

RAPPORT PROJET INFORMATIQUE

L3 Méthodes informatiques

Appliquées à la gestion des entreprises

GALAXY MEETING

Réalisé par :

- Mouhibe Mohammed Khalil (GR4)
- Tahri EL Ghali (GR4)
- Moussaoui Anas (GR4)
- Rouissi Meriem (GR4)

Année universitaire 2021-2022

Table des matières

Présentation	3
Analyse et Conception	3
MCD	3
MLD	4
Outils	4
MySql	4
Oracle	4
PI/Sql	5
MySqli	5
WinDesign	5
PHP	6
Visual Studio	6
Base de données	7
Script de création des tables	7
Etoile	7
Constellation	7
Position	8
Ajout des clés primaires et étrangères	8
Exportation des données	8
Etoile	8
Constellation	9
Position	10
Insertion des données	10
Etoile	10
Constellation	11
Position	12
Utilisateur	13
Quelques requêtes	13
Prototype	14
Connexion	14
Inscription	14
Home	15
Constellation	15
Map	15
Ein	16

Présentation

Dans notre application on vise à créer une plateforme qui contient la map de la galaxie avec les étoiles et les constellations qu'elles constituent avec la possibilité de cliquer sur une étoile et avoir toutes les informations de cette dernière ou bien cliquer sur une constellation et avoir toutes les étoiles constituant cette dernière et même des information supplémentaire de cette constellation, cependant on va même donner la possibilité de se connecter et donner votre date de naissance pour avoir à quelle constellation vous êtes attribué , les informations de cette constellation , les étoiles Et même avoir toutes les personnes qui sont compatibles avec vous et pouvoir les contacter d'où vient l'idée du nom du projet **Galaxy Meeting**

Analyse et Conception

MCD

MLD

Outils

MySal

MySQL est un système de gestion de bases de données relationnelles (SGBDR). Il est distribué sous une double licence GPL et propriétaire. Il fait partie des logiciels de gestion de base de données les plus utilisés au monde, autant par le grand public (applications web principalement) que par des professionnels, en concurrence avec Oracle, PostgreSQL et Microsoft SQL Server.

Oracle

Oracle est un <u>SGBD</u> (système de gestion de bases de données) édité par la société du même nom (Oracle Corporation - http://www.oracle.com), leader mondial des bases de données.

La société *Oracle Corporation* a été créée en 1977 par Lawrence Ellison, Bob Miner, et Ed Oates. Elle s'appelle alors *Relational Software Incorporated (RSI)* et commercialise un Système de Gestion de Bases de données relationnelles (SGBDR ou RDBMS pour *Relational Database Management System*) nommé *Oracle*.

PI/Sql

PL/SQL est un langage procédural spécifiquement conçu pour accepter les instructions SQL au sein de sa syntaxe. Les unités du programme PL/SQL sont compilées par le serveur Oracle Database et stockées dans la base de données. Au moment de l'exécution, les deux langages PL/SQL et SQL s'exécutent au sein du même processus de serveur, pour une efficacité optimale. PL/SQL hérite automatiquement de la robustesse, de la sécurité et de la portabilité d'Oracle Database.

MySqli

L'extension MySQLi (abréviation pour MySQL Improved en anglais, c'est-àdire MySQL Amélioré) est un pilote qui permet d'interfacer des programmes écrits dans le langage de programmation PHP avec les bases de données MySQL, depuis la version 4.1.

WinDesign

Couverture complète de l'ensemble des modélisations des systèmes d'information

- -Solution de modélisation d'architecture d'entreprise
- -3 modules dédiés
- -Autonomes et communicants

-Un environnement complet et intégré, articulé autour d'un référentiel partagé

PHP

PHP: Hypertext Preprocessor, plus connu sous son sigle PHP, principalement utilisé pour produire des pages Web dynamiques via un serveur HTTP, mais pouvant PFE-DUT — GI Année universitaire2020-2021 20 également fonctionner comme n'importe quel langage interprété de façon locale. PHP est un langage impératif orienté objet. PHP a permis de créer un grand nombre de sites web célèbres, comme Facebook et Wikipédia. Il est considéré comme une des bases de la création de sites web dits dynamiques mais également des applications web

Visual Studio

Visual Studio Code est un éditeur de code extensible développé par Microsoft pour Windows, Linux et macOS2.Les fonctionnalités incluent la prise en charge du débogage, la mise en évidence de la syntaxe, la complétion intelligente du PFE-DUT – GI Année universitaire2020-2021 19 code, les snippets, la refactorisation du code et Git intégré. Les utilisateurs peuvent modifier le thème, les raccourcis clavier, les préférences et installer des extensions qui ajoutent des fonctionnalités supplémentaires.

