Data Mining & Machine Learning

CS37300 Purdue University

Oct 4, 2023

Ensemble methods

Boosting

- Main assumption
 - Combining many *weak* (but stable) predictors in an ensemble produces a *strong* predictor (i.e., <u>reduces bias</u>)
 - Weak predictor: only weakly predicts correct class of instances (e.g., tree stumps)
- Model space: non-parametric, can model any function if an appropriate base model is used

Boosting

TREATMENT OF INPUT DATA

reweight examples CHOICE OF BASE CLASSIFIER

weak predictore.g., decisionstump

PREDICTION AGGREGATION

weighted vote

Adaboost Algorithm

- Takes training data (x_i, y_i) (y 1 or 1), weights w_i
 - Initialize weights w_i to 1/n
- For m=1..M
 - Learn classifier f_m
 - $Error_m = \sum_{i=1}^n w_i^m \mathbf{I} \{ f_{m(x_i)} \neq y_i \}$
 - Computer classifier coefficient $\alpha_m = \frac{1}{2} \log \frac{1 Error_m}{Error_m}$
 - Update weights $w_i^{m+1} = \frac{w_i^m \exp(-\alpha_m y_i f_m(x_i))}{\sum_{j=1}^n w_j^m \exp(-\alpha_m y_i f_m(x_i))}$
- Final classifier $f^*(x) = \operatorname{sign}(\sum_{m=1}^{M} \alpha_m f_m(x))$

Boosting Caveats

- While theoretically sound, Adaboost not that robust to noisy labels
 - Weights of mislabeled data grow until classifier fits the noise
- Must use weak classifiers
 - Otherwise easily overfits training data

Random Forests

- Problem: Decision Trees prone to overfitting
- Solution: Decision tree on fewer features
- Ensemble idea
 - Randomly select subsets of features
 - Choose best candidate split from just within subset
- Algorithm the same as standard decision tree, except instead of applying information gain / gini index / ..., first randomly select subset, then apply
 - All features (except the one use) passed to the next level

Ensemble summary

- Two approaches for Ensemble learning:
 - Boosting reduce bias
 - Bagging reduce variance
- Applicable in different situations

Interactive Machine Learning

Classical Machine Learning

• Source: Interactive Machine Learning. Fails and Olsen.

Interactive Machine Learning

- Source: Interactive Machine Learning. Fails and Olsen.
- Goal: Create systems that allows quick feedback and quick training

Side by Side comparison

- Classical setting
 - "Offline" training, time taken not very important
 - Limited training data
 - Feature selection and engineering
 - Systems components: Build ML pipeline, no User Interface (UI)
 - Explicit corrections for Bias/Variance

- Interactive setting
 - "online" training, needs to be done within seconds
 - Can have unlimited training loops
 - Limited focus on feature engineering
 - Ul as important as machine learning model itself
 - Bias/Variance to be handled by the designer

Model choices for IML

- Neural Networks (too slow)
- K-NN (curse of dimensionality, especially for high-dimensional image datasets; too slow in classification)
- Boosted stumps (too slow)
- Decision trees: Fast re-training and classification, flexible modifications that help with speed of training and classification

Example

Active Learning

- Limited number of labels, several un-labelled examples available
- "Interaction" with a human involves the model <u>selectively</u> asking for additional labels
- Transductive Settings