Porównanie metod konstrukcji diagramu Woronoja

Bartosz Hanc, Jakub Pawlina

3 stycznia 2023

Spis treści

0.1	Część techniczna
	0.1.1 Wprowadzanie danych wejściowych
	0.1.2 Wizualizacja wyników
0.2	Opis problemu
0.3	Konstrukcja diagramu Woronoja jako grafu dualnego do triangulacji Delaunay'a wy-
	znaczonej algorytmem Bowyera–Watsona
	0.3.1 Opis algorytmu
	0.3.2 Wydajność zaimplementowanego algorytmu
	0.3.3 Graficzna prezentacja wyników działania algorytmu
	0.3.4 Wizualizacja etapów działania algorytmu
0.4	Aproksymacyjny algorytm brute force
	0.4.1 Opis algorytmu
	0.4.2 Graficzna prezentacja wyników działania algorytmu

0.1 Część techniczna

Projekt został wykonany w środowisku Jupyter Notebook w języku Python z wykorzystaniem dostarczonego na laboratoriach narzędzia graficznego. Wszystkie dostępne funkcjonalności programu zostały opisane w notatniku Jupyter, natomiast ich uruchomienie jest możliwe poprzez uruchomienie odpowiedniej komórki w notatniku. Do implementacji samych algorytmów wykorzystano jedynie bibliotekę standardową Pythona.

0.1.1 Wprowadzanie danych wejściowych

Danymi wejściowymi jest lista punktów reprezentowana przez pary typu (float, float). Oprócz bezpośredniego wpisania listy punktów możliwe jest zadawanie punktów za pomocą myszki, korzystając z interfejsu graficznego. Wprowadzone w taki sposób dane można następnie zapisać do pliku .json poprzez uruchomienie odpowiedniej komórki. Możliwe jest następnie wczytanie danych wejściowych z pliku .json korzystając z funkcji loadPoints("name.json") przez podanie nazwy pliku znajdującego się w tym samym folderze co notatnik Jupyter. Dodatkowo istnieje również opcja wygenerowania n losowych punktów należących do zadanego obszaru płaszczyzny $[a;b] \times [a;b]$ poprzez wywołanie funkcji genRndPoints(n,a,b).

0.1.2 Wizualizacja wyników

Notatnik Jupyter zawiera również zaimplementowane funkcje showResults1(points) oraz showResults2(points) wizualizujące wyniki działania odpowiednio pierwszego i drugiego zaimplementowanego algorytmu.

Dostępna jest również interaktywna wizualizacja algorytmu prezentująca graficznie kolejne etapy jego działania. Wizualizację można uruchomić poprzez uruchomienie odpowiedniej komórki w notatniku.

0.2 Opis problemu

Diagramem Woronoja generowanym przez zbiór punktów $S := \{p_1, ..., p_n\} \subset \mathbb{R}^2$ nazywamy podział płaszczyzny \mathbb{R}^2 na obszary $H_1, ..., H_n$ parami rozłączne, takie że dla każdego H_i zachodzi $\forall_{p \in H_i} : d(p, p_i) = \min \{d(p, p_i) \mid p_i \in S\}$, gdzie $d : \mathbb{R}^2 \times \mathbb{R}^2 \mapsto \mathbb{R}_+$ jest metryką na płaszczyźnie \mathbb{R}^2 .

Celem projektu było zaimplementowanie dwóch różnych algorytmów wyznaczających diagram Woronoja zadanej chmury punktów na płaszczyźnie euklidesowej.

0.3 Konstrukcja diagramu Woronoja jako grafu dualnego do triangulacji Delaunay'a wyznaczonej algorytmem Bowyera–Watsona

0.3.1 Opis algorytmu

Jako jedną z dwóch wymaganych metod konstrukcji diagramów Woronoja wybrano metodę konstrukcji korzystającą z dualności między triangulacją Delaunay'a, a diagramem Woronoja. Schemat postępowania jest wówczas następujący: wyznaczamy najpierw triangulację Delaunay'a chmury punktów, a następnie na jej podstawie tworzymy krawędzie diagramu Woronoja. Do wyznaczenia triangulacji Delaunay'a wykorzystano algorytm Bowyera–Watsona. Ideę zaproponowanej metody można przedstawić w postaci elementarnego pseudokodu*:

```
funkcja BowyerWatson:
    points := lista zadanych punktów
    triangles := pusty zbiór trójkątów triangulacji
    Znajdź super-prostokąt pokrywający całkowicie chmurę punktów.
    Dodaj do triangles dwa super-trójkąty powstałe z podziału
    super-prostokąta jedną z jego przekątnych.
    Dla każdego punktu p z points:
        Znajdź wszystkie trójkąty T, takie że okrąg opisany na T zawiera
       punkt p i dodaj je do zbioru badTriangles.
        Znajdź krawędzie wielokąta, który powstałby po usunięciu trójkątów
       z badTriangles i dodaj je do zbioru polygon.
       Usuń z triangles wszystkie trójkąty znajdujące się w badTriangles.
       Dokonaj triangulacji powstałej wielokątnej wnęki polygon.
    Usuń z triangles wszystkie trójkąty, które zawierają wierzchołek
    super-trójkąta.
    Oblicz diagram Woronoja jako graf dualny do triangulacji Delaunaya
    zawartej w triangles.
```

