Delegation with Endogenous States

Dino Gerardi Lucas Maestri Ignacio Monzón

(Un. Turin and CCA) (FGV EPGE) (Un. Turin and CCA)

May 25, 2021

Delegation

- Delegation problems are widespread:
 - A party with authority to make a decision (Principal)
 - must rely on a better informed party (Agent)
 - Should the principal give flexibility to the agent, or instead restrict what the agent can choose?
- Some examples:
 - CEO selects feasible projects
 Manager (better informed about their profitability) chooses one
 - Regulator restricts the prices that a monopolist (better informed about costs) can charge

Moral hazard

- Before choosing an action, agent can exert effort and affect outcomes
 - Effort is typically unobservable
 - Agent cannot fully control outcomes
- Examples:
 - Manager's effort affects potential profits of various projects
 - Monopolist can adopt practices that reduce production costs

Results

- We characterize the optimal delegation set when the principal cares about the agent's effort and action
- The agent's effort does not affect the variance of the state (both with aligned and misaligned preferences)
 - Optimal delegation set has a floor: actions below a threshold are excluded
- Variance increasing in the effort level (with aligned preferences)
 - The optimal delegation set has a gap: intermediate actions are excluded
- Variance decreasing in the effort level (with aligned preference)
 - The optimal delegation set has a floor and a ceiling

Closely related literature

- Delegation with misaligned preferences, no moral hazard:
 - Holmström (1977, 1984)
 - Alonso and Matouschek (2008)
 - Amador and Bagwell (2013)
- Delegation with moral hazard:
 - Armstrong and Vickers (2010)
- Delegation with information acquisition:
 - Szalay (2005)
 - Deimen and Szalay (2018)

Timing of the game

Principal selects a delegation set $A \subseteq \mathbb{R}$ (A closed)

Agent exerts costly effort $\gamma \geq 0$

The effort γ affects the distribution of the state ω

Agent observes the state and chooses an action $a \in A$

Uniform distribution and quadratic payoff function

Uniform distribution with shifting support

When the effort is $\gamma\geqslant 0$ the state ω is uniformly distributed in the unit interval $[\gamma,\gamma+1]$

Payoffs

The parties' payoffs are:

$$U_P(a,\omega,\gamma) = u_P(a,\omega) + \tilde{v}(\omega)$$

$$U_A(a, \omega, \gamma) = u_A(a, \omega) - c(\gamma)$$

We assume

$$u_P(a, \omega) = -(\omega + \beta - a)^2$$

$$u_A(a, \omega) = -(\omega - a)^2$$

Misaligned preferences: if $\beta>0$ ($\beta<0$) the agent prefers lower (higher) actions than principal

Our analysis also covers the case of aligned preferences ($\beta=0$)

Cost function is quadratic: $c(\gamma) = \frac{\gamma^2}{2}$

The benefit function $\tilde{v}(\cdot)$ is increasing and concave

We let $v\left(\gamma\right)$ denote the expected value of $\tilde{v}(\cdot)$ when the effort level is γ :

$$v\left(\gamma\right) = \int_{\gamma}^{\gamma+1} \tilde{v}\left(\omega\right) d\omega$$

The delegation set A and the effort level γ induce expected payoffs:

$$V_{P}(A,\gamma) = -\int_{\gamma}^{\gamma+1} (\omega + \beta - \hat{a}(\omega,A))^{2} d\omega + v(\gamma)$$
$$V_{A}(A,\gamma) = -\int_{\gamma}^{\gamma+1} (\omega - \hat{a}(\omega,A))^{2} d\omega - \frac{\gamma^{2}}{2}$$

where
$$\hat{a}(\omega, A) = \arg \max_{a \in A} -(\omega - a)^2$$

Necessary conditions for optimal effort

Given a delegation set A, the agent solves the following problem:

$$\begin{split} \max_{\gamma \geqslant 0} \int_{\gamma}^{\gamma+1} \left[\max_{a \in \tilde{A}} - \left(\omega - a \right)^2 \right] d\omega - \frac{\gamma^2}{2} = \\ \max_{\gamma \geqslant 0} \int_{\gamma}^{\gamma+1} - \left(\omega - \hat{a} \left(\omega, A \right) \right)^2 d\omega - \frac{\gamma^2}{2} \end{split}$$

First-order conditions for interior γ :

$$\left(\gamma-\hat{a}\left(\gamma,\tilde{A}
ight)
ight)^{2}-\left(\gamma+1-\hat{a}\left(\gamma+1,\tilde{A}
ight)
ight)^{2}=\gamma$$

In general, the first-order conditions are not sufficient (the problem is not necessarily concave)

Concavity under interval delegation

Lemma 1 Suppose that the delegation set is an interval $[\underline{a}, \overline{a}]$ for some $\underline{a} \leq \overline{a}$. For every γ , let $z(\gamma)$ denote the agent's expected payoff if the effort is γ :

$$z\left(\gamma\right) = -\int_{\gamma}^{\gamma+1} \left[\max_{a \in [\underline{a},\overline{a}]} u_{A}\left(a,\omega\right) \right] d\omega - \frac{\gamma^{2}}{2}$$

The function $z(\cdot)$ is concave.

Optimal interval delegation

Let \tilde{A} be the optimal delegation set and let γ be the optimal effort level.

We say that \tilde{A} is *minimal* if for every $a \in \tilde{A}$ there exists $\omega \in [\gamma, \gamma+1]$ such that $a=\hat{a}\left(\omega,A\right)$.

In what follows we focus on minimal optimal delegation sets.

Proposition 1 Let $\gamma>0$ be an optimal effort level and \tilde{A} a (minimal) optimal delegation set. Then \tilde{A} is convex. Moreover, either $\tilde{A}\subset [\gamma,\gamma+1]$ or $\tilde{A}=\{a\}$ with $a>\gamma+1$.

Optimal interval delegation: sketch of the proof

Step 1: If $\tilde{A} \cap (\gamma, \gamma + 1) = \emptyset$, then \tilde{A} is a singleton.

The delegation set A' yields to the principal a larger payoff than A

We work with a relaxed problem: the agent's level of effort has to satisfy the first-order conditions

Step 2: Let \tilde{A} denote the optimal delegation set and let \underline{a} denote the smallest element of \tilde{A} . Then either \tilde{A} is a singleton or $\underline{a} \geqslant \gamma$.

The delegation set A' yields to the principal a larger payoff than A

Step 3: Let \tilde{A} denote the optimal delegation set and let \bar{a} denote the largest element of \tilde{A} . Then either \tilde{A} is a singleton or $\bar{a} \leqslant \gamma + 1$.

The delegation set A' yields to the principal a larger payoff than A

Step 4: Suppose that the optimal delegation set $\tilde{\boldsymbol{A}}$ is not a singleton

 \tilde{A} solves the relaxed problem. Therefore, $\tilde{A}\subseteq [\gamma,\gamma+1]$

Suppose that \tilde{A} has a gap. The principal's payoff increases if the gap is filled

The interval delegation set induces the same effort level as \tilde{A} (it satisfied the same first-order conditions and the problem is concave)

Step 5: If $\tilde{A}=\{a\}$, then $a\geqslant \gamma$

If $\tilde{A}=\{a\}$, with $a<\gamma,$ the agent has an incentive to reduce the effort level

Floor Delegation

Proposition 2 Let $\gamma>0$ be the optimal level of effort and \tilde{A} the optimal delegation set. If $\tilde{A}\subseteq [\gamma,\gamma+1]$ then $\tilde{A}=[\underline{a},\gamma+1]$ for some $\underline{a}>\gamma$.

Notice that in this case the *floor* delegation set $[\underline{a}, \infty]$ is also optimal

Suppose that the optimal delegation set is

$$\tilde{A} = [\underline{a}, \bar{a}] \subseteq [\gamma, \gamma + 1]$$

The first-order conditions

$$(\gamma - \underline{a})^2 - (\gamma + 1 - \overline{a})^2 = \gamma$$

imply $\underline{a} > \gamma$. If $\overline{a} < \gamma + 1$, it is possible to perturb \underline{a} and \overline{a} and increase the principal's payoff

Discretion and level of effort

Lemma 2 Suppose that the optimal effort level γ is interior. Let \tilde{A} denote optimal delegation set. If $\gamma < 1$, then

$$\tilde{A} = [\gamma + \sqrt{\gamma}, \gamma + 1]$$

If
$$\gamma \geqslant 1$$
, then

$$\tilde{A} = \left\{ \frac{3\gamma + 1}{2} \right\}$$

Suppose that the optimal delegation set is $\tilde{A}=[\underline{a},\gamma+1]$ for some $\gamma<\underline{a}<\gamma+1$

The effort level γ satisfies the first order conditions:

$$(\gamma - \underline{a})^2 = \gamma$$

which imply

$$\underline{a} = \gamma + \sqrt{\gamma} < \gamma + 1$$

and, thus,

$$\gamma < 1$$

On the other hand, if $\tilde{A}=\{\underline{a}\}$ for some $\underline{a}\geqslant \gamma+1$ then

$$(\underline{a} - \gamma)^2 - (\underline{a} - \gamma - 1)^2 = \gamma$$

which yields

$$\underline{a} = \frac{3\gamma + 1}{2} \geqslant \gamma + 1$$

and, thus,

$$\gamma \geqslant 1$$

The optimal level of effort

For every $\gamma>0$ let $V_{P}\left(\gamma\right)$ denote the principal's payoff if he offers the optimal delegation set that induces the effort level γ

We have

$$V_{P}(\gamma) = -\int_{\gamma}^{\gamma+\sqrt{\gamma}} (\gamma + \sqrt{\gamma} - (\omega + \beta))^{2} d\omega - \int_{\gamma+\sqrt{\gamma}}^{\gamma+1} \beta^{2} d\omega + v(\gamma)$$

for $\gamma < 1$, and

$$V_{P}\left(\gamma
ight)=-\int_{\gamma}^{\gamma+1}\left(rac{3\gamma+1}{2}-\left(\omega+eta
ight)
ight)^{2}d\omega+v\left(\gamma
ight)$$

for $\gamma \geqslant 1$

We compute the derivative of V_P :

$$V_{P}^{\prime}\left(\gamma
ight)=eta-rac{1}{2}\sqrt{\gamma}+v^{\prime}\left(\gamma
ight)$$

for $\gamma < 1$, and

$$V_{P}^{\prime}\left(\gamma
ight)=eta-rac{1}{2}\gamma+v^{\prime}\left(\gamma
ight)$$

for $\gamma \geqslant 1$

 V_P is concave (recall v is concave) and V_P' is continuous everywhere

We set $V_{\mathcal{P}}'(\gamma) = 0$ and obtain a unique solution

Proposition 3 Assume that the optimal level of effort is strictly positive.

If $\beta-\frac{1}{2}+v'(1)<0$, then the optimal delegation set is $[\gamma^*+\sqrt{\gamma^*},\gamma^*+1]$ where the optimal level of effort $\gamma^*<1$ satisfies

$$\beta - \frac{1}{2}\sqrt{\gamma^*} + v'\left(\gamma^*\right) = 0$$

If $\beta - \frac{1}{2} + v'\left(1\right) \geqslant 0$, then the optimal delegation set is $\left\{\frac{3\gamma^* + 1}{2}\right\}$ where $\gamma^* \geqslant 1$ satisfies

$$\beta - \frac{1}{2}\gamma^* + v'(\gamma^*) = 0$$

Corner solution

If $\beta\geqslant 0$, it is not optimal for the principal to induce an effort level equal to zero

If $\beta<0$, the optimal delegation set that induces zero effort coincides with the optimal delegation set $(-\infty,\bar{a}]$, $\bar{a}<1$, when the state is uniformly distributed over the unit interval (no moral hazard)

Comparative Statics

Proposition 4 (For $\beta < 0$ assume $\gamma^* > 0$)

- i) The optimal level of effort γ^* and the principal's payoff are increasing in β
- ii) Suppose that $c(\gamma)=k\gamma^2$ for k>0. Both γ^* and the principal's payoff are decreasing in k
- iii) Suppose that $v\left(\gamma\right)=\rho h\left(\gamma\right)$, with $\rho>0$ and $h\left(\cdot\right)$ increasing an concave. Then $\frac{\partial\gamma^*}{\partial\rho}>0$

The variance is increasing in the effort level

Aligned preferences: $\beta = 0$

When the effort is γ the state is uniformly distributed in the interval $[-\left(1-\alpha\right)\gamma,\alpha\gamma+1]$

The variance is increasing in the effort level: the size of the support is $\gamma+1$

We assume that $\alpha \in (0,1)$: the support is "increasing" in γ

The function $v\left(\gamma\right)$ is increasing

If $\alpha > \frac{1}{2}$ (the expectation is increasing in γ) and $\tilde{v}\left(\omega\right)$ is increasing and linear, then $v\left(\gamma\right)$ is increasing

The set of effort levels is bounded: $\gamma \in [0, \bar{\gamma}]$

Assumption 1

If the delegation set is $[-(1-\alpha)\,\bar{\gamma},0]\cup[1,\alpha\bar{\gamma}+1]$ the agent chooses the effort level $\bar{\gamma}$

If the optimal effort level is $\gamma^*=0$, then the optimal delegation set contains the unit interval

We focus on the case $\gamma^{*}>0$ (this is the case if $v'\left(0\right)>c''\left(0\right))$

We work with a relaxed problem:

$$\begin{split} \max_{a(\cdot),\gamma} &- \int_{-(1-\alpha)\gamma}^{\alpha\gamma+1} \frac{(a(\omega)-\omega)^2}{\gamma+1} d\omega + v\left(\gamma\right) \\ \text{s.t.} &- \left(a\left(\omega\right)-\omega\right)^2 \geqslant - \left(a\left(\omega'\right)-\omega\right)^2 \\ \text{for every } &\left(\omega,\omega'\right) \in \left[-\left(1-\alpha\right)\bar{\gamma},\alpha\bar{\gamma}+1\right]^2 \\ &\frac{\partial}{\partial\gamma} \left[- \int_{-(1-\alpha)\gamma}^{\alpha\gamma+1} \frac{(a(\omega)-\omega)^2}{\gamma+1} d\omega - \frac{\gamma^2}{2}\right] \geqslant 0 \end{split}$$

Let $a^{*}\left(\cdot\right)$ and γ^{*} denote the solution to the relaxed problem.

We also let
$$D^* = \bigcup_{\omega \in [-(1-\alpha)\gamma^*, \alpha\gamma^*+1]} \{a^*(\omega)\}$$

Lemma 3 The solution to the relaxed problem satisfies $a^* (-(1-\alpha)\gamma^*) = -(1-\alpha)\gamma^*$ and $a^* (\alpha\gamma^* + 1) = \alpha\gamma^* + 1$

If the equalities in Lemma 3 are not satisfied we can perturb the delegation set D^* and increase the value of the objective function

Proposition 5 Let γ^* denote the optimal effort level of the unrelaxed problem. There exist $0 < \underline{a} < \overline{a} < 1$ such that the delegation set $[-(1-\alpha)\gamma^*,\underline{a}] \cup [\overline{a},\alpha\gamma^*+1]$ is optimal

$$-(1-\alpha)\gamma^*$$
 \underline{a} \overline{a} $\alpha\gamma^* + 1$

The solution to the relaxed problem must satisfy the second constraint with equality (the principal can fill the gaps in D^* and increase the objective function)

It follows from Lemma 3 that

$$\frac{\frac{\partial \left(-\int_{-(1-\alpha)\gamma}^{\alpha\gamma+1} \frac{(a(\omega)-\omega)^{2}}{\gamma+1} d\omega - \frac{\gamma^{2}}{2}\right)}{\partial \gamma} \bigg|_{\gamma=\gamma^{*}} = \int_{-(1-\alpha)\gamma^{*}}^{\alpha\gamma^{*}+1} \frac{(a(\omega)-\omega)^{2}}{(\gamma^{*}+1)^{2}} d\omega - \gamma^{*} = 0$$
(1)

which implies that the value of the objective function is

$$-\int_{-(1-\alpha)\gamma^*}^{\alpha\gamma^*+1} \frac{\left(a\left(\omega\right)-\omega\right)^2}{\left(\gamma^*+1\right)} d\omega + v\left(\gamma^*\right) = -\left(\gamma^*+1\right)\gamma^* + v\left(\gamma^*\right)$$

It follows from Assumption 1 that there exist $0<\underline{a}<\bar{a}<1$ such that the delegation set $[-\left(1-\alpha\right)\gamma^*,\underline{a}]\cup[\bar{a},\alpha\gamma^*+1]$ satisfies equality (1)

Finally, given the delegation set $[-(1-\alpha)\gamma^*,\underline{a}] \cup [\bar{a},\alpha\gamma^*+1]$, the second order conditions of the agent's problem are satisfied

The variance is decreasing in the effort level

Aligned preferences: $\beta = 0$

When the effort is γ the state is uniformly distributed in the interval $[\alpha\gamma,1-(1-\alpha)\,\gamma]$

The variance is decreasing in the effort level: the size of the support is $1-\gamma$

We assume that $\alpha \in (0,1)$: the support is "decreasing" in γ

The function $v\left(\gamma\right)$ is increasing

If $\alpha > \frac{1}{2}$ (the expectation is increasing in γ) and $\tilde{v}\left(\omega\right)$ is increasing and linear, then $v\left(\gamma\right)$ is increasing

The set of effort levels is bounded: $\gamma \in [0, \bar{\gamma}]$, with $\bar{\gamma} < 1$

Assumption 2

If the delegation set is $\left\{\frac{1+(2\alpha-1)\bar{\gamma}}{2}\right\}$ the agent chooses the effort level $\bar{\gamma}$

The optimal effort level is strictly positive: $\gamma^*>0$

As in the previous case, we work with a relaxed problem:

$$\begin{split} \max_{a(\cdot),\gamma} &- \int_{\alpha\gamma}^{1-(1-\alpha)\gamma} \frac{(a(\omega)-\omega)^2}{1-\gamma} d\omega + v\left(\gamma\right) \\ \text{s.t.} &- \left(a\left(\omega\right)-\omega\right)^2 \geqslant - \left(a\left(\omega'\right)-\omega\right)^2 \\ &\quad \text{for every } \left(\omega,\omega'\right) \in \left[0,1\right]^2 \\ &\quad \frac{\partial}{\partial\gamma} \left[- \int_{\alpha\gamma}^{1-(1-\alpha)\gamma} \frac{(a(\omega)-\omega)^2}{1-\gamma} d\omega - \frac{\gamma^2}{2} \right] \geqslant 0 \end{split}$$

Let $a^{*}\left(\cdot\right)$ and γ^{*} denote the solution to the relaxed problem.

We also let
$$D^* = \bigcup_{\omega \in [\alpha \gamma^*, 1 - (1 - \alpha) \gamma^*]} \{a^*(\omega)\}$$

Lemma 4 The solution to the relaxed problem satisfies $a^*\left(\alpha\gamma^*\right)>\alpha\gamma^*$ and $a^*\left(1-\left(1-\alpha\right)\gamma^*\right)<1-\left(1-\alpha\right)\gamma^*.$ Furthermore, D^* is convex

Interval delegation: by filling the gaps the principal increases the objective function and relaxes the constraint

We show that $D^* \cap [\alpha \gamma^*, 1 - (1 - \alpha) \gamma^*] \neq \emptyset$: if this is not true, the principal is better off by choosing the delegation set $\left\{\frac{1+(2\alpha-1)\bar{\gamma}}{2}\right\}$ which induces the largest effort level $\bar{\gamma}$

Finally, if $D^* \cap [\alpha \gamma^*, 1 - (1 - \alpha) \gamma^*] \neq \emptyset$, then $D^* \subset (\alpha \gamma^*, 1 - (1 - \alpha) \gamma^*)$ (if not, then perturbations of D^* increase the value of the objective function)

Proposition 6 Let γ^* denote the optimal effort level. The optimal delegation set is $[\underline{a}, \overline{a}]$ for some $\alpha \gamma^* < \underline{a} < \overline{a} < 1 - (1 - \alpha) \gamma^*$

With the delegation set $[\underline{a}, \overline{a}]$ the second order conditions of the agent's problem are satisfied

Conclusions

- We introduce endogenous states in the canonical delegation model
- When effort does not affect the variance, the optimal delegation set has a floor
- When the variance is increasing in the effort level, the optimal delegation set has a gap
- When the variance is decreasing in the effort level, the optimal delegation set has both a floor and a ceiling