734 1961	7	7	6	20.00	18.9	101.8	2.6	10	-1000.0
93734 1961	7	7	7	19.44	18.9	101.7	2.6	10	-1000.0
93734 1961	7	7	8	20.56	19.4	101.7	2.6	10	-1000.0
93734 1961	7	7	9	20.56	19.4	101.8	0.0	10	-1000.0
93734 1961	7	7	10	20.56	20.0	101.8	5.7	10	-1000.0
93734 1961	7	7	11	21.11	20.0	101.7	5.7	10	-1000.0
93734 1961	7	7	12	21.67	20.0	101.7	3.1	10	-1000.0
93734 1961	7	7	13	22.78	20.0	101.8	4.1	10	-1000.0
93734 1961	7	7	14	23.89	20.0	101.8	3.6	8	-1000.0
93734 1961	7	7	15	23.33	20.0	101.7	4.6	9	-1000.0
93734 1961	7	7	16	23.89	18.9	101.7	3.6	9	-1000.0
93734 1961	7	7	17	23.89	18.9	101.7	3.6	8	-1000.0
93734 1961	7	7	18	23.33	19.4	101.7	4.6	8	-1000.0
93734 1961	7	7	19	22.78	19.4	101.6	4.1	5	-1000.0
93734 1961	7	7	20	21.67	18.3	101.6	2.6	3	-1000.0
93734 1961	7	7	2 1	21.11	18.9	101.7	2.6	4	-1000.0
93734 1961	7	7	2 2	20.56	18.9	101.7	2.1	4	-1000.0
93734 1961	7	7	2 3	20.56	18.9	101.8	2.6	10	-1000.0
93734 1961	7	7	0	20.00	18.3	101.7	2.6	2	-1000.0
93734 1961	7	8	1	20.00	18.3	101.6	1.5	0	-1000.0
93734 1961	7	8	2	19.44	18.3	101.6	0.0	0	-1000.0
93734 1961	7	8	3	19.44	18.3	101.5	0.0	8	-1000.0
93734 1961	7	8	4	19.44	18.3	101.5	0.0	4	-1000.0
93734 1961	7	8	5	19.44	18.3	101.5	2.1	10	-1000.0
93734 1961	7	8	6	19.44	18.3	101.5	2.1	8	-1000.0
93734 1961	7	8	7	20.56	19.4	101.6	2.1	10	-1000.0
93734 1961	7	8	8	22.22	19.4	101.6	0.0	9	-1000.0
93734 1961	7	8	9	23.33	18.9	101.6	2.1	9	-1000.0
93734 1961	7	8	10	22.78	19.4	101.6	3.1	10	-1000.0
93734 1961	7	8	11	24.44	20.0	101.5	2.6	10	-1000.0
93734 1961	7	8	12	24.44	19.4	101.5	2.6	10	-1000.0
93734 1961	7	8	13	25.56	19.4	101.4	3.1	7	-1000.0
93734 1961	7	8	14	26.67	20.0	101.4	4.1	5	-1000.0
93734 1961	7	8	15	27.22	20.6	101.3	3.1	6	-1000.0
93734 1961	7	8	16	26.67	19.4	101.3	3.6	8	-1000.0
93734 1961	7	8	17	26.67	19.4	101.2	3.1	8	-1000.0
93734 1961	7	8	18	26.11	19.4	101.2	4.1	9	-1000.0
93734 1961	7	8	19	25.00	19.4	101.2	3.1	9	-1000.0
93734 1961	7	8	20	23.33	20.0	101.2	3.1	7	-1000.0
93734 1961	7	8	2 1	22.78	20.0	101.2	3.1	8	-1000.0
93734 1961	7	8	22	22.78	20.0	101.2	3.1	7	-1000.0
93734 1961	7	8	2 3	22.22	20.6	101.2	2.6	7	-1000.0
93734 1961	7	8	0	21.67	20.6	101.1	2.6	6	-1000.0
93734 1961	7	9	1	21.11	20.0	101.1	2.1	8	-1000.0
93734 1961	7	9	2	20.56	19.4	101.0	2.6	5	-1000.0
93734 1961	7	9	3	20.00	18.9	101.0	2.1	3	-1000.0
93734 1961	7	9	4	19.44	18.9	101.0	2.1	4	-1000.0
93734 1961	7	9	5	19.44	18.3	101.0	2.1	4	-1000.0
93734 1961	7	9	6	18.89	18.3	101.1	2.6	10	-1000.0
93734 1961	7	9	7	20.00	18.9	101.1	2.6	4	-1000.0
93734 1961	7	9	8	21.67	19.4	101.1	2.6	6	-1000.0
93734 1961	7	9	9	22.78	20.0	101.2	3.1	3	-1000.0
93734 1961	7	9	10	24.44	20.0	101.2	2.6	3	-1000.0
93734 1961	7	9	11	25.56	20.0		0.0	3	
93734 1961	7	9	1 2		16.7	101.1			-1000.0
93734 1961	7	9	13	27.22		101.1	4.1	2	~1000.0
			14	27.22	11.7	101.1	5.7	2	-1000.0
93734 1961	7	9		27.22	12.8	101.1	5 . 1	2	-1000 0
93734 1961	7		15	26.67	15.0	101.1	5.1	5	-1000.0
93734 1961	7	9	1 6	26.11	13.3	101.1	5.7	7	-1000 0

```
12.8 101.1
12.8 101.1
12.8 101.2
11.1 101.2
93734 1961 7 9 17

93734 1961 7 9 18

93734 1961 7 9 19

93734 1961 7 9 20

93734 1961 7 9 21

93734 1961 7 9 22

93734 1961 7 9 22

93734 1961 7 9 23
                                                       25.56
                                                                             12.8
12.8
101.2
11.1
101.2
                                                                                                                       5.7 7 -1000.0
                                                    25.56
23.33
21.11
20.00
19.44
                                                                                                                       6.2 7 -1000.0
6.2 7 -1000.0
6.2 7 -1000.0
3.6 8 -1000.0
4.1 4 -1000.0
4.6 3 -1000.0
3.6 3 -1000.0
                                                                              11.1
                                                                                                  101.4
                                                                              11.7
                                                         18.89
                                                                                                 101.4
93734 1961
                         7
                                   9 0
                                                          18.33
                                                                               11.7
                                                                                                 101.4
```

