## THE SYLOW THEOREMS

#### 1. Introduction

The converse of Lagrange's theorem is false: if G is a finite group and  $d \mid |G|$ , then there may not be a subgroup of G with order d. The simplest example of this is the group  $A_4$ , of order 12, which has no subgroup of order 6. The Norwegian mathematician Peter Ludwig Sylow [1] discovered that a converse result is true when d is a prime power: if p is a prime number and  $p^k \mid |G|$  then G must contain a subgroup of order  $p^k$ . Sylow also discovered important relations among the subgroups with order the largest power of p dividing |G|, such as the fact that all subgroups of that order are conjugate to each other.

For example, a group of order  $100 = 2^2 \cdot 5^2$  must contain subgroups of order 1, 2, 4, 5, and 25, the subgroups of order 4 are conjugate to each other, and the subgroups of order 25 are conjugate to each other. It is not necessarily the case that the subgroups of order 2 are conjugate or that the subgroups of order 5 are conjugate.

**Definition 1.1.** Let G be a finite group and p be a prime. Any subgroup of G whose order is the highest power of p dividing |G| is called a p-Sylow subgroup of G. A p-Sylow subgroup for some p is called a Sylow subgroup.

In a group of order 100, a 2-Sylow subgroup has order 4, a 5-Sylow subgroup has order 25, and a p-Sylow subgroup is trivial if  $p \neq 2$  or 5.

In a group of order 12, a 2-Sylow subgroup has order 4, a 3-Sylow subgroup has order 3, and a p-Sylow subgroup is trivial if p > 3. Let's look at a few examples of Sylow subgroups in groups of order 12.

**Example 1.2.** In  $\mathbb{Z}/(12)$ , the only 2-Sylow subgroup is  $\{0, 3, 6, 9\} = \langle 3 \rangle$  and the only 3-Sylow subgroup is  $\{0, 4, 8\} = \langle 4 \rangle$ .

**Example 1.3.** In  $A_4$  there is one subgroup of order 4, so the only 2-Sylow subgroup is

$$\{(1), (12)(34), (13)(24), (14)(23)\} = \langle (12)(34), (14)(23)\rangle.$$

There are four 3-Sylow subgroups:

$$\{(1), (123), (132)\} = \langle (123)\rangle, \{(1), (124), (142)\} = \langle (124)\rangle,$$

$$\{(1), (134), (143)\} = \langle (134)\rangle, \{(1), (234), (243)\} = \langle (234)\rangle.$$

**Example 1.4.** In  $D_6$  there are three 2-Sylow subgroups:

$$\{1,\ r^3,\ s,\ r^3s\} = \langle r^3,s\rangle,\ \ \{1,\ r^3,\ rs,\ r^4s\} = \langle r^3,rs\rangle,\ \ \{1,\ r^3,\ r^2s,\ r^5s\} = \langle r^3,r^2s\rangle.$$

The only 3-Sylow subgroup of  $D_6$  is  $\{1, r^2, r^4\} = \langle r^2 \rangle$ .

In a group of order 24, a 2-Sylow subgroup has order 8 and a 3-Sylow subgroup has order 3. Let's look at two examples.

**Example 1.5.** In  $S_4$ , the 3-Sylow subgroups are the 3-Sylow subgroups of  $A_4$  (an element of 3-power order in  $S_4$  must be a 3-cycle, and they all lie in  $A_4$ ). We determined the 3-Sylow subgroups of  $A_4$  in Example 1.3; there are four of them.

There are three 2-Sylow subgroups of  $S_4$ , and they are interesting to work out since they can be understood as *copies of*  $D_4$  *inside*  $S_4$ . The number of ways to label the four vertices of a square as 1, 2, 3, and 4 is 4! = 24, but up to rotations and reflections of the square there are really just three different ways of carrying out the labeling, as follows.



Any other labeling of the square is a rotated or reflected version of one of these three squares. For example, the square below is obtained from the middle square above by reflecting across a horizontal line through the middle of the square.



