华东师范大学软件工程学院实验报告

课程名称:

指导教师:

姓名:

学号: 10235101

实践日期: 2025/

实践名称:

实践编号:()

实践时间: 2 学时

目录

	实验目的	
2	内容与设计思想	1
	2.1 使用分栏模块	
	2.2 分割线	2
	2.3 多种短块样式	2
	2.4 Color Box	3
3	实验环境	5
4	实验过程与分析	6
5	实验结果	6
	附录	
	6.1 项目架构	6
参	着 文献	-

1 实验目的

本实验的目标是使得用户能够使用 Typst 来编写实验报告。

2 内容与设计思想

2.1 使用分栏模块

2.1.1 使用引用

在尾部添加 <Head> 标签后,在任意位置即可使用 @ 符号引用 图 1.

2.1.2 添加参考文献

使用 Cite 来引用参考文献 [1], [2].

2.1.3 添加超链接

https://github.com

2.1.4 样式语法糖

将内容块作为参数传递(这是语法糖,实际上还是 会被转化为参数传递)

2.1.5 添加数学公式

行内公式 Message = $\rho_{\star}gh$,不要加空格,长文本用引号括起来。

行间公式在两边加上空格:

$$f(x) = \sum_{i=0}^{x}, f(x) = \sum_{\{i=0\}}^{\{x-\varepsilon\}} \frac{Q_i - \lambda}{2}$$
 (2.1)

$$\operatorname{vec} \coloneqq \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \tag{2.2}$$

$$a \Rightarrow b, a \rightsquigarrow b$$
 (2.3)

2.1.6 添加图片

图 1 使用标记文本(内容块)也可以为图片添加标题

2.1.7 添加代码块

使用 Markdown 语法即可撰写漂亮的代码块:

```
1 fn main() {
2  println!("Hello, world!");
3 }
```

2.2 分割线

- The Art of Typst By Deralive.
 - 1. Windows 11 24H2.
 - 1. <u>\(\lambda \) Linux Ubuntu 22.04.</u>
- 使用 来构建无序列表

2.3 多种短块样式

This is highlighted in blue. This is highlighted in yellow. This is highlighted in green. This is highlighted in red.

This is \$\implies\$ Stars For You \$\implies\$.

PRAINSTORMING

This is a brainstorming.

? QUESTION

This is a question.

***** TASK

This is a task.

DEFINITION

若需要首行缩进, 在前面添加 #h(2em) 即可。

素数是一个数,它大于1,且只能被1和它本身整除。

Solution: "Maxwell Equation Set"

$$a_{n+1}x^n = 2... (2.5)$$

2.4 Color Box

实验结果已封装为多个 Colorbox 样式, 开箱即用。

麦克斯韦方程组

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.6)

其中, $\left(\oint_{\partial S} \vec{B} \cdot d\vec{l}\right)$ 是沿闭合曲线的磁场线积分。

这是麦克斯韦方程

麦克斯韦方程组

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.7)

其中, $\left(\oint_{\partial S} \vec{B} \cdot d\vec{l}\right)$ 是沿闭合曲线的磁场线积分。

Maxwell

麦克斯韦方程组

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.8)

其中, $\left(\oint_{\partial S} \vec{B} \cdot d\vec{l}\right)$ 是沿闭合曲线的磁场线积分。

Maxwell

此 Box 不含脚注

Warning

麦克斯韦方程组

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.9)

Maxwell

This is Maxwell Equation Set

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.10)

This is a sample footer for red box

Divergence theorem

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.11)

In the case of \$n=3\$, \$V\$ represents a volume in three-dimensional space, and \$diff V = S\$ its surface

Maxwell's Equations

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right) \tag{2.12}$$

This is a sample footer.

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.13)

其中, $\left(\oint_{\partial S} \vec{B} \cdot d\vec{l}\right)$ 是沿闭合曲线的磁场线积分。

引理 麦克斯韦方程组 More args..

Lemma 1

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.14)

其中, $\left(\oint_{\partial S} \vec{B} \cdot d\vec{l}\right)$ 是沿闭合曲线的磁场线积分。

Important 2 麦克斯韦方程组 (Maxwell):麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right)$$
 (2.15)

其中, $\left(\oint_{\partial S} \vec{B} \cdot d\vec{l}\right)$ 是沿闭合曲线的磁场线积分。

定理 麦克斯韦方程组 Maxwell

Theorem 3

麦克斯韦方程组是描述电磁场的四个基本方程。

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \left(\int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A} \right) \tag{2.16}$$

其中, $\left(\oint_{\partial S} \vec{B} \cdot d\vec{l}\right)$ 是沿闭合曲线的磁场线积分。

父级容器	
父级容器第一个子模块	
子 Showybox I 这里是第一个 Showybox.	子 Showybox II 这里是第二个 Showybox.
可以传入脚注	
继续传入脚注	

3 实验环境

\boxtimes	Close cabin door		
	Start engines		
	Radio tower		
	Push back		

TRAINSET	Top Speed	Length	Weight
TGV RÉSEAU	320 km/h	200m	383t
ICE 403	330 km/h	201m	409t
Shinkansen N700	300 km/h	405m	700t

Technique	Advantage	Drawback	
Diegetic	Immersive	May be contrived	
Extradiegetic	Breaks immersion	Obtrusive	
Omitted	Fosters engagement	May fracture audience	

Week	Distance (km)	Time (hh:mm:ss)	
1	5	00:30:00	
2	7	00:45:00	
3	10	01:00:00	
4	12	01:10:00	
5	15	01:25:00	
6	18	01:40:00	
7	20	01:50:00	
8	22	02:00:00	
Goal	42.195	02:45:00	

表 1 Training regimen for Marathon

Evelyn Archer	Off	fice	Remote		Office
Lila Montgomery	On leave				
Nolan Pearce	Remote	Off	ice	Remote	Office

	В		D	
A		C		E
F		Н		J
	G		I	
	L		N	
K		M		0
P		R		Т
	Q		S	
	V		X	
U		W		Y
Z				

4 实验过程与分析

(a) An image of the andromeda galaxy.

(b) A sunset illuminating the sky above a mountain range.

图 2 A figure composed of two sub figures.

Above in 图 2, we see a figure which is composed of two other figures, namely 图 2a and 图 2b.

5 实验结果

6 附录

参考文献无需添加标题,直接使用 #bibliography("ref.bib") 即可引用。

6.1 项目架构

- chapters/
 - chapter_1.typ
 - chapter_2.typ
- main.typ ← document entry point
- template.typ

参考文献

- [1] R. Taylor, 《Artificial Intelligence: A Brief Introduction》. 2022 年.
- [2] J. Brown 和 P. Williams, 《Data Mining for Business Intelligence》, *Journal of Business Analytics*, 卷 37, 期 4, 页 100–110, 2018, doi: 10.1109/JBA.2018.1234567.