Regression Models Course Project

Author: Fred Zhou

In this document, we will try to answer the following questions:

- Q1: "Is an automatic or manual transmission better for MPG"
- Q2: "Quantify the MPG difference between automatic and manual transmissions"

By default, we assume that for the $\ensuremath{\mathtt{mpg}}$, the lower the value the better.

(For am, 0 for automatic transmission, 1 for manual transmission.) ## summary of data

```
data("mtcars")
#Visulize the data first
head(mtcars)
```

```
##
                     mpg cyl disp hp drat
                                              wt qsec vs am gear carb
## Mazda RX4
                    21.0
                              160 110 3.90 2.620 16.46
                                                        0
                                                           1
                                                                     4
## Mazda RX4 Wag
                           6 160 110 3.90 2.875 17.02
                                                                4
                                                                     4
                    21.0
                                                        0
                                                           1
                    22.8 4 108 93 3.85 2.320 18.61 1
## Datsun 710
                                                                     1
                                                           1
## Hornet 4 Drive
                    21.4
                           6 258 110 3.08 3.215 19.44 1
                                                                3
                                                                     1
## Hornet Sportabout 18.7
                              360 175 3.15 3.440 17.02
                                                        0
                                                           0
                                                                3
                                                                     2
## Valiant
                           6 225 105 2.76 3.460 20.22
                                                                     1
```

```
summary(mtcars)
```

```
##
                                             disp
         mpg
                           cyl
                                                               hp
##
            :10.40
                     Min.
                             :4.000
                                               : 71.1
                                                                : 52.0
    Min.
                                       Min.
                                                         Min.
##
    1st Qu.:15.43
                      1st Qu.:4.000
                                       1st Qu.:120.8
                                                         1st Qu.: 96.5
##
    Median :19.20
                     Median :6.000
                                       Median :196.3
                                                         Median :123.0
##
    Mean
            :20.09
                     Mean
                             :6.188
                                       Mean
                                               :230.7
                                                         Mean
                                                                :146.7
##
    3rd Qu.:22.80
                      3rd Qu.:8.000
                                       3rd Qu.:326.0
                                                         3rd Qu.:180.0
##
    Max.
            :33.90
                     Max.
                             :8.000
                                       Max.
                                               :472.0
                                                                :335.0
##
          drat
                            wt
                                             qsec
                                                               vs
##
    Min.
            :2.760
                             :1.513
                                                                 :0.0000
                     Min.
                                       Min.
                                               :14.50
                                                         Min.
    1st Ou.:3.080
                     1st Ou.:2.581
##
                                       1st Ou.:16.89
                                                         1st Ou.:0.0000
##
    Median :3.695
                     Median :3.325
                                       Median :17.71
                                                         Median :0.0000
##
    Mean
            :3.597
                     Mean
                             :3.217
                                       Mean
                                               :17.85
                                                         Mean
                                                                :0.4375
                     3rd Qu.:3.610
                                       3rd Qu.:18.90
##
    3rd Qu.:3.920
                                                         3rd Qu.:1.0000
##
    Max.
                                               :22.90
            :4.930
                     Max.
                             :5.424
                                       Max.
                                                         Max.
                                                                :1.0000
##
           am
                            gear
                                              carb
##
    Min.
            :0.0000
                       Min.
                              :3.000
                                        Min.
                                                :1.000
    1st Qu.:0.0000
                       1st Qu.:3.000
                                        1st Qu.:2.000
##
##
    Median :0.0000
                       Median :4.000
                                        Median :2.000
##
    Mean
            :0.4062
                       Mean
                              :3.688
                                        Mean
                                                :2.812
##
    3rd Qu.:1.0000
                       3rd Qu.:4.000
                                        3rd Qu.:4.000
##
            :1.0000
                              :5.000
                                                :8.000
    Max.
                       Max.
                                        Max.
```

Q1. Is an automatic or manual transmission better for MPG

To answer this question, we assume that the all the variables in the population follow normal distribution. Thus we first use Student's T test to address whether there's difference in these two groups

Visualize the data between AUTOMATIC and MANUAL

Transmission vs mpg

Student's T-test between AUTOMATIC and MANUAL (alpha=0.05)

```
test_mpg=t.test(mtcars$mpg[mtcars$am==1],mtcars$mpg[mtcars$am==0])
print(test_mpg)
```

```
##
## Welch Two Sample t-test
##
## data: mtcars$mpg[mtcars$am == 1] and mtcars$mpg[mtcars$am == 0]
## t = 3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 3.209684 11.280194
## sample estimates:
## mean of x mean of y
## 24.39231 17.14737
```

print(paste('The P-value for the T-test between AUTOMATIC and MANUAL transmissions
for the mpg is ',round(test_mpg\$p.value,digits = 4),sep=''))

