Introduction To Data Visualization

With matpletlib

What is Data Visualization

- Data visualization is the graphical representation of data to help identify patterns, trends, and insights
- In data science, it is an essential tool for exploring data, communicating findings, and making data-driven decisions.
- Effective visualizations simplify complex datasets, making them easier to understand and analyze.

Why good visualizations matter

Bar Charts

Use Cases:

Comparing categorical data

Data Types:

Categorical (x-axis) and Numerical (y-axis)

Benefits:

- Easy to compare values across categories
- Clearly visualizes trends and differences
- Works well with both small and large datasets

PRODUCT SALES REVENUE

Scatter Plots

Use Cases:

 Examining the relationships and correlation between variables

Data Types:

• Two numerical variables (x-axis and y-axis)

Benefits:

- Great for spotting trends and correlations
- Helps identify clusters and patterns in data
- Useful for regression analysis

Pie Charts

Use Cases:

• Showing distribution and percentage breakdowns

Data Types:

 Categorical (labels) and Numerical (proportions/percentages)

Benefits:

- Helps reveal the shape and spread of data
- Useful for detecting skewness and outliers
- Ideal for summarizing large datasets

Project Resources Distribution

Histograms (AKA Bar Graph)

Use Cases:

Understanding distributions and frequency within ranges

Data Types:

Numerical (grouped into bins)

Benefits:

- Simple and intuitive representation of proportions
- Effective for showing part-to-whole relationships
- Best for datasets with a few distinct categories

Distribution of Customer Ages

January 2024

Lets Get Plotting

Key matplotlib functions

plt.title()

Key Parameters:

String of title name

plt.scatter()

Key Parameters:

- x: Numerical data
- y: Numerical data
- color: Point color

plt.bar()

Key Parameters:

- x: Categorical data
- height: Numerical values
- color: Bar color (default is blue)

plt.xlabel() and plt.ylabel()

Key Parameters:

 String of respective axis name

plt.pie()

Key Parameters:

- x: Numerical data
- labels: Names
- autopct: Displays percentage values
- colors: Slices color

plt.hist()

Key Parameters:

- x: Numerical data
- bins: Number of intervals (default is 10)
- color: Bar color

Machine Learning and Data Science Club