Змістовий модуль 3. Теорема Ербрана

Тема 8. Семантичні дерева. Теорема Ербрана

План лекції.

- Семантичні дерева
- Теорема Ербрана.
- Застосування теореми Ербрана
- Жак Ербран
- Питання для самоконтролю

3.7. Семантичні дерева

Нагадаємо, що літералом називають атом чи його заперечення. Якщо P – атом, то два літерали P та $\neg P$ називають контрарними, а множину $\{P, \neg P\}$ – контрарною парою. Диз'юнкт є загальнозначущою формулою (тавтологією), якщо він містить контрарну пару.

Раніше ми побачили, що для отримання відповіді про виконуваність множини диз'юнктів можна розглядати не всі інтерпретації, а тільки *H*-інтерпретації. Тут ми підемо далі. <u>Ми фактично покажемо, що для розв'язування цього питання можна обмежитися скінченними підмножинами ербранівського універсуму.</u> Головним поняттям тут є поняття *семантичного дерева* (не плутати із семантичною таблицею).

Нехай S — множина диз'юнктів, $B = \{P_1, P_2, ...\}$ — її ербранівський базис (складається з атомарних формул для S без предметних змінних: замість предметних змінних підставлено елементи ербранівського універсуму). Задати ербранівську інтерпретацію (H-інтерпретацію) означає задати істинісні значення для елементів ербранівського базису (див. приклад 3.6). Інтерпретацію подаватимемо як множину літералів, наприклад, множина літералів $\{P_1, \neg P_2, \neg P_3, P_4, \neg P_5, ...\}$ означає таку інтерпретацію:

P_1	P_2	P_3	P_4	P_5	•••
T	F	F	T	F	• • •

Сформулюємо означення. Нехай S — множина диз'юнктів і $B = \{P_1, P_2, ...\}$ її ербранівський базис. Семантичне дерево T для S — це бінарне дерево, на кожному рівні якого із кожної вершини N виходять два ребра, одне з яких позначено як P_i , а інше — як $\neg P_i$ (рис. 3.1).

Отже, ребра позначаються літералами, що подають істинісні значення атомів, які ε елементами ербранівського базису B для множини диз'юнктів S. <u>Нагадаємо, що довільна H-інтерпретація задається наданням значень істинності атомам ербранівського базису.</u>

Звідси випливає, що всяка гілка дерева T задає деяку H-інтерпретацію. Семантичне дерево T вичерпує всі H-інтерпретації для S.

Вершину N семантичного дерева T називають *вершиною-спростуванням*, якщо шлях у T від кореня до вершини N містить істинісні значення атомів із ербранівського базису B, при яких спростовується якийсь основний приклад деякого диз'юнкта з множини S. При цьому жодна інша вершина від кореня до N зазначеної властивості спростовування не має.

Приклад 3.10.

Множина диз'юнктів (з прикладу 3.1): $S = \{P(x), \neg P(x) \lor Q(f(y)), \neg Q(f(a))\}.$

Ербранівський універсум: $H_{\infty} = \{a, f(a), f(f(a)), f(f(f(a))), \dots\}.$

Ербранівський базис: $B = \{ P(a), Q(a), P(f(a)), Q(f(a)), P(f(f(a))), Q(f(f(a))), \dots \}.$

Семантичне дерево T для множини диз'юнктів S зображено на рис. 3.2.

На рис. 3.2 вершини-спростування позначено хрестиками. Вкажемо відповідні цим вершинам H-інтерпретації, які спростовують розглядувану множину диз'юнктів S.

Вершина	<i>H</i> -інтер- претація	P(a)	Q(a)	P(f(a))	Q(f(a))	•••
Вершина 2	IH_1	F	•••	•••	•••	• • •
Вершина 9	IH_2	T	T	T	T	• • •
Вершина 10	<i>IH</i> ₃	T	T	T	F	• • •
Вершина 11	IH_4	T	T	F	T	• • •
Вершина 12	IH_5	T	T	F	F	• • •
Вершина 13	IH_6	T	F	T	T	• • •
Вершина 14	IH_7	T	F	T	F	• • •
Вершина 15	IH_8	T	F	F	T	• • •
Вершина 16	<i>IH</i> ₉	T	F	F	F	• • •

У вершині 2 спростовується диз'юнкт $D \equiv P(x)$ бо його основний приклад $D' \equiv P(a)$ фальшивий, тобто формула P(x) при інтерпретації IH_1 фальшива.

