

Universidade Estadual de Londrina Departamento de Computação

<u>Programa de Mestrado em Computação</u> <u>Módulo 4 - Processamento Digital de</u> <u>Imagens</u>

Autor: Prof. Dr. Alan Salvany Felinto

email: alan@uel.br

(2017)

Sumário

- Espaço 3D
- Espaço de função (produto escalar etc..., propriedades etc...)
- Teorema da convolução.
- Filtragem na frequência
- Exercícios
- Referências Bibliográficas

Espaço 3D

$$\vec{i} = (1,0,0)$$
 $\vec{j} = (0,1,0)$

O ponto p é obtido pela combinação linear com os elementos da base

$$p=(9,3,12)=9\vec{i}+3j+12k=9(1,0,0)+3(0,1,0)+12(0,0,1)=$$

 $(9,0,0)+(0,3,0)+(0,0,12)=(9,3,12)$

Espaço 3D - Projeção

Projeção do vetor *p* no vetor da base *i*. O coeficiente 9 indica a contribuição da base *i* para formar o ponto (9, 3, 12)

OBS:

- 1) Com todos os coeficientes e todos os vetores da base pode-se calcular o ponto p.
- 2) A partir do ponto *p* pode-se calcular os coeficientes projetando o ponto nos elementos da base.

Espaço 3D - Projeção

Produto Escalar

$$\vec{v} \cdot \vec{u} = |\vec{v}| \cdot |\vec{u}| \cos(\theta)$$

Se \vec{v} e \vec{u} são ortogonais então \vec{v} . \vec{u} = 0

Magnitude do vetor
$$|\vec{v}| = \sqrt{v_i^2 + v_i^2 + v_k^2}$$

Espaço de Função

•Imagine o espaço de função.

- •Se existir uma base no espaço de função então uma função qualquer pode ser calculada como combinação linear do conjunto de funções que formam uma base neste espaço.
- •A partir de uma função "A" e a base pode-se calcular os coeficientes que indicam a contribuição de cada elemento da base para formar a função "A" (produto escalar entre funções).
- •A partir dos coeficientes e a base e utilizando combinação linear pode-se calcular uma função no espaço de função.

Seja f(x) uma função contínua e real.

Transformada de Fourier

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-j2\pi ux} dx$$

Transformada de Fourier inversa

₄Imaginário

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} du$$
 coeficie

$$z(\alpha) = e^{j\alpha} = \cos(\alpha) + jsen(\alpha) = x_z + jy_z$$

$$\frac{Onde:}{\alpha}$$

$$\alpha = 2u\pi x$$

$$u \in a \text{ variá vel de frequência}$$

$$\alpha = 2u\pi x$$

u é a variá vel de frequência

$$e^{-j\alpha} = \cos(\alpha) - j\operatorname{sen}(\alpha)$$

Como estaremos trabalhando com imagens então f(x) é uma função real e geralmente F(u) é uma função no domínio dos números imaginários.

$$F(u)=R(u)+jI(u)$$
 número complexo $F(u)=|F(u)|e^{j2\pi ux}$ descreve um ponto no plano imaginário

$$\varphi(u)=2\pi ux$$
 ângulo de fase

$$\varphi(u) = \tan^{-1} \left[\frac{I(u)}{R(u)} \right]$$

$$|F(u)|^2 = R^2(u) + I^2(u)$$
 espectro de potência ou densidade espectral

Seja f(x) uma função contínua e real.

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux}dx = \int_{-\infty}^{\infty} f(x)(\cos(2\pi ux) - j\operatorname{sen}(2\pi ux))dx$$
$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux}du = \int_{-\infty}^{\infty} F(u)(\cos(2\pi ux) + j\operatorname{sen}(2\pi ux))du$$

Observação:

Uma linha na imagem são números reais (inteiros), portanto considerando o nosso objeto de estudo f(x) são números reais e F(u) são números complexos

Uma função e o seu espectro de Fourier

Gonzalez

Transformada Discreta de Fourier

$$\{f(x_0), f(x_0 + \Delta x), f(x_0 + 2\Delta x), \dots, f(x_0 + [N-1]\Delta x)\}$$

$$f(x) = f(x_0 + x \Delta x)$$

Amostragem de uma função contínua

📗 Transformada Discreta de Fourier 🏋 🖰 C

Transforma Discreta de Fourier 1D:

