

Welcome to KLA's

Software Engineering Workshop

Jan 12, 2024

Agenda for the day

8:15am	Problem statement description
8:45am	Students download input dataset & problem description
9:00am	Q&A Students start investigating & solving the problem
9:30am onwards	Mentor assigned to you will check-in and connect
	Mentors will check-in with you hourly and guide
1:00pm	Lunch
5:00pm	Final cut off to submit results and final mentor check-ins
6:15pm	Results announcement

Silicon Chip

Wafer manufacturing process

Silicon Ingot

Bare wafer

Bare wafer

- * Center of wafer
- Wafer Size (mm)
- Measurement Location in wafer coordinate
- Distance from COW -> Measurement location
- Edge exclusion boundary
 - Excluded Measurement locations

Patterned wafer

Patterned wafer

Reticle, Die & street

Die street width

Die street height

Reticle street width

Reticle street height

Die shift (Reticle with 1x1 die)

Die Shift vector from COW = 0

- + COW
- → Die Shift vector (COW to Lower left die in Reticle)

Die Shift vector from COW = (+,+)

Die Index, Reference die, Partial and Measurement die

→ COW to Center of Reference die

Partial die

Measurement die

Die coordinate vs Wafer coordinate

Wafer Gripper

Summary

Wafer map with Reticle of 1 x 1 Dies

Milestone 1 – Bare wafer map

Input

- Wafer Diameter (mm)
- N number of equally spaced points to be generated
- Angle in (deg)

Output

Generate N points that are equally spaced at a given angle.

```
(-120.0000, 0.0000)
(-119.6552, 4.5000)
(-149.3103, 2.0000)
(-181.9655, 0.0000)
(-124.6207, 0.0000)
(- 98.2759, 0.0000)
```


Milestone 2 – Simple Pattern wafer map

Input

- Wafer Diameter (mm)
- Die size x, y (mm),
- Die shift vector x, y (mm)
- Distance from COW to Center of Reference Die x, y (mm)

Output

- Die Index of all dies including partial dies from reference die
- LLC of all valid dies (including partial dies) in wafer coordinate

Output Format (in mm)

```
(0,0): (15.1231, 20.3200)
(2,3): (30.4534, 40.1223)
```


Die Shift vector from COW = (+,+)

Milestone 3 – Asymmetric wafer map

Input

- Wafer Diameter (mm)
- Die size x, y (mm)
- Die shift vector x, y (mm)
- Distance from COW to Center of Reference Die x, y (mm)
- Number of dies per reticle (rows x columns)
- Reticle Street Width & Height (mm)
- Die Street Width & Height (mm)

Output

- Die Index of all dies including partial dies from reference die
- LLC of all dies including partial dies in wafer coordinate

```
(0,0): (15.1232, 20.3212)
(2,3): (30.4512, 40.1232)
```


Milestone 4 – find measurement locations in dies on a given radius

Input

- Wafer Diameter (mm)
- Die size x, y (mm),
- Die shift vector x, y (mm)
- Distance from COW to center of Reference Die x, y (mm)
- Number of dies per reticle (rows x columns),
- Reticle Street Width & Height (mm)
- Die Street Width & Height (mm)
- Radius (mm)
- Die coordinates (mm) of Locations to be measured

Output

- Die Index of dies that intersect on a given radius .
- Wafer Coordinates of the measurement locations in the intersecting dies that fall inside the given radius.

```
(5,0): (45.1232, 2.3243)
(5,0): (47.1232, -2.3243)
(5,-1): (47.4512, -7.1234)
```


Milestone 5 – find valid die coordinates of Meas. Locs & die index

Input

- Wafer Diameter (mm)
- Die size x, y (mm),
- Die shift vector x, y (mm)
- Distance from COW to Center of Reference Die x, y (mm)
- Number of dies per reticle (rows x columns)

- Reticle Street Width & Height (mm)
- Die Street Width & Height (mm)
- 4 Gripper angles (deg)
- Gripper width and height (mm)
- Circular Edge exclusion (mm)
- List of wafer coordinates to measure (mm)

Output

Die Index & die Coordinates of meas, locations available in valid regions.

```
(0,0):(15.1243, 20.3222)
(2,3):(30.4512, 40.1243)
```


Student guideline

- Student Input Location (Input files, Validation utility, Problem statement pdf, dependent files)
 - FTP link https://fft.kla-tencor.com/login?local=true
 - Username: KLAUniversityWorkshop2024
 - Pwd: KLAUniversityWorkshop-2024

Install the Aspera plugin extension if required.

- Make a source code check in to git hub every hour / after every milestone.
- Share the Github public repo access to <u>klauniversityworkshophiring@gmail.com</u>
- Use appropriate data structure, class objects & efficient algorithms. Mentors will review the various solution approaches & code quality.

Solution validator

https://klasolutionvalidator2024.azurewebsites.net/

KLA Workshop - Solution Validator

End

