

REVIEW NUMPY IMAGE PROCESSING

Review-Numpy array

Ôn tập kiến thức về numpy

Outline

- > Numpy Examples
- > Application 1: Image Brightness Change
- > Application 2: Background Replacing

Read and save image

Grayscale Image (Height, Width)

Read and save image

```
import cv2
import numpy as np

# Doc hinh anh
image = cv2.imread('nature.jpg')

# Hiển thị hình anh
cv2.imshow("Image", image)
cv2.waitKey(0) # Chờ người dùng nhấn một phím bất kỳ để đóng cửa sổ hiển thị
cv2.destroyAllWindows() # Đóng tất cả các cửa sổ hiển thị
#Lưu hình anh
cv2.imwrite("new_nature.jpg", image)
```


* Cắt ảnh với slicing

1 img_rgb_crop = image[50:150, 500:700]

❖ Xoay ảnh − np.rot90

img_rot = np.rot90(image)

Xoay ånh - transpose

img_transpose = img.transpose(1, 0, 2)

Plus

IMG1

IMG1 + IMG2

IMG2

***** Image

Grayscale Image (Height, Width)

Color Image (Height, Width, Channel)

***** Grayscale images

230 194 147 108 90 98 84 96 91 101 237 | 206 | 188 | 195 | 207 | 213 | 163 | 123 | 116 | 128 210 | 183 | 180 | 205 | 224 | 234 | 188 | 122 | 134 | 147 198 | 189 | 201 | 227 | 229 | 232 | 200 | 125 | 127 | 135 249 241 237 244 232 226 202 116 125 126 251 | 254 | 241 | 239 | 230 | 217 | 196 | 102 | 103 | 243 255 240 231 227 214 203 116 95 91 204 231 208 200 207 201 200 121 95 95 144 140 120 115 125 127 143 118 92 91 121 | 121 | 108 | 109 | 122 | 121 | 134 | 106 | 86 97

Width

Pixel p = scalar

 $0 \le p \le 255$

Resolution: #pixels

Resolution = HeightxWidth

Height

***** Color images

RGB color image

Pixel p=
$$\begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

 $0 \le r,g,b \le 255$

(Height, Width, channel)

		233	188	137	96	90	95	63	73	73	82
	237	202	159	120	105	110	88	107	112	121	109
226 221	191	147	110	101	112	98	123	110	119	142	131
	191	176	182	203	214	169	144	133	145	155	122
185	160	161	184	205	223	186	137	147	161	140	115
181	174	189	207	206	215	194	136	142	151	133	87
246	237	237	231	208	206	192	122	143	144	111	74
254	254	241	224	199	192	181	99	122	117	107	74
239	248	232	207	187	182	184	110	114	110	113	74
193	215	193	167	158	164	181	114	112	111	105	82
113	119	110	111	113	123	135	120	108	106	113	
93	97	91	103	107	111	122	112	104	114		

Increase the brightness of a grayscale image

Idea
For each pixel
Increase pixel value
by a value v

Increase brightness

Increase the brightness of a grayscale image

Idea
For each pixel in each channel
Decrease pixel value
by a value v

Decrease brightness

***** Load an image

```
1 import cv2
2
3 # read a grayscale image
4 img = cv2.imread('nature.jpg', 0)
5
6 # save the image
7 cv2.imwrite('processed_image.jpg', img)
```

```
1 # get image info
2
3 import numpy as np
4 import cv2
5
6 # read a grayscale image
7 img = cv2.imread('nature.jpg', 0)
8
9 shape = img.shape
10 6/25/253t(shape)
```


(400, 650)

(Height, Width)

***** Load an image

```
1 import cv2
2
3 # read a color image
4 img = cv2.imread('nature.jpg', 1)
5
6 # save the image
7 cv2.imwrite('processed_image.jpg', img)
```

```
1 # get image info
2
3 import numpy as np
4 import cv2
5
6 # read a grayscale image
7 img = cv2.imread('nature.jpg', 1)
8
9 shape = img.shape
10 o/prigt(shape)
```


(400, 650, 3)

(Height, Width, Channel)

