Concours commun Centrale

MATHÉMATIQUES II. FILIERE MP

Partie I - Une fonction polynômiale

Т. Α.

$$\begin{aligned} \textbf{I.A.1}) \ I_1 &= \int_0^1 t(1-t) \ dt = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \ \text{et} \ I_2 = \int_0^1 t^2 (1-t)^2 \ dt = \frac{1}{3} - \frac{2}{4} + \frac{1}{5} = \frac{1}{30}. \ \text{Donc}, \ L_1 = 6 \int_0^x t(1-t) \ dt = 6 \left(\frac{x^2}{2} - \frac{x^3}{3} \right) = -2x^3 + 3x^2 \ \text{et} \ L_2 &= 30 \int_0^x t^2 (1-t)^2 \ dt = 30 \left(\frac{x^3}{3} - \frac{x^4}{2} + \frac{x^5}{5} \right) = 6x^5 - 15x^4 + 10x^3. \end{aligned}$$

$$L_1 = -2x^3 + 3x^2 \text{ et } L_2 = 6x^5 - 15x^4 + 10x^3.$$

I.A.2) Soient $m \in \mathbb{N}$ et $x \in \mathbb{R}$.

$$\begin{split} I_m L_m(1-x) &= \int_0^{1-x} t^m (1-t)^m \ dt = - \int_1^x (1-u)^m u^m \ du = \int_0^1 (1-u)^m u^m \ du - \int_0^x (1-u)^m u m \ du \\ &= I_m - I_m L_m (1-x), \end{split}$$

et donc

$$\forall m \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ L_m(x) + L_m(1-x) = 1.$$

On en déduit encore que $2L_m\left(\frac{1}{2}\right)=1$ et donc que $L_m\left(\frac{1}{2}\right)=\frac{1}{2}$.

I.B

I.B.1) Soit $m \in \mathbb{N}$. Pour $x \in \mathbb{R}$, $L'_m(x) = \frac{1}{I_m} x^m (1-x)^m$. Donc, L'_m , qui est de degré 2m, admet 0 et 1 pour racines d'ordre m.

De plus, la fonction L_m' est strictement positive sur]0,1[et donc la fonction L_m est strictement croissante sur [0,1]. Comme $L_m(0)=0$, L_m admet une et une seule racine dans [0,1], à savoir 0. Enfin, puisque 0 est racine de L_m' d'ordre m, 0 est racine de L_m d'ordre m+1.

$$\label{eq:LB2} \begin{split} \textbf{I.B.2)} \text{ La fonction } x \mapsto \frac{L_0(x)}{\frac{1}{2}} = 1 \text{ est constante sur l'intervalle sur }]0, \frac{1}{2}[. \\ \text{Soit } m \in \mathbb{N}^*. \text{ Pour } x \in]0, \frac{1}{2}[, \\ \end{split}$$

$$I_mL_m''(x) = mx^{m-1}(1-x)^m - mx^m(1-x)^{m-1} = mx^{m-1}(1-x)^{m-1}(1-2x) > 0.$$

On en déduit que la fonction L_m est strictement convexe sur $[0,\frac{1}{2}]$ et donc que la fonction pente $x\mapsto \frac{L_m(x)}{x}=\frac{L_m(x)-L_m(0)}{x-0}$ est strictement croissante sur $[0,\frac{1}{2}]$.

$$\forall m \in \mathbb{N}^*, \, \text{la fonction} \, \, x \mapsto \frac{L_m(x)}{x} \, \, \text{est strictement croissante sur }]0, \frac{1}{2}].$$

I.B.3) Soit $m \in \mathbb{N}^*$. Notons \mathscr{C}_m la courbe représentative de L_m .

• La relation : $\forall x \in [0,1], \ L_m(x) + L_m(1-x) = 1 \ \text{montre que le point } (\frac{1}{2},\frac{1}{2}) \ \text{est centre de symétrie de } \mathscr{C}_m.$

- \bullet $L_{\mathfrak{m}}$ est convexe sur $[0,\frac{1}{2}]$ et donc, par symétrie concave sur $[\frac{1}{2},1].$
- L_m est croissante sur [0,1] et $L'_m(x) = 0 \Leftrightarrow x \in \{0,1\}$. Donc, \mathscr{C}_m admet deux points en lesquels la tangente est horizontale, les points (0,0) et (1,1).

Graphe de L_m pour $m \ge 1$.

