Еталонен модел на мрежите

Характеристики на нивата. Модел ТСР/IР.

Какво ще научим

Защо е избрана слоеста архитектура. Какво печелим.

Понятие за услуги, интерфейси, прозрачност. Модел на ISO и модел TCP/IP.

Слоестата архитектура е взаимствана от системната. (Интернет е един глобален компютър.)

Ще бъде ли TCP/IP изместен от мрежовото кодиране, Named Data Networking?

Слоеста системна архитектура

Figure 2.1 Layers and Views of a Computer System

3-слойна архитектура на web сайт/портал

Презентационен слой — основните портални компоненти за изграждане на потребителския интерфейс: портлети, HTML форми, JSP страници и др.

Бизнес слой — реализира бизнес логиката на решението (библиотеки от Java класове и Java Bean компоненти работещи в J2EE Server среда и услуги).

Бази от данни — реализира съхраняването и извличането на данните, независимо от конкретната СУБД и архитектура на данните.

3-слойна архитектура на web сайт/портал

- Основен принцип в съвременните мрежови архитектури е принципът за разслояване на функциите по управление на връзките, като всеки слой ползва услугите, предоставени от по-долните слоеве, без да знае как са реализирани тези услуги. Това е принципът на прозрачност.
- Слоят n на една машина взаимодейства със слоят n (на същото ниво) на друга машина. Правилата, по които се осъществява това взаимодействие, се определят от протокола на n-то ниво.
- Най-общо под протокол се разбира съгласувани правила между комуникиращите страни за това как да протича комуникацията.
- На практика при комуникацията между съответните слоеве на двете машини не се предават данни. Всеки слой *п* предава данни и контролна информация (header+trailer) на непосредствено по-долния слой *n-1*, докато се достигне най-долния слой *I*, където се осъществява реалната комуникация между машините през физическата среда. В приемника получените данни се разпространяват в обратна посока от слой *I* нагоре, като всеки слой премахва контролната информация, която се отнася до него. Опаковане и разопаковане (encapsulation decapsulation).

Данните+Контр. Инф. на слой n се наричат протоколен блок от данни (PDU). За слой n-1 PDU(n) са си обикновени данни. Чисто потребителските данни — payload.

- Всеки слой n предоставя **интерфейс** на слой n+1 функциите и услугите, които слоят n предоставя на слой n+1. Ясно да се знае какви функции изпълнява всеки слой.
- Разслояването позволява да се промени изцяло реализацията на даден слой n, без да се променя реализацията на другите слоеве достатъчно е да се запази множеството от услугите, които слой n осигурява на горния слой n+1. Прозрачност (transparency) и Гъвкавост (flexibility).
- Една **мрежова архитектура** се определя от множеството на слоевете, услугите които те предоставят и протоколите, по които се осъществява взаимодействие между слоевете на едно и също ниво.

Реализацията на слоевете, както и интерфейсът между отделните слоеве не е задължително да са едни и същи на машините в една мрежа — достатъчно е всеки слой *п* да може да комуникира със съответния слой *п* по определения протокол и да предоставя съответните услуги на по-горния слой. Мащабируемост (scalability).

Списъкът от протоколи, използвани от една система, по един протокол за всеки слой се нарича протоколен стек.

Протоколи и услуги

Протоколи и услуги на едно ниво: k.

Моделът OSI

- Съвременните мрежови архитектури следват принципите на модела OSI (Open Systems Interconnection), създаден от Международната организация по стандартизация ISO (International Standards Organization) за връзка между отворени системи.
- Отворена система е система, чиито ресурси могат да се използват от другите системи в мрежата.
- OSI моделът е абстрактен модел на мрежова архитектура, който описва предназначението на слоевете, но не се обвързва с конкретен набор от протоколи. Поради това OSI моделът се нарича още еталонен модел и всъщност дава препоръки (Reference Model).
- В еталонния модел има седем слоя физически, канален, мрежов, транспортен, сесиен, представителен, приложен.

OSI RM – хост машини и

комуникационна мрежа

Name of unit Layer exchanged Application protocol Application Application **APDU** 7 Interface Presentation protocol Presentation Presentation **PPDU** 6 Session protocol 5 **SPDU** Session Session Transport protocol Transport Transport **TPDU** 4 Communication subnet boundary Internal subnet protocol 3 Network Network Network Network **Packet** 2 Data link Data link Data link Data link Frame **Physical Physical Physical Physical** Bit Host A Router Router Host B Network layer host-router protocol Data link layer host-router protocol Physical layer host-router protocol

The OSI reference model.

Физически слой

- **Физическият слой** (physical layer) има за задача да реализира предаването на битове през физическата среда.
- Основна функция на физическия слой е да управлява кодирането и декодирането на сигналите, представящи двоичните цифри 0 и 1. Той не се интересува от предназначението на битовете.
- Физическият слой трябва да осигурява възможност на по-горния слой да активизира, поддържа и прекратява физическите съединения.
- Обекти на този слой хардуерни устройства, реализиращо предаването на 0-и и 1-ци през физическата среда мрежови карти (NIC) и модули, модеми.

Канален слой

- Основна функция на каналният слой (data-link layer) е управлението на канала от един възел до друг (точка-точка) според класическия модел, "точка-много точки" (напр. Frame Relay) или достъп до преносната среда (MAC) в LAN.
- Откриването и евентуалното коригиране на грешки при предаването на данните.
- Данните на канално ниво се обменят на порции (PDU), наречени кадри (frames), обикновено с дължина от няколко стотин до няколко хиляди байта в зависимост от скоростта на линията.

Канален слой

Канален слой

- При надеждна комуникация приемникът трябва да уведомява изпращача за всеки успешно получен кадър като му изпраща обратно потвърждаващ кадър.
- Форматът на кадрите се определя от избрания протокол на канално ниво. Функциите на каналния слой обикновено се реализират смесено апаратно и програмно. Колкото повече функции са реализирани софтуерно (контролерът е реализиран на дънната платка), по-ниска е производителността.

Мрежов слой

- **Мрежовият слой** (network layer) отговаря за функционирането на комуникационната подмрежа.
- Приложните програми, които се изпълняват в двете крайни системи взаимодействат помежду си посредством сегменти от данни.
- Пакетите са с фиксирана големина в рамките на една мрежа. Но при преминаване от една КМ в друга е възможно пакетът да се раздели на части фрагментира, след което да се възстанови. Напр. Преход: LAN-WAN-LAN

Мрежов слой

Основна задача на мрежовия слой е маршрутизирането на тези сегменти, опаковани като пакети (PDU за мрежов слой).

За системите, реализиращи възлите на комуникационната подмрежа (маршрутизатори - routers) този слой е последен. Функциите на мрежовия слой, както и на по-горните слоеве се реализират програмно.

Транспортен слой

Транспортният слой (transport layer) осигурява транспортирането на съобщения от източника до получателя. Той е най-ниският слой, който реализира връзка от тип "край-край" между комуникиращите системи.

Изгражда програмен канал между портовете на приложения, които си "говорят" през мрежата.

Транспортен слой

- В транспортния слой на изпращача съобщенията се разбиват на сегменти (PDU за тр. слой) и се подават на мрежовия слой, където се опаковат като пакети, а в транспортния слой на получателя разопакованите от мрежовия слой сегменти се реасемблират.
- Транспортният слой освобождава по-горния сесиен слой от грижата за надеждното и ефективно транспортиране на данните между крайните системи.
- Т.е транспортният слой отговаря за целостта на обменяните съобщения, което включва откриване на загубени сегменти и тяхното повторно предаване.

Сесиен слой

- **Сесийният слой** (session layer) е отговорен за диалога между две комуникиращи програми. Съобщения се обменят след като двата крайни абоната установят сесия.
- Сесийният слой осигурява различни режими на диалог двупосочен едновременен диалог (full duplex FD), двупосочен алтернативен диалог (half duplex HD), еднопосочен диалог (simplex).
- Освен това той предоставя възможност за прекъсване на диалога и последващо възстановяване от мястото на прекъсването.
- При липсата на сесиен слой всяко съобщение се предава независимо от другите съобщения.

