배열

특정 자료형의 집합, 인덱스로 참조되는 값의 집합.

배열을 구성하는 각 값을 배열 요소(element)라고 하며 배열에서의 위치는 인덱스 (Index)라고 함

- 자바에서 배열을 선언 방법
- 1) 자료형 [] 변수명 = { 값 }; //배열 선언과 동시에 입력 Ex) int[] iArr = { 10, 20, 30, 40, 50 };
- 2) 자료형 [] 변수명;

```
변수명 = new 자료형[배열 수] // 변수 선언후 배열 수만 먼저 입력
//이때 배열에는 기본값은 0;
```

Ex) int[] iArr;

iArr = new int[5]

- 배열은 하나의 데이터를 가지고 있는 변수와는 다르게 데이터가 있는곳의 주소를 가르킴
- 이때 주소값을 레퍼런스라고 함.

만약 같은 주소를 가르키는 배열이 있다면

Ex) int[] $s = \{10,20,30,40,50\};$

int[] ss = s; //이때 ss 배열에도 s배열변수가 가지는 값과 배열 수를 가지지만

// 각자의 내용을 독립적으로 복사해 갖고 있지 않고 자료가 있는 주소를 공유함

// 따라서 배열을 복사할때는 new연산자를 이용 인스턴트를 생성후 넣어야함

System.arraycopy 함수를 이용해 배열을 복제할수있다.

Ex) System.arraycopy (원본배열객체, int 원본시작위치, 복사본배열객체, int 복사본시작위치, int 복사길이)

다중배열

배열이 2차원 형식으로 자료를 갖고 있는 구조

Ex) int[][] test = { { 1, 2, 3 }, // 변수명[][] 시 첫번째 는 행값 , 두번째는 열값 { 4, 5, 6 } }; // ex) 예제에서 5의 위치는 test[1][1];

거스름돈 배열 알고리즘

```
Ex)2680원의 거스름돈(혹은 사용자 입력금액)을 주어야할때 500원 100원 50원 10원 을 얼마씩 주어야하나 public static void main(String[] args) {

int[] arr = { 500, 100, 50, 10 }; //배열에 큰순서대로 화폐단위 입력

int money = 2680;

System.out.println("거스름돈" + money );

for (int i = 0; i < arr.length; i++) { // 화폐금액을 하나씩 입력후

System.out.println(arr[i] + "원짜리" + money / arr[i] + "개 입니다.");

//첫번째 배열 금액으로 나눈 후 나누어지지않은 금액(나머지)을

// 다시 총액에 초기화 후 다음 금액으로 배열 순환

money %= arr[i]; // 나머지 금액 입력
```

배열 오름차순 정렬 알고리즘

```
public static void main(String[] args) {

int[] arr = { 76, 45, 34, 89, 100, 50, 90, 92 }; //

int[] sortArr = new int[arr.length]; //오름차순 정렬하기위해 같은 배열 생성

for (int i = 0; i < arr.length; i++) {

sortArr[i] = arr[i];

}

// 오름차순 : Array.sort(배열)

for (int i = 0; i < sortArr.length - 1; i++) {

for (int j = i + 1; j < sortArr.length; j++) { // i번째와 j번째(i의 다음번째)비교

if (sortArr[i] > sortArr[j]) { //비교하려는 변수(i번째)가 비교대상(j번째)보다 크면

int temp = sortArr[i]; //변수를 하나더 생생하여 i번째변수를 넣고

sortArr[i] = sortArr[j]; //비교대상(j번째)을 정렬하려는 변수에 넣는다

sortArr[j] = temp;//다시 비교를 위해 sortArr[j]배열에 넣는다.

for (int i = 0; i < arr.length; i++) {

System.out.println(sortArr[i]);
```