

CURSO DE ENGENHARIA DE SOFTWARE

Disciplina: Unidade Central de Processamento

UNIDADE CENTRAL DE PROCESSAMENTO - CPU

Prof. Alexandre Tannus

Objetivos

- ► Detalhar o funcionamento da Unidade Central de Processamento (CPU Central Processing Unit)
- ► Entender a operação da Unidade Lógica Aritmética e como ela realiza cálculos básicos (soma e subtração)
- Compreender a função dos diversos registradores presentes na CPU
- Explicar as atribuições da unidade de controle
- ► Identificar os tipos de barramentos
- Investigar o conjunto de instruções
- Comparar os modelos de paralelismo que podem ser utilizados

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercícios

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercício

Unidade Central de Processamento (CPU**)** IL VANGÉLICA

- ► Central Processing Unit (CPU)
- ► Responsável pelos cálculos e controle da operação do computador

Estrutura da CPU

- ► Unidade lógica aritmética (ULA)
- ► Unidade de controle (UC)
- Registradores
- Barramentos

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercício

CPU - Unidade Lógica Aritmética

- ► Realiza as operações lógicas e aritméticas
 - ► NOT, OR, AND
 - ► Adição, Subtração
 - Comparação
 - ▶ Deslocamento

Projeto da ULA - Representação de númentesangélica

- Inteiros sinalizados.
 - ► Sinal-magnitude
 - ► Complemento de 2

- Ponto Flutuante
 - ► Padrão ANSI/IEEE

Representação de inteiros: Sinal-magnitude VANGÉLICA

- ▶ Bit mais significativo (MSB *Most Significant Bit*) indica o sinal
 - ▶ 1: número negativo
 - ▶ 0: número positivo

Representação de inteiros: Complemento udevance.

- ► Representação de números negativos mais comum em hardware
- ightharpoonup Complemento de 1 o inversão bit a bit do número (complemento)
- lacktriangle Complemento de 2 ightarrow adição de 1 ao complemento de 1

Exemplos (representação em 8 bits)

$$-9+4$$

Representação de ponto flutuante

Característica	Único/Curto	Duplo/Longo
Largura da palavra	32	64
Bits mantissa	23	52
Intervalo mantissa	$[1, 2-2^{-23}]$	$[1, 2-2^{-52}]$
Bits de expoente	8	11
Excesso do expoente	127	1023
Mínimo	$2^{-126} \approx 1,2x10^{-38}$ $2^{128} \approx 3,4x10^{-38}$	$2^{-1022} \approx 2,2x10^{-308}$ $2^{1024} \approx 1,8x10^{308}$
Máximo	$2^{128} \approx 3,4 \times 10^{-38}$	$2^{1024} \approx 1,8 \times 10^{308}$

Meio Somador - Half Adder

Exemplos

- ightharpoonup (11001)₂ + (1011)₂
- ightharpoonup (101101)₂ + (11100111)₂
- $\qquad \qquad (100111)_2 + (1110)_2 + (1011)_2$

Somador Completo - Full Adder

Α	В	C-IN	C-OUT	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercício

CPU - Registradores

- ► Armazenam dados e instruções
- ► Baixa capacidade de armazenamento
- ► Alta velocidade de acesso

- Podem ser
 - Propósito geral operações lógicas e aritméticas
 - ► Especiais Acumuladores, *Program Counter*, registrador de *flags*, etc.

Registradores importantes

- ► Contador de programa (*Program Counter* PC)
 - Armazena o endereço de memória onde será lida a próxima instrução que será executada
 - Atualizado após a busca da instrução

- ► Registrador de Instrução (Instruction Register IR)
 - ► Armazena a instrução em execução

Registradores importantes

- ▶ Registrador de endereços de memória (*Memory Address Registers* MAR)
- ► Registrador *buffer* de memória (*Memory Buffer Register* MBR)

Registradores responsáveis pela troca de informações (dados e instruções) entre memória e CPU

Registradores importantes

- ▶ Palavra de estado do programa (*Program State Word* PSW)
- Informações de estado
 - sinal
 - zero
 - carry: carry out bit de uma operação
 - overflow
 - ▶ interrupt enable/disable: habilita ou desabilita interrupções

Registradores de uso geral - Intel x86

- AX Acumuladores
- ▶ BX Base
- CX Contador
- DX Dados
- ▶ BP Ponteiro de base
- ▶ SI e DI usado em operações que envolvem strings

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercício

CPU - Unidade de Controle

- ► Controla toda a operação do microprocessador
- Constituída por
 - ► Circuito de temporização
 - ► Controle e decodificação
 - Decodificador de instruções

