Capítulo 11

Problema 01

Nº de sucessos	0	1	1 2		4	5	
p	0,0	0,2	0,4	0,6	0,8	1,0	
$P(\hat{p})$	0,3277	0,4096	0,2048	0,0512	0,0064	0,0003	

$$E(\hat{p}) = 0.2 = p$$
; $Var(\hat{p}) = 0.032 = \frac{p(1-p)}{5}$.

Problema 02

$$Var(\hat{p}) = \frac{p(1-p)}{n} \le \frac{1}{4n}$$

n	10	25	100	400
Limite superior de				
$Var(\hat{p})$	0,025	0,01	0,0025	0,000625

$$(\mathbf{a}) \qquad X = \sum_{i=1}^{n} X_i$$

$$X \sim Binomial(n; p)$$
; $E(X) = np$; $Var(X) = np(1-p)$

$$E(\hat{p}_1) = E\left(\frac{X}{n}\right) = \frac{1}{n}E(X) = \frac{np}{n} = p;$$

$$Var(\hat{p}_1) = Var\left(\frac{X}{n}\right) = \frac{1}{n^2}Var(X) = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}.$$

(b) X_1 = resultado da 1^a prova

$$X_1 \sim Bernoulli(p); E(X_1) = p; Var(X_1) = p(1-p)$$

 $E(\hat{p}_2) = E(X_1) = p;$
 $Var(\hat{p}_2) = Var(X_1) = p(1-p).$

O estimador \hat{p}_2 não é bom porque só assume os valores 0 ou 1, de pendendo do resultado da 1ª prova. Além disso, $Var(\hat{p}_2) = nVar(\hat{p}_1)$, ou seja, sua variância é maior que a variância de \hat{p}_1 , para todo n maior que 1.

Problema 04

$$\lim_{n\to\infty} (E(\hat{p}_1)) = p \ \ \mathrm{e} \ \lim_{n\to\infty} Var(\hat{p}_1) = \lim_{n\to\infty} \frac{p(1-p)}{n} = 0 \ .$$

Logo, \hat{p}_1 é um estimador consistente de p.

$$\lim_{n \to \infty} (E(\hat{p}_2)) = p \text{ e } \lim_{n \to \infty} Var(\hat{p}_2) = \lim_{n \to \infty} p(1-p) = p(1-p) \neq 0, \text{ para } p \neq 0 \text{ e } p \neq 1.$$

Logo, \hat{p}_2 não é um estimador consistente de p.

Problema 05

Propriedades dos	Estimador				
estimadores	t_1	t_2			
Viés	2	0			
Variância	5	10			
EQM	9	10			

O estimador t_1 é viesado, enquanto que t_2 é não-viesado. A mediana e a moda de t_1 e t_2 são iguais ou muito próximas de $\theta = 100$. Além disso, $EQM(t_1) = 9$, enquanto que $EQM(t_2) = 10$. A única medida realmente discrepante é a variância: $Var(t_2) = 2Var(t_1)$. Como o viés de t_1 é pequeno e sua variância a metade da variância de t_2 , pode-se considerar que t_1 é um estimador melhor que t_2 .

(a)

t	y_t	$(y_t - 6)^2$	$(y_t - 7)^2$	$(y_t - 8)^2$	$(y_t - 9)^2$	$(y_t - 10)^2$
1	3	9	16	25	36	49
2	5	1	4	9	16	25
3	6	0	1	4	9	16
4	8	4	1	0	1	4
5	16	100	81	64	49	36
	$S(\mu)$	114	103	102	111	130

 $S(\mu)$ parece ser mínimo para μ aproximadamente igual a 7,5.

(b)

$$\frac{dS(\mu)}{d\mu} = -2\sum_{t} (y_{t} - \mu) = -2\sum_{t} y_{t} + 2n\mu$$

$$\frac{dS(\mu)}{d\mu} = 0 \Leftrightarrow \mu = \hat{\mu}_{MQ} = \frac{\sum_{t} y_{t}}{n} = \bar{y}$$

$$\frac{dS(\mu)}{d\mu} = 0 \iff \mu = \hat{\mu}_{MQ} = \frac{\sum_{t} y_{t}}{n} = \bar{y}$$

Logo, $\hat{\mu}_{\it MQ} = \overline{y} = 7,6$. Esse valor é próximo àquele visualizado no gráfico do item (a).

