Math 321: Coda, or the limits of mathematics

Kameryn J Williams

University of Hawai'i at Mānoa

Fall 2020

Recapping the semester

We covered three main things this semester.

- We learned some rules of logic.
- We learned strategies for proofs.
- We learned some fundamental concepts that show up in many places in mathematics.

Recapping the semester

We covered three main things this semester.

- We learned some rules of logic.
- We learned strategies for proofs.
- We learned some fundamental concepts that show up in many places in mathematics.

Mathematics is often presented as clear cut, with no room for reasonable disagreement. There is a single objectively correct answer, and any disagreement is because one (or more) person is wrong.

Recapping the semester

We covered three main things this semester.

- We learned some rules of logic.
- We learned strategies for proofs.
- We learned some fundamental concepts that show up in many places in mathematics.

Mathematics is often presented as clear cut, with no room for reasonable disagreement. There is a single objectively correct answer, and any disagreement is because one (or more) person is wrong.

To close off this class, I want to have a bit of a class discussion about why this view of what math is misses out on some real complexity.

Alternate logics

- We talked about certain rules for logic and proofs, and these are indeed the rules that are most commonly used among mathematicians.
- We can think of rules for proofs as saying that certain moves are valid.
 - For example: If we know A and we know "if A then B", then it is valid to conclude B. (This is the rule of modus ponens.)

Alternate logics

- We talked about certain rules for logic and proofs, and these are indeed the rules that are most commonly used among mathematicians.
- We can think of rules for proofs as saying that certain moves are valid.
 - For example: If we know A and we know "if A then B", then it is valid to conclude B. (This is the rule of modus ponens.)
- But you could ask what happens if you don't accept certain techniques as valid.

Alternate logics

- We talked about certain rules for logic and proofs, and these are indeed the rules that are most commonly used among mathematicians.
- We can think of rules for proofs as saying that certain moves are valid.
 - For example: If we know A and we know "if A then B", then it is valid to conclude B. (This is the rule of modus ponens.)
- But you could ask what happens if you don't accept certain techniques as valid.
- Let's see an example.

What does it mean to assert $\exists x \ P(x)$?

• It means there exists an object x which has the property P

- It means there exists an object x which has the property P
- But what does it mean to say a mathematical object exists???

- It means there exists an object x which has the property P
- But what does it mean to say a mathematical object exists???
- One possible answer: saying a mathematical object exists means saying you can explicitly construct it.

- It means there exists an object x which has the property P
- But what does it mean to say a mathematical object exists???
- One possible answer: saying a mathematical object exists means saying you can explicitly construct it.
- If you take this view, that affects what mathematical statements are true.

Kőnig's Lemma

Lemma

Any infinite binary tree has an infinite branch.

Kőnig's Lemma

Lemma

Any infinite binary tree has an infinite branch.

But this result is not constructively valid.

Constructivism

Constructivism is an approach to mathematics based on this idea that "existence" in mathematics is a matter of having an explicit construction.

 The upshot of this is that it means using different rules of logic, based on a different interpretation of the meaning of logical symbols.

Constructivism

Constructivism is an approach to mathematics based on this idea that "existence" in mathematics is a matter of having an explicit construction.

- The upshot of this is that it means using different rules of logic, based on a different interpretation of the meaning of logical symbols.
- For example, to know $P \lor Q$ means you know P is true, or you know Q is true. That is, it's not allowed where you know one of the two is true but you cannot say which.

Constructivism

Constructivism is an approach to mathematics based on this idea that "existence" in mathematics is a matter of having an explicit construction.

- The upshot of this is that it means using different rules of logic, based on a different interpretation of the meaning of logical symbols.
- For example, to know $P \lor Q$ means you know P is true, or you know Q is true. That is, it's not allowed where you know one of the two is true but you cannot say which.
- In particular, the law of excluded middle $P \lor \neg P$ is not valid in constructivism.

This leads to a different mathematics. We saw that Kőnig's Lemma is one point of difference. There are also differences in, for example, real analysis, the mathematics underlying calculus.

To sum up

If you use different rules of logic—rules which can be well motivated by a different understanding of how logic works—then you can get different mathematical results.

- If we agree on the rules of logic, then we agree on what makes a proof valid.
- But what if we disagree on the mathematical premises used in the proof?

- If we agree on the rules of logic, then we agree on what makes a proof valid.
- But what if we disagree on the mathematical premises used in the proof?
- I could try to convince you by providing a proof of the disputed premises, but what if you disagree with the premises of that proof?

- If we agree on the rules of logic, then we agree on what makes a proof valid.
- But what if we disagree on the mathematical premises used in the proof?
- I could try to convince you by providing a proof of the disputed premises, but what if you disagree with the premises of that proof?
- We can try to push this down even further, but we could get down to an axiom we disagree about.

- If we agree on the rules of logic, then we agree on what makes a proof valid.
- But what if we disagree on the mathematical premises used in the proof?
- I could try to convince you by providing a proof of the disputed premises, but what if you disagree with the premises of that proof?
- We can try to push this down even further, but we could get down to an axiom we disagree about.
- At this point, our disagreement cannot be resolved by mathematics.
 Maybe I can convince you that my axiom is better than your axiom, or maybe you can convince me to accept your axiom, but this cannot happen just by exhibiting a proof.

Another place for disagreement

We might agree about the rules of logic and the basic axioms of mathematics, but still disagree.

- The way math works is, there are some intuitive concepts we want to study—shapes, quantity, space, continuity, etc.
- We take these intuitive concepts and formalize them, coming up with precise mathematical definitions that we can then prove theorems about.
- How do we know whether a definition is correct? Is it even sensible to ask such a thing?

Another place for disagreement

We might agree about the rules of logic and the basic axioms of mathematics, but still disagree.

- The way math works is, there are some intuitive concepts we want to study—shapes, quantity, space, continuity, etc.
- We take these intuitive concepts and formalize them, coming up with precise mathematical definitions that we can then prove theorems about.
- How do we know whether a definition is correct? Is it even sensible to ask such a thing?

This brings us to the reading: Lakatos's *Proofs and Refutations*.

What is a polyhedron?

Euler's theorem ("theorem"?)

Theorem (Euler)

Consider a polyhedron. Let V be its number of vertices, E be its number of edges, and F be its number of faces. Then,

$$V-E+F=2.$$

Euler's theorem ("theorem"?)

Theorem (Euler)

Consider a polyhedron. Let V be its number of vertices, E be its number of edges, and F be its number of faces. Then,

$$V - E + F = 2$$
.

Whether this theorem is actually true depends on how you define polyhedron.