Exercise Sheet 20

Discrete Mathematics, 2020.12.15

- 1. ([R], Page 557, Exercise 8) In a survey of 270 college students, it is found that 64 like brussels sprouts, 94 like broccoli, 58 like cauliflower, 26 like both brussels sprouts and broccoli, 28 like both brussels sprouts and cauliflower, 22 like both broccoli and cauliflower, and 14 like all three vegetables. How many of the 270 students do not like any of these vegetables?
- 2. ([R], Page 558, Exercise 22) Prove the principle of inclusion—exclusion using mathematical induction.
- 3. ([R], Page 565, Exercise 13) How many derangements are there of a set with seven elements?
- 4. ([R], Page 565, Exercise 16) A group of n students is assigned seats for each of two classes in the same classroom. How many ways can these seats be assigned if no student is assigned the same seat for both classes?
- 5. ([R], Page 565, Exercise 17) How many ways can the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 be arranged so that no even digit is in its original position?

1. ([R], Page 557, Exercise 8) In a survey of 270 college students, it is found that 64 like <u>brussels</u>	4. ([R], Page 565, Exercise 16) A group of n students is assigned seats for each of two classes in
sprouts, 94 like broccoli, 58 like cauliflower, 26 like both brussels sprouts and broccoli, 28 like both brussels sprouts and cauliflower, 22 like both broccoli and cauliflower, and 14 like all three vegetables. How many of the 270 students do not like any of these vegetables?	the same classroom. How many ways can these seats be assigned if no student is assigned the same seat for both classes?
time vegetables. How many of the 270 soutients to not race any of these vegetables:	First step: assign students seats for the first class
Let U be the set of all students, An = {a a tikes BS}, An={a a tikes Br} and An={a a tikes Ca}	we have n! cases. (Permutation)
$ v - A_1 - A_2 - A_3 + A_1 \cap A_2 + A_2 \cap A_3 + A_2 \cap A_1 - A_1 \cap A_4 \cap A_3 $	Second step: assign students seats for the first class
= 270-64-94-58+26+28+22-14	We have $n! \cdot \sum_{i=0}^{n} H^{1i} \cdot \frac{1}{i!}$ cases. (Derangement)
= 116	By multiplication: answer is $(n!)^{2} \cdot \sum_{k=0}^{n} (-1)^{k-1} \cdot \frac{1}{k!}$
2. ([R], Page 558, Exercise 22) Prove the principle of inclusion–exclusion using mathematical	217666° 5. ([R], Page 565, Exercise 17) How many ways can the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 be
induction.	arranged so that no even digit is in its original position?
① if $n = 1.2$, obviously $ A_1 = A_1 $, $ A_1 /A_2 = A_1 + A_2 - A_1 \cap A_2 $	Let U be the set of all the ways with no constraint.
② Suppose that when $n=m$ we have $\left \bigcup_{i=1}^{m} Ai\right = \bigcup_{i=1}^{m} \sum_{1 \in [n_0, \dots, n_m] \in [n]} \bigcup_{i=1}^{m} A_{k_0}$	Ai = the set of ways in which i is in its original position.
3 When n=m+1	Obviously Ao -0, U -9.9!
$\left(\bigcup_{i=1}^{m'} A_i \right) = \left[\left(\bigcup_{i=1}^{m} A_i \right) \cup A_{m+1} \right]$	Azi = 8×81 , Azi / Azj = 7·7! , Azi / Azj / Azi = 6·6! Azi / Azj / Azi / Azi = 5·5!
$= \left \bigcup_{i=1}^{m} A_{i} \right + \left A_{m+1} \right - \left \bigcup_{i=1}^{m} A_{i} \right \cap A_{m+1}$	Thus, 9.9! - 4.8*8! + C2.77! - 4.6.6! + 5.5!
$= \left \bigcup_{i=1}^{m} A_i \right + \left A_{m+1} \right - \left \bigcup_{i=1}^{m} \left(A_i \cap A_{m+1} \right) \right $	= 2170680
$=\sum_{l=1}^{m}\sum_{k\in\mathbb{N}_{l}<\cdots< k\in\mathbb{N}_{l}}\left \prod_{i=1}^{k-1}A_{ki_{i}}\right +\left A_{ik+1}\right -\sum_{l=1}^{m}\sum_{l\in\mathbb{N}_{l}<\cdots< k\in\mathbb{N}_{l}}\left \prod_{i=1}^{k-1}A_{ki_{i}}\right A_{ik+1}\right $	
$= \sum_{k=1}^{m} \sum_{1 \leq k_1 < \cdots < k_k \leq m} (-1)^{\ell-1} \cdot \left \bigcap_{k=1}^{\ell} A_{R_k} \right + \left A_{net} \right - \sum_{k=1}^{m} \sum_{1 \leq k_1 < \cdots < k_k \leq m} (-1)^{\ell-1} \cdot \left \left(\bigcap_{k=1}^{\ell} A_{R_k} \right) \bigcap_{k \in \mathbb{N}} A_{net} \right $	
$=\sum_{k=1}^{m}\sum_{k\in\mathbb{N}_{k},\ldots,k\in\mathbb{N}_{k+1}}\left(-1\right)^{k+1}\left[\prod_{i=1}^{k}A_{ik_{i}}\right]+\left A_{m+1}\right +\sum_{k=1}^{m}\sum_{k\in\mathbb{N}_{k},\ldots,k\in\mathbb{N}_{k+1}}\left(-1\right)^{k+2}\left[\prod_{i=1}^{k+1}A_{ik_{i}}\right]$	
Ann不在其中的所有情况 Ann在其中的所有情况	
$=\sum_{i=1}^{n+1}\sum_{1\leq k_1<\dots< k_n\in[n+1]}\left -1\right ^{k+1}\cdot\left \prod_{i=1}^kA_{K_0}\right $	
3. ([R], Page 565, Exercise 13) How many derangements are there of a set with seven elements?	
$7! - 7 \times 6! + C_1^2 \cdot 5! - C_1^3 \cdot 4! + C_1^4 \cdot 9! - C_1^5 \cdot 2! + C_1^6 \cdot 1! - C_1^7$	
=1854	