Démontrons que la dérivation de cos est cyclique par récurrence.

Soit P_n une propriété telle que :

$$P_n: \cos(x)^{(4+n)} = \cos(x)^{(n)}$$

Montrons que cette propriété est vraie pour tout n appartenant à \mathbb{N} .

Initialisation Calculons $\cos(x)^{(4)}$.

$$\cos(x)^{(4)} = (\cos(x)')^{(3)}$$

$$\Leftrightarrow \cos(x)^{(4)} = (-\sin(x))^{(3)}$$

$$\Leftrightarrow \cos(x)^{(4)} = ((-\sin(x))')^{(2)}$$

$$\Leftrightarrow \cos(x)^{(4)} = (-\cos(x))^{(2)}$$

$$\Leftrightarrow \cos(x)^{(4)} = ((-\cos(x))')'$$

$$\Leftrightarrow \cos(x)^{(4)} = (\sin(x))'$$

$$\Leftrightarrow \cos(x)^{(4)} = \cos(x)$$

Il s'agit exactement de P_0 . Ainsi P_n est initialisée.

 $H\acute{e}r\acute{e}dit\acute{e}$ Fixons n dans $\mathbb N$ tel que P_n soit vraie. Alors :

$$\cos(x)^{(4+n)} = (\cos(x)')^{(3+n)}$$

$$\Leftrightarrow \cos(x)^{(4+n)} = (-\sin(x))^{(3+n)}$$

$$\Leftrightarrow \cos(x)^{(4+n)} = ((-\sin(x))')^{(2+n)}$$

$$\Leftrightarrow \cos(x)^{(4+n)} = (-\cos(x))^{(2+n)}$$

$$\Leftrightarrow \cos(x)^{(4+n)} = ((-\cos(x))')^{(1+n)}$$

$$\Leftrightarrow \cos(x)^{(4+n)} = (\sin(x))^{(1+n)}$$

$$\Leftrightarrow \cos(x)^{(4+n)} = \cos(x)^{(n)}$$

Ainsi P_n est héréditaire.

Comme P_0 est vraie et que P_n est héréditaire, alors, par principe de récurrence, P_n est vraie pour tout n appartenant à \mathbb{N} .

Comme la dérivation de cos est cyclique et que ni cos ni sin, les fonctions apperessants dans ce cycle, est monotone, alors cos appartient à \mathcal{C}^{∞} puisqu'il n'existe pas de dérivé n-ième de cos qui sont monotones.