Base de données

```
Script de création des tables
Etoile
CREATE TABLE IF NOT EXISTS ETOILE
 ID_ETOILE BIGINT(4) NOT NULL ,
 STAR_NAME CHAR(255) NULL,
 CODE_CONSTELATION CHAR(255) NULL,
 APPROVAL_DATE DATE NULL
 , PRIMARY KEY (ID_ETOILE)
Constellation
CREATE TABLE IF NOT EXISTS CONSTELLATION
(
 CODE_CONSTELATION CHAR(255) NOT NULL,
 ID_UTILISATEUR BIGINT(4) NOT NULL ,
 ID_ETOILE BIGINT(4) NOT NULL ,
 NAME CHAR(255) NULL,
 SAISON VARCHAR(255) NULL,
 ETOILE_PRINCIPALE CHAR(255) NULL,
 IMAGE VARCHAR(255) NULL,
 DATE_DEBUT DATE NULL,
 DATE_FIN DATE NULL
 , PRIMARY KEY (CODE_CONSTELATION)
```

```
)
Position
CREATE TABLE IF NOT EXISTS POSITION
(
 ID_ETOILE_SE_SITUE BIGINT(4) NOT NULL ,
 ID_ETOILE BIGINT(4) NULL ,
 RA_HOUR REAL(5,2) NULL,
 RA_MIN BIGINT(4) NULL,
 RA_SEC BIGINT(4) NULL,
 DEC_DEG BIGINT(4) NULL,
 DEC_MIN BIGINT(4) NULL,
 DEC_SEC BIGINT(4) NULL,
 MAGNITUDE BIGINT(4) NULL,
 LONGITUDE REAL(5,2) NULL,
 LATITUDE BIGINT(4) NULL,
 ID_POSITION BIGINT(4) NOT NULL
 , PRIMARY KEY (ID_POSITION)
)
Ajout des clés primaires et étrangères
 ALTER TABLE CONSTELLATION
 ADD FOREIGN KEY FK_CONSTELLATION_UTILISATEUR (ID_UTILISATEUR
 REFERENCES UTILISATEUR (ID_UTILISATEUR);
 ALTER TABLE CONSTELLATION
 ADD FOREIGN KEY FK_CONSTELLATION_ETOILE (ID_ETOILE)
 REFERENCES ETOILE (ID_ETOILE);
 ALTER TABLE POSITION
 ADD FOREIGN KEY FK_POSITION_ETOILE (ID_ETOILE_SE_SITUE)
 REFERENCES ETOILE (ID_ETOILE);
```

Exportation des données

Dans un premier temps et durant la recherche des données depuis le web on avait des tables remplies mais pas bien organisées selon les colonnes qu'on veut.

Etoile

Dans un premier temps nous avions les tables de cette forme

Etoile1

On aura besoin seulement du nom de l'étoile ,code_constellation et approval_date

Pour les autres données on va les insérer dans la table position

				NOM_CONSTELLATION	\$ WDS_J		⊕ RA	DEC	
1	Brachium	HR 5603	σ	Lib	15041-2517	3,25	226,017567	-25,281961	05/09/17
2	Capella	HR 1708	α	Aur	05167+4600	0,08	79,172328	45,997991	30/06/16
3	Cebalrai	HR 6603	β	Oph	-	2,76	265,868136	4,5673	21/08/16
4	Gomeisa	HR 2845	β	CMi	07272+0817	2,89	111,787674	8,289316	20/07/16
5	Chara	HR 4785	β	CVn	12337+4121	4,24	188,435603	41,357479	20/07/16
6	Denebola	HR 4534	β	Leo	11491+1434	2,14	177,26491	14,572058	30/06/16
7	Enif	HR 8308	٤	Peg	21442+0953	2,38	326,046484	9,875009	20/07/16
8	Chalawan	HR 4277	47	UMa	-	5,03	164,866553	40,430256	15/12/15
9	Rasalgethi	HR 6406	αl	Her	17146+1423	3,37	258,66191	14,390333	30/06/16
10	Sualocin	HR 7906	α	Del	20396+1555	3,77	309,90953	15,912073	12/09/16
11	Ran	HR 1084	٤	Eri	03329-0927	3,73	53,232687	-9,458259	15/12/15
12	Albaldah	HR 7264	п	Sgr	19098-2101	2,88	287,440971	-21,023615	05/09/17
13	Alcyone	HR 1165	η	Tau	03475+2406	2,85	56,871152	24,105136	30/06/16
14	Alderamin	HR 8162	α	Cep	21186+6235	2,45	319,644885	62,585574	20/07/16
15	Aljanah	HR 7949	٤	Суд	20462+3358	2,48	311,552843	33,970257	30/06/17

