Team 205 – Robotic Arm to Assist Motorized Chair Users

- Industry Sponsor: PPMD, Keith Van Houten
- Faculty Advisor: Stephen Moyer
- Team Lead: Brooke Harrington
- Team Members: Cavan Moriarty, Omar Abuljobain, Justin Lee, and Andrew Baum

Agenda

System Decomposition

Conceptual Design

Preliminary Design

Project Management

- Background, Problem, Value Proposition
- System Architecture
- System Requirements
- Team Concepts
- Concept Screening and Scoring
- Final Concept
- System Diagram, Electrical Diagram
- CAD Models
- Prototypes, Engineering Calculation
- Risk and Mitigation Strategies
- Budget
- Project Timeline

Background on Duchenne Muscular Dystrophy (DMD)

- DMD is a progressive disorder that deteriorates muscles over time
- Requires those with DMD to use motorized wheelchairs such as the Permobil M3 and Quantum
- People with DMD have limited range of motion (ROM) and often require a caretaker or robotic device to help with everyday tasks

Figure 2 Permobil M3 Corpus

Problems with the Current ROM Assistive Robot

Current solutions such as the Kinova JACO robotic arm are:

- Too Expensive (>\$60,000)
- Difficult to Control
- Large/Bulky
- Difficult to remove for travel

Team 205 will develop an affordable, simple to control robotic arm that will accomplish two high value functions: pushing handicap door and elevator buttons, and bringing a cup to the user's face

Proj. Management

Figure 3: Kinova JACO robotic arm

Conceptual Design

Figure 4: Robotic Arm Mounted on Wheelchair

For individuals with DMD who require ROM assistance, an affordable robotic aid would provide assistance with everyday tasks

- Perform high value functions such as pushing a handicap door button
- Simple controls allow easier access to ROM assistance
- Integrate robotic manipulation capabilities onto powered wheelchairs at an affordable price

System Level Objectives

Technical Requirement ID	Requirement	Verification Method
TR 1.1.0	The robot shall be controlled manually by a joystick and should have the ability to program automatic functions accessed through a button push or voice activation	Test
TR 1.2.0	The robot shall have no more than six degrees of freedom to reduce the complexity of controls	Inspection
TR 1.3.0	The robot shall have an operating radius that spans a minimum of 5 inches to a maximum of 2 feet from mount location with 180 degrees of rotation total	System Test
TR 1.4.0	The robot should receive power from the motorized wheelchair battery and should include a backup battery	Analysis

System Decomp.

Derived Requirements

Technical Requirement ID	Requirement	Verification Method
TR 1.1.1	The joystick shall be attached to the wheelchair such that the user can comfortably manipulate the controls within their range of motion	User Testing
TR 1.1.2	Automatic functions such as bringing a water bottle to the user shall be independent of the joystick and should operate without any joystick inputs, utilizing buttons instead	System Test
TR 1.1.3	The arm shall mount in a location that does not interfere with the users seating or ability to pass through an ADA compliant door	Physical Inspection
TR 1.3.1	The device should be able to reach and depress handicap and elevator buttons between 34" and 48" off the floor as specified by ADA standards	System Test
TR 2.1.0	The robot electronics shall be contained in a weather resistant enclosure	Material Test
TR 3.1.1	The robot shall be disassembled and reassembled for the inspection and cleaning of parts	Timed Test or PM/M Plan Development
TR 4.1.0	The system shall be optimized to contain minimum safety hazards including sharp edges and pinch points for user safety	Visual/Physical Inspection
TR 5.1.0	The robot shall have an accessible kill switch between the battery and circuitry to protect against unexpected energization	System Test
TR 5.2.0	The robot shall have physical/program limiters to prevent the robot from intrusively interacting with the user	System Test

Changes to Requirements Upon Further Discussion and New Information

Requirement ID	Old Requirement Description	Updated Requirement Description	Reason
TR 1.1.0	The robot shall be controlled manually by a joystick and should have the ability to program automatic functions accessed through a button push or voice activation	The robot shall be controlled manually by a joystick and should have the ability to program automatic functions accessed through a button	Voice activation exceeds the scope of the project Manual joystick control was emphasized

