2D Matrices

TABLE OF CONTENTS

- 1. Search in row-wise & column-wise sorted 2D array
- 2. Row with maximum number of 1's
- 3. Spiral Matrix
- 4. Sum of all sub-matrices sum

Search in row-wise & column-wise sorted 2D array

each
$$100 = 30$$
 solved as 100 bed as 100 search 100

N * M

BF Idea

Just on whole mateix & check.

TC: O(NM)

Observation

code
$$i = 0$$
 $j = m-1$

while $(i \le N \ge k j \ne 0) \le i$

if $(all(i)(j) = = k)$

return two else if $(all(i)(j) \ge k)$
 $i = 0$

else $i = 0$
 $i = 0$
 $i = m-1$
 $i =$

• If there are multiple K's, return smallest value of i+1009**j arr[i][j]=k

Row with maximum number of 1's

Given a binary sorted matrix A of size N*N. Find the row with the maximum number of 1's [Only rows are sorted]

$$A = \begin{bmatrix} & 0 & 1 & 2 \\ & 0 & [& 0 & , & 1 & , & 1 &] \\ & & & 1 & [& 0 & , & 0 & , & 1 &] \\ & & & & 2 & [& 0 & , & 1 & , & 1 &] & \end{bmatrix}$$

$$A = \begin{bmatrix} & 0 & 1 & 2 & 3 \\ & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} & 1 & [& 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ & & 2 & [& 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \\ & & 3 & [& 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Count 1's in each you TC: O(NM)

Observation

m - left n - down

n+m

	0	1	2	3	4	5
0	0	9—	0	9		1
1	0	0	1	1	1	1
2	0	0	0	0	0	1
3	0	0	0	0	1	1
4	0	1	1	1	1	1
5	0	0	0	1	1	1

</>
</>
Code

detun any

0 11

Print Boundary Elements in clockwise direction

		mat[N][N]				
		0	1	2	3	4
	0	1	2	3	4	5
.[=][=]	1	6	7	8	9	10
mat[5][5]	2	1 1	12	13	14	15
	3	16	17	18	19	20
	4	2 1	22	23	24	25

o/p \rightarrow [1 , 2 , 3 , 4 , 5 , 10 \bigwedge 20 , 25 , 24 , 23 , 22 , 21 , 16 , 11 , 6]

1) Print N-1 elems from low o 1) Print N-1 elem from last col 3) Print n-1 elem from lost low 4) Print n-1 elem from lost low

</> </> Code

Void print Boundary(arr[N][N]) {

$$i = 0$$

$$for(R: O \rightarrow n-2) \mathcal{L}$$

Spiral Matrix

mat[N][N]							
	0	1	2	3	4	5	
0	1	2	3	4	5	6	
1	7	8	9	10	11	12	
2	13	14	15	16	17	18	
3	19	20	21	22	23	24	
4	25	26	27	28	29	30	
5	31	32	33	34	35	36	

o/p
$$\rightarrow$$
 [1,2,3,4,5,6,12,18,24,30,36,35,34,33,32,31,25,19,
13,7,8,9,10,11,17,23,29,28,27,26,20,14,15,16,22,21]

Quiz:

$$o/p \rightarrow 13$$
 | 14 | 12 | $p \rightarrow 7$ | 0 | 11 | 6 | 5 | 10 | 0 | 9 | 1 | 2 | 3 | 5

```
1 = 0
while (N>1) {
      for (R:O \rightarrow n-2) \mathcal{L}
              paint (auli) (,j)
     for (R:O \rightarrow n-2) C
             print (auli) (,j)
    for (R:O \rightarrow n-2) C
             print (auli) (,j)
    for (R: D->n-2) <
            print arclidis
             J++
```


41	0	1	2	3	4	5	6
0	1	2	3	4	5	6	7
1	8	10	12	17	18	19	20
2	9	11	13	21	22	25	26
3	14	15	16	23	24	27	28
4	29	31	35	36	37	38	39
5	3 0	32	40	41	42	43	44
6	33	34	45	46	47	48	49

Sub - Matrices

Contiguous part of a matrix

					(2)	43
	0	1	2	3		
0	1	2	3	4		
1	5	6	7	8		
2	9	10	11	12		
3	13	14	15	16		

< **Question** >: Given mat[N][M]. Find sum of all sub-matrix sums.

	0	1	2
0	4	9	6
1	5	- 1	2

[Brut Force Approach] →

I terate over all submotrices & calculate sum for each.

Contribution Technique

N=5 M=4

• In how many sub - matrices (2, 2) will be present?

$$BR = (n-i)(m-j)$$

ans=0

for
$$(i: 0 \rightarrow n-1)$$
 C

for $(j: 0 \rightarrow m-1)$ C
 $top_left = (i+1)(j+1)$

bottom_right = $(n-i)(m-j)$
 $nom_sob = top_left * bottom_right$

ans $f = au(i)(j) * nom_sob$
 $T : O(NM)$

return ans.

Number of =
$$\frac{n(n+1)}{2} \times \frac{m(m+1)}{2}$$

submatrices

String Brilder

"Omansh" + 11 = "Omansh 11"

int $n = \frac{1}{C} + 1$ 22 + 100

Chas my char = $\frac{1}{C} + 1$ Us 'd'