Erstellen von KV-Diagrammen

öffentlich verfügbar am 6.12.2021 auf: https://schuelerunterlagen.de/wp-content/uploads/2017/11/Erstellen-von-KV-Diagrammen.pdf

Eine Eingangsvariable

Es wird für jede Zeile der Funktionstabelle ein Kästchen aufgezeichnet. Die Zuordnung muss dabei wie nachfolgend abgebildet erfolgen.

Die unten grün eingetragene Beschriftung gibt an, dass das Kästchen darunter mit der Zeile der Funktionstabelle korrespondiert in welcher E1 den Wert "1" hat.

Eine Eingangsvariable

Üblicherweise wird über die Kästchen nur die Beschriftung für die "1"-Werte der Eingangsvariablen angeschrieben.

Um jedoch den Einstieg zu erleichtern werden in dieser Einführung auch die negierten Eingangsvariablen – in rot – angeschrieben.

Eine Eingangsvariable

Ein KV-Diagramm kann jeweils nur für eine Ausgangsvariable erstellt werden. Sollten in der Funktionstabelle mehrere Ausgangsvariable stehen, so muss für jede dieser Ausgangsvariablen ein eigenes KV-Diagramm erstellt werden.

Zeile	E2	E1	Α
00	0	0	
01	0	1	
02	1	0	
03	1	1	

Um das KV-Diagramm auf zwei Eingangsvariable zu erweitern wird das Diagramm von einer Eingangsvariable an einer horizontalen Achse gespiegelt.

Der bereits bestehende Teil repräsentiert nun die negierte neue Variable E2.

Die durch die Spieglung neu hinzugekommenen Kästchen repräsentieren die nicht negierte neue Variable E2.

Zeile	E2	E1	A	Zwei Eingangsvariable
00	0	0	0	Auch hier werden die "1"-Signale des Ausgangssignals in die
01	0	1	1	korrespondierenden Kästchen eingetragen.
02	1	0	1	
03	1	1	0	
				E2 00 1 Spiegelachse

Zeile	E3	E2	E1	A
00	0	0	0	
01	0	0	1	
02	0	1	0	
03	0	1	1	
04	1	0	0	
05	1	0	1	
06	1	1	0	
07	1	1	1	

Um das KV-Diagramm um eine Variable zu erweitern erfolgt jeweils eine erneute Spiegelung.

Dabei wechseln sich horizontale Spiegelachsen (Erweiterung von einer auf zwei Eingangsvariablen) stets mit vertikalen Spiegelachsen (Erweiterung von zwei auf drei Eingangsvariablen) ab.

Zeile	E3	E2	E1	Α
00	0	0	0	
01	0	0	1	
02	0	1	0	
03	0	1	1	
04	1	0	0	
05	1	0	1	
06	1	1	0	
07	1	1	1	

Man erkennt, dass die aufsteigende Nummerierung der Kästchen durch die Spiegelung vorgegeben wird.

Ein Kästchen mit niedriger Ziffer im ursprünglichen Bereich des KV-Diagramms entspricht einem Kästchen mit niedriger Ziffer im gespiegelten Bereich des KV-Diagramms.

Zeile	E3	E2	E1	A
00	0	0	0	
01	0	0	1	
02	0	1	0	
03	0	1	1	
04	1	0	0	
05	1	0	1	
06	1	1	0	
07	1	1	1	

Wie mit den Nummerierungen der Kästchen verhält es sich auch mit den bisherigen Variablen.

Die zweite Spalte repräsentiert bisher die nicht negierte Variable E1. Diese Spalte wird durch die Spiegelung auf die dritte Spalte abgebildet. Folgerichtig repräsentiert die dritte Spalte auch E1. Analog dazu wird die erste auf die vierte Spalte abgebildet.

Zeile	E3	E2	E1	A
00	0	0	0	
01	0	0	1	
02	0	1	0	
03	0	1	1	
04	1	0	0	
05	1	0	1	
06	1	1	0	
07	1	1	1	

Wie bereits bei der Erweiterung von einer auf zwei Eingangsvariable entspricht der bisherige Bereich des KV-Diagramms der negierten neuen Variablen E3, während der neue Teil des Diagramms die nicht negierte Eingangsvariable E3 repräsentiert.

Zeile	E3	E2	E1	A
00	0	0	0	
01	0	0	1	1
02	0	1	0	
03	0	1	1	
04	1	0	0	
05	1	0	1	
06	1	1	0	
07	1	1	1	

Weist die Ausgangsvariable nun beispielsweise in der Zeile 01 den Wert "1" auf, so muss im KV-Diagramm der Bereich gesucht werden in welchem:

- (1) Variable E3 nicht vorhanden ist
- (2) Variable E2 nicht vorhanden ist
- (3) und Variable E1 vorhanden ist
- → In dieses Kästchen wird die "1" des Ausgangs A eingetragen.

