Chapitre 1 - partie 2 Flots et coupes

Cours RO202

Zacharie ALES (zacharie.ales@ensta.fr)

Adapté de cours de Marie-Christine Costa, Alain Faye et Sourour Elloumi

3/36

Créé le 21/01/2018 Modifié le 21/11/2022 (v6)

Le problème du flot maximal

L'algorithme de Ford-Fulkerson

L'algorithme de Ford-Fulkerson

L'algorithme de Ford-Fulkerson

Programme

Optimisation dans les graphes
Chapitre 1

1.1 - Arbre couvrant

1.2 - Chemin

1.3 - Flot

Programmation linéaire (PL)
Chapitre 2

1236

Sommaire

1 Le problème du flot maximal
2 L'algorithme de Ford-Fulkerson

4 136

11/36

• $v(\varphi)=7$

Le problème du flot maximal

Définition - **Valeur d'un flot** $v(\varphi)$

Flux des arcs entrants en t

= Flux des arcs sortants de s

$$v(\varphi) = \sum_{i \in \Gamma^-(t)} \varphi_{it}$$

Définition - Flot maximal

Flot de valeur maximale

14/36

Le problème du flot maximal

Retour à notre réseau de transport

Comment améliorer le flot?

Chaîne améliorante

13/36

15/36

Définition - **Chaîne améliorante** μ pour un flot φ

Le problème du flot maximal

Chaîne de *s* à *t* vérifiant que :

• pour tout arc (ij) de μ dans le "bon sens"

— de *s* vers *t*

• pour tout arc (ij) de μ dans le "mauvais sens"

de t vers s

Le problème du flot maximal

L'algorithme de Ford-Fulkerson

Problème
Trouver un flot maximal

Principe

• Trouver un flot initial
De préférence complet
• Tant qu'une chaîne améliorante est trouvée
• Améliorer le flot le long de cette chaîne

⇒ un flot optimal
Preuve plus loin

L'algorithme de Ford-Fulkerson : une procédure de marquage Algorithme Données : G = (V, A, C)Établir un flot admissible (complet de préférence) répéter Retirer toutes les marques Marquer '+' le sommet s Marquer i+i le sommet terminal i de tout arc (ij) tel que : • i est marqué • j est non marqué • (ij) non saturé Marquer -i le sommet initial i de tout arc (ij) tel que : i est non marqué • *j* est marqué • (ij) a un flux non nul tant que un nouveau sommet a été marqué et t n'est pas marqué si t est marqué alors Améliorer le flux via une chaîne améliorante tant que t est marqué 20/36 Le problème du flot maximal L'algorithme de Ford-Fulkerson

Quiz!

Question 3 et 4

Appliquer le marquage de l'algorithme de Ford-Fulkerson en vue de trouver le flot maximal entre les sommets A et D.

A chaque étape si vous avez la possibilité de marquer plusieurs sommets marquer celui qui est le premier dans l'ordre alphabétique.

21/36

23/36

L'algorithme de Ford-Fulkerson : une procédure de marquage

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

repeter

Retirer toutes les marques

Marquer '+' le sommet s

répéter

Marquer +i le sommet terminal j de tout

 $\operatorname{arc}\left(\mathit{ij}\right)$ tel que :

- i est marqué
- j est non marqué
- (ij) non saturé

Marquer '-j' le sommet initial i de tout arc (ij) tel que :

- i est non marqué
- j est marqué
- (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

tant que t est marqué

L'algorithme de Ford-Fulkerson

Chaîne améliorante μ

Amélioration de ...

22/36

Le problème du flot maxim

L'algorithme de Ford-Fulkerson

Quiz!

Question 5

De combien d'unités ce marquage permet-il d'augmenter le flot entre H et C?

Question 6

De combien d'unités ce marquage permet-il d'augmenter le flot entre C et B?

L'algorithme de Ford-Fulkerson

Un réseau de transport

Le flot obtenu est-il optimal?

Oui

O Non

 $a - 1/6 \longrightarrow b$ $5 - 2/2 \longrightarrow c$ $1/1 \longrightarrow b$ $2/3 \longrightarrow 1/1$ $2/3 \longrightarrow 0$ $2/6 \longrightarrow 0$ $2/6 \longrightarrow 0$

Le problème du flot maxima

L'algorithme de Ford-Fulkerson

Preuve de l'algorithme

Problème de coupe minimale

Comment séparer s de t en supprimant un ensemble d'arcs de valeur totale minimale ?

"Séparer" signifie qu'il n'existe plus de chemin de s à t après suppression des arcs

Définition - Coupe (S,T)

Partition de *V* en deux sous-ensembles S et T telle que

- s ∈ S
- t ∈ T

Remarque

Par définition $(ts) \notin \omega^+(T)$ Car $(ts) \notin A$

Notations

- $\omega^-(T) = \text{arcs entrant dans } T$ $\{(i,j) \in A \mid i \in S, j \in T\}$
- $\omega^+(T) = \text{arcs sortant de } T$ $\{(i,j) \in A \mid i \in T, j \in S\}$

Définition - Capacité d'une coupe (S,T)

$$c(S, T) =$$

.

