

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/82, 15/56, A01H 5/00		A1	(11) International Publication Number: WO 98/41643 (43) International Publication Date: 24 September 1998 (24.09.98)
(21) International Application Number: PCT/GB98/00833 (22) International Filing Date: 19 March 1998 (19.03.98) (30) Priority Data: 9705694.9 19 March 1997 (19.03.97) GB		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(71) Applicant (<i>for all designated States except US</i>): SCOTTISH CROP RESEARCH INSTITUTE [GB/GB]; Invergowrie, Dundee DD2 5DA (GB). (72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): MACHRAY, Gordon, Cameron [GB/GB]; 2 Jedburgh Road, Dundee DD2 1BB (GB). HEDLEY, Peter [GB/GB]; "Morar", Church Lane, Errol PH2 7PX (GB). MEYER, Rhonda [DE/GB]; 41 Loons Road, Dundee DD3 6AB (GB). MADDISON, Anne [GB/GB]; Middle Ludmill Farm, Farmley Tyas, Huddersfield HD4 6UP (GB). (74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(54) Title: EXPRESSION CONTROL POLYNUCLEOTIDES			
(57) Abstract			
<p>There is provided an expression control polynucleotide of an invertase gene, which may be operably linked to a heterologous polynucleotide. Optionally the expression control polynucleotide and heterologous polynucleotide construct is transfected into host cells or organisms. Preferably the construct is used to produce a transgenic plant and the expression control polynucleotide is pollen cell-specific. A suitable expression control polynucleotide is as set out in SEQ ID No 1, especially nucleotides 3430-5349 thereof. Desirably the protein expressed by the heterologous polynucleotide causes male sterility in the transgenic plants.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

1 **"Expression Control Polynucleotides"**

2

3 This invention relates to the fields of plant
4 biotechnology and plant genetic engineering. In
5 particular it relates to transgenic plant production
6 and tissue-specific expression of introduced gene
7 sequences in pollen cells.

8

9 A promoter is a non-coding nucleotide sequence which
10 controls the transcription of an adjacent nucleotide
11 sequence. A number of promoters have been isolated
12 from a wide variety of sources, including plants. In
13 certain applications it is desirable to genetically
14 engineer a construct which comprises a promoter
15 operatively linked to a heterologous nucleotide
16 sequence such that the promoter controls expression of
17 the heterologous sequence in the host cell transformed
18 with that construct. Where the promoter is only active
19 in particular tissue types expression of the
20 heterologous sequence is restricted accordingly and
21 this may be especially desirable in some circumstances.

22

23 A number of plant-derived promoters have been isolated
24 which activate expression of their companion nucleotide
25 sequences only in pollen cells. Use of these pollen

1 cell-specific promoters to activate genes encoding
2 heterologous proteins has also been described [see CA
3 2021643] and may lead to the production of proteins not
4 normally present in pollen cells. Such an approach may
5 allow the expression of heterologous genes which encode
6 for proteins able to render the plant male-sterile by
7 ablation of pollen cells (for example if the proteins
8 are toxic to the pollen cell) or to drive the
9 production of antisense RNAs which interfere with the
10 normal processes of pollen cell metabolism. Pollen
11 cell-specific promoters can further be used to drive
12 expression of proteins that are toxic to insects or
13 other pests which consume pollen. These promoters can
14 also be used to activate the expression of genes
15 encoding proteins which will enhance the nutritional
16 value of pollen.

17
18 However, the number of pollen cell-specific promoters
19 which have been well characterised is limited and
20 different promoters exhibit a range of activities which
21 cannot be predicted *a priori* and are difficult to
22 quantify. The activity of a promoter isolated from one
23 species of plant may also differ when the promoter is
24 utilised in an heterologous species - such differences
25 may be both in the tissue specificity and strength of
26 the promoter and are more likely to occur with greater
27 taxonomic distance between plant species. In addition
28 different promoters may be required to control
29 expression of multiple genes since a gene silencing
30 effect can occur if duplicate copies of the same
31 promoter are used. The choice of promoter is therefore
32 limited and has to be experimentally verified in the
33 system under study.

34
35 According to the present invention there is provided an
36 invertase gene expression control polynucleotide, a

1 derivative, a functional equivalent, or a part thereof,
2 which is pollen cell-specific.

3

4 By "pollen cell-specific" we mean that the expression
5 control polynucleotide exhibits a distinct level of
6 activity (or lack of activity) in pollen cells (ie in
7 material ranging from developing pollen grain through
8 to material derived from pollen) compared to the other
9 tissue types of the transformed plant.

10

11 By "expression control polynucleotide" we mean any
12 polynucleotide which is capable of affecting the
13 expression of a gene. The term is intended to include
14 promoters, enhancers and suppressors.

15

16 By "functional equivalent" we mean any variation of the
17 expression control polynucleotide which exhibits
18 substantially the same functional properties of the
19 original polynucleotide.

20

21 By "derivative" we mean a modified version of the
22 expression control polynucleotide which exhibits
23 substantial sequence homology to the original
24 polynucleotide, for example which include nucleotide
25 substitutions which have no effect on biological
26 function.

27

28 By "part" we mean a deleted version of the expression
29 control polynucleotide, which comprises at least a
30 substantial portion of the original polynucleotide (for
31 example at least 50% of said polynucleotide).

32

33 The preferred type of expression control polynucleotide
34 is a promoter.

35

36 The invertase gene promoter is preferably derived from

1 a dicotyledon, such as potato.

2

3 The expression control polynucleotide of the invention
4 may comprise double- or single-stranded DNA or RNA.

5

6 The invention also provides the use of the expression
7 control polynucleotide described above to control
8 expression of heterologous sequences. Optionally the
9 expression control polynucleotide is used to drive
10 pollen cell-specific expression of protein-encoding
11 heterologous genes in plants eg monocotyledons or
12 dicotyledons. Use of the expression control
13 polynucleotide in this way in dicotyledons is
14 preferred.