I.C -

I.C.1) Puisque $L_0'(x) = 1$, $\forall (x,y) \in [0,1]^2$, $L_0'(x) = L_0'(y)$. Soient $m \in \mathbb{N}^*$ et $(x,y) \in [0,1]^2$.

$$\begin{split} L_{\mathfrak{m}}'(x) &= L_{\mathfrak{m}}'(y) \Leftrightarrow (x(1-x))^{\mathfrak{m}} = (y(1-y))^{\mathfrak{m}} \\ &\Leftrightarrow x(1-x) = y(1-y) \; (\operatorname{car} x(1-x) \geq 0 \; \operatorname{et} y(1-y) \geq 0) \\ &\Leftrightarrow (y-x)(x+y-1) = 0 \Leftrightarrow y = x \; \operatorname{ou} \; y = 1-x. \end{split}$$

$$\forall m \in \mathbb{N}^*, \ \forall (x,y) \in [0,1]^2, \ L_m'(x) = L_m'(y) \Leftrightarrow y = x \ \mathrm{ou} \ y = 1-x.$$

I.C.2) Soient $\mathfrak{m} \in \mathbb{N}^*$ et $\alpha \in [0, 1. \text{ D'après 1})$, pour $(\beta, \gamma) \in [0, 1]^2$,

$$L_m'(\beta) = L_m'(\alpha) \text{ et } L_m'(\gamma) = L_m'(\alpha) \Leftrightarrow (\beta, \gamma) \in \{(\alpha, \alpha), (\alpha, 1 - \alpha), (1 - \alpha, \alpha), (1 - \alpha, 1 - \alpha)\}.$$

- Si $(\beta, \gamma) = (\alpha, \alpha), \ \alpha + \beta + \gamma = 1 \Leftrightarrow \alpha = \beta = \gamma = \frac{1}{3}.$
- Si $(\beta, \gamma) = (\alpha, 1 \alpha)$ ou $(\beta, \gamma) = (1 \alpha, \alpha)$, $\alpha + \beta + \gamma = 1 \Leftrightarrow \alpha = \beta = 0$ et $\gamma = 1$ ou $\alpha = \gamma = 0$ et $\beta = 1$.
- Si $(\beta, \gamma) = (1 \alpha, 1 \alpha), \ \alpha + \beta + \gamma = 1 \Leftrightarrow \alpha = 1 \text{ et } \beta = \gamma = 0.$

I.C.3) Si l'un des trois réels α_2 , α_3 ou α_4 vaut $1-\alpha_1$, la condition $\alpha_1+\alpha_2+\alpha_3+\alpha_4=1$ impose aux deux autres d'être nuls puis $\alpha_1=0$ ou $\alpha_1=1$. Ceci fournit les 4 solutions extrémales (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1). Sinon, les trois réels α_2 , α_3 et α_4 sont égaux à α_1 ce qui fournit la solution $(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$.

$$\mathscr{S} = \left\{ (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}) \right\}.$$

Partie II - Les polynômes de Taylor

II.A - Soient $F = \mathbb{R}_n[X] = \mathrm{Vect}\left((X - \alpha)^p\right)_{0 \le p \le n}$ et $G = \mathrm{Vect}\left((X - \alpha)^p\right)_{p \ge n+1}$. Puisque la famille $\left((X - \alpha)^p\right)_{p \in \mathbb{N}}$ est une base de $\mathbb{R}[X]$, on a $\mathbb{R}[X] = F \oplus G$.

Soit $P \in \mathbb{R}[X]$. $T_{n,\alpha}(P) \in F$ et d'après la formule de Taylor, $P - T_{n,\alpha}(P) = \sum_{p=n+1}^{+\infty} \frac{P^{(p)}(\alpha)}{p!} (X-\alpha)^p \in G$ (la somme étant finie). Ainsi, $T_{n,\alpha}$ est le projecteur sur F parallèlement à G.

 $\mathrm{Im}(T_{n,\alpha}) = F = \mathbb{R}_p[X] \ \mathrm{et} \ \mathrm{Ker}(T_{n,\alpha}) = G = (X-\alpha)^{n+1}\mathbb{R}[X]. \ \mathrm{Ker}(T_{n,\alpha}) \ \mathrm{est} \ \mathrm{l'ensemble} \ \mathrm{des} \ \mathrm{multiples} \ \mathrm{du} \ \mathrm{polynôme} \ (X-\alpha)^{n+1} \ \mathrm{ou} \ \mathrm{encore} \ \mathrm{l'id\'eal} \ \mathrm{de} \ \mathbb{R}[X] \ \mathrm{engendr\'e} \ \mathrm{par} \ (X-\alpha)^{n+1}.$

II.B - Soit $(R, S) \in (\mathbb{R}_m[X])^2$. D'après I.A.2),

$$U(X) = R(X)L_m(1-X) + S(X)L_m(X) = R(X)(1-L_m(X)) + S(X)L_m(X) = R(X) + (S(X)-R(X))L_m(X).$$

Mais d'après I.B.1), 0 est racine d'ordre m+1 de L_m et donc le polynôme $(S-R)L_m$ est dans $X^{m+1}\mathbb{R}[X]$. On en déduit que $T_{m,0}(U)=R$. De même, puisque 1 est racine d'ordre m+1 du polynôme $L_m(1-X)$, $T_{m,1}(U)=S$

$$\forall (R,S) \in (\mathbb{R}_m[X])^2, \ T_{m,0}(U) = R \ \mathrm{et} \ T_{m,1}(U) = S.$$

II.C -

II.C.1) Soit $P \in \mathbb{R}_n[X]$. Déjà, $\deg(\Phi(P)) \le m + (2m+1) = 3m+1 \le (n-1)+1 = n$ ce qui montre que $\varphi(P) \in \mathbb{R}_n[X]$. La linéarité de Φ étant claire, on a donc $\Phi \in \mathcal{L}(\mathbb{R}_n[X])$.

