Aula 5: Estruturas de Repetição

Necessidade da Repetição

- **Pense na sua rotina:** Escovar os dentes, tomar café, ir para a aula... são ações que você repete diariamente.
- Pense na programação: E se você precisasse ler a nota de 40 alunos? Você escreveria 40 linhas de código pedindo input() para cada aluno? Muito trabalhoso, né? Você criaria 40 variáveis (nota1, nota2, ..., nota40)? Impraticável em casos assim!

Solução? Utilizar **estruturas de repetição** (ou **Laços**), permitindo que você escreva o código UMA VEZ e deixe o computador executando quantas vezes forem necessárias.

Comando	Tradução	Uso Principal
for	Para	Usado quando você sabe o número exato de repetições (ou quer percorrer uma lista/sequência).
while	Enquanto	Usado quando você quer repetir a ação enquanto uma condição for verdadeira (número de repetições é incerto).
do-while	Faça-Enqua nto	Como Python não tem o comando do-while nativo, sua funcionalidade é simulada com o while e uma lógica de inicialização/controle.

Atividade Assistida

Vamos desenvolver um programa que leia 5 números e calcule o dobro, o triplo e o quádruplo de cada um. Faremos isso de três formas, focando nas estruturas:

Usando for (Quando sabemos a contagem: 5 vezes nesse caso)

O for em Python usa a função range() para determinar a contagem.

```
print("--- Usando FOR (Repetição Contada) ---")
# O range(5) gera os números 0, 1, 2, 3, 4 (5 repetições)
for i in range(5):
    try:
        # i representa o número atual da repetição (0, 1, 2...)
        print(f"Número {i + 1} de 5:")
        num = float(input("Digite um número: "))

        dobro = num * 2
        triplo = num * 3
        quádruplo = num * 4

        print(f" Resultado: Dobro={dobro}, Triplo={triplo}, Quádruplo={quádruplo}\n")
        except ValueError:
        print("Entrada inválida. Tente novamente.")
```

Usando while (Repetição baseada em Condição)

O while repete o bloco de código enquanto a condição inicial for True. Precisamos de um contador manual para controlar o número de repetições:

```
print("--- Usando WHILE (Repetição Condicional) ---")
contador = 0 # Inicializamos o contador
limite = 5 # Definimos o limite
while contador < limite: # A condição de parada: Enquanto o contador for menor que 5
  try:
     print(f"Número {contador + 1} de {limite}:")
    num = float(input("Digite um número: "))
    dobro = num * 2
    triplo = num * 3
    quádruplo = num * 4
    print(f" Resultado: Dobro={dobro}, Triplo={triplo}, Quádruplo={quádruplo}\n")
    contador = contador + 1 # IMPORTANTÍSSIMO! Incrementa o contador para evitar loop
infinito
  except ValueError:
     print("Entrada inválida. Tente novamente.")
    # Não incrementamos o contador para dar nova chance ao usuário
```

Usando do-while (Executar primeiro, checar depois)

Como o Python não tem o do-while nativo, nós o simulamos garantindo que o bloco interno execute pelo menos uma vez, ou usando um while True com um if para quebrar (comando break):

```
print("--- Simulação DO-WHILE (Executa 1ª vez, depois checa) ---")
contador = 0
limite = 5
while True: # Loop infinito garantido para executar pelo menos uma vez
  if contador >= limite:
     break # Ponto de DECISÃO: Se o limite for atingido, usamos 'break' para sair
  try:
     print(f"Número {contador + 1} de {limite}:")
     num = float(input("Digite um número: "))
     dobro = num * 2
     triplo = num * 3
     quádruplo = num * 4
     print(f" Resultado: Dobro={dobro}, Triplo={triplo}, Quádruplo={quádruplo}\n")
     contador = contador + 1 # Incremento
  except ValueError:
     print("Entrada inválida. Tente novamente.")
```

Desafios:

1. Cálculo de Média Escolar para Vários Alunos

Use o laço for para repetir a lógica de cálculo de média e status (Aprovado/Reprovado/Recuperação) que você fez na Aula 4, agora para 10 estudantes.

2. Cadastro de Candidatos

Desenvolva um programa que colete dados de 12 pessoas, usando a decisão para filtrar candidatos menores de 18 anos.

- O programa deve pedir o Ano de Nascimento do candidato.
- Se for menor de 18, o programa deve informar que ele não pode participar e pular a coleta dos demais dados (telefone, email etc) para esse candidato.
- Se for maior de 18, o programa prossegue com o input() para os demais dados.

3. Tentativa de Login e Senha

Simule um sistema de login simples onde o usuário tem um número limitado de tentativas para digitar a senha correta.

- Defina um nome de **usuário** e uma **senha** corretos (ex: admin e 123456).
- Dê ao usuário **3 tentativas** para acertar a combinação.
- Se a senha estiver correta, imprima uma mensagem de sucesso e use o comando break para sair do loop.
- Se a senha estiver errada, informe o erro e diminua o número de tentativas restantes.
- Se as tentativas acabarem, imprima uma mensagem de bloqueio.