• Resposta em freqüência de amplificadores.

Considerações gerais

As figuras abaixo mostram gráficos típicos do ganho versus freqüência de um amplificador. Note que há uma faixa de freqüência na qual o valor do ganho é igual ou próximo ao valor nas freqüências médias. Para escolhermos os limites de freqüência em que temos um ganho relativo, $0,707A_{vméd}$ é o ganho escolhido para especificar as freqüências que delimitam esta faixa (freqüências de corte). As freqüências f_1 e f_2 são chamadas freqüências de cortes, inferior e superior respectivamente e f_2 - f_1 é a largura de banda ou faixa de passagem -3dB do amplificador.

Gráfico do ganho normalizado versus freqüência

Gráfico do ganho normalizado em dB versus freqüência

• Análise para baixa freqüência – Diagrama de Bode

Para o Amplificador a transistor Bipolar de único estágio, nas baixas freqüências, quem determina a freqüência de corte inferior é a combinação de R-C formada pelos capacitores de bloqueio DC, desaclopamento de emissor e os parâmetros resistivos. Na verdade, pode-se estabelecer para cada elemento capacitivo um circuito RC semelhante ao da figura abaixo, e determinar a freqüência na qual o ganho de tensão cai a 0,707 ($\ddot{\mathbf{0}}$ 2) do seu valor máximo. Uma vez determinadas as freqüências de corte para cada capacitor, a freqüência de corte inferior pode ser levantada.

Combinação RC que derteminará a frequência de corte inferior (Passa altas)

As tensões de entrada e saída são relacionadas pelas regra do divisor de tensão:

$$V_0 = R/(R+X_C).V_e$$

com a amplitude de V_0 (módulo) determinada por:

$$\frac{1}{2}\sqrt{2} = \{ [R/(R+X_C)] . [R/(R+X_C^*)] \}^{1/2} . \frac{1}{2}\sqrt{2}$$

onde X^*_C é o complexo comjugado de X_C , assim

$$1/2V_0$$
 $1/2 = R/(R^2 + X^2_C)^{1/2}$ $1/2V_e$ $1/2$

Para o caso especial em que $R = \frac{1}{2} K_C \frac{1}{2}$

$$1/2V_01/2 = 1/(2)^{1/2}1/2V_e1/2$$

$$1/2$$
 $1/2$

Em logarítmo,

$$G_v = 20logA_v = 20 log(0,707) = -3dB$$

Portanto a frequencia de corte inferior é determinada de

$$X_C = 1/2 \mathbf{p} f_I C = R \implies f_I = 1/2 \mathbf{p} R C$$

Em freqüências muito altas,

$$|X_C| = 1/2 pfC \gg 0$$

e o capacitor pode ser substituido por um curto cirtuito equivamente. O resultado é que $V_0 \gg V_e$ para altas freqüências . Em $f=0H_Z$,

$$|X_C| = 1/2 pfC \otimes \mathbf{Y} \mathbf{W}$$

e o resultado é V_0 » 0V.

Entre os dois resultados, a razão $\frac{1}{2}A_v\frac{1}{2}=\frac{1}{2}V_0$ / V_e $\frac{1}{2}$ rá variar de forma mostrada na figura abaixo. A medida que a freqüência aumenta, a reatância capacitiva diminui, e maior é a porção de entrada que aparece entre os terminais de saída.

Resposta em frequencia do circuito RC (passa altas)

Diagrama de Bode

A equação do ganho A_v pode ser escrita na forma

$$A_{v} = V_{0}/V_{e} = R/(R-j/wC) = R/(R-j/2pfC)$$

e considerando a freqüência definida acima,

$$A_{v} = 1/(1-if/f_1)$$

Na forma de amplitude e fase,

Amplitude de
$$V_0$$
 Diferença de fase entre de V_0 e V_e

$$A_v = |A_v| \angle A_v = 1/(1 + (f_1/f_1)^2)^{1/2} \operatorname{arctang} f_1/f$$

