

CSD18542KTT

SLPS590A - MARCH 2016-REVISED MARCH 2017

CSD18542KTT 60-V N-Channel NexFET™ Power MOSFET

Features

- Ultra-Low Q_a and Q_{ad}
- Low-Thermal Resistance
- Avalanche Rated
- Logic Level
- Lead-Free Terminal Plating
- **RoHS Compliant**
- Halogen Free
- D²PAK Plastic Package

Applications

- DC-DC Conversion
- Secondary Side Synchronous Rectifier
- Motor Control

3 Description

This 60-V, 3.3-m Ω , D²PAK (TO-263) NexFETTM power MOSFET is designed to minimize losses in power conversion applications.

Product Summary

$T_A = 25^\circ$	С	TYPICAL VA	UNIT		
V_{DS}	Drain-to-Source Voltage		V		
Q_g	Gate Charge Total (10 V) 44				
Q_{gd}	Gate Charge Gate-to-Drain	6.9	nC		
D	Drain-to-Source On Resistance	V _{GS} = 4.5 V 4.0		mΩ	
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V 3.3		11177	
V _{GS(th)}	Threshold Voltage 1.8				

Device Information⁽¹⁾

DEVICE	QTY	MEDIA	PACKAGE	SHIP
CSD18542KTT	500		D ² PAK	Tape
CSD18542KTTT	50	13-Inch Reel	Plastic Package	and Reel

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

T _A = 2	5°C	VALUE	UNIT
V _{DS}	Drain-to-Source Voltage	60	V
V_{GS}	Gate-to-Source Voltage	±20	٧
	Continuous Drain Current (Package Limited)	200	
I _D	Continuous Drain Current (Silicon Limited), $T_C = 25^{\circ}C$	170	Α
	Continuous Drain Current (Silicon Limited), $T_C = 100$ °C	120	
I_{DM}	Pulsed Drain Current ⁽¹⁾	400	Α
P_D	Power Dissipation	250	W
T _J , T _{stg}	Operating Junction, Storage Temperature	-55 to 175	ပ္
E _{AS}	Avalanche Energy, Single Pulse I_D = 75 A, L = 0.1 mH, R_G = 25 Ω	281	mJ

(1) Max $R_{\theta JC}$ = 0.6°C/W, pulse duration ≤ 100 μs , duty cycle ≤ 1%.

Gate Charge

Table of Contents

2 3 4 5	Features 1 Applications 1 Description 1 Revision History 2 Specifications 3 5.1 Electrical Characteristics 3 5.2 Thermal Information 3 5.3 Typical MOSFET Characteristics 4 Device and Documentation Support 7 6.1 Receiving Notification of Documentation Updates 7	6 6 7 N 11	.2 Community Resources	e
------------------	--	----------------------------	------------------------	-------

4 Revision History

CI	Changes from Original (March 2016) to Revision A						
•	Changed the values for C_{OSS} , Q_{gs} , t_r , $t_{d(off)}$, t_f , Q_{rr} , and t_{rr} in the <i>Electrical Characteristics</i> table						
•	Added Receiving Notification of Documentation Updates section to the Device and Documentation Support section	١					

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

5 Specifications

5.1 Electrical Characteristics

 $T_A = 25^{\circ}C$ (unless otherwise stated)

PARAMETER	TEST CONDITIONS	MIN T	YP MAX	UNIT
CHARACTERISTICS				
Drain-to-source voltage	V _{GS} = 0 V, I _D = 250 μA	60		V
Drain-to-source leakage current	V _{GS} = 0 V, V _{DS} = 48 V		1	μА
Gate-to-source leakage current	V _{DS} = 0 V, V _{GS} = 20 V		100	nA
Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.5	1.8 2.2	V
Drain to acureo an registence	V _{GS} = 4.5 V, I _D = 100 A	4	4.0 5.1	~0
Drain-to-source on resistance	V _{GS} = 10 V, I _D = 100 A	;	3.3 4.0	mΩ
Transconductance	V _{DS} = 6 V, I _D = 100 A	1	98	S
C CHARACTERISTICS				
Input capacitance		39	00 5070	pF
Output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V}, f = 1 \text{ MHz}$	5	70 740	pF
Reverse transfer capacitance			11 14	pF
Series gate resistance			1.3 2.6	Ω
Gate charge total (4.5 V)			21 27	nC
Gate charge total (10 V)			44 57	nC
Gate charge gate-to-drain	V _{DS} = 30 V, I _D = 100 A	(6.9	nC
Gate charge gate-to-source			10	nC
Gate charge at V _{th}			7.3	nC
Output charge	V _{DS} = 30 V, V _{GS} = 0 V		63	nC
Turnon delay time			6	ns
Rise time	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V},$		5	ns
Turnoff delay time	$I_{DS} = 100 \text{ A}, R_G = 0 \Omega$		18	ns
Fall time			21	ns
HARACTERISTICS				
Diode forward voltage	I _{SD} = 100 A, V _{GS} = 0 V	(0.9 1.0	V
Reverse recovery charge	V _{DS} = 30 V, I _F = 100 A,	1	48	nC
Reverse recovery time	di/dt = 300 A/μs		53	ns
	Drain-to-source voltage Drain-to-source leakage current Gate-to-source leakage current Gate-to-source threshold voltage Drain-to-source on resistance Transconductance CCHARACTERISTICS Input capacitance Output capacitance Reverse transfer capacitance Series gate resistance Gate charge total (4.5 V) Gate charge gate-to-drain Gate charge gate-to-source Gate charge at V _{th} Output charge Turnon delay time Rise time Turnoff delay time Fall time HARACTERISTICS Diode forward voltage Reverse recovery charge	PARAMETER TEST CONDITIONS CHARACTERISTICS Drain-to-source voltage $V_{GS} = 0 \text{ V}, I_D = 250 \text{ μA}$ Drain-to-source leakage current $V_{GS} = 0 \text{ V}, V_{DS} = 48 \text{ V}$ Gate-to-source leakage current $V_{DS} = 0 \text{ V}, V_{DS} = 250 \text{ μA}$ Drain-to-source on resistance $V_{DS} = V_{GS}, I_D = 250 \text{ μA}$ Drain-to-source on resistance $V_{DS} = 4.5 \text{ V}, I_D = 100 \text{ A}$ Transconductance $V_{DS} = 6 \text{ V}, I_D = 100 \text{ A}$ CCHARACTERISTICS Input capacitance Output capacitance $V_{DS} = 6 \text{ V}, I_D = 100 \text{ A}$ Reverse transfer capacitance $V_{CS} = 0 \text{ V}, V_{DS} = 30 \text{ V}, f = 1 \text{ MHz}$ Reverse gate resistance $V_{CS} = 0 \text{ V}, V_{DS} = 30 \text{ V}, I_D = 100 \text{ A}$ Gate charge total (4.5 V) $V_{CS} = 30 \text{ V}, I_D = 100 \text{ A}$ Gate charge gate-to-drain $V_{DS} = 30 \text{ V}, I_D = 100 \text{ A}$ Gate charge at V_{th} $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$ Output charge $V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_{DS} = 100 \text{ A}, R_G = 0 \Omega$ Turnon delay time $V_{DS} = 100 \text{ A}, V_{GS} = 0 \text{ V}$ Fall time $V_{DS} = 30 \text{ V}, V_{DS} = 30 \text{ V}, V_{DS} = 100 \text{ A}, V_{DS} = 100 \text{ A}$ HAR	PARAMETER TEST CONDITIONS MIN T CHARACTERISTICS Drain-to-source voltage $V_{GS} = 0 \text{ V}$, $I_{D} = 250 \text{ μA}$ 60 Drain-to-source leakage current $V_{GS} = 0 \text{ V}$, $V_{DS} = 48 \text{ V}$ 60 Gate-to-source leakage current $V_{DS} = 0 \text{ V}$, $V_{DS} = 20 \text{ V}$ 1.5 Gate-to-source threshold voltage $V_{DS} = 0 \text{ V}$, $V_{DS} = 20 \text{ V}$ 1.5 Drain-to-source on resistance $V_{CS} = 4.5 \text{ V}$, $I_{D} = 100 \text{ A}$ 4 Transconductance $V_{CS} = 10 \text{ V}$, $I_{D} = 100 \text{ A}$ 1 Transconductance $V_{DS} = 6 \text{ V}$, $I_{D} = 100 \text{ A}$ 1 CCHARACTERISTICS Input capacitance 39 Output capacitance $V_{CS} = 0 \text{ V}$, $V_{DS} = 30 \text{ V}$, $f = 1 \text{ MHz}$ 5 Reverse transfer capacitance $V_{CS} = 0 \text{ V}$, $V_{DS} = 30 \text{ V}$, V	Characteristrics V _{GS} = 0 V, I _D = 250 μA 60

5.2 Thermal Information

 $T_A = 25$ °C (unless otherwise stated)

	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance			0.6	°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance			62	°C/W

Product Folder Links: CSD18542KTT

5.3 Typical MOSFET Characteristics

 $T_A = 25$ °C (unless otherwise stated)

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

Typical MOSFET Characteristics (continued)

 $T_A = 25$ °C (unless otherwise stated)

Typical MOSFET Characteristics (continued)

 $T_A = 25$ °C (unless otherwise stated)

Figure 11. Single Pulse Unclamped Inductive Switching

Figure 12. Maximum Drain Current vs Temperature

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

Device and Documentation Support

6.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

6.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

6.3 Trademarks

NexFET, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

Submit Documentation Feedback

Product Folder Links: CSD18542KTT

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7.1 KTT Package Dimensions

Notes:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. Features may not exist and shape may vary per different assembly sites.

Table 1. Pin Configuration

POSITION	DESIGNATION
Pin 1	Gate
Pin 2 / Tab	Drain
Pin 3	Source

Submit Documentation Feedback

7.2 Recommended PCB Pattern

For recommended circuit layout for PCB designs, see *Reducing Ringing Through PCB Layout Techniques* (SLPA005).

7.3 Recommended Stencil Opening (0.125 mm Stencil Thickness)

Notes:

- 1. This package is designed to be soldered to a thermal pad on the board. See application notes *PowerPAD Thermally Enhanced Package* (SLMA002) and *PowerPAD Made Easy* (SLMA004) for more information.
- 2. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 3. Board assembly site may have different recommendations for stencil design.

Copyright © 2016–2017, Texas Instruments Incorporated

Submit Documentation Feedback

PACKAGE OPTION ADDENDUM

9-.lun-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CSD18542KTT	ACTIVE	DDPAK/ TO-263	KTT	3	500	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-55 to 175	CSD18542KTT	Samples
CSD18542KTTT	ACTIVE	DDPAK/ TO-263	KTT	3	50	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-55 to 175	CSD18542KTT	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

9-Jun-2020

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated