

Açarlar

Memar Timati yeni bir qaçış oyunu hazırladı. Bu oyunda 0-dan n-1-ə nömrələnmiş n sayda otaq var. Başlanğıcda hər bir otaqda tam olaraq bir açar var. Hər bir açarın 0 ilə n-1 arasında (hər ikisi daxil) bir tam ədəd ilə işarələnmiş bir növü var. i-ci ($0 \le i \le n-1$) otaqdakı açarın növü r[i]-dir. Qeyd edək ki, müxtəlif otaqlarda eyni növdə açarlar ola bilər, yəni ki, r[i] dəyərləri mütləq deyil ki hamısı fərqli olsun.

Oyunda həmçinin 0 ilə m-1 arasında nömrələnmiş m sayda **qoşa istiqamətli** birləşdirici var. j ($0 \le j \le m-1$) nömrəli birləşdirici u[j] və v[j] nömrəli bir cüt müxtəlif otağı bir-birinə bağlayır. Bir cüt otaq birdən çox birləşdirici ilə bir-birinə bağlanmış ola bilər.

Oyun tək oyunçu tərəfindən oynanılır. Oyunçu açarlar toplayır və birləşdiricilərdən istifadə edərək otaqlar arasında hərəkət edir. Oyunçu j nömrəli birləşdirici ilə **hərəkət edir** dedikdə, onun u[j] nömrəli otaqdan v[j] nömrəli otağa və ya tərsinə getdiyi nəzərdə tutulur. Oyuncu j nömrəli birləşdiricidə o zaman hərəkət edə bilər ki, o c[j] növlü açarı öncədən toplamış olsun.

Oyunda hər hansı bir anda oyunçu hər hansı x nömrəli otaqda olarsa aşağıdakı iki hərəkəti edə bilər:

- x nömrəli otaqdakı r[x] növlü açarı toplamaq (əgər hələ də toplamayıbsa)
- j nömrəli birləşdiricidə hərəkət etmək, əgər u[j] = x və ya v[j] = x olarsa və oyunçu artıq c[j] növlü açarı öncədən toplayıbsa. Qeyd edək ki, oyunçu topladığı açarları **heç vaxt** atmır.

Oyunçu heç bir açar olmadan hər hansı s nömrəli otaqda oyuna **başlayır**. t nömrəli otaq s nömrəli otaqdan o zaman çatıla bilən sayılır ki, oyunçu s nömrəli otaqda başlayıb yuxarıda təsvir edilən addımları bir neçə dəfə etməklə t nömrəli otağa çata bilisin.

Hər bir i ($0 \le i \le n-1$) nömrəli otaq üçün, ondan gedilə bilən otaqların sayına p[i] deyək. Timati p[i] dəyəri minimum olan i ($0 \le i \le n-1$) nömrəli otaqları bilmək istəyir.

İmplementasiya detalları

You are to implement the following procedure:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: an array of length n. For each i ($0 \le i \le n-1$), the key in room i is of type r[i].
- u,v: two arrays of length m. For each j ($0 \le j \le m-1$), connector j connects rooms u[j] and v[j].
- c: an array of length m. For each j ($0 \le j \le m-1$), the type of key needed to traverse connector j is c[j].

• This procedure should return an array s of length n. For each $0 \le i \le n-1$, the value of s[i] should be 1 if for every j such that $0 \le j \le n-1$, $p[i] \le p[j]$. Otherwise, the value of s[i] should be 0.

Nümunələr

Nümunə 1

Consider the following call:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

If the player starts the game in room 0, they can perform the following sequence of actions:

Current room	Action
0	Collect key of type 0
0	Traverse connector 0 to room 1
1	Collect key of type 1
1	Traverse connector 2 to room 2
2	Traverse connector 2 to room 1
1	Traverse connector 3 to room 3

Hence room $\,3$ is reachable from room $\,0$. Similarly, we can construct sequences showing that all rooms are reachable from room $\,0$, which implies $\,p[0]=4$. The table below shows the reachable rooms for all starting rooms:

Starting room i	Reachable rooms	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

The smallest value of p[i] across all rooms is $\,2$, and this is attained for $\,i=1$ or $\,i=2$. Therefore, this procedure should return $\,[0,1,1,0]$.

Nümunə 2

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
        [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
        [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
        [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

The table below shows the reachable rooms:

Starting room i	Reachable rooms	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4,6]	2

The smallest value of p[i] across all rooms is 2, and this is attained for $i \in \{1, 2, 4, 6\}$. Therefore, this procedure should return [0, 1, 1, 0, 1, 0, 1].

Nümunə 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

The table below shows the reachable rooms:

Starting room i	Reachable rooms	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

The smallest value of p[i] across all rooms is 1, and this is attained when i=2. Therefore, this procedure should return [0,0,1].

Məhdudiyyətlər

- $2 \le n \le 300\,000$
- $1 \le m \le 300000$
- $0 \leq r[i] \leq n-1$ bütün $0 \leq i \leq n-1$ üçün
- $0 \leq u[j], v[j] \leq n-1$ və u[j]
 eq v[j] bütün $0 \leq j \leq m-1$ üçün

+ $0 \leq c[j] \leq n-1$ bütün $0 \leq j \leq m-1$ üçün

Alt tapşırıqlar

- 1. (9 bal) c[j]=0 bütün $0\leq j\leq m-1$ üçün və $n,m\leq 200$
- 2. (11 bal) $n,m \leq 200$
- 3. (17 bal) $n, m \leq 2000$
- 4. (30 bal) $c[j] \leq 29$ (bütün $0 \leq j \leq m-1$ üçün) və $r[i] \leq 29$ (bütün $0 \leq i \leq n-1$ üçün)
- 5. (33 bal) Əlavə məhdudiyyət yoxdur.

Nümunə grader (qiymətləndirici)

Nümunə grader inputu aşağıdakı formatda oxuyur:

- sətir 1: n m
- sətir 2: r[0] r[1] ... r[n-1]
- sətir 3+j ($0 \le j \le m-1$): u[j] v[j] c[j]

Nümunə grader find_reachable prosedurundan qayıdan dəyəri aşağıdakı formatda çap edir:

• sətir 1: s[0] s[1] ... s[n-1]