

Ch 4. Combinational logic

4.1 Introduction

4.2 Combinational circuits

- Outputs are determined from the present inputs
- Consist of input/output variables and logic gates

가 combinational circuit

Fig. 4-1 Block Diagram of Combinational Circuit

4.3 Analysis procedure

- To determine the function of circuit
- Analysis procedure
 - Make sure the circuit is combinational or sequential
 - Obtain the output Boolean functions or the truth table

4.3 Analysis procedure

- Boolean function
 - Label all gate outputs
 - Make output functions at each level
 - Substitute final outputs to input variables
- Truth table
 - Put the input variables to binary numbers
 - Determine the output value at each gate
 - Obtain truth table

4.3 Analysis procedure

Table 4-1 *Truth Table for the Logic Diagram of Fig. 4-2*

Α	В	С	F ₂	F_2'	<i>T</i> ₁	T ₂	T ₃	F ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Fig. 4-2 Logic Diagram for Analysis Example

4.4 Design procedure

- Procedure to design
 - Determine the required number of input and output from specification
 - Assign a letter symbol to each input/output
 - Derive the truth table
 - Obtain the simplified Boolean functions
 - Draw the logic diagram and verify design correctness

- OBCD to excess-3 code converter
 - Excess-3 code : decimal digit+3
- Design procedure
 - 1) Determine inputs/outputs

Inputs: A,B,C,D (0000~1001)

Outputs: W,X,Y,Z (0011~1100)

2)Derive truth table

Table 4-2 *Truth Table for Code-Conversion Example*

	Input	t BCD		Output Excess-3 Code				
Α	В	С	D	w	x	y	z	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

3)Obtain simplified Boolean functions

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

4) Draw the logic diagram

$$z = D'$$

 $y = CD + C'D' = CD + (C + D)'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $= B'(C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

4.5 Binary adder-subtractor

- Binary adder
 - Half adder: performs the addition of 2-bits(x+y)
 - Full adder: performs the addition of 3-bits(x+y+z)
 - Two half adder can be employed to a full adder
- Realization of Binary adder-subtractor
 - Half adder
 - Full adder
 - Cascade of n-full adder
 - Providing a complementing circuit

4.5 Binary adder-subtractor - Half Adder

Sum of 2 binary inputs

Input : X(augend), Y(addend)

Output: S(sum), C(carry)

Table 4-3 Half Adder

x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S=xy'+x'y$$

4.5 Binary adder-subtractor - Half Adder

(a)
$$S = xy' + x'y$$

 $C = xy$

(b)
$$S = x \oplus y$$

 $C = xy$

Fig. 4-5 Implementation of Half-Adder

4.5 Binary adder-subtractor - Full adder

- Sum of 3 binary inputs
- Input: X,Y(2 significant bits),Z(1 carry bit)
- Output : S(sum),C(carry)

Table 4-4
Full Adder

x	у	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz$$

Fig. 4-6 Maps for Full Adder

4.5 Binary adder-subtractor - Full adder

Fig. 4-7 Implementation of Full Adder in Sum of Products

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

4.5 Binary adder-subtractor - Binary adder

- Sum of two n-bit binary numbers
 - 4-bit adder

A=1011, B=0011

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_{i}
Augend	1	0	1	1	A_{i}
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

(delay가 , 3)

Fig. 4-9 4-Bit Adder

4.5 Binary adder-subtractor - Carry propagation

- Rising of delay time(carry delay)
- One solution is carry lookahead
- O All carry is a function of P_i,G_i and C₀

Fig. 4-10 Full Adder with P and G Shown

4.5 Binary adder-subtractor - Carry propagation

Carry lookahead generator

$$C_0$$
 = input carry
 $C_1 = G_0 + P_0 C_0$
 $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

4.5 Binary adder-subtractor - Carry propagation

4-bit adder with carry lookahead

Fig. 4-12 4-Bit Adder with Carry Lookahead

4.5 Binary adder-subtractor - Binary subtractor

- A-B equals A+(2'complement of B)
- When M=0(act as adder) M=1(subtractor)

Fig. 4-13 4-Bit Adder Subtractor

4.5 Binary adder-subtractor - Overflow

- Sum of *n* digit number occupies *n*+1digit
- Occurs when two numbers are same sign

(examples of overflow)

carries:	0	1		carries:	1	0	
+70		0	1000110	-70		1	0111010
+80		0	1010000	-80		1	0110000
+150		1	0010110			0	1101010

4.6 Decimal adder

- Calculate binary and represent decimal in binary coded form
- Decimal adder for the BCD code

