1

1.a

We know $V_i \cap \sum_{i \neq j} V_j = \{0\}$, so $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3 \leq \dim \mathbb{R}^3 = 3$, and $\dim V_\lambda \geq 1$ for any $\lambda \in \operatorname{Spec} T$, so $3 \leq \dim V_1 + \dim V_2 + \dim V_3$, thus $\dim(V_1 + V_2 + V_3) = \dim \mathbb{R}^3$, so T is diagonalizeable.

1.b

Let v be an eigenvector of T with eigenvalue λ . $TSv = STv = S\lambda v = \lambda Sv$, so Sv is an eigenvector of T. T is diagonalizable, so $\dim V_1 + \dim V_2 + \dim V_3 = \dim V = 3$. That is, each eigenspace has dimension 1, so Sv and v must be in the same eigenspace. Thus $Sv = \lambda v$. This holds for any vectors v_1, v_2, v_3 in an eigenbasis for T, so S is diagonalizable using the same eigenvectors as T, as desired.

1.c

Let $\beta = \{v_1, v_2, v_3\}$ be an eigenbasis for T. $[T]_{\beta}^{\beta} = [1]_{\varepsilon}^{\beta} [T]_{\varepsilon}^{\varepsilon} [1]_{\beta}^{\varepsilon}$ is clearly diagonal. We saw in part b) that β is also an eigenbasis for S, so $[T]_{\beta}^{\beta} = [1]_{\varepsilon}^{\beta} [T]_{\varepsilon}^{\varepsilon} [1]_{\beta}^{\varepsilon}$ is also diagonal. Thus $Q = [1]_{\varepsilon}^{\beta}$ has the desired property.

1.c

Let $A_D = QAQ^{-1}$, $B_D = QBQ^{-1}$. Then $A = Q^{-1}A_DQ$, $B = Q^{-1}B_DQ$. $A + B = Q^{-1}A_DQ + Q^{-1}B_DQ = Q^{-1}(A_D + B_D)Q$. Since $A_D + B_D$ is diagonal with entries from Spec T + Spec S, and since A + B corresponds to T + S, the eigenvalues in Spec(T + S) must also come from Spec T + Spec S, so Spec $(T + S) \subset \text{Spec } T + \text{Spec } S$, as desired.

1.d

Using the same definition of A_D and B_D as above, $AB = Q^{-1}A_DQQ^{-1}B_DQ = Q^{-1}(A_DB_D)Q$. Since A_DB_D is diagonal with entries from Spec $T \cdot \text{Spec } S$, and since AB corresponds to TS, the eigenvalues in Spec(TS) must also come from $\text{Spec } T \cdot \text{Spec } S$, so $\text{Spec}(TS) \subset \text{Spec } T \cdot \text{Spec } S$, as desired.

 $\mathbf{2}$

 $\lambda - ST$ is invertible: $\lambda - TS$ is invertible, so $\ker(\lambda - TS) = \{0\}$. Thus there is no $v \in V$ such that $TSv = \lambda v$, so λ is not an eigenvalue of TS. Let $0 \neq \lambda' \in \operatorname{Spec} ST$. Then there is some $0 \neq v \in V$ such that $STv = \lambda' v$. Then $TS(Tv) = T(STv) = T(\lambda' v) = \lambda' Tv$. Since $S(Tv) = \lambda' v \neq 0$, $Tv \neq 0$, thus $\lambda' \in \operatorname{Spec} TS$. But $\lambda \notin \operatorname{Spec} TS$, so $\lambda' \neq \lambda$. Thus $\lambda \notin \operatorname{Spec} ST$, so $\ker(\lambda - ST) = \{0\}$, and so $\lambda - ST$ is invertible, as desired.

$$\begin{split} \frac{(\lambda - TS)^{-1} &= \lambda^{-1} + \lambda^{-1}T(\lambda - ST)^{-1}S}{(\lambda - TS)(\lambda^{-1} + \lambda^{-1}T(\lambda - ST)^{-1}S)} \\ &= 1 + T(\lambda - ST)^{-1}S - \lambda^{-1}TS - \lambda^{-1}TST(\lambda - ST)^{-1}S \\ &= 1 + T((\lambda - ST)^{-1} - \lambda^{-1} - \lambda^{-1}ST(\lambda - ST)^{-1})S \\ &= 1 + T((1 - \lambda^{-1}ST)(\lambda - ST)^{-1} - \lambda^{-1})S \\ &= 1 + T(\lambda^{-1}(\lambda - ST)(\lambda - ST)^{-1} - \lambda^{-1})S \\ &= 1 + T(\lambda^{-1}1 - \lambda^{-1})S \\ &= 1 + T(0)S \\ &= 1 \end{split}$$

So the equality holds.