Etoile 2

Pour cette table on aura besoin de l'id de l'étoile

1	544	alf
2	546	gam2
3	617	alf
4	824	(null)
5	834	eta
6	1017	alf
7	1084	eps
8	1149	(null)
9	1178	(null)
10	1325	omi2
11	1346	gam
12	1520	mu
13	1577	iot
14	1641	eta
15	1708	alf
16	1790	gam
17	1791	bet

Constellation

Dans un premier temps nous avions la table de cette forme

Constellation1

Pour cette table on aura besoin de la saison , code_constellation, name, principal_star et l'image

SAIS€	ON	CODE	NAME		DEC		⊕ RA		∯ QUAD	NAME_ORIGINE	
1 Spring	ı /	UMa	Ursa Major	1279,66	+50°	43,27'	02:11,07	Alioth	North	Ptolémée	https://www.datastro.eu/api,
2 Autum	1 /	Tri	Triangulum	131,847	+32°	23,28'	04:42,13	β Trian	South	Ptolémée	https://www.datastro.eu/api
3 Summer	r / Été	Vul	Vulpecula	268,165	+24°	26,56'	09:34,64	Anser	North	Hevelius	https://www.datastro.eu/api
4 Winter	. /	Gem	Gemini	513,761	+22°	36,01'	11:18,76	Pollux	North	Ptolémée	https://www.datastro.eu/api
5 South	ern	Col	Columba	270,184	-35°	05,67'	11:23,75	Phact	South	Plancius	https://www.datastro.eu/api
6 Winter	. /	CMi	Canis Minor	183,367	+06°	25,63'	14:34,54	Procyon	North	Ptolémée	https://www.datastro.eu/api
7 South	ern	Cru	Crux	68,447	-60°	11,19'	20:41,61	Acrux	South	Plancius	https://www.datastro.eu/api
8 Spring	ı /	CVn	Canes Venatici	465,194	+40°	06,11'	15:08,64	Cor Caroli	North	Hevelius	https://www.datastro.eu/api
9 Winter	. /	Leo	Leo	946,964	+13°	08,32'	07:03,63	Regulus	North	Ptolémée	https://www.datastro.eu/api
0 Summer	r / Été	Lyr	Lyra	286,476	+36°	41,36'	10:16,43	Vega	North	Ptolémée	https://www.datastro.eu/api
1 Summer	r / Été	PsA	Piscis Aust	245,375	-30°	38,53'	20:13,88	Fomalhaut	South	Ptolémée	https://www.datastro.eu/api
2 Summer	r / Été	Aql	Aquila	652,473	+03°	24,65'	15:11,96	Altair	North	Ptolémée	https://www.datastro.eu/api
3 Summer	r / Été	Cep	Cepheus	587,787	+71°	00,51'	22:00,00	Alderamin	North	Ptolémée	https://www.datastro.eu/api
4 South	ern	Ara	Ara	237,057	-56°	35,30'	02:38,16	β Arae	South	Ptolémée	https://www.datastro.eu/api
5 Autum	1 /	Cam	Camelopardalis	756,828	+69°	22,89'	08:38,96	β Camel	North	Plancius	https://www.datastro.eu/api
6 Autum	1 /	Cet	Cetus	1231,411	-07°	10,76'	12:47,27	Diphda	South	Ptolémée	https://www.datastro.eu/api
7 South	ern	Cen	Centaurus	1060,422	-47°	20,72'	13:04,27	Rigil K	South	Ptolémée	https://www.datastro.eu/api
8 South	ern	Vel	Vela	499,649	-47°	10,03'	19:19,54	γ2 Velorum	South	Lacaille	https://www.datastro.eu/api
9 Autum	1 /	Cas	Cassiopeia	598,407	+62°	11,04'	01:19,16	Schedar	North	Ptolémée	https://www.datastro.eu/api
0 Spring	ı /	Lib	Libra	538,052	-15°	14,08'	10:40,03	Zubenes	South	Ptolémée	https://www.datastro.eu/api
1 South	ern	Pav	Pavo	377,666	-65°	46,89'	05:42,46	Peacock	South	Bayer	https://www.datastro.eu/api
							10 00 01	n 11		D. 11 1	

