Лекция по АиСД №5

26.01.2016

Быстрая сортировка. Продолжение

Говоря об алгоритме быстрой сортировки (QSORT), мы рассматривали только случаи, когда все элементы различны. Однако это далеко не всегда так. Если в входном массиве есть равные элементы, то алгоритм может застопориться. Для того, чтобы избежать этого, изменим алгоритм Partition. Попытаемся преобразовывать массив таким образом, чтобы в левой части стояли элементы строго меньшие опорного, в правой — строго большие, а в середине — равные ему:

$$| \dots | x | \dots | \longrightarrow | \langle x | = x | > x |$$

Обозначим за опорный элемент последний. Будем проходиться по массиву от начала до конца, выставляя элементы в нужном порядке (? — ещё не просмотренные элементы):

Algorithm 1 Модифицированный алгоритм PARTITION

```
1: function Partition(a)
 2:
       i := 1
       i := 1
 3:
       k := n - 1
 4:
       while j < k do
 5:
           if a[j] = a[n] then
 6:
               k := k - 1
 7:
               a[j], a[k] := a[k], a[j]
 8:
           else
 9:
               if a[j] < a[n] then
10:
                   a[i], a[j] := a[j], a[i]
11:
                   j := j + 1
12:
                   i := i + 1
13:
14:
               else
15:
                   j := j + 1
```

Заметим, что j=k (так как алгоритм не закончит работу до тех пор, пока это не станет верно). Тогда на выходе получится массив вида:

$$\begin{array}{c|cccc} (< x | > x | = x \\ \hline (1,i) & [i,j) & [k,n] \end{array}$$

Остаётся только переставить части массива:

В: Самая быстрая из наших сортировок — $O(n \log n)$. А можно ли быстрее?

1: while i < k and $j \le n$ do

- 2: a[i], a[j] := a[j], a[i]
- i := i + 1
- 4: j := j + 1

О: На основе только сравнений — нет.

Использовать разобранные нами сортировки можно на любых сущностях, для которых определена операция сравнения.

Предположим теперь, что мы сортируем натуральные числа, не превосходящие некоторого числа ${\cal C}.$

Создадим массив b размера C, заполненный нулями. Будем проходить по исходному массиву a и на каждом шаге будем добавлять 1 к соответствующему элементу массива b:

$$b[a[i]] := b[a[i]] + 1$$

Потом, проходя по получившемуся массиву b, будем восстанавливать исходный массив уже в отсортированном виде.

Такая сортировка будет работать за O(n), однако, она не универсальна.

Вернёмся к универсальным сортировкам. Рассмотрим дерево для массива a = [6, 5, 2]:

Подобное дерево можно составить для любого детерминированного алгоритма сортировки, зафиксировав n. Сложность алгоритма будет являться высота h дерева. Посчитаем это h:

- ightharpoonup Так как алгоритм должен работать на любой перестановке из n элементов, то у дерева не может быть меньше, чем n! листов.
- \blacktriangleright Так как сравнение бинарная операция, то у каждой вершины не более двух потомков. Тогда в дереве не может быть больше, чем 2^h листьев.
- ▶ Тогда $2^h \geqslant n! \iff h \geqslant \log_2 n!$. Заметим, что:

$$n! = 1 \cdot 2 \cdot \ldots \cdot \left\lfloor \frac{n}{2} \right\rfloor \cdot \underbrace{\left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \cdot \ldots (n-1) \cdot n}_{\text{каждый из } \frac{n}{2} \text{ элементов не меньше } \frac{n}{2}} \geqslant \left(\frac{n}{2} \right)^{\frac{n}{2}}$$

Тогда $h\geqslant \log_2\left(\frac{n}{2}\right)^{\frac{n}{2}}=\frac{n}{2}\log_2\frac{n}{2}=\Omega(n\log n)$. Из этого следует, что отсортировать произвольный массив с помощью только сравнений меньше, чем за $\Omega(n\log n)$ операций, невозможно.

