Exercises

- 1. A set Ω is *pathwise connected* if any two points in Ω can be joined by a piecewise smooth curve entirely contained in Ω . We show that an open set Ω is pathwise connected if and only if Ω is connected.
 - (a) Suppose first that Ω is open and pathwise connected, and that it can be written as a disjoint union of non-empty open sets $\Omega = \Omega_1 \cup \Omega_2$. Let $w_1 \in \Omega_1$ and $w_2 \in \Omega_2$ and let $z : [0,1] \to \Omega$ be a curve with $z(0) = w_1$ and $z(1) = w_2$. Let

$$t^* = \sup_{0 \le t \le 1} \{t : z(s) \in \Omega_1 \text{ for all } 0 \le s \le t\}.$$

Arrive at a contradiction by considering the point $z(t^*)$.

- (b) Conversely, suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_1 \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω . Also, let $\Omega_2 \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω . Show that both Ω_1 and Ω_2 are open, disjoint and their union is Ω . Conclude that $\Omega = \Omega_1$.
- 2. Let Ω be an open set in \mathbb{C} and $z \in \Omega$. The connected component C_z of z is the set of all points in w that can be reached from z by a curve entirely contained in Ω .
 - (a) Show that C_z is open and connected, and any two connected components are either disjoint or coincide.
 - (b) Show that Ω can have only countably many distinct connected components.
 - (c) Prove that if Ω is the complement of a compact set, then Ω has only one unbounded component.
- 3. For a function $f: \mathbb{C} \to \mathbb{C}$ and a curve γ in the complex plane define the integral with respect to \bar{z} as $\int_{\gamma} f d\bar{z} = \overline{\int_{\gamma} \bar{f} dz}$. From this the line integral with respect to x and y can be defined as

$$\int_{\gamma} f dx = \frac{1}{2} \left(\int_{\gamma} f dz + \int_{\gamma} f d\bar{z} \right)$$

$$\int_{\gamma} f dy = \frac{1}{2i} \left(\int_{\gamma} f dz - \int_{\gamma} f d\bar{z} \right)$$

Check that for f = u + iv

$$\int_{\gamma} f dz = \int_{\gamma} (u dx - v dy) + i \int_{\gamma} (u dy + v dx). \tag{0.1}$$

If we instead start by defining for any $p, q : \mathbb{R}^2 \to \mathbb{R}$ and $\gamma : [a, b] \to \mathbb{R}^2$ the line integral $\int_{\gamma} p dx + q dy$ by

$$\int_{\gamma} pdx + qdy := \int_{a}^{b} p\left(x(t), y(t)\right) \cdot x'(t)dt + q\left(x(t), y(t)\right) \cdot y'(t)dt$$

1

then show that the right hand side of (0.1) gives $\int_{\gamma} f dz$.

The integral with respect to the arc length is

$$\int_{\gamma} f ds = \int_{\gamma} f |dz| := \int_{\gamma} f(z(t))|z'(t)|dt$$

With $f \equiv 1$ one gets the arc length. In this case $\int_{-\gamma} f|dz| = \int_{\gamma} f|dz|$ and

$$\left| \int_{\gamma} f dz \right| \le \int_{\gamma} |f| \cdot |dz|.$$

Show the following **Theorem**: If p and q are (possibly complex valued) continuous functions in a region Ω , then for any curve γ in Ω the line integral $\int_{\gamma} p dx + q dy$ depends only on the endpoints of γ if and only if there exists a function U(x,y) in Ω with the partial derivatives $\partial U/\partial x = p$, $\partial U/\partial y = q$.

Hint: For the only if part fix a point (x_0, y_0) and let $U(x', y') = \int_{\gamma} p dx + q dy$ for any(?) curve γ which starts at (x_0, y_0) and ends at (x', y').

