ИДЗ№1

1. Построить график функции, используя графики основных элементарных функций (1 балл)

1.1.
$$y = \frac{\pi}{3} - \arcsin|4 + x|$$
;

1.2.
$$y = \left| 2 \cdot \sin\left(x + \frac{\pi}{6}\right) - 2 \right|;$$

1.3.
$$y = -1 - \left| \operatorname{tg} \left(x - \frac{\pi}{3} \right) \right|;$$

1.4.
$$y = 3 \cdot \text{ctg} \left| x - \frac{\pi}{2} \right| - 2;$$

1.5.
$$y = 4 \cdot arctg(|x| - 3) + \frac{\pi}{6}$$
;

1.6.
$$y = \left| arcsin(x-2) + \frac{\pi}{4} \right|;$$

1.7.
$$y = y = 3 - 2 \cdot \sin(|x| - \frac{\pi}{6});$$

1.8.
$$y = \frac{\pi}{3} - \arcsin|4 + x|$$
;

1.9.
$$y = |-3 + ln|2x + 6|$$
;
1.10. $y = 4 - 2 \cdot e^{|4-3x|}$;

1.10.
$$y = 4 - 2 \cdot e^{|4-3x|}$$
;

1.11.
$$y = 2 \cdot \cos\left(|x| - \frac{\pi}{3}\right) + 3;$$

1.12.
$$y = \left| -2 \cdot \sin\left(x - \frac{\pi}{4}\right) - 1 \right|;$$

1.13.
$$y = 4 - \left| \text{ctg} \left(x + \frac{\pi}{4} \right) \right|;$$

1.14.
$$y = 2 \cdot \operatorname{tg} \left| x + \frac{\pi}{2} \right| + 1;$$

1.15.
$$y = \left| arcctg(-6x + 3) + \frac{\pi}{6} \right|;$$

1.16.
$$y = -\arcsin(2|x| - 4) - \frac{\pi}{4}$$
;

1.17.
$$y = |arccos(x-5)| - 2\pi$$
;

1.18.
$$y = -\pi + 2 \cdot arccos|-x + 2|$$
;

1.19.
$$y = |4 - ln|2x - 6|$$
;

1.20.
$$y = |2 \cdot e^{|2x-4|} - 5|;$$

1.21.
$$y = 3 - \sin(2|x| - \pi)$$
;

1.22.
$$y = -4 \cdot \left| \operatorname{tg} \left(x + \frac{3\pi}{2} \right) - 1 \right|;$$

1.23.
$$y = \left| 5 - \sin \left(2x + \frac{\pi}{2} \right) \right|;$$

1.24.
$$y = 3 - 4 \cdot \cos|3x - \pi|$$
;

1.25.
$$y = arcsin(2|x| + 4) + \frac{\pi}{6}$$

1.26.
$$y = \left| \cos \left(-2x + \frac{3\pi}{2} \right) + 3 \right|$$
.

1.27.
$$y = |-3\arcsin(-x+4)| + \frac{\pi}{6}$$

2. Вычислить пределы (1.5 балла=5*0,3)

