U^b

b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Advanced Networking and Future Internet

I. Introduction

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 14.09.2020

Advanced Networking and Future Internet: Introduction

b UNIVERSITÄT RERN

Table of Contents

- Introduction
 - 1. Advanced Networking & Future Internet
 - 2. Multimedia
 - 3. Media Classification
- 2. Quality-of-Service
 - QoS Parameters
 - Network QoS Parameters
 - 3. Jitter
 - 4. Quality-of-Service Demanding Applications
 - 5. Application Requirements
- 3. Quality-of-Experience
 - 1. Quality Measures
 - 2. Mean Opinion Score
 - 3. Peak Signal to Noise Ratio
 - 4. Structural Similarity Index

- 4. Multimedia Data Streams
 - Data Transmission
 - 2. Continuous Media Data Streams
- 5. Lecture Overview
 - Introduction
 - Peer-to-Peer Networks
 - 3. Queue Management
 - 4. Traffic Engineering
 - 5. Software-Defined Networking
 - 6. Data Centre Networking
 - 7. Multicast
 - 8. Information-Centric Networking
 - 9. Audio/Video Compression
 - 10. Audio/Video Transport
 - 11. Audio/Video Conferencing and Streaming
 - 12. Virtual Reality

b UNIVERSITÄT BERN

1. Introduction

1. Advanced Networking and Future Internet

- Internet is the basic network for all kinds of today's communication.
 - e.g., for web, TV, phone (Voice over IP)
- Internet development started in the 1970's with continuous development
 - Queuing
 - Traffic Engineering
 - Software-Defined Networking
- New challenges from new application areas
 - Content distribution, peer-to-peer networks
 - Multimedia applications, e.g.,
 - interactive TV and games
 - Virtual Reality / Augmented Reality
 - computer supported cooperative work
 - Cloud computing (data centres)
- Several international research projects on Future Internet architectures
 - Information-Centric Networking

u'

UNIVERSITÄT BERN

1. Introduction

2. Multimedia

- Multi
 - in Latin: multus = numerous
- Medium
 - in Latin: medium = middle, center
 - here: a means to distribute and represent information
 - Examples: text, graphics, pictures, sound, music

u^{t}

UNIVERSITÄT Bern

1. Introduction

3. Media Classification

Classification of media depends on presentation space dimensions (time and space).

- Discrete (time-independent) media
 - Time-independent information items:
 Time is not part of semantics of discrete media.
 - Sequence of single elements without any time relationship
 - Media processing is not time-critical, but should be performed as fast as possible
 - Examples: text, graphics, pictures

- Continuous (time-dependent) media
 - Time is part of the information itself.
 Time is part of the semantics.
 - Changes in timing may lead to modified sequencing → altered meaning
 - Media processing is time critical.
 - Examples: sound and motion video

u^t

D UNIVERSITÄT BERN

2. Quality-of-Service

1. Quality-of-Service (QoS) Parameters

Set of chosen parameters for a particular service determines what will be measured as QoS.

- Perceptual QoS parameters
 - Perceptive quality (media quality, window size, response time etc.)
 - Description of pricing choices
- Application QoS parameters
 - Media quality (frame rate and resolution)
 - Media relations (relations among media)
 - Adaptation rules (actions if bandwidth is scarce)

- System QoS parameters: requirements derived from application QoS
 - Quantitative criteria (concrete measures of throughput, errors etc.)
 - Qualitative criteria (functions needed to provide application QoS: synchronization, ordering, error control etc.)
- Device QoS parameters
 - Timing and throughput demands for audio / video devices
- Network QoS parameters
 - Network load
 - Network performance

$u^{^{t}}$

b UNIVERSITÄT BERN

2. Quality-of-Service

2. Network QoS Parameters

- Bandwidth
 - Number of bits that can be transferred over a network/link in a certain time period.
 - also: term used for width of frequency bands
- Throughput
 - Performance measure for systems
- Delay / Latency
 - One-way delay (difficult to measure, requires time synchronization)
 - Round trip time (RTT)
 - Delay components
 - Transmission delay = packet size / link bandwidth
 - Propagation delay = distance / propagation speed (e.g., c)
 - Processing delay for packet processing in end systems or routers
 - Queuing delay because packets might have to wait before transmission over a link
- Jitter

$u^{^{\scriptscriptstyle b}}$

UNIVERSITÄT BERN

2. Quality-of-Service

3. Jitter

- Delay jitter = delay variation (difference between minimum and maximum delay)
- Jitter compensation by buffering at receiver (play-out buffer)

2. Quality-of-Service

b UNIVERSITÄT BERN

4. Quality-of-Service Demanding Applications

- Interactive vs. non-interactive
 - IP telephony requires < 300 ms delay and low delay variation (< 75 ms jitter).
 - Non-interactive applications such as data backup have often large bandwidth requirements.
- Elastic vs. inelastic
 - Elastic applications (e.g., on top of TCP) can work under a variety of network conditions.
 - Many inelastic (real-time) applications need QoS guarantees.
 Soft real-time applications can tolerate some temporary QoS degradation.
- Tolerant vs. intolerant
 - Tolerant applications have QoS requirements but with ranges or levels.

