Project Title:

Facial Emotion Recognition using Deep Learning

Project Description

This project aims to build a deep learning model capable of recognizing human emotions from facial expressions. Using the **FER2013 dataset**, which consists of 48x48 pixel grayscale images of faces categorized into seven emotions (**Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral**), the project explores various model architectures, including:

1. Custom CNN from Scratch

 A Convolutional Neural Network (CNN) is built from scratch to extract features from facial images and classify emotions.

2. Custom CNN with Augmentation

 Image augmentation techniques are applied to the training data to improve the model's generalization ability and prevent overfitting.

3. Transfer Learning with VGG16

 A pre-trained VGG16 model is used as a feature extractor, and a custom classification layer is added on top to classify emotions.

4. Transfer Learning with ResNet50

 Similar to VGG16, a pre-trained ResNet50 model is employed for feature extraction followed by a custom classification layer.

Project Goals

- Develop a deep learning model to accurately classify emotions from facial images.
- Compare the performance of different model architectures.
- Evaluate the effectiveness of image augmentation techniques.
- Achieve high accuracy on the FER2013 dataset.

Methodology

1. Data Preparation

Download and preprocess the FER2013 dataset, including data cleaning and analysis.

2. Model Development

Construct and train CNN models using TensorFlow and Keras.

3. Model Evaluation

- Evaluate model performance using metrics like accuracy, precision, recall, and F1-score.
- Generate confusion matrices and classification reports to analyze the model's predictions.

4. Model Optimization

• Tune hyperparameters and explore image augmentation techniques to improve model performance.

5. Making Predictions

 Use the trained model to make predictions on new facial images and visually assess its performance.

Expected Outcomes

- A robust deep learning model capable of accurately recognizing human emotions from facial expressions.
- Insights into the strengths and weaknesses of different model architectures.
- Understanding of the impact of image augmentation on model performance.
- A system that can be further developed for real-world applications, such as human-computer interaction and emotion analysis.