

Track Breakout Sessions (Time: 14.30 - 15.30)

TIME/TOPIC	DATA ANALYTIC (ROOM 324)	DESIGN AUTOMATION (ROOM 325)	ACADEMIA (ROOM 326)	COMPUTIONAL FINANCE (ROOM 327)
Time: 14.30	Developing IoT Applications with MATLAB & SimuLink	ADAS algorithm design and prototyping using MATLAB: Sensor fusion example	How a Differential Equation Becomes a Robot	Advanced Portfolio Construction (Smart Beta and Stock Selection models)
Time: 15.30	Predictive Maintenance with MATLAB – A Machine Learning Case Study	Robotics Algorithm Design with Robotics System Toolbox	Part 1: Mechanical and Electrical Systems Modelling Part 2: IoT-based Monitoring and Control Applications	Part1: MacroEconomic Stress Testing Part 2: Fixed Income Analytics (price and analyze fixed income securities)

Developing IoT Applications with MATLAB & Simulink

Yi Wang, Application Engineer Manager at MathWorks

Developing Internet of Things (IoT) Applications with MATLAB and Simulink

Yi Wang

Application Engineering Manager, MathWorks USA

The Challenge of IoT

Figure 3. Vibration analysis: Data processed by the company's vibration analysis tool, and leading up to the fan's catastrophic failure, provides an ambiguous indication of the asset's degrading condition.

IoT System Examples

Case Study: Human Activity Analysis and Classification

What is the Internet of Things?

Look at the Pieces: Devices

- Sensors and Human Interaction
- May have strict energy budget
- Required embedded programming skills
- Bandwidth is expensive in power and dollars
- Goal for device is to do as much data reduction locally as possible

Look at the Pieces: Data Collection & Online Analytics

- Server or Cloud-based
- Log and analyze information across collection of devices
- Real-time information for situational awareness
- Requires cloud/web development skills and operations support
- Data Intake must be scalable and reliable
- True "Big Data"

Look at the Pieces: Exploratory Analysis

- Desktop-based
- Access historical device information
- Analyze past performance for predictive modeling and deep insight
- Requires data analysis / data science skills
- Heavy use of statistics and signal processing techniques
- Deploy complex algorithms to both cloud and edge devices

MathWorks Capabilities for IoT

Leveraging MATLAB Analytics and Model-Based Design

MathWorks Provides Capabilities for All of these Steps

MATLAB & Simulink Capabilities for IoT

Verification/Validation and Process Support

 Model- and Code proving Lifecycle management tools

Speech recognition

Sensor Analytics for IoT

Computer Vision is all about analyzing and understanding images at a higher level

Computer Vision for Sensor Analytics

- Data reduction is the key!
- Typical image capture data rate:
 - 640 x 480 resolution, 30 FPS
 - 1-2 MB/sec (compressed)
- With object detection/recognition
 - Example: Traffic monitoring
 - 10-20 KB/min (object counts)

Object Detection and Recognition

Object detection and recognition are used to locate, identify, and categorize objects in images and video. Computer Vision System Toolbox provides a comprehensive suite of algorithms and tools for object detection and recognition.

Object Classification

You can detect or recognize an object in an image by training an object classifier using pattern recognition algorithms that create classifiers based on training data from different object classes. The classifier accepts image data and assigns the appropriate object or class label.

Computer Vision System Toolbox provides algorithms to train image classification and image retrieval systems using the bag-of-words model. The system toolbox also provides feature extraction techniques you can use to create custom classifiers using supervised classification algorithms from Statistics and Machine Learning Toolbox™.

Image Classification

Image category classification using bag-of-visual words

Image Retrieval

Searching image set for similar image

Object Recognition and Tracking for Augmented

Use object recognition and tracking to create an augmented reality application with a webcam in MATLAB® Recognize an image in a scene, track its position, and augment the display by playing a video in the image's place

Object Detection with MATLAB

Multiple approaches available:

- 1. Feature detection, extraction and matching
- 2. Pre-trained models
- Out-of-the box frameworks
- 4. Design and construct custom detector

IoT Example: Monitoring Traffic

MathWorks

Objectives

- Measure, explore, discover traffic patterns
- Provide live local traffic information service

Solution

- RaspberryPi + webcam
- Automated deployment of vision algorithms on embedded sensor
- Full example available at makerzone.mathworks.com

Car Counter Setup

MathWorks

Detecting Cars

Foreground Mask

Filtered Foreground Mask

Link to ThingSpeak Channel

Car Counting Algorithm

Live Car Counting with Raspberry Pi Hardware

To run this model on hardware, on the Simulink Editor toolbar, click the "Run" button. Note that the simulation mode is "External". This mode allows you to tune parameters and monitor signals in the model while the application is running on hardware.

Analyzing Data from ThingSpeak In MATLAB

Key Takeaways

- Data reduction through computer vision
- Custom object detection and recognition methods
- Algorithm implementation on edge device
- Efficient data transfer to backend aggregator

Why MATLAB?

MATLAB and Simulink are well positioned for:

- A. Analytics that increasingly require **both business and engineering data**
- B. Developing **embedded systems** which have increasing analytic content
- C. Deploying the increasing number of analytic-rich applications that run on **both traditional IT and embedded platforms**
- D. Enabling domain experts to do data science

Customer Case Study

Customer Study: iSonea

Cloud and Embedded Analytics

Opportunity

Develop an acoustic respiratory monitoring system for wheeze detection and asthma management

Analytics in cloud and embedded

- Captures 30 seconds of windpipe sound and processes the data locally to clean up and reduce ambient noise
- Invokes spectral processing and pattern-detection analytics for wheeze detection on iSonea server in the cloud
- Provides feedback to the patient on their smartphone

Benefit

Eliminates error-prone self-reporting and visits to the doctor

http://www.mathworks.com/company/user_stories/isonea-develops-mobile-app-for-wheeze-detection-and-asthma-management.html

Customer Study: iSonea

Cloud and Embedded Analytics

Opportunity

Develop an acoustic respiratory monitoring system for wheeze detection and asthma management

Spectral processing and pattern-detection analytics for wheeze detection

Windpipe sound capture and processing to clean up and reduce ambient noise

© 2016 The MathWorks, Inc.

Quick Break (5 Minutes)

Southeast Asia's sole distributor of

