

Unidad	Parámetro	Tipo de medida	Dominio frecuencial
m/ s² m/s	RMS	En cuerpo Humano Activdades	CPB 1/3 octava
mm/s m mm	PICO PICO-PICO RMS	Diagnosis de Maquinaria	FFT
mm/s mm	RMS	Análisis de estructuras Edificios	FFT
μm		sísmica	

Unidad	Parámetro	Tipo de medida
g	PGA	Sísmica USA
Gal	PGA	Sismica USA

PGA:Peak ground acceleration

•1Gal=1 cm/s²

•1 g = 981 Gal

Ref: VibconTécnica/Documentación técnica/Sismos-Viento-Edificios/Sismología/PAG-Gal.docx

1.- Calcular los niveles de vibración en dB en los 3 parámetros a partir de valores dados en unidades MKS. y posteriormente ordenarlos de mayor a menor

	а	La	V	L _v	d	L _d
Hz	[m/s ²]	d B	[m/s]	d B	[m/s]	d B
5	0,003					
52	0,006					
7	0,03					
12	0,03					
9	0,00087					
22	0,000015					
35	0,03					
12	0,098					
47	0,0087					
14	59					
80	10					
35	0,000002					
43	0,0034					

3.- Cambia de función aceleración los siguientes valores de aceleración eficaz

4.- Determina el valor global de desplazamiento de los valores de aceleración eficaz antes indicados.

	a rms	pico	pico-pico
Hz	[m/s2]	[m/s2]	
1	0,028284271		
2	0,190918831		
3	0,003181981		
4	0,021213203		
5	0,176776695		
6	0,848528137		
7	15,567		
8	59		

	Desplazamiento rms
Hz	m
1	
2	
4	
5	
6	
7	
8	
Global	

Tenemos el espectro de vibración en 1/3 de octava expresado tanto en unidades lineales de m/s² (columna lin.) y en niveles en dB respecto a0:10-6 m/s² (columna Nivel dB).

Calcular para cada columna el valor global de vibración expresados en dB para ambos casos)

Hz 1/3octava	Lin [m/s²]	NIVEL en dB.
1	0,00054 m/s ²	54,60 dB
1,25	0,00060 m/s²	55,60 dB
1,6	0,10839 m/s²	100,70 dB
2	1011579,45426 m/s ²	240,10 dB
2,5	1000,00000 m/s ²	180,00 dB
3,15	223,87211 m/s ²	167,00 dB
4	0,00001 m/s²	15,00 dB
5	0,01585 m/s²	84,00 dB
6,3	0,06310 m/s²	96,00 dB
8	0,14125 m/s ²	103,00 dB
10	1,00000 m/s²	120,00 dB
12,5	6,30957 m/s²	136,00 dB
16	54,95409 m/s ²	154,80 dB
20	109,64782 m/s ²	160,80 dB
25	944060,87629 m/s ²	239,50 dB
31,5	1071519,30524 m/s ²	240,60 dB
40	0,00000 m/s²	10,29 dB
50	0,33113 m/s ²	110,40 dB
63	32,35937 m/s ²	150,20 dB
80	0,00174 m/s²	64,80 dB
valor global en dB	?	?
	UTLIZAR suma energética	utilizar método suma logorítmica

- 4. Inspección e impacto ambiental
- 41. Puestos de trabajo

VMB (vha) s/UNE-EN ISO 5349-1

Medida y evaluación de las vibraciones transmitidas por la mano:

La exposición diaria a las vibraciones se evalúa mediante:

 $A(8) = a_h \sqrt{\frac{T}{T_0}}$

donde:

T es la duración total diaria de la exposición a las vibraciones

To es la duración de referencia de 8 horas (28.800 s)

Si el trabajo es tal que la exposición diaria total a las vibraciones consta de varias operaciones con diferentes magnitudes de las vibraciones, entonces:

$$A(8) = \sqrt{\frac{1}{T_0} \sum_{i=1}^{n} a_{hvi}^2 T_i}$$

donde:

a_{hvi} es la magnitud (vector suma) de las vibraciones de la operación i

n es el número de exposiciones individuales a las vibraciones

Ti es la duración de la operación i

$$a_{hv} = \sqrt{(a_{hwx})^2 + a_{hwy}^2 + (a_{hwz}^2)^2}$$

a_{hw}(t) Valor de la aceleración instantánea de las vibraciones transmitidas por la mano, ponderadas en frecuencia, en el tiempo t, en m/s²

ahw Valor eficaz de la aceleración instantánea de las vibraciones transmitidas por la mano, ponderadas en frecuencia, en el tiempo t, en m/s²

 a_{hwx} Valor de a_{hw} , en m/s², para el eje x

a_{hwy} Valor de a_{hw}, en m/s², para el eje y

a_{hwz} Valor de a_{hw}, en m/s², para el eje z

Valor total de la aceleración eficaz de las vibraciones, ponderada en frecuencia. Conocida también como vector suma o suma de aceleraciones ponderadas en frecuencias. Es la raíz cuadrada de la suma de los cuadrados de los valores de a hw para los tres ejes de medida de las vibraciones, en m/s²

A(8) Exposición diaria a las vibraciones (valor total de la energía equivalente de las vibraciones para 8 horas), en m/s². También denominado ahv(eq.8h) o, abreviadamente, ahv

T Duración total diaria de la exposición a las vibraciones

T_o Duración de referencia de 8 horas (28 800 s)

W_h Característica de ponderación en frecuencia para las vibracione transmitidas por la mano

Rafael Torres del Castillo (2ª Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

Parámetro de la amplitud

VMB (vha) s/UNE-EN ISO 5349-1

$$a_{hw} = \sqrt{\sum_{i} (W_{hi} a_{hi})^2}$$

Exposición diaria A(8) mano brazo con UNA SOLA FUENTE DE VIBRACIÓN

$A(8) = a_{hv} \sqrt{\frac{T}{T_0}}$

$$A(8) = \sqrt{a_{hv}^2 \left(\frac{T}{T_0} \right)}$$

$$A(8) = \sqrt{\frac{1}{T_0}} a_{hv}^2 T$$

$$A^2(8) = \frac{1}{T_0} a_{hv}^2 T$$

Exposición diaria A(8) mano brazo con VARIAS FUENTES DE VIBRACIÓN

$$A^{2}(8) = A_{1}^{2}(8) + A_{2}^{2}(8) + ... + A_{n}^{2}(8)$$

$$A(8) = \sqrt{A_1^2(8) + A_2^2(8) + ... + A_n^2(8)}$$

$$A(8) = \sqrt{\frac{1}{T_0} \sum_{i=1}^{n} a_{hvi}^2 T_i}$$

	Valor que da lugar a una acción	Valor límite
Vibraciones transmitidas al sistema mano-brazo	2,5 m/s ²	5 m/s ²
Vibraciones transmitidas al cuerpo entero	0,5 m/s²	1,15 m/s ²

31/07/14c

•Una vez conocidos los valores eficaces de la aceleraciones ponderadas en frecuencia \mathbf{a}_{wx} , \mathbf{a}_{wy} y \mathbf{a}_{wz} , se calculan las exposiciones diarias A(8) EN CUARPO COMPLETO POR CADA EJE mediante las expresiones siguientes:

$$A_{Y}(8) = 1.4a_{WY} \sqrt{\frac{T}{T_{0}}}$$

$$A_Z(8) = a_{WZ} \sqrt{T_0}$$

•Se toma como valor diario de la exposición A(8) en CUERPO COMPLETO, para comparar con los valores de referencia, el máximo de estos tres valores.

