Lecture 1 Introduction

Algorithm

- A well-defined computational procedure that takes some value (or set of values) as input and produces some value (or set of values) as output
- Provides a step by step method for solving a computational problem.
- Is not dependent on any particular programming language, machine or compiler.
- A general computational procedure that solves a well-defined specific problem.

Criteria

- Input there are zero or more quantities which are externally supplied.
- Output at least one quantity is produced
- Definiteness each instruction must be clear and unambiguous
- Finiteness it terminates after a finite number of steps
- Effectiveness every instruction must be sufficiently basic that it can in principle be carried out by a person using only pencil and paper.

Computational Problem (Example)

Input:

A set of *n* real numbers $(a_1, a_2, ..., a_n)$

Output:

A value 5 where

$$S = g + l$$

 $g = max (a_1, a_2, ..., a_n)$
 $l = min (a_1, a_2, ..., a_n)$

The sum of the greatest number and lowest number.

Algorithm (Example)

Let A[i] be the ith number on the list $(a_1, a_2, ..., a_n)$

- 1 Max, min = A[1]
- 2 For i = 2 to n
- 3 If A[i] > max then max = A[i]
- 4 Elself A[i] < min then min = A[i]
- 5 Next i
- 6 Return max + min

Design Issues in Algorithms

- Correctness does the algorithm solve the computational problem?
- Efficiency how fast can the algorithm run?

Consider Another Scenario

- Problem: Robot Tour Optimization
- Input: A set of S of n points in the plane
- Output: What is the shortest cycle tour that visits each point in the set S?

Assumptions: robot moves with fixed speed, thus the travel time between 2 points are proportional to their distance

Possible Solution

- Nearest-neighbor heuristic
 - Starting from some point p_o, walk first to the nearest neighbor p₁.
 - From p₁, walk to its nearest neighbor unvisited neighbor, excluding p_o
 - Repeat the process until we run out of unvisited points
 - Return to p_o to close off the tour.

Pseudocode

- Pick & visit an initial point p_o from P
- $p = p_0$
- I = 0
- While there are still unvisited points
 - \circ I = I + 1
 - Select p_i to be the closes unvisited point to p_{i-1}
 - Visit p_i
- Return to p_0 from p_{n-1}

Design Issues in Algorithms

Correctness – does the algorithm solve the computational problem?

Efficiency – how fast can the algorithm run?

Analyzing Algorithms, why?

- Intended use of the algorithm
- predicting the resources that the algorithm requires, such that evaluation of its suitability for various applications can be done
 - memory
 - communication bandwidth
 - computer hardware
 - computational time

Why is there a need for algorithm analysis?

- To study its behavior
 - What happens if the input size is increased?
- To predict its performance
 - Time (processing speed)
 - Space (memory)
- Given two algorithms, A1 and A2 solving the same problem: which is better?
- Or given an existing algorithm, can a modified optimal algorithm be defined?

Assumption

- We are using a generic processor, Random Access Memory (RAM) model of computation
 - Instructions are executed ONE AT A TIME, no concurrent operations
- Algorithms implemented as computer programs

Algorithm Efficiency Analysis Methodologies

- A priori analysis determines the efficiency of an algorithm based on or derived from mathematical or logical facts
- A posteriori analysis determines the efficiency of an algorithm based on actual experiments

A Posteriori Analysis (Example)

	10	100	
Algo 1	1 sec	10 sec	
Algo 2	3 sec	15 sec	

Algo 1 seems more efficient than Algo2

	10	100	1000
Algo 1	1 sec	10 sec	100 sec
Algo 2	3 sec	15 sec	30 sec

Is Algo1 still faster than Algo2?

```
A Priori Analysis (Example)
```

Assumptions:

- Instructions are executed sequentially
- Each instruction takes c time units

Let A[i] be the ith number on the list $(a_1, a_2, ..., a_n)$

Total =
$$(3n - 1) c$$

Analyzing Algorithms

- Time taken by an algorithm grows with the size of the input
 - input size
 - Number of items in the input
 - Number of bits needed
 - running time
 - Number of primitive operations
 - Number of "steps" executed
- Our concern: Rate Of Growth or Order Of Growth

Growth of Functions

	1	5	10	11
$(\log n) + 1$	1	1.7	2	2.04
n	1	5	10	11
3n-1	2	14	29	32
n ²	1	25	100	121
10n ²	10	250	1000	1210
2 ⁿ	2	32	1024	2048

In time-complexity analysis it is important to note how fast the algorithm performs over the size of the input and other factors

A Comparison of Growth-Rate Functions

(a)					n		
	Function	10	100	1,000	10,000	100,000	1,000,000
	1	1	1	1	1	1	1
	log ₂ n	3	6	9	13	16	19
	n	10	10^{2}	10^{3}	104	105	106
	n ∗ log₂n	30	664	9,965	105	106	10 ⁷
	n²	10 ²	104	106	108	1010	1012
	n ³	10 ³	106	10 ⁹	1012	1015	10 ¹⁸
	2 ⁿ	10 ³	1030	1030	1 103,0	10 10 ³⁰ ,	103 10301,030

A Comparison of Growth-Rate Functions (cont.)

