

Física 3

Campo de formación básica (CFB): Ingeniería Eléctrica / Metalúrgica

Total de horas: 48 (asignatura cuatrimestral)

Cuerpo docente: Dr. Juan Pedrosa (TN)

Clase 6 (práctica de OEM)

Ejercicio 0. Explicar qué es una onda plana monocromática y polarizada, e identificar explícitamente la dirección y velocidad de propagación, su frecuencia y longitud de onda. En el caso en que la onda plana sea electromagnética, demostrar que los campos E y B son perpendiculares entre sí y (ambos) perpendiculares a la dirección de propagación de la onda. **AYUDA:** utilizar las ecuaciones de Maxwell.

Ejercicio 1. Una onda electromagnética plana está formada por un campo eléctrico de amplitud $E_0 = 3 V/m$ y una frecuencia f = 1 MHz. Determinar la función, solución de la ecuación de onda, que representa al campo eléctrico \overrightarrow{E} si la onda avanza en el eje y y el campo está polarizado en el eje z. Calcular asimismo la dirección del campo magnético.

Ejercicio 2. Una antena emite una onda electromagnética de frecuencia $f = 50 \, kHz$.

- 1. Calcular su longitud de onda.
- 2. Determinar la frecuencia de una onda sonora de la misma longitud de onda.

DATOS: $c = 3 \cdot 10^8 \, m/s \, y \, v_{SONIDO} = 340 \, m/s.$

Ejercicio 3. El espectro visible en el aire está comprendido entre las longitudes de onda $\lambda = 380 \, nm$ (violeta) y $\lambda = 780 \, nm$ (rojo).

- 1. Calcular las frecuencias asociadas a estos extremos de radiación electromagnética. ¿Cuál de ellas se propaga a mayor velocidad?
- 2. Determinar el intervalo de longitudes de onda correspondiente al espectro visible en el agua, cuyo índice de refracción es $n_{AGUA} = 4/3$. **NOTA:** considerar $c = 3 \cdot 10^8 \, m/s$.

Ejercicio 4. Una onda electromagnética tiene, en el vacío, una longitud de onda de $\lambda = 5 \cdot 10^{-7} \, m$.

1. Determinar la frecuencia y el número de onda correspondientes

2. Si dicha onda entra en un determinado medio, su velocidad se reduce a $v_{MEDIO} = \frac{3}{4}c$. Determinar el índice de refracción del medio y la frecuencia y la longitud de onda en dicho medio. **NOTA:** considerar $c = 3 \cdot 10^8 \, m/s$.

Ejercicio 5. Un rayo de luz amarilla de longitud de onda en el aire $\lambda_{AIRE} = 580 \, nm$, pasa a un cierto cristal en el que su longitud de onda pasa a ser de $\lambda_{CRISTAL} = 5.10^{-7} \, m$.

- 1. Calcular razonadamente frecuencia y velocidad de propagación en cada medio.
- 2. Si el rayo refractado forma un ángulo $\theta = 30^{\circ}$ con la normal a la frontera que separa a los dos medios, calcular con qué ángulo incidió el rayo. **AYUDA:** realizar un esquema de rayos.

Ejercicio 6. Considerar una onda electromagnética constituida por el siguiente campo eléctrico $\overrightarrow{E} = E_0 \cos[(10m^{-1}) \cdot x + (3 \cdot 10^9 s^{-1}) \cdot t] \hat{z}$.

- 1. Determinar su longitud de onda y periodo.
- 2. Enunciar la dirección y el sentido de propagación de la misma.
- 3. Calcular el campo magnético \overrightarrow{B} asociado a esta onda y el vector de Poynting \overrightarrow{S} correspondiente.

Ejercicio 7. Escribir una expresión para el campo eléctrico y magnético que constituyen una onda electromagnética plana, cuyo campo eléctrico está contenido en el plano xy y se propaga desde el origen hasta el punto P = (0,3,3). Si la frecuencia angular de la onda es $\omega = 100\pi [rad/s]$, la velocidad de la luz es c y la magnitud del campo eléctrico es E_0 , hallar la potencia promedio que transporta esta onda.

