EE 304P Communication Theory Lab Lab assignment – 1

1.

fm = 1000 Hz

fc = 10 MHz

 $kf = 2 \times \pi \times 1000$

Am = 5

Ac = 1

Message signal: mt=Am*sin(2*pi*fm*t)

Carrier signal: ct=Ac*sin(2*pi*fc*t)

Modulated signal:

Fm=Ac*cos(2*pi*fc*t-(kf*Am*cos(2*pi*fm*t))/(2*pi*fm))

- When Am is positive, modulated signal has higher frequency.
- When Am is negative, modulated signal has lower frequency.


```
fm = 1000 Hz
```

fc = 10 MHz

 $kf = 2 \times \pi \times 5000$

Am = 1

Ac = 1

Message signal: mt=Am*sin(2*pi*fm*t)

Carrier signal: ct=Ac*sin(2*pi*fc*t)

Modulated signal

 $Fm = Ac^*\cos(2^*pi^*fc^*t - (kf^*Am^*\cos(2^*pi^*fm^*t))/(2^*pi^*fm))$

- When Am is positive, modulated signal has higher frequency.
- When Am is negative, modulated signal has lower frequency.

3.

fm = 10 Hz

fc = 50 Hz

 $kf = 2 \times \pi \times 150$

Am = 1

Ac = 1

Message Signal mt= square(2*pi*fm*t)

Carrier Signal ct= Ac*sin(2*pi*fc*t)

Modulated Signal

 $Fm = Ac^*\cos(2^*pi^*fc^*t + (kf/(2^*pi^*fm))^*sawtooth(2^*pi^*fm^*t, 0.5))$

- When Am is positive, modulated signal has higher frequency.
- When Am is negative, modulated signal has lower frequency.
- fc is a lot smaller here than in the previous cases. This makes it easier to observe changes in frequency of FM signal.