2. Вычислить пределы (1.5 балла=5*0,3)					
2.1.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{4x^4 - 4x^2 - 1} - 3x}{2x^2 + 5x + 4}$;	$\text{B)}\lim_{x\to 0}\frac{tg2x}{\sqrt{4+\sin 3x}-2};$	$A) \lim_{x \to \infty} \left(\frac{5x^2 + 7x - 1}{5x^2 - 6x + 7} \right)^{\frac{x - 1}{2}};$		
	6) $\lim_{x \to -1} \frac{x^3 + 4x^2 + 5x + 2}{x^3 - 3x - 2}$;	$r)\lim_{x\to 1}(3-2x)^{\frac{x}{1-x}};$			
2.2.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{8x^6 - 5x^3 + 2 + 3x}}{3x^2 - 4x - 3}$;	B) $\lim_{x\to 0} \frac{arcsin5x}{3-\sqrt{2x+9}};$	$A) \lim_{x \to \infty} \left(\frac{2x^2 + 3x + 1}{2x^2 + x - 5} \right)^{3x - 5};$		
	6) $\lim_{x \to -3} \frac{x^2 + 4x + 3}{x^3 + 4x^2 + 4x + 3}$;	$\Gamma \lim_{x \to \infty} (2x+3)(\ln(x+2) - \ln x);$			
2.3.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x^6 - 1} - \sqrt[3]{27x^6 - 4x^2 + 2}}{\sqrt[3]{6x} - \sqrt[3]{4x^4 + 5}};$	B) $\lim_{x\to 0} \frac{x \sin(6x)}{\cos x - \cos 2x}$;	$A\lim_{x \to \infty} \left(\frac{x^2 + 3x - 9}{x^2 + 7x - 2} \right)^{4 - 5x};$		
	6) $\lim_{x \to 3} \frac{x^4 - 3x^3 + 2x^2 - 6x}{x^3 - 2x^2 - 2x - 3}$;	Γ $\lim_{x\to 1} (2-x)^{\frac{2x}{1-x}};$			
2.4.	a) $\lim_{x \to +\infty} \frac{\sqrt[4]{x^4 - 9} - \sqrt[5]{2 - x^{10}}}{\sqrt[3]{4x^4 + 4} - \sqrt[3]{x^6 + x^2 - 1}};$	B) $\lim_{x \to 0} \frac{arcsin^2 3x}{4 - \sqrt{x^2 + 16}};$	$A) \lim_{x \to \infty} \left(\frac{2x^2 + 7x - 3}{2x^2 + x + 5} \right)^{5-3x};$		
	6) $\lim_{x \to 3} \frac{x^3 - x^2 - 21x + 45}{2x^3 - 7x^2 - 12x + 45}$;	$\Gamma \lim_{x \to \infty} (3x+2)(\ln(x-2) - \ln x);$			
2.5.	a) $\lim_{x \to +\infty} \frac{\sqrt[4]{16x^8 - 5x^4 + x + 1}}{8x^2 - 4x + 1};$	B) $\lim_{x \to 0} \frac{arctg3x}{\sqrt{x^2 + 4x + 1} - 1};$	$A) \lim_{x \to \infty} \left(\frac{2x^2 - 4x + 9}{2x^2 - 5} \right)^{6x};$		
	6) $\lim_{x \to -3} \frac{2x^3 + 13x^2 + 24x + 9}{(x^2 + 2x - 3)^2}$;	$r)\lim_{x\to 1}\frac{\sin 7\pi x}{\sin 8\pi x};$			
2.6.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{4x^4 - 7x^2 + x} - 4}{5x^2 - 2x + 1}$;	$B)\lim_{x\to 1}\frac{arctg(2x-2)}{3-\sqrt{2x+7}};$	$A) \lim_{x \to \infty} \left(\frac{x^2 + 2x - 6}{x^2 + 7x + 11} \right)^{-3x - 2};$		
	6) $\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2};$	$r)\lim_{x\to 1}(2x-1)^{\frac{3x}{x-1}};$			
2.7.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x^4 + 2} - \sqrt[4]{16x^8 + 2x^3}}{\sqrt[3]{x^4 + 5} + \sqrt[3]{8x^6 + 6}};$	B) $\lim_{x\to 0} \frac{\sqrt{4+tg(3x^2)}-2}{2x^2}$;	$A) \lim_{x \to \infty} \left(\frac{3x^2 + x - 1}{3x^2 - 6x + 2} \right)^{3x - 4};$		
	6) $\lim_{x \to 1} \frac{x^4 - 2x^3 + 2x^2 - 2x + 1}{4x^3 - 5x^2 - 2x + 3}$;	Γ) $\lim_{x \to \infty} (2x - 3)(\ln x - \ln(3x - 1));$			
2.8.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{2x^2 - 9} - \sqrt[3]{4x^8 + 5x^4 - 3}}{\sqrt[3]{2 - x^{12}} + \sqrt[3]{2x - 4}};$	B) $\lim_{x\to 2} \frac{\sqrt{5x-1}-3}{tg(3x-6)};$	$A) \lim_{x \to \infty} \left(\frac{5x^2 + x - 1}{5x^2 - 6x + 2} \right)^{\frac{x+3}{2}};$		
	6) $\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + 2x^2 - x - 2}$;	r) $\lim_{x\to 1} (3x-2)^{\frac{5x}{x-1}};$			
2.9.	a) $\lim_{x \to +\infty} \frac{6x^2 - 3x + 5}{\sqrt[3]{27x^6 - 7x^3 + 15} + 4x}$;	B) $\lim_{x \to 4} \frac{\sin^2(x-4)}{x(\sqrt{2x+1}-3)};$	$A) \lim_{x \to \infty} \left(\frac{x^2 - 3x + 2}{x^2 - 7x + 1} \right)^{\frac{3x - 1}{4}};$		
	6) $\lim_{x \to -1} \frac{x^4 + 2x + 1}{x^3 - x^2 - 2x}$;	r) $\lim_{x \to 10} \frac{e^{x-10} - 1}{tg(x-10)}$;			

2.10.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x^4 - 5x^2 + 3} - 7x^2}{3x^2 + 2x - 4};$	B) $\lim_{x\to 0} \frac{1-\sqrt{1-7\sin x}}{tg5x}$;	$\exists A \lim_{x \to \infty} \left(\frac{7x^2 - 8x + 9}{7x^2 - 2x + 1} \right)^{\frac{x - 1}{2}};$
	6) $\lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x^3 - 3x^2 + 4}$;	$r)\lim_{x\to 4} \frac{\sin\left(\frac{\pi x}{4}\right)}{\ln\left(x-3\right)};$	
2.11.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x-9} - \sqrt[3]{x^4 - 3}}{\sqrt[3]{x^4 + 1} + \sqrt[3]{x - 6}};$	B) $\lim_{x\to 0} \frac{5-\sqrt{3x+25}}{\ln(1+2x)}$;	$A) \lim_{x \to \infty} \left(\frac{x^2 + 9x - 1}{x^2 - 6x + 7} \right)^{5 - 3x};$
	6) $\lim_{x \to 1} \frac{2x^3 - x^2 - 4x + 3}{x^3 - x^2 - x + 1}$;	r) $\lim_{x \to -1} (3 + 2x)^{\frac{x}{1+x}};$	
2.12.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x+1} - \sqrt[3]{8x} + 5}{\sqrt[3]{5+27x} + \sqrt[3]{x+6}};$	B) $\lim_{x\to 1} \frac{\arcsin^{\square}(x-1)}{2-\sqrt{2x^2+2}};$	$\pi \lim_{x \to \infty} \left(\frac{8x^2 - 3x + 2}{8x^2 - 6x - 1} \right)^{\frac{3x - 2}{6}};$
	6) $\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 7x^2 + 16x + 12}$;	$\Gamma \lim_{x \to \infty} (x-3)(\ln x - \ln(x-4));$	
2.13.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{4x^4 - 2x^2 + 5} - 5x}{5x^2 + 3x - 4}$;	B) $\lim_{x\to 0} \frac{x \sin 3\pi x}{\sqrt{\cos 2x} - 1}$;	$\exists \lambda \lim_{x \to \infty} \left(\frac{5x^2 + 2x - 19}{5x^2 - 3x + 7} \right)^{\frac{3x - 1}{4}};$
	6) $\lim_{x \to -1} \frac{4x^4 + 4x^3 - 3x^2 - 2x + 1}{x^3 + 5x^2 + 7x + 3}$;	r) $\lim_{x\to 2} (2x-3)^{\frac{3x}{2-x}};$	
2.14.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{8x^6 + 4x^3 - 2x + 4x}}{2x^2 + 4x - 3};$	B) $\lim_{x\to 0} \frac{\sin 3x}{\sqrt{4+\sin 5x}-2}$;	$\exists \lim_{x \to \infty} \left(\frac{2x^2 - 3x + 1}{2x^2 + 6x - 5} \right)^{-3x + 8};$
	6) $\lim_{x \to 2} \frac{x^3 - 3x - 2}{x^3 - 3x^2 - 4x + 12}$;	$r)\lim_{x\to\infty}(x-2)(\ln x - \ln(x+4));$	
2.15.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x^2 - 4} - \sqrt[3]{8x^6 + 3x^2 + 2}}{\sqrt[3]{6x - 4} - \sqrt[3]{9x^4 + 5}};$	$\text{B)}\lim_{x\to 0}\frac{1-\sqrt[3]{x}}{1-\cos 5x};$	$\pi \lim_{x \to \infty} \left(\frac{x^2 + 7x - 9}{x^2 + 9x - 4} \right)^{4x - 3};$
	6) $\lim_{x \to 1} \frac{x^3 + x^2 + 3x - 5}{x^3 + 3x^2 - x - 3}$;	$r)\lim_{x\to 3}\frac{\arcsin(x^2-9)}{tg(x-3)};$	
2.16.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x^2 + 9} - \sqrt[3]{2 + x}}{\sqrt[3]{9x^2 + 4} - \sqrt[3]{x^6 + 7x^2 - 9}};$	B) $\lim_{x\to 1} \frac{x^2 - 1}{tg(1-x)}$;	$A) \lim_{x \to \infty} \left(\frac{2x^2 - 8x - 6}{2x^2 + x - 5} \right)^{5 - x};$
	6) $\lim_{x \to 1} \frac{x^4 - x^3 + x^2 - 1}{x^2 + x - 2}$;	$r)\lim_{x\to\infty}(x+9)(\ln x-\ln(x+7));$	
2.17.	a) $\lim_{x \to +\infty} \frac{\sqrt[4]{x^8 + 6x^4 - 2x + 1}}{7x^2 - 4x + 1}$;	B) $\lim_{x\to 3} \frac{\sqrt{10-2x}-2}{\sin(6-2x)};$	$\exists \lim_{x \to \infty} \left(\frac{2x^2 - 4x + 3}{2x^2 - 5x + 7} \right)^{6x - 1};$
	6) $\lim_{x \to 2} \frac{x^3 - x^2 - x - 2}{x^2 + x - 6}$;	$r)\lim_{x\to 1}(2-x)^{\frac{1}{\sin(x-1)}};$	
2.18.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{25x^4 + 7x^2 + x} - 3}{6x^2 + 2x + 1}$;	$\text{B)}\lim_{x\to 0}\frac{\sin 3x}{\sqrt{16-\sin 2x}-4};$	$\exists \lambda \lim_{x \to \infty} \left(\frac{x^2 + 6x - 6}{x^2 - 4x + 11} \right)^{3x + 5};$
	6) $\lim_{x \to -2} \frac{x^3 + 3x^2 - 4}{2x^3 + 5x^2 - 4x - 12}$;	$\Gamma \lim_{x \to \infty} x \ln \frac{4+x}{2+x};$	
2.19.	a) $\lim_{x \to +\infty} \frac{\sqrt[4]{x-12} - \sqrt[4]{16x^8 + 5x^3}}{\sqrt[4]{9x^4 + 5} + \sqrt[3]{x^6 - 8}};$ 6) $\lim_{x \to -2} \frac{x^4 + 4x^3 + 5x^2 + 4x + 4}{2x^3 + 5x^2 - 4x - 12};$	B) $\lim_{x \to 0} \frac{2x tg3x}{\cos 3x - \cos 4x};$ r) $\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - 1}{tg\pi x};$	$\pi \lim_{x \to \infty} \left(\frac{3x^2 + 4x - 1}{3x^2 - x + 2} \right)^{-5x - 4};$
L	$x \rightarrow -2$ $\angle x^3 + 5x^2 - 4x - 12$		<u> </u>

2.20.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x+3} - \sqrt[3]{4x^8 - 5x^3 - 3}}{\sqrt[3]{7 + x^{12}} + \sqrt[3]{2x + 4}};$	B) $\lim_{x\to 0} \frac{\ln \ln^2 (1+\pi x)}{2-\sqrt{4+tg^2x}};$	$\exists \lambda \lim_{x \to \infty} \left(\frac{5x^2 + 3x - 1}{5x^2 - 9x + 7} \right)^{\frac{2x + 3}{2}};$
	6) $\lim_{x \to 2} \frac{x^3 - 3x^2 + 4}{x^5 + x^4 - 4x^3 - 4x^2}$;	Γ) $\lim_{x\to 1} (7x-6)^{\frac{x+2}{1-x}};$	
2.21.	a) $\lim_{x \to +\infty} \frac{7x^2 + 8x + 5}{\sqrt[3]{-8x^6 + 7x^3 + 15} + 4x}$;	B) $\lim_{x\to 0} \frac{tg4x}{\cos 2x - \cos 3x}$;	$\exists A \lim_{x \to \infty} \left(\frac{x^2 - 4x + 2}{x^2 - 9x + 1} \right)^{\frac{3x - 1}{4}};$
	6) $\lim_{x \to -1} \frac{x^3 + 2x^2 - x - 2}{x^3 - 9x^2 + 15x + 25}$;	$\Gamma)\lim_{x\to 1} (5x-4)^{\frac{3x+2}{2x-2}};$	
2.22.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{x^6 + 4x^3 + 3} - 2x^2}{5x^2 + 2x - 4}$;	B) $\lim_{x\to 0} \frac{tg4x}{\sqrt{9+arctg3x}-3}$;	$\exists \lambda \lim_{x \to \infty} \left(\frac{7x^2 - 3x + 9}{7x^2 - 9x + 1} \right)^{\frac{x - 1}{2}};$
	6) $\lim_{x \to 5} \frac{2x^3 - 19x^2 + 40x + 25}{x^3 - 11x^2 + 35x - 25}$;	$r)\lim_{x\to\frac{\pi}{2}}\frac{tg3x}{tg5x};$	
2.23.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{4x+3} - \sqrt[3]{x^2 - 6}}{\sqrt[3]{9x^3 + 1} + \sqrt[3]{7x - 6}};$	B) $\lim_{x \to 5} \frac{arctg(5-x)}{\sin(3-\sqrt{4+x})};$	$\mu \lim_{x \to \infty} \left(\frac{x^2 + 3x - 1}{x^2 - 7x + 7} \right)^{5 - 2x};$
	6) $\lim_{x \to -2} \frac{x^3 + x^2 - x + 2}{(x^2 - x - 6)^2};$	$r)\lim_{x\to 2} (5x-9)^{\frac{7x+2}{x-2}};$	
2.24.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{3x+1} - \sqrt[3]{8x^3 - 4}}{\sqrt[3]{-5 + 4x^{1}} + \sqrt[3]{x^3 - 6}};$	B) $\lim_{x\to 0} \frac{(4^{3x+1}-4)}{\sqrt{25+tg\pi x}-5};$	$\exists x \in \mathbb{R}^{2}$ $\lim_{x \to \infty} \left(\frac{8x^2 - x + 2}{8x^2 - 6x - 7} \right)^{\frac{x-2}{6}};$
	6) $\lim_{x \to 1} \frac{x^4 - x^3 + x - 1}{2x^2 - x - 1}$;	$\Gamma)\lim_{x\to\pi}\frac{tg9x}{sinx};$	
2.25.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{8x^6 + 2x^2 + x} - 3x^2}{2x^2 - 3x + 4}$;	B) $\lim_{x \to 1} \frac{\sqrt{8-4x}-2}{\log_2^{-1}(3-2x)};$	$\pi \lim_{x \to \infty} \left(\frac{4x^2 - 3x + 2}{4x^2 - 9x + 1} \right)^{2x - 4};$
	6) $\lim_{x \to -2} \frac{x^3 + x^2 - x + 2}{x^3 - 7x - 6}$;	$\Gamma)\lim_{x\to\frac{\pi}{2}}\frac{ctg3x}{ctgx};$	
2.26.	a) $\lim_{x \to +\infty} \frac{\sqrt[3]{27x^6 - 4x^2 + x} - 2x^2}{4x^2 - 3x + 4}$;	B) $\lim_{x\to 1} \frac{\sqrt{4-3x}-1}{\ln(3-2x)};$	$ \pi$) $\lim_{x \to \infty} \left(\frac{6x^2 - 3x + 2}{6x^2 + 7x + 1} \right)^{x+3}; $
	6) $\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 - 7x - 6}$;	$r) \lim_{x \to \frac{\pi}{2}} \frac{ctg3x}{ctg7x};$	
2.27.	a) $\lim_{x \to +\infty} \frac{-3x^2 + 8x + 5}{\sqrt[3]{8x^6 - 5x^3 + 15} + 2x}$;	B) $\lim_{x\to 0} \frac{2tg3x}{\cos 5x - \cos 3x}$;	$\exists x \in \mathbb{Z}$ д) $\lim_{x \to \infty} \left(\frac{3x^2 + 4x + 2}{3x^2 - x + 1} \right)^{\frac{3x - 1}{4}}$;
	6) $\lim_{x \to -1} \frac{x^3 + 2x^2 - x - 2}{x^3 - 9x^2 + 15x + 25};$	r) $\lim_{x \to -1} (5x + 6)^{\frac{3x+2}{2x+2}};$	

3. Определить точки разрыва функции y(x), если они существуют и построить график функции $(0,5 \, 6.)$

3.1.
$$y = \begin{cases} -x, & ecnu \ x \le 0 \\ x^2, & ecnu \ 0 < x \le 2, \\ x+1, & ecnu \ x > 2 \end{cases}$$

3.2.
$$y = \begin{cases} x^2 + 1, & ecnu \ x \le 1 \\ 2x, & ecnu \ 1 < x \le 3, \\ x + 2, & ecnu \ x > 3 \end{cases}$$

3.3.
$$y = \frac{2}{x^2 + 8x + 15}$$
,

3.4.
$$y = \frac{3}{x^2 + 7x + 6}$$
,

3.5.
$$y = \begin{cases} x - 3, & ecnu \ x < 0 \\ x + 1, & ecnu \ 0 \le x \le 4, \\ \sqrt{x} + 3, & ecnu \ x > 4 \end{cases}$$

3.6.
$$y = \begin{cases} \sqrt{1-x}, & ecnu \ x \le 0 \\ 0, & ecnu \ 0 < x \le 2, \\ x-2, & ecnu \ x > 2 \end{cases}$$

3.7.
$$y = \frac{1}{x^2 + 5x + 6}$$
,

3.8.
$$y = \frac{2}{x^2 - 2x - 15}$$
,

3.9.
$$y = \begin{cases} 2x^2, & ecnu \ x \le 0 \\ x, & ecnu \ 0 < x \le 1, \\ 2, & ecnu \ x > 1 \end{cases}$$

3.10.
$$y = \begin{cases} \sin x, & ecnu \ x < 0 \\ x, & ecnu \ 0 \le x \le 2, \\ 0, & ecnu \ x > 2 \end{cases}$$

3.11.
$$y = \frac{x}{x^2 - 9x + 14}$$
,

3.12.
$$y = \frac{3x+1}{x^2-x-6}$$
,

3.13.
$$y = \begin{cases} \cos x, ecnu & x < \frac{\pi}{2} \\ 0, & ecnu & \frac{\pi}{2} \le x < \pi, \\ \frac{\pi}{2}, & ecnu & x \ge \pi \end{cases}$$

3.14.
$$y = \begin{cases} x-1, & ecnu \ x \le 0 \\ x^2, & ecnu \ 0 < x < 2, \\ 2x, & ecnu \ x \ge 2 \end{cases}$$

