Centro Universitário São Miguel

Fluídos Biológicos Urinálise

Urinálise

Exame de urina

- Séculos
- Forte elemento diagnóstico nos estudo das patologias
- Rápido e econômico
- Avaliação da função renal
- Técnicas específicas e sensíveis: análise
- Provas químicas: <u>Tiras Reativas</u>

Urinálise

Exame de urina

- 1. pH $(5,5 \text{ à } 7,5 \rightarrow >5,5 \text{ indicativo doenças nos túbulos renais;}$ > 7,5 possível infecção bacteriana)
- 2. Proteínas († concentração indicativo de dano glomerular)
- 3. Glicose (diabetes por excesso de glicose no sangue ou problema renal por não reabsorção da glicose)
- 4. Cetonas (baixa ingestão de alimentos (jejum); dieta de restrição de carboidratos; exercícios intensos prolongados; alcoolismo; ou diabetes mellitus tipo 1 não tratada)
- 5. Sangue (problema renal ou no trato urinário)
- 6. Bilirrubina (doenças no fígado, na vesícula ou distúrbios no sangue)

Urinálise

Exame de urina

- 7. Urobilinogênio (em quantidades acima do esperado pode apontar uma possível doença hepática ou alteração no sangue)
- 8. Nitrito (evidência da presença de Enterobacteriaceae)
- Densidade (↓ pode representar uso excessivo de líquido, diabetes ou hipertensão - e a ↑ densidade pode ser indicativo de desidratação ou insuficiência cardíaca.)
- 10. Leucócitos (indicativo inflamação nas vias urinárias por infecção, trauma, substâncias irritantes ou outro tipo de inflamação não ocasionada por agente infeccioso)

Urinálise

Exame de urina

Para cada 1.000 mL de Urina temos a seguinte composição:

- 1. Água: 950 mL.
- 2. Ureia: 9 a 23 g.
- 3. Cloro: 1,8 a 8,4 g.
- 4. Sódio: 1,2 a 4,4 g.
- 5. Potássio: 0,7 a 2,6 g.
- 6. Sulfatos: 0,2 a 2,2 g.
- 7. Creatinina: 0,6 a 2,1 g.
- 8. Fósforo: 0,4 a 1 g
- 9. Amônia: 0,2 a 0,7 g.
- 10. Ácido úrico: 0,04 a 0,6 g.
- 11. Bicarbonato: 0,02 a 0,5 g
- 12. Cálcio: 0,03 a 0,4 g

Urinálise

Urinálise

Caracteres Gerais

Vol. corporal
Sudorese
Ingesta de água

Volume Urinário

- V. diário ≈ 1000 a 2000 mL
- Excreção criança X adulto
- POLIÚRIA→↑3000 mL (diabetes e outros)
- OLIGÚRIA →↓500 ml (nefrite, diarréia, vômitos, desidratação, choque, doenças cardíacas).

Urinálise

- ANÚRIA: Retenção total (Nefroses, obstrução das vias excretoras urinárias).
- NICTÚRIA: Inversão de valores 1/3 noite e 2/3 manhã

Urinálise

Amostra

- Única
- Primeira da manhã (jato médio)
- Recomendável: após 8 horas de repouso (antes das atividades habituais);
- Amostra aleatória
 - Falso negativos e positivos;
- Orientações:
 - Lavar as mãos:
 - Lavar a genitália;
 - Despreza o primeiro jato;

Molhe as mãos com água

Aplique sabão para cobrir todas as superficies das mãos

Esfregue as palmas das mãos, uma na outra

Palma da mão direita no dorso da esquerda, com os dedos entrelaçados e vice-versa

Palma com palma com os dedos entrelaçados

Parte de trás dos dedos nas palmas opostas com os dedos entrelaçados

Esfregue o polegar esquerdo em sentido rotativo, entrelaçado na palma direita e e vice-versa

Esfregue rotativamente para trás e para a frente os dedos da mão direita na palma da mão esquerda e vice-versa