15

16 The invention also provides a recombinant expression
17 control polynucleotide comprising at least a part of a
18 pollen cell-specific expression control polynucleotide
19 as described above. The recombinant expression control
20 polynucleotide of the invention is capable of specific
21 expression of a heterologous sequence in pollen cells.
22 The heterologous sequence expressed may encode a
23 protein. Alternatively RNA sequences which do not code
24 for protein (eg ribosomal RNA or anti-sense RNA) may
25 instead be transcribed from the heterologous sequence.

26

27 The invention also provides a polynucleotide having the
28 sequence set out in SEQ ID No 1, including derivatives,
29 functional equivalents or parts thereof. The preferred
30 polynucleotide is that shown in SEQ ID No 1 from
31 nucleotides 3144-5396 and more preferably from
32 nucleotides 3430-5349. The most preferred
33 polynucleotide is the promoter in the 3430-5349 bp
34 fragment.

35

36 A deposit of genetic material containing the

1 polynucleotide of SEQ ID No 1 was made at the National
2 Collection of Type Cultures on 7 February 1997 under No
3 NCTC 13013.

4

5 The present invention also provides a recombinant
6 nucleotide construct comprising an expression control
7 polynucleotide according to the invention operably
8 linked to a heterologous (preferably protein-encoding)
9 polynucleotide.

10

11 Thus, activation of the expression control
12 polynucleotide may drive the expression of the
13 heterologous polynucleotide, enabling production of the
14 encoded protein. Since the expression control
15 polynucleotide is tissue-specific, production of the
16 protein will be limited to those tissues where the
17 expression control polynucleotide is active.

18

19 The present invention also provides a recombinant
20 vector containing an expression control polynucleotide
21 or a recombinant nucleotide construct as defined above.

22

23 According to the present invention there is also
24 provided a method of producing a recombinant vector,
25 said method comprising ligating an expression control
26 polynucleotide as described above into a suitable
27 vector. A method of producing a transformed cell by
28 transfecting a host cell using said recombinant vector
29 forms another aspect of the invention. Suitable
30 vectors and genetic modifications thereof are well-
31 known in the art.

32

33 The present invention also provides a transformed host
34 cell containing a recombinant nucleotide construct or
35 vector as defined above.

36

1 The present invention also provides a transgenic
2 organism (for example a transgenic plant) containing a
3 recombinant nucleotide construct or a vector as defined
4 above. The progeny (and seeds) of such transgenic
5 organisms forms a further part of the invention.

6

7 The present invention also provides a method for
8 controlling the expression of a protein, said method
9 comprising operably linking a polynucleotide sequence
10 encoding said protein to an expression control
11 polynucleotide of the invention. The method is
12 especially useful for the expression of proteins in
13 pollen. Preferably the protein expressed leads to
14 sterility of the transformed plant.

15

16 Thus the invention also provides a method of
17 controlling the expression of a heterologous
18 polynucleotide in pollen, said method comprising
19 operably linking said heterologous polynucleotide to an
20 expression control polynucleotide of the invention.

21

22 In one embodiment the promoter for the invertase gene
23 of potato is expressed specifically in pollen to
24 activate expression of any DNA sequences in the pollen
25 of transgenic plants. Below we describe the isolation
26 and characterisation of this promoter and how it has
27 been used to express genes in pollen.

28

29 The present invention will now be further described
30 with reference to the Example and accompanying Figures
31 in which:

32

33 **Figure Legends**

34

35 **Figure 1.** Map of sequences detailed in text with
36 restriction enzymes used in their cloning.

1 **Figure 2.** whole anther from transgenic potato plant
2 stained for GUS activity (GUS activity
3 indicated by the dark areas).

4

5 **Figure 3.** cross-section of anther as in Figure. 2
6 showing staining in individual pollen grains
7 (pollen grains appear as dark spots).

8

9 **Figure 4.** RT-PCR analysis showing a product of 374 bp
10 indicating expression from the promoter in
11 (a) floral and bud tissue, and (b) in excised
12 anthers but not in the remainder of the
13 floral tissue.

14

15 **Example**

16 A potato (*Solanum tuberosum L.*) cv. Saturna genomic
17 library, consisting of a partial Sau3AI digest of
18 genomic DNA cloned into λ EMBL3, was plated to yield 1 \times
19 10^5 pfu which were screened with a radiolabelled carrot
20 invertase cDNA fragment generated by reverse
21 transcription-polymerase chain reaction (RT-PCR) using
22 primers derived from a sequence of carrot cDNA (Sturm
23 and Chrispeels, 1990).

24

25 The primers were:

26 Forward Primer: 5'-AACGATCCAAATGGACCA-3' (SEQ ID No 2)

27 Reverse Primer: 5'-GAAAAAATCAGGACATTCCCA-3' (SEQ ID
28 No 3).

29

30 Hybridisation conditions of 5 \times SSC at 65°C were
31 utilised with subsequent low stringency washing of
32 filters in 2 \times SSC at 65°C. After three rounds of
33 screening two positive clones were obtained plaque
34 pure. DNA was purified from one positive clone, λ GF5,
35 which was shown to contain an insert of approximately
36 23 kb of potato DNA. This cloned potato DNA was

1 digested with XbaI and SalI, and fragments cloned into
2 pUC19. One subclone, named pGF521, contained 5.4 kb of
3 the potato DNA. A complete DNA sequence of this
4 fragment is presented (SEQ ID No 1). It was
5 determined, by homology to known invertase gene
6 sequences, that the 5.4 kb of potato DNA (Figure 1)
7 carried sequence of two invertase genes with the
8 intergenic region constituting the promoter of the
9 downstream gene. A 2.25 kb HindIII-XbaI fragment (bp
10 3144-596; Figure 1) comprising the promoter, 3' end of
11 the upstream gene and 5' end of the downstream gene was
12 subcloned into pUC19 to yield plasmid pGF5211
13 (deposited as NCTC 13013). This fragment was also
14 cloned into pBI101.3 to give plasmid pRM11.2 which was
15 used as a vector for stable plant transformation. In
16 pRM11.2 the fragment is fused to the *uidA* gene from
17 *Escherichia coli* and when the promoter is active in
18 plants would drive the transcription of this gene to
19 produce the bacteria enzyme β -glucuronidase (GUS). An
20 internal AccI fragment of 1.9 kb (bp 3430-5349; Figure
21 1) derived from the 2.2 kb fragment was also cloned
22 into pBI101.3 to generate plasmid pRM12.3 which was
23 also used as a vector for stable plant transformation.
24 This fragment was also fused to the *uidA* gene to drive
25 β -glucuronidase synthesis when active.

