Minimax Lower Bounds

Presented by Wanteng Ma

Department of Mathematics Hong Kong University of Science and Technology

April 14, 2022

Motivation

Minimax lower bounds describe how fast we can learn a problem from data in the worst case scenario.

- Can we obtain matching lower bounds on estimation rates for
 - a specific procedure or algorithm?
 - any possible algorithm?
- Lower bounds of this minimax type can yield two different but complementary types of insight
 - If some computationally efficient estimators are statistically "optimal", then lower statistical errors are of little interest.
 - If lower bounds do not match the best known upper bounds. In this case, one has a strong motivation to study alternative estimators.

Definition

Given a class of distributions \mathcal{P} , with a functional $\theta(\mathbb{P})$ for $\mathbb{P} \in \mathcal{P}$. Our goal is to estimate $\theta(\mathbb{P})$ based on samples drawn from the unknown distribution \mathbb{P} .

- **1** The quantity $\theta(\mathbb{P})$ may uniquely determines the underlying distribution \mathbb{P} .
- ② In other settings, it does not uniquely specify the distribution. For instance, consider density function f,
 - Estimating the quadratic functional

$$\mathbb{P} \mapsto \theta(\mathbb{P}) = \int_0^1 \left(f'(t) \right)^2 dt \in \mathbb{R}$$

• For a class of unimodal density functions, consider estimating the mode of the density

$$\theta(\mathbb{P}) = \arg\max_{x \in [0,1]} f(x)$$

Definition

For any fixed θ^* , there is always a very good way to estimate it: ignore the data, and return θ^* . The resulting deterministic estimator has zero risk when evaluated at the fixed θ^* , but is likely to behave very poorly for other choices.

Definition (Minimax risks)

If any distribution \mathbb{P} is with quantity $\theta = \theta(\mathbb{P})$, and $\rho(\theta, \theta')$ is a semi-metric, letting Φ be an increasing function on the non-negative real line, then the minimax risk is defined as

$$\mathcal{M}(\theta(\mathcal{P}); \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[\Phi(\rho(\widehat{\theta}, \theta(\mathbb{P})))] = \inf_{\widehat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} R(\widehat{\theta}, \mathbb{P})$$

Definition |

Definition (Bayes risks)

For a risk function and a given prior $\Lambda(\theta)$, Bayes risk is the lowest possible risk when the parameter is sampled from the prior^a

$$R_{Bayes} = \inf_{\widehat{\theta}} r(\Lambda, \widehat{\theta}) = \inf_{\widehat{\theta}} \int R(\widehat{\theta}, \theta) d\Lambda(\theta)$$

^aErich L Lehmann and George Casella. *Theory of point estimation*. Springer Science & Business Media, 2006.

Bayes risk is a nature lower bound of minimax lower bound. One classic approach to get sharp Bayes risk lower bound is the van Trees inequality,

$$\int E_{\theta} \left[(\widehat{\theta}(\mathbf{X}) - \theta)^2 \right] d\Lambda(\theta) \ge \frac{1}{\int \mathcal{I}(\theta) d\Lambda(\theta) + \mathcal{J}(\theta)},$$

where $\mathcal{I}(\theta)$ and $\mathcal{J}(\theta)$ are Fisher information of X and θ respectively.

From estimation to testing

Minimax lower bounds can be obtained via "reduction" to the problem of obtaining lower bounds for the probability of error in a certain testing problem.

Suppose that $\{\theta^1, \ldots, \theta^M\}$ is a 2δ -separated set. For each θ^j , there is a distribution \mathbb{P}_{θ^j} that can represent θ^j . Consider the M-ary hypothesis testing problem defined by the family of distributions $\{\mathbb{P}_{\theta^j}, j=1,\ldots,M\}$.

- Sample a random integer J from the uniform distribution over the index set [M]
- ② Given J = j, sample $Z \sim \mathbb{P}_{\theta^j}$. Then we have $Z \sim \bar{\mathbb{Q}} = \frac{1}{M} \sum_{j=1}^M \mathbb{P}_{\theta^j}$
- § For a testing function $\psi: \mathcal{Z} \to [M]$, associated probability of error is given by $\mathbb{Q}[\psi(Z) \neq J]$

From estimation to testing

Proposition (From estimation to testing)

For any increasing function Φ and choice of 2δ -separated set, the minimax risk is lower bounded as

$$\mathcal{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\psi} \mathbb{Q}[\psi(Z) \ne J]$$

Figure 15.1 Reduction from estimation to testing using a 2δ -separated set in the space Ω in the semi-metric ρ . If an estimator $\widehat{\theta}$ satisfies the bound $\rho(\widehat{\theta},\theta^0) < \delta$ whenever the true parameter is θ^j , then it can be used to determine the correct index j in the associated testing problem.

