

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL PROF.^a MARA DE CARVALHO DE SOUSA - 2008

VETORES

1)A figura abaixo é constituída de nove quadrados congruentes (de mesmo tamanho).
Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

2) A figura a baixo representa um paralelepípedo retângulo. Decidir se é verdadeira ou falsa cada uma das afirmações abaixo:

i)
$$\overrightarrow{AB}$$
 , \overrightarrow{FG} e \overrightarrow{EG} são coplanares

$$j)\overrightarrow{EG},\overrightarrow{OB}$$
 e \overrightarrow{HF} são coplanares

m)
$$\overrightarrow{AB}$$
, \overrightarrow{DC} e \overrightarrow{CF} são coplanares

a)
$$\overrightarrow{DH} = \overrightarrow{BF}$$

b) $\overrightarrow{AB} = \overrightarrow{HG}$
c) $\overrightarrow{AB} \perp \overrightarrow{DG}$

e)
$$|\overrightarrow{AC}| = |\overrightarrow{F}|$$
f) $|\overrightarrow{AG}| \neq |\overrightarrow{DF}|$
g) $|\overrightarrow{BG}| / |\overrightarrow{ED}|$
h) $|\overrightarrow{AB}|$ $|\overrightarrow{BC}|$ e $|\overrightarrow{GG}|$ são coplanares

1

3) A figura abaixo representa um losango EFGH inscrito no retângulo ABCD, sendo O, o ponto de interseção das diagonais desse losango. Decidir se é verdadeira ou falsa cada uma das afirmações:

4)Com base na figura do exercício1, determinar os vetores abaixo, expressando-os com origem no ponto A:

5)Com base na figura do exercício 2, determinar os vetores abaixo, expressando-os com origem no ponto A:

g)
$$\overrightarrow{AB}$$
 + \overrightarrow{AD} + \overrightarrow{AE}
h) \overrightarrow{EG} + \overrightarrow{DA} + \overrightarrow{FH}

RESP: a)
$$\overrightarrow{AF}$$
 b) \overrightarrow{AE} c) \overrightarrow{AH} d) \overrightarrow{AB} e) \overrightarrow{AH} f) \overrightarrow{AF} g) \overrightarrow{AG} h) \overrightarrow{AD}

6) Com base na figura do exercício 3, determinar os vetores abaixo, expressando-os com origem no ponto A:

a)
$$\overrightarrow{CC}$$
 + \overrightarrow{CH} d) \overrightarrow{H} + \overrightarrow{FC} g) $\overrightarrow{2}$ \overrightarrow{EC} + \overrightarrow{EH} c) $2\overrightarrow{AE}$ + $2\overrightarrow{AF}$ f) $2\overrightarrow{CE}$ + $2\overrightarrow{CC}$ h) \overrightarrow{FE} + \overrightarrow{FG}

7)Determine as somas que se pedem:

RESP: a)
$$\overrightarrow{AC}$$
 b) \overrightarrow{EF} c)2 \overrightarrow{BG} d)2 \overrightarrow{BG} e) \overrightarrow{AC} .

8)A figura abaixo representa um paralelepípedo retângulo de arestas paralelas aos eixos coordenados e de medidas 2,1 e 3. Determinar as coordenadas dos vértices deste sólido, sabendo que A (2, -1,2).

RESP: B(2, -3,2), C(3, -3,2), D(3, -1,2), E(3, -1,5), F(2, -1,5), G(2, -3,5) e H(3, -3,5) 9) Determine x para que se tenha $\overline{A}B = \overline{C}D$, sendo A (x,1), B(4,x+3), C(x,x+2) e D(2x,x+6). **RESP:** x=2

- 10) Escreva o vetor (7,-1), como a soma de dois vetores, um paralelo ao vetor (1,-1) e outro paralelo ao vetor (1,1).

 RESP: x = 3 e y = 4
- 11) Dados A(-1,-1) e B(3,5), determinar C, tal que

a)
$$\overrightarrow{AC} = \frac{1}{2} \overrightarrow{AB}$$
 b) $\overrightarrow{AC} = \frac{2}{3} \overrightarrow{AB}$. **RESP:** a) $\overrightarrow{AC} = \frac{3}{3} \overrightarrow{AB} = \frac{$

RESP: a) x = 1 e y = 2 b)
$$x = \frac{5}{3}$$
 e y

12) Dados os vetores a = (2,-1) e b = (1,3), determinar um vetor x, tal que:

a)
$$\frac{2}{3}\vec{x} + \frac{1}{2} [2(\vec{x} + \vec{a}) - \vec{b}] = \frac{\vec{a} + \vec{x}}{2}$$

b)
$$4\vec{a} - 2\vec{x} = \frac{1}{3}\vec{b} - \frac{x+a}{2}$$

RESP: a)
$$x = \left(-\frac{3}{7}, \frac{12}{7}\right)$$
 b) $x = \left(\frac{52}{9}, -\frac{33}{9}\right)$

13) Dados os vetores a =(-1,1,2) e b =(2,0,4), determine o vetor v , tal que:

a)
$$\frac{2v}{3} - [2(\vec{v} + \vec{a}) - \vec{b}] = \frac{a - v}{2}$$

b)
$$\frac{2}{3}\vec{v} - [2(\vec{v} + \vec{a}) - \vec{b}] = \frac{\vec{b}}{4} - \frac{\vec{v} - \vec{a}}{2}$$

RESP:
$$\vec{a}$$
) $\vec{v} = \left(\frac{27}{5}, -3, -\frac{6}{5}\right)$ \vec{b}) $\vec{v} = \left(\frac{24}{5}, -3, -\frac{12}{5}\right)$

14)Sendo A(1, −1,3) e B(3,1,5), até que ponto se deve prolongar o segmento AB, no sentido de A para B, para que seu comprimento quadruplique de valor?

RESP: (9,7,11)

15) Sendo A(-2,1,3) e B(6,-7,1) extremidades de um segmento, determinar:

a)os pontos C , D e E, nesta ordem, que dividem o segmento AB em quatro partes de mesmo comprimento;

b) os pontos F e G, nesta ordem que dividem o segmento AB em três partes de mesmo comprimento.

RESP: a)C
$$\left(0,-1,\frac{5}{2}\right)$$
, D(2,-3,2) e E $\left(4,-5,\frac{3}{2}\right)$; b) F $\left(\frac{2}{3},-\frac{5}{3},\frac{7}{3}\right)$ e

$$G\left(\frac{10}{3}, -\frac{13}{3}, \frac{5}{3}\right)$$

- 16)Dadas as coordenadas, x=4, y=-12, de um vetor \vee do \Re^3 , calcular sua terceira coordenada z, de maneira que $| | \vee | | = 13$.
- 17) Sejam os pontos M(1,-2,-2) e P(0,-1,2), determine um vetor $\sqrt{}$ colinear à \overrightarrow{PM} e tal

que
$$|\vec{v}| = \sqrt{3}$$
.

RESP: $\vec{v} = \left(\pm \frac{1}{\sqrt{6}}, \mp \frac{1}{\sqrt{6}}, \mp \frac{4}{\sqrt{6}}\right)$

18)Achar um vetor \times de módulo igual a 4 e de mesmo sentido que o vetor \vee =6 i -2 j - 3 k.

RESP:
$$\vec{x} = \left(\frac{24}{7}, -\frac{8}{7}, -\frac{12}{7}\right)$$

- 19) No triângulo ABC, os vértices A (1,2), B(-2,3) e C(0,5):
 - a) determinar a natureza do triângulo;
 - b) calcular o comprimento da mediana AM. Sendo M o ponto médio do lado BC.

RESP: a) isósceles b)
$$| | \overline{A} M | | = 2\sqrt{2}$$

20) Sejam a = i + 2j - 3k e b = 2i + j - 2k. Determine um versor dos vetores abaixo:

a) a + b B) 2a -3b c) 5a +4b

RESP: a)
$$\vec{u} = \frac{1}{\sqrt{43}} (3,3,-5)$$
 b) $\vec{u} = \frac{1}{\sqrt{17}} (-4,1,0)$ c) $\vec{u} = \frac{1}{\sqrt{894}} (13,14,-23)$

- 21) Determine um vetor da mesma direção de v =2 i j +2 k e que:
 - a) tenha norma (módulo) igual a 9;
 - b) seja o versor de v;
 - c) tenha módulo igual a metade de v.

RESP: a) w = 6 (6,-3,6) b)
$$\vec{u} = \frac{1}{3}(2,-1,2)$$
 c) $\vec{p} = \frac{1}{2}(2,-1,2)$

22) Num paralelogramo ABCD sabe-se que A (1,3,-2) e que as diagonais são \overline{AC} =(4,2,-3) e \overline{BD} =(-2,0,1).Calcule as coordenadas dos outros três vértices.

23)Sabendo que A (1,–1), B(5,1) e C(6,4) são vértices de um paralelogramo, determinar o quarto vértices de cada um dos três paralelogramos possíveis de serem formados.

