2 Context-Free Languages

2.1 Context-Free Grammars

A context-free grammar (CFG) is a structure $G = (N, \Sigma, P, S)$ where

- * N is a finite set, the non-terminals,
- * Σ is a finite set disjoint from N, the terminals,
- * $P \subseteq N \times (N \cup \Sigma)^*$ is a finite set of *productions*,
- * $S \in N$ is the start symbol.

Productions are denoted as follows.

- * A production $(A, w) \in P$ is written $A \to w$.
- * Several productions $A \to w_1, \ldots, A \to w_n$ are written $A \to w_1 \mid \ldots \mid w_n$.
- * The right-hand side may be empty: an ε -production is written $A \to \varepsilon$.

Example: $G = (N, \Sigma, P, E)$ for arithmetic expressions

Example: $G' = (N, \Sigma, P, S)$

Consider a CFG $G = (N, \Sigma, P, S)$.

- * Let $u, v, w \in (N \cup \Sigma)^*$ and $A \to w \in P$.
- * Then uAv yields uwv in one step, by replacing A with w; this is denoted $uAv \Rightarrow_G^1 uwv$.
- * Alternatively, uwv is derivable from uAv in one step.
- * Each of u, v, w may be ε .
- * A can be replaced with w irrespective of the context u, v in which A occurs.

Derivability is a relation on $(N \cup \Sigma)^*$.

- * Let $x_i \in (N \cup \Sigma)^*$ for each $i \in \mathbb{N}$.
- * x_n is derivable from x_0 in n steps if $x_i \Rightarrow_G^1 x_{i+1}$ for each $0 \le i < n$; this is denoted $x_0 \Rightarrow_G^n x_n$.
- * $x \Rightarrow_G^0 y$ if and only if x = y.
- * y is derivable from x if it is derivable in any number of steps.
- * Alternatively, x generates y or x yields y.
- * $x \Rightarrow_G^* y$ if $x \Rightarrow_G^n y$ for some $n \in \mathbb{N}$.
- * The relation \Rightarrow_G^* is the reflexive-transitive closure of the relation \Rightarrow_G^1 .

2.1.1 Context-Free Languages

A context-free grammar generates a context-free language (CFL).

- * A sentential form is any $x \in (N \cup \Sigma)^*$ derivable from the start symbol S, that is, $S \Rightarrow_G^* x$.
- * A sentence is a sentential form that consists only of terminal symbols: $x \in \Sigma^*$.
- * $L(G) = \{x \in \Sigma^* \mid S \Rightarrow_G^* x\}$ is the language generated by G.
- * $A \subseteq \Sigma^*$ is context-free if A = L(G) for some CFG G.

$A = \{a^n b^n \mid n \in \mathbb{N}\}$ is context-free:
--

Further examples of CFLs are:

* $\{a^ib^jc^k\mid (i=j \text{ or } j=k) \text{ and } i,j,k\geq 1\}$ is generated by

$$S \rightarrow TC \mid AU$$

$$T \rightarrow aTb \mid ab$$

$$U \rightarrow bUc \mid bc$$

$$A \rightarrow a \mid aA$$

$$C \rightarrow c \mid cC$$

The language of balanced parentheses is generated by

A sentence may have several derivations.

* Consider the CFG induced by the production

$$E \rightarrow E + E \mid E * E \mid n$$

* Some derivations of the sentence n + n * n are:

- $* \Rightarrow$ is short for \Rightarrow^1 , which is short for \Rightarrow^1_G if G is understood.
- * The first two are *leftmost derivations*, the next two are *rightmost* derivations.
- * In each step of a leftmost derivation, the leftmost non-terminal is replaced.
- * In each step of a rightmost derivation, the rightmost non-terminal is replaced.
- * A sentence is *ambiguous* if it has more than one leftmost derivation.
- * A CFG is ambiguous if it generates an ambiguous sentence.
- * A CFL is inherently ambiguous if every CFG generating it is ambiguous.
- * $\{a^ib^jc^k\mid i=j \text{ or } j=k\}$ is inherently ambiguous.

