浙江工业大学 32 学时线性代数期末试卷 (2021 ~ 2022 第一学期)

				•	. •			
任课教师		学院班	E级:	选课班中编号:				
学号:		<u>j</u>	姓名:	得分:				
	题号	_	=	Ξ	四			
	得分							
- .	填空题(每3	空 3 分, 共 30 分)	本题得分				
1.	1. 设 $A = (\alpha_1, \beta)_{2\times 2}$, $B = (\alpha_2, \beta)_{2\times 2}$, 已知 $ A = 2$, $ B = 1$ 则 $ A + B =$							
	设 $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$,则 $\mathbf{x}^{\mathrm{T}} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = \underline{\hspace{1cm}}$.							
3.	已知 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 3 & 1 \\ 4 & 5 & -1 \end{pmatrix}$, \mathbf{A} 中元素 a_{ij} 的代数余子式为 A_{ij} , \mathbf{A} 的伴随矩阵为 \mathbf{A}^* ,							
	则 A ₁₁ +A ₁₂	+ A ₁₃ =, ($(A^*)^{-1} = $	·				
4.	将3阶矩阵	A 的第 1 行与第	52行互换得矩阵	B , 再将 B 的第	3 行加到第 2			
	行得矩阵 C	,满足 PA=C 的	可逆矩阵 P =	<u>.</u>				
5.	己知向量组	$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} k \\ -2 \\ 0 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 线性	挂相关,则 <i>k</i> =	<u>.</u>			
6.	向量空	间 $\{(x,y,z) \mid x-z\}$	2z=0} 的维数	女 是	, 一 组 基			
	\ 1							

7. 实向量空间 \mathbf{R}^2 中的向量 $\boldsymbol{\alpha} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 在基 $\boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 下的坐标

8. 若 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$, 其中 $\mathbf{P} = (\boldsymbol{\alpha}, \boldsymbol{\beta})$, 令 $\mathbf{Q} = (2\boldsymbol{\alpha}, -\boldsymbol{\beta})$, 则 $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \underline{}$.

二. 单项选择题(每小题 2 分,共 10 分)

- 1. 已知A, B均为n阶矩阵,则以下命题中正确的是(
 - (A) 若 AB=0,则 A=0 或 B=0 (B) 若 $A^2=B^2$,则 A=B 或 A=-B
 - (C) 若 AB=0,则|A|=0或|B|=0 (D) 若(A+B)(A-B)=0,则 $A^2=B^2$
- 2. 如果排列 $x_1x_2\cdots x_n$ 的逆序数为k,则排列 $x_nx_{n-1}\cdots x_1$ 的逆序数为(
- (A) k (B) n-k (C) $\frac{n(n-1)}{2}-k$ (D) $k-\frac{n(n-1)}{2}$
- 3. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则().
 - (A) 必有某个向量为零向量
 - (B) 必有 2 个向量成比例
 - (C) 任意向量可由其余向量线性表示
 - (D) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 \boldsymbol{\alpha}_3$ 一定线性相关
- 4. 设非齐次线性方程组 $A_{mxn}X = \beta$ 有解,则以下不可能的是().
 - (A) R(A)=n

- (B) R(A) < n (C) R(A) = m (D) $R(A, \beta) > m$
- 5. 设 λ_1, λ_2 是 A 的 2 个不同特征值, α_1 , α_2 是 A 对应于特征值 λ_1, λ_2 的特征向量, 则 a_1 , $A(a_1 + a_2)$ 线性无关的充分必要条件是 ().

- (A) $\lambda_1 = 0$ (B) $\lambda_1 \neq 0$ (C) $\lambda_2 = 0$ (D) $\lambda_2 \neq 0$

三、计算题(每题 10 分,共 50

分)

1	2	3	4	5	本题总得分

1. 已知
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a & b & c \end{pmatrix}$$
,求 $|\mathbf{A}|$.

2. 已知
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 2 \end{pmatrix}$$
, 矩阵 X 满足 $XA = A + 2X$, 求 X .

3. 求向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ 的秩、极大无关组,并用该极

大无关组表示其余向量.

4. 已知线性方程组
$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + 2x_2 + kx_3 = 3 \\ kx_1 + x_2 + 2x_3 = 2 \end{cases}$$
 问:

- (1). 当参数 k 满足什么条件时,方程组有唯一解? 无解? 有无穷多解?
- (2). 有无穷多解时,求方程组的通解.

5. 设
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, 方阵 \boldsymbol{A} 满足 $\boldsymbol{A}\boldsymbol{\alpha}_1 = \boldsymbol{\alpha}_1$, $\boldsymbol{A}\boldsymbol{\alpha}_2 = \boldsymbol{\alpha}_2$,

$$A\alpha_3 = -\alpha_3$$
.

(1) 求矩阵A; (2) 求 $|(2E+A)^{100}|$.

四、证明题(共10分)

1	2	本题总得分

1. (6 分) 设 $A \in n$ 阶方阵,若对任意 n 维列向量 α ,皆满足 $A\alpha = 0$,证明: A = 0.

2. (4 分) 设n阶方阵A,B满足ABA=A,证明:AB的特征值为1或0.