Mathematics 1A HSLU, Semester 1

Matteo Frongillo

September 30, 2024

Contents

Ι	Week 1	4
1	The set theory 1.1 Definition of a set 1.2 Logical symbols 1.2.1 Definition 1.2.2 Equal 1.2.3 Belongs to 1.2.4 Does not belong to 1.2.5 Inclusion and contains 1.2.6 For all/any 1.3 Numerical sets 1.3.1 Inclusion of sets	4 4 4 4 4 4 4 5 5
2	Intervals in the real line 2.1 Examples 2.1.1 Interval sets 2.1.2 Graphical examples	5 5 5 5
4	The extended line 3.1 Properties	6 6 6 6 7 7
	4.1.1 Interval sets	7 7
5	Propositional logic 5.1 Logical connectives 5.1.1 Logical conjunction ∧ 5.1.2 Logical disjunction ∨ 5.1.3 Logical negation ¬ 5.1.4 Implication ⇒ 5.1.5 Inference \Leftarrow 5.1.6 If and only if \Leftrightarrow	7 7 7 8 8 8 8
6	$\begin{array}{c} \textbf{Union} \cup \textbf{and Intersection} \cap \\ 6.1 \textbf{Universe symbol} \\ 6.2 \textbf{Venn diagram} \\ 6.2.1 \textbf{Union} \ A \cup B \\ 6.2.2 \textbf{Intersection} \ A \cap B \\ 6.2.3 \textbf{Complement} \ \bar{A} \end{array}$	8 8 8 8 9 9

	6.2.4 Difference between sets \backslash	10
7	The absolute value function	11
	7.1 Graph of absolute value functions	
	7.3 Triangular inequalities	
	Transama inequations	12
II	Week 2	13
8	Concept of functions 3.1 Image (Range)	13 13
9	Linear function	14
	9.1 Cartesian diagram	14
	0.2 Straight line	14
	9.3 Slope-intercept equation	
	9.3.1 Slope	
	9.3.2 Drawing	
	0.4 Vertical lines	15
10	Equation of a line 10.1 General equation in a cartesian diagram	15 15
11	Increasing and decreasing functions	16
	1.1.1 Increasing functions	16
	11.2 Decreasing functions	16
12	Inverse function 2.1 Facts about inverse functions	16
II	Week 3	17
13	Polynomial function	17
	13.1 Expressions, terms and factors	17
	13.1.1 Expressions	17
	13.1.2 Terms	17
	13.1.3 Factors	17
14	Common factor	17
15	Notable products	17
16	Classification of polynomials	17
	6.1 Definition	18
	6.2 Degree	18
	16.2.1 Monomials	18 18
17	Symmetrical functions	18
-•	17.1 $n \text{ odd}$	18
	17.1.1 Graph examples	18
	17.2 n even \dots	19
	17.2.1 Graph examples	19
	7.3 General case	19
	7.4 Symmetry of a polynomial	19
18	Intersection with axis	20
	18.1 Vertical intersection	20
	18.2 Zeros of a function	20

18.3 Graph example	20
19 Dominant elements in a function approaching $\pm\infty$	21
19.1 Order of dominance	21
19.1.1 Approaching to $+\infty$	21
19.1.2 Approaching to $-\infty$	21
19.1.3 Dominance in rational functions	21

Part I

Week 1

1 The set theory

1.1 Definition of a set

A set is a collection of objects or elements.

Remark: The collection of all sets is not a set.

1.2 Logical symbols

1.2.1 Definition

Braces and the definition symbol ":=" are used to define a set giving all its elements:

$$A := \{a, b, c, d, e\}$$

1.2.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

$$A = B$$

1.2.3 Belongs to

The symbols \in and \ni describe an element which is part of the set:

$$a \in A \Longleftrightarrow A \ni a$$

1.2.4 Does not belong to

The symbols \notin mean that an element does not belong to the set:

$$f \notin A$$

1.2.5 Inclusion and contains

The symbols \subset and \supset mean that a set has another set included in its set:

$$\mathbb{N} \subset \mathbb{Z} \Longleftrightarrow \mathbb{Z} \supset \mathbb{N}$$

1.2.6 For all/any

The symbol \forall means that we are considering any type of element:

$$\forall x \in \mathbb{R}, \ x > 0$$

In this case, we've defined a new set.