Thus $\int_{\gamma} f(z)dz = \int_{\gamma} f(z)dx + i \int_{\gamma} f(z)dy$ is dependent only on the endpoints for any γ if there is a function F on Ω such that

$$\frac{\partial F(z)}{\partial x} = f(z), \quad \frac{\partial F(z)}{\partial y} = if(z).$$

Conclude then that $\int_{\gamma} f dz$ with f continuous, depends only on the endpoints of γ if and only if f is the derivative of a holomorphic function in Ω . (note that we proved only one direction in class)

- 4. These calculations provide some insight into Cauchy's theorem
 - (a) Evaluate $\int_{\gamma} z^n dz$ for all integers n. Here γ is any circle centered at the origin with positive orientation. What if γ is a circle not containing the origin?
 - (b) show that if |a| < r < |b| then

$$\int_{\gamma} \frac{dz}{(z-a)(z-b)} = \frac{2\pi i}{a-b},$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

- 5. Suppose that f is holomorphic in an open set Ω . Prove that in any one of the following cases:
 - (a) Re(f) is constant;
 - (b) Im(f) is constant;
 - (c) |f| is constant;

one can conclude that f is constant.

- 6. Suppose f is continuous in a region Ω . Prove that any two primitives of f (if they exist) differ by a constant.
- 7. [HW 1, due 5 Oct] Consider a holomorphic function f on a region Ω . Let C be a circle inside Ω whose interior is also contained in Ω . Here is another way to show that $\int_C f(z)dz = 0$.

- (a) Consider any regular polygon P_n of n sides inscribed inside the circle. Argue that $\int_{P_n} f(z)dz = 0$.
- (b) Show that $\lim_{n\to\infty} \int_{P_n} f(z)dz = \int_C f(z)dz$.
- 8. The next few exercises show how complex integration can help us compute complicated real integrals.
 - (a) [HW 2, due Oct 11] Prove

$$\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}.$$

The integral \int_0^∞ is interpreted as $\lim_{R\to\infty}\int_0^R$. HINT: Integrate e^{-z^2} from 0 to R, then along the circular arc from R to $Re^{i\pi/4}$ and then along the straight line from $Re^{i\pi/4}$ to 0.

(b) Show $\int_0^\infty \frac{\sin x}{x} = \frac{\pi}{2}$.

HINT: The integral equals $\frac{1}{2i} \int_{-\infty}^{\infty} \frac{e^{ix}-1}{x} dx$. Use the indented semicircle.

(c) [HW 2, due Oct 11] Evaluate the integrals

$$\int_0^\infty e^{-ax}\cos(bx)dx \quad \text{and} \quad \int_0^\infty e^{-ax}\sin(bx)dx, \quad a > 0$$

by integrating e^{-Ax} , $A = \sqrt{a^2 + b^2}$, over an appropriate sector with angle ω , with $\cos \omega = a/A$.

- (d) Prove that for all $\xi \in \mathbb{C}$ we have $e^{-\pi \xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{2\pi i x \xi}$.
- 9. Suppose f is continuously complex differentiable on Ω , and $T \subset \Omega$ is a triangle whose interior is also contained in Ω . Apply Green's theorem to show that $\int_T f(z)dz = 0$. this provides a proof of Goursat's theorem under the additional assumption that f'is continuous.
- 10. Show that every non-constant polynomial $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ with complex coefficients has a root in \mathbb{C} . From this conclude that P(z) has n roots w_1, w_2, \cdots, w_n and $P(z) = a_n(z - w_1)(z - w_2) \cdots (z - w_n)$.

HINT: Suppose not. Then note that $P(z)^{-1}$ is entire.

- 11. HW 3 (Due Monday 25 October) Let f be a holomorphic function on the disc D_{R_0} centered at the origin and of radius R_0 .
 - (a) Prove that whenever $0 < R < R_0$ and |z| < R, then

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\phi}) \cdot Re\left(\frac{Re^{i\phi} + z}{Re^{i\phi} - z}\right) d\phi.$$

HINT: Note that if $w = R^2/\bar{z}$, then the integral of $f(\zeta)/(\zeta - w)$ around the circle of radius R centered at the origin is 0. Use this, together with the Cauchy integral formula.

(b) Show that

$$Re\left(\frac{Re^{i\gamma}+r}{Re^{i\gamma}-r}\right) = \frac{R^2-r^2}{R^2-2Rr\cos\gamma+r^2}.$$

- 12. HW 3 (Due Monday 25 October) Say that a twice continuously differentiable real-valued function is harmonic if $\Delta u(x,y) = 0$ where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.
 - (a) If f is holomorphic in an open set Ω , then show that the real and imaginary parts of f are harmonic.
 - (b) Let u be a real-valued function defined on the unit disc \mathbb{D} . Suppose that u is twice continuously differentiable and harmonic.
 - i. Prove that there exists a holomorphic function f on \mathbb{D} such that Re(f) = u. Also show that the imaginary part of f is uniquely defined up to an additive (real) constant.

