

E-paper Display Series

GDEW060C01

Dalian Good Display Co., Ltd.

Revision History

Rev.	Issued Date	Revised Contents			
1.0	May.26.2020	Preliminary			
1.1	Jun.08.2020	 In part 10: Modify Reliability test. In part 4: Modify module. 			

TECHNICAL SPECIFICATION CONTENTS

NO.	ITEM			
-	Cover	1		
-	Revision History	2		
-	Contents	3		
1	Application	4		
2	Features	4		
3	Mechanical Specifications	4		
4	Mechanical Drawing of DES module	5		
5	Input/Output Terminals	6		
6	Electrical Characteristics	7		
7	Power on sequence	13		
8	Optical Characteristics	15		
9	Handling, Safety and Environment Requirements	17		
10	Reliability test	18		
11	Point and line standard	20		
12	Packing	21		

1. Over View

The display is a TFT active matrix electrophoretic display, with interface and a reference system design. The 6" active area contains 1072×1448 pixels, and has 2-16 gray levels (1-4 bits) white/black full display capabilities.

2. Features

- Carta high contrast reflective/electrophoretic technology
- 1072 x 1448 resolution
- Ultra wide viewing angle
- Low power consumption
- Pure reflective mode
- Bi-stable
- Commercial temperature range
- Landscape, portrait mode

3. Mechanical Specifications

Parameter	Parameter Specifications		Remark
Screen Size	Size 6		
Display Resolution	1072(H)×1448(V)	Pixel	Dpi: 300
Active Area	90.584(H)×122.356(V)	mm	
Pixel Pitch	0.0845×0.0845	mm	
Pixel Configuration	Square		
Outline Dimension	101.8(H)×138.4(V) ×1.05(D)	mm	
Weight	34.4±1	g	

4. Mechanical Drawing of DES module

5. Input/Output Terminals

5-1) Pin out List

Pin#	Single	Description
1	VNEG	Negative power supply source driver
2	VGL	Negative power supply gate driver
3	VSS	Ground
4	NC	No connection
5	NC	No connection
6	VDD	Digital power supply drivers
7	VSS	Ground
8	XCL	Clock source driver
9	VSS	Ground
10	XLE	Latch enable source driver
11	XOE	Output enable source driver
12	XSTL	Start pulse gate driver
13	D0	Data signal source driver
14	D1	Data signal source driver
15	D2	Data signal source driver
16	D3	Data signal source driver
17	D4	Data signal source driver
18	D5	Data signal source driver
19	D6	Data signal source driver
20	D7	Data signal source driver
21	VCOM	Common connection
22	NC	NO Connection
23	NC	NO Connection
24	NC	NO Connection
25	NC	NO Connection
26	VSS	Ground
27	MODE1	Output mode selection gate driver
28	CKV	Clock gate driver
29	SPV	Start pulse gate driver
30	NC	NO Connection
31	BORDER	Border connection
32	VSS	Ground
33	VPOS	Positive power supply source driver
34	VGH	Positive power supply gate driver

6. Electrical Characteristics

6-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	VDD	-0.3 to +5	V
Positive Supply Voltage	V_{POS}	-0.3 to +18	V
Negative Supply Voltage	$V_{ m NEG}$	-0.3 to -18	V
Max .Drive Voltage Range	V_{POS} - V_{NEG}	36	V
Supply Voltage	VGG	-0.3 to +45	V
Supply Voltage	VEE	-25.0 to +0.3	V
Supply Range	VGG-VEE	-0.3 to +45	V
Operating Temp. range	T_{OPR}	-20 to +60	$^{\circ}$
Storage Temp. range	T_{STG}	-25 to +75	$^{\circ}$

