Math 109 HW4

Neo Lee

03/01/2023

Problem 8.1

 $\textbf{Proposition 1.} \ g(x,y) = \begin{cases} x & if x \geq y \\ y & if x \leq y \end{cases} \ \text{is well defined for} \ g: \mathbb{R}^2 \rightarrow \mathbb{R}.$

Proof. For all $(x, y) \in \mathbb{R}^2$, it is exclusively that x > y, x < y, or x = y. If x > y, g(x, y) is uniquely defined as $x \in \mathbb{R}$. If x < y, g(x, y) is uniquely defined as $y \in \mathbb{R}$. \square

Proposition 2. Let $f(x,y) = \frac{x+y}{2} + \frac{|x-y|}{2}$ for $f: \mathbb{R}^2 \to \mathbb{R}$, f = g.

Proof. If
$$x > y$$
, $f(x,y) = \frac{x+y}{2} + \frac{x-y}{2} = x$. If $x < y$, $f(x,y) = \frac{x+y}{2} + \frac{y-x}{2} = y$. If $x = y$, $f(x,y) = \frac{x+x}{2} + \frac{x-x}{2} = x = y$. Hence, $f(x,y) = g(x,y)$ for all $(x,y) \in \mathbb{R}^2$.

Problem 8.2

(i)
$$f \circ f = f(f(x)) = f(x^3) = x^{3^3} = x^9 \text{ for } \mathbb{R} \to \mathbb{R}.$$

(ii)
$$f \circ g = f(g(x)) = f(1-x) = (1-x)^3 \text{ for } \mathbb{R} \to \mathbb{R}.$$

(iii)
$$g \circ f = g(f(x)) = g(x^3) = 1 - x^3 \text{ for } \mathbb{R} \to \mathbb{R}.$$

(iv)
$$g \circ g = g(g(x)) = g(1-x) = 1 - (1-x) = x \text{ for } \mathbb{R} \to \mathbb{R}.$$

 $fg(x) = gf(x) \Leftrightarrow (1 - x^3) = 1 - x^3 \Leftrightarrow 1 - 3x + 3x^2 - x^3 = 1 - x^3 \Leftrightarrow x(x - 1) = 0 \Leftrightarrow x = 0 \text{ or } x = 1.$ Hence, $\{x \in \mathbb{R} | fg(x) = gf(x)\} = \{0, 1\}.$

Problem 8.3

(i)
$$f_1(x) = x$$
 for $\mathbb{R} \to \mathbb{R}$.

(ii)
$$f_2(x) = |x|$$
 for $\mathbb{R} \to \mathbb{R}$.

(iii)
$$f_3(x) = \begin{cases} x & if x \notin \mathbb{Z} \\ 0.1 & if x \in \mathbb{Z} \end{cases}$$
 for $\mathbb{R} \to \mathbb{R}$.

(iv)
$$f_4(x) = |x|$$
 for $\mathbb{R} \to \mathbb{R}$.

Problem 8.5 (i) and (iv) are graphs of a function $f: X \to Y$.

\boldsymbol{x}	$f_i(x)$	$f_{iv}(x)$
a	z	y
b	y	z
c	z	w
d	\boldsymbol{x}	x

For (ii), $\{c\} \times Y$ contains no elements, which means not every element in X is mapped to Y. For (iii), $\{b\} \times Y$ contains more than one element, which mean f(x) is not uniquely defined in Y for x = b.

Problem 9.1

- (i) Bijective. It is surjective because for every image y, there is a pre-image $x = \frac{y-5}{2}$. It is injective because if $y_0 = f(x_1) = f(x_2) \Leftrightarrow 2x_1 + 5 = 2x_2 + 5 \Leftrightarrow 2x_1 = 2x_2 \Leftrightarrow x_1 = x_2$.
- (ii) Neither injective nor surjective. Let f(x) = 1, x = -2 or x = 0, thus it's not injective. Since there does not exists x for f(x) = -1, it's not surjective.
- (iii) Neither injective nor surjective. Let f(x) = 0, x = 0 or x = 2, thus it's not injective. Since there does not exists x for f(x) = -2, it's not surjective.
- (iv) Bijective. It is surjective because for every image $y \neq 0$, there is a pre-image $x = \frac{1}{y}$; for y = 0, x = 0. It is injective becasue if $0 \neq y_0 = f(x_1) = f(x_2) \Leftrightarrow \frac{1}{x_1} = \frac{1}{x_2} \Leftrightarrow x_1 = x_2$; if $y_0 = 0, x_1 = x_2 = 0$.

