Breast Cancer Prediction

Machine Learning
By Kiruthika

Breast Cancer Detection

- 1 Introduction
- 2 Visualization
- 3 Machine Learning
- 4 HyperTuning

Introduction

The **breast cancer dataset** is a classic and very easy binary classification dataset. It contains features computed from a digitized image of a fine needle aspirate (FNA) of a breast mass and describe characteristics of the cell nuclei present in the image.

Classes	2
Samples per class	212(M),357(B)
Samples total	569
Dimensionality	30
Features	real, positive

:Summary Statistics:		
	=====	=====
	Min	Max
	======	======
radius (mean):	6.981	28.11
texture (mean):	9.71	39.28
perimeter (mean):	43.79	188.5
area (mean):	143.5	2501.0
smoothness (mean):	0.053	0.163
compactness (mean):	0.019	0.345
concavity (mean):	0.0	0.427
concave points (mean):	0.0	0.201
symmetry (mean):	0.106	0.304
fractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
texture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
<pre>smoothness (standard error):</pre>	0.002	0.031
compactness (standard error):	0.002	
concavity (standard error):	α α	W 306

Visualization

The following is a visualization image of breast cancer attributes from the given dataset.

Range Data	ss 'pandas.core.frame.Data eIndex: 569 entries, 0 to columns (total 31 columns	568 s):		
#	Column	Non-	-Null Count	Dtype
0	mean radius	569	non-null	float64
1	mean texture		non-null	float64
2	mean perimeter		non-null	float64
3	mean area		non-null	float64
4	mean smoothness		non-null	float64
5	mean compactness		non-null	float64
6	mean concavity		non-null	float64
7	mean concave points		non-null	float64
8	mean symmetry	569	non-null	float64
9	mean fractal dimension	569	non-null	float64
10	radius error	569	non-null	float64
11	texture error	569	non-null	float64
12	perimeter error	569	non-null	float64
13	area error	569	non-null	float64
14	smoothness error	569	non-null	float64
15	compactness error	569	non-null	float64
16	concavity error	569	non-null	float64
17	concave points error	569	non-null	float64
18	symmetry error	569	non-null	float64
19	fractal dimension error	569	non-null	float64
20	worst radius	569	non-null	float64
21	worst texture	569	non-null	float64
22	worst perimeter	569	non-null	float64
23	worst area	569	non-null	float64
24	worst smoothness	569	non-null	float64
25	worst compactness	569	non-null	float64
26	worst concavity	569	non-null	float64
27	worst concave points		non-null	float64
28	worst symmetry		non-null	float64
29	worst fractal dimension	569	non-null	float64
30	target	569	non-null	int64

Preparing our Data

Splitting our dataset

```
X = data.data
# Store the target data
y = data.target
# split the data using Scikit-Learn's train_test_split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

Visualization

Algorithm

Choosing our Algorithm

In our dataset we have the outcome variable or Dependent variable i.e Y having only two set of values, either M (Malign) or B(Benign). So we will use **Classification algorithm** of **supervised learning**.

- Logistic Regression
- Nearest Neighbor
- Support Vector Machines
- Kernel SVM
- Naïve Bayes
- Decision Tree Algorithm
- Random Forest Classification

Results

Choosing our Algorithm

In our dataset we have the outcome variable or Dependent variable i.e Y having only two set of values, either M (Malign) or B(Benign). So we will use **Classification algorithm** of **supervised learning**.

- Logistic Regression
- Nearest Neighbor
- Support Vector Machines
- Naïve Bayes
- Decision Tree Algorithm
- Random Forest Classification

Results

```
#Using Logistic Regression Algorithm to the Training Set
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)
classifier.score(X_test, y_test)
predictions = classifier.predict(X_test)
print(accuracy_score(y_test, predictions))
print(classification_report(y_test, predictions))
```

0.958041958041958

	precision	recall	f1-score	support
0 1	0.94 0.97	0.94 0.97	0.94 0.97	53 90
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	143 143 143

```
classifier.fit(X_train, y_train)
classifier.score(X_test, y_test)
predictions = classifier.predict(X_test)
print(accuracy_score(y_test, predictions))
print(classification_report(y_test, predictions))
```

classifier = KNeighborsClassifier(n_neighbors = 6, metric

from sklearn.neighbors import KNeighborsClassifier

#Using KNeighborsClassifier Method o

0.951048951048951

	precision	recall	f1-score	support
0 1	0.96 0.95	0.91 0.98	0.93 0.96	53 90
accuracy	0.95	0.94	0.95 0.95	143 143
macro avg weighted avg	0.95	0.94	0.95	143

Logistic Regression

K Neighbour

Results

```
from sklearn.svm import SVC
classifier_svm = SVC (kernel = 'rbf', random_state = SEED)
classifier_svm.fit (X_train, y_train)
predictions = classifier_svm.predict(X_test)
print(accuracy_score(y_test, predictions))
print(classification_report(y_test, predictions))
cm_svm = confusion_matrix (y_test, predictions)
acc_svm = accuracy_score (y_test, predictions)
```

0.965034965034965

	precision	recall	f1-score	support
0	0.96	0.94	0.95	53
1	0.97	0.98	0.97	90
accuracy			0.97	143
macro avg weighted avg	0.96 0.96	0.96 0.97	0.96 0.96	143 143

```
from sklearn.naive_bayes import GaussianNB
classifier_nb = GaussianNB()
classifier_nb.fit (X_train, y_train)
predictions = classifier_nb.predict(X_test)
print(accuracy_score(y_test, predictions))
print(classification_report(y_test, predictions))
cm_nb = confusion_matrix (y_test, predictions)
acc_nb = accuracy_score (y_test, predictions)
```

0.916083916083916

	precision	recall	f1-score	support
0 1	0.89 0.93	0.89 0.93	0.89 0.93	53 90
accuracy macro avg weighted avg	0.91 0.92	0.91 0.92	0.92 0.91 0.92	143 143 143

Support Vector Machine

Naive Bayes

Results

```
#Using DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy',
    classifier.fit(X_train, y_train)
    classifier.score(X_test, y_test)
    predictions = classifier.predict(X_test)
    print(accuracy_score(y_test, predictions))
    print(classification_report(y_test, predictions))
```

0.958041958041958

	precision	recall	f1-score	support
0 1	0.93 0.98	0.96 0.96	0.94 0.97	53 90
accuracy			0.96	143
macro avg	0.95	0.96	0.96	143
weighted avg	0.96	0.96	0.96	143

Decision Tree

```
#Using RandomForestClassifier method
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criter
classifier.fit(X_train, y_train)
classifier.score(X_test, y_test)
predictions = classifier.predict(X_test)
print(accuracy_score(y_test, predictions))
print(classification_report(y_test, predictions))
```

recall f1-score precision support 0.95 0.98 0.96 53 0.99 0.97 0.98 90 0.97 143 accuracy 0.97 0.97 0.97 143 macro avg weighted avg 0.97 0.97 0.97 143

0.972027972027972

Random Forest

Results

	MODEL	ACCURACY
0	LOGISTIC REGRESSION	0.958042
1	K-NN	0.951049
2	NAIVE BAYES	0.916084
3	SVM	0.965035
4	DECISION TREE	0.881119
5	RANDOM FOREST	0.972028

Final Results

Hyperparameter Tuning

	NAME OF MODEL	ACCURACY SCORE	BEST ACCURACY
0	LOGISTIC REGRESSION	0.958042	0.98361
1	K-NN	0.951049	0.971059
2	NAIVE BAYES	0.916084	_
3	SVM	0.965035	0.982023
4	DECISION TREE	0.881119	0.931847
5	RANDOM FOREST	0.972028	0.826725

Hyperparameter Tuning

```
from sklearn.model_selection import RepeatedStratifiedKFold
model = LogisticRegression()
solvers = ['newton-cg']
max_iter= 1000
penalty = ['12']
c_values = [1000, 100, 10, 1.0, 0.1, 0.01, 0.001]
# define grid search
grid = dict(solver=solvers,penalty=penalty,C=c_values)
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=SEED)
grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy',error_score=0)
grid_result = grid_search.fit(X_train, y_train)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
best_accuracy_log = grid_search.best_score_
Best: 0.981248 using {'C': 1.0, 'penalty': 'l2', 'solver': 'newton-cg'}
```

Logistic Regression

Hyperparameter Tuning

```
model = KNeighborsClassifier()
n_neighbors = range(1, 21, 2)
weights = ['uniform', 'distance']
metric = ['euclidean', 'manhattan', 'minkowski']
# define grid search
grid = dict(n_neighbors=n_neighbors,weights=weights,metric=metric)
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=SEED)
grid_search = GridSearchCV(estimator=classifier_knn, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy')
grid_result = grid_search.fit(X_train, y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
best_accuracy_knn = grid_search.best_score_
```

Best: 0.971059 using {'metric': 'manhattan', 'n_neighbors': 3, 'weights': 'uniform'}

K Neighours

Hyperparameter Tuning

```
model = SVC()
kernel = ['poly', 'rbf', 'sigmoid']
C = [1000, 100, 10, 1.0, 0.1, 0.01, 0.001]
gamma = [0.02, 0.01]
# define grid search
grid = dict(kernel=kernel,C=C,gamma=gamma)
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=SEED)
grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy')
grid_result = grid_search.fit(X_train, y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
best_accuracy_svm = grid_search.best_score_
Best: 0.982023 using {'C': 10, 'gamma': 0.01, 'kernel': 'rbf'}
```

Support Vector Machines

Hyperparameter Tuning

```
model = DecisionTreeClassifier()
criterion = ['gini', 'entropy', 'log_loss']
max_depth = [4,5,6,7,8,9,10,11,12,15,20,30,40,50,70,90,120,150]
max_leaf_nodes = [2,4,6,10,15,30,40,50,100]
min_samples_split = [2, 3, 4]
# define grid search
cv = random_state=SEED
grid = dict(criterion=criterion, max_depth=max_depth, max_leaf_nodes=max_leaf_nodes)
grid_search = GridSearchCV(estimator=model, param_grid=grid, cv=cv)
grid_result = grid_search.fit(X_train, y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
best_accuracy_dtc = grid_search.best_score_
Best: 0.928055 using {'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10}
```

Decision Tree

Hyperparameter Tuning

```
model = RandomForestClassifier()
n_estimators = [10, 100, 1000]
criterion = ['gini', 'entropy', 'log_loss']
# define grid search
grid = dict(n_estimators=n_estimators, criterion=criterion)
cv = RepeatedStratifiedKFold(random_state=SEED)
grid_search = GridSearchCV(estimator=model, param_grid=grid, scoring='accuracy')
grid_result = grid_search.fit(X_train, y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
best_accuracy_rfc = grid_search.best_score_
Best: 0.967114 using {'criterion': 'entropy', 'n_estimators': 10}
```

Random Forest

