Name : ADITYA SINGH Date : 9/08/21

Roll No: 2K19/EP/005

EXPERIMENT - 1

<u>Aim</u> - To study the field pattern of various modes inside a rectangular waveguide.

Results and Discussion -

1. TE_{oo} Mode

This mode does not exist as the field equations in the rectangular waveguide for Transverse Electric (TE) become zero for m = n = 0.

2. TE₀₁ Mode

The electric field E_x exists, and E_y = 0.

H_x = 0, and magnetic fields H_y and H_z exist.

3. TE₁₀ Mode

The electric field E_y exists. E_x = E_z = 0.

The magnetic field H_x exists. H_y = H_z = 0.

4. TE₁₁ Mode

The electric fields E_x and E_y exist. E_z = 0.

The magnetic fields H_x , H_v and H_z all exist.

5. TM₀₀ Mode

This mode does not exist as the field equations in the rectangular waveguide for Transverse Magnetic (TM) become zero for m = n = 0.

6. TM₀₁ Mode

This mode does not exist as the field equations in the rectangular waveguide for Transverse Magnetic (TM) become zero for m = 0 and n = 1.

7. TM₁₀ Mode

This mode does not exist as the field equations in the rectangular waveguide for Transverse Magnetic (TM) become zero for m = 1 and n = 0.

8. TM₁₁ Mode

The electric fields E_x , E_y and E_z all exist.

The magnetic fields H_x and H_y exist. H_z = 0.

Conclusions -

The Field Equations for Transverse Electric (TE):

$$E_{x} = \frac{j\omega\mu}{h^{2}} \left(\frac{n\pi}{b}\right) \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

$$E_{y} = \frac{-j\omega\mu}{h^{2}} \left(\frac{m\pi}{a}\right) \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$$

$$E_{z} = 0$$

$$H_{x} = \frac{j\beta}{h^{2}} \left(\frac{m\pi}{a}\right) \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$$

$$H_{y} = \frac{j\beta}{h^{2}} \left(\frac{n\pi}{b}\right) \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

$$H_{z} = \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

The Field Equations for Transverse Magnetic (TM):

$$E_{x} = \frac{-j\beta}{h^{2}} \left(\frac{m\pi}{a}\right) \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

$$E_{y} = \frac{-j\beta}{h^{2}} \left(\frac{n\pi}{b}\right) \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$$

$$E_{z} = \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

$$H_{x} = \frac{j\omega\varepsilon}{h^{2}} \left(\frac{n\pi}{b}\right) \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$$

$$H_{y} = \frac{-j\omega\varepsilon}{h^{2}} \left(\frac{m\pi}{a}\right) \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

$$H_{z} = 0$$

- 1. TE_{00} mode does not exist in waveguide as all the field components of Electric Field become zero.
- 2. TM_{00} , TM_{01} and TM_{10} modes do not exist. In Transverse Magnetic mode, if one of the m or n values become zero, the mode will not exist, as all field components vanish.
- 3. The dominant mode in a particular waveguide is the mode having lowest frequency.
- 4. The dominant mode in a particular waveguide is the mode having the lowest cutoff frequency. The cutoff frequency is given by

$$f_{cmn} = \frac{c}{2\pi} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

where a > b, The TE_{10} mode has the lowest cutoff frequency and hence is the dominant mode of the rectangular waveguide. Only the dominant mode has a sinusoidal dependence upon y and thus possesses fields that are periodic in y and "dominate" the field pattern far away from the source, at distances larger than the transverse dimensions of the waveguide.