MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit (WORSE CASE IS AS BELOW)

WIFI:

Antenna Gain	Peak Output	Power Density	Limit of Power	Test
(Numeric)	Power (mW)	(S) (mW/cm2)	Density (S)	Result
			(mW/cm2)	
2.19	65.31	0.0285	1	Compiles
(3.4 dBi)	(16.66dBm)			

BT:

Antenna Gain	Peak Output	Power Density	Limit of Power	Test
(Numeric)	Power (mW)	(S) (mW/cm2)	Density (S) (mW/cm2)	Result
0.895 (-0.48 dBi)	3.133 (4.96dBm)	0.00056	1	Compiles

0.0285+ 0.00056=0.02906<1