

Dpto. de Teoría de la Señal y Comunicaciones Escuela Técnica Superior de Ingeniería de Telecomunicación

AMPLIACIÓN DE SEÑALES Y SISTEMAS PARCIAL 1: MODELO DE EXAMEN A

Apellidos:		
	D.N.I.:	
Marque con una X la titula Grado en Ingeniería en Te	ción en la que está matriculado: cnologías de Telecomunicación	
Grado en Ingeniería en Sis Grado en Ingeniería en Te Doble Grado Ingeniería S	lemática	

Ejercicio 1.- En el laboratorio se tiene un sistema en tiempo discreto del que se quieren estudiar sus propiedades. De forma genérica la señal de entrada de dicho sistema se denota como x[n] y la señal de salida como y[n].

En el laboratorio se comprobado que si $x[n] = 1 + \cos[(\pi/3)n]$, entonces

$$y[n] = 3 + e^{j\frac{\pi}{3}n} + 2e^{-j\frac{\pi}{3}n}.$$

- a) Calcule y dibuje la Transformada de Fourier de la señal x[n].
- b) ¿Puede ser un sistema lineal e invariante? Razone brevemente su respuesta.
- c) Suponga que la respuesta a la pregunta b) es afirmativa y diga entonces cuál será el valor de y[n] si $x[n] = \sin[(\pi/3)n] 2$. Razone <u>brevemente</u> su respuesta.

(3,0 puntos)

Ejercicio 2.- Sea x(t) una señal continua limitada en banda cuya transformada de Fourier $X(j\omega)$ viene dada por:

Dicha señal se procesa mediante el siguiente esquema:

Donde:

- C/D es un conversor continuo a discreto (muestreador más paso de tren a secuencia) a una tasa de muestreo de T segundos.
- D/C es un conversor discreto a continuo (paso de tren a secuencia más filtro paso bajo) a una tasa de interpolación de T segundos.
- $\uparrow P$, indica interpolar $x_1[n]$ por un factor P, es decir, $x_2[n]$ representa el resultado de insertar P-1 ceros entre dos muestras sucesivas de x[n].
- $\downarrow K$, indica diezmar $x_3[n]$ por un factor K.
- a) Dibuje las transformadas de Fourier de $x_1[n]$, $x_2[n]$, $x_3[n]$, $x_4[n]$, y(t). Indique claramente la variable representada en el eje de abcisas, amplitudes, periodos y ancho de banda de la primera réplica. (5,0 puntos).
- b) Indique cuántos segundos estarán separadas a la salida del sistema de dos muestras que estaban separadas t_0 segundos a la entrada del sistema. (2,0 puntos).

(7,0 puntos)