伴随函子的 unit 与 counit

对任意 c 和 d 有 $(dL \xrightarrow{c} c) \cong (d \xrightarrow{D} cR)$, 将 c 替换为 dL 后即为

对任意 d 都会有 $(|\mathbf{dL} \overset{\epsilon}{\to} |\mathbf{dL}|) \overset{\mathsf{Set}}{\cong} (\mathbf{d} \overset{\mathsf{D}}{\to} |\mathbf{dLR}|)$, 等价于

对任意 d 都会有 $(dL \to dL) \stackrel{\mathsf{Set}}{\cong} (d_{:D}\mathrm{Id} \to dLR)$

既然如此,那么对于任意 d 在左侧集合选取 $:_{cl_L}$ id 右侧集合中就必然会有箭头 $d \longmapsto dLR$ 与之对应。 我们将这些右侧集合的箭头拼起来就可以构建一个自然变换,即 $\eta:_{:D}$ $Id \mapsto L^{cat}$ 。

所以这和米田引理有什么关系呢?

• 套用协变米田引理我们便可获得

之前证米田引理的时候有提到过

任何左侧集合中的 $\frac{1}{\phi}$ 都会与右侧集合中的 $\frac{1}{2}(dL)^{id}((dL)^{id})$ ——对应 $\frac{1}{2}$

