Soutenance

Recruit Restaurant Visitor Forecasting

Predict how many future visitors a restaurant will receive

Data Science Starter Program

DSSP 7 – 2017

Jordan VIDAL

Introduction

- Objectif: prédire le nombre de visiteurs dans certains restaurants japonais à certaines dates
- Apprentissage supervisé & régression
- Compétition Kaggle
- Projet "data scientist"
- Projet codé en python3
- 7 packages utilisés

Sommaire

- 1. Présentation des données
- 2. Data Exploration
- 3. Data Processing
- 4. Modélisation
- 5. Conclusion

Data preparation accounts for about 80% of the work of data scientists

Source: www.forbes.com

Présentation des données

 7 dataset fournis dont 2 sources de données principales (deux systèmes de réservation)

	Hot Pepper Gourmet (HPG)	AirREGI / Restaurant Board (AIR)
Réservations	hpg_reserve.csv (2 000 320, 4)	air_reserve.csv (92 378, 4)
Restaurants	hpg_store_info.csv (4690, 5)	air_store_info.csv (829, 5)

- store_id_relation.csv (150, 2)
- sample_submission.csv (32 019, 2)
- date_info.csv (517, 3)

Data Exploration

Réservations	Restaurants	Autre	
Il y a 20x plus de réservations effectuées via le système HPG que via le système AIR	Le système AIR comporte 829 restaurants de 14 types de cuisines différents et repartis dans 103 "area" du pays	Il n'y a que 150 restaurants présents dans les deux systèmes de réservations (store_id_relation.csv)	
Les deux dataset ont enregistré les réservations effectuées sur la même période : du 1er janvier 2016 au 22 avril 2017	Le système HPG comporte 4690 restaurants dans 34 genre de cuisines différentes et répartis dans 119 "area" du pays	Le dataset date_info.csv ("hol") nous donne des informations sur le jour de la semaine et sur les jours de vacances ("holiday_flg") entre le 01-01-2016 et le 31-05-2017	
La distribution du nombre de visiteurs par réservations sur les deux systèmes AIR et HPG sont similaires : la moyenne du nombre de visiteurs par réservation est de ~5	Les "area_name" sont parfois très similaires (ex: "Tokyo-to Shinjuku-ku None" vs "Tokyo-to Shinjuku-ku Kabukicho")	Le dataset "sample_submission" va nous servir de test. Il contient 32019 lignes et 2 colonnes: - une colonne "id" qui est une concaténation de "air_store_id" et une date au format YYYY-MM-DD (comprises entre le 23 avril 2017 et le 31 mai 2017) - colonne "visitors" qui est le nombre de visiteurs a prédire	

Data Exploration

Réservations	Restaurants	Autre	
Il y a 20x plus de réservations effectuées via le système HPG que via le système AIR	Le système AIR comporte 829 restaurants de 14 types de cuisines différents et repartis dans 103 "area" du pays	Il n'y a que 150 restaurants présents dans les deux systèmes de réservations (store_id_relation.csv)	
Les deux dataset ont enregistré les réservations effectuées sur la même période : du 1er janvier 2016 au 22 avril 2017	Le système HPG comporte 4690 restaurants dans 34 genre de cuisines différentes et répartis dans 119 "area" du pays	Le dataset date_info.csv renseigne le jour de la semaine et les jours de vacances entre le <u>1er Janvier 2016 et le 31 Mai 2017</u>	
La distribution du nombre de visiteurs par réservations sur les deux systèmes AIR et HPG sont similaires : la moyenne du nombre de visiteurs par réservation est de ~5	Les "area_name" sont parfois très similaires (ex: "Tokyo-to Shinjuku-ku None" vs "Tokyo-to Shinjuku-ku Kabukicho")	Le dataset "sample_submission" va nous servir de test. Il contient 32019 lignes et 2 colonnes: - une colonne "id" qui est une concaténation de "air_store_id" et une date au format YYYY-MM-DD (comprises entre le 23 avril 2017 et le 31 mai 2017) - colonne "visitors" qui est le nombre de visiteurs a prédire	

"You can have data without information, but you cannot have information without data"

~ Daniel Keys Moran, science fiction writer

"Coming up with features is difficult, timeconsuming, requires expert knowledge"

~ Prof. Andrew Ng. VP & Chief Scientist of Baidu, Adjunct Professor at Stanford University

Data preprocessing

1. Cleaning

- Pas de valeurs manquantes
- Pas de valeurs dupliquées
- Pas de valeurs aberrantes

Merci Kaggle

Et Pandas-Profiling package

Data preprocessing

2. Feature Extraction + Engineering

Variables temporelles Les dates (4)	dayofweek year month visit_date
Variables catégorielles	LabelEncoder sur les 10 plus récurrents "area_name" et "genre_name"
Les nouvelles variables créées (13)	min_visitors max_visitors mean_visitors median_visitors count_observations rs1 rs2 rv1 rv2 total_reserv_sum total_reserv_dt_diff_mean date_int

