KKMC and RRes for low energy colliders S. Jadach

Institute of Nuclear Physics, Kraków, Poland

Outline:

• ...

• ..

KKMC available from http://home.cern.ch/jadach

S. Jadach April 14, 2003

RRes package of M. Boonekamp, now included in $\mathcal{KK}\mathbf{MC}$

- ullet R(s) from most available hadronic data, old ones (SLAC, Orsay) and new (Novosibirsk).
- In particular ρ and ω region parametrized using new Novosibirsk data, hep-ex/9904027.
- In MC generation R(s) split into resonant and non-resonant parts. R(s) is also split among available $q_i \bar{q}_i$ pairs, for resonances and continuum.
- Resonance decays (from ρ to Υ) generated using Pythia tool.
- Non-resonant "continuum" part modelled using Pythia tool for $q_i \bar{q}_i$ string. At $\sqrt{s} < 2 GeV$ for (small) non-resonant component flat phase space is used experimental data are used to determine the type of final state (any channel).
- No naive QCD applied for "continuum", for the moment.

To be improved: for continuum part replace flat phase space with more realistic description of $n\pi$ state, better matching with perturbative QCD and QED (FSR).

S. Jadach

S. Jadach

This hadronic experimental distribution R(s) is now implemented in package RRes by M. Boonekamp and used in \mathcal{KK} MC for low Q^2 quark-pair spectrum

S. Jadach

Split of continuum into channels

Experimental data are used to determine channel in the non-resonant part below 2GeV.

S. Jadach

Radiative return at KLOE with \mathcal{KK} MC. PHOTON DISTRIBUTIONS

KKMC: 1019MeV KKMC: 1019MeV

Event selection as in KLOE paper hep-ex/0106100:

$$5^{\circ} < \Theta_{\gamma} < 21^{\circ}, \quad 159^{\circ} < \Theta_{\gamma} < 175^{\circ}, \quad E_{\gamma} > 10 MeV$$

$$55^{\circ} < \Theta_{\pi} < 125^{\circ}, \quad p_{\pi}^{T} > 200 MeV.$$

N.B. TWO photons within the "detection window" with $\sim 3\%$ probability!

S. Jadach

Radiative return at KLOE with \mathcal{KK} MC. $Q^2_{\pi^+\pi^-}$ DISTRIBUTIONS

KKMC: 1019MeV

Event selection as in KLOE paper hep-ex/0106100:

$$5^{\circ} < \Theta_{\gamma} < 21^{\circ}, \quad 159^{\circ} < \Theta_{\gamma} < 175^{\circ}, \quad E_{\gamma} > 10 MeV$$

$$55^{\circ} < \Theta_{\pi} < 125^{\circ}, \quad p_{\pi}^{T} > 200 MeV.$$

CEEX $\mathcal{O}(\alpha^2)$ matrix element.

S. Jadach

KKMC/other

ds_dqq_phokhara_g_10e6_born_0_180_0_180.dat MAGENTA

ds_dqq_phokhara_g_10e6_nlo_0_180_0_180.dat RED

KKMC BLACK, Muon pair KKMC GREEN, Axel, CYAN

Note: No cut on pions! For KKMC $\pi^+\pi^-$ from ϕ is NOT excluded.

S. Jadach

2π KKMC&Phokara, with cuts

KKMC/other

$$5^{\circ} < \vartheta_{\gamma} < 21^{\circ}$$
 and $55^{\circ} < \vartheta_{\pi_{\pm}} < 125^{\circ}$

ds_dqq_phokhara_g_10e6_born_5_21_55_125.dat MAGENTA,

ds_dqq_phokhara_g_10e6_nlo_5_21_55_125.dat RED,

KKMC **BLACK**, Note1: for KKMC cut on "explicit photon", not on missing energy momentum!

Note2: for KKMC also $p_{\pi}^{T}>200MeV$ cut and $\pi^{+}\pi^{-}$ from ϕ is not excluded!

S. Jadach

2π KKMC&Phokara, NO CUTS

phokara_born_1_qq.dat BORN MAGENTA

phokara_nlo_1_qq.dat NLO RED

KKMC BLACK, Muon pair KKMC GREEN,

NOTES: No cut on pions nor photons! KKMC run at slightly off-resonance 1.02100GeV. (For KKMC $\pi^+\pi^-$ from ϕ is excluded).

S. Jadach

2π KKMC&Phokara, WITH CUTS

KKMC/other 1.05 1.04 1.03 1.02 1.01 0.99 0.98 0.97 0.96 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Q² [GeV]

phokara_born_2_qq.dat BORN MAGENTA

phokara_nlo_2_qq.dat NLO RED, KKMC BLACK,

With cuts: $\,\vartheta_{\gamma}<15^{\circ}$, $\,E_{\gamma}>10 {\rm MeV}$, $\,40^{\circ}<\vartheta_{\pi}<140^{\circ}$, $\,p_{\pi}^{T}>0.2 {\rm GeV}$

The p_π^T cut not included in Pkokara results. KKMC run at slightly off-resonance 1.02100GeV.

S. Jadach

KKMC CEEX versus KKsem, muons, 14apr 7AM

KKMC muons, NO CUTS

KKsem/KKMC

KKMC CEEX versus KKsem, muons, error in Born of KKsem

S. Jadach

KKMC CEEX versus KKsem, muons, 14apr 8AM

KKMC muons, NO CUTS

KKsem/KKMC

Muon pairs. KKMC CEEX versus KKsem, the best NLL+LL3 exponentiated analytical ISR. (Corrected error in Born of KKsem).

S. Jadach

KKMC EEX versus KKsem, muons

KKMC muons, NO CUTS

KKsem/KKMC

Muon pairs. KKMC EEX versus KKsem with the best NLL+LL3 exponentiated analytical ISR.

(UNCORRECTED error in Born of KKsem to match the same error in EEX of KKMC).

S. Jadach

KKMC EEX versus KKsem, pions FIRTST ATTEMPT. KKMC EEX versus KKsem with the best NLL+LL3 exponentiated analytical ISR.

Big differences due to phi chanel in KKsem which is not in the histo from KKMC. On to of that problem near threshold probably of the same origin...

S. Jadach

Conclusions

- ...
- ...
- ...

S. Jadach April 14, 2003