EFFECT OF ADDING SPIRAL REINFORCING TO VERTICALLY REINFORCED CONCRETE COLUMNS

BY

W. HALLSTEIN C. L. BOETTER

ARMOUR INSTITUTE OF TECHNOLOGY
1 9 1 4

Illinois Institute
of Technology
UNIVERSITY LIBRARIES

AT 335 Hallstein, W. The effect of adding spiral reinforcing to vertically

For Use In Library Only

THE EFFECT OF ADDING SPIRAL REINFORCING TO VERTICALLY REINFORCED CONCRETE COLUMNS.

A THESIS

Presented By

Walter Hallstein

Carl L. Boetter

to the

President and Faculty

of

ARMOUR INSTITUTE OF TECHNOLOGY

for the degree of

Bachelor of Science in Civil Engineering Having

Completed the Prescribed Course of Study in

CIVIL ENGINEERING

1914

ILLINOIS INSTITUTE OF TECHNOLOGY PAUL V. GALVIN LIBRARY 35 WEST 33RD STREET CHICAGO, IL 60616

IM Raymond

C.C. Morrin

	Table of Contents	
	10000 01 00.000	Page
I	Introduction	3
II	Materials	5
III	Specimens - making, curing and testing	11
IV	Experimental results and discussion	16
V	Conclusions	19
ΙV	Bibliography	22
VII	Log sheets	24
VIII	Curves	31
IX	Illustrations	32

'The Effect of Adding Spiral Reinforcing to Longitudinally Reinforced Columns.

Introduction

The purpose of these tests was to study the effect of adding spiral steel to longitudinally reinforced columns. Two columns were tested, on with vertical reinforced steel, and the other reinforced with spiral and vertical steel. Both columns were made with a protective shell an inch thick on the outside of the steel. While this made it difficult to study the distribution of stress in the concrete and reinforcing steel, usefull information was obtained in regard to the behavior of this shell. The work on columns was done in the mechanical laboratory, the vertical reinforced column being made inside and the other or spiral, outside. The cement, sand and stone tests were made in the cement laboratory and the different strength tests made in the laboratory of the main building.

Materials

Materials.

Cement: - Chicago portland cement from the local market was used in the tests. Table I gives the tensile strength of neat and 1:3 morter briquettes tested at 7 and 28 days.

	Table I				
Briquettes	Ultimate strength, lbs/in2				
Number	Age 7 day		Age 28 days		
	Neat	1:3 Mortar	Neat	1:3 Mortar	
1	430//	340%	77 7 #	450#	
2	456/1	319#	703#	425#	
Average	443#	329.5 ⁴	740//	437.5#	

Sieve Analysis of Cement.

200 grams of dried cement, taken from four bags and thoroughly mixed, were placed in the testing sieve agitator and operated for ten minutes, the following results being obtained,

Table II				
# of sieve	grams retained	% retained		
10	0			
20	0			
30	0			
40	.10	.051		
50	2.15	1.100		
60	. 9-6	.491		
80	12.57	6.42		
100	13.40	6.85		
200	61.30	31.350		
Passing all	106.35	54.300		
Total	195.83	100.901		

Sand:- The sand used was a good torpedo obtained from the local market. The mechanical analysis of this sand is obtained in table III, a 500 gram sample being used.

Taole III

Analysis of Sand						
Per cent Voids 30 Weight per cu. ft. = 101.6						
Sieve meshes per in.	grams retained	% retained				
10	165.30	33.50				
20	95.10	19.25				
30	84.10	17.00				
40	60.60	12.25				
50	61.10	10.38				
60	12.45	2.52				
80	7.65	1.55				
100	3.00	.61				
200	2.00	.40				
Passing all	2.60	. 53				
Total	493.90	09.05 %				

Stone: - A soft crushed limestone was used, the voids of which were found by the pail method.

Concrete:- Computations for percentage of ingredients.

Voids in stone ----- 48 %

40% excess of mortar over the voids in the stone used.

Cement paste has 0.8 the volume of dry cement.

Begin with 100 parts of crushed stone.

No. of parts of mortar $.46 \times 100 \times 1.4 = 67.2$ parts Mortar=sand plus cement.

$$67.2 = S(1 - .3) + S(.30) \times 1.5$$

53.76 = .528S + .36S = .888 S

S = 53.76 = 60.5 parts of sand. .888

 $60.5 \times .3 \times 1.2 = 27.2$ parts of cement.

 Cement
 Sand
 Crushed Stone

 Parts 27.2
 : 60.5
 : 100

 1
 : 2.22
 : 3.68

Computation of Weights of Ingredients.

Weight of cylinders assumed ----- 100# each.

Volume of column $= 11^2 \times .7854 \times 10 = 6.6 \text{ cu. ft.}$

Weight of column = $6.6 \times 150 = 990$ lbs.

1200 pounds of concrete made up in three batches.

Weight of cement per cubic foot ----- $97_L^{\#}$ (say $95_L^{\#}$ net)

" stone " " " ----- 93.6

" sand " " 101.6

By vol. 1 ______ 2.22 _____ 3.68

Wt. relative) 95/95 = 1 ______ 101.6 = 1.07 _____ 93.6 = .985

Therefore by) weight 1 ______ 1.07 x 2.22 = J.37 -.985x3.68 = 3.62

Proportions for 400# Batch.

Cement----- 1

Sand _____ 2.37

C. S. _________3.62 6.99 or 7 parts.

Cement $\frac{400}{7} = ---- 57.1 \#$

Sand 2.37 x 57.1=----135.0

Stone 3.62 x 57.1=--- 208.0 400.1 lbs of concrete.

In mixing each patch the sand was first spread on the mixing platform and the cement added evenly on top. The sand and cement were thoroughly mixed while dry and then water added to make a good plaster paste. The stone was added after the mortar had been mixed for ten minutes and additional water used to make a good wet concrete which would flow readily around the reinforcing without much puddling. The way in which the water was added played an important part in securing a uniform consistency throughout the batch. The cement was carried to the form in pails, a platform being erected to facilitate the handling of same.

Steel:- The vertical steel used was a mild steel, while the steel in the spiral was a high carbon. The former was i diameter and the diameter of the latter was .1761", the pitch of the spiral being 1" and rigidly held by spacing bars. Two inch pieces of the vertical steel were tested for compression and 4" pieces of the spiral steel were tested for tension. Table IV gives the mechanical analysis for the two steels.

	Length of bar	Area in	Load at yield pnt.		Stresses at	Ultimate strength
	71 0201	0.10	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		lbs./in.2	lbs/sq. ir.
Compression	on 2"	.1975	8400	9,700	42,500	49,250
11	2	.2235	8530	11,400	38,200	51,000
44	2	.1958	8400	12,500	42,850	63,800
lensior	: 4	.025	1700	2500	39,800	102,600

Specimens.

Making, Curing and Testing.

III Specimens: - Making, Curing and Testing.

Auxiliary Specimens.

From the first two batches of concrete mixed for each column, a 7" cylinder was made. Tests of these cylinders served to indicate the strength of the concrete used in the columns. The cylinders were left under the same conditions as the columns and those made at the time the column was, were tested the same day as the column. (34 days)

Compressive Strength of Concrete Cylinders					
Column	Specimens 7" x 16" cylinders	Age in days	Modulus of Elasticity	Ultimate strength lbs/sq. in.	
1.	1	34		860	
1	2	34		1110	
2	3	34	1,940,000	2127.9	

Columns.

Forms:- The forms were made octagonal, of 2" stock 10' long and beveled to form an octagonal cylinder. The eight pieces were held together by 2" x 4" timbers bolted together. These were put around the form as shown in fig. I and wedges put in to make the form as tight as possible. The bottom was nailed to the form

and small pieces of wood for spacing the vertical rods placed. About 6" from the pottom a wedge shaped hole was cut to enable the observer to set the rods on the small wood blocks. A scaffold was built around the form and the latter rigidly fastened to it. The steel rods for the vertical reinforcing were held in place by iron hoops 1/8" x 3/8" in cross section, spaced every 6" of length. In the spiral reinforcing the vertical rods were fastened to the spiral lirectly, hay wire being used and ties made every 6".

Making:- In fabricating the two columns, the concrete was poured in from a pail at the top.

While the column was being poured it was continually puddled, both inside and outside of the reinforcing to prevent the formation of pockets and blow holes. A day or two after the columns were made, a thin coat of 1:1 mortar was applied to their top. In making the column with the spiral reinforcing, considerable difficulty was encountered in keering the stell in the continually was form.

Curing:- The forms were removed from the columns at the end of seven days and then they were allowed to cure in the open air for 27 days.