24) Dados os vetores u = (3,2), v = (2,4) e w = (1,3), exprimir w como a combinação linear de u e v.

$$\vec{w} = -\frac{1}{4}\vec{u} + \frac{7}{8}\vec{v}$$

- 25) Dados os vetores a = (3,-2,1), b = (-1,1,-2) e c = (2,1,-3), determinar as coordenadas do vetor v = (11,-6,5) na base $\beta = \{a,b,c\}$.
- 26)Escreva o vetor $\mathbf{v} = (4,-1,0)$, na base $\beta = \{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$, sendo $\mathbf{v}_1 = (1,0,0)$, $\mathbf{v}_2 = (3,2,1)$ e $\mathbf{v}_3 = (-1,-1,1).$ **RESP:** $\vec{\mathbf{v}} = \frac{16}{3}\vec{\mathbf{v}}_1 \frac{1}{3}\vec{\mathbf{v}}_2 + \frac{1}{3}\vec{\mathbf{v}}_3$
- 27)Dois vetores a = (2,-3,6) e b = (-1,2,-2), tem uma mesma origem. Calcular as coordenadas do vetor c sobre a bissetriz do ângulo formado pelos vetores a e b ,sabendo que $|c| = 3\sqrt{42}$.
- 28) Dados os vetores a = (1,-1,0), b = (3,-1,1), c = (2,2,1) e d = (4,-3,1). Determinar o vetor v = (x,y,z), tal que : (v + a) // b e (v + c) // d. **RESP:** v = (-10,4,-3)

PRODUTO DE VETORES

PRODUTO ESCALAR

29) Sendo u = (2,3,1) e v = (1,4,5). Calcular:

a)
$$u \bullet v$$
 b) $(u - v)$ c) $(u + v)^2$ d) $(3u - 2v)^2$ e) $(2u - 3v) \bullet (u + 2v)$

- 30) Sendo a = (2,-1,1), b = (1,-2,-2) e c = (1,1,-1). Calcular um vetor v = (x,y,z), tal que $v \cdot a = 4$. $v \cdot b = -9$ e $v \cdot c = 5$. RESP: V =(3,4,2)
- 31) Sejam os vetores a = (1, -m, -3), b = (m+3, 4-m, 1)e c = (m, -2, 7). Determinar m para que a • b = (a + b) • c. **RESP:** m=2
- 32) Determinar a, de modo que o ângulo do triângulo ABC, seja 60°. Dados: A(1,0,2), B(3,1,3) e C(a+1,-2,3). RESP: -1 ou
- 33) Dados os pontos A (4,0,1), B(5,1,3) C(3,2,5) e D(2,1,3). Determine:
 - a) se eles foram alguma figura. Em caso afirmativo, qual?
 - b) O ângulo entre as retas paralelas aos vetores \overrightarrow{BD} e \overrightarrow{AC} .

RESP: a) Paralelogramo b)
$$\alpha = \arccos \frac{\sqrt{21}}{21} = 102^{\circ}36'44,22''$$
.

- 34) Os vetores u e v formam um ângulo de 60° . Sabe-se que |u| = 8 e |v| = 5, calcule:

- a) ||u+v|| b) ||u-v|| c) ||2u+3v|| d) ||4u-5v||

RESP: a) $\sqrt{129}$ b) 7 c) $\sqrt{721}$ d)

 $\sqrt{849}$

- 35) Os vetores a e b formam um ângulo de 150°, sabe-se que $|a| = \sqrt{3}$ e que $|b| = \sqrt{3}$ $\sqrt{2}$, Calcule:

- a) ||a+b|| b) ||a-b|| c) $||\beta a+2b||$ d) ||5a-4b||

RESP: a) $\sqrt{5-3\sqrt{2}}$ b) $\sqrt{5+3\sqrt{2}}$ c) $\sqrt{35-18\sqrt{2}}$

- d) $\sqrt{107 + 60}\sqrt{2}$
- 36) Determinar o valor de x para que os vetores $v_1 = x_i 2_j + 3_k$ e $v_2 = 2_i j + 2_k$, sejam ortogonais. RESP:

x = -4

37) Determine um vetor unitário ortogonal aos vetores a = (2,6,-1) e b = (0,-2,1).

RESP:

$$\vec{c} = \left(\mp \frac{2}{3}, \pm \frac{1}{3}, \pm \frac{2}{3}\right)$$

38) Dados a = (2, 1, -3) e b = (1, -2, 1), determinar o vetor $v \perp a$, $v \perp b e | v | = 5$.

RESP:
$$\vec{v} = \pm \frac{5\sqrt{3}}{3} (1, 1, 1)$$

39)Dados dois vetores a =(3,-1,5) e b =(1,2,-3), achar um vetor x , sabendo-se que ele é perpendicular ao eixo OZ , e que verifica as seguintes relações: x •a =9, e x •b =-4.

RESP:
$$x = (2, -3, 0)$$

40)Seja o cubo de aresta a representado na figura abaixo. Determinar:

a)
$$\overrightarrow{OA} \cdot \overrightarrow{OC}$$
 d) $|\overrightarrow{OB}| e |\overrightarrow{OG}|$
b) $\overrightarrow{OA} \cdot \overrightarrow{OD}$ e) $\overrightarrow{EG} \cdot \overrightarrow{OG}$
c) $\overrightarrow{OE} \cdot \overrightarrow{OB}$ f) $|\overrightarrow{ED} \cdot \overrightarrow{AB}|$ $|\overrightarrow{OG}|$

g)o ângulo agudo entre a diagonal do cubo e uma aresta; h)o ângulo agudo formado por duas diagonais do cubo.

RESP: a)0 b)0 c)0 d)
$$a\sqrt{2}$$
 e $a\sqrt{3}$ g) arc $\cos\frac{\sqrt{3}}{3} \cong 54^{\circ}44'$ h) arc $\cos\frac{1}{3} \cong 70^{\circ}31'$

d)
$$a\sqrt{2} = a\sqrt{3}$$
 e) $a^2 f$ (a^3, a^3, a^3)

41)Calcule o ângulo formado pelas medianas traçadas pelos vértices dos ângulos agudos de um triângulo retângulo isósceles. RESP: $\theta = \arccos \frac{4}{5}$, $\theta \approx 36^{\circ}$

52'11,6"

- 42)Um vetor \mathbf{v} forma ângulos agudos congruentes com os semi-eixos coordenados positivos. Calcule suas coordenadas sabendo que $|\mathbf{v}| = 3$. **RESP:** $\mathbf{v} = \sqrt{3}(1,1,1)$.
- 43)Um vetor unitário \mathbf{v} forma com o eixo coordenado OX um ângulo de 60° e com os outros dois eixos OY e OZ ângulos congruentes. Calcule as coordenadas de \mathbf{v} .

RESP:
$$\vec{v} = \left(\frac{1}{2}, \frac{\sqrt{6}}{4}, \frac{\sqrt{6}}{4}\right)$$
 ou $\left(\frac{1}{2}, \frac{\sqrt{6}}{4}, \frac{\sqrt{6}}{4}\right)$

44) O vetor $\vec{v} = (-1, -1, -2)$ forma um ângulo de 60° com o vetor $\overline{A}B$, onde A (0,3,4) e B(m, -1,2). Calcular o valor de m. **RESP:** m=-34 ou m=2

- 45)Os vetores a e b formam um ângulo $\theta = \frac{\pi}{6}$, calcular o ângulo entre os vetores P = a + b e q = a b, sabendo que $||a|| \neq \sqrt{3}$ e $||b|| \neq 1$. **RESP:** $\cos\theta = \frac{2\sqrt{7}}{7}$, $\theta = 40^{\circ}53'36,2''$
- 46) Dados u = (2,-3,-6) e v = 3 i 4 j 4 k, determine:
 - a) a projeção algébrica de v sobre u (norma do vetor projeção de v sobre u);
 - b) 0 vetor projeção de v sobre u.

RESP: a)6 b)

$$\frac{6}{7}(2,-3,-6)$$

47)Decomponha o vetor \mathbf{v} =(-1,2,-3) em dois vetores a e \mathbf{b} , tais que \mathbf{a} // \mathbf{w} e $\mathbf{b} \perp \mathbf{w}$,

com
$$w = (2,1,-1)$$
.

RESP: $\vec{a} = \left(1, \frac{1}{2}, -\frac{1}{2}\right) e$

$$b = \left(-2, \frac{3}{2}, -\frac{5}{2}\right)$$

- 48)São dados os vetores $v_1 = (1,1,1)$, $v_2 = (-1,2,3)$ e $v_3 = (26,6,8)$. Decompor o vetor v_3 em dois vetores x e y ortogonais entre si, sendo x simultaneamente ortogonal a v_1 e a v_2 . **RESP:** x = (1,-4,3) e y = (25,10,5)
- 49)São dados $v_1 = (3,2,2)$ e $v_2 = (18,-22,-5)$, determine um vetor v, que seja ortogonal à v_1 e a v_2 , tal que forme com o eixo OY um ângulo obtuso e que |v| = 28.

RESP: v = (-8.-

12,24)

50)Os vértices de um triângulo são M(1,1,2) ,N(5,1,3) e Q(-3,9,3). Calcule as coordenadas do vetor $\overline{M} H$, onde H é o pé da altura relativa ao lado NQ.

