at everyone

1 | Complete the Representation

Function	First four terms	Generalized
$\frac{1}{1-2x}$	$1 + 2x + 4x^2 + 8x^3 + \cdots$	$\sum_{k=0} 2^k x^k$
$\cos(3x)$	$1 - \frac{9x^2}{2!} + \frac{81x^4}{4!} - \frac{729x^6}{6!} + \cdots$	$\sum_{k=0}^{\infty} \frac{(-1)^k (3x)^{2k}}{2k!}$
$\frac{e^x}{e^2}$	$\frac{1}{e^2} + \frac{x}{e^2} + \frac{x^2}{e^2 2!} + \cdots$	$\sum_{k=0} \frac{x^k}{e^2 k!}$
$\sin(x^2)$	$x^2 - \frac{x^6}{3!} + \frac{x^10}{5!} + \frac{x^14}{7!} + \cdots$	$\sum_{k=0} \frac{(-1)^k x^{2^{2k+1}}}{(2k+1)!}$
$\frac{1}{1+x^4}$	$1 - x^4 + x^8 - x^16 + \cdots$	$\sum_{k=0} (-x^4)^k$
e^{x-1}	$1 + \frac{(x-1)^2}{2!} + \frac{(x-1)^4}{4!} + \frac{(x-1)^6}{6!} + \cdots$	$\sum_{k=0} \frac{(x-1)^{2k}}{k!}$
$\frac{\cos(x)-1}{x^2}$	$-\frac{1}{2!} + \frac{x^2}{4!} - \frac{x^4}{6!} + \cdots$	$\sum_{k=1} \frac{(-1)^k x^{2(k-1)}}{(2k)!}$
$2x\ln(1+2x)$	$(2x)(2x) - \frac{(2x)(2x)^2}{2} + \frac{(2x)(2x)^3}{3} - \frac{(2x)(2x)^4}{4} + \cdots$	$\sum_{k=1}^{\infty} \frac{2x(-1)^{k-1}(2x)^k}{k}$
$\frac{x}{1+x^2}$	$2x - 2x^3 + 2x^5 - 2x^7 + \cdots$	$\sum_{k=0} 2x(-1)^k x^{2k}$

2 | page 3

2.1 | a: skipped

2.2 | find maclaurin series for f'(x) where $f(x) = \sum_{k=0} \frac{(2x)^{k+1}}{k+1}$

$$\frac{d}{dx}\frac{(2x)^{n+1}}{n+1} = \frac{(n+1)^2(2x)^n(2)}{(n+1)^2} = 2(2x)^n$$

So, our series is just

$$\sum_{k=0}^{\infty} 2(2x)^k = 2 + 4x + 8x^2 + 16x^3 + \cdots$$

2.3 | estimate $f'\left(-\frac{1}{3}\right)$

$$2 + 4\frac{-1}{3} + 8\left(\frac{-1}{3}\right)^2 + 16\left(\frac{-1}{3}\right)^2 = \frac{10}{3}$$

3 | page 4

3.1 | find
$$1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$

That series is just the taylor series for

$$f(x) = \frac{\sin x}{x}$$

So the derivative at zero is zero, and the second derivative:

$$\frac{d}{dx}\frac{x\cos x - \sin x}{x^2} = \frac{x^2\left(-x\sin x + \cos x - \cos x\right) - \left(x\cos x - \sin x\right)\left(2x\right)}{x^4}$$
$$= \frac{-x^3\sin x - 2x\left(x\cos x - \sin x\right)}{x^4}$$

is undefined at zero. However, the top of the fraction will be negative ($x^3 \sin x$ is even and $x \cos x - \sin x = x(\cos x - \frac{\sin x}{x})$, so the second derivative is zero at x. (Checked with desmos). Thus, the function has a local maximum at x=0.

3.2 | show approximation at x=1 is within $\epsilon < \frac{1}{100}$ with $1-\frac{1}{3!}$

Exr0n · 2020-2021 Page 2 of 2