## Class11: Candy Project

Kaitlyn Madriaga, A17217752

In today's class we will examine

```
candy <- read.csv("candy-data.csv", row.names = 1)
head(candy)</pre>
```

|              | cnoco        | orate | iruity   | caramel | peanu  | tyalmondy | nougat   | crispear | cewaier |
|--------------|--------------|-------|----------|---------|--------|-----------|----------|----------|---------|
| 100 Grand    |              | 1     | 0        | 1       |        | 0         | 0        |          | 1       |
| 3 Musketeers |              | 1     | 0        | 0       |        | 0         | 1        |          | 0       |
| One dime     |              | 0     | 0        | 0       |        | 0         | 0        |          | 0       |
| One quarter  |              | 0     | 0        | 0       |        | 0         | 0        |          | 0       |
| Air Heads    |              | 0     | 1        | 0       |        | 0         | 0        |          | 0       |
| Almond Joy   |              | 1     | 0        | 0       |        | 1         | 0        |          | 0       |
|              | ${\tt hard}$ | bar   | pluribus | sugarpe | ercent | priceper  | cent wir | npercent |         |
| 100 Grand    | 0            | 1     | C        | )       | 0.732  | 0         | .860     | 66.97173 |         |
| 3 Musketeers | 0            | 1     | C        | )       | 0.604  | 0         | .511     | 67.60294 |         |
| One dime     | 0            | 0     | C        | )       | 0.011  | 0         | .116 3   | 32.26109 |         |
| One quarter  | 0            | 0     | C        | )       | 0.011  | 0         | .511 4   | 46.11650 |         |
| Air Heads    | 0            | 0     | C        | )       | 0.906  | 0         | .511 5   | 52.34146 |         |

0.465

0.767

50.34755

Q1. How many different candy types are in this dataset?

1

```
nrow(candy)
```

Almond Joy

[1] 85

Q2. How many fruity candy types are in this dataset?

```
sum(candy$fruity)
```

#### [1] 38

Q. What are these fruity candy?

We can use the == ; candy\$fruity == 1 will give us a set of TRUE/FALSE values

```
head(candy[candy$fruity == 1, ])
```

|                            | chocolate  | fruity   | caran  | nel j | peanutyalm | nondy | nougat  |
|----------------------------|------------|----------|--------|-------|------------|-------|---------|
| Air Heads                  | 0          | 1        |        | 0     |            | 0     | 0       |
| Caramel Apple Pops         | 0          | 1        |        | 1     |            | 0     | 0       |
| Chewey Lemonhead Fruit Mix | . 0        | 1        |        | 0     |            | 0     | 0       |
| Chiclets                   | 0          | 1        |        | 0     |            | 0     | 0       |
| Dots                       | 0          | 1        |        | 0     |            | 0     | 0       |
| Dum Dums                   | 0          | 1        |        | 0     |            | 0     | 0       |
|                            | crispedrio | cewafer  | hard   | bar   | pluribus   | sugai | percent |
| Air Heads                  |            | 0        | 0      | 0     | 0          |       | 0.906   |
| Caramel Apple Pops         |            | 0        | 0      | 0     | 0          |       | 0.604   |
| Chewey Lemonhead Fruit Mix |            | 0        | 0      | 0     | 1          |       | 0.732   |
| Chiclets                   |            | 0        | 0      | 0     | 1          |       | 0.046   |
| Dots                       |            | 0        | 0      | 0     | 1          |       | 0.732   |
| Dum Dums                   |            | 0        | 1      | 0     | 0          |       | 0.732   |
|                            | priceperce | ent winp | percer | nt    |            |       |         |
| Air Heads                  | 0.8        | 511 52   | 2.3414 | 16    |            |       |         |
| Caramel Apple Pops         | 0.3        | 325 34   | 4.5176 | 88    |            |       |         |
| Chewey Lemonhead Fruit Mix | 0.5        | 511 36   | 6.0176 | 3     |            |       |         |
| Chiclets                   | 0.3        | 325 24   | 4.5249 | 99    |            |       |         |
| Dots                       | 0.8        | 511 42   | 2.2720 | 8(    |            |       |         |
| Dum Dums                   | 0.0        | 39 39    | 9.4605 | 56    |            |       |         |

