TD of thermal combustion-Enthalpy Changes

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

Previously: J-T Coef. & TD relationships in real gases

$$\mu_{\rm JT} \begin{cases} < 0 \\ = 0 \\ > 0 \end{cases}$$

$$\mu = \left(\frac{\partial T}{\partial P}\right)_h$$

 $\mu_{\rm JT} \begin{cases} < 0 & \text{temperature increases} \\ = 0 & \text{temperature remains constant} \end{cases}$ temperature decreases

$$dh = c_p dT + \left[v - T \left(\frac{\partial v}{\partial T} \right)_P \right] dP$$

$$s_2 - s_1 = (s_2 - s_b^*) + (s_b^* - s_2^*) + (s_2^* - s_1^*) + (s_1^* - s_a^*) + (s_a^* - s_1)$$

Smalley's top ten ventures to save the world! MRS Bulletín Volume 30, June 2005 Pg 412

- 10. Population
- 9. Democracy
- 8. Education
- 7. Disease
- 6. Terrorism and War
- 5. Poverty
- 4. Environment
- 3. Food
- 2. Water
- 1. Energy!!!

People & Things... Source: Simons & Company

Top 15 World Economies Per Capita Income vs Per Capita Energy Consumption

Per capita energy consumption (mbtu/year)

From: Economides on the web...

Enthalpy of formation & combustion

$$C_8H_{18} + a_{th}(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O(\ell) + 3.76a_{th}N_2$$

$$\begin{split} \overline{h}_C &= H_{\text{prod}} - H_{\text{react}} \\ &= \sum N_p \overline{h}_{f,p}^{\circ} - \sum N_r \overline{h}_{f,r}^{\circ} = (N \overline{h}_f^{\circ})_{\text{CO}_2} + (N \overline{h}_f^{\circ})_{\text{H}_2\text{O}} - (N \overline{h}_f^{\circ})_{\text{C}_8 \text{H}_{18}} \end{split}$$

$$\overline{h}_C = (8 \text{ kmol})(-393,520 \text{ kJ/kmol}) + (9 \text{ kmol})(-285,830 \text{ kJ/kmol})$$

$$-(1 \text{ kmol})(-249,950 \text{ kJ/kmol})$$

$$= -5,471,000 \text{ kJ/kmol} \text{ C}_8\text{H}_{18} = -47,891 \text{ kJ/kg} \text{ C}_8\text{H}_{18}$$

First law analysis for reacting systems

Enthalpy =
$$\overline{h}_f^{\circ} + (\overline{h} - \overline{h}^{\circ})$$
 (kJ/kmol)

$$\overline{h}(T,p) = \overline{h}_{\mathrm{f}}^{\circ} + \left[\overline{h}(T,p) - \overline{h}(T_{\mathrm{ref}},p_{\mathrm{ref}})\right] = \overline{h}_{\mathrm{f}}^{\circ} + \Delta \overline{h}$$

Thermochemical Properties of Selected Substances at 298K and 1 atm

			Enth along of	Ollaha Farratian		Heating Values	
Substance	Formula	Molar Mass, M (kg/ kmol)	Enthalpy of Formation, h (kJ kmol)	Gibbs Function of Formation, \overline{g}_{f}^{o} (kJ/kmol)	Absolute Entropy, \$\overline{s}^{\phi}\$ (kJ kmol·K)	Higher, HHV (kJ/kg)	Lower, LHV (kJ kg)
Carbon	C(s)	12.01	0	0	5.74	32,770	32,770
Hydrogen	H ₂ (g)	2.016	0	0	130.57	141,780	119,950
Nitrogen	N ₂ (g)	28.01	0	0	191.50	_	_
Oxygen	O ₂ (g)	32.00	0	0	205.03	_	-
Carbon Monoxide	CO(g)	28.01	-110,530	-137,150	197.54	_	_
Carbon dioxide	CO ₂ (g)	44.01	-393,520	-394,380	213.69	_	_
Water	H₂O(g)	18.02	<i>–</i> 241,820	-228,590	188.72	_	_
Water	H ₂ O(I)	18.02	-285,830	-237,180	69.95	_	_

First law Balance for reacting systems

$$\dot{E}_{\rm in} = \dot{E}_{\rm out}$$

$$\underline{\dot{Q}_{\rm in} + \dot{W}_{\rm in} + \sum \dot{n}_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_r} = \underline{\dot{Q}_{\rm out} + \dot{W}_{\rm out} + \sum \dot{n}_p (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_p}$$

Rate of net energy transfer in by heat, work, and mass Rate of net energy transfer out by heat, work, and mass

$$Q_{\rm in} + W_{\rm in} + \sum N_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_r = Q_{\rm out} + W_{\rm out} + \sum N_p (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_p$$

Energy transfer in per mole of fuel by heat, work, and mass Energy transfer out per mole of fuel by heat, work, and mass

$$Q - W = \overline{h}_C^{\circ} + \sum N_p (\overline{h} - \overline{h}^{\circ})_p - \sum N_r (\overline{h} - \overline{h}^{\circ})_r \qquad (kJ/kmol)$$

$$Q_{\text{out}} = \underbrace{\sum N_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_r}_{\text{Energy in by mass}} - \underbrace{\sum N_p (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_p}_{\text{Energy out by mass}}$$

$$= \underbrace{\sum N_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_r}_{\text{Energy out by mass}}$$

$$= \underbrace{\sum N_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_r}_{\text{Energy out by mass}}$$

$$= \underbrace{\sum N_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_r}_{\text{Energy out by mass}}$$

Higher & Lower Heating Value

Adiabatic flame temperature

$$H_{\text{prod}} = H_{\text{react}} \qquad Q = 0 \text{ and } W = 0$$

$$\sum N_p (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_p = \sum N_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ})_r$$

$$Air$$
Insulation

Combustion chamber

T_{max}

First law for closed systems

$$E_{\rm in} - E_{\rm out} = \Delta E_{\rm system}$$

$$(Q_{\rm in} - Q_{\rm out}) + (W_{\rm in} - W_{\rm out}) = U_{\rm prod} - U_{\rm react}$$
 (kJ/kmol fuel)

$$\overline{u} = \overline{h} - P\overline{V}$$
 $\overline{u}_f^{\circ} + \overline{u} - \overline{u}^{\circ} = \overline{h}_f^{\circ'} + \overline{h} - \overline{h}^{\circ} - PV$

$$Q - W = \sum N_p (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ} - P \overline{v})_p - \sum N_r (\overline{h}_f^{\circ} + \overline{h} - \overline{h}^{\circ} - P \overline{v})_r$$

Energy Density

What's next?

• Entropy & free energy changes in chemically reacting systems