NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

AY2021, Semester 1 MA1508E Linear Algebra for Engineering Tutorial 8

Solutions

- 1. For each of the following matrices \mathbf{A} ,
 - (i) Find a basis for the row space of **A**.
 - (ii) Find a basis for the column space of **A**.
 - (iii) Find a basis for the nullspace of **A**.
 - (iv) Hence determine $rank(\mathbf{A})$, $nullity(\mathbf{A})$ and verify the dimension theorem for matrices.
 - (v) Is **A** full rank?

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 5 & 3 \\ 1 & -4 & -1 & -9 \\ -1 & 0 & -3 & 1 \\ 2 & 1 & 7 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$

- (i) A basis for the row space is $\{(1,0,3,-1),(0,1,1,2)\}.$
- (ii) A basis for the column space is $\{(1, 1, -1, 2, 0)^T, (2, -4, 0, 1, 1,)^T\}$.
- (iii) A basis for the nullspace is $\{(-3, -1, 1, 0)^T, (1, -2, 0, 1)^T\}$.
- (iv) $\operatorname{rank}(\mathbf{A}) = 2$, $\operatorname{nullity}(\mathbf{A}) = 2$. Since $\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = 2 + 2 = 4$ which is the number of columns of \mathbf{A} , we have verified the dimension theorem for matrices.
- (v) $rank(\mathbf{A}) = 2 < min\{4, 5\}$. **A** is not full rank.

(b)
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 7 \\ 2 & 1 & 8 \\ 3 & -5 & -1 \\ 2 & -2 & 2 \\ 1 & 1 & 5 \end{pmatrix}$$
.

$$\mathbf{A} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (i) A basis for the row space is $\{(1,0,0),(0,1,0),(0,0,1)\}.$
- (ii) A basis for the column space is $\{(1, 2, 3, 2, 1)^T, (3, 1, -5, -2, 1)^T, (7, 8, -1, 2, 5)^T\}$.

- (iii) The basis for the nullspace is the empty set.
- (iv) $\operatorname{rank}(\mathbf{A}) = 3$, $\operatorname{nullity}(\mathbf{A}) = 0$. Since $\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = 3 + 0 = 3$ which is the number of columns of \mathbf{A} , we have verified the dimension theorem for matrices.
- (v) $rank(A) = 3 = min\{3, 5\}$. **A** is full rank.
- 2. Show that for any linear system Ax = b, the solution set is

$$\{ \mathbf{x}_p + \mathbf{u} \mid \mathbf{u} \in \text{Null}(\mathbf{A}) \},$$

where \mathbf{x}_p is a particular solution to the linear system, and Null(\mathbf{A}) is the nullspace of \mathbf{A} (See tutorial 5 question 6).

See tutorial 5 question 6.

3. Suppose **A** and **B** are two matrices such that AB = 0. Show that the column space of **B** is contained in the nullspace of **A**.

Write $\mathbf{B} = (\mathbf{b}_1 \ \mathbf{b}_2 \cdots \mathbf{b}_n)$, where \mathbf{b}_i is the *i*-th column of \mathbf{B} . Then

$$\mathbf{0} = \mathbf{A}\mathbf{B} = \mathbf{A} \left(\mathbf{b}_1 \ \mathbf{b}_2 \cdots \mathbf{b}_n \right) = \left(\mathbf{A}\mathbf{b}_1 \ \mathbf{A}\mathbf{b}_2 \cdots \mathbf{A}\mathbf{b}_n \right)$$

By comparing the columns, we conclude that $\mathbf{Ab}_i = \mathbf{0}$ for all i = 1, ..., n. Hence, $\mathbf{b}_i \in \text{Null}(A)$ for all i = 1, ..., n.

- 4. (MATLAB) Let $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, and $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2)$.
 - (a) Compute $\mathbf{v}_1 \cdot \mathbf{v}_1$, $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_2 \cdot \mathbf{v}_1$, and $\mathbf{v}_2 \cdot \mathbf{v}_2$.

$$\rightarrow$$
 dot(v1,v1), or \rightarrow v1'*v1, ans=6.

