S.N. 09/920,740

6

3

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1 1 (Currently Amended). A method of protecting a document check, which 2 will be transformed into a value bearing instrument after adding additional 3 markings to the document check, from fraudulent alteration of the 4 markings comprising the steps of: 5 generating encryptions of a unique identifier X of the document, 6 the unique identifier X being check data including a bank ID, an account 7 ID number and a check number printed on the document check, the 8 encryptions being $\operatorname{Sign}_{k,0}(X)$, where $\operatorname{Sign}_{k,0}(X)$ is a cryptographic function 9 or family thereof which is known only to an institution which issues the 10 check, Sign_{t o}(X) being used to authenticate the check; and covering each critical field k, k=1,2,3..., of the document check 11 12 where markings are to be added with encrypted versions of $X \operatorname{Sign}_{t-n}(X)$, 13 where Sign_{t-a}(X) is a family of eryptographic functions which is known 14 only to an institution which issues the document, Sign, o(X) being used to 15 authenticate the document a large number of lines of fine print, the lines of 16 fine print comprising the cryptographic function Sign, the critical fields k 17 including a date field, a payee field, amount fields, a payer's signature field, and an endorser's field. 18 2 (Canceled). 1 3 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim 2 1, wherein each critical field k of

3 the document, in addition to being covered by the encrypted version of X,

4 $\operatorname{Sign}_{k,n}(X)$, is covered with another encrypted version of X, $\operatorname{Sign}_{k}(X)$,

5 where $Sign_k(X)$ is another cryptographic function or family thereof

different from the cryptographic function $Sign_{k,0}(X)$ which is known to a

7 larger number of authorized institutions for performing an initial

S.N. 09/920,740

5

4

8 authentication of the document check. 4 (Canceled). 1 5 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim 3, wherein each critical field k of the 3 document check, in addition to being covered by encrypted versions of X, 4 $\operatorname{Sign}_{k}(X)$ and $\operatorname{Sign}_{k,0}(X)$, is covered with a third encrypted version of X, 5 $Sec_k(X)$, where $Sec_k(X)$ is another cryptographic function or family thereof different from the cryptographic functions $Sign_{k,0}(X)$ and $Sign_k(X)$ which is 6 7 known to a small group within the institution which issues the document 8 check for performing final authentication of the document check. 1 6 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim 5, further comprising the step of 3 indexing the cryptographic functions Sign_k, Sign_{k0} and Sec_k, by a number 4 corresponding to the field k, so that each line comprises different 5 encryptions of X such that each cryptographic function $Sign_{\iota}(X)$, 6 $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sec}_{k}(X)$ is a family of different cryptographic functions. 1 7 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim 6, wherein the families of 3 cryptographic functions Sign_k, Sign_{k0} and Sec_k prevent cryptographic 4 functions which have been obscured at different places by marks added to 5 the document check from being used to reconstitute the full cryptographic 6 function. 1 8 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim 1, wherein electronic deposit of a 3 document check transformed into a value bearing instrument comprises the 4 steps of:

scanning the document check with a scanner to generate a digitized

6 version of the document check; and 7 transmitting the digitized version of the document check for 8 deposit. 1 9 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim 8, wherein electronic deposit of a 3 document check transformed into a value bearing instrument further 4 comprises the step of endorsing the document check, if needed, having 5 printed thereon encryptions in at least selected locations where markings 6 are added to transform the document check into a value bearing 7 instrument, the act of endorsing obscuring some of the encryptions. 1 10 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim $\frac{8}{5}$, wherein electronic deposit of a 3 document transformed into a value bearing instrument further comprises 4 the steps of: 5 generating a digitized version of the check in at least selected 6 locations where markings are added to transform the check into a value 7 bearing instrument; 8 extracting from the digitized version of the document check the 9 unique identifier X and a corresponding digital encryption of X, $Sign_k(X)$, 10 which is known to a large number of authorized institutions; and 11 comparing a decrypted version of Sign_k(X) to the unique identifier 12 X as an initial authentication of the document check. 1 11 (Currently Amended). The method of protecting a document check 2 from fraudulent alteration recited in claim 10, wherein electronic deposit 3 of a document transformed into a value bearing instrument further 4 comprises the steps of: 5 extracting from the digitized version of the document check the 6 unique identifier X and a corresponding digital encryption of X, Sign_{k 0}(X), 7 which is known only to an institution that issues the document check; and

