SI100B Tutorial: Signal Denoise

Qixuan ZAI, Jianwen LUO Nov. 2021

Table of Contents

- Frequency Domain: A New Viewpoint to Signals
- Still Frequency Domain: A New Viewpoint to Noises
- Discrete Fourier Transform: Time Domain to Freq. Domain
- Fast Fourier Transform: Just a Way You Compute DFT
- FIR Filters and Convolution: Know How and Better Know What
- MATLAB Signal Processing Toolbox: Easy Usage with `fdatool`

Frequency Domain

A New Viewpoint to Signals

Case Study: Sine

-15 -10 -20

Sine in Freq Domain

Case Study: Square Wave

Cont'd: Square Wave But as Sum

Still Frequency Domain

A New Viewpoint to Noises

Types of Noise

- Types of noise in communication system:
- White or colored?
- Bandlimited or Low pass or High pass?
- AWGN: Additive White Gaussian Noise
- https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
- Reference: Principles Of Communications, Chapter7: RANOM SIGNALS AND NOISE

Cont'd

• Only consider colored and bandlimited noise !!!

A First Sight: Separated Frequency (Band?)

ys = 10 * sin(100000 * ts) + sin(100 * ts) + randn([1 length(ts)]);

Time Domain

Frequency Domain

SNR Effect: Have You Noticed the Glitches?

Frequency Domain

Discrete Fourier Transform

Time Domain to Freq. Domain

The Formula: Just Have a Look

$$\hat{u}_k = h \sum_{j=1}^N e^{-ikx_j} u_j, \; k = -N/2 + 1, \dots, N/2,$$

$$u_j = rac{1}{2\pi} \sum_{k=-N/2+1}^{N/2} e^{ikx_j} \hat{u}_k, \ j=1,\dots,N,$$

Number of Samples: N

Sampling Frequency: f_s

Sampling Duration: (0 to) t_1

Sampling Period: $T = \frac{1}{f_S} = \frac{t_1}{N}$

Time Indexing: $x_n = x(nT) = x(n\frac{t_1}{N})$

Freq. Indexing: $X_n = X(2\pi \frac{f_s}{N})$

Fast Fourier Transform

Just a Way You Compute DFT

THIS is all You Need (for DFT)!

- X = fft(xs): DFT with Freq. $[0, f_s)$
- X_shift = fftshift(X): DFT result shifted to Freq. $[-f_s/2, f_s/2)$
- abs(X): Amplitude Spectral
- angle(X): Phase Spectral
- ------
- xs = ifft(X): Travel from Freq. Domain back to Time Domain!
- X = ifftshift(X_shift): shifted DFT result back as un-shifted

FIR Filters and Convolution

Know How and Better Know What

Why Filter?

- Why not FFT and Truncate and IFFT?
 - Require the whole signal known
 - Lead to Large Latency
 - Require Large Storage
 - => Impractical in real-time applications
- Why FIR?
 - Maths. Stuffs, e.g. Stability
 - Practical Latency
 - East to implement

(Discrete) Convolution?

- Equivalent to Linear Time-Invariant System
 - In one word:
 - $Y\{\sum_{m} x[m]\delta[n-m]\}[n] = \sum_{m} x[m]h[n-m] = \sum_{m} h[m]x[n-m]$
- Be careful about Cyclic Convolution!
 - Discrete Convolution is performed with Z indexing
 - ... but we have only finite samples so we only have cyclic convolution
 - ... just by default (fortunately)!
 - -----
 - Remember Zero Padding before calling ys = conv(hs, xs)
 - ... pad both hs and xs to [length(xs) + length(hs) 1]

So what is FIR Filter?

- Do you remember h[n] (in last page)?
- FIR filter is an LTI system h[n] with a finite support.
 - i.e. only finite entries are non-zero
- How to apply?
 - Just perform convolution.
- What to design?: Mag. Resp.

MATLAB Signal Processing Toolbox

Easy Usage with 'fdatool'

fdatool is ALL You Need

Good Luck Have Fun!

Q&A