NAME

pyFAI-recalib - pyFAI-recalib

DESCRIPTION

INFO:root:Enter, port=54321. usage: pyFAI-recalib [options] $-\mathbf{i}$ ponifile $-\mathbf{w}$ 1 $-\mathbf{c}$ calibrant.D image-file.edf

Calibrate the diffraction setup geometry based on Debye–Sherrer rings images with a priori knowledge of your setup (an input PONI–file). You will need to provide a calibrant or a "d–spacing" file containing the spacing of Miller plans in Angstrom (in decreasing order). Calibrants available: Ni, CrOx, NaCl, Si_SRM640e, Si_SRM640d, Si_SRM640b, Cr2O3, AgBh, Si_SRM640, CuO, PBBA, alpha_Al2O3, SI_SRM640c, quartz, C14H30O, cristobaltite, Si, LaB6, CeO2, LaB6_SRM660a, LaB6_SRM660b, LaB6_SRM660c, TiO2, ZnO, Al, Au or search in the American Mineralogist database: http://rruff.geo.arizona.edu/AMS/amcsd.php The —calibrant option is mandatory!

positional arguments:

FILE List of files to calibrate

optional arguments:

-h, --help

show this help message and exit

-V, --version

show program's version number and exit

-o FILE, --out FILE

Filename where processed image is saved

-v, --verbose

switch to debug/verbose mode

-c FILE, --calibrant FILE

Calibrant name or file containing d-spacing of the reference sample (MANDATORY, case sensitive!)

-w WAVELENGTH, --wavelength WAVELENGTH

wavelength of the X-Ray beam in Angstrom. Mandatory

-e ENERGY, --energy ENERGY

energy of the X-Ray beam in keV (hc=12.398419292keV.A).

-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR

polarization factor, from -1 (vertical) to +1 (horizontal), default is None (no correction), synchrotrons are around 0.95

-i FILE, --poni FILE

file containing the diffraction parameter (poni-file). MANDATORY for pyFAI-recalib!

-b BACKGROUND, --background BACKGROUND

Automatic background subtraction if no value are provided

-d DARK, --dark DARK

list of comma separated dark images to average and subtract

-f FLAT, --flat FLAT

list of comma separated flat images to average and divide

-s SPLINE, --spline SPLINE

spline file describing the detector distortion

-D DETECTOR_NAME, **--detector** DETECTOR_NAME

Detector name (instead of pixel size+spline)

-m MASK, --mask MASK

file containing the mask (for image reconstruction)

-n NPT, --pt NPT

file with datapoints saved. Default: basename.npt

--filter FILTER

select the filter, either mean(default), max or median

-l DISTANCE, --distance DISTANCE

sample-detector distance in millimeter. Default: 100mm

--dist DIST

sample-detector distance in meter. Default: 0.1m

--poni1 PONI1

poni1 coordinate in meter. Default: center of detector

--poni2 PONI2

poni2 coordinate in meter. Default: center of detector

--rot1 ROT1

rot1 in radians. default: 0

--rot2 ROT2

rot2 in radians. default: 0

--rot3 ROT3

rot3 in radians. default: 0

--fix-dist

fix the distance parameter

--free-dist

free the distance parameter. Default: Activated

--fix-poni1

fix the poni1 parameter

--free-poni1

free the poni1 parameter. Default: Activated

--fix-poni2

fix the poni2 parameter

--free-poni2

free the poni2 parameter. Default: Activated

--fix-rot1

fix the rot1 parameter

--free-rot1

free the rot1 parameter. Default: Activated

--fix-rot2

fix the rot2 parameter

--free-rot2

free the rot2 parameter. Default: Activated

--fix-rot3

fix the rot3 parameter

--free-rot3

free the rot3 parameter. Default: Activated

--fix-wavelength

fix the wavelength parameter. Default: Activated

--free-wavelength

free the wavelength parameter. Default: Deactivated

—tilt Allow initially detector tilt to be refineINFO:root:Enter.

d (rot1,

rot2, rot3). Default: Activated

--no-tilt

Deactivated tilt refinement and set all rotation to 0

--saturation SATURATION

consider all pixel>max*(1-saturation) as saturated and reconstruct them, default: 0 (deactivated)

--weighted

weight fit by intensity, by default not.

--npt NPT_1D

Number of point in 1D integrated pattern, Default: 1024

--npt-azim NPT_2D_AZIM

Number of azimuthal sectors in 2D integrated images. Default: 360

--npt-rad NPT 2D RAD

Number of radial bins in 2D integrated images. Default: 400

--unit UNIT

Valid units for radial range: 2th_deg, 2th_rad, q_nm^-1, q_A^-1, r_mm. Default: 2th_deg

--no-gui

force the program to run without a Graphical interface

--no-interactive

force the program to run and exit without prompting for refinements

-r MAX_RINGS, --ring MAX_RINGS

maximum number of rings to extract. Default: all accessible

-k, --keep

Keep existing control point and append new

The main difference with pyFAI–calib is the way control–point hence DebyeSherrer rings are extracted. While pyFAI–calib relies on the contiguity of a region of peaks called massif; pyFAI–recalib knows approximatly the geometry and is able to select the region where the ring should be. From this region it selects automatically the various peaks; making pyFAI–recalib able to run without graphical interface and without human intervention (—**no–gui** and —**nointeractive** options). Note that 'pyFAI–recalib' program is obsolete as the same functionnality is available from within pyFAI–calib, using the 'recalib' command in the refinement process. Two option are available for recalib: the numbe of rings to extract (similar to the –**r** option of this program) and a new option which lets you choose between the original 'massif' algorithm and newer ones like 'blob' and 'watershed' detection.