Back-Propagation-Auto-Diff

Harpreet Singh (Fall 2023)



# Notation — input/output



 $w_{jk}^{l}$  is the weight from  $k^{th}$  neuron in  $(l-1)^{th}$  layer to  $j^{th}$  neuron in  $l^{th}$  layer

Total Input to neuron =  $z_1^2 = w_{11}^2 a_1^1 + w_{12}^2 a_2^1 + b_1^2$ Output from neuron =  $a_1^2 = \sigma(z_1^2)$ 

# Notation input/output



 $w_{jk}^{l}$  is the weight from  $k^{th}$  neuron in  $(l-1)^{th}$  layer to  $j^{th}$  neuron in  $l^{th}$  layer

Total Input to neuron = 
$$z_j^l = \sum_k w_{jk}^l a_k^{l-1} + b_j^l$$

Matrix Notation 
$$z_j^l \equiv w^l a^{l-1} + b_j^l$$



Output from neuron=  $a_i^l = \sigma(z_i^l)$ 

Matrix Notation  $a^l = \sigma(z^l)$ 

#### Notation-Cost



For MSE (mean Squared Error)

$$C = rac{1}{2} \|y - a^L\|^2 = rac{1}{2} \sum_j (y_j - a_j^L)^2$$

For n observations

$$C = rac{1}{2n} \sum_x \|y(x) - a^L(x)\|^2,$$

# Calculations – Last layer (Output Layer)

Objective : 
$$\frac{\partial C}{\partial w_{ik}^L}$$
,  $\frac{\partial C}{\partial b_i^L}$ 

For illustration we will use following :  $\frac{\partial C}{\partial w_{11}^4}, \frac{\partial C}{\partial b_1^4}$ 



error

Derivative of activation function

### Calculations – Last layer (Output Layer)

Objective :  $\frac{\partial C}{\partial w_{ik}^L}$  ,  $\frac{\partial C}{\partial b_i^L}$ 

Layer 4  $a_1^3 \qquad w_{11}^4 \qquad a_1^4 \qquad Cost C$   $a_2^3 \qquad a_2^4 \qquad Cost C$ 

For illustration we will use following :  $\frac{\partial C}{\partial w_{11}^4}$ ,  $\frac{\partial C}{\partial b_1^4}$ 

$$z_1^4 = w_{11}^4 a_1^3 + w_{12}^4 a_2^3 + b_1^4$$

$$\frac{\partial C}{\partial w_{11}^4} = \frac{\partial C}{\partial a_1^4} \frac{\partial a_1^4}{\partial z_1^4} \frac{\partial z_1^4}{\partial w_{11}^4} = \left(a_1^4 - y_1\right) \sigma'(z_1^4) a_1^3$$

$$\frac{\partial C}{\partial w_{11}^4} = \frac{\partial C}{\partial z_1^4} \frac{\partial z_1^4}{\partial w_{11}^4} = \left(a_1^4 - y_1\right) \sigma'(z_1^4) a_1^3$$

$$\frac{\partial C}{\partial w_{11}^4} = \delta_1^4 a_1^3 \text{ , where } \delta_1^4 = \frac{\partial C}{\partial z_1^4} = \frac{\partial C}{\partial a_1^4} \frac{\partial a_1^4}{\partial z_1^4}$$

$$\frac{\partial C}{\partial w_{jk}^4} = \delta_j^L a_k^{L-1}$$
, where  $\delta_j^L = \frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_1^4} \sigma'(z_1^4)$ 

### Calculations – Last layer (Output Layer)

Objective :

$$\frac{\partial C}{\partial w_{jk}^L}$$
,  $\frac{\partial C}{\partial b_j^L}$ 

For illustration we will use following :

$$\frac{\partial C}{\partial w_{11}^4}$$
,  $\frac{\partial C}{\partial b_1^4}$ 

Layer 4

$$z_1^4 = w_{11}^4 a_1^3 + w_{12}^4 a_2^3 + b_1^4$$



Cost C 
$$\frac{\partial C}{\partial b_1^4} = \frac{\partial C}{\partial a_1^4} \frac{\partial a_1^4}{\partial z_1^4} \frac{\partial z_1^4}{\partial b_1^4} = \delta_1^4 * \frac{\partial z_1^4}{\partial b_1^4} = \delta_1^4$$