 $MAX: \{ Ax(8), Ay(8), Az(8) \}$

	Valor que da lugar a una acción	Valor límite
Vibraciones transmitidas al sistema mano-brazo	2,5 m/s ²	5 m/s²
Vibraciones transmitidas al cuerpo entero	0,5 m/s²	1,15 m/s ²

Exposición diaria A(8) cuerpo completo con UNA SOLA FUENTE DE VIBRACIÓN

$$A_{1X}(8) = 1.4 a_{WX} \sqrt{T/T_0}$$

$$A_{1Y}(8) = 1.4 a_{WY} \sqrt{\frac{T}{T_0}}$$

$$A_{1Z}(8) = a_{WZ} \sqrt{\frac{T}{T_0}}$$

Para una fuente 1

$$a_w = \sqrt{1,4(a_{wx})^2 + 1,4(a_{wy})^2 + (a_{wz})^2}$$

$MAX: \{ Ax(8), Ay(8), Az(8) \}$

Exposición diaria A(8) cuerpo completo con VARIAS FUENTES DE VIBRACIÓN

$$A_X(8) = \sqrt{A_{1X}^2(8) + A_{2X}^2(8) + \dots + A_{nX}^2(8)}$$

$$A_{Y}(8) = \sqrt{A_{1Y}^{2}(8) + A_{2Y}^{2}(8) + \dots + A_{nY}^{2}(8)}$$

$$A_Z(8) = \sqrt{A_{1Z}^2(8) + A_{2Z}^2(8) + ... + A_{nZ}^2(8)}$$

$$A_{X}^{2}(8) = \left(1,4a_{WX}\sqrt{T/T_{0}}\right)^{2} A_{Y}^{2}(8) = \frac{1}{T_{0}}1.96a_{WY}^{2}T$$

$$A_{X}^{2}(8) = \frac{1}{T_{0}}1.96a_{WX}^{2}T A_{Z}^{2}(8) = \frac{1}{T_{0}}a_{WY}^{2}T$$

 $MAX: \{ Ax(8), Ay(8), Az(8) \}$

31/07/14

VCC (wbv) s/ISO 2631 parte 1 y 2

		VMB (hav) s/UNE-EN ISO 5349-1		VCC (wbv) s/ISO 2631 parte 1 y 2	
Valor de umbral A(8)		1 m/s ²	120 dB	0,25 m/s ²	108 dB
Valor de exposición que da lugar a una acción A(8)		2,5m/s ²	128 dB	0,5 m/s ²	114 dB
Valor límite de NO Protegida		5 m/s ²	134 dB	0,7 m/s ²	117 dB
exposición diaria A(8)	Protegida	5 m/s ²	134 dB	1,15 m/s ²	121 dB

2.0.- Calcular el <u>vector aceleración a_{hv} </u> de los valores espectrales en 1/3 octava en los ejes Z,X eY.

$$a_{hv} = \sqrt{(a_{hwx})^2 + a_{hwy}^2 + (a_{hwz}^2)^2}$$

Hz	0	0)/		
1/3octava	a _x	ay	a _z	
1	2,E-04	8,E-05	1,E-04	
1,25	2,E-04	1,E-04	1,E-04	
1,6	2,E-04	9,E-05	5,E-05	
2	1,E-04	8,E-05	1,E-04	
2,5	7,E-05	1,E-04	1,E-04	
3,15	7,E-05	8,E-05	7,E-05	
4	7,E-05	1,E-04	1,E-04	
5	5,E-05	8,E-05	1,E-04	
6,3	1,E-04	9,E-05	2,E-04	
8	1,E-04	1,E-04	5,E-04	
10	2,E-04	2,E-04	1,E-03	
12,5	2,E-04	4,E-04	2,E-03	
16	2,E-03	2,E-03	3,E-03	
20	2,E-03	2,E-03	6,E-03	
25	4,E-03	4,E-03	3,E-03	
31,5	2,E-03	2,E-03	3,E-03	
40	1,E-03	2,E-03	2,E-03	
50	1,E-03	1,E-03	1,E-03	
63	1,E-03	8,E-04	1,E-03	
80	2,E-03	1,E-03	1,E-03	

2.1.- Un trabajador está expuesto a los siguientes valores de aceleración continua equivalente: Fresar 2 h a 1m/s²; tornear 1,5 h a 4 m/s² y prensa 1 h a 8 m/s².

Determinar la exposición diária de las vibraciones y evaluar el Riesgo a VMB

$$A(8) = \sqrt{\frac{1}{T_0} \sum_{i=1}^{n} a_{hvi}^2 T_i}$$

- **2.2.-** Un trabajador manipula con una tronzadora durante 63 minutos a una aceleración MB de 4,5m/s2.
- 1- Determinar la exposición diaria a las vibraciones transmitidas por la mano
- 2-Determinar el EAV
- 3-Determinar el ELV
- **2.3**.- Un trabajador está expuesto a los siguientes valores de aceleración continua equivalente: Fresar 3 h a 1m/s²; tornear 2 h a 4 m/s², prensa 2 h a 8 m/s², ajuste 2h 1,5 m/s², 2 horas pulir en taller 0,8m/s²

Determinar la exposición diaría de las vibraciones y evaluar el Riesgo a VMB

EAV: Tiempo en alcanzar el Valor de exposición que da lugar a una acción

ELV: Tiempo en alcanzar el valor límite de exposión

 $A(8) = a_{hvi} \sqrt{\frac{T}{T_0}}$ Valor de exposición que da lugar a una acción A(8)

Valor límite de

5 m/s²

exposición diaria A(8)

EAV: Tiempo en alcanzar el Valor de exposición que da lugar a una acción

ELV: Tiempo en alcanzar el valor límite de exposión

- •Son términos de las siglas inglesas Exposure Action Value (EAV) y Action Value (AV)
- •Ambos términos nos permiten determinar el tiempo máximo que un trabajador ha de estar expuesto a vibraciones sin sobrepasar el marco normativo, para cada una de las fases que realice manipulando la máquina correspondiente.
- •Por tanto, ambos términos se miden en unidades de tiempo.
- •Como se ve en el esquema, el valor que da lugar a una acción en vibraciones mano brazo (2.5m/s²) y el valor límite de exposición diaria (5 m/s²) son precisamente la dosis diaria normalizada A(8).
- •El a_{hvt} es el vector aceleración de vibración que genera la máquina cuando el trabajador la manipula. Por tanto es un dato que lo facilita el propio fabricante o bien se obtiene mediante una medida triaxial de vibraciones.
- •El T0 es 8 h laborables de una jornada normalizada de trabajo.

Valor rms dinámico

Tiene en cuenta transitorios y choques ocasionales

Valor rms dinámico: MTVV (Valor máximo transitorio de la vibración)

$$MTVV = \max \left[\left(\frac{1}{\tau} \int_{-\infty}^{1} a_{Wm}^{2}(\zeta) e^{-\frac{t-\zeta}{\tau}} d\zeta \right)^{\frac{1}{2}} \right]_{t=0}^{t=T}$$

- $\mathbf{a}_{\mathbf{wm}}(\zeta)$: Aceleración instantánea en función de tiempo ζ ponderada frecuencialmente Wm en m/s²
- •T: Duración de la medición
- τ:1s promediado exponencial de 1 segundo.

Valor de la dosis de vibración a la cuarta potencia -VDV

$$VDV = \left[\int_{0}^{T} a_{w}^{4}(\tau)d(\tau)\right]^{\frac{1}{4}}$$

- **a**_{wm}(ζ): Aceleración instantánea en función de tiempo ζ ponderada frecuencialmente Wm en m/s²
- •T: Duración de la medición

$$a_v = \sqrt{1,4^2(a_{wx})^2 + 1,4^2(a_{wy})^2 + (a_{wz})^2}$$

- 4. Inspección e impacto ambiental
- 41. Edificios
- 42. Maquinaria
- 43. Actividades

- Actividades
- Instalaciones
- Vecindario

DB SEC

Tabla 2.4. Valores de referencia para el valor pico de la vibración del terreno en su mayor componente frente a vibraciones de corta duración (UNE 22-381-93)

Une Voladuras

	Frecuencia principal (Hz)			
Clase de edificio	2-15	15-75	>75	
	Velocidad	Desplazamiento ⁽¹⁾	Velocidad	
	[mm/s]	[mm]	[mm/s]	
Edificios y naves industriales ligeras con estructuras de hormigón armado o metálicas.	20	0,212	100	
Edificios de viviendas y otros similares en su construcción y/o en su utilización.	9	0,095	45	
Edificios especialmente sensibles a las vibraciones.	4	0,042	20	

