Capitolo 5

1 Propositions and Inference

Introduzione

• La logica proposizionale è uno strumento efficace per rappresentare vincoli in modo conciso, evitando tabelle complesse.

• Vantaggi:

- Maggiore leggibilità.
- Facilita l'espressione di relazioni tra variabili.
- Consente inferenze logiche per risolvere problemi complessi.

1.1 Propositions

5.1.1 Syntax of Propositional Calculus

- Proposizione atomica (Atom):
 - Un simbolo (es. a, b) con valore di verità ($true ext{ o } false$).
 - Esempio: ai_is_fun può essere true o false in base all'interpretazione.

• Proposizioni composte:

- Formate da connettivi logici:
 - * $\neg p$: Negazione.
 - * $p \wedge q$: Congiunzione.
 - * $p \lor q$: Disgiunzione.
 - * $p \to q$: Implicazione.
 - * $p \leftrightarrow q$: Equivalenza.

• Precedenza degli operatori:

- − 1. ¬
- − 2. ∧
- 3. ∨
- $-4. \rightarrow$
- $-5. \leftrightarrow$

5.1.2 Semantics of Propositional Calculus

• Semantica:

- Mappa ogni proposizione atomica in un valore di verità {true, false}.
- Le proposizioni composte derivano il loro valore usando la tabella di verità.

• Interpretazione:

- Funzione che assegna un valore {true, false} a ciascun atomo.
- Esempio: Se $\pi(ai_is_fun) = true$, allora ai_is_fun è vero in quella interpretazione.

5.1.3 Knowledge Base (KB) e Logical Consequence

- Knowledge Base (KB):
 - Insieme di proposizioni considerate vere.
 - Ogni proposizione nella KB è un assioma.

• Modello di una KB:

- Interpretazione in cui tutte le proposizioni nella KB sono vere.

• Conseguenza logica:

- Una proposizione g è conseguenza logica di KB (indicato con KB $\models g$) se g è vera in tutti i modelli di KB.
- Esempio: Se KB = $\{a \to b, a\}$, allora KB $\models b$.

1.2 Propositional Definite Clauses

Definizione

• Clausola definita:

- Regola logica del tipo $h \leftarrow b_1 \wedge b_2 \wedge \cdots \wedge b_n$, dove:
 - * h: Testa (Head).
 - * $b_1 \wedge b_2 \wedge \cdots \wedge b_n$: Corpo (Body).
- Se tutte le condizioni nel corpo sono vere, allora anche la testa è vera.

• Knowledge Base (KB):

- Insieme di clausole definite.

1.3 Propositional Definite Clauses (Continua)

5.2.2 Proofs

- Obiettivo della prova:
 - Verificare se una proposizione è conseguenza logica di KB.
- Metodi di prova:
 - Bottom-Up Proof Procedure:
 - * Deduce tutte le conseguenze logiche partendo dai fatti noti.
 - * Usa la regola di inferenza (modus ponens): Se $h \leftarrow b_1 \land b_2$ e b_1 , b_2 sono veri, allora h è vero.
 - Top-Down Proof Procedure:
 - \ast Parte dalla query ge risale ai fatti necessari per dimostrarla.

1.4 Knowledge Representation Issues

Debugging della Base di Conoscenza

- Errori comuni:
 - False-positive:
 - * Una risposta derivata è falsa nell'interpretazione reale.
 - False-negative:
 - * Una risposta vera non viene derivata.
 - Loop infinito:
 - * Il sistema non trova una soluzione e continua a esplorare.
- Risoluzione:
 - Identificare clausole mancanti o errate.

1.5 Proving by Contradictions

Clausole di Horn

- Estensione delle clausole definite, che includono regole con false come conclusione.
- Forma generale: false $\leftarrow a_1 \land a_2 \land \cdots \land a_n$.
- Permettono dimostrazioni per contraddizione:
 - Dimostrano che un insieme di assunzioni non può essere vero.

Diagnosi Basata su Consistenza

- Identifica conflitti tra osservazioni e regole per determinare errori o guasti.
- Conflitti minimi:
 - Il più piccolo insieme di assunzioni che causa inconsistenza.

1.6 Complete Knowledge Assumption

Closed-World Assumption (CWA)

- Gli atomi non derivabili come veri sono considerati falsi.
- Contrapposto alla open-world assumption, in cui gli atomi non derivabili sono ignoti.

Negazione come Fallimento

 \bullet La negazione di un atomo $\neg a$ è vera se a non può essere derivato dalla KB.

Clark's Completion

• Completa la KB assumendo che ogni clausola copra tutti i possibili casi.

1.7 Abduction

Definizione

- Ragionamento per spiegare osservazioni basandosi su assunzioni.
- Usa clausole di Horn e assumables (ipotesi).

Diagnosi Abduttiva

- Identifica guasti o anomalie spiegando sintomi osservati.
- Implementazioni:
 - Bottom-Up:
 - * Calcola spiegazioni minime per ogni osservazione.
 - Top-Down:
 - * Genera conflitti e prova spiegazioni per risolverli.

Conclusioni

Questa sintesi offre una visione dettagliata dei concetti di logica proposizionale, clausole definite, debugging, diagnosi e abduzione, fornendo una base solida per comprendere e applicare queste tecniche.