Breaking the System Down – 3 Subsystems

Assistive Robotic for Motorized Wheelchair System Subsystem **Robot Frame** Configuration Robot Frame Mount / fector End-Effector lages Item lttaches **Defines** Allows interaction **Function** bot and Prov Mount. geometry with environment controller Structure to used in and provides method ass Linkages the Arm software or completing high electric value functions developmen neelchair

Breaking the System Down – 3 Subsystems

System

Assistive Robotic for Motorized Wheelchair

Subsystem

Electronics / Circuitry

Software / Programming

Configuration Item

Function

Servo / Stepper Motors

Moves the linkages o the robot for precise positioning in 3-D

trol, for

Receives a translates us inputs for programmed actions

User Inputs

ranslates user or mands into tor inputs for position or phe Pythesbot interaction with environment

10

Robot Inputs

Team Members Generated Individual Concepts to be Considered

Figure 6: Justin Omar Combo Robotic Arm

Figure 7: Brooke Cavan Over the Shoulder Robotic Arm

11

Team Members Generated Individual Concepts to be Considered

Figure 8: Justin AJ Combo Assistive Toolbelt

Figure 9: Omar Track/Pneumatic Arm

Team Members Generated Individual Concepts to be Considered

Figure 10: Combo Utility Box

Figure 11: Brooke Multi End Effector

Concept Screening Narrowed Down the Teams Concepts

			CONCEPT CORFERMA			
			CONCEPT SCREENING			
Criteria	Justin Omar Combo Robotic Arm	Brooke Cavan Combo Over the Shoulder Arm	Justin AJ Combo Assistive Toolbelt/Button Pusher	Omar Track Pneumatic Arm	Combo Utility Box (all in one)	Brooke Multi End Effector
Operating Radius						
Number of Inputs to control device						
Number of actuators to control device						
Size						
Cost						
Safety						
Failure Modes						
Device Integration into chair						
Ease of Installation						
Net "+"						
Net "-"						
Net						
Rank						
Continue?						

A "+" indicates that the concept is better than the reference for that criteria

A "0" indicates it is equal in performance as the reference

A "-" indicates the concept is worse than the reference for that criteria

Concept Scoring Weighed the Importance of Each Criteria for Final Selection

Rated on a 1-4 scale where 1 and 2 are worse than the reference and 4 is better than the reference. Reference is 3

	CONCEPT SCORING												
		Justin Omar Co	mbo Robotic Arm		bo Over the Shoulder rm	Justin AJ Combo Assistive Toolbelt/Bu Pusher							
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score						
Operating Radius	10%												
Number of Inputs to control device	15%												
Number of actuators to control device	10%												
Size	15%												
Cost	10%												
Safety	15%												
Failure Modes	10%												
Device Integration into Chair	10%												
Ease of Instillation	5%												
	Total Score												
	Rank												
	Continue?												

15

Assumptions for the Robotic Arm Concept

- An off the shelf robotic arm will be purchased and integrated into the wheelchair
- The Waveshare robotic arm is controlled by connecting to a website, but an Arduino can be connected allowing for other methods of control

Figure 12: Waveshare Low-Cost Robotic Arm

 Wheelchair donations from QL+ will be modified to resemble the structure of the Permobil M3 for testing purposes

Figure 13. Donated Hoveround Chair

Figure 14. Donated Jazzy Chair

The concept will mount to the Permobil Unitrack which is screwed into the seat of their motorized wheelchairs

Unitrack

Figure 15: Permobil M3 Corpus Unitrack

System Diagram

Parent Project Muscular Dystrophy

Benchmarking

	<u>Waveshare</u> <u>RoArm-M2</u>
Price	\$189.99
Payload Capacity	500g
Weight	826g
DOF	4
Reach	500mm (19.6in)
Programming Language	Open source
End Effector	Included

System Decomp.

18

Conceptual Design

19

Joystick Mount CAD Model

Proj. Management

Joystick Mount CAD Model

21

System Decomp.

VI VIRGINIA

Parent Project Muscular Dystrophy

Case CAD Model

Processing Equipment

Circuitry

Batteries

Mounting points for robot arm

25

Risk and Risk Mitigation

End Effector and Arms Intrusively Interacting With User

Water Contamination of Electrical Components

Electrical and Component Overheating Leading to **Heat Sustained** Damage

Mechanical and Electronic Stops to Ensure User Safety

Tolerate Ingress Protection (IP) Ratings of Enclosures and Seals – IP 65

Material Analysis, Proper Ventilation, **Active Cooling**

26

Team 205's Maximum Budget is \$5000

Budget Expenditure over Time

Team is Currently on Schedule for CDR Preparation

System Decomp.