The above CFG for expressions has the following rightmost derivation:

$$E \Rightarrow E + T$$

$$\Rightarrow E + T * F$$

$$\Rightarrow E + T * n$$

$$\Rightarrow E + F * n$$

$$\Rightarrow E + n * n$$

$$\Rightarrow T + n * n$$

$$\Rightarrow F + n * n$$

$$\Rightarrow n + n * n$$

2.1.2 Regular Grammars

A regular grammar is a CFG $G = (N, \Sigma, P, S)$ where for each $A \to w \in P$,

* $w = \varepsilon$, or

 $* \ w \in \Sigma N.$

* The right-hand side of each production is either ε or a terminal followed by a non-terminal.

Example:

Every regular language is generated by a regular grammar. Proof:

* Consider the DFA $M = (Q, \Sigma, \delta, q_0, F)$.

* Construct the regular grammar $G = (Q, \Sigma, P, q_0)$ with the following productions P:

$$\begin{array}{ccc} q_i & \to & aq_j & & \text{if } \delta(q_i,a) = q_j \\ q_i & \to & \varepsilon & & \text{if } q_i \in F \end{array}$$

* Then for each $w \in \Sigma^*$,

$$w = a_1 a_2 \dots a_{n-1} a_n \in L(M)$$

$$\Leftrightarrow \hat{\delta}(q_0, w) \in F$$

$$\Leftrightarrow \delta(q_{i-1}, a_i) = q_i \text{ for each } 1 \leq i \leq n \text{ and } q_n \in F$$

$$\Leftrightarrow q_{i-1} \to a_i q_i \in P \text{ for each } 1 \leq i \leq n \text{ and } q_n \to \varepsilon \in P$$

$$\Leftrightarrow q_0 \Rightarrow a_1 q_1 \Rightarrow a_1 a_2 q_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_{n-1} a_n q_n \Rightarrow a_1 a_2 \dots a_{n-1} a_n$$

$$\Leftrightarrow w = a_1 a_2 \dots a_{n-1} a_n \in L(G).$$

* Hence L(M) = L(G).

Every regular grammar generates a regular language. Proof:

- * Consider the regular grammar $G = (N, \Sigma, P, S)$.
- * Construct NFA $M = (N, \Sigma, \delta, S, F)$.
- * The accept states are $F = \{V \mid (V \to \varepsilon) \in P\}.$
- * The transitions are $\delta(V, a) = \{W \mid (V \to aW) \in P\}.$
- * Then for each $w \in \Sigma^*$,

$$w = a_1 a_2 \dots a_{n-1} a_n \in L(G)$$

$$\Leftrightarrow S = V_0 \Rightarrow a_1 V_1 \Rightarrow a_1 a_2 V_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_{n-1} a_n V_n \Rightarrow a_1 a_2 \dots a_{n-1} a_n$$

$$\Leftrightarrow V_{i-1} \to a_i V_i \in P \text{ for each } 1 \leq i \leq n \text{ and } V_n \to \varepsilon \in P$$

$$\Leftrightarrow V_i \in \delta(V_{i-1}, a_i) \text{ for each } 1 \leq i \leq n \text{ and } V_n \in F$$

$$\Leftrightarrow \hat{\delta}(S, w) \cap F \neq \emptyset$$

$$\Leftrightarrow w = a_1 a_2 \dots a_{n-1} a_n \in L(M).$$

* Hence L(G) = L(M).

Every regular language A has the following equivalent characterisations:

- * A is accepted by a DFA.
- * A is accepted by an NFA.
- * A is accepted by an NFA with ε -transitions.
- * A is generated by a regular expression.
- * A is generated by a regular grammar.

