Embracing monotonicity in

Danel Ahman @ INRIA Paris

joint work with

Cătălin Hrițcu and Kenji Maillard @ INRIA Paris Cédric Fournet, Aseem Rastogi, and Nikhil Swamy @ MSR

(based on our POPL 2018 paper)

ICE-TCS Seminar January 29, 2018

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

F*

[fstar-lang.org]

- F* is
 - a functional programming language
 - ML, OCaml, F#, Haskell, ...
 - extracted to OCaml or F#; subset compiled to efficient C code
 - an interactive proof assistant
 - Agda, Coq, Lean, Isabelle/HOL, ...
 - interactive modes for Emacs and Atom
 - a semi-automated verifier of imperative programs
 - Dafny, Why3, FramaC, . . .
 - Z3-based SMT-automation; tactics and metaprogramming (WIP)
- Application-driven development
 - Project Everest

[project-everest.github.io]

- Microsoft Research (US, UK, India), INRIA (Paris), . . .
- miTLS, HACL*, Vale, . . .

```
F*
```

[fstar-lang.org]

- **F*** is
 - a functional programming language
 - ML, OCaml, F#, Haskell, ...
 - extracted to OCaml or F#; subset compiled to efficient C code
 - an interactive proof assistant
 - Agda, Coq, Lean, Isabelle/HOL, ...
 - interactive modes for Emacs and Atom
 - a semi-automated verifier of imperative programs
 - Dafny, Why3, FramaC, . . .
 - Z3-based SMT-automation; tactics and metaprogramming (WIP)

Application-driven development

Project Everest

[project-everest.github.io]

- Microsoft Research (US, UK, India), INRIA (Paris), ...
- miTLS, HACL*, Vale. . . .

F* – a prog. lang./proof assistant/verifier

```
module Talk
// Dependent (inductive) types
type vector 'a : nat -> Type =
 I Nil : vector 'a 0
  | Cons : #n:nat -> 'a -> vector 'a n -> vector 'a (n + 1)
// Dependently typed (recursive, total) functions
val append : #a:Type -> #n:nat -> #m:nat -> vector a n -> vector a m -> Tot (vector a (n + m))
let rec append #a #n #m xs vs =
 match xs with
  I Nil -> vs
  I Cons #n x xs -> Cons x (append xs vs)
// Refinement types
let in_range_index (min:nat) (max:nat) = i:nat{min <= i \land i <= max}
val lkp : #a:Type -> #n:nat -> vector a n -> in range index 1 n -> Tot a
let rec lkp #a #n xs i =
  match xs with
 I Cons x xs -> if i = 1 then x else lkp xs (i - 1)
// First-class predicates (for which Type0 behaves like (classical) Prop)
type is_prefix_of (#a:Type) (#n:nat) (#m:nat) (xs:vector a n) (zs:vector a m\{n \le m\}) : Type0 = m
  forall (i:nat). (1 \leftarrow i \wedge i \leftarrow n) \Longrightarrow lkp xs i \Longrightarrow lkp zs i
// Extrinsic reasoning (using separate lemmas)
val lemma : #a:Type -> #n:nat -> *m:nat -> xs:vector a n -> vs:vector a m -> Lemma (requires (True))
                                                                                      (ensures (xs `is_prefix_of` (append xs ys)))
let rec lemma #a #n #m xs ys =
  match xs with
  I Nil -> ()
  I Cons x xs -> lemma xs vs
// Intrinsic reasoning (making lemmas part of definitions)
val take: #a:Type -> #n:nat -> zs:vector a n -> m:nat -> Pure (vector a m) (requires (m <= n))
                                                                               (ensures (fun xs -> xs `is_prefix_of` zs))
let rec take #a #n zs m =
  if m > 0 then match zs with | Cons z zs -> let m' : nat = m - 1 in Cons z (take zs m')
           else Nil
```

F* – not just a pure programming language

- Tot, Lemma, Pure, ... are just some effects amongst many
 - Tot t
 - Lemma (requires preLemma) (ensures postLemma)
 - Pure t (requires prepure) (ensures postpure)
 - Div t (requires preDiv) (ensures postDiv)
 - Exc t (requires pre_{Exc}) (ensures $post_{Exc}$)
 - ST t (requires pre_{ST}) (ensures $post_{ST}$)
 - ...
- Monad morphs. Pure → {Div, Exc, ST}; Exc → STExc; ...
- Systematically derived from **WP-calculi** (see POPL'17 paper)

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

• Consider a program operating on set-valued state

```
\verb"insert v; complex_procedure(); \verb"assert" (v \in \texttt{get}())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant
 {λ s. y ∈ s} complex procedure() {λ s. y ∈ s}

- likely that we have to carry $\lambda s.v \in s$ through the proof of c_x
- does not guarantee that λs. v ∈ s holds at every point in c_p
- sensitive to proving that c_p maintains $\lambda s.w \in s$ for some w
- However, if c_p never removes, then λs. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

Consider a program operating on set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda s. v \in s\} complex_procedure() \{\lambda s. v \in s\}
```

- likely that we have to carry $\lambda \mathbf{s} \cdot \mathbf{v} \in \mathbf{s}$ through the proof of c_{-1}
- does not guarantee that $\lambda s \cdot v \in s$ holds at every point in c₋₁
- sensitive to proving that c_p maintains $\lambda s.w \in s$ for some w
- However, if c_p never removes, then λs. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

Consider a program operating on set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda s. v \in s\} complex_procedure() \{\lambda s. v \in s\}
```

- likely that we have to carry $\lambda s.v \in s$ through the proof of c_p
- does not guarantee that $\lambda s. v \in s$ holds at every point in c_p
- sensitive to proving that c_p maintains $\lambda s. w \in s$ for some w
- However, if c_p never removes, then λs. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

Consider a program operating on set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda s. v \in s\} complex_procedure() \{\lambda s. v \in s\}
```

- likely that we have to carry $\lambda s.v \in s$ through the proof of c_p
- does not guarantee that $\lambda s. v \in s$ holds at every point in c_p
- sensitive to proving that c_p maintains $\lambda s. w \in s$ for some w
- However, if c_p never removes, then λ s. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a proof of existence of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - f 3) So, given a ref. f r, it is f guaranteed f to f point to an f a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation **stores** an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation **stores** an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from **global state** + **general monotonicity**

Monotonicity is really useful!

- In this talk, we will see how monotonicity gives us
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated **region-based memory models** [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Monotonicity is really useful!

- In this talk, we will see how monotonicity gives us
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification | project-everest.github.io

Monotonicity is really useful!

- In this talk, we will see how monotonicity gives us
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

- Based on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - a stateful program e is monotonic (wrt. rel) when
 ∀s e's'. (e.s) →* (e'.s') ⇒ rel s s'
 - a stateful predicate p is **stable** (wrt. rel) when $\forall \, \mathbf{s} \, \mathbf{s}'. \, \mathbf{p} \, \mathbf{s} \, \wedge \, \, \mathbf{rel} \, \mathbf{s} \, \mathbf{s}' \Longrightarrow \, \mathbf{p} \, \mathbf{s}'$
- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - ullet a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- Based on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 set inclusion, heap inclusion, increasing counter values, . . .
 - a stateful program e is **monotonic** (wrt. rel) when

$$\forall \, \mathsf{s} \, \mathsf{e}' \, \mathsf{s}'. \, (\mathsf{e}, \mathsf{s}) \leadsto^* (\mathsf{e}', \mathsf{s}') \implies \mathsf{rel} \, \mathsf{s} \, \mathsf{s}'$$

$$orall$$
 s s $'$. p s \wedge rel s s $'$ \Longrightarrow p s $'$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to recall the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- Based on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when
 ∀s e's'. (e.s) ~* (e'.s') ⇒ rel s s
 - a stateful predicate p is **stable** (wrt. rel) when

$$\forall$$
ss'.ps \land relss' \Longrightarrow ps'

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to recall the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- Based on monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. rel) when

$$\forall\, \mathtt{s}\, \mathtt{e}'\, \mathtt{s}'.\, (\mathtt{e},\mathtt{s}) \leadsto^* (\mathtt{e}',\mathtt{s}') \implies \mathtt{rel}\,\, \mathtt{s}\,\, \mathtt{s}'$$

$$\forall$$
 s s'. p s \land rel s s' \Longrightarrow p s'

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - ullet a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- Based on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall\,\mathtt{s}\,\mathtt{e}'\,\mathtt{s}'.\;(\mathtt{e},\mathtt{s})\rightsquigarrow^*(\mathtt{e}',\mathtt{s}')\implies \mathtt{rel}\,\,\mathtt{s}\,\,\mathtt{s}'$$

$$\forall \, s \, s'. \, p \, s \, \wedge \, rel \, s \, s' \implies p \, s'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a **state-independent proposition**
 - ullet a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- Based on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall \, s \, e' \, s'. \, (e, s) \leadsto^* (e', s') \implies rel \, s \, s'$$

$$\forall \, s \, s'. \, p \, s \, \wedge \, \underset{\mathsf{rel}}{\mathsf{rel}} \, s \, s' \implies p \, s'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - ullet a means to **witness** the validity of $p\ s$ in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- Based on monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. rel) when

$$\forall s e' s'. (e, s) \rightsquigarrow^* (e', s') \implies rel s s'$$

```
\forall\,\mathtt{s}\,\mathtt{s}'.\,\,\mathtt{p}\,\mathtt{s}\,\,\wedge\,\, \textcolor{red}{\mathtt{rel}}\,\,\mathtt{s}\,\,\mathtt{s}'\,\Longrightarrow\,\,\mathtt{p}\,\,\mathtt{s}'
```

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\texttt{pre}: \texttt{state} \to \texttt{Type} \qquad \quad \texttt{post}: \texttt{state} \to \texttt{t} \to \texttt{state} \to \texttt{Type}
```

ST is an abstract pre-postcondition refinement of

```
st t \stackrel{\text{def}}{=} state \rightarrow t * state
```

The global state actions have types

```
get: unit \to ST state (requires (\lambda_-, \top)) (ensures (\lambda s_0 s s_1, s_0 = s = s_1))
put: s:state \to ST unit (requires (\lambda_-, \top)) (ensures (\lambda_-, s_1, s_1 = s))
```

Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{picture}(20,20) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10
```

• ST is an abstract pre-postcondition refinement of

$$\mathtt{st} \ \mathtt{t} \overset{\mathtt{def}}{=} \mathtt{state} \to \mathtt{t} * \mathtt{state}$$

The global state actions have types

```
get: unit \to ST state (requires (\lambda_-, \top)) (ensures (\lambda_s_0 s s_1, s_0 = s = s_1))
put: s:state \to ST unit (requires (\lambda_-, \top)) (ensures (\lambda_-, s_1, s_1 = s))
```

Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10
```

• ST is an abstract pre-postcondition refinement of

```
\mathtt{st} \ \mathtt{t} \overset{\mathtt{def}}{=} \mathtt{state} \to \mathtt{t} * \mathtt{state}
```

The global state actions have types

```
get: unit \rightarrow ST state (requires (\lambda_-.\top)) (ensures (\lambda s_0 s s_1 . s_0 = s = s_1))
put: s:state \rightarrow ST unit (requires (\lambda_-.\top)) (ensures (\lambda_-s_1 . s_1 = s))
```

Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the comp. type

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{tabular}{ll} pre: state \rightarrow Type & post: state \rightarrow t \rightarrow state \rightarrow Type \\ \hline \end{tabular}
```

• ST is an abstract pre-postcondition refinement of

```
\mathtt{st} \ \mathtt{t} \overset{\mathtt{def}}{=} \mathtt{state} \to \mathtt{t} * \mathtt{state}
```

• The global state actions have types

```
get: unit \rightarrow ST state (requires (\lambda_-.\top)) (ensures (\lambda s_0 s s_1.s_0 = s = s_1))
put: s:state \rightarrow ST unit (requires (\lambda_-.\top)) (ensures (\lambda_-.s_1.s_1 = s))
```

• Refs. and local state are defined in F* using monotonicity

We capture monotonic state with a new computational type

```
{
m MST}_{
m state,rel} t (requires pre) (ensures post)
```

The get action is typed as in ST

```
\label{eq:get:mit} \texttt{get}: \texttt{unit} \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda \; \_. \top \big) \big) \\ \big( \texttt{ensures} \; \big( \lambda \; \texttt{s}_0 \; \texttt{s} \; \texttt{s}_1 \, . \; \texttt{s}_0 = \texttt{s} \; \texttt{s}_1 \big) \big)
```

To ensure monotonicity, the put action gets a precondition

```
put: s:state \rightarrow MST unit (requires (\lambda s_0.rel s_0s))
(ensures (\lambda_- s_1.s_1=s))
```

So intuitively, MST is an abstract pre-postcondition refinement of

```
\texttt{mst} \ \texttt{t} \ \stackrel{\text{def}}{=} \ \texttt{s}_0 \texttt{:state} \to \texttt{t} * \texttt{s}_1 \texttt{:state} \{ \texttt{rel} \ \texttt{s}_0 \ \texttt{s}_1 \}
```

• We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

• The **get** action is typed as in ST

```
\label{eq:get:mit} \texttt{get:unit} \to \texttt{MST state} \; \big( \texttt{requires} \; \big( \lambda \;\_. \top \big) \big) \\ \qquad \qquad \big( \texttt{ensures} \; \big( \lambda \; \texttt{s}_0 \; \texttt{s} \; \texttt{s}_1 \, . \; \texttt{s}_0 = \texttt{s} \; \texttt{s}_1 \big) \big)
```

To ensure monotonicity, the put action gets a precondition put: s:state → MST unit (requires (λ s₀.rel s₀ s))
 (ensures (λ _ _ s₁.s₁ = s))

• So intuitively, MST is an **abstract** pre-postcondition refinement of

• We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

• The get action is typed as in ST

```
\begin{aligned} \texttt{get}: \texttt{unit} & \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda_-.\top \big) \big) \\ & \big( \texttt{ensures} \; \big( \lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big) \end{aligned}
```

To ensure monotonicity, the put action gets a precondition put: s:state → MST unit (requires (λ s₀.rel s₀ s))
 (ensures (λ _ _s₁.s₁ = s))

• So intuitively, MST is an **abstract** pre-postcondition refinement of

• We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

• The get action is typed as in ST

```
\begin{aligned} \texttt{get}: \texttt{unit} & \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda_-.\top \big) \big) \\ & \big( \texttt{ensures} \; \big( \lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big) \end{aligned}
```

• To ensure monotonicity, the put action gets a precondition

So intuitively, MST is an abstract pre-postcondition refinement of

```
	exttt{mst} \; 	exttt{t} \; \stackrel{	exttt{def}}{=} \; 	exttt{s}_0 	exttt{:state} \{ 	exttt{rel} \; 	exttt{s}_0 \; 	exttt{s}_1 \}
```

New: Monotonic global state in F*

• We capture monotonic state with a new computational type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

• The get action is typed as in ST

```
\begin{aligned} \texttt{get}: \texttt{unit} & \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda_-.\top \big) \big) \\ & \big( \texttt{ensures} \; \big( \lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big) \end{aligned}
```

• To ensure monotonicity, the put action gets a precondition

```
put: s:state \rightarrow MST unit (requires (\lambda s_0.rel s_0 s))
(ensures (\lambda_{--}s_1.s_1 = s))
```

So intuitively, MST is an abstract pre-postcondition refinement of

```
\texttt{mst t} \ \stackrel{\text{def}}{=} \ \textbf{s_0} \text{:state} \rightarrow \textbf{t} * \textbf{s_1} \text{:state} \big\{ \texttt{rel } \textbf{s_0} \ \textbf{s_1} \big\}
```

We extend F* with a logical capability

```
witnessed : (\mathtt{state} 	o \mathtt{Type}) 	o \mathtt{Type}
```

together with a weakening principle (functoriality)

```
\label{eq:wk:pq:(state of Type) of Lemma (requires ($\forall \, s. \, p. \, s \implies q. \, s)$)}  (ensures (witnessed $p \implies witnessed $q$)
```

```
\llbracket 	ext{witnessed p} 
Vert(	ext{s}) \overset{	ext{def}}{=} orall 	ext{s}'. 	ext{rel s s}' \implies \llbracket 	ext{p s}' 
Vert(	ext{s}) 
Vert
```

- As usual, for natural deduction, need world-indexed sequents
- But. wait a minute . . .

• We extend F* with a logical capability

```
\mathtt{witnessed} : (\mathtt{state} \to \mathtt{Type}) \to \mathtt{Type}
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p \, s \implies q \, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket (\mathtt{s}) \stackrel{\mathtt{def}}{=} \ \forall \ \mathtt{s'} \, . \, \mathtt{rel} \ \mathtt{s} \ \mathtt{s'} \implies \llbracket \mathtt{p} \ \mathtt{s'} \rrbracket (\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- But, wait a minute . . .

• We extend F* with a logical capability

```
\mathtt{witnessed}: (\mathtt{state} \to \mathtt{Type}) \to \mathtt{Type}
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p \, s \implies q \, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket (\mathtt{s}) \stackrel{\mathsf{def}}{=} \ \forall \, \mathtt{s'} \, . \, \mathtt{rel} \, \, \mathtt{s} \, \, \mathtt{s'} \implies \llbracket \mathtt{p} \, \, \mathtt{s'} \rrbracket (\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- But, wait a minute . . .

• We extend F* with a logical capability

```
witnessed : (state 	o Type) 	o Type
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p \, s \implies q \, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket (\mathtt{s}) \stackrel{\mathsf{def}}{=} \ \forall \, \mathtt{s'} \, . \, \mathtt{rel} \, \, \mathtt{s} \, \, \mathtt{s'} \implies \llbracket \mathtt{p} \, \, \mathtt{s'} \rrbracket (\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- But, wait a minute . . .

• We extend F* with a logical capability

```
\mathtt{witnessed} : (\mathtt{state} \to \mathtt{Type}) \to \mathtt{Type}
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires ($\forall \, s.\, p.\, s \implies q.\, s$)) \\ & (ensures (witnessed $p \implies witnessed $q$)) \\ \end{tabular}
```

```
\llbracket \mathtt{witnessed} \ \mathtt{p} \rrbracket(\mathtt{s}) \stackrel{\mathsf{def}}{=} \ \forall \ \mathtt{s'} \ . \ \mathtt{rel} \ \mathtt{s} \ \mathtt{s'} \implies \llbracket \mathtt{p} \ \mathtt{s'} \rrbracket(\mathtt{s})
```

- As usual, for natural deduction, need world-indexed sequents
- But, wait a minute . . .

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

and a stateful elimination rule for witnessed

```
\begin{split} \text{recall} &: \text{ p:}(\text{state} \rightarrow \text{Type}_0) \\ &\rightarrow \text{ MST unit (requires } (\lambda_-. \text{witnessed p})) \\ & \qquad \qquad \left(\text{ensures } (\lambda \, \text{s}_0 \, \_ \, \text{s}_1 \, . \, \text{s}_0 = \text{s}_1 \, \land \, \text{p 'stable\_from' s}_1)\right) \end{split}
```

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

```
\label{eq:state} \begin{split} \text{witness} \; : \; \; & p{:}\big(\text{state} \to \text{Type}_0\big) \\ & \to \; \text{MST unit (requires } \big(\lambda \, s_0 \, . \, p \; \text{`stable\_from'} \; s_0\big)\big) \\ & \qquad \qquad \big(\text{ensures } \big(\lambda \, s_0 \, . \, s_1 \, . \, s_0 = s_1 \; \land \; \text{witnessed p}\big)\big) \end{split}
```

and a stateful elimination rule for witnessed

```
\begin{split} \text{recall} \; : \; & \text{p:}(\text{state} \rightarrow \text{Type}_0) \\ & \rightarrow \; \text{MST unit (requires } (\lambda_-. \text{witnessed p})) \\ & \qquad \qquad \left( \text{ensures } (\lambda \, \text{s}_0 \, - \, \text{s}_1 \, . \, \text{s}_0 = \, \text{s}_1 \, \land \, \text{p 'stable\_from' s}_1) \right) \end{split}
```

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

