Math235 Notes

mzx!

July 8, 2019

Contents

1	Eigenvectors and Diagonalization	2
	1.1 Similar Matrices	2
2	Applications of Orthogonal Matrices	3
	2.1 Orthogonal Similarity	3
	2.1.1 Application	3

Chapter 1

Eigenvectors and Diagonalization

1.1 Similar Matrices

Introducing Jennifer. She has her own language to represent any vector

In her language, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ equals $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ in OUR Co-ordination System

- \bullet Let $\mathbb B$ be the basis of **Jennifer's** Co-ordination System
- Let L be the linear-transformation from **Jennifer's** Co-ordination System to **MY** Co-ordination System.
- Let Matrix A be the standard Linear-Transformation of L A = [L],in this case, $A = \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix}$
- $[\vec{x}]_{\mathbb{B}}$ represent how **Jennifer** represent \vec{x} from **MY** Co-ordination System using her language
- Since we have P, \vec{x} in Jennifer's language (i.e. $[\vec{x}]_{\mathbb{B}}$) multiple by P is \vec{x} in Our System $P[\vec{x}]_{\mathbb{B}} = \vec{x}$
- Inverse, $[\vec{x}]_{\mathbb{B}} = P^{-1}\vec{x}, (P^{-1})$ convert any vector in out language into Jennifer's language

•

Chapter 2

Applications of Orthogonal Matrices

2.1 Orthogonal Similarity

2.1.1 Application

- Find one of the real eigenvalues $C(\lambda) = \det(A \lambda I) = 0$
- Find the corresponding eigenvector $(\vec{v_1}) A \lambda I \rightarrow RREF$
- Extend \vec{v}_1 to orthonormal basis of \mathbb{R}^n , Usually I, but not always
- Calculate $P_1^T A P_1 = \begin{vmatrix} \lambda & \vec{b}^T \\ \vec{0} & A_1 \end{vmatrix}$
- Inductively working on A_1 , Notices that $\begin{vmatrix} \lambda & \vec{b}^T \\ \vec{0} & A_1 \end{vmatrix}$ is already upper triangular
- \bullet We are looking for Orthogonal Matrix Q such that $Q^TA_1Q=T_1$