

Metodologias de Otimização e Apoio à Decisão Data: 03/02/2023 Exame – Época de Recurso

Nota: Apresente todos os cálculos que efetuar e justifique convenientemente as suas respostas.

1. (cotação prevista: 7.5 valores = 2.5 + 2.5 + 2.5)

Considere o seguinte problema de programação linear com um só objetivo:

Maximizar
$$z = x_1 + 3x_2$$

sujeito a
 $x_1 + x_2 \le 8$ (1)
 $4x_1 + x_2 \le 26$ (2)
 $-x_1 + x_2 \le 4$ (3)
 $x_1 \ge 0, x_2 \ge 0$

Assumindo que x₃, x₄ e x₅ são as variáveis *slack* das restrições funcionais (1), (2) e (3), respetivamente, o quadro ótimo do *simplex* é:

		, Ci	1	3	0	0	0	
Х	В	c _B \ x _i	X 1	X 2	X 3	X 4	X 5	b
X	(1	1	1	0	1/2	0	-1/2	2
Х	(4	0	0	0	-5/2	1	3/2	12
Х	(2	3	0	1	1/2	0	1/2	6
Z _i -C _i			0	0	2	0	1	20

- a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de pós-otimização, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes da variação:
 - i) Introdução de uma nova restrição funcional: 2x₁ + x₂ ≤ 12.
 - ii) Introdução de uma **nova variável** com coeficientes nas restrições iguais a $\begin{bmatrix} 0 \\ -2 \\ 2 \end{bmatrix}$ e coeficiente

na função objetivo igual a 4.

- b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que **intervalo de c**₁ (coeficiente de **x**₁ na função objetivo) a solução apresentada acima, continuará ótima.
- **2.** (cotação prevista: 5,0 valores)

Considere agora o seguinte problema de programação por metas:

Minimizar Z =
$$\left\{ d_{4}^{-}, d_{3}^{-} \right\}$$
 sujeito a
$$2x_{1} + 3x_{2} + d_{1}^{-} = 24 \qquad \text{(1)}$$

$$3x_{1} + x_{2} - d_{2}^{+} = 12 \qquad \text{(2)}$$

$$x_{1} - x_{2} + d_{3}^{-} - d_{3}^{+} = 4 \qquad \text{(3)}$$

$$x_{2} + d_{4}^{-} - d_{4}^{+} = 4 \qquad \text{(4)}$$

$$x_{1} \geq 0, \quad x_{2} \geq 0, \quad d_{i}^{-} \geq 0, \quad d_{i}^{+} \geq 0 \quad (i = 1, 2, 3, 4)$$

Resolva este problema pelo método gráfico.

Duração: 2h

 $(cotação\ prevista:\ 7,5\ valores=5,0+1,5+1,0)$

3.

Considere o seguinte problema de programação linear inteira pura:

Maximizar
$$z = 3x_1 + 2x_2$$

sujeito a
 $2x_1 - x_2 \le 6$ (1)
 $2x_1 + 3x_2 \le 9$ (2)
 $x_1 \ge 0, x_2 \ge 0$
 $x_1 \in x_2 \text{ inteiros}$

Considerando x_3 e x_4 as variáveis *slack* das restrições funcionais (1) e (2), respetivamente, suponha que se aplicou o **algoritmo de Gomory** a este mesmo problema e que no final do 1º passo se obteve o seguinte quadro ótimo:

	Ci	3	2	0	0	
\mathbf{x}_{B}	c _B \x _i	X 1	\mathbf{x}_{2}	X ₃	X_4	b
X ₁	3	1	0	3/8	1/8	27/8
X 2	2	0	1	-1/4	1/4	3/4
	zj-cj	0	0	5/8	7/8	93/8

- a) Retire as suas **conclusões** e, se achar necessário, **prossiga com o 2º passo** do referido algoritmo para resolver o problema apresentado.
- **b)** Considerando a resolução gráfica do problema de PL associado apresentada abaixo, **interprete a resolução da alínea anterior**, completando o referido gráfico.

c) A restrição x₁ + x₂ ≤ 3 poderia ser uma restrição de corte para este problema? Justifique.

Nome: Nº ____