Testing:- After 13 drys, the columns were tested in the 400,000 pound Olsen testing machine in the laboratory. The column was put in the machine and bedded on a cast iron plate at the top and bottom, sheets of paper being placed between the column and the plates to fill up any depressions in the surface. The column was loaded in increments of 10,000 pounds. The cylinders were tested in a 200,000 pound Richle testing machine, increments of 2000 pounds being used.

Measurements of the longitudinal deformation were made by means of compressometers, which measured to 0.0001 of an inch. The compressometers shown in fig. IIIa and IIIb were used, the former for deformations of the cylinders and the latter for deformations of the columns. For use on the columns, four bars were fastened on the column about three fect from the top.

On opposite sides of the column brass rods were fastened to the bars and insulated by means of fibre. The other end of the rods formed a contact for a dial fastened on another set of bars spaced 44 inches below the first set. The instrument has a vertical scale divided into tenths of an inch and these in turn are divided into four equal

parts, making each vertical division equal to 1/40 of an inch. The wheel or dial, worked by a vertical screw was divided into 250 equal parts and one turn of it corresponded to one division on the vertical scale, or 1/40 of an inch, making each division on the wheel equal to 0.0001 of an inch. Contact was assured by means of a bell in circuit with a storage battery. After each load was anclied, the dial on one side was read and recorded, then the dial on the other side.

To measure the deformation of the spiral, the shell was taken off near the center for about a foot, exposing the spiral steel. One end of a steel tape was soldered to the spiral and wound around five times, the other end being held teut by means of a spring. A transit was used to read the deformations, but the spiral did not undergo any change until the last two loads were applied, so that the values were not considered trust-vorthy and will not be reported.

Experimental Results and Discussion.

Discussion.

I Tests of 7" Cylinders.

Log sheet III contains the result of compression tests made on the seven inch cylinders. Owing to misunderstanding, two of the cylinders were tested for ultimate strength only, and did not show as strong as . the last one tested which gave an average modulus of elasticity of 1,940,000 lbs./sg. in., and an ultimate strength of 2127 lbs./sq. in. The last cylinder tested seemed to be apportually strong in comparison with the others, being almost twice as great in ultimate strength as the next highest. This variation being due to a great extent to the fact that the load was given a rest of a few minutes to give time to read the compressometer whereas in the other the load was applied until rupture occurred. The break in the cylinders was diagonal, running from top to oottom.

II Test of Longitudinally Reinforced Column.

When tested, the column showed itself to be very stiff for a load about 2/3 of its ultimate strength, when the shell began to peel at the bottom, which together with the deformations indicated that the yield

point of the steel had been reached. At this point, however, owing to the insufficient support offered by the widely separated bands, it oegan to fail. The reinforcement failed by buckling as shown in fig. II, while the concrete failed in the same way as it did for the cylinders, that is, diagonally. The data for this column is contained in log sheet I.

Test of Column with Longitudinal and Spiral Reinforcing.

This column showed a very marked increase in stiffness over the preceding column, the deformation for the same load being about one third to one half that of the column, with just the longitudinal reinforcing. At half load, the column began to spall at the top, but this was due to the concave surface which had been filled with Plaster of Paris, making the edges brittle. At 7/6 of the ultimate load, the column tegan to spall at the bottom, and failed at 310,000 lbs. by the breaking of the first hoop at the top. As the load was kept on the column, the first five spirals at the top gave way in the following fifteen minutes and the protecting shell began to spall near the center.

Conclusions.

Conclusions.

- The plain concrete cylinder had an average modulus of elasticity of 1,940,000 los./in.² and an ultimate strength per sq. in. of 2127 pounds. Although the cylinder showed up exceptionally strong under practical working conditions, the liability of variations in strength and eccentricity make the use of a low working stress necessary for such a brittle material.
- 2. The vertical reinforcing in the first column did not seem to aid the strength of the column at
 all. In fact the ultimate strength was below that of
 the plane concrete cylinder.
- 3. The double reinforcing, spiral and vertical, was the only one that seemed to effect the strength of the column. The deformations were small in comparison to the first column, and although the shell peeled off at a load of 2036 pounds/sq. in., the column continued to hold up a load twice as great or 4194. bs./in.²
- 4. The spiral reinforcing kept the vertical reinforcing from bulging. The latter added to the stiffening of the column until the yield point was reached,
 when the stress was taken up by the spiral reinforcing.

