

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
16. August 2001 (16.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/58804 A2

- (51) Internationale Patentklassifikation⁷: **B81B 7/00**
- (21) Internationales Aktenzeichen: PCT/DE00/04554
- (22) Internationales Anmeldedatum: 20. Dezember 2000 (20.12.2000)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
100 05 555.9 9. Februar 2000 (09.02.2000) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **ROBERT BOSCH GMBH [DE/DE]**; Postfach 30 02 20, 70442 Stuttgart (DE).
- (72) Erfinder; und
(73) Erfinder/Anmelder (nur für US): **FISCHER, Frank** [DE/DE]; Robert-Koch-Strasse 8, 72810 Gomaringen (DE).
- (81) Bestimmungsstaaten (national): JP, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).
- Veröffentlicht:**
— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts
- Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: MICROMECHANICAL COMPONENT AND CORRESPONDING PRODUCTION METHOD

(54) Bezeichnung: MIKROMECHANISCHES BAUELEMENT UND ENTSPRECHENDES HERSTELLUNGSVERFAHREN

WO 01/58804 A2

(57) **Abstract:** The invention relates to a micromechanical component comprising a substrate (1), a functional region (5) on the substrate (1) and a cap-like cover (10, 14, 18; 10', 14', 20, 25; 10'', 14'', 30) for covering the functional region (5). The cap-like cover (10, 14, 18; 10', 14', 20, 25; 10'', 14'', 30) comprises at least one upper and one lower protective layer (10, 14; 10', 14'; 10'', 14''). The protective layers (10, 14; 10', 14'; 10'', 14'') each comprise a hole arrangement (11, 15), displaced relative to each other, of which at least one is sealed by a sealing layer (17; 20, 25; 14'', 30).

[Fortsetzung auf der nächsten Seite]

(57) Zusammenfassung: Die Erfindung schafft ein mikromechanisches Bauelement mit einem Substrat (1); einem auf dem Substrat (1) vorgesehenen Funktionsbereich (5); und einer kappenförmigen Abdeckung (10, 14, 18; 10', 14', 20, 25; 10'', 14'', 30) zum Abdecken des Funktionsbereichs (5). Die kappenförmige Abdeckung (10, 14, 18; 10', 14', 20, 25; 10'', 14'', 30) weist mindestens eine obere und eine untere Deckschicht (10, 14; 10', 14'; 10'', 14'') auf. Die Deckschichten (10, 14; 10', 14'; 10'', 14'') weisen eine jeweilige zueinander versetzte Lochanordnung (11, 15) auf, von denen mindestens eine durch mindestens eine Verschlusschicht (17; 20, 25; 14'', 30) verschlossen ist.

Mikromechanisches Bauelement und entsprechendes
5 Herstellungsverfahren

STAND DER TECHNIK

Die vorliegende Erfindung betrifft ein mikromechanisches
10 Bauelement mit einem Substrat, einem auf dem Substrat vor-
gesehenen Funktionsbereich und einer kappenförmigen Abde-
ckung zum Abdecken des Funktionsbereichs sowie ein entspre-
chendes Herstellungsverfahren, wie aus der DE 195 37 814 A1
bekannt.

15 Obwohl auf beliebige mikromechanische Bauelemente und
Strukturen, insbesondere Sensoren und Aktuatoren, anwend-
bar, werden die vorliegende Erfindung sowie die ihr zugrun-
deliegende Problematik in bezug auf ein in der Technologie
20 der Silizium-Oberflächenmikromechanik herstellbares mikro-
mechanisches Bauelement, z.B. einen Beschleunigungssensor,
erläutert.

In der DE 195 37 814 A1 werden der Aufbau eines funktiona-
25 len Schichtsystems und ein Verfahren zur hermetischen Ver-
kappung von Sensoren in Oberflächenmikromechanik beschrie-
ben. Hierbei wird die Herstellung der Sensorstruktur mit
bekannten technologischen Verfahren erläutert. Die besagte
hermetische Verkappung erfolgt mit einem separaten Kappen-

- 2 -

Wafer aus Silizium, der mit aufwendigen Strukturierungsprozessen, wie beispielsweise KHO-Ätzen, strukturiert wird.