RESP: MH

=(2,2,1)

PRODUTO VETORIAL

51) Dados os vetores $\mathbf{u} = (-1,3,2)$, $\mathbf{v} = (1,5,-2)$ e $\mathbf{w} = (-7,3,1)$. Calcule as coordenadas dos vetores:

a)
$$u \times v$$

b)
$$\mathbf{v} \times \mathbf{w}$$

c)
$$v \times (u \times w)$$

d)
$$(v \times u) \times w$$
 e) $(u + v) \times (u + w)$ f) $(u - w) \times w$
RESP: a) $(-16,0,8)$ b) $(11,13,38)$ c) $(64,-12,2)$ d) $(-24,-72,48)$ e) $(24,0,64)$ f) $(-3,-13,18)$

- 52)Determinar o vetor \mathbf{x} , paralelo ao vetor ao vetor \mathbf{w} =(2,-3,0) e tal que $\mathbf{x} \times \mathbf{u} = \overrightarrow{\mathbf{v}}$, onde \mathbf{u} =(1,-1,0) e $\overrightarrow{\mathbf{v}}$ =(0,0,2). **RESP:** \mathbf{x} =(4.-6,0)
- 53) Determinar o vetor $_{\mathbf{V}}$, sabendo que ele é ortogonal ao vetor $_{\mathbf{a}}^{\mathbf{i}} = (2,-3,1)$ e ao vetor $_{\mathbf{b}}^{\mathbf{i}} = (1,-2,3)$ e que satisfaz a seguinte condição; $_{\mathbf{v}}^{\mathbf{i}} = (\mathbf{i}+2\mathbf{j}-7\mathbf{k})=10$. **RESP:** $_{\mathbf{v}}^{\mathbf{i}} = (7,5,1)$
- 54) Determinar \vec{v} , tal que \vec{v} seja ortogonal ao eixo dos y e que $\vec{u} = \vec{v} \times \vec{w}$, sendo $\vec{u} = (1,1,-1)$ e $\vec{w} = (2,-1,1)$.
- 55) Dados os vetores $v_1=(0,1,-1)$, $v_2=(2,0,0)$ e $v_3=(0,2,-3)$. Determine um vetor v, tal que $v^{-}/\sqrt{3}$ e $v^{-} \times v_1=v_2$. **RESP:** $v^{-}=(0,4,-6)$
- 56) Determine um vetor unitário ortogonal aos vetores $V_1 = (-1, -1, 0)$ e $V_2 = (0, -1, -1)$.

RESP:

$$\pm \frac{1}{\sqrt{3}} (1,-1,1)$$

- 57) Ache u tal que $|u| = 3\sqrt{3}$ e u é ortogonal a v = (2,3,-1) e a w = (2,-4,6). Dos u encontrados, qual forma ângulo agudo com o vetor (1,0,0). $\vec{u} = (3,-3,-3)$
- 58)São dados os vetores $v_1 = (1,1,1)$, $v_2 = (-1,2,3)$ e $v_3 = (26,6,8)$. Decompor o vetor v_3 em dois vetores x e y ortogonais entre si, sendo x simultaneamente ortogonal a v_1 e a v_2 . **RESP:** x = (1,-4,3) e y = (25,10,5)
 - 59) Dado o vetor $\lor_1 = (3,0,-1)$. Determine o vetor $\lor = (x,y,z)$, sabendo-se que \lor é ortogonal ao eixo OX, que $| | \lor \lor \lor_1 | | = 6\sqrt{14}$, e que $\lor \bullet \lor_1 = -4$. **RESP:** $\lor = (0,\pm 6,4)$
- 60) São dados $v_1 = (3,2,2)$ e $v_2 = (18,-22,-5)$, determine um vetor v, que seja ortogonal à v_1 e a v_2 , tal que forme com o eixo OY um ângulo obtuso e que |v| = 28.

RESP: $\vee = (-8, -12, 24)$

- 61)Sendo $v_1 = (-2,1,-1)$ e $v_2 = (0,y,z)$, calcule y e z de modo que $||v_1 \times v_2|| = 4\sqrt{3}$ e que o vetor $v = v_1 \times v_2$ faça ângulos congruentes com os eixos OX e OY. **RESP:** $(0,\pm 2,\pm 2)$
- 62) Resolva os sistemas abaixo:

a)
$$\begin{cases} x \times (2i + 3j - k) = 0 \\ x \cdot (4i - 2j + k) = 2 \end{cases}$$
b)
$$\begin{cases} y \times (-i + 2j + k) = 8i + 8k \\ y \cdot (2i + k) = 2 \end{cases}$$
c)
$$\begin{cases} y \cdot (3, -1, 2) = -2 \\ y \times (2, 3, 0) = 3i - 2j - 3k \end{cases}$$
RESP: a) $(4, 6, -2)$ b) $(2, 4, -2)$ c) $(1, 3, -1)$

- 63) Dados os vetores u = (1,-1,1) e v = (2,-3,4), calcular:
 - a) A área do paralelogramo de determinado por u e v;
 b)a altura do paralelogramo relativa à base definida pelo vetor u .

RESP: a)A=
$$\sqrt{6}$$
u.a. b)h= $\sqrt{2}$ u.c.

64)Dados os vetores $\mathbf{u} = (2,1,-1)$ e $\mathbf{v} = (1,-1,\alpha)$, calcular o valor de α para que a área do paralelogramo determinado por \mathbf{u} e \mathbf{v} seja igual a $\sqrt{62}$ u.a.(unidades de área).

RESP: ∞=3

65) A área de um triângulo ABC é igual a $\sqrt{6}$. Sabe-se que A(2,1,0), B(-1,2,1) e que o vértice C pertence ao eixo OY. Calcule as coordenadas de C.

RESP:
$$(0,3,0)$$
 ou $\left(0,\frac{1}{5},0\right)$

66)Os vértices de um triângulo ABC são os pontos A (0,1,-1), B(-2,0,1) e C(1,-2,0). Determine a altura relativa ao lado BC.

$$h = \frac{3\sqrt{35}}{7} \text{ u.c.}$$

67) Determine a área do triângulo ABD, obtido pela projeção do vetor \overrightarrow{BA} sobre o vetor

$$\overrightarrow{BC}$$
 , onde A (5,1,3), B(-3,9,3) e C(1,1,2).
 RESP: A = $\frac{128\sqrt{2}}{9}$ ua

68) Calcule a distância do ponto P(-2,1,2) à reta determinada pelos pontos M(1,2,1) e

N(0,-1,3). **RESP:**
$$d = \frac{3\sqrt{35}}{7}$$
 u.c.

PRODUTO MISTO

- 69)Qual é o valor de x para que os vetores a = (3,-x,-2), b = (3,2,x) e c = (1,-3,1) sejam coplanares. **RESP:** x=14 ou x=-2
- 70)Determinar o valor de k para que os pontos $A(0,0,3),B(1,2,0),\ C(5,-1,-1)$ e D(2,2,k) sejam vértices de uma mesma face de um poliedro. **RESP:** k=-1
- 71)Determinar o valor de x de modo que o volume do paralelepípedo gerado pelos vetores u = 2i j + k e v = i j e w = xi + j 3k, seja unitário. **RESP:** x = -5 ou x = -3
- 72)Sejam os vetores \mathbf{u} =(1,1,0), \mathbf{v} =(2,0,1) \mathbf{e} $\mathbf{w}_1 = 3\mathbf{u} 2\mathbf{v}$, $\mathbf{w}_2 = \mathbf{u} + 3\mathbf{v}$ \mathbf{e} $\mathbf{w}_3 = \mathbf{i} + \mathbf{j} 2\mathbf{k}$. Determinar o volume do paralelepípedo definido por \mathbf{w}_1 , \mathbf{w}_2 \mathbf{e} \mathbf{w}_3 . **RESP:** V=44 u.v.
- 73)Dado um tetraedro de volume 5 e de vértices A (2,1,-1), B(3,0,1) e C(2,-1,3). Calcular as coordenadas do quarto vértice D, sabendo-se que se acha sobre o eixo OY.

RESP: D (0,-7,0) ou D(0,8,0)

- 74)São dados os pontos A(1, -2,3), B(2, -1, -4), C(0,2,0) e D(-1,m,1), calcular o valor de m para que seja de 20 unidades o volume do paralelepípedo determinado pelos vetores \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} . RESP: m=6 ou m=2
- 75)Determine sobre o eixo OX um ponto P, tal que, o volume do tetraedro PABC seja o dobro do volume do tetraedro POBC. Dados: O (0,0,0) ,A(1,0,0) , B(0,1,0) e C(0,0,1).

RESP: (-1,0,0) ou

$$\left(\frac{1}{3},0,0\right)$$

76)Sendo u = (1,1,0), v = (2,1,3) e w = (0,2,-1). Calcular a área do triângulo ABC e o volume do tetraedro ABCD, onde B = A + u. C = A + v e D = A + w.

RESP:
$$S = \frac{\sqrt{19}}{2} ua$$
, $V = \frac{5}{6} uv$

77) Determine a altura do tetraedro ABCD, onde A(1,3,1), B(0,-2,4), C(2,1,-3) e D(0,-6,0).

RESP:

$$h = \frac{4\sqrt{6}}{11}$$
 u.c.

78) Determine a distância do ponto D(2,3,3) ao plano determinado pelos pontos A(3,3,1),

B(1,1,-3) e C(-1,-3,0). RESP:
$$\frac{5\sqrt{174}}{58}$$

u.c.

- 79)Os vértices de um tetraedro são M (0,3,4), N(–1,2,2) e Q(2,–1,2) e P é um ponto pertencente ao eixo coordenado OZ. Calcule:
 - a)as coordenadas do ponto P de modo que o tetraedro MNPQ tenha volume igual a 1 uv;
 - b)a área e o perímetro da face NMQ;
 - c)os ângulos internos da face MNQ;
 - d)calcule a altura do tetraedro MNPQ, relativa à face MNQ.

RESP: a)P
$$(0,0,0)$$
 ou P $(0,0,2)$

b)S=
$$3\sqrt{3}$$
 u.a., $2p=3\sqrt{6}+3\sqrt{12}$ u.c.

c)
$$\alpha = 30^{\circ}$$
, $\beta = 90^{\circ}$, $\gamma = 60^{\circ}$

d)
$$\frac{1}{3\sqrt{3}}$$
 u.c.

