Exam 2 - Problem 2

David Williams

March 26, 2023

- a When n=1 and $A=(\alpha)$ then there will be no a_{01} or a_{10}^T to overwrite. The only step performed will be $\alpha_{11}:=v_{11}=\alpha_{11}=a_{10}^Ta_{01}$. This is equivalent to saying $\alpha_{11}:=v_{11}=\alpha_{11}$, so the matrix is unchanged. this means that $\check{L}=(1)$ and $\check{U}=(\alpha)$. Because $\check{L}\check{U}=(1)(\alpha)=(\alpha)=A+\Delta A=A+0$, this case is true.
- b We know that for n > 1 we can partition A, \check{L} , and \check{U} as:

$$A = \begin{pmatrix} A_{00} & a_{01} \\ a_{10}^T & \alpha_{11} \end{pmatrix}, \check{L} = \begin{pmatrix} \check{L}_{00} & 0 \\ \check{l}_{10}^T & 1 \end{pmatrix}, \check{U} = \begin{pmatrix} \check{U}_{00} & \check{u}_{01} \\ 0 & \check{v}_1 1 \end{pmatrix}$$