1

2

3

1

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, in the application:

What is claimed is:

- 1 1. (original) A method for inhibiting the corrosion of metals embedded in a 2 cementitious material, said cementitious material manufacturable from a process 3 comprising the activities of:
- 4 manufacturing lithium nitrate; and 5 providing said lithium nitrate for addition to said cementitious material at an effective dosage rate. 6
- 2. (original) The method of claim 1, wherein said effective dosage rate is 1 2 between about 0.01 gram moles of lithium nitrate per cubic foot of cementitious material and about 100 gram moles of lithium nitrate per cubic foot of cementitious 3 material. 4
- 3. (original) The method of claim 1, wherein said effective dosage rate is 1 2 between about 0.01 gram moles of lithium nitrate per cubic foot of cementitious material and about 0.1 gram moles of lithium nitrate per cubic foot of cementitious 3 4 material.
 - 4. (original) The method of claim 1, wherein said effective dosage rate is between about 0.1 gram moles of lithium nitrate per cubic foot of cementitious material and about 1 gram moles of lithium nitrate per cubic foot of cementitious material.
- 5. (original) The method of claim 1, wherein said effective dosage rate is 2 between about 1 gram moles of lithium nitrate per cubic foot of cementitious material 3 and about 10 gram moles of lithium nitrate per cubic foot of cementitious material.

1 6. (original) The method of claim 1, wherein said effective dosage rate is 2 between about 10 gram moles of lithium nitrate per cubic foot of cementitious material and about 100 gram moles of lithium nitrate per cubic foot of cementitious material. 3 1 7. (original) The method of claim 1, wherein said effective dosage rate is 2 about 0.815 gram moles of lithium nitrate per cubic foot of cementitious material. 1 8. (original) The method of claim 1, wherein said lithium nitrate is provided as 2 a solid. 9. (original) The method of claim 1, wherein said lithium nitrate is provided in 1 2 an aqueous solution. 1 10. (original) The method of claim 1, wherein said cementitious material is 2 concrete. 1 11. (original) The method of claim 1, wherein said cementitious material is 2 grout. 12. The method of claim 1, wherein said cementitious material is mortar. 1 13. (original) The method of claim 1, wherein said cementitious material is 1 2 pozzalanic cement. 1 14. (original) The method of claim 1, wherein said cementitious material is at 2 least one of cement, grout, mortar, and pozzalanic cement, or any combination thereof. 15. (original) A method for inhibiting the corrosion of metals embedded in 1

2	concrete or any other cementitious material, said concrete or cementitious material
3	manufacturable from a process comprising the activities of:
4	obtaining lithium nitrate; and
5	mixing said lithium nitrate with said concrete or cementitious material at an
6	effective dosage rate.
1	16 (wining) The weatherd of claims 15 subscening and officiative decays note in
1	16. (original) The method of claim 15, wherein said effective dosage rate is
2	between about 0.01 gram moles of lithium nitrate per cubic foot of concrete or
3	cementitious material and about 100 gram moles of lithium nitrate per cubic foot of
4	concrete or cementitious material.
1	17. (original) The method of claim 15, wherein said effective dosage rate is
2	between about 0.01 gram moles of lithium nitrate per cubic foot of concrete or
3	cementitious material and about 0.1 gram moles of lithium nitrate per cubic foot of
4	concrete or cementitious material.
1	18. (original) The method of claim 15, wherein said effective dosage rate is
2	between about 0.1 gram moles of lithium nitrate per cubic foot of concrete or
3	cementitious material and about 1 gram moles of lithium nitrate per cubic foot of
4	concrete or cementitious material.
1	19. (original) The method of claim 15, wherein said effective dosage rate is
2	between about 1 gram moles of lithium nitrate per cubic foot of concrete or
3	cementitious material and about 10 gram moles of lithium nitrate per cubic foot of
4	concrete or cementitious material.
	20 (
1	20. (original) The method of claim 15, wherein said effective dosage rate is
2	between about 10 gram moles of lithium nitrate per cubic foot of concrete or
3	cementitious material and about 100 gram moles of lithium nitrate per cubic foot of

