Markov processes – I

- checkout counter example
- Markov process definition
- n-step transition probabilities
- classification of states

$$state(t+1) = f(state(t), noise)$$

checkout counter example

• discrete time $n = 0, 1, \dots$

- customer arrivals: Bernouilli (p)
- customer service times: geometric (q)
- "state" X_n : number of customers at time n

discrete-time finite state Markov chains

- X_n : state after n transitions
 - belongs to a finite set
 - initial state X_0 either given or random
 - transition probabilities:

$$p_{ij} = P(X_1 = j \mid X_0 = i)$$

= $P(X_{n+1} = j \mid X_n = i)$

Markov property/assumption:

"given current state, the past doesn't matter"

$$p_{ij} = P(X_{n+1} = j \mid X_n = i)$$

= $P(X_{n+1} = j \mid X_n = i, X_{n-1}, ..., X_0)$

• model specification: identify states, transitions, and transition probabilities

n-step transition probabilities

• state probabilities, given initial state i:

$$r_{ij}(n) = P(X_n = j \mid X_0 = i)$$

= $P(X_{n+s} = j \mid X_s = i)$

• key recursion:

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

random initial state:

$$P(X_n = j) = \sum_{i=1}^{m} P(X_0 = i) r_{ij}(n)$$

example

$$r_{ij}(n) = \mathbf{P}(X_n = j \mid X_0 = i)$$

	n = 0	n = 1	n=2	n = 100	n = 101
$r_{11}(n)$					
$r_{12}(n)$					
$r_{21}(n)$					
21()					
$r_{\alpha\alpha}(n)$					
$r_{22}(n)$					

generic convergence questions

• does $r_{ij}(n)$ converge to something?

$$n \text{ odd: } r_{22}(n) =$$

$$n \text{ even: } r_{22}(n) =$$

does the limit depend on initial state?

$$r_{11}(n) =$$

$$r_{31}(n) =$$

$$r_{21}(n) =$$

recurrent and transient states

- state i is recurrent if "starting from i, and from wherever you can go, there is a way of returning to i"
- if not recurrent, called transient

• recurrent class: a collection of recurrent states communicating only between each other