Universidade de Aveiro

Inteligência Artificial (LEI, LECI)

Tópicos de IA:

Resolução Automática de Problemas

Ano lectivo 2024/2025

Regente: Luís Seabra Lopes

Tópicos de Inteligência Artificial

- Agentes
- Representação do conhecimento
- Técnicas de resolução de problemas
 - Técnicas de pesquisa em árvore
 - Técnicas de pesquisa em grafo
 - Técnicas de pesquisa por melhorias sucessivas
 - Técnicas de pesquisa com propagação de restrições
 - Técnicas de planeamento

Resolução de problemas em IA

- Um *problema* é algo (um objectivo) cuja solução não é imediata
- Por isso, a resolução de um problema requer a pesquisa de uma solução

Resolução de problemas em IA

- Um *problema* é algo cuja solução não é imediata
- Exemplos de problemas:
 - Dado um conjunto de axiomas, demonstrar um novo teorema
 - Dado um mapa, determinar o melhor caminho entre dois pontos.
 - Dada uma situação num jogo de xadrez, determinar uma boa jogada.
 - Determinar a melhor distribuição das portas lógicas no circuito VLSI
 - Dada as peças de um produto a montar, determinar a melhor sequência de montagem.

Formulação de problemas e pesquisa de soluções

- A formulação de um problema inclui:
 - Descrição do ponto de partida o estado inicial
 - Exemplos
 - A situação no jogo de xadrez
 - A descrição de um mapa e a localização inicial do viajante
 - Um conjunto de transições de estados
 - Um função que diz se um dado estado satisfaz o objectivo
 - Por vezes também uma função que avalia o custo de uma solução
- A pesquisa de uma solução é um processo que, de forma recursiva ou iterativa, vai executando transições de estados até que um estado gerado satisfaça o objectivo.

Aplicação: determinar um percurso num mapa topológico

• Dados:

Distâncias por estrada entre cidades vizinhas

• Exemplo:

 Determinar um caminho de Santarém para a Viseu

IA 2024/2025: Resolução Automática de Problemas

Estratégias de pesquisa

- Pesquisa em árvore
 - Estratégias de pesquisa cega (não informada):
 - Em largura
 - Em profundidade
 - Em profundidade com limite
 - Em profundidade com limite crescente
 - Estratégias de pesquisa informada
 - Pesquisa A* e suas variantes (custo uniforme, gulosa)
 - Advanced techniques (graph-search, IDA*, RBFS, SMA*)
- Pesquisa com propagação de restrições
- Pesquisa por melhorias sucessivas
- Planeamento

Pesquisa em árvore – algoritmo genérico

pesquisa(Problema, Estratégia) retorna a Solução, ou 'falhou'

Árvore ← árvore de pesquisa inicializada com o estado inicial do Problema Ciclo:

se não há candidatos para expansão, retornar 'falhou'

Folha ← uma folha escolhida de acordo com Estratégia

se Folha contem um estado que satisfaz o objectivo

então retornar a Solução correspondente

senão expandir Folha e adicionar os nós resultantes à Árvore

Fim do ciclo;

Percursos na árvore de pesquisa

Pesquisa em largura

Pesquisa em profundidade

(crédito das figuras: Alexander Drichel / Wikipedia)

Pesquisa em árvore — implementação baseada numa fila

```
pesquisa_em_arvore(Problema,AdicionarFila) retorna a Solução, ou 'falhou'
Fila ← [ fazer_nó(estado inicial do Problema) ]
Ciclo
se Fila está vazia, retornar 'falhou'
Nó ← remover_cabeça(Fila)
se estado(Nó) satisfaz o objectivo
então retornar a solução(Nó)
senão Fila ← AdicionarFila(Fila, expansão(Nó))
```

```
pesquisa_em_largura(Problema) retorna a Solução, ou 'falhou' retornar pesquisa_em_arvore(Problema,juntar_no_fim)
```

```
pesquisa_em_profundidade(Problema) retorna a Solução, ou 'falhou' retornar pesquisa em arvore(Problema,juntar à cabeça)
```

Pesquisa em largura

Pesquisa em profundidade

Pesquisa em Árvore em Python

- Vamos criar um conjunto de classes para suporte à resolução de problemas por pesquisa em árvore
 - Classe SearchDomain() classe abstracta que formata a estrutura de um domínio de aplicação
 - Classe SearchProblem(domain,initial,goal) classe para especificação de problemas concretos a resolver
 - Classe SearchNode(state,parent) classe dos nós da árvore de pesquisa
 - Classe SearchTree(problem) classe das árvores de pesquisa, contendo métodos para a geração de uma árvore para um dado problema