⁽¹⁾ En los tramos de frecuencias comprendidas entre 15 y 75 Hz se podrá calcular la velocidad equivalente conociendo la frecuencia principal a través de la ecuación:

 $v = 2 \cdot \pi \cdot f \cdot d$

siendo

v la velocidad de vibración equivalente en mm/s

f la fre cuencia principal en Hz

d el desplazamiento admisible en mm indicado en la tabla

DB SEC

Tabla 2.5. Valores de referencia para la velocidad de vibración (mm/s) de las cimentaciones frente a vibraciones de corta duración

	Cimientos			Nivel del techo del piso mas alto habitable	Forjados o Techos
Clase de edificio	Valor máximo de las 3 componentes del vector velocidad			Vibraciones horizontales en dos direcciones	Vibración ver- tical en el cen- tro
		Frecuenc	ias	Todas las fre-	Todas las
	< 10 Hz	10 a 15 Hz	50 a 100 ⁽¹⁾ Hz	cuencias	frecuencias
Edificios utilizados para actividades industriales y edificios industriales	20	20 a 40	40 a 50	40	
Edificios de viviendas y otros similares en su construcción y/o su utilización. Edificios con enlucidos	5	5 a 15	15 a 20	15	20
Edificios especialmente sensibles a las vibraciones	3	3 a 8	8 a 10	8	

⁽¹⁾ Para frecuencias superiores a 100 Hz se deben aplicar, como mínimo, los valores de referencia para 100 Hz

Inspección de la molestia de las actividades, instalaciones, vecindario y transporte que en su uso, funcionamiento o ejercicio generen molestia y riesgo para la salud de las personas, su salud o bienestar o bien deteriorar la calidad del medio ambiente.

- ISO 2631-2 2003:Método cálculo MTVV
 - RD 1367/2007: Anexo II: Objetivos de calidad acústica
- ISO 2631-2 1989: Método Índice K de vibración
 - Ley 7/2002 de Protección contra la contaminación acústica de la Comunidad Valenciana.

Fase de la medición

Multiplico para cada valor de **a**_{i,j} Por la ponderación **Wn** para cada 1/3 octava de 1 a 80 Hz.

- •(j)=cada uno de los1/3 octava
- •(i)=los distintos instantes de la medición (i)).
- ·Wn=ponderación a cada 1/3 octava

Promediado temporal exponencial. Tiempo de promediado de 1 s. *T*₁=1s m/s² rms T_1 Τ, Τ, Т, time TIEMPO en s Hz 1/3octava 7,E-05 9,E-06 1,25 3,E-07 2,E-05 1,E-04 1,6 1,E-05 2.E-04 6,E-04

1,E-05

2.E-05

1.E-04

2,E-04

3.E-04

2.E-04

2.E-04

1,E-04

4,E-04

3.E-04

2,E-04

1.E-04

8,E-05

2.5

12.5

31.5

40

50

63

16

3,E-04

6,E-04

3.E-04

1,E-04

9,E-05

1,E-04

4,E-04

7,E-04

8,E-04

3.E-04

2,E-04

1.E-04

8,E-05

6,E-04

5,E-04

3,E-04

1,E-04 1,E-04

6.E-05

5,E-05

8.E-05

9,E-05

5,E-04

3,E-04

2.E-04

1,E-04

Fase de post procesado

aw,i,j (de octava (j) y para los distintos instantes de la medición (i)).

$$a_{w,i} = \sqrt{\sum_{j} \left(w_{m,j} a_{w,i,j} \right)^2}$$

Global=suma energética RAIZ(SUMA.CUADRADOS)

Máquina rotativa trabajando en zona mixta de viviendas y zona industrial.

día y hora de la

medida:15/2/07 a las

20.00h

DETERMINAR EL NIVEL DE ACELERACIÓN PONDERADO GLOBAL DEL PROCESADO SIGUIENTE S/ISO2631 Y LEY DEL RUIDO. (MTVV)

Uso del edificio	Índice de vibración L _{aw}	
Vivienda o uso residencial	75	
Hospitalario	72	
Educativo o cultural	72	

