Package 'descomponer'

October 13, 2022

Type Package

Version 1.6

Title Seasonal Adjustment by Frequency Analysis

Date 2021-08-13
Author Francisco Parra <parra_fj@cantabria.es></parra_fj@cantabria.es>
Maintainer Francisco Parra <parra_fj@cantabria.es></parra_fj@cantabria.es>
Description Decompose a time series into seasonal, trend and irregular components using transformations to amplitude-frequency domain.
License GPL (>= 2)
Depends $R(>=2.10)$
Repository CRAN
NeedsCompilation no
Date/Publication 2021-08-12 11:40:02 UTC
R topics documented:
cdf celec descomponer gestimardf FFF gdescomponer gdf gdt gdt gperiodograma gtd gtd ipi 10 MW 10 periodograma 1 PIB 1 predictFFF 1

Description

Gets the auxiliary matrix to vector in time domain, pre-multiplies the vector by the orthogonal matrix, W, and its transpose, Parra F. (2013)

Usage

cdf(y)

Arguments

у

a vector of the observed time-serie values

Value

a matrix of sine and cosine waves adjusted to time-serie

Author(s)

Francisco Parra

References

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

Examples

```
n<-100; x<-seq(0,24*pi,length=n); y<-sin(x)+rnorm(n,sd=.3) cdf(y)
```

celec 3

celec

Consumption of electricity in Spain

Description

A vector: celec, Miles de Tep, 1995 a 2013

Usage

data(celec)

Source

Instituto Nacional de Estadistica Spain

descomponer

Time series decomposition

Description

Decompose a time series into seasonal, trend and irregular components using the transform amplitude-frequency domain to time series.

Usage

```
descomponer(y, frequency, type)
```

Arguments

y a Vector of the observed time-serie values frequency Number of times in each unit time interval

type lineal (1), quadratic(2)

Details

One could use a value of 7 for frequency when the data are sampled daily, and the natural time period is a week, or 4 and 12 when the data are sampled quarterly and monthly and the natural time period is a year.

Transforms the time series in amplitude-frequency domain, by a band spectrum regresion (Parra, F. ,2013) of the serie y_t and a OLS lineal trend, in which regression is carried out in the low and the sesaonal amplitude-frequency_t. The low frequency are the periodicity a n/2*frequency or (n-1)/2*frequency, if n is odd. The seasonal frequency are the periodicity: 2n/2*frequency,3n/2*frequency,4n/2*frequency,...

Use the "sort.data.frame" function, Kevin Wright (http://tolstoy.newcastle.edu.au/R/help/04/07/1076.html).

Slow computer in time series higher 1000 data.

The output is a data.frame object.

4 estimardf

The Vector of the observed time-serievalues

Value

У

TDST	The trend and seasonal time serie of y
TD	The trend time serie of y
ST	The seasonal time serie of y
IR	The remainder time serie of y
regresoresTD	The regressors matrix use to the trend estimated
regresoresST	The regressors matrix use to the seasonal estimated
${\tt coeficientesTD}$	The coefficient vector use to the trend estimated
coeficientesSD	The coefficient vector use to the seasonal estimated

References

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

Examples

```
data(ipi)
datos <- descomponer(ipi,12,2)
plot(ts(datos$datos,frequency=12))</pre>
```

estimardf

Prediction whit Regression in domain frequency

Description

Make a prediction for a rdf object

Usage

```
estimardf(a,b)
```

Arguments

a model rdf

b An optional data frame in which to look for variables with which to predict. If

omitted, the fitted values are used.

Details

Use predict.lm, with interval="prediction"

Slow computer in time series higher 1000 data.

FFF 5

Value

fit vector or matrix as above

References

DURBIN, J., "Tests for Serial Correlation in Regression Analysis based on the Periodogram of Least-Squares Residuals," Biometrika, 56, (No. 1, 1969), 1-15.

Engle, Robert F. (1974), Band Spectrum Regression, International Economic Review 15,1-11.

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

Examples

```
data(PIB)
data(celec)
mod1=rdf(celec,PIB)
newdata=c(20000)
estimardf(mod1,newdata)
```

FFF

Regression in Fourier Flexible Form

Description

Make a Fourier Flexible Form Regression

Usage

```
FFF(y,x)
```

Arguments

y a Vector of the dependent variable

x a Vector of the independent variable

Details

The regresion FFF use LM for fitted into the serie y_t and the fourier coefficients expansion described in Gallant (1984).

The output is a data.frame object.

6 gdescomponer

Value

fitted The time - serie fitted

X The X time - series fourier coefficients

residuals The time - serie fitted

References

DURBIN, J., "Tests for Serial Correlation in Regression Analysis based on the Periodogram of Least-Squares Residuals," Biometrika, 56, (No. 1, 1969), 1-15.

