UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS

João Victor Alcantara Pimenta

Matrizes Aleatórias e Simulação de Gases de Coulomb

São Carlos

João Victor Alcantara Pimenta

Matrizes Aleatórias e Simulação de Gases de Coulomb

Trabalho de conclusão de curso apresentado ao Programa de Graduação em Física do Instituto de Física de São Carlos, da Universidade de São Paulo, para a obtenção do título de Bacharel em Física Computacional.

Orientador: Prof. Dr. Guilherme Silva

Versão original

São Carlos 2024

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica revisada pelo Serviço de Biblioteca e Informação Prof. Bernhard Gross, com os dados fornecidos pelo(a) autor(a)

João Victor Alcantara Pimenta Matrizes Aleatórias e Simulação de Gases de Coulomb / João Victor Alcantara Pimenta ; orientador Guilherme Silva.

– São Carlos, 2024. 20 p.

Trabalho de Conclusão de Curso (Graduação em Física Computacional) — Instituto de Física de São Carlos, Universidade de São Paulo, 2024.

1. Introdução. 2. Matrizes Aleatórias. 3. Simulações e Algoritmos. 4. Implementação e Resultados 5. Conclusão. I. SILVA, GUILHERME L. F., orientador. II. Matrizes Aleatórias e Simulação de Gases de Coulomb.

RESUMO

PIMENTA, J. V. A. Matrizes Aleatórias e Simulação de Gases de Coulomb. 2024. 20p. Monografia (Trabalho de Conclusão de Curso) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2024.

O estudo do espectro de matrizes é peça fundamental na descrição de sistemas físicos. Isso se deve principalmente ao fato que a representação matricial das equações diferenciais que regem a mecânica guardam características intrínsecas do sistema. Contudo, para sistemas com suficiente complexidade, estudar a dinâmica deterministicamente é contraproducente, quando sabe-se montar os operadores, suas soluções são, em geral, instáveis. Uma abordagem alterativa nos indica à Teoria de Matrizes Aleatórias (RMT, Random Matrix Theory), que, sob as devidas hipóteses, permite caracterizar estatisticamente as propriedades físicas do sistema considerado. A relevância dos métodos de matrizes aleatórias não se restringe contudo à física, fazendo aparições na descrição dos zeros da função de Riemann, em modelos de correlação no mercado financeiro e em inúmeras outras aplicações. Descreveremos alguns dos principais conceitos em RMT, como medidas de matrizes aleatórias e ensembles, dos quais descrevemos com algum detalhe os chamados Gaussianos. Com a natural analogia de Gases de Coulomb, descrevemos o comportamento dos autovalores destas matrizes como gases de partículas interagentes e intuímos a noção de medidas de equilíbrio no limite termodinâmico, que explicitamos para alguns ensembles. Com essa ferramenta, a teoria de simulação de moléculas previamente desenvolvida para condições similares nos permitem calcular médias de funções de interesse. Discutimos um pouco sobre a metodologia utilizada e algumas de suas alternativas e limitações. Dando atenção para as duas mais salientes, a escalabilidade do problema e suas singularidades. Mostramos que o método de Langevin Monte Carlo tem boa performance e possibilita a réplica de medidas para modelos em uma dimensão bem descritos. Além disso podemos, com boa segurança, afirmar, em extensões do potencial e da dimensão da simulação, a possibilidade de replicar resultados recentemente exploradas na literatura. Com isso, indica-se uma alternativa númerica para a descrição qualitativa de uma ampla gama de modelos de interesse.

Palavras-chave: Matrizes Aleatórias. Gases de Coulomb. Dinâmica de Langevin.

SUMÁRIO

1	INTRODUÇÃO 5
2	MATRIZES ALEATÓRIAS
2.1	Distribuição de autovalores
2.2	Ensembles Gaussianos
2.3	Gases de Coulomb
2.4	Medidas de Equilíbrio
2.5	Potenciais notáveis
3	SIMULAÇÕES E ALGORITMOS
3.1	Dinâmica de Langevin Monte Carlo
3.2	Integração Numérica
3.3	Passo de Metropolis
4	IMPLEMENTAÇÃO E RESULTADOS
4.1	A implementação
4.2	Resultados e Discussão
5	CONCLUSÃO
	REFERÊNCIAS 20

1 INTRODUÇÃO

Sistemas integráveis em física são descritos por equações diferenciais simples o suficiente tais que se pode determinar soluções explícitas. Seu comportamento é, em algum sentido, previsível e unicamente determinado pelas condições iniciais. Naturalmente, muitos sistemas de interesse não se enquadram nessa classe, são chamados caóticos ou não integráveis. Seja por complexidade ou instabilidade, não conseguimos expressar ou resolver significativamente os operadores associados à esses sistemas.

De acordo com a mecânica quântica, níveis de energia de uma sistema são descritos pelos autovalores de seu operador hermitiano associado, o hamiltoniano \mathcal{H} . Para um modelo simples o suficiente, caracterizar o sistema físico é equivalente à resolver o problema de autoenergias $\mathcal{H}\Psi_i=E_i\Psi_i$. Contudo, para estado excitados de alta energia de núcleos atômicos pesados, por exemplo, esta abordagem se torna impeditiva, ou não se sabe o hamiltoniano ou sua solução é complicada. Wigner sugere uma abordagem alternativa, uma mecânica estatística para o problema de autovalores. Tal teoria descreveria as propriedades estatísticas da estrutura energética nucleica ao invés de detalhar seus níveis. Buscavase, em algum sentido, uma universalidade, uma descrição que fosse, dada complexidade o suficiente, sensível às simetrias mas independente dos detalhes em \mathcal{H} . A teoria foi prontamente seguida por, dentre outros, Gaudin, Mehta (1), e Dyson (2), que avançaram na descrição dos principais ensembles. Esse desenvolvimento é o início do que chamamos hoje Teoria de Matrizes Aleatórias (RMT, Random Matrix Theory).

Para alguns ensembles, chamados invariantes, uma importante analogia se apresenta, a de Gases de Coulomb. Pensando os autovalores como partículas de um gás interagente sob potencial externo, podemos usar de noções físicas para derivar, por exemplo, as densidades de autovalores no limite termodinâmico. A analogia permite, mudando a caracterização do gás, explorar ensembles de matrizes com entradas correlacionadas, de difícil construção direta. Contudo, nem sempre soluções analíticas são possível para as equações diferencias estocásticas que descrevem a dinâmica destes gases. Por isso, recorre-se à simulações numéricas. Mesmo estas, podem ser difíceis de tratas, a dinâmica tem alta complexidade temporal e as singularidades dificultam manter invariante a energia. Ainda assim, exploraremos abordagens que tornam a simulação da dinâmica suficientemente acurada e permitem, de forma direta, descrição numérica de casos analiticamente complicados e visualização de fenômenos, medidas e funções outrossim inacessíveis, ainda que em alguns casos, qualitativamente.

