Zaman Serileri - Basit Zaman Serisi Modelleri

Zaman Serileri Analizi Ekonometrik Modelleme ve Zaman Serileri Analizi

Dr. Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

27 Şubat 2023

1/21

Taslak

Motivasyon

- Zaman Serisi Modelleri: Örnekler
 - Statik Modeller
 - FDL Modelleri

Motivasyon

- Bu bölümde zaman serisi analizi uygulamalarında yararlı olan ve SEKK Yöntemi ile kolayca tahmin edilebilen iki basit zaman serisi modelini inceleyeceğiz.
 - Statik Modeller
 - Sonlu Dağıtılmış Gecikme Modelleri (Finite Distributed Lag Models) FDL Modelleri
- Yukarıda bahsedilen modeller, daha sonra göreceğimiz zaman serileri verisiyşe regresyon analizi konusuna hazırlık olarak düşünülmelidir.

3/21

Statik Model

Statik Model

y ve z eşanlı (contemporaneously) zaman indeksi taşıyan iki zaman serisi olsun. y'yi z ile ilişkilendiren statik bir model aşağıdaki gibi yazılabilir.

$$y_t = \beta_0 + \beta_1 z_t + u_t, \quad t = 1, 2, \dots, n$$

• Statik model, değişkenlerin birinci farkları arasında da formüle edilebilir.

$$\Delta y_t = \beta_1 \Delta z_t + u_t, \quad t = 1, 2, \dots, n$$

- Buradaki statik kelimesi y ve z arasında eşanlı (yani aynı zamanlı) bir ilişki modellediğimizden dolayı kullanılmaktadır.
- Statik modeller genellikle z'de t zamanında oluşan bir değişikliğin y üzerindeki etkisi hemen (yani t zamanında) gözleniyorsa kullanılır.

$$\Delta y_t = \beta_1 \Delta z_t$$
, $\Delta u_t = 0$ iken

Statik Model (Basit Doğrusal Regresyon): Örnek

Statik Phillips Eğrisini statik zaman serisi modeline bir örnek olarak kullanabiliriz.

Statik Phillips Eğrisi Modeli

$$inf_t = \beta_0 + \beta_1 unem_t + u_t$$

in f: enflasyon oranı; unem: işsizlik oranı

- Bu formadaki bir Phillips Eğrisi modeli doğal işsizlik oranı (natural rate of unemployment) ve **beklenen enflasyonun** (expected inflation) sabit olduğunu varsayar.
- Bu model aracılığıyla $in f_t$ ve $unem_t$ değişkenleri arasındaki **eşanlı ödünümü** (contemporaneous tradeoff) inceleyebiliriz.

Statik Model (Çoklu Doğrusal Regresyon): Örnek

- Statik bir regresyon modelinde çok sayıda farklı bağımsız değişken bulunabilir.
- Aşağıdaki model yıllara göre bir şehirdeki cinayet oranını etkileyen faktörleri statik olarak açıklamaya çalışıyor.

Statik Cinayet Modeli

$$mrdrte_t = \beta_0 + \beta_1 convrte_t + \beta_2 unem_t + \beta_3 yngmle_t + u_t$$

mrdrte: şehirdeki 10000 kişi başına cinayet oranı; convrte: cinayetten hüküm giyme oranı; *unem*: işsizlik oranı; *ynqmle*: 18-25 yaşları arasındaki erkeklerin oranı

• Yukarıdaki statik modeli kullanarak cinayetten hüküm giyme oranı *convrte*'nın cinayet oranı mrdrte üzerindeki ceteris paribus (yalın) etkisini tahmin edebiliriz.

6/21

Sonlu Dağıtılmış Gecikme Modeli (FDL Modeli)

 Sonlu dağıtılmış gecikme modellerinde (Finite Distributed Lag Models) bağımlı değişken y'yi bağımsız değişkenin belli bir gecikmesi (lag) ile etkileyen bir çok değişken mevcuttur.

1. Dereceden FDL Modeli: FDL₍₁₎

 y_t 'yi z_t ve z_t 'nin birinci gecikmesi z_{t-1} ile ilişkilendiren 1. dereceden FDL modeli aşağıdaki gibi yazılabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + u_t, \quad t = 1, 2, \dots, n$$

2. Dereceden FDL Modeli: FDL₍₂₎

 y_t 'yi z_t ve z_t 'nin birinci ve ikinci gecikmeleri z_{t-1} ve z_{t-2} ile ilişkilendiren 2. dereceden FDL modeli aşağıdaki gibi yazılabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

• FDL modellerinde, bağımlı değişken y_t 'yi eşanlı ve gecikmeli olarak etkilyen bir çok farklı bağımsız değişken olabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + u_t$$

2. Dereceden FDL Modeli: Örnek

FDL₍₂₎ Doğurganlık ve Vergi Muafiyeti Modeli

$$gfr_t = \alpha_0 + \delta_0 p e_t + \delta_1 p e_{t-1} + \delta_2 p e_{t-2} + u_t$$

qfr: doğurganlık oranı (doğurganlık yaşındaki 1000 kadına düşen bebek sayısı); *pe*: çocuk sahibi olmayı özendirmek için getirilen vergi muafiyeti

 Vergi muafiyetinin doğurganlığa etkisini ele alan yukarıdaki model 2. dereceden FDL modeline bir örnektir.

Etki Carpanı

2. Dereceden FDL Modeli: FDL₍₂₎

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

• Yukarıda verilen 2. dereceden FDL modelindeki parametreleri yorumlayabilmek için varsayalım ki t zamanından önceki tüm dönemlerde z sabit ve c'ye eşit. Fakat t zamanında bir birim artarak c + 1 oluyor ve t + 1 zamanında tekrar eski değerine dönüyor. Yani t zamanında z'de gerçekleşen **geçici** bir artış var.

$$\ldots$$
, $z_{t-2} = c$, $z_{t-1} = c$, $z_t = c+1$, $z_{t+1} = c$, $z_{t+2} = c$, \ldots

• Bu değişimin y'de yaratacağı ceteris paribus (yalın) etkiye, **etki çarpanı ya da etki** çoğaltanı (impact multiplier) denir

Etki Çarpanın Hesaplanması

2. Dereceden FDL Modeli: FDL₍₂₎

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

- Şimdi yukarıda verilen 2. dereceden FDL modelindeki etki çarpanını hesaplayalım.
- z'nin y üzerindeki ceteris paribus (yalın) etkisine odaklanabilmek için her zaman periodunda hata terimi u_t 'nin sıfır olduğunu varsayalım.

$$y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c \qquad (zaman: t-1)$$

$$y_t = \alpha_0 + \delta_0(c+1) + \delta_1 c + \delta_2 c$$
 (zaman: t)

$$y_{t+1} = \alpha_0 + \delta_0 c + \delta_1 (c+1) + \delta_2 c \qquad (zaman: t+1)$$

$$y_{t+2} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 (c+1)$$
 (zaman: t + 2)

$$y_{t+3} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c \qquad (zaman: t+3)$$

 $y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$

Etki Çarpanın Hesaplanması

$$y_{t} = \alpha_{0} + \delta_{0}(c+1) + \delta_{1}c + \delta_{2}c$$
 (zaman: t)

$$y_{t+1} = \alpha_{0} + \delta_{0}c + \delta_{1}(c+1) + \delta_{2}c$$
 (zaman: t + 1)

$$y_{t+2} = \alpha_{0} + \delta_{0}c + \delta_{1}c + \delta_{2}(c+1)$$
 (zaman: t + 2)

$$y_{t+3} = \alpha_{0} + \delta_{0}c + \delta_{1}c + \delta_{2}c$$
 (zaman: t + 3)

- İlk iki denklemden $y_t y_{t-1} = \delta_0$ olduğu rahatlıkla görülebilir.
- δ_0 , t döneminde (cari) z'deki bir birim artışın y üzerindeki **ani etkisini** gösterir ve etki çarpanı olarak adlandırılır.
- Benzer şekilde y'deki değişim, geçici değişmenin olduğu t döneminden bir dönem sonra $y_{t+1} - y_{t-1} = \delta_1$ 'e, iki dönem sonra ise $y_{t+2} - y_{t-1} = \delta_2$ 'ye eşit olacaktır.
- t + 2 döneminden sonra, yani t + 3 döneminde, y eski değerine geri dönecektir. Yani, $y_{t-1} = y_{t+3}$. Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran 2. dereceden FDL modeli olmasıdır.

(zaman: t-1)

Gecikme Dağılımı

- δ_i 'lerin j indeksine göre çizilen grafiği **gecikme dağılımını** (lag distribution) verecektir.
- Bu grafik, z'de meydana gelen **geçici** (temporary) bir artışın *y* üzerindeki dinamik etkisini (dynamic effect) gösterecektir.
- 2. dereceden FDL modeli için olası bir gecikme dağılımı Şekil 1'de görülebilir.
- Elbette δ_i parametrelerini bilemeyiz. Buna rağmen δ_i 'leri tahmin edip bu tahminler üzerinden tahmini bir gecikme dağılımı çizebiliriz.

Şekil 1: Gecikme Dağılımı

Kaynak: Wooldridge (2016)

Uzun Dönem Carpanı

2. Dereceden FDL Modeli: FDL₍₂₎

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

- *z*'deki **kalıcı** (permanent) artışların *y* üzerindeki etkisini de bilmek isteriz.
- Yukarıda verilen 2. dereceden FDL modelindeki parametreleri yorumlayabilmek için varsayalım ki t zamanından önceki tüm dönemlerde z sabit ve c'ye eşit. Fakat t zamanından itibaren bir birim artarak kalıcı bir şekilde c + 1 oluyor. Yani tzamanında z'de gerçekleşen kalıcı bir artış var.

...,
$$z_{t-2} = c$$
, $z_{t-1} = c$, $z_t = c+1$, $z_{t+1} = c+1$, $z_{t+2} = c+1$, ...

- Bu değişimin y'de yaratacağı uzun dönemli etkiye, uzun dönem çarpanı ya da uzun dönem çoğaltanı (long-run multiplier) denir.
- FDL modellerinde, uzun dönem çarpanı ilginin ana odağıdır.

 $y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$

Uzun Dönem Çarpanın Hesaplanması

2. Dereceden FDL Modeli: FDL₍₂₎

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

- Şimdi yukarıda verilen 2. dereceden FDL modelindeki uzun dönem çarpanını hesaplayalım.
- z'nin y üzerindeki uzun dönem etkisine odaklanabilmek için her zaman periodunda hata terimi u_t 'nin sıfır olduğunu varsayalım.

$$y_{t} = \alpha_{0} + \delta_{0}(c+1) + \delta_{1}c + \delta_{2}c$$
 (zaman: t)

$$y_{t+1} = \alpha_{0} + \delta_{0}(c+1) + \delta_{1}(c+1) + \delta_{2}c$$
 (zaman: t + 1)

$$y_{t+2} = \alpha_{0} + \delta_{0}(c+1) + \delta_{1}(c+1) + \delta_{2}(c+1)$$
 (zaman: t + 2)

$$y_{t+3} = \alpha_0 + \delta_0(c+1) + \delta_1(c+1) + \delta_2(c+1)$$
 (zaman: $t+3$)

(zaman: t-1)

Uzun Dönem Çarpanın Hesaplanması

$$y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$
 (zaman: $t-1$)

$$y_t = \alpha_0 + \delta_0 (c+1) + \delta_1 c + \delta_2 c$$
 (zaman: t)

$$y_{t+1} = \alpha_0 + \delta_0 (c+1) + \delta_1 (c+1) + \delta_2 c$$
 (zaman: $t+1$)

$$y_{t+2} = \alpha_0 + \delta_0(c+1) + \delta_1(c+1) + \delta_2(c+1)$$
 (zaman: t + 2)

$$y_{t+3} = \alpha_0 + \delta_0(c+1) + \delta_1(c+1) + \delta_2(c+1)$$
 (zaman: t + 3)

- İlk iki denklemden $y_t y_{t-1} = \delta_0$ olduğu rahatlıkla görülebilir.
- Benzer şekilde y'deki değişim, kalıcı değişmenin olduğu t döneminden bir dönem sonra $y_{t+1} y_{t-1} = \delta_0 + \delta_1$ 'e, iki dönem sonra ise $y_{t+2} y_{t-1} = \delta_0 + \delta_1 + \delta_2$ 'ye eşit olacaktır.
- t+2 döneminden sonra, yani t+3 dönemi ve sonrasında y'de daha fazla artış meydana gelmez. Yani, $y_{t+2}=y_{t+3}$. Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran 2. dereceden FDL modeli olmasıdır.
- Cari ve gecikmeli z değişkeninin katsayıları toplamı, yani $\delta_0 + \delta_1 + \delta_2$, t döneminde (cari) z'deki bir birimlik kalıcı bir artışın y üzerindeki **uzun dönemli etkisini** gösterir ve buna **uzun dönem çarpanı** denir.

Etki Çarpanı ve Uzun Dönem Çarpanın Hesaplanması: Örnek

FDL₍₂₎ Doğurganlık ve Vergi Muafiyeti Modeli

$$gfr_t = \alpha_0 + \delta_0 p e_t + \delta_1 p e_{t-1} + \delta_2 p e_{t-2} + u_t$$

qfr: doğurganlık oranı (doğurganlık yaşındaki 1000 kadına düşen bebek sayısı); *pe*: çocuk sahibi olmayı özendirmek için getirilen vergi muafiyeti

- Vergi muafiyetinin doğurganlığa etkisini ele alan yukarıdaki modelde δ_0 , pe'de 1 birimlik artışın doğurganlık oranında yaratacağı ani değişmeyi (etki çarpanı) ölçer. Bu etki biyolojik ve davranışsal nedenlerden ötürü, ya sıfır ya da çok küçük olacaktır.
- δ_1 ve δ_2 , sırasıyla, bir dönem ve iki dönem önceki 1 birimlik *pe* artışının etkilerini ölçmektedir. Bu katsayıların pozitif olmalarını bekleyebiliriz.
- Eğer pe'de t döneminden itibaren kalıcı olarak 1 birimlik artış olursa, qfr'deki değişim, iki dönem sonra $\delta_0 + \delta_1 + \delta_2$ (uzun dönem çarpanı) kadar olacaktır. İki dönemden sonra ise *q f r*'de değişme olmayacaktır.

16/21

q. Dereceden FDL Modeli: FDL_(a)

• $FDL_{(q)}$ modellerinde bağımlı değişken y'yi bağımsız değişkenin q kadar gecikmesi (lag) ile etkileyen bir çok değişken mevcuttur.

q. Dereceden FDL Modeli: $FDL_{(q)}$

 y_t 'yi z_t ve z_t 'nin gecikmeleri $z_{t-1}, z_{t-2}, \dots, z_{t-q}$ ile ilişkilendiren q. dereceden FDL modeli aşağıdaki gibi yazılabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \dots + \delta_q z_{t-q} + u_t, \quad t = 1, 2, \dots, n$$

- Slayt 4'de tanıtılan statik model, $FDL_{(a)}$ modelinin $\delta_1 = \delta_2 = \cdots = \delta_a = 0$ eşitliklerini sağladığı özel bir halidir. Bu sebeple, FDL modelleri, bağımsız değişken z'nin bağımlı değişken y üzerinde **gecikmeli etkisinin** (lagged effect) olup olmadığını görmemize yarar.
- FDL_(a) modelinde, cari dönem değişkeni z_t 'nin katsayısı δ_0 etki çarpanıdır.
- $\mathrm{FDL}_{(q)}$ modelinde, uzun dönem çarpanı tüm $z_t, z_{t-1}, \ldots, z_{t-q}$ değişkenlerine ait katsayıların toplamıdır.

Uzun Dönem Çarpanı = $\delta_0 + \delta_1 + \cdots + \delta_q$

q. Dereceden FDL Modeli: $FDL_{(a)}$

- z_t 'nin gecikmeleri $z_{t-1}, z_{t-2}, \dots, z_{t-q}$ arasında çoğu zaman yüksek korelasyon bulunur. Bu durum çoklu doğrusal bağıntı (ÇDB) problemine yol açar.
 - CDB de δ_i 'lerin ayrı ayrı ve kesin bir şekilde tahmin edilmelerini güçleştirir.
- $\mathrm{FDL}_{(q)}$ modellerinde birden fazla bağımsız değişken gecikmeli olarak bulunabilir.

$$y_{t} = \alpha_{0} + \delta_{0}z_{t} + \delta_{1}z_{t-1} + \dots + \delta_{q}z_{t-q} + \beta_{0}x_{t} + \beta_{1}x_{t-1} + \dots + \beta_{q}x_{t-q} + u_{t}$$

- Cari dönem değişkenleri de, x_t ve w_t gibi, $FDL_{(a)}$ modellerine eklenebilir.
 - Örneğin, Slayt 16'deki doğurganlık ve vergi muafiyeti modeline, doğurganlık yaşındaki kadınların ortalama eğitim seviyesi educt'yi ekleyebiliriz.
 - Böylelikle, kadınlardaki değişen eğitim seviyelerini kontrol etme olanağına kavuşuruz.

$$gfr_t = \alpha_0 + \delta_0 pe_t + \delta_1 pe_{t-1} + \delta_2 pe_{t-2} + \beta_1 educ_t + u_t$$

q. Dereceden FDL Modeli: FDL_(a)

Örnek Soru

Aşağıda yıllık verilerle tahmin edilmiş $FDL_{(2)}$ modelinin etki çarpanını ve uzun dönem çarpanını bulun ve yorumlayın.

$$\widehat{int_t} = 1.6 + 0.48 \, enf_t - 0.15 \, enf_{t-1} + 0.32 \, enf_{t-2}$$

int: faiz oranı; *in f*: enflasyon oranı

q. Dereceden FDL Modeli: FDL_(a)

Örnek Soru

Aşağıda yıllık verilerle tahmin edilmiş FDL₍₂₎ modelinin etki çarpanını ve uzun dönem çarpanını bulun ve yorumlayın.

$$\widehat{int_t} = 1.6 + 0.48 \, enf_t - 0.15 \, enf_{t-1} + 0.32 \, enf_{t-2}$$

int: faiz oranı; *in f*: enflasyon oranı

• Etki çarpanı:

Etki Çarpanı =
$$\delta_0$$

= 0.48

Uzun dönem çarpanı:

Uzun Dönem Çarpanı =
$$\delta_0 + \delta_1 + \delta_2$$

= 0.48 + (-0.15) + 0.32
= 0.65

21/21

Kaynaklar

Hyndman, R.J. ve G. Athanasopoulos (2018). Forecasting: Principles and Practice. OTexts. Tastan, H. (2020). Lecture on Econometrics II. Personal Collection of H. Tastan. Retrieved from Online. Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.