$$\bullet \ \mathbb{E}_{\mathbb{P}}[\Phi(\rho(\widehat{\theta},\theta))] \geq \Phi(\delta)\mathbb{P}[\Phi(\rho(\widehat{\theta},\theta)) \geq \Phi(\delta)] \geq \Phi(\delta)\mathbb{P}[\rho(\widehat{\theta},\theta) \geq \delta]$$

From estimation to testing

Thus, it suffices to lower bound the quantity $\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{P}[\rho(\widehat{\theta},\theta(\mathbb{P}))\geq\delta]$. From the definition of the mixture $\bar{\mathbb{Q}}$, by construction we have

•

$$\sup_{\mathbb{P}\in\mathcal{P}} \mathbb{P}\left[\rho(\widehat{\theta}, \theta(\mathbb{P})) \geq \delta\right] \geq \frac{1}{M} \sum_{j=1}^{M} \mathbb{P}_{\theta^{j}}\left[\rho\left(\widehat{\theta}, \theta^{j}\right) \geq \delta\right] = \mathbb{Q}\left[\rho\left(\widehat{\theta}, \theta^{J}\right) \geq \delta\right]$$

• For any estimation $\widehat{\theta}$, we have a corresponding test

$$\psi(Z) := \arg\min_{\ell \in [M]} \rho\left(\theta^{\ell}, \widehat{\theta}\right)$$

which subjects to $\left\{\rho\left(\widehat{\theta},\theta^{J}\right)<\delta\right\}\Rightarrow\{\psi(Z)=J\},$ i.e.,

$$\mathbb{Q}\left[\rho\left(\widehat{\theta},\theta^{J}\right) \geq \delta\right] = \frac{1}{M} \sum_{j=1}^{M} \mathbb{P}_{\theta^{j}}\left[\rho\left(\widehat{\theta},\theta^{j}\right) \geq \delta\right] \geq \mathbb{Q}[\psi(Z) \neq J]$$

Some divergence measures

Our next step is to develop techniques for lower bounding the error probability, for which we require some background on divergence measures between probability distributions.

• total variation (TV) distance: $\|\mathbb{P} - \mathbb{Q}\|_{\text{TV}} := \sup_{A \subseteq \mathcal{X}} |\mathbb{P}(A) - \mathbb{Q}(A)|$

$$\|\mathbb{P} - \mathbb{Q}\|_{\text{TV}} = \frac{1}{2} \int_{\mathcal{X}} |p(x) - q(x)| dv(x)$$

- **2** Kullback–Leibler (KL) divergence: $D(\mathbb{Q}||\mathbb{P}) = \int_{\mathcal{X}} q(x) \log \frac{q(x)}{p(x)} dv(x)$
- Hellinger distance: $H^2(\mathbb{P}||\mathbb{Q}) := \int (\sqrt{p(x)} \sqrt{q(x)})^2 dv(x)$

Lemma (Pinsker-Csisar-Kullback inequality)

$$\|\mathbb{P} - \mathbb{Q}\|_{\text{TV}} \le \sqrt{\frac{1}{2}D(\mathbb{Q}\|\mathbb{P})}$$

Lemma (Le Cam's inequality)

$$\|\mathbb{P} - \mathbb{Q}\|_{\text{TV}} \le H(\mathbb{P}\|\mathbb{Q})\sqrt{1 - \frac{H^2(\mathbb{P}\|\mathbb{Q})}{4}}$$

Binary testing and Le Cam's method

For the divergence measures, we have the following properties for i.i.d cases

•
$$D\left(\mathbb{P}^{1:n}\|\mathbb{Q}^{1:n}\right) = \sum_{i=1}^{n} D\left(\mathbb{P}_i\|\mathbb{Q}_i\right) = nD\left(\mathbb{P}_1\|\mathbb{Q}_1\right)$$

•
$$\frac{1}{2}H^2\left(\mathbb{P}^{1:n}\|\mathbb{Q}^{1:n}\right) = 1 - \left(1 - \frac{1}{2}H^2\left(\mathbb{P}_1\|\mathbb{Q}_1\right)\right)^n \le \frac{1}{2}nH^2\left(\mathbb{P}_1\|\mathbb{Q}_1\right)$$

In a binary testing problem with equally weighted hypotheses, suppose Z is drawn from $\bar{\mathbb{Q}} := \frac{1}{2}\mathbb{P}_0 + \frac{1}{2}P_1$. We have:

$$\inf_{\psi} \mathbb{Q}[\psi(Z) \neq J] = \frac{1}{2} \{ 1 - \|\mathbb{P}_1 - \mathbb{P}_0\|_{\text{TV}} \}$$

• Each decision rule ψ is equivalent to a decision region (A, A^c) . Thus

$$\sup_{\psi} \mathbb{Q}[\psi(Z) = J] = \sup_{A \subseteq \mathcal{X}} \left\{ \frac{1}{2} \mathbb{P}_1(A) + \frac{1}{2} \mathbb{P}_0(A^c) \right\}$$
$$= \frac{1}{2} \sup_{A \subseteq \mathcal{X}} \left\{ \mathbb{P}_1(A) - \mathbb{P}_0(A) \right\} + \frac{1}{2}$$

Binary testing and Le Cam's method

• Since $\sup_{\psi} \mathbb{Q}[\psi(Z) = J] = 1 - \inf_{\psi} \mathbb{Q}[\psi(Z) \neq J]$, combined with the estimation-testing transform we have

Lemma (Le Cam's method for binary testing)

Consider a pair of 2δ -separated distributions $\mathbb{P}_0, \mathbb{P}_1 \in \mathcal{P}$. We have

$$\mathcal{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \frac{\Phi(\delta)}{2} \left\{ 1 - \|\mathbb{P}_1 - \mathbb{P}_0\|_{TV} \right\}$$

Example: (Gaussian location family) For the Gaussian location family $\mathbb{P}_{\theta} = N(\theta, \sigma^2)$ with fixed σ^2 , use squared error to measure the risk.

• Set $\theta = 2\delta$ we have

$$\|\mathbb{P}_{\theta}^{n} - \mathbb{P}_{0}^{n}\|_{\text{TV}}^{2} \le \frac{1}{4} \left\{ e^{n\theta^{2}/\sigma^{2}} - 1 \right\} = \frac{1}{4} \left\{ e^{4n\delta^{2}/\sigma^{2}} - 1 \right\}$$

• Choose $\delta = \frac{\sigma}{2\sqrt{n}}$ and use Le Cam's method:

$$\inf_{\widehat{\theta}} \sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} \left[(\widehat{\theta} - \theta)^2 \right] \ge \frac{\delta^2}{2} \left\{ 1 - \frac{1}{2} \sqrt{e - 1} \right\} \ge \frac{\delta^2}{6} = \frac{1}{24} \frac{\sigma^2}{n}$$

Le Cam for functionals

Le Cam's method is also useful for nonparametric problems especially in density estimation. An important quantity in the Le Cam approach to such problems is the **Lipschitz constant** of θ w.r.t the Hellinger norm, given by

$$\omega(\epsilon; \theta, \mathcal{F}) := \sup_{f, g \in \mathcal{F}} \left\{ |\theta(f) - \theta(g)| |H^2(f||g) \le \epsilon^2 \right\}$$

Corollary (Le Cam for functionals)

For any increasing function Φ on the non-negative real line and any functional $\theta: \mathcal{F} \to \mathbb{R}$, we have

$$\inf_{\widehat{\theta}} \sup_{f \in \mathcal{F}} \mathbb{E}[\Phi(\widehat{\theta} - \theta(f))] \ge \frac{1}{4} \Phi\left(\frac{1}{2}\omega\left(\frac{1}{2\sqrt{n}}; \theta, \mathcal{F}\right)\right)$$

• Setting $\epsilon^2 = \frac{1}{4n}$, we can find such a pair f, g that achieve $\omega(1/(2\sqrt{n}))$, thus

$$\left\| \mathbb{P}_f^n - \mathbb{P}_g^n \right\|_{\text{TV}}^2 \le H^2 \left(\mathbb{P}_f^n \| \mathbb{P}_g^n \right) \le nH^2 \left(\mathbb{P}_f \| \mathbb{P}_g \right) \le \frac{1}{4}$$

Lower bounds for quadratic functionals

Now consider the class of twice-differentiable density functions:

$$\mathcal{F}_2([0,1]) := \left\{ f : [0,1] \to [c_0,c_1] \mid ||f''||_{\infty} \le c_2 \text{ and } \int_0^1 f(x) dx = 1 \right\}.$$
 The quadratic functional $f \mapsto \theta(f) := \int_0^1 (f'(x))^2 dx$ measure the "smoothness" of the density.