D'après 1), $T_{m,0}(\Phi(P)) = P_0$ et $T_{m,1}(\Phi(P)) = P_1$. Donc,

$$\Phi(\Phi(P))(X) = T_{m,0}(\Phi(P))L_m(X) + T_{m,1}(\Phi(P))L_m(1-X) = P_0L_m(X) + P_1L_m(1-X) = \Phi(P).$$

Ainsi, Φ est un endomorphisme idempotent de $\mathbb{R}_n[X]$ et donc

Φ est un projecteur de $\mathbb{R}_n[X]$.

 $\begin{array}{l} \textbf{II.C.2)} \ \ \text{D\'eterminons} \ \ \text{Ker}(\Phi). \ \ \text{Soit donc} \ \ P \in \text{Ker}(\Phi). \ \ \text{On a donc} \ \ P_0(X)L_m(1-X) + P_1(X)L_m(X) = 0 \ \text{ou encore, puisque} \\ L_m(1-X) = 1 - L_m(X), \ \ P_0(X) = (P_0(X) - P_1(X))L_m(X). \ \ \text{Comme} \ \ 0 \ \ \text{est racine d'ordre} \ \ m+1, \ \ \text{le polynôme} \ \ P_0(X) = (P_0(X) - P_1(X))L_m(X) \ \ \text{est de valuation au moins \'egale \`a} \ \ m+1. \ \ \text{Comme} \ \ d'autre part, \ P_0 \ \ \text{est de degr\'e} \ \ \text{au plus} \ \ m, \ \ \text{on en d\'eduit que} \ \ P_0 = 0. \ \ \text{Il reste} \ \ P_1(X)L_m(X) = 0 \ \ \text{et donc} \ \ P_1 = 0. \ \ \text{En r\'esum\'e}, \ \ \text{si} \ \ \Phi(P) = 0 \ \ \text{alors} \ \ P_0 = P_1 = 0. \ \ \text{La r\'eciproque} \ \ \ \text{\'etant claire, on a montr\'e que} \end{array}$

$$\mathrm{Ker}(\Phi) = \mathrm{Ker}(T_{m,0}) \cap \mathrm{Ker}(T_{m,1}) \cap \mathbb{R}_n[X] = (X^{m+1}\mathbb{R}[X]) \cap ((1-X)^{m+1}\mathbb{R}[X]) \cap \mathbb{R}_n[X] = X^{m+1}(1-X)^{m+1}\mathbb{R}[X] \cap \mathbb{R}_n[X].$$

$$\mathrm{Ker}(\Phi) = X^{m+1}(1-X)^{m+1}\mathbb{R}[X] \cap \mathbb{R}_n[X] = \mathrm{Vect}(X^{m+1}(1-X)^{m+1}X^k)_{0 \leq k \leq n-(2m+2)} \ \mathrm{et} \ \dim(\mathrm{Ker}(\Phi)) = n-2m-1.$$

On en déduit encore que $\dim(\operatorname{Ker}(\Phi-\operatorname{Id}))=\dim(\operatorname{Im}(\Phi))=(\mathfrak{n}+1)-(\mathfrak{n}-2\mathfrak{m}-1)=2\mathfrak{m}+2.$ Comme d'autre part $\operatorname{Im}(\Phi)$ est engendrée par la famille $(X^kL_{\mathfrak{m}}(X))_{0\leq k\leq \mathfrak{m}}\cup (X^kL_{\mathfrak{m}}(1-X))_{0\leq k\leq \mathfrak{m}},$ cette famille est une base de $\operatorname{Im}(\Phi)$.

$$\operatorname{Im}(\Phi) = \operatorname{Vect}((X^k L_{\mathfrak{m}}(X))_{0 \leq k \leq \mathfrak{m}} \cup (X^k L_{\mathfrak{m}}(1-X))_{0 \leq k \leq \mathfrak{m}}) \text{ et } \dim(\operatorname{Im}(\Phi)) = 2\mathfrak{m} + 2.$$

Partie III - Un raccord

III.A -

III.A.1) Unicité. Soient Q_1 et Q_2 deux polynômes vérifiant les conditions de l'énoncé. Le polynôme $Q_2 - Q_1$ est alors de degré au plus 3 et admet -1 et 1 pour racines d'ordre au moins 2. On en déduit que $Q_2 - Q_1$ est le polynôme nul ce qui démontre l'unicité de Q_1 .