NOTE: Data in the columns greater than 80 are truncated.

```
-----
* Execution of CRWDTA
-----
   ******************
          CREATING A WEATHER DATA FILE
   *************
 Enter LATITUDE, LONGITUDE, and TIME ZONE:
38.85
77.03
 Enter one of the following:
 1 - to process the weather data in file WTPOUT.DAT
  (previously read from weather tape by program RDTAPE)
 2 - to generate clear sky design data
 3 - to generate cloudy sky design data
 Enter output file name (up to 12 characters)
 or carriage return for default name: WEATHER.DAT
```

STOP --- END OF CREATING WEATHER FILE -----

File: WEATHER.DAT

 . WEA		.R.DAI							
 7	7	38	. 85 77	. 03	5.00 1				
7	7	0.0	20.0000	-0.6220	101.7000	2.6000	0.0000	0.0000	
7	7	1.0	21.6700	-0.6220	101.7000	2.1000	0.0000	0.0000	
7	7	2.0	20.5600	-0.6220	101.6000	2.1000	0.0000	0.0000	
7	7	3.0	20.5600	-0.6220	101.7000	3.1000	0.0000	0.0000	
7	7	4.0	20.5600	-0.6220	101.7000	0.0000	0.0000	0.0000	
7	7	5.0	20.0000	-0.6220	101.7000	3.1000	0.0000	0.0000	
7	7	6.0	20.0000	-0.6220	101.8000	2.6000	0.1969	5.7888	
7	7	7.0	19.4400	-0.6220	101.7000	2.6000	0.7688	31.1430	3
7	7	8.0	20.5600	-0.6220	101.7000	2.6000	0.1449	22.0106	2
7	7	9.0	20.5600	-0.6220	101.8000	0.0000	0.1269	27.8079	2
7	7	10.0	20.5600	-0.6220	101.8000	5.7000	0.4839	65.8495	6
7	7	11.0	21.1100	-0.6220	101.7000	5.7000	2.3168	161 7803	16
7	7	12.0	21.6700	-0.6220	101.7000	3.1000	22.0643	360.2322	38
7	7	13.0	22.7800	-0.6220	101.8000	4.1000	107 1346	429.5686	53
7	7	14.0	23.8900	-0.6220	101.8000	3.6000	147 1323	413.1729	5 4
7	7	15.0	23.3300	-0.6220	101.7000	4.6000	378.0356	315.3931	63
7	7	16.0	23.8900	-0.6220	101.7000	3.6000	769 6187	138.2964	68
7	7	17.0	23.8900	-0.6220	101.7000	3.6000	181.6750	245.9064	3 4
7	7	18.0	23.3300	-0.6220	101.7000	4.6000	115.4136	168.2981	2 1

7	7 19.0	22.7800	-0.6220	101.6000	4.1000	6.6053	55.7066	5
7	7 20.0	21.6700	-0.6220	101.6000	2.6000	0.0000	0.0000	
7	7 21.0	21.1100	-0.6220	101.7000	2.6000	0.0000	0.0000	
7	7 22.0	20.5600	-0.6220	101.7000	2.1000	0.0000	0.0000	
7	7 23.0	20.5600	-0.6220	101.8000	2.6000	0.0000	0.0000	
7	7 24.0	20.0000	-0.6220	101.7000	2.6000	0.0000	0.0000	
7	8 1.0	20.0000	-0.6220	101.6000	1.5000	0.0000	0.0000	
7	8 2.0	19.4400	-0.6220	101.6000	0.0000	0.0000	0.0000	
7	8 3.0	19.4400	-0.6220	101.5000	0.0000	0.0000	0.0000	
7	8 4.0	19.4400	-0.6220	101.5000	0.0000	0.0000	0.0000	
7	8 5.0	19.4400	-0.6220	101.5000	2.1000	0.0000	0.0000	
7	8 6.0	19.4400	-0.6220	101.5000	2.1000	0.5209	9.2447	
7	8 7.0	20.5600	-0.6220	101.6000	2.1000	4.9306	77.5720	7
