Lecture hours 13-15

Definitions and Theorems

Definition (Kernel and Image of a linear transformation). Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation

- The kernel ker(T) is the set of vectors $\vec{x} \in \mathbb{R}^n$ such that $T(\vec{x}) = 0$.
- The image of T is the set of all vectors $\vec{y} \in \mathbb{R}^m$ such that $T(\vec{x}) = \vec{y}$ for some $\vec{x} \in \mathbb{R}^n$.

Definition (Rank and Nullity of a linear transformation). Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation

- The rank of T is the dimension of the image of T, rank $T = \dim(\operatorname{im} T)$.
- The nullity of T is the dimension of the kernel of T, nullity T = dim(ker T).

Theorem (Rank Nullity Theorem).

• In terms of linear transformations:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation

$$rank T + nullity T = n$$
.

• In terms of matrices:

Let A be an $m \times n$ matrix

dim(imA) + dim(kerA) = number of columns of A = n.

Problem 29 (Rank and Nullity). Let $\vec{v} \neq \vec{0}$ be the vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$. Define a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T(\vec{x}) = \vec{v} \times \vec{x}$$
.

- a) What is the nullity of T?
- b) What is the rank of T? Why?

Solution 29 (Rank and Nullity)

a) From Problem 27 in Tutorial 6 we know that if \vec{x} is in the kernel of T then $x=c\vec{v}$ for some $c\in\mathbb{R}$.

From the definition of cross product, it is straightforward to show that any scalar multiple of vector \vec{v} is in the kernel of T.

Therefore, Ker T = span (\vec{v}) and nullity T = 1.

b) The rank of *T* is 2. The easiest way to find this is to use that the kernel of *T* is 1-dimensional and apply the rank-nullity theorem.

Problem 30 (Rank Nullity Theorem). True or false? Justify your answer.

- a) If A is a 2×4 matrix with kernel of dimension 2, then the equation $A\vec{x} = \vec{e}_2$ is consistent.
- b) There is a 5×5 matrix A such that dim(imA) = dim(kerA).

Solution 30 (Rank Nullity Theorem)

- a) True, by the rank-nullity theorem A has rank 2, so the image of A is \mathbb{R}^2 .
- b) False. Suppose dim(im A) = dim(ker A) for some 5×5 matrix A. By the rank-nullity theorem we have

$$5 = dim(imA) + dim(kerA) = 2dim(imA).$$

which is impossible because 2dim(imA) is always an even integer. It cannot be equal to 5.

Problem 31 (Rank Nullity Theorem). Let $T:\mathbb{R}^4\to\mathbb{R}^3$ be the linear transformation defined by

$$T\left(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}\right) = \begin{bmatrix} a - b \\ c - d \end{bmatrix}.$$

Find the kernel, nullity, image and rank of T.

Solution 31 (Rank Nullity Theorem)

1. If $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ is in the kernel of T then a = b and c = d. It follows that the kernel of T

is given by the span of $\begin{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ and nullity T = 2.

2. From the Rank Nullity Theorem we have

$$rank T + nullity T = rank T + 2 = 4.$$

Therefore rank T=2. In other words, the image of T is a 2-dimensional subspace of \mathbb{R}^2 . It follows that im $T=\mathbb{R}^2$.

Problem 32 (Rank Nullity Theorem). Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by

$$T\left(\begin{bmatrix} a \\ b \\ c \end{bmatrix}\right) = \begin{bmatrix} a \\ b \end{bmatrix}.$$

Find the kernel, nullity, image and rank of T.

Solution 32 (Rank Nullity Theorem)

1. If $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is in the kernel of T then a=0 and c=0. It follows that the kernel of T is given by the span of $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and nullity T = 1.

2. From the Rank Nullity Theorem we can conclude that the image of T is a 2-dimensional subspace of \mathbb{R}^2 . It follows that imT = \mathbb{R}^2 .