It follows that:

Alternative characterisations of regular grammars require for each $A \to w \in P$:

```
* \ w \in \Sigma N \cup \{\varepsilon\},\
```

*
$$w \in N\Sigma \cup \{\varepsilon\},$$

*
$$w \in \Sigma N \cup \Sigma \cup \{\varepsilon\},$$

$$* \ w \in N\Sigma \cup \Sigma \cup \{\varepsilon\},\$$

$$* \ w \in \Sigma N \cup N \cup \{\varepsilon\},\$$

$$* \ w \in N\Sigma \cup N \cup \{\varepsilon\},\$$

*
$$w \in \Sigma^* N \cup \Sigma^*$$
, or

 $* \ w \in N\Sigma^* \cup \Sigma^*.$

In general, the following restrictions do not yield regular languages:

$$* \ w \in \Sigma N \cup N\Sigma \cup \{\varepsilon\},\$$

 $* \ w \in NN \cup \Sigma.$

2.1.3 Chomsky Normal Form

A CFG $G = (N, \Sigma, P, S)$ is in Chomsky normal form if every production has the form

- * $A \to BC$, where $B, C \in N$, or
- * $A \to a$, where $a \in \Sigma$.
- * The right-hand side of each production is either two non-terminals or a terminal.

For every CFG G with $\varepsilon \notin L(G)$ there is a CFG G' in Chomsky normal form with L(G) = L(G').

- 1. Eliminate ε -productions of the form $A \to \varepsilon$.
- 2. Eliminate unit-productions of the form $A \to B$.
- 3. Eliminate non-generating non-terminals.
- 4. Eliminate non-reachable non-terminals.
- 5. Eliminate terminals from right-hand sides of length at least 2.
- 6. Eliminate right-hand sides of length at least 3.
- 1. If $A \to uBv \in P$ for $u, v \in (\Sigma \cup N)^*$ and $B \to \varepsilon \in P$, add $A \to uv$ to P.
- * Repeat this step while there are changes.
- * Afterwards, remove all ε -productions of the form $A \to \varepsilon$.
- 2. If $A \to B \in P$ and $B \to w \in P$ for $w \in (\Sigma \cup N)^*$, add $A \to w$ to P.
- * Repeat this step while there are changes.
- * Afterwards, remove all unit-productions of the form $A \to B$.
- 3. A non-terminal A is generating if $A \Rightarrow^* w$ for some $w \in \Sigma^*$.
- * If $A \to w \in P$ and w contains only terminals, A is generating.
- * If $A \to w \in P$ and w contains only terminals or generating non-terminals, A is generating.
- * Remove each non-generating non-terminal with all productions containing it.
- 4. A non-terminal A is reachable if $S \Rightarrow^* uAv$ for some $u, v \in (\Sigma \cup N)^*$.
- * S is reachable.
- * If $A \to w \in P$ and A is reachable, every non-terminal in w is reachable.
- * Remove each non-reachable non-terminal with all productions containing it.
- 5. Consider every terminal a in a right-hand side of length at least 2.
- * Add a new non-terminal A and the production $A \to a$.
- * Replace every occurrence of a in a right-hand side of length at least 2 with A.
- 6. Consider every production $A \to B_1 B_2 \dots B_n$ with $n \ge 3$.
- * Add a new non-terminal C and replace this production with $A \to B_1C$ and $C \to B_2B_3 \dots B_n$.
- * Repeat this step while there are changes.

The above steps must be performed

The resulting grammar is in Chomsky normal form.

Example:

 $S \rightarrow TbT$

 $T \rightarrow aU$

 $T \rightarrow U$

 $T \rightarrow V$

 $U \rightarrow \varepsilon$

 $V \rightarrow b$

Grammars in Chomsky normal form cannot generate ε . If ε is needed:

- * Add a new non-terminal S' and the production $S' \to \varepsilon$.
- * For each production $S \to w$ of the start symbol S, add $S' \to w$.
- * Make S' the new start symbol.

