Chapter 7

- 7.1 Measures of predictive accuracy
- 7.2 Information criteria and cross-validation
 - Instead of 7.2, read:
 Vehtari, A., Gelman, A., Gabry, J. (2017). Practical
 Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5):1413–1432. arXiv preprint.
- 7.3 Model comparison based on predictive performance
- 7.4 Model comparison using Bayes factors
- 7.5 Continuous model expansion / sensitivity analysis
- 7.5 Example (may be skipped)

Model assessment, selection and inference after selection

- Extra material at https://avehtari.github.io/modelselection/
 Videos, Slides, Notebooks, References
- CV-FAQ https://avehtari.github.io/modelselection/CV-FAQ.html

Predicting concrete quality

Predicting cancer recurrence

- ► True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation
- Expected predictive performance
 - approximates the external validation

- We need to choose the utility/cost function
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.

- We need to choose the utility/cost function
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.
- If are interested overall in the goodness of the predictive distribution, or we don't know (yet) the application specific utility, then good information theoretically justified choice is log-score

$$\log p(y^{\text{rep}} \mid y, M),$$

- What is cross-validation
 - Leave-one-out cross-validation (elpd_loo, p_loo)
 - Uncertainty in LOO (SE)
- When is cross-validation applicable?
 - data generating mechanisms and prediction tasks
 - leave-many-out cross-validation
- Fast cross-validation
 - PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
 - K-fold cross-validation
- Related methods (WAIC, *IC, BF)
- Model comparison and selection (elpd_diff, se)
- Model averaging with Bayesian stacking

Stan and loo package

Computed from 4000 by 20 log-likelihood matrix

```
Estimate SE
elpd loo -29.5 \ 3.3
p_loo 2.7 1.0
```

Monte Carlo SE of elpd loo is 0.1.

Pareto k	diagi	nostic	value	es:			
				Count	Pct.	Min.	n_eff
(-Inf, 0.	5]	(good)		18	90.0%	899	
(0.5, 0.	7]	(ok)		2	10.0%	459	
(0.7,	1]	(bad)		0	0.0%	<NA $>$	
(1, In	ıf)	(very	bad)	0	0.0%	<na></na>	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

Model comparison: (negative 'elpd diff' favors 1st model, positive favors 2nd)

$$\begin{array}{ccc} \text{elpd_diff} & \text{se} \\ -0.2 & 0.1 \end{array}$$

Posterior mean, alternative data realisation

Posterior predictive distribution

$$p(\tilde{y} \mid \tilde{x} = 18, x, y) = \int p(\tilde{y} \mid \tilde{x} = 18, \theta) p(\theta \mid x, y) d\theta$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18})]$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R², 90% error

Leave-one-out residual

$$y_{18} - E[p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R², 90% error

See LOO-R² at avehtari.github.io/bayes_R2/bayes_R2.html

Leave-one-out predictive distribution

$$p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18}) = \int p(\tilde{y} \mid \tilde{x} = 18, \theta) p(\theta \mid x_{-18}, y_{-18}) d\theta$$

Posterior predictive density

$$p(\tilde{y} = y_{18} \mid \tilde{x} = 18, x, y) \approx 0.07$$

Leave-one-out predictive density

$$p(\tilde{y} = y_{18} \mid \tilde{x} = 18, x, y) \approx 0.07$$

 $p(\tilde{y} = y_{18} \mid \tilde{x} = 18, x_{-18}, y_{-18}) \approx 0.03$

Leave-one-out predictive densities

 $p(y_i \mid x_i, x_{-i}, y_{-i}), \quad i = 1, \dots, 20$

Leave-one-out log predictive densities

 $\log p(y_i\mid x_i,x_{-i},y_{-i}),\quad i=1,\ldots,20$

Leave-one-out log predictive densities

 $\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$

Leave–one–out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$

Leave-one-out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$ an estimate of log posterior pred. density for new data

Leave–one–out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

lpd = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x, y) \approx -26.8$

Leave–one–out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

lpd = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x, y) \approx -26.8$
p loo = lpd - elpd loo ≈ 2.7

Leave–one–out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i \mid x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

Leave-one-out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i \mid x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

see Vehtari, Gelman & Gabry (2017a) and Vehtari & Ojanen (2012) for more

LOO is ok for fixed / designed x. SE is uncertainty about $y \mid x$.

LOO is ok for random x. SE is uncertainty about $y \mid x$ and x.

LOO is ok for random x. SE is uncertainty about $y \mid x$ and x. Covariate shift can be handled with importance weighting or modelling

see Vehtari & Ojanen (2012) and CV-FAQ

100 package

Computed from 4000 by 20 log-likelihood matrix

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

		Count	Pct.	Min.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)		0.0%	<NA $>$	
(1, Inf)	(very bad)	0	0.0%	<NA $>$	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

Extrapolation is more difficult

Can LOO or other cross-validation be used with time series?

Leave-one-out cross-validation is ok for assessing conditional model

Leave-future-out cross-validation is better for predicting future

m-step-ahead cross-validation is better for predicting further future

m-step-ahead leave-a-block-out cross-validation

Can LOO or other cross-validation be used with hierarchical data?

Summary of data generating mechanisms and prediction tasks

- You have to make some assumptions on data generating mechanism
- Use the knowledge of the prediction task if available
- Cross-validation can be used to analyse different parts, even if there is no clear prediction task

Fast cross-validation

- Pareto smoothed importance sampling LOO (PSIS-LOO)
- K-fold cross-validation

• We want to compute

$$p(y_i \mid x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$$

- We want to compute $p(y_i \mid x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p(\theta \mid x_{-i}, y_{-i})$

We want to compute

$$p(y_i \mid x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$$

- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_i^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_i \mid \theta^{(s)})}$$

• We want to compute $p(y_i \mid x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$

- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_{i}^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_{i} \mid \theta^{(s)})}$$
$$\tilde{w}_{i}^{(s)} = \frac{w_{i}^{(s)}}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

Posterior draws 7.5 > 5.0 2.5 0.0 10 15 20 5 Χ $\theta^{(s)} \sim p(\theta \mid x, y)$

Posterior predictive distribution

$$\theta^{(s)} \sim p(\theta \mid x,y), \quad p(\tilde{y} \mid \tilde{x},x,y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\tilde{y} \mid \tilde{x},\theta^{(s)})$$

Posterior predictive distribution

$$\theta^{(s)} \sim p(\theta \mid x, y), \quad p(\tilde{y} \mid \tilde{x}, x, y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\tilde{y} \mid \tilde{x}, \theta^{(s)})$$

PSIS-LOO weighted draws

$$\theta^{(s)} \sim p(\theta \mid x, y), \quad w_i^{(s)} = p(\theta^{(s)} \mid x_{-i}, y_{-i}) / p(\theta^{(s)} \mid x, y)$$

PSIS-LOO weighted predictive distribution

$$\begin{aligned} \theta^{(s)} &\sim p(\theta \mid x, y), \quad w_i^{(s)} = p(\theta^{(s)} \mid x_{-i}, y_{-i}) / p(\theta^{(s)} \mid x, y) \\ p(y_i \mid x_i, x_{-i}, y_{-i}) &\approx \sum_{s=1}^{S} [\tilde{w}_i^{(s)} p(y_i \mid x_i, \theta^{(s)})] \end{aligned}$$

Pareto smoothed importance sampling LOO

We want to compute

$$p(y_i \mid x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$$

- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_i^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_i \mid \theta^{(s)})}$$
$$\tilde{w}_i^{(s)} = \frac{w_i^{(s)}}{\sum_{s'=1}^S w_i^{(s')}}$$

- The variability of importance weights matter
 - Pareto-k diagnostic
 - Pareto smoothed importance sampling LOO (PSIS-LOO)

ESS
$$\approx 1/\sum_{s=1}^{S} (\tilde{w}^{(s)})^2 \approx 459$$

ESS
$$\approx 1/\sum_{s=1}^{S} (\tilde{\textit{w}}^{(s)})^2 \approx 459$$

Pareto $\hat{k} \approx 0.52$

- Pareto \hat{k} estimates the tail shape which determines the convergence rate of PSIS. Less than 0.7 is ok.

