Μαθηματικά Γ' Λυκείου - Πετρίδης Κωνσταντίνος Παραβολή

1. Να βρείτε τις εξισώσεις των παραβολών, γνωρίζοντας την εστία E και τη διευθετούσα (δ) :

i.
$$E(1,1)$$
 xal (δ) : $3x + 4y - 5 = 0$

ii.
$$E(2,0)$$
 και (δ) : $x=-2$

ііі.
$$E(0, -3)$$
 жа
і $(\delta): y = 3$

iv.
$$E(-5,0)$$
 και (δ) : $x-5=0$

Λύση: (Ασχ. 1/81)

i. Από τον *ορισμό* της παραβολής:

PE = απόσταση του σημείου P(x, y) από τη διευθετούσα (δ) ,

δηλαδή:

$$\sqrt{(x-x_E)^2 + (y-y_E)^2} = \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}}.$$

Για E(1,1) και $(\delta): 3x + 4y - 5 = 0$:

$$\sqrt{(x-1)^2 + (y-1)^2} = \frac{|3x + 4y - 5|}{5}.$$

Υψώνουμε στο τετράγωνο και αναπτύσσουμε:

$$25((x-1)^2 + (y-1)^2) = (3x + 4y - 5)^2.$$

Μετά την ανάπτυξη και απλοποίηση προκύπτει:

$$16x^2 + 9y^2 - 24xy - 20x - 10y + 25 = 0$$

ii. Γενική εξίσωση παραβολής με εστία E(a,0) και διευθετούσα x=-a:

$$y^2 = 4ax$$
.

Για E(2,0) και $(\delta): x=-2$, έχουμε a=2:

$$y^2 = 8x$$

iii. Γενική εξίσωση παραβολής με εστία E(0,a) και διευθετούσα y=-a:

$$x^2 = 4ay$$
.

Για E(0, -3) και $(\delta): y = 3$, έχουμε a = -3:

$$x^2 = -12y$$

iv. Γενική εξίσωση παραβολής με εστία E(-a,0) και διευθετούσα x=a:

$$y^2 = -4ax.$$

Για E(-5,0) και $(\delta): x = 5$, έχουμε a = 5:

$$y^2 = -20x$$

- **2.** Να βρείτε τις εξισώσεις των παραβολών με κορυφή το O(0,0), αν γνωρίζετε ότι:
- i. έχει άξονα συμμετρίας τον x'x και εστία το σημείο (-2,0)
- ii. έχει άξονα συμμετρίας τον $y^\prime y$ και εστία το σημείο E(0,2)
- iii. έχει διευθετούσα την ευθεία y=4
- iv. έχει άξονα συμμετρίας τον x'x και διέρχεται από το σημείο A(-1,2).

Λύση: (Ασχ. 2/81)

i. Κανόνας (άξονας x'x, κορυφή O): $y^2 = 4ax$, E(a,0), (δ): x = -a.

$$\Gamma$$
ia $E(-2,0) \Rightarrow a = -2$.

$$y^2 = -8x$$

ii. Κανόνας (άξονας y'y, κορυφή O): $x^2 = 4ay$, E(0,a), $(\delta): y = -a$.

$$\Gamma \iota \alpha \ E(0,2) \Rightarrow a = 2.$$

$$x^2 = 8y$$

iii. Κανόνας (άξονας y'y, κορυφή O): $x^2=4ay$ με διευθετούσα y=-a.

Δίνεται $(\delta): y=4 \Rightarrow -a=4 \Rightarrow a=-4.$

$$x^2 = -16y$$

iv. Κανόνας (άξονας x'x, κορυφή O): $y^2 = 4ax$.

Ανήκει το $A(-1,2) \Rightarrow 2^2 = 4a(-1) \Rightarrow a = -1$.

$$y^2 = -4x$$

3. Δίνονται οι παραβολές με εξισώσεις:

i.
$$y^2 = 12x$$

ii.
$$y^2 = -8x$$

iii.
$$x^2 = 10y$$

iv.
$$x^2 = -4y$$

Να βρείτε τις συντεταγμένες της εστίας και την εξίσωση της διευθετούσας σε κάθε περίπτωση.

Λύση: (Ασχ. 3/81)

i. Αν $y^2=4ax$, τότε E(a,0) και $(\delta): x=-a$. Εδώ $4a=12\Rightarrow a=3$.

$$E(3,0), \qquad (\delta): x = -3$$

ii. Αν $y^2=4ax$, τότε E(a,0) και $(\delta): x=-a$. Εδώ $4a=-8 \Rightarrow a=-2$.

$$E(-2,0), \qquad (\delta): x=2$$

iii. Αν $x^2 = 4ay$, τότε E(0,a) και $(\delta): y = -a$. Εδώ $4a = 10 \Rightarrow a = \frac{10}{4} = \frac{5}{2}$.

$$E(0, \frac{5}{2}), \qquad (\delta): \ y = -\frac{5}{2}$$

iv. Αν $x^2 = 4ay$, τότε E(0, a) και $(\delta) : y = -a$. Εδώ $4a = -4 \Rightarrow a = -1$.

$$E(0,-1), \qquad (\delta): y=1$$

4. Δίνεται η παραβολή με εξίσωση $y^2 = 8x$. Να βρείτε τα σημεία της, των οποίων η απόσταση από την εστία είναι ίση με 4 μονάδες.

Λύση: (Ασκ. 4/81)

Αν $y^2=4ax$, τότε η εστία είναι E(a,0) και η διευθετούσα x=-a.

Eδώ $4a = 8 \Rightarrow a = 2 \Rightarrow E(2,0)$.

Θέτουμε P(x,y) σημείο της παραβολής με PE=4. Τότε

$$\begin{cases} y^2 = 8x, \\ (x-2)^2 + y^2 = 4^2. \end{cases}$$

Αντικαθιστούμε $y^2 = 8x$:

$$(x-2)^2 + 8x = 16 \iff x^2 + 4x + 4 = 16 \iff x^2 + 4x - 12 = 0 \iff x = \frac{-4 \pm 8}{2} \in \{2, -6\}.$$

Επειδή στην $y^2 = 8x$ πρέπει $x \ge 0$, κρατούμε x = 2. Τότε $y^2 = 8 \cdot 2 = 16 \Rightarrow y = \pm 4$.

$$P_1(2,4), P_2(2,-4)$$

Προσοχή: Το x=-6 απορρίπτεται διότι θα έδινε $y^2<0$

5. Αν η χορδή AB της παραβολής $y^2=4ax$ με a>0 τέμνει κάθετα τον άξονά της στο σημείο P, να αποδείξετε ότι $(AB)^2=16a\,(OP)$. Αν η AB διέρχεται και από την εστία E, να δείξετε ότι (AB)=4a.

Λύση: (Ασκ. 5/81)

Γενικά στοιχεία παραβολής $y^2 = 4ax$:

$$O(0,0)$$
 (κορυφή), άξονας $x'x$, $E(a,0)$ (εστία), $(\delta): x=-a$.

Θεωρούμε χορδή κάθετη στον άξονα. Κάθε ευθεία κάθετη στον x'x έχει μορφή $x=t\ (t\in\mathbb{R})$ και τέμνει τον άξονα στο

$$P(t,0), \qquad OP = |t|.$$

Για να τέμνει την παραβολή $y^2=4ax$ απαιτείται $t\geq 0.$

Τα σημεία τομής A,B ικανοποιούν το σύστημα

$$\begin{cases} y^2 = 4ax, \\ x = t, \end{cases} \implies y = \pm 2\sqrt{at}.$$

Άρα

$$A(t, 2\sqrt{at}), \qquad B(t, -2\sqrt{at})$$

και το μήκος της χορδής είναι

$$(AB) = |2\sqrt{at} - (-2\sqrt{at})| = 4\sqrt{at}.$$

Επομένως

$$(AB)^2 = 16at = 16a |t| = 16a (OP).$$

 $(AB)^2 = 16a (OP)$

Αν επιπλέον η χορδή διέρχεται από την εστία E(a,0), τότε t=a (διότι η κάθετη x=t που περνά από το E έχει t=a). Άρα

$$(AB) = 4\sqrt{a \cdot a} = 4a \implies (AB) = 4a$$

6. Δίνεται η παραβολή $y^2=4ax$ και σημεία της $A(x_1,y_1),\,B(x_2,y_2).$ Να αποδείξετε ότι η AB περνά από την εστία E $a\nu$ και μόνο $a\nu$ $y_1y_2=-4a^2$ και $x_1x_2=a^2$.

Λύση: (Ασκ. 6/81)

Κανόνες: Για την παραβολή $y^2=4ax$ ισχύουν

$$E(a,0),$$
 $P(t) \equiv (at^2, 2at)$ (παραμετρική μορφή).

Αναγκαίο \Rightarrow (αν AB διέρχεται από E): Έστω $A=P(t_1)=(at_1^2,2at_1),$ $B=P(t_2)=(at_2^2,2at_2).$ Η ευθεία AB περνά από το E(a,0) αν

$$\begin{vmatrix} at_1^2 & 2at_1 & 1 \\ at_2^2 & 2at_2 & 1 \\ a & 0 & 1 \end{vmatrix} = 0 \iff a(t_1^2 - t_2^2) \cdot 0 - 2a(t_1 - t_2) \cdot a + a(2at_1 - 2at_2) = 0$$

$$\iff (t_1-t_2)(-2a^2+2a^2t_1t_2)=0 \iff t_1t_2=-1$$
 (διαφορετικά σημεία $t_1\neq t_2$).

Άρα

$$y_1y_2 = (2at_1)(2at_2) = 4a^2(t_1t_2) = -4a^2, x_1x_2 = (at_1^2)(at_2^2) = a^2(t_1t_2)^2 = a^2.$$

Ικανό \Leftarrow (αν $y_1y_2 = -4a^2$ και $x_1x_2 = a^2$):

Από την παραμετρική μορφή θέτουμε $A = P(t_1), B = P(t_2)$. Τότε

$$y_1 y_2 = 4a^2 t_1 t_2 = -4a^2 \implies t_1 t_2 = -1,$$

και συνεπώς η ευθεία AB ικανοποιεί την προηγούμενη συνθήκη $t_1t_2=-1$, άρα περνά από την εστία E(a,0).

Συμπέρασμα:

$$AB$$
 διέρχεται από $E\iff y_1y_2=-4a^2$ και $x_1x_2=a^2.$

- 7. Δίνεται παραβολή με κορυφή την αρχή των αξόνων O(0,0) και άξονα συμμετρίας τον άξονα των τετμημένων. Αν η παραβολή διέρχεται από το σημείο A(16,-8), να βρεθούν:
- i. η *εξίσωση* της παραβολής,
- ii. οι συντεταγμένες της εστίας και η εξίσωση της διευθετούσας,
- iii. οι συντεταγμένες σημείου B της παραβολής ώστε $\angle AOB = 90^\circ$ όπου O η αρχή των αξόνων.

Λύση: (Ασκ. 7/81)

Αν $y^2 = 4ax$, τότε E(a,0) και $(\delta): x = -a$.

i. Η παραβολή έχει μορφή $y^2 = 4ax$. Επειδή ανήκει το A(16, -8):

$$(-8)^2 = 4a \cdot 16 \implies 64 = 64a \implies a = 1$$

άρα

$$y^2 = 4x$$

ii. Γ ia a=1: E(a,0)=(1,0) kai $(\delta): x=-a \Rightarrow x=-1$.

$$E(1,0)$$
 $(\delta): x = -1$

iii. Κριτήριο καθέτων ευθειών: Αν δύο μη κατακόρυφες ευθείες έχουν κλίσεις m_1,m_2 , τότε είναι κάθετες αν $m_1m_2=-1$.

Η OA έχει κλίση $m_{OA}=\frac{-8}{16}=-\frac{1}{2}$. Άρα η OB πρέπει να έχει κλίση $m_{OB}=2$ και, επειδή διέρχεται από το O, είναι $OB:\ y=2x.$

Το B είναι η τομή της y=2x με την παραβολή $y^2=4x$:

$$(2x)^2 = 4x \implies 4x^2 = 4x \implies x(x-1) = 0.$$

Λύσεις x=0 (δίνει το O, που απορρίπτεται ως ταυτιζόμενο με την κορυφή) ή $x=1\Rightarrow y=2.$

8. Δίνεται η παραβολή $y^2=2x$ και χορδή AB της, έτσι ώστε το σημείο $\Gamma(5,-1)$ να είναι το μέσο της. Να βρεθεί η εξίσωση της AB.

