A View Towards Target Gene Identification Through CRISPR KO Labelling

Introduction

Motivation: People want to avoid costly development of a modulator that is ineffective at treating the pathology of interest due to bad target identification

Goal: Target identification and validation (classify human genes into "targets" and "non-targets")

To predict novel therapeutic targets in oncology using computational intelligence methods

What they did in this paper: Different machine learning classifiers applied to the task of drug target classification for nine different human cancer type; predict on more than 15000 protein-coding genes

Method:

Data type: gene mutations and gene expression, essentiality data and features with a numerical embedding of the interaction network of protein-coding genes. **Six different machine learning classifiers**: Random forest, artificial neural network,

Six different machine learning classifiers: Random forest, artificial neural network, support vector machine, logistic regression, Linear Discriminant analysis (LDA) and KNN method.

What' differ than other methods: disease-specific but cover a broad range of cancers

Data Collecting and Processing - Genes and Labels

P O S I T I V E

FDA-approved drugs for each cancer - US National Cancer Institute

	Bladder	Breast	Colon	Kidney	Leukemia	Liver	Lung	Ovarian	Pancreatic
Drugs	10	31	13	13	29	6	7	9	7
Target genes	26	58	32	31	99	26	11	31	41
Cancer genes	13	36	61	1	203	1	63	29	21
Total genes	39	94	93	32	302	27	74	60	62
Genes with data	39	87	83	32	228	27	67	57	55

Bazaga, A., Leggate, D., & Weisser, H. (2020).

1:1

N E G A T I V

Human protein-coding genes

18,898 genes

Randomly select x10

Data Collecting and Processing - Features

Multivariate Feature Selections

Importance using RF

Shuffle labels 100 times, then calculate importance using RF

Normal distribution of feature importance

Z score of each feature importance of each cancer type

This work

Literature

Model Artificial Neural Network

Model 2 Linear Discriminant Analysis(LDA)

WITH 3 primary features

Model 3 Random Forest

SVM

With 35 features including 3 primary features

Model 6 Logistic Regression

Logistic Regression method Receiver operating characteristic (ROC) curve

Discussion

- Need different models for different lineages
- Compared to the paper's drug based data set, the newer gene dependency data set has both different feature importance and model accuracy.
- Addition of network based features can add bias towards genes that are well studied.

Future Work

- Apply different labelling methodology using CRISPR KO.
- Find new target genes using CRISPR KO Labelling and compare results with drug-based labelling.
- Incorporating other features can help reduce potential bias.
- A semi-supervised model can help incorporate genes with "unknown" status into our model.

Questions?