- 80)A figura abaixo representa uma pirâmide de base quadrada OABC em que as coordenadas são O(0,0,0), B(4,2,4) e C(0,6,6), e o vértice V é equidistante dos demais, determine:
 - a) as coordenadas do vértice D;
 - b) as coordenadas cartesianas do ponto V, considerando que o volume da pirâmide é igual a 72 u.v. **RESP:** a)D(-4,4,2) b) V(-2,-1,7)

81)São dados no espaço os pontos A(2,-1,0), B(1,-2,1) e C(1,0,2), determine o ponto D, tal que $\overline{O}D$, $\overline{O}A \times \overline{O}B$ e $\overline{O}A \times \overline{O}C$ sejam coplanares, $\overline{O}D \bullet \overline{O}B = -28$ e que o volume do tetraedro OABD seja igual a 14. **RESP:** D(0,0,-28) ou D(12,24,8)

RETA NO \mathbb{R}^3

- 82) Estabelecer as equações vetoriais, paramétricas, simétricas e reduzidas das retas nos seguintes casos:
 - a)determinada pelo ponto A(1,-2,1) e pelo vetor $\mathbf{v} = (3,1,4)$;
 - b)determinada pelos pontos A(2,-1,3) e B(3,0,-2);

c)possui o ponto A(1,-2,3) e é paralela à reta definida pelo ponto B(2,0,1) e pelo vetor diretor \mathbf{v} =(2,-2,3);

d)possui o ponto M (1,5,-2) e é paralela à reta determinada pelos pontos A(5,-2,3) e B(-1,-4,3);

e)possui o ponto A(2,1,0) e é paralela à reta de equação $r: \frac{x+2}{-5} = \frac{y+4}{3} = \frac{z-1}{2}$;

f)possui o ponto A(-6,7,9) e é paralela ao vetor $\mathbf{v} = (-2,0,-2)$;

g)possui o ponto A(0,0,4) e é paralela ao vetor \mathbf{v} =(8,3,0);

h)possui o ponto A(2, -2,1) e é paralela ao eixo OX;

i)possui o ponto A(8,0,-11) e é paralela ao eixo OZ.

RESP: a) P=(1,-2,1) +m(3,1,4) ,
$$\begin{cases} x = 1 + 3m \\ y = -2 + m \\ z = 1 + 4m \end{cases}$$
,
$$\frac{x-1}{3} = \frac{y+2}{1} = \frac{z-1}{4}$$
,
$$z = 4y + 9$$

b) P=(2,-1,3) +m(1,2,-5),
$$\begin{cases} x = 2 + m \\ y = -1 + m \\ z = 3 - 5m \end{cases}$$
 $x - 3 = y = \frac{z + 2}{-5}$,
$$\begin{cases} y = \chi - 3 \\ z = -5\chi + 1 \end{cases}$$

c) P=(1,-2,3) +m(2,-2,3) ,
$$\begin{cases} x = 1 + 2m \\ y = -2 - 2m \\ z = 3 + 3m \end{cases}, \frac{x-1}{2} = \frac{y+2}{-2} = \frac{x-3}{3}, \begin{cases} x = -y-1 \\ z = \frac{3}{2}y \end{cases}$$

d) P=(1,5,-2) +m(3,1,0) ,
$$\begin{cases} x = 1 + 3m \\ y = 5 + m \\ z = -2 \end{cases}$$

e) P=(2,1,0) =m(-5,3,2) ,
$$\begin{cases} x = 2-5m \\ y = 1+3m \\ z = 2m \end{cases}$$
,
$$\frac{x-2}{-5} = \frac{y-1}{3} = \frac{z}{2}$$
,
$$\begin{cases} x = \frac{-5z+4}{2} \\ y = \frac{3z+2}{2} \end{cases}$$

f)
$$P=(-6,7,9)=m(1,0,1)$$
 ,
$$\begin{cases} x=-6+m \\ y=7 \\ z=9+m \end{cases}$$
 , $x+6=z-9$; $y=7$

f)
$$P=(-6,7,9)=m(1,0,1)$$
,
$$\begin{cases} x=-6+m \\ y=7 \\ z=9+m \end{cases}$$
, $x+6=z-9$; $y=7$;
$$z=9+m$$

$$\begin{cases} x=8m \\ y=3m \\ z=4 \end{cases}$$

h) P=(2,-2,1) = m(1,0,0) ,
$$\begin{cases} y = -2 \\ z = 1 \end{cases}$$
;

i)
$$P=(8,0,-11) = m(0,0,1)$$
, $\begin{cases} \chi : \delta \\ y : 0 \end{cases}$.

- 83) Determine as equações simétricas da reta que passa pelo baricentro do triângulo de vértices A(3,4,-1), B(1,1,0) e c(2,4,4) e é paralela à reta suporte do lado AB do **RESP:** $\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$. triângulo.
- 84) Os vértices de um triângulo são O (0,0,0), A(3,4,0) e B(1,2,2). Forme as equações reduzidas da bissetriz interna do ângulo A Ô B e determine sua interseção com o lado AB.

RESP:
$$\begin{cases} X = \frac{7}{5}Z \\ y = \frac{7}{5}Z \end{cases} = P\left(\frac{7}{4}, \frac{11}{4}, \frac{5}{4}\right).$$

85) Os pontos de trisseção do segmento A(4,3,0) e B(-2,-3,3) são M e N. Unindo-os ao ponto P(0,-1,0), obtêm-se as retas PM e PN . Calcule o ângulo formado pelas mesmas.

RESP:
$$\theta = \arccos \frac{1}{3}, \theta \approx 70^{\circ} 31'43,6''$$

86) A reta $r: \frac{x-2}{4} = \frac{+4}{5} = \frac{z}{3}$, forma um ângulo de 30° com a reta determinada pelos **RESP:** n=7 ou 1 pontos A(0,-5,-2) e B(1,n-5,0). Calcular o valor de n.

87) Determine as equações da reta r definida pelos pontos A (2,-1,4) e B= $r_1 \cap r_2$, com

$$r_1: \frac{x-1}{2} = \frac{y-3}{4} = \frac{z-1}{-2}$$
 e $r_2: \begin{vmatrix} x=3m \\ y=1+2m \\ z=2+m \end{vmatrix}$ RESP: $\begin{cases} y=-x+1 \\ z=x+2 \end{cases}$

88) Determinar as equações paramétricas da reta t, que é perpendicular a cada uma das retas:

a)
$$s: \frac{x-3}{2} = \frac{-2y}{4} = z+3$$
 e $r: x = \frac{2y-44}{10} = \frac{z+8}{-2}$, e que passa pelo ponto P(2,3,5);

b) s:
$$\frac{x-2}{2} = \frac{2y}{-4} = 3z + 3$$
 e r: $x + 4 = \frac{2-y}{-2} = \frac{z}{-3}$, e que passa pelo ponto P(2,-3,1);

c)
$$\int \frac{y = -2x - 3}{z = 1}$$
 e S: $\begin{cases} x = \frac{2y - 1}{2} \\ z = \frac{-6y + 2}{2} \end{cases}$, e que passa pelo ponto P(3,-3,4).

RESP: a)t:
$$\begin{cases} x = 2 - m & x = 2 + 4m \\ y = 3 + 5m & b)t: \\ z = 5 + 1 2m & z = 1 + 6m \end{cases}$$
 b)t:
$$\begin{cases} x = 2 + 4m \\ y = -3 + 7m \\ z = 4 + 3m \end{cases}$$

80) Estabeleça as equações, em função de x, da reta traçada pela interseção de

r:P=(-6,1,0)+m(1,-1,1), com a reta
$$x = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
, e que forma ângulos agudos $x = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$

90) São dadas as retas
$$\uparrow$$
: $\begin{cases} \chi \colon Z \nmid 1 \\ y \colon 2z \cdot 1 \end{cases}$ e o ponto A(3,-2,1). Calcule as $y \colon Z \mapsto 5$

coordenadas dos pontos P e Q pertencentes, respectivamente a r e a s, de modo que A seja o ponto médio do segmento PQ. **RESP:** P(1, -1,0) e Q(5,3,2)

91) Determine o ponto O', simétrico de da origem O dos eixos coordenados, em relação ã

reta r:
$$\frac{x-2}{-1} = y+1 = \frac{z-4}{-2}$$
. RESP: O' $\left(\frac{1}{3}, \frac{5}{3}, \frac{2}{3}\right)$

92) Determine as coordenadas de A' simétrico de A (4,0,3), em relação a reta

s:
$$\frac{x+1}{2} = y+1 = \frac{z+2}{4}$$
. **RESP:**

$$A'\left(-\frac{2}{21},\frac{20}{21},\frac{101}{21}\right)$$

93) Estabeleça as equações paramétricas da reta traçada pelo ponto A(-1, 4,5) e que é

perpendicular à reta r;
$$P=(-2,1,1) + m(1,-1,2)$$
. **RESP:** 1: $y = 4 + 2m$ $z = 5 + m$

94)Determine uma equação da reta r que passa pelo ponto A(2,-1,3), e é perpendicular à

reta s:
$$\frac{x-1}{3} = \frac{y}{2} = \frac{z+2}{-1}$$
. **RESP:** P= (2,-1,3)+m(-13,3,-33)

