第 40 届全国信息学奥林匹克竞赛

CCF NOI2023 模拟题

第二试

竞赛时间: 7:30-12:20

(请选手务必仔细阅读本页内容)

一. 题目概况

· 10000			
中文题目名称	回家路线	机器人	弹跳
英文题目与子目录名	route	robot	jump
可执行文件名	route	robot	jump
输入文件名	route.in	robot.in	jump.in
输出文件名	route.out	robot.out	jump.out
每个测试点时限	1.0秒	3.0秒	2.0秒
测试点数目	20	20	25
测试点是否等分	是	是	是
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)		回车)
题目类型	传统型	传统型	传统型
运行内存上限	512MB	512MB	128MB

二. 提交源程序文件名

対す C++语言	对于 C++语言	route.cpp	robot.cpp	jump.cpp
----------	----------	-----------	-----------	----------

三. 编译选项

对于 C++语言	-lm -std=c++14 -02

四. 注意事项:

- 1.文件名(程序名和输入输出文件名)必须使用英文小写。
- 2.C/C++中函数 main()的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 3.全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 8GB。上述时限以此配置为准。
 - 4.只提供 Linux 格式附加样例文件。
 - 5.特别提醒: 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。

1. 回家路线(route)

【题目描述】

猫国的铁路系统中有 n 个站点,从 $1 \sim n$ 编号。小猫准备从 1 号站点出发,乘坐列车回到猫窝所在的 n 号站点。它查询了能够乘坐的列车,这些列车共 m 班,从 $1 \sim m$ 编号。小猫将在 0 时刻到达 1 号站点。对于 i 号列车,它将在时刻 p_i 从站点 x_i 出发,在时刻 q_i 直达站点 y_i ,小猫只能在时刻 p_i 上 i 号列车,也只能在时刻 q_i 下 i 号列车。

小猫可以通过多次换乘到达 n 号站点。一次换乘是指对于两班列车,假设分别为 u 号与 v 号列车,若 $y_u = x_v$ 并且 $q_u \le p_v$,那么小猫可以乘坐完 u 号列车后在 y_u 号站点等待 $p_v - q_u$ 个时刻,并在时刻 p_v 乘坐 v 号列车。

小猫只想回到猫窝并且减少途中的麻烦,对此它用烦躁值来衡量。

- 小猫在站点等待时将增加烦躁值,对于一次 t ($t \ge 0$) 个时刻的等待,烦躁值将增加 $At^2 + Bt + C$,其中 A, B, C 是给定的常数。注意:小猫登上第一班列车前,即从 0 时刻起停留在 1 号站点的那些时刻也算作一次等待。
- 若小猫最终在时刻 z 到达 n 号站点,则烦躁值将再增加 z。

形式化地说,若小猫共乘坐了k班列车,依次乘坐的列车编号可用序列 s_1, s_2, \dots, s_k 表示。该方案被称作一条可行的回家路线,当且仅当它满足下列两个条件:

- 1. $x_{s_1} = 1$, $y_{s_k} = n$
- 2. 对于所有 j ($1 \le j < k$),满足 $y_{s_j} = x_{s_{j+1}}$ 且 $q_{s_j} \le p_{s_{j+1}}$ 对于该回家路线,小猫得到的烦躁值将为:

$$q_{s_k} + (A \cdot p_{s_1}^2 + B \cdot p_{s_1} + C) + \sum_{i=1}^{k-1} \left(A(p_{s_{j+1}} - q_{s_j})^2 + B(p_{s_{j+1}} - q_{s_j}) + C \right)$$

小猫想让自己的烦躁值尽量小,请你帮它求出所有可行的回家路线中,能得到的最小的烦躁值。题目保证至少存在一条可行的回家路线。

【输入格式】

从文件 route.in 中读入数据。

第一行五个整数 n, m, A, B, C, 变量意义见题目描述。

接下来 m 行,第 i 行四个整数 x_i, y_i, p_i, q_i ,分别表示 i 号列车的出发站、到达站、出发时刻与到达时刻。

【输出格式】

输出到文件 route.out 中。

输出仅一行一个整数,表示所求的答案。

【样例1输入】

- 3 4 1 5 10
- 1 2 3 4
- 1 2 5 7
- 1 2 6 8
- 2 3 9 10

【样例1输出】

94

【样例1解释】

共有三条可行的回家路线:

1. 依次乘坐 1, 4 号列车,得到的烦躁值为:

$$10 + (1 \times 3^2 + 5 \times 3 + 10) + (1 \times (9 - 4)^2 + 5 \times (9 - 4) + 10) = 104$$

2. 依次乘坐 2, 4号列车,得到的烦躁值为:

$$10 + (1 \times 5^2 + 5 \times 5 + 10) + (1 \times (9 - 7)^2 + 5 \times (9 - 7) + 10) = 94$$