6-2) Panel DC Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Single ground	V _{SS}		-	0	-	V
Logio Cymply Voltogo	V_{DD}		1.7	3.0	3.6	V
Logic Supply Voltage	I_{VDD}	$V_{DD}=3.0V$	-	3.1	7.8	mA
Cata Nagativa Symply	VGL		-20	-	VNEG-4	V
Gate Negative Supply	I_{GL}	VGL=-20V	-	1.2	12	mA
Cata Dagitiya Supply	VGH		7	VGL+42	VGL+45	V
Gate Positive Supply	I_{GH}	VGH=22V	-	1.2	2.5	mA
Corner Nagative Creaty	V _{NEG}		-15.4	-	-10	V
Source Negative Supply	I _{NEG}	$V_{NEG} = -15V$	-	8.5	160	mA
Source Desitive Supply	V_{POS}		10	-	15	V
Source Positive Supply	I_{POS}	$V_{POS} = 15V$	-	8.2	166	mA
Border Supply	V _{com}		-4	Adjusted	-0.2	V
Asymmetry Source	V _{ASYM}	$V_{POS} + V_{NEG} \\$	-800	0	800	mV
Common volto co	V _{COM}		-4	Adjusted	-0.2	V
Common voltage	I_{COM}		-	0.2	-	mA
Panel Power	P		-	285	4680	mW
Standby power panel	P _{STBY}		-	-	1.3	mW

- The maximum power consumption is measured using 85 Hz waveform with following pattern transition: from pattern of repeated 1 consecutive black scan lines followed by 1 consecutive white scan line to that of repeated 1 consecutive white scan lines followed by 1 consecutive black scan lines. (Note 1)
- The Typical power consumption is measured using 85 Hz waveform with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern. (Note 2)
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.

- Vcom is recommended to be set in the range of assigned value $~\pm~0.1~V$
- The maximum I_{COM} inrush current is about 1000 mA
- Customer need to use decoupling capacitors on each power rail at system board as below table to keep EPD driving power stable. (Note 3)

Note 1

The maximum power consumption

Note 2

Note 3

The decoupling capacitors on each power rail at customer system side

Power rail	Capacitors suggested (uF / Tolerance)		
IPOS	4.7 uF x 2pcs / $\pm 10\%$		
INEG	$4.7 \mathrm{uF} \times 2 \mathrm{pcs} / \pm 10\%$		
IGH	$4.7\mathrm{uF}\mathrm{x}\mathrm{1pcs}/\pm\mathrm{10\%}$		
IGL	$4.7\mathrm{uF}\mathrm{x}\mathrm{1pcs}/\pm\mathrm{10\%}$		
IDD	$4.7 \text{uF x 1pcs} / \pm 10\%$		

6-3) Panel AC Characteristics

VDD=3.0V, unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	unit
Clock frequency	fckv	-	-	200	kHz
Minimum "L" clock pulse width	twL	1	-	-	us
Minimum "H" clock pulse width	twH	1	-	-	us
Clock rise time	trckv	-	-	100	ns
Clock fall time	tfckv	-	-	100	ns
SPV setup time	tSU	100	-	twH-100	ns
SPV hold time	tH	100	-	twH-100	ns
Pulse rise time	trspv	-	-	100	ns
Pulse fall time	tfspv	-	_	100	ns
Clock XCL cycle time	tcy	22.22	_	-	ns
D0D7setup time	tsu	11	-	-	ns
D0D7 hold time	th	11	-	-	ns
XSTL setup time	tstls	0.5*tcy	-	0.8*tcy	ns
XSTL hold time	tstlh	0.5*tcy	_	-	ns
XLE on delay time	tLEdly	4.5*tcy	-	-	ns
LEH high-level pulse width (When VDD=1.7V to 2.1V)	tLEW	400	-	-	ns
XLE off delay time	tLEoff	250	-	-	ns
Output setting time to +/-30mV (C load=200pF)	tout	-	-	20	us

Note 1: First gate line on timing . After 5 CKV, gate line be on.

6-4) Refresh rate

The module applied at a maximum refresh rate of 85 Hz.

SPV

Gout1

	Min	Max
Refresh rate	-	85Hz

6-5) Controller Timing

This timing mode is depicted on Figure 1 and Figure 2 and it refers to timing of Source Driver Output Enable (SDOE) and Gate Driver Clock (GDCK). Note, that in this mode LGON follows GDCK timing.

