In a random assemblage of 23 people what are the chances that there are two people with the same birthday?

The birthday paradox

In a random assemblage of 23 people what are the chances that there are two people with the same birthday?

- Another balls and urns setting: n people (balls), 365 days (urns). Outcomes: birthdays arranged in an ordered list form an ordered n-tuple (k₁, k₂, ..., k_n) of days of the year (we ignore leap years) where *sampling is with replacement*. We assume random sampling (this at least gives a conservative estimate of the chances of coincidence).
- * The number of possible outcomes: 365ⁿ.
- * The complement of the event that there is a coincidence of birthdays consists of those outcomes $(k_1, k_2, ..., k_n)$ where each of $k_1, k_2, ..., k_n$ is a distinct day of the year. This corresponds to sampling without replacement. The number of outcomes favourable to the event that each person has a distinct birthday is $365^{\frac{n}{2}} = 365 \cdot (365 1) \cdot (365 2) \cdots (365 n + 1)$.
- * The probability of a birthday coincidence is $p(n) := 1 \frac{365^{\frac{n}{n}}}{365^{n}}$.

The birthday paradox

In a random assemblage of 23 people what are the chances that there are two people with the same birthday?

- * Another balls and urns setting: n people (balls), 365 days (urns). Outcomes: birthdays arranged in an ordered list form an ordered n-tuple $(k_1, k_2, ..., k_n)$ of days of the year (we ignore leap years) where *sampling is with replacement*. We assume random sampling (this at least gives a conservative estimate of the chances of coincidence).
- * The number of possible outcomes: 365ⁿ.
- * The complement of the event that there is a coincidence of birthdays consists of those outcomes $(k_1, k_2, ..., k_n)$ where each of $k_1, k_2, ..., k_n$ is a distinct day of the year. This corresponds to sampling without replacement. The number of outcomes favourable to the event that each person has a distinct birthday is $365^{\frac{n}{2}} = 365 \cdot (365 1) \cdot (365 2) \cdots (365 n + 1)$.
- * The probability of a birthday coincidence is $p(n) := 1 \frac{365^{\frac{n}{n}}}{365^{\frac{n}{n}}}$.

n	p(n)
5	0.0271
10	0.1169
15	0.2529
20	0.4114
23	0.5073
30	0.7063
50	0.9704
70	0.9992