

GT911

小尺寸 MID 5 点电容触控芯片

Rev.08 —— 2014 年 07 月 18 日

===== 免责声明 ======

本出版物中所述的器件应用信息及其他类似内容仅为您提供,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口 头、法定 或其他 形式 的声明或 担保,包括但 不限 于针 对其 使用情况、质量、性能、适销性 或特定用途的适用性的声明或 担保。GOODIX 对因这些信息及 使用这些信息 而引起的后果 不承担 任何责任。未经 GOODIX 书面 批准,不得 将GOODIX 的产品 用作 生命维持系统 中的 关键组件。在GOODIX 知识产权 保护下,不得暗中或以其他方式 转让任何许可 证。

目录

1.	-	
	产品特点	
	芯片原理图	
	管脚定义	
	传感器设计	
	5.1. 感应通道排布	
	5.2. 驱动通道排布	
	5.3. 传感 器设计参数要求	
	5.4. 触摸按键设计	9
6.	I ² C 通讯	10
	6.1. I ² C 通讯	10
	a) 数据传输	12
	b) 对 GT911 写操作	13
	c) 对 GT911 读操作	13
7.	HotKnot 模式	14
	7.1. 启动 HotKnot	14
	7.2. TP 间数据传输	14
	7.3. CPU 从 GT911 接收数据	14
8.	功能描述	18
	8.1. 工作模式	15
	a) Normal Mode	15
	b) Green Mode	16
	c) Gesture mode	16
	d) Sleep Mode	16
	e) Approach Mode	17
	f) Receive Mode	17

小尺寸 MID 5 点电容触控芯片

	!	g)	Send Mode	18
	8.2.	中国	断触发方式	18
	8.3.	睡	民模式	18
	8.4.	固化	七配置 功能	18
	8.5.	跳步	顷功能	18
	8.6.	自苕	动校准	19
	;	a)	初始化校 准	19
	1	b)	自动温漂补偿	19
9.	参考印	电路	图	20
10.	电气炸	寺性		21
	10.1.	札	及限电气参数	21
	10.2.	扌	t荐工作条件	21
	10.3.	A	AC 特性	21
	10.4.	С	OC 特性	22
11.	产品劸	討装		23
12.	版本讠	己录		24
12	时子 交元	<u></u>		25

1. 概述

GT911 是专为 7 ~8 设计的新一代 5 点电容触控方案 ,拥有 26 个驱动通道 和 14 个感应通道 ,以满足更高的 touch 精度要求。

GT911 可同时识别 5 个触摸点位的实时准确位置,移动轨迹及触摸面积。并可根据主控需要,读取相应点数的触摸信息。

2. 产品特点

- 2 内置电容检测电路 及高性能 MPU
 - ? 触摸扫描频率: 100Hz
 - ? 触摸点 坐标实时 输出
 - ? 统一软件版本适用于多种尺寸的电容屏
 - ? 单电源供电,内置 1.8V LDO
 - ? Flash 工艺制程,支持在线烧录
 - ? HotKnot 功能

2 电容屏传感器

- ? 检测通道:26(驱动通道)*14(感应通道)
- ? 电容屏尺寸范围:7~8"
- ? 支持 FPC 按键设计
- ? 同时支持 ITO 玻璃和 ITO Film
- ? Cover Lens 厚度支持:
 - 0.55mm 玻璃 2mm,0.5mm 亚克力 1.2mm (具体请参考 Sensor 设计 规范)
- ? 内置跳频功能,支持 OGS 全贴合

2 HotKnot

? 传输速度: 7.0Kbps(max)

? 数据帧最大容量: 128 byte

? 适用 sensor 类型: OGS/传统 GFF/GG/GF

2 环境适应性能

- ? 初始化自动校准
- ? 自动温漂补偿
- ? 工作温度: -40 ~+85 , 湿度: 95%RH
- ? 储存温度: -60 ~+125 , 湿度: 95%RH

2 通讯接口

- ? 标准 I²C 通讯接 口
- ? 从设备工作模式
- ? 支持 1.8V~3.3V 接口电平

2 响应时间

- ? Green mode: <48ms
- ? Sleep mode: <200ms
- ? Initialization: <200ms

2 电源电压:

- ? 单电源 供电: 2.8V~3.3V
- 2 电源纹波:
 - ? Vpp 50mV
- 2 封装: 52 pins , 6mm*6mm*0.8mm, QFN 0.4mm Pitch
- 2 应用开发支持工具
 - ? 触摸屏模组参数 侦测及配置参数 自动生成
 - ? 触摸屏模组性能综合测试工具
 - ? 模组量产测试工具
 - ? 主控软件开发参考驱动代码及文档指导

3. 芯片原理图

4. 管脚定义

管脚号.	名称	功能描述	备注
1~11	SEN3~SEN13	触摸模 拟信号输入	HotKnot 功能使用时同时 也做驱 动信号输出
12	AVDD28	模拟电源正	接 2.2uF 滤波电容
13	AVDD18		接 2.2uF 滤波电容
14	DVDD12		接 2.2uF 滤波电容
15	DGND	数字信号地	
16	INT	中断信号	
17	Sensor_OPT1	模组识 别口	
18	Sensor_OPT2	模组识 别口(备选)	需外部 下拉
19	I2C_SDA	I ² C 数据信号	
20	I2C_SCL	I ² C 时钟信号	
21	VDDIO	GPIO 电平控制	接 2.2uF 滤波电容 悬空:1.8V 接 AVDD:AVDD
22	/RSTB	系统 复位脚	需外部 10K 上拉,拉低复位
23~48	DRV25~DRV0	驱动信号输出	
49	AGND	模拟电源地	
50~52	SEN0~SEN2	触摸模 拟信号输入	HotKnot 功能使用时同时 也做驱 动信号输出

5. 传感器设计

5.1. 感应通道排布

SENS0~SENS13 是 14 个电容检测输入通道,直接与触摸屏模组的 14 个感应 ITO 通道相连。模组上感应 ITO 通道按照顺序或逆序依次连接至芯片的 SENS0 至 SENS13。若 ITO 通道少于芯片检测通道,请按照《通道选择器》来选择通道。

I 排布方式 示例:感应 ITO通道按 照顺序 接入芯片的SENS0 至SENS13。

5.2. 驱动通道排布

DRV0~DRV25 是 26 个电容检测驱动信号输出通道,直接与触摸屏模组的 26 个 ITO 驱动通道相连。驱动线请按照《通道选择器》来选择通道和排布通道,在确定排布方式后 ,需配置 GT911 芯片的相关寄存器来保证各驱动通道 的逻辑位置关系与物理位置关系一致,以使输出坐标与物理坐标匹配。

Sensor 设计的更细规则,请参考具体 layout 指南。

5.3. 传感器设计参数要求

参数	DITO极限值	SITO极限值
驱动通道 走线阻抗	3k	3k
驱动通道 阻抗	10k	10k
感应通道走线阻抗	10k	10k
感应通道 阻抗	40k	10k
节点电容	4pF	4pF

注:

- 1、 具体的 Sensor 设计,请务必参考 Goodix 的《Sensor 设计规范》。
- 2、 通道走线采用金属走线时,由于工艺控制等原因会导致部分走线被氧化,阻抗变大,导致各通道走线存在差异;当采用 ITO 材料走线时,虽然设计时会尽力通过长度、宽度匹配使得各通道走线一致,但还是会存在不同程度的差异。为保证整屏数据一致性和均匀性,需要控制走线阻抗符合上表要求。
- 3、 驱动走线与感应走线相邻且平行时,需在两者间插入地线,地线宽度参考《Sensor设计规范》,最小不得小于 0.2mm。

5.4. 触摸按键设计

GT911 支持 4 个触摸按键 , 实现方式有两种:

Sensor 扩展方式:由驱动通道作按键公共端,将一条驱动通道与4根感应形成4个按键。 作按键的驱动通道不可与屏体上驱动复用,但作按键的感应通道必须与屏体上复用;

FPC 设计方式 : 单独拿出一条驱动通道 与 4 条感应通道形成 4 个按键 , 4 条感应通道与屏体部分复用。FPC 的 sensor 图案需专门设计。

6. I2C 通讯

6.1. I²C 通讯

GT911 提供标准的 I^2 C 通讯接口 ,由 SCL 和 SDA 与主 CPU 进行通讯。在系统中 GT911 始终作为从设备,所有通讯都是由主 CPU 发起,建议通讯速度为 400Kbps 或以下。其 支持的 I^2 C 硬件电路支持时序如下:

测试条件 1:1.8V 通讯接口, 400Kbps 通讯速度,上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit
SCL low period	t _{lo}	1.3	-	us
SCL high period	t _{hi}	0.6	-	us
SCL setup time for START condition	t _{st1}	0.6	-	us
SCL setup time for STOP condition	t _{st3}	0.6	-	us
SCL hold time for START condition	t _{hd1}	0.6	-	us
SDA setup time	t _{st2}	0.1	-	us
SDA hold time	t _{hd2}	0	-	us

测试条件 2:3.3V 通讯接口, 400Kbps 通讯速度,上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit
SCL low period	t _{lo}	1.3	-	us
SCL high period	t _{hi}	0.6	-	us
SCL setup time for START condition	t st1	0.6	-	us
SCL setup time for STOP condition	t _{st3}	0.6	-	us
SCL hold time for START condition	t _{hd1}	0.6	-	us
SDA setup time	t _{st2}	0.1	-	us
SDA hold time	t _{hd2}	0	-	us

GT911 的 I^2 C 从设备地址有两组,分别为 0xBA/0xBB 和 0x28/0x29。 主控在上电初始化时控制 Reset 和 INT 口状态进行设定,设定方法及时序图如下:

上电时序图:

主控复位 GT911 时序图:

设定地址为 0x28/0x29 的时序:

设定地址为 OxBA/OxBB 的时序:

a) 数据传输

(以设备地址为 0xBA/0xBB 为例)

通讯总是由主 CPU 发起,有效的起始信号为:在 SCL 保持为 1 时,SDA 上发生由 1 到 0 "的跳变。地址信息或数据流均在起始信号之后传输。

所有连接在 I²C 总线上的从设备,都要检测总线上起始信号之后所发送的 8 位地址信息,并做出正确反应。在收到与自己相匹配的地址信息时,GT911 在第 9 个时钟周期,将 SDA 改为输出口,并置 f)",作为应答信号。若收到不与自己匹配的地址信息,即非 0XBA 或 0XBB,GT911 将保持闲置状态。

SDA 口上的数据按 9 个时钟周期串行 发送 9 位数据:8 位有效数据 +1 位接收方发 送的应答信号 ACK 或非应答信号 NACK。数据传输在 SCL 为 1 时有效。

当通讯完成时,由主 CPU 发送停止信号。停止信号是当 SCL 为 1 时, SDA 状态由 0 到 1 "的 的跳变。

b) 对 GT911 写操作

(以设备地址为 0xBA/0xBB 为例)

写操作时序图

上图为主 CPU 对 GT911 进行的写操作流程图。首先主 CPU 产生一个起始信号,然后发送地址信息及读写位信息 0 表示写操作:0XBA。

在收到应答后,主 CPU 发送寄存器的 16 位地址,随后是 8 位要写入到寄存器的数据内容。

GT911 寄存器的地址指针会在写操作后自动加 1,所以当主 CPU 需要对连续地址的寄存器进行写操作时,可以在一次写操作中连续写入。写操作完成,主 CPU 发送停止信号结束当前写操作。

c) 对 GT911 读操作

(以设备地址为 0xBA/0xBB 为例)

读操作时序图

上图为主 CPU 对 GT911 进行的读操作流程图。首先主 CPU 产生一个起始信号,然后发送设备地址信息及读写位信息 的 表示写操作:0XBA。

在收到应答后,主 CPU 发送首寄存器的 16 位地址信息,设置要读取的寄存器地址。在收到应答后,主 CPU 重新发送一次起始信号,发送读操作:0XBB。收到应答后,主 CPU 开始读取数据。