95)Estabeleça as equações da reta s, traçada pelo ponto P(-1,-3,1), que seja concorrente

com a reta
$$\vec{l}$$
: \vec{l} : \vec

RESP:
$$s: x+1=\frac{y+3}{-1}=\frac{z_1}{2}$$

PLANO

- 96) Determinar a equação geral dos planos nos seguintes casos:
 - a) passa pelo ponto D(1,-1,2) e é ortogonal ao vetor $\mathbf{v} = (2,-3,1)$;
 - b)possui o ponto A(1,-2,1) e é paralelo aos vetores a = i + j k e b = i + j 2k;
 - c) passa pelos pontos A(-2,1,0), B(-1,4,2) e C(0,-2,2);
 - d) passa pelos pontos P(-2,1,0), Q(-1,4,2) e R(0,-2,2);
 - e)passa pelos pontos A(2,1,5), B(-3,-1,3) e C(4,2,3);
 - f) passa pelo ponto E(1,2,2) e contém os vetores $\mathbf{v} = (2,-1,1)$ e $\mathbf{w} = (-3,1,-2)$;
 - g) possui o ponto P(2,-1,3) e é paralelo ao plano XOZ;
 - h) contém as retas $r: \frac{x-7}{3} = \frac{y-2}{2} = \frac{z-1}{2}$ e s: $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-5}{4}$;
 - i) contém as retas $r: \frac{x}{2} = y + 1 = z + 3$ e $s: \frac{x+1}{4} = \frac{y-2}{2} = \frac{z}{2}$;
 - j) que contém as retas [:] $y: t \in S: \frac{x+2}{2}: \frac{y\cdot 2}{\cdot 2}, Z: 0;$
 - k)contém as retas $\begin{vmatrix}
 y : 2x | 3 \\
 y : 2x | 3 \\
 y : : : :
 2 : 3x | 4
 \end{vmatrix}$
 - I) passa pela reta $\frac{x-1}{2} = \frac{y}{2} = z-1$ e é paralelo à reta $\frac{x-3}{2} = \frac{y-2}{-1} = \frac{z-4}{4}$

RESP: a)
$$\pi$$
 :2x-3y+z-7=0

b)
$$\pi$$
 :x-y-z=0

d)
$$\pi$$
 :12x+2y-9z+22=0 e) π :6x-14y-z+7=0 f) π :x+y-z-5=0

$$e)\pi :6x-14y-z+7=0$$

$$f)\pi : x+y-z-5=0$$

$$g)\pi : y+1=0$$

h)
$$\pi$$
 :2x–16y–13z+31= 0 i) π :y–z–2=0

i)
$$\pi$$
 :y-z-2=0

$$j)\pi :4x+4y+3z=0$$

97) Determine a equação da reta interseção dos planos, nos seguintes casos:

a)
$$\begin{cases} x + 2y - z - 1 = 0 \\ x + y + 1 = 0 \end{cases}$$

$$\begin{cases} 3x - y + z - 3 = 0 \\ x + 3y + 2z + 4 = 0 \end{cases}$$

c)
$$\begin{cases} x - 2y - z - 8 = 0 \\ 2x + 3y + 1 & 3 & 0 \end{cases}$$
 d) $\begin{cases} 3x - 2y - z - 1 = 0 \\ x + 2y - z - 7 = 0 \end{cases}$

RESP: a)r:P=(-3,2,0)+m(-1,1,1) b)
$$x = y - 2 = \frac{z-1}{-2}$$

c)<sub>r:
$$\frac{x+\frac{2}{7}}{3} = \frac{y+\frac{29}{7}}{-2} = \frac{z}{7}$$
 d) $\frac{x}{2} = y+4 = \frac{z-7}{4}$</sub>

98)Forme a equação do plano que possui um ponto M(-2,1,3) e que é perpendicular à reta

$$r: \frac{x}{2} = \frac{y-1}{3} = -z$$
. RESP: $\pi: 2x + 3y - z + 4 = 0$

99)Dado o ponto P(5,2,3)e o plano π :2x+y+z-3=0,determinar:

- a) a equação paramétrica da reta que passa por P e é perpendicular a π ;
- b) a projeção ortogonal de P sobre π ;
- c) o ponto P simétrico de P em relação a π ;
- d) a distância de P ao plano π .

RESP: a)
$$\int_{0}^{1} X = 5 + 2t$$

 $y = 2 = t$ b) $I(1,0,1)$ c) $P'(-3, -2, -1)$ d) $d = 2\sqrt{6}$
 $z = 3 = t$

100)Forme a equação do plano mediador do segmento A(1,2,-3) e B(3,2,5)

RESP: π :x+4z-6=0

101)Determinar a equação do plano que contém os pontos A (1,-2,2) e B(-3,1,-2) e é perpendicular ao plano π : 2x+y-z+8-0.

 π :x-12y-10z-5=0

102) Um plano π , traçado por P(3,3,-1) intercepta os semi-eixos coordenados positivos OX,OY e OZ, respectivamente nos pontos A,B, e C, tais que $\|\overrightarrow{OA}\| = 2\|\overrightarrow{OB}\|$ e $\|\overrightarrow{OA}\| = 3\|\overrightarrow{OC}\|$.Estabeleça a equação geral de π . **RESP:**

 π ;x+2y+3z-6=0

103)Determine a equação do plano que contém a reta interseção dos planos π_1 : 3x-2y-z-1=0 e π_2 : x +2y-z-7=0 e que passa pelo ponto M(2,0,-1).

RESP: π :9x+2y-5z-13=0

104)Determinar as equações paramétricas da reta que passa pelo ponto A(-1,0,0) e é paralela a cada uma dos planos π_1 : 2x-y-z+1=0 e π_2 :x+3y+z+5=0.

RESP:
$$\begin{cases} x = -1 + 2t \\ y = -3t \\ x = 7t \end{cases}$$

105)Determinar equação geral do plano π ,que passa ponto A(4, 1, 0) e é perpendicular aos planos π ₁: 2x -y -4z- 6 = 0 e π ₂: x + y + 2z -3 = 0. **RESP:** π :2x-8y+ 3z=0

106)Determinar a equação do plano que contém o ponto A(3,-2,-1) e a reta

$$\begin{cases} x + 2y + z - 1 = 0 \\ 2x + y - z + 7 = 0 \end{cases}$$
 RESP: π :2x+3y+x+1=0

107) Determinar a equação do plano π , que passa pelo ponto P(2,5,3) e é perpendicular à reta r, interseção dos planos π ₁: x–2y+z–1=0 e π ₂:3x+2y–3z+5=0.

RESP: π : 2x+3y+4z-31=0

108)Determinar a equação do plano que passa pela reta [$\begin{cases} 3\chi + 2y + 5z + 6 = 0 \\ \chi + 4y + 3z + 4 = 0 \end{cases}$, é paralelo à

reta s:
$$\frac{x-1}{3} = \frac{y-5}{3} = \frac{z+1}{-3}$$
. **RESP:** π :3x+2y+5z+6=0

109)Dados os planos π ₁:2x+y-3z+1=0, π ₂:x+y+z+1=0 e π ₃:x-2y+z+5=0, ache uma equação do plano que contém π ₁ $\cap \pi$ ₂ e é perpendicular a π ₃. **RESP:** π :x + y + z +1=0

110)Calcule o volume do tetraedro, cujas faces são os planos coordenados e o plano

$$\pi$$
 :5x+4y-10z-20=0. RESP: $V_T = \frac{20}{3}$

u.v.

111) Determine o ponto A', simétrico de A (1,4,2) em relação ao plano π : x-y+z-2 =0.

RESP: R: A'(3,2,4)

112) Determine uma equação da reta t, simétrica de $r: x-3=\frac{y-2}{2}=\frac{z}{-1}$, em relação ao

plano
$$\pi$$
 :2x+y-z+2=0.

RESP:
$$s: \frac{x-1}{-7} = y+2 = \frac{z-2}{2}$$

113) Dado o plano π_1 :2x+5y+3z+3=0 e a reta AB, sendo A (1,1,1) e B(2,2,2), determina a equação do plano que passa pelo ponto onde a reta AB fura o plano π_1 e é paralelo ao plano π_2 :x-3=0.

$$x + \frac{3}{10} = 0$$

114) Considere as retas r:P=(1,1,0)+t(0,1,1) e s: $\frac{x-1}{2}$ = y = z. Seja A o ponto onde s fura o plano π :x-y+z=2, e B e C ,respectivamente, os pontos onde r fura os planos XOZ e XOY,respectivamente. Calcule a área de triângulo ABC. **RESP:** $S = \frac{\sqrt{3}}{2}$ ua

115)Determinar a equação simétrica da reta r, que passa pelo ponto M(2,-4,-1), e pelo

meio do segmento de reta $\$: \begin{bmatrix} 3\chi + 4y + 5z - 2 & 60 \\ 3\chi - 3y - 2z - 5 = 0 \end{bmatrix}$, compreendido entre os planos

$$\pi_{1}:5x+3y-4z+11=0$$
 e $\pi_{2}:5x+3y-4z-41=0$.

RESP:
$$r: \frac{x-2}{2} = \frac{y+5}{5} = \frac{z+1}{3}$$

116) Dados o ponto P(1,3–1), o plano π :x+z=2 e a reta s:P=(2,0,0)+m(1,0,1), obtenha uma equação da reta r que passa por P, é paralela a π e dista 3 da reta s.

RESP:
$$r:P=(1,3,-1)+m(-1,0,1)$$

COORDENADAS POLARES E TRANSFORMAÇÕES LINEARES

117)Dois dos vértices de um triângulo eqüilátero são os pontos A(0 , 75 $^{\circ}$) e B(3, 180 $^{\circ}$). Ache as coordenadas polares do terceiro vértice.

RESP:
$$C(3,120^{\circ})$$
 e $C'(3,-240^{\circ})$ ou $C'(3,-120^{\circ})$

118)Lado de um hexágono mede 4 u.c. Determine as coordenadas polares dos vértices deste hexágono quando seu centro coincidir com o pólo do sistema e um de seus vértices pertencerem ao eixo polar.

