Mathématiques – Seconde

Corrigés des exercices

Table des matières

1 Rappels de calcul et de géométrie

2

Rappels de calcul et de géométrie

Exercice 1 Dans chaque question, on obtient la réponse à l'aide d'un tableau de proportionnalité.

1.

Nombre de personnes	4	6
Farine (en g)	250	?
Lait (en mL)	500	?
Œufs	4	6

Pour 6 personnes, il faut $\frac{250\times6}{4} = \frac{1500}{4} = 375$ g de farine, $\frac{500\times6}{4} = \frac{3000}{4} = 750$ mL de lait et, bien sûr, 6 œufs.

2. Les 6 yaourts pèsent $6 \times 125 = 750$ g.

masse (en g)	1000	750
prix (en €)	2	?

Je payerai $\frac{750\times2}{1000} = \frac{1500}{1000} = 1,5$ €.

3. Généralement, dans ce type de question, il vaut mieux convertir en minutes ¹.

temps (en min)	60	?
distance (en km)	20	45

On mettra $\frac{60\times45}{20} = \frac{20\times3\times45}{20} = 135$ min, soit 2 h 15 min (puisque 135 = 120 + 15).

4. L'énoncé donne les informations recensées dans le tableau ci-dessous et demande de compléter la case ①.

Florins	7	?	1
Pistoles	6	4	2
Deniers	?	5	30

On complète d'abord la case ② : en échange de 30 deniers, on a $4 \times 30 \div 5 = 24$ pistoles :

Florins	7	?	1
Pistoles	6	4	24
Deniers	?	5	30

On peut alors compléter la case ① : en échange de 30 deniers, on a $\frac{7 \times 24}{6} = \frac{7 \times 4 \times 6}{6} = 28$ florins.

Exercice 2 1. On complète deux tableaux de proportionnalité (on travaille en min et en km) :

temps (en min)	60	?
distance (en km)	3	0,5

temps (en min)	60	?
distance (en km)	15	5

Stéphane nage $\frac{60\times0,5}{3}=\frac{30}{3}=10$ min, puis il court $\frac{60\times5}{15}=\frac{300}{15}=20$ min.

2. Stéphane a parcouru un total de 5 + 0, 5 = 5, 5 km, en 10 + 20 = 30 min.

temps (en min)	30	60
distance (en km)	5,5	?

La vitesse moyenne de Stéphane sur l'ensemble de son parcours est donc $\frac{60 \times 5,5}{30} = \frac{30 \times 2 \times 5,5}{30} = 11 \text{ km/h}.$

Exercice 3

^{1.} Les calculs ne sont pas toujours plus faciles en minutes qu'en heures, mais c'est généralement le cas.

Le trapèze est constitué:

- d'un rectangle *BHDC*, d'aire $\ell \times L = 3 \times 2 = 6$; d'un triangle *AHD*, d'aire $\frac{B \times h}{2} = \frac{2 \times 2}{2} = 2$.

Donc l'aire du trapèze est 6 + 2 = 8.

Remarque: On peut aussi utiliser la formule (hors-programme):

$$\mathcal{A}_{\text{trapèze}} = \frac{(B+b) \times h}{2} = \frac{(5+3) \times 2}{2} = 8.$$

Exercice 4 Le losange est « la moitié » d'un rectangle de côtés ℓ et L, donc son aire est $\frac{\ell \times L}{2}$.

Exercice 5 Rappels:

- une hauteur est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé (les hauteurs sont tracées en pointillés bleus);
- le fait que les hauteurs soient « concourantes » signifie qu'elles passent toutes les trois par un même point qu'on appelle « orthocentre du triangle » (nommé O sur la figure ci-dessous).

Exercice 6 On note *H* le pied de la hauteur issue de *A* dans le triangle *ABC*.

[AH] est une hauteur dans les triangles BIA et CIA, donc

$$\mathcal{A}_{BIA} = \frac{BI \times AH}{2} \qquad \qquad \mathcal{A}_{CIA} = \frac{CI \times AH}{2}.$$

Or BI = CI puisque I et le milieu de [BC], donc BIA et CIA ont la même aire.

Exercice 7 1. La négation de

Tous les hommes sont mortels.

est

<u>Il existe</u> un homme <u>immortel</u>.

2. La négation de

<u>Il existe</u> un dessert <u>sans sucre</u> à la cantine.

est

Tous les desserts sont sucrés à la cantine.

Remarque: Dans les deux exemples que nous venons de traiter, pour écrire la négation d'une phrase, il suffit de remplacer les « tous » par « il existe » , et réciproquement; et d'inverser les conclusions (exemple : immortel/mortel). C'est une technique qui fonctionne toujours.

