2.60:

- (a) Prove that a continuous function $f:M\to\mathbb{R}$, all of whose values are integers, is constant provided that M is connected.
- (b) What if all the values are irrational?

Solution:

- (a) Assume $f: M \to \mathbb{R}$ is continuous, all of whose values are integers, where M is connected. Then it follows, the intermediate value property must hold. But, if f wasn't constant, there would exist unique $a, b \in \mathbb{Z}$, and by connectedness of M, it must take every value between a and b, which would include non-integers which isn't possible given our assumptions. Therefore, f must be constant.
- (b) Using the same logic from above, we can use the intermediate value property to show f must be constant. If f wasn't constant, there would exist unique irrational a, b, and by connectedness of M, it must take every value between a and b, which would include a rational number which isn't possible given our assumptions. Therefore, f must be constant.
- **2.88:** Give a direct proof that a closed subset A of a covering compact set K is covering compact. Hint: If \mathcal{U} is an open covering of A, adjoin the set $W = M \setminus A$ to \mathcal{U} . Is $\mathcal{U} \cup \{W\}$ an open covering of K? If so, what does this imply?

Solution: Suppose A is a closed subset of K, where K is covering compact. Let \mathcal{U} be an open covering of A. Moreover, let $W = K \setminus A$ which by must be open in K because its complement is A, which is closed in K. Moreover, $\mathcal{U} \cup \{W\}$ is an open covering of K because \mathcal{U} is an open covering of K and W is open in K. Because K is covering compact, every open covering in K reduces to a finite subcovering. So then, this implies there is a finite subcovering for the open covering $\mathcal{U} \cup \{W\}$. So then, if we reconstruct this finite subcovering to only include elements in A, we have constructed a finite subcovering of A for \mathcal{U} , proving A is covering compact.

2.91: Suppose that M is covering compact and that $f: M \to N$ is continuous. Use the Lebesgue number lemma to prove that f is uniformly continuous.

Hint: Consider the covering of N by $\epsilon/2$ -neighborhoods $\{N_{\epsilon/2}(q): q \in N\}$ and its preimage in M, $\{f^{-1}(N_{\epsilon/2}(q)): q \in N\}$.

Solution: Suppose that M is covering compact and that $f:M\to N$ is continuous. Consider the covering of N by $\epsilon/2$ -neighborhoods $\{N_{\epsilon/2}(q):q\in N\}$, which forms an open covering of N because each set is an open ball, the collection of which contains every point in N. Moreover, because f is continuous, the preimage of N by $\epsilon/2$ -neighborhoods must be open in M, and is more so an open covering of M since M is covering compact. This means there exists a finite subcovering of M. By the Lebesgue number lemma, we know that every open covering of our sequentially compact set, M, has a Lebesgue number $\lambda>0$. Therefore, for any $\epsilon>0$, there exists δ , namely our Lebesgue number we have guaranteed, such that for all $x,y\in M$ with $d_M(x,y)<\delta$, $d_N(f(x),f(y))<\frac{\epsilon}{2}$, which we know holds from the Lebesgue number where any δ ball in M is mapped in some $\epsilon/2$ cover in N, proving uniform continuity.