Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Выпускная квалификационная работа магистра:

Численное моделирование роста усталостной трещины с использованием MLS и XFEM методов

Выполнил магистрант гр. РК5-41М: Перминов С.Д. Научный руководитель: к.т.н., доцент кафедры «Прикладная механика» Чернятин А.С.

Постановка задачи

Постановка задачи

Альтернативные методы

Metod XFEM (XFEM method)

Имитация трещины путем добавления в КЭ аппроксимацию специальных разрывных и асимптотических функций форм без специального разбиения сетки

Бессеточные методы (Meshless methods)

Вместо КЭ сетки – связь между точкой и узлами, определяемая на основе их взаимного расположения; решение задач без переразбиения модели

Цель работы

• Разработать численную модель роста усталостной трещины на основе совместного использования бессеточного метода движущихся наименьших квадратов (MLS) и расширенного КЭ метода (XFEM) и произвести верификацию полученных результатов и оценку эффективности работы вышеуказанной модели по сравнению с существующими расчетными комплексами.

Алгоритм построения бессеточного метода

Шаг 1. Создание расчетной модели

Шаг 2. Формирование функций формы для аппроксимации перемещений MLS методом

$$U(x,y) = \sum_{i=1}^{n} N_i(x,y) * u_i$$

Область поддержки («support domain»)

Размер области поддержки: $d_s = \alpha_s d_c$, где:

- α_s коэффициент, определяется из проведенных ранее экспериментов
- d_c расстояние между двумя соседними узлами

Шаг 3. Выполнение вычислений для системы

Энергетический метод Ритца

Наиболее прост для понимания и реализации

Шаг 4. Решение системы уравнений бессеточного метода

Шаг 5. Обработка результатов

Принципы построения метода XFEM

Поле перемещений:

$$U(x,y) = \sum_{i=1}^{10} N_i(x,y)u_i$$

Классическая КЭ аппроксимация

КЭ сетка, элементы которой фактически учитывают наличие трещины:

 $U(x,y) = \sum_{i=1}^{n} N_i(x,y)u_i + N_{11}(x,y)u_{11} + bN_{11}(x,y)H(x,y)$

степень свободы b

Классическая КЭ аппроксимация

Разрывная функция, отражающая наличие берегов трещины в узле 11

 u_i - перемещение i-того узла $N_i(x,y)$ – функция формы i-того узла

$$H(x,y) = \begin{cases} 1, y > 0 \\ -1, y < 0 \end{cases}$$

Асимптотические функции:

Для узлов вблизи вершины трещины вводятся асимптотические функции

Для трещины смешанного типа:

Для трещины смешанного типа:
$$u_{x}(x,y) = \frac{K_{I}}{2G} \sqrt{\frac{r}{2\pi}} \cos\left(\frac{\theta}{2}\right) \left[\chi - 1 + 2\sin^{2}\left(\frac{\theta}{2}\right)\right] + \frac{K_{II}}{2G} \sqrt{\frac{r}{2\pi}} \sin\left(\frac{\theta}{2}\right) \left[\chi + 1 + 2\cos^{2}\left(\frac{\theta}{2}\right)\right]$$
$$u_{y}(x,y) = \frac{K_{I}}{2G} \sqrt{\frac{r}{2\pi}} \sin\left(\frac{\theta}{2}\right) \left[\chi + 1 - 2\cos^{2}\left(\frac{\theta}{2}\right)\right] - \frac{K_{II}}{2G} \sqrt{\frac{r}{2\pi}} \cos\left(\frac{\theta}{2}\right) \left[\chi - 1 - 2\sin^{2}\left(\frac{\theta}{2}\right)\right]$$

Для записи **асимптотических функций форм** используется набор функций, представленный в виде вектора:

$$\{\gamma(r,\theta)\} = \begin{cases} \sqrt{r}\cos\left(\frac{\theta}{2}\right) \\ \sqrt{r}\sin\left(\frac{\theta}{2}\right) \\ \sqrt{r}\sin\left(\frac{\theta}{2}\right)\sin(\theta) \\ \sqrt{r}\cos\left(\frac{\theta}{2}\right)\sin(\theta) \end{cases}$$

• 7

В результате проведенного исследования был установлен следующий факт:

Совместное использование бессеточного MLS и XFEM методов **ВОЗМОЖНО**

Влияние на модель методом XFEM осуществляется исключительно с помощью **узловых функций форм**

Поле перемещений: $\{U(x,y)\} = [N_{res}(x,y)]\{u\}$

Задача роста усталостной трещины

Анализ усталостного распространения трещины основывался на законе Пэриса:

$$rac{dl}{dn} = C(\Delta K)^m$$
, $\Delta K = K_{max} - K_{min}$ $egin{align*} & C, \, m - \text{параметры материала;} \ l - \text{длина трещины;} \ n - \text{количество циклов;} \ K - \text{КИH.} \ \end{pmatrix}$

Для трещины смешанного типа ($K_I \neq 0$, $K_{II} \neq 0$) вместо ΔK используется ΔK_{eqv} :

$$\Delta K_{eqv} = \frac{1}{2} \cos \frac{\varphi}{2} \left[\Delta K_I \cdot (1 + \cos \varphi) - \Delta K_{II} \cdot 3 \sin \varphi \right]$$

$$\varphi = \pm \cos \frac{3(K_{IImax})^2 + K_{Imax}\sqrt{(K_{Imax})^2 + 8(K_{IImax})^2}}{(K_{Imax})^2 + 9(K_{IImax})^2}$$

Приращение трещины Δl – значение фиксированное

Численный расчет задачи роста усталостной центральной трещины смешанного типа

Схема нагружения

Узловая модель

Вершина

Трещина

Интегрирование глобальной матрицы жесткости

• 11

1 этап – реализация <u>статического решения</u>, определение НДС прямоугольной пластины с центральной наклонной трещиной и расчет КИН с последующей верификацией

КИН определялся на основе полученного поля перемещений.

