NOI2025 联合省选模拟赛

GDFZ

时间: 2025 年 2 月 11 日

题目名称	乌龟	路灯	野火
题目类型	传统题	传统题	传统题
目录	turtle	light	fire
可执行文件名	turtle	light	fire
输入文件名	turtle.in	light.in	fire.in
输出文件名	turtle.out	light.out	fire.out
每个测试点时限	2 秒	2 秒	2 秒
内存限制	512 MB	512 MB	512 MB
子任务数目	4	5	5
丁忙分数日	4	9	9

提交源程序文件名

对于 C++ 语言	turtle.cpp	light.cpp	fire.cpp
-----------	------------	-----------	----------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项 (请仔细阅读)

- 1. 测试机器: CPU(AMD Ryzen 5 3600 6-Core Processor *12), RAM 8.0G。
- 2. 系统环境: NOI Linux 2.0(基于 Ubuntu 20.04.1)。
- 3. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 4. C/C++ 中函数 main() 返回类型必须是 int,程序正常结束返回值必须是 0。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。

乌龟 (turtle)

【题目描述】

有一个n个节点,m条边的无向图,第i条边形如,从 u_i 走到 v_i 需要花费 w_i 的单位时间。图上面有 2 个乌龟和k只小猪,小猪会魔法可以在图上面瞬移,乌龟的目标则是在限定时间内消灭小猪。只有明确知道某只小猪会在某个时刻出现在某个节点,且一个乌龟在该时刻出现在该节点,乌龟才能消灭该小猪。

乌龟现在掌握了 e 个线索,第 i 条线索形如,第 p_i 只小猪会在 t_i 时刻出现在节点 x_i 。

现在,这两名乌龟找上了你,让你帮它们算一算,它们消灭所有小猪最少需要花费 多少时间,或者它们无法在限定时间内消灭所有小猪。

【输入格式】

从文件 turtle.in 中读入数据。

第一行三个整数 n, m, k,表示共有 n 个节点, m 条边, 以及共有 k 只小猪。

接下来 m 行,每行三个数 u, v, w,表示一条链接 u 和 v 的双向边,乌龟们通过这条 边需要花费 w 单位时间。

接下来一行两个数 e, t_{max} , 表示乌龟们掌握了 e 条线索, 限定乌龟们在 t_{max} 时刻及其前消灭所有小猪。

接下来 e 行,每行三个数 p, x, t,表示乌龟们知道第 p 只小猪会在 t 时刻出现在节点 x。

最后一行两个数 x, y,表示两个乌龟初始位于 x 和 y 两个节点。

【输出格式】

输出到文件 turtle.out 中。

若乌龟们能在限定时间内消灭所有小猪,则输出它们消灭所有小猪最少要花的时间,否则输出-1。

【样例 1 输入】

1 3 1 2 2 1 2 1 3 2 1

4 1 2 1

【样例 1 输出】

```
1 1
```

【样例 2 输入】

```
5 7 3
 1
   1 2 1
   2 3 2
 3
   2 4 1
 4
   3 4 5
 5
   4 5 1
 6
   5 2 5
 7
   5 1 5
 8
 9
   3 8
   1 5 3
10
   3 4 2
11
   2 2 4
12
   3 1
13
```

【样例 2 输出】

```
1 4
```

【样例 3】

见选手目录下的 turtle/turtle3.in 与 turtle/turtle3.ans。

【数据范围】

对于所有数据, $1 \le n \le 10^4, 0 \le m \le 2 \times 10^4, 0 \le k \le 8, 0 \le e \le 2 \times 10^5, 1 \le t_{max} \le 10^8, 1 \le u, v, x \le n, 1 \le p \le k, 1 \le w, t \le t_{max}$ 。

子任务编号	子任务分值	特殊限制
1	20	$n \le 50, m \le 110, t_{max} \le 1000$
2	25	$n \le 70, m \le 150$
3	25	k=2
4	30	无特殊限制

路灯 (light)

【题目描述】

飞鸟和 charlie 在研究路灯。

一盏路灯可以视为一个高为 a,底边长为 b,斜边长为 c 的直角三角形,定义一盏路灯的**亮度**为其斜边长 c。定义两盏路灯**本质相同**当且仅当它们所对应的直角三角形相似。

飞鸟定义 f(n) 为**本质不同的**亮度不超过 n 的路灯数量,相应的,charlie 定义 $g(n) = \frac{n}{2f(n)}$ (当 f(n) = 0 时认为 $g(n) = +\infty$)。

