PAC2 - Primavera 2011

Data inici:	06/04/2011
Data fin:	17/04/2011
Data notes:	01/05/2011
Data solució:	18/04/2011

Per a dubtes i aclariments sobre l'enunciat, adreceu-vos al fòrum de la vostra aula.

Pregunta resposta lliure (25%)

Pregunta

Formalitzeu el següent raonament:

Els llops udolen i s'agrupen quan la lluna és plena. Cal que els llops udolin perquè l'home llop es transformi. Només quan l'home llop es transforma, sempre que els llops s'agrupen ataquen als humans. Els llops o udolen o s'agrupen i ataquen als humans però no ambdues coses a la vegada. Per tant ni la lluna és plena ni l'home llop es transforma.

Resposta

Usem la següent assignació d'àtoms:

P: la lluna és plena

U: els llops udolen

G: els llops s'agrupen

A: els llops ataquen els humans

T: I'home llop es transforma

Formalització:

$$P \rightarrow U \land G, T \rightarrow U, \neg T \rightarrow \neg (G \rightarrow A), (U \lor (G \land A)) \land \neg (U \land G \land A) \stackrel{\bullet}{\cdot} \neg P \land \neg T$$

Lògica de Enunciats - Taules de veritat: . (25%)

Esbrina la vaidesa del següent raonament

Raonament

1	$P \rightarrow \neg Q \wedge R$	Premissa
2	$(R \rightarrow P) \land (Q \rightarrow P)$	Premissa
3	¬(R ∧ P) ∨Q	Premissa
4	$Q \land (Q \rightarrow P)$	Conclusió

Taula de veritat

Р	Q	R	\neg	¬Q	$P \rightarrow$	R	Q	$(R \to P)$ $\land (Q \to P)$	R	¬(R	¬(R ^	Q A (Q	Contraex
			Q	$\wedge R$	¬Q ∧	\rightarrow	\rightarrow	$\wedge (Q \rightarrow P)$	Λ	∧ P)	P) ∨Q	→P)	emple?

					R	Р	Р		Р				
V	٧	٧	F	F	F	٧	٧	V	V	F	V	V	No
٧	٧	F	F	F	F	٧	٧	V	F	V	V	V	No
٧	F	٧	V	V	V	٧	٧	V	V	F	F	F	No
V	F	F	V	F	F	V	٧	V	F	V	V	F	No
F	٧	٧	F	F	V	F	F	F	F	V	V	F	No
F	٧	F	F	F	V	٧	F	F	F	V	V	F	No
F	F	٧	V	V	V	F	٧	F	F	V	V	F	No
F	F	F	V	F	V	٧	V	V	F	V	V	F	Si

Podem concloure que el raonament és: Invàlid

Lògica de Enunciats - Resolució: . (35%)

Esbrina si és vàlid el següent raonament

Raonament

1	$\neg (S \rightarrow Q \land \neg R)$	Premissa
2	P∨S→R	Premissa
3	$Q \rightarrow (R \rightarrow (\neg S \rightarrow P))$	Premissa
4	$P \lor (Q \land \neg S) \rightarrow R$	Conclusió

FNC

Pre	emissa 1: ¬(S→Q∧¬R)				
1.	$\neg (S \rightarrow Q \land \neg R)$				
2.	¬(¬S∨(Q∧¬R))	Elimina implicació: A → B = ¬ A ∨B	Correcte		
3.	¬ ¬S ∧ ¬ (Q ∧ ¬R)	Llei de Morgan: ¬(A ∨B) = ¬A ∧ ¬B	Correcte		
4.	S ∧ ¬ (Q ∧ ¬R)	Simplifica la doble negació: ¬¬A = A	Correcte		
5.	S∧(¬Q∨¬¬R)	Llei de Morgan: ¬(A ∧B) = ¬A ∨ ¬B	Correcte		
6.	S∧ (¬Q∨R)	Simplifica la doble negació: ¬¬A = A	Correcte		
7.		FNC	Correcte		

