EFC02

October 9, 2019

```
[1]: import time
    import operator
    from functools import partial
    from concurrent.futures import ProcessPoolExecutor
    import numpy as np
    import pandas as pd
    from scipy.stats import norm
    from scipy.spatial.distance import correlation as dcorrelation
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import roc_curve, confusion_matrix, accuracy_score, __
     →classification_report
    from sklearn.model_selection import train_test_split
    sns.set(style="white")
    %matplotlib inline
[2]: def gen_confusion_matrix(y, yh):
        cls = np.unique(y)
        confusion_m = np.zeros((cls.size, cls.size))
        for i, yhto in enumerate(y):
            for cl in cls:
                if yhto == yh[i] and yhto == cl:
                    confusion_m[cl, cl] += 1
                    break
                elif yhto != yh[i]:
                    confusion_m[yhto, yh[i]] += 1
                    break
        return confusion_m
    def gen_classification_report(confusion_m):
        cls, _ = confusion_m.shape
        cls = range(cls)
        report = {(i+1): {"precision": 0, "recall": 0, "f1-score": 0, "support": 0}_\(\)
     →for i in cls}
        for r in cls:
```

```
for c in cls:
            if r == c:
                tp = confusion_m[r, c]
                tn = np.diagonal(confusion_m) - tp
                fp = np.sum(confusion_m[:, c])
                fn = np.sum(confusion_m[r, :])
                P, R = np.round(tp / fp, 2), np.round(tp / fn, 2)
                report[r+1]["support"] = tp + (fn - tp)
                report[r+1]["precision"] = P
                report[r+1]["recall"] = R
                report[r+1]["f1-score"] = np.round((2 * (P * R)) / (P + R), 2)
    return report
def one_hot_encode(y):
    return pd.get_dummies(y).values
class LogisticRegressionImpl():
    def __init__(self, fit_intercept=True, decay=1e-4, batch_size=32,__
 →weights=None):
        self.w = weights
        self.fit_intercept = fit_intercept
        self._decay = decay
        self._batch_size = batch_size
    def _one_hot_encode(self, y):
        return pd.get_dummies(y).values
    def __softmax(self, z):
        e_x = np.exp(z.T - np.max(z, axis=1))
        return (e_x / e_x.sum(axis=0)).T
    def __sigmoid(self, z):
        return 1./(1 + np.exp(-z))
    def _add_intercept(self, X):
        intercept = np.ones((X.shape[0], 1))
        return np.concatenate((intercept, X), axis=1)
    def _shuffle(self, X, y):
        permutation = np.random.permutation(X.shape[0])
        if self.__cls > 2:
            return X[permutation, :], y[permutation, :]
        return X[permutation, :], y[permutation]
    def train(self, x, y, lr=1e-4, epochs=10000):
        # Check to see the number of classes
```

```
uniq = np.unique(y)
       self.__activation = self.__sigmoid
       self.__cls = uniq.shape[0]
       if self.__cls > 2:
           y = self._one_hot_encode(y)
           self.__activation = self.__softmax
       # Train and validation sets
       x_train, x_val, y_train, y_val = train_test_split(x, y, train_size=0.7)
       # Should we add a intercept
       x_train, x_val = self._add_intercept(x_train), self.
→_add_intercept(x_val)
       # Number of samples
       self.N = y.size
       # Initialize weights
       if self.w is None:
           self.w = np.random.rand(x_train.shape[1], ) * np.sqrt(2 / (self.N + _ )
→2))
           if self.__cls > 2:
               self.w = np.random.rand(x_train.shape[1], self.__cls) * np.
→sqrt(2 / (self.N + self.__cls))
       # Train loop Gradient Descent
       J, ACC = [], []
       mb = np.ceil(x_train.shape[0] / self._batch_size).astype(np.int32)
       for i in range(epochs):
           # Shuffle dataset in each epoch
           x_train, y_train = self._shuffle(x_train.copy(), y_train.copy())
           r = 0
           for _ in range(mb):
               # Mini batch crop
               ini, end = r * self._batch_size, (r + 1) * self._batch_size
               batch_X, batch_y = x_train[ini:end, :], y_train[ini:end]
               if self.__cls > 2:
                   batch_X, batch_y = x_train[ini:end, :], y_train[ini:end, :]
               r += 1
               # Forward
               yh = self.__activation(np.dot(batch_X, self.w))
               # Gradient
               dw = (1 / self.N) * np.dot(batch_X.T, (yh - batch_y))
               # Weight adjust with regularization
               self.w = (self.w - (lr * dw)) - (((lr * self._decay) / self.N)_{\sqcup}
→* self.w)
           # Validation Loss
           h = self.__activation(np.dot(x_val, self.w))
           # Accuracy
           ACC.append(np.round(self._acc(y_val, h), 5))
           # Loss
```

```
J.append(np.round(self.__loss(y_val, h), 5))
       return J, ACC
  def predict_proba(self, x):
      x = self._add_intercept(x)
      return self.__activation(np.dot(x, self.w))
  def predict(self, x, threshold=0.5):
       if self. cls > 2:
           return np.argmax(self.predict_proba(x), axis=1)
      return (self.predict_proba(x) >= threshold).astype(np.int)
  def __acc(self, y, yh):
      Y, YH = y, (yh >= .5).astype(np.int)
       if self.__cls > 2:
           Y, YH = np.argmax(y, axis=1), np.argmax(yh, axis=1)
      return (
               np.round(
                   np.mean([y == yh for y, yh in zip(Y, YH)]), 2
               * 100
           )
  def __loss(self, y, yh):
      L2 = (self._decay / (2 * self.N)) * np.sum([np.sum(np.square(w)) for w_{l})
→in self.wl)
       if self.__cls > 2:
           n_samples = y.shape[0]
           logp = -np.log(yh[np.arange(n_samples), y.argmax(axis=1)])
           loss = np.sum(logp) / n_samples
           return loss + L2
      bce = -np.sum(np.multiply(y, np.log(yh)) + np.multiply((1-y), np.log(1_U))
\rightarrow yh)))
      return ((1 / self.N) * bce) + L2
```

1 IA006 - Exercícios de Fixação de Conceitos

1.1 EFC2 - 2s2019

1.1.1 Parte 1 - Classificação Binária

Problema: identificação do gênero do locutor apartir de trechos de voz

Dataset: https://www.mldata.io/dataset-details/gender_voice/ Descrição dos dados:

• Showing 15 out of 21 attributes.

Name	Туре	Description
meanfreq	float	mean frequency (in kHz)
sd	float	standard deviation of frequency
median	float	median frequency (in kHz)
Q25	float	first quantile (in kHz)
Q75	float	third quantile (in kHz)
IQR	float	interquantile range (in kHz)
skew	float	skewness (see note in specprop description)
kurt	float	kurtosis (see note in specprop description)
sp.ent	float	spectral entropy
sfm	float	spectral flatness
mode	float	mode frequency
centroid	float	frequency centroid (see specprop)
meanfun	float	average of fundamental frequency measured
		across acoustic signal
minfun	float	minimum fundamental frequency measured
		across acoustic signal
label	string	Predictor class, male or female

Apresentação dos 5 primeiros dados:

```
[3]: df = pd.read_csv("dados_voz_genero.csv")
print(df.head(5))
```

	sd	median	Q25	Q75	IQR	skew	kurt	\
0	0.064241	0.032027	0.015071	0.090193	0.075122	12.863462	274.402906	
1	0.067310	0.040229	0.019414	0.092666	0.073252	22.423285	634.613855	
2	0.083829	0.036718	0.008701	0.131908	0.123207	30.757155	1024.927705	
3	0.072111	0.158011	0.096582	0.207955	0.111374	1.232831	4.177296	
4	0.079146	0.124656	0.078720	0.206045	0.127325	1.101174	4.333713	
	sp.ent	sfm	mode	centroid	meanfun	minfun	maxfun \	
0	0.893369	0.491918	0.000000	0.059781	0.084279	0.015702	0.275862	
1	0.892193	0.513724	0.000000	0.066009	0.107937	0.015826	0.250000	
2	0.846389	0.478905	0.000000	0.077316	0.098706	0.015656	0.271186	
3	0.963322	0.727232	0.083878	0.151228	0.088965	0.017798	0.250000	
4	0.971955	0.783568	0.104261	0.135120	0.106398	0.016931	0.266667	
	meandom	mindom	maxdom	${\tt dfrange}$	modindx	label		
0	0.007812	0.007812	0.007812	0.000000	0.000000	1.0		
1	0.009014	0.007812	0.054688	0.046875	0.052632	1.0		
2	0.007990	0.007812	0.015625	0.007812	0.046512	1.0		

```
3 0.201497 0.007812 0.562500 0.554688 0.247119 1.0
4 0.712812 0.007812 5.484375 5.476562 0.208274 1.0
```

a) Análise estatística dos dados

plt.subplot(6, 2, 2)

A análise estatística será feita particularmente em apenas um subset do conjunto total de features, que são: *sd, median, skew, kurt, sp.ent, sfm, mode, centroid, meanfun, meandom*.

