## The Bootstrap

- Given a dataset of size N
- Draw N samples with replacement to create a new dataset
- Repeat ~1000 times
- You now have ~1000 sample datasets
  - All drawn from the same population
  - You can compute ~1000 sample statistics
  - You can interpret these as repeated experiments, which is exactly what the frequentist perspective calls for
- Very elegant use of computational resources

## Bootstrap example

## mean

| 1 | 2 | 3 | 4 | 5 | 6 | 3.5  |
|---|---|---|---|---|---|------|
| 4 | 3 | 4 | 2 | 1 | 6 | 3.33 |
| 2 | 3 | 6 | 1 | 3 | 5 | 3.33 |
| 5 | 1 | 1 | 2 | 3 | 6 | 3.00 |
| 2 | 5 | 2 | 6 | 3 | 4 | 3.67 |
| 4 | 4 | 4 | 2 | 1 | 3 | 3.00 |
| 3 | 4 | 5 | 3 | 2 | 1 | 3.00 |
| 1 | 2 | 3 | 6 | 6 | 1 | 3.17 |
| 5 | 2 | 3 | 1 | 4 | 5 | 3.33 |



## The Bootstrap

Example:

Generate 1000 samples and 1000 linear regressions

You want a 90% confidence interval for the slope?

Just take the 5th percentile and the 95th percentile!

