# Échantillons Aléatoires et lois d'échantillonnage

#### Wissem Maazoun

École Polytechnique de Montréal. Département de Mathématiques et de génie industriel

←□ → ←□ → ← □ → □ → ○ へ ○

Échantillons Aléatoires et lois d'échantillonnage 1/15

Échantillons Aléatoires et lois d'échantillonnage

Statistiques et distributions d'échantilonnage

3 / 15

## Définition

Soit  $X_1, \ldots, X_n$  un échantillon aléatoire d'une v.a. X. Toute fonction  $h(X_1, \ldots, X_n)$  qui ne dépend que de  $X_1, X_2, \ldots, X_n$ constitue une statistique.

- **1** La moyenne  $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$  est une statistique.
- 2 La variance  $S^2 = \frac{\sum_{i=1}^{n} (X_i \bar{X})^2}{n-1}$  est une statistique.
- 3 La médiane de l'échantillon est une statistique.

Une statistique  $h(X_1, X_2, \dots, X_n)$  étant une fonction de v.a. est aussi une v.a. Sa distribution est qualifiée de distribution échantillonnale. Chaque statistique possède une distribution échantillonnale; cette distribution dépend de celle de la v.a. X, et de la taille *n* de l'échantillon.

## Introduction

L'inférence statistique sur les paramètres (moyenne, variance, etc.) d'une variable X définie dans une population se fait à l'aide d'un échantillon de la population étudiée. Un tel échantillon doit être tiré au hasard (de la population) pour être représentatif de celle-ci. On parle alors d'échantillon aléatoire.

## Échantillons aléatoires

Échantillons Aléatoires et lois d'échantillonnage

Soit X une v.a. (i.e. une population). Un échantillon aléatoire de taille n de la v.a. X est une suite de n v.a.  $X_1, X_2, \ldots, X_n$ indépendantes et identiquement distribuées (i.i.d.) selon la loi de probabilité de X. lorsque les données  $x_1, \ldots, x_n$  sont obtenues, on dit qu'on a une réalisation de l'échantillon.

Wissem Maazoun

Échantillons Aléatoires et lois d'échantillonnage 2 / 15

Échantillons Aléatoires et lois d'échantillonnage

Statistiques et distributions d'échantilonnage

Échantillons Aléatoires et lois d'échantillonnage Statistiques et distributions d'échantilonnage

Statistiques et distributions d'échantilonnage

## Exemple

Soit une population de 3 unités pour lesquelles X prend les valeurs 0, 1, 2. Si on extrait de cette population un échantillon aléatoire de taille 2 (avec remise), déterminons la distribution échantillonnale de  $\bar{X}$ .

## Remarque

En pratique les populations étudiées sont nombreuses, voire infinies; le nombre d'échantillons possibles est également très grand, voire infini. La distribution échantillonnale de la moyenne  $\bar{X}$ est donc en général de type continu (loi normale).

Échantillons Aléatoires et lois d'échantillonnage 4 / 15

Échantillons Aléatoires et lois d'échantillonnage

La loi du khi-deux (ou khi-carré)

#### Définition

Soient  $Z_1, Z_2, \ldots, Z_k$  des v.a. i.i.d de loi N(0, 1). La v.a. définie par

$$\chi_k^2 = Z_1^2 + Z_2^2 + \ldots + Z_k^2$$

est dite de loi khi-deux à k degrés de liberté. Sa densité celle d'une Gamma avec r = k/2 et  $\lambda = 1/2$  est

$$f(x) = \begin{cases} \frac{x^{k/2-1}}{2^{k/2}\Gamma(k/2)}e^{-x/2} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

On peut montrer (propriétés de loi Gamma) que  $E(\chi_k^2) = k$  et

Pour une valeur  $\alpha$ , telle que  $0 \le \alpha \le 1$  on définit le centile  $\chi^2_{\alpha \cdot \nu}$ par la relation

$$P(\chi_k^2 > \chi_{\alpha,k}^2) = \alpha.$$

Échantillons Aléatoires et lois d'échantillonnage

Théorème

Soit X une v.a. de moyenne  $\mu = E(X)$  et de variance  $\sigma^2 = V(X)$ , et soit  $X_1, \ldots, X_n$  un échantillon aléatoire de taille n de la v.a. X. Si la v.a. X est de loi normale ou si la taile de l'échantillon est grande, alors

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 i.e.  $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ .

## Remarque

D'autres lois de probabilité permettent de caractériser les distributions échantillonnage de certaines statistiques usuelles.

- **1** La loi du Khi-deux  $(\chi^2)$ .
- 2 La loi T de Student.
- La loi F de Fisher.

Wissem Maazoun

Échantillons Aléatoires et lois d'échantillonnage 5 / 15

Échantillons Aléatoires et lois d'échantillonnage

6 / 15

La loi du khi-deux (ou khi-carré)

## Exemples

$$P(\chi_{10}^2 > 18, 31) = 0,05$$
 i.e.  $\chi_{0,05;10}^2 = 18,31$ .  
 $P(\chi_4^2 \le 0,48) = 1 - P(\chi_4^2 > 0,48) = 1 - 0,975 = 0,025$ .





Figure 9.1 La fonction de densité de différentes lois du khi-carré

) Figure 9.2 Le centile  $\chi^2_{i}(\alpha)$  d'une loi du khi-carré.

Échantillons Aléatoires et lois d'échantillonnage 7 / 15

Échantillons Aléatoires et lois d'échantillonnage

La loi du khi-deux (ou khi-carré)

9 / 15

## Théorème : Utilisation en inférence statistique

Soit  $X_1, X_2, \dots, X_n$  un échantillon aléatoire d'une v.a X de loi  $N(\mu, \sigma^2)$ . Alors

$$(n-1)\frac{S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} \sim \chi_{n-1}^2,$$

où 
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$
.

## Exemple

Soit  $X_1, \ldots, X_{10}$  un échantillon aléatoire d'une v.a X de loi  $N(\mu, 4)$ . Calculer  $P(S^2 > 7, 52)$ .

Échantillons Aléatoires et lois d'échantillonnage 9 / 15

Théorème : Additivité de la loi khi-deux

La loi du khi-deux (ou khi-carré)

Soient  $\chi^2_{k_1}, \chi^2_{k_2}, \dots, \chi^2_{k_n}$  des v.a indépendantes distribuées selon des lois Khi-deux, alors la v.a  $Y = \chi_{k_1}^2 + \chi_{k_2}^2 + \ldots + \chi_{k_n}^2 = \sum_{i=1}^p \chi_{k_i}^2$ suit une loi  $\chi^2_k$  avec  $k = k_1 + k_2 + \ldots + k_p$  degrés de liberté.

### Exemple

Soient  $X_1$  et  $X_2$  deux v.a indépendantes telles que  $X_1 \sim \chi^2$  et  $X_2 \sim \chi_1^2$ . Calculer  $P(X_1 + X_2 \le 7, 81)$ .

Échantillons Aléatoires et lois d'échantillonnage 8 / 15

Échantillons Aléatoires et lois d'échantillonnage

La loi du khi-deux (ou khi-carré)

#### Définition

Soit Z une v.a de loi N(0,1), et soit  $\chi_k^2$  une v.a de loi khi-deux à k degré de liberté, telle que Z et  $\chi^2_k$  sont indépendantes. La v.a  $T_k = \frac{Z}{\sqrt{\chi_k^2/k}}$  est dite de loi  $T_k$  de Student avec k degré de liberté.

Sa fonction de densité est

$$f(t) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{\pi k} \Gamma(k/2)} \frac{1}{(\frac{t^2}{k}+1)^{\frac{k+1}{2}}}, \qquad -\infty < t < \infty$$

On peut montrer que  $E(T_k) = 0$  et  $V(T_k) = \frac{k}{k-2}$  si k > 2. Pour une valeur  $\alpha$ , telle que  $0 \le \alpha \le 1$  on définit le centile  $t_{\alpha:k}$  par la relation  $P(T_k > t_{\alpha:k}) = \alpha$ .

La distribution d'une v.a de loi  $T_k$  est symétrique par rapport à sa moyenne 0. On a donc  $-t_{\alpha;k} = t_{1-\alpha;k}$ .



