LECTURE 2: A CRASH COURSE IN R

STAT 545: INTRODUCTION TO COMPUTATIONAL STATISTICS

Vinayak Rao

Department of Statistics, Purdue University

August 20, 2018

THE R PROGRAMMING LANGUAGE

From the manual,

- R is a system for statistical computation and graphics
- R provides a programming language, high level graphics, interfaces to other languages and debugging facilities

It is possible to go far using R interactively

Better:

Organize code for debugging/reproducibility/homework

THE R PROGRAMMING LANGUAGE

John Chambers:

- · Everything that exists is an object
- · Everything that happens is a function call
- typeof() gives the type or internal storage mode of an object
- str() provides a summary of the R object
- class() returns the object's class

ATOMIC VECTORS

Collections of objects of the same type

Common types include: "logical", "integer", "double", "complex", "character", "raw"

R has no scalars, just vectors of length 1

CREATING VECTORS

One-dimensional vectors:

```
age <- 25  # 1-dimensional vector
name <- "Alice"; undergrad <- FALSE

typeof(age) # Note: age is a double

#> [1] "double"

class(age)

#> [1] "numeric"
```

```
age <- 15L  # L for long integer
typeof(age)
#> [1] "integer"
```

CREATING VECTORS

```
people <- c('Alice', 'Bob', 'Carol') # c() concatenates
years <- 1991:2000 # but not years <- 2000:1991, use seq()
even_years <- (years %% 2) == 0</pre>
```

```
typeof(people)
#> [1] "character"
length(years)
#> [1] 10
is.vector(even_years)
#> [1] TRUE
```

Use brackets [] to index subelements of a vector

```
people[1] # First element is indexed by 1
#> [1] "Alice"

years[1:5] # Index with a subvector of integers
#> [1] 1991 1992 1993 1994 1995

years[c(1, 3, length(years))]
#> [1] 1991 1993 2000
```

Negative numbers exclude elements

```
people[-1]
#> [1] "Bob" "Carol" # All but the first element
years[-c(1, length(years))] # All but first and last elements
#> [1] 1991 1992 1993 1994 1995
```

Index with logical vectors

```
even_years <- (years %% 2) == 0
#> [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
years[even_years] # Index with a logical vector
#> [1] 1992 1994 1996 1998 2000
```

Example: sample 100 Gaussian random variables and find the mean of the positive elements

```
xx <- rnorm(100, 0, 1)  # Sample 100 Gaussians
indx_xx_pos <- (xx > 0)  # Is this element positive
xx_pos <- xx[indx_xx_pos]  # Extract positive elements
xx_pos_mean <- mean(xx_pos)  # calculate mean</pre>
```

Example: sample 100 Gaussian random variables and find the mean of the positive elements

```
xx <- rnorm(100, 0, 1)  # Sample 100 Gaussians
indx_xx_pos <- (xx > 0)  # Is this element positive
xx_pos <- xx[indx_xx_pos]  # Extract positive elements
xx_pos_mean <- mean(xx_pos)  # calculate mean</pre>
```

More terse

Can assign single elements

```
people[1] <- "Dave"; print(people)
#> [1] "Dave" "Bob" "Carol"
```

Can assign single elements

```
people[1] <- "Dave"; print(people)
#> [1] "Dave" "Bob" "Carol"
```

or multiple elements

```
years[even_years] <- years[even_years] + 1
#> [1] 1991 1993 1993 1995 1995 1997 1997 1999 1999 2001
```

Can assign single elements

```
people[1] <- "Dave"; print(people)
#> [1] "Dave" "Bob" "Carol"
```

or multiple elements

```
years[even_years] <- years[even_years] + 1
#> [1] 1991 1993 1993 1995 1995 1997 1997 1999 1999 2001
```

or assign multiple elements a single value (more on this when we look at recycling)

```
years[-c(1,length(years)] <- 0
#> [1] 1991 0 0 0 0 0 0 0 2001
```

What if we assign to an element outside the vector?

```
years[length(years) + 1] <- 2015
years
#> [1] 1991 0 0 0 0 0 0 0 2001 2015
length(years)
#> [1] 11
```

