Analisi Teoremi e Dimostrazioni Esame

Andrea Bellu

2023/2024

Contents

L	\mathbf{Ass}	siomi dei numeri reali
	1.1	Assiomi relativi alle operazioni
	1.2	Assiomi relativi all'ordinamento
		1.2.1 Assioma di completezza
	1.3	Denso
		1.3.1 $\sqrt{2}$
	Cor	mplementi ai numeri reali
	2.1	Massimo, Minimo, Estremo Superiore, Estremo Inferiore
		2.1.1 Il massimo e il minimo sono unici
		2.1.2 Osservazione
	2.2	Maggiorante e Minorante
	2.3	Teorema dell'esistenza dell'estremo superiore
		2.3.1 Estremo superiore
		2.3.2 Estremo inferiore
		2.3.3 Osservazione
	a	
		ccessioni e Limiti
	3.1	Limiti
	3.2	Proposizione
	3.3	Successioni Limitate
	3.4	Teorema
	3.5	Operazioni con i limiti
	3.6	Forme infeterminate o di indecisione
	3.7	Teoremi di confronto
		3.7.1 Teorema della permanenza del segno
		3.7.2 Teorema dei carabinieri
		3.7.3 Teorema del limite del prodotto di una successione limitata per una infinitesima
	3.8	Alcuni limiti notevoli
	3.9	Limiti relativi alle funzioni trigonometriche
	3.10	Successione notevole importante
	3 11	Successioni Monotòne

1 Assiomi dei numeri reali

- Assiomi relativi alle operazioni
- Assiomi relativi all'ordinamento
- Assioma di completezza

1.1 Assiomi relativi alle operazioni

Sono definite le operazioni di addizione e moltiplicazione tra coppie di numeri reali e valgono le proprietà:

- Proprietà associativa
- Proprietà commutativa
- Proprietà distributiva
- Esistenza degli elementi neutri
- Esisstenza degli opposti
- Esistenza degli inversi

1.2 Assiomi relativi all'ordinamento

E' definita la relazione di Minore o Uguale \leq .

- Dicotomia
- Proprietà Assimetrica
- Assioma di completezza

1.2.1 Assioma di completezza

$$\forall a \in A, \forall b \in A, a \leq b \implies \exists c \in A : a \leq c \leq b$$

Esempi:

Figure 1: Esempio 1

Esistono infiniti c.

Figure 2: Esempio 2

$$A = \{x \in \mathbb{R} : x \ge 1\} \quad B = \{x \in \mathbb{R} : x \ge 1\} \implies c = 1$$

Osservazione: Non tutti gli insiemi hanno il più grande o il più piccolo elemento. Ad esempio:

$$A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\} = \{\frac{1}{n} : n \in \mathbb{N}\}$$

Figure 3: Esempio 3

Non ha un elemento più piccolo. (Invece c'è il più grande che è 1).

1.3 Denso

Si dimostra che \mathbb{Q} è denso sulla retta reale (nel senso che fra due numeri razionali è sempre possibile trovare un terzo, anzi infiniti).

$$a = \frac{m_1}{n_1} \quad b = \frac{m_2}{n_2}$$

faccio la media $\frac{a+b}{2}=\frac{\frac{m_1}{n_1}+\frac{m_2}{n_2}}{2}=\frac{m_1n_2+m_2n_1}{2n_1n_2}\implies \in \mathbb{Q}$

1.3.1 $\sqrt{2}$

 $\sqrt{2}$ non si può rappresentare come numero razionale.

Dimostrazione: Ragioniamo per assurdo, supponiamo che $\sqrt{2}$ sia un numero razionale, cioè $\sqrt{2} = \frac{m}{n}$ con $m, n \in \mathbb{Z}$ posso supporre che m.n siano primi tra loro e che al più uno tra loro sia pari. Allora $2 = \frac{m^2}{n^2} \implies 2n^2 = m^2(\star) \implies m^2$ deve essere pari e quindi m è pari.

Posso esprimere m nella forma: m = 2k con k intero.

Ricavo che $\implies 2n^2 = m^2 = 4k^2$ semplifico per 2 e ottengo $n^2 = 2k^2$

Ripeto il ragionamento precedente $\implies n^2$ pari e quindi anche n pari. Ma allora sia m che n risultano pari, ASSURDO! Avevo supposto che fossero primi ed (al più) uno dei due pari. \clubsuit

Per capire meglio guarda esempi della Francy nella prima lezione.

