Unraveling the Complexity of Multivariate Systems with Symbolic Regression

Giorgio Morales

Gianforte School of Computing Montana State University

Equations are Interpretable

$$F = G \frac{m_1 m_2}{r^2}$$

- F is proportional to m_1
- F is proportional to m_2
- ullet F is inversely proportional to the square of distance r

Introduction

- "Black-box" models are not suitable for understanding the underlying processes
- A goal of science is to discover causal explanations for the observable world
- Symbolic regression (SR) aims to identify underlying relationships in the studied phenomena

Multivariate Symbolic Regression

- Consider a multivariate system $y = f(\mathbf{x}) = f(x_1, ..., x_t)$ ($\mathbf{x} \in \mathbb{R}^t$)
- $f(\cdot)$ is the underlying function of the system
- We assume f can be expressed as a mathematical expression that uses:
 - Unary operators: sin, cos, log, etc.
 - Binary operators: +, -, *, /
- Goal: Given a dataset of observations, generate a mathematical expression \tilde{f} that approximates f
- The skeleton of $3x^2 + e^{2x} 4$ is $c_1x^2 + e^{c_2x} + c_3$

SR vs. Function Fitting

• Step 1: Assume the function has a prior form:

$$y = w_2 \sigma(w_1 x_1 + b_1) + b_2$$

• Step 2: Find coefficients that best fit the data (e.g., gradient descent)

Q: Why SR is harder than function fitting?

Problem Definition

- The primary focus of SR methods is to minimize the prediction error
- SR methods that rely on genetic programming (GP) suffer from slow computation
- GP-based SR methods do not consider past experiences
- SR methods often fail to identify the functional form that explains the relationship between each variable and the system's response

Interpretability vs. Explainability

- Interpretability: Allows to identify cause-effect relationships within the system's inputs and outputs.
- Explainability: Associated with the internal logic and mechanisms inside a machine learning system.

This Looks Like That (Chen et al., 2019)

Interpretability vs. Explainability

- Interpretability: Allows to identify cause-effect relationships within the system's inputs and outputs.
- Explainability: Associated with the internal logic and mechanisms inside a machine learning system.

Explaining nonlinear classification decisions with deep Taylor decomposition (Montavon et al., 2016)

Problem Definition

- SR models (i.e., equations) are white-box models
- Explainable models: Allow to understand the models' inner mechanisms
- Interpretations: Allow humans to identify cause-effects

Contributions

- A method that learns univariate symbolic skeletons to explain the functional form between an independent variable and the system's response
- We introduce an SR problem called multi-set symbolic skeleton prediction (MSSP)
- We present a novel transformer network model called "Multi-Set Transformer" to solve the MSSP problem

Transformers

- The transformer architecture is designed to process sequential data
- It uses an encoder-decoder architecture
- It leverages the concept of self-attention mechanism

Attention is all you need (Vaswani et al., 2017)

Genetic Algorithms

Multi- and many-objective factored evolutionary algorithms (Peerlinck, 2023)

Genetic Programming

Related Work

- Cramer (2020) presented PySR, a GP-based library for SR
- Biggio et al. (2021) designed a method called NeSymReS using a pre-trained transformer model
- He et al. (2022) proposed **TaylorGP** which uses a Taylor polynomial to extract important features
- Kamienny et al. (2022) proposed the transformer model **E2E** that estimates the full mathematical expression
- Bendinelli *et al.* (2023) modified the method proposed by Biggio *et al.* to include *a priori* information

- Consider a system $f(\mathbf{x}) = \sin\left(\frac{x_1}{10 x_2} + \frac{\pi}{2}\right)^2$
- From a dataset (**X**, **Y**) construct a subset where $x_2 = 5$

- The SSP problem would benefit from the injection of additional context data
- We propose to process the information from multiple sets simultaneously to produce a symbolic skeleton that is common to all input sets
- We refer to this new problem as multi-set symbolic skeleton prediction (MSSP)

$$f(\mathbf{x}) = \sin\left(\frac{x_1}{10 \ x_2} + \frac{\pi}{2}\right)^2 \qquad \sin\left(x + \frac{\pi}{2}\right)^2$$

- The Transformer processes sequences with fixed orderings (one at a time)
- Sets don't have inherent order. Permutations don't alter their semantics
- We propose a Multi-Set Transformer architecture to solve the MSSP problem
- The Multi-Set Transformer is pre-trained on a large dataset of synthetic expressions

Four sets of input–response pairs generated from the symbolic skeleton $\frac{c_1x}{\log(c_2x_2^2+c_3)}+c_4$

Model Training

• We created a dataset ${f Q}_1$ of 10^6 expressions for training and 10^5 expressions for validation. They allow up to 1 nested operation

- Architecture details:
 - # of input sets: $N_S = 10$
 - # of input-response pairs in each input set: n = 3000
 - # of encoder blocks: N = 5
 - # of decoder blocks: M = 5

Dataset available at https://huggingface.co/datasets/AnonymousGM/MultiSetTransformerData

Univariate Symbolic Skeleton Prediction

- f can be approximated based on observed data using a neural network (NN)
- Let (\mathbf{X},\mathbf{Y}) be a dataset, so that $\mathbf{X}=\{\mathbf{x}_1,\dots,\mathbf{x}_{N_R}\}$ and $\mathbf{y}=\{y_1,\dots,y_{N_R}\}$
- A NN $\hat{f}(\cdot)$ is trained to capture the association between **X** and **Y**
- Given an input \mathbf{x}_{j} , $\hat{y}_{j} = \hat{f}(\mathbf{x}_{j})$ and $\hat{y}_{j} \approx y_{j}$

Univariate Symbolic Skeleton Prediction

- Suppose we are currently analyzing the v-th variable, x_v
- We generate N_S synthetic sets and estimate their response with \hat{f}

Univariate Symbolic Skeleton Prediction

- Suppose we are currently analyzing the v-th variable, x_v
- We generate N_S synthetic sets and estimate their response with \hat{f}
- The collection of N_S sets and their estimated response is fed into the Multi-Set Transformer

Skeleton Performance Evaluation

$$f(x_1, x_2, x_3) = 5.5 + (1 - x_1/4)^2 + \sqrt{x_2 + 10}\sin(x_3/5)$$

$$\mathbf{e}(x_1) = (c_1 x_1 + c_2)^2 + c_3$$

$$\mathbf{e}(x_2) = c_4 \sqrt{x_2 + c_5} + c_6$$

$$\mathbf{e}(x_3) = c_7 \sin(c_8 x_3) + c_9$$

Skeleton Performance Evaluation

$$\mathbf{e}(x_1) = \sin(c_1 x_1 + c_2) + c_3$$

Method 1's result: $\hat{\mathbf{e}}_1(x_1) = c_9 \cos(c_{10} x_1 + c_{11}) + c_{12}$

Method 2's result: $\hat{\mathbf{e}}_2(x_1) = c_{13} \sin(c_{14} x_1 + c_{15})^4 + c_{16}$

Comparison Is $\hat{\mathbf{e}}_1(x_1)$ equivalent to $\mathbf{e}(x_1)$?

Sample coefficients of $\mathbf{e}(x_1)$:

Fit coefficients of $\hat{\mathbf{e}}_1(x_1)$

 $1\cos(-0.2x_1 - 0.43) + 6$

$$f_{target}(x_1) = \sin(-0.3 x_1 - 0.1) - 2$$

Skeleton Performance Evaluation

$$\mathbf{e}(x_1) = \sin(c_1 x_1 + c_2) + c_3$$

Method 1's result: $\hat{\mathbf{e}}_1(x_1) = c_9 \cos(c_{10} x_1 + c_{11}) + c_{12}$

Method 2's result: $\hat{\mathbf{e}}_2(x_1) = c_{13} \sin(c_{14} x_1 + c_{15})^4 + c_{16}$

Comparison Is $\hat{\mathbf{e}}_2(x_1)$ equivalent to $\mathbf{e}(x_1)$?

Sample coefficients of $\mathbf{e}(x_1)$:

 $f_{target}(x_1) = \sin(0.2 x_1 + 2) + 6$

Fit coefficients of $\hat{\mathbf{e}}_2(x_1)$

 $-1.83 \sin(0.101 x_1 - 9.23)^4 + 6.7$

 $f_{target}(x_1) = \sin(-0.3 x_1 - 0.1) - 2$

 $1.89\sin(0.149\,x_1 - 3.86)^4 - 2.72$

Eq.	Underlying Equation	Domain range
E1	$(3.0375x_1x_2 + 5.5\sin(9/4(x_1 - 2/3)(x_2 - 2/3)))/5$	$[-5,5]^2$
E2	$5.5 + (1 - x_1/4)^2 + \sqrt{x_2 + 10} \sin(x_3/5)$	$[-10, 10]^2$
E3	$(1.5e^{1.5x_1} + 5\cos(3x_2))/10$	$[-5,5]^2$
E4	$((1-x_1)^2 + (1-x_3)^2 + 100(x_2 - x_1^2)^2 + 100(x_4 - x_3^2)^2)/10000$	$[-5,5]^4$
E5	$\sin(x_1 + x_2 x_3) + e^{1.2x_4}$	$x_1 \in [-10, 10], x_2 \in [-5, 5],$ $x_3 \in [-5, 5], x_4 \in [-3, 3]$
E6	$tanh(x_1/2) + x_2 cos(x_3^2/5)$	$[-10, 10]^3$
E7	$(1 - x_2^2)/\sin(2\pi x_1 + 1.5)$	$[-5,5]^2$
E8	$x_1^4/(x_1^4+1)+x_2^4/(x_2^4+1)$	$[-5,5]^2$
E9	$\log(2x_2 + 1) - \log(4x_1^2 + 1)$	$[0,5]^2$
E10	$\sin(x_1e^{x_2})$	$x_1 \in [-2, 2], x_2 \in [-4, 4]$
E11	$x_1 \log(x_2^4)$	$[-5,5]^2$
E12	$1 + x_1 \sin(1/x_2)$	$[-10, 10]^2$
E13	$\sqrt{x_1}\log(x_2^2)$	$x_1 \in [0, 20], x_2 \in [-5, 5]$

Method	Learned Expressions
PySR	$0.4094 x_3 + x_1 - 3.5101 - 1.952 + 4.1115$
TaylorGP	$-0.497 x_1 + 0.001498 x_2 + 0.3868 x_3 + 8.619$
NeSymRes	$-x_1 + 0.4029 x_3 + \exp(\exp(-0.000755 x_2)) + 5.8753$

Equations obtained by other methods for problem E2

E2:
$$5.5 + (1 - x_1/4)^2 + \sqrt{x_2 + 10} \sin(x_3/5)$$

Method	x_1	x_2	x_3
PySR	$c_1 + c_2 + c_3 + x_1 $	c_1	$c_1 + c_2 x_3$
TaylorGP	$c_1 + c_2 x_1$	$c_1 + c_2 x_2$	$c_1 + c_2 x_3$
NeSymRes	$c_1 + c_2 x_1$	$c_1 + \exp(\exp(x_2))$	$c_1 + c_2 x_3$
E2E	$c_1 + c_2 x_1 + c_3 (c_4 + c_5 x_1)^2$	$c_1 + c_2(c_3 + c_4x_2)$	$c_1 + c_2 x_3 + c_3 (c_4 + c_5 \cos(c_6 + c_7 x_3))$
MST	$c_1 + c_2(c_3 + c_4x_1)^2$	$c_1 \sqrt{c_2 x_2 + c_3} + c_4$	$c_1 + c_2 \sin(c_3 x_3 + c_4)$
Target $\mathbf{e}(x)$	$c_1 + (c_2 + c_3 x_1)^2$	$c_1\sqrt{x_2+c_2}+c_3$	$c_1 + c_2 \sin(c_3 x_3)$

