תזכורת

נתחיל בתזכורת למה שלמדנו לפני שכל האוכל הנורמלי נעלם מהמדינה ואנשים הוכרחו לאכול חתיכות דיקט בגודל של מסך מחשב.

האלגוריתם הגנרי למציאת מק"ב ממקור יחיד בגרף מכוון ממושקל מתחזקים לכל $v \in V$:

- (∞) אורך מסלול כלשהו מs אורך d[v]
- (Null יכול להיות) א בעץ מק"ב מ-v בעץ ההורה של $\pi[v]$

<u>האלגוריתם</u>:

- : Relax (u, v) •
- אזי: d[v] > d[u] + w(u,v) אזי \circ
- $d[v] \leftarrow d[u] + w(u,v)$
 - $\pi[v] \leftarrow u$
- <u>אתחול:</u>
- $d[s] \leftarrow 0$ o
- $v \neq s$ לכל $d[v] \leftarrow \infty$ \circ
- $\forall v \in V \quad \pi[v] \leftarrow \text{Null} \quad \circ$
- $\operatorname{Relax}(u,v)$ ונבצע (u,v) איז: נבחר קשת (u,v) ונבצע
- עוד אפשר לשנות עוד $d[v] \le d[u] + w(u,v)$ מתקיים מתקיים (u,v) אפשר לשנות עוד פוער לכנים באמצעות Relax ערכים באמצעות

הוכחנו: משפט נכונות האלגוריתם הגנרי:

- $d[v] = \delta(s, v) \Leftrightarrow$ תנאי הסיום מתקיים
- אם התנאי הנ"ל מתקיים אזי הגרף $\left(V,\left\{\left(\pi[v],v\right)\middle|v\neq s\right\}\right)$ מהווה עץ מק"ב מ-s לכל הקדקודים.

(עבור משקולות כלליים) Bellman-Ford האלגוריתם של

- אתחול כמו באלגוריתם הגנרי●
 - :Relax לולאת צעדי
- $\left(u,v
 ight)$ לכל קשת לכל Relax $\left(u,v
 ight)$ פעמים נעבור על כל הקשתות ונבצע $\left|V\right|-1$ \circ
 - בדיקת מעגלים שליליים באמצעות תנאי הסיום:
 - נבדוק את תנאי הסיום באלגוריתם הגנרי:
 - v לכל $\pi[v], d[v]$ אם הוא מתקיים, נחזיר את הנתונים
 - "אם לא, נודיע "קיים מעגל שלילי בגרף."

הוכחנו: טענה: אם קיים מעגל שלילי, האלגוריתם מודיע זאת.

<u>ניסחנו</u>: <u>משפט</u>: אם אין מעגל שלילי, האלגוריתם של בלמן ופורד מחזיר מרחקים ק"ב ועץ מק"ב.

:הוכחנו את המשפט באמצעות

[המשך החומר] טענת עזר

 $d[s] \le \delta(s,s)$

[ציור

v -ל s -אם אין מעגלים שליליים, אזי בסוף האיטרציה ה- k , לכל קדקוד $v\in V$ כך שקיים מק"ב מ $d[v]\leq \delta(s,v)$ בעל $k\geq t$

<u>הוכחה</u>:

: k באינדוקציה על

ריבוע □

- . k ונוכיח את הטענה עבור k ' ונוכיח עבר כל אינדוקטיבי: נניח עבר כל א ונוכיח את מ-s ל-s קשתות לכל היותר. $v \in V$ יהי $v \in V$
- מקרה 1: אם |p|< k אם לפי הנחת האינדוקציה, בשלב קודם באלגוריתם כבר התקיים |p|< k אם |p|< k אי- Relax לכן אי , $d[v] \leq \delta(s,v)$ האלגוריתם יכול רק להקטין את השוויון ממשיך להתקיים.
- ים מקרה 2: אם p מכיל בדיוק k ($1 \le p$ קשתות, תהי (u,v) הקשת האחרונה ב-p , כלומר p מכיל בדיוק p עבור מסלול p מ-p ל-p בעל p קשתות.

הוא מק"ב p' הוא מק"ב), המסלול p' הוא מק"ב הוא בעצמו מק"ב), המסלול p' הוא מק"ב מ-s ל-u, ומכיל s

לכן, לפי הנחת האינדוקציה, בסוף האיטרציה ה-(k-1) כבר התקיים

$$(*) d[u] \leq \delta(s,u)$$

ים בכל מהלך (*) אי-שוויון התקיים בכל מהלך Relax שוב, כיוון ש- Relax שוב, כיוון ש- איים אויים בכל האיטרציה ה- k .

