Estudo de caso: Grupo D 3

Gilmar and Maressa Nunes R. Tavares and Victor
3 de Setembro, 2019

0.1 Descrição do Problema

Para a versão atual de um dado sistema, sabe-se que sua distribuição de custos de execução possui média populacional de $\mu=50$ e variância $\sigma^2=100$. Uma nova versão desse software foi desenvolvida, portanto uma análise estatística deve ser feita para investigar os ganhos de desempenho obtidos em relação à versão atual. Espera-se que sejam testados a média e variância dos custos de execução O presente trabalho tem como objetivo delinear e executar testes estatísticos para avaliar uma nova versão de um software, em relação aos resultados obtidos na versão anterior. Tendo em vista que a última versão possui uma distribuição do custo computacional com média $\mu=50evariância$ $\sigma=100$, dados da população, objetiva-se verificar se a nova versão apresenta resultados melhores para tais características. Para tanto, utilizou-se o teste z com nível de significância $\alpha=0,01$ e $\alpha=0,05$, para os testes de média e variância, respectivamente. Após os testes verificou-se que....

0.2 Planejamento do Experimento

0.2.1 Geração dos dados

Para simular a geração de dados da nova versão, a biblioteca ExpDE [1] será utilizada. Ela é declarada da seguinte forma:

```
# Set-up the data generating procedure
mre <- list(name = "recombination_bin", cr = 0.9)</pre>
mmu <- list(name = "mutation_rand", f = 2)</pre>
mpo <- 100
mse <- list(name = "selection_standard")</pre>
mst <- list(names = "stop_maxeval", maxevals = 10000)</pre>
mpr < -1ist(name = "sphere", xmin = -seq(1, 20), xmax = 20 + 5 * seq(5, 24))
set.seed(1234) # to generate always the same results
# define functions for data generation
get.single.sample <- function(mpo, mmu, mre, mse, mst, mpr){</pre>
  generator <- ExpDE(mpo, mmu, mre, mse, mst, mpr, showpars = list(show.iters = "none"))</pre>
  return(generator$Fbest)
}
get.n.samples <- function(mpo, mmu, mre, mse, mst, mpr, N){</pre>
  my.sample <- numeric(N)</pre>
  for (i in seq(N)){
    my.sample[i] <- get.single.sample(mpo, mmu, mre, mse, mst, mpr)
  }
  return(my.sample)
}
```

As funções get.single.sample e get.n.samples foram criadas para facilitar o entendimento da função de geração de dados.

0.2.2 Teste do custo médio

Para este teste, são estabelecidos os seguintes objetivos:

- Nível de significância desejado alpha = 0.01. Logo, o nível de confiança desejado é $1 \alpha = 0.99$
- Efeito relevante mínimo de $\delta^* = 4$
- Potência desejada $\pi = 1 \beta = 0.8$

Como estamos interessados em saber se existem ganhos em termos do custo médio, e dado que a média populacional da versão atual é $\mu_0 = 50$, define-se a seguinte hipótese nula e alternativa:

$$\begin{cases} H_0: \mu = 50 \\ H_1: \mu < 50 \end{cases}$$

0.2.3 Teste da variância do custo

Para este teste, são estabelecidos os seguintes objetivos:

- Nível de significância desejado alpha=0.01. Logo, o nível de confiança desejado é $1-\alpha=0.99$
- Usar as mesmas observações coletadas para o teste da média.

Como estamos interessados em saber se existem ganhos em termos de variância média, e dado que a variância populacional da versão atual é $\sigma^2 = 100$, define-se a seguinte hipótese nula e alternativa:

$$\begin{cases} H_0: \sigma^2 = 100 \\ H_1: \sigma^2 < 100 \end{cases}$$

0.3 Análise Exploratória dos Dados

0.4 Análise Estatística

0.4.1 Teste sobre a média do custo

0.4.1.1 Cálculo do tamanho amostral

Baseado nas informações preliminares do problema, $\sigma^2 = 100$, $\delta^* = 4$ e $\pi = 0.8$, e dado que estamos considerando uma hipótese alternativa unilateral para a média amostral, o cálculo do tamanho amostral pode ser estimado com a função power.t.test:

```
# define current system parameters
current_mu <- 50
current_var <- 100
# define mean cost test parameters
sig_level_mean <- 0.01
delta \leftarrow 4
beta <- 0.2
pi <- 1 - beta
ci_mean <- 1 - sig_level_mean</pre>
# use the function inivisble() to supress the function console output
invisible(sample_size_calc <- power.t.test(delta = delta,</pre>
                             sd = sqrt(current_var),
                            sig.level = sig_level_mean,
                            power = pi,
                            alternative = "one.sided",
                            type = "one.sample"))
```

```
# round to the next integer
N <- ceiling(sample_size_calc$n)</pre>
```

Resultando em um tamanho amostral de:

```
## [1] N = 66
```

0.4.1.2 Teste de Hipoteses

0.4.1.3 Calculo do intervalo de confianca

0.4.1.4 Validação das premissas

0.4.2 Teste sobre a variância do custo

0.4.2.1 Teste de Hipoteses

Para a variância, e dado que a população é modelada por uma distribuição normal (vide análise exploratória), a estatística de teste irá seguir uma distribuição chi-quadrado com n-1 graus de liberdade [2]. O teste da variância pode ser executado com a função varTest do pacote EnvStats [3].

```
data.mean.test <- get.n.samples(mpo, mmu, mre, mse, mst, mpr, N)
sig_level_sd <- 0.05
ci_sd <- 1 - sig_level_sd</pre>
varTest(x = data.mean.test, alternative = "less",
        sigma.squared = current_var, conf.level = ci_sd)
##
   Chi-Squared Test on Variance
##
## data: data.mean.test
## Chi-Squared = 19.104, df = 65, p-value = 4.686e-09
## alternative hypothesis: true variance is less than 100
## 95 percent confidence interval:
     0.00000 40.26176
## sample estimates:
## variance
## 29.39083
```

Logo, a hipótese nula é rejeitada, sendo possível declarar que a variância da nova versão do software é significativamente inferior à atual (com um intervalo de confiança de 95%).

0.4.2.2 Calculo do intervalo de confianca

Como temos uma hipótese unilateral, precisamos definir somente um intervalo superior para o nível de significância de desejadado $\alpha=0.95$. De acordo com [2], para n-1 graus de liberdade e significância α , ele pode ser calculado por:

$$\sigma_{Upper}^2 = \frac{(n-1)S^2}{\chi^2_{(\alpha,n-1)}}\tag{1}$$

```
sig_level_sd <- 0.05
ci_sd <- 1 - sig_level_sd
var.upper.ci <- (N-1)*var(data.mean.test)/qchisq(sig_level_sd, N-1)
print(var.upper.ci)</pre>
```

```
## [1] 40.26176
```

Logo, o intervalo de confiança é [0, 40.26176], para um nível de confiança de 95%.

0.4.2.3 Validação das premissas

0.4.3 Discussão e Conclusões

0.5 Divisão das Atividades

Victor - Reporter Maressa - Coordenadora Gilmar - Verificador e Monitor

Referências

- [1] M. B. Felipe Campelo, "CRAN package expde modular differential evolution for experimenting with operators." https://cran.r-project.org/web/packages/ExpDE/index.html, Jan-2018.
- [2] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, (with cd). John Wiley & Sons, 2007.
- [3] S. P. Millard, EnvStats: An r package for environmental statistics. New York: Springer, 2013.