Position

Dans un premier temps nous avions les tables de cette forme

		RA_HOUR	∯ RA_MIN	RA_SEC	DEC_DEG	DEC_MIN	DEC_SEC			∯ LATTITUDE
1	546	1	53	32	19	17	37	5	28	19
2	617	2	7	10	23	27	45	2	32	23
3	824	2	47	55	29	14	50	5	42	29
4	834	2	50	42	55	53	44	4	43	56
5	1017	3	24	19	49	51	41	2	51	50
6	1084	3	32	56	-9	27	30	4	53	-9
7	1149	3	45	50	24	22	4	4	56	24
8	1178	3	49	10	24	3	12	4	57	24
9	1325	4	15	16	-7	39	10	4	64	-6
10	1346	4	19	48	15	37	39	4	65	16
11	1520	4	45	30	-3	15	17	4	71	-3
12	1577	4	56	60	33	9	58	3	74	33
13	1641	5	6	31	41	14	4	3	77	41
14	1708	5	16	41	45	59	53	0	79	46
15	1790	5	25	8	6	20	59	2	81	6
16	1791	5	26	18	28	36	27	2	82	29
17	1903	5	36	13	-1	12	7	2	84	-1
18	1956	5	39	39	-34	4	27	3	85	-34
19	2040	5	50	58	-35	46	6	3	88	-34
20	2282	6	20	19	-30	3	48	3	95	-30
21	2286	6	22	58	22	30	49	3	96	23
22	0.000	-			1.5		_		100	

Insertion des données

Donc on a décidé d'utiliser ces données sur oracle et utiliser des Curseurs qui traversent ces tables et insèrent les données qu'on veut sur nos tables en utilisant des jointures pour éviter d'avoir des étoiles sans constellation ou sans position ou bien des constellation sans étoiles dans notre base de données

Etoile

declare

Cursor c is SELECT * FROM (etoiles1 join position on etoiles1.magnitude=position.magnitude NATURAL JOIN constellation NATURAL join etoiles2);

begin

for rec in c loop

insert into etoile values (rec.ID_etoile, rec.Star_name, rec.nom_constellation, rec.approval_date);

end loop;

end;

Puis on exporte cette table vers une base de données MySql

Résultat

+ Options			
ID_ETOILE	STAR_NAME	CODE_CONSTELATION	APPROVAL_DATE
1708	Capella	Aur	2016-06-30
2845	Gomeisa	CMi	2016-07-20
4534	Denebola	Leo	2016-06-30
4392	Chalawan	UMa	2015-12-15
1084	Ran	Eri	2015-12-15
4405	Alkes	Crt	2016-09-12
2657	Meridiana	CrA	2017-09-05
3903	Meridiana	CrA	2017-09-05
1520	Wurren	Phe	2017-11-19
4623	Wurren	Phe	2017-11-19
2286	Tejat	Gem	2017-02-01
1956	Kraz	Crv	2018-06-01
2845	Cor Caroli	CVn	2016-07-20
3275	Alsciaukat	Lyn	2017-06-30
4662	Arneb	Lep	2016-07-20
1520	Sceptrum	Eri	2017-06-30
4623	Sceptrum	Eri	2017-06-30
4357	Zosma	Leo	2016-07-20
3307	Avior	Car	2016-07-20
1084	Chamukuy	Tau	2017-09-05
1791	Elnath	Tau	2016-07-20
1520	Alchiba	Crv	2016-09-12
	1 2 001	-	

Constellation

declare

cursor c is select * from constellation1 where code_constellation in (SELECT code_constellation from constellation1 join etoile on constellation1.code_constellation = etoile.constellation);

begin

for rec in c loop

insert into constellation (code_constellation, name, saison, etoile_principale, image) VALUES

(rec.code_constelation , rec.name , rec.saison , rec.principal_star , rec.image);

end loop;

end;

