VI - Espaces vectoriels

Seuls les espaces vectoriels \mathbb{R}^n sont au programme.

I - Systèmes d'équations linéaires

Définition 1 - Système linéaire

Soient $a_{1,1},\ldots,a_{1,p},\ldots,a_{n,1},\ldots,a_{n,p},b_1,\ldots,b_n$ des réels. Le système (\mathcal{S})

$$(\mathscr{S}) \begin{cases} a_{1,1}x_1 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + \dots + a_{2,p}x_p &= b_2 \\ \vdots &= \vdots \\ a_{n,1}x_1 + \dots + a_{n,p}x_p &= b_n \end{cases}$$

est un système linéaire d'inconnues x_1, \ldots, x_p .

- Un p-uplet (x_1, \ldots, x_p) est solution de (\mathcal{S}) s'il est solution de chacune des lignes du système.
- Deux systèmes sont dits équivalents s'ils ont le même ensemble de solutions.

Exemple 1

Les systèmes suivants sont des systèmes d'équations linéaires :

$$\begin{cases}
2x + 3y + z &= 0 \\
x + 5y + 2z &= 1
\end{cases}$$

$$\begin{cases}
2x + 3y = 1 \\
2x + y &= 3 \\
x + 5y &= 2
\end{cases}$$

$$\bullet \ \left\{ 2x + 3y + 5z = 2 \right.$$

$$\bullet \ \Big\{ 2x + 3y = 1$$

$$\begin{cases}
2x + y &= 3 \\
x + 5y &= 2
\end{cases}$$

Définition 2 - Opérations élémentaires

Nous noterons L_1, \ldots, L_n les lignes du système et appellerons opérations élémentaires sur les lignes du système les transformations suivantes:

- Pour $i \neq j$, l'échange des lignes L_i et L_j , symbolisé par $L_i \leftrightarrow L_i$.
- Pour $\alpha \neq 0$, la multiplication de la ligne L_i par α , symbolisée par $L_i \leftarrow \alpha L_i$.
- Pour $i \neq j$ et $\beta \in \mathbb{R}$, l'ajout à L_i de la ligne L_i multipliée par β , symbolisé par $L_i \leftarrow L_i + \beta L_i$.

Théorème 1

Le système obtenu par application d'opérations élémentaires sur les lignes est équivalent au système initial.

Principe de l'algorithme du pivot de Gauss : On utilise les opérations élémentaires pour transformer le système en un système échelonné.

Algorithme:

- On cherche une ligne où le coefficient α de x_1 est non nul et simple. Notons cette ligne L_{i_0} .
- On échange les lignes 1 et $i_0, L_1 \leftrightarrow L_{i_0}$.
- On utilise la nouvelle ligne L_1 pour éliminer les occurrences de x_1 dans les lignes suivantes, c'est la ligne pivot. Par exemple, si à la ligne L_2 le coefficient de x_1 est a, on effectue $L_2 \leftarrow \alpha L_2 - aL_1$.
- On reprend ensuite les étapes de l'algorithme en travaillant sur toutes les lignes sauf la première de manière à éliminer x_2 ...
- Enfin, on exprime les solutions en fonction des variables libres.

Définition 3 - Rang d'un système linéaire

Le rang du système est le nombre d'équations non triviales du système échelonné.

Théorème 2 - Ensemble de solutions

Soit S l'ensemble des solutions du système (\mathcal{S}) .

- Soit $S = \emptyset$, les équations sont *incompatibles*.
- \bullet Soit S est un singleton, le rang est alors égal au nombre d'inconnues.
- Soit S est infini, le rang est alors strictement inférieur au nombre d'inconnues.

