Arushi Sadam

Professor Mark Loveland

Engineering Computation: COE 311K

08 February 2024

Homework 1

Problem 1:

Function exact velocity() found in HW1.py.

Problem 2:

Code block calling exact velocity () and plotting velocity versus time:

Plot on the next page.

Problem 3:

Function forward Euler velocity() found in HW1.py.

Problem 4:

The difference between the exact velocity and velocity calculated by the Euler approximation is most obvious at high velocities, before the object achieves terminal velocity. The exact velocity has $\frac{\partial v}{\partial t} \sim v(t)^2$ while the Euler approximation suggests $\frac{\partial v}{\partial t} \sim v(t)$. At low velocities, although $\frac{\partial v}{\partial t}$ is high, the v(t) is low so the difference between v(t) and $v(t)^2$ is not noticeable, leading to less error. At higher velocities, the difference v(t) and $v(t)^2$ is quite high, resulting in larger errors. Near terminal velocity, $\frac{\partial v}{\partial t}$ is close to zero, so the error between the exact velocity and the Euler approximation is less noticeable.

Problem 5:

Code block calculating and plotting root mean square error of Euler approximation:

```
def root_mean_square_error(maxt:float, dt:float, cd:float, m:float, g:float) -> float:
    """
    Calculates the root mean square error of the velocity at any given time point.
    Args:
        float maxt: the maximum time to be calculated.
        float dt: the step size or delta time interval between velocity re-calculations.
        float m: mass of the object
        float g: gravitational constant
    Returns:
        float rmse: the root mean square error of the velocities of the data sample. The data sample is defined\
        as all the times between 0 and maxt with the delta t as dt.
    """
    tsteps = int(maxt/dt) + 1 # the total number of time instances where to calculate velocity
    t = np.linspace(0,maxt, tsteps) # each time spot
    # the difference between the exact and approximated velocities at the times listed in t
    dv = np.array(exact_velocity(cd, m, t, g) - forward_Euler_velocity(cd, m, t, g))
    rmse = sqrt(np.sum(dv**2)/tsteps) # compute the quadrature of dv over the number of time steps
    return rmse
```

```
rmse = []
step_sizes = [.0625,.125,.25,.5,1,2]
    rmse+=[root_mean_square_error(max_time,dt,cd,m,g)]
plt.figure(2)
plt.plot(step_sizes, rmse,
           color = "darkgreen",
           markerfacecolor = "darkorange",
           marker = "o", markersize = 5,
           label = "Exact Velocity")
plt.title("Root Mean Square Error (RMSE) vs. Time Step Size")
plt.xlabel("Time (s)") # assumed to be in seconds
plt.ylabel("RMSE (m/s)") # assumed to be in meters per second
plt.legend([f"Root Mean Square Error for Euler-Calculated Velocity \
           \n(mass = {m} kg and drag coefficient = {cd})"])
plt.grid()
plt.show()
plt.savefig("HW1P5.png")
```

Plot on the next page.

Problem 6:

- 1. As a computational engineer in general, what is error and why is it important to us?
 - Error is the difference between a computed or estimated value and the true value. For computational engineers, error measurement is crucial to determine the validity of a model; a model with high error cannot represent real-world scenarios. Comparing errors between models (the error between each model and the true value) can also determine which model is better.
- 2. In your own words, what is roundoff error and why should we care about it? Roundoff error is error due to the computer's finite precision; computers cannot represent irrational numbers to infinite precision so the difference between the true value and the rounded value (that is stored in the computer) is the roundoff error
- 3. In your own words, what is truncation error and why should we care about it? Truncation error is associated with converting mathematical operations to discrete operations that can be performed by computers. For example, derivatives or integrals are numerically approximated; exponential functions like e^x or functions $\sin(x)$ like may be approximated by a finite set of an infinite series.

