

Discover.
what's possible

Mathematics Extension 1

2021 Trial HSC Assessment point 4

General Instructions

• Working time: 1 hour

• Write using black or blue pen

• Attempt ALL questions

Do NOT write in pencil

 Write your student number on the front of each exam writing booklet. Section 1 - Multiple Choice 5 marks

Section 1 – Written (booklets) 30 marks

Section 2 - Multiple Choice 5 marks

Section 2 – Written (booklets) 30 marks

Section I (Multiple Choice)

5 marks

Attempt Questions 1-5

Allow approximately 8 minutes for this section

Mark your answers on the multiple-choice answer provided.

- What is the solution set of the inequality $\frac{x^2 6}{x} \le 1$? 1.
 - (A) $\left(\infty, -2\right] \cup \left(0, 3\right]$

(C) [-2,3]

- (B) $\left[-2,0\right) \cup \left[3,\infty\right)$ (D) $\left(\infty,-2\right] \cup \left[0,3\right]$
- What is the range of the function $y = \sin^{-1} x + \tan^{-1} x$? 2.
 - (A) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

(B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

(C) $-\frac{3\pi}{4} \le y \le \frac{3\pi}{4}$

- (C) $-\pi < y < \pi$
- 3. The slope field of a first order differential equation is shown here.

Which of the following could be the differential equation represented above?

 $\frac{dy}{dx} = \frac{xy}{2}$ (A)

 $\frac{dy}{dx} = -\frac{xy}{2}$ (B)

(C) $\frac{dy}{dx} = \frac{x}{2y}$

 $\frac{dy}{dx} = -\frac{x}{2y}$ (D)

- 4. In how many ways can the letters of the word OLYMPICS be arranged if the 2 vowels are **not** next to each other?
 - 40320 (A)

(B) 30240

(C) 10080

- (D) 2520
- Given that $(1+x)^n (1+x)^n = (1+x)^{2n}$, which of the following is equivalent to 5.

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2$$
?

- (B) $\left(\frac{2n}{n}\right)^2$
- (C) $\binom{2n}{0} + \binom{2n}{1} + \binom{2n}{2} + \dots + \binom{2n}{n}$ (D) $\binom{2n}{0} + \binom{2n}{1} + \binom{2n}{2} + \dots + \binom{2n}{2n}$

Section I (Written response)

30 marks

Attempt Questions 6-7

Allow approximately 52 minutes for this section.

Write your answers in the writing booklets supplied. Use a separate writing booklet for each question. Additional writing booklets are available.

Your responses should include relevant mathematical reasoning and/or calculations.

QUESTION 6 (15 MARKS) (Start a new Answer Booklet)

Marks

3

2

- (a) Using the substitution u = x + 3, find $\int \frac{x}{\sqrt{x+3}} dx$
- (b) Consider the polynomial $P(x) = x^3 4x^2 + kx + 12$, where k is a constant. It is given that α , β , and γ are the roots of the equation P(x) = 0.
 - (i) Find the values of $\alpha + \beta + \gamma$ and $\alpha\beta\gamma$
 - (ii) If two of the roots are equal in magnitude but opposite in sign, find the value of the roots and the value of k.
- (c) How many numbers do you need to select from the integers 1 to 18 to ensure that there is a pair of numbers that add to give you 19?
- (d) In how many ways can 10 people be split into two unequal groups? (Note, a group must contain at least one person).
- (e) (i) Write the expression $\cos x + \cos 5x$ as the product of trigonometric ratios.
 - (ii) Hence solve the equation $\cos x + \cos 3x + \cos 5x = 0$ for $0 \le x \le \pi$

End of Question 6. Question 7 continues over the page.

QUESTION 7 (15 MARKS) (Start a new Answer Booklet)

Marks

(a)

In the diagram, the region bounded by the curve $y = \ln(x+2)$, the x-axis and the y-axis, is rotated one revolution about the **y-axis**. Find in simplest exact form, the volume of the solid formed.

4

- (b) In 2020 the world population was 7.8 billion. Projections are that the population will be 8.6 billion in 10 years' time and that the projected maximum population is 10.9 billion.
 - (i) show by differentiation that $P = 10.9 + Be^{-kt}$ is a solution of the differential equation $\frac{dP}{dt} = -k(P-10.9)$ where t is the number of years after 2020.

1

(ii) In how many years will the population reach 10 billion? (answer to the nearest year)

3

(iii) What will the rate of population growth be at that time?

1

Question 7 continues over the page

(c) A stone *P* is projected from a point *O* with an initial velocity of $30\sqrt{2} \, ms^{-1}$ at an angle of 45° from the horizontal. At the same instant a second stone *Q* is projected in the opposite direction with an initial speed of $40 \, ms^{-1}$ from the same horizontal plane 60 metres from *O*.

After T seconds, the stones collide. Assume $g = 10 \, ms^{-2}$.

- (i) Show that the position vector of stone *P* is given by $r(t) = 30ti + (30t 5t^2)i$
- (ii) Given that the position vector of stone Q is given by $\underline{r}(t) = 40t \cos \theta \underline{i} + \left(40t \sin \theta 5t^2\right) \underline{j} \text{ (DO NOT SHOW THIS), find the angle of projection of stone } Q \text{ to the nearest degree.}$
- (iii) Find the **exact** value of *T*, the time when the stones collide and the horizontal distance from O at the point of collision.

End of Question 7. End of Section I.

