Тензоры

https://colab.research.google.com/drive/1VHdqejoDpzC5ra6plw2k5qWa9aWjlGT #scrollTo=bHLpzNn

Тензоры — это фундаментальный строительный блок машинного обучения.

Их работа — представлять данные в числовом виде.

Создание тензоров

Скаляр

Скаляр — это одно число, и, говоря тензорным языком, это тензор нулевой размерности

```
scalar = torch.tensor(7)
#out: tensor(7)
```

Мы можем проверить размеры тензора, используя ndim атрибут.

scalar.ndim
#out: 0

Имя	Что это такое?	Количество измерений	Нижний или верхний (обычно/ пример)
скаляр	одно число	0	Ниже (а)
вектор	число с указанием направления (например, скорость ветра с указанием направления), но может также иметь множество других чисел	1	Ниже (у)
матрица	двумерный массив чисел	2	Верхний (Q)
тензор	n-мерный массив чисел	может быть любым числом, 0-мерный тензор является скаляром, 1-мерный тензор является вектором	Верхний (Х)

Тензоры 1

Scalar

Vector

7

7 or 7 4

Matrix

Tensor

Тензор с рандомными числами:

Основные мат.операции:

- Добавление
- Вычитание
- Умножение (поэлементное)
- Разделение
- Умножение матрицы

(+, -, *, /, @)

Нахождение min, max, avg, etc

```
x = torch . pacположить в диапазоне ( 0 , 100 , 10 )

x.min()
x.max()
# x.mean() # это приведет к ошибке
x.type(torch.float32).mean() # не будет работать без типа данных float
x.sum()
```

Index min/max

```
torch.argmax()
torch.argmin()
```

Изменение формы

1. torch.reshape()

Добавляет доп. измерение.

```
x = torch.arange(1., 8.)
x_reshaped= x.reshape(1, 7)
x_reshaped, x_reshaped.shape
#(tensor([[1., 2., 3., 4., 5., 6., 7.]]), torch.Size([1, 7]))
```

2. torch.stack()

Разместить наш новый тензор поверх самого себя пять раз

```
x_stacked = torch.stack([x, x, x, x], dim=0)
#tensor([[5., 2., 3., 4., 5., 6., 7.],
        [5., 2., 3., 4., 5., 6., 7.],
        [5., 2., 3., 4., 5., 6., 7.],
        [5., 2., 3., 4., 5., 6., 7.]])
#dim = 1 - транспонирование
```

Numpy

- torch.from_numpy(ndarray)
 - Maccив NumPy -> Тензор PyTorch.
- torch.Tensor.numpy(.)
 - Тензор PyTorch -> Macсив NumPy.

Если вы хотите преобразовать массив NumPy (float64) -> Teнзop PyTorch (float64) -> Teнзop PyTorch (float32), вы можете использовать

tensor = torch.from_numpy(array).type(torch.float32) .

Тензоры 3

Одинаковые рандомные значения

Но что, если вы хотите создать два случайных тензора с одинаковыми значениями.

Именно здесь появляется $\frac{\text{torch.manual seed(seed)}}{\text{torch.manual seed(seed)}}$, где $\frac{\text{seed}}{\text{torch.manual seed(seed)}}$, где $\frac{\text{deg}}{\text{torch.manual seed(seed)}}$

Перемещение тензоров с ГПУ на ЦП и наоборот

Графические процессоры обеспечивают гораздо более быстрые численные вычисления, чем ЦП, а если графический процессор недоступен, из-за нашего кода, не зависящего от устройства, он будет работать на процессоре.

Давайте попробуем создать тензор и поместить его в графический процессор (если он доступен).

```
# Create tensor (default on CPU)
tensor = torch.tensor([1, 2, 3])

# Tensor not on GPU
print(tensor, tensor.device)

# Move tensor to GPU (if available)
tensor_on_gpu = tensor.to(device)
tensor_on_gpu

Вывод:
tensor([1, 2, 3]) cpu
tensor([1, 2, 3], device='cuda:0')
```

Тензоры