Análise Sintática LR(k)

Análise Sintática LR(K)

O ponto fraco da técnica LL(K) é precisar prever que produção usar com base nos primeiros K *tokens* do lado direito da produção.

A técnica LR(K) posterga a decisão até ter visto todo o lado direito de uma produção, mais os k próximos *tokens* da entrada.

Left-to-right parsing, Rightmost-derivation, K-symbol lookahead

O parser tem uma pilha e a entrada.

Os primeiros k *tokens* da entrada formam o *lookahead*

O parser possui uma pilha e a entrada

O primeiros K tokens da entrada formam o lookahead

Possui ações a serem executadas:

- SHIFT: move o primeiro token para o topo da pilha
- REDUCE:
 - Escolhe uma produção X → ABC;
 - Desempilha C, B e A
 - Empilha X (GOTO)

$$X \rightarrow A B C$$
 $A \rightarrow \mathbf{a}$
 $B \rightarrow \mathbf{b}$
 $C \rightarrow \mathbf{c}$

$$X \rightarrow A B C$$
 $A \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$

$$X \rightarrow A B C$$
 $A \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$

$$X \rightarrow ABC$$

$$A
ightarrow {f a}$$
 .

$$\begin{array}{c} B \rightarrow \mathbf{b} \\ C \rightarrow \mathbf{c} \end{array}$$

$$C \rightarrow c$$

•	
•	
-	
-	

push a (SHIFT)

$$X \rightarrow A \cdot B C$$

$$A
ightarrow \mathbf{a}$$
 .

$$\begin{array}{c} B \longrightarrow \mathbf{b} \\ C \longrightarrow \mathbf{c} \end{array}$$

$$C \rightarrow c$$

pop a (REDUCE)

push A (GOTO)

entrada: a b c

 $A \to \mathbf{a}$

$$X \rightarrow A \cdot B C$$
 $A \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$

$$X \rightarrow A \cdot B C$$
 $A \rightarrow a$
 $B \rightarrow b \cdot C$
 $C \rightarrow c$

	_
-	
	_
	_
	_
	-
A	-
	_

push b (SHIFT)

$$X \rightarrow AB \cdot C$$
 $A \rightarrow a$
 $B \rightarrow b \cdot C$
 $C \rightarrow C$

pop b (REDUCE)

push B (GOTO)

$$B \to b$$

$$A \rightarrow a$$

$$X \rightarrow AB \cdot C$$
 $A \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$

$$X \rightarrow AB \cdot C$$
 $A \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c \cdot$

•
•
•
•
В
A

•	
С	
В	
\boldsymbol{A}	

push c (SHIFT)

$$B \to b$$

$$A \rightarrow a$$

$$X \rightarrow ABC$$

$$A \to \mathbf{a}$$

$$B \rightarrow b$$

$$egin{aligned} B &
ightarrow \mathbf{b} \ C &
ightarrow \mathbf{c} \end{array}$$

С
В
A

•
В
A

pop c (REDUCE)

push C (GOTO)

$$C \rightarrow c$$

$$B \rightarrow \mathbf{b}$$

$$A\,
ightarrow{}\mathbf{a}$$

$$X \rightarrow ABC$$
.

$$A \to \mathbf{a}$$

$$\begin{array}{c} B \longrightarrow \mathbf{b} \\ C \longrightarrow \mathbf{c} \end{array}$$

$$C \rightarrow c$$

•	
C	
В	
A	

pop C

push X (GOTO)

pop B

pop A

(REDUCE)

entrada: a b c

C
ightarrow c

 $X \rightarrow ABC$

$$\mathbf{B} \to \mathbf{b}$$

 $A \to \mathbf{a}$

$$X \rightarrow ABC$$

C
ightarrow c

 $B \rightarrow b$

 $A \to \mathbf{a}$

 \boldsymbol{X}

$$X \rightarrow ABC$$

$$B \rightarrow b$$

$$A \to \mathbf{a}$$

$$X \rightarrow ABC$$
 $C \rightarrow c$
 $B \rightarrow b$
 $A \rightarrow a$
 $A \rightarrow B$
 C

$$X \rightarrow ABC$$
 $C \rightarrow C$
 $B \rightarrow D$
 $A \rightarrow a$
 $A \rightarrow B$
 C
 $A \rightarrow B$
 C

$$X \rightarrow ABC$$
 $C \rightarrow c$
 $B \rightarrow b$
 $A \rightarrow a$

$$A \qquad B \qquad C$$

$$A \qquad B \qquad C$$

$$X \rightarrow ABC \rightarrow ABC \rightarrow Abc \rightarrow abc$$

LR Parsing - Exemplo

0.
$$S' \rightarrow S \$$$

1. $S \rightarrow S$; S
2. $S \rightarrow id := E$
3. $S \rightarrow print(L)$
4. $E \rightarrow id$
5. $E \rightarrow num$
6. $E \rightarrow E + E$
7. $E \rightarrow (S, E)$
8. $L \rightarrow E$
9. $L \rightarrow L$, E

Derivação para:

$$a := 7; b := c + (d := 5 + 6, d) $$$

LR Parsing - Exemplo

```
0. S' \rightarrow S $
1. S \rightarrow S; S
2. S \rightarrow id := E
3. S \rightarrow print(L)
4. E \rightarrow id
5. E \rightarrow num
6. E \rightarrow E + E
7. E \rightarrow (S, E)
8. L \rightarrow E
9. L \rightarrow L, E
```

```
Stack
                                                                                           Action
                        a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                                           shift
                           := 7 ; b := c + (d := 5 + 6 , d) $
                                                                                           shift
1 id4
                                7 : b := c + (d := 5 + 6, d) $
                                                                                           shift
1 \text{ id}_4 := 6
                                   ; b := c + (d := 5 + 6, d) $
                                                                                           reduce E \rightarrow num
_{1} id_{4} :=_{6} num_{10}
                                   ; b := c + (d := 5 + 6, d) $
                                                                                           reduce S \rightarrow id := E
_{1} id_{4} :=_{6} E_{11}
                                   ; b := c + (d := 5 + 6, d) $
                                                                                           shift
_1 S_2
                                       b := c + (d := 5 + 6, d)$
                                                                                           shift
_{1}S_{2};_{3}
_{1} S_{2} ;_{3} id_{4}
                                          := c + (d := 5 + 6, d)$
                                                                                           shift
                                              c + (d := 5 + 6, d)$
_{1} S_{2} :_{3} id_{4} :=_{6}
                                                                                           shift
                                                  + (d := 5 + 6, d) $
                                                                                           reduce E \rightarrow id
1 S_2 : 3 id_4 := 6 id_{20}
_{1}S_{2}; _{3} id<sub>4</sub> := _{6}E_{11}
                                                 + (d := 5 + 6, d) $
                                                                                           shift
                                                 (d := 5 + 6, d)$
1 S_2 : 3 id_4 := 6 E_{11} + 16
                                                                                           shift
                                                                                           shift
_{1}S_{2}; _{3}id_{4}:=_{6}E_{11}+_{16}(_{8}
_{1}S_{2}; _{3}id_{4}:=_{6}E_{11}+_{16}(_{8}id_{4})
                                                         := 5 + 6 , d ) $
                                                                                           shift
                                                                 5 + 6, d) $
_{1}S_{2}; _{3}id_{4}:=_{6}E_{11}+_{16}(_{8}id_{4}:=_{6}
                                                                                           shift
_{1}S_{2}; _{3}id_{4}:=_{6}E_{11}+_{16}(_{8}id_{4}:=_{6}num_{10})
                                                                   + 6 , d ) $
                                                                                           reduce E \rightarrow num
1 S_2 : 3 id_4 := 6 E_{11} + 16 (8 id_4 := 6 E_{11})
                                                               +6,d)$
                                                                                           shift
1 S_2 : 3 id_4 := 6 E_{11} + 16 (8 id_4 := 6 E_{11} + 16
                                                                      6 , d ) $
                                                                                           shift
1 S_2 : 3 id_4 := 6 E_{11} + 16 (8 id_4 := 6 E_{11} + 16 num_{10})
                                                                                          reduce E \rightarrow num
_{1}S_{2}; _{3}id_{4}:=_{6}E_{11}+_{16}(_{8}id_{4}:=_{6}E_{11}+_{16}E_{17})
                                                                          , d) $
                                                                                          reduce E \rightarrow E + E
1 S_2 : 3 id_4 := 6 E_{11} + 16 (8 id_4 := 6 E_{11})
                                                                          , d) $
                                                                                           reduce S \rightarrow id := E
                                                                          , d) $
_{1}S_{2}; _{3} id<sub>4</sub> := _{6}E_{11} + _{16} (_{8}S_{12}
                                                                                           shift
_{1}S_{2}; _{3} id<sub>4</sub> := _{6}E_{11} + _{16} (_{8}S_{12}, _{18}
                                                                              d) $
                                                                                            shift
_{1}S_{2}; _{3} id<sub>4</sub> := _{6}E_{11} + _{16} (_{8}S_{12}, _{18} id<sub>20</sub>
                                                                                           reduce E \rightarrow id
_{1}S_{2}; _{3}id_{4}:=_{6}E_{11}+_{16}(_{8}S_{12},_{18}E_{21})
                                                                                           shift
1 S_2 : 3 id_4 := 6 E_{11} + 16 (8 S_{12}, 18 E_{21}) 22
                                                                                           reduce E \to (S, E)
                                                                                           reduce E \rightarrow E + E
1 S_2 : 3 id_4 := 6 E_{11} + 16 E_{17}
                                                                                           reduce S \rightarrow id := E
1 S_2; 3 id4 := 6 E_{11}
1 S_2 ; 3 S_5
                                                                                           reduce S \rightarrow S; S
_1 S_2
                                                                                           accept
```

LR Parsing Engine

Como o *parser* sabe quando fazer um shift ou um reduce?

LR Parsing Engine

Como o *parser* sabe quando fazer um shift ou um reduce?

Usando um autômato de pilha!

As arestas são nomeadas com os símbolos que podem aparecer na pilha

4 tipos de ações:

s*n*: Shift para o estado *n*;

gn: Vá para o estado n;

rk: Reduza pela regra k;

a: Accept;

: Error (entrada em branco).

As arestas do DFA são as ações shift e goto No exemplo anterior, cada número indica o estado destino

LR Parsing Engine

	id	num	print	;	,	+	:=	()	\$	S	E	L
1	s4		s7								g2		
2				s3						a			
3	s4		s7								g5		
4							s6						
5				r1	r1					r1			
6	s20	s10						s8				g11	
7								s9					
8	s4		s7								g12		
9	s20	s10						s8			1000	g15	g14
10				r5	r5	r5			r5	r5			
11				r2	r2	s16				r2			
12				s3	s18								
13				r3	r3					r3			
14					s19				s13				
15					r8				r8				
16	s20	s10						s8				g17	
17				r6	r6	s16			r6	r6			
18	s20	s10						s8				g21	
19	s20	s10						s8				g21 g23	
20				r4	r4	r4			r4	r4			
21									s22				
22				r7	r7	r 7			r7	r7			
23					r9	s16			r9				

Geração de Parsers LR(0)

LR(0) são as gramáticas que podem ser analisadas olhando somente a pilha.

- $S' \rightarrow S$ \$
- 1. $S \rightarrow (L)$
- $2. S \rightarrow X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

Estados

1.
$$S \rightarrow (L)$$

- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

$$S \to x$$
.

- Shift de "x" e "("
- Estado 2 permite reduce

$$S' \rightarrow .S$$
\$

 $S \rightarrow .x$

$$S \to .(L)$$

• Estado Inicial

$$S \to (.L)$$

$$L \to .L, S$$

$$L \to .S$$

$$S \to .(L)$$

$$S' \rightarrow S.\$$$

Estados

Goto Action:

- Imagine um shift de x ou "(" no estado 1 seguido de redução pela produção de S correspondente.
- Todos os símbolos do lado direito da produção serão desempilhados e o parser vai executar um goto para S no estado 1.
- Isso se representa movendo-se o ponto para após o S e colocando este item em um novo estado (4)

Algoritmos

- Closure(I): adiciona itens a um estado quando um "." precede um n\u00e3o terminal
- Goto(I,X): movimenta o "." para depois de X em todos os itens

```
Closure (I) = Goto (I, X) = set J to the empty set for any item A \to \alpha.X\beta in I for any production X \to \gamma add A \to \alpha X.\beta to J return I closure I for any item I for any item I for any item I and I for any item I for any item I and I for any item I for any item I and I for any item I return I for any item I for any item I for any item I and I for any item I for a
```

Algoritmos

Construção do parser LR(0)

```
Initialize T to {Closure(\{S' \rightarrow .S\}\})}
Initialize E to empty.
repeat
      for each state I in T
             for each item A \rightarrow \alpha . X\beta in I
                    let J be Goto (I, X)
                    T \leftarrow T \cup \{J\}
                   E \leftarrow E \cup \{I \xrightarrow{X} J\}
until E and T did not change in this iteration
R \leftarrow \{\}
for each state I in T
      for each item A \rightarrow \alpha.
           R \leftarrow R \cup \{I, A \rightarrow \alpha\}
```

$$S' \rightarrow . S$$
\$

- S'→ S\$
- 1. $S \rightarrow (L)$
- $S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

$$S' \rightarrow . S$$
\$

$$S \rightarrow .(L)$$

$$S \rightarrow .x$$

- $S' \rightarrow S$ \$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

1

$$S' \rightarrow .S \$$$

$$S \rightarrow .(L)$$

$$S \rightarrow .x$$

- $S' \rightarrow S$ \$
- 1. $S \rightarrow (L)$
- $S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

 $\begin{array}{c|c}
S' \to .S \\
S \to .(L) \\
S \to .x
\end{array}$

- $S' \rightarrow S$ \$
- 1. $S \rightarrow (L)$
- $S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- S' → S\$
- 1. $S \rightarrow (L)$
- $S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S$ \$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S\$$ 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $\begin{array}{ccc} \bullet & S' \rightarrow S\$ \\ 1. & S \rightarrow (L) \\ 2. & S \rightarrow x \end{array}$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

• $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$ 3. $L \rightarrow S$

• $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$ 3. $L \rightarrow S$ 4. $L \rightarrow L, S$

- $S' \rightarrow S$ \$

 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

• $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$ 3. $L \rightarrow S$ 4. $L \rightarrow L, S$

- S'→ S\$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- S'→ S\$
- 1. $S \rightarrow (L)$
- $S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- S'→ S\$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- S'→ S\$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S$ \$

 1. $S \rightarrow (L)$
- $2. \hspace{1cm} S \rightarrow X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$ 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- S'→ S\$
- 1. $S \rightarrow (L)$
- $S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S\$$ 1. $S \rightarrow (L)$ 2. $S \rightarrow x$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \to S$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- S' → S\$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

- $S' \rightarrow S$ \$
- 1. $S \rightarrow (L)$
- $2. \qquad S \to X$
- 3. $L \rightarrow S$
- 4. $L \rightarrow L$, S

• $S' \rightarrow S$ \$

1. $S \rightarrow (L)$ 2. $S \rightarrow x$ 3. $L \rightarrow S$ 4. $L \rightarrow L, S$

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
4 5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

•
$$S' \rightarrow S$$
\$

1.
$$S \rightarrow (L)$$

$$2. \hspace{1cm} S \rightarrow X$$

3.
$$L \rightarrow S$$

4.
$$L \rightarrow L$$
, S

A cadeia abaixo pertence a linguagem gerada pela gramática?

(x)\$

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow X$
3.	$L \to S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

4.

•	$S'\!\to S\$$
1.	$S \rightarrow (L)$
2.	$S \rightarrow X$
3.	$L \to S$

 $L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

-

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow X$
3.	$L \rightarrow S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha	Entrada	Ação
1	(x)\$	shif
₁ (₃	x)\$	

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow x$
3.	$L \to S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g 7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow x$
3.	$L \to S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow x$
3.	$L \to S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow x$
3.	$L \rightarrow S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow X$
3.	$L \to S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

S' → S\$
$S \rightarrow (L)$
$S \rightarrow X$
$L \to S$
$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

Entrada | Ação

(x)\$ | shift
x)\$ | shift
)\$ | Reduce S-> x
)\$ | Reduce L-> S
)\$ | shift
\$ |

•	S' → S\$
1. 2. 3.	$S \rightarrow (L)$
2.	$S \rightarrow X$
3.	$L \rightarrow S$
4.	$L \rightarrow L$, S
1	

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha	
1	
₁ (₃	
$_{1}(_{3}x_{2}$	
₁ (₃ S ₇	
$_1$ ($_3$ L $_5$	
$_1$ ($_3$ L $_5$) $_6$	
₁ S	

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow X$
3.	$L \rightarrow S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha	
1	
₁ (₃	
$_{1}(_{3}x_{2}$	
₁ (₃ S ₇	
$_{1}$ ($_{3}$ L $_{5}$	
$_{1}$ ($_{3}L_{5}$) $_{6}$	
$_1$ S $_4$	

•	S' → S\$
1.	$S \rightarrow (L)$
2.	$S \rightarrow X$
3.	$L \to S$
4.	$L \rightarrow L$, S

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g 7	g5
4					a		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

Pilha

1 1(3 1(3x2 1(3S7 1(3L5) 1(3L5) 154

Entrada | Ação

(x)\$ | shift

x)\$ | shift

)\$ | Reduce S-> x

)\$ | Reduce L-> S

)\$ | shift

\$ | Reduce S->(L)

\$ | accept

Tente construir um *parser* LR(0)

- $S \rightarrow E$ \$ 2. $E \rightarrow T$
- 1. $E \rightarrow T + E$ 3. $T \rightarrow x$

Tente construir um *parser* LR(0)

- $S \rightarrow E$ \$
- 1. $E \rightarrow T + E$

- 2. $E \rightarrow T$
- 3. $T \rightarrow x$

Não é LR(0)!!!

$$\bullet E \rightarrow T + E.$$

SLR Parser (Simple LR)

Colocar reduções somente onde indicado pelo conjunto FOLLOW

- $S \rightarrow E$ \$
- 1. $E \rightarrow T + E$
- 2. $E \rightarrow T$
- 3. $T \rightarrow x$

$Follow(E) = \{ \$ \}$
$Follow(T) = \{ +, \$ \}$

	X	+	\$	E	T
1	s5			g2	g3
2			a		53.50
3		s4	r2		
4	s5			g6	g3
5		r3	r3	200000	****
6			r1		

É SLR!!!

Lista de Exercícios

Lista 12

• Exercícios teóricos