

आधारभूत गणित (Basic Mathematics)

JEE

द्विघात समीकरण

यदि समीकरण $ax^2 + bx + c = 0$ के मूल x_1 व x_2 हैं तो—

$$x_1 + x_2 = \frac{-b}{a}$$
 तथा $x_1 x_2 = \frac{c}{a}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

द्विपद सन्निकटन

यदि x << 1 तो $(1+x)^n = 1 + nx$ तथा $(1-x)^n = 1 - nx$

लघुगणक

- long m/n = log m log n
- \bullet log $m^n = n \log m$
- \bullet $\log_e m = 2.303 \log_{10} m$
- \bullet log 2 = 0.3010

समान्तर श्रेणी

 $a, a + d, a + 2d, a + 3d, \dots, a + (n-1)d$ जहाँ, d =सार्वान्तर

n पदों का योग $S_n = \frac{n}{2}[2a + (n-1)d]$

- $n = \frac{n(n+1)}{2}$
- $n^2 = \frac{n(n+1)(2n+1)}{6}$

गुणोत्तर श्रेणी

 $a, ar, ar^2, ar^3, \ldots$ जहाँ, r सर्वानुपात है।

n पदों का योग $S_n = \frac{a(1-r^n)}{(1-r)}$

अनंत पदों का योग $S_{\infty} = \frac{a}{1-r}$

ज्या नियम

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

कोज्या नियम

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
; $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$;

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

फलन y = f(x) का उच्चिष्ठ और निम्निष्ठ

- \Rightarrow তিচ্ছত के लिये:- $\frac{dy}{dx} = 0$ और $\frac{d^2y}{dx^2} < 0$
- \bullet निम्निष्ठ के लिये:- $\frac{dy}{dx} = 0$ और $\frac{d^2y}{dx^2} > 0$
- Φ फलन $(A\cos\theta+B\sin\theta)$ का अधिकतम व न्यूनतम मान क्रमशः $\sqrt{A^2+B^2}$ व $-\sqrt{A^2+B^2}$ है।

परिवर्ती राशि का औसत मान-

y = f(x) का x_1 से x_2 तक का औसत मानः

$$\langle y \rangle = \overline{y} = \frac{\int_{x_1}^{x_2} y dx}{\int_{x_1}^{x_2} dx} = \frac{\int_{x_1}^{x_2} y dx}{x_2 - x_1}$$

सदिश

वे भौतिक राशियाँ जिनमें परिमाण व दिशा होती है तथा जो सदिश नियमों का पालन करती है, सदिश कहलाती है।

सदिश के प्रकार-

समान सदिश

समान्तर सदिश

 \vec{A} की दिशा = \vec{B} की दिशा

प्रति समान्तर सदिश

इकाई सदिश

$$\hat{A} = \frac{\vec{A}}{|\vec{A}|}$$

x,y व z अक्ष के अनुदिश इकाई सदिश \hat{i},\hat{j} व \hat{k} द्वारा प्रदिशत किये जाते हैं।

दो सदिशों के योग का त्रिभुज नियम:--

सदिशों के योग का समान्तर चतुर्भुज नियम:-

 $R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$

$$\tan\alpha = \frac{B\sin\theta}{A + B\cos\theta}$$

सदिशों के योग का बहुभुज नियम:-

 $\vec{R} = \vec{A} + \vec{B} + \vec{C}$

दो असमान सदिशों का परिणामी शून्य नहीं हो सकता।

- तीन समतलीय सदिशों का परिणामी शून्य अथवा अशून्य दोनों हो सकता है।
- ❖ तीन असमलीय सदिशों का परिणामी शून्य नहीं हो सकता।
- समान परिमाण तथा परस्पर समान कोण वाले समतलीय सिदशों का परिणामी शून्य होता है।

सदिशों का अंतर:-

 $\left| \vec{A} - \vec{B} \right| = \sqrt{A^2 + B^2 - 2AB\cos\theta}$

जहाँ θ , \vec{A} व \vec{B} के बीच कोण है।

अदिश (बिंदु) गुणनफल:--

 $\vec{A}.\vec{B} = AB\cos\theta; \cos\theta = \frac{\vec{A}.\vec{B}}{AB}$

सदिश (वज्र) गुणनफल-

 $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A}) = -\vec{B} \times \vec{A} = AB \sin \theta \,\hat{n}$