3. La négation de

<u>Il existe</u> un pays dans lequel <u>tous</u> les hommes <u>savent lire</u>.

est

Dans <u>tous</u> les pays, <u>il existe</u> un homme qui ne sait pas lire.

4. Le contraire de « être allé en Angleterre ou en Espagne » est « n'être allé ni en Angleterre, ni en Espagne », donc la négation de

Tous les élèves de la classe sont déjà allés en Angleterre ou en Espagne .

est

<u>Il existe</u> un élève de la classe qui n'est jamais allé en Angleterre, ni en Espagne.

5. Comme dans l'exemple précédent, le contraire de « ni... ni... » est « ou ». Donc la négation de

Chloé n'aime ni les fraises, ni les framboises.

est

Chloé aime les fraises ou les framboises.

Exercice 8 1. (a) On identifie A et B dans l'implication :

Cette implication est vraie (cours du primaire).

(b) • L'implication contraposée est

on A

Cette contraposée est vraie, puisque l'implication originale l'est (cf l'énoncé : quand une implication est vraie, sa contraposée l'est aussi).

· L'implication réciproque est

B A Elle est fausse, comme le montre le contre-exemple suivant : 10 est multiple de 5, mais il ne se termine pas par 5.

2. L'implication

Si
$$\underbrace{\text{un nombre se termine par 0}}_{A}$$
, alors $\underbrace{\text{il est multiple de 10}}_{B}$.

et sa réciproque

sont vraies toutes les deux.

Exercice 9 Soit ABC un triangle

1. Théorème de Pythagore.

Si *ABC* est rectangle en *A*, alors $BC^2 = AB^2 + BC^2$.

2. Théorème contraposé de Pythagore.

Si
$$BC^2 \neq AB^2 + BC^2$$
, alors ABC n'est pas rectangle en A.

3. Théorème réciproque de Pythagore.

Si
$$BC^2 = AB^2 + BC^2$$
, alors ABC est rectangle en A .

Le théorème réciproque est bien sûr vrai, comme vous l'avez appris au collège.

<u>N</u>En devoir, le correcteur sera très attentif au nom du théorème utilisé dans les démonstrations : théorème, théorème contraposé ou théorème réciproque – il ne faudra pas confondre!

Exercice 10 1. Pour construire la figure, on trace successivement :

- Le segment [*EF*].
- La perpendiculaire à [EF] passant par E.
- Un arc de cercle de centre F, de rayon 7 cm. Il coupe la perpendiculaire que nous venons de tracer en G.

D'après **le théorème de Pythagore** dans *EFG* rectangle en *E* :

$$FG^{2} = EF^{2} + EG^{2}$$

$$7^{2} = 5^{2} + EG^{2}$$

$$49 = 25 + EG^{2}$$

$$49 - 25 = EG^{2}$$

$$\sqrt{24} = EG$$

Conclusion : $EG = \sqrt{24}$ cm.

 $\underline{\wedge} Sauf$ si l'énoncé le demande, ne donnez pas de valeur approchée.

2. Le plus grand côté est [BC] , donc le triangle ne pourrait être rectangle qu'en ${\cal A}.$

On calcule:

$$BC^2 = 6^2 = 36 AB^2 + AC^2 = 5^2 + 4^2 = 25 + 16 = 41$$

$$BC^2 \neq AB^2 + AC^2.$$

D'après **la contraposée du théorème de Pythagore**, ABC n'est pas rectangle en A.

Exercice 11 ABCDEFGH est un parallélépipède rectangle tel que AB = BC = 6 et CG = 3.

On utilise deux fois de suite le théorème de Pythagore :

Dans ABC rectangle en B,

$$AC^{2} = AB^{2} + BC^{2}$$

$$AC^{2} = 6^{2} + 6^{2}$$

$$AC^{2} = 36 + 36$$

$$AC^{2} = 72$$
(Inutile de donner AC!)

Dans ACG rectangle en C,

$$AG^{2} = AC^{2} + CG^{2}$$

$$AG^{2} = 72 + 3^{2}$$

$$AG^{2} = 72 + 9$$

$$AG^{2} = 81$$

$$AG = \sqrt{81} = 9$$

Conclusion : AG = 9.

Exercice 12 Sur la figure ci-dessous (qui n'est pas à l'échelle), le segment [MK] mesure 3 cm, le segment [MN] mesure 5 cm et h = 1,2 cm.

- 1. $\mathscr{A}_{MNP} = \frac{MN \times h}{2} = \frac{5 \times 1,2}{2} = 3 \text{ cm}^2$. 2. On a aussi $\mathscr{A}_{MNP} = \frac{PN \times MK}{2}$, donc $3 = \frac{PN \times 3}{2}$, soit $3 \times 2 = PN \times 3$; et donc PN = 2 cm.
- 3. (Non détaillé.) Il faut calculer successivement KN, puis KP et MP.