```
\label{eq:state} \begin{split} \text{witness} \; : \; \; & p{:}\big(\text{state} \to \text{Type}_0\big) \\ & \to \; \text{MST unit (requires } \big(\lambda \, s_0 \, . \, p \; \text{`stable\_from'} \; s_0\big)\big) \\ & \qquad \qquad \big(\text{ensures } \big(\lambda \, s_0 \, . \, s_1 \, . \, s_0 = s_1 \; \land \; \text{witnessed p}\big)\big) \end{split}
```

and a stateful elimination rule for witnessed

```
\begin{split} \text{recall} &: \ p\text{:}(\texttt{state} \to \texttt{Type}_0) \\ &\to \texttt{MST} \ \text{unit} \ (\texttt{requires} \ (\lambda_-, \texttt{witnessed} \ p)) \\ &\quad \left(\texttt{ensures} \ (\lambda \, \texttt{s}_0 \, \_\, \texttt{s}_1 \, , \, \texttt{s}_0 \, = \, \texttt{s}_1 \ \land \ p \ \text{`stable\_from'} \ \texttt{s}_1)) \end{split}
```

Outline

- F*
- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** ⊆ as our preorder **rel** on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } v; \texttt{ witness } (\lambda \texttt{ s} . \texttt{ v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\lambda \texttt{ s} . \texttt{ v} \in \texttt{s}); \texttt{ assert } (\texttt{ v} \in \texttt{get()})
```

For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled similarly easily by

```
\texttt{insert w; witness } (\lambda \, \texttt{s.w} \in \texttt{s}); \; [ \; ]; \; \texttt{recall } (\lambda \, \texttt{s.w} \in \texttt{s}); \; \texttt{assert } (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
insert\ v;\ witness\ (\lambda\,s\,.\,v\in s);\ c\_p();\ recall\ (\lambda\,s\,.\,v\in s);\ assert\ (v\in get()
```

For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled **similarly easily** by

```
\texttt{insert w; witness } (\lambda \, \texttt{s.w} \in \texttt{s}); \; [ \; ]; \; \texttt{recall } (\lambda \, \texttt{s.w} \in \texttt{s}); \; \texttt{assert } (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick set inclusion ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } \texttt{v}; \texttt{ witness } (\texttt{\lambda} \texttt{s}. \texttt{v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\texttt{\lambda} \texttt{s}. \texttt{v} \in \texttt{s}); \texttt{ assert } (\texttt{v} \in \texttt{get()})
```

For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled similarly easily by

```
\texttt{insert w}; \ \texttt{witness} \ (\lambda \, \texttt{s.w} \in \texttt{s}); \ [ \ ]; \ \texttt{recall} \ (\lambda \, \texttt{s.w} \in \texttt{s}); \ \texttt{assert} \ (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick set inclusion ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } \texttt{v}; \texttt{ witness } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ assert } (\texttt{v} \in \texttt{get()})
```

• For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled similarly easily by

```
insert w; witness (\lambda s.w \in s); [ ]; recall (\lambda s.w \in s); assert (w \in get())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c.p(); recall $(\lambda \, \text{c.c} > 0)$

• Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } \texttt{v}; \texttt{ witness } (\texttt{\lambda} \texttt{s}. \texttt{v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\texttt{\lambda} \texttt{s}. \texttt{v} \in \texttt{s}); \texttt{ assert } (\texttt{v} \in \texttt{get()})
```

For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled **similarly easily** by

```
insert w; witness (\lambda s.w \in s); [ ]; recall (\lambda s.w \in s); assert (w \in get())
```

Monotonic counters are analogous, by picking N and ≤, e.g.,
 create 0; incr(); witness (λc.c > 0); c_p(); recall (λc.c > 0)

First, we define a type of heaps as a finite map

```
\label{eq:type-heap} \begin{split} &|\; H:h:(\mathbb{N}\to cell)\to ctr:\mathbb{N}\{\forall\, n\,.\, ctr\leq n \implies h\,\, n=Unused\}\to heap \\ &\text{where} \\ &\text{type cell}=\\ &|\; Unused:cell \\ &|\; Used:a:Type\to v:a\to cell \end{split}
```

Next, we define a preorder on heaps (heap inclusion)

```
let heap_inclusion (H h_0 _) (H h_1 _) = \forall id.match h_0 id,h_1 id with 
 | Used a _,Used b _ \rightarrow a = b 
 | Unused,Used _ _ \rightarrow \top 
 | Unused,Unused \rightarrow \top
```

• First, we define a type of **heaps** as a finite map

```
type heap =
        \mid \texttt{H} : \textcolor{red}{\textbf{h} : \textbf{h} : (\mathbb{N} \to \texttt{cell}) \to \texttt{ctr} : \mathbb{N} \{ \forall \, \texttt{n} \, . \, \texttt{ctr} \leq \texttt{n} \implies \texttt{h} \, \texttt{n} = \texttt{Unused} \} \to \texttt{heap}}
where
  type cell =
        Unused: cell
        | Used : a:Type \rightarrow v:a \rightarrow cell
```