2.2 The Cocke-Younger-Kasami Algorithm

Given a string $w \in \Sigma^*$ and a CFL A, is $w \in A$?

- * This is the test for membership in a CFL.
- * It is similar to parsing, but no syntax tree has to be constructed.
- * $A = L(G) = \{x \in \Sigma^* \mid S \Rightarrow_G^* x\}$ for a CFG G.
- * Hence $w \in A$ if and only if $S \Rightarrow_G^* w$.
- * Checking all derivations does not work, since there might be infinitely many.
- * Assume that G is in Chomsky normal form.
- * Every non-terminal produces at least one terminal.
- * It suffices to consider derivations that introduce up to |w| non-terminals.
- * This gives an upper bound on the length of derivations that need to be checked.
- * The number of derivations might still be exponential in the length of w.

A technique to improve the running time is dynamic programming.

- * It applies to problems whose solution can be reduced to similar, but smaller subproblems.
- * The solution to a problem must be obtained from solutions to subproblems.
- * This gives a recursive algorithm.
- * The total number of possible subproblems must be small.
- * Storing the solutions to subproblems in a table avoids repeated calculations in the recursion.
- * Dynamic programming is typically applied to optimisation problems.
- * A different example is the Cocke-Younger-Kasami (CYK) algorithm.

The CYK algorithm solves the membership problem $w \in L(G)$.

* Assume that G is in Chomsky normal form, for example:

$$S \rightarrow BB \mid AS \mid a$$

$$A \rightarrow BC$$

$$B \rightarrow BS \mid b$$

$$C \rightarrow a$$

- * Let n be the length of w: for example, n = 6 for w = bbabab.
- * Mark the positions that separate symbols in w:

$$|b|b|a|b|a|b|$$

0 1 2 3 4 5 6

- * Let w_{ij} be the substring of w between positions i and j: for example, $w_{25} = aba$ and $w_{06} = w$.
- * $N_{ij} = \{A \in N \mid A \Rightarrow^* w_{ij}\}$ contains the non-terminals that generate w_{ij} .
- * The CYK algorithm calculates N_{ij} for each $0 \le i < j \le n$.
- * Then $w \in L(G)$ if and only if $S \in N_{0n}$.

Problem is solved by generalisation:

The CYK algorithm fills a table with N_{ij} in column i, row j.

* The calculation proceeds in increasing order of substring length.

First come the substrings of length 1, that is, j = i + 1.

- * The 1-symbol substring $w_{i,i+1}$ can be generated from A if $A \to w_{i,i+1} \in P$.
- * For each production $A \to a$ where $a = w_{i,i+1}$, add A to the entry at column i, row j.
- * These entries form the main diagonal of the table.

Then come the substrings of length 2, that is, j = i + 2.

- * The 2-symbol substring $w_{i,i+2}$ is broken up into two 1-symbol substrings $w_{i,i+1}$ and $w_{i+1,i+2}$.
- * If $B \in N_{i,i+1}$ and $C \in N_{i+1,i+2}$ and $A \to BC \in P$, then add A to $N_{i,i+2}$.
- * These entries form the diagonal below the main diagonal.

The 3-symbol substring $w_{i,i+3}$ can be broken up in two ways.

- * Consider how to generate $w_{i,i+3}$ using a production $A \to BC$, that is, $A \Rightarrow BC \Rightarrow^* w_{i,i+3}$.
- * This follows from $B \Rightarrow^* w_{i,i+1}$ and $C \Rightarrow^* w_{i+1,i+3}$ or from $B \Rightarrow^* w_{i,i+2}$ and $C \Rightarrow^* w_{i+2,i+3}$.
- * If $B \in N_{i,i+1}$ and $C \in N_{i+1,i+3}$ and $A \to BC \in P$, then add A to $N_{i,i+3}$.
- * If $B \in N_{i,i+2}$ and $C \in N_{i+2,i+3}$ and $A \to BC \in P$, then add A to $N_{i,i+3}$.