- **Key idea**: constructing perturbation based on the uniform distribution f_0 to control the Lipschitz constant.
- Find a certain basis function $\phi(x)$ and define the shifted rescaled $\phi_j(x) = \frac{C}{m^2}\phi\left(m\left(x-x_j\right)\right)$ in an sub-interval $[x_j,x_{j+1}]$ with $x_j = \frac{j}{m}$
- We construct a new density $g(x) := 1 + \sum_{j=1}^{m} \phi_j(x)$ and control the Hellinger distance

$$\frac{1}{2}H^{2}(f_{0}||g) = 1 - \int_{0}^{1} \sqrt{1 + \sum_{j=1}^{m} \phi_{j}(x)dx} \le cb_{0}\frac{1}{m^{4}}$$

Lower bounds for quadratic functionals

- Choose $m^4 := 2cb_0 n$, and then we have $H^2(f_0||g) \leq \frac{1}{n}$ which satisfies the Corollary.
- For the functionals we have

$$\theta(g) = \int_0^1 \left(\sum_{j=1}^m \phi_j'(x) \right)^2 dx = m \int_0^1 \left(\phi_j'(x) \right)^2 dx = \frac{C^2 b_1}{m^2}.$$

• $|\theta(g) - \theta(f_0)| \ge \frac{K}{\sqrt{n}}$, which indicates that

$$\sup_{f \in \mathcal{F}_2} \mathbb{E}[|\widehat{\theta}(f) - \theta(f)|] \gtrsim n^{-1/2}$$

Le Cam's convex hull method

Taking the convex hulls of **two classes** of distribution can make the lower bound tighter. Consider two subsets that are 2δ -separated, in the sense that $\rho\left(\theta\left(\mathbb{P}_{0}\right),\theta\left(\mathbb{P}_{1}\right)\right)\geq2\delta$ for all $\mathbb{P}_{0}\in\mathcal{P}_{0}$ and $\mathbb{P}_{1}\in\mathcal{P}_{1}$.

Lemma (Le Cam)

For any 2δ -separated classes of distributions \mathcal{P}_0 and \mathcal{P}_1 , any estimator $\widehat{\theta}$ has worst-case risk at least

$$\sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\mathbb{P}}[\rho(\widehat{\theta}, \theta(\mathbb{P}))] \ge \frac{\delta}{2} \sup_{\substack{\mathbb{P}_0 \in \operatorname{conv}(\mathcal{P}_0) \\ \mathbb{P}_1 \in \operatorname{conv}(\mathcal{P}_1)}} \{1 - \|\mathbb{P}_0 - \mathbb{P}_1\|_{TV}\}$$

• Define the random variables $V_j(\widehat{\theta}) = \frac{1}{2\delta} \inf_{\mathbb{P}_j \in \mathcal{P}_j} \rho\left(\widehat{\theta}, \theta\left(\mathbb{P}_j\right)\right)$, for j = 0, 1. Then we have

$$\sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\mathbb{P}}[\rho(\widehat{\theta},\theta(\mathbb{P}))] \geq \delta \left\{ \mathbb{E}_{\mathbb{P}_0} \left[V_0(\widehat{\theta}) \right] + \mathbb{E}_{\mathbb{P}_1} \left[V_1(\widehat{\theta}) \right] \right\}$$

Le Cam's convex hull method

• Since the RHS is linear, we can take suprema over the convex hulls,

$$\sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\mathbb{P}}[\rho(\widehat{\theta}, \theta(\mathbb{P}))] \ge \delta \sup_{\substack{\mathbb{P}_0 \in \operatorname{conv}(\mathcal{P}_0) \\ \mathbb{P}_1 \in \operatorname{conv}(\mathcal{P}_1)}} \left\{ \mathbb{E}_{\mathbb{P}_0} \left[V_0(\widehat{\theta}) \right] + \mathbb{E}_{\mathbb{P}_1} \left[V_1(\widehat{\theta}) \right] \right\}$$

• By the triangle inequality, we have

$$\rho\left(\widehat{\theta},\theta\left(\mathbb{P}_{0}\right)\right)+\rho\left(\widehat{\theta},\theta\left(\mathbb{P}_{1}\right)\right)\geq\rho\left(\theta\left(\mathbb{P}_{0}\right),\theta\left(\mathbb{P}_{1}\right)\right)\geq2\delta,$$

i.e.,
$$V_0(\widehat{\theta}) + V_1(\widehat{\theta}) \ge 1$$
.

• Studying the integral of density we have

$$\mathbb{E}_{\mathbb{P}_0}\left[V_0(\widehat{\theta})\right] + \mathbb{E}_{\mathbb{P}_1}\left[V_1(\widehat{\theta})\right] \ge 1 - \|\mathbb{P}_1 - \mathbb{P}_0\|_{\mathrm{TV}}$$

Example: (Gaussian location family) consider the two families $\mathcal{P}_0 = \{\mathbb{P}_0^n\}$ and $\mathcal{P}_1 = \{\mathbb{P}_{\theta}^n, \mathbb{P}_{-\theta}^n\}$. Note that the mixture distribution $\overline{\mathbb{P}} := \frac{1}{2}\mathbb{P}_{\theta}^n + \frac{1}{2}\mathbb{P}_{-\theta}^n$ belongs to conv (\mathcal{P}_1) . Comparing $\overline{\mathbb{P}}$ and \mathbb{P}_0 we can get a sharper lower bound.

Optimal bounds for quadratic functionals

We resume the previous example for estimating quadratic functionals.

- For each binary vector $\alpha \in \{-1,1\}^m$, define \mathbb{P}_{α} with density $f_{\alpha} = 1 + \sum_{j=1}^m \alpha_j \phi_j(x)$.
- Define $\mathcal{P}_0 := \{ \mathbb{U}^n \}$ and $\mathcal{P}_1 := \{ \mathbb{P}^n_{\alpha}, \alpha \in \{-1, +1\}^m \}.$
- Let $\mathbb{Q} := 2^{-m} \sum_{\alpha \in \{-1,+1\}^m} \mathbb{P}^n_{\alpha}$ be the uniformly weighted mixture over all 2^m choices of \mathbb{P}^n_{α} . Then,

$$\inf_{\substack{\mathbb{P}_j \in \operatorname{conv}(\mathcal{P}_j) \\ j = 0.1}} \|\mathbb{P}_0 - \mathbb{P}_1\|_{\operatorname{TV}} \le \|\mathbb{U}^n - \mathbb{Q}\|_{\operatorname{TV}} \le H\left(\mathbb{U}^n\|\mathbb{Q}\right)$$

• One possible upper bound is given by

$$H^{2}(\mathbb{U}^{n}\|\mathbb{Q}) \le n^{2} \sum_{j=1}^{m} \left(\int_{0}^{1} \phi_{j}^{2}(x) dx \right)^{2} \le b_{0}^{2} \frac{n^{2}}{m^{9}}.$$

• Setting $m^9 = 4b_0^2 n^2$ yields that $\|\mathbb{U}^{1:n} - \mathbb{Q}\|_{TV} \leq H\left(\mathbb{U}^{1:n}\|\mathbb{P}^{1:n}\right) \leq 1/2$

Optimal bounds for quadratic functionals

• Apply Le Cam's convex hull method:

$$\sup_{f \in \mathcal{F}_2} \mathbb{E}|\widehat{\theta}(f) - \theta(f)| \ge \delta/4 = \frac{C^2 b_1}{8m^2} \succsim n^{-4/9} \gg n^{-1/2}$$

• This lower bound turns out to be unimprovable.

Figure 15.4 Illustration of some densities of the form $f_{\alpha}(x) = 1 + \sum_{j=1}^{m} \alpha_{j} \phi_{j}(x)$ for different choices of sign vectors $\alpha \in \{-1, 1\}^{m}$. Note that there are 2^{m} such densities in total.

Fano's method

For metrics like $\rho(f,g) = \int (f-g)^2$, Le Cam's method will usually not give a tight bound. Instead, we use Fano's method.

Lemma (Fano's inequality)

For any r.v J, Z, with $J \in \mathcal{X}$, $|\mathcal{X}| = M$, consider the error $e = I\{\psi(Z) \neq J\}$, and $q(e) = \mathbb{P}[\psi(Z) \neq J]$. We let H(e) denote the binary entropy. Then

$$H(J|Z) \le H(e) + p(e)\log(M-1)$$

• If further J is uniformly distributed, we have $H(J) = \log M$. Thus we have

$$\mathbb{P}[\psi(Z) \neq J] \ge 1 - \frac{I(Z;J) + \log 2}{\log M}$$

which is critical to our analysis.

- The mutual information $I(Z;J) := D\left(Q_{Z,J} \| Q_Z Q_J\right)$
- In this case, $I(Z;J) = \frac{1}{M} \sum_{i=1}^{M} D\left(\mathbb{P}_{\theta^{j}} \| \overline{\mathbb{Q}}\right)$

Fano's method

Proposition (Fano's method)

Suppose that $\{\theta^1, \ldots, \theta^M\}$ is a 2δ -separated set in ρ on $\theta(\mathcal{P})$, and suppose that J is uniformly distributed over the index set [M], and $(Z|J=j) \sim \mathbb{P}_{\theta^j}$. Then the minimax risk is lower bounded as

$$\mathcal{M}(\theta(\mathcal{P}); \Phi \circ \rho) \ge \Phi(\delta) \left\{ 1 - \frac{I(Z; J) + \log 2}{\log M} \right\}$$

