IPW for missing data: Taylor series expansion with adjustment for unknown weights

Tanayott Thaweethai

October 21, 2019

1 Setting and procedure

We are interested in fitting a linear regression of Y on X. However, some subjects do not have complete data on X and Y and so the analysis model cannot be fit for all subjects. R is a binary indicator of being a complete case. We assume that missingness is explained completely by Z, a vector of fully observed variables. We fit a logistic regression of R on Z, obtaining $\hat{\alpha}$, and then calculate $\hat{\pi} = Pr(R = 1|Z;\hat{\alpha})$ for all subjects. We then fit the analysis model among subjects with R = 1, where each subject is weighted by $1/\hat{\pi}$. We obtain $\hat{\beta}$, the parameter of interest. This is called inverse probability weighting.

2 Notation

Variable	Dimension	Description
Y_i	Scalar	Outcome for i^{th} subject
X_i	$1 \times p$	Analysis model covariates for i^{th} subject
R_i	Scalar	Binary indicator of whether i^{th} subject is a complete case
Z_i	$1 \times q$	Selection model covariates for i^{th} subject
β	$p \times 1$	Analysis model regression coefficient
α	$q \times 1$	Selection model regression coefficient

3 Inference

3.1 Estimating equations

To estimate α , fitting a logistic regression is equivalent to solving the estimating equations

$$\sum_{i=1}^{N} S_{\alpha,i}(\alpha) = \sum_{i=1}^{N} Z_i^{\top} \left(R_i - \frac{\exp(Z_i \alpha)}{1 + \exp(Z_i \alpha)} \right) = 0$$

to obtain $\hat{\alpha}$. We assume $\hat{\alpha}$ converges to α^* as $N \to \infty$. Then, to estimate β , fitting a linear regression with inverse probability weights as a function of $\hat{\alpha}$ is equivalent to solving the estimating equations

$$\sum_{i=1}^{N} S_{\beta,i}(\hat{\alpha}, \beta) = \sum_{i=1}^{N} \frac{R_i}{\pi(\hat{\alpha})} X_i^{\top} (Y_i - X_i \beta) = 0$$

to obtain $\hat{\beta}$. Again we assume $\hat{\beta}$ converges to β^* as $N \to \infty$.

3.2 Taylor series expansion

Expanding $N^{-1} \sum_{i=1}^{N} S_{\alpha,i}(\hat{\alpha})$ about α^* , and multiplying by $N^{1/2}$, we obtain

$$0 = N^{-1/2} \sum_{i=1}^{N} S_{\alpha,i}(\alpha^*) + N^{1/2} E \left[\frac{\partial S_{\alpha,i}(\alpha)}{\partial \alpha^{\top}} \right]_{\alpha = \alpha^*} (\hat{\alpha} - \alpha^*)$$
 (1)

Then expanding $N^{-1} \sum_{i=1}^{N} S_{\beta,i}(\hat{\alpha}, \hat{\beta})$ about (α^*, β^*) , we obtain

$$0 = N^{-1/2} \sum_{i=1}^{N} S_{\beta,i}(\alpha^*, \beta^*) + N^{1/2} E \left[\frac{\partial S_{\beta,i}(\alpha, \beta^*)}{\partial \alpha^{\top}} \right]_{\alpha = \alpha^*} (\hat{\alpha} - \alpha^*) + N^{1/2} E \left[\frac{\partial S_{\beta,i}(\alpha^*, \beta)}{\partial \beta^{\top}} \right]_{\beta = \beta^*} (\hat{\beta} - \beta^*)$$
(2)

We define

$$\tau = -E \left[\frac{\partial S_{\beta,i}(\alpha^*,\beta)}{\partial \beta^\top} \right]_{\beta = \beta^*}, \quad \delta = -E \left[\frac{\partial S_{\beta,i}(\alpha,\beta^*)}{\partial \alpha^\top} \right]_{\alpha = \alpha^*}, \quad I_{\alpha} = -E \left[\frac{\partial S_{\alpha,i}(\alpha)}{\partial \alpha^\top} \right]_{\alpha = \alpha^*}$$

Substituting in these quantities and rearranging the terms in equations 1, we obtain

$$0 = N^{-1/2} \sum_{i=1}^{N} S_{\alpha,i}(\alpha^*) - N^{1/2} I_{\alpha}(\hat{\alpha} - \alpha^*)$$
(3)

$$N^{1/2}(\hat{\alpha} - \alpha^*) = N^{-1/2} \sum_{i=1}^{N} I_{\alpha}^{-1} S_{\alpha,i}(\alpha^*)$$
(4)

Now substituting in the above quantities and rearranging the terms in equation 2, we obtain

$$0 = N^{-1/2} \sum_{i=1}^{N} S_{\beta,i}(\alpha^*, \beta^*) - N^{1/2} \delta(\hat{\alpha} - \alpha^*) - N^{1/2} \tau(\hat{\beta} - \beta^*)$$
 (5)

$$N^{1/2}(\hat{\beta} - \beta^*) = \tau^{-1} \left[N^{-1/2} \sum_{i=1}^{N} S_{\beta,i}(\alpha^*, \beta^*) - N^{1/2} \delta(\hat{\alpha} - \alpha^*) \right]$$
 (6)

Then substituting in from equation 4.

$$N^{1/2}(\hat{\beta} - \beta^*) = \tau^{-1} \left[N^{-1/2} \sum_{i=1}^{N} S_{\beta,i}(\alpha^*, \beta^*) - \delta N^{-1/2} \sum_{i=1}^{N} I_{\alpha}^{-1} S_{\alpha,i}(\alpha^*) \right]$$
 (7)

$$= \tau^{-1} N^{-1/2} \sum_{i=1}^{N} \left[S_{\beta,i}(\alpha^*, \beta^*) - \delta I_{\alpha}^{-1} S_{\alpha,i}(\alpha^*) \right]$$
 (8)

