MAT1320 LINEAR ALGEBRA EXERCISES IV-V

	1911	
	Name Surname:	Group No:
	Student No:	Duration:
	Department:	Date: 31 October 2022
-	Lecturer: Dr. Mustafa SARI	
	Lecturer: Dr. Mustaia SARI	Signature:

1. What is the determinant of the following matrix?

$$\left[\begin{array}{ccccccc}
2 & 0 & 0 & -3 & 1 \\
0 & 0 & 0 & 0 & 7 \\
-3 & 2 & 0 & -1 & -6 \\
2 & -2 & -1 & 1 & 4 \\
0 & 0 & 0 & 4 & 3
\end{array}\right]$$

- a) 112
- b) -56 c) -112 d) -28
- e) 28

2. If the following matrix A is invertible, which of the followings is all possible values of k?

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & k \\ 1 & 4 & k^2 \end{array} \right]$$

- a) $\{1, 2\}$
- b) $\mathbb{R} \{1\}$
 - c) $\mathbb{R} \{1, 2\}$

- d) R
- e) There is no such k.

- 3. Let A and B be two real matrices of the size 3×3 . If $\det(A) = \sqrt{3}$ and $\det(B) = \frac{1}{2}$, then what is $\det(2A^T B^{-3})$?

- a) $32\sqrt{3}$ b) $16\sqrt{3}$ c) 48 d) $4\sqrt{3}$ e) $64\sqrt{3}$

- 4. Let $A=\left[\begin{array}{ccc} -1 & 1 & 3\\ 2 & 0 & -2\\ 1 & 3 & -2 \end{array}\right]$ be an invertible matrix. What is $\mathrm{Adj}\left(A^{-1}\right)^{\mathsf{L}}$?
 - a) $\begin{bmatrix} 3/7 & 11/14 & -1/7 \\ 1/7 & -1/14 & 2/7 \\ 3/7 & 2/7 & -1/7 \end{bmatrix}$ b) $\begin{bmatrix} -1/14 & 1/14 & 3/14 \\ 1/7 & 0 & -1/7 \\ 1/14 & 3/14 & -1/7 \end{bmatrix}$ c) $\begin{bmatrix} 3/7 & 1/7 & 3/7 \\ 11/14 & -1/14 & 2/7 \\ -1/7 & 2/7 & -1/7 \end{bmatrix}$ d) $\begin{bmatrix} -1/14 & 1/7 & 1/14 \\ 1/14 & 0 & 3/14 \\ 3/14 & -1/7 & -1/7 \end{bmatrix}$
 - e) None of them

5. Which of the followings is true for the matrix A =

$$\begin{pmatrix}
0 & -3 & -1 & 1 \\
-2 & 0 & 2 & 5 \\
3 & -2 & 0 & 0 \\
1 & -4 & 0 & 0
\end{pmatrix}$$
?

- I. A is invertible.
- II. The reduced row echelon form of A is I_4 .

III.
$$\operatorname{Adj}(A)A = \left(\begin{array}{cccc} 60 & 0 & 0 & 0 \\ 0 & 60 & 0 & 0 \\ 0 & 0 & 60 & 0 \\ 0 & 0 & 0 & 60 \end{array} \right)$$

- a) Onyl I
- b) I and II
- c) I and III

- d) II and III
- e) I, II and III

- 6. If $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 4$, then what is $\begin{vmatrix} a_1 & a_2 & 4a_3 2a_2 \\ b_1 & b_2 & 4b_3 2b_2 \\ \frac{1}{2}c_1 & \frac{1}{2}c_2 & 2c_3 c_2 \end{vmatrix}$?
 - a) 8
- b) 6
- c) 4
- d) 2

- Let $A = \begin{bmatrix} -2 & 3 & 0 \\ 4 & 1 & -3 \\ 2 & 0 & 1 \end{bmatrix}$. Recall that A_{ij} is the cofactor of the component a_{ij} . Then, what is $a_{11}A_{12} + a_{21}A_{22} + a_{31}A_{32}$?
 - a) 0 b) -32
- c) 32
- d) 16
- e) -16

MAT1320 LINEAR ALGEBRA EXERCISES IV-V

	1911		
ſ	Name Surname:		Group No:
	. <u> </u>		
	Student No:	MINN MANDE = KINDERN MANDE	Duration:
	Department:	*	Date: 31 October 2022
	Lecturer: Dr. Mustafa SARI		Signature:

1.

$$\begin{bmatrix} 2 & 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 & 7 \\ -3 & 2 & 0 & -1 & -6 \\ 2 & -2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 4 & 3 \end{bmatrix}$$

matrisinin determinantı aşağıdakilerden hangisidir?

$$-56$$

c)
$$-112$$
 d) -28

$$)$$
 -28 ϵ

$$= -28.2(-1)^{1+1} \begin{vmatrix} 2 & 0 \\ -2 & -1 \end{vmatrix} = -56.-2 = 112$$

Note: A =
$$\frac{1}{2\pi i 3}$$
 (a) $\frac{1}{2}$ (A) = $\frac{1}{2}$ (A) =

$$= 1c^2 - 3k + 2 = (k - 2)(k - 1) = 0$$

$$\Rightarrow$$
 $12-\{1,2\}$

2. A terslenebilir bir matris ise k nın tüm değerleri aşağıdakilerden hangisidir?

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & k \\ 1 & 4 & k^2 \end{array} \right]$$

- a) $\{1, 2\}$
- b) $\mathbb{R} \{1\}$

- $d) \mathbb{R}$
- e) Böyle bir k sayısı yoktur.