Note that $\mathbf{v}_1 \cdot \mathbf{v}_2 = \mathbf{v}_2 \cdot \mathbf{v}_1$.

$$\rightarrow$$
 dot(v1,v2), or \rightarrow v1'*v2, ans=0.

$$\rightarrow$$
 dot(v2,v2), or \rightarrow v2'*v2, ans=2.

(b) Compute $\mathbf{V}^T\mathbf{V}$. What does the entries of $\mathbf{V}^T\mathbf{V}$ represent? >> $\mathbf{V}=[\mathbf{v1} \ \mathbf{v2}]$;

$$\rightarrow$$
 V'* V, ans= $\begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$.

Since
$$\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2), \ \mathbf{V}^T = \begin{pmatrix} \mathbf{v}^T \\ \mathbf{v}_2^T \end{pmatrix}$$
. So

$$\mathbf{V}^T \mathbf{V} = \begin{pmatrix} \mathbf{v}_1^T \mathbf{v}_1 & \mathbf{v}_1^T \mathbf{v}_2 \\ \mathbf{v}_2^T \mathbf{v}_1 & \mathbf{v}_2^T \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{v}_1 & \mathbf{v}_1 \cdot \mathbf{v}_2 \\ \mathbf{v}_2 \cdot \mathbf{v}_1 & \mathbf{v}_2 \cdot \mathbf{v}_2 \end{pmatrix},$$

that is, the (i, j)-entry of $\mathbf{V}^T \mathbf{V}$ is $\mathbf{v}_i \cdot \mathbf{v}_j$.

5. Let W be a subspace of \mathbb{R}^n . The *orthogonal complement* of W, denoted as W^{\perp} , is defined to be

$$W^{\perp} := \{ \ \mathbf{v} \in \mathbb{R}^n \ \big| \ \mathbf{v} \cdot \mathbf{w} = 0 \ \text{for all} \ \mathbf{w} \in W \ \}.$$

Let
$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{w}_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \\ 0 \end{pmatrix}$, and $\mathbf{w}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$, and $W = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

(a) Show that $S = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent.

Since any orthogonal set of nonzero vectors is linearly independent, suffice to

show that S is orthogonal. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & -2 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$
. Then

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

shows that S is orthogonal.

- (b) Show that S is orthogonal.

 Shown in (a).
- (c) Show that W^{\perp} is a subspace of \mathbb{R}^5 by showing that it is a span of a set. What is the dimension? (**Hint**: See Tutorial 4 question 6.) By Tutorial 4 question 6, W^{\perp} is the nullspace of \mathbf{A}^T .

$$\mathbf{A}^T \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -2 & -1/4 \\ 0 & 1 & 0 & 1 & 1/2 \\ 0 & 0 & 1 & 2 & 3/4 \end{pmatrix}$$

So the nullspace of \mathbf{A}^T is spanned by $\left\{ \begin{pmatrix} 2\\-1\\-2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\-3\\0\\4 \end{pmatrix} \right\}$. This shows that W^{\perp}

is a subspace of \mathbb{R}^5 . In fact, the fact that W^{\perp} is a nullspace of some matrix proves that it is a subspace. It has 2 dimensions.

(d) Obtain an orthonormal set T by normalizing $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$.

From (b) we know that $||\mathbf{w}_1||^2 = 5$, $||\mathbf{w}_2||^2 = 10$, and $||\mathbf{w}_3||^2 = 4$. So T =

$$\left\{ \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\2\\-1\\-2\\0 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\-1\\0 \end{pmatrix} \right\}.$$

(e) Let
$$\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
. Find the projection of \mathbf{v} onto W .