Представителен слой

- Представителният слой (presentation layer) е най-ниският слой, който разглежда значението на предаваната информация.
- Първата функция на този слой е да определи общ синтаксис за предаване на съобщенията.
- Втората функция на слоя е да унифицира вътрешната структура на представените данни в съобщенията.
- По този начин за по-горния приложен слой няма значение дали двете крайни системи използват различни представяния на данните.
- UTF-8 (8-bit UCS/Unicode Transformation Format) представя всеки символ в Unicode стандарта, но е и обратно съвместим с ASCII. По тгези причини е предпочитан за e-mail, web страници и др.
- Криптиране на данните, компресия.

https://developers.google.com/+/web/

Базови размери за устройствата дефинираме по следните размери по хоризонталата:

За десктоп екрани: >= 992 рх размери

За таблети: (768 рх, 992 рх)

За **телефони**: <= 767px

Десктоп версия

English

Добре дошли в EGOV.BG - Порталът за достъп и информация относно всички електронни административни услуги и федерираните институционални сайтове в Република България.

Търсене в EGOV.BG

Социални придобивки

Гражданско състояние Гражданско състояни Раждане, брак, отглеждане на деца, смърт

Бизнес и свободни

Бизнес и свободни професии Управление и развитие на бизнеса

Работодатели и предприемачи

Назначаване, осигуряване и заплащане

Околна среда и селско

Природни бедствия, рециклиране

Имущество и комунални услуги

Недвижими имоти и местни услуги, данъци и такси

Данъци и такси Данъци, социално и здравно

Работа и пенсии Работни дни, осигуровки и

Популярни

Услугите в тази секция ще се подреждат автоматично според броя прегледи

Одобряване на технически и работни инвестиционни проекти за обекти на техническата инфраструктура за повече от една област

Плащане на данъци и осигуровки по Интернет с дебитни карти

Подаване на декларация/искане по §19и, ал.2/ал.4 от ПЗР на 330 по електронен път

ДДС върху електронните услуги - Регистрация

Категоризация на заведения за хранене и развлечение -Район Южен

Категоризация на средства за подслон и места за настаняване - Район Западен

Институциите на България

Президент

Министерски съвет Съдебна власт

- 14 Министерства
- 45 Агенции

безработица

- 28 Областни администрации 300 Общини и района
- **152** Други

Научи повече

- правителството на Република България
- Символите на <u>Република</u>
- Електронното управление Програма, документи, статистика

Новини, анонси и прес-съобщения

МТИТС успешно реализира проект за Създадените електронни услуги и приложения, бяха дискутирани на

Заглавие на новина или аноно

Подготовката на изображение в подходяш вид и резолюция е още трудно, но пък анонс с картинка има много по-голям шанс да бъде

МТИТС успешно реализира проект за железопътната инфраструктура

Създадените електронни услуги и приложения, бяха дискутирани на

Нещо не е наред с тази страница?

Условия за ползване

кръгла маса.

Карта на уебсайта За уебсайта

Социални придобивки Гражданско състояние

Правен ред

Хора с увреждания

Транспорт и автомобили

Околна среда и селско стопанство

<u>Имущество и комунални</u> <u>услуги</u>

Данъци и такси Работа и пенсии

Освен ако не е указано нещо друго, цялото съдържание на EGOV.BG е лицензирано според каквото кажат юристите, че е редно да пише тук.