From the convexity of the Kullback–Leibler divergence we can yield $I(Z;J) \leq \frac{1}{M^2} \sum_{j,k=1}^{M} D\left(\mathbb{P}_{\theta^j} || \mathbb{P}_{\theta^k}\right)$. To use this proposition, we need to

- construct a 2δ -separated set such that all pairs of distributions \mathbb{P}_{θ^i} and \mathbb{P}_{θ^j} are close on average
- decrease δ sufficiently to ensure that $\frac{I(Z;J) + \log 2}{\log M} \leq \frac{1}{2}$

Bounds based on local packings

Example: (Gaussian location family)

- Consider a 2δ -separated set of real-valued parameters, e.g., $\{\theta^1, \theta^2, \theta^3\} = \{0, 2\delta, -2\delta\}.$
- $D\left(\mathbb{P}_{\theta^j}^{1:n}\|\mathbb{P}_{\theta^k}^{1:n}\right) = \frac{n}{2\sigma^2}\left(\theta^j \theta^k\right)^2 \leq \frac{2n\delta^2}{\sigma^2}$. Thus the mutual information is bounded.
- Choosing $\delta^2 = \frac{\sigma^2}{20n}$ ensures that $\frac{2n\delta^2/\sigma^2 + \log 2}{\log 3} < 0.75$. We have

$$\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} \left[(\widehat{\theta} - \theta)^2 \right] \ge \frac{\delta^2}{4} = \frac{1}{80} \frac{\sigma^2}{n}$$

In more general cases, we need to construct a local 2δ -packing in parameter space such that

- the KL divergences are bounded: $\sqrt{D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{P}_{\theta^{k}}\right)} \leq c\sqrt{n}\delta$.
- The cardinality of the packing is large enough: $\log M \geq 2 \left\{ c^2 n \delta^2 + \log 2 \right\}$

Minimax risks for linear regression

Consider the standard linear regression model $\mathbf{y} = \mathbf{X}\theta^* + \boldsymbol{w}$ with fixed design and Gaussian noise. Find the minimax risk in the prediction (semi-)norm $\rho_{\mathbf{X}}\left(\widehat{\theta}, \theta^*\right) := \frac{\|\mathbf{X}(\widehat{\theta} - \theta^*)\|_2}{\sqrt{n}}$

- Consider the set $\{\gamma \in \text{range}(\mathbf{X}) \mid ||\gamma||_2 \leq 4\delta\sqrt{n}\}$. Let $\{\gamma^1, \ldots, \gamma^M\}$ be a $2\delta\sqrt{n}$ -packing in the ℓ_2 -norm. We have $\log M > r \log 2$.
- We thus have a collection of vectors of the form $\gamma^j = \mathbf{X}\theta^j$ satisfying $2\delta \leq \frac{\|\mathbf{X}(\theta^j \theta^k)\|_2}{\sqrt{n}} \leq 8\delta$.
- The construction forms a local 2δ -packing with

$$D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{P}_{\theta^{k}}\right) = \frac{1}{2\sigma^{2}} \left\| \mathbf{X} \left(\theta^{j} - \theta^{k} \right) \right\|_{2}^{2} \leq \frac{32n\delta^{2}}{\sigma^{2}}$$

- Thus, $\inf_{\widehat{\theta}} \sup_{\theta \in \mathbb{R}^d} \mathbb{E} \left[\frac{1}{n} \| \mathbf{X}(\widehat{\theta} \theta) \|_2^2 \right] \ge \frac{\sigma^2}{128} \frac{\operatorname{rank}(\mathbf{X})}{n}$
- This lower bound is sharp, and can be achieved by the usual linear least-squares estimate.

Minimax risk for sparse linear regression

Consider the high-dimensional linear regression model $\mathbf{y} = \mathbf{X}\theta^* + \boldsymbol{w}$ with a prior that θ^* is sparse and $s \ll d$. Find the minimax risk in the prediction (semi-)norm $\rho_{\mathbf{X}}\left(\widehat{\theta}, \theta^*\right) := \frac{\|\mathbf{X}(\widehat{\theta} - \theta^*)\|_2}{\sqrt{n}}$

• Consider the " ℓ_0 " ball $\mathbb{T}^d(s) := \{ \theta \in \mathbb{R}^d \mid \|\theta\|_0 \le s, \|\theta\|_2 \le 1 \}$. We can construct a 1/2-packing of this set with:

$$\log M \geq c_1 s \log \left(\frac{ed}{s}\right)$$
 (use Gilbert–Varshamov lemma).