Entretanto a matriz de correlação pearson será apresentada para todo o dataset.

```
[4]: fields = ["sd", "median", "skew", "kurt", "sp.ent", "sfm", "mode", "centroid",
     →"meanfun", "meandom", "label"]
   x fields = fields[:10]
   sound_c = df[fields]
[5]: data = []
   for field in x_fields:
        unique elements, counts elements = np.unique(sound c[field],
     →return_counts=True)
        data.append([
            field,
            len(sound_c[field]),
            np.round(np.min(sound_c[field]), 3),
            np.round(np.max(sound_c[field]), 3),
            np.round(np.mean(sound_c[field]), 3),
            np.round(np.median(sound c[field]), 3),
            np.round(np.var(sound_c[field]), 3),
            np.round(np.std(sound c[field]), 3),
            len(counts_elements)
        ])
   df2 = pd.DataFrame(data, columns=["Field", "Qtd", "Min", "Max", "Mean", [
     →"Median", "Var.", "Std", "Unique"])
   print(df2)
                                          Mean Median
         Field
                 Qtd
                        Min
                                   Max
                                                                        Std Unique
                                                              Var.
   0
            sd
                3168
                      0.018
                                 0.115
                                         0.057
                                                 0.059
                                                             0.000
                                                                      0.017
                                                                                3166
        median
                      0.011
                                                 0.190
   1
                3168
                                 0.261
                                         0.186
                                                             0.001
                                                                      0.036
                                                                               3077
   2
          skew
                3168
                      0.142
                                34.725
                                         3.140
                                                 2.197
                                                            17.976
                                                                      4.240
                                                                               3166
   3
                3168
                      2.068
                             1309.613
                                        36.568
                                                 8.318 18199.997
                                                                   134.907
                                                                               3166
          kurt
   4
                3168
                      0.739
                                 0.982
                                         0.895
                                                 0.902
                                                             0.002
                                                                      0.045
                                                                               3166
        sp.ent
   5
                      0.037
                                         0.408
                                                 0.396
                                                                      0.177
           sfm
                3168
                                 0.843
                                                             0.032
                                                                               3166
   6
                      0.000
                                 0.280
                                         0.165
                                                 0.187
                                                             0.006
                                                                      0.077
                                                                               2825
          mode
                3168
   7
                3168
                      0.039
                                 0.251
                                         0.181
                                                 0.185
                                                             0.001
                                                                      0.030
                                                                               3166
      centroid
   8
                                 0.238
                                         0.143
                                                                      0.032
       meanfun
                3168
                      0.056
                                                 0.141
                                                             0.001
                                                                               3166
       meandom
                3168
                      0.008
                                 2.958
                                         0.829
                                                 0.766
                                                             0.276
                                                                      0.525
                                                                                2999
[6]: plt.figure(figsize=(12, 12))
   plt.subplot(6, 2, 1)
   plt.title("sd")
   plt.hist(sound_c["sd"], bins='auto', color="C1")
```

```
plt.title("median")
plt.hist(sound_c["median"], bins='auto', color="C1")
plt.subplot(6, 2, 3)
plt.title("skew")
plt.hist(sound_c["skew"], bins='auto', color="C1")
plt.subplot(6, 2, 4)
plt.title("kurt")
plt.hist(sound_c["kurt"], bins='auto', color="C2")
plt.subplot(6, 2, 5)
plt.title("sp.ent")
plt.hist(sound_c["sp.ent"], bins='auto', color="C2")
plt.subplot(6, 2, 6)
plt.title("sfm")
plt.hist(sound_c["sfm"], bins='auto', color="C2")
plt.subplot(6, 2, 7)
plt.title("mode")
plt.hist(sound_c["mode"], bins='auto', color="C3")
plt.subplot(6, 2, 8)
plt.title("centroid")
plt.hist(sound_c["centroid"], bins='auto', color="C3")
plt.subplot(6, 2, 9)
plt.title("meanfun")
plt.hist(sound_c["meanfun"], bins='auto', color="C3")
plt.subplot(6, 2, 10)
plt.title("meandom")
plt.hist(sound_c["meandom"], bins='auto')
plt.tight_layout()
plt.show()
```


Como é possível observar alguns dos atributos tem o perfil de seu histograma próximo ao formato de uma distribuição gaussiana. Abaixo, são apresentados as Densidades de Probabilidade dos mesmos dados, entretanto escalonados usado a seguinte operação:

```
y = \frac{x-\mu}{\sigma} onde \mu é a média e \sigma a variância de cada coluna.
```

```
Field
                              Max Mean
                                                      Std Unique
             Qtd
                     Min
                                         Median Var.
0
        sd 3168 -2.32814 3.49241 -0.0 0.12187
                                                      1.0
                                                  1.0
                                                             3166
    median 3168 -4.80399 2.07963 -0.0 0.12135
1
                                                  1.0 1.0
                                                             3077
2
      skew
            3168 -0.70720 7.44961 -0.0 -0.22243
                                                  1.0 1.0
                                                             3166
3
      kurt 3168 -0.25573 9.43643 0.0 -0.20940
                                                  1.0 1.0
                                                             3166
4
            3168 -3.47939 1.93162 0.0 0.14764
                                                  1.0 1.0
                                                             3166
    sp.ent
5
       sfm 3168 -2.09214 2.44922 0.0 -0.06694
                                                  1.0 1.0
                                                             3166
6
      mode 3168 -2.14121 1.48616 0.0 0.27616
                                                  1.0 1.0
                                                             2825
7
  centroid 3168 -4.73181 2.34737 -0.0 0.13144
                                                  1.0 1.0
                                                             3166
   meanfun 3168 -2.70103 2.93596 -0.0 -0.07084
                                                  1.0 1.0
8
                                                             3166
9
   meandom 3168 -1.56420 4.05329
                                   0.0 -0.12076
                                                  1.0 1.0
                                                             2999
```

```
[9]: kds = {'shade': True, 'linewidth': 2}
   plt.figure(figsize=(12, 12))
   plt.subplot(6, 2, 1)
   plt.title("sd")
   sns.distplot(sound_c["sd"], hist=False, kde=True, kde_kws=kds, color="C1")
   plt.ylabel('Density')
   plt.subplot(6, 2, 2)
   plt.title("median")
   sns.distplot(sound_c["median"], hist=False, kde=True, kde_kws=kds, color="C1")
   plt.ylabel('Density')
   plt.subplot(6, 2, 3)
   plt.title("skew")
   sns.distplot(sound_c["skew"], hist=False, kde=True, kde_kws=kds, color="C1")
   plt.ylabel('Density')
   plt.subplot(6, 2, 4)
   plt.title("kurt")
   sns.distplot(sound_c["kurt"], hist=False, kde=True, kde_kws=kds, color="C2")
   plt.ylabel('Density')
   plt.subplot(6, 2, 5)
   plt.title("sp.ent")
   sns.distplot(sound_c["sp.ent"], hist=False, kde=True, kde_kws=kds, color="C2")
   plt.ylabel('Density')
```

```
plt.subplot(6, 2, 6)
plt.title("sfm")
sns.distplot(sound_c["sfm"], hist=False, kde=True, kde_kws=kds, color="C2")
plt.ylabel('Density')
plt.subplot(6, 2, 7)
plt.title("mode")
sns.distplot(sound_c["mode"], hist=False, kde=True, kde_kws=kds, color="C3")
plt.ylabel('Density')
plt.subplot(6, 2, 8)
plt.title("centroid")
sns.distplot(sound_c["centroid"], hist=False, kde=True, kde_kws=kds, color="C3")
plt.ylabel('Density')
plt.subplot(6, 2, 9)
plt.title("meanfun")
sns.distplot(sound_c["meanfun"], hist=False, kde=True, kde kws=kds, color="C3")
plt.ylabel('Density')
plt.subplot(6, 2, 10)
plt.title("meandom")
sns.distplot(sound_c["meandom"], hist=False, kde=True, kde_kws=kds)
plt.ylabel('Density')
plt.tight_layout()
plt.show()
```


Através da matriz de correlação, podemos ter uma ideia de como as features de nosso dataset estão correlacionadas entre si.

Nota-se uma correlação relativamente alta entre os campos *meanfun* e o *label*. O que permite inferir que esse atributo terá forte influência na classificaçãod dos resultados.

Evitando, encontrar apenas correlações lineares entres os valores, aplica-se também a Correlação em Distância, a qual possibilita visualizar valores de correlação não lineares entre variáveis e também avaliar a indepedência das variáveis (quando o valor for zero).