HINT: If there is such an f then $f'(z) = 2\partial u/\partial z$. Therefore, let $g(z) = 2\partial u/\partial z$ and prove that g is holomorphic. Why can one find F with F' = g? Prove that Re(f) differs from u by a real constant.

ii. Deduce from this result, and the above exercise, the Poisson integral representation formula from the Cauchy integral formula: If u is harmonic in $\mathbb D$ and continuous on its closure, then if $z=re^{i\theta}$ one has

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - \phi) u(\phi) d\phi$$

where $P_r(\gamma)$ is the Poisson kernel for the unit disc given by

$$P_r(\gamma) = \frac{1 - r^2}{1 - 2r\cos\gamma + r^2}.$$

13. Suppose f is an analytic function defined everywhere in \mathbb{C} and such that for each $z_0 \in \mathbb{C}$ at least one coefficient in the expansion

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

is equal to 0. Prove that f is a polynomial.

HINT: Use the fact that $c_n n! = f^{(n)}(z_0)$ and use a countability argument.

14. Let Ω be a bounded open subset of \mathbb{C} , and $\phi:\Omega\to\Omega$ a holomorphic function. Prove that if there exists a point $z_0\in\Omega$ such that

$$\phi(z_0) = z_0$$
 and $\phi'(z_0) = 1$

then ϕ is linear.

HINT: Why can one assume that $z_0 = 0$? Write $\phi(z) = z + a_n z^n + O(z^{n+1})$ near 0, and prove that if $\phi_k = \phi \circ \cdots \circ \phi$ (k times) then $\phi_k(z) = z + k a_n z^n + O(z^{n+1})$. Apply the Cauchy inequalities and let $k \to \infty$ to conclude the proof.

15. [HW 4, Due Wednesday 3 November] This exercise shows that one cannot always extend a holomorphic function from a smaller set to a larger one (see the seciton on Schwarz reflection principle in Stein-Shakarchi for some cases in which one can extend). The following definition is needed. Let f be a function defined in the unit disc \mathbb{D} , with boundary circle C. A point w on C is said to be regular for f if there is an open neighbourhood U of w and an analytic function g on U, so that f = g on $\mathbb{D} \cap U$. A function f defined on \mathbb{D} cannot be continued analytically past the unit circle if no point of C is regular for f.

(a) Let

$$f(z) = \sum_{n=0}^{\infty} z^{2^n}$$
 for $|z| < 1$.

Notice that the radius of convergence of the above series is 1. Show that f cannot be continued analytically past the unit disc.

HINT: Suppose $\theta = 2\pi p/2^k$, whre p and k are positive integers. Let $z = re^{i\theta}$; then $|f(re^{i\theta})| \to \infty$ as $r \to 1$.

(b) Fix $0 < \alpha < \infty$. show that the analytic function f defined by

$$f(z) = \sum_{n=0}^{\infty} 2^{-n\alpha} z^{2^n}$$
 for $|z| < 1$

extends continuously of the unit circle, but cannot be analytically continued past the unit circle.

16. [HW 4, Due Wednesday 3 November] Prove the converse to Runge's theorem: if K is a compact set whose complement is not connected, then there exists a function f holomorphic in a neighborhood of K which cannot be appromizated uniformly by polynomials on K.

HINT: Pick a point z_0 in a bounded component of K^c , and let $f(z) = 1/(z - z_0)$. If f can be approximated uniformly by polynomials on K, show that there exists a polynomial p such that $|(z - z_0)p(z) - 1| < 1$. Use the maximum modulus principle (see below) to show that this inequality continues to hold for all z in the component of K^c that contains z_0 . The maximum modulus principle (which we learn later) states that if h is a non-constant holomorphic function in a region Ω , then |h| cannot attain a maximum in Ω .

17. Using Euler's formula

$$\sin \pi z = \frac{e^{i\pi z} - e^{-i\pi z}}{2i}$$

show that the complex zeroes of $\sin \pi z$ are exactly at the integers, and that they are each of order 1.

Calculate the residue of $\frac{1}{\sin \pi z}$ at $z = n \in \mathbf{Z}$.

