

Fast Recovery Epitaxial Diode (FRED)

DSEI 30

 $I_{FAVM} = 37 A$ $V_{RRM} = 600 V$ $t_{rr} = 35 ns$

\mathbf{V}_{RSM}	\mathbf{V}_{RRM}	Туре	
V	V		

DSEI 30-06A

600

640

A = Anode, C = Cathode

Symbol	Test Conditions	Maximum Ratings	
FRMS 1	$T_{VJ} = T_{VJM}$ $T_{C} = 85^{\circ}C$; rectangular, $d = 0.5$	70 37	A A
FRM	t_p < 10 μ s; rep. rating, pulse width limited by $T_{_{VJM}}$	375	A
I _{FSM}	$T_{VJ} = 45$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	300 320	A A
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	260 280	A A
l²t	$T_{VJ} = 45^{\circ}\text{C}$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	450 420	A²s A²s
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	340 320	A ² s A ² s
T _{VJ} T _{VJM} T _{stg}		-40+150 150 -40+150	°C °C °C
P _{tot}	T _C = 25°C	125	W
M _d	Mounting torque	0.81.2	Nm
Weight		6	g

Symbol	Test Conditions	Characteristic Values typ. max.		Values
I _R	$T_{VJ} = 25^{\circ}C$ $V_{R} = V_{RRM}$ $T_{VJ} = 25^{\circ}C$ $V_{R} = 0.8 \bullet V_{RRM}$ $T_{VJ} = 125^{\circ}C$ $V_{R} = 0.8 \bullet V_{RRM}$		100 50 7	μΑ μΑ mA
V _F	$I_F = 37 \text{ A};$ $T_{VJ} = 150^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$		1.4 1.6	V V
ν _{το} r _τ	For power-loss calculations only $T_{VJ} = T_{VJM}$		1.01 7.1	V mΩ
R _{thJC} R _{thCK} R _{thJA}		0.25	1 35	K/W K/W K/W
t _{rr}	$I_F = 1 \text{ A}; -di/dt = 100 \text{ A/}\mu\text{s}; V_R = 30 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$	35	50	ns
I _{RM}	$V_R = 350 \text{ V}; I_F = 30 \text{ A}; -di_F/dt = 240 \text{ A}/\mu\text{s}$ 10 L $\leq 0.05 \mu\text{H}; T_{VJ} = 100^{\circ}\text{C}$		11	А

Features

- International standard package JEDEC TO-247 AD
- · Planar passivated chips
- · Very short recovery time
- · Extremely low switching losses
- Low I_{RM}-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- · Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- · Ultrasonic cleaners and welders

Advantages

- · High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- Low losses
- Operating at lower temperature or space saving by reduced cooling

 $[\]odot$ I_{FAVM} rating includes reverse blocking losses at T_{V,JM}, V_R = 0.8 V_{RRM}, duty cycle d = 0.5 Data according to IEC 60747 IXYS reserves the right to change limits, test conditions and dimensions

Fig. 4 Dynamic parameters versus junction temperature.

80

40

0,

Fig. 2 Recovery charge versus -di_F/dt.

Fig. 5 Recovery time versus -di_F/dt.

Fig. 3 Peak reverse current versus -di_r/dt.

Fig. 6 Peak forward voltage versus di_F/dt.

120°C 160

T_{VJ} -

Fig. 7 Transient thermal impedance junction to case.

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	19.81	20.32	0.780	0.800
В	20.80	21.46	0.819	0.845
С	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
Е	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
Н	-	4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
М	0.4	0.8	0.016	0.031
N	2.2	2.54	0.087	0.102