The spiral reinforcing did not show any deformation until 7/8 of the ultimate load was applied, which tended to show that the concrete was dense and compact.

blow holes, and in rupturing, the stones were sheared off clean, showing a good compact and dense mixture with a good bond. From the results obtained, the conclusions can be drawn that the longitudinal reinforcing is of no aid in the strengthening of columns outside of adding to the stiffness, whereas the addition of spiral reinforcing more than doubled the strength of the former, and as the ultimate strength was twice that at the time of spalling, it shows that the failure was slow in comparison to the vertical reinforced column.

Bibliography

Bibliography.

Pamphlets

Bulletin #300, University of Wisconsin.

Tests on Plain and Reinforced Concrete Columns.

Bulletins #10, #20, #50, University of Illinois.

Tests of Concrete and Reinforced Concrete Columns.

Books.

Turneaure and Maurer,

Principles of Reinforced Concrete.

Baker,

Masonry Construction.

Log Sheets.

#I Log sheet for longitudinal reinforced concrete column.

Original diameter - 10"

Original area - 78.54 sq. in.

Length under messurement - 44".

Length of column - 10'-)".

		1					
Load Co.			ssometer	Readings	Compre	Modulus of Elasticity	
Actual	Per sq in	L.	R.	llean	Actual	Per in.	$E = \frac{P}{e}$,
P 0	0	.4422	.2911	.3562	0	0	0
10000	127.3	.4454	. 2928	.3641	.0079	.00018	707250
20000	254.6	.4488	. 2945	.3717	.0155	.00035	727400
30000	381.9	.4520	.2963	.3742	.0180	.00041	939000
40000	509.2	.4560	.2961	.3761	.0199	.00045	1132000
50000	636.5	.4596	.3973	.3784	.0222	.00050	1273000
60000	763.8	.4623	.2955	.3789	.0227	.00052	1468000
70000	891.1	.4665	.2953	.3809	.0247	.00056	1590000
80000	1018.4	.4692	.2954	.3823	.0261	.00059	1726000
90000	1145.7	.4751	.2955	.3853	.0291	.00066	1736000
100000	1273.0	.4815	.2955	.3885	.0323	.00074	1707000
110000	1400.3	.4888	.2956	.3923	.0360	.00082	1707000
120000	1527.6	.4950	. 2946	.3948	.0386	.00088	1736000
130000	1654.9	.5038	.2945	3992	.0430	.00098	1637000
140000	1782.2	.5137	.2962	.4050	.0488	.00110	1782200
149200	1896.8			• 1000	.0.700	.00110	1102200

Average 1420900

#II Log sheet for spiral and longitudinal reinforced concrete columns
Original diameter - 10"

Original area - 73.54 sq. in.

Length under measurement 44".

Length of column 10' - 0"

	L	ond	Compress	someter R	eadings	Comy	ression	Modulus of Elasticity
Spiral Expansion	Actual P	Per sq in.	L.	R.	Mean	Actual	Per in.	$E = \frac{P}{e}$
Expansion 0	P 0 10000 20000 30000 44000 50000 60000 70000 80000 100000 110000 120000 130000 140000 150000 160000 170000 200000 210000 210000 210000 250000 250000 250000 250000 270000 280000 290000	P 0 254.6 381.9 560.1 763.8 891.1 1018.4 1145.7 1273.0 1400.3 1527.6 1654.9 1782.2 1909.5 2036.8 2164.1 2291.4 2418.7 2546.0 2673.3 2800.6 2927.9 3055.2 3182.5 3349.8 3437.1 3564.4 3691.7 3819.0 4193.8	-1495 .1502 .1514 .1530 .1548 .1564 .1581 .1597 .1615 .1634 .1655 .1662 .1687 .1702 .1727 .1745 .1775 .1805 .1830 .1863 .1907 .1958 .1995 .2030 .2089 .2210 .2335 .2558 .2835	.1898 .1906 .1922 .1935 .1950 .1968 .1978 .1985 .2005 .2021 .2035 .2056 .2080 .2085 .2128 .2145 .2160 .2173 .2192 .2220 .2253 .2285 .2308 .2325 .2383 .2387 .2427 .2447	.1697 .1704 .1718 .1733 .1749 .1766 .1780 .1791 .1811 .1828 .1845 .1859 .1884 .1892 .1928 .1945 .1938 .1945 .1968 .1989 .2011 .2042 .2080 .2152 .2152 .2183 .2236 .3299 .2381 .2514 .2641	0007 .0021 .0036 .0051 .0069 .0083 .0094 .0114 .0131 .0148 .0152 .0187 .0195 .0231 .0248 .0271 .0292 .0314 .0345 .0345 .0455 .0455 .0486 .0529 .0602 .0684 .0617	.000016 .000048 .000081 .00016 .000157 .000189 .000214 .000260 .000300 .000305 .000425 .000425 .000443 .000564 .000564 .000714 .000784 .000784 .000966 .001034 .00105 .001255 .001370 .001556 .001860 .002145	23870000 11670000 7858000 6584000 5380000 5380000 4890000 4668000 4780000 4180000 4310000 3870000 3836000 3640000 3640000 318000 318000 3030000 2950000 2880000 2734000 2250000 1980000
5	280000	3819.0	.2558	1		1		

