Cyclistic Case Study Jan21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for January 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
            1.2.1
                       ✓ stringr 1.4.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jan21 <- read_csv("C:/Users/theby/Documents/202101-divvy-tripdata.csv")</pre>
```

```
## Rows: 96834 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
View(Jan21)
 colnames(Jan21)
     [1] "ride id"
                                 "rideable_type"
                                                        "started at"
     [4] "ended at"
                                 "start station name" "start station id"
    [7] "end_station_name"
                                 "end_station_id"
                                                       "start_lat"
 ## [10] "start_lng"
                                 "end_lat"
                                                        "end_lng"
 ## [13] "member_casual"
 nrow(Jan21)
 ## [1] 96834
 dim(Jan21)
 ## [1] 96834
                  13
 head(Jan21)
 ## # A tibble: 6 × 13
 ##
      ride id
                       ridea…¹ started at
                                                     ended at
                                                                           start...<sup>2</sup> start...<sup>3</sup>
 ##
                       <chr>
                               <dttm>
                                                     <dttm>
 ## 1 E19E6F1B8D4C4... electr... 2021-01-23 16:14:19 2021-01-23 16:24:44 Califo... 17660
 ## 2 DC88F20C2C55F... electr... 2021-01-27 18:43:08 2021-01-27 18:47:12 Califo... 17660
 ## 3 EC45C94683FE3... electr... 2021-01-21 22:35:54 2021-01-21 22:37:14 Califo... 17660
 ## 4 4FA453A75AE37... electr... 2021-01-07 13:31:13 2021-01-07 13:42:55 Califo... 17660
 ## 5 BE5E8EB4E7263... electr... 2021-01-23 02:24:02 2021-01-23 02:24:45 Califo... 17660
 ## 6 5D8969F88C773... electr... 2021-01-09 14:24:07 2021-01-09 15:17:54 Califo... 17660
      ... with 7 more variables: end station name <chr>>, end station id <chr>>,
        start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
 ## #
```

```
tail(Jan21)
```

2start_station_name, 3start_station_id

```
## # A tibble: 6 × 13
##
     ride_id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
##
                     <chr>
                             <dttm>
                                                   <dttm>
## 1 44DE07FCDD3AD... docked... 2021-01-17 13:20:12 2021-01-17 14:15:33 Lake S... 13300
## 2 B1A5336E1412D... classi... 2021-01-19 19:03:17 2021-01-19 20:10:03 Lake S... 13300
## 3 57EA5CB7DCD75... classi... 2021-01-05 18:42:27 2021-01-05 19:33:33 Lake S... 13300
## 4 815B319A078CC... classi... 2021-01-07 17:59:47 2021-01-07 19:34:03 Lakefr... KA1504...
## 5 6DB04151565CE... classi... 2021-01-06 19:20:31 2021-01-06 20:41:57 Lakefr... KA1504...
## 6 8008C9C998083... docked... 2021-01-17 13:20:02 2021-01-17 14:17:00 Lake S... 13300
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
## #
       2start_station_name, 3start_station_id
```

member casual <chr>, and abbreviated variable names ¹rideable type,

```
summary(Jan21)
```

#

```
##
      ride id
                      rideable_type
                                           started at
##
   Length:96834
                      Length:96834
                                         Min. :2021-01-01 00:02:05.00
##
                      Class :character
                                         1st Qu.:2021-01-08 20:55:02.75
   Class :character
                      Mode :character
##
   Mode :character
                                         Median :2021-01-15 06:05:04.00
                                         Mean :2021-01-15 17:57:29.96
##
##
                                         3rd Qu.:2021-01-22 09:28:48.50
##
                                         Max. :2021-01-31 23:57:00.00
##
##
      ended at
                                    start station name start station id
##
         :2021-01-01 00:08:39.00
                                    Length:96834
                                                       Length:96834
   1st Ou.:2021-01-08 21:14:23.75
                                    Class :character
                                                       Class :character
##
##
   Median :2021-01-15 06:19:58.50
                                    Mode :character
                                                      Mode :character
##
         :2021-01-15 18:12:46.10
##
   3rd Qu.:2021-01-22 09:41:18.75
##
   Max. :2021-02-01 15:33:15.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.64
##
   Length:96834
                      Length:96834
                                                         Min. :-87.78
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                         Mean :-87.65
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.06
                                                         Max. :-87.53
##
##
                      end lng
      end lat
                                    member casual
##
   Min. :41.64
                   Min. :-87.81
                                    Length: 96834
                   1st Qu.:-87.66
##
   1st Qu.:41.88
                                    Class :character
   Median :41.90
                   Median :-87.64
                                    Mode :character
##
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.07
                   Max. :-87.51
##
   NA's
          :103
                   NA's
                          :103
```

str(Jan21)