Λύση: (Ασκ. 8/81)

Για την παραβολή $y^2=4ax$, η χορδή που έχει $\mu \acute{\epsilon}\sigma o$ το (x_1,y_1) δίνεται από

$$T = S_1 \iff yy_1 = 2a(x + x_1) + (y_1^2 - 4ax_1).$$

Στην $y^2=2x$ έχουμε $4a=2\Rightarrow a=\frac{1}{2}.$ Για $\Gamma(5,-1)$:

$$-y = 1 \cdot (x+5) + \left((-1)^2 - 4 \cdot \frac{1}{2} \cdot 5\right) = x+5 + (1-10) = x-4.$$

Άρα

$$x + y - 4 = 0$$

Έλεγχος: Η τομή της x+y-4=0 με $y^2=2x$ δίνει,

$$(-x+4)^2 = 2x \Rightarrow x^2 - 10x + 16 = 0 \Rightarrow x = 2,8$$

Τότε y=2,-4. Το μέσο είναι $\left(\frac{2+8}{2},\,\frac{2+(-4)}{2}\right)=(5,-1)=\Gamma.$

9. Να βρείτε τη $θ \in ση$ των σημείων (-1,2), (2,-1), (-4,-2) και (4,5) σε σχέση με τις παραβολές με εξίσωση:

i.
$$y^2 = 6x$$

ii.
$$x^2 = -4y$$

Λύση: (Ασχ. 1/87)

i. Για $y^2=4ax$ έχουμε $4a=6\Rightarrow a=\frac{3}{2}$. Η θέση σημείου $A(x_1,y_1)$ ως προς την παραβολή δίνεται από το πρόσημο της παράστασης

$$y_1^2 - 4ax_1 = y_1^2 - 6x_1.$$

Για καθένα από τα σημεία:

$$\begin{array}{lll} A_1(-1,2): & y_1^2-6x_1=4-6(-1)=10>0 & \Rightarrow \ A_1 \ \text{emtds ths parabolishs}, \\ A_2(2,-1): & y_1^2-6x_1=1-12=-11<0 & \Rightarrow \ A_2 \ \text{entds ths parabolishs}, \\ A_3(-4,-2): & y_1^2-6x_1=4-6(-4)=28>0 & \Rightarrow \ A_3 \ \text{extds ths parabolishs}, \\ A_4(4,5): & y_1^2-6x_1=25-24=1>0 & \Rightarrow \ A_4 \ \text{extds ths parabolishs}, \\ \end{array}$$

ii. Για
$$x^2=4ay$$
 έχουμε $4a=-4\Rightarrow a=-1$. Η θέση σημείου $A(x_1,y_1)$ δίνεται από
$$x_1^2-4ay_1=x_1^2+4y_1.$$

Υπολογίζουμε:

$$\begin{array}{lll} A_1(-1,2): & x_1^2+4y_1=1+8=9>0 & \Rightarrow A_1 \ \text{emtds ths paraboly}, \\ A_2(2,-1): & x_1^2+4y_1=4-4=0 & \Rightarrow A_2 \ \text{epadus sthus sthus sthus sthus sthus stands}, \\ A_3(-4,-2): & x_1^2+4y_1=16-8=8>0 & \Rightarrow A_3 \ \text{emtds ths paraboly}, \\ A_4(4,5): & x_1^2+4y_1=16+20=36>0 & \Rightarrow A_4 \ \text{emtds ths paraboly}, \end{array}$$

10. Να λύσετε γραφικά τις ανισώσεις, αιτιολογώντας την απάντησή σας.

i.
$$y^2 \le 12x$$

ii.
$$y^2 + 8x < 0$$

iii.
$$x^2 \ge 2y$$

iv.
$$2x^2 - 9y \le 0$$

Λύση: (Ασκ. 2/87)

i.
$$S_1 = \{(x, y) \in \mathbb{R}^2 : y^2 \le 12x\} \implies x \ge \frac{y^2}{12}$$
.

ii.
$$S_2 = \{(x,y) \in \mathbb{R}^2: y^2 < -8x\} \implies x < -\frac{y^2}{8}.$$

iii.
$$S_3 = \{(x, y) \in \mathbb{R}^2 : x^2 \ge 2y\} \implies y \le \frac{x^2}{2}$$
.

iv.
$$S_4 = \{(x, y) \in \mathbb{R}^2 : 2x^2 - 9y \le 0\} \implies y \ge \frac{2}{9}x^2$$
.

11. Να λύσετε γραφικά την ανίσωση

$$(y^2 - 4x)(x^2 + y^2 - 4) \le 0.$$

Λύση: (Ασχ. 3/87)

Θέτουμε

$$f(x,y) = y^2 - 4x$$
, $g(x,y) = x^2 + y^2 - 4$.

Ζητούμε τα σημεία για τα οποία $f\cdot g\leq 0$, δηλαδή $a\nu t i \partial \epsilon t a$ πρόσημα ή τουλάχιστον $\epsilon \nu a$ μηδ $\epsilon \nu i \kappa \delta$. Τα σύνορα είναι:

$$\underline{y^2 = 4x}$$
 , $\underline{x^2 + y^2 = 4}$.
παραβολή (P) χύχλος (K)

- i. $f(x,y) \le 0 \iff y^2 \le 4x$: $\epsilon \sigma \omega \tau \epsilon \rho$ ικό $(\mu \epsilon \ \sigma \dot{\upsilon} \nu o \rho o)$ της παραβολής P.
- ii. $f(x,y) \ge 0 \iff y^2 \ge 4x$: εξωτερικό της παραβολής.
- iii. $g(x,y) \leq 0 \iff x^2 + y^2 \leq 4$: εσωτερικό (με σύνορο) του κύκλου K.
- iv. $g(x,y) \ge 0 \iff x^2 + y^2 \ge 4$: εξωτερικό του κύκλου.

Άρα

$$(f\cdot g\leq 0)\iff \big(\,f\leq 0\,\,\&\,\,g\geq 0\,\big)\quad \cup\quad \big(\,f\geq 0\,\,\&\,\,g\leq 0\,\big).$$

Δηλαδή η ένωση δύο χωρίων:

$$S = \underbrace{\{y^2 \leq 4x\} \cap \{x^2 + y^2 \geq 4\}}_{S_1 : \text{ μέσα στην παραβολή & έξω από τον χύχλο}} \cup \underbrace{\{y^2 \geq 4x\} \cap \{x^2 + y^2 \leq 4\}}_{S_2 : \text{ έξω από την παραβολή & μέσα στον χύχλο}}$$

με ολόκληρα τα σύνορα P και K να περιλαμβάνονται (επειδή ≤ 0).

Σημεία τομής $P\cap K$ (για το σχήμα): Από $y^2=4x$ και $x^2+y^2=4$ παίρνουμε $x=\frac{y^2}{4}$ και

$$\frac{y^4}{16} + y^2 - 4 = 0 \implies y^2 = -8 + 8\sqrt{2},$$

οπότε

$$x = -2 + 2\sqrt{2}, \qquad y = \pm \sqrt{-8 + 8\sqrt{2}}.$$

Τα σημεία αυτά χωρίζουν τα σύνορα και βοηθούν στη $\gamma \rho a \varphi$ ική παράσταση του S.

12. Να βρείτε τη $θ \in ση$ της ευθείας:

i.
$$y = -x - 1$$
 ως προς την παραβολή $y^2 = 2x$

ii.
$$y = \frac{\sqrt{2}}{2} x + \sqrt{2}$$
 ως προς την παραβολή $y^2 = 4x$

iii.
$$x-y=2$$
 ως προς την παραβολή $x^2+y=0$.

Λύση: (Ασχ. 4/87)

i. Στο $y^2 = 2x$ βάζουμε y = -x - 1:

$$(-x-1)^2 = 2x \iff x^2 + 1 = 0.$$

Η εξίσωση δεν έχει πραγματικές ρίζες $(\Delta=-4<0)\Rightarrow$ δεν τέμνει την παραβολή.

ii. Στο $y^2=4x$ βάζουμε $y=\frac{\sqrt{2}}{2}x+\sqrt{2}$:

$$\left(\frac{\sqrt{2}}{2}x + \sqrt{2}\right)^2 = 4x \iff \frac{1}{2}x^2 - 2x + 2 = 0 \iff (x-2)^2 = 0.$$

Μοναδική λύση $x=2\Rightarrow y=2\sqrt{2}.~~(\Delta=0)\Rightarrow$ εφαπτέται στην $A(2,2\sqrt{2}).$

iii. Από $x-y=2 \Rightarrow y=x-2$. Στην $x^2+y=0$:

$$x^{2} + x - 2 = 0 \iff (x - 1)(x + 2) = 0 \Rightarrow x = 1 \ \text{\'n} \ x = -2.$$

Άρα σημεία τομής $A(1,-1),\ B(-2,-4).\ \ (\Delta=9>0)\Rightarrow$ τέμνει την παραβολή σε δύο σημεία.

13. Να δείξετε ότι η ευθεία με εξίσωση y=2x-4 τέμνει την παραβολή με εξίσωση $y^2=4x$, υπολογίζοντας και τις συντεταγμένες των κοινών τους σημείων.

Λύση: (Ασχ. 5/87)

Στην $y^2 = 4x$ θέτουμε y = 2x - 4:

$$(2x-4)^2 = 4x \iff 4x^2 - 16x + 16 = 4x \iff 4x^2 - 20x + 16 = 0 \iff x^2 - 5x + 4 = 0.$$

Η διαχρίνουσα είναι $\Delta=25-16=9>0 \implies$ η ευθεία τέμνει την παραβολή σε δύο σημεία.

$$x = \frac{5 \pm 3}{2} \implies x_1 = 1, \ x_2 = 4.$$

 Γ ια y=2x-4 παίρνουμε

$$y_1 = 2 \cdot 1 - 4 = -2,$$
 $y_2 = 2 \cdot 4 - 4 = 4.$

Άρα τα κοινά σημεία είναι

$$A(1,-2), B(4,4).$$

$$Ελεγχος: (-2)^2 = 4 \cdot 1$$
 και $4^2 = 4 \cdot 4$

- **14.** Δίνεται η παραβολή με εξίσωση $y^2 = 4x$. Να υπολογίσετε την τιμή του $\lambda \in \mathbb{R}$, ώστε η ευθεία $y = \lambda x + 1$:
- εφάπτεται της παραβολής,
- ii. τέμνει την παραβολή,
- iii. μην τέμνει την παραβολή.

Λύση: (Aσχ. 6/87)

Θέτοντας $y=\lambda x+1$ στην $y^2=4x$ παίρνουμε εξίσωση ως προς x:

$$(\lambda x + 1)^2 = 4x \iff \lambda^2 x^2 + (2\lambda - 4)x + 1 = 0.$$

Για $\lambda \neq 0$ είναι δευτέρου βαθμού με διαχρίνουσα

$$\Delta = (2\lambda - 4)^2 - 4\lambda^2 = 16(1 - \lambda).$$

i. Εφαπτομένη \iff $\Delta=0$ \iff $1-\lambda=0$ \Rightarrow $\lambda=1$.

(Τότε $x = 1, y = 2 \Rightarrow T(1, 2)$.)

ii. Témnet $\iff \Delta > 0 \iff 1 - \lambda > 0 \Rightarrow \lambda < 1$.

Παρατήρηση: Για $\lambda=0$ η εξίσωση γίνεται γραμμική $(-4)x+1=0 \Rightarrow x=\frac{1}{4}$ και δίνει ένα κοινό σημείο $(\frac{1}{4},1)$, που ανήκει επίσης στην περίπτωση (ii).

- **15.** Δίνεται η παραβολή με εξίσωση $y^2 = 4ax$ με a > 0 και το σημείο A(2a,0).

Να αποδείξετε ότι:

- i. η ευθεία (ε) : x-y+a=0 $\epsilon \varphi \acute{a} \pi \tau \epsilon \tau a \iota$ στην παραβολή σε σημείο της B,
- ii. αν η ευθεία AB τέμνει την παραβολή σε σημείο Γ (διαφορετικό από το B), τότε ισχύει $(A\Gamma)=2(AB).$

Λύση: (Ασκ. 7/87)

i. Για την παραβολή $y^2=4ax$ η εξίσωση εφαπτομένης με κλίση m είναι $y=mx+\frac{a}{m}$ $(m\neq 0).$

Για m=1 παίρνουμε y=x+a, δηλαδή x-y+a=0, άρα (ε) είναι εφαπτομένη.

Το σημείο επαφής προκύπτει από το σύστημα

$$\begin{cases} y^2 = 4ax, \\ y = x + a \end{cases} \implies (x+a)^2 = 4ax \implies (x-a)^2 = 0 \implies x = a, \ y = 2a.$$

Άρα B(a, 2a).

ii. Η ευθεία
$$AB$$
 με $A(2a,0),\,B(a,2a)$ έχει κλίση $m=\frac{2a-0}{a-2a}=-2$ και εξίσωση
$$AB:\,\,y=-2x+4a.$$

Τα κοινά σημεία της AB με την παραβολή δίνονται από

$$(-2x+4a)^2 = 4ax \iff 4x^2 - 20ax + 16a^2 = 0 \iff x^2 - 5ax + 4a^2 = 0,$$

με ρίζες x=a (που αντιστοιχεί στο B) και x=4a.

Για x = 4a βρίσκουμε y = -2(4a) + 4a = -4a, άρα $\Gamma(4a, -4a)$.

Τότε

$$(AB) = \sqrt{(a-2a)^2 + (2a-0)^2} = \sqrt{a^2 + 4a^2} = a\sqrt{5},$$

$$(A\Gamma) = \sqrt{(4a-2a)^2 + (-4a-0)^2} = \sqrt{(2a)^2 + (4a)^2} = 2a\sqrt{5} = 2(AB).$$

Επομένως $(A\Gamma) = 2(AB)$.

16. Δίνεται η παραβολή με εξίσωση $y^2=4ax$ με a>0 και ένα σημείο της B. Αν η ευθεία (ε) είναι η εφαπτομένη της παραβολής στο σημείο B και η ευθεία (ζ) είναι κάθετη στην (ε) στο σημείο B, να δείξετε ότι η (ζ) διχοτομεί τη γωνία που σχηματίζουν οι ημιευθείες Bx και BE, όπου E είναι η εστία της παραβολής και η Bx είναι διάμετρος της παραβολής (παράλληλη με τον άξονα x'x).

(Ανακλαστική ιδιότητα παραβολής)

Θέτουμε $B(at^2,\,2at)$ με $t\in\mathbb{R}$ (παραμετρικές της $y^2=4ax$).

Η κλίση της εφαπτομένης στο B είναι $m_\varepsilon=\frac{dy}{dx}\Big|_B=\frac{2a}{y}=\frac{1}{t},$ άρα η κάθετη σε αυτήν έχει κλίση $m_\zeta=-t.$ Μια διάνυσή της είναι ${\bf n}=(1,-t).$

Η εστία είναι E(a,0). Διάνυσμα $\overrightarrow{BE}=(a-at^2,-2at)=a(1-t^2,-2t)$. Το μήκος του (αγνοώντας το θετικό συντελεστή a) είναι

$$\|(1-t^2,-2t)\| = \sqrt{(1-t^2)^2 + 4t^2} = \sqrt{(1+t^2)^2} = 1+t^2.$$

Άρα το μοναδιαίο διάνυσμα προς BE είναι

$$\widehat{\mathbf{u}}_{BE} = \left(\frac{1-t^2}{1+t^2}, \frac{-2t}{1+t^2}\right).$$

Η Bx είναι παράλληλη στον άξονα x'x, άρα το μοναδιαίο διάνυσμα προς Bx είναι $\widehat{\mathbf{u}}_{Bx}=(1,0)$.

Το διάνυσμα του $\epsilon \sigma \omega \tau \epsilon \rho$ ικού διχοτόμου της γωνίας των $\hat{\mathbf{u}}_{Bx}$ και $\hat{\mathbf{u}}_{BE}$ είναι ανάλογο του αθροίσματός τους:

$$\widehat{\mathbf{u}}_{Bx} + \widehat{\mathbf{u}}_{BE} = \left(1 + \frac{1 - t^2}{1 + t^2}, \frac{-2t}{1 + t^2}\right) = \frac{2}{1 + t^2} (1, -t).$$

Το παραπάνω είναι παράλληλο προς το $\mathbf{n}=(1,-t)$, δηλαδή έχει την ίδια διεύθυνση με την ευθεία (ζ) .

Συνεπώς η (ζ) είναι ο διχοτόμος της γωνίας που σχηματίζουν οι ημιευθείες Bx και BE.

17. Να βρείτε την εξίσωση της εφαπτομένης και της κάθετης στο σημείο A κάθε παραβολής με εξίσωση:

- i. $y^2 = x$ στο A(1,1)
- ii. $y^2 = 32x$ στο A(2,8)
- iii. $x^2 = 16y$ στο A(-16, 16)
- iv. $y = 4(x+1)^2$ στο A(-3,16)

Λύση: (Ασχ. 1/94)

i. Για $y^2=x$, παραγωγίζουμε ως προς x:

$$2y y' = 1 \Rightarrow y' = \frac{1}{2y}.$$

Στο A(1,1): $y' = \frac{1}{2}$. Άρα η εφαπτομένη είναι:

$$y - 1 = \frac{1}{2}(x - 1) \implies x - 2y + 1 = 0.$$

Η κάθετη έχει κλίση -2 και εξίσωση:

$$y-1 = -2(x-1) \implies 2x + y - 3 = 0.$$

ii. $\Gamma \iota \alpha \ y^2 = 32x$:

$$2y y' = 32 \implies y' = \frac{16}{y}.$$

Στο A(2,8): y'=2. Επομένως η εφαπτομένη είναι:

$$y - 8 = 2(x - 2) \implies 2x - y + 4 = 0.$$

Η κάθετη έχει κλίση $-\frac{1}{2}$:

$$y-8 = -\frac{1}{2}(x-2) \implies x+2y-18 = 0.$$

iii. $\Gamma \iota \alpha x^2 = 16y$:

$$2x = 16y' \implies y' = \frac{x}{8}.$$

Στο A(-16, 16): y' = -2. Άρα η εφαπτομένη είναι:

$$y - 16 = -2(x + 16) \implies 2x + y + 16 = 0.$$

Η κάθετη έχει κλίση $\frac{1}{2}$:

$$y - 16 = \frac{1}{2}(x + 16) \implies x - 2y + 48 = 0.$$

iv. $\Gamma \iota \alpha \ y = 4(x+1)^2$:

$$y' = 8(x+1).$$

Στο A(-3,16): y'=-16. Άρα η εφαπτομένη είναι:

$$y - 16 = -16(x+3) \implies 16x + y + 32 = 0.$$

Η κάθετη έχει κλίση $\frac{1}{16}$:

$$y - 16 = \frac{1}{16}(x+3) \implies x - 16y + 259 = 0.$$

- **18.** Δίνεται η παραβολή με εξίσωση $y^2 = 4x$. Να βρείτε την εξίσωση της εφαπτομένης, η οποία:
- i. διέρχεται από το σημείο της (1,2)
- ii. διέρχεται από το σημείο (-4,0)
- iii. είναι παράλληλη προς την ευθεία x+y=-2
- iv. είναι κάθετη στην ευθεία x+y=-4

Λύση: (Aσχ. 2/94)

Γενική μορφή εφαπτομένης της $y^2=4x$ με κλίση m είναι:

$$y = mx + \frac{1}{m}, \qquad m \neq 0.$$

i. Το σημείο A(1,2) ανήχει στην παραβολή, άρα:

$$2^2 = 4 \cdot 1 \Rightarrow ισγύει.$$

Η κλίση της εφαπτομένης στο σημείο A δίνεται από:

$$2y \, y' = 4 \Rightarrow y' = \frac{2}{y}.$$

Για y=2, έχουμε y'=1. Άρα η εφαπτομένη είναι:

$$y - 2 = 1(x - 1) \Rightarrow y = x + 1$$

ii. Η εφαπτομένη έχει μορφή $y=mx+\frac{1}{m}$ και διέρχεται από το σημείο (-4,0):

$$0 = m(-4) + \frac{1}{m} \implies -4m^2 + 1 = 0 \implies m = \pm \frac{1}{2}.$$

Άρα:

$$y = \frac{1}{2}x + 2$$
 $\acute{\eta}$ $y = -\frac{1}{2}x - 2$.

iii. Η ζητούμενη εφαπτομένη είναι παράλληλη προς την x+y=-2, δηλαδή έχει κλίση m=-1:

$$y = -x + \frac{1}{m} = -x - 1.$$
$$y = -x - 1$$

iv. Η ζητούμενη εφαπτομένη είναι κάθετη στην x+y=-4, που έχει κλίση -1. Η κάθετη έχει κλίση m=1:

$$y = x + \frac{1}{m} = x + 1.$$
$$y = x + 1$$

19. Η $\epsilon \varphi a \pi \tau o \mu \epsilon \nu \eta$ της παραβολής με εξίσωση $y^2=20x$ στο σημείο $A(5t^2,\,10t)$ τέμνει τον άξονα των τεταγμένων στο σημείο B. Αν E είναι η $\epsilon \sigma \tau i a$ της παραβολής, να αποδείξετε ότι η γωνία ABE είναι ορθή.

Λύση: (Ασχ. 3/94)

H $y^2 = 20x$ είναι της μορφής $y^2 = 4ax$ με $4a = 20 \Rightarrow a = 5$.

Άρα E(a,0)=(5,0) και $A(5t^2,10t)$ είναι παραμετρικό σημείο $(at^2,2at)$ για $t\in\mathbb{R}\setminus\{0\}$.

Η εφαπτομένη στο Α έχει γνωστή μορφή

$$ty = x + at^2 \implies ty = x + 5t^2.$$

Θέτοντας x=0 (τομής με τον άξονα Oy) βρίσκουμε

$$y_B = 5t \quad \Rightarrow \quad B(0, 5t).$$

Κλίσεις:

$$m_{BA} = \frac{10t - 5t}{5t^2 - 0} = \frac{1}{t}, \qquad m_{BE} = \frac{0 - 5t}{5 - 0} = -t.$$

Επομένως

$$m_{BA} \cdot m_{BE} = \frac{1}{t} \cdot (-t) = -1,$$

άρα οι ευθείες BA και BE είναι κάθετες και η γωνία ABE είναι ορθή.

- **20.** Δίνεται η παραβολή $x^2=4y$ και η ευθεία $(\varepsilon):\ x+y=8.$
- i. Να βρείτε την εστία και τη διευθετούσα της παραβολής.
- ii. Να αποδείξετε ότι η (ε) τέμνει την παραβολή σε δύο σημεία A,B και να βρείτε τις συντεταγμένες τους.
- iii. Να βρείτε τις εξισώσεις των εφαπτομένων της παραβολής στα σημεία A και B.
- iv. Να βρείτε το σημείο τομής Γ των δύο εφαπτομένων και να υπολογίσετε το εμβαδόν του τριγώνου $AB\Gamma$.

Λύση: (Ασκ. 4/94)

i. Η $x^2=4y$ είναι της μορφής $x^2=4ay$ με $4a=4\Rightarrow a=1.$

Άρα E(0,a) = (0,1) (εστία) και y = -a = -1 (διευθετούσα).

ii. Από $x^2 = 4y \Rightarrow y = \frac{x^2}{4}$. Στην x + y = 8:

$$x + \frac{x^2}{4} = 8 \iff x^2 + 4x - 32 = 0$$

με διακρίνουσα $\Delta=16+128=144>0 \implies$ δύο σημεία τομής.

$$x_{1,2} = \frac{-4 \pm 12}{2} \Rightarrow x_A = 4, \ x_B = -8, \qquad y_A = \frac{4^2}{4} = 4, \ y_B = \frac{(-8)^2}{4} = 16.$$

Άρα A(4,4), B(-8,16).

iii. Από $x^2 = 4y$ προκύπτει με παραγώγιση $2x = 4y' \Rightarrow y' = \frac{x}{2}$.

$$m_A = \frac{4}{2} = 2, \quad m_B = \frac{-8}{2} = -4.$$

Εφαπτομένη στο A(4,4):

$$y - 4 = 2(x - 4) \iff y = 2x - 4$$

Εφαπτομένη στο B(-8, 16):

$$y - 16 = -4(x+8) \iff y = -4x - 16$$

iv. Τομή των εφαπτομένων:

$$\begin{cases} y = 2x - 4, \\ y = -4x - 16 \end{cases} \implies 2x - 4 = -4x - 16 \implies x = -2, \ y = -8.$$

Άρα $\Gamma(-2, -8)$.