• Use the same rescaling procedure to form a 2δ -packing such that $\|\theta^j - \theta^k\|_2 \le 4\delta$. By sparsity we have $\sqrt{D\left(\mathbb{P}_{\theta^j} \|\mathbb{P}_{\theta^k}\right)} = \frac{1}{\sqrt{2}\sigma} \|\mathbf{X}\left(\theta^j - \theta^k\right)\|_2 \le \frac{\gamma_{2s}}{\sqrt{2}\sigma} 4\delta$

• The choice $\delta^2 = c_1 \frac{\sigma^2}{400\gamma_{2s}^2 \cdot n} s \log \frac{ed}{s}$ guarantees that $c_1 s \log \frac{ed}{s} \ge 128 \frac{\gamma_{2s}^2}{\sigma^2} n \delta^2 + 2 \log 2$. Therefore, we have an unimprovable lower bound:

$$\mathcal{M}\left(\mathbb{S}^d(s); \|\cdot\|_2\right) \succsim \frac{\sigma^2}{\gamma_{2s}^2} \frac{s \log \frac{ed}{s}}{n}$$

Local packings with Gaussian entropy bounds

This is a more delicate upper bound for Gaussian mixture, and it is a consequence of the maximum entropy property of the multivariate Gaussian distribution.

Lemma (Gaussian entropy bounds)

Suppose J is uniformly distributed over $[M] = \{1, ..., M\}$ and that Z conditioned on J = j has a Gaussian distribution with covariance Σ^j . Then the mutual information is upper bounded as

$$I(Z;J) \le \frac{1}{2} \left\{ \log \det \operatorname{cov}(Z) - \frac{1}{M} \sum_{j=1}^{M} \log \det (\Sigma^{j}) \right\}$$

Example (Lower bounds for PCA) We study the lower bounds for principal component analysis in the spiked covariance ensemble case.

• Suppose a random vector $x \in \mathbb{R}^d$ is is generated via $x \stackrel{\mathrm{d}}{=} \sqrt{v}\xi\theta^* + w$, where v is the SNR, $\|\theta^*\|_2 = 1$, $\xi \sim \mathcal{N}(0, 1)$ and $w \sim \mathcal{N}(0, \mathbf{I}_d)$ are independent.

Lower bounds for PCA

- The covariance: $\Sigma := \mathbf{I}_d + v (\theta^* \otimes \theta^*)$, and the vector θ^* is the unique maximal eigenvector of the covariance matrix.
- We construct the local packing by first finding a 1/2-packing of unit sphere $\{\Delta^1, \ldots, \Delta^M\}$ with $\log M \geq (d-1)\log 2 \geq d/2$. Then let

$$\theta^{j}(\mathbf{U}) = \sqrt{1 - \delta^{2}} \begin{bmatrix} 1 \\ 0_{d-1} \end{bmatrix} + \delta \begin{bmatrix} 0 \\ \mathbf{U}\Delta^{j} \end{bmatrix}$$

for any given orthonormal matrix \mathbf{U} . The corresponding covariance matrix is $\mathbf{\Sigma}^{j}(\mathbf{U}) := \mathbf{I}_{d} + v\left(\theta^{j}(\mathbf{U}) \otimes \theta^{j}(\mathbf{U})\right)$.

• For any fixed **U** we have $\mathbb{P}\left[\psi\left(Z_1^n(\mathbf{U})\right) \neq J \mid \mathbf{U}\right] \geq 1 - \frac{nI(Z(\mathbf{U});J) + \log 2}{d/2}$. Suppose **U** is chosen uniformly at random. Use Gaussian entropy bounds we have

$$\mathbb{E}_{\mathbf{U}}[I(Z(\mathbf{U});J] \leq \frac{1}{2} \{ \log \det \underbrace{\mathbb{E}_{\mathbf{U}}(\text{cov}(Z(\mathbf{U})))}_{:=\Gamma} - \log(1+v) \}$$

Lower bounds for PCA

- Computing the entries of the expected covariance matrix Γ we find that Γ is diagonal with $\Gamma_{11} = 1 + v v\delta^2$, $\Gamma_{2:d,2:d} = \left(1 + \frac{\delta^2 v}{d-1}\right) \mathbf{I}_{d-1}$.
- Putting together the pieces, we have

$$\log \det \Gamma = (d-1)\log \left(1 + \frac{v\delta^2}{d-1}\right) + \log \left(1 + v - v\delta^2\right)$$

• Thus we have

$$2\mathbb{E}_{\mathbf{U}}[I(Z(\mathbf{U});J)] \le (d-1)\log\left(1 + \frac{v\delta^2}{d-1}\right) + \log\left(1 - \frac{v}{1+v}\delta^2\right)$$
$$\le \left(v - \frac{v}{1+v}\right)\delta^2$$
$$= \frac{v^2}{1+v}\delta^2$$

• Then we yield $\mathcal{M}\left(\text{PCA}; \mathbb{S}^{d-1}, \|\cdot\|_2^2\right) \succsim \min\left\{\frac{1+v}{v^2}\frac{d}{n}, 1\right\}$

Yang-Barron version of Fano's method

Our previous analysis is largely based on the construction of local packing. But what if the local packing is hard to find?