4.6 Decimal adder - BCD Adder

- BCD digit output of 2-BCD digit sum
- Carry arise if output 1010~1111
- \circ C=K+Z₈Z₄+Z₈Z₂

Fig. 4-14 Block Diagram of a BCD Adder

4.7 Binary multiplier

\circ 2bit x 2bit = 4bit(max)

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

4.7 Binary multiplier

(K-bit) x (J-bit)(K x J) AND gates,(J-1) K-bit adder needed

 $\begin{array}{ccc} B_3B_2B_1B_0 \\ x & A_2A_1A_0 \end{array}$

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4.8 Magnitude comparator

- X≔1only if the pair of bits in *i* are equal
- \circ (A=B)= $x_3x_2x_1x_0$
- $(A>B)=A_3B_3'+x_3A_2B_2'+x_3x_2A_1$ $B_1'+x_3x_2x_1A_0B_0'$
- $(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'$ $B_1 + x_3x_2x_1A_0'B_0$

Fig. 4-17 4-Bit Magnitude Comparator

4.9 Decoders

- Generate the 2ⁿ(or less) minterms of n input variables
 - Eg)3 to 8 line decoder

n 2^n minterm

Table 4-6 *Truth Table of a 3-to-8-Line Decoder*

	Input	s		Outputs							
X	y	Z	D_0	D_1	D_2	D_3	D_4	D ₅	D_6	D ₇	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
XX	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Fig. 4-18 3-to-8-Line Decoder

4.9 Decoders

- 2 to 4 line decoder with Enable input
 - Control circuit operation by E

E	A	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(a) Logic diagram

(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

4.9 Decoders

 Decoders with enable inputs can be a larger decoder circuit

Eg)4x16 decoder by two 3x8 decoders

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

4.9 Decoders - Combinational logic implementation

- Combinational logic implementation
 - Any combinational circuit can be implemented with line decoder and OR gates
 - Eg)full adder

Table 4-4
Full Adder

	uuci			
х	у	Z	С	S
0	0	0	0	0
0	0	1	0	
0	1	0	0	
0	1	1		0
1	0	0	0	\bigcirc
1	0	1		0
1	1	0		0
1	1	1		
1	1	1		

Fig. 4-21 Implementation of a Full Adder with a Decoder

4.10 Encoders

Inverse operation of a decoder

decode 2^n

- Generate n outputs of 2ⁿ input values
 - Eg) octal to binary encoder

Table 4-7 *Truth Table of Octal-to-Binary Encoder*

Inp	uts		Outputs							
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	х	y	z.
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

4.10 Encoders - Priority encoder

- Problem happens two or more inputs equal to 1 at the same time
- Give a priority function to circuit

Table 4-8 *Truth Table of a Priority Encoder*

	Inp	uts	(Output	S	
D_0	D_1	D_2	D_3	X	у	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

(x100 means 0100, 1100)

Fig. 4-22 Maps for a Priority Encoder

4.11 Multiplexers

- Select a binary information from many input lines
- Selection is controlled by a set of selection lines
- 2ⁿ input lines have *n* selection lines

4.11 Multiplexers

• 4 to 1 line multiplexer

s_1	s_0	Y
O	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

(b) Function table

(a) Logic diagram

4.11 Multiplexers

Quadruple 2 to 1line multiplexer

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

4.11 Multiplexers - Boolean function implementation

- Boolean function implementation
 - Minterms of function are generated in a MUX
 - n input variables, n-1 selection input

\boldsymbol{x}	y	z	F	
0	0	0	0	_
O	0	1	1	F = z
0	1	0	1	
0	1	1	0	F = z'
1	0	О	0	E = 0
1	0	1	0	F = 0
1	1	0	1	72 4
1	1	1	1	F = 1

(a) Truth table

(b) Multiplexer implementation

$$F=xy+yz'+x'y'z$$

4.11 Multiplexers - Three-state gates

- Three-state gates
 - Logic 1, 0 and high-impedance
 - High-impedance behaves like an open circuit

Fig. 4-29 Graphic Symbol for a Three-State Buffer

4.11 Multiplexers

• Multiplexers with three-state gates

(a) 2-to-1- line mux

(b) 4 - to - 1 line mux

Fig. 4-30 Multiplexers with Three-State Gates

4.12 HDL for combinational circuit

- Modeling techniques:
 - Gate level modeling
 - Instantiation of gates and user defined modules
 - Dataflow modeling
 - Using continuous assignment statements-assign
 - Behavioral modeling
 - Using procedural assignment statements-always