Der Kappen-Wafer wird mit einem Glas-Lot (Seal-Glas) auf dem Substrat mit dem Sensor (Sensor-Wafer) aufgebracht.

- 5 Hierfür ist um jeden Sensorchip ein breiter Bond-Rahmen notwendig, um eine ausreichende Haftung und Dichtheit der Kappe zu gewährleisten. Dies begrenzt die Anzahl der Sensor-Chips pro Sensor-Wafer erheblich. Auf Grund des großen Platzbedarfs und der aufwendigen Herstellung des Kappen-
10 Wafers entfallen erhebliche Kosten auf die Sensor-Verkappung.

VORTEILE DER ERFINDUNG

- 15 Das erfindungsgemäße mikromechanische Bauelement mit den Merkmalen des Anspruchs 1 bzw. das Herstellungsverfahren nach Anspruch 8 sieht einen mindestens zweischichtigen Schichtaufbau vor, mit dem mikromechanische Sensoren bzw. Funktionsstrukturen hermetisch verkappt werden können. Da-
20 bei lässt sich ein definierter Gas- und/oder Druckeinschluss gewährleisten.

Kern der Erfindung ist also eine Mehrschichtstruktur, die über mikromechanischen Sensoren bzw. Funktionsstrukturen abgeschieden wird und diese vor Umgebungseinflüssen schützt. Dabei wird die Sensorkappe nicht wie üblich separat durch Ätz-Prozesse strukturiert und mit einem Seal-Glas-Lötverfahren mit dem Sensor-Wafer bzw. Funktions-Wafer verbunden, sondern die Verkappung wird direkt auf dem Sen-

sor-Wafer derart erzeugt, dass ein Mehrschichtgerüst über den beispielsweise beweglichen Funktionsstrukturen aufgebaut wird, wobei das Mehrschichtgerüst nach einem Opferschicht-Ätzen durch mindestens eine Verschlusschicht hermetisch verschlossen wird.

Hierdurch ist eine wesentlich kleinere kappenförmige Abdeckung als beim Stand der Technik möglich. Das Mehrschicht-Kappen-Gerüst lässt sich mit einfachen Halbleiterprozessen erzeugen. Es kann auf PbO-haltiges Seal-Glas verzichtet werden, welches unter Feuchtigkeitseinfluss eine massive Korrosion auf Al-Bond-Pads verursacht.

In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Verbesserungen des in Anspruch 1 angegebenen mikromechanischen Bauelements.

Gemäß einer bevorzugten Weiterbildung ist eine erste Verschlußschicht über der oberen Deckschicht angeordnet, und die Lochanordnung der oberen Deckschicht ist durch die erste Verschlußschicht verpfropft.

Gemäß einer weiteren bevorzugten Weiterbildung ist eine zweite Verschlußschicht zwischen der oberen und der unteren Deckschicht angeordnet, und die Lochanordnung der oberen Deckschicht ist durch Schmelzperlen der zweiten Verschlußschicht verschlossen.

- 4 -

- Gemäß einer weiteren bevorzugten Weiterbildung fungiert die obere Deckschicht als Verschlußschicht für die Lochanordnung der unteren Deckschicht. Dies läßt sich dadurch realisieren, daß das Material der oberen Deckschicht derart gewählt wird, daß es einen niedrigeren Schmelzpunkt als das Material der unterer Deckschicht aufweist und die obere Deckschicht aufgeschmolzen wird, so daß sie die Lochanordnung der unteren Deckschicht verschließt.
- 10 Gemäß einer weiteren bevorzugten Weiterbildung weist die obere Deckschicht Verbindungsstege zur Verbindung mit der unteren Deckschicht auf.
- 15 Gemäß einer weiteren bevorzugten Weiterbildung weist die untere Deckschicht und/oder die obere Deckschicht Polysilizium oder Aluminium auf.
- 20 Gemäß einer weiteren bevorzugten Weiterbildung weist die Verschlußschicht Aluminium, Silizium, Siliziumnitrid, Siliziumdioxid, ein Glas oder einen Lack auf.

