EP2

Verificação Simbólico de Modelos

Data de entrega: 10/12/2015

1. Objetivo: Implementar um Verificador Simbólico de Modelos CTL usando uma biblioteca de BDDs.

2. Introdução

O problema da Verificação de Modelos é: dado M, s e Φ , queremos verificar se M, s |= Φ devolvendo SIM, se essa relação for verdadeira ou NÂO, caso contrário, isto é, M, s | $\neq \Phi$. Porém, alternativamente podemos resolver o seguinte problema:

"Dado um modelo M e uma fórmula CTL Φ , encontre o conjunto A de todos os estados que satisfazem Φ ",

e em seguida, basta verificar se s ∈ A.

A Figura 1 mostra um exemplo de modelo M, dado pela tupla (S, \to, L) (estrutura de Kripke). É importante observar que para todo $s \in S$ existe um $s' \in S$ tal que (s,s') pertence $a \to$, isto é, existe uma transição a partir de todo estado $s \in S$.

3. Algoritmos de verificação de modelos

Os 4 algoritmos de verificação de modelos vistos em sala de aula (Apêndice A): SAT, SAT_{AF}, SAT_{EX} e SAT_{EU}, manipulam subconjuntos de estados de S e o modelo de transições de estados, dado pelas duplas s \rightarrow s', com s, s' \in S . Note ainda que os 3 algoritmos, SAT_{AF}, SAT_{EX} e SAT_{EU}, realizam operações de pré-imagem para "subir" na árvore computacional. Para as fórmulas temporais temos 2 tipos de operações de pré-imagem (vide seção 6.3 do livro).

4.1 Pré-imagem Fraca (Pre _∃)

A pré-imagem fraca de um conjunto de estados X, denotada por Pre_{\exists} (X), devolve o conjunto de todos os estados s \in S tal que, na estrutura de Kripke (modelo), existe uma aresta que sai de s e vai para algum estado s' \in X, ou seja:

$$Pre_{\exists}(X) = \{s \in S \mid \exists s' \ s \rightarrow s' \ e \ s' \in X\}$$
 (1)

A Pre 3 (X) é usada nos algoritmos SAT_{EX} e SAT_{EU}.

4.2 Pré-imagem Forte (Pre)

A pré-imagem forte de um conjunto de estados X, denotada por $\text{Pre}_{\forall}(X)$, devolve o conjunto de todos os estados $s \in S$ tal que, na estrutura de Kripke (modelo), para todo $s' \in S$ que exista uma aresta que sai de s e leve a s' então $s' \in X$, ou seja:

$$\operatorname{Pre}_{\forall}(X) = \{ s \in S \mid \forall s', s \rightarrow s' \text{ implica que } s' \in X \}$$
 (2)

A Pre $_{\exists}$ (X) é usada no algoritmo SAT_{AF}. Note que podemos computar a pré-imagem forte usando a pré-imagem fraca, da seguinte forma:

$$Pre_{\forall}(X) = S \setminus Pre_{\exists}(S-X)$$
 (3)

Assim, precisamos apenas implementar $Pre_{\exists}(X)$, e computar a pré-imagem forte em função desta.

5. Algoritmos de verificação de modelos simbólica

Para implementarmos, usando a biblioteca de BDDs, as versões simbólicas dos 4 algoritmos, SAT, SAT_{AF}, SAT_{EX} e SAT_{EU}, vamos especificá-los em termos de operações entre expressões lógicas, ao invés de operações entre conjuntos de estados. Para isso, precisaremos representar conjuntos de estados e o modelo (dado pelas relações $s \rightarrow s'$) em termos de

expressões lógicas, codificadas como BDDs. Também precisaremos definir as operações entre conjuntos, incluindo a operação de pré-imagem fraca, em termos de operações entre expressões lógicas. Isso será visto em detalhes nessa seção.

Vamos usar a seguinte convenção para as operações lógicas e de conjuntos, transformadas em operações booleanas:

∧ ou ∩	* (ou & na biblioteca de BDDs PyEDA)
∨ou ∪	+ (ou na biblioteca de BDDs PyEDA)

