

planetmath.org

Math for the people, by the people.

metric entropy

Canonical name MetricEntropy

Date of creation 2013-03-22 14:31:59 Last modified on 2013-03-22 14:31:59

Owner Koro (127) Last modified by Koro (127)

Numerical id 6

Author Koro (127)
Entry type Definition
Classification msc 28D20
Classification msc 37A35
Synonym entropy

Synonym measure theoretic entropy

Let (X, \mathcal{B}, μ) be a probability space, and $T \colon X \to X$ a measure-preserving transformation. The entropy of T with respect to a finite measurable partition \mathcal{P} is

 $h_{\mu}(T, \mathcal{P}) = \lim_{n \to \infty} H_{\mu} \left(\bigvee_{k=0}^{n-1} T^{-k} \mathcal{P} \right),$

where H_{μ} is the entropy of a partition and \vee denotes the join of partitions. The above limit always exists, although it can be $+\infty$. The entropy of T is then defined as

$$h_{\mu}(T) = \sup_{\mathcal{P}} h_{\mu}(T, \mathcal{P}),$$

with the supremum taken over all finite measurable partitions. Sometimes $h_{\mu}(T)$ is called the metric or measure theoretic entropy of T, to differentiate it from topological entropy.

Remarks.

1. There is a natural correspondence between finite measurable partitions and finite sub- σ -algebras of \mathscr{B} . Each finite sub- σ -algebra is generated by a unique partition, and clearly each finite partition generates a finite σ -algebra. Because of this, sometimes $h_{\mu}(T,\mathcal{P})$ is called the entropy of T with respect to the σ -algebra \mathscr{P} generated by \mathscr{P} , and denoted by $h_{\mu}(T,\mathscr{P})$. This simplifies the notation in some instances.