<u>Поле перемещений</u>. Коэффициент увеличения $=3 \cdot 10^4$

Было произведено сравнение КИН с табличными данными из справочника Ю. Мураками

Точное решение:

$$K_{I (exact)} = F_{I}\sigma\sqrt{\pi a}$$
 $K_{II (exact)} = F_{II}\sigma\sqrt{\pi a}$

Вычисление отклонений:

$$\Delta_{K_{I},K_{II}} = \left| \frac{\left| K_{I,II (MLS+XFEM)} \right| - K_{I,II (exact)}}{K_{I,II (exact)}} \right|$$

		θ					
	a/W	15°	30°	45°	60°	75°	
FI	0.1	0.9391	0.7557	0.5046	0.2527	0.0678	
	0.2	0.9577	0.7730	0.5181	0.2605	0.0701	
	0.3	0.9904	0.8025	0.5406	0.2730	0.0736	
	0.4	1.0402	0.8456	0.5719	0.2896	0.0783	
	0.5	1.1128	0.9046	0.6119	0.3099	0.0837	
	0.6	1.2183	0.984	0.6611	0.3332	0.0896	
	0.7	1.378	1.091	0.721	0.359	0.0957	
	0.8	1.653	1.245	0.795	0.388	0.102	
FII	0.1	0.2502	0.4339	0.5018	0.4352	0.2516	
	0.2	0.2510	0.4367	0.5072	0.4417	0.2560	
	0.3	0.2527	0.4417	0.5162	0.4521	0.2631	
	0.4	0.2560	0.4497	0.5290	0.4660	0.2721	
	0.5	0.2619	0.4617	0.5458	0.4827	0.2825	
	0.6	0.2725	0.480	0.5674	0.5022	0.2939	
	0.7	0.290	0.508	0.595	0.524	0.3060	
	0.8	0,307	0.550	0.630	0.549	0.319	

Полученные отклонения КИН от точных значений незначительны и обусловлены несовершенством алгоритма расчета КИН ввиду того, что основной целью работы являлось объединение MLS и XFEM методов.

Таблица отклонений КИН от точного значения

2a/2W=0.3								
	15 ⁰	30^{0}	45 ⁰	60°				
Δ_{K_I}	14%	22%	7%	9%				
$\Delta_{K_{II}}$	2% 6%		20%	8%				
2a/2W=0.4								
	15 ⁰	30°	45 ⁰	60°				
Δ_{K_I}	8%	1%	28%	21%				
$\Delta_{K_{II}}$	13%	18%	2%	11%				

2 этап – реализация <u>решения задачи роста усталостной трещины,</u> оценка правильности результата и сравнение итоговых конфигураций трещин с аналогичным расчетом в ПК ANSYS

КЭ модель обладает рядом ограничений:

	КЭ модель в ANSYS	Разработанная бессеточная модель
Вершины начальной трещины располагаются:	На границах элементов	Произвольным образом
Начальная трещина задается:	Так, чтобы не проходить через какой-либо узел	Произвольным образом
Величина приращения трещины:	Не может быть меньше размеров элемента	Произвольная
Рост трещины может остановиться ввиду несовершенства алгоритма	Может	Не может

Выводы по данной работе

- ✓ Разработана параметрическая численная модель на основе бессеточного метода MLS в сочетании с методом XFEM в математическом пакете MATLAB для решения плоской статической задачи линейной механики разрушения и задачи роста усталостной трещины, ориентированной произвольным образом;
- ✓ Детально изучены принципы построения разрешающей системы уравнений бессеточного метода с помощью энергетического метода Ритца, а также возможности совместного формирования функций форм методами MLS и XFEM;
- ✓ Разработана бессеточная модель прямоугольной пластины с центральной наклонной трещиной, находящейся под действием равномерно распределенных одноосных растягивающих напряжений и проанализированы особенности реализации MLS и XFEM методов;
- ✓ Разработан специальный алгоритм интегрирования ввиду наличия сингулярности типа $\frac{1}{\sqrt{r}}$ в ближайшей окрестности вершины трещины

Выводы по данной работе

- ▶ Были произведены статический и усталостный расчеты бессеточной модели с трещиной. Полученные поля перемещений удовлетворяют всем граничным условиям, и их вид полностью соответствует предполагаемой форме деформируемого плоского тела;
- Полученные отклонения КИН от точных значений незначительны и обусловлены несовершенством алгоритма расчета КИН ввиду того, что основной целью работы являлось объединение MLS и XFEM методов.
- ▶ Было произведено сравнение итоговых конфигураций трещины между бессеточной и КЭ моделью в результате решения задачи усталостного роста трещины. Бессеточная модель на каждом этапе приращения трещины реализует устойчивое и физически правильное решение, и его точность может быть повышена путем уменьшения величины приращения без увеличения размерности задачи, в отличие от КЭ модель. КЭ модель обладает рядом существенных недостатков по сравнению с бессеточным методом;
- ▶ Решение задач усталостного роста трещины на основе бессеточного метода в сочетании с методом XFEM возможно и перспективно.

Спасибо за внимание!