7	8 8.0	22.2200	-0.6220	101.6000	0.0000	28.4925	188.5826	20
7	8 9.0	23.3300	-0.6220	101.6000	2.1000	197.4422	285.1067	41
7	8 10.0	22.7800	-0.6220	101.6000	3.1000	191.8022	347.8713	49
7	8 11.0	24.4400	-0.6220	101.5000	2.6000	262.0825	376.1016	60
7	8 12.0	24.4400	-0.6220	101.5000	2.6000	237.6303	408.2700	63
7	8 13.0	25.5600	-0.6220	101.4000	3.1000	741.7134	197.3627	90
7	8 14.0	26.6700	-0.6220	101.4000	4.1000	15.9343	331.6353	3 4
7	8 15.0	27.2200	-0.6220	101.3000	3.1000	300.4958	341.8843	59
7	8 16.0	26.6700	-0.6220	101.3000	3.6000	394.5117	262.8533	5 4
7	8 17.0	26.6700	-0.6220	101.2000	3.1000	415.3787	199.4689	42
7	8 18.0	26.1100	-0.6220	101.2000	4.1000	211.0219	164.0207	2 4
7	8 19.0	25.0000	-0.6220	101.2000	3.1000	4.9064	49.0572	4
7	8 20.0	23.3300	-0.6220	101.2000	3.1000	0.0000	0.0000	•
7	8 21.0	22.7800	-0.6220	101.2000	3.1000	0.0000	0.0000	
7	8 22.0	22.7800	-0.6220	101.2000	3.1000	0.0000	0.0000	
7	8 23.0	22.2200	-0.6220	101.2000	2.6000	0.0000	0.0000	
7	8 24.0	21.6700	-0.6220	101.1000	2.6000	0.0000	0.0000	
7	9 1.0	21.1100	-0.6220	101.1000	2.1000	0.0000	0.0000	
7	9 2.0	20.5600	-0.6220	101.0000	2.6000	0.0000	0.0000	
7	9 3.0	20.0000	-0.6220	101.0000	2.1000	0.0000	0.0000	
7	9 4.0	19.4400	-0.6220	101.0000	2.1000	0.0000	0.0000	
7	9 5.0	19.4400	-0.6220	101.0000	2.1000	0.0000	0.0000	
7	9 6.0	18.8900	-0.6220	101.1000	2.6000	18.3946	38.7504	4
7	9 7.0	20.0000	-0.6220	101.1000	2.6000	235.8925	126.3230	19
7	9 8.0	21.6700	-0.6220	101.2000	2.6000	549.5164	141.5620	40
7	9 9.0	22.7800	-0.6220	101.2000	3.1000	664.4600	155.3863	58
7	9 10.0	24.4400	-0.6220	101.2000	2.6000	721.2656	168.6929	73
7	9 11.0	25.5600	-0.6220	101.1000	0.0000	759.7915	176.3566	85
7	9 12.0	27.2200	-0.6220	101.1000	4.1000	766.8362	185.3893	91
7	9 13.0	27.2200	-0.6220	101.1000	5.7000	742.5952	196.9268	90
7	9 14.0	27.2200	-0.6220	101.1000	5.1000	638.1118	233.0332	81
7	9 15.0	26.6700	-0.6220	101.1000	5.1000	504.5327	265.9695	68
7	9 16.0	26.1100	-0.6220	101.1000	5.7000	89.4878	315.3828	3 7
7	9 17.0	25.5600	-0.6220	101.1000	5.7000	504.6819	175.9864	45
7	9 18.0	25.5600	-0.6220	101.1000	6.2000	401.5051	137.2548	28
7	9 19.0	23.3300	-0.6220	101.1000	6.2000	41.8718	77.0723	8
7	9 20.0	21.1100	-0.6220	101.2000	6.2000	0.0000	0.0000	0
7	9 21.0	20.0000	-0.6220	101.2000				
7	9 22.0	19.4400	-0.6220	101.3000	3.6000 4.1000	0.0000	0.0000	
7	9 23.0	18.8900	-0.6220	101.4000	4.1000	0.0000	0.0000	
7	9 24.0	18.3300	-0.6220	101.4000	3.6000	0.0000	0.0000	
,	7 24.0	10,3300	-0.0220	101.4000	3,6000	0.000	0.0000	