Existence. Le polynôme L_1 est de degré 3, admet 0 pour racine d'ordre 2, prend la valeur 1 en 1 et de plus $L_1'(1)=0$.

Donc, le polynôme
$$Q_1 = L_1\left(\frac{1+X}{2}\right)$$
 convient. De plus, $Q_1 = -2\left(\frac{X+1}{2}\right)^3 + 3\left(\frac{X+1}{2}\right)^2 = \frac{1}{4}(-X^3 + 3X + 2)$.

$$Q_1 = \frac{1}{4}(-X^3 + 3X + 2).$$

III.A.2) De même, le polynôme $Q_2 = L_2\left(\frac{1+X}{2}\right)$ convient et est le seul. De plus,

$$Q_2 = 6\left(\frac{1+X}{2}\right)^5 - 15\left(\frac{1+X}{2}\right)^4 + 10\left(\frac{1+X}{2}\right)^3 = \frac{1}{16}(3X^5 - 10X^3 + 15X + 8).$$

$$Q_2 = \frac{1}{16}(3X^5 - 10X^3 + 15X + 8).$$

III.B - Posons g = (x, y) puis montrons que x et y sont de classe C^1 sur \mathbb{R} . La fonction x est déjà de classe C_1 sur $]-\infty,-1[$, sur [-1,1] et sur $]1,+\infty[$ de même que la fonction y.

Soit f la fonction dont les restrictions à $]-\infty,-1]$ et $[1,+\infty[$ sont x_1 et x_2 . Posons $f(t)=f_1\left(\frac{1+t}{2}\right)$ ou encore $f_1(t)=f_1(t)$

f(2t-1). La question II.B - montre que si P_0 et P_1 sont les polynômes de Taylor à l'ordre 1 en 0 et 1 respectivement de la fonction f_1 , la fonction $t \mapsto P_0(t)L_1(1-t)+P_1(t)L_1(t)$ a mêmes polynômes de Taylor à l'ordre 1 en 0 et 1 respectivement. Mais alors, par changement de variables, la fonction

$$t \mapsto P_0\left(\frac{1+t}{2}\right) L_1\left(\frac{1-t}{2}\right) + P_1\left(\frac{1+t}{2}\right) L_1\left(\frac{1+t}{2}\right) = Q_1(-t)h_1(t) + Q_1(t)h_2(t) = x_3(t)$$

a mêmes polynômes de TAYLOR à l'ordre 1 en -1 et 1 respectivement que la fonction f. Ceci montre que x est de classe C^1 sur \mathbb{R} et il en est de même de y.

g est de classe
$$C^1$$
 sur \mathbb{R} .

III.C - Le support de g_1 (resp. g_2) est la demi-droite d'équation $y=-x, x \le -1$ (resp. $y=x, x \ge 1$). Pour $t \in [-1,1]$,

$$\begin{split} x_3(t) &= \frac{1}{4}(-(-t)^3 + 3(-t) + 2)(-1 + \alpha(t+1)) + \frac{1}{4}(-t^3 + 3t + 2)(1 + \alpha(t-1)) \\ &= \frac{1}{4}\left((t^3 - 3t)(2\alpha - 2) + 2(2\alpha t)\right) = \frac{1}{2}((\alpha - 1)t^3 - (\alpha - 3)t), \end{split}$$

et

$$y_3(t) = \frac{1}{4}(t^3 - 3t + 2)(1 - a(t+1)) + \frac{1}{4}(-t^3 + 3t + 2)(1 + a(t-1))$$
$$= \frac{1}{4}((t^3 - 3t)(-2at) + 2(2 - 2a)) = \frac{1}{2}(-at^4 + 3at^2 + 2 - 2a).$$

$$\forall t \in [-1,1], \ g_3(t) = \left(\frac{1}{2}((\alpha-1)t^3 - (\alpha-3)t), \frac{1}{2}(-\alpha t^4 + 3\alpha t^2 + 2 - 2\alpha)\right).$$

$$y\left(\pm\sqrt{\frac{\alpha-3}{\alpha-1}}\right) = \frac{1}{2}\left(-\alpha\left(\frac{\alpha-3}{\alpha-1}\right)^2 + 3\alpha\frac{\alpha-3}{\alpha-1} + 2 - 2\alpha\right) = \frac{-\alpha(\alpha-3)^2 + 3\alpha(\alpha-1)(\alpha-3) - 2(\alpha-1)^3}{2(\alpha-1)^2} = \frac{1-3\alpha}{(\alpha-1)^2}.$$

Ceci montre déjà que le raccord coupe (Oy) en au plus deux points. Enfin,

$$1-\alpha = \frac{1-3\alpha}{(\alpha-1)^2} \Leftrightarrow -(\alpha-1)^3 = 1-3\alpha \Leftrightarrow -\alpha^3+3\alpha^2 = 0 \Leftrightarrow \alpha \in \{0,3\},$$

et donc pour a > 3, $y(0) \neq y\left(\pm\sqrt{\frac{a-3}{a-1}}\right)$.

Si a > 3, le raccord coupe (0y) en deux points distincts, les points (0, 1-a) et $\left(0, \frac{1-3a}{(a-1)^2}\right)$.

Partie IV - Une animation

IV.A -

I.A.1) Les quatre points A_i , $1 \le i \le 4$, ne sont pas coplanaires et en particulier sont deux à deux distincts.

Soit $i \in [1,4]$. Les points $(A_j)_{j \neq i}$ définissent un unique plan. On note $a_ix + b_iy + c_iz + d_i = 0$, $(a_i,b_i,c_i) \neq (0,0,0)$ une équation de ce plan. La point A_i n'est pas dans ce plan et donc $a_ix_i + b_iy_i + c_iz_i + d_i \neq 0$. Une autre équation de ce plan est alors $u_ix + v_iy + c_iz + d_i = 0$ où $u_i = \frac{a_i}{a_ix_i + b_iy_i + c_iz_i + d_i}$, $v_i = \frac{b_i}{a_ix_i + b_iy_i + c_iz_i + d_i}$, $w_i = \frac{c_i}{a_ix_i + b_iy_i + c_iz_i + d_i}$ Posons alors $g_i(M) = u_i x + v_i y + c_i z + h_i$. Par construction, $(u_i, v_i, w_i) \neq (0, 0, 0)$ et $\forall j \in [1, 4]$, $g_i(A_j) = \delta_{i,j}$.

$$\forall i \in [\![1,4]\!], \ \exists g_i = u_i x + v_i y + w_i z + h_i / \ (u_i,v_i,w_i) \neq (0,0,0) \ \mathrm{et} \ \forall j \in [\![1,4]\!], \ g_i(A_j) = \delta_{i,j}.$$

IV.A.2) D'après la question précédente on a

$$\begin{pmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{pmatrix} \times \begin{pmatrix} u_1 & u_2 & u_3 & u_4 \\ v_1 & v_2 & v_3 & v_4 \\ w_1 & w_2 & w_3 & w_4 \\ h_1 & h_2 & h_3 & h_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

La matrice $\begin{pmatrix} u_1 & u_2 & u_3 & u_4 \\ v_1 & v_2 & v_3 & v_4 \\ w_1 & w_2 & w_3 & w_4 \\ h_1 & h_2 & h_3 & h_4 \end{pmatrix}$ est donc inversible. On en déduit que ses trois premières lignes sont linéairement indépendantes et donc que la matrice $\begin{pmatrix} u_1 & u_2 & u_3 & u_4 \\ v_1 & v_2 & v_3 & v_4 \\ w_1 & w_2 & w_3 & w_4 \end{pmatrix}$ est de rang 3. Ce rang est encore le rang de la famille

 $(\phi_i)_{1 < i < 4}$.

$$\operatorname{rg}(\phi_{\mathfrak{i}})_{1\leq \mathfrak{i}\leq 4}=3.$$

IV.B -

I.B.1) Soit $i \in [1,4]$.

$$g(A_i) = \sum_{j=1}^4 g_j(A_i) = \sum_{j=1}^4 \delta_{i,j} = 1.$$

g est une forme affine et coïncide avec la forme affine $(x,y,z)\mapsto 1$ sur le repère affine (A_1,A_2,A_3,A_4) . On en déduit que $\forall (x,y,z)\in\mathbb{R}^3,\ g((x,y,z))=1$.

$$\forall (x,y,z) \in \mathbb{R}^3, \ g((x,y,z)) = 1.$$

 $\begin{aligned} \mathbf{IV.B.2)} & \text{ Soit } M \in \mathscr{E}_3. \text{ Puisque } (A_1, A_2, A_3, A_4) \text{ est un repère affine, } M \text{ est un barycentre des points } A_i, \ 1 \leq i \leq 4. \text{ Posons} \\ M &= \sum_{i}^4 \lambda_j A_j \text{ avec } \sum_{i}^4 \lambda_j = 1. \text{ Soit } i \in \llbracket 1, 4 \rrbracket. \end{aligned}$

$$g_{\mathfrak{i}}(M) = \sum_{j=1}^{4} \lambda_{j} g_{\mathfrak{i}}(A_{j}) = \sum_{j=1}^{4} \lambda_{j} \delta_{\mathfrak{i},j} = \lambda_{\mathfrak{i}}.$$

Donc,

$$\forall M \in \mathscr{E}_3, \ M = \mathrm{bar}((A_i,g_i(M)))_{1 \leq i \leq 4}.$$

