Зразки задач основних типів з математичного аналізу -2

1. Обчислити невласні інтеграли:

a)
$$\int_{1}^{+\infty} \frac{\sin(x-1)}{2x-2} dx$$
; 6) $\int_{-\infty}^{+\infty} e^{-x^2+x} dx$; B) $\int_{0}^{+\infty} \frac{\cos 3x - \cos 4x}{x} dx$; r) $\int_{0}^{+\infty} \frac{e^{-x^2} - e^{-2x^2}}{x^2} dx$

- 2. Виразити через Ейлерові інтеграли та їх похідні: a) $\int\limits_0^{+\infty} \frac{x^7}{1+x^3} dx$; б) $\int\limits_0^{+\infty} t^{\alpha+2} e^{-2t} \ln t dx$.
- 3. Змінити порядок інтегрування в інтегралі: a) $\int\limits_0^1 \left(\int\limits_1^{x_1+1} f(x_1,x_2) dx_2 \right) dx_1$; б) $\int\limits_0^1 \left(\int\limits_{x_1^2}^{2x_1^2} f(x_1,x_2) dx_2 \right) dx_1$.
- 4. Обчислити інтеграл $\int\limits_A x_1 x_2 dx_1 dx_2$, де множина A обмежена кривими $x_2 = x_1^2 2, \; x_2 = 4 5x_1^4$.
- 5. Обчислити масу фігури з заданою щільністю $\rho = x_2^2$, обмеженої заданими кривими: $1 \le x_1^2 + x_2^2 \le 4, \ x_2 \ge x_1$.
- 6. Знайти об`єм тіла, обмеженого поверхнями: $x_1^2 + x_2^2 + x_3^2 = 4$, $x_3^2 \ge x_1^2 + x_2^2$.
- 7. Обчислити роботу сили $\vec{F}\left(x_1,x_2\right) = \left(x_1^2,x_2^2\right)$ вздовж межі півкола $x_1^2 + x_2^2 \leq 1, \ x_2 \geq 0$, що пробігається за годинниковою стрілкою.
- 8. Обчислити $\int_{\Gamma} x_1^2 dx_2 x_2 dx_1$, де $\Gamma = \left\{ \left(t^2, t^3 \right) | t \in [0, 2] \right\}$ пробігається за зростанням параметра.
- 9. Знайти масу кривої $x_2 = \sqrt{x_1 + 1}, \ x_1 \in [0,1]$ зі щільністю $\rho(x_1, x_2) = x_2^2$.
- 10. Обчислити $\int\limits_{\Gamma} x_1 x_2 dl$, де $\Gamma = \left\{ \left(2t+1, 3t+2\right) | t \in [0,2] \right\}$.
- 11. Обчислити площу поверхні $\{(3t_1\cos t_2, 3t_1\sin t_2, 4t_2) | 0 \le t_1 \le 1, 0 \le t_2 \le 2\pi\}$.
- 12. Обчислити поверхневий інтеграл $\int_S x_1 dx_2 \Lambda dx_3 + x_2 dx_3 \Lambda dx_1 + x_3 dx_1 \Lambda dx_2$ по зовнішньому боку поверхні $x_1^2 + x_3^2 = 1$ при $x_2 \in [0,1]$.