

Deep Domain Adaptation Methods

Condy Chen

Outline

- Basic introduction and a simple method (DCC)
- Conditional Adversarial Domain Adaptation
- Self-ensembling for visual domain adaptation

Basic Introduction

Basic Introduction

- Source domain: $D_S = \{X_S, P(X_S)\}$
- Source task: $T_S = \{Y_S, f_S(\cdot)\}$
- ► Target domain: $D_T = \{X_T, P(X_T)\}$
- ► Target task: $T_T = \{Y_T, f_T(\cdot)\}$
- ▶ Goal: $\min \epsilon(f_T(\mathbf{X}_T), Y_T)$
- ► Conditions: $D_T \neq D_S$ or $T_T \neq T_S$ with (D_T, D_S, Y_T, Y_S) may be unknown, respectively

Basic Introduction

Inductive transfer learning

Given $T_S \neq T_T$ under conditions:

- ightharpoonup A lot of labeled D_S or
- ightharpoonup No labeled D_S

Transductive transfer learning

Given $T_S = T_T$ under conditions:

- $ightharpoonup \mathbf{X}_S
 eq \mathbf{X}_T$ or
- ▶ $\mathbf{X}_S = \mathbf{X}_T$ and $P(X_S) \neq P(X_T)$

Unsupervised transfer learning

Given $T_S \neq T_T$ under conditions:

ightharpoonup No labeled D_S and D_T

Transfer Learning Settings	Related Areas	Source Domain Labels	Target Domain Labels	Tasks
Inductive Transfer Learning	Multi-task Learning	Available	Available	Regression,
				Classification
	Self-taught Learning	Unavailable	Available	Regression,
				Classification
Transductive Transfer Learning	Domain Adaptation, Sample	Available	Unavailable	Regression,
	Selection Bias, Co-variate Shift			Classification
Unsupervised Transfer Learning		Unavailable	Unavailable	Clustering,
				Dimensionality
				Reduction

A simple method (DDC)

A simple method (DDC)

$$MMD(X_{S}, X_{T}) = \frac{1}{|X_{S}|} \sum_{x_{s} \in X_{S}} \phi(x_{s}) - \frac{1}{|X_{T}|} \sum_{x_{t} \in X_{T}} \phi(x_{t})$$
(1)

```
def mmd_linear(f_of_X, f_of_Y):
    delta = f_of_X - f_of_Y
    loss = torch.mean(torch.mm(delta, torch.transpose(delta, 0, 1)))
    return loss
```

$$\mathcal{L} = \mathcal{L}_C(X_L, y) + \lambda \text{MMD}^2(X_S, X_T)$$

Conditional Adversarial Domain Adaptation

Mingsheng Long[†], Zhangjie Cao[†], Jianmin Wang[†], and Michael I. Jordan[‡]

[†]School of Software, Tsinghua University, China

[†]KLiss, MOE; BNRist; Research Center for Big Data, Tsinghua University, China

[‡]University of California, Berkeley, Berkeley, USA

{mingsheng, jimwang}@tsinghua.edu.cn caozhangjie14@gmail.com

jordan@berkeley.edu

Conditional Adversarial Domain Adaptation

Conditional Adversaria Domain Adaptation

Conditional Discriminator

$$E_G = \frac{1}{n_s} \sum_{i=1}^{n_s} L\left(G\left(\mathbf{x}_i^s\right), \mathbf{y}_i^s\right),\tag{1}$$

$$E_{D,G} = -\frac{1}{n_s} \sum_{i=1}^{n_s} \log \left[D\left(\mathbf{f}_i^s, \mathbf{g}_i^s \right) \right] - \frac{1}{n_t} \sum_{j=1}^{n_t} \log \left[1 - D\left(\mathbf{f}_j^t, \mathbf{g}_j^t \right) \right], \tag{2}$$

Goal

$$\min_{G} E_{G} - \lambda E_{D,G}
\min_{D} E_{D,G}$$
(3)

