Information Retrieval

Language Models

Using Language Models in IR

- Treat each document as the basis for a model
 - e.g., unigram sufficient statistics
- Rank document d based on P(d | q)

$$P(d \mid q) = P(q \mid d) \times P(d) / P(q)$$

- P(q) is the same for all documents, so ignore
- P(d) [the prior] is often treated as the same for all d
- But we could use criteria like authority, length, genre ■ P(q | d) is the probability of q given d's model
- Very general formal approach

The fundamental problem of LMs

- Usually we don't know the model M
 - But have a sample of text representative of that model

- Estimate a language model from a sample
- Then compute the observation probability

Language Models for IR

- Language Modeling Approaches
 - Attempt to model query generation process
 - Documents are ranked by the probability
 - that a query would be observed as a random sample from the respective document model
 - Multinomial(多项式) approach

$$P(Q|M_D) = \prod_{w} P(w|M_D)^{q_w}$$

Retrieval based on probabilistic LM

- Treat the generation of queries as a random process.
- Approach
 - 1 Infer a language model for each document.
 - 2 Estimate the probability of generating the query according to each of these models.
 - 3 Rank the documents according to these probabilities.
 - Usually a unigram estimate of words is used

Query generation probability

Ranking formula
$$p(Q,d) = p(d) \, p(Q \, | \, d)$$

$$\approx p(d) \, p(Q \, | \, M_d)$$

■ The probability of producing the query given the language model of document $\frac{d}{d}$ using MLE is: $\hat{p}(Q \mid M_d) = \prod_{a} \hat{p}_{ml}(t \mid M_d)$

$$\hat{p}(Q \mid M_d) = \prod_{t \in Q} \hat{p}_{ml}(t \mid M_d)$$

$$= \prod_{t \in Q} \frac{t f_{(t,d)}}{d l_d}$$

Unigram assumption: Given a particular language model, the query terms occur independently

 $M_{_{d}}$: language model of document ${
m d}$

 $t\!f_{(t,d)}$: raw $t\!f$ of term t in document d

 dl_d : total number of tokens in document d

Classic Problem

Zero probability

$$p(t \mid M_d) = 0$$

- May not wish to assign a probability of zero to a document that is missing one or more of the query terms
- General approach
 - A non-occurring term is possible, but no more likely than would be expected by chance in the collection.

$$tf_{(t,d)} = 0 p(t \mid M_d) = \frac{cf_t}{cs}$$

 $c\!f_t$: raw count of term t in the collection

 ${\it cs}\,\,$: raw collection size(total number of tokens in the collection)

Zero probabilities

- Need to smooth probabilities
 - Discount nonzero probabilities
 - Give some probability mass to unseen things
- There's a wide space of approaches to smoothing probability distributions to deal with this problem
 - such as
 - adding 1, ½ or ε to counts
 - Dirichlet priors (Dirichlet 先验)
 - discounting
 - Interpolation (插值)
 - [See FSNLP ch. 6 or CS224N if you want more]
- A simple idea that works well in practice
 - use a mixture between the document multinomial and the collection multinomial distribution

Mixture model

- $P(w|d) = \lambda P_{mle}(w|M_d) + (1 \lambda)P_{mle}(w|M_c)$
- Mixes the probability
 - from the document with the general collection frequency of the word.
- Correctly setting λ is very important
 - A high value of lambda suitable for short queries
 - makes the search "conjunctive-like"
 - A low value is more suitable for long queries
- Can tune λ to optimize performance
 - Perhaps make it dependent on document size
 - cf. Dirichlet prior or Witten-Bell smoothing

Basic mixture model summary

General formulation of the LM for IR

$$p(Q,d) = p(d) \prod_{t \in Q} ((1-\lambda) \, p(t) + \lambda p(t \mid M_d))$$
 general language model
$$\frac{1}{\text{Individual-document model}}$$

- The user has a document in mind and generates the query from this document.
- The equation represents the probability
 - that the document that the user had in mind was in fact this one.

Example

- Document collection (2 documents)
 - d₁: Xerox reports a profit but *revenue* is *down*
 - d₂: Lucent narrows quarter loss but *revenue* decreases further
- Model: MLE unigram from documents; λ = ½
- Query: revenue down
 - $P(Q|d_1) = [(1/8 + 2/16)/2] \times [(1/8 + 1/16)/2]$
 - = 1/8 x 3/32 = 3/256
 - $P(Q|d_2) = [(1/8 + 2/16)/2] \times [(0 + 1/16)/2]$
 - = 1/8 x 1/32 = 1/256
- Ranking: d₁ > d₂

LM vs. Prob. Model for IR

- The main difference is
 - whether "Relevance" figures explicitly in the model or not
- LM approach
 - Attempts to do away with modeling relevance
 - Assumes that documents and expressions of information problems are of the same type
 - Computationally
 - Intuitively

LM vs. Prob. Model for IR (\slash)

- Problems of basic LM approach
 - Assumption of equivalence between document and information problem representation is unrealistic
 - Very simple models of language

 - Relevance feedback is difficult to integrate
 as are user preferences, and other general issues of relevance
 - Can't easily accommodate phrases, passages, Boolean operators
- Current extensions focus on
 - putting relevance back into the model
 - etc.