Aula 3 – Mineração de Dados Representação e Pré-processamento dos Dados

Profa. Elaine Faria
UFU

Agradecimentos

Este material é baseado

- No livro Tan et al, 2006
- Nos slides do prof. Andre C. P. L. F. Carvalho

- Agradecimentos
 - Ao professor André C. P. L. F. Carvalho que gentilmente cedeu seus slides

O que é um conjunto de dados?

Atributos

- Descreve os objetos
- Variável, característica, campo ou dimensão

Objetos

- Descritos por seus atributos
- Registros, pontos, vetor, padrões, eventos, exemplos, observações, instâncias ou entidades
- Conjunto de dados (data set ou base de dados)
 - Coleção de objetos de dados

O que é um conjunto de dados?

- Conjunto de Dados
 - É um arquivo no qual os objetos são os registros (linhas) do arquivo
 - Cada campo (coluna)
 corresponde a um
 atributo

Matricula	Período	Nota
1010	1	95
1011	1	66
2010	2	55
2012	2	87
7010	7	72

Conjunto de dados sobre estudantes

Atributos e Medidas

Atributo

- É uma propriedade ou característica de um objeto
- Pode variar de um objeto para outro ou de tempos em tempos
- Ex: cor dos olhos → símbolo (azul, preto,...)
 temperatura → número (35, 30,...)

Atributos e Medidas

Atributos e Medidas

Na tabela de informações sobre alunos podemos aplicar a função média nos atributos matrícula e nota?

Tipos de Atributos

- Categóricos (qualitativo)
 - Nominal
 - Valores são apenas nomes diferentes
 - Ex: sexo $(\{M,F\} = \{0,1\}),$
 - Ex: cor do olho ({preto,azul, verde} = {0,1,2})
 - Ordinal
 - Fornecem informações para ordenar os objetos
 - Ex: tamanho: ({pequeno, médio e grande}={1,2,3})

Tipos de Atributos

- Numérico (quantitativo)
 - Intervalar
 - As diferenças entre valores fazem sentido
 - Interpretação depende de uma unidade de medida, cujo zero é arbitrário
 - Ex: temperatura em graus Celsius, datas
 - Racional
 - Razão e diferença entre valores fazem sentido
 - Ex: temperatura em Kelvin, quantidades monetárias, idade e altura

Tipos de Atributos

Propriedades:

- Distinção: = e ≠
- Ordem: > e <</p>
- Adição: + e –
- Multiplicação: * e /
- Atributo Nominal: distinção
- Atributo Ordinal: distinção e ordem
- Atributo Intervalar: distinção, ordem e adição
- Atributo Racional: as 4 propriedades

Exemplos

Nome	Temp	Enjôo	Mancha	Dor	Salário	Diagnóstico
João Pedro Maria José Ana Leila		sim não sim não não não	pequena pequena grande pequena grande grande	sim não não sim sim sim	1000 1100 600 2000 1800 900	doente saudável saudável doente saudável doente
Nominal Intervalar Ordinal Racional						

Quantidade de valores de um atributo

Discreto

- Tem um número finito de valores ou um conjunto infinito enumerável de valores
- Ex: CEP e ID
- Binário
 - Tipo especial de atributo discreto
 - Assume somente dois valores
 - Ex: true/false, sim/não ou 0/1

Contínuo

- Possui valores numéricos reais
- Ex: temperatura, peso, altura

Atributos Assimétricos

- Caso especial de atributo discreto
- Somente a presença de um dos valores é considerado importante
- Ex: base de dados de estudantes, vetor de atributos indica se o aluno cursa ou não uma disciplina
- Atributo binário assimétrico

 atributos binários nos quais somente valores não-zero são importantes

Características de uma base de dados

Dimensionalidade

- Número de atributos
- Bases de dados com alta dimensionalidade → dificuldades
- Pré-processamento: redução da dimensionalidade

Esparsidade

- Conjuntos de dados no qual os objetos têm característica assimétrica
- A maioria dos atributos do objeto tem valores 0, mas o que interessa são apenas os valore não-zeros

Características de uma base de dados

Resolução

- Diferentes níveis → diferentes resoluções e diferentes propriedades de dados
- Ex: calcular a variação atmosférica na escala de horas ou meses, o primeiro consegue-se ver o movimento de tempestades, já o ultimo o fenômeno não é detectável