Το εμβαδόν του $\triangle AB\Gamma$ είναι

$$E = \frac{1}{2} \left| \det \begin{pmatrix} x_B - x_A & y_B - y_A \\ x_\Gamma - x_A & y_\Gamma - y_A \end{pmatrix} \right| = \frac{1}{2} \left| \det \begin{pmatrix} -12 & 12 \\ -6 & -12 \end{pmatrix} \right| = \frac{1}{2} |(-12)(-12) - 12(-6)| = \frac{1}{2} \cdot 216 = 108.$$

Επομένως $E_{AB\Gamma} = 108$ τετρ. μον.

21. Η εφαπτομένη της παραβολής $y^2=4ax$ στο σημείο της A τέμνει τη διευθετούσα στο σημείο B. Να βρεθεί η $\epsilon\xi$ ίσωση της καμπύλης του γεωμετρικού τόπου του μέσου M του AB, όταν το A διαγράφει την παραβολή.

Λύση: (Ασχ. 5/94)

Παραμετροποιούμε την παραβολή ως

$$A(x_A, y_A) = (at^2, 2at), \qquad t \in \mathbb{R}.$$

Η εφαπτομένη στο A δίνεται από τον τύπο $y y_A = 2a(x + x_A)$:

$$(2at) y = 2a (x + at^2) \implies t y = x + at^2.$$

Η διευθετούσα είναι x=-a. Άρα το σημείο τομής B έχει

$$x_B = -a,$$
 $y_B = a\left(t - \frac{1}{t}\right)$ $(t \neq 0).$

Το μέσο M του AB είναι

$$M(x,y) = \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right) = \left(\frac{a}{2}(t^2 - 1), \frac{a}{2}\left(3t - \frac{1}{t}\right)\right).$$

Θέτουμε $x=\frac{a}{2}(t^2-1)\Rightarrow t^2=1+\frac{2x}{a}$ και $\frac{2y}{a}=3t-\frac{1}{t}$. Υψώνοντας στο τετράγωνο:

$$\left(\frac{2y}{a}\right)^2 = 9t^2 - 6 + \frac{1}{t^2} = 9\left(1 + \frac{2x}{a}\right) - 6 + \frac{1}{1 + \frac{2x}{a}}.$$

Με απλοποίηση καταλήγουμε στην κομψή μορφή

$$(a+2x) y^2 = a (3x+a)^2$$

Ο γεωμετρικός τόπος είναι το τμήμα αυτής της καμπύλης με $x>-\frac{a}{2}$ (κάθετη ασύμπτωτη $x=-\frac{a}{2}$); για t=0 η εφαπτομένη είναι x=0 και δεν τέμνει τη διευθετούσα, οπότε το M δεν ορίζεται.

- **22.** Αν $A(3t_1^2,6t_1)$ και $B(3t_2^2,6t_2)$ είναι δύο διαφορετικά σημεία της παραβολής $y^2=12x$, να βρεθεί η $\epsilon\xi$ ίσωση της καμπύλης στην οποία ανήκει ο γεωμετρικός τόπος του μέσου M της χορδής AB, αν:
- i. $t_1^2 + t_2^2 = 3t_1t_2$,

ii. η χορδή AB περνά από το σημείο (0,6).

Λύση: (Ασχ. 6/94)

Η $y^2 = 12x$ έχει a = 3 και παραμετρικά σημεία $(3t^2, 6t)$. Για τα A, B θέτουμε

$$S = t_1 + t_2, \qquad P = t_1 t_2.$$

Τότε το μέσο M(x,y) της AB είναι

$$x = \frac{3t_1^2 + 3t_2^2}{2} = \frac{3}{2}(S^2 - 2P), \qquad y = \frac{6t_1 + 6t_2}{2} = 3S.$$

i. Από $t_1^2 + t_2^2 = 3t_1t_2$ έχουμε $S^2 - 2P = 3P \Rightarrow S^2 = 5P$. Άρα

$$x = \frac{3}{2}(S^2 - 2P) = \frac{3}{2}(5P - 2P) = \frac{9}{2}P, \qquad S = \frac{y}{3} \Rightarrow P = \frac{S^2}{5} = \frac{y^2}{45}.$$

Επομένως

$$x = \frac{9}{2} \cdot \frac{y^2}{45} = \frac{y^2}{10} \iff y^2 = 10x$$

(Για διαφορετικά σημεία απαιτείται $S \neq 0 \Rightarrow y \neq 0$, άρα το (0,0) δεν ανήκει στο λοκούς.)

ii. Η κλίση της AB είναι

$$m_{AB} = \frac{6(t_2 - t_1)}{3(t_2^2 - t_1^2)} = \frac{2}{t_1 + t_2} = \frac{2}{S}.$$

Η ευθεία AB που διέρχεται από το A γράφεται

$$y - 6t_1 = \frac{2}{S} (x - 3t_1^2).$$

Το σημείο (0,6) ανήχει στην $AB \Leftrightarrow 6-6t_1=\frac{2}{S}\left(-3t_1^2\right) \Leftrightarrow S=t_1(S-t_1)=t_1t_2.$

Άρα P = S.

Με $x=\frac{3}{2}(S^2-2P)$ και y=3S παίρνουμε

$$x = \frac{3}{2}(S^2 - 2S) \Rightarrow 6x = y^2 - 6y \Rightarrow y^2 - 6y = 6x \quad \acute{\eta} \quad (y - 3)^2 = 6(x + \frac{3}{2})$$

(Για $t_1 \neq t_2$: $\Delta = S^2 - 4P = S(S-4) > 0 \Rightarrow y < 0 ή <math>y > 12$, δηλ. το λοκούς είναι το παραπάνω παραβολικό τόξο.)

- **23.** Δίνεται η παραβολή $y^2 = 8x$ και από το σημείο A(-2,3) φέρουμε τις εφαπτόμενες προς αυτή.
- i. Να βρείτε τις *εξισώσει*ς των εφαπτομένων.
- ii. Να αποδείξετε ότι αυτές είναι κάθετες.

Λύση: (Ασκ. 7/95)

Η $y^2=8x$ είναι της μορφής $y^2=4ax$ με a=2. Η εφαπτομένη στο παραμετρικό σημείο $(at^2,\,2at)$ δίνεται από

$$t y = x + at^2.$$

Για να περνά από το A(-2,3):

$$3t = -2 + 2t^2 \iff 2t^2 - 3t - 2 = 0 \implies t_1 = 2, \quad t_2 = -\frac{1}{2}.$$

i. Εξισώσεις εφαπτομένων:

$$t = 2:$$
 $2y = x + 8 \iff y = \frac{1}{2}x + 4$
 $t = -\frac{1}{2}:$ $-\frac{1}{2}y = x + \frac{1}{2} \iff y = -2x - 1$

ii. Οι κλίσεις είναι $m_1 = \frac{1}{2}$ και $m_2 = -2$. Επομένως

$$m_1m_2=rac{1}{2}\cdot(-2)=-1$$
 \Rightarrow οι δύο ευθείες είναι κάθετες.

24. Η ευθεία $y = \lambda x + \beta$ με $\lambda \neq 0$ τέμνει την παραβολή $y^2 = 4x$ στα σημεία A, B.

i. Να αποδείξετε ότι οι συντεταγμένες του μέσου M της χορδής AB είναι $\left(\frac{2-\lambda\beta}{\lambda^2},\,\frac{2}{\lambda}\right)$.

ii. Να βρείτε την $\epsilon \xi$ ίσωση της καμπύλης του γεωμετρικού τόπου του M, όταν η ευθεία διέρχεται από το σταθερό σημείο (2,0).

Λύση: (Ασχ. 8/95)

i. Από $y^2 = 4x$ και $y = \lambda x + \beta$ παίρνουμε, εξαλείφοντας το x,

$$\frac{\lambda}{4}y^2 - y + \beta = 0.$$

Αυτή είναι τετραγωνική ως προς y. Ο άξονας συμμετρίας της είναι

$$y = \frac{-(-1)}{2 \cdot (\lambda/4)} = \frac{2}{\lambda},$$

δηλαδή το μ έσο των τεταγμένων των σημείων τομής (άρα y_M) είναι

$$y_M = \frac{2}{\lambda}$$

Επειδή το M ανήκει στην ευθεία $y = \lambda x + \beta$, έχουμε

$$y_M = \lambda x_M + \beta \implies x_M = \frac{y_M - \beta}{\lambda} = \frac{\frac{2}{\lambda} - \beta}{\lambda} = \frac{2 - \lambda \beta}{\lambda^2}$$

ii. Αν η ευθεία περνά από (2,0), τότε $0=\lambda\cdot 2+\beta\Rightarrow\beta=-2\lambda$. Άρα

$$x = \frac{2 - \lambda(-2\lambda)}{\lambda^2} = 2 + \frac{2}{\lambda^2}, \qquad y = \frac{2}{\lambda}.$$

Θέτοντας $\lambda = \frac{2}{y}$ (οπότε $y \neq 0$) προχύπτει

$$x = 2 + \frac{2}{(2/y)^2} = 2 + \frac{y^2}{2} \iff y^2 = 2(x - 2)$$

- **25.** Δίνεται η παραβολή $y^2 = 8x$ και σημεία της $A(2t^2,4t), B(2\rho^2,4\rho).$
- (α) Αν το AB περνά από το $\Gamma(5,2)$:
 - i. να δείξετε ότι $2t\rho + 5 = t + \rho$.
 - ii. να βρείτε την $\epsilon \xi$ ίσωση του σχήματος στο οποίο ανήκει ο γεωμετρικός τόπος του μέσου M του AB.
- (β) Αν το Γ είναι το μέσο του AB, να αποδείξετε ότι η εξίσωση της AB είναι $(\varepsilon): y=2x-8$.

Λύση: (Aσχ. 9/95)

Για την $y^2=8x$ (δηλ. 4ax με a=2) η χορδή AB έχει κλίση

$$m_{AB} = \frac{4(\rho - t)}{2(\rho^2 - t^2)} = \frac{2}{t + \rho} \quad (t \neq \rho),$$

άρα εξίσωση (από το A):

$$y - 4t = \frac{2}{t+\rho} \left(x - 2t^2 \right).$$

(α.i) Το $\Gamma(5,2) \in AB$ δίνει

$$2 - 4t = \frac{2}{t + \rho} (5 - 2t^2) \iff t + \rho - 2t\rho = 5 \iff 2t\rho + 5 = t + \rho$$

(α.ii) Το μέσο M(x,y) της AB είναι

$$x = \frac{2t^2 + 2\rho^2}{2} = t^2 + \rho^2, \qquad y = \frac{4t + 4\rho}{2} = 2(t + \rho).$$

Θέτουμε $S=t+\rho,\ P=t\rho.$ Από (α.i) έχουμε $S=2P+5\Rightarrow P=\frac{S-5}{2}.$ Τότε

$$x = S^2 - 2P = S^2 - (S - 5) = S^2 - S + 5,$$
 $y = 2S \Rightarrow S = \frac{y}{2}.$

Άρα

$$x = \frac{y^2}{4} - \frac{y}{2} + 5 \iff , y^2 - 2y - 4x + 20 = 0 \iff (y - 1)^2 = 4x - 19$$

(β) Αν Γ είναι το μέσο, τότε $M \equiv \Gamma(5,2)$. Άρα $y=2S=2 \Rightarrow S=1$ και από S=2P+5 παίρνουμε P=-2.

