

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

LAPORAN INTERNAL AUDIT ENERGI

TAHUN 2015

UP. MUARA TAWAR PT. PEMBANGKITAN JAWA BALI

No. Dokumen	FM – UPMTW
Tanggal Terbit	

Dokumen terkendali dan terkini Sistem Manajemen UPMTW dapat diakses di https://standard.ptpjb.com. Dokumen tercetak bersifat tidak terkendali kesalahan dan perbedaan isi diluar tanggungjawab Sekr. SM_UPMTW.

No. Revisi	00
Halaman	1 dari 11

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR SO 9001:2000 – ISO 14001:2004 – OHSAS18001:1999 – PERMENAKER No.PER.05/MEN/1996

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

I. PENDAHULUAN

Audit energy secara internal dilakukan oleh Tim Manajemen Energi PT PJB UP Muara Tawar untuk mengetahui seberapa besar konsumsi energy yang dibutuhkan untuk memproduksi listrik per kWh dan mengidentifikasi peralatan – peralatan yang menjadi penyebab meningkatnya konsumsi energy yang dibutuhkan untuk memproduksi listrik per kWh. Jenis audit energy yang dilakukan adalah sebagai berikut:

- 1. Performance Test
- 2. Heat Rate Gap Analysis

PT PJB UP Muara Tawar mengoperasikan 1 blok PLTGU yang terdiri dari 3 unit Gas Turbine, 3 unit HRSG dan 1 unit Steam Turbine dengan kapasitas total 660 MW yang terhubung ke system 500 kV Jawa-Bali. PLTGU Muara Tawar selama tahun 2013 memproduksi listrik per bulan rata – rata 372 GWh dengan rata – rata yang disalurkan ke system 500 kV Jawa-Bali 364 GWh (97.8 %) dan digunakan untuk pemakaian sendiri 8 GWh (2.2 %).

II. DASAR HUKUM PELAKSANAAN

Pelaksanaan audit energy secara internal didasarkan pada tugas pokok dari Tim Manajemen Energi PT PJB UP Muara Tawar khususnya tugas koordinator bidang, sebagai berikut:

"Melakukan audit energy dan menyusun laporan audit energi setiap satu tahun sekali". Tugas pokok Tim Manajemen Energi PT PJB UP Muara Tawar secara lengkap sebagai mana terlampir.

III. TUJUAN AUDIT ENERGI

Tujuan dilakukan audit energy internal adalah sebagai berikut :

- 1. Mengukur effisiensi energy mesin pembangkit secara total
- 2. Mengukur konsumsi energy yang dibutuhkan untuk memproduksi listrik per kWh
- 3. Mengetahui peralatan peralatan yang menjadi penyebab peningkatan konsumsi energy
- 4. Menentukan langkah langkah yang ditempuh dalam rangka peningkatan effisiensi energy

No. Dokumen	FM – UPMTW	Dokumen terkendali dan terkini Sistem Manajemen UPMTW dapat diakses di <u>http://standard.ptpib.com</u> . Dokumen tercetak bersifat tidak	No. Revisi	00
Tanggal Terbit		terkendali kesalahan dan perbedaan isi diluar tanggungjawab Sekr. SM_UPMTW.	Halaman	3 dari 11

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR ISO 9001:2000 – ISO 14001:2004 – OHSAS18001:1999 – PERMENAKER No. PER. 05/MEN/1996

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

IV. DESKRIPSI FASILITAS YANG DIAUDIT

Fasilitas – fasilitas yang diaudit adalah seluruh fasilitas yang berhubungan langsung dengan proses produksi listrik, mulai dari bahan bakar masuk Gas Turbine sampai dengan terbentuknya uap / steam untuk menggerakkan Steam Turbine Generation. Fasilitas – fasilitas tersebut diantaranya Sistem Gas Turbine, Sistem Heat Recovery Steam Generator (HRSG), dan Sistem Steam Turbine. Deskripsi fasilitas – fasilitas tersebut sebagai berikut:

1. Sistem Gas Turbine

Gas Turbine adalah suatu pembangkit listrik tenaga gas, dimana udara yang telah di kompresi dipanaskan dengan bahan bakar gas atau HSD yang kemudian digunakan untuk menggerakkan turbin. Tipe Gas turbine yang digunakan di PT PJB UP Muara Tawar adalah GT 13E2 dengan kapasitas 145 MW, sedangkan bahan bakar yang digunakan adalah bahan bakar gas atau HSD.

