Lecture 24, Nov. 4

24.1 Theorem (Intermediate Value Thm (IVT)). If f(x) is continuous on [a, b] and f(a)f(b) < 0, then there exists $c \in (a, b)$ with f(c) = 0.

24.2 Example. Show that

$$f(x) = x^2 + x - 3$$

has a root on [0, 4].

Solution. Observation:

- 1. f(x) is continuous.
- 2. f(0) = -3 < 0
- 3. f(4) > 0

By the theorem 24.1 there exists $c \in [0, 4]$ with f(c) = 0.

24.3 Question. How do we find c?

Solution. Binary Search Algorithm.

Set Up f(x) is continuous. We want to solve f(x) = 0.

Step 1 Find a < b with f(a)f(b) < 0.

Algorithm

- 1. $a_1 = a, b_1 = b$
- 2. If $|b-a| < 2\epsilon$, let $d = \frac{a+b}{2}$, stop
- 3. If f(d) = 0, stop
- 4. If f(a)f(d) < 0, let $a_1 = a_1$, $b_1 = d$, goto 1.
- 5. If f(d)f(b) < 0, let $a_1 = d$, $b_1 = b_1$, goto 2
- **24.4 Example.** Show that there exists $c \in [0, \frac{\pi}{2}]$ with $\cos c = c$

Solution. Let $f(x) = \cos x - x$, which is continuous on $[0, \frac{\pi}{2}]$. Observe that f(0) > 0 and $f(\frac{\pi}{2}) < 0$. By the theorem 24.1 there exists c with $f(c) = 0 = \cos c - c$.

24.5 Theorem (Extreme Value Theorem). If f(x) is continuous on [a, b], then there exists $c, d \in [a, b]$ such that

$$f(c) \le f(x) \le f(d)$$

for all $x \in [a, b]$.

Proof. First we show that f(x) is bounded. Suppose it is not bounded. Then for each $n \in \mathbb{N}$, there exists $x_n \in [a,b]$ with $f(x_n) \ge n$. By the BWT, $\{x_n\}$ has a convergent sub-sequence $\{x_{n_k}\}$ with $x_{n_k} \to x_0 \in [a,b]$. Since f is continuous, $f(x_{n_k}) \to f(x_0)$. But $f(x_{n_k}) \ge n_k \to \infty$, which is impossible. Thus f([a,b]) is bounded.

Let M = Iub(f([a, b])). For each $n \in \mathbb{N}$ choose $y_m \in [a, b]$ with $M - \frac{1}{n} < f(y_n) \le M$. By the BWT, $\{y_n\}$ has a convergent sub-sequence $\{y_{n_k}\}$ with $y_{n_k} \to d \in [a, b]$. Hence $f(d) = \lim_{k \to \infty} f(x_{n_k}) = M$