NALAIYA THIRAN PROJECT BASED LEARNING ON PROFESSIONAL READINESS FOR INNOVATION EMPLOYMENT AND ENTREPRENEURSHIP

PROJECT REPORT

PROJECT NAME: SMART SOLUTIONS FOR RAILWAYS

TEAM ID: PNT2022TMID44252

TEAM LEADER: NAVEEN T

TEAM MEMBERS: NAVEENKUMAR J

NAVEENKUMAR S

SUGESH N

BACHELOR OF ENGINEERING
IN
ELECTRONICS AND COMMUNICATION

BUILDERS ENGINEERING COLLEGE NATHAKADAIYUR

ANNA UNIVERSITY CHENNAI-600025

INDEX

1. INTRODUCTION

- 1.1. Project Overview
- 1.2. Purpose

2. LITERATURE SURVEY

- 2.1. Existing problem
- 2.2. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1. Empathy Map Canvas
- 3.2. Ideation & Brainstorming
- 3.3. Proposed Solution
- 3.4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1. Functional requirement
- 4.2. Non-Functional requirement

5. PROJECT DESIGN

- 5.1. Data Flow Diagrams
- 5.2. Solution & Technical Architecture

6. PROJECT PLANNING & SCHEDULING

- 6.1. Sprint Planning & Estimation
- 6.2. Sprint Delivery Schedule

7.CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1. Features
- 7.2. Codes

8. TESTING

8.1. User Acceptance Testing

9. RESULT

9.1. Performance Metrics

10. ADVANTAGES & DISADVANTAGES

11.CONCLUSION

12.FUTURE SCOPE

13.APPENDIX

Source code

GitHub Link

1. INTRODUCTION

1.1 Project Overview

- The device will detect the animals and birds using the Clarifai service.
- ❖ If any animal or bird is detected the image will be captured and stored in the
- ❖ IBM Cloud object storage.
- It also generates an alarm and prevents animals from destroying the crop.
- ❖ The image URL will be stored in the IBM Cloudant DB service.
- ❖ The device will also monitor the soil moisture levels, temperature, and humidity values and send them to the IBM IoT Platform.
- ❖ The image will be retrieved from Object storage and displayed in the web application.
- ❖ A web application is developed to visualize the soil moisture, temperature, and humidity values.
- Users can also control the motors through web applications.

1.2 PURPOSE

An intelligent crop protection system helps the farmers in protecting the crop from the animals and birds which destroy the crop. This system also helps farmers to monitor the soil moisture levels in the field and also the temperature and humidity values near the field. The motors and sprinklers in the field can be controlled using the mobile application.

2. LITERATURE SURVEY

2.1 Existing Problem

Most of the farmers are facing many problems nowadays due to many reasons. Our problem to solve is the invasion of various species such as birds and animals that harm the crops that are being cultivated. Various types of species such as birds and animals come to the cultivation field according to the crop that is being cultivated and also according to the season of cultivation. Some wild animals enter the field during night times when the field is near a forest region or when the farm cultivates some fruits and other crops that attract animals. Some animals cross the field in search of food and water and also the birds enter the field for food and they

damage all the crops. When the animals enter the field they not only eat food but they also damage the entire field by walking upon the crops and also by spoiling the food crops. The birds, by entering the field they come to eat seeds of the crops and also they tend to drag the crops and ruin the entire field. Some birds enter the field to eat the insects and pests in the field.

2.2 Problem Statement Definition

Most of the farmers are facing many problems nowadays due to many reasons. Our problem to solve is the invasion of various species such as birds and animals that harm the crops that are being cultivated. Various types of species such as birds and animals come to the cultivation field according to the crop that is being cultivated and also according to the season of cultivation. Some wild animals enter the field during night times when the field is near a forest region or when the farm cultivates some fruits and other crops that attract animals.

