

Shedding Light on Black Box Machine Learning Algorithms

Development of an Axiomatic Explanation Consistency Framework to Assess the Quality of Methods that Explain Individual Predictions

Milo R. Honegger

Reviewer: Prof. Dr. rer. pol. Christof Weinhardt

Second reviewer: Prof. Dr. Alexander Maedche

Advisor: Rico Knapper

Second advisor: Dr. Sebastian Blanc

27.06.2018

The Classical Machine Learning Task

House Sales Price Dataset

House	Size (m ²)	Location (lat/long)	Year built	Condition		Price (\$)
1	220	47,23 / -122,10	1995	Good		430k
2	150	47,58 / -122,23	1987	Ok		250k
3	340	47,92 / -122,55	2009	New		740k
:	:	:	:	:	:	:

Prediction Model

New Housing Dataset

House	Size (m²)	Location (lat/long)	Year built	Condition		Price (\$)
1	245	47,85 / -122,92	1992	Ok		??
2	150	47,28 / -122,48	1997	Good		??
3	340	47,95 / -122,73	2011	New		??
:	:	:	:	:	:	:

Trained Prediction Model

Predicted House Price

\$ 615.484

Black Box Machine Learning Models and Explanation Methods

Legend: X: Input Data, y^* : Actual (Real) Value, \hat{y} : Predicted Value, $e(\hat{y})$: Explanation for the Predicted Value

Interpretability | \square

[Accuracy /]?

Explanation: "The Answer to a Why-Question" (Miller, 2017) (1/2)

House in King County

Predicted House Price

\$ 615.484

Research Gap & Research Question

Current Research Focus & Gap

Current Research Focus:

Developing new explanation methods

Research Gap:

Method to compare and assess the quality, strengths and weaknesses of different EMs

Research Question

"Can we develop an axiomatic framework to assess the quality of explanation methods, used to explain individual predictions made by black box machine learning models?"

	Topic	#
1	Introduction, Recap & Motivation	2
2	Axiomatic Explanation Consistency (Regression Case)	8
3	Experiments & Evaluation	11
4	Discussion of Limitations and Outlook	15
5	Conclusion	17

	Topic	#
1	Introduction, Recap & Motivation	2
2	Axiomatic Explanation Consistency (Regression Case)	8
3	Experiments & Evaluation	11
4	Discussion of Limitations and Outlook	15
5	Conclusion	17

Interpretability and Explanation Consistency

Axiomatic Explanation Consistency (Regression Case)

Axioms

1. **Identity:** Identical objects must have identical explanations:

$$d(\vec{x}_a, \vec{x}_b) = 0 \Longrightarrow d(\vec{\varepsilon}_a, \vec{\varepsilon}_b) = 0,$$

$$\forall a, b$$

2. Separability: Non-identical objects can not have identical explanations:

$$d(\vec{x}_a, \vec{x}_b) \neq 0 \Longrightarrow d(\vec{\varepsilon}_a, \vec{\varepsilon}_b) > 0,$$

 $\forall a, b$

3. Stability: Similar objects must have similar explanations:

$$\rho\left(D_{Z_j}, D_{E_j}\right) = \rho_j > 0,$$

$$\forall j \in |Z|, \quad \rho_j \subset P$$

	Topic	#
1	Introduction, Recap & Motivation	2
2	Axiomatic Explanation Consistency (Regression Case)	8
3	Experiments & Evaluation	11
4	Discussion of Limitations and Outlook	15
 5	Conclusion	17
	COTICIUSION	1 /

Experiments: Seattle House Prices

Dataset

- Homes in King County (Seattle)
- >21.000 house sale prices (2014 / 2015)
- 19 features for each house
- Mean Price \$540.607

Prediction Model

- Extreme Gradient Boosting (XGB)
- Tree ensemble
- 100 boosting rounds (estimators)
- Overfitting control

Model Performance

- R²: 0.89
- RMSE: \$120.478
- 22,29% deviation from mean price
- Outliers influence on performance measures