 Dados usados na mineração de dados foram coletados para outros propósitos

 Problemas nos dados precisam ser corrigidos

- Algoritmos podem tratar problemas nos dados
 - Ex: tratamento de ruídos e outliers

- Problemas nos dados são devidos a
 - Erros humanos
 - Limitações dos dispositivos de medição
 - Falhas na coleta dos dados
- Exemplos de problemas nos dados
 - Atributo com valor ausente
 - Objetos espúrios ou duplicados
 - Valores incorretos

Ruídos

- Componente aleatória de uma medida de erro
- Envolve a distorção de um valor ou a adição de objetos espúrios

Artefatos

Distorção determinística nos dados

Outliers

- Objetos de dados que tem características que são diferentes da maioria dos outros objetos no conjunto de dados
- Valores de um atributo que são não usuais em relação aos valores típicos para aquele atributos
- Em alguns casos, os outliers podem ser de interesse
 - Ex: detecção de fraudes

- Valores Ausentes
 - Não é incomum objetos terem valores ausentes para um ou mais atributos
 - Causas
 - Informação não coletada
 - Atributo não é aplicável a todos os objetos
 - Problema na coleta

- Estratégias para lidar com valores ausentes
 - Eliminar os objetos ou atributos com valores ausentes
 - Vantagens? Desvantagens?
 - Estimar os valores ausentes
 - Vantagens? Desvantagens?
 - Ignorar os valores ausentes
 - Vantagens? Desvantagens?
 - Modificar o algoritmo para lidar com valores ausentes
 - Vantagens? Desvantagens?

- Instâncias duplicadas
 - Instâncias idênticas ou que diferem de forma não significativa
 - Ex: uma pessoa aparece duas vezes na base de dados com o campo nome com pequenas diferenças
 - Ex: duas instâncias com os mesmos valores
- Deduplicação
 - Processo de lidar com instâncias duplicadas
 - Detectar e tratar o problema

Nome	Idade	Altura	Peso
João	15	1,72	80
Maria	20	1,54	50
Pedro	15	1,72	80
Ana	32	1,60	58

Conhecer os dados é muito importante!!!!

Quais são os atributos?

Há dados duplicados?

Há valores ausentes?

Há ruídos?

Os outliers são de interesse para minha aplicação?

Pré-processamento de dados

- Pré-processamento
 - Tornar os dados mais adequados para a tarefa de mineração
 - Objetivo: melhorar a mineração com relação a tempo, custo e qualidade
 - Diferentes técnicas podem ser usadas
 - Agregação
 - Amostragem
 - Redução de dimensionalidade
 - Seleção de atributos
 - Discretização ou binarização
 - Transformação de variáveis

Agregação

- Combinar duas ou mais instâncias em um única instância
- Objetivo
 - Redução de dados
 - Menos memória e tempo de processamento
 - Uso de algoritmos mais "caros"
 - Comportamento mais estável
 - Quantidades agregadas tem menor variabilidade que objetos individuais
 - Desvantagem: perda de detalhes
- Ex: Agregar a soma de produtos vendidos nas cidades de uma região

Amostragem

- Selecionar um subconjunto das instâncias
- Técnica muito útil em MD

- Visão da Estatística
 - É caro e exige muito tempo obter todos os dados
- Visão da MD
 - É caro e consome muito tempo processar todos os dados

Amostragem

Princípio básico

- O uso da amostragem irá produzir resultados tão bons quanto usar o conjunto de dados inteiro, se a amostragem for representativa
- Menor esforço computacional para processar os dados

Amostragem representativa

- Possui as mesmas propriedades (de interesse) da base de dados original
- Ex: mesma média na base original e na amostra

- Principais técnicas
 - Aleatória
 - Estratificada
 - Progressiva

Aleatória

- Sem reposição
 - Cada instância selecionada é removida do conjunto de dados que constituem a população
- Com reposição
 - Instâncias não são removidas da população quando elas são selecionadas
 - A mesma instância pode ser selecionada mais de uma vez
 - A probabilidade de selecionar um objeto se mantêm constante

- Estratificada
 - Usada para garantir que todas as classes do problema serão representadas
 - Variações
 - O mesmo número de instâncias de cada classe são selecionadas
 - O número de instâncias selecionadas de cada classe é proporcional ao número de instâncias da classe

- Progressiva
 - O tamanho da amostra é difícil de ser determinado
 - Começar com uma pequena amostra e aumentar o tamanho da amostra até que um tamanho suficiente seja encontrado

Como avaliar se o tamanho é suficiente?

