SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

VK3234 多总线接口 四通道通用异步收发器 无铅封装

1.产品概述

VK3234是业界首款具备 UART/SPI™接口的4通道UART器件。可以通过模式选择使得该芯片工作于以上任何一种主接口模式下:

当主接口为UART时,VK3234将一个标准3线异步串口(UART)扩展成为4个增强功能串口(UART)。 主接口UART在数据传输时可以选择需要转义字符和不需要转义字符两种模式。此外,主接口的UART 可以通过引脚配置为红外通信模式。

当主接口为SPI接口时,VK3234实现SPI桥接/扩展4个增强功能串口(UART)的功能。 扩展的子通道的UART具备如下功能特点:

每个子通道UART的波特率、字长、校验格式可以独立设置,最高可以提供1Mbps的通信速率。

每个子通道可以独立设置工作在IrDA红外通信、RS-485自动收发控制、9位网络地址自动识别、硬件自动流量控制、广播接收等高级工作模式下。

每个子通道具备收/发独立的16 BYTE FIFO, FIFO的中断为4级可编程条件触发点。

VK3234采用SOP28绿色环保的无铅封装,可以工作在2.5~5.5V的宽工作电压范围,具备可配置自动休眠/唤醒功能。

[注]: SPI[™] 为MOTOLORA公司的注册商标。

2.基本特性

2.1 总体特性

- 支持多种主机接口:可以选择 UART或SPI
- 低功耗设计,可以配置自动休眠,自动唤醒模式
- 宽工作电压设计,工作电压为 2.5V~5.5V
- 精简的配置寄存器和控制字,操作简单可靠
- 创新的可编程数据广播模式支持向任意子通道发送数据广播
- 提供工业级和商业级产品
- 高速CMOS工艺
- 采用符合绿色环保政策的SOP28无铅封装

2.2 扩展子通道UART特性

● 子通道串口独立配置,高速、灵活:

每个子串口为全双工,每个子串口可以通过软件开启/关闭 波特率可以独立设置,子串口最高可以达到1M bit/s (5V工作电压) 每个子串口字符格式包括数据长度、停止位数、奇偶校验模式可以独立设置 每个子串口可以软件设置为是否接收数据广播 完善的子串口状态查询功能

FIFO功能:

每个子串口具备独立的16级9Bits发送FIF0,发送FIF0具备4级可编程触发点每个子串口具备独立的16级Bits接收FIF0,接收FIF0具备4级可编程触发点软件FIF0使能和清空

FIF0状态和计数器输出

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

- 流量控制:
 - 支持RTS、CTS的硬件自动流量控制
- RS-485功能:
 - RTS控制的自动RS-485收发控制
 - RS-485网络地址自动识别功能
- ₩ 错误检测:
 - 支持奇偶校验错,数据帧错误及溢出错误检测 支持起始位错误检测
- 每个子串口可以软件设置为是否接收数据广播
- 内置符合SIR标准的IrDA红外收发编解码器,传输速度可达115.2K bit/s

2.3 UART主接口特性

- 主接口为标准的三线UART串口(RX,TX,GND),无需其它地址信号、控制信号线
- 可编程波特率设置,最高速度可以达到1M bit/s
- 可选择的奇校验,偶校验和无校验模式
- 业界首创的不需地址线控制的串口扩展方式,通过芯片内置的协议处理器实现多串口扩展
- UART主接口可以通过引脚设置为红外模式
- UART主接口可以通过引脚选择是否采用转义字符模式

2.4 SPI主接口特性

- 最高速度5M bit/s
- 仅支持SPI从模式
- 16位,SPI模式0

3.应用领域

- 多串口服务器/多串口卡
- 工业/自动化现场RS-485控制
- 通过CDMA/GPRS MODEM的无线数据传输
- 车载信息平台/车载GPS定位系统
- 远传自动抄表 (AMR) 系统
- POS/税控POS/金融机具
- DSP/嵌入式系统

4. 订购信息

表4.1 VK3234 订购信息

产品型号	封装	说明
VK3234-ESPG	SOP28 无铅封装	加强工业级; 工作温度 -45℃~+85℃
VK3234-ISPG	SOP28 无铅封装	普通工业级; 工作温度 -45℃~+85℃
VK3234-CSPG	SOP28 无铅封装	普通商业级; 工作温度 0℃~+70℃

5.原理框图

图5.1 VK3234 原理框图

维肯电子 2011年 发布 版权所有

2 of 25

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

6. 封装引脚

6.1封装图

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

6.2 引脚描述

表6.2 VK3234 引脚描述

名称	管脚	类型	描述
OSCO	1	I	晶振输入;
OSCI	2	0	晶振输出;
MS	4	I	主接口模式选择:
			MS=1 主机接口为UART接口
			MS=0 主机接口为SPI接口
SCS/	5	I	当主接口为UART时,为IR(主口红外通信模式)功能引脚:
IR			IR=1 红外通信模式;
			IR=O 普通UART通信模式;
			当主接口为SPI时,为SCS(SPI片选)功能引脚: 低电平有效
SCLK/	6	I	当主接口为UART时,为MRX(主口UART接收)功能引脚;
MRX			当主接口为SPI时,为SCLK(SPI 时钟输入)功能引脚;
SDIN/	7	I	当主接口为UART时,为TR(转义字符传输)功能引脚:
TR			TR=1 选择有转义字符的串口扩展工作模式;
			TR=0 选择没有转义字符的串口扩展工作模式;
			当主接口为SPI时,为SDIN(SPI数据输入)功能引脚;
SDOUT	8	I	当主接口为UART时,为MTX(主和UART发送)功能引脚;
/MTX			当主接口为SPI时,为SDOUT(SPI数据输出)功能引脚;
RTS1	24	0	子串口1~4的请求发送信号(Request To Send),低电平有效.
RTS2	19		当RTSx=0时,表明VK3234的相应子串口接收已准备就绪,请求与其相连
RTS3	28		的数据UART发送数据。RTS可以通过子串口状态寄存器进行设置。
RTS4	9		当子串口工作在自动流量控制模式下时,RTS通过自动流量控制逻辑控制
			控制数据收发。
		//	当子串口工作在RS-485自动收发模式下,该引脚用于控制RS-485数据的
0704	0.1		自动收发转换。
CTS1	21	1	子串口1~4的清除发送信号(Clear To Send),低电平有效.
CTS2	16		当CTSx=0时,表明数据UART已经准备好接收VK3234相应的子串口发送数
CTS3	25		据。可以通过读取子串口状态寄存器读取CTS的相应状态。
CTS4	12		当子串口工作在自动流量控制模式下时,CTS通过自动流量控制逻辑控制控制被提供发
RX1	23	I	制控制数据收发。 子通道串口串行数据输入。
RX2	23 18		T通过中口中们数据调入。 RX 将所连数据UART的串行数据输入VK3234的相应管脚。
RX3	27		M 有//尺之刻がDAN I I リ中生 X が 棚/ C V NO 2 3 4 Fリ 作 型 目 №。
RX4	10		
TX1	22	0	子通道串口串行数据输出。
TX2	17		TX 将串行数据输出到与其连接的器件引脚。
TX3	26		
TX4	11		
/RST	13	ı	硬件复位引脚,低电平复位有效
, 1.01	.0	•	NIZE APPLING I ZEAM