Exemple 2 - Résolution de système

• Résolvons le système suivant avec l'algorithme du pivot de Gauss:

$$(\mathscr{S}) \begin{cases} 2x + 3y + z &= 7 \\ x - y + 2z &= -3 \\ 3x + y - z &= 6 \end{cases}$$

 $(x,y,z) \in \mathbb{R}^3$ est solution de (\mathscr{S})

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 & L_1 \leftrightarrow L_2 \\ 2x + 3y + z &= 7 \\ 3x + y - z &= 6 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3\\ 5y - 3z &= 13 \quad L_{2} \leftarrow L_{2} - 2L_{1}\\ 4y - 7z &= 15 \quad L_{3} \leftarrow L_{3} - 3L_{1} \end{cases}$$

$$(x, y, z) \in \mathbb{R}^{3} \text{ est solution de } (\mathcal{S})$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 & L_{1} \leftrightarrow L_{2} \\ 2x + 3y + z &= 7 \\ 3x + y - z &= 6 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 \\ 5y - 3z &= 13 & L_{2} \leftarrow L_{2} - 2L_{1} \\ 4y - 7z &= 15 & L_{3} \leftarrow L_{3} - 3L_{1} \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 \\ 5y - 3z &= 13 \\ -23z &= 23 & L_{3} \leftarrow 5L_{3} - 4L_{2} \end{cases}$$

Le système (\mathcal{S}) possède une unique solution. L'ensemble des solutions est $\{(1,2,-1)\}.$

• Résolvons le système suivant avec l'algorithme du pivot de Gauss:

$$(\mathscr{S}) \begin{cases} x+y &= 2\\ x-2y &= 5 \end{cases}.$$

 $(x,y) \in \mathbb{R}^2$ est solution de (\mathscr{S})

$$\Leftrightarrow \begin{cases} x+y = 2 \\ x-2y = 5 \end{cases} \Leftrightarrow \begin{cases} x+y = 2 \\ 3y = -3 \end{cases} \quad L_{2} \leftarrow L_{1} - L_{2}$$
$$\Leftrightarrow \begin{cases} x = 3 \\ y = -1 \end{cases}$$

Le système (\mathcal{S}) possède une unique solution. L'ensemble des solutions est $\{(3, -1)\}.$

• Résolvons le système

$$(\mathscr{S}) \left\{ x + 2y + 3z \right\} = 1.$$

Ce système est déjà échelonné. Ainsi, (x,y,z) est solution de (\mathscr{S})

$$\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} ; \begin{cases} x = 1 - 2\lambda - 3\mu \\ y = \lambda \\ z = \mu \end{cases}$$

Le système (\mathscr{S}) possède une infinité de solutions. L'ensemble des solutions est

$$\begin{aligned} & \left\{ (1 - 2\lambda - 3\mu, \lambda, \mu), \ (\lambda, \mu) \in \mathbb{R}^2 \right\} \\ & = \left\{ (1, 0, 0) + \lambda(-2, 1, 0) + \mu(-3, 0, 1), \ (\lambda, \mu) \in \mathbb{R}^2 \right\}. \end{aligned}$$

II - Espaces vectoriels

On note $\overrightarrow{0_n} = (0, \dots, 0) \in \mathbb{R}^n$. Les lettres n et p désignent des entiers naturels non nuls.

Définition 4 - L'espace vectoriel \mathbb{R}^n

On définit sur \mathbb{R}^n l'addition et la multiplication par un réel de la manière suivante:

Addition. Si
$$(x_1, \ldots, x_n) \in \mathbb{R}^n$$
 et $(y_1, \ldots, y_n) \in \mathbb{R}^n$,

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

Multiplication par un réel. Si $(x_1, \ldots, x_n) \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}$,

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n).$$

Exemple 3 - Cas où n = 2, 3

• Si n = 2.

$$(1,2) + (3,4) = (4,6)$$

 $(1,5) + (-1,0) = (0,5)$
 $3 \cdot (4,2) = (12,6)$

• Si n = 3.

$$(1,-1,2) + (4,5,-5) = (5,4,-3)$$

 $(1,0,-1) + (3,1,2) = (4,1,1)$
 $2 \cdot (4,1,-2) = (8,2,-4)$

Proposition 1 - Structure d'espace vectoriel

- Propriétés de l'addition. Soit x, y, z des vecteurs de \mathbb{R}^n .
 - \star Associativité : x + (y + z) = (x + y) + z.
 - * Élément neutre : $x + \overrightarrow{0_n} = \overrightarrow{0_n} + x = x$.
 - * Existence d'un opposé: $x + (-1) \cdot x = (-1) \cdot x + x = \overrightarrow{0_n}$.
 - \star Commutativité : x + y = y + x.
- Propriétés de la multiplication par un réel. Soit $x, y \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$.

$$\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x \mid (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
$$1 \cdot x = x \quad \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$$

 \mathbb{R}^n est un espace vectoriel. Les éléments de \mathbb{R}^n sont des vecteurs.

