ESP32-S3-PICO-1 Series

Datasheet

2.4 GHz Wi-Fi + Bluetooth® LE SiP Supporting IEEE 802.11b/g/n (2.4 GHz Wi-Fi) and Bluetooth® 5 (LE) Integrating all peripheral components in one single package

Including:

ESP32-S3-PICO-1-N8R2

ESP32-S3-PICO-1-N8R8

Product Overview

ESP32-S3-PICO-1 is a System-in-Package (SiP) device that is based on ESP32-S3 with integrated 2.4 GHz Wi-Fi and Bluetooth[®] Low Energy (Bluetooth LE). It integrates an 8 MB SPI flash and an up to 8 MB SPI PSRAM.

ESP32-S3-PICO-1 provides complete Wi-Fi and Bluetooth[®] functionalities and is designed with the TSMC low-power 40 nm technology. It seamlessly integrates all peripheral components, including a crystal oscillator, decoupling capacitors, SPI flash/PSRAM, and RF matching links, within a single package. As a result, there is no need for additional peripheral components, simplifying the soldering and testing processes. It also streamlines the supply chain and enhances control and management efficiency.

With its ultra-small size, robust performance, and low-energy consumption, ESP32-S3-PICO-1 is well suited for any space-limited or battery-operated applications, such as wearable electronics, medical equipment, sensors and other IoT products.

At the core of ESP32-S3-PICO-1 is the ESP32-S3 chip, a low-power MCU-based system on a chip (SoC) with integrated 2.4 GHz Wi-Fi and Bluetooth[®] Low Energy (Bluetooth LE). It consists of high-performance dual-core microprocessor (Xtensa[®] 32-bit LX7), a low-power coprocessor, a Wi-Fi baseband, a Bluetooth LE baseband, RF module, and numerous peripherals. For more details on ESP32-S3, please refer to ESP32-S3 Series Datasheet.

Block Diagram

The block diagram of ESP32-S3-PICO-1 is shown below.

ESP32-S3-PICO-1 Block Diagram

Features

CPU and Memory

- ESP32-S3 SoC embedded, Xtensa[®] dual-core 32-bit LX7 microprocessor (with single precision FPU), up to 240 MHz
- 384 KB ROM
- 512 KB SRAM
- 16 KB SRAM in RTC

Wi-Fi

- 802.11b/g/n
- Bit rate: 802.11n up to 150 Mbps

- TX/RX A-MPDU, TX/RX A-MSDU
- 0.4 μs guard interval support
- Center frequency range of operating channel: 2412 ~ 2484 MHz

Bluetooth

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets

- Channel selection algorithm #2
- Internal co-existence mechanism between Wi-Fi and Bluetooth to share the same antenna

Peripherals

 GPIO, SPI, LCD interface, Camera interface, UART, I2C, I2S, remote control, pulse counter, LED PWM, USB 1.1 OTG, USB Serial/JTAG controller, MCPWM, SD/MMC host, GDMA, TWAI[®] controller (compatible with ISO 11898-1), ADC, touch sensor, temperature sensor, timers and watchdogs

Note:

* Please refer to <u>ESP32-S3 Series Datasheet</u> for detailed information about the peripherals.

Integrated Components

- 40 MHz crystal oscillator
- 8 MB Quad SPI flash
- Up to 8 MB PSRAM

Operating Conditions

- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating ambient temperature:
 - ESP32-S3-PICO-1-N8R2: -40 ~ 85 °C
 - ESP32-S3-PICO-1-N8R8: -40 ~ 65 °C

Applications (A Nonexhaustive List)

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- USB Devices
- Speech Recognition
- Image Recognition
- Mesh Network
- Home Automation

- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications

Note:

Check the link or the QR code to make sure that you use the latest version of this document: https://www.espressif.com/documentation/esp32-s3-pico-1_datasheet_en.pdf

Contents

	oduct Overview	2
	k Diagram	3
Feat		3
Appii	ications	4
1	ESP32-S3-PICO-1 Series Comparison	9
1.1	ESP32-S3-PICO-1 Series Nomenclature	9
1.2	Comparison	9
2	Pin Definition	10
2.1	Pin Layout	10
2.2	Pin Description	11
2.3	Strapping Pins	14
	2.3.1 Chip Boot Mode Control	15
	2.3.2 VDD_SPI Voltage Control	15
	2.3.3 ROM Messages Printing Control	16
	2.3.4 JTAG Signal Source Control	16
3	Electrical Characteristics	17
3.1	Absolute Maximum Ratings	17
3.2	Recommended Power Supply Characteristics	17
3.3	VDD_SPI Output Characteristics	18
3.4	DC Characteristics (3.3 V, 25 °C)	18
3.5	ADC Characteristics	19
3.6	Current Consumption	19
	3.6.1 RF Current Consumption in Active Mode	19
	3.6.2 Current Consumption in Other Modes	19
3.7	Reliability	21
3.8	Wi-Fi Radio	21
	3.8.1 Wi-Fi RF Transmitter (TX) Specifications	22
	3.8.2 Wi-Fi RF Receiver (RX) Specifications	22
3.9	Bluetooth 5 (LE) Radio	24
	3.9.1 Bluetooth LE RF Transmitter (TX) Characteristics	24
	3.9.2 Bluetooth LE RF Receiver (RX) Characteristics	25
4	Schematics	28

5	Peripheral Schematics	29
6	Packaging	30
7	Product Handling	31
7.1	Storage Conditions	31
7.2	Reflow Profile	31
7.3	Ultrasonic Vibration	31
8	Related Documentation and Resources	32
Re	evision History	33

