R Basics and Exploratory Statistics

Hakunawadi Pswarayi

University of Nottingham, MAPS Project

Course Outline

- Some Common errors with the R software
- Objects and object names
- Data types and structures in R
- Handling data in R
- Graphics in R
- Exploratory data analysis

The skills to take home

- Writing and debugging R scripts
- Generating and manipulating R data
- Making R graphics
- Carrying out exploratory data analysis

- Script missing things or has more things than necessary:
 - a bracket, comma, full stop, etc,.
- Package not installed or loaded:
 - Not installed: "there is no package called 'abc"
 - Not loaded: "could not find function "mutate"
- Working directory not set:
 - Most common with beginners
 - Error message: "cannot open the connection"
- To resolve errors, read and understand the error message

The Mother of Errors!

- Error message difficult to understand and trace.
- Source of great frustration!
- Watch out for differences in variable names between scripts and data files
 - especially when a function or script is used for different variables

Objects and object names

- We manipulate objects and object names with R scripts/commands
- Objects are data, and object names, variables
- Objects are assigned names
- e.g., mass, 200:
 - 200 is the data object,
 - and mass the object name
- To manipulate the object (200), we manipulate the object name (mass).

Data Types

- Simplest data type is a scalar
 - which is a single value of some variable
 - e.g. the value 22, or the name "Bert"
- Numeric data
- Character data
- Logical data

Data types and Structures: Learning by Doing

Data Structures

- Vectors
- Factors
- Matrices
- Data Frames

To handle data, first set a working directory

- Essential when running data and scripts from your PC drive:
- Three ways of setting a working directory
- 1. Using the "setwd()" function:
 - you need to know the working directory path
 - which I find complicated
- 2. Using the "Session" Tool on the Tool menu
 - Click "Session" "Set working directory" "Choose directory"
 - Navigate to the folder you want as working directory
 - Then click "Open" on the dialogue box

The file browser

- 3. Using the "File Browser" tab
 - Navigate to the folder/file you want as working directory
 - Then "click" on the "More" tool (with cog/wheel next to it)
 - Then "click" on "Set as Working Directory"

Reading Simple Data Files into R

- Different data formats are read in by different functions
- Data formats:
 - .txt files
 - .dat files
 - .csv files (comma-separated values)
 - .excel files
- The different functions:
 - read.delim(), reading .txt files
 - read.table(), reading .dat files
 - read.csv(), reading .comma-separated values files
 - readxl(), reading excel files

Function and arguments

- The typical arguments:
 - File name
 - header
 - stringsAsFactors
- Example of function and arguments:
- read.delim("vari.txt", header = T, stringsAsFactors = T)

Writing data out of R

- Data can be written out in.dat .txt, and .csv formats
- Data is directly written to the working directory
- Sloppiness deletes files, and give errors
 - Data file with identical name and format with one being written out of R is automatically deleted/overwritten.
 - An open data file with an identical name and format to that being written will generate an error

Subsetting and Cleaning Data

- Subsetting is extracting subsets of R objects from:
 - data frames
 - lists
 - matrices
 - vectors
 - factors
- Subsetting operators:
 - They are: [, [[, \$
- Cleaning data is removing NA values

Histograms

- Created with single variables.
 - to visualize data distributions.
- Using the function: hist()
- The arguments, e.g.,:

label: xlabtitle: main

colour

• and many others waiting to be explored!

