tractitioner's Docket No.: 789 071

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

the application of: Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki

NAKAYAMA, Hiroyuki TAKEUCHI and Seiji YASUI

Ser. No.: 09/913,353

Group Art Unit: 1775

Filed: August 13, 2001

Examiner: Turner, A.

Conf. No.: 8579

For:

HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Assistant Commissioner for Patents Washington, DC 20231

I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 addressed to Assistant Commissioner for Patents, Washington, D.C. 20231 on February 26, 2003 under "EXPRESS MAIL" mailing label number EV 196642704 US.

Tara L. Preston

SUBMISSION OF NEW FORMAL DRAWINGS

Sir:

Attached please find new formal drawings of Figs. 3-5, 8, 16, 17, 19-21, 23, 24, 26-28, 30, 34, 38 and 40. The terms "impregnate," "impregnated," "impregnating" and "impregnation" have been changed to --infiltrate--, --infiltrated--, --infiltrating-- and --infiltration--, respectively, to correspond with the language used throughout the specification and claims.

The Examiner is requested to confirm receipt and entry of these new formal drawings.

February 26, 2003

Date

Respectfully submitted,

Reg. No. 32,970

SPB/SC/tlp

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068 Customer No.: 025191

Telephone: (315) 233-8300

Facsimile: (315) 233-8320

FIG. 4

FIG. 5

FIG. 16

1	7	/	4	0
•	,	,	-1	v

띩			17/40					
WATER RESISTANCE	EFFECT	GENERA- TION OF	GENERA- TION OF CARBIDE					
ATER	-	◁	4	△	٥	△	٥	1
**	COEFFICIENT OF THERMAL EXPANSION (×10-6/K)	14.0	13.5	13.6	14.0	11.5		
	COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	321	325	305	321	311	301	
	INFIL- INFIL- TRATION TRATION METHOD PRESSURE (MPa)	60.0	60.0	60.0	0.09	0.09	60.0	
-	INFIL- TRATION METHOD	PRESS	PRESS	PRESS	PRESS	PRESS	PRESS	
ADDED ELEMENT	AMOUNT OF ADDITION (wt%)	0.001	0.001	0.001	0.001	0.001	1.001	
ADO /		S _S	§.	§.	₽ 2	₽ S	NB	
METAL	~	3	3	3	3	3	S	
W	FILLING METHOD	NO PRESSUR- IZATION	NO PRESSUR- IZATION	NO PRESSUR- IZATION	NO PRESSUR- IZATION	PRESSUR- IZATION, 7MPa	PRESSUR- IZATION, 25MPa	
	PARTICLE SIZE OF POWDER (µm)	AVERAGE 120	AVERAGE 50	212– 1180	AVERAGE 120	AVERAGE 120	AVERAGE 120	
	TYPE OF POWDER	type -p	type -S	type -R	type -P	type -p	type -P	
	S1ZE (mm)	30 ·× 120 × 190	30 × 120 × 191	30 × 120 × 192	30 × 120 × 193	30 × 120 × 194	30 × 120 × 195	
	SAMPLE	pW-1	PW-2	PW-3	PW-4	PW-5	9-Md	