NOTE: Data in the columns greater than 80 are truncated.

B. Simulation

ISSHEL =1

(1) Allocation of Output Files

Default names of the output files are MODSUM.DAT, MODOUT.DAT, and INITOUT.DAT.

(2) Execution of MODSIM for Initialization

Minimum time step, maximum time step, and simulation stopping time are 1, 1000, and 86400 seconds, respectively.

(3) Continuation of Simulation

* Execution of MODSIM for Simulation using the Initialization File

Enter MINIMUM TIME STEP, MAXIMUM TIME STEP, and SIMULATION STOPPING TIME 1,1000,259200

Is the Building Shell Model used? (N)

Will the Initialization File be called? (N)

What is the INDEX NUMBER of the SUPERBLOCK for the Building Shell?

Enter the time of day (in hours after midnight) at which the simulation is to begin

Use default file names for all files? (Y/N) (Y)

Do you want Diagnostic Information to be written (N)?

Would you like to monitor the Simulation on Screen? (N)

----- SIMULATION BEGINS ------- FIRST WEATHER DATA SET HAS BEEN READ

---- INITIALIZATION FILE HAS BEEN WRITTEN ---STOP -----END OF SIMULATION -----

* File: MODOUT.DAT (for the second run)

SUPERBLOCK 1 1.00

SUPERBLOCK 2 1.00			
20.0006 20.0006			20.0000
7.400326E-04 7.400326E-04	7 . 400324E-04		
SUPERBLOCK 2 3.00			
20.0012 20.0012	20.0379	22.1665	20.0000
7.400652E-04 7.400652E-04	7.400645E-04		
SUPERBLOCK 2 361.00			
20.1085 20.1074	21.3665	22.1665	20.0000
7.458397E-04 7.458394E-04	7 . 4 2 8 8 0 9 E - 0 4		
SUPERBLOCK 1 900.00			
20.2759 19.0246	20.2807	20.2373	20.2915
20.2914 20.3087	20.2832	20.5286	20.7815
2.963960E-03 -1.935803E-03		0.000000	0.000000
0.00000			
SUPERBLOCK 2 1030.00			
20.2914 20.2848	21.9241	22.1665	20.0000
7.564859E-04 7.564828E-04	7 447517E-04		
SUPERBLOCK 1 1800.00			
	20.4744	20.3599	20.4871
20.4858 20.3460	20.3776	20.8428	21.3204
8.122213E-04 -5.813498E-03		0.000000	0.000000
0.000000	-0.310032	0.00000	0.00000
SUPERBLOCK 2 2030.00			
20.5684 20.5509	22.0615	22.1665	20.0000
7 . 7 2 2 4 5 5 E - 0 4 7 . 7 2 2 3 1 0 E - 0 4	7.456099E-04		
SUPERBLOCK 1 2700.00			
20.5417 19.3457		20.5468	20.7238
20.7221 20.4563		21.0963	21.6165
-1.365668E-02 -1.414384E-02	-0.274801	0.000000	0.000000
0.00000			
SUPERBLOCK 2 3030.00			
20.8199 20.8021		22.1665	20.0000
7.880400E-04 7.880139E-04	7.459365E-04		
SUPERBLOCK 1 3600.00			
20.7171 19.5224	20.9170	20.7383	20.9268
20.9277 20.6030	20.7128	21.2837	21.6700
-3.207046E-02 -1.868834E-02	-0.226565	0.000000	0.000000
0.00000			
SUPERBLOCK 2 4030.00			
21.0320 21.0371	22.1258	22.1665	20.0000
8.040539E-04 8.040317E-04			
SUPERBLOCK 1 4500.00			
20.8678 19.6788	21.0512	20.8912	21.0556
21.0583 20.7467		21.4103	21.4980
-4.560097E-02 -1.715894E-02		0.000000	0.000000
0.00000	0.1/0/22	0.00000	0.00000
SUPERBLOCK 2 5030.00			
21.2083 21.2612	77 1303	22.1665	20.0000
8.203641E-04 8.203788E-04		22.1003	20.0000
	7.4013346-04		
SUPERBLOCK 1 5400.00	2 4 4 0 0 0	24 0040	0.4 . 0.4.0
20.9771 19.8039	21.1038	21.0048	21.1012
21.1027 20.8734		21 4787	21 1868
-6.460547E-02 -6.795895E-02	-0.185209	0.000000	0.000000
0.00000			
SUPERBLOCK 2 6030.00			
	22.1425	22.1665	20.0000
8.363114E-04 8.363035E-04	7.461291E-04		
SUPERBLOCK 1 6300.00			
21.0412 19.8925	21.0877	21.0771	21 0774
21.0786 20.9682	21.0801	21 4985	20 8396

