02-24-00201 Probability and Statistics II

DR. AHMED TAYEL

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University

ahmed.tayel@alexu.edu.eg

What is a random variable

2.1 Introduction

What is a random variable (RV)

• Depends on the outcome of a random experiment

• It takes different <u>numerical</u> values

Examples

Heart rate

Queue length

Call duration

Life time

From random experiment to RV's

Example

A coin is tossed twice and the appearing sides are observed. Let X be the number of appearing heads.

Find the possible values of X and the probability of each value.

From random experiment to RV's (Cont'd)

Example

A die is thrown twice.

Let X denotes the sum of the appearing numbers.

Find the possible values of X and the probability of each value.

X	2	3	 12
P(X = x)	1/36	2/36	1/36
	V		

Expectation and variance

Introduction to expectation

Example

A class of 100 students with ages ranging from 20 to 24 years old.

A record of the ages of students is introduced in the following table.

	A				
Age (x)	20	21	22	23	24
Number of students	5	20	50	15	10
P _X (x)	5/100	20/100	50/100	15/100	10/100

Q: How to average these numbers?

Motivation

Sum the ages of all students and divide by the number of students

$$\frac{20*5+21*20+22*50+23*15+24*10}{100}$$

The average of X may be computed as follows:

$$20 \times (5/100) + 21 \times (20/100) + (22) \times (50/100) + 23 \times (15/100) + 24 \times (10/100) = 22.05$$

Expectation or mean (E(X), μ_X)

$$E(X) = \sum_{x} x \, P_X(x)$$

Definition

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$E(a X + b) = a E(X) + b$$

What does E(X) represent?

- A weighted sum of the RV values.
- The average value of the RV over the long run.
- The *balancing point* of the PMF.

measure to the Control tendency

Variance

Definition

$$Var(X) = E(X - \mu_X^{\prime})^2$$

you near

Variance is a measure of dispersion

General property

$$Var(a)X + b) = a^2 Var(X) +$$

Standard deviation

$$\sigma_{\mathsf{X}} = \sqrt{\mathsf{Var}(\mathsf{X})}$$

Moment generating function

Introduction

For a random variable X (discrete or continuous)

- The mean: E(X)
- The variance: $E(X^2) E(X)^2$

• We need to calculate E(X), $E(X^2)$,, $E(X^n)$,

2nd moment

nth moment

• Moment generating function (MGF): $M_X(t)$

1st moment

Definition

Definition

$$M_X(t) = E(e^{tX})$$

Discrete

Continuous

$$E(X) = \left[\frac{d}{dt} M_X(t)\right]_{t=0}$$

$$E(X^2) = \left[\frac{d^2}{dt^2} M_X(t)\right]_{t=0}$$

$$E(X^n) = \left[\frac{d^n}{dt^n} M_X(t)\right]$$

MGF for important RV's

Binomial(n, p)
$$(1-p+pe^t)^n$$

Geometric(p) $\frac{pe^t}{1-(1-p)e^t}$
Poisson(λ) $e^{\lambda(e^t-1)}$
Uniform(a, b) $\frac{e^{bt}-e^{at}}{t(b-a)}$
Exponential(λ) $\frac{\lambda}{\lambda-t}$
 $N(\mu,\sigma^2)$ $e^{t\mu+\frac{1}{2}t^2\sigma^2}$

Multiple random variables

3.1 Introduction

- ➤ No of packets
- Destination

- > Transmitted signal
- > Received signal

- Waiting time
- ➤ Queue length

Mixed

Marginal PMF's/PDF's

Independence

X and Y are independent if $f(x, y) = f_X(x) f_Y(y)$, for all x and y.

Definition: i.i.d. random variables.

Independent and identically distributed

Expectations

Properties

(1)
$$E(X + Y) = E(X) + E(Y)$$
,
 $E(X - Y) = E(X) - E(Y)$.
(2) If X and Y are *independent*,

Variance

For independent random variables X and Y, the variance of their sum or difference is the sum of their variances

$$\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$$
 $\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2$

Variances are added for both the sum *and* difference of two independent random variables because the variation in each variable contributes to the variation in each case

The Normal distribution

Normal (Gaussian) random variable

From http://en.wikipedia.org

Standard normal (Gaussian) RV

$$Z \sim N(0,1)$$
 $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, -\infty < z < \infty$

	CE	
(CD	

$$\phi(\mathbf{z}) = \int_{-\infty}^{z} f_{z}(t)dt$$

$\phi(0) =$	0.5
-------------	-----

$$\phi(-\infty) = \mathcal{O}$$

$$\phi(\infty) =$$

$$\phi(-2) =$$

$$\phi(-2) = P(772) = 1 - P(752) = 1 - \varphi(2)$$

X	
(x)	
60	

	Z	φ(z)
/)	0.00	0.5000
\	0.01	0.5040
	0.02	0.5080
	2.99	0.9986

$$-\Psi(2)$$

Example

Compute

(a)
$$P(Z < 1) = \varphi^{(1)}$$

(b)
$$P(Z > 2) = 1 - \varphi(2)$$

(c)
$$P(1.5 < Z < 2.2) = \varphi(2.2) - \varphi(1.5)$$

(d)
$$P(Z < -1) = P(Z > 1) = 1 - P(Z < 1)$$

= 1 - $CP(1)$

$$X \sim N (\mu, \sigma^2)$$
 $\frac{X - \mu}{\sigma} \sim N(0, 1)$