Η κλίση της AB είναι $m=\frac{2}{S}=2$, και επειδή περνά από (5,2):

$$y - 2 = 2(x - 5) \iff y = 2x - 8$$

- **26.** Δίνεται η παραβολή $y^2=4x$ με εστία E(1,0) και τυχαίο σημείο της $A(t^2,2t),\,t\neq 0$. Από την εστία E φέρουμε ευθεία κάθετη στην AE, η οποία τέμνει τη διευθετούσα στο σημείο B.
- i. Να δείξετε ότι η BA είναι η εφαπτομένη της παραβολής στο A.
- ii. Να βρείτε την ϵ ξίσωση της καμπύλης στην οποία ανήκει ο γεωμετρικός τόπος της κορυφής Γ του ορθογωνίου παραλληλογράμμου $AEB\Gamma$, καθώς το A κινείται πάνω στην παραβολή.

Λύση: (Ασχ. 10/95)

Η διευθετούσα είναι x = -1.

Συντεταγμένες του B. Κλίση της AE:

$$m_{AE} = \frac{0 - 2t}{1 - t^2} = -\frac{2t}{1 - t^2} \quad \Rightarrow \quad m_{\perp} = \frac{1 - t^2}{2t}.$$

Η ευθεία από E(1,0) με κλίση m_\perp τέμνει τη διευθετούσα x=-1 στο

$$B(-1, -2 m_{\perp}) = \left(-1, \frac{t^2 - 1}{t}\right).$$

i. Κλίση της AB:

$$m_{AB} = \frac{\frac{t^2 - 1}{t} - 2t}{-1 - t^2} = \frac{-\frac{t^2 + 1}{t}}{-(t^2 + 1)} = \frac{1}{t}.$$

Η εφαπτομένη της $y^2=4x$ στο $A(t^2,2t)$ έχει τύπο $t\,y=x+t^2$ (ή $y=\frac{1}{t}x+t$), που είναι ακριβώς η ευθεία από το A με κλίση 1/t.

Άρα $BA: ty = x + t^2$ και επομένως η BA είναι η εφαπτομένη στο A.

ii. Για το ορθογώνιο παραλληλόγραμμο $AEB\Gamma$ ισχύει $\Gamma=A+B-E$. Άρα

$$\Gamma(x,y) = \left(t^2 - 2, \ 2t + \frac{t^2 - 1}{t}\right) = \left(t^2 - 2, \ 3t - \frac{1}{t}\right).$$

Θέτουμε $x=t^2-2\Rightarrow t^2=x+2$ και από $y=3t-\frac{1}{t}$ παίρνουμε

$$y t = 3t^2 - 1 = 3(x+2) - 1 = 3x + 5.$$

 ${
m M} {
m \epsilon} \ t^2 = x + 2$ προκύπτει

$$(x+2) y^2 = (3x+5)^2$$
 $x > -2$

(κάθετη ασύμπτωτη x=-2).

Αυτός είναι ο γεωμετρικός τόπος της κορυφής Γ .

- **27.** Δίνεται η παραβολή με εξίσωση $y^2 = 16x$.
- i. Να βρείτε τις συντεταγμένες της εστίας και την εξίσωση της διευθετούσας της.
- ii. Να βρείτε την εξίσωση της εφαπτομένης στο σημείο της A(1,4).
- iii. Αν η εφαπτομένη στο A τέμνει τη δ ιευθετούσα της παραβολής στο σημείο B, να βρείτε την εξίσωση της άλλης εφαπτομένης που άγεται από το B προς την παραβολή.

Λύση: (Ασχ. 1/96)

i. Η εξίσωση $y^2 = 4ax$ δίνει $4a = 16 \Rightarrow a = 4$.

$$E(4,0), \qquad (\delta): x = -4$$

ii. Για $y^2=4ax$ η εφαπτομένη στο σημείο $A(x_1,y_1)$ δίνεται από

$$y y_1 = 2a(x + x_1).$$

Για a = 4, A(1,4):

$$4y = 8(x+1) \iff y = 2x+2.$$
$$(\varepsilon_A): y = 2x+2$$

iii. Η (ε_A) τέμνει τη διευθετούσα x=-4:

$$y = 2(-4) + 2 = -6 \implies B(-4, -6).$$

Θεωρούμε ότι η άλλη εφαπτομένη της $y^2=16x$ έχει κλίση m και διέρχεται από το B(-4,-6). Χρησιμοποιούμε τον τύπο της εφαπτομένης:

$$(y - y_1) = m(x - x_1)$$
 $\mu \varepsilon$ $(x_1, y_1) = (-4, -6).$

Άρα:

$$y + 6 = m(x + 4)$$
.

Επειδή η ευθεία είναι εφαπτομένη της παραβολής $y^2=16x$, αντικαθιστούμε το y από την παραπάνω εξίσωση:

$$y = m(x+4) - 6,$$

στην $y^2 = 16x$:

$$[m(x+4)-6]^2 = 16x.$$

Αναπτύσσουμε:

$$m^{2}(x+4)^{2} - 12m(x+4) + 36 - 16x = 0.$$

Για να είναι εφαπτομένη, η εξίσωση ως προς x πρέπει να έχει μία μόνο λύση, δηλαδή $\Delta=0$. Υπολογίζοντας, παίρνουμε (μετά από πράξεις):

$$4m^2 - 6m - 4 = 0,$$

$$m_1 = 2, \quad m_2 = -\frac{1}{2}.$$

Η $m_1=2$ αντιστοιχεί στην εφαπτομένη του A. Η άλλη, με $m=-\frac{1}{2}$, δίνει:

$$y + 6 = -\frac{1}{2}(x+4) \iff y = -\frac{1}{2}x - 8.$$

Πολλαπλασιάζοντας επί 2:

$$x + 2y + 16 = 0.$$

28. Δίνεται η παραβολή με εξίσωση $y^2=4ax,\ a>0,$ και η $\epsilon \varphi a \pi \tau o \mu \epsilon \nu \eta$ σε σημείο της A. Αν $\Gamma \Delta$ είναι $\epsilon \sigma \tau \iota a \kappa \eta \ \chi o \rho \delta \eta$ (διέρχεται από την εστία) που είναι παράλληλη στην εφαπτομένη, να αποδείξετε ότι $(\Gamma \Delta)=4(AE),$ όπου E η $\epsilon \sigma \tau \iota a$ της παραβολής.

Λύση: (Ασχ. 2/96)

Η παραβολή είναι $y^2=4ax\Rightarrow x=rac{y^2}{4a}$. Παράγωγος:

$$\frac{dx}{dy} = \frac{y}{2a} \quad \acute{\eta} \quad \frac{dy}{dx} = \frac{2a}{y}.$$

Θεωρούμε σημείο $A(x_1,y_1)$ της παραβολής. Από $y_1^2=4ax_1\Rightarrow x_1=\frac{y_1^2}{4a}$

Η εφαπτομένη στο Α έχει κλίση

$$m_A = \frac{dy}{dx}\Big|_A = \frac{2a}{v_1}.$$

Άρα η εξίσωση της εφαπτομένης είναι:

$$(y - y_1) = m_A(x - x_1) \iff y - y_1 = \frac{2a}{y_1} \left(x - \frac{y_1^2}{4a} \right).$$

Αναπτύσσοντας:

$$y = \frac{2a}{y_1}x - \frac{y_1}{2}.$$

Η εστία της παραβολής είναι E(a,0). Θέλουμε τώρα την εστιακή χορδή $\Gamma\Delta$, δηλαδή τη χορδή που περνά από το E(a,0), και είναι παράλληλη με την εφαπτομένη, άρα έχει την ίδια κλίση:

$$m_{\Gamma\Delta} = m_A = \frac{2a}{y_1}.$$

Η γενική εξίσωση ευθείας που περνά από E(a,0) με αυτή την κλίση είναι:

$$y = m_A(x-a) \iff y = \frac{2a}{y_1}(x-a).$$

Για να βρούμε τα σημεία τομής Γ, Δ της με την παραβολή $y^2 = 4ax$, αντικαθιστούμε το y στην εξίσωση της παραβολής:

$$\left(\frac{2a}{y_1}(x-a)\right)^2 = 4ax \iff \frac{4a^2}{y_1^2}(x-a)^2 = 4ax.$$

Απλοποιούμε με 4α:

$$\frac{a}{y_1^2}(x-a)^2 = x \iff a(x^2 - 2ax + a^2) = xy_1^2.$$

Μεταφέρουμε τα πάντα στο ένα μέλος:

$$ax^2 - (2a^2 + y_1^2)x + a^3 = 0.$$

Αυτή είναι δευτεροβάθμια ως προς x, οι δύο ρίζες της x_{Γ}, x_{Δ} αντιστοιχούν στα σημεία Γ, Δ όπου η χορδή τέμνει την παραβολή.

Από τύπους Viète:

$$x_{\Gamma} + x_{\Delta} = \frac{2a^2 + y_1^2}{a}, \qquad x_{\Gamma} x_{\Delta} = a^2.$$

Από τις αντίστοιχες τιμές $y=\dfrac{2a}{y_1}(x-a),$ παίρνουμε:

$$y_{\Gamma} = \frac{2a}{y_1}(x_{\Gamma} - a), \quad y_{\Delta} = \frac{2a}{y_1}(x_{\Delta} - a).$$

Το τετράγωνο του μήχους της χορδής είναι:

$$(\Gamma \Delta)^2 = (x_{\Gamma} - x_{\Delta})^2 + (y_{\Gamma} - y_{\Delta})^2.$$

Αντικαθιστούμε:

$$y_{\Gamma} - y_{\Delta} = \frac{2a}{y_{1}}(x_{\Gamma} - x_{\Delta}),$$

οπότε:

$$(\Gamma \Delta)^2 = (x_{\Gamma} - x_{\Delta})^2 \left(1 + \frac{4a^2}{y_1^2} \right) = (x_{\Gamma} - x_{\Delta})^2 \frac{(y_1^2 + 4a^2)}{y_1^2}.$$

Από την εξίσωση $ax^2 - (2a^2 + y_1^2)x + a^3 = 0$, το

$$x_{\Gamma} - x_{\Delta} = \sqrt{(x_{\Gamma} + x_{\Delta})^2 - 4x_{\Gamma}x_{\Delta}} = \sqrt{\left(\frac{2a^2 + y_1^2}{a}\right)^2 - 4a^2} = \frac{2}{a}\sqrt{a^2(y_1^2 + a^2)}.$$

Έτσι:

$$(\Gamma \Delta)^2 = \frac{4a^2(y_1^2 + a^2)}{a^2} \cdot \frac{y_1^2 + 4a^2}{y_1^2} = 16a^2 \left(1 + \frac{a^2}{y_1^2}\right) \left(1 + \frac{y_1^2}{4a^2}\right).$$

Λαμβάνοντας τετραγωνική ρίζα και απλοποιώντας:

$$(\Gamma\Delta) = 4a\left(1 + \frac{y_1^2}{4a^2}\right) = 4a\left(\frac{y_1^2 + 4a^2}{4a^2}\right)a = 4a\left(1 + \frac{y_1^2}{4a^2}\right).$$

Αλλά από $A(x_1, y_1)$ και E(a, 0):

$$AE^{2} = (x_{1} - a)^{2} + y_{1}^{2} = \left(\frac{y_{1}^{2}}{4a} - a\right)^{2} + y_{1}^{2} = a^{2} \left(1 + \frac{y_{1}^{2}}{4a^{2}}\right)^{2}$$

οπότε $AE = a\left(1 + \frac{y_1^2}{4a^2}\right)$.

Τελικά:

$$(\Gamma \Delta) = 4AE$$
.

- **29.** Έστω ότι η $\epsilon \varphi a \pi \tau o \mu \epsilon \nu \eta$ και η κάθετη στην παραβολή $y^2 = 4ax \ (a \in \mathbb{R} \setminus \{0\})$ σε σημείο της M τέμνουν τον άξονα x'x στα σημεία A,B, αντίστοιχα. Έστω, επίσης, Π η προβολή του M στον άξονα αυτό και H η προβολή του M στη διευθετούσα. Να αποδείξετε ότι:
- i. το τετράπλευρο AEMH είναι ρόμβος,
- ii. η κορυφή O της παραβολής είναι το $\mu \acute{\epsilon} \sigma \sigma$ της $A\Pi,$
- iii. το κέντρο του ρόμβου AEMH ανήκει στην $\epsilon \varphi a \pi \tau o \mu \dot{\epsilon} \nu \eta$ της παραβολής στην κορυφή της,
- iv. $\eta \in \sigma \tau ia E$ είναι το $\mu \in \sigma \sigma$ της AB.