Hz	TIEMPO en s							
1/3octava	1	2	3	4	5	6		
1	3,E-07	1,E-05	8,E-05	3,E-04	5,E-04	6,E-04		
1,25	3,E-07	2,E-05	1,E-04	3,E-04	7,E-04	6,E-04		
1,6	2,E-05	2,E-04	6,E-04	6,E-04	4,E-04	2,E-04		
2	1,E-05	3,E-04	6,E-04	4,E-04	2,E-04	1,E-04		
2,5	2,E-05	3,E-04	6,E-04	3,E-04	2,E-04	1,E-04		
3,15	2,E-04	6,E-04	3,E-04	2,E-04	1,E-04	1,E-04		
4	2,E-04	4,E-04	2,E-04	9,E-05	1,E-04	1,E-04		
5	2,E-04	5,E-04	2,E-04	9,E-05	9,E-05	1,E-04		
6,3	4,E-04	2,E-04	1,E-04	9,E-05	1,E-04	9,E-05		
8	4,E-04	2,E-04	9,E-05	8,E-05	1,E-04	1,E-04		
10	3,E-04	2,E-04	2,E-04	1,E-04	2,E-04	2,E-04		
12,5	3,E-04	2,E-04	2,E-04	2,E-04	2,E-04	1,E-04		
16	1,E-03	1,E-03	2,E-03	1,E-03	8,E-04	9,E-04		
20	3,E-03	3,E-03	5,E-03	3,E-03	3,E-03	2,E-03		
25	2,E-03	4,E-03	5,E-03	5,E-03	4,E-03	3,E-03		
31,5	2,E-03	1,E-03	2,E-03	2,E-03	2,E-03	1,E-03		
40	1,E-03	1,E-03	1,E-03	2,E-03	1,E-03	1,E-03		
50	1,E-03	1,E-03	1,E-03	1,E-03	1,E-03	1,E-03		
63	1,E-03	1,E-03	9,E-04	1,E-03	9,E-04	9,E-04		
80	1,E-03	1,E-03	1,E-03	1,E-03	1,E-03	1,E-03		

Tiempo en s								
233	234	235	236	237	238			
1,E-04	9,E-05	2,E-04	2,E-04	1,E-04	9,E-05			
9,E-05	6,E-05	5,E-05	1,E-04	1,E-04	2,E-04			
4,E-05	6,E-05	6,E-05	2,E-04	2,E-04	9,E-05			
6,E-05	8,E-05	1,E-04	8,E-05	1,E-04	2,E-04			
1,E-04	1,E-04	2,E-04	1,E-04	7,E-05	5,E-05			
7,E-05	4,E-05	7,E-05	6,E-05	1,E-04	8,E-05			
1,E-04	6,E-05	5,E-05	7,E-05	8,E-05	7,E-05			
5,E-05	8,E-05	5,E-05	4,E-05	6,E-05	5,E-05			
1,E-04	8,E-05	5,E-05	6,E-05	9,E-05	6,E-05			
1,E-04	5,E-05	6,E-05	7,E-05	6,E-05	3,E-05			
4,E-04	3,E-04	2,E-04	2,E-04	2,E-04	2,E-04			
2,E-04	2,E-04	2,E-04	1,E-04	2,E-04	2,E-04			
2,E-03	2,E-03	2,E-03	1,E-03	1,E-03	2,E-03			
3,E-03	3,E-03	2,E-03	3,E-03	3,E-03	6,E-03			
4,E-03	3,E-03	6,E-03	4,E-03	4,E-03	4,E-03			
2,E-03	2,E-03	2,E-03	2,E-03	2,E-03	2,E-03			
1,E-03	1,E-03	1,E-03	1,E-03	1,E-03	1,E-03			
1,E-03	2,E-03	1,E-03	1,E-03	1,E-03	1,E-03			
8,E-04	8,E-04	8,E-04	8,E-04	8,E-04	7,E-04			
1,E-03	1,E-03	1,E-03	1,E-03	1,E-03	1,E-03			

.....nos vemos pronto ©

