

Regressão logística - Estudo da diabetes

Análise de Clusters

ANA SOFIA FERREIRA PG38356

CAROLINA SILVA PG38335

CÉLIA FIGUEIREDO PG41022

MÁRCIA COSTA A67672

SAMUEL COSTA PG38352

Conteúdos

Análise do dataset

Tratamento dos dados

Análise Exploratória

Construção do modelo

Modelo final

- Interpretação dos coeficientes obtidos
- Accuracy do modelo
- Avaliação da capacidade preditiva do modelo

Conclusão

Prediction of Diabetes in PIMA Women

Dataset utilizado

Variáveis	Descrição	
Pregnancies	Número de vezes que engravidou	
Glucose	Concentração de glicose no plasma durante 2 horas presente num teste de tolerância à glicose por via oral	
BloodPressure	Pressão sanguínea diastólica (mm Hg)	
SkinThickness	Espessura da dobra da pele do tríceps (mm)	
Insulin	Insulina sérica de 2 horas (mg/dl)	
BMI	índice de massa corporal (kg/m2)	
DiabetesPedigreeFuction	Função de hereditariedade do diabetes (uma função que pontua a probabilidade de diabetes com base no histórico familiar)	
Age	Idade (anos)	
Outcome	Variável de classe (0 se não diabético, 1 se diabético)	

Distribuição da variável "Outcome"

- Verificaram-se mais casos de ausência da doença
- Os casos de ocorrência da doença são, aproximadamente, metade dos casos de não ocorrência

Tratamento dos dados

Análise da variável Gravidez

Gravidez

Número de gravidezes

- Valor mais recorrente: 1 vez grávida
- Quanto mais vezes a ocorrência de gravidez menos pacientes verificados

Gravidez vs Diabetes

- Proporção de pacientes com diabetes aumenta à medida que o número de gravidezes aumenta.
- Existe um número muito elevado de pacientes sem diabetes que tiveram um número reduzido de gravidezes ou nenhuma.

Glicose vs Diabetes

 Pessoas com diabetes apresentam no sangue uma maior quantidade de glicose.

Pressão sanguínea vs Diabetes

 Em média, a pressão sanguínea de uma mulher com diabetes é muito similar à de uma mulher sem diabetes.

 Como tal, suspeita-se que a pressão sanguínea poderá ser uma variável a retirar do modelo.

Espessura da pele vs Diabetes

- Pacientes com maiores valores de espessura da pele possuem uma maior probabilidade de ter diabetes.
- Em contrapartida, menores valores de espessura da pele possuem uma densidade superior de mulheres sem diabetes, comparativamente às mulheres que possuem.

Insulina vs Diabetes

- Percebe-se que em mulheres sem diabetes existe uma maior concentração de registos com quantidade de insulina verificada abaixo de, aproximadamente, 155.
- No caso de mulheres com diabetes a concentração é maior acima desse mesmo número.

IMC vs Diabetes

 Mulheres com diabetes, em média, têm um maior índice de massa corporal.

Função genética vs Diabetes

 A possibilidade de uma pessoa ter diabetes, transmitida hereditariamente, é maior nas mulheres com diabetes, efetivamente.

Idade vs Gravidez | Insulina vs Glicose

- Há muitas ocorrências de aproxidamente 155. Devese ao facto de os missing values terem sido substituídos pela média.
- Níveis de glicose mais baixos dizem respeito a ocorrências menos frequentes de diabetes.