We have increased the vector length by 1

In general, this is an inefficient way to go about things

Much more efficient is to first allocate the entire vector

RECYCLING

```
vals <- 1:6
#> [1] 1 2 3 4 5 6
vals + 1
#> [1] 2 3 4 5 6 7
```

RECYCLING

```
vals <- 1:6
#> [1] 1 2 3 4 5 6
vals + 1
#> [1] 2 3 4 5 6 7
```

```
vals + c(1, 2)
#> [1] 2 4 4 6 6 8
```

Can repeat explicitly too

RECYCLING

```
vals <- 1:6
#> [1] 1 2 3 4 5 6
vals + 1
#> [1] 2 3 4 5 6 7
```

```
vals + c(1, 2)
#> [1] 2 4 4 6 6 8
```

Can repeat explicitly too

```
rep(c(1, 2),3)

#> [1] 1 2 1 2 1 2

rep(c(1, 2),each=3)

#> [1] 1 1 1 2 2 2
```

SOME USEFUL R FUNCTIONS

```
seq(), min(), max(), length(), range(), any(), all(),
Comparison operators: <, <=, >, >=, ==, !=
Logical operators: &&, ||, !, &, |, xor()
```

```
is.logical(), is.integer(), is.double(), is.character()
as.logical(), as.integer(), as.double(), as.character()
```

'Coercion' often happens implicitly in function calls:

```
sum(rnorm(10) > 0)
```

LISTS (GENERIC VECTORS) IN R

Elements of a list can be any R object (including other lists)

Lists are created using list():

```
> car <- list("Ford", "Mustang", 1999, TRUE)
> length(car)
```

LISTS (GENERIC VECTORS) IN R

Elements of a list can be any **R** object (including other lists)

Lists are created using list():

```
> car <- list("Ford", "Mustang", 1999, TRUE)
> length(car)
```

Can have nested lists:

```
# car, house, cat and sofa are other lists
> possessions <- list(car, house, cat, sofa, "3000USD")</pre>
```

INDEXING ELEMENTS OF A LIST

Use brackets [] and double brackets [[]]
Brackets [] return a sublist of indexed elements

INDEXING ELEMENTS OF A LIST

Use brackets [] and double brackets [[]]

Brackets [] return a sublist of indexed elements

```
> car[1]
[[1]]
[1] "Ford"

> typeof(car[1])
[1] "list"
```

INDEXING ELEMENTS OF A LIST

Use brackets [] and double brackets [[]]

Double brackets [[]] return element of list

```
> car[[1]]
[1] "Ford"

> typeof(car[[1]])
[1] "character"
```

NAMED LISTS

Can assign names to elements of a list

```
> names(car) <- c("Manufacturer", "Make", "Year",
+ "Mileage", "Gasoline")
# Or
> car <- list("Manufacturer" = "Ford", "Make" = "Mustang",
+ "Year" = 1999, "Mileage" = 120021.3, "Gasoline" = TRUE)</pre>
```

NAMED LISTS

Can assign names to elements of a list

```
> names(car) <- c("Manufacturer", "Make", "Year",
+ "Mileage", "Gasoline")
# Or
> car <- list("Manufacturer" = "Ford", "Make" = "Mustang",
+ "Year" = 1999, "Mileage" = 120021.3, "Gasoline" = TRUE)</pre>
```

```
> car[["Year"]] # A length-one vector
[1] 1999
# Or
> car$Year # Shorthand notation
[1] 1999
```

OBJECT ATTRIBUTES

names() is an instance of an object attributeThese store useful information about the object

OBJECT ATTRIBUTES

names() is an instance of an object attribute

These store useful information about the object

Other common attributes: class, dim and dimnames.

Many have specific accessor functions e.g. class() or dim()

You can create your own

Are two- and higher-dimensional collections of objects

These have an appropriate dim attribute

Are two- and higher-dimensional collections of objects

These have an appropriate dim attribute

Equivalently (and better)

```
> my_mat <- matrix(1:6, nrow = 3, ncol = 2) # ncol is redundant
```

Are two- and higher-dimensional collections of objects

These have an appropriate dim attribute

```
> my_arr <- array(1:8, c(2,2,2))
, , 1
    [,1][,2]
[1,] 1 3
[2,] 2 4
    [,1] [,2]
[1,] 5 7
[2,] 6 8
```

Useful functions include

```
• typeof(), class(), str()
```

- dim(), nrow(), ncol()
- . is.matrix(), as.matrix(), ...

Matrix multiplication is carried out with the %*% operator Simple * is elementwise multiplication

A vector/list is NOT an 1-d matrix (no dim attribute)

```
> is.matrix(1:6)
[1] FALSE
```

A vector/list is NOT an 1-d matrix (no dim attribute)

```
> is.matrix(1:6)
[1] FALSE
```

Use drop() to eliminate empty dimensions

A vector/list is NOT an 1-d matrix (no dim attribute)

```
> is.matrix(1:6)
[1] FALSE
```

Use drop() to eliminate empty dimensions

```
> my_mat <- array(1:6, c(2,3,1)) # dim(my_mat) is (2,3,1)
, , 1
      [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> my_mat <- drop(my_mat) # dim is now (2,3)
      [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6</pre>
```

INDEXING MATRICES AND ARRAYS

```
> my_mat[2,1] # Again, use square brackets
[1] 2
```

INDEXING MATRICES AND ARRAYS

```
> my_mat[2,1] # Again, use square brackets
[1] 2
```

Excluding an index returns the entire dimension

```
> my_mat[2,]
[1] 2 4 6
> my_arr[1,,1] # slice along dim 2, with dims 1, 3 equal to 1
[1] 6 8
```

INDEXING MATRICES AND ARRAYS

```
> my_mat[2,1] # Again, use square brackets
[1] 2
```

Excluding an index returns the entire dimension

```
> my_mat[2,]
[1] 2 4 6
> my_arr[1,,1] # slice along dim 2, with dims 1, 3 equal to 1
[1] 6 8
```

Usual ideas from indexing vectors still apply

```
> my_mat[c(2,3),]
    [,1] [,2]
[1,] 2 5
[2,] 3 6
```

COLUMN-MAJOR ORDER

We saw how to create a matrix from an array

COLUMN-MAJOR ORDER

We saw how to create a matrix from an array

In R matrices are stored in column-major order (like Fortran, and unlike C and Python)

RECYCLING

Column-major order explains recycling to fill larger matrices

RECYCLING

Column-major order explains recycling to fill larger matrices

RECYCLING

Column-major order explains recycling to fill larger matrices

Very common and convenient data structures Used to store tables:

Columns are variables and rows are observations

	Age	PhD	GPA
Alice	25	TRUE	3.6
Bob	24	TRUE	3.4
Carol	21	FALSE	3.8

An R data frame is a list of equal length vectors and special convenience syntax

```
> df <- data.frame(age = c(25L,24L,21L),

PhD = c(T,T,F),

GPA = c(3.6,2.4,2.8))
```

```
> df
    age    PhD    GPA
1    25    TRUE    3.6
2    24    TRUE    2.4
3    21    FALSE    2.8
> typeof(df)
[1] "list"
> class(df)
[1] "data.frame"
```

```
> str(df) # Try yourself
```

Since data frames are lists, we can use list indexing

Can also use matrix indexing (more convenient)

```
> df[2,3]
[1] 2.4
> df[2,]
  age PhD GPA
2 24 TRUE 2.4
> df$GPA
[1] 3.6 2.4 2.8
```

- · list functions apply as usual
- · matrix functions are also interpreted intuitively