Conclusions and Future Work

The Team Has:

- Discussed customer needs and high value functions with end user – informing requirements
- Developed and down selected a concept to move forward
- Assessed feasibility and risk associated with selected concept
- Began developing CAD models and researching material selection
- Acquired chairs to begin modifying
- Determined which arm will be purchased

The Team Will:

- Modify a Jazzy wheelchair to replicate mounting structure of a Permobil M3 wheelchair
- Begin Prototyping
 - Design mounting bracket that attaches the robotic case to the side of the wheelchair
 - Order the robot arm and control systems
 - Integrate the Waveshare robotic arm and control systems onto robotic case
 - Learn syntax and program robotic arm,
 - Learn Arduino integration with ESP32

Conclusions:

- Team is on track to meeting the high value functions of pushing an elevator and handicap door button
- The team will continue to work closely with our customers from PPMD to ensure our prototyping process gets constant feedback from the end user

Thank you for your time!

Questions?

Backup Slides, Additional Information

PEOLIREMENTS VEDI	FICATION TRACEABILITY MATRIX	X (RVTM)		
roject Name:	Robotic Arm to Assist Motorized Chair Users	A (IXV IIVI)	Customer Approval	
rogram/Customer:	PPMD			
roject Manager Name: roject Description:	Brooke Harrington Robotic arm that attaches to a motorized chair to aid people	uith mobility roctrictions due to Dyckenne	Signature Keith Van Houten	09/19/2024
Technical Requirement ID #			Comments	Verification Method
rechnical Requirement ib #	Requirement	Requirement Origination	Comments	Vernication Method
	The team shall research, design,			
	develop, integrate, and test an assistive		The robot should be able to preform one	
TR 1.0.0	robotic device modified for a motorized	Customer Requirement	well defined task. More task can be	
	wheelchair including a custom		undertaken as the main task is completed.	
	mounting device, electronics, and software.			
	The robot shall be controlled manually			
	by a joystick and should have the ability		The control system should be able to	
TR 1.1.0	to program automatic functions	Customer Requirement	attach to either left/right side (dependent	Test
	accessed through a button push or		on user's dominant side)	
	voice activation			
	The joystick shall be attached in a		Customer stated postioning the control	
TR 1.1.1	location near the motorized wheelchair	Customer Requirement	interface near the non dominant hand so the wheelchair and robot system can be	Visual Inspection
	armrest		used simulataneously	
	Any automatic functions shall be			
TR 1.1.2	independent of the joystick and should	Customer Requirement	Automatic functions are to be determined if main function is properly adressed	System Test
	operate without any joystick inputs		Tanada is properly adioged	
	The arm shall not mount in a location			
	that infringes on the user's seating			
TR 1.1.3	space, and must be small enough that	Customer Requirement		Physical Inspection
	as installed on wheelchair, the user can			
	still pass through a standard door			
	opening		Developed from the control of	
TR 1.2.0	The robot shall have no more than six	Customer Needs	Developed from "ease of use" customer need	Inpection
	degrees of freedom The robot shall have an operating			
	radius that spans a minimum of 5			
TR 1.3.0	inches to a maximum of 2 feet from	Customer Needs	Developed from high value functions	System Test
	mount location with 180 degrees of		discussion with customer	
	rotation total			
	The robot should receive power from			
TR 1.4.0	the motorized wheelchair battery and	Customer Needs		Analysis
	should include a backup battery			-
	The robot shall operate in dry, arid			
TR 2.0.0	conditions and should operate under	Customer Needs		System Test
	rainy, humid conditions			
	The value also transies also !! !-			
TD 2.4.0	The robot electronics shall be	Customer Needs	Daylanad from 2.0.0	Material Test
TR 2.1.0	contained in a weather resistant	Customer Needs	Devloped from 2.0.0	Material Test
TR 2.1.0	contained in a weather resistant enclosure	Customer Needs	Devloped from 2.0.0	Material Test
TR 2.1.0	contained in a weather resistant enclosure The robot motors shall be secured in a	Customer Needs Customer Needs	Devloped from 2.0.0 Devloped from 2.0.0	Material Test Material Test
	contained in a weather resistant enclosure		Devloped from 2.0.0	
	contained in a weather resistant enclosure The robot motors shall be secured in a weather resistant sleeve		Devloped from 2.0.0 In order for multiple people from PPMD to	
TR 2.1.1	contained in a weather resistant enclosure The robot motors shall be secured in a weather resistant sleeve The robot shall be installed in less than	Customer Needs	Devloped from 2.0.0 In order for multiple people from PPMD to test the system when they visit, it is ideal to have the install/unsinstall and time till	Material Test
	contained in a weather resistant enclosure The robot motors shall be secured in a weather resistant sleeve The robot shall be installed in less than one hour and should be operational		Devloped from 2.0.0 In order for multiple people from PPMD to test the system when they visit, it is ideal to have the install/unsinstall and time till operation be minimized without sacrificing	
TR 2.1.1	contained in a weather resistant enclosure The robot motors shall be secured in a weather resistant sleeve The robot shall be installed in less than	Customer Needs	Devloped from 2.0.0 In order for multiple people from PPMD to test the system when they visit, it is ideal to have the install/unsinstall and time till	Material Test

