函数 1-03

微积分研究的是客观世界的数量反映

——函数的性质、取值规律和函数值的 变化情况。

从根本上说,微积分这一学说的诞生的基础是——笛卡儿的解析几何。

解析几何的学说使得对函数的讨论可以"数"、"形"结合。

二 1. 函数定义:

函数__五要素:自变量,因变量,定义域 domain,值域range,对应关系function.

上 两个函数相同⇔对应关系相同 & 定义域相同.

$$s = \sqrt{t^2} = |x| 相同,$$

例如,
$$y = \log_2 2^x$$
 与 $y = x$ 相同, $s = \sqrt{t^2}$ 与 $y = |x|$ 相同, $y = 2^{\log_2 x}$ 与 $y = \frac{x^2}{x}$ 不同.

2. 函数的几何特性:

函数的这四个几何特性都是整体特性.

(1).函数的有界性:

若 $X \subset D$,∃M > 0,∀ $x \in X$,有 $|f(x)| \le M$ 成立,则称函数f(x)在X上有界.否则称无界.

(2).函数的单调性:

设函数f(x)的定义域为D,区间 $I \in D$, 如果对于区间I上任意两点 x_1 及 x_2 , 当 $x_1 < x_2$ 时,恒有 $(1)f(x_1) \le f(x_2)$,则称函数f(x)在区间I上是单调增加的;

上页

下页

设函数 f(x)的定义域为D,区间 $I \in D$,如果对于区间 I 上任意两点 x_1 及 x_2 ,当 $x_1 < x_2$ 时,恒有 (1) $f(x_1) < f(x_2)[f(x_1) > f(x_2)]$,则称函数 f(x) 在区间 I 上是严格单调增加 [严格单调减少]的。

(3).函数的奇偶性:

设实数集D关于原点对称, $\forall x \in D$,有 f(-x) = f(x),则称函数f(x)是数集D上的偶函数.

设实数集D关于原点对称, $\forall x \in D$,有 f(-x) = -f(x),则称函数f(x)是数集 D上的奇函数.

(4).函数的周期性:

设函数f(x)的定义域为D,如果存在一个不为零的数l,使得对于任一 $x \in D$, $x \pm l \in D$,且f(x + l) = f(x)恒成立.则称f(x)为周期函数,l 称为f(x)的周期. 我们通常所说周期函数的周期是指其最小正周期. 不过,周期函数未必有最小正周期.

上页

3. 反函数

例如, $x = f(y) = 2^y$ 是一个严格单 调增加的函数,故其存在反函数

$$y = f^{-1}(x) = \log_2 x,$$

其中f-1是逆映射(反函数)的记号.

函数f严格单调是其反函数存在的

上 反函数存在定理(充要条件): 对于函数x = f(y),若在 $y \in D_f$, $x \in R_f$ 时f是一个一一映射,则 于 存在反函数 $y = f^{-1}(x)$,此时有 $x \in D_{f^{-1}} = R_f, y \in R_{f^{-1}} = D_f.$

自变量y	1	2	3
因变量x	0.2	0.3	0.1

THE R. P. LEWIS CO., LANSING, S. LEWIS CO., LANSING, S. L.					卜单调函数 ,		
Ŧ	自变量y	1	2	3			
Ţ	因变量x	0.2	0.3	0.1			
自变量 y 1 2 3 因变量 x 0.2 0.3 0.1 其反函数为 $y = f^{-1}(x)$:							
#	自变量x	0.2	0.3	0.1			
	因变量y	3	1	2			
T							
1111							
王					上页 下页 返		

4. 常见函数举例

(1).符号函数
$$y = \operatorname{sgn} x = \begin{cases} 1 & \exists x > 0 \\ 0 & \exists x = 0 \\ -1 & \exists x < 0 \end{cases}$$

$$x = \operatorname{sgn} x \cdot |x|$$

(2). Heaviside 函数

$$H(x) = \begin{cases} 0, & x < a \\ 1, & x \ge a \end{cases}$$

Heaviside 是一位英国的电子工程师,他用 Heaviside 函数来描述事物由量变到质变 的一个过程与状态.

