LECCIONES DE PROGRAMACION INTERMEDIAS

SEGUIDOR DE PARED SIMPLE & OPTIMIZADO

By Sanjay and Arvind Seshan

Translated by David Daniel Galván Medrano

Objetivos

Aprenda a utilizar el sensor ultrasónico para seguir paredes

Aprenda como optimizar código

Prerrequisitos: Bucles, Interruptores, Sensor Ultrasónico

Desafío 1: Seguidor de pared simple

Desafío: ¿Puedes diseñar un programa que tenga a un robot siguiendo la pared (estando siempre separado 15 cm de la pared) usando el sensor ultrasónico?

PASO 1: En un Interruptor, da vuelta a izquierda o derecha dependiendo si el robot esta muy lejos o muy cerca de la pared

PASO 2: Repita todo en un bucle infinito (puede modificar la condición del bucle si lo desea)

Reproduzca el video para ver como debe moverse su robot

Solución Desafío 1

Desafío 2: Optimizando El Código

El código para el Seguidor de Pared Ultrasónico Simple es lento y el robot se sacude demasiado.

Desafío: Piense como puede mejorar el programa para que el robot siga la pared de una manera mas suave.

Pista: Cambie el ángulo de los giros

Reproduzca el video para ver como debe moverse su robot

¿Puede notar la diferencia?

Solución Desafío 2

The goal of this program is to make a optimized wall follower that wiggles less than the simple wall follow $\frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \left(\frac{1}{2} \int_{\mathbb{R}$

The steering values in the move steering blocks are set to 20 instead of 50 so that the robot makes less sharp turns

Créditos

Este tutorial fue creado por Sanjay Seshan y Arvind Seshan

Mas lecciones disponibles en <u>www.ev3lessons.com</u>

Traducido por David Daniel Galván Medrano

This work is licensed under a <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.