Wissem Maazoun

Échantillons Aléatoires et lois d'échantillonnage 10 / 15

Échantillons Aléatoires et lois d'échantillonnage

∟La loi T de Student

12 / 15

## Théorème : Utilisation en inférence statistique

Soit  $X_1, X_2, \dots, X_n$  un échantillon aléatoire d'une v.a X de loi  $N(\mu, \sigma^2)$ . Alors

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim T_{n-1},$$

où 
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$
  $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ ,

de plus  $\bar{X}$  et  $S^2$  sont des v.a indépendantes.

### Exemple

Soit  $X_1, X_2, X_3, X_4$  un échantillon aléatoire d'une v.a X de loi  $N(0, \sigma^2)$ . Calculer  $P(\frac{\bar{X}}{S} > 0, 819)$ .

## Exemples

- **1**  $t_{0.25\cdot4} = 0.741$  i.e  $P(T_4 > 0.741) = 0.25$ .
- ② On a aussi  $t_{0.75:4} = -t_{0.25:4} = -0.741$ .



) Figure 9.3 La fonction de densité de différentes lois de t.

Figure 9.4 Les centiles de la loi de t.

Échantillons Aléatoires et lois d'échantillonnage 11/15

◆ロト ◆御 ト ◆恵 ト ◆恵 ト 恵 めなべ

### Définition

Soit  $\chi_u^2$  et  $\chi_v^2$  deux v.a indépendantes de lois khi-deux à u et vdegrés de liberté respectivement. Alors, la v.a  $F = \frac{\chi_u^2/u}{v^2/v}$  est dite de loi F de Fisher à u et v degré de liberté. On la note  $F_{u:v}$ . Sa fonction de densité est

$$f(x) = \begin{cases} \frac{\Gamma(\frac{u+v}{2})}{\Gamma(u/2)\Gamma(v/2)} \frac{\left(\frac{u}{v}\right)^{u/2} x^{u/2-1}}{\left[\left(\frac{u}{v}\right)x+1\right]^{\frac{u+v}{2}}} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

Il est démontré que  $E(F_{u:v}) = \frac{v}{v-2}$  si v > 2 et

$$V(F_{u;v}) = \frac{2v^2(u+v-2)}{u(v-2)^2(v-4)}$$
 si  $v > 4$ .

Pour une valeur  $\alpha$ , telle que  $0 \le \alpha \le 1$ , on définit le centile  $f_{\alpha:u,v}$ par la relation

$$P(F_{u;v} > f_{\alpha;u,v}) = \alpha.$$

Wissem Maazoun Échantillons Aléatoires et lois d'échantillonnage 13 / 15

Échantillons Aléatoires et lois d'échantillonnage

La loi F de Fisher

## Théorème : Utilisation en inférence statistique

Soient  $X_{11}, X_{12}, \ldots, X_{1n_1}$  et  $X_{21}, X_{22}, \ldots, X_{2n_2}$  deux échantillons aléatoires indépendants provenant de deux populations (ou v.a  $X_1$ et  $X_2$ ) de lois  $N(\mu_1, \sigma_1^2)$  et  $N(\mu_2, \sigma_2^2)$ . On pose

$$ar{X}_1 = rac{1}{n_1} \sum_{i=1}^{n_1} X_{1i} \; \; ; \; \; S_1^2 = rac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_{1i} - ar{X}_1)^2$$

$$\bar{X}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} X_{2i} \; \; ; \; \; S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (X_{2i} - \bar{X}_2)^2,$$

alors la v.a.  $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1;n_2-1}$ .

La loi F de Fisher

## **Exemples**

$$f_{0,05;7,9} = 3,29$$
 i.e  $P(F_{7;9} > 3,29) = 0,05$ .





Figure 9.6 Les centiles inférieurs et supérieurs d'une loi de F.

#### ) Figure 9.5 La fonction de densité de deux lois de F.

#### ◆ロト ◆御 ト ◆恵 ト ◆恵 ト 恵 めなべ

Échantillons Aléatoires et lois d'échantillonnage 14 / 15