Conditional Adversaria attitude Domain Adaptation

Multilinear Conditioning

Taking the advantage of multilinear map, in this paper, we condition D on g with the multilinear map

$$T_{\otimes}\left(\mathbf{f},\mathbf{g}\right) = \mathbf{f} \otimes \mathbf{g},$$
 (4)

where T_{\otimes} is a multilinear map and $D(\mathbf{f}, \mathbf{g}) = D(\mathbf{f} \otimes \mathbf{g})$. As such, the conditional domain discrimi-

Dimension Explosion? ?

$$T(\mathbf{h}) = \begin{cases} T_{\otimes}(\mathbf{f}, \mathbf{g}) & \text{if } d_f \times d_g \leq 4096 \\ T_{\odot}(\mathbf{f}, \mathbf{g}) & \text{otherwise,} \end{cases}$$

$$T_{\odot}\left(\mathbf{f},\mathbf{g}\right) = \frac{1}{\sqrt{d}}\left(\mathbf{R_f}\mathbf{f}\right) \odot \left(\mathbf{R_g}\mathbf{g}\right),$$

Conditional Adversaria attitude Machine Intelligence & Learning Domain Adaptation

Entropy Conditioning

$$H\left(\mathbf{g}\right) = -\sum_{c=1}^{C} g_c \log g_c$$

The certainty of predictions can be computed by $e^{-H(g)} \in [\frac{1}{C}, 1]$.

$$E_{D,G} = -\frac{1}{n_s} \sum_{i=1}^{n_s} e^{-H(\mathbf{g}_i^s)} \log \left[D\left(T\left(\mathbf{h}_i^s\right)\right) \right] - \frac{1}{n_t} \sum_{j=1}^{n_t} e^{-H\left(\mathbf{g}_j^t\right)} \log \left[1 - D\left(T\left(\mathbf{h}_j^t\right)\right) \right].$$

Conditional Adversaria distinuo Domain Adaptation

Conditional Domain Adversarial Network

$$\begin{split} & \min_{G} \ \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} L\left(G\left(\mathbf{x}_{i}^{s}\right), \mathbf{y}_{i}^{s}\right) \\ & + \frac{\lambda}{n_{s}} \sum_{i=1}^{n_{s}} e^{-H\left(\mathbf{g}_{i}^{s}\right)} \log\left[D\left(T\left(\mathbf{h}_{i}^{s}\right)\right)\right] + \frac{\lambda}{n_{t}} \sum_{j=1}^{n_{t}} e^{-H\left(\mathbf{g}_{j}^{t}\right)} \log\left[1 - D\left(T\left(\mathbf{h}_{j}^{t}\right)\right)\right] \\ & \max_{D} \ \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} e^{-H\left(\mathbf{g}_{i}^{s}\right)} \log\left[D\left(T\left(\mathbf{h}_{i}^{s}\right)\right)\right] + \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} e^{-H\left(\mathbf{g}_{j}^{t}\right)} \log\left[1 - D\left(T\left(\mathbf{h}_{j}^{t}\right)\right)\right] \end{split}$$

Conditional Adversaria attitude and a Conditional Adaptation

Experience Result

Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (AlexNet and ResNet)