ZEICHNUNGEN

Ausführungsbeispiele der Erfindung sind in den Zeichnungen 25 dargestellt und in der nachfolgenden Beschreibung näher erläutert.

Es zeigen:

Fig. 1a-g eine schematische Querschnittsansicht der Herstellungsritte eines mikromechanischen Bauelements gemäß einer ersten Ausführungsform der vorliegenden Erfindung;

5

Fig. 1h eine Draufsicht auf das mikromechanischen Bauelement gemäß der ersten Ausführungsform zur Illustration der verschiedenen Lochanordnungen;

10 Fig. 2a-e eine schematische Querschnittsansicht der Herstellungsritte eines mikromechanischen Bauelements gemäß einer zweiten Ausführungsform der vorliegenden Erfindung; und

15 Fig. 3a-c eine schematische Querschnittsansicht der Herstellungsritte eines mikromechanischen Bauelements gemäß einer dritten Ausführungsform der vorliegenden Erfindung.

20 BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE

In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten.

25 Fig. 1a-g zeigen eine schematische Querschnittsansicht der Herstellungsritte eines mikromechanischen Bauelements gemäß einer ersten Ausführungsform der vorliegenden Erfindung und Fig. 1h eine entsprechende Draufsicht zur Illustration der verschiedenen Lochanordnungen.

Gemäß Figur 1a werden, wie im Stand der Technik beschrieben, auf einem Silizium-Substrat 1 eine Opferschicht 2 aus SiO₂, eine strukturierte Leiterbahnebene 3 und eine weitere 5 Opferschicht 4 aus SiO₂ aufgebracht. Auf der Opferschicht 4 wird eine funktionale Schicht mit dem Funktionsbereich 5 aufgebracht, welche durch ebenfalls bekannte Verfahren für das Ätzen von Gräben 6 strukturiert wird. Beispielsweise kann dazu das in der DE 42 41 045 A1 beschriebene Verfahren 10 eingesetzt werden. Die funktionalen Strukturelemente 7, welche hier beispielhaft als drei Elektrodenfinger dargestellt sind, werden für das vorgeschlagene Bauelement entweder durch ein bekanntes Verfahren zum Opferschicht-Ätzen frei beweglich gemacht (siehe z.B. die DE 43 17 274 A1), 15 oder sie bleiben nach dem Tiefen-Ätzen noch fest auf der Opferschicht 4 angebunden, wie dies in Abbildung 1a dargestellt ist.

Wie in Figur 1b dargestellt, wird auf den funktionalen 20 Strukturelementen 7 des mikromechanischen Bauelements in einem nächsten Schritt eine dicke Opferschicht 8 derart abgeschieden, dass die Strukturgräben 6 teilweise im oberen Grabenbereich 9 mit dem Opfermaterial aufgefüllt sind. Die Opferschicht 8 deckt den Teil der Struktur ab, welcher im 25 Endzustand verkappt sein soll. Die Opferschicht 8 hat vorzugsweise eine Dicke von 1 µm bis 20 µm und kann beispielsweise aus Siliziumdioxid, Bor-Phosphor-Silikat-Glas oder amorphen Silizium bestehen. Es kann aber auch jedes andere Material verwendet werden, das sich isotrop mit einer aus-

reichenden Selektivität gegenüber den funktionalen Strukturelementen 7 und den späteren Deckschichten ätzen lässt.

Als nächstes wird gemäß Figur 1c auf die Opferschicht 8 die untere Deckschicht 10 abgeschieden und mit einer Lochanordnung mit kleinen Löchern 11 strukturiert. Die Löcher 11 können eckig oder rund sein. Der Durchmesser der Löcher 11 liegt vorzugsweise zwischen 0,5 µm und 20µm. Die Lochung wird so ausgelegt, dass sie gleichmäßig über der Fläche der funktionalen Strukturelemente 7 liegt. Die untere Deckschicht 10 ist vorzugsweise zwischen 0,5µm und 10µm dick und aus Polysilizium oder Aluminium hergestellt. Sie kann aber auch aus jedem anderen Material bestehen, das resistent gegen das Opferschicht-Ätzen der Opferschicht 8 und weiterer Opferschichten ist. Die untere Deckschicht 10 wird über den Rand der Opferschicht 8 hinausgezogen und an die Schicht mit den funktionalen Strukturelementen 7 angebunden. Die untere Deckschicht 10 steht idealerweise unter intrinsischer Zugspannung, die durch geeignete Temperaturbehandlung eingestellt werden kann.

