Applied Deep Learning and Generative Models in

• Healthcare

Session 5: Medical Image Synthesis with Diffusion Date: Mar 08 2025

Instructor: Mahmoud E. Khani, Ph.D.

The Landscape of Deep Generative Learning

Denoising Diffusion Models

"Diffusion Models Beat GANs on Image Synthesis" Dhariwal & Nichol, OpenAI, 2021

"Cascaded Diffusion Models for High Fidelity Image Generation" Ho et al., Google, 2021

Text-to-Image Generation

DALL·E 2

"a teddy bear on a skateboard in times square"

"Hierarchical Text-Conditional Image Generation with CLIP Latents" Ramesh et al., 2022

Imagen

A group of teddy bears in suit in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk.

"Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", Saharia et al., 2022

Learning to Generate by Denoising

Denoising diffusion consists of two processes:

- Forward diffusion to gradually add noise to input
- Reverse denoising that learns to generate data by denoising

Forward Diffusion Process

 The formal definition of the forward process in T steps:

Diffusion Kernel

Reverse Denoising Process

Formal definition of reverse process in T steps:

Training and Sampling Algorithms

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: $\mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}$ 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: $\mathbf{end} \ \mathbf{for}$ 6: $\mathbf{return} \ \mathbf{x}_{0}$

Network Architectures

 Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Diffusion Parameters

The noise schedule

Above, β_t and σ_t^2 control the variance of the forward diffusion and reverse denoising processes respectively. Often a linear schedule is used for β_t , and σ_t^2 is set equal to β_t .

Fourier Analysis of the Forward Process

Recall that sampling from $q(\mathbf{x}_t|\mathbf{x}_0)$ is done using $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{(1-\bar{\alpha}_t)} \ \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Fourier Analysis

Decomposition of signal into frequency components

https://dibsmethodsmeetings.github.io/fourier-transforms/

Content-Detail Tradeoff

The weighting of the training objective for different timesteps is important!

Denoising Diffusion Probabilistic Models (DDPM)

Umar Jamil

Diffusion Models in Medical Imaging

- Diffusion models have emerged as powerful generative models in medical imaging
 - improved sample quality, mode coverage, and versatility across various applications.

https://www.sciencedirect.com/science/article/pii/S1361841523001068

Applications in medical image generation

- Diffusion models have remarkable performance in generating synthetic medical images
 - o aiding data augmentation and rare disease representation

https://arxiv.org/abs/2209.13167

Applications in medical image generation

Generating histopathology images with genotype guidance

Genotype-conditioned Image Generation

How Are IDH Mutation and 1p/19q Co-Deletion Extracted for Training Data?

The training data for the diffusion model includes paired histopathology images and genotype information. The genotype labels (IDH mutation status and 1p/19q co-deletion) are extracted through molecular and genetic tests, including:

1. IDH Mutation Detection

- Immunohistochemistry (IHC): Uses antibodies to detect mutant IDH1 protein in tumor samples.
- Next-Generation Sequencing (NGS): Directly sequences the IDH1/IDH2 genes to detect mutations.

2. 1p/19q Co-Deletion Detection

- Fluorescence In Situ Hybridization (FISH): A cytogenetic test that detects the loss of chromosome arms 1p and 19q in tumor cells.
- Comparative Genomic Hybridization (CGH): Identifies chromosomal deletions.
- PCR-based methods: Detects loss of heterozygosity (LOH) in 1p and 19q regions.

Once the genetic data is obtained, it is **paired with corresponding histopathology images** to create a **genotype-labeled dataset** for training.

Genotype-conditioned Image Generation

What is an IDH Mutation?

- IDH (Isocitrate Dehydrogenase) Mutation refers to genetic alterations in the IDH1 or IDH2 genes.
- These mutations are commonly found in gliomas (brain tumors) and are important for tumor classification, prognosis, and treatment decisions.
- IDH-mutant gliomas tend to have better survival rates compared to IDH-wildtype gliomas,
 which are more aggressive.

What is 1p/19q Co-Deletion?

- The 1p/19q co-deletion is a chromosomal alteration where parts of chromosomes 1p (short arm of chromosome 1) and 19q (long arm of chromosome 19) are missing.
- This is a key molecular marker used to classify gliomas.
- Gliomas with 1p/19q co-deletion are almost always oligodendrogliomas, which respond well to chemotherapy and radiation therapy.
- If a glioma has IDH mutation but no 1p/19q co-deletion, it is classified as an astrocytoma instead of an oligodendroglioma.

Inception score

What it measures: The quality and diversity of generated images.

How it works:

- Uses a pre-trained **Inception network** (e.g., Inception v3) to classify generated images.
- Measures:
 - Quality: If a generated image is highly classifiable (i.e., strong class predictions).
 - **Diversity**: If the generated images cover multiple classes.
- Requires a well-trained classifier on medical data, unlike natural images (e.g., CIFAR, ImageNet).

Applications in medical image generation

Session #96: Denoising Diffusion Models for Medical Image Analysis

Julia Wolleb

Conditional Diffusion

https://arxiv.org/abs/2112.10752

Self-Attention Module

Purpose: Captures long-range dependencies within feature maps.

Mechanism:

- Flattens spatial dimensions into "tokens."
- Applies multi-head self-attention (along with layer normalization and a feedforward network) to let every part of the feature map attend to every other part.
- Role in Diffusion: Helps preserve global structure during the denoising process.

Self-attention vs Cross-attention

Figure 2. Cross and self-attention layers in Stable Diffusion.

https://arxiv.org/abs/2403.03431