Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
Р3	1 secondi	-	-
P4	4 secondi	1 secondo	-

Questo è il diagramma che è uscito seguendo le tabelle della traccia dell'esercizio. Credo che il modello multi-tasking e quello time sharing siano i più efficaci, questo vuol dire che entrambi sono efficienti per la gestione e l'esecuzione dei processi; il più efficace tra i due è il time-sharing in questo caso perché termina la sua esecuzione un secondo prima dell'altro .

Il sistema mono-tasking è ovviamente inefficiente, questo perché vediamo che la CPU passa una percentuale importante del suo tempo in attesa di eventi esterni senza fare azioni.

Il sistema multi-tasking, grazie alla preemptive multitaking fa in modo che la CPU, quando un processo sta aspettando eventi esterni, può essere usata per altro, invece di essere inattiva.

Nel sistema di time-sharing, che è un'evoluzione del sistema multi-tasking, ogni processo viene eseguito in maniera ciclica per piccole porzione di tempo (in questo caso esemplificando: 1 secondo) > abbiamo quindi un'evoluzione parallela dei processi.