- 4 concrete or cementitious material.
- 1 21. (original) The method of claim 15, wherein said effective dosage rate is
- 2 about 0.815 gram moles of lithium nitrate per cubic foot of concrete or cementitious
- 3 material.
- 1 22. (original) A method for inhibiting the corrosion of metals embedded in
- 2 grout, said grout manufacturable from a process comprising the activities of:
- 3 obtaining lithium nitrate; and
- 4 mixing said lithium nitrate with said grout at an effective dosage rate.
- 1 23. (original) The method of claim 22, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of grout and about 80
- 3 gram moles of lithium nitrate per cubic foot of grout.
- 1 24. (original) The method of claim 22, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of grout and about 82
- 3 gram moles of lithium nitrate per cubic foot of grout.
- 1 25. (original) The method of claim 22, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of grout and about 100
- 3 gram moles of lithium nitrate per cubic foot of grout.
- 1 26. (original) The method of claim 22, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of grout and about 0.1
- 3 gram moles of lithium nitrate per cubic foot of grout.
- 1 27. (original) The method of claim 22, wherein said effective dosage rate is
- 2 between about 0.1 gram moles of lithium nitrate per cubic foot of grout and about 1

- 3 gram moles of lithium nitrate per cubic foot of grout.
- 1 28. (original) The method of claim 22, wherein said effective dosage rate is
- 2 between about 1 gram moles of lithium nitrate per cubic foot of grout and about 10
- 3 gram moles of lithium nitrate per cubic foot of grout.
- 1 29. (original) The method of claim 22, wherein said effective dosage rate is
- 2 between about 10 gram moles of lithium nitrate per cubic foot of grout and about 100
- 3 gram moles of lithium nitrate per cubic foot of grout.
- 1 30. (original) The method of claim 22, wherein said effective dosage rate is
- 2 about 0.815 gram moles of lithium nitrate per cubic foot of grout.
- 1 31. (original) A method for inhibiting the corrosion of metals embedded in
- 2 mortar, said mortar manufacturable from a process comprising the activities of:
- 3 obtaining lithium nitrate; and
- 4 mixing said lithium nitrate with said mortar at an effective dosage rate.
- 1 32. (original) The method of claim 31, wherein said effective dosage rate is
- between about 0.01 gram moles of lithium nitrate per cubic foot of mortar and about 80
- 3 gram moles of lithium nitrate per cubic foot of mortar.
- 1 33. (original) The method of claim 31, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of mortar and about 82
- 3 gram moles of lithium nitrate per cubic foot of mortar.
- 1 34. (original) The method of claim 31, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of mortar and about
- 3 100 gram moles of lithium nitrate per cubic foot of mortar.

1	35. (original) The method of claim 31, wherein said effective dosage rate is
2	between about 0.01 gram moles of lithium nitrate per cubic foot of mortar and about
3	0.1 gram moles of lithium nitrate per cubic foot of mortar.
1 .	36. (original) The method of claim 31, wherein said effective dosage rate is
2	between about 0.1 gram moles of lithium nitrate per cubic foot of mortar and about 1
3	gram moles of lithium nitrate per cubic foot of mortar.
1	37. (original) The method of claim 31, wherein said effective dosage rate is
2	between about 1 gram moles of lithium nitrate per cubic foot of mortar and about 10
3	gram moles of lithium nitrate per cubic foot of mortar.
1	38. (original) The method of claim 31, wherein said effective dosage rate is
2	between about 10 gram moles of lithium nitrate per cubic foot of mortar and about 100
3	gram moles of lithium nitrate per cubic foot of mortar.
1	39. (original) The method of claim 31, wherein said effective dosage rate is
2	about 0.815 gram moles of lithium nitrate per cubic foot of mortar.
1	40. (original) A method for inhibiting the corrosion of metals embedded in
2	cementitious material, said cementitious material manufacturable from a process
3	comprising the activities of:
4	obtaining lithium nitrate; and
5	applying said lithium nitrate to the surface of said cementitious material at an
6	effective dosage rate.
1	41. (original) The method of claim 40, wherein said effective dosage rate is
2	between about 0.01 gram moles of lithium nitrate per cubic foot of cementitious