Problema 07

(a)

(b)
$$S(\alpha, \beta) = \sum_{t} (y_{t} - \alpha - \beta t)^{2}$$
$$\frac{dS(\alpha, \beta)}{d\alpha} = -2\sum_{t} (y_{t} - \alpha - \beta t) = -2\sum_{t} y_{t} + 2n\alpha + 2\beta \sum_{t} t = -2n\overline{y} + 2n\alpha + 2n\beta \overline{t}$$
$$\frac{dS(\alpha, \beta)}{d\beta} = -2\sum_{t} t(y_{t} - \alpha - \beta t) = -2\sum_{t} ty_{t} + 2\alpha \sum_{t} t + 2\beta \sum_{t} t^{2}$$

Igualando a zero, temos:

$$\frac{dS(\alpha, \beta)}{d\alpha} = 0 \Leftrightarrow \alpha = \hat{\alpha} = \overline{y} - \beta \hat{t}$$

$$\frac{dS(\alpha,\beta)}{d\beta} = 0 \Leftrightarrow (\overline{y} - \beta \overline{t})n\overline{t} + \beta \sum_{t} t^{2} = \sum_{t} ty_{t} \Leftrightarrow \beta = \hat{\beta} = \frac{\sum_{t} ty_{t} - n\overline{t}\overline{y}}{\sum_{t} t^{2} - n\overline{t}^{2}}.$$

Logo, os estimadores de mínimos quadrados de α e β são dados, respectivamente, por

$$\hat{\alpha} = \overline{y} - \beta \hat{t} \quad e \quad \hat{\beta} = \frac{\sum_{t} t y_{t} - n \overline{t} \overline{y}}{\sum_{t} t^{2} - n \overline{t}^{2}}.$$

Na amostra observada, obtemos as seguintes estimativas:

$$\hat{\alpha} = 350026,73 \text{ e } \hat{\beta} = 177,80.$$

(c) A inflação prevista pelo modelo ajustado é

$$\hat{y}(1981) = 350026,73 + 177,80 \times 1981 = 2202,143$$
.

(d) Sim, pois a inflação cresceu exponencialmente (e não linearmente) no período observa do.

Problema 08

Com cálculos análogos aos feitos no Exercício 7, substituindo t por x_t , obtemos que

$$\hat{\alpha} = \overline{y} - \beta \overline{x} \ e \ \hat{\beta} = \frac{\sum_{t} x_{t} y_{t} - n \overline{x} \overline{y}}{\sum_{t} x_{t}^{2} - n \overline{x}^{2}}.$$

Problema 09

$$\hat{\beta} = \frac{\sum_{t} x_{t} y_{t} - n \overline{x} \overline{y}}{\sum_{t} x_{t}^{2} - n \overline{x}^{2}} = \frac{2586,43 - 10 \times 3,73 \times 68,66}{169,25 - 10 \times 3,73^{2}} = 0,844;$$

$$\hat{\alpha} = \overline{y} - \beta \overline{x} = 68,66 - 0,844 \times 3,73 = 65,513$$
.

Logo, o modelo ajustado é dado por

$$\hat{y}_t = 65,513 + 0,844x_t$$
.

Problema 10

$$L(p) = p^{x}(1-p)^{n-x} = p^{3}(1-p)^{2}$$

Função de verossimilhança da distribuição Binomial(5;p)

p	1/5	2/5	3/5	4/5
L(p)	0,005	0,023	0,035	0,020

Problema 11

- (a) $P(X = x) = P(x 1 \text{ fracassos e 1 sucesso}) = P(FFF...FS) = p(1 p)^{x-1}$.
- (b) Função de verossimilhança

$$L(p \mid \mathbf{x}) = P(X_1 = x_1 \mid p) \cdots P(X_n = x_n \mid p) = p(1-p)^{x_1-1} \cdots p(1-p)^{x_n-1} = p^n (1-p)^{\sum x_i - n};$$

Função log-verossimilhança

$$l(p \mid \mathbf{x}) = \log(L(p \mid \mathbf{x})) = n \log p + (\sum x_i - n) \log(1 - p);$$

Maximizando em relação a p:

$$l'(p \mid \mathbf{x}) = \frac{n}{p} - \frac{\sum x_i - n}{1 - p} = 0 \Leftrightarrow n(1 - p) - \left(\sum x_i - n\right)p = 0 \Leftrightarrow p = \frac{n}{\sum x_i}.$$

Logo, o EMV para p é dado por

$$\hat{p} = \frac{n}{\sum x_i}.$$

(c)
$$\hat{p} = \frac{5}{11} = 0.455$$
.

Sim, poderíamos estimar p = P(coroa) lançando a moeda n vezes e contando o número de coroas (m). Nesse caso, $\hat{p} = m/n$.