-8.624774E-02	-8.800596E-02	-0.187045	0.000000	0.000000
0.00000				
SUPERBLOCK 2	7030 00			
21.4201	21.4618 8.513539E-04	22.1407	22.1665	20.0000
8 . 5 1 3 8 2 5 E - 0 4	8.513539E-04	7.459873E-04		
SUPERBLOCK 1				
	19.9451	21.0291	24 1050	04 0440
		21.0291	21.1050	
	21.0245	21.1266	21.4826	
-0.106536	-0.104631	-0.197710	0.000000	0 0 0 0 0 0 0
0.00000				
	0000 00			
SUPERBLOCK 2				
21.4587	21.5024	22.1354	22.1665	20 0000
8 651502E-04	8.651000E-04	7 457146E-04		
SUPERBLOCK 1				
	19.9696		21 1058	
20.9433 -0.121632	21.0477	21.1412	21 4495	20.4258
-0 121632	-0 116654	-0 210883	0 000000	0.000000
0.000000	• . • • • • • • • • • • • • • • • • • •	0 010000	0.00000	4.00000
SUPERBLOCK 1				
21.0460	19.9751	20.9115	21.0928	20.8857
20.8906	21 0481	21.1434	21 4171	
	0 12002	0.00000	0.00000	0 00000
	-0.120037	-0.223062	0.00000	0.00000
0.00000				
SUPERBLOCK 2	9030.00			
21 4581	21 5124	22 1255	22 1445	20 0000
21.4001	21.5134 8.775219E-04	22.1233	22.1003	20.000
8.775 Y Y Y E - U 4	8.775219E-04	7.454029E-04		
(OUTP	UTS FROM TIME=9	900 TO 251796	ARE DELETED)	
SUPERBLOCK 1 25				
21 9522	20.9661			
21 9522	20.9661			
21.9522 21.2573	20.9661 22.1396	22.0591	21.3677	19.4400
21.9522 21.2573 -0.263559	20.9661	22.0591	21.3677	19.4400
21.9522 21.2573 -0.263559 0.000000	20.9661 22.1396 -0.238100	22.0591	21.3677	19.4400
21.9522 21.2573 -0.263559	20.9661 22.1396 -0.238100	22.0591	21.3677	19.4400
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25	20.9661 22.1396 -0.238100 2796.00	22.0591 -0.265956	21.3677 0.000000	19.4400
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498	20.9661 22.1396 -0.238100 2796.00 22.3719	22.0591 -0.265956 22.0977	21.3677 0.000000 22.1665	19.4400
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03	22.0591 -0.265956 22.0977	21.3677 0.000000 22.1665	19.4400
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00	22.0591 -0.265956 22.0977 7.443607E-04	21.3677 0.000000 22.1665	19.4400 0.000000 20.0000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00	22.0591 -0.265956 22.0977 7.443607E-04	21.3677 0.000000 22.1665	19.4400 0.000000 20.0000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074	22.0591 -0.265956 22.0977 7.443607E-04	21.3677 0.000000 22.1665 21.7072	19.4400 0.000000 20.0000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050	21.3677 0.000000 22.1665 21.7072 21.2637	19.4400 0.000000 20.0000 20.9788 19.3084
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050	21.3677 0.000000 22.1665 21.7072 21.2637	19.4400 0.000000 20.0000 20.9788 19.3084
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050	21.3677 0.000000 22.1665 21.7072 21.2637	19.4400 0.000000 20.0000 20.9788 19.3084
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050	21.3677 0.000000 22.1665 21.7072 21.2637	19.4400 0.000000 20.0000 20.9788 19.3084
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000	19.4400 0.000000 20.0000 20.9788 19.3084 0.000000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000	19.4400 0.000000 20.0000 20.9788 19.3084 0.000000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000	19.4400 0.000000 20.0000 20.9788 19.3084 0.000000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000	19.4400 0.000000 20.0000 20.9788 19.3084 0.000000 20.7517
