UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CSW40 - SISTEMAS MICROCONTROLADOS

Prof.: Guilherme de Santi Peron

Prof.: Marcos Eduardo Pivaro Monteiro

LAB 4A - MOTOR DC e AD

Roteiro:

Utilizando um *timer*, implementar um circuito de controle de velocidade de motor DC em ambos os sentidos. Será necessário a utilização de display LCD e teclado matricial.

O código poderá ser escrito em assembly para Cortex-M4 ou linguagem C.

O motor deverá girar segundo uma presseleção de velocidades de acordo com as teclas do teclado matricial ou de acordo com um potenciômetro que está ligado a entrada de uma interface analógica.

Requisito:

Será **OBRIGATÓRIO** a entrega do fluxograma ou diagrama de estados e transições (DET) no início das atividades laboratoriais. A equipe só poderá apresentar o laboratório caso o documento tenha sido mostrado.

Funcionamento:

- Ao inicializar a placa ou "resetar" o motor deve estar parado (velocidade = 0) e o LCD deve indicar a seguinte mensagem "MOTOR PARADO".
- 2. O programa deve requisitar se usuário deseja controlar a velocidade do motor pelo teclado ou pelo potenciômetro.
- Se o usuário optar pelo teclado, o LCD deve pedir o sentido de rotação (podendo ser sentido horário ou anti-horário) e em seguida a velocidade de rotação, conforme a seguir:
 - a. Botão 0 Executa o comando de parar o motor, independente da velocidade que este se encontra;
 - b. Botão 1 Executa o comando para deixar o motor girando a 50% de sua velocidade máxima em regime permanente;
 - c. Botão 2 Executa o comando para deixar o motor girando a 60% de sua velocidade máxima em regime permanente;
 - d. Botão 3 Executa o comando para deixar o motor girando a 70% de sua velocidade máxima em regime permanente;

- e. Botão 4 Executa o comando para deixar o motor girando a 80% de sua velocidade máxima em regime permanente;
- f. Botão 5 Executa o comando para deixar o motor girando a 90% de sua velocidade máxima em regime permanente;
- g. Botão 6 Executa o comando para deixar o motor girando a 100% (~99,99%) de sua velocidade máxima em regime permanente;
- 4. Se o usuário optar pelo potenciômetro, o LCD deve pedir o sentido de rotação (podendo ser sentido horário ou anti-horário). Após isso, o motor deve girar sua velocidade conforme o valor de tensão de entrada do potenciômetro deve ser lido, pelo conversor A/D e este valor deve servir como porcentagem de giro do motor de 0 a 100% em relação a 3,3V.
- 5. As velocidades e o sentido de rotação deverão ser mostrados no display LCD conforme a seleção do usuário;
- 6. Para controlar a velocidade do motor fazer um PWM (verificar ao final deste arquivo como gerar um PWM);
- 7. A qualquer momento, se o botão '*' for pressionado o motor deve alterar a rotação para girar no sentido horário e se o botão '#' for pressionado o motor deve girar no sentido anti-horário:
- 8. A qualquer momento se a USR_SW1 for pressionada, o programa deve voltar para o menu principal.

Atenção:

- a. Cuidar com o **bounce** das teclas, que deverá ser feito por *hardware* ou por *software*;
- Utilizar o P5 da PAT para controle bidirecional do motor DC que já possui saída de um L293.

LAB 4B - MOTOR DC e UART

Roteiro:

Utilizando um *timer*, implementar um circuito de controle de velocidade de motor DC em ambos os sentidos.

O código poderá ser escrito em assembly para Cortex-M4 ou linguagem C.

O motor deverá girar segundo uma presseleção de velocidades segundo à escolha do usuário por meio da interface RS-232 e um programa terminal no computador (ex. putty).

Requisito:

Será **OBRIGATÓRIO** a entrega do fluxograma ou diagrama de estados e transições (DET) no início das atividades laboratoriais. A equipe só poderá apresentar o laboratório caso o documento tenha sido mostrado.

Funcionamento:

- 1. Ao inicializar a placa ou "resetar" o motor deve estar parado (velocidade = 0) e o terminal deve mostrar a mensagem "MOTOR PARADO".
- 2. O terminal deve pedir o sentido de rotação (podendo ser sentido horário ou anti-horário) e em seguida a velocidade de rotação, conforme a seguir:
 - a. 0 Executa o comando de parar o motor, independente da velocidade que este se encontra;
 - b. 1 Executa o comando para deixar o motor girando a 50% de sua velocidade máxima em regime permanente;
 - c. 2 Executa o comando para deixar o motor girando a 60% de sua velocidade máxima em regime permanente;
 - d. 3 Executa o comando para deixar o motor girando a 70% de sua velocidade máxima em regime permanente;
 - e. 4 Executa o comando para deixar o motor girando a 80% de sua velocidade máxima em regime permanente;
 - f. 5 Executa o comando para deixar o motor girando a 90% de sua velocidade máxima em regime permanente;
 - g. 6 Executa o comando para deixar o motor girando a 100% (~99,99%) de sua velocidade máxima em regime permanente;
- 3. As velocidades e o sentido de rotação deverão ser mostrados no terminal conforme a seleção do usuário;
- 4. Para controlar a velocidade do motor fazer um PWM (verificar ao final deste arquivo como gerar um PWM);

- 5. A qualquer momento, se no terminal for enviada 'h' o motor deve alterar a rotação para girar no sentido horário e se 'a' for enviada o motor deve girar no sentido anti-horário;
- 6. A qualquer momento se a USR_SW1 for pressionada, o motor deve para e o programa deve voltar para o início.

Atenção:

- c. Cuidar com o **bounce** das teclas, que deverá ser feito por *hardware* ou por software:
- d. Utilizar o P5 da PAT para controle bidirecional do motor DC que já possui saída de um L293.

Gerando um PWM com um Timer

Na Tiva um PWM pode ser gerado de várias formas. Uma das formas é por meio de um timer periódico em que em cada estouro do timer o valor de uma porta é alternada e o valor de contagem é alterado conforme o valor total do período. Por exemplo:

Suponha um PWM com período 1ms, para um duty cycle de 60% o período em alta deve permanecer por 600us e o período em baixa por 400us. Desta forma, pode-se configurar para o timer contar inicialmente para 600us e ligar a porta PF2 (que neste caso está ligada ao *enable* da ponte H). Quando o timer estourar, na rotina de tratamento de interrupção pode-se recarregar com o valor que o timer deveria permanecer em baixa, neste caso por 400us, e desligar a porta PF2 e repetir o procedimento indefinidamente.

