Conflict or Cooperation? Predicting Future Tendency of International Relations

Peng Chen, Adam Jatowt, Masatoshi Yoshikawa Kyoto University, Kyoto, Japan 28th Feb. 2020

Outline

- Introduction & GDELT Dataset
- Related Work
- Problem Statement
- Methodology
- Experiment
- Future Work

Introduction

Motivation

- Predicting future tendency of international relations helps us prepare and make decisions in advance for events that are likely to happen.
 - An early warning system of conflicts can be further developed.

Introduction

 Generally, recent events between two countries directly reflect the international relation between them.

Idea

 Predicting future tendency of international relations by predicting future conflict / cooperation events.

- GDELT: Global Data on Events, Location, and Tone [1]
- GDELT is available online, providing auto-coded event records from news sources all over the world from 1979 to now.
- Total size: 230.75GB (up to 11th Feb. 2020)
- Over 6×10⁸ events

GDELT event database

- One line per event record
- Event Details: Date, Actors, Event Code, NumMentions, *QuadClass*

SQLDATE	Actor1Code	Actor2Code	EventCode	QuadClass	GoldsteinScale	NumMentions	
20150313	USA	JPN	43	1	2.8	4	
20160919	USA	JPN	20	1	3	6	
20170519	USA	JPN	40	1	1	4	
20170519	USAGOV	JPN	61	2	6.4	8	
20180517	USA	JPN	20	1	3	1	
20181231	USA	JPN	193	4	-10	7	
20181231	USA	JPN	80	2	5	2	

 Hierarchical Event Type

Basic Level **QuadClass: 4 classes**

... **Appeal** Consult High Level **Public Statement Over 300 types Economic cooperation**

Middle Level **Event Root Code: 20 types**

GDELT Dataset: Counts of 4 Main Event Classes

- Example of events, where actor1 is India and actor2 is China.
- Counting the weekly number of events.
- 4 classes of events

Related Work

Predicting future events using GDELT

- Predicting Social Unrest Using GDELT [1]. (models: Random Forest, Ada Boost, LSTM)
- Predicting conflict events in Afghanistan with RNN [2].

Prediction task under different settings

• Stock Price Prediction Using Attention-based Multi-Input LSTM [3].

^[1] Divyanshi Galla and James Burke. 2018. Predicting Social Unrest Using GDELT.InInternational Conference on Machine Learning and Data Mining in PatternRecognition. Springer, 103–116.

^[2] Smith, Emmanuel M., et al. "Predicting the occurrence ofworld news events using recurrent neural networks and auto-regressive moving average models."

^[3] Li, Hao, Yanyan Shen, and Yanmin Zhu. "Stock Price Prediction Using Attention-based Multi-Input LSTM." Asian Conference on Machine Learning. 2018.

Problem Statement

- Predicting future events between a pair of countries.
- Counting the weekly number of each event class (4 classes: Verbal/Material Cooperation/Conflict).
- Given data for consecutive M weeks, predict the event counts in the (M+1)th week.

Time Series Learning Models

Baseline: Traditional LSTM

Proposed: Related Pairs Selection + Multi-input LSTM

• **Hypothesis:** Relations between a specific pair of countries are likely to be affected by other country pairs.

For example:

- A unit of Multi-input LSTM.
- One more input.
- Additional attention layer.
- Intuition:

Use additional information extracted from related pairs to update cell states.

Related Pairs Selection 1

Pearson Correlation Coefficient

Define the data sequence of countries Y and Xi as Sy and Sxi

$$Cor(S_Y, S_{X_i}) = \frac{Cov(S_Y, S_{X_i})}{\sqrt{Var(S_Y) * Var(S_{X_i})}}$$

where Cov means covariance, Var means variance.

Related Pairs Selection 2

- Geographical distance between country capitals is used as distance between different countries.
- For example, distance between (JPN, USA) and (CHN, USA) equals to Dis(Tokyo, Beijing).

Related Pairs Selection 3

Semantic Similarity

Use the difference between two semantic vectors (word2vec[1]) of a country pair.

