# Langages hors contextes et automates à pile

## Langages hors contextes

 Un langage hors-contexte est un langage généré par une grammaire hors-contexte (type 2)

## Langages hors contextes

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

$$S => \varepsilon$$

$$L(G) = \{a^nb^n; n \ge 0\}$$

## Conception d'une grammaire

## Exemple du langage des parenthèses

- Base : ε est une SPE
- Schéma d'induction :
  - Si A est une SPE, alors (A) est une SPE
  - Si A et B sont des SPE, alors AB est une SPE
- 3. Clause finale: rien n'est une SPE hormis par (1) et (2)

## Traduction sous forme de grammaire:

$$S \longrightarrow \epsilon \mid (S) \mid SS$$

#### Arbre de dérivation

- Soit G = <V, Σ, S, R> une grammaire hors-contexte
   Un arbre de dérivation pour w∈ Σ\* dans G est un arbre tel que :
  - Racine: S
  - Concaténation des feuilles : w
  - Si un nœud N a pour descendants immédiats  $N_1$ ,  $N_2$ , ...,  $N_k$ , alors  $(N \rightarrow N_1 N_2 ... N_k) ∈ R$

#### Arbre de dérivation

#### Théorème

w∈L(G) ⇔ il existe un arbre de dérivation A pour w dans G

#### Preuve:

- $-\Rightarrow$ : récurrence sur le nombre de pas dans la dérivation (démontrer que pour tout non-terminal X et tout mot  $\phi$ , si X  $\Rightarrow$ \* $\phi$ , alors il existe un arbre de dérivation pour  $\phi$  de racine X)
- ⇐ : récurrence sur la profondeur de l'arbre

- S ---> aSbS ---> ε



## **Ambiguïté**

- w∈L(G) est dit ambigu si et seulement si w admet plus d'un arbre de dérivation
- G est ambiguë ssi elle engendre au moins un mot ambigu
- L est ambigu ssi L ne peut être engendré que par des grammaires ambiguës

## **Ambiguïté**

#### Exemple:

Soit la grammaire G dont les règles sont:

$$S \rightarrow aAb$$

$$S \rightarrow a$$

$$A \rightarrow bS$$

G est ambiguë





#### **Théorème**

L'ensemble des langages hors-contextes est fermé pour:

- la réunion
- la concaténation
- l'étoile (et aussi +)
- L'image miroir

#### Fermeture pour la réunion:

$$G_1 = \langle V_1, \Sigma, S_1, R_1 \rangle$$
  
 $G_2 = \langle V_2, \Sigma, S_2, R_2 \rangle$ 

On peut supposer que  $V_1 \cap V_2 = \emptyset$  et que  $S \notin V_1 \cup V_2$ . On définit  $G = \langle \{S\} \cup V_1 \cup V_2, \Sigma, S, R \rangle$  où R contient  $R_1 \cup R_2$  et la règle:  $S \rightarrow S1 \mid S2$ . Alors  $L(G) = L(G_1) \cup L(G_2)$ 

-

#### Fermeture pour la concaténation:

$$G_1 = \langle V_1, \Sigma, S_1, R_1 \rangle$$
  
 $G_2 = \langle V_2, \Sigma, S_2, R_2 \rangle$ 

On peut supposer que  $V_1 \cap V_2 = \emptyset$  et que  $S \notin V_1 \cup V_2$ . On définit  $G = \langle S \rangle \cup V_1 \cup V_2, \Sigma, S, R \rangle$  où R contient  $R_1 \cup R_2$  et la règle:  $S \rightarrow S1$  S2. Alors  $L(G) = L(G_1)$   $L(G_2)$ 

#### Fermeture pour l'étoile:

$$G_1 = \langle V_1, \Sigma, S_1, R_1 \rangle$$

On définit  $G = \langle S \rangle \cup V_1$ ,  $\Sigma$ , S,  $R \rangle$  où R contient  $R_1$  et la règle:  $S \rightarrow S$  S1  $| \epsilon$ . Alors  $L(G)=L(G_1)^*$ 