Multivariate graphs

- Created with multiple variables.
 - to visualize how they relate to each other.
- Using the function: plot()
- The arguments, e.g.,:
 - axes and title labels: xlab, ylab, main
 - axes limits: xlim, ylim
 - symbols: (pch), symbol fill: (bg), symbol size: (cex), symbol colour: (red, blue, etc.)
 - type: I, b, c, o,h, s and n
 - type n: plots differentiating sources of a variable
 - e.g., yield from different regions
 - legend and its position

Functions and arguments

- The par() function
- The arguments:
 - mfrow: number of rows and columns into which our device should be split
 - mar: to adjust the margins for each individual graph
- The layout() function
- For the finer control of the layout of our graphics
- The main argument:
 - matrix that specifies the locations for each graphic
 - e.g., rbind(1, 2:4)

Graph formats

- The formats: pdf, png and jpeg
 - The functions: pdf(), png() and jpeg()
- To print a graph, first **create** the device:
 - pdf("name.pdf")
 - png("name.pgn")
 - jpeg("name.jpeg")
- Then close the device after: dev.off()
 - otherwise all your graphics onwards will be pdf etc. documents

Exploratory Data Analysis

- The initial data investigations with:
- summary statistics
 - mean, median, skewness coefficients, number of outliers
- and graphics:
 - Histograms, Q-Q Plots, Boxplots
- To check for data conformity to assumptions
 - e.g., conformity to normal distribution
- To check for data anomalies (e.g., outliers)
 - that might affect statistics

Distributions and the Assumptions of Statistical Inference

- Data distribution should match assumptions of statistical inference
- Otherwise validity of interpretation of results is affected
- We are mostly interested with assumptions of normally distributed data
- Therefore skewed distributions violate the normal distribution assumptions

Symmetrical Distribution

- One type of a normal distribution
- Most frequent values are around the mid-point of the range of values in the data set.
- Have similar sized right and left tails.
- The distribution of interest for our assumptions of statistical inference.
 - Because it gives efficient/precise estimates of the mean and variances

Histogram of a Symmetrical Distribution

Symmetrical

Zn concentration / ug dL⁻¹

Q-Q Plots

- A plot of the ordered values of a data set against the equivalent quantiles of a standard version of a specified distribution.
- Used to assess if the sample data came from some theoretical distribution (e.g., Normal distribution).
- The plot is expected to lie on straight line when assessing for normal distribution, and the sample data are from a normal random variable.

Q-Q Plot of a Symmetrical Distribution

Normal Q-Q Plot

Theoretical Quantiles

Skewed distributions

- Positive (Right) or negative (left) skewdness:
 - Positive: Most frequent values found below the mid-point, with an upper tail of large values:
 - **Negative**: Most frequent values found above the mid-point, with a lower tail of small values

Histogram of Right Skewed Distribution

Skewed right

Zn concentration / ug dL⁻¹

Histogram of Left Skewed Distribution

Skewed left 200 Frequency 10 30 50 70 Zn concentration / ug dL⁻¹

Importance of Skewed Distributions

- Skewed distributions give inefficient estimates of the mean and variances
 - Inefficient estimates have large errors
 - Hence, less precise estimates
- Skewness affects validity of inferences
 - e.g., comparison of 2018 and 2019 annual household incomes in the next slide

Of Skewed Distributions and Validity of Inferences

Importance of Skewed Distributions

2018	2019
6000	5000
6500	6000
7000	6500
7500	7000
8000	7500
8500	8200
9000	23100
9500	30000
10100	40000
8011	14811

Importance of Skewed Distributions

- Although the mean increased in 2019, households became poorer
- The mean is generally strongly affected by a few wealthier households
- Hence, the mean can mislead when data are skewed.

The Pearson coefficient

- Coefficient depends on the mean cube of the difference for the data from the mean
- Hence, is very susceptible to outliers
- When coefficients are outside range [-1, 1]:
 - The validity of inference is affected
 - Positive coefficient means right-skewed distribution
 - Negative coefficient means left-skewed distribution
 - Investigate outliers, or transform distribution

The Octile coefficient

- Based on whether the octiles are symmetrical about the median
- Hence, immune to effects of outliers compared to Pearson's
- When coefficients are outside the range [-0.2, 0.2]:
 - The validity of inference is affected
 - Transform the distribution if possible

Location of the values: the mean and median

- Data for variables (e.g., serum zinc for WRA) vary
- This variation gives data distributions
- We summarize data distributions by the mean, median and mode

