Міністерство освіти і науки України НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО»

Лабораторна робота № 5 з дисципліни «Мультипарадигмене програмування»

> Виконав: Студент групи IO-23 Швед А. Д.

Завдання

За допомогою продукційного програмування реалізувати перетворення чисельного ряду до лінгвістичного ланцюжка за певним розподілом ймовірностей потрапляння значень до інтервалів.

Вхідні данні

Чисельний ряд, вид розподілу ймовірностей, потужність алфавіту.

Вихідні дані

Лінгвістичний ряд та матриця передування.

Мова програмування

CLIPS.

Хід роботи

Програма реалізує перетворення числового ряду у лінгвістичний ланцюжок з наступним побудуванням матриці передування.

Правила

- 1. Дані зчитуються з текстового файлу за допомогою функції load-numbers. Кожне значення файлу додається до факту numbers, що дозволяє зберігати числовий ряд для подальшої обробки.
- 2. Числовий ряд сортується за допомогою функції insert-ordered. Числа додаються до списку, рісля чого список сортується для побудови інтервалів.
- 3. Після сортування числового ряду, інтервали для алфавіту розраховуються за допомогою функції assign-symbols. Кількість інтервалів визначається кількістю символів алфавіту. Кожне число в числовому ряді потрапляє в один з інтервалів, і відображається у відповідний символ з алфавіту.
- 4. Після того як числа прив'язуються до символів, створюється лінгвістичний ряд, що відображає розподіл чисел по символах.
- 5. За лінгвістичним рядом створюється матриця передування, що показує кількість випадків, коли одна буква слідує за іншою.
- 6. Виведення результатів

При виконанні роботи було помічено, що обробка 5000 значень на CLIPS відбувалася значно довше, ніж у попередніх лабораторних робітах. На це є кілька причин.

По-перше, CLIPS не має вбудованого швидкого сортування, тому для сортування числового ряду було написано код для сортування алгоритмом вставки, що є дуже повільним на великих масивах.

По-друге, обробка кожного факту у CLIPS відбувається окремо, що призводить до значного навантаження на процесор за великої кількості значень.

Оскільки CLIPS орієнтований на невеликі обсяги даних і обробку бази фактів лімітованого розміру, робота з великикими обсягами даних стає значно менш ефективною порівняно з

іншими мовами програмування, що підтримують більш оптимальні для цього алгоритми та структури даних.

Результати виконання

Рисунок 1: Перший числовий ряд B-C-D-E-F-Brent Oil Futures Historical Data (5000 значень - 5 символів)

```
FFFFFEEFEEEE
                                                                                                                                 GGFGGGGF
                                                                                                                                                                                                               GGGGGGGFFGGFFF
                                                                                                                                               G F
                                                                                                     \  \, \mathsf{D} \,\,\mathsf{D} \,\,\mathsf
                                                                                                            \  \, \mathsf{D} \,\, \mathsf{D} \,
                                                                                                                                                                    DDCDCDDD
                                                                                                                                                                                                                              DCCCCCCC
                                                                                                                          C C B B B B B C C C C C C C
                                                                                                                                                                                                                              \mathsf{C} \; \mathsf{C} \; \mathsf{C} \; \mathsf{C} \; \mathsf{C} \; \mathsf{C}
                                                                                                                                                                                                                                                                                                                                   C
cccccccccc
                                                                                             Precedence matrix:
       131 7 0 0 0 0 0 0 0 0 0 0 0 0 0
       8 451 18 0 0 0 0 0 0 0 0 0 0 0 0
       0 19 341 11 0 0 0 0 0 0 0 0 0 0 0
      0 0 12 220 23 0 0 0 0 0 0 0 0 0 0
       0 0 0 24 372 21 0 0 0 0 0 0 0 0 0
       0 0 0 0 22 363 21 0 0 0 0 0 0 0 0
       0 0 0 0 0 22 305 21 0 0 0 0 0 0
       0 0 0 0 0 0 22 248 7 0 0 0 0 0 0
       0 0 0 0 0 0 0 7 129 12 0 0 0 0 0
       0 0 0 0 0 0 0 0 12 120 13 0 0 0
              0 0 0 0 0 0 0 0 13 306 28 1 0 0
             0 0 0 0 0 0 0 0 0 0 6 84 3 0
              0 0 0 0 0 0 0 0 0 0 0 2 22 3
       0000000000000129
```

Рисунок 2: Перший числовий ряд B-C-D-E-F-Brent Oil Futures Historical Data (5000 значень - 15 символів)