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

/IRQ	15	0	中断输出信号,低电平有效,建议外接上拉电阻,典型值5.1K
VCC	14	-	电源 2.5V~5.5V工作范围
GND	3 20	-	地

7. 寄存器描述

7.1 寄存器列表

VK3234的寄存器按地址编号为6位地址编号,地址000000~111111,分为全局寄存器和子串口寄存器。其中高2位为通道编号,低4位为寄存器地址编号。

全局寄存器4个,具体排列见表7.1:

表7.1 全局寄存器列表

寄存器地址[3:0]	寄存器名称	类型	寄存器功能描述
(00) 0000	RSV	无	保留
(00) 0001	GCR	R/W	全局控制寄存器
(00) 0010	GMUCR	R/W	全局主串口控制寄存器
(00) 0011	GIR	R/W	全局中断寄存器

子串口寄存器10个,其排列为C1C0 REG[3:0],高两位为子串口通道号,低4位为寄存器地址,按低4位的寄存器地址具体排列见表7.2:

表7.2 子串口寄存器列表

寄存器地址[3:0]	寄存器名称	类型	寄存器功能描述
(C1,C0) 0110	SCTLR	R/W	子串口控制寄存器
(C1,C0) 0111	SCONR	R/W	子串口配置寄存器
(C1,C0) 1000	SFWCR	R/W	子串口流量控制寄存器
(C1,C0) 1001	SFOCR	R/W	子串口 FIFO 控制寄存器
(C1,C0) 1010	SADR	R/W	子串口自动识别地址寄存器
(C1,C0) 1011	SIER	R/W	子串口中断使能寄存器
(C1,C0) 1100	SIFR	R	子串口中断标志寄存器
(C1,C0) 1101	SSR	R	子串口状态寄存器
(C1,C0) 1110	SFSR	RW	子串口 FIFO 状态寄存器
(C1,C0) 1111	SFDR	RW	子串口 FIFO 数据寄存器

C1,C0: 子通道号,00~11 分别对应子串口 1 到子串口 4。

7.2 寄存器描述

7.2.1 GCR 全局控制寄存器: (0001)

位	复位值	功能描述	类型
Bit7	0	GBDEN 全局广播使能位0: 禁止数据广播1: 使能数据广播	W/R
Bit6	0	IDEL 软件 IDEL 使能位	W/R

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

			. • -
		0:唤醒正常工作	
		1: 进入 IDEL 模式	
Bit5	0	-保留	-
Bit4	0	-保留	-
Bit3	0	-保留	-
Bit2	0	-保留	-
Bit1	0	-保留	-
Bit0	0	-保留	-

7.2.2 GMUCR 全局主串口控制寄存器: (0010)

位	复位值	功能描述	类型
Bit7 – 4	0011	主串口波特率设置,具体设置值参见表8.6.1(Bit7—4对应B3—B0)	W/R
Bit3	0	PAEN 主 UART 校验设定(数据长度设置位)	W/R
		0:8位数据(无带校验位)	
		1:9位数据(带第9位校验位)	
Bit2	0	STPL 停止位长度设置位	W/R
		0: 1 位停止位	
		1: 2 位停止位	
Bit1 – 0	00	PAM1—0 奇偶校验模式选择	W/R
		00: 强制 0 校验 01: 奇校验	
		10: 偶校验 11: 强制 1 校验	

7.2.3 GIR 全局中断寄存器: (0011)

位	复位值	功能描述	类型
Bit7	0	U4IEN 子串口 4 中断使能控制位	W/R
		0: 禁止子串口 4 中断	
		1: 使能子事口 4 中断	
Bit6	0	U3IEN 子串口 3 中断使能控制位	W/R
		0: 禁止子串口3中断	
		1: 使能子串口3中断	
Bit5	0	U2IEN 子串口 2 中断使能控制位	W/R
		0:禁止子串口2中断	
		1: 使能子串口 2 中断	
Bit4	0	Ulien 子串口 1 中断使能控制位	W/R
		0: 禁止子串口1中断	
	~	1: 使能子串口1中断	
Bit3	0	U4IF 子串口 4 中断标志位	R
		0: 子串口 4 无中断	
		1: 子串口 4 有中断	
Bit2	0	U3IF 子串口 3 中断标志位	R
		0: 子串口 3 无中断	
		1: 子串口3有中断	
Bit1	0	U2IF 子串口 2 中断标志位	R