## How often does my favorite candy win?

winpercent is the percentage of people who choose a candy over another randomly chosen candy from the dataset

```
candy["Twix", ]$winpercent
```

#### [1] 81.64291

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

candy["Sour Patch Kids", ]\$winpercent

## [1] 59.864

Q4. What is the winpercent for KitKat?

candy["Kit Kat", ]\$winpercent

## [1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

candy["Tootsie Roll Snack Bars", ]\$winpercent

## [1] 49.6535

skimr::skim(candy)

Table 1: Data summary

| Name                   | candy |
|------------------------|-------|
| Number of rows         | 85    |
| Number of columns      | 12    |
| Column type frequency: |       |
| numeric                | 12    |
| Group variables        | None  |

## Variable type: numeric

| skim_variable n_ | missingcomp | lete_ra | tmean | $\operatorname{sd}$ | p0   | p25  | p50  | p75  | p100 | hist |
|------------------|-------------|---------|-------|---------------------|------|------|------|------|------|------|
| chocolate        | 0           | 1       | 0.44  | 0.50                | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 |      |
| fruity           | 0           | 1       | 0.45  | 0.50                | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 |      |
| caramel          | 0           | 1       | 0.16  | 0.37                | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |
| peanutyalmondy   | 0           | 1       | 0.16  | 0.37                | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |
| nougat           | 0           | 1       | 0.08  | 0.28                | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |      |

| skim_variable n_missingcomplete_ratmean |   |   |       | $\operatorname{sd}$ | p0    | p25   | p50   | p75   | p100  | hist |
|-----------------------------------------|---|---|-------|---------------------|-------|-------|-------|-------|-------|------|
| crispedricewafer                        | 0 | 1 | 0.08  | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| hard                                    | 0 | 1 | 0.18  | 0.38                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| bar                                     | 0 | 1 | 0.25  | 0.43                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| pluribus                                | 0 | 1 | 0.52  | 0.50                | 0.00  | 0.00  | 1.00  | 1.00  | 1.00  |      |
| sugarpercent                            | 0 | 1 | 0.48  | 0.28                | 0.01  | 0.22  | 0.47  | 0.73  | 0.99  |      |
| pricepercent                            | 0 | 1 | 0.47  | 0.29                | 0.01  | 0.26  | 0.47  | 0.65  | 0.98  |      |
| winpercent                              | 0 | 1 | 50.32 | 14.71               | 22.45 | 39.14 | 47.83 | 59.86 | 84.18 |      |

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

winpercent column is on a 0:100 scale and all others appear to be 0:1

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

A zero here means the candy is not classified as containing chocolate.

Q8. Plot a histogram of winpercent values

In base R graphics:

hist(candy\$winpercent)

## Histogram of candy\$winpercent



```
library(ggplot2)

ggplot(candy) +
  aes(winpercent) +
  geom_histogram(bins = 10)
```



Q9. Is the distribution of winpercent values symmetrical?

No

Q10. Is the center of the distribution above or below 50%? below 50%, with a median of 47

```
median(candy$winpercent)
```

[1] 47.82975

```
mean(candy$winpercent)
```

[1] 50.31676

Q11. On average, is chocolate candy higher or lower ranked than fruit candy?