Ejercicio 8. Dos ondas electromagnéticas son emitidas por dos fuentes diferentes, de modo tal que

$$E_1(x,t) = E_{10}\cos(kx - \omega t)\hat{y}$$

y

$$E_2(x,t) = E_{20}\cos(kx - \omega t + \phi)\hat{y}$$

- 1. Calcular el vector de Poynting asociado a la onda electromagnética resultante
- 2. Encuentrar la intensidad de la onda.
- 3. Repetir el cálculo si el sentido de propagación de la segunda onda electromagnética fuese opuesta a la primera

$$E_1(x,t) = E_{10}\cos(kx - \omega t)\hat{y}$$

y

$$E_2(x,t) = E_{20}\cos(kx + \omega t + \phi)\hat{y}$$

Ejercicio 9. Una onda electromagnética plana propagándose en el vacío tiene un campo magnético dado por:

$$\overrightarrow{B} = B_0 f(ax + bt)\hat{y}$$

$$donde f(u) = \begin{cases} 1 & si & 0 \le x \le 1 \\ 0 & \sim \end{cases}$$

donde a y b son constantes positivas

- 1. ¿Cuál debe ser la relación entre a y b para cumplir con las Ecuaciones de Maxwell?
- 2. Determinar el valor de $|\overrightarrow{E}|$ de esta onda electromagnética. ¿En qué dirección y sentido se propaga la onda?
- 3. Determinar la magnitud y la dirección del flujo de energía llevada por la onda. Expresar el resultado en función de B_0 y constantes universales.

Ejercicio 10. Una onda plana electromagnética armónica con una longitud de onda de $\lambda=0$, $12\,m$ se desplaza en el vacío en la dirección z positiva. Oscila a lo largo del eje x de manera que en t=0 y z=0, el campo E tiene un valor máximo de $E(0,0)=+6\,V/m$.

- 1. Escribir una expresión para $\overrightarrow{E}(z,t)$.
- 2. Calcular el campo magnético de la onda asociada.

Ejercicio 11. Una onda luminosa plana, armónica y polarizada linealmente tiene una intensidad de campo eléctrico dada por:

$$E_z = E_0 \cos \pi 10^{15} (t - \frac{x}{0,65c})$$

mientras viaja en un trozo de vidrio.

- 1. Calcular la frecuencia de la luz y su longitud de onda.
- 2. Calcular el índice de refracción del cristal.

Ejercicio 12. Calcular el índice de refracción de un medio si quisiéramos reducir la velocidad de la luz en un 10 % comparada con su velocidad en el vacío.

Ejercicio 13. Dada una interfaz entre agua ($n_{AGUA}=4/3$) y vidrio ($n_{VIDRIO}=3/2$), calcular el ángulo de transmisión para un haz inciente en el agua a 45° . Si el haz transmitido regresa de tal forma que ahora incide en la interfaz, demostrar que $\theta_t=45^{\circ}$.

Ejercicio 14. La luz de longitud de onda de 600 nm en el vacío entra a un bloque de vidrio en donde $n_v = 1,5$. Calcular su longitud de onda en el vidrio. ¿De qué color aparecerá para alguien sumergido en el vidrio? **AYUDA:** ver tabla 3.4 del Hecht.

Ejercicio 15. Un haz de rayos láser incide en una interfaz aire-líquido a un ángulo de 55°. Se observa que el rayo refractado es transmitido a 40°. ¿Cuál es el índice de refracción del líquido?

Ejercicio 16. La luz incide en aire sobre una interfaz aire-vidrio. Si el índice de refracción del vidrio es 1,7 averiguar el ángulo incidente tal que el ángulo de transmisión sea igual a $\frac{1}{2}\theta_i$.

Ejercicio 17. Demostrar que en incidencia normal en la frontera entre dos dieléctricos se cumple que:

 $\begin{bmatrix} t_{\parallel} \end{bmatrix}_{\theta_i=0} = [t_{\perp}]_{\theta_i=0} = \frac{2n_i}{n_i + n_t}$

Ejercicio 18. Utilizar las ecuaciones de Fresnel para demostrar que la luz incidente a $\theta_p = \frac{1}{2}\pi - \theta_t$ da como resultado un haz de luz reflejado que está realmente polarizada.