

Experimental physik Vb (Teilchen- und Astrophysik)

Übung 04

Aufgabe 1 SU(3) Quarkmodell der Hadronen (25 Punkte)

In den frühen 1960er Jahren war die Zahl der bekannten "Elementarteilchen" schon auf über 100 angewachsen. Die Frage nach einer zugrunde liegenden Ordnung beantworteten Gell-Mann und Zweig im Jahre 1964 mit dem Quarkmodell der Hadronen, bei dem diejenigen Mesonen und Baryonen, die nach modernem Kenntnisstand aus u-, d- und s-Quarks zusammengesetzt sind, in Multipletts der Symmetriegruppe SU(3) angeordnet werden. Damit eröffnete sich gleichzeitig ein Hinweis auf die zugrunde liegende Quarkstruktur, die zu der Zeit noch nicht bekannt war. Daraus können auch grobe Aussagen über die Massen der beteiligten Quarks und die Bindungsenergien in den Hadronen gewonnen werden.

Wir betrachten zunächst am Beispiel der Spin-SU(2) das Prinzip: Bekanntlich können zwei Spin- $\frac{1}{2}$ Zustände $(S=\frac{1}{2})$ zu einem Triplett (S=1) und einem Singulett (S=0) koppeln. Auf grafischem Wege erhält man diese Lösung wie in Abb. 1 skizziert. Die

Abbildung 1: Kopplung zweier Spin $\frac{1}{2}\text{-Dubletts}.$

beiden Faktoren auf der linken Seite der Gleichung stellen jeweils ein Spin- $\frac{1}{2}$ -Multiplett mit den beiden Zuständen dar, die den Einstellmöglichkeiten $S_z=\pm\frac{1}{2}$ entsprechen. Die Zustände des einen Faktors werden als Nullpunkte genommen, an die dann jeweils die Zustände des anderen Faktors "angeheftet" werden. Bei der Zerlegung in Summanden nutzt man dann aus, dass man die Multipletts, die zu einem Spin-1 bzw. Spin-0 Zustand gehören, kennt. Man schreibt symbolisch:

$$[2]\otimes[2]=[3]\oplus[1].$$

Eine experimentelle Schlüsselbeobachtung besteht nun darin, dass die starke Wechselwirkung nicht zwischen Protonen und Neutronen unterscheidet, ähnlich wie in einem elektrischen Feld die gleiche Kraft auf ein Elektron wirkt, egal ob es im Zustand $|\uparrow\rangle$ oder $|\downarrow\rangle$ ist. Man ordnet Protonen und Neutronen daher in Analogie zum Spin einem so genannten Isospindublett zu:

$$|p\rangle=|I=\frac{1}{2},I_3=+\frac{1}{2}\rangle \quad |n\rangle=|I=\frac{1}{2},I_3=-\frac{1}{2}\rangle.$$

Für ein Teilchen mit Baryonzahl B und Strangeness S definieren wir die Hyperladung

$$Y = B + S$$
.

Dann gilt für die Ladung Q die Gell-Mann-Nishijima-Relation

$$Q = e\left(I_3 + \frac{Y}{2}\right).$$

Wir wollen nun die Struktur der SU(3) näher betrachten und uns dann das Quarkmodell anschaulich plausibel machen, ohne allzu tief in die gruppentheoretische Behandlung einsteigen zu müssen.

Eine unitäre Matrix $U \in SU(3)$ mit det U = 1 lässt sich allgemein schreiben als

$$U = \exp\left(i\sum_{a=1}^{8} \alpha_a \lambda_a\right),\,$$

wobei die λ_a ein Satz von acht linear unabhängigen, hermiteschen, spurfreien Matrizen sind, die man als *Generatoren* bezeichnet.

Wir benutzen die folgende Wahl für die Generatoren der SU(3):

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

$$\lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{8} = \sqrt{\frac{1}{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Wir definieren $F_i \equiv \frac{\lambda_i}{2}$ und damit drei Sätze von Schiebeoperatoren

$$I_{\pm} = F_1 \pm iF_2$$
 $V_{\pm} = F_4 \pm iF_5$ $U_{\pm} = F_6 \pm iF_7$

sowie die beiden Diagonaloperatoren

$$\hat{I}_3 = F_3$$
 und $\hat{Y} = \frac{2}{\sqrt{3}}F_8$.

- a. Begründen Sie kurz, dass es sich bei $\{\lambda_i\}_{i=1..8}$ tatsächlich um einen Satz von Generatoren der SU(3) handelt. (1 Punkt)
- b. Begründen Sie, dass gemeinsame Eigenzustände $|I_3,Y\rangle$ existieren, so dass

$$\hat{I}_3|I_3,Y\rangle=I_3|I_3,Y\rangle$$
 und $\hat{Y}|I_3,Y\rangle=Y|I_3,Y\rangle.$ (2 Punkte)

c. Untersuchen Sie die Wirkung der Schiebeoperatoren. Zeigen Sie, dass

$$V_{\pm}|I_3,Y\rangle \propto |I_3\pm\frac{1}{2},Y\pm1\rangle, \quad U_{\pm}|I_3,Y\rangle \propto |I_3\mp\frac{1}{2},Y\pm1\rangle, \quad I_{\pm}|I_3,Y\rangle \propto |I_3\pm1,Y\rangle.$$

$$(4 \ Punkte)$$

Wir identifizieren nun die Eigenzustände von I_3 und Y wie folgt:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \equiv |u\rangle \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \equiv |d\rangle \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \equiv |s\rangle$$

und nennen sie up-Quark, down-Quark und strange-Quark und ordnen ihnen die Baryonzahl $B=\frac{1}{3}$ zu.

- d. Berechnen Sie I_3 , Y und S für die drei Quarks. (1 Punkt)
- e. Zeichnen Sie die drei Quarkzustände in der Y-I₃-Ebene (d.h. I₃ auf der x-Achse und Y auf der y-Achse). Sie haben damit das Triplett zur fundamentalen Darstellung [3] zur Hand. Zeichnen Sie analog das Triplett zur Darstellung [\bar{3}], das den Antiquarks entspricht. Die Quantenzahlen drehen dabei einfach ihr Vorzeichen um.
- f. Stellen Sie grafisch die Wirkung der Schiebeoperatoren in dem Multiplett [3] dar. (2 Punkte)
- g. Berechnen Sie nun die Zerlegung der Meson- und Baryon-Zustände, d.h. zerlegen Sie grafisch (wie oben am Beispiel der SU(2) erklärt) die Produkte

$$[3] \otimes [\bar{3}]$$
 und $[3] \otimes [3] \otimes [3]$

in Summanden. Nehmen Sie Abbildung 2 zu Hilfe, die die höherdimensionalen Multipletts der SU(3) zeigt, die sich im Rahmen der Gruppentheorie berechnen lassen (und die durch die Wirkung der Schiebeoperatoren intuitiv verständlich sind). (6 Punkte)

- h. Ordnen Sie mit Hilfe des Review of Particle Physics die leichtesten Mesonen (π, K, η, η') und Baryonen $(p, n, \Sigma, \Xi, \Lambda, \text{sowie } \Delta, \Sigma^*, \Xi^* \text{ und } \Omega, \text{ jeweils mit verschiedenen Ladungszahlen})$ den richtigen Multipletts zu und zeichnen Sie diese in der Y- I_3 -Ebene. (3 Punkte)
- i. Wodurch wird die SU(3)-Symmetrie gebrochen? (1 Punkt)
- j. Aus dem Quarkmodell folgt zum Beispiel die Massenbeziehung

$$\frac{m_N + m_{\Xi}}{2} = \frac{3m_{\Lambda} + m_{\Sigma}}{4}.$$

Dabei ist m_N die Nukleonenmasse. Leiten Sie diese Massenbeziehung her, indem Sie für die Massen von up- und down-Quark $m_u = m_d$ annehmen und annehmen, dass die Bindungsenergie W_B zwischen den Quarks bei allen diesen Zuständen identisch ist. Überprüfen Sie, wie gut die Massenbeziehung experimentell erfüllt ist.

(2 Punkte)

Abbildung 2: Die niedrigsten SU(3)-Multipletts.