 $^{^{1}}$ Детерминированный алгоритм — алгоритмический процесс, который выдаёт предопределённый результат для заданных входных данных. Например, QSORT, выбирающий опорный элемент случайным образом, не является детерминированным.

Поиск медианы

Медиана — такой элемент массива, что не меньше половины элементов меньше неё, и не меньше половины — больше.

Для отсортированного массива размера n медиана будет находиться под номером $\frac{n+1}{2}$ для нечётных n и $\frac{n}{2}$ для чётных n. Пример: для массива (8,1,3,5,6,9) медианой будет являться 5.

Как же найти медиану? Очевидно, что можно отсортировать и взять средний — $\Theta(n)$.

А можно ли найти медиану ли за линейное время? Можно. Напишем алгоритм, находящий элемент, стоящий на k-ом месте в массиве, получающемся из входного после сортировки. Это называется поиском k-ой порядковой статистики. Составим этот алгоритм, немного модифицировав QSort:

Algorithm 2 Поиск k-ой порядковой статистики

```
1: function Select(a, k)
     choose pivot a[p]
2:
     i := PARTITION(a, p)
3:
     if i := k then
4:
         return a[i]
5:
     if i > k then
6:
         return Select(a[1...i-1], k)
7:
     else
8:
         return Select(a[i+1...n], k-i)
9:
```

Как и в быстрой сортировке, неправильно выбранный опорный элемент портит скорость до n^2 . Будем выбирать опорный элемент случайным образом.

Попробуем посчитать время работы в среднем случае.

```
j-подзадача размера n'. \left(\frac{3}{4}\right)^{j+1} n < n' \leqslant \left(\frac{3}{4}\right)^{j} n
```

Как и в QSort, в среднем мы потратим две попытки на переход к следующему j.

Максимальное $j - O(\log_{\frac{4}{3}} n)$

$$T(n) \leqslant \sum_{j=0}^{\log_{\frac{4}{3}}n} 2 \cdot c \cdot \left(\frac{3}{4}\right)^j n = 2cn \sum_{j=0}^{\log_{\frac{4}{3}}n} \left(\frac{3}{4}\right)^j \leqslant 2cn$$

Время работы алгоритма в худшем случае всё ещё $O(n^2)$. Худший случай — когда на каждом шаге мы отщеплем всего один элемент. Для достижения лучшего случая, на каждом шаге нужно выбирать в качестве опорного элемента медиану.

Медиана медиан

Попробуем несколько модифицировать наш алгоритм. Разобьём входной массив на группы по 5 элементов. Отсортируем каждую такую группу. Так как размер каждой группы зафиксирован, время сортировки не зависит от n. Зависит только количество сортировок. Возьмём медиану в каждой группе и применим алгоритм нахождения медианы к получившемуся массиву медиан. Выберем её в качестве опорного элемента.

$$T(n)\leqslant cn+T\left(rac{n}{5}
ight)+T\left(rac{7}{10}n
ight)$$
 $T(n)\leqslant ln$ для некоторого l $T(n)\leqslant cn+T(rac{n}{5})+T(rac{7}{10})\leqslant cn+rac{ln}{5}+rac{7}{10}ln$

Algorithm 3 Поиск k-ой порядковой статистики 2

```
1: function Select(a, k)
          Divide a into groups of 5
 2:
          Choose medians m_1, \dots m_{\frac{n}{5}}

x = \text{Select}([m_1, \dots, m_{\frac{n}{5}}], \frac{n}{10})

choose x as pivot a[p]
 3:
 4:
 5:
          i := PARTITION(a, p)
 6:
          if i := k then
 7:
               return a[i]
 8:
          if i > k then
 9:
               return Select(a[1 \dots i-1], k)
10:
          else
11:
               return \operatorname{Select}(a[i+1\dots n],k-i)
12:
```