119)Determine as coordenadas polares dos vértices de um quadrado ABCD, sabendo-se que o pólo é o ponto O'(1,2), que o eixo polar é paralelo ao eixo OX e que tem o mesmo sentido deste. Sendo dados as coordenadas cartesianas dos vértices: A (4,2), B(7,5), C(4.8) e D(1,5). **RESP:** A (3,0°), B $\left(3\sqrt{5},26^{\circ}30^{\circ}\right)$, C($3\sqrt{5}$,63,5°), D(3,90°)

120)Num sistema de coordenadas polares são dados os dois vértices
$$A\left(3,-\frac{4\pi}{9}\right)$$
e

 $B\left(5,\frac{3\pi}{4}\right)$ do paralelogramo ABCD e o ponto de interseção das diagonais coincide com o pólo. Achar as coordenadas polares dos outros dois vértices.

RESP:
$$C\left(5,-\frac{\pi}{4}\right)$$
 e $D\left(3,\frac{4\pi}{9}\right)$

121)Determinar as coordenadas polares dos vértices do quadrado ABCD, sabendo-se que o eixo polar é a reta paralela a diagonal AC, com o mesmo sentido desta, que o pólo é o ponto médio de BC e que o lado do quadrado mede 6 cm.

RESP: A
$$(3\sqrt{5}, 161^{\circ}30')$$
, B $(3,-135^{\circ})$, C $(3,45^{\circ})$ e D $(3\sqrt{5},108^{\circ}30')$

122) Transformar as seguintes equações cartesianas em equações polares:

a)
$$x^2 + y^2 = 25$$
 b) $x^2 - y^2 = 4$ c) $(x^2 + y^2)^2 = 4(x^2 - y^2)$ d) $x - 3y = 0$ e) $y^2 + 5x = 0$ f) $x^2 + y^2 + 4x - 2y = 5$ h) $(x^2 + y^2)^2 - 18xy = 0$ i) $4y^2 - 20x - 25 = 0$ j) $12x^2 - 4y^2 - 24x + 9 = 0$ k) $x^2 + y^2 - 2y = 0$

Obs.: Somente considere a resposta em que $\rho > 0$.

RESP: a)
$$\rho = 5$$
 b) $\rho^2 \cos 2\theta = 4$ c) $\rho^2 = 4 \cos 2\theta$ d) $\theta = \arctan 1/3$ e) $\rho \sec^2\theta + 5 \cos\theta = 0$ f) $\rho^2 \sec^2\theta = 8$ g) $\rho^2 + 2\rho$ (2 cos θ - sen θ) = 5

h)
$$\rho^2 = 9 \sec 2 \theta$$
 i) $\rho = \frac{5}{2(1-\cos \theta)}$ j) $\rho = \frac{3}{2+4\cos \theta}$ k) $\rho = 2 \sec \theta$

123)Transformar as seguintes equações polares em equações cartesianas:

a)
$$\rho = 4$$
 b) $\theta = 1/4\pi$ c) $\rho = 8\cos\theta$ d) $\rho = 6\sin\theta + 3\cos\theta$

e)
$$\rho$$
 = 15 sec θ f) ρ (sen θ + 3 cos θ) = 3 g) ρ (2 -cos θ) = 4
h) 2ρ = 2 + cos 2θ i) ρ 2 = 4 cos 2θ j) ρ = 4 (1 + cos θ

RESP: a)
$$x^2 + y^2 = 16$$
 b) $x = y$ c) $x^2 + y^2 - 8x = 0$ d) $x^2 + y^2 - 3x - 6y = 0$ e) $x = 15$ f) $3x - y - 3 = 0$ g) $3x^2 + 4y^2 - 8x - 16 = 0$ h) $4(x^2 + y^2)^3 = (3x^2 + y^2)^2$

124) Transforme, em relação a um novo sistema de coordenadas de eixos paralelos aos primeiros e origem conveniente para que na nova equação não figure os termos do 1º grau, as equações:

a)
$$x^2 + y^2 - 6x + 2y - 6 = 0$$

b) $xy - x + 2y - 10 = 0$
c) $x^2 - 4y^2 - 2x + 8y - 7 = 0$
d) $x^2 + 4y^2 - 2x - 16y + 1 = 0$
e) $30xy + 24x - 25y - 80 = 0$
f) $3x^2 + 3y^2 - 10xy - 2x + 14y + 27 = 0$

RESP: a) $x'^2 + y'^2 = 16$, O'(3,-1) b) x'y'=8, O'(-2,1) c) $x'^2 - 4y'^2 - 4 = 0$, O'(1,1)

d)
$$x'^2 + 4y'^2 - 16 = 0$$
, $O'(1,2)$ e) $x'y'=2$, $O'\left(\frac{5}{6}, -\frac{4}{5}\right)$ f) $O'(2,1)$

$$3x'^2+3y'^2-10x'y'+32=0$$
 g) $O\left(\frac{3}{4},0\right)$, $4x^{2}-4x^{2}+4y^{2}-4x^{2}+6$

i) $(x^2 + y^2)^2 = 4x^2 - 4y^2$

125)Transforme as equações abaixo, mediante uma rotação de eixos :

a)
$$x^2 + 2 xy + y^2 - 32 = 0$$
 b) $xy - 8 = 0$ c) $31 x^2 + 10 \sqrt{3} xy + 21 y^2 - 144 = 0$

d)
$$6x^2 + 26y^2 + 20\sqrt{3}xy - 324 = 0$$
 e) $4x^2 + 4xy + y^2 + \sqrt{5}x = 1$

g)
$$2xy + 6x - 8y = 0$$
 h) $7x^2 - 6\sqrt{3}xy + 13y^2 - 16 = 0$

RESP: a)
$$x' = \pm 4 \theta = 45^{\circ}$$
 b) $x'^{2} - y'^{2} = 16 \theta = 45^{\circ}$

c)
$$9x'^2 + 4y'^2 - 36 = 0$$
 $\theta = 30^0$ d) $9x'^2 - y'^2 - 81 = 0$ $\theta = 60^0$
e) $5x'^2 + 2x' - y' = 1$, $\theta = 26.2^0$ q) $\theta = 45^0$, $x'^2 - y'^2 - \sqrt{2}x' - 7\sqrt{2}y' = 0$

e)
$$5x'^2+2x'-y'=1,\theta=26,2^0$$
 g) $\theta=45^0$, $x'^2-y'^2-\sqrt{2}$ $x'-7\sqrt{2}$ $y'=0$
h) $\theta=30^0$, $x'^2+4y'^2-4=0$

CÔNICAS

<u>ELIPSE</u>

126)Achar a equação de uma elipse cujos focos se encontram sobre o eixo das abscissas, e sabendo-se que:

j) 16($x^2 + y^2$) = ($x^2 + y^2 - 4x$)²

- a) a distância focal é igual a 6 e a excentricidade é $e = \frac{3}{5}$;
- b) seu menor eixo é 10 e a excentricidade e $e = \frac{12}{13}$;
- c) C(0,0), eixo menor igual 6, passa pelo ponto $P(-2\sqrt{5},2)$;
- d) focos $F_1(3,2)$ e $F_2(3,8)$, comprimento do eixo maior 8.

e) C(0,0),
$$e = \frac{1}{2}$$
, $P(3, \frac{9}{2})$, ponto da cônica;

- f) seus vértices são $A_1(-2,2)$, $A_2(4,2)$, $B_1(1,0)$, $B_2(1,4)$;
- g) vértices (7,2) e (1,2), eixo menor=2;
- h) C(0,0), $P(\sqrt{15},-1)$ ponto da cônica, distância focal 8;

RESP: a)
$$16x^2 + 25y^2 - 400 = 0$$

b)
$$25x^2 + 169y^2 - 4225 = 0$$
;

c)
$$x^2 + 4y^2 - 36 = 0$$

d)
$$16x^2 + 7y^2 - 96x - 70y + 207 = 0$$

e)
$$3x^2 + 4y^2 - 108 = 0$$

$$f)4x^2 + 9y^2 - 8x - 36y + 4 = 0$$

q)
$$x^2 + 9y^2 + 8x - 36y + 43 = 0$$

h)
$$x^2 + 5y^2 - 20 = 0$$

127)A órbita da Terra é uma elipse, com o Sol em um dos focos. Sabendo-se que o eixo maior da elipse mede 2.999.338.000 km e que a excentricidade mede $\frac{1}{62}$. Determine a maior e a menor distância da Terra em relação a Sol.

RESP: MAD =152.083.016 km; med =147.254.984 km.

128)O centro de uma elipse coincide com a origem. O eixo maior é vertical e seu comprimento é o dobro do comprimento do eixo menor, sabendo-se que essa elipse

passa pelo ponto
$$P\left(\frac{\sqrt{7}}{2},3\right)$$
, achar sua equação. **RESP:** $4x^2 + y^2$

129)Uma elipse é tangente ao eixo das abscissas no ponto A(3,0) e ao eixo das ordenadas no ponto B(0,-4). Formar a equação dessa elipse, sabendo-se que seus eixos de simetria são paralelos aos eixos de coordenadas.

RESP:
$$9x^2 + 16y^2 - 54x + 128y + 193 = 0$$

130)Achar a equação da cônica com centro C(3,1), um dos vértices A(3,-2) e

excentricidade
$$\frac{1}{3}$$
. RESP: $9x^2 + 8y^2 - 54x - 16y + 17 = 0$

131)Determine a equação da elipse de centro C(-2,1), excentricidade 3/5 e eixo maior horizontal de comprimento 20. **RESP:** $16x^2 + 25y^2 + 64x - 50y - 1511 = 0$

132) Determine a equação da cônica de C(4,1), um foco (1,1) e excentricidade $e = \frac{1}{3}$.

