Miscellaneous Problems

Normal Distribution as limiting case of Binomial distribution

Normal distribution is limiting case of Binomial distribution when n is very large and neither p nor q is very small.

- 1) Find the probability of getting 3 heads to 6 heads in 10 tosses of a fair coin using
 - (i) binomial distribution
 - (ii) the normal approximation to the binomial distribution

Soln:
$$p = \frac{1}{2}$$
; $q = \frac{1}{2}$; $n = 10$
 $P(X = x) = n_{C_X} p^x q^{n-x}$

$$P$$
 (Getting atleast) = P (3 $\leq X \leq 6$) 3 heads

$$= P(3) + P(4) + P(5) + P(6)$$

$$\therefore P\left(\frac{\text{Getting atleast}}{3 \text{ heads}}\right) = 0.7734$$

If we take data as continuous, it follows that 3 to 6 heads can be considered as 2.5 to 6.5 heads.

Mean is
$$\mu=np=10\left(\frac{1}{2}\right)=5$$

Standard deviations is $\sigma=\sqrt{npq}=1.58$

If X is a normal variate, then standard normal variable is $Z = \frac{X - \mu}{L}$

When

$$X = 2.5, Z = \frac{2.5-5}{1.58} = -1.58$$

$$X = 6.5, Z = \frac{6.5-5}{1.58} = 0.95$$

Now, required probability is

$$P(2.5 \le X \le 6.5) = P(-1.58 < Z < 0.95)$$

= $P(-1.58 < Z < 0) + P(0 < Z < 0.95)$
= $P(0 < Z < 1.58) + P(0 < Z < 0.95)$
= $A(1.58) + A(0.95)$

$$= 0.4429 + 0.3289 = 0.7718$$

Fitting of Binomial distribution

$$P(X=x)=n_{C_X}p^xq^{n-x}$$

Recurrence formula:

If X is a binomial variate, then

$$P(x+1) = \left(\frac{n-x}{x+1}\right) \left(\frac{p}{q}\right) P(x)$$

1. Five unbiased coins are tossed and numbers of heads are noted. The experiment is repeated 64 times and the following distribution is obtained.

No. of heads	0	1	2	3	4	5	Total
Frequencies	3	6	24	26	4	1	<mark>64</mark>

Soln:
$$p = \frac{1}{2}$$
; $q = \frac{1}{2}$; $n = 5$; $N = 64$
 $P(X = x) = n_{C_X} p^x q^{n-x}$

Expected frequencies: f(x) = NP(x)

$$P(X = 0) = P(0) = n_{C_0} p^0 q^{n-0} = q^5 = \frac{1}{32}$$

Expected frequency is

$$f(0) = NP(0) = 64\left(\frac{1}{32}\right) = 2$$

Wkt

$$P(x+1) = \left(\frac{n-x}{x+1}\right) \left(\frac{p}{q}\right) P(x)$$

$$P(1) = \left(\frac{5-0}{0+1}\right)(1)P(0) = \frac{5}{32}$$

Expected frequency is

$$f(1) = NP(1) = 64\left(\frac{5}{32}\right) = 10$$

X	Probabilities $\frac{P(x)}{}$	Expected frequencies $f(x) = NP(x)$	Observed Frequencies
0	1/32	2	3
1	5/32	10	6
2	10/32	20	24
3	10/32	20	26
4	5/32	10	4
5	1/32	2	1
Total		<mark>64</mark>	<mark>64</mark>

Note: Probabilities can be computed directly without using the recurrence relation