Submission 1.2

Saffron Liu

For problems 10-13:

- If the claim that's made is correct, prove that it's correct.
- If the claim that's made is incorrect, prove that it's incorrect.
- If the problem asks a question, answer it with a correct claim, and prove that your claim is correct.
- 10. A two-place connective, \circ , is called associative if $(A \circ B) \circ C$ is logically equivalent to $A \circ (B \circ C)$. Which of $\land, \lor, \rightarrow, \leftrightarrow$ are associative? (J 20)

 $\land, \lor,$ and \leftrightarrow are associative. \rightarrow is not.

 $(A \wedge B) \wedge C$ and $A \wedge (B \wedge C)$ are logically equivalent because each is true if and only if A, B, and C are all true; if at least one is false, the expression is as well.

 $(A \lor B) \lor C$ and $A \lor (B \lor C)$ are logically equivalent because each is false if and only if A, B, and C are all false; if at least one is true, the expression is true.

 $(A \leftrightarrow B) \leftrightarrow C$ and $A \leftrightarrow (B \leftrightarrow C)$ are logically equivalent. I can't explain it, but hey look, I made a truth table!

Α	В	C	$(A \leftrightarrow B) \leftrightarrow C$	$A \leftrightarrow (B \leftrightarrow C)$
Т	Т	Т	Т	Τ
\mathbf{T}	Γ	F	F	F
\mathbf{T}	F	Т	F	\mathbf{F}
\mathbf{T}	F	F	${ m T}$	${ m T}$
\mathbf{F}	Т	Т	F	F
F	Т	F	${ m T}$	${ m T}$
F	F	Т	${ m T}$	${ m T}$
F	F	F	F	F

 $(A \to B) \to C$ and $A \to (B \to C)$ are not logically equivalent because $(F \to T) \to F$ is false while $F \to (T \to F)$ is true.

11. Suppose C is a tautology. What can you say about the argument $\frac{A}{C}$? (M 46)

The argument is valid. Because C is a tautology, the conclusion of the argument is always true, and thus there can be no counterexample to the argument.

- 12. Suppose that A and B are logically equivalent. What can you say about $A \vee B$? (M 46) A and B are each logically equivalent to $A \vee B$. If A is true, $A \vee B$ is also true. If A is false, B must be false as well (since $A \leftrightarrow B$), and thus $A \vee B$ is also false. This means A is logically equivalent to $A \vee B$, and because B is logically equivalent to A, B is logically equivalent to $A \vee B$ as well.
- 13. Suppose that A and B are not logically equivalent. What can you say about $A \vee B$? (M 46) $A \vee B$ is a tautology. Where A is true, B must be false and $A \vee B$ must be true. Where A is false, B must be true and so $A \vee B$ must be true. $A \vee \neg A$ is a tautology, and because $A \vee B$ follows from it, $A \vee B$ must also be a tautology.

1