3	material and about 100 gram moles of lithium nitrate per cubic foot of cementitious
4	material.
1	42. (original) The method of claim 40, wherein said effective dosage rate is
2	between about 0.01 gram moles of lithium nitrate per cubic foot of cementitious
3	material and about 0.10 gram moles of lithium nitrate per cubic foot of cementitious
4	material.
1	43. (original) The method of claim 40, wherein said effective dosage rate is
2	between about 0.1 gram moles of lithium nitrate per cubic foot of cementitious material
3	and about 1 gram moles of lithium nitrate per cubic foot of cementitious material.
1	44. (original) The method of claim 40, wherein said effective dosage rate is
2	between about 1 gram moles of lithium nitrate per cubic foot of cementitious material
3	and about 10 gram moles of lithium nitrate per cubic foot of cementitious material.
1	45. (original) The method of claim 40, wherein said effective dosage rate is
2	between about 10 gram moles of lithium nitrate per cubic foot of cementitious material
3	and about 100 gram moles of lithium nitrate per cubic foot of cementitious material.
1	46. (original) The method of claim 40, wherein said effective dosage rate is
2	about 0.815 gram moles of lithium nitrate per cubic foot of cementitious material.
1	47. (original) A method for inhibiting the corrosion of metals in embedded in
2	cementitious material, said cementitious material manufacturable from a previously
3	heated Portland cement composition, said Portland cement manufacturable from a
4	process comprising the activities of:
5	obtaining lithium nitrate; and
6	admixing said lithium nitrate with said Portland cement composition at an

- 7 effective dosage rate.
- 1 48. (original) The method of claim 47, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of cement and about
- 3 100 gram moles of lithium nitrate per cubic foot of cement.
- 1 49. (original) The method of claim 47, wherein said effective dosage rate is
- 2 between about 0.01 gram moles of lithium nitrate per cubic foot of cement and about
- 3 0.1 gram moles of lithium nitrate per cubic foot of cement.
- 1 50. (original) The method of claim 47, wherein said effective dosage rate is
- 2 between about 0.1 gram moles of lithium nitrate per cubic foot of cement and about 1
- 3 gram moles of lithium nitrate per cubic foot of cement.
- 1 51. (original) The method of claim 47, wherein said effective dosage rate is
- 2 between about 1 gram moles of lithium nitrate per cubic foot of cement and about 10
- 3 gram moles of lithium nitrate per cubic foot of cement.
- 1 52. (original) The method of claim 47, wherein said effective dosage rate is
- 2 between about 10 gram moles of lithium nitrate per cubic foot of cement and about 100
- 3 gram moles of lithium nitrate per cubic foot of cement.
- 1 53. (original) The method of claim 47, wherein said effective dosage rate is
- 2 about 0.815 gram moles of lithium nitrate per cubic foot of cement.
- 1 54. (original) A method for inhibiting the corrosion of metals embedded in
- 2 cementitious material, said cementitious material comprising a Portland cement
- 3 composition, said Portland cement composition creatable from a method comprising
- 4 the activities of:

5	obtaining lithium nitrate;
6	admixing said lithium nitrate with said Portland cement in an amount sufficient
7	to inhibit the corrosion of metals; and
8	heating said material to form a Portland cement clinker.
1	55. (original) The method of claim 54, wherein said sufficient amount
2	provides a molar ratio of lithium to sodium equivalent in the resultant cement clinker
3	of between about 0.01:1 to about 10:1.
1	56. (original) The method of claim 54, wherein said sufficient amount
2	provides a molar ratio of lithium to sodium equivalent in the resultant cement clinker
3	of between about 0.01:1 to about 0.1:1.
1	57. (original) The method of claim 54, wherein said sufficient amount
2	provides a molar ratio of lithium to sodium equivalent in the resultant cement clinker
3	of between about 0.1:1 to about 1:1.
1	58. (original) The method of claim 54, wherein said sufficient amount
2	provides a molar ratio of lithium to sodium equivalent in the resultant cement clinker
3	of between about 1:1 to about 5:1.
1	59. (original) The method of claim 54, wherein said sufficient amount
2	provides a molar ratio of lithium to sodium equivalent in the resultant cement clinker
3	of between about 5:1 to about 10:1.
1	60. (original) A composition comprising:
2	a concrete or cementitious material comprising between about 0.01 gram moles
3	of lithium nitrate per cubic foot of concrete to about 100 gram moles of lithium nitrate
4	per cubic foot of concrete or cementitious material.

1	61. (original) The composition of claim 60, wherein said concrete or
2	cementitious material comprises between about 0.01 gram moles of lithium nitrate per
3	cubic foot of concrete to about 0.1 gram moles of lithium nitrate per cubic foot of
4	concrete or cementitious material.
1	62. (original) The composition of claim 60, wherein said concrete or
2	cementitious material comprises between about 0.1 gram moles of lithium nitrate per
3	cubic foot of concrete to about 1 gram moles of lithium nitrate per cubic foot of
4	concrete.
1	63. (original) The composition of claim 60, wherein said concrete or
2	cementitious material comprises between about 1 gram moles of lithium nitrate per
3	cubic foot of concrete to about 10 gram moles of lithium nitrate per cubic foot of
4	concrete or cementitious material.
_	
1	64. (original) The composition of claim 60, wherein said concrete or
2	cementitious material comprises between about 10 gram moles of lithium nitrate per
3	cubic foot of concrete to about 100 gram moles of lithium nitrate per cubic foot of
4	concrete or cementitious material.
1	65. (currently amended) The method-composition of claim 60, wherein said
2	concrete or cementitious material comprises about 0.815 gram moles of lithium nitrate
3	per cubic foot of grout or cementitious material.
1	66. (original) A composition comprising:
2	a grout comprising between about 0.01 gram moles of lithium nitrate per cubic
3	foot of grout to about 100 gram moles of lithium nitrate per cubic foot of grout.

1		67. (original) The composition of claim 66, wherein said grout comprises
2		between about 0.01 gram moles of lithium nitrate per cubic foot of grout and about 80
3		gram moles of lithium nitrate per cubic foot of grout.
1		68. (original) The composition of claim 66, wherein said grout comprises
2		between about 0.01 gram moles of lithium nitrate per cubic foot of grout and about 82
3		gram moles of lithium nitrate per cubic foot of grout.
1		69. (currently amended) The method composition of claim 66, wherein grout
2		comprises between about 0.01 gram moles of lithium nitrate per cubic foot of grout and
3		about 0.1 gram moles of lithium nitrate per cubic foot of grout.
1	1	70. (currently amended) The method composition of claim 66, wherein said
2	•	grout between about 0.1 gram moles of lithium nitrate per cubic foot of grout and about
3		1 gram moles of lithium nitrate per cubic foot of grout.
1	ŀ	71. (currently amended) The method composition of claim 66, wherein said
2	1	grout comprises between about 1 gram moles of lithium nitrate per cubic foot of grout
3		and about 10 gram moles of lithium nitrate per cubic foot of grout.
1	1	72. (currently amended) The methodcomposition of claim 66, wherein said
2	•	grout comprises between about 10 gram moles of lithium nitrate per cubic foot of grout
3		and about 100 gram moles of lithium nitrate per cubic foot of grout.
1	1	73. (currently amended) The method composition of claim 66, wherein said
2	ı	grout comprises about 0.815 gram moles of lithium nitrate per cubic foot of grout.
1		74. (original) A composition comprising:
2		a mortar comprising between about 0.01 gram moles of lithium nitrate per cubic

3		foot of mortar to about 100 gram moles of lithium nitrate per cubic foot of mortar.
1		75. (original) The composition of claim 74, wherein said mortar comprises
2		between about 0.01 gram moles of lithium nitrate per cubic foot of mortar and about 80
3		gram moles of lithium nitrate per cubic foot of mortar.
1		76. (original) The composition of claim 74, wherein said mortar comprises
2		between about 0.01 gram moles of lithium nitrate per cubic foot of mortar and about 82
3		gram moles of lithium nitrate per cubic foot of mortar.
1		77. (currently amended) The method composition of claim 74, wherein mortar
2	,	comprises between about 0.01 gram moles of lithium nitrate per cubic foot of mortar
3		and about 0.1 gram moles of lithium nitrate per cubic foot of mortar.
1		78. (currently amended) The method composition of claim 74, wherein said
2	,	mortar between about 0.1 gram moles of lithium nitrate per cubic foot of mortar and
3		about 1 gram moles of lithium nitrate per cubic foot of mortar.
1		79. (currently amended) The method composition of claim 74, wherein said
2	١.	mortar comprises between about 1 gram moles of lithium nitrate per cubic foot of
3		mortar and about 10 gram moles of lithium nitrate per cubic foot of mortar.
1	1	80. (currently amended) The method composition of claim 74, wherein said
2	1	mortar comprises between about 10 gram moles of lithium nitrate per cubic foot of
3		mortar and about 100 gram moles of lithium nitrate per cubic foot of mortar.
1		81. (currently amended) The method composition of claim 74, wherein said
2	'	mortar comprises about 0.815 gram moles of lithium nitrate per cubic foot of mortar.

- 1 82. (original) A composition comprising:
- 2 a cementitious material comprising an effective amount lithium nitrate per
- 3 cubic foot of cementitious material for inhibiting the corrosion of metals embedded in
- 4 cementitious material.