Logika (MSc)

Rezolúciós elv II.

Tartalom

Elsőrendű rezolúciós kalkulus - előkészítő fogalmak

Prenex formula, Skolem normálforma, elsőrendű klóz

Eldönthető formulaosztályok keresése elsőrendű logikában.

Prenex formula

Legyen Q tetszőleges kvantor, a $Q_1x_1\,Q_2x_2\dots Q_nx_nB$ formula. $Q_1x_1\,Q_2x_2\dots Q_nx_n$ prefixum, a formula magja, törzse B, kvantormentes formula.

Skolem formula

Skolem formula a $\forall x_1, \forall x_2, \dots, \forall x_n A$ formula, ahol a prefixumban csak univerzális kvantorok szerepelnek. Ez eldönthető formulaosztály.

Elsőrendű klóz

Olyan zárt Skolem formula, aminek a magja az elsőrendű nyelv literáljainak diszjunkciója.

PI. $\forall x \forall y (P(x) \lor \neg Q(x, f(y))).$

Az ítéletlogikai klózhalmaz (KNF) elsőrendű megfelelője-elsőrendű klózhalmaz (elsőrendű klózok konjunkciója) lehetne.

A feladat tetszőleges elsőrendű formula átírása elsőrendű klózok konjunkciós formulájává. Az eldöntésprobléma elsőrendű klózhalmaz kielégíthetetlenségének eldöntése.

Ha egy univerzális formulát kifejtünk egy U univerzum felett, akkor a mag alappéldányainak konjunkciója lesz U-ekvivalens az eredeti formulával.

Ha elsőrendű klózok halmazával tesszük ugyanezt, akkor alapklózok hamazát kapjuk. A kifejtett klózhalmaz kielégíthetetlensége a kapott $\,U\,$ feletti alapklózok halmazának kielégíthetetlenségével ekvivalens.

Az alapklózokra a rezolúciós kalkulust ugyanúgy definiálhatjuk mint az ítéletlogikában – alaprezolúció (Tk.251-254.o.). Alaprezolúcióval bármely adott U univerzumon való kielégíthetetlenség eldönthető.

Formula felírása elsőrendű klózok konjunkciójaként

Hogyan lehet előállítani a vizsgálandó formulát elsőrendű klózok konjunkciójaként?

- 1 Tetszőleges formula átírható prenex alakba.
- 2 Tetszőleges prenex formula átírható Skolem alakba.
- Tetszőleges Skolem normálforma felírható elsőrendű klózok konjunkciójaként.

(1) Tetszőleges formula átírható prenex alakba

Az átalakításhoz szükséges átalakítási szabályok.

- (2) $\exists x A[x] \land B \sim \exists x (A[x] \land B)$ $\exists x A[x] \lor B \sim \exists x (A[x] \lor B)$
- (3) $\forall x A[x] \land \forall x B[x] \sim \forall x (A[x] \land B[x])$, de \lor -re nem
- (4) $\exists x A[x] \lor \exists x B[x] \sim \exists x (A[x] \lor B[x])$, de \land -re nem
- (5) $Q_1xA[x] \wedge Q_2xB[x] \sim Q_1xQ_2z(A[x] \wedge B[x/z])$
- (6) $Q_1 x A[x] \vee Q_2 x B[x] \sim Q_1 x Q_2 z (A[x] \vee B[x/z])$

A prenex formába való átírás algoritmusa

- A logikai összekötőjelek átírása ¬, ∧, ∨-ra.
- A De Morgan szabályok alkalmazása addig amíg a ¬ hatásköre atomi formula nem lesz.
- A kvantorkiemelési szabályok alkalmazása addig amíg minden kvantor a formula elejére nem kerül (a formula törzse kvantormentes formula).

Prenex fomrára való átírás - példa

$$\forall x (\forall y P(x,y) \land \exists y \neg (Q(y) \supset P(x,a))) \supset \neg \forall x \exists y (P(y,x) \supset R(x,y))$$

• 1. lépés

$$\neg(\forall x(\forall y P(x,y) \land \exists y \neg(\neg Q(y) \lor P(x,a))) \lor \neg \forall x \exists y (\neg P(y,x) \lor R(x,y))$$

2. lépés

$$\exists x \neg (\forall y P(x, y) \land \exists y \neg (\neg Q(y) \lor P(x, a))) \lor \exists x \neg \exists y (\neg P(y, x) \lor R(x, y))$$

$$\exists x (\neg \forall y P(x, y) \lor \neg \exists y \neg (\neg Q(y) \lor P(x, a))) \lor \exists x \forall y \neg (\neg P(y, x) \lor R(x, y))$$

$$\exists x (\exists y \neg P(x, y) \lor \forall y \neg \neg (\neg Q(y) \lor P(x, a))) \lor \exists x \forall y (P(y, x) \land \neg R(x, y))$$

$$\exists x (\exists y \neg P(x, y) \lor \forall y (\neg Q(y) \lor P(x, a))) \lor \exists x \forall y (P(y, x) \land \neg R(x, y))$$

Példa folyt.

3. lépés (kvantorkiemelési szabályok)

$$\exists x (\exists y \neg P(x, y) \lor \forall y (\neg Q(y) \lor P(x, a)) \lor \forall y (P(y, x) \land \neg R(x, y))).$$

 $\exists y$ kiemeléséhez először végrehajtjuk az y/y_1 helyettesítést a $\forall y$ -al kezdődő első részformulában és az y/y_2 helyettesítést a $\forall y$ -al kezdődő második részformulában.

$$\exists x (\exists y \neg P(x, y) \lor \forall y_1 (\neg Q(y_1) \lor P(x, a)) \lor \forall y_2 (P(y_2, x) \land \neg R(x, y_2)))$$

$$\exists x \exists y (\neg P(x, y) \lor \forall y_1 (\neg Q(y_1) \lor P(x, a)) \lor \forall y_2 (P(y_2, x) \land \neg R(x, y_2)))$$

Utolsó lépés:

$$\exists x \exists y \forall y_1 \forall y_2 (\neg P(x,y) \lor (\neg Q(y_1) \lor P(x,a)) \lor (P(y_2,x) \land \neg R(x,y_2)))$$

Megkaptuk a prenex formulát. A mag DNF.

Ha a prenex formula törzse KNF-ben vagy DNF-ben van, akkor a formula normálforma: prenex konjunktív / prenex diszjunktív formula.

(2) Tetszőleges prenex formula átírható Skolem formába

Tekintsük az első egzisztenciális kvantort a prefixumban, legyen ez $\exists x_j$. Ha a formula igaz egy interpretációban, akkor az $x_1, x_2, \ldots, x_{j-1}$ változók minden értékkombinációjához létezik legalább egy értéke az x_j változónak amelyre a formula értéke i. Ezt a tényt az $f(x_1, x_2, \ldots, x_{j-1}) = x_j$ (Skolem) függvénnyel fejezzük ki. Ez a függvény rendeli az x_j -hez a megfelelő értéket az $x_1, x_2, \ldots, x_{j-1}$ változók minden változókiértékelése esetén. Ezt a lépést végrehajtjuk a soronkövetkező egzisztenciális kvantorra addig amíg, minden egzisztenciális kvantort nem elimináltunk.

Példa 1.

 $\forall x \exists y P(x, y)$

Skolem alak: $\forall x P(x, f(x))$

Példa 2.

 $\exists x \exists y \forall y_1 \forall y_2 (\neg P(x,y) \lor Q(y_1) \lor P(x,a) \lor P(x,y_2) \land \neg R(x,y_2))$ x és y-hoz tartozó Skolem függvények 0 változósak (Skolem konstansok), pl. q, r. Skolem alak:

 $\forall y_1 \forall y_2 (\neg P(q,r) \vee \neg Q(y_1) \vee P(q,a) \vee P(q,y_2) \wedge \neg R(q,y_2))$

(3) Tetszőleges Skolem normálforma felírható elsőrendű klózok konjunkciójaként

A Skolem normálforma magja KNF, az elsőrendű nyelv literáljaiból felírt klózok konjunkciós lánca.