8 comparing a decrypted version of $Sign_{k,0}(X)$ to the unique identifier 9 X as a further authentication of the document check. 12 (Currently Amended). The method of protecting a document check 1 2 from fraudulent alteration recited in claim 11, wherein electronic deposit of a document transformed into a value bearing instrument further 3 4 comprises the steps of: extracting from the digitized version of the document check the 5 unique identifier X and a corresponding digital encryption of X, $Sec_k(X)$, 6 7 which is known to a small group within the institution that issues the 8 document check; and 9 comparing a decrypted version of Sec_k(X) to the unique identifier X as a final authentication of the document check. 10 13 (Currently Amended). The method of protecting a document check 1 2 from fraudulent alteration recited in claim 1, wherein portions of the lines 3 of fine print are obscured by writing added to the document check when transforming the document check into a value bearing instrument. 4 14 (Canceled). 15 (Currently Amended). The method of protecting a document check 1 2 from fraudulent alteration recited in claim 14 1, wherein an issuing bank chooses a first secret key Sign, using a secure cryptographic generator 3 (SCG), further comprising the steps of: 4 computing a the first family of encrypted functions Sign_k(X); and 5 communicating the key Sign, to banks and other authorized 6 institutions involved in depositing of checks, the family of encrypted 7 functions Sign_k(X) allowing the payee's bank to perform a first 8 9 authentication of the check.

Docket: YOR920000722US1 (00280672AA) S.N. 09/920,740

1	16 (Currently Amended). The method of protecting a document check
2	from fraudulent alteration recited in claim 15, wherein an issuing bank
3	chooses a second secret key Sign _{k,0} using a SCG, further comprising the
4	steps of:
5	computing a the second family of encrypted functions $Sign_{k,0}(X)$,
6	key Sign _{k,0} remaining the exclusive property of the issuing bank; and
7	using SCGs, communicating the key Sign _{k,0} to all branches of the
8	issuing bank where check clearing is done, the family of encrypted
9	functions $Sign_{k,0}(X)$ being used exclusively by the issuing bank and
10	branches involved in the clearing of checks.
1	17 (Currently Amended). The method of protecting a document check
2	from fraudulent alteration recited in claim 16, wherein an issuing bank
3	chooses a third secret key Seck which is exclusively known to a small
4	group within the issuing bank, further comprising the step of computing a
5	the third family of encrypted functions $Sec_k(X)$, the secret key Sec_k being
6	used by the issuing bank as final instrument to verify the check.
1	18 (Currently Amended). The method of protecting a document check
2	from fraudulent alteration recited in claim 14 1, wherein the check is
3	deposited by a payee electronically from a location remote from a bank or
4	Automatic Teller Machine (ATM).
1	19 (Currently Amended). The method of protecting a document check
2	from fraudulent alteration recited in claim 14 5, wherein electronic deposit
3	of the check by a payee comprises the steps of:
4	endorsing the check having printed thereon encryptions in at least
5	selected locations where information is written by a payer, the act of
6	endorsing by the payee obscuring some of the encryptions;
7	scanning the endorsed check with a scanner to generate a digitized
8	version of the check;
9	transmitting the digitized version of the check for deposit to the

10 payee's bank. 1 20 (Currently Amended). The method of protecting a document check from 2 fraudulent alteration recited in claim 19, wherein electronic deposit of the 3 check by a payee comprises the steps of: extracting by the payee's bank from the digitized version of the 4 5 check the unique identifier X and a corresponding digital encryption of X, $Sign_k(X)$, which is known to a large number of authorized institutions 6 7 including the payee's bank; and 8 comparing by the payee's bank a decrypted version of $Sign_t(X)$ to 9 the unique identifier X as an initial authentication of the check. 21 (Currently Amended). The method of protecting a document check 1 2 from fraudulent alteration recited in claim 20, wherein electronic deposit of the check further comprises the steps of: 3 extracting from the digitized version of the check the unique 4 5 identifier X and a corresponding digital encryption of X, $Sign_{k,0}(X)$, which 6 is known only to a bank that issues the check; and comparing by the payor's bank a decrypted version of $Sign_{k,0}(X)$ to 7 the unique identifier X as a further authentication of the check. 8 22 (Currently Amended). The method of protecting a document check 1 from fraudulent alteration recited in claim 21, wherein electronic deposit 2 3 of the check further comprises the steps of: extracting from the digitized version of the check the unique 4 5 identifier X and a corresponding digital encryption of X, Sec_k(X), which is known to a small group within the bank that issues the check; and 6 comparing a decrypted version of Sec_k(X) to the unique identifier X 7 8 as a final authentication of the check. 23 (Currently Amended). The method of protecting a document check 1 2 from fraudulent alteration recited in claim 19, further comprising the step