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

		0: 子串口2无中断	
		1: 子串口 2 有中断	
Bit0	0	U1IF 子串口 1 中断标志位	R
		0: 子串口1无中断	
		1: 子串口1有中断	

7.2.4 SCTLR 子串口控制寄存器: (0110)

位	复位值	功能描述	类型
Bit7 – 4	0011	子串口波特率设置 , 具体设置值参见表 8.6.1 (Bit7—4 对应	W/R
		B3—B0)	<u> </u>
Bit3	0	UTEN 子串口使能控制位	W/R
		0: 不使能,此时该子串口通道不能进行数据收发	
		1: 使能, 使能后该子串口可以进行正常的数据收发	
Bit2	0	MDSEL 485 和 232 模式选择控制位	W/R
		0: RS232 收发模式	
		1: RS485 自动收发模式,该模式下,RTS 作为自动收发控制信	
		号	
Bit1	0	RBDEN 允许接收广播数据控制位	W/R
		1: 允许子串口接收广播数据	
		0: 禁止子串口接收广播数据	
Bit0	0	IREN 红外模式选择位	W/R
		0: 标准串口模式	
		1: 红外数据模式	

7.2.5 SCONR 子串口配置寄存器: (0111)

位	复位	立值	功能描述	类型
Bit7	0		SSTPL 子串口停止位长度控制位	W/R
			0: 1位停止位	
			1: 2 位停止位	
Bit6	0		SPAEN 子串口校验使能(数据长度控制)位	W/R
			0: 无校验位(8位数据)	
	0.47	" 》	1: 有校验位(9位数据)	
Bit5	0		SFPAEN 子串口强制校验使能控制位	W/R
		,	0: 不使用子串口强制校验	
			1: 使能子串口强制校验	
Bit4 -	- 3 00		PAM1—0 奇偶校验模式选择:	W/R
			当 SFPAEN=1 子串口强制校验使能时:	
			00: 强制 0 校验 ; 01,10: 强制用户校验 ; 11: 强制 1 校验	
			当 SFPAEN=0, 子串口普通校验模式时:	
			00: 0 校验; 01: 奇校验; 10: 偶校验; 11: 1 校验	
Bit2	1		AOD 子串口地址/数据模式选择位(工作在 RS485 模式时)	W/R
			0: 允许接收所有数据字节	
			1: 只允许接收地址字节	

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

Bit1	0	AREN 网络地址自动识别控制位					
		0: 禁止网络地址自动识别					
		1: 允许网络地址自动识别					
		详细操作参见 RS-485 操作模式介绍					
Bit0	0	AVEN 网络地址可见控制位					
		0:禁止网络地址可见,网络地址不写入 FIFO					
		1: 允许网络地址可见,网络地址写入 FIFO					

7.2.6 SFWCR 子串口流量控制寄存器: (1000)

位	复位值	功能描述	类型
Bit7 – 6	00	HRTL1—0 暂停发送触发点控制 (RS232 模式下有效):	W/R
		00=3bytes 01=7bytes 10=11bytes 11=15bytes	
		在流量控制使能的条件下,当接收 FIFO 中数据的增加到该触发点时,	
		启动相应的硬件流量控制,控制通道相连接的设备暂停数据发送。	
Bit5 – 4	00	PRTL1—0 继续发送触发点控制 (RS232 模式下有效):	W/R
		00=0bytes 01=4bytes 10=8bytes 11=12bytes	
		在流量控制使能的条件下,当接收 FIFO 中的数据降低到该触发点时,	
		通过硬件流量控制机制,控制与该通道相连接的设备继续发送数据。	
Bit3	0	FWCEN 流量控制使能控制位(RS232 模式下有效)	W/R
		0: 禁止子串口自动流量控制。	
		1: 允许子串口自动流量控制	
Bit2	0	FWCM 流量控制模式 (当流量控制使能时有效)	W/R
		0: 保留	
		1: 子串口自动硬件流量控制	
Bit1	0	AOMH 硬件流量控制选择 (当硬件流量控制使能时有效)	W/R
		0: 自动硬件流量控制	
		1: 手动流量控制	
Bit0	0	保留	W/R

7.2.7 SFOCR 子事口 FIFO 控制寄存器: (1001)

位	复位值	功能描述	类型
Bit7 – 6	00	TFTL1—0 发送 FIFO 触点控制:	W/R
/		00=0bytes 01= 4bytes 10=8bytes 11=12bytes	
		当接收 FIFO 的数据减少到该触发点时,提示主机可以继续向发送	
* * *		FIFO 写入数据。	
Bit5 – 4	00	RFTL1—0 接收 FIFO 触点控制:	W/R
		00=1bytes 01=4bytes 10=8bytes 11=14bytes	
		当接收 FIFO 的数据增加到该触发点是,提示主机接口从接收 FIFO 中	
		读取数据。	
Bit3	0	TFEN 发送 FIFO 使能控制位	W/R
		0: 禁止发送 FIFO,待发送的数据不写入发送 FIFO,直接进入发送移	
		位寄存器	
		1: 使能发送 FIFO,待发送的数据写入发送 FIFO,通过 FIFO 发送	
Bit2	0	RFEN 接收 FIFO 使能	W/R

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

			- 17 -				
		0:禁止接收 FIFO,接收到的数据不写入接收 FIFO					
		1: 使能接收 FIFO,接收到的数据写入接收 FIFO					
Bit1	Bit1 0 TFCL 清除发送 FIFO						
		0: 不清除 TX FIFO					
		1: 清除发送 TX FIFO 中所有数据					
Bit0	0	RFCL 清除接收 FIFO	W/R				
		0: 不清除接收 FIFO 中数据					
		1: 清除接收 FIFO 中所有数据					

7.2.8 SADR 子串口自动识别地址寄存器: (1010)

位	复位值	功能描述					
Bit7 – 0	00000000	子串口自动识别网络地址寄存器。(RS485 模式下有效)	W/R				

7.2.9 SIER 子串口中断使能寄存器: (1011)

位	复位值	功能描述	类型			
Bit7	0	RXBY RX_BUSY 状态位	R			
		0: 该通道 RX 空闲				
		1: 该通道 RX 正在接收数据				
Bit6	Bit6 0 FOEIEN FIFO 数据错误中断使能位:					
		0:禁止 FIFO 数据错误产生中断				
		1: 使能 FIFO 数据错误产生中断				
Bit5	0	RAIEN 接收地址中断使能位:	W/R			
		0: 禁止子串口接收地址产生中断				
		1: 使能子串口接收地址产生中断				
Bit4	0	保留	W/R			
Bit3	Bit3 0 RSTIEN RTS 中断使能位					
		0: 禁止 RTS 中断				
		1: 使能 RTS 中断				
Bit2	0	CTSIEN CTS 中断使能位	W/R			
	- 4	0: 禁止 CTS 中断				
	74	1: 使能 CTS 中断				
Bit1	0.	TRIEN 发送 FIFO 触点中断使能位	W/R			
		0: 禁止发送 FIFO 触点中断				
		1: 使能发送 FIFO 触点中断				
Bit0	0	RFIEN 使能接收 FIFO 触点中断	W/R			
	**	0:禁止接收 FIFO 触点中断				
		1: 使能接收 FIFO 触点中断				

