Standard Normal Distribution

Math 122

Density Functions

- Every continuous random variable has a density function
- The total area under the function is 1
- To find P(a<x<b), we find the area under the function between a and b

Normal Distribution

The most important distribution for statistics.

Normal Distribution with mean μ and standard deviation σ

$$y = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sigma\sqrt{2\pi}}$$

Standard Normal Distribution

• Has mean μ =0 and standard deviation σ =1

$$y = \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}}$$

Usually use z for a standard normal distribution

Standard Normal Distribution

Suppose that z has a standard normal distribution

$$P(-1 < z < 1) = 0.68$$

 $P(-2 < z < 2) = 0.954$ Empirical Rula
 $P(-3 < z < 3) = 0.957$

Inverse Normal Function

To find a number a so that P(z<a)=α use invnorm(α)

Suppose that z has a standard normal distribution

• Find a so that
$$P(z

$$Q = invno(n(0.05))$$

$$= -1.64$$$$

Suppose that z has a standard normal distribution

 Find a and b which separate the middle 95% of values of z from the rest.

α Tails

• The number z_{α} is the unique number so that $P(z>z_{\alpha})=\alpha$

• Find
$$z_{0.01} = |inunum(0.01)| = 2.33$$

• Find $z_{0.005} = 2.59$

Z-Stanlard normal P (12-2-22) = 0.101 P(Z<0.5)=0.691 noral cuf (-9,0.5) Find a # a so that P(2>a) = 0.75 a= invnorm(0.25) = -0.67