2. Sistem HRSG

HRSG atau Heat Recovery Steam Generator berfungsi untuk memproduksi uap air sebagai penggerak Steam Turbine dengan memanfaatkan panas gas buang dari Gas Turbine. Jenis HRSG yang digunakan di PT PJB UP Muara Tawar adalah natural circulation dimana sirkulasi air di dalam HRSG memanfaatkan gaya gravitasi dari air itu sendiri. HRSG terdiri dari sisi High Pressure dengan kapasitas 60 kg/s dan tekanan 70 bar serta sisi Low Pressure dengan kapasitas 30 kg/s dan tekanan 5 bar.

3. Sistem Steam Turbine

Steam Turbine adalah suatu pembangkit listrik tenaga uap dimana turbin digerakkan oleh uap air atau steam yang merupakan produksi HRSG. Steam Turbine terdiri dari sisi High Pressure dan Low Pressure dengan kapasitas terpasang 225 MW.

Sedangkan parameter – parameter peralatan di dalam sistem gas turbine, HRSG, dan steam turbine yang diaudit menggunakan data – data komisioning sebagai data referensi, sehingga audit dilaksanakan dengan membandingkan data – data hasil pengukuran dengan data – data referensi untuk diketahui gap yang terjadi pada masing – masing parameter. Data referensi yang digunakan adalah sebagai berikut :

No. Dokumen	FM – UPMTW
Tanggal Terbit	

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR ISO 9001:2000 – ISO 14001:2004 – OHSAS18001:1999 – PERMENAKER No.PER.05/MEN/1996

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

	Existing	Reference	Losses (%)	Losses (kcal/kWh)
GT Load, MW				
GT 1.1	139.16	139.28	0.336	6.314
GT 1.2	142.69	142.69	0.358	6.729
GT 1.3	138.94	140.24	0.597	11.213
Energy Consumption, Mcal/hr				
GT 1.1	393189.90	397595.13		
GT 1.2	407143.19	400538.63		
GT 1.3	402147.56	396689.47		
STG Load, MW	195.62	214.02		
Auxiliary Power, kW	12310.00	10305.63	0.003	0.062
Heat rate, kcal/kWh	1950.77	1877.99		
Delta	72.78		3.875	
Condenser vaccum, mm HgA HP Bypass Turbine to	54.45	61.13	-0.701	-13.163
Condenser	0	0	0	
LP Bypass Turbine to Condenser	0	0	0	
HP Steam Flow	590.18	609.77	0.476	8.935
HP Steam Pressure	69.68	69.90	0.047	0.891
HP Steam Temperature	494.78	490.02	-0.051	-0.965
LP Steam Flow	270.77	276.70	0.011	0.199
LP Steam Pressure	4.61	5.21	0.029	0.543
LP Steam Temperature	159.36	161.00	0.097	1.828
LP Admission not in service				
HP ST Efficiency	95.29	95.44	0.019	0.360
LP ST Efficiency	67.36	77.51	2.487	46.705

	No. Dokumen	FM - UPMTW	Dokumen terkendali dan terkini Sistem Manajemen UPMTW dapat diakses di <u>http://standard.ptpjb.com</u> . Dokumen tercetak bersifat tidak	No. Revisi	00
ı	Tanggal Terbit		terkendali kesalahan dan perbedaan isi diluar tanggungjawab Sekr. SM_UPMTW.	Halaman	5 dari 11

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR SO 9001:2000 - ISO 14001:2004 - OHSAS18001:1999 - PERMENAKER No.PER.05/MEN/1996

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

V. STATUS ENERGI SAAT INI

Berikut ini adalah hasil perhitungan audit energy untuk mengetahui kondisi energy PLTGU Muara Tawar saat ini :