3. 依次乘坐 3, 4 号列车,得到的烦躁值为:

$$10 + (1 \times 6^2 + 5 \times 6 + 10) + (1 \times (9 - 8)^2 + 5 \times (9 - 8) + 10) = 102$$

第二条路线得到的烦躁值最小为94。

【样例 2 输入】

- 4 3 1 2 3
- 1 2 2 3
- 2 3 5 7
- 3 4 7 9

【样例 2 输出】

34

【样例 3】

见选手目录下的 route/route3.in 与 route/route3.ans。 该样例的数据类型与最终测试点 $5 \sim 8$ 一致。

【样例 4】

见选手目录下的 route/route4.in 与 route/route4.ans。 该样例的数据类型与最终测试点 $11 \sim 14$ 一致。

【样例 5】

见选手目录下的 route/route5.in 与 route/route5.ans。 该样例的数据类型与最终测试点 $18 \sim 20$ 一致。

【数据范围与提示】

对于所有测试点:

 $2 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$

 $0 \le A \le 10$, $0 \le B, C \le 10^6$

 $1 \le x_i, y_i \le n \ , \ x_i \ne y_i \ , \ 0 \le p_i < q_i \le 10^3$

每个测试点的具体限制见下表:

测试点编号	n	m	A,B,C 特殊限制	其他特殊条件	
1 ~ 2	≤ 100	= n - 1	无	v - r 1	
3 ~ 4	≤ 100	≤ 100	A = B = C = 0	$y_i = x_i + 1$	
5 ~ 8			A = B = C = 0		
9	≤ 2000	≤ 4000	A = B = 0	$x_i < y_i$	
10			<u> </u>	A = 0	
11 ~ 14				无	
15			A = B = 0	. 无	
$16 \sim 17$	$\leq 10^5 \leq 2 \times 10^5$	$\leq 2 \times 10^5$	A = 0		
18 ~ 20			无		

2. 机器人(robot)

【题目描述】

小R喜欢研究机器人。

最近,小 R 新研制出了两种机器人,分别是 P 型机器人和 Q 型机器人。现在他要测试这两种机器人的移动能力,测试在从左到右排成一排的 n 个柱子上进行,柱子用 $1 \sim n$ 依次编号,i 号柱子的高度为一个正整数 h_i 。机器人只能在相邻柱子间移动,即:若机器人当前在 i 号柱子上,它只能尝试移动到 i-1 号和 i+1 号柱子上。

每次测试,小 R 会选取一个起点 s,并将两种机器人均放置在 s 号柱子上。随后它们会按自己的规则移动。

P 型机器人会一直向左移动,但它无法移动到比起点 s 更高的柱子上。更具体地, P 型机器人在 l ($l \le s$) 号柱子停止移动,**当且仅当**下列两个条件均成立:

- l = 1 或 $h_{l-1} > h_s$.
- 对于满足 $l \le j \le s$ 的 j,有 $h_i \le h_s$ 。

Q 型机器人会一直**向右**移动,但它**只能**移动到比起点 s **更低**的柱子上。更具体地, Q 型机器人在 r ($r \ge s$) 号柱子停止移动,**当且仅当**下列两个条件均成立:

- $r = n \oplus h_{r+1} \ge h_s$.
- 对于满足 $s < j \le r$ 的 j,有 $h_i < h_s$ 。

现在,小 R 可以设置每根柱子的高度,i 号柱子可选择的高度范围为 $[A_i, B_i]$,即 $A_i \le h_i \le B_i$ 。小 R 希望无论测试的起点 s 选在哪里,两种机器人移动过的柱子数量的 差的绝对值都小于等于 2。他想知道有多少种柱子高度的设置方案满足要求,小 R 认 为两种方案不同当且仅当存在一个 k,使得两种方案中 k 号柱子的高度不同。请你告诉 他满足要求的方案数模 $10^9 + 7$ 后的结果。

【输入格式】

从文件 robot.in 中读入数据。

第一行一个正整数n,表示柱子的数量。

接下来n行,第i行两个正整数 A_i, B_i ,分别表示i号柱子的最小和最大高度。

【输出格式】

输出到文件 robot.out 中。

仅一行一个整数,表示答案模 $10^9 + 7$ 的值。

【样例1输入】

5

3 3

3 3

3 4

2 2

3 3

【样例1输出】

1

【样例1解释】

柱子高度共两种情况:

- 1. 高度为: 32323。此时若起点设置在5,P型机器人将停在1号柱子,共移动4个柱子。Q型机器人停在5号柱子,共移动0个柱子,不符合条件。
- 2. 高度为: 32423。此时无论起点选在哪,都满足条件,具体见下表:

起点编号	P 型机器人	Q 型机器人
1	停在1号柱子,移动过0个	停在2号柱子,移动过1个
2	停在2号柱子,移动过0个	停在2号柱子,移动过0个
3	停在1号柱子,移动过2个	停在5号柱子,移动过2个
4	停在 4 号柱子, 移动过 0 个	停在 4 号柱子, 移动过 0 个
5	停在4号柱子,移动过1个	停在5号柱子,移动过0个

