ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Clasificación con K vecinos más cercanos (KNN)

Andrés G. Abad, Ph.D.

Agenda

Introducción a los modelos de k vecinos más cercanos (KNN)

Pre-procesamiento de datos

Algoritmo de KNN

Introducción a los modelos de k vecinos más cercanos (KNN) I

► Dime con quien andas y te diré quien eres. . .

Introducción a los modelos de k vecinos más cercanos (KNN) II

- Un poderoso algoritmo no paramétrico de clasificación utilizado en reconocimiento de patrones
- ► KNN guarda todas las instancias disponibles y clasifica nuevas instancias basadas en una medida de similitud (e.g. una función de distancia)
- ► Se clasifica según la mayoría de votos entre las k instancias más cercanas

- ► Centrar y estandarizar
 - 1. Centrar: restrar la media de cada vector
 - 2. Estandarizar: dividir para la desviación estandar

$$\Rightarrow$$
 Mean = 0 y STDEV = 1

- 3. Centrar y estandarizar con la función scale()
- Transformación Log
- ► Transformación Ranking: se reemplazan los valores medidos por sus rankings
- No transformar

Ponderando las características I

Pondere cada característica según su importancia para la clasificación

$$D(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} w_{k}(x_{i} - y_{i})^{2}}$$

- Podemos usar nuestro conocimiento a priori para decidir que características son más importantes
- ▶ Podemos aprender los pesos w_i utilizando validación cruzada

Normalización de características I

 Distancia puede ser dominada por unos atributos con valores relativamente grandes

$$x'_{i} = \frac{x_{i} - \min\{x_{1}, \dots, x_{p}\}}{\max\{x_{1}, \dots, x_{p}\} - \min\{x_{1}, \dots, x_{p}\}}$$

- ► Mapea los valores al rango R_[0,1]
- ► Sucede cuando los features están en escalas muy diferentes

Andrés G. Abad, Ph.D., agabad@espol.edu.ec

Noción de distancia entre objetos I

Toda noción de distancia entre dos objetos x y y debe cumplir los siguientes axiomas:

- $b d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
- $d(\mathbf{x}, \mathbf{x}) = 0$
- ► $d(\mathbf{x}, \mathbf{y}) = 0$ si y solo si $\mathbf{x} = \mathbf{y}$
- $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$

Noción de distancia entre objetos II

Las siguientes son distancias comunmente utilizadas en el análisis de datos:

- Variables numéricas
 - Distancia euclideana
 - Distancia manhattan
 - Distancia Canberra
 - Distancia Minkowski
- Variables binarias
 - Índice de Jaccard
- Variables categóricas
 - ► Índice de dice
- Distribuciones de probabilidad
 - ► Divergencia de Kullback-Leibler

Distancias para variables numéricas I

Considere dos vectores $\mathbf{x} = [x_1, \dots, x_p]$ y $\mathbf{y} = [y_1, \dots, y_p]$ pertenecientes a \mathbb{R}^p

► Distancia euclideana:

$$l_2(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_p - y_p)^2}$$

► Distancia manhattan:

$$l_1(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \dots + |x_p - y_p|$$

Distancias para variables numéricas II

► Distancia Canberra:

$$d(\mathbf{x}, \mathbf{y}) = \frac{|x_1 - y_1|}{|x_1| + |y_1|} + \dots + \frac{|x_p - y_p|}{|x_p| + |y_p|}$$

▶ Distancia Minkowski:

$$l_p(\mathbf{x}, \mathbf{y}) = (|x_1 - y_1|^p + \dots + |x_p - y_p|^p)^{1/p}$$

Distancia para variables binarias I

- Índice Jaccard: útil para vectores binarios de presencia o ausencia
- Mide la similitud entre dos muestras finitas

$$J(X,Y) = \frac{|X \cap Y|}{|X \cup Y|} = \frac{|X \cap Y|}{|X| + |Y| - |X \cap Y|}$$

► Considere dos vectores $\mathbf{x} = [x_1, \dots, x_p] \mathbf{y} \mathbf{y} = [y_1, \dots, y_p]$ donde $x_i, y_j \in \{0, 1\}$

$$J(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i} + \sum_{j} y_{j} - \sum_{k} x_{k} y_{k}}$$

Distancia para variables binarias II

Distancia basada en la correlación: 1 - r

► Coeficiente de correlación de Pearson (PCC)

$$r = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{(\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2)(\sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2)}}$$

Desventaja: sensitivo a *outliers*

Distancia para variables categóricas I

► Índice Dice: útil para variables categóricas primero convertidos en binarias)

$$QS(X,Y) = \frac{2|X \cap Y|}{|X| + |Y|}$$

Color		Red	Yellow	Green
Red				
Red		1	0	0
Yellow		1	0	0
Green		0	1	0
Yellow		0	0	1
	Į.			

Distancia para distribuciones de probabilidad I

 Divergencia Kullback-Leibler: útil para comparar distribuciones de probabilidad

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx$$

 No es una distancia debido a que no es simétrica y no respeta la desigualdad triangular

Combinando distancias - Distancia de Gower I

La **distancia de Gower** es un método para combinar en una sola medida de distancia varias variables de tipos diferentes (númericas, binarias, categóricas, etc)

Distancia de Gower

- Asigne una medida de distancia para cada variable y luego normalícela entre 0 y 1
- 2. Combine (convexamente) las diferentes medidas; generalmente utilice el promedio

Combinando distancias - Distancia de Gower II

En detalle, la distancia de Gower d_G entre dos objetos $\mathbf{x} = [x_1, \dots, x_p]$ y $\mathbf{y} = [y_1, \dots, y_p]$ es la siguiente.

- 1. Considere las distancias (parciales) d_1, \ldots, d_p , donde $d_i = d(x_i, y_i)$.
- 2. Normalice las distancias haciendo $\tilde{d}_i = d_i/(\text{máx}_{x,y}(d_i) \text{mín}_{x,y}(d_i))$
- 3. Combine estas distancias parciales normalizadas haciendo $d_G = \sum_i \lambda_i \tilde{d}_i$, donde $\sum_i \lambda_i = 1$

Algoritmo de KNN I

- Es un método del aprendizaje basado en instancias
- ► Todas las instancias corresponden a puntos en un espacion *n*-dimensional
- ► Cada punto en el *training set* consiste en un conjunto de vectores y una etiqueta con la clase asociada
- Se recomiendan menos de 20 características

Vecino más cercano

▶ Dada una instancia x_q , primero encuentre en el *training set* la instancia más cercana x_l y estime

$$\hat{f}(\mathbf{x}_q) \leftarrow f(\mathbf{x}_l)$$

Algoritmo de KNN II

K vecinos más cercanos (KNN)

- ▶ Dada una instancia x_q , vote entre los K vecinos más cercanos (si respuesta es discreta)
- ► Toma el promedio del valor f de los K vecinos más cercanos

$$\hat{f}(\mathbf{x}_q) \leftarrow \frac{\sum_{k=1}^K f(\mathbf{x}_k)}{K}$$

Algoritmo de KNN III

Cliente	Edad	Ingresos	# tarjetas de cred.	Acepta
Jorge	35	35k	3	No
Raquel	22	50k	2	Si
Ricardo	63	200k	1	No
Tomás	59	170k	1	No
Ana	25	40k	4	Si
Juán	37	50k	2	?

Seleccionando el valor de K I

- ► El valor de *K* tiene un fuerte efecto en el desempeño de *K*NN
 - valor grande: todo se clasifica como la probabilidad a priori mayor
 - valor pequeño: alta variabilidad, borde de clasificación inestables
 - Pequeños cambios en el training set grandes cambios en los resultados de clasificación
 - Afecta la "suavidad" del borde de clasificación
- ► Seleccionando el valor de *K*
 - cree el validation set convervando una porción del training set
 - ▶ varíe K considerando el error de validación
 - ► Alternativamente, utilice la *rule of thumb* de $K < \sqrt{n}$, donde n es el número de instancias

KNN ponderado I

Podríamos desear ponderar más a los vecinos más cercanos

$$\hat{f}(\mathbf{x}_q) \leftarrow \frac{\sum_{k=1}^K w_k f(\mathbf{x}_k)}{K},$$

donde

$$w_k = \frac{1}{d\left(\mathbf{x}_q, \mathbf{x}_k\right)^2},$$

y $d(\mathbf{x}_q, \mathbf{x}_k)$ es la distancia entre \mathbf{x}_q y \mathbf{x}_k .

Note como ahora puede tener sentido utilizar *todas* las intancias en el conjutno de entrenamiento.

Andrés G. Abad, Ph.D., agabad@espol.edu.ec

Fortalezas y debilidades I

Fortalezas

- ► Muy simple e intuitivo
- ► Entrenamiento rápido
- Puede ser aplicado a datos de cualquier distribución
- ► Buen clasificador si el número de instancias es lo suficientemente grande

Debilidades

- Lento al momento de clasificar nuevas instancias
 - Necesita calcular y comparar distancias de la nueva instancia a todas las demás
- ► Escoger un buen valor de *K* puede ser dificil
- ► Necesita un número grande de instancias para buena precisión