ANALISI E SIMULAZIONE DI SISTEMI DINAMICI

Lezione VI: Trasformata di Laplace

- Traformata di Laplace: Definizione
- Segnali elementari
- Proprietà della Trasformata di Laplace
- Antitrasformata di Laplace
- Esempi

Trasformata di Laplace: Definizione

La *Trasformata di Laplace* di un segnale f(t) è la funzione di variabile complessa $s \in \mathbb{C}$, $(s = \sigma + j\omega)$

$$f(t) o F(s) \doteq \int_0^\infty f(t) e^{-st} dt \doteq \mathcal{L}[f]$$

Trasformate di Laplace di alcuni segnali elementari:

• Funzione impulso (Delta di Dirac)

$$f(t) = \delta(t) \doteq \begin{cases} 0 & \text{se } t \neq 0 \\ +\infty & \text{se } t = 0 \end{cases}$$
 tale che $\int_{-\infty}^{+\infty} \delta(t) dt = 1$

si può considerare come il limite della successione di funzioni $f_{\epsilon}(t)$ per $\epsilon \to 0$, dove

$$f_{\epsilon}(t) \doteq \left\{ egin{array}{ll} rac{1}{\epsilon} & ext{se } 0 \leq t \leq \epsilon \\ 0 & ext{altrimenti} \end{array}
ight.$$

$$\mathcal{L}[f] = F(s) = 1 \quad \forall \quad s \in \mathbf{C}$$

Trasformata di Laplace: Segnali elementari

SEGNALE	f(t)	F(s)
Impulso unitario	$\delta(t)$	1
Gradino unitario	1(t)	1/s
Rampa unitaria	t 1(t)	$1/s^2$
Parabola unitaria	$(t^2/2)1(t)$	$1/s^3$
Esponenziale	$e^{at} \; 1(t)$	1/(s-a)
Sinusoide	$\sin \omega t 1(t)$	$\omega/(s^2+\omega^2)$
Cosinusoide	$\cos \omega t 1(t)$	$s/(s^2+\omega^2)$
Esponenziale+monomio	$t^n e^{at} \ 1(t)$	$n!/(s-a)^{n+1}$

Trasformata di Laplace: Proprietà

- Linearità: $c_1 f_1(t) + c_2 f_2(t) \to c_1 F_1(s) + c_2 F_2(s)$, Esempio: $\delta(t) - 2 \cdot 1(t) \Longrightarrow F(s) = 1 - \frac{2}{s}$
- Teorema della traslazione nel tempo: $f(t-a)1(t-a) \to F(s)e^{-as}$ Esempio: $3 \cdot 1(t-2) \Longrightarrow F(s) = \frac{3e^{-2s}}{s}$
- Teorema della traslazione nella frequenza: $e^{at}f(t) \to F(s-a)$ Esempio: $e^{at}1(t)\Longrightarrow F(s)=\frac{1}{s-a}$, $\cos(\omega t)1(t)\Longrightarrow F(s)=\frac{s}{s^2+\omega^2}$
- Teorema della derivata nel tempo: $\frac{d}{dt}f(t) \to sF(s) f(0^+)$ Esempio: $\sin(\omega t)1(t) \Longrightarrow F(s) = \frac{\omega}{s^2 + \omega^2}$
- Teorema della derivata nella frequenza: $tf(t) \rightarrow -\frac{d}{ds}F(s)$ Esempio: $t \cdot 1(t) \Longrightarrow F(s) = \frac{1}{s^2}$
- Teorema dell'integrale nel tempo: $\int_0^t f(\tau)d au o rac{F(s)}{s}$

• Teorema di convoluzione: Si definisce convoluzione di due segnali f(t) e g(t)

$$(f * g)(t) \doteq \int_0^\infty f(\tau)g(t - \tau)d\tau = \int_0^\infty g(\tau)f(t - \tau)d\tau$$

$$\implies \mathcal{L}[(f * g)(t)] = \mathcal{L}[f(t)]\mathcal{L}[g(t)] = F(s)G(s)$$

• Teorema del valore finale: $\lim_{t\to +\infty} f(t) = \lim_{s\to 0} sF(s)$ (se esistono entrambi) Esempio:

$$f(t) = (1 - e^{-t})1(t) \to F(s) = \frac{1}{s} - \frac{1}{s+1}$$
$$\lim_{t \to +\infty} f(t) = \lim_{s \to 0} sF(s) = 1$$

• Teorema del valore iniziale: $\lim_{t\to 0^+} f(t) = \lim_{s\to \infty} sF(s)$ Esempio:

$$f(t) = (1 - t)1(t)$$
 \to $F(s) = \frac{1}{s} - \frac{1}{s^2}$ $\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s) = 1$

Anti-Trasformata di Laplace di Funzioni Razionali

• Espansione in fratti semplici di F(s) (radici p_i semplici):

$$F(s) = \frac{Q(s)}{\prod_{i=1}^{n} (s - p_i)} = \sum_{i=1}^{n} \frac{K_i}{s - p_i}, \quad K_i = \lim_{s \to p_i} (s - p_i) F(s)$$

 K_i è detto *residuo* di F(s) in $p_i \in \mathbb{C}$. Antitrasformando

$$f(t) = \sum_{i=1}^{n} K_i e^{p_i t} \cdot \mathbf{1}(t)$$

• Espansione in fratti semplici di F(s) (radici p_i di generica molteplicità m_i):

$$F(s) = \frac{Q(s)}{\prod_{i=1}^{n} (s - p_i)} = \sum_{i=1}^{k} \sum_{j=1}^{m_i} \frac{K_{ij}}{(s - p_i)^j} , \quad K_{ij} = \frac{1}{(m_i - j)!} \lim_{s \to p_i} \frac{d^{(m_i - j)}}{ds^{(m_i - j)}} (s - p_i)^{m_i} F(s)$$

Antitrasformando

$$f(t) = \sum_{i=1}^{k} \sum_{j=1}^{m_i} \frac{K_{ij} \ t^{j-1} e^{p_i t}}{(j-1)!} \cdot 1(t)$$

• Se esiste una coppia di radici p_i , \overline{p}_i complesse coniugate allora:

$$F'(s) = \frac{K_i}{s - p_i} + \frac{\overline{K}_i}{s - \overline{p}_i} = \frac{\alpha s + \beta}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

 $\omega_n = |p_i|$ pulsazione naturale

 $\zeta = -Re[p_i]/|p_i|$ coefficiente di smorzamento

$$f'(t) = K_i e^{p_i t} + \overline{K}_i e^{\overline{p}_i t} = 2|K_i| e^{-\zeta \omega_n t} \cos\left(\omega_n t \sqrt{1 - \zeta^2} + \angle K_i\right) \cdot 1(t)$$

 Possibili applicazioni: soluzione di equazioni differenziali lineari a coefficienti costanti Esempio:

$$\ddot{y} + 3\dot{y} + 2y = 1 - 3e^{-t}$$
 $t \ge 0$, $y(0) = 1$, $\dot{y}(0) = 0$.