$$x \in [0,1],$$

$$R(x) = \begin{cases} \frac{1}{q}, \exists x = \frac{p}{q} (p, q \in \mathbb{Z}^+, p, q \text{互质}) \text{时} \\ 0, \exists x = 0, 1 \text{或}(0, 1) \text{内的无理数时} \end{cases}$$

爆米花 函数

(4). 狄利克雷(Dirichlet)函数

$$D(x) = \begin{cases} 1 & \exists x \text{是有理数时} \\ 0 & \exists x \text{是无理数时} \end{cases}$$

其定义域为 $D_f=(-\infty, +\infty)$,其值域为 $R_f=\{0, 1\}$.

$$a > 0, a \neq 1, x \in \mathbb{R}$$

 $\sqrt[q]{a} = b, b > 0, b^q = a.$

$$x = \frac{p}{q} \in \mathbb{Q}, q \in \mathbb{Z}^+, p \in \mathbb{Z}, a^x = a^{\frac{p}{q}} = (\sqrt[q]{a})^p,$$

$$a^{x}, x = \frac{p}{q} \in \mathbb{Q}, q \in \mathbb{Z}^{+}, p \in \mathbb{Z}$$

$$a^{x} \triangleq \begin{cases} \sup\{a^{r} : r \in \mathbb{Q}, r < x, x \in \mathbb{R} \setminus \mathbb{Q}\}, a > 1 \\ \inf\{a^{r} : r \in \mathbb{Q}, r < x, x \in \mathbb{R} \setminus \mathbb{Q}\}, a < 1 \end{cases}$$

(6). 对数函数 $y = \log_a x$ $(a > 0, a \ne 1)$ $y = \ln x$

(8).三角函数

正弦函数 $y = \sin x$

余弦函数

$$y = \cos x$$

上页

正切函数 $y = \tan x$

$$y = \cot x$$

(9).反三角函数

周期函数
$$x = \sin y$$
在 $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

的时候严格单调,所以有反函数

$$y = \arcsin x, x \in [-1,1], y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

上页 / 下

下页

$$\exists \exists \exists \exists x = \sin(\pi - y), \pi - y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\exists \therefore \pi - y = \arcsin x,$$

$$\Rightarrow y = \pi - \arcsin x, x \in [-1,1].$$

自定义知: $y \in [-1,1]$, 则 $\sin(\arcsin y) = y$. 动问: $\forall x \in \mathbb{R}$, $\frac{1}{2} \arcsin(\sin x) = ?$

正弦曲线OABC: $x = \sin y, y \in [0, 2\pi]$

曲线
$$OABC$$
的另一种表示法:
 $OA: y = \arcsin x, y \in [0, \pi/2],$

$$AB: y = \pi - \arcsin x, y \in [\pi/2, 3\pi/2],$$

$$C \cdot y = x \quad \text{arcsin} \ x, y \in [x/2, 5x/2],$$

BC: y = 2π + arcsin x, y ∈
$$[3π/2, 2π]$$
,
∴ y ∈ $[3π/2, 2π]$ ⋈, y − 2π ∈ $[-π/2, 0]$
x = sin y = sin (y − 2π),

$$\therefore y - 2\pi = \arcsin x, \Rightarrow y = 2\pi + \arcsin x.$$

周期函数 $x = \cos y$ 在 $y \in [0,\pi]$ 时严格单调递减, 所以有反函数 $y = \arccos x, x \in [-1,1], y \in [0,\pi]$. $x = \cos y$

 $y = \arccos x$

反正弦函数 $y = \arcsin x$

证明
$$x \in [-1,1]$$
,

$$\arcsin x + \arccos x \equiv \frac{\pi}{2}$$

記
$$\alpha = \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

$$\beta = \arccos x \in [0, \pi],$$

反余弦函数
$$y = \arccos x$$

$$y = \arccos x$$

$$y = \arccos x$$

$$x \in [-1,1], y = \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \cos \alpha = +\sqrt{1 - \sin^2 \alpha} = \sqrt{1 - x^2},$$
$$\sin \beta = +\sqrt{1 - \cos^2 \beta} = \sqrt{1 - x^2},$$
$$\text{反余弦函数 } y = \arccos x$$
$$\therefore \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

 $\therefore \alpha + \beta \in \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right], \therefore \alpha + \beta \equiv \frac{\pi}{2}.$

 $=x^2+1-x^2\equiv 1,$

求证
$$x \in [-1,1]$$
, $\arcsin x + \arccos x \equiv \frac{\pi}{2}$.