List of Tables

1-1	ESP32-S3-PICO-1 Series Comparison	9
2-1	Pin Description	11
2-2	Default Configuration of Strapping Pins	14
2-3	Description of Timing Parameters for the Strapping Pins	14
2-4	Chip Boot Mode Control	15
2-5	VDD_SPI Voltage Control	15
2-6	JTAG Signal Source Control	16
3-1	Absolute Maximum Ratings	17
3-2	Recommended Power Characteristics	17
3-3	VDD_SPI Internal and Output Characteristics	18
3-4	DC Characteristics (3.3 V, 25 °C)	18
3-5	ADC Characteristics	19
3-6	ADC Calibration Results	19
3-7	Current Consumption for Wi-Fi (2.4 GHz) in Active Mode	19
3-8	Current Consumption in Modem-sleep Mode	20
3-9	Current Consumption in Low-Power Modes	20
3-10	Reliability Qualifications	21
3-11	1 Wi-Fi RF Characteristics	21
3-12	2 TX Power with Spectral Mask and EVM Meeting 802.11 Standards	22
3-13	3 TX EVM Test	22
3-14	4 RX Sensitivity	22
3-15	5 Maximum RX Level	23
3-16	6 RX Adjacent Channel Rejection	23
3-17	7 Bluetooth LE RF Characteristics	24
3-18	Bluetooth LE - Transmitter Characteristics - 1 Mbps	24
3-19	9 Bluetooth LE - Transmitter Characteristics - 2 Mbps	24
3-20) Bluetooth LE - Transmitter Characteristics - 125 Kbps	25
3-21	Bluetooth LE - Transmitter Characteristics - 500 Kbps	25
3-22	2 Bluetooth LE - Receiver Characteristics - 1 Mbps	25
3-23	Bluetooth LE - Receiver Characteristics - 2 Mbps	26
3-24	4 Bluetooth LE - Receiver Characteristics - 125 Kbps	27
3-25	5 Bluetooth LE - Receiver Characteristics - 500 Kbps	27

List of Figures

1-1	ESP32-S3-PICO-1 Series Nomenclature	9
2-1	ESP32-S3-PICO-1 Pin Layout (Top View)	10
2-2	Visualization of Timing Parameters for the Strapping Pins	15
4-1	ESP32-S3-PICO-1 Schematics	28
5-1	ESP32-S3-PICO-1 Peripheral Schematics	29
6-1	LGA56 (7x7 mm) Package	30
7-1	Reflow Profile	31

1

1 ESP32-S3-PICO-1 Series Comparison

1.1 ESP32-S3-PICO-1 Series Nomenclature

Figure 1-1. ESP32-S3-PICO-1 Series Nomenclature

1.2 Comparison

Table 1-1. ESP32-S3-PICO-1 Series Comparison

Ordering Code ¹	In-Package flash	In-Package PSRAM	Ambient Temp. ² (°C)	SPI Voltage
ESP32-S3-PICO-1-N8R2	8 MB (Quad SPI)	2 MB (Quad SPI)	-40 ∼ 85	3.3 V
ESP32-S3-PICO-1-N8R8 ³	8 MB (Quad SPI)	8 MB (Octal SPI)	-40 ~ 65	3.3 V

¹ For details on chip marking and packing, see Section 6 Packaging.

² Ambient temperature specifies the recommended temperature range of the environment immediately outside an Espressif chip.

³ The ESP32-S3-PICO-1-N8R8 is still in sample status.

2 Pin Definition

2.1 Pin Layout

Figure 2-1. ESP32-S3-PICO-1 Pin Layout (Top View)

N

2.2 Pin Description

Table 2-1. Pin Description

Name	No.	Type ¹	Power Domain	Function ^{2, 5}						
LNA_IN	1	I/O	_	Low Noise Amplific	er (RF LNA	A) input and o	utput signal			
VDD3P3	2	P_A	_	Analog power sup	Analog power supply					
VDD3P3	3	P_A	_	Analog power sup	ply					
				High: on, enables	ESP32-S3	3-PICO-1.				
CHIP_PU	4	I	VDD3P3_RTC	Low: off, ESP32-S	S3-PICO-1	powers off.				
				Note: Do not leave	e the CHIF	PPU pin floati	ng.			
GPIO0	5	I/O/T	VDD3P3_RTC	RTC_GPIO0,	GPIO0					
GPIO1	6	I/O/T	VDD3P3_RTC	RTC_GPIO1,	GPIO1,	TOUCH1,	ADC1_CH0			
GPIO2	7	I/O/T	VDD3P3_RTC	RTC_GPIO2,	GPIO2,	TOUCH2,	ADC1_CH1			
GPIO3	8	I/O/T	VDD3P3_RTC	RTC_GPIO3,	GPIO3,	TOUCH3,	ADC1_CH2			
GPIO4	9	I/O/T	VDD3P3_RTC	RTC_GPIO4,	GPIO4,	TOUCH4,	ADC1_CH3			
GPIO5	10	I/O/T	VDD3P3_RTC	RTC_GPIO5,	GPIO5,	TOUCH5,	ADC1_CH4			
GPIO6	11	I/O/T	VDD3P3_RTC	RTC_GPIO6,	GPIO6,	TOUCH6,	ADC1_CH5			
GPIO7	12	I/O/T	VDD3P3_RTC	RTC_GPIO7,	GPIO7,	TOUCH7,	ADC1_CH6			
GPIO8	13	I/O/T	VDD3P3_RTC	RTC_GPIO8,	GPIO8,	TOUCH8,	ADC1_CH7,	SUBSPICS1		
GPIO9	14	I/O/T	VDD3P3_RTC	RTC_GPIO9,	GPIO9,	TOUCH9,	ADC1_CH8,	SUBSPIHD,	FSPIHD	
GPIO10	15	I/O/T	VDD3P3_RTC	RTC_GPIO10,	GPIO10,	TOUCH10,	ADC1_CH9,	FSPIIO4,	SUBSPICS0,	FSPICS0
GPIO11	16	I/O/T	VDD3P3_RTC	RTC_GPIO11,	GPIO11,	TOUCH11,	ADC2_CH0,	FSPIIO5,	SUBSPID,	FSPID
GPIO12	17	I/O/T	VDD3P3_RTC	RTC_GPIO12,	GPIO12,	TOUCH12,	ADC2_CH1,	FSPIIO6,	SUBSPICLK,	FSPICLK
GPIO13	18	I/O/T	VDD3P3_RTC	RTC_GPIO13,	GPIO13,	TOUCH13,	ADC2_CH2,	FSPIIO7,	SUBSPIQ,	FSPIQ
GPIO14	19	I/O/T	VDD3P3_RTC	RTC_GPIO14,	GPIO14,	TOUCH14,	ADC2_CH3,	FSPIDQS,	SUBSPIWP,	FSPIWP
VDD3P3_RTC	20	P_A	_	Analog power sup	ply					
XTAL_32K_P	21	I/O/T	VDD3P3_RTC	RTC_GPIO15,	GPIO15,	U0RTS,	ADC2_CH4,	XTAL_32K_P		
XTAL_32K_N	22	I/O/T	VDD3P3_RTC	RTC_GPIO16,	GPIO16,	U0CTS,	ADC2_CH5,	XTAL_32K_N		
GPIO17	23	I/O/T	VDD3P3_RTC	RTC_GPIO17,	GPIO17,	U1TXD,	ADC2_CH6			

