Project Design Phase-II Technology Stack (Architecture & Stack)

Date	08 October 2022
Team ID	PNT2022TMID40761
Project Name	NATURAL DISASTERS INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

Technical Architecture:

<u>Table-1</u>: Components & Technologies:

S. No	Component	Description	Technology
1.	User Interface	User interacts with application for the prediction of Any Natural disaster which will happen in future minutes.	HTML, CSS, JavaScript, Django, Python.
2.	Feature Engineering Pipeline	Algorithms can't make sense of raw data. We have to select, transform, combine, and otherwise prepare our data so the algorithm can find useful patterns.	Image processing, pattern extraction, etc.
3.	Model Training kit	It learns patterns from the data. Then they use these patterns to perform particular tasks.	Multiclass Classification Model, Regression Model, etc.
4.	Prediction unit	This function is used to predict outcomes from the new trained data to perform new tasks and solve new problems.	Decision trees, Regression, Neural networks.
5.	Evaluation system	It monitors that how Algorithm performs on data as well as during training.	Chi-Square, Confusion Matrix, etc.
6.	Interactive services	To interact with our model and give it problems to solve. Usually this takes the form of an API, a user interface, or a command-line interface.	Application programming interface, etc.
7.	Data collection unit	Data is only useful if it's accessible, so it needs to be stored ideally in a consistent structure and conveniently in one place.	IBM Cloud, SQL Server.
8.	Data generation system	Every machine learning application lives off data. That data has to come from somewhere. Usually, it's generated by one of your core business functions.	Synthetic data generation.

9.	Database management system	An organized collection of data stored in database,	MySQL, DynamoDB etc.
		so that it can be easily accessed and managed.	
10.	IBM Cloud services	Processed data stored in cloud service which can be	IBM Cloud etc.
		access by the admin anywhere over the internet.	

<u>Table-2</u>: Application Characteristics:

S. No	Characteristics	Description	Technology	
1.	Open-Source Frameworks	An open source framework is a template for software development that is designed by a social network of software developers. These	Keras, pensor flow.	
		frameworks are free for public use and provide the foundation for building a software application.		
2.	Authentication	This keeps our models secure and makes sure		
		only those who have permission can use them.	Encryption and Decryption (OTP).	
3.	Application interface	User uses mobile application and web application	Android and Web Development	
		to interact with model	(PhoneGap, ReactNative, and NativeScript).	
4.	Availability (both Online and Offline	Its include both online and offline work. As good	0 1: 1 1	
	work)	internet connection is need for online work to	Caching, backend server.	
		explore the software perfectly. Offline work includes the saved data to explore for later time.		
5.	Regular Updates	The truly excellent software product needs a		
		continuous process of improvements and updates.	Waterfall Approach	
		Maintain your server and make sure that your	Incremental Approach	
		content is always up-to-date. Regularly update an	Spiral Approach	
		app and enrich it with new features.		
6.	Personalization	Software has features like flexible fonts,		

backgrounds, settings, colour themes, etc. which make a software interface looks good and functional.	HubSpotProof	
---	---	--