ÁRVORES B

Prof. Muriel Mazzetto Estrutura de Dados

- Projetada para trabalhar em memória secundária.
- □ Tem a funcionalidade de minimizar operações de buscas no disco.
- Funciona como uma generalização das Árvores
 Binárias de Busca.

- Diferente das ABB, essa estrutura possui mais de uma chave por nó.
- Os nós são chamados de páginas, que podem armazenar diversos elementos.
- A quantidade de elementos por página é definida
 pela ordem m da árvore:
 - Mínimo m chaves por página (exceto para a raíz);
 - Máximo 2m chaves por página;

 \square Exemplo de Árvore B de ordem m = 2.

□ Exemplo de Árvore B de ordem m = 2.

-CADA ELEMENTO POSSUI SEU FILHO DA ESQUERDA E O FILHO DA DIREITA.

-MANTEM A ORDEM DE UMA ABB.
-FILHOS PODEM SER COMPARTILHADOS.

□ Exemplo de Árvore B de ordem m = 2.

-CADA ELEMENTO POSSUI SEU FILHO DA ESQUERDA E O FILHO DA DIREITA.
-MANTEM A ORDEM DE UMA ABB.
-FILHOS PODEM SER COMPARTILHADOS.

 \square Exemplo de Árvore B de ordem m = 2.

-CADA ELEMENTO POSSUI SEU FILHO DA ESQUERDA E O FILHO DA DIREITA.
-MANTEM A ORDEM DE UMA ABB.
-FILHOS PODEM SER COMPARTILHADOS.

 \square Exemplo de Árvore B de ordem m = 2.

 \square Exemplo de Árvore B de ordem m = 2.

QUANTIDADE MÁXIMA DE ELEMENTOS POR PÁGINA: 2m = 4

 \square Exemplo de Árvore B de ordem m = 2.

QUANTIDADE MÍNIMA DE ELEMENTOS POR PÁGINA: m = 2

 \square Exemplo de Árvore B de ordem m = 2.

RAIZ PODE TER QUANTIDE MENOR QUE *m*DE ELEMENTOS.

 \square Exemplo de Árvore B de ordem m = 2.

TODAS AS PÁGINAS FOLHAS ESTÃO NO MESMO NÍVEL.

Estrutura da página

Cada página é estruturada da seguinte forma:

N PO CODO P1 C1D1 P2 ... Pn CnDn

- N: número de elementos na página.
- Ci: chave (id) do elemento.
- □ Di: dado (ponteiro para uma struct).
- □ Pi: ponteiro para o filho.
- Cada página é uma lista de dados:
 - Dinâmica: busca sequencial.
 - Estática: busca binária.

Inserção em Árvore B

- Algoritmo de inserção de um elemento:
 - Percorrer como em uma ABB até encontrar página com espaço.
 - Se o valor já existe, avise e descarte.
 - Se não existe e a página possui menos de 2m elementos, insere ordenado na lista.
 - Se não existe e a página está cheia:
 - Insere ordenado na lista;
 - Promove elemento do meio da lista (subir para página pai).

PÁGINA RAIZ VAZIA.

PÁGINA RAIZ VAZIA.

INSERIR VALOR NOVO.

PÁGINA RAIZ VAZIA.

INSERIR VALOR NOVO.

PÁGINA RAIZ COM 1 ELEMENTO.

INSERIR VALOR NOVO.

INSERIR VALOR NOVO MANTENDO A ORDEM NA LISTA.

PÁGINA RAIZ COM 2 ELEMENTOS.

INSERIR VALOR NOVO.

INSERIR VALOR NOVO MANTENDO A ORDEM NA LISTA.

PÁGINA RAIZ COM 3 ELEMENTOS.

INSERIR VALOR NOVO.

INSERIR VALOR NOVO MANTENDO A ORDEM NA LISTA.

PÁGINA RAIZ COM 4 ELEMENTOS.

INSERIR VALOR NOVO.

INSERIR VALOR NOVO MANTENDO A ORDEM NA LISTA.

QUANTIDADE DE ELEMENTOS <u>MAIOR QUE</u> O LIMITE DA ORDEM.

SELECIONAR <u>ELEMENTO DO MEIO DA LISTA</u>
PARA SER PAI DOS DEMAIS.

PROMOVER O ELEMENTO CENTRAL PARA
UMA PÁGINA PAI.
DIVIDIR ELEMENTOS EM DUAS NOVAS
PAGINAS FILHO.

ÁRVORE B DENTRO DOS LIMITES ESPECIFICADOS PELA ORDEM.

APÓS ALGUMAS INSERÇÕES.

PROMOVER O ELEMENTO CENTRAL PARA

UMA PÁGINA PAI.