Figure 1 Line Timing in Mode 3

Figure 2 Frame Timing in Mode 3

Mode	3					
SDCK(MHz)	40					
Pixel per SDCK	4					
Line Parameters	LSL	LBL	LDL	LEL	GDCK_STA	LGONL
(SDCK)	14	8	362	51	100	281
Line Parameters	1	-	-	1	-	-
(us)	0.35	0.20	9.05	1.28	2.5	7.03
Frame parameters	FSL	FBL	FDL	FEL	-	FR(Hz)
(lines)	2	4	1072	4	-	84.99
Frame parameters					-	-
(us)	21.75	43.5	11658	43.5	-	-

Note 1: For parameters definition, see Section 6. Active Matrix Electronic Paper Display Timings

Note 2 : For Isis Controller GDCK_STA and LGONL are not settable parameters ; GDCK_STA=LBL, LGONL=LDL+0.5

Note 3: For Freescale SoC GDOE Low pulse represent FSL and GDSP pulses with the first period of FBL

Note 4:

SDCLK = XCL

 $SDD[7:0] = D0 \sim D7$

 $SDCE_L(in) = XSTL$

GDCK = CKV

GDSP = SPV

GDOE = Mode 1

SDOE = XOE

7. Power on sequence

Power Rails must be sequenced in following order:

- 1. VSS→VDD→VNEG→VPOS (Source driver) →VCOM
- 2. VSS→VDD→VGL→VGH(Gate drive)

POWER ON

	Min	Max
Tsd	30us	-
Tde	100us	-
Тер	1000us	-
Tpv	100us	-
Tvd	100us	-
Ten	0us	-
Tng	1000us	-
Tgv	100us	-

	Min	Max	Remark
Tdv	100us	-	-
Tvg	0us	-	-
Tgp	0us	-	-
Tpn	0us	-	-
Tne	0us	-	-
Ted	0.5s	-	Discharged point @ -7.4 Volt

Note 1: Supply voltages decay through pull-down resistors.

Note 2: Turn off VGL power after VNEG and VPOS power discharged to GND state.

Note 3: VGL must remain negative of Vcom during decay period.

8. Optical characteristics

8-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

 $T=25^{\circ}C$

SYMBOL	PARAMETER	METER CONDITIONS		ТҮРЕ	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 8-1
Gn	N _{th} Grey Level	-	-	$DS+(WS-DS) \times n/(m-1)$	-	L*	-
CR	Contrast Ratio	indoor	8		-	-	-
T _{update}	Update time	25℃	-	1	-	Sec	-
Panel's life		-20℃~60℃		1000000 times or 5 years	-	-	Note 8-2

WS: White state; DS: Dark state, Gray state from Dark to White: DS, G1, G2..., Gn..., Gm-2, WS

m: 4, 8, 16 when 2, 3, 4 bit mode.

Note 8-1: Luminance meter: Eye – One Pro Spectrophotometer

Note 8-2: Each update interval time should be minimum at 180 seconds.

Note 8-3: When work in temperature 60 degree, suggest update once every 1hours.

9-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)():

R1: white reflectance Rd: dark reflectance

CR = R1/Rd

8-3) Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \; Factor \; _{white \; board} \quad \; x \; (L \; _{center} \; / \; L \; _{white \; board} \;)$

 L_{center} is the luminance measured at center in a white area (R=G=B=1) . $L_{white \, board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9. Handling, Safety and Environmental Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status					
Product specification	The data sheet contains final product specifications.				
	Limiting values				

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product environmental certification	
RoHS	

10. Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperatu re Operation	T = 60°C, RH=20% for 240 hrs	When the experimental cycle finished, the DES samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As DESs return to room temperature, testers will observe the appearance, and test electrical and optical	When experiment finished, the DES must meet electrical and optical performance standards.
2	Low-Temperatu re Operation	T = -20°C for 240 hrs	performance based on standard # IEC 60 068-2-2Bp. When the experimental cycle finished, the DES samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As DESs return room temperature, testers will observe the appearance, and test electrical and optical performance based on standard # IEC 60 068-2-2Ab.	When experiment finished, the DES must meet electrical and optical performance standards.
3	High-Temperatu re Storage	$T = +70^{\circ}\text{C}$, RH=20% for 240 hrs Test in white pattern	When the experimental cycle finished, the DES samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As DESs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard # IEC 60 068-2-2Bp.	When experiment finished, the DES must meet electrical and optical performance standards.
4	Low-Temperatu re Storage	T = -25°C for 240 hrs Test in white pattern	When the experimental cycle finished, the DES samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As DESs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard # IEC 60 068-2-2Ab	When experiment finished, the DES must meet electrical and optical performance standards.
5	High Temperature, High- Humidity Operation	T=+40°C, RH=90% for240hrs	When the experimental cycle finished, the DES samples will be taken out from the environmental chamber and set aside for a few minutes. As DESs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard # IEC 60 068-2-3CA.	When experiment finished, the DES must meet electrical and optical performance standards.
6	High Temperature, High- Humidity Storage	T=+60°C, RH=80% for 240 hrs Test in white pattern	When the experimental cycle finished, the DES samples will be taken out from the environmental chamber and set aside for a few minutes. As DESs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard # IEC 60 068-2-3CA.	When experiment finished, the DES must meet electrical performance standards.
7	Temperature Cycle	[-25°C 30mins]→ [+70°C, RH=20% 30mins],	1. Samples are put in the Temp & Humid. Environmental Chamber. Temperature cycle starts with -25℃, storage period 30 minutes. After 30 minutes, it needs 30min to	When experiment finished, the DES must meet electrical

