CH-231-A Algorithms and Data Structures ADS

Lecture 42

Dr. Kinga Lipskoch

Spring 2022

General: Linear Programming¹

- ▶ Important tool for optimal allocation of scarce resources, among a number of competing activities.
- Powerful and general problem-solving method.
- Applications:
 - Computer science: Compiler register allocation, data mining.
 - ► Electrical engineering: VLSI design, optimal clocking.
 - Economics: Equilibrium theory, two-person zero-sum games.
 - Environment: Water quality management.
 - ▶ Logistics: Supply-chain management, Berlin airlift.
 - ► Manufacturing: Production line balancing, cutting stock.
 - Telecommunication: Network design, Internet routing.

ADS Spring 2022 2/18

¹Source of slides: Kevin Wayne: Algorithms and Data Structures, Spring 2004, Princeton University

Brewery Problem: A Toy LP Example

Small brewery produces ale and beer.

- ▶ Production limited by scarce resources: corn, hops, malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale	5	4	35	13
Beer	15	4	20	23
Quantity	480	160	1190	

How can brewer maximize profits?

- ▶ Devote all resources to ale: 34 barrels of ale \rightarrow \$442.
- ▶ Devote all resources to beer: 32 barrels of beer \rightarrow \$736.
- ▶ 7.5 barrels of ale, 29.5 barrels of beer \rightarrow \$776.
- ▶ 12 barrels of ale, 28 barrels of beer \rightarrow \$800.

Brewery Problem

Brewery Problem: Feasible Region

ADS Spring 2022 5 / 18

Brewery Problem: Objective Function

Brewery Problem: Geometry

Observation: Regardless of objective function coefficients, an optimal solution occurs at an extreme point.

ADS Spring 2022 7 / 18

Linear Programming: Standard Form

Standard form:

- ▶ Input: real numbers c_j , b_i , a_{ij} .
- \triangleright Output: real numbers x_i .
- ightharpoonup n = # nonnegative variables, m = # constraints.
- Maximize linear objective function subject to linear inequalities.

(P)
$$\max \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$
 $x_j \ge 0 \quad 1 \le j \le n$

(P)
$$\max c^T x$$

 $s.t. \quad Ax = b$
 $x \ge 0$

Linear: No x^2 , xy, arccos(x), etc.

Programming: Planning (term predates computer programming).

Brewery Problem: Converting to Standard Form

Original input:

Standard form:

- Add slack variable for each inequality.
- Now a 5-dimensional problem.

Geometry (1)

Geometry:

- Inequalities : halfplanes (2D), hyperplanes.
- ▶ Bounded feasible region: convex polygon (2D), (convex) polytope.

Convex: if a and b are feasible solutions, then so is (a + b)/2. Extreme point: feasible solution x that cannot be written as (a + b)/2 for any two distinct feasible solutions a and b.

Geometry (2)

Extreme point property: If there exists an optimal solution to (P), then there exists one that is an extreme point.

- Only need to consider finitely many possible solutions.

Challenge: Number of extreme points can be exponential.

- Consider *n*-dimensional hypercube.

Greedy: Local optima are global optima.

- Extreme point is optimal if no neighboring extreme point is better.

Simplex Algorithm

Simplex algorithm: (George Dantzig, 1947)

- Developed after WWII in response to logistical problems.
- ▶ Used for 1948 Berlin airlift.

Generic algorithm:

- Start at some extreme point.
- Pivot from one extreme point to a neighboring one. (never decrease objective function)
- Repeat until optimal.

How to implement? Linear algebra.

Simplex Algorithm: Basis

Basis: Subset of m of the n variables.

Basic feasible solution (BFS): Set n-m nonbasic variables to 0, solve for remaining m variables.

- ► Solve *m* equations in *m* unknowns.
- ▶ If unique and feasible solution \rightarrow BFS.
- BFS corresponds to extreme point.
- Simplex only considers BFS.

Simplex Algorithm: Pivot 1 (1)

Basis =
$$\{S_c, S_H, S_M\}$$

A = B = 0
Z = 0
 S_c = 480
 S_H = 160
 S_M = 1190

Substitute: $B = 1/15 (480 - 5A - S_c)$

Basis = {B,
$$S_H$$
, S_M }
 $A = S_C = 0$
 $Z = 736$
 $B = 32$
 $S_H = 32$
 $S_M = 550$

Simplex Algorithm: Pivot 1 (2)

max Z subject to					
_13A + 23B -	Z = 0				
5A (15B)+ 5 _C	= 480				
$4A + 4B + 5_H$	= 160				
$35A + 20B + S_M$	= 1190				
A , B , S_C , S_H , S_M	≥ 0				

```
Basis = \{S_C, S_H, S_M\}

A = B = 0

Z = 0

S_C = 480

S_H = 160

S_M = 1190
```

Why pivot on column 2?

- ► Each unit increase in *B* increases objective value by \$23.
- ▶ Pivoting on column 1 also OK.

Why pivot on row 2?

- ▶ Preserves feasibility by ensuring $RHS \ge 0$.
- ► Minimum ratio rule: min{480/15, 160/4, 1190/20}.

Simplex Algorithm: Pivot 2

Basis = $\{B, S_H, S_M\}$ $A = S_c = 0$ S_M = 550

5ubstitute: $A = 3/8 (32 + 4/15 S_c - S_u)$

Basis = $\{A, B, S_{M}\}$

Simplex Algorithm: Optimality

When to stop pivoting?

▶ If all coefficients in top row are non-positive.

Why is resulting solution optimal?

- Any feasible solution satisfies system of equations in tableaux.
 - in particular: $Z = 800 S_C 2S_H$
- ▶ Thus, optimal objective value $Z^* \le 800$ since $S_C, S_H \ge 0$.
- Current BFS has value 800 → optimal.

Basis =
$$\{A, B, S_M\}$$

 $S_C = S_H = 0$
 $Z = 800$
 $B = 28$
 $A = 12$
 $S_M = 110$

ADS Spring 2022 17 / 18

Simplex Algorithm: Issues

Remarkable property: In practice, simplex algorithm typically terminates in at most 2(m + n) pivots.

- ► No polynomial pivot rule known.
- ▶ Most pivot rules known to be exponential in worst-case.

Issues: Which neighboring extreme point?

Degeneracy: New basis, same extreme point.

"Stalling" is common in practice.

Cycling: Get stuck by cycling through different bases that all correspond to same extreme point.

- Does not occur in the wild.
- ▶ Bland's least index rule \rightarrow finite # of pivots.