A Correlação em Distância, também exemplifica o apresentado acima a respeito do atributo *meanfun*.

```
corr = df.corr()
# Distance Correlation
ds = len(cols)
dcorr = np.zeros((ds, ds))
for i, field in enumerate(cols):
    for k, field2 in enumerate(cols):
        dcorr[i][k] = dcorrelation(df[field], df[field2])
cmap = sns.diverging_palette(10, 255, as_cmap=True)
plt.figure(figsize=(18, 18))
plt.subplot(2, 1, 1)
plt.title("Pearson Correlation")
ax = sns.heatmap(corr, cmap=cmap, vmax=.3, center=0,
            square=True, linewidths=1, annot=True, cbar_kws={"shrink": .5})
ax.set_ylim(ds, 0)
plt.subplot(2, 1, 2)
plt.title("Distance Correlation")
ax = sns.heatmap(dcorr, cmap=cmap, vmax=.3, center=0,
            square=True, linewidths=1, annot=True, cbar_kws={"shrink": .5},
            xticklabels=fields, yticklabels=fields
)
ax.set_ylim(ds, 0)
plt.tight_layout()
plt.show()
```

									Pear	son C	Correl	ation								
sd	1	-0.56	-0.85	-0.16	0.87	0.31	0.35	0.72	0.84	-0.53	-0.74	-0.47	-0.35	-0.13	-0.48	-0.36	-0.48	-0.48	0.12	0.48
median	-0.56	1	0.77	0.73	-0.48	-0.26	-0.24	-0.5	-0.66	0.68	0.93	0.41	0.34	0.25	0.46	0.19	0.44	0.44	-0.21	-0.28
Q25	-0.85	0.77	1	0.48	-0.87	-0.32	-0.35	-0.65	-0.77	0.59	0.91	0.55	0.32	0.2	0.47	0.3	0.46	0.45	-0.14	-0.51
Q75	-0.16	0.73	0.48	1	0.0096	-0.21	-0.15	-0.17	-0.38	0.49	0.74	0.16	0.26	0.29	0.36	-0.024	0.34	0.34	-0.22	0.067
IQR	0.87	-0.48	-0.87	0.0096	1	0.25	0.32	0.64	0.66	-0.4	-0.63	-0.53	-0.22	-0.07	-0.33	-0.36	-0.34	-0.33	0.041	0.62
skew	0.31	-0.26	-0.32	-0.21	0.25	1	0.98	-0.2	0.08	-0.43	-0.32	-0.17	-0.22	-0.081	-0.34	-0.062	-0.31	-0.3	-0.17	0.037
kurt	0.35	-0.24	-0.35	-0.15	0.32	0.98	1	-0.13	0.11	-0.41	-0.32	-0.19	-0.2	-0.046	-0.3	-0.1	-0.27	-0.27	-0.21	0.087
sp.ent	0.72	-0.5	-0.65	-0.17	0.64	-0.2	-0.13	1	0.87	-0.33	-0.6	-0.51	-0.31	-0.12	-0.29	-0.29	-0.32	-0.32	0.2	0.49
sfm	0.84	-0.66	-0.77	-0.38	0.66	0.08	0.11	0.87	1	-0.49	-0.78	-0.42	-0.36	-0.19	-0.43	-0.29	-0.44	-0.43	0.21	0.36
mode	-0.53	0.68	0.59	0.49	-0.4	-0.43	-0.41	-0.33	-0.49	1	0.69	0.32	0.39	0.17	0.49	0.2	0.48	0.47	-0.18	-0.17
centroid	-0.74	0.93	0.91	0.74	-0.63	-0.32	-0.32	-0.6	-0.78	0.69	1	0.46	0.38	0.27	0.54	0.23	0.52	0.52	-0.22	-0.34
meanfun	-0.47	0.41	0.55	0.16	-0.53	-0.17	-0.19	-0.51	-0.42	0.32	0.46	1	0.34	0.31	0.27	0.16	0.28	0.28	-0.055	-0.83
minfun	-0.35	0.34	0.32	0.26	-0.22	-0.22	-0.2	-0.31	-0.36	0.39	0.38	0.34	1	0.21	0.38	0.082	0.32	0.32	0.002	-0.14
maxfun	-0.13	0.25	0.2	0.29	-0.07	-0.081	-0.046	-0.12	-0.19	0.17	0.27	0.31	0.21	1	0.34	-0.24	0.36	0.36	-0.36	-0.17
meandom	-0.48	0.46	0.47			-0.34					0.54		0.38	0.34	1	0.1	0.81			
mindom	-0.36				-0.36			-0.29		0.2	0.23			-0.24	0.1	1	0.027			-0.19
maxdom	-0.48	0.44	0.46	0.34		-0.31						0.28				0.027	1	1	-0.43	-0.2
dfrange	-0.48	0.44	0.45	0.34	-0.33		-0.27				0.52		0.32			0.0087	1	1	-0.43	
modindx	0.12			-0.22								-0.055				0.2	-0.43	-0.43	1	0.031
label	0.48	-0.28	-0.51		0.62							-0.83					-0.2	-0.19		1
	28																_			
					Makes,											_	_	CO.	6	
	0,	median	025	Q75	IQR	skew	kurt	sp.ent	stm	mode	æntroi	eanfu	minfun	maxfu	sandoi	opuim	naxdo	dfrange	nodin	label
	0,	media	8	Δ/	ō	ske	귷	sp.er			centroid	noi meanfun	minfu	maxfun	meandom	mindom	тахдот	dfran	modindx	lab
sd	0	1.6	1.8	1.2	0.13	0.69	0.65	0.28		ince (_	nJuim 1.3	1.1	neandor	opuim 1.4	орхаш 1.5	dfranc	0.88	QE 0.52
sd median								ds	Dista	ince (Correl	ation 1.5								
	0	1.6	1.8	1.2	0.13	0.69	0.65	0.28	Dista	1.5 0.32	Correl	ation 1.5 0.59	1.3	1.1	1.5	1.4	1.5	1.5	0.88	0.52
median	0	1.6	1.8	1.2 0.27	0.13	0.69	0.65	0.28	0.16 1.7	1.5 0.32	1.7 0.075	ation 1.5 0.59	1.3 0.66	1.1 0.75	1.5 0.54	1.4 0.81	1.5 0.56	1.5 0.56	0.88	0.52
median Q25	0 1.6 1.8	1.6 0 0.23	1.8 0.23	1.2 0.27 0.52	0.13 1.5 1.9	0.69 1.3 1.3	0.65 1.2 1.4	0.28	0.16 1.7	1.5 0.32 0.41	1.7 0.075 0.089	ation 1.5 0.59	1.3 0.66 0.68	1.1 0.75 0.8	1.5 0.54 0.53	1.4 0.81 0.7	1.5 0.56 0.54	1.5 0.56 0.55	0.88 1.2 1.1	0.52 1.3 1.5
median Q25 Q75	0 1.6 1.8	1.6 0 0.23	1.8 0.23 0 0.52	1.2 0.27 0.52	0.13 1.5 1.9	0.69 1.3 1.3 1.2 0.75	0.65 1.2 1.4 1.1	0.28 1.5 1.6	Dista 0.16 1.7 1.8	1.5 0.32 0.41 0.51	1.7 0.075 0.089	ation 1.5 0.59 0.45	1.3 0.66 0.68 0.74	1.1 0.75 0.8 0.71	1.5 0.54 0.53 0.64	1.4 0.81 0.7	1.5 0.56 0.54 0.66	1.5 0.56 0.55 0.66	0.88 1.2 1.1 1.2	0.52 1.3 1.5 0.93
median Q25 Q75 IQR	0 1.6 1.8 1.2	1.6 0 0.23 0.27	1.8 0.23 0 0.52 1.9	1.2 0.27 0.52 0	0.13 1.5 1.9 0.99 0	0.69 1.3 1.3 1.2 0.75	0.65 1.2 1.4 1.1 0.68	0.28 1.5 1.6 1.2 0.36	Dista 0.16 1.7 1.8 1.4 0.34	0.32 0.41 0.51	1.7 0.075 0.089 0.26	ation 1.5 0.59 0.45 0.84	1.3 0.66 0.68 0.74 1.2	1.1 0.75 0.8 0.71 1.1	1.5 0.54 0.53 0.64 1.3	1.4 0.81 0.7 1	1.5 0.56 0.54 0.66 1.3	1.5 0.56 0.55 0.66 1.3	0.88 1.2 1.1 1.2 0.96	0.52 1.3 1.5 0.93 0.38
median Q25 Q75 IQR skew	0 1.6 1.8 1.2 0.13	1.6 0 0.23 0.27 1.5	1.8 0.23 0 0.52 1.9	1.2 0.27 0.52 0 0.99	0.13 1.5 1.9 0.99 0	0.69 1.3 1.3 1.2 0.75	0.65 1.2 1.4 1.1 0.68	0.28 1.5 1.6 1.2 0.36 1.2	Dista 0.16 1.7 1.8 1.4 0.34	0.32 0.41 0.51 1.4	0.075 0.089 0.26 1.6	ation 1.5 0.59 0.45 0.84 1.5	1.3 0.66 0.68 0.74 1.2	1.1 0.75 0.8 0.71 1.1	1.5 0.54 0.53 0.64 1.3	1.4 0.81 0.7 1 1.4	1.5 0.56 0.54 0.66 1.3	1.5 0.56 0.55 0.66 1.3	0.88 1.2 1.1 1.2 0.96 1.2	0.52 1.3 1.5 0.93 0.38 0.96
median Q25 Q75 IQR skew kurt	0 1.6 1.8 1.2 0.13 0.69	1.6 0 0.23 0.27 1.5 1.3	1.8 0.23 0 0.52 1.9 1.3	1.2 0.27 0.52 0 0.99 1.2	0.13 1.5 1.9 0.99 0 0.75	0.69 1.3 1.3 1.2 0.75 0 0.023	0.65 1.2 1.4 1.1 0.68 0.023	0.28 1.5 1.6 1.2 0.36 1.2	Dista 0.16 1.7 1.8 1.4 0.34 0.92	0.32 0.41 0.51 1.4 1.4	0.075 0.089 0.26 1.6 1.3	ation 1.5 0.59 0.45 0.84 1.5 1.2	1.3 0.66 0.68 0.74 1.2 1.2	1.1 0.75 0.8 0.71 1.1 1.1	1.5 0.54 0.53 0.64 1.3 1.3	1.4 0.81 0.7 1 1.4 1.1	1.5 0.56 0.54 0.66 1.3 1.3	1.5 0.56 0.55 0.66 1.3 1.3	0.88 1.2 1.1 1.2 0.96 1.2	0.52 1.3 1.5 0.93 0.38 0.96 0.91
median Q25 Q75 IQR skew kurt sp.ent	0 1.6 1.8 1.2 0.13 0.69 0.65	1.6 0 0.23 0.27 1.5 1.3 1.2	1.8 0.23 0 0.52 1.9 1.3 1.4	1.2 0.27 0.52 0 0.99 1.2 1.1	0.13 1.5 1.9 0.99 0 0.75 0.68	0.69 1.3 1.3 1.2 0.75 0 0.023	0.65 1.2 1.4 1.1 0.68 0.023 0	0.28 1.5 1.6 1.2 0.36 1.2 1.1	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89	1.5 0.32 0.41 0.51 1.4 1.4	1.7 0.075 0.089 0.26 1.6 1.3 1.3	ation 1.5 0.59 0.45 0.84 1.5 1.2 1.2	1.3 0.66 0.68 0.74 1.2 1.2	1.1 0.75 0.8 0.71 1.1 1.1	1.5 0.54 0.53 0.64 1.3 1.3	1.4 0.81 0.7 1 1.4 1.1 1.1	1.5 0.56 0.54 0.66 1.3 1.3	1.5 0.56 0.55 0.66 1.3 1.3 1.3	0.88 1.2 1.1 1.2 0.96 1.2 1.2	0.52 1.3 1.5 0.93 0.38 0.96 0.91
