1		Claims
2		
3	1.	Piezoelectric actuator having
4	-	a piezoelectric element (2; 21) for actuating a mechanical component with
5		a pulling or pushing force, and a compensating element (3; 22), wherein
6		the piezoelectric element (2) and the compensating element (3; 22)
7		basically have the same temperature expansion coefficients, and wherein
8	-	the compensating element (3; 22) is mechanically coupled to the
9		piezoelectric element (2; 21) in such a fashion that the temperature-
10		induced expansions of the piezoelectric element (2; 21) and the
11		compensating element (3; 22) cancel each other out in the effective
12		direction in such a fashion that the actuating element remains in its
13		position.
14		
15	2.	Piezoelectric actuator according to claim 1, characterized in that
16	-	a heat transfer compound (12) is located between the piezoelectric
17		element (2; 21) and the compensating element (3; 22).
18		
19	3.	Piezoelectric actuator according to claim 1, characterized in that
20	-	the piezoelectric element (2; 21) is supported on one end on a fixed
21		support plate (9), which fixed support plate (9) bears against the housing
22		(7) for the piezoelectric actuator (1; 20) via a spring (10) and which is
23		connected at the other end to a pretensioning spring (6; 23) via a pressing
24		plate (11; 24), which pretensioning spring (6; 23), in turn, is held against
25		the fixed support plate (9) with its other end, and that
26	-	the compensating element (3; 22) basically lies parallel to the piezoelectric
27		element (2; 21) and is also held against the fixed support plate (9) with
28		one end and solidly abuts the housing (7) with the other end.
29		
30	4.	Piezoelectric actuator according to claim 3, characterized in that

TONTASTO DECON

	1	-	the pretensioning spring (6) and the piezoelectric element (2) are located
	2		in tandem.
	3		
	4	5.	Piezoelectric actuator according to claim 4, characterized in that
	5	-	the movable end of the piezoelectric element (2) is connected to the
	6		pressing plate (5) via a tightening strap (8).
	7		
	8	6.	Piezoelectric actuator according to claim 3, characterized in that
	9	-	the pretensioning spring (23) and the piezoelectric element (21) are
	10		situated parallel to each other.
	11		
	12	7.	Piezoelectric actuator according to claim 1, characterized in that
	13	-	the pretensioning spring is formed out of at least one zigzag spring (6; 23).
=i =	14		
	15	8.	Piezoelectric actuator according to claim 1, characterized in that
	16	-	the piezoelectric element (2; 21) is composed of a multilayer structure of
	17		transversely arranged, ceramic piezoelectric plies that become longer in
	18		the effective direction when an external electric voltage is applied, and the
IJ	19		compensating element (3; 22) is made of ceramic.
i Vi	20		
	21	9.	Piezoelectric actuator according to claim 1, characterized in that
i 😂	22	-	the piezoelectric element (2, 21) is composed of a multilayer structure of
	23		transversely arranged, ceramic piezoelectric plies that become longer in
	24		the effective direction when an external electric voltage is applied, and that
	25		
	26	-	the compensating element (3; 22) is composed of piezoelectric plies
	27		arranged in the longitudinal direction that become shorter in the effective
	28		direction when an external electric voltage is applied.