When  $D_4$  acts on a square with labeled vertices, each motion of  $D_4$  creates a permutation of the four vertices, and this permutation is an element of  $S_4$ . For example, a 90 degree rotation of the square is a 4-cycle on the vertices. In this way we obtain a copy of  $D_4$  inside  $S_4$ . The three essentially different labelings of the vertices of the square above embed  $D_4$  into  $S_4$  as three different subgroups of order 8:

$$\{1, (1234), (1432), (12)(34), (13)(24), (14)(23), (13), (24)\} = \langle (1234), (13)\rangle,$$

$$\{1, (1243), (1342), (12)(34), (13)(24), (14)(23), (14), (23)\} = \langle (1243), (14)\rangle,$$

$$\{1, (1324), (1423), (12)(34), (13)(24), (14)(23), (12), (34)\} = \langle (1324), (12)\rangle.$$

These are the 2-Sylow subgroups of  $S_4$ .

**Example 1.6.** The group  $SL_2(\mathbf{Z}/(3))$  has order 24. An explicit tabulation of the elements of this group reveals that there are only 8 elements in the group with 2-power order:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \\ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}.$$

These form the only 2-Sylow subgroup, which is isomorphic to  $Q_8$  by labeling the matrices in the first row as 1, i, j, k and the matrices in the second row as -1, -i, -j, -k.

There are four 3-Sylow subgroups:  $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$ ,  $\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle$ ,  $\langle \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix} \rangle$ , and  $\langle \begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} \rangle$ .

Here are the Sylow theorems. They are often given in three parts. The result we call Sylow III\* is not always stated explicitly as part of the Sylow theorems.

**Theorem 1.7** (Sylow I). A finite group G has a p-Sylow subgroup for every prime p and any p-subgroup of G lies in a p-Sylow subgroup of G.

**Theorem 1.8** (Sylow II). For each prime p, the p-Sylow subgroups of G are conjugate.

**Theorem 1.9** (Sylow III). For each prime p, let  $n_p$  be the number of p-Sylow subgroups of G. Write  $|G| = p^k m$ , where p doesn't divide m. Then

$$n_p \equiv 1 \mod p \quad and \quad n_p \mid m.$$

**Theorem 1.10** (Sylow III\*). For each prime p, let  $n_p$  be the number of p-Sylow subgroups of G. Then  $n_p = [G : N(P)]$ , where P is any p-Sylow subgroup and N(P) is its normalizer.

Sylow II says for two p-Sylow subgroups H and K of G that there is some  $g \in G$  such that  $gHg^{-1} = K$ . This is illustrated in the table below.

| Example | Group                           | Size | p | H                                                              | K                                                              | g                                              |
|---------|---------------------------------|------|---|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|
| 1.3     | $A_4$                           | 12   | 3 | $\langle (123) \rangle$                                        | $\langle (124) \rangle$                                        | (243)                                          |
| 1.4     | $D_6$                           | 12   | 2 | $\langle r^3, s \rangle$                                       | $\langle r^3, rs \rangle$                                      | $r^2$                                          |
| 1.5     | $S_4$                           | 24   | 2 | $\langle (1234), (13) \rangle$                                 | $\langle (1243), (14) \rangle$                                 | (34)                                           |
| 1.6     | $\mathrm{SL}_2(\mathbf{Z}/(3))$ | 24   | 3 | $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$ | $\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle$ | $\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$ |

When trying to conjugate one cyclic subgroup to another cyclic subgroup, be careful: not all generators of the two groups have to be conjugate. For example, in  $A_4$  the subgroups  $\langle (123) \rangle = \{(1), (123), (132)\}$  and  $\langle (124) \rangle = \{(1), (124), (142)\}$  are conjugate, but the conjugacy class of (123) in  $A_4$  is  $\{(123), (142), (134), (243)\}$ , so there's no way to conjugate (123) to (124) by an element of  $A_4$ ; we must conjugate (123) to (142). The 3-cycles (123) and (124) are conjugate in  $S_4$ , but not in  $A_4$ . Similarly,  $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$  and  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$  are conjugate in  $GL_2(\mathbf{Z}/(3))$  but not in  $SL_2(\mathbf{Z}/(3))$ , so when Sylow II says the subgroups  $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$  and  $\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle$  are conjugate in  $SL_2(\mathbf{Z}/(3))$  a conjugating matrix must send  $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$  to  $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ .

Let's see what Sylow III tells us about the number of 2-Sylow and 3-Sylow subgroups of a group of order 12. For p=2 and p=3 in Sylow III, the divisibility conditions are  $n_2 \mid 3$  and  $n_3 \mid 4$  and the congruence conditions are  $n_2 \equiv 1 \mod 2$  and  $n_3 \equiv 1 \mod 3$ . The divisibility conditions imply  $n_2$  is 1 or 3 and  $n_3$  is 1, 2, or 4. The congruence  $n_2 \equiv 1 \mod 2$  tells us nothing new (1 and 3 are both odd), but the congruence  $n_3 \equiv 1 \mod 3$  rules out the option  $n_3 = 2$ . Therefore  $n_2$  is 1 or 3 and  $n_3$  is 1 or 4 when |G| = 12. If |G| = 24 we again find  $n_2$  is 1 or 3 while  $n_3$  is 1 or 4. (For instance, from  $n_3 \mid 8$  and  $n_3 \equiv 1 \mod 3$  the only choices are  $n_3 = 1$  and  $n_3 = 4$ .) Therefore as soon as we find more than one 2-Sylow subgroup there must be three of them, and as soon as we find more than one 3-Sylow subgroup there must be four of them. The table below shows the values of  $n_2$  and  $n_3$  in the examples above.

| Group                           | Size | $n_2$ | $n_3$ |
|---------------------------------|------|-------|-------|
| ${\bf Z}/(12)$                  | 12   | 1     | 1     |
| $A_4$                           | 12   | 1     | 4     |
| $D_6$                           | 12   | 3     | 1     |
| $S_4$                           | 24   | 3     | 4     |
| $\mathrm{SL}_2(\mathbf{Z}/(3))$ | 24   | 1     | 4     |

#### 2. Proof of the Sylow Theorems

Our proof of the Sylow theorems will use group actions. The table below is a summary. For each theorem the table lists a group, a set it acts on, and the action. We write  $\mathrm{Syl}_p(G)$  for the set of p-Sylow subgroups of G, so  $n_p = |\mathrm{Syl}_p(G)|$ .

| Theorem                           | Group                     | Set                       | Action      |
|-----------------------------------|---------------------------|---------------------------|-------------|
| Sylow I                           | p-subgroup $H$            | G/H                       | left mult.  |
| Sylow II                          | p-Sylow subgroup $Q$      | G/P                       | left mult.  |
| Sylow III $(n_p \equiv 1 \mod p)$ | $P \in \mathrm{Syl}_p(G)$ | $\operatorname{Syl}_p(G)$ | conjugation |
| Sylow III $(n_p \mid m)$          | $G^{-}$                   | $\operatorname{Syl}_p(G)$ | conjugation |
| Sylow III*                        | G                         | $\operatorname{Syl}_p(G)$ | conjugation |

The two conclusions of Sylow III are listed separately in the table since they are proved using different group actions.

Our proofs will usually involve the action of a p-group on a set and use the fixed-point congruence for such actions:  $|X| \equiv |\operatorname{Fix}_{\Gamma}(X)| \mod p$ , where X is a finite set being acted on by a finite p-group  $\Gamma$ .

**Proof of Sylow I**: Let  $p^k$  be the highest power of p in |G|. The result is obvious if k = 0, since the trivial subgroup is a p-Sylow subgroup, so we can take  $k \ge 1$ , hence  $p \mid |G|$ .

Our strategy for proving Sylow I is to **prove a stronger result**: there is a subgroup of order  $p^i$  for  $0 \le i \le k$ . More specifically, if  $|H| = p^i$  and i < k, we will show there is a p-subgroup  $H' \supset H$  with [H' : H] = p, so  $|H'| = p^{i+1}$ . Then, starting with H as the trivial subgroup, we can repeat this process with H' in place of H to create a rising tower of subgroups

$$\{e\} = H_0 \subset H_1 \subset H_2 \subset \cdots$$

where  $|H_i| = p^i$ , and after k steps we reach  $H_k$ , which is a p-Sylow subgroup of G.