Growth-Rate Functions

- If an algorithm takes 1 second to run with the problem size 8, what is the time requirement (approximately) for that algorithm with the problem size 16?
- If its order is:

```
O(1) \rightarrow T(n) = 1 second

O(log<sub>2</sub>n) \rightarrow T(n) = (1*log<sub>2</sub>16) / log<sub>2</sub>8 = 4/3 seconds

O(n) \rightarrow T(n) = (1*16) / 8 = 2 seconds

O(n*log<sub>2</sub>n) \rightarrow T(n) = (1*16*log<sub>2</sub>16) / 8*log<sub>2</sub>8 = 8/3 seconds

O(n<sup>2</sup>) \rightarrow T(n) = (1*16<sup>2</sup>) / 8<sup>2</sup> = 4 seconds

O(n<sup>3</sup>) \rightarrow T(n) = (1*16<sup>3</sup>) / 8<sup>3</sup> = 8 seconds

O(2<sup>n</sup>) \rightarrow T(n) = (1*2<sup>16</sup>) / 2<sup>8</sup> = 2<sup>8</sup> seconds = 256 seconds
```

Program = $t(n) = 60n^2 + 5n + 1$

n	t(n)	60n²
10	6,051	6,000
100	600,501	60,000
1000	60,005,001	60,000,000
10,000	6,000,050,001	6,000,000,000

t(n) grows "like" 60n²

Assuming $t(n) = 60n^2 + 5n + 1$ is measured in terms of seconds.

So in terms of minutes: $n^2 + 5n/60 + 1/60$

Observations on Growth

- The dominant term (term with the fastest growth rate) in the function determines the behavior of the algorithm
- Any exponential function of n dominates any polynomial function of n
- A polynomial degree k dominates a polynomial of degree m iff k > m
- Any polynomial function of n dominates any logarithmic function of n
- Any logarithmic function of *n* dominates a constant term

Order of Growth

- The order of growth is a function of the dominant term of the running time
- The dominant term is the term that contributes the most significant increase in *T(n)* as *n* increases
- The coefficient of the dominant term is ignored

Exercise

What is the growth rate corresponding to the following running time?

1.
$$3n + 5n - 2$$

2.
$$6n^2 + 7n + 3$$

3.
$$9n^3 + 6n^2 + n + 2$$

Asymptotic Bounds – Big-Oh, Theta, and Omega

- It is hard to get the exact running-time of an algorithm
- Asymptotic Bounds are used instead to describe the complexity of the algorithms
- Asymptotic Bounds describes only the growth rates of the algorithm as the input size approaches infinity and ignoring most of the small inputs and constant factors
- Among these bounds are: Big-Oh, Big-Omega and Theta

For Simplicity...

- The worst-case complexity of the algorithm is the function defined by the maximum number of steps taken in any instance of size n.
- The best-case complexity of the algorithm is the function defined by the minimum number of steps taken in any instance of size n.
- The average-case complexity of the algorithm, which is the function defined by the average number of steps over all instances of size n.

Asymptotic Bounds – Big-Oh, Theta, and Omega

The Big-Oh of a function g(n) is O(f(n)), iff there exist a positive number c and n₀ such that:

$$0 <= g(n) <= c f(n) \text{ where } n >= n_0$$

- Describes an asymptotically loose upper bound of the algorithm
- Represents the worst-case running time of the algorithm

Example

- $g(n) = 2n^2 + 3$
- ▶ The big-Oh of g(n) is $O(n^2)$
- Proof:

$$2n^2 + 3 <= c n^2$$

Divide both sides by n^2

$$2 + 3/n^2 <= c$$

$$g(n) <= c n^2$$
, for $c = 5$, $n_0 = 1$, $n >= n_0$

Properties of Growth-Rate Functions

- 1. We can ignore low-order terms in an algorithm's growth-rate function.
 - If an algorithm is $O(n^3+4n^2+3n)$, it is also $O(n^3)$.
 - We only use the higher-order term as algorithm's growth-rate function.
- 2. We can ignore a multiplicative constant in the higher-order term of an algorithm's growth-rate function.
 - If an algorithm is $O(5n^3)$, it is also $O(n^3)$.
- 3. O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - We can combine growth-rate functions.
 - If an algorithm is $O(n^3) + O(4n^2)$, it is also $O(n^3 + 4n^2) \rightarrow So$, it is $O(n^3)$.
 - Similar rules hold for multiplication.