Amostragem e Perda de Informação

- Como escolher o tamanho da amostra?
 - Amostras grandes
 - Aumentam a probabilidade de que a amostra será representativa
 - Eliminam muitas das vantagens da amostragem
 - Amostras pequenas
 - Aumenta a chance de perda de informação

Redução de Dimensionalidade

- Conjuntos de dados podem ter um grande nro de atributos
 - Ex: mineração de texto

Reduzir a dimensionalidade pode ser a solução para trabalhar com conjuntos de dados contendo muitos atributos

Redução de Dimensionalidade

Benefícios

- Algoritmos trabalham melhor com poucos atributos
- Redução de atributos irrelevantes e ruídos
- Modelo mais compreensível
- Dados são mais facilmente visualizados
- Quantidade de tempo e memória usados pelo algoritmo de MD é reduzida

Redução de Dimensionalidade

- Extração de Atributos
 - Reduzir a dimensão criando novos atributos que são uma combinação dos atributos antigos

- Seleção de atributos
 - Reduzir a dimensão selecionando novos atributos que são um subconjunto dos atributos antigos

Maldição da dimensionalidade

- Fenômeno no qual a análise dos dados torna-se mais complicada com o aumento da dimensionalidade
- Dimensão aumenta → dados mais esparsos
 - Densidade e distância entre pontos tornam-se menos significativas
 - Qualidade dos clusters pode ser pobre
- Número de instâncias para manter o desempenho cresce com o nro de atributos

Seleção de Atributos

- Usar somente um subconjunto de atributos → reduz a dimensionalidade
- Atributos redundantes
 - Duplicar a informação contida em um ou mais atributos
- Atributo irrelevante
 - Não contém informação útil para a tarefa preditiva

Como selecionar um conjunto de atributos?

Seleção de Atributos

- Propostas Embutida Embedded
 - Seleção de atributos ocorre naturalmente como parte do algoritmo de AM

Filtros

Atributos são selecionados antes da execução do algoritmo de AM

Wrappers

 Seleção de atributos usa o algoritmo de AM para encontrar o melhor subconjunto de atributos

Transformação de dados

- Tarefa
 - Converter dados de
 - Numérico para categórico
 - Categórico para numérico
 - Normalizar dados

- Por que transformar dados?
 - Algumas técnicas trabalham apenas com dados numérico ou apenas com categóricos

Discretização e Binarização

- Discretizar
 - Transformar atributos contínuos em categórico
- Binarizar
 - Transformar atributos contínuos ou discretos em binário

O melhor método de discretização e binarização é aquele que produz o melhor resultado para o algoritmo de MD que será usado. No free lunch!

- Codificação inteira-binária
 - Se há m valores categóricos
 - Associar cada valor original a um inteiro no intervalo [0,m-1]
 - Se o valor é ordinal → manter a ordem
 - Converter cada um dos m inteiros para um número binário
 - São necessários n = log₂m dígitos binários
 - Ex: Variável categórica com 5 valores: péssimo, ruim, ok, bom, ótimo → 3 variáveis binárias

Codificação inteira-binária

Valor Categórico	Valor Inteiro	X ₁	X ₂	X ₃
Péssimo	0	0	0	0
Ruim	1	0	0	1
Ok	2	0	1	0
Bom	3	0	1	1
Ótimo	4	1	0	0

- Codificação 1-de-n
 - 1 atributo binário para cada valor categórico
 - Ex: Variável categórica com 5 valores: péssimo, ruim,
 Ok, bom, ótimo → 5 variáveis binárias

Codificação 1-de-n

Valor Categórico	Valor Inteiro	X ₁	X ₂	X ₃	X ₄	X ₅
Péssimo	0	1	0	0	0	0
Ruim	1	0	1	0	0	0
Ok	2	0	0	1	0	0
Bom	3	0	0	0	1	0
Ótimo	4	0	0	0	0	1

Quais os problemas com a codificação inteira? Quais os problemas com a codificação 1-de-n?