Wie in Figur 1d illustriert, wird auf der ersten Deckschicht 10 eine zweite Opferschicht 12 aufgebracht. Diese zweite Opferschicht 12 besteht idealerweise aus dem gleichen Material wie die erste Opferschicht 8, also aus Siliziumdioxid, und ist ebenfalls selektiv gegenüber der unteren Deckschicht 10 ätzbar. Die Dicke der zweiten Opferschicht 12 beträgt vorzugsweise zwischen 0,3µm und 5µm. Die zweite Opferschicht 12 wird danach derart strukturiert, daß

sie auf der Durchgangslochanordnung 11 der unteren Deckschicht 10 liegt. Auch die zweite Opferschicht 12 weist eine Lochanordnung mit Löchern 13 auf, welche gegenüber den Löchern 11 der Lochanordnung der unteren Deckschicht 10
5 versetzt sind.

Gemäß Figur 1e wird auf der zweiten Opferschicht 12 die obere Deckschicht 14 abgeschieden. Diese obere Deckschicht 14 ist lokal über die Löcher 13 der zweiten Opferschicht 12 an der unteren Deckschicht 10 angebunden. In der oberen Deckschicht 14 wird eine Lochanordnung mit Löchern 15 ausgebildet, wobei die Löcher 15 gegenüber den Löchern 11 der unteren Deckschicht 10 versetzt sind, so dass die Löcher 11 alle samt von der oberen Deckschicht 14 überdeckt werden
15 und unter den Löchern 15 überall die untere Deckschicht 10 liegt. Die Lochung besitzt vorzugsweise einen Durchmesser von 0,5 µm bis 20 µm. Die obere Deckschicht 14 wird über den Rand der zweiten Opferschicht 12 hinaus gezogen und an der unteren Deckschicht 10 und vorzugsweise auch an der Peripherie des Funktionsbereiches 5 angebunden. Mit anderen Worten überdeckt die obere Deckschicht 14 auch die untere Deckschicht 10 vorzugsweise vollständig. Die obere Deckschicht 14 ist zwischen 0,5 µm und 30 µm dick und kann wie die untere Deckschicht 10 beispielsweise aus Silizium oder
20 Aluminium oder sonstigen Materialen mit den erforderlichen Ätz-Eigenschaften bestehen.
25

Wie in Figur 1f bildlich dargestellt, werden danach in einem selektiven Ätzschritt die erste Opferschicht 8 und die

zweite Opferschicht 12 geätzt. Hierbei kann eine nass-chemisches Verfahren, wie z. B. BOE (BOE = buffered oxide etch = gepufferte Oxidätzung) oder ein Trockenätzverfahren, wie beispielsweise das aus der DE 43 172 74 A1 bekannte
5 Flusssäure-Dampf-Ätzverfahren verwendet werden. Die Opferschichten 2 und 4 unterhalb der funktionalen Strukturelemente 7 können in diesem Schritt ebenfalls geätzt werden, falls nicht schon vor Abscheidung der ersten Opferschicht 8 geschehen. Nach diesem selektiven Ätzbereich ist über den
10 funktionalen Strukturelementen (hier bewegliche Kondensatorelektroden) eine Kappe bzw. Kuppel aufgespannt, welche mit Löchern perforiert ist. Diese Kappe besteht aus den miteinander verbundenen Deckschichten 10, 14, wobei es keinen geradlinigen Weg für Gase bzw. Atome oder Moleküle
15 durch die Kappe gibt, da die Lochanordnungen in den Deckschichten 10, 14 gegeneinander versetzt angeordnet sind.