median Q25 Q75 IQR skew kurt sp.ent sfm	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36	0.69 1.3 1.3 1.2 0.75 0 0.023 1.2	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13	1.5 0.32 0.41 0.51 1.4 1.4 1.3	0.075 0.089 0.26 1.6 1.3 1.3	ation 1.5 0.59 0.45 0.84 1.5 1.2 1.2	1.3 0.66 0.68 0.74 1.2 1.2 1.3	1.1 0.75 0.8 0.71 1.1 1.1 1.1	1.5 0.54 0.53 0.64 1.3 1.3 1.3	1.4 0.81 0.7 1 1.4 1.1 1.3	1.5 0.56 0.54 0.66 1.3 1.3 1.3	1.5 0.56 0.55 0.66 1.3 1.3 1.3	0.88 1.2 1.1 1.2 0.96 1.2 1.2 0.8	0.52 1.3 1.5 0.93 0.38 0.96 0.91 0.51
median Q25 Q75 IQR skew kurt sp.ent sfm mode	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36 0.34	0.69 1.3 1.3 1.2 0.75 0 0.023 1.2 0.92	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0	0.32 0.41 0.51 1.4 1.4 1.3	1.7 0.075 0.089 0.26 1.6 1.3 1.3 1.6 1.8	1.5 0.59 0.45 0.84 1.5 1.2 1.2 1.5	1.3 0.66 0.68 0.74 1.2 1.2 1.2 1.3 1.4	1.1 0.75 0.8 0.71 1.1 1.1 1.1 1.2 0.83	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4	1.4 0.81 0.7 1 1.4 1.1 1.3 0.8	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53	0.88 1.2 1.1 1.2 0.96 1.2 1.2 0.8 0.79	0.52 1.3 1.5 0.93 0.38 0.96 0.91 0.51 0.64
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7 0.32	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36 0.34 1.4	0.69 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0	1.7 0.075 0.089 0.26 1.6 1.3 1.6 1.8 0.31	1.5 0.59 0.45 0.84 1.5 1.2 1.2 1.5 1.4 0.68	1.3 0.66 0.68 0.74 1.2 1.2 1.3 1.4 0.61	1.1 0.75 0.8 0.71 1.1 1.1 1.1 1.2 0.83	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4 0.51	1.4 0.81 0.7 1 1.4 1.1 1.3 1.3 0.8	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53	0.88 1.2 1.1 1.2 0.96 1.2 1.2 0.8 0.79 1.2	0.52 1.3 1.5 0.93 0.38 0.96 0.91 0.51 0.64 1.2
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7 0.32 0.075	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36 0.34 1.4 1.6	0.69 1.3 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.6 1.5	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0	1.7 0.075 0.089 0.26 1.6 1.3 1.3 1.6 1.8 0.31 0	ation 1.5 0.59 0.45 0.84 1.5 1.2 1.5 1.4 0.68 0.54	1.3 0.66 0.68 0.74 1.2 1.2 1.3 1.4 0.61 0.62	1.1 0.75 0.8 0.71 1.1 1.1 1.1 1.2 0.83 0.73	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4 0.51 0.46	1.4 0.81 0.7 1 1.4 1.1 1.3 0.8 0.77 0.84	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48	0.88 1.2 1.1 1.2 0.96 1.2 1.2 0.8 0.79 1.2 1.1	0.52 1.3 1.5 0.93 0.96 0.91 0.51 0.64 1.2 1.3
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun minfun	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5 1.7	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7 0.32 0.075 0.59	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26 0.84	0.13 1.5 1.9 0.99 0.75 0.68 0.36 1.4 1.6 1.5	0.69 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2 1.2	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.6 1.5 1.3	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8 1.4	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0 0.31 0.68	1.7 0.075 0.089 0.26 1.6 1.3 1.6 1.8 0.31 0	ation 1.5 0.59 0.45 0.84 1.5 1.2 1.2 1.5 1.4 0.68 0.54 0	1.3 0.66 0.68 0.74 1.2 1.2 1.2 1.3 1.4 0.61 0.62 0.66	1.1 0.75 0.8 0.71 1.1 1.1 1.2 0.83 0.73 0.69	1.5 0.54 0.53 0.64 1.3 1.3 1.4 0.51 0.46 0.73	1.4 0.81 0.7 1 1.4 1.1 1.3 1.3 0.8 0.77 0.84 0.92	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48 0.72	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48 0.72	0.88 1.2 1.1 1.2 0.96 1.2 1.2 0.8 0.79 1.2 1.1 1.1	0.52 1.3 1.5 0.93 0.96 0.91 0.51 0.64 1.2 1.3 1.8
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun minfun maxfun	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5 1.7 1.5	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7 0.32 0.075 0.59 0.66	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089 0.45 0.68	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26 0.84 0.74	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36 0.34 1.4 1.6 1.5 1.2	0.69 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2 1.2 1.1	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2 1.2	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.6 1.5 1.3	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8 1.4	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0 0.31 0.68	1.7 0.075 0.089 0.26 1.6 1.3 1.3 1.6 1.8 0.31 0 0.54 0.62	1.5 0.59 0.45 0.84 1.5 1.2 1.2 1.5 1.4 0.68 0.54 0	1.3 0.66 0.68 0.74 1.2 1.2 1.3 1.4 0.61 0.62 0.66	1.1 0.75 0.8 0.71 1.1 1.1 1.2 0.83 0.73 0.69 0.79	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4 0.51 0.46 0.73 0.62	1.4 0.81 0.7 1.4 1.1 1.3 1.3 0.8 0.77 0.84 0.92 1.2	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48 0.72 0.68	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48 0.72 0.68	0.88 1.2 1.1 1.2 0.96 1.2 1.2 0.8 0.79 1.2 1.1 1.1	0.52 1.3 1.5 0.93 0.96 0.91 0.51 0.64 1.2 1.3 1.8 1.1
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun minfun maxfun meandom	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5 1.7 1.5 1.3	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7 0.32 0.075 0.66 0.75	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089 0.45 0.68	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26 0.84 0.74 0.71	0.13 1.5 1.9 0.99 0 0.75 0.68 0.34 1.4 1.6 1.5 1.2	0.69 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2 1.2 1.1	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2 1.2 1 1.3	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.6 1.5 1.3	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8 1.4 1.4 1.2	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0 0.31 0.68 0.61 0.83	0.075 0.089 0.26 1.6 1.3 1.3 1.6 1.8 0.31 0 0.54 0.62 0.73	1.5 0.59 0.45 0.84 1.5 1.2 1.2 1.5 1.4 0.68 0.54 0 0.66 0.69	1.3 0.66 0.68 0.74 1.2 1.2 1.3 1.4 0.61 0.62 0.66 0 0.79	1.1 0.75 0.8 0.71 1.1 1.1 1.1 1.2 0.83 0.73 0.69 0.79	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4 0.51 0.46 0.73 0.62 0.66	1.4 0.81 0.7 1 1.4 1.1 1.3 0.8 0.77 0.84 0.92 1.2 0.9	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48 0.72 0.68 0.64 0.19	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48 0.72 0.68 0.64	0.88 12 1.1 12 0.96 12 0.8 0.79 12 1.1 1 1.4 1.2 0.8	0.52 1.3 1.5 0.93 0.96 0.91 0.51 0.64 1.2 1.3 1.8 1.1