IV.B.3) Soient $(i,j) \in [1,4]$ tel que $i \neq j$ puis $M \in \mathcal{E}_3$. $\exists \lambda \in [0,1]/; M = \lambda A_i + (1-\lambda)A_j$. Dans ce cas, on a $g_i(M) = \lambda$, $g_i(M) = 1 - \lambda$ et pour $k \notin \{i,j\}$, $g_k(M) = 0$. Mais alors, d'après I.A.2),

$$G(M) = L_m(\lambda) + L_m(1 - \lambda) + L_m(0) + L_m(0) = 1.$$

$$\forall i \neq j, \ \forall M \in [A_i, A_j], \ G(M) = 1.$$

IV.C -

IV.C.1) • Soit $M \in \Delta$.

$$OM = \left\| \sum_{i=1}^4 g_i(M) \overrightarrow{OA_i} \right\| \leq \sum_{i=1}^4 |g_i(M)| OA_i = \sum_{i=1}^4 g_i(M) OA_i \leq \sum_{i=1}^4 OA_i.$$

Donc Δ est une partie bornée de \mathcal{E}_3 .

• Soit $i \in [1,4]$. g_i est une forme affine et en particulier g_i est continue sur \mathcal{E}_3 .

Mais alors $\Delta_i = \{M \in \mathcal{E}_3 / 0 \le g_i(M) \le 1\} = g_i^{-1}([0,1])$ est un fermé de \mathcal{E}_3 en tant qu'image réciproque d'un fermé de \mathbb{R} par une application continue.

On en déduit que $\Delta = \bigcap_{1 \leq i \leq 4} \Delta_i$ est un fermé de \mathcal{E}_3 en tant qu'intersection de fermés de \mathcal{E}_3 .

 Δ est ainsi une partie fermée et bornée de \mathcal{E}_3 et puisque \mathcal{E}_3 est de dimension finie sur \mathbb{R} , le théorème de BOREL-LEBESGUE permet d'affirmer que

Δ est un compact de \mathcal{E}_3 .

IV.C.2) Considérons la face $A_1A_2A_3$ notée \mathscr{F} . Elle est constituée des $\alpha A_1 + \beta A_2 + \gamma A_3$ tels que $(\alpha, \beta, \gamma) \in (\mathbb{R}^+)^3$ et $\alpha + \beta + \gamma = 1$. C'est un compact de \mathscr{E}_3 en tant qu'image du compact $\{(\alpha, \beta, \gamma) \in (\mathbb{R}^+)^3 / \alpha + \beta + \gamma = 1\}$ de \mathbb{R}^3 par l'application continue $(\alpha, \beta, \gamma) \mapsto \alpha A_1 + \beta A_2 + \gamma A_3$. Comme G est continue sur le compact \mathscr{F} à valeurs dans \mathbb{R} , G admet sur \mathscr{F} un minimum et un maximum.

 \mathscr{F} est constituée des points $M=\alpha A_1+\beta A_2+\gamma A_3,\ \alpha+\beta+\gamma=1,\ \alpha>0,\ \beta>0,\ \gamma>0.$ Pour un tel point M, on a $g_1(M)=\alpha,\ g_2(M)=\beta$ et $g_3(M)=\gamma.$ On en déduit que

$$G(M) = G(\alpha A_1 + \beta A_2 + \gamma A_3) = L_m(\alpha) + L_m(\beta) + L_m(\gamma) = L_m(\alpha) + L_m(\beta) + L_m(1 - \alpha - \beta).$$

Posons $T = \{(\alpha, \beta) \in \mathbb{R}^2 / \alpha \ge 0, \ \beta \ge 0, \ \alpha + \beta \le 1\}$ et pour $(\alpha, \beta) \in T$, $\tilde{G}((\alpha, \beta)) = G(M) = L_m(\alpha) + L_m(\beta) + L_m(1 - \alpha - \beta)$. D'après 1), on sait que \tilde{G} prend la valeur 1 sur le bord de T. D'autre part, puisque \tilde{G} est de classe C^1 sur l'ouvert \tilde{T} , si \tilde{G} admet un extremum en un point de \tilde{T} , ce point est un point critique de \tilde{G} . Or

$$\frac{\partial \tilde{G}}{\partial \alpha}((\alpha,\beta)) = L_{\mathfrak{m}}'(\alpha) - L_{\mathfrak{m}}'(1-\alpha-\beta) = L_{\mathfrak{m}}'(\alpha-L_{\mathfrak{m}}'(\gamma) \text{ et } \frac{\partial \tilde{G}}{\partial \beta}((\alpha,\beta)) = L_{\mathfrak{m}}'(\alpha-L_{\mathfrak{m}}'(\gamma).$$

http://www.maths-france.fr

Par suite, $\frac{\partial \tilde{G}}{\partial \alpha}((\alpha,\beta)) = \frac{\partial \tilde{G}}{\partial \beta}((\alpha,\beta)) = 0 \Leftrightarrow L_m'(\alpha) = L_m'(\beta) = L_m'(\gamma)$. Puisque α , β et γ sont strictement positifs, ces égalités sont équivalentes à $\alpha = \beta = \gamma = \frac{1}{3}$ d'après I.C.2). Dans ce cas, $G(M) = 3L_m\left(\frac{1}{3}\right)$. Enfin, d'après I.B.2) et I.A.2), on a $\frac{L_m(1/3)}{1/3} < \frac{L_m(1/2)}{1/2} = 1$ ou encore $3L_m\left(\frac{1}{3}\right) < 1$.