**Summary:** 

$$\frac{\partial \mathcal{C}}{\partial w_{jk}^L} = \boldsymbol{\delta_j^L} \boldsymbol{a_k^{L-1}} \;, \quad \frac{\partial \mathcal{C}}{\partial b_l^L} = \boldsymbol{\delta_j^L} \quad \text{, where } \boldsymbol{\delta_j^L} = \frac{\partial \mathcal{C}}{\partial \mathbf{z_j^L}} = \frac{\partial \mathcal{C}}{\partial a_j^L} \; \boldsymbol{\sigma}' \left( \mathbf{z_j^L} \right)$$

|                         | This Example                              | Linear Regression | Logistic Regression |
|-------------------------|-------------------------------------------|-------------------|---------------------|
| $oldsymbol{\delta_j^L}$ | Error * derivative of activation function | Error             | Error               |

Objective : 
$$\frac{\partial C}{\partial w_{jk}^l}$$
 ,  $\frac{\partial C}{\partial b_j^l}$ 

$$\frac{\partial C}{\partial w_{21}^3}\,, \frac{\partial C}{\partial b_2^3}$$



$$\frac{\partial C}{\partial w_{21}^{3}} = \frac{\partial C}{\partial a_{1}^{4}} \frac{\partial a_{1}^{4}}{\partial z_{1}^{4}} \frac{\partial z_{1}^{4}}{\partial a_{2}^{3}} \frac{\partial a_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial w_{21}^{3}} + \frac{\partial C}{\partial a_{2}^{4}} \frac{\partial a_{1}^{4}}{\partial z_{2}^{4}} \frac{\partial a_{2}^{4}}{\partial a_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial w_{21}^{3}} + \frac{\partial C}{\partial a_{2}^{4}} \frac{\partial a_{2}^{4}}{\partial z_{2}^{4}} \frac{\partial a_{2}^{3}}{\partial a_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial w_{21}^{3}} + \frac{\partial C}{\partial a_{2}^{4}} \frac{\partial a_{2}^{4}}{\partial z_{2}^{4}} \frac{\partial a_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial w_{21}^{3}} + \frac{\partial C}{\partial a_{2}^{4}} \frac{\partial a_{2}^{4}}{\partial z_{2}^{4}} \frac{\partial a_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial z_{2}^{3}} + \frac{\partial C}{\partial a_{2}^{4}} \frac{\partial a_{2}^{4}}{\partial z_{2}^{4}} \frac{\partial a_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^{3}}{\partial z_{2}^{3}} \frac{\partial z_{2}^$$



$$\frac{\partial C}{\partial w_{21}^3} = \left(\delta_1^4 \frac{\partial z_1^4}{\partial a_2^3} + \delta_2^4 \frac{\partial z_2^4}{\partial a_2^3}\right) \frac{\partial a_2^3}{\partial z_2^3} \frac{\partial z_2^3}{\partial w_{21}^3}$$

Objective:

$$\frac{\partial C}{\partial w_{jk}^l}$$
 ,  $\frac{\partial C}{\partial b_j^l}$ 

$$\frac{\partial C}{\partial w_{21}^3}$$
,  $\frac{\partial C}{\partial b_2^3}$ 



$$\frac{\partial C}{\partial w_{21}^3} = \left(\delta_1^4 \frac{\partial z_1^4}{\partial a_2^3} + \delta_2^4 \frac{\partial z_2^4}{\partial a_2^3}\right) \frac{\partial a_2^3}{\partial z_2^3} \frac{\partial z_2^3}{\partial w_{21}^3}$$

$$= \left(\delta_1^4 w_{12}^4 + \delta_2^4 w_{22}^4\right) \frac{\partial a_2^3}{\partial z_2^3} \frac{\partial z_2^3}{\partial w_{21}^3}$$

Objective:

$$\frac{\partial C}{\partial w_{jk}^l} , \frac{\partial C}{\partial b_j^l}$$

$$\frac{\partial C}{\partial w_{21}^3}$$
,  $\frac{\partial C}{\partial b_2^3}$ 

$$z_1^4 = w_{11}^4 a_1^3 + w_{12}^4 a_2^3 + b_1^4$$
$$\frac{\partial z_1^4}{\partial a_2^3} = w_{12}^4$$

$$z_{2}^{4} = w_{21}^{4} a_{1}^{3} + w_{22}^{4} a_{2}^{3} + b_{2}^{4}$$
$$\frac{\partial z_{2}^{4}}{\partial a_{2}^{3}} = w_{22}^{4}$$



$$\frac{\partial C}{\partial w^l_{jk}} \; , \frac{\partial C}{\partial b^l_j}$$

$$\frac{\partial C}{\partial w_{21}^3}$$
,  $\frac{\partial C}{\partial b_2^3}$ 

$$\frac{\partial c}{\partial w_{21}^3} = \left(\delta_1^4 w_{12}^4 + \delta_2^4 w_{22}^4\right) \frac{\partial a_2^3}{\partial z_2^3} \frac{\partial z_2^3}{\partial w_{21}^3}$$