Consider the left multiplication action of H on the left cosets G/H (this need not be a group). This is an action of a finite p-group H on the set G/H, so by the fixed-point congruence for actions of nontrivial p-groups,

(2.1) 
$$|G/H| \equiv |\operatorname{Fix}_H(G/H)| \bmod p.$$

Let's unravel what it means for a coset gH in G/H to be a fixed point by the group H under left multiplication:

$$hgH = gH$$
 for all  $h \in H$   $\iff$   $hg \in gH$  for all  $h \in H$   $\iff$   $g^{-1}hg \in H$  for all  $h \in H$   $\iff$   $g^{-1}Hg \subset H$   $\iff$   $g^{-1}Hg = H$  because  $|g^{-1}Hg| = |H|$   $\iff$   $g \in \mathcal{N}(H)$ .

Thus 
$$\operatorname{Fix}_H(G/H) = \{gH : g \in \operatorname{N}(H)\} = \operatorname{N}(H)/H$$
, so (2.1) becomes (2.2) 
$$[G : H] \equiv [\operatorname{N}(H) : H] \mod p.$$

Because  $H \triangleleft N(H)$ , N(H)/H is a group.

When  $|H| = p^i$  and i < k, the index [G:H] is divisible by p, so the congruence (2.2) implies [N(H):H] is divisible by p, so N(H)/H is a group with order divisible by p. Thus N(H)/H has a subgroup of order p by Cauchy's theorem. All subgroups of the quotient group N(H)/H have the form H'/H, where H' is a subgroup between H and N(H). Therefore a subgroup of order p in N(H)/H is H'/H such that [H':H] = p, so  $|H'| = p|H| = p^{i+1}$ .

**Proof of Sylow II**: Pick two p-Sylow subgroups P and Q. We want to show they are conjugate.

Consider the action of Q on G/P by left multiplication. Since Q is a finite p-group,

$$|G/P| \equiv |\operatorname{Fix}_Q(G/P)| \mod p$$
.

The left side is [G:P], which is nonzero modulo p since P is a p-Sylow subgroup. Thus  $|\operatorname{Fix}_Q(G/P)|$  can't be 0, so there is a fixed point in G/P. Call it gP. That is, qgP = gP for all  $q \in Q$ . Equivalently,  $qg \in gP$  for all  $q \in Q$ , so  $Q \subset gPg^{-1}$ . Therefore  $Q = gPg^{-1}$ , since Q and  $gPg^{-1}$  have the same size.

**Proof of Sylow III**: We will prove  $n_p \equiv 1 \mod p$  and then  $n_p \mid m$ .

To show  $n_p \equiv 1 \mod p$ , consider the action of P on the set  $\operatorname{Syl}_p(G)$  by conjugation. The size of  $\operatorname{Syl}_p(G)$  is  $n_p$ . Since P is a finite p-group,

$$n_p \equiv |\{\text{fixed points}\}| \mod p.$$

Fixed points for P acting by conjugation on  $\operatorname{Syl}_p(G)$  are  $Q \in \operatorname{Syl}_p(G)$  such that  $gQg^{-1} = Q$  for all  $g \in P$ . One choice for Q is P. For any such Q,  $P \subset \operatorname{N}(Q)$ . Also  $Q \subset \operatorname{N}(Q)$ , so P and Q are p-Sylow subgroups in  $\operatorname{N}(Q)$ . Applying Sylow II to the group  $\operatorname{N}(Q)$ , P and Q are conjugate in  $\operatorname{N}(Q)$ . Since  $Q \triangleleft \operatorname{N}(Q)$ , the only subgroup of  $\operatorname{N}(Q)$  conjugate to Q is Q, so Q = Q. Thus Q = Q is the only fixed point when Q = Q acts on  $\operatorname{Syl}_p(Q)$ , so Q = Q and Q = Q.

To show  $n_p \mid m$ , consider the action of G by conjugation on  $\operatorname{Syl}_p(G)$ . Since the p-Sylow subgroups are conjugate to each other (Sylow II), there is one orbit. A set on which a group acts with one orbit has size dividing the size of the group, so  $n_p \mid |G|$ . From  $n_p \equiv 1 \mod p$ , the number  $n_p$  is relatively prime to p, so  $n_p \mid m$ .

