# Hypothesis testing via simulation

Test for independence

Dr. Maria Tackett

11.07.19



## Click for PDF of slides



### **Announcements**

Project data analysis due December 3



3

## Hypothesis testing framework

- Start with a null hypothesis,  $H_0$ , that represents the status quo
- Set an alternative hypothesis,  $H_A$ , that represents the research question, i.e. what we're testing for
- Conduct a hypothesis test under the assumption that the null hypothesis is true and calculate a p-value (probability of observed or more extreme outcome given that the null hypothesis is true)
  - if the test results suggest that the data do not provide convincing evidence for the alternative hypothesis, stick with the null hypothesis
  - if they do, then reject the null hypothesis in favor of the alternative



## Testing for independence



## Is yawning contagious?

Do you think yawning is contagious?







## Is yawning contagious?

An experiment conducted by the MythBusters tested if a person can be subconsciously influenced into yawning if another person near them yawns.

https://www.discovery.com/tv-shows/mythbusters/videos/is-yawning-contagious-2

Do we buy their conclusion?



/

## Study description

In this study 50 people were randomly assigned to two groups: 34 to a group where a person near them yawned (treatment) and 16 to a control group where they didn't see someone yawn (control).



8

## Proportion of yawners

- Proportion of yawners in the treatment group:  $\frac{10}{34} = 0.2941$
- Proportion of yawners in the control group:  $\frac{4}{16} = 0.25$
- Difference: 0.2941 0.25 = 0.0441
- Our results match the ones calculated on the MythBusters episode.



## Independence?

Based on the proportions we calculated, do you think yawning is really contagious, i.e. are seeing someone yawn and yawning dependent?



## Dependence, or another possible explanation?

- The observed differences might suggest that yawning is contagious, i.e. seeing someone yawn and yawning are dependent.
- But the differences are small enough that we might wonder if they might simple be **due to chance**.
- Perhaps if we were to repeat the experiment, we would see slightly different results.
- So we will do just that well, somewhat and see what happens.
- Instead of actually conducting the experiment many times, we will simulate our results.



## Two competing claims

- "There is nothing going on." Yawning and seeing someone yawn are independent, yawning is not contagious, observed difference in proportions is simply due to chance. → Null hypothesis
- "There is something going on." Yawning and seeing someone yawn are dependent, yawning is contagious, observed difference in proportions is not due to chance. → Alternative hypothesis



datasciencebox.org 12

## Simulation setup

- 1. A regular deck of cards is comprised of 52 cards: 4 aces, 4 of numbers 2-10, 4 jacks, 4 queens, and 4 kings.
- 2. Take out two aces from the deck of cards and set them aside.
  - Take out Jokers if you have them.
- 3. The remaining 50 playing cards to represent each participant in the study:
  - 14 face cards (including the 2 aces) represent the people who yawn.
  - 36 non-face cards represent the people who don't yawn.



## Running the simulation

- 1. Shuffle the 50 cards at least 7 times<sup>1</sup> to ensure that the cards counted out are from a random process.
- 2. Count out the top 16 cards and set them aside. These cards represent the people in the control group.
- 3. Out of the remaining 34 cards (treatment group) count the number of face cards (the number of people who yawned in the treatment group).
- 4. Calculate the difference in proportions of yawners (treatment control).
- 5. Send one group member to the front of the room to input your group's difference in proportions.

[1] <a href="http://www.dartmouth.edu/~chance/course/topics/winning\_number.html">http://www.dartmouth.edu/~chance/course/topics/winning\_number.html</a>

datasciencebox.org 14

## Simulation by hand - Your results

Do the simulation results suggest that yawning is contagious, i.e. does seeing someone yawn and yawning appear to be dependent?



datasciencebox.org 15

## Simulation by hard - Your results

```
## # A tibble: 12 x 1
      diff_in_prop
##
              <dbl>
##
##
##
##
##
##
##
##
##
##
##
  10
## 11
## 12
```

| ## | # A          | tibble: | 12 | Χ | 1 |
|----|--------------|---------|----|---|---|
| ## | diff_in_prop |         |    |   |   |
| ## | <dbl></dbl>  |         |    |   |   |
| ## | 1            |         | (  | 9 |   |
| ## | 2            |         | (  | 9 |   |
| ## | 3            |         | (  | 9 |   |
| ## | 4            |         | (  | 9 |   |
| ## | 5            |         | (  | 9 |   |
| ## | 6            |         | (  | Э |   |
| ## | 7            |         | (  | 9 |   |
| ## | 8            |         | (  | Э |   |
| ## | 9            |         | (  | 9 |   |
| ## | 10           |         | (  | Э |   |
| ## | 11           |         | (  | 9 |   |
| ## | 12           |         | (  | 9 |   |



16



17

- Start with the data frame
- Specify the variables
  - Since the response variable is categorical, specify the level which should be considered as "success"



- Start with the data frame
- Specify the variables
  - Since the response variable is categorical, specify the level which should be considered as "success"
- State the null hypothesis (yawning and whether or not you see someone yawn are independent)



19

- Start with the data frame
- Specify the variables
  - Since the response variable is categorical, specify the level which should be considered as "success"
- State the null hypothesis (yawning and whether or not you see someone yawn are independent)
- Generate simulated differences via permutation



- Start with the data frame
- Specify the variables
  - Since the response variable is categorical, specify the level which should be considered as "success"
- State the null hypothesis (yawning and whether or not you see someone yawn are independent)
- Generate simulated differences via permutation
- Calculate the sample statistic of interest (difference in propotions)
  - Since the explanatory variable is categorical, specify the order in which the subtraction should occur for the calculation of the sample statistic,  $(\hat{p}_{treatment} \hat{p}_{control})$ .

```
mb_yawn %>%
  specify(response = outcome, explanatory = group,
        success = "yawn") %>%
  hypothesize(null = "independence") %>%
  generate(1000, type = "permute") %>%
```

generate(1000, datasciencebox.org

21

- Save the result
- Start with the data frame
- Specify the variables
- State the null hypothesis (yawning and whether or not you see someone yawn are independent)
- Generate simulated differences via permutation
- Calculate the sample statistic of interest (difference in proportions)



## Visualizing the null distribution

What would you expect the center of the null distribution to be?

visualize(null\_dist)

#### Simulation-Based Null Distribution





## Calculating the p-value, visually

What is the p-value, i.e. in what % of the simulations was the simulated difference in sample proportion at least as extreme as the observed difference in sample proportions?

```
visualize(null_dist) +
  shade_p_value(obs_stat = 0.0441, direction = "greater")
```



## Calculating the p-value, directly



### Conclusion

What is the conclusion of the hypothesis test?

Do you buy this conclusion?



## Equivalency of confidence and significance levels

- Two sided alternative HT with  $\alpha \rightarrow CL = 1 \alpha$
- One sided alternative HT with  $\alpha \to CL = 1 (2 \times \alpha)$





27



## **Testing errors**

- Type 1: Reject  $H_0$  when you shouldn't have
  - P(Type 1 error) =  $\alpha$
- Type 2: Fail to reject  $H_0$  when you should have
  - P(Type 2 error) is harder to calculate, but increases as  $\alpha$  decreases

#### In a court of law

- Null hypothesis: Defendant is innocent
- Alternative hypothesis: Defendant is guilty

Which is worse: Type 1 or Type 2 error?



## Probabilities of testing errors

- P(Type 1 error) =  $\alpha$
- P(Type 2 error) = 1 Power
- Power = P(correctly rejecting the null hypothesis)

Fill in the blanks in terms of correctly/incorrectly rejecting/failing to reject the null hypothesis:

- $\bullet$   $\alpha$  is the probability of \_\_.
- 1 Power is the probability of \_\_.



## Hypothesis testing for a single numeric variable



## Hypothesis testing for a single numeric variable

Let's go back to the price to rent a one-bedroom apartment in Manhattan.

```
library(tidyverse)
manhattan <- read_csv("data/manhattan.csv")</pre>
```

```
manhattan %>% slice(1:10)
                                         manhattan %>% slice(11:20)
  \# A tibble: 10 x 1
                                         ## # A tibble: 10 x 1
##
                                         ##
      rent
                                                rent
##
     <dbl>
                                               <dbl>
                                         ##
   1 3850
                                            1 2145
##
                                         ##
   2 3800
                                            2 2300
##
                                         ##
   3 2350
                                            3 1775
##
                                         ##
   4 3200
                                            4 2000
##
                                         ##
   5 2150
                                         ## 5 2175
##
   6 3267
                                         ##
                                            6 2350
##
                                            7 2550
##
   7 2495
                                         ##
                                         ## 8 4195
##
   8 2349
##
      3950
                                         ##
                                            9 1470
   10
      1795
                                         ## 10
                                                2350
```

datasciencebox.org 31

#### Rent in Manhattan

```
manhattan %>% summarise(mean=mean(rent))
```

```
## # A tibble: 1 x 1
## mean
## <dbl>
## 1 2626.
```

According to the site Rent Jungle, the average price to rent an apartment in LA is around \$2400. Is the average rent for a one-bedroom in Manhattan significantly different from \$2400?



## Simulation process

We will use bootstrapping to generate a sampling distribution under the assumption of the null hypothesis being true. Then, calculate the p-value to make a decision on the hypotheses.

- 1. Take a bootstrap sample a random sample taken with replacement from the original sample, of the same size as the original sample.
- 2. Calculate the mean of the bootstrap sample.
- 3. Repeat steps (1) and (2) many times to create a bootstrap distribution a distribution of bootstrap means.
- 4. Shift the bootstrap distribution to be centered at the null value by subtracting/adding the difference between the center of the bootstrap distribution and the null value to each bootstrap mean.
- 5. Calculate the p-value as the proportion of simulations that yield a sample mean at least as extreme as the observed sample mean.

datasciencebox.org 33



## Part 1: Take Bootstrap Sample

Take a bootstrap sample - a random sample taken with replacement from the original sample, of the same size as the original sample

```
rent_bootstrap <- manhattan %>%
  specify(response = "rent") %>%
  generate(reps = 1000, type = "bootstrap") %>%
  calculate(stat = "mean")
```



## Part 1: Take Bootstrap Sample

#### Bootstrap distribution





Where is the center of the distribution? What should it be under the null

datasciencebox.org 35

#### Part 2: Shift Distribution

Shift the bootstrap distribution to be centered at the null value by subtracting/adding the difference between the center of the bootstrap distribution and the null value to each bootstrap mean.

```
rent_boot_mean <- rent_bootstrap %>%
  summarise(mean = mean(stat)) %>% pull()

rent_bootstrap <- rent_bootstrap %>%
  mutate(null_dist_stat = stat - (rent_boot_mean - 2400))
```



### Part 2: Shift Distribution

#### Bootstrap distribution





### Part 3: Calculate P-value

How should we calculate the p-value?



## Part 3: Calculate p-value

Use the results below to calculate p-value:



39