5.1 Representação fatorada de um conjunto de estados

Como vimos, um estado s é rotulado por um conjunto de proposições L(s), isto é L(s)= $\{x_1, x_2, ..., x_m\}$, sendo m o número de proposições do modelo. Assim, representaremos um estado s como uma conjunção de x_i , se $x_i \in L(s)$, e \overline{x}_i , se $x_i \in L(s)$. Por exemplo, sendo m=3 e L(s)= $\{x_1, x_3\}$, temos s dado pela fórmula lógica $x_1 \wedge \overline{x}_2 \wedge x_3$, representada pela função booleana::

$$B_s = X_1 * \overline{X}_2 * X_3 \tag{4}$$

Um conjunto de estados X é representado pela disjunção das fórmulas de cada estado, ou seja, $B_x = B_{s1} \lor B_{s2} \lor B_{s3}$, representado pela função booleana:

$$B_{X} = B_{s1} + B_{s2} + B_{s3}$$
 (5)

5.2 Representação fatorada do modelo

Dado uma função de transição de estados \rightarrow , a representação fatorada de uma aresta s \rightarrow s', é dada pela conjunção entre a fórmula de s (isto é, conjunção de variáveis x_i e \overline{x}_i) e a fórmula de s' (isto é, conjunção de variáveis x_i e \overline{x}_i). A representação fatorada completa para a relação de transição, B_, é a disjunção das fórmulas de cada aresta.

5.3 Função de Pré-imagem (fraca) simbólica

Seja B_X a representação fatorada do conjunto de estados $X \in B_X$, a representação fatorada do conjunto X (isto é, envolvendo variáveis $x'_i \in \overline{x'_i}$). Seja ainda o conjunto B_{\rightarrow} a representação

fatorada do modelo. Para computarmos de forma simbólica a pré-imagem fraca de um conjunto de estados X (Seção 6.3.3 do livro), dada pela Equação (1):

$$Pre_{\exists}(X) = \{s \in S \mid \exists s' s \rightarrow s' e s' \in X\},\$$

temos que primeiro verificar quais são as relações s \rightarrow s' que levam para estados em X, isto é X'. Para isso, basta fazer a conjunção $B_{X'} \wedge B_{\rightarrow} (B_{X'} * B_{\rightarrow})$. Note que na fórmula resultante são eliminados os fatores das disjunções em B_{\rightarrow} que geram uma inconsistência (p $\vee \neg$ p') com as variáveis em $B_{X'}$, uma vez que $\bot \lor \phi \equiv \phi$.

Flnalmente, usamos a operação Exists (vista na aula sobre BDDs) para "eliminar" **todas** as variáveis "linha" (Equação 6).

$$Pre_{=}(X) = Exists(x_i') (B_{x'} * B_{-}), com i=1, ...,m$$
 (6)

Assim, todas as operações dos algoritmos SAT, SAT_{AF}, SAT_{EX} e SAT_{EU}, podem ser definidas de forma simbólica e podemos implementá-las usando a biblioteca de BDDs PyEDA.

6. Especificações da implementação

Neste EP, você deverá implementar um programa em Python, utilizando a biblioteca PyEDA, que recebe uma descrição de um modelo de transição M, uma fórmula CTL φ e um estado inicial s e decide se s satisfaz (ou não) a fórmula φ .

6.1. Representação do modelo

Iremos representar o conjunto de estados S com um número inteiro N, tal que |S|=N,, sendo que os estados de S são números 0, 1, ... N.

A função de transição será descrita por pares de inteiros, por exemplo, (1,3) para $s_1 \rightarrow s_3$.

A função de rotulação L(s) será dada por uma lista de subconjuntos de [x_i], onde para cada estado i, L(i) é um subconjunto { x_i }.

Para ilustrar, o modelo descrito na Figura 1 é codificado da seguinte forma (substituindo p, q e r por x_1 , x_2 e x_3):

```
3 [(0,1),(0,2),(1,0),(1,2),(2,2)] [(x_1,x_2),(x_2,x_3),(x_3)]
```

6.2. Parser de fórmulas temporais

Fórmulas temporais CTL são fórmulas lógicas que utilizam os operadores básicos de Lógica Proposicional (V, A, ¬) e operadores temporais EX, AX, EF, AF, EG, AG, EU e AU.

Para facilitar a leitura e manipulação das fórmulas temporais durante a verificação, iremos disponibilizar um parser (parser.py) para transformar fórmulas CTL ("strings de texto") em sua árvore de análise (ParseTree) correspondente.

Neste Exercício-Programa, vamos utilizar uma notação simplificada para as fórmulas CTL: As constantes verdadeiro ($^{\top}$) e falso ($^{\perp}$) serão representadas por 1 e 0, respectivamente.

Todos átomos serão da forma x_n , onde n é um número inteiro. Os operadores lógicos (\lor , \land , \neg) serão representados por (+, *, -) respectivamente.

