Math 302 Theorem 2.3

Raiden van Bronkhorst

27 January 2020

Proof. Because gcd(a, b) = gcd(|a|, |b|), let a = |a| and b = |b| from now on.

Suppose set $S = \{ax + by : x, y \in \mathbb{Z}, ax + by > 0\}.$

Case 1. a = 0 or b = 0

Without loss of generality, suppose a = 0. Then choosing y = 1 gives us 0 + b = b. Because a and b cannot both be zero, b > 0. Therefore b is in set S.

Case 2. $a \neq 0$ and $b \neq 0$.

Then choose x = 1 and y = 1, which gives us a + b. Because $a \ge 0$, $b \ge 0$, and a and b cannot both be 0, a + b > 0. Therefore a + b is in set S.

Therefore S is nonempty. By the well-ordering property, S must have some least element d, so d is the smallest positive integer that can be written as ax + by.

Suppose c = gcd(a, b). Then c|a and c|b, so $ck_1 = a$ and $ck_2 = b$ for some integers k_1 and k_2 . Thus $d = ax + by = ck_1x + ck_2y = c(k_1x + k_2y)$. So, c|d. This means $c \le d$.

By the Division Algorithm, we can write $a = m_1d + r_1$ for some integers m_1 and r_1 , such that $0 \le r_1 < m_1$. Then $r_1 = a - dm_1 = a - (ax + by)m_1 = a(1 - m_1x) + b(-m_1y)$. So, r_1 is also in the form ax + by. Since $0 \le r_1 < d$ and d is the smallest positive integer of the form ax + by, r_1 must be 0. Therefore a = md, so d|a.

By the Division Algorithm we can also write $b = m_2d + r_2$ for some integers m_2 and r_2 , such that $0 \le r_2 < m_2$. By the same process as above, we find that $r_2 = 0$, so d|b.

Since d|a and d|b, then $d \leq c$. We have $c \leq d \leq c$, so c = d.