2 MATRIZES ALEATÓRIAS

2.1 Distribuição de autovalores

Seja S um conjunto tal como $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (Reais, Complexos e Quaterniônicos). Consideremos inicialmente uma matriz $\hat{M} \in \mathcal{M}_{\mathbb{S}}(N)$ espaço de matrizes $N \times N$, de entradas reais, complexas ou quaterniônicas. Se tomamos o elemento de matriz $M_{i,j} \, \forall i, j \in \mathbb{Z}$, com $1 \leq i, j \leq N$, como variável aleatória de distribuição arbitrária, podemos expressar a densidade de probabilidade conjunta de \hat{M} (jpdf, joint probability density function) como

$$p(\hat{M})dM = p(M_{1,1}, \dots, M_{N,N}) \prod_{i,j=1}^{N} dM_{i,j}.$$

Considere a decomposição $\hat{M} = \hat{O}\hat{D}\hat{O}^{-1}$, com $\hat{O} \in V_N(\mathbb{S}^N)$ variedade de Stiefel e $\hat{D} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$. Esta decomposição vale quase certamente mas, especialmente, vale quando tomado \hat{M} matriz simétrica, hermitiana ou autodual, que implica autovalores $\lambda \in \mathbb{R}$ sem degeneração. Isto pode ser motivado fisicamente sabendo que, para sistemas quânticos invariantes reversíveis, o Hamiltoniano é matriz real simétrica; na presença de campo magnético, o Hamiltoniano é matriz complexa hermitiana; na presença de acoplamento spin-órbita, o Hamiltoniano é simplético (3, Capítulo 2). Consideremos os ensembles com esta simetria. Se a transformação tem Jacobiano $J(\hat{M} \to \{\vec{\lambda}, \hat{O}\})$, reescreve-se a jpdf em função dos autovalores e \hat{O} tal que:

$$p(\hat{M})dM = p\left(M_{1,1}(\vec{\lambda}, \hat{O}), \cdots, M_{N,N}(\vec{\lambda}, \hat{O}) | J(\hat{M} \to \{\vec{\lambda}, \hat{O}\})\right) dO \prod_{i=1}^{N} \lambda_{i}.$$
 (2.1.1)

Aqui, ressalta-se que estamos interessados em distribuições de autovalores. Para calcular $p(\lambda_1, \lambda_2, ..., \lambda_N)$ devemos integrar os termos à direita da equação 2.1.1 sobre o subespaço $V_N(\mathbb{S}^N)$, o que nem sempre é fácil ou possível. Para garantir integrabilidade, tomaremos ensembles de matrizes aleatórias onde o jpdf de suas entradas pode ser escrito exclusivamente como função dos autovalores, ou seja

$$p(\lambda_1, \lambda_2, \dots, \lambda_N, \hat{O}) \equiv p\left(M_{1,1}(\vec{\lambda}), \dots, M_{N,N}(\vec{\lambda}) | J(\hat{M} \to {\{\vec{\lambda}\}})\right).$$

Ensembles com esta propriedade são denominados invariantes (por rotação). Considere que \hat{U} é ortogonal, unitária ou simplética respectivamente quando $\mathbb{S} = \mathbb{R}, \mathbb{C}, \mathbb{H}$. A escolha de ensemble implica que quaisquer duas matrizes \hat{M}, \hat{M}' que satisfaçam a relação de equivalência $\hat{M} = \hat{U}\hat{M}'\hat{U}^{-1}$ - de mesmos autovalores - tem mesma probabilidade. Considere o teorema (4, Capítulo 3).

Teorema 2.1.1 Tome $\hat{M} \in M_{\mathbb{R}}(N), M_{\mathbb{C}}(N), M_{\mathbb{H}}(N)$ simétrica, hermitiana ou autodual, respectivamente. Se \hat{M} tem jpdf da forma $\phi(\hat{M})$, invariante sobre transformações de

similaridade ortogonal, a jpdf dos N autovalores ordenados de \hat{M} , $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$, é

$$C_{N,\beta}^{(ord)}\phi(\hat{D})\prod_{i< j}(\lambda_i - \lambda_j)^{\beta}$$

com $C_{N,\beta}^{(ord)}$ constante e $\beta = 1, 2, 4$ correspondente à $\hat{M} \in M_{\mathbb{R}}(N), M_{\mathbb{C}}(N), M_{\mathbb{H}}(N)$, respectivamente.

Logo, desde que tomemos um ensemble invariante, podemos reescrever a distribuição em função dos autovalores pelo Teorema 2.1.1. Vale ainda observar que, pelo Lema de Weyl, uma jpdf invariante pode ser expressa totalmente por $p(\hat{M}) = \phi\left(\text{Tr}(F(M))\right)$ com F função polinomial. Ou seja, se unirmos os resultados anteriores, podemos escrever, para ensembles que satisfaçam as condições que

$$p_{ord}(\lambda_1, \lambda_2, \dots, \lambda_N) = C_{N,\beta}^{(ord)} \phi\left(\sum_{i=1}^{N} F(\lambda_i)\right) \prod_{i < j} (\lambda_i - \lambda_j)^{\beta}.$$
 (2.1.2)

Note que, diferentemente da medida de matrizes com todas entradas independentes, a simetrização causa que autovalores destas matrizes apresentem repulsão, que pode ser vista no produtório de 2.1.2. Esta ideia naturaliza a analogia da Seção 2.3.

2.2 Ensembles Gaussianos

Dentre os muitos ensembles em RMT, os Gaussianos são notórios. São eles o Gaussian Orthogonal Ensemble (GOE) ($\beta=1$), Gaussian Unitary Ensemble (GUE) ($\beta=2$) e Gaussian Sympletic Ensemble (GSE) ($\beta=4$). Notemos primeiramente que o nome é relacionado à escolha de S. Mais explicitamente, o nome é dado em relação à se \hat{O} , tal que $\hat{M}=\hat{O}\hat{D}\hat{O}^*$, é ortogonal, unitário ou simplético. É natural então pensar nos ensembles GOE, GUE e GSE como matrizes $\hat{M}\in\mathcal{M}_{\mathbb{S}}(N)$ onde

$$\mathcal{M}_{\mathbb{S}}(N) \ni M_{i,j} \sim \begin{cases} \mathcal{N}_{\mathbb{S}}(0,1/2) & \text{ para } i \neq j, \\ \mathcal{N}_{\mathbb{S}}(0,1) & \text{ para } i = j. \end{cases}$$