Példa

$$\forall x \forall y \forall y_1((\neg P(x,y) \lor Q(y_1)) \land (R(y,f(x) \lor P(x,a)) \land (P(x,y_1) \lor \neg R(x,y)))$$

Ezért a 3. kvantorkiemelési szabály alkalmazható. A formula elsőrendű klózok konjunkciós lánc alakja:

$$\forall x \forall y \forall y_1 (\neg P(x, y) \lor Q(y_1)) \land \forall x \forall y \forall y_1 (R(y, f(x)) \lor P(x, a)) \land \forall x \forall y \forall y_1 (P(x, y_1) \lor R(x, y))$$

(3) folyt.

Elsőrendű klózhalmaz kielégíthetetlenségének vizsgálata.

Mivel egy kvantált formula értéke nem függ a benne szereplő kötött változó értékétől, ezeket a változókat át lehet nevezni.

$$\forall x \forall y \forall y_1 (\neg P(x,y) \lor \neg Q(y_1)) \land \forall z \forall w \forall y_1 (R(w,f(z)) \lor P(z,a)) \land \\ \forall v \forall z_1 \forall y_3 (P(v,y_3) \lor \neg R(v,z_1)) \quad \text{változóidegen klózok konjunkciója.}$$

Változóidegen elsőrendű klózhalmaz kielégíthetetlenségének vizsgálata.

$$\{(\neg P(x, y) \lor \neg Q(y_1)), (R(w, f(z)) \lor P(z, a)), (P(v, y_3) \lor \neg R(v, z_1))\}$$

Kielégíthetőség és az U számossága

Ha egy formula azonosan igaz |U|=n számosságon, akkor ennél kisebb számosságon is azonosan igaz. (Tk.257.o.)

Ha egy formula kielégíthető |U|=n számosságon, akkor ennél nagyobb számosságon is kielégíthető.(Tk.258.o.)

Löwenheim-Skolem tétel Tk.258.o.

Ha egy formula kielégíthető egyáltalán, akkor kielégíthető legfeljebb megszámlálhatóan végtelen U-n.

A kielégíthetetlenségre hasonló tételek nincsenek.

Mit tudunk a kielégíthetetlenségről mondani? Van-e olyan U, hogy az U-n való kielégíthetetlenség biztosítja a kielégíthetetlenséget. Egy példán (Tk.254./6.3.45.) megmutatjuk, hogy ilyen U nem biztos, hogy létezik. De a klózhalmaz leíró nyelvének függvény és konstansszimbólumai segitségével elő lehet állítani egy szimbolikus, az ábécé által meghatározott U_H univerzumot, ami biztosítja a kielégíthetetlenséget. (Herbrand eredménye)

Példa

$$\forall x \forall y \exists z ((P(x,y) \supset \neg P(y,x)) \land (P(x,z) \lor P(z,y)))$$

Bebizonyítható, hogy a formula nem elégíthető ki kételemű univerzumon, de háromelemű univerzumon már kielégíthető.

Legyen $\mathcal{U} = \{a, b\}$. A P(a, a), P(b, b), P(a, b), P(b, a) bázishoz tartozó teljes szemantikus fát a következő ábra mutatja.

Klózhalmaz:

$$S = \{ \neg P(x, y) \lor \neg P(y, x), P(x, f(x, y)) \lor P(f(x, y), y) \}$$

Elsőrendű klózhalmaz kielégíthetetlensége I.

Egy S elsőrendű klózhalmaz kielégíthetetlen, ha minden interpretációban legalább egy klóza hamis.

Egy elsőrendű klóz hamis egy interpretációban, ha az interpretáló struktúra U univerzumán kifejtve a magból kapott alapklózok közül legalább egy hamis ebben az interpretációban.