Explanation Methods

LIME (Ribeiro et al., 2016)
(Local Interpretable Model-Agnostic Explanations)

SHAP (Lundberg et al., 2017) (Shapley Additive Explanations)

Players Coalitions

Experiments: Evaluation of the Explanation Consistency of LIME and SHAP

Explanation Method	Axiom	# violated	# satisfied	% satisfied
	1. Identity	5.355	0	0%
LIME	2. Separability	134	28.670.536	99,9995%
	3. Stability	4	5.351	99,9252%
	1. Identity	0	5.355	100%
SHAP	2. Separability	28	28.670.642	99,9999%
	3. Stability	0	5.355	100%

Stability Axion	n: in-depth	Analysis
Spearman's Rho	LIME	SHAP
Minimum	-0,0086	0,1685
Maximum	0,8001	0,8934
Mean	0,4902	0,7020
Median	0,5037	0,7150

Experiments: Strengths, Weaknesses and Application Domains

LIME: Strengths

- + Fast
- + Returns a prediction model
- + Tabular, text and image data

LIME: Weaknesses

- Randomness (identity axiom)
- Specific knowledge required
- No solid theory

LIME: Best Application Domains

- Most real world problems where an approximate solution suffices
- Datasets with a big amount of features

SHAP: Strengths

- + Solid theoretical foundation
- + High explanation consistency
- Lightning fast for tree ensembles

SHAP: Weaknesses

- Exponential complexity for non-tree ensembles O(2^k)
- Misinterpretation
- Does not return a prediction model

SHAP: Best Application Domains

- Situations that demand explainability by law (GDPR)
- Debugging (model / data bias)

	Topic	#
1	Introduction, Recap & Motivation	2
2	Axiomatic Explanation Consistency (Regression Case)	8
3	Experiments & Evaluation	11
4	Discussion of Limitations and Outlook	15
5	Conclusion	17

Discussion of Limitations & Outlook

Limitations: Approach

- Test other EMs
- Validate with more datasets
- People validation

Limitations: Explanation Consistency Framework

- Stricter sub-axioms?
- Computational complexity
- Aggregated distances = loss of information?

Future Directions for Research

- Validation with more EMs, datasets and people
- Further axioms
- Variance-based approach

Outlook and Next Steps

- Research Paper
- Explanation Demonstrator Dash

	Topic	#
1	Introduction, Recap & Motivation	2
2	Axiomatic Explanation Consistency (Regression Case)	8
3	Experiments & Evaluation	11
4	Discussion of Limitations and Outlook	15
5	Conclusion	17

Conclusion

Research Question

"Can we develop an axiomatic framework to assess the quality of explanation methods, used to explain individual predictions made by black box machine learning models?"

Bottom Line

- Yes!
- The explanation consistency framework represents groundbreaking research
- It is a starting point to motivate further research
- Useful and feasible to measure and compare explanation quality
- Work in Progress

Thank You very much for your Attention!

www.anacision.de [ænəˈsɪʒn]

Main Literature Sources (not exhaustive)

- Molnar, C., et al. (2018). Interpretable machine learning: A guide for making black box models explainable.
- Rüping, S., et al. (2006). Learning interpretable models.
- Friedman, J., Hastie, T., & Tibshirani, R. (2009). The elements of statistical learning 2nd edition. New York: Springer.
- Miller, T. (2017). Explanation in artificial intelligence: Insights from the social sciences. arXiv preprint arXiv:1706.07269.
- Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365.
- Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning.
- Doshi-Velez, F., Kortz, M., Budish, R., Bavitz, C., Gershman, S., O'Brien, D., . . . Wood, A. (2017). Accountability of ai under the law: The role of explanation. arXiv preprint arXiv:1711.01134.
- Lundberg, S. M., & Lee, S.-I. (2017a). Consistent feature attribution for tree ensembles. arXiv preprint arXiv:1706.06060.
- Lundberg, S. M., & Lee, S.-I. (2017b). A unified approach to interpreting model predictions. In Advances in neural information processing systems (pp. 4768{4777}).
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining the predictions of any classier. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 1135{1144}).