Difference vector of (JPN, USA) is

$$\overrightarrow{JPN}, \overrightarrow{USA} = \overrightarrow{USA} - \overrightarrow{JPN}$$

Correlation: Similarity between difference vectors

[1] Pretrained word2vec on Google News: https://code.google.com/archive/p/word2vec/

1. Related Pairs Selection 2. LSTM Encoder 3. Multi-input LSTM

Settings:

- Given data of previous M = 15 weeks, predict event counts in 16th week.
- **56 target country pairs**(formed by Australia, Canada, China, France, Japan, Russia, USA, UK)
- Baseline: Traditional LSTM
- Training set: [Jan. 1, 2005, Jun. 1, 2016) (595 weeks)
- Test set: [Jun. 1, 2016, Dec. 1, 2018) (130 weeks)
 - Size(Training) : Size(Test) $\approx 80\%$: 20%

- Example of prediction
- Material Conflict

of (JPN, USA)

Green: Ground Truth

Blue: LSTM

Orange: MILSTM

with PCC

- Example of prediction
- Material Conflict of (USA, CHN)

Green: Ground Truth

Blue: LSTM

Orange: MILSTM

with PCC

• Evaluation: Root Mean Square Error (RMSE) (Different from MSE in the submitted paper)

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} |Y_{i, GroundTruth} - Y_{i, Predicted}|}$$

where m is the number of test cases.

Predicted Events: Verbal Cooperation, Material Cooperation

Verbal Conflict, Material Conflict

- Example of Training
 Loss
- Prediction of Material Conflict of (USA, CHN)
- RMSE

Blue: LSTM

Orange: MILSTM with

PCC

Evaluation Results

- RMSE
- Verbal Conflict
- Sort pairs by average weekly verbal conflict

RMSE Improvement:

	LSTM	MILSTM	MILSTM	MILSTM	Average Weekly	
	LSTM	with PCC	with geo-distance	with word2vec	Verbal Conflict	
(USA, RUS)	153.1	122.9	126.0	116.4	118.3	
(RUS, USA)	124.9	101.6	101.5	121.1	115.9	
(USA, CHN)	35.0	28.1	32.7	32.5	92.0	
(CHN, USA)	49.0	38.9	40.4	31.3	89.2	
(GBR, USA)	36.9	27.4	25.3	32.9	62.2	
(USA, GBR)	32.6	26.9	25.3	25.2	59.1	
(USA, CAN)	21.7	19.9	19.3	19.4	43.2	
(CAN, USA)	29.5	30.1	27.4	29.7	41.1	
(CHN, JPN)	10.9	9.7	10.7	10.6	36.0	
(FRA, USA)	13.4	18.7	14.5	14.6	32.4	
(GBR, RUS)	146.9	144.3	142.7	143.5	30.9	
(JPN, CHN)	11.0	12.3	10.7	9.4	30.6	
(USA, FRA)	21.5	19.1	21.3	21.7	30.0	
(USA, JPN)	7.6	12.7	9.5	7.2	29.1	
(JPN, USA)	6.8	6.5	6.6	7.4	27.5	
			l			
Average Wee	kly	> 10	0 20 20	> 40	10 0	

Average Weekly Verbal Conflict	≥ 100	≥ 80	≥ 60	≥ 40	$ \geq 20$	≥ 10	≥ 0
Number of Pairs	2	4	5	8	18	26	56
MILSTM with PCC	19.8%	19.7%	20.9%	16.6%	3.5%	-0.2%	-4.5%
MILSTM with geo-distance	17.8%	15.2%	18.4%	16.0%	7.0%	3.5%	-0.8%
MILSTM with word2vec	24.0%	17.6%	16.2%	14.3%	7.3%	4.2%	-0.9%

Experiment: Improvement

- Verbal Cooperation
- Material Cooperation
- Verbal Conflict
- Material Conflict