• First, we define a type of heaps as a finite map

```
\label{eq:type-heap} \begin{split} & | \; \text{H} : h \text{:} (\mathbb{N} \to \text{cell}) \to \text{ctr} \text{:} \mathbb{N} \{ \forall \, n \, . \, \text{ctr} \leq n \implies h \, \, n = \text{Unused} \} \to \text{heap} \\ \text{where} \\ & \text{type cell} = \\ & | \; \text{Unused} : \text{cell} \\ & | \; \text{Used} : \, \textbf{a} \text{:} \text{Type} \to \textbf{v} \text{:} \textbf{a} \to \text{cell} \end{split}
```

Next, we define a preorder on heaps (heap inclusion)

```
let heap_inclusion (H h_0 _) (H h_1 _) = \forall id.match h_0 id, h_1 id with 
 | Used a _, Used b _ \rightarrow a = b 
 | Unused, Used _ \rightarrow \rightarrow \rightarrow | Unused, Unused \rightarrow \rightarrow | Used _ _, Unused \rightarrow \rightarrow \rightarrow
```

• As a result, we can define new local state effect

```
MLST t pre post \stackrel{\text{def}}{=} MST<sub>heap,heap_inclusion</sub> t pre post
```

Next, we define the type of references using monotonicity
 abstract type ref a = id:N{witnessed (λh.contains h id a)}
 where

```
let contains (H h \_) id a = match h id with  | \text{Used b } \_ \rightarrow \text{ a} = \text{b}
```

Important: contains is stable wrt. heap_inclusion

• As a result, we can define new local state effect

```
MLST t pre post \stackrel{\text{def}}{=} MST<sub>heap,heap_inclusion</sub> t pre post
```

Next, we define the type of references using monotonicity

```
\texttt{abstract type ref a} = \texttt{id} : \mathbb{N} \{ \texttt{witnessed ($\lambda$ h. contains h id a)} \}
```

where

```
let contains (H h \_) id a =  match h id with | Used b \_ \rightarrow a = b | Unused \rightarrow \bot
```

Important: contains is stable wrt. heap_inclusion

• As a result, we can define new local state effect

```
MLST t pre post \stackrel{\text{def}}{=} MST<sub>heap,heap_inclusion</sub> t pre post
```

• Next, we define the type of references using monotonicity

```
\texttt{abstract type ref a} = \texttt{id} : \mathbb{N} \{ \texttt{witnessed ($\lambda$ h. contains h id a)} \}
```

where

```
let contains (H h \_) id a =  match h id with | Used b \_ \rightarrow a = b | Unused \rightarrow \bot
```

Important: contains is stable wrt. heap_inclusion

Finally, we define MLST's actions using MST's actions

- **get** the current heap
- update the heap with the given value at the given ref.
- put the updated heap back

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type) (v:a): MLST (ref a) ... = ...
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a): MLST a (req. (\top)) (ens. (...)) = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - select the given reference from the heap
 - let write (r:ref a) (v:a) : MLST unit ... = ...
 - recall that the given ref. is in the hear
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type) (v:a): MLST (ref a) ... = ...
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a): MLST a (req. (\top)) (ens. (...)) = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - select the given reference from the heap
 - let write (r:ref a)(v:a):MLST unit ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type) (v:a): MLST (ref a) ... = ...
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a): MLST a (req. (\top)) (ens. (...)) = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - **select** the given reference from the heap
 - let write (r:ref a) (v:a): MLST unit ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
|\mbox{ Used}:a:Type \to v:a \to t:tag \to cell where type \mbox{ tag } = \mbox{ Typed}:tag \ | \mbox{ Untyped}:tag
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
where

| Used: a:Type → v:a → t:tag a → cell

where

type tag a = Typed: rel:preorder a → tag a | Untyped: tag a
```

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \mbox{ Used: a:Type} \rightarrow \mbox{v:a} \rightarrow \mbox{t:tag} \rightarrow \mbox{cell} where  \mbox{type tag} \ = \mbox{ Typed: tag} \ | \mbox{ Untyped: tag}
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| \  \, \text{Used} : a: Type \rightarrow v: a \rightarrow t: tag \ a \rightarrow \text{cell} \\ \text{where} \\
```

type tag a = Typed:rel:preorder a \rightarrow tag a | Untyped:tag a

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \mbox{ Used: a:Type} \rightarrow \mbox{v:a} \rightarrow \mbox{t:tag} \rightarrow \mbox{cell} where  \mbox{type tag} \ = \mbox{ Typed: tag} \ | \mbox{ Untyped: tag}
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| \mbox{ Used : a:Type} \rightarrow \mbox{ v:a} \rightarrow \mbox{ t:tag } \mbox{ a} \rightarrow \mbox{ cell} \\ \mbox{ where} \\ \mbox{ type tag a} = \mbox{ Typed : rel:preorder a} \rightarrow \mbox{ tag a} \mbox{ | Untyped : tag a} \\
```

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \  \, \text{Used} : a: Type \to v: a \to \texttt{t:tag} \to \texttt{cell} where  \  \, \text{type tag} \ = \ Typed : \texttt{tag} \ | \  \, \text{Untyped} : \texttt{tag}
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with **typed tags**

```
| \  \, \texttt{Used} : \texttt{a:Type} \rightarrow \texttt{v:a} \rightarrow \texttt{t:tag} \; \textcolor{red}{\texttt{a}} \rightarrow \texttt{cell} \\ \text{where} \\
```

```
type tag a = Typed: rel:preorder a \rightarrow tag a | Untyped: tag a
```

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

Conclusion

- Monotonicity
 - can be distilled into a simple and general framework
 - is **useful** for **programming** (refs.) and **verification** (Prj. Everest)
- See our POPL 2018 paper for
 - further examples and case studies
 - meta-theory and total correctness for MST
 - based on an instrumented operational semantics

$$\left(\texttt{witness}\;x.\varphi\,,\,s\,,\,W\right)\;\leadsto\;\left(\texttt{return}\;\left(\right),\,s\,,\,W\cup\{x.\varphi\}\right)$$

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for MST
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction

Conclusion

- Monotonicity
 - can be distilled into a simple and general framework
 - is **useful** for **programming** (refs.) and **verification** (Prj. Everest)
- See our POPL 2018 paper for
 - further examples and case studies
 - meta-theory and total correctness for MST
 - based on an instrumented operational semantics

```
(witness x.\varphi, s, W) \rightsquigarrow (return (), s, W \cup \{x.\varphi\})
```

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for MST
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction

Thank you for your attention!

Questions?

• In F* every abstract ST computation

```
e:ST t (requires pre) (ensures post)

can be reified into its underlying Pure representation

reify e:s_0:state \rightarrow Pure (t*state) (requires (pre s_0))

(ensures (\lambda (x,s_1).post s_0 x s_1))

and vice versa using reflection (see our POPL 2017 paper)
```

- Useful for extrinsic reasoning, e.g., for relational properties
- We also need it for MST!

• In F* every abstract ST computation

```
e:ST t (requires pre) (ensures post)

can be reified into its underlying Pure representation

reify e:s_0:state \rightarrow Pure (t*state) (requires (pre s_0))

(ensures (\lambda (x,s_1).post s_0 x s_1))

and vice versa using reflection (see our POPL 2017 paper)
```

- Useful for extrinsic reasoning, e.g., for relational properties
- We also need it for MST!

• In F* every abstract ST computation

```
e:ST t (requires pre) (ensures post)
```

can be **reified** into its **underlying** Pure **representation**

```
\label{eq:s0} \begin{split} \text{reify e: } s_0\text{:state} & \to \text{Pure (t*state) (requires (pre } s_0))} \\ & \qquad \qquad \left(\text{ensures } \left(\lambda \left(\textbf{x}, \textbf{s}_1\right).\, \text{post } \textbf{s}_0 \; \textbf{x} \; \textbf{s}_1\right)\right) \end{split}
```

and vice versa using reflection (see our POPL 2017 paper)

- Useful for **extrinsic reasoning**, e.g., for relational properties
- We also need it for MST!

We cannot simply turn an abstract MST computation

```
e: MST t (requires pre) (ensures post) into a state-passing function s_0 : \texttt{state} \to \texttt{Pure} \ (\texttt{t} * \texttt{s}_1 : \texttt{state} \{ \texttt{rel} \ \texttt{s}_0 \ \texttt{s}_1 \}) \ (\texttt{req}. \ (\texttt{pre} \ \texttt{s}_0)) \\ (\texttt{ens.} \ (\lambda \ (\texttt{x}, \texttt{s}_1) . \, \texttt{post} \ \texttt{s}_0 \ \texttt{x}_1) )
```

• For example, consider the recalling action

```
\begin{aligned} \texttt{recall}: \texttt{p:}(\texttt{state} \rightarrow \texttt{Type}) \rightarrow \texttt{MST unit (requires ($\lambda$\_.witnessed p))} \\ & (\texttt{ensures ($\lambda$ $\texttt{s}_0$\_$\texttt{s}_1$.$\texttt{s}_0 = \texttt{s}_1$ $\land$ p $\texttt{s}_1$))} \end{aligned}
```

which we would like to reduce as

```
reify (recall p) \rightsquigarrow \lambda s_0.return ((), s_0)
```

but we cannot prove $p s_0$ from witnessed p in the pure logic

• We cannot simply turn an abstract MST computation

```
e: MST t (requires pre) (ensures post)
```

into a state-passing function

```
\begin{split} \mathbf{s_0} : & \mathtt{state} \to \mathtt{Pure} \ \big( \mathtt{t} * \mathbf{s_1} : \mathtt{state} \{ \mathtt{rel} \ \mathbf{s_0} \ \mathbf{s_1} \} \big) \ \big( \mathtt{req.} \ \big( \mathtt{pre} \ \mathbf{s_0} \big) \big) \\ & \big( \mathtt{ens.} \ \big( \lambda \ \big( \mathtt{x}, \mathbf{s_1} \big) . \, \mathtt{post} \ \mathbf{s_0} \ \mathtt{x} \ \mathbf{s_1} \big) \big) \end{split}
```

For example, consider the recalling action

