청년 AI·BIG DATA 아카데미 25기

2024.04.24

## 크라우드소싱 배송을 위한 배송지 고려 적재 최적화

B2 김아연 김한탁 류지연 서지윤 오석훈 하지민



### **CONTENTS**

| Chapter 1. | 프로젝트 개요                                     | Chapter 3. <b>분석 결과</b> Object Detection, 강화학습 알고리즘, Unity  시연 영상 |
|------------|---------------------------------------------|-------------------------------------------------------------------|
| Chapter 2. | 프로세스 소개  ■ 프로젝트 소개  ■ 적용 방안  ■ 프로세스 및 활용 기술 | Chapter 4. <b>결론 및 논의</b> • 결론 및 기대효과 • 한계점 및 개선 사항               |

## 1. 프로젝트 개요 🤝

#### 중국 e-커머스(C-커머스)의 공습



- C-커머스(알리익스프레스, 테무, 쉐인)가 국내 e-커머스 시장을 위협
- 이에 쿠팡은 3조원 이상을 투자하여 2027년까지 로켓배송(당일/익일 배송) 지역을 전국으로 확장 계획을 발표

#### 국내 e-커머스의 라스트마일 배송 경쟁



- 라스트마일: 터미널에서 주문자에게 배송하는 마지막 단계
- 라스트 마일 배송 시장 선점을 두고 업계에서 속속 관련 서비스를 선보이며 경쟁이 불붙고 있음



#### 쿠팡 플렉스 시작으로 크라우드소싱 배송 시스템 확산



- <mark>크라우드소싱</mark>: 기업 활동에 소비자 참여(크라우드 워커)로 활동을 증진하고 그 수익을 공유하는 비즈니스 모델
- 라스트마일 배송 중 하나인 크라우드소싱 배송
- 크라우드소싱 배송시스템이 e-커머스 시장 전반으로 확산

### 산업 현황



#### 크라우드소싱 배송 기업 사례

• 아마존 플렉스



- 아마존은 당일배송을 추진하기 위해 2015년 플렉스(Flex) 서비스를 시작
- 아마존과 계약을 맺은 일반인들이 자신의 차량으로 아마존 상품을 배송
- 현재 미국 내 50개 도시에서 플렉스 서비스를 운영 중

#### • 쿠팡 플렉스

## coupang flex

- 쿠팡은 물량 폭증에 대응하기 위해 2018년 플렉스(Flex) 서비스를 시작
- 원하는 지역에서, 원하는 날에, <mark>자신의 차량으로 쿠팡 상품을 배송</mark>
- 런칭한 이후 3년 동안 수십만 명의 플렉서가 참여해온 국민 부업



플렉스 앱 회원가입 및 업무 신청



배송 캠프 도착



배송 물건 적재



배송

### 전기수 분석



#### 21기 C3조 'PBA Twins'

강화학습 기반 디지털 트윈을 활용한 물류 최적화 시스템



- 가상환경 구현: Unity
- 강화학습 알고리즘: PPO
- 로봇팔제어: ROS
- 2D Bin Packing System

#### 22기 C4조 'CPost(C4st)'

강화학습을 통한 3D 물류 적재 최적화 시스템



- 가상환경 구현 : Unity
- 강화학습 알고리즘: ACTKR
- 로봇팔제어: ROS
- 3D Bin Packing System



#### 전기수

- 💟 밀도, 무게만을 고려하여 최적 적재 방안 도출
- 🤡 표준 산업용 팔레트 사이즈, 110cm x 80cm x 170cm 기준

#### 차별점

- 🧧 밀도, 무게, 배송지 우선순위 고려하여 최적 적재 방안 도출
- 💟 차종에 따른 트렁크 실제 크기를 바탕으로 Multi-Pallete 설계

### 논문 분석



#### 3D Bin Packing Problem

#### Learning Efficient Online 3D Bin Packing on Packing Configuration Trees



- 최적의 공간에 해당 배치를 출력하는 온라인 3D bin packing 을 구현
- 물류가 성공적으로 배치되면 공간 점유율에 따라 보상을 줌
- 물류를 재조정 하지 않는 온라인 방식을 다룸