**Proof of Sylow III**\*: Let P be a p-Sylow subgroup of G and let G act on  $\mathrm{Syl}_p(G)$  by conjugation. By the orbit-stabilizer formula,

$$n_p = |\operatorname{Syl}_p(G)| = [G : \operatorname{Stab}_{\{P\}}].$$

The stabilizer  $\operatorname{Stab}_{\{P\}}$  is

$$Stab_{\{P\}} = \{g : gPg^{-1} = P\} = N(P).$$

Thus  $n_p = [G : N(P)].$ 

### 3. Historical Remarks

Sylow's proof of his theorems appeared in [1]. Here is what he showed (of course, without using the label "Sylow subgroup").

- 1) There exist p-Sylow subgroups. Moreover,  $[G : N(P)] \equiv 1 \mod p$  for any p-Sylow subgroup P.
- 2) Let P be a p-Sylow subgroup. The number of p-Sylow subgroups is [G: N(P)]. All p-Sylow subgroups are conjugate.
- 3) Any finite p-group G with size  $p^k$  contains an increasing chain of subgroups

$$\{e\} = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_k \subset G,$$

where each subgroup has index p in the next one. In particular,  $|G_i| = p^i$  for all i. Here is how Sylow phrased his first theorem (the first item on the above list):<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>We modify some of his notation: he wrote the subgroup as g, not H, and the prime as n, not p.

Si  $p^{\alpha}$  désigne la plus grande puissance du nombre premier p qui divise l'ordre du groupe G, ce groupe contient un autre H de l'ordre  $p^{\alpha}$ ; si de plus  $p^{\alpha}\nu$  désigne l'ordre du plus grand groupe contenu dans G dont les substitutions sont permutables à H, l'ordre de G sera de la forme  $p^{\alpha}\nu(pm+1)$ .

In English, using current terminology, this says

If  $p^{\alpha}$  is the largest power of the prime p which divides the size of the group G, this group contains a subgroup H of order  $p^{\alpha}$ ; if moreover  $p^{\alpha}\nu$  is the size of the largest subgroup of G that normalizes H, the size of G is of the form  $p^{\alpha}\nu(pm+1)$ .

Sylow did not have the abstract concept of a group: all groups for him arose as subgroups of symmetric groups, so groups were always "groupes de substitutions." The condition that an element  $x \in G$  is "permutable" with a subgroup H means xH = Hx, or in other words  $x \in N(H)$ . The end of the first part of his theorem says the normalizer of a Sylow subgroup has index pm + 1 for some m, which means the index is  $\equiv 1 \mod p$ .

# 4. Analogues of the Sylow Theorems

There are analogues of the Sylow theorems for other types of subgroups.

- (1) A Hall subgroup of a finite group G is a subgroup H whose order and index are relatively prime. For example, in a group of order 60 any subgroup of order 12 has index 5 and thus is a Hall subgroup. A p-subgroup is a Hall subgroup if and only if it is a Sylow subgroup. In 1928 Philip Hall proved in every solvable group of order n that there is a Hall subgroup of each order d dividing n where (d, n/d) = 1 and any two Hall subgroups with the same order are conjugate. Conversely, Hall proved that a finite group of order n containing a Hall subgroup of order n for each n0 dividing n1 such that n2 has to be a solvable group.
- (2) In a compact connected Lie group, the *maximal tori* (maximal connected abelian subgroups) satisfy properties analogous to Sylow subgroups: they exist, every torus is contained in a maximal torus, and all maximal tori are conjugate. Of course, unlike Sylow subgroups, maximal tori are always abelian.
- (3) In a connected linear algebraic group, the maximal unipotent subgroups are like Sylow subgroups: they exist, every unipotent subgroup is contained in a maximal unipotent subgroup, and all maximal unipotent subgroups are conjugate. The normalizer of a maximal unipotent subgroup is called a Borel subgroup, and like the normalizers of Sylow subgroups all Borel subgroups equal their own normalizer. For the group  $GL_n(\mathbf{Z}/(p))$ , its subgroup of upper triangular matrices with 1's along the main diagonal

$$\begin{pmatrix}
1 & * & \cdots & * \\
0 & 1 & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}$$

is both a p-Sylow subgroup and a maximal unipotent subgroup.

#### References

[1] L. Sylow, Théorèmes sur les groupes de substitutions, Mathematische Annalen 5 (1872), 584-594. Translation into English by Robert Wilson at http://www.maths.qmul.ac.uk/~raw/pubs\_files/Sylow.pdf.