26
27 A series of transgenic lines of potato (cv. Desiree)
28 plants were generated by *Agrobacterium tumefaciens*-
29 mediated transformation using pRM12.3 and pRM11.2 as a
30 vector. Plants derived from the use of pRM12.3 as a
31 vector were passed through one cycle of tuberisation
32 then grown in a controlled environment until flowering
33 occurred. The floral tissues including anthers,
34 sepals, petals and ovules were separately analysed by a
35 GUS histochemical assay performed at two pH values: pH
36 5 to assay for endogenous enzyme activity (the control)

1 and pH 7 to detect the activity derived from the *uidA*
2 gene activated by the invertase promoter. A strong blue
3 staining, detected only at pH 7 and thus indicative of
4 bacterial GUS derived from expression of *uidA* driven by
5 the invertase promoter, was observed only in pollen
6 cells (see dark areas of Figures 2 and 3) and in no
7 other tissues of the flower or elsewhere throughout the
8 plant, while in control untransformed plants only a
9 light background of blue staining was observed in
10 pollen cells. Prior to the GUS histochemical analysis
11 an analysis using RT-PCR to detect expression from the
12 native promoter driving its invertase gene had detected
13 expression only in floral and bud tissue with no
14 expression observed in source and sink leaf (Figure
15 4a), stem, root or tuber. A subsequent RT-PCR analysis
16 detected expression only in the pollen-containing
17 anthers and not elsewhere throughout the flower (Figure
18 4b). We conclude that the activity of this promoter is
19 restricted to pollen.

20

21 The recombinant DNA procedure utilised were as
22 described by Sambrook et al (1989). Plant tissue
23 culture and transformation protocols were as detailed
24 by Hedley (1995). Histochemical assay of GUS was
25 performed as indicated by Jefferson (1987).

26

27 The invention describes a promoter sequence
28 demonstrated to be active specifically in pollen of
29 *Solanum tuberosum*. This promoter is likely to be
30 active in pollen of other species of the Solanaceae, and
31 may be active in pollen of other plant species
32 including those in which the production of male sterile
33 plants for hybrid production is important eg
34 *Lycopersicon esculentum* and the Brassicaceae. It is a
35 unique sequence described with this activity in *Solanum*
36 *tuberosum*, and for other plants it provides an

10

1 alternative to the use of previously isolated
2 promoters. It has the advantage of its own
3 characteristic activity profile and when used in
4 heterologous species may escape problems such as gene
5 silencing, which can compromise the use of homologous
6 promoters. It has potential use in the genetic
7 engineering of male sterile plants and lines for the
8 restoration of fertility, for the production of
9 proteins in pollen which are toxic to insect and other
10 pests, or for the production of protein of enhanced
11 nutritional value in pollen.

12

1 **References**

- 2 Hedley (1995). PhD. Thesis, University of Dundee.
- 3 Jefferson (1987). Plant Molecular Biology Reporter 5,
4 387-405.
- 5 Sambrook et al. (1989). Molecular cloning A
6 Laboratory Manual. Second edition. Cold spring Harbor
7 Laboratory Press, Cold Spring Harbor, New York.
- 8 Sturn & Chrispeels (1990). The Plant Cell 2, 1107-
9 1119.

10

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: SCOTTISH CROP RESEARCH INSTITUTE
- (B) STREET: INVERGOWRIE
- (C) CITY: DUNDEE
- (E) COUNTRY: UK
- (F) POSTAL CODE (ZIP): DD2 5DA
- (G) TELEPHONE: 01382 562731
- (H) TELEFAX: 01382 562426

(ii) TITLE OF INVENTION: EXPRESSION CONTROL POLYNUCLEOTIDES

(iii) NUMBER OF SEQUENCES: 3

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10811 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Solanum tuberosum

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGCCTAGTT CGACCTGCAG TCAACGGATC TTTATAGCTA CATATATATA AGATTGATCA	60
TTCTTGATAA GCTGGACGTC AGTTGCCTAG AAATATCGAT GTATATATAT TCTAACTAGT	120
AAGAACTATT TTCAAAAATTA TGTATACATA CACACACATA CATAATTATG TGTTTCATTT	180
GTGTTAGTTA AAGTTTTAAT ACATATGTAT GTGTGTGTAT GTATTAATAC ACCAAGTAAA	240
CACAATCAAT TCTATTATTC AGTAGTCAGT ATTCATTTTT GAAATGTAAT TAATTAAAT	300
TTGTGTCTAA AGATAATAAG TCATCAGTCA TAAGTAAAAA CTTTACATTA ATTAAATTAA	360
AACACAGATA ATATTCTATT TTGGAGAACCA AAATCGCTCA TGATCAACAA TCGATGACTC	420
AATTTTTAAT TATAAGATAA AACCTCTTGT TTTAGCGAGT ACTAGTTGTT AGCTACTGAG	480
TTAAAAAATTA ATTTAAATTC GAAATTAGAT TAATTATTAT GGCAAGACAA TTACAAGGCT	540
AAGGTTTTGT TAAATTAAAG CTTTAATCTA ATTAATAATA CCGTTCTGTT AATGTTCCGA	600
TTCCAAAACG ATAAGAATGT GCAAAAGAGA AAAAGAAACA TGAAATATAT GAAAAAGTTC	660
TTTTAACCTC TATTCTTACA CGTTTCTCT TTTTCTTGT ACTTTATATA CTCCCCAAG	720
AAAATTGGAA AGATTTGGC CATGGAATTA AGGTGAAAT TAATTGTTG GAGGCACCCCT	780

