

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

·

INFORMATIQUE

Jeudi 2 mai : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé de trois parties indépendantes.

Partie I - Inversions de permutations (Informatique pour tous)

Pour tout $n \in \mathbb{N}\setminus\{0\}$, une **permutation de taille n** est une bijection de l'ensemble $\{0, 1, \dots, n-1\}$ dans lui-même. Dans la suite, l'ensemble des permutations de taille n est noté \mathfrak{S}_n . Étant donné une permutation σ de taille n, on la représente sous la forme $\sigma_0\sigma_1\cdots\sigma_{n-1}$ où :

$$\forall i \in \{0, \cdots, n-1\}, \sigma_i = \sigma(i).$$

Par exemple, $\sigma = 1032$ représente la permutation envoyant 0 sur 1, 1 sur 0, 2 sur 3 et 3 sur 2.

Soit $\sigma = \sigma_0 \cdots \sigma_{n-1}$ une permutation de taille n. On dit que $(i, j) \in \{0, 1, \dots, n-1\}^2$ est une **inversion** de σ si $\sigma_i > \sigma_j$ et i < j. On note inv (σ) le nombre d'inversions de σ . Tout d'abord, on relie ce nombre avec un algorithme de tri : le tri à bulles. Puis, on s'intéresse à la table d'inversions d'une permutation, un objet qui caractérise une permutation.

Dans la suite, une permutation de taille n est représentée en Python par une liste sans répétition contenant tous les entiers compris entre 0 et n-1. Par exemple, la liste [1,0,3,2] représente la permutation $\sigma = 1032$.

Si *A* est un ensemble fini, Card(*A*) désigne le cardinal de l'ensemble *A*. Pour tout entier $n \ge 1$, on pose $E_n = \prod_{k=1}^n \{0, 1, \dots, n-k\}$. Par exemple, on a $E_3 = \{0, 1, 2\} \times \{0, 1\} \times \{0\}$.

I.1 - Tri et inversions

Q1. Déterminer l'ensemble des inversions de la permutation $\sigma = 140253$.

On rappelle l'algorithme de tri à bulles :

```
Algorithme 1 - Tri à bulles
```

```
Entrées : Une liste d'entiers L

pour i allant de (taille de L)-1 à 1 (bornes incluses) faire

| pour j allant de (taille de L)-1 à (taille de L)-i (bornes incluses) faire

| si L[j]<L[j-1] alors

| Echanger L[j] et L[j-1]

| fin

fin
```

Q2. Écrire une fonction Python tri_bulle(L) qui prend en argument une liste d'entiers L et qui trie cette liste à l'aide du tri à bulles. À l'issue de la fonction, la liste est triée.

Dans la suite, on admet que l'algorithme du tri à bulles est bien un algorithme de tri.

- **Q3.** Montrer que si on effectue exactement un échange dans une liste lors du tri à bulles, la nouvelle liste a exactement une inversion en moins.
- **Q4.** En déduire une fonction Python nombre_inversions (L) qui prend en argument une liste L correspondant à une permutation et renvoyant le nombre d'inversions de celle-ci. Cette fonction sera une légère modification du tri à bulles.

I.2 - Table d'inversions d'une permutation

Définition 1 (Table d'inversions). Soit σ une permutation de taille $n \ge 1$. La **table d'inversions** de σ est le n-uplet $(\alpha_0, \dots, \alpha_{n-1})$ tel que :

$$\forall i \in \{0, \dots, n-1\}, \alpha_i = \operatorname{Card}\left(\left\{j \in \{i+1, \dots, n-1\} \middle| \sigma_j < \sigma_i\right\}\right).$$

Elle est notée \mathbf{Tab}_{σ} . De plus, pour tout $i \in \{0, \dots, n-1\}$, $\mathbf{Tab}_{\sigma}[i]$ désigne α_i .