在接下来的 T 个晚上,飞鸟和 charlie 共走过了 T 条街道,第 i 条街道的路灯亮度都属于整数区间 $[l_i, r_i]$ 。为了数学之美,对于每条街道 i,他们想知道 $g(l_i), g(l_i+1), \ldots, g(r_i)$ 中与 π 之差的绝对值最小的 g(x)。

【输入格式】

从文件 light.in 中读入数据。

第一行一个整数 T,代表有 T 条街道。

接下来 T 行,每行两个整数为 l_i, r_i 。

【输出格式】

输出到文件 light.out 中。

输出 T 行,第 i 行两个互质的正整数 p,q,以"/"三个字符分割,代表第 i 条街道的答案为 p/q。特别的,若答案为 ∞ ,则认为 p=1,q=0。

【样例 1 输入】

```
1 4 2 5 6 3 5 13 4 14 17 5 91 100
```

【样例 1 输出】

```
1 3 / 1
2 13 / 4
3 17 / 6
4 47 / 15
```

【样例 2】

见选手目录下的 light/light2.in 与 light/light2.ans。 样例约束满足子任务 2 的约束。

【样例 3】

见选手目录下的 *light/light3.in* 与 *light/light3.ans*。 样例约束满足子任务 3 的约束。

【样例 4】

见选手目录下的 *light/light4.in* 与 *light/light4.ans*。 样例约束满足子任务 4 的约束。

【样例 5】

见选手目录下的 light/light5.in 与 light/light5.ans。 样例约束满足子任务 5 的约束。

【数据范围】

保证 $1 \le T \le 100, 1 \le l \le r \le 10^9, r - l \le 10^5$ 。

- 子任务 1 (15 分): *r* ≤ 100。
- 子任务 2 (15 分): $r < 10^5$ 。
- 子任务 3 (30 分): $r < 10^8, r l < 100$.
- 子任务 4 (20 分): *l* = *r*。
- 子任务 5 (20 分): 无特殊限制。

野火 (fire)

【题目描述】

草原上的野火,是精灵,还是魔鬼?

在 charlie 所生活的草原上,燃烧着 n 团野火,第 i 团野火的大小为 a_i ,满足 $a_i \geq 2$ 。 charlie 对此有些担忧,因此向飞鸟求助这些野火会如何发展。经过考察,飞鸟发现每天这些野火将会出现如下变化:

- 1. 设 p_i 为 a_i 的最小素因子
- 2. $\Leftrightarrow a_i \leftarrow a_i/p_i$
- 3. 产生一团新的野火,大小为 $\prod p_i$
- 4. 所有大小为1的野火消失

charlie 想知道,m 天以后草原上的野火大小所形成的可重集 S,S 中每个元素对 10^9+7 取模。

【输入格式】

从文件 fire.in 中读入数据。

第一行两个整数 n, m。

第二行 n 个整数 a_1, a_2, \ldots, a_n 。

【输出格式】

输出到文件 fire.out 中。

第一行一个整数 k,表示 m 天以后可重集的大小。

第二行 k 个整数 b_1, b_2, \ldots, b_k ,表示每个可重集的元素对 $10^9 + 7$ 取模后的值。元素可按任意顺序输出。

【样例 1 输入】

1 4 3

2 3 4 5

【样例 1 输出】

3
 2
 15
 4

【样例1解释】

$$\{2,3,4,5\} \rightarrow \{2,60\} \rightarrow \{4,30\} \rightarrow \{2,4,15\}$$

【样例 2 输入】

1 10 100 2 3 5 6 7 10 12 19 23 27 36

【样例 2 输出】

1 6 2 3 23 45 120 126 684

【样例 3】

见选手目录下的 fire/fire3.in 与 fire/fire3.ans。

【样例 4】

见选手目录下的 *fire/fire4.in* 与 *fire/fire4.ans*。

【数据范围】

对于所有数据,满足 $1 \le n \le 10^4, 2 \le a_i \le 10^9, 1 \le m \le 10^{18}$ 。

- 子任务 1 (10 分): $n \times m < 10^5$ 。
- 子任务 2 (20 分): n = 1。
- 子任务 3 (20 分): n < 100。
- 子任务 4 (25 分): n < 2000。
- 子任务 5 (25 分): 无特殊限制。