Problema 12

Função densidade de probabilidade

$$f(x_i \mid \mu) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x_i - \mu)^2}{2}\right\};$$

Função de verossimilhança

$$L(\mu \mid \mathbf{x}) = \prod_{i=1}^{n} f(x_i \mid \mu) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{(x_i - \mu)^2}{2} \right\} \right] = \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp\left\{ -\frac{\sum (x_i - \mu)^2}{2} \right\};$$

Função log-verossimilhança

$$l(\mu \mid \mathbf{x}) = \log(L(\mu \mid \mathbf{x})) = -\frac{n}{2}\log(2\pi) - \frac{\sum(x_i - \mu)^2}{2};$$

Maximizando em relação a μ:

$$l'(\mu \mid \mathbf{x}) = \sum_{i} (x_i - \mu) = n\overline{x} - n\mu = 0 \iff \mu = \overline{x}.$$

Logo, o EMV de μ é dado por:

$$\hat{\mu}_{MV} = \overline{x}$$
.

Problema 13

Função de probabilidade

$$P(Y_i = y_i \mid \lambda) = \frac{e^{-\lambda} \lambda^{y_i}}{y_i!};$$

Função de verossimilhança

$$L(\lambda \mid \mathbf{y}) = P(Y_1 = y_1 \mid \lambda) \cdots P(Y_n = y_n \mid \lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{y_i}}{y_i!} = \frac{e^{-n\lambda} \lambda^{\sum y_i}}{\prod y_i!};$$

Função de log-verossimilhança

$$l(\lambda \mid \mathbf{y}) = \log(L(\lambda \mid \mathbf{y})) = -n\lambda + \sum y_i \log \lambda - \log(\prod y_i!);$$

Maximizando em relação a λ :

$$l'(\lambda \mid \mathbf{y}) = -n + \frac{\sum y_i}{\lambda} = 0 \Leftrightarrow \lambda = \frac{\sum y_i}{n} = \overline{y}.$$

Logo, o EMV de λ é dado por:

$$\hat{\lambda}_{MV} = \overline{y}$$
.

Problema 14.

$$IC(\mu; \gamma) = \left| \overline{X} - z(\gamma) \frac{\sigma}{\sqrt{n}}; \overline{X} + z(\gamma) \frac{\sigma}{\sqrt{n}} \right|$$

			Intervalo d	e confiança		
Média	Tamanho da	Desvio padrão da	Coeficiente de	;	Limite	Limite
amostral	amostra	população	confiança	$z(\gamma)$	inferior	superior
170	100	15	95%	1,960	167,06	172,94
165	184	30	85%	1,440	161,82	168,18
180	225	30	70%	1,036	177,93	182,07

Problema 15

(a)
$$IC(\mu;0.99) = 800 \pm 2.576 \times \frac{100}{20} =]787,12;812,88[$$

(b)
$$e = 0.98 \Rightarrow z(\gamma) \frac{s}{\sqrt{n}} = 0.98 \Rightarrow z(\gamma) = 0.98 \frac{\sqrt{n}}{s} = 0.98 \times \frac{20}{100} = 0.196 \Rightarrow \gamma = 15.54\%$$
.

(c)
$$e = z(\gamma) \frac{s}{\sqrt{n}} \Leftrightarrow n = \left(\frac{z(\gamma)s}{e}\right)^2 = \left(\frac{1,96 \times 100}{7,84}\right)^2 = 625$$
.

Suposições: Amostragem aleatória simples; tamanho amostral grande.

Problema 16

(a)
$$P(|\overline{X} - \mu| < e) = \gamma \Leftrightarrow P\left(-\frac{e}{s/\sqrt{n}} < \frac{\overline{X} - \mu}{s/\sqrt{n}} < \frac{e}{s/\sqrt{n}}\right) = \gamma \Leftrightarrow \frac{e}{s/\sqrt{n}} = z(\gamma) \Leftrightarrow n = \left(\frac{z(\gamma)s}{e}\right)^2$$

$$n = \left(\frac{1,96 \times 10}{1}\right)^2 = 384,16 \cong 385.$$

(b)
$$n = \left(\frac{2,576 \times 10}{1}\right)^2 = 663,58 \cong 664$$
.

(a)
$$P(|\overline{X} - \mu| > 1) = 8\% \iff P(|\overline{X} - \mu| < 1) = 92\%$$
;

$$n = \left(\frac{z(\gamma)s}{e}\right)^2 = \left(\frac{1,75 \times 10}{1}\right)^2 = 306,25 \cong 307.$$

(b)
$$IC(\mu;0.92) = 50 \pm 1.75 \times \frac{10}{307} =]49.0;51.0[$$
.