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun minfun maxfun meandom mindom mindom	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5 1.7 1.5 1.3 1.1	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 0.32 0.075 0.59 0.66 0.75 0.54	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089 0.45 0.68 0.8	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26 0.84 0.74 0.71	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36 1.4 1.6 1.5 1.2 1.1 1.3	0.69 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2 1.2 1.1 1.3	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2 1.2 1 1.3	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.5 1.3 1.1	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8 1.4 1.4 1.2	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0 0.31 0.68 0.61 0.83	0.26 1.6 1.3 1.6 1.8 0.31 0 0.54 0.62 0.73 0.46 0.77	1.5	1.3 0.66 0.68 0.74 1.2 1.2 1.3 1.4 0.61 0.62 0.79 0.62 0.92	1.1 0.75 0.8 0.71 1.1 1.1 1.1 1.2 0.83 0.73 0.69 0.79 0	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4 0.51 0.73 0.62 0.66 0	1.4 0.81 0.7 1 1.4 1.1 1.3 0.8 0.77 0.84 0.92 1.2 0.9 0.97	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48 0.72 0.68 0.64 0.19	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48 0.72 0.68 0.64 0.19	0.88 12 1.1 12 0.96 12 0.8 0.79 12 1.1 1 1.4 1.2 0.8	0.52 1.3 1.5 0.93 0.96 0.91 0.51 0.64 1.2 1.3 1.8 1.1 1.2 1.2
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun minfun maxfun meandom mindom mindom maxdom dfrange	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5 1.7 1.5 1.3 1.1	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 1.7 0.32 0.075 0.59 0.66 0.75 0.54 0.81 0.56	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089 0.45 0.68 0.8 0.53 0.7	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26 0.84 0.74 0.71 0.64	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36 1.4 1.6 1.5 1.2 1.1 1.3	0.69 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2 1.1 1.3	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2 1.2 1 1.3 1.1	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.6 1.5 1.3 1.1	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8 1.4 1.4 1.2 1.4	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0 0.31 0.68 0.61 0.83 0.51	0.075 0.089 0.26 1.6 1.3 1.3 1.6 1.8 0.31 0 0.54 0.62 0.73 0.46	1.5 0.59 0.45 0.84 1.5 1.2 1.5 1.4 0.68 0.54 0 0.66 0.69 0.73 0.84 0.72	1.3 0.66 0.68 0.74 1.2 1.2 1.3 1.4 0.61 0.62 0.79 0.62 0.92 0.68 0.68	1.1 0.75 0.8 0.71 1.1 1.1 1.1 1.2 0.83 0.73 0.69 0.79 0 0.66 1.2	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4 0.51 0.46 0.73 0.62 0.66 0	1.4 0.81 0.7 1 1.4 1.1 1.3 0.8 0.77 0.84 0.92 1.2 0.9 0.97	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48 0.72 0.68 0.64 0.19 0.97	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48 0.72 0.68 0.64 0.19	0.88 12 1.1 12 0.96 12 0.8 0.79 12 1.1 1 1.4 1.2 0.8 1.4 1.4	0.52 1.3 1.5 0.93 0.96 0.91 0.51 0.64 1.2 1.3 1.8 1.1 1.2 1.2
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun minfun maxfun meandom mindom mindom	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5 1.7 1.5 1.3 1.1 1.5 1.4	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 0.32 0.075 0.59 0.66 0.75 0.54 0.81 0.56 0.56	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089 0.45 0.68 0.8 0.53 0.7 0.54 0.55	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26 0.84 0.74 0.71 0.64 1 0.66 0.66	0.13 1.5 1.9 0.99 0 0.75 0.68 0.36 1.4 1.6 1.5 1.2 1.1 1.3 1.4 1.3	0.699 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2 1.1 1.3 1.1 1.3	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2 1.1 1.3 1.1 1.3	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.6 1.5 1.3 1.1 1.3 1.3 1.3	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8 1.4 1.4 1.2 1.4 1.3	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0 0.31 0.68 0.61 0.83 0.51 0.8	0.075 0.089 0.26 1.6 1.3 1.3 1.6 1.8 0.31 0 0.54 0.62 0.73 0.46 0.77 0.48 0.48 1.2	ation 1.5 0.59 0.45 0.84 1.5 1.2 1.5 1.4 0.68 0.54 0 0.66 0.69 0.73 0.84 0.72	1.3 0.66 0.68 0.74 1.2 1.2 1.2 1.3 1.4 0.61 0.62 0.09 0.62 0.92 0.68	1.1 0.75 0.8 0.71 1.1 1.1 1.2 0.83 0.73 0.69 0.79 0 0.66 1.2 0.64	1.5 0.54 0.53 0.64 1.3 1.3 1.3 1.4 0.51 0.73 0.62 0.66 0 0.9 0.19	1.4 0.81 0.7 1 1.4 1.1 1.3 0.8 0.77 0.84 0.92 1.2 0.9 0 0.97 0.99	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48 0.72 0.68 0.64 0.19 0.97 0.0001	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48 0.72 0.68 0.64 0.19 0.99	0.88 1.2 1.1 1.2 0.96 1.2 0.8 0.79 1.2 1.1 1.1 1.4 1.2 0.8	0.52 1.3 1.5 0.93 0.96 0.91 0.51 0.64 1.2 1.3 1.8 1.1 1.2 1.2 1.2
median Q25 Q75 IQR skew kurt sp.ent sfm mode centroid meanfun minfun maxfun meandom mindom mindom maxdom dfrange	0 1.6 1.8 1.2 0.13 0.69 0.65 0.28 0.16 1.5 1.7 1.5 1.1 1.5 1.4 1.5 0.88	1.6 0 0.23 0.27 1.5 1.3 1.2 1.5 0.075 0.59 0.66 0.75 0.54 0.81 0.56 0.56 1.2	1.8 0.23 0 0.52 1.9 1.3 1.4 1.6 1.8 0.41 0.089 0.45 0.68 0.53 0.7 0.54 0.55 1.1	1.2 0.27 0.52 0 0.99 1.2 1.1 1.2 1.4 0.51 0.26 0.84 0.74 0.71 0.64 1 0.666 0.666	0.13 1.5 1.9 0.99 0 0.75 0.68 0.34 1.4 1.6 1.5 1.2 1.1 1.3 1.4 1.3	0.69 1.3 1.2 0.75 0 0.023 1.2 0.92 1.4 1.3 1.2 1.1 1.3 1.1 1.3 1.2	0.65 1.2 1.4 1.1 0.68 0.023 0 1.1 0.89 1.4 1.3 1.2 1.2 1 1.3 1.1 1.3 1.3	0.28 1.5 1.6 1.2 0.36 1.2 1.1 0 0.13 1.3 1.6 1.5 1.3 1.1 1.3 1.3 1.3	Dista 0.16 1.7 1.8 1.4 0.34 0.92 0.89 0.13 0 1.5 1.8 1.4 1.4 1.2 1.4 1.3 1.4 1.4 0.79	1.5 0.32 0.41 0.51 1.4 1.4 1.3 1.5 0 0.31 0.68 0.61 0.83 0.51 0.8	0.26 1.6 1.3 1.6 1.8 0.31 0 0.54 0.62 0.73 0.46 0.77 0.48 0.48	ation 1.5 0.59 0.45 0.84 1.5 1.2 1.5 1.4 0.68 0.54 0 0.66 0.69 0.73 0.84 0.72 0.72 1.1	1.3 0.66 0.68 0.74 1.2 1.2 1.2 1.3 1.4 0.61 0.62 0.66 0 0.79 0.62 0.68 0.68 1	1.1 0.75 0.8 0.71 1.1 1.1 1.1 1.2 0.83 0.73 0.69 0.79 0 0.66 1.2 0.64 1.4	1.5 0.54 0.53 0.64 1.3 1.3 1.4 0.51 0.46 0.73 0.62 0.66 0 0.9 0.19 0.19	1.4 0.81 0.7 1 1.4 1.1 1.3 0.8 0.77 0.84 0.92 1.2 0.9 0 0.97 0.99 0.8	1.5 0.56 0.54 0.66 1.3 1.3 1.3 1.4 0.52 0.48 0.72 0.68 0.64 0.19 0.97 0.00010 1.4	1.5 0.56 0.55 0.66 1.3 1.3 1.3 1.4 0.53 0.48 0.72 0.68 0.64 0.19 0.99	0.88 1.2 1.1 1.2 0.96 1.2 0.8 0.79 1.2 1.1 1.1 1.4 1.2 0.8 1.4 1.4 0	0.52 1.3 1.5 0.93 0.96 0.91 0.64 1.2 1.3 1.8 1.1 1.2 1.2 1.2 1.2 1.2

