Zadanie: USA

Usadzenie

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 1. Dostępna pamięć: 128 MB.

07.10.2017

Andrzej organizuje przyjęcie, na które zaprosił wielu gości. Na przyjęciu jest N miejsc siedzących. Goście przychodzą grupami i Andrzej jeżeli może usadza grupę gości razem na kolejnych miejscach, a jeżeli nie jest w stanie tego zrobić, grupa gości odchodzi. Bywa również tak że co jakiś czas na miejscach w przedziale [a,b] wywiązuje się kłótnia i Andrzej, chcąc panować nad porządkiem wyprasza wszystkich gości zajmujących pozycje od a do b włącznie. Wtedy nowo przybyci goście mogą zajmować zwolnione miejsca. Mamy więc dwa typy wydarzeń:

- 1 Przybycie x ($1 \le x \le N$) gości. Jeżeli w danym momencie jest to możliwe goście usadzani są w grupie x gości obok siebie tak jak przyszli, albo wcale. Jeżeli grupa gości może zostać usadzona, usadzana jest na polach o najmniejszych indeksach.
 - 2 Wyproszenie wszystkich gości z przedziału od a do b ($1 \le a \le b \le N$).

Dla każdego zapytania typu 1 podaj przedział w którym usiądą goście, lub "NIE", jesli nie znajdzie się dla nich miejsce.

Wejście

Pierwsza linia wejścia zawiera jedną dwie liczby całkowite N ($1 \le N \le 500\,000$) i M ($1 \le M \le 300\,000$) oznaczające kolejno ilość miejsc przy stole i liczbę wydarzeń.

W kolejnych M wierszach jest podane są zdarzenia w jednej z dwóch postaci:

 $1 \ x \ (1 \le x \le N)$, zdarzenie oznaczające przybycie x gości.

2 a b $(1 \le a \le b \le N)$, zdarzenie oznaczające wyproszenie wszystkich gości z przedziału [a, b].

Wyjście

Dla każdego zdanirzenia typu 1, wypisz przedział w którym zostaną usadzeni goście, lub "NIE", jeśli nie da się usadzić zadanej liczby gości obok siebie.

Przykład

Dla danych wejściowych:	nonrous	nrm	gamilaiom	ioat.
Dia danyen wejselowyen.	popraw	111 / 111	wynikiem	lest.

10 5	1 6
1 6	NIE
1 5	1 1
2 1 2	7 9
1 1	

4 2

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \le 100, m \le 1000$	30
2	brak dodatkowych założeń	70

