Application No.: 10/578,626 Amendment under 37 CFR 1.111 Reply to Office Action dated January 5, 2009 April 6, 2009

AMENDMENTS TO THE CLAIMS

Please substitute the following claims for the pending claims with the same numbers respectively:

Claim 1 (Currently amended): An aqueous solution of a chromium salt, wherein comprising:

an oxalic acid content [[is]] $\underline{\text{of}}$ 8% by weight or less relative to chromium,

wherein the chromium salt is a chromium chloride, [[and]] wherein the aqueous solution contains a basic chromium chloride represented by the composition formula $Cr(OH)_xCl_y$ (wherein $0 < x \le 2$, $1 \le y < 3$, and x + y = 3);

wherein the aqueous solution of the chromium salt is produced by a process comprising the steps of:

adding an organic reducing agent composed of a monohydric alcohol or a dihydric alcohol to an aqueous solution of chromic acid to reduce part of a chromic acid in advance in a first stage of reaction;

Application No.: 10/578,626 Amendment under 37 CFR 1.111 Reply to Office Action dated January 5, 2009 April 6, 2009

mixing hydrochloric acid and the organic reducing agent to
form a mixture; and

adding the mixture to the aqueous solution of chromic acid so as to complete the reaction.

Claims 2-4 (Cancelled):

Claim 5 (Previously presented): The aqueous solution of the chromium salt according to claim 1, wherein a specific gravity at 20°C is 1.35 to 1.44, and a molar ratio (Cl/Cr) of chlorine to chromium is 1 or more and less than 3.

Claim 6 (Previously presented): The aqueous solution of the chromium salt according to claim 1, wherein a concentration in terms of Cr is 8.2% to 14% by weight.

Claims 7-23 (Cancelled):

Claim 24 (New): A method for producing an aqueous solution of a chromium salt including an oxalic acid content of 8% by weight or less relative to chromium, wherein the chromium salt is

Application No.: 10/578,626 Amendment under 37 CFR 1.111 Reply to Office Action dated January 5, 2009 April 6, 2009

a chromium chloride, and the aqueous solution contains a basic chromium chloride represented by the composition formula $\text{Cr}(OH)_x \text{Cl}_y \text{ (wherein } 0 < x \leq 2, \ 1 \leq y < 3, \ \text{and } x + y = 3),$ comprising the steps of:

adding an organic reducing agent composed of a monohydric alcohol or a dihydric alcohol to an aqueous solution of chromic acid to reduce part of a chromic acid in advance in a first stage of reaction;

mixing hydrochloric acid and the organic reducing agent to form a mixture; and

adding the mixture to the aqueous solution of chromic acid so as to complete the reaction.