	J (10) 011 01	,			(- ·		
Method	$A \rightarrow W$	$D \rightarrow W$	$W \rightarrow D$	$A \rightarrow D$	$D \rightarrow A$	$W \rightarrow A$	Avg
AlexNet [27]	61.6 ± 0.5	95.4 ± 0.3	99.0 ± 0.2	63.8 ± 0.5	51.1±0.6	49.8 ± 0.4	70.1
DAN [29]	68.5 ± 0.5	96.0 ± 0.3	99.0 ± 0.3	67.0 ± 0.4	54.0 ± 0.5	53.1 ± 0.5	72.9
RTN [31]	73.3 ± 0.3	96.8 ± 0.2	99.6 ± 0.1	71.0 ± 0.2	50.5 ± 0.3	51.0 ± 0.1	73.7
DANN [13]	73.0 ± 0.5	96.4 ± 0.3	99.2 ± 0.3	72.3 ± 0.3	53.4 ± 0.4	51.2 ± 0.5	74.3
ADDA [51]	73.5 ± 0.6	96.2 ± 0.4	98.8 ± 0.4	71.6 ± 0.4	54.6 ± 0.5	53.5 ± 0.6	74.7
JAN [30]	74.9 ± 0.3	96.6 ± 0.2	99.5 ± 0.2	71.8 ± 0.2	58.3 ± 0.3	55.0 ± 0.4	76.0
CDAN-RM	77.9 ± 0.3	96.9 ± 0.2	$100.0 \pm .0$	75.1 ± 0.2	54.5 ± 0.3	57.5 ± 0.4	77.0
CDAN-M	78.3 ± 0.2	97.2 ± 0.1	$100.0 \pm .0$	76.3 \pm 0.1	57.3 ± 0.2	57.3 ± 0.3	77.7
ResNet-50 [20]	68.4 ± 0.2	96.7 ± 0.1	99.3±0.1	68.9 ± 0.2	62.5 ± 0.3	60.7 ± 0.3	76.1
DAN [29]	80.5 ± 0.4	97.1 ± 0.2	99.6 ± 0.1	78.6 ± 0.2	63.6 ± 0.3	62.8 ± 0.2	80.4
RTN [31]	84.5 ± 0.2	96.8 ± 0.1	99.4 ± 0.1	77.5 ± 0.3	66.2 ± 0.2	64.8 ± 0.3	81.6
DANN [13]	82.0 ± 0.4	96.9 ± 0.2	99.1 ± 0.1	79.7 ± 0.4	68.2 ± 0.4	67.4 ± 0.5	82.2
ADDA [51]	86.2 ± 0.5	96.2 ± 0.3	98.4 ± 0.3	77.8 ± 0.3	69.5 ± 0.4	68.9 ± 0.5	82.9
JAN [30]	85.4 ± 0.3	97.4 ± 0.2	99.8 ± 0.2	84.7 ± 0.3	68.6 ± 0.3	70.0 ± 0.4	84.3
GTA [43]	89.5 ± 0.5	97.9 ± 0.3	99.8 ± 0.4	87.7 ± 0.5	72.8 ± 0.3	71.4 ± 0.4	86.5
CDAN-RM	93.0 ± 0.2	98.4 ± 0.2	$100.0 \pm .0$	89.2 ± 0.3	70.2 ± 0.4	67.4 ± 0.4	86.4
CDAN-M	93.1 ±0.1	98.6 ±0.1	$100.0 \pm .0$	92.9 ± 0.2	71.0 ± 0.3	69.3 ± 0.3	87.5

Table 2: Accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (AlexNet and ResNet)

Method	$I \rightarrow P$	$P \rightarrow I$	$I \rightarrow C$	$C \rightarrow I$	$C \rightarrow P$	$P \rightarrow C$	Avg
AlexNet [27]	66.2 ± 0.2	70.0 ± 0.2	84.3 ± 0.2	71.3 ± 0.4	59.3 ± 0.5	84.5 ± 0.3	73.9
DAN [29]	67.3 ± 0.2	80.5 ± 0.3	87.7 ± 0.3	76.0 ± 0.3	61.6 ± 0.3	88.4 ± 0.2	76.9
DANN [13]	66.5 ± 0.6	81.8 ± 0.3	89.0 ± 0.4	79.8 ± 0.6	63.5 ± 0.5	88.7 ± 0.3	78.2
JAN [30]	67.2 ± 0.5	82.8 ± 0.4	91.3 ± 0.5	80.0 ± 0.5	63.5 ± 0.4	91.0 ± 0.4	79.3
CDAN-RM	67 ± 0.4	84.8 ± 0.2	92.4 ± 0.3	81.3 ± 0.3	64.7 ± 0.3	91.6 ±0.4	80.3
CDAN-M	67.7 ± 0.3	83.3 ± 0.1	91.8 ± 0.2	81.5 ± 0.2	63.0 ± 0.2	91.5 ± 0.3	79.8
ResNet-50 [20]	74.8 ± 0.3	83.9 ± 0.1	91.5 ± 0.3	78.0 ± 0.2	65.5 ± 0.3	91.2 ± 0.3	80.7
DAN [29]	74.5 ± 0.4	82.2 ± 0.2	92.8 ± 0.2	86.3 ± 0.4	69.2 ± 0.4	89.8 ± 0.4	82.5
DANN [13]	75.0 ± 0.6	86.0 ± 0.3	96.2 ± 0.4	87.0 ± 0.5	74.3 ± 0.5	91.5 ± 0.6	85.0
JAN [30]	76.8 ± 0.4	88.0 ± 0.2	94.7 ± 0.2	89.5 ± 0.3	74.2 ± 0.3	91.7 ± 0.3	85.8
CDAN-RM	77.2 ± 0.3	88.3 ± 0.3	98.3 ± 0.4	90.7 ± 0.4	76.7 ± 0.3	94.0 ±0.4	87.5
CDAN-M	78.3 ±0.3	91.2 ±0.2	96.7±0.3	91.2 ±0.3	77.2 ±0.2	93.7±0.3	88.1

