Fundação Getúlio Vargas

Matemática Aplicada

Nome:

Monitores: Cleyton e Jeann

Exercício 1 - O Teorema do Valor Intermediário

- (a) Seja $f:\mathbb{R}\to\mathbb{R}$ uma função contínua tal que f(c)>0 e $f(x)\neq 0, \forall x\in\mathbb{R}$. Existe $x\in\mathbb{R}$ tal que f(x)<0?
- (b) Seja $g: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que $g(x) \geq 0, \forall x > 0$ e $g(x) \leq 0, \forall x < 0$. Quais os possíveis valores de g(0)?
- (c) Seja $h:[0,1] \to [0,1]$ uma função tal que $|h(x)-h(y)| \le |x-y|, \forall x,y \in [0,1]$. Se for "<" em vez de " \le ", mostre que existe um único $x_0 \in [0,1]$ tal que $h(x_0) = x_0$.

Exercício 2 - A Continuidade Preserva Intervalos

Seja $f:\mathbb{R}\to\mathbb{R}$ uma função contínua. Mostre que se I é um intervalo, então f(I) é um intervalo.

Reciprocamente, seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que se I é um intervalo, então f(I) é um intervalo e, além disso, para cada $a \in \mathbb{R}$, suponha que $\{x \in \mathbb{R} | f(x) = a\}$ é finito. Então, mostre que f é contínua.

O que acontece se existir algum $a\in\mathbb{R}$ tal que $\{x\in\mathbb{R}|f(x)=a\}$ não seja finito?

Exercício 3 - O Teorema de Weierstrass

Seja $f:\mathbb{R} \to \mathbb{R}$ contínua tal que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = -\infty$. Mostre que existe $x_0 \in \mathbb{R}$ tal que $f(x_0) \geq f(x), \forall x \in \mathbb{R}$.

Exercício 4 - A Descontinuidade Enumerável

Seja $f:\mathbb{R} \to \mathbb{R}$ uma função decrescente. Mostre que

- (a) existem os limites laterais em todo ponto de f
- (b) para cada ponto de descontinuidade de f, existe um intervalo aberto no qual a função faz um (ou dois) "salto(s)" e estes intervalos são disjuntos para cada ponto.
- (c) o conjunto $D \subset \mathbb{R}$ dos pontos de descontinuidade de f é enumerável.

(Sugestão: Você talvez precise usar que \mathbb{Q} é denso em \mathbb{R} ...)

Exercício 5 - Limites Laterais Distintos

Seja $f:[a,b] \to \mathbb{R}$ limitado e a < c < b tal que $\lim_{x \to c} f(x)$ não existe. Mostre que existem $(x_n), (y_n)$ sequências em [a,b] tais que $x_n, y_n \to c$, mas $\lim f(x_n) \neq \lim f(y_n)$.

Exercício 6 - Mind-Blowing... (o__o;)

Gustavo e Murilo, amigos de Nati e Robertinha, estavam estudando funções em seu curso de Análise.

Gustavo pensou em uma função $f:\mathbb{Q}\to\mathbb{R}\setminus\mathbb{Q}$ e Murilo pensou em uma função $g:\mathbb{R}\setminus\mathbb{Q}\to\mathbb{Q}$. Então, eles resolveram juntar as duas funções, obtendo $h:\mathbb{R}\to\mathbb{R}$ tal que h(x)=f(x) se $x\in\mathbb{Q}$ e h(x)=g(x) se $x\in\mathbb{R}\setminus\mathbb{Q}$.

Mas eles se perguntaram se h era contínua. Ajude-os respondendo se h pode ou não ser contínua e (obviamente) por quê?

Exerício 1 - Solução

- (a) Não. Com efeito, pelo Teorema do Valor Intermediário, se existisse $x \in \mathbb{R}$ tal que f(x) < 0 e, supondo x < c, então, existiria $a \in (x,c)$ tal que f(a) = 0, o que é um absurdo. Análogo para x > c.
- (b) g(0) = 0. Com efeito, $g\left(-\frac{1}{n}\right) \le 0 \le g\left(\frac{1}{n}\right)$. Logo, tomando o limite em g, temos que $g(0) \le 0 \le g(0)$, ou seja, g(0) = 0.
- (c) Temos que h é contínua. Com efeito, dado $\varepsilon>0$ e $y\in\mathbb{R}$, seja $\delta=\varepsilon$, donde $|x-y|<\delta\Rightarrow|h(x)-h(y)|\leq|x-y|<\delta=\varepsilon$. Agora, considere a função $F:[0,1]\to[-1,1]$ dada por F(x)=h(x)-x, que também será contínua. Veja que $F(0)=h(0)\geq0$ e $F(1)=h(1)-1\leq0$. Se for F(0)=0 ou F(1)=1 está feito. Caso contrário, teremos F(0)>0 e F(1)<0. Pelo Teorema do Valor Intermediário, existe $c\in(0,1)$ tal que F(c)=0, donde h(c)=c. Agora, se existirem dois pontos x_0 e y_0 tais que $h(x_0)=x_0$ e $h(y_0)=y_0$ e $|h(x_0)-h(y_0)|<|x_0-y_0|$, teríamos $|x_0-y_0|<|x_0-y_0|$, que é um absurdo!