In einem weiteren Schritt wird gemäß Figur 1g eine Verschlusschicht 17 auf der oberen Deckschicht 14 vorgesehen,
20 welche über Pfpfen 18 die Löcher 15 der oberen Deckschicht 14 dicht verschließt. Die Verschlusschicht 17 überdeckt vorzugsweise die obere Deckschicht 14 vollständig. Der Verschließvorgang erfolgt unter definierten Gas- und Druckverhältnissen. Die Verschlusschicht 17 kann aus Aluminium, Silizium, Siliziumnitrid, Siliziumdioxid, einem
25 Glas, einem Lack oder einem sonstigen geeigneten Material bestehen und wird vorzugsweise mittels eines CVD (Chemical Vapour Deposition)-Verfahrens, Sputterverfahren, Aufdampf-

- 10 -

verfahrens, Flashverdampfungsverfahren, Spin-On-Verfahrens oder Sprühverfahrens aufgebracht.

Damit ist die gezeigte Sensorstruktur hermetisch verkappt,
5 und unter der Verkappung in dem Funktionsbereich 5 mit den funktionalen Strukturelementen herrschen eine vorbestimmte Atmosphäre und ein vorbestimmter Druck.

Figur 1h illustriert die gegenseitige Orientierung der ver-
10 schiedenen Lochungen. In der Draufsicht von Figur 1h wird der Versatz der Löcher 15 in der oberen Deckschicht 14 ge- gegenüber den Löchern 11 in der unteren Deckschicht 10 deut- lich. Die Verbindungsstellen 13 zwischen der unteren Deck- schicht 10 und der oberen Deckschicht 14 sind gegenüber den 15 beiden Lochanordnungen mit den Löchern 11 bzw. 15 versetzt, so dass Gase (z. B. Reaktionsprodukte und -edukte beim Op- ferschichtätzen) durch beide Lochanordnungen ins Freie strömen können.

20 Fig. 2a-e illustrieren eine schematische Querschnittsan- sicht der Herstellungsritte eines mikromechanischen Bau- elements gemäß einer zweiten Ausführungsform der vorliegen- den Erfindung.

25 Bei der zweiten Ausführungsform des erfindungsgemäßen mik- romechanischen Bauelementes wird, wie in Figur 2a illust- riert, auf die untere Deckschicht 10' eine Schicht 20 auf- gebracht und strukturiert, welche bevorzugt aus Aluminium oder einem anderen schmelzbaren Material mit ausreichender

Oberflächenspannung und geeigneter Haftung bzw. Benetzung auf dem Material der unteren Deckschicht 10' besteht. Die Schichtdicke der zweiten Verschlusschicht 20 sollte kleiner als die Dicke der zweiten Opferschicht 12' sein. Des Weiteren ist die zweite Verschlusschicht 20 derart strukturiert, das sie die Löcher 11 der unteren Deckschicht 10 frei lässt und unterhalb der Löcher 15 der oberen Deckschicht 14' angeordnet ist.

- 10 Wie in Figur 2b dargestellt, wird analog wie bei der ersten Ausführungsform die obere Opferschicht 12' abgeschieden und strukturiert. Allerdings enthält die zweite Opferschicht 12' bei dieser zweiten Ausführungsform nicht notwendigerweise Löcher zur Anbindung der oberen Deckschicht 14' an
15 der unteren Deckschicht 10'.

Gemäß Figur 2c erfolgt das Opferschicht-Ätzen zum Ätzen der Schichten 2, 4, 8 und 12' im nächsten Prozessschritt. Nach dem Opferschicht-Ätzen ist ein Temperaturschritt zur thermischen Reinigung der Sensoroberflächen zweckmäßig, der jedoch nicht über die Schmelztemperatur des Materials der zweiten Verschlusschicht 20 reichen darf. Nach der Reinigung wird die gesamte Struktur in eine Heizvorrichtung eingebracht, in der definierte Gas- und Druckverhältnisse eingestellt werden können. Hierbei kann beispielsweise ein Vakuum erzeugt werden, oder ein Edelgas bzw. ein anderes Gas zur Erhöhung der Dämpfung der Schwingungen der funktionalen Strukturelemente 7 eingeschlossen werden.