Os três ensembles gaussianos compartilham de uma propriedade exclusiva - são os únicos ensembles com entradas independentes e, simultaneamente, jpdf rotacionalmente invariante. Tomemos, por simplicidade, $\hat{G} \in \mathcal{M}_{\mathbb{R}}(N)$, matriz real simétrica, do GOE. Para esta, sabendo as entradas independentes, podemos escrever

$$p(\hat{G}) = \prod_{i=1}^{N} \frac{\exp\left\{\frac{G_{i,i}^{2}}{2}\right\}}{\sqrt{2\pi}} \prod_{i \le i} \frac{\exp\left\{G_{i,i}^{2}\right\}}{\sqrt{\pi}} = 2^{-N/2} \pi^{-N(N+1)/4} \exp\left\{-\frac{1}{2} \operatorname{Tr}\left\{G^{2}\right\}\right\}.$$

Note que essa jpdf satisfaz as condições do Teorema 2.1.1 e, especialmente, é da forma que exige o Lema de Weyl, logo, pela Equação 2.1.2,

$$p_{ord}^G(\lambda_1, \lambda_2, \dots, \lambda_N) = \frac{1}{Z_{N,\beta=1}^{(ord)}} \exp\left\{-\frac{1}{2} \sum_{i=1}^N \lambda_i^2\right\} \prod_{i < j} (\lambda_i - \lambda_j).$$

De forma análoga, podemos deduzir mais geralmente para $\beta = 1, 2, 4$ que

$$p(\lambda_1, \lambda_2, \dots, \lambda_N) = \frac{1}{N! Z_{N,\beta}^{(ord)}} \exp\left\{-\left(\sum_{i=1}^N \frac{\lambda_i^2}{2} - \sum_{i < j} \log|\lambda_i - \lambda_j|^\beta\right)\right\},$$

$$= \frac{1}{Z_{N,\beta}} e^{-\beta_N \mathcal{H}_N(\vec{\lambda})},$$
(2.2.1)

onde $Z_{N,\beta}$ é função de partição canônica para autovalores desordenados*, normalizante da expressão 2.2.1. O fator $\beta_N = \beta N^2$ é pensado como a temperatura inversa. Definimos ainda o Hamiltoniano

$$\mathcal{H}_N(\vec{\lambda}) = \frac{1}{N} \sum_{i=1}^N \frac{\lambda_i^2}{2} + \frac{1}{N^2} \sum_{i < j} \log \frac{1}{|\lambda_i - \lambda_j|}, \quad \lambda_i \mapsto \lambda_i \sqrt{\beta N}.$$

Onde é aplicado a devida escala na magnitude dos autovalores.

2.3 Gases de Coulomb

Sob as devidas condições, o Gás de Coulomb p_N (5) é medida de probabilidade de Boltzmann-Gibbs dada em $(R^d)^N$. A medida p_N modela um gás interagente de partículas indistinguíveis sob potencial externo nas posições $x_1, x_2, \ldots, x_N \in \mathbb{S}$ de dimensão d em \mathbb{R}^n ambient space. A medida é dada por

$$dp_N(x_1, x_2, \dots, x_N) = \frac{e^{-\beta N^2 \mathcal{H}_N(x_1, x_2, \dots, x_N)}}{Z_{N,\beta}} dx_1 dx_2 \dots dx_N,$$
 (2.3.1)

onde

$$\mathcal{H}_N(\vec{x}) = \frac{1}{N} \sum_{i=1}^N V(x) + \frac{1}{2N^2} \sum_{i \neq j} g(x_i - x_j)$$

é usualmente chamado hamiltoniano[†] ou energia do sistema. V: $\mathbb{S} \mapsto \mathbb{R}$ é potencial externo e g: $\mathbb{S} \mapsto (-\infty, \infty]$ núcleo de interação coulombiana solução da equação de Poisson dada por $-\nabla g(\vec{x}) = c_n \delta_0$. Além disso, βN^2 é chamado temperatura inversa. Assumiremos, para que valha a definição 2.3.1, que V é tal que a constante de normalização (função partição) $Z_{N,\beta} < \infty \ \forall \ N$ e o suporte da medida é compacto.

Se lembramos da expressão 2.2.1, perceberemos que, para o devido V: $\mathbb{R} \to \mathbb{R}$, podemos tomar d=1 e n=2 para recuperar a medida dos ensembles gaussianos

$$p_N(\vec{x}) = \frac{e^{-\beta_N \mathcal{H}_N(\vec{x})}}{Z_{N,\beta}}, \quad \mathcal{H}_N(\vec{x}) = \frac{1}{N} \sum_{i=1}^N V(x_i) + \frac{1}{N^2} \sum_{i < j} \log \frac{1}{|x_i - x_j|}.$$
 (2.3.2)

Estamos tratando de partículas no plano confinadas à uma reta neste caso. Esta medida aceita uma extensão natural para um potencial admissível arbitrário. Isso, junto à devida escolha de n e d adequados, leva à medida de outros ensembles de matrizes.

^{*} Usa-se do fator de contagem de Boltzmann para escrever $Z_{N,\beta} = N! Z_{N,\beta}^{(ord)}$.

Note que p_N é um modelo de interações estáticas e não há campos magnéticos considerados.

2.4 Medidas de Equilíbrio

O conjunto de pontos no espaço de fase ou ainda, os microestados, determinam um ensemble estatístico. De mesma forma, um conjunto de matrizes determina um ensemble em RMT. Podemos relacionar o conjunto de microestados dos autovalores $\{\vec{\lambda}\}$ com as configurações do sistema de N partículas descrito na Seção 2.3. Notando que tratamos do ensemble canônico, um argumento termodinâmico nos indica então que devemos minimizar a energia livre $E_{N,\beta}^V \propto \log Z_{N,\beta}$.

