Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2022. nov. 10.								

NÉV:

Neptun kód: ___

Előadó: Márkus / Sarkadi

- Egy h magasságú teniszező labdát üt el ν_θ=[ν_x; ν_y] kezdősebességgel. A teniszező célja, hogy a labda épp hogy átrepüljön a háló felett. A háló magassága ugyancsak h, és d távolsága helyezkedik el a teniszezőtől.
 - a) Határozza meg a kezdősebesség függőleges és vízszintes komponensének $v_x \cdot v_y$ szorzatát, amely ahhoz szükséges, hogy a h magasságból indított labda éppen átrepüljön a háló felett! (1)

$$\begin{array}{ccc}
U_{x} \cdot t_{i} = d & \Rightarrow t_{i} = \frac{d}{U_{x}} & \Rightarrow \\
-U_{y} = U_{y} - gt_{i} & \Rightarrow & 2U_{y} = g \cdot \frac{d}{U_{x}} \\
V \cdot V & = gd
\end{array}$$

 A teniszező azt is szeretné, hogy a labda a háló túloldalán a hálótól d/2 távolságra érjen földet. Határozza meg az ehhez szükséges v_x és v_y sebességkomponens nagyságát! (2)

$$\frac{d}{d} = U_x \cdot t_2 \implies t_2 = \frac{d}{2}U_x$$

$$0 = h - V_y \cdot \frac{d}{2}U_x - \frac{g}{2} \cdot \frac{d^2}{4}U_x^2$$

$$0 = h \cdot V_x^2 - V_x \cdot V_y \cdot \frac{d}{2} - \frac{gd^2}{8}$$

$$0 = h \cdot V_x^2 - \frac{gd}{2} \cdot \frac{d}{2} - \frac{gd^2}{8}$$

$$0 = h \cdot V_x^2 - \frac{gd}{2} \cdot \frac{d}{2} - \frac{gd^2}{8}$$

$$0 = h \cdot V_x^2 - \frac{gd}{2} \cdot \frac{d}{2} - \frac{gd^2}{8}$$

$$V_y = \frac{gd}{2}U_x = \frac{gd}{2} \cdot \frac{gd^2}{8}$$

$$V_y = \frac{gd}{2}U_x = \frac{gd}{2} \cdot \frac{gd^2}{8}$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2022. nov. 10.				44				

- 2 Egy sífelvonó 30°-os emelkedőn egyenletes sebességgel vontat felfelé egy m tömegű síelőt. A vontatókötél a sípályával szintén 30°-os szöget zár be az ábra szerint. A hó és a sítalpak közti csúszási súrlódási együttható értéke µ
 - a) Rajzolja fel az ábrára a síelőre ható erőket! (0,5)

b) Írja fel a mozgásegyenlet lejtövel párhuzamos, és a lejtőre merőleges erőkre vonatkozó komponensét! (1)

$$Z = F_{k} \cdot \cos 30 - F_{5} - \log \sin 30 = 0$$

 $Z = F_{5} + F_{k} \sin 30 - \log \cos 30 = 0$

c) Határozza meg a sielő kezében lévő vontatókötelet feszítő erőt (1,5)

$$\begin{aligned}
& = \lim_{t \to \infty} \cos b \circ - F_{k} \cdot \sin b \circ \\
& = \lim_{t \to \infty} F_{t} = \lim_{t \to \infty} \cos b \circ - F_{k} \cdot \sin b \circ \\
& = \lim_{t \to \infty} F_{k} \cdot \cos b \circ - \lim_{t \to \infty} \cos b \circ - F_{k} \cdot \sin b \circ - \lim_{t \to \infty} \sin b \circ = 0 \\
& = \lim_{t \to \infty} F_{k} \cdot \cos b \circ + \lim_{t \to \infty} \cos b \circ + \lim_{t \to \infty} F_{k} \cdot \sin b \circ - \lim_{t \to \infty} \sin b \circ = 0 \\
& = \lim_{t \to \infty} F_{k} \cdot \cos b \circ + \lim_{t \to \infty} \cos b \circ - \lim_{t \to \infty} F_{k} \cdot \sin b \circ - \lim_{t \to \infty} \sin b \circ = 0
\end{aligned}$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2022. nov. 10.								

- Egy R sugarů, félgömb alaků tálban kicsiny golyót guritunk úgy, hogy az vízszintes síků körpályán mozog egyenletes sebességgel. A gömb középpontjából a golyóhoz húzott sugár a függőlegessel 45° -os szöget zár be.
- a) Mekkora a körpálya sugara? (0,5)

b) Írja fel a vízszintes és a függőleges irányú erőösszetevőkre vonatkozó mozgásegyenleteket! (1)

c) Mekkora sebességgel kell keringenie a golyónak, hogy az a feladatkiírásban szereplő pályán mozogjon? (1)

d) Mekkora a mozgás periódusideje? (0,5)

$$T = \frac{2\pi T}{U} = \frac{2R \cdot \sin 45 \cdot T}{\sqrt{Rg \sin^2 45}} = 2T$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2022. nov. 10.								

Tömör félhenger legfelső pontjához 4R hosszúságú fonál csatlakozik, melyet vízszintesen kifeszítűnk az ábra szerint. A fonál végére m tömegű testet kötünk, melyet kezdősebesség nélkül elengedűnk. A fonál a félhengerre tekeredik, amig a fonál a szaggatottvonallal jelölt helyzetbe kerül.

a) Mekkora lesz golyó sebessége a szaggatottvonallal jelölt helyzetben? (0,5)

Med. everya m. tv: 2Rgm = 1 m or => W= 4gR

b) Mekkora a szaggatottvonal hossza? (0,5)

1=4R-RTT=R(4-TT)

c) Mekkora erő feszíti a kötelet? (1)

d) Mekkora a golyó eredő gyorsulása a szaggatottvonallal jelölt helyzetben? (1)

$$a_e = \sqrt{a_{qp}^2 + g^2} = \sqrt{\frac{4g}{4-71}^2 - g^2}$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2022. nov. 10.								

Kifejtendő kérdések

Mit értünk konzervatív erőtér alatt? (1) Adja meg a potenciális energia helyfűggését egy pontszerű test gravitációs terében! Vázlatosan ábrázolja a potenciálfüggvényt! (1) Írja fel a mechanikai energia megmaradás tételét!(1)

· Kenzeuntir erotorben morgo temegpanten as anton mundot veger, a mucha esser a mergis kerde is vegpontjænde helpretotal ligg. · Mech any a megmandis

- · Gravitaicis pot enga En Kenzewater exotile vergo tomegood binetisus es potanoislis Epot = -8 Mm energy ajoinal thege o'llando.
- Nevezzen meg két tehetetlenségi erőt, mely egyenletes körmozgást végző vonatkoztatási rendszerben lép fel! (1) Adjon meg összefüggést a két említett erő meghatározására, és nevezze meg a benne szereplő fizikai mennyiségeket! (1) Az északi féltekén a 45° szélességi kör környezetében vonat közlekedik északi irányban. Abrán szemléltesse, vagy a földrajzi irányok segítségével írja le, milyen irányban hatnak az említett

tehetetlenségi erők! (1) · Centrifugalis evo

Fg = - un (i) x (i For = -2 m (w x v')

The neglocat rehere's a

cer. rendresher lapeot.

von. rend. higgsbessty · Conolos-ano

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2022. nov. 10.								

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

