Brasília, 3 de novembro de 2015.

Esse documento resume o trabalho feito especialmente nos últimos dias, que tem sido o ajuste das metodologias em McCormick et al. (2012) e Kastner e Frühwirth-Schnatter (2014). Em suma, o primeiro artigo citado inspirou uma proposta para modelar a variável latente h_t do modelo de volatidade estocástica. Já o segundo sugere uma metodologia inovadora que envolve basicamente a alternância da especificação do modelo no processo de estimação dos parâmetros $\psi = (\mu, \phi, \sigma^2)$.

Após a metodologia em McCormick et al. (2012) ser adaptada às especificações do modelo de volatidade estocástica, ela foi testada computacionalmente quanto à sua adequabilidade. Nessa etapa, a partir de uma população simulada, os valores **reais** dos parâmetros foram fornecidos e foi feita a estimação de h_t com base nessa proposta. Vale destacar que o intervalo de possíveis valores do parâmetro de desconto λ_t foi reduzido para (0,8;1), diferente do teórico (0;1). O gráfico que segue ilustra esse processo. A série estimada a partir das médias de h_t é comparada com a série real dos valores. A banda de credibilidade 95% também pode ser observada.

Como a própria visualização da série dos valores estimados em relação aos valores reais de h_t sugere, a aplicação da metodologia inspirada em McCormick et al. (2012) foi considerada com sucesso, lembrando que os valores reais de $\psi = (\mu, \phi, \sigma^2)$ foram fornecidos ao algoritmo. Então a próxima etapa é juntar esse processo de estimação com o processo iterativo de Kastner e Frühwirth-Schnatter (2014).

A primeira execução resultou num erro inesperado já de inicio. O algoritmo para estimar h_t é baseado, por fim, num sorteio de uma distribuição normal com média e variância aproximadas por processos iterativos. Aconteceu que a variância do candidato a h_t foi diminuindo, diminuindo, e após algumas rodadas foi para zero.

O próximo gráfico mostra o que aconteceu com a série estimada da variável latente.

O valor inicial é sempre igual a zero, o que funcionou muito bem quando foram fornecidos os valores reais de $\psi = (\mu, \phi, \sigma^2)$, conforme a observação do gráfico anterior. Mas agora, com ψ desconhecido é como se o algoritmo baseado em McCormick et al. (2012) caísse num poço de potencial em torno de zero e não conseguisse escapar.

Depois de grande esforço de investigação (testes de tentativa e erro, procura por bugs no código e revisão das contas) foi constatado que o parâmetro ϕ é extremamente determinante na estimação de h_t . O gráfico seguinte mostra o resultado da estimação da variável latente quando todos os parâmetros são desconhecidos, exceto ϕ . O processo logo após algumas iterações converge para um valor aceitável.

A primeira alternativa, baseada inclusive em outros trabalhos como no próprio Kastner e Frühwirth-Schnatter (2014), foi de tomar todos os parâmetros desconhecidos, porém partir do valor inicial igual ao valor real do parâmetro (entretanto, nesse caso

apenas para ϕ). Curiosamente o processo voltou a funcionar de forma satisfatória, conforme é mostrado no próximo gráfico, provando mais uma vez a extrema importância de ϕ nessa metodologia.

Como iniciar o algoritimo a partir dos valores reais (mesmo que de uma variável apenas) não é uma condição desejável, o plano então foi tentar resolver esse problema da especificação do parâmetro ϕ .

Após um nova longa jornada de testes computacionais e estudo das equações que definem o problema, surgiu a suspeita de que o termo $R_t = \frac{\phi^2 C_{t-1}}{\lambda_t}$, presente nas derivadas da aproximação tomada no algoritmo, é quem estaria levando para zero a variância do candidato a h_t . Então, a proposta natural seria contrabalancear os valores de ϕ com λ_t .

Recapitulando, os valores de λ_t foram limitados ao intervalo (0,8;1). Contudo, em tentativas anteriores, foi percebido que havia uma tendência do fator de desconto, λ_t , apresentar valores bem pequenos, o que inflacionaria bastante a incerteza das estimativas seguintes. Isso inclusive é a causa de existir esse intervalo limitando os possíveis valores de λ_t . Então o intervalo limitante foi deixado de lado, e o valor de lambda foi fixado em 0,25. O resultado pode ser visto nos gráficos seguintes. O primeiro mostra apenas a série real de h_t e os valores médios estimados, enquanto que ao segundo é adicionada a banda de credibilidade de 95%.

É evidente que, como esperado, os valores estimados de h_t ficaram bem mais difusos devido ao baixo valor de λ_t . Mas agora o algoritmo funcionou sem erros.

Com base nisso os valores estimados dos parâmetros foram calculados para um conjunto de populações com parâmetros pré-fixados, e também pré-fixando λ_t . O resultados podem ser vistos nos gráficos seguintes. Acima do gráfico estão a média dos valores estimados e entre parêntese o valor real.

O que percebi é que μ é bem estimado independente das circunstâncias. ϕ tem pouquíssima dispersão, mas parece viesado, e aumentar esse viés a medida que o seu valor real decresce, ou fica muito próximo de um. E σ tem uma estimativa razoavelmente comportada.

Tabela 1: $\mu = -5.4$; $\phi = 0.99$; $\sigma = 0.5$

$\overline{\phi_0}$	MAD	MSE	MAPE	SMAPE	MedAPE	MASE	μ	$\bar{\sigma}$
0,99	2,418	9,497	-1.109,59	14,500	0,397	230,40	-5,331	0,203
0,95	2,240	8,016	-1.114,87	28,490	0,400	213,45	-5,306	0,244
0,90	2,090	6,894	-1.179,27	-20,236	0,559	199,15	-5,301	0,293
0,85	2,009	6,312	-1.228,78	14,255	0,765	191,42	-5,298	0,357
0,80	2,007	6,348	-1.229,54	21,681	0,844	191,22	-5,296	0,426

Tabela 2: $\mu = -5.4$; $\phi = 0.9$; $\sigma = 0.5$

$\overline{\phi_0}$	MAD	MSE	MAPE	SMAPE	MedAPE	MASE	μ	$\bar{\sigma}$
0,99	2,450	10,395	-417,81	13,961	-2,332	42,02	-5,404	0,043
0,95	2,224	8,111	-411,75	13,378	-1,769	38,13	-5,395	0,071
0,90	2,023	6,397	-353,82	12,835	-1,681	34,70	-5,393	0,122
0,85	1,892	5,572	-409,72	12,464	-1,225	32,44	-5,391	0,173
0,80	1,802	5,121	-419,68	12,224	-1,409	30,90	-5,391	0,225

Tabela 3: $\mu = -5,4$; $\phi = 0,8$; $\sigma = 0,5$

$\overline{\phi_0}$	MAD	MSE	MAPE	SMAPE	MedAPE	MASE	μ	$\bar{\sigma}$
0,99	2,287	8,519	-209,19	13,287	-1,670	-245,88	-5,422	0,053
0,95	2,125	7,192	-208,29	12,819	-1,301	-228,43	-5,411	0,068
0,90	1,977	6,169	-212,23	12,378	-1,363	-212,51	-5,408	0,085
0,85	1,855	5,422	-216,79	12,022	-1,135	-199,42	-5,407	0,106
0,80	1,758	4,892	-214,75	11,754	-0,92	-189,01	-5,406	0,147