25/36

27/36

Exemple de coupe

Coupe de valeur 15

- $S = \{s, a, b, c\}$
- $T = \{t, d, e, f\}$
- $C = \omega^{-}(T) = \{(b, t), (a, e), (c, e), (s, d)\}$

26/36

Le problème du flot maximal

L'algorithme de Ford-Fulkerson

Relation flots / coupes

Propriété

Soit G = (V, A) un réseau de transport

- $\forall \varphi$ flot admissible sur G
- $\forall (S, T)$ coupe de G

On a

.....

Preuve

Soit (S, T) une coupe de G

- (loi de conservation)
- On sait que $\varphi_{ts} = v(\varphi)$

Le problème du not maximai

L'algorithme de Ford-Fulkerson

L'algorithme de Ford-Fulkerson

Fin de l'algorithme de Ford-Fulkerson

Rappel

t non marqué \Rightarrow flot maximal

Propriété

La coupe minimale sépare les sommets marqués des non marqués

Exemple

- $S^* = \{s, a, b, c, d\}$
- $T^* = \{t, e, f\}$
- $C^* = \{(b, t), (a, e), (c, e), (d, f)\}$

$$v(\varphi^*) = 10 = v(C^*)$$

Théorème de Ford-Fulkerson

Théorème - Ford-Fulkerson, 1962

La valeur d'un flot maximal est égale

Propriété - CNS d'optimalité

Un flot φ de s à t est maximal si et seulement si ______

29/36

31/36

Notations

- φ^* : flot obtenu par l'algorithme
- ullet S* : ensemble des sommets marqués à la fin de l'algorithme

Preuve du théorème et de l'algorithme de Ford-Fulkerson

ullet T*: ensemble des sommets non marqués à la fin de l'algorithme

Rappels

• $\mathbf{v}(\varphi^*) = \varphi^*(t, \mathbf{s})$

• $(t, s) \notin \omega^+(T)$

Preuve

- Toute coupe (S,T) et tout flot φ vérifient : $v(\varphi) \leq c(S, T)$
- (loi de conservation des flux)

(principe de marquage)

•

30/36

Le problème du flot maxim

L'algorithme de Ford-Fulkerson

Convergence de l'algorithme

Théorème des valeurs entières

Dans un réseau de transport à capacités entières, il existe un flot maximal dont tous les flux sont entiers

Convergence de l'algorithme

Si les capacités sont entières, l'algorithme de Ford-Fulkerson converge en un nombre fini d'itérations car :

- La valeur du flot max est bornée
 Par la capacité de n'importe quelle coupe
- À chaque itération, on augmente le flot d'une valeur entière

L'algorithme de Ford-Fulkerson

Nombre d'itérations

Un mauvais choix de chaînes améliorantes peut entraîner un nombre d'itérations égal à la valeur du flot maximal

Complexité de l'algorithme (nombre d'«opérations »)

Théorème

Si chaque augmentation du flot est faite suivant une chaîne améliorante de longueur minimale, alors

• le flot maximal est obtenu après moins de $\frac{mn}{2}$ itérations.

Complexité

$$\mathcal{O}(\frac{m^2n}{2})$$

D'après le théorème et le fait qu'il y ait au plus *m* marquages à chaque itération

Remarque

Il existe des algorithmes plus efficaces

33/36

Un modèle mathématique « Programmation linéaire »

Programme linéaire

$$\begin{cases}
 \text{max} & cx \\
 & Ax \leq b \\
 & x \geq 0
\end{cases}$$

- A, b, c : données
- x : variables

Propriété

L'optimum d'un programme linéaire en variables continues peut être obtenu en temps polynomial

Voir cours suivant

Programme linéaire pour le flot maximal

$$\left\{ \begin{array}{ll} \max & \varphi_{ts} \\ & \varphi_{ij} \leq c_{ij} \\ & \sum\limits_{i \in \Gamma^{-}(j)} \varphi_{ij} = \sum\limits_{i \in \Gamma^{+}(j)} \varphi_{ji} \\ & \varphi_{ij} \geq 0 \end{array} \right. \quad \forall (ij) \in \mathcal{A} \quad \text{(capacit\'es)} \quad \quad \forall i \in \mathcal{V} \quad \text{(conservation des flux)} \quad \quad \forall i \in \mathcal{V} \quad \quad \forall$$

34/ 36

Le problème du flot maxim

L'algorithme de Ford-Fulkerson

Résumé

Notions abordées dans ce chapitre

Définitions

Réseau de transport

Flot

Flot maximal

Coupe

Capacité d'une coupe

. .

Algorithme de Ford-Fulkerson

Calcul d'un flot maximal par détection de chaînes améliorantes via une procédure de marquage

 En fin d'algorithme, s et t sont séparés par une coupe de capacité égale à la valeur du flot

Ces deux problèmes sont duaux (voir chapitre suivant)

Pistes d'approfondissement

• Flot maximal de coût minimal

Problème "facile"

Multiflots et multicoupes

Problèmes "difficiles"

Flot avec multiplicateurs

Flux en entrée d'un arc multiplié à sa sortie

- Matrice totalement unimodulaire et programmation linéaire en nombres entiers
- Programmation linéaire et dualité

03:B-H D+H E+A F+G G+A H+G

L'algorithme de Ford-Fulkerson

01:3