Exercice 1

Soient E et F deux espaces vectoriels de dimension finie et soit $f \in \mathcal{L}(E, F)$.

- 1) Montrer que Im(f) est un sous-espace vectoriel de F et Ker(f) est un sous-espace vectoriel de E
- 2) Montrer que f est injective si et seulement si $Ker(f) = \{0_E\}$.
- 3) Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E.
 - a) Montrer que $f(e_1), f(e_2), \ldots, f(e_n)$ est une famille génératrice de Im(f).
 - b) Montrer que f est injective si et seulement si $(f(e_1), f(e_2), \dots, f(e_n))$ est une famille libre.
 - c) Montrer que f est un isomorphisme si et seulement si $f(e_1), f(e_2), \ldots, f(e_n)$ est une base de F
- 4) Rappeler le théorème de la base incomplète, puis démontrer le théorème du rang : rg(f) + dim(Ker(f)) = dim(E).

Dans chaque cas, déterminer si F est un sous-espace vectoriel de E et le cas échéant déterminer une base de F.

- 1) $F = \{(x, y, z) \in \mathbb{R}^3, x = 0 \text{ et } y = 0\}, E = \mathbb{R}^3$
- 2) $F = \{(x, y, z) \in \mathbb{R}^3, x = 0 \text{ ou } y = 0\}, E = \mathbb{R}^3$

3)
$$F = \{(x, y, z, t) \in \mathbb{R}^4, \begin{cases} 2x + y + z = 0 \\ y - z + 2t = 0 \\ x - 3y + z - t = 0 \end{cases}, E = \mathbb{R}^4$$

4)
$$F = \{(x, y, z, t) \in \mathbb{R}^4, \begin{cases} 3x - y + 2z + t = 0 \\ -x + y - z = 0 \end{cases}, E = \mathbb{R}^4$$

 $2x + z + t = 0$

Exercice 3

Soit n un entier naturel non nul et soit $E = \mathbb{R}_n[X]$. On considère l'ensemble $F = \{P \in E \mid P(1) = 0\}$

- 1) Montrer que F est un sous-espace vectoriel de E
- 2) Montrer que F est le noyau d'une application linéaire $\varphi: E \to \mathbb{R}$ que l'on précisera.
- 3) En déduire la dimension de F.

Exercice 4

Pour chacune des matrices suivantes, déterminer le rang, la dimension du noyau, une base de l'image et une base du noyau.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ -1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 5 \\ 1 & 1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8 \end{pmatrix}$$

~ ~

Exercice 5

Soit $M \in \mathcal{M}_3(\mathbb{R})$ une matrice de rang 1. On note A^T la transposée d'une matrice A.

- 1) Montrer qu'il existe 6 réels a_1, a_2, a_3 et b_1, b_2, b_3 tels que $M_{i,j} = a_i b_j$ pour tout $(i, j) \in \{1, 2, 3\}^2$
- 2) Justifier qu'il existe deux matrices colonnes A et B tels que $M = AB^T$.
- 3) Montrer que $M^2 = tr(M)M$

- Exercice 6

Soit E un espace vectoriel de dimension 3, et $f \in \mathcal{L}(E)$ telle que $f^3 = 0$ et $f^2 \neq 0$.

Montrer qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

On pose
$$T = D + N$$
 où $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Déterminer une expression de T^n en fonction de D, N et n, puis en fonction seulement de n.

$$\star \star \star$$
Exercice 8

On appelle homothétie de E tout endomorphisme $f \in \mathcal{L}(E)$ tel que $f = \lambda \mathrm{id}_E$ pour un certain réel λ .

Soit E un \mathbb{R} -espace vectoriel de dimension finie et u un endomorphisme de E qui laisse stable toute droite vectorielle de E (on dit que $F \subset E$ est stable par u si $u(F) \subset F$). Montrer que u est une homothétie.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n et soient f et g deux endomorphismes de E.

- 1) Montrer que $rg(f+g) \le rg(f) + rg(g)$.
- 2) Montrer que $\operatorname{rg}(f+g)=\operatorname{rg}(f)+\operatorname{rg}(g)$ si et seulement si $\operatorname{Im} f\cap \operatorname{Im} g=\{0\}$ et $\operatorname{Ker} f+\operatorname{Ker} g=E$

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice fixée. Résoudre l'équation $X + {}^t X = \operatorname{tr}(X)A$ d'inconnue $X \in \mathcal{M}_n(\mathbb{R})$.

Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on note f_A l'application qui à tout $X \in \mathcal{M}_n(\mathbb{R})$ associe $\operatorname{tr}(AX)$.

- 1) Montrer que quel que soit $A \in \mathcal{M}_n(\mathbb{R}), f_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R}).$
- 2) Montrer que l'application suivante est un isomorphisme d'espaces vectoriels :

$$\varphi: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R})$$

$$A \longmapsto f_A$$

Le coin des Khûbes

Exercice 12 -

Soit n un entier naturel non nul et soit u l'application définie sur $\mathbb{R}_n[X]$ par u(P) = P(1-X) pour tout $P \in \mathbb{R}_n[X]$.

- 1) Montrer que u est un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Montrer que $u^2 = \mathrm{id}_{\mathbb{R}_n[X]}$.
- 3) En déduire qu'il existe $P \in \mathbb{R}_n[X]$ non nul tel que P(1-X) = P(X) ou P(1-X) = -P(X).

* * * * Exercice 13

(ENS 2024) On considère une application φ non-constante de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} . On suppose que pour toutes matrices A et B dans $\mathcal{M}_n(\mathbb{R})$ on a :

$$\varphi(AB) = \varphi(A)\varphi(B)$$

Attention! L'application φ n'est pas supposée linéaire.

- 1) a) Soit O la matrice nulle de $\mathcal{M}_n(\mathbb{R})$. Déterminer $\varphi(O)$.
 - b) Soit I la matrice identité de $\mathcal{M}_n(\mathbb{R})$. Déterminer $\varphi(I)$.
- 2) Montrer que si une matrice A de $\mathcal{M}_n(\mathbb{R})$ est inversible, alors $\varphi(A)$ est non-nul.
- 3) a) Soient A et B deux matrice de même rang. Montrer que $\varphi(A)$ est non-nul si et seulement si $\varphi(B)$ est non-nul.
 - b) Soit A dans $\mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe $m \in \mathbb{N}$ tel que A^m est nulle. Déterminer $\varphi(A)$.
 - c) En déduire que si une matrice A vérifie $\varphi(A) \neq 0$, alors elle est inversible.