У вершині 9 спростовується диз'юнкт $D \equiv \neg Q(f(a))$ бо його основний приклад – сам цей диз'юнкт – фальшивий при інтерпретації IH_2 .

У вершині 10 спростовується диз'юнкт $D \equiv \neg P(x) \lor Q(f(y))$ бо його основний приклад $D' \equiv \neg P(a) \lor Q(f(a))$ фальшивий при IH_3 , тобто формула $\neg P(x) \lor Q(f(y))$ при інтерпретації IH_3 фальшива.

У вершині 11 спростовується диз'юнкт $D \equiv \neg Q(f(a))$ бо його основний приклад – сам цей диз'юнкт – фальшивий при інтерпретації IH_4 .

У вершині 12 спростовується диз'юнкт $D \equiv \neg P(x) \lor Q(f(y))$ бо його основний приклад $D' \equiv \neg P(a) \lor Q(f(a))$ фальшивий при IH_5 .

У вершині 13 спростовується диз'юнкт $D \equiv \neg Q(f(a))$ бо його основний приклад – сам цей диз'юнкт – фальшивий при інтерпретації \mathbf{IH}_6 .

У вершині 14 спростовується диз'юнкт $D \equiv \neg P(x) \lor Q(f(y))$ бо його основний приклад $D' \equiv \neg P(a) \lor Q(f(a))$ фальшивий при IH_7 .

У вершині 15 спростовується диз'юнкт $D \equiv \neg Q(f(a))$ бо його основний приклад – сам цей диз'юнкт – фальшивий при інтерпретації IH_8 .

У вершині 16 спростовується диз'юнкт $D \equiv \neg P(x) \lor Q(f(y))$ бо його основний приклад $D' \equiv \neg P(a) \lor Q(f(a))$ фальшивий при IH_9 .

Множина диз'юнктів S невиконувана, бо S спростовується при кожній H-інтерпретації, тобто будь-яка H-інтерпретація спростовує один з диз'юнктів множини S (робить фальшивим один із членів у кон'юнкції диз'юнктів множини S). Скінченна множина вершин дерева $\{2, 9, 10, 11, 12, 13, 14, 15, 16\}$ породжує скінченну множину $\{P(a), Q(f(a)), \neg P(a) \lor Q(f(a))\}$ основних прикладів, невиконувану при будь-якій H-інтерпретації (а тому й при довільній інтерпретації). Зазначимо, що сама множина основних прикладів диз'юнктів нескінченна, бо нескінченним є ербранівський універсум.

3.8. Теорема Ербрана.

Тут ми розглянемо один із варіантів знаменитої теореми математичної логіки, яка є основою алгоритмів пошуку доведення теорем. Це – теорема Ербрана. Попередньо доведемо такий результат.

Лема 3.2. Нехай S – невиконувана множина диз'юнктів. Тоді:

- 1) кожна гілка семантичного дерева T для S містить вершину-спростування;
- 2) множина всіх вершин-спростувань в S скінченна.

Доведення. Нехай V – гілка в семантичному дереві T, IH_V – H-інтерпретація, яка відповідає гілці V. Множина S фальшива при інтерпретації IH_V , тобто S містить диз'юнкт D, для якого існує основний приклад D', фальшивий при H-інтерпретації, яка відповідає гілці V. Основний приклад D' має скінченну кількість атомів. Тому на шляху від кореня гілкою V існує вершина N така, що на цьому шляху визначені всі істинісні значення атомів із D'. Оскільки D' фальшивий при інтерпретації IH_V , то D' спростовується у вершині N. Як вершину-спростування N візьмемо на шляху гілкою V найближчу до кореня вершину із зазначеною властивістю. Отже, кожна гілка в дереві T має вершину-спростування.

Покажемо, що число вершин-спростувань в T скінченне. Обрізаємо дерево T, відкидаючи в T кожне піддерево з коренем у вершині-спростуванні (саму вершину-спростування залишаємо). Отримаємо дерево T'. Покажемо, що дерево T' скінченне (має скінченну кількість вершин). Припустимо, що дерево T' нескінченне. Серед вершин рівня 1 в T' виберемо піддерево T_x з коренем x, яке містить нескінченну кількість вершин (у T'). Вершина x, очевидно, не є вершиною-спростуванням. У дереві T_x виберемо піддерево T_y з коренем y серед вершин рівня y, яке містить нескінченну кількість вершин дерева y. (Рівень вершин визначається відносно дерева y.) Вершина y не є вершиною спростуванням. І так далі. Як результат отримаємо нескінченну гілку, яка проходить через вершини y, y, ... і не має вершини-спростування. Суперечність із наявністю вершини-спростування на кожній гілці дерева y. Отже, множина вершин-спростувань y дереві y скінченна.

Теорема 3.2 (Ербран). Множина диз'юнктів S невиконувана (не виконується при всіх інтерпретаціях) тоді й тільки тоді, коли існує **скінченна** невиконувана (не виконується при всіх інтерпретаціях) підмножина S'множини всіх основних прикладів диз'юнктів із S.

Зауваження. Зверніть увагу, що множина $S \in$ множиною диз'юнктів логіки першого порядку, а множина $S' \in$ множиною диз'юнктів пропозиційної логіки. Саме цей факт буде істотно використаний у наступному розділі для доведення теореми 4.3 (про повноту методу резолюцій у логіці першого прядку).

Доведення. Необхідність. Припустимо, що множина диз'юнктів S невиконувана. Візьмемо семантичне дерево T для S і позначимо в T всі вершини-спростування (їхня кількість скінченна). Для кожної вершини-спростування візьмемо один основний приклад того диз'юнкта із S, який спростовується в цій вершині. Створюється **скінченна** невиконувана при будь-якій H-інтерпретації (а тому й при довільній інтерпретації) підмножина S' основних прикладів диз'юнктів із S, бо для будь-якої H-інтерпретації ε фальшивим один із основних прикладів у S' того диз'юнкта із S, який

спростовується у вершині-спростуванні на тій гілці семантичного дерева T, яка відповідає цій Hінтерпретації. Наведений вище приклад $3.10 \, \epsilon$ ілюстрацією ідеї цього доведення.

Достатність. Навпаки, нехай існує скінченна невиконувана (не виконується при всіх інтерпретаціях) підмножина S' множини основних прикладів диз'юнктів із S. Покажемо, що множина диз'юнктів S невиконувана. Допустимо протилежне: множина S виконувана. Тоді існує інтерпретація, а, отже, і деяка H-інтерпретація, у якій ця множина виконується. Тоді будь-який диз'юнкт $D(x_1, ..., x_k)$ із множини S виконується у цій H-інтерпретації. Але всі предметні змінні зв'язані кванторами всезагальності, тому виконується і будь-який диз'юнкт $D(t_1, ..., t_k)$ для всіх $t_1, ..., t_k$ з ербранівського універсуму H_{∞} для множини S. Але тоді виконується і множина основних прикладів S', бо всякий основний приклад D' із S' отримується із деякого диз'юнкта D із S підходящою заміною предметних змінних $x_1, ..., x_k$ в $D(x_1, ..., x_k)$ на деякі елементи $t_1, ..., t_k$ ербранівського універсуму H_{∞} . Суперечність з невиконуваністю S'. Отже, наше припущення хибне, і множина S невиконувана.

Приклад 3.11. Нехай $S = \{ \neg P(x) \lor Q(f(x), x), P(g(b)), \neg Q(y, z) \}$. Множина S невиконувана. Одна із невиконуваних множин основних прикладів диз'юнктів множини S така:

$$S' = \{ \neg P(g(b)) \lor Q(f(g(b)), g(b)), P(g(b)), \neg Q(f(g(b)), g(b)) \}.$$

Доведення невиконуваності множини диз'юнктів S називають cnpocmуванням цієї множини.