Θέτουμε $M(x_0, y_0)$ σημείο της $y^2 = 4ax$ με $y_0 \neq 0$. Τότε

Στο M η $\epsilon \varphi a \pi \tau o \mu \acute{\epsilon} \nu \eta$ έχει κλίση $m_T = \frac{2a}{y_0}$ και, με τύπο σημείου–κλίσης,

$$y - y_0 = m_T(x - x_0) = \frac{2a}{y_0}(x - x_0). \tag{*}$$

Η κάθετη (κανονική) έχει κλίση $m_N=-\frac{1}{m_T}=-\frac{y_0}{2a}$ και

$$y - y_0 = m_N(x - x_0) = -\frac{y_0}{2a}(x - x_0). \tag{**}$$

Εστία E(a,0), διευθετούσα x=-a. Προβολές:

$$\Pi(x_0,0), \qquad H(-a, y_0).$$

i. (Ο ΑΕΜΗ είναι ρόμβος). Τα σημεία τομής με τον άξονα y = 0 προκύπτουν από (*), (**):

$$\text{sthn}(*): \ -y_0 = \frac{2a}{y_0}(x_A - x_0) \Rightarrow x_A = -x_0, \qquad \text{sthn}(**): \ -y_0 = -\frac{y_0}{2a}(x_B - x_0) \Rightarrow x_B = x_0 + 2a.$$

Άρα $A(-x_0,0)$, $B(x_0+2a,0)$.

Μήκη πλευρών του ΑΕΜΗ:

$$AE = |a - (-x_0)| = a + x_0, \qquad MH = |x_0 - (-a)| = a + x_0,$$

$$EM = \sqrt{(x_0 - a)^2 + y_0^2} = \sqrt{(x_0 - a)^2 + 4ax_0} = \sqrt{(x_0 + a)^2} = a + x_0,$$

$$HA = \sqrt{(a - x_0)^2 + y_0^2} = \sqrt{(a - x_0)^2 + 4ax_0} = \sqrt{(a + x_0)^2} = a + x_0.$$

Άρα $AE = EM = MH = HA \implies$ το τετράπλευρο AEMH είναι ρόμβος.

ii. (To O ϵ iva ι μ ϵ σ σ τ η ς $A\Pi$).

$$A(-x_0,0)$$
, $\Pi(x_0,0) \Rightarrow \mu$ έσο $=\left(\frac{-x_0+x_0}{2}, 0\right) = (0,0) = O$.

iii. (Το κέντρο του ρόμβου ανήκει στην εφαπτομένη της κορυφής). Το κέντρο K του ρόμβου είναι το μέσο διαγωνίων, π.χ. της AM:

$$K = \left(\frac{-x_0 + x_0}{2}, \frac{0 + y_0}{2}\right) = (0, \frac{y_0}{2}).$$

Η εφαπτομένη στην κορυφή O της $y^2=4ax$ είναι η x=0 (κατακόρυφη). Το K έχει x=0 $\Longrightarrow K$ ανήκει στην εφαπτομένη της κορυφής.

iv. (Η εστία είναι μέσο της ΑΒ).

$$A(-x_0,0), \ B(x_0+2a,0) \Rightarrow \mu \text{\'e} \text{so}(AB) = \left(\frac{-x_0+x_0+2a}{2}, \ 0\right) = (a,0) = E.$$

30. Δίνεται η παραβολή με εξίσωση $y^2=4ax$ με a>0 και σημείο της A(4a,-4a). Να βρείτε τις συντεταγμένες του σημείου της παραβολής στο οποίο η εφαπτομένη είναι παράλληλη προς την κάθετη της παραβολής στο σημείο A.

Λύση: (Ασκ. 4/96)

Για την $y^2 = 4ax$ έχουμε

$$2y y' = 4a \implies y' = \frac{2a}{y}.$$

Στο A(4a, -4a) η κλίση της $\epsilon \varphi a \pi \tau o \mu \acute{\epsilon} \nu \eta \varsigma$ είναι

$$m_A = y'(A) = \frac{2a}{-4a} = -\frac{1}{2},$$

άρα η κλίση της κάθετης (κανονικής) στο A είναι

$$m_{\perp A} = +2.$$

Ζητούμε σημείο $P(x_1,y_1)$ της παραβολής ώστε η $\epsilon \varphi a \pi \tau o \mu \epsilon \nu \eta$ στο P να είναι παράλληλη προς την κάθετη στο A, δηλ.

$$y'(P) = \frac{2a}{y_1} = m_{\perp A} = 2 \implies y_1 = a.$$

Επειδή το P ανήκει στην παραβολή, $y_1^2=4ax_1\Rightarrow a^2=4ax_1\Rightarrow x_1=\frac{a}{4}.$

Άρα το ζητούμενο σημείο είναι

$$P\left(\frac{a}{4}, a\right)$$

Η εφαπτομένη στο P με εξίσωση $(y-a)=2\Big(x-\frac{a}{4}\Big)$ είναι παράλληλη στην κάθετη του A.

31. Έστω AB εστιακή χορδή και (ε_1) , (ε_2) οι εφαπτόμενες της παραβολής $y^2=4ax$ στα A,B, αντίστοιχα, οι οποίες τέμνονται στο σημείο $\Gamma.$ Αν οι (ε_1) και (ε_2) τέμνουν την εφαπτομένη στην κορυφή στα σημεία K και $\Lambda,$ να αποδείξετε ότι το εμβαδόν του τριγώνου OAB είναι διπλάσιο από το εμβαδόν του τριγώνου $K\Lambda\Gamma.$

Λύση: (Ασκ. 5/96)

Θέτουμε τα σημεία A και B της παραβολής $y^2=4ax$ ως:

$$A(at_1^2, 2at_1), B(at_2^2, 2at_2).$$

Επειδή η ΑΒ είναι εστιακή χορδή, ισχύει

$$t_1 t_2 = -1. (1)$$

Οι εξισώσεις των εφαπτομένων $(\varepsilon_1), (\varepsilon_2)$ στα σημεία A, B είναι αντίστοιχα:

$$(\varepsilon_1): t_1 y = x + a t_1^2,$$

 $(\varepsilon_2): t_2 y = x + a t_2^2.$

Το σημείο Γ τομής τους προκύπτει λύνοντας το σύστημα:

$$t_1y - x - at_1^2 = 0,$$
 $t_2y - x - at_2^2 = 0.$

Αφαιρούμε κατά μέλη:

$$(t_1 - t_2)y - a(t_1^2 - t_2^2) = 0 \implies y_{\Gamma} = a(t_1 + t_2).$$

Αντικαθιστούμε στην πρώτη εξίσωση:

$$x_{\Gamma} = t_1 y_{\Gamma} - a t_1^2 = a t_1 (t_1 + t_2) - a t_1^2 = a t_1 t_2.$$

Άρα:

$$\Gamma(at_1t_2, \ a(t_1+t_2)). \tag{2}$$

Η $\epsilon \varphi a \pi \tau o \mu \epsilon \nu \eta$ στην κορυφή O(0,0) είναι ο άξονας x=0. Οι $(\varepsilon_1),(\varepsilon_2)$ τέμνουν την x=0 στα σημεία K και Λ . Από x=0:

$$t_1 y = at_1^2 \implies y = at_1, \implies K(0, at_1),$$

 $t_2 y = at_2^2 \implies y = at_2, \implies \Lambda(0, at_2).$

Υπολογίζουμε τα εμβαδά:

Το τρίγωνο OAB έχει κορυφές O(0,0), $A(at_1^2,2at_1)$, $B(at_2^2,2at_2)$, οπότε το εμβαδόν του δίνεται από τον τύπο:

$$E_{OAB} = \frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_O & y_O & 1 \end{vmatrix} = \frac{1}{2} |x_A y_B - x_B y_A| = \frac{1}{2} a^2 |t_1 t_2| |2(t_1 - t_2)|.$$

Από (1), $t_1t_2 = -1$, άρα

$$E_{OAB} = a^2 |t_1 - t_2|. (3)$$

Για το τρίγωνο ΚΛΓ:

$$K(0, at_1), \quad \Lambda(0, at_2), \quad \Gamma(at_1t_2, a(t_1 + t_2)).$$

Το εμβαδόν είναι:

$$E_{K\Lambda\Gamma} = \frac{1}{2} \begin{vmatrix} x_K & y_K & 1 \\ x_{\Lambda} & y_{\Lambda} & 1 \\ x_{\Gamma} & y_{\Gamma} & 1 \end{vmatrix} = \frac{1}{2} |x_{\Gamma}| \cdot |y_{\Lambda} - y_K| = \frac{1}{2} |at_1 t_2| \cdot a|t_2 - t_1| = \frac{1}{2} a^2 |t_1 - t_2|. \tag{4}$$

Από (3) και (4):

$$E_{OAB} = 2 E_{K\Lambda\Gamma}$$
.

32. Δίνεται η παραβολή $y^2=4ax~(a>0)$ με κορυφή O. Έστω A,B σημεία της παραβολής έτσι ώστε οι χορδές OA και OB να είναι κάθετες. Να αποδείξετε ότι ο γ εωμετρικός τόπος του σημείου τομής των εφαπτομένων στα A και B είναι η ευθεία x=-4a.

Λύση: (Aσχ. 6/96)

Παραμετροποιούμε την $y^2 = 4ax$ ως

$$A(at_1^2, 2at_1), \quad B(at_2^2, 2at_2), \quad t_1, t_2 \in \mathbb{R}.$$

<u>Κλίση εφαπτομένης:</u> Για $y^2=4ax$ ισχύει $2y\,y'=4a\Rightarrow y'=\frac{2a}{y}$. Στο σημείο $P(at^2,2at)$ παίρνουμε

$$m_T(t) = \frac{2a}{2at} = \frac{1}{t} \quad \Rightarrow \quad y - 2at = \frac{1}{t}(x - at^2) \iff ty = x + at^2.$$
 (1)

Άρα οι εφαπτόμενες στα A, B είναι

$$t_1y = x + at_1^2, t_2y = x + at_2^2.$$

Λύνοντας το σύστημα, το σημείο τομής Γ ικανοποιεί

$$(t_1 - t_2)y = a(t_1^2 - t_2^2) \implies y_{\Gamma} = a(t_1 + t_2),$$

και από (1) (π.χ. για t_1):

$$x_{\Gamma} = t_1 y_{\Gamma} - a t_1^2 = a t_1 (t_1 + t_2) - a t_1^2 = a t_1 t_2. \tag{2}$$

Κάθετες OA και OB:

χλίση
$$OA=rac{2at_1}{at_1^2}=rac{2}{t_1}, \qquad$$
 χλίση $OB=rac{2}{t_2}.$

Κάθετες $\iff \frac{2}{t_1} \cdot \frac{2}{t_2} = -1 \implies t_1 t_2 = -4.$

$$t_1 t_2 = -4. (3)$$

Από (2) και (3) προκύπτει

$$x_{\Gamma} = a t_1 t_2 = a(-4) = -4a,$$

δηλαδή το x-συντεταγμένο του Γ είναι σ ταθ ϵ ρ δ και ανεξάρτητο των t_1,t_2 .

Συμπέρασμα: Ο γεωμετρικός τόπος των σημείων τομής των εφαπτομένων στα A,B είναι η κατακόρυφη ευθεία

$$x = -4a$$

33. Να βρείτε την $\epsilon \xi$ ίσωση της χορδής της παραβολής $y^2=4ax\ (a>0)$, της οποίας το $\mu \epsilon$ σο είναι το σημείο $A(x_1,y_1)$, σε συνάρτηση των x_1,y_1 .

