

Dynamic Causal Modeling

Hannes Almgren, Frederik van de Steen, Daniele Marinazzo

daniele.marinazzo@ugent.be @dan_marinazzo

Model of brain mechanisms

Neural model

Neural populations

Neural model

Interactions between and within neural populations

Neural model

Interactions between and within neural populations

Forward model

Bayesian model inversion

$$P(\theta | y, m) = \frac{P(y|\theta,m) * P(\theta|m)}{P(y|m)}$$

y = data

m = model

 θ = parameter

 θ^c = neural parameters θ^h = (hemodynamic) parameters

Bayesian model inversion

What **parameter estimates** (θ) have highest probability given the **data** (y) and the **model** (m)?

Bayesian model inversion

- **Prior:** Specifies what connections are included in the model
- **Likelihood:** Incorporates the generative model and prediction errors
- **Model evidence:** Quantifies the 'goodness' of a model (i.e., accuracy minus complexity). Used to draw inference on model structure.
- **Posterior:** Probability density function of the parameters given the data and model. Used to draw inference on model parameters.

$$P(\theta | y, m) = \frac{P(y|\theta,m) * P(\theta|m)}{P(y|m)}$$

Inference

- On the level of **model structure**: Which model (or family of models) has highest evidence?

- On the level of **model parameters**: What parameters are statistically significant, and what is their size/sign?

Inference on model structure

- Inference on **model structure** is a necessary step in DCM studies
 - → Unless strong prior knowledge about model structure
- **Bayesian model comparison (BMS)** compares the (log) model evidence of different models (i.e., probability of the data given model)
 - → log model evidence is approximated by free energy

In
$$p(y|m) = F(y,q) + D_{KL}[q(\Theta)||p(\Theta|y,m)]$$

Inference on model parameters

 Inference on model parameters is often a second step in DCM studies

- If a clear 'winning' model:
 - → Inference on parameters of this optimal model

Inference on model structure

- If no clear 'winning' model (or if optimal model structure differs between groups) then **Bayesian model averaging** (BMA) is an option

→ Final parameters are weighted average of individual model parameters and posterior probabilities

Group-level inference

- Different DCM's are fitted to the data for every subject.
- Group inference on the models: themselves or groups of models (in DCM terminology families of models e.g. all models with input to DLPFC vs. input to FFA vs. both → three families): Bayesian model selection
- Winning model/family is the one with highest exceedance probability

Group-level inference

- Group inference on model parameter: Either on the winning model or Bayesian model averaging (BMA) across models (within a winning family or all models when BMS reveal no clear winner)
- (BMA) Parameter(s) of interest are harvested for every subject and subjected to frequentist inference (e.g. t-test)

Inference: summary

Stephan et al., 2010

Different variants of DCM

Different variants of DCM

- DCM has been developed for specific contexts (e.g., fMRI and EEG data, time and frequency domain, task-induced and resting state paradigms,...)
- The following types of DCM are often used:
 - DCM for task-fMRI (Friston et al., 2003)*
 - DCM for resting state fMRI (Friston et al., 2014)*
 - DCM for ERP/ERF (David et al., 2006)

DCM for task-fMRI

Neural model

- Structure (effective connections)
- Modulation of connections
- Driving inputs

$$\dot{x} = (A + \Sigma_j u_j B^j) x + Cu$$

DCM for task-fMRI

Forward model:

→ Embeds Balloon-Windkessel model

hemodynamic response

Friston et al., 2003

DCM for task-fMRI

Bayesian Model Inversion

→ Variational Expectation Maximization

Assumes (approximate) posterior is **Gaussian**

Maximizes free energy by updating (hyper)parameters

Neural model

$$\dot{x} = Ax + v$$

- A → Structure (effective connections)
- v → neuronal fluctuations (drive the system)

Parametrization of spectral densities

$$g_{\nu}(\omega,\theta) = \alpha_{\nu}\omega^{-\beta\nu} \rightarrow \text{neuronal fluctuations}$$

$$g_{e}(\omega,\theta) = \alpha_{e}\omega^{-\beta e} \rightarrow observation noise$$

Forward model:

Modeled with Volterra kernels [κ(t)]

Is a function of effective connectivity

Generative model (in frequency domain)

•
$$g_{v}(\omega,\theta) = |K(\omega)|^{2} g_{v}(\omega,\theta) + g_{e}(\omega,\theta)$$

Predicted cross spectra

Fourier transform Volterra kernels

Bayesian Model Inversion

→ Variational Expectation Maximization

Quality check

- After estimating DCMs, diagnostics should be consulted
- Code for fMRI: spm_dcm_fmri_check(DCM):
 - Proportion explained variance should be sufficient (at least 10% for task-fMRI)
 - Largest extrinsic connection's strength should be
 > 0.125Hz
 - Estimable parameters should be greater than 1
- → If one of the above is not satisfied, respective subtitle will be shown in red

- Neural model: much more complex compared to DCM for fMRI
- Each region ('node') is modelled with neural mass (or field) models
- 3 layer per node: supra, infra-granular layer and layer IV
- Nodes are connected by either forward, backward or lateral connection (the extrinsic connections)

- Bottom-up: connection from low to high hierarchical areas (Felleman 1991)
- top-up: connection from high to low hierarchical areas (Felleman 1991)
- Lateral: same level in hierarchical organization (e.g. interhemispheric connection)
- Prior on connection: forward>backward>lateral

- Layers within regions interact via intrinsic connection
- What is measured with the EEG/MEG sensor are the potentials generated by pyramidal cells

Single source model

 The forward model in EEG/MEG is much simpler compared to fMRI:

•
$$Y(t) = LX_0(t) + \varepsilon(t)$$

- Y(t) are the channel time series, L is the leadfield (conduction of electromagnetic fields), X_0 are the pyramidal potentials of all sources and ε is measurement noise.
- In words: each channel is a weighted sum of source activities where the weights depend on position and orientation of the sources and channels

- ROIs need to be specified based on prior knowledge/assumptions regarding the location of the sources or based on data itself via source reconstruction
- Models with different ROIs can be compared (not the case with fMRI)
- Search in literature for determining type of connection between ROIs (e.g. forward connection from low to higher cortical areas)

Recommended articles

DCM for task-fMRI:

→ Friston et al., 2003: Dynamic causal modeling (NI)

DCM for resting state fMRI:

- → Friston et al., 2014: A DCM for resting state fMRI (NI)
- → Razi et al., 2015: Construct validation of a DCM for resting state fMRI (NI)

DCM for ERP/ERF:

→ David et al., 2006: Dynamical causal modelling of evoked reponses in EEG and MEG (NI)

Practical recommendations:

- → Stephan et al., 2010: Ten simple rules for dynamic causal modeling (NI)
- → Penny et al., 2004: Comparing Dynamic causal models (NI)