```
\begin{aligned} \text{recall}: p: & (\text{state} \rightarrow \text{Type}) \rightarrow \text{MST unit } \left( \text{requires } (\lambda_-. \text{witnessed p}) \right) \\ & \left( \text{ensures } (\lambda \, \mathbf{s_0} \, \_ \, \mathbf{s_1} \, . \, \mathbf{s_0} = \mathbf{s_1} \, \land \, \mathbf{p} \, \, \mathbf{s_1} \right) \end{aligned}
```

which we would like to reduce as

```
reify (recall p) \rightsquigarrow \lambda s_0.return ((), s_0)
```

but we cannot prove p so from witnessed p in the pure logic

• We cannot simply turn an abstract MST computation

```
e: MST t (requires pre) (ensures post)
```

into a state-passing function

```
\begin{split} \mathbf{s_0} : & \mathtt{state} \to \mathtt{Pure} \ \big( \mathtt{t} * \mathbf{s_1} : \mathtt{state} \{ \mathtt{rel} \ \mathbf{s_0} \ \mathbf{s_1} \} \big) \ \big( \mathtt{req.} \ \big( \mathtt{pre} \ \mathbf{s_0} \big) \big) \\ & \big( \mathtt{ens.} \ \big( \lambda \ \big( \mathtt{x}, \mathbf{s_1} \big) . \ \mathtt{post} \ \mathbf{s_0} \ \mathtt{x} \ \mathbf{s_1} \big) \big) \end{split}
```

• For example, consider the recalling action

```
\begin{split} \text{recall}: p:&(\text{state} \rightarrow \text{Type}) \rightarrow \text{MST unit (requires ($\lambda$_-.witnessed p))} \\ & \left(\text{ensures ($\lambda$_{0}$_-$_{1}.$_{0}=$_{1} $\land$ p$_{1})}\right) \end{split}
```

which we would like to **reduce** as

```
reify (recall p) \rightsquigarrow \lambda s_0. return ((), s_0)
```

but we cannot prove p so from witnessed p in the pure logic

- In our POPL 2018 paper, we support reification and reflection by
 - indexing MST_{state,rel,b} with a **boolean flag** b (reifiable?), and
 - guarding the pre-postconditions of witness and recall with b
 so if b = true then witness and recall are logically no-ops.
- This works but leads to duplication of pre- and postconditions!

• Instead, ongoing work is taking (hybrid) modal logic seriously

```
\mathbf{s_0} : \mathtt{state} \rightarrow \mathtt{Pure} \; \big( \mathtt{t} * \mathbf{s_1} : \mathtt{state} \{ \mathtt{rel} \; \mathbf{s_0} \; \mathbf{s_1} \} \big) \; \big( \mathtt{req.} \; \big( \mathtt{pre} \; \mathbf{s_0} \; \mathbf{@} \; \mathbf{s_0} \big) \big) \\ \qquad \qquad \big( \mathtt{ens.} \; \big( \lambda \; \big( \mathtt{x}, \mathbf{s_1} \big) . \, \mathtt{post} \; \mathbf{s_0} \; \mathtt{x} \; \mathbf{s_1} \; \mathbf{@} \; \mathbf{s_1} \big) \\
```

where **@** is the **standard translation** of modal logic

- In our POPL 2018 paper, we support reification and reflection by
 - indexing MST_{state,rel,b} with a **boolean flag** b (reifiable?), and
 - guarding the pre-postconditions of witness and recall with b
 so if b = true then witness and recall are logically no-ops.
- This works but leads to duplication of pre- and postconditions!
- Instead, ongoing work is taking (hybrid) modal logic seriously

```
\mathbf{s}_0:state 	o Pure (t * \mathbf{s}_1:state{rel \mathbf{s}_0 \mathbf{s}_1}) (req. (pre \mathbf{s}_0 \mathbf{0} \mathbf{s}_0))

(ens. (\lambda (x, \mathbf{s}_1).post \mathbf{s}_0 x \mathbf{s}_1 \mathbf{0} \mathbf{s}_1)
```

where **@** is the **standard translation** of modal logic

- In our POPL 2018 paper, we support reification and reflection by
 - indexing MST_{state,rel,b} with a **boolean flag** b (reifiable?), and
 - guarding the pre-postconditions of witness and recall with b
 so if b = true then witness and recall are logically no-ops.
- This works but leads to duplication of pre- and postconditions!
- Instead, ongoing work is taking (hybrid) modal logic seriously

```
\begin{split} \mathbf{s_0} : & \mathsf{state} \to \mathsf{Pure} \ \big( \mathsf{t} * \mathbf{s_1} : \mathsf{state} \{ \mathsf{rel} \ \mathbf{s_0} \ \mathbf{s_1} \} \big) \ \big( \mathsf{req.} \ \big( \mathsf{pre} \ \mathbf{s_0} \ \mathbf{0} \ \mathbf{s_0} \big) \big) \\ & \big( \mathsf{ens.} \ \big( \lambda \ \big( \mathbf{x}, \mathbf{s_1} \big) . \ \mathsf{post} \ \mathbf{s_0} \ \mathbf{x} \ \mathbf{s_1} \ \mathbf{0} \ \mathbf{s_1} \big) \big) \end{split}
```

where ${\bf 0}$ is the **standard translation** of modal logic