

Selected Topics in Image Understanding Project Presentation 3 Wagner, Schnell, Mayer

Prof. Dr.-Ing. Klaus Tönnies Summer Semester 2018

Concept

Configurations

Manual, step-by-step parameter Optimization

HOG

- · All objects fill the entire image and are oriented in same way
- · Edges are good features
- · Suggested in the lecture

PCA

- · Reduce number of dimensions of feature space
- Avoid overfitting
- · Commonly used

SVM

- Often used before neural networks became popular
- Non-generative model was sufficient

Adjustments: HoG parameters changed to reduce computation time

- On the web one can find recommendations for the parameters used to create the HoG features
- We made adjustments to speed up the calculations:
- Size of the cells: 25x25 pixels
- Size of the normalization blocks: 3x3

Adjustments: Class scatter as SVM class weights

- After receiving a 30-dimensional feature space with the help of PCA,
 compute the covariance matrix for each class
- Use the determinant of the covariance matrix to determine the weight of each class: A larger determinant corresponds to more scatter within a class and, thus, the class is weighted less

• Formula:
$$w_i = 1 - \frac{c}{\max_{j} \sqrt[n]{|\Sigma_j|}} \sqrt[n]{|\Sigma_i|}$$

- $\circ w_i$: Weight of each class
- $\circ \sum_{i}$: Covariance matrix of each class
- \circ *n* : Size of the feature space (30)
- \circ *c*: Threshold that defines lowest possible class weight (0.5)

Figure: Two classes with low/high class scatter

Alternative Approach: Transfer Learning

- Use weights of pre-trained Convolutional Neural Network (VGG16 trained on ImageNet dataset)
- Extract first fully connected layer of the network for each image (4096 dimensions) and use it as the feature vector
- Direct use of linear SVM for classification without dimensionality reduction leads to 90% accuracy but is computationally expensive

Figure 1: Architecture of the VGG16 model (taken from http://www.cs.toronto.edu/~frossard/post/vgg16/)

Results

There are huge differences in recognizing the different classes:

- cannon, crocodile, mayfly close to 0% accuracy
- accordion, airplanes, leopards, motorbikes close to 100% accuracy

Further Findings:

- Google_Background has maximal class scatter
- Huge standard deviation for some classes (e.g. inline_skate)
- Bigger categories have higher accuracies

Measure	HOG & PCA & SVM	Transfer Learning
Minimum	56,2	
Mean	64,4	90
Maximum	67,7	

Results HOG & PCA & SVM

Problems

Problems

Possible Improvements

- Use scikit grid search to test all "meaningful" parameter combinations
- Combine multiple classifiers
- Use fine-tuning or additional trainable layers for the transfer learning approach

Thank you for your attention!