- Pour KN, on utilise le théorème de Pythagore dans le triangle KMN. On obtient KN=4 cm.
- KP = KN PN = 4 2 = 2 cm.
- Enfin, pour calculer *PM*, on utilise le théorème de Pythagore dans le triangle *KMP*. On obtient $MP = \sqrt{13}$ cm.

1. Les côtés de l'angle droit d'un triangle rectangle mesurent *a* et *b*, l'hypoténuse mesure *c*. Exercice 13

D'après le théorème de Pythagore, $c^2 = a^2 + b^2$, donc

$$c = \sqrt{a^2 + b^2}.$$

2. L'affirmation

Pour tous nombres positifs
$$a$$
 et b , $\sqrt{a^2 + b^2} = a + b$.

est FAUSSE! Voici deux justifications:

• Par le calcul. Il suffit de donner un contre-exemple : on choisit a=4 et b=3. Dans ce cas

$$\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$
 est différent de $a + b = 4 + 3 = 7$.

• **Géométriquement.** $\sqrt{a^2 + b^2}$ est la longueur de l'hypoténuse c du triangle rectangle de la question 1; tandis que a + b est la somme des longueurs des côtés de l'angle droit. Or cette somme est strictement plus grande que celle de l'hypoténuse, puisque le chemin le plus court d'un point à un autre est la ligne droite.

Exercice 14 Soit *A* un point et Δ une droite du plan. Le projeté orthogonal de *A* sur Δ est le point *H* de Δ tel que (*AH*) $\perp \Delta$.

1. On trace la perpendiculaire à Δ passant par A. Elle coupe Δ en H.

2. Par construction, le triangle *AMH* est rectangle en *H*, donc son hypoténuse *AM* est strictement plus grande que le côté de l'angle droit *AH* (c'est le même raisonnement que celui de l'exercice précédent) :

3. Le segment [AH] est la hauteur ² issue de A dans le triangle ABC.

^{2.} Le mot *hauteur* est polysémique (il a plusieurs sens) : le segment [AH] peut être appelé *hauteur*, la droite (AH) peut également être appelée *hauteur*; enfin la longueur AH peut elle aussi être appelée *hauteur* – c'est cette longueur, par exemple, que l'on retrouve dans la formule $\frac{B \times h}{2}$ pour l'aire du triangle.

Exercice 15 On résout les équations :

Exercice 16 Les deux plateaux de la balance ci-dessous sont en équilibre. Les poids noirs ont tous la même masse M kg.

Le fait que la balance soit en équilibre se traduit par l'équation

$$3M + 7 = 10 + M$$
.

On la résout:

$$3M+7-M = 10 + M-M$$

$$2M+7 = 10$$

$$2M+7-7 = 10-7$$

$$2M = 3$$

$$\frac{2M}{2} = \frac{3}{2}$$

$$M = 1,5$$

Conclusion : la solution est M = 1, 5.

Exercice 17 Le stade des Gones compte 15 000 places. Il y a x places dans les virages et les autres dans les tribunes. Une place en virage coûte $15 \notin$ et une place dans les tribunes coûte $25 \notin$.

Aujourd'hui, le stade est plein et la recette est de 295 000 €.

1. Il y a x places dans les virages, donc (15000 - x) places dans les tribunes. La recette totale en ϵ est donc

$$15 \times x + 25 \times (15000 - x)$$
.

Comme cette recette est 295 000 €, *x* est solution de l'équation

$$15x + 25(15000 - x) = 295000.$$

2. On résout l'équation de la question précédente :

$$15x + 25(15000 - x) = 295000$$

$$15x + 25 \times 15000 + 25 \times (-x) = 295000$$

$$15x + 375000 - 25x = 295000$$

$$-10x + 375000 = 295000$$

$$-10x + 375000 - 375000 = 295000 - 375000$$

$$-10x = -80000$$

Conclusion : il y a x = 8000 places dans les virages (et donc 7 000 dans les tribunes).

Exercice 18

$$A = \frac{5}{6} + \frac{2}{3} = \frac{5}{6} + \frac{2 \times 2}{3 \times 2} = \frac{5}{6} + \frac{4}{6} = \frac{5 + 4}{6} = \frac{9}{6} = \frac{3 \times 3}{2 \times 3} = \frac{3}{2}$$

$$B = \frac{3}{4} - \frac{1}{6} = \frac{3 \times 3}{4 \times 3} - \frac{1 \times 2}{6 \times 2} = \frac{9}{12} - \frac{2}{12} = \frac{9 - 2}{12} = \frac{7}{12}$$

$$C = 2 + \frac{1}{5} = \frac{2}{1} + \frac{1}{5} = \frac{2 \times 5}{1 \times 5} + \frac{1}{5} = \frac{10}{5} + \frac{1}{5} = \frac{11}{5}$$

