Практическая часть

Часть 1. Базовые технологические процессы изготовления активных элементов твердотельной электроники

Часть 2. Активные элементы интегральных микросхем

- 1. Рассчитать пороговое напряжение $U_{\rm nop}$ и сдвиг $U_{\rm nop}$ в короткоканальном МОПТ $\Delta U_{\rm nop}$. Задано: материал кремний; толщина подзатворного диэлектрика ${\rm SiO}_2\,d=40$ нм; подложка p-типа с концентрацией примеси $N{\rm a}(N_{\rm n})=10^{16}\,{\rm cm}^{-3}$; плотность поверхностных состояний $N_{\rm nc}=10^{10}\,{\rm cm}^{-2}$; длина канала $L=1,5\,{\rm mkm}$; концентрация примеси в истоке и стоке $Nd=10^{21}\,{\rm cm}^{-3}$; глубина переходов истока и стока $X_{d_i}=1,5\,{\rm mkm}$; поверхностный потенциал $\phi_s=0,02\,{\rm B}$; напряжение подложка исток $U_{\rm пи}=0\,{\rm B}$; затвор поликремниевого p-типа; температура $T=300\,{\rm K}$; напряжение на стоке $U_{\rm cu}=5\,{\rm B}$.
- 2. Рассчитать сплавной выпрямительный диод. Задано: прямое падение напряжения $U_{\rm пр}=0.8~{\rm B}$; максимальное обратное напряжение $U_{\rm обртах}=150~{\rm B}$; прямой допустимый ток $I_{\rm прдоп}=5~{\rm A}$; диапазон температур окружающей среды составляет от минус 70 до плюс $140~{\rm ^oC}$. Определить или выбрать: исходный полупроводниковый материал; концентрацию примесей в n-базе; марку полупроводникового материала; ток генерации при U=0; тепловое сопротивление переход корпус R_t при температуре $T=300~{\rm K}$.
- 3. Рассчитать крутизну S n-канального МОПТ для пологой части выходной ВАХ при напряжении затвор исток $U_{3\mu}=3U_{\text{пор}}$. Задано: материал кремний; толщина подзатворного диэлектрика SiO_2 d=40 нм; концентрация примеси в подложке $N_{\Pi}=10^{16}$ см $^{-3}$; плотность поверхностных состояний $N_{\text{пс}}=10^{10}$ см $^{-2}$; эффективная подвижность электронов в канале $\mu_{9\varphi}=400$ см 2 / $\text{B}\cdot\text{c}$; длина канала L=3 мкм; ширина канала Z=10 мкм; температура T=300 К; затвор алюминий.
- 4. Рассчитать коэффициент инжекции эмиттера биполярного транзистора с учетом эффектов высокого уровня легирования. Задано: концентрация донорной примеси в эмиттере $N_{d9} = 10^{21}$ см⁻³; концентрация примеси в базе $N_{ab} = 10^{17}$ см⁻³; ширина базы и эмиттера $W_9 = W_b = 1$ мкм; температура T = 300 К.
- 5. Рассчитать пороговое напряжение $U_{\rm пор}\,p$ -канального МОПТ с затвором из n-поликремния. Задано: материал кремний; концентрация примеси в подложке $N_{\rm n}=10^{16}\,{\rm cm}^{-3}$; плотность поверхностных состояний $N_{\rm nc}=10^{10}{\rm cm}^{-2}$; толщина подзатворного диэлектрика ${\rm SiO}_2\,d=40$ нм; температура $T=300\,{\rm K}$.