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercício

Barramentos

- Vias que interligam os dispositivos (CPU, memória e periféricos), permitindo a comunicação entre os mesmos.
- ► Três tipos
 - Dados
 - Endereços
 - ► Controle

Barramento de dados

- ► Trafega dados, informações ou instruções
- Composto por vias
 - ► Cada via trafega um bit
 - Quantidade de vias define largura do barramento
- ► ATENÇÃO: Largura do barramento de dados pode ser diferente da quantidade de bits que o processador utiliza

Barramento externo vs. processamento in the process

Processador	Processamento interno	Barramento externo
i8080 (1974)	8	8
8088 (1979)	16	8
80286 (1982)	8	16
80386DX (1985)	32	32
80486DX (1989)	32	32
Pentium (1993)	32	64
Athlon 64 (2003)	64	128

Barramento de endereços

- ► Endereçamento dos periféricos do sistema
 - Memórias
 - Controlador de vídeo
 - ▶ Disco
 - ► Rede

Quantidade de vias define quantidade máxima de endereços possíveis

Barramento de endereço

Processador	Largura do barramento de endereços	Quantidade máxima de endereços	
10000	•	,	
i8088	20 bits	1 Mb	
i80286	24 bits	16 Mb	
i386	32 bits	4 Gb	
Pentium	32 bits	4 Gb	
Core i5	35 bits	32 Gb	

Barramento de controle

- ▶ Recebimento/envio de sinais de controle para os dispositivos do sistema
 - ► RESET
 - Interrupções
 - ► HALT
 - ► HOLD
 - ▶ Seleção

► Sinais de controle são específicos de cada arquitetura

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercício

Conjunto de Instruções

- ► Interface entre o programador e a máquina
- Cada instrução realiza uma tarefa simples
- ▶ Operações complexas podem ser construídas a partir de operações simples

Formato das instruções

- Execução sequencial
- Exceções
 - Instruções de salto
 - ► Instruções de desvio

Tipos de instruções

Tipo	Formato (bits)					
R	opcode (6)	rs(5)	rt(5)	rd(5)	shamt(5)	function(6)
- 1	opcode (6)	rs(5)	rt(5)		imediato(16)	
J	opcode(6)	endereço(26)				

Instruções Aritméticas e Lógicas Básicas UniEVANGÉLICA

Operação	Comando	Sintaxe	Função
Adição	add	add \$t0,\$s0,\$s1	32
Subtração	sub	sub \$t0,\$s0,\$s1	34
Lógica AND	and	and \$t0,\$s0,\$s1	36
Lógica OR	or	or \$t0,\$s0,\$s1	37
Lógica XOR	xor	<i>xor</i> \$ <i>t</i> 0,\$ <i>s</i> 0,\$ <i>s</i> 1	38
Lógica NOR	nor	nor \$t0,\$s0,\$s1	39
Adição imediata	addi	addi \$t0,\$s0, constante	8
Lógica AND imediata	andi	andi \$t0,\$s0, constante	12
Lógica OR imediata	ori	ori \$t0,\$s0, constante	13
Lógica XOR imediata	xori	xori \$t0,\$s0, constante	14

Instruções de Carga e Armazenamento

- ► Transferência de 32 bits entre memória e registradores
- Instrução tipo I
- ► Regsitrador rt destino (load) ou origem (store)
- lacktriangle Endereço de memória Constante de deslocamento + valor do registrador rs

Instruções de Salto e Desvio

- ► Alteram o fluxo de execução sequencial
- Salto
 - ▶ Instrução j ou jr

- Desvio
 - ▶ bne diferente de
 - ▶ bltz menor que
 - ▶ beq igual a

Modos de endereçamento

- ► Implícito
- ► Imediato
- ▶ Por registrador
- ▶ Base
- ► Relativo ao PC
- Pseudodireto

Ciclo de Instrução

- Busca
 - Leitura da próxima instrução da memória

- Execução
 - ► Interpretação e efetuação da operação indicada

- Interrupção
 - ► Verificação de ocorrência de interrupção

Ciclo de instrução

Arquitetura CISC

- ► Anos 80 computadores mais complexos
- ► CISC Complex Instruction Set Computer
- Conjuntos de instruções cada vez mais complexas e maiores
 - Pode afetar o desempenho
 - ► Maior dificuldade de implementação de outras funções

Arquitetura RISC

- ► RISC Reduced Instruction Set Computer
- Diminuição do número de instruções disponíveis
- ► Padronização do tamanho das instruções
- Introdução do pipeline

