Lab 1: Intro to Python

Step 0: Install Anaconda

• see the notes on Blackboard under python_stuff

Main Topics

- basic syntax and creating variables
- working with Jupyter Notebooks
- for loops
- if/then statements
- plotting
- working with data

Step 1: Presentations by Dr. Krauss

Download and follow along:

- intro to Python.ipynb
- intro_to_scientific_and_engineering_python.ipynb

Step 2: Notebooks to read and work through on your own

- for_loops.ipynb
- $\bullet \hspace{0.2cm} plotting_with_matplotlib.ipynb$

Step 3: First Batch of Tasks

Task 1: Plotting

- generate a plot of a sine wave vs. time:
 - create a time vector using np.arange
 - use plt.figure and plt.plot to create the graph
 - also use plt.xlabel, plt.ylabel, and plt.title to complete the plot

Task 2: loadtxt and for loops

- write Python code that finds all of the *.csv files in a folder, loads each *.csv file into an array, and then generates on plot per file
 - assume each *.csv file contains data in columns where the first column is time
 - plot the remaining columns vs. time on one plot
 - the data files may have different numbers of columns in them
- Here are links to three csy files:
 - data file 1
 - data file 2
 - data file 3

- download all three files to the same folder
- use glob.glob to find all of the *.csv files in a given folder
- use np.loadtxt to load the data from one *.csv file into an array
- use plt.figure, plt.plot, ... to generate the plots

Task 3: Writing a Function

• create a function that takes the coefficient p as its input and returns the step response of the corresponding first order transfer function G(s):

$$G(s) = \frac{p}{s+p}$$

- then call your function inside of a for loop and overlay the step responses for three different values of p: [1,5,30]
- in order to complete this task, you will need to install the python-control module using the command pip install python-control
 - windows users should use the Anaconda Prompt
 - mac users should use the terminal
- use the function control. TransferFunction to create G(s)
- use the function control.step_response to find the step response

Step 4: Another Notebook to read and work through

- extracting rows or columns from a 2d array is called indexing or slicing
- Notebook: slicing and indexing.ipynb

Step 5: Final Task

The data file pendulum_data.txt contains data from the pendulum vibration suppression test we did in class. Download the data and load it into Python using np.loadtxt.

Analyze the data by creating several plots:

- first, make a separate plot for each column of data
 - extract the column label from the first row of the csv file and use the labels for the title of each plot
- pick 3 columns to slice out from the data and overlay on one plot
 - use the corresponding column labels in the legend for the plot