Name	No.	Type ¹	Power Domain	Function ^{2, 5}					
GPIO18	24	I/O/T	VDD3P3_RTC	RTC_GPIO18,	GPIO18,	U1RXD,	ADC2_CH7,	CLK_OUT3	
GPIO19	25	I/O/T	VDD3P3_RTC	RTC_GPIO19,	GPIO19,	U1RTS,	ADC2_CH8,	CLK_OUT2,	USB_D-
GPIO20	26	I/O/T	VDD3P3_RTC	RTC_GPIO20,	GPI020,	U1CTS,	ADC2_CH9,	CLK_OUT1,	USB_D+
GPIO21	27	I/O/T	VDD3P3_RTC	RTC_GPIO21,	GPIO21				
SPICS1 ⁴	28	I/O/T	VDD_SPI	SPICS1,	GPIO26				
VDD_SPI	29	P_D	_	Output power su	pply: VDD3	3P3_RTC			
NC	30	_	_	NC					
NC	31	_	_	NC					
NC	32	_	_	NC					
NC	33	_	_	NC					
NC	34	_	_	NC					
NC	35	_	_	NC					
SPICLK_N ³	36	I/O/T	VDD3P3_CPU / VDD_SPI	SPICLK_N_DIFF,	GPIO48,	SUBSPICLK	_N_DIFF		
SPICLK_P3	37	I/O/T	VDD3P3_CPU / VDD_SPI	SPICLK_P_DIFF,	GPIO47,	SUBSPICLK	_P_DIFF		
GPIO33 ^{3, 4}	38	I/O/T	VDD3P3_CPU / VDD_SPI	SPIIO4,	GPIO33,	FSPIHD,	SUBSPIHD		
GPIO34 ^{3, 4}	39	I/O/T	VDD3P3_CPU / VDD_SPI	SPIIO5,	GPIO34,	FSPICS0,	SUBSPICS0		
GPIO35 ^{3, 4}	40	I/O/T	VDD3P3_CPU / VDD_SPI	SPIIO6,	GPIO35,	FSPID,	SUBSPID		
GPIO36 ^{3, 4}	41	I/O/T	VDD3P3_CPU / VDD_SPI	SPIIO7,	GPIO36,	FSPICLK,	SUBSPICLK		
GPIO37 ^{3, 4}	42	I/O/T	VDD3P3_CPU / VDD_SPI	SPIDQS,	GPIO37,	FSPIQ,	SUBSPIQ		
GPIO38	43	I/O/T	VDD3P3_CPU	GPIO38,	FSPIWP,	SUBSPIWP			
MTCK	44	I/O/T	VDD3P3_CPU	MTCK,	GPIO39,	CLK_OUT3,	SUBSPICS1		
MTDO	45	I/O/T	VDD3P3_CPU	MTDO,	GPI040,	CLK_OUT2			
VDD3P3_CPU	46	P_D	_	Input power supp	oly for CPU	Ю			
MTDI	47	I/O/T	VDD3P3_CPU	MTDI,	GPI041,	CLK_OUT1			
MTMS	48	I/O/T	VDD3P3_CPU	MTMS,	GPIO42				
U0TXD	49	I/O/T	VDD3P3_CPU	U0TXD,	GPIO43,	CLK_OUT1			
U0RXD	50	I/O/T	VDD3P3_CPU	U0RXD,	GPI044,	CLK_OUT2			
GPIO45	51	I/O/T	VDD3P3_CPU	GPIO45					
GPIO46	52	I/O/T	VDD3P3_CPU	GPIO46					

12

Pin Definition

Name	No.	Type ¹	Power Domain	Function ^{2, 5}
NC	53	_	_	NC NC
NC	54	_	_	NC NC
VDDA	55	P_A	_	Analog power supply
VDDA	56	P_A	_	Analog power supply
GND	57	G	_	Ground

Pin Definition

¹ P: power pin; P_A : analog power pin; P_D : digital power pin; I: input; O: output; T: high impedance; NC: no component.

² Pin functions in bold font are the default pin functions in SPI Boot mode. For pins No.38 \sim 42, the default function is decided by eFuse bit.

 $^{^3}$ Power supply for GPIO33 \sim GPIO37, GPIO47 and GPIO48 is configurable to be either VDD3P3_CPU (default) or VDD_SPI.

⁴ For ESP32-S3-PICO-1-N8R2, SPICS1 is connected to the Quad SPI PSRAM and is not available for other uses. For ESP32-S3-PICO-1-N8R8, SPICS1 and GPIO33 ~ GPIO37 are connected to the Octal SPI PSRAM and are not available for other uses.

⁵ The pin function in this table refers only to some fixed settings and do not cover all cases for signals that can be input and output through the GPIO matrix. For more information on the GPIO matrix, please refer to ESP32-S3 Technical Reference Manual.

2.3 Strapping Pins

At each startup or reset, the ESP32-S3-PICO-1 requires some initial configuration parameters, such as in which boot mode to load the SiP, voltage of flash memory, etc. These parameters are passed over via the strapping pins. After reset, the strapping pins operate as regular IO pins.

The parameters controlled by the given strapping pins at SiP reset are as follows:

GPIO45

GPIO46

- Chip boot mode GPIO0 and GPIO46
- VDD_SPI voltage GPIO45
- ROM messages printing GPIO46
- JTAG signal source GPIO3

GPIO0, GPIO45, and GPIO46 are connected to the chip's internal weak pull-up/pull-down resistors at chip reset. These resistors determine the default bit values of the strapping pins. Also, these resistors determine the bit values if the strapping pins are connected to an external high-impedance circuit.

Strapping PinDefault ConfigurationBit ValueGPIO0Pull-up1GPIO3Floating-

Pull-down

Pull-down

0

0

Table 2-2. Default Configuration of Strapping Pins

To change the bit values, the strapping pins should be connected to external pull-down/pull-up resistances. If the ESP32-S3-PICO-1 is used as a device by a host MCU, the strapping pin voltage levels can also be controlled by the host MCU.

All strapping pins have latches. At system reset, the latches sample the bit values of their respective strapping pins and store them until the chip is powered down or shut down. The states of latches cannot be changed in any other way. It makes the strapping pin values available during the entire chip operation, and the pins are freed up to be used as regular IO pins after reset.

Regarding the timing requirements for the strapping pins, there are such parameters as *setup time* and *hold time*. For more information, see Table 2-3 and Figure 2-2.