3.15.
$$y = \frac{x-1}{x^2-5x-6}$$
,

3.16.
$$y = \frac{2x}{x^2 - x - 12}$$
,

$$3.17. \ \ y = \frac{x}{2x^2 + 5x - 3},$$

3.18.
$$y = \frac{2}{x^2 + 6x - 16}$$
,

3.19.
$$y = \begin{cases} 3x + 1, ecnu & x < 0 \\ x^2 + 1, ecnu & 0 \le x < 1, \\ 0, & ecnu & x \ge 1 \end{cases}$$

3.20.
$$y = \begin{cases} \sin x, & ecnu \ x < 0 \\ x, & ecnu \ 0 \le x \le 2, \\ 0, & ecnu \ x > 2 \end{cases}$$

3.21.
$$y = \frac{3x}{2x^2 + x - 3}$$
,

3.22.
$$y = \frac{2x+1}{3x^2-5x-2}$$
,

3.23.
$$y = \begin{cases} 0, & ecnu \ x \le 0 \\ tg \ x, & ecnu \ 0 < x < \frac{\pi}{2}, \\ x, & ecnu \ x \ge \frac{\pi}{2} \end{cases}$$

3.24.
$$y = \begin{cases} x^3, & ecnu \ x < -1 \\ x - 1, & ecnu \ -1 \le x \le 3, \\ -x + 5, & ecnu \ x > 3 \end{cases}$$

$$3.25. \ \ y = \frac{x+2}{2x^2 + 5x - 7} \,.$$

$$3.26. \quad y = \frac{3x}{2x^2 + x - 3},$$

3.27.
$$y = \frac{x-1}{x^2 - 5x - 6}$$
,

4. Найти асимптоты и построить эскизы графиков функций (без применения производных) (1 балл)

4.1.
$$y = \frac{x^3 + 4}{x^2}$$
.

4.2.
$$y = \frac{x^2 - x + 1}{x - 1}$$
.

4.3.
$$y = \frac{2}{x^2 + 2x}$$
.

4.4.
$$y = \frac{4x^2}{x^2 + 3}$$
.

4.5.
$$y = \frac{12x}{x^2 + 9}$$

4.6.
$$y = \frac{x^2 - 3x + 3}{x - 1}$$
.

4.7.
$$y = \frac{4 - x^3}{x^2}$$
.

4.8.
$$y = \frac{(x-1)^2}{x^2}$$
.

4.9.
$$y = \frac{x^2}{(x-1)^2}$$
.

4.10.
$$y = \left(1 + \frac{1}{x}\right)^2$$
.

4.11.
$$y = \frac{x^2 - 4x + 1}{(x - 4)}$$
.

4.12.
$$y = \frac{2x^3 + 1}{x^2}$$
.

4.13.
$$y = \frac{12 - 3x^2}{x^2 + 12}$$

4.14.
$$y = \frac{9+6x-3x^2}{x^2-2x+13}$$

4.15.
$$y = \frac{-8x}{x^2 + 4}$$
.

4.16.
$$y = \frac{(x-1)^2}{(x+1)^2}$$
.

4.17.
$$y = \frac{3x^4 + 1}{x^3}$$
.

4.18.
$$y = \frac{4x}{(x+1)^2}$$
.

4.19.
$$y = \frac{8(x-1)}{(x+1)^2}$$
.

4.20.
$$y = \frac{(1-2x^3)}{x^2}$$
.

4.21.
$$y = \frac{4}{(x^2 + 2x - 3)}$$

4.22.
$$y = \frac{1}{3 + 2x - x^2}$$

4.23.
$$y = \frac{x^2 + 2x - 7}{x^2 + 2x - 3}$$
.

4.24.
$$y = \frac{1}{x^4 - 1}$$
.

4.25.
$$y = \frac{x^2 - 32}{r^2}$$

4.26.
$$y = \frac{-8x}{x^2 + 4}$$

$$4.27. \quad y = \frac{4}{\left(x^2 + 2x - 3\right)}$$