Discover.
what's possible

Mathematics Extension 1

2021 Trial HSC Assessment point 4

General Instructions

• Working time: 1 hour

• Write using black or blue pen

• Attempt ALL questions

Do NOT write in pencil

 Write your student number on the front of each exam writing booklet. Section 1 - Multiple Choice 5 marks

Section 1 – Written (booklets) 30 marks

Section 2 - Multiple Choice 5 marks

Section 2 – Written (booklets) 30 marks

Section II (Multiple Choice)

5 marks

Attempt Questions 8-12

Allow approximately 8 minutes for this section

Mark your answers on the multiple-choice answer provided.

- What is the remainder when the polynomial $P(x) = x^3 8x^2 4x + 5$ is divided by 2x + 1? 8.
- (B) $\frac{1}{2}$ (C) $\frac{39}{8}$ (D) $\frac{9}{8}$
- OABC is a parallelogram. $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OC} = \underline{c}$. The points P and Q are chosen such that 9. AP: PB = 1:3 and CQ: QB = 1:3.

Which of the following is \overrightarrow{PQ} ?

(A) $\frac{3}{4}c - \frac{3}{4}a$

(B) $\frac{3}{4}c + \frac{3}{4}a$

(C) $\frac{2}{3}c - \frac{2}{3}a$

- (C) $\frac{2}{3}c + \frac{2}{3}a$
- The graph of $y = \cos^{-1}(x+2)$ is transformed by being dilated horizontally with a scale factor of $\frac{1}{2}$ 10. then translated to the right by 1.

What is the equation of the transformed graph?

(A) $y = \frac{1}{2}\cos^{-1}(x+1)$

(B) $y = 2\cos^{-1}(x+1)$

(C) $y = \cos^{-1} 2x$

(D) $y = \cos^{-1}\left(\frac{x+3}{2}\right)$

11. If
$$y = \sin^{-1} \frac{1}{x}$$
 for $x \ge 1$, what is $\frac{dy}{dx}$?

(A) $\cos^{-1}\frac{1}{x}$

(B) $\frac{x}{\sqrt{x^2 - 1}}$

(C) $-\csc^2 y \sec y$

- (D) $-\sin y \tan y$
- 12. A vertical tower of height h metres stands with its base on horizontal ground. A stone projected horizontally from the top of the tower O with speed V ms^{-1} . The stone moves in a vertical plane under gravity, where the acceleration due to gravity is g ms^{-2} . At time t seconds its position vector **relative to** O is given by $r(t) = Vti \frac{1}{2}gt^2j$. The stone hits the ground at a horizontal distance 2V metres from the base of the tower. What is the height of the tower in terms of g?
 - (A) $\frac{1}{2}g$ metres

(B) g metres

(C) 2g metres

(D) 4g metres

Section II (Written Section)

30 marks

Attempt Questions 13-14

Allow approximately 52 minutes for this section.

Write your answers in the writing booklets supplied. Use a separate writing booklet for each question. Additional writing booklets are available.

Your responses should include relevant mathematical reasoning and/or calculations.

QUESTION 13 (15 MARKS) (Start a new Answer Booklet)

Marks

(a) Prove by mathematical induction that $13 \times 6^n + 2$ is divisible by 10 for all integers $n \ge 1$

3

(b) In the diagram, OAB is a triangle with $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ and $|\overrightarrow{OA}| = |\overrightarrow{OB}|$.

If *M* is the midpoint of *AB*, show that $\overrightarrow{OM} \perp \overrightarrow{AB}$. (Diagram is not to scale)

3

Question 13 continues over the page

(c) Sand is poured from above onto a cone with a height of 10 cm, so that it remains conical in shape but the semi-vertical angle α is increasing at a rate of 0.0005 radians per second, while the height remains unchanged. Find the rate at which the volume of the cone is increasing when the semi-vertical angle is $\frac{\pi}{3}$. (Answer to 2 decimal places)

You are given that the volume of the cone is $V = \frac{1}{3}\pi h^3 \tan^2 \alpha$.

- (d) Solve the differential equation $y' = \frac{3x}{\cos y}$ given that y(1) = 0
- (e) Find the exact value of $\sin \left[\cos^{-1} \frac{3}{5} + \tan^{-1} \left(\frac{-3}{4} \right) \right]$

End of Question 13. Question 14 starts over the page.

QUESTION 14 (15 MARKS) (Start a new Answer Booklet)

Marks

(a) An object on level ground is subject to forces operating horizontally of magnitudes F Newtons, G Newtons and 10 Newtons as shown on the diagram. Find the exact value of F if the object is in equilibrium.

3

3

1

(b) Find
$$\int_0^{\frac{\pi}{3}} \sin^3 x \, dx$$

(c) The graph of the function $f(x) = \frac{-4x}{x^2 + 1}$ is shown below.

(i) What is the domain of the graph
$$y = \sqrt{f(x)}$$
?

(ii) Sketch the graph of $y = \frac{1}{\sqrt{f(x)}}$ showing clearly any turning points, intercepts and asymptotes 2

(iii) On a separate axis, Sketch the graph of
$$y^2 = \frac{1}{f(x)}$$

Question 14 continues over the page

(d) (i) Show that
$$\tan(\alpha + \beta + \gamma) = \frac{\tan \alpha + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - \tan \alpha \tan \beta - \tan \alpha \tan \gamma - \tan \beta \tan \gamma}$$

(ii) If
$$\tan \alpha$$
, $\tan \beta$, $\tan \gamma$ are the roots of the equation $x^3 - (a+1)x^2 + (b-a)x - b = 0$, show that $\alpha + \beta + \gamma = n\pi + \frac{\pi}{4}$.

End of Section II. End of Examination.