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665	19.4400 0.000000 20.0000 20.9788 19.3084 0.000000 20.0000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665	19.4400 0.000000 20.0000 20.9788 19.3084 0.000000 20.0000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665	19.4400 0.000000 20.0000 20.9788 19.3084 0.000000 20.0000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307 20.6115	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307 20.6115 -0.285258	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307 20.6115	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.0000000 SUPERBLOCK 1 25 21.2307 20.6115 -0.285258 0.0000000	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537 -0.255413	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307 20.6115 -0.285258 0.000000 SUPERBLOCK 2 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537 -0.255413	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101 20.6300 21.4194 -0.341664	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000 21.3117 21.0885 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000 20.5824 19.0314 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307 20.6115 -0.285258 0.000000 SUPERBLOCK 2 25 21.7180	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537 -0.255413	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101 20.6300 21.4194 -0.341664	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000 21.3117 21.0885 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000
21.9522 21.2573 -0.263559 0.0000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.0000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.0000000 SUPERBLOCK 1 25 21.2307 20.6115 -0.285258 0.000000 SUPERBLOCK 2 25 21.7180 1.268979E-03	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537 -0.255413 4796.00 21.8235 1.301975E-03	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101 20.6300 21.4194 -0.341664	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000 21.3117 21.0885 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000 20.5824 19.0314 0.000000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307 20.6115 -0.285258 0.000000 SUPERBLOCK 2 25 21.7180 1.268979E-03 SUPERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537 -0.255413 4796.00 21.8235 1.301975E-03 5600.00	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101 20.6300 21.4194 -0.341664 22.0655 7.440925E-04	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000 21.3117 21.0885 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000 20.5824 19.0314 0.000000
21.9522 21.2573 -0.263559 0.000000 SUPERBLOCK 2 25 22.3498 1.271887E-03 SUFERBLOCK 1 25 21.6665 21.0090 -0.247862 0.000000 SUPERBLOCK 2 25 22.0627 1.270476E-03 SUPERBLOCK 1 25 21.4073 20.7804 -0.234484 0.000000 SUPERBLOCK 1 25 21.2307 20.6115 -0.285258 0.000000 SUPERBLOCK 2 25 21.7180 1.268979E-03 SUPERBLOCK 1 25	20.9661 22.1396 -0.238100 2796.00 22.3719 1.306680E-03 2900.00 20.7074 21.8346 -0.225442 3796.00 22.1211 1.304380E-03 3800.00 20.4740 21.5584 -0.214536 4700.00 20.3158 21.3537 -0.255413 4796.00 21.8235 1.301975E-03	22.0591 -0.265956 22.0977 7.443607E-04 21.0275 21.8050 -0.291922 22.0852 7.441964E-04 20.7989 21.5725 -0.316101 20.6300 21.4194 -0.341664 22.0655 7.440925E-04	21.3677 0.000000 22.1665 21.7072 21.2637 0.000000 22.1665 21.4561 21.1705 0.000000 21.3117 21.0885 0.000000	19.4400 0.000000 20.00000 20.9788 19.3084 0.000000 20.7517 19.1715 0.000000 20.5824 19.0314 0.000000