- 0.2 - 0.0 - -0.6

- 0.30 - 0.25 - 0.20 - 0.10 - 0.05 - 0.00 Abaixo alguns gráficos o quais apresentam a distribuição de algumas das correlações entre os atributos do dataset. Para que seja possível observar essa correlação linear ou não linear.

```
[11]: labels, colors, colors2 = ("male", "female"), ("C3", "C2"), ("C4", "C1")
     plt.figure(figsize=(13, 6))
     plt.subplot(1, 2, 1)
     for i, color, label in zip([0, 1], colors, labels):
         sfm = sound_c[sound_c["label"] == i]["sfm"]
         centroid = sound_c[sound_c["label"] == i]["centroid"]
         plt.scatter(sfm, centroid, c=color, label=label)
     plt.title("sfm x centroid : pearson corr -0.78, distance corr 1.8")
     plt.xlabel("sfm")
     plt.ylabel("centroid")
     plt.legend()
     plt.subplot(1, 2, 2)
     for i, color, label in zip([0, 1], colors2, labels):
         sfm = sound_c[sound_c["label"] == i]["mode"]
         centroid = sound c[sound c["label"] == i]["centroid"]
         plt.scatter(sfm, centroid, c=color, label=label)
     plt.title("mode x centroid : pearson corr 0.69, distance corr 0.31")
     plt.xlabel("mode")
     plt.ylabel("centroid")
     plt.legend()
     plt.show()
```



```
[12]: labels, colors, colors2 = ("male", "female"), ("C3", "C2"), ("C4", "C1")
    plt.figure(figsize=(13, 6))
    plt.subplot(1, 2, 1)
```

```
for i, color, label in zip([0, 1], colors, labels):
    sfm = sound_c[sound_c["label"] == i]["median"]
    centroid = sound_c[sound_c["label"] == i]["sd"]
    plt.scatter(sfm, centroid, c=color, label=label)
plt.title("median x sd : pearson corr -0.56, distance corr 1.6")
plt.xlabel("sfm")
plt.ylabel("centroid")
plt.legend()
plt.subplot(1, 2, 2)
for i, color, label in zip([0, 1], colors2, labels):
    sfm = sound_c[sound_c["label"] == i]["sd"]
    centroid = sound_c[sound_c["label"] == i]["centroid"]
    plt.scatter(sfm, centroid, c=color, label=label)
plt.title("sd x centroid : pearson corr -0.74, distance corr 1.7")
plt.xlabel("mode")
plt.ylabel("centroid")
plt.legend()
plt.show()
```


De acordo com a análise estatística apresentada acima, podemos usar apenas os seguintes campos do dataset para conseguir uma acurácia em torno de 96% (sd, median, sp.ent, sfm, centroid, meanfun, meandom).

Outros campos analisados como *skew* e *kurt*, tem baixa correlação com o label final e o campo *mode* tem uma forte correlação com todos os outros campos mas também relativamente baixa com o label.

b) Implementar a Regressão Logística e apresentar os valores da curva ROC e F1-Score em função do threshold.

O modelo de Regressão Logística implementado possui 5 hiperparâmetros, que podem ser alterados, são eles:

- Regularização => valor padrão : 1e-4 (L2)
- Learning rate => valor padrão : 1e-4
- Épocas do algoritmo de GD => valor padrão : 10000
- Batch Size => valor padrão : 32
- Threshold de classificação => valor padrão : 0.5 (apenas para classificação binária)

O classificador implementa o processo iterativo conhecido como Gradiente Descendente no mini-batch passado. Além disso, ele valida os dados em um pequeno subset (30% dos dados de treinamento).

Nos testes iniciais o único valor padrão alterado foi de learning rate, alterado de 1e-4 para 1e-1, para que o modelo possa convergir no melhor ponto dentro da quantidade de épocas padrão. Neste algoritmo não foi implementado Early Stop, mas esta implementado a utilização de minibatch.

Conforme mencionado em aula, apesar da análise estatística apresentar uma possível seleção de atributos, no caso do classificador serão utilizados todos os dados (todos os dados escalonados).

Executando o classificador obtemos as seguintes visualizações, respectivamente, da Curva ROC, a evolução da métrica F-Score e da Acurácia de acordo com o Threshold.

```
[13]: fields = cols[:len(cols)-1].to numpy()
     x = np.copy(df[fields].to_numpy())
     y = np.copy(df["label"].to_numpy())
     # train test split 20%
     x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8)
[14]: # Logistic function
     clf = LogisticRegressionImpl()
     J, ACC = clf.train(x_train, y_train, lr=1e-1)
[15]: probs = clf.predict_proba(x_test)
     fpr, tpr, thresholds = roc curve(y test, probs)
     plt.figure(figsize=(10, 5))
     plt.subplot(1, 2, 1)
     plt.title("Curva ROC")
     plt.plot([0, 1], [0, 1], linestyle='--')
     plt.plot(fpr, tpr)
     plt.xlabel("FP")
     plt.ylabel("TP")
     plt.tight_layout()
     plt.show()
```



```
[16]: def calculate_resultados(y_test, y_pred):
         with np.errstate(all='ignore'):
             cfm = confusion_matrix(y_test, y_pred)
             acertos = cfm[0, 0] + cfm[1, 1]
             erros = cfm[0, 1] + cfm[1, 0]
             precisao = np.round(cfm[0, 0] / (cfm[0, 0] + cfm[0, 1]), 2)
             recall = np.round(cfm[0, 0] / (cfm[0, 0] + cfm[1, 0]), 2)
             fscore = np.round((2 * recall * precisao) / (recall + precisao), 2)
             acuracia = np.round(acertos / len(y_test) * 100, 2)
             erros = np.round(erros / len(y_test) * 100, 2)
         return acuracia, erros, recall, precisao, fscore
     def print_resultados(acuracia, erros, recall, precisao, fscore):
         print("Acurácia:")
         print("-" * 30)
         print(f"Acertos: {acuracia}%")
         print(f"Erros : {erros}%")
         print()
```

```
print("Recall | Precisão | F-Score")
   print("-" * 30)
   print(f"{recall} | {precisao} | {fscore}")
resultados = []
for thre in np.linspace(0, 1, 41):
   thre = np.round(thre, 2)
   y_pred = clf.predict(x_test, threshold=thre)
   resultados.append(np.concatenate((np.array([thre]),__
→calculate_resultados(y_test, y_pred))))
resultados = np.nan_to_num(np.array(resultados))
df = pd.DataFrame(resultados, columns=["Threshold", "Acurácia", "Erros", |
→"Recall", "Precisão", "F-Score"])
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title("Threshold x F-Score")
plt.plot(df["Threshold"], df["F-Score"], c="C3")
plt.xlabel("Threshold")
plt.ylabel("F-Score")
plt.subplot(1, 2, 2)
plt.title("Threshold x Acurácia")
plt.plot(df["Threshold"], df["Acurácia"], c="CO")
plt.xlabel("Threshold")
plt.ylabel("Acurácia")
plt.tight_layout()
plt.show()
ordered = df.sort_values(by=["F-Score", "Acurácia"], ascending=False)
print("Resultados:")
print("-" * 30)
print(ordered.head(10))
```


Resultados:

	Threshold	Acurácia	Erros	Recall	Precisão	F-Score
31	0.78	96.85	3.15	0.96	0.98	0.97
32	0.80	96.85	3.15	0.96	0.98	0.97
29	0.73	96.69	3.31	0.97	0.97	0.97
33	0.82	96.69	3.31	0.96	0.98	0.97
30	0.75	96.69	3.31	0.96	0.97	0.96
25	0.62	96.37	3.63	0.97	0.96	0.96
28	0.70	96.37	3.63	0.97	0.96	0.96
23	0.58	96.21	3.79	0.97	0.95	0.96
24	0.60	96.21	3.79	0.97	0.95	0.96
26	0.65	96.21	3.79	0.97	0.96	0.96

A curva ROC apresenta a qualidade do classificador e a evolução da F-medida permite encontrar um melhor threshold para os dados. Entretanto tal alternativa é realmente válida para classificação binária, visto que principalmente a curva ROC e o threshold são escolhas realizadas entre até 2 elementos.