जहाँ $\hat{n},\ \vec{A}$ व \vec{B} के लंबवत् एकांक सदिश है।

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$

लामी प्रमेय

यदि $\vec{A} + \vec{B} + \vec{C} = 0$ तो:—

$$\frac{A}{\sin\alpha} = \frac{B}{\sin\beta} = \frac{C}{\sin\gamma}$$

अवकलन के मूलभूत सूत्र—

फलन	अवकलन
यदि c कोई नियतांक	$\frac{d}{d}(c) = 0$
है	$\frac{1}{dx}(c) \equiv 0$
यदि $y = cx$ जहाँ c	dy = d $(ax) = a dx = a$
नियतांक है	$\frac{dy}{dx} = \frac{d}{dx}(cx) = c\frac{dx}{dx} = c$
यदि $y = cu$ जहाँ c	$\frac{dy}{dx} = \frac{d}{dx}(cu) = c\frac{du}{dx}$
नियतांक है तथा <i>u, x</i>	dx - dx = dx
का फलन है	
यदि $y = x^n$ जहाँ n	$\frac{dy}{dx} = nx^{n-1}$
वास्तविक संख्या है	
यदि $y = u^n$ जहाँ n	$\frac{dy}{dx} = nu^{n-1} \frac{du}{dx}$
वास्तविक संख्या तथा	dx dx
u, x का फलन है	
यदि $y = u + v$ जहाँ	$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$
<i>u</i> तथा <i>v</i> , <i>x</i> के फलन	dx dx dx
ह यदि $y = uv$ जहाँ u	L. L. L.
तथा v, x के फलन है	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
(गुणनफल सूत्र)	ax ax ax
	du dv
यदि $y = \frac{u}{v}$ जहाँ u	$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$
तथा <i>v</i> , <i>x</i> के फलन है	$\frac{1}{dx} = \frac{1}{dx} \left(\frac{1}{v} \right) = \frac{1}{v^2}$
(भागफल सूत्र)	
यदि $y = f(u)$ तथा	dy dy du
u = f(x)	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
यदि $y = (ax + b)^n$	$\frac{dy}{dx} = n(ax+b)^{n-1} \times \frac{d}{dx}(ax+b)$
	$\frac{dx}{dx} - h(dx + b) - \lambda \frac{dx}{dx}$
यदि $y = \sin x$	$\frac{dy}{dx} = \frac{d}{dx}(\sin x) = \cos x$
	dx dx
यदि $y = \cos x$	$\frac{dy}{dx} = \frac{d}{dx}(\cos x) = -\sin x$
ਸ਼ਰਿ n = top ::	
यदि $y = \tan x$	$\frac{dy}{dx} = \frac{d}{dx}(\tan x) = \sec^2 x$
यदि <i>y</i> = cot <i>x</i>	
	$\frac{dy}{dx} = \frac{d}{dx}(\cot x) = -\csc^2 x$
यदि <i>y</i> = sec <i>x</i>	
	$\frac{dy}{dx} = \frac{d}{dx}(\sec x) = \tan x \sec x$
यदि $y = \csc x$	$\frac{dy}{dx} = \frac{d}{dx}(\csc x) = -\cot x \csc x$
	$\frac{dx}{dx} = \frac{1}{dx} (\cos \sec x) = -\cot x \csc x$