Таблет версия

Горен колонтитул	
Таксономия - Колона 1	Таксономия - Колона 2
Най-често посещавани услуги	
Институциите на България	
Основни власти	Категории
Научи повече	
Новини	
Новина 1	
Новина 2	
Новина 3	
Долен колонтитул	

Версия за мобилен телефон

Горен колонтитул
Таксономия
Най-често посещавани услуги
Институциите на България
Основни власти и категории
Научи повече
Новини
Новина 1
Новина 2
Новина 3
Долен колонтитул

Приложен слой

- **Приложният слой** (application layer) е най-горният слой, към който се свързват потребителските процеси в двата крайни абоната.
- Някои потребителски процеси са интерактивни взаимодействат си в голям период от време с кратки съобщения от тип заявка- отговор (request-reply).
- Други потребителски процеси взаимодействат с малко на брой големи по обем порции от данни.
- За двата вида процеси се предвиждат различни протоколи на приложния слой например протокол **FTP** (file transfer protocol) за обмен на цели файлове, протокол **HTTP** (hyper text transfer protocol) за обмен на уеб-страници и др.

Модел ТСР/ІР

- Когато започват да се изграждат реални мрежи, използвайки
- OSI-модела и съществуващите протоколи се вижда, че те не отговарят на изискваните спецификации за обслужване.
- Въведен е за първи път през 1974 г. от V. Cerf и Kahn в ARPANET първата компютърна мрежа, която прераства в Internet. Целта е била да позволи свързването на различни мрежи, да бъде жизненоспособна и гъвкава, да оцелее и в условията на ядрен апокалипсис.
- Мрежа с комутация на пакети, базирана на обслужване с неустановена връзка (connectionless без предварително уговаряне на параметрите на връзката между източник и приемник).
- Това е мрежовото ниво Интернет, където имаме "best effort delivery". IP протокол, IP пакети.

OSI vs. TCP/IP

OSI Model

TCP/IP Model (DoD Model) TCP/IP - Internet Protocol Suite

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Internet

Network Access

Telnet, SMTP, POP3, FTP, NNTP, HTTP, SNMP, DNS, SSH, ...

TCP, UDP

IP, ICMP, ARP, DHCP

Ethernet, PPP, ADSL

TCP/IP – мрежи, протоколи и услуги

Както Интернет, така и транспортният слой е подобен на OSI.

- TCP (Transmission Control Protocol) е connection-oriented. Потокът от байтове да бъде доставен без грешка. Съобщението се разбива на сегменти.
- UDP (User Datagram Protocol) е connectionless за обмен на звук, къси съобщения: NTP, TFTP, SNMP.

Сравнение на OSI и TCP/IP

Общи свойства: единен стек от независими протоколи, подобни функции.

Три основни свойства на OSI:

- Дефиниране на услуги
- Дефиниране на интерфейси
- Дефиниране на протоколи
- Основно предимство на OSI: прави разграничение между тези три свойства.
- ТСР/ІР няма точно разграничение между трите.
- Протоколите в OSI са по-добре обособени, отколкото в TCP/IP. Могат да бъдат заменяни по-лесно.

Сравнение на OSI и TCP/IP

- OSI преди да е създадена концепцията за протоколите достатъчно общ.
- Липса на опит с конкретни обекти недостатъчна функционалност
- Канален слой за връзки "точка-точка". С поява на LAN broadcast мрежите нов подслой.
- Подслоевете да бъдат изменяни в зависимост от различията в конкретните мрежи.
- OSI създателите всяка страна по една OSI мрежа под управлението на правителството. Не е мислено за междумрежово свързване.
- TCP/IP първо се разработват протоколите. Моделът реално описание на вече съществуващи протоколи. Т.е пасват перфектно, без да е необходима да са напасвани към модела, както при OSI.

Сравнение на OSI и TCP/IP

TCP/IP не е приложим за описание на мрежи, които не поддържат TCP/IP. Но днес всички производители го поддържат. Такива със собствени протоколни стекове. Novell се отказа от SPX/IPX, Apple – от AppleTalk, Microsoft – от NetBIOS и др.

Т.е ТСР/ІР стана световен мрежов стандарт.

Други разлики:

- На мрежово ниво TCP/IP само connectionless; OSI и connection oriented.
- На транспортно ниво OSI само connection oriented; TCP/IP и двете (TCP и UDP).

Идва ли краят на ТСР/ІР?

Internet може да стане по-бърза и по-сигурна, като се изостави концепцията за пакети и корекцията на грешките, която забавя трафика заради повторните предавания.