A. Performance Test

1. Data Gas turbine

4	SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR
# RJB	ISO 9001:2000 - ISO 14001:2004 - OHSAS18001:1999 - PERMENAKER No.PER.05/MEN/1996
Unit Pembangkitan	
MILADA TAWAD	DOKUMEN LEVEL IV- FORMULIR: RESUME PERFORMANCE TEST GAS TURBINE

Unit Load: Baseload 100 %

Date Issued Monday, July 6, 2015

Time 8:15:00 PM **S.d** 9:15:00 PM

Parameter	Unit	GT 11	GT 12	GT 13
active power	MW	139.16	142.69	138.94
Reactive power	Mvar	27.26	23.30	27.41
Relative Humidity (Rhamb)	%	63.40	63.40	63.40
Barometric Pressure (Pamb)	mBar	1,023.44	1,023.44	1,023.44
Ambient Temperature (tamb)	Deg Cel	27.65	27.65	27.65
Fuel Oil Flow (Flow)	kg/s	-	-	-
Fuel Oil Temperatur (tF)	Deg Cel	32.95	36.85	36.13
Fuel gas Flow (Flow)	kg/s	9.40	9.45	9.34
Fuel gas Temperatur (tF)	Deg Cel	78.19	95.33	89.48
Generator Speed (Speed)	Rpm	2,996.67	2,996.68	2,996.65
Frequency	Hz	49.90	49.90	49.92
Variable IGV (VIGV)	Deg	(0.05)	0.03	(0.11)
Pressure Kompressor 2 (PK 2)	Bar	13.47	13.58	13.47
Temperature Kompressor 1 (TK 1)	Deg Cel	27.65	26.72	26.62
Temperature Inlet Turbine	Deg Cel	1,099.97	1,099.97	1,099.96
Temperature After Turbine	Deg Cel	535.38	528.92	533.86
Heat Input	kJ/s	457,280	473,508	467,698
Heat Input corr	kJ/s	449,258	465,206	459,540
SFC	MMBTU/kWh	0.01154	0.01132	0.01149
SFC Corr	MMBTU/kWh	0.01182	0.01160	0.01177
Efficiency	%	30.43	30.13	29.71
Efficiency corr-guarantee	%	30.24	29.94	29.52
Gross Heat rate	Kcal/kWh	2,825.49	2,853.34	2,894.31
GIOSS Heat Tate Coll-	Kcal/kWh	2,843.58	2,871.64	2,913.14

omor Dokumen FM-OPS-UPMTW-009 Dokumen ini milik PT PJB Unit Pembangkitan Muara Tawar No Revisi Fanggal Terbit 1 Maret 2005 Dilarang menggandakan tanpa sejijin Sekretariat Sislem Manajemen Terpadu Halaman

No. Dokumen	FM – UPMTW
Tanggal Terbit	

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

2. Data HRSG

PB Unit Pembangkitan MUARA TAWAR

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR

ISO 9001:2000 - ISO 14001:2004 - OHSAS18001:1999 - PERMENAKER No.PER.05/MEN/1996

DOKUMEN LEVEL IV- FORMULIR: RESUME HEAT RECOVERY STEAM GENERATOR 11,12,13

Unit Load Baseload 100 %

Date Issued Monday, July 6, 2015

Time 8:15:00 PI **S.d** 1:15:00 PM

			Besaran		
No	Parameter	Unit	HRSG 11	HRSG 12	HRSG 13
1	Press HP Drum HRSG	bara	75.21	75.02	74.77
2	Press LP Drum HRSG	bara	6.89	6.74	6.69
3	Press LP FW to HRSG	bara	17.69	17.28	17.17
4	Temp LPFW to HRSG	°C	49.08	48.56	49.81
5	Flow LP FW to HRSG	kg/s	18.88	19.38	21.04
6	Flow LP FW to Deaerator	kg/s	#NAME?	1.49	2.03
7	Press HP FW to HRSG	bara	492.78	123.46	123.29
8	Temp HP FW to HRSG	°C	54.16	50.34	52.32
9	Flow HP FW to HRSG	kg/s	55.15	56.82	56.56
10	Temp Exhaust Stack	°C	121.18	130.18	133.31
11	Flow HP Steam to Header	kg/s	55.15	54.27	54.53
12	Press HP Steam to Header	bara	72.60	72.30	72.17
13	Temp HP Steam to Header	°C	490.78	489.92	487.35
14	Flow LP Steam to ST14	kg/s	25.76	23.50	25.96
15	Press LP Steam to ST14	bara	6.56	5.65	6.58
16	Temp LP Steam to ST14	°C	162.67	156.29	159.12
17	Temp After Turbine (TAT)	°C	535.38	528.92	533.86

