Proof. Assume that (a) holds and put $\mathcal{K}_0(x) = \operatorname{Diag}(K_1(x), ..., K_m(x))$. Let $\mathcal{K}(x)$ be any canonical matrix which is equivalent to $x \in -A$ and has properties (4)-(8). Then $\mathcal{K}_0(x)$ and we have $\overline{\mathcal{K}}(x) = \overline{\mathcal{K}}_0(x)$ and $\mathcal{D}_s(\mathcal{K}) = \mathcal{D}_s(\mathcal{K}_0) = (K_1(x) \cdot ... \cdot K_s(x))$ for s = 1, m. we obtain successively for $s = \overline{1}$, m the equations $K_{SS}(x) = K_S(x)$, $K_{SI}(x) = K_{IS}(x) = 0$ $\neq s$, i.e., $\mathcal{K} = \mathcal{K}_0$. This proves the implication (a) \Rightarrow (b).

Assume that (b) holds and assume that the quasicanonical matrix which is equivalent to A has the form (4). We show first of all that it is a diagonal matrix. Assume the conthen we have for some $i \ge 1$

$$\mathcal{R} = \operatorname{Diag}\left(K_{11}(x), \ldots, K_{i-1 \ i-1}(x), \begin{pmatrix} K_{ii}(x) \ldots K_{im}(x) \\ \ldots & \ldots \\ K_{mi}(x) \ldots K_{mm}(x) \end{pmatrix}\right),\,$$

or some j > i either $K_{ij}(x) \neq 0$ or $K_{ji}(x) \neq 0$. Assume that $K_{ij}(x) \neq 0$. Then it follows (7) and (8) that $K_{ii}(x) + K_{ij}(x) = K'_{ii}(x)$, and if we add column j of \mathcal{H} to column i we n

$$\mathcal{K} \sim \mathcal{K}' = \text{Diag}\left(K_{11}, \ldots, K_{i-1 \ i-1}, \begin{pmatrix} K'_{ii} \ K_{ii+1} \ \ldots \ K'_{im} \\ \ldots \ \ldots \\ K'_{mi} \ K_{mi+1} \ K_{mm} \end{pmatrix}\right),$$

the matrix \mathcal{H}' has properties (4)-(7). Using the remark following the proof of the part of Theorem 4, we can say that the matrix \mathcal{H}' is equivalent to a quasicanonical x \mathcal{H}'' of the form

$$\mathcal{K}'' = \text{Diag}\left(K_{11}, \ldots, K_{i-1 \, i-1}, \begin{pmatrix} K'_{ii} & K''_{ii+1} & \ldots & K''_{im} \\ \ldots & & & \\ K''_{mi} & \ldots & K''_{mm} \end{pmatrix}\right),\,$$

is not equal to \mathcal{H} , since $K'_{ii} \neq K_{ii}$. Consequently, \mathcal{H} is a diagonal matrix: $\mathcal{H} = \text{Diag}$..., K_m). If then there exists an i < m such that $K_{i+1}(x) = K_i(x)Q(x) + K_{ii+1}(x)$, where $i_{i+1}(x) < \deg K_i(x)$ and $K_{ii+1}(x) \neq 0$, one sees without difficulty that in view of (5) $(x) = \overline{0}$ and the matrix \mathcal{H} is equivalent to a quasicanonical matrix different from \mathcal{H} ,

$$\mathcal{R}' = \operatorname{Diag}\left(K_1, \ldots, K_{i-1}, \begin{pmatrix} K_i & K_{ii+1} \\ 0 & K_{i+1} \end{pmatrix}, K_{i+2}, \ldots, K_m\right).$$

fore, each element on the main diagonal of \mathcal{X} is divisible by the preceding one and $\mathcal{D}_s(xE = \mathcal{D}_s(\mathcal{X}) = (K_1 \cdot ... \cdot K_s)$ is a principal ideal for s = 1, m. This proves the implication > (c).

Finally, assume that (c) holds and let (4) by any quasicanonical matrix for xE - A. we have $\overline{\mathcal{D}_1(xE-A)}=(K_{11}(x))$ and $K_{11}(x)\in\mathcal{D}_1(xE-A)$, hence $\mathcal{D}_1(xE-A)=(K_{11}(x))$. Consely all elements of the matrix $\mathcal{H}(x)$ are divisible by $K_{11}(x)$ and $K_{11}(x)=K_{11}(x)=0$ for $K_{11}(x)=K_{11}(x)=0$. In this case $K_{11}(x)\cdot K_{22}(x)\in\mathcal{D}_2(xE-A)$ holds and from $\overline{\mathcal{D}_2(xE-A)}=(K_{11}\cdot K_{22})$ we deduce $E-A)=(K_{11}\cdot K_{22})$. It follows that all elements $K_{11}(x)K_{11}(x)$ for $i,j\geq 2$ are divisible $K_{11}(x)K_{12}(x)$, i.e., $K_{22}|K_{11}$ and $K_{21}=K_{12}=0$ for $K_{11}=1$. Continuing in this fashion we shall $K_{11}=1$ for $K_{$

We shall say that a matrix $A \in R_m$ is canonically determined if whenever $B \in R_m$ satisfies then $B \approx A$.

COROLLARY 1. If $A \in R_m$ and the minimal polynomial of the matrix $\overline{A} \in \overline{R}_m$ coincides with characteristic polynomial then $A * S(\chi_A(x))$.

The proof follows from the equations $\mathcal{D}_m(xE-A)=(\chi_A(x)), \quad \mathcal{D}_{m-1}(xE-A)=...=\mathcal{D}_1(xE-A)=(e)$.

COROLLARY 2. If $A \in R_m$ and all Fitting invariants of the matrix (xE - A) are principal then A is canonically determined.

All examples studied by the author suggest that the converse of Corollary 2 holds also,

Conjecture. The matrix $A \in R_m$ is canonically determined if and only if all the Fitting riants of the matrix xE - A are principal ideals.