

Technical Test Result

DESCRIPTION	STATUS
Attempted Questions	15
Blank Answer	0
Basic Correct	12
Optional Correct	0

1. Artificial intelligence is

- (A) the embodiment of human intellectual capabilities within a computer.
- \bigcirc (B) a set of computer programs that produce output that would be considered to reflect intelligence if it were generated by humans.
- $^{\circ}$ (C) the study of mental faculties through the use of mental models implemented on a computer.
- (D) All of the above 🗸

2. Which algorithm is used for solving temporal probabilistic reasoning?

- (A) Hill-climbing search
- (B) Hidden markov model
- O(C) Depth-first search
- O(D) Breadth-first search

3. Where does the Hidden Markov Model is used?

- (B) Understanding of real world

 (C) Both Speech recognition & Understanding of real world (D) None of the mentioned
4. A Web Crawler is a/an
 (A) Intelligent goal-based agent ✓ (B) Problem-solving agent (C) Simple reflex agent (D) Model based agent
5. Which data structure is used to give better heuristic estimates?
 ○ (A) Forwards state-space ○ (B) Backward state-space ● (C) Planning graph algorithm ✓ ○ (D) None of the mentioned
6. How many types of recognition are there in artificial intelligence
 ○ (A) 1 ○ (B) 2 ● (C) 3 ✓ ○ (D) 4
7. Which of the following machine learning algorithm can be used for imputing missing values of both categorical and continuous variables?
 (A) K-NN ✓ (B) Linear Regression (C) Logistic Regression (D)
8. In k-NN it is very likely to overfit due to the curse of dimensionality. Which of the following option would you consider to handle such problem?
 ○ (A) Dimensionality ○ (B) Feature selection ● (C) A and B ✓ ○ (D) None of these

9. Which of the following statements is true for k-NN classifiers?
 (A) The classification accuracy is better with larger values of k (B) The decision boundary is smoother with smaller values of k (C) The decision boundary is linear (D) k-NN does not require an explicit training step ✓
10. Which of the following algorithm doesn't uses learning Rate as of one of its
hyperparameter?
 ● (A) Random Forest ✓ ○ (B) Gradient Boosting ○ (C) AdaBoost ○ (D)
11. When you use the boosting algorithm you always consider the weak learners. Which of the following is the main reason for having weak learners?
 ○ (A) To prevent overfitting ○ (B) To prevent under fitting ● (C) To prevent overfitting and underfitting ○ (D) None of these
12. A perceptron is:
 (A) a single layer feed-forward neural network with pre-processing ✓ (B) an auto-associative neural network (C) a double layer auto-associative neural network (D) a neural network that contains feedback
13. A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively. The output will be:
 ♠ (A) 238 ✓ ○ (B) 76 ○ (C) 119 ○ (D) 123

14. $\stackrel{\bigstar}{\bigcirc}$ p(s=1 x) = 1/(1+exp(-x/T))) ,where 's' is the output given the activation 'x' is a?
O (A) hopfield network
○ (B) sigma network
○ (C) stochastic network ✓
(D) none of the mentioned
15. A Morphological Segmentation
O (A) Does Discourse Analysis
$^{\odot}$ (B) Separate words into individual morphemes and identify the class of the morphemes
$^{ extstyle e$
\bigcirc (D) None of the mentioned