Table 3: Accuracy (%) on Office-Home for unsupervised domain adaptation (AlexNet and ResNet)

Method	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Avg
AlexNet [27]	26.4	32.6	41.3	22.1	41.7	42.1	20.5	20.3	51.1	31.0	27.9	54.9	34.3
DAN [29]	31.7	43.2	55.1	33.8	48.6	50.8	30.1	35.1	57.7	44.6	39.3	63.7	44.5
DANN [13]	36.4	45.2	54.7	35.2	51.8	55.1	31.6	39.7	59.3	45.7	46.4	65.9	47.3
JAN [30]	35.5	46.1	57.7	36.4	53.3	54.5	33.4	40.3	60.1	45.9	47.4	67.9	48.2
CDAN-RM	36.2	47.3	58.6	37.3	54.4	58.3	33.2	43.9	62.1	48.2	48.1	70.7	49.9
CDAN-M	38.1	50.3	60.3	39.7	56.4	57.8	35.5	43.1	63.2	48.4	48.5	71.1	51.0
ResNet-50 [20]	34.9	50.0	58.0	37.4	41.9	46.2	38.5	31.2	60.4	53.9	41.2	59.9	46.1
DAN [29]	43.6	57.0	67.9	45.8	56.5	60.4	44.0	43.6	67.7	63.1	51.5	74.3	56.3
DANN [13]	45.6	59.3	70.1	47.0	58.5	60.9	46.1	43.7	68.5	63.2	51.8	76.8	57.6
JAN [30]	45.9	61.2	68.9	50.4	59.7	61.0	45.8	43.4	70.3	63.9	52.4	76.8	58.3
CDAN-RM	49.2	64.8	72.9	53.8	62.4	62.9	49.8	48.8	71.5	65.8	56.4	79.2	61.5
CDAN-M	50.6	65.9	73.4	55.7	62.7	64.2	51.8	49.1	74.5	68.2	56.9	80.7	62.8

Table 4: Accuracy (%) on Digits and VisDA-2017 for unsupervised domain adaptation (ResNet)

	• • •	_		•		• '
Method	$M \rightarrow U$	$U \rightarrow M$	$S \rightarrow M$	Avg	Method	Synthetic \rightarrow Real
UNIT [28]	96.0	93.6	90.5	93.4	JAN [30]	61.6
CyCADA [22]	95.6	96.5	90.4	94.2	GTA [43]	69.5
CDAN-M	96.5	97.1	89.2	94.3	CDAN-M	70.3

Conditional Adversarial Domain Adaptation

Experience Result

Figure 3: T-SNE of features by (a) ResNet, (b) DANN, (c) CDAN-f, (d) CDAN-fg (red: A; blue: W).

Self-ensembling for visual domain adaptation

French, G. g.french@uea.ac.uk

Mackiewicz, M.

m.mackiewicz@uea.ac.uk

Fisher, M.

mark.fisher@uea.ac.uk

September 25, 2018

Self-ensembling for visual domain adaptation

Model Structure

(a) Mean-teacher

(b) Our model

Self-ensembling for visual domain adaptation

Confidence thresholding

 $\tilde{f}_{Ti} = \max_{j \in C}(\tilde{z}_{Tij})$; the predicted probability of the predicted class of the sample. If \tilde{f}_{Ti} is below the confidence threshold (a parameter search found 0.968 to be an effective value for small image benchmarks), the self-ensembling loss for the sample x_i is masked to 0.