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \exp(-j 2 \pi u x/N)$$
 Para $u = 0, 1, 2, ..., N-1$

$$F(u) \text{ é discreta em intervalo de } \Delta u$$

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) (\cos(2 \pi u x/N) - j \sin(2 \pi u x/N))$$

Transforma Inversa de Fourier 1D:

$$f(x) = \sum_{u=0}^{N-1} F(u) \exp(j 2 \pi u x/N)$$
$$f(x) = \sum_{u=0}^{N-1} F(u) (\cos(2 \pi u x/N) + \sin(2 \pi u x/N))$$

Para x = 0, 1, 2, ..., N-1

Delta x e Delta u possuem a seguinte relação:

$$\Delta u = \frac{1}{N\Delta x}$$

Transformada Discreta de Fourier 2D

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \exp\left(-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)\right)$$

Para u = 0, 1, 2, ..., M-1 e v = 0, 1, 2, ..., N-1

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \exp\left(j2\pi\left(\frac{ux}{M} + \frac{vy}{N}\right)\right)$$

Para x = 0, 1, 2, ..., M-1 e y = 0, 1, 2, ..., N-1

Transformada Discreta de Fourier 2D

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \exp\left(-j2\pi \frac{(ux+vy)}{N}\right)$$

Para u = 0, 1, 2, ..., M-1 e v = 0, 1, 2, ..., N-1

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) \exp\left(j2\pi \frac{(ux+vy)}{N}\right)$$

Para x = 0, 1, 2, ..., M-1 e y = 0, 1, 2, ..., N-1

Visualização da Transformada de Fourier

Considere:

- A variação da Transformada de Fourier de uma imagem igual a $[0, R] = [0, 2.5x10^6]$
- 256 níveis de cinza de uma imagem

$$s = T(r)$$
 Desta forma $s = [0, 255]$ e $r = [0, 2.5x10^6]$

Como as principais informações da T.F. estão contidas nas regiões próximas de zero então a transformação T deverá realçar as informações próxima de zero em detrimento das informações próxima de 2.5×10^6 .

Visualização da Transformada de Fourier

Considere: $|\mathbf{r}| = |\mathbf{F}(\mathbf{u}, \mathbf{v})|$

 $s = c \log(1+|r|)$, considere que r máximo é igual a $2.5x10^6$ então $\log(1+|2.5x10^6|) = 6.4$, portanto c = 255/6.4

Fórmula final: $s = (255/6.4) \log(1+|r|)$

Propriedades da TF

- Separabilidade
- Translação
- Periodicidade
- Rotação
- Distributiva e Mudança de Escala
- Valor Médio
- Laplaciano
- -Convolução e Correlação
- Amostragem

Separabilidade

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \left(\sum_{y=0}^{N-1} f(x,y) \exp\left(-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)\right) \right)$$

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \exp\left(-j 2\pi \frac{ux}{M}\right) \sum_{y=0}^{N-1} f(x,y) \exp\left(-j 2\pi \frac{vy}{N}\right)$$

Para u = 0, 1, 2, ..., M-1 e v = 0, 1, 2, ..., N-1

A inversa é análoga

Utilizando a Transformada de Fourier 1D para calcular a TF 2D

Translação

$$f(x, y) \exp[j2\pi(u_0x + v_0y)/N] \Leftrightarrow F(u - u_0, v - v_0)$$

$$f(x-x_0, y-y_0) \Leftrightarrow F(u, v) \exp[-j2\pi(ux_0+vy_0)/N]$$

Multiplicando no espaço há o Deslocamento no domínio da frequência para (u_0, v_0)

Multiplicando da Frequência há o deslocamento no domínio espacial para (x_0, y_0)

O deslocamento em f(x,y) não altera a magnitude da sua TF O deslocamento em f(x,y) altera a fase da transformada.

$$[F(u, v) \exp[-j2\pi(ux_0 + vy_0)/N]] = [F(u, v)]$$

Considere o caso para $u_0 = v_0 = N/2$

$$\exp[j2\pi(u_0x + v_0y)/N] = e^{j\pi(x+y)}$$
$$= (-1)^{x+y}$$
$$f(x,y)(-1)^{x+y} \Leftrightarrow F(u+N/2,v-N/2)$$

Neste caso a origem no espaço de frequência é transladado para o centro.

