

Agenda

- Quick Project Overview
- Report Status
- Previous Work Review
- Current Working in Progress
- Next Steps

Timeline

- Previous Project Review (code review, interviews, library, etc)
- Digital Model (generic translator & Simulator)
- Synchronization
- Validation
- Digital Twin's Services
- Alignment with MindSphere

MindSphere

MindSphere

- Public Awarding ceremony for Phase-I
- Selected for the next development phase
- Opportunity to test the solution at Industry
 4.0 Lab
- Opportunity to test the solution with other industry partners
- Possibility to use partner software (Plant Simulation)
- MindSphere Solution: Machine Learning for predicting Remaining Cycle Time (input to compare with simulation approach)

Report Status

Generic Digital Twin for predicting remaining Cycle Time of systems

TESI DI LAUREA MAGISTRALE IN XXXXXXX ENGINEERING - INGEGNERIA XXXXXXX

Author: Alex & Pedro

1	Intr	roduction	3					
2	State of the Art							
	2.1	Research Framework	5					
	2.2	Paper selection	7					
		2.2.1 Papers acquisitions	8					
		2.2.2 Criteria: Keywords matching	9					
		2.2.3 Targeting	13					
	2.3	Review: Digital Twin	16					
		2.3.1 Present scenario in Industrial and commercial space	16					
		2.3.2 Research developments in the field of Digital Twins	19					
	2.4	Review: Remaining Cycle Time	21					

Understanding the Existing Architecture

- supervisor class
- analytics class
- controller class
- validation class

- synchroniser class
- MSM
- simulator class
- database class

Mapping Code Functions

Obsidian

Work Review

Interview with previous researchers

- Model generation Giovanni Lugarasi
- Validation of Digital twins Sofia Ganzemi
- Syncronisation of Digital twins Edoardo Passarin

Main Aim of the Interview:

- Discussion on their works
- Clarification of doubts on the respective topics
- Know about their research experience

Available Choices

Simulator:

- ManPy / DREAM
 - Specific for Manufacturing
 - Dedicated functions
 - Written on Python2
 - Lack of updates and appropriate documentations
 - Built on SimPy

ManPy Discrete event simulation in python

Available Choices

Simulator:

- SimPy
 - Generic package
 - Applicable to a wide variety of scenarios
 - continous updates and documentations

Available Choices

Arena®

Simulator:

- Commercial software
 - Arena simulation
 - Technomatix plant simulation
 - Good GUI
 - complex logics for automating between Python and the respective softwares

Current Digital Model

How to use it? (7 lines)

```
environment = simpy.Environment()
model_2stations_closed_path = "models\model_2stations_closed.json"
model_2stations_closed = Model(name= "model_2stations_closed",model
model_2stations_closed.model_translator()
model_2stations_closed.verbose()
model_2stations_closed.run()
model_2stations_closed.analyze_results()
```

Validation: 2s Model (Arena)

Validation: 2s Model (Arena)

```
####### Running Analysis #######
Number of Parts finished: 39
Total time of Simulation: 201
```

```
>>> *** SYSTEM THROUGHPUT: 0.19402985074626866
>>> Cycle Time of each part:
[10, 15, 20, 25, 20, 20, 20, 20, 20, 20, 20, 20
20, 20, 20, 20, 20, 20, 20, 20, 20, 20]
- Maximum Cycle Time: 25
- Minimum Cycle Time: 10
*** AVERAGE CYCLE TIME OF THE SYSTEM: 19.743589
```

Identifier	Count	Limit
No.of.Pallets_Entry	4	Infinite
No.of.Parts_Entry	43	Infinite
No.of.Parts_Exit	39	Infinite

d Q2 at: 35.000000

d Station2 at: 35.000000 d Station1 at: 35.000000

| Station2 at: 40.000000 Parts_Exited: 7.000000 System Time: 20.0000

ed Q1 at: 40.000000

Validation: 5s Model (Arena)

Validation: 5s Model (Arena)

```
####### Running Analysis #######
```

Number of Parts finished: 17

Total time of Simulation: 200100

```
>>> Cycle Time of each part:
[35000, 50000, 65000, 75000, 85000, 95000, 105000, 115000, 185000, 195000]
```

- Maximum Cycle Time: 195000
- Minimum Cycle Time: 35000
- *** AVERAGE CYCLE TIME OF THE SYSTEM: 119062.5 [time unit]

Identifier	Count	Limit	
No.of.Pallets_Entry	100	Infinite	
No.of.Parts_Entry	117	Infinite	
No.of.Parts_Exit	17	Infinite	

Identifier	Average	Half Width	Minimum	Maximum	Observations		
sys_time	1.1971E+	5 (Insuf)	35000.	2.0000E+	5 17		
Part_A.VATime	2 4 .43	2.0	(##)	888	0		
Part_A.NVATime	建心	2922	-22	1830325	0		
Part_A.WaitTime	2 4 .43	200		i.e.e	0		
Part_A.TranTime	DECUP.	202	-22	用量益	0		
Part_A.OtherTime	2 4 .43	55		6 215	0		
Part A.TotalTime	2500	202	-22	1820325	0		
Ougus 2 MaitingTime	00000	(Inc. f)	aaaaa	00000	24		

Validation: 5s Model (Simulink)

Validation: 5s Model (Simulink)

```
Total time of Simulation: 200100

>>> Cycle Time of each part:
[35000, 50000, 65000, 75000, 85000, 95000, 105000, 115000, 185000, 195000]

- Maximum Cycle Time: 195000

- Minimum Cycle Time: 35000
```

*** AVERAGE CYCLE TIME OF THE SYSTEM: 119062.5 [time unit]

####### Running Analysis #####

Number of Parts finished: 17

```
number_of_parts_finished = length(out.Time Out System)
number_of_parts_finished = 17
cycle_time = out.Time_Out_System - out.Time_In_System
 cycle time = 17 \times 1
          35000
          50000
          60000
          70000
          80000
          90000
         100000
         110000
         120000
         130000
avg_cycle_time = mean(cycle_time)
```

avg_cycle_time = 1.1971e+05

Strengths & Weakness

- Flexibility
- Control Over Simulation
- Easy to integrate with database
- Components generations automated
- matching with other softwares
- Library

- Hard coding
- Visualization
- Possible bugs

Timeline and Next Steps

- Validate Digital Model for more complex system and different cases
- Look for more python libraries (?)
- Integrate with the Database
- Validation Implementation
- Synchronization
- Predict Remaining Cycle Time