Това предполагат учени от Aalborg University, Дания, в сътрудничество с МІТ и Caltech (California Institute of Technology).

Те искат да заменят сегашния модел със система от линейни уравнения.

Методиката

Методиката се базира на мрежовото кодиране и декодиране, по-точно RLNC (Random Linear Network Coding – Случайно линейно мрежово кодиране)

Все едно, колите навлизат в кръстовище от всички посоки, без да се налага да се изчакват помежду си или да чакат да им светне "зелено". Естествено, без да стават катастрофи:)
4-минутно видео се "сваля" 5 пъти по-бързо отклкото по традиционната технология.

Как работи

На съдържанието на пакета се гледа като на отделно число. Всеки възел в мрежата създава система от линейни уравнения от числата, извлечени от съдържанието на пакетите и множество от случайно генерирани коефициенти.

Ако си спомняте от гимназиалния курс по математика, необходими са ви N линейни уравнения, за да намерите стойностите на N неизвестни.

Всеки кодиран пакет съдържа по едно уравнение. Т.е на получателят му трябват N пакета (с различни коефициенти), за да може да декодира данните.

По-сигурна система. На "подслушвачите" ще им трябва да прихванат всички пакети, за да декодират информацията

Coding as a Measure Content of Protection

Противници

На нас ни предстои да се занимаваме с модела TCP/IP. Рано е да се каже, че е за изхвърляне. Трябва да отбележим, че:

Пакетите не е задължително да бъдат подредени. Протоколът ТСР няма такова изискване. Сегментите, на които се разделя дадено съобщение, се номерират.

Благодарение на прозоречни механизми и др. техники, повторните предавания (ако се наложи) не забавят скоростта.

Нека имаме предвид и високото бързодействие на днешнте интегрални схеми.

Все пак предлаганата технология сигурно ще намери приложение в 5G мобилни мрежи, сателитни комуникации и Internet of Things.

Вече в Силиконовата долина

RLNC технологията е патентована и "опакована" в C++ софтуер от фирмата Steinwurf с марката Kodo. Steinwurf планира да я продава на хардуерни производители.

Steinwurf e основана от професор Frank Fitzek от Aalborg University и двама негови бивши студенти заедно с американските им колеги.

Компанията вече има офис и в Силиконовата долина, но управлението й е все ще в Aalborg.

Named Data Networking

Проектът Named Data Networking (NDN - http://named-data.net) цели нова Internet архитектура.

Дават се имена на данните, а не на местоположението им.

Сегашната Internet подсигурява контейнера с данни, а NDN подсигурява самото съдържание.

NDN Testbed в момента включва 31 възела с 84 връзки. Участници в NDN проекта са от повече от 60 академични и търговски институции като UCLA, University of Goettingen, Osaka University Cisco и др.

Архитектура на NDN

email WWW phone ...

TCP UDP ...

packets

SMTP HTTP RTP...

IP

ethernet PPP ...

CSMA async sonet ...

copper fiber radio ...

Individual apps

Every node

Individual links

browser chat ... File Stream ... Security Content chunks Strategy IP UDP P2P BCast ... copper fiber radio ...

Архитектура на NDN (6 основни принципи)

- (1) Оригиналният Internet e IP центриран. NDN около обемите с данни.
- (2) придържа се към принципа end-to-end.
- (3) Маршрутизиращата и направляващата равнини и тук са разделени. NDN реализира най-добрата технология за направляване на данните, като се правят проучвания за нова система за маршрутизация.
- (4) NDN дава основна сигурност, като подписва всички именувани данни.
- (5) NDN включва балансиране на потоците с данни.
- (6) NDN полага усилия да даде инициативата в ръцете на крайния потребител и да стимулира конкуренцията.

Архитектура на NDN (формат на пакетите)

Interest packet

Selector
(order preference, publisher filter, scope, ...)

Nonce

Data packet

Signature
(digest algorithm, witness, ...)

Signed Info
(publisher ID, key locator, stale time, ...)

Data