$$D = \frac{3}{10} \times \frac{5}{6} = \frac{3 \times 5}{10 \times 6} = \frac{15}{60} = \frac{\cancel{15}}{\cancel{15} \times 4} = \frac{1}{4}$$

$$E = 2 \times \frac{5}{6} - \frac{4}{9} = \frac{2 \times 5}{6} - \frac{4}{9} = \frac{10 \times 3}{6 \times 3} - \frac{4 \times 2}{9 \times 2} = \frac{30}{18} - \frac{8}{18} = \frac{30 - 8}{18} = \frac{22}{18} = \frac{11 \times \cancel{2}}{9 \times \cancel{2}} = \frac{11}{9}$$

$$F = 4 - 3 \times \frac{5}{6} = \frac{4}{1} - \frac{3 \times 5}{6} = \frac{4 \times 6}{1 \times 6} - \frac{15}{6} = \frac{24}{6} - \frac{15}{6} = \frac{24 - 15}{6} = \frac{9}{6} = \frac{3 \times \cancel{3}}{2 \times \cancel{3}} = \frac{3}{2}$$

$$G = \frac{6}{10} \times \frac{15}{8} = \frac{6 \times 15}{10 \times 8} = \frac{90}{80} = \frac{9 \times \cancel{10}}{8 \times \cancel{10}} = \frac{9}{8}$$

$$H = \left(\frac{2}{3}\right)^2 = \frac{2}{3} \times \frac{2}{3} = \frac{2 \times 2}{3 \times 3} = \frac{4}{9}$$

Exercice 19 Le père donne le tiers de la somme nécessaire et le petit-frère donne le quart, donc à eux deux ils en donnent

$$\frac{1}{3} + \frac{1}{4} = \frac{1 \times 4}{3 \times 4} + \frac{1 \times 3}{4 \times 3} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}.$$

Ainsi il reste $\frac{5}{12}$ du prix à payer à la charge du grand-frère. Or on sait que le grand frère a donné $10 ext{ €}$, donc le prix du livre (soit $\frac{12}{12}$ du prix) est égal à

$$\frac{12}{5} \times 10 = \frac{12 \times 10}{5} = \frac{120}{5} = 24 \in.$$

Remarque : Il peut être agréable de présenter les choses avec le schéma ci-dessous : chaque petite tranche représente $\frac{1}{12}$ du prix du livre et vaut $2 \in$. Ainsi, les $\frac{5}{12}$ du prix payé (c'est-à-dire le prix payé par le grand-frère) valent $5 \times 2 = 10 \in$; et la valeur totale du livre est $12 \times 2 = 24 \in$.

Exercice 20

$$A = \frac{2^{15} \times 3^{6}}{2^{12} \times 3^{4}} = \frac{2^{15}}{2^{12}} \times \frac{3^{6}}{3^{4}} = 2^{15-12} \times 3^{6-4} = 2^{3} \times 3^{2} = 8 \times 9 = 72$$

$$B = \frac{5^{3} \times 5^{6}}{5^{7}} = \frac{5^{3+6}}{5^{7}} = \frac{5^{9}}{5^{7}} = 5^{9-7} = 5^{2} = 25$$

$$C = \frac{2^{18}}{8 \times 2^{12}} = \frac{2^{18}}{2^{3} \times 2^{12}} = \frac{2^{18}}{2^{3+12}} = \frac{2^{18}}{2^{15}} = 2^{18-15} = 2^{3} = 8$$

$$D = \frac{6^{6}}{2^{5} \times 3^{4}} = \frac{(2 \times 3)^{6}}{2^{5} \times 3^{4}} = \frac{2^{6} \times 3^{6}}{2^{5} \times 3^{4}} = \frac{2^{6}}{2^{5}} \times \frac{3^{6}}{3^{4}} = 2^{6-5} \times 3^{6-4} = 2^{1} \times 3^{2} = 2 \times 9 = 18$$

$$E = \frac{(10^{4})^{3}}{10^{8}} = \frac{10^{4 \times 3}}{10^{8}} = \frac{10^{12}}{10^{8}} = 10^{12-8} = 10^{4} = 10000$$

$$F = \frac{4^{5}}{8^{3}} = \frac{(2^{2})^{5}}{(2^{3})^{3}} = \frac{2^{2 \times 5}}{2^{3 \times 3}} = \frac{2^{10}}{2^{9}} = 2^{10-9} = 2$$

$$G = \frac{10^{10} + 10^{8}}{10^{7}} = \frac{10^{10}}{10^{7}} + \frac{10^{8}}{10^{7}} = 10^{10-7} + 10^{8-7} = 10^{3} + 10^{1} = 1000 + 1 = 1001$$