III - Familles de vecteurs

Dans tout ce chapitre, p désigne un entier naturel non nul.

III.1 - Sous-espace vectoriel

Définition 5 - Sous-espace vectoriel

Une parție A de \mathbb{R}^n est un sous-espace vectoriel si

- $\overrightarrow{0_n} \in A$,
- pour tout $u, v \in A$ et $\alpha, \beta \in \mathbb{R}, \alpha u + \beta v \in A$.

Exemple 4 - Exemples classiques de sous-espaces vectoriels

- \mathbb{R}^n est un sous-espace vectoriel de \mathbb{R}^n .
- $\{\overrightarrow{0_n}\}$ est un sous-espace vectoriel de \mathbb{R}^n .
- Géométriquement,
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^2 .
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - \star les plans sont des sous-espaces vectoriels de \mathbb{R}^3 .

Exemple 5 - Exemples de sous-espaces vectoriels

- Soit $F = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0, 2x + 3y + 5z = 0\}$. Alors, F est un sous-espace vectoriel de \mathbb{R}^3 . En effet,
 - $\star 0 + 0 + 0 = 0$ et $2 \times 0 + 3 \times 0 + 5 \times 0 = 0$. Ainsi, $\overrightarrow{0_3} \in F$.
 - \star Soient $u=(x_1,y_1,z_1),\ v=(x_2,y_2,z_2)$ deux vecteurs de F et $\alpha,\,\beta$ deux réels. Alors,

$$\begin{cases} x_1 + y_1 + z_1 &= 0 \\ 2x_1 + 3y_1 + 5z_1 &= 0 \end{cases} \text{ et } \begin{cases} x_2 + y_2 + z_2 &= 0 \\ 2x_2 + 3y_2 + 5z_2 &= 0 \end{cases}.$$

De plus, $\alpha u + \beta v = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2)$. Ainsi,

$$\begin{cases}
(\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2) + (\alpha z_1 + \beta z_2) \\
= \alpha (x_1 + y_1 + z_1) + \beta (x_2 + y_2 + z_2) = 0 \\
2(\alpha x_1 + \beta x_2) + 3(\alpha y_1 + \beta y_2) + 5(\alpha z_1 + \beta z_2) \\
= \alpha (2x_1 + 3y_1 + 5z_1) + \beta (2x_2 + 3y_2 + 5z_2) = 0
\end{cases}$$

Donc $\alpha u + \beta v$ appartient à F.

Finalement, F contient le vecteur nul et est stable par combinaisons linéaires, donc F est un sous-espace vectoriel de \mathbb{R}^3 .

• Soit $\mathscr{F} = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 1, 2x + 3y + 5z = 3\}$. Alors, \mathscr{F} n'est pas un sous-espace vectoriel de \mathbb{R}^3 . En effet, $0 + 0 + 0 = 0 \neq 1$, donc $\overrightarrow{0_3}$ n'appartient pas à \mathscr{F} .

Définition 6 - Combinaison linéaire

Soit (u_1, \ldots, u_p) une famille de vecteurs de \mathbb{R}^n .

