2019년도 한국멀티미디어학회 춘계 학술 발표대회

360도 VR 영상의 사용자 시점 팔로잉 자막 구현

김형균*, 박서연**, 이소은***, 남혜영***,고혜영***

*서울여자대학교 SW교육혁신센터

**서울여자대학교 소프트웨어융합학과

***서울여자대학교 디지털미디어학과

e-mail: multikim@swu.ac.kr

Hyeong-Gyun Kim*, Seo-Yeon Park**, So-Eun Lee***, Hye-Yeong Nam***. Hye-Yeong Go***

*Dept of SW Education Innovation Center, Seoul Women's University

**Dept of Software Convergence, Seoul Women's University

***Dept of Digital Media & Applications, Seoul Women's University

02

03

04

가상현실의 발전

시 · 공간을 초월하여 영상 정보 습득 가능

본 연구는 이러한 현실에서 사용자가 영상에 대한 정보를 자막을 통해 효과적으로 얻을 수 있도록 360도 VR 영상에서 사용자 시점에 따라 이동하는 자막을 구현하였다.

02

03

04

영상의 한 곳에 고정해서 삽입하는 것만 가능하므로 사용자 시점의 변화에 따라 자막이 흘러가는 현상이 발생 즉, VR영상 을 보고있는 사용자의 시점이 자막에 있지 않으면 자막을 통해 정보 습득 불가

사용자가 바라보는 곳에 상관없이 정보 전달이 가능 하려면

문제점을 해결하기 위해 360도 VR영상에서 사용자의 시점에 따라 움직이는 자막을 생성하는 시스템(SFUPS: Subtitle Following to User's Point of view System)을 설계

02

03

04

SFUPS를 구현하기 위한 알고리즘 생성

구현에 사용한 소프트웨어는 Unity 2018.3.11이고, 운영체제는 windows 10이다. 테스트를 위해 사용한 영상소스는 CyberLink PowerDirector 17에서 무료 로 제공하는 360도 vr영상 샘플 소스이다.

그림 2. SFUPS 흐름도

주요 클래스

02

03

04

그림 3. ChangeNormal 클래스의 흐름도

sphere객체를 밖에서 바라보고 있던 사용자의 시점을 sphere 안에서 밖을 바라보는 형태로 바꿀 수 있다.

- 1. 정점과 여러 삼각면을 가지는 mesh를 생성 filter(sphere의 MeshFilter)의mesh 속성을 생성된 mesh에 할당
- 2. 생성된 mesh의 normals를 변경하기 위해 mesh에서 normals를 복사하여 받아온 후 for문을 통해 normals를 변경하여 생성된 mesh의 normals에 재할당
- 3. 생성된 mesh 내부의 subMesh의 triangle 배열을 변경
- 4. 변경된 triangle배열을 생성된 mesh 내부의 subMesh에 삽입

주요 클래스 $\bigcirc 1$ angles생성 02 03 Input 값으로 angles 수정 [ClamAngle로 angle범위 지정] 04 positon 수정 [distance값 클림트 및 raycast사용] 카메라 각도 및 위치 재설정 [transform.rotation, transform.positon] 그림 4. SightOrbitproved 클래스의 흐름도 시점에 따라 자막이 이동할 수 있는 환경 설정

- 1. Vector3 angles를 생성하고 Sight Orbitproved 클래스가 부여될 객체의 Euler 각도 값을 삽입
- 2. input을 통해 회전 값을 받아온다. Y축 값을 지정된 범위 내에 들어가도록 clamp Angle()함수를 사용
- 3. position을 수정한다. distance의 값이 최소/최대 범위 내의 값만 가지도록 설정
- 4. SightOrbitproved 클래스가 부여될 객체의rotation 과 position의 값을 지정하여 카메라의 해당
 SightOrbitproved 클래스를 부여한다. 이를 통해 360도 VR영상을 보는 사용자의 시점에 따라 카메라의 시점이 이동 가능

02

03

04

그림 5. 일반 자막과 3D Text자막 비교

실제 화면

점선으로 표시된 일반 자막은 사용자의 시점에 따라 움직이지 않음 반면, 긴 파선 점선으로 표시된 3D Text는 사용자의 시점에 따라 움직임

	결론
01	
02	본 논문에서는 360도 VR 영상에서 사용자 시점을 팔로잉하는 자막 을 구현하였다
03	
04	기존의 360도 영상 자막들은 한 곳에 고정되어 사용자가 자막을 통해 영상에 대한 정보를 지속적으로 전달 받기 어렵다는 문제점을 해결하기 위해
	가이게기 게 크ె 등에 이용에 내린 정 프로 제국 그프로 만든 단기 어디어 는 문제답을 예술에게 위해

자막이 사용자의 시점에 따라서 움직여 사용자가 **영상 내의 어느 곳을 바라보아도 지속적으로 정보를 얻을 수 있도록** 설계하였다.

출처

01	[1]https://docs.unity3d.com/kr/530/ScriptReference/Mesh.html
	[2]https://docs.unity3d.com/kr/530/ScriptReference/Transform-eulerAngles.html
02	[3]https://docs.unity3d.com/kr/530/ScriptReference/Mathf.Clamp.html
03	
04	