Problema 18

$$IC(p;\gamma) = \hat{p} \pm z(\gamma) \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$IC(p;0,9) = 0.7 \pm 1,645 \sqrt{\frac{0.7 \times 0.3}{625}} = 0.7 \pm 0.030 =]0.670;0.730[$$
.

Intervalo conservador:
$$IC(p;0.9) = 0.7 \pm 1.645 \sqrt{\frac{1}{4 \times 625}} = 0.7 \pm 0.033 =]0.667;0.733[$$

Problema 19

$$IC(p;0.95) = 0.3 \pm 1.96 \sqrt{\frac{0.3 \times 0.7}{400}} = 0.3 \pm 0.045 =]0.255;0.345[.$$

Intervalo conservador: $IC(p;0.95) = 0.3 \pm 1.96 \sqrt{\frac{1}{4 \times 400}} = 0.3 \pm 0.049 =]0.251;0.349[$.

Problema 20

(a)
$$P(\mid \hat{p} - p \mid < e) = \gamma \Leftrightarrow P\left(-\frac{e}{\sqrt{p(1-p)/n}} < \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} < \frac{e}{\sqrt{p(1-p)/n}}\right) = \gamma \Leftrightarrow \frac{e}{\sqrt{p(1-p)/n}} = z(\gamma) \Leftrightarrow n = \left(\frac{z(\gamma)}{e}\right)^2 p(1-p)$$

Supondo que a proporção na amostra real seja próxima de p:

$$n = \left(\frac{1,2816}{0,01}\right)^2 \times 0,6 \times 0,4 \cong 3942$$

(b)
$$IC(p;0.95) = 0.55 \pm 1.96 \sqrt{\frac{0.55 \times 0.45}{3942}} = 0.55 \pm 0.016 =]0.534;0.566[$$
.
Intervalo conservador: $IC(p;0.95) = 0.55 \pm 1.96 \sqrt{\frac{1}{4 \times 3942}} = 0.55 \pm 0.016 =]0.534;0.566[$.

(a)
$$IC(p;0.95) = 0.333 \pm 1.96 \sqrt{\frac{0.333 \times 0.667}{300}} = 0.333 \pm 0.053 =]0.280;0.387[$$
.

Intervalo conservador:

$$IC(p;0.95) = 0.333 \pm 1.96 \sqrt{\frac{1}{4 \times 300}} = 0.333 \pm 0.057 =]0.277;0.390[$$
.

Interpretação: Se pudéssemos construir um grande número de intervalos aleatórios para p, todos baseados em amostras de tamanho n, 95% deles conteriam o parâmetro p.

(b) Utilizando a estimativa da amostra observada ($\hat{p} = 0.333$):

$$n = \left(\frac{1,96}{0,02}\right)^2 \times 0,333 \times 0,667 \cong 2134$$
.

Utilizando o valor máximo de p(1-p):

$$n = \left(\frac{1,96}{0,02}\right)^2 \times \frac{1}{4} \cong 2401$$

Interpretação: Utilizando o tamanho amostral encontrado, teremos uma probabilidade de 95% de que a proporção amostral difira do verdadeiro valor de p por menos que 2%.

Problema 22

(a)

	Estimador					
Propriedades	t	ť'				
Média	10	9,9				
Vício	0,0	-0,1				
Variância	4,8	3,79				
EQM	4,8	3,8				

O estimador t é não-viesado, porém tem variância maior que t', o qual é viesado. O EQM de t' é menor que o de t.

(b) Pode-se escolher *t*', pois seu vício é pequeno, e sua variância e EQM são bem menores que os de *t*.

(a)
$$IC(\mu;0.95) = 150 \pm 1.96 \times \frac{5}{6} = 150 \pm 1.633 =]148,37;151,63[;$$

(b)
$$e = z(\gamma) \frac{s}{\sqrt{n}} \Leftrightarrow n = \left(\frac{z(\gamma)s}{e}\right)^2 = \left(\frac{1,96 \times 5}{0,98}\right)^2 = 100.$$

Problema 24

(a)
$$IC(\mu;0.90) = 6.222 \pm 1.645 \times \frac{2}{3} = 6.222 \pm 1.097 =]5.13;7.32[$$

(b)
$$e = z(\gamma) \frac{s}{\sqrt{n}} \Leftrightarrow n = \left(\frac{z(\gamma)s}{e}\right)^2 = \left(\frac{1,645 \times 2}{0,01}\right)^2 = 108241.$$

(c) Como *n* é pequeno (*n* = 9), não seria razoável simplesmente substituir o desvio padrão populacional pelo amostral. Pode-se usar o desvio padrão amostral *s*, e substituir a estatística *z* pela estatística *t*, obtida de uma distribuição *t*-Student com *n*-1 graus de liberdade.

