ADITYA SAINI

EDUCATION _

Ph.D., Aerospace Engineering
2017
GPA: 3.89/4

North Carolina State University (Raleigh, NC)

Master of Science, Aerospace Engineering 2014 GPA: 3.87/4

North Carolina State University (Raleigh, NC)

Bachelor of Technology, Mechanical Engineering 2012 GPA: 7.94/10

Indian Institute of Technology (Ropar, India)

Relevant coursework: Applied Aerodynamics, Airfoil and Wing Theory, Computational Fluid Dynamics, Experimental Fluid mechanics, Advanced Dynamics, Flight Vehicle Aerodynamics (MIT-edx), Engineering Design Optimization, Advanced Convective Heat Transfer, Fluid Dynamics of Combustion, Propulsion Systems, Energy Science and Technology, Power Plant Engineering.

SKILLS _

- Experienced in statistical modeling, sensor fusion, fault diagnostics, reliability calculations, and FMECA.
- Experienced in Machine Learning & Data Engineering tools like TensorFlow, PyTorch, Pandas, scikit-learn, NumPy, Matplotlib.
- Proficient in signal processing, data analysis/visualization, feature extraction, and scripting & automation.
- Deep understanding of flight vehicle aerodynamics (fixed wing/rotorcraft) and aero-thermal dynamics.
- Expertise in numerical tools for aerodynamic design and analysis of airfoils/wings (XFOIL, AVL, XFLR5) and aircraft conceptual design (OpenVSP).
- Programming Languages: Python, MATLAB, Fortran, and MATHEMATICA.
- CFD software packages: STAR-CCM+ and ANSYS (CFX, FLUENT).

WORK EXPERIENCE __

DEI Group, MD Reliability Engineer April 2018 – Present

- Managing projects on condition-based monitoring of multimillion-dollar assets, such as gas turbine engines, hydro-turbines, and marine diesel engines.
- Leading the research and development of failure-indicating features from high-speed data, such as vibration waveforms, pressure waves, proximity probes, etc. to enhance diagnostics capabilities in multiple projects.
- Spearheaded the integration of a thermodynamic performance monitoring package into the existing software framework which resulted in getting new clients onboard.
- Developed test cases and simulations for the testing and validation of DEI's SmartMachine product. Provided insights and feedback for improvements.
- Designed Bayesian belief networks for the determination of failure probability (health/degradation) associated with different failure modes in power generation systems.

North Carolina State University Rese

Research & Teaching Assistant

March 2013 – April 2018

- Developed a novel technique for aerodynamic parameter estimation and stall detection.
- Simulated & analyzed CFD data (steady and unsteady) and automated CFD post-processing and data analysis using Tecplot & MATLAB.
- Conducted wind-tunnel tests for validating low-order methods. Designed & fabricated experimental models and setups for investigating the flow in different scenarios, such as flow past airfoil models, airfoil in the wake of a cylinder, flat plate with bluff bodies etc.
- Educated students by developing GUI's/animations and setting up experimental demonstrations in the wind-tunnel and controls lab.

.

Leading-Edge Flow Sensing Algorithm

North Carolina State University

- Developed a novel algorithm for real-time estimation of aerodynamic parameters using discrete surface pressures measured at a few ports near the leading edge of a wing or blade section.
- The algorithm directly computes the inflow velocity, the stagnation-point location, section angle of attack and lift coefficient (without any calibration for airfoils with thickness less than 15% of chord).
- Demonstrated the functioning of the LEFS algorithm on computational data (steady & unsteady simulations) and wind-tunnel data (steady flow & rotating blade).
- Successfully applied the LEFS algorithm for detecting surface pressure signatures associated with leading-edge vortex formation, shedding, and detachment from airfoils undergoing unsteady motions.

Stall Detection and Post-Stall Aerodynamics

North Carolina State University

- Investigated surface-mounted pressure probes for detecting flow-separation and identifying stall onset.
- Designed & conducted wind-tunnel experiments to assess the effectiveness of the LEFS method in deducing the loss of dynamic pressure due to wake impingement on tail surfaces.
- Augmented the LEFS algorithm with Kirchhoff equations for identifying aerodynamic parameters in post-stall conditions.

Aerodynamic Flow Sensing with Elastic Microfence Structures

North Carolina State University

- Designed wind-tunnel setups and evaluated the performance of microfence structures quantifying shear-stress and identifying critical aerodynamic flow features, in collaboration with NASA Langley Research Center.
- Developed experiments to characterize the directional sensitivity of the micro-structures by creating flow reversal at the sensor location during wind-tunnel runs.
- Successfully minimized the effects of flow-induced vibration in the recorded videos using image processing algorithms in MATLAB and Python during post processing.
- Explored bimorph piezo-system for flow sensing using energy formulation and Euler-Bernoulli beam theory.

PROJECTS _

Aerodynamic Design & Analysis

North Carolina State University

- Conducted preliminary aircraft sizing study and performance analysis for conceptual VTOL aircraft (modeled using OpenVSP).
- Evaluated propeller performance using blade element momentum theory (BEMT) for comparison with experimental data obtained using the propeller test rig in the NCSU subsonic wind tunnel.
- Performed a parametric study to analyze the effect of varying thickness, laminar extent, and flap deflection on the drag bucket of a cambered natural-laminar-flow airfoil using PROFOIL, MFOIL & XFOIL.
- Created codes based on the Lifting-Line theory and Vortex Lattice method for the analysis of different subsonic wing configurations.

Computational Fluid Dynamics

North Carolina State University

- Conducted CFD analysis of unsteady airfoil pitching motion at different oscillating frequencies in ANSYS Fluent to understand leading-edge vortex formation.
- Created meshes using ICEM CFD and developed User-Defined Function (UDF) for sliding zone motion.
- Developed CFD codes for solution of Incompressible Navier-Stokes Equations using Finite Volume Methods for a driven cavity and for flow in a divergent channel (with and without an immersed body) using FORTRAN.

Advanced Dynamics Simulations

North Carolina State University

- Developed mathematical models for tilt-rotor aircraft dynamics and conceptual lighter-than-air airborne wind turbine system.
- Modeled and simulated the multi-body motion of a gyroscopic system using Newton-Euler approach.
- Animated the system for comparison with the real experimental setup to analyze the phenomenon of precession and nutation.
- Analyzed and compared different methods (Newton-Euler, Lagrangian, and Kane's method) for modeling and simulating the chaotic behavior of a double pendulum.

SELECTED PUBLICATIONS

Journal

- Saini, A. and Gopalarathnam, A."Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation", AIAA Journal, Vol. 56, No. 12 (2018), pp. 4706-4718.
- Kim, T., Saini, A., Kim, J., Gopalarathnam, A., Zhu, Y., Palmieri, F.L., Wohl, C.J. and Jiang, X., "Piezoelectric Floating Element Shear Stress Sensor for the Wind Tunnel Flow Measurement," in IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7304-7312, Sept. 2017.

Conference

- Saini, A., Kim, T., Cui, Z., Schuessler, B., Palmieri, F., Lin, Y., Connell, J., Jiang, X., Zhu, Y., Gopalarathnam, A. and Wohl, C., "Aerodynamic Flow Sensing with Elastic Microfence Structures," AIAA Paper2017-0479, 2017.
- Saini, A., & Gopalarathnam, A., "Determination of Section Aerodynamic Operating Condition on Wings and Rotor Blades from Leading-Edge Pressure Measurements,". AIAA Paper 2015-3290, 2015.
- Aleman, M. A., **Saini, A.,** & Gopalarathnam, A., "Airfoil Flow-Separation and Stall Detection Using Surface-Mounted Pitot Tubes," AIAA Paper 2017-3749, 2017.
- Kim, T., Saini, A., Kim, J., Gopalarathnam, A., Zhu, Y., Palmieri, F. L., ... & Jiang, X., "A piezoelectric shear stress sensor," Proc. SPIE 9803, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, 98032S (20 April 2016)

Invited Talk

 Gopalarathnam, A., Saini, A., Narsipur, S., Babu, A.V.S., Ramesh, K.K., "Surface Signatures for Leading Edge Vortex Shedding and Detachment from Unsteady Airfoils". In 55th AIAA Applied Aerodynamics Conference, Grapevine TX, January 2017.