Pesquisa em Árvore em Python

Pesquisa em profundidade - variantes

- Pesquisa em profundidade <u>sem repetição de estados</u> para evitar ciclos infinitos, convém garantir que estados já visitados no caminho que liga o nó actual à raiz da árvore de pesquisa não são novamente gerados
- Pesquisa em profundidade <u>com limite</u> não são considerados para expansão os nós da árvore de pesquisa cuja profundidade é igual a um dado limite
- Pesquisa em profundidade *com limite crescente* consiste no seguinte procedimento:
 - 1) Tenta-se resolver o problema por pesquisa em profundidade com um dado limite *N*
 - 2) Se foi encontrada uma solução, retornar.
 - 3) Incrementar *N*.
 - 4) Voltar ao passo 1.

Pesquisa informada ("melhor primeiro")

pesquisa_informada(Problema,FuncAval) **retorna** a Solução, ou 'falhou' Estratégia ← estratégia de gestão de fila de acordo com FuncAval pesquisa_em_arvore(Problema,Estratégia)

Avaliação das estratégias de pesquisa

- <u>Completude</u> uma estratégia é completa se é capaz de encontrar uma solução quando existe uma solução
- <u>Complexidade temporal</u> quanto tempo demora a encontrar a solução
- <u>Complexidade espacial</u> quanto espaço de memória é necessário para encontrar uma solução
- Optimalidade a primeira solução que a estratégia de pesquisa consegue encontrar é a melhor solução.

Pesquisa A*

- Escolhe-se o nó em que a função de custo total f(n)=g(n)+h(n) tem o menor valor
 - -g(n) = custo desde o nó inicial até ao nó n
 - -h(n) = custo estimado desde o nó n até à solução [heurística]
- A função heurística h(n) diz-se *admissível* se nunca sobrestima o custo real de chegar a uma solução a partir de n.
- Se for possível garantir que h(n) é admissível, então a pesquisa A* encontra sempre (um)a solução óptima.
- A pesquisa A* é também completa.

Shakey the Robot

 A pesquisa A* foi inventada em 1968 para optimizar o planeamento de caminhos deste robô

Pesquisa A* - variantes

- Pesquisa de custo uniforme
 - h(n) = 0
 - f(n) = g(n)
 - É um caso particular da pesquisa A*
 - Também conhecido como algoritmo de Dijkstra
 - Tem um comportamento parecido com o da pesquisa em largura
 - Caso exista solução, a primeira solução encontrada é óptima
- Pesquisa gulosa
 - Ignora custo acumulado g(n)
 - f(n) = h(n)
 - Dado que o custo acumulado é ignorado, não é verdadeiramente um caso particular da pesquisa A*
 - Tem um comportamento que se aproxima da pesquisa em profundidade
 - Ao ignorar o custo acumulado, facilmente deixa escapar a solução óptima

Pesquisa num grafo de estados - motivação

- Em inglês: "graph search"
- Frequentemente, o espaço de estados é um grafo.
- Ou seja, transições a partir de diferentes estados podem levar ao mesmo estado.
- Isto leva a que a pesquisa fique menos eficiente.
- Portanto, o que se deve fazer é memorizar os estados já visitados por forma a evitar tratá-los novamente.
- Memoriza-se apenas o melhor caminho até cada estado

Pesquisa num grafo de estados

- Tal como no algoritmo anterior, trabalha-se com uma fila de nós
 - Chama-se fila de nós ABERTOS (nós ainda não expandidos, ou folhas)
 - Em cada iteração, o primeiro nó em ABERTOS é seleccionado para expansão
- Adicionalmente, usa-se também uma lista de nós FECHADOS (os já expandidos)
 - Necessário para evitar repetições de estados

Pesquisa num grafo de estados - algoritmo

- 1. Inicialização
 - N0 ← nó do estado inicial; ABERTOS ← { N0 }
 - FECHADOS $\leftarrow \{ \}$
- 2. Se *ABERTOS* = {}, então acaba sem sucesso.
- 3. Seja *N* o primeiro nó de *ABERTOS*.
 - Retirar N de ABERTOS.
 - Colocar N em FECHADOS.
- 4. Se *N* satisfaz o objectivo, então retornar a solução encontrada.
- 5. Expandir *N* :
 - *CV* ← conjunto dos vizinhos sucessores de *N*
 - Para cada $X \in CV$ -(ABERTOS \cup FECHADOS), ligá-lo ao antecessor directo, N
 - Para cada $X \in CV \cap (ABERTOS \cup FECHADOS)$, ligá-lo a N caso o melhor caminho passe por N
 - Adicionar os novos nós a ABERTOS
 - Reordenar ABERTOS
- 6. Voltar ao passo 2.