3.IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation and Brainstorming

3.3 Proposed Solution

S.No	Parameter	Description
1.	Problem Statement (Problem to be solved)	Crops are not irrigated properly due to insufficient labour forces. Improper maintenance of crops against various environmental factors such as temperature climate, topography and soil quality which results in crop destruction. Requires protecting crops from Wild animals attacks, birds and pests.
2.	Idea / Solution description	Moisture sensor is interfaced with Arduino Microcontroller to measure the moisture level in soil and relay is used to turn ON and OFF the motor pump for managing the excess water level. It will be updated to authorities through IOT. Temperature sensor connected to microcontroller is used to monitor the temperature in the field. Image processing techniques with IOT is followed for crop protection against animal attacks.
3.	Novelty / Uniqueness	 Automatic crop maintenance and protection using embedded and IOT technology.
4.	Social Impact / Customer Satisfaction	 This proposed system provides many facilities which helps the farmers to maintain the crop field without much loss.
5.	Business Model (Revenue Model)	This prototype can be developed as product with minimum cost with high performance.
6.	Scalability of the Solution	 This can be developed to a scalable product by using sensors and transmitting the data through Wireless Sensor Network and Analysing the data in cloud and operations is performed using robots.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirement

FR No	Functional Requirement (Epic)	Sub Requirement		
		(Story / Sub-Task)		
FR-1	Data Collecting	Smart farming based IOT		
		Extract Data from		
		Sources		
FR-2	Data Supervision and Management	Transform data into		
		proper format		
		Effective Environmental		
		Indicators Performance		
		Evalution of Proposed		
		system		
		Mobile App for Farming		
		Staffs		
FR-3	Feature Selection	Wrapper feature		
		selection approach to		
		analyze the environment		
		indicators,which selects		
		the effective indicators		
		on the farming system		
FR-4	Analysis of Agricultural data	Effective environmental		
		indicators		
FR-5	Performance evalution of proposed	Dashboard For Farming		
	algorithm	Staffs and Mobile Apps		

4.2 Non Functional requirement

Following are the non-functional requirements of the proposed solution.

- NFR-1 Usability You will able to allocate money to different priorities and also help you to cut down on unnecessary spending
- NFR-2 Security More security of the customer data and bank account details.
- NFR-3 Reliability Used to manage his/her expense so that the user is the path of financial stability. It is categorized by week, month, and year and also helps to see more expenses made. Helps to define their own categories.
- NFR-4 Performance The types of expense are categories along with an option. Throughput of the system is increased due to light weight database support.

 NFR-5 Availability Able to track business expenses and monitor important for maintaining healthy cash flow. NFR-6 Scalability The ability to appropriately handle increasing demands.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution Architecture Diagram:

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Naveen T
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Naveen kumar J
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	Naveen Kumar S
Sprint-1		USN-4	As a user, I can register for the application through Gmail	2	Medium	Sugesh N
Sprint-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	
	Dashboard					

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	31 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	07 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

7. CODING AND SOLUTIONING

7.1 Features Feature

- 1 Detect the Temperature Feature
- 2 Detect the Humidity Feature
- 3 Detect the Moisture Feature
- 4 Detect the Animals

Codes:

PYTHON CODE TO IBM:

