ОТДЕЛ ОБРАЗОВАНИЯ, СПОРТА И ТУРИЗМА АДМИНИСТРАЦИИ ЛЕНИНСКОГО РАЙОНА Г. ГРОДНО ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГИМНАЗИЯ № 2 Г. ГРОДНО»

Секция «Математика»

РЕШЕНИЕ ИССЛЕДОВАТЕЛЬСКОЙ ЗАДАЧИ «ИССЛЕДОВАНИЕ РАСПОЛОЖЕНИЯ ДРОБЕЙ»

Автор: Новицкая Алина Руслановна, ученица 5 «Б» класса

Руководитель: Кемежук Елена Валерьевна, учитель математики

Оглавление

Введение.	3
Основная часть	
Заключение	
Список использованных источников	

Введение

Исследовательская задача «Исследование расположения дробей» была предложена для решения школьникам в «VII Минском открытом городском турнире юных математиков 2020 г.». Она заинтересовала меня тем, что в программе изучения предмета «Математика» в 5 классе мы имеем дело с дробями. Также исследовательская работа развивает умение анализировать, рассуждать и обобщать данные. Решая данную задачу, можно в полной мере проявить свои способности к творческому мышлению.

Постановка задачи:

- 1. Все обыкновенные правильные несократимые дроби, числители и знаменатели которых однозначные числа, упорядочили по возрастанию. Между какими двумя последовательно расположенными дробями находится число $\frac{3}{7}$?
- 2. Все обыкновенные правильные несократимые дроби, числители и знаменатели которых двузначные числа, упорядочили по возрастанию. Между какими двумя последовательно расположенными дробями находится число $\frac{3}{7}$?

A
$$\frac{4}{7}$$
?

- 3. Среди обыкновенных дробей с положительными знаменателями, расположенными между числами $\frac{87}{38}$ и $\frac{88}{39}$, найдите такую, знаменатель которой минимален.
- 4. Среди обыкновенных дробей с положительными знаменателями, расположенными между числами $\frac{68}{21}$ и $\frac{76}{23}$, найдите такую, знаменатель которой минимален.
- 5. Найдите наименьшее натуральное число n, удовлетворяющее следующему условию: для любого целого числа m, где 0 < m < 2019, существует целое число k такое, что $\frac{m}{2019} < \frac{k}{n} < \frac{m+1}{2020}$.[1]
- 6. Предложите алгоритм нахождения обыкновенных правильных несократимых и последовательно расположенных дробей знаменатели которых n-значные числа между которыми находится число $\frac{m}{k}$.

Объект исследования: обыкновенные дроби.

Предмет исследования: разработка алгоритма сравнения дробей при конкретно заданных условиях задачи.

Цель работы: развивать умение анализа и обобщения результатов, полученных в ходе исследования.

3

Основная часть

1. Все обыкновенные правильные несократимые дроби, числители и знаменатели которых однозначные числа, упорядочили по возрастанию. Между какими двумя последовательно расположенными дробями находится число $\frac{3}{7}$?

Для определения между какими двумя последовательно расположенными дробями находится число $\frac{3}{7}$ рассмотрим все обыкновенные правильные несократимые дроби, числители и знаменатели которых однозначные числа и приведем их в таблице 1. В строках и столбцах указаны дроби с одинаковыми числителями и знаменателями по возрастанию.

Таблица 1 Правильные несократимые дроби, числители и знаменатели которых однозначные числа

знаменатели которых однозначные числа							
1_	1	1	1	1	1	1	
8	7	6		4	3	$\frac{\overline{2}}{2}$	
	2		2		2		
	$\frac{\overline{7}}{7}$		5		3		
3	3			3			
8	7		5	$\frac{-}{4}$			
	4		4				
	$\frac{\overline{7}}{7}$		5				
5	5	5					
8	7	- 6					
	6						
	$\frac{-}{7}$						
7							
8							
	$\frac{1}{8}$ $\frac{3}{8}$ $\frac{5}{8}$	$ \begin{array}{c c} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Пользуясь правилом сравнения дробей, расположим по возрастанию все дроби до $\frac{1}{2}$, так как $\frac{3}{7} < \frac{1}{2}$. В результате получаем:

$$\frac{1}{9}; \frac{1}{8}; \frac{1}{7}; \frac{1}{6}; \frac{1}{5}; \frac{2}{9}; \frac{1}{4}; \frac{2}{7}; \frac{1}{3}; \frac{3}{8}; \frac{2}{5}; \frac{3}{7}; \frac{1}{2}.$$

Анализируя данный ряд, можно заметить, две закономерности:

1. Каждая дробь, расположенная между двумя другими представляет собой сумму числителей, записанную в числитель, и сумму знаменателей этих дробей, записанную в знаменатель.

