Modelos Regressivos e Séries Temporais

Diógenes Justo diogenes.justo@gmail.com

Referências

- Gujarati, Econometria Básica
- Hamilton, Time Series
- http://www.icmc.usp.br/~ehlers/slides-st.pdf
- A. Coghlan, A Little Book of R for Time Series

Modelos de Regressão Linear

Representação de um modelo contínuo
 y(t) = at + b + e(t)

Representação de um modelo discreto

$$y_{t} = at + b + e_{t}$$


```
(Terceiro grupo)

(Segundo grupo)

(Primeiro grupo)
```


$$D = \begin{cases} 1, & \text{se a observação verifica a característica que define o segundo grupo} \\ 0, & \text{caso contrário} \end{cases}$$

Modelo regressão linear com *dummy* de sazonalidade:

$$y_t = at + b_1 + b_2D_1 + b_3D_2 + ... + e_t$$

Onde D_i é a dummy para o i-ésimo período sazonal

Modelo (puramente) determinístico:

$$y(t) = at + b$$

• Modelo regressão linear:

```
y(t) = at + b + e(t)
e(t) => componente probabilístico adicionado ao
sistema
```

 Se for eliminado o componente determinístico?

$$y(t) = e(t)$$

e(t) => componente probabilístico adicionado ao sistema

Ou seja, é um modelo estritamente aleatório, randômico

Exemplos 3.* em R

Processo Estocástico

 Conjunto de variáveis aleatórias indexadas representando a evolução de um sistema sobre o tempo

Série Temporal

- Coleção de observações feitas ao longo do tempo (ordem é essencial), em períodos com intervalos constantes
- Observações vizinhas são dependentes:

$$y_t = y_t(y_{t-1})$$

Modelo(processo) Autoregressivo

Modelo (puramente) determinístico

$$y_t = ay_{t-1} + b$$

Modelo para processo estocástico

 $y_t = ay_{t-1} + b + e_t$ (incluindo fator probabilístico, estocástico)

Obs: chamamos de modelo autoregressivo de ordem 1, pois foi utilizado um período anterior

Modelo Autoregressivo ordem p

Generalizando:

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + ... + a_p y_{t-p} + b + e_t$$

Modelo Autoregressivo ordem 4

• Ex. numérico:

	x(t)	x(t-1)	x(t-2)	x(t-3)	x(t-4)
1					578.25
2				578.25	577.91
3			578.25	577.91	576.89
4		578.25	577.91	576.89	575.96
5	578.25	577.91	576.89	575.96	576.80
6	577.91	576.89	575.96	576.80	577.68
7	576.89	575.96	576.80	577.68	578.38
8	575.96	576.80	577.68	578.38	578.52
9	576.80	577.68	578.38	578.52	579.74

Exemplos 4.* em R

Processos Estacionários e Não estacionários

Definição 3.1 Um processo estocástico é dito ser estritamente estacionário se a distribuição de probabilidade conjunta de $X(t_1), \ldots, X(t_k)$ é a mesma de $X(t_1 + \tau), \ldots, X(t_k + \tau)$.

Processos Estacionários e Não estacionários

Processos Estacionários

Um processo estocástico Z_t é estacionário quando as propriedades estatísticas de qualquer sequência finita $z_1, z_2, \ldots z_k$ de componentes de Z_t são semelhantes às da sequência $z_{1+h}, z_{2+h}, \ldots z_{k+h}$ para qualquer número inteiro h

Processos Não Estacionários

Um processo estocástico Z_t é não estacionário quando as **propriedades estatísticas de ao menos uma sequência finita** $z_1, z_2, ...$ z_k de componentes de Z_t são **diferentes** das de sequência $z_{1+h}, z_{2+h}, ...$ z_{k+h} para **ao menos um** número inteiro h

Passeio aleatório

Um processo $\{X_t\}$ é chamada de passeio aleatório se

$$X_t = X_{t-1} + \epsilon_t$$
.

Fazendo-se substituições sucessivas,

$$X_{t} = X_{t-2} + \epsilon_{t-1} + \epsilon_{t}$$

$$= X_{t-3} + \epsilon_{t-2} + \epsilon_{t-1} + \epsilon_{t}$$

$$\vdots$$

$$= X_{0} + \sum_{j=1}^{t} \epsilon_{j} = \sum_{j=1}^{t} \epsilon_{j}, \text{ para } X_{0} = 0.$$

Se E(e_t)=0 ao assumirmos um passeio aleatório, não há o que estimar!

Passeio aleatório?

http://www.revista.ufpe.br/gestaoorg/index.php/gestao/article/viewFile/130/112