- Adaptive vs. non-adaptive
 - Adaptive applications try to maintain a reasonable quality level even under poor network conditions, e.g., by changing encoding or buffering.
- Real-time audio / video vs. streaming
 - Hard delay requirements vs. adapting play-out using buffering
- Multimedia vs. large-scale data and computation
 - Cloud computing or stock data applications may also generate QoS requirements in terms of bandwidth and/or delay.

Time-Sensitivity

few 100 ms

few s

partly

10-20 ms

few 100 ms

UNIVERSITÄT

2. Quality-of-Service

File transfer

Web documents

conferencing

Virtual Reality

11

Interactive games

Instant messaging

Internet telephony / Video

Audio/Video streaming

Email

0

0

tolerant

tolerant

tolerant

tolerant

0

5. Application Requirements		
Application	Loss	Throughput

Elastic

Elastic

Elastic (few kbps)

many Gbps

Elastic

Audio: few kbps – 1 Mbps

cf. Internet telephony / video conferencing

Video: 10 kbps – 5 Mbps

few kbps – several Mbps

u^{b}

UNIVERSITÄT BERN

3. Quality-of-Experience

1. Quality Measures

QoE describes user-/application-oriented quality of multimedia services.

- Subjective: User rates perceived audio/video quality, but it is not possible to measure at run-time.
 - Absolute rating: Mean Opinion Score (MOS)
 - Comparison-based rating: Users listen/watch to reference and actual A/V sequences.

- Objective: A/V QoE depends on QoS measures such as A/V coding distortion, delay, jitter, packet loss
 - Estimation of QoE based on measured QoS parameters and/or A/V signals
 - Learning of correlation between QoS measures and QoE, e.g., using neural networks
 - Examples
 - Audio: comparison of reference and degraded audio waves
 - Video: Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM) Index

u^{t}

UNIVERSITÄT BERN

3. Quality-of-Experience

2. Mean Opinion Score

- Example: voice applications
- Listeners are asked to rate "absolute" quality of speech (absolute category rating).
 - Insertion of reference (not known to users) for calibration
 - Quality scale:
 - Bad (very annoying distortions)
 - Poor (annoying distortions)
 - Fair (slightly annoying distortions)
 - Good (perceptible distortions, but not annoying)
 - Excellent (imperceptible distortions)

- Comparative approaches
 - Degradation category rating: comparison with good quality speech
 - Comparison category rating: comparison with random quality speech

u^{t}

UNIVERSITÄT BERN

3. Quality-of-Experience

3. Peak Signal to Noise Ratio

 PSNR measures mean error between original and distorted frame.

$$-MSE = \frac{1}{M \cdot N} \sum_{m=1}^{M} \sum_{n=1}^{N} |o(m,n) - d(m,n)|^{2}$$

$$-PSNR = 10 \log \frac{255^2}{MSE}$$

Example mapping for MPEG4 video

PSNR	MOS
> 37	5
31-37	4
25-31	3
20-25	2
< 20	1

UNIVERSITÄT BERN

3. Quality-of-Experience

4. Structural Similarity Index

- SSIM index considers that human eye extracts <u>luminance</u>, <u>contrast</u>, <u>and structural</u> information from images.
- $x = \{x_i | i=1,...,N\}$: original signal
- $y = \{y_i | i=1,...,N\}$: distorted signal
- $-\overline{x}$: mean of x
- $-\overline{y}$: mean of y
- $-\sigma_x$: variance of x
- $-\sigma_{v}$: variance of y
- σ_{xy} : covariance of x and y, $\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i \overline{x}) \cdot (y_i \overline{y})$
- C_{1,2}: constants

$$SSIM = \frac{(2\overline{xy} + C_1) \cdot (2\sigma_{xy} + C_2)}{(\overline{x}^2 + \overline{y}^2 + C_1) \cdot (\sigma_{x}^2 + \sigma_{y}^2 + C_2)}$$

b Universität Rern

4. Multimedia Data Streams

1. Data Transmission

- Transmission of packets from source to sink.
- Data stream = (temporal) sequence of packets
- Packets can carry information from continuous and discrete media.
- Data transmission
 - asynchronous
 - synchronous
 - isochronous

4. Multimedia Data Streams

1.1 Asynchronous Transmission

- Transmission may start at any instant.
- Two independent clocks at sender and receiver.
- Packets shall reach receiver as soon as possible.