3. A ve B, 3×3 boyutlu ve reel bileşenli iki matris olmak üzere $\det(A) = \sqrt{3}$ ve $\det(B) = \frac{1}{2}$ ise $\det(2A^TB^{-3})$ değeri aşağıdakilerden hangisidir?

a) $32\sqrt{3}$ b) $16\sqrt{3}$ c) 48 d) $4\sqrt{3}$ (e) $\sqrt{6}4\sqrt{3}$

$$|2A^{T}.B^{-3}| = 2^{3} |A^{T}B^{-3}|$$

$$= 8 \cdot |A^{T}| \cdot |B^{T}|$$

$$= 8 \cdot |A| \cdot \left(\frac{1}{|B|}\right)^{3}$$

$$= |B^{T}|^{3} = \left(\frac{1}{|B|}\right)^{3}$$

$$= |B^{T}|^{3} = \left(\frac{1}{|B|}\right)^{3}$$

$$= 8.13. \left(\frac{1}{2}\right)^{3} = 6 \ln 3$$

 $(A^{-1})^{-1} = \frac{A_{3}(A^{-1})}{|A^{-1}|} \Rightarrow A_{3}(A^{-1}) = (A^{-1}|.A)$

$$\begin{vmatrix} -1 & 1 & 3 \\ 2 & 0 & -2 \\ 1 & 3 & -2 \end{vmatrix} = \begin{vmatrix} -1 & 1 & 3 \\ 2 & 0 & -2 \\ 4 & 0 & -11 \end{vmatrix} = 1.(-1) \cdot \begin{vmatrix} 1+2 \\ 2 & -2 \\ 4 & -11 \end{vmatrix}$$

4. $A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & -2 \end{bmatrix}$ terslenebilir bir matris olmak üzere

Ek (A^{-1}) matrisi aşağıdakilerden hangisidir?

a)
$$\begin{bmatrix} 3/7 & 11/14 & -1/7 \\ 1/7 & -1/14 & 2/7 \\ 3/7 & 2/7 & -1/7 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -1/14 & 1/14 & 3/14 \\ 1/7 & 0 & -1/7 \\ 1/14 & 3/14 & -1/7 \end{bmatrix}$$

- $\begin{bmatrix} 3/7 & 1/7 & 3/7 \\ 11/14 & -1/14 & 2/7 \\ -1/7 & 2/7 & -1/7 \end{bmatrix} d) \begin{bmatrix} -1/14 & 1/7 & 1/14 \\ 1/14 & 0 & 3/14 \\ 3/14 & -1/7 & -1/7 \end{bmatrix}$
- e) Hiçbiri

5.
$$A = \begin{pmatrix} 0 & -3 & -1 & 1 \\ -2 & 0 & 2 & 5 \\ 3 & -2 & 0 & 0 \\ 1 & -4 & 0 & 0 \end{pmatrix}$$
 ise aşağıdakilerden hangileri doğrudur?

I. A matrisinin tersi vardır.

 $\bigcup I$ A matrisinin satırca indirgenmiş eşelon formu I_4 birim

$$\text{III. } \operatorname{Adj}(A)A = \left(\begin{array}{cccc} 60 & 0 & 0 & 0 \\ 0 & 60 & 0 & 0 \\ 0 & 0 & 60 & 0 \\ 0 & 0 & 0 & 60 \end{array}\right)$$

a) Yalnız I

d) II ve III

$$|A| = \begin{vmatrix} 0 & -3 & -1 & 1 \\ -2 & 0 & 2 & 5 \\ 3 & -2 & 0 & 0 \\ 1 & -4 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -3 & -1 & 1 \\ -2 & -6 & 0 & 7 \\ 3 & -2 & 0 & 0 \\ 1 & -4 & 0 & 0 \end{vmatrix}$$

$$(2-1)^{2}+2r$$
,

Since they are different, this sim

$$=(-1)\cdot(-1)\cdot \begin{vmatrix} 3 & -2 & 0 \\ 1 & -4 & 0 \end{vmatrix} = (-1)\cdot 7(-1)\cdot \begin{vmatrix} 3 & -2 \\ 1 & -4 \end{vmatrix}$$
is equal to 0 .

Since IAl=foto, A' exists

Recall that

AT oxists @ IALES @ R.R. & F 13 In a ROMA = n

Reall Hot A. od, A = IAI. In

6.
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 4 \text{ ise } \begin{vmatrix} a_1 & a_2 & 4a_3 - 2a_2 \\ b_1 & b_2 & 4b_3 - 2b_2 \\ \frac{1}{2}c_1 & \frac{1}{2}c_2 & 2c_3 - c_2 \end{vmatrix} \text{ değeri}$$
aşağıdakilerden hangisidir?

(a) 8 b) 6 c) 4

d) 2 e) 1

7. $A = \begin{bmatrix} -2 & 3 & 0 \\ 4 & 1 & -3 \\ 2 & 0 & 1 \end{bmatrix}$ matrisi verilsin. A_{ij} , a_{ij} bileşeninin kofaktörü olmak üzere $a_{11}A_{12} + a_{21}A_{22} + a_{31}A_{32}$ değeri aşağıdakilerden hangisidir?

b) -32

c) 32

d) 16

a,, o2,, a31; the cleverts of

A12, A22, A32: the capacier of the elements of the second

6) | a, a₂ ha₃-2a₁ |
b₁ b₂ hb₃-2b₁ |
\frac{1}{2} \cdot \frac{1}{2} \cdot 2 \cdot

= 1 by by Liby =

= 4 | a, a2 a3 | = 2. L=8