18. [HW 5, Due Monday 15 November] Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{dx}{1 + x^4}.$$

19. [HW 5, Due Monday 15 November] Show that

$$\int_{-\infty}^{\infty} \frac{\cos x \, dx}{x^2 + a^2} = \frac{\pi e^{-a}}{a}, \quad \text{for all } a > 0.$$

20. [HW 5, Due Monday 15 November] Prove that

$$\int_0^{2\pi} \frac{d\theta}{(a+\cos\theta)^2} = \frac{2\pi a}{(a^2-1)^{3/2}}, \qquad \text{whenever } a>1.$$

21. (HW 6, Due Monday 22 November) Morera's theorem states that if f is continuous in \mathbb{C} , and $\int_T f(z)dz = 0$ for all triangles T, then f is holomorphic in \mathbb{C} . We may ask if the conclusion still holds if we replace triangles by other sets.

(a) Suppose that f is continuous on \mathbb{C} , and

as well as

$$\int_C f(z)dz = 0 \tag{0.2}$$

for every circle C. Prove that f is holomorphic.

(b) More generally, let Γ be any toy contour, and \mathcal{F} the collection of all translates and dilates of Γ . Show that if f is continuous on \mathbb{C} , and

$$\int_{\gamma} f(z)dz = 0 \qquad \text{for all } \gamma \in \mathcal{F}$$

then f is holomorphic. In particular, Morera's theorem holds under the weaker assumption that $\int_T f(z)dz = 0$ for all equilateral triangles.

[HINT (for part (a)): As a first step, assume that f is twice real differentiable, and write $f(z) = f(z_0) + a(z - z_0) + b(\overline{z - z_0}) + O(|z - z_0|^2)$ for z near z_0 . Integrate this expression over small circles around z_0 to conclude $\partial f/\partial \overline{z} = b = 0$ at z_0 . Alternatively, suppose only that f is differentiable and apply Green's theorem to conclude that the real and imaginary parts of f satisfy the Cauchy-Riemann equations. In general, let $\phi(w) = \phi(x,y)$ (when w = x + iy) denote a smooth function with $0 \le \phi(w) \le 1$, and $\int_{\mathbb{R}^2} \phi(w) dV(w) = 1$, wehre dV(w) = dxdy, and \int denotes the usual integral of a function of two variables in \mathbb{R}^2 . For each $\epsilon > 0$, let $\phi_{\epsilon}(z) = \epsilon^{-2}\phi(\epsilon^{-1}z)$,

$$f_{\epsilon}(z) = \int_{\mathbb{R}^2} f(z-w)\phi_{\epsilon}(w)dV(w),$$

where the integral denotes the usual integral of functions of two variables, with dV(w) the area element of \mathbb{R}^2 . Then f_{ϵ} is smooth, satisfies condition (0.2), and $f_{\epsilon} \to f$ uniformly on any compact subset of \mathbb{C} .

22. [HW 7, due Saturday Dec 4] Suppose f(z) is holomorphic in a punctured disc $D_r(z_0) - \{z_0\}$. Suppose also that

$$|f(z)| \le A|z - z_0|^{-1 + \epsilon}$$

for some $\epsilon > 0$, and all z near z_0 . Show that the singularity of f at z_0 is removable.

- 23. Use the Cauchy inequalities or the maximum modulus principle to solve the following problems.
 - (a) Prove that if f is an entire function that satisfies

$$\sup_{|z|=R} |f(z)| \le AR^k + B$$

for all R > 0, and for some integer $k \ge 0$ and some constants A, B > 0, then f is a polynomial of degree $\le k$.

- (b) Show that if f is holomorphic in the unit disc, is bounded, and converges uniformly to zero in the sector $\theta < argz < \phi$ as $|z| \to 1$, then f = 0.
- (c) Let $w_1, w_2, \dots w_n$ be points on the unit circle in the complex plane. Prove that there exists a point z on the unit circle such that the product of the distances from z to the points $w_j, 1 \leq j \leq n$, is at least 1. Conclude that there exists a point w on the unit circle such that the product of the distances from w to the points $w_j, 1 \leq j \leq n$, is exactly equal to 1.