Puis on exporte cette table vers une base de données MySql

Résultat

CODE_CONSTELATION	NAME	SAISON	ETOILE_PRINCIP	IMAGE	DATE_DEBUT	DATE_FIN
UMa	Ursa Major	Spring / Printemps	Alioth	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Tri	Triangulum	Autumn / Automne	β Trianguli	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Gem	Gemini	Winter / Hiver	Pollux	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Col	Columba	Southern hemisphere constellation / Constellation	Phact	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
CMi	Canis Minor	Winter / Hiver	Procyon	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Cru	Crux	Southern hemisphere constellation / Constellation	Acrux	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
CVn	Canes Venatici	Spring / Printemps	Cor Caroli	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Leo	Leo	Winter / Hiver	Regulus	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Lyr	Lyra	Summer / Été	Vega	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Сер	Cepheus	Summer / Été	Alderamin	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL
Cen	Centaurus	Southern hemisphere constellation /	Rigil Kentaurus	https://www.datastro.eu/api/datasets/1.0/88-conste	NULL	NULL

Position

On a ajouté deux colonnes longitude et latitude qui vont nous permettre de dessiner les etoiles avec SVG

declare

cursor c is select * from position;

a number; b Number;

begin

for d in c loop

update position set longitude =(d.RA_hour + d.RA_min /60 + d.RA_sec / 3600) * 15, latitude = d.dec_deg + d.dec_min / 60 + d.dec_sec / 3600 where id_etoile = d.id_etoile;

end loop;

end;

Puis on exporte cette table vers une base de données MySql

Résultat

ID_ETOILE	RA_HOUR	RA_MIN	RA_SEC	DEC_DEG	DEC_MIN	DEC_SEC	MAGNITUDE	LONGITUDE	LATTITUDE
546	1	53	32	19	17	37	5	256	238
617	2	7	10	23	27	45	2	264	246
824	2	47	55	29	14	50	5	284	258
834	2	50	42	55	53	44	4	286	312
1017	3	24	19	49	51	41	2	302	300
1084	3	32	56	-9	27	30	4	306	182
1149	3	45	50	24	22	4	4	312	248
1178	3	49	10	24	3	12	4	314	248
1325	4	15	16	-7	39	10	4	328	188
1346	4	19	48	15	37	39	4	330	232
1520	4	45	30	-3	15	17	4	342	194
1577	4	56	60	33	9	58	3	348	266
1641	5	6	31	41	14	4	3	354	282
1708	5	16	41	45	59	53	0	358	292
1790	5	25	8	6	20	59	2	362	212
1791	5	26	18	28	36	27	2	364	258
1903	5	36	13	-1	12	7	2	368	198
1956	5	39	39	-34	4	27	3	370	132

Utilisateur

+ Options

id_utilisateur	email	password	date_naissance	gender	nom	prenom
1	mohammed khalil.mouhibe @gmail.com	123	2001-11-23 00:00:00	male	mouhibe	mohammed khalil
2	2 ghalil.tahri@gmail.com		2001-11-20 00:00:00	male	Tahri	El Ghali
3	anas.moussaoui@gmail.com	123	2001-11-16 00:00:00	male	Moussaoui	Anas

Quelques requêtes

• Les étoiles d'une constellation

(Virgo ici c'est juste un exemple on peut le remplacer par la suite par la suite avec la constellation qu'on veut)

Select star_nam from etoile natural join constellation where name="Virgo";

• Pour savoir la constellation d'un utilisateur

Select name from constellation ,utilisateur where utilisateur.date_naissance between date_debut and date_fin ;

• Image d'une constellation

Select image from constellation where name = "Virgo;

• L'Etoile principal d'une constellation

Select principal_star from constellation where name="virgo";

• Si on clique sur une étoile on affiche ses donnes de position

Select * From position where id_etoile=\$_GET["star_name";

• Les constellations par saison

Select name from constellation where saison='ete';

• Le nombre des utilisateurs qui ont la même constellation

select count(*) from constellation ,utilisateur where utilisateur.date_naissance between date_debut and date_fin;

Le nombre des utilisateurs

select count(*) from utilisateur;

Pour vérifier l'email et le mot de passe lors de la connexion

Select email, password from utilisateur;

Pour afficher les emails des utilisateurs compatibles à la personne connecte

Select email from utilisateur, constellation where date_naissance beteween date_debut ,date_fin and id_utilisateur not in (select id_utilisateur from utilisateur where id_utilisateur= \$ GET["id utilisateur"];

Prototype

Galaxy Meeting

Map

On a dessiné cette Map à l'aide de PHP en utilisant la balise SVG et on va essayer de la développer pendant la suite du projet pendant le 2 eme semestre

(Le code de cette Map et dans le fichier « code »)

Fin