## In [1]:

```
import sys
print('Python={}'.format(sys.version))
import pandas
print('Pandas={}'.format(pandas.__version__))
import matplotlib
print('Matplotlib={}'.format(matplotlib.__version__))
import numpy
print('Numpy={}'.format(numpy.__version__))
import scipy
print('Scipy={}'.format(scipy.__version__))
import sklearn
print('Sklearn={}'.format(sklearn.__version__))
Python=3.9.7 (default, Sep 16 2021, 16:59:28) [MSC v.1916 64 bit (AMD64)]
Pandas=1.3.4
Matplotlib=3.4.3
```

```
Python=3.9.7 (default, Sep 16 2021, 16:59:28) [MSC V.1916 64 bit (AMD64)]
Pandas=1.3.4
Matplotlib=3.4.3
Numpy=1.20.3
Scipy=1.7.1
Sklearn=0.24.2
```

## In [2]:

```
import pandas as pd
   from pandas.plotting import scatter_matrix
   from matplotlib import pyplot
 4 from sklearn.model selection import train test split
 5 from sklearn.model selection import cross val score
 6 | from sklearn.model_selection import StratifiedKFold
 7
   from sklearn.metrics import classification_report
 8 from sklearn.metrics import confusion_matrix
 9 from sklearn.metrics import accuracy_score
10 from sklearn.linear model import LogisticRegression
11 from sklearn.tree import DecisionTreeClassifier
12 from sklearn.neighbors import KNeighborsClassifier
13 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
14 | from sklearn.naive_bayes import GaussianNB
15 from sklearn.svm import SVC
16 from sklearn import model selection
   from sklearn.ensemble import VotingClassifier
```

### In [3]:

```
1 dataset=pd.read_csv('iris.csv')
```

#### In [4]:

```
1 print(dataset.shape)
```

(150, 5)

# In [5]:

|--|

|    | sepal.length | sepal.width | petal.length | petal.width | variety |
|----|--------------|-------------|--------------|-------------|---------|
| 0  | 5.1          | 3.5         | 1.4          | 0.2         | Setosa  |
| 1  | 4.9          | 3.0         | 1.4          | 0.2         | Setosa  |
| 2  | 4.7          | 3.2         | 1.3          | 0.2         | Setosa  |
| 3  | 4.6          | 3.1         | 1.5          | 0.2         | Setosa  |
| 4  | 5.0          | 3.6         | 1.4          | 0.2         | Setosa  |
| 5  | 5.4          | 3.9         | 1.7          | 0.4         | Setosa  |
| 6  | 4.6          | 3.4         | 1.4          | 0.3         | Setosa  |
| 7  | 5.0          | 3.4         | 1.5          | 0.2         | Setosa  |
| 8  | 4.4          | 2.9         | 1.4          | 0.2         | Setosa  |
| 9  | 4.9          | 3.1         | 1.5          | 0.1         | Setosa  |
| 10 | 5.4          | 3.7         | 1.5          | 0.2         | Setosa  |
| 11 | 4.8          | 3.4         | 1.6          | 0.2         | Setosa  |
| 12 | 4.8          | 3.0         | 1.4          | 0.1         | Setosa  |
| 13 | 4.3          | 3.0         | 1.1          | 0.1         | Setosa  |
| 14 | 5.8          | 4.0         | 1.2          | 0.2         | Setosa  |
| 15 | 5.7          | 4.4         | 1.5          | 0.4         | Setosa  |
| 16 | 5.4          | 3.9         | 1.3          | 0.4         | Setosa  |
| 17 | 5.1          | 3.5         | 1.4          | 0.3         | Setosa  |
| 18 | 5.7          | 3.8         | 1.7          | 0.3         | Setosa  |
| 19 | 5.1          | 3.8         | 1.5          | 0.3         | Setosa  |

# In [6]:

1 print(dataset.describe())

|       | sepal.length | sepal.width | petal.length | petal.width |
|-------|--------------|-------------|--------------|-------------|
| count | 150.000000   | 150.000000  | 150.000000   | 150.000000  |
| mean  | 5.843333     | 3.057333    | 3.758000     | 1.199333    |
| std   | 0.828066     | 0.435866    | 1.765298     | 0.762238    |
| min   | 4.300000     | 2.000000    | 1.000000     | 0.100000    |
| 25%   | 5.100000     | 2.800000    | 1.600000     | 0.300000    |
| 50%   | 5.800000     | 3.000000    | 4.350000     | 1.300000    |
| 75%   | 6.400000     | 3.300000    | 5.100000     | 1.800000    |
| max   | 7.900000     | 4 400000    | 6.900000     | 2 500000    |

# In [7]:

1 print(dataset.groupby('variety').size())

variety

Setosa 50 Versicolor 50 Virginica 50 dtype: int64

### In [8]:

1 dataset.plot(kind='box',subplots=True,layout=(2,2),sharex=False,sharey=False)

## Out[8]:

sepal.length sepal.width petal.length petal.width petal.width petal.width dtype: object 

AxesSubplot(0.125,0.536818;0.352273x0.343182)

AxesSubplot(0.547727,0.536818;0.352273x0.343182)

AxesSubplot(0.125,0.125;0.352273x0.343182)



# In [9]:

dataset.hist()
pyplot.show()



# In [10]:

```
1 scatter_matrix(dataset)
2 pyplot.show()
```



### In [11]:

```
1 array=dataset.values
2 X=array[:,0:4]
3 Y=array[:,4]
4 X_train,X_validation,Y_train,Y_validation=train_test_split(X,Y,test_size=0.2,random_
```

## In [12]:

```
models=[]
models.append(('LR',LogisticRegression(solver='liblinear',multi_class='ovr')))
models.append(('LDA',LinearDiscriminantAnalysis()))
models.append(('KNN',KNeighborsClassifier()))
models.append(('NB',GaussianNB()))
models.append(('SVM',SVC(gamma='auto')))
```

### In [13]:

```
1
  result=[]
2
  name=[]
3
  for n,m in models:
4
       kfold=StratifiedKFold(n_splits=10,shuffle=True,random_state=1)
5
       cv_results=cross_val_score(m,X_train,Y_train,cv=kfold,scoring='accuracy')
       result.append(cv_results)
6
7
      name.append(n)
8
       print('%s:%f (%f)' % (n,cv_results.mean(),cv_results.std()))
```

```
LR:0.941667 (0.065085)

LDA:0.975000 (0.038188)

KNN:0.958333 (0.041667)

NB:0.950000 (0.055277)

SVM:0.983333 (0.033333)
```

### In [14]:

```
pyplot.boxplot(result,labels=name)
pyplot.title('Algorithm Comparison')
pyplot.show()
```



## In [15]:

```
model=SVC(gamma='auto')
model.fit(X_train,Y_train)
pred=model.predict(X_validation)
```

# In [16]:

```
print(accuracy_score(Y_validation,pred))
print(confusion_matrix(Y_validation,pred))
print(classification_report(Y_validation,pred))
```

#### 0.966666666666667

```
[[11 0 0]
[ 0 12 1]
[ 0 0 6]]
```

| []]          | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Setosa       | 1.00      | 1.00   | 1.00     | 11      |
| Versicolor   | 1.00      | 0.92   | 0.96     | 13      |
| Virginica    | 0.86      | 1.00   | 0.92     | 6       |
| accuracy     |           |        | 0.97     | 30      |
| macro avg    | 0.95      | 0.97   | 0.96     | 30      |
| weighted avg | 0.97      | 0.97   | 0.97     | 30      |