

Yuxin Zhang

Ph.D. Candidate

1997-09-24 **L**S2N, Centrale Nantes

• France

Google Scholar

@ yuxin.zhang@ls2n.fr

Yuxin-Zhang-Jasmine

digital C.V.

My research interest is in Biomedical Ultrasound imaging. I hold a firm belief in the future of digital healthcare!

Education

Skills & Languages

2024.11	LS2N, Centrale Nantes, France	US Tools	Field-II, K-Wave, MUST, Aria
2021.09	Ph.D. Candidate •	AI Tools	Pytorch, Tensorflow
	Medical Ultrasound Image Reconstruction with Deep Learning	Coding	Python, MATLAB
2021.06	Centrale Nantes, France	os	∆ Linux
2019.09	2^{nd} Year Master • Signal and Image Processing	Other Tools	Git, Conda, HPC, Latex
	1^{nd} Year Master • Industrial Engineering	A	English B2 (work), Chinese (native),
2019.06	Harbin Institute of Technology, China	Languages	French B2 (DELF Certificate)
2015.09	Bachelor's Degree • Civil Engineering		

</> Projects

- Ultrasound image reconstruction by solving an inverse problem using Denoising Diffusion Restoration Models.
 Innovative point: Using a neural network to represent the prior knowledge and suit different physical models.
 Presented at the Deep Generative Models Workshop of MICCAI 2023, Code Link, Proceeding Link, Arxiv Link
- > Ultrasound image despeckling by taking the variance of multiple diffusion samples. **Innovative point**: Based on the nature of multiplicative noise inherent to ultrasound, and the stochasticity of diffusion models, we proposed a new echogenicity map estimator. **Submitted** to the 32nd European Signal Processing Conference (EUSIPCO 2024). Arxiv Link(conf.), Arxiv Link(journal)
- > Multi-angle planar wave 3D ultrasound imaging with physics-informed implicit neural networks. (ongoing)
- > RF data decluttering using an optimized ADMIRE with hyperbolic regularization. (abstract link)
- ➤ Beamforming network enhancement by incorporating multiple regularization terms into the loss function. (code link)

Presentations

2024.03	Ultrasound Imaging based on the Variance of a Diffusion Restoration Model. IABM, Grenoble,		
	France. Poster, Photo		
2023.10	Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models.		
	DGM4MICCAI@MICCAI2023, Vancouver, Canada. Slides		
2023.06	Ultrasound Image Reconstruction with Deep Learning. ED_seminar, Vannes, France. Slides, Video		
2023.03	Ultrasound Image Reconstruction by Solving an Inverse Problem with Denoising Diffusion		
	Restoration Models. AiBy4 DAY, Nantes, France. Poster1, Poster2, Slides		

Awards & Certifications

- ➤ Outstanding Winner in the Mathematical Contest in Modeling (MCM 2018) (Certificate) (rate< 1%)
- ➤ First Prize in the Chinese Mathematics Competitions (CMC 2017) (Certificate) (rate< 8%)
- > First Prize in the Undergraduate Training Progress for Innovation & Entrepreneurship (2018) (Certificate)
- > Shenyang Eurasia Elite Mechanics Scholarship (Certificate)
- > TensorFlow Developer Certification, Completion Certification in AI Deep Learning Specialization

Other Activities

2022.06 | Gretsi Signal and Image Processing Summer School (Nice, France):, (Certificate)
2022.07 | Deep Learning for Medical Imaging Summer School (Montreal, Canada):, (Certificate)