NYC Marathon

The Effect of Marathon Road Closures on Ride Service Times

Yining Zhao, Justin Goh, Eugene Tan, Bradley Turcios, Ronald Smith

Background

- NYC Marathon Largest Single Event in NYC
- Significant Road Closures
 - Over 42 streets closed to traffic
 - No Buses allowed to cross 5th Ave
- Increased Human Traffic
 - Spectators wanting to view the race
 - O Runners trying to get to the start line, and heading home after the race

Problem Statement

- New Yorkers have a hard time getting around on race day
- How can road closures be planned to minimise disruption to service times

Goal

- Develop a model to investigate the effect of specific road closures on taxi service times
- Develop heuristics to guide selection of roads for closure

Initial Exploration

Initial Exploration

Step 1:Creating a Network

Step 2: Simulating Road Closures

Road Closure	Taxi Zones Affected
Central Park	43
1 st Ave	140, 262
5 th Ave	74, 75, 236, 237

Step 2: Simulating Road Closures

1st Avenue Closed, "140", "262"

Central Park Closed, "43"

1st Ave, 5th Ave, Central Park Closed

Step 3: Calculating Travel Times

Increase in Travel Time Due to Closures

- 1. Majority of Routes: No Change in Travel Time
- 2. Non-Linear Disruptive Effect of Incremental Road Closures
- 3. Corner Nodes are Less Disruptive (Closing 1st Avenue)

Global Increase in Travel Time Due to Closures

Estimating Demand Rates

Time	Node
00:00-08:00	Non-Peak
08:01-10:00	Peak
10:01-16:00	Non-Peak
17:00-19:00	Peak
19:00-23:59	Non-Peak

5 Demand Rates per Zone

Approximating Dropoff Location

Uniformly Distributed By Zone

Closed Road	Mean Time Increase
Central Park & Surrounding Roads	1.15 min/ ride
5 th Avenue	1.94 min/ ride
1 st Avenue, 5 th Avenue, Central Park	2.94 min/ride

- 1. Global Increase in Travel Time = \sum Mean Increase in Travel Time per Zone x Demand per Zone
- 2. Mean Time Increase = Global Time Increase / Total No of Rides

Conclusions

- Impact of Closure of Roads during the New York Marathon
 - o 47.4% of all Trips Ride Time Increased
 - o 2.94 min/ride Increase
- Potential Planning Guidelines
 - o Boundary/ Perimeter Road Closures have Least Impact
 - Reopen Roads by 10am will Mitigate Impact of Road Closures
- Limitation of Project
 - Use of Zones for Nodes in Lieu of Road Junctions
 - Results Shown Represent Worst Case Scenario

Further Work/Improvements

- Increase Data Set
- Higher Resolution Network
 - Increased Accuracy
 - o More Reflective of Road Closures rather than Zonal Closures
- Changing the Objective
 - o Defining Optimal in terms of Revenue
- Additional Constraints
 - Incorporate Race Considerations
 - (eg. Desirability of Roads to Runners)

Source: https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b