Enxague as mãos com água

Seque as mãos com toalhete descartável

Utilize o toalhete para fechar a torneira, se esta for de comando manual

Agora as suas mãos estão limpas e seguras

Urinálise

Armazenamento

- Refrigeração (2 a 8 °C) após a coleta
- Substâncias fotossensíveis

Urinálise

ASPECTO

- Límpida;
- Turva:
 - piócitos, hemácias, células epiteliais, cristais e bactérias;
 - contaminação por antisépticos, talcos, material fecal;
 - precipitação de fosfatos e carbonatos;
 - material gorduroso (emulsão)

Urinálise

ODOR

- Característico
- Tempo de repouso \rightarrow decomposição \rightarrow fermentação bacteriana \rightarrow odor amoniacal
- Dieta e Medicação

COR

- Amarelo citrino (variação do tom)
- Vermelha → estado de conservação dos eritrócitos
- Medicação/alimentos
- Âmbar → distúrbios hepáticos

Urinálise

DENSIDADE

- Medida para avaliar a capacidade de concentração e diluição do rim.
- Normal: 1015 a 1025 (24 h) e 1003 a 1030 (amostras ao acaso).

Métodos de medida:

- Urodensímetro
- Fita Reativa: baseada na mudança do pKa de certas moléculas eletrolíticas que são sensíveis ao número de íons presente na amostra da urina, o que acarreta a mudança de pH. Na presença de um indicador mudança de cor.
 - ↑ [GLICOSE E URÉIA] NÃO ALTERAM

Urinálise

Urinálise

Verificação da Exatidão

Medir a densidade de 3 líquidos (água destilada, solução de cloreto de sódio 0,85% e 5%).

VALORES BAIXOS: nefrite crônica, na ingestão de grande quantidade de líquido.

VALORES ALTOS: diabete melito, desidratração.

Urinálise

Exame Químico - Determinação do pH urinário

- 5,5 a 7,5
- Dieta rica em proteínas → produção de fosfato e sulfatos → pH (acidificam a urina)
- Dieta vegetariana →↑ pH
- Evitar a alcalinização da amostra

Urinálise

Proteínas

- 30 a 50 mg/24h
- Determinação quantitativa e qualitativa

Testes químicos ou fita reativas

Resultado: expresso por NEGATIVO, TRAÇOS E +

Proteinúria

- Processos degenerativos tubulares (7g/24h)
- Arteriosclerose (0,5 a 4g/24h)

Proteína de Bence-Jones

Urinálise

Proteínas - Proteína de Bence-Jones

É um diferencial para o diagnóstico de mieloma múltiplo em contexto de manifestações de órgão-alvo, tais como a insuficiência renal, lesões ósseas (lesões líticas), anemia, ou um grande número de células plasmáticas na medula óssea.

Urinálise

Glicose

- Filtrada e reabsorvida pelos túbulos
- Capacidade máxima de reabsorção tubular é de cerca de 160mg/dl glicosúria
- V.N: 130 mg/24h (concentrações menores do que outros açúcares)

Tira reativa contendo glicose oxidase

Fundamento: a glicose-oxidase reage com a glicose urinária formando a glicolactona e liberando 2 átomos de H. A glicolactona se hidrata rapidamente dando ácido glicônico. O H liberado se combina com o O_2 atm. para formar H_2O_2 . O H_2O_2 oxida a ortololuidina em presença de peroxidase, formando coloração azul.

Sistema Urinário e Urinálise

Corpos Cetônicos

- Metabolismo dos ácidos graxos
- Acetona, ácido acetoacético, ácido beta-hidroxi butírico

Carência de glicose, excesso de gordura, diabetes

 A urina normal contém pequenas quantidades de corpos cetônicos, que não são detectáveis pelos métodos de pesquisa comumente utilizados.

Tira reativa:

 Coloração roxa → reação corpos cetônicos com nitroprussiato de sódio.

Sistema Urinário e Urinálise

Pigmentos Biliares

Bilirrubina

- Icterícias hemóliticas (não aumento)
- Bilirrubinúria (direta ou conjugada)
- Exame qualitativo (V.N: 2 mg/dl)

Urobiliogênio

- Circulação → Rins
- Menos de 4 mg por dia

Urinálise

Hemoglobina

Duas origens:

- Processo hemorrágico do trato urogenital → hematúria
- Excessiva destruição das hemácias → hemoglobinúria
- V.N: 100 a 130 mg/dl (acima: não metabolização normal → não é reabsorvida → excreção).

Urinálise

Sedimento Urinário

- Estudo importante para o estado funcional do rim
- Microscopia óptica
- Os elementos podem sofrer modificações estruturais:
 - Mudança de pH
 - Decomposição bacteriana
 - Baixa densidade (diluídas)
 - Medicamentos e dieta
- Frascos limpos e identificados

Urinálise

Exame Qualitativo

Preparo da amostra

Homogenizar a urina e colher uma alíquota

Tubo de ensaio cônico graduado (2ml)

Centrifugação

Desprezar o sobrenadante Homogenizar o sedimento

Urinálise

Elementos do sedimento - Leucócitos e Piócitos

- Leucócitos degenerados (inf. microbiana)
- Granulações
- Até 5 por campo: não patológico
- Acima de 5: piúria
- Acima de 50: "incontáveis"
- Não sofrem modificações em urina de pH normal
- Ácidas: retraídos e Básicas: distendidos

Urinálise

Urinálise

- Piúria + proteinúria + cilindrúria → processo infeccioso de vias altas
- Cistites, nefrites agudas (células de Malbin)

Urinálise

Hemácias

- Hematúria
- Prova dos 3 corpos
 - Processos hemorrágicos
 - Local: primeiro jato (uretra) e segundo jato (bexiga)
 - + cilindros (vias renais altas)
- Gorduras em grande quantidade prejudicam a visualização das hemácias.
- 150.000 a 300.000 hemácias/24h
- Raras hemácias no sedimento: sem significado clínico

Urinálise

Sistema Urinário e Urinálise

Células Epiteliais

- São encontradas em urinas normais
- Mulher e gestação
- Aumentam nas infecções (alta e baixa)
- Não é feita a classificação quanto à origem do epitélio
- Célula refringente cél. epitelial com gotículas de gordura associação a uma ampla variedade de nefropatias e parecem indicar extensa degeneração tubular.

Sistema Urinário e Urinálise

Cilindros

São elementos exclusivamente renais compostos por proteínas e moldados principalmente na luz dos túbulos contorcidos distais e túbulos coletores.

Presença:

- Grave prognóstico
- Exercícios extenuantes, febre, uso de diuréticos (pequena qtd.)

Fatores importantes na formação:

- Concentração e natureza protéica na urina tubular
- Acidez da urina
- Concentração de solutos dialisáveis (sais e uréia)

Urinálise

Classificação (origem e composição)

- Cilindros hialinos
 - Precipitação proteica na luz tubular
 - Não possui nenhum elemento em seu interior
 - São os mais comuns

Urinálise

Cilindros epiteliais

 Edema tubular - aderência das paredes internas dos túbulos - moldados por aderência (compressão).

Desintegração dos epitélios - cilindros granulosos - cilindro céreo

(amarelado).

Urinálise

Cilindros hemáticos

Aglomeração das hemácias; alaranjados

Cilindros leucocitários

Urinálise

Cristais

- Cristalúria: Achado frequente na análise dos sedimento normal
- Raramente tem significado clínico X cálculo renal
- Presença: pH e dieta
- Urinas ácidas:
 - Uratos amorfos (forma de granulações)
 - Oxalato de cálcio (octaedro)
 - Ácido úrico (losango)

Urinálise

Urinas básicas

- Fosfatos amorfos (acinzentados)
- Fosfato de cálcio (brilhantes, cuneiforme)
- Carbonato de cálcio (amorfos, halteres)

Muco e Filamentos

- Precipitação de mucoproteínas (fibrinas)
- Forma de rede
- Cruzes
- Eleva-se nas uretrites

Urinálise

Flora Bacteriana

- Bexiga (não contém)
- Contaminada flora normal da uretra e genitais
- Coleta: assepsia e imediatamente examinada
- Bactérias flora normal (bacilos de Doderlein) facilidade de visualização
- Patogênicas
- Técnicas microbiológicas

Quando presente

- Fungos ou leveduras: diabéticos, mulheres, contaminação
- Trichomonas vaginalis
- Gordura: degeneração tubular, contaminação
- Cristais de substâncias não identificadas

DOWNLOAD DO

CONTATOS

