

Arrangement

Introduction

Junhui DENG

deng@tsinghua.edu.cn

k-Flat

 \diamondsuit The affine hull of k + 1 affinely independent points is called a k-flat

0-flat: point

1-flat: line

2-flat: plane

. . .

(d-1)-flat: hyperplane

d-flat: \(\mathcal{E}^d \)

(-1)-flat: defined as the empty set \varnothing

Vertical Flat

❖ A line is called vertical

if

it is parallel to the x_d -axis

❖ A k-flat is called vertical

if

it contains a vertical line

Hyperplane

$$\bullet$$
 h(N, δ) = { $x \in \mathcal{E}^d \mid N^T x = \delta$ } where

N is a normalized vector in \mathcal{E}^d , and

$$\delta \in R$$

a (d - 1)-dimensional Euclidean space

e.g., lines in the plane, or

Non-vertical Hyperplane

 $h \subset \mathcal{E}^d$ is not vertical iff

there exist d reals $[\eta_1, \ldots, \eta_d] \in R$ s.t.

$$h = \{ x = (x_1, ..., x_d)^T \mid x_d = \eta_1 x_1 + ... + \eta_{d-1} x_{d-1} + \eta_d \}$$

Upper/Lower Halfspaces

- ❖ Let h be a non-vertical hyperplane in E^d
- $p = (x_1, \ldots, x_d)^T$ is called to lie

above/on/below h if

$$x_d > / \equiv / < \eta_1 x_1 + ... + \eta_{d-1} x_{d-1} + \eta_d,$$

is called the upper/lower halfspace defined by h

X^d

Arrangement

- \clubsuit Let S be a finite collection of geometric objects in $\mathcal{R}^{\!\scriptscriptstyle d}$
 - e.g. hyperplanes or spheres
- \star The arrangement A(S) is

the decomposition of \mathcal{R}^d induced by S where

each maximal connected open set is called a cell

A k-cell is a cell of dimension k, for k = 0, 1, ..., d

❖ The closure of a k-cell of A(H) is called a k-face

Arrangement of Hyperplanes

 \clubsuit Let A(H) be an arrangement of n hyperplanes in \mathcal{E}^{d}

2-face (facet in space)

- ❖ Each k-face of A(H) is
 - a maximal connected set of points

lying in the intersection of at least

d-k hyperplanes (i.e. a k-flat) of H

 \Rightarrow If (k-1)-face f \subset k-face g, we say

f is a subface of g and

there is an incidence between f and g

1-face / edge
(facet in plane)

0-face / vertex