

L1 - S2 Electrocinétique 2 **Avril 2018** Durée: 2h

Sans document - Calculatrice autorisée

NOM: Prénom: Groupe de TD:

1. Phaseur - Impédance

6 points

Le circuit linéaire présenté sur la figure 1 est alimenté par un générateur de tension sinusoïdale de forme $u(t) = \cos(2\pi t - \pi/6)$. Le courant sinusoïdal i(t) traversant le générateur présente la forme suivante : $i(t) = \sqrt{2}\sin(2\pi t + \pi/6)$.

- Quelle est la fréquence de fonctionnement du générateur ?
- b. Présenter les phaseurs de la tension u(t) et du courant i(t).
- c. Présenter le diagramme des phaseurs de la tension et du courant dans le plan complexe.
- d. Préciser les valeurs efficaces du courant et de la tension.
- e. Calculer l'impédance complexe (Z) du circuit linéaire sous formes exponentielle et cartésienne.
- Calculer la puissance active associée au dipôle Z. Cette puissance est-elle générée ou dissipée ?

2. Circuit RC 5 points

La figure 2 présente un circuit constitué d'un résistor de résistance R en série avec un condensateur de capacité C et alimenté par une source de tension sinusoïdale de forme $u(t) = U_{\text{max}} \cos(\omega t)$.

Figure 2

Remarque: Aucune valeur numérique n'est fournie.

- Déterminer l'expression de l'impédance complexe <u>Z</u> du circuit RC sous forme cartésienne. a.
- En utilisant la définition de l'impédance, déterminer le phaseur de l'intensité de courant <u>I</u>. b.
- Donner la forme temporelle de l'intensité de courant i(t). c.
- L'intensité du courant est-elle en avance ou en retard de phase par rapport à la tension ? d.
- Si $\omega \rightarrow \infty$, quel est le déphasage entre la tension et l'intensité de courant ?

3. Circuit RL 5 points

On considère le circuit de la figure 3 constitué d'un résistor de résistance R en parallèle avec une bobine d'inductance L. Ce circuit RL est alimenté par une source de courant idéale de paramètre i de la forme $i = I_{max} \cos(\omega t)$.

Données numériques : $R = 10 \Omega$, L = 60 mH, $I_{max} = 1 \text{ A}$, f = 50 Hz.

- a. A l'aide de la formule du pont diviseur de courant, exprimer i_1 et i_2 en fonction de R, L et i.
- b. Calculer les intensités des courants $i_0(t)$, $i_1(t)$ et $i_2(t)$. On exprimera chaque intensité sous la forme $i_n(t)=I_{\text{MAX}n}\cos(\omega_n t \varphi_n)$ et on calculera les paramètres $I_{\text{MAX}n}$, ω_n , et φ_n (avec n=0, 1 et 2).
- c. Représenter le diagramme des phaseurs associés aux courants i, i_1 et i_2 .

Figure 3

4. Equivalence série-parallèle

4 points

On considère sur la figure 4 deux dipôles. Le premier est constitué d'un résistor de résistance R_1 en série avec un condensateur de capacité C_1 . Le second est constitué d'un résistor de résistance R_2 en parallèle avec un condensateur de capacité C_2 .

- a. Exprimer l'impédance équivalente de ces deux dipôles.
- b. Déterminer les conditions d'équivalence entre R₁, R₂, C₁, C₂ pour que les deux dipôles présentent la même impédance à une vitesse angulaire ω donnée.

Figure 4