A amplitude quando $f = f_I$,

$$|A_v| = 1/(1+1)^{1/2} = 1/\ddot{\boldsymbol{0}}2 \gg 0,707 \rightarrow -3 \ dB$$

e a fase entre V_0 e V_e ,

$$\angle A_v = arctang \ 1 = 45^{\circ}$$

Em logaritmo, o ganho em B é

$$A_{v(dB)} = 20log[1/(1+(f_1/f)^2)^{1/2}] = -20log(1+(f_1/f)^2)^{1/2}$$

$$A_{v(dB)} = -10log(1+(f_1/f)^2)$$

 $e para f << f_1$

$$A_{v(dB)} \approx -20log(f_1/f)^2 = -20log f_1/f \qquad (assintota)$$
 (175)

 $E para f >> f_1$

$$A_{v(dB)} \gg -10log(1) = 0dB$$
 (assíntota) (176)

O gráfico das equações (175) e (176) produzirá em uma escala log de freqüência resultados muito utilizados em futuros gráficos em decibel.

O gráfico de assíntotas com os pontos de quebra associados é chamado de diagrama de Bode.

Resposta de fase do Passa altas RC

✓ Resposta em baixas freqüências - Amplificador a TBJ (Bipolar)

Análise a ser realizada empregará a configuração de polarização por divisor de tensão com resistor de carga R_L e de fonte R_S , mas os resultados obtidos podem ser aplicados a qualquer configuração do TBJ. Será necessário apenas encontrar a resistência equivalente apropriada para a combinação R-C. Para o circuito da figura abaixo, os capacitores C_S , C_C e C_E determinarão a resposta em baixas freqüências. Examinaremos agora, o efeito de cada um, independentemente, na ordem listada.

Amplificador com capacitores que afetam a resposta em baixas freqüências

Efeito de C_S

Como C_S está normalmente conectado entre a fonte aplicada e o dispositivo ativo, a forma geral da configuração R-C é estabelecida pelo circuito da figura abaixo. A resistência total é agora R_S + R_i e a freqüência de corte determinada utilizando o procedimento descrito anteriormente é

$$f_{sL} = 1/[2 \mathbf{p} (R_S + R_i) C_s]$$
 (177)

Determinando o efeito de C_s na resposta em baixas freqüências

Nas frequências médias e altas, a reatância capacitiva será pequena o suficiente para considerarmos o elemento um curto circuito. A relação entre v_i e v_e será, portanto,

$$V_i = R_i V_s / (R_i + R_s) \tag{178}$$

Em f_{sL} a tensão será 70,7% do valor determinado pela equação (178), assumindo que C_S é o único elemento capacitivo controlando a resposta em baixas freqüências.

Quando analisamos os efeitos de C_S no circuito do amplificador em questão devemos considerar que C_E e C_C estão operando de modo esperando, pois do contrário a análise torna-se impraticável. Ou seja, consideramos que os valores das reatâncias permitem o emprego de curto circuito equivalente, quando comparado as outras impedâncias em série. Utilizando esta hipótese o circuito equivalente AC para entrada é da forma mostrada abaixo.

O valor de R_i é dado por

$$R_i = R_1 / / R_2 / / \mathbf{b} r_e$$

Circuito equivalente de entrada

Efeito de C_C

Como o capacitor de acoplamento está normalmente conectado entre a saída do dispositivo ativo e a carga aplicada, a configuração R-C que determina a freqüência de corte inferior devido a C_C aparece na figura abaixo. Da figura temos que a resistência total em série com o capacitor é agora $R_0 + R_L$ e a freqüência de corte inferior devido a C_C é determinada por

Determinando o efeito de C_C na resposta em baixas freqüências

Ignorando os efeitos de C_S e C_E , a tensão de saída v_0 em f_{Lc} será 70,7% do seu valor no meio da faixa. Para o circuito em questão a circuito equivalente AC para saída, com $v_e = 0$, aparece na figura abaixo. Portanto, o valor resultante para R_0 na equação (179) é simplesmente,

$$R_0 = R_C / / r_0$$

Circuito equivalente de saída com $v_e = 0$

Efeito de C_E

Para determinar f_{Le} , a impedância (resistência) vista pelo capacitor deve der determinada como mostra a figura abaixo. Uma vez estabelecido o valor de R_e , a freqüência de corte devido a C_E pode ser determinada utilizando-se a seguinte equação:

$$f_{Le} = 1/[2\mathbf{p} R_e C_E] \tag{180}$$

Determinando o efeito de C_E na resposta em baixas freqüências

Para o circuito em questão, a impedância vista por C_E aparece na figura abaixo. Portanto, o valor de R_e é determinado por

$$R_e = R_E //(R'_S/\mathbf{b} + r_e)$$
 onde $R'_S = R_S//R_I//R_2$.