Pour tout $n \ge 1$, on désigne par **Tab** : $\mathfrak{S}_n \to E_n$ l'application qui associe à une permutation de taille n sa table d'inversions.

- **Q5.** Déterminer la table d'inversions de la permutation $\sigma = 140253$.
- **Q6.** Montrer que pour toute permutation σ de taille $n \ge 1$, **Tab** $_{\sigma}$ est bien un élément de E_n .
- **Q7.** Soit σ une permutation de taille $n \ge 1$. Montrer que $\sigma_0 = \mathbf{Tab}_{\sigma}[0]$.
- **Q8.** Montrer que pour tout entier $n \ge 1$, l'application **Tab** est bijective.
- **Q9.** Écrire une fonction Python permutation_vers_table(L) qui prend en argument une permutation représentée par la liste L et qui renvoie la table d'inversions correspondante.
- **Q10.** Écrire une fonction Python table_vers_permutation(L) qui prend en argument une liste L qui correspond à une table d'inversions et qui renvoie la permutation qui lui est associée.

Partie II - Théorie des automates et des langages rationnels

Dans toute cette partie, la lettre ε désigne le mot vide, Σ désigne un alphabet et Σ^* l'ensemble des mots finis sur Σ .

II.1 - Définitions

Définition 2 (Automate déterministe). Un automate déterministe A est un quintuplet $A = (Q, \Sigma, q_0, F, \delta)$, avec :

- Q un ensemble d'états;
- Σ un alphabet;
- q_0 l'état initial;
- $F \subseteq Q$ un ensemble d'états finaux ;
- $\delta: Q \times \Sigma \to Q$ une application de transition.

Définition 3 (Langage). Un langage sur Σ est une partie de Σ^* .

Définition 4 (Application de transition étendue aux mots). Soit $A = (Q, \Sigma, q_0, F, \delta)$ un automate déterministe. On définit de manière récursive $\delta^* : Q \times \Sigma^* \to Q$ par :

$$\begin{array}{lll} \forall q \in Q, & \delta^{\star}(q, \varepsilon) & = & q \\ \forall q \in Q, \forall a \in \Sigma, \forall w \in \Sigma^{\star}, & \delta^{\star}(q, aw) & = & \delta^{\star}\left(\delta(q, a), w\right). \end{array}$$

Cette application δ^* vérifie alors la propriété admise suivante :

$$\forall q \in Q, \forall v \in \Sigma^{\star}, \forall w \in \Sigma^{\star}, \delta^{\star}(q, vw) = \delta^{\star} \left[\delta^{\star} \left(q, v \right), w \right].$$

Définition 5 (Langages rationnels). On rappelle que les langages rationnels sont définis de manière inductive par :

- l'ensemble Ø est un langage rationnel;
- les langages $\{a\}$ où a est une lettre, sont rationnels;
- si L et L' sont des langages rationnels, $L.L', L \cap L', L \cup L'$ sont des langages rationnels;
- si L est un langage rationnel, L^* est un langage rationnel.

Définition 6 (Carré d'un langage). Soit L un langage sur Σ . Le **carré du langage** L est l'ensemble $\{uu, u \in L\}$. Il est noté $L \odot L$.

Définition 7 (Racine carrée d'un langage). Soit L un langage sur Σ . La **racine carrée du langage** L est l'ensemble $\{u \in \Sigma^* | uu \in L\}$. Elle est notée \sqrt{L} .

On pourra utiliser sans démonstration le théorème ci-dessous :

Théorème 1. Soit L un langage. Il est rationnel si et seulement s'il existe un automate déterministe et fini le reconnaissant.

Dans la suite, on décrit un langage rationnel par une expression rationnelle.

II.2 - Racine carrée d'un langage

Exemples

Q11. Décrire \sqrt{L} lorsque $\Sigma = \{a, b\}$ et L est décrit par l'expression rationnelle a^*b^* .

Q12. Décrire \sqrt{L} lorsque $\Sigma = \{a, b\}$ et L est décrit par l'expression rationnelle $b^*a^*b^*$.