- Examples:
 - Best-Effort-Internet
 - Ethernet
- Appropriate for transmission of discrete media information

u'

b UNIVERSITÄT RERN

4. Multimedia Data Streams

1.2 Synchronous Transmission

- Defines a maximum end-to-end delay for each packet of a stream
- Packet can reach receiver early.
- Jitter compensation by buffering requires large buffers, e.g.,
 - Data rate: 20 Mbps
 - Jitter: 1 s
 - Buffering of 2.5 MB data

u'

4. Multimedia Data Streams

1.3 Isochronous Transmission

- Limitation of jitter (and reduction of buffer) by maximum and minimum end-to-end delay
- Requires scheduling support along the whole transmission path

UNIVERSITÄT BERN

4. Multimedia Data Streams

2. Continuous Media Data Streams

- Continuous media consist of a temporal sequence of information.
- Information Units
 - Protocol Data Unit (PDU)
 - or: packet
 - depends on properties of communication system
 - Logical Data Unit (LDU) (or Application Data Unit, ADU)
 - Application dependent
 - Hierarchy possible, e.g.: movie, scene, single image, pixel
- Classification
 - Strongly and weak periodic data streams
 - Variation of data volume of consecutive information units

4. Multimedia Data Streams

b UNIVERSITÄT BERN

2.1 Strongly and Weak Periodic Data Streams

- Strongly periodic
 - Example: PCM audio
- Weakly periodic
- Aperiodic
 - Example: interactive application

4. Multimedia Data Streams

2.2 Variation of Data Volume of Consecutive Information Units

- Strongly regular
 - Example: PCM audio
- Weakly regular
 - Example: MPEG video
- Irregular

b UNIVERSITÄT BERN

5. Lecture Overview

- 2. Queue Management
- 3. Peer-to-Peer Networks
- 4. Traffic Engineering
- 5. Software-Defined Networking
- 6. Data Centre Networking
- 7. Multicast
- 8. Information-Centric Networking

- 9. Audio/Video Compression
- 10. Audio/Video Transport
- 11. Audio/Video Conferencing and Streaming
- 12. Virtual Reality

$u^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT

5. Lecture Overview

2. Queue Management

- Packet scheduling must select one packet among queued ones.
- Dropping
 mechanism
 decides when and
 which packets to
 drop in overload
 conditions.

u^t

UNIVERSITÄT RERN

5. Lecture Overview

3. Peer-to-Peer-Networks

- Index and file server
 - contains file index and corresponding files (
- P2P network with central index server
 - contains file index
 - Files are distributed among peers.
- Distributed P2P network
 - Index and files are distributed among peers.
 - Redundancy
 - Load balancing
 - Categories
 - Unstructured, flat overlay network with random searching
 - Structured overlay network; more efficient search based on mapping of keys to nodes

UNIVERSITÄT RERN

5. Lecture Overview

4. Traffic Engineering

- Problem
 - Shortest path routing leads to congestion at certain links while others remain unloaded.
- Solution: Traffic engineering
 process of controlling how traffic flows through a network to optimize resource utilization and network performance
 - Routing Protocol Extensions
 - Multi-Protocol Label Switching
 - Overlay Networks

b UNIVERSITÄT BERN

5. Lecture Overview

5. Software-Defined Networking

- SDN separates control and data plane
- Centralized network management by SDN controller
- Configuration protocol between SDN controller and network devices
- Software-based configuration of network devices
- Benefits for virtual and data centre networks

5. Lecture Overview

6. Data Centre Networking

- Architectures: Main frame → Client/Server → Clouds
- Economies of scale
- Everything as a Service
- Technologies
 - Virtualization
 - Resource allocation
 - Load balancing
 - Advanced networking mechanisms
 - Software-Defined Networking
 - Data Centre Networking: special scalable network topologies for high performance and good connectivity
- Network Function Virtualization

UNIVERSITÄT

5. Lecture Overview

7. Multicast

1 sender, n receivers

- IP Multicast routing
- Application Level Multicast

5. Lecture Overview

8. Information-Centric Networking

b UNIVERSITÄT

UNIVERSITÄT BERN

5. Lecture Overview

9. Audio/Video Compression

Audio Compression

- Waveform coding:
 approximation of original audio
 wave form in time domain,
 determines relation between
 subsequent audio samples
- Vocoding: transformation of audio into frequency domain and characterization of signal and frequency parameters

Video Compression

- Encoding of differences between pictures
- Compression of still images and difference values
- Conferencing vs streaming

5. Lecture Overview

10. Audio/Video Transport

- Transport of (real-time) audio and video requires
 - advanced mechanisms such as media scaling to support heterogeneous devices and bandwidth adaptation to current network conditions
 - time synchronization of video and audio streams
 - message formats, e.g., time stamps and coding information
- → Real-Time Transport (Control) Protocol

UNIVERSITÄT

b Universität Rern

5. Lecture Overview

11. Audio/Video Conferencing & Streaming

- A/V conferencing and streaming require control message exchange between entities exchanging A/V data
- A/V conferencing
 - Call establishment, adaptation, and termination
- A/V streaming
 - Commands to start, adapt, stop
 A/V data stream

Voice data stream

UNIVERSITÄT

5. Lecture Overview

12. Virtual Reality

- Sensor measurements
 (body and head movements)
 and transmission to server
- 2. Analysis of measurements and flight simulation
- 3. Calculation of user's view
- 4. Transmission of user's view to VR equipment, possibly using 360° video

Thanks

for Your Attention

 \boldsymbol{u}

UNIVERSITÄT

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 14.09.2020