- (d) Show that if the real part of an entire function f is bounded, then f is constant.
- 24. [HW 7, due Saturday Dec 4] Suppose f and g are holomorphic in a region containing the disc $\{|z| \le 1\}$. Suppose that f has a simple zero at z = 0 and vanishes nowhere else in $\{|z| \le 1\}$. Let

$$f_{\epsilon}(z) = f(z) + \epsilon g(z).$$

Show that if ϵ is sufficiently small, then

- (a) $f_{\epsilon}(z)$ has a uniques zero in $\{|z| \leq 1\}$, and
- (b) If z_{ϵ} is this zero, the mapping $\epsilon \mapsto z_{\epsilon}$ is continuous.
- 25. Give another proof of the Cauchy integral formula

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

using homotopy of curves.

HINT: Deform the circle C to a small circle centered at z, and note that the quotient $(f(\zeta) - f(z))/(\zeta - z)$ is bounded.

- 26. Prove the maximum principle for harmonic functions, that is:
 - (a) If u is a non-constant real-valued harmonic function in a region Ω , then u cannot attain a maximum (or minimum) in Ω .
 - (b) Suppose that Ω is a region with compact closure $\bar{\Omega}$. If u is harmonic in Ω and continuous in $\bar{\Omega}$, then

$$\sup_{z \in \Omega} |u(z)| \le \sup_{z \in \bar{\Omega} - \Omega} |u(z)|.$$

HINT: To prove the first part, assume that u attains a local maximum at z_0 . Let f be holomorphic near z_0 with u = Re(f), and show that f is not open.

27. Prove that all entire functions that are also injetive take the form f(z) = az + b with $a, b \in \mathbb{C}$, and $a \neq 0$.

HINT: Apply the Casorati-Weierstrass theorem to f(1/z).

28. Let f be non-constant and holomorphic in an open set containing the closed unit disc. Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

HINT: One must show that $f(z) = w_0$ has a root for every $w_0 \in \mathbb{D}$. To do this, it suffices to show that f(z) = 0 has a root (why?). Use the maximum modulus principle to conclude.

29. [HW 8, due Dec 13] This exercise is borrowed from Chapter 4, Section 2 of Ahlfors. You can consult that section. There is no need to prove parts (a) and (d) below since the proofs are already there in the book.

For a curve γ define

$$n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

to be the index of the point a with respect to the curve γ . It is also called the winding number of γ with respect to a.

(a) (Lemma 1:) If the piecewise differentiable closed (not necessarily simple) curve γ does not pass through the point a, then the value of the integral

$$\int_{\gamma} \frac{dz}{z - a}$$

is a multiple of $2\pi i$. In particular $n(\gamma, a)$ is an integer. For example if γ goes around the circle $C_r(0)$ twice then $n(\gamma,0)=2$ (the number of times γ winds around 0 is 2.)

Look at the proof in Ahlfors, no need to reproduce it here.

- (b) Show that if γ lies inside of a circle then $n(\gamma, a) = 0$ for all points a outside of
- (c) Show that as a function of a the index $n(\gamma, a)$ is constant in each of the regions determined by γ , and zero in the unbounded region.
- (d) (Lemma 2:) Let z_1, z_2 be two points on a closed curve γ which does not pass through the origin. Denote the subarc from z_1 to z_2 in the direction of the curve by γ_1 , and the subarc from z_2 to z_1 by γ_2 . Suppose that z_1 lies in the lower half plane and z_2 in the upper half plane. If γ_1 does not meet the negative real axis and γ_2 does not meet the positive real axis, then $n(\gamma,0)=1$.
 - Look at the proof in Ahlfors, no need to reproduce it here.
- (e) Give an alternate proof of Lemma 1 by dividing γ into a finite number of subarcs such that there exists a single-valued branch of $\arg(z-a)$ on each subarc. Pay particular attention to the compactness argument that is needed to prove the existence of such a subdivision.
- (f) It is possible to define $n(\gamma, a)$ for any continuous closed curve γ that does not pass through a, whether piecewise differentiable or not. For this purpose γ is divided into subarcs $\gamma_1, \gamma_2, \cdots, \gamma_n$, each contained in a circular disc that does not include a. Let σ_k be the directed line segment from the initial to the terminal point of γ_k , and set $\sigma = \sigma_1 + \cdots + \sigma_n$. We define $n(\gamma, a)$ to be the value $n(\sigma, a)$. To justify the definition, prove the following.
 - i. The result is independent of the subdivisions.
 - ii. If γ is piecewise differentiable the new definition is equivalent to the old.
 - iii. The properties (b) and (c) continue to hold.
- (g) The Jordan curve theorem asserts that every Jordan curve in the plane determines exactly two regions. The notion of winding number leads to a quick proof of one part of the theorem, namely that the complement of a Jordan curve γ has at least two components. This will be so if there exists a point a with $n(\gamma, a) \neq 0$.