7.2.10 SIFR 子串口中断标志寄存器: (1100)

112110	112110 01111 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
位 复位值 功能描述					
Bit7	0	CTSR 指示 CTS 的状态位 当前 CTS 引脚的值	R		
		⇒刖 C13 分腳的但			
Bit6	0	FOEINT 子串口 FIFO 数据错误中断标志位	R/W		

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

		0: 无 FIFO 数据错误中断	<u>эн</u> , э, н с г					
		1: FIFO 数据错误(当 FIFO 中数据出错时产生该中断)						
Bit5	0	RAINT 子串口自动地址识别中断位	R/W					
1		0: 无地址自动识别中断						
		1: 自动地址识别中断(当接收到的数据为地址字节且与 SDAR 匹配时						
		产生中断)						
Bit4	0	保留	R/W					
Bit3	0	RSTINT RTS 中断标志位	R/W					
		0: 无 RTS 中断						
		1: 有 RTS 中断						
Bit2	0	CTSINT CTS 中断标志位	R/W					
		0: 读取该寄存器后自动清零						
		1: 有 CTS 中断						
Bit1	0	TFINT 子串口发送 FIFO 触点中断标志位	R/W					
		0: 无 TFINT 中断						
		1: 有 TFINT 中断						
Bit0	0	RFINT 子串口接收 FIFO 触点中断标志位	R/W					
		0: 无 RFINT 中断						
		1:有 RFINT 中断						

7.2.11 SSR 子串口状态寄存器: (1101)

位	复位值	功能描述	类型
Bit7	X	OE 子串口接收 FIFO 中当前数据(最早写入)的溢出错误标志位:	R
		0: 无 OE 错误	
		1: 有 OE 错误	
Bit6	X	FE 子串口接收 FIFO 中当前数据(最早写入)的帧错误标志位:	R
		0: 无 FE 错误	
		1: 有 FE 错误	
Bit5	X	PE 子串口接收 FIFO 中当前数据(最早写入)的校验错误标志位	R
		0: 无 PE 错误	
		1: 有 PE 错误	
Bit4	X	RX8 子串口接收 FIFO 中当前数据(最早写入)的第 9 位(Bit8)数据值	R
Bit3	0//	TFFL 子串口发送 FIFO 满标志	R
		0: 子串口发送 FIFO 未满	
	**// **	1: 子串口发送 FIFO 满	
Bit2	1	TFEM 子串口发送 FIFO 空标志	R
		0: 子串口发送 FIFO 位空	
		1: 子串口发送 FIFO 空	
Bit1	0	TXBY 子串口发送 TX 忙标志	R
		0: 子串口发送 TX 空	
		1: 子串口发送 TX 忙	
Bit0	1	RFEM 子串口接收 FIFO 空标志	R
		0: 子串口接收 FIFO 未空	
		1: 子串口接收 FIFO 空	

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

7.2.12 SFSR 子串口 FIF0 状态寄存器: (1110)

位	复位值	功能描述	类型
Bit7 – 4	0000	TCNT3—0 子串口发送 FIFO 中的数据个数	R
Bit3 – 0	0000	RCNT3—0 子串口接收 FIFO 中的数据个数	R

7.2.13 SFDR 子串口 FIFO 数据寄存器: (1111)

位	复位值	功能描述	类型
Bit7 – 0	xxxxxxx	写操作时:写入的子串口发送 FIFO 的数据	W/R
		写操作时:写入的子串口发送 FIFO 的数据 读操作时:读出的子串口接收 FIFO 的数据	ک

8.全局功能描述

8.1 复位

VK3234为低电平复位。

各寄存器的复位值见7.2寄存器表中所列。

复位期间及复位后,各子串口处于禁止收发状态。当子串口处于联网模式下时,该特性使得该子串口所在的子节点在上电、复位期间不会对联网的其它节点产生干扰。

当主接口为UART串口时, 其复位后的默认波特率见表8.6.1中阴影标注部分

8.2 时钟选择

VK3234使用晶振时钟作为芯片的时钟源。

8.3 中断控制

VK3234有两级中断: 子串口及MODEM中断,全局中断。当IRQ引脚指示有中断时,可以通过读取全局中断寄存器GIR以判断当前中断的类型,然后去读取相应的中断状态寄存器,以确定当前的中断源。

VK3234的中断结构如下图所示:

11 of 25

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

图 8.3 VK3234 中断结构图

VK3234的每个子串口都有独立的中断系统,包括:FIFO数据错误中断,接收地址中断(RS485模式),RTS中断,CTS中断,发送FIFO触发点中断,接收FIFO触发点中断。