Consideraremos V sob condições tais que seja denominado um potencial admissível (5). Com isso, se $\mu_V(\vec{\lambda})$ é medida de probabilidade no espaço das possíveis configurações de autovalores, $Z_{N,\beta}$ será finita e existirá $\mu_V^* = \arg\inf \mathcal{H}_N(\vec{\lambda})$ medida de equilíbrio única no limite termodinâmico $N \to \infty$. Para determinar a medida de equilíbrio de 2.3.2 (3), queremos satisfazer o sistema de equações

$$\frac{\partial \mathcal{H}}{\partial \lambda_i} = 0 \implies V'(\lambda_i) = \frac{1}{N} \sum_{1=j \neq i}^{N} \frac{1}{\lambda_i - \lambda_j} \quad \text{para } i = 1, \dots, N.$$
 (2.4.1)

Usaremos o denominado resolvent. Considere a função complexa

$$G_N(z) = \frac{1}{N} \operatorname{Tr} \left\{ \left(z \mathbb{1} - \hat{M} \right)^{-1} \right\} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z - \lambda_i},$$

onde \hat{M} é matriz aleatória com autovalores $\{\lambda_1, \lambda_2, \dots, \lambda_N\}$. Note que $G_N(z)$ é uma função complexa aleatória com polos em λ_i . Não trivialmente, podemos reescrever 2.4.1 como

$$V'(z)G_N(z) - \Pi_N(z) = \frac{G_N^2(z)}{2} + \frac{G_N'(z)}{2N},$$

onde

$$\Pi_N(z) = \frac{1}{N} \sum_{i=1}^N \frac{V'(z) - V'(\lambda_i)}{z - \lambda_i}$$

é um polinômio de grau deg V'(z) - 1 = k - 1. Resolver explicitamente para N constante pode não ser simples ou mesmo possível. Em geral, tomaremos a assintótica $N \to \infty$ de $G_N(z)$, nesse limite temos a transformada de Stieltjes[‡]

$$S^{\mu_V}(z) = \int \frac{\mu_V^*(\lambda)}{z - \lambda} d\lambda = V'(z) \pm \sqrt{V'(z)^2 - 2\Pi_\infty(z)}.$$
 (2.4.2)

com

$$\Pi_{\infty}(z) = \int \frac{V'(z) - V'(\lambda)}{z - \lambda} \mu_V^*(\lambda) d\lambda.$$

Como consequência da fórmula de Sokhotski-Plemeji, é enunciado o resultado

$$\mu_V^*(x) = \frac{1}{2\pi i} \left(S_+^{\mu_V} - S_-^{\mu_V} \right) = \frac{1}{\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} S_+^{\mu_V}(x + i\epsilon). \tag{2.4.3}$$

Em geral, restaria para cada potencial, balancear o sistema de k+2 equações dada por

$$(S^{\mu_V} - V')^2 = (V')^2 - 2\Pi_{\infty}.$$

[‡] Também chamada transformada de Cauchy.

2.5 Potenciais notáveis

O desenvolvimento feito na seção 2.4 é suficiente para resolver os seguintes casos exemplificados, salvo detalhes. Retome a medida 2.3.2 e considere primeiramente o potencial

$$V(x) = \frac{x^2}{2}.$$

Neste caso, teremos que

$$\operatorname{supp} \mu_V^*(x) = [-\sqrt{2}, \sqrt{2}], \quad \mu_V^*(x) = \frac{1}{\pi} \sqrt{2 - x^2}. \tag{2.5.1}$$

Esse resultado é bem conhecido e a medida encontrada é denominada Semi-Círculo de Wigner. Especialmente é medida de equilíbrio para os ensembles gaussianos e vale para qualquer β . A diferença é notada somente para N suficientemente pequeno.

Agora, considere o potencial

$$V(x) = \frac{x^4}{4} + t\frac{x^2}{2}.$$

Aqui observaremos, a depender de t, pela primeira vez, a separação do suporte de μ_V^* . Teremos um ponto crítico em t = -2, onde, com t < -2, este se separa do intervalo $[-b_t, b_t]$ para $[-b_t, -a_t] \cup [a_t, b_t]$. Considere a medida nos dois casos

•
$$t \ge -2$$

$$\sup \mu_V^*(x) = [-b_t, b_t], \quad \mu_V^*(x) = \frac{1}{2\pi} (x^2 + c_t^2) \sqrt{b_t^2 - x^2}, \qquad (2.5.2)$$

$$\operatorname{com} c_t^2 := \frac{1}{2} b_t^2 + t := \frac{1}{3} (2t + \sqrt{t^2 + 12}).$$

• t < -2

$$\operatorname{supp} \mu_V^*(x) = [-b_t, -a_t] \cup [a_t, b_t], \quad \mu_V^*(x) = \frac{1}{2\pi} |x| \sqrt{(x^2 - a_t^2)(b_t^2 - x^2)}, \quad (2.5.3)$$

$$\operatorname{com} a_t := \sqrt{-2 - t}, b_t := \sqrt{2 - t}.$$

Por último, tome

$$V(x) = tx^{2m}.$$

Com o mesmo processo, apesar de mais geral, determinamos sua medida

$$\operatorname{supp} \mu_V^*(x) = [-a, a], \quad \mu_V^*(x) = \frac{mt}{\pi} \sqrt{a^2 - x^2} \, h_1(x), \tag{2.5.4}$$

com

$$a := \left(mt \prod_{l=1}^{m} \frac{2l-1}{2l} \right) \quad \text{e} \quad h_1(x) = x^{2m-2} + \sum_{j=1}^{m-1} x^{2m-2-2j} a^{2j} \prod_{l=1}^{j} \frac{2l-1}{2l}.$$

Essas medidas de equilíbrio nos servirão no Capítulo 4 quando quisermos conferir o bom comportamento das simulações implementadas.

3 SIMULAÇÕES E ALGORITMOS

A medida μ de Boltzmann-Gibbs descreve o denominado ensemble canônico. Médias sobre suas configurações, microestados, são usadas para inferir informações macroscópicas do sistema. Sistemas dinâmicos que amostrem da medida μ são denominados termostatos e são notoriamente difíceis de se construir ergoticamente com processos dinâmicos determinísticos, portanto, uma teoria de equações diferenciais estocásticas foi desenvolvida. Usualmente, para o ensemble canônico, uma escolha natural de processo é a denominada Langevin Dynamics (6, Capítulo 6), especialmente sua versão cinética. Muitas vezes as equações usadas não são diretamente integráveis e, por isso, se recorre a métodos numéricos. O caso cinético pode ser separado em duas dinâmicas. Para a integração da primeira, chamada Hamiltoniana, utilizamos o esquema de Verlet. Para a segunda parte, denominada flutuação-dissipação, resolve-se analiticamente por se tratar de processo de Ornstein-Uhlenbeck de variância explícita. Apesar das qualidades dos métodos citados, a discretização pode introduzir instabilidade numérica e, para amenizar seus efeitos, introduzse um passo de Metropolis (6, Apêndice C). As escolhas supracitadas são descritas em (7) e é denominada Langevin Monte Carlo.

3.1 Dinâmica de Langevin Monte Carlo

Nosso objetivo com a simulação é determinar a esperança de uma função de interesse $f(\vec{q})$

$$\langle f \rangle \approx \frac{1}{n} \sum_{i=0}^{n-1} f(\vec{q_i}),$$

onde $\vec{q_i}$ são obtidos por meio da simulação com dada distribuição de Gibbs-Boltzmann. Para fazer o modelo ergótico, ou seja, garantir que a dinâmica (e nossas amostras) não esteja restrita à um subconjunto do espaço de fase, tomaremos uma dinâmica, um termostato, estocástica. Isso usualmente garante que o sistema convirja para sua medida invariante (única). Um esquema comumente utilizado é o da dinâmica de Langevin*.