Zeile	E3	E2	E1	A
00	0	0	0	
01	0	0	1	1
02	0	1	0	
03	0	1	1	
04	1	0	0	
05	1	0	1	
06	1	1	0	
07	1	1	1	

Weist die Ausgangsvariable nun beispielsweise in der Zeile 01 den Wert "1" auf, so muss im KV-Diagramm der Bereich gesucht werden in welchem:

- (1) Variable E3 nicht vorhanden ist
- (2) Variable E2 nicht vorhanden ist
- (3) und Variable E1 vorhanden ist
- → In dieses Kästchen wird die "1" des Ausgangs A eingetragen.

Zeile	E3	E2	E1	Α	Dre	i Eingar	ngsvaria	able		
00	0	0	0		Mar	n erkennt	t, dass b	ei syster	natische	m Erstellen von
01	0	0	1	1					•	sowie ordnungsgemäßer
02	0	1	0				_			nen eine viel schnellere angs in das korrespondierende
03	0	1	1			chen mö		•	J	
04	1	0	0							
05	1	0	1							
06	1	1	0							
07	1	1	1			EÌ	Е	1	E1	
					E2	00	1	05	04	
					E2	02	03	07	06	
						Ē	3	Ε	3	

Zeile	E3	E2	E1	Α	
00	0	0	0	0	
01	0	0	1	1	
02	0	1	0	1	
03	0	1	1	1	
04	1	0	0	0	
05	1	0	1	0	
06	1	1	0	1	
07	1	1	1	0	

Hier sehen Sie noch ein Beispiel wie die "1"-Signale des Ausgangs A in das KV-Diagramm übertragen wurden.

Zeile	E4	E3	E2	E1
00	0	0	0	0
01	0	0	0	1
02	0	0	1	0
03	0	0	1	1
04	0	1	0	0
05	0	1	0	1
06	0	1	1	0
07	0	1	1	1
10	1	0	0	0
11	1	0	0	1
12	1	0	1	0
13	1	0	1	1
14	1	1	0	0
15	1	1	0	1
16	1	1	1	0
17	1	1	1	1

Vier Eingangsvariable

Durch wiederholte Anwendung des bisher beschriebenen Verfahrens kann das KV-Diagramm nun auf vier Eingangsvariable erweitert werden.

Dafür ist wieder die Spiegelung an einer horizontalen Achse nötig.

Zeile	E5	E4	E3	E2	E1
00	0	0	0	0	0
01	0	0	0	0	1
02	0	0	0	1	0
03	0	0	0	1	1
04	0	0	1	0	0
05	0	0	1	0	1
06	0	0	1	1	0
07	0	0	1	1	1
10	0	1	0	0	0
11	0	1	0	0	1
12	0	1	0	1	0
13	0	1	0	1	1
14	0	1	1	0	0
15	0	1	1	0	1
16	0	1	1	1	0
17	0	1	1	1	1
20	1	0	0	0	0
:	:	:	÷	:	÷

Fünf Eingangsvariable

Auch das KV-Diagramm für fünf Eingangsvariable erhält man durch eine Spiegelung – nun wieder an einer vertikalen Achse. KV-Diagramme für mehr als fünf Eingangsvariable sind eigentlich nicht mehr praktisch handhabbar und deshalb unüblich.

Regeln zum Aufstellen von KV-Diagrammen

- 1. KV-Diagramm entsprechend der Anzahl der Eingangsvariablen zeichnen.
- 2. Felder mit den Zeilennummern beschriften.
- 3. Übertrag der Werte der Ausgangsvariable aus der Funktionstabelle in das Diagramm
 - "1"-Werte müssen übertragen werden
 - "0"-Werte können übertragen werden
 - Zeilen mit undefiniertem Ausgangswert (können "0" oder "1" sein) müssen mit einem Kreuz ("X") eingetragen werden

Regeln zum Auswerten von KV-Diagrammen

Man versucht, möglichst viele horizontal und vertikal benachbarte Felder, die eine "1" enthalten einzukreisen. Dabei gelten folgende Regeln:

- 1. "X"-Felder zählen in diesem Fall als "1"-Felder
- 2. Die umkreisten "1"-Felder bilden in der Fläche ein Rechteck oder ein Quadrat
- 3. Die umkreisten "1"-Felder müssen über ihre Seiten (nicht Ecken!) zusammenhängen
- 4. Die Bereiche können über die Seiten des KV-Diagramms hinaus reichen
- 5. Es müssen zusammenhängende 2ⁿ-Blöcke also 2er-, 4er-, 8er- oder 16er-Blöcken (sogenannte Päckchen) gebildet werden.
- 6. Felder dürfen doppelt verwendet werden sollten es aber nicht.
- 7. Bleiben am Ende einzelne "1"-Felder übrig werden diese allein eingekreist
- 8. Für jeden umkreisten Bereich wird nun ein Term (=Minterm) aufgestellt.
- 9. Zusammenfassen aller Minterme mittels ODER-Verknüpfungen