RESP:
$$8x^2 + 9y^2 - 64x - 18y - 511 = 0$$

133)Determine a equação da cônica de vértices A₁(1,8) e A₂(1, 7 4) e excentricidade

$$e = \frac{2}{3}$$
. **RESP:** $9x^2 + 5y^2 - 18x - 20y - 151 = 0$

134) Determine a equação da cônica de focos (-1, -3) e (-1,5), e excentricidade $e = \frac{2}{3}$.

RESP:
$$9x^2 + 5y^2 + 18x - 10y - 166 = 0$$

135)Determine a equação da elipse de excentricidade $\frac{3}{5}$, cujos focos são pontos da reta y –1=0 e sendo B(–2, 9) um dos extremos do seu eixo menor.

RESP:
$$16x^2 - 25y^2 + 64x = 50y - 1561 = 0$$

- 136)A uma elipse de excentricidade $\frac{1}{3}$, circunscreve-se um retângulo de lados paralelos aos eixos coordenados da elipse. Calcular a área do retângulo, sabendo-se que seu perímetro vale $8(3+2\sqrt{2})m$.
- 137)Em cada uma das equações abaixo, determinar as coordenadas dos vértices, focos, centro, excentricidade, corda focal, parâmetro e as equações das diretrizes:

a)
$$\frac{x^2}{100} + \frac{y^2}{36} = 1$$

b)
$$9x^2 + 5y^2 - 45 = 0$$

c)
$$4x^2 + y^2 - 1 = 0$$

$$f)4x^2 + 3y^2 + 32x + 24y + 64 = 0$$

g)
$$4x^2 + 9y^2 - 48x + 72y + 144 = 0$$

RESP: a)C(0,0), A ($\pm 10,0$), B(0, ± 6), F($\pm 8,0$), e= 4/5, eixo maior horizontal;

b)C(0,0),A(0, \pm 3),B(\pm $\sqrt{5}$,0),F(0, \pm 2),e =2/3, eixo maior vertical;

c)C(0,0),A(0,±1),
$$F\left(0,\pm\frac{\sqrt{3}}{2}\right)$$
, $B(\pm1/2,0)$, $e=\sqrt{3}/2$, eixo maior vertical;

- d) $C(-1,-2),A_1(-1,2),A_2(-1,-7), F_1(4,0), F_2(-1,-5), B_1(3,-2), B_2(-5,-2), e$ =3/5, eixo maior horizontal;
- e) C(-1,2), $A_1(-6,2)$, $A_2(4,2)$, $F_1(3,2)$, $F_2(-4,2)$, $B_1(-1,-2)$, $B_2(-1,6)$ e =1/2, eixo maior horizontal;

 $f)C(-4,-4),\ A_1(-4,0),\ A_2(-4,8),\ F_1(-4,-2),\ F_2(-4,-6),\ B\bigl(-4\pm2\sqrt{3},-4\bigr),\ e=\frac{1}{2},\ eixo\ maior\ vertical;$

g)C(6,-4), A₁(12,-4), A₂(0,-4), F(6
$$\pm 2\sqrt{5}$$
,-4), $e = \frac{\sqrt{5}}{3}$, eixo maior horizontal;

<u>HIPÉRBOLE</u>

- 138) Determine a equação da hipérbole, nos seguintes casos:
 - a)de focos $F(0,\pm 5)$ e vértices A $(0,\pm 3)$;
 - b)que tem focos no eixo das abscissas e eixos real e imaginário 10 e 8 , respectivamente;
 - c) de focos F(3,4) e (3,2) e excentricidade e=2;
 - d)de focos F (] 1,] 5) e (5,] 5), equilátera
 - e)eixo real horizontal, equilátera, de vértices (-3,-4) e (-3,4);
 - f) de C0,0), que passa pelo ponto (-5,3), é equilátera e de eixo real horizontal;
 - g)que tem eixo real vertical de comprimento 8 e passa pelo ponto (6,5);
 - h)eixo real sobre o eixo das abscissas ,distância focal é igual a 10 e eixo imaginário 8;

i)eixo real sobre o eixo das ordenadas, as equações das assíntotas $y = \pm \frac{12}{5}x$ e distância focal 52.

- j) eixo real horizontal, distância focal é igual a 6 e a excentricidade $\frac{3}{2}$;
- k) eixo real paralelo ao eixo OX, centro no ponto C(-1,-3), comprimento do eixo imaginário é $4\sqrt{5}$ e excentricidade $\frac{3}{2}$;
- I) C(2, -3), eixo real vertical, passando pelos pontos (3, -1) e (-1,0)(trabalhosa);
- m)centro é o ponto C(0,4), um dos focos é (0,–1) e um de seus pontos $P\left(\frac{16}{3},9\right)$.

RESP: a)
$$9x^2 - 16y^2 + 144 = 0$$

c)
$$4x^2 - 12y^2 - 24x + 24y + 51 = 0$$

e)
$$x^2 - y^2 + 6x + 25 = 0$$

$$g)x^2 - 4y^2 + 64 = 0$$

i)
$$144 x^2 - 25 y^2 + 14400 = 0$$

$$k)5x^2-4y^2+10x-24y-111=0$$

m)
$$16x^2 - 9y^2 - 128y + 112 = 0$$

b)
$$16x^2 - 25y^2 - 400 = 0$$

d)
$$2x^2 - 2y^2 - 8x - 20y - 51 = 0$$

$$f) x^2 - y^2 = 16$$

$$h)16x^2 - 9y^2 - 144 = 0$$

$$i)5x^2 - 4y^2 - 20 = 0$$

$$1) 5x^2 - 8y^2 20x - 48y - 25 = 0$$

- 139)O centro de uma cônica está na origem, seu eixo real encontra-se ao longo do eixo
 - OY e cujas assíntotas são as retas $y = \pm \frac{1}{4}x$. Determinar a equação da cônica, se seus vértices são os pontos A(0,6 2). **RESP:** $x^2 - 16y^2 + 64 = 0$

- 140)Determine a equação da hipérbole que tem como uma assíntota, a reta $2x + 3\sqrt{2}y = 0$ eixo horizontal e passa pelo ponto (3, \begin{array}{c} 1). \end{array} **RESP:** $2x^2 9y^2 9 = 0$
- 141)Determine a equação da hipérbole que tem como assíntotas, as retas 2x+y-3=0 e 2x-y-1=0, eixo horizontal e passa pelo ponto (4,6). **RESP:** $4x^2-y^2-8x+2y-8=0$
- 142)Determine a equação da hipérbole que tem como assíntotas, as retas 3x-4y+16=0 e

$$3x+4y-16=0$$
, eixo vertical e que passa pelo ponto $\left(\frac{16}{3},9\right)$.

RESP:
$$9x^2 - 16y^2 + 128y - 112 = 0$$

- 143)Determinar a equação reduzida da hipérbole, cujo eixo real tem por extremos os focos da elipse $16x^2 + 25y^2 625 = 0$ e cuja excentricidade é o inverso da excentricidade da elipse dada. **RESP:** $16x^2 9y^2 225 = 0$
- 144)Os focos de uma hipérbole coincidem com os da elipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ Forme a equação da hipérbole, considerando-se que sua excentricidade é e= 2.

RESP:
$$3x^2 - v^2 - 12 = 0$$

145)Determine a equação da elipse de centro na origem, cujos vértices coincidem com os focos da hipérbole $64 x^2 - 36 y^2 - 2304 = 0$ e cujos focos são os vértices da hipérbole.

RESP:
$$16x^2 + 25y^2 - 400 = 0$$

146)Em cada uma das equações de hipérbole abaixo, determine as coordenadas dos vértices, focos, centro a excentricidade, corda focal, parâmetro, equação das diretrizes e das assíntotas.

a)
$$\frac{x^2}{100} - \frac{y^2}{64} = 1$$

b)
$$9x^2 - 16y^2 = 144$$

c)
$$4x^2 - 5y^2 + 20 = 0$$

d)
$$x^2 - y^2 = 1$$

$$e)x^2 - 4y^2 + 6x + 24y - 31 = 0$$

$$f)16x^2 - 9y^2 - 64x - 18y + 199 = 0$$

$$g)9x^2 - 4y^2 - 54x + 8y + 113 = 0$$

$$h)9x^2 - 4y^2 + 18x - 24y - 63 = 0$$

RESP: a) C(0,0),A(± 10,0), $F(\pm 2\sqrt{41},0)$, $e = \frac{\sqrt{41}}{5}$, eixo real horizontal, ass: $y = \pm \frac{4}{5}$,

b)C(0,0), A(± 4,0), F(± 5,0),
$$e = \frac{5}{4}$$
, eixo real horizontal, ass : $y = \pm \frac{3}{4}x$;

c)C(0,0), A(0,±2), F(0,±3),
$$e = \frac{3}{2}$$
, eixo real vertical, ass; $y = \pm \frac{2\sqrt{5}}{5}x$, $y = \pm \frac{4}{3}$;

d)C(0,0), A(
$$\pm$$
 1,0), F($\pm\sqrt{2}$,0), e = $\sqrt{2}$, eixo real horizontal, ass: y= \pm x;

