

EL2520 Control Theory and Practice

Lecture 13: Dealing with Hard Constraints

Elling W. Jacobsen School of Electrical Engineering and Computer Science KTH, Stockholm, Sweden

Input Constraints

Dealing with input constraints:

- Linear control design: punish large control moves, e.g.,
 - LQG: choose large input weight Q_2
 - $-H_{\infty}$: include e.g, $||G_{wu}||_{\infty}$ in objective function
- But, inputs often have hard constraints

$$u_{min} \le u_p \le u_{max}$$

Outline of Lecture

Dealing with hard constraints

- Previous lecture: Constrained Receding Horizon Control / MPC
- This lecture: Anti reset windup
 - State feedback with a nonlinear observer.
 - Interpretation and extension to any controller

Model Predictive Control

Finite-horizon discrete time LQR with hard constraints on u and y:

minimize
$$J(U) = \sum_{k=0}^{N-1} (x_k^T Q_1 x_k + u_k^T Q_2 u_k) + x_N^T Q_f x_N$$

subject to $u_{\min} \le u_k \le u_{\max}, \ k = 0, \dots, N-1$
 $y_{\min} \le C x_k \le y_{\max}, \ k = 1, \dots, N$
 $x_{k+1} = A x_k + B u_k$

- Can be written as a quadratic programming problem in $\{u_0,\ldots,u_{N-1}\}$
- Implement only u_0 , let system evolve one sample and redo optimization with new state estimate; results in receding horizon optimization
- Main advantage: constraints can be included in optimization

Anti Reset Windup

The problem with saturating input

- feedback broken, i.e., system open-loop, when u in saturation
- problem, in particular if F or G unstable
- F usually has integrator (unstable)
- The classical approach to deal with hard constraints on the input is called anti-reset windup

Magnitude limitations on control

Linear model

Actual implementation

Example: DC servo

Servo:

$$G(s) = \frac{1}{s(s+1)}$$

A controller designed using LQG is

$$F_y(s) = \frac{439s^2 + 710.5s + 316.2}{s^3 + 26.47s^2 + 349.8s - 7.13}$$

which has poles in -13.2444 +- 13.2255i, and 0.0204

Note: controller is unstable, but closed loop is internally stable!

Step response (no constraints)

Step response with saturated input

$$-1 \le u_p \le 1$$

Observer + State Feedback

Many controllers based on feedback from observed states

Observer:

$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu(t) + K(y(t) - C\hat{x}(t))$$

Feedback from observed states

$$u = -L\hat{x}$$

Controller transfer-function

$$U(s) = -F_y(s)Y(s) = -L(sI - A + BL + KC)^{-1}KY(s)$$

A solution: modified observer

Observer should reflect true dynamics

$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu_p(t) + K(y(t) - C\hat{x}(t))$$

The constrained (actually applied) input is used in observer

- a nonlinear observer!
- based on measuring the actual input or having a model of the constraint

Step responses with modified observer

Analysis: stability also in saturation

$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu_p(t) + K(y(t) - C\hat{x}(t)) =$$
$$= (A - KC)\hat{x}(t) + Bu_p(t) + Ky(t)$$

Controller transfer function

$$U(s) = -L(sI - A + KC)^{-1}KY(s) - L(sI - A + KC)^{-1}BU_p(s)$$

In saturation ($u < u_{min}$ or $u > u_{max}$), u_p is constant

Thus, in saturation, the controller dynamics is given by A-KC whose eigenvalues are -0.5446±0.7276i, -1.2106 (i.e. stable)

This modification is known as anti-reset windup.

Interpretation: feedback from u-up

Write controller as

$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu_p(t) + K(y(t) - C\hat{x}(t)) =
= (A - KC)\hat{x}(t) + B(u_p(t) + u(t) - u(t)) + Ky(t) =
= (A - BL - KC)\hat{x}(t) + Ky(t) + B(u_p(t) - u(t))$$

Taking Laplace transforms

$$U(s) = -L(sI - A + BL + KC)^{-1}KY(s)$$

$$-L(sI - A + BL + KC)^{-1}B(U_p(s) - U(s)) =$$

$$= -F_y(s)Y(s) + W(s)(U_p(s) - U(s))$$

In block diagram

Anti-reset windup is based on tracking input

Application to PID controllers

• Common choice: $W(s) = \frac{1}{sT_t}$

DC Servo under PID control

Servo: PID+Anti-reset Windup

Summary

- Hard constraints: a nonlinearity essentially always present in real control systems
- Main problem: system drifts off when input in saturation
- Approaches to deal with hard constraints
 - constrained receding horizon LQG control (MPC)
 - anti-reset windup