- si $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$, le vecteur $\alpha_1 u_1 + \cdots + \alpha_p u_p$ est une combinaison linéaire des vecteurs (u_1, \ldots, u_p) .
- L'ensemble des combinaisons linéaires de (u_1, \ldots, u_p) est noté :

$$\operatorname{Vect}\{u_1,\ldots,u_p\} = \left\{ \sum_{i=1}^p \alpha_i u_i, \, (\alpha_1,\ldots,\alpha_p) \in \mathbb{R}^p \right\}.$$

Proposition 2

Soit (u_1, \ldots, u_p) une famille de vecteurs de \mathbb{R}^n . Alors, Vect $\{u_1, \ldots, u_p\}$ est un sous-espace vectoriel de \mathbb{R}^n .

Exemple 6 - Un peu de géométrie

- $D = \text{Vect}\{(1,2)\} = \{\alpha(1,2), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 . L'ensemble D est une droite de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0)\} = \{\alpha(1,0), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 . L'ensemble D est une droite de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0,1)\} = \{\alpha(1,0,1), \alpha \in \mathbb{R}\}$ est un sousespace vectoriel de \mathbb{R}^3 . L'ensemble D est une droite de \mathbb{R}^2 .
- $P = \text{Vect}\{(1,0,0),(0,0,1)\} = \{(\alpha,0,\beta), \alpha,\beta \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^3 . L'ensemble P est un plan de \mathbb{R}^3 .

Exemple 7 - Équation cartésienne \rightarrow Combinaison linéaire

Cette transformation repose sur la résolution d'un système linéaire via l'algorithme du pivot de Gauss.

Soit $F = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0 \text{ et } 2x + 3y + 5z = 0\}.$

Écrivons F comme un ensemble de combinaisons linéaires.

$$(x, y, z) \in F \Leftrightarrow \begin{cases} x + y + z &= 0\\ 2x + 3y + 5z &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y+z &= 0 \\ y+3z &= 0 \end{cases} \Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= 2\lambda \\ y &= -3\lambda. \\ z &= \lambda \end{cases}$$

Ainsi,

$$F = \{\lambda \cdot (2, -3, 1), \lambda \in \mathbb{R}\} = \text{Vect}\{(2, -3, 1)\}.$$

Exemple 8 - Combinaison linéaire \rightarrow Équation cartésienne

Cette transformation repose sur l'existence d'une solution d'un système linéaire via l'algorithme du pivot de Gauss.

Soit $F = \text{Vect}\{(1,2,3), (1,0,1), (2,2,4)\}.$

Déterminons une équation cartésienne de F.

 $(x, y, z) \in F$ si et seulement s'il existe $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que $(x, y, z) = \lambda(1, 2, 3) + \mu(1, 0, 1) + \nu(2, 2, 4)$

si et seulement si le système suivant admet une solution :

$$\begin{cases} \lambda + \mu + 2\nu &= x \\ 2\lambda + 2\nu &= y \Leftrightarrow \\ 3\lambda + \mu + 4\nu &= z \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu + 2\nu &= x \\ -2\mu - 2\nu &= y - 2x & \iota_{2} \leftarrow \iota_{2} - 2\iota_{1} \\ -2\mu - 2\nu &= z - 3x & \iota_{3} \leftarrow \iota_{3} - 3\iota_{1} \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda + \mu + 2\nu &= x \\ -2\mu - 2\nu &= y - 2x \\ 0 &= x - 2y + z \quad L_3 \leftarrow L_3 - L_2 \end{cases}$$

Ainsi, une description de F via une équation cartésienne est

$$\{(x, y, z) \in \mathbb{R}^3 ; x - 2y + z = 0\}.$$

Proposition 3

Soit (u_1,\ldots,u_p) une famille de vecteurs de \mathbb{R}^n , $(\alpha_2,\ldots,\alpha_p)\in\mathbb{R}^p$ et $\alpha_1 \neq 0$. Alors,

- Vect $\{u_1, \ldots, u_p\}$ = Vect $\left\{\alpha_1 u_1 + \sum_{i=2}^p \alpha_i u_i, u_2, \ldots, u_p\right\}$. Si $u_p \in \text{Vect}\{u_1, \ldots, u_{p-1}\}$, alors Vect $\{u_1, \ldots, u_p\}$ =
- Vect $\{u_1, \ldots, u_{n-1}\}.$

III.2 - Bases

Dans cette partie, (u_1, \ldots, u_p) désigne une famille de vecteurs de \mathbb{R}^n .