Egy S elsőrendű klózhalmaz kielégíthetetlen U felett, ha az U-n definiálható minden struktúrában az alapklózok halmaza kielégíthetetlen. Ha az S elsőrendű klózhalmazból az adott számosságú univerzumon a kifejtéssel megkapott alapklózok halmazából alaprezolúcióval levezethető az üres klóz, akkor a klózhalmaz ezen az univerzumon kielégíthetetlen. Ha egy S kielégíthetetlen egy |U|=n számosságú univerzumon, még lehet nagyobb számosságon kielégíthető (könyv 254.o. 6.3.45. Példa).

Elsőrendű klózhalmaz kielégíthetetlensége II.

Herbrand megmutatta, hogy ha tekintjük az **elsőrendű klózhalmaz leíró nyelvének alaptermjei**ből álló hamazt a Herbrand univerzumot H-t, akkor a klózhalmaz kielégíthetetlensége H-n a klózhalmaz kielégíthetetlenséget jelenti. Minden elsőrendű nyelvhez (elsőrendű klózhalmazhoz) létezik **legfeljebb megszámlálhatóan végtelen univerzum, a Herbrand univerzum.**

Egy elsőrendű klózhalmaz kielégíthetetlen akkor és csak akkor, ha Herbrand univerzumán kielégíthetetlen.

Herbrand univerzum előállítása Tk.259.o.

Herbrand univerzum konstrukciója lépésről lépésre:

- ① $\mathcal{H}_0 = \{S\text{-ben előforduló konstansok halmaza}\}$ vagy ha a klózhalmazban nincs konstans szimbólum, akkor egy szimbolikus konstans $\{a\}$.
- 2 $\mathcal{H}_{i+1} = \mathcal{H}_i \cup F_i$, ahol F_i azon alaptermek halmaza, amelyeket \mathcal{H}_i elemeinek a klózhalmazban lévő függvényszimbólumokba való behelyettesítésével kapjuk.
- 3 $\mathcal{H}_{\infty} = \bigcup_{k \in \mathbf{N}} \mathcal{H}_k$

Példa

```
Tekintsük az S = \{P(x), \neg Q(y,z) \lor \neg P(z), Q(u,f(u)) klózhalmazt. 
 \mathcal{H}_0 = \{a\} - fiktív konstans 
 \mathcal{H}_1 = \{a,f(a)\} 
 \mathcal{H}_j = \{a,f(a),f(f(a)),\ldots,f(\ldots f(a)\ldots)\} - j-szeres iteráció 
 \mathcal{H}_\infty = \{a,f(a),f(f(a)),\ldots,f(\ldots f(a)\ldots)\}
```

Herbrand bázis, Herbrand interpretáció

Herbrand bázis: H_{∞} feletti alapatomok halmazának egy sorozata.

PI.:
$$\{P(a), Q(a, a), P(f(a)), Q(a, f(a)), Q(f(a), a), Q(f(a), f(a)), P(f(f(a))), \ldots\}$$

A helyettesítés: x/a, y/a, u/a, z/f(a)

Az alapklózhalmaz:

$$\{P(f(a)), \neg Q(a, f(a)) \lor \neg P(f(a)), Q(a, f(a))\}$$

Könnyen ellenőrizhető, hogy a bázisra épülő szemantikus fa már a negyedik szinten zárt.

Herbrand interpretáció ($\mathcal{I}_{\mathcal{H}}$): univerzuma \mathcal{H}_{∞} , konstansszimbólumokhoz önmagát rendeli, az f n-változós függvényszimbólumhoz az $f(h_1,h_2,\ldots,h_n)$ Herbrand univerzumelemet rendeli.

Az $\mathcal{I}_{\mathcal{H}}$ a bázisra épített szemantikus fa ágain jelenik meg.

Tetszőleges \mathcal{I} interpretációnak megfelelő Herbrand interpretáció

Definíció Tk.261.o.

