11/29/24, 8:20 PM code1

```
In [1]: import pandas as pd
        file_path = 'Grocery_Items_30.csv'
        data = pd.read_csv(file_path, header=0)
        print("Original dataset:")
        print(data.head())
        data = data.apply(lambda row: row.dropna().tolist(), axis=1)
        print("\nDataset after removing null values within each row:")
        print(data)
        flattened_items = [item for sublist in data for item in sublist]
        items_series = pd.Series(flattened_items)
        items_series = items_series.str.strip()
        unique items = items series.nunique()
        print(f"\nNumber of unique items: {unique items}")
        total_records = len(data)
        print(f"Number of transactions: {total records}")
        most_popular_item = items_series.value_counts().idxmax()
        most popular count = items series.value counts().max()
        print(f"Most popular item: {most_popular_item}, Transactions: {most_popular_count}"
```

11/29/24, 8:20 PM code1

```
Original dataset:
                                                      2
                         0
                                      1
                                                                   3
                                                                                   6 \
          other vegetables
                                  candy
                                                    NaN
                                                                 NaN
                                                                      NaN
                                                                           NaN
                                                                                NaN
       1
                 pip fruit
                                 yogurt
                                                    NaN
                                                                                NaN
                                                                 NaN
                                                                      NaN
                                                                           NaN
       2
                                                                                NaN
                      meat
                                    soda cream cheese
                                                                 NaN
                                                                      NaN
                                                                           NaN
       3
                      pork
                                dessert
                                                    NaN
                                                                      NaN
                                                                           NaN
                                                                                NaN
                                                                 NaN
         other vegetables hard cheese
                                                 liquor brown bread
                                                                      NaN
                                                                           NaN
                                                                                NaN
            7
                 8
                     9 10
       0
          NaN
               NaN NaN NaN
       1
          NaN
               NaN NaN NaN
       2
          NaN
               NaN NaN NaN
       3
          NaN
               NaN NaN NaN
              NaN NaN NaN
          NaN
       Dataset after removing null values within each row:
                                        [other vegetables, candy]
       1
                                              [pip fruit, yogurt]
       2
                                      [meat, soda, cream cheese ]
       3
                                                  [pork, dessert]
       4
               [other vegetables, hard cheese, liquor, brown ...
       7995
                          [whole milk, pork, rolls/buns, yogurt]
       7996
                             [canned beer, whole milk, pork, oil]
       7997
                                              [whole milk, pasta]
       7998
                                     [shopping bags, salty snack]
       7999
                                                  [candy, coffee]
       Length: 8000, dtype: object
       Number of unique items: 166
       Number of transactions: 8000
       Most popular item: whole milk, Transactions: 1336
In [3]: from mlxtend.preprocessing import TransactionEncoder
        from mlxtend.frequent_patterns import fpgrowth, association_rules
        file path = 'Grocery Items 30.csv'
        data1 = pd.read_csv(file_path)
        transaction_list= data1.stack().groupby(level=0).apply(lambda x: x.tolist())
        te = TransactionEncoder()
        te_ary = te.fit(transaction_list).transform(transaction_list)
        df = pd.DataFrame(te ary, columns=te.columns )
        frequent_itemsets = fpgrowth(df, min_support=0.01, use_colnames=True)
        frequent_itemsets
```

11/29/24, 8:20 PM code1

Out[3]:	support		itemsets		
	0	0.124000	(other vegetables)		
1		0.012500	(candy)		
	2	0.089250	(yogurt)		
	3	0.048375	(pip fruit)		
	4	0.093125	(soda)		
	•••	•••			
	64	0.019625	(salty snack)		
	65	0.014375	(other vegetables, whole milk)		
	66	0.012375	(whole milk, yogurt)		
	67	0.013500	(rolls/buns, whole milk)		
	68	0.010375	(rolls/buns, other vegetables)		

69 rows × 2 columns

In [4]: association_rules(frequent_itemsets, metric="confidence", min_threshold=0.08, num_i

\cap	115	-	ГΛ	
U	u	L.	4	
			_	-1

		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	rep
	0	(other vegetables)	(whole milk)	0.12400	0.15750	0.014375	0.115927	0.736047	
	1	(whole milk)	(other vegetables)	0.15750	0.12400	0.014375	0.091270	0.736047	
3	2	(yogurt)	(whole milk)	0.08925	0.15750	0.012375	0.138655	0.880352	
	3	(rolls/buns)	(whole milk)	0.11225	0.15750	0.013500	0.120267	0.763602	
	4	(whole milk)	(rolls/buns)	0.15750	0.11225	0.013500	0.085714	0.763602	
	5	(rolls/hlins)	(other vegetables)	0.11225	0.12400	0.010375	0.092428	0.745384	
	6	(other vegetables)	(rolls/buns)	0.12400	0.11225	0.010375	0.083669	0.745384	
	4								•

```
In [5]: import seaborn as sns
        import matplotlib.pyplot as plt
        from mlxtend.frequent_patterns import apriori, association_rules
        msv_values = [0.001, 0.005, 0.01]
        mct_values = [0.05, 0.075, 0.1]
```

11/29/24, 8:20 PM code1

```
rule_counts = []

for msv in msv_values:
    row = []
    for mct in mct_values:
        frequent_itemsets = apriori(df, min_support=msv, use_colnames=True)

    rules = association_rules(frequent_itemsets, metric="confidence", min_thres
        row.append(len(rules))

    rule_counts.append(row)

heatmap_data = pd.DataFrame(rule_counts, index=mct_values, columns=msv_values)

plt.figure(figsize=(8, 6))
sns.heatmap(heatmap_data, annot=True, cmap='YlGnBu', fmt='d', cbar_kws={'label': 'N plt.title('Association Rules Count for Different MSV and MCT Values')
plt.xlabel('Minimum Support (msv)')
plt.ylabel('Minimum Confidence Threshold (mct)')
plt.show()
```