	Table 2-3.	Description of	f Timing Parameters	for the Strapping Pins
--	------------	----------------	---------------------	------------------------

Parameter	Description	Min (ms)
+	Setup time is the time reserved for the power rails to stabilize before	0
t_{SU}	the CHIP_PU pin is pulled high to activate the chip.	0
	Hold time is the time reserved for the chip to read the strapping pin	
t_H	values after CHIP_PU is already high and before these pins start	3
	operating as regular IO pins.	

Figure 2-2. Visualization of Timing Parameters for the Strapping Pins

2.3.1 **Chip Boot Mode Control**

GPIO0 and GPIO46 control the boot mode after the reset is released. See Table 2-4 Chip Boot Mode Control.

Boot Mode	GPIO0	GPIO46
Default Configuration	1 (Pull-up)	0 (Pull-down)
SPI Boot (default)	1	Any value
Download Boot	0	0

Table 2-4. Chip Boot Mode Control

0

1

2.3.2 VDD_SPI Voltage Control

The required VDD_SPI voltage for ESP32-S3-PICO-1 can be found in Table 1-1 Comparison.

Invalid combination 1

Depending on the value of EFUSE_VDD_SPI_FORCE, the voltage can be controlled in two ways.

Table 2-5. VDD_SPI Voltage Control

EFUSE_VDD_SPI_FORCE	GPIO45	eFuse 1	Voltage	VDD_SPI power source ²
0	0	lanorod	3.3 V	VDD3P3_RTC via R _{SPI}
0	1 Ignored	1.8 V	Flash Voltage Regulator	
1	Ignored	0	1.8 V	Flash Voltage Regulator
I	ignored	1	3.3 V	VDD3P3_RTC via R_{SPI}

¹ eFuse: EFUSE_VDD_SPI_TIEH

¹ This combination triggers unexpected behavior and should be avoided.

² See *ESP32-S3 Series Datasheet* > Section Power Scheme

ROM Messages Printing Control 2.3.3

During boot process the messages by the ROM code can be printed to:

- (Default) UART and USB Serial/JTAG controller.
- USB Serial/JTAG controller.
- UART.

The ROM messages printing to UART or USB Serial/JTAG controller can be respectively disabled by configuring registers and eFuse. For detailed information, please refer to ESP32-S3 Technical Reference Manual > Chapter Chip Boot Control.

2.3.4 **JTAG Signal Source Control**

The strapping pin GPIO3 can be used to control the source of JTAG signals during the early boot process. This pin does not have any internal pull resistors and the strapping value must be controlled by the external circuit that cannot be in a high impedance state.

As Table 2-6 shows, GPIO3 is used in combination with EFUSE_DIS_PAD_JTAG, EFUSE_DIS_USB_JTAG, and EFUSE_STRAP_JTAG_SEL.

eFuse 1ª	eFuse 2 ^b	eFuse 3 ^c	GPIO3	JTAG Signal Source
		0	Ignored	USB Serial/JTAG Controller
0	0	4	0	JTAG pins MTDI, MTCK, MTMS, and MTDO
		l l	1	USB Serial/JTAG Controller
0	1	Ignored	Ignored	JTAG pins MTDI, MTCK, MTMS, and MTDO
1	0	Ignored	Ignored	USB Serial/JTAG Controller
1	1	Ignored	Ignored	JTAG is disabled

Table 2-6. JTAG Signal Source Control

^a eFuse 1: EFUSE_DIS_PAD_JTAG

^b eFuse 2: EFUSE DIS USB JTAG

[°] eFuse 3: EFUSE_STRAP_JTAG_SEL

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Stresses above those listed in Table 3-1 *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and normal operation of the device at these or any other conditions beyond those indicated in Section 3.2 Recommended Power Supply Characteristics is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 3-1. Absolute Maximum Ratings

Parameter	Description	Min	Max	Unit
VDDA, VDD3P3, VDD3P3_RTC,	Allowed input voltage	-0.3	3.6	\/
VDD3P3_CPU, VDD_SPI	Allowed Input voltage	-0.3	3.0	V
l _{output} 1	Cumulative IO output current	_	1500	mA
T_{STORE}	Storage temperature	-40	150	°C

¹ The product proved to be fully functional after all its IO pins were pulled high while being connected to ground for 24 consecutive hours at ambient temperature of 25 °C.

3.2 Recommended Power Supply Characteristics

For recommended ambient temperature, see Section 1 ESP32-S3-PICO-1 Series Comparison.

Table 3-2. Recommended Power Characteristics

Parameter ¹	Description	Min	Тур	Max	Unit
VDDA, VDD3P3	Recommended input voltage	3.0	3.3	3.6	V
VDD3P3_RTC ²	Recommended input voltage	3.0	3.3	3.6	V
VDD_SPI (as input)	_	1.8	3.3	3.6	V
VDD3P3_CPU ³	Recommended input voltage	3.0	3.3	3.6	V
$ V_{VDD} ^4$	Cumulative input current	0.5	_	_	Α

 $^{^{1}}$ If VDD3P3_RTC is used to power VDD_SPI, the voltage drop on R_{SPI} should be accounted for. See also Section 3.3 VDD_SPI Output Characteristics.

² If writing to eFuses, the voltage on VDD3P3_CPU should not exceed 3.3 V as the circuits responsible for burning eFuses are sensitive to higher voltages.

³ If you use a single power supply, the recommended output current is 500 mA or more.

VDD_SPI Output Characteristics

Table 3-3. VDD_SPI Internal and Output Characteristics

Parameter	Description ¹	Тур	Unit
В	VDD_SPI powered by VDD3P3_RTC via R_{SPI}	14	0
R_{SPI}	for 3.3 V flash/PSRAM ²	14	7.2

¹ VDD3P3_RTC must be more than VDD_flash_min + I_flash_max * R_{SPI}; where

- VDD_flash_min minimum operating voltage of flash/PSRAM
- /_flash_max maximum operating current of flash/PSRAM

3.4 DC Characteristics (3.3 V, 25 °C)

Table 3-4. DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	_	2	_	рF
V_{IH}	High-level input voltage	0.75 × VDD ¹		VDD ¹ + 0.3	V
V_{IL}	Low-level input voltage	-0.3	_	$0.25 \times VDD^1$	V
$ I_{IH} $	High-level input current	_		50	nA
_{IL}	Low-level input current	_	_	50	nA
V_{OH}^2	High-level output voltage	$0.8 \times VDD^1$	_	_	V
V_{OL}^2	Low-level output voltage	_	_	$0.1 \times VDD^1$	V
	High-level source current (VDD 1 = 3.3 V, V $_{OH}$		40		mA
$ _{OH}$	>= 2.64 V, PAD_DRIVER = 3)	_	40	_	шА
1	Low-level sink current (VDD 1 = 3.3 V, V $_{OL}$ =		28		mA
$\mid \mid_{OL}$	0.495 V, PAD_DRIVER = 3)	_	20	_	ША
R_{PU}	Internal weak pull-up resistor	_	45	_	$k\Omega$
R_{PD}	Internal weak pull-down resistor	_	45	_	kΩ
V	SiP reset release voltage (CHIP_PU voltage is	0.75 × VDD ¹		VDD ¹ + 0.3	V
V_{IH_nRST}	within the specified range)	0.73 x VDD	_	VDD + 0.3	V
V	SiP reset voltage (CHIP_PU voltage is within	-0.3		0.25 × VDD ¹	V
V_{IL_nRST}	the specified range)	_0.5		0.20 X VDD	V

¹ VDD is the I/O voltage for a particular power domain of pins.

 $^{^2\,\}mathrm{V}_{OH}$ and V_{OL} are measured using high-impedance load.

3.5 ADC Characteristics

The measurements in this section are taken with an external 100 nF capacitor connected to the ADC, using DC signals as input, and at an ambient temperature of 25 °C with disabled Wi-Fi.

Table 3-5. ADC Characteristics

Symbol	Min	Max	Unit
DNL (Differential nonlinearity) 1	-4	4	LSB
INL (Integral nonlinearity)	-8	8	LSB
Sampling rate	_	100	kSPS ²

¹ To get better DNL results, you can sample multiple times and apply a filter, or calculate the average value.

Table 3-6. ADC Calibration Results

Parameter	Description	Min	Max	Unit
	ATTENO, effective measurement range of 0 ~ 850	-5	5	mV
Total error	ATTEN1, effective measurement range of 0 ~ 1100	-6	6	mV
	ATTEN2, effective measurement range of 0 ~ 1600	-10	10	mV
	ATTEN3, effective measurement range of 0 ~ 2900	-50	50	mV

3.6 Current Consumption

3.6.1 RF Current Consumption in Active Mode

The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

Table 3-7. Current Consumption for Wi-Fi (2.4 GHz) in Active Mode

Work Mode	Ork Mode RF Condition Description		Peak (mA)	
		802.11b, 1 Mbps, DSSS @ 20.0dBm	350	
Active (RF working)	TX RX	802.11g, 54 Mbps, OFDM @ 17.0dBm	287	
		802.11n, HT20, MCS7 @ 16.5dBm	282	
		802.11n, HT40, MCS7 @ 16.5dBm	280	
		802.11b/g/n, HT20	100	
		802.11n, HT40	105	

Note:

The content below is excerpted from Section Power Consumption in Other Modes in ESP32-S3 Series Datasheet.

3.6.2 Current Consumption in Other Modes

Please note that since the SiP has in-package PSRAM, the current consumption might be higher compared to the measurements below.

² kSPS means kilo samples-per-second.

Table 3-8. Current Consumption in Modem-sleep Mode

	Frequency		Typ ¹	Typ ²
Work mode	(MHz)	Description	(mA)	(mA)
		WAITI (Dual core in idle state)	13.2	18.8
		Single core running 32-bit data access instructions, the other core in idle state	16.2	21.8
	40	Dual core running 32-bit data access instructions	18.7	24.4
		Single core running 128-bit data access instructions, the other core in idle state	19.9	25.4
		Dual core running 128-bit data access instructions	23.0	28.8
		WAITI	22.0	36.1
		Single core running 32-bit data access instructions, the other core in idle state	28.4	42.6
	80	Dual core running 32-bit data access instructions	33.1	47.3
		Single core running 128-bit data access instructions, the other core in idle state	35.1	49.6
Ma dana ala an 3		Dual core running 128-bit data access instructions	41.8	56.3
Modem-sleep ³		WAITI	27.6	42.3
		Single core running 32-bit data access instructions, the other core in idle state	39.9	54.6
	160	Dual core running 32-bit data access instructions	49.6	64.1
		Single core running 128-bit data access instructions, the other core in idle state	54.4	69.2
		Dual core running 128-bit data access instructions	66.7	81.1
		WAITI	32.9	47.6
		Single core running 32-bit data access instructions, the other core in idle state	51.2	65.9
	240	Dual core running 32-bit data access instructions	66.2	81.3
		Single core running 128-bit data access instructions, the other core in idle state	72.4	87.9
		Dual core running 128-bit data access instructions	91.7	107.9

¹ Current consumption when all peripheral clocks are **disabled**.

Table 3-9. Current Consumption in Low-Power Modes

Work mode	Description	Typ (μ A)		
Light cloop1	Light-sleep ¹ VDD_SPI and Wi-Fi are powered down, and all GPIOs			
Light-sieep	are high-impedance.	240		
Doop aloop	RTC memory and RTC peripherals are powered up.	8		
Deep-sleep	RTC memory is powered up. RTC peripherals are	7		
	powered down.	1		

² Current consumption when all peripheral clocks are **enabled**. In practice, the current consumption might be different depending on which peripherals are enabled.

³ In Modem-sleep mode, Wi-Fi is clock gated, and the current consumption might be higher when accessing flash. For a flash rated at 80 Mbit/s, in SPI 2-line mode the consumption is 10 mA.

Power off CHIP_PU is set to low level. The SiP is shut down.	1
--	---

¹ In Light-sleep mode, all related SPI pins are pulled up. Please add corresponding PSRAM consumption values, e.g., 140 μA for 8 MB 8-line PSRAM (3.3 V) and 40 μ A for 2 MB 4-line PSRAM (3.3 V).

