Title

Subtitile

Mladen Ivkovic

17. September 2019

LASTRO

École Polytechnique Fédérale de Lausanne

Outline

Section Name

Blocks

Proof, Definitions, Lemmata, Remarks

Overlays

Two Columns

Images

Two images

Full Page Image

Citations and References

Section Name

Test Frametitle

- Test
- Test 2
- Test 3

 G_3' : Text goes here.

WTF

Item Name Description

Blocks

blocks

simple block title Simple block text

example block title example block text

alert block title alert block text

Remarks

Proof, Definitions, Lemmata,

Proofs etc

Proof.Proof

Lemma (XY – A dual zu YX) Lemma

Theorem (T – after Tarski)
Theorem

Remark remark: first set

\newtheorem*{rem}{Remark}

in preamble!

• Start

- Start
- so it follows

- Start
- so it follows
- then this

- Start
- so it follows
- then this
- then that

Two Columns

Two column stuff

- 1. Start
- 2. Stop

Images

Two images

1: I really don't

2: indeed I don't

Small caption for big image

Dalmas de Réotier, Pierre (2010): Introduction to muon spin rotation and relaxation. [Online]. Availible: http://inac.cea.fr/Pisp/pierre.dalmas-de-reotier/introduction_muSR.pdf

$$f(z) = \lim_{x \to \infty} \frac{\sin x}{x} = 0 \tag{1}$$

$$\int (z)dz = \frac{1}{4} \left[\int \frac{e^{ia(u+1)}}{u} du - \int \frac{e^{ia(u+1)}}{u+2} du \right]$$

$$z = 1 \Rightarrow u = 0 \quad \underbrace{\frac{e^{ia}}{4}}_{} \left[\underbrace{\frac{e^{iae^{i\varphi}}}{\epsilon e^{i\varphi}} i\epsilon e^{i\varphi}}_{\rightarrow i} d\varphi - \int_{\pi}^{0} \underbrace{\frac{e^{iaee^{i\varphi}}}{\epsilon e^{i\varphi} + 2} \underbrace{i\epsilon e^{i\varphi}}_{\rightarrow 0}}_{\rightarrow 0} d\varphi \right]$$
(3)

2 + 2 = 4 some more space after this line please. (4)

Citations and References

Citations and References

Knollmann and Knebe 2009

(Berger and Colella 1989)

References

M. J. Berger and P. Colella. "Local adaptive mesh refinement for shock hydrodynamics". In: *Journal of Computational Physics* 82 (May 1989), pp. 64–84. DOI: 10.1016/0021-9991(89)90035-1.

S. R. Knollmann and A. Knebe. "AHF: Amiga's Halo Finder". In: $\rm ApJ$ 182 (June 2009), pp. 608–624. DOI: 10.1088/0067-0049/182/2/608. arXiv: 0904.3662.