TTATATTCT TCTAAAACCG GTACCTTAAT TCCACTTTA ATTAAACAAC CTCCGTGGGA	840
AATATAAGGC CTTGGCATT TCTTCTCCCT TATATTTTT CCTTCTAAAT TATTATTATT	900
ATTTTATTG GAACCGTAAA AGAACGGGA ATATAAAAAA GGAAGATTAA ATAATAATAA	960
TAAAAATAAA TTATTATTAT TATTATTAAG TGTTGAAATA TAGTGACATT TCATACATAC	1020
TCACATATT AATAATAATA ATAATAATTC ACAACTTTAT ATCACTGTAA AGTATGTATG	1080
AGTGTATAAG TGTACATT TAATGTAGGT CTTATATTAA TTAAAACCTG CCAAACATAT	1140
TGTCTCTTAC ACATGTAAAT TATACATCCA GAATATAATT AATTTGAAAC GGTTGTATA	1200
ACAGAGAATT AAAGTTGGCT CCCCCAACCC CCAACCTCAC CCCACCCCAA AAAAAATTAC	1260
TTCATCAATA TTTCAACCGA GGGGGTTGGG GGTTGGAGTG GGGTGGGATT TTTTTAATG	1320
AAGTAGTTAT TCGTTTTTC ATGTGACACA ATTTCTTAT TTAATTGTT ATCTAAAGAA	1380
TGACTATTAA AGCAAAAAAG TACACTGTGT TAAAAGAATA AATTAAACAA TAGATTCTT	1440
ACTGATAAAT ATATATTAA ACCTGTACTT ATCATTCTAC ATGATATATA TATATATATA	1500
TATATATATA TATATAAATT TGGACATGAA TAGTAAGATG TACTATATAT ATATATATAT	1560
ATATATATAA TGTATATATA TGTGTGTGTG TGTGTTATA GTCACAATAA ATCTCATGAT	1620
ATGTTTCAGT ACATATATAT ACACACACAC ACAAAATAT CAGTGTATT TAGAGTACTA	1680
TACAAAGTCA TCATAATTAA CAAATATTAA TTACTTTATT TTTAAATTAA CGTATTAAAT	1740
CAAATTACGT AGTATTAAGA GTTTATTAAGA AATGAAATAA AAAATTAAT GCATAATTAA	1800
GTTTAATGCC CATATAAATT AAAATGATTC AACTAATTAG TCATTTTGT ATTCCTACA	1860
TTTCTGTGTG GTATATTAA TTTTACTAAG TTGATTAATC AGTAAAACA TAAAGGATGT	1920
AAAGACACAT CACCTTGAT TTGTTAATTA TTATAGTATT TGATTATTTC TTAATCATTG	1980
ATTAATTATA GTGGAAACTA AACAAATTAA AATATCATAA ACTAATAAAG AATTAGTAAC	2040
TAATTAATAG TAATGCTTTC TATTGTCTTC ACTAATCATT TCTTTTTAA AAATTCTTT	2100
GTTCTTATAC ATTACGAAAG ATAACAGAAG TGATTAGTAA AGAAAAAAAT TTTAAGAAAA	2160
CAAGAATATT GGTCTCTCTT CATTGGATAC CTTTCAAATA TACAAAGACC CTAATGGTGA	2220
GTTAGATTAA CCAGAGAGAA GTAACCTATG GAAAGTTAT ATGTTCTGG GATTACCACT	2280
CAATCTAATA TTTTTTTAT TTATTCTTCC TAAATAAACT ATATATACAC ACAACTTGTC	2340
AATAACTCAT AAAAAAAATA AATAAGAAGG ATTATTTGA TATATATGTG TGTGAACAG	2400
TTATTGAGTA TTATATTATT GACTATCATT TTATTTTCA ACAGCACCAA TGTATTATAA	2460
TGGAGTATAT AATATAATAA CTGATAGTAA AATAAAAAGT TGTCGTGGTT ACATAATATT	2520
ACCTCATATT CATTATTCT ATCAATACAA TCCAAAAGGA TCAGTATGGG GCAATATTGT	2580
TTGGGCTCAA GTAAATAAGA TAGTTATGTT AGGTTTCCT AGTCATACCC CGTTATAACA	2640
AACCCGAGTT TCAGTCTCAA AAGACTTGAT AAATTGGATC CATTAGAAC CCGCAATTAA	2700
TCCATCTAAA AGTCAGAGTT TTCTGAACTA TTTAACCTAG GTAAATCTG GGC GTTAAAT	2760

14

AGGTAGATTA AAATTTGACA AATATGGTGC TTGGTCCGGG TCAGCAACTA TTCTACCAAA	2820
TAACAAGCCT TTTAAACTGT TTATACCACG AACCAAGGCC AGTCGTTGAT AAGATGGTTT	2880
ATTGTTCGGC GTTATCTTAT ACACCGGAGT AGTAGATTCC CATGATTCTC AAGTTCAAAA	2940
TTATGCAATG CAATAGAATA TGTGGCCTCA TCATCTAAGG GTACTAAGAG TTCAAGTTTT	3000
AATACTTAC CCGGCTAACT TGTCTGATCC ATTTCTTCGT AAATGGATCA AACCTAATAA	3060
CAACCCGTTG GGCCGATTGA ACAGACTAGG TAAAGAAGCA TTTACCTAGT TTGGATTATT	3120
GTTGGGCAAG ATTGTACCTG ACAATAGCAT CAACAAAACC AAATTCGTG ATCCAACAAC	3180
CGCATGGATC TAACATGGAC TGTTATCGTA GTTGTGTTGG TTTAAAGCAC TAGGTTGTTG	3240
GCGTACCTAG GGCCAAGATG GGCTTTGGAG AATTGTAATA GGAAGTATGA GAAAACATAG	3300
AGGGATGGCC CCGGTTCTAC CCGAACCTC TTAACATTAT CCTTCATACT CTTTGTATC	3360
TCCCTACCGA TTATTGTATA GAAGTAGAGA CTTCATTAAA TGGGCCAAAG CCCAACATCC	3420
ACTTCATTCT AATAACATAT CTTCATCTCT GAAGTAATT ACCCGGTTTC GGGTTGTTAGG	3480
TGAAGTAAGA TCTCCTCATA CTGGAAATTG GGAATGTCCT GATTTTTTC CTGTATCATT	3540
AAAAAAACT AGAGGAGTAT GACCTTAAAC CCTTACAGGA CTAAAAAAAG GACATAGTAA	3600
TTTTTTATGA AATGGCTTAG ATGCATCGTA TCGCGAAAA AATGTCAAAT ATGTCCTTAA	3660
GAATAGCCTT TTACCGAAC TACGTAGCAT AGGCCTTTTT TTACAGTTA TACAGGAATT	3720
CTTATCGGAT GATGTTAATA GTTGTGAGTA TTACACTATT GGATGTATG ACACCAAAAA	3780
AGATAGGTAA CTACAATTAT CCAAACTCAT AATGTGATAA CCATACATAC TGTGGTTTT	3840
TCTATCCATC ATTCCGTATA ACAATTCTAT CGATGGTTG AAGGGATTGA GGCTTGACTA	3900
TGGGAATTG TAAGGACTAT TGTAAAGATA GCTACCAAGC TTCCCTAACT CCGAACTGAT	3960
ACCCCTAAAC TATGCATCTA AATCATTCTA TGACCCATG AAGAATCGAA GAATTGTATG	4020
GGGTTGGACG ATACGTAGAT TTAGTAAGAT ACTGGGATAC TTCTTAGCTT CTTAACATAC	4080
CCCAACCTGA AATGAATCAG ATGTTTACC TGACGATGAA ATTAAGAAAG GATGGCTGG	4140
AATTCAAGCT TTACTTAGTC TACAAATGG ACTGCTACTT TAATTCTTTC CTACCCGACC	4200
TTAAGTCGT ATTCCCGTAA AAGTATGGCT CGACCCTAGT GGTAAACAAC TGATTCAATG	4260
GCCTATTGAA TAAGGCGCAT TTCATACCGA GCTGGGATCA CCATTTGTTG ACTAAGTTAC	4320
CGGATAACTA GAATTAGAAA CATTAAGAAA GCAAAAGATT ATTCAATTGA ACAACAAGAA	4380
GTTGAGCAAT CTTAACCTTT GTAATTCTTT CGTTTCTAA TAAGTTAACT TGTGTTCTT	4440
CAAATCGTTG GGAGAAATGT TTGAAGTTAA AGGAATCTCA GCATCACAGG TTTTAACCTT	4500
TCCTTATTAC CCTCTTTACA AACTTCATT TCCTTAGAGT CGTAGTGTCC AAAATTGAAA	4560
AGGAATAATA ACTATAGTCT TTTAAATATC ACAACAAAAA GTAATTAA TTAGTATACA	4620
ATGTATAATT TGATATCAGA AAATTTATAG TGTGTTTTT CATTAAAATT AATCATATGT	4680
TACATATTAC AATGTATAAC TATTATATCA ATTGCATATG ATAGGTCTAT ATATAGTACA	4740
TTAATTATTG TTACATATTG ATAATATAGT TAACGTATAC TATCCAGATA TATATCATCT	4800