Translação e diferença da fase 🟋

Considere que H é a TF de h

$$h(t-t_0) \Leftrightarrow H(f)e^{-j2\pi ft_0}$$

$$h(t) \Leftrightarrow H(f) = \left(\sqrt{real(H(f))^2 + imaginário(H(f))^2}\right) e^{j \cdot \arctan\left(\frac{imaginário(H(f))}{real(H(f))}\right)} e^{j \cdot \arctan\left(\frac{imaginário(H(f))}{real(H(f))}\right)} e^{j \cdot \arctan\left(\frac{imaginário(H(f))}{real(H(f))}\right)} e^{-j2\pi f t_0}$$

Diferença da fase: $\Delta \theta = \arctan\left(\frac{imaginário(H(f))}{real(H(f))}\right) - \left(\arctan\left(\frac{imaginário(H(f))}{real(H(f))}\right) - 2\pi f t_0\right) = 2\pi f t_0$ Dividindo a Diferença $\Delta \theta = 2\pi f t_0$ A diferença de fase da TF fornece

da fase por $2\pi f$: $\Delta x = \frac{\Delta \theta}{2\pi f} = \frac{2\pi f t_0}{2\pi f} = t_0$ A diferença de fase da TF fornece o deslocamento no espaço

periodicidade

Período N

$$F(u,v) = F^*(-u,-v)$$

$$|F(u,v)| = |F(-u,-v)|$$

Se a função
$$f$$
 for real $F(u) = F(u+N)$
 $|F(u)| = |F(-u)|$.

Rotação

Coordenadas polares:

$$x = r \cos \theta$$

$$y = r \operatorname{sen} \theta$$

$$u = \omega \cos \phi$$

$$v = \omega \operatorname{sen} \phi$$

f(x,y) e F(u,v) em coordenadas polares resulta em $f(r,\theta)$ e $F(w,\Phi)$

$$f(r,\theta+\theta_0) \Leftrightarrow F(\omega,\phi+\theta_0).$$

Se rotacionar f de um ângulo θ . F também será rotacionado com o

mesmo ângulo θ .

Distributiva

$$\mathfrak{F}\{f_1(x,y) + f_2(x,y)\} = \mathfrak{F}\{f_1(x,y)\} + \mathfrak{F}\{f_2(x,y)\}$$

Em geral: $\mathfrak{F}{f_1(x,y) \cdot f_2(x,y)} \neq \mathfrak{F}{f_1(x,y)} \cdot \mathfrak{F}{f_2(x,y)}$

Prove ???????

Fator de Escala

$$af(x, y) \Leftrightarrow aF(u, v)$$

$$f(ax, by) \Leftrightarrow \frac{1}{|ab|} F(u/a, v/b)$$

Valor médio

Transformada
$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \exp\left(-j2\pi \frac{(ux+vy)}{N}\right)$$

Média do NC de uma imagem
$$\bar{f}(x, y) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y)$$

Tranformada de Fourier para
$$u = v = 0$$
: $F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{v=0}^{N-1} f(x,y)$

A relação do valor médio do NC da imagem e a transformada de fourier é dado por:

$$\bar{f}(x,y) = \frac{1}{N}F(0,0)$$

O Laplaciano

O laplaciano (derivadas parciais em x e y)

$$\nabla^{2} f(x,y) = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}$$

$$\Im \left\{ \nabla^{2} f(x,y) \right\} \Leftrightarrow -(2\pi)^{2} (u^{2} + v^{2}) F(u,v)$$

Filtro Passa Alta – Detecta Bordas

Processamento Digital de Imagens

Filtragem espacial:

Convolução:

Núcleo de convolução

$$h(x,y) = f(x,y) * g(x,y) = \int_{-\infty}^{\infty} \int f(\alpha,\beta) \cdot g(x - \alpha,y - \beta) d\alpha d\beta$$

Exemplo na forma discreta com um núcleo de convolução 3x3:

Convolução

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x - \alpha) d\alpha$$

(b)

(f)

 $f(x) * g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x - \alpha) d\alpha$ Exemplo: $\begin{cases} x/2 & 0 \le x \le 1 \\ 1 - x/2 & 1 \le x \le 2 \\ 0 & \text{caso contrário.} \end{cases}$

Convolução

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x - \alpha) d\alpha$$

 $1/\Delta x$

(d)

(e)

 $-1/\Delta x$

Transformada Rápida de Fourier FFT

N	N ² (FT Direto)	$N \log_2 N$ (FFT)	Vantagem computacional (N/log ₂ N)
2	4	2	2,00
4	16	8	2,00
8	64	24	2,67
16	256	64	4,00
32	1.024	160	6,40
64	4.096	384	10,67
128	16.384	896	18,29
256	65.536	2.048	32,00
512	262.144	4.608	56,89
1.024	1.048.576	10.240	102,40
2.048	4.194.304	22.528	186,18
4.096	16.777.216	49.152	341,33
8.192	67.108.864	106.496	630,15

Seja f(x) uma função contínua e real.