Λύση: (Ασκ. 7/97)

Θέτουμε τα άχρα της χορδής

$$P(at_1^2, 2at_1), \qquad Q(at_2^2, 2at_2).$$

Εφόσον το μέσο είναι $A(x_1, y_1)$,

$$x_1 = \frac{a(t_1^2 + t_2^2)}{2}, \qquad y_1 = \frac{2a(t_1 + t_2)}{2} = a(t_1 + t_2).$$
 (1)

Από (1) παίρνουμε

$$t_1 + t_2 = \frac{y_1}{a}, \qquad t_1^2 + t_2^2 = (t_1 + t_2)^2 - 2t_1t_2 = \frac{y_1^2}{a^2} - 2t_1t_2,$$

και άρα

$$x_1 = \frac{a}{2} \left(\frac{y_1^2}{a^2} - 2t_1 t_2 \right) \implies t_1 t_2 = \frac{y_1^2}{2a^2} - \frac{x_1}{a}.$$
 (2)

Η εξίσωση της ευθείας PQ γράφεται y=mx+c. Για κάθε σημείο της παραβολής $(x,y)=(at^2,2at)$ που ανήκει στην ευθεία ισχύει

$$2at = m(at^2) + c \iff mat^2 - 2at + c = 0,$$

της οποίας ρίζες είναι t_1, t_2 . Άρα Vieta,

$$t_1 + t_2 = \frac{2}{m}, \qquad t_1 t_2 = \frac{c}{ma}.$$
 (3)

Από (1) και (3) παίρνουμε

$$m = \frac{2}{t_1 + t_2} = \frac{2}{y_1/a} = \frac{2a}{y_1},$$

και από (2),(3)

$$c = ma t_1 t_2 = \frac{2a}{y_1} \cdot a \left(\frac{y_1^2}{2a^2} - \frac{x_1}{a} \right) = y_1 - \frac{2ax_1}{y_1}.$$

Επομένως η ζητούμενη χορδή είναι

$$y = \frac{2a}{y_1}x + \left(y_1 - \frac{2ax_1}{y_1}\right).$$

Πολλαπλασιάζοντας επί y₁:

$$y y_1 = 2a x + y_1^2 - 2a x_1 \iff y y_1 = 2a(x + x_1) + (y_1^2 - 4ax_1).$$

(Η σχέση ισχύει για κάθε $A(x_1,y_1)$; αν $y_1=0$, η χορδή είναι ο άξονας y=0.)

- **34.** Δίνεται η παραβολή $y^2=4x$ και τα σημεία της $P(\rho^2,2\rho)$ και $T(t^2,2t)$.
- i. Να βρείτε τις *εξισώσεις των εφαπτομένων* στα P,T.
- ii. Να βρείτε τις συντεταγμένες του σημείου τομής M των εφαπτομένων.
- iii. Αν η χορδή PT διέρχεται από το σταθερό σημείο A(2,0), να δείξετε ότι $\rho t=-2$.
- iv. Να βρείτε την εξίσωση της καμπύλης στην οποία ανήχει ο γεωμετρικός τόπος του M.
- ν. Να βρείτε την τιμή του $\rho>0$ για την οποία το $\epsilon\mu\beta a\delta \delta\nu$ του τριγώνου PMT είναι $\epsilon\lambda \dot{a}\chi \imath \sigma \tau \sigma$ και να υπολογίσετε το εμβαδόν αυτό.

$$Λύση:$$
 (Ασκ. 8/97)

Παράγωγος και τύπος σημείου-κλίσης. Από $y^2=4x$ παίρνουμε $2y\,y'=4\Rightarrow y'=\frac{2}{y}$. Στο σημείο $(s^2,2s)$ η κλίση της εφαπτομένης είναι $m=\frac{2}{2s}=\frac{1}{s}$ και

$$y - 2s = \frac{1}{s}(x - s^2) \iff s y = x + s^2.$$
 (*)

i. Για τα σημεία $P(\rho^2, 2\rho)$ και $T(t^2, 2t)$, από (*):

$$(\varepsilon_P): \rho y = x + \rho^2, \qquad (\varepsilon_T): ty = x + t^2.$$

ii. Για το σημείο τομής M των εφαπτομένων λύνουμε το σύστημα:

$$\begin{cases} \rho y = x + \rho^2 \\ t y = x + t^2 \end{cases} \Rightarrow (\rho - t)y = \rho^2 - t^2 = (\rho - t)(\rho + t) \Rightarrow y_M = \rho + t,$$
$$x_M = \rho y_M - \rho^2 = \rho(\rho + t) - \rho^2 = \rho t.$$
$$M(\rho t, \rho + t)$$

iii. Η χορδή PT περνά από το σταθερό σημείο A(2,0). Η κλίση της PT είναι

$$m_{PT} = \frac{2t - 2\rho}{t^2 - \rho^2} = \frac{2}{t + \rho}.$$

Για να ανήκει το A στην PT, πρέπει να ισχύει:

$$\frac{0 - 2\rho}{2 - \rho^2} = \frac{2}{t + \rho} \iff -2\rho(t + \rho) = 2(2 - \rho^2) \iff -\rho t - \rho^2 = 2 - \rho^2 \implies \rho t = -2$$

iv. Από (ii) και (iii): $x_M = \rho t = -2, \ y_M = \rho + t.$ Άρα ο γεωμετρικός τόπος του M έχει εξίσωση x = -2

v. Από
$$\rho t = -2$$
 έχουμε $t = -\frac{2}{\rho}$ με $\rho > 0$. Τότε:

$$P(\rho^2, 2\rho), \quad T\left(\frac{4}{\rho^2}, -\frac{4}{\rho}\right), \quad M(-2, \ \rho - \frac{2}{\rho}).$$

Το εμβαδόν $E(\rho)$ του τριγώνου PMT (τύπος ορίζοντα):

$$E(\rho) = \frac{1}{2} |x_P(y_T - y_M) + x_T(y_M - y_P) + x_M(y_P - y_T)| = \frac{\rho^3}{2} + 3\rho + \frac{6}{\rho} + \frac{4}{\rho^3}.$$

Παράγωγος:

$$E'(\rho) = \frac{3}{2}\rho^2 + 3 - \frac{6}{\rho^2} - \frac{12}{\rho^4} = \frac{3(\rho^2 - 2)(\rho^2 + 2)^2}{2\rho^4}.$$

Για $\rho > 0$, ελάχιστο όταν $\rho = \sqrt{2}$.

$$\rho_{\min} = \sqrt{2}, \quad t_{\min} = -\sqrt{2}, \quad E_{\min} = 8\sqrt{2}$$

35. Να δείξετε ότι η $\epsilon \varphi a \pi \tau o \mu \epsilon \nu \eta$ της παραβολής $y^2=4x$ στο σημείο της $P(\rho^2,2\rho)$ είναι η $\rho y=x+\rho^2$. Αν η εφαπτομένη τέμνει τον άξονα των x στο σημείο A και O είναι η κορυφή της παραβολής, να δείξετε ότι ισχύει:

$$(PA)^2 - (PO)^2 = 3\rho^4.$$

Λύση: (Ασχ. 9/96)

Για την παραβολή $y^2=4x$ έχουμε $2y\,y'=4\Rightarrow y'=rac{2}{y}.$

Στο σημείο $P(\rho^2,2\rho)$ η κλίση της εφαπτομένης είναι

$$m_P = \frac{2}{2\rho} = \frac{1}{\rho}.$$

Η εξίσωση της εφαπτομένης με τύπο σημείου-κλίσης είναι:

$$y - 2\rho = \frac{1}{\rho}(x - \rho^2) \iff \rho y = x + \rho^2.$$

Η εφαπτομένη τέμνει τον άξονα των x (όπου y=0):

$$0 = \frac{1}{\rho}(x - \rho^2) + 2\rho \iff x = \rho^2 - 2\rho^2 = -\rho^2.$$

Άρα:

$$A(-\rho^2,0).$$

Η κορυφή είναι O(0,0) και $P(\rho^2,2\rho)$.

Υπολογίζουμε:

$$PA^{2} = (\rho^{2} - (-\rho^{2}))^{2} + (2\rho - 0)^{2} = (2\rho^{2})^{2} + (2\rho)^{2} = 4\rho^{4} + 4\rho^{2}.$$
$$PO^{2} = (\rho^{2} - 0)^{2} + (2\rho - 0)^{2} = \rho^{4} + 4\rho^{2}.$$

Άρα:

$$(PA)^{2} - (PO)^{2} = (4\rho^{4} + 4\rho^{2}) - (\rho^{4} + 4\rho^{2}) = 3\rho^{4}.$$

36. Έστω η παραβολή $y^2 = 4ax$ με a > 0 και μια $\epsilon \sigma \tau \iota a \kappa \eta$ χορδή της PQ. Να δείξετε ότι:

i. οι $\epsilon \varphi a \pi \tau \delta \mu \epsilon \nu \epsilon \varsigma$ στα άχρα P,Q τέμνονται υπό ορθή γωνία πάνω στη διευθετούσα της παραβολής,

ii. ο κύκλος με διάμετρο την PQ εφάπτεται της διευθετούσας.

Λύση: (Ασχ. 10/97)

Θέτουμε

$$P(at_1^2, 2at_1), \qquad Q(at_2^2, 2at_2)$$

(παραμετρικά σημεία της $y^2 = 4ax$). Εφόσον η PQ είναι $\epsilon \sigma \tau i a \kappa \eta$ χορδή,

$$t_1 t_2 = -1. (1)$$

Η παράγωγος της $y^2=4ax$ δίνει $2y\,y'=4a\Rightarrow y'=rac{2a}{y}$. Στο σημείο $(at^2,2at)$ η κλίση της εφαπτομένης είναι $m=rac{1}{t}$ και η εξίσωσή της (τύπος σημείου-κλίσης) ισοδυναμεί με

$$y - 2at = \frac{1}{t}(x - at^2) \iff t y = x + at^2.$$
 (2)

i. Κάθετες εφαπτόμενες που τέμνουν στη διευθετούσα. Οι εφαπτόμενες στα P,Q από (2) είναι

$$t_1 y = x + at_1^2, t_2 y = x + at_2^2.$$

Τομή τους Γ: αφαιρούμε κατά μέλη

$$(t_1 - t_2)y = a(t_1^2 - t_2^2) \implies y_{\Gamma} = a(t_1 + t_2),$$

και π.χ. στην πρώτη

$$x_{\Gamma} = t_1 y_{\Gamma} - a t_1^2 = a t_1 t_2.$$

Με (1): $x_{\Gamma}=a(-1)=-a$. Άρα Γ ανήκει στη διευθετούσα x=-a. Επιπλέον οι κλίσεις είναι $m_P=\frac{1}{t_1},\ m_Q=\frac{1}{t_2}$ οπότε

$$m_P m_Q = \frac{1}{t_1 t_2} = -1,$$

δηλαδή οι δύο εφαπτόμενες είναι κάθετες. Το (i) αποδείχθηκε.

ii. O κύκλος με διάμετρο PQ εφάπτεται της διευθετούσας. Κέντρο M του κύκλου: μέσο του PQ,

$$M\left(\frac{a(t_1^2+t_2^2)}{2}, \frac{2a(t_1+t_2)}{2}\right) = \left(\frac{a}{2}(t_1^2+t_2^2), a(t_1+t_2)\right).$$

Ακτίνα $r = \frac{PQ}{2}$. Από

$$\Delta x = a(t_1^2 - t_2^2) = a(t_1 - t_2)(t_1 + t_2), \qquad \Delta y = 2a(t_1 - t_2),$$

παίρνουμε

$$r^{2} = \frac{(\Delta x)^{2} + (\Delta y)^{2}}{4} = \frac{a^{2}(t_{1} - t_{2})^{2} \left[(t_{1} + t_{2})^{2} + 4 \right]}{4}.$$
 (3)

 $Aπό t_1t_2 = -1 ισχύει$

$$(t_1 - t_2)^2 = (t_1 + t_2)^2 - 4t_1t_2 = (t_1 + t_2)^2 + 4.$$
(4)

Mε (4) η (3) δίνει

$$r^2 = \frac{a^2}{4} (t_1 - t_2)^4 \quad \Rightarrow \quad r = \frac{a}{2} |t_1 - t_2|^2.$$
 (5)

Η απόσταση του κέντρου M από τη διευθετούσα x=-a είναι

$$d(M, x = -a) = |x_M + a| = \left| \frac{a}{2} (t_1^2 + t_2^2) + a \right| = \frac{a}{2} ((t_1 + t_2)^2 + 4) = \frac{a}{2} |t_1 - t_2|^2.$$
 (6)

Από (5) και (6) προκύπτει d(M, x = -a) = r. Άρα η διευθετούσα είναι $\epsilon \varphi a \pi \tau o \mu \epsilon \nu \eta$ του κύκλου με διάμετρο PQ.