Problema 25

$$IC(\mu;0,95) = 400 \pm 1,96 \times \frac{103,923}{10} = 400 \pm 20,37 =]379,63;420,37[$$

Problema 26

$$\hat{\beta} = \frac{\sum_{t} t y_{t} - n \bar{t} \bar{y}}{\sum_{t} t^{2} - n \bar{t}^{2}} = \frac{529,40 - 10 \times 5,50 \times 8,55}{385,00 - 10 \times 5,50^{2}} = 0,717;$$

$$\hat{\alpha} = \bar{y} - \beta \bar{t} = 8,55 - 0,717 \times 5,50 = 4,607$$
.

Logo, o modelo ajustado é dado por

$$\hat{y}_t = 4,607 + 0,717t$$
.

Novembro (t = 11): 12,49;

Dezembro (t = 12): 13,21;

Julho (t = 19): 18,23;

Agosto (t = 20): 18,95.

Problema 27

(a)
$$IC(p;0.90) = 0.6 \pm 1.645 \sqrt{\frac{0.6 \times 0.4}{300}} = 0.6 \pm 0.047 =]0.553;0.647[$$
.

Intervalo conservador:

$$IC(p;0.90) = 0.6 \pm 1.645 \sqrt{\frac{1}{4 \times 300}} = 0.6 \pm 0.047 =]0.553;0.647[$$
.

(b)

$$P(\mid \hat{p} - p \mid < 0.001) = P\left(\frac{-0.001}{\sqrt{p(1-p)/n}} < \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} < \frac{0.001}{\sqrt{p(1-p)/n}}\right) \cong P\left(\frac{-0.001}{\sqrt{0.6 \times 0.4/300}} < Z < \frac{0.001}{\sqrt{0.6 \times 0.4/300}}\right) = P(-0.035 < Z < 0.035) = 2.820\%$$

(c)
$$n = \left(\frac{z(\gamma)}{e}\right)^2 p(1-p) \cong \left(\frac{1.96}{0.0005}\right)^2 \times 0.6 \times 0.4 = 3.687.936$$
.

Não parece factível, pois o tamanho amostral é muito grande. Deve-se aumentar e ou diminuir γ .

Problema 28

(a)
$$IC(p;0.98) = 0.4 \pm 2.326 \sqrt{\frac{1}{4 \times 10000}} = 0.4 \pm 0.012 =]0.388;0.412[$$
.

(b)
$$IC(p;0.98) = 0.4 \pm 2.326 \sqrt{\frac{0.4 \times 0.6}{10000}} = 0.4 \pm 0.011 =]0.389;0.411[.$$

Problema 29

$$IC(p;0.95) = 0.52 \pm 1.96 \sqrt{\frac{0.52 \times 0.48}{400}} = 0.52 \pm 0.049 =]0.471;0.569[$$
.

Problema 30

$$e = z(\gamma)\sqrt{\frac{p(1-p)}{n}} \Leftrightarrow z(\gamma) = \frac{e\sqrt{n}}{\sqrt{p(1-p)}} = \frac{0.045 \times 10}{\sqrt{0.6 \times 0.4}} = 0.919 \Rightarrow \gamma = 64.2\%$$

Problema 31

$$\overline{X} \sim N\left(\mu_1, \frac{\sigma_1^2}{n_1}\right) e \overline{Y} \sim N\left(\mu_2, \frac{\sigma_2^2}{n_2}\right)$$
, independentes.

Logo:

$$\overline{X} - \overline{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right).$$

Portanto, o intervalo de confiança para $\mu_1 - \mu_2$ é dado por:

$$IC(\mu_1 - \mu_2; \gamma) = \overline{X} - \overline{Y} \pm z(\gamma) \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$

Problema 32

(a)
$$IC(\mu_A; 0.95) = 50 \pm 1.96 \frac{10}{4} = 50 \pm 4.9 =]45.1;54.9[;$$

 $IC(\mu_B; 0.95) = 60 \pm 1.96 \frac{10}{5} = 60 \pm 3.92 =]56.08;63.92[.$

(b)
$$IC(\mu_1 - \mu_2; 0.95) = 50 - 60 \pm 1.96 \sqrt{\frac{100}{16} + \frac{100}{25}} = -10 \pm 6.28 =] -16.28; -3.72[$$
.