AATTAATAAT ATTCACTTGT TATATGTATA TCGGTGATAA TTATAAATTG TTGCAATTGA	4860
ACGAGTGAAA TAAGTGAACA ATATACATAT AGCCACTATT AATATTTAAC AACGTTAACT	4920
TGCTCACTTA TATTGGT TAGTCGGAA AAAAATTGA CTAGGGCTAG GGCTAAATAA	4980
ACTTGTGCGT ATAAAAACCA ATCAGCCCTT TTTTAAACT GATCCCGATC CCGATTTATT	5040
TGAACACGCT TAGCTTCTTC TCATCTTACA TTTCTTGGT TGCAAGCTGA TATTGAAGTG	5100
TCGTTCTCTA ATCGAAGAAG AGTAGAATGT AAAGAAACCA ACGTCCGACT ATAACCTCAC	5160
AGCAAGAGAT TTTCAAGTTT GAACAAGGCC GAACAATTG ATCCTAAATG GGCGACCTT	5220
TATGCCAAA AAAGTTCAAA CTTGTTCCGG CTTGTTAAC TAGGATTAC CCGGCTGGAA	5280
ATACGGGTTG ATGTTGTGC CATAAAGGGT TCGACTATCC AAGGTGGGCT TGGACCATT	5340
GGGCTTGTGC TACAAACACG GTATTTCCA AGCTGATAGG TTCCACCCGA ACCTGGTAAA	5400
CCCGAACACA CATTAGCTTC TAAAAACTTG GAAGAATACA CACCTGTTT CTTTCGAGTG	5460
TTTAAGGCTT GTAATCGAAG ATTTTGAAAC CTTCTTATGT GTGGACAAAA GAAAGCTCAC	5520
AAATTCCGAC AAAAGAATTA TAAGGTTCTC ATGTGCTCAG ATGCTAGAAG GTTTGTTCT	5580
TCAATTGAAG TTTTCTTAAT ATTCCAAGAG TACACGAGTC TACGATCTTC CAAACAAAGA	5640
AGTTAACCTT TAGTTGTAAT GATCATAGTT TACATAGTT ACTCAATATA GGAGCACAAA	5700
ATTTGAGTAA ATCAACATTA CTAGTATCAA ATGTATCAAT TGAGTTATAT CCTCGTGT	5760
TAAACTCATA ATCAAGAATT ATAATGACCC GACTTGATA TCATGATAAG AAATACATCT	5820
ACTTATCGAT TAGTTCTAA TATTACTGGG CTGAAACTAT AGTACTATTC TTTATGTAGA	5880
TGAATAGCTT TGTTTATTAG TGTCATTAAC AAACCTCAAC CTTGTTAGT TTCTTTATTA	5940
ATGAGCAGAA ACAAAATAATC ACAGTAATTT TTTGAGATTG GAACAAATCA AAGAAATAAT	6000
TACTCGTCTT CTACCATGAG ACAAAATGAA GCAATGTACA AGCCCTCATT TGCTGGATAT	6060
GTAGATGTAA GATGGTACTC TGTTTACTT CGTTACATGT TCGGGAGTAA ACGACCTATA	6120
CATCTACATG ATTTAGTAGA CACGAAGAAG TTATCTTTA GGAGTTGGT AAGTTGCTT	6180
TCATCATTTC TAAATCATCT GTGCTCTTC AATAGAGAAT CCTCAAACCA TTCAAACGAA	6240
AGTAGTAAAT TTATTTTTT TATAATTAT TTGATCAAGC TTTAAGATT GCATTATTTT	6300
GAAGAGTAA AAATAAAAAA ATATTAATAA AACTAGTTCG AAAATTCTAA CGTAATAAAA	6360
CTTCTCATTC GATTGTGTT TGACTAATCA GTTTGTATCA TATGTATATT TTTCAGATTG	6420
ATAACTCAGG CTAACACAA ACTGATTAGT CAAACATAGT ATACATATAA AAAGTCTAAC	6480
TATTGAGTCT AGTGGAGAGT TTTGGTGCTG GTGGAAAAAC ATGCATAACA TCGAGGGTGT	6540
ATCCAACGTA TCACCTCTCA AAACCACGAC CACCTTTTG TACGTATTGT AGCTCCCACA	6600
TAGGTTGCAT AGCGATTATCATAAATGCAC ATTATTTGT CTTCAATAAT GGATCTGAGA	6660
CAATCACAAA TCGCTAAGTA TTATTACGTG TAAATAAACAA GAAGTTATTA CCTAGACTCT	6720
GTTAGTGTGTT TGAGACTCTT AATGCTTGGGA GCATGGATGT ACCTAAGATG CACTAAATAT	6780

16

TTTTTTTAA ACTCTGAGAA TTACGAACCT CGTACCTACA TGGATTCTAC GTGATTTATA	6840
AAAAAAAATA AAAGGAATTA TGTCTACAAAC CATATATGTC TAAAGAGACA AAAATTGTGT	6900
CAAATTTAAT TTTCCCTTAAT ACAGATGTTG GTATATACAG ATTTCTCTGT TTTAACACA	6960
GTTTAAATTC AGTAGATGAT GTCCTCAAGA ATCCTCTATA ATTGTCTCTT AATTATTTT	7020
GGTGAATTTG TCATCTACTA CAGGAGTTCT TAGGAGATAT TAACAGAGAA TTAAATAAAAA	7080
CCACTTAAA GAAGGCAAAG AGTGTGTATA TGGCTTGTCT AGTACCATAT ATATACTAAG	7140
AAAGAAATTT CTTCCGTTTC TCACACATAT ACCGAACAGA TCATGGTATA TATATGATT	7200
TTTCTTTAAT GTTAGCTTTC CTTTTTGTTT TGTTACACAA TCAAATGTGT GGTCTTATGT	7260
AGAACTAATA CAATCGAAAG GAAAAACAAA ACAATGTGTT AGTTTACACA CCAGAATACA	7320
TCTTGATTAA TTTGGTAATA TTAGGCAAGT TGTTATGTGA CTTATTTTAT TCAAATATAA	7380
TAAGAAGTTT AAACCATTAT AATCCGTTCA ACAATACACT GAATAAAATA AGTTTATATT	7440
ATTCTTCAAC AAAGAGAAGA GTACAAGTAA GTAGAGGCAG ATTCAAGGATT TGAAGAGTTT	7500
GGGTGCATCG TTTCTCTTCT CATGTTCATT CATCTCCGCT TAAGTCCTAA ACTTCTCAA	7560
CCCACGTAGA ATATTATTTT AATTAAAGCA TTAGTAAAAA TATTAATGAC GGCTAACGAA	7620
TAATGTCATT TATAATAAA TTAAATTCTGT AATCATTTT ATAATTACTG CCGATTGCTT	7680
ATTACAGTAA TTTAATAGCA AATAAACTCT TTAACTTGTA ATAAAATGAG TAAAAAATGG	7740
GTTGTTGGCT AAATTATCGT TTATTTGAGA AATTGAACAT TATTTTACTC ATTTTTTACC	7800
CAACAACCGC GAAATCGACT CTAGGTCGTA GGGGTGGACT CCCTTACTTC CAACAACGTA	7860
CTAGATCAAG CTTTAGCTGA GATCCAGCAT CCCCCACCTGA GGGAAATGAAG GTTGTGCGAT	7920
GATCTAGTTT GCCTTCTAAA GGTGCACTCT TTTTTATATT CTCTATTTT ACTAGTTCT	7980
CAAGATACTA CGGAAGATTT CCACGTGAGA AAAAATATAA GAGATAAAAA TGATCAAAGA	8040
GTTCTATGAT GTAGATCCGC CTCTGCAAGT AAGCGGAAGG ACAAAATTTT ACCTTACTAA	8100
CTCTATTGAA CATCTAGGCG GAGACGTTCA TTCGCCCTCC TGTTAAAAA TGGAATGATT	8160
GAGATAACTG GCACCAAATC CCTATTAAACA AGCATAAAAA TATGAGAAGA CGAAAGAACT	8220
AAGTAAGTTC CGTGGTTAG GGATAATTGT TCGTACTTTT ATACTCTTCT GCTTTCTTGA	8280
TTCATTCAA TAATTATTGT ATAATTATA ACACACTCTA GGATAATATT ACAAAATAAGA	8340
ATAGTGAATT ATTAATAACA TATTAATAT TGTGTGAGAT CCTATTATAA TGTTTATTCT	8400
TATCACTAA CTTAATTAAT GACGAACAT AAAAGCAAAG AAGGAAGAGG AGTGATGAGC	8460
CTCGGAAAAT GAATTAATTA CTGCTTGATA TTTTCGTTTC TTCCTTCTCC TCACTACTCG	8520
GAGCCTTTA AAAAATCACA AATGAATAAA GATGGCTAAA ATAGAGTAAC TTGATGAAGT	8580
TGATACTTCT TTTTTAGTGT TTACTTATTT CTACCGATTT TATCTCATTG AACTACTTCA	8640
ACTATGAAGC ATTCTATAATC AAATCTGTTC AAAAACACTT GATAGTTAAT TTTTAATTTT	8700
AAGAGATGCG TAAGTATTAG TTTAGACAAG TTTTTGTGAA CTATCAATTA AAAATAAAAA	8760
TTCTCTACGA CAATATCGTT TCTTACTATT CTTTAGGGC TTTTCGCCCT AGGGATATAG	8820

