

Tree Based Regressions

Decision Trees & Random Forest Regression

Muhammad Huzaifa Shahbaz DSC Lead @ Google Developers, Machine Learning Engineer @mhuzaifadev **Credits: StatQuest with Josh Starmer**

Google Developers

However, we don't know the optimal dosage to give to patients.

VS.

© So we do a clinical trial with different dosages... 30 20 40 10 Drug Dosage (mg) Google Developers

Developer Student Clubs

Credits:

StatQuest with Josh Starmer

...and measure how effective each dosage is.

Credits:

StatQuest with Josh Starmer

...and, in general, the higher the dose,

Credits:

StatQuest with Josh Starmer

...and, in general, the higher the dose, the more effective the drug...

...we could use the line to predict that a **27 mg Dose** should be **62% Effective**.

Credits:

StatQuest with Josh Starmer

In this case, fitting a straight line to the data will not be very useful.

...then we would predict that a 20 mg

Dose should be 45% Effective...

Google Developers

Developer Student Clubs

In a Regression Tree, each leaf represents a numeric value.

With this **Regression Tree**, we start by asking if the **Dosage** is less than **14.5**.

Developer Student Clubs

Google Developers

Statiguest with Josh

...so the tree uses the average value, 52.8%, as its prediction for people with Dosages between 23.5 and 29.

Developer Student Clubs

Google Developers

...so the tree uses the average value, 100%, as its prediction for people with Dosages between 14.5 and 23.5.

Since each leaf corresponds to the average **Drug Effectiveness** in a different cluster of observations...

Credits:
StatQuest with Josh Starmer

©

Drug Dosage (mg)

At this point you might be thinking, "The Regression Tree is cool, but I can also predict Drug Effectiveness just by looking at the graph..."

But when we have 3 or more predictors, like Dosage, Age and Sex, to predict Drug Effectiveness, drawing ' a graph is very difficult, if not impossible.

Dosage	Age	Sex	Etc.	Drug Effect.
10	25	Female	•••	98
20	73	Male	•••	0
35	54	Female	•••	100
5	12	Male		44
etc	etc	etc	etc	etc

In contrast, a **Regression Tree** easily accommodates the additional predictors.

Dosage	Age	Sex	Etc.	Drug Effect.
10	25	Female	•••	98
20	73	Male	•••	0
35	54	Female		100
5	12	Male		44
etc	etc	etc	etc	etc

Now you fully understand the concept

Decision Trees

Random Forest

