Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

07 de maio de 2019

Plano de Aula

Equivalência Lógica

[Q026]

A partir da tabela-verdade abaixo

р	q	$p \leftrightarrow q$	$(p \leftrightarrow q) \land p$	$(p \leftrightarrow q) \land p \rightarrow q$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	V	F	V

é correto afirmar que...

- (A) $p \leftrightarrow q \Rightarrow p$
- (B) $p \Rightarrow p \leftrightarrow q$
- (C) $(p \leftrightarrow q) \Rightarrow p \rightarrow q$
- (D) $(p \leftrightarrow q) \land p \Rightarrow q$

[Q027]

Seja a implicação $(p \to q \to r) \land (r \lor p) \Rightarrow r \lor p$. Pode-se dizer que ela é...

- (A) Verdadeira.
- (B) Falsa.

Definição

Diz-se que uma proposição $P(p,q,r,\ldots)$ logicamente equivalente ou apenas **equivalente** a uma proposição $Q(p,q,r,\ldots)$, se as tabelas-verdade destas duas proposições forem idênticas.

Definição

Diz-se que uma proposição $P(p,q,r,\ldots)$ logicamente equivalente ou apenas **equivalente** a uma proposição $Q(p,q,r,\ldots)$, se as tabelas-verdade destas duas proposições forem idênticas.

Notação

$$P(p,q,r,\ldots) \Leftrightarrow Q(p,q,r,\ldots)$$

Definição

Diz-se que uma proposição $P(p,q,r,\ldots)$ logicamente equivalente ou apenas **equivalente** a uma proposição $Q(p,q,r,\ldots)$, se as tabelas-verdade destas duas proposições forem idênticas.

Notação

$$P(p, q, r, \ldots) \Leftrightarrow Q(p, q, r, \ldots)$$

Exemplos

$$\sim \sim p \Leftrightarrow p$$
 e $p \to q \Leftrightarrow \sim p \lor q$

[Q028]

Qual das alternativas abaixo é falsa?

- (A) $p \land \sim q \Leftrightarrow p \land \sim q$
- (B) $p \land (p \lor q) \Leftrightarrow p$
- (C) $p \rightarrow q \Leftrightarrow q \rightarrow p$
- (D) $p \lor q \Leftrightarrow q \lor p$

Propriedades¹

Reflexiva

$$P(p,q,r,\ldots) \Leftrightarrow P(p,q,r,\ldots)$$

Reflexiva

$$P(p, q, r, \ldots) \Leftrightarrow P(p, q, r, \ldots)$$

Simétrica

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$
 então

Propriedades¹

Reflexiva

$$P(p, q, r, \ldots) \Leftrightarrow P(p, q, r, \ldots)$$

Simétrica

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$
 então $Q(p, q, r, ...) \Leftrightarrow P(p, q, r, ...)$

Reflexiva

$$P(p,q,r,\ldots) \Leftrightarrow P(p,q,r,\ldots)$$

Simétrica

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$
 então $Q(p, q, r, ...) \Leftrightarrow P(p, q, r, ...)$

Transitiva

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$

Reflexiva

$$P(p,q,r,\ldots) \Leftrightarrow P(p,q,r,\ldots)$$

Simétrica

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$
 então $Q(p, q, r, ...) \Leftrightarrow P(p, q, r, ...)$

Transitiva

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$

e
$$Q(p,q,r,...) \Leftrightarrow R(p,q,r,...)$$
 então

Reflexiva

$$P(p, q, r, \ldots) \Leftrightarrow P(p, q, r, \ldots)$$

Simétrica

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$
 então $Q(p, q, r, ...) \Leftrightarrow P(p, q, r, ...)$

Transitiva

Se
$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$

e
$$Q(p,q,r,\ldots) \Leftrightarrow R(p,q,r,\ldots)$$
 então

$$P(p,q,r,\ldots) \Leftrightarrow R(p,q,r,\ldots)$$

Tautologias e Equivalência Lógica

Teorema

$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$

se, e somente se a bicondicional $P(p, q, r, ...) \leftrightarrow Q(p, q, r, ...)$
for uma tautologia.

Tautologias e Equivalência Lógica

Teorema

$$P(p,q,r,\ldots)\Leftrightarrow Q(p,q,r,\ldots)$$

se, e somente se a bicondicional $P(p,q,r,\ldots)\leftrightarrow Q(p,q,r,\ldots)$
for uma tautologia.

Corolário

Se
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
 então $P(P_0,Q_0,R_0,...) \Leftrightarrow Q(P_0,Q_0,R_0,...)$ quaisquer que sejam $P_0,Q_0,R_0,...$

Tautologias e Equivalência Lógica

Teorema

$$P(p,q,r,\ldots)\Leftrightarrow Q(p,q,r,\ldots)$$

se, e somente se a bicondicional $P(p,q,r,\ldots)\leftrightarrow Q(p,q,r,\ldots)$
for uma tautologia.

Corolário

Se
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
 então $P(P_0,Q_0,R_0,...) \Leftrightarrow Q(P_0,Q_0,R_0,...)$ quaisquer que sejam $P_0,Q_0,R_0,...$

Nota...

Os símbolos ↔ e ⇔ são distintos. O primeiro é uma operação lógica, enquanto o segundo é uma relação lógica.

[Q029]

Se

$$(p \lor q) \rightarrow r \Leftrightarrow r$$

е

$$r \Leftrightarrow (s \leftrightarrow t) \land v$$

não se pode afirmar que...

(A)
$$(p \lor q) \to r \Leftrightarrow (s \leftrightarrow t) \land v$$

(B)
$$(p \lor q) \Leftrightarrow (s \leftrightarrow t)$$

(C)
$$(p \lor q) \to r \Leftrightarrow (p \lor q) \to r$$

(D)
$$(s \leftrightarrow t) \land v \Leftrightarrow r$$

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

07 de maio de 2019