Binarização - Exercício

- Imagine que um atributo seja nome de país
 - Existem 193 países (192 representados na ONU + Vaticano)
 - Transformar valores nominais em valores numéricos utilizando a codificação 1-de-n

Qual o problema em usar a codificação 1-de-n?

Discretização de Atributos Contínuos

Tarefas

- Decidir quantos categorias
 - Dividir os valores dos atributos em n intervalos, especificando n-1 pontos de divisão
- Decidir como mapear os valores contínuos em categorias
 - Todos os valores em um intervalos são mapeados para o mesmo valor categórico

Representação

- $-x_0 < x <= x_1, x_1 < x <= x_2, \dots \rightarrow intervalos$
- $-\{(x_0,x_1],(x_1,x_2],...\rightarrow designaldade$

Discretização de Atributos Contínuos

- Discretização Não-supervisionada
 - Prop. 1: Larguras Iguais
 - Dividir o atributo em um número de intervalos especificado pelo usuário (todos do mesmo tamanho)
 - Prop. 2: Frequências Iguais
 - Dividir o atributo em intervalos, de modo que cada um tenha a mesma quantidade de exemplos

Discretização de Atributos Contínuos

- Discretização Não-supervisionada
 - Prop 3. Inspeção Visual
 - Determinar visualmente qual é a melhor forma de discretizar os dados
 - Prop 4: Algoritmos de agrupamento
 - Usar algoritmos de agrupamento para encontrar a melhor forma de discretizar os dados

Discretização de Atributos

Figura retirada dos slides do prof. André C. P. L. F. Carvalho – disciplina Aprendizado de Máquina – ICMC-USP

- Transformação aplicada a todos os valores da variável
- Motivação
 - Grande variação de valores
 - Limites dos valores são muitos diferentes
 - Evitar que um atributo predomine sobre o outro
 - Propriedades estatísticas desejadas
- Tipo de transformação
 - Função simples
 - Normalização

- Por que é importante aplicar transformação de atributos?
 - Ex: comparar duas pessoas usando duas variáveis: idade e salário
 - A diferença entre salário será muito maior do que entre idade
 - A diferença entre duas pessoas será dominada pelo atributo salário
 - Ex: P1: (25, 10.000)
 - Ex: P2: (25, 10.400)
 - Ex: P3: (60, 10.300)
 - Quem se parece mais com P1? P2 ou P3?

- Função simples
 - Uma função matemática simples é aplicada a cada valor individualmente
 - Ex: Seja x a variável
 - Exemplo de funções: x^k, log x, sin x, 1/x ou |x|

Qual função escolher?

R: Depende do problema

- Cuidado no uso de funções simples
 - Podem mudar a ordem dos valores
 - Ex.: Uso da função 1/x para x = 0,2;0,5;1;2;4
 - Novos valores: 5; 2; 1; 0,5; 0,25
 - Reverte a ordem dos valores
 - Valores menores se tornam maiores (e vice-versa)
 - Se um dos valores fosse 0?

- Normalização
 - Objetivo: fazer um conjunto de valores ter uma propriedade particular
 - Tipos de normalização
 - Re-escalar
 - Padronizar

- Re-escalar
 - Mudar a unidade de medida dos dados
 - Propriedade: colocar os valores mínimos e máximos iguais
 - Como fazer
 - Adicionar ou subtrair uma constante
 - Multiplicar ou dividir por uma constante
 - Ex: converter os valores para o intervalo [0,1]

$$d' = \frac{(d - \min_d)}{(\max_d - \min_d)}$$

- Padronização
 - Como fazer:
 - Adicionar ou subtrair uma medida de localização
 - Multiplicar ou dividir por uma medida de escala
 - Ex: \bar{x} é o valor médio de um atributo e s_x é o seu desvio padrão, então

$$x' = (x - \overline{x})/ s_x$$

Cria uma variável que tem média zero e desvio padrão 1

Tarefa

 Leitura do Capítulo (seções 2.1 a 2.3) do livro Tan et al, 2006

Referências

 Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006.