Ben Langmead



Department of Computer Science



Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).



|   | Α | С | G | Т | - |
|---|---|---|---|---|---|
| Α | 0 | 4 | 2 | 4 | 8 |
| С | 4 | 0 | 4 | 2 | 8 |
| G | 2 | 4 | 0 | 4 | 8 |
| Т | 4 | 2 | 4 | 0 | 8 |
| _ | 8 | 8 | 8 | 8 |   |

Could also use *larger* scores for similarities and *smaller* scores for dissimilarities...

E.g. subtract one then change sign

...as long as we switch min to max:

```
A
C
G
T
-

A
1
-3
-1
-3
-7

C
-3
1
-3
-1
-7

G
-1
-3
1
-3
-7

T
-3
-1
-3
1
-7

-
-7
-7
-7
-7
-7
```



| S | (a, | b) |
|---|-----|----|
|   | \   |    |

|   | Α  | С  | G  | Т  | ı  |
|---|----|----|----|----|----|
| Α | 1  | -3 | -1 | -3 | -7 |
| С | -3 | 1  | -3 | -1 | -7 |
| G | -1 | -3 | 1  | -3 | -7 |
| Т | -3 | -1 | -3 | 1  | -7 |
| _ | -7 | -7 | -7 | -7 |    |



| s(a, b) |
|---------|
|---------|

|   | Α | С | G | Т | - |
|---|---|---|---|---|---|
| А | 0 | 4 | 2 | 4 | 8 |
| С | 4 | 0 | 4 | 2 | 8 |
| G | 2 | 4 | 0 | 4 | 8 |
| Т | 4 | 2 | 4 | 0 | 8 |
| - | 8 | 8 | 8 | 8 |   |

Same traceback



| s | (a, | b) |
|---|-----|----|
|   | \   |    |

|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| Α | 1  | -3 | -1 | -3 | -7 |
| С | -3 | 1  | -3 | -1 | -7 |
| G | -1 | -3 | 1  | -3 | -7 |
| Т | -3 | -1 | -3 | 1  | -7 |
| - | -7 | -7 | -7 | -7 |    |

Similarities (matches) get score >0

Dissimilarities (mismatches and gaps) get score <0

Given strings x and y, what is the optimal global alignment value of a substring of x to a substring of y. This is local alignment.



Assume scoring function where: (a) similarities get scores > 0, (b) dissimilarities get scores < 0, (c) global alignment value for  $x = \epsilon$ ,  $y = \epsilon$  is 0

Given strings x and y, what is the optimal global alignment value of a substring of x to a substring of y. This is local alignment.

- y struts\_and\_frets\_his\_hour\_upon\_the\_stage



Assume scoring function where: (a) similarities get scores > 0, (b) dissimilarities get scores < 0, (c) global alignment value for  $x = \epsilon$ ,  $y = \epsilon$  is 0

In some way, we're considering all possible pairs of substrings

What roughly is # substring pairs, where |x| = n, |y| = m?  $O(m^2n^2)$ 

Surprisingly, we'll do it in O(mn)

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.



Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.

Small example:



|   | Α  | С  | G  | Т  | _  |
|---|----|----|----|----|----|
| Α | 1  | -1 | -1 | -1 | -1 |
| С | -1 | 1  | -1 | -1 | -1 |
| G | -1 | -1 | 1  | -1 | -1 |
| Т | -1 | -1 | -1 | 1  | -1 |
| _ | -1 | -1 | -1 | -1 |    |

What value goes here?

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.



|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| Α | 1  | -1 | -1 | -1 | -1 |
| С | -1 | 1  | -1 | -1 | -1 |
| G | -1 | -1 | 1  | -1 | -1 |
| Т | -1 | -1 | -1 | 1  | -1 |
| _ | -1 | -1 | -1 | -1 |    |

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.



|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| А | 1  | -1 | -1 | -1 | -1 |
| С | -1 | 1  | -1 | -1 | -1 |
| G | -1 | -1 | 1  | -1 | -1 |
| Т | -1 | -1 | -1 | 1  | -1 |
| - | -1 | -1 | -1 | -1 |    |

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.



|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| А | 1  | -1 |    | -1 | -1 |
| С | -1 | 1  | -1 | -1 | -1 |
| G | -1 | -1 | 1  | -1 | -1 |
| Т | -1 | -1 | -1 | 1  | -1 |
| - | -1 | -1 | -1 | -1 |    |

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.