3.9. Застосування теореми Ербрана

Теорема Ербрана дає змогу формально побудувати процедуру спростування (метод Ербрана). Для виявлення невиконуваності множини диз'юнктів S потрібно: 1) утворювати множини S'_0 , S'_1 , S'_2 , ..., S'_i , ... основних прикладів диз'юнктів для кожного рівня i ербранівського універсуму;

2) послідовно перевіряти їх на невиконуваність. За теоремою Ербрана, якщо S невиконувана, то процедура виявить такий рівень N, що множина S'_N буде невиконуваною.

Гілмор (Gilmore P.C.) одним з перших застосував цю процедуру. У 1960 році він написав машинну програму, яка успішно будувала множини S'_0 , S'_1 , S'_2 , ..., де S'_i – множина всіх основних прикладів диз'юнктів, отриманих заміною змінних в S константами з H_i – множини констант i-го рівня для S. Оскільки кожну множину S'_i можна подати як кон'юнкцію основних прикладів диз'юнктів, то можна використати будь-який метод, щоб перевірити її невиконуваність. Гілмор використовував *мультиплікативний* метод: приводив кожну побудовану множину S'_i до $\partial u ''$ юнктивної нормальної форми. Після цього кожна кон'юнкція в диз'юнктивній нормальній формі, яка містила контрарні пари, вилучалася. Якщо якесь S'_i виявлялося порожнім, то невиконуваність S виявлялася доведеною.

Приклад 3.12. Нехай $S = \{P(a), \neg P(f(x)) \lor Q(x), \neg Q(f(a))\}.$

Тоді $H_0 = \{a\}$ – множина констант нульового рівня для S;

 $S_0' = \{P(a), \neg P(a) \lor Q(f(a)), \neg Q(f(a))\}$ – множина основних прикладів диз'юнктів для нульового рівня.

Подамо множину S_0' у вигляді кон'юнкції: $S_0' = P(a) \land (\neg P(a) \lor Q(f(a))) \land \neg Q(f(a)).$

Після тривіальних перетворень отримаємо:

$$S_0' \equiv P(a) \land (\neg P(a) \lor Q(f(a))) \land \neg Q(f(a)) \equiv$$
 КНФ
 $\equiv (P(a) \land \neg P(a) \land \neg Q(f(a))) \lor (P(a) \land Q(f(a)) \land \neg Q(f(a))) \equiv$ ДНФ
 $\equiv \mathbf{F} \lor \mathbf{F} \equiv \mathbf{F}.$ Результат

Отже, доведено, що множина S невиконувана.

Зазначимо, що мультиплікативний метод неефективний. Легко побачити, що для малопотужної множини із десяти основних диз'юнктів, кожний з яких складається з двох літералів, існує 2^{10} кон'юнкцій. Ефективним методом для автоматичного доведення теорем, який зараз використовується, є метод резолюцій.

3.10. Жак Ербран

Жак Ербран (Jacques Herbrand), 12 лютого 1908 – 27 липня 1931 – французький математик. Хоча він помер в 23 роки, він вважався одним з «найвидатніших математиків молодшого покоління». Його професорами були Гельмут Гассе і Ріхард Курант.

Він працював над **математичною логікою** та теорією полів класів. Увів поняття функціональної рекурсії. *Теорема Ербрана* відноситься до двох зовсім різних тем. Перша теорема (теорема Ербрана) є результатом його дисертаційної роботи з теорії доведень, а друга — теорема Ербрана—Рібета, стосується іншої тематики.

Займаючись альпінізмом у французьких Альпах з двома друзями, він насмерть розбився в гранітних горах масиву де Екрінс.

3.11. Питання для самоконтролю

- 1. Що таке ербранівський універсум множини диз'юнктів?
- 2. Що таке ербранівський базис множини диз'юнктів?
- 3. Що таке основний приклад диз'юнкта?
- 4. Що таке *H*-інтерпретація множини диз'юнктів?
- 5. Сформулюйте теорему про *H*-інтерпретацію.
- 6. Що таке семантичне дерево?
- 7. Що таке вершина-спростування в семантичному дереві?
- 8. Сформулюйте теорему Ербрана.
- 9. Опишіть процедуру спростування множини диз'юнктів на основі теореми Ербрана. Чому ця процедура неефективна?