当任意一个中断使能后,满足中断条件就会产生相应的中断。

8.3.1 FIFO数据错误中断

FIFO数据错误中断表明当前接收FIFO中有一个或以上的数据错误,产生错误的条件包括OE(数据溢出错误),FE(数据帧错误),和PE(奇偶校验错)。

一旦有接收FIF0中有出错数据,将产生该中断,直到接收FIF0中的所有出错数据都被读取后,该中断才被清除。该中断清除后表明当前接收FIF0中没有出错数据。

8.3.2 接收地址中断

该中断仅当VK3234工作在RS485模式时产生。在RS232模式下不会产生该中断。

在自动地址识别模式下, 子串口接收到与其设定地址一致的地址字节时, 产生该中断。直到相应的中断寄存器被读取后, 该中断自动清除。

在手动地址识别模式下,一旦接收到地址字节,都将产生该中断。相应的中断寄存器被读取 后,该中断被清除。

8.3.3 RTS中断

在自动或手动硬件流量控制模式下,当RTS信号从O变为1时,都可以产生该中断。

在自动硬件流量控制模式下,当接收FIFO中的数据个数降低到设定的继续发送触发点时,该中断被清除。

手动硬件流量控制模式下,向RTS寄存器写入0将清除该中断。

8.3.4 CTS中断

CTS信号从0变为1时,将产生该中断; 当读取CTS中断标志寄存器后将清除该中断。

8.3.5 发送FIFO触发点中断

当发送FIF0中的数据个数小于设定的发送FIF0触发点时,产生该中断。当发送FIF0中的数据个数大于设定的发送FIF0触发点时,该中断被清除。

8.3.6 接收FIFO触发点中断

当接收FIF0中的数据个数大于设定的发送FIF0触发点时,产生该中断。当接收FIF0中的数据

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

个数小于设定的接收FIFO触发点时,该中断被清除。

8.4 广播模式操作

VK3234支持子串口通道可独立配置的数据广播模式。

首先通过设置全局寄存器GCR中的GBDEN位,将主口的全局广播设置为使能,然后设置需要接收广播数据的相应子串口通道的SCTLR的RDBEN位,使得该通道可以接收数据广播。设置完成后,主口发往任意通道的数据都能被设置为接收广播使能的子串口接收,而未设置接收数据广播的子串口将会忽略这些数据。

8.5 红外模式操作

VK3234的主串口和子串口都可以设置成为红外通信模式。当VK3234的UART设置为IrDA模式时,可以与符合SIR红外通信协议标准的设备通信,或者直接应用于光隔离通信中。

在1rDA模式下,一位数据的周期缩短到普通UART一位数据的3/16, 小于1/16波特周期的脉冲将被作为干扰而忽略。

8.5.1 红外接收操作

在红外数据接收的时序和普通UART数据接收的对应图 如图8.5.1所示: IRX为接收到的红外数据信号,RX为通过红外数据解码后的数据。解码后的数据与IRX上的数据有1个BIT(16xCLOCK)的延迟。接收模式下,与普通UART不同的是,RX在脉冲的中间进行一次采样(区别与普通UART的3次采样),IrDA解码器将IRX上的3/16波特周期的脉冲解码为数据0,持续低电平解码为数据1。

图 8.5.1 红外接收时序

8.5.2 红外发送操作

红外数据发送和普通UART数据发送的对应图如图8.5.2所示,TX为普通UART数据发送时序,LRTX为红外发送时序。当发送数据0时,红外编码器将产生一个3/16位宽的脉冲通过TX发送。当发送数据0时,保持低电平不变。

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

8.6 可编程波特率发生器

VK3234 的主串口和子串口采用相同的独立可编程波特率发生器。该波特率发生器产生固定 16X 系统时钟的波特率,分频率可以通过软件设置。

下表给出了在不同系统时钟频率下的串口波特率设置表:

表 8.6.1

	衣 8.0.1					# W. #			
	BA	UD		分	波特率	波特率	波特率	波特率	波特率
В3	B2	B1	B0	频	Fosc=	Fosc=	Fosc=	Fosc=	Fosc=
				率	1.8432MHz	3.6864MHz	7.3728MHz	11.0592MHz	14.7456MHz
0	0	0	0	3	38400	76800	153600	230400	307200
0	0	0	1	6	19200	38400	76800	115200	153600
0	0	1	0	12	9600	19200	38400	57600	76800
0	0	1	1	24	4800	9600	19200	28800	38400
0	1	0	0	48	2400	4800	9600	14400	19200
0	1	0	1	96	1200	2400	4800	7200	9600
0	1	1	0	192	600	1200	2400	3600	4800
0	1	1	1	384	300	600	1200	1800	2400
1	0	0	0	1 💨	115200	230400	460800	691200	921600
1	0	0	1	2	57600	115200	230400	345600	460800
1	0	1	0	4	28800	57600	115200	172800	230400
1	0	1	1	² /8	14400	28800	57600	86400	115200
1	1	0	0	16	7200	14400	28800	43200	57600
1	1	0	1	32	3600	7200	14400	21600	28800
1	1	1	0	64	1800	3600	7200	10800	14400
1	1	1	1	128	900	1800	3600	5400	7200

[注] 上表中蓝底部分的设置为 VK3234 复位后的初始值。

8.7 数据格式设置

8.7.1 校验模式

VK3234的UART能提供强制校验,计算校验和无校验的数据格式,通过SCONT(子串口配置寄存器)进行设置:

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

强制校验模式

VK3234支持强1校验,强0校验和用户指定校验模式。在这种模式下,校验设置仅影响数据发送,数据接收将忽略奇偶校验。

在RS-485模式下,推荐使用强制校验模式,在该模式下,可以很方便的区分数据和地址。 计算校验模式

VK3234支持1校验、0校验, 奇校验、偶校验模式。在该模式下, 接收和发送的数据都进行 奇偶校验计算。

8.7.2 数据长度

VK3234支持1或2位停止位模式。

8.8 休眠和自动唤醒

VK3234支持休眠和自动唤醒模式,向GCR的IDLE位写入1,将进入休眠模式。在休眠模式下,VK3234的系统时钟将停止以降低功耗。

在休眠模式下,可以被主口和子串口自动唤醒:一旦SCS, CS, 主口MRX, 子串口RX有数据改变, VK3234的系统时钟将会被自动唤醒, 进入正常收发。

9.SPI接口模式操作

9.1 SPI 与主机的连接:

如图 9.1 所示 SPI 接口包括如下四个信号:

SDIN: SPI 数据输入。 SDOUT: SPI 数据输出。 SCLK: SPI 串行时钟。

SCS: SPI 片选(从属选择)。

VK3234 与主机的连接如图 9.1 所示。

图 9.1 SPI 与主机连接图

9.2 SPI 接口的操作时序

VK3234 工作在 SPI 同步串行通信的从机模式下 , 支持 SPI 模式 0 标准。为实现主机和 VK3234 的通信,在主机端需要设置 CPOL=0(SPI 时钟极性选择位),CPHA=0(SPI 时钟相位选择位)。

