Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

Cancún, Q. Roo, 12 de julio de 2011. Academia de Matemáticas.

Actualización del Plan de la carrera de Ingeniería Industrial.

Relación con otras asignaturas

Anteriores

Posteriores

Asignatura(s)
a) Algebra lineal

Tema(s)
a) Ecuaciones lineales

Posteriores

Asignatura(s)
a) Estadística Aplicada a la Ingeniería

Tema(s)
a) Interpolación

Nombre de la asignatura Departamento o Licenciatura

Métodos numéricos por computadora Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	110423	8	Licenciatura Elección Libre

Tipo de asignatura

Horas de estudio

HT HP TH HI

Materia

32 32 64 64 64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar conceptos como base para la solución de problemas y toma de decisiones en las diversas áreas de la ingeniería industrial

Objetivo procedimental

Aplicar métodos numéricos para la resolución de sistemas de ecuaciones en que se involucran diversas variables y condiciones.

Objetivo actitudinal

Generar el espíritu emprendedor de alto desempeño para la obtención de resultados a problemas de Ingeniería.

Unidades y temas

Unidad I. APROXIMACIÓN NUMÉRICA Y ERRORES

Explicar la importancia de la precisión y error numérico al aplicar métodos numéricos por computadora para la resolución de sistemas de ecuaciones.

- 1) Introducción histórica
- 2) Necesidad de uso de la computadora
- 3) Precisión y exactitud
- 4) Propagación del error

Unidad II. SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRÁICAS Y TRASCENDENTES

Aplicar métodos numéricos para la solución de ecuaciones algebraicas y trascendentes

- 1) Método de punto fijo.
- 2) Método de bisección.
- 3) Método de Newton Raphson
- 4) Método de la secante.

Unidad III. SOLUCIÓN NUMÉRICA DE SISTEMAS DE ECUACIONES LINEALES

Usar métodos numéricos por computadora para la resolución de sistemas de ecuaciones lineales y tomar decisiones en las diversas áreas de la ingeniería.

- 1) Método de Gauss Jordan
- 2) Métodos de descomposición LU
- 3) Métodos de Jacobi, Métodos de Gauss Seidel. Condición de convergencia

Unidad IV. INTERPOLACIÓN, DERIVACIÓN E INTEGRACIÓN NUMÉRICA

Emplear métodos para la resolución numérica de problemas de interpolación, derivación e integración numérica.

- 1) Tabla de diferencia. Interpolación con incrementos constantes.
 - a) Polinomios interpolantes y diagramas de rombos
 - b) Análisis del error en las fórmulas de interpolación
- 2) Polinomios de Lagrange.
- 3) Método de interpolación de Newton.
- 4) Derivación numérica
- 5) Integración numérica
 - a) Newton Cotes
 - b) Métodos de cuadratura gaussiana.

Unidad V. SOLUCIÓN NUMÉRICA DE ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES

Demostrar los métodos numéricos por computadora para la solución numérica de ecuaciones y sistemas de ecuaciones diferenciales.

1) Serie de Taylor

- 2) Métodos de Euler.
- 3) Métodos de Runge Kutta

Actividades que promueven el aprendizaje

Docente Estudiante

Preguntas guía

Corrillo

Presentación de un estudio de caso

Mapas conceptuales

Resolución de ejercicios guiados por el profesor

Elaboración de ejercicios en pequeños grupos

Presentación de un estudio de caso en

computadora

Aprendizaje basado en problemas Preparación de estudio de caso Lectura de materiales impresos

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

http://mathworld.wolfram.com

http://citeseer.ist.psu.edu/

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Solución de ejercicios	20
Estudio de caso	30
Trabajos escritos	20
Total	100

Fuentes de referencia básica

Bibliográficas

García L. M., Pérez M. J. (2005). Métodos Numéricos con Matemática (1ª Ed.). Ed. Alfaomega. ISBN 970¿15¿0977¿3 QUINTANA, PEDRO. (2005). METODOS NUMERICOS CON APLICACIONES EN EXCEL (1ª ED.). REVERTE EDICIONES. ISBN 9686708596

Richard L. Burden, J. Douglas Faires. Análisis Numérico (2a ed.). Grupo Editorial Iberoamérica. ISBN 970¿625¿063¿8

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Chapra, S.C., Canale, R.P. (2000). Métodos numéricos para ingenieros. McGraw¿Hill.

Martínez Salas, J. (1989). Métodos matemáticos. Editorial Gráficas Andrés Martín S.A.

Matthews, J.H. (1987). Numerical methods for computer science. Engineering and mathematics. Prentice; Hall International. Inc.

Shoichiro, Nakamura. (1992). Métodos numéricos aplicados con software. Pearson Educación. México.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en ingeniería industrial o afines.

Docentes

Tener experiencia docente de tres años mínimo a nivel superior en asignaturas relacionadas.

Profesionales

Tener experiencia en investigación o en puestos que apliquen los métodos numéricos en el sector industrial.