The k-symbol substring $w_{i,i+k}$ can be broken up in k-1 ways.

* If $B \in N_{i,i+l}$ and $C \in N_{i+l,i+k}$ for any $1 \le l < k$ and $A \to BC \in P$, then add A to $N_{i,i+k}$.

Implementation:

* The CYK algorithm can be implemented as follows:

$$\begin{array}{l} \mathbf{for} \ i := 0 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ N_{i,i+1} := \{A \mid (A \to w_{i,i+1}) \in P\} \\ \mathbf{for} \ k := 2 \ \mathbf{to} \ n \ \mathbf{do} \\ \mathbf{for} \ i := 0 \ \mathbf{to} \ n-k \ \mathbf{do} \\ N_{i,i+k} := \emptyset \\ \mathbf{for} \ j := i+1 \ \mathbf{to} \ i+k-1 \ \mathbf{do} \\ N_{i,i+k} := N_{i,i+k} \cup \{A \mid (A \to BC) \in P \ \mathrm{and} \ B \in N_{i,j} \ \mathrm{and} \ C \in N_{j,i+k}\} \end{array}$$

- * The running time is $O(n^3)$.
- * The underlying recursion is:

$$N_{i,i+k} = \left\{ \begin{array}{l} \{A \mid (A \rightarrow w_{i,i+1}) \in P\} & \text{if } k = 1 \\ \bigcup_{i+1 \leq j \leq i+k-1} \{A \mid (A \rightarrow BC) \in P \text{ and } B \in N_{i,j} \text{ and } C \in N_{j,i+k}\} & \text{if } 2 \leq k \leq n \end{array} \right.$$

2.3 Pushdown Automata

A pushdown automaton is an extension of a finite automaton.

- * A stack is added, in which stack symbols can be stored.
- * Transitions may depend on symbols at the top of the stack.
- * Transitions may change the symbols at the top of the stack.
- * The stack size is unlimited.

A pushdown automaton (PDA) is a structure $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- * Q, Σ , q_0 and F are as in an NFA or a DFA,
- * Γ is a finite set, the stack alphabet,
- $* \varepsilon \notin \Sigma \cup \Gamma,$
- * $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^* \to \mathcal{P}(Q \times \Gamma^*)$ is the transition relation.

The transition relation has the following properties.

- * As in NFAs with ε -transitions, there are two sources of non-determinism.
- * δ may have ε -transitions.
- * δ yields a set of successor states.
- * Extending NFAs, the transitions refer to the top symbols of the stack; hence Γ^* is added.

The language $A = \{a^n b^n \mid n \in \mathbb{N}\}$ is accepted by the following PDA.

* L(M) = A for $M = (\{q_0, q_1\}, \{a, b\}, \{0\}, \delta, q_0, \{q_1\})$ where δ returns \emptyset except for

$$\delta(q_0, a, \varepsilon) = \{(q_0, 0)\}$$

$$\delta(q_0, \varepsilon, \varepsilon) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, b, 0) = \{(q_1, \varepsilon)\}$$

* M is represented by the following transition diagram:

The label $a, \alpha/\beta$ shows the input symbol and the top of the stack before/after the transition.

- * The first symbol of α and the first symbol of β are at the top of the stack.
- * By convention the PDA stack is shown growing from right to left.

A transition $(q, \beta) \in \delta(p, a, \alpha)$ has the following meaning.

- * It may be applied if the following three conditions hold.
- * M is in state p.
- * If $a \neq \varepsilon$, the next input symbol is a.
- * The top $|\alpha|$ symbols of the stack are α .
- * Then the following actions take place.
- * M moves to state q.
- * If $a \neq \varepsilon$, a is consumed from the input.
- * The top $|\alpha|$ symbols of the stack are removed; the symbols in β are pushed on the stack.

A configuration is an element $(q, x, \alpha) \in Q \times \Sigma^* \times \Gamma^*$.