Reliability 3.7

Table 3-10. Reliability Qualifications

Test Item	Test Conditions	Test Standard	
ESD (Electro-Static	HBM (Human Body Mode) ¹ ± 2000 V	JS-001	
Discharge Sensitivity)	CDM (Charge Device Mode) ² ± 1000 V	JS-002	
Latch up	Current trigger ± 200 mA	JESD78	
Laterrup	Voltage trigger 1.5 × VDD $_{max}$	JESDIO	
	Bake 24 hours @125 °C	J-STD-020, JESD47,	
Preconditioning	Moisture soak (level 3: 192 hours @30 °C, 60% RH)	JESD22-A113	
	IR reflow solder: 260 + 0 °C, 20 seconds, three times	JL3D22-A113	
TCT (Temperature Cycling	65 °C / 150 °C 500 avalor	JESD22-A104	
Test)	_65 °C / 150 °C, 500 cycles	JE3D22-A104	
uHAST (Highly			
Accelerated Stress Test,	130 °C, 85% RH, 96 hours	JESD22-A118	
unbiased)			
HTSL (High Temperature	150 °C 1000 bours	JESD22-A103	
Storage Life)	150 °C, 1000 hours	JESD22-A103	
LTSL (Low Temperature	40 °C 1000 bours	JESD22-A119	
Storage Life)	40 °C, 1000 hours	JEODZZ-ATT9	

¹ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

3.8 Wi-Fi Radio

Table 3-11. Wi-Fi RF Characteristics

Name	Description
Center frequency range of operating channel	2412 ~ 2484 MHz
Wi-Fi wireless standard	IEEE 802.11b/g/n

² JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

3.8.1 Wi-Fi RF Transmitter (TX) Specifications

Table 3-12. TX Power with Spectral Mask and EVM Meeting 802.11 Standards

	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps, DSSS	_	20.0	_
802.11b, 11 Mbps, CCK	_	20.0	
802.11g, 6 Mbps, OFDM		19.0	_
802.11g, 54 Mbps, OFDM	_	17.0	_
802.11n, HT20, MCS0		18.5	_
802.11n, HT20, MCS7	_	16.5	_
802.11n, HT40, MCS0		18.0	_
802.11n, HT40, MCS7	_	16.5	

Table 3-13. TX EVM Test¹

	Min	Тур	Limit
Rate	(dB)	(dB)	(dB)
802.11b, 1 Mbps, DSSS	_	-25.0	-10.0
802.11b, 11 Mbps, CCK	_	-25.0	-10.0
802.11g, 6 Mbps, OFDM		-23.0	-5.0
802.11g, 54 Mbps, OFDM	_	-30.0	-25.0
802.11n, HT20, MCS0		-23.5	-5.0
802.11n, HT20, MCS7	_	-31.5	-27.0
802.11n, HT40, MCS0		-25.5	-5.0
802.11n, HT40, MCS7	_	-31.0	-27.0

¹ EVM is measured at the corresponding typical TX power provided in Table 3-12 Wi-Fi RF Transmitter (TX) Specifications above.

3.8.2 Wi-Fi RF Receiver (RX) Specifications

Table 3-14. RX Sensitivity

	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps, DSSS	_	-97.8	_
802.11b, 2 Mbps, DSSS		-95.8	
802.11b, 5.5 Mbps, CCK	_	-93.6	_
802.11b, 11 Mbps, CCK	_	-88.4	_
802.11g, 6 Mbps, OFDM	_	-93.0	_
802.11g, 9 Mbps, OFDM	_	-91.8	_
802.11g, 12 Mbps, OFDM	_	-90.4	_
802.11g, 18 Mbps, OFDM	_	-88.0	_

Table 3-14 – cont'd from previous page

	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11g, 24 Mbps, OFDM	_	-85.0	_
802.11g, 36 Mbps, OFDM	_	-82.0	_
802.11g, 48 Mbps, OFDM	_	-77.6	_
802.11g, 54 Mbps, OFDM	_	-76.0	_
802.11n, HT20, MCS0	_	-92.8	_
802.11n, HT20, MCS1	_	-90.2	_
802.11n, HT20, MCS2	_	-87.6	_
802.11n, HT20, MCS3	_	-84.6	_
802.11n, HT20, MCS4	_	-81.4	_
802.11n, HT20, MCS5	_	-77.0	_
802.11n, HT20, MCS6	_	-75.2	_
802.11n, HT20, MCS7	_	-74.2	_
802.11n, HT40, MCS0	_	-89.4	_
802.11n, HT40, MCS1	_	-87.2	_
802.11n, HT40, MCS2	_	-84.4	_
802.11n, HT40, MCS3	_	-81.4	_
802.11n, HT40, MCS4	_	-78.2	_
802.11n, HT40, MCS5	_	-73.8	_
802.11n, HT40, MCS6	_	-72.4	_
802.11n, HT40, MCS7	_	-71.0	

Table 3-15. Maximum RX Level

	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps, DSSS	_	5	
802.11b, 11 Mbps, CCK	_	5	_
802.11g, 6 Mbps, OFDM	_	5	
802.11g, 54 Mbps, OFDM	_	0	_
802.11n, HT20, MCS0	_	5	_
802.11n, HT20, MCS7	_	0	_
802.11n, HT40, MCS0	_	5	_
802.11n, HT40, MCS7	_	0	

Table 3-16. RX Adjacent Channel Rejection

	Min	Тур	Max
Rate	(dB)	(dB)	(dB)
802.11b, 1 Mbps, DSSS		35	
802.11b, 11 Mbps, CCK	_	35	

Table 3-16 - cont'd from previous page

	Min	Тур	Max
Rate	(dB)	(dB)	(dB)
802.11g, 6 Mbps, OFDM	_	31	_
802.11g, 54 Mbps, OFDM	_	14	_
802.11n, HT20, MCS0		31	_
802.11n, HT20, MCS7	_	13	_
802.11n, HT40, MCS0		19	_
802.11n, HT40, MCS7		8	

3.9 Bluetooth 5 (LE) Radio

Table 3-17. Bluetooth LE RF Characteristics

Name	Description
Center frequency range of operating channel	2402 ~ 2480 MHz
RF transmit power range	-24.0 ~ 20.0 dBm

3.9.1 Bluetooth LE RF Transmitter (TX) Characteristics

Table 3-18. Bluetooth LE - Transmitter Characteristics - 1 Mbps

Parameter	Description	Min	Тур	Max	Unit
	Max. $ f_n _{n=0, 1, 2, 3,k}$		1.7	_	kHz
Carrier frequency offset and drift	Max. $ f_0 - f_n _{n=2, 3, 4,k}$		1.6	_	kHz
Carrier frequency offset and drift	Max. $ f_{n-1} _{n=6, 7, 8,k}$		1.1	_	kHz
	$ f_1 - f_0 $		0.4	_	kHz
	$\Delta F1_{avg}$	_	250.5		kHz
Modulation characteristics	Min. Δ $F2_{\text{max}}$ (for at least		198.5	_	kHz
	99.9% of all Δ $F2_{\text{max}}$)				KI IZ
	$\Delta~F2_{ m avg}/\Delta~F1_{ m avg}$		0.85		_
	± 2 MHz offset		-37		dBm
In-band emissions	± 3 MHz offset		-42	_	dBm
	> ± 3 MHz offset		-44	_	dBm