1.3 Numerical sets

- $\mathbb{N} := \text{Natural numbers (including 0)};$
- $\mathbb{Z} := \text{Integer numbers};$
- $\mathbb{Q} := \text{Rational numbers};$
- $\mathbb{R} := \text{Real numbers} := \mathbb{Q} \cup \{ \text{irrational numbers} \}$.

Notation: The "*" symbol means that the set does not include 0.

1.3.1 Inclusion of sets

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

$$\begin{split} B &:= \{\pi, 1, -1, 0\} \, ; \\ C &:= \{\pi, 1\} \, ; \\ D &:= \{\pi\} \, . \end{split}$$

Then we write some examples: $\pi \in B$, $D \subset B$, $C \subset B$, $B \not\subset C$, $0 \in B$, $0 \notin C$.

2 Intervals in the real line

Intervals describe what happens between two or more elements.

2.1 Examples

2.1.1 Interval sets

We have 4 cases:

- $(a,b) = \{ \forall x \in \mathbb{R} \mid a < x < b \};$
- $[a,b) = {\forall x \in \mathbb{R} \mid a \le x < b};$
- $(a,b] = \{ \forall x \in \mathbb{R} \mid a < x \le b \};$
- $[a,b] = \{ \forall x \in \mathbb{R} \mid a \le x \le b \}.$

Notation: a and b are often called the "end points" of the interval;

2.1.2 Graphical examples

$$\forall x \in \mathbb{R}, \ x \in [a, b]$$

3 The extended line

In the real line \mathbb{R} we add $\pm \infty$.

Real line: $(-\infty, +\infty) = \mathbb{R}$

Extended real line: $[-\infty, +\infty] = \overline{\mathbb{R}}$

Remark: $\pm \infty \notin \mathbb{R}$

3.1 Properties

$$\boxed{\forall x \in \mathbb{R} \mid \infty > x \mid -\infty < 0}$$

6

3.2 Operation in the extended line

If $a, b \in \mathbb{R}$, then a + b, a - b, $a \cdot b$, $\frac{a}{b}$ (with $b \neq 0$) stay the same

3.2.1 Additions

Let $\forall a \in \mathbb{R}$:

- $a + \infty := \infty$;
- $a-\infty:=-\infty$;
- $+\infty + \infty := +\infty$;
- $-\infty \infty := -\infty$;
- $+\infty \infty :=$ undefined.

3.2.2 Moltiplications

Let $\forall a \in \mathbb{R}$:

- $+\infty \cdot +\infty := +\infty;$
- $-\infty \cdot +\infty := -\infty;$
- $-\infty \cdot (-\infty) := \infty$

$$\bullet \ a\cdot \infty := \begin{cases} a>0 & +\infty \\ a<0 & -\infty \\ a=0 & \text{undefined} \end{cases}$$

•
$$a \cdot (-\infty) := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & \text{undefined} \end{cases}$$

$$\bullet \ \frac{a}{+\infty} = \frac{a}{-\infty} := 0;$$

$$\bullet \quad \frac{+\infty}{a} := \begin{cases} a > 0 & +\infty \\ a < 0 & -\infty \\ a = 0 & +\infty \end{cases}$$

$$\bullet \quad \frac{-\infty}{a} := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & -\infty \end{cases}$$

• $\frac{\infty}{\infty}$:= undefined.

4 Intervals including $\pm \infty$

Intervals describe what happens between two or more elements, including $\pm \infty$.

4.1 Examples

4.1.1 Interval sets

Let $a \in \mathbb{R}$, then:

- $(-\infty, a) = \{ \forall x \in \mathbb{R} \mid x < a \};$
- $(a, +\infty) = \{ \forall x \in \mathbb{R} \mid x > a \};$
- $(-\infty, a] = \{ \forall x \in \mathbb{R} \mid x \le a \};$
- $[a, +\infty] = \{ \forall x \in \mathbb{R} \mid x \ge a \};$
- $(-\infty, +\infty) = \mathbb{R}$;
- $[-\infty, +\infty] = \overline{\mathbb{R}}$.

4.1.2 Graphical examples

 $\forall x \in \mathbb{R}, \ x \in [a, b] \cup [c, +\infty[$

<u>Notation</u>: The union of two or more intervals where $x \in \mathbb{R}$ is denoted by the symbol \cup .

5 Propositional logic

Propositional logic is a branch of mathematics that deals with propositions and logical operations.

5.1 Logical connectives

A	В	$\neg B$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Т	Т	F	Т	Т	Т	Т
Т	F	Т	F	Т	F	F
F	Т	F	F	Т	Т	F
F	F	Т	F	F	Т	Т

5.1.1 Logical conjunction \wedge

Given two statements P and Q, $P \wedge Q$ is true if both P and Q are true.

