Unit 3

ALGEBRA AND LOGIC CIRCUITS:

Binary numbers, Number base conversion and Hexadecimal Numbers, Complements, Basic definitions, Basic theorems and properties of Boolean Algebra, Boolean functions, Canonical and Standard forms, Digital Logic gates, Demorgan's Laws, Ex-OR realization using NAND and NOR, Kmaps (Upto 4 variable)

COMBINATIONAL LOGIC:

Introduction, Design procedure, Adders-Half adder, Full adder

Number System

Number System is a way to represent numbers in computer architecture.

Four different types of the number system:

- 1. Binary number system (base 2)
- 2. Octal number system (base 8)
- 3. Decimal number system(base 10)
- 4. Hexadecimal number system (base 16)

Binary Number System:

- According to digital electronics and mathematics, a binary number is defined as a number that is expressed in the binary system or base 2 numeral system.
- It describes numeric values by two separate symbols; 1 (one) and 0 (zero). The base-2 system is the positional notation with 2 as a radix.
- The binary system is applied internally by almost all latest computers and computer-based devices because of its direct implementation in electronic circuits using logic gates.
- Every digit is referred to as a **bit**.
- A binary number consists of several bits. Examples are:

EX: 10101 is a five-bit binary number

101 is a three-bit binary number

100001 is a six-bit binary number

Decimal to Binary

Convert 4 in binary number system.

Step 1: Divide the number 4 by 2. Use the integer quotient obtained in this step as the dividend for the next step. Continue this step, until the quotient becomes 0.

Dividend	Remainder
4/2 = 2	0
2/2 = 1	0
1/2 = 0	1

Step 2: write the remainder in reverse chronological order. (i.e from bottom to top)

Binary to Decimal

1. What is binary number 1.1 in decimal

Step 1: 1 on the left-hand side is on the one's position, so it's 1.

Step 2: The one on the right-hand side is in halves, so it's $1 \times \frac{1}{2}$

Step 3: so, 1.1 = 1.5 in decimal.

2.Write 10.11₂ in Decimal?

$$S1:10.11 = 1 \times (2)^{1} + 0 (2)^{0} + 1 (\frac{1}{2})^{1} + 1(\frac{1}{2})^{2}$$

$$= 2 + 0 + \frac{1}{2} + \frac{1}{2}$$

• So, 10.11 is 2.75 in Decimal.

Octal Number System

- Has a base of eight and uses the numbers from 0 to 7.
- Any number with base 8 is an octal number like 24_8 , 109_8 , 55_8 , etc
- The octal numbers, in the <u>number system</u>, are usually represented by binary numbers when they are grouped in pairs of three.
- For example, an octal number 12_8 is expressed as 001010_2 in the binary system, where 1 is equivalent to 001 and 2 is equivalent to 010.
- Solve an octal number, each place is a power of eight.

$$124_8 = 1 \times 8^2 + 2 \times 8^1 + 4 \times 8^0$$

• Only 3 bits are used to represent Octal Numbers. Each group will have a distinct value between 000 and 111

Note: Beyond 7, such as 8 and 9 are not octal digits. For example, 19 is not an octal number.

Decimal to Octal Number

the octal dabble method is used-decimal number is divided by 8 each time, it yields or gives a remainder.

The first remainder we get is the least significant digit(LSD) and the last remainder is the most significant digit(MSD)

• Ex: 560 is a decimal number, convert it into an octal number.

Solution: If 560 is a decimal number, then,

560/8 = 70 and the remainder is 0

70/8 = 8 and the remainder is 6

8/8 = 1 and the remainder is 0

And 1/8 = 0 and the remainder is 1

So the octal number starts from MSD to LSD, i.e. 1060

Therefore, $560_{10} = 1060_8$

_	iic iast	
	Octal Digital Value	Binary Equivalent
	0	000
	1	001
	2	010
	3	011
	4	100
	5	101
	6	110
	7	111

Decimal to Octal Number

Convert 0.52 into an octal number.

- **Solution:** The fraction part of the decimal number has to be multiplied by 8.
- $0.52 \times 8 = 0.16$ with carry 4
- $0.16 \times 8 = 0.28$ with carry 1
- $0.28 \times 8 = 0.24$ with carry 2
- $0.24 \times 8 = 0.92$ with carry 1
- So, for the fractional octal number, we read the generated carry from up to down.
- Therefore,4121 is the octal number.