GT911 同样支持连续的读操作,默认为连续读取数据。主 CPU 在每收到一个 Byte 数据后需发送一个应答信号表示成功接收。在接收到所需的最后一个 Byte 数据后,主 CPU 发送 靠应答信号 NACK",然后再发送停止信号结束通讯。

7. HotKnot 模式

7.1. 启动 HotKnot

当有数据发送时,则主 CPU 下发进入主机接近检测模式命令 0x21,则该终端可以检测到与之通讯的接收端。 成功检测到另一支持 HotKnot 技术通讯终端,会以 INT 的方式告知主 CPU。

7.2. TP 间数据传输

成功接近检测后,主控下发 HotKnot 的传输固件,传输固件运行后,进入数据传输模式,默认处于接收状态,即检测是否有数据从发送端发来。当 GT911 的发送缓冲区 被正确刷新,则会立即启动发送,接收方就可以检测到数据。

7.3. CPU 从 GT911 接收数据

GT911 发送完或接收完一帧数据,会通过翻转 INT 来通知 CPU 处理。当 GT911 接收完一帧数据,CPU 先获取 HotKnot 的状态寄存器,当接收状态寄存器指示成功接收到一帧数据时,CPU 再去接收缓冲区 将收到的数据通过 I²C 读取上来,读取上来后再往指定地址写入0xAA,告知 GT911 数据读取完毕。对于发送也是一样,获取成功发送的状态后,往指定地址写入0xAA,告知 GT911 已处理完毕,GT911 会自动切换至接收数据状态,直到发送缓冲区被再次刷新才会启动发送。

8. 功能描述

8.1. 工作模式

a) Normal Mode

GT911 在 Normal mode 时,最快的坐标刷新周期为 7ms-10ms 间(依赖于配置信息的设定, 配置信息可控周期步进长度为 1ms)。

Normal mode 状态下,一段时间无触摸事件发生,GT911 将自动转入 Green mode,以降低功耗。GT911 无触摸自动进入 Green mode 的时间可通过配置信息设置,范围为 0~15s ,步进为 1s。

b) Green Mode

在 Green mode 下,GT911 扫描周期约为 40ms,若检测到有触摸动作发生,自动进入 Normal mode。

c) Gesture mode

主 CPU 通过下发 I^2 C 命令 8 到 0x8046,再下发命令 8 到 0x8040,让 GT911 进入 Gesture mode 后,可通过滑动屏体、双击或者在屏体上书写特定字符实现唤醒。

在 Gesture mode 下, GT911 检测到手指在屏体上滑动足够的长度, INT 就会输出一个大于 250us 的脉冲或者高电平, 主控收到脉冲或高电平后醒来亮屏。

在 Gesture mode 下, GT911 检测到手指在屏体上发生双击动作, INT 也会输出一个大于 250us 的脉冲或者高电平, 主控收到脉冲或高电平后醒来亮屏。

在 Gesture mode 下, GT911 检测到手指在屏体上书写特定字符, INT 也会输出一个大于 250us 的脉冲或者高电平,主控收到脉冲或高电平后醒来亮屏。

d) Sleep Mode

主 CPU 通过 I^2 C 命令 ,使 GT911 进入 Sleep mode(需要先将 INT 脚输出低电平)。当需要 GT911 退出 Sleep mode 时,主机输出一个高电 平到 INT 脚(主机打高 INT 脚 2~5ms),唤 醒后 GT911 将进入 Normal mode 。下发 I^2 C 关屏命令与唤醒之间的时间间隔要求大于 58ms。

e) Approach Mode

当使能 HotKnot 接近检测功能后,GT911 默认运行在 Approach Mode 下,当退出此模式后,主 CPU 通过下发 0x20 或 0x21 命令,使 GT911 进入 Approach mode。该模式下,触控检测和近场的接近检测相间进行。

Approach mode 在发送端与接收端模式存在区别:在发送端是会通过驱动感应通道发送约定规律约定频率的信标,发送完再检测是否收到接收端返回的约定规律约定频率的信标,以此判定有无接收端存在。在接收端,Approach mode 一直检测是否收到发送端发来的约定规律约定频率的信标,若检测到,返回约定规律约定频率的信标通知发送端。