Définition 7 - Famille libre

La famille (u_1, \ldots, u_p) est *libre* si, pour tout $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$,

$$\sum_{i=1}^{p} \alpha_i u_i = \overrightarrow{0_n} \implies \forall \ i \in [1, p], \ \alpha_i = 0.$$

La famille (u_1, \ldots, u_n) est une famille de vecteurs *linéairement* indépendants.

Exemple 9

• La famille ((1,2),(3,4)) est une famille libre de \mathbb{R}^2 . En effet, soit $\alpha, \beta \in \mathbb{R}$ tels que $\alpha(1,2) + \beta(3,4) = (0,0)$. Alors.

$$(\alpha + 3\beta, 2\alpha + 4\beta) = (0, 0)$$

Ainsi,

$$\begin{cases} \alpha + 3\beta &= 0 \\ 2\alpha + 4\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta &= 0 \\ -2\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha &= 0 \\ \beta &= 0 \end{cases}$$

• La famille ((1,2,-1),(2,1,1)) est une famille libre de \mathbb{R}^3 . En effet, soit $\alpha, \beta, \gamma \in \mathbb{R}$ tels que

$$\alpha(1,2,-1) + \beta(2,1,1) = (0,0,0).$$

Alors,

$$(\alpha + 2\beta, 2\alpha + \beta, -\alpha + \beta) = (0, 0, 0).$$

Ainsi.

$$\begin{cases} \alpha + 2\beta &= 0 \\ 2\alpha + \beta &= 0 \\ -\alpha + \beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + 2\beta &= 0 \\ -3\beta &= 0 \\ 3\beta &= 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} \alpha &= 0 \\ \beta &= 0 \end{cases}$$

Définition 8 - Vecteurs colinéaires

Soit $u, v \in \mathbb{R}^n$. Les vecteurs u et v sont colinéaires s'il existe $\lambda \in \mathbb{R}$ tel que

$$u = \lambda v$$
 ou $v = \lambda u$.

Proposition 4 - Colinéarité et liberté

Soit $u, v \in \mathbb{R}^n$. La famille (u, v) est liée si et seulement si les vecteurs u et v sont colinéaires.

Définition 9 - Famille génératrice

Soit F un sous-espace vectoriel de \mathbb{R}^n . La famille (u_1,\ldots,u_n) est une famille génératrice de F si, pour tout $x \in F$, il existe $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$ tels que $x = \sum_{i=1}^{p} \alpha_i u_i$.

Exemple 10 - L

famille ((1,2),(3,4)) est une famille génératrice de \mathbb{R}^2 . Soit $u = (x, y) \in \mathbb{R}^2$. Recherchons α, β réels tels que

$$u = \alpha(1, 2) + \beta(3, 4).$$

Alors,

$$\begin{cases} x = \alpha + 3\beta \\ y = 2\alpha + 4\beta \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta = x \\ -2\beta = y - 2x \end{cases} \Leftrightarrow \begin{cases} \alpha = -2x + \frac{3}{2}y \\ \beta = x - \frac{1}{2}y \end{cases}$$

Définition 10 - Base

Soit F un sous-espace vectoriel de \mathbb{R}^n . La famille (u_1, \ldots, u_p) est une *base* de F si elle est génératrice et que ses vecteurs sont linéairement indépendants.

Exemple 11 - Bases canoniques

- ((1,0),(0,1)) est une base de \mathbb{R}^2 .
- ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 .

Proposition 5 - Dimension

Soit F un sous-espace vectoriel de \mathbb{R}^n . Si (u_1,\ldots,u_p) et (v_1,\ldots,v_q) sont des bases de F, alors p=q. L'entier p est la dimension de l'espace vectoriel F, noté dim F. Par convention, dim $\left\{\overrightarrow{0_n}\right\}=0$.

