

4.7 单纯形法一从小于或等于约束条件开始

最优性条件

前面章节中已经提到过,函数的梯度与其等值线正交,且是函数值增加的方向。因此, 从图 4.3 中可以看出,点 A 明显不是极大值。考虑到图示的方向 c,在可行域 Ω 内沿着 x_1 的方向或 x_2 的方向都会使函数值增加。更为一般的说法是,由于c是函数f的梯度、朝着指 向c的半空间移动、都会使函数值f增加。从点B开始、向点C

移动,会使函数值增加。从点 E 开始向点 D 移动,然后再移动到 C,会使函数值f增加。在点C处,无论如何移动都不会使函数 值增加,这意味着 C 就是最优点。从图 4.4 可以看出,从点 D 出 图4.4 非最优点 D 处的 发,选择阴影中的任意方向作为搜索方向,都能使函数值 f 增加, 搜索方向 且保证处于可行域 Ω 中。单纯形法采用方向 d 作为下降方向,即 沿着可行域边界搜索,从一个顶点到另外一个顶点。

明理, 精工, 笃学, 致远

4.7 单纯形法一从小于或等于约束条件开始

最优性条件 (KKT条件)

◆ 如果可行域内的某点, 能够使得式(4.7) 成立, 且有 $\mu_i \geq 0$, $i \in$ 1. 则该点是最优点。

$$\mathbf{c} = \mu_i \mathbf{N}_i$$

◆ 也就是说当目标函数的梯度和约束方程的梯度确定,可以获得 每个约束极点的拉格朗日乘子,满足上述条件为最优点。

明理,精工,笃学,致远

4.7 单纯形法一从小于或等于约束条件开始

最优性条件 (KKT条件)

对于极大化问题, 梯度c可以表示为各起作用约束方程梯度的线性组合:

$$\mathbf{c} = \sum_{i \in I} \mu_i \mathbf{N}_i \tag{4.7}$$

其中, 1 为在最优点处起作用约束的下标集合, N, 为第 i 个起作用约束的梯度或者法向量 $(a_i \cup -e_i), \mu_i$ 为拉格朗日乘子。式 (4.7) 的含义为向量 c 位于由起作用约束的梯度构成

明理,精工,笃学,致远

4.7 单纯形法一从小于或等于约束条件开始

KKT条件

在点 A 处,起作用约束的梯度为 $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$,因此,将 $\mathbf{c} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 表示为两个梯度的线 性组合: $\begin{bmatrix} 2 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 0 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, 由此可得 $\mu_1 = -2$, $\mu_2 = -1$ 。这恰好就是首行的检验

在点 D 处,梯度的线性组合为 $\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \mu_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \mu_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$,可得 $\mu_1 = -1$, $\mu_2 = 1$,也不是最

在点 C 处、梯度的线性组合为 $\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \mu_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \mu_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, 可得 $\mu_1 = 0.8$, $\mu_2 = 0.6$, 说明这 是最优解。点 C 就是 KKT 点。

明理,精工,笃学,致远

4.7 单纯形法一从小于或等于约束条件开始

KKT条件

式 (4.7) 所示的 KKT 条件意味着所有不起作用约束的拉格朗目乘子为零,即对于 $i \in I$, 有 $g_i < 0$,则对应的拉格朗日乘子为 $\mu_i = 0$ 。这可以归纳为一个互补条件,即 $\mu_i g_i = 0$ 。

1亿代円翘:		
	maximize $\mathbf{c}^{T}\mathbf{x}$	
	subject to $Ax \leq b$	(4.8)
	x ≥ 0	
KKT 条件:		
可行性条件	$\mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b}$	(4.9)
最优性条件	$\mathbf{c} = \mathbf{A}^{T} \mathbf{v} - \mathbf{n}$	(4.10)
互补条件	$\mathbf{u}^{T}\mathbf{x} + \mathbf{v}^{T}\mathbf{y} = 0$	(4.11)
非负约束	$x \ge 0$, $y \ge 0$, $u \ge 0$, $v \ge 0$	(4.12)

明理,精工,笃学,致远

4.7 单纯形法一从小于或等于约束条件开始

枢轴变换的几何解释

- ◆ 所谓离基变量,就是在枢轴变换过程中,从正数变为0的变量,实际上也就是 确定哪个约束从不起作用约束变成了起作用约束
- ◆如果变量是问题中的原有变量,那么这就意味若该变量恰好到达边界;如果是 松弛变量,那么其所在的不等式约束变为起作用约束
- ◆ 算法中的step 3 确定的是,与当前极点到下一个极点之间的直线相交的最近的 约束方程
- ◆ 总而言之, 进基操作(Step 2) 确定的是x空间中的移动方向, 而离基操作(Step 3)确定的是沿着可行域多面体边界的移动步长