Nomor Dokumen	FM-OPS-UPMTW-009	DOKUMEN INI MILIK PT PJB UNIT PEMBANGKITAN IWUARA TAWAR	No Revisi	
Tanggal Terbit	1 Maret 2005	Dilarang menggandakan tanpa seijin Sekretariat Sistem Manajemen	Halaman	

No. Dokumen	FM – UPMTW
Tanggal Terbit	

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR

DOKUMEN LEVEL IV - FORM ULIR: LAPORAN AUDIT ENERGI

3. Data Steam turbine

MUARA TAWAR

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR 2001:2000 – ISO 14001:2004 – OHSAS18001:1999 – PERMENAKER No. PER.05/MEN/1

DOKUMEN LEVEL IV- FORMULIR: RESUME PERFORMANCE STEAM TURBINE 1.4

Unit Load Baseload 100 % Date Issued 7/6/2015

Time 8:15:00 F S.d 8:30:00 PM

No	Parameter	Unit	Besaran
1	Active Power Gen ST	kW	195.62
2	Reactive Power Gen ST	kVar	36.9860
3	Frequency Gen ST	HZ	49.94
4	Power Factor	PF	0.9820
5	T HP Steam Inlet	°C	494.78
6	P HP Steam Inlet	bara	69.6760
7	T HP Turbin Exhaust	°C	156.77
8	P LP Steam Inlet	bara	4.6100
9	T Steam LP Exhaust	°C	45.67
10	Pressure Condenser	bara	0.0726
11	T Bef Condenser Ln 1	°C	29.25
12	T Ball Strainer Aft Condenser Ln 1	°C	38.20
13	P MCW Ln 1 Bef Cond	bara	161.46
14	P Ball Strainer Aft Cond 1	bara	1.64
15	P Deaerator Tank	bara	0.2200
16	T Deaerator Tank	°C	48.78
17	T Aft HP FW Pump	°C	50.13

FM-OPS-UPMTW-009 1 Maret 2005

ookumen ini mirik PT PJB onit Pembangkitan wuara Taw Dilarang menggandakan tanpa seljin Sekretariat Sistem

4. Resume Performance Test

#RIE Unit Pembangkita MUARA TAWAR

DOKUMEN LEVEL IV- FORMULIR: RESUME PERFORMANCE TEST BLOK I

BASE LOAD 100 % Monday, July 6, 2015 20:15 S.d Unit Load Date Issued Time

No	Parameter	Unit	GT 11	GT12	GT13	ST14	Muara Tawar CCPP
1	Measured Power	kW	139,158	142,690	138,944	195,622	616,414
2	Measured Power, corrected	kW	135,847	139,295	135,638	193,187	603,968
3	Power Auxiliary	kW					
4	Power SST	kW					
3	Specific Fuel Consumption						
	- Oil	Liter/kWh	-	-	-		-
	- Gas	MMBTU/kWI	0.0118	0.0116	0.0118		0.0080
4	Heat Rate						
	- Heat Rate, measured	kJ/kWh	11,830	11,946	12,118	13,084	8,167.475
		kCal/kWh	2,825	2,853	2,894	3,125.2	1,950.8
	- Heat Rate, corrected	kJ/kWh	11,906	12,023	12,197	,	8,199.86
		kCal/kWh	2,844	2,872	2,913		1,958.503
5	Unit Thermal Efficiency, mea	%	30.43	30.13	29.71	27.16	44.08
6	Unit Thermal Efficiency,corr	%	30.24	29.94	29.52	26.82	43.90
7	HRSG Power output	kW	239,704.76	232,353.35	238,941.53		
8	HRSG Efficiency	%	77.41	72.15	74.66	-	-
9	Condenser Cleanliness Factor	%	-	- 1	-		89.64

July 6, 2015 Manajer Operasi UP Muara Tawar

Suyanto Kadi

Dokumen ini milik PT PJB Unit Pembangkitan Muara Tawar Dilarang menggandakan tanpa seijin Sekretariat Sistem Manajemen Ter

FM - UPMTW Tanggal Terbit

Dokumen terkendali dan terkini Sistem Manajemen UPMTW dapat diakses di http://standard.ptpjb.com. Dokumen tercetak bersifat tidak terkendali kesalahan dan perbedaan isi diluar tanggungjawab Sekr. SM_UPMTW.

00 8 dari 11

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR ISO 9001:2000 – ISO 14001:2004 – OHSAS18001:1999 – PERMENAKER No.PER.05/MEN/1996

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

B. Heat Rate Gap Analysis

Combine Cycle 3-3-1 Configuration

	Existing	Reference	Losses (%)	Losses (kcal/kWh)
GT Load, MW				
<i>G</i> T1.1	139.16	139.28	0.336	6.314
GT 1.2	142.69	142.69	0.358	6.729
<i>G</i> T 1.3	138.94	140.24	0.597	11.213
Energy Consumption, Mcal/hr				
<i>G</i> T1.1	393189.90	397595.13		
<i>G</i> T1.2	407143.19	400538.63		
<i>G</i> T1.3	402147.56	396689.47		
STG Load, MW	195.62	214.02		
Auxiliary Power, kW	12310.00	10305.63	0.003	0.062
Heat rate, kcal/kWh	1950.77	1877.99		
Delta	72.78		3.875	
Condenser vaccum, mm HgA	54.45	61.13	-0.701	-13,163
HP Bypass Turbine to Condenser	О	o	О	
LP Bypass Turbine to Condenser	o	o	0	
HP Steam Flow	590.18	609.77	0.476	8.935
HP Steam Pressure	69.68	69.90	0.047	0.891
HP Steam Temperature	494.78	490.02	-0.051	-0.965
LP Steam Flow	270.77	276.70	0.011	0.199
LP Steam Pressure	4.61	5.21	0.029	0.543
LP Steam Temperature	159.36	161.00	0.097	1,828
LP Admission not in service				
HP ST Efficiency	95.29	95.44	0.019	0.360
LP ST Efficiency	67.36	77.51	2.487	46.705
Make Up Water	7.58	12.16	-0.178	-3.343
Heat Loss of Exhaust Duct				
HR5G 1.1	30.38	22.00	0.313	5.877
HR5 <i>G</i> 1,2	26.92	22.00	0.184	3.450
HR5 <i>G</i> 1,3	23.86	22.00	0.070	1,306
HP Eco Outlet Temperature				
HRSG 1.1	280.73	281.00	0.004	0.077
HR5G 1.2	285.70	284.00	-0.026	-0.485
HR5G 1.3	287.80	284.00	-0.058	-1.083
LP Eco Outlet Temperature				
HRSG 1.1	180.22	183.00	0.028	0.528
HRSG 1.2	164.84	108.00	-0.170	-3.198
HR5 <i>G</i> 1.3	164.70	179.00	0.145	2.716
Desuperheater Flow				
HR5 <i>G</i> 1.1	О	О	О	0
HRSG 1.2	О	О	О	0
HR5 <i>G</i> 1.3	О	О	О	0
Stack Temperature				
HRSG 1.1	121.18	118.85	0.074	1.398
HRSG 1.2	130.18	126.03	0.133	2.496
HRS <i>G</i> 1.3	133.31	113.53	0.633	11.885
Sub Total Losses			4.860	91,272
Uncalculated Losses			-0.985	-18.493
Total Losses			3.875	72.779

No. Dokumen	FM – UPMTW
Tanggal Terhit	

No. Revisi	00
Halaman	9 dari 11

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

Breakdown for GT

	Item	Losses (%)	Losses (kcal/kWh)
GT 1.1	Partial Loading	0.008	0.157
	Ambient Temperature	0.194	3.651
	Excess Inlet Pressure Drop	0.043	0.813
	Excess GT Back Pressure	0	0
	Compressore Efficiency	0.090	1.692

GT 1.2	Partial Loading	0.000	0.000
	Ambient Temperature	0.134	2.515
	Excess Inlet Pressure Drop	0.056	1.057
	Excess GT Back Pressure	0	0
	Compressore Efficiency	0.168	3.157

GT 1.3	Partial Loading	0.091	1.707
	Ambient Temperature	0.181	3.407
	Excess Inlet Pressure Drop	0.048	0.895
	Excess GT Back Pressure	0	0
	Compressore Efficiency	0.277	5.205

A. Analisa dan Kesimpulan

1. Dari hasil perhitungan, kondisi energy PLTGU Muara Tawar pada saat ini menunjukkan telah terjadi peningkatan konsumsi energy yang dibutuhkan untuk memproduksi listrik per kWh sebesar 72,779 kCal/kWh (3,8%) dimana data referensi 1877,99 kCal/kWh sedangkan data sekarang 1958,053 kCal/kWh. Hal ini menunjukkan bahwa untuk memproduksi listrik per kWh dibutuhkan energy yang lebih besar sehingga menyebabkan mampu produksi PLTGU Muara Tawar turun sebesar 19,8 MW (3,11 %) dari 636,22 MW menjadi 616,414 MW.

No. Dokumen	FM – UPMTW
Tanggal Torbit	

No. Revisi	00
Halaman	9 dari 11

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR ISO 9001:2000 – ISO 14001:2004 – OHSAS18001:1999 – PERMENAKER No. PER.05/MEN/1996

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

2. Parameter – parameter yang menyebabkan terjadinya peningkatan konsumsi energy yang cukup signifikan dapat digambarkan sebagai berikut :

No	Parameter	Satuan	Kondisi	Kondisi	Losses
			Saat Ini	Referensi	(kCal/kWh)
1	GT Load 1.3	MW	138.944	140,24	11,22
2	HP Steam Flow	Kg/s	590,18	609,77	8,935
3	LP ST Efficiency	%	67,36	77,51	46,705
4	Stack Temperature HRSG 1.3	С	133.31	113,53	11,885

SISTEM MANAJEMEN UNIT PEMBANGKITAN MUARA TAWAR

DOKUMEN LEVEL IV - FORM ULIR : LAPORAN AUDIT ENERGI

VI. POTENSI EFFISIENSI ENERGI YANG DAPAT DILAKUKAN

Berdasarkan hasil perhitungan dan analisa kondisi energi PLTGU Muara Tawar saat ini diatas, terlihat ada 4 (empat) parameter utama yang berperan cukup signifikan meningkatkan konsumsi energi per kWh produksi, yaitu GT load GT 1.3, HP steam flow, LP ST Efficiency, dan stack temperature HRSG 1.3, dengan total losses energi dari 4 (empat) parameter tersebut sebesar 78,745 kCal/kWh.

Jika produksi rata – rata per bulan sebesar 372 GWh atau sama dengan 372.000.000 kWh, maka potensi effisiensi energi yang dapat dilakukan terhadap ke-enam parameter tersebut sebagai berikut :

Potensi effisiensi energi per bulan : 78,745 (kCal/kWh) x 372.000.000 (kWh)

: 29.293.140.000 kCal

: 123.124.250.000 kilojoule

VII. RENCANA KERJA EFFISIENSI ENERGI

Dalam rangka meningkatkan effisiensi energi, maka perlu dilakukan kegiatan – kegiatan effisiensi energi khususnya yang berhubungan dengan ke-empat parameter diatas sehingga diharapkan effisiensi energi dapat meningkat atau konsumsi energi per kWh produksi dapat menurun. Rencana kerja effisiensi energi tersebut diantaranya sebagai berikut:

No	Rencana Kegiatan Effisiensi Energi	KPI	PIC	Target Waktu
1	Retubing Condenser	DP Kond < 0,40	Rendal Har	Jan-16
2	Inspeksi LP Steam	Eff LP ST>77%	МО	Jan-16
3	Perbaikan LP Steam Turbin 1.4	Eff LP ST>77%	МО	Mar-16
4	Cleaning HRSG	Eff HRSG 78%	Rendal Har	Apr-16

No. Dokumen	FM – UPMTW
Tanggal Terbit	