Denote q, com $q \in \mathbb{R}^d$ posição generalizada associada às N partículas. Poderíamos enunciar a seguinte equação diferencial para a dinâmica

$$dq_t = -\alpha_N \nabla H_N(q_t) dt + \sqrt{2 \frac{\gamma_N \alpha_N}{\beta_N}} dW_t$$
 (3.1.1)

onde $(W_t)_{t>0}$ é processo de Wiener, $\gamma_N > 0$ é constante de atrito e α_N é escala temporal. Isso seria suficiente e é chamado *Overdamped Langevin*, contudo, tomaremos sua versão cinética. Usaremos q como variável de interesse e p, com $p \in \mathbb{R}^d$ variável de momento generalizado,

^{*} Poderíamos ter explorado quaisquer outras dinâmicas similares tais como as dinâmicas de Dissipative Particle (8) ou Nose-Hoover (9).

para flexibilizar a dinâmica. Considere $U_N \colon \mathbb{R}^d \to \mathbb{R}$ energia cinética generalizada tal que $e^{-\beta_N U_N}$ seja lebesgue integrável. Para uma energia da forma $E(q,p) = \mathcal{H}_N(q) + U_N(p)$, escreve-se (10) a dinâmica de Langevin para o processo de difusão em $\mathbb{R}^{dN} \times \mathbb{R}^{dN}$ como a solução para a equação estocástica

$$\begin{cases} dq_t = \alpha_N \nabla U_N(p_t) dt, \\ dp_t = -\alpha_N \nabla \mathcal{H}_N(q_t) dt - \gamma_N \alpha_N \nabla U_N(p_t) dt + \sqrt{2 \frac{\gamma_N \alpha_N}{\beta_N}} dB_t. \end{cases}$$
(3.1.2)

onde β_N , temperatura inversa e $\mathcal H$ são como em 2.3.2. Essa dinâmica admite o gerador infinitesimal

$$\mathcal{L} = \mathcal{L}_{\mathcal{H}} + \mathcal{L}_{U},$$

$$\mathcal{L}_{\mathcal{H}} = -\alpha_{N} \nabla \mathcal{H}_{N}(q) \cdot \nabla_{p} + \alpha_{N} \nabla U_{N}(p) \cdot \nabla_{q}, \quad \mathcal{L}_{U} = \frac{\gamma_{N} \alpha_{N}}{\beta_{N}} \Delta_{p} - \gamma_{N} \alpha_{N} \nabla U_{N}(p) \cdot \nabla_{p}.$$

Denomina-se $\mathcal{L}_{\mathcal{H}}$ a parte Hamiltoniana e \mathcal{L}_{U} a parte de flutuação-dissipação. Tomaremos $\mathrm{U}_N(p) = \frac{1}{2}|p|^2$ tal que $\mathrm{U}_N(p)$ é energia cinética usual. Além disso, $(B_t)_{t>0}$ é processo browniano. Para simular o processo (p_t,q_t) integramos 3.1.2, contudo, sabemos que isso pode não ser possível analiticamente, o que nos leva a recorrer a métodos numéricos para amostragem.

3.2 Integração Numérica

Para integrar \mathcal{L} , opera-se separadamente sobre $\mathcal{L}_{\mathcal{H}}$ e \mathcal{L}_{U} . A dinâmica hamiltoniana é reversível, o que é importante no algoritmo para garantir que mantém-se a medida invariante. Um esquema ter invariância de \mathcal{H} significa que, idealmente, a trajetória será em uma hiper-superfície de constante densidade de probabilidade. Ainda mais, a dinâmica preserva o volume do espaço de fase, de forma que não precisamos calcular o jacobiano da matriz que define a transformação da dinâmica. Essa propriedade pode ser mantida na discretização quando utilizamos do método de Verlet (7)(6, Capítulo 2). A dinâmica deveria também manter o Hamiltoniano constante, contudo, discretizada, podemos garantir somente que ele se mantenha quase constante. Para lidar com esse fato, discute-se a implementação de um passo de Metropolis na seção 3.3. Para $\Delta t > 0$, a partir do estado (q_k, p_k) , o esquema lê-se

$$\begin{cases}
\tilde{p}_{k+\frac{1}{2}} = \tilde{p}_k - \nabla \mathcal{H}_N(q_k) \alpha_N \frac{\Delta t}{2}, \\
\tilde{q}_{k+1} = q_k + \tilde{p}_{k+\frac{1}{2}} \alpha_N \Delta t, \\
\tilde{p}_{k+1} = \tilde{p}_{k+\frac{1}{2}} - \nabla \mathcal{H}_N(q_{k+1}) \alpha_N \frac{\Delta t}{2},
\end{cases}$$
(3.2.1)

onde (q_{k+1}, p_{k+1}) é estado seguinte da dinâmica. Um esquema análogo é possível para energias cinéticas generalizadas (10). Outros métodos tais quais *Euler-Maruyama* (EM) (6, Capítulo 7) poderiam ser utilizados para o mesmo fim. Nos métodos que temos interesse, o erro associado à discretização deve ir à zero quando Δt vai à zero. Para EM, o erro

por passo, local, é da ordem de $\mathcal{O}(\Delta t^2)$ e o erro final, global, $\mathcal{O}(\Delta t)$, Já para o esquema escolhido, temos erro local de $\mathcal{O}(\Delta t^3)$ e global de $\mathcal{O}(\Delta t^2)$. Essa diferença vem do fato da discretização usada ser reversível (11, Capítulo 5).

Nos resta integrar \mathcal{L}_{U} , o qual, para a energia cinética usual, consiste em um processo de Ornstein-Uhlenbeck de variância explícita, ou ainda,

$$dx_t = -\alpha_N x_t dt + \sigma dB_t,$$

onde $\alpha_N, \sigma > 0$ são parâmetros e B_t é processo browniano. Este processo também mantém a medida invariante. Note que, para $\alpha_N > 0$ somente substituiremos parcialmente o momento das variáveis e, se $\alpha_N, \gamma_N \to 0$ com $\alpha_N \gamma_N = 1$, retomaríamos a dinâmica de 3.1.1. Este processo não seria muito melhor, contudo, do que um Random Walk Metropolis (11, Capítulo 5) já que o momento seria completamente substituído. De qualquer forma, \mathcal{L}_U pode ser integrado a partir da fórmula de Mehler para obter

$$\tilde{p}_k = \eta p_k + \sqrt{\frac{1 - \eta^2}{\beta_N}} G_k, \quad \eta = e^{-\gamma_N \alpha_N \Delta t}.$$
 (3.2.2)

Onde G_k é variável aleatória Gaussiana usual.