Comparison of skeleton prediction results for problem E2

E2:
$$5.5 + (1 - x_1/4)^2 + \sqrt{x_2 + 10} \sin(x_3/5)$$

Eq.	Var.	PySR	TaylorGP	NeSymReS	E2E	MST
E1	x_1	1.4 ± 0.8	1.4 ± 0.8	0.9 ± 0.7	$\boldsymbol{0.2 \pm 0.4}$	$\boxed{0.01 \pm 0.02}$
	x_2	1.5 ± 0.9	1.5 ± 0.9	1.3 ± 0.8	1.5 ± 0.9	0 ± 0
	x_1	303.5 ± 167.3	310.0 ± 170.1	310.0 ± 170.1	0 ± 0	0 ± 0
$\mathbf{E2}$	x_2	5.4 ± 5.0	4.2 ± 5.3	4.6 ± 5.0	4.2 ± 5.3	$\boxed{0.02 \pm 0.03}$
	x_3	1.7 ± 1.0	1.7 ± 1.0	1.7 ± 1.0	0.01 ± 0.02	0 ± 0
E3	x_1	$2 \times 10^{12} \pm 5 \times 10^{12}$	939.4 ± 1419.9	1.9 ± 1.2	0.8 ± 1.8	$oldsymbol{0.8\pm1.8}$
	x_2	1.3 ± 1.0	1.3 ± 1.0	0.8 ± 0.8	0 ± 0	0 ± 0
E 4	x_1	4576.2 ± 2695.7	4581.5 ± 2697.4		2.3 ± 3.6	1.1 ± 0.7
	x_2	79.6 ± 41.3	80.2 ± 40.8		0 ± 0	0 ± 0
	x_3	3995.5 ± 2815.6	4304.6 ± 2843.7		2.0 ± 4.0	1.0 ± 0.9
	x_4	74.5 ± 48.0	75.5 ± 47.0		0 ± 0	0 ± 0
E5	x_1	0.6 ± 0.05	0.6 ± 0.05		0 ± 0	0 ± 0
	x_2	1.5 ± 1.0	1.5 ± 1.0		1.5 ± 1.0	0 ± 0
	x_3	0.6 ± 0.05	0.6 ± 0.05		0.6 ± 0.05	0 ± 0
	x_4	2.7 ± 1.2	487.4 ± 461.9		0.6 ± 0.8	0.6 ± 0.8
	x_1	0.8 ± 0.08	0.8 ± 0.08	0.3 ± 0.01	0.04 ± 0	0 ± 0
E6	x_2	16.8 ± 12.2	16.8 ± 12.2	13.8 ± 11.1	1.3 ± 0.9	0 ± 0
	x_3	2.9 ± 1.3	1.9 ± 0.7	1.6 ± 0.9	1.6 ± 0.9	0 ± 0

Skeleton evaluation performance comparison

https://github.com/NISL-MSU/MultiSetSR/

		-				_
E7	x_1	29.5 ± 1.0	1.8 ± 2.0	1.8 ± 2.0	1.1 ± 1.3	0 ± 0
	x_2	63.6 ± 43.8	1.6 ± 1.0	42.4 ± 24.7	0 ± 0	0 ± 0
E8	x_1	0.02 ± 0.01	0.04 ± 0.01	0.8 ± 1.2	0.02 ± 0.02	0 ± 0
	x_2	0.02 ± 0.01	0.04 ± 0.01	0.9 ± 1.3	0.02 ± 0.01	0 ± 0
E9	x_1	271.3 ± 446.8	239.8 ± 428.2	375.1 ± 485.5	0 ± 0	0 ± 0
	x_2	0 ± 0	0.2 ± 0.09	2.7 ± 1.7	0.05 ± 0.01	0 ± 0
E10	x_1	0 ± 0	0.6 ± 0.2	0 ± 0	0 ± 0	0 ± 0
	x_2	0 ± 0	0.4 ± 0.06	0 ± 0	0 ± 0	0 ± 0
E11	x_1	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0
	x_2	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0
E12	x_1	21.8 ± 13.1	0 ± 0	0 ± 0	0 ± 0	0 ± 0
	x_2	0 ± 0	2.4 ± 1.5	2.5 ± 1.6	0 ± 0	0 ± 0
E13	x_1	0 ± 0	0.8 ± 0.5	0.7 ± 0.6	0.7 ± 0.8	0 ± 0
	x_2	0 ± 0	0 ± 0	3.8 ± 3.5	0 ± 0	0 ± 0
	x_1	0 ± 0	0.8 ± 0.5	0.7 ± 0.6	0.7 ± 0.8	0 ± 0

Skeleton evaluation performance comparison

Crop Production

- In precision agriculture, black-box models are trained to relate input factors and outcome variables (e.g., crop yield)
- Those models can be used to understand the relationship between input variables and outputs

Yield Prediction Model

A Convolutional Neural Network designed for yield prediction called "Hyper3DNetReg"

Crop Production

- Models can estimate N-response curves
- N-response curves are used for optimization and to understand fertilizer responsivity of the field
- SR methods could learn the mathematical expressions that describe site-specific Nresponse curves from data
- The use of mathematical expressions can accelerate optimization techniques

Conclusions

- We aim to establish the basis for a decomposable SR method
- First "neural" SR method that prioritizes the identification of the functional relationships between each system variable and the response
- Experimental results demonstrate that our Multi-Set Transformer model learns to identify skeletons correctly and consistently for all system variables
- Our method can be viewed as a post-hoc interpretability method that generates mathematical expressions as interpretations of a black-box model's function

Thanks to:

- NISL
 - Dr. John Sheppard
 - Will Jardee

- DIFM Project
 - Dr. David Bullock
 - Dr. Brittani Edge
 - Dr. Paul Hegedus
 - Dr. Bruce Maxwell
 - Dr. Taro Mieno
 - Dr. Laila Puntel

THANK YOU!

Contact

giorgio-morales

giorgiomorales.github.io/