Octal to Decimal

• multiply each digit of the given octal with the reducing power of 8.

Example 1: Suppose 215₈ is an octal number, then it's decimal form will be,

$$215_8 = 2 \times 8^2 + 1 \times 8^1 + 5 \times 8^0$$

= $2 \times 64 + 1 \times 8 + 5 \times 1 = 128 + 8 + 5$
= 141_{10}

Example 2: Let 125 is an octal number denoted by 125₈. Find the decimal number.

$$125_8 = 1 \times 8^2 + 2 \times 8^1 + 5 \times 8^0$$
$$= 1 \times 64 + 2 \times 8 + 5 \times 1 = 64 + 16 + 5$$
$$= 85_{10}$$

Binary To Octal Number

Convert (100010)₂ to an octal number

100---4

010---2

Therefore, $(100010)_2 = 42$

Octal Digital Value	Binary Equivalent
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Octal to Hexadecimal Number

- Conversion of the octal number to hexadecimal requires two steps.
- First, convert octal numbers to decimal numbers.
- Then, convert decimal numbers to hexadecimal numbers.

Example

Convert the octal numbers to decimal

$$(55)_8 = (45)_{10}$$

Convert (45)₁₀ into a hexadecimal number by di 15 H5 16 until you get a remainder less than 16.

$$(45)_{10} = (2D)_{16}$$

Or $(55)_8 = (2D)_{16}$

Practice Questions

Convert the following octal numbers into their equivalent decimal number.

- 1. 23₈ (Answer: 19₁₀)
- 2. 770_8 (Answer: 504_{10})
- 3. 152_8 (Answer: 106_{10})

Convert the following octal numbers into hexadecimal numbers.

- 1. 23₈ (Answer: 13₁₆)
- 2. 770_8 (Answer: 1F8₁₆)
- 3. 152_8 (Answer: $6A_{16}$)

Hexadecimal Number System

- Has a base value equal to 16. It is also pronounced sometimes as **'hex'**. Hexadecimal numbers are represented by only 16 symbols. These symbols or values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.
- Each digit represents a decimal value. For example, D is equal to base-10 13.

Decimal Numbers	4-bit Binary Number	Hexadecimal Number				
О	0000	0				
1	0001	1				
2	0010	2				
3	0011	3				
4	0100	4				
5	0101	5				
6	0110	6				
7	0111	7				
8	1000	8				
9	1001	9				
10	1010	Α				
11	1011	В				
12	1100	С				
13	1101	D				
14	1110	E				
15	1111	F				

Decimal to Hexadecimal Conversion

- Divide the number by 16
- Take the quotient and divide again by 16
- The remainder left will produce the hex value
- Repeats the steps until the quotient has become 0

Example: Convert $(242)_{10}$ into hexadecimal.

Solution: Divide 242 by 16 and repeat the steps, till the quotient is left as 0. $_{16}$ $_{242}$

Octal to Hexadecimal Conversion

To convert octal to hex, we have to first convert octal number to decimal and then decimal to hexadecimal.

- Example: Convert (121)₈ into hexadecimal.
- **Solution:** First convert 121 into decimal number.

•
$$\Rightarrow 1 \times 8^{2} + 2 \times 8^{1} + 1 \times 8^{0}$$

 $\Rightarrow 1 \times 64 + 2 \times 8 + 1 \times 1$
 $\Rightarrow 64 + 16 + 1$
 $\Rightarrow 81$
(121)₈ = 81_{10}

Now converting 81_{10} into a hexadecimal number.

Therefore,
$$81_{10} = 51_{16}$$

Hexadecimal to Binary Conversion

Use only 4 digits to represent each hexadecimal number, where each group has a distinct value from 0000 (for 0) and 1111 (for F=15=8+4+2+1)

Hexadeci mal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
Binary	0	1	1	1	10 0	10 1	11 0	11	100	10 01	101 0	101	110 0	110 1	111 O	111

Binary to Hexadecimal Conversion

- Binary to hexadecimal conversion is a simple method to do. You just have to put the values of the binary number to the relevant hexadecimal number.
- Example: Convert (11100011)₂ to hexadecimal. Solution: From the table, we can write, 11100011 as E3.

Therefore, $(11100011)_2 = (E3)_{16}$