TATATATGAT GTTATAGCAA AGAATGATAA GAAAATCCCG AAAAGCGGGGA TCCCTATATC	8880
ATATATAC TC CAAATTCAC GCCATATATA AATAATGTGG AAAAAACTTA TAATTTCAA	8940
GGTAACAAGG GTTAAAGTG CGGTATATAT TTATTACACC TTTTTGAAT ATTAAAAGTT	9000
CCATTGTTCA AATCATATTT TTGTTACGCC TTCGTGGAGA CTACTTCCTC AATCGTAACA	9060
AAGAACAACT TTAGTATAAA AACAAATGCAG AAGCACCTCT GATGAAGGAG TTAGCATTGT	9120
TTCTTGTGA TTTCAAGTGG CGACTCAAAA AAGTCGCCAC GACCGGTGAT AACCTTTGT	9180
GGCGATTATT AAAGTCACC GCTGAGTTT TTCAGCGGTG CTGGCCACTA TTGGAAAACA	9240
CCGCTAATAA TTTAGTCGCC ACTAAACATT ATTTGTGATC ATATTTCTT TTCTTTCA	9300
TTTTTATTAA AAATCAGCGG TGATTGTAA TAAACACTAG TATAAAAGAA AAGAAAAAGT	9360
AAAAAAATAAT AAGGTCAAAT TTACCCCTT ATCTTATTAA TGTAATTGG AAAATCCAA	9420
ATTTTGCATA TTCCAGTTA AATGGGGAAA TAGAATAAT ACATTTAACC TTTTAGGGTT	9480
TAAAACGTAT ATTTTCGAA TTCTTTTT TTTAACACAC TCAAAAGTCA AAACATTAAA	9540
GAACGGAATA TAAAAGCTT AAGGAAAAAA AAATTGTGTG AGTTTCAGT TTTGTAATT	9600
CTTGCCCTAA GCAAATTAAA TGGCAAAAGA CTTGTTCTAA CAAAAAATTA TTAGTAAAAC	9660
AGACTCATGT CGTTAATT ACCGTTTCT GAACAAGATT GTTTTTAAT AATCATTTC	9720
TCTGAGTACA AATGTAACAA TAACCAACAA ATTATCCAA ATTTAGATA AATATTATCC	9780
AAACAAATAT TTACATTGTT ATTGGTTGTT TAATAGGTT TAAAATCTAT TTATAATAGG	9840
TTTGTAAATA TAAATAATCA TCCAATCCAT TTAATTATT TTTAAAAAAA ATCCTAAATT	9900
AACTCTCCAT TTTTATTAGT AGGTTAGGTA AATTAATAA AAATTTTT TAGGATTAA	9960
TTGAGAGGTT CTTTCACTCA AAAACAAACT CTACCCATT TTTTCACTAT AAATACTCTT	10020
CATAATTAA GAAAGTGAGT TTTGTTGA GATGGTAAA AAAAGTGATA TTTATGAGAA	10080
GTATTAAAAC ATTTATTCTT CATTCCCAAG TTTCTTCTC CCTATCCAA AAAAATAAAA	10140
AAAAATTATG TAAATAAGAA GTAAGGGTTC AAAGAAAGAG GGATAGGTT TTTTTATT	10200
TTTTAATAT TAGATTAAATT ACCACTATCT GTCAAAGCCC AATTATTGAA AAAAAMAAAA	10260
CTATGGATTA ATCTAATTAA TGGTGATAGA CAGTTCGGG TTAATAACTT TTTTTTTTT	10320
GATACCTAAA TTCATCTAAT TCTCGTTGGG CTTGCCAGT TATCTTAGTT TGCTTTTTA	10380
TAGTTTATT AAGTAGATTA AGAGCAACCC GAAACGGTCA ATAGAATCAA ACGAAAAAT	10440
ATCAAAATAT ATCCAATAAT GTTGTGTTTG CTTCTCACAA AGTTTTATT CATTGCAAT	10500
CTCAAAATGA TAGGTTATTAA CAACAAAAAC GAAGAGTGT TCAAAATAA GTAAACGTAA	10560
GAGTTTACG TGAAATGTT CAAACTGTT ATAGAACTGG TTACCATTTT CAGCCAGAAA	10620
AACATTGGAG ACATTTACAA GTTGACAAG TATCTTGACC AATGGTAAA GTCGGTCTTT	10680
TTGTAACCTT CAATGGTATG TATACGCGCT TTTTCGCGTT TTTTCTTCTT TATATATGTG	10740
TCAAAAAAAA GTTACCATAC ATATGCGCGA AAAAGCGCAA AAAAGAAGAA ATATATACAC	10800

18

AGTTTTTTTT A

10811

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Forward primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

AACGATCCAA ATGGACCA

18

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Reverse primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GAAAAAAATCA GGACATTCCC A

21

1 **Claims**

2

3 1. A pollen cell-specific expression control
4 polynucleotide of an invertase gene, or a
5 derivative, functional equivalent or part of said
6 expression control polynucleotide.