ST and TS have the same nonzero eigenvalues: Let $0 \neq \lambda \in \operatorname{Spec} TS$. Then there is some $v \in V$ such that $TSv = \lambda v$. $ST(Sv) = S(TSv) = \lambda Sv$, so $ST(Sv) = \lambda Sv$, thus $\lambda \in \operatorname{Spec} ST$. So $\operatorname{Spec} TS \setminus \{0\} \subseteq \operatorname{Spec} ST \setminus \{0\}$.

Now let $0 \neq \lambda \in \operatorname{Spec} ST$. Then there is some $v \in V$ such that $STv = \lambda v$. $TS(Tv) = T(STv) = \lambda Tv$, so $TS(Tv) = \lambda Tv$, thus $\lambda \in \operatorname{Spec} TS$. So $\operatorname{Spec} ST \setminus \{0\} \subseteq \operatorname{Spec} TS \setminus \{0\}$.

Thus Spec $ST \setminus \{0\} = \operatorname{Spec} TS \setminus \{0\}$, so TS and ST have the same nonzero eigenvalues, as desired.

Example of S,T such that 0 is an eigenvalue of ST but 0 is not an eigenvalue of TS: Let $V = \{(a_n)_{n=1}^{\infty} \mid a_n \in \mathbb{N}\}$, and let T and S be the right and left shift operators, respectively. Then TS = I, so 0 - TS = -I = I is invertible, thus $0 \notin \operatorname{Spec} TS$, but ST is not invertible, since $(1,0,\ldots) \notin \operatorname{ran} ST$, and so 0 - ST is not invertible, thus $0 \notin \operatorname{Spec} ST$, as desired. 3

 \underline{T}^* is linear: Let $f, g \in W^*$, $\lambda \in F$.

$$T^*(f + \lambda g) = (f + \lambda g) \circ T$$
$$= f \circ T + \lambda g \circ T$$
$$= T^*(f) + \lambda T^*(g)$$

So T^* is linear.

Transpose map is linear: Let $S, T \in \mathcal{L}(V, W), \lambda \in F$. Let $f \in W^*$.

$$(S + \lambda T)^*(f) = f \circ (S + \lambda T)$$
$$= f \circ S + f \circ \lambda T$$
$$= S^*(f) + \lambda T^*(f)$$

So the transpose map is linear.

3.a

<u>i</u> is linear: Let $w_1, w_2 \in W$, $\lambda \in F$.

$$i(w_1 + \lambda w_2) = w_1 + \lambda w_2$$
$$= i(w_1) + \lambda i(w_2)$$

So i is linear.

<u>r is linear</u>: Let $f, g \in V^*$, $\lambda \in F$. If $f \in V^*$, let f_W be f restricted to W.

$$r(f + \lambda g) = f_W + \lambda g_W$$
$$= r(f) + \lambda r(g)$$

So r is linear.

3.b

$$\begin{aligned} \ker r &= \{ f \in V^* \mid r(f) = 0 \} \\ &= \{ f \in V^* \mid f_W = 0 \} \\ &= \{ f \in V^* \mid f(w) = 0 \text{ for any } w \in W \} \\ &= W^{\perp} \end{aligned}$$

3.c

Let $f \in V^*$. $r(f) = f_W = f \circ i$, since Im i = W, so $r = i^*$.

4

 \underline{f} is surjective $\Longrightarrow f^*$ is injective: Let $g \in \ker f^*$. Then $f^*(g) = 0$, so $g \circ f(v) = 0$ for any $v \in V$. f is surjective, so g(w) = 0 for any $w \in W$, so g = 0. Thus $\ker f^* = \{0\}$, so f^* is injective.

 $\underline{f}*$ is surjective $\Longrightarrow f$ is injective: f is injective, so it has an inverse map $f^{-1}\colon \operatorname{Im} f \longrightarrow V$. Fix some $v \in V^*$. If we define $g \in W^*$ by $g(x) = v(f^{-1}(x))$, then $f^*(g) = g \circ f$. $g \circ f(x) = v(f^{-1}(f(x))) = v(x)$ for any $x \in V$, so $f^*(g) = v$, thus f^* is surjective.