RMSE

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2}$$

Train/Test split

X_train : (201686, 50) X_test : (50422, 50) y_train : (201686,) y_test : (50422,)

Modèles linéaires vs modèles non linéaires

Avec et sans recherche d'hyperparamètres

1. Algorithmes Linéaires

Régression Linéaire, Régression Ridge, Régression Lasso

- R² assez faible (<0.57)
- Modèle sous-apprend : ne se généralise pas à de nouvelles données
 - ► Train score = 0.57
 - ► Test score = 0.56
- La cross validation améliore légèrement R² (0.6)
- RMSE = 11.2271

```
First 10 Predictions [ 17.65879935 11.49043542 22.94236448 11.22690248 14.88090359
  16.98326204 24.75024193 10.08335482 10.86074349 44.183807767
First 10 Real Values 160503
                              33
74437
         20
93611
        24
36756
        16
61315
        10
99936
189042
78456
180807
         11
47721
         12
```

2. Algorithmes non linéaires

Random Forest

(RandomForestRegressor)

Le modèle sur-apprend ("overfit")

Train score = 0.92Test score = 0.53

RMSE = 11.7

	values		
mean_visitors	0.574544	air_genre_name0	0.004598
date_int	0.167078	r82_X	0.004430
month	0.028307	rv2_x	0.004283
rv1_x	0.023451	rs1_x	0.003644
max visitors	0.022363	rv1_y	0.003307
median_visitors	0.018189	rv2_y	0.002986
air_store_id2	0.017369	rs1_y	0.002929
count observations	0.012910	rs2_y	0.002860
min_visitors	0.011730	air_area_name0	0.002111
air_area_name4	0.009378	air_area_name1	0.001613
air_area_name2	0.008394	air_area_name5	0.001416
dow	0.007861	year	0.001362
air_area_name	0.007241	air_area_name3	0.001279
day_of_week	0.006997	total reserv mean	0.000877
holiday_flg	0.006599	total reserv sum	0.000678
air_genre_name1	0.006101	total_reserv_dt_diff_mean	0.000594
var_max_lat	0.005346	air_genre_name9	0.000592
latitude	0.005304	air_genre_name6	0.000592
var_max_long	0.005097		
lon plus lat	0.004921	air_area_name7	0.000566
air_genre_name	0.004792	air_genre_name2	0.000375
longitude	0.004709	air_area_name6	0.000246
		air_area_name9	0.0000000

Random Forest - with GridSearch

(RandomForestRegressor)

Paramètres: n_estimators (100) et max_depth (11)

Modèle ne sur-apprend plus!

Train score = $0.92 \ 0.66$ Test score = $0.53 \ 0.58$

RMSE = 11.02

Feature importances

2. Algorithmes non linéaires

XGBoost

(XGBRegressor)

Train score = 0.6 Test score = 0.57

RMSE = 11.05

XGBoost - with GridSearch

(XGBRegressor)

Train score = 0.600.68Test score = 0.570.59

RMSE = 11.02

Paramètres:

n_estimators: 100, max_depth: 11, learning_rate: 0.1 **XGBoost - with Hyperopt**

(XGBRegressor)

Train score = 0.68Test score = 0.59 0.60

RMSE = 10.754

Paramètres:

'colsample_bytree': 0.8,

'gamma': 2.4000000000000004,

'learning_rate': 0,

'max_depth': 4,

'min_child_weight': 4.0,

'n_estimators': 0,

'nthread': 0,

'objective': 0,

'reg_alpha': 1.1,

'reg_lambda': 0.700000000000001,

'subsample': 1.0

Résultats

	Train/Test	RMSE
Linear Regression	0.5793 / 0.5651	11.2271
Ridge Regression	0.5788 / 0.5648	11.2308
Lasso	0.5749 / 0.5612	11.2767
RandomForest	0.6613 / 0.5807	11.0236
XGBoost	0.686 / 0.6	10.754

Axes d'améliorations

Feature Engineering:

- Label encoder sur seulement les 10 premières variables
- Prise en compte des horaires de réservations, de la géographique (latitude, longitude), de la météo...

Modélisation:

- Pas de quick&dirty pour démarrer d'une base
- Pas nécessairement utile de tester plusieurs modèles, l'idée est d'améliorer un ou deux modèles

Organisation:

- Anticipation de temps de calcul des différents modèles
- Anticipation sur les ressources utilisées par la machine (GridSearch, hyperopt)

Compétences:

- 1. Maîtrise du python
- 2. Machine Learning

Axes d'améliorations

Merci de votre attention