Q In a workshop, there are five machines and the probability of any one of them to be out of service on a day is 1. If the probability that atmost two machines will be out of service on the same day is then K= ! 0 out of services $\longrightarrow {}^{5}C_{0}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{5}$

Add $\frac{5\zeta_{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{3}}{\left(\frac{3}{4}\right)^{3}\cdot\left(\frac{17}{8}\right)}$

 $\longrightarrow {}^{5}C_{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{4}$

 $\left(K = \frac{17}{8}\right)$

 Θ_7 Mean and variance of a binomial probability distribution are 4 and $\frac{4}{3}$ respectively then the probability of atleast two success is equal to

(A)
$$\frac{552}{729}$$
 (B) $\frac{201}{243}$ (C) $\frac{298}{343}$ (D) $\frac{716}{729}$

$$\begin{array}{ccc}
sol^{n} & np = 4 & \nearrow & n = 6 \\
npq = \frac{4}{3} & \nearrow & p = \frac{2}{3} \\
q = \frac{1}{3}
\end{array}$$

$$n p q = \frac{4}{3} \qquad p = \frac{2}{3} \qquad q = \frac{1}{3}$$

$$P(x = 2) = 1 - P(x = 0) - P(x = 1)$$

$$n pq = \frac{4}{3} \qquad \qquad q = \frac{1}{3}$$

$$P(x72) = 1 - P(x=0) - P(x=1)$$

$$= 1 - \left({}^{6}C_{0} \left(\frac{1}{3} \right)^{6} + {}^{6}C_{1} \left(\frac{2}{3} \right)^{1} \left(\frac{1}{3} \right)^{5} \right) = \frac{716}{729}$$

If the probability that a number selected from the set $\{1, 2, 3, ..., 1000\}$ is divisible by 3 but neither divisible by 5 nor by 7, is $\frac{m}{n}$, then $5\left[\frac{5m}{n}\right]$ is (where [.] represents greatest integer function less than or equal to x)?

$$A \rightarrow \text{div by } 3$$

$$B \rightarrow \text{""} 5$$

$$C \rightarrow \text{""} 7$$

$$n(B) = 200$$

$$n(C) = 142$$

$$n(AnBnC) = 66$$

$$n(A) - (n(AnB) + n(AnC))$$

$$333 + n(AnBnC)$$

$$g$$

can be expressed in lowest rational as
$$\frac{p}{q}$$
 find $(p+q)$.

$$P(n) = Kn^{2}$$

$$P(1) = K; \quad P(2) = 2^{2}K; \quad P(3) = 3^{2}K; \quad P(6) = 6^{2}K$$

A die is weighted such that the probability of rolling the face numbered n is proportional to n^2 (n = 1, 2, 3, 4, 5, 6). The die is rolled twice, yielding the numbers a and b. If the probability that a < b

$$P(1) = K; \quad P(2) = 2^{2}K; \quad P(3) = 3^{2}K; \quad P(6) = 6^{2}K$$

$$P(1) + P(2) + \cdots + P(6) = 1$$

$$K + 2^{2}K + \cdots + 6^{2}K = 1 \Rightarrow K = \frac{1}{91}$$

$$R + 2^{2}R + \cdots + 6^{2}R = 1 \Rightarrow R = \frac{1}{9!}$$

$$P(1) = \frac{1}{9!}; \quad P(2) = \frac{4}{9!} \cdots \cdots$$

$$P(A) = P(C)$$

$$\beta \circ \alpha = b \leftarrow$$

$$\Rightarrow C : \alpha < b \checkmark$$

$$P(A) + P(B) + P(C) = 1 \Rightarrow 2P(A) + P(B) = 1$$

$$P(A) + P(B) + P(C) = 1 \Rightarrow 2P(A) + P(B) = 1$$

$$P(B) = \left(\frac{1}{9!}\right)^{2} + \left(\frac{4}{9!}\right)^{2} + \left(\frac{9}{9!}\right)^{2} + \left(\frac{16}{9!}\right)^{2} + \left(\frac{25}{9!}\right)^{2} + \left(\frac{25}{9!}\right)^{2$$

$$P(B) = \left(\frac{1}{9!}\right)^2 + \left(\frac{4}{9!}\right)^2 + \left(\frac{9}{9!}\right)^2 + \left(\frac{16}{9!}\right)^2 + \left(\frac{25}{9!}\right)^2 + \left(\frac{36}{9!}\right)^2$$

$$P(B) = \frac{2275}{(91)^2} = \frac{25}{91}$$

$$P(A) = \frac{1 - P(B)}{2} = \frac{33}{91} = \frac{1}{91}$$

(p+q) = 124 Ans

3 coins are thrown at a time and we remove those coins which show tails. The trial is done repeatedly until all of coins are removed. Then the probability that trial will end in the 2nd round:-

that trial will end in the
$$2^{nd}$$
 round :-

(A) $\frac{19}{64}$ (B) $\frac{13}{64}$

(C) $\frac{17}{64}$ (D) $\frac{21}{64}$

$$C-I \qquad HHH \longrightarrow TTT$$

$$\frac{1}{8} \times \frac{1}{8} = \frac{1}{64}$$

$$C-I \qquad HTT \longrightarrow T$$

$$\sqrt{3} \times \left(\frac{1}{8}\right) \times \left(\frac{1}{4}\right) = \frac{3}{16}$$

A pair of fair dice is thrown independently three times. The probability of getting a score of exactly 9 twice is:-

(A)
$$\frac{8}{243}$$
 (B) $\frac{1}{729}$ (C) $\frac{8}{9}$ (D) $\frac{8}{729}$

Soly
$$P(9) = \frac{4}{36} = \frac{1}{9}$$
Success
$$Failure \quad P(F) = \frac{8}{9}$$

$$\frac{8}{313} \quad A$$

Let A,B & C are three independent events such that $P(B \cup C) = \frac{1}{2}$, $P(A \cap \overline{B} \cap \overline{C}) = \frac{1}{8}$.

If $P(A \cup B \cup C) = \frac{p}{q}$ (p & q are coprime), then q - p is