Wie in Figur 2d gezeigt, wird nach Einregelung der Gas- und Druckverhältnisse die Temperatur in der Heizvorrichtung über den Schmelzpunkt des Materials der zweiten Verschlusschicht 20 erhöht, so dass sich das Material 20 auf Grund 5 der Oberflächenspannung zusammenzieht und Schmelzperlen ausbildet. Die Lage dieser Schmelzperlen auf der unteren Deckschicht 10 wird über die Strukturlage und Dicke der zweiten Verschlusschicht 20 derart gesteuert, dass die Schmelzperlen exakt unter den Löchern 15 der zweiten Deckschicht 14' entstehen. Das Material der zweiten Verschlusschicht 20 ist derart gewählt, das es eine ausreichende Benetzung mit dem Material der unteren Deckschicht 10' und 10 der oberen Deckschicht 14' eingeht, und daher werden die Öffnungen 15 der oberen Deckschicht 14' von unten dicht 15 verschlossen. Dadurch lässt sich eine vorbestimmte Atmosphäre und ein vorbestimmter Druck unter der Verkappung einstellen. Beim Öffnen der Heizvorrichtung muss allerdings abgewartet werden, bis die Temperatur unter die Schmelztemperatur des Materials der zweiten Verschlusschicht 20 ge- 20 sunken ist.

Zur dauerhaften hermetischen Verschließung kann optionellweise eine weitere Verschlusschicht 25 über der resultierenden Struktur wie bei der ersten Ausführungsform abgeschieden werden, wie in Fig. 2e gezeigt. 25

Fig. 3a-c sind eine schematische Querschnittsansicht der Herstellungsritte eines mikromechanischen Bauelements ge-

mäß einer dritten Ausführungsform der vorliegenden Erfindung.

Bei der dritten Ausführungsform wird das Material der oberen Deckschicht 14`` derart gewählt, dass es einen niedrigeren Schmelzpunkt als das Material der unteren Deckschicht 10`` aufweist. Beispielsweise kann das Material der oberen Deckschicht 14`` Aluminium sein, welches bei 660°C aufschmilzt, während das Material der unteren Deckschicht 10`` ein hochschmelzendes Material, z. B. CVD-Silizium, ist.

Figur 3a zeigt den Zustand nach dem Opferschicht-Ätzen entsprechend dem Zustand von Figur 2c bzw. dem Zustand von Figur 1f.

15

Wie in Figur 3b illustriert, wird nach dem Opferschicht-Ätzen und einer eventuell durchgeführten thermischen Reinigung der Oberflächen das Material der oberen Deckschicht 14`` unter definierten Gas- und Druckbedingungen in einer Heizvorrichtung aufgeschmolzen. Bei einer ausreichenden Benetzung zwischen der unteren und oberen Deckschicht 10`` , 20 14`` werden dann die Öffnungen 11 in der unteren Deckschicht 10`` durch die obere Deckschicht 14`` hermetisch dicht verschlossen.

25

Wie bei der zweiten Ausführungsform kann auch bei dieser dritten Ausführungsform zur hermetischen Versiegelung eine weitere Verschlusschicht 30 auf der oberen Deckschicht 14`` aufgebracht werden, welche aus Siliziumdioxid, Alumi-

nium, Siliziumnitrid, Silizium oder einem anderen geeigneten Material besteht. Dies zeigt Fig. 3c.

Obwohl die vorliegende Erfindung vorstehend anhand eines 5 bevorzugten Ausführungsbeispiels beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.

Es können insbesondere beliebige mikromechanische Grundmaterialien verwendet werden, und nicht nur das exemplarisch 10 angeführte Siliziumsubstrat.

Auch können die Lochanordnungen und die Anzahl und das Design der Deckschichten und Opferschichten beliebig gewählt 15 werden.

Weiterhin können die Strukturelemente der verschiedenen Ausführungsformen miteinander kombiniert werden.

- 15 -

5

PATENTANSPRÜCHE

1. Mikromechanisches Bauelement mit:

10

einem Substrat (1);

einem auf dem Substrat (1) vorgesehenen Funktionsbereich (5); und

15

einer kappenförmigen Abdeckung (10, 14, 18; 10', 14', 20, 25; 10'', 14'', 30) zum Abdecken des Funktionsbereichs (5);

dadurch gekennzeichnet, daß

20

die kappenförmige Abdeckung (10, 14, 18; 10', 14', 20, 25; 10'', 14'', 30) mindestens eine obere und eine untere Deckschicht (10, 14; 10', 14'; 10'', 14'') aufweist; und

25 die Deckschichten (10, 14; 10', 14'; 10'', 14'') eine jeweilige zueinander versetzte Lochanordnung (11, 15) aufweisen, von denen mindestens eine durch mindestens eine Verschlußschicht (17; 20, 25; 14'', 30) verschlossen ist.