Construction d'automates

Définition 8. Soient $A = (Q, \Sigma, q_0, F, \delta)$ un automate fini déterministe, q' un élément de Q et F' une partie de Q. L'automate $(Q, \Sigma, q', F', \delta)$ est noté $A_{q',F'}$. Si on note L le langage reconnu par A, $L_{q',F'}$ désigne le langage reconnu par $A_{q',F'}$.

Ici, L désigne le langage reconnu par l'automate A suivant :

- **Q13.** Construire un automate reconnaissant $L_{3,\{1\}}$ en modifiant légèrement l'automate A.
- **Q14.** On veut construire l'automate de Glushkov de L décrit par $a(a + ba^*b)^*ba^*$.
 - 1. Décrire L', le linéarisé de L.
 - 2. Déterminer les préfixes de L' de longueur 1, les suffixes de L' de longueur 1 et les facteurs de L' de longueur 2.
 - 3. En déduire l'automate de Glushkov G de L.
- **Q15.** Déterminiser l'automate *G*.

Propriétés de la racine carrée d'un langage rationnel

Ici, on fixe L un langage rationnel sur un alphabet Σ et $A = (Q, \Sigma, q_0, F, \delta)$ un automate fini reconnaissant celui-ci.

- **Q16.** Soit u un mot de Σ^* . Montrer que u est un élément de \sqrt{L} si et seulement s'il existe un $q \in Q$ tel que $u \in L_{q_0,\{q\}}$ et $u \in L_{q,F}$.
- **Q17.** En déduire que \sqrt{L} est un langage rationnel.
- **Q18.** Montrer que l'on a $(\sqrt{L} \odot \sqrt{L}) \subset L$.

Partie III - Algorithmique des mots sans facteur carré

L'objectif de cette partie est de construire différents algorithmes pour vérifier si un mot comporte des facteurs carrés ou non.

Dans toute la suite, $\Sigma = \{a_1 < \dots < a_p\}$ désigne un alphabet totalement ordonné comportant p lettres, ε représente le mot vide et Σ^* est l'ensemble des mots finis obtenus à partir de Σ . Pour tout réel x, on note $\lfloor x \rfloor$ la partie entière de x.

III.1 - Définitions

Définition 9 (Longueur d'un mot). Soit $w = w_0 \cdots w_{n-1}$ un mot de Σ^* . La **longueur** n de w est notée |w|, pour tout $0 \le i \le j < n$, w[i, j] désigne le mot $w_i \cdots w_j$. Par convention, si j < i, w[i, j] désigne ε .

Définition 10 (Mot carré). Soit w un mot de Σ^* . On dit que w est un **carré** s'il existe un mot x tel que $w = x \cdot x$.

Définition 11 (Facteur d'un mot). Soient v et w deux mots de Σ^* . On dit que v est un **facteur** de w s'il existe r et s deux mots (éventuellement vides) tels que w = rvs.

Définition 12 (Répétition). On dit qu'un mot w contient une **répétition** s'il contient un facteur carré différent de ε .

Dans la suite, un mot sera représenté en Caml par la liste de ses lettres. Par exemple, le mot *baba* est représenté par la liste ['b'; 'a'; 'b'; 'a'] et le mot vide est représenté par la liste [].

III.2 - Fonctions utiles sur les listes

- **Q19.** Écrire une fonction récursive Caml de signature longueur : 'a list -> int qui renvoie la longueur de la liste.
- **Q20.** Écrire une fonction Caml de signature sous_liste : 'a list -> int -> 'a list où sous_liste L k long renvoie une liste S qui est la sous-liste de L commençant à l'indice k et de longueur long. On suppose que l'indexation des listes commence à 0.

On pourra dans la suite de l'énoncé utiliser les fonctions longueur et sous_liste.

III.3 - Un algorithme naïf

- **Q21.** Préciser si les mots suivants contiennent ou non une répétition.
 - 1. aabfa 2. abfdang 3. ababa 4. avba.
- **Q22.** Soit w un mot contenant au plus deux lettres différentes. Montrer que si $|w| \ge 4$ alors w contient au moins une répétition.
- **Q23.** Écrire une fonction Caml de signature estCarre : 'a list -> bool prenant en argument une liste *w* et retournant true si *w* est un carré et false sinon.
- **Q24.** Déterminer la complexité en nombre de comparaisons de lettres de la fonction estCarre.
- **Q25.** Écrire une fonction Caml de signature contientRepetitionAux : 'a list -> int -> bool prenant en argument une liste w et un entier m et retournant true si w contient une répétition de la forme xx avec x de longueur m et false sinon.
- **Q26.** Montrer que toute répétition d'un mot w de longueur n est de la forme xx avec $|x| \le \frac{n}{2}$.
- **Q27.** En déduire une fonction Caml de signature contientRepetition : 'a list -> bool prenant en argument une liste *w* retournant true si *w* contient une répétition et false sinon.
- **Q28.** Quelle est la complexité en nombre de comparaisons de caractères de la fonction contientRepetition?

III.4 - Algorithme de Main-Lorentz

L'algorithme de Main-Lorentz permet de détecter de manière plus efficace des répétitions d'un mot w. Il comporte essentiellement deux parties :

- la première consiste à voir si étant donné deux mots *u* et *v*, le mot *uv* contient un carré non nul issu de la concaténation :
- la deuxième s'appuie sur le principe de "diviser pour régner".

Remarquons qu'un mot *uv* contient une répétition si et seulement si *u* ou *v* contiennent une répétition ou *uv* contient des répétitions provenant de la concaténation. Pour déterminer si un mot *uv* contient de nouvelles répétitions, on commence par effectuer des prétraitements consistant à calculer des tables de valeurs de *u* et de *v* qui sont généralement appelées tables de préfixes (ou suffixes). Avant de présenter des algorithmes permettant de générer ces tables, on commence par justifier leur application dans la détection de répétitions.

Définition 13 (Carré centré). Soient u et v deux mots. On dit que uv contient un **carré centré** sur u (respectivement sur v) s'il existe un mot w non vide et des mots u', v'', w', w'' tels que u = u'ww', v = w''v'', w = w'w'' (respectivement u = u'w', v = w''wv'', w = w'w'').

Définition 14 (Plus long préfixe commun, plus long suffixe commun). Soient u et v deux mots de Σ^* . Le **plus long préfixe** (respectivement suffixe) **commun** de u et v est le plus long mot w tel qu'il existe deux mots r et s tels que u = wr et v = ws (respectivement u = rw et v = sw). On le note lcp(u, v) (respectivement lcs(u, v)).

À propos des carrés centrés

- **Q29.** Dans cette question, $\Sigma = \{a, b\}$. Soient u = abababaa et v = ababaaa. Déterminer le plus grand préfixe commun de u et v.
- **Q30.** Soient u et v deux mots de Σ^* . Montrer que uv contient un carré centré sur u si et seulement s'il existe $i \in \{0, \dots, |u| 1\}$ tel que $\left| lcs(u[0, i 1], u) \right| + \left| lcp(u[i, |u| 1], v) \right| \ge |u| i$.

De la même manière, on peut montrer que uv contient un carré centré sur v si et seulement s'il existe $j \in \{1, \dots, |v|-1\}$ tel que $\left| \operatorname{lcs}(v[0, j-1], u) \right| + \left| \operatorname{lcp}(v, v[j, |v|-1]) \right| \ge |v| - j$.

Ainsi, pour pouvoir déterminer s'il existe un carré centré sur u ou v, on peut utiliser les valeurs :

$$\left| \text{lcs} \left(u \left[0, i - 1 \right], u \right) \right|, \left| \text{lcp} \left(u \left[i, |u| - 1 \right], v \right) \right|, \left| \text{lcs} \left(v \left[0, j - 1 \right], u \right) \right|, \left| \text{lcp} \left(v, v \left[j, |v| - 1 \right] \right) \right|.$$

Dans la suite, étant donné deux mots u et v, on note $\operatorname{pref}_{u,v}$, suff_{u} et $\operatorname{suff}_{u,v}$ les tableaux vérifiant :

$$\forall i \in \{0, \dots, |u| - 1\}, \quad \text{pref}_{u}[i] = \left| \text{lcp}(u[i, |u| - 1], u) \right|, \quad \text{pref}_{u, v}[i] = \left| \text{lcp}(u[i, |u| - 1], v) \right|$$

$$\text{suff}_{u}[i] = \left| \text{lcs}(u[0, i], u) \right|, \quad \text{suff}_{u, v}[i] = \left| \text{lcs}(u[0, i], v) \right|.$$

Calcul de table de préfixes

On présente un algorithme permettant le calcul de la table pref_u ainsi que sa complexité en nombre de comparaisons de caractères en page 8. En adaptant cet algorithme, il est également possible de calculer la table $\operatorname{pref}_{u,v}$ en O(|u|) de comparaisons de caractères.

- **Q31.** On pose u = aabbba et v = abbaab. Déterminer les tableaux pref_u et pref_{u,v} sans justification.
- **Q32.** En déroulant **l'algorithme 2** de la page suivante appliqué au mot u = aaabaaabaaab, compléter le tableau

i =	f	g	pref[i]
0	_	0	12
1	1	3	2
2			
:	:	:	:
11	4	12	0

de la façon suivante : pour une valeur i donnée, on indique les valeurs de f, g, pref[i] à l'issue des instructions internes de la boucle.

Par exemple, à l'initialisation, i = 0, f n'est pas définie, g vaut 0 et pref[0] = 12. Pour i = 1, à l'issue des instructions internes à la boucle, on a f = 1, g = 3, pref[1] = 2.

Q33. Déduire de l'algorithme 2 une procédure calculant suff_u.

Dans la suite, on suppose que l'algorithme tabpref(u,v) qui prend en argument deux chaînes de caractères u et v et qui renvoie la table $\operatorname{pref}_{u,v}$ nous est donné. On admet que la complexité de cet algorithme est de O(|u|) en nombre de comparaisons de caractères.

- Q34. Déduire des questions précédentes un algorithme qui, étant donnés deux mots u et v, renvoie VRAI s'il existe un carré centré sur u et FAUX sinon.
- Q35. Quelle est la complexité de cet algorithme en nombre de comparaisons de caractères ?

Application des tables

- **Q36.** Déduire des questions précédentes un algorithme récursif qui prend en argument une chaîne de caractères et qui renvoie VRAI si la chaîne contient une répétition et FAUX sinon.
- Q37. Déterminer la complexité de cet algorithme en nombre de comparaisons de caractères.

```
Algorithme 2 - Calcul de la table pref
```

```
Entrées : une chaîne de caractères u
Sorties: un tableau pref,
i \leftarrow 0, pref \leftarrow tableau de taille |u| initialisé à 0, pref[i] \leftarrow |u|, g \leftarrow 0
pour i allant de 1 à |u| - 1 faire
     si i < g et pref[i - f] < g - i alors
     |\operatorname{pref}[i] \leftarrow \operatorname{pref}[i-f]
     fin
     sinon si i < g et pref[i - f] > g - i alors
         \operatorname{pref}[i] \leftarrow g - i
     fin
     sinon
          (f,g) \leftarrow (i, \max(g,i))
          tant que g < |u| et u[g] == u[g - f] faire
          g \leftarrow g + 1
          fin
          pref[i] \leftarrow g - f
     fin
fin
```

On admet que la complexité est de O(|u|) en nombre de comparaisons de caractères.

FIN