Designing with Hall-Effect Switches & Latches

TI Precision Labs - Magnetic Position Sensing

Presented by Manny Soltero Prepared by Harsha Munikoti

What are Hall-Effect Switches and Latches?

- Magnetic flux density (B) to binary output
 - Typically used with moving permanent magnets for contactless motion sensing
 - Applications: hinges, buttons, levers, knobs, valves, relays, fans, etc.
- Directional
 - Most sense B in 1-D
 - Up to 3 axes of sensitivity possible
- Sense B amplitude and polarity
 - Switches detect changes in B amplitude
 - Latches detect changes in B polarity

Implemented as Hysteresis Comparators

Upper magnetic threshold, B_{OP} : "Operate Point" Lower magnetic threshold, B_{RP} : "Release Point" Amount of hysteresis, $B_{HYS} = |B_{OP} - B_{RP}|$

Switches and latches have similar responses

$$|B| > |B_{OP}| \rightarrow V_{OUT} LOW$$

 $|B| < |B_{RP}| \rightarrow V_{OUT} HIGH$

Behaviors differ due to polarities of B_{OP} and B_{RP} Switches \Rightarrow B_{OP} and B_{RP} have same polarity Latches \Rightarrow B_{OP} and B_{RP} have opposite polarity

Typical Switch Application: Proximity Sensing

- Magnet moves towards or away from switch along axis
 - Need V_{OUT} HIGH when $d > d_2$ and LOW when $d < d_1$
 - Pick suitable sensor and magnet
- First-order algebraic analysis for sensor selection

- Need B(d₁) > B_{OP,MAX} and B(d₂) < B_{RP,MIN}
$$\rightarrow$$
 need $\frac{B(d_1)}{B(d_2)} > \frac{B_{OP,MAX}}{B_{RP,MIN}}$ (1)

NOTE: **B(d)** α **1/d**² (approximately) for common magnet shapes

$$B(d_{1}) = \frac{K}{d_{1}^{2}}$$

$$B(d_{2}) = \frac{K}{B(d_{2})} = \frac{d_{2}^{2}}{B(d_{2})} > \frac{B_{OP,MAX}}{B_{RP,MIN}} \implies \frac{B_{OP,MAX}}{B_{RP,MIN}} < \left(\frac{d_{2}}{d_{1}}\right)^{2}$$
 (2)

Switch Design Example: Sensor Selection

• If
$$d_1 = 2mm$$
 and $d_2 = 6mm$, need: $\frac{B_{OP,MAX}}{B_{RP,MIN}} < \left(\frac{6mm}{2mm}\right)^2 = 9$

- Compute B_{OP,MAX}/B_{RP,MIN} for devices of interest
 - If DRV5032 is considered, DU, AJ and ZE will likely work:

DU VERSION							
В	Magnetic threshold operate point	OUT1 pin (north)	-3.9	-2.5	-1.2	mT	
B _{OP}		OUT2 pin (south)	1.2	2.5	3.9		
В	Magnetic throughold release point	OUT1 pin (north)	-3.5	-1.8	-0.9	mT mT	
B _{RP}	Magnetic threshold release point	OUT2 pin (south)	0.9	1.8	3.5		

DRV5032 variant	B _{OP,MAX}	B _{RP,MIN}	B _{OP,MAX} /B _{RP,MIN}
DU	3.9	0.9	4.33
FA, FB, FC, FD	4.8	0.5	9.6
AJ	9.5	3	3.17
ZE	63	30	2.1

Switch Design Example: Magnet Selection

- Use online tool available on product page
- Adjust magnet properties until B(2mm) > B_{OP,MAX} and B(6mm) < B_{RP,MIN}
- For example, magnet selected works for both DRV5032DU and AJ
- Similarly a 6mm x 4mm cylindrical ferrite magnet would work for the DRV5032ZE

Typical Latch Application: Incremental Rotary Encoding

- N-pole magnet on rotary shaft, with M latch sensors
 - Target angle resolution specified → select N, M

transitions =
$$M \times N \ge \frac{360^{\circ}}{Resolution}$$
 (3a)

- Need M ≥ 2 out-of-phase sensors to resolve spin direction
- Need N even → $N \ge 2 \times CEIL\left(\frac{180^{\circ}}{Resolution \times M}\right)$ (3b)
- Magnet can be placed arbitrarily close to sensor(s)
- Other sensor selection criteria
 - Sufficient sampling rate to support angular speed (RPM)

$$f_{SAMPLE}[Hz] > \frac{RPM}{60} \times N \times 2$$
 (4)

Latch Design Example

• Target angle resolution = 5°, RPM ≤ 10000

$$\#transitions = M \times N \ge \frac{360^{\circ}}{Resolution} = 72$$

Use M = 2 *for sensing spin direction*

$$\therefore N \ge 2 \times CEIL\left(\frac{180^{\circ}}{Resolution \times M}\right) = 36 \ (18 \ pairs)$$

• If only 20-pole magnet available

$$M \ge \frac{72}{N} = 3.6 \implies Use M = 4 sensors$$

$$Resolution = \frac{360^{\circ}}{M \times N} = 4.5^{\circ}$$

• Sensor sampling rate (for N = 36)

$$f_{SAMPLE}[Hz] > \frac{RPM}{60} \times N \times 2 = 12kHz$$

To find more magnetic position sensing technical resources and search products, visit ti.com/halleffect