Семинар 14

Течение газов. Явления в разреженных газах.

Теория

Гидродинамика

Уравнение Бернулли: $\frac{v^2}{2} + gh + \frac{p}{\rho} = const$

Течение Пуазейля: $\upsilon(r) = \upsilon_{\text{max}} \left(1 - \frac{r^2}{R^2} \right)$

Объемный расход жидкости: $Q_V = \frac{\pi r^4}{8nl} (p_1 - p_2)$

Число Рейнольдса: $Re = \frac{\rho vl}{n} < 0.5$ для ламинарного течения

Расстояние установления ламинарного течения: $a \approx 0.2r \cdot \text{Re}$

Вакуум

Высокий вакуум: $\lambda \gg L$, где $\lambda = 1/\sigma n$ — средняя длина свободного пробега, L — характерный размер сосуда (например, диаметр трубки).

Число Кнудсена: $K_n = \frac{\lambda}{L}$;

Эффект Кнудсена: $\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{1/2}$;

Течение Кнудсена: $j = C\frac{r}{L}(j_1 - j_2)$, где $j_x = \frac{dN}{Sdt} = \frac{n_x \langle \upsilon \rangle_x}{4}$, $C = \frac{8}{3}$ для трубки.

Средняя кинетическая энергия потока газа, уходящего через малое отверстие: 2kT (!!!)