Homework 02 Review for Group 09

General Feedback

- Overall a nice notebook, everything works out of the box :)
- Some markdown formatting to structure the notebook and separate the different tasks would have been nice
- Nice commenting and use of docstrings, though the latter are incomplete (i.e. missing arguments and return description) or are missing completely (i.e., Gridworld class and init of Tab SARASAN class)

Task 01

- Nice way of initializing a board randomly, especially checking whether a path exists to the terminal state via search
- Good visualization with a nice legend for overview
- Intermediate negative reward for all other states seems relatively high compared to the terminal state reward

Task 02

- Minor remark: you could have cleared the output after each epoch to not clutter the screen
- Maybe also include the cumulative reward in the visualize=false setting to at least have that information as well, i.e.print it together with the current episode
- Minor remark: would have been nice to be able to provide the gridworld as an argument for the Tab_SARASAN class in order to train on the same grid world that one configures beforehand
- Apart from that, everything works nicely. Well done! :)

Homework 02 Review for Group 16

General Feedback

- In general, this notebook seems well coded, formatted and everything runs smoothly

Task 01

- Missing Docstrings, although you've provided extensive comments still nice to have them
- Cool idea to use the recursive backtracking algorithm to create random mazes
- Why exactly has the size to be odd in order for the agent to find a goal?

Task 02

- Legend of the different colors used in the gridworld would be helpful, otherwise really nice visualization almost looks like a real board game (really cool!)
- General description and returns within the docstrings are missing
- Maybe use the clear_output function at the beginning of each episode to not clutter the notebook output
- Only one-step Sarsa is implemented
- It seems as if the agent cannot move through the white tiles. Therefore, in some cases, the agent is trapped and can't reach the goal
- Apart from that, everything works nicely. Well done! :)

Homework 02 Review for Group 46

General Feedback

- Overall, your work looks really good and like you put a lot of effort into this. I also love how clean and smooth your code looks!

Task 01

- Your grid world has all it needs and it even checks for exceptions!
- You allow for arbitrary grid sizes, which is neat.
- The "random state transition" works, but could have been a little more creative.

Task 02

- Looks great overall. Your implementation of SARSA should be correct.
- The idea of using a distance measure to measure training progress looks really useful. However, defining it on the policies can lead to misleading results. For example, if action a is suboptimal in state s, but its Q-Value is highly overestimated, it may take a few iterations to change the policy in s. During this time, your distance measure between both policies will be zero (for this state), even though the Q-values may be changing a lot on every iteration.
- I also like that you compared the runtimes for different epsilon-values. Plotting both against each other also would have been interesting too.