Например:
$$\frac{1}{8} = \frac{1+1}{9+7} = \frac{2}{16} = \frac{1}{8}$$
; $\frac{1}{7} = \frac{1+1}{8+6} = \frac{1}{7}$.

2. Разность произведения знаменателя меньшей дроби и числителя последующей с произведением числителя меньшей из дробей со знаменателем последующей равна единице.

Например:
$$\frac{1}{9}$$
; $\frac{1}{8}$ $1 \cdot 9 - 1 \cdot 8 = 1$ $\frac{3}{8}$; $\frac{2}{5}$ $2 \cdot 8 - 3 \cdot 5 = 1$

Запишем выведенные формулы в общем виде.

$$\frac{a}{b} < \frac{a+m}{b+n} < \frac{m}{n} \tag{1}$$

$$\frac{a}{b} < \frac{c}{d} \quad bc - ad = 1 \tag{2}$$

Таким образом, можно сделать вывод, что для решения данной задачи нет необходимости располагать в порядке возрастания все дроби.

Будем рассматривать $\frac{3}{7}$ как дробь с суммой натуральных чисел в числителе и знаменателе:

$$\frac{3}{7} = \frac{1+2}{6+1} = \frac{1+2}{5+2} = \frac{1+2}{4+3} = \frac{1+2}{3+4} = \frac{1+2}{2+5} = \frac{1+2}{1+6}$$
.

Согласно условию задачи подходящими являются 2 пары дробей:

1)
$$\frac{1}{4}$$
 $\times \frac{2}{3}$;

2)
$$\frac{2}{5}$$
 $\frac{1}{2}$

Сравнив их с дробью $\frac{3}{7}$, выбираем ближе расположенную пару, т. е. из

пары чисел $\frac{1}{4}$ и $\frac{2}{5}$ большее число $(\frac{2}{5} > \frac{1}{4})$, а из пары $\frac{2}{3}$ и $\frac{1}{2}$ меньшее $(\frac{1}{2} < \frac{2}{3})$.

Таким образом, получаем, что $\frac{2}{5} < \frac{3}{7} < \frac{1}{2}$.

Otbet:
$$\frac{2}{5} < \frac{3}{7} < \frac{1}{2}$$
.

2. Все обыкновенные правильные несократимые дроби, числители и знаменатели которых двузначные числа, упорядочили по возрастанию. Между

5

какими двумя последовательно расположенными дробями находится число $\frac{3}{7}$?

A
$$\frac{4}{7}$$
?

Если знаменатели дробей — двузначные числа, то очевидно, что сумма таких знаменателей <200. Таким образом, самое большое из чисел, входящих в данный промежуток, которое будет делится на 7 без остатка это 196.

Таким образом, воспользовавшись основным свойством дроби, получим: $\frac{3}{7} = \frac{84}{196} \ .$

Далее, чтобы определить между какими двумя последовательно расположенными дробями находится число $\frac{3}{7}$, наша задача из дробей меньших

 $\frac{84}{196}$ выбрать наибольшую, а из дробей больших $\frac{84}{196}$ наименьшую. При этом сумма числителей равна 84, а сумма знаменателей 196.

Способом подбора с использованием ранее выведенных формул (1) и (2) получаем подходящую пару дробей: $\frac{44}{103}$ и $\frac{40}{93}$.

Otbet:
$$\frac{44}{103} < \frac{3}{7} < \frac{40}{93}$$
.

Определим между какими двумя последовательно расположенными дробями находится число $\frac{4}{7}$.

Воспользовавшись основным свойством дроби, получим: $\frac{4}{7} = \frac{112}{196}$

Далее, чтобы определить между какими двумя последовательно расположенными дробями находится число $\frac{4}{7}$, из дробей меньших $\frac{112}{196}$ выбираем наибольшую, а из дробей больших $\frac{112}{196}$ наименьшую. При этом сумма числителей равна 112, а сумма знаменателей 196.

Способом подбора получаем подходящую пару дробей: $\frac{57}{100}$ и $\frac{55}{96}$.

Otbet:
$$\frac{57}{100} < \frac{4}{7} < \frac{55}{96}$$
.

3. Среди обыкновенных дробей с положительными знаменателями, расположенными между числами $\frac{87}{38}$ и $\frac{88}{39}$, найдите такую, знаменатель которой минимален.

Будем рассматривать неправильные дроби в виде смешанных чисел $\frac{87}{38} = 2\frac{11}{38}$; $\frac{88}{39} = 2\frac{10}{39}$.

Приведем дробные части к наименьшему общему числителю равному 110. Получим: $2\frac{110}{380}$ и $2\frac{110}{429}$. Таким образом, наша задача найти дробь числитель и знаменатель которой имеют наибольший из возможных общих делителей, при этом данная дробь должна быть больше, чем $2\frac{110}{429}$ и меньше, чем $2\frac{110}{380}$.

