Lecture 4

ORTHOGRAPHIC PROJECTIONS

:: INTRODUCTION

TA 101: Engineering Graphics

2007~08 Semester II

January – May 2008

3D Viewing of an object from any point in space

OUTLINE

- Classification of Views
- Principal Planes of Projection
- Angles of Projection

C. V. R. Murty @ IIT Kanpur :: TA101 :: 2007-08 II

CLASSIFICATION OF VIEWS

C. V. R. Murty @ IIT Kanpur :: TA101 :: 2007 - 08 II

Horizontal & Vertical angles

12

- Between viewing planes & principal planes of object

- Horizontal Angle
 - Between viewing planes & principal planes of object

C. V. R. Murty @ IIT Kanpur :: TA101 :: 2007-08 II

- Vertical Angle
 - Between viewing planes & principal planes of object

C. V. R. Murty @ IIT Kanpur :: TA101 :: 2007-08 II

- Axonometric Projections
 - Viewing plane NORMAL to viewing/projection lines

Isometric

$$\alpha = \beta = \gamma$$

$$\alpha = \beta \neq \gamma$$

$$\alpha \neq \beta \neq \gamma$$

C. V. R. Murty @ IIT Kanp

Oblique Projections

17

- Viewing plane INCLINED to viewing/projection lines

PRINCIPAL PLANES

ORTHOGRAPHIC PROJECTIONS

• Each object can be seen to have principle planes

ANGLES OF PROJECTION

CONVENTION

• Convention to indicate FIRST Angle Projection

Front View

Right Side View (drawn on left side)

C. V. R. Murty @ IIT Kanpur :: TA101 :: 2007-08 II