해당 논문의 ACKTR, A2C 모델을 포함한 다양한 강화학습 알고리즘을 사용하여 3D 물류 적재 최적화 시스템을 만들고자 함

#### 배송지 우선 순위 고려

#### Hatch를 고려한 컨테이너 터미널 적재 순서 최적화 연구



Figure 4. Basic structure of the optimization model

- 팔레트에서 적재 최적화를 해치를 고려해 적재 순서를 결정
- 각 배송지의 컨테이너 처리 시간, 터미널 내 위치를 기준으로 배송지 우선 순위를 부여하여 운영의 효율성 증대시킴



적재 최적화 알고리즘에서 적하 우선순위를 고려하여 설계했을 때 소요 시간이 낮아짐을 확인함

## 2. 프로젝트 소개 📑

### 프로젝트 소개



Object Detection을 활용한 차량인식 및 차량에 따른 트렁크공간 생성



실제산업에서사용되는 박스규격을모델링하기위한 박스크기 랜덤화



밀도, 무게, 배송지 우선순위 제약조건 설정을 통한 강화학습 진행



강화학습 알고리즘 적용 로봇팔 시뮬레이션(Unity)





크라우드소싱 배송에 사용되는 차량의 배송지 고려 적재 최적화

#### 크라우드소싱 배송 차량 선정 → 3D 환경 구성

- 쿠팡플렉스에서 주로 사용되는 6종 차량을 선정
- 차량의 트렁크 실측 길이를 반영하여 3D 공간 생성



#### 박스 규격

• 마켓컬리, 우체국 등 실제 산업에서 사용되는 박스 규격을 조사하여 랜덤 사이즈 박스의 최소값과 최대값을 설정







| 박스 규격  | 길이(cm) |    |  |
|--------|--------|----|--|
| च≏ π⁴व | 최대     | 최소 |  |
| 가로     | 20     | 50 |  |
| 세로     | 15     | 40 |  |
| 높이     | 10     | 35 |  |

#### 보상 함수 제약 조건

#### 1) reward

: ratio \* 10 + 0.01 \* density \* ( max\_h - z) + w \* destination\_reward

- ratio : 상자 부피의 합 / 3D 공간의 부피
- density : 박스의 밀도
- destination\_reward : 배송지 우선순위 제약조건
- w: 배송지 우선순위 제약조건 가중치

#### 2) 0.01 \* density \* (max\_h - z)

- 박스의 밀도가 크면서, 위치가 최대높이(max\_h)에 가까울수록 보상 감소

#### 3) destination\_reward

: max(0, 1 - abs((배송지 주소 수-배송지 우선순위 + 1) \* (3D 공간 높이 / 배송지 주소 수) - (박스 높이 + 박스의 현재 z 좌표)) / 3D 공간 높이)

- 배송지 우선순위가 높을수록 z축에서 높은 위치에 배치되어야 보상 증가

### 프로세스 및 활용 기술















3. 분석 결과 🚚

### **Object Detection**



#### 데이터 수집

Al-hub에서 제공하는 '자동차 차종/연식/번호판 인식용 영상' 데이터



#### 데이터 라벨링

Augmentataions을 이용하여 모델 학습에 사용할 수 있는 사진의 양을 늘림 → 7907장(학습용 6916장, 시험용 371장, 평가용 620장)



#### 모델 성능 비교

YOLOv5, v8의 손실함수(Box Loss, Class Loss, DFL Loss)



모델별 validation set에 의한 평가지표 결과에 따른 차이는 거의 없지만 validation과 train set의 loss 값 비교를 통해 Yolov8 모델의 성능이 더 좋다고 판단