Arquitetura RISC

► Controle via hardware

- ► Maior número de registradores
- Modos de endereçamento limitados

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercício

Paralelismo

- ► Realizar várias coisas ao mesmo tempo
- ▶ Dois níveis
 - Instrução
 - ► Processador

Paralelismo de instrução

- Executar mais instruções em um determinado tempo
- Dois modelos
 - Pipelines
 - Superescalares

Pipeline

- ► Dividir uma instrução em vários estágios
- Dedicar uma parte do hardware para cada estágio
- ► Executar paralelamente vários estágios

Pipeline de 6 estágios

Pipeline de 6 estágios

- Buscar Instrução (Fetch Instruction)
 - ► Leitura da próxima instrução

- Decodificar Instrução
- Calcular operandos
 - Cálculo do endereço efetivo de cada operando

Pipeline de 6 estágios

- Obter operandos (Fetch Operands)
 - Obtenção dos operandos da memória

- Executar Instrução
 - ► Realização da operação e armazenamento do resultado no registrador
- ► Escrever operandos (*Write Operands*)
 - Cálculo do endereço efetivo de cada operando

Executando instruções

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Instrução 1	FI	BI	CO	FO	ΕI	W0												
Instrução 2							FI	BI	CO	FO	ΕI	WO						
Instrução 3													FI	BI	CO	FO	ΕI	WO

Executando instruções

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Instrução 1	FI	BI	CO	FO	El	W0												
Instrução 2		FI	BI	CO	FO	ΕI	WO											
Instrução 3			FI	BI	CO	FO	EI	WO										

Superescalares

Execução de vários pipelines simultaneamente

Paralelismo de processador

- ▶ Projeto de computadores com várias CPUs
- Modelos
 - ► Computadores paralelos
 - Multiprocessadores
 - Multicomputadores

Introdução

Unidade Lógica Aritmética

Registradores

Unidade de Controle

Barramentos

Instruções

Paralelismo

Exercícios

Sobre Processadores, analise as assertivas e assinale a alternativa que aponta a(s) correta(s).

- I. A CPU é o 'cérebro' do computador, sua função é executar programas armazenados na memória principal, buscando suas instruções, examinando-as e então executando-as uma após a outra.
- II. Barramentos podem ser externos à CPU, conectando-a à memória e aos dispositivos E/S, mas também podem ser internos à CPU.
- III. A CPU é composta por várias partes distintas. A unidade de controle é responsável por buscar instruções na memória principal e determinar seu tipo.
- IV. A unidade de aritmética e lógica efetua operações como adição AND (E) booleano para executar as intruções.

Em relação à arquitetura, a CPU é representada pelo microprocessador, sendo responsável pela principal função dos microcomputadores, que é o processamento dos dados. Conceitualmente, a CPU é constituída de

- a Registradores / Memória Cache / Coprocessador Aritmético e Lógico.
- b Registradores / Unidade de Controle / Unidade Lógica e Aritmética.
- c Buffers / Memória Cache / Coprocessador Aritmético e Lógico.
- d Buffers / Unidade de Controle / Unidade Lógica e Aritmética.

A CPU gera endereços que são colocados no barramento ...I.....e a memória os recebe através deste barramento. O caminho inverso desta operação não é possível (isso pode ser observado na figura). Durante a execução de um programa, cada instrução é levada até a ALU a partir da memória, uma instrução de cada vez, junto com qualquer dado que seja necessário para executá- la, cujo valor é transmitido através do barramento...II.... . A saída do programa é colocada em um dispositivo como um monitor de vídeo ou disco. A comunicação entre os componentes do sistema é sincronizada pelo barramento...III... .

As lacunas I, II e III são correta e, respectivamente, preenchidas por:

- a De controle, de endereços, de dados
- b De endereços, de dados, de sincronização
- c De dados, de endereços, de controle
- d De endereços, de dados, de controle

Verdadeiro ou Falso

A função do registro de instrução é armazenar o identificador da próxima instrução a ser executada pelo processador.

Verdadeiro ou Falso

Se, para reduzir custos de fabricação, for criado um computador em que o tamanho do registrador PC (program counter) seja a metade do REM, então, embora ocorra a redução do custo, essa máquina não irá funcionar, pois o PC deve ser projetado, no mínimo, com o mesmo tamanho do REM.

Bibliografia

William Stallings.

Arquitetura e Organização de Computadores.

Pearson, São Paulo, 8 edition, 2010.

Andrew S. Tanenbaum.

Organização estruturada de computadores.
2007.

