Wy. WILL < Keerti P. Charantimath 19 MA 20059 Page No.: Discrete Math lest 2 EABE Given: T is a set of real numbers of the form $\frac{a_1 + a_2 + a_3 + \cdots + a_n + \cdots}{3 + 3^2 + 3^3}$ where an is 0 or 2 To prove: - T is an uncountable set We can use Cantor's diagonal argument. Let us assume that I is countable Hence, an enumeration of Texists Let the enumeration be T= & t, t2, t3 --- 3 where tra is of the form aim + azm +: anm,

3 32 37 and aij is either o' or 2' + isiEN AS T is countable, we can list its elements as follows t1 = <u>a11</u> + <u>a21</u> + <u>a31</u> + --- + <u>an1</u> + $\frac{t_2 = a_{12} + a_{22} + a_{32} + \dots + a_{n2} + a_{n2}}{3}$ $tm = \frac{a_1m}{3} + \frac{a_2m}{3^2} + \frac{a_3m}{3^3} + \dots + \frac{a_{nm}}{3^n} + \dots$ ER- met 161 com of not wit

THISTO

TITISY THE WAY

EABER-AND SOLVEN COS

way and	19MA 20059
	where aij E \ \ 0,2 \} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Let's draw a diagonal and construct a
	1a number $t = \underbrace{a_{1}t + a_{2}t + a_{3}t + \dots + a_{n}t}_{3^{n}}$
	where $ait = \begin{cases} 0 & if ait is 2 \\ 2 & if ait is 0 \end{cases}$
	Y i E IN
	Thus t is a part of T as it is of the given form $a_1 + a_2 + a_n$, 3 32 3"
	aie so, 2 f 4/N
	However, we will not see t in the
	list & t,, t2, th, }.
	Suppose that $t = bk$ for some $k \in IN$, then the art from t will be equal to
	But, we have defined to such that are + and
	This contradicts our assumption.
	Hence, Rantor's Teenery set 7 is uncountable.
	네트 아이들 보고 있는 것이 되었다. 그 그 이 그녀가 생생님이 됐다고요요. 그리고 없는 사람들이 모르는 사람들이 되었다. 그 나는 사람들이 되었다.

ATEAN.

THIS YOU

)	
· 	19MA 20059
3) 1 2 3 4 5	f(x,y,z) = xyz + xyz + xyz + xyz + xyz + xyz Step 0 Step 1 Minterms Bitstring #8t Term Bitstring xyz 110 2 (1,3) xz 1-0 xyz 101 2 (2,3) xy 10- xyz 100 + (4,5) xz 0-1 xyz 001 1
	no more steps possible
	742 742 742 742 742 742 742 742 742 742
	$\frac{\overline{y}z}{\overline{z}}$ \times \times \times \times
	After simplification, we get final answer as $f(n,y/z) = nz + nz + nz + nzy$
	$f(\pi_1, \pi_2) = \pi_2 + \pi_2 + \pi_2$
	Sol.

COMMO?

	19 MA 20059	+
4)	f = wxyz + wxy	A Harv
	g = (w+x+y+z)(x+y+z)(w+y+z) $= (w+x+y+z)(x+y+z)(w+y+z)$ $= wxyz+xyz+wyz$ $= wxyz+xyz+wxyz+wxyz+wxyz$ $= xyz+wxyz+wxyz+wxyz+xyz+xyz+xyz$	
	$f = \frac{1}{100} = $	Some TITLE

EABER - Weet Town 63

EMP AND

19 MA 20059 BE + BDE is simplified version of ABE + BCDE + ACDE + BCDE When E = 0 11 10 X 0) 11 10 50 When E = 1 10 The dont care conditions are d(A,B,C,D,E) = 2m(22,27,29) for which

> f(A,B,C,D,E) = BE+BDE becomes the Simplified version of g(A,B,(,D,E) = ABE+BCDE+ACDE+BCDE

THISY