#### 강화학습 알고리즘 모델 선정



Reward, Ratio 기준 성능이 가장 좋은 ACKTR 알고리즘 선정



#### 배송지 우선 순위 조건 항의 최적 가중치 선정



배송지 우선 순위의 가중치를 크게 부여할수록 박스의 밀도 제약조건을 잘 반영하지 못하는 현상 발생 박스 밀도, 배송지 우선순위 제약 조건을 적절히 반영하기 위해 w = 1로 선정





#### ACTKR 모델 평가

#### **Best Reward episode**



| Ratio | Reward | 박스 개수 |
|-------|--------|-------|
| 0.570 | 21.106 | 71    |





Best Ratio의 모델이 배송지 우선순위 및 박스 밀도 제약조건을 더 잘 고려하는 것으로 나타남
Best Ratio를 기준으로 Best Episode 선정



#### 차량별 Best Episode 확인





선정한 6종의 차량 모두 박스의 밀도, 배송지 우선순위 제약조건이 잘 반영됨을 알 수 있음

#### 가상환경 비교

#### UNITY

- 로보틱스 분야에서 가장 많이 사용되는 시뮬레이터

| 장점                                         | 단점                    |
|--------------------------------------------|-----------------------|
| - 광범위한 사용법<br>- 강력한 커뮤니티 및 지원<br>- 플랫폼 호환성 | - 리소스 사용<br>- 유료 라이선스 |

#### Open Al Gym(Issac Gym)

- Isaac Sim 시뮬레이션를 이용해 강화학습을 진행하기 위해 사용되는 Isaac Sim 내 하나의 틀

| 장점     | 단점                       | 장점             | 단점                   |
|--------|--------------------------|----------------|----------------------|
| GPU 가속 | - 특화된 사용<br>- 하드웨어 요구 사항 | - 사실적 물리 및 렌더링 | - 복잡한 설정<br>-하드웨어 요구 |

#### Omniverse

- nVIDIA가 개발한 3D 가상세계를 만들고 물리 공간을 확장하는 플랫폼으로 실시간 시뮬레이션 지원

#### **Unity Map**

• 포스코 포항 제철소





#### 실험 조건 및 환경

#### 알고리즘 vs 인간 적재 비교

#### 실험 조건

- 1. 팔레트 규격은 'Ray'로 한정
- 2. ACKTR 모델의 Best Episode를 선정하여 사용된 크기와 순서 사용
- 3. 박스는 가로, 세로, 높이 축에 평행하게 적재
- 4. 상자는 하나씩 실시간으로 생성
- 5. 팔레트 규격을 초과할 시 종료
- 6. 적재 공간 없을 시 에피소드 종료



Chapter 3-2 시연 영상



청년 AI · BIG DATA 아카데디

# 4. 결론 및 논의 🞉

### 결론 및 기대효과



#### 결론



YOLOv8를 활용한 차량 인식 및 차량에 따른 적재 공간을 생성 - Multi Pallet 구현



여러 배송 업체의 박스 규격을 참고하여, 규격 범위 내 난수 생성을 통한 박스 크기를 다양화



강화 학습 시 밀도, 무게 뿐만 아니라 <mark>배송지 우선 순위 제약 조건</mark>을 추가



제약 조건을 적용한 강화 학습 알고리즘을 Digital Twin 환경인 Unity에서 구현

#### 기대 효과



무게 뿐만이 아닌 배송지 우선 순위를 고려한 적재로 빠른 배송 가능



최적화된 적재 · 배송으로 차량의 운행 횟수와 거리를 줄일 수 있어 더 친환경적인 물류 솔루션 제공 가능

### 한계점 및 개선 사항



#### 한계점 및 개선 사항

- ☑ Online 방식으로 물류를 적재하여 배송지 우선순위가 완전히 고려되지 않음
- **르** 트렁크의 곡선의 형태를 반영한 팔레트를 구현한다면, 완전한 현실을 반영한 알고리즘 설계 가능
- 💟 🛮 유니티 내 객체를 인식하는 기능을 구현한다면 진정한 디지털 트윈 가상현실 실현 가능











