

Escuela Profesional de Ciencia de la Computación

ICC Fase 1

Computer graphics

Image Arithmetic

MSc. Vicente Machaca Arceda

Universidad Nacional de San Agustín de Arequipa

May 16, 2020

Overview

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

Objectives

Understand about the arithmetic between images.

vmachacaa@unsa.edu.pe

- Understand about the arithmetic between images.
- Learn addition, subtraction, multiplication, division and blending between images.

vmachacaa@unsa.edu.pe —

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

Definition

This operator takes as input two identically sized images and produces as output a third image of the same size as the first two. Each pixel value is the sum of the values of the corresponding pixel from each of the two input images.

Normal addition:

$$Q(i,j) = P_1(i,j) + P_2(i,j)$$
 (1)

Definition

Normal addition:

$$Q(i,j) = P_1(i,j) + P_2(i,j)$$
 (1)

Almost always, we need to scale the image:

$$Q(i,j) = P_1(i,j)/2 + P_2(i,j)/2$$
 (2)

Normal addition:

$$Q(i,j) = P_1(i,j) + P_2(i,j)$$
 (1)

Almost always, we need to scale the image:

$$Q(i,j) = P_1(i,j)/2 + P_2(i,j)/2$$
 (2)

Also, we could add a constant value:

$$Q(i,j) = P_1(i,j) + C \tag{3}$$

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

Example with scaling

Figure: Example of pixel addition using Equation 5. OpenCV limits the values to [0-255] (int8).

Example without scaling

Figure: Example of pixel addition using Equation 5. We cast the image to int, before the adding operation.

Figure: Example of pixel addition using Equation 2.

Image plus constant

Original

Original + 50

Figure: Adding a constant to a image.

Image plus constant

Original

Original + 100 (OpenCV)

Figure: If you use OpenCV, this problem could occurs. It is because OpenCV limits the pixel values to [0-255].

Image plus constant

Figure: Before add a constant, cast the image type to int (img = img.astype(int)).

Image plus constant

Original

Original*0.8 + 100

Figure: We scale the image before adding a constant.

Image addition with colors

Figure: Two images for addition.

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

Image addition with colors

Figure: Addition of two images with colors.

vmachacaa@unsa.edu.pe --

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

Definition

The pixel subtraction operator takes two images as input and produces as output a third image whose pixel values are simply those of the first image minus the corresponding pixel values from the second image.

Definition

$$Q(i,j) = |P_1(i,j) - P_2(i,j)| \tag{4}$$

$$Q(i,j) = |P_1(i,j) - C|$$
 (5)

vmachacaa@unsa.edu.pe

Pixel subtraction

Example

Figure: Example of subtraction operator.

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

Applications - Segmentation of Characters

Suppose we want to segment the characters, the result will be:

Figure: Photo.

Figure: Thresholding ($\theta = 127$).

Applications - Segmentation of Characters

We could take a photo of a white paper to apply subtraction:

Figure: Photo.

Figure: Photo of white paper.

Applications - Segmentation of Characters

We take the normal photo and subtracts the white paper photo to get a new image:

Figure: Result after applying subtraction and an addition of 100 to avoid negative values.

Applications - Segmentation of Characters

Then we apply thresholding with $\theta = 80$

Figure: Difference

Figure: Thresholding ($\theta = 80$).

Applications - Segmentation of Characters

Comparison:

Figure: Without subtraction.

Figure: With subtraction.

- Introduction
 - Objectives
- Pixel addition
 - Definition
 - Examples
 - Colors
- Pixel Subtraction
 - Definition
 - Characters segmentation
 - Change detection

Applications - Change detection

We could use subtraction to detect changes between frames.

Figure: Frame 1.

Figure: Frame 2.

Applications - Change detection

Figure: |Frame 1 - Frame 2| and contrast stretching.

