Maths

Objective

The objective of this problem is to test the students' understanding on **Recursion**. Students also need to know the basic algorithm for multiplying and adding 2 matrices.

Problem Description

Your task is to compute the result of " $\mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \mathbf{A}^4 + ... + \mathbf{A}^{N}$ ", given a 2x2 matrix \mathbf{A} and an integer \mathbf{N} , \mathbf{I} is an identity matrix, $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. If the element $\mathbf{A}[\mathbf{i}, \mathbf{j}] \geq \mathbf{M}$, you need to subtract \mathbf{M} from $\mathbf{A}[\mathbf{i}, \mathbf{j}]$ until $0 \leq \mathbf{A}[\mathbf{i}, \mathbf{j}] < \mathbf{M}$.

Input

The first two lines of the input contain the information of matrix **A**. The next line contains 2 integers **N** $(1 \le N \le 1,000,000,000)$ and **M** $(1 \le M \le 1,000,000)$.

Output

Output the result of " $\mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \mathbf{A}^4 + \dots + \mathbf{A}^{\mathbf{N}}$ ".

Sample Input

- 1 2
- 3 4
- 2 10

Sample Output

- 9 2
- 8 7

Explanation

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} = \begin{pmatrix} 9 & 12 \\ 18 & 27 \end{pmatrix}$$

Some elements in the final result are larger than or equal to \mathbf{M} . Hence we need to subtract \mathbf{M} from those elements until they are smaller than \mathbf{M} . The final result is $\begin{pmatrix} 9 & 2 \\ 8 & 7 \end{pmatrix}$.