TFE4101 KRETS- OG DIGITALTEKNIKK

Forenkling av Boolske funksjoner

Gajski:

Kap. 4.4: Forenkling av Boolske funksjoner

Kap. 4.5-4.6: Teknologimapping

Tabellmetoden (Quine-McCluskey)

- Karnaughdiagram
 - basert på mønstergjenkjenning
 - velegnet for bruk av mennesker
 - meget vanskelig med mer enn 6 variable
- Tabellmetoden
 - systematisk og velegnet for bruk av datamaskin
 - brukbar inntil ca. 16 variable
 - finner alle primledd
 - velger blant primleddene for å finne forenklet uttrykk
 - (nær) minimum antall literaler
 - irredundant dekning
- Finn primimplikanter
 - Sorter mintermer etter antall enere
 - Finn 1-subkuber ved å sammenlikne nabogrupper
 - Sorter 1-subkubene etter antall enere
 - Finn 2-subkuber ved å sammelikne nabogrupper
 - osv.

TFE4101 Digitaltekn Forel. 6

Tabellmetoden: finn prim implikanter

Mint.	W	Х	у	Z	F
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	~	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

Grp.	Sub-		Ve	rdi		
id	kube	W	X	У	Z	Dekket
G_0	(0)	0	0	0	0	no
G_1	(2)	0	0	1	0	no
	(4)	0	1	0	0	no
G_2	(3)	0	0	1	1	no
	(6)	0	1	1	0	no
	(9)	1	0	0	1	no
G_3	(7)	0	1	1	1	no
	(11)	1	0	1	1	no
	(13)	1	1	0	1	no
G_4	(15)	1	1	1	1	no

TFE4101 Digitaltekn Forel. 6

Tabellmetoden: finn prim implikanter

Grp.	Sub-		Ve	rdi		
id	kube	W	X	У	Z	Dekket
G_0	(0)	0	0	0	0	yes
G₁	(2)	0	0	1	0	yes
	(4)	0	1	0	0	yes
G_2	(3)	0	0	1	1	yes
	(6)	0	1	1	0	yes
	(9)	1	0	0	1	yes
G_3	(7)	0	1	1	1	yes
	(11)	1	0	1	1	yes
	(13)	1	1	0	1	yes
G_4	(15)	1	1	1	1	yes

Grp.	Sub-		Ve	rdi		
id	kube	$ \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}$			Dekket	
G_0	(0,2)	0	0	-	0	no
	(0,4)	0	ı	0	0	no
G ₁	(2,3)	0	0	1	ı	no
	(2,6)	0	-	1	0	no
	(4,6)	0	1	-	0	no
G_2	(3,7)	0	-	1	1	no
	(3,11)	_	0	1	1	no
	(6,7)	0	1	1	1	no
	(9,11)	1	0	-	1	no
	(9,13)	1	-	0	1	no
G_3	(7,15)	-	1	1	1	no
	(11,15)	1	-	1	1	no
	(13,15)	1	1	-	1	no

o NTNU

Tabellmetoden: finn prim implikanter

Grp.	Sub-		Ve	rdi		
id	kube	$ \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}$				Dekket
G_0	(0,2)	0	0	-	0	yes
	(0,4)	0	-	0	0	yes
G_1	(2.3)	0	0	1	-	yes
	(2,6)	0	_	1	0	yes
	(4,6)	0	1	-	0	yes
G_2	(3,7)	0	-	1	1	yes
	(3,11)	_	0	1	1	yes
	(6,7)	0	1	1	-	yes
	(9,11)	1	0	-	1	yes
	(9,13)	1	-	0	1	yes
G_3	(7,15)	_	1	1	1	yes
	(11,15)	1	_	1	1	yes
	(13,15)	1	1	-	1	yes

Grp.	Sub-	Verdi				
id	kube	W	X	У	Z	Dekket
G_0	(0,2,4,6)	0	ı	ı	0	no
G ₁	(2,3,6,7)	0	1	1	1	no
G_2	(3,7,11,15)	1	ı	1	1	no
	(9,11,13,15)	1	1	1	1	no

$$P_1 = w'z'$$

 $P_2 = w'y$
 $P_3 = yz$
 $P_4 = wz$

Tabellmetoden: finn minimal dekning

- Lag valgtabell der
 - hver rad tilsvarer en PI
 - hver kolonne tilsvarer en minterm
- Sett kryss i de celler der tilhørende PI dekker tilhørende minterm
- Dersom en kolonne bare har ett kryss, er den PI som tilhører raden med kryss en EPI
- Ring rundt EPI kryss
- Merk av de mintermer som er dekket av en EPI
- Velg den PI som dekker flest udekkede mintermer
- Merk av de mintermer som er dekket av denne
- Fortsett til alle mintermer er dekket

Tabellmetoden: finn minimal dekning

PI	PI	PI		Funksjonens mintermer								
navn	uttrykk	mintermer	0	2	3	4	6	7	9	11	13	15
P_1	w'z'	(0,2,4,6)	X	X		X	Х					
P ₂	w'y	(2,3,6,7)		X	Х		Х	Х				
P_3	yz	(3,7,11,15)			Х			Х		Х		Х
P ₄	WZ	(9,11,13,15)							X	Х	X	X
Dekket			0	2	3	4	6	7	9	11	13	15

$$F = w'z' + wz + w'y$$

$$F = w'z' + wz + yz$$

Tabellmetoden: finn minimal dekning (annen funksjon)

PI	PI	PI	Funksjonens mintermer						
navn	uttrykk	mintermer	2	6	7	8	9	13	15
P1	w'yz'	(2,6)	X	Х					
P2	wx'y'	(8,9)				X	Х		
P3	w'xy	(6,7)		X	Х				
P4	wy'z	(9,13)					Х	Х	
P5	xyz	(7,15)			Х				Х
P6	WXZ	(13,15)						Х	Х
	Dekk	et	2	6	7	8	9	13	15

TFE4101 Digitaltekr <u>Forel</u>. 6

$$F = w'yz' + wx'y' + xyz + wxz$$

Teknologimapping

- Mål:
 - Konverter funksjon slik at den benytter tilgjengelige porttyper
 - Redusere forsinkelse på kritisk sti
 - Redusere totalt antall transistorer brukt i designet
- Metode:
 - Dekomponer innganger

Konverter porter

Optimaliser bort dobbel invertering

$$- \longrightarrow - \longrightarrow A = \overline{A}$$

Teknologimapping til NAND-2 og INV

$$F = ABC + \overline{A}$$

Kun 2 innganger

Kritisk sti B/C – F: 2,4 + 2,4 + 2,4 = 7,2ns

Bare NAND og INV

Teknologimapping til NAND-2 og INV

Fra forrige lysark

Optimaliser bort dobbel invertering

Kritisk sti B/C – F: 1,4 + 1 + 1,4 + 1,4 = 5,2 ns

Teknologimapping til NAND-2 og INV

Anta at bare C – F del av kritisk sti i totalkretsen: X + 1,4 + 1 + 1,4 + 1,4 = (X + 5,2) ns

Ny C – F kritisk sti: X + 1,4 + 1,4 = (X + 2,8) ns