We may assume that Re(z) > 0 on γ , and that there are points $z_1, z_2 \in \gamma$ with $Imz_1 < 0$, $Imz_2 > 0$. These points may be chosen so that there are no other points of γ on the line segments from 0 to z_1 and from 0 to z_2 . Let γ_1 and γ_2 be the arcs of γ from z_1 to z_2 (excluding the end points).

Let σ_1 be the closed curve that consists of the line segment from 0 to z_1 followed by γ_1 and the segment from z_2 to 0, and let σ_2 be constructed in the same way with γ_2 in the place of γ_1 . Then $\sigma_1 - \sigma_2 = \pm \gamma$.

The positive real axis intersects both γ_1 and γ_2 (why?). Choose the notation so that the intersection x_2 farthest to the right is with γ_2 . Prove the following

- i. $n(\sigma_1, x_2) = 0$, hence $n(\sigma_1, z) = 0$ for $z \in \gamma_2$.
- ii. $n(\sigma_1, x) = n(\sigma_2, x) = 1$ for small x > 0 (see Lemma 2).
- iii. the first intersection x_1 of the positive real axis with γ lies on γ_1 .
- iv. $n(\sigma_2, x_1) = 1$, hence $n(\sigma_2, z) = 1$ for $z \in \gamma_1$.
- v. there exists a segment of the positive real axis with one end point on γ_1 , the other on γ_2 , and no other points on γ . The points x between the end points satisfy $n(\gamma, x) = \pm 1$.
- 30. [HW 9, due Dec 24] Let t > 0 be given and fixed, and define F(z) by

$$F(z) = \prod_{n=1}^{\infty} (1 - e^{-2\pi nt} e^{2\pi i z}).$$

- (a) Show that the product defines an entire function of z.
- (b) Show that $|F(z)| \leq Ae^{a|z|^2}$, hence F is of order 2.
- (c) F vanishes exactly when z=-int+m for $n\geq 1$ and n,m integers. Then, if z_n is an enumeration of these zeros we have

$$\sum \frac{1}{|z_n|^2} = \infty \quad \text{but} \quad \sum \frac{1}{|z_n|^{2+\epsilon}} < \infty.$$

HINT: To prove (b), write $F(z) = F_1(z)F_2(z)$ where

$$F_1(z) = \prod_{n=1}^{N} (1 - e^{-2\pi nt} e^{2\pi i z})$$
 and $F_1(z) = \prod_{n=N+1}^{\infty} (1 - e^{-2\pi nt} e^{2\pi i z})$.

Choose $N \approx c|z|$ for c appropriately large.

31. [HW 9, due Dec 24] The pseudo-hyperbolic distance between two points $z, w \in \mathbb{D}$ is defined by

$$\rho(z,w) = \left| \frac{z - w}{1 - \bar{w}z} \right|.$$

(a) Prove that if $f: \mathbb{D} \to \mathbb{D}$ is holomorphic, then

$$\rho(f(z), f(w)) \le \rho(z, w)$$
 for all $z, w \in \mathbb{D}$. (0.3)

Moreover, prove that if f is an automorphism of $\mathbb D$ then f preserves the pseudo-hyperbolic distance

$$\rho(f(z), f(w)) = \rho(z, w)$$
 for all $z, w \in \mathbb{D}$.

HINT: Consider the automorphism $\psi_{\alpha}(z) = (z - \alpha)/(1 - \bar{\alpha}z)$ and apply the Schwarz lemma to $\psi_{f(w)} \circ f \circ \psi_w^{-1}$.

(b) Prove that if $f: \mathbb{D} \to \mathbb{D}$ is holomorphic then

$$\frac{|f'(z)|}{1-|f(z)|^2} \le \frac{1}{1-|z|^2} \quad \text{for all } z \in \mathbb{D}.$$

HINT: Take $w \to z$ in (0.3)