Nous allons dans cette séance explorer différentes méthodes permettant d'approximer numériquement le volume d'un solide $\mathcal{S} \subset \mathbb{R}^3$, *i.e.* l'intégrale triple

$$\operatorname{vol}(\mathcal{S}) = \iiint_{\mathcal{S}} dV.$$

Pour fixer les idées, nous prendrons pour $\mathcal S$ la région cacahuétoïdale définie par l'inégalité :

$$f(x, y, z) \le 0$$
 avec $f(x, y, z) = ((0.05 - x)^2 + y^2 + z^2 + 1)^2 - 5x^2 - 2$.

A) Monte-Carlo, pt. 1

En l'absence de quelque chose de mieux à faire, on peut toujours (comme dans la vie) jouer à des jeux de hasard, à savoir ici : tirer aléatoirement un certain nombre n de points à l'intérieur d'un pavé \mathcal{P} contenant \mathcal{S} et déterminer le nombre m de ces points tombant dans \mathcal{S} ; son volume peut alors vraisemblablement être approchée par la quantité

$$\frac{m}{n} \cdot \text{vol}(\mathcal{P}).$$

Implémenter numériquement cette méthode en définissant une fonction MC3D(n) renvoyant une estimation du volume de S obtenue en générant n points aléatoires, puis porter sur un graphe les estimations obtenues en fonction de n pour observer comment elles évoluent. Quels sont les avantages et les inconvénients de cette méthode?

B) Monte-Carlo, pt. 2

On sait qu'en effectuant un découpage en bâtonnets verticaux, on peut calculer $\operatorname{vol}(\mathcal{S})$ comme l'intégrale double

$$\iint_{\mathcal{D}} g \, \mathrm{d}A,$$

où \mathcal{D} est l'intersection de \mathcal{S} avec le plan z=0 et g est une fonction appropriée que vous préciserez. Par analogie avec la méthode précédente : une fois choisi un rectangle \mathcal{R} incluant \mathcal{D} , on génère n points P_i au hasard dans \mathcal{R} et on approxime $\operatorname{vol}(\mathcal{S})$ par

$$\frac{\operatorname{aire}(\mathcal{R})}{n} \sum_{i} g(P_i),$$

où la somme est prise sur les indices i pour lesquels $P_i \in \mathcal{D}$.

Définir une nouvelle fonction $\mathtt{MC2D}(n)$ implémentant cette méthode. Comment se compare-t-elle à la précédente? Assurez-vous de la cohérence de vos réponses entre elles.

C) Maillage rectangulaire (sommes de Riemann)

Voici une façon de procéder un peu plus systématique : on divise \mathcal{R} en m parties égales selon l'axe des x, et en n parties égales selon l'axe des y, obtenant ainsi mn sous-rectangles \mathcal{R}_{ij} .

On peut alors approximer le volume de ${\mathcal S}$ par

$$\frac{\operatorname{aire}(\mathcal{R})}{mn} \sum_{i,j} g(P_{ij}),$$

où P_{ij} désigne le centre du rectangle \mathcal{R}_{ij} lorsqu'il est à l'intérieur de \mathcal{D} .

Implémenter cette méthode dans une fonction $\mathtt{Riemann}(m,n)$ et en observer numériquement la convergence quand $m,n\to\infty$. (On pourra prendre par exemple m=2n pour simplifier.)