		70cycles,	let temperature rise to 75°C. After 30min, temperature	and optical
		Test in white	will be adjusted to 75°C, RH=20% and storage period	performance
		pattern	is 30 minutes. After 30 minutes, it needs 30min to let	standards.
			temperature rise to -25 $^{\circ}$ C. One temperature cycle	
			(2hrs) is complete.	
			2. Temperature cycle repeats 70 times.	
			3. When 70 cycles finished, the samples will be taken out	
			from experiment chamber and set aside a few minutes.	
			As DESs return to room temperature, tests will	
			observe the appearance, and test electrical and optical	
			performance based on standard # IEC 60 068-2-14NB.	
UV exposure		765 W/m ² for 168	Standard # IEC 60 068-2-5 Sa	
0	Resistance	hrs,40°C	Standard # IEC 00 008-2-3 Sa	
9	Electrostatic discharge	Machine model:		
		+/-250V,	Standard # IEC61000-4-2	
		0Ω,200pF		
	Package Vibration	1.04G,Frequency:		
		10~500Hz		
10		Direction : X,Y,Z	Full packed for shipment	
		Duration:1hours		
		in each direction		
	Package Drop	Drop from height		
		of 122 cm on		
11		Concrete surface		
		Drop sequence:1	Full packed for shipment	
11	Impact	corner, 3edges,	r un packed for simplifeit	
		6face		
		One drop for		
		each.		

Actual EMC level to be measured on customer application.

Note: (1) The protective film must be removed before temperature test.

(2) In order to make sure the display module can provide the best display quality, the update should be made after putting the display module in stable temperature environment for 4 hours at 25° C.

11. Point and line standard

Shipment Inseption Standard

Part-A: Active area Part-B: Border area

Equipment: Electrical test fixture, Point gauge

Outline dimension:

 $101.8(H) \times 138.4(V) \times 1.05(D)$

	Cinc. Inin							
	Temperature	Humidity	Illuminan	ice	Distance	Time	Angle	
Environment	23±2℃	55± 5%RH	1200~ 1500Lu		300 mm	35 Sec		
Name	Causes	Spot size		Part-A	Part-B			
	D/W	D ≤ 0.25mm				Ignore	Ignore	
G 4	B/W spot in glass or	0.25 mm $< D \leqslant 0.4$ mm				4		
Spot	protection sheet,	0.4 mm $< D \leqslant 0.5$ mm				2		
	foreign mat. Pin hole	0.5mm < D				0		
	Scratch on glass or	Leng	gth		Width	Part-A		
Scratch or line defect	Scratch on FPL or	L ≤3mm		W	≤0.1 mm	Ignore	Ionoso	
Scratch of line defect	Particle is Protection	3 mm < L	≤ 6mm	0.1 mm	<w≤ 0.2mm<="" td=""><td>2</td><td colspan="2" rowspan="2">Ignore</td></w≤>	2	Ignore	
	sheet.	6 mm	< L	0.2	2mm < W	0		
		D1, D2 ≤ 0.3 mm		Ignore	Ignore			
Air bubble	Air bubble	0.3 mm < D1,D2 ≤ 0.5mm				4		
		0.5mm < D1, D2				0		
Side Fragment			× ×					
	X≤6mm, Y≤1mm & display is ok, Ignore							

Unit: mm

Remarks: Spot define: That only can be seen under WS or DS defects.

Any defect which is visible under gray pattern or transition process but invisible under black and white is disregarded.

Here is definition of the "Spot" and "Scratch or line defect".

Spot: W > 1/4L Scratch or line defect: W $\leq 1/4L$

Definition for L/W and D (major axis)

FPC bonding area pad doesn't allowed visual inspection.

Note: AQL = 0.4

12. Packing TBD