To answer this question, I will need to: - "subset" (aka "select", "filter") the candy dataset to just chocolate candy - get the winpercent files - calculate the mean of these,

Then do the same for fruity candy and compare.

```
mean(candy[candy$chocolate == 1,]$winpercent)

[1] 60.92153

#can also use as.logical(candy$chocolate) to get TRUE/FALSE values
mean(candy[as.logical(candy$fruity), ]$winpercent)

[1] 44.11974

To break it down:

#Filter/select/subset to just chocolate rows
chocolate.candy <- candy[as.logical(candy$fruity),]
fruity.candy <- candy[as.logical(candy$fruity),]

#Get their winpercent values
chocolate.winpercent <- chocolate.candy$winpercent</pre>
```

#### [1] 60.92153

```
mean(fruity.winpercent)
```

mean(chocolate.winpercent)

#### [1] 44.11974

The mean winpercent for chocolate candy is 60.92153, while the mean winpercent for fruity candy is 44.11974. Thus, chocolate candy is ranked higher.

Q12. Is this difference statistically significant?

fruity.winpercent <- fruity.candy\$winpercent</pre>

#Calculate their mean winpercent value

```
t.test(chocolate.winpercent, fruity.winpercent)

Welch Two Sample t-test

data: chocolate.winpercent and fruity.winpercent
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
```

## **Overall Candy Rankings**

There is a base R function called sort() for sorting vectors of input

```
x <- c(5, 2, 10)
#sort(x, decreasing = TRUE)
sort(x)
[1] 2 5 10</pre>
```

The buddy function to sort() that is often useful is called order(). It returns the indices of the input that would result in it being sorted.

```
order(x)
[1] 2 1 3
    x[ order(x) ]
[1] 2 5 10
    Q13. What are the five least liked candy types in this set?
```

# ord <- order(candy\$winpercent) head(candy[ord, ], 5)</pre>

|              |       | chocolate  | fruity   | caran        | nel p | peanutyalm | nondy | nougat  |              |
|--------------|-------|------------|----------|--------------|-------|------------|-------|---------|--------------|
| Nik L Nip    |       | 0          | 1        |              | 0     |            | 0     | 0       |              |
| Boston Baked | Beans | 0          | 0        |              | 0     |            | 1     | 0       |              |
| Chiclets     |       | 0          | 1        |              | 0     |            | 0     | 0       |              |
| Super Bubble |       | 0          | 1        |              | 0     |            | 0     | 0       |              |
| Jawbusters   |       | 0          | 1        |              | 0     |            | 0     | 0       |              |
|              |       | crispedrio | ewafer   | ${\tt hard}$ | bar   | pluribus   | sugar | percent | pricepercent |
| Nik L Nip    |       |            | 0        | 0            | 0     | 1          |       | 0.197   | 0.976        |
| Boston Baked | Beans |            | 0        | 0            | 0     | 1          |       | 0.313   | 0.511        |
| Chiclets     |       |            | 0        | 0            | 0     | 1          |       | 0.046   | 0.325        |
| Super Bubble |       |            | 0        | 0            | 0     | 0          |       | 0.162   | 0.116        |
| Jawbusters   |       |            | 0        | 1            | 0     | 1          |       | 0.093   | 0.511        |
|              |       | winpercent | ;        |              |       |            |       |         |              |
| Nik L Nip    |       | 22.44534   | <u> </u> |              |       |            |       |         |              |
| Boston Baked | Beans | 23.41782   | 2        |              |       |            |       |         |              |
| Chiclets     |       | 24.52499   | )        |              |       |            |       |         |              |
| Super Bubble |       | 27.30386   | 3        |              |       |            |       |         |              |
| Jawbusters   |       | 28.12744   | <u> </u> |              |       |            |       |         |              |

#This will order the candy from lowest winpercent to highest

Q14. What are the top 5 all time favorite candy types out of this set?

```
ord2 <- order(candy$winpercent, decreasing = TRUE)
head(candy[ord2,], 5)</pre>
```

