Métodos Numéricos Seminario

Seminario (Temas 1, 2 y 3)

- 1. Dada la ecuación $f(x) = x^4 x 1 = 0$
 - a) Mediante los métodos de Descartes y Lagrange verifique que posee una raíz positiva y una negativa, contenidas en el intervalo [-2, 2]
 - b) Exprese la ecuación en la forma equivalente g(x)=h(x), y por intermedio del gráfico de las funciones y=g(x), y=h(x) verifique que la raíz negativa se encuentra en el intervalo [-1, 0]
 - c) Mediante el método analítico verifique que la raíz positiva se encuentra en el intervalo [1, 2]
 - d) Verifique que las secuencias de aproximaciones por los métodos de Regula-Falsi, Newton-Raphson (x_0 = 1.5) y de la Secante (x_{-1} =2, x_0 = 1.5) son convergentes y monótonas. En cada uno de estos métodos indique si las aproximaciones son por exceso o por defecto, y el tipo de monotonía de la secuencia de aproximaciones
 - e) Complete las siguientes tablas:

<u>Bisección</u>

i	a _i	b _i	Sg(f(a _i))	Sg(f(b _i))	Xi	Δx_{i}	$Sg(f(x_i))$
0	1	2	-	+		0.5	+
1			-	+		0.25	+
2	1	1.25	-	+	1.125	0.125	-
3	1.13	1.25	-	+	1.1875		

Regula-Falsi

i	ai	bi	f(ai)	f(bi)	хi	f(xi)	Δx_i
0	1	2	-1	13		-0.753618	-
1			-0.753618		1.122309	-0.535774	0.045335
2	1.122309		-0.535774		1.157050	-0.364761	0.030025
3	1.157050		-0.364761		1.180056		

Newton-Raphson

i	xi	f(xi)	fd(xi)	Δx_i
0	1.5	2.5625	12.5	-
1		0.517413	7.686990	0.205000
2	1.227690	0.044029	6.401605	0.067310
3	1.220812			

Secante

i	xi	xi-1	f(xi)	f(xi-1)	Δx_i
0	1.5	2	2.562500	13	0.5
1			1.220624	2.562500	0.122754
2	1.265583	1.377246	0.299861	1.220624	0.111662
3	1.229218				

Métodos Numéricos Seminario

f) Completar:

Método	r _a	Δr _a	k	δr_a	n
Bisección		$\Delta r_a = \Delta x_3$ $= 0.0625$		$\delta r_a = \delta x_3$ $= 0.052632$	1
RF	$r_a = x_3$ = 1.180056		1	$\delta r_a = \delta x_3$ =0.016521	2
NR	$r_a = x_3$ = 1.220812	$\Delta r_a = \Delta x_3$ $= 0.006878$	1	$\delta r_a = \delta x_3$ =0.005634	
Secante	$r_a = x_3$ = 1.229218	$\Delta r_a = \Delta x_3$ $= 0.036365$	1		2

2. Dado el sistema
$$\begin{cases} 20x_1 + 4x_2 - 5x_3 + 3x_4 = 28.3 \\ -4x_1 + 15x_2 + 2x_3 - x_4 = 29.2 \\ x_1 - 2x_2 - 15x_3 + x_4 = -49.7 \\ -3x_1 + x_2 - 7x_3 + 20x_4 = 60.7 \end{cases}$$

- a) Escriba el sistema en las formas Ax=b y x = Mx + c.
- b) Verifique que los métodos de Jacobi y Seidel son convergentes, analizando si la matriz A tiene diagonal predominante, y determinando el factor de convergencia de cada método. ¿qué relación existe entre estos conceptos?
- c) Escriba la ecuación recursiva del método de Jacobi en forma vectorial, y complete la siguiente tabla obtenida mediante el empleo de este método. ¿Habrá finalizado el proceso iterativo si se desea un error absoluto menor que 0.05?

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_{3}^{(k)}$	$x_4^{(k)}$	$1.5 x^{(k)} - x^{(k-1)} $
0	1.415000	1.946667	3.313333	3.035000	
1	1.398750	2.084556	3.350444	4.309583	1.911874
2	1.189262	2.160246	3.415948	4.313240	0.314231
3					

d) Escriba las ecuaciones recursivas del método de Seidel y complete la siguiente tabla obtenida mediante el empleo de este método. ¿Habrá finalizado el proceso iterativo si se desea un error absoluto menor que 0.05?

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_{3}^{(k)}$	$x_4^{(k)}$	$1.5 x^{(k)} - x^{(k-1)} $
0	1.415000	1.946667	3.313333	3.035000	
1		2.080222	3.331554	4.306846	1.907769
2	1.185817		3.398738	4.297141	0.319400
3	1.198953	2.099698			

Métodos Numéricos Seminario

y la tabla:

3. Dado
$$y = f(x) = e^{\sqrt{x^2+1}}$$
, el grafico de $y = |f^{(3)}(x)|$ en [-1, 1]

i	x_i	$y_i = f(x_i)$
0	-1	4.113250
1	-0.6	3.209741
2	-0.4	2.935956
3	-0.2	2.772651

a) Obtenga el polinomio de Lagrange en [-0.6, -0.2] y una estimación del error $(L(x), \Delta L(x))$

b) Completar la siguiente tabla de diferencias divididas;

i	x_i	y_i	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
0	-1	4.113250	-2.25877	1.483072	
1	-0.6	3.209741	-1.36893		
2	-0.4	2.935956			•
3	-0.2	2.772651			

c) Indique el grado de un polinomio para aproximar a f(x) en [-1, -0.2]?. Justifique

d) Obtenga el polinomio de Newton en [-1, -0.4] y una estimación computacional del error (N(x), $\Delta N(x)$)

e) Para obtener un valor aproximado de f(-0.8), ¿Cuál de los polinomios hallados (L(x) o N(x)) es aconsejable emplear?. Calcular aproximadamente f(-0.8) y una valoración del error cometido

f) Para obtener un valor aproximado de f(-0.5), ¿Cuál de los polinomios hallados (L(x) o N(x)) es aconsejable emplear?. Calcular aproximadamente f(-0.5) y una valoración del error cometido.