Лістинг коду

```
main.clp
    ......
    ;; Templates
    (deftemplate numbers (slot value)) ;; Template for a number series
    (deftemplate symbol-mapped (slot value) (slot symbol)) ;; Template for mapping numbers to
    symbols
    (deftemplate linguistic-pair
 6
        (slot from) ;; Template for linguistic pairs
        (slot to)
 a
        (slot pair-id))
 10
    (deftemplate status (slot stage)) ;; Template to save statuses for every step
    (deftemplate sorted-list (multislot values)) ;; Template for a sorted list
 11
 13
 14
    15
    ;; Globals
16
    .....
    ;; Alphabet definition
19
    (defglobal
20
        ?*alphabet* = (create$ A B C D E F G H I J K L M N 0))
21
    ;; Functions
24
25
    26
27
    ;; File reading function
    (deffunction load-numbers (?filename)
        (bind ?opened (open ?filename filein))
        (if (eq ?opened FALSE) then
           (printout t "Could not open " ?filename crlf)
31
 32
           (return))
 33
        (loop-for-count (?i 1 10000)
           (bind ?val (read filein))
34
           (if (eq ?val EOF) then (return))
35
36
           (assert (numbers (value ?val)))) ;; Reading the numbers as facts
 37
        (close filein)
 38
        (printout t "Data read from " ?filename crlf)
39
    )
40
41
    ;; Insertion into sorted sequence function
42
    (deffunction insert-ordered (?val ?sorted)
43
        ;; Функція для вставки значення в відсортований ряд
        (bind ?result (create$))
44
45
        (bind ?inserted FALSE)
46
        (foreach ?x ?sorted
47
           (if (and (not ?inserted) (< ?val ?x)) then
48
           (bind ?result (create$ ?result ?val))
49
           (bind ?inserted TRUE))
50
           (bind ?result (create$ ?result ?x)))
        (if (not ?inserted) then
51
           (bind ?result (create$ ?result ?val)))
53
        ?result)
54
55
    ;; Function to reflect numbers into symbols
56
    (deffunction assign-symbols (?vals)
 57
        (bind ?count (length$ ?*alphabet*)) ;; Length of the alphabet
        (bind ?min (nth$ 1 ?vals)) ;; Minimal value
        (bind ?max (nth$ (length$ ?vals)) ;; Maximal value
59
60
        (bind ?step (/ (- ?max ?min) ?count)) ;; Interval width
61
62
        ;; Creating the intervals
63
        (bind ?intervals (create$))
64
        (bind ?i 1)
65
        (while (<= ?i ?count)</pre>
66
           (bind ?start (+ ?min (* (- ?i 1) ?step)))
```

```
(bind ?end (+ ?start ?step))
             (bind ?sym (nth$ ?i ?*alphabet*)) ;; Determining the number
68
             (bind ?intervals (create$ ?intervals ?start ?end ?sym))
69
             (bind ?i (+ ?i 1)))
 71
         ;; Binding numbers to symbols
 73
         (do-for-all-facts ((?n numbers)) TRUE
 74
             (bind ?v ?n:value)
             (bind ?j 0)
 76
             (while (< ?j (* ?count 3))
                 (bind ?a (nth$ (+ ?j 1) ?intervals))
(bind ?b (nth$ (+ ?j 2) ?intervals))
 78
                 (bind ?s (nth$ (+ ?j 3) ?intervals))
                 (if (or (and (>= ?v ?a) (< ?v ?b))
81
                     (and (= ?v ?max) (= ?b ?max))) then
82
                     (assert (symbol-mapped (value ?v) (symbol ?s))) ;; Reflecting the symbol
83
                     (bind ?j (* ?count 3))) ; вихід з циклу
84
                 (bind ?j (+ ?j 3)))))
85
86
    87
     ;; Rules
88
    ;; Number-sorting rule
90
    (defrule sort-values
91
92
             (bind ?raw (create$))
             (do-for-all-facts ((?n numbers)) TRUE
93
                 (bind ?raw (create$ ?raw ?n:value)))
95
             (bind ?sorted (create$))
96
             (foreach ?val ?raw
97
                 (bind ?sorted (insert-ordered ?val ?sorted))) ;; Using a sorting function
98
             (assert (sorted-list (values ?sorted))) ;; Saving a sorted sequence
99
             (assert (status (stage ready))) ;; Ready status
    )
102
     ;; Symbol-number mapping rule
103
     (defrule map-values-to-symbols
104
         ?sorted <- (sorted-list (values $?vals)) ;; Checking if a number sequence is sorted
105
         (status (stage ready)) ;; Checking the ready status
             (assign-symbols ?vals) ;; Calling a reflection function
108
    )
    ;; Rule to build linguistic pairs
110
111
     (defrule build-pairs
112
113
             (bind ?all (find-all-facts ((?s symbol-mapped)) TRUE)) ;; Finding all facts
114
             (bind ?len (length$ ?all)) ;; Taking a number of facts
115
             (loop-for-count (?i 1 (- ?len 1))
                 (bind ?from (fact-slot-value (nth$ ?i ?all) symbol)) ;; Taking a symbol from a
     current fact
                 (bind ?to (fact-slot-value (nth$ (+ ?i 1) ?all) symbol)) ;; Taking a symbol
117
     from the next fact
                 (assert (linguistic-pair (from ?from) (to ?to) (pair-id ?i)))) ;; Creating a
118
     linguistic pair
119
     ;; Rule to print the linguistic sequence
122
     (defrule print-linguistic-sequence
123
             (printout t crlf "Linguistic sequence: ")
124
125
             (do-for-all-facts ((?s symbol-mapped)) TRUE
                 (printout t ?s:symbol " ")) ;; Print every symbol in a sequence
127
             (printout t crlf)
128
129
    ;; Rule to print the precedence matrix
131
     (defrule print-precedence-matrix
132
         (printout t crlf "Precedence matrix:" crlf)
133
```

```
134
         (printout t " ")
         135
136
137
         (printout t crlf)
         (foreach ?row ?*alphabet*
  (printout t ?row " ") ;; Printing column header
  (foreach ?col ?*alphabet*
138
139
140
141
                 (bind ?count (length$ (find-all-facts ((?t linguistic-pair))
142
                     (and (eq ?t:from ?row) (eq ?t:to ?col)))))
                 (printout t " " ?count)) ;; Printing the amount of pairs for every symbol
143
     combination
144
            (printout t crlf))
145 )
```