Legyen $\mathcal I$ univerzuma U. $\langle U, Pr, Fn, Cnst \rangle$ Az $\mathcal I$ -nek megfelelő $\mathcal I_{\mathcal H}$ Herbrand interpretáció, ha $\varphi \colon \mathcal H \to U$ olyan, hogy

- ha a fiktív konstans ($Cnst = \emptyset$), akkor $\varphi(a) = az \ U$ egy tetszőleges elemével,
- ha Cnst nem üres (a_1,\ldots,a_n) , akkor $\varphi(a_i)=\mathcal{I}_{Cnst}(a_i)$,
- ha $h \in \mathcal{H}$ $f(h_1,h_2,\ldots,h_n)$ alakú, akkor $\varphi(f(h_1,h_2,\ldots,h_n))$ legyen $f^{\mathcal{I}}(\varphi(h_1),\varphi(h_2),\ldots,\varphi(h_n))$. Kiválasztjuk azt az $\mathcal{I}_{\mathcal{H}}$ -t, ahol $P(h_1,h_2,\ldots,h_n)$ alapatom pontosan akkor igaz, ha $P^{\mathcal{I}}(\varphi(h_1),\varphi(h_2),\ldots,\varphi(h_n))$ alapatom igaz \mathcal{I} -ben.

Tételek Herbrand interpretációhoz kapcsolódóan

Tétel Tk.6.3.60

Ha egy $\mathcal I$ interpretáció kielégít egy elsőrendű klózhalmazt, akkor az $\mathcal I$ -nek megfelelő $\mathcal I_{\mathcal H}$ is kielégíti. Ha S-nek van modellje, akkor van Herbrand modellje is. (Mi egy $\mathcal H$ modell?)

Tétel Tk.6.3.61

Egy elsőrendű klózhalmaz akkor és csak akkor kielégíthetetlen, ha a Herbrand univerzuma feletti egyetlen Herbrand interpretáció sem elégíti ki. Nincs Herbrand modellje.

A 6.3.61 tétel csak elsőrendű klózhalmaz esetén áll fenn. Példa:

Legyen egy nem elsőrendű klózhalmaz $S=\{P(a),\exists x\neg P(x)\}.$ S Herbrand univerzuma: $\{a\}$, Herbrand bázisa $\{P(a)\}$, Herbrand interpretációk: $P(a),\neg P(a)$. Egyikük sem elégíti ki S-et. Ugyanakkor S kielégíthető például az $U=\{0,1\}(P(x))$ struktúrában, ahol P(0)=i és P(1)=h.

Herbrand tételek

H1 Tk.263.o.

Egy S elsőrendű klózhalmaz kielégíthetetlen akkor és csak akkor, ha S bármely szemantikus fájához van véges zárt szemantikus fája.

H2 Tk.264.o.

Egy S elsőrendű klózhalmaz kielégíthetetlen akkor és csak akkor, ha S klózai alapelőfordulásainak van véges kielégíthetetlen S^\prime részhalmaza.

Az alaprezolúció előzményei: Davis Putnam-alapklózhalmaz kielégíthetetlensége Tk.265.o.

Kielégíthető kezdeti halmaz esetén üres halmazt kapunk, különben \square megjelenik a halmazban.

- $\textbf{1} \ \, \textbf{Tautológia szabály (Tautology Rule): Egy klózt nevezzünk} \\ \, \textit{tautológiának}, \ \text{ha tartalmaz komplemens literálpárt. Törölni} \\ \text{kell } S\text{-ből minden tautológiát. Ha a megmaradó } S' \\ \text{alapklózhalmaz üres, akkor megállunk, egyébként a} \\ \text{megmaradó } S' \ \text{alapklózhalmazzal folytatjuk az eljárást.}$
- ② Egy-literál szabály (One-Literal Rule): Ha S-ben van egy L egységalapklóz, akkor S-ből úgy kapjuk S'-t, hogy S-ből elhagyjuk az L-et tartalmazó alapklózokat. Ha S' üres, akkor megállunk, egyébként előállítjuk S''-t az S'-ből úgy, hogy töröljük $\neg L$ -et az S' alapklózaiból. Megjegyezzük, hogy ha S-ben volt $\neg L$ egységklóz, akkor ez a klóz $\neg L$ törlése után az üres klóz (\square) lesz és ekkor is megállunk. Egyébként az S'' alapklózhalmazzal folytatjuk az eljárást.

Davis-Putman folyt.

- ③ Tiszta-literál szabály (Pure-Literal Rule): Azt mondjuk, hogy S egy alapklózában lévő L literál tiszta S-ben, ha $\neg L$ nem fordul elő S egyetlen klózában sem. Ha L tiszta S-ben, akkor S-ből úgy kapjuk S'-t, hogy S-ből elhagyunk minden L-et tartalmazó alapklózt. A megmaradó S' alapklózhalmazzal, ha az nem üres, folytatjuk az eljárást.
- 4 Szétvágási szabály (Splitting Rule): Ez a szabály akkor alkalmazható, ha S klózai a következőképpen csoportosíthatók:

$$\{(A_1 \vee L), (A_2 \vee L), \ldots, (A_m \vee L)\}$$

$$\{(B_1 \vee \neg L), (B_2 \vee \neg L), \ldots, (B_n \vee \neg L)\}, R,$$
 ahol $R = \{R_1, R_2, \ldots, R_s\}$, és az A_i, B_i, R_i alapklózok nem tartalmazzák sem L -et, sem $\neg L$ -et. Legyen ekkor
$$S_1 = \{A_1, A_2, \ldots, A_m\} \cup R \text{ és } S_2 = \{B_1, B_2, \ldots, B_n\} \cup R.$$
 A kapott S_1 és S_2 klózhalmazokkal dolgozunk tovább (S kielégithetetlen, ha mindkettő az).

Példa alaprezolúcióra

Előállítjuk az elsőrendű klózok magjainak összes alappéldányát és az alapklózok halmazán ítéletlogikai rezolúcióval levezetjük az üres klózt.

Az elsőrendű klózhalmaz:

$$\{ \forall x \forall y (P(x) \lor \neg Q(x, f(y))), \\ \forall z \forall v (\neg P(g(z)) \lor \neg P(v)), \\ \forall u (Q(g(u), u)) \}$$

Herbrand univerzum:

$$\{a, g(a), f(a), g(f(a)), g(g(a)), f(f(a)), f(g(a)), \dots \}$$
 (A klózhalmaz leíró nyelvének összes alaptermje)

Példa folyt.

Alapklózok különböző helyettesítések esetén:

x	y	z	v	u	$\{P(x) \vee \neg Q(x, f(y)),$
					$\neg P(g(z)) \lor \neg P(v),$
					$Q(g(u),u)\}$
a	a	a	a	a	$\{P(a) \vee \neg Q(a, f(a)),$
					$\neg P(g(a)) \lor \neg P(a),$
					Q(g(a),a)
g(a)	a	a	g(a)	a	$\{P(g(a)) \lor \neg Q(g(a), f(a)),$
					$\neg P(g(a)) \lor \neg P(g(a)),$
					Q(g(a),a)
g(a)	a	a	g(a)	f(a)	$\{P(g(a)) \lor \neg Q(g(a), f(a)),$
					$\neg P(g(a)) \lor \neg P(g(a)),$
					$Q(g(f(a)), f(a))\}$
g(f(a))	a	f(a)	g(f(a))	f(a)	$\{P(g(f(a))) \vee \neg Q(g(f(a)), f(a)),$
					$\neg P(g(f(a))) \lor \neg P(g(f(a))),$
					$Q(g(f(a)),f(a))\}$

Példa folyt.

Alaprezolúció:

Legyen a bázis első két eleme P(g(f(a))), Q(g(f(a)), f(a)). Illesszük szemantikus fára az alapklózhalmazt.

Elsőrendű rezolúciós kalkulus – előkészítő fogalmak

Az elsőrendű rezolúciós kalkulushoz definiálni kell két elsőrendű klóz elsőrendű rezolvensét. Az elsőrendű rezolúciós levezetés definíciója ezután ugyanolyan, mint az ítéletlogikában. Szükséges fogalmak: illesztő helyettesítés (Tk.273.o.), faktorizáció (Tk.6.3.80.def.)

Összeférhetetlenségi halmaz

Legyen W azonos predikátumszimbólumot tartalmazó atomi formulák legalább kételemű véges halmaza. Vizsgáljuk a W elemeit szimbólumonként párhuzamosan balról jobbra haladva. Álljunk meg annál az első szimbólumnál, amelyik a W nem minden atomi formulájában egyforma. Emeljük ki W minden atomi formulájából azt a résztermet, amely az ezen a pozíción lévő szimbólummal kezdődik. E résztermek D halmazát a W összeférhetetlenségi halmazának nevezzük.

Legáltalánosabb illesztő helyettesítés

A legáltalánosabb illesztő helyettesítés algoritmusa:

- 2 Ha W_k egyelemű, akkor a legáltalánosabb illesztő helyettesítés: σ_k . Stop.
- 4 Ha van D_k -ban olyan x_k változó és t_k term, hogy x_k nem fordul elő t_k -ban, akkor folytatás az 5. lépéssel. Egyébként nincs illesztő helyettesítés. Stop.
- **6** k := k + 1. 2. lépés.

Legáltalánosabb illesztő helyettesítés – példa

Példa

$$W = \{Q(f(a), g(x)), Q(y, y)\}$$

- 2 W_0 nem egyelemű.
- **3** $D_0 = \{f(a), y\}$
- **4** $v_0 = y, t_0 = f(a)$
- **6** A helyettesítés: $\sigma_1 = (y \parallel f(a))$. $W_1 := W_0(y \parallel f(a)) = \{Q(f(a), g(x)), Q(f(a), f(a))\}$.
- **6** k := 1.
- **2** W_1 nem egyelemű.
- **3** $D_1 = \{g(x), f(a)\}.$
- 4 Nincs változó D_1 -ben. Sikertelen.

Faktor, bináris rezolvens

Klózok faktora

Ha egy C elsőrendű klózban előforduló legalább két azonos alapú egyformán negált literál illeszthető és σ a legáltalánosabb illesztő helyettesítés, akkor $C\sigma$ a C klóz faktora.

Példa

 $\forall x \forall y (P(x) \lor P(f(y)) \lor \neg Q(x))$ faktora $\sigma = x \parallel f(y)$ helyettesítéssel: $\forall x \forall y (P(f(y)) \lor \neg Q(f(y)))$.

Bináris rezolvens

Ha $C_1,\,C_2$ változóidegen elsőrendű klózok magjai és alakjuk $C_1=C_1'\vee L_1,\,C_2=C_2'\vee \neg L_2$ és L_1,L_2 illeszthetők egy σ legáltalánosabb illesztő helyettesítéssel, akkor a $C_1,\,C_2$ klózok bináris rezolvense $C_1'\sigma\vee C_2'\sigma$ magú elsőrendű klóz. $C_1,\,C_2$ klózok a szülő klózok.

Elsőrendű rezolvens, rezolúciós levezetés

Elsőrendű rezolvens Tk.6.3.83

A C_1 és a C_2 szülő klózok elsőrendű rezolvense a következő bináris rezolvensek valamelyike:

- \bigcirc a C_1 és a C_2 klózok bináris rezolvense,
- \mathbf{Q} a C_1 klóz és a C_2 klóz egy faktorának a bináris rezolvense,
- 3 a C_1 klóz egy faktorának és a C_2 klóznak a bináris rezolvense,
- f 4 a C_1 klóz egy faktorának és a C_2 klóz egy faktorának a bináris rezolvense.