Asymptotic Bounds – Big-Oh, Theta, and Omega

The Big-Omega of a function g(n) is $\Omega(f(n))$, iff there exist a positive number c and n_0 such that:

$$0 <= c f(n) <= g(n) where n > n_0$$

- Describes an asymptotically loose lower bound of the algorithm
- Represents the best-case running time of the algorithm

Asymptotic Bounds – Big-Oh, Theta, and Omega

The Theta of a function g(n) is $\theta(f(n))$, iff there exist a positive number c, c' and n_0 such that:

$$c_1 f(n) \le g(n) \le c_2 f(n) \text{ where } n > n_0$$

- Describes an asymptotically tight bound of the algorithm
- Represents the average-case running time of the algorithm

Asymptotic Bounds - Big-Oh, Theta, and Omega

Common Upper Bounds

- O(1)
- O(log n)
- O(n)
- O(n log n)
- → O(n²)
- \rightarrow O(n³)
- ▶ O(2ⁿ)

constant

logarithm

linear

linear-log

quadratic

cubic

exponential

NP Complete Problem

Operation Count

- Language: C Language
- Declarations
 - · none with no initializations
 - count of 1 with initializations
- Delimiters (such as { and })
 - none
- Function Heading
 - none
- Operators (Arithmetic, Relational, Logical)
 - for simplicity, each operator has a count of 1
- Expressions
 - sum of all operators

Assignment Statement

- 1 count for assignment operator
- 2 counts for ++, -, +=, -=, *=, /=, %=
- Function call
 - 1(function call) + operation count for the operators + operation count of the function
- if or if-else Statement
 - operation count of conditional statement + Maximum Operation Count (if_block, else_block)
- for Statement
- while Statement
- do-while Statement
- Nested Loops

Analyze the following code

$$T(n) = 38$$

Analyze the following code

∴
$$T(n) = 42$$

Analyze the following code

$$T(n) = 22$$

Analyze the following code

Let's Generalize

Let's Generalize (with respect to frequency count)

Let's Generalize

Let's Generalize (with respect to frequency count)

Sample Problems

```
(a) for (j = 0; j < n; j++)
    printf ("Sample Problem 1\n");

(b) for (j = 0; j < n; j++)
    {
        printf ("Operation Count - ");
        printf ("Sample Problem 2\n");
    }</pre>
```

```
(C)
int factorial (int nVal)
   int j;
   int nFactorial = 1;
   for (j = 1; j <= nVal; j++)
      nFactorial *= j;
   return nFactorial;
```

```
(d)
int factorial (int nVal)
   int j;
   int nFactorial = 1;
   for (j = nVal; j > 0; j--)
      nFactorial *= j;
   return nFactorial;
```

```
(e)
int n, i, j;
scanf ("%d", &n);
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
        printf ("%d", i * j);</pre>
```

- Number of statements or steps needed by the algorithm to finish
- Simple statements:

$$\circ$$
 b \leftarrow a * 2

Count: 1

Count: 1

Conditional Statements

```
if (<condition>)
     <S1>;
else
     <S2>;
```

Sum of the following:

```
• 1 + Max{ Count(<S1>), Count(<S2>) }
```

Frequency Count - Example

```
if x > 1

y \leftarrow 10;

else

y \leftarrow 20;

z \leftarrow 30;

z \leftarrow 30;
```

Total = 3

Loop Statements

for
$$i \leftarrow \langle lb \rangle$$
 to $\langle ub \rangle$ ub - $lb + 2$
 $\langle S1 \rangle$ ub - $lb + 1$

Example

for
$$i \leftarrow 1$$
 to n $n-1+2=n+1$ $x \leftarrow x+1$ n

$$Total = 2n+1$$

Frequency Count - Example

```
if x < 1
       y ← 10 1
else
       if x < 2
          y ← 20; -
               z ← 30 –
                                                         2x+2
        else
       \{ \text{ for } i \leftarrow 1 \text{ to } x \text{ } x+1 \}
                                     = 2x+1
                print(i)
                                              Total = 2x+3
```

Frequency Count – Exercise

```
1. k \leftarrow 500;
for i \leftarrow 1 to k-1
z \leftarrow z + 1
```