3.3 Passo de Metropolis

Muitos algoritmos utilizam de um passo de seleção para estabilizar sua dinâmica e otimizar a convergência e a amostragem da variável de interesse. Partindo dos esquemas da Seção 3.2, consideraremos que temos uma proposta \tilde{q}_{k+1} de estado. Para o método de Metropolis, um importante aspecto é manter a razão de rejeições baixa para não atrapalhar a eficiência do programa, o que influencia no tamanho do passo temporal decidido. Pode ser mostrado que Δt é ideal quando é da ordem de $N^{-\frac{1}{4}}$ (7), tornando o esquema interessante pela escalabilidade de N.

Propõe-se então que, a partir da proposição de estado \tilde{q}_{k+1} gerada pelo esquema anterior, se calcule a probabilidade

$$P_{k} = 1 \wedge \frac{K(\tilde{q}_{k+1}, q_{k}) e^{-\beta_{N} \mathcal{H}_{N}(\tilde{q}_{k+1})}}{K(q_{k}, \tilde{q}_{k+1}) e^{-\beta_{N} \mathcal{H}_{N}(q_{k})}},$$
(3.3.1)

onde o núcleo K(x,y) é simétrico (7) para o caso do algoritmo de Langevin Monte Carlo e, por se cancelar, não será discutido adiante. Atribua agora às novas coordenadas generalizadas (q_{k+1}, p_{k+1}) valor da seguinte forma

$$(q_{k+1}, p_{k+1}) = \begin{cases} (\tilde{q}_{k+1}, \tilde{p}_{k+1}) \text{ com probabilidade } P_k, \\ (q_k, -\tilde{p}_k) \text{ com probabilidade } 1 - P_k; \end{cases}$$
(3.3.2)

De forma a garantir a conservação da energia, que é uma preocupação na discretização da dinâmica, e otimizar a exploração do espaço de fase.

4 IMPLEMENTAÇÃO E RESULTADOS

Consideraremos N partículas em um subespaço S de dimensão d em \mathbb{R}^n de forma que nosso espaço de fase Ω será de dimensão Nd. O campo externo é $V: S \mapsto \mathbb{R}$ e o núcleo de interação entre as partículas é função $W: S \mapsto (-\infty, \infty]$. Reunindo os resultados do Capítulo 3 sob essas condições, temos o algoritmo, descrito em (7), completo. Dada uma condição inicial (q_k, p_k) , vetores de posição e velocidade generalizadas, para cada $k \geq 0$, realizamos os seguintes passos

1. Baseado em 3.2.2, atualize a \tilde{p}_k com

$$\tilde{p}_k = \eta p_k + \sqrt{\frac{1 - \eta^2}{\beta_N}} G_k, \ \eta = e^{-\gamma_N \alpha_N \Delta t}; \tag{4.0.1}$$

2. Utilizando do esquema de 3.2.1, calcule os termos

$$\begin{cases}
\tilde{p}_{k+\frac{1}{2}} = \tilde{p}_k - \nabla \mathcal{H}_N(q_k)\alpha_N \frac{\Delta t}{2}, \\
\tilde{q}_{k+1} = q_k + \tilde{p}_{k+\frac{1}{2}}\alpha_N \Delta t, \\
\tilde{p}_{k+1} = \tilde{p}_{k+\frac{1}{2}} - \nabla \mathcal{H}_N(q_{k+1})\alpha_N \frac{\Delta t}{2};
\end{cases} (4.0.2)$$

3. Pela definição 3.3.1, tome

$$P_k = 1 \wedge \exp\{-\beta_N \left(\mathcal{H}_N(\tilde{q}_{k+1}) - \mathcal{H}_N(q_k) + U_N(\tilde{q}_{k+1}) - U_N(q_k)\right)\}; \tag{4.0.3}$$

4. Defina, a partir de 3.3.2,

$$(q_{k+1}, p_{k+1}) = \begin{cases} (\tilde{q}_{k+1}, \tilde{p}_{k+1}) \text{ com probabilidade } P_k, \\ (q_k, -\tilde{p}_k) \text{ com probabilidade } 1 - P_k; \end{cases}$$

$$(4.0.4)$$

4.1 A implementação

Tomaremos o subespaço $\mathbb{S}=\mathbb{R}^d$ com d=1,2. Consideraremos um núcleo de interação W=g coulombiano em n=2. Por isso, retomamos medida da forma 2.3.1 usual de gases de coulomb. A esquemática da implementação se encontra na Figura 1. Podemos entender melhor a relação entre as sub-rotinas e funções em referência à Tabela 1.

Alguns detalhes são importantes de notar. O gerador de variáveis aleatórias gaussianas, necessário em 4.0.1 foi implementado utilizando do algoritmo de Box-Muller. Além disso, o ajuste de variáveis é notoriamente um dos aspectos complicados do algoritmo implementado. Precisamos de uma holística par ajustar Δt , α_N e γ_N . No escopo deste programa, Δt e α_N desempenham o mesmo papel e, por isso, toma-se $\alpha_N = 1$ e varia-se Δt .

Figura 1 – Implementação do algoritmo *Langevin Monte Carlo* (LMC). Setas sólidas indicam o fluxo do programa. Setas tracejadas indicam chamadas de funções dentro do bloco. A descrição das funções se encontra na Tabela 1.

Nome	Descrição
Init	Modifica p_k vetor $[N \times m]$, global, uniforme no cubo em R^d e q_k, G_H ,
	vetores $[N \times m]$, globais, nulos.
L2-OrnsUhlen	Modifica \tilde{p}_k , vetor $[N \times m]$, global, por \mathcal{L}_U segundo 4.0.1.
L1-Verlet	Modifica $\tilde{p}_{k_1}, \tilde{q}_{k_1}$ vetores $[N \times m]$, globais, por $\mathcal{L}_{\mathcal{H}}$ segundo 4.0.2.
GradH	Modifica G_H , vetor $[N \times m]$, global, gradiente do Hamiltoniano.
GradW	Modifica G_{W_i} , escalar, global, gradiente de W núcleo de interação.
GradV	Modifica G_{V_i} , escalar, global, gradiente de V potencial.
ProbLog	Retorna P_K , escalar, local, probabilidade de aceite de 4.0.3.
Н	Retorna H , escalar, local, hamiltoniano em k .
V	Retorna V_i , escalar, local, potencial de q_i .
W	Retorna $W_{i,j}$, escalar, local, interação entre q_i, q_j
Metropolis	Modifica p_k, q_k , vetores $[N \times m]$, globais por 4.0.4.
Gauss	Retorna variáveis gaussianas, vetor $[1 \times m]$, local por Box-Muller.