Experiment Result

	USPS	MNIST	SVHN	MNIST	CIFAR	STL	Syn Digits	Syn Signs		
	-	-	-	-	_	-	_	-		
	MNIST	USPS	MNIST	SVHN	STL	CIFAR	SVHN	GTSRB		
TRAIN ON SOURCE										
SupSrc*	77.55	82.03	66.5	25.44	72.84	51.88	86.86	96.95		
_	± 0.8	± 1.16	± 1.93	± 2.8	± 0.61	± 1.44	± 0.86	± 0.36		
SupSrc+TF	77.53	95.39	68.65	24.86	75.2	59.06	87.45	97.3		
	± 4.63	± 0.93	± 1.5	± 3.29	± 0.28	± 1.02	± 0.65	± 0.16		
SupSrc+TFA	91.97	96.25	71.73	28.69	75.18	59.38	87.16	98.02		
	± 2.15	± 0.54	± 5.73	± 1.59	± 0.76	± 0.58	± 0.85	± 0.20		
Specific aug. ^b	-	-	_	61.99 ± 3.9	_	_	_	_		
RevGrad ^{a [1]}	74.01	91.11	73.91	35.67	66.12	56.91	91.09	88.65		
DCRN [2]	73.67	91.8	81.97	40.05	66.37	58.65	_	_		
G2A [3]	90.8	92.5	84.70	36.4	_	_	_	_		
ADDA [4]	90.1	89.4	76.00	_	_	_	_	_		
${ m ATT}^{~[5]}$	_	_	86.20	52.8	_	_	93.1	96.2		
SBADA-GAN [6]	97.60	95.04	76.14	61.08	_	_	_	_		
ADA [7]	_	_	97.6	_	_	_	91.86	97.66		
OUR RESULTS										
MT+TF	98.07	98.26	99.18	13.96^{c}	80.08	18.3	15.94	98.63		
	± 2.82	± 0.11	± 0.12	± 4.41	± 0.25	± 9.03	± 0.0	± 0.09		
$MT+CT^*$	92.35	88.14	93.33	33.87^{c}	77.53	71.65	96.01	98.53		
	± 8.61	± 0.34	± 5.88	± 4.02	± 0.11	± 0.67	± 0.08	± 0.15		
MT+CT+TF	97.28	98.13	98.64	34.15^{c}	79.73	74.24	96.51	98.66		
	± 2.74	± 0.17	± 0.42	± 3.56	± 0.45	± 0.46	± 0.08	± 0.12		
MT+CT+TFA	99.54	98.23	99.26	37.49^{c}	80.09	69.86	97.11	99.37		
	± 0.04	± 0.13	± 0.05	± 2.44	± 0.31	± 1.97	± 0.04	± 0.09		
Specific aug. ^b	-	-	_	97.0° ± 0.06	_	_	-	_		
TRAIN ON TAR	GET									
$SupTgt^*$	99.53	97.29	99.59	95.7	67.75	88.86	95.62	98.49		
	± 0.02	± 0.2	± 0.08	± 0.13	± 2.23	± 0.38	± 0.2	± 0.32		
SupTgt+TF	99.62	97.65	99.61	96.19	70.98	89.83	96.18	98.64		
_	± 0.04	± 0.17	± 0.04	± 0.1	± 0.79	± 0.39	± 0.09	± 0.09		
SupTgt+TFA	99.62	97.83	99.59	96.65	70.03	90.44	96.59	99.22		
_	± 0.03	± 0.17	± 0.06	± 0.11	± 1.13	± 0.38	± 0.09	± 0.22		
Specific aug. ^b	-	-	_	97.16	_	_	_	_		
				± 0.05						

Conclusions

Contributions

- CDAN presented a novel approach to domain adaption
- CDAN doesn't match the feature representation across domains which is prone to under-matching like previous adversarial adaptation methods
- CDAN thinks about dimension explosion and gives a solution

Shortages

- CDAN lacked doing some experiments on transfer learning standard datasets such as cifar to STL and STL to cifar
- It is not clear in 《self-emsembling …》 why using MSE, instead of other difference function

Thanks!