O zero não está contido no intervalo. Logo, há evidências de que as duas médias são diferentes.

Problema 33

$$\begin{split} \hat{p}_A - \hat{p}_B &\sim N \Bigg(p_A - p_B; \frac{p_A (1 - p_A)}{n_A} + \frac{p_B (1 - p_B)}{n_B} \Bigg) \\ IC(p_A - p_B; \gamma) &= \hat{p}_A - \hat{p}_B \pm z(\gamma) \sqrt{\frac{p_A (1 - p_A)}{n_A} + \frac{p_B (1 - p_B)}{n_B}} \\ IC(p_A - p_B; 0.95) &= 0.450 - 0.583 \pm 1.96 \sqrt{\frac{0.450 \times 0.550}{400} + \frac{0.583 \times 0.417}{600}} = \\ &= -0.133 \pm 0.063 =] - 0.196; -0.070[\end{split}$$

Problema 34

$$\overline{X} \sim N\left(\mu; \frac{\sigma^2}{n}\right)$$

$$P(|\overline{X} - \mu| \ge k) \le \frac{Var(\overline{X})}{k^2} = \frac{\sigma^2}{nk^2} \xrightarrow{n \to \infty} 0.$$

Logo, \overline{X} é consistente.

Problema 35

$$P\left(\left|\frac{k}{n}-p\right| \ge \varepsilon\right) \le \frac{Var(k/n)}{\varepsilon^2} = \frac{p(1-p)}{n\varepsilon^2}$$
, pois $Var\left(\frac{k}{n}\right) = \frac{p(1-p)}{n}$.

Problema 36

$$\delta = 1 - \gamma = 1 - 0.95 = 0.05$$

$$n = \frac{1}{4\delta \varepsilon^2} = \frac{1}{4 \times 0.05 \times 0.05^2} = 2000$$

Função densidade de probabilidade

$$f(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x_i - \mu)^2}{2\sigma^2}\right\};$$

Função de verossimilhança

$$L(\mu, \sigma^{2} \mid \mathbf{x}) = \prod_{i=1}^{n} f(x_{i} \mid \mu, \sigma^{2}) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left\{ -\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}} \right\} \right] = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^{n} \exp\left\{ -\frac{\sum (x_{i} - \mu)^{2}}{2\sigma^{2}} \right\}$$

Função log-verossimilhança

$$l(\mu, \sigma^2 \mid \mathbf{x}) = \log(L(\mu, \sigma^2 \mid \mathbf{x})) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\sigma^2 - \frac{\sum(x_i - \mu)^2}{2\sigma^2};$$

Maximizando em relação a μ e σ^2 :

$$\frac{\partial l(\mu, \sigma^2 \mid \mathbf{x})}{\partial \mu} = \frac{1}{2\sigma^2} \sum_i (x_i - \mu) = \frac{1}{2\sigma^2} (n\overline{x} - n\mu) = 0 \Leftrightarrow \mu = \overline{x}.$$

$$\frac{\partial l(\mu, \sigma^2 \mid \mathbf{x})}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_i (x_i - \mu)^2 = 0 \Leftrightarrow \frac{1}{2\sigma^2} \left(-n + \frac{1}{\sigma^2} \sum_i (x_i - \mu)^2 \right) = 0 \Leftrightarrow \sigma^2 = \frac{\sum_i (x_i - \mu)^2}{n}$$

Logo, os EMV's de μ e σ^2 são dados por:

$$\hat{\mu}_{MV} = \overline{x} e \hat{\sigma}^{2}_{MV} = \frac{\sum (x_i - \overline{x})^2}{n}.$$

Problema 38

- (a) $E(T_1) = E(2\overline{X}) = 2E(\overline{X}) = 2E(X) = 2 \times \frac{\theta}{2} = \theta$. Logo, T_1 é um estimador não-viciado para θ .
- (b) Como T_1 é um estimador não-viesado:

$$EQM(T_1) = Var(T_1) = Var(2\overline{X}) = 4Var(\overline{X}) = 4\frac{Var(X)}{n} = \frac{4\theta^2}{n \cdot 12} = \frac{\theta^2}{3n}.$$

(c)
$$T_1$$
 é consistente, pois T_1 é não-viesado e $\lim_{n\to\infty} (Var(T_1)) = \lim_{n\to\infty} \left(\frac{\theta^2}{3n}\right) = 0$.