Small example:

What value goes here?



|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| Α | 1  | -1 | -1 | -1 | -1 |
| С | -1 | 1  | -1 | -1 | -1 |
| G | -1 | -1 | 1  | -1 | -1 |
| Т | -1 | -1 | -1 | 1  | -1 |
| _ | -1 | -1 | -1 | -1 |    |

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.



|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| Α | 1  | -1 | -1 | -1 | -1 |
| С | -1 | 1  | -1 | -1 | -1 |
| G | -1 | -1 | 1  | -1 | -1 |
| Т | -1 | -1 | -1 | 1  | -1 |
| _ | -1 | -1 | -1 | -1 |    |

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.

|   | E | T | C | Α | G |
|---|---|---|---|---|---|
| E | 0 | 0 | 0 | 0 | 0 |
| C | 0 | 0 | 1 | 0 | 0 |
| Α | 0 | 0 | 0 | 2 | 1 |
| C | 0 | 0 | 1 | 1 | 1 |

|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| Α | 1  | -1 | -1 | -1 | -1 |
| С | -1 | 1  | -1 | -1 | -1 |
| G | -1 | -1 | 1  | -1 | -1 |
| Т | -1 | -1 | -1 | 1  | -1 |
| - | -1 | -1 | -1 | -1 |    |

Let V[i, j] be the optimal global alignment among substrings of x ending at i and substrings of y ending at j. The substrings may be empty.



How to find best *local alignment*, i.e. the pair of substrings of *X* and *Y* with highest global alignment value?

max(V[i, j]) over all i, j

How to calculate V[i, j]?



As for edit distance, there are only so many possibilities:

*Empty*: let both substrings be empty, global alignment value = 0

*Vertical*: append **D** to transcript for V[*i*-1, *j*], add penalty

*Horizontal*: append  $\mathbf{I}$  to transcript for V[i, j-1], add penalty

*Diagonal*: append M or R to transcript for V[*i*-1, *j*-1], add match bonus or replacement penalty as appropriate

See also: Gusfield 11.7.1 - 11.7.2

Let 
$$V[0, j] = 0$$
, and let  $V[i, 0] = 0$ 

Otherwise, let 
$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

s(a,b) assigns a score to a particular match, gap, or replacement (gap = insertion or deletion)

What's different from global alignment?

First row, column initialized to 0s

0 is one of the arguments of the max (because of  $\varepsilon$ ,  $\varepsilon$ )

Scoring function with differences < 0, matches > 0

Dynamic-programming implementation of this is called Smith-Waterman

Does it make sense that first row and column get all 0s? Yes, b/c global alignment value of  $\epsilon$ ,  $\epsilon$  (0) always best

|     |            | Υ          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|-----|------------|------------|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|
|     | _          | $\epsilon$ | Τ | Α | Τ | Α | Τ | G | C | G | G | C | G | Τ | Τ | <u>T</u> |
|     | $\epsilon$ | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        |
|     | G          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | G          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | Т          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | Α          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | Т          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | G          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| X   | C          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| , , | C<br>T     | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | G          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | G          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | C          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | G          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | C          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | Т          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | Α          | 0          |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|     | •          |            |   |   |   |   |   |   |   |   |   |   |   |   |   |          |

| s | (a | , | b)            | ) |
|---|----|---|---------------|---|
|   |    |   | $\overline{}$ |   |

|   | Α  | C  | G  | H  | I  |
|---|----|----|----|----|----|
| Α | 2  | -4 | -4 | -4 | -6 |
| С | -4 | 2  | -4 | -4 | -6 |
| G | -4 | -4 | 2  | -4 | -6 |
| Т | -4 | -4 | -4 | 2  | -6 |
| - | -6 | -6 | -6 | -6 |    |

$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

|            | $\epsilon$ | Т | Α | Т | Α         | Т | G | C | G | G | C | G | Т | Т | Т |
|------------|------------|---|---|---|-----------|---|---|---|---|---|---|---|---|---|---|
| $\epsilon$ | 0          | 0 | 0 | 0 | 0         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G          | 0          | 0 | 0 | 0 | 0         | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 |
| G          | 0          | 0 | 0 | 0 | 0         | 0 | 2 | 0 | 2 | 4 | 0 | 2 | 0 | 0 | 0 |
| Т          | 0          | 2 | 0 | 2 | 0         | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 2 |
| Α          | 0          | 0 | 4 | 0 | <b>^.</b> |   |   |   |   |   |   |   |   |   |   |
| Т          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| G          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| C          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| Т          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| G          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| G          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| C          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| G          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| C          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| Т          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |
| Α          | 0          |   |   |   |           |   |   |   |   |   |   |   |   |   |   |

# s(a,b)

|   | Α  | C  | G  | H  | I  |
|---|----|----|----|----|----|
| Α | 2  | -4 | -4 | -4 | -6 |
| С | -4 | 2  | -4 | -4 | -6 |
| G | -4 | -4 | 2  | -4 | -6 |
| Т | -4 | -4 | -4 | 2  | -6 |
| - | -6 | -6 | -6 | -6 |    |

$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

|            | $\epsilon$ | Т | Α | Т | Α | Т | G | С  | G | G | C  | G  | Т | Т  | <u>T</u> |
|------------|------------|---|---|---|---|---|---|----|---|---|----|----|---|----|----------|
| $\epsilon$ | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0  | 0 | 0  | 0        |
| G          | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2 | 2 | 0  | 2  | 0 | 0  | 0        |
| G          | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2 | 4 | 0  | 2  | 0 | 0  | 0        |
| Т          | 0          | 2 | 0 | 2 | 0 | 2 | 0 | 0  | 0 | 0 | 0  | 0  | 4 | 2  | 2        |
| Α          | 0          | 0 | 4 | 0 | 4 | 0 | 0 | 0  | 0 | 0 | 0  | 0  | 0 | 0  | 0        |
| Т          | 0          | 2 | 0 | 6 | 0 | 6 | 0 | 0  | 0 | 0 | 0  | 0  | 2 | 2  | 2        |
| G          | 0          | 0 | 0 | 0 | 2 | 0 | 8 | 2  | 2 | 2 | 0  | 2  | 0 | 0  | 0        |
| C          | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 10 | 4 | 0 | 4  | 0  | 0 | 0  | 0        |
| Т          | 0          | 2 | 0 | 2 | 0 | 2 | 0 | 4  | 6 | 0 | 0  | 0  | 2 | 2  | 2        |
| G          | 0          | 0 | 0 | 0 | 0 | 0 | 4 | 0  | 6 | 8 | 2  | 2  | 0 | 0  | 0        |
| G          | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2 | 8 | 4  | 4  | 0 | 0  | 0        |
| C          | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 4  | 0 | 2 | 10 | 4  | 0 | 0  | 0        |
| G          | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 6 | 2 | 4  | 12 | 6 | 0  | 0        |
| C          | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 4  | 0 | 2 | 4  | 6  | 8 | 2  | 0        |
| Т          | 0          | 2 | 0 | 2 | 0 | 2 | 0 | 0  | 0 | 0 | 0  | 0  | 8 | 10 | 4        |
| Α          | 0          | 0 | 4 | 0 | 4 | 0 | 0 | 0  | 0 | 0 | 0  | 0  | 2 | 4  | 6        |

| _ / | _  | 7. |
|-----|----|----|
| S1  | a. | O  |
| - ( | )  |    |

|   | Α  | С  | G  | Т  | ı  |
|---|----|----|----|----|----|
| Α | 2  | -4 | -4 | -4 | -6 |
| С | -4 | 2  | -4 | -4 | _  |
| G | -4 | -4 | 2  | -4 | -6 |
| Т | -4 | -4 | -4 | 2  | -6 |
| _ | -6 | -6 | -6 | -6 |    |

0's in essence allow peaks of similarity to rise above "background" of 0s

Where / how to backtrace?

Backtrace: (a) start from maximal cell, (b) stop upon reaching cell with score = 0

|               | $\epsilon$ | T | Α | Τ | Α | T | G | C  | G  | G  | C   | G  | Τ          | Τ | Т          | _   |          |            | ,   | - \   |    |
|---------------|------------|---|---|---|---|---|---|----|----|----|-----|----|------------|---|------------|-----|----------|------------|-----|-------|----|
| $\epsilon$    | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0   | 0  | 0          | 0 | 0          |     |          |            | s(a | (a,b) |    |
| G             | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 2  | 0   | 2  | 0          | 0 | 0          |     |          |            | `   |       |    |
| G             | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 4  | 0   | 2  | 0          | 0 | 0          |     |          | Α          | С   | G     | T  |
| T             | 0          | 2 | 0 | 3 | 0 | 2 | 0 | 0  | 0  | 0  | 0   | 0  | 4          | 2 | 2          |     | <u>A</u> | 2          | -4  | -4    | -4 |
| Α             | 0          | 0 | 4 | 0 | 4 | 0 | 0 | 0  | 0  | 0  | 0   | 0  | 0          | 0 | 0          |     | C        | -4         | 2   | -4    | -4 |
| Т             | 0          | 2 | 0 | 6 | 0 | 6 | 0 | 0  | 0  | 0  | 0   | 0  | 2          | 2 | 2          |     | G        | -4         | -4  | 2     | -4 |
| G             | 0          | 0 | 0 | 0 | 2 | 0 | 8 | 2  | 2  | 2  | 0   | 2  | 0          | 0 | 0          |     | T        | -4         | -4  | -4    | 2  |
| $\mathbf{C}$  | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 10 | 4  | 0  | 4   | 0  | 0          | 0 | 0          |     | _        | -6         | -6  | -6    | -6 |
| T             | 0          | 2 | 0 | 2 | 0 | 2 | 0 |    | 6  | 0  | 0   | 0  | 2          | 2 | 2          |     |          |            |     |       |    |
| G             | 0          | 0 | 0 | 0 | 0 | 0 | 4 | 0  | 16 | 8  | 2   | 2  | 0          | 0 | 0          |     |          |            |     |       |    |
| G             | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 8  | 4   | 4  | 0          | 0 | 0          |     |          |            |     |       |    |
|               | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 4  | 0  | 2  | 10  | 4  | 0          | 0 | 0          |     |          |            |     |       |    |
| G             | 0          | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 6  | 2  | 4   | 1  | 6          | 0 | 0          |     |          |            |     |       |    |
| $\mathcal{C}$ | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 4  | 0  |    |     |    |            |   |            |     |          | <b>-</b> ^ |     |       |    |
| T             | 0          | 2 | 0 | 2 | 0 | 2 | 0 | 0  | 0  | X  | : G | GI | AI         | G |            | GGC | GC       | I A        | - 1 |       |    |
| A             | 0          | 0 | 4 | 0 | 4 | 0 | 0 | 0  | 0  |    |     |    |            |   |            |     |          |            |     |       |    |
| A             |            |   |   | L |   |   | U | U  | V  | Ly | : T | AT | <b>A</b> 1 | G | <b>C</b> - | GGC | G T      | TT         |     |       |    |
|               |            |   |   |   |   |   |   |    |    |    |     |    |            |   |            |     |          |            | _   |       |    |

What if we didn't have a positive "bonus" for matches?

All cells would = 0

| ,          | E | Τ | Α | Τ | Α | Τ | G | С  | G | G | С  | G  | Τ | <u>T</u> | <u>T</u> |
|------------|---|---|---|---|---|---|---|----|---|---|----|----|---|----------|----------|
| $\epsilon$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0  | 0 | 0        | 0        |
| G          | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2 | 2 | 0  | 2  | 0 | 0        | 0        |
| G          | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2 | 4 | 0  | 2  | 0 | 0        | 0        |
| Т          | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 0  | 0 | 0 | 0  | 0  | 4 | 2        | 2        |
| Α          | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0  | 0 | 0 | 0  | 0  | 0 | 0        | 0        |
| Т          | 0 | 2 | 0 | 6 | 0 | 6 | 0 | 0  | 0 | 0 | 0  | 0  | 2 | 2        | 2        |
| G          | 0 | 0 | 0 | 0 | 2 | 0 | 8 | 2  | 2 | 2 | 0  | 2  | 0 | 0        | 0        |
| C          | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 10 | 4 | 0 | 4  | 0  | 0 | 0        | 0        |
| Т          | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 4  | 6 | 0 | 0  | 0  | 2 | 2        | 2        |
| G          | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0  | 6 | 8 | 2  | 2  | 0 | 0        | 0        |
| G          | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 2 | 8 | 4  | 4  | 0 | 0        | 0        |
| C          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4  | 0 | 2 | 10 | 4  | 0 | 0        | 0        |
| G          | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0  | 6 | 2 | 4  | 12 | 6 | 0        | 0        |
| C          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4  | 0 | 2 | 4  | 6  | 8 | 2        | 0        |
| Т          | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 0  | 0 | 0 | 0  | 0  | 8 | 10       | 4        |
| Α          | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0  | 0 | 0 | 0  | 0  | 2 | 4        | 6        |

|            | /        | 7 \ |
|------------|----------|-----|
| e l        | $\alpha$ | h   |
| <b>3</b> 1 | u.       | U   |
| •          | ( ')     |     |

|   | Α  | С  | G  | Т  | -  |
|---|----|----|----|----|----|
| Α | 2  | -4 | -4 | -4 | -6 |
| С | -4 | 2  | -4 | -4 | -6 |
| G | -4 | -4 | 2  | -4 | -6 |
| Т | -4 | -4 | -4 | 2  | -6 |
| - | -6 | -6 | -6 | -6 |    |

What if we didn't have negative "penalties" for edits?

Rule for  $\epsilon$ ,  $\epsilon$  would never be used and alignment would essentially be global

$$\max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

Let 
$$V[0,j]=0$$
, and let  $V[i,0]=0$  
$$\begin{cases} V[i-1,j]+s(x[i-1],-)\\ V[i,j-1]+s(-,y[j-1])\\ V[i-1,j-1]+s(x[i-1],y[j-1]) \end{cases}$$
 S(a, b) assigns a score to a particular match, gap, or replacement

Python example: http://bit.ly/CG\_DP\_Local

#### Local alignment in whole-genome alignment



MUMmer used a suffix tree to make this plot. Could we make it with dynamic programming alignment?

Global or local?

Might do *local* first, then string local alignments together ("chaining"). Sometimes called *glocal* alignment.

Axes show two strains of Helicobacter pylori, bacterium found in the stomach & associated with gastric ulcers