CSPB 2824 - Stade - Discrete Structures

<u>Dashboard</u> / My courses / <u>2237:CSPB 2824</u> / <u>18 September - 24 September</u> / <u>Sets and Functions Quiz</u>

Started on	Tuesday, 19 September 2023, 8:53 PM
State	Finished
Completed on	Tuesday, 19 September 2023, 8:56 PM
Time taken	2 mins 27 secs
Marks	16.00/16.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

Let x be an element of nonempty set A, and suppose $x \neq \emptyset$. Select whether each of the following statements are necessarily true or false. A statement that is not necessarily true should be marked as false.

(a)
$$0 \in \emptyset$$
 False
 (b) $\emptyset \subset A$ True
 (c) $\emptyset \in \{x\}$ False

(d) $A - \{x\} \subseteq A$ True

Correct

Marks for this submission: 1.00/1.00.

Correct

Mark 1.00 out of 1.00

Which of the following sets in ${\bf builder}$ notation is equal to the set S in ${\bf roster}$ notation?

$$S = \{4, 8, 12, 16, 20\}$$

Select one:

- $(x \in \mathbb{N} | (\exists y \in \mathbb{Z} (x = 4y)) \land (x < 20) \}$
- $(x \in \mathbb{N} | (\forall y \in \mathbb{Z} (x = 4y)) \land (x \le 20) \}$

Correct

Marks for this submission: 1.00/1.00.

Correct

Mark 1.00 out of 1.00

Find the sets \boldsymbol{A} and \boldsymbol{B} if the following are true.

$$A - B = \{1, 3, 5, 7\}$$

$$B - A = \{2, 9, 10\}$$

$$A \cap B = \{4, 6\}$$

What is the set A ? b

- b) {1,3,4,5,6,7}

a) $\{1,3,5,7\}$

- c) {1,3,4,5,6,7,8}
- d) $\{1,2,3,4,5,6,7,9,10\}$

What is the set B ? g

- e) $\{1,2,3,4,5,6,7,9,10\}$
- f) $\{2,4,6,8,9,10\}$
- g) $\{2,4,6,9,10\}$
- h) $\{1,5,6,8,10\}$

Correct

Marks for this submission: 1.00/1.00.

Correct

Mark 1.00 out of 1.00

Consider the following fact. Suppose A and B are sets, that $S \subseteq A$, $T \subseteq A$, and f is a function mapping $A \to B$. Then $f(S \cap T) \subseteq f(S) \cap f(T)$.

Which of the following sets, subsets and definition for the function f can be used to demonstrate the fact that $f(S \cap T)$ might be a proper subset of $f(S) \cap f(T)$?

(Hint: This problem is probably best tackled by actually plugging these sets/subsets into f and seeing which case demonstrates the proper subset case of the above fact, $f(S \cap T) \subset f(S) \cap f(T)$)

Select one:

$$A = \{-1, 0, 1\}, B = \mathbb{Z}, S = \{-1, 0\}, T = \{0, 1\}, f(x) = x$$

$$A = \{0, 1, 2\}, B = \mathbb{Z}, S = \{0, 1\}, T = \{1, 2\}, f(x) = x^2$$

$$A = \{-1, 0, 1\}, B = \mathbb{Z}, S = \{-1, 0\}, T = \{0, 1\}, f(x) = x^2$$

$$A = \{-1, 0, 1\}, B = \mathbb{Z}, S = \{-1, 0\}, T = \{0, 1\}, f(x) = x^3$$

Correct

Marks for this submission: 1.00/1.00.

Question 5

Correct

Mark 3.00 out of 3.00

Simplify

Your answer is correct.

Correct

Marks for this submission: 3.00/3.00.

Que	sti	on	6
Cor	re	ct	
	ı	_	

Mark 3.00 out of 3.00

Solve for x

(assume log base 10)

Check your answers by graphing with Desmos.com

* You may discuss the algebra in detail on Piazza. Notice how easy it is to see the solution by graphing.

log x = 1 - log (x - 3) 5

$$3^{(4-x)} = 5$$
 4 - (log 5/log 3)
log(x²) = (log x)² 100 and 1

Your answer is correct.

Marks for this submission: 3.00/3.00.

Question 7

Correct

Mark 3.00 out of 3.00

Suppose you divide 1234 by 101.

What is the quotient?

12

What is the remainder?

22

What is 1234 mod 101?

22

Correct

Marks for this submission: 3.00/3.00.

Correct

Mark 3.00 out of 3.00

Modulo operation on negative numbers can be somewhat confusing. But there is a simple trick:

(-n) mod k equals (k - (n mod k)) mod k.

In other words take, the modulus of the positive number and subtract from the number k, you are taking modulus over.

Eg.,

What is (-50) mod 7?

50 mod 7 = 1

Therefore $(-50) \mod 7 = 7 - (50 \mod 7) = 6$.

What is $(-100 \mod 101)$?

1

What is (-10 mod 3)?

2

What is (-2824 mod 101)?

4

Correct

Marks for this submission: 3.00/3.00.