Pesquisa num grafo de estados

- Tal como a pesquisa em árvore, a "pesquisa em grafo" ou "graph search" utiliza uma árvore de pesquisa
- No entanto, a pesquisa em árvore normal ignora a possibilidade de o espaço de estados ser um grafo
 - Mesmo que o espaço de estados seja um grafo, a pesquisa em árvore trata-o como se fosse uma árvore
- Pelo contrário, a pesquisa em grafo leva em conta que o espaço de estados é normalmente um grafo e garante que a árvore de pesquisa não tem mais do que um caminho para cada estado

Avaliação da pesquisa em árvore - factores de ramificação

- Seja:
 - N número de nós da árvore de pesquisa no momento em que se encontra a solução
 - X Número de nós expandidos (não terminais)
 - d comprimento do caminho na árvore correspondente à solução
- Ramificação média número médio de filhos por nó expandido:

$$RM = \frac{N-1}{X}$$

Nota: a ramificação média é um indicador da dificuldade do problema.

• Factor de ramificação efectivo – número de filhos por nó, B, numa árvore com ramificação constante e com profundidade constante d. Portanto:

numa arvore com ramificação constante e com profundidade constante
$$a$$
. Por $1+B+B^2+...+B^d=N$ ou seja: $\frac{B^{d+1}-1}{B-1}=N$ (resolve-se por métodos numéricos).

 O factor de ramificação efectiva é um indicador da <u>eficiência da técnica de pesquisa</u> utilizada.

Aplicação: planear um passeio turístico

Dados:

- Coordenadas entre cidades
- Distâncias por estrada entre cidades vizinhas

Calcular:

O melhor caminho entre duas cidades.

• Usando:

- Pesquisa em largura
- Pesquisa A*

Aplicação: planeamento de sequências de acções

- O problema consiste em determinar uma sequência de acções a desempenhar por um agente por forma a que, partindo de um dado *estado inicial*, se atinja um dado *objectivo*.
- O conhecimento do domínio inclui uma descrição das condições de aplicabilidade e efeitos das acções possíveis.

Representação de acções em problemas de planeamento

- STRIPS planeador desenvolvido por volta de 1970, por Fikes, Hart e Nilsson
- A funcionalidade de um dado tipo de operação é definida, no formalismo STRIPS, através de uma estrutura chamada *operador*, que inclui a seguinte informação:
 - Pré-condições um conjunto de fórmulas atómicas que representam as condições de aplicabilidade deste tipo de operação.
 - Efeitos negativos (delete list) um conjunto de fórmulas atómicas que representam propriedades do mundo que deixam de ser verdade ao executarse a operação.
 - Efeitos positivos (add list) um conjunto de fórmulas atómicas que representam propriedades do mundo que passam a ser verdade ao executar-se a operação.

Exemplo: planeamento no mundo

dos blocos


```
Plano:
[ desempilhar(c,b),
  poisar(c),
  levantar(d),
  empilhar(d,c),
  levantar(a),
  empilhar(a,b) ]
```

```
Especificação de acções. Exemplo: empilhar(X,Y)

Pré-condições: [no_robot(X), livre(Y)]

Efeitos negativos: [no_robot(X), livre(Y)]

Efeitos positivos: [em_cima(X,Y), robot_livre]
```

Pesquisa A* - heurísticas

- Uma heurística é tanto melhor quanto mais se aproximar do custo real
 - A qualidade de uma heurística pode ser medida através do factor de ramificação efectiva
 - Quanto melhor a heurística, mais baixo será esse factor
- Em alguns domínios, há funções de estimação de custos que naturalmente constituem heurísticas admissíveis
 - Exemplo: Distância em linha recta no domínio dos caminhos entre cidades
- Em muitos outros domínios práticos, não há uma heurística admissível que seja óbvia
 - Exemplo: Planeamento no mundo dos blocos