Tabela 1 – Descrição das funções e subrotinas utilizadas na implementação do programa.

Seguindo a recomendação de (11, Capítulo 5), tomaremos $\Delta t = \Delta \tilde{t} + X$, onde X é variável aleatória de média 0 e variância σ^2 pequena. Essa escolha ajuda a acelerar a convergência e melhor garante ergoticidade. Lembra-se ainda que $\Delta \tilde{t}$ é ideal na ordem de $N^{-\frac{1}{4}}$, isto é, é pequeno o suficiente para manter a razão de aceite do passo de Metropolis alta e grande o suficiente para não desacelerar a convergência do algoritmo. Já γ_N definirá o quanto substituiremos o momento anterior das partículas será relevante em relação ao movimento browniano. Aqui, sabemos que tornar η próximo demais de 0, ou de 1 para todos efeitos, desacelera intensamente a convergência. Faremos, em geral, com que $\gamma_N \alpha_N \Delta t \approx 0.5$.

4.2 Resultados e Discussão

Simular gases de coulomb é especialmente interessante quando não há modelos de matrizes conhecidos, disponíveis ou simples para o \mathcal{H} definido. Podemos, com a simulação de tais gases, calcular a média da função densidade das partículas, ou autovalores. Alternativamente, quando há modelos disponíveis em matrizes aleatórias, essa medida poderia ser tirada diretamente do calculo de seus autovalores.

A família de ensembles gaussianos são modelos que mostramos ser bem representados como matrizes na Seção 2.2. Retorne os resultados da Seção 2.5. Tomar a medida dos ensembles gaussianos é o equivalente, na simulação descrita, a tomar

$$d = 1; \quad n = 2; \quad V(x) = \frac{|x|^2}{2}; \quad W(x) = g(x) = \log|x|; \quad \beta_N = \beta N^2; \quad \beta = 1, 2, 4. \quad (4.2.1)$$

O resultado da simulação para a configuração 4.2.1 é apresentado na Figura 2. Apresentamos por contraste, na coluna da esquerda, os resultados para N=10, da densidade gerada pela simulação equivalente com matrizes e pelos gases para os três modelos ($\beta=1,2,4$). Na coluna central, representa-se a comparação da medida da simulação com o Semi-Círculo de Wigner, configuração de equilíbrio para os três modelos quando N é grande o suficiente. Note que os valores foram escalados por $\sqrt{2\beta}$. Finalmente, na coluna da direita apresentamos a distribuição do maior autovalor λ_{max} . Um resultado importante (12) enuncia que existem $z_N^{(\beta)}$ e $s_N^{(\beta)}$ tais que

$$\lim_{N \to \infty} \mathbb{P}_{\beta, N, V} \left(\frac{\lambda_{max} - z_N^{(\beta)}}{s_N^{(\beta)}} \le x \right) = F_{\beta}(x),$$

onde $F_{\beta}(x)$ é a densidade acumulada de Tracy-Widow. Mostraremos a concordância desse resultado com a simulação na coluna da direita. Observa-se que os dois modelos à esquerda concordam bem na estimativa da medida para o N usado. No centro, é possível notar que a medida de equilíbrio esperada, o Semi-Círculo de Wigner, é aproximada rapidamente pelo aumento de partículas no sistema. A distribuição do autovalor máximo é mais delicada, contudo, ainda apodemos ver boa correspondência com o resultado esperado pela Tracy-Widow.

Podemos retomar também as descrições dos potenciais mônico em 2.5.4 e os dois regimes do potencial quártico, 2.5.2 e 2.5.3. Respectivamente, estes modelos equivalem a tomar na simulação os parâmetros

$$d = 1; \quad n = 2; \quad V(x) = t|x|^{2m}; \quad W(x) = g(x) = \log|x|; \quad \beta_N = \beta N^2; \quad \beta = 2.$$
 (4.2.2)

$$d = 1; \quad n = 2; \quad V(x) = \frac{|x|^4}{4} + t\frac{|x|^2}{2}; \quad W(x) = g(x) = \log|x|; \quad \beta_N = \beta N^2; \quad \beta = 2. \quad (4.2.3)$$

O caso mônico se reduz ao gaussiano se m=1. Os resultados para ambos os potenciais estão explicitados na Figura 3 para alguns parâmetros interessantes de t e m.

Figura 2 – Densidade para ensembles gaussianos, 4.2.1. Tomou-se $\Delta t = 0.5$ e $nsteps = 5 \cdot 10^6$ passos, registrando a cada 1000 iterações a partir de nsteps/5. À esquerda da figura, em azul, a densidade da amostragem de $4 \cdot 10^3$ matrizes do ensemble. No centro, o Semi-Círculo de Wigner, medida de equilíbrio. Na direita, apresenta-se a densidade de λ_{max} normalizado e sua medida esperada.

Figura 3 – Potencial Quártico 4.2.3 e Mônico 4.2.2, respectivamente à esquerda e direita. Tomou-se $\Delta t = 0.1$, N = 100, e $nsteps = 5 \cdot 10^6$ passos. Registra-se a cada 1000 iterações a partir de nsteps/5. No Quártico, simula-se t = -1, -2, -3. No Mônico fixa-se t = 1 e simula-se m = 1, 3, 5.

Novamente as medidas experimentais parecem convergir para a medida teórica enunciada em todas as configurações testadas. Contudo, isso é explorado e pode ser observado igualmente, com exceção do Mônico, em (7). Em uma situação recentemente explorada em (13), considere a seguinte configuração de potencial e autovalores complexos

 $(\mathbb{R}^d = \mathbb{R}^2)$ e a representação das medidas simuladas para alguns valores de interesse de t,a na Figura 4,

$$d=2; n=2; V(z)=|z|^{2a}-\operatorname{Re}\{tz^a\}; W(x)=g(x)=\log|x|; \beta_N=\beta N^2; \beta=2. (4.2.4)$$

Figura 4 – Medidas referentes à configuração 4.2.4. Tomou-se $\Delta t = 0.5$ e $nsteps = 2 \cdot 10^6$ passos, registrando a cada 500 iterações a partir de nsteps/5.

É previsto para esse modelo uma transição de regime, uma separação da medida de equilíbrio, para $t_c \approx \sqrt{\frac{1}{a}}$ (13), o que pode ser observado na Figura 4 com algum detalhe. Outros fatores que corroboram o bom comportamento do modelo são que medida é uniforme no disco quando (a,t)=(1,0) e se concentra no bordo quando incrementa-se a, fatos também previstos. Esse exemplo demonstra que é possível, sem muito esforço, replicar a medida, e principalmente o suporte, para potenciais mais complexos estudados em publicações recentes no tema e pode ser estendido para outros estudos, como para o potencial discutido em (14).