TR 3.1.1	The robot shall be disassembled and reassembled for maintenance in less than three hours	VT Design Team		Timed Test or PM/M Plan Development
TR 3.2.0	The robot shall require maintenance every year and should be cleaned and inspected every 3 months	VT Design Team	(Subject to change once robot and assistive wheelchair have been acquired)	Analysis / PM/M Plan Development
TR 4.0.0	The system shall be neutral in color and should blend into the motorized wheelchair structure	VT Design Team	Talk this over with customer once robot has been acquired/developed	Visual Inspection
TR 4.1.0	The system shall contain no sharp edges and should minimize sharp corners on frame, end effector, and joystick	VT Design Team		Visual/Physical Inspection
TR 5.0.0	The robot shall not cause harm to the operator in any way.	VT Design Team		System Test
TR 5.1.0	Upon startup, the robot shall have safeguards against unexpected energization	VT Design Team		System Test
TR 5.2.0	The robot shall have physical or program safeguards to prevent it from reaching undesired locations	VT Design Team		System Test

Requirements Verification Traceability Matrix

System Architecture

Concept Screening and Scoring

	С	ONCEPT SCREEN	NING				CONCEPT SCORING								
0.11.1	Justin Omar Combo Brooke Caval Combo Over		Justin AJ Combo Assistive	Omar	Combo Utility		100%		Justin Omar Combo	Robotic Arm		Combo Over the rm/Backpack	Justin AJ Combo Assistive Toolbelt/Button Pusher		
Criteria	Robotic Arm	the shoulder	Toolbelt/Button	Track/Pneumatic	Box (all in one)	effector	Criteria	Weight	Rating	Score	Rating	Score	Rating	Score	
		Arm/Backpack (REF)	Pusher	Arm			Operating Radius	10%	4	0.4	3	0.3	2	0.2	
Operating Radius	+	0	-	0	-	+	Number of inputs to control	15%	3	0.45	3	0.45	4	0.6	
Number of inputs to control device	0	0	+	0	-	-	device								
Number of actuators to control device	0	0	+	+	+	-	Number of actuators to	10%	3	0.3	3	0.3			
Size	+	0	0	-	-	-	control device	1070	3	0.0	J	0.0			
Cost	+	0	0	-	+	-	Size	15%	3	0.45	3	0.45	3	0.45	
Safety	+	0	+	0	-	+	Cost	10%	3	0.3	3	0.3	3	0.3	
Failure Modes	0	0	0	-	+	-	Safety	15%	4	0.6	3	0.45	4	0.6	
Device Integration onto Chair	0	0	0	+	0	+	Failure Modes	10%	3	0.3	3	0.3	4	0.4	
Ease of Installation	0	0	0	-	0	+	Device Integration into Chair	10%	3	0.3	3	0.3	3	0.3	
Net "+"	4	0	3	2	3	4							_		
Net "-"	0	0	1	4	4	5	Ease of Installation	5%	3	0.15	3	0.15	4	0.2	
Net	4	0	2	-2	-1	-1	Tot	tal Score	3.25		3		3.45		
Rank	1	3	2	6	4.5	4.5		Rank		2		3		1	
Continue?	Continue	Continue	Continue	Eliminate	Eliminate	Eliminate	Co	ontinue?	Develop		Discard		Deve	lop	

Risk and Mitigation Plan

Risk ID#	Risk Description	Risk Category	Likelihood	Severity	Risk Level	Owner	Mitigation Plan	Mitigated Likelihood	Mitigated Severity	Wiitigated Risk Level	Status
	Sheering of bolts/welds at mounting location of robotic arm due to										
\leftarrow	deformation or excessive force	Technical	2	4	6	Justin	Stress analysis between bolts and track rail	1	2	3	Open
2	Bending and buckling of robotic members at critical points along arm	Technical	5	1	6	Justin	Material selection with higher stress standards	2	1	3	Open
m	End effector and arms exceeding range of operation	Technical	4	5	9	Cavan	Mechanical and digital stops	2	3	5	Open
	Electrical components overheat, causing technical or electrical failure										
	and deformation	Technical	3	4	7	Cavan	Material analysis and proper ventilation	2	2	4	Open
2	Excessive weight load on robotic arm	Technical	2	3	5	Omar	Incorporate verbal weight load capacity - Factor of Safety	2	2	4	Open
							Program failsafe function that stops all current functions by comparing				
9	Programmed function exceeding operating time (Loop)	Technical	2	2	4	AJ	operation time	1	1	2	Open
7	Water damage	Technical	3	5	8	Brooke	Tolerate Ingress Protection (IP) ratings of enclosure and seals	2	2	4	Open
∞	Sensitivity / Delay between robotic arm and joystick (controller)	Program	3	3	6	Omar	Adjusting sensitivty thorugh analysis and testing	1	2	3	Open
თ	Electical overload when powered on	Technical	2	5	7	AJ	Include a breaker between the battery and processing components	1	2	3	Open
10	Robotic arm operation is systematic (out of control)	Technical	1	4	5	Brooke	Implement emergency stop	1	2	3	Open

Budget Decomposition

1	Budge	et - 205 - Rob	otic Arm to	Assis	t Moto	orized \	Wh	eel	lchai	r Users				
Starting Budget =				7 10010	111000	7112001	• • • •				<u>'</u>			
Projected Budget =					Projected U	sed Budget =	\$ (97	75.82)	Verification	n				Any othe
Available Budget =	= \$ 5,000.00					Used Budget =	\$	-	\$ -					
					Price Per U	nit (No ship or				Shipping		Status	Received	Purchase
Item description	Part #	URL	Vendor	Quantity	tax)		Tax		Shipping	Method	Total Cost	(OPEN/PURCHASED)	(Y/N)	Month
		https://buildmywheelchair.co												
		m/unitrack-bar-14-15-16-seat												
Permobil UniTrack Bar 14-16" seat depth	SKU: 321434	depth-corpus-3g-vs/	Build My Wheelchair	1	L \$	48.00	\$	-	\$ 14.9	9 Standard	\$ 62.9	9 OPEN	N	November
		https://buildmywheelchair.co												
1		m/unitrack-bar-17-18-19-seat			1.									
Permobil UniTrack Bar 17-19" seat depth	SKU: 321440	depth-corpus-3g-vs/ https://maxamps.com/collecti	Build My Wheelchair	(\$	48.00	\$	-	\$ 14.9	9 Standard	\$	OPEN	N	November
		ons/lipo-battery-												
Lipo Battery Charger Hitec		charger/products/lipo-battery-	Mayampa		L \$	79.00	¢	4.19	¢ 01	5 standard	\$ 91.4	4 OPEN	N	November
Lipo Battery Charger Filtec		https://www.robotshop.com/p	пахаттр5		LΨ	79.00	Ψ	4.15	φ 0.2	Standard	Φ 51.4	4 OPEN	IN	November
		roducts/arduino-uno-r3-usb-								USPS Ground				
Arduino Uno R3 USB Microcontroller	SKU: RB-Ard-34	microcontroller	RobotShop		L \$	27.60	4	1.47	\$ 17	4 Advantage	\$ 33.8	1 OPEN	N	November
Artualilo ollo 110 03B Pilciocontiottei	SKO. ND-AIG-04	microcontroller	Повотопор	_	LΨ	27.00	Ψ	1.47	Ψ 4.7	Auvantage	Ψ 00.0	OLLIV	IN .	November
		https://www.robotshop.com/p								USPS Ground				
Arduino Uno Rev4 Wifi	SKU: RB-Ard-187	roducts/arduino-uno-rev4-wifi	RobotShop		\$	30.07	\$	1.59	\$ 17	4 Advantage	\$	OPEN	N	November
Arduno ono neva wiii	SKO. ND-AIG-107	https://www.robotshop.com/p	Пороголор	,	Ψ	00.07	Ψ	1.55	Ψ 4.7	Advantage	Ψ	OI LIV	TN TO	November
		roducts/arduino-mega-2560-								USPS Ground				
Arduino Mega 2560 Microcontroller REv3	SKU: RB-Ard-33	microcontroller-rev3	RobotShop		\$	48.40	\$	2.56	\$ 4.7	4 Advantage	\$	OPEN	N	November
Artadino Fiega 2000 File rocordiotec Filevo	OKO. HB AIR OO	Interdeditional Teve	Повосопор	· ·) (40.40	ı v	2.00	Ψ -1.7	Advantage		OT EIV	1''	November
		https://www.waveshare.com/												
Waveshare High-torque Serial Bus Servo,		product/robotics/robot-arm-												
RoArm-M2-S Desktop Robotic Arm Kit, Based	SKU:25118 Part	control/robot-arm/roarm-m2-												
On ESP32, 4-DOF	No.:RoArm-M2-S	s.htm?sku=25118	Waveshare		L \$	189.99	\$	_	\$39.6	0 USPS	\$ 229.5	9 OPEN	N	November
		https://maxamps.com/collecti			,		*		,					
	SKU: Graphene- Lipo-	ons/3s-lipo-battery-11-												
Graphene LiPo 5200 3S 11.1v Battery Pack	5200-3S-Pack-2	1v/products/graphene-lipo-	Maxamps	1	2 \$	134.00	\$	7.10	\$ 8.2	5 Standard	\$ 298.7	O OPEN	N	November
		https://www.metalsdepot.co	·											
		m/aluminum-products/6061-												
6061 Aluminum Sheet & Plate	P314T6		Metals Depot		L \$	87.76	\$	_	\$		\$ 87.7	6 OPEN	N	January
0001 Ataminam oneet a reate	101410	aluminum-sheet-plate	Петата Берот		Ψ	07.70	Ψ		Ψ		Ψ 07.7	O CI LIV	Tiv .	January
		rney-45889-e4043-aluminum-												
Aluminum Stick Electrode	E4043	electrode-1-8-in-x-1-2-pound	Forney	1	L \$	31.99	\$	-	\$		\$ 31.9	OPEN OPEN	N	January
Gorilla All Weather Outdoor Waterproof Duct		https://www.amazon.com/sto res/page/BE8CB2B1-203E-	Garrila		L \$	25.96	¢	2.31	\$ 6.9	9 Standard	\$ 35.2	6 OPEN	N	lanuani
Tape	6009002		Gorrila		Ψ	23.96	φ	2.01	ψ 6.9	Standard	φ 35.2	OFEN	14	January
	0107-002040	https://www.servocity.com/3-				00.00	_	, ,,,	•	0		ODEN		l., .
3 Function Joystick	SKY: 605616	function-joystick/	Servocity	- 1	3 \$	29.99	\$	4.77	\$	Standard	\$ 104.2	8 OPEN	N	November

Forward Kinematics

• Transformation matrix (T) displays the position (p) and orientation (R) of the end effector in reference to the base of the robot

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Screws (S1,S2,S3,S4) are determined through robot geometry
- M is the initial transformation matrix, showing the initial position and orientation of the end effector

$$T = e^{([S_1]*\theta_1)*e^{([S_2]*\theta_2)*e^{([S_3]*\theta_3)*e^{([S_4]*\theta_4)*M}}$$

• Given desired θ values, the position and orientation of the end-effector can be determined

Figure XX: Circuit Diagram

