2017-12-28

- Definition of PSPACE, NPSPACE, coNPSPACE:
 - **PSPACE** := $\bigcup_{k \ge 1}$ SPACE[n^k].
 - **NPSPACE** := $\bigcup_{k\geq 1}$ NSPACE[n^k].
 - **conpspace** := $\{L|\Sigma^* L \in \text{NPSPACE}\}.$
- Definition of L, NL, coNL:
 - $\mathbf{L} := \bigcup_{k \geq 1} \text{ SPACE}[\log n].$
 - $\mathbf{NL} := \bigcup_{k \ge 1} \text{ NSPACE}[\log n].$
 - $\operatorname{coNL} := \{L | \Sigma^* L \in \operatorname{NL} \}.$
- Obviously, we have $L \subseteq NL$, $P \subseteq NP$, and $PSPACE \subseteq NPSPACE$.
- Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$, where $f(n) \ge n$.
- $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE = NPSPACE$.
- Theorem: NSPACE = coNPSPACE. If $L \in NSPACE[n^k]$, then $\Sigma^* L \in NSPACE[n^k]$.
- Theorem: NL = coNL. If $L \in \text{NSPACE}[\log n]$, then $\Sigma^* L \in \text{NSPACE}[\log n]$.
- Definition of NL-hard, NL-complete:
 - NL-hard: $\{L \mid \forall L' \in NL, L' \leq_{\log} L\}$.
 - $\bullet \ \ \mathbf{NL\text{-}complete} \colon \{L \mid L \in \mathsf{NL} \ \mathsf{and} \ L \in \mathsf{NL\text{-}hard}\}.$
- **Theorem**: Reachability is NL-complete.
- **Theorem**: True quantified Boolean formula (TQBF) is PSPACE-complete.