20.4205			21.0109	
	0.220511	-0.359827	0.000000	0.000000
0.000000				
SUPERBLOCK 2 25579				
		22.0548	22.1665	20.0000
1.267662E-03	1.299750E-03	7.440553E-04		
SUPERBLOCK 1 25650	0.00			
20.8110	19.9485	20.2499	20.8892	20.2050
20.2323	20.9246	21.0394	20.9373	18.7490
-0.220682 -6	0.203429	-0.380644	0.000000	0.000000
0.000000				
SUPERBLOCK 2 25679				
21.2297	21.3887	22.0451	22.1665	20.0000
1.266833E-03				
SUPERBLOCK 1 25740	0.00			
20.6175	19.7789	20.0705	20.6980	20.0268
20.0533	20.7238	20.8625	20.8683	18.6086
-0.208762 -0	0.193080	-0.400627	0.000000	0.000000
0.00000				
SUPERBLOCK 2 25779	6.00			
21.0301	21.2090	22.0363	22.1665	20.0000
1.266805E-03				
SUPERBLOCK 1 25830				
20.4375	19.6212	19.9016	20.5214	19.8589
	20.5357	20.6978	20.8033	18.4689
	0.185770		0.000000	0.000000
0.00000				
SUPERBLOCK 2 25879	6.00			
		22.0282	22.1665	20.0000
1.267894E-03				20
SUPERBLOCK 1 259200				
	19.4752	19.7435	20.3584	19.7015
		20.5448		
			0.000000	0.000000
0.000000				0.00000
SUPERBLOCK 2 25920	0 00			
		22.0223	22 1445	20.0000
1.268553E-03	1 2077105-03	7 4444005 - 04	22.1003	20.000
1.2003332-03	1.2///102-03	/ . 444000FP 4		

C. Postprocessing - Output Data Analysis

Execution of SORTSB program and plotting using the output of SORTSB.