Por fim, no Capítulo 1 é notado que os modelos gaussianos são os únicos em RMT com invariância por rotação e independência das entradas simultaneamente. Gerar matrizes de outros modelos invariantes dependeria de ser capaz de construir entradas correlacionadas devidamente ja que, se tratando de ensembles invariantes, ou seja, de medida igual para quaisquer M, M' tais que $\hat{M} = \hat{U}\hat{M}'\hat{U}^{-1}$, podemos simular \hat{U} autovetores uniformemente do espaço correspondente. Isso pois sabemos do teorema espectral que, para as matrizes tomadas, vale a decomposição $\hat{M} = \hat{U}\hat{D}\hat{U}^{-1}$. Para reconstruir uma elemento do ensemble de interesse nos resta replicar a medida de autovalores, \hat{D} . Isso, de forma interessante, pode ser feito pela simulação descrita de Gases de Coulomb, que replica a medida dos autovalores dos ensemble.

5 CONCLUSÃO

A Teoria de Matrizes Aleatórias é um ferramenta matemática extremamente versátil. Suas aplicações são extensas e diversas, cobrindo ambos sistemas físicos e matemáticos de grande relevância. Partindo da hipótese que autoenergias de sistemas complexos se comportam localmente como autovalores de matrizes aleatórias adequadas, permite-se a caracterização estatística do núcleo atômico ou ainda a determinação de propriedades físicas de metais. Em matemática, além das clássicas aplicações estatísticas dos modelos, mostra-se que matrizes aleatórias tem importante papel na determinação dos zeros da função de Riemann. Consolidada assim sua importância, a teoria se desenvolve rapidamente e tem chamado atenção da comunidade científica-matemática. Introduzimos neste trabalho as ideias de medida de matrizes aleatórias e ensembles, essenciais à RMT, e descrevemos os clássicos ensembles gaussianos, que julgamos exemplares para o entendimento dos resultados sobre medida nos autovalores e equilíbrio.

A analogia de Gases de Coulomb surge naturalmente quando se explicita a medida de matrizes de ensembles invariantes. Sua interpretação permite pensar na dinâmica dos autovalores como uma de partículas interagentes, da qual intuímos as ideias de minimização da energia livre para identificar o equilíbrio. Percebemos que muitas vezes métodos numéricos são necessários para a solução das equações de movimento estocásticas que descrevem a dinâmica das partículas modeladas. Apresentamos então os métodos de simulação numérica e discutimos as principais características do algoritmo implementado, denominado Langevin Monte Carlo.

Além disso, apresentamos os resultados, que dividimos, em propósito, em duas partes. Os primeiros resultados são de medidas de autovalores na reta, bem explorados an teoria e relativamente simples. Para estes, incluímos explicitamente no trabalho as soluções. Qualitativamente observa-se que os resultados tem boa concordância com a teoria, mesmo em distribuições mais delicadas, como a Tracy-Widow. Isso nos dá boa indicação do bom comportamento dos métodos e implementação utilizados. Com isso, apresentamos um dos resultados obtidos em um Gás de Coulomb em duas dimensões. Isso de refere à um potencial complexo e tem sido explorado com mais afinco apenas em teoria recente. Mesmo aqui, mostra-se que é possível replicar características de resultados apontados em trabalhos recentes e indica uma possível direção para exploração numérica da teoria.

Finalmente, vale dizer entendemos este estudo como uma descrição e validação de métodos conhecidos de simulação e matrizes aleatórias, ainda que atuais. Contudo, vê-se extensões da utilização do método para estudo numérico de importantes resultados com menos descrição teórica, o que, até onde sabemos, é menos explorado.

REFERÊNCIAS

- 1 MEHTA, M.; GAUDIN, M. On the density of eigenvalues of a random matriz. **Nuclear Physics**, v. 18, p. 420–427, 1960. ISSN 0029-5582.
- 2 DYSON, F. J. Statistical theory of the energy levels of complex systems. i. **Journal of Mathematical Physics**, v. 3, n. 1, p. 140–156, 01 1962. ISSN 0022-2488.
- 3 POTTERS, M.; BOUCHAUD, J. A First Course in Random matriz Theory: for Physicists, Engineers and Data Scientists. Cambridge, Inglaterra: Cambridge University Press, 2020. ISBN 9781108488082.
- 4 EDELMAN, A. Eigenvalues and Condition Numbers of Random Matrices. 1984. Tese (Doutorado) Massachusetts Institute of Technology, 1984.
- 5 CHAFAï, D.; HARDY, A.; MAïDA, M. Concentration for coulomb gases and coulomb transport inequalities. **Journal of Functional Analysis**, Elsevier BV, v. 275, n. 6, p. 1447–1483, sep 2018. ISSN 0022-1236.
- 6 LEIMKUHLER, B.; MATTHEWS, C. Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. Cham, Suiça: Springer International Publishing, 2015. (Interdisciplinary Applied Mathematics). ISBN 9783319163758.
- 7 CHAFAï, D.; FERRÉ, G. Simulating coulomb and log-gases with hybrid monte carlo algorithms. **Journal of Statistical Physics**, Springer Science and Business Media LLC, v. 174, n. 3, p. 692–714, nov 2018.
- 8 ESPAñOL, P.; WARREN, P. Statistical mechanics of dissipative particle dynamics. **Europhysics Letters**, v. 30, n. 4, p. 191, may 1995.
- 9 HOOVER, W. G. Canonical dynamics: Equilibrium phase-space distributions. **Phys. Rev.** A, American Physical Society, v. 31, p. 1695–1697, Mar 1985.
- 10 STOLTZ, G.; TRSTANOVA, Z. Langevin dynamics with general kinetic energies. **Multiscale Modeling & amp; Simulation**, Society for Industrial & Applied Mathematics (SIAM), v. 16, n. 2, p. 777–806, jan 2018. ISSN 1540-3467.
- 11 BROOKS, S. et al. Handbook of Markov Chain Monte Carlo. [S.l.: s.n.]: CRC Press, 2011. (ISSN). ISBN 9781420079425.
- 12 TRACY, C.; WIDOM, H. The distributions of random matrix theory and their applications. *In*: **New Trends in Mathematical Physics**. Dordrecht: Springer Netherlands, 1970. p. 753–765. ISBN 978-90-481-2809-9.
- 13 BALOGH, F.; GRAVA, T.; MERZI, D. Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane. 2016.
- 14 BLEHER, P.; SILVA, G. The mother body phase transition in the normal matrix model. 2016.