Circuito equivalente visto por C_E com $v_e = 0$

Antes de prosseguir, não esqueça que C_S , C_C e C_E afetarão a resposta apenas em baixa freqüências. Para as freqüências no meio do faixa, os capacitores serão considerados como curto circuito. Embora os capacitores afetem o ganho em faixa de freqüências semelhantes, a freqüência de corte inferior mais altas determinadas por C_S , C_C ou C_E terá o maior impacto sobre a resposta do amplificador. Isto porque é a última freqüência de corte antes do meio da faixa. Se as freqüências estão relativamente distantes entre si, a freqüência de corte mais alta determinar a freqüência de corte inferior do amplificador. Se houver duas ou mais freqüências de corte "altas", o resultado será o aumento o aumento da freqüência de corte inferior e a redução da banda passante do amplificador. Em outra palavras, há uma interação entre os elementos capacitivos que podem afetar a freqüência de ocrte inferior. Entretanto, se as freqüências de corte estabelecidas por cada capacitor diferirem suficientemente (10X) entre si, o efeito de uma sobre as outra pode ser desprezado. Como demonstrará o seguinte exercício.

Exercício:

- a) Determine a frequência de corte inferior para o circuito da figura abaixo.
- b) Esboce a resposta em freqüência utilizando um diagrama de Bode.

a) Análise DC (para determinar r_e)

Note que
$$bR_E = 100*2kW >> R_1 //R_2 = 40kW //10kW$$

Então

$$V_B R_2/(R_2+R_1) V_{CC} = 10k W/(10k W+40k W)20V = 4,0V$$

e

$$V_E = V_B - V_{BE} = 4.0V - 0.7V = 3.3V$$

$$I_C \gg I_E = V_E / R_E = 3.3 V / 2k W \gg 1.65 mA$$

$$r_e = V_T / I_C = 26mV / 1,65mA = 15,76W$$

e

b
$$r_e = 100*15,76 = 1,576k$$

- b) Análise AC(ganho no meio da faixa)
- 1) A impedância de entrada

$$Z_i = R_i = R_1//R_2//\mathbf{b} \ r_e = 40k\mathbf{W}//10k\mathbf{W}//1,576k\mathbf{W} \ ** 1,32kW$$

2) Ganho no meio da faixa

$$A_{vI} = v_0 / v_i = -R_C / / R_L / r_e$$
. = $-(4kW / / 2, 2kW) / 15,76W \gg -90$

Mas

$$v_i/v_e = R_i/(R_i + R_S) = 1.32kW/(1.32kW + 1kW) \gg 0.57$$

então

$$A_v = v_0 / v_e = v_0 / v_i v_i / v_e = -90 * 0.57 * -51.2$$

- b) Freqüências de corte
- 1) C_S

$$f_{Ls} = 1/(2\mathbf{p}(R_i + R_S)C_S) = 1/(2\mathbf{p}(1.32k\mathbf{W} + 1k\mathbf{W})10\mathbf{m}F \gg 6.9\mathbf{H}_{\mathbf{Z}}$$

2) *C*_C

$$f_{Lc} = 1/(2\mathbf{p}(R_C + R_L)C_S) = 1/(2\mathbf{p}(4k\mathbf{W} + 2,2k\mathbf{W})1\mathbf{m}F) \approx 25,7\mathbf{H}_Z$$

3) C_E

$$R'_S = R_S / R_1 / R_2 = 1kW / 40kW / 10kW \gg 0.89kW$$

 $R_e = R_E / (R_S / \mathbf{b} + r_e) = 2kW / (0.89 / 100 + 15.76W) \gg 24.3W$
 $f_{Lc} = 1/2 p R_e C_E = 1/2 p (24.3W) (20 mF) \gg 327 H_Z$

c) Esboço do diagrama de Bode

Diagrama de Bode

Simulação