- e)C(-3,3),A₁(-1,3), A₂(-5,3), F(-3 $\pm \sqrt{5}$,3), eixo real horizontal, ass₁:x-2y-9=0,ass₂:x + 2y-3=0,;
- $f)C(2,1),A_1(2,-3), \qquad A_2(2,-3), \qquad F_1(2,-4), \qquad F_2(2,6), \qquad \text{eixo} \qquad \text{real} \qquad \text{vertical} \\ ,ass_1:4x-3y-5=0,ass_2:4x-3y-5=0;$
- g)C(3,1), A₁(3,4), A₂(3,-2), F(3,1 $\pm\sqrt{13}$), ass₁:3x-2y-1=0, ass₂:3x\=2y-5=0;

$$h)C(-1,-3),\ A_1(1,-3),A_2(-3,-3),\ F\left(-1\pm\sqrt{13},-3\right),\ ass_1:3x-2y-3=0\ e\ ass_2:2x+2y-9=0, e=\frac{\sqrt{13}}{2}$$

PARÁBOLA

147)Determinar a equação da parábola:

- a) de vértice V(6,-2), cujo eixo é y +2=0 e que passa pelo ponto (8,2);
- b) de foco F(3,3) e diretriz y-1=0;
- c) de vértice V(0,3) e diretriz x + 5=0;
- e) de foco F(3,3) e diretriz y-5=0;
- g)V(3,-6),eixo de simetria paralelo ao OY, e que passa pelo ponto (-3,-10);
- i) F(4,3), diretriz y +1 = 0;
- k) Eixo // OY, $V\left(-\frac{3}{2},2\right)$ passa pelo ponto M(-1,-1);
- I) V(4, -1), eixo: y+1=0 e passa pelo ponto (3, -3)
- n) F(3, 1) e diretriz d: 2x-1=0;
- o) V(\big| 4,3) e F(\big| 4,1)
- p) V(1,3), eixo de simetria paralelo ao eixo dos x, passa pelo ponto P(\rceil 1, \rceil 1)
- q) V(3, 2), eixo de simetria y+2=0, passa pelo ponto P(2,2)
- s) de foco F(-7,3) e diretriz x+3=0;
- v) F(5,2), diretriz x 7 = 0;

RESP: a)
$$y^2 + 4y - 8x + 52 = 0$$

c)
$$y^2 - 6x - 20X + 9 = 0$$

$$g)x^2 - 6x + 9y + 63 = 0$$

$$k)12x^2 + 36x + y + 25 = 0$$

n)
$$4y^2 + 8y - 20x + 39 = 0$$

$$(x)^2 - 6y + 8x + 1 = 0$$

s)
$$y^2 - 6x + 4y + 49 = 0$$

b)
$$x^2 - 6x - 4y + 17 = 0$$

e)
$$x^2 - 6x + 4y - 7 = 0$$

i)
$$x^2 - 8x - 8y + 24 = 0$$

$$1) y^2 + 2y + 4x - 15 = 0$$

$$0) x^2 + 8x + 8y - 8 = 0$$

q)
$$y^2 + 16x + 4y - 44 = 0$$

$$y$$
) $y^2 + 4x - 4y - 20 = 0$

- 148) Determine a equação da parábola que tem eixo de simetria horizontal que passa **RESP:** $y^2 + 4x + 2y - 15 = 0$; V(4.-1), p=-2pelos pontos A(-5,5), B(3,-3) e C(3,1).
- 149) Determine os pontos de interseção da hipérbole $x^2 4y^2 20 = 0$ com a parábola $y^2 - 3x = 0$ **RESP**: $(10,\pm\sqrt{30})$ e $(2,\pm\sqrt{6})$
- 150) Achar a equação da parábola, cuja corda focal liga os pontos (3,5) e (3,-3).

RESP:
$$y^2 - 2y - 8x + 9 = 0$$
 ou $y^2 - 2y + 8x - 39 = 0$

- 151) Encontre na parábola $y^2 8x = 0$ um ponto tal que sua distância à diretriz seja igual a **RESP:** P(2,4) ou P(2,-4)
- 152)Determine a equação da parábola que tem eixo de simetria vertical e passa pelos **RESP:** $V\left(\frac{1}{2}, -\frac{1}{4}\right)$; $P = \frac{1}{2}$; $x^2 - x - y = 0$ pontos A(0,0), B(2,2,) e C(-4,20).
- 153)Dada uma elipse de centro na origem, distância focal 8 e comprimento do eixo maior 12 e eixo maior paralelo ao eixo OX. Considere uma parábola que tem por diretriz, a reta suporte do eixo menor da elipse e por foco, o foco à direita do cento da elipse. RESP: $v^2 - 8x + 16 = 0$ Determine a equação da parábola.
- 154) Determinar as coordenadas do vértice, foco, a equação da diretriz e o parâmetro das seguintes parábolas:

a)
$$y^2 - 6x = 0$$

$$c)y^2 + 4x = 0$$

c)
$$y^2 + 4x = 0$$
 d) $y^2 - 4x + 8 = 0$

$$e)x^2 - 6y - 2 = 0$$

$$f)x^2 - 6x + 9y + 63 = 0$$

j)
$$y^2 - 8y - 8x + 40 = 0$$

$$k)y^2 - 8x - 6y - 7 = 0$$

RESP: a)V(0,0), $F\left(\frac{3}{2},0\right)$, d:2x+3=0, eixo de simetria horizontal,CVD;

b) V(0,0).
$$F\left(0,\frac{5}{4}\right)$$
, d: 4y+5=0, eixo de simetria vertical, CVC;

- c)V(0,0), F(-1,0). d: x = 1,eixo de simetria horizontal, CVE;
- d)V(2,0), F(3,0), d:x-1=0,eixo de simetria horizontal, CVD;
- e) $V\left(0,-\frac{1}{3}\right)$, $F\left(0,\frac{7}{6}\right)$ d: 6y +11=0, eixo de simetria vertical, CVC;
- f)V(3,-6), $F\left(3,-\frac{33}{4}\right)$, d:4y +15=0, eixo de simetria vertical, CVB;
- i)V(4,-1), F(3,-1), d:x -5=0,eixo de simetria horizontal, CVE;
- k)V(-2.3), F(0.3), d:x +4=0.eixo de simetria horizontal, CVD:

BIBLIOGRAFIA

- WINTERLE, PAULO. VETORES E GEOMETRIA ANALÍTICA. MAKRON BOOKS, 2000.
- BOULOS, PAULO; CAMARGO IVAN. INTRODUÇÃO À GEOMETRIA ANALÍTICA NO ESPAÇO. MAKRON BOOKS 1997.
- **FEITOSA**, MÍGUEL O.. CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA EXERCÍCIOS PROPOSTOS E RESOLVIDOS. EDITORA ATLAS S.A.. 1989.
- FRANCISCO, BLASI. EXERCÍCIOS DE GEOMETRIA ANALÍTICA -. PAPIRUS LIVRARIA EDITORA, 1984.
- **KINDLE**, JOSEPH H.. PROBLEMAS E EXERCÍCIOS DE GEOMETRIA ANALÍTICA NO PLANO (COLEÇÃO SCHAUM). AO LIVRO TÉCNICO S.A.,1965 .
- KLÉTÉNIC. PROBLEMAS DE GEOMETRÍA ANALÍTICA. LIVRARIA CULTURA BRASILEIRA EDITORA, 1980. LEHMANN, CHARLES H., GEOMETRIA ANALÍTICA. EDITORA GLOBO, 1974.
- MACHADO, ANTONIO DOS SANTOS. ALGEBRA LINEAR E GEOMETRIA ANALÍTICA. ATUAL EDITORA,
- **MENEZES**, DARCY LEAL DE, NOÇÕES E FORMULÁRIO DE GEOMETRIA ANALÍTICA NO PLANO E NO ESPACO.J.B. LEANDRO-EDIROE E DISTRIBUIDOR.1977.
- **MENNA**, ZÓZIMO GONÇALVES. CURSO DE GEOMETRIA ANALÍTICA NO ESPAÇO TRATAMENTO VETORIAL. LIVROS TÉCNICOS E CIENTÍFICOS S.A., 1978.
- **MENNA**, ZÓZIMO GONÇALVES. GEOMETRIA ANALÍTICA PLANA TRATAMENTO VETORIAL. LIVROS TÉCNICOS E CIENTÍFICOS S.A.1978
- **MENNA**, ZÓZIMO GONÇALVES. CURSO DE GEOMETRIA ANALÍTICA COM TRATAMENTO VETORIAL. EDITORA CIENTÍFICA.
- PINTO, HERBERT F.. PROBLEMAS E EXERCÍCIOS DE GEOMETRIA ANALÍTICA NO PLANO. AO LIVROTÉCNICO LTDA. 1956.
- **RIGHETTO**, ARMANDO VETORES E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR). INSTITUTO BRASILEIRO DO LIVRO CIENTÍFICO LTDA, 1985 (EDIÇÕES MAIS ANTIGAS IVAN ROSSI EDITORA).
- SANTOS, NATHAN MOREIRA DOS. VETORES E MATRIZES. LIVROS TÉCNICOS E CIENTÍFCOS EDITORA, 1982
- **SMITH,** PERCEY F.; GALE, ARTHUR SULLIVAN NEELLEY, JOHN HAVEN. GEOMETRIA ANALÍTICA. AO LIVRO TÉCNICO. 1957.
- STEINBRUCH, ALFREDO; BASSO, DELMAR. GEOMETRIA ANALÍTICA PLANA. MAKROM BOOKS 1991 STEINBRUCH, ALFREDO, WINTERLE, PAULO; GEOMETRIA NALÍTICA. MAKRO BOOKS, 1987
- CORRÊS, PAULO SÉRGIO QUELELLI; ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. INTERCIÊNCIA, 2006