Résumons le travail précédent. La fonction G admet sur $\mathscr F$ un maximum et un minimum. Comme G prend la valeur 1 sur le bord de $\mathscr F$ et admet un et un seul point critique à l'intérieur de $\mathscr F$ en lequel la valeur est strictement plus petite que 1, on en déduit que G admet son minimum en le point $M_0 = \frac{1}{3}(A_1 + A_2 + A_3)$ et que ce minimum vaut $3L_m\left(\frac{1}{3}\right)$ et admet son maximum en tout point du bord de $\mathscr F$ et que ce maximum vaut 1.

Sur une face,

 $G \ atteint \ son \ maximum \ en \ tout \ point \ du \ bord \ et \ son \ maximum \ vaut \ 1,$ $G \ atteint \ son \ minimum \ en \ son \ isobarycentre \ et \ son \ minimum \ vaut \ 3L_m \left(\frac{1}{3}\right).$

IV.C.3) Puisque
$$\Omega = \frac{1}{4}(A_1 + A_2 + A_3 + A_4), G(\Omega) = 4L_m(\frac{1}{4}).$$

Pour $i \in [1,4]$, g_i est une application affine. Donc sa différentielle en tout point est sa partie linéaire ϕ_i . On en déduit que

$$\forall M \in \mathscr{E}_3, \ dG_M = \sum_{i=1}^4 L_{\mathfrak{m}}'(\mathfrak{g}_i(M))\phi_i.$$

 $\mathrm{Maintenant,\ d'après\ IV.B.1),\ \sum_{i=1}^{4}g_{i}=1.\ \mathrm{En\ diff\acute{e}rentiant,\ on\ obtient}\ \sum_{i=1}^{4}\phi_{i}=0.\ \mathrm{Donc,\ }dG_{\Omega}=L'_{\mathfrak{m}}\left(\frac{1}{4}\right)\sum_{i=1}^{4}\phi_{i}=0.$

$$G(\Omega)=4L_{\mathfrak{m}}\left(\frac{1}{4}\right)\,\mathrm{et}\,\,dG_{\Omega}=0.$$

IV.C.4) Soit $M \in \Delta$. En tenant compte de $\sum_{i=1}^{4} \varphi_i = 0$ et du fait que $(\varphi_1, \varphi_2, \varphi_3, \varphi_4)$ est de rang 3 de sorte que $(\varphi_1, \varphi_2, \varphi_3)$ est libre, on a

$$\begin{split} dG_M = 0 &\Leftrightarrow \sum_{i=1}^3 \left(L_m'(g_i(M)) - L_m'(g_4(M)) \right) \phi_i = 0 \Leftrightarrow L_m'(g_1(M)) = L_m'(g_2(M)) = L_m'(g_3(M)) = L_m'(g_4(M)) \\ &\Leftrightarrow M \in \{A_1, A_2, A_3, A_4, \Omega \text{ (d'après I.C.3)}). \end{split}$$

Les points critiques de G, éléments de Δ sont $A_1,\,A_2,\,A_3,\,A_4$ et $\Omega.$

IV.C.5) Par un raisonnement identique à celui de la question IV.C.2), on obtient

 $G \ {\rm atteint \ son \ maximum \ en \ tout \ point \ d'une \ arête \ de \ } A_1A_2A_3A_4 \ {\rm et \ } G_{max}=1,$ $G \ {\rm atteint \ son \ minimum \ en \ } \Omega \ {\rm et \ son \ minimum \ vaut \ } G_{min}=4L_m\left(\frac{1}{4}\right).$

IV.D -

IV.D.1) D'après IV.C.4), on sait déjà que le point O et les sommets A_i , $1 \le i \le 4$, sont des points critiques de G. Comme $O \notin \Sigma$ et que $\forall i \in [\![1,4]\!]$, $A_i \in \Sigma$, on a déjà quatre points singuliers de Σ à savoir les points A_i , $1 \le i \le 4$. Déterminons s'il y en a d'autres.

Soit $(x, y, z) \in \mathbb{R}^3$.

$$\begin{cases} \frac{\partial G}{\partial x}((x,y,z)) = 0 \\ \frac{\partial G}{\partial y}((x,y,z)) = 0 \\ \frac{\partial G}{\partial z}((x,y,z)) = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{3}{8}(2x - 2yz) = 0 \\ \frac{3}{8}(2y - 2xz) = 0 \\ \frac{3}{8}(2z - 2xy) = 0 \end{cases} \Leftrightarrow \begin{cases} z = xy \\ x(1 - y^2) = 0 \\ y(1 - x^2) = 0 \end{cases}$$
$$\Leftrightarrow (x,y,z) \in \{(0,0,0), (1,1,1), (-1,-1,1), (-1,1,-1)\}.$$

Les points singuliers de Σ sont les quatre points $A_i, 1 \le i \le 4$.