在 Approach mode 下,当发现近场范围存在可通讯终端,会以 INT 的方式通知 主 CPU 来获取状态。为了保证收发双方可靠的检测到对方,当获取到接近状态后,须继续保持至少 150ms 检测,主 CPU 再下发 HotKnot 传输固件进入 Receive mode。

f) Receive Mode

在 GT911 运行在 Approach mode 时,主 CPU 获取到 GT911 检测到可通讯终端,主 CPU 再下发 HotKnot 传输固件使 GT911 进入 Receive mode。在该模式下,不断地检测有无起始帧信号,检测到后,开始检测数据,接收完成后,进行校验,若校验失败,重新开始接收;若接收成功,则以 INT 方式通知 主 CPU 来接收缓冲区读取数据。

g) Send Mode

在 GT911 运行在 Receive mode 时,主 CPU 将待发数据发送至发送缓冲区,GT911 检测到发送缓冲区 被刷新且有数据需要发送时,自动从 Receive mode 切换到 Send mode。在该模式下,先发送起始帧信号,并检测到接收端有返回 ACK,再接着发送数据信号,发送完一个数据序列,开始检测 ACK;若没有 ACK 或不对,重发刚发过的字节,重发若超过五次都失败,会将本帧数据重新开始发送,直到主 CPU 超时使其退出。数据成功发送完成后,待主 CPU 处理完或超时后,自动切换到 Receive mode。

8.2. 中断触发方式

当有触摸时,GT911每个扫描周期均会通过INT脚发出脉冲信号,通知主CPU读取坐标信息。主CPU可以通过相关的寄存器位 fNT 来设置触发方式。设为 0 表示上升沿触发,即在有用户操作时,GT911会在INT口输出上升沿跳变,通知CPU;设为 1 表示下降沿触发,即在有用户操作时,GT911会在INT口输出下降沿跳变。

8.3. 睡眠模式

当显示屏熄灭时或在其他不需要操作触摸屏的状态下,可以通过 I²C 命令使 GT911 进入 Sleep mode 以降低功耗。当需要 GT911 正常工作时,主控将 INT 口输出一段时间的高电平 将其唤醒。主控控制 GT911 进入睡眠状态和退出睡眠状态时序,具体时序请参考第 7.1 节。

8.4. 固化配置 功能

GT911 支持固化配置 功能,当获取项目的配置参数后,GT911 会自动将版本较高的配置参数固化,固化了配置参数后的 GT911 只会与主控进行 I2C 通讯,不会接收主控下发的低版本配置。

8.5. 跳频 功能

GT911 拥有很好的硬件抗干扰基础 , 当 GT911 的驱动频谱与干扰信号的峰值频谱叠加时 , 可通过自适应跳频机制来切换到另一个频率 , 从而避开干扰。

8.6. 自动校准

a) 初始化校准

不同的温度、湿度及物理空间结构均会影响到电容传感器在闲置状态的基准值。GT911 会 在初始化的 200ms 内根据环境情况自动获得新的检测基准。完成触摸屏检测的初始化。

b) 自动温漂补偿

温度、湿度或灰尘等环境因素的缓慢变化,也会影响到电容传感器在闲置状态的基准值。 GT911 实时检测各点数据的变化,对历史数据进行统计分析,由此来修正检测基准。从而 降低环境变化对触摸屏检测的影响。

9. 参考电路图

GT911 参考应用电路图

注:

- 1、 本电路仅表示基本应用方式,实际或根据应用环境需要对部分电路进行调整。
- 2、 电容建议采用 X7R 材质。

10. 电气特性

10.1. 极限电 气参数

(环境温度 为 25)

参数	最小值	最大值	单位
模拟电源 AVDD28 (参考 AGND)	2.66	3.47	V
VDDIO (参考 DGND)	1.7	3.47	V
数字 I/O 可承受电压	-0.3	3.47	V
模拟 I/O 可承受电压	-0.3	3.47	V
工作温度范围	-40	85	
存储 温度 范围	-60	125	
焊接温度(10 秒钟)		300	
ESD 保护电压(HB Model)	-	± 2	KV

