

Questão 01 - (UEM PR/2012)

Do topo de uma plataforma vertical com 100 m de altura, é solto um corpo C_1 e, no mesmo instante, um corpo C2 é arremessado de um ponto na plataforma situado a 80 m em relação ao solo, obliquamente formando um ângulo de elevação de 30° com a horizontal e com velocidade inicial de 20 Considerando que os corpos estão, inicialmente, na mesma linha vertical, desprezando a resistência do ar, e considerando $g = 10 \text{ m/s}^2$, assinale o que for **correto**.

- 01. A altura máxima, em relação ao solo, atingida pelo corpo C_2 é de 85 m
- 02. Os dois corpos atingem a mesma altura, em relação ao solo, 1,5 segundos após o lançamento.
- 04. O corpo C_2 demora mais de 6 segundos para atingir o solo.
- 08. Os dois corpos atingem o solo no mesmo instante de tempo.
- 16. A distância entre os corpos, 2 segundos após o lançamento, é de $20\sqrt{3}$ metros.

Questão 02 - (UFTM/2011)

Num jogo de vôlei, uma atacante acerta uma cortada na bola no instante em que a bola está parada numa altura h acima do solo. Devido à ação da atacante, a bola parte com velocidade inicial V_0 , com componentes horizontal e vertical, respectivamente em módulo, $V_x = 8 \text{ m/s}$ e $V_y = 3 \text{ m/s}$, como mostram as figuras 1 e 2.

Após a cortada, a bola percorre uma distância horizontal de 4 m, tocando o chão no ponto P.

Considerando que durante seu movimento a bola ficou sujeita apenas à força gravitacional e adotando g=10 m/s², a altura h, em m, onde ela foi atingida é

- a) 2,25.
- b) 2.50.
- c) 2,75.
- d) 3,00.
- e) 3,25.

Questão 03 - (UEPG PR/2011)

Um projétil quando é lançado obliquamente, no vácuo, ele descreve uma trajetória parabólica. Essa trajetória é resultante de uma composição de dois movimentos independentes. Analisando a figura abaixo, que representa o movimento de um projétil lançado obliquamente, assinale o que for correto.

- 01. As componentes da velocidade do projétil, em qualquer instante nas direções x e y, são respectivamente dadas por, $V_x = V_0 \cdot \cos\theta$ e $V_y = V_0 \cdot \sin\theta gt$
- 02. As componentes do vetor posição do projétil, em qualquer instante, são dadas por, $x = V_0 \cdot \cos\theta \cdot t$ e $y = V_0 \cdot \sin\theta \frac{1}{2} gt^2$
- 04. O alcance do projétil na direção horizontal depende da velocidade e do ângulo de lançamento.
- 08. O tempo que o projétil permanece no ar é $t = 2 \frac{V_o.sen\theta}{g}$
- 16. O projétil executa simultaneamente um movimento variado na direção vertical e um movimento uniforme na direção horizontal.

Questão 04 - (UFMS/2010)

Uma bola de bilhar de massa m é lançada horizontalmente com velocidade V_o da borda de uma mesa que está a uma altura H do solo também horizontal. A aceleração da gravidade no local é g e é uniforme, veja a figura. Considerando que o ar exerce uma força F_a de arrasto na bola dada pelo formalismo vetorial F_a = -bV, onde b é uma constante de proporcionalidade, e V é o vetor velocidade da bola vista de um

referencial inercial, assinale a(s) proposição(ões) correta(s).

- 01. A trajetória da bola não será uma parábola.
- 02. A componente da velocidade da bola na direção horizontal permanece constante durante a queda.
- 04. A força de arrasto é sempre vertical para cima.
- 08. O alcance A na horizontal é igual a $V_0(2H/g)^{1/2}$.
- 16. A intensidade do vetor aceleração da bola vai diminuindo durante a queda.

TEXTO:

Nesta prova, quando necessário, considere:

- a aceleração da gravidade é 10 m/s².
- a resistência do ar pode ser desprezada.

Questão 05 - (UFPB/2010)

O recorde mundial do salto a distância masculino está na marca dos 19,6 *m*. Com base nessa informação, identifique as afirmativas corretas:

- I. Se um atleta conseguir saltar, fazendo um ângulo exato de 45° com a horizontal, o módulo da sua velocidade inicial, para atingir o recorde mundial, deverá ser de 14 m/s.
- II. Se um atleta saltar, fazendo um ângulo de 60° com a horizontal com velocidade inicial de 14 *m/s* em módulo, quebrará o recorde mundial.
- III. Se um atleta conseguir saltar, com velocidade inicial em módulo de 13

m/s, atingirá, no máximo, uma distância de 16,9 *m*.

- IV. Se um atleta saltar na Lua, onde a gravidade é um sexto da gravidade da Terra, com velocidade inicial em módulo de 15 *m/s*, atingirá a distância máxima de 135 *m*.
- V. Se um atleta saltar no planeta Júpiter, onde a gravidade é duas vezes e meia a gravidade da Terra, com velocidade de 15 *m/s* em módulo, atingirá uma distância máxima de 9 *m*.

Questão 06 - (UFOP MG/2010)

Uma pessoa lança uma pedra do alto de um edificio com velocidade inicial de 60m/s e formando um ângulo de 30° com a horizontal, como mostrado na figura abaixo. Se a altura do edificio é 80m, qual será o alcance máximo (x_f) da pedra, isto é, em que posição horizontal ela atingirá o solo? (dados: sen $30^{\circ} = 0.5$, cos $30^{\circ} = 0.8$ e $g = 10 \text{ m/s}^2$).