IV.D.2) Soit $P(a,b,c) \in \mathcal{E}_3$ tel que $a^2 + b^2 + c^2 = 3$. Un point du segment [OP] est un point de la forme $Q = (ta, tb, tc), t \in [0,1]$.

Pour $t \in [0, 1]$, posons

$$h(t) = G(ta, tb, tc) = \frac{1}{8}(3t^2(a^2 + b^2 + c^2) - 6t^3abc) + 5) = \frac{1}{8}(-6abct^3 + 9t^2 + 5).$$

Pour $t \in [0,1]$, $h'(t) = \frac{9t}{4}(1-abct)$. D'après le résultat admis par l'énoncé, on a $|abc| \le 1$ de sorte que $\frac{1}{|abc|} \ge 1$. Par suite, h' est strictement positive sur]0,1[et donc h est strictement croissante sur [0,1]. De plus $h(0) = \frac{5}{8} < 1$ et $h(1) = \frac{7-3abc}{4} \ge \frac{7-3\times 1}{4} = 1$ et puisque h est continue sur [0,1], h prend une et une seule fois la valeur 1, ou encore

$$\forall P \in S(O, \sqrt{3}), \ \exists ! Q \in [OP]/\ Q \in \Sigma.$$

IV.D.3) • Ainsi, depuis le point O, dans toute direction, on voit un et un seul point de Σ' .

- La question IV.C.5) montre que les arêtes du tétraèdre $A_1A_2A_3A_4$ sont contenues dans Σ' et que tout autre point du tétraèdre n'est pas sur Σ' (et est plus précisément intérieur à Σ').
- L'intersection de Σ' avec la sphère $S(O, \sqrt{3})$ est constituée des points A_1, A_2, A_3 et A_4 .

IV.D.4) Soit $M(x, y, z) \in \mathcal{E}_3$. On note (P) le plan médiateur du segment $[A_3A_4]$. Puisque (P) contient O, l'intersection de (P) et de $\overline{B}(O, \sqrt{3})$ est un disque de centre O et de rayon $\sqrt{3}$. Ensuite

$$\begin{split} M \in (P) \cap \Sigma &\Leftrightarrow \left\{ \begin{array}{l} x+y=0 \\ \frac{1}{8}[3(x^2+y^2+z^2-2xyz)+5] = 1 \end{array} \right. \\ &\Leftrightarrow \left\{ \begin{array}{l} y=-x \\ 2x^2+z^2+2x^2z=1 \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} y=-x \\ (z+1)(2x^2+z-1) = 0 \end{array} \right. \\ &\Leftrightarrow \left\{ \begin{array}{l} y=-x \\ z=-1 \end{array} \right. \\ \end{aligned}$$

 $(P) \cap \Sigma \text{ est donc la réunion de la droite } \mathscr{D} \text{ d'équations } \left\{ \begin{array}{l} y = -x \\ z = -1 \end{array} \right. \text{ et de la courbe } \mathscr{D} \text{ d'équations } \left\{ \begin{array}{l} y = -x \\ z = -2x^2 + 1 \end{array} \right. .$

Pour tracer ces deux courbes, changeons de repère orthonormé et prenons comme plan (XOY) le plan (P). La matrice de

ce changement de repère est
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$
 et les formules de changement de repère s'écrivent
$$\begin{cases} x = \frac{X+Z}{\sqrt{2}} \\ y = \frac{-X+Z}{\sqrt{2}} \\ z = Y \end{cases}$$

Un système d'équations de \mathcal{D} dans le nouveau repère est $\left\{ \begin{array}{l} Y=-1\\ Z=0 \end{array} \right.$ et un système d'équations de \mathcal{D} dans le nouveau repère est $\left\{ \begin{array}{l} Y=-2\\ Z=0 \end{array} \right.$ et un système d'équations de \mathcal{D} dans le nouveau repère est $\left\{ \begin{array}{l} Y=-1\\ Z=0 \end{array} \right.$ et un système d'équations de \mathcal{D} dans le nouveau repère est $\left\{ \begin{array}{l} Y=-1\\ Z=0 \end{array} \right.$ est une parabole.

IV.D.5) Pour $G = G_{\text{Min}} = 0$, S_{α} est le point Ω . Quand α croît, S_{α} grossit à l'intérieur du tétrèdre puis vient toucher les faces du tétraèdre, les traverse et dans sa position finale obtenue pour $G = G_{\text{max}} = 1$, contient les sommets et les arètes du tétraèdre.