Problem 9.2

- (i) Injective only. It is injective because let $y_0 = f(x_1) = f(x_2) \Leftrightarrow 3x_1 + 2 = 3x_2 + 2 \Leftrightarrow 3x_1 = 3x_2 \Leftrightarrow x_1 = x_2$. It is not surjective because there does not exist x for f(x) = 1.
- (ii) Injective only. It is injective because let $y_0 = f(x_1) = f(x_2) \Leftrightarrow x_1^2 + 2x_1 + 1 = x_2^2 + 2x_2 + 1 \Leftrightarrow (x_1 + 1)^2 = (x_2 + 1)^2 \Leftrightarrow x_1 + 1 = x_2 + 1$ [note: square root of both sides are always positive since x > 0] $\Leftrightarrow x_1 = x_2$. It is not surjective because there does not exist x for f(x) = 0.1.
- (iii) Not a function. There does not exist $f(x) \in \mathbb{R}^+$ for x = 0.1.
- (iv) Bijective. It is surjective because for every image y, there is a pre-image $x = \frac{1}{y}$. It is injective because if $y_0 = f(x_1) = f(x_2) \Leftrightarrow \frac{1}{x_1} = \frac{1}{x_2} \Leftrightarrow x_1 = x_2$.

Problem 9.3

- (i) $f^{-1}(x) = \frac{x-2}{3}$.
- (ii) $f^{-1}(x) = \sqrt[3]{x-1}$.

Problem 9.4

Proposition 3. $g \circ f$ is injective if g and f are both injective.

Proof.

$$z = g(f(x_1)) = g(f(x_1)) \Rightarrow f(x_1) = f(x_2) \qquad \therefore g \text{ is injective}$$
 (1)

$$\Rightarrow x_1 = x_2$$
 : f is injective (2)

Hence, $g \circ f(x_1) = g \circ f(x_2) \Rightarrow x_1 = x_2$.

Problem 9.6

Proposition 4. Let $f: X \to Y$ be a function with graph $G_f \subseteq X \times Y$. f is surjective if and only if $\forall y \in Y, (X \times \{y\} \cap G_f) \neq \emptyset$.

Proof. (\Rightarrow) Since f is surjective, $\forall y \in Y$, $\exists x$ such that f(x) = y. Let $x_0 \in X$ such that $f(x_0) = y_0$ for arbitrary $y_0 \in Y$. Then $(x_0, y_0) \in (X \times \{y_0\} \cap G_f)$. Hence, for all $y \in Y$, $(X \times \{y\} \cap G_f) \neq \emptyset$.

 (\Leftarrow) Since $\forall y \in Y, (X \times \{y\} \cap G_f) \neq \emptyset$, we can take an arbitrary $y_1 \in Y$ and there must exist $(x_1, y_1) \in X \times \{y_1\}$. At the same time $(x_1, y_1) \in G_f$, so we know that $f(x_1) = y_1$. Hence, it satisfies that definition of surjection that $\forall y \in Y, \exists x \text{ such that } f(x) = y$.

Problem 14 $f \circ f = x \mapsto x^4$. $f \circ g = x \mapsto x^4 - 2x^2 + 1$. $g \circ f = x \mapsto x^4 - 1$. $g \circ g = x \mapsto x^4 - 2x^2$. $\{x \in \mathbb{R} | fg(x) = gf(x)\} \Leftrightarrow x^4 - 2x^2 + 1 = x^4 - 1 \Leftrightarrow -2x^2 + 2 = 0 \Leftrightarrow -2(x^2 - 1) = 0 \Leftrightarrow x = -1 \text{ or } x = 1 \Leftrightarrow \{-1, 1\}$.

Problem 15

(i) We can easily see that $\chi_A(x)\chi_B(x) \equiv \chi_{A\cap B}(x)$ by drawing a truth table.

$x \in A$	$x \in B$	$\chi_A(x)\chi_B(x)$	$\chi_{A\cap B}(x)$
T	T	1	1
T	F	0	0
F	T	0	0
F	F	0	0

(ii) Let $C = A \cup B$.

$x \in A$	$x \in B$	$\chi_A(x) + \chi_B(x) - \chi_A(x)\chi_B(x)$	$\chi_C(x)$
T	T	1	1
T	F	1	1
F	T	1	1
F	F	0	0

Problem 16

(i) Bijective. Surjective: $\forall y = f_1(x), \exists x = y + 1 \in \mathbb{R}$. Injective: $y_0 = f_1(x_1) = f_1(x_2) \Leftrightarrow x_1 - 1 = x_2 - 1 \Leftrightarrow x_1 = x_2, f_1^{-1}(x) = x + 1.$

(ii) Bijective. Surjective: $\forall y = f_2(x), \exists x = \sqrt[3]{y} \in \mathbb{R}$. Injective: $y_0 = f_2(x_1) = f_2(x_2) \Leftrightarrow x_1^3 = x_2^3 \Leftrightarrow \left(\frac{x_1}{x_2}\right)^3 = 1 \Leftrightarrow \frac{x_1}{x_2} = 1 \Leftrightarrow x_1 = x_2$. $f_2^{-1}(x) = \sqrt[3]{x}$.

(iii) Surjective. Surjective: $\lim_{x\to\infty} f_3(x) = \infty$ and $\lim_{x\to-\infty} f_3(x) = -\infty$. Since $f_3(x)$ is a polynomial, it is a continuous function. By intermediate value theorem, $\forall y \in (-\infty, \infty) \equiv \mathbb{R}$, $\exists x$ such that $y = f_3(x)$. Not injective: let $f_3(x) = 0$, x = -1 or x = 0 or x = 1.

(iv) Bijective. Surjective: $\forall y = f_4(x), \exists x \text{ such that } x^3 - 3x^2 + 3x - 1 = y \Leftrightarrow (x - 1)^3 = y \Leftrightarrow x = \sqrt[3]{y} + 1.$ Injective: $f_4(x)' = 3x^2 - 6x + 3 \ge 0$ for all $x \in \mathbb{R}$; so for every $y_0 = f_4(x)$, there exists only at most one x_0 such that $f_4(x_0) = y_0$. $f_4^{-1}(x) = \sqrt[3]{x} + 1$.

(v) Injective. Not surjective: let y = -1, there does not exist $x \in \mathbb{R}$ such that $f_5(x) = e^x = y$. Injective: let $y_0 = f_5(x_1) = f_5(x_2) \Leftrightarrow e^{x_1} = e^{x_2} \Leftrightarrow ln(e^{x_1}) = ln(e^{x_2}) \Leftrightarrow x_1 = x_2$.

(vi) Bijective. Surjective: $\forall y = f_6(x) \geq 0, \exists x = \sqrt{y}; \ \forall y = f_6(x) < 0, \exists x = \sqrt{-y}.$ Injective: let $0 \geq y_1 = f_6(x_1) = f_6(x_2) \Leftrightarrow x_1^2 = x_2^2 \Leftrightarrow \sqrt{x_1^2} = \sqrt{x_2^2} \Leftrightarrow x_1 = x_2 \text{ [note: from the condition of } f_6, \text{ we know } x_1, x_2 \geq 0 \text{]. Let } 0 > y_2 = f_6(x_3) = f_6(x_4) \Leftrightarrow -x_3^2 = -x_4^2 \Leftrightarrow x_3^2 = x_4^2 \Leftrightarrow \sqrt{x_3^2} = \sqrt{x_4^2} \Leftrightarrow x_3 = x_4 \text{ [note: from the condition of } f_6, \text{ we know } x_1, x_2 \leq 0 \text{]. } f_6^{-1}(x) = \begin{cases} \sqrt{x} & \text{if } x \geq 0, \\ \sqrt{-x} & \text{if } < 0. \end{cases}$