

A Generative Adversarial Framework for Bounding Confounded Causal Effects

Yaowei Hu¹, Yongkai Wu², Lu Zhang¹, Xintao Wu¹

¹University of Arkansas ²Clemson University

A Generative Adversarial Framework for Bounding Confounded Causal Effects

Unidentifiable Problem

confounding effects

When hidden confounders exist, the ACE may not be uniquely calculated from the observational data without further assumptions, known as the unidentifiable problem.

Goal: How to bound ACEs to continuous and possibly high dimensional variables when hidden confounders exist.

Example

Causal graph and equations

Architecture of neural networks

Proposed Framework

Framework: We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models.

- Estimate response functions from ${\bf PA}_V$ to ${\bf V}$ by neural networks with a certain network structure.
- Use the implicit generative model to generate the distribution for the response-function variable.
- Parameterize the causal model by expressing it with responsefunction variables.
- Formulate an adversarial learning problem for computing the bounds of the ACE.

Experiments

Results of synthetic dataset

Results of adult dataset

