Real-time Web Application for Predicting and Classifying Industrial Systems Faults

Mr. Mansour HAJJI

Supervisor

Mr. Vicenç PUIG

Co-Supervisor

Mr. Majdi MANSOURI

Co-Supervisor

Mr. Meher BOULAABI

Plan

01

Introduction

The Challenges Main Idea

03

Part 02

Web Interface

02

Part 01

Prepare the Data Random forest Classifiers Contribution

04

Conclusion

Best Scenario Future Work

The Challenges

Main idea

PART 01 PART 02

The Process

Plan

01 Introduction

Problematic Main Idea

03 Part 02

Web Interface Implementation

02

Part 01

Prepare the Data

04 Conclusion

Best Scenario Future Work

Data Variable Labeling

Measures	Symbol	Variable	e Description
	I_a	x_1	Grid current phase a
Grid Three phase current	I_b	x_2	Grid current phase b
	I_c	x_3	Grid current phase c
PV current	I_{pv}	x_4	Output current of the PV panel
	V_a	x_5	Grid voltage phase a
Grid three phase voltage	V_b	x_6	Grid voltage phase b
	V_c	x_7	Grid voltage phase c
Output Voltage	V_{out}	x_8	Output voltage of the DC-DC
			converter
PV voltage	V_{pv}	x_9	Output voltage of the PV panel

Data Structure

Plan

01 Introduction

The Challenges Main Idea

03 Part 02

Web Interface

02

Part 01

Random Forest Classifier

04 Conclusion

Best Scenario Future Work

Type of machine learning

Type of machine learning

Type of Supervised Learning

Type of Supervised Learning

What is Classification?

Solution under Classification

Solution under Classification

What is Random Forest?

Decision Tree and Random Forest

Decision Tree and Random Forest

	Decision Tree	Random Forest
Accuracy	The Results are not accurate	The results are accurate
Computation	Require low computation power	Require High computation power
Visualization	Easy to visualize	Complex visualization
Performance	Overfits the data	Does not overfit the data

Summary of All Processes

Plan

01Introduction

The Challenges Main Idea

03 Part 02

Web Interface

02

Part 01

Contribution

04 Conclusion

Best Scenario Future Work

Contribution

Scenario 02

we will focus exclusively on the transitory regime

Scenario 01

the first scenario involves training the model on all the data

Scenarios 01: Entire Data

Scenarios 01: Entire Data

Discussion

In Scenario 01, the model's performance is commendable, with an accuracy 96.36%, indicating its ability to effectively detect and classify industrial faults

However, this scenario uses a relatively large dataset with ~550K samples, making it computationally intensive, especially during training

Accuracy

0.9631

Computation time

1.2200 seconds

Scenarios 02: Transitory Regime

Visualization of the extracted part

Scenarios 02: Transitory Regime

Discussion

In Scenario 02, the model's performance surpasses that of Scenario 01, achieving a perfect accuracy of 1.0. This means it makes no misclassifications and is exceptionally reliable in fault detection

This drastic reduction in data size results in much faster computation times, both during training and testing

Accuracy

1.0

Computation time

 $0.008\,\mathrm{sec}$

Plan

01 Introduction

The Challenges Main Idea

03 Part 02

Web Interface

02

Part 01

Results and discussion

04 Conclusion

Best Scenario Future Work

Accuracy

Classification Report

Confusion Matrix

Outliers

Indicating a highly effective solution for rapid fault detection in industrial systems

It correctly identified and classified all instances for each class, leaving no room for misclassifications

The model exhibits perfect precision, recall, and F1-scores for all classes

It contributes to data quality, model accuracy, robustness, and the overall success of the mode

03

01

02

04

100 %

Accuracy Confusion Matrix
Classification Report Outliers

Accuracy

Contusion Matrix

Classification Report

Outlier:

	Precision	Recall	F1-Score	Support
0	1.00	1.00	1.00	215
1	1.00	1.00	1.00	222
2	1.00	1.00	1.00	176
3	1.00	1.00	1.00	204
4	1.00	1.00	1.00	189
5	1.00	1.00	1.00	194
Accuracy			1.00	1200
Macro Avg	1.00	1.00	1.00	1200
Weighted Avg	1.00	1.00	1.00	1200

Plan

01 Introduction

The Challenges Main Idea

03 Part 02

Web Interface

02

Part 01

Results and discussion

04 Conclusion

Best Scenario Future Work

Build the Web Application

Loading the best model

Friendly interface & easy to use

Signal Input and Processing

Users can input signals from their industrial system

Fault Prediction and Classification

The application provides all results to the user

The Process

Final App : Offline

HOME Page

Test one signal page

Test multiple signal page

Conclusion and Future Work

THANK YOU!!