【样例 2】

见选手目录下的 robot/robot2.in 与 robot/robot2.ans。

【样例 3】

见选手目录下的 robot/robot3.in 与 robot/robot3.ans。

【样例 4】

见选手目录下的 robot/robot4.in 与 robot/robot4.ans。

【数据范围与提示】

对于所有测试数据: $1 \le n \le 300$, $1 \le A_i \le B_i \le 10^9$ 。 每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊性质
1, 2	7	$A_i = B_i , B_i \le 7$
3,4	1	$B_i \leq 7$
5, 6, 7	50	$B_i \le 100$
8, 9, 10	300	$B_i \le 10000$
11, 12	50	$A_i = 1 , B_i = 10^9$
13, 14, 15	50	
16, 17	150	无
18, 19	200	
20	300	
		•

3. 弹跳(jump)

【题目描述】

跳蚤国有 n 座城市,分别编号为 $1 \sim n$, 1 号城市为首都。所有城市分布在一个 $w \times h$ 范围的网格上。每座城市都有一个整数坐标 (x,y) $(1 \le x \le w, 1 \le y \le h)$,不同城市的坐标不相同。

在跳蚤国中共有 m 个弹跳装置,分别编号为 $1 \sim m$,其中 i 号弹跳装置位于 p_i 号城市,并具有参数 t_i, L_i, R_i, D_i, U_i 。利用该弹跳装置,跳蚤可花费 t_i $(t_i > 0)$ 个单位时间,从 p_i 号城市跳至坐标满足 $L_i \leq x \leq R_i, D_i \leq y \leq U_i$ $(1 \leq L_i \leq R_i \leq w, 1 \leq D_i \leq U_i \leq h)$ 的任意一座城市。需要注意的是,一座城市中可能存在多个弹跳装置,也可能没有弹跳装置。

由于城市间距离较远,跳蚤们必须依靠弹跳装置出行。具体来说,一次出行将经过若干座城市,依次经过的城市的编号可用序列 a_0,a_1,\cdots,a_k 表示;在此次出行中,依次利用的弹跳装置的编号可用序列 b_1,b_2,\cdots,b_k 表示。其中每座城市可在序列 $\{a_j\}$ 中出现任意次,每个弹跳装置也可在序列 $\{b_j\}$ 中出现任意次,且满足,对于每个 j $\{1 \le j \le k\}$,编号为 b_j 的弹跳装置位于城市 a_{j-1} ,且跳蚤能通过该弹跳装置跳至城市 a_j 。我们称这是一次从城市 a_0 到城市 a_k 的出行,其进行了 k 次弹跳,共花费 $\sum_{i=1}^k t_{b_i}$ 个单位时间。

现在跳蚤国王想知道,对于跳蚤国除首都(1号城市)外的每座城市,从首都出发,到达该城市最少需要花费的单位时间。跳蚤国王保证,对每座城市,均存在从首都到它的出行方案。

【输入格式】

从文件 jump.in 中读入数据。

第一行包含四个整数 n, m, w, h, 变量的具体意义见题目描述。

接下来n行,第i行包含两个整数 x_i, y_i ,表示i号城市的坐标。

接下来m行,第i行包含六个整数 $p_i, t_i, L_i, R_i, D_i, U_i$,分别表示i号弹跳装置所在的城市编号、弹跳所需的时间、可到达的矩形范围。这些整数的具体意义见题目描述。

【输出格式】

输出到文件 jump.out 中。

输出 n-1 行,第 i 行包含一个整数,表示从跳蚤国首都到 i+1 号城市最少需要花费的单位时间。

【样例1输入】

- 5 3 5 5
- 1 1
- 3 1
- 4 1
- 2 2
- 3 3
- 1 123 1 5 1 5
- 1 50 1 5 1 1
- 3 10 2 2 2 2

【样例1输出】

- 50
- 50
- 60
- 123

【样例 2】

见选手目录下的 jump/jump2.in 与 jump/jump2.ans。 这组样例的数据范围为 n = 10000, m = 20000, w = 10000, h = 1。

【样例 3】

见选手目录下的 jump/jump3.in 与 jump/jump3.ans。 这组样例的数据范围为 n=10000, m=20000, w=10000, h=10000。

【数据范围与提示】

对于所有测试点和样例满足:

 $1 \le n \le 70000$, $1 \le m \le 150000$, $1 \le w, h \le n$, $1 \le t_i \le 10000$ 。 每个测试点的具体限制见下表。

测试点编号	$1 \le n \le$	$1 \le m \le$	特殊限制
1 ~ 8	100	100	无
9 ~ 13	50000	100000	每个弹跳装置恰好可达一座城市,且 $L_i = R_i, D_i = U_i$
14 ~ 18	50000	100000	h = 1
19 ~ 22	25000	50000	无
$23 \sim 25$	70000	150000	无

请注意,本题的内存限制为 128MB。