import random
import ibmiotf.application
import ibmiotf.device
from time import sleep
import sys
#IBM Watson Device Credentials.
organization = "op701j"
deviceType = "Lokesh"
deviceId = "Lokesh89"
authMethod = "token"

```
authToken = "1223334444"
def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
if status=="sprinkler on":
  print ("sprinkler is ON")
else:
  print ("sprinkler is OFF")
#print(cmd)
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
  print("Caught exception connecting device: %s" % str(e))
sys.exit()
#Connecting to IBM watson.
deviceCli.connect()
while True:
#Getting values from sensors.
temp sensor = round( random.uniform(0,80),2)
PH sensor = round(random.uniform(1,14),3)
camera = ["Detected", "Not Detected", "Not Detected", "Not Detected", "Not
Detected","Not Detected",]
camera reading = random.choice(camera)
```

```
flame = ["Detected","Not Detected","Not Detected","Not
Detected", "Not Detected",
flame reading = random.choice(flame)
moist level = round(random.uniform(0,100),2)
water level = round(random.uniform(0,30),2)
#storing the sensor data to send in json format to cloud.
temp data = { 'Temperature' : temp sensor }
PH data = { 'PH Level' : PH sensor }
camera data = { 'Animal attack' : camera reading}
flame data = { 'Flame' : flame reading }
moist data = { 'Moisture Level' : moist level}
water data = { 'Water Level' : water level}
# publishing Sensor data to IBM Watson for every 5-10 seconds.
success = deviceCli.publishEvent("Temperature sensor", "json", temp_data,
qos=0
sleep(1)
if success:
  print (" ......publish ok.....")
print ("Published Temperature = %s C" % temp sensor, "to IBM Watson")
success = deviceCli.publishEvent("PH sensor", "json", PH data, qos=0)
sleep(1)
if success:
  print ("Published PH Level = %s" % PH sensor, "to IBM Watson")
```

```
success = deviceCli.publishEvent("camera", "json", camera data, qos=0)
sleep(1)
if success:
  print ("Published Animal attack %s " % camera reading, "to IBM Watson")
success = deviceCli.publishEvent("Flame sensor", "json", flame data, qos=0)
sleep(1)
if success:
  print ("Published Flame %s " % flame_reading, "to IBM Watson")
success = deviceCli.publishEvent("Moisture sensor", "json", moist_data, qos=0)
sleep(1)
if success:
   print ("Published Moisture Level = %s " % moist level, "to IBM Watson")
success = deviceCli.publishEvent("Water sensor", "json", water data, qos=0)
sleep(1)
if success:
  print ("Published Water Level = %s cm" % water level, "to IBM Watson")
print ("")
#Automation to control sprinklers by present temperature an to send alert message
to IBM Watson.
if (temp sensor > 35):
  print("sprinkler-1 is ON")
success = deviceCli.publishEvent("Alert1", "json", { 'alert1' : "Temperature(%s) is
high, sprinkerlers are turned ON" %temp sensor }
```

```
, qos=0)
sleep(1)
if success:
  print('Published alert1:', "Temperature(%s) is high, sprinkerlers are turned
ON" %temp sensor,"to IBM Watson")
print("")
else:
print("sprinkler-1 is OFF")
print("")
#To send alert message if farmer uses the unsafe fertilizer to crops.
if (PH sensor > 7.5 or PH sensor < 5.5):
  success = deviceCli.publishEvent("Alert2", "json", { 'alert2' : "Fertilizer PH
level(%s) is not safe, use other fertilizer" %PH sensor },
qos=0)
sleep(1)
if success:
  print('Published alert2:', "Fertilizer PH level(%s) is not safe, use other
fertilizer" %PH sensor, "to IBM Watson")
print("")
#To send alert message to farmer that animal attack on crops.
if (camera reading == "Detected"):
  success = deviceCli.publishEvent("Alert3", "json", { 'alert3' : "Animal attack on
crops detected" }, qos=0)
```

```
sleep(1)
if success:
  print('Published alert3:', "Animal attack on crops detected", "to IBM
Watson", "to IBM Watson")
print("")
#To send alert message if flame detected on crop land and turn ON the splinkers to
take immediate action.
if (flame reading == "Detected"):
  print("sprinkler-2 is ON")
success = deviceCli.publishEvent("Alert4", "json", { 'alert4' : "Flame is detected
crops are in danger, sprinklers turned ON" }, qos=0)
sleep(1)
if success:
  print('Published alert4:', "Flame is detected crops are in danger, sprinklers
turned ON", "to IBM Watson")
#To send alert message if Moisture level is LOW and to Turn ON Motor-1 for
irrigation.
if (moist level < 20):
  print("Motor-1 is ON")
success = deviceCli.publishEvent("Alert5", "json", { 'alert5' : "Moisture level(%s)
is low, Irrigation started" %moist level }, qos=0)
sleep(1)
if success:
  print('Published alert5: ', "Moisture level(%s) is low, Irrigation started"
%moist level,"to IBM Watson")
```

```
print("")
#To send alert message if Water level is HIGH and to Turn ON Motor-2 to take
water out.
if (water level > 20):
  print("Motor-2 is ON")
success = deviceCli.publishEvent("Alert6", "json", { 'alert6' : "Water level(%s) is
high, so motor is ON to take water out "
%water level }, qos=0)
sleep(1)
if success:
  print('Published alert6: ', "water level(%s) is high, so motor is ON to take water
out " %water level, "to IBM Watson" )
  print("")
#command recived by farmer
deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```