Elsőrendű rezolúciós levezetés

Egy S elsőrendű klózhalmazból való rezolúciós levezetés egy olyan véges k_1, k_2, \ldots, k_n klózsorozat, ahol minden $j = 1, 2, \ldots, n$ -re:

- **1** vagy $k_i \in S$
- 2 vagy van olyan $1 \le s, t \le j$, hogy k_j a k_s , k_t klózpár elsőrendű rezolvense.

Levezetés célja üres klóz levezetése / megállási feltétel.

Faktorizáció fontossága: lehetséges, hogy S kielégíthetetlen, de faktorizáció nélkül nem vezethető le az üres klóz (Tk.278.o/6.3.90.példa)

Elsőrendű rezolúciós kalkulus helyessége

Tétel: Helyesség Tk.6.3.88.

Ha egy S elsőrendű klózhalmazból levezethető az üres klóz, akkor az S kielégíthetetlen.

Bizonyítás: Létezik az üres klóznak S-ből való levezetése $k_1, k_2, \ldots, k_n = \square$. Tegyük fel, hogy S mégis kielégíthető. Megmutatjuk, hogy az S-ből való rezolúciós levezetés minden klóza következménye S-nek. Vegyük sorra a rezolúciós levezetés klózait. Ha $k_j \in S$ akkor $S \models k_j$, ha j az első index, hogy k_j elsőrendű rezolvense két őt megelőző k_s, k_t klóznak $s, t \leq j$, akkor $S \models k_s$ és $S \models k_t$, valamint a rezolvensekre vonatkozó tétel miatt $\{k_s, k_t \models k_j\}$, ezért $S \models k_j$. Tehát, ha S kielégíthető, akkor az üres klóz is kielégíthető, ami ellentmondás.

Elsőrendű rezolúciós kalkulus teljessége

Tétel: Teljesség

Ha a S klózhalmaz kielégíthetetlen, akkor a S klózhalmaznak van elsőrendű rezolúciós cáfolata.

Bizonyítás: Az S klózhalmaz kielégíthetetlen, tehát H1 miatt van végesen zárt szemantikus fája. A zárt szemantikus fa léte biztosítja, hogy a fát lezáró alap klózhalmazból létezik az üres klózra alaprezolúciós levezetés. Ezután azt kell megmutatni, hogy egy alaprezolúciós cáfolat alapján egyértelműen előállítható az üres klózra egy elsőrendű levezetés S-ből. Ennek biztosítására szolgál a lifting lemma.

Lifting lemma

Ha $C_1,\,C_2$ elsőrendű klózok valamilyen σ helyettesítéssel előállított $C_1\sigma,\,C_2\sigma$ példányainak elsőrendű rezolvense C*, akkor ez valamely példánya a $C_1,\,C_2$ klózok C elsőrendű rezolvensének.

Példa elsőrendű rezolúciós levezetésre

Legyen $S = {\neg P(x) \lor Q(f(x), x), P(g(b)), \neg Q(y, z)}$. Kezdjük az elsőrendű rezolúciós levezetést $\neg Q(y, z)$ -vel.

1.
$$\neg Q(y,z)$$

$$\in S$$

2.
$$\neg P(x) \lor Q(f(x), x)$$

2.
$$\neg P(x) \lor Q(f(x), x) \in S$$
, a legált. illesztő helyettesítés $(y \parallel f(x)), (z \parallel x)$.

3.
$$\neg P(x)$$

bináris rezolvense 1. alapján

a
$$\neg Q(y, z)(y \parallel f(x)), (z \parallel x)$$
 és a 2-nek

4.
$$P(g(b))$$

 $\in S$, a legált. illesztő helyettesítés $(x \parallel g(b))$.

5.
$$\Box$$

bináris rezolvense 3. alapján

a
$$\neg P(x)(x \parallel g(b))$$
 és a 4-nek.