Table 3-19. Bluetooth LE - Transmitter Characteristics - 2 Mbps

Parameter	Description	Min	Тур	Max	Unit
Carrier frequency offset and drift	Max. $ f_n _{n=0, 1, 2, 3,k}$	_	2.5		kHz
	Max. $ f_0 - f_n _{n=2, 3, 4,k}$	_	1.3		kHz
	Max. $ f_{n-1}f_{n-5} _{n=6, 7, 8,k}$	_	1.0	_	kHz
	$ f_1-f_0 $	_	0.4		kHz
	$\Delta F1_{ ext{avg}}$	_	498.0	_	kHz

Modulation characteristics

Table 3-19 - cont'd from previous page

Parameter	Description	Min	Тур	Max	Unit
	Min. Δ $F2_{\text{max}}$ (for at least	_	429.0		kHz
	99.9% of all Δ $F2_{\text{max}}$)		429.0	_	KI IZ
	$\Delta F2_{\text{avg}}/\Delta F1_{\text{avg}}$	_	0.91	_	_
In-band emissions	± 4 MHz offset	_	-42	_	dBm
	± 5 MHz offset	_	-44	_	dBm
	> ± 5 MHz offset	_	-47	_	dBm

Table 3-20. Bluetooth LE - Transmitter Characteristics - 125 Kbps

Parameter	Description	Min	Тур	Max	Unit
	Max. $ f_n _{n=0, 1, 2, 3,k}$	_	0.5		kHz
Carrier frequency effect and drift	Max. $ f_0 - f_n _{n=1, 2, 3,k}$	_	0.2		kHz
Carrier frequency offset and drift	$ f_0 - f_3 $		0.2	_	kHz
	Max. $ f_{n-1}f_{n-3} _{n=7, 8, 9,k}$	_	0.7		kHz
Modulation characteristics	$\DeltaF1_{ m avg}$		250.4		kHz
Woodiation characteristics	Min. Δ $F1_{\rm max}$ (for at least		240.8		kHz
	99.9% of all Δ $F1_{\rm max}$)		240.0	_	KI IZ
	± 2 MHz offset		-37		dBm
In-band emissions	± 3 MHz offset		-42	_	dBm
	> ± 3 MHz offset		-44	_	dBm

Table 3-21. Bluetooth LE - Transmitter Characteristics - 500 Kbps

Parameter	Description	Min	Тур	Max	Unit
	Max. $ f_n _{n=0, 1, 2, 3,k}$	_	0.5	_	kHz
Carrier frequency offset and drift	Max. $ f_0 - f_n _{n=1, 2, 3,k}$	_	0.5	_	kHz
Carner frequency offset and drift	$ f_0-f_3 $	_	0.2	_	kHz
	Max. $ f_{n-1}f_{n-3} _{n=7, 8, 9,k}$		0.7		kHz
Modulation characteristics	$\Delta~F2_{ m avg}$	_	211.5		kHz
Woodiation characteristics	Min. Δ $F2_{\rm max}$ (for at least		198.1		kHz
	99.9% of all Δ $F2_{\text{max}}$)	_	190.1	_	NI IZ
	± 2 MHz offset	_	-37		dBm
In-band emissions	± 3 MHz offset	_	-42	_	dBm
	> ± 3 MHz offset	_	-44	_	dBm

3.9.2 Bluetooth LE RF Receiver (RX) Characteristics

Table 3-22. Bluetooth LE - Receiver Characteristics - 1 Mbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-96.0	_	dBm
Maximum received signal @30.8% PER	_	_	8	_	dBm

Table 3-22 - cont'd from previous page

Parameter		Description	Min	Тур	Max	Unit
	Co-channel	F = F0 MHz	_	8	_	dB
		F = F0 + 1 MHz	_	4	_	dB
		F = F0 - 1 MHz	_	4	_	dB
		F = F0 + 2 MHz	_	-23	_	dB
	Adjacent channel	F = F0 - 2 MHz	_	-23	_	dB
C/I and receiver	Adjacent channel	F = F0 + 3 MHz	_	-34	_	dB
selectivity performance		F = F0 - 3 MHz	_	-34	_	dB
		$F \ge F0 + 4 MHz$	_	-36	_	dB
		$F \le F0 - 4 MHz$	_	-37	_	dB
	Image frequency	_	_	-36	_	dB
	Adjacent channel to	$F = F_{image} + 1 \text{ MHz}$	_	-39	_	dB
	image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-34	_	dB
		30 MHz ~ 2000 MHz	_	-12	_	dBm
Out-of-band blocking performance		2003 MHz ~ 2399 MHz	_	-18	_	dBm
		2484 MHz ~ 2997 MHz	_	-16	_	dBm
		3000 MHz ~ 12.75 GHz	_	-10	_	dBm
Intermodulation		_	_	-29		dBm

Table 3-23. Bluetooth LE - Receiver Characteristics - 2 Mbps

Parameter		Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER		_	_	-91.5	_	dBm
Maximum received signa	al @30.8% PER	_	_	3	_	dBm
	Co-channel	F = F0 MHz	_	8	_	dB
		F = F0 + 2 MHz	_	4	_	dB
		F = F0 - 2 MHz	_	4	_	dB
		F = F0 + 4 MHz	_	-27	_	dB
	Adjacent channel	F = F0 – 4 MHz	_	-27	_	dB
C/I and receiver	Adjacent channel	F = F0 + 6 MHz	_	-38	_	dB
selectivity performance		F = F0 – 6 MHz	_	-38	_	dB
		$F \ge F0 + 8 MHz$	_	-41	_	dB
		$F \le F0 - 8 MHz$	_	-41	_	dB
	Image frequency	_	_	-27	_	dB
	Adjacent channel to	$F = F_{image} + 2 MHz$	_	-38	_	dB
	image frequency	$F = F_{image} - 2 \text{ MHz}$	_	4	_	dB
			_	-15	_	dBm
Out-of-band blocking performance		2003 MHz ~ 2399 MHz	_	-21	_	dBm
		2484 MHz ~ 2997 MHz	_	-21	_	dBm
		3000 MHz ~ 12.75 GHz	_	-9	_	dBm
Intermodulation		_	_	-29	_	dBm