Делители числа 110: 110, 55, 11, 10, 5, 2, 1.

НОД(110; 385)=55

$$2\frac{110}{429} < 2\frac{110}{385} < 2\frac{110}{380}$$

$$2\frac{110}{385} = 2\frac{2}{7}$$
.

Ответ:
$$2\frac{2}{7}$$
.

4. Среди обыкновенных дробей с положительными знаменателями, расположенными между числами $\frac{68}{21}$ и $\frac{76}{23}$, найдите такую, знаменатель которой минимален.

Будем рассматривать неправильные дроби в виде смешанных чисел $\frac{68}{21} = 3\frac{5}{21}; \ \frac{76}{23} = 3\frac{7}{23}$

Приведем дроби к наименьшему общему числителю равному 35. Получим $3\frac{35}{147}$ и $3\frac{35}{115}$.

Таким образом, необходимо найти дробь числитель и знаменатель которой имеют наибольший из возможных общих делителей, при этом данная дробь должна быть больше, чем $3\frac{35}{147}$ и меньше, чем $3\frac{35}{115}$.

Делители 35: 35, 7, 5, 1.

НОД (35; 140)=35.

$$3\frac{35}{147} < 3\frac{1}{4} < 3\frac{35}{115}$$

Ответ:
$$3\frac{1}{4}$$
.

5. Найдите наименьшее натуральное число n, удовлетворяющее следующему условию: для любого целого числа m, где 0 < m < 2019, существует целое число k такое, что $\frac{m}{2019} < \frac{k}{n} < \frac{m+1}{2020}$.

Используя (1), получаем
$$\frac{k}{n} = \frac{m+m+1}{4039} = \frac{2m+1}{4039}$$
.

Ответ: 4039.

6. Предложите алгоритм нахождения обыкновенных правильных несократимых и последовательно расположенных дробей знаменатели которых n-значные числа между которыми находится число $\frac{m}{k}$.

Пусть
$$\frac{a}{b} < \frac{m}{k} < \frac{c}{d}$$
. Тогда получим
$$bm - ak = 1 \text{ и } kc - md = 1$$
 (3)

Если знаменатели дробей $\frac{a}{b}$ и $\frac{c}{d}$ – n-значные числа, то сумма таких знаменателей меньше $2\cdot 10^n$. Таким образом, необходимо определить большее из чисел, входящих в данный промежуток, которое будет делится на k без остатка. Пусть результат деления равен z.

Воспользовавшись основным свойством дроби, получим:

$$\frac{m}{k} = \frac{mz}{kz}$$
, где $kz - n$ -значное число.

Далее, чтобы определить между какими двумя последовательно расположенными дробями находится число $\frac{m}{k}$, наша задача из дробей меньших

 $\frac{mz}{kz}$ выбрать наибольшую, а из дробей больших $\frac{mz}{kz}$ наименьшую.

$$a + c = mz \quad \text{if } b + d = kz \tag{4}$$

Способом подбора с использованием формул (3) и (4) получаем подходящую пару дробей.

Заключение

Полностью решены все пункты задачи, поставленной на VII Минском городском открытом турнире юных математиков.

- 1. Найдено между какими двумя последовательно расположенными дробями знаменатели которых однозначные числа находится число $\frac{3}{7}$.
- 2. Найдено между какими двумя последовательно расположенными дробями знаменатели которых двузначные числа находятся числа $\frac{3}{7}$ и $\frac{4}{7}$.
- 3. Найдена обыкновенная дробь с наименьшим положительным знаменателем, расположенная между числами $\frac{87}{38}$ и $\frac{88}{39}$.
- 4. Найдена обыкновенная дробь с наименьшим положительным знаменателем, расположенная между числами $\frac{68}{21}$ и $\frac{76}{23}$.
- 5. Найдено наименьшее натуральное число n, удовлетворяющее следующему условию: для любого целого числа m, где 0 < m < 2019, существует целое число k такое, что $\frac{m}{2019} < \frac{k}{n} < \frac{m+1}{2020}$.
- 6. Предложен алгоритм нахождения обыкновенных правильных несократимых и последовательно расположенных дробей знаменатели которых n-значные числа между которыми находится число $\frac{m}{k}$.

Практическое значение результатов предполагает использование их на факультативных занятиях по математике, математических олимпиадах, конкурсах и турнирах с целью развития творческих способностей учащихся.

Список использованных источников

1. Задания VII Минского городского открытого турнира юных математиков — 2020 младшая лига, 5-7 классы Электронный ресурс - сайт www.uni.bsu.by