灾难侦测

张浩楠

写提案,清洗、模型和提交,展示的课件和手稿

蔡宇生

写提案,清洗、模型和提交,展示的课件和手稿

吴昊原

写提案,清洗、模型和提交,展示的课件和手稿

展示目录

数据、模型、提交

灾难侦测

- 随着互联网的进步,
- 更多的人会去在互联网上分享它们的故事,包括 灾难,
- 从互联网侦测灾难,而不是等市民去叫夭夭九,
- 能使消防车等工作人员更早到达去救援,从而减小损失。

灾难侦测

■ 去预测一个帖子是否跟真实灾难有关

数据概观

训练

缺失

6

编号	位置	关键字	文本	标签
1	英国	缺失	突然听	0
3	缺失	闪光	意外有	1
4	新加坡	爆炸	飞机在	0

龙卷风

测试

编号	位置	关键字	文本	标签
2	加拿大	暴雨	看到了	
5	日本	缺失	恐怖的	
7	英国	缺失	飞机在	
8	新加坡	缺失	一个意	

×7613

恐怖的...

×3263

关键字、地点

缺失值比例

关键字 0.8% 地点 33.0% 帖子的文字

· 帖子的文字没有缺失值

标签

- ■0 → 假灾难
- ■1 → 真灾难

帖子文字

处理

- 删除不常见的符号, å Ç
- 事 拆开略缩(contraction), he's → he is
- 删除链接(link), <u>http://www.kaggle.com</u>
- 删除井号(hashtag), #disaster @kaggle
- 删除重复的样本, 甚至有的样本被标注错误

模型概观

- 模型骨干
- bert-base-uncased 最流行
- 大, 不区分大小写
- 12层变形金刚编码器

(Transformer encoder)

- 12注意头 (Attention head)
- 110000000参数 (110M parameters)

bert 令牌器

■ 1 添加特殊令牌[CLS][SEP]

[CLS] This here's an example of using the BERT tokenizer. [SEP]

- bert 令牌器
- 2 切割単词

(子词令牌化, wordpiece)

tokenizer $\rightarrow \rightarrow$ token ##izer

bert 令牌器

■ 3 转变成数字序列(sequence)

[CL S]	Thi s	•	S	an	am ple	of	usi ng	Th e	В	## ER			tok en		[SE P]
							$\overline{\Psi}$								
10 1	11 88	13 03	11 2	18 8	11 26	18 59	11 04	16 06	11 03	13 9	96 37	19 42	22 55 9	17 26 0	10 2

bert 令牌器

This here's an example of using the BERT tokenizer.

10 1	11	13	11	18	11	18	11	16	11	13	96	19	22 55	17 26	10
1	88	03	2	8	26	59	04	06	03	9	37	42	9	0	2

bert 的组成

- 词嵌入(word embeddings)
- 12层变形金刚编码器(Transformer encoder)

词嵌入

- 令牌嵌入: 一个词对应一个令牌嵌入
- 段嵌入: 这个词在第一句话还是第二句话
- 位置嵌入: 这个词在句子中的位置

变形金刚编码器

模型概观

在最后的输出中拿出[CLS] 对应的嵌入, 将会是规模为768的向量。 接上密集层和Softmax激活函数 输出规模为2的向量 对应两个标签(0,1)。

模型选择

- ■冻结词嵌入器
- 和变形金刚编码器
- 只去优化密集层分类器

模型选择 网格搜索 (GridSearch找最好超参)

■ 分类器密集层数量、优化器

1层,	亚当优化器	2层,	亚当优化器	3层,	亚当优化器
1层,	随机梯度下	2层,	随机梯度下	3层,	随机梯度下

模型选择 网格搜索 (GridSearch找最好超参)

- (1层, Adam)和(2层, Adam)最快最准
- 另外去采用交叉熵损失函数, F1score验证评价指标

1层,	亚当优化器	2层,	亚当优化器	3层,	亚当优化器
1层,		2层,	随机梯度下	3层,	随机梯度下

模型选择交叉验证 (KFold)

- 交叉验证先将数据集划分为5个大小相同的子集
- 每轮随机的选择 4份作为训练集
- 剩下的1份做测试集
- 重新随机选择 4份来训练数据
- 5轮之后,我们选择验证分数最高的一个。

模型选择交叉验证(KFold)

验证分数

1层亚当

模型二

2层亚当

	0.73
	0.77
	0.72
模型一	0.84
	0.81

0.85 0.72 0.72 0.84 0.75

软投票(soft-vote)和提交

预测一

0	1
0.3	0.7
0.8	0.2
0.9	0.1
0.9	0.1

• • •

预测二

0	1
0.3	0.7
0.8	0.2
0.9	0.1
0.9	0.1

软投票(soft-vote)和提交

预测一和预测二的均值

소도 (UI)	
コルノンハリ	
コトノノノノ	

	0	1
0	30	0.70
0	80	0.20
0	90	0.10
0	90	0.10

预测二

0		1
0.2	20	0.80
0.8	30	0.20
0.7	0	0.30
0.2	20	0.80

投票结果

0	1
0.25	0.75
0.80	0.20
0.80	0.20
0.55	0.45

最大

标签	
1	
0	
0	
0	

软投票(soft-vote)和提交

预测一和预测二的均值

丞至 ;□□	
וועל ועד	
コレン・ノンコ	

	0	1
0	30	0.70
0	80	0.20
0	90	0.10
0	90	0.10

预测二

0		1
0.2	20	0.80
0.8	30	0.20
0.7	0	0.30
0.2	20	0.80

投票结果

0	1
0.25	0.75
0.80	0.20
0.80	0.20
0.55	0.45

最大

标签
1
0
0
0

提交

最终的预测

标签

1

0

0

排行榜分数F1score 0.81 与之前的验证分数相近 342 一人一塊小牛扒

0.81121

17

4d

Your Best Entry!

Your submission scored 0.78026, which is not an improvement of your previous score. Keep trying!

张浩楠

写提案,清洗、模型和提交,展示的课件和手稿

蔡宇生

写提案,清洗、模型和提交,展示的课件和手稿

吴昊原

写提案,清洗、模型和提交,展示的课件和手稿

灾难侦测

_张浩楠

写提案,清洗、模型和提交,展示的课件和手稿

蔡宇生

写提案,清洗、模型和提交,展示的课件和手稿

吴昊原

写提案,清洗、模型和提交,展示的课件和手稿

