

Predicting Surface Temperature Change from Agricultural CO₂ Emissions

DATASCI207 Fall 2023

Darya Likhareva, Faye Titchenal, Rachel Tripoli, Julia Zhao

Motivation

Primary Motivation: explore the impact CO2 emissions has on temperature changes, regionally.

The Intergovernmental Panel on Climate Change (IPCC) and data from Our World in Data collectively show that climate change is a global, rapidly intensifying phenomenon, heavily influenced by human activities, with urgent calls for substantial reductions in greenhouse gas emissions to mitigate its impact

Past research/models:

- Short-term: models are based on atmospheric and/or geophysical processes
- Long-term: utilize paleo-climate data to forecast future
- Machine-Learning in climate models is in its infancy
 - Experimental
 - Long term goal in research is to use machine learning to bridge the gap between scales of current models to increase the resolution of accuracy

Question

Can we predict the average annual land temperature change from annual agricultural CO2 emissions?

Data

Features

Inputs:

- 1. Country/Territory, Region, Sub-Region
- 2. Year
- 3. Agricultural Emissions (in kilotons of CO₂):
 - Fires in different ecosystems → Savanas, Forests, etc.
 - Food Systems → Food packaging, transport, & retail
 - Manure Management → Methane production from livestock
 - Industrial Processes and Product Use → Fertilizer manufacturing
 - On-Farm Energy Use → Electricity and fuel for equipment
- 1. Multivariate El Niño Southern Oscillation (ENSO) Index:
 - Represents fluctuations in sea surface temperature & air pressure
 - Weather patterns directly influence agricultural production

Output:

Average Annual Temperature Delta (°C) \rightarrow Temperature change from baseline period of 1951-1980

Pre-processing

- Combined similar columns
- 2. Joined with two other datasets to obtain MEI and region/subregion details
- 3. Evaluated dataset for completeness:
 - Some areas did not have data for the full 31 years
 - Some features contained null values
- 4. Log transformation of heavily skewed variables
- 5. Cumulative sum of features
- 6. Train | Validation | Test Split: ~ 80% | 10% | 10%
 - 0 1990 2014 | 2015 2017 | 2018 2020
- 7. Standardize input variables in training dataset

EDA

Asia shows a steep upward trend, indicating a significant increase in total emissions over time

Here as well, Asia shows increased emissions by population level

Despite fluctuations, there is a general upward trend in average temperature change for all regions

Feature Selection

Highest correlations between input variables and average temp:

- Cum_sum_log_on_farm_energy_use
- Cum_sum_log_food_systems

per per residence de la companya de

on planter that the full planter of the first plant

eder jan ted bedriger for their debed

Modeling Approach

Baseline Model: Linear Regression with one

input feature

Model 1: Regression Tree

Model 2: Random Forests

Model 3: XGBoost Tree

Model 4: Multiple linear regression

Model 5: Feed forward neural network

Metrics

Mean Absolute Error (MAE):

• Robust to outliers & interpretable

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Root Mean Squared Error (RMSE):

Penalizes large errors & interpretable

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} |y_i - \widehat{y}_i|^2}{N}}$$

2 Sample T-test:

 Compare errors between models to determine statistical significance

Final Results

- Linear Regression model demonstrated best performance
- 2 Sample T-test indicates statistically significant difference between Linear Regression and FFNN errors
- On average prediction is 0.38°C from actual temperature

	MAE	RMSE
Linear Regression	0.382	0.502
FFNN	0.411	0.522
XGBoost	0.483	0.645
Regression Tree	0.519	0.697
Random Forest	0.521	0.690
Baseline	0.743	0.916

Experiments

Baseline Model

- Linear regression with single input feature (Cumulative Sum Total CO₂ Emissions)
- Established baseline loss for comparison on future models
- MAE = 0.743°C

Regression Tree

- Potential explainability benefit
- Moderate improvement over baseline model → MAE = 0.519°C
- Optimal Hyperparameter: Max Depth = 5

Random Forest

- Ensemble learning with bootstrapping
- Slight improvement over regression tree, but still not a reliable predictor
 - \circ MAE = 0.521°C
- Optimal Hyperparameters:
 - o Max Depth = 9
 - Num Estimators = 80

RF Hyperparameter Tuning

XGBoost Tree

- Gradient boosting ensemble learning
- Improvement over random forest, but still not a reliable predictor: MAE = 0.483°C
- Optimal Hyperparameters: Max Depth = 3

Linear Regression

- Linear regression with optimized feature selection
- Significant improvement over baseline model and moderate improvement over tree variants
- MAE = 0.382°C
- Optimal Hyperparameters:
 - o Initial LR: 1e-3
 - o LR Schedule: Exponential Decay
 - o Epochs: 150
 - o Batch Size: 400

Linear Regression Hyperparameter Tuning

"+" indicates learning rate with exponential decay

Linear Regression Hyperparameter Tuning

FFNN

- Comparable to linear model, but much higher computational cost
- Results indicate few non-linear relationships
 - \circ MAE = 0.411°C
- Optimal Hyperparameters:
 - 2 hidden layers (128 units each)
 - o Initial LR: 1e-5
 - LR Schedule: Exponential Decay
 - o Epochs: 2000
 - o Batch Size: 500

FFNN Hyperparameter Tuning

Final Model (2 layers, 128 units, no dropout):

1 layer:

2 layers, 50 units:

3 layers:

2 layers, dropout layer:

Conclusion & Future Considerations

- Best Performance: Linear regression model
- 51% reduction in loss compared to baseline
- For future: More modeling with LSTM for better recognition of patterns in temperature changes over extended periods
- Overall: unable to accurately predict recent temperature extremes from agricultural emissions alone

Questions?

Contributions

	Domain Research	Pre-processing/ Feat. Eng	EDA	Decision Tree & Variants	Linear Regression	FFNN	Slides
Rachel	Х		Х	Х			X
Darya	X				Х	Х	Х
Julia		Х			х	Х	х
Faye		х	Х	X	X	X	X

Github Repository

https://github.com/rachtripoli/DATASCI207_finalproject_Likhareva _Titchenal_Tripoli_Zhao/tree/main

Data Sources/References

- 1. https://www.kaggle.com/datasets/alessandrolobello/agri-food-co2-emission-dataset-forecasting-ml/data
- 2. https://psl.noaa.gov/enso/mei/
- 3. https://ourworldindata.org/greenhouse-gas-emissions-food#:~:text=The%20specific%20number%20that%20answers,w/e%20include%20all%20agricultural%20products.
- 4. https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/
- 5. https://www.gfdl.noaa.gov/news/noaa-scientists-harness-machine-learning-to-advance-climate-models/