Figure D-3. Ceiling inner surface temperatures of the three-zone model

Figure D-4. Inner surface temperatures of the selected building surfaces in Zone 1.

Figure D-5. Outdoor, zone, supply, and inlet air temperatures in Zone 3

Figure D-6. Zone air temperatures in the three-zone model

Figure D-7. Convective heat flow rates from the building inner surfaces

Figure D-8. Solar radiation influxes from a weather tape

NBS-114A (REV. 2-80)					
U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Performing Organ. Report No. 3. Pt	blication Date		
BIBLIOGRAPHIC DATA	NBSIR-86/3331		MARCH 1986		
SHEET (See instructions) 4. TITLE AND SUBTITLE	NB31K-007 3331				
	Contract on 1 Equipment	Ci-ulatian December			
Building Loads Cal	Systems and Equipment	Simulation Program:			
building Loads Cal	lculation				
5. AUTHOR(S)					
Cheol Park, Daniel	l R. Clark, George E.	Kelly			
6. PERFORMING ORGANIZA	TION (If joint or other than NBS,	, see instructions) 7. Cor	tract/Grant No.		
NATIONAL BUREAU OF					
			e of Report & Period Covered		
WASHINGTON, D.C. 20234					
9. SPONSORING ORGANIZAT	TON NAME AND COMPLETE A	DDRESS (Street, City, State, ZIP)			
9	and Community Systems	•			
U.S. Department of H		U.S. Department of De			
1000 Independence Av		Port Hueneme, CA 930	+3		
Washington, DC 2058					
10. 3011 EENENTART NOTE	9				
		S Software Summary, is attached.			
 ABSTRACT (A 200-word of bibliography or literature) 		significant information. If document inc	ludes a significant		
A non-proprietary building system simulation program called HVACSIM, which stands					
for HVAC SIMulation PLUS other systems, has been developed at the National Bureau of					
Standards (NBS) in an effort to understand the dynamic interactions between a building					
shell, an HVAC system, and building controls. HVACSIM consists of a main simulation					
program, a library of HVAC system component models, a building shell model, and inter-					
active front end input data generation programs.					
The main simulation program employs a hierarchical, modular approach and advanced					
equation solving techniques to perform dynamic simulations of building/HVAC/control systems. In the building shell model, a fixed time step selected by the user is					
-	_	_			
employed, while a variable time step approach is used in the HVAC and control systems portion of a simulation and the zone model.					
This report presents the overall architecture of the HVACSIM program, algorithms					
used in the main simulation program, a brief discussion of the numerical methods used					
in solving a system of non-linear simultaneous equations, integrating stiff ordinary					
differential equations and interpolating data and descriptions of the building shell					
and zone models. Conduction transfer functions, weather data, and simulation procedure					
are also described. This report is the third document, which describes the building model, supplied with HVACSIM+.					
model, Supplied with					
12. KEY WORDS (Six to twelv	e entries; alphabetical order; ca	pitalize only proper names; and separat	e key words by semicolons)		
building dynamics; building simulation; building system modeling; computer simulation					
		ing of building systems; d			
	namic simulations; HV	AC system simulations; HVA	-		
13. AVAILABILITY			14. NO. OF PRINTED PAGES		
X Unlimited					
For Official Distribution. Do Not Release to NTIS Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.					
Order From Superinter 20402.	ident of Documents, U.S. Govern	ment Printing Office, washington, D.C.	15. Price		
X Order From National	\$22.95				