Transformada de Fourier

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-j2\pi ux} dx$$

Transformada de Fourier inversa

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{j 2\pi u x} du$$

$$\alpha = 2u\pi x$$

u é a frequência

$$e^{-j\alpha} = \cos(\alpha) - j\operatorname{sen}(\alpha)$$

Transformada de Fourier Discreta

$$N-1$$
 $-j2\pi$

$$N-1$$
 $-j2\pi \frac{-j2\pi}{N}$

$$F(u) = \sum_{N=1}^{N} f(x)e^{\frac{J-N}{N}}$$
 se $w=e^{\frac{J-N}{N}}$ e $N=4$ teremos:

$$F(u) = \sum_{x=0}^{\infty} f(x)e^{N} \quad \text{se } w = e^{N} \quad e \text{ N= 4 teremos:}$$

$$F(0) = f(0)w^{0} + f(1)w^{0} + f(2)w^{0} + f(3)w^{0} Obs: w^{ux} = e^{\sqrt{N}}$$

$$F(1) = f(0)w^{0} + f(1)w^{1} + f(2)w^{2} + f(3)w^{3}$$

$$F(2) = f(0)w^{0} + f(1)w^{2} + f(2)w^{4} + f(3)w^{6}$$

$$F(3) = f(0)w^{0} + f(1)w^{3} + f(2)w^{6} + f(3)w^{9}$$

em forma de matriz:

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \end{bmatrix} = \begin{bmatrix} w^0 & w^0 & w^0 & w^0 \\ w^0 & w^1 & w^2 & w^3 \\ w^0 & w^2 & w^4 & w^6 \\ w^0 & w^3 & w^6 & w^9 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{bmatrix}$$
Neste caso para calcular a TF utiliza-se:

-N² multiplicações complexas
(16)
-N(N-1) somas complexas (12)

Transformada de Fourier Discreta

Forma compacta: $F(u) = w^{ux} f(x)$

Forma Matricial:

$$\begin{vmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \end{vmatrix} = \begin{vmatrix} w^0 & w^0 & w^0 & w^0 \\ w^0 & w^1 & w^2 & w^3 \\ w^0 & w^2 & w^4 & w^6 \\ w^0 & w^3 & w^6 & w^9 \end{vmatrix} \begin{vmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{vmatrix}$$

Simplificando:

$$\begin{vmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & w^{1} & w^{2} & w^{3} \\ 1 & w^{2} & w^{0} & w^{2} \\ 1 & w^{3} & w^{2} & w^{1} \end{vmatrix} \begin{vmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{vmatrix}$$

Transformada Rápida de Fourier

manipulando com a matriz:

$$\begin{bmatrix} F(0) \\ F(2) \\ F(1) \\ F(3) \end{bmatrix} = \begin{bmatrix} 1 & w^0 & 0 & 0 \\ 1 & w^2 & 0 & 0 \\ 0 & 0 & 1 & w^1 \\ 0 & 0 & 1 & w^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & w^0 & 0 \\ 0 & 1 & 0 & w^0 \\ 1 & 0 & w^2 & 0 \\ 0 & 1 & 0 & w^2 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{bmatrix}$$

Onde:

$$\mathbf{w}^0 = -\mathbf{w}^2$$

$$\mathbf{W}^1 = -\mathbf{W}^3$$

 $W^0 = W^4$ Portanto temos 4 multiplicações complexas e 8 adições complexas.

Transformada Rápida de Fourier

manipulando com a matriz:

$$\begin{bmatrix} F(0) \\ F(2) \\ F(1) \\ F(3) \end{bmatrix} = \begin{bmatrix} F'(0) \\ F'(1) \\ F'(2) \\ F'(3) \end{bmatrix} = \begin{bmatrix} 1 & w^0 & 0 & 0 \\ 1 & w^2 & 0 & 0 \\ 0 & 0 & 1 & w^1 \\ 0 & 0 & 1 & w^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & w^0 & 0 \\ 0 & 1 & 0 & w^0 \\ 1 & 0 & w^2 & 0 \\ 0 & 1 & 0 & w^2 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{bmatrix}$$

Como calcular a ordem do vetor ?

$$\begin{bmatrix} F(00) \\ F(10) \\ F(01) \\ F(11) \end{bmatrix} = \begin{bmatrix} F'(00) \\ F'(01) \\ F'(10) \\ F'(11) \end{bmatrix}$$

Resposta: inverta os bits dos índices do vetor

Ordem de complexidade é N log N, sendo N potência de 2

Transformadas Separáveis de Imagens

$$F(u) = \sum_{x=0}^{N-1} f(x)g(x,u)$$
 Produtos internos
$$f(x) = \sum_{u=0}^{N-1} F(u)h(x,u)$$
 Núcleos das transformadas

Em 2D:

$$F(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) g(x,y,u,v)$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) h(x,y,u,v)$$
Núcleos

O núcleo é dito separável se : $g(x,y,u,v) = g_1(x,u) g_2(y,v)$

Se g1 for funcionalmente igual a g2 então o núcleo será simétrico:

$$g(x,y,u,v) = g_1(x,u) g_1(y,v)$$

Transformadas Separáveis de Imagens

Se o núcleo g(x,y,u,v) for separável e simétrico então podemos escrever a transformada direta como: F = AfA

Um exemplo deste tipo de transformada é a transformada de Fourier.

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \exp\left(-j2\pi \frac{ux}{M}\right) \sum_{y=0}^{N-1} \underbrace{f(x,y)} \exp\left(-j2\pi \frac{vy}{N}\right)$$
Se $B = A^{-1}$ então
$$BFB = BAfAB$$

$$BFB = f$$

Se B for aproximadamente igual a *A*-1 então temos que:

$$\hat{f} = BAfAB$$

Exemplos de Transformadas: Cosseno, Seno, haar, Slant, Walsh, Hadamard

Modelo de imagem:

$$f(x,y) = i(x,y)$$
. $r(x,y)$, onde:

- •i(x,y) = Iluminação da cena
- $\cdot r(x,y) = Quantidade de luz refletida dos objetos contidos na cena.$
- •0 < i(x,y) < ∞ e 0 < r(x,y) < 1

Note que: $TF(f(x,y)) = \underline{TF(i(x,y). r(x,y))} \neq \underline{TF(i(x,y)).TF(r(x,y))}$

Portanto ao utilizar a Transformada de Fourier diretamente neste modelo de imagem as componentes de reflectância e de iluminação ficam misturadas.

Para manter o controle da iluminação e reflectância no domínio da frequência utiliza-se a seguinte solução:

Considerando que:

```
Log<sub>a</sub> (x * y) = log<sub>a</sub> x + log<sub>a</sub> y então:

z(x,y) = ln f(x,y) = ln(i(x,y)*r(x,y)) =

= ln i(x,y) + ln r(x,y)
```

Portanto temos que:

```
TF(z(x,y)) = TF(ln f(x,y)) = TF(ln i(x,y)) + TF(ln r(x,y))

Z(u,v) = I(u,v) + R(u,v),

C(u,v) = TF(ln i(x,y)) = R(u,v) = TF(ln r(x,y))

C(u,v) = TF(ln i(x,y)) = TF(ln r(x,y))

C(u,v) = TF(ln i(x,y)) = TF(ln r(x,y))

C(u,v) = TF(ln i(x,y)) = TF(ln i(x,y))

C(u,v) = TF(ln i(x,y))

C(u,v)
```

(mudanças bruscas nas intensidades da luz)

Onde: H(u,v) é o filtro homomórfico

Figura 4.41 — Seção transversal de uma função de filtro circularmente simétrica para uso em filtragem homomórfica. D(u, v) é a distância a partir da origem.

Diminui o brilho ao mesmo tempo que aumenta o contraste

 $\rightarrow D(u,v)$

 γ_H γ_L H > 1 e L < 1

Propriedades:

- •Log_a (x * y) = log_a x + log_a y
- $-\log_a x/y = \log_a x \log_a y$
- $\bullet log_a x^m = m * log_a x$
- •Ln[exp(x)]=x, exp[Ln(x)]=x

Utilizada em Realce de Imagens

Diminui o brilho ao mesmo tempo que aumenta o contraste

https://sites.google.com/site/rhcmelo/projeto/homomorfico

Filtragem na Freqüência

$$f(x,y)*g(x,y)\Leftrightarrow F(u,v).G(u,v)$$

$$R(u,v) = F(u,v).G(u,v)$$
 $r(x,y)$ é a imagem resultante da $r(x,y) = InvTF(R(u,v))$ convolução de $f(x,y)$ com $g(x,y)$

Transforma Discreta de Fourier 1D:

$$F(u) = \sum_{x=0}^{N-1} f(x) \exp(-j 2\pi u x/N)$$

$$F(u) = \sum_{x=0}^{N-1} f(x) (\cos(2\pi u x/N) - j \sin(2\pi u x/N))$$

Para
$$u = 0, 1, 2, ..., N-1$$

Transforma Inversa de Fourier 1D:

$$f(x) = \frac{1}{N} \sum_{u=0}^{N-1} F(u) \exp(j2\pi u x/N)$$
$$f(x) = \frac{1}{N} \sum_{u=0}^{N-1} F(u) (\cos(2\pi u x/N) + \sin(2\pi u x/N))$$

Para
$$x = 0, 1, 2, ..., N-1$$

|G(u)|

|G(u)|

Filtro passa baixa (freqüências) → retira ruído e borra as bordas

Filtro passa alta (freqüências) → detecção de bordas (detalhes)

|G(u)| u

Filtro passa faixa (freqüências) →

Transformada de Fourier de uma Gaussiana

Exercícios:

Fazer a TF de uma imagem, zerar as bordas da matriz e em seguida calcular a inversa para obter a nova imagem processada.

A transformada de Fourier de uma gaussiana é uma gaussiana

1D
$$g_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{x^2}{2\sigma^2}}$$
 2D $G(u,v) = e^{-\left(\frac{u^2 + v^2}{2\sigma^2}\right)}$

O desvio padrão, sigma, controla a quantidade de borramento da imagem. Consequentemente, controla filtro para a retirada do ruído

$$R(u,v) = F(u,v).G(u,v)$$

$$r(x,y) = InvTF(R(u,v))$$

Problemas de Implementação

Fazer a TF de uma imagem, zerar os cantos da matriz resultante da TF e em seguida calcular a inversa para obter a nova imagem processada.

Qual é o resultado deste processamento, para a imagem de teste ?

Exercícios

- 1) Implemente, utilizando OpenCV, o programa com a seguinte especificação: (implícito nos outros exercícios)
 - Leitura de uma imagem.
 - Transformar a Imagem em níveis de Cinza.
 - Calcular a Transformada de Fourier da Imagem.
 - Calcular a Inversa da Transformada de Fourier.
 - Mostrar a imagem resultante.
- 2) Implemente filtragem na frequência, utilizando a gaussiana como filtro passa baixa ou passa alta ou passa faixa. Escolha uma filtragem.

OBS: Utilizem rotinas prontas das bibliotecas do OpenCV.

Exercícios

$$\mathfrak{F}\{f_1(x,y) + f_2(x,y)\} = \mathfrak{F}\{f_1(x,y)\} + \mathfrak{F}\{f_2(x,y)\}$$
$$\mathfrak{F}\{f_1(x,y) \cdot f_2(x,y)\} \neq \mathfrak{F}\{f_1(x,y)\} \cdot \mathfrak{F}\{f_2(x,y)\}$$
$$af(x,y) \Leftrightarrow aF(u,v)$$

Bibliografias

- •[Castleman (1996)] Castleman, K. R. Digital Image Processing. Prentice Hall pp-667. 1996.
- •[Gonzalez (1993)] Gonzalez, R. F.; Woods, R. E. Digital Image Processing. Addison-Wesley, p 716. 1993.
- •[Gonzalez (2010)] Gonzalez, R. F.; Woods, R. E. Processamento Digital de Imagens, 3ª edição, Pearson Prentice Hall, 624p. 2010.
- •[Hearn (1997)] Hearn, D; Baker, M. P. Computer Graphics, C Version. Prentice Hall, 2ª edição, p. 650. 1997.
- •[FOLEY_90] Foley, James D. et al: Computer Graphics Principles and Practice, Addison-Wesley Publishing Company, 1990.
- •[PERSIANO_89] Persiano, R.C.M.; Oliveira, A.A.F. :Introdução à Computação Gráfica, Livros Técnicos e Científicos Editora Ltda., 1989.
- •[Pratt (1991)] Pratt, Willian K. Digital Image Processing. A Wiley-Interscience Publication, 2<u>a</u> edição. 698 p. 1991.