10.2. 推荐 工作条件

参数	最小值	典型 值	最大 值	单 位
AVDD28	2.8	-	3.3	V
VDDIO	1.8	-	3.3	V
工作温度	-20	25	85	

10.3. AC 特性

(环境温度 为 25 , AVDD=2.8V , VDDIO=1.8V)

参数	最小值	典型值	最大 值	单位
OSC 振荡 频率	59	60	61	MHz
I/O 输出由低到高转换时间	-	-	0.5	ns
I/O 输出由高到低转换时间	-	-	0.5	ns

10.4. DC 特性

(环境温度 为 25 , AVDD=2.8V , VDDIO=1.8V)

参数	最 小值	典型 值	最大 值	单位
Normal mode 工作电流	-	8	14.5	mA
Green mode 工作电流	-	3.3	-	mA
Sleep mode 工作电流	70	-	120	uA
Doze mode 工作电流	-	0.78	-	mA
数字输入为低电平电压值/VIL	-0.3		0.25*VDDIO	V
数字输入为高电平电压值/VIH	0.75*VDDIO		VDDIO+0.3	V
数字输出为低电平电压值/VOL			0.15*VDDIO	V
数字输出为高电平电压值/VOH	0.85*VDDIO			V

11. 产品 封装 TOP VIEW

QFN 6 X 6 52PIN 0.4 PITCH SQUARE

Coursels al	Dimen	sions In Millim	eters
Symbol	Min.	Normal	Max.
Α	0.70	0.75	0.80
A1	0.00	0.035	0.05
b		0.40BSC	
D	6.00BSC		
D1	4.40	4.50	4.60
Е	6.00BSC		
E1	4.40	4.50	4.60
е	0.15	0.20	0.25
L	0.30	0.40	0.50
L1	0.31	0.36	0.41
L2	0.13	0.18	0.23
K	0.203BSC		

12. 版本记录

文件版本	发布时 间	修订
Rev.00	2012-11-02	预发布
Rev.01	2012-11-22	修改配置信息、更新参考电路图
Rev.02	2012-12-26	修改存储 温度 、各模式 电流及部分 表述
Rev.03	2013-03-19	在配置信息列表中增加 filter 功能描述
Rev.04	2013-05-14	增加过锡炉 条件部分
		产品特点 增加支持 ITO Film 和 OGS 全贴合;
		传感 器设计 增加 SITO 结构参数 ;
		更新寄存器列表内容及其相应描述;
Rev.05	2013-06-19	修改工作模式转换图描述;
		修改 sleep mode 的描述和唤醒时序图;
		删除 过锡炉 条件部分 内容、更新 参考电路 图 ;
		修改 Normal mode 工作电流典型值。
	2013-08-27	添加感应通道排布 示例图 ;
		更新 I ² C 通讯参数 ;
Rev.06		更新 上电时 序图 ;
Nev.00		更新 寄存 器列表内容, 把自容、 接近感应等没有的
		内容 删除 ;
		更新 极限 电气 参数。
		产品特点 增加 hotknot 描述、支持 FPC 按键 , 修改
		Cover Lens 厚度和封装 信息 ;
		修改管脚定义描述;
		增加触摸按键设计 信息 ;
		更新 上电时 序图 ;
Rev.07	2014-07-09	增加主控复位 IC 时序图 ;
Nev.or	2014-01-03	更新 I2C 选址时序图 ;
		删除 寄存 器信息 ;
		修改工作模式图 ,增加 Gesture mode 和 hotknot
		模式 的描 述 ;
		修改参考电路图;
		更新 DC 特性参数 。
Rev.08	2014-07-18	更新 上电时 序图 ;
1.64.00	2014-07-10	更新 复位时 序图。

13.联系方式

深圳市汇顶科技股份有限公司

深圳市 福田 保税区腾飞 工业 大厦 B 座 13 层 518000

Floor 13, Phase B, TengFei Industrial Building, FuTian Free Trade Zone, ShenZhen, 518000

电话/TEL: +86-755-33338828 传真/FAX: +86-755-33338828

www.goodix.com