4.12 HDL for combinational circuit - Gate-level modeling

Circuit is specified by its gates and their interconnection

HDL Example 4-1

```
//Gate-level description of a 2-to-4-line decoder
//Figure 4-19
module decoder_gl (A,B,E,D);
   input A,B,E;
   output [0:3]D;
   wire Anot, Bnot, Enot;
   not
      n1 (Anot, A),
      n2 (Bnot, B),
      n3 (Enot, E);
   nand
      n4 (D[0], Anot, Bnot, Enot),
      n5 (D[1], Anot, B, Enot),
         (D[2], A, Bnot, Enot),
      n7 (D[3], A, B, Enot);
endmodule
```


4.12 HDL for combinational circuit - Gate-level modeling

Instantiation

```
module halfadder (S,C,x,y);
  input x,y;
  output S,C;
//Instantiate primitive gates
  xor (S,x,y);
  and (C,x,y);
endmodule
```


Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

4.12 HDL for combinational circuit - Gate-level modeling

Instantiation in 4-bit adder

endmodule

Fig. 4-9 4-Bit Adder

4.12 HDL for combinational circuit - 3 State Gate

4.12 HDL for combinational circuit - Dataflow modeling

 Assign a value to a net by using operands and operators

out=x? A: B means out=A, if x is true =B, if x is false

Table 4-10 *Verilog HDL Operators*

Symbol	Operation
+	binary addition
	binary subtraction
&	bit-wise AND
	bit-wise OR
^	bit-wise XOR
\sim	bit-wise NOT
==	equality
>	greater than
<	less than
{ }	concatenation
?:	conditional

4.12 HDL for combinational circuit - Dataflow modeling

- Assignment
 - 2-to-4 line decoder

HDL Example 4-3

```
//Dataflow description of a 2-to-4-line decoder
//See Fig. 4-19
module decoder_df (A,B,E,D);
   input A,B,E;
   output [0:3] D;
   assign D[0] = ~(~A & ~B & ~E),
        D[1] = ~(~A & B & ~E),
        D[2] = ~(A & B & ~E);
endmodule
```


4.12 HDL for combinational circuit - Dataflow modeling

Assignment

- 4-bit adder

Fig. 4-9 4-Bit Adder

HDL Example 4-4

```
//Dataflow description of 4-bit adder
module binary_adder (A,B,Cin,SUM,Cout);
  input [3:0] A,B;
  input Cin;
  output [3:0] SUM;
  output Cout;
  assign {Cout,SUM} = A + B + Cin;
endmodule
```


4.12 HDL for combinational circuit - Behavioral modeling

Use procedural assignment statement, always

 Target output must be the reg data type

Eg)4 to 1 line mux

```
module mux4x1 bh (i0,i1,i2,i3,select,v);
   input i0, i1, i2, i3;
   input [1:0] select;
   output y;
   reg y;
   always @ (i0 or i1 or i2 or i3 or select)
            case (select)
               2'b00: y = i0;
               2'b01: y = i1;
               2'b10: v = i2;
               2'b11: v = i3;
            endcase
```

endmodule

4.12 HDL for combinational circuit - Writing a simple test bench

- Test bench : Applying stimulus to test HDL and observe its response
- reg inputs , wire outputs

Fig. 4-33 Stimulus and Design Modules Interaction

4.12 HDL for combinational circuit - Writing a simple test bench

- System tasks: keywords that can display various outputs (begin with \$)
- \$\infty\$ \$\square\$ ships \text{ships} \text{ships} \$\square\$ \$\square\$ \$\square\$ ships \text{ships} \$\square\$ \$\s
- Format of system tasks
 - Task name(format specification, argument list);
 - Eg) \$monitor(%d %b %b, C,A,B);

4.12 HDL for combinational circuit - Writing a simple test bench

• Example of test bench


```
//Stimulus for mux2x1 df.
module testmux;
 reg TA, TB, TS; //inputs for mux
 wire Y; //output from mux
 mux2x1_df mx (TA,TB,TS,Y); // instantiate mux
    initial
       begin
            TS = 1; TA = 0; TB = 1;
         #10 TA = 1; TB = 0;
         #10 TS = 0;
         #10 TA = 0; TB = 1;
       end
    initial
     $monitor("select = %b A = %b B = %b OUT = %b time = %0d",
             TS, TA, TB, Y, $time);
endmodule
//Dataflow description of 2-to-1-line multiplexer
//from Example 4-6
module mux2x1_df (A,B,select,OUT);
   input A,B,select;
   output OUT;
   assign OUT = select ? A : B;
endmodule
```