СОДЕРЖАНИЕ

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ	3
введение	4
1 Исследование предметной области	5
1.1 Исследование особенностей систем агрегирования данных	5
1.1.1 Определение и назначение систем агрегирования данных	5
1.1.2 Классификация систем агрегирования данных	5
1.1.3 Архитектурные принципы систем агрегирования данных	5
1.2 Исследование методов выполнения аналитических запросов	6
1.2.1 Введение в аналитические запросы	6
1.2.2 Основные методы выполнения аналитических запросов	6
1.2.2.1 OLAP (Online Analytical Processing)	6
1.2.2.2 MapReduce	6
1.2.2.3 SQL и NoSQL-подходы	6
1.2.2.4 Индексы и материализованные представления	6
1.3 Исследование особенностей работы оперативной аналитической	
обработки	7
1.3.1 Определение оперативной аналитической обработки (OLAP)	7
1.3.2 Основные принципы OLAP	7
1.3.3 Технологии оперативной аналитической обработки	7
1.3.4 Преимущества и недостатки OLAP	7

термины и определения

В настоящем отчете применяют следующие термины, сокращения и определения с соответствующими определениями.

OLAP	
API	
ETL	
ВІ-система	
БД	
NoSQL-	
хранилищами	
batch processing	
stream processing	
OLAP	
MOLAP	
ROLAP	
HOLAP	
MapReduce	
SQL	
PostgreSQL	
MySQL	
Oracle	
СУБД	

ВВЕДЕНИЕ

В современном мире финансовая аналитика требует обработки больших объемов данных, поступающих из различных источников. Для эффективного анализа и принятия решений необходимо агрегировать данные, сводя их к структурированным наборам, удобным для последующей обработки. В данной главе рассматриваются особенности систем агрегирования данных, их архитектурные принципы и функциональные возможности.

1 Исследование предметной области

1.1 Исследование особенностей систем агрегирования данных

1.1.1 Определение и назначение систем агрегирования данных

Системы агрегирования данных представляют собой программные и аппаратные комплексы, предназначенные для сбора, обработки, обобщения и хранения информации из разнородных источников. Эти системы применяются для консолидации данных и их подготовки к аналитической обработке.

Основные задачи агрегирования данных:

- Объединение данных из различных источников (базы данных, АРІ, файловые хранилища);
 - Очистка и трансформация данных;
 - Поддержка процессов ETL (Extract, Transform, Load);
 - Обеспечение оперативного доступа к агрегированным данным;
 - Подготовка данных для аналитических и ВІ-систем.

1.1.2 Классификация систем агрегирования данных

Системы агрегирования данных можно классифицировать по различным критериям:

- По типу источников данных: работающие с реляционными БД, NoSQL-хранилищами, потоковыми данными.
- По способу обработки: пакетная обработка (batch processing), потоковая обработка (stream processing), гибридные подходы.
 - По архитектуре: централизованные системы, распределенные системы.

1.1.3 Архитектурные принципы систем агрегирования данных

Современные системы агрегирования данных строятся на основе следующих архитектурных подходов:

- Многоуровневые архитектуры, включающие уровни сбора, обработки и хранения данных.
- Микросервисный подход, обеспечивающий гибкость и масштабируемость.
- Использование облачных технологий, позволяющее динамически изменять ресурсы под нагрузку.

1.2 Исследование методов выполнения аналитических запросов

1.2.1 Введение в аналитические запросы

Аналитические запросы предназначены для обработки больших объемов данных с целью выявления закономерностей, трендов и аномалий. Они широко используются в финансовой аналитике для расчета премий, оценки рисков и прогнозирования.

1.2.2 Основные методы выполнения аналитических запросов

1.2.2.1 OLAP (Online Analytical Processing)

OLAP-технология предназначена для многомерного анализа данных и позволяет выполнять сложные аналитические запросы. Основные типы OLAP:

- MOLAP (Multidimensional OLAP) хранение данных в многомерных кубах.
- ROLAP (Relational OLAP) хранение данных в реляционных таблицах, обработка с помощью SQL-запросов.
- HOLAP (Hybrid OLAP) гибридный подход, сочетающий MOLAP и ROLAP.

1.2.2.2 MapReduce

Метод MapReduce позволяет обрабатывать большие объемы данных параллельно на распределенных системах. Этот метод эффективен для работы с неструктурированными и полуструктурированными данными.

1.2.2.3 SQL и NoSQL-подходы

- SQL-методы: Используются в традиционных реляционных БД (PostgreSQL, MySQL, Oracle) для аналитических запросов с агрегацией (SUM, AVG, COUNT, GROUP BY).
- NoSQL-методы: Используются в документоориентированных, графовых и других БД (MongoDB, Cassandra) для обработки данных в реальном времени.

1.2.2.4 Индексы и материализованные представления

Для ускорения аналитических запросов применяются индексы (Вдеревья, Віtтар-индексы) и материализованные представления, хранящие предварительно рассчитанные результаты запросов.

1.3 Исследование особенностей работы оперативной аналитической обработки

1.3.1 Определение оперативной аналитической обработки (OLAP)

Оперативная аналитическая обработка (OLAP) представляет собой технологию, обеспечивающую быстрый доступ к агрегированным данным в многомерных структурах. OLAP используется в системах финансовой аналитики для мгновенного расчета показателей, таких как премии, рентабельность и финансовые риски.

1.3.2 Основные принципы OLAP

- Многомерность данных: Данные организованы в виде кубов с различными измерениями (время, категория, география).
- Агрегация: Данные сводятся к обобщенным показателям, что снижает объем вычислений.
- Оптимизация хранения: Используются специальные структуры данных для быстрого доступа.

1.3.3 Технологии оперативной аналитической обработки

Среди наиболее распространенных технологий OLAP можно выделить:

- Apache Druid: Высокопроизводительная аналитическая база данных для работы с потоковыми и историческими данными.
- ClickHouse: Колонночная СУБД с высокой скоростью выполнения аналитических запросов.
- Microsoft Analysis Services: Инструмент для работы с OLAP-кубами в экосистеме Microsoft.

1.3.4 Преимущества и недостатки OLAP

Преимущества:

- Высокая скорость выполнения запросов за счет предварительной агрегации данных.
 - Возможность многомерного анализа данных.
 - Поддержка сложных аналитических вычислений.

Недостатки:

- Высокие затраты на вычислительные ресурсы.
- Ограниченная гибкость по сравнению с транзакционными базами данных.
 - Сложность настройки и поддержки.