Pesquisa A* - cálculo de heurísticas admissíveis em problemas simplificados

- Um <u>problema simplificado</u> (*relaxed problem*) é um problema com menos restrições do que o <u>problema</u> original
 - É possível gerar automaticamente formulações simplificadas de problemas a partir da formulação original
 - A resolução do problema simplificado será feita usando pouca ou nenhuma pesquisa
 - Pode-se assim "inventar" heurísticas, escolhendo a melhor, ou combinando-as numa nova heurística
- IMPORTANTE: O custo de uma solução óptima para um problema simplificado constitui uma heurística admissível para o problema original

Pesquisa A* - combinação de heurísticas

- Se tivermos várias heurísticas admissíveis $(h_1, ..., h_n)$, podemos combiná-las numa nova heurística:
 - $H(n) = \max(\{h_1(n), ..., h_n(n)\})$
- Esta nova heurística tem as seguintes propriedades:
 - Admissível
 - Dado que é uma melhor aproximação ao custo real, vai ser uma heurística melhor do que qualquer das outras

Pesquisa A* em aplicações práticas

- Principais vantagens
 - Completa
 - Óptima
- Principais desvantagens
 - Na maior parte das aplicações, o consumo de memória e tempo de computação têm um comportamento exponencial em função do tamanho da solução
 - Em problemas mais complexos, poderá ser preciso utilizar algoritmos mais eficientes, ainda que sacrificando a optimalidade
 - Ou então, usar heurísticas com uma melhor aproximação média ao custo real, ainda que não sendo estritamente admissíveis, e não garantindo portando a optimalidade da pesquisa

IDA*

- Semelhante à pesquisa em profundidade com aprofundamento iterativo
- A limitação à profundidade é estabelecida indirectamente através de um limite na função de avaliação $f(n) = g(n) + h(n) \le f_{max}$
 - Ou seja: Qualquer nó $n \operatorname{com} f(n) > f_{max}$ não será expandido
- Passos do algoritmo:
 - $1. f_{max} = f(raiz)$
 - 2. Executar pesquisa em profundidade com limite f_{max}
 - 3. Se encontrou solução, retornar solução encontrada
 - 4. f_{max} ← menor f(n) que tenha sido superior a f_{max} na última execução do A*
 - 5. Voltar ao passo 2

RBFS

- Pesquisa recursiva melhor-primeiro (*Recursive Best-First Search*)
- Para cada nó n, o algoritmo não guarda o valor da função de avaliação f(n), mas sim o menor valor f(x), sendo x uma folha descendente do nó n
 - Sempre que um nó é expandido, os custos armazenados nos ascendentes são actualizados
- Funciona como pesquisa em profundidade com retrocesso
 - Quando a folha m com menor custo f(m) não é filha do último nó expandido n, então o algoritmo retrocede até ao ascendente comum de m e n

RBFS – exemplo

Nó *n* acaba de ser expandido

Custos foram actualizados

Algoritmo retrocedeu até ao nó *k*; Expansão segue pelo nó *m*

SMA*

- A^* com memória limitada simplificado (*simplified memory-bounded A**)
- Usa a memória disponível
 - Contraste com IDA* e RBFS: estes foram desenhados para poupar memória, independentemente de ela existir de sobra ou não
- Quando a memória chega ao limite, esquece (remove) o nó n com maior custo f(n)=g(n)+h(n), actualizando em cada um dos nós ascendentes o "custo do melhor nó esquecido"
- Só volta a gerar o nó *n* quando o custo do melhor nó esquecido registado no antecessor de *n* for inferior aos custos dos restantes nós
- Em cada iteração, é gerado apenas um nó sucessor
 - Existindo já um ou mais filhos de um nó, apenas se gera ainda outro se o custo do nó pai for menor do que qualquer dos custos dos filhos
 - Quando se gerou todos os filhos de um nó, o custo do nó pai é actualizado como no RBFS

SMA* - exemplo – espaço de estados

SMA* - exemplo

- Neste exemplo: memória = 3 nós
 - Melhores custos de nós esquecidos anotados entre parêntesis

SMA* - exemplo (cont.)