The projection is

$$\frac{\mathbf{v} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{v} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \mathbf{w}_2 + \frac{\mathbf{v} \cdot \mathbf{w}_3}{\mathbf{w}_3 \cdot \mathbf{w}_3} \mathbf{w}_3 = \frac{1}{10} \begin{pmatrix} 10 \\ -1 \\ 12 \\ 3 \\ 6 \end{pmatrix}.$$

(f) Let \mathbf{v}_W be the projection of \mathbf{v} onto W. Show that $\mathbf{v} - \mathbf{v}_W$ is in W^{\perp} .

$$\mathbf{v} - \mathbf{v}_W = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ -1 \end{pmatrix} - \frac{1}{10} \begin{pmatrix} 10 \\ -1 \\ 12 \\ 3 \\ 6 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 10 \\ 1 \\ -2 \\ 7 \\ -16 \end{pmatrix}$$

$$\mathbf{A}^{T}(\mathbf{v} - \mathbf{v}_{W}) = \frac{1}{10} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & -2 & 0 \\ 1 & -1 & 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 10 \\ 1 \\ -2 \\ 7 \\ -16 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

This shows that $(\mathbf{v} - \mathbf{v}_W)$ is in the nullspace of \mathbf{A}^T , which is W^{\perp} .

This exercise demonstrated the fact that every vector \mathbf{v} in \mathbb{R}^5 can be written as $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_W^{\perp}$, for some \mathbf{v}_W in W and \mathbf{v}_W^{\perp} in W^{\perp} . In other words, $W + W^{\perp} = \mathbb{R}^5$ (see Tutorial 7 question 1).

6. Let $S = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$ where

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \ \mathbf{u_2} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{u_3} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \ \mathrm{and} \ \mathbf{u_4} = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix}.$$

(a) Check that S is an orthogonal set.

Let
$$\mathbf{U} = \begin{pmatrix} 1 & 1 & -1 & -2 \\ 2 & 1 & 1 & 1 \\ 2 & -1 & -1 & 1 \\ -1 & 1 & -1 & 2 \end{pmatrix}$$
. Then

$$\mathbf{U}^T \mathbf{U} = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 10 \end{pmatrix}$$

Hence, S is an orthogonal set. Since it is an orthogonal set of nonzero vectors, it is linearly independent, and since it contains 4 vectors, it must be a basis. Alternatively, since the product $\mathbf{U}^T\mathbf{U}$ is invertible, \mathbf{U} is invertible. So the columns form a basis for \mathbb{R}^4 .

- (b) Is S a basis for \mathbb{R}^4 ? Shown in (a).
- (c) Is it possible to find a nonzero vector \mathbf{w} in \mathbb{R}^4 such that $S \cup \{\mathbf{w}\}$ is an orthogonal set?

No, since if **w** exists, then $S \cup \{\mathbf{w}\}$ will be a linearly independent set in \mathbb{R}^n containing 5 vectors, a contradiction. Alternatively, from Tutorial 4 question 6, **w** must be in the nullspace of U. But since U is invertible, it has the trivial nullspace, and so there can be no nonzero vector that is orthogonal to the set S.

(d) Obtain an orthonormal set T by normalizaing $\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}$. From (a) we know that $||\mathbf{u_1}||^2 = 10$, $||\mathbf{u_2}||^2 = 4$, $||\mathbf{u_3}||^2 = 4$, and $||\mathbf{u_4}||^2 = 10$. So

$$T = \left\{ \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\2\\2\\-1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} -1\\1\\-1\\-1 \end{pmatrix}, \frac{1}{\sqrt{10}} \begin{pmatrix} -2\\1\\1\\2 \end{pmatrix} \right\}.$$

(e) Let $\mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$. Find $(\mathbf{v})_S$ and $(\mathbf{v})_T$.

We have

$$\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{v} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{v} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3 + \frac{\mathbf{v} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4,$$

which means that

$$(\mathbf{v})_S = \begin{pmatrix} \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \\ \frac{\mathbf{v} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \\ \frac{\mathbf{v} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_4} \\ \frac{\mathbf{v}_4 \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \end{pmatrix} = \begin{pmatrix} 3/10 \\ 1/2 \\ -1 \\ 9/10 \end{pmatrix}.$$

Let

$$\mathbf{u}_{1}' = \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\2\\2\\-1 \end{pmatrix}, \mathbf{u}_{2}' = \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix}, \mathbf{u}_{3}' = \frac{1}{2} \begin{pmatrix} -1\\1\\-1\\-1 \end{pmatrix}, \mathbf{u}_{4}' = \frac{1}{\sqrt{10}} \begin{pmatrix} -2\\1\\1\\2 \end{pmatrix}.$$

Then

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1')\mathbf{u}_1' + (\mathbf{v} \cdot \mathbf{u}_2')\mathbf{u}_2' + (\mathbf{v} \cdot \mathbf{u}_3')\mathbf{u}_3' + (\mathbf{v} \cdot \mathbf{u}_4')\mathbf{u}_4',$$

which means that

$$(\mathbf{v})_T = \begin{pmatrix} \mathbf{v} \cdot \mathbf{u}_1' \\ \mathbf{v} \cdot \mathbf{u}_2' \\ \mathbf{v} \cdot \mathbf{u}_3' \\ \mathbf{v} \cdot \mathbf{u}_4' \end{pmatrix} = \begin{pmatrix} 3/\sqrt{10} \\ 1 \\ -2 \\ 9/\sqrt{10} \end{pmatrix}.$$

(f) Suppose
$$\mathbf{w}$$
 is a vector in \mathbb{R}^4 such that $(\mathbf{w})_S = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$. Find $(\mathbf{w})_T$.

Note that $\mathbf{u}_i' = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|}$, and so

$$\begin{split} \mathbf{w} &= \frac{\mathbf{w} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{w} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3 + \frac{\mathbf{w} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4 \\ &= \left(\frac{\mathbf{w} \cdot \mathbf{u}_1}{||\mathbf{u}_1||} \right) \frac{\mathbf{u}_1}{||\mathbf{u}_1||} + \left(\frac{\mathbf{w} \cdot \mathbf{u}_2}{||\mathbf{u}_2||} \right) \frac{\mathbf{u}_2}{||\mathbf{u}_2||} + \left(\frac{\mathbf{w} \cdot \mathbf{u}_3}{||\mathbf{u}_3||} \right) \frac{\mathbf{u}_3}{||\mathbf{u}_3||} + \left(\frac{\mathbf{w} \cdot \mathbf{u}_4}{||\mathbf{u}_4||} \right) \frac{\mathbf{u}_4}{||\mathbf{u}_4||} \\ &= \left(\frac{\mathbf{w} \cdot \mathbf{u}_1}{||\mathbf{u}_1||} \right) \mathbf{u}_1' + \left(\frac{\mathbf{w} \cdot \mathbf{u}_2}{||\mathbf{u}_2||} \right) \mathbf{u}_2' + \left(\frac{\mathbf{w} \cdot \mathbf{u}_3}{||\mathbf{u}_3||} \right) \mathbf{u}_3' + \left(\frac{\mathbf{w} \cdot \mathbf{u}_4}{||\mathbf{u}_4||} \right) \mathbf{u}_4' \end{split}$$

Let $(\mathbf{w})_S(i)$ and $(\mathbf{w})_T(i)$ denote the *i*-th coordinate of $(\mathbf{w})_S$ and $(\mathbf{w})_T$, respectively. Then, we have

$$(\mathbf{w})_S(i) = \frac{\mathbf{w} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} = \frac{\mathbf{w} \cdot \mathbf{u}_i}{||\mathbf{u}_i||^2} = \frac{1}{||\mathbf{u}_i||} \frac{\mathbf{w} \cdot \mathbf{u}_i}{||\mathbf{u}_i||} = \frac{1}{||\mathbf{u}_i||} (\mathbf{w})_T(i).$$

And so
$$(\mathbf{w})_T = \begin{pmatrix} \sqrt{10} \\ 4 \\ 2 \\ \sqrt{10} \end{pmatrix}$$
.