* zeros() and where() functions

zeros() function

	0	1	2
0	0	0	0
1	0	0	0

```
2 # Tạo một numpy array
3 # với tất cả phẩn tử là 0
4
5 import numpy as np
6
7 # shape: 2 dòng, 3 cột
8 arr = np.zeros((2,3))
9 print(arr)
```

```
[[0. 0. 0.]
[0. 0. 0.]]
```

where() function


```
4  # create an array
5  arr = np.arange(5)
6  print(arr)
7
8  # condition
9  condition = arr < 3
10  out = np.where(condition, arr, arr*2)
11
12  print(condition)
13  print(out)</pre>
```

```
[0 1 2 3 4]
[ True True True False False]
[0 1 2 6 8]
```

clip() function

```
numpy.clip()
             <3
        <3
                                       >6
                                           >6
   data
                clip(data, a min=3, a max=6)
  result
    import numpy as np
    data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
    print("data: ", data)
    # element < 3 sẽ gán bằng 3
   # element > 6 sẽ gán bằng 6
   result = np.clip(data, a min=3, a max=6)
12 print("result: ", result)
data: [1 2 3 4 5 6
```

```
numpy.clip()
```

```
data
1
2
3
4
5
6
7
8
9
10
```

```
clip( data, a min=[3, 4, 1, 1, 1, 4, 4, 4, 4, 4], a max=9)
```

```
result 3 4 3 4 5 6 7 8 9 9
```

```
import numpy as np

# create data
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print ("data: ", data)

# clip values
min_list = [3, 4, 1, 1, 1, 4, 4, 4, 4, 4]
result = np.clip(data, a_min=min_list, a_max=9)
print("result: ", result)
```

```
data: [1 2 3 4 5 6 7 8 9 10] <sub>18</sub> result: [3 4 3 4 5 6 7 8 9 9]
```

❖ Increase brightness - Implementation - 1

```
1∨import cv2
   2 import numpy as np
      import matplotlib.pyplot as plt
     img = cv2.imread('nature.jpg', 1)
      img = img.astype(float
     h, w, c = img.shape
   9 \vee \text{for i in range(h)}:
          for j in range(w):
  10 V
  11 \vee
               for k in range(c):
                   img[i, j, k] = img[i, j, k] + 50
  12
                   if img[i, j, k] <0:</pre>
  13 v
                       img[i, j, k] = 0
  14
                   elif img[i, j, k] > 255:
  15 V
                       img[i, j, k] = 255
  16
  17
  18 img = img.astype('uint8')
      cv2.imwrite('increase50_loop.jpg', img)
      cv2.imshow("img", img)
  21 cv2.waitKey(0)
  22 cv2.destroyAllWindows()
6/26/2023
```


❖ Increase brightness - Implementation - 2

```
1∨import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    img = cv2.imread('nature.jpg', 1)
    img = img.astype(float)
   img = img + 50
    img = np.clip(img, 0, 255)
10
    img = img.astype(np.uint8)
    cv2.imwrite('increase50_clip.jpg', img)
    cv2.imshow("img", img)
    cv2.waitKey(0)
   cv2.destroyAllWindows()
```


***** Increase brightness - Implementation - 3

```
1∨import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    img = cv2.imread('nature.jpg', 1)
    img = img.astype(float)
    img = img + 50
    img = np.where(img<0., 0., img)</pre>
    img = np.where(img>255., 255., img)
11
    img = img.astype(np.uint8)
    cv2.imwrite('increase50_where.jpg', img)
```


Decrease brightness - Implementation - 1

```
1∨import cv2
   import numpy as np
   import matplotlib.pyplot as plt
   img = cv2.imread('nature.jpg', 1)
    img = img.astype(float)
    h, w, c = img.shape
   for i in range(h):
        for j in range(w):
10
            for k in range(c):
11
                img[i, j, k] = img[i, j, k] -80
12
13
                if img[i, j, k] <0:
                    img[i, j, k] = 0
14
                elif img[i, j, k] >255:
15
16
                    img[i, j, k] = 255
17
   img = img.astype('uint8')
    cv2.imwrite('decrease80_loop.jpg', img)
    cv2.imshow("img", img)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
```


Decrease brightness - Implementation - 2

```
1∨import cv2
   import numpy as np
   import matplotlib.pyplot as plt
   img = cv2.imread('nature.jpg', 1)
   img = img.astype(float)
   img = img - 80
   img = np.clip(img, 0, 255)
10
   img = img.astype(np.uint8)
   cv2.imwrite('decrease80_clip.jpg', img)
   cv2.imshow("img", img)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
```


Decrease brightness - Implementation - 3

```
1∨import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    img = cv2.imread('nature.jpg', 1)
    img = img.astype(float)
    img = img - 80
    img = np.where(img<0., 0., img)</pre>
    img = np.where(img>255., 255., img)
10
11
    img = img.astype(np.uint8)
    cv2.imwrite('decrease80_where.jpg', img)
    cv2.imshow("img", img)
    cv2.waitKey(0)
   cv2.destroyAllWindows()
```


Outline

- > Numpy Examples
- > Application 1: Image Brightness Change
- > Application 2: Background Replacing

Background Subtraction

Background Subtraction

Background

coming image

Background

Background Subtraction

different image

Background Subtraction

Output