VK3234 SPI 接口的操作时序如图 9.2 所示:

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

图 9.2 SPI 操作时序图

9.3 SPI 总线通信协议描述:

9.3.1.SPI 写寄存器

SPI			控	制字节	CMD					数据	字节	DB				
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIN	1	C1	CO	A3	A2	A1	A0	D8t	D7t	D6t	D5t	D4t	D3t	D2t	D1 t	D0t
DOUT	INT1	INT2	INT3	INT4	TXF	TXE	TXB	RXE	RXB	TC2	TC1	TC0	RC3	RC2	RC1	RC0

9.3.2.SPI 读寄存器

分类			控	制字节	CMD				数据	字节 [)B				
BIT	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	0
DIN	0	C1	CO	A3	A2	A1	A0	0	0 0	0	0	0	0	0	0
DOUT	INT1	INT2	INT3	INT4	0E	FE	PE	RX8	D7r D6r	D5 r	D4r	D3r	D2r	D1 r	D0r

说明:

C1 C0: 子串口通道号 00~11 分别对应子串口 1 到子串口 4

A3-A0: 子串口寄存器地址。

D8t: 9位数据长度发送时第9位的数据 INT1—INT4: 通道1到4的中断标志

OE: =1 时 溢出错误标志 FE: =1 时 帧错误标志 PE: =1 时 校验错误标志 RX8: 接收的第 9 位数据

TC3—TC0: 发送 FIFO 数据的个数 RC3—RC0: 接收 FIFO 数据的个数

TXF: =1 时 发送 FIFO 满
TXE: =1 时 发送 FIFO 空
TXB: =1 时 发送 FIFO Busy
RXE: =1 时 接收 FIFO 空

10.UART接口模式操作

10.1 UART接口与主机的连接

当VK3234的主接口为UART时,仅需要RX,TX连接主机。采用标准的UART协议进行通信。上电后,主机以VK3234的复位值所确定的波特率和数据格式对VK3234进行初始化设置后即可方便的实现串口扩

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

展功能。

VK3234与主机的接口如图10.1所示:

图 10.1 UART 接口与主机连接图

10.2 主UART接口的操作时序

写操作时,先向VK3234的RX写入一个命令字节(Command Byte),随后写入相应的数据字节,其操作时序(无校验,禁止转义和红外模式)如图10.2.1所示;

图 10.2.1 UART 主接口写操作时序

读操作时,先向VK3234的RX写入命令字节,相应的数据字节从TX读取,其操作时序(无校验,禁止转义和红外模式)如图10.2.2所示

图 10.2.2 UART 主接口读操作时序

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

10.3 主UART通信传输协议描述:

10.3.1. 写寄存器:

分类				控制	字节 C	MD				1 个	数据与	字节 DI	B(下行	Ē)		
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
TX	1	0	C1	CO	А3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
RX																

10.3.2.写FIFO: (多字节写入)

分类				控制	字节 C	MD				[N3	N2 N1	NO]^	个数据	字节 DB(下行)
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2 1 0
TX	1	1	C1	CO	N3	N2	N1	NO	D7	D6	D5	D4	D3	D2 D1 D0
RX													//	

10.3.3.读寄存器:

												200	7000 10	300.		
分类				控制等	字节 C	MD				1个	数据字	空节 DI	3(上行	Ē)		
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
TX	0	0	C1	CO	А3	A2	A1	A0		400	1					
RX									D7	D6	D5	D4	D3	D2	D1	DO

10.3.4.读FIFO: (多字节读取)

分类				控制等	字节 C	MD				[N3	N2 N1	N0]^	个数据	字节	DB(上:	行)
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
TX	0	1	C1	CO	N3	N2	N1	NO		88						
RX									D7	D6	D5	D4	D3	D2	D1	DO

说明:

C1,C0: 子串口通道号; C1 C0: 子串口通道号 00~11分别对应子串口1到子串口4。

A3,A2,A1,A0:子串口寄存器地址;

N3,N2,N1,N0:写入/读取FIFO的数据字节个数; 当其为0000时,表明后接1个数据字节; 当其为1111时,表明后接16个数据字节;

向子串口读/写数据有两种方法:

- a. 读/写寄存器方式。对子串口FIFO寄存器SFDR(1111)进行读/写操作,一次只能读/写一个字节;
- b. 读/写FIF0方式,对接收/发送FIF0直接进行读/写操作,一次最多可以读写16个连续数据

10.4 主UART接口转义字符操作模式:

当主串口TR引脚接高电平时,VK3234工作在转义模式下。该模式在普通UART主接口通信模式下加入了一个转义字符(00H)作为帧同步,使得在数据传送中即使一个数据帧传输出错,不会影响其后的其它数据传输。该模式适合用于远距离和干扰较大的场合进行数据通信。

在该模式下,一个完整的数据发送帧包括一个转义字符(00H),一个命令字节,以及紧跟其后的数据字节。其格式如下

转义字符(00H)	控制字节 CMD	数据字节 DB (1个或多个字节)

注意: 当需要传输的数据中包含00H时,需要连续传送2个00H给VK3234;第一个00H作为转义字符,第二个00H才作为数据00H接收。

当TR接低电平时,VK3234工作在普通UART传输协议模式下,其操作按照10.3.1描述的进行操作。

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

在转义模式下, UART主接口的操作时序如下所示:

图 10.4.2 UART 主接口转义模式读操作时序

10.5 主UART接口红外操作模式

当主串口IR引脚接高电平时,VK3234主UART工作在红外模式下,主UART与主机的通信遵从红外通信协议,其操作时序参见8.5红外模式操作。

当主串口IR引脚接低电平时,VK3234工作在普通模式下。

11. 子串口操作描述

11.1 子串口使能/禁止

VK3234允许独立使能或禁止每个子串口通道。

在使用中可以禁止不使用的子串口通道以降低功耗。

子串口通道只有处在使能状态才能接收和发送数据。

11.2 收发 FIFO 控制

VK3234提供了独立的16级FIF0接收和发送FIF0。接收FIF0包含额外的3个bit,用于存储错误状态。相关操作通过SF0CR(子串口FIF0控制寄存器)进行设置。