Dokładny opis implementacji w języku Python poszczególnych fragmentów powyższego pseudokodu został opisany poniżej.

• Wykorzystane struktury danych

- Wejściowe punkty są przechowywane w liście points, która zawiera pary typu (float,float) określające współrzędne kolejnych punktów
- Struktura triangles przechowuje trójki postaci (int,int,int) określające wierzchołki trójkąta jako indeksy punktów w liście points. Struktura triangles została zaimplementowana jako pythonowy set().

^{*}Przedstawiony pseudokod z niewielkimi modyfikacjami został zaczerpnięty z artykułu "Bowyer–Watson algorithm" na Wikipedii.

- Struktura edges przechowuje pary typu key-value, gdzie kluczami są pary typu (int,int) określające krawędź triangulacji jako indeksy punktów w liście points, natomiast wartościami są zbiory zawierające trójkąty, które zawierają krawędź będąca kluczem. Trójkąty te są reprezentowane tak jak w strukturze triangles tj. w postaci trójek typu (int,int,int). Struktura edges została zaimplementowana jako pythonowy słownik.
- Konstrukcja superprostokąta pokrywającego chmurę punktów. Superprostokąt obliczamy poprzez znalezienie maksymalnej i minimalnej współrzędnej x i y chmury punktów, obliczenie wielkości $l := \max(|y_{\max} y_{\min}|, |x_{\max} x_{\min}|)$, a następnie odpowiednio dodanie i odjęcie l do/od x_{\max} , y_{\max} i x_{\min} , y_{\min} . Parametr l określa wielkość obszaru, do którego ograniczamy obliczany diagram Woronoja.
- Poszukiwanie trójkątów, których okrąg opisany zawiera dany punkt p. Dla każdego trójkąta T(A,B,C) znajdującego się aktualnie w zbiorze triangles obliczamy współrzędne (S_x,S_y) środka okręgu opisanego na nim, korzystając ze wzorów

$$S_x = \frac{1}{D} \left[(A_x^2 + A_y^2)(B_y - C_y) + (B_x^2 + B_y^2)(C_y - A_y) + (C_x^2 + C_y^2)(A_y - B_y) \right]$$

$$S_y = \frac{1}{D} \left[(A_x^2 + A_y^2)(C_x - B_x) + (B_x^2 + B_y^2)(A_x - C_x) + (C_x^2 + C_y^2)(B_x - A_x) \right]$$

gdzie $D:=2[A_x(B_y-C_y)+B_x(C_y-A_y)+C_x(A_y-B_y)]$ oraz promień tego okręgu korzystając ze wzoru

$$R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}},$$

gdzie a, b, c to długości boków trójkąta, a $s:=\frac{1}{2}(a+b+c)$. Jeśli odległość punktu p od środka centre(A,B,C) jest mniejsza lub równa R to dodajemy trójkąt T(A,B,C) do zbioru badTriangles (badTriangles jest implementowany jako pythonowy set()). Równość sprawdzana jest przez warunek |dist(p, centre) - R| < err, gdzie err to tolerancja dla zera.

- Poszukiwanie krawędzi wielokątnej wnęki. Dla każdego trójkąta T(A,B,C) znajdującego się w zbiorze badTriangles przypisujemy a,b,c=(A,B),(B,C),(C,A), a następnie dla każdej krawędzi e z (a,b,c) obliczamy moc zbioru (edges $[e] \cap \text{badTriangles}) \{T\}$ (ponieważ #edges $[e] \leq 2$ oraz złożoność znalezienia części wspólnej $s \cap t$ to $O(\min(\#s,\#t))$, a złożoność znalezienia różnicy s-t to O(#s), więc obliczenie mocy zbioru w powyższy sposób zajmuje O(1) operacji). Jeśli moc powyższego zbioru wynosi 0 to dana krawędź e nie jest krawędzią wspólną żadnych dwóch trójkątów ze zbioru badTriangles, czyli jest krawędzią poszukiwanego wielokąta i dodajemy ją do zbioru krawędzi polygon (polygon jest implementowany jako pythonowy set())
- Usuwanie nieprawidłowych trójkątów. Dla każdego trójkąta T(A,B,C) znajdującego się w zbiorze badTriangles przypisujemy a,b,c=(A,B),(B,C),(C,A). Usuwamy T ze zbioru triangles korzystając z metody .remove() (o złożoności czasowej O(1)), a następnie aktualizujemy strukturę edges: dla każdej krawędzi e z (a,b,c) usuwamy trójkąt T ze zbioru edges[e] korzystając z metody .remove() i jeśli po usunięciu zbiór ten jest pusty usuwamy klucz e ze słownika edges korzystając z metody del (o złożoności O(1)).
- Triangulacja wielokątnej wnęki. Dla każdej krawędzi e = (q, r) ze zbioru polygon dodajemy do zbioru triangles trójkąt T(p, q, r) i aktualizujemy strukturę edges: przypisujemy a, b, c = (p, q), (q, r), (r, p), a następnie dla każdej krawędzi e z (a, b, c) wykonujemy:
 - jeśli klucz e istnieje już w edges (sprawdzamy to w O(1), korzystając z metody .get()) to dodajemy do zbioru edges[e] trójkąt T(p,q,r);
 - jeśli klucz e nie istnieje, to go tworzymy i wstawiamy do pustego zbioru $\mathsf{edges}[e]$ trójkąt T(p,q,r).

- Usuwanie trójkątów zawierających wierzchołek początkowego supertrójkąta. Dla każdego trójkąta T(A,B,C) znajdującego się w zbiorze triangles sprawdzamy, czy A lub B lub C są wierzchołkami supertrójkąta. Jeśli tak to dodajemy T do zbioru toRemove. Następnie dla każdego trójkąta T ze zbioru toRemove usuwamy T ze zbioru triangles korzystając z metody .remove().
- Obliczenie diagramu Woronoja dualnego do wyznaczonej triangulacji Delaunay'a. Diagram Woronoja jest reprezentowany przez listę voronoi zawierającą krawędzie go tworzące. Dla każdej krawędzi e będącej kluczem w edges przypisujemy Ts = edges[e] ∩ triangles (O(1)). Jeśli #Ts = 2 to krawędź e jest krawędzią wspólną dwóch trójkątów T₁(A₁, B₁, C₁), T₂(A₂, B₂, C₂) zatem do listy voronoi dodajemy krawędź [centre(A₁, B₁, C₁), centre(A₁, B₂, C₂)]. Jeśli #Ts = 1 to krawędź e należy do otoczki wypukłej chmury punktów i krawędź diagramu Woronoja jest fragmentem prostej prostopadłej do e. W celach wizualizacji możemy jednak utworzyć w tym przypadku krawędź pomiędzy trójkątem T₁ z Ts i trójkątem T₂ zawierającym wierzchołek supertrójkąta, przy czym oba trójkąty T₁ i T₂ znajdują się w zbiorze edges[e].

Ze względu na przeszukiwanie wszystkich trójkątów w strukturze triangles w celu utworzenia zbioru bad
Triangles złożoność czasowa opisanego algorytmu wynosi
 $O(n^2)$, gdzie n to liczba wprowadzonych punktów. Taki sposób znajdowania nie
prawidłowych trójkątów jest jednak bardzo czytelny w kodzie w języku Python i wymaga istotnie mniej implementacji. Sama procedura przekształcania triangulacji Delaunay'a w dualny do niej diagram Woronoja jest realizowana w czasie liniowym.

0.3.2 Wydajność zaimplementowanego algorytmu

Złożoność czasowa zaimplementowanego algorytmu wynosi $O(n^2)$. W Tabeli 1 zebrano uśrednione czasy działania programu (bez wizualizacji) dla wygenerowanych losowo zbiorów punktów o coraz większej liczności. Testy przeprowadzono na komputerze z procesorem Intel Core i5-8600k 3.60 GHz i systemem operacyjnym Windows 11. Dla n < 1000 program oblicza diagram Woronoja w rozsądnym czasie, jednak ze względu na odbiegającą od wzorcowej złożoność nie może zostać wykorzystany do przetwarzania bardzo dużych chmur punktów. Jednocześnie ze względu na krótką i przejrzystą implementację nadaje się do wizualizacji algorytmu służącej objaśnieniu działania algorytmu.

