

FACEBOOK AI

Meeting Formal Linguistics and Optimisation

Lucas Weber, Jaap Jumelet, Elia Bruni & Dieuwke Hupkes

MAIN CONTRIBUTIONS

- 1. We introduce ,similarity probing', a method to obtain similarity-estimates of linguistic phenomena from language models (LMs) in an easy-to-apply and computationallycheap way.
- 2. We show that linguistically similar sentences evoke similar gradients in language models.

BACKGROUND

- 1. Weber et al. 2021 consider LMs multi-task learners (MTL), optimizing many different linguistic phenomena at once. They establish a connection between similarity of phenomena and the transfer-learning across them.
- 2. Yu et al. (2020) show that different tasks interfere as their gradients are pointing in conflicting directions (a.o.).

METHODS

Language model evaluate finetune

2. Gradient clustering

1. Similarity-

probing

1. Similarity probing reveals linguistic structure in language models.

2. LM-gradients contain information about linguistic phenomena.

DATASET

BLiMP-dataset: minimal pairs of 13 linguistic phenomena, divisible into 67 linguistic paradigms (Warstadt et al., 2020)

MODELS

LSTM-LM following Gulordava et al. (2018) Fairseq-transformerLM (Ott et al. 2019)

RESULTS

1. Similarity space:

Maximum Spanning Arborescence of linguistic similarity in a LSTM-LM.

Scan for labeled interactive graph

2. Gradients:

2.1 Gradient similarities

All gradient similarities are $> 0 \rightarrow$ There are no gradient conflicts in LMs! Further, gradient similarities go towards 0 with increasing pretraining.

pretrain: ½ epoch

2.2 Gradient clustering

Gradients of different instances of the same phenomenon cluster together.

FURTHER QUESTIONS

- 1. What connects phenomena that have similar gradients?
- 2. How can we use linguistic knowledge to improve model performance?
- 3. Why are gradients in implicit and explicit MTL so substantially different? What does that mean for interference in both types of settings?