Exerício 2 - Solução

- Suponha que f(I) é limitado. Então existem sequências $(x_n), (y_n)$ tais que $f(x_n) \to \inf_{x \in I} f(x)$ e $f(y_n) \to \sup_{x \in I} f(x)$. Desde que $\inf_{x \in I} f(x) \le \sup_{x \in I} f(x)$, existe $n_0 \in \mathbb{N}$ tal que $f(x_n) \le f(y_n), \forall n > n_0$. Para cada $n > n_0$, dado algum $c_n \in [f(x_n), f(y_n)]$, pelo Teorema do Valor Intermediário, existe $d_n \in I$ tal que $f(d_n) = c_n$, donde $[f(x_n), f(y_n)] \subset f(I)$. Daí, $\bigcup_{n > n_0} [f(x_n), f(y_n)] \subset f(I)$. Na verdade, $\bigcup_{n > n_0} [f(x_n), f(y_n)] = f(I)$, pois todo elemento de f(I) está entre $\inf_{x \in I} f(x)$ e $\sup_{x \in I} f(x)$. Mas, esta união constrói um intervalo (A saber, um dentre as opções $\left[\inf_{x \in I} f(x), \sup_{x \in I} f(x)\right]$, $\left[\inf_{x \in I} f(x), \sup_{x \in I} f(x)\right]$ e $\left(\inf_{x \in I} f(x), \sup_{x \in I} f(x)\right)$. Para o caso f(I) ilimitado, o raciocínio é similar, bastando trocar $\inf_{x \in I} f(x) = -\infty$ ou $\sup_{x \in I} f(x) = +\infty$.
- Se f não fosse contínua em algum ponto a, existiria um $\varepsilon > 0$ tal que $\forall n \in \mathbb{N}$, existiria x_n tal que $x_n \in \left(a \frac{1}{n}, a + \frac{1}{n}\right)$, mas $|f(x_n) f(a)| \ge \varepsilon$, donde $f(x_n) \ge f(a) + \varepsilon$ ou $f(x_n) \le f(a) \varepsilon$. Para os infinitor valores de n, temos a ocorrência de infinitas vezes de pelo menos uma destas expressões. Suponha, sem perda de generalidade, que seja $f(x_n) \ge f(a) + \varepsilon$. Como $f\left(\left(a \frac{1}{n}, a + \frac{1}{n}\right)\right)$ é um intervalo que contém f(a) e $f(x_n)$ em infinitos valores de n, contém também $f(a) + \varepsilon$ que está entre f(a) e $f(x_n)$. Mas isto é um absurdo, pois isto implicaria que o conjunto dos valores x tais que $f(x) = f(a) + \varepsilon$ é infinito. Logo, f é contínua.
- Neste caso, a função pode não ser contínua. Por exemplo, seja $f(x) = \sin\left(\frac{1}{x}\right)$ se $x \neq 0$ e f(0) = 0. A função não é contínua em 0, mas f(I) = [-1,1], para todo intervalo contendo 0 e, certamente é intervalo para intervalos I que não contém 0, pois a função é contínua nestes pontos. Além disso, para $x_n = \frac{1}{2n\pi}$, temos que $f(x_n) = 0, \forall n \in \mathbb{N}$.

Exerício 3 - Solução

A=f(1). Como $\lim_{x\to -\infty}f(x)=\lim_{x\to +\infty}f(x)=-\infty$, temos que existe M>0 tal que se |x|>M, tem-se f(x)< A. Como, f é contínua, temos que f assume valor máximo em [-M,M], isto é, existe $x_0\in [-M,M]$ tal que $f(x_0)\geq f(x), \forall x\in [-M,M]$. Além disso, f(x)< A=f(1) para $x\in \mathbb{R}\setminus [-M,M]$, donde $1\in [-M,M]$. Logo, $f(x_0)\geq f(x), \forall x\in \mathbb{R}\setminus [-M,M]$ e, consequentemente, $f(x_0)\geq f(x), \forall x\in \mathbb{R}$.