$$= \left(\delta_1^4 w_{12}^4 + \delta_2^4 w_{22}^4\right) \sigma'(z_2^3) \frac{\partial z_2^3}{\partial w_{21}^3}$$

$$a_2^3 = \sigma(z_2^3)$$

$$\frac{\partial a_2^3}{\partial z_2^3} = \sigma'(z_2^3)$$



$$\frac{\partial C}{\partial w_{21}^3} = \left(\delta_1^4 w_{12}^4 + \delta_2^4 w_{22}^4\right) \sigma'(z_2^3) \frac{\partial z_2^3}{\partial w_{21}^3}$$
$$\frac{\partial c}{\partial z_2^3} = \delta_2^3$$

Objective:

$$rac{\partial C}{\partial w^l_{jk}}$$
 ,  $rac{\partial C}{\partial b^l_j}$ 

$$\frac{\partial C}{\partial w_{21}^3}$$
,  $\frac{\partial C}{\partial b_2^3}$ 

$$z_{2}^{3} = w_{21}^{3} a_{1}^{2} + w_{22}^{3} a_{2}^{2} + b_{2}^{3}$$
$$\frac{\partial z_{2}^{3}}{\partial w_{21}^{3}} = a_{1}^{2}$$



Objective:

For illustration we will use following:

$$\frac{\partial C}{\partial w^l_{jk}}\;, \frac{\partial C}{\partial b^l_j}$$

$$\frac{\partial C}{\partial w_{21}^3}$$
,  $\frac{\partial C}{\partial b_2^3}$ 

$$\frac{\partial C}{\partial w_{21}^3} = \left(\delta_1^4 w_{12}^4 + \delta_2^4 w_{22}^4\right) \sigma'(z_2^3) \frac{\partial z_2^3}{\partial w_{21}^3}$$

$$\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l).$$

$$\frac{\partial c}{\partial z_2^3} = \delta_2^3$$

= weighted sum of deltas from previous layer \* derivative of activation function



$$\frac{\partial C}{\partial w_{21}^3} = \delta_2^3 \frac{\partial z_2^3}{\partial w_{21}^3} = \delta_2^3 a_1^2, \quad \frac{\partial C}{\partial b_2^3} = \delta_2^3 \frac{\partial z_2^3}{\partial b_2^3} = \delta_2^3$$

$$rac{\partial \mathcal{C}}{\partial w_{jk}^l} = oldsymbol{\delta}_j^l oldsymbol{a}_k^{l-1}$$
 ,  $rac{\partial \mathcal{C}}{\partial b_j^l} = oldsymbol{\delta}_j^L$ 

Objective:

$$\frac{\partial C}{\partial w_{jk}^l}$$
,  $\frac{\partial C}{\partial b_j^l}$ 

$$\frac{\partial C}{\partial w_{21}^3}$$
,  $\frac{\partial C}{\partial b_2^3}$ 

$$z_2^3 = w_{21}^3 a_1^2 + w_{22}^3 a_2^2 + b_2^3$$

$$\frac{\partial z_2^3}{\partial w_{21}^3} = a_1^2 \qquad \frac{\partial z_2^3}{\partial b_2^3} = 1$$

#### Gradient Update Rule

$$rac{\partial \mathit{C}}{\partial w_{jk}^{l}} = \delta_{j}^{l} a_{k}^{l-1}$$
 ,  $rac{\partial \mathit{C}}{\partial b_{j}^{l}} = \delta_{j}^{L}$ 

$$rac{\partial C}{\partial w} = a_{
m in} \delta_{
m out},$$



Delta 
$$\delta_j^l \equiv \frac{\partial C}{\partial z_j^l}$$

Hidden Layer 
$$\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l)$$
 .

= weighted sum of deltas from previous layer

\* derivative of activation function

Output Layer 
$$\delta_j^L = rac{\partial \mathcal{C}}{\partial a_j^L} \, \sigma' \left( z_j^L 
ight)$$

|              | This Example                              | Linear Regression | Logistic Regression |
|--------------|-------------------------------------------|-------------------|---------------------|
| $\delta_j^L$ | Error * derivative of activation function | Error             | Error               |

#### Simple Neural Network



Implement One pass of forward Implement backward pass the update the circled values

Use sigmoid activation function for both hidden layer and output layer

Correct Output = t = 1.0

**Useful Formulae:** 

$$y = sigmoid(x) = 1/(1 + e^{-x})$$

$$\frac{\partial y}{\partial x} = \frac{\partial sigmoid(x)}{\partial y}$$

$$= sigmoid(x)(1 - sigmoid(x))$$

$$= y(1-y)$$