Let
$$P = (x > 0)$$
 and $Q = (y > 0)$, then:

$$P \wedge Q = (x > 0 \wedge y > 0)$$

5.1.2 Logical disjunction \lor

Given two statements P and Q, $P \vee Q$ is true if at least one of P or Q is true.

Let
$$P = (x = 0)$$
 and $Q = (y \neq 0)$, then:

$$P \lor Q = (x = 0 \lor y \neq 0)$$

5.1.3 Logical negation \neg

The negation of a statement P, denoted as $\neg P$, is true if P is false, and false if P is true.

Let $P = (x \ge 5)$, then:

5.1.4 Implication \Rightarrow

The symbol \Rightarrow indicates that if statement P is true, then statement Q must also be true (i.e., P implies Q). Warning: It does not require that Q implies P.

$$P = (x = 1) \Rightarrow Q = (x \in \mathbb{N})$$

5.1.5 Inference \Leftarrow

The symbol \Leftarrow means that a conclusion or result implies the truth of an earlier statement. If Q is true, then P must be true.

$$Q = (x > 0) \Leftarrow P = (x \in \mathbb{R}^+)$$

5.1.6 If and only if \Leftrightarrow

The symbol \Leftrightarrow indicates that two statements P and Q are logically equivalent, meaning P is true if and only if Q is true.

$$P = (x \in \mathbb{N}, \ x \neq 0) \Longleftrightarrow Q = (x \in \mathbb{N}^*)$$

6 Union \cup and Intersection \cap

6.1 Universe symbol

The symbol [] := Universe describes a big set which contains all sets involved in our discussions (not always).

6.2 Venn diagram

6.2.1 Union $A \cup B$

If A and B are sets, then their union is:

$$\boxed{A \cup U = \{ \forall x \in \bigcup \mid x \in A \lor x \in B \}}$$

6.2.2 Intersection $A \cap B$

If A and B are sets, then their intersection is:

$$A \cap B = \{ \forall x \in \bigcup \mid x \in A \land x \in B \}$$

6.2.3 Complement \bar{A}

If A is a set, its complement is:

$$\bar{A} = \{ \forall x \in \bigcup \mid x \notin A \}$$

6.2.4 Difference between sets \setminus

If A and B are sets, then their difference is:

$$A \setminus B = \{ \forall x \in \bigcup \mid x \in A, \ x \notin B \}$$

6.2.5 Symmetrical difference \triangle

If A and B are sets, then their symmetrical difference is:

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

6.2.6 Disjoined sets (Empty sets) \emptyset

 $\emptyset :=$ the set containing zero elements:

$$A \cap B = \emptyset$$

7 The absolute value function

The absolute value is an operator that returns the positive value of a number, regardless of its original sign. Let $x \in \mathbb{R}$, then:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ x & \text{if } -x < 0 \end{cases}$$

7.1 Graph of absolute value functions

Let's plot the function y = |x|:

7.2 Properties

Let $a, b \in \mathbb{R}$, then:

- $|a \cdot b| = |a| \cdot |b|$;
- $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ for $b \neq 0$;
- $|a \pm b| \neq |a| \pm |b|$.

7.3 Triangular inequalities

Let $a, b \in \mathbb{R}$, then:

$$|a|+|b| \ge |a+b|$$

$$|a|-|b| \le |a-b|$$

Part II

Week 2

8 Concept of functions

Let's take any two sets $A\{a, b, c, d, e, f, g\}$ and $B\{a_1, b_1, c_1, d_1, e_1, f_1, g_1\}$.

$$f: A \to B$$
$$a \longmapsto f(a)$$

A function is a relation between the sets A and B, according to which we associate to each element of A one and only one element of B:

Notation: $f(a) = b_1$, $f(b) = a_1$, $f(c) = c_1$, $f(d) = d_1$, ...

Each point in set A is associated with one element of B. However, it is possible for more than two elements of A to point to the same element of B.

The set A is called domain of f. The set B is called the *codomain* of f.

8.1 Image (Range)

Let $f: X \to Y$ be a function. The image of f is defined as:

$$\boxed{\operatorname{Im}(f) = \{ y \in Y \mid y = f(x), \ x \in X \}}$$

Easily, the image is the set containing all the elements of the set B associated with the elements of the set A.

9 Linear function

9.1 Cartesian diagram

9.2 Straight line

Let A and B be any two distinct points, then there is one and only one line passing through A and B.

9.3 Slope-intercept equation

Let $m, q \in \mathbb{R}$, then

$$y = mx + q$$

- *m*: slope;
- q: vertical intercept.

9.3.1 Slope

The slope of a line can be calculated with the equation

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x} = \tan(\theta)$$

We have three different slope outcomes:

- m > 0, the line is increasing;
- m = 0, the line is stable;
- m < 0, the line is decreasing.

Warning: This works only if $x_B \neq x_A$.

9.3.2 Drawing

9.4 Vertical lines

The more the value of m increases, the closer the line will get to the vertical, without ever reaching it.

Let $c \in \mathbb{R}$, then x = c.

Vertical lines cannot be written as a function.

10 Equation of a line

Let $m, x_A, y_A \in \mathbb{R}$ and $A(x_A, y_A)$, then

$$y - y_A = m(x - x_A)$$

e.g.: Find the line with m = -1 and A(2, -1).

$$y - 1 = -1(x + 2) \Rightarrow y = -x + 1$$

Points: A(2,-1); B(0,1)

10.1 General equation in a cartesian diagram

$$ax + by + c = 0$$

Remark:

- All the lines can be described with this kind of equation;
- When b = 0, $a \neq 0$, then $ax = -c \Rightarrow x = \frac{-c}{a} \in \mathbb{R}$;
- When $b \neq 0$, then $y = -\frac{a}{b}x \frac{c}{b}$, where $m = -\frac{a}{b}$ and $q = -\frac{c}{b}$.

11 Increasing and decreasing functions

Let $f:[a,b]\longrightarrow \mathbb{R}$

Notation: if your replace [a, b] with \mathbb{R} , you obtain the definition in the whote \mathbb{R} .

11.1 Increasing functions

- f is increasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) \ge f(x_1)$;
- f is strictly increasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) > f(x_1)$.

11.2 Decreasing functions

- f is decreasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) \leq f(x_1)$;
- f is strictly decreasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) < f(x_1)$.

12 Inverse function

Let's take any two sets A and B.

A function $f:A\to B$ is invertible if there exists another function $f^{-1}:B\to A$, called the inverse function, such that:

$$\forall x \in A, \ f^{-1}(f(x)) = x$$
$$\forall y \in B, \ f(f^{-1}(y)) = y$$

Warning: A function is invertible if and only if it is bijective.

12.1 Facts about inverse functions

1)

Let $f: D \to \mathbb{R}$

f is invertible in D when:

- *f* is strictly increasing;
- f is strictly decreasing.

2)

Let $f: D \to \mathbb{R}$

f is invertible when $f^{-1}: \operatorname{Im}(f) \to D$.

Part III

Week 3

13 Polynomial function

13.1 Expressions, terms and factors

13.1.1 Expressions

An expression is any formula containing numbers, variables, operations, and brackets.

$$y = ax^2 + bx \cdot c$$

13.1.2 Terms

A term is any part of the expression separated by "+" or "-".

$$y = \underbrace{ax^2}_{term} + \underbrace{bx \cdot c}_{term}$$

13.1.3 Factors

Each term can be split into a product of factors.

$$x \cdot y \cdot (a-b) \cdot 24 = x \cdot y \cdot (a-b) \cdot 2 \cdot 2 \cdot 2 \cdot 3$$

<u>Notice</u>: the process of splitting a term into several factors is called "factorization".

The goal of a factorization is to factorize an expression as much as possible.

14 Common factor

Any expression made of terms is composed of several factors.

$$x^2 + x^3 + x = x(x + x^2 + 1), \ \forall x \in \mathbb{R}$$

15 Notable products

- $(a+b)^2 = a^2 + 2ab + b^2$ (square of a binomial);
- $(a-b)^2 = a^2 2ab + b^2$ (square of a binomial);
- $(a-b)(a+b) = a^2 b^2$ (difference of squares);
- $(a+b)(a^2-ab+b^2) = a^3+b^3$ (sum of cubes);
- $(a-b)(a^2 + ab + b^2) = a^3 b^3$ (difference of cubes).

Remark: notable products are useful to factorize expressions when we don't know a common factor.

16 Classification of polynomials

Polynomials can be classified using two criteria:

- 1. the number of terms;
- 2. the degree of the polynomial.

Number of Terms	Name	Example	Comment
One	Monomial	ax^2	Mono means "one" in Greek
Two	Binomial	$ax^2 - bx$	Bi means "two" in Latin
Three	Trinomial	$ax^2 - bx + c$	Tri means "three" in Greek
Four or more	Polynomial	$ax^3 - bx^2 + cx - d$	Poly means "many" in Greek

16.1 Definition

Let $n \in \mathbb{N}^*$, then a polynomial is the sum or difference of n-monomials.

16.2 Degree

The degree of a polynomial is the largest exponent of its monomials.

16.2.1 Monomials

The degree of a monomial is the sum of all the exponents of all the variables.

$$p(x) = x^2 + 1 \rightarrow$$
 the degree is 2.

 $\forall x \in \mathbb{R}, \ p(0) = 0^2 + 1 = 1 \rightarrow A \text{ constant term, like 1, is a polynomial with degree 0.}$

16.2.2 Polynomials

The degree of a polynomial is the highest of all the degrees of all the monomials which compose the polynomial.

$$p(x) = x^3 + 1 + x^5 + x^2$$
1 $\rightarrow \deg(p(x)) = 21$

Let a, b, c, d, x, y be variables, then:

$$q(a,b,c,d,x,y) = 12 \underbrace{abcd}_{\text{deg}=4} -31x^3 + 2xy \rightarrow \text{deg}(q(x)) = 4$$

Notation: Let $f(x) = ax^2 + bx + c$, a, b and c are called coefficients.

The coefficient of the monomial with highest degree is called **leading coefficient**.

17 Symmetrical functions

Let $y = kx^n$, then we plot:

17.1 *n* **odd**

$$f(-x) = -f(x), \quad \forall x \in \mathbb{R}$$

17.1.1 Graph examples

17.2 *n* even

$$f(-x) = f(x), \quad \forall x \in \mathbb{R}$$

17.2.1 Graph examples

<u>Definition</u>:

- a function y = f(x) is called **odd** if it is symmetric with respect to the origin;
- a function y = f(x) is called **even** if it is symmetric with respect to the y-axis.

17.3 General case

Let y = p(x), where p(x) is any polynomial with real coefficients:

$$p(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \dots + a_2 \cdot x^2 + a_1 \cdot x^1 + a_0$$

where:

- $n \in \mathbb{N}$;
- $n = \deg(p(x));$
- $a_n = \text{leading coefficient.}$

$$p(x) = \sum_{i=0}^{n} a_i \cdot x^i$$

17.4 Symmetry of a polynomial

Let y = p(x) be a polynomial function, then:

1) y = p(x) is odd iff all the degrees of all the terms of p(x) are odd;

2) y = p(x) is even iff all the degrees of all the terms of p(x) are even;

3) y = p(x) has mixed degrees, p(x) is neither odd nor even.

18 Intersection with axis

18.1 Vertical intersection

Let y = f(x) be any function, then we solve for y:

$$\begin{cases} x = 0 \\ y = f(0) \end{cases}$$

18.2 Zeros of a function

Let y = f(x) be any function, then we solve for x:

$$\begin{cases} y = 0 \\ 0 = f(x) \end{cases}$$

18.3 Graph example

19 Dominant elements in a function approaching $\pm \infty$

As x approaches $\pm \infty$, the term with the highest degree in a polynomial function dominates the behavior of the function.

p(x) has, as a dominant, the element a_n with the highest degree x^n

19.1 Order of dominance

19.1.1 Approaching to $+\infty$

Let $n \in \mathbb{N}$, $m \in \mathbb{N}$, 2 < n < m, then:

In these cases, we always have $x \to +\infty \Rightarrow p(x) \to +\infty$

19.1.2 Approaching to $-\infty$

Let $\lambda > 2$ and odd, k > 2 and even.

Functions like x^{λ} (with λ odd) and $-x^{k}$ (with k even) both approach $-\infty$, but at different rates.

19.1.3 Dominance in rational functions

When the dominant element is at the numerator:

$$\lim_{x \to \infty} \frac{x^n}{x^{n-1}} = \infty$$

When the dominant element is at the denominator:

$$\lim_{x \to \infty} \frac{x^{n-1}}{x^n} = 0$$

When we have the same degree either in the numerator and in the denominator:

$$\lim_{x \to \infty} \frac{ax^n}{bx^n} = \frac{a}{b}$$

<u>Definition</u>: horizontal asymptote appears when x approaches to ∞ , which implies that y approaches to a number A different from $\pm \infty$

21