Lezione 26 Geometria I

Federico De Sisti 2024-05-09

1 Mappe tra spazi proiettivi

Siano V, W \mathbb{K} -spazi vettoriali

Definizione 1

Un'applicazione $f: \mathbb{P}(V) \to \mathbb{P}(W)$ si dice trasformazione proiettiva se esiste un'applicazione lineare iniettiva $\varphi: V \to W$ tale che

$$f([v]) = [\varphi(v)] \quad \forall \ v \in V \setminus \{0\}.$$

Osservazione

Scriviamo $f = \bar{\varphi}$ e diciamo che φ induce f.

Notiamo che $\bar{\varphi} = \overline{\lambda \varphi}$ $\lambda \in \mathbb{R} \setminus \{0\}$ quindi la famiglia $\{\lambda \varphi | \lambda \in \mathbb{K} \setminus \{0\}$ induce la stessa trasformazione proiettiva

Nomenclatura 1

- \circ Se φ è un isomorfismo $f = \bar{\varphi}$ si chiama isomorfismo proiettivo
- o Se $\varphi: V \to V$ è un isomorfismo, $f = \bar{\varphi}$ si chiama proiettività
- o $A, B \subseteq \mathbb{P}(V)$ sono proiettivamente equivalenti se esiste proettività f tale che f(A) = B

Formula di Grassmann Proiettiva

 $S_1 = \mathbb{P}(W_1)$ $S_2 = \mathbb{P}(W_2)$

 $S_1 \cap S_2 = \mathbb{P}(W_1 \cap W_2) \quad L(S_1, S_2) = \mathbb{P}(W_1 + W_2)$

Dove $L(S_1, S_2)$ è il minimo sottospazio che contiene S_1, S_2

$$\dim L(S_1, S_2) = \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2).$$

$$\Rightarrow \dim(S_1 \cap S_2) \ge \dim S_1 + \dim S_2 - \dim \mathbb{P}$$
.

 \Rightarrow se $\dim S_1 + \dim S_2 \geq \dim \mathbb{P}$ allora S_1, S_2 sono incidenti

2 Sottospazi in posizione Generale

Definizione 2

 S_1, S_2 sottospazi di $\mathbb{P}(V)$ sono in posizione generale se $S_1 \cap S_2$ ha dimensione minima

Osservazione

Se dim $S_1=h,\dim S_2=k,\dim \mathbb{P}=n$ allora S_1,S_2 sono in posizione generale se

$$\dim S_1 \cap S_2 = h + k - n \quad \text{se } h + k \ge n.$$

$$S_1 \cap S_2 = \emptyset$$
 se $h + k < n$.

Definizione 3 (Cono proiettivo)

 $J \subseteq \mathbb{P}(V), P \in \mathbb{P}$

Il Cono proiettivo J di p è definito con

$$C_p(J) = \bigcup_{Q \in J} L(P, Q).$$

Esercizio

1. $S\subseteq \mathbb{P}$ è un sottospazio proiettivo, allora

$$C_p(S) = L(P, S).$$

2. S_1, S_2 sono sottospazi proiettivi, allora

$$L(S_1, S_2) = \bigcup_{P_1 \in S_1, P_2 \in S_2} L(P_1, P_2) = \bigcup_{P_2 \in S_2} C_{P_2}(S_1).$$

 $H \in \mathbb{P}$ iperpiano $P \in \mathbb{P} \setminus H$

La proiezione di H di centro P è l'applicazione

$$\pi_{P,H}: \mathbb{P} \setminus \{P\} \to H.$$

$$\pi_{P,H}(Q) = L(P,Q) \cap H.$$

Osserviamo che se $J\subseteq \mathbb{P}$ e $p\notin J$

$$\pi_{P,H}(J) = H \cap C_P(J).$$

Esempio

$$\mathbb{P}^N$$
, $H_0 = \{x_0 = 0\} = \{[0, x_1, \dots, x_N] \in \mathbb{P}^N\}$

Dato che punti proporzionali ci danno lo stesso risultato dire $x_0=1$ non avrebbe senso, sarebbe identico a $x_0=3$

Se
$$P = [1, 0, \dots, 0] \notin H_0$$

Se $Q = [x_0, \dots, x_N]$, allora

$$\pi_{P,H}(Q) = [0, x_1, \dots, x_N].$$

$$L(P,Q) = [\lambda + \mu x_0, \mu x_1, \dots, \mu x_n]$$

 $L(P,Q) \cap H_0$
Esempio

Esemplo [1, 2, 1][0, 1, -1]

$$\{\lambda[1,2,1] + \mu[0,1,-1] | (\lambda,\mu) \in \mathbb{K}^2 \neq (0,0) \}.$$

Qui c'è lo spazio quoziente $(\lambda, \mu)/\lambda \sim \mu$

3 Posizione generale di sottospazi in $\mathbb{P}^3, \mathbb{P}^4$

$$\dim S_1 = h$$

$$\dim S_2 = k \quad \dim S_1 \cap S_2 = \begin{cases} h+k-n & h+k \ge n \\ -1 & h+k < n \end{cases}$$

Osserviamo che in un riferimento proiettivo in \mathbb{P}^n sia e_0, \dots, e_n individua i punti fondamentali ed il punto unità, e questi sono in posizione generale

$$F_0 = [e_0], \dots, F_n = [e_n], u = [e_0 + \dots + e_n].$$

... ... 0 0... 1 ogni (n+1)-ple di righe ha rango massimo

1 1... 1

100 Esempio \mathbb{P}^2 $[e_0]$

 $0\ 1\ 0$ tutti i minori di rango 3 sono non zero 0 0 1

Viceversa, data una (n+2)-pla di punti in posizione generale, esiste un unico riferimento proiettivo che il ammette come punti fondamentali e punti unità. Siano dati P_0, \ldots, P_n n punti in posizione generale,

1 1 1

supponiamo che $P_i=[v_i],\ i=0,\dots,n$ Allora $\{v_0,\dots,v_n\}$ è una base di V. Se $n\in V$ è tale che N=[n], allora

$$n = \lambda_0 v_0 + \ldots + \lambda_n v_n.$$

in modo unico.

Osserviamo che per l'ipotesi di posizione generale, tutti i λ_i sono diversi da zero. Allora $(\lambda_0 v_0) \dots (\lambda v_n)$ è un riferimento con le proprietà valide: infatti i punti fondamentali sono

$$[\lambda_i v_i] = [v_i] = P_i.$$
$$[(\lambda_0 v_0) + \ldots + (\lambda_n v_n)] = [n] = V.$$

3.1 Esercizi

Verificare che in $\mathbb{P}^2(\mathbb{R})$

$$[\frac{1}{2}, 1, 1], [1, \frac{4}{3}, \frac{4}{3}], [2, -1, 2].$$

Sono allineati e trovare un'equazione della retta che li contiene **Svolgimento**

$$0 = \det \begin{pmatrix} x_0 & x_1 & x_2 \\ 1 & 2 & 2 \\ 3 & 1 & 4 \end{pmatrix} = 6x_0 + 2x_1 - 5x_2 = 12 - 2 - 10 = 0$$

Altro Esercizio

Determinare i valori di $a \in \mathbb{C}$ per cui le rette in $\mathbb{P}^2(\mathbb{C})$

$$ax_1 - x_2 + 3ix_0 = 0.$$
$$-iax_1 + x_1 - ix_2 = 0.$$

$$3ix_2 + 3x_0 + x_1 = 0.$$

sono concorrenti (si intersecano in un punto)

Svolgimento

Le rette sono concorrenti se e solo se il sistema delle tre equazioni ha una soluzione non nulla

$$A = \begin{pmatrix} 3i & a & -1 \\ -ia & 1 & -i \\ 5 & 1 & 3i \end{pmatrix}.$$

$$\det A = 0 \quad ra^2 + 4ia + 7 = 0 \quad \Rightarrow \quad a = \frac{-2 \pm \sqrt{-ra^2 - 21a^2}}{3} = \begin{cases} i \\ -\frac{7}{3}i \end{cases}$$

Altro altro esercizio

Si considerano i punti seguenti in $\mathbb{P}^3(R)$

$$P_1 = [1, 0, 1, 2], P_2 = [0, 1, 1, 1], P_3 = [2, 1, 2, 2], P_4 = [1, 1, 2, 3].$$

- a. Dire se P_1, P_2, P_3, P_4 sono in posizione generale
- b. Calcola dim $L(P_1, P_2, P_3, P_4)$ e trovare equazioni cartesiane
- c. Completare, se possibile, P_1, P_2, P_3 a un riferimento proiettivo di $\mathbb{P}^3(\mathbb{R})$

Svolgimento

I punti dati sono in posizione generale se posto $P_i = [v_i], v_1, v_2, v_3, v_4$ sono linearmente indipendenti

$$\det \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 2 & 1 & 2 & 2 \\ 1 & 1 & 2 & 3 \end{pmatrix} = 0.$$

Tuttavia il determinante del minore $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ è diverso da 0

$$L(P_1, P_2, P_3, P_4) = L(P_1, P_2, P_3).$$

$$\det \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 2 & 1 & 2 & 2 \end{pmatrix} = 0 \quad \Rightarrow \quad -x_0 - 2x_1 + 3x_2 - x_3 = 0.$$

Ultimo punto dell'esercizio

Per prima cosa si completa ad una base, si può completare con $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ e il determinate è diverso da 0, a questo punto possiamo prendere P_1, P_2, P_3 come prima, $\widetilde{P}^4 = [0,0,0,1] \ U = [3,2,4,6]$