Nested Statements

for
$$i \leftarrow 1$$
 to $n - 1 + 2 = n+1$
(n) = $\langle S1 \rangle$ for $j \leftarrow 1$ to $n (n+1)(n)$
 $x \leftarrow x + 1 (n)(n)$

Total =
$$n+1 + n^2+n + n^2$$

= $2n^2 + 2n + 1$

Frequency Count - Example

Total =
$$n-1 + n^2-2n+n-2 + n^2-2n$$

= $2n^2 - 2n - 3$

Frequency Count - Example

Total =
$$n+1 + n + n^2 + (n-1)n + (n-1)n$$

= $2n+1 + n^2 + n^2 - n + n^2 - n$
= $3n^2 + 1$

Frequency Count – Exercise

```
for i \leftarrow 1 to n for j \leftarrow 1 to n for k \leftarrow 1 to n z \leftarrow z + 1
```

Loop Statementsdo<S1>while <condition>

Loop Statements

Ex.

What if while $x \le n$? What if x = 0?

Frequency Count - Example

```
1. x \leftarrow 1
                                     n-x+2=n+1
      while x \le n
             x \leftarrow x + 1
                                     Total = 2n + 2
2. \quad x \leftarrow 1
      do
                                       n-1-x=n-2
             y \leftarrow y + 1
                                       n-1-x=n-2
              x \leftarrow x + 1
                                       n-1-x=n-2
       while x <> n-1
                                       Total = 3n - 5
```

Summation/Arithmetic Series

-arises in the analysis of iterative algorithms

$$\sum_{k=1}^{n} 1 = n$$

$$\sum_{k=a}^{b} 1 = b - a + 1$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k = \frac{1}{2} n(n+1)$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Geometric Series:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n}$$

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

$$\sum_{k=0}^{\infty} x^{k} = \frac{1}{1 - x}$$

Harmonic Series:

- arises in probabilistic analyses of algorithms

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1)$$

Telescoping series

$$\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0$$

for
$$(j = 3; j <= n; j++)$$
 $1 \quad n-3 + 2 \quad 2(n-2)$

for $(k = 0; k <= j; k++)$
 $\sum_{j=3}^{n} 1 \quad \sum_{j=3}^{n} (j+2) \quad \sum_{j=3}^{n} 2(j+1)$

printf("This is easy");

 $\sum_{j=3}^{n} (j+1)$

for
$$(j = 1; j < n; j++)$$

$$1 \quad n-1+1 \quad 2(n-1)$$
for $(k = 2; k <= j+1; k++)$

$$\sum_{j=1}^{n-1} 1 \quad \sum_{j=1}^{n-1} 2(j+1) \quad \sum_{j=1}^{n-1} 2(j)$$
printf("This is easy");
$$\sum_{j=1}^{n-1} (j)$$

for
$$(j = 3; j <= n; j++)$$
 $1 \quad n-3+2 \quad 2(n-2)$

for $(k = j; k <= n; k++)$

$$\sum_{j=3}^{n} 1 \quad \sum_{j=3}^{n} (n-j+2) \quad \sum_{j=3}^{n} 2(n-j+1)$$

printf("This is easy");
$$\sum_{j=3}^{n} (n-j+1)$$

for
$$(j = 1; j < n; j++)$$

$$1 \quad n-1+1 \quad 2(n-1)$$
for $(k = j+1; k <= 5; k++)$

$$\sum_{j=1}^{n-1} \sum_{j=1}^{n-1} (6-j) \quad \sum_{j=1}^{n-1} 2(5-j)$$
printf("This is easy");
$$\sum_{j=1}^{n-1} (5-j)$$

Summation Notation

Using Summation

• for j = 1 to n

$$\sum_{j=1}^{n+1} = \langle ub \rangle - \langle lb \rangle + 1$$

= n+1 - 1 + 1
= n + 1

• for j = 1 to n-1

$$\sum_{i=1}^{n} 1 = n - 1 + 1$$
= n

• for j = 0 to n

$$\sum_{j=0}^{n+1} 1 = n+1 - 0 + 1$$

$$j=0 = n+2$$

Using Summation

• for j = 1 to n
$$\sum_{j=1}^{n+1} \frac{1}{1}$$
for k = 1 to n
$$\sum_{k=1}^{n+1} \sum_{j=1}^{n} 1$$

$$x = x + 2; \sum_{k=1}^{n} \sum_{j=1}^{n} 1$$

Nested Loops with Dependent Loop Control Variables

```
for i = 1 to n
for j = 1 to i
x++;
```

```
for i = 1 to n
for j = 1 to i
for k = 1 to j
x++;
```