- * q is the current state.
- * x is the remaining input.
- * α is the content of the stack.
- * A configuration describes a snapshot of M during a computation.
- * The start configuration for input x is (q_0, x, ε) : the stack is empty initially.
- * The next-configuration relation \rightarrow describes a possible transition:

* The remaining input x and the content γ below the top of the stack are unchanged.

Configuration sequences:

- $* \rightarrow *$ is the reflexive-transitive closure of \rightarrow .
- * $c \rightarrow^* d$ means configuration d is reachable from configuration c in zero or more transitions.
- * The language accepted by M is

$$L(M) = \{x \in \Sigma^* \mid (q_0, x, \varepsilon) \to^* (q, \varepsilon, \varepsilon) \text{ for some } q \in F\}.$$

* Acceptance requires the PDA to be in an accept state and to have an empty stack.

Further examples of PDAs are:

* The following PDA accepts aababa, but neither ab nor aaababab:

* The accepting sequence of configurations for input aababa is:

* The following PDA accepts the strings containing twice as many a-symbols as b-symbols:

$$\begin{array}{c}
a, \varepsilon/a \\
b, aa/\varepsilon \\
b, a/b \\
b, \varepsilon/bb \\
a, b/\varepsilon
\end{array}$$

2.3.1 Context-Free Languages and Pushdown Automata

Every CFL is accepted by a PDA. Proof sketch:

- * Let $G = (N, \Sigma, P, S)$ be a CFG.
- * Idea: simulate leftmost-derivation, keep track of sentential forms.
- * Construct a PDA $M = (\{q_0, q_1\}, \Sigma, \Sigma \cup N, \delta, q_0, \{q_1\})$ with

$$q_0 \xrightarrow{\varepsilon, \varepsilon/S} q_1 \xrightarrow{q_1, a/\varepsilon} \text{ for each } a \in \Sigma \\ \varepsilon, A/w \text{ for each } A \to w \in P$$

- * The transition $(q_1, S) \in \delta(q_0, \varepsilon, \varepsilon)$ pushes the start symbol S on the stack.
- * A transition $(q_1, \varepsilon) \in \delta(q_1, a, a)$ reads terminal a.
- * A transition $(q_1, w) \in \delta(q_1, \varepsilon, A)$ expands non-terminal A to w.
- * The stack is the part of a sentential form that remains to be parsed in a leftmost derivation.
- * An inductive proof shows that for each $A \in N$ and $x, y \in \Sigma^*$ and $z \in (\Sigma \cup N)^*$,

 $A \Rightarrow^* xz$ in a leftmost derivation if and only if $(q_1, xy, A) \rightarrow^* (q_1, y, z)$.

- * In particular, $S \Rightarrow^* x$ if and only if $(q_1, x, S) \to^* (q_1, \varepsilon, \varepsilon)$, if and only if $(q_0, x, \varepsilon) \to^* (q_1, \varepsilon, \varepsilon)$.
- * Thus L(M) = L(G).

Example CFG with start symbol E:

$$\begin{array}{ccc} E & \rightarrow & T \mid E + T \\ T & \rightarrow & F \mid T * F \\ F & \rightarrow & (E) \mid n \end{array}$$

This results in the following PDA:

The accepting sequence of configurations and the leftmost derivation for input n+n*n are:

Conversely, for every PDA M a CFG G can be constructed such that L(G) = L(M).

- * PDAs accept exactly the CFLs.
- * Thus CFLs are described either by CFGs or by PDAs.
- * This is similar to regular grammars and finite automata for regular languages.

Remarks on the use of PDAs for parsing:

- * The PDA constructed for a CFG is non-deterministic.
- * Efficient parsers use deterministic PDAs.
- * Unlike finite automata, deterministic PDAs are less expressive than non-deterministic PDAs.
- * Recursive-descent LL(k) parsers recognise only a small subset of the CFLs.
- * The call-stack of the recursive functions corresponds to the stack of the PDA.
- * Shift-reduce LR(k), LALR(k), SLR(k) parsers recognise more CFLs, but not all.