|                           | ${\tt chocolate}$ | fruity  | caram | nel j | peanutyaln | nondy | nougat  |
|---------------------------|-------------------|---------|-------|-------|------------|-------|---------|
| Reese's Peanut Butter cup | 1                 | 0       |       | 0     |            | 1     | 0       |
| Reese's Miniatures        | 1                 | 0       |       | 0     |            | 1     | 0       |
| Twix                      | 1                 | 0       |       | 1     |            | 0     | 0       |
| Kit Kat                   | 1                 | 0       |       | 0     |            | 0     | 0       |
| Snickers                  | 1                 | 0       |       | 1     |            | 1     | 1       |
|                           | crispedrio        | cewafer | hard  | bar   | pluribus   | sugar | percent |
| Reese's Peanut Butter cup |                   | 0       | 0     | 0     | 0          |       | 0.720   |
| Reese's Miniatures        |                   | 0       | 0     | 0     | 0          |       | 0.034   |
| Twix                      |                   | 1       | 0     | 1     | 0          |       | 0.546   |
| Kit Kat                   |                   | 1       | 0     | 1     | 0          |       | 0.313   |

| Snickers                  |              | 0     | 0     | 1 | 0 | 0.546 |
|---------------------------|--------------|-------|-------|---|---|-------|
|                           | pricepercent | winpe | rcent |   |   |       |
| Reese's Peanut Butter cup | 0.651        | 84.   | 18029 |   |   |       |
| Reese's Miniatures        | 0.279        | 81.   | 86626 |   |   |       |
| Twix                      | 0.906        | 81.   | 64291 |   |   |       |
| Kit Kat                   | 0.511        | 76.   | 76860 |   |   |       |
| Snickers                  | 0.651        | 76.   | 67378 |   |   |       |

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
  aes(winpercent, row.names(candy)) +
  geom_col()
```



#We use geom\_col(), geom\_bar() computes stuff for you

Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(row.names(candy), winpercent)) +
```

#### geom\_col()



```
#makes a black vector for each candy
my_cols=rep("black", nrow(candy))
#overwrites chocolate candy as a chocolate color (no longer black)
my_cols[as.logical(candy$chocolate)] = "chocolate"
#overwrites bars as brown
my_cols[as.logical(candy$bar)] = "brown"
#overwrites fruity candy as pink
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill=my_cols)
```



Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starburst

## Taking a look at pricepercent

What is the best candy for the least money?

We can determine this by looking at winpercent vs pricepercent

```
my_cols[as.logical(candy$fruity)] = "red"

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent) +
   geom_point(col=my_cols)
```



## Add some labels

```
ggplot(candy) +
  aes(winpercent, pricepercent, label= rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text()
```



To deal with overlapping labels, I can use the **ggrepel** package

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label= rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col = my_cols, size = 3.3, max.overlaps = 6)
```

Warning: ggrepel: 61 unlabeled data points (too many overlaps). Consider increasing max.overlaps



## **Exploring the correlation structure**

Pearson correlation goes between -1 and +1, with zero indicating no correlation. Values close to 1 are very highly (anti) correlated.

```
library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
    corrplot(cij)</pre>
```



Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

fruity + chocolate

Q23. Similarly, what two variables are most positively correlated? chocolate + winpercent or chocolate + bar

## **Principal Component Analysis**

The base function for PCA is called prcomp() and we can set "scale = TRUE/FALSE"

```
pca <- prcomp(candy, scale = TRUE)
summary(pca)</pre>
```

#### Importance of components:

```
PC1
                                  PC2
                                         PC3
                                                  PC4
                                                         PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601\ 0.4680\ 0.5705\ 0.66688\ 0.7424\ 0.79830\ 0.85369
                            PC8
                                    PC9
                                           PC10
                                                    PC11
                                                            PC12
```

```
Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

The main result of PCA - i.e. the new PC plot (projection of candy on our new PC axis) is contained in pca\$x

```
pc <- as.data.frame(pca$x)

p <- ggplot(pc) +
   aes(PC1, PC2, label = rownames(pc)) +
   geom_point(col = my_cols) +
   geom_text_repel(col = my_cols, max.overlaps = 5)

p</pre>
```

Warning: ggrepel: 71 unlabeled data points (too many overlaps). Consider increasing max.overlaps



```
#library(plotly)
#ggplotly(p)
```

Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```



fruity, hard, pluribus are captured in PC1