Actividad regresión lineal con datos de salario

Fernando Cerriteño Magaña A01702790

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import statsmodels.formula.api as smf
import statsmodels.api as sm
from scipy import stats
```

df = pd.read_csv('/content/ds_salaries.csv')

df.head()

₽	Unnamed:	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
0	0	2020	MI	FT	Data Scientist	70000	EUR	79833	DE	0	DE	L
1	1	2020	SE	FT	Machine Learning Scientist	260000	USD	260000	JP	0	JP	S
2	2	2020	SE	FT	Big Data Engineer	85000	GBP	109024	GB	50	GB	M
3	3	2020	MI	FT	Product Data Analyst	20000	USD	20000	HN	0	HN	S
4	4	2020	SE	FT	Machine Learning	150000	USD	150000	US	50	US	L

Se eliminan las variables que no se ocupan

```
df.drop('Unnamed: 0',axis=1,inplace = True)
df.drop('work_year',axis=1,inplace = True)
df.drop('job_title',axis=1,inplace = True)
df.drop('salary_currency',axis=1,inplace = True)
df.drop('employee_residence',axis=1,inplace = True)
df.drop('cmpany_location',axis=1,inplace = True)
df.drop('cmpany_size',axis=1,inplace = True)
```

df.head()

	experience_level	employment_type	salary	salary_in_usd	remote_ratio
0	MI	FT	70000	79833	0
1	SE	FT	260000	260000	0
2	SE	FT	85000	109024	50
3	MI	FT	20000	20000	0
4	SE	FT	150000	150000	50

Se checa que no existan varibales nulas

```
df.isnull().sum()
```

experience_level (employment_type salary salary_in_usd remote_ratio dtype: int64

Se genera nuevas columnas dummies para trabajar solo con enteros

```
dummies_el = pd.get_dummies(df['experience_level'],prefix='Exp')
dummies_et = pd.get_dummies(df['employment_type'],prefix='Emp')

df = pd.concat([df,dummies_et],axis=1)
df = pd.concat([df,dummies_el],axis=1)
```

Se eliminan experience level y employment type para tabajar con las creadas previamente

```
df.drop('employment_type',axis=1,inplace = True)
df.drop('experience_level',axis=1,inplace = True)
```

		salary	salary_in_usd	remote_ratio	Emp_CT	Emp_FL	Emp_FT	Emp_PT	Exp_EN	Exp_EX	Exp_MI	Exp_SE
	0	70000	79833	0	0	0	1	0	0	0	1	0
Se empieza a revisar que los datos sean independientes												
	0	05000	100004	EU	^	^	4	^	^	^	^	4
corre		ion = df ion	.corr()									

	salary	salary_in_usd	remote_ratio	Emp_CT	Emp_FL	Emp_FT	Emp_PT	Exp_EN	Exp_EX	Exp_MI	Е
salary	1.000000	-0.083906	-0.014608	-0.008268	-0.014568	0.025685	-0.020006	-0.015845	0.014130	0.074626	-0.0
salary_in_usd	-0.083906	1.000000	0.132122	0.092907	-0.073863	0.091819	-0.144627	-0.294196	0.259866	-0.252024	0.3
remote_ratio	-0.014608	0.132122	1.000000	0.065149	-0.016865	-0.023834	-0.002935	-0.010490	0.041208	-0.127850	0.1
Emp_CT	-0.008268	0.092907	0.065149	1.000000	-0.007423	-0.506989	-0.011795	0.066013	0.070739	-0.028817	-0.0
Emp_FL	-0.014568	-0.073863	-0.016865	-0.007423	1.000000	-0.453089	-0.010541	-0.033537	-0.017229	0.068108	-0.0
Emp_FT	0.025685	0.091819	-0.023834	-0.506989	-0.453089	1.000000	-0.719987	-0.167828	-0.008698	-0.006597	0.1
Emp_PT	-0.020006	-0.144627	-0.002935	-0.011795	-0.010541	-0.719987	1.000000	0.204028	-0.027379	-0.013805	-0.1
Exp_EN	-0.015845	-0.294196	-0.010490	0.066013	-0.033537	-0.167828	0.204028	1.000000	-0.087108	-0.302761	-0.3
Exp_EX	0.014130	0.259866	0.041208	0.070739	-0.017229	-0.008698	-0.027379	-0.087108	1.000000	-0.155539	-0.1
Exp_MI	0.074626	-0.252024	-0.127850	-0.028817	0.068108	-0.006597	-0.013805	-0.302761	-0.155539	1.000000	-0.6
Exp_SE	-0.065995	0.343513	0.113071	-0.047768	-0.034520	0.128381	-0.119762	-0.381033	-0.195751	-0.680373	1.0

alta_corr = np.where((correlacion>0.95)&(correlacion<1))
alta_corr</pre>

(array([], dtype=int64), array([], dtype=int64))

baja_corr = np.where((correlacion<-0.95)&(correlacion>-1))

(array([], dtype=int64), array([], dtype=int64))

Debido a que no se necesito estandarizar los datos, se continua con la regresión lineal

Se divide la base de datos para el modelo con una semilla predeterminada

entrenamiento,prueba=train_test_split(df,test_size=0.20,random_state=42)

entrenamiento

	salary	salary_in_usd	remote_ratio	Emp_CT	Emp_FL	Emp_FT	Emp_PT	Exp_EN	Exp_EX	Exp_MI	Exp_SE
9	125000	125000	50	0	0	1	0	0	0	0	1
227	75000	88654	50	0	0	1	0	0	0	1	0
591	144854	144854	100	0	0	1	0	0	0	0	1
516	152500	152500	100	0	0	1	0	0	0	0	1
132	38400	38400	100	0	0	1	0	0	0	1	0
***		***	***								
71	37000	42197	50	0	0	1	0	0	0	1	0
106	235000	187442	100	0	0	1	0	0	0	1	0
270	72500	72500	100	0	0	1	0	1	0	0	0
435	70000	91614	100	0	0	1	0	0	0	1	0
102	11000000	36259	50	0	0	1	0	0	0	1	0
485 rc	485 rows × 11 columns										

	salary	salary_in_usd	remote_ratio	Emp_CT	Emp_FL	Emp_FT	Emp_PT	Exp_EN	Exp_EX	Exp_MI	Exp_SE
563	140250	140250	100	0	0	1	0	0	0	0	1
289	135000	135000	100	0	0	1	0	0	0	0	1
76	100000	100000	100	0	0	1	0	0	0	1	0
78	270000	270000	100	1	0	0	0	0	0	1	0
182	22000	26005	0	0	0	1	0	0	0	1	0
		***	***								***
249	170000	170000	100	0	0	1	0	0	0	0	1
365	138600	138600	100	0	0	1	0	0	0	0	1
453	120000	120000	100	0	0	1	0	0	0	1	0
548	99050	99050	100	0	0	1	0	0	0	0	1
235	110000	110000	0	0	0	1	0	0	0	1	0

122 rows × 11 columns

Se empieza a trabajar en el modelo

```
#salary_in_usd es la variable dependiente
#Se omite EMP_PT y EXP_SE debido a que quedan implicitas
modelo=smf.ols(formula='salary_in_usd~salary+Exp_EN+Exp_EX+Exp_MI',data=entrenamiento)
modelo = modelo.fit()
print(modelo.summary())
```

OLS Regression Results

Dep. Variable:	salary_in_usd	R-squared:	0.253
Model:	OLS	Adj. R-squared:	0.247
Method:	Least Squares	F-statistic:	40.70
Date:	Wed, 16 Aug 2023	Prob (F-statistic):	2.24e-29
Time:	18:16:29	Log-Likelihood:	-6047.6
No. Observations:	485	AIC:	1.211e+04
Df Residuals:	480	BIC:	1.213e+04
Df Model:	4		
Covariance Type:	nonrohust		

covar zarrec	· ypc ·	110111 00	456			
	coef	std err	t	P> t	[0.025	0.975]
Intercept salary	1.413e+05 -0.0068	4276.518	33.037	0.000	1.33e+05 -0.013	1.5e+05 -0.001
Exp_EN	-7.754e+04	8570.685	-9.048	0.000	-9.44e+04	-6.07e+04
Exp_EX Exp_MI	6.913e+04 -4.91e+04	1.42e+04 6483.621	4.883 -7.573	0.000	4.13e+04 -6.18e+04	9.69e+04 -3.64e+04
Omnibus:		239.	858 Durbin	n-Watson:		1.990
Prob(Omnib	us):	0.	000 Jarque	e-Bera (JB)):	1925.137
Skew:		1.	990 Prob(JB):		0.00
Kurtosis:		11.	912 Cond.	No.		5.07e+06

Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 5.07e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Analizando el resumen obtenido, se observa que:

```
r^2 = 0.253
```

En este caso la expresión es y = $\beta_0 + \beta_1 X + ... + \beta_n X_n$

 β_0 siendo Intercept en la tabla mostrada previamente

Tomando en cuenta los p-values, la ecuación matemática que describe el modelo es:

```
y = 1.413e+05 - 0.0068 * 'salary' - 7.754e+04 * 'Exp_EN' + 6.913e+04 * Exp_EX - 4.91e+04 * Exp_MI
```

y_aprox=9.787e+04-0.0067*prueba['salary']+7.688e+04*prueba['Exp_EN']-4.479e+04*prueba['Exp_EN']+6.662e+04*prueba['Exp_EN']-4.79e+04*prueba['Exp_EN'] $y_aprox = 1.413e + 05 - 0.0068 * prueba['salary'] - 7.754e + 04 * prueba['Exp_EN'] + 6.913e + 04 * prueba['Exp_EX'] - 4.91e + 04 * prueba['Exp_MI'] + 0.913e + 0.91$

 $\verb| tabla=pd.DataFrame(('Real':prueba['salary_in_usd'], 'Prediccion':y_aprox, 'Error':prueba['salary_in_usd']-y_aprox|)|$

	Real	Prediccion	Error
563	140250	140346.30	-96.30
289	135000	140382.00	-5382.00
76	100000	91520.00	8480.00
78	270000	90364.00	179636.00
182	26005	92050.40	-66045.40

249	170000	140144.00	29856.00
365	138600	140357.52	-1757.52
453	120000	91384.00	28616.00
548	99050	140626.46	-41576.46
235	110000	91452.00	18548.00

Gráfico de disperción

122 rows × 3 columns

```
{\tt import\ matplotlib.pyplot\ as\ plt}
plt.scatter(prueba['salary_in_usd'],y_aprox,color='purple')
plt.plot(prueba['salary_in_usd'],prueba['salary_in_usd'],color='red')
plt.title('Gráfico de dispersión')
plt.xlabel('Datos reales')
plt.ylabel('Prediccion')
```


Histograma

#qqplot

QQ=sm.qqplot(tabla['Error'],stats.norm,line='45')
plt.title('Gráfico qqplots')

-50000 -100000

20

60

Numero del residuo

80

100

120

```
plt.hist(x=tabla['Error'],color='orange')
plt.xlabel('Residuos')
plt.xlabel('Residuos')
plt.ylabel('Frecuencia(probabilidad)')

Text(0, 0.5, 'Frecuencia(probabilidad)')

Histograma residuos

35

30

(Pep)
15

10

50000 100000 150000 200000 250000

Residuos

media=tabla['Error'].mean()
std=tabla['Error'].std()
Error_est=tabla['Error']-media/std
```


Productos de pago de Colab - Cancelar contratos