Many datasets are data frames and many packages expect dataframes

```
> library("datasets")
> class(mtcars)
[1] "data.frame"
```

```
> head(mtcars)
              # Print part of a large object
                mpg cyl disp hp drat wt qsec vs am gear
Mazda RX4
                21.0
                         160 110 3.90 2.620 16.46
                21.0 6
Mazda RX4 Wag
                         160 110 3.90 2.875 17.02
Datsun 710
                22.8 4
                          108 93 3.85 2.320 18.61 1 1 4
Hornet 4 Drive 21.4
                          258 110 3.08 3.215 19.44 1 0 3
Hornet Sportabout 18.7
                          360 175 3.15 3.440 17.02 0 0 3
Valiant
                18.1
                          225 105 2.76 3.460 20.22 1
```

if statements

Allow conditional execution of statements

```
if( condition1 ) {
    statement1
} else if( condition2 ) {
    statement2
} else {
    statement3
}
```

LOGICAL OPERATORS

- !: logical negation
 & and &&: logical 'and'
 | and ||: logical 'or'
 & and | perform elementwise comparisons on vectors
 && and ||:
- · evaluate from left to right
- · look at first element of each vector
- · evaluation proceeds only until the result is determined

```
for(elem in vect) {  # Can be atomic vector or list
  Do_stuff_with_elem  # over successive elements of vect
}
```

```
for(elem in vect) {  # Can be atomic vector or list
  Do_stuff_with_elem # over successive elements of vect
}
```

```
x <- 0
for(ii in 1:50000) x <- x + log(ii) # Horrible
```

```
for(elem in vect) {  # Can be atomic vector or list
  Do_stuff_with_elem  # over successive elements of vect
}
```

```
x <- 0
for(ii in 1:50000) x <- x + log(ii)  # Horrible
x <- sum(log(1:50000))  # Much more simple and efficient!</pre>
```

```
for(elem in vect) {  # Can be atomic vector or list
  Do_stuff_with_elem  # over successive elements of vect
}
```

```
x <- 0
for(ii in 1:50000) x <- x + log(ii)  # Horrible
x <- sum(log(1:50000))  # Much more simple and efficient!
> system.time({x<-0; for(i in 1:50000) x[i] <- i})
  user system elapsed
0.048  0.000  0.048
> system.time(x <- log(sum(1:50000))
  user system elapsed
0.001  0  0.002</pre>
```

Vectorization allows concise and fast loop-free code

Vectorization allows concise and fast loop-free code

```
H \leftarrow -sum(p * log(p)) # Vectorized but wrong (p[i] == 0?)
```

Vectorization allows concise and fast loop-free code

```
H \leftarrow -sum(p * log(p)) # Vectorized but wrong (p[i] == 0?)
```

Vectorization allows concise and fast loop-free code

```
H <- -sum( p * log(p) ) # Vectorized but wrong (p[i] == 0?)
```

```
pos <- p > 0
H <- - sum( p[pos] * log(p[pos]) )
```

WHILE LOOPS

```
while( condition ) {
  stuff # Repeat stuff while condition evaluates to TRUE
}
```

If stuff doesn't affect condition, we loop forever.

Then, we need a break statement. Useful if many conditions

```
while( TRUE ) { # Or use 'repeat { ... }'
  stuff1
  if( condition1 ) break
  stuff2
  if( condition2 ) break
}
```

THE *APPLY FAMILY

Useful functions for repeated operations on vectors, lists etc.

Sample usage:

```
# Calc. mean of each element of my_list
rslt_list <- lapply(my_list, FUN = mean)</pre>
```

Stackexchange has a nice summary: [url]

Note (Circle 4 of the R inferno):

- These are not vectorized operations but are loop-hiding
- · Cleaner code, but comparable speeds to explicit for loops

R FUNCTIONS

R comes with its own suite of built-in functions

An important part of learning R is learning the vocabulary
 See e.g. http://adv-r.had.co.nz/Vocabulary.html

Non-trivial applications require you build your own functions

- · Reuse the same set of commands
- Apply the same commands to different inputs
- · Cleaner, more modular code
- Easier testing/debugging

CREATING FUNCTIONS

Create functions using function:

```
my_func <- function( formal_arguments ) body</pre>
```

The above statement creates a function called my_func

formal_arguments comma separated names

describes inputs my_func expects

function_body a statement or a block

describes what my_func does with inputs

AN EXAMPLE FUNCTION

```
normalize mtrx <- function( ip mat, row = TRUE ) {</pre>
# Normalizes columns to add up to one if row = FALSE
# If row = TRUE or row not specified, normalizes columns
 if(!is.mat(ip mat)) {
   warning("Expecting a matrix as input");
   return(NULL)
 # You can define objects inside a function
  # You can even define other functions
 rslt <- if(row) ip mat / rowSums(ip mat) else
                  t( t(ip_mat) / colSums(ip_mat))
```

```
n_mtrx <- normalize_mtrx(mtrx)</pre>
```

ARGUMENT MATCHING

Proceeds by a three-pass process

- · Exact matching on tags
- · Partial matching on tags: multiple matches gives an error
- Positional matching

Any remaining unmatched arguments triggers an error

PLOTTING IN BASE R

```
> str(diamonds)
'data.frame': 53940 obs. of 10 variables:
$ carat
         : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 ...
$ cut
          : Ord.factor w/ 5 levels "Fair"<"Good"<...: 5 4 2 ...
 $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<...: 2 2 ...</pre>
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<...: 2 3 ...</pre>
 $ depth
         : num
                 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 ...
$ table
                 55 61 65 58 58 57 57 55 61 61 ...
         : num
$ price
                 326 326 327 334 335 336 336 337 337 338 ...
          : int
$ x
                 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 ...
          : num
$ y
                 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 ...
          : num
$ z
                 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 ...
          : num
```

```
plot(diamonds$carat, diamonds$price) # plot(x,y)
```

PLOTTING IN GGPLOT

```
ggplot() +
  layer(
    data = diamonds,
    mapping = aes(x = carat, y = price),
    geom = "point",
    stat = "identity",
    position = "identity" ) +
  scale_y_continuous() + scale_x_continuous() +
  coord_cartesian()
```

PLOTTING IN GGPLOT

```
ggplot() +
  layer(
    data = diamonds,
    mapping = aes(x = carat, y = price),
    geom = "point",
    stat = "identity",
    position = "identity" ) +
  scale_y_continuous() + scale_x_continuous() +
  coord_cartesian()
```

Of course, ggplot has intelligent defaults

```
ggplot(diamonds, aes(carat, price)) + geom_point()
```

PLOTTING IN GGPLOT

```
ggplot() +
  layer(
    data = diamonds,
    mapping = aes(x = carat, y = price),
    geom = "point",
    stat = "identity",
    position = "identity" ) +
  scale_y_continuous() + scale_x_continuous() +
  coord_cartesian()
```

Of course, ggplot has intelligent defaults

```
ggplot(diamonds, aes(carat, price)) + geom_point()
```

There's also further abbreviations via qplot (I find it confusing)

LAYERS

ggplot produces an object that is rendered into a plot

This object consists of a number of layers

Each layer can get own inputs or share arguments to ggplot()

LAYERS

ggplot produces an object that is rendered into a plot

This object consists of a number of layers

Each layer can get own inputs or share arguments to ggplot()

Add another layer to previous plot:

MORE EXAMPLES

```
ggplot(diamonds, aes(x=carat, y = price,colour=cut)) +
  geom point() +
  geom_line(stat= "smooth", size=5, alpha= 0.7)
ggplot(diamonds, aes(x=carat, y = price,colour=cut)) +
  geom point() +
  geom_line(stat= "smooth", method=lm, size=5, alpha= 0.7) +
   scale x log10()+ scale y log10()
ggplot(diamonds, aes(x=carat, fill=cut)) +
geom_histogram(alpha=0.7, binwidth=.4, color="black",
 position="dodge") + xlim(0,2) + coord cartesian(xlim=c(.1,5))
```

A MORE COMPLICATED EXAMPLE

'A Layered Grammar of Graphics', Hadlay Wickham, Journal of Computational and Graphical Statistics, 2010

ggplot documentation: http://docs.ggplot2.org/current/

Search 'ggplot' on Google Images for inspiration

Play around to make your own figures