

A new approach for digital power control

Using SMED & STLUX

Classic Analog Controller

Classic Digital Controller

Re-thinking Digitizing

Classic digital control: Digitizing the analog process

Different approach: State machine

Is it over current?
Is it over voltage?
Does it reach the timer?

Move real time signal into SMED

State Machine Event Driven(SMED)

Thinking with SMED

- Use time instead of the analog signals (when is possible)
- Divide the circuit functions that you need in three categories:
 - CCE = Cycle by Cycle Event: ZCD, top current, protection (current or voltage), ...
 - HFE = High Frequency Control Loop Event: the control loop regulation time
 - LFE = Low Frequency Control Loop Event: low signal variation
- Map the CC event directly into SMED using:
 - → the input events and the SMED states
- Map the HF event using an HIGH priority interrupt
- Map the LF event on the main code, when core is free
- Use wfi() instruction when core wait an event to improve current consumption and decrease the interrupt service time

STLUX385A meets Power Conv. requirements

- SIX configurable PWM State Machine Event Driven (SMED) 1.3ns resolution (with automatic dithering) – 10.4 native.
 - 4 Analog Comparators and 6 fast digital inputs synchronized with 96MHz clock
- 8 channels 10 bit ADC with programmable op amp GAIN resolution), 2.4 µs conversion time,
- -40 °C to 105 °C temperature range
- TSSOP38

STLUX digital power converters are the right solution for digital power conversion applications.

ST programmable SMED peripherals + Switch matrix and 8 bits ST core provide flexible and complete power management functionalities in a single IC.

By providing high–speed PWMs (96MHz), dedicated 8ch ADCs with selectable gain, STLUX exploits system performance and reliability

Connection Switch Matrix – Input Events

CONNECTION MATRIX configuration

Con-box Interconnection Matrix					
SMED	Event input	Matrix selection			
		00	01	10	11
0	0	CP0	DIG0	DIG2	DIG5
	1	CP1	DIG0	DIG3	CP3
	2	CP2	DIG1	DIG4	SW0
1	0	CP1	DIG1	DIG3	DIG0
	1	CP2	DIG1	DIG4	CP3
	2	CP0	DIG2	DIG5	SW1
2	0	CP2	DIG2	DIG4	DIG1
	1	CP0	DIG2	DIG5	PWM0
	2	CP1	DIG3	DIG0	SW2
3	0	CP0	DIG3	DIG5	DIG2
	1	CP1	DIG3	DIG0	PWM1
	2	CP2	DIG4	DIG1	SW3
4	0	CP1	DIG4	DIG0	DIG3
	1	CP2	DIG4	DIG1	PWM5
	2	CP0	DIG5	DIG2	SW4
5	0	CP2	DIG5	DIG1	DIG4
	1	CP0	DIG5	DIG2	CP3
	2	CP1	DIG0	DIG3	SW5

- MSC_CBOXSn register in SMEDn defines the EVx connection (field Conb_sx)
- Each SMED can be connected to all CPs and DIGINs
- Each SMED can be triggered by 1 SW event
- Some SMEDs can be connected to other smeds.

State Machine - Complete

Each state has 3 configuration registers to program

- Conditions when the machine leaves the current state and what is the next state
- Actions to be done when leaving the state (counter reset and/or output pin level)

STLUX platform

SMED Clock Sources

Each SMED with independent clock

- 96MHz PLL+ programmable Dithering
 - 1.3ns average resolution
 - 13Hz average frequency step @ 100kHz

Analog Comparators

- Up to 4 independent comparators
- Very fast propagation delay (50 ns max)
- Internal 4 bit DAC reference: 16 values selectable from 0 to 1.23 V (bandgap reference)
- One comparator available with external reference

Analog to Digital Converter

- 8 channels
- 10 bit resolution with gain (x1 or x4)
- 300 μ V resolution (G = x4)
- Conversion time: 2.4 μs (single mode), 3 μs (circular mode)
- Input resistance: more then 10MΩ
- Reference internally generated from the band-gap => independent on supply voltage => no need for very accurate voltage supply

Main features:

- Bi-phase Manchester asynchronous serial data format (6-9V)
- Programmable 1.2kHz, 2.4kHz and 4.8 kHz transmission rate (±10%)
- Bi-directional communications in four 8-bit forward/backward data registers
- Variable 16-18bit and 24 bit forward message length are supported
- 153.6Khz internal RC can be used in low power (standby) mode for Dali peripheral
- 500ms (±10%) interface failure detection to monitor receiver line timeout
- Maskable interrupt
- Dali_rx, Dali_tx polarity insensitive signal lines
- Configurable Noise Rejection Fitler
 - remove any RX bounce, glitch or spurious pulse

5//

Hardware DALI

Standard references – IEC 62386 – xxx:

- 101 general requirements of systems
- 102 general requirements of control gears
- 201 fluorescent lamps
- 202 emergency lighting
- 203 discharge lamp (not Fluorescent)
- 204 LV Halogen
- 205 supply voltage for incandescent lamps
- 206 Conversion from digital to DC voltage
- 207 LED modules
- 208 Switching function (on/off devices ndr)
- 209 Color LED
- 210 Sequencer

Application Examples

A Simple Power Factor Correction Implementation

Analog Transition Mode PFC

Digital PFC control

State Transition for PFC

Example Waveforms for States

Thank you for your attention