- Chegámos a uma solução (estado I)
- Se quisermos continuar: Das restantes folhas já exploradas, a que tinha o estado B era a melhor, por isso a pesquisa retrocede e continua expandindo esse folha

Estratégias de pesquisa

- Pesquisa em árvore
- Pesquisa com propagação de restrições
- Pesquisa por melhorias sucessivas
- Planeamento

Pesquisa para problemas de atribuição

• Nos <u>problemas de atribuição</u> pretende-se atribuir valores a um conjunto de variáveis, respeitando um conjunto de restrições.

• Exemplos:

- Problema das 8 rainhas
 distribuir 8 rainhas num tabuleiro de xadrez de forma a que haja uma e uma só rainha em cada linha e em cada coluna e não haja mais do que uma rainha em cada diagonal.
- Invenção de palavras cruzadas
 dada uma matriz de palavras cruzadas vazia,
 preencher os espaços brancos com letras, de forma a que a matriz possa ser usada como passatempo de palavras cruzadas.
- Técnicas de resolução de problemas de atribuição:
 - Método construtivo usando técnicas de pesquisa em árvore
 - Em cada passo da pesquisa atribui-se um valor a uma variável
 - Método construtivo combinado com propagação de restrições
 - Resolução por melhorias sucessivas

Pesquisa com propagação de restrições em problemas de atribuição

- Construir um grafo de restrições:
 - Em cada nó do grafo está uma variável
 - Um arco dirigido liga um nó *i* a um nó *j* se o valor da variável de *j* impõe restrições ao valor da variável de *i*.
 - Um arco (*i,j*) é *consistente* se, para cada valor da variável *i*, existe um valor da variável *j* que não viola as restrições.
- Tipicamente, usa-se uma estratégia de pesquisa em profundidade; em cada iteração da pesquisa, faz-se o seguinte:
 - Seleciona-se arbitrariamente um dos valores possíveis para uma das variáveis (descartam-se os restantes)
 - 2) Restringem-se os conjuntos de valores possíveis das restantes variáveis por forma a que os arcos do grafo de restrições continuem consistentes.
- Nota: Neste caso, cada estado da pesquisa não representa uma situação ou configuração possível do mundo, como acontece no problema dos blocos; o estado é constituído pelos conjuntos de valores possíveis para as variáveis.

Pesquisa com propagação de restrições em problemas de atribuição - algoritmo

- 1. <u>Inicialização</u>: o nó inicial da árvore de pesquisa é composto por todas as variáveis e todos os valores possíveis para cada uma delas
- 2. Se pelo menos uma variável tem um conjunto de valores vazio, falha e retrocede; se não puder retroceder, <u>a pesquisa falha</u>
- 3. Se todas as variáveis têm exactamente um valor possível, tem-se uma solução; retornar com sucesso
- 4. Expansão: Escolher arbitrariamente uma variável V_k e, de entre os valores possíveis, um dado valor X_{kl} descartar os restantes valores possíveis dessa variável
- 5. <u>Propagação de restrições</u>: para cada arco (i,j) no grafo de restrições, remover os valores na variável V_i por forma a que o arco fique consistente
- 6. Caso tenha sido preciso remover valores na origem de algum arco, voltar a repetir o passo 5.
- 7. Voltar ao passo 2.

Propagação de restrições - algoritmo

- Os passos 5 e 6 do algoritmo anterior executam a propagação de restrições
- Esta parte do processo é suportada por uma fila de arestas do grafo de restrições
 - Inicialmente, a fila contém as arestas que apontam para a variável cujo valor foi fixado

```
propagarRestricoes(grafoRestricoes,FilaArestas) retorna o grafo de restrições com domínios possivelmente mais limitados enquanto FilaArestas não vazia fazer { (X_j, X_i) \leftarrow remover cabeça de FilaArestas remover valores inconsistentes em X_j se removeu valores, então para cada vizinho X_k, acrescentar (X_k, X_j) a FilaArestas }
```

Tipos de restrições

- Restrições unárias envolvem apenas uma variável
 - Podem ser satisfeitas através de pré-processamento do domínio de valores da variável – aproveitam-se apenas os valores que satisfazem a restrição
- Restrições binárias envolvem duas variáveis
 - Uma restrição binária é directamente representada por uma aresta no grafo de restrições
- Restrições de ordem superior envolvem três ou mais variáveis
 - Através da introdução de variáveis auxiliares, uma restrição de ordem superior pode ser transformada num conjunto de restrições binárias e/ou unárias