Ο κύκλος με διάμετρο PQ εφάπτεται της διευθετούσας x=-a.

37. Δίνεται η παραβολή $y^2=4ax~(a>0)$, μια χορδή της AB και η εφαπτομένη (ε) που είναι παράλληλη προς την AB. Να αποδείξετε ότι, αν M είναι το μέσο της AB και Γ το σημείο επαφής της (ε) με την παραβολή, τότε η $M\Gamma$ είναι παράλληλη προς τον άξονα της παραβολής (τον x'x).

Λύση: (Ασκ. 11/97)

Παραμετροποιούμε την $y^2 = 4ax$ ως

$$A(at_1^2, 2at_1), \qquad B(at_2^2, 2at_2) \qquad (t_1, t_2 \in \mathbb{R}).$$

Τότε το $\mu \epsilon \sigma \sigma$ της χορδής AB είναι

$$M\left(\frac{a(t_1^2+t_2^2)}{2}, \frac{2a(t_1+t_2)}{2}\right) = \left(\frac{a}{2}(t_1^2+t_2^2), a(t_1+t_2)\right). \tag{1}$$

Κλίση χορδής AB. Η κλίση της AB είναι

$$m_{AB} = \frac{2a(t_2 - t_1)}{a(t_2^2 - t_1^2)} = \frac{2}{t_1 + t_2} \quad (t_1 \neq t_2). \tag{2}$$

Κλίση εφαπτομένης. Από $y^2=4ax$ προκύπτει $2y\,y'=4a\Rightarrow y'=\frac{2a}{y}$. Στο σημείο $(a\tau^2,2a\tau)$ η κλίση της εφαπτομένης είναι

$$m_{\text{expart}}(\tau) = \frac{2a}{2a\tau} = \frac{1}{\tau}.$$
 (3)

Η (ε) είναι παράλληλη προς την $AB \implies$ ίδιες κλίσεις. Από (2),(3): $\frac{1}{\tau}=\frac{2}{t_1+t_2}\Rightarrow \tau=\frac{t_1+t_2}{2}$. Άρα το σημείο επαφής είναι

$$\Gamma(a\tau^2, 2a\tau) = \left(a\left(\frac{t_1 + t_2}{2}\right)^2, 2a \cdot \frac{t_1 + t_2}{2}\right) = \left(\frac{a}{4}(t_1 + t_2)^2, a(t_1 + t_2)\right). \tag{4}$$

Από (1) και (4) παίρνουμε

$$y_M = a(t_1 + t_2) = y_{\Gamma}.$$

Άρα η ευθεία $M\Gamma$ έχει σ ταθερή τεταγμένη και επομένως είναι οριζόντια, δηλαδή παράλληλη προς τον άξονα x'x.

$$M\Gamma \parallel x'x$$

38. Δίνεται η παραβολή $y^2=4ax~(a>0)$ και από σημείο $M(x_0,y_0)$ εκτός της παραβολής άγονται οι εφαπτόμενες $\varepsilon_1,\varepsilon_2$. Αν M_1,M_2 είναι τα σημεία επαφής των $\varepsilon_1,\varepsilon_2$ με την παραβολή, να αποδείξετε ότι η χορδή επαφής M_1M_2 έχει εξίσωση

$$y y_0 = 2a \left(x + x_0 \right)$$

Λύση: (Ασχ. 12/97)

Εξίσωση εφαπτομένης με παράγωγο και τύπο σημείου-κλίσης.

Από
$$y^2 = 4ax \Rightarrow 2y y' = 4a$$
, άρα $y' = \frac{2a}{y}$.

Στο σημείο της παραβολής $P(at^2,\,2at)$ η κλίση είναι $m=\frac{2a}{2at}=\frac{1}{t}$ και

$$y - 2at = \frac{1}{t}(x - at^2) \iff t y = x + at^2.$$
 (1)

Οι δύο εφαπτόμενες από το $M(x_0,y_0)$ αντιστοιχούν σε δύο τιμές $t=t_1,t_2$ που ικανοποιούν

$$t y_0 = x_0 + at^2 \iff at^2 - y_0t + x_0 = 0.$$
 (2)

Θέτουμε

$$S = t_1 + t_2 = \frac{y_0}{a}, \qquad P = t_1 t_2 = \frac{x_0}{a}.$$
 (3)

Εξίσωση της M_1M_2 . Τα άχρα της είναι $M_1(at_1^2, 2at_1), M_2(at_2^2, 2at_2)$.

Η κλίση της χορδής M_1M_2 (από τον τύπο δύο σημείων) είναι

$$m_{12} = \frac{2a(t_2 - t_1)}{a(t_2^2 - t_1^2)} = \frac{2}{t_1 + t_2} = \frac{2}{S}.$$
 (4)

Με τύπο σημείου-κλίσης από το M_1 :

$$y - 2at_1 = \frac{2}{S}(x - at_1^2) \iff Sy = 2x - 2at_1^2 + 2at_1S = 2x + 2at_1t_2.$$

Άρα

$$Sy = 2x + 2aP.$$

Χρησιμοποιώντας το (3):

$$\frac{y_0}{a}y = 2x + 2a \cdot \frac{x_0}{a} \iff y y_0 = 2a(x + x_0).$$

39. Να εξηγήσετε γιατί ο γ εωμετρικός τόπος των κέντρων των χύχλων που εφάπτονται σε ευθεία (δ) χαι διέρχονται από σταθερό σημείο E είναι παραβολή με εστία το E χαι διευθετούσα την (δ) .

Λύση: (Ασχ. 1/98)

Έστω κύκλος που $\epsilon \varphi$ άπτ ϵ ται στην (δ) και δι ϵ ρχ ϵ ται από το E. Θέτουμε C το κέντρο του και r την ακτίνα του. Η επαφή με την (δ) σημαίνει ότι η απόσταση του C από την (δ) είναι ίση με την ακτίνα:

$$d(C, \delta) = r.$$

Εφόσον το E ανήκει στον κύκλο, η απόσταση του C από το E είναι επίσης r:

$$CE = r$$
.

Άρα για κά ϑ ε τέτοιο κέντρο C ισχύει

$$CE = d(C, \delta).$$

Αυτή αχριβώς είναι ο ορισμός της παραβολής με ϵ στία το σημείο E και διευθετούσα την (δ) : ο τόπος των σημείων που είναι ισαπέχοντα από ένα σταθερό σημείο (εστία) και μια σταθερή ευθεία (διευθετούσα).

Συνεπώς, ο γεωμετρικός τόπος των κέντρων C όλων των ζητούμενων κύκλων είναι παραβολή με εστία E και διευθετούσα (δ) .

Λοκούς $C:\ CE=d(C,\delta)\iff$ παραβολή με εστία E και διευθετούσα $(\delta).$

40. Δίνεται η παραβολή με εξίσωση $y^2=8x$ με $\epsilon \sigma \tau$ ία το σημείο E. Το σημείο A της παραβολής είναι τέτοιο, ώστε το ευθύγραμμο τμήμα AH να είναι κάθετο στη διευθετούσα της παραβολής (H σημείο της διευθετούσας) και η $\widehat{AEH}=30^\circ$. Να υπολογίσετε το $\epsilon \mu \beta a \delta \delta \nu$ και την περίμετρο του τριγώνου AEH.

Λύση: (Ασκ. 2/98)

Η παραβολή έχει τη μορφή $y^2=4ax$ με $4a=8\Rightarrow a=2$.

Άρα:

$$E(2,0), \qquad (\delta): x = -2.$$

Θέτουμε $A(at^2, 2at) \Rightarrow A(2t^2, 4t)$.

Το σημείο H ανήκει στη διευθετούσα, άρα έχει συντεταγμένες $H(-2,y_H)$. Εφόσον το AH είναι κάθετο στη διευθετούσα (δηλαδή παράλληλο στον άξονα x'x), θα έχει σταθερή τεταγμένη $y_A=y_H=4t$.

Άρα:

$$H(-2, 4t)$$
.

Αποστάσεις σημείων:

$$AE = \sqrt{(2t^2 - 2)^2 + (4t - 0)^2} = \sqrt{4(t^2 - 1)^2 + 16t^2} = 2\sqrt{(t^2 - 1)^2 + 4t^2} = 2\sqrt{t^4 + 2t^2 + 1} = 2(t^2 + 1).$$

$$EH = |x_E - x_H| = 2 - (-2) = 4.$$

$$AH = |x_A - x_H| = 2t^2 - (-2) = 2(t^2 + 1).$$

 Δ εδομένο: η $\widehat{AEH}=30^\circ$. Από τον νόμο των συνημιτόνων στο τρίγωνο AEH:

$$\cos 30^{\circ} = \frac{AE^2 + EH^2 - AH^2}{2(AE)(EH)}.$$

Αντικαθιστούμε:

$$\frac{\sqrt{3}}{2} = \frac{(2(t^2+1))^2 + 4^2 - (2(t^2+1))^2}{2 \cdot 2(t^2+1) \cdot 4} = \frac{16}{16(t^2+1)} \Rightarrow \sqrt{3}(t^2+1) = 2 \Rightarrow t^2 = \frac{2}{\sqrt{3}} - 1.$$

Υπολογισμοί πλευρών:

$$AE = 2(t^2 + 1) = 2\left(\frac{2}{\sqrt{3}}\right) = \frac{4}{\sqrt{3}}, \qquad EH = 4, \qquad AH = 2(t^2 + 1) = \frac{4}{\sqrt{3}}.$$

Εμβαδόν:

$$E_{\triangle AEH} = \frac{1}{2}(AE)(EH)\sin 30^{\circ} = \frac{1}{2} \cdot \frac{4}{\sqrt{3}} \cdot 4 \cdot \frac{1}{2} = \frac{4}{\sqrt{3}}.$$

Περίμετρος:

$$\Pi_{\triangle AEH} = AE + EH + AH = \frac{4}{\sqrt{3}} + 4 + \frac{4}{\sqrt{3}} = 4\left(1 + \frac{2}{\sqrt{3}}\right).$$

41. Να βρείτε την εξίσωση της καμπύλης στην οποία ανήχει ο γεωμετρικός τόπος των προβολών της εστίας μιας παραβολής πάνω στις εφαπτόμενές της.

Λύση: (Ασκ. 3/98)

Έστω η παραβολή $y^2 = 4ax$ με

$$E(a,0)$$
 (εστία).

Η εξίσωση εφαπτομένης στο σημείο $P(at^2,2at)$ είναι

$$ty = x + at^2. (1)$$

Θέλουμε την προβολή M(x,y) του E(a,0) πάνω στην εφαπτομένη (1).

Απόσταση σημείου από ευθεία. Η (1) γράφεται σε κανονική μορφή:

$$x - ty + at^2 = 0. (2)$$

Η κλίση της εφαπτομένης είναι $m=\frac{1}{t}$, άρα η κλίση της κάθετης (διεύθυνση της προβολής) είναι -t.

Η ευθεία κάθετη στην (1) που διέρχεται από E(a,0) έχει εξίσωση:

$$y = -t(x - a). (3)$$

Το σημείο τομής της (3) με την (1) είναι η προβολή M. Από (1): $ty=x+at^2 \Rightarrow x=ty-at^2$. Αντικαθιστούμε στη (3):

$$y = -t(ty - at^2 - a) \implies y(1 + t^2) = at^3 + at \implies y = \frac{at(1 + t^2)}{1 + t^2} = at.$$

Άρα

$$y_M = at$$
.

Αντικαθιστούμε στην (1):

$$t(at) = x + at^2 \implies x = at^2 - at^2 = 0.$$

Έτσι:

$$M(0, at)$$
.

Το σημείο M κινείται με $x=0,\ y=at.$ Εφόσον το t παίρνει όλες τις πραγματικές τιμές, ο τόπος των σημείων M είναι η $\epsilon \upsilon \vartheta \epsilon ia$

$$x = 0$$

Άρα, ο γεωμετρικός τόπος των προβολών της εστίας πάνω στις εφαπτόμενες της παραβολής $y^2=4ax$ είναι η κάθετη διάμεσος της παραβολής, δηλαδή ο άξονας συμμετρίας της.