Talvez uma alternativa para multi-classes, seria algo como gerar a curva ROC e o threshold para uma estrutura um-contra-todos, por exemplo.

c) Melhor valor do threshold e matriz de confusão dos resultados.

Abaixo será aplicado o melhor de threshold encontrado e observado na tabela acima.

```
print("Acurácia:")
print("-" * 30)
print(f"Acertos: {np.round(accuracy_score(y_test, y_pred) * 100, 2)}%")
print(f"Erros : {np.round((1-accuracy_score(y_test, y_pred)) * 100, 2)}%")
print()
print("Relatório de Classificação:")
print("-" * 30)
report = classification_report(y_test.astype(np.int), y_pred.astype(np.int),_u
→output_dict=True)
items = []
for key, value in report.items():
    if isinstance(value, dict) and key.isdigit():
        items.append([
            kev,
            np.round(value["precision"], 2),
            np.round(value["recall"], 2),
            np.round(value["f1-score"], 2),
            np.round(value["support"], 2)
        ])
dfclass = pd.DataFrame(items, columns=["Classe", "Precisão", "Recall", "

¬"F1-Score", "Support"])
print(dfclass)
```

Melhor threshold encontrado usando os experimentos acima: 0.78

Acurácia:

Acertos: 96.85% Erros : 3.15%

Relatório de Classificação:

```
Classe Precisão Recall F1-Score Support
0 0 0.96 0.98 0.97 325
1 1 0.98 0.96 0.97 309
```

```
[18]: cfm = confusion_matrix(y_test.astype(np.int), y_pred.astype(np.int))

plt.figure(figsize=(12, 10))
plt.subplot(2, 2, 1)
plt.title("Loss x Epochs")
plt.xlabel("epoch")
plt.ylabel("J ()")
plt.plot(J, color="C4")
plt.subplot(2, 2, 2)
plt.title("Accuracy x Epochs")
```

```
plt.xlabel("epoch")
plt.ylabel("J ()")
plt.plot(ACC, color="C3")
ax = plt.subplot(2, 2, 3)
im = plt.imshow(cfm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
ax.set(xticks=np.arange(cfm.shape[1]),
       yticks=np.arange(cfm.shape[0]),
       # ... and label them with the respective list entries
       xticklabels=["female", "male"], yticklabels=["female", "male"],
       title="Matriz de Confusão",
       ylabel='True label',
       xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
thresh = cfm.max() / 2.
for i in range(cfm.shape[0]):
    for j in range(cfm.shape[1]):
        ax.text(j, i, format(cfm[i, j], '.2f'),
                ha="center", va="center",
                color="white" if cfm[i, j] > thresh else "black")
ax.set_xlim(-0.5, 1.5)
ax.set_ylim(1.5, -0.5)
plt.tight_layout()
plt.show()
```


Após a análise exploratória dos dados e a verificação de qual o melhor threshold do classificador de Regressão Logística é possível notar a relativa precisão do classificador permitindo que o mesmo tenha um bom grau de generalização mesmo nos dados de teste. Dito isto a análise exploratória e mesmo a escolha das features e hiperparâmetros podem influenciar na melhor ou pior generalização do modelo.

1.1.2 Parte 2 - Classificação Multi Classe

Problema: identificação de atividade humana usando dados de smartphones **Dataset:** https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

```
return pd.DataFrame(columns)

har_x_train = read_dataset("./har_smartphone/X_train.txt")
har_x_test = read_dataset("./har_smartphone/X_test.txt")
har_y_train = read_dataset("./har_smartphone/y_train.txt", ground_truth=True)
har_y_test = read_dataset("./har_smartphone/y_test.txt", ground_truth=True)
```

Em primeiro lugar será feita a leitura do dataset e apresentação de algumas das informações.

O dataset contém informações pré-processadas das leituras de acelerômetros e giroscópio de aparelhos celulares.

Abaixo algumas informações numéricas do dataset.

```
[20]: print(f"Quantidade de amostras para treinamento : {har_x_train.shape[0]}")
    print(f"Quantidade de amostras para teste : {har_x_test.shape[0]}")
    print(f"Quantidade total de colunas (features) : {har_x_train.shape[1]}")

    print()
    print("Apresentação dos primeiros 2 registros e algumas colunas:")
    print("-" * 30)
    print(har_x_train.head(2))
```

Quantidade de amostras para treinamento : 7352 Quantidade de amostras para teste : 2947 Quantidade total de colunas (features) : 561

Apresentação dos primeiros 2 registros e algumas colunas:

```
0 1 2 3 4 5 6 \
0 0.288585 -0.020294 -0.132905 -0.995279 -0.983111 -0.913526 -0.995112
1 0.278419 -0.016411 -0.123520 -0.998245 -0.975300 -0.960322 -0.998807

7 8 9 ... 551 552 553 554 \
0 -0.983185 -0.923527 -0.934724 ... -0.074323 -0.298676 -0.710304 -0.112754
```

```
1 -0.974914 -0.957686 -0.943068 ... 0.158075 -0.595051 -0.861499 0.053477

555 556 557 558 559 560
0 0.030400 -0.464761 -0.018446 -0.841247 0.179941 -0.058627
1 -0.007435 -0.732626 0.703511 -0.844788 0.180289 -0.054317
```

[2 rows x 561 columns]

a) Modelo de Regressão Logística

Para este exercício foi utilizado o modelo criado previamente no exercício anterior, o qual sofreu alterações para a possibilidade de expandi-lo para a classificação multiclasse. Neste sentido foi implementada a função softmax dada pela seguinte fórmula.

```
y = \frac{exp(z)}{\sum exp(z)}
```

Os dados brutos do dataset foram usados diretamente no modelo de Regressão Logística usando a camada de softmax para determinar as classes. Não há necessidade de normalização ou

qualquer outro tipo de pré-processamento, visto que, como mencionado os dados já foram préprocessados.

Os resultados foram muito positivos dada a quantidade de informação e o tipo da mesma (dados de sensores).

Como o modelo utilizado é o mesmo que o implementado anterior, o único parâmetro que foi alterado para os resultados abaixo, foi o learning rate (valor de 1e-1).

Definido como métrica para os resultados a precisão, recall e f1-score. Todas métricas, além da acurácia que permitem analisar melhor como o modelo se comportou para a classificação de cada classe.

Abaixo, a apresentação dos resultados.

```
[21]: x_har_train = har_x_train.to_numpy()
     x_har_test = har_x_test.to_numpy()
     y_har_train = har_y_train.to_numpy().flatten()
     y_har_test = har_y_test.to_numpy().flatten()
[22]: # Logistic function
     clfsft = LogisticRegressionImpl()
     J, ACC = clfsft.train(x_har_train, y_har_train, lr=1e-1)
[23]: y_har_pred = clfsft.predict(x_har_test)
     y_har_test_on = np.argmax(one_hot_encode(y_har_test), axis=1)
     print("Aplicando o classificador no conjunto de teste")
     print("-" * 30)
     print()
     print("Acurácia:")
     print("-" * 30)
     print(f"Acertos: {np.round(accuracy_score(y_har_test_on, y_har_pred) * 100,__
      →2)}%")
     print(f"Erros : {np.round((1-accuracy_score(y har_test_on, y_har_pred)) * 100,__
      →2)}%")
     print()
     print("Relatório de Classificação:")
     print("-" * 30)
     report = classification_report(y_har_test_on + 1, y_har_pred + 1,__
      →output_dict=True)
     items = []
     for key, value in report.items():
         if isinstance(value, dict) and key.isdigit():
             items.append([
                 kev,
                 np.round(value["precision"], 2),
                 np.round(value["recall"], 2),
                 np.round(value["f1-score"], 2),
                 np.round(value["support"], 2)
             ])
```

Aplicando o classificador no conjunto de teste

Acurácia:

Acertos: 94.84% Erros : 5.16%

Relatório de Classificação:

	Classe	Precisão	Recall	F1-Score	Support
0	1	0.94	0.99	0.96	496
1	2	0.94	0.94	0.94	471
2	3	0.97	0.91	0.94	420
3	4	0.94	0.88	0.91	491
4	5	0.90	0.95	0.93	532
5	6	1.00	1.00	1.00	537

```
[24]: labels = ["caminhada", "subindo escadas", "descendo escadas", "sentado", "em_
     ⇒pé", "deitado"]
     cfm = confusion_matrix(y_har_test_on, y_har_pred)
     plt.figure(figsize=(12, 10))
     plt.subplot(2, 2, 1)
     plt.title("Loss x Epoch")
     plt.xlabel("epochs")
     plt.ylabel("J ()")
     plt.plot(J, color="C4")
     plt.subplot(2, 2, 2)
     plt.title("Accuracy x Epoch")
    plt.xlabel("epochs")
     plt.ylabel("J ()")
     plt.plot(ACC, color="C3")
     ax = plt.subplot(2, 2, 3)
     im = plt.imshow(cfm, interpolation='nearest', cmap=plt.cm.Blues)
     ax.figure.colorbar(im, ax=ax)
     ax.set(xticks=np.arange(cfm.shape[1]),
            yticks=np.arange(cfm.shape[0]),
            # ... and label them with the respective list entries
            xticklabels=labels, yticklabels=labels,
            title="Matriz de Confusão",
            ylabel='True label',
```


É evidente que mesmo modelos mais simples (diferentemente de Redes Neurais Profundas), pode sanar problemas que muitas vezes parecem ser complexos e com uma dinâmica aparentemente caótica.

