BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement de Spécialité

Durée de l'épreuve : 4 heures

Coefficient: 9

Ce sujet comporte 6 pages numérotées de 1 à 6

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices. La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (5 points)

(Commun à tous les candidats)

Une ferme aquatique exploite une population de crevettes qui évolue en fonction de la reproduction naturelle et des prélèvements effectués.

La masse initiale de cette population de crevettes est estimée à 100 tonnes.

Compte tenu des conditions de reproduction et de prélèvement, on modélise la masse de la population de crevettes, exprimée en tonne, en fonction du temps, exprimé en semaine, par la fonction f_p , définie sur l'intervalle $[0; +\infty[$ par :

$$f_p(t) = \frac{100p}{1 - (1 - p)e^{-pt}}$$

où p est un paramètre strictement compris entre 0 et 1 et qui dépend des différentes conditions de vie et d'exploitation des crevettes.

- 1) Cohérence du modèle
 - **a)** Calculer $f_p(0)$.
 - **b)** On rappelle que 0 . $Démontrer que pour tout nombre réel <math>t \ge 0$, $1 - (1 - p)e^{-pt} \ge p$.
 - c) En déduire que pour tout nombre réel $t \ge 0$, $0 < f_p(t) \le 100$.
- **2)** Étude de l'évolution lorsque p = 0,9

Dans cette question, on prend p = 0.9 et on étudie la fonction $f_{0.9}$ définie sur $[0; +\infty[$ par :

$$f_{0,9}(t) = \frac{90}{1 - 0.1e^{-0.9t}}.$$

- a) Déterminer les variations de la fonction $f_{0,9}$.
- **b)** Démontrer pour tout nombre réel $t \ge 0$, $f_{0.9}(t) \ge 90$.
- c) Interpréter les résultats des questions 2. a. et 2. b. dans le contexte.
- 3) Retour au cas général

On rappelle que 0 .

Exprimer en fonction de p la limite de f_p lorsque t tend vers $+\infty$.

- **4)** Dans cette question, on prend $p = \frac{1}{2}$.
 - a) Montrer que la fonction H définie sur l'intervalle $[0; +\infty[$ par :

$$H(t) = 100 \ln \left(2 - e^{-\frac{t}{2}} \right) + 50 t$$

est une primitive de la fonction $f_{1/2}$ sur cet intervalle.

b) En déduire la masse moyenne de crevettes lors des 5 premières semaines d'exploitation, c'est-à-dire la valeur moyenne de la fonction $f_{1/2}$ sur l'intervalle [0; 5]. En donner une valeur approchée arrondie à la tonne.

EXERCICE 2 (5 points)

(commun à tous les candidats)

Dans les parties A et B de cet exercice, on considère une maladie; tout individu a une probabilité égale à 0,15 d'être touché par cette maladie.

Partie A

Cette partie est un questionnaire à choix multiples (Q. C. M.). Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse exacte. Aucune justification n'est demandée. Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse ne rapporte ni n'enlève aucun point.

Un test de dépistage de cette maladie a été mis au point. Si l'individu est malade, dans 94 % des cas, le test est positif. Pour un individu choisi au hasard dans cette population, la probabilité que le test soit positif vaut 0,158.

1) On teste un individu choisi au hasard dans la population : le test est positif. Une valeur arrondie au centième de la probabilité que la personne soit malade est égale à :

A: 0,94 **B:** 1 **C:** 0,89 **D:** on ne peut pas savoir

2) On prélève un échantillon aléatoire dans la population, et on fait passer le test aux individus de cet échantillon. On souhaite que la probabilité qu'au moins un individu soit testé positivement soit supérieure ou égale à 0,99. La taille minimum de l'échantillon doit être égale à :

A: 26 personnes **B:** 27 personnes **C:** 3 personnes **D:** 7 personnes

3) Un vaccin pour lutter contre cette maladie a été mis au point. Il est fabriqué par une entreprise sous forme de dose injectable par seringue. Le volume V (exprimé en millilitre) d'une dose suit une loi normale d'espérance $\mu=2$ et d'écart-type σ . La probabilité que le volume d'une dose, exprimé en millilitre, soit compris entre 1,99 et 2,01 millilitres est égale à 0,997. La valeur de σ doit vérifier :

A: $\sigma = 0.02$ **B:** $\sigma < 0.003$ **C:** $\sigma > 0.003$ **D:** $\sigma = 0.003$

Partie B

- 1) Une boîte d'un certain médicament permet de soigner un malade. La durée d'efficacité (exprimée en mois) de ce médicament est modélisée de la manière suivante :
 - durant les 12 premiers mois après fabrication, on est certain qu'il demeure efficace;
 - au-delà, sa durée d'efficacité restante suit une loi exponentielle de paramètre λ .

La probabilité que l'une des boîtes prise au hasard dans un stock ait une durée d'efficacité totale supérieure à 18 mois est égale à 0,887.

Quelle est la valeur moyenne de la durée d'efficacité totale de ce médicament?

2) Une ville de 100 000 habitants veut constituer un stock de ces boîtes afin de soigner les personnes malades.

Quelle doit être la taille minimale de ce stock pour que la probabilité qu'il suffise à soigner tous les malades de cette ville soit supérieure à 95 %?

EXERCICE 3 (5 points)

(Commun à tous les candidats)

On se place dans un repère orthonormé d'origine O et d'axes (Ox), (Oy) et (Oz). Dans ce repère, on donne les points A(-3;0;0), B(3;0;0), $C(0;3\sqrt{3};0)$ et $D(0;\sqrt{3};2\sqrt{6})$. On note H le milieu du segment [CD] et I le milieu du segment [BC].

1) Calculer les longueurs AB et AD.

On admet pour la suite que toutes les arêtes du solide ABCD ont la même longueur, c'est-à-dire que le tétraèdre ABCD est un tétraèdre régulier.

On appelle \mathscr{P} le plan de vecteur normal \overrightarrow{OH} et passant par le point I.

- **2)** Etude de la section du tétraèdre ABCD par le plan \mathscr{P} .
 - a) Montrer qu'une équation cartésienne du plan \mathscr{P} est : $2y\sqrt{3} + z\sqrt{6} 9 = 0$.
 - **b)** Démontrer que le milieu J de [BD] est le point d'intersection de la droite (BD) et du plan \mathscr{P} .
 - **c**) Donner une représentation paramétrique de la droite (AD), puis démontrer que le plan \mathscr{P} et la droite (AD) sont sécants en un point K dont on déterminera les coordonnées.
 - **d**) Démontrer que les droites (*IJ*) et (*JK*) sont perpendiculaires.
 - e) Déterminer précisément la nature de la section du tétraèdre ABCD par le plan \mathscr{P} .
- **3)** Peut-on placer un point *M* sur l'arête [*BD*] tel que le triangle *OIM* soit rectangle en *M*?

EXERCICE 4 (5 points)

(Candidats ayant suivi l'enseignement de spécialité)

On s'intéresse à la figure suivante, dans laquelle *a*, *b* et *c* désignent les longueurs des hypoténuses des trois triangles rectangles en *O* dessinés ci-dessous.

Problème : on cherche les couples de **nombres entiers naturels non nuls** (u, v) tel que ab = c.

1) Modélisation

Démontrer que les solutions du problème sont des solutions de l'équation :

(E):
$$v^2 - 2u^2 = 1$$
 (v et u étant des entiers naturels non nuls).

2) Recherche systématique de solutions de l'équation (*E*)

Recopier et compléter l'algorithme suivant pour qu'il affiche au cours de son exécution tous les couples solutions de l'équation pour lesquels $1 \le u \le 1\,000$ et $1 \le v \le 1\,000$.

Pour <i>u</i> allant de 1 à faire	Au cours de son exécution,
Pour	l'algorthme affiche :
Si	2 3
Afficher u et v	12 17
Fin Si	70 99
Fin Pour	408 577
Fin Pour	

3) Analyse des solutions éventuelles de l'équation (*E*)

On suppose que le couple (u, v) est une solution de l'équation (E).

- **a)** Établir que u < v.
- **b**) Démontrer que n et n^2 ont la même parité pour tout entier naturel n.
- **c)** Démontrer que v est un nombre impair.
- **d)** Établir que $2u^2 = (v-1)(v+1)$.

En déduire que u est un nombre pair.

4) Une famille de solutions

On assimile un couple de nombres entiers
$$(u, v)$$
 à la matrice colonne $X = \begin{pmatrix} u \\ v \end{pmatrix}$.

On définit également la matrice
$$A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$
.

- a) Démontrer que si une matrice colonne X est une solution de l'équation (E), alors AX est aussi une solution de l'équation (E).
- **b)** Démontrer que si une matrice colonne X est une solution de l'équation (E), alors pour tout entier naturel n, A^nX est aussi une solution de l'équation (E).
- **c)** À l'aide de la calculatrice, donner un couple (u, v) solution de l'équation (E) tel que $v > 10\,000$.