# TCP/IP in hardware using SME

Mark Jan Jacobi & Jan Meznik

KU

September 18, 2019



Mark siger introduktion og 2-3 saetninger "abstrakt"

# Table of Contents

- Introduction
- 2 Implementation
- 3 Evaluation
- Discussion
- Conclusion
- 6 Future Work
- Questions



## Background and Motivation

FPGAs are making their way into data centers to boost the computing power and the overall power efficiency.



Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

TCP/IP in hardware using SME

Introduction

Background and Motivation

Background and Motivation

TCP/IP in hardware using SME

Introduction

Applikationer og Big-Data udregninger flytter til Cloud, drevet af store data centre.

Disse data-centre kraever rigtigt meget plads, store maengder af stroem og er i stigende grad svaere at vedligeholde og udvide.

De fleste data-centre er derfor begyndt at aflaste beregningerne til FPGAer, som fjerner meget af overhead til beregningerne

FPGA bruges til at få en computer til at køre hurtigere hvis de mest brugte instruktioner, skrives direkte ned i hardwaren

PROBLEMET er at der kun kan vaere en begreanset antal af FPGAer i konventionele servere

#### A conventional data center architecture





Proposed disaggregated data center architecture (Weerasinghe et al. [2016])





Hvis man splitter resourcerne op, kan man takket været FPGA få bedre ydeevne på det samme areal, samt nemmere håndtering af servere og deres komponenter.

### FPGA usage





#### The Internet



Figure: Map of about 30% of the accessible the endpoints on the Internet



#### The Internet Protocol Suite - A scenario





#### Design with the 4 layers in mind





# Table of Contents

- Introduction
- 2 Implementation
- Evaluation
- 4 Discussion
- Conclusion
- Future Work
- Questions



- SME introduction
- Processes
  - State machines
- Buffers
  - Memory segments
  - Dictionary
- Interface signal control
  - Buffer-Producer
  - Compute-Producer
- Interface control
  - Usage
  - Limitations



### SME(Synchronous Message Exchange) introduction

- Processes and Busses
- Higher abstraction
- Handling of clocks
- Easy testing



a

#### State machines

```
public class SomeProcess :

→ StateProcess

2
3
       private override async
      → Task OnTickAsync()
4
         a();
5
6
         await ClockAsync();
7
        b();
8
         await ClockAsync();
9
         c();
10
         await ClockAsync();
12
    }
```

```
public class SomeProcess :
 1
    \hookrightarrow SimpleProcess
 2
 3
     // Initial state
    state = A;
 5
    protected override void
    ⇔ OnTick()
 7
 8
       switch(state) {
 9
         case A:
10
           a();
           state = B;
11
         case B:
12
13
           b();
           state = C;
14
15
         case C:
16
           c();
17
           state = A;
18
     }
19
```



Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 18, 2019

13 / 43

019-09-18

TCP/IP in hardware using SME Limplementation

—Implementation



#### State machines

- StateProcess
   Eksekvering kan stoppes når som helst(i bidder)
- SimpleProcess
   Run er en clock altid, state machine håndteres med en switchcase.
   Algoritme kan splittes op i flere bidder, men kræver en state per bid

## Examples



The internet process state machine The transport process state machine



Labels!

Buffers

#### Memory segments





Thumbnail?

**Buffers** 

#### Memory dictionary





Statisk tabel?

Animationer? Billede af splitup af pakker? Hold det uden protocol specifik info.

Buffers



Buffers



Buffers



Buffers



Buffers



Buffers



Interface signal protocol

#### Identifying the scenarios



Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 18, 2019

18 / 43

TCP/IP in hardware using SME \_\_Implementation

—Implementation



Interface signal protocol







#### Buffer-Producer: Inspired by AXI4

- Single clock offset when sending data.
- Indicate end of stream with bytes\_left.





Interface signal protocol







# Table of Contents

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion
- Conclusion
- 6 Future Work
- Questions



- Setup
  - Graph file simulator
- Test
- Validation
  - Latency
  - Outgoing packet validation
  - Internet Protocol Suite compliancy as per RFC 1122



#### Graph file simulation

- Full input output
- Does not take latency between packets into account
- Simplifies test cases



Definer send og receive bedre



Setup



TCP/IP in hardware using SME

Evaluation

Evaluation



#### Senario

- Real life scenario
- Test at high workloads
- Remove garbage
- Respond to packet
- Differ between concurrent connections



# Evaluation Test

#### The test

- 17283 packets in total
- Two "sessions"
- 640\*2 UDP packets that needs a response
- 640 well formed UDP packets with no session (discard)
- Rest of data is "background noise" (TCP packets with state, data, etc)
- Total data sent through: 1832958 bytes
- 1.83 Million clocks used



#### Validation

#### Latency calculations:

n<sub>D</sub>: The number of bytes in the data part of the protocol. This excludes both headers from transport and internet.

 $n_{\rm I}$  : The internet header size.

 $n_{\rm T}$ : The transport header size.

*n*: The total packet size.

From packet to user

$$6+n_{\mathtt{I}}+2n_{\mathtt{T}}+3n_{\mathtt{D}}$$

From user to packet

$$8+2n_{\mathtt{I}}+3n_{\mathtt{T}}+4n_{\mathtt{D}}$$

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

TCP/IP in hardware using SME

Evaluation

Lamory calculations

Top protect. The scribe both control of the scribe both control of the protect. The scribe both control of the scribe both control of the protect. The scribe both control of the scribe both contro

Hav billede af sytem ved siden af system graf med selve latency bufferen kan ikke videresende data dirrekte, da den skal gemme segmentet først

#### Validation

Outgoing packet validation:





Protocol ikke sat korrekt, destination ip ikke sat korrekt

Validation

Internet Protocol Suite compliancy as per RFC 1122



Ikke testet helt igennem, mem felterne er generelt sat

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion
- Conclusion
- Future Work
- Questions



## Improving the performance:

## Estimated performance:

$$1~\text{Byte}*10~\text{MHz}=80~\text{Mbps}$$



| Mark Jan Jacobi & Jan Meznik (KU)                                                                                                   | TCP/IP in hardware using SME | September 18, 2019         | 33 / 43     |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------|
| TCP/IP in hardware u                                                                                                                | using SME                    | Discussion                 |             |
| α ' ' ICF/IF III IIaruware u                                                                                                        |                              | Improving the performance: |             |
| $\stackrel{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$ |                              |                            |             |
| 60                                                                                                                                  |                              | Estimated performance:     | MANUFACTURE |
| -Discussion                                                                                                                         |                              | 1 Byte + 10 MHz = 80 Mbps  | 1212        |
| (1)                                                                                                                                 |                              |                            |             |

Usability

# SOMETHING

| Mark Jan Jacobi & Jan Meznik (KU) | TCP/IP in hardware using SME | September 18, 2019 | 34 / 43 |
|-----------------------------------|------------------------------|--------------------|---------|
| TCP/IP in hardware to Discussion  | ising SME                    | Usuality SOMETHING |         |

Using C#

State modelling Simulation Concurrency

| Mark Jan Jacobi & Jan Meznik (KU)                                                            | TCP/IP in hardware using SME | September 18, 2019 3                    | 5 / 43 |
|----------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|--------|
| TCP/IP in hardware u CONTROL  TCP/IP in hardware u TCP/IP in hardware u TCP/IP in hardware u | sing SME                     | State mediffing. Similation Concurrency |        |

- Introduction
- 2 Implementation
- Evaluation
- 4 Discussion
- Conclusion
- 6 Future Work
- Questions



#### Conclusion

- The design underwent many alternations, but the final layered design has proven to work great
- In 1.83 mio. simulated clock cycles, all of 17283 packets were handled correctly
- Errors in the outgoing packets, but they should be easily fixable
- SME was of great help for the implementation, albeit with a few errors and bugs



- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion
- Conclusion
- 6 Future Work
- Questions



#### **Future Work**

Firewall





Integration med buffere. Hvad ville det indebære

# Future Work

#### Implementing TCP





- Introduction
- 2 Implementation
- Evaluation
- 4 Discussion
- Conclusion
- 6 Future Work
- Questions



## **Bibliography**

[1] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. Disaggregated fpgas: Network performance comparison against bare-metal servers, virtual machines and linux containers. In 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pages 9–17, Dec 2016. doi: 10.1109/CloudCom.2016.0018.