2 Complementi ai numeri reali

2.1 Massimo, Minimo, Estremo Superiore, Estremo Inferiore

Def: M è il massimo di A
$$\begin{cases} M \in A & (1) \\ M \geq a & \forall a \in A & (2) \end{cases}$$

Il massimo di un insieme di numeri reali A quindi, se esiste, è un numero M dell'insieme A, che è maggiore o uguale ad ogni altro elemento dell'insieme A.

Def: m è il minimo di A
$$\begin{cases} m \in A & (1) \\ m \le a & \forall a \in A & (2) \end{cases}$$

Il minimo di A analogamente, se esiste, è un numero m di A, che è minore o uguale ad ogni altro elemento di A.

2.1.1 Il massimo e il minimo sono unici

Il massimo e il minimo, se esistono, sono unici.

Dimostrazione: Siano M_1 e M_2 due massimi di A.

Ma allora per definizione di massimo,

(1)
$$M_1 \ge a$$
 (2) $M_2 \ge a$ $\forall a \in A$

Sempre per definizione, M_1, M_2 sono elementi di A.

Quindi da (1) se $a = M_2$, ottengo $M_1 \ge M_2$

Da (2) se $a = M_1$, ottengo $M_2 \ge M_1$

Segue che $M_1 = M_2 \clubsuit$.

2.1.2 Osservazione

Un insieme finito ammette sempre massimo e minimo, ma consideriamo i seguenti insiemi:

- $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, il più grande elemento di A è 1, che è il massimo, il più piccolo non c'è.
- $B = \{1 \frac{1}{n} : n \in \mathbb{N}\} = \{\frac{n-1}{n} : n \in \mathbb{N}\}$, il più piccolo elemento di B è 0, che è il minimo, il più grande non c'è.

2.2 Maggiorante e Minorante

L si dice **maggiorante** per un insieme A se

$$L \ge a \quad \forall a \in A$$

l si dice **minorante** per un insieme A se

$$l \le a \quad \forall a \in A$$

Non sempre un insieme A ammette maggioranti e minoranti.

L'insieme A si dice **limitato superiormente** se ammette un maggiorante.

L'insieme A si dice **limitato inferiormente** se ammette un minorante.

L'insieme A si dice **limitato** se è limitato superiormente ed inferiormente, in simboli:

$$l \le a \le L \quad \forall a \in A \implies \exists M : |a| \le M \quad \forall a \in A$$

2.3 Teorema dell'esistenza dell'estremo superiore

Sia A un insieme non vuoto di numeri reali e limitato superiormente. Allora esiste il minimo dell'insieme dei maggioranti di A.

$$A = \{a \in A\}$$
 $B = \{b \text{ maggiorante di } A\}$

Applichiamo l'assioma di completezza di due insiemi A e B, quindi esiste c numero reale tale che:

$$a < c < b \quad \forall a \in A \quad \forall b \in B$$

Dato che $c \ge a \quad \forall a \in A, c$ è un maggiorante di A, cioè $c \in B$.

Ma c è anche tale che $c \le b$ (minore o uguale a tutti gli elementi di B). $\implies c$ è un minimo.

Allora possiamo dare la seguente definizione:

2.3.1 Estremo superiore

Def: Sia A un insieme non vuoto di numeri reali e limitato superiormente. Diremo che $M \in \mathbb{R}$ è l'estremo superiore di A se M è il minimo dei maggioranti di A. In simboli:

$$M \text{ estremo superiore di } A \iff \begin{cases} M \geq a & \forall a \in A \ (\mathbf{1}) \ (\mathbf{M} \text{ è maggiorante}) \\ \forall \varepsilon > 0 & \exists a \in A : M - \varepsilon < a \ (\mathbf{2}) \ (\mathbf{M} \text{ è il minimo dei maggioranti}) \end{cases}$$

Analogamente:

2.3.2 Estremo inferiore

Def: Sia A un insieme non vuoto di numeri reali e limitato inferiormente. Diremo che m è l'estremo inferiore di A se m è il massimo dei minoranti di A. In simboli:

$$m$$
 estremo inferiore di $A \iff \begin{cases} m \leq a & \forall a \in A \ (1) \ (\text{m è minorante}) \\ \forall \varepsilon > 0 & \exists a \in A : m + \varepsilon > a \ (2) \ (\text{m è il massimo dei minoranti}) \end{cases}$

⇒ Quindi se un insieme è limitato superiormente allora esiste l'estremo superiore ed è un numero reale. Se un insieme è limitato inferiormente, allora esiste l'estremo inferiore ed è un numero reale. Altrimenti:

- L'estremo superiore è $+\infty$ se A non è limitato superiormente
- L'estremo inferiore è $-\infty$ se A non è limitato inferiormente

$$\begin{cases} \sup A = +\infty \iff \forall M \in \mathbb{R} & \exists a \in A : M < a \\ \inf A = -\infty \iff \forall m \in \mathbb{R} & \exists a \in A : m > a \end{cases}$$

Ongi insieme non vuoto di numeri reali ammette sia estremo superiore che inferiore (che sono finiti se l'insieme è limitato superiormente ed inferiormente).

2.3.3 Osservazione

Assioma di completezza (punto di partenza) \implies Esistenza dell'estremo superiore.

3 Successioni e Limiti

Una successione è una legge che ad ogni numero naturale n fa corrispondere uno ed un solo numero reale a_n . Una successione è una funzione di $\mathbb{N}in\mathbb{R}$.

- $\mathbb{N} \to \mathbb{R}$
- $1 \rightarrow a_1$
- $2 \rightarrow a_2$
- $3 \rightarrow a_3$
- $n \to a_n$

Simbolo: (a_n) oppure più semplicemente a_n

A noi interessa il comportamento della successione per n grande, più precisamente il **limite** della successione a_n , cioè un numero reale $(a \in \mathbb{R})$ che sia "vicino" ai termini della successione che hanno l'indice n "grande".

Consideriamo a_n con a limite della successione ($a \in \mathbb{R}$). a è il limite della successione se comunque si scelga un intervallo

Figure 4: Intorno

di numeri intorno ad a, diciamo $(a - \varepsilon, a + \varepsilon)$, $\varepsilon > 0$, allora esiste un indice ν , tale che $\forall n > \nu$ a_n sta nell'intervallo $(a - \varepsilon, a + \varepsilon)$, cioè $a - \varepsilon < a_n < a + \varepsilon$.

3.1 Limiti

Un numero reale a è il limite della succesione a_n (si dice che a_n tende o converge ad a) e si scrive:

$$\lim_{n \to +\infty} a_n = a \quad \text{o } a_n \to_{n \to +\infty} a$$

se, qualunque sia $\varepsilon > 0$, esiste un numero ν tale che:

$$|a_n - a| < \varepsilon \quad \forall n > \nu$$

In simboli:

$$\lim_{n \to +\infty} a_n = a \iff \forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$$

Osservazione: $a - \varepsilon < a_n < a + \varepsilon$ si può scrivere $-\varepsilon < a_n - a < \varepsilon$.

3.2 Proposizione

Se esiste il limite $a \in \mathbb{R}$ della successione a_n , allora è unico.

Dimostrazione: Ragioniamo per assurdo. Supponiamo che:

$$a_n \to a$$
 e $a_n \to b$ con $a \neq b$

Allora $\forall \varepsilon > 0$

$$\exists \nu_1 : |a_n - a| < \varepsilon \quad \forall n > \nu_1$$

$$\exists \nu_2 : |a_n - b| < \varepsilon \quad \forall n > \nu_2$$

Prendo $\varepsilon = \frac{|a-b|}{2} > 0$ e ponendo $\nu = \max\{\nu_1, \nu_2\}, (1)$ e (2) valgono contemporaneamente. Allora:

$$|a - b| = |(a - a_n) + (a_n - b)| < |a - a_n| + |a_n - b| < \varepsilon + \varepsilon = |a - b|$$

Ma allora |a-b| < |a-b|, ASSURDO! \clubsuit

Una succesisone a_n ha limite $+\infty$ (si dice anche che tende o diverge a $+\infty$)

$$\lim_{n \to +\infty} a_n = +\infty$$

se, qualunque sia $M>0\in\mathbb{R},$ esiste un numero ν tale che:

$$a_n > M \quad \forall n > \nu$$

In simboli:

$$\lim_{n \to +\infty} a_n = +\infty \iff \forall M > 0 \quad \exists \nu \in \mathbb{N} : a_n > M \quad \forall n > \nu$$

Analogamente si definisce il limite $-\infty$:

$$\lim_{n \to +\infty} a_n = -\infty \iff \forall M < 0 \quad \exists \nu \in \mathbb{N} : a_n < M \quad \forall n > \nu$$

Osservazione:

- Le successioni che ammettono limite finito si dicono convergenti
- Le successioni che ammettono limite infinito si dicono divergenti
- Le successioni convergenti o divergenti si dicono regolari
- Una successione che tende a zero si dice anche infinitesima
- Una successione divergente si dice anche infinita

3.3 Successioni Limitate

 a_n si dice **limitata** se $\exists M \in \mathbb{R}$:

$$|a_n| \leq M$$

Osservazione: In particolare $a_n = (-1)^n$ è un esempio di successione limitata che non ammette limite. Viceversa, ogni successione che ammette limite finito, è limitata. Vale il seguente:

3.4 Teorema

Ogni successione convergente è limitata.

Dimostrazione: Sia a_n una successione convergente e supponiamo che:

$$\lim_{n \to +\infty} a_n = a$$

Allora $\forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$

Posso predere $\varepsilon = 1 \implies |a_n - a| < 1$, valuto $|a_n|$:

$$|a_n| = |(a_n - a) + a| \le |a_n - a| + |a| < 1 + |a| \quad \forall n > \nu$$

posso prendere $M = \max\{|a_1|, |a_2|, \cdots, |a_{\nu}|, 1 + |a|\}$.

3.5 Operazioni con i limiti

Supponiamo $\lim_{n\to+\infty} a_n = a$ e $\lim_{n\to+\infty} b_n = b$ con $a,b\in\mathbb{R}$. Allora:

- $\lim_{n\to+\infty}(a_n+b_n)=a+b$
- $\lim_{n\to+\infty} (a_n b_n) = a b$
- $\lim_{n\to+\infty} (a_n \cdot b_n) = a \cdot b$
- $\lim_{n\to+\infty} \frac{a_n}{b_n} = \frac{a}{b}$ se $b\neq 0$

Si dimostra anche che:

•
$$a_n \to a \ b_n \to \pm \infty \implies a_n + b_n \to \pm \infty$$

- $a_n \to a \neq 0$ $b_n \to \pm \infty \implies a_n \cdot b_n \to \pm \infty$
- $a_n \to a \ b_n \to \pm \infty$ entrambe con lo stesso segno $\implies a_n + a_b \to \pm \infty$ e $a_n \cdot b_n \to + \infty$
- $a_n \to a \ b_n \to \pm \infty \implies \frac{a_n}{b_n} \to 0$
- $a_n \to \pm a \ b_n \to \pm 0 \implies \frac{a_n}{b_n} \to +\infty$

3.6 Forme infeterminate o di indecisione

- $\bullet \infty \infty$
- $0 \cdot \infty$

- ∞^0
- 1^{±∞}
- 0⁰

Dire che un limite è una forma indeterminata non significa dire che non esiste, ma che occorre togliere, se possibile, l'indeterminazione, mediante semplificazioni o trasformazioni.

3.7 Teoremi di confronto

Teorema della permanenza del segno

Se $\lim_{n\to+\infty} a_n = a > 0$, esiste un numero ν tale che $a_n > 0 \quad \forall n > \nu$.

Esempio: $a_n = \frac{n-12}{n}$, $\lim_{n \to +\infty} a_n = 1 > 0$, ma i primi termini della successione sono negativi. $a_n = 0$ per n = 12, quindi se prendo $\nu = 12$, e $n > \nu$ allora $a_n > 0$.

Dimostrazione: $\lim_{n\to+\infty} a_n = a \iff \forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$

a>0,quindi posso prendere $\varepsilon=\frac{a}{2}>0$ e:

$$|a_n-a|<\frac{a}{2} \quad \forall n>\nu \iff -\frac{a}{2}< a_n-a<\frac{a}{2} \quad \forall n>\nu \iff a_n>a-\frac{a}{2}=\frac{a}{2}>0 \quad \forall n>\nu \iff a_n>a-\frac{a}{2}=\frac{a}{2}>0$$

Corollario (viceversa)

Se $\lim_{n\to+\infty} a_n = a$ e $a_n \ge 0$ (vale anche $a_n > 0$), allora $a \ge 0$.

3.7.2 Teorema dei carabinieri

Si consideriamo tre successioni a_n, b_n, c_n con la proprietà che:

$$a_n \le c_n \le b_n$$

Se risulta che $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = a$, allora anche $\lim_{n\to+\infty} c_n = a$ (per ipotesi $a_n \to a$).