S.N. 09/920,740

7

9

3 of accessing a database by the payee's bank where the unique identifier X 4 and first encrypted function Sign_k(X) is registered to determine whether the 5 check has been previously presented for deposit. 1 24 (Currently Amended). The method of protecting a document check 2 from fraudulent alteration recited in claim 19, further comprising the step 3 of registering a check to be deposited by the payee with an a secure 4 <u>cryptgraphic generator</u> (SCG) to prevent multiple deposits. 1 25 (Currently Amended). A document check protecting against fraudulent 2 alteration of markings added to the document check to transform the 3 document check into a value bearing instrument, the document check 4 having printed thereon a unique identifier X, the unique identifier 5 including a bank ID, an account ID number and a check number, the check 6 further having critical fields k, k=1,2,3..., the critical fields including a date 7 field, a payee field, amount fields, a payer's field, and an endorser's field, 8 and covering each critical field k, k=1,2,3..., being covered a large number 9 of lines of fine print comprising where markings are added to the 10 document encrypted versions a the unique identifier X printed on the 11 document, $Sign_{\iota_0}(X)$, where $Sign_{\iota_0}(X)$ is a cryptographic function or family 12 thereof which is known only to an institution which issues the document, 13 $Sign_{k0}(X)$ being used to authenticate the document. 26 (Canceled). 1 27 (Currently Amended). The document check recited in claim 26 25, 2 wherein each critical field k of the document check, in addition to being 3 covered by encrypted versions of X, $Sign_{10}(X)$, is covered with another 4 encrypted version of X, $Sign_k(X)$, where $Sign_k(X)$ is another cryptographic 5 function or family thereof different from the cryptographic function 6 $\operatorname{Sign}_{k,0}(X)$ which is known to a larger number of authorized institutions for

performing an initial authentication of the document.

- 1 28 (Currently Amended). The document check recited in claim 27, wherein 2 each critical field k of the document check, in addition to being covered by 3 encrypted versions of X, $Sign_{k,0}(X)$ and $Sign_{k}(X)$, is covered with a third 4 encrypted version of X, Sec_k(X) is another cryptographic function or family thereof different from the cryptographic functions $Sign_{k,0}(X)$ and 5 6 $Sign_{\iota}(X)$ which is known to a small group within the institution which 7 issues the document for performing final authentication of the document. 1 29 (Currently Amended). The document check recited in claim 28, wherein 2 the cryptographic functions Sign_k, Sign_{k0} and Sec_k, are indexed by a 3 number corresponding to the field k, so that each line comprises different 4 encryptions of X such that each cryptographic function $Sign_{\iota}(X)$, 5 $\operatorname{Sign}_{k,0}(X)$, $\operatorname{Sec}_k(X)$ is a family of different cryptographic functions. 6 30 (Currently Amended). The document check recited in claim 29, wherein 7 the act of adding markings to the document check to transform the 8 document check into a value bearing instrument obscures some of the 9 encryptions, the families of different cryptographic functions preventing 10 cryptographic functions which have been obscured at different places from being used to reconstitute the full cryptographic function. 11 31 (Canceled). 1 32 (Currently Amended). The document check recited in claim 3+ 25, 2 wherein the act of adding markings to the check to transform the document into a value bearing instrument obscures some of the encryptions 3 33 (Canceled).
- 1 34 (Currently Amended). The document check recited in claim 33 32,
- wherein each critical field k of the document check, in addition to being

- 3 covered by encrypted versions of X, $Sign_{k0}(X)$, is covered with another 4 encrypted version of X, Sign_k(X), where Sign_k(X) is another cryptographic 5 function or family thereof different from the cryptographic function 6 $Sign_{k,0}(X)$ which is known to a larger number of authorized banks and 7 institutions for performing an initial authentication of the check. 1 35 (Currently Amended). The document check recited in claim 34, wherein 2 each critical field k of the document check, in addition to being covered by 3 encrypted versions of X, $Sign_{k,0}(X)$ and $Sign_k(X)$, is covered with a third 4 encrypted version of X, $Sec_{\iota}(X)$ is another cryptographic function or 5 family thereof different from the cryptographic functions $Sign_{k,0}(X)$ and 6 Sign_k(X) which is known to a small group within the bank or institution 7 which issues the check for performing final authentication of the check. 1 36 (Currently Amended). The document check recited in claim 35, wherein 2 the encrypted function $Sign_k(X)$ are is communicated to banks and other 3 authorized institutions involved in depositing checks and the encrypted 4 function Sign_t(X) allows the payee's bank to perform a first authentication 5 of the check. 1 37 (Currently Amended). The document check recited in claim 36, wherein 2 key Sign_{k,0} remains the exclusive property of the issuing bank and the 3 encrypted function $Sign_{k,0}(X)$ is used exclusively by the issuing bank and 4 branches involved in the clearing of checks. 1 38 (Currently Amended). The document check recited in claim 37, wherein 2 secret key Sec, is exclusively known to the issuing bank and the encrypted 3 function $Sec_k(X)$ is used by the issuing bank as a final instrument to verify 4 the check. 1 39 (New). An apparatus for protecting a check, which will be transformed
- 2 into a value bearing instrument after adding additional markings to the