3.3 Central limit theorem

By the central limit theorem,

$$N^{1/2}(\hat{\beta} - \beta^*) \to \text{Normal}(0, \Omega)$$
 (9)

where

$$\Omega = \tau^{-1} \operatorname{Var} \left[S_{\beta,i}(\alpha^*, \beta^*) - \delta I_{\alpha}^{-1} S_{\alpha,i}(\alpha^*) \right] \tau^{-\top}$$
(10)

3.4 Expression for plug-in estimator

By Slutsky's theorem, we can estimate Ω with $\hat{\Omega}$ where

$$\hat{\Omega} = \hat{\tau}^{-1} \left\{ N^{-1} \sum_{i=1}^{N} \left[S_{\beta,i}(\hat{\alpha}, \hat{\beta}) - \hat{\delta} \hat{I}_{\alpha}^{-1} S_{\alpha,i}(\hat{\alpha}) \right]^{\otimes 2} \right\} \hat{\tau}^{-1}$$

$$\hat{\tau} = -\frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial S_{\beta,i}(\hat{\alpha}, \beta)}{\partial \beta^{\top}} \right]_{\beta = \hat{\beta}}, \quad \hat{\delta} = -\frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial S_{\beta,i}(\hat{\alpha}, \beta)}{\partial \alpha^{\top}} \right]_{\alpha = \hat{\alpha}}, \quad \hat{I}_{\alpha} = -\frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial S_{\alpha,i}(\alpha)}{\partial \alpha^{\top}} \right]_{\alpha = \hat{\alpha}}$$

where $A^{\otimes 2} = AA^{\top}$. Then, for a given estimator $\hat{\beta}$, we estimate the variance of $\hat{\beta}$ by $\widehat{\text{Var}}(\hat{\beta}) = \hat{\Omega}/N$.

3.5 Naive robust sandwich estimator

If we were to ignore the fact that the weights were estimated (i.e., that α is known), then if we were to expand $N^{-1} \sum_{i=1}^{N} S_{\beta,i}(\alpha,\hat{\beta})$ about β^* , we obtain

$$0 = N^{-1/2} \sum_{i=1}^{N} S_{\beta,i}(\alpha, \beta^*) + N^{1/2} E \left[\frac{\partial S_{\beta,i}(\alpha, \beta)}{\partial \beta^{\top}} \right]_{\beta = \beta^*} (\hat{\beta} - \beta^*)$$
 (11)

$$= N^{-1/2} \sum_{i=1}^{N} S_{\beta,i}(\alpha, \beta^*) - N^{1/2} \tau(\hat{\beta} - \beta^*)$$
(12)

$$N^{1/2}(\hat{\beta} - \beta^*) = \tau^{-1} N^{-1/2} \sum_{i=1}^{N} S_{\beta,i}(\alpha, \beta^*)$$
(13)

Then by the central limit theorem,

$$N^{1/2}(\hat{\beta} - \beta^*) \to \text{Normal}(0, \tilde{\Omega})$$
 (14)

where

$$\tilde{\Omega} = \tau^{-1} \operatorname{Var} \left[S_{\beta,i}(\alpha, \beta^*) \right] \tau^{-\top} \tag{15}$$

and we estimate $\tilde{\Omega}$ by $\hat{\tilde{\Omega}}$ where

$$\hat{\tilde{\Omega}} = \hat{\tau}^{-1} \left\{ N^{-1} \sum_{i=1}^{N} \left[S_{\beta,i}(\alpha, \hat{\beta}) \right]^{\otimes 2} \right\} \hat{\tau}^{-1}$$

and $\hat{\tau}$ was defined as above. This is known generally as the **robust sandwich estimator**. This is the same as the estimator provided in Section 3.4 except for the use of α instead of $\hat{\alpha}$ and subtracting off the term $\hat{\delta}\hat{I}_{\alpha}^{-1}S_{\alpha,i}(\hat{\alpha})$. By the form of $\hat{\delta}$ and \hat{I}_{α} , we know that $\hat{\delta}\hat{I}_{\alpha}^{-1}S_{\alpha,i}(\hat{\alpha})$ is nonnegative. Therefore, $\hat{\Omega} \geq \hat{\Omega}$, and so accounting for estimation of the weights results in a lower standard error estimate. In other words, assuming the weights are known results in an overestimate of the true standard error if the weights were in fact estimated.

3.6 Plug-in estimator for logistic selection model and linear analysis model

$$S_{\alpha,i}(\hat{\alpha}) = Z_i^{\top} \left(R_i - \frac{\exp(Z_i \hat{\alpha})}{1 + \exp(Z_i \hat{\alpha})} \right), \quad S_{\beta,i}(\hat{\alpha}, \hat{\beta}) = \frac{R_i (1 + \exp(Z_i \hat{\alpha}))}{\exp(Z_i \hat{\alpha})} X_i^{\top} \left(Y_i - X_i \hat{\beta} \right)$$
(16)

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} \frac{R_i (1 + \exp(Z_i \hat{\alpha}))}{\exp(Z_i \hat{\alpha})} X_i^{\top} X_i, \quad \hat{\delta} = \frac{1}{N} \sum_{i=1}^{N} \frac{R_i}{\exp(Z_i \alpha)} X_i^{\top} \left(Y_i - X_i \hat{\beta} \right) Z_i, \tag{17}$$

$$\hat{I}_{\alpha} = \frac{1}{N} \sum_{i=1}^{N} \frac{\exp(Z_i \hat{\alpha})}{\left[1 + \exp(Z_i \hat{\alpha})\right]^2} Z_i^{\top} Z_i$$
(18)