Correcte

Pre	Premissa 2: P ∨S → R					
1.	$P \lor S \rightarrow R$					
2.	¬(P∨S) ∨R	Elimina implicació: A →B = ¬A ∨B	Correcte			
3.	(¬P∧ ¬S) ∨R	Llei de Morgan: ¬ (A ∨B) = ¬A ∧ ¬B	Correcte			

4.	(¬P∨R) ∧(¬S∨R)	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte	
5.		FNC	Correcte	

Correcte

Pre	emissa 3: Q \rightarrow (R \rightarrow (\neg S \rightarrow P))				
1.	$Q \rightarrow (R \rightarrow (\neg S \rightarrow P))$				
2.	$\neg Q \lor (R \rightarrow (\neg S \rightarrow P))$	Elimina implicació: A →B = ¬A ∨B	Correcte		
3.	$\neg Q \lor (\neg R \lor (\neg S \rightarrow P))$	Elimina implicació: A →B = ¬A ∨B	Correcte		
4.	$\neg Q \lor \neg R \lor \neg \neg S \lor P$	Elimina implicació: A →B = ¬A ∨B	Correcte		
5.	¬Q∨¬R∨S∨P	Simplifica la doble negació: ¬ ¬ A = A	Correcte		
6.		FNC	Correcte		

Correcte

Ne	legació de la conclusió: ¬ (P ∨ (Q ∧ ¬S) → R)					
1.	$\neg (P \lor (Q \land \neg S) \rightarrow R)$					
2.	¬(¬(P∨(Q∧¬S))∨R)	Elimina implicació: A →B = ¬A ∨B	Correcte			
3.	¬ ¬(P ∨ (Q ∧ ¬S)) ∧ ¬R	Llei de Morgan: ¬ (A ∨B) = ¬A ∧ ¬B	Correcte			
4.	(P∨(Q∧¬S))∧¬R	Simplifica la doble negació: ¬¬A = A	Correcte			
5.	(P∨Q) ∧(P∨¬S) ∧ ¬R	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte			
6.		FNC	Correcte			

Correcte

Resolució

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: {S, ¬Q∨R, ¬P∨R, ¬S∨R, ¬Q∨¬R ∨S∨P} Conjunt de suport: {P∨Q, P∨¬S, ¬R}		
Conjunt de clàusules de les premisses: {S, ¬Q∨R, ¬P∨R, ¬S∨R} Conjunt de suport: {P∨Q, P∨¬S, ¬R}	Subsumpció: S subsumeix ¬Q∨¬R ∨S∨P	Correcte

Arbre de resolució

Conjunt de clàusules de les premisses: { S , \neg Q \lor R , \neg P \lor R , \neg S \lor R } Conjunt de suport: { P \lor Q , P \lor \neg S , \neg R }

	Clàusules troncals	Clàusules laterals	
1.	S	¬S∨R	
2.	R	¬R	Correcte

3.		Correcte
1		

Consistència de les premisses

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: {S, ¬Q∨R, ¬P∨R, ¬S∨R, ¬Q∨¬R ∨S∨P}		
Conjunt de clàusules de les premisses: { S, ¬Q ∨R, ¬P ∨R, ¬S ∨R}	Subsumpció: S subsumeix ¬Q∨¬R ∨S∨P	Correcte
Conjunt de clàusules de les premisses: { S}	Literal pur: R	Correcte
Conjunt de clàusules de les premisses: {}	Literal pur: S	Correcte

Arbre de resolució

Conjunt de clàusules de les premisses: { }

Conclusió

Podem concloure que el raonament és: Vàlid, premisses consistents

Pregunta resposta lliure (15%)

Pregunta

Es vol dissenyar, utilitzant únicament portes NOR, un circuit lògic que correspongui a la següent expressió:

$$A \rightarrow B$$

Troba l' expressió i comprova mitjançant una taula de veritat l' equivalència de l' expressió original amb la trobada.

Resposta

Α	В	X = A NOR A	Y = X NOR B	Z = X NOR A	Y NOR Z	$A \rightarrow B$
0	0	1	0	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	0	0
1	1	0	0	0	1	1