3 check, from fraudulent alteration of the markings comprising: 4 printing means for printing checks having printed thereon a unique 5 identifier X, the unique identifier including a bank ID, an account ID number and a check number, the check further having critical fields k, 6 7 k=1,2,3..., the critical fields including a date field, a payee field, amount 8 fields, a payer's field, and an endorser's field, and each critical field k, 9 k=1,2,3..., being covered a large number of lines of fine print comprising 10 encrypted versions a the unique identifier X printed on the document, 11 $\operatorname{Sign}_{k0}(X)$, where $\operatorname{Sign}_{k0}(X)$ is a cryptographic function or family thereof 12 which is known only to an institution which issues the document: 13 digitizing means for generating a digitized version of the check in 14 at least selected locations where markings are added to transform the check 15 into a value bearing instrument; 16 first extracting means for extracting from the digitized version of 17 the document the unique identifier X and a corresponding digital 18 encryption of X, Sign_k(X), which is known to a large number of authorized 19 institutions; and 20 first comparing means for comparing a decrypted version of 21 $Sign_{k}(X)$ to the unique identifier X as an initial authentication of the 22 document. 1 40 (New). The apparatus recited in claim 39, wherein each critical field of the check, in addition to being covered by the encrypted version of X, 2 3 $Sign_{k,0}(X)$, is covered by another encrypted version of X, $Sign_k(X)$, where 4 $Sign_{k0}(X)$ being used to authenticate the document, $Sign_k(X)$, where 5 $Sign_{t}(X)$ is another cryptographic function or family thereof different from 6 the cryptographic function $Sign_{k,0}(X)$ which is known to a larger number of 7 authorized institutions for performing an initial authentication of the 8 check, further comprising: 9 second extracting means for extracting from the digitized version 10 of the document the unique identifier X and the corresponding digital 11 encryption of X, $Sign_{k,0}(X)$, which is known only to an institution that

S.N. 09/920,740

12 issues the document; and 13 second comparing means for comparing a decrypted version of 14 $\operatorname{Sign}_{k,0}(X)$ to the unique identifier X as a further authentication of the 15 document. 1 41 (New). The apparatus of claim 40, wherein each critical field k of the 2 check, in addition to being covered by the encrypted versions of X, 3 $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sign}_k(X)$, is covered with another encrypted version of X, and $Sec_{k}(X)$, where $Sec_{k}(X)$ is another cryptographic function or family 4 5 thereof different from the cryptographic functions $Sign_{k,0}(X)$ and $Sign_{k}(X)$ 6 and which is known to a small group within the institution which issues 7 the document for performing final authentication of the check, further 8 comprising: 9 third extracting means for extracting from the digitized version of 10 the document the unique identifier X and a corresponding digital 11 encryption of X, $Sec_{k}(X)$, which is known to a small group within the institution that issues the document; and 12 13 third comparing means for comparing a decrypted version of 14 $Sec_{\iota}(X)$ to the unique identifier X as a final authentication of the 15 document. 1 42 (New). The apparatus of 41, wherein the cryptographic functions Sign_k, 2 Sign_{k 0} and Sec_k, are indexed by a number corresponding to the field k, so 3 that each line comprises different encryptions of X such that each 4 cryptographic functions $Sign_k(X)$, $Sign_{k,0}(X)$ and $Sec_k(X)$ are families of 5 different cryptographic functions, wherein the families of cryptographic 6 functions Sign_k, Sign_k and Sec_k prevent cryptographic functions which 7 have been obscured at different places by marks added to the check from 8 being used to reconstitute the full cryptographic function. 43 (New). The apparatus recited in claim 41, further comprising one or 1 2 more secure cryptographic generators (SCGs) for computing the first

S.N. 09/920,740

14

family of encrypted functions $Sign_k(X)$, the second family of encrypted

- functions $Sign_{k,0}(X)$, and the third family of encrypted functions $Sec_k(X)$.
- 5 44 (New). The apparatus recited in claim 39, further comprising a database
- where the unique identifier X and first encrypted function $Sign_k(X)$ is
- 7 registered, said database being accessed by the payee's bank to determine
- 8 whether the check has been previously presented for deposit.