Отчёт по лабораторной работе №5

Простейший вариант

Гиршфельд Александр Евгеньевич

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	10
Список литературы		11

Список иллюстраций

2.1	создание файла	6
	написание кода	7
	трансляция	7
	создание исполняемого файла	7
2.5	создание другого исполняемого файла	8
2.6	запуск исполняемого файла	8
2.7	копируем файл	8
	создание объектного файла компеляция и проверка работы	8
2.9	загрузил файлы на github	9

Список таблиц

1 Цель работы

Освоение сборки программ, написанных на NASM

2 Выполнение лабораторной работы

Откроем нужную папку, создадим файл и откроем его в gedit (рис. [2.1])

Рис. 2.1: создание файла

Запишем код на языке NASM в файл с помощью gedit (рис. [2.2])

```
*hello.asm
            \oplus
Открыть 🔻
1; hello.asm
2 SECTION .data ; Начало секции данных
3 hello: DB 'Hello world!',10 ; 'Hello world!' плюс
4 ; символ перевода строки
5 helloLen: EQU $-hello ; Длина строки hello
6 SECTION .text ; Начало секции кода
7 GLOBAL _start
8 _start: ; Точка входа в программу
9 mov eax,4 ; Системный вызов для записи (sys_write)
10 mov ebx,1 ; Описатель файла '1' - стандартный вывод
11 mov ecx,hello ; Адрес строки hello в есх
12 mov edx, helloLen ; Размер строки hello
13 int 80h ; Вызов ядра
14 mov eax,1 ; Системный вызов для выхода (sys_exit)
15 mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
16 int 80h ; Вызов ядра
```

Рис. 2.2: написание кода

Протранслируем файл hello.asm и получим объектный файл hello.o (рис. [2.3])

```
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $ nasm -f elf hello.asm
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $ []
```

Рис. 2.3: трансляция

Далее мы получаем объектный файл obj.o (он будет в формате elf) и файл листинга list.lst. Затем скомпилируем наш исполняемый файл hello (рис. [2.4])

```
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $ nasm -f elf hello.asm
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $ nasm -o obj.o -f elf -g -l list.lst hello.asm
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $ []
```

Рис. 2.4: создание исполняемого файла

Тут мы создаем исполняемый файл main из объектного файла obj.o. Делать этот файл будет то же, что и файл hello.(рис. [2.5])

```
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $ ld -m elf_i386 hello.o -o hello
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $ ld -m elf_i386 obj.o -o main
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $
```

Рис. 2.5: создание другого исполняемого файла

Запустим файл hello (рис. [2.6])

```
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $ ./hello
Hello world!
aegirshfeljd@dk8n77 -/work/arch-pc/lab04 $ ...
```

Рис. 2.6: запуск исполняемого файла

задания для сомостоятельной работы скопируем файл hello.asm как lab4 (рис. [2.7])

Рис. 2.7: копируем файл

я открыл файл внес изменения и создал объектный файл и затем скомпилировал в конце получилось то что хотели (рис. [2.8])

```
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $ gedit lab4.asm
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $ nasm -f elf hello.asm
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $ nasm -f elf lab4.asm
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $ ld -m elf_i386 lab4.o -o lab4
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $ ./lab4
Гирифельд Александр
aegirshfeljd@dk8n77 ~/work/arch-pc/lab04 $
```

Рис. 2.8: создание объектного файла компеляция и проверка работы

загрузил файлы на github (рис. [2.9])

```
aegirshfeljdBkdkn77 -/work/arch-pc/lab84 $ cd
aegirshfeljdBkdkn77 -/work/arch-pc/lab84 $ cd
aegirshfeljdBkdkn77 -/work/study/3203-22024/Архитектура конпьютера/arch-pc/labs/lab84 $ git commit -am 'feat(main): add files lab-4'
[Emster $907b55] Feat(main): add files lab-4'
5 files changed, 34 insertions(+), 103 deletions(-)
delete mode 100644 labs/lab83/report/report.doc
delete mode 100644 labs/lab83/report/report.doc
delete mode 100644 labs/lab83/report/report.dof
create mode 100644 labs/lab83/report/report.dof
create mode 100644 labs/lab84/lab4, asm
aegirshfeljdBkdkn77 -/work/study/3203-2024/Apxитектура конпьютера/arch-pc/labs/lab84 $ git push
flepeumCneum obekertos: 108K (13/13), roroso.
flogcuer obekertos: 108K (13/13), roroso.
flogcuer obekertos: 108K (13/3), roroso.
Samtus obekertos: 108K (38/3), roloso.
Samtus obekertos: 108K (38/3), roloso.
Becro 8 (изменений использовано 0 (изменений 0), повторно использовано пакетов 0
remote: Resolving deltas: 108K (44/4), completed with 3 local objects.
To github.com:aegirsh/study_2023-2024/Apxитектура конпьютера/arch-pc/labs/lab84 $ ¶
1b3669.390755s master -> master
aegirshfeljdBdk8n77 -/work/study/2023-2024/Apxитектура конпьютера/arch-pc/labs/lab84 $ ¶
```

Рис. 2.9: загрузил файлы на github

3 Выводы

были получены навыки по сборке кода, написанного с помощью NASM, в исполняющий файл

Список литературы