F1G. 17

19/40

		77	-7-	_	_	_		_		_	-			_	T	_	_		
EFFECT		MONE	NONF			WETT-	ABILITY					GENERALION	UF CARBIDE		COMBINED	ADDITION	NONE	WETT-	ABILITY
WATER RESISTANCE			1 ©			()		-			4)	0	()
BENDING STRENGTH (MPa)	THI CK-	7230 53 0	41.2	45.1	41.2	39. 2	38.2	39. 2	41.2	57.8	58.8	56.8	56.8	40.2	45 1	- -	41.2	39. 2	42 1
BENI STRE (MF	SUR-	22 2	27.4	28. 4	27.4	26.5	25.5	26.5	27.4	34.3	37.2	34.3	34.3	24.5	27 4	61.7	27.4	26.5	28.4
COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /°C)	THICK-	N 7	-	5.1	5.1	5.1	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2		5.0	5.1	5.0
COEFFICIEN OF THERMAL EXPANSION (×10 ⁻⁶ /°C	SUR-	7 AVR	2 -	5.0	5.0	5.0	4.9	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	THICK-	171	170	178	186	189	1.78	176	185	204	192	181	190	174	177	:	188	196	204
COEFFICIENT OF THERMAL CONDUCTIVIT (W/mK)	SUR-	171	162	168	178	180	172	169	172	184	187	175	187	172	165	?	170	185	192
INFIL- TRATING METHOD		PRESS	PRESS			DDECC	וורסס					PRESS			PRESS		GAS	0 4 0	S S
AMOUNT OF ADDITION	(wt%)	NONE	NONE	2	0.5	0.5	2	0.5,0.5	0.5, 2.0	-	0.5	0.5	0.02	0.5	0.5.0.5		NONE	7	2
ELEMENT		NONE	NONE	Bi	S	Те	<u>e</u>	Te, Bi	Te, Pb	Be	င်	Mn	å	Zr	Te. Ni		NONE	<u>۔</u>	<u>ط</u>
METAL EL		A	ŋ	no	సె	J.	ည	 					సె	S	3		J	3	ટ
S1ZE (mm)		20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	. 20×60×60	20×60×60	20×60×60		20×60×60	10x85x180	20×60×60
SAMPLE		p1-1	p1-2	p2-1	p2-2	p2-3	p2-4	p2-5	p2-6	p3-1	p3-2	p3-3	p3-4	p3-5	p4-1		p5-1	p6-1	p6-2

F16.1

F1G. 20

_	,		,			2	0/	4	0					_		
			EFFECT			NONE	NONE	NONE	WETT-	10101		CENEDATION	OF CARRIDE	O ONE DE		HON
		WATER	RESISTANCE	,	-	<	1 ©	0	0				◁			©
91.0	BENDING	L SNI	(MPa)	TH1CK-		┸		ı	39. 2	50 0	ο α Θ	2 2	57.8	57:0	50 0	
	DEN STD	2	3	SUR-	FACE	34 3	28 4		26.5	26.2		35.2	35.3	35.3		25.5
COEFFICIENT	IERMAL	EXPANSION	$(\times 10^{-6})^{\circ}$ C)	THI CK-	NESS	5.6	5		5.1	7	- -	. r.		5	гс.	2
COEFF	OF THERMAI	EXPAI	(×10	SUR-	FACE	4.5	4.5		4.5	4.5	. 4	. 7	5.5	4.5	4 5	4.5
COEFF I CI ENT	OF THERMAL	TIVITY	(W/mK)	THI CK-	NESS	187	181		199	213	193	192	192	207	182	198
COEFF	F I	CONDUCTIVI	/M)	SUR-	FAGE	161	145		168	184	170	165	162	169	158	166
	INFIL-	TRATING	METHOD			PRESS	PRESS		PRESS			20	YKESS			GAS
	AMOUNT	ᆼ	ADDITION	(wt%)		NONE	NONE		0.50	1.00	0.50	0. 20	0.05	0.02	0.50	NONE
	•	METAI FE EMENT				NONE	NONE		<u>ө</u>	Be	ပ်	Æ	.Q	ş	7Ľ	NONE
		METAI	1			٩١	ņ		ος	ŋ	3	3	უ	3	ŋ	no
		SIZE	(mm)			20×60×60	20×60×60		m2-1 20x60x60	20×60×60	20×60×60	20×60×60	20×120×190	20×60×60	20×60×60	20×60×60
		SAMPI F				m1-1	m1-2		m2-1	m3-1	m3-2	ш3-3	m34	m3-5	m3-e	m5-1