$\begin{array}{ c c c } \text{Liczba} \\ \text{punkt\'ow } n \end{array}$	Czas [s]
10	0.002
50	0.013
100	0.047
500	1.08
1000	4.24
1500	9.57

Tabela 1: Czasy działania programu dla losowo wygenerowanych zbiorów punktów

0.3.3 Graficzna prezentacja wyników działania algorytmu

Na Rysunku 1 przedstawiono wygenerowane wizualizacje wyznaczonych diagramów Woronoja dla trzech różnych zbiorów punktów. Czarne punkty oznaczają wprowadzoną chmurę punktów, czarne krawędzie to krawędzie triangulacji, czerwone punkty to środki okręgów opisanych na trójkątach z triangulacji, natomiast czerwone krawędzie to krawędzie diagramu Woronoja.

Zaimplementowany algorytm przetestowano na różnych zbiorach punktów. W szczególności sprawdzono, czy w przypadku zbioru punktów, dla których więcej niż 3 z nich leżą na jednym okręgu nie występują problemy związane z testem przynależności do koła opisanego. Nie stwierdzono występowania żadnych problemów i jak widać na zamieszczonym przykładzie: dla 10-kąta foremnego triangulacja Delaunay'a i diagram Woronoja zostały wyznaczone poprawnie.

Rysunek 1: Wizualizacja diagramu Woronoja dla trzech różnych zbiorów punktów

0.3.4 Wizualizacja etapów działania algorytmu

Pierwsza część wizualizacji prezentuje algorytm wyznaczania triangulacji Delaunay'a zadanej chmury punktów, natomiast druga – przekształcenie uzyskanej triangulacji w dualny do niej diagram Woronoja. Na Rysunku 2 zamieszczono wybrane fragmenty wizualizacji algorytmu wraz z opisem.

Rysunek 2: Wybrane fragmenty wizualizacji etapów algorytmu

0.4 Aproksymacyjny algorytm brute force

0.4.1 Opis algorytmu

Jako drugą metodę zaimplementowano algorytm brute force wyznaczający w przybliżony sposób wieloboki Woronoja dla zadanej chmury punktów. Algorytm wprowadza na płaszczyźnie dyskretną kratę \mathbb{Z}_+^2 i dla każdego punktu kratowego znajduje punkt z zadanej chmury, dla którego odległość (w sensie metryki euklidesowej) jest minimalna. Algorytm zaimplementowany w języku Python jest niezwykle krótki, dlatego zamieszczono go poniżej w całości.

```
def ApproxVoronoi(points, N): # O(n*N^2)
   n = len(points)
   P = [i for i in range(n)]
   mx, my = min(points, key=lambda x: x[0])[0], min(points, key=lambda x: x[1])[1]
```

Krata jest reprezentowana przez tablicę dwuwymiarową $\operatorname{grid}[N][N]$, której wartościami są indeksy punktów z zadanej chmury points . Liczba naturalna N^2 określa liczbę punktów kratowych i jednocześnie wpływa bezpośrednio na dokładność wyznaczonego podziału. Obszar, dla którego wprowadzana jest krata, jest ograniczany do prostokąta $((m_x, m_y), (m_x, M_y), (M_x, M_y), (M_x, m_y))$, gdzie m_x , m_y , M_x , M_y to odpowiednio przeskalowane minimalne i maksymalne współrzędne punktów zadanej chmury. Odległość między sąsiednimi punktami kratowymi wynosi wówczas $h_x = (M_x - m_x)/N$ (w poziomie) i $h_y = (M_y - m_y)/N$ (w pionie). Złożoność czasowa działania tego algorytmu to $O(nN^2)$, czyli dla ustalonej liczby punktów kratowych jest liniowa względem wielkości wprowadzonej chmury punktów.

0.4.2 Graficzna prezentacja wyników działania algorytmu

Na Rysunku 3 przedstawiono wygenerowaną za pomocą algorytmu aproksymacyjnego dla 10^4 punktów kratowych wizualizację diagramu Woronoja dla 40 losowo wygenerowanych punktów oraz diagram dokładny wyznaczony opisanym wcześniej algorytmem Bowyera–Watsona.

Rysunek 3: Przybliżony diagram Woronoja 40 losowych punktów wyznaczony algorytmem aproksymacyjnym dla 10^4 punktów kratowych oraz diagram dokładny wyznaczony algorytmem Bowyera–Watsona