(a) $E(M) = \int_0^\theta x \frac{n}{\theta^n} x^{n-1} dx = \frac{n}{\theta^n} \int_0^\theta x^n dx = \frac{n}{\theta^n} \left(\frac{\theta^{n+1}}{n+1} \right) = \theta \frac{n}{n+1}$. Logo, M é um estimador viesado. Seu viés é dado por

$$V(\theta) = E(M) - \theta = \theta \frac{n}{n+1} - \theta = -\frac{1}{n+1}\theta$$
.

Logo: $\lim_{n\to\infty} (V(\theta)) = 0$.

(**b**) Como T_2 é não-viesado:

$$EQM(T_2) = Var(T_2) = Var\left(\frac{n+1}{n}M\right) = \left(\frac{n+1}{n}\right)^2 Var(M).$$

Mas: $Var(M) = E(M^2) - [E(M)]^2$, onde

$$E(M^{2}) = \int_{0}^{\theta} x^{2} \frac{n}{\theta^{n}} x^{n-1} dx = \frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n+1} dx = \frac{n}{\theta^{n}} \left(\frac{\theta^{n+2}}{n+2} \right) = \theta^{2} \frac{n}{n+2} .$$

Logo:

$$EQM(T_2) = \left(\frac{n+1}{n}\right)^2 \left(\theta^2 \frac{n}{n+2} - \theta^2 \frac{n^2}{(n+1)^2}\right) = \frac{1}{n(n+2)}\theta^2$$

(c) Temos que:

 $\lim_{n\to\infty} (Var(t_2)) = \lim_{n\to\infty} \frac{1}{n(n+2)} \theta^2 = 0$. Além disso, T_2 é não-viciado. Logo, T_2 é um estimador consistente.

Problema 40

$$\frac{Var(T_2)}{Var(T_1)} = \frac{\frac{\theta^2}{n(n+2)}}{\frac{\theta^2}{3n}} = \frac{3}{n+2} \Leftrightarrow Var(T_2) = \frac{3}{n+2} Var(T_1)$$

$$\frac{1}{n} = \frac{3}{n+2} Var(T_1)$$

$$Var(T_2)/Var(T_1) = \frac{3}{n+2} Var(T_1)$$

$$Var(T_2)/Var(T_1) = \frac{3}{n+2} Var(T_1)$$

$$Var(T_2)/Var(T_1) = \frac{3}{n+2} Var(T_1)$$

Logo, para n grande, a variância de T_2 é muito menor que a variância de T_1 .

Temos que
$$\overline{X} \sim N\left(\frac{\theta}{2}; \frac{\theta^2}{12n}\right)$$
.

$$P\left(-1,645 < \frac{\overline{X} - \theta / 2}{\theta / \sqrt{12n}} < 1,645\right) = 90\% \Rightarrow P\left(2\left(\overline{X} - \frac{1,645\theta}{\sqrt{12n}}\right) < \theta < 2\left(\overline{X} + \frac{1,645\theta}{\sqrt{12n}}\right)\right).$$

(a) Usando $T_1 = 2\overline{X}$ como estimador de θ :

$$IC(\theta;90\%) = \left[2\left(\overline{X} - \frac{1,645 \times 2\overline{X}}{\sqrt{12n}}\right) 2\left(\overline{X} + \frac{1,645 \times 2\overline{X}}{\sqrt{12n}}\right)\right] = \left[2\overline{X}\left(1 - \frac{3,29}{\sqrt{12n}}\right) 2\overline{X}\left(1 + \frac{3,29}{\sqrt{12n}}\right)\right]$$

(b) Usando $T_2 = \frac{n+1}{n}M$ como estimador de θ :

$$IC(\theta;90\%) = \left[2\left(\overline{X} - \frac{1,645(n+1)M}{n\sqrt{12n}}\right)2\left(\overline{X} + \frac{1,645(n+1)M}{n\sqrt{12n}}\right)\right].$$

(c)
$$IC(\theta;90\%) = \left[2\left(\overline{X} - \frac{1,645M}{\sqrt{12n}}\right) 2\left(\overline{X} + \frac{1,645M}{\sqrt{12n}}\right)\right].$$

(d) Serão aproximadamente iguais, pois para n grande, $(n+1)/n \approx 1$.

Problema 42

 $T_1 = 5,094$; $T_2 = 4,997$.

	<i>IC</i> (θ;90%)								
Estimador	Limite inferior	Limite superior							
T_1	4,941	5,247							
T_2	4,944	5,244							
M	4,944	5,244							

Problema 44

$$IC(\mu;0.95) = 10.3 \pm 1.96 \frac{1.4}{\sqrt{600}} = 10.3 \pm 0.112 =]10.19;10.41[$$
.

