UNIT 1

INFINITE SERIES

OBJECTIVES

- By the end of the unit, you must be able to:
- √ find the limit of a sequence
- √ test an infinite series for convergence
- establish sum of convergent infinite series
- √ obtain a power series expansion of a function

1.1

LIMIT OF A SEQUENCE

NOTIONS

What is a sequence?

a list of objects arranged by a particular order

What is a sequence?

> a finite or infinite list

$$\frac{1}{2}$$
 $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{16}$ $\frac{1}{32}$ $\frac{1}{64}$ $\frac{1}{128}$ • • •

What is a sequence?

most common form: a list of "numbers" following some pattern

1 1 2 3 5 8 🞁

1 1 2 3 5 8 13 21 34 55 89 · · ·

FIBONACCI SEQUENCE

What is a sequence?

representation: as a set where the elements (or terms) follow an order

Definition

What is a sequence?

a function whose domain is the set of natural numbers

elements of the range are called as the terms

Notations

$$\left\{a_n\right\}_{n=1}^{\infty} \left\{a_n\right\} \quad \left\{f(n)\right\}$$

Example

Sequence:
$$\left\{\frac{1}{n}\right\}$$

$$a_n = \frac{1}{n}$$
 or $f(n) = \frac{1}{n}$

Graphical representation of a sequence

Graph of a sequence $\{a_n\}$

the set of **isolated** points (n, a_n) on the plane

Example

$$\left\{ \begin{array}{c} 1 \\ n \end{array} \right\}$$

1 2 3 4 5 · · · n · ·
(1,1)
$$(2,\frac{1}{2})(3,\frac{1}{3})(4,\frac{1}{4})(5,\frac{1}{5})(1,\frac{1}{n})$$

Example

$$\left\{\frac{(-1)^n}{n}\right\}$$

$$(1,-1)(2,\frac{1}{2})(3,-\frac{1}{3})(4,\frac{1}{4})(5,-\frac{1}{5})(1,\frac{(-1)^n}{n})$$

GOAL

GIVEN A SEQUENCE $\{a_n\}$.

✓ BEHAVIOR OF a_n AS $n \to +\infty$

LIMIT OF A SEQUENCE: $\lim_{n \to +\infty} a_n$

Definition

 $\lim_{n \to +\infty} a_n = L \text{ if and only if for}$

every $\varepsilon > 0$, there exists an N > 0 such that if n > N, then $|a_n - L| < \varepsilon$.

$$|a_n - L| < \varepsilon \implies -\varepsilon < a_n - L < \varepsilon$$

 $\Rightarrow L - \varepsilon < a_n < L + \varepsilon$

Tale of the tail

$$\lim_{n \to +\infty} a_n = L$$

n > N

 $a_1 \ a_2 \ a_3 \cdot \cdot \cdot a_n \ a_{n+1} \ a_{n+2} \cdot \cdot \cdot$

TAIL!

"near" the limit $oldsymbol{L}$

Illustration

Simplification

IF
$$n \to +\infty$$
 AS $a_n \to L$,

THEN $\lim_{n \to +\infty} a_n = L$.

(HITCH!) Theorem

Let f be defined for every positive integer

THEN
$$\lim_{n \to +\infty} f(n) = L$$

NOTE

f(n) is over natural numbers

While f(x) is over $[1,+\infty)$.

Example 1. Determine the limit of $\left\{\frac{2n-1}{4-3n}\right\}$

Solution:

Let
$$f(x) = \frac{2x-1}{4-3x}$$
.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x-1}{4-3x} = \frac{-2}{3}$$

Thus, the limit of the sequence $\left\{\frac{2n-1}{4-3n}\right\}$ is $\frac{-2}{3}$.

Example 2. Determine the limit of $\begin{cases} n^2 + 1 \\ n + 2 \end{cases}$

Let
$$f(x) = \frac{x^2 + 1}{x + 2}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 1}{x + 2} = \lim_{x \to +\infty} \frac{\frac{x^2 + 1}{x}}{\frac{x + 2}{x}}$$

$$= \lim_{x \to +\infty} \frac{1}{1 + \frac{2}{x}} = +\infty$$

Thus, the limit of the sequence $\left\{\frac{n^2+1}{n+2}\right\} = +\infty$

Example 4. Determine the limit of $\left\{ \left(1 + \frac{2}{n}\right)^n \right\}$ Solution:

Let
$$f(x) = \left(1 + \frac{2}{x}\right)^x$$

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x$ $\left(1^{\infty}\right)$ INDETERMINATE

Let $y = \left(1 + \frac{2}{x}\right)^x$
 $\Rightarrow \ln y = x \ln\left(1 + \frac{2}{x}\right)$

$$\Rightarrow \ln y = x \ln \left(1 + \frac{2}{x}\right)$$

$$\lim_{x \to \infty} \ln y = \lim_{x \to \infty} x \ln \left(1 + \frac{2}{x}\right) = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{2}{x}\right)}{1}$$

$$= \lim_{x \to \infty} \frac{1}{\left(1 + \frac{2}{x}\right)} = \frac{1}{2}$$

$$= 2$$

Thus, the limit of the sequence $\left\{ \left(1 + \frac{2}{n}\right)^n \right\}$ is e^2

Example 5. Determine the limit of

$$\{(-1)^n\}$$

ANSWER

Does not exist!

Dilemmas

Let n be a natural number.

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 2 \cdot 1$$

n! CANNOT be converted to a form x!

Dilemma

$$\lim_{n \to +\infty} \frac{1}{n!} = ???$$

AS
$$n \to +\infty$$
 , $n! \to +\infty$.

Hence,
$$\lim_{n\to +\infty} \frac{1}{n!} = 0$$
.

Convergence / Divergence

If the limit of $\{a_n\}$ exists, then $\{a_n\}$ is convergent.

Else, the sequence is divergent.

Also, if $\lim_{n \to +\infty} a_n = L$, the sequence converges to L.

Example

Since
$$\lim_{n \to +\infty} \frac{2n-1}{4-3n} = -\frac{2}{3}$$
,
$$\left\{ \frac{2n-1}{4-3n} \right\}$$
 is convergent.

Since
$$\lim_{n \to +\infty} \frac{n^2 + 1}{n + 2} = +\infty$$

$$\left\{ \frac{n^2 + 1}{n + 2} \right\}$$
 is divergent.