Os operadores temporais são representados por pares de letras maiúsculas, sendo que a primeira pode ser A ou E e a segunda pode ser X, F, G ou U.

Além disso, usaremos a notação prefixa dos operadores binários, utilizando parênteses ao redor dos elementos, por exemplo: "+(φ_1)(φ_2)" ao invés de " $\varphi_1 \land \varphi_2$ " e "EU(1)(φ_1)" ao invés de "E[\top U φ_1]". Os operadores unários são utilizados sem parentêses, por exemplo: "-x3", "AX EG x2"

6.3. Exemplos de Teste

A entrada do seu programa é dada da seguinte forma (5 linhas):

A saída de seu programa deve ter duas linhas: (1) uma lista de todos estados (número) que satisfazem a fórmula e (2) "satisfaz" ou "não satisfaz" se o estado de interesse satisfaz a fórmula ou não.

Use o exercício 6.12 (2) do livro para testar o seu programa para os dois modelos CTL da Figura 6.32.

Os modelos da Figura 6.32 seriam dados por: (note que a Figura 6.32(a) tem uma aresta incompleta, para este exercício, considere que o sentido é de s₃ para s₁.)

```
Modelo (a) e fórmula (a)
```

("x2")

```
4
[(0,1),(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,3)]
[("x1","x2"),("x1"),(),("x2")]
AG +(x1)(-x2)
("x1")

Modelo (b) e fórmula (b)

3
[(0,2),(1,0),(1,1),(2,0),(2,1)]
[("x1"),("x2"),()]
EU(x2)(x1)
```

Apêndice A. Pseudo-código dos algoritmos de verificação (não-fatorados)

```
function SAT(\phi):
/* precondition: • is an arbitrary CTL formula */
/* postcondition: SAT(\oplus returns the set of states satisfying \oplus */
begin function
      case
            \phi is \top: return S
            o is ⊥: return 0
            \phi is atomic formula: return \{s \in S \mid \phi \in L(s)\}
            \phi is \neg \phi_1: return S \setminus SAT(\phi_1)
            \phi is \phi_1 \wedge \phi_2: return SAT(\phi_1) \cap SAT(\phi_2)
            \phi is \phi_1 \vee \phi_2: return SAT(\phi_1) \cup SAT(\phi_2)
            \phi is \phi_1 \rightarrow \phi_2: return SAT(\neg \phi_1 \lor \phi_2)
             \phi is AX\phi_1: return SAT(\neg EX \neg \phi_1)
             \phi is EX\phi_1: return SAT_{EX}(\phi_1)
             \phi is A[\phi_1 U \phi_2]:
                   return SAT(\neg(E[\neg\phi_1U(\neg\phi_1\wedge\neg\phi_2)]\vee EG\neg\phi_2))
             \phi is E[\phi_1 U \phi_2]: return SAT_{EU}(\phi_1, \phi_2)
             \phi is EF\phi_1: return SAT(E[\top U \phi_1])
             \phi is EG\phi_1: return SAT(\neg AF \neg \phi_1]
             \phi is AF\phi_1: return SAT<sub>AF</sub>(\phi_1)
             \phi is AG\phi_1: return SAT(\neg EF \neg \phi_1)
       end case
 end function
```

```
function SAT<sub>AF</sub>(\phi):
/* pre: • is an arbitrary CTL formula */
/* post: SAT_{AF}(\phi) returns the set of states satisfying AF \phi */
local var X, Y
begin
     X := S;
     Y := SAT(\phi);
     repeat until X = Y
          begin
               X := Y;
               Y := Y \cup \{s \in S \mid \text{ for all } s' \text{ with } s \to s' \text{ we have } s' \in Y\};
           end
     return Y
end
  function SAT<sub>EU</sub>(\phi, \psi):
  /* pre: o is an arbitrary CTL formula */
  /* post: SAT_{EU}(\phi, \psi) returns the set of states satisfying E[\phi U\psi] */
  local var W.X.Y
  begin
      W := SAT(\phi);
      X := S;
      Y := SAT(\psi);
      repeat until X = Y
            begin
                Y := Y \cup (W \cap \{s \in S \mid \text{exists } s' \text{ such that } s \to s' \text{ and } s' \in Y\};
            end
       return Y
  end
function SAT<sub>EX</sub>(\phi):
/* pre: of is an arbitrary CTL formula */
/* post: SAT_{EX}(\phi) returns the set of states satisfying EX \phi */
local var X, Y
begin
     X := SAT(\phi);
      Y := \{s_0 \in S | s_0 \to s_1 \text{ for some } s_1 \in X\};
      return Y
end
```