Bancada de testes

Case Eletrônica

"Sagu" Amanda Jury Nakamura Bacharelado em Sistemas de Informação UTFPR – Curitiba, Centro

- Subsistema de eletrônica
- Sensores J13
- Protocolos de comunicação
- DAC e ADC
- Desenvolvimento do case
- Conclusão

Introdução

• Subsistema de eletrônica

- Segurança
- Softwares
- Impressão 3D
- Aquisição e tratamento de dados

Problemática e Objetivos

- Testes e validação
- Horários
- Dependência

- Desenvolver uma bancada de testes
 - Simulação da eletrônica do veículo
 - Ondas digitais e analógicas
 - Avaliação dos sensores

Desenvolvimento

Planejamento

Pesquisa

Ferramentas

Sensores J13

Sensor	Função Módulo		Protocolo/Sinal
Reed Switch	RPM do motor		Analógico
Indutivo	Velocidade		Analógico
Infravermelho	Temperatura da CVT	MLX90614	I2C
Acelerômetro	Aceleração	MPU6050	I2C
Indefinido	Pressão do freio		ADC (ADS1115) -> I2C
Indefinido	Corrente		ADC -> I2C
Indefinido	Tensão		ADC -> I2C

Protocolos de comunicação

Sinais digitais X Analógicos

- Protocolos de comunicação serial
 - Assíncronos
 - Síncronos
 - 12C

DAC e ADC

- Conversor analógico-digital
- Conversor digital-Analógico

Escolha dos pinos GPIOS

ESP32 Wroom DevKit Full Pinout

GPIO	Input	Output	Notes
0	pulled up	OK	outputs PWM signal at boot, must be LOW to enter flashing mode
1	TX pin	OK	debug output at boot
2	ОК	OK	connected to on-board LED, must be left floating or LOW to enter flashing mode
3	ОК	RX pin	HIGH at boot
4	OK	OK	
5	OK	OK	outputs PWM signal at boot, strapping pin
6	x	×	connected to the integrated SPI flash
7	×	×	connected to the integrated SPI flash
8	×	×	connected to the integrated SPI flash
9	×	×	connected to the integrated SPI flash
10	×	×	connected to the integrated SPI flash
11	×	×	connected to the integrated SPI flash
12	OK	OK	boot fails if pulled high, strapping pin
13	OK	OK	
14	OK	OK	outputs PWM signal at boot
15	OK	OK	outputs PWM signal at boot, strapping pin
16	OK	OK]	
17	OK	OK	
18	OK	OK	
19	OK	OK	
21	OK	OK]	
22	OK	OK	
23	OK	OK	
25	OK	OK	
26	OK	OK	
27	OK	OK	
32	OK	OK	
33	OK	OK	
34	OK		input only
35	OK		input only
36	OK		input only
39	OK		input only

- Interrupção por timer
 - Velocidade e RPM
 - Chamada da função que alterna o estado da onda
 - Frequência e período

$$\Delta T = \frac{COMP * k * 3,6}{vel}$$

$$\Delta T = \frac{60000}{rpm}$$

COMP: Comprimento da roda k: constante referente a caixa de redução = (1000/0.7) velocidade: velocidade escolhida para a simulação

```
void alterna1(void* arg) {
 estadoOnda1 = !estadoOnda1;
                                                                Inverte o estado
 digitalWrite(velPin1, estadoOnda1);
void setup() {
 Serial.begin(115200);
                                                                Configura o pino
 pinMode(velPin1, OUTPUT);
 int t1 = (COMPRIMENTO * (1000 / 7.0) * 3.6) / V1;
 const esp timer create args t timer args = {
                                                               Configura o timer
   .callback = &alterna1,
   .arg = NULL.
   .dispatch method = ESP TIMER TASK,
   .name = "timer1"
 esp err t err = esp timer create(&timer args, &timer1);
 if (err != ESP_OK) {
   Serial.println("Erro ao criar o timer");
   return:
                                                               Aciona a interrupção
 err = esp_timer_start_periodic(timer1, t1/2*1000);
 // 500000 microsegundos = 500 ms
 if (err != ESP OK) {
   Serial.println("Erro ao iniciar o timer");
 } else {
   Serial.println("Início do Timer com sucesso");
```

• Freio > Funções millis () e Random()

```
unsigned long int timerFreio = 0;

void loop() {

//pressao freio -> afere acada 5s

pinMode(pinFreio, OUTPUT);

//timerFreio = tempo em ms da ultima execucao

//varacao de temp > 5s

if (millis()- timerFreio > 5000){

digitalWrite(pinFreio, random(0, 1));

timerFreio = millis();

}
```


Teste do ADC – simular o DAC

```
int auxDAC = 0; //valor de entrada do DAC
//esse valor varia de 0 a 255 e volta para 0
void ondaTriangular () {
    dacWrite(pinDAC, auxDAC);
    auxDAC++;
    if (auxDAC == 256){
      auxDAC = 0;
void loop() {
    ondaTriangular();
    delay (50);
```


Solicitação

• I2C – aceleração e temperatura

Leitura ou escrita

Endereço

Master Controls SDA Line

Slave Controls SDA Line

Write to One Register in a Device

Device (Slave) Address (7 bits)

Register Address N (8 bits)

Data Byte to Register N (8 bits)

Start

R/W = 0 ACK

ACK

ACK

ACK

STOP

Resposta

Conclusão

- Simulação das ondas
 - Velocidade
 - RPM 💙
 - Freio ¥
 - DAC V

- 12C
- Implementar e validar o código
- Testes dos sensores em bancada

Referências

- 1. Horowitz, P., & Hill, W. (2015). The Art of Electronics (3rd ed.). Cambridge University Press.
- 2. Tanenbaum, A. S., & Wetherall, D. J. (2011). Computer Networks (5th ed.). Pearson Education.
- 3. Harold, L. (2007). "UART Communications." In Embedded Systems Design with the Atmel AVR Microcontroller (pp. 115-136). Springer.
- 4.Smiley, J. (2011). "Using the I2C Bus." In Arduino Workshop: A Hands-On Introduction with 65 Projects (pp. 287-304). No Starch Press.
- 5.https://www.crescerengenharia.com/post/como-instalar-driver-ch340#viewer-9os1qFranco, S. (1994). Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill.
- 6.Laker, K. R., & Sansen, W. M. C. (1994). Design of Analog Integrated Circuits and Systems. McGraw-Hill.
- 7. Schreier, R., & Temes, G. C. (2005). Understanding Delta-Sigma Data Converters. Wiley-Interscience.
- 8.https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/i2c.html
- 9.randomnerdtutorials.com/esp32-i2c-scanner-arduino/
- 10. https://circuitdigest.com/microcontroller-projects/esp32-timers-and-timer-interrupts
- 11.https://randomnerdtutorials.com/esp32-i2c-communication-arduino-ide/
- 12. Franco, S. (1994). Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill.
- 13.Laker, K. R., & Sansen, W. M. C. (1994). Design of Analog Integrated Circuits and Systems. McGraw-Hill.
- 14. Schreier, R., & Temes, G. C. (2005). *Understanding Delta-Sigma Data Converters*. Wiley-Interscience.

Obrigada!

Case eletrônica – Bancada de teste

Amanda Jury Nakamura "Sagu"

