2. Calendar life degradation = 2%/year

(yele life degradation = 0.05% / Lycle

Around driving distance = 20,000 trafform

Energy consumption proyers = 200 Wh/km

(a) Eyron = 20,000 km x 200 wh = 4000 kmhlyeor Pyrteslyeon = Eyron Epock

lets Assume Epock = 72 kmh as per example 2.

Negelos/goor = 4000kmh x55.55 = 56 cycles/ypor

(b) Total degradation: 5 years x 2% = 10% (Calonder loss)

Tycle lass: 0.05% x 5 years x 4000 kwh = 14%

Total Capacity loss = 10% + 14% = 24%

(1) Total allowable degradation: 100%-80%: 20%

1055 por year = 2% + (0.05% × 56) = 2% + 2.8% = 4.8%

20% or 4.2 cross

Time taken to reduce to 20% = 20% \$4.2 years

965 Rop Coll moss=489 Cp=3.8k]/kg.k Rint=0.012

Discharge current per string=120A + max=45°C Cool plate temp: 25°C

Allowed Coolart temp rise=5°C

Coolant: Cp, wobst=3.6k]/kg.k, l=1050 kg/m³

Locally state head transfer, Q = M x Cp x DT	
Hoof generaled per pack Notal power loss, Qtotal = 1920 cells x 0-36W = 691-2W Coolant mass flow rate required prass flow rate tor Steady state heat transfer, Q = M x Cp x DT	
Neells = 96x 20 = 1920 cells x 0-36W = 691.2W Total power loss, Qtotal = 1920 cells x 0-36W = 691.2W Coolant mass flow rate required, mass flow rate tor steady state heat transfer, Q = M x Cp x DT	
Neells = 96x 20 = 1920 cells x 0-36W = 691.2W Total power loss, Qtotal = 1920 cells x 0-36W = 691.2W Coolant mass flow rate required, mass flow rate tor steady state heat transfer, Q = M x Cp x DT	
Total power loss, Qtotal = 1920 cells x 0-36W = 691-2W Coolant mass flow rate required press flow rate tor steady state heat transfer, Q = M x Cp x DT	
tor Steady State heat transfer, Q=M x Cp x Q1	
tor Steady State heat transfer, Q=M x Cp x Q1	
m - 0.0384 Kols	
$m = \frac{Q}{L_{p} \times \Delta T} = \frac{691.2 W}{3.6 \text{KJ/kg.k}} = 0.0384 \text{kg/s}$	_
· Volumetric flaw rate.	
e 10 50 kg/m3	
- Coll temp rise for thornal resistance	
DTCell = PCELL + R = 0.36WX 0.15K/W = 0.054°C	
Final design Summary: Manifold system	
Total power loss = 691.2W Gar use posalle)	recuifo o
system with b-	8 paralle
orter to	
volumelaic flow acte: 2-20 Llmin feeding 12-16 cold Cell-cold plate temp rise: 0-05/1°C	yidios
Coolant temp. rise = 5C (Given). Plapable of delivering > 2.20Umin Thornolly coupled to live to the thylere glydl each relu. Pump -> Manifold -> Cold plates - Manifold return	-
In composibility with ethylere gyod each tell	-
	-
(206)	
V	4
Reservoir for Hoot excharges	
coolant for cooled radiates	