

Statistics Ex 7.4 Q12

Answer:

Given: Median = 525

We prepare the cumulative frequency table, as given below.

Class interval:	Frequency:	Cumulative frequency
	(f_i)	(c.f.)
0-100	2	2
100-200	5	7
200-300	f_1	$7 + f_1$
300-400	12	$19 + f_1$
400-500	17	$36 + f_1$
500-600	20	$56 + f_1$
600-700	f_2	$56 + f_1 + f_2$
700-800	9	$65 + f_1 + f_2$
800-900	7	$72 + f_1 + f_2$
900-1000	4	$76 + f_1 + f_2$
1	$V = 100 = 76 + f_1 + .$	f_2

Now, we have

$$N = 100$$

$$76 + f_1 + f_2 = 100$$

$$76 + f_1 + f_2 = 100$$

$$f_2 = 24 - f_1 \qquad \dots (1)$$

So,
$$\frac{N}{2} = 50$$

Since median = 525 so the median class is 500-600.

Here,
$$l = 500$$
, $f = 20$, $F = 36 + f_1$ and $h = 100$

We know that

Median =
$$l + \left\{ \frac{\frac{N}{2} - F}{f} \right\} \times h$$

 $525 = 500 + \left\{ \frac{50 - (36 + f_1)}{20} \right\} \times 100$
 $25 = \frac{(14 - f_1) \times 100}{20}$
 $25 \times 20 = 1400 - 100 f_1$
 $100 f_1 = 1400 - 500$
 $f_1 = \frac{900}{100}$

Putting the value of f_1 in (1), we get

$$f_2 = 24 - 9$$

= 15

Hence, the missing frequencies are 9 and 15.

Statistics Ex 7.4 Q13

Answer:

Given: Median = 32.5

We prepare the cumulative frequency table, as given below.

Class interval:	Frequency:	Cumulative frequency
	(f_i)	(c.f.)
0-10	f_1	f_1
10-20	5	$5 + f_1$
20-30	9	$14 + f_1$
30-40	12	$26 + f_1$
40-50	f_2	$26 + f_1 + f_2$
50-60	3	$29 + f_1 + f_2$
60-70	2	$31 + f_1 + f_2$
1	$V = 40 = 31 + f_1 + f_2$	f_2

Now, we have

$$N = 40$$

$$31 + f_1 + f_2 = 40$$

$$f_2 = 9 - f_1$$
(1)

Also,
$$\frac{N}{2} = 20$$

Since median = 32.5 so the median class is 30-40.

Here,
$$I = 30$$
, $f = 12$, $F = 14 + f_1$ and $h = 10$

We know that

Median =
$$I + \left\{ \frac{\frac{N}{2} - F}{f} \right\} \times h$$

 $32.5 = 30 + \left\{ \frac{20 - (14 + f_1)}{12} \right\} \times 10$
 $2.5 = \frac{(6 - f_1) \times 10}{12}$
 $2.5 \times 12 = 60 - 10 f_1$
 $10 f_1 = 60 + 30$
 $f_1 = \frac{30}{10}$
 $= 3$

Putting the value of f_1 in (1), we get

$$f_2 = 9 - 3$$

= 6

Hence, the missing frequencies are 3 and 6.

****** END ******