- 6. Рассчитать частоту отсечки $f_{\rm T}$ n-канального МОПТ с алюминиевым затвором при напряжении затвор исток $U_{\rm 3u}=2U_{\rm пор}$. Задано: материал кремний; концентрация примеси в подложке $N_{\rm n}=10^{16}{\rm cm}^{-3}$; плотность поверхностных состояний $N_{\rm nc}=10^{10}{\rm \,cm}^{-2}$; толщина подзатворного диэлектрика ${\rm SiO}_2$ d =40 нм; подвижность носителей в канале μ = 500 см 2 / В \cdot с; длина канала L_k = 1,5 мкм; температура T = 300 К.
- 7. Рассчитать пороговое напряжение узкоканального n-МОПТ с алюминиевым затвором. Задано: материал кремний; концентрация примеси в подложке $N_{\rm n}=10^{16}~{\rm cm}^{-3}$; плотность поверхностных состояний $N_{\rm nc}=10^{10}~{\rm cm}^{-2}$; толщина подзатворного диэлектрика ${\rm SiO}_2~d=40~{\rm hm}$; длина канала $L_k=1~{\rm mkm}$; ширина канала $Z=0,5~{\rm mkm}$; температура $T=300~{\rm K}$.
- 8. Рассчитать напряжение лавинного пробоя короткоканального МОПТ. Задано: материал кремний; подложка p-типа с концентрацией примеси $N_{\rm n}=10^{16}{\rm cm}^{-3}$; длина канала L=1,5 мкм; время жизни дырок в канале $\tau=10^{-7}{\rm C}$; коэффициент n=4; температура $T=300~{\rm K}$.
- 9. Рассчитать частоту отсечки f_T кремниевого биполярного n-p-n транзистора. Задано: концентрации примесей в эмиттере, базе и коллекторе $N_{d9} = 10^{20}$ см $^{-3}$; $N_{ab} = 10^{17}$ см $^{-3}$, $N_{d\kappa} = 10^{20}$ см $^{-3}$, соответственно; площадь эмиттера и коллектора $S_9 = S_{\kappa} = 10^{-3}$ см 2 ; ширина базы $W_{\rm B} = 1$ мкм; время жизни электронов в базе $\tau_n = 10^{-7}$ с; сопротивление базы $R_{\rm B} = 300$ Ом; ток эмиттера $I_9 = 1$ мА; температура T = 300 К.
- 10. Рассчитать время пролета через базу n^+ -p- n^+ с учетом эффекта Кирка. Задано: материал кремний; плотность тока коллектора $J_{\rm K}=2\cdot 10^5 {\rm A/cm}^2;$ ширина базы $W_{\rm B}=1$ мкм; концентрация примеси в базе $N_{a{\rm B}}=10^{17}\,{\rm cm}^{-2};$ время жизни электронов в базе $\tau_{\rm II}=10^{-7}{\rm c};$ концентрация примеси в коллекторе $N_{d{\rm K}}=10^{20}\,{\rm cm}^{-3};$ напряжение коллектор база $U_{{\rm KB}}=20\,{\rm B}.$ Температура $T=300\,{\rm K}.$
- 11. Рассчитать величину приращения электронейтральной базы $W_{\text{Б-K}}$ при больших плотностях коллекторного тока $J_{\text{к}}$ кремниевого n^+ -p- n^- - n^+ -транзистора. Задано: концентрация примеси в υ -области $N_d=10^{15}\,\mathrm{cm}^{-3}$; ширина υ -области $W_n=10\,\mathrm{mkm}$; плотность тока коллектора $J_k=5\cdot 10^4\mathrm{A/cm}^2$; напряжение коллектор база $U_{\mathrm{кБ}}=20\,\mathrm{B}$; температура $T=300\,\mathrm{K}$.
- 12. Рассчитать напряжение сквозного обеднения n-канального МОПТ. Задано: материал кремний; толщина подзатворного диэлектрика $SiO_2\ d=40$ нм; концентрация примеси в подложке $N_{\rm n}=5\cdot 10^{16}\ {\rm cm}^{-3}$; плотность поверхностных состояний $N_{\rm nc}=10^{10}\ {\rm cm}^{-2}$; длина канала L=1,5 мкм; температура $T=300\ {\rm K}$.
- 13. Определить толщину высокоомного слоя Δ_{X_B} , концентрацию примеси N_d и удельное сопротивление ρ_n эпитаксиального слоя в МДП-транзисторе с вертикальным каналом. Задано: материал кремний, напряжение источника

- питания $E_c = 25$ В; напряжение на стоке открытого транзистора $U_{\text{ост}} = 3$ В; температура T = 300 К.
- 14. Определить величину тока стока n-канального МОПТ на крутом участке выходной ВАХ с учетом поперечного и продольного электрических полей. Задано: материал кремний; толщина подзатворного диэлектрика SiO_2 d=40 нм; длина канала L=2 мкм; величина порогового напряжения $U_{\rm nop}=1$ В; напряжение затвора $U_{\rm 3u}=2$ В; напряжение на стоке $U_{\rm cu}=1,5$ В, концентрация примеси в подложке $N_a=5\cdot 10^{16}\,{\rm cm}^{-3}$; температура T=300 К.
- 15. Определить величину тока диода Шоттки при напряжении U=0,3 В. Задано: диод AL-кремний n-типа; постоянная Ричардсона $A^+=7$ А/см $^2\cdot$ К 2 ; площадь контакта металл полупроводник $S=10^{-3}$ см 2 ; высота барьера Шоттки $q\phi_{\hat{\mathbf{A}}}=0,8$ эВ; коэффициент неидеальности n=1,1; температура T=300 К.
- 16. Рассчитать пороговое напряжение полевого транзистора с управляющим p-n-переходом. Задано: материал арсенид-галлия; транзистор p-канальный; концентрации примеси в подложке и затворе $N_{a\pi}=10^{16} {\rm cm}^{-3}$ и $N_{a3}=10^{21} {\rm cm}^{-3}$, соответственно; толщина канала d=0,5 мкм, температура $T=300~{\rm K}$.
- 17. Рассчитать величину концентрации примеси в подложке n-канального МОПТ. Задано: материал кремний; толщина подзатворного диэлектрика SiO_2 d=40 нм; плотность поверхностных состояний $N_{\rm nc}=10^{10}\,{\rm cm}^{-2}$; материал затвора алюминий; температура T=300 К; напряжение плоских зон $U_{\rm ns}=1,3$ В.
- 18. Определить марку кремния для i-области СВЧ переключательного диода с p-i-n-структурой. Задано: полупроводниковый материал кремний; барьерная емкость $C_{\text{бар}} = I_{\text{пф}}$; сопротивление i-области $R_i = 100$ Ом.
- 19. Рассчитать площадь и прямой допустимый ток СВЧ переключательного диода с p-i-n-структурой. Задано: полупроводниковый материал кремний; обратное напряжение $U_{\rm ofp} = 60$ В; барьерная емкость $C_{\rm fap} = 1$ пф; концентрация примеси в i-области. $N_d = 5 \cdot 10^{13} {\rm cm}^{-3}$; температура T = 300 К.
- 20. Рассчитать диффузионную емкость диода $C_{\text{диф}}$. Задано: материал кремний; удельное сопротивление эмиттерной области $\rho_3 = 0.01~\text{Ом}\cdot\text{см}$; концентрация примеси в p-базе $N_a = 10^{16}~\text{см}^{-3}$; ширина эмиттера и базы W = 1~мкм, площадь $S = 10^{-3} \text{см}^{-2}$; температура T = 300~K.
- 21. Рассчитать постоянную перезаряда барьерной емкости диода Шоттки т при тепловом равновесии $C_{\rm бар}(0)$. Задано: материал арсенид галлия; концентрация примеси в полупроводнике $Nd=10^{16}{\rm cm}^{-3}$; площадь контакта $S=10^{-4}~{\rm cm}^2$; высота барьера Шоттки $q\phi_{\rm B}\to 0,8~{\rm 3B}$; сопротивление базы $R_{\rm B}=5~{\rm Om}$; температура $T=300~{\rm K}$.

- 22. Определить величину приращения электронейтральной базы $\Delta W_{\rm B}$ мощных n^+ -p- n^+ . Задано: материал кремний; напряжение коллектор база $W_{\rm KB} = 30$ В; концентрация примеси в базе $N_{a\rm B} = 10^{13}$ см $^{-3}$; плотность тока коллектора $J_k = 1.6 \cdot 10^6$ А/см 2 ; температура T = 300 К.
- 23. Определить добротность Q-варикапа. Задано: материал арсенидгаллия; частота f=10 мГц; концентрация примеси в n-базе $N_d=10^{16}\,\mathrm{cm}^{-3}$; толщина базы $W_\mathrm{B}=10$ мкм; площадь варикапа $S=10^{-3}\,\mathrm{cm}^2$; обратное напряжение $U_\mathrm{oбp}=5$ В; температура T=300 К.
- 24. Определить коэффициент перекрытия по емкости варикапа K. Задано: материал кремний; концентрация примеси в эмиттере $N_a = 10^{20} {\rm cm}^{-3}$; концентрация примеси в базе $N_d = 10^{16} {\rm cm}^{-3}$; величины максимального и минимального обратных напряжений $U_{\rm max} = 10 {\rm \ B}$ и $U_{\rm min} = 1 {\rm \ B}$, соответственно; база легирована равномерно; температура $T = 300 {\rm \ K}$.
- 25. Определить минимальную площадь эмиттера мощного биполярного транзистора. Задано: материал кремний; максимальный ток коллектора $I_{\rm K}=5$ А; коэффициент передачи тока эмиттера $\alpha_N=0.99$; концентрации примесей в эмиттере и базе $N_{d9}=10^{20}\,{\rm cm}^{-3}$ и $N_{a\rm E}=10^{17}\,{\rm cm}^{-3}$; падение напряжения на переходе эмиттер база $U_{3\rm E}=0.7$ В; температура T=300 К.