Supplementary Problems

- 7. Recall that a matrix **A** is an orthogonal matrix if $\mathbf{A}^T = \mathbf{A}^{-1}$ (see Tutorial 4 question 1(d)).
 - (a) Show that if **A** is an orthogonal matrix of order n, then the columns of **A** is an orthonormal basis of \mathbb{R}^n .

Write $\mathbf{A} = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$, where \mathbf{a}_i is the *i*-th column of \mathbf{A} . Then

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} \mathbf{a}_{1}^{T}\mathbf{a}_{1} & \mathbf{a}_{1}^{T}\mathbf{a}_{2} & \cdots & \mathbf{a}_{1}^{T}\mathbf{a}_{n} \\ \mathbf{a}_{2}^{T}\mathbf{a}_{1} & \mathbf{a}_{2}^{T}\mathbf{a}_{2} & \cdots & \mathbf{a}_{2}^{T}\mathbf{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n}^{T}\mathbf{a}_{1} & \mathbf{a}_{n}^{T}\mathbf{a}_{2} & \cdots & \mathbf{a}_{n}^{T}\mathbf{a}_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{a}_{1} \cdot \mathbf{a}_{1} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{1} \cdot \mathbf{a}_{n} \\ \mathbf{a}_{2} \cdot \mathbf{a}_{1} & \mathbf{a}_{2} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{2} \cdot \mathbf{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n} \cdot \mathbf{a}_{1} & \mathbf{a}_{n} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \cdot \mathbf{a}_{n} \end{pmatrix}.$$

This shows that

$$\begin{cases} \mathbf{a}_i \cdot \mathbf{a}_j = 1 & \text{when } i = j, \\ \mathbf{a}_i \cdot \mathbf{a}_j = 0 & \text{when } i \neq j, \end{cases}$$

that is, $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\}$ is an orthonormal set. Since an orthonormal set is linearly independent, and the set has n vectors in \mathbb{R}^n , it must be a basis of \mathbb{R}^n .

(b) Show that if **A** is an orthogonal matrix of order n, then the rows of **A** is an orthonormal basis of \mathbb{R}^n .

Write
$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_n \end{pmatrix}$$
, where \mathbf{a}_i is the *i*-th row of \mathbf{A} . Then

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{A}\mathbf{A}^{T} = \begin{pmatrix} \mathbf{a}_{1}\mathbf{a}_{1}^{T} & \mathbf{a}_{1}\mathbf{a}_{2}^{T} & \cdots & \mathbf{a}_{1}\mathbf{a}_{n}^{T} \\ \mathbf{a}_{2}\mathbf{a}_{1}^{T} & \mathbf{a}_{2}\mathbf{a}_{2}^{T} & \cdots & \mathbf{a}_{2}\mathbf{a}_{n}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n}\mathbf{a}_{1}^{T} & \mathbf{a}_{n}\mathbf{a}_{2}^{T} & \cdots & \mathbf{a}_{n}\mathbf{a}_{n}^{T} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{a}_{1} \cdot \mathbf{a}_{1} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{1} \cdot \mathbf{a}_{n} \\ \mathbf{a}_{2} \cdot \mathbf{a}_{1} & \mathbf{a}_{2} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{2} \cdot \mathbf{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n} \cdot \mathbf{a}_{1} & \mathbf{a}_{n} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \cdot \mathbf{a}_{n} \end{pmatrix}.$$

This shows that

$$\begin{cases} \mathbf{a}_i \cdot \mathbf{a}_j = 1 & \text{when } i = j, \\ \mathbf{a}_i \cdot \mathbf{a}_j = 0 & \text{when } i \neq j, \end{cases}$$

that is, $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\}$ is an orthonormal set. Since an orthonormal set is linearly independent, and the set has n vectors in \mathbb{R}^n , it must be a basis of \mathbb{R}^n .

An analogous proof shows that if $\mathbf{A}^T \mathbf{A}$ (**A** not necessarily a square matrix) is a diagonal matrix, then the columns of **A** is an orthogonal set, and if $\mathbf{A}\mathbf{A}^T$ is a diagonal matrix, then the rows of **A** is an orthogonal set.