Fundação Hermínio Ometto Bacharelado em Sistemas de Informação

SIF009 - Linguagem de Programação I Prof. Dr. Sérgio Luis Antonello

Plano de ensino

- Unidade I Programação estruturada e Linguagem C (objetivos b, c e d).
 - 1.1. Conceitos de programação estruturada.
 - 1.2. Estrutura de um programa de computador.
 - 1.3. Códigos fonte, objeto e executável.
 - 1.4. Biblioteca de códigos.
 - 1.5. Compiladores e Interpretadores.
 - 1.6. Processos de compilação e link edição.
 - 1.7. Identificação dos tipos de erros e alertas (léxicos, sintáticos e semânticos).
 - 1.8. Depuração de código.
 - 1.9. Palavras reservadas.
 - 1.10. Tipos de dados.
 - 1.11. Constantes. Variáveis simples e estruturadas. Escopo de variáveis.
 - 1.12. Operadores e precedência.
 - 1.13. Expressões aritméticas, lógicas e relacionais.
 - 1.14. Comandos.
 - 1.15. Ambientes de desenvolvimento e programação.
- Unidade II Estruturas de controle (sequência, decisão e repetição), registro e arquivo
 - 2.1. Comandos if e switch.
 - 2.2. Comandos for, while e do while.
 - 2.3. Blocos de comandos e aninhamento.
 - 2.4. Definição de tipos.
 - 2.5. Registro.
 - 2.6. Arquivo: leitura e gravação de dados em disco.
- Unidade III Ponteiros e Funções (objetivos a, c, d, e).
 - 3.1. Ponteiros.
 - 3.2. Funções.
 - 3.3. Passagem de parâmetro por valor.
 - 3.4. Passagem de parâmetro por referência.
- Unidade IV- Strings e Variáveis indexadas (objetivos a, c, d).
 - 4.1. Manipulação de strings.
 - 4.2. Manipulação de caracteres.
 - Declaração e manipulação de vetores.
 - 4.4. Declaração e manipulação de matrizes.

Plano de ensino

Data	Atividade
04/08	Aula 01
11/08	Aula 02
18/08	Aula 03
25/08	Aula 04
01/09	Aula 05
08/09	Aula 06
15/09	Prova 1
22/09	Aula 08
29/09	Aula 09
06/10	Aula 10

Data	Atividade					
13/10	Aula 11					
20/10	Maratona FHO de Programação					
27/10	Aula 13					
03/11	Aula 14					
10/11	Aula 15					
17/11	Prova 2 Entrega Trabalho					
2 4/11	Semana Científica					
01/12	Prova SUB					
08/12	Aula 19					
15/12	Aula 20					

Sumário da aula

Primeiro momento (revisão)

- ✓ Vetor
 - ✓ Declaração
 - ✓ Acesso a um elemento específico
 - ✓ Acesso a todos os elementos sequencialmente

Segundo momento (conteúdo)

- ✓ Conceitos de variáveis indexadas
- ✓ Manipulação de matriz

Terceiro momento (síntese)

✓ Retome pontos importantes da aula

1. Primeiro momento: revisão

Grande parte dos dados armazenados e que circulam digitalmente estão no formato de strings.

É uma importante forma de dados, composta por caracteres alfanuméricos e caracteres especiais.

Cada caractere pode ser acessado individualmente, como em qualquer vetor, através do uso de colchetes.

Funções específicas permitem manusear tanto a strings como um todo quanto individualmente cada um de seus caracteres.

1. Primeiro momento: revisão

Correção de exercícios

2. Segundo momento

- Conceitos de variáveis indexadas
- Manipulação de matriz

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

2. Segundo momento: motivação

É bastante comum a necessidade de armazenamento e manipulação de um ou vários dados de maneira sequencial.

Como por exemplo pode-se observar o cálculo das notas de um aluno, dado pela média entre 5 notas (nota da prova, nota do trabalho, nota da workshop e uma nota da entrega de tarefas).

São quatro valores numéricos de mesmo tipo para o cálculo de aluno.

E se precisarmos fazer esse processamento para todos os alunos de uma turma? Qual recurso poderemos usar?

2. Segundo momento: motivação

Será que ocorre a necessidade de se processar especificamente uma quantidade de dados de mesmo tipo?

Aluno	Status Mat.	Mat.	Faltas	SPA	Anterior	Nota	Média
	CURSANDO	0	20	-	6.4	3.3	4.3
	CURSANDO	16	20	-	4.1	5.7	5,2
	CURSANDO	0	20	-	6.3	7.6	7.2
	^I CURSANDO	0	20	-	8,9	9.4	9.2
	CURSANDO	12	20	-	3.6	2.8	3.1
	CURSANDO	12	20	-	9,2	7.2	7.9
	CURSANDO	0	20	-	7.0	7.9	7.6
	CURSANDO	0	20	-	3.3	4.3	4.0
	CURSANDO	4	20	-	7.5	7.0	7,2

3. Variáveis indexadas

Variável Indexada é o conjunto de variáveis do mesmo tipo, referenciadas pelo mesmo nome e individualizadas por índices.

Uma variável indexada pode fazer uso de um ou mais índices, de acordo com a quantidade de dimensões desta variável.

Esses índices são necessários para permitir o acesso a cada elemento da variável indexada.

Vetor é uma variável indexada com uma dimensão.

Matriz é uma variável indexada de duas ou mais dimensões.

Uma matriz caracteriza-se, também, por ser uma sequência de valores de um mesmo tipo.

Assim como no vetor, esses valores ficam alocados contiguamente na memória.

Cada elemento pode ser acessado a partir da sua posição.

Uma matriz necessita de **mais de um índice** para identificar cada um de seus elementos, cada índice para uma dimensão.

Uma matriz bidimensional precisa de 2 índices;

Uma matriz tridimensional precisa de 3 índices; etc.

Um elemento da matriz pode ser usado no programa como qualquer outra variável.

Para cada dimensão é necessário um índice;

O primeiro elemento da matriz tem **índice zero na linha** e **índice zero na coluna**.

int matriz [2]
$$[5] = \{ \{1, 2, 3, 4, 5\}, \{6, 7, 8, 9, 10\} \}$$

MATRIZ	coluna [0]	coluna [1]	coluna [2]	coluna [3]	coluna [4]
linha [0]	1	2	3	4	5
linha [1]	6	7	8	9	10

Alguns algoritmos precisam acessar sequencialmente todos os elementos da matriz.

Exemplo:

```
int main() {
   int AluNotas[5][3];
   int indalu, indnot;

   for(indalu=0; indalu<5; indalu++) {
      for (indnot=0; indnot<3; indnot++) {
        scanf("%d", &AluNotas[indalu][indnot]);
      }
   }
}</pre>
```

5. Exercícios

Vamos Programar!

5. Exercícios

- 1) Carregar duas matrizes bidimensionais A e B, cada uma com 4 linhas e 3 colunas. Construir uma matriz C de mesma dimensão, onde C é formada pela soma dos respectivos elementos da matriz A com B.
- 2) Resolva o problema URI 1181 Linha na Matriz.

https://www.urionlinejudge.com.br/judge/pt/problems/view/1181

3) Escrever um programa que lê uma matriz float de 5 linhas e 10 colunas e no final exiba toda a coluna onde está o menor valor da matriz. Se tiver mais de um elemento igual ao de menor valor igual, considere a coluna do primeiro deles..

6. Terceiro momento: síntese

As variáveis indexadas usam índices para acessar cada um de seus elementos.

Um vetor usa um índice.

Uma matriz bidimensional usa dois índices, um para especificar a linha e outro para especificar a coluna da matriz.

Rotinas com loops aninhados possibilitam acessar individualmente todos os elementos de uma matriz.