

Packet Tracer - Skills Integration Challenge

Topology

Addressing Table

Device	Interface	IPv4 Address	Subnet Mask	
Device		IPv6 Address/Prefix		
IPv4-Edge	S0/0/0	172.31.6.1	255.255.255.252	
	S0/0/1	10.10.8.1	255.255.255.252	
	S0/1/0	209.165.200.226	255.255.255.224	
R1	S0/0/0	172.31.6.2	255.255.255.252	
R2	S0/0/1	10.10.8.2	255.255.255.252	
IPv6-Edge	S0/0/0	2001:DB8:A001:6::1/64		
	S0/0/1	2001:DB8:A001:7::1/64		
	S0/1/0	2001:DB8:CAFE:1::2/64		
R3	S0/0/0	2001:DB8:A001:7::2/64		
R4	S0/0/1	2001:DB8:A001:6::2/64		

Scenario

In this activity, you are tasked with implementing EIGRP for IPv4 and IPv6 on two separate networks. Your task includes enabling EIGRP, assigning router-IDs, changing the hello timers, configuring EIGRP summary routes and limiting EIGRP advertisements.

Requirements

EIGRP for IPv4

- Implement EIGRP on IPv4 enabled routers using Autonomous System 1.
 - Use the classful network address for the loopback interfaces.
 - Use the wildcard mask to advertise the /30 networks between R1, R2 and IPv4-Edge.
 - Use the **default** method to only allow EIGRP updates out the active EIGRP serial interfaces.
 - Advertisements should not be summarized.
- Configure a directly attached default route on IPv4-Edge and propagate it in EIGRP updates.
- Configure the serial interfaces between R1, R2 and IPv4-Edge to send hellos every 10 seconds.
- On R1 and R2, configure an EIGRP summary route for the loopback networks.

R1 Loopback Networks	R2 Loopback Networks
172.31.0.0/25	10.10.0.0/24
172.31.0.128/25	10.10.1.0/24
172.31.1.0/25	10.10.2.0/23
172.31.1.128/25	10.10.4.0/22
Summary:	Summary:

- R1 and R2 should only have four EIGRP routes in the routing table, one of which is the default route (D*EX). IPv4-Edge should only have two EIGRP routes in the routing table.
- Verify R1 and R2 can ping the IPv4 Server. IPv4 Server should also be able to ping every loopback address on R1 and R2.

EIGRP for IPv6

- Implement EIGRP on IPv6 enabled routers using Autonomous System 1.
 - Assign IPv6-Edge with the router-ID of 1.1.1.1
 - Assign **R3** with the router-ID of 3.3.3.3
 - Assign **R4** with the router-ID of 4.4.4.4
- Configure a directly attached default route on IPv6-Edge and propagate it in EIGRP updates.
- On R3 and R4, configure an EIGRP summary route for the loopback networks.

R3 Loopback Networks	R4 Loopback Networks
2001:DB8:1:1:A000::1/72	2001:DB8:1:1:BB80::1/76
2001:DB8:1:1:A100::1/72	2001:DB8:1:1:BB90::1/76
2001:DB8:1:1:A200::1/72	2001:DB8:1:1:BBA0::1/76
2001:DB8:1:1:A300::1/72	2001:DB8:1:1:BBB0::1/76
Summary:	Summary:

• R3 and R4 should only have four EIGRP routes in the routing table, counting the default external route. IPv6-Edge should only have two EIGRP routes in the routing table.

• Verify R3 and R4 can ping the IPv6 Server. IPv6 Server should also be able to ping every loopback address on R3 and R4.

Suggested Scoring Rubric

Note: Packet Tracer does not currently grade EIGRP for IPv6 summary routes. Therefore, part of your grade depends on routing table verification by your instructor.

Scored Work	Possible Points	Earned Points
IPv6-Edge Routing Table	10	
Packet Tracer Score	90	
Total Score	100	