[1] "The P-value for the T-test between AUTOMATIC and MANUAL transmissions for the mpg is 0.0014"

```
print(paste('Mean value for the mpg with AUTOMATIC transmissions: ',round(test_mp
g$estimate[1],digits = 2),sep=''))
```

```
## [1] "Mean value for the mpg with AUTOMATIC transmissions: 24.39"
```

```
print(paste('Mean value for the mpg with MANUAL transmissions: ',round(test_mpg$e
stimate[2],digits = 2),sep=''))
```

```
## [1] "Mean value for the mpg with MANUAL transmissions: 17.15"
```

Thus we could address that indeed the types of transmission will affect the mpg, and on average AUTOMATIC will bear a *higher consumption of fuel* against the MANUAL transmission, and the average difference is around 7.24 miles per Gallon used.

Q2. Quantify the MPG difference between automatic and manual transmissions

Correlation analysis winthin all variables against the mpg

```
sort(abs(cor(mtcars)[1,]))
```

```
## qsec gear carb am vs drat hp
## 0.4186840 0.4802848 0.5509251 0.5998324 0.6640389 0.6811719 0.7761684
## disp cyl wt mpg
## 0.8475514 0.8521620 0.8676594 1.0000000
```

We already get the hint that the AUTOMATIC/MANUAL have impacts on the fuel consumption, thus from the correlation analsis we could guess that any variant with a higher correlation value against AUTOMATIC/MANUAL may contribute to the fuel consumption. including:

- 1. vs V/S
- 2. drat Rear axle ratio
- 3. hp Gross horsepower
- 4. disp Displacement (cu.in.)
- 5. cyl Number of cylinders
- 6. wt Weight (1000 lbs)

Thus, we could guess that it's reasonable to include any variable into the linear regressions. We could make a most general form of regression, then add in more variants to further optimize our model.

General model

We only take the am as variables to do the linear regression first:

```
fit_1 <- lm(mpg~am, data = mtcars)
summary(fit_1)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
##
      Min
                10 Median
                               30
                                      Max
## -9.3923 -3.0923 -0.2974 3.2439
                                   9.5077
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                17.147
                            1.125 15.247 1.13e-15 ***
## (Intercept)
## am
                 7.245
                            1.764
                                    4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared:
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

Based on the stat data we could address:

- On average, AUTOMATIC car have 17.15 MPG and MANUAL transmission cars have 7.25 MPG more
- The R^2 value is only 0.36, which means that our current model only explains 36% of the variance

lasso for the selection of variables

We try to include all the 7 possible variables (am, vs, drat, hp, disp, cyl, wt) meanwhile use Lasso to do the regression.

```
x<-model.matrix(mpg~am + vs + drat + hp + disp + cyl + wt,data=mtcars)
x=x[,-1]
glmnet1<-cv.glmnet(x=x,y=mtcars$mpg,type.measure='mse',nfolds=5,alpha=.5)
coef(glmnet1,s=9.8,exact=TRUE)</pre>
```

Based on the lasso results together with the correlation test, we could get the idea that the $wt\ cyl$ affect most for the mpg.

Advanced model - linear regression using wt cyl and am

```
fit_2 <- lm(mpg ~ am + wt + cyl, data = mtcars)
summary(fit_2)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am + wt + cyl, data = mtcars)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -4.1735 -1.5340 -0.5386 1.5864 6.0812
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 39.4179 2.6415 14.923 7.42e-15 ***
                          1.3045 0.135 0.89334
## am
                0.1765
                          0.9109 -3.431 0.00189 **
## wt
               -3.1251
               -1.5102
                          0.4223 -3.576 0.00129 **
## cyl
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.612 on 28 degrees of freedom
## Multiple R-squared: 0.8303, Adjusted R-squared: 0.8122
## F-statistic: 45.68 on 3 and 28 DF, p-value: 6.51e-11
```

Based on the stat data we could address:

- MANUAL is slightly beneficial for the fuel saving, after model adjusting the value comes to be 0.1765 miles per gallon.
- wt and cyl affect huge against the mpg, which is appearant since more cylinders or more load will eventually consume more fuel.