Practical Deep Learning Assignment 1

Run as script:

usage: main.py [-h] [-task TASK] [-path PATH]

optional arguments:

- -h, --help show this help message and exit
- -task TASK Choose the task you want to run: task1 | task3 | task6 | task7
- -path PATH Insert the absolute/relative prefix path for folder that the data is lying

Implementation details:

- Software engineering abstraction:
 - All the components in the network including the network, implement Module abstract class with 3 abstract methods:
 - forward returns the output of the module.
 - <u>backward</u> returns the output of the module in the backpropagation (the derivative).
 - parameters returns the parameters of the module.

- Central classes:

- <u>Linear</u>: implements Module,
 - <u>constructor:</u> randomly init the multiplication matrix and the bias vector.
 - <u>forward:</u> implements the forward pass of a linear layer following the non-linear activation function.
 - <u>backward:</u> computes the gradient of the layer multiplied by external v, which is the derivative of a forward layer.
- NeuralNetwork: implements Module,
 - <u>constructor:</u> init a list of Linear layers as a default architecture of a neural network, possible to pass "use_arch=False" and use "add_layer" method.
 - forward: implements the forward pass of a the whole net.
 - <u>backward</u>: implements the backpropagation algorithm.
 - <u>parameters:</u> aggregates a reference for all the parameters in the network.

- SGDOptimizer:

- constructor: receive as an input the parameters to optimise.
- <u>update:</u> update the parameters by a given learning rate and gradients.
- optimize(f: NeuralNetwork, loss: Module, data, epochs=250, lr=1e-01, plot=False, dl: DataLoader = None, calc_acc=False): implements SGD optimisation method with a given neural network and a loss function.

<u>Task1:</u>
We checked our gradient test for one example.
Details:

- Data: one example with 4 dimensions [1,2,3,4], label 0.

<u>Task 3:</u>

We first checked our SGD implementation on one example (which expected to overfit after a few epochs) with the softmax objective.

Details:

- <u>Data</u>: one example with 4 dimensions [1,2,3,4], label 0.

- <u>Epochs</u>: 50

- Learning rate: 0.1

Next, we check this on real data:

Details:

- <u>Data</u>: GMM Data, 5 classes.

<u>Epochs</u>: 200<u>Learning rate</u>: 0.1

As expected, the softmax-objective didn't fit the data, because it has no non-linearity part.

Next, we check this on real data:

Details:

- <u>Data</u>: PeaksData Data, 5 classes.

- <u>Epochs</u>: 200

- Learning rate: 0.1

Task6:

In order to validate the Jacobian over network with 2 layers we checked our gradient test for one example.

Details:

- Data: one example with 4 dimensions [1,2,3,4], label 0.

<u>Task7:</u> We trained the whole network, architecture:

```
[Linear(in_dim=input_dim, out_dim=10, activation=Tanh()),
Linear(in_dim=10, out_dim=7, activation=Tanh()),
Linear(in_dim=7, out_dim=num_of_classes, activation=None)]
Loss = SoftmaxCrossEntropyLoss()
```

Details:

- Data: GMM Data, 5 classes.

Batch-Size: 64Epochs: 250Learning rate: 0.1

- Final Accuracy on Test: 98.57%

Details:

- Data: Swiss Roll Data, 2 classes.

Batch-Size: 64Epochs: 250Learning rate: 0.1

- Final Accuracy on Test: 100%