明理,精工,笃学,致远

4.7 单纯形法一从小于或等于约束条件开始

枢轴变换的几何解释

- ◆ 选择进基变量,依据是最小的负检验数,可认为沿着期望使得目标函数增长 量最大的方向移动,直到到达最优点C
- ◆ 因此,在点A 处,由于 $c = [2,1]^T$ 。因此在从A到B方向上的斜率分量为2,而 从A到E方向上的斜率分量为1。
- ◆ 由此可知,如果从点A出发到B的方向就是目标函数增长期望值最大的方向, 到达B之后, x₂ 不起作用约束
- ◆目标函数值的实际增长量还与AB或AE之间的距离有关,究竟增长量多大,完 成枢轴变换之后才知道

明理,精工,笃学,致远

4.10 线性规划中的对偶

- ◆每一个线性规划问题都对应着一个对偶的线性规划,而该问题本身则称为原问 题。对偶问题与原问题具有完全一致的参数。
- ◆如果原(对偶)问题是极大化问题,则对偶(原)问题是极小化问题
- ◆ 在工程和经济领域中,对偶现象处处可见。
- ◆电路可以基于电动势设计,也可以基于电动势的对偶变量,即电流进行设计。
- ◆ 机械结构可以基于应变(位移)设计,也可以基于其对偶参数,即应力(拉力) 进行设计
- ◆ 在资源配置问题中, 如果原问题的目标是每单位产量的定价, 则对偶问题就是 生产方必须为每单位资源支付的价格

明理,精工,笃学,致远

12

4.10 线性规划中的对偶

线性规划的对偶定理

- ◆如果原问题和对偶问题都有可行解,则都有最优解,原问题目标函数的极大值 就等于对偶问题的极小值。
- ◆如果原(对偶)问题有无界解,则对偶(原)问题不存在可行解。

明理,精工, 笃学, 致远

17

€ 4.11 对偶单纯形法

◆对于某些线性规划问题,无法第一眼看出原问题的基本可行解,但能够直接 找出对偶问题的可行解 (满足原问题的最优性条件)

minimize
$$2x_1 + x_2$$

subject to $2x_1 + 5x_2 \ge 20$ [1]
 $x_1 + x_2 \ge 6$ [2]
 $3x_1 + x_2 \ge 9$ [3]
 $x_1 \ge 0, x_2 \ge 0$

- ◆ 对于该问题,采用对偶单纯形法,基本思路是在保持对偶问题可行性的基础上,使得原问题的解逐渐从不可行到可行
- ◆与常规单纯形法不同的是,对偶单纯形法能够在迭代过程中始终保持"最优性",即检验数始终保持非负;但是,迭代过程得到的解不可行(某些基变量x_i < 0)。因此,一旦得到了可行解,就意味着得到了最优解,迭代结束

明理,精工,笃学,致远

19

4.10 线性规划中的对偶

线性规划的对偶定理

例4.3 考虑4.3节中的结构设计问题,线性规划原问题的各参数为

$$\mathbf{c} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 0 & 1 \\ 4 & 3 \\ 4 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 200 \\ 1280 \\ 960 \end{bmatrix}$$

因此,由对称形式的对偶问题结构式(4.25)可得对偶问题为 minimize $f_d = 200 v_1 + 1280 v_2 + 960 v_3$ subject to $4 v_2 + 4 v_3 \geqslant 1$

 $v_1 + 3v_2 + v_3 \ge 1$ $v_1 + 3v_2 + v_3 \ge 1$ $v \ge 0$ 原问題 对偶问题 maximize c^Tx minimize b^Tv

原问题有 2 个决策变量和 3 个约束条件,因此对偶问题有 2 个约束条件和 3 个决策变量。对偶问题的最优解为 $\mathbf{v} = [0.25, 0.25, 0]^\mathsf{T}$, 实际上这就是原问题中各约束条件对应的拉格期目乘子。对偶问题目标函数的最优值也是 370,最优解之外的任意可行解 \mathbf{v} 所对应的目标函数值都大于 370。比如, $\mathbf{v} = [1,1,1]^\mathsf{T}$ 对应的目标函数值为 $f_u = 2440$ 。对于原问题,可行域内最优点之外的任一点对应的目标函数值都小于 370。由此可以看出,当原问题和对偶问题都达到了最优解时,对偶间隙为零。原问题的拉格朗目乘子 v_i 的意义已经在4.3 节中讨论过了。

明理,精工,笃学,致远

18

4.11 对偶单纯形法

minimize $2x_1 + x_2$ subject to $2x_1 + 5x_2 \ge 20$ [1] $x_1 + x_2 \ge 6$ [2] $3x_1 + x_2 \ge 9$ [3] $x_1 \ge 0, x_2 \ge 0$

- ◆首先,引入剩余变量,构造标准形式,列写出初始 单纯形表
- ◆将剩余变量对应的约束方程两端同时乘以-1,就可以避免引入人工变量

明理,精工,笃学,致远

20

4.11 对偶单纯形法

第一步: 初始化

minimize	$2x_1 + x_2$	
	$2x_1 + 5x_2 \ge 20$	[1]
	$x_1 + x_2 \ge 6$	[2]
	$3x_1 + x_2 \ge 9$	[3]

		初始单	单纯形表 (对应	点 4)		
	x,	x2	x3	x4	x ₅	右端项
ſ	2	1	0	0	0	0
x_3	-2	[-5]	1	0	0	- 20
x4	-1	-1	0	1	0	-6
x ₅	-3	-1	0	0	1	-9

- ◆首行元素全部为正数, 说明原问题的最优性条件或对偶问题的可行性条 件是能够保证,如图4.6所示
- ◆但是,对应的基本解对于原问题而言不可行,因为x₃、x₄、x₅都是负值

明理,精工,笃学,致远

4.11 对偶单纯形法

第二步: 确定离基变量

		初始自	单纯形表(对应	点 4)		
	х,	x2	х3	x4	x5	右端項
ſ	2	ı	0	0	0	0
x3 -	-2	[-5]	- 1	0	0	- 20
x4	-1	- t	0	1	0	-6
X.	-3	-1	0	0	1	-9

原问题		对偶问题		
maximize subject to $x \ge 0$		minimize subject to v ≥ 0		

- ◆在当前的基变量中,选择最小的负值变量b;作为离基变量,行下标为i。如果找不到负值基变量,说明这就是最优解。对于上表,最小的负值基变量为-20,故枢轴行对应的变量为x₃
- lacktriangle 针对离基变量对应的负系数 a_{ij} ,选择正数 c_j ,开展比值计算 $c_j/(-a_{ij})$,最小比值对应的列j 就是枢轴列。如果无法得到这样的枢轴列,则对偶问题是无界的。上表中,比值运算结果 为 $\{2/(-(-2)), 1/(-(-5))\}$,故对应的枢轴列为第2 列,即 x_2 对应的列。 x_2 为进基变量。表中 用方括号标出的变量即为枢轴变量。

明理,精工,笃学,致远

22

4.11 对偶单纯形法

第三步: 确定进基变量, 完成进基变换

	初始单纯形表 (对应点 A)					
	x1	x2	x3	x4	x5	右端项
ſ	2	1	0	0	0	0
x3	-2	[-5]	1	0	0	- 20
x4	-1	- 1	0	1	0	-6
x,	-3	-1	0	0	1	-9

围绕这一枢轴变量开展初等行变换,使其变换为1,枢轴列的其他元素均为0,得到如 下所示的单纯形表 (对应图 4.6 的点 B):

第2个	单纯形表 (对应			
x2	х,	x4	<i>x</i> ₅	右端項
0	0. 2	0	0	-4
1	-0.2	O	0	4

明理,精工,笃学,致远

4.11 对偶单纯形法

		第2个	个单纯形表 (对应	克点 B)		
3	x ₁	x2	x3	x,	.x5	右端项
f	1.6	0	0. 2	0	0	-4
x2	0. 4	1	- 0. 2	0	0	4
x_4	-0.6	0	-0.2	1	0	- 2
x5	[-2.6]	0	-0.2	0	1	-5

以此类推,继续开展离基进基操作,可得枢轴行为第3行,对应变量 x。 离基;枢轴列 为第1列;进行初等行变换后,得到第3个单纯形表(对应图 4.6 中的点 C):

第3个单纯形表 (对应点 C)

	x ₁	x2	x,	x4	.x5	右端项
f	0	0	0.077	0	0.615	-7,077
x2	0	1	-0.231	0	0.154	3. 231
x_4	0	0	[-0.154]	1	-0.231	-0.846
x_1	1	0	0. 077	0	-0.385	1.923

明理,精工,笃学,致远

24

