Part IV

MODULAR WORLD AND MODULAR DYNAMICS

Definition 4.1.1

Let m be a positive integer (called the modulus). We say two integers a and b are $congruent\ modulo\ m$, written as

$$a \equiv b \pmod{m}$$
,

if $m \mid a - b$.

Theorem 4.1.2

Fix a modulus m. "Being congruent module m" is an equivalence relation on \mathbb{Z} . Namely,

- (reflexivity) for all integer $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$;
- (symmetry) for all integers $a, b \in \mathbb{Z}$, if $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$;
- (transitivity) for all integers $a, b, c \in \mathbb{Z}$, if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Definition 4.1.3

For any integer $a \in \mathbb{Z}$, the set of integers congruent to a modulo m is called the *congruence class* (modulo m) with representative a, written as $[a]_m$, or simply [a] or \bar{a} if the modulus m is clear.

Definition 4.1.3

For any integer $a \in \mathbb{Z}$, the set of integers congruent to a modulo m is called the *congruence class* (modulo m) with representative a, written as $[a]_m$, or simply [a] or \bar{a} if the modulus m is clear.

Example 4.1.4

Take 2 to be the modulus. $[0]_2$ is the set of even numbers, while $[1]_2$ is the set of odd numbers.

Definition 4.1.5

The residue set modulo m, written as \mathbb{Z}/m , is the quotient set of \mathbb{Z} up to congruence modulo m. Namely, \mathbb{Z}/m is the set of congruence classes modulo m.

Definition 4.1.5

The residue set modulo m, written as \mathbb{Z}/m , is the quotient set of \mathbb{Z} up to congruence modulo m. Namely, \mathbb{Z}/m is the set of congruence classes modulo m.

A priori, every integer defines a congruence class. But many of them turn out to be the same.

Example 4.1.6

It turns out that $\mathbb{Z}/2$ consists of only two classes: $[0]_2$, the even numbers, and $[1]_2$, the odd numbers.

Definition 4.1.7

Let x be an integer and m be a modulus.

The natural representative of x modulo m is the remainder r left under the division

$$x = q \cdot m + r$$
, $0 \le r < m$, $q \in \mathbb{Z}$.

Definition 4.1.7

Let x be an integer and m be a modulus.

The natural representative of x modulo m is the remainder r left under the division

$$x = q \cdot m + r$$
, $0 \le r < m$, $q \in \mathbb{Z}$.

Example 4.1.8

- The natural representative of $1234567 \pmod{10}$ is 7.
- The natural representative of $7^{2023} \pmod{2}$ is 1.

Definition 4.1.7

Let x be an integer and m be a modulus.

The natural representative of x modulo m is the remainder r left under the division

$$x = q \cdot m + r$$
, $0 \le r < m$, $q \in \mathbb{Z}$.

Note that $x \equiv r \pmod{m}$. Hence, $[r]_m = [x]_m$. Namely, r is a representative of the congruence class $[x]_m$. Moreover, the natural representative depends only on the congruence class $[x]_m$, rather than the integer x.

Theorem 4.1.8

The set \mathbb{Z}/m is finite. In fact, it is bijective to the set of remainders dividing m: $\{0, \dots, m-1\}$.

Proof. The following process gives a bijection from \mathbb{Z}/m to $\{0, \dots, m-1\}$: for any congruence class $[x]_m$, take the natural representative r of it.