10 Turing Machines

	T T 7	11	1
•	1/1/A	ctill.	have.
•	v v C	OULL	110000

- a set of states
- some final states
- The input alphabet is a subset of the input alphabet
- We have a simbol for the space: \square .
 - Not really different from λ
- This is deterministic
- · You don't have to process all the input
 - All you have to do is end up in the final state
- Imagine we have a tape, and some symbol a. The read-write head starts as some state q_0 .
 - Now we write over a to a value d, we now are at q_1
- Now suppose the input *abb*.
 - 1. Start at $a(q_0)$.
 - 2. Move to $b(q_1)$
 - 3. Move to $b(q_1)$
- Example $abcd \implies abq_1c \vdash abeq_2d$
 - A way of describing what we go from to.