11.2.1 发送FIFO 触发点操作

VK3234为每个通道提供独立的可编程发送FIF0触发点设置,以产生相应的发送FIF0触发点中断。 当发送FIF0触发点中断使能时,发送FIF0中的数据数目小于设定的触发点时产生相应中断。

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

11.2.2 接收FIFO触发点操作

VK3234为每个通道提供独立的可编程接收FIF0触发点设置,以产生相应的接收FIF0触发点中断。 当接收FIF0触发点中断使能时,接收FIF0中的数据数目大于设定的触发点时产生相应中断。

11.2.3 发送FIFO的使能/禁止

复位后,发送FIFO处于禁止状态。如果希望将数据写入发送FIFO,需要首先使能发送FIFO。 发送FIFO中的数据是否发送,取决于相应的子通道UART是否使能。一旦相应子通道UART处于 使能状态,则发送FIFO中的数据将会立即发送,否则,发送FIFO中的数据将不会被发送直到相应 的子通道被使能。

11.2.4 接收FIFO的使能/禁止

复位后,接收FIFO处于禁止状态。如果希望接收子串口数据,需要首先使能相应的子串口通道及其接收FIFO。只有相应的UART和接收FIFO使能后,接收到的数据才能写入接收FIFO存储。

如果子串口通道使能而接收FIFO禁止,子串口能接收数据,但数据不会写入接收FIFO而被忽略。

11.2.5 发送FIFO 清空

当SFOCR中发送FIFO清空位(TFCL)被置1时,该子通道发送FIFO中的数据将被清空,发送FIFO 计数器和指针都将清零。

TFCL位被置1后,将会在一个时钟后被硬件自动清0。

11.2.6 接收FIFO 清空

当SFOCR中接收FIFO清空位(RFCL)被置1时,该子通道接收FIFO中的数据将被清空,接收FIFO 计数器和指针都将清零。

RFCL位被置1后,将会在一个时钟后被硬件自动清0。

11.2.7 发送FIFO 计数器

VK3234用寄存器中的4位来反应当前发送FIF0中的数据数目: 当一个字节的数据写入发送FIF0后,发送FIF0计数器自动加1: 当一个发送FIF0中的数据被发送后,发送FIF0计数器自动减1。

注意: 当发送FIF0计数器为15(1111)时,如果再写入一个数据则计数器变为0(0000)。当发送FIF0计数器为1(0001)时,发送一个数据之后则计数器也变为0(0000)。因此,当发送FIF0计数器为0时,表明发送FIF0满或者空,在这种情况下,需要结合子串口状态寄存器(SSR)中的相关状态位进行判断。

11.2.8 接收FIF0计数器

VK3234用寄存器中的4位来反应当前接收FIF0中的数据数目: 当一个字节的数据写入接收FIF0后,接收FIF0计数器自动加1: 当一个接收FIF0中的数据被读取后,接收FIF0计数器自动减1。

注意: 当接收FIF0计数器为15(1111)时,如果再接收一个数据则计数器变为0(0000)。当接收FIF0计数器为1(0001)时,读取一个数据之后则计数器也变为0(0000)。因此,当接收FIF0计数器为0时,表明接收FIF0满或者空,在这种情况下,需要结合子串口状态寄存器(SSR)中的相关状态位进行判断。

11.3 流量控制

VK3234提供硬件流量控制和手动流量控制两种模式可选择。硬件流量控制通过CTS和RTS引脚实现流量控制,可以减少软件开销并提高系统效率。软件流量控制通过XON和XOFF可编程特殊字符实现流量控制操作。相关操作通过SFWCR(子串口流量控制寄存器)设置。

在RS485模式下,该功能被禁止。

11.3.1 触发点控制

当VK3234设置为自动硬件流量控制时:

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

SFWCR中的HRTL1—0用于设置暂停发送触发点,当接收FIFO中的数据个数达到暂停发送触发点时,VK3234将发出暂停发送信号,以通知发送端暂停发送数据。

SFWCR中的PRTL1—0用于设置继续发送触发点,在暂停发送状态下,主机口可以通过读取数据操作读取接收FIFO中的数据,当接收FIFO中的数据个数等于设置的继续发送触发点时,VK3234将通知发送端继续发送数据。

设置时,需要保证暂停发送触发点大于继续发送触发点的数值。VK3234不对该条件做自动判断。

11.3.2.1 自动硬件流量控制

当VK3234的子串口工作在自动硬件流量控制模式时,包含自动RTS控制和自动CTS控制。分别通过硬件自动设置RTS信号和判断CTS信号来实现硬件流量控制。

典型的硬件流量控制的通过器件A的RTS连接器件B的CTS,器件A的CTS连接器件B的RTS,将器件A和B都设置为硬件自动流量控制模式即可实现硬件的自动流量控制。其连接示意图如下所示:

图 11.3.2.1 硬件流量控制示意图

在硬件自动流量控制模式下,一旦数据接收端接收FIF0中数据的个数达到设定的触发点时,为防止接收FIF0溢出,接收端将自动拉高RTS,数据发送端的相应的CTS变高,数据接收端检测到CTS变高后,将发送完当前字节后即暂停数据发送。

发送端暂停数据发送后,接收端的主机接口读取接收FIF0中的数据以释放接收FIF0空间,当接收FIF0中数据的个数减少到继续发送触发点时,接收端的CTS自动变为低电平,发送端相应的RTS变为低电平,发送端检测到RTS为低后,将恢复数据发送。

下图显示了硬件流量控制下的时序操作(硬件流量控制下RTS和CTS的操作与MODEM模式下的RTS和CTS操作一样):

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

图 11.3.2.2 硬件流量操作时序图

11.3.2.2 手动硬件流量控制

当VK3234的子串口工作在手动模式下,可以通过手动写RTS寄存器拉高或拉低RTS引脚信号。

在该模式下,其它的操作与硬件自动流量控制一样,只是RTS由相应的寄存器控制。手动设置RTS为1可以暂停数据发送端发送数据,设置RTS为0则数据发送端继续发送数据。

11.4 RS485操作

VK3368 的子串口支持 RS485 自动收发控制模式和自动网络地址识别模式,网络地址可见设置。在 RS485 模式下,只支持带 9 位地址和数据位,一位停止位的数据。如果要传输不带效验位的 8 位数据,一位停止位,可通过写 SIFR 寄存器 RSTINT 位利用软件设置为手动硬件流模式来完成 485 的收发。(设置为 232 模式)

11.4.1 RS485自动收发

在 RS485 模式下,流量控制将被禁止。RTS 信号用于控制 RS485 收发器的自动收发控制。 只有在发送数据时,RTS 才为高,其它情况下,RTS 都保持低。

VK3234 和 485 的收发器的连接如图:

图 11.4.1 RS485 连接图

11.4.2 网络地址和自动地址识别

RS485 模式下,每个 UART 有一个唯一的网络地址,VK3234 提供了一个 8 位寄存器进行 RS485 网络设置。

当自动网络地址识别功能使能时, VK3234 对接收到的数据进行自动识别。

如果接收到的数据为数据字节或者是与 SADR 中地址字节不匹配的地址字节时, VK3234 忽略这些数据。

如果该子串口接收到的数据为地址字节,且与 SADR 中的数据匹配,则 VK3234 进入接收状态,将该地址字节后的数据字节写入接收 FIFO 中。

当该子串口在数据接收状态下,接收到一个地址字节,且该字节与SADR不匹配时,接收将被自动禁能。

11.4.3 自动和手动地址识别

RS485模式下,SCONR子串口配置寄存器中的AOD位为数据地址选择位。其默认值为1,表明该子串口只接收地址字节而忽略数据字节。

在RS485自动地址模式下,当接收到的地址与SADR的地址一致时,AOD将自动变为0,此时该子串口可以继续接收数据。当子串口接收到的下一个地址字节与SARD的地址不一致时,AOD位将

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

自动置1,不再接收其后的数据字节。

在RS485手动地址识别模式下,RS485地址由上层软件判断,AOD位需要手动设置。AOD设置为0时表明可以接收其后的所有数据,当AOD设置为1时,表明将忽略除了地址以外的所有数据。当接收到地址字节时,VK3234将产生中断,通知MCU将收到的地址字节进行判断,以决定是否设置AOD以接收其后的数据。

11.4.4 网络地址可见设置

当子串口设置为手动地址识别模式时, RS485网络地址总是可见。

在子串口社设置为自动地址识别模式时,可以设置SCONR子串口配置寄存器中的AVEN位,改变网络地址可见属性。当设为地址可见时,接收到的网络地址进入接收FIFO,否则将被忽略。

12. 参数指标

12.1 VK3234的静态参数

除非特别说明,满足: VCC=(2.5V±0.2V)或(3.3±0.3V)或(5±0.5V);-40℃到+85℃;

符号	说明	条件	VCC:	=2.5V	VCC:	=3.0V	VCC	=5.0V	单
			最小	最大	最小	最大	最小	最大	位
电源									
VCC	电源电压		2.3	2.7	3.0	3.6	4.5	5.5	V
ICC	工作电流	3.6864MHz 晶振	1 .	2	2	3	6	10	mA
ICCsl	休眠电流	无负载	150	-	[#] 200	-	460	-	uA
输入逻辑	信号								
Vih	输入高电平	.000	1.8	5.5	2.0	5.5	3.6	5.5	V
V_{IL}	输入低电平		-	0.6	-	0.9	-	1.1	V
IιL	输入漏电流	Vi=5.5 or 0V	-	±10	-	±10	-	±10	uA
Cı	输入电容		-	5	-	5	-	5	pF
输出逻辑	信号								
Vон	输出高电平	Iон≕6mA	1.9	-	2.4	-	4.5	-	V
Vol	输出低电平	IoL=-6mA	-	0.4	-	0.4	0	0.4	V
Iol	输出漏电流		-	±10	-	±10	-	±10	uA
Co	输出电容	·	-	5	-	5	-	5	pF

12.2 VK3234的动态参数

符号	说明	条件	VCC=	=2.5V	VCC:	=3.0V	VCC	=5.0V	单
			最小	最大	最小	最大	最小	最大	位
Fosi	晶振频率		-	15	-	18	-	20	MHz

12.3 VK3234的极限参数

符号	说明	条件	最小	最大	单位
VCC	电源电压		-0.5	6	V
Vı	输入电压		-0.5	+5.5	V

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

Vo	输出电压	-0.5	+5.5	V
PTOL	总功耗	-	600	mW
То	工作温度	-40	+85	$^{\circ}\!\mathbb{C}$
Tstg	存储温度	-65	+150	$^{\circ}\!\mathbb{C}$

13. 封装信息

VK3234采用S0P28无铅绿色封装

图 13.1 SOP28 封装信息

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
J	0.219	0.339	.0086	.0133
J1	0.219	0.289	.0086	.0114
К	0.406	0.496	.0160	.0195
K1	0.406	0.456	.0160	.0180

14. 焊接工艺

VK3234 采用使用绿色环保材料,引脚采用纯锡电镀。推荐使用峰值温度小于 260℃,符合无铅标准的回流焊工艺进行焊接。

所有 SMD 器件焊接工艺都对湿度敏感,建议在焊接前进行干燥处理。

采用手工焊接时,应首先焊接两个对角线的引脚进行固定后再焊接其它引脚。焊接温度为 300℃,烙铁与引脚的接触时间控制在 10 秒以内。

15. 特别申明

本产品并非为生命保障系统、航空航天系统设计,将本产品应用于该领域而引发的一切后果,维肯电子将不承担任何责任。 维肯电子保留对产品进行性能、功能、参数修改的权利。对于正式量

SPI/UART接口 宽工作电压 4通道 16级FIFO的UART

产的产品,维肯电子做出的修改将以公告方式通告用户。

16. 版本历史

V1.0 以前版本均为未正式发布的内部版本。

17. 联系信息

. 请访问维肯电子的网站获取我们的最新联系方式: www.vkic.com