Exemplo:

quebra-cabeças critpoaritmético

- Variáveis principais: F, O, R, T, U, W $(\in \{0...9\})$
- Variáveis internas: X_1 (transporte das unidades para as dezenas) e X_2 (transporte das dezenas para as centenas) ($\in \{0, 1\}$)
- Restrições:

Todas as variáveis são diferentes [restrição sobre 6 variáveis]

$$2 \cdot O = R + 10 \cdot X_1$$
 [restrição sobre 3 variáveis]
 $2 \cdot W + X_1 = U + 10 \cdot X_2$ [restrição sobre 4 variáveis]
 $2 \cdot T + X_2 = O + 10 \cdot F$ [restrição sobre 4 variáveis]

Restrições de ordem superior — conversão para restrições binárias

- No exemplo anterior, a restrição ternária $2 \cdot O = R + 10 \cdot X_1$ pode ser transformada no seguinte conjunto de restrições:
 - Restrições binárias:
 - O = primeiro(Aux)
 - R = segundo(Aux)
 - $X_I = \text{terceiro}(Aux)$
 - Restrição unária:
 - 2· primeiro(Aux) = segundo(Aux) + 10· terceiro(Aux)
- Aux é uma variável auxiliar cujo domínio é o produto cartesiano dos domínios de O, R e X_I .
 - Ou seja: $Aux \in \{0..9\} \times \{0..9\} \times \{0,1\}$
 - A restrição unária sobre Aux pode ser satisfeita através de préprocessamento

Estratégias de pesquisa

- Pesquisa em árvore
- Pesquisa com propagação de restrições
- Pesquisa por melhorias sucessivas
 - Montanhismo (hill-climbing)
 - Recozimento simulado (Simulated annealing)
 - Algoritmos genéticos
- Planeamento

Pesquisa por melhorias sucessivas

- Também conhecida como pesquisa local
 - A partir de uma dada configuração inicial, fazem-se refinamentos sucessivos até obter uma configuração satisfatória
 - A solução inicial pode ser aleatória
- Técnicas mais comuns:
 - Reparação heurística
 - É a versão mais básica deste tipo de pesquisa: reparações à solução inicial vão sendo aplicadas de acordo com uma heurística local.
 - No caso de problemas de satisfação de restrições, a heurística pode ser:
 - Fazer a reparação que, naquele momento, mais contribui para reduzir os conflitos entre variáveis, dadas as restrições.
 - Montanhismo
 - Recozimento simulado
 - Algoritmos genéticos

Pesquisa por melhorias sucessivas: montanhismo

- A pesquisa é vista como um problema de optimizar uma função
- O espaço de soluções é visto como uma paisagem de vales (zonas de soluções menos satisfatórias) e colinas (zonas de soluções melhores).
- Tem semelhanças com a pesquisa em profundidade e com a pesquisa gulosa, diferenciando-se pelo seguinte:
 - Escolhe-se sempre o sucessor com melhor valor da função de avaliação
 - Não há retrocesso (backtracking)
 - Quando o valor da função no nó actual é superior ao valor da função em qualquer dos seus sucessores, a pesquisa pára. (atingiu-se um máximo local)
- Problemas:
 - Máximos locais, planaltos, ravinas

Montanhismo: variantes

aleatório

- Montanhismo estocástico escolhe aleatoriamente entre os sucessores que melhoram a função de avaliação (escolhe um ao calhas, não o melhor)
- Montanhismo de primeira escolha escolhe sucessores aleatoriamente até encontrar um com melhor função de avaliação que o estado actual o primeiro que lhe aparecer
- Montanhismo com reinício aleatório executar o montanhismo várias vezes, partindo de estados iniciais aleatórios, e escolhe a melhor solução
- Recozimento simulado (página seguinte)

Pesquisa por melhorias sucessivas: recozimento simulado

- Recozimento simulado (Simulated Annealing) é uma variante da pesquisa por montanhismo na qual podem ser aceites refinamentos que, localmente, piorem a solução.
 - O nome inspira-se no processo industrial chamado recozimento.
 - Recozer = "deixar esfriar lentamente (um produto de cerâmica ou de vidro) num forno especial, logo após o seu fabrico".
- Começou a ser usado circa 1980 para resolver problemas de configuração de circuitos VLSI
- Particularidades:
 - O sucessor é seleccionado aleatoriamente
 - Quando o valor da função no nó actual é superior ao valor da função no sucessor, o sucessor é aceite com uma probabilidade que diminui exponencialmente em função da perda na função de avaliação.
 - Pesquisa termina quando um indicador designado "temperatura" chega a zero.

