计算机视觉 Computer Vision

周琬婷 wanting.zhou@bupt.edu.cn

扫一扫二维码, 加入群聊

Edge detection

Machine Vision Technology								
Semantic information					Metric 3D information			
Pixels	Segments	Images	Videos		Camera		Multi-view Geometry	
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking		Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2		2	2	2	2

Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Origin of edges

Edges are caused by a variety of factors:

Source: Steve Seitz

Characterizing edges

An edge is a place of rapid change in the image intensity function

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Source: K. Grauman

Partial derivatives of an image

 $\frac{\partial f(x,y)}{\partial x}$

1 1 or 1

Which shows changes with respect to x?

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:
$$M_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 $M_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Image gradient

The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

The gradient points in the direction of most rapid increase in intensity

How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradient Magnitude

X-Derivative

Y-Derivative

Gradient Magnitude

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:
- This saves us one operation: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

Derivative of Gaussian filter

Are these filters separable?

Derivative of Gaussian filter

Which one finds horizontal/vertical edges?

Scale of Gaussian derivative filter

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales"

Source: D. Forsyth

Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast

original image

Slide credit: Steve Seitz

norm of the gradient $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

thresholding

How to turn these thick regions of the gradient into curves?

thresholding

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

requires checking interpolated pixels p and r

Problem:
pixels along
this edge
didn't
survive the
thresholding

thinning

(non-maximum suppression)

Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: L. Fei-Fei

Recap: Canny edge detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

```
MATLAB: edge(image, 'canny');
```

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Edge detection is just the beginning...

human segmentation gradient magnitude image

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/