Matriz de correlação

Variáveis mais correlacionadas:

- Pregancies e Age
- BMI e SkinThickness
- Insulin e Glucose

Variáveis que mais se relacionam com a resposta:

- Glucose
- BMI

Construção do modelo

Dados para treino: 70% Dados para teste: 30%

```
Call:
glm(formula = Outcome ~ ., family = binomial(link = "logit"),
    data = train)
Deviance Residuals:
   Min
             10
                  Median
-2.5957 -0.7006 -0.3841
                         0.6853 2.3762
Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
(Intercept)
                        -9.6526443 0.9893468 -9.757 < 2e-16 ***
                         0.1185184 0.0387091
                                               3.062
Pregnancies
                                              7.864 3.73e-15 ***
Glucose
                         0.0375306 0.0047726
BloodPressure
                        -0.0082741 0.0106001
                                              -0.781
                                                       0.4351
SkinThickness
                                               1.112
                         0.0180122 0.0161984
                                                       0.2661
Insulin
                         0.0005201 0.0015363
                                               0.339
                                                       0.7350
                         0.0921209 0.0218500
                                               4.216 2.49e-05 ***
DiabetesPedigreeFunction 0.8526290 0.3587499
                                               2.377
                                                       0.0175 *
Age
                         0.0127746 0.0114296
                                               1.118 0.2637
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 696.28 on 537 degrees of freedom
Residual deviance: 487.84 on 529 degrees of freedom
ATC: 505.84
Number of Fisher Scoring iterations: 5
```

Regressão gradual

- •Adicionar e remover iterativamente preditores ao modelo.
- •Através da função stepAIC testamos os 3 métodos: backward, forward e both

AIC "both"	501.0397	Método <i>backward</i>
AIC "backward"	501.0397	escolhido
AIC "forward"	505.8351	

Número de variáveis

Modelo Final

(Intercept) -9.62124129

Pregnancies 0.13877111 Glucose 0.03852866 BMI DiabetesPedigreeFunction 0.09838685 0.87090498

- Coeficientes positivos aumentam a probabilidade de ter a diabetes
- Coeficientes negativos diminuem a probabilidade de ter a diabetes

Modelo de Regressão Logística:

Accuracy = 0.75

y = -9.62124129 + 0.13877111 pregnancies + 0.03852866 Glucose + 0.09838685 BMI + 0.87090498 Diabetes Pedigree Function

Tabela da análise do desvio

```
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 537 696.28

Pregnancies 1 29.047 536 667.23 7.065e-08 ***

Glucose 1 134.568 535 532.67 < 2.2e-16 ***

BMI 1 35.684 534 496.98 2.321e-09 ***

DiabetesPedigreeFunction 1 5.943 533 491.04 0.01478 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Quanto maior a diferença entre o desvio nulo e o desvio residual, melhor o modelo.
- Sempre que se adiciona uma variável há um decréscimo no desvio residual.

Avaliação da capacidade preditiva do modelo

Curvas ROC

- Área abaixo da curva ROC auc
- ➤ 0.8230833

- Validação interna auc i
- 0.8537538

Significado do modelo

Glucose

```
\exp(0.03852866*10) OR = 1.470036
```

Um aumento de 10 mg de glicose no sangue faz com que uma mulher tenha cerca de 1.47 vezes mais possibilidade de ter diabetes.

• BMI

Um aumento de 5 unidades no IMC faz com que uma mulher tenha cerca de 1.64 vezes mais possibilidade de ter diabetes.

Predict

t=(1+exp(-(predict(model2,list(Pregnancies=5,BMI=30,DiabetesPedigreeFunction=0.25,Glucose=100)))))^-1
t=0.1295224

Conclusões

- A regressão logística tem muitas vantagens perante a regressão linear (resíduos não precisam estar normalizados);
- A análise exploratória inicial das variáveis está coerente com os resultados obtidos;
- Todas as variáveis que compõem o modelo influenciam positivamente o resultado final;
- A precisão de 0.75 no conjunto de testes é um bom resultado. No entanto, este resultado depende um pouco da divisão dos dados para treino/teste;
- A área abaixo da curva ROC com valor de 0.85 é considerado um valor bastante bom.

Regressão logística - Estudo da diabetes

Análise de Clusters

ANA SOFIA FERREIRA PG38356

CAROLINA SILVA PG38335

CÉLIA FIGUEIREDO PG41022

MÁRCIA COSTA A67672

SAMUEL COSTA PG38352