

225V高压半桥驱动电路

描述

SDH21263是用作N型功率MOSFET和IGBT等高压功率器件的半桥驱动电路。它内置VCC欠压保护,防止功率管在低的控制电压下工作;具有高低侧输入信号互锁保护功能,可确保功率管上下桥臂不会同时导通。

主要特点

- ◆ 高侧浮动偏移电压 225V
- ◆ 输出电流+1A / -1.3A
- ◆ 输入逻辑兼容 3.3V / 5V / 15V
- 高低侧输入信号互锁保护
- ◆ VCC 欠压 (UV) 保护
- ◆ dV/dt 误动作防止功能

应用

- ◆ 马达驱动
- 电动自行车
- 电动工具

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SDH21263	SOP-8-225-1.27	SDH21263	无卤	料管
SDH21263TR	SOP-8-225-1.27	SDH21263	无卤	编带

杭州士兰徽电子股份有限公司 http://www.silan.com.cn

内部框图

极限参数 (除非特别注明, 否则 T_{amb} =25°C)

参数	符号	参数范围	单位
高侧浮动绝对电压	V _B	-0.3~250	V
高侧浮动偏移电压	Vs	V _B -25∼V _B +0.3	V
高侧输出电压	V _{HO}	V _S -0.3∼V _B +0.3	V
低侧供电电压	V _{CC}	-0.3~25	V
低侧输出电压	V_{LO}	-0.3∼V _{CC} +0.3	V
逻辑输入电压(HIN, LIN)	V _{IN}	-0.3~15	V
功率耗散@TA≤25°C	P _D	≤0.6	W
结对环境的热阻	R _{thJA}	≤200	°C/W
结温范围	Tj	≤150	°C
工作温度范围	T _{opr}	-40~125	°C
储存温度范围	T _{stg}	-40~150	°C

推荐工作条件

参数	符号	测试条件	最小值	典型值	最大值	单位
高侧浮动绝对电压	V _B		V _S +10	-	V _S +20	V
高侧浮动偏移电压	Vs		-5		225	٧
高侧输出电压	V _{HO}		Vs		V _B	V
低侧供电电压	Vcc		10		20	V
低侧输出电压	V_{LO}		0		V _{CC}	V
逻辑输入电压	V _{IN}	HIN, LIN	0		13	V

电气参数(除非特别注明,否则 T_{amb} =25°C, V_{cc} = V_{BS} (= V_{B} - V_{S})=15V)

参数	符号	测试条件	最小值	典型值	最大值	单位
浮动电源漏电流	I _{LK}	V _B =V _S =225V			10	μA
V _{BS} 静态电流	I _{QBS}	HIN=0V, LIN =5V		20		μA
V _{CC} 静态电流	I _{QCC}	HIN=0V, LIN =5V		60		μA
高电平输出电压	V _{OH}	I _O =20mA		14.8		V
低电平输出电压	V _{OL}	I _O =20mA		0.1		V
高电平输入阈值电压	V _{IH}	HIN, LIN	2.7			V
低电平输入阈值电压	V _{IL}	HIN, LIN			0.8	V
高电平输入偏置电流	I _{IH}	HIN=5V, LIN =0V		60		μA
低电平输入偏置电流	I _{IL}	HIN=0V, LIN =5V			10	μA
Vcc欠压保护复位电压	V _{CCuvr}		8.0	8.9	9.8	V
Vcc欠压保护检测电压	V _{CCuvt}		7.4	8.2	9.0	V
Vcc 欠压保护迟滞电压	V_{CCuvh}		0.3	0.7		V
高电平输出短路脉冲电流	I _{OH}	V _O =0V, V _O =5V, PW≤10μs		1		А
低电平输出短路脉冲电流	I _{OL}	V _O =15V, V _O =0V, PW≤10μs		1.3		А
输出上升沿传输延时	Ton	C _L =1000pF		270		ns
输出下降沿传输延时	T _{off}	C _L =1000pF		150		ns
输出上升时间	t _r	C _L =1000pF		15		ns
输出下降时间	t _f	C _L =1000pF		15		ns
死区时间	DT			120		ns
高低侧延时匹配	MT			0	50	ns

管脚排列图

杭州士兰徽电子股份有限公司 http://www.silan.com.cn

管脚描述

管脚号	管脚名称	I/O	管脚描述	
1	VCC	I	低侧供电电压	
2	HIN	I	高侧输入	
3	LIN	1	低侧输入	
4	GND	1	接地	
5	LO	0	低侧输出	
6	VS	I	高侧浮动偏移电压	
7	НО	0	高侧输出	
8	VB	İ	高侧浮动绝对电压	

功能描述

SDH21263 是用于 N 型功率 MOSFET 和 IGBT 等高压功率器件的半桥驱动电路,正常工作时,输出 LO 与 $\overline{\text{LIN}}$ 逻辑反相、输出 HO 与输入 HIN 逻辑同相。

SDH21263 具有输入高低侧信号互锁功能并内置死区时间,当LIN 为低电平、HIN 为高电平时,LO 和 HO 均输出低电平。该功能防止被驱动的两个 MOSFET 或 IGBT 因同时导通而产生大电流,有效保护功率器件。

SDH21263 同时具备欠压(UV)保护功能,当 V_{CC} 的电压低于欠压保护检测电压时,LO 和 HO 均输出低电平。该功能防止被驱动的 MOSFET 或 IGBT 工作在高电压高电流状态下,有效保护功率器件并避免后续设备在低效率下工作。

SDH21263 还具备 dV/dt 误动作防止功能,当 Vs 电压产生突变时,输出端逻辑电平不会发生变化,防止产生误动作。

时间测试标准

功能表

HIN	LIN	Vcc UV	НО	LO	逻辑状态
L	Н	Н	L	L	HO=LO= "0"
L	L	Н	L	Н	HO= "0", LO= "1"
Н	Н	Н	Н	L	HO= "1", LO= "0"
Н	L	Н	L	L	HO=LO= "0"
Х	Х	L	L	L	HO=LO="0",VCC 欠压保护

注意: V_{cc} UV 的 "L"状态表示低于欠压保护检测电压。

输入/输出逻辑时序图

典型应用线路图

C1: 电源滤波电容,根据电路情况可选择 0.1µF~1µF。

C2: 高压供电电源滤波电容,容值根据后续电路应用而定。

R: 栅极保护电阻,阻值根据被驱动器件要求而定。

Dbs: 自举二极管,应选择高反向击穿电压(>225V)、恢复时间尽量短的二极管。

Cbs: 自举电容,应选择陶瓷电容或钽电容,最小容值可按以下式子计算:

$$Cbs \! \geq \! \frac{2 \! \cdot \! \left[2 \cdot Q_g + Q_{period} + \frac{I_{bs(staic)}}{f} + \frac{I_{bs(leak)}}{f} \right]}{Vcc - V_F - V_{ds(L)} - V_{BSmin}}$$

其中: Qq 为高侧功率器件的栅极电荷;

Q_{period} 为每个周期中电平转换电路的电荷要求,约为 5nC;

I_{bs(staic)}为高侧驱动电路的静态电流;

I_{bs(leak)}为自举电容的漏电流;

f 为电路工作频率;

V_{cc}为自举二极管的充电电压(低侧供电电压);

V_F为自举二极管的正向导通压降;

 $V_{ds(L)}$ 为低侧功率器件的导通压降。

VBSmin 为应用要求的 VBS 电压最小值。

注: 以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

封装外形图

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- ◆ 必须采用导体包装或抗静电材料包装或运输。

重要注意事项:

- ◆ 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和完整。
- ◆ 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- ◆ 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http://www.silan.com.cn

产品	品名称:	SDH21263	文档类型:	说明书
版	权:	杭州士兰微电子股份有限公司	公司主页:	http://www.silan.com.cn
版	本:	1.3		
	1. 更新	参数		
	2. 更新	典型应用图中的 Cbs 最小容值计算公式		
	3. 更新	说明书模板(更新重要注意事项)		
版	本:	1.2		
	1. 更新	低电平输入偏置电流参数		
版	本:	1.1		
	1. 修改	HIN/LIN 端口耐压		
版	本:	1.0		

1. 正式版本发布