Link Prediction from Heterogeneous Opinion Mining Networks with Multi-Domain Applications

Bernardo M. Costa, Aime Nobrega, Adailton Araujo, Ricardo Marcacini

Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP)

Motivation and Research Question

Opinion Mining and Analysis: core task in NLP

State-of-the-art results on mining opinion from text obtained with feature extraction and sentiment analysis methods

```
The laptop has an excellent screen but the battery is short-lived e_i s_{ijkl} a_{ij} a_{i(j+1)} s_{i(j+1)kl}
```

```
"laptop" is the entity (e_i) "screen" is the aspect (a_{ij}) with positive sentiment "battery" is another aspect (a_{i(j+1)}) with negative sentiment
```

Requires large labeled datasets for the training or model fine-tuning step, where fine-tuned models for a particular domain often fail in new domains

How to mine opinions from pre-trained and generalpurpose models in different domain applications?

Our Approach - Heterogeneous Network

Heterogeneous opinion mining network combines opinion data from different domains, integrating models trained for different applications

Overview of the datasets used in the experimental evaluation

Dataset	sentences	features	distinct features
eBay	294	206	167
Evernote	367	295	259
Facebook	327	242	204
Netflix	341	262	201
Photo editor	154	96	80
Spotify	227	180	145
Twitter	183	122	99
WhatsApp	169	118	100

General network structure

Network layers composition

RE-BERT trained models, each one on an app train dataset

Results

Network topology carries information across domains

GCN Embeddings can be used as valuable information

Evaluation Results (Accuracy)				
Algorithm	GCN-HOMN-LM	LM GCN-HOMN		
Sample Size (p)	Mean Std	Mean Std		
0.05 (498)	0.824 ± 0.023	0.808 ± 0.017		
0.10 (945)	$0.810\ \pm0.025$	0.818 ± 0.010		
0.15 (1338)	0.772 ± 0.063	0.818 ± 0.009		
0.20 (1680)	$0.790\ \pm0.026$	0.808 ± 0.012		
0.25 (1968)	0.793 ± 0.011	0.801 ± 0.004		
0.30 (2205)	0.775 ± 0.023	$0.782\ \pm0.007$		

Link prediciton with and without Language Modeling enrichment results

Conclusions

Heterogeneous Networks are a natural way of representing and combining different domains applications on tasks in Opinion Mining

Network embeddings are potentially usefull for mining opinions

Future work

Investigate network embeddings and apply to a wide range of different tasks in opinion mining