

UNIVERSIDAD AUSTRAL DE CHILE INSTITUTO DE ELECTRICIDAD Y ELECTRÓNICA

TAREA I

VISIÓN ARTIFICIAL Y REDES NEURONALES (ELEP 233)

1. Escriba un programa en Python que reemplace los colores de la imagen en el punto 1, de acuerdo a la siguiente Tabla:

Color original (R G B)	Color Nuevo (R G B)
0 0 0	111
0 0 1	010
0 1 0	110
0 1 1	100
100	011
1 0 1	0 0 1
1 1 0	101
1 1 1	0 0 0

Nota: La foto escogida debe poseer todos los colores contenidas en la Tabla anterior. En el color original se considera que 1 significa >=120 y 0 significa <120. En color nuevo 1 significa 255 y 0 significa 0.

- 2. Cree un vector en N³ que indique la cantidad de píxeles que tiene cada nivel de color en las bandas R, G y B.
- 3. Exprese la imagen anterior en escala de rojos, verde, azul, cyan, magenta y amarillo.
- 4. Transforme la imagen RGB a una imagen HSI con OpenCV y Python, y luego elimine la información referente a tonalidad y saturación para obtener una imagen en escala de grises.
- 5. Obtenga el negativo de la imagen RGB y el negativo de la imagen en escala de grises. Mostrar cada imagen original junto a su respectiva imagen negativa.

Todos los programas deben incluir comentarios y ser capaces de trabajar con imágenes de cualquier tamaño. Incluya instrucciones de uso de ser necesario.