Relazioni matematiche fra grandezze fisiche

La Fisica si occupa di descrivere il mondo. Per fare questo, è necessario usare il linguaggio della Matematica.

Galileo Galilei, noto per aver compreso l'importanza della Matematica nella Scienza.

Grandezze Fisiche Fondamentali

Grandezze Fondamentali (MKS)

```
m (massa) kg
```

L (lunghezza) m

T (tempo) s

Grandezze Fondamentali (MKS)

m (massa) kg

1 kg \approx 4.595 m_P (m_P: Planck mass)

$$m_P = \sqrt{\frac{\hbar c}{G}} \approx 1,2209 \times 10^{28} \, \mathrm{eV/c^2}$$

Grandezze Fondamentali (MKS)

T (tempo) s

1 s=durata di 9192631770 periodi della radiazione corrispondente alla transizione tra due livelli iperfini dello stato fondamentale dell'atomo di Cesio-133

Grandezze Fondamentali (MKS)

L (lunghezza) m

1 m=distanza percorsa dalla luce nel vuoto in 1/299792458 secondi

c = 299792458 m/s

Grandezze Fisiche Derivate

Superficie (区域)
$$S = [m^2]$$

Volume (体积)
$$V = [m^3]$$

Velocità (速度)

$$v = \frac{s}{t} \left| \frac{m}{sec} \right|$$

Accelerazione (加速度)

$$a = \frac{v}{t} \left[\frac{m}{sec^2} \right]$$

Accelerazione di gravità (重力加速度)

$$g = 9.8 \frac{\mathsf{m}}{\mathsf{sec}^2}$$

Grandezze Fondamentali

```
I (corrente) A
```

T (temperatura) K

J (intensità luminosa) cd

N (quantità di materia) n

Nel corso di Chimica

numero di Avogadro

Vediamo che in natura esistono grandezze rappresentate da numeri molto diversi tra di loro

Sistema Internazionale (SI) multipli e sottomultipli

Il SI è un sistema metrico decimale: i multipli e i sottomultipli si ottengono moltiplicando o dividendo per potenze di 10.

• deca	10	da	• deci	10-1	d
 hetto 	100	h	• centi	10^{-2}	c
• kilo	10^3	k	• milli	10^{-3}	m
• Mega	10^{6}	M	• micro	10-6	m
• Giga	10^{9}	G	nano	10^{-9}	n
• Tera	10^{12}	T	• pico	10-12	p
• Peta	10^{15}	P	• femto	10^{-15}	f
• Esa	10^{18}	E	• atto	10-18	a

	fattore di moltiplicazione	prefisso	simbolo
	$1\ 000\ 000\ 000\ 000\ 000\ 000\ = 10^{18}$	exa	E
	$1\ 000\ 000\ 000\ 000\ 000 = 10^{15}$	peta	P
	$1\ 000\ 000\ 000\ 000 = 10^{12}$	tera	${ m T}$
	$1\ 000\ 000\ 000\ = 10^9$	giga	${ m G}$
	$1\ 000\ 000\ = 10^6$	mega	\mathbf{M}
	$1\ 000 = 10^3$	kilo	k
	$100 = 10^2$	etto	h
multipli	$10 = 10^1$	deca	da
sottomultipli	$0.1 = 10^{-1}$	deci	d
	$0.01 = 10^{-2}$	centi	\mathbf{c}
	$0.001 = 10^{-3}$	milli	m
	$0.000\ 001\ = 10^{-6}$	micro	μ
	$0.000\ 000\ 001\ = 10^{-9}$	nano	n
	$0.000\ 000\ 000\ 001\ = 10^{-12}$	pico	p
	$0.000\ 000\ 000\ 000\ 001\ = 10^{-15}$	femto	p f
	$0.000\ 000\ 000\ 000\ 001\ = 10^{-18}$	atto	a

i neutrini impiegano 2,4 millisecondi per coprire la distanza (730 Km), con un anticipo di 60 miliardesimi di secondo (60 nanosecondi) rispetto alla velocità attesa.

Ordine di grandezza

Serve per esprimere brevemente grandezze molto piccole o molto grandi

numero - multiplo/sottomultiplo - u.d.m.

EX:
$$57800g = 5.78 \times 10^4 g = 5.78 \times (10^1 \times 10^3) g = 57.8 \text{ kg}$$

$$57.8 \, kg = 57.8 \times 10^3 \, g = 5.78 \times 10^4 \, g$$

EX:
$$0.0047g = 4.7 \times 10^{-3}g = 4.7 \text{ mg}$$

$$0.00047g = 4.7 \times 10^{-4}g = 4.7 \times \left(10^2 \times 10^{-6}\right)g = 470 \,\mu g$$

UTILE PER CONFRONTI

raggio atomo: 10^{-10} m 10^{-10} m $/10^{-15}$ m = 10^{5}

raggio nucleo: 10-15 m

L'atomo è 100000 volte più grande del nucleo!

Ancora sulle potenze di dieci

l'uso delle potenze di dieci permette di eseguire velocemente operazioni complicate, con risultati non lontani dal risultato vero

```
2897 · 71544 = 207262968 = 2.07·10<sup>8</sup> (esatto)

= (2.897 \cdot 10^3) \cdot (7.1544 \cdot 10^4)

= 2.897 \cdot 7.1544 \cdot (10^3 \cdot 10^4)

(3.10^3) \cdot (7.10^4) = 3.7 \cdot 10^7 = 21.10^7 = 2100000000 = 2.1.10^8 (appross.)
```

In Fisica utilizziamo spesso queste approssimazioni, quando stimiamo gli ordini di grandezza delle quantità (io lo faccio ogni giorno nel mio lavoro di ricerca).