Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S^+$, $a \in A(s)$, such that $Q(terminal, \cdot) = 0$

Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_*$

Loop for each episode: Initialize S

Loop for each step of episode:

Choose A from S using the policy ε -greedy in $Q_1 + Q_2$ Take action A, observe R, S'

With 0.5 probabilility:
$$O(G,A) \leftarrow O(G,A)$$

else:
$$Q_2(S,A) \leftarrow$$

 $S \leftarrow S'$ until S is terminal

 $Q_1(S, A) \leftarrow Q_1(S, A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S', a)) - Q_1(S, A)\right)$

 $Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{arg\,max}_a Q_2(S', a) \big) - Q_2(S, A) \Big)$