2. Mikromechanisches Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß eine erste Verschlußschicht (17; 25; 30) über der oberen Deckschicht (14; 14'; 14'') angeordnet ist und die Lochanordnung (15) der oberen Deckschicht (14; 14'; 14'') durch die erste Verschlußschicht (17; 25; 30) verpfropft ist.
3. Mikromechanisches Bauelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine zweite Verschlußschicht (20) zwischen der oberen und der unteren Deckschicht (14', 10'') angeordnet ist und die Lochanordnung (15) der oberen Deckschicht (14') durch Schmelzperlen der zweiten Verschlußschicht (20) verschlossen ist.
4. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die obere Deckschicht (14'') als Verschlußschicht für die Lochanordnung (11) der unteren Deckschicht (10'') fungiert.
5. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die obere Deckschicht (14) Verbindungsstege zur Verbindung mit der unteren Deckschicht (10) aufweist.
6. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die untere Deckschicht (10) und/oder die obere Deckschicht (14) Polysilizium oder Aluminium aufweist.

7. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verschlußschicht (17) Aluminium, Silizium, Siliziumnitrid, Siliziumdioxid, ein Glas oder einen Lack aufweist.

5

8. Verfahren zur Herstellung eines mikromechanischen Bauelementes nach Anspruch 1 mit den Schritten:

Vorsehen einer ersten Opferschicht (8) auf dem Funktionsbereich (5);

Vorsehen der unteren Deckschicht (10; 10', 10'') mit der Lochanordnung (11) auf der ersten Opferschicht (8) derart, daß sie über den Rand der ersten Opferschicht (8) hinausgezogen ist und an der Peripherie des Funktionsbereiches (5) angebunden ist;

Vorsehen einer zweiten Opferschicht (12; 12') auf der unteren Deckschicht (10; 10', 10'');

Vorsehen der oberen Deckschicht (14; 14', 14'') mit der Lochanordnung (15) auf der zweiten Opferschicht (12; 12') derart, daß sie über den Rand der zweiten Opferschicht (12; 12') hinausgezogen ist und an der unteren Deckschicht (10; 10', 10'') und optionellerweise an der Peripherie des Funktionsbereiches (5) angebunden ist;

selektives Entfernen der ersten Opferschicht (8) und der zweiten Opferschicht (12; 12'); und

Verschließen mindestens einer der Lochanordnungen (11, 15) durch mindestens eine Verschlußschicht (17; 20, 25; 14'', 30).

5

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß eine erste Verschlußschicht (17; 25; 30) über der oberen Deckschicht (14; 14'; 14'') vorgesehen wird und die Lochanordnung (15) der oberen Deckschicht (14; 14'; 14'') durch 10 die erste Verschlußschicht (17; 25; 30) verpfropft wird.

10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß eine zweite Verschlußschicht (20) auf der unteren Deckschicht (14', 10') vorgesehen wird und die Lochanordnung (15) der oberen Deckschicht (14') durch Schmelzperlen 15 der zweiten Verschlußschicht (20) verschlossen wird.

11. Verfahren nach Anspruch 8, wobei das Material der oberen Deckschicht (14'') derart gewählt wird, daß es einen 20 niedrigeren Schmelzpunkt als das Material der unterer Deckschicht (10'') aufweist, dadurch gekennzeichnet, daß die obere Deckschicht (14'') aufgeschmolzen wird, so daß sie die Lochanordnung (11) der unteren Deckschicht (10'') verschließt.

FIG 1a**FIG 1b****FIG 1c**

2/6

FIG 1d

FIG 1e

FIG 1f

FIG 1g

FIG 1h

FIG 2a**FIG 2b****FIG 2c**

FIG 2d**FIG 2e**

6/6

FIG 3a**FIG 3b****FIG 3c**