यदि $y = \sin u$ जहाँ	$\frac{dy}{dx} = \frac{d}{dx}(\sin u) = \cos u \frac{d(u)}{dx}$
u, x का फलन है	$\frac{dx}{dx} - \frac{dx}{dx} (\sin u) - \cos u \frac{dx}{dx}$
यदि $y = \cos u$ जहाँ	$dy = d_{(\cos u)} = \sin u d(u)$
u, x का फलन है	$\frac{dy}{dx} = \frac{d}{dx}(\cos u) = -\sin u \frac{d(u)}{dx}$
यदि $y = \tan u$ जहाँ	$dy = d \left(\tan u \right) = \cos^2 u d(u)$
u, x का फलन है	$\frac{dy}{dx} = \frac{d}{dx}(\tan u) = \sec^2 u \frac{d(u)}{dx}$
यदि $y = \cot u$ जहाँ	dy = d (and u)
u, x का फलन है	$\frac{dy}{dx} = \frac{d}{dx}(\cot u) = -\csc^2 u \frac{d(u)}{dx}$
यदि $y = \sec u$ जहाँ	dy = d $d(u)$
u, x का फलन है	$\frac{dy}{dx} = \frac{d}{dx}(\sec u) = \sec u \tan u \frac{d(u)}{dx}$
यदि $y = \csc u$	dy = d
जहाँ <i>u, x</i> का फलन	$\frac{dy}{dx} = \frac{d}{dx}(\csc u)$
है	
यदि $y = \log_a x$, तब	dy 1.
	$\frac{dy}{dx} = \frac{1}{x} \log_a e$
यदि $y = \log_e x$, तब	dy 1, 1
	$\frac{dy}{dx} = \frac{1}{x}\log_e e = \frac{1}{x}$
यदि $y = \log_a u$, तब	dy = 1 $d(u)$
	$\frac{dy}{dx} = \frac{1}{u} \log_a e \times \frac{d(u)}{dx}$
यदि $y = \log_e u$, तब	$dy = 1 \int d(u)$
	$\frac{dy}{dx} = \frac{1}{u} \times \frac{d(u)}{dx}$
यदि $y = a^x$, तब	$\frac{dy}{dx} = a^x \log_x a$
	dx
यदि $y = e^x$, तब	dy x, x
	$\frac{dy}{dx} = e^x \log_e e = e^x$
यदि $y = e^u$, तब	$\frac{dy}{dx} = e^u \frac{d(u)}{dx}$
	$\frac{\partial}{\partial x} = e^{xx} - \frac{\partial}{\partial x}$
यदि $y = a^u$, तब	$\frac{dy}{dt} = a^u \log_e a \times \frac{d(u)}{dt}$
	$\frac{d}{dx} = a \log_e a \times \frac{d}{dx}$
L	

समाकलन के मूलभूत सूत्र-

$\int x^n dx = \frac{x^{n+1}}{n+1},$ ਯੂਲੱ $n \neq -1$	$\int \sec^2 x dx = \tan x$
$\int dx = \int x^0 dx = \frac{x^{0+1}}{0+1} = x$	$\int \csc^2 x \ dx = -\cot x$
$\int (u+v)dx = \int u dx + \int v dx$	$\int \sec x \tan x dx = \sec x$
$\int cu dx = c \int u dx$	$\int \csc x \cot x dx = -\csc x$

- 	T
जहाँ c नियतांक है तथा u,	
x का फलन है।	
$\int cx^n dx = c \frac{x^{n+1}}{n+1}$	$(ax+b)^n dx$
n+1	$\int = \frac{(ax+b)^{n+1}}{1}$
	$\int = \frac{(ax+b)^{n+1}}{(n+1)\frac{d}{dx}(ax+b)}$
	$=\frac{(ax+b)^{n+1}}{a(n+1)}$
	$={a(n+1)}$
$\int x^{-1} dx = \int \frac{dx}{x} = \log_e x$	$\int \frac{a}{(ax+b)} dx = \frac{a \log_e(ax+b)}{\frac{d}{dx}(ax+b)}$
	$=\log_e(ax+b)$
$\int e^x dx = e^x$	$\int ax+b$, e^{ax+b} e^{ax+b}
J	$\int e^{ax+b} dx = \frac{e^{ax+b}}{\frac{d}{dx}(ax+b)} = \frac{e^{ax+b}}{a}$
$\int a^x dx = \frac{a^x}{\log_e a}$	$\int a^{cx+d} dx = \frac{a^{cx+d}}{\log_e a \frac{d}{dx} (cx+d)}$
	$= \frac{a^{cx+d}}{c \log_e a}$
$\int \sin x dx = -\cos x$	$\int \sec^2(ax+b)dx$
	$= \frac{\tan(ax+b)}{\frac{d}{dx}(ax+b)} = \frac{\tan(ax+b)}{a}$
$\int \sin nx dx = \frac{-\cos nx}{n}$	$\int \csc^2(ax+b)dx$
n	$= \frac{-\cot(ax+b)}{b} = \frac{-\cot(ax+v)}{b}$
	$=\frac{d}{dx}(ax+b)=\frac{d}{a}$
$\int \cos x dx = \sin x$	$\int \sec(ax+b)\tan(ax+b)dx$
	$= \frac{\sec(ax+b)}{\frac{d}{dx}(ax+b)} = \frac{\sec(ax+b)}{a}$
$\int \cos nx dx = \frac{\sin nx}{n}$	$\int \csc(ax+b)\cot(ax+b)dx$
n	$=\frac{-\csc(ax+b)}{a}$
	$=\frac{d}{dx}(ax+b)$
	$=\frac{-\csc(ax+b)}{}$
	a

विभिन्न समीकरणों के लिए कुछ महत्वपूर्ण ग्राफ