The Mean

- A typical/representative value of a data distribution
- The central tendency in a data distribution
- A simple arithmetic average of a sample:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

- e.g., $(61 + 62 + 63 + 64 + 65) \div 5 = 63g/dL$
- The most widely used statistic
- However, a non-robust statistic
- Because it is easily influenced by single value changes in a data set
- E.g., (61 + 62 + 63 + 64 + **90**) ÷ 5 = 68

The Median

- A value at the middle of a numerically ordered data set
 - e.g, 61, 62, **63**, 64, 65
- Or the average value of two middle values in a numerically ordered data set
 - e.g., 61, **62**, **63**, 64 : (62 + 63)/2 = 62.5
- Half data set values are less than the median, the other half larger
- A rough estimate of the centre of a distribution

The Median

- Robust statistic
- Because it is not easily influenced by single value changes
- e.g., (61, 62, **63**, 64, 65) to this (61, 62, **63**, 64, **90**)
- Although the last value changed from 65 to 90, the median remained 63

Describing distributions by the relative positions of the mean and median

The mean is larger than median - right skewed

The mean is smaller than median - left skewed

Is About Outliers

- The Untypical values in datasets that may or may not be erroneous
- The Extreme observations lying an abnormal distance from other values
 - Very large values e.g., 21, 23, 20, 22, 25, 45
 - Very small values e.g., 9, 21, 23, 20, 22, 25, 23

Importance Of Outliers

- They may induce skewness in data distributions
- The mean and standard deviation highly sensitive to outliers
 - e.g., 21, 23, 20, 22, 25, 23 Mean: 22.3, Stdev: 1.8
 - e.g., 21, 23, 20, 22, 25, **45**,: Mean: **26**, Stdev: **9.5**.
 - Hence, can unduly influence statistics calculated.
 - Which leads to incorrect inferences about data

Tukey Criterion

- Outliers are values beyond 1.5 or 3 times the interquartile range
- The Interquartile Range/Hspread (HS):
 - A measure of the variability of a variable in a data set
 - Defined as the absolute difference between Quartile 3 (75th percentile) and Quartile 1 (25th percentile).
- For MAPS, outliers are values beyond 3 times the interquartile range

Boxplot, Interquartile Range, and Outliers

Types and Origin

- Impossible data: e.g., negative Zinc values due to:
 - Erroneous data entry
 - Erroneous sample analyses
 - Unusual data values, e.g., large values above outer fence due to:
 - Contamination
 - Soils with high nutrient content
 - True genetic values

Dealing With Outliers

- Impossible data values
 - Edit erroneous data entries
 - Re-analyse erroneously analysed samples if spares are available
 - Unsual data values
 - Use robust estimators
 - Remove outliers (some purposes)
 - Retain outliers (other purposes)

Based on Residuals, not Raw Data

- Transformations are carried out when skewness coefficients are outside the range
- Investigate skewness on distribution of residual, not raw data.
- If you base on raw data distributions:
 - you are on the highway to wrong conclusions
 - because complexities in raw data (e.g., subpopulations) may lead to skewed distributions.

Based on Residuals, not Raw Data

- Data complexities may be due to:
 - Differences in the **means** of subpopulations
 - e.g., rural and urban sub-populations
- Raw data: original observed values
- Residuals: the difference between the observed value and the fitted value (e.g., a subgroup mean) from some proposed conceptual model is for data.

Based on Residuals, not Raw Data

- Fit the proposed model first.
- Then investigate residuals for skewness
 - Investigate outliers, or transform distribution when the Pearson coefficient is outside the range [-1,1]
 - Transform distribution when the octile coefficient is outside the range [-0.2, 0.2]

- Two methods, Log and BoxCox.
- Method of choice depends on the type and skewness severity
- Or the outcomes of transformation
 - Better method gives the smallest coefficient of skewness
- Log method:
 - Cannot be used with negative types of skewness
 - May not be adequate with severely skewed distributions
- The BoxCox method
 - For severely skewed distributions
 - For **both** negative and positive skewed distributions