				1								_
Average Weekly Verbal Cooperation		00 >	300	≥ 2	00	≥ 10	0 ≥	≥ 40	≥ 2	20	≥ 10	≥ 0
Number of Pairs		6		12		20	3	4	48		54	56
MILSTM with PCC	9.3%	6 9.7%		9.59	%	8.5%	5	.6%	4.4	%	3.6%	2.7%
MILSTM with geo-distance	10.0	% 9.	% 9.3%		%	7.6%	5	.5%	3.0	%	2.4%	1.5%
MILSTM with word2vec	9.3%	6 9.	9.6%		8.0%		6.1% 4.0		.6% 3.4		2.2%	1.3%
Average Weekly Material Cooperation		≥ 8	≥ 80		≥ 60		≥ 40		20	≥	10	≥ 0
Number of Pairs		1		6		9		14		20	6	56
MILSTM with PCC		14.0%		11.1	1% -1.8		3%	% -2.6%		-5	5.7%	-5.7%
MILSTM with geo-distance			23.3%		9.8% 2.5		%	6 -2.0%		-4	1.9%	-4.6%
MILSTM with word2vec			19.3%		12.4%		2.4% -0		.6% 0.		.0%	-4.3%
Average Weekly Verbal Conflict		≥ 100 ≥		80	$ \geq 6$		50 ≥ 40		≥ 2	0.0	≥ 10	$ \geq 0$
Number of Pairs	2	!	4		5		8		18		26	56
MILSTM with PCC	1	9.8% 19		.7% 20.		.9% 16.6%		3.59	%	-0.2%	6 -4.5%	
MILSTM with geo-distance 1		17.8% 15		.2% 18		.4% 16.09		0%	% 7.0%		3.5%	-0.8%
MILSTM with word2vec 2		4.0%	17	.6%	16	.2%	14.3	3%	7.39	%	4.2%	-0.9%
Average Weekly Material Conflict	≥ 80		≥ 60)	≥ 40) ≥	≥ 20	≥	10	≥ 0)	
Number of Pairs			1			8	1	4	24	1	56	
MILSTM with PCC			21.2%		%	8.8%	<u> </u>	.5%	1.	6%	-2.2	2%
MILSTM with geo-distance			21.1%		10.2%		4.6%		0.	0.4% -3.7%		7%
MILSTM with word2ve	с	18.8	8%	5.7%	ó	8.1%	ó 4	.8%	2.	1%	-1.1	1%

- When Average Weekly Event Counts >= 20,
- MILSTM outperforms LSTM for most target pairs.

	Verbal Conflict	Material Conflict	Verbal Cooperation	Material Cooperation	Overall
MILSTM with PCC	3.5%	5.5%	4.4%	-2.6%	2.70%
MILSTM with geo-distance	7.9%	4.6%	3.0%	-2.0%	3.38%
MILSTM with word2vec	7.3%	4.8%	3.4%	-0.6%	3.73%

Table 6.15: RMSE improvement of MILSTM compared to LSTM.

	Verbal Conflict	Material Conflict	Verbal Cooperation	Material Cooperation
MILSTM with PCC	77.8%	71.4%	73.5%	64.3%
MILSTM with geo-distance	88.9%	78.6%	73.5%	50.0%
MILSTM with word2vec	72.2%	71.4%	70.6%	57.1%

Table 6.14: Proportion of better prediction of MILSTM compared to LSTM.

Conclusions

- Related pairs does indeed help the model achieve better performance, especially for predicting pairs with high frequency of interactions (Large Average Weekly event counts).
- MILSTM is not suitable for some country pairs with few international events.
- Overall, the performance of three types of MILSTM is **similar**, but MILSTM with **word2vec(semantic similarity)** is **slightly better**.

Future Work

- 1: Effectiveness
 - Training MILSTM is too slow
 - Combination of basic models (easy to use)
- 2. **Dynamic** Related Pairs Selection
 - Current: Static, Select pairs before training
 - Calculate correlation dynamically with Graph Convolutional Network

References

- [1] Qiao, Fengcai, et al. "Predicting social unrest events withhidden Markov models using GDELT."
- [2] Smith, Emmanuel M., et al. "Predicting the occurrence ofworld news events using recurrent neural networks and auto-regressive moving average models."
- [3] Li, Hao, Yanyan Shen, and Yanmin Zhu. "Stock Price Prediction Using Attention-based Multi-Input LSTM." Asian Conference on Machine Learning. 2018.
- [4] Divyanshi Galla and James Burke. 2018. Predicting Social Unrest Using GDELT.InInternational Conference on Machine Learning and Data Mining in PatternRecognition. Springer, 103–116.
- [5] Kalev Leetaru and Philip A Schrodt. "Gdelt: Global data on events, location, and tone, 1979–2012". In:ISA annual convention. Vol. 2. 4. Citeseer. 2013,pp. 1–49.

Thank you!

Thanks to all staff for their efforts in hosting SAC 2020 in this difficult time!