```
## spc tbl [96,834 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                       : chr [1:96834] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377D
##
  $ ride id
R"
##
  $ rideable_type
                       : chr [1:96834] "electric bike" "electric bike" "electric bike" ...
                       : POSIXct[1:96834], format: "2021-01-23 16:14:19" "2021-01-27 18:43:08" ...
  $ started at
                        : POSIXct[1:96834], format: "2021-01-23 16:24:44" "2021-01-27 18:47:12" ...
##
   $ ended at
   $ start_station_name: chr [1:96834] "California Ave & Cortez St" "California Ave & Cortez St" "California Ave
##
& Cortez St" "California Ave & Cortez St" ...
   $ start_station_id : chr [1:96834] "17660" "17660" "17660" "17660" ...
   $ end_station_name : chr [1:96834] NA NA NA NA ...
##
##
   $ end station id
                       : chr [1:96834] NA NA NA NA ...
                       : num [1:96834] 41.9 41.9 41.9 41.9 ...
##
   $ start lat
##
   $ start_lng
                       : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
   $ end lat
                       : num [1:96834] 41.9 41.9 41.9 41.9 ...
                       : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
    $ end lng
                        : chr [1:96834] "member" "member" "member" ...
##
   $ member casual
   - attr(*, "spec")=
##
##
    .. cols(
##
          ride_id = col_character(),
         rideable_type = col_character(),
##
     . .
##
         started at = col datetime(format = ""),
     . .
##
          ended_at = col_datetime(format = ""),
     . .
##
         start_station_name = col_character(),
     . .
##
         start station id = col character(),
     . .
##
         end_station_name = col_character(),
     . .
##
         end_station_id = col_character(),
##
         start_lat = col_double(),
     . .
##
         start lng = col double(),
     . .
##
         end lat = col double(),
     . .
##
         end lng = col double(),
     . .
##
         member casual = col character()
    . .
##
    ..)
   - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Jan21$date <- as.Date(Jan21$started_at)
Jan21$month <- format(as.Date(Jan21$date), "%m")
Jan21$day <- format(as.Date(Jan21$date), "%d")
Jan21$year <- format(as.Date(Jan21$date), "%Y")
Jan21$year <- format(as.Date(Jan21$date), "%A")
Jan21$ride_length <- difftime(Jan21$ended_at,Jan21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Jan21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Jan21$ride_length <- as.numeric(as.character(Jan21$ride_length))
is.numeric(Jan21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Jan21 <- na.omit(Jan21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Jan21 <- subset(Jan21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
Jan21 <- subset (Jan21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Jan21$ride_length)
```

```
## [1] 873.3146
```

median(Jan21\$ride_length)

```
## [1] 560
```

max(Jan21\$ride_length)

```
## [1] 1189555
```

min(Jan21\$ride_length)

[1] 2

Run a statistical summary of the ride length.

```
summary(Jan21$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.0 339.0 560.0 873.3 973.0 1189555.0
```

Compare the members and casual users

```
aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = mean)
```

```
## Jan21$member_casual Jan21$ride_length
## 1 casual 1582.5232
## 2 member 721.9413
```

```
aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = median)
```

```
## Jan21$member_casual Jan21$ride_length
## 1 casual 760
## 2 member 525
```

```
aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = max)
```

```
## Jan21$member_casual Jan21$ride_length
## 1 casual 1189555
## 2 member 73601
```

```
aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Jan21$ride_length ~ Jan21$member_casual + Jan21$day_of_week, FUN = mean)
```

```
##
      Jan21$member_casual Jan21$day_of_week Jan21$ride_length
## 1
                                      Friday
                                                      1416.5261
                   casual
## 2
                   member
                                      Friday
                                                       704.3606
## 3
                   casual
                                      Monday
                                                      1191.0708
## 4
                   member
                                      Monday
                                                      683.1691
## 5
                                    Saturday
                                                      1989.3881
                   casual
## 6
                                    Saturday
                                                       785.2681
                   member
## 7
                   casual
                                      Sunday
                                                      1848.5789
## 8
                   member
                                      Sunday
                                                      778.1468
## 9
                                                      1224.0158
                   casual
                                    Thursday
## 10
                   member
                                    Thursday
                                                       691.5325
                                                      1390.8352
## 11
                                     Tuesday
                   casual
## 12
                   member
                                     Tuesday
                                                       694.3875
## 13
                    casual
                                   Wednesday
                                                      1570.0719
## 14
                                                       726.2292
                   member
                                   Wednesday
```

Sort the days of the week in order.

```
Jan21$day_of_week <- ordered(Jan21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Jan21$ride_length ~ Jan21$member_casual + Jan21$day_of_week, FUN = mean)
head(x)</pre>
```

```
Jan21$member_casual Jan21$day_of_week Jan21$ride_length
## 1
                  casual
                                     Sunday
                                                     1848.5789
## 2
                                     Sunday
                                                     778.1468
                  member
## 3
                  casual
                                     Monday
                                                     1191.0708
## 4
                  member
                                     Monday
                                                      683.1691
## 5
                                                     1390.8352
                  casual
                                    Tuesday
## 6
                                                      694.3875
                  member
                                    Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member_casual weekday number_of_rides average_duration
##
                     <int>
                                      <int>
## 1 casual
                                                        1849.
                         1
                                       2370
## 2 casual
                          2
                                       1666
                                                        1191.
## 3 casual
                          3
                                       1481
                                                        1391.
                                                        1570.
## 4 casual
                          4
                                       1670
## 5 casual
                          5
                                       1899
                                                        1224.
## 6 casual
                                       2220
                                                        1417.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Jan21$member_casual)
```

```
##
## casual member
## 14687 68811
```

```
table(Jan21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 61407 2106 19985
```

```
table(Jan21$day_of_week)
```

```
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 10068 11418 10794 11557 12453 13192 14016
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Jan21$day_of_week,Jan21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                        casual 2370
## 2
          Monday
                        casual 1666
## 3
         Tuesday
                        casual 1481
## 4
       Wednesday
                        casual 1670
## 5
        Thursday
                        casual 1899
                        casual 2220
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Jan21$rideable_type,Jan21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

Plot for bike user vs bike type.

Riders and Ride Types 40000 20000 Classic_bike docked_bike Riders Riders member_casual casual member

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Jan21, "Jan21.csv")