:בפרט, אחרי ביצוע $\operatorname{Relax}(u,v)$ באיטרציה הk - בפרט, אחרי ביצוע

$$d[v] \le d[u] + w(u,v) \le \delta(s,u) + w(u,v) = w(p') + w(u,v) = w(p) = \delta(s,v)$$

רק יכול להקטין את Relax -זה אי-השוויון שרצינו להוכיח, ומשום ש $[\,\cdot\,]$ אי-שוויון אי-השוויון שרצינו להוכיח, ומשום שk - זה ממשיך להתקיים עד סוף האיטרציה ה

זמן ריצה

(לכן: איטרציה, לכן: |E| איטרציות וכ- איטרציה, לכן:

$O(|V| \cdot |E|)$

Physarum Polycephalum האלגוריתם של

:בגרף א מכוון עם משקל מקסימלי W מוצא מק"ב מ-s ל-t כד כדי (1+arepsilon) בזמן

$$O\left(|E| \cdot W \cdot \left(\log|V| + \log W\right) \frac{1}{\varepsilon^2}\right)$$

[QR Code]

[לא ניכנס לזה, כי הוא ממומש ע"י ג'יפה צהובה.]

(All-pairs shortest paths) מסלולים קצרים ביותר בין כל הזוגות

[הפעם נרצה למצוא את כל המסלולים הקצרים ביותר בין כל שני קדקודים בגרף.]

 $u, v \in V$ הבעיה: מציאת מק"ב בין כל זוג קדקודים •

בעיון לפתרון – רדוקציה למה שאנחנו כבר יודעים לעשות: v בריץ אלגוריתם למציאת מק"ב מv נריץ אלגוריתם למציאת מק"ם ארגוריתם ארגוריתם

עבור משקלות |V| פעמים דייקסטרה •

$$O(|V||E|+|V|^2\log|V|) = O(|V|\cdot T(Dijkstra))$$
 = זמן ריצה \leftarrow

Bellman-Ford פעמים |V|כ \subset (\mathbb{R}) אות המקרה הכללי (משקלות - \bullet

$$\mathrm{O}\!\left(\left|V\right|^{2}\left|E\right|
ight)$$
 זמן ריצה: \Leftarrow

נראה בהמשך כיצד ניתן בכל-זאת להפעיל את האלגוריתם של דייקסטרה, אבל כעת נציע אלגוריתם שונה לחלוטין, שלא מבוסס על האלגוריתם הגנרי כלל.

Floyd-Warshall האלגוריתם של

- . <u>הרעיון</u>: תכנון דינאמי
- $V = ig\{1, 2, \dots, ig|Vig|ig\}$ נסמן את הקדקודים ב-
- נגדיר: $k \in V$ ולכל $i, j \in V$ נגדיר: •

$$\delta^k_{ij} \coloneqq \left\{egin{array}{ll} \{1,\dots,k\} \cdot \} & \text{ אורך מסלול קצר ביותר מ-} i & j \cdot \} \end{array}
ight.$$
 אם אין מסלול כזה ∞ – אם אין מסלול כזה

 $(i, j \in V$ לכל לפתור: (לכל שרוצים לפתור) •

$$\delta(i,j) = \delta_{ii}^{|V|}$$

נתבונן במקרים האפשריים ע"מ לבנות את נוסחת המבנה:

k=0 :מקרה בסיס

$$\delta_{ij}^{0} = \begin{cases} 0, & i = j \\ w(i,j) & (i,j) \in E \\ \infty & \text{otherwise} \end{cases}$$

[[הסבר: במקרה זה אנו בוחנים מה משקל מק"ב בין i ל-j שלא עובר בדרך בשום קדקוד בגרף. אם i קיים המסלול המנוון i שמשקלו i0. אם i וְ-i שכנים, קיים המסלול שמכיל רק את הקשת שביניהם (כך לא עוברים בקדקודים בגרף כלל פרט לקדקוד הראשון והאחרון, שאותם אנו לא מחשיבים). []

k ≥ 1 :מקרה כללי

- אם אנו מניחים שאין מעגלים שליליים אז אין סיבה לחזור על קדקוד פעמיים במסלול מi ל- אם אנו מניחים שאין את המשקל הכולל). j

.k אנו עוברים לכל היותר פעם אחת בקדקוד j לכן בפרט במסלול קצר ביותר מj ל-, אנו עוברים לכל היותר פעם אחת בקדקוד לכן יש שתי אפשרויות:

:לא עוברים בk כלל

 δ_{ij}^{k-1} במקרה זה אורך המסלול הוא

:עוברים בk פעם אחת בדיוק \circ

. k -החל מ- k והחל מ- במקרה המסלול לפני המסלול מ- k והחל מ- במקרה המסלול הוא $\delta_{ik}^{k-1} + \delta_{ki}^{k-1}$ לכן אורך המסלול הוא

לכן המסלול הקצר ביותר מ-i ל-j שמשתמש אך ורק בקדקודים $1, \ldots, k$ הוא הקצר מבין שני הנ"ל, כלומר:

$$\delta_{ij}^{k} = \min\left\{\delta_{ij}^{k-1}, \delta_{ik}^{k-1} + \delta_{kj}^{k-1}\right\}$$

אלגוריתם איטרטיבי

:אתחול

$$d_{ii}^0 \leftarrow 0$$
 : i לכל

$$d_{ij}^0 \leftarrow w(i,j)$$
 : (i,j) ס לכל קשת $:$

$$d_{ij}^0 \leftarrow \infty$$
 : $(i,j) \notin E$ - $i \neq j$ לכל \circ

- לולאה מרכזית:
- :עבור k מ-1 ועד |V|, נריץ לולאה \circ
 - :i,j∈V †ct

$$d_{ij}^{k} \leftarrow \min \left\{ \delta_{ij}^{k-1}, \delta_{ik}^{k-1} + \delta_{kj}^{k-1} \right\} \quad \bullet$$

:i- שיהווה מק"ב מ T_i לכל לכל $i\in V$ לכל

$$T_i = \left(V, \left\{ \left(\pi_i[j], j\right) \middle| j \neq i \right\} \right)$$

נחשב שדות ביניים:

$$\pi_i^0[j] \leftarrow \begin{cases} i & (i,j) \in E \\ \text{Null} & \text{otherwise} \end{cases}$$

לולאה: k = 1,..., |V| לכל

$$k = 1, \dots, |V|$$
 לכל

$$\pi_{i}^{k}[j] \leftarrow \begin{cases} \pi_{i}^{k-1}[j] & d_{ij}^{k-1} \leq d_{ik}^{k-1} + d_{kj}^{k-1} \\ \pi_{k}^{k-1} & \text{otherwise} \end{cases}$$

להסביר

זמן ריצה

יש שלושה אינדקסים שרצים על |V| אפשרויות, לכן הסיבוכיות הכוללת היא $\left|V
ight|$ וזה הכי טוב שידוע כיום].

Johnson האלגוריתם של

[זה אלגוריתם שנועד בעיקר להעשרה; הוא בסילבוס אבל הוא לא עניין מהותי בחומר.]

נרצה למצוא דרך להריץ את האלגוריתם של דייקסטרה, כי הוא נחמד ויעיל ומגניב ומזכיר לי את המילה ההולנדית ל-"דולפינים" (Dolfijn).

לצערנו, תיתכנה משקלות שליליות בגרף, וזה מפריע.

אנו יודעים שלא ניתן באופן נאיבי להוסיף קבוע לכל המשקלות, כי אז מסלולים עם כמויות שונות של קשתות משתנים באופן לא סימטרי.

> האלגוריתם של Johnson בא לפתור בעיה זו. אופן הפעולה:

- .0 נוסיף קדקוד חדש לגרף, q , ונחבר אותו לכל הקדקודים עם קשתות במשקל, q
- לכל d '[v] על הגרף החדש ממקור q ונקבל מרחקים [Bellman-Ford =]] B-F ערטיי פריץ q (או שנגלה מעגל שלילי). $v \in V$
 - מקיימים: d' מקיימים \bullet

$$d'[v] \le w(u,v) + d'[u]$$

.(u,v) לכל קשת

:נגדיר

$$w'(u,v) := w(u,v) + d'[u] - d'[v] \ge 0$$

- . $w'(\cdot\,,\,\cdot)$ מכל קדקוד עם המשקולות החדשים Oijkstra שלב אחרון: נריץ
 - <u>:אבחנה</u>

אי: G אזי: $p=\left(v_1,v_2,\ldots,v_k\right)$ אם

$$w'(p) = \sum_{i=1}^{k-1} w'(v_i, v_{i+1}) =$$

$$= \sum_{i=1}^{k-1} (w(v_i, v_{i+1}) + d'[v_i] - d'[v_{i+1}]) =$$

$$= \underbrace{\sum_{i=1}^{k-1} w(v_i, v_{i+1})}_{w(p)} + d'[v_1] - d'[v_k]$$

[כלומר קיבלנו שהמשקל החדש של ${f ct}$ מסלול מ- v_{l} ל- v_{l} שווה למשקל הקודם ועוד הערך . d ' $\left[v_{l}\right]-d$ ' $\left[v_{k}\right]$ משקל כל המסלולים גדל בקבוע, לכן מק"ב עם המשקל החדש הוא גם מק"ב עם המשקל הישן.]