Problem 7:

Forth + f(x-h) = 2
$$f(x+h) - 2 f(x) + f(x-h)$$
 $\frac{\partial^2 f(x)}{\partial x^2} \approx f(x+h) - 2 f(x) + f(x-h)$
 $\frac{\partial^2 f(x)}{\partial x^2} \approx f(x+h) - 2 f(x) + f(x-h)$
 $\frac{\partial^2 f(x)}{\partial x^2} \approx f(x+h) - 2 f(x) + f(x)$

Problem 8:

8.2	$[A] = \begin{bmatrix} 4 & 7 \\ 5 & 6 \end{bmatrix} \qquad [B] = \begin{bmatrix} 4 & 3 & 7 \\ 2 & 0 & 4 \end{bmatrix} \qquad [C] = \begin{bmatrix} 3 \\ 6 \\ 6 \end{bmatrix}$
	$[F] = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 7 & 3 \end{bmatrix}$ $[G] = \begin{bmatrix} 7 & 6 & 4 \end{bmatrix}$
(a)	dimensions: (b) square matrices: [B], (E]
	[A]: (3,2) column matrices: [C]
	[B]: (3,3) now matrices: [G]
	[c]: (3,1)
0	[D7: (2,4)
	CE7: (3,3)
	[F]: (2,3)
	[6]: (1,3)
(C)	value of elements:
	a ₁₂ = 7
	b23 = 7
	d32 = does not exist
	C22 = 2
	f12 = 0
	912 = 6

(d)	1: (E)+(B)=[158]+[437]=[585] [406]+[277]=[8410]
	2: [A]+[F] = not computable size ([A]) = (3,2) = size([B])=(3,3)
	3: $[B] - [E] = \begin{bmatrix} 4 & 3 & 7 \\ 1 & 2 & 7 \\ 2 & 0 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 5 & 8 \\ 7 & 2 & 3 \\ 4 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 3 & -2 & -1 \\ -6 & 0 & 4 \\ -2 & 0 & -2 \end{bmatrix}$
	4: 7×[8] = 7. [4 3 7] = [28 21 49] [2 04] [4 0 28]
	5: [C] = { }] = [3 6 1]
)	6:[E] x (B] = [158] x [437] 406) x [127]
	= 4+5+16 3+10+0 7+35+32 7 28+2+6 21+4+0 49+14+12 16+0+12 12+0+0 28+0+24
	$= \begin{bmatrix} 25 & 13 & 74 \\ 36 & 25 & 75 \\ 28 & 12 & 52 \end{bmatrix}$
	7. (B] \times [A] = $\begin{bmatrix} 4 & 3 & 7 \\ 1 & 2 & 7 \\ 2 & 0 & 4 \end{bmatrix} \times \begin{bmatrix} 4 & 7 \\ 5 & 6 \end{bmatrix}$
	= 16+3+35 28+6+42 4+2+35 7+4+42 8+0+20 14+0+24
	= 54 76 41 53 28 38

8: $[D]^{7} = \begin{bmatrix} 9 & 4 & 3 & -6 \\ 2 & 1 & 7 & 5 \end{bmatrix}^{T} = \begin{bmatrix} 9 & 2 \\ 4 & 1 \\ -6 & 5 \end{bmatrix}$
9: [A] ×[C] = [4 7] × [3] = not computable
[A] size = (3,2); [c]size=(3,1)
for matrix multiplication, the number of columns of the first matrix (matrix (A), 2 columns) should be equal to the
2 columns) should be equal to the number of rows in the second matrix (matrix [B], 3 rows).
10: [I] x[B] assuming identity is of a compatable size with matrix [B]. The identity matrix for matrix is a square matrix. For matrix
multiplication, number of columns of identity matrin muse agual number of
nows of (B) matrin.
$(B) = \begin{bmatrix} 4 & 3 & 7 \\ 2 & 5 & 4 \end{bmatrix} $ Size $((B)) = (3,3)$ Now $(B) = (3,3)$ So, Size $((II)) = (3,3)$
$[I] \times [B] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 4 & 3 & 7 \\ 1 & 2 & 7 \\ 2 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 4+0+0 & 3+0+0 & 7+0+0 \\ 0 & 1+0 & 0+2+0 & 0+7+0 \\ 0+0+2 & 0+0+0 & 0+0+4 \end{bmatrix}$

$$[E]^{T} = \begin{bmatrix} 1 & 5 & 8 \\ 7 & 2 & 3 \\ 4 & 0 & 6 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 7 & 4 \\ 5 & 2 & 0 \\ 8 & 3 & 6 \end{bmatrix}$$

$$[E]^{T} \times [E] = \begin{bmatrix} 1 & 7 & 4 \\ 5 & 2 & 0 \\ 8 & 3 & 6 \end{bmatrix} \times \begin{bmatrix} 1 & 6 & 8 \\ 7 & 2 & 3 \\ 4 & 0 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 1+49+16 & 5+14+0 & 8+21+24 \\ 5+14+0 & 25+4+0 & 40+6+0 \\ 8+21+24 & 40+6+0 & 64+9+36 \end{bmatrix}$$

$$= \begin{bmatrix} 66 & 19 & 53 \\ 19 & 29 & 46 \\ 53 & 46 & 109 \end{bmatrix}$$

$$12: [C]^{T} \times [C] = \begin{bmatrix} 3 & 6 & 1 \end{bmatrix} \times \begin{bmatrix} 3 & 6 & 1 \\ 6 & 19 & 19 \end{bmatrix}$$

$$[C]^{T} \times [C] = \begin{bmatrix} 3 & 6 & 1 \end{bmatrix} \times \begin{bmatrix} 3 & 6 & 1 \\ 6 & 19 & 19 \end{bmatrix} = \begin{bmatrix} 46 & 1 \\ 6 & 19 & 19 \end{bmatrix}$$

Problem 9:

$$\begin{bmatrix} 0 & -7 & 15 \\ 4 & -3 & 7 \\ -20 & 9 & -7 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 50 \\ -30 \\ 42 \end{bmatrix}$$

Problem 10:

10.	(A)=[6-1] (B)=[4 0] (C)=[2 -2]
(9.4)	$[A] = \begin{bmatrix} 6 & -1 \\ 1^2 & 8 \\ -5 & 4 \end{bmatrix} [B] = \begin{bmatrix} 4 & 0 \\ 0.5 & 2 \end{bmatrix} [C] = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix}$
	all combinations of matrices A, B, C: [A] x [B] (3(2) × (3,2) 2=2 / Inze [A]: (3,2) (B] x [A] (2,2) × (3,2) 2 ± 3 × size [B]: (2,2)
	[C] x [A] (2,2) x (3,2) 2 # 3 X
	(B] × (C) (20) × (B2) 2=2 / (C] × (B] (20) × (B2) 2=2 /
P)	Mote: number of columns in first matrix must equal number of rows in second matrix. Both of these are urcled above.
a)	Thus, the following matrices can be multiplied
	1. $[A] \times [B] = \begin{bmatrix} 6 & -1 \\ 12 & 8 \end{bmatrix} \times \begin{bmatrix} 4 & 0 \\ .5 & 2 \end{bmatrix} = \begin{bmatrix} 245 & 0 - 2 \\ 48 + 4 & 0 + 16 \\ -20 + 2 & 0 + 8 \end{bmatrix}$
	= \begin{pmatrix} 23.5 & -2 \\ 52 & 16 \\ -18 & 8 \end{pmatrix}
.0	$2.[A] \times (C) = \begin{bmatrix} 6 & -1 \\ 12 & 8 \\ -5 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 12 - 3 & -12 - 1 \\ 24 + 24 & -24 + 8 \\ -10 + 12 & 10 + 4 \end{bmatrix}$
	= 48 -16 2 14

$$CS[\times [4] = \begin{bmatrix} 4 & 0 \\ .5 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8+0 & -8+0 \\ 1+6 & -1+2 \end{bmatrix} = \begin{bmatrix} 8 & -8 \\ 7 & 1 \end{bmatrix}$$

$$[c] \times [B] = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \times \begin{bmatrix} 4 & 0 \\ .5 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 8-1 & 0-4 \\ 12+.5 & 0+2 \end{bmatrix} = \begin{bmatrix} 7 & -4 \\ 12.5 & 2 \end{bmatrix}$$

c) For two matrices, (A) & [B], when the matrices

ATE multiplied, the number of columns of

the first watrice must be equal to the

number of rows of the second matrice.

Tet the size of (A) be (l, m) & the

size of (B) le (n, o) where l, m, n, o

are arbitrary integers. [A] × [B] is

ialid only if m=n, (B] × (A) is only

valid if o=l. These two conditions (m=n o)

o=l) are independent; if (A) × [B] is

valid, this means nothing about [B] × [A].

Per part a, note that [A] × [B] is valid but [B] × [A] × [A] × [B] is valid but [B] × [A] is not. The order of multiplication determines if the product can be computed. Additionally, note that (B) × (B) × (B) are both valid, but their products are not equal.

The sizes of the 2 betons are flipped:

let (B) have size (lim) & (C) have size

(n,0). For [B]x[C]=[D] to be computable,

m=n & for [C]x[B]=[E] to be computable,

0=l. Thus. [B], [C] have sizes [l,m]&[m,l].

(D) + [C]; matrix multiplication is not generally commutative.

Problem 11:

11.	
(9.4)	-3x2+7x3=4 0x4-3x2+7x3=4
	21+222-23=0 => 24+222-22=0
	$5x_1 - 2x_2 = 3$ $5x_1 - 2x_2 + 0x_3 = 3$
	[0-37]m][4]
Ca	$ \begin{bmatrix} 0 & -3 & 7 & \alpha_1 \\ 1 & 2 & -1 & \alpha_2 \\ 5 & -2 & 0 & \alpha_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix} $
	5 -2 0 22 3
a)	1 0 -3 7
0.1	$\begin{vmatrix} 0 & -3 & 7 \\ 1 & 2 & -1 \end{vmatrix} = 0(2 \cdot 0 - (-1) \cdot (-2)) - (-3)(1 \cdot 0 - (-1) \cdot 5)$ $5 & -2 & 0 & +7(1 \cdot (-2) - 2 \cdot 5)$
	7 2 2 +2(1/2)-2.5)
	5 -2 0. ++(1.00)
	= 0+3(0+5)+7(-2-10)
	= 15+7(-12) =-69

(c) $\begin{bmatrix} 0 & -3 & 7 \\ 1 & 2 & -1 \\ 5 & -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$
$ \begin{bmatrix} 0 & -3 & 7 & 4 \\ 1 & 2 & -1 & 0 \\ 5 & -2 & 0 & 3 \end{bmatrix} $ $ \begin{bmatrix} 0 & -3 & 7 & 4 \\ 1 & 2 & -1 & 0 \\ 0 & -3 & 7 & 4 \end{bmatrix} $ $ \begin{bmatrix} 6 & -2 & 0 & 3 \end{bmatrix} $ $ \begin{bmatrix} 6 & -2 & 0 & 3 \end{bmatrix} $ $ \begin{bmatrix} 7 & -2 & 0 & 3 \end{bmatrix} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$23 \times 3 = 2.6 \implies 23 = \frac{3}{23} \times 0.565$ $-3x_2 + 7x_3 = 4 \implies -3x_2 + 3.96 = 4; x_2 = \frac{-1}{69} \times014$ $23 \times 3 = 2.6 \implies x_1 + .006 = .6; x_1 = \frac{41}{69} \times .594$
$\hat{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} .594 \\0145 \\ .565 \end{bmatrix}$
determinant of $\begin{bmatrix} 0 & -3 & 7 \\ 0 & 0 & 4.6 \end{bmatrix} = 1x-3 \times 4.6$

	7
	Lince in step 2, now I was divided by 5 (scaled by 1/5), the determinant
	Was also smiled by 1/5
	Additionally, 2 row werk swapped due to partial pivoting; so the determinant was scaled by (-1) =+1
	to partial pivoting; so the determinant
	was scaled by (-1)=+1
	Applying these stops to the calculated
	determinant of the reduced matrix
	in the reverse order brings the
	determinant 6:
-	5x 12 -12 9 -10 . high is pared
7882-200	to the determinant of the non-reduced
	untial matrix.
. 11	To substitute bolutions back into
(0)	original equations:
	-3x2+7x3=4 7 = [41169]
	$\begin{array}{c c} -3x_2+7x_3=4 & 7 = 41/69 \\ x_1+2x_2-x_3=0 & 7 = -1/69 \\ 5x_1-2x_2=3 & 13/23 \end{array}$
	5x,-2x2=3) [(3/25)
	-3 (-1)+7(13)= = + 91 = 6348 = 4V
	(61) (23) 57 23 1587
	$\frac{41}{69} + 2\left(\frac{-1}{69}\right) - \frac{13}{23} = \frac{39}{69} - \frac{13}{23} = 0$
	5(41)-2(-1)= 205 +2 = 207 = 3V
	64/ 69/ 69 69

Problem 12:

Problem 13:

13	•
(9.7)	2xy - 6x2-213 = - 38
	-324 - 22 + 723 = -34 $-821 + 22 - 222 = -20$
	-821+22-223=-20
~	[2 -6 -1 7[247 [-38]
a)	
	-3 -1 7 22 = -34 -8 1 -2 23 = -20
	[2-6-1 -38] R3->R, [-81-2 -20]
	-3 -1 7 -34 => 1 -3 -1 7 -34
	-81-2-20 L2-6-11-38
	R2-3R-P2 -8 1-2 -207
	2 -6 -1 -38
	5 . [0] .2] .00]
	$R_2 \rightarrow R_3$ $\begin{vmatrix} -8 & 1 & -2 & & -20 & & & & & & & & & & $
	0 -11/8 31/4 -53/2
_	0 110 20
	R2+1R3R2 -8 1-2 -20 7
	0-23-3 -43
	L 0-11/ 31/4 -53/2
	8 79
	R3-11 12-283 [-8 1-2 1-207
	0 - 2 - 3 - 43
	0 0 373 -373
	46 23
	373 22 = -373 097
	46 26
	-23 22-3 23=-43 eg2
	4 - 2 - 5

$$-8\pi_{1} + \pi_{2} - 2\pi_{3} = -20 \quad eq 3$$

$$\pi_{3} = -2$$

$$\pi_{2} = 8$$

$$\pi_{1} = 4$$

$$2 = 8$$

$$2 = 8$$

$$2 = 8$$

$$2 = 8$$

$$2 = -23$$

$$4 = 68$$

$$2 = -23 = -38 \quad eq 1$$

$$2 = -6 \cdot 8 - (-2) = -38$$

$$-3\pi_{1} - 2\pi_{2} + 7\pi_{3} = -34 \quad eq 2$$

$$-3 \cdot 4 - 8 + 7 \cdot (2) = -34$$

$$-8\pi_{1} + \pi_{2} - 2\pi_{3} = -20 \quad eq 3$$

$$-8\pi_{1} + 8\pi_{2} - 2\pi_{3} = -20 \quad eq 3$$

$$-8\pi_{1} + 8\pi_{2} - 2\pi_{3} = -20 \quad eq 3$$

$$-8\pi_{1} + 8\pi_{2} - 2\pi_{3} = -20 \quad eq 3$$

Bonus: Part 1 & Part 2.

Found in HW1.py.