Hunter Lybbert Student ID: 2426454 11-18-24 AMATH 567

HOMEWORK 8

Collaborators*: TBD

*Listed in no particular order. And anyone I discussed at least part of one problem with is considered a collaborator.

1: The Korteweg-de Vries (KdV) equation arises whenever long waves of moderate amplitude in dispersive media are considered. For instance, it describes waves in shallow water, and ion-acoustic waves in plasmas. The equation is given by

$$u_t = 6uu_x + u_{xxx},$$

where indices denote partial differentiation.

(a) By looking for solutions u(x,t) = U(x), derive a first-order ordinary differential equation for U(x). Introduce integration constants as required.

Solution:

TODO:

This

(b) Let $U = U_0 \wp(x - x_0)$. Determine U_0 so that u = U(x) solves the KdV equation.

Solution:

TODO:

2: From A&F: 3.6.5

Solution:

TODO:

3: Here's a way to evaluate

$$\sum_{k=1}^{\infty} \frac{1}{k^2},$$

due to Euler. We've seen that

$$\frac{\sin \pi z}{\pi z} = \prod_{j=1}^{\infty} \left(1 - \frac{z^2}{j^2} \right).$$

(a) Equate the coefficients of z^2 on both sides, to recover the desired sum.

Solution:

TODO:

This

(b) Equate the coefficients of z^4 on both sides to recover a different sum.

Solution:

TODO:

This

By equating coefficients of higher powers of z, one can recover other identities too.

- **4:** For the following, suppose that f(z) is analytic in an open set Ω that contains [-1,1].
 - (a) Show that there exists a contour C, encircling [-1,1], such that

$$\int_{-1}^1 \frac{f(x)\mathrm{d}x}{\sqrt{1-x}\sqrt{1+x}} = \frac{1}{2i} \oint_C \frac{f(z)\mathrm{d}z}{\sqrt{z-1}\sqrt{z+1}}.$$

Solution:

TODO:

This

(b) Use this to evaluate

$$I_{1} = \int_{-1}^{1} \frac{dx}{\sqrt{1 - x}\sqrt{1 + x}}, \quad I_{2} = \int_{-1}^{1} \sqrt{1 - x}\sqrt{1 + x} dx,$$
$$I_{3} = \int_{-1}^{1} \frac{\sqrt{1 - x}}{\sqrt{1 + x}} dx, \quad I_{4} = \int_{-1}^{1} \frac{\sqrt{1 + x}}{\sqrt{1 - x}} dx,$$

without using any changes of variable (e.g., no trig subs!).

Solution:

TODO:

5: Suppose, for |z| = 1, that the series

$$f(z) = \sum_{n = -\infty}^{\infty} f_n z^n,$$

converges uniformly.

(a) Compute series representations for

$$F(z) := \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z} d\xi, \quad |z| \neq 1, \quad C = \partial B_1(0).$$

Solution:

TODO:

This

(b) For |z| = 1, compute

$$\lim_{\epsilon \to 0^+} F(z(1-\epsilon)) - \lim_{\epsilon \to 0^+} F(z(1+\epsilon)).$$

Solution:

TODO: