Exercícios de Física Geral I

Ano lectivo 2016/2017, semestre ímpar Série de exercícios No. 1

1 Dimensões e unidades

- 1. A velocidade da luz no vácuo é $c=2.997 \times 10^8$ m/s. Escreva c em unidades nm/ps.
- 2. A densidade de alumínio é $\rho = 2.70 \text{ g/cm}^3$. Escreva esta densidade em unidades SI.
- 3. Determine a dimensão e a unidade do Sistema Internacional (SI) da constante de gravitação universal, G, sabendo que a grandeza da força gravítica entre duas massas, m_1 e m_2 , à distância r é:

$$F = G \frac{m_1 m_2}{r^2} \,.$$

- 4. Nas seguintes equações, a distância x está expressa em metros, o tempo t em segundos e a velocidade v, em metros por segundo. Quais serão as unidades das constantes C_1 e C_2 no Sistema Internacional (SI)?
 - (a) $x = C_1 + C_2 t$
 - (b) $x = \frac{1}{2}C_1t^2$
 - (c) $v = 2C_1 x$
- 5. Nas equações seguintes a distância x e o tempo t estão expressos em unidades SI. Determine as dimensões e as unidades SI das restantes grandezas presentes nas equações.
 - (a) $x = V + Xt + Yt^2 + W \ln Z$,
 - (b) $x = Xe^{-Yt}$.
- 6. A frequência das oscilações longitudinais duma vara sólida elástica com comprimento l, área de secção A, densidade de massa ρ , e módulo de Young Y, é dada por

$$f = \frac{C}{l} \sqrt{\frac{Y}{\rho}} \,,$$

onde C é um factor puramente numérico (i.e., adimensional). Determine a dimensão e a unidade SI do módulo de Young Y.

2 Vetores

- 1. Dados os vectores $\mathbf{A} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ e $\mathbf{B} = 3\hat{\imath} 2\hat{\jmath} \hat{k}$ qual deverá ser o vector \mathbf{D} tal que $\mathbf{A} + \mathbf{B} + \mathbf{D} = 0$?
- 2. Calcule o ângulo entre os vetores $\mathbf{A} = \hat{\imath} + \hat{\jmath} + \hat{k}$ e $\mathbf{B} = \hat{\imath} + \hat{\jmath}$.
- 3. Dados os vectores $\mathbf{A} = p\hat{\imath} + \hat{\jmath} + \hat{k}$ e $\mathbf{B} = \hat{\imath} 2p\hat{\jmath} + \hat{k}$, para que valores de p são os vectores \mathbf{A} e \mathbf{B} perpendiculares entre si?
- 4. Diga se os dois vectores $\mathbf{A} = 15\hat{\mathbf{i}} 10\hat{\mathbf{j}} + 30\hat{\mathbf{k}}$ e $\mathbf{B} = 4\hat{\mathbf{i}} + 2\hat{\mathbf{j}} \hat{\mathbf{k}}$ são perpendiculares entre si.
- 5. Determine um vector unitário perpendicular ao plano definido por $\mathbf{A} = 6\hat{\imath} 6\hat{\jmath} 3\hat{k}$ e $\mathbf{B} = 4\hat{\imath} + 3\hat{\jmath} \hat{k}$.
- 6. Os vectores \mathbf{A} e \mathbf{B} , de módulos A e B, respectivamente, fazem um ângulo θ entre si. Considerando as componentes de \mathbf{A} e \mathbf{B} ao longo de um sistema de eixos ortogonais, mostre que o módulo do vector $\mathbf{R} = \mathbf{A} + \mathbf{B}$ é dado por $R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$.
- 7. Dados os vectores $\mathbf{A} = 2\hat{\imath} + \hat{\jmath} \hat{k}$ e $\mathbf{B} = \hat{\imath} \hat{\jmath} + 2\hat{k}$, escreva \mathbf{A} como uma soma de dois vetores componentes $\mathbf{A}_{||}$ e \mathbf{A}_{\perp} , onde $\mathbf{A}_{||}$ é paralelo a \mathbf{B} e \mathbf{A}_{\perp} é perpendicular a \mathbf{B} .

3 Cálculo de erros

- 1. A distância percorrida por um corpo, inicialmente em repouso, sujeito a uma aceleração constante a durante o tempo t, é $x=\frac{1}{2}at^2$. A aceleração foi medido como $a=2.3\pm0.2~\mathrm{m/s^2}$, e o periodo do tempo como $t=5.87\pm0.01~\mathrm{s}$. Qual é a distância percorrida e a incerteza associada?
- 2. Um corpo desloca-se de uma distância $x=158.2\pm0.8$ m durante o tempo $t=8.5\pm0.3$ s com uma velocidade constante v=x/t. Determine a velocidade e a sua incerteza associada.