1D Diagenetic modelling - Porous Media

Arthur Capet, Eric Delhez, Marilaure Grégoire

July 11, 2017

2. Porous Media

3. Reaction-Transport in Porous Media

4. Case Study: Oxygen diffusion

Reaction-Transport Models

Transport Reaction Equation

$$\frac{\partial C}{\partial t} = T + R$$

С	Concentration	mass/m ³
t	Time	time
Т	Transport	mass/m³/time
R	Reaction	mass/m³/time

- ightharpoonup C(t,x)
- x is the axis of largest spatial variability

- ightharpoonup C(t,x)
- x is the axis of largest spatial variability
- ► *C* can be considered homogeneous along the other dimension

parallel isosurfaces

parallel isosurfaces

cylindrical isosurfaces

В

cylindrical isosurfaces

parallel isosurfaces

spherical isosurfaces

D

Transport Reaction Equation in 1D

$$\frac{\partial C}{\partial t} = \underbrace{-\frac{1}{A_x} \frac{\partial (A_x. J)}{\partial x}}_{\text{Transport}} + R$$

С	Concentration	mass/m ³
t	Time	time
R	Reaction	mass/m³/time
A_{x}	Surface	m^2
J	Flux	mass/m ² /time

Transport Reaction Equation in 1D

$$\frac{\partial C}{\partial t} = \underbrace{-\frac{1}{A_x} \frac{\partial (A_x. J)}{\partial x}}_{\text{Transport}} + R$$

С	Concentration	mass/m ³
t	Time	time
R	Reaction	mass/m ³ /time
A_{x}	Surface	m^2
J	Flux	mass/m ² /time

General flux expression

$$J = \underbrace{-D\frac{\partial C}{\partial x}}_{\text{Diffusion}} + \underbrace{vC}_{\text{Advection}}$$

D	Diffusion Coefficient	m ² /time
V	Advection rate	m/time

$$\frac{\partial C}{\partial t} = -\frac{1}{A_x} \frac{\partial (A_x, J)}{\partial x} + R \quad (1) \qquad \qquad J = -D \frac{\partial C}{\partial x} + \nu C \quad (2)$$

$$\frac{\partial C}{\partial t} = -\frac{1}{A_x} \frac{\partial (A_x, J)}{\partial x} + R \qquad (1) \qquad \qquad J = -D \frac{\partial C}{\partial x} + vC \qquad (2)$$

$(1)+(2) o \mathsf{General}\ \mathsf{1D}\ \mathsf{Diffusion} ext{-}\mathsf{Advection-}\mathsf{Reaction}\ \mathsf{equation}$

$$\frac{\partial C}{\partial t} = \frac{1}{A_x} \frac{\partial}{\partial x} \left[A_x. D \frac{\partial (C)}{\partial x} - A_x. vC \right] + R$$

$$\frac{\partial C}{\partial t} = -\frac{1}{A_x} \frac{\partial (A_x. J)}{\partial x} + R \quad (1)$$

$$J = -D\frac{\partial C}{\partial x} + vC \qquad (2)$$

Assumptions

▶ Horizontal homogeneity → Constant surface $A_x = A$

 $(1) + (2) \rightarrow$ General 1D Diffusion-Advection-Reaction equation

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[D \frac{\partial (C)}{\partial x} - vC \right] + R$$

2. Porous Media

3. Reaction-Transport in Porous Media

4. Case Study: Oxygen diffusion

Until now:

Concentration: mass / Volume

Until now:

Concentration: mass / Volume

 $Bulk\ Sediments = Solid + Liquid$

Until now:

Concentration: mass / Volume

 $Bulk\ Sediments = Solid + Liquid$

More convenient to use

- for Solutes mass / Vol. of liquid
- for Solids mass / Vol. of solid

Until now:

Concentration: mass / Volume

Bulk Sediments = Solid + Liquid

More convenient to use

- ► for Solutes mass / Vol. of liquid
- for Solids mass / Vol. of solid

Porosity:

 $\phi = \text{Vol. Liquid} / \text{Vol. Bulk}$ $1-\phi=$ Vol. Solid / Vol. Bulk

Porosity:

 $\phi = \text{Vol. Liquid} / \text{Vol. Bulk}$ $1 - \phi = \text{Vol. Solid} / \text{Vol. Bulk}$

if R_s is a solid-phase reaction rate $[mmol/m_{solid}^3/time]$

The effect on liquid phase will be : $R_s.(1-\phi)/(\phi)$

Multiple phases: Transport terms

for liquids:

- Diffusion is due to molecular diffusion
- Advection is due to liquid flow

$$J_{Liq.} = -D_{sed} \frac{\partial C}{\partial x} + v_L C$$

Multiple phases: Transport terms

for liquids:

- Diffusion is due to molecular diffusion
- Advection is due to liquid flow

for solid:

- Diffusion is due to bioturbation
- ► Advection is due to solid advection (sedimentation or compression)

$$J_{Liq.} = -D_{sed} \frac{\partial C}{\partial x} + v_L C$$
 $J_{Sol.} = -D_b \frac{\partial C}{\partial x} + v_S C$

2. Porous Media

3. Reaction-Transport in Porous Media

4. Case Study: Oxygen diffusion

Reactive Transport in Porous Media

for liquids:

$$\frac{\partial \phi_{x} C}{\partial t} = \frac{\partial}{\partial x} \left[\phi_{x} J_{L} \right] + \phi_{x} R_{L}$$

for solids:

$$\frac{\partial (1 - \phi_x)S}{\partial t} = \frac{\partial}{\partial x} \left[(1 - \phi_x)J_S \right] + (1 - \phi_x)R_S$$

Reactive Transport in Porous Media

for liquids:

$$\frac{\partial \phi_{x} C}{\partial t} = \frac{\partial}{\partial x} \left[\phi_{x} J_{L} \right] + \phi_{x} R_{L}$$

$$\frac{\partial \phi_{x} C}{\partial t} = \frac{\partial}{\partial x} \left[\phi_{x} \left(-D_{\text{sed}} \frac{\partial C}{\partial x} + v_{L} C \right) \right] + \phi_{x} R_{L}$$

for solids:

$$\frac{\partial (1 - \phi_x)S}{\partial t} = \frac{\partial}{\partial x} \left[(1 - \phi_x)J_S \right] + (1 - \phi_x)R_S$$

$$\frac{\partial (1 - \phi_x)S}{\partial t} = \frac{\partial}{\partial x} \left[(1 - \phi_x)(-D_b \frac{\partial C}{\partial x} + v_S C) \right] + (1 - \phi_x)R_S$$

Reactive Transport in Porous Media

for liquids:

$$\frac{\partial \phi_{x} C}{\partial t} = \frac{\partial}{\partial x} \left[\phi_{x} J_{L} \right] + \phi_{x} R_{L}$$

$$\frac{\partial \phi_{x} C}{\partial t} = \frac{\partial}{\partial x} \left[\phi_{x} \left(-D_{sed} \frac{\partial C}{\partial x} + v_{L} C \right) \right] + \phi_{x} R_{L}$$

$$\frac{\partial C}{\partial t} = \frac{1}{\phi_{x}} \frac{\partial}{\partial x} \left[\phi_{x} \left(-D_{sed} \frac{\partial C}{\partial x} + v_{L} C \right) \right] + R_{L}$$

for solids:

$$\frac{\partial (1 - \phi_x)S}{\partial t} = \frac{\partial}{\partial x} \left[(1 - \phi_x)J_S \right] + (1 - \phi_x)R_S$$

$$\frac{\partial (1 - \phi_x)S}{\partial t} = \frac{\partial}{\partial x} \left[(1 - \phi_x)(-D_b \frac{\partial C}{\partial x} + v_S C) \right] + (1 - \phi_x)R_S$$

$$\frac{\partial S}{\partial t} = \frac{1}{1 - \phi_x} \frac{\partial}{\partial x} \left[(1 - \phi_x)(-D_b \frac{\partial C}{\partial x} + v_S C) \right] + R_S$$

2. Porous Media

3. Reaction-Transport in Porous Media

4. Case Study: Oxygen diffusion

- ▶ We only consider dissolved oxygen, only the liquid phase.
- ▶ Permeable sediments → No liquid flow, no advection.
- Constant oxygen consumption rate as a function of depth.

$$\frac{\partial O_2(z)}{\partial t} = \frac{1}{\phi} \frac{\partial}{\partial z} [\phi D \frac{\partial C}{\partial z}] - \gamma(z)$$
 (3)

$$\gamma(z) = \begin{cases} \gamma_0, & \text{if } z \le L \\ 0, & \text{if } z > L \end{cases} \tag{4}$$