Exemple 12 - Dimensions

- Comme ((1,0),(0,1)) est une base de \mathbb{R}^2 , alors $\dim \mathbb{R}^2 = 2$.
- Comme ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 , alors dim $\mathbb{R}^3 = 3$.
- Plus généralement, dim $\mathbb{R}^n = n$.
- Soit $F = \{(x, y, z) \in \mathbb{R}^3 ; x + 2y + z = 0\}$. Alors, $(x, y, z) \in F$ si et seulement si

$$\begin{cases} x + 2y + z = 0 \iff \exists \lambda, \mu \in \mathbb{R} ; \begin{cases} x = -2\lambda - \mu \\ y = \lambda \\ z = \mu \end{cases}$$

$$\Leftrightarrow$$
 $(x, y, z) \in \text{Vect}\{(-2, 1, 0), (-1, 0, 1)\}.$

Ainsi, ((-2,1,0),(-1,0,1)) est une base de F et $\dim F = 2$.

Définition 11 - Un peu de géométrie

Soit E un espace vectoriel de dimension n et F un sous-espace vectoriel de E. Alors, F est de dimension finie.

- Si dim F = 1, alors F est une *droite*.
- Si dim F = 2, alors F est un plan.
- Si dim F = n 1, alors F est un hyperplan.

Proposition 6 - Caractérisation des bases

Soit F un sous-espace vectoriel de dimension q de \mathbb{R}^n et (u_1, \ldots, u_p) une famille de vecteurs de F. Il y a équivalence entre :

- (i). (u_1, \ldots, u_p) est une base de F.
- (ii). (u_1, \ldots, u_p) est une famille de vecteurs linéairement indépendants et p = q.
- (iii). (u_1, \ldots, u_p) est une famille génératrice de F et p = q.

Exemple 13

La liberté d'une famille est souvent plus facile à montrer que le caractère générateur. Si la dimension de l'espace vectoriel est connue, on montrera qu'une famille est une base en étudiant sa liberté et son nombre d'éléments.

Montrons que la famille $\mathscr{B} = ((1,2,3),(1,0,1),(0,1,-1))$ est une base de \mathbb{R}^3 .

- La famille \mathscr{B} est une famille de 3 vecteurs de \mathbb{R}^3 , espace vectoriel de dimension 3.
- Montrons que \mathcal{B} est une famille libre. Soit $\alpha, \beta, \gamma \in \mathbb{R}$ tels que

$$\alpha(1,2,3) + \beta(1,0,1) + \gamma(0,1,-1) = (0,0,0).$$

Alors,

$$\begin{cases} \alpha + \beta &= 0 \\ 2\alpha + \gamma &= 0 \Leftrightarrow \\ 3\alpha + \beta - \gamma &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + \beta &= 0 \\ -2\beta + \gamma &= 0 \Leftrightarrow \\ -2\beta - 4\gamma &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + \beta &= 0 \\ -2\beta + \gamma &= 0 \\ 5\gamma &= 0 \end{cases}$$

soit
$$\alpha = \beta = \gamma = 0$$
.

Finalement, \mathcal{B} est une famille libre constituée 3 vecteurs dans un espace vectoriel de dimension 3, donc \mathcal{B} est une base.

Théorème 3 - Théorème de la base incomplète

Soit F un sous-espace vectoriel de \mathbb{R}^n et (u_1, \ldots, u_p) une famille libre de F. Il existe une famille (v_{p+1}, \ldots, v_q) telle que $(u_1, \ldots, u_p, v_{p+1}, \ldots, v_q)$ soit une base de F.

Définition 12 - Coordonnées

Soit F un sous-espace vectoriel de \mathbb{R}^n , (u_1, \ldots, u_p) une base de F et $u \in F$. Il existe un unique $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$ tel que $u = \sum_{i=1}^p \lambda_i u_i$.

Exemple 14 - Calcul de coordonnées

Déterminons les coordonnées de (3,1,2) dans la base ((1,2,3),(1,0,1),(0,1,-1)).

On cherche $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que

$$(3,2,1) = \lambda(1,2,3) + \mu(1,0,1) + \nu(0,1,-1)$$