Remarque:

L'ensemble des langages hors-contexte n'est pas fermé pour l'intersection et la complémentation

## Lemme de pompage:

Soit L un langage hors-contexte. Alors, il existe  $n \in \mathbb{N} \setminus \{0\}$  tel que pour tout mot  $w \in L$  avec  $|w| \ge n$ , on peut trouver  $w_1, w_2, w_3, w_4, w_5 \in \Sigma^*$  tels que  $w = w_1 w_2 w_3 w_4 w_5$  et:

- $-W_2W_4\neq \varepsilon$
- $-|w_2w_3w_4| \le n$
- Pour tout k ∈  $\aleph$ , xy<sup>k</sup>z ∈ L

## Limites des langages hors contexte

Il existe des langages non hors-contexte.

Exemple:  $\{a^n b^n c^n | n \ge 0\}$ 

 On utilise le lemme de pompage pour montrer par l'absurde qu'un langage est non hors-contexte.

• Description:



Situation initiale:



Situation quelconque:



Situation finale acceptante:









• L={a<sup>n</sup>cb<sup>n</sup> |n≥0}



125





- Un automate à pile est la donnée de :
  - Q : ensemble d 'états
  - $-\Sigma$ : alphabet (ruban)
  - $-\Gamma$ : alphabet (pile)
  - Z0  $\in \Gamma$  : symbole initial de la pile
  - q0∈Q : état initial
  - F⊆ Q : ensemble d'états finaux
  - $-\delta$ : ensemble de transitions (quintuplets)

$$\delta: \mathbb{Q} \times \Sigma^* \times \Gamma^* \to \mathscr{P} (\mathbb{Q} \times \Gamma^*)$$

#### **Transitions**

• Un élément de  $\delta$ :

$$(q, u, \alpha) \rightarrow (q', \beta)$$
  
 $q, q' \in Q; u, v \in \Sigma^*; \alpha, \beta \in \Gamma^*$ 

• Si dans l'état q, l'automate peut lire le mot u sur le ruban (de gauche à droite) et si le mot  $\alpha$  figure en haut de la pile (de haut en bas), alors il peut passer dans l'état q',parcourir u et remplacer en haut de la pile  $\alpha$  par  $\beta$ 

## Cas particuliers

- $(q0, u, \varepsilon) \longrightarrow (q1, \beta)$ :
  - EMPILER  $\beta$
- $(q0, u, \alpha) ----> (q1, \epsilon)$ :
  - DEPILER α

## **Configurations**

- Triplet (q, u, σ) où:
  - $q \in \Sigma$ ;  $u \in \Sigma^*$ ;  $\sigma \in \Gamma^*$
  - q : état courant
  - u : mot restant à lire (de gauche à droite)
  - $-\sigma$ : contenu de la pile (de bas en haut)
- configuration initiale:
  - (q0, w, Z0)
- configuration terminale acceptante:
  - (q, ε, Z0) : automate (q final et chaîne entièrement parcourue et pile vide)

# Transformation d'une grammaire horscontexte en un automate à pile

•  $G = \langle V_T, V_N, S, R \rangle$ 

But: trouver P, automate à pile, qui reconnaît exactement le langage engendré par G

# Transformation d'une grammaire horscontexte en un automate à pile

L'automate est défini par:

```
\begin{array}{l} - \ Q = \{p,\,q\} \\ - \ \Sigma = V_T \\ - \ \Gamma = V_N \cup V_T \cup \{Z0\} \\ - \ Z0 \in \Gamma : \text{symbole initial de pile} \end{array} \tag{$Z0 \not\in V_N \cup V_T$}
```

- p = état initial
- {q} = ensemble d'états finaux
- $-\delta$ : ensemble de transitions (quintuplets)
  - $(p,\epsilon,\epsilon) \rightarrow (q,S)$
  - pour chaque règle A → φ
     ajouter (q, ε, A) → (q, ~φ)
  - pour chaque symbole terminal x : ajouter (q, x, x) → (q, ε)