# 40.016: Analytics Edge Week 5 Lecture 1

## MODEL ASSESSMENT AND MODEL SELECTION: SUBSET SELECTION

Term 6, 2020



#### **Outline**

- Model assessment and Model selection
- Bias-Variance trade-off
- Subset Selection

- Cross validation
- LASSO

#### Model assessment and Model selection

- We will use recent ideas in regression and classification.
- Mostly developed for large data sets with many predictors.
- GOAL prediction accuracy
  - model interpretability

## Big data

- n: # observations.
- p: predictors, attributes.
- Classical statistics: n >> p.
- But sometimes:  $n \sim p$  or n << p.
- cancer dataset
  - many many genes (potential predictors)
  - a very small sample
- High flexibility in model selection.







#### Bias-Variance trade-off

Think of a linear regression model. The true model is:

$$Y = f(X) + \epsilon$$

where  $\epsilon$  is a random error term with mean 0 and variance  $\sigma^2$ .

- Suppose we use least squares minimization to find predictor  $\hat{f}$  for f.
- lackloais We use training set data to find  $\hat{f}$  but expect good performance out-of-sample.
- Let  $(X_0, Y_0)$  be a (test) data point.
- We want low test MSE or low test RSS (residual sum of squares):

Test MSE = 
$$\mathbb{E}(Y_0 - \hat{f}(X_0))^2$$
.

## Balancing bias and variance



Das

## Balancing bias and variance



Left: Linear regression fit, Right: Higher degree polynomial fit

## Balancing bias and variance



Blue line: linear regression, Purple line: higher degree polynomial, Red curve: actual function.

## Bias and Variance

#### Bias-Variance trade-off

We can check that:

$$\begin{split} \mathbb{E}(Y_0 - \hat{f}(X_0))^2 &= \mathsf{Var}(\hat{f}(X_0)) + \mathbb{E}\left[ (f(X_0) - \hat{f}(X_0))^2 \right] + \sigma^2 \\ &= \mathsf{Variance of estimator} \\ &+ \mathsf{Squared Bias} \\ &+ \mathsf{Variance of error term (irreducuble errror)}. \end{split}$$

- Complex model: typically high variance and low bias.
- Simple model: Low variance but high bias.
- Find the right balance.

## Training set error and test set error



#### Subset selection

- We have n observations, and p predictor variables.
- If  $n \approx p$  or n < p: risk of overfitting.
- Pick a selection of important explanatory variable from the p available..
- Solution space: 2<sup>p</sup> subsets.

#### Best subset selection

- Let  $M_0$  denote a null model with no predictors (only the intercept).
- For  $k = 1, \ldots, p$ , do:
  - Fit all  $\binom{p}{k}$  models that contains exactly k predictors and the intercept.
  - ullet Pick the best among these models by choosing the model with the minimum sum of squared errors for linear regression or maximum log-likelihood for logistic regression. Call this model  $M_k$ .
- Choose the best model among  $M_0, M_1, ..., M_p$  using cross-validation errors or adjusted R-squared (linear regression) or AIC (logistic regression).

Complexity is  $O(2^p)$ : we need to solve  $2^p$  linear or logistic regressions.

### Forward stepwise selection

- Let  $M_0$  denote a null model with no predictors (only the intercept).
- For  $k = 1, \ldots, p$ , do:
  - Fit all models that augment the predictors in model  $M_{k-1}$  with exactly one more predictor (a total of p-k+1 models are fit in step k).
  - ullet Pick the best among these models by choosing the model with the minimum sum of squared errors for linear regression or maximum log-likelihood for logistic regression. Call this model  $M_k$ .
- Choose the best model among  $M_0$ ,  $M_1$ , ...,  $M_p$  using cross-validation errors or adjusted R-squared (linear regression) or AIC (logistic regression).

Complexity is  $O(p^2)$ : but there is no guarantee that this will always find the optimal solution.

## Backward stepwise selection

- We start with the subset including all variables.
- We drop variables one at a time rather than adding.
- Has the same complexity as forward stepwise selection.
- Solutions from backward & forward methods can be different.
- Solutions of both can differ from the best subset selection solution.

Complexity is  $O(p^2)$ : no guarantee of optimality.

#### **Cross-Validation**

- Model assessment technique.
- A model is considered good if it has a low test set error (TEST MSE).
- We often do not have a large test set to validate our model.
- One method of model assessment here is Cross Validation.

## Validation set approach

- Divide the data randomly into 2 subsets (often roughly of equal size): the *training set* and the *validation set* or *hold-out set*.
- ② Use the training set to fit the model, and the validation set to predict and then estimate Mean squared error (MSE).

#### Potential drawbacks:

- The method depends on the points chosen, hence different choices may lead to starkly different estimated MSEs.
- Since we are only using a subset of the available data set, the performance of the model is worse than it would be on a larger data set. And the error estimates tend to be larger.

#### LOOCV: Leave out one cross validation

Compensates for the drawbacks of the Validation set approach yet keeping the same spirit.

- **1** For every  $i \in I = \{1, \dots, n\}$ , train the model on the set  $I \setminus \{i\}$ .
- ② Use this model to predict the *i*th response, say it is  $\hat{y}_i$ . and compute  $MSE_i = (y_i \hat{y}_i)^2$ .
- Compute cross validation error

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathsf{MSE}_i.$$

#### Advantages:

- This method has far less bias, since we are fitting the model to n-1 of the points.
- 2 Does not change depending on the random sample like the validation set method.

The only potential drawback is that it may be computationally intensive: we need to fit n models.

#### k-fold cross validation

- ① Divide the data randomly into k subsets (folds) of (roughly) equal size.
- 2 Start with the first fold as a validation set and use the remaining k-1 folds to fit the model.
- 3 Compute the error of the fitted model in the held-out fold.
- **4** Repeat steps 2 and 3 by using the second, third and so on folds as the hold-out fold with the remaining k-1 folds to fit the model.
- f 6 Average the error across all the k fitted models to estimate the cross-validation error.

Some of the commonly used choices for k are 5 or 10.

When k = n, this reduces to LOOCV.

#### k-fold cross validation