7

8 2. An expression control polynucleotide as claimed in
9 Claim 1 which is a promoter.

10

11 3. An expression control polynucleotide as claimed in
12 either one of Claims 1 and 2 which comprises a
13 sequence substantially as set out in SEQ ID No 1
14 or as present in NCTC Deposit No 13013, or a
15 functional equivalent or part thereof.

16

17 4. An expression control polynucleotide as claimed in
18 Claim 3 which comprises the sequence of
19 nucleotides 3430-5349 of SEQ ID No 1.

20

21 5. A recombinant expression control polynucleotide
22 comprising at least a part of a polynucleotide as
23 claimed in any one of Claims 1 to 4.

24

25 6. A recombinant nucleotide construct which comprises
26 an expression control polynucleotide as claimed in
27 any one of Claims 1 to 5 operably linked to a
28 heterologous polynucleotide.

29

30 7. A construct as claimed in Claim 6 which is in the
31 form of a vector.

32

33 8. A construct as claimed in either one of Claims 6
34 and 7 wherein said heterologous polynucleotide
35 encodes a protein.

36

20

- 1 9. A host cell transformed with a construct as
- 2 claimed in any one of Claims 6 to 8.
- 3
- 4 10. A transgenic organism transformed with a construct
- 5 as claimed in any one of Claims 6 to 8.
- 6
- 7 11. An organism as claimed in Claim 10 which is a
- 8 plant.
- 9
- 10 12. An organism as claimed in Claim 11 wherein said
- 11 expression control polynucleotide is pollen cell-
- 12 specific and the heterologous polynucleotide
- 13 operably linked thereto encodes for a protein
- 14 which causes male sterility of said plant.
- 15
- 16

1 / 4

Fig. 1

2 / 4

Fig. 2

3 / 4

Fig. 3

4 / 4

Fig. 4a

Fig. 4b

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/GB 98/00833

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C12N15/82 C12N15/56 A01H5/00

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	XU J ET AL: "A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: Evidence from a maize invertase gene family." PLANT CELL 8 (7). 1996. 1209-1220. ISSN: 1040-4651, XP002071291 see page 1213, left-hand column, line 11 - line 19 --- MASCARENHAS, J.P.: "Gene activity during pollen development" ANN. REV. PLANT PHYSIOL. PLANT MOL. BIOL, vol. 41, 1990, pages 317-338, XP002071292 see page 329, paragraph 3 - page 331 ---	1,2,5-11
Y	---	1,2,5-11

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

13 July 1998

27/07/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Maddox, A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 98/00833

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>MEYER R ET AL: "Promoter deletion analysis of potato invertase gene expression."</p> <p>ANNUAL MEETING OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY, SWANSEA, WALES, UK, APRIL 11-15, 1994. JOURNAL OF EXPERIMENTAL BOTANY 45 (SUPPL.). 1994. 6. ISSN: 0022-0957, XP002071293 see abstract P2.4</p> <p>---</p>	1-12
A	<p>HEDLEY, P.E., ET AL.: "cDNA cloning and expression of a potato (<i>Solanum tuberosum</i>) invertase"</p> <p>PLANT MOLECULAR BIOLOGY, vol. 22, 1993, pages 917-922, XP002071294 see the whole document</p> <p>---</p>	3,4
A	<p>LORENZ, K., ET AL.: "Structural organization and differential expression of carrot beta-fructofuranosidase genes: identification of a gene coding for a flower bud-specific isozyme"</p> <p>PLANT MOLECULAR BIOLOGY, vol. 28, 1995, pages 189-194, XP002071295 see the whole document</p> <p>& LORENZ, K., ET AL.: "D.carota (Queen Anne's Lace) Inv*Dc2 gene 3432bp" EMBL SEQUENCE DATABASE, ACCESSION NO. X78424, 25 March 1994, see the whole document</p> <p>& STURM A.: "D.carota (Queen Anne's Lace) Inv*Dc1 gene" EMBL SEQUENCE DATABASE, ACCESSION NO. X69321, 23 November 1992, see the whole document</p> <p>---</p>	3,4
A	<p>HEDLEY, P.E., ET AL.: "Potato (<i>Solanum tuberosum</i>) invertase-encoding cDNAs and their differential expression"</p> <p>GENE, vol. 145, 1994, pages 211-214, XP002071296 see figure 1</p> <p>---</p> <p style="text-align: right;">-/--</p>	3,4

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 98/00833

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	ALLEN, R.L., ET AL.: "Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development" THE PLANT JOURNAL, vol. 3, no. 2, 1993, pages 261-271, XP002071297 see the whole document ---	10-12
A	WO 94 01572 A (PIONEER HI BRED INT) 20 January 1994 see page 31 ---	12
A	RAMLOCH-LORENZ, K., E AL.: "Molecular characterization of the gene for carrot cell wall beta-fructosidase" THE PLANT JOURNAL, vol. 4, no. 3, 1993, pages 545-554, XP002071298 see the whole document -----	1-12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 98/00833

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9401572	A	20-01-1994	AT 147434 T	15-01-1997
			AU 669384 B	06-06-1996
			AU 4769693 A	31-01-1994
			DE 69307320 D	20-02-1997
			DE 69307320 T	07-08-1997
			DK 651814 T	30-06-1997
			EP 0651814 A	10-05-1995
			ES 2099968 T	01-06-1997
			JP 8501684 T	27-02-1996
			MX 9304114 A	31-05-1994
			NZ 255026 A	26-04-1996
			US 5412085 A	02-05-1995
			US 5545546 A	13-08-1996