Fruitungsteinnenmer	Fruitungsterium	Emzeipi ulungsnummer
		P a g
Kennzahl:		
78 T W W W	Herbst	
Kennwort:		46113
	2005	
Arbeitsplatz-Nr.:		

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben -

Fach: Informatik (Unterrichtsfach)

Einzelprüfung: Theoretische Informatik

Anzahl der gestellten Themen (Aufgaben): 2

Anzahl der Druckseiten dieser Vorlage: 4

Bitte wenden!

Thema Nr. 1

Sämtliche Teilaufgaben sind zu bearbeiten!

Vorbemerkung: Bei der Lösung von Teilaufgaben können (wenn möglich) Lösungen der vorherigen Teilaufgaben vorausgesetzt werden, auch wenn diese nicht gelöst wurden.

Aufgabe 1

Gegeben ist der folgende nichtdeterministische endliche Automat A mit Leerübergängen. (Ein Leerübergang hat die Markierung " ε " und besagt, dass der Automat (spontan) einen Zustandswechsel durchführen kann ohne ein Eingabezeichen zu lesen.)

Es bezeichne L(A) die von A akzeptierte Sprache.

- a) Konstruieren Sie einen äquivalenten Automaten ohne Leerübergänge.
- b) Konstruieren Sie einen äquivalenten, minimalen deterministischen Automaten.
- c) Beweisen Sie unter Verwendung des in Teil b) konstruierten minimalen Automaten, dass für jedes $w \in L(A)$ gilt: Die Anzahl der in w vorkommenden Zeichen b ist gerade.
- d) Geben Sie einen regulären Ausdruck an, der die Sprache L(A) beschreibt.
- e) Geben Sie eine rechtslineare Grammatik an, die die Sprache L(A) erzeugt.

Aufgabe 2

Für eine primitiv rekursive Funktion $f: N \to N$ sei die (von f abhängige) Menge $M_f \subseteq N$ folgendermaßen definiert (wobei N die Menge der natürlichen Zahlen einschließlich der 0 bezeichnet):

$$M_f = \{x \in N \mid \exists z \le x, f(z) = x\}$$

- a) Geben Sie primitiv rekursive Funktionen f1 und f2 an mit $M_{f1} = N$ und $M_{f2} = \{0\}$.
- b) Zeigen Sie, dass es keine primitiv rekursive Funktion f gibt mit $M_f = \emptyset$.

Es soll nun bewiesen werden, dass M_f primitiv rekursiv ist, d.h. dass die charakteristische Funktion $\chi_{M_f}: N \to N$ (mit $\chi_{M_f}(x) = 1$ falls $x \in M_f$, $\chi_{M_f}(x) = 0$ sonst) primitiv rekursiv ist. Zum Beweis sind die Teilaufgaben c) und d) zu bearbeiten.

c) Die (von f abhängige) Funktion $\Phi_f: N^2 \to N$ wird definiert durch

$$\Phi_f(x,y) = \begin{cases} 1 & \text{falls } \exists z \leq y \text{ mit } f(z) = x \\ 0 & \text{sonst} \end{cases}$$

Zeigen Sie, dass Φ_f primitiv rekursiv ist. Beim Beweis ist das Schema der primitiven Rekursion mit geeigneten primitiv rekursiven Funktionen $g:N\to N$ und $h:N^3\to N$ zu verwenden. Dabei kann vorausgesetzt werden, dass die Funktionen $eq:N^2\to N$ und $or:N^2\to N$ primitiv rekursiv sind, wobei eq(x,y)=1 falls x=y, eq(x,y)=0 sonst und or(x,y)=1 falls $x\neq 0$ oder $y\neq 0$, or(x,y)=0 sonst.

d) Zeigen Sie unter Verwendung von Teil c), dass M_f primitiv rekursiv ist.

Thema Nr. 2

Aufgabe 1

Gegeben sind die drei folgenden Sprachen L_1, L_2 und L (jeweils über dem Alphabet $\{a, b, c\}$).

$$\begin{split} L_1 &= \left\{a^i b^k c^k \mid i, k > 0\right\} \\ L_2 &= \left\{a^i b^i c^k \mid i, k > 0\right\} \\ L &= \left\{a^i b^j c^k \mid i, j, k > 0, i = j \operatorname{oder} j = k\right\} \end{split}$$

- a) Beweisen Sie, dass L_1 nicht regulär ist!
- b) Geben Sie kontextfreie Grammatiken G_1 und G_2 an, die die Sprachen L_1 bzw. L_2 erzeugen!
- c) Wie kann man aus den beiden Grammatiken für L_1 und L_2 eine Grammatik G konstruieren, die die Sprache L erzeugt? (Begründung ohne Beweis!)
- d) Zeigen Sie, dass die in Teil c) konstruierte Grammatik G mehrdeutig ist!
- e) Ist die Sprache $L_1 \cap L_2$ kontextfrei? (Begründung ohne Beweis!)

Aufgabe 2

Geben Sie einen vollständigen deterministischen endlichen Automaten (etwa in Form eines Zustandsdiagramms) an, der genau diejenigen Worte aus $\{a,b\}^*$ akzeptiert, die an drittletzter Position das Zeichen a stehen haben. Begründen (beweisen) Sie, dass der Automat alle diese und nur diese Worte akzeptiert!

Hinweis: Konstruieren Sie zuerst einen nichtdeterministischen endlichen Automaten, der die genannte Menge akzeptiert.