Recozimento simulado: algoritmo

```
recozimento simulado(Problema, Regime termico, Aval)
(* A função Regime termico dá a temperatura em função do tempo. *)
N\acute{o} \leftarrow fazer nó(estado inicial do Problema)
repetir para t=0..\infty: {
   T \leftarrow Regime \ termico(t)
   se T=0, retornar a solução de Nó
   Prox ← um sucessor de Nó gerado aleatoriamente
   Ganho \leftarrow Aval(Prox)-Aval(No')
   se Ganho>0, No \leftarrow Prox
   senão, com probabilidade \exp(Ganho/T), fazer: No \leftarrow Prox
```

Nota: Se a temperatura *T* diminuir de forma suficientemente lenta, o recozimento simulado encontra um máximo global (solução óptima) com uma probabilidade que tende para 1.

Recozimento simulado: regime térmico

- $t \rightarrow \infty$
- $T \rightarrow 0$
- $Ganho/T \rightarrow -\infty$ (dado que o Ganho é negativo)
- Probabilidade: $\exp(Ganho/T) \rightarrow 0$
- Ou seja: À medida que o tempo passa, a pesquisa arrisca cada vez menos quanto a aceitar alterações com ganho negativo

Pesquisa local alargada (local beam search)

- Pesquisa local alargada semelhante ao montanhismo mas, em cada iteração, são mantidos k estados, e os melhores k sucessores são passados para a iteração seguinte [NOTA: podem ser seleccionados vários sucessores de alguns dos k estados e nenhum sucessor de alguns dos outros] Altera uma solução individual sem combinar com outras
- Pesquisa alargada estocástica semelhante à pesquisa local alargada, mas os k sucessores são seleccionados aleatoriamente
- Algoritmos genéticos variante da pesquisa alargada estocástica em que os sucessores são gerados por combinação de dois estados, e não apenas por modificação de um único estado

Algoritmos Genéticos (1)

Algoritmos Genéticos (2)

Estratégias de pesquisa

- Pesquisa em árvore
- Pesquisa com propagação de restrições
- Pesquisa por melhorias sucessivas
- Planeamento

Planeamento: STRIPS, o primeiro planeador

```
STRIPS(EI, Objectivos) % EI é argumento de entrada/saída
Plano \leftarrow []
repetir {
   C \leftarrow uma condição em Objectivos não satisfeita em EI
   OP \leftarrow um operador que pode ter C como efeito positivo
   A \leftarrow \text{acção}, dada por uma completa instanciação de OP
   PC \leftarrow \text{pré-condições de } A
   SubPlano \leftarrow STRIPS(EI,PC)
   Plano \leftarrow concatenar(Plano, concatenar(SubPlano, [A]))
   EI \leftarrow novo estado, resultante da aplicação de A em EI
   se Objectivos satisfeitos em EI,
        retornar Plano
```

STRIPS: exemplo

- Abreviaturas de condições:
 - Bloco em cima de bloco: ec(A,B)
 - Bloco no chão: c(B)
 - Bloco no robô: r(X)
 - Robô livre: rl
 - Bloco livre: l(X)
- Abreviaturas de operadores:
 - Empilhar: emp(A,B)
 - Desempilhar: desemp(A,B)
 - Levantar: lev(X)
 - Poisar: p(X)
- Plano:
 - desemp(c,a), emp(c,b), lev(a), emp(a,c)
- Sucessão de estados:
 - -1: ec(c,a), c(a), l(c), c(b), l(b), rl
 - 2: r(c), l(a), c(a), c(b), l(b)
 - 3: ec(c,b), l(c), l(a), c(b), c(a), rl
 - 4: r(a), ec(c,b), c(b), l(c)
 - 5: ec(a,c), ec(c,b), c(b), rl

Objectivo:

a c b

A Anomalia de Sussman

- Dependendo da ordem pela qual o STRIPS trata os objectivos, os seguintes planos poderão ser gerados:
 - [desempilhar(c,a), poisar(c), levantar(a), empilhar(a,b), desempilhar(a,b), poisar(a), levantar(b), empilhar(b,c), levantar(a), empilhar(a,b)]
 - [levantar(b), empilhar(b,c), desempilhar(b,c), poisar(b), desempilhar(c,a), poisar(c), levantar(a), empilhar(a,b), desempilhar(a,b), poisar(a), levantar(b), empilhar(b,c), levantar(a), empilhar(a,b)]
- Nenhum deles é óptimo
 - Na verdade, o algoritmo STRIPS não consegue gerar um plano óptimo para este problema