Engle, Robert F. (1974), Band Spectrum Regression, International Economic Review 15,1-11.

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Gallant; A. R.(1984), The Fourier Flexible Form. Amer. J. Agr. Econ.66(1984):204-15.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

Parra, F.(2021), Econometria con Series de Fourier (https://econometria.files.wordpress.com/2020/12/curso-de-econometria-avanzado.pdf)

Examples

```
data(PIB)
data(celec)
FFF(celec,PIB)
```

gdescomponer

Plotting the trend and seasonal

Description

Plotting the trend and seasonal of time series.

Usage

```
gdescomponer(y, freq, type, year, q)
```

Arguments

У	a vector of the observed time-serie values
freq	Number of times in each unit time interval

type lineal (1), quadratic(2)

year the year of the first observation q the time of the first observation

gdf 7

References

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

See Also

```
descomponer
```

Examples

```
data(ipi)
gdescomponer(ipi,12,1,2002,1)
```

gdf

Get Frequency Data

Description

Transforms the data from the amplitude-time domain the amplitude-frequency domain pre-multiplied by the orthogonal matrix ,W, whose elements are defined in Harvey A.C. (1978).

Usage

gdf(y)

Arguments

У

a vector of the observed time-series values

Value

a vector of the estimated coefficients fourier

Author(s)

Francisco Parra

References

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

See Also

gdt

8 gdt

Examples

```
n<-100; x<-seq(0,24*pi,length=n); y<-sin(x)+rnorm(n,sd=.3) gdf(y)
```

gdt

Get Time Data

Description

Transforms the data from the amplitude-frequency domain the amplitude-time domain pre-multiplied by inverse of the orthogonal matrix ,W, whose elements are defined in Harvey A.C. (1978).

Usage

gdt(y)

Arguments

У

a vector of the coefficients fourier

Value

a vector of the observed time-series values

Author(s)

Francisco Parra

References

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

See Also

gdf

Examples

```
 \begin{array}{l} n<-100; x<-seq(0,24*pi,length=n); y<-sin(x)+rnorm(n,sd=.3) \\ coef <- \ gdf(y) \\ gdt(coef) \end{array}
```

gperiodograma 9

gperiodograma

Plotting method for specturm

Description

Plotting method for specturm calculate by periodograma function.

Usage

```
gperiodograma(y)
```

Arguments

У

a vector of the observed time-serie values

References

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

See Also

```
periodograma
```

Examples

```
n<-100; x<-seq(0,24*pi,length=n); y<-sin(x)+rnorm(n,sd=.3)
gperiodograma(y)
```

gtd

Plotting method for specturm

Description

Plotting cumulative periodogram test.

Usage

gtd(y)

Arguments

У

a vector of the observed time-serie values

10 MW

References

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

See Also

td

Examples

```
data(PIB)
gtd(PIB)
```

ipi

Indice de Produccion Industrial de Cantabria

Description

A vector: IPI, Base: 2010. Enero 2002 a Abril 2014

Usage

```
data(ipi)
```

Source

Instituto Nacional de Estadistica Spain

MW

Get Frequency Data

Description

Orthogonal matrix defined in Harvey (1978)

Usage

MW(n)

Arguments

n

rows and columuns number

Value

Orthogonal matrix of n X n dimensions

periodograma 11

Author(s)

Francisco Parra

References

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

See Also

```
gdt,gdf,cdf
```

Examples

MW(80)

Description

Calculates and displays the spectrum of the time serie

Usage

```
periodograma(y)
```

Arguments

y a vector of the observed time-serie values

Value

frecuencia Vector of frequencies at which the spectral density is estimated. The units are

the reciprocal of cycles per unit time.

omega Is calculated by pi*frecuencia/(n/2)

periodos n/frecuencia

densidad Vector of estimates of the spectral density at frequencies corresponding to fre-

cuencia.

References

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

12 predictFFF

See Also

```
gperiodograma
```

Examples

```
 n < -100; x < -seq(0, 24*pi, length=n); y < -sin(x) + rnorm(n, sd=.3) \\ periodograma(y)
```

PIB

GDP Volume Index in Spain

Description

A vector: PIB, Base: 2010. 1995 a 2013

Usage

data(PIB)

Source

Instituto Nacional de Estadistica Spain

predictFFF

Prediction whit Regression in FFF

Description

Make a prediction for a rdf object

Usage

```
predictFFF(y,x,new)
```

Arguments

y a Vector of the dependent variablex a Vector of the independent variable

new A data frame in which to look for variables with which to predict. If omitted,

the fitted values are used.

Details

Use predict.lm, with interval="confidence"

predictrdf 13

Value

fit vector or matrix as above

References

DURBIN, J., "Tests for Serial Correlation in Regression Analysis based on the Periodogram of Least-Squares Residuals," Biometrika, 56, (No. 1, 1969), 1-15.

Engle, Robert F. (1974), Band Spectrum Regression, International Economic Review 15,1-11.

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Gallant; A. R.(1984), The Fourier Flexible Form. Amer. J. Agr. Econ.66(1984):204-15.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

Parra, F.(2021), Econometria con Series de Fourier (https://econometria.files.wordpress.com/2020/12/curso-de-econometria-avanzado.pdf)

Examples

```
data("ipi")
t=seq(1:length(ipi))
Mod1=FFF(ipi,t)
plot(ipi)
lines(Mod1$fitted)
new=(length(t)+1):(length(t)+12)
Mod2=predictFFF(ipi,t,new)
```

predictrdf

Prediction whit Regression in domain frequency

Description

Make a prediction for a rdf object

Usage

```
predictrdf(a,b)
```

Arguments

a model rdf

b An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.

Details

Use predict.lm, with interval="prediction"

Slow computer in time series higher 1000 data.

14 rdf

Value

fit vector or matrix as above

References

DURBIN, J., "Tests for Serial Correlation in Regression Analysis based on the Periodogram of Least-Squares Residuals," Biometrika, 56, (No. 1, 1969), 1-15.

Engle, Robert F. (1974), Band Spectrum Regression, International Economic Review 15,1-11.

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

Examples

```
data(PIB)
data(celec)
mod1=rdf(celec,PIB)
newdata=c(100)
predictrdf(mod1,newdata)
```

rdf

Regression in domain frequency

Description

Make a Band Spectrum Regression using the comun frequencies in cross-spectrum.

Usage

```
rdf(y,x)
```

Arguments

y a Vector of the dependent variablex a Vector of the independent variable

Details

Transforms the time series in amplitude-frequency domain, order the fourier coefficient by the comun frequencies in cross-spectrum, make a band spectrum regresion (Parra, F. ,2013) of the serie y_t and x_t for every set of fourier coefficients, and select the model to pass the Durbin test in the significance chosen.

If not find significance for Band Spectrum Regression, make a OLS.

The generalized cross validation (gcv), is caluculated by: gcv=n*sse/((n-k)^2)

td 15

where "sse" is the residual sums of squares, "n" the observation, and k the coefficients used in the band spectrum regression.

Slow computer in time series higher 1000 data.

The output is a data.frame object.

Value

datos\$Y The Y time-serie
datos\$X The X time-serie
datos\$F The time - serie fitted
datos\$reg The error time-serie

Fregresores The matrix of regressors choosen in frequency domain

Tregresores The matrix of regressors choosen in time domain

Nregresores The coefficient number of fourier chosen

sse Residual sums of squares gcv Generalized Cross Validation

References

DURBIN, J., "Tests for Serial Correlation in Regression Analysis based on the Periodogram of Least-Squares Residuals," Biometrika, 56, (No. 1, 1969), 1-15.

Engle, Robert F. (1974), Band Spectrum Regression, International Economic Review 15,1-11.

Harvey, A.C. (1978), Linear Regression in the Frequency Domain, International Economic Review, 19, 507-512.

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

Examples

data(PIB)
data(celec)
rdf(celec,PIB)

td

Cumulative periodogram test

Description

Cumulative periodogram test.

Usage

td(y)

16 td

Arguments

y a vector of the observed time-serie values

Details

The output is a data.frame object.

Value

s2 Cumulative periodogram.

min Is calculated by -c+(t/length(y))
max Is calculated by c+(t/length(y))

References

Parra, F. (2014), Amplitude time-frequency regression, (http://econometria.wordpress.com/2013/08/21/estimation-of-time-varying-regression-coefficients/)

See Also

periodograma

Examples

data(PIB)
td(PIB)

Index

```
* datasets
                                                       PIB, 12
                                                        {\tt predictFFF}, {\tt 12}
    celec, 3
     ipi, 10
                                                       predictrdf, 13
    PIB, 12
                                                        rdf, 14
* smooth
    cdf, 2
                                                        td, 10, 15
     descomponer, 3
     \texttt{estimardf}, \textcolor{red}{4}
     FFF, 5
     gdescomponer, 6
     gdf, 7
     gdt, 8
     gperiodograma, 9
     gtd, 9
    MW, 10
     periodograma, 11
    predictFFF, 12
    predictrdf, 13
     rdf, 14
    td, 15
cdf, 2, 11
celec, 3
descomponer, 3, 7
estimardf, 4
FFF, 5
gdescomponer, 6
gdf, 7, 8, 11
gdt, 7, 8, 11
gperiodograma, 9, 12
gtd, 9
ipi, 10
MW, 10
periodograma, 9, 11, 16
```