Dimostrazione:

$$\forall \varepsilon > 0 \ \exists \nu_1 : |a_n - a| < \varepsilon \ \forall n > \nu_1$$

$$\forall \varepsilon > 0 \ \exists \nu_2 : |b_n - a| < \varepsilon \ \forall n > \nu_2$$

Definisco $\nu_3 = \max\{\nu_1, \nu_2\}$ e per ipotesi $a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \implies |c_n - a| < \varepsilon \quad \forall n > \nu_3 \implies c_n \to a$ Osservazione: Valgono per i limiti infiniti:

$$a_n \le b_n \quad \forall n \in \mathbb{N} \begin{cases} a_n \to +\infty \implies b_n \to +\infty \\ b_n \to -\infty \implies a_n \to -\infty \end{cases}$$

Dal teorema dei Carabinieri, segue il seguente risultato molto importante per le applicazioni e gli esercizi:

3.7.3 Teorema del limite del prodotto di una successione limitata per una infinitesima

Se a_n è limitata e b_n è infinitesima, allora $a_n \cdot b_n \to 0$ Dimostrazione: Considero $|a_n \cdot b_n| \Longrightarrow$

$$|a_n \cdot b_n| = |a_n| \cdot |b_n| \le M \cdot |b_n|$$

Per la proprietà del valore assoluto $|x| \le r \iff -r \le x \le r$

$$-M|b_n| \le a_n \cdot b_n \le M|b_n|$$
 per ipotesi $b_n \to 0$

 \implies Per il Teorema dei Carabinieri $a_n \cdot b_n \to 0$.

3.8 Alcuni limiti notevoli

•
$$\lim_{n \to \infty} a^n = \begin{cases} +\infty & \text{se } a > 1 \\ 0 & \text{se } -1 < a < 11 \end{cases}$$
 se $a = 1$ non esiste se $a \le -1$

•
$$\lim_{n\to\infty} n^b = \begin{cases} +\infty & \text{se } b > 0\\ 1 & \text{se } b = 00 & \text{se } b < 0 \end{cases}$$

•
$$\lim_{n \to +\infty} \sqrt[n]{a} = \lim_{n \to +\infty} a^{\frac{1}{n}} = 1 \quad \forall a > 0$$

•
$$\lim_{n \to +\infty} \sqrt[n]{n^b} = \lim_{n \to +\infty} n^{\frac{b}{n}} = 1 \quad \forall b \in \mathbb{R}$$

3.9 Limiti relativi alle funzioni trigonometriche

•
$$a_n \to 0 \implies \sin a_n \to 0$$

•
$$a_n \to 0 \implies \cos a_n \to 1$$

Ad esempio, se $a_n = \frac{1}{n} \implies \sin \frac{1}{n} \to 0 \in \cos \frac{1}{n} \to 1$.

•
$$a_n \to 0, a_n \neq 0 \quad \forall n \quad (1) \frac{\sin a_n}{a_n} \to 1$$

•
$$a_n \to 0, a_n \neq 0 \ \forall n \ (2) \frac{1 - \cos a_n}{a_n^2} \to \frac{1}{2}$$

Infatti
$$\frac{1 - \cos a_n}{a_n^2} = \frac{(1 - \cos a_n)(1 + \cos a_n)}{a_n^2(1 + \cos a_n)} = \frac{1 - \cos^2 a_n}{a_n^2(1 + \cos a_n)} = \frac{\sin^2 a_n}{a_n^2} \cdot \frac{1}{1 + \cos a_n} = \frac{1}{2}$$

3.10 Successione notevole importante

$$a_n = (1 + \frac{1}{n})^n \quad 1^{+\infty}$$

Confrontiamola con altre successioni b_n, c_n :

$$b_n = (1 + \frac{1}{n})^3 = (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \to 1$$

$$c_n = (1 + \frac{1}{10})^n = (\frac{11}{10})^n = a^n \to +\infty \quad \text{con } a > 1$$

Quindi a_n è una forma indeterminata $1^{+\infty}$, che da una parte, vuole tendere ad 1, dall'altra a $+\infty$, arriverà quindi ad un "punto di mezzo". Si definisce e il **numero di Nepero** tale che:

$$e = \lim_{n \to +\infty} (1 + \frac{1}{n})^n$$

dove $e\simeq 2,71828182845904523536028747135266249775724709369995\dots$ Si dimsotra che la succesisone a_n è strettamente crescente e limitata.

3.11 Successioni Monotòne

•