证明 记
$$\alpha = \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

证明 记
$$\alpha = \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

$$\beta = \arccos x \in \left[0, \pi \right],$$

$$\cos \alpha = +\sqrt{1 - \sin^2 \alpha} = \sqrt{1 - x^2},$$

$$\sin \beta = +\sqrt{1 - \cos^2 \beta} = \sqrt{1 - x^2},$$

$$\therefore \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$= x^2 + 1 - x^2 \equiv 1,$$

$$\therefore \alpha + \beta \in \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right], \therefore \alpha + \beta \equiv \frac{\pi}{2}.$$

$$\therefore \sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$= x^2 + 1 - x^2 \equiv 1,$$

$$\therefore \alpha + \beta \in \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right], \therefore \alpha + \beta \equiv \frac{\pi}{2}.$$

正切函数 $x = \tan y$

$$x \in (-\infty, +\infty), y = \arctan x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

反正切函数 $y = \arctan x$

反正切函数 $y = \arctan x$

$$x \in (-\infty, +\infty),$$

 $\arctan x + \operatorname{arccot} x \equiv \frac{\pi}{2}$

$$x \in (-\infty, +\infty), y = \arctan x \in (-\infty, +\infty), y = (-\infty, +\infty),$$

 $x \in (-\infty, +\infty), y = \operatorname{arccot} x \in (0, \pi)$

幂函数,指数函数,对数函数,三角函数和反三角函数统称为基本初等函数.

上页

$$x \in (-\infty, +\infty), \arctan x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$$

$$x \in (-\infty, +\infty), \operatorname{arccot} x \in (0, \pi).$$

 $x \in [-1,1], \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$

 $= \frac{1}{2} \quad x \in [-1,1], \arccos x \in [0,\pi].$

5. 复合函数 初等函数
(1).复合函数.

例如,
$$y = \sqrt{u}$$
, $u = 1 - x^2 \xrightarrow{|x| \le 1} y = \sqrt{1 - x^2}$.

定义.设函数 $y = f(u)$ 的定义域为 D_f ,而
函数 $u = \varphi(x)$ 的值域为 R_{φ} .若 $D_f \cap R_{\varphi} \neq \emptyset$,
则称 $y = f[\varphi(x)]$ 为 x 的复合函数.

 $x \leftarrow$ 自变量, $u \leftarrow$ 中间变量, $y \leftarrow$ 因变量.

函数 $u = \varphi(x)$ 的值域为 R_{ω} .若 $D_f \cap R_{\omega} \neq \emptyset$,

 $x \leftarrow$ 自变量, $u \leftarrow$ 中间变量, $y \leftarrow$ 因变量.

注意: (a). 不是任何两个函数都可以复合成一个复合函数的;

例如 $y = \arcsin u, u = 2 + x^2 \neq y = \arcsin(2 + x^2)$.

(b). 复合函数可以由两个以上的函数经过复合构成.

例如,
$$y = \sqrt{\cot \frac{x}{2}} \iff y = \sqrt{u}, u = \cot v, v = \frac{x}{2}.$$

(2). 初等函数 由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.

函数的分类:

思考练习

1.
$$f(x) = \frac{1}{2+x}$$
, $f[f(x)] = ?$

2. 若函数f(x)满足关系式

$$2f(x) + f\left(\frac{1}{x}\right) = \frac{k}{x},$$

k为常数,证明: f(x)是奇函数.

3. 证明: $x \in (-\infty, +\infty)$,

$$\arctan x + \operatorname{arccot} x \equiv \frac{\pi}{2}$$
.

4.证明:
$$\forall x \geq 1$$
,

$$\arctan x - \frac{1}{2}\arccos \frac{2x}{1+x^2} \equiv \frac{\pi}{4}.$$

5.
$$\forall x, y \in D_f = \mathbb{R}, f(x) \le x,$$

$$f(x+y) \le f(x) + f(y),$$

于证明:
$$f(x) = x, \forall x \in \mathbb{R}$$
.

6. 试问:

 $\sin(\arcsin x) = ?$

 $\arcsin(\sin x) = ?$

7. (Berkeley, 2015 Fall)

证明函数 $f(x) = x^3 - 2x$ 是 从有理数集到自身的单射.

解f[f(x)] =
$$\frac{1}{2+f(x)}$$
 = $\frac{1}{2+\frac{1}{2+x}}$ = $\frac{1}{\frac{5+2x}{2+x}}$, 或表达为 $f[f(x)] = \frac{2+x}{5+2x}$ ($x \neq -2$).

1. $f(x) = \frac{1}{2+x}, f[f(x)] = ?$

4.证明
$$\forall x \ge 1$$
, $\arctan x - \frac{1}{2} \arccos \frac{2x}{1+x^2} \equiv \frac{\pi}{4}$;
证明 可证 $\forall x \ge 1$, $2 \arctan x - \arccos \frac{2x}{1+x^2} \equiv \frac{\pi}{2}$.

证明 可证
$$\forall x \ge 1, 2 \arctan x - \arccos \frac{2x}{1+x^2}$$
 记 $\arctan x = \alpha, \arccos \frac{2x}{1+x^2} = \beta.$

$$\cos(2\alpha - \beta) = \cos 2\alpha \cos \beta + \sin 2\alpha \sin \beta$$

$$\frac{1}{1+\tan^{2}\alpha}\cos(2\alpha-\beta) = \cos 2\alpha \cos \beta + \sin 2\alpha \sin \alpha$$

$$= \frac{1-\tan^{2}\alpha}{1+\tan^{2}\alpha}\cos\beta + \frac{2\tan\alpha}{1+\tan^{2}\alpha}\sin\beta$$

$$= \frac{1-x^{2}}{1+x^{2}}\cdot\frac{2x}{1+x^{2}} + \frac{2x}{1+x^{2}}\cdot\sin\beta$$

$$\frac{-x^2}{-x^2} \cdot \frac{2x}{1+x^2} + \frac{2x}{1+x^2} \cdot \sin \beta$$

$$\sin \beta = \pm \sqrt{1 - \cos^2 \beta} = \pm \sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} = ?$$

$$1 + x^{2} = \beta \in [0, 2]$$

$$\therefore \sin \beta = +\sqrt{1 - \cos^{2} \beta} = \sqrt{1 - \left(\frac{2x}{1 + x^{2}}\right)^{2}}$$

$$= \frac{\left|x^{2} - 1\right|}{1 + x^{2}} = \frac{x^{2} - 1}{1 + x^{2}},$$

$$\therefore x \ge 1, \therefore \arctan x = \alpha \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \therefore 2\alpha - \beta \in (0, \pi).$$

 $\frac{1}{1+x^2} \therefore x \ge 1, \therefore 0 < \frac{2x}{1+x^2} \le 1,$ $\therefore \arccos \frac{2x}{1+x^2} = \beta \in \left[0, \frac{\pi}{2}\right].$

$$\cos(2\alpha - \beta) = \frac{1 - x^2}{1 + x^2} \cdot \frac{2x}{1 + x^2} + \frac{2x}{1 + x^2} \cdot \sin\beta$$

$$= \frac{1 - x^2}{1 + x^2} \cdot \frac{2x}{1 + x^2} + \frac{2x}{1 + x^2} \cdot \frac{x^2 - 1}{1 + x^2} \equiv 0,$$

$$\therefore 2\alpha - \beta = \frac{\pi}{2}.$$

 $\sin \beta = \sqrt{1 - \cos^2 \beta} = \frac{x^2 - 1}{1 + x^2},$

 $\frac{1}{2} 2\alpha - \beta \in (0,\pi).$

5.
$$\forall x, y \in D_f = \mathbb{R}, f(x) \leq x$$
,

$$f(x+y) \le f(x) + f(y),$$

证明:
$$f(x) = x, \forall x \in \mathbb{R}$$
.

5.证明:
$$(1).f(0) = f(0+0) \le f(0) + f(0),$$

 $f(0) \le 0 \Rightarrow f(0) \ge 0, \therefore f(0) = 0.$

$$(2). \forall x \in \mathbb{R}, f(x) = f(0 - (-x))$$

$$F \ge f(0) - f(-x) = -f(-x) \ge x,$$

$$\therefore f(x) = x, \forall x \in \mathbb{R} .$$