Dessa maneira, pode ser muito interessante, avaliar os dados em modelos simples antes mesmo de partir para abordagens mais complexas e que necessitam de melhor tuning de parâmetros.

b) Implementação do kNN e variação do hiperparâmetro k.

Neste exercício foi implementado o algoritmo de classificação K Nearest Neighbors. A distância entre os padrões é calculada utilizando-se a distância euclidiana.

$$w = \sqrt{(\sum a - b)^2}$$

Como parametrização do algoritmo é possível selecionar dois parametros.

O primeiro deles é o valor dos K vizinhos, dessa maneira, é possível selecionar a quantidade exata de vizinhos para se avaliar a qual classe o novo padrão deve vir a pertencer. O Valor padrão de K é 5.

O outro parâmetro criado é a heurística para determinar a classe baseada na distância. Neste sentido foram implementadas duas heurísticas: *uniform* e *distance*

- *uniform*: Heurística padrão do modelo, e mais simples, defini a classe do novo padrão, verificando qual a maior quantidade de classes dos padrões mais próximos. Ou seja, tendo 5 padrões mais próximos daquele que se deseja classificar, a classe definida será a que possuir maior número dentro destes 5 padrões. Em caso de empate, opta-se pela classe que possui o padrão com menor distância (o mais próximo).
- distance: Implementa uma heurística um pouco mais complexa que a de cima, ao invés de escolher apenas a classe que possui maior quantidade de padrões, verifica na verdade a média das distâncias de cada classe divido pela quantidade de elementos.

```
y = \max_{r} \left( \sum_{i=1}^{k} d_i 1_{y(i)=r} \right)
```

onde d é o vetor invertido com o cálculo das distâncias para cada padrão, r é a quantidade de classes.

$$d_i = \frac{1}{w_i}$$

[190]: %load_ext cython

The cython extension is already loaded. To reload it, use: %reload_ext cython

```
[192]: def compute_knn(_metric, _k, _x, _y, xt):
          # Calcular as distancias
          distancias = list(calcular distancias(xt, x, y))
          distancias.sort(key=operator.itemgetter(1))
          # Pegar os primeiros K resultados
          dist = np.array(distancias[:_k])
          # Verificar quais dos resultados deve-se usar
          unique, counts = np.unique(dist[:, 0], return_counts=True)
          # Pontos baseando-se na distancia média dos melhores resultados
          if _metric == "distance":
              cls = {u: np.sum(1./dist[dist[:, 0] == u][:, 1]) for u in unique}
              return int(max(cls, key=cls.get))
          # Todos os pontos tem o mesmo peso
          else:
              cmax = np.where(counts == np.max(counts))[0][0]
              return int(unique[cmax])
      class KNeighborsClassifierImpl:
          def __init__(self, k=5, metric="uniform"):
              self._k = k
              if "uniform" in metric:
                  self. metric = "uniform"
              else:
                  self._metric = "distance"
          def fit(self, x, y):
              permutation = np.random.permutation(x.shape[0])
              self._x, self._y = x[permutation, :], y[permutation,]
          def predict(self, x_test):
              with ProcessPoolExecutor() as exc:
                  y_pred = list(exc.map(partial(compute_knn, self._metric, self._k,_
       →self._x, self._y), x_test, chunksize=500))
              return np.array(y_pred)
[193]: best_acc, best_k, best_m = 0, 1, "uniform"
      ACC = {"uniform": [], "distance": []}
      for k in range(1, 21):
          for metric in ACC.keys():
              knn = KNeighborsClassifierImpl(k=k, metric=metric)
              knn.fit(x_har_train, y_har_train)
              y_har_pred = knn.predict(x_har_test)
              acc = np.round((np.sum(y_har_test == y_har_pred) / len(x_har_test)) *__
       \rightarrow 100, 2)
              ACC[metric].append(acc)
```

```
if acc > best_acc:
    best_k = k
    best_m = metric
    best_acc = acc
```

Abaixo, são apresentados os gráficos das validações do modelo, foram realizados a validação do valor de K variando de 1 até 20 e claro, para ambas as heurísticas de classificação *uniform* e *distance*.

```
[194]: plt.figure(figsize=(13, 10))
   plt.subplot(2, 2, 1)
   plt.title("Acurácia x K (métrica uniform)")
   plt.plot(range(1, 21), ACC["uniform"])
   plt.xlabel("K")
   plt.ylabel("Acurácia")

plt.subplot(2, 2, 2)
   plt.title("Acurácia x K (métrica distance)")
   plt.plot(range(1, 21), ACC["distance"])
   plt.xlabel("K")
   plt.ylabel("Acurácia")

plt.tight_layout()
   plt.show()
```



```
[195]: knn = KNeighborsClassifierImpl(k=best_k, metric=best_m)
    knn.fit(x_har_train, y_har_train)
    y_har_pred = knn.predict(x_har_test)
    acc = np.sum(y_har_test == y_har_pred) / len(x_har_test)
    cfm = confusion_matrix(y_har_test, y_har_pred)
```

Seguindo ao informado acima, é selecionado o melhor valor de K baseado na acurácia nos dados de teste.

Abaixo são apresentadas as métricas e a matriz de confusão para esse melhor valor de K nos dados de teste.

```
[196]: print(f"Melhores valores")
     print("-" * 30)
     print(f"K
                   : {best k}")
     print(f"Métrica : {best_m}")
     print(f"Acurácia : {np.round(acc * 100, 2)}%")
     print("Relatório de Classificação:")
     print("-" * 30)
     report = classification_report(y_har_test, y_har_pred, output_dict=True)
     items = []
     for key, value in report.items():
          if isinstance(value, dict) and key.isdigit():
              items.append([
                  key,
                  np.round(value["precision"], 2),
                  np.round(value["recall"], 2),
                  np.round(value["f1-score"], 2),
                  np.round(value["support"], 2)
              ])
     dfclass = pd.DataFrame(items, columns=["Classe", "Precisão", "Recall", [

¬"F1-Score", "Support"])
     print(dfclass)
     labels = ["caminhada", "subindo escadas", "descendo escadas", "sentado", "em∪
      →pé", "deitado"]
     plt.figure(figsize=(8, 6))
     ax = plt.subplot(1, 1, 1)
     im = plt.imshow(cfm, interpolation='nearest', cmap=plt.cm.Blues)
     ax.figure.colorbar(im, ax=ax)
     ax.set(xticks=np.arange(cfm.shape[1]),
             yticks=np.arange(cfm.shape[0]),
             # ... and label them with the respective list entries
             xticklabels=labels, yticklabels=labels,
             title="Matriz de Confusão",
             ylabel='True label',
             xlabel='Predicted label')
      # Rotate the tick labels and set their alignment.
     plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
     # Loop over data dimensions and create text annotations.
     thresh = cfm.max() / 2.
     for i in range(cfm.shape[0]):
         for j in range(cfm.shape[1]):
```

Melhores valores

K : 8

Métrica : distance Acurácia : 90.97%

Relatório de Classificação:

	Classe	Precisão	Recall	F1-Score	Support
0	1	0.86	0.97	0.92	496
1	2	0.90	0.90	0.90	471
2	3	0.95	0.81	0.88	420
3	4	0.91	0.82	0.86	491
4	5	0.85	0.93	0.89	532
5	6	1.00	0.99	1.00	537

Por fim, após a execução do método KNN, é possível dizer que mesmo um método nãoparamétrico é capaz de atingir resultados relativamente ótimos. Claro que nessa avaliação é importante salientar que os dados e consequentemente a relação entre si permitem um excelente desempenho.

Dessa maneira, quando da escolha do melhor modelo ou método, para a abordagem de determinado problema, faz-se importante a avaliação de diversos, entendendo claro a peculiaridade de cada um e dos dados que se tem a disposição.

[]: