Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 15: Raggiungibilità e controllabilità a tempo discreto (parte 3)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

-	

In questa lezione

- ▶ Controllabilità di sistemi lineari a t.d.
- ▶ Controllabilità e forma di Kalman
- ▶ Test PBH di controllabilità

Controllabilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t), x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$

$$0 = x(t) = F^{t}x_{0} + \sum_{k=0}^{t-1} F^{t-k-1}Gu(k) = F^{t}x_{0} + \mathcal{R}_{t}u_{t}$$

Insieme di stati x_0 controllabili al tempo t (= in t passi) allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati $x_0 \in \mathbb{R}^n$?

Spazio controllabile

 $X_C(t) = \text{spazio controllabile in } t \text{ passi} = \{x \in \mathbb{R}^n : F^t x \in \text{im}(\mathcal{R}_t)\}$

Teorema: Gli spazi di controllabilità soddisfano:

$$X_C(1) \subseteq X_C(2) \subseteq X_C(3) \subseteq \cdots$$

Inoltre, esiste un primo intero $i \le n$ tale che

$$X_C(i) = X_C(j), \forall j \geq i.$$

i = indice di controllabilità

 $X_C \triangleq X_C(i) = \text{(massimo) spazio controllabile}$

G. Baggio

Lez. 15: Raggiungibilità e controllabilità a t.d. (pt. 3)

24 Marzo 2022

Criterio di controllabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$, con t indice di controllabilità.

$$\Sigma$$
 controllabile \iff im $(F^n) \subseteq$ im $(\mathcal{R}) = X_R$

 Σ raggiungibile $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$ controllabile

 $\Sigma \text{ controllabile} \not\Rightarrow \Sigma \text{ raggiungibile } !!!$

G. Baggio

Lez. 15: Raggiungibilità e controllabilità a t.d. (pt. 3)

24 Marzo 2022

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \implies \text{non raggiungibile } \forall \alpha_1, \alpha_2 \in \mathbb{R}$$
 ma controllabile se $\alpha_1 = 0$

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \implies \begin{array}{l} \text{raggiungibile e quindi} \\ \text{controllabile} \end{array}$$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 \implies non raggiungibile ma controllabile (in 2 passi)

G. Baggio

Lez. 15: Raggiungibilità e controllabilità a t.d. (pt. 3)

24 Marzo 2022

Controllabilità e forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_{NR}(t) = F_{22}^t x_{NR}(0)$$

- 1. Σ controllabile $\iff \exists \, \overline{t} : F_{22}^t = 0, \, t \geq \overline{t} \Leftrightarrow F_{22} \text{ nilpotente (autovalori di } F_{22} = 0)$
- **2.** $X_R \subseteq X_C$ e $X_R = X_C$ se F_{22} invertibile
- **3.** Σ reversibile (= F invertibile) $\Longrightarrow F_{22}$ invertibile $\Longrightarrow X_R = X_C$

G. Baggio

Lez. 15: Raggiungibilità e controllabilità a t.d. (pt. 3)

24 Marzo 2022

Test PBH di controllabilità

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

(- , -) (- , (-)	
Teorema: Il sistema Σ è controllabile se e solo se la matrice PBH di raggiungibilità	
$\begin{bmatrix} zI - F & G \end{bmatrix}$	
ha rango pieno (rank $[zI - F \ G] = n$) per ogni $z \in \mathbb{C}$ con $z \neq 0$.	
N.B. La matrice PBH può essere valutata solo per gli $z \neq 0$ che sono autovalori di F !	
G. Baggio Lez. 15: Raggiungibilità e controllabilità a t.d. (pt. 3) 24 Marzo 2022	
	¬