- a) 153 m
- b) 96 m
- c) 450 m
- d) 384 m

Questão 07 - (PUCCAMP SP/2010)

Do alto de uma montanha em *Marte*, na altura de 740 m em relação ao solo horizontal, é atirada horizontalmente uma pequena esfera de aço com velocidade de 30 m/s. Na superfície

deste planeta a aceleração gravitacional é de 3,7 m/s².

A partir da vertical do ponto de lançamento, a esfera toca o solo numa distância de, em metros,

- a) 100
- b) 200
- c) 300
- d) 450
- e) 600

Questão 08 - (UFT TO/2010)

Um jogador de futebol chuta uma bola com massa igual a meio quilograma, dando a ela uma velocidade inicial que faz um ângulo de 30 graus com a horizontal. Desprezando a resistência do ar, qual o valor que melhor representa o módulo da velocidade inicial da bola para que ela atinja uma altura máxima de 5 metros em relação ao ponto que saiu?

Considere que o módulo da aceleração da gravidade vale 10 metros por segundo ao quadrado.

- a) 10.5 m/s
- b) 15,2 m/s
- c) 32.0 m/s
- d) 12,5 m/s
- e) 20.0 m/s

Questão 09 - (UFU MG/2010)

Em um jogo da Copa do Mundo de 2002, Ronaldinho Gaúcho preparou-se para bater uma falta. A bola foi posicionada a uma distância de 20m do gol. A cobrança de falta foi feita de tal modo que a bola deixou o solo em uma direção que fez 45° com a horizontal.

Dados: $g = 10 \text{m/s}^2 \text{ e cos } 45^{\circ} = 1/\sqrt{2}$

Faça o que se pede.

- a) Com que velocidade Ronaldinho chutou a bola, sabendo que ela atingiu sua altura máxima a uma distância horizontal de 11,25m de onde a bola foi chutada?
- b) O goleiro, que estava adiantado, pulou, mas não alcançou a bola. Verifique com cálculos, se a bola teve altura suficiente para entrar no gol, sendo a altura oficial do travessão de 2,44m.

Questão 10 - (MACK SP/2012)

Uma bola é chutada a partir de um ponto de uma região plana e horizontal, onde o campo gravitacional é considerado uniforme, segundo a direção vertical descendente. A trajetória descrita pela bola é uma parábola, $|\vec{g}| = 10 \text{m/s}^2$ e a do resistência é desprezível. ar Considerando os valores da tabela ao lado, conclui-se que o ângulo α de lancamento bola da foi, aproximadamente,

- a) 15°
- b) 30°
- c) 45°
- d) 50°
- e) 75°

Questão 11 - (PUC SP/2012)

Dois amigos, Berstáquio e Protásio, distam de 25,5m. Berstáquio lança

obliquamente uma bola para Protásio que, partindo do repouso, desloca-se ao encontro da bola para segurá-la. No instante do lançamento, a direção da bola lançada por Berstáquio formava um ângulo θ com a horizontal, o que permitiu que ela alcançasse, em relação ao ponto de lançamento, a altura máxima de 11,25m e uma velocidade de 8m/s nessa posição. Desprezando o atrito da bola com o ar e adotando g = 10m/s², podemos afirmar que a aceleração de Protásio, suposta constante, para que ele consiga pegar a bola no mesmo nível do lançamento deve ser de

- a) $\frac{1}{2}$ m/s²
- b) $\frac{1}{3}$ m/s²
- c) $\frac{1}{4}$ m/s²
- d) $\frac{1}{5}$ m/s²
- e) $\frac{1}{10}$ m/s²

Questão 12 - (UNIFESP SP/2010)

No campeonato paulista de futebol, um famoso jogador nos presenteou com um lindo gol, no qual, ao correr para receber um lançamento de um dos atacantes, o goleador fenomenal parou a bola no peito do pé e a chutou certeira ao gol. Analisando a jogada pela TV, verifica-se que a bola é chutada pelo armador da jogada a partir do chão com uma

Balística – Avançada

velocidade inicial de 20,0 m/s, fazendo um ângulo com a horizontal de 45° para cima.

Dados: $g = 10.0 \text{ m/s}^2 \text{ e} \sqrt{2} = 1.4$

- a) Determine a distância horizontal percorrida pela bola entre o seu lançamento até a posição de recebimento pelo artilheiro (goleador fenomenal).
- b) No instante do lançamento da bola, o artilheiro estava a 16,0 m de distância da posição em que ele estimou que a bola cairia e, ao perceber o início da jogada, corre para receber a bola. A direção do movimento do artilheiro é perpendicular à trajetória da bola, como mostra a figura. Qual é a velocidade média, em km/h, do artilheiro, para que ele alcance a bola imediatamente antes de ela tocar o gramado?

$$l = \frac{20\sqrt{2}}{15}$$

$$y = v_0 \text{sen} \varnothing \cdot t - \frac{1}{2} \text{gt}^2$$

$$y = 15 \times \frac{1}{\sqrt{2}} \times \frac{20\sqrt{2}}{15} - \frac{1}{2} 10 \left(\frac{20\sqrt{2}}{15}\right)^2$$

$$y = 20 - \frac{160}{9} = 2,22 \text{m}$$

Como 2,22 m e menor que a altura do gol (2,44 m) a bola tem altura suficiente para entrar no gol.

10. D

11. B

12.

a) D = 40 m

b) $V_m = 20,16 \text{ km/h}$

Gabarito:

01. 17

02. C

03. 29

04. 17

05. I, III, IV, V

06. D

07. E

08. E

09.

a) 15m/s

b) x = 20m

 $v_0 = 15 \text{m/s}$

 $x = v_0 \cos \varnothing \cdot t$