Δ.		
21	/4	

				\top	Т	T		1.						T.		\top			Т		Т	
RESISTANCE	EFFECT		NONE	NONE	WETTABLLITY			GENERATION OF	CARBIDE				ADDITION	GENERATION OF		EXPANSION OF	SOLID-LIQUID	RANGE	NONE	GENERATION OF CARBIDE	EXPANSION OF	SOLID-LIQUID RANGE
WATER	~		4 <	000) ©	0 <	143	100	۷.	٥<	14	4	ÖÖ	٥	٥<	00	0 @	0	0	٥	0	0
	COMPRESSIVE STRENGTH (MPa)	TH I CK-	51.0				48 0				58.8		51.0 51.9		51.9 63.7	60.8	68.6 7	8.09		62.7	61.7	68.6
<u> </u>	COMPI STR ()	SUR- FACE	46.1				42 1	į		40.2		57.8	51.9 48.0		48. 0 53. 9	53.9				57.8	50.0	56.8
NDUCT I V'I	BENDING STRENGTH (MPa)	THI CK-	51.9	39. 2		62.7	59.8	57.8	56.8	-					-				39. 2			
MAL CO	BEN STR (A	SUR- FACE	31.4	26.5	.1		36.3	35.3 35.3	34.3										26.5			
COEFFICIENT OF THERMAL CONDUCTIVITY	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	THICK- NESS	6.0	4. 5 5. 5	.,	4.5		4.4. 3.5			, co								4.5	6.5	6.5	6.5
INFILTRATION PRESSURE	COEFF OF T EXP/ (×1	SUR- FACE	5. 57 5. 57	3 3 3		დ 4 8 0	က က	ကက်		4 4 0 0	4.0								3 8	5.0	5.0	5.0
TION P	_	(W/mK)	311	310 268	╄	341 342		338		363		365		352		333			320	332	329	327
:ILTRA			156 185	150 147	130	183 189	180 176	198	158	182			86			157		-	2	177	169	181
¥)	- I	26. 7 60. 0	26. 7 26. 7	1 1			_	26. 7		90.	96				26.7		- 1	26. 7	0.09	60.0	60.0
METHOD	~		PRESS PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS PRESS	PRESS PRESS	PRESS	PRESS	PRESS	PRESS		PRESS	PRESS	PRESS	PRESS	PRESS	GAS	PRESS	PRESS	PRESS
FILTRATING ME	AMOUNT OF ADDITION (wt%)		NONE NONE	NONE NONE	0.500			0.050 0.050	0.00	0.001	1.100	9.4.6.7	1. 0, 0. 23, 0. 04	4. 180 2. 870	4. 490	10.300	5. 170	5.300	NONE	2. 000	5.000	12.000
≥	ADDITIVE ELEMENT		NONE	NONE	Те	B B	ა≨:	88,	- S	S	2 g	N.S.	Ni.Si.P	Ę ċ	7.5	<u>ت</u> ت	S	Si	NONE	Be	Si	Si
METAL	\sim		₹ ₹ (33	3	33,	330	333	33	3	36	33	3	3 &	33	33	3	3	3	Ā	A	А
	SIZE (mm)		20 × 120 × 190	20 × 60 × 60 20 × 120 × 190	20×60×60	20×60×60 20×120×190	20 × 60 × 60 20 × 60 × 60	20 × 120 × 190 20 × 120 × 190 20 × 60 × 60	20 × 120 × 190	$20\times120\times190$	20×120×190 20×120×190	20×120×190	20×120×190		20×120×190	20 × 120 × 190 20 × 120 × 190	20×	xI:	00 × 00 × 07	20×120×190	20×120×190	20×120×190
F1G. 21	SAMPLE		- 1- - 4-	n 1-3	12-1	- 2- - 2- - 2- - 2- - 2- - 2- - 2- - 2-	2	2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -		6-0	10 13 11 11	2	n3-13		n3-16	n3-18	n3-19	03-50	2	n7-1	n7-2	n7-3