Zeile	E4	E3	E2	E1	Α	
00	0	0	0	0	0	
01	0	0	0	1	1)
02	0	0	1	0	0	
03	0	0	1	1	1)
04	0	1	0	0	1)
05	0	1	0	1	0	
06	0	1	1	0	0	
07	0	1	1	1	1)
10	1	0	0	0	1)
11	1	0	0	1	1)
12	1	0	1	0	0	
13	1	0	1	1	1)
14	1	1	0	0	1	\bigcirc
15	1	1	0	1	1)
16	1	1	1	0	0	
17	1	1	1	1	0	

In diesem Beispiel stechen sofort ein horizontaler (Kästchen 10, 11, 15, 14) und ein vertikaler (Kästchen 01, 03, 13, 11) Viererblock ins Auge.

Nun kann das bisher ungenutzte Kästchen 07 noch mit 03 zu einem Zweierblock zusammengespannt werden.

Kästchen 04 sieht zunächst alleinstehend aus, kann aber über den Seitenrand mit Kästchen 14 umkreist werden.

Zeile	E4	E3	E2	E1	Α
00	0	0	0	0	0
01	0	0	0	1	1
02	0	0	1	0	0
03	0	0	1	1	1
04	0	1	0	0	1
05	0	1	0	1	0
06	0	1	1	0	0
07	0	1	1	1	1
10	1	0	0	0	1
11	1	0	0	1	1
12	1	0	1	0	0
13	1	0	1	1	1
14	1	1	0	0	1
15	1	1	0	1	1
16	1	1	1	0	0
17	1	1	1	1	0

Aufstellen der Minterme:

• Kästchen 10, 11, 15, 14: $\overline{E2} * E4$

• Kästchen 01, 03, 13, 11: $E1 * \overline{E3}$

• Kästchen 03, 07: $E1 * E2 * \overline{E4}$

• Kästchen 04, 14: $\overline{E1} * \overline{E2} * E3$

→ Gesamtterm (DNF):

$$A = (\overline{E2} * E4) + (E1 * \overline{E3}) + (E1 * E2 * \overline{E4}) + (\overline{E1} * \overline{E2} * E3)$$

Zeile	E4	E3	E2	E1	Α	
00	0	0	0	0	1	
01	0	0	0	1	0	
02	0	0	1	0	1	
03	0	0	1	1	0	
04	0	1	0	0	0	
05	0	1	0	1	0	
06	0	1	1	0	1	
07	0	1	1	1	0	
10	1	0	0	0	1	
11	1	0	0	1	1	
12	1	0	1	0	0	
13	1	0	1	1	1	
14	1	1	0	0	1	
15	1	1	0	1	0	
16	1	1	1	0	0	
17	1	1	1	1	0	

Zunächst fallen die zwei Zweierblöcke 00 /02, sowie 13 /11 auf.

Nun stehen noch drei einzelne "1"-Kästchen im KV-Diagramm. Diese können jedoch über die Seitenränder hinweg verbunden werden: 06 mit 02 und 14 mit 10.

Beachten Sie: 10 hätte auch mit 11 einen Zweierblock ergeben, dann hätte man aber ein einzelnes Feld übrig gehabt → ein Minterm mehr!

Zeile	E4	E3	E2	E1	A
00	0	0	0	0	1
01	0	0	0	1	0
02	0	0	1	0	1
03	0	0	1	1	0
04	0	1	0	0	0
05	0	1	0	1	0
06	0	1	1	0	1
07	0	1	1	1	0
10	1	0	0	0	1
11	1	0	0	1	1
12	1	0	1	0	0
13	1	0	1	1	1
14	1	1	0	0	1
15	1	1	0	1	0
16	1	1	1	0	0
17	1	1	1	1	0
17	1	1	1	1	0

Aufstellen der Minterme:

• Kästchen 00, 02: $\overline{E1} * \overline{E3} * \overline{E4}$

• Kästchen 13, 11: $E1 * \overline{E3} * E4$

• Kästchen 02, 06: $\overline{E1} * E2 * \overline{E4}$

• Kästchen 10, 14: $\overline{E1} * \overline{E2} * E4$

→ Gesamtterm (DNF):

$$A = (\overline{E1}*\overline{E3}*\overline{E4}) + (E1*\overline{E3}*E4) + (\overline{E1}*E2*\overline{E4}) + (\overline{E1}*\overline{E2}*E4)$$