Computational Neurodynamics

Topic 13 Consciousness

Murray Shanahan

Overview

- Recap
- Global workspace theory
- The connective core hypothesis

Recap

- We have looked at
 - The brain's fundamental building blocks, neurons, and how to simulate them
 - How large numbers of neurons are connected together in complex networks,
- We examined various phenomena exhibited by such networks, such as
 - Competition
 - Dynamical complexity
 - Oscillation and synchrony

Long-term Aims

- How do all the elements of the course hang together?
- The ultimate aim of work in this area is to reverse engineer the biological brain
- And to do so by distilling the deep principles of its organisation and operation
- These principles should apply to any biological brain capable of sophisticated cognition
- And they should be applicable to the construction of artefacts capable of sophisticated cognition

Towards a Theory

- But neuroscience still lacks a fundamental theory of the brain, something comparable to the theory of evolution in biology
- Among the things this theory will have to account for are
 - The flexibility of cognition. That is, the ability to vary and combine the elements of an existing behavioural repertoire in novel ways
 - Consciousness. Or more precisely, the distinction between consciously-mediated behaviour and unconscious (automatic or habitual) behaviour

Global Workspace Theory 1

Parallel Specialist Processes

Global Workspace

- Multiple parallel specialist processes compete and cooperate for access to a global workspace
- If granted access to the global workspace, the information a process has to offer is *broadcast* back to the entire set of specialists

Global Workspace Theory 2

- The global workspace architecture harnesses massively parallel computation
- The global workspace itself exhibits a *serial* procession of states
- Yet each state-to-state transition is the result of filtering and integrating the contributions of huge numbers of *parallel* computations
- According to global workspace theory (Baars)
 - The human brain instantiates such an architecture
 - Information processing in the parallel specialists is non-conscious
 - Only information that is broadcast is consciously processed

Connective Cores (Again)

 Recall that extracting the connector hubs and their interconnections from a modular network yields its connective core

The connective core

The Locus of a GNW

• The connective core of the human brain is a good candidate for the locus of a *global neuronal workspace* (GNW)

Workspace Connectivity

- A network that realises a GNW is likely to be (hierarchically) modular and small-world
 - The parallel specialist processes will be densely intra-connected modules
 - But to enable the brain-wide dissemination of the influence from any specialist process, there must be a web of inter-module connections
- It's also likely to have a pronounced connective core
 - Information and influence funnels into and fans out from the connective core
 - This imposes a *limited capacity* on the communications infrastructure
 - It encourages a degree of serial processing
 - And promotes winner-takes-all competition

A Computer Model

- This model (Shanahan, 2008) includes a connective core
- It generates a sequence of reverberating broadcast states

Coalition Formation

 Behaviour is generated by coalitions of coupled brain processes (sensory, motor, memory, affective)

• Coalition formation is part of a *cycle*. As time passes, coalitions form, then break up, then new coalitions form, and so on

• It is also *competitive*. Only one coalition can eventually take charge of a shared resource (eg: hand position, gaze direction)

The Connective Core Hypothesis

- Hypothesis: The blueprint for a cognitively capable brain must include a connective core
- The connective core is a limited capacity, highly connected communications infrastructure that provides
 - a locus of broadcast,
 - an arena for competition among coalitions of brain processes, and
 - a medium for coupling and communication between coalition members
- As well as supporting a conscious / unconscious distinction, it promotes cognitive integration

Cognitive Integration

- Cognitive integration is achieved when the full resources of the brain are brought to bear on the ongoing situation
 - Specialist motor skills in diverse domains
 - Episodic memory of diverse past experiences
 - Working memory
- This requires the availability of the whole combinatorial repertoire of process coalitions
- Total cognitive integration is an ideal, and failures are commonplace (eg: the U-bend of my sink)
- But even non-human animals manage impressive feats of cognitive integration (eg: innovative tool manufacture in corvids)

The Need for Broadcast

- How does broadcast subserve open-ended, combinatorial coalition formation?
 - In order to maximise the availability of a system's resources, to allow the largest repertoire of combinations, it must be possible for each of its components to influence and be influenced by the whole system
 - That is to say, the system must exhibit dynamical complexity, a balance of integrated and segregated activity
 - This demands a global communications infrastructure to disseminate influence and information among otherwise independent processes

The Need for a Bottleneck

- Why does the broadcast mechanism have to be a limited capacity "bottleneck"?
 - Only one coalition at a time can take charge of what the animal or robot does next
 - So coalition formation is competitive, and there can only be one winner at a time
 - The connective core enforces this winner-takes-all rule because only one coalition at a time can dominate it
 - This also enforces serial processing, which is vital for the sequential chaining of mental operations
 - The connective core is a bottleneck, in a good way

Conclusion: Seriality and Unity

 Information and influence funnel in to and fan out from the connective core (GNW), which acts as a limited bandwidth processing bottleneck, allowing for serial mental operations

Serial from Parallel

 It also promotes integration across the brain, so that a coherent response to the ongoing situation can be orchestrated from its full resources

Unity from Multiplicity

Related Reading

- Baars, B.J. (1997). *In the Theater of Consciousness: The Workspace of the Mind*. Oxford University Press.
- Shanahan, M. (2008). A Spiking Neuron Model of Cortical Broadcast and Competition. *Consciousness and Cognition* 17, 288–303.
- Shanahan, M.P. (2010). *Embodiment and the Inner Life: Cognition and Consciousness in the Space of Possible Minds*. Oxford University Press.
- Shanahan, M. (2012). The Brain's Connective Core and its Role in Animal Cognition. *Philosophical Transactions of the Royal Society B* 67(1603), pp.2704–2714.