2.4 Decision Problems for Context-Free Languages

Problems for CFGs G, G' and string $x \in \Sigma^*$:

- * Membership $x \in L(G)$:
- * Emptiness $L(G) = \emptyset$:
- * Finiteness $|L(G)| \in \mathbb{N}$:

- * Universality $L(G) = \Sigma^*$ and intersection emptiness $L(G) \cap L(G') = \emptyset$:
- * Equivalence L(G) = L(G'):
- * Inclusion $L(G) \subseteq L(G')$:

Comparison of regular languages and CFL:

language	grammar	automaton	membership
regular language	regular grammar	DFA	O(n)
deterministic CFL	deterministic CFG	deterministic PDA	O(n)
CFL	CFG	PDA	$O(n^3)$

2.5 Non-Context-Free Languages

Pumping Lemma for CFLs: Let A be context-free. Then there is a number n such that each $z \in A$ with $|z| \ge n$ can be broken into five parts z = uvwxy with

- $vx \neq \varepsilon$
- * $|vwx| \leq n$, and
- * $uv^iwx^iy \in A$ for each $i \in \mathbb{N}$.

Proof idea:

- * Let A = L(G) for a CFG G in Chomsky normal form.
- * A long string in A has a large syntax tree.
- * A large syntax tree has a long path.
- * On a long path, a non-terminal occurs twice.
- * A copy of the tree below the first occurrence can be grafted at the second occurrence.
- * This pumping can be repeated any number of times.

Use the pumping lemma to show that $A = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ is not context-free:

Another example of a non-CFL is $A = \{ww \mid w \in \{a, b\}^*\}$:

- * Given $n \in \mathbb{N}$, set $z = a^n b^n a^n b^n \in A$.
- * Let z = uvwxy with $vx \neq \varepsilon$ and $|vwx| \leq n$.
- * Set i = 0 and consider uwy.
- * If vwx is a substring of a^nb^n , only the first or the second half of z is shortened.
- * If vwx is a substring of b^na^n , only b from the first half or a from the second half is removed.
- * In either case, the two halves differ, so $uwy \notin A$.

2.5.1 Closure Properties of Context-Free Languages

CFLs are closed under union.

- * Let $L_1 = L(G_1)$ and $L_2 = L(G_2)$ for CFGs $G_1 = (N_1, \Sigma, P_1, S_1)$ and $G_2 = (N_2, \Sigma, P_2, S_2)$.
- * Assume that $N_1 \cap N_2 = \emptyset$ and let $S \notin N_1 \cup N_2$.
- * Construct $G = (N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}, S).$
- * Then $L(G) = L_1 \cup L_2$.
- * Similar constructions show that CFLs are closed under concatenation and star.
- * The intersection of a CFL and a regular language is a CFL.

CFLs are not closed under intersection.

* $L_1 = \{a^k b^n c^n \mid k, n \in \mathbb{N}\}$ is generated by the following CFG:

* $L_2 = \{a^n b^n c^k \mid k, n \in \mathbb{N}\}$ is generated by the following CFG:

* But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ is not context-free.

CFLs are not closed under complement.

- * $\overline{A} = \Sigma^* \setminus \{ww \mid w \in \{a, b\}^*\}$ is context-free.
- * Consider the CFG with the productions:

- * A generates all strings of odd length containing a.
- * B generates all strings of odd length containing b.
- * AB generates all strings of the form uavxby with $u, v, x, y \in \Sigma^*$ and |u| = |v| and |x| = |y|.
- * BA generates all strings of the form ubvxay with $u, v, x, y \in \Sigma^*$ and |u| = |v| and |x| = |y|.
- * Such a string z has a and b at distance |z|/2 from each other.
- * The generated language contains all strings not of the form ww.