Problema 45

$$E(T_1) = E\left(\frac{\hat{\mu}_1 + \hat{\mu}_2}{2}\right) = \frac{1}{2} (E(\hat{\mu}_1) + E(\hat{\mu}_2)) = \mu;$$

$$E(T_2) = E\left(\frac{4\hat{\mu}_1 + \hat{\mu}_2}{5}\right) = \frac{1}{5}\left(4E(\hat{\mu}_1) + E(\hat{\mu}_2)\right) = \mu;$$

$$E(T_3) = E(\hat{\mu}_1) = \mu .$$

(i) Logo, os três estimadores são não-viesados.

$$Var(T_1) = Var\left(\frac{\hat{\mu}_1 + \hat{\mu}_2}{2}\right) = \frac{1}{4}\left(Var(\hat{\mu}_1) + Var(\hat{\mu}_2)\right) = \frac{1}{4} \times \frac{4}{3}Var(\hat{\mu}_2) = \frac{Var(\hat{\mu}_2)}{3} = 0.333Var(\hat{\mu}_2)$$

$$Var(T_2) = Var\left(\frac{4\hat{\mu}_1 + \hat{\mu}_2}{5}\right) = \frac{1}{25}\left(16Var(\hat{\mu}_1) + Var(\hat{\mu}_2)\right) = \frac{19}{75}Var(\hat{\mu}_2) = 0.253Var(\hat{\mu}_2)$$

$$Var(T_3) = Var(\hat{\mu}_1) = \frac{Var(\hat{\mu}_2)}{3} = 0.333Var(\hat{\mu}_2)$$

(ii) Ordenando segundo a eficiência: $Var(T_2) < Var(T_1) = Var(T_3)$.

Problema 46

Temos que $\lambda=E(Y)$ (1° momento populacional). Pelo método dos momentos, a estimativa para λ é dada pelo 1° momento amostral, isto é, $\hat{\lambda}_{\scriptscriptstyle M}=\overline{Y}$.

Problema 47Amostra de bootstrap sorteada

Indivíduo	22	15	74	35	74	78	17	78	87	57
Nota	4,0	7,5	6,5	3,0	6,5	7,0	6,5	7,0	6,5	7,5

													Desvio
												Desvio	absoluto
Amostra		Notas									Mediana	Médio	mediano
1	3,0	7,0	7,0	3,0	6,5	4,0	6,5	6,5	6,5	7,5	6,5	1,5	1,3
2	4,0	7,5	6,5	3,0	6,5	6,5	6,5	6,5	4,0	6,5	6,5	1,3	0,8
3	6,5	3,0	7,0	7,0	6,5	6,5	7,0	6,5	3,0	6,5	6,5	1,2	0,8
4	7,0	7,0	6,5	7,0	7,5	7,5	7,0	7,5	7,5	6,5	7,0	0,3	0,4
5	6,5	6,5	6,5	7,0	7,5	6,5	4,0	7,0	6,5	4,0	6,5	0,9	0,6
6	7,0	6,5	7,0	7,5	3,0	7,5	3,0	7,0	4,0	7,0	7,0	1,6	1,3
7	6,5	6,5	3,0	7,5	6,5	6,5	7,5	7,5	6,5	7,0	6,5	0,7	0,3
8	7,0	7,0	6,5	4,0	3,0	7,5	7,0	6,5	3,0	6,5	6,5	1,5	1,2
9	6,5	7,0	3,0	6,5	6,5	6,5	6,5	7,5	4,0	6,5	6,5	1,0	0,5
10	4,0	6,5	6,5	4,0	7,5	7,0	7,0	7,5	3,0	6,5	6,5	1,4	1,3
11	7,5	7,0	3,0	7,5	7,0	7,5	7,0	4,0	7,5	6,5	7,0	1,2	1,1
12	7,5	6,5	3,0	6,5	4,0	3,0	7,5	6,5	4,0	6,5	6,5	1,6	1,5
13	7,5	6,5	6,5	6,5	4,0	7,5	4,0	6,5	7,5	6,5	6,5	0,9	0,7
14	6,5	3,0	6,5	7,0	7,0	7,0	7,0	7,0	7,0	6,5	7,0	0,7	0,6
15	7,5	7,0	6,5	7,5	7,5	6,5	7,0	3,0	7,5	7,5	7,3	0,9	0,8
	Desvio padrão											0,4	0,4

Portanto, as estimativas de bootstrap dos parâmetros de interesse são dadas por:

$$\hat{e}p(Med) = 0.3$$
; $\hat{e}p(DM) = 0.4$; $\hat{e}p(DAM) = 0.4$