Sprawozdanie z ćw 53 – PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

Michał Puchyr, Dawid Chudzicki 16 kwietnia 2023

1 Cel ćwiczenia

- Wyznaczenie wartości indukcyjności cewki i pojemności kondensatora przy zastosowaniu prawa Ohma dla prądu przemiennego,
- Sprawdzenie prawa Ohma dla prądu przemiennego dla szeregowego układu złożonego z opornika, cewki indukcyjnej i kondensatora.

2 Wstęp teoretyczny

Prąd przemienny (AC) – charakterystyczny przypadek prądu elektrycznego okresowo zmiennego, w którym wartości chwilowe podlegają zmianom w powtarzalny, okresowy sposób, z określoną częstotliwością. Wartości chwilowe natężenia prądu przemiennego przyjmują naprzemiennie wartości dodatnie i ujemne.

Największe znaczenie praktyczne mają prąd i napięcie o przebiegu sinusoidalnym. W żargonie technicznym nazwa prąd przemienny często oznacza po prostu **prąd sinusoidalny**.

Kondensator – element elektroniczny bierny zbudowany z dwóch przewodników – inaczej okładek lub elektrod – rozdzielonych dielektrykiem; przechowuje on energię w postaci pola elektrycznego.

Pojemność kondensatora mierzy zdolność kondensatora do magazynowania ładunku elektrycznego.

Jednostka pojemności jest farad (F).

Kondensatory są wykorzystywane w elektronice do różnych celów, na przykład do filtrowania sygnałów, magazynowania energii, stabilizacji napięcia, generowania sygnałów i wielu innych zastosowań.

Cewka indukcyjna to element elektryczny składający się z przewijanej spirali z drutu lub taśmy ferromagnetycznej, który wykorzystuje zjawisko elektromagnetycznej indukcji do magazynowania energii w postaci pola magnetycznego.

Indukcyjność jest podstawowym parametrem elektrycznym opisującym cewkę. Jednostką indukcyjności jest henr [H]. Prąd płynący w obwodzie wytwarza skojarzony z nim strumień magnetyczny.

Indukcyjność definiuje się jako stosunek tego strumienia i prądu, który go wytworzył:

$$L = k \frac{\Phi}{i}$$

Współczynnik k zależy od geometrii układu, a więc między innymi od kształtu cewki, liczby zwojów, grubości użytego drutu. Indukcyjność cewki zależy również od przenikalności magnetycznej rdzenia.

Wykaz przyrządów:

- Generator AG 1022F
- Woltomierz napięcia przemiennego
- Miliamperomierz prądu przemiennego
- Zestaw składający się z oporników, cewek indukcyjnych i kondensatorów

Oporność badanego opornika : $R = (157 \pm 3)\Omega$

Oporność cewki indukcyjnej : $R_{L2} = (0, 60 \pm 0, 05)\Omega$

Przedział częstotliwości pomiarowej dla pojemności C_3 : od 50 Hz do 200Hz

3 Przykładowe obliczenia

3.1 Niepewności mierników

Niepewność woltomierza Dla zakresu:

• $4V: \pm 0.8\% \text{ rdg} + 3\text{dgt}$ dgt = 1mV

• $40V : \pm 2.5\% \text{ rdg} + 5\text{dgt}$ dgt = 10mV

Np.

$$u_b(U) = \frac{0,008 \cdot 1,016 + 3 \cdot 0,001}{\sqrt{3}} = 0,00642 \approx 0,0065[V]$$

Niepewność amperomierza (dla prądu zmiennego) Dla zakresu:

• 40 mA: $\pm 1.5\%$ rdg + 3dgt dgt = 10μ A

• $400 \text{ mA} : \pm 1.5\% \text{ rdg} + 3 \text{dgt} \quad \text{dgt} = 100 \mu \text{A}$

Np.

$$u_b(I) = \frac{0.015 \cdot 2.090 + 3 \cdot 0.00001}{\sqrt{3}} = 0.01811 \approx 0.019[mA]$$

Niepewność ustalenia częstotliwości generatora:

• $\pm 1\%$ rdg ± 1 Hz

Np.

$$u_b(f) = \frac{0.01 \cdot 125 + 1}{\sqrt{3}} = 1.29903 \approx 1.3[Hz]$$

3.2 Obliczenia prowadzące do wyznaczenia pojemności kondensatora

4 Pomiary i opracowanie wyników

4.1 Wyznaczanie pojemności kondensatora (RC)

--- Regresja liniowa: y = 469, 49x - 1,998

Wykres zależności napięcia od natężenia

Tabela 1: Wyniki pomiarów i obliczeń

Lp	U[V]	u(U)[V]	I[mA]	u(I)[mA]	Z_{c}	$u(Z_c)$	f[Hz]	$\mathrm{u}(f)[\mathrm{Hz}]$	С	u(C)
1	1,0160	0,0065	2,090	0,019	470	2	125,0	1,3	$2,874115^{-6}$	$3,3624^{-8}$
2	2,034	0,012	4,130	0,036						
3	3,046	0,016	6,420	0,056						
4	4,100	0,089	8,600	0,075						
5	5,12	0,11	10,900	0,095						
6	6,15	0,12	13,11	0,12						
7	7,17	0,14	14,87	0,13						
8	8,16	0,15	17,48	0,16						
9	9,18	0,17	19,75	0,18						
10	10,15	0,18	21,75	0,19						

4.2 Wyznaczenie indukcyjności cewki