Table 3-24. Bluetooth LE - Receiver Characteristics - 125 Kbps

Parameter		Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER		_	_	-102.5	_	dBm
Maximum received signa	al @30.8% PER	_	_	8	_	dBm
	Co-channel	F = F0 MHz	_	4	_	dB
	Adjacent channel	F = F0 + 1 MHz	_	1	_	dB
		F = F0 – 1 MHz	_	2	_	dB
C/I and receiver selectivity performance		F = F0 + 2 MHz	_	-26	_	dB
		F = F0 – 2 MHz	_	-26	_	dB
		F = F0 + 3 MHz	_	-36	_	dB
		F = F0 – 3 MHz	_	-39	_	dB
		F ≥ F0 + 4 MHz		-42	_	dB
		$F \le F0 - 4 \text{ MHz}$	_	-43	_	dB
	Image frequency	_		-42	_	dB
	Adjacent channel to	$F = F_{image} + 1 \text{ MHz}$	_	-43	_	dB
	image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-36		dB

Table 3-25. Bluetooth LE - Receiver Characteristics - 500 Kbps

Parameter		Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER		_	_	-99.0	_	dBm
Maximum received signa	al @30.8% PER	_	_	8	_	dBm
	Co-channel	F = F0 MHz	_	4	_	dB
	Adjacent channel	F = F0 + 1 MHz	_	1	_	dB
		F = F0 – 1 MHz	_	0	_	dB
C/I and receiver selectivity performance		F = F0 + 2 MHz	_	-24	_	dB
		F = F0 – 2 MHz	_	-24	_	dB
		F = F0 + 3 MHz	_	-37	_	dB
		F = F0 – 3 MHz	_	-39	_	dB
		$F \ge F0 + 4 MHz$	_	-38	_	dB
		$F \le F0 - 4 \text{ MHz}$	_	-42	_	dB
	Image frequency	_	_	-38	_	dB
	Adjacent channel to	$F = F_{image} + 1 \text{ MHz}$	_	-42	_	dB
	image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-37		dB

Schematics

This is the reference designs of ESP32-S3-PICO-1.

Figure 4-1. ESP32-S3-PICO-1 Schematics

5 Peripheral Schematics

This is the typical application circuit of ESP32-S3-PICO-1 connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

Figure 5-1. ESP32-S3-PICO-1 Peripheral Schematics

To ensure that the power supply to ESP32-S3-PICO-1 is stable during power-up, it is advised to add an RC delay circuit at the CHIP_PU pin. The recommended setting for the RC delay circuit is usually R = 10 k Ω and C = 1 μ F. However, specific parameters should be adjusted based on the power-up timing of the SiP and the power-up and reset sequence timing of the chip. For ESP32-S3's power-up and reset sequence timing diagram, please refer to ESP32-S3 Series Datasheet > Section Power Supply.

6 Packaging

Figure 6-1. LGA56 (7x7 mm) Package

Note:

- The pins of the ESP32-S3-PICO-1 series are numbered in an anti-clockwise direction from Pin 1 in the top view.
- For information about tape, reel, and product marking, please refer to Espressif Chip Packaging Information.

7 Product Handling

7.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and /90%RH. The SiP is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the SiP must be soldered within 168 hours with the factory conditions 25±5 °C and /60%RH. If the above conditions are not met, the SiP needs to be baked.

7.2 Reflow Profile

Solder the SiP in a single reflow.

Figure 7-1. Reflow Profile

7.3 Ultrasonic Vibration

Avoid exposing Espressif SiPs to vibration from ultrasonic equipment, such as ultrasonic welders or ultrasonic cleaners. This vibration may induce resonance in the in-SiP crystal and lead to its malfunction or even failure. As a consequence, the SiP may stop working or its performance may deteriorate.

8 Related Documentation and Resources

Related Documentation

- ESP32-S3 Series Datasheet Specifications of the ESP32-S3 hardware.
- ESP32-S3 Technical Reference Manual Detailed information on how to use the ESP32-S3 memory and peripherals.
- ESP32-S3 Hardware Design Guidelines Guidelines on how to integrate the ESP32-S3 into your hardware product.
- ESP32-S3 Series SoC Errata Descriptions of known errors in ESP32-S3 series of SoCs.
- Certificates

https://espressif.com/en/support/documents/certificates

• ESP32-S3 Product/Process Change Notifications (PCN)

https://espressif.com/en/support/documents/pcns?keys=ESP32-S3

ESP32-S3 Advisories – Information on security, bugs, compatibility, component reliability.

https://espressif.com/en/support/documents/advisories?keys=ESP32-S3

 Documentation Updates and Update Notification Subscription https://espressif.com/en/support/download/documents

Developer Zone

- ESP-IDF Programming Guide for ESP32-S3 Extensive documentation for the ESP-IDF development framework.
- ESP-IDF and other development frameworks on GitHub.

https://github.com/espressif

• ESP32 BBS Forum – Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

https://esp32.com/

• The ESP Journal – Best Practices, Articles, and Notes from Espressif folks.

https://blog.espressif.com/

See the tabs SDKs and Demos, Apps, Tools, AT Firmware.
 https://espressif.com/en/support/download/sdks-demos

Products

• ESP32-S3 Series SoCs - Browse through all ESP32-S3 SoCs.

https://espressif.com/en/products/socs?id=ESP32-S3

• ESP32-S3 Series Modules - Browse through all ESP32-S3-based modules.

https://espressif.com/en/products/modules?id=ESP32-S3

• ESP32-S3 Series DevKits – Browse through all ESP32-S3-based devkits.

https://espressif.com/en/products/devkits?id=ESP32-S3

• ESP Product Selector – Find an Espressif hardware product suitable for your needs by comparing or applying filters. https://products.espressif.com/#/product-selector?language=en

Contact Us

• See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples (Online stores), Become Our Supplier, Comments & Suggestions.

https://espressif.com/en/contact-us/sales-questions

Revision History

Date	Version	Release notes
	Added the following sections:	
		Section 3.4 DC Characteristics (3.3 V, 25 °C)
		Section 3.5 ADC Characteristics
		Section 3.6 Current Consumption
		• Section 3.7 Reliability
0000 07 01	v1.0	Section 3.8 Wi-Fi Radio
2023-07-21		• Section 3.9 Bluetooth 5 (LE) Radio
		Updated the following section:
		Updated Section 2.3 Strapping Pins
		Updated Section 4 Schematics
		Updated Section 5 Peripheral Schematics
		Other minor updates
2023-03-30	v0.2	Updated Figure Peripheral Schematics
2022-09-23	v0.1	Preliminary

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2023 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.