Lemma (Yang-Barronmethod)

Let $N_{\mathrm{KL}}(\epsilon; \mathcal{P})$ denote the ϵ -covering number of \mathcal{P} in the square-root KL divergence. Then the mutual information is upper bounded as

$$I(Z; J) \le \inf_{\epsilon > 0} \left\{ \epsilon^2 + \log N_{\mathrm{KL}}(\epsilon; \mathcal{P}) \right\}$$

• Notice the fact that:

$$I(Z;J) = \frac{1}{M} \sum_{j=1}^{M} D\left(\mathbb{P}_{\theta^{j}} \| \overline{\mathbb{Q}}\right) \stackrel{\text{(i)}}{\leq} \frac{1}{M} \sum_{j=1}^{M} D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{Q}\right) \leq \max_{j=1,\dots,M} D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{Q}\right)$$

• Since the bound holds for any distribution \mathbb{Q} , we let $\{\gamma^1, \dots, \gamma^N\}$ be an ϵ -covering of Ω in the square-root KL pseudo-distance, and then set $\mathbb{Q} = \frac{1}{N} \sum_{k=1}^{N} \mathbb{P}_{\gamma^k}$.

Yang-Barron version of Fano's method

• By construction, for each j we can find γ^k such that $D\left(\mathbb{P}_{\theta^j} || \mathbb{P}_{\gamma^k}\right) \leq \epsilon^2$, thus

$$D\left(\mathbb{P}_{\theta^{j}}\|\mathbb{Q}\right) = \mathbb{E}_{\theta^{j}}\left[\log\frac{d\mathbb{P}_{\theta_{j}}}{\frac{1}{N}\sum_{\ell=1}^{N}d\mathbb{P}_{\gamma^{\ell}}}\right]$$

$$\leq \mathbb{E}_{\theta^{j}}\left[\log\frac{d\mathbb{P}_{\theta_{j}}}{\frac{1}{N}d\mathbb{P}_{\gamma^{k}}}\right]$$

$$= D\left(\mathbb{P}_{\theta^{j}}\|\mathbb{P}_{\gamma^{k}}\right) + \log N$$

$$\leq \epsilon^{2} + \log N.$$

• To use this lemma, we need to find a pair $(\delta, \epsilon) \in \mathbb{R}^2_+$ such that

$$\log M(\delta; \rho, \Omega) \ge 2 \left\{ \epsilon^2 + \log N_{\text{KL}}(\epsilon; \mathcal{P}) + \log 2 \right\}$$

- . Finding such a pair can be accomplished via a two-step procedure
- [A] First, choose $\epsilon_n > 0$ such that $\epsilon_n^2 \ge \log N_{\text{KL}}(\epsilon_n; \mathcal{P})$
- [B] Then choose the largest δ_n that satisfies the lower bound $\log M\left(\delta_n; \rho, \Omega\right) \ge 4\epsilon_n^2 + 2\log 2$.

Density estimation revisited

Example (Density estimation revisited) Let us return to the problem of density estimation in the Hellinger metric in \mathcal{F}_2 space.

- From classical theory, it is known that the metric entropy of the class \mathcal{F}_2 in L^2 -norm scales as $\log N(\delta; \mathcal{F}_2, \|\cdot\|_2) \approx (1/\delta)^{1/2}$ for $\delta > 0$ sufficiently small.
- Step A. Given n i.i.d. samples, the square-root Kullback–Leibler divergence is multiplied by a factor of \sqrt{n} . We can set $\epsilon_n^2 \gtrsim \left(\frac{\sqrt{n}}{\epsilon_n}\right)^{1/2}$, e.g., $\epsilon_n^2 \approx n^{1/5}$ to satisfy the first inequality.
- Step B. Then the second condition can be satisfied by choosing δ_n that $\left(\frac{1}{\delta_n}\right)^{1/2} \gtrsim n^{2/5}$, i.e., $\delta_n^2 \asymp n^{-4/5}$.
- The minimax risk thus is lower bounded by the order $n^{-4/5}$.