DIVIDIR ELEMENTOS EM DUAS NOVAS

PAGINAS FILHO.

ÁRVORE B DENTRO DOS LIMITES ESPECIFICADOS PELA ORDEM.

Remoção em Árvore B

- □ Algoritmo de remoção de um elemento:
 - Percorrer como em uma ABB até encontrar posição.
 - Se o valor não existe, retornar aviso.
 - Se estiver em uma página folha:
 - Se N>m, apenas remove o elemento.
 - Se **N==**m:
 - **Emprestar** do irmão esquerdo ou direito (trocar com o pai).
 - Concatenar páginas irmãs e elemento pai, caso não mantenham a ordem m da árvore B.
 - Se for intermediário:
 - Substituir pelo menor da subárvore direita ou maior da subárvore esquerda. Concluir removendo o substituto.

ÁRVORE B DENTRO DOS LIMITES ESPECIFICADOS PELA ORDEM.

*MAIOR DA ESQUERDA TOMA LUGAR DO ELEMENTO PAI. PAI DESCE PARA PÁGINA DA REMOÇÃO, MANTENDO ORDEM NA LISTA.

*MAIOR DA ESQUERDA TOMA LUGAR DO ELEMENTO PAI. PAI DESCE PARA PÁGINA DA REMOÇÃO, MANTENDO ORDEM NA LISTA. *MENOR DA
DIREITA, CASO
SUBSTITUTO
ESTEJA NO
IRMÃO DA
DIREITA.

ÁRVORE B DENTRO DOS LIMITES ESPECIFICADOS PELA ORDEM.

NENHUM PODE EMPRESTAR.

*CONCATENAR PÁGINA DA REMOÇÃO, PAI

E PÁGINA IRMÃ.

NENHUM PODE EMPRESTAR.

*CONCATENAR PÁGINA DA REMOÇÃO, PAI

E PÁGINA IRMÃ.

*MANTER
ORDEM DE
SELEÇÃO DE
QUAL IRÁ
CONCATENAR.

E PÁGINA IRMÃ.

ÁRVORE B DENTRO DOS LIMITES ESPECIFICADOS PELA ORDEM.

NÓ INTERMEDIÁRIO. *SUBSTITUIR PELO <u>MAIOR DA ESQUERDA</u> OU SUBSTITUIR PELO <u>MENOR DA DIREITA</u>.

NÓ INTERMEDIÁRIO. *SUBSTITUIR PELO <u>MAIOR DA ESQUERDA</u> OU SUBSTITUIR PELO <u>MENOR DA DIREITA</u>. *SEMPRE SEGUIR
O MESMO
ALGORITMO
SELECIONADO.

NÓ INTERMEDIÁRIO. *SUBSTITUIR PELO MAIOR DA ESQUERDA OU <u>SUBSTITUIR PELO MENOR DA DIREITA</u>. *SEMPRE SEGUIR
O MESMO
ALGORITMO
SELECIONADO.

AO SUBSTITUIR, O ELEMENTO É SOBRESCRITO NA MEMÓRIA.

NÓ INTERMEDIÁRIO. *SUBSTITUIR PELO MAIOR DA ESQUERDA OU <u>SUBSTITUIR PELO MENOR DA DIREITA</u>. *SEMPRE SEGUIR
O MESMO
ALGORITMO
SELECIONADO.

REMOVER O ELEMENTO SUBSTITUTO. OBSERVAR OS CASOS DE REMOÇÃO.

ÁRVORE B DENTRO DOS LIMITES ESPECIFICADOS PELA ORDEM.

□ Árvore B+:

- Mantem todos os dados nas páginas folhas.
- Páginas intermediárias são apenas indexadores.
- Possibilita acesso sequencial nas páginas de dados.

□ Árvore B+:

- Mantem todos os dados nas páginas folhas.
- Páginas intermediárias são apenas indexadores.
- Possibilita acesso sequencial nas páginas de dados.

□ Árvore B*:

- Realiza redistribuição entre páginas até que duas páginas irmãs fiquem cheias.
- Divide o conteúdo das duas em 3 páginas.
- Otimiza o gerenciamento de espaço.

□ Exemplo de Árvore B*: Original.

□ Exemplo de Árvore B*: Após inserir 20.

□ Exemplo de Árvore B*: Após inserir 22.

DESLOCOU OS ELEMENTOS PARA A DIREITA.
EXTRAPOLOU ORDEM E CRIA NOVA PÁGINA.

Exercício

- □ Faça as seguintes operações em uma Árvore B:
 - □ Inserir 15-25-47-10-8-64-53-9-13-19-14;
 - Remover 47;
 - □ Remover 25;