

Showcase Diretoria de Tecnologia

Deep markovian trader

• Introduzir o mercado de finanças quantitativas, destacando seu potencial e oportunidades.

• Apresentar a construção de uma estratégia quantitativa, desde a filtragem de ativos até a geração de sinais de trading.

• Explicar como **modelos econométricos** (ex: MSGARCH) e **redes neurais** (ex: LSTM) podem ser combinados para prever o comportamento do mercado.

Oportunidades na Área de Finanças Quantitativas

Oportunidades na Área de Finanças Quantitativas

Oportunidades na Área de Finanças Quantitativas

Salaries and Bonuses in Quant Finance: broken down by role, seniority & region:

https://www.efinancialcareers.com/news/salaries-and-bonuses-in-quant-finance-broken-down-by-role-seniority-and-region

Position at Jane Street

https://www.janestreet.com/join-jane-street/position/4794171002/

O que é uma Estratégia de Investimento Quantitativa?

Definição: Estratégia que utiliza modelos matemáticos, estatísticos e algoritmos para tomar decisões de investimento.

Base de Dados: Depende de dados históricos e em tempo real para identificar padrões e sinais de mercado.

Automatização: As operações são executadas automaticamente, minimizando a intervenção humana e os vieses emocionais.

Backtesting: Os modelos são testados com dados passados para validar sua eficácia antes de serem aplicados em tempo real.

Escalabilidade: Permite a análise simultânea de grandes volumes de dados e múltiplos ativos.

Aprimoramento Contínuo: Pode incorporar técnicas de machine learning para refinar e adaptar os modelos conforme as condições de mercado mudam.

Por onde começar a estratégia?

Ativos Modelo Dados Estratégia Backtesting É necessário, antes de Aqui chegamos na Talvez os dados sejam Sabendo o ativo que Depois de tudo tudo, definir em que etapa mais complexa a etapa mais será trabalhado e o definido, não temos universo de ativos da formação da importante das modelo adotado, é como simplesmente iremos trabalhar. estratégia, nesse ponto estratégias possível identificar chegar aplicando a entram os modelos quantitativas, afinal características que estratégia, e aí entra o matemáticos e sem dados não há corroboram para o backtest, quando estatísticos que irão nenhum trabalho a ser melhor funcionamento testaremos nosso modelo no passado, basear a nossa feito. de x estratégia. previsão. avaliando sua eficácia e acurácia.

A Estratégia que Vamos Apresentar

Estratégia

Compramos o primeiro percentil de ações com maior variação de preço e damos short, caso possível, nas ações do último percentil

MSGARCH

A grande base da nossa estratégia é a previsão de volatilidade através do modelo econométrico MSGARCH

Backtesting

Realizamos um backtest vetorizado sobre os dados adquiridos pós aplicação da estratégia

LSTM

Modelo de IA aplicado nas ações filtradas por high ou low vol de acordo com o MSGARCH, utilizada para prever a variação de preços.

Universo de ativos

S&P500

O modelo MSGARCH combina dois conceitos importantes. Primeiro, ele usa um modelo de mudanças de regime (Markov-Switching), que permite que a série financeira alterne entre diferentes estados, como períodos de baixa e alta volatilidade. Depois, dentro de cada regime, ele aplica um modelo GARCH, que é uma forma de capturar como a volatilidade depende dos retornos passados. Isso torna o modelo mais flexível e realista, pois permite que a volatilidade siga padrões diferentes dependendo do regime em que o mercado se encontra.

O modelo MSGARCH assume que os retornos r_t seguem um processo de volatilidade condicional que muda ao longo do tempo de acordo com um processo de Markov. Ele pode ser escrito como:

$$r_t = \sigma_t \epsilon_t$$

onde:

 r_t é o retorno do ativo no tempo $_t$

 σ_t é a volatilidade condicional no tempo t

 ϵ_t representa choques aleatórios no mercado no tempo t, assumindo que eles seguem uma distribuição específica (como normal ou t-student) para tornar o modelo tratável.

Markov-Switching GARCH

A grande diferença para um GARCH tradicional está na volatilidade σ_t , que agora depende de um regime oculto S_t :

$$S_t = \sigma_t^2 = \alpha S_t + \beta S_t r_{t-1}^2 + \gamma S_t \sigma_{t-1}^2$$

onde S_t é o estado do mercado no tempo t, determinado por uma cadeia de Markov de transição:

$$p_{ij} = P(S_t = j | S_{t-1} = i) = p_{ij}$$

onde p_{ij} representa a probabilidade de mudar do regime para o regime

Machine Learning aplicado a problemas de previsão

Modelos de **Machine Learning** são frequentemente usados em problemas de previsão devido à sua **capacidade de aprender padrões complexos a partir de dados históricos, sem a necessidade de especificar uma fórmula matemática explícita.** Esses modelos são particularmente úteis em problemas em que as relações entre variáveis são não lineares ou difíceis de modelar diretamente com abordagens tradicionais.

Modelos de **Machine Learning são frequentemente** aplicados para resolver dois grandes tipos de problemas de previsão:

- 1. Classificação O modelo prevê categorias (ex.: prever se o mercado vai subir ou cair).
- 2. **Regressão** O modelo prevê valores contínuos (ex.: prever o retorno esperado de um ativo).

Aqui, lidaremos com um problema de **regressão**, pois queremos prever o risco futuro de um ativo.

Machine Learning aplicado a problemas de previsão

O que é um modelo de Machine Learning?

Um modelo de **machine learning** é uma representação matemática que descreve a relação entre as variáveis de entrada (características ou "features") e as variáveis de saída (resultados ou "rótulos"). Ele é criado a partir de dados e treinado para identificar padrões ou regularidades que ajudam a fazer previsões ou decisões sobre dados novos. Como mencionamos anteriormente, não precisamos fornecer uma fórmula matemática específica para criar um modelo de machine learning, e isso é verdade porque **esses modelos têm a capacidade de aprender essas relações diretamente a partir dos dados**.

Exemplo Intuitivo:

Imagine que você tem um conjunto de dados sobre imóveis. As entradas podem ser características como o tamanho do imóvel, a localização e o número de quartos, enquanto a saída seria o preço do imóvel. O modelo de **machine learning** tenta entender como essas características influenciam o preço, de forma que, quando você fornecer as características de um novo imóvel, o modelo consiga prever seu preço. Em outras palavras, o modelo aprende a criar uma função matemática que, ao receber como entrada as características do imóvel, gera como saída o preço correspondente.

Machine Learning aplicado a problemas de previsão

O que é uma Rede Neural e por que usá-las?

Redes neurais são modelos poderosos de **machine learning** inspirados no cérebro humano. Elas são particularmente eficazes para lidar com problemas complexos e dados **não lineares**, capturando relações difíceis de modelar com abordagens tradicionais. Essa capacidade de identificar padrões complexos é o que torna as redes neurais tão eficazes para prever fenômenos como o **preço de ativos**, que seguem dinâmicas altamente não lineares e dependem de múltiplos fatores interconectados.

Existem várias **arquiteturas** de redes neurais, cada uma com características específicas para diferentes tipos de tarefas. No contexto da **previsão de séries temporais**, as **redes neurais recorrentes (RNNs)** se destacam. Dentro desse grupo, a arquitetura **LSTM** (**Long Short-Term Memory**) é particularmente eficaz.

Redes LSTM são projetadas para capturar **dependências de longo prazo**, permitindo que o modelo compreenda padrões temporais mais complexos e faça previsões mais precisas, especialmente quando a **informação histórica** é crucial para prever o futuro.

Resultados

A tabela ao lado apresenta um intervalo de erro da previsão, isto é, o quanto o retorno real divergiu do retorno previsto pela LSTM, os valores vieram das seis vezes que testamos a rede neural. Observando a tabela, podemos calcular que mais de 85% dos ativos tiveram seus preços previstos com um erro de no máximo 5%. Além disso, não há a presença de outliers com uma alta margem de erro, reforçando a robustez do nosso modelo.

Intervalo da Margem de Erro	Quantidade de Resultados
0 - 1%	37
1 - 2%	52
2 - 5%	124
5 - 10%	34
10 - 20%	3
20 - 50%	0

Problemas de estratégias quantitativas

Overfitting:

 Modelos que se ajustam demais aos dados históricos podem não generalizar bem para dados futuros.

Qualidade dos Dados:

 Dados incompletos, imprecisos ou desatualizados podem comprometer a eficácia do modelo.

Mudanças de Regime:

 Alterações nas condições do mercado podem tornar os modelos obsoletos rapidamente.

Risco de Modelagem:

 Escolha inadequada de técnicas, parâmetros ou variáveis pode levar a previsões erradas.

Custos de Transação e Slippage:

 Operações frequentes podem aumentar os custos e reduzir a rentabilidade real.

Complexidade e Interpretação:

 Modelos complexos podem ser difíceis de interpretar e ajustar, dificultando a identificação de erros ou vieses.