III Log sheet for 7" concrete cylinder

Original diameter - 7"

Criginal area - 38.46 sq. in.

Length under measurement - 12"

Length of cylinder - $16\frac{1}{4}$ "

Ī	Load		Compres	someter	Readings	Compression Modulus			
1				in inch		-	inches	Elasticity	
	Actual	Per Sq In.	L.	R.	Hean	Actual	Per In.	$E = \frac{P}{e}$	
	0	0	.7900	.5000	.6450	0	0		
	1200	31.3	.7900	.5000	. 6450	0	0		
	2000	51.9	.7902	.5003	.64525	.00025	.00002	2595000	
	4000	103.8	.7902	.5006	. 6454	.0004	.000033	3120000	
	6000	155.7	.7900	.5022	.6461	.0011	.000091	1715000	
	8000	207.6	.7904	.5029	.64665	.00165	.000137	1510000	
	10000	259.5	.7903	.5031	. 6467	.0017	.00014	1850000	
	12000	311.4	.7902	.5035	.64685	.00185	.00015	2070000	
1	14000	363.3	.7898	.5040	.6469	.0019	.00016	2270000	
1	16000	415.2	.7896	.5048	.6472	.0022	.00018	2300600	
	18000	467.1	.7897	.5064	.64805	.00305	.00025	1870000	
	20000	519.0	.7899	.5078	.64885	.00385	.00032	1620000	
	22000	570.9	.7905	.5090	.64975	.00475	.00039	1465000	
1	24000	622.8	.7905	.5090	.64975	.00475	.00039	1595000	
	26000	674.7	.7915	.5087	.6501	.00501	.00042	1605000	
	28000	726.6	.7913	.5113	.6513	.00630	.00052	1395000	
	30000	778.5	.7924	.5104	.6514	.0064	.00053	1465000	
	32000	830.4	.7912	.5108	.6510	.0060	.07050	1660000	
	34000	882.3	.7928	.5107	.65175	.00675	.0 054	1635000	
	36000	934.2	.7885	.5117	.6501	.0051	.00042	2220000	
	38000	986.1	.7882	.5119	.65005	.00505	.00042	2345000	
	40000	1038.0	.7880	.5123	.65015	.00515	.00042	2450000	
	42000	1089.9	.7880	.5133	.65065	.00565	.00047	2320010	
1	44000	1141.8	.7880	.5138	.6509	.0059	.00049	2330000	
	46000	1193.7	.7877	.5145	.6511	.0061	.00051	2340000	
	48000	1245.6	.7880	.5157	.65185	.00685	.00057	2180000	
	50000 52000	1297.5	.7872	.5178	. 6525	.0075	.00062	2060000	
	54000	1349.4	.7870	.5186	.6528	.0078	.00065	2075000	
	56000	1401.3	.7878	.5210	.6544	.0094	.00078	1795000	
	58000	1453.2	.7872	. 5208	.6540	.0090	.00075	1935000	
	60000	1505.1	.7870	.5212 .5220	.6541	.0091	.00076	1980000	
	62000	1557.0	.7872 .7858	.5224	.6546 .6541	.0096	.00080	1945000	
	64000	1660.8	.7857	.5240	.65485	.0091	.00076	2025000	
	00000	1712.7	.7854	.5253	.65535	.01035	·0086	1995000	
	68000	1764.6	.7845	.5274	.65595	.01095	.00091	1935000	
	70000 72000	1815.5	.7830	.5290	.6560	.0116	.00096	1890000	
	74000	1358.4	.7823 .7820	.5316 .5352	.65695	.01195	.00099	1873000	
1	76000	1972.2	.7815	.5366	.6586 .65905	.0136	.00113	1685000	
	78000	2024.1	.7802	.5396	.6599	.0149	.00124	1620000	
	80000 82000	2076.0					Average	1940000	
_	0.2000	い上がしるコ							

#IV Log sheet for Spiral Reinforcing
Original Average Diameter - .1761"
Original Average Area - .024355 sq. in.
Length under measurement - 4"

Load		Extensometer Readings			Exte	ension	Modulus of Elasticity
Actual	Per Sq In.	L.	R.	llean	Actual	Per In.	E P e
150	6170	.0043	.0063	.0053	.0008	.00010	61700000
400	20520	.0067	.0097	.0082	.0037	.00046	44600000
600	24640	.0090	.0124	.0107	.0062	.00077	32000000
800	32880	.0108	.0150	.0129	.0084	.00105	31300000
1000	41080	.0129	.0177	.0153	.0108	.00135	30400000
1200	49280	.0152	.0200	.0176	.0131	.00164	30000000
1400	57600	.0182	.0224	.0203	.0158	.00198	29100000
1500	61600	.0194	.0253	.0214	.0169	.00211	29200000
1600	65800	.0210	.0248	.0230	.0185	.00231	28500000
1700	69800	.0230	.0277	.0253	.0208	.00260	26800000
1800	74000	.0247	.0280	.0263	.0218	.00272	27200000
1900	78000	.0277	.0314	.0295	.0250	.00312	25000000
2000	82200	.0294	.0333	.0313	.0268	.00335	24500000
2100	86400	.0328	.0372	.0350	.0305	.00381	22700000
2200	90400	.0369	.0422	.0395	.0350	.00438	20600000
2300	94400	.0430	.0480	.0455	.0410	.00512	13400000
2400	98800	.0514	.0560	.0537	.0492	.00615	16050000
2420	99600	.0545	.0660	.0602	.0557	.00696	143 0000
2500	102600						
		Ultimate	Strength	102,600	lbs. per	sq. in.	

#V Log Sheet for Vertical Reinforcing, Sample No. I. Original Average Diameter - .50145" Original Average Area - .19745 sq. in.

Length under Measurement - 2"

=	Lo	ad	С	ompresson	seter	Compre	Modulus of Elasticity	
	Actual P	Per Sq In	L.	R.	Mean	Actual	Per In.	2===
	0 600 2600 3750 4850 5700 6430 7050 7600 7950 8320 8500 8400 8500 8450	3040 13200 19000 24600 29000 32600 35800 38600 40300 42200 43100 42500 43100 42750	2.0555 .0551 .0545 .0542 .0540 .0539 .0535 .0531 .0530 .0529 .0499 .0488 .0475 .0460	2.0570 .0570 .0560 .0552 .0549 .0543 .0540 .0539 .0539 .0523 .0509	2.0562 .0561 .0552 .0547 .0545 .0545 .0538 .0535 .0535 .0536 .0510 .0498	0 .0001 .0010 .0015 .0017 .0021 .0024 .0027 .0027 .0028 .0052 .0064	0 .000049 .000490 .000732 .000830 .001025 .001170 .001320 .001370 .002540 .003120	60800000(?) 26900000 26000000 29600000 27800000 27100000 29400000 16600000 13800000
	8400 8430 8450 8450 8650 Co £650 8950 9300 9700	42500 42700 42750 43300 43800 mpressomete 43900 45500 47250 49250	Failure	.0398 .0351 .0289 .0160 doved 1.9520 1.951 1.925 by bendi		.0119 .0191 .0262 .0381 .048 .049 .075	.005810 .009320 .012800 .018600 ivider Rea .0240 .0245 .0375	7310000 4575000 3340000 2320000 dings 1830000 1860000 1260000

#VI Log Sheet for Vertical Reinforcing, Sample No. II
Original Average Diameter - .4986"
Original Average Area - .2235 sq. in.
Length under Measurement - 2"

L	oad	С	ompressom	eter	Compre	ession	Modulus of Elasticity
Actuel P	Per Sq In	. L.	R.	Hean	Actual	Per In.	$E = \frac{P}{\Theta}$
50		2.0615	2.0671	2:0643			
600	2685	.0616	.0669	.0642	.0001	.000048	56000000
1050	4700	.0615	.0668	.0641	.0002	.000096	49000000
1900	8500	.0614	.0660	.0637	.0006	.000288	29500000
3300	14800	.0610.	.0350	.0630	.0013	.000630	23500000
4450	19900	.0608	.0647	.0627	.0016	.000775	25700000
5450	24400	.0604	.0640	.0622	.0021	.001020	23900000
6300	28200	.0601	.0640	.0620	.0023	.001115	25300000
7250	32400	.0600	.0639	.0620	.0023	.001115	29100000
7650	34200	.0592	.0639	.0616	.0027	.001310	26100000
7750	34700	.0590	.0639	.0614	.0029	.001405	24700000
8100	36200	.0588	,0634	.0611	.0032	.001550	23400000
8350	37400	.0584	.0625	.0604	.0039	.001890	19800000
8530	38200	.0576	.0600	.0588	.0055	.002665	14300000
8650	38700	.0560	.0558	.0559	.9084	.004070	9510000
8350	37400	.0560	.0558	.0559	.0084	.004070	9200000
8600	38400	.0542	.0525	.0533	.0110	.005330	7200000
8350	37400	.0541	.0525	.0533	.0110	.005330	7025000
8530	38200	.0511	.0482	.0496	.0147	.007120	5370000
8350	37400	.0511	.0482	.0496	.0147	.007120	5260000
8580	38400	.0470	.0435	.0452	.0191	.009250	4160000
8350	37400	.0469	.0432	.0450	.0193	.009340	4000000
8700	38900	.0390	.0349	.0369	.0274	.013300	2930000
8350	37400	.0388	.0347	.0367	.0276	.013380	2800000
8650	38700	.0300	.0252	.0276	.0367	.017780	2180000
8350	37400	.0297	.0251	.0274	.0369	.017850	2100000
8750	39200	.0184	.0144	.0164	.0479	.023200	1690000
	Divi			een origi:	nal 2 poi	nts	
8750	39600	1.97	S		.03	.015	264000C
8980	39900	1.95			.05	.025	1600000
11400	51000						
		Ultima	te Streng	th 51,000	lbs. per	sq. in.	

WVII Log sheet for Vertical Reinforcing, Sample No. 3.

Original Average Diameter - .4993"

Original Average Area - .1958 sq. in.

Length under measurement - 2".

Load		(Compressor	meter	Comp	Modulus of Elasticity	
Actual P	Per sq in	L.	R.	Mean	Actual	Per in.	$E = \frac{p}{e}$
180		2.0638	2.0580	2.0609	.0000		
890	4550	.0638	.0576	.0607	.0002	.000097	46900000
2300	11750	.0637	.0566	.0601	.0008	.000388	30300000
3500	17880	.0635	.0560	.0597	.0012	.000582	30700000
4600	23450	.0630	.0558	.0594	.0015	.000727	32300000
5400	27600	.0628	.0555	.0591	.0018	.000872	31700000
6170	31500	.0624	.0540	.0582	.0027	.001310	24000000
7050	36000	.0619	.0505	.0562	.0047	.002280	15800000
7350	37600	.0618	.0490	.0554	.0055	.002670	14100000
7800	39800	.0611	.0465	.0538	.0071	.003440	11580000
8150	41650	.0600	.0419	.0509	.0100	.004850	8600000
8300	42400	.0550	.0355	.0452	.0157	.007610	5580000
8200	41850	.0528	.0323	.0425	.0184	.008920	4700000
8400	42850	.0450	.0280	.0365	.0244	.011840	3620000
8300	42350	.0465	.0245	.0355	.0245	.012320	3440000
8380	42750	.0410	.0240	.0325	.0284	.013800	3095000
8400	42850	.0350	.0187	.0268	.0341	.016540	2590000
8420	43000	.0285	.0127	.0206	.0403	.019550	2200000
8700	44400	.0224	.0067	.0145	.0464	.022500	1975000
8900	45500	.0190	.0027	.0108	.0501	.024300	1870000
Exter	nsometer R	emoved			l	4	
L2500		Maximum					
Ultin	mate Stren	gth 45,50	00 lbs. pe	er sq. in.			

Curves

3

.

Deformation per unit length

Todd per squi

Fig. 1

Fig. 3h

Fig.3a

Fig. 4

Fig. 5