Frequency Count – Exercise

1. for
$$i \leftarrow 1$$
 to n
for $j \leftarrow 1$ to $2n$

$$x \leftarrow x + 1$$

2. for
$$k \leftarrow 2$$
 to $n+1$
for $j \leftarrow 3$ to $n-3$
 $x \leftarrow x + 1$

Frequency Count – Exercise

```
3. for i \leftarrow 2 to n+1
for j \leftarrow 3 to n-3
for k \leftarrow 4 to n-4
x \leftarrow x + 1
```

Frequency Count – Exercise

- 5. for $i \leftarrow 1$ to n for $j \leftarrow n$ downto 1 $x \leftarrow x + 1$
- 6. for $i \leftarrow 1$ to n-1for $j \leftarrow 1$ to i $x \leftarrow x + 1$
- 7. for $i \leftarrow 4$ to nfor $j \leftarrow 1$ to i $x \leftarrow x + 1$

Frequency Count – Exercise

```
8. while (i < n)
{    k = k+1;
    i = i+1;
    }

9. while (i>=n)
{    k = k+1;
    i = i-1;
}

11. while (b!= n-10)
{    k = k+1;
    x = x+1;
    i = i-1;
}

12. do { h = h-1;
} while (h >= n);
```

Frequency Count - Exercise

```
13. for i \leftarrow 1 to 2n
               for j \leftarrow 1 to 2i
                       x \leftarrow x + 1
14. for i \leftarrow 2 to n+2
               for j \leftarrow i to 2i
                       x \leftarrow x + 1
15. for i \leftarrow 1 to n
               for j \leftarrow 1 to i
                       for k \leftarrow 1 to i
                               x \leftarrow x + 1
```

Summation - Exercise

$$\sum_{j=1}^{n} (3j^2 + n + 4)$$

$$\sum_{j=3}^{n} (j/4)^2$$

Recurrence

- An equation or inequality that describes a function in terms of its value on smaller inputs.
- Given a function defined by a recurrence relation, our objective is to determine a closed form of the function.
- Arises in the analysis of divide and conquer algorithms and recursive subroutines
- 3 approaches
 - Iteration Method
 - Master Method
 - Substitution Method

Iteration Method

- Expand the recurrence k times
- Work some algebra to express as a summation
- Evaluate the summation

Examples:

```
T(n) = T(n-1) + 2, n > 0
5, n = 0
```

T(n) =
$$T(n/2) + 5$$
, $n > 1$
7, $n = 1$

Master Method (cormen)

In general the Master Theorem says that the recurrence,

$$T(n) = aT(n/b) + f(n)$$

where n/b to mean either \[\text{n/b} \] or \[\text{n/b} \]. T(n) can be bounded asymptotically as follows:

- (a) If $f(n) \in O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- (b) If $f(n) \in \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- (c) If $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1, and all sufficiently large n, then $T(n) = \Theta(f(n))$

Examples:

(a)
$$T(n) = 4T(n/2) + n$$

(b)
$$T(n) = 4T(n/2) + n^2$$

(c)
$$T(n) = 4T(n/2) + n^3$$

Substitution Method

- Guess the form of the answer
- Use induction to find the constants and show that the solution works.

Example:

Given $T(n) = 2T(\lfloor n/2 \rfloor) + n$

Guess: T(n) = O(n log n)

Prove: $T(n) \le cn \log n$, c > 0

Given 2 algorithms A1 and A2 performing the same task on n inputs:

A1 A2 $10n n^{2}/2$ O(n) O(n^{2})

Which is faster and more efficient?

Solution:

n	A1	A2
1	10	0.5
5	50	12.5
10	100	50
15	150	112.5
20	200	200
30	300	450

Arrange the following in increasing order of complexity:

```
a. n^2, 10n
```

b.
$$4^{n}$$
, $4n^{3}$

c.
$$n^2$$
, $n^{1/3}$, n, $n \log_2 n$

What is the smallest value of *n* such that an algorithm whose running time is $100n^2$ runs faster than an algorithm whose running time is 2^n on the same machine?

End of Lesson 1

Additional References Used

- [1] Katoen, Joost-Pieter. <u>Introduction to</u>
 <u>Algorithm Analysis</u>.
 http://fmt.cs.utwente.nl/courses/adc/lec1.p
 <u>df</u>
- [2] <u>Asymptotic Algorithms Analysis.</u> http://irl.eecs.umich.edu/jamin/courses/eec s281/winter04/lectures/lecture4j.pdf
- [3] Shaof, William. <u>Asymptotic in Analysis of</u> <u>Algorithms.</u>
 - http://www.cs.fit.edu/~wds/classes/algorithms/Asym/asymptotics/asymptotics.html