Planeamento no espaço de soluções

- Em todas as aproximações ao planeamento anteriormente apresentadas, cada nó da pesquisa corresponde a um estado do mundo → planeamento no espaço de estados.
- Uma técnica alternativa consiste em partir de um plano vazio e adicionar sucessivamente operações e restrições de sequenciamento → planeamento no espaço de soluções.
- Neste caso, cada nó da pesquisa corresponde a uma solução parcial para o problema.
- Operações de transformação da solução:
 - Adicionar um operador
 - Re-ordenar operadores
 - Instanciar um operador

Planeamento Hierárquico – a técnica ABSTRIPS

- O planeamento é realizado numa hierarquia de níveis de abstração.
- Um valor de "criticalidade" é atribuido a cada uma das condições que podem aparecer na descrição do estado do mundo.

• Algoritmo:

- 1. $CM \leftarrow$ valor inicial para o nível de criticalidade mínima.
- 2. Gerar um um plano que satisfaça todas as condições com nível de criticalidade ≥ CM.
- 3. $CM \leftarrow CM$ -1
- 4. Usando o plano anterior como guia, gerar um plano que satisfaça todas as condições com criticalidade $\geq CM$.
- 5. se todas as condições estão satisfeitas, retornar a solução.
- 6. **voltar** ao passo 3.

ABSTRIPS: exemplo

planeamento inicial para CM=2

- Dois níveis de criticalidade:
 - ec(A,B) 2
 - c(B) -1
 - r(X) 2
 - rl 1
 - -1(X)-1
- Plano inicial:
 - lev(a), emp(a,b), lev(b), emp(b,c)
- Sucessão de estados:
 - 1: ec(c,a)
 - 2: ec(c,a), r(a)
 - 3: ec(c,a), ec(a,b)
 - 4: ec(c,a), ec(a,b), r(b)
 - 5: ec(c,a), ec(a,b), ec(b,c)
- Os estados não são consistentes!

ABSTRIPS: exemplo

Planeamento para CM=1

• As precondições de criticalidade 1 da primeira acção, lev(a), não estão reunidas, pelo que é preciso determinar um plano para as atingir

- Plano:
 - desemp(c,a), p(c)
- Sucessão de estados:
 - -1: ec(c,a), c(a), l(c), c(b), l(b), rl
 - -2: r(c), l(a), c(a), c(b), l(b)
 - -3: rl, c(c), l(c), l(a), c(a), c(b), l(b)

Operadores com fórmulas não atómicas e condicionais

- Literal uma formula atómica (literal positivo) ou negação de uma fórmula atómica (literal negativo)
- Fórmula de aplicabilidade do operador pode ser:
 - Fórmula atómica
 - Negação de uma fórmula
 - Conjunção de fórmulas
 - Disjunção de fórmulas
 - Fórmula quantificada existencialmente
 - Fórmula quantificada universalmente
- Fórmula de efeitos do operador pode ser:
 - Literal
 - Conjunção de literais
 - Efeitos condicionais: when <fórmula de aplicabilidade> <fórmula de efeitos>
 - Fórmula de efeitos quantificada universalmente
 - Conjunção de fórmulas de efeitos
- Ver "PDDL Planning Domain Definition Language".

PDDL - exemplo

```
(:action stop
 :parameters (?f - floor)
 :precondition (lift-at ?f)
 :effect (and
           (forall (?p - passenger)
              (when (and (boarded ?p) (destin ?p ?f))
                      (and (not (boarded ?p)) (served ?p))))
           (forall (?p - passenger)
              (when (and (origin ?p ?f) (not (served ?p)))
                     (boarded ?p)))))
```

PDDL - exemplo

```
(:action drive-truck
:parameters (?truck – truck
              ?loc-from ?loc-to - location
              ?city - city)
:precondition (and (at ?truck ?loc-from) (in-city ?loc-from ?city)
                    (in-city ?loc-to ?city))
:effect (and (at ?truck ?loc-to)
             (not (at ?truck ?loc-from))
             (forall (?x - obj)
                    (when (and (in ?x ?truck))
                           (and (not (at ?x ?loc-from))
                                 (at ?x ?loc-to))))))
```