EFFECT		•		NONE	WETT	ABILITY		NONE		NONE
WATER			. (9	(9		<u></u>		9
BENDING STRENGTH (MPa)	SUR- THICK-	NESS	41.2	41.2	38. 2	42.1	42.1	38. 2	39. 2	39. 2
BENI STRE	SUR-	FACE	27.4	27.4	25.5	28. 4	28. 4	25. 5	26.5	26.5
SOEFFICIENT OF THERMAL EXPANSION	SUR- THICK-	NESS	5.1	5.0	5.0	5.0	5.1	5.1	4.5	4.5
 	SUR-	FACE	5.1	5.0	4.9	5.0	4.5	4.5	3.8	3.8
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	SUR- THICK-	NESS	170	188	178	204	181	198	310	320
COEFF OF TH CONDUC (W)	SUR-	FACE	162	170	172	192	145	166	150	170
INFIL- TRATING	MEIHOD	·	PRESS	GAS	PRESS	GAS	PRESS	GAS	PRESS	GAS
AMOUNT OF ADDITION	(wt%)		HOME	HOINE	2	2	LINOIN	NONE	HONE	1 5 1
METAL ELEMENT			HONE	אַסואַר	ц е	Te	HON	NONE	NOME	ווסור
METAL			ċ	3	3	Cu	ċ	3	nე	3
S1ZE (mm)	-		20×60×60	20×60×60	p2-4 20x60x60	p6-2 20x60x60	m1-2 20x60x60	m5-1 20x60x60	n1-2 20x60x60	n5-1 20x60x60
SAMPLE			p1-2	p5-1	p2-4	p6-2	m1-2	m5-1	n1-2	n5-1

F1G. 23

	_
C	-
-	٧
•	
_	

FEB 2 6 2003

No.	POROSITY [%]	PORE DIAMETER [\m m]	N i PLAT ING	S i INFIL- TRATION	INFILTRATION TEMPERATURE [°C]	PRESSURIZATION [MPa(kgf/cm²)]	PRESSURIZATION TIME [sec]	COOLING SPEED [°C/min]	REACTION OF Si/Cu	INFIL- TRATION
SAMPLE1	35	70	ABSENT	ABSENT	1130	0.78(8)	90	260	<	~
SAMPLE2	44	22	ABSENT	ABSENT	1130	7 84 (80)	8 6	202	10	10
SAMPLE3	59	42	ABSENT	PRESENT	1130	11 8(120)	10	200)(9
SAMPLE4	15	5	PRESENT	ABSENT	1130	23 5 (240)	0 0	200	9 @	9
SAMPLE5	59	42	ABSENT	PRESENT	1180	0 78(8)	09	36) <	
SAMPLE6	15	2	ABSENT	ABSENT	1180	3 92 (40)	8	200	10	4
SAMPLE7	59	42	ABSENT	PRESENT	1180	11.8(120)	10	000)@	10
SAMPLE8	44	22	ABSENT	ABSENT	1180	23. 5 (240)	10	620) ©	0
SAMPLE9	44	22	ABSENT	PRESENT	1230	0. 78 (8)	20	480		> <
SAMPLE10	59	42	PRESENT	ABSENT	1230	3. 92 (40)	35	790	C	1 0
SAMPLE11		70	ABSENT	ABSENT	1230	7.84(80)	100	620	0	0
SAMPLE12		22	ABSENT	PRESENT	1230	23. 5 (240)	5	620	0	0
SAMPLE13		42	ABSENT	ABSENT	1280	3. 92 (40)	50	790	0	0
SAMPLE14		70	ABSENT	ABSENT	1280	7. 84 (80)	35	480	⊲	(©
SAMPLE15		22	PRESENT	ABSENT	1280	7.84(80)	2	620	0	0
SAMPLE16	29	42	ABSENT	PRESENT	1280	11.8(120)	10	790	C	0
SAMPLE17		21	ABSENT	ABSENT	1150	156.1	3	006	0	@
SAMPLE18		19	ABSENT	ABSENT	1150	156.1	5	006	0	0
SAMPLE19		23	ABSENT	ABSENT	1140	69.3	2	006	0	0
SAMPLE20	20	22	ABSENT	ABSENT	1145	76 7		000	@	0

NOTES REACTION of Si/Cu: @NO REACTION OSLIGHT REACTION ASTRONG REACTION INFILTRATION OF Cu: @GOOD INFILTRATION OSLIGHTLY INSUFFICIENT INFILTRATION

FIG. 34

FIG. 38

FIG. 40