Exerício 4 - Solução

- (a) Vamos provar apenas a existência de um dos limites laterais. O outro é análogo. Dado $c \in \mathbb{R}$, seja $L_c^- = \inf\{f(x)|x < c\}$. Vamos mostrar que $L_c^- = \lim_{x \to c^-} f(x)$. Com efeito, dado $\varepsilon > 0$, pela definição de L_c^- , deve existir $x_0 \in \mathbb{R}$ tal que $f(c) \leq f(x_0) < f(c) + \varepsilon$. Como a função é decrescente, $x_0 < c$. Além disso, se $x_0 < x < c$, então $f(c) \varepsilon < f(c) \leq f(x) \leq f(x_0) < f(c) + \varepsilon$. Assim, basta tomar $c \delta = x_0$, ou seja, $\delta = c x_0$. O limite lateral à esqueda é dado por $L_c^+ = \sup\{f(x)|x > c\}$.
- (b) Isto equivale a mostrar que nestes pontos de descontinuidade, digamos $c \in \mathbb{R}$, temos $L_c^+ < L_c^-$. Com efeito, como a função é decrescente, obtemos que se x < c < y, então f(x) > f(c) > f(y), donde $\inf_{x < c} f(x) \ge f(c) \ge \sup_{x > c} f(x)$. Ou seja, $L_c^- \ge c \ge L_c^+$. Se for $L_c^- = L_c^+ = c$, teremos que a função será contínua em c, o que contradiz o fato de c ser ponto de descontinuidade. Logo, deve ser $L_c^+ < L_c^-$. Além disso, dado d < c outro ponto de descontinuidade de f, vem que $L_c^- \le L_d^+$, já que f é decrescente. Analogamente para um ponto de descontinuidade maior que c.
- (c) Como cada ponto de descontinuidade de f tem um intervalo aberto associado que é disjunto dos demais, podemos estabelecer uma bijeção entre tais pontos e estes intervalos. Cada intervalo, por ser não-degenerado, admite um número racional. Logo, podemos estabelecer uma bijeção entre os intervalos e um subconjunto dos números racionais, que é enumerável. Logo, o conjunto dos pontos de descontinuidade de f é enumerável.

Exerício 5 - Solução

Dadas (c_n) e (d_n) em [a,b] tais que $c_n,d_n\to c$, com $c_n< c< d_n, \forall n\in\mathbb{N}$. Como f é limitada, temos $(f(c_n))$ limitada, portanto, por Bolzano-Weierstrass, existe subsequência (x_n) de (c_n) tal que $f(x_n)$ é convergente para algum valor L. Além disso, se toda subsequência convergente (existe pelo menos uma, por Bolzano-Weierstrass) de $(f(d_n))$ convergir para L, pelo item (d) do Exercício 1 da Lista 2, teremos que $f(d_n)$ é convergente e converge para L. Aplicando o mesmo raciocínio a $(f(c_n))$, se toda subsequência convergente convergir para L, teremos $f(c_n)$ convergente com limite L. Mas, como (c_n) e (d_n) são tomados arbitrariamente, seguiria que $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L$, ou seja, existe o limite $\lim_{x\to c} f(x)$, que é um absurdo. Logo, devemos ser capazes de extrair uma subsequência, seja de $(f(c_n))$ ou de $(f(d_n))$, convergente para algum valor $M \neq L$.

Exerício 6 - Solução

Escrevendo $\mathbb{Q}=\{a_1,a_2,...,a_n,...\}$, obtemos que a imagem de f será o conjunto $f(\mathbb{Q})=\{f(a_1),f(a_2),...,f(a_n)\}$, que é enumerável. Além disso, a imagem de g é $g(\mathbb{R}\backslash\mathbb{Q})\subset\mathbb{Q}$, que também é enumerável. Logo, a imagem de h é $A\cup B$, que é ainda enumerável. Se h fosse contínua, levaria intervalos em intervalos (pelo Exercício 2). Como $h(\mathbb{R})=A\cup B$, que é enumerável, deve ser um intervalo degenerado e, portanto, h é constante. Mas isto implicaria que $f(x)=c=g(y), \forall x\in\mathbb{Q}$ e $\forall y\in\mathbb{R}\backslash\mathbb{Q}$, que é um absurdo. Logo, h nunca será contínua.