Pareto k diagnostic values:

		Count	Pct.	Min .	n_eft
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(very bad)	0	0.0%	<NA $>$	

PSIS-LOO diagnostics

Pareto k diagnostic values:

		Count	Pct.	Min .	n_eft
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(very bad)	0	0.0%	<na></na>	

100 package

Computed from 4000 by 20 log-likelihood matrix

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

		Count	Pct.	Mın.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<na></na>	
(1, Inf)	(very bad)	0	0.0%	<na></na>	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

see more in Vehtari, Gelman & Gabry (2017b)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
 - equivalent to using model to filter the noise out of the weights

See more in Vehtari, Simpson, Gelman, Yao & Gabry (2021)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
 - equivalent to using model to filter the noise out of the weights
- Reduced variability compared to the plain IS
- Reduced bias compared to the truncated IS

See more in Vehtari, Simpson, Gelman, Yao & Gabry (2021)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
 - equivalent to using model to filter the noise out of the weights
- Reduced variability compared to the plain IS
- Reduced bias compared to the truncated IS
- Asymptotically consistent under some mild conditions

See more in Vehtari, Simpson, Gelman, Yao & Gabry (2021)

Stan code

$$\log(w_i^{(s)}) = \log(1/p(y_i \mid x_i, \theta^{(s)})) = -\log_{\text{lik}[i]}$$

Stan code

```
\log(w_i^{(s)}) = \log(1/p(y_i \mid x_i, \theta^{(s)})) = -\log_{\text{lik}[i]}
model {
  alpha ~ normal(pmualpha, psalpha);
  beta ~ normal(pmubeta, psbeta);
  y ~ normal(mu, sigma);
generated quantities {
  vector[N] log lik;
  for (i in 1:N)
    log lik[i] = normal lpdf(v[i] | mu[i], sigma);
```

Stan code

```
\log(w_i^{(s)}) = \log(1/p(v_i \mid x_i, \theta^{(s)})) = -\log \text{ lik[i]}
model {
  alpha ~ normal(pmualpha, psalpha);
  beta ~ normal(pmubeta, psbeta);
  y ~ normal(mu, sigma);
generated quantities {
  vector[N] log lik;
  for (i in 1:N)
    log lik[i] = normal lpdf(v[i] | mu[i], sigma);
```

RStanARM and BRMS compute log_lik by default

Pareto smoothed importance sampling LOO

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO
 - see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
 - Stan demo of the challenges and integrated LOO at https://avehtari.github.io/modelselection/roaches.html

Pareto smoothed importance sampling LOO

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO
 - see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
 - Stan demo of the challenges and integrated LOO at https://avehtari.github.io/modelselection/roaches.html
- PSIS-LOO for non-factorizable models
 - mc-stan.org/loo/articles/loo2-non-factorizable.html

Pareto smoothed importance sampling LOO

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO
 - see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
 - Stan demo of the challenges and integrated LOO at https://avehtari.github.io/modelselection/roaches.html
- PSIS-LOO for non-factorizable models
 - mc-stan.org/loo/articles/loo2-non-factorizable.html
- PSIS-LOO for time series
 - Approximate leave-future-out cross-validation (LFO-CV)
 - mc-stan.org/loo/articles/loo2-lfo.html

LFO-CV

LFO-CV

LFO-CV

PSIS-1-step-ahead with refits

K-fold cross-validation

- K-fold cross-validation can approximate LOO
 - the same use cases as with LOO
- K-fold cross-validation can be used for hierarchical models
 - good for leave-one-group-out
- K-fold cross-validation can be used for time series
 - with leave-block-out

Balance k-fold approximation of LOO

Year

kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()

WAIC has same assumptions as LOO

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead
- Multiplying by -2 doesn't give any benefit (Watanabe didn't multiply by -2)

*IC

- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is an approximation for marginal likelihood
- TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

Marginal likelihood / Bayes factor

 Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations

Marginal likelihood / Bayes factor

 Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations
 - which makes it very sensitive to prior

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations
 - which makes it very sensitive to prior and
 - unstable in case of misspecified models

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations
 - which makes it very sensitive to prior and
 - unstable in case of misspecified models also asymptotically

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - e.g. 90% absolute error

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - e.g. 90% absolute error
- Also useful in model checking in similar way as posterior predictive checking (PPC)
 - model misspecification diagnostics (e.g. Pareto-k and p_loo)
 - checking calibration of leave-one-out predictive posteriors (ppc_loo_pit in bayesplot)

see demos avehtari.github.io/modelselection/

Radon example

PSIS-LOO diagnostics

see Vehtari, Gelman & Gabry (2017a)

Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 11.

Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 11.

- BDA3, Chapter 6
- Gabry, Simpson, Vehtari, Betancourt, Gelman (2019). Visualization in Bayesian workflow. JRSS A, https://doi.org/10.1111/rssa.12378
- mc-stan.org/bayesplot/articles/graphical-ppcs.html

 With good priors that keep the prior on predictive space consistent, there is no need to do model selection to avoid overfitting

- Logistic regression for predicting probability of switching well with high arsenic level in rural Bangladesh
 - Model 1: log(arsenic) + distance
 - Model 2: log(arsenic) + distance + education level

Model 1: $\widehat{\text{elpd}}_{\text{Loo}}(\mathbf{M}_a \mid y^{\text{obs}}) \approx \text{-1952}$, SE=16 Model 2: $\widehat{\text{elpd}}_{\text{Loo}}(\mathbf{M}_b \mid y^{\text{obs}}) \approx \text{-1938}$, SE=17

Difference: $\widehat{\text{elpd}}_{\text{Loo}}(M_a, M_b \mid y^{\text{obs}}) \approx -14.4$, SE = 6.1

Difference: $\widehat{\mathrm{elpd}}_{\mathrm{Loo}}\big(\mathrm{M}_a,\mathrm{M}_b\mid y^{\mathrm{obs}}\big)\approx$ -14.4, SE = 6.1

Difference: $\widehat{\text{elpd}}_{\text{Loo}}(M_a, M_b \mid y^{\text{obs}}) \approx -14.4$, SE = 6.1

Difference: $\widehat{\text{elpd}}_{\text{Loo}}(M_a, M_b \mid y^{\text{obs}}) \approx -14.4$, SE = 6.1

1. The models make very similar predictions

2. The models are misspecified with outliers in the data

3. The number of observations is small

- 1. The models make very similar predictions
 - if $|\widehat{\text{elpd}}_{\text{Loo}}(M_a, M_b \mid y^{\text{obs}})| < 4$, SE is not reliable, but the difference is small anyway
 - selecting a "wrong" model has small cost
 - in nested case the skewness favors the simpler model
- 2. The models are misspecified with outliers in the data

3. The number of observations is small

- 1. The models make very similar predictions
 - if $|\widehat{\text{elpd}}_{\text{Loo}}(M_a, M_b \mid y^{\text{obs}})| < 4$, SE is not reliable, but the difference is small anyway
 - selecting a "wrong" model has small cost
 - in nested case the skewness favors the simpler model
- 2. The models are misspecified with outliers in the data
 - in nested case the bias favors the simpler model
 - model checking and model extension to avoid misspecified models (Bayesian workflow)
- The number of observations is small

- 1. The models make very similar predictions
 - if $|\widehat{\text{elpd}}_{\text{Loo}}(M_a, M_b \mid y^{\text{obs}})| < 4$, SE is not reliable, but the difference is small anyway
 - selecting a "wrong" model has small cost
 - in nested case the skewness favors the simpler model
- 2. The models are misspecified with outliers in the data
 - in nested case the bias favors the simpler model
 - model checking and model extension to avoid misspecified models (Bayesian workflow)
- 3. The number of observations is small
 - in nested case the skewness favors the simpler model
 - any inference with small *n* is difficult
 - if $|\widehat{\text{elpd}}_{\text{Loo}}(\mathbf{M}_a, \mathbf{M}_b \mid y^{\text{obs}})| > 4$, model is well specified, and n > 100 then the normal approximation is good

 In nested case, often easier and more accurate to analyse posterior distribution of more complex model directly avehtari.github.io/modelselection/betablockers.html

Sometimes predictive model comparison can be useful

Marginal posterior intervals

Sometimes predictive model comparison can be useful

rstanarm + bayesplot

Sometimes predictive model comparison can be useful

rstanarm + bayesplot

see also Collinear demo

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
 andrewgelman.com/2018/07/26/
 parsimonious-principle-vs-integration-uncertainties/

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
 andrewgelman.com/2018/07/26/
 parsimonious-principle-vs-integration-uncertainties/
- In a nested case choose more complex if you want to take into account all the uncertainties. andrewgelman.com/2018/07/26/ parsimonious-principle-vs-integration-uncertainties/

Model averaging

• Prefer continuous model expansion

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging
- Bayesian stacking may work better than BMA in case of misspecified models or small data
 - Yao, Vehtari, Simpson, & Gelman (2018)

Cross-validation and model selection

- · Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear

Cross-validation and model selection

- Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - selection process can lead to severe overfitting

Cross-validation and model selection

- Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - selection process can lead to severe overfitting
- Overfitting in selection process is not unique for cross-validation

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models
- Bigger problem if there is a large number of models as in covariate selection

Selection induced bias in variable selection

Selection induced bias in variable selection

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy