Algoritmi di ordinamento - Esercizi

PIETRO DI LENA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA UNIVERSITÀ DI BOLOGNA

Algoritmi e Strutture di Dati Anno Accademico 2022/2023

- Consideriamo un array A con n interi nell'intervallo $[1, \dots, k]$
- Analizzare il costo nel caso pessimo per ordinare *A* con MERGESORT e COUNTINGSORT quando
 - k = O(1)
 - $= k = \Theta(\log n)$
 - $k = \Theta(n)$
 - $= k = \Theta(n^2)$
- Quale algoritmo sceglieremmo, MERGESORT o COUNTINGSORT, assumendo di conoscere il valore asintotico di *k*?

Esercizio 1 - Soluzione

- Il costo nel caso pessimo di MERGESORT, $\Theta(n \log n)$, è indipendente da k, mentre il costo nel caso pessimo di COUNTINGSORT, $\Theta(n+k)$, dipende sia da n che da k.
- Il costo pessimo di COUNTINGSORT è quindi
 - $\Theta(n)$, se k = O(1)
 - $\Theta(n)$, se $k = \Theta(\log n)$
 - $\Theta(n)$, se $k = \Theta(n)$
 - $\Theta(n^2)$, se $=\Theta(n^2)$
- COUNTINGSORT è la scelta migliore in tutti i casi tranne quando $k = \Theta(n^2)$, nel qual caso MERGESORT risulta essere più efficiente.

- Dobbiamo cercare i *k* oggetti più costosi in una lista non ordinata contenente *n* oggetti
- Ideare due algoritmi per risolvere tale problema
- Assumiamo che l'algoritmo prenda in input un array di lunghezza n e posizioni i k valori più grandi in A nelle prime k posizioni dell'array (non necessariamente ordinandoli)
- Indicare qual è l'algoritmo più efficiente (nel caso pessimo) quando
 - 1 k = O(1)
 - $k = \Theta(logn)$
 - $k = \Theta(n)$

Esercizio 2 - Soluzione

■ Una possibile soluzione è semplicemente quella di ordinare in modo inverso l'array con MERGESORT. In questo caso abbiamo un costo pessimo di $\Theta(n \log n)$, che non dipende da k. Una seconda possibile soluzione è una semplice ricerca sequenziale

```
1: function TOPK(ARRAY A[1, \dots, n], INT k)
2: for i = 1, \dots, k do
3: \triangleright j = index \ of \ the \ max \ value \ in \ A[i, \dots, n]
4: j = \max(A[i, \dots, n])
5: SWAP(A, i, j)
```

Con TOPK eseguiamo su A k ricerche, il cui costo totale è O(nk):

$$\Theta(n)+\cdots+\Theta(n-k+1)=\Theta\left(\sum_{i=0}^{k-1}n-i\right)=\Theta\left(nk-\sum_{i=0}^{k-1}i\right)=O(nk)$$

- Se k = O(1), TOPK ha un costo lineare, meglio che MERGESORT
 - **2** Se $k = \Theta(\log n)$ entrambi gli algoritmi sono una valida soluzione
 - 3 Se $k = \Theta(n)$ la scelta migliore è utilizzare MERGESORT poichè TOPK ha un costo pessimo quadratico $O(n^2)$

- Consideriamo la seguente variante di MERGESORT
 - 1 Dividiamo l'array A in tre sotto-array A_1, A_2, A_3 di uguale lunghezza
 - **2** Richiamiamo ricorsivamente l'algoritmo su A_1, A_2, A_3
 - **3** Eseguiamo merge tra A_1 e A_2 e poi tra l'array ottenuto e A_3
- E' questa variante più o meno efficiente del MERGESORT originale?

Esercizio 3 - Soluzione

- Possiamo scrivere la relazione di ricorrenza della variante del MERGE-SORT e confrontare il suo costo con quello della versione originale
- Il costo di una chiamata ricorsiva dipende dalle due chiamate alla procedura MERGE
 - La prima chiamata unisce A_1 con A_2 con costo $\frac{1}{3}n + \frac{1}{3}n = \frac{2}{3}n$
 - La seconda chiamata unisce il vettore riorganizzato $A_1 + A_2$ con A_3 ed ha un costo $\frac{2}{3}n + \frac{1}{3}n = n$
 - Il costo totale è quindi $\frac{2}{3}n + n = \frac{5}{3}n = \Theta(n)$
- L'equazione di ricorrenza completa è

$$T(n) = \begin{cases} 1 & n = 0 \\ 3T(n/3) + n & n > 0 \end{cases}$$

che, secondo il Master Theorem, ha soluzione $\Theta(n \log n)$ $(\alpha = \beta = 1)$

 Conclusione: la variante è asintoticamente equivalente alla versione originale (con qualche costante più alta a causa delle due chiamate a MERGE)

- Consideriamo un array A con m+n elementi, dove solo i primi m elementi sono ordinati
- Scrivere un algoritmo di ordinamento per tale problema che abbia un costo pessimo migliore di $O((m+n)\log(m+n))$
- Analizzare il caso pessimo dell'algoritmo proposto nei seguenti casi:
 - 1 n = O(1)

 - 3 n = O(m)

Esercizio 4 - Soluzione

■ Una idea semplice è quella di ordinare $A[m+1,\cdots,n]$ e poi usare la procedura MERGE per unire $A[1,\cdots,m]$ con $A[m+1,\cdots,n]$

```
1: function NEWSORT(ARRAY A[1, \dots, m+n], INT m)
2: MERGESORT(A, m+1, m+n)
3: MERGE(A, 1, m, n)
```

che nel caso pessimo ha costo $\Theta(n \log n + m + n) = \Theta(n \log n + m)$

- **1** Se n = O(1) allora NEWSORT ha costo pessimo $\Theta(m)$
- **2** Se $n = O(\log m)$ allora NEWSORT ha costo pessimo $\Theta(m)$
 - Notiamo che $\log m \cdot \log (\log m) = O(\log^2 m) = O(m)$
- **3** Se n = O(m) allora NEWSORT has costo pessimo $\Theta(m \log m)$

- Dato un array non ordinato A con n numeri e un indice $1 \le k \le n$, ideare un algoritmo chet *selezioni* il k-esimo elemento in A
- Esempio: se A = [6, 1, 2, 3, 1, 4] e k = 3 la funzione ritorna 2
- In particolare, ideare un algoritmo con costo medio O(n)
- Analizzare il costo dell'algoritmo anche nel caso ottimo e pessimo

Esercizio 5 - Soluzione

■ Possiamo usare la funzione PARTITION di quicksort QUICKSORT

```
1: function QUICKSELECT(ARRAY A[1, \cdots, n], INT k, INT p, INT r) \rightarrow INT 2: q = \text{PARTITION}(A, p, r)
3: if q == k then
4: return A[q]
5: else if q < k then
6: return QUICKSELECT(A, k, q + 1, r)
7: else
8: return QUICKSELECT(A, k, p, q - 1)
```

- La funzione PARTITION è la stessa che in QUICKSORT
- Il costo di PARTITION è quindi $\Theta(r-p+1)$
 - Costo lineare sulla dimensione in input $A[p, \dots, r]$

Esercizio 4 - Soluzione (caso ottimo e pessimo)

Nel caso ottimo il costo coincide con quello di una sola chiamata a PARTITION (riga 3, q uguale a k dopo la prima chiamata) e quindi $\Theta(n)$. Alternativamente, il caso ottimo si verifica quando tutte le partizioni sono ben bilanciate

$$T(n) = \begin{cases} 1 & n = 1 \\ T(n/2) + n & n > 1 \end{cases}$$

Per il Master Theorem ($\alpha=0,\beta=1$), abbiamo un costo pari a $\Theta(n)$

■ Nel caso pessimo le partizioni sono completamente sbilanciate e la ricorsione è sempre effettuata sulla partizione più grande

$$T(n) = \begin{cases} 1 & n = 1 \\ T(n-1) + n & n > 1 \end{cases}$$

Usando il metodo iterativo otteniamo un costo pari a $\Theta(n^2)$

ESERCIZIO 5 - SOLUZIONE (CASO MEDIO)

 Per analizzare il caso medio assumiamo che tutte le partizioni siano equiprobabili e consideriamo il costo medio su tutte le possibili partizioni

$$T(n) = \begin{cases} 1 & n = 1 \\ \frac{1}{n-1} \sum_{i=1}^{n-1} T(i) + n & n > 1 \end{cases}$$

- Validiamo l'ipotesi $T(n) \le cn$ con il metodo di sostituzione:
 - Caso base: $T(1) = 1 \le c \cdot 1$ vera per ogni $c \ge 1$
 - Induzione: assumendo che l'ipotesi $T(i) \le ci$ sia vera $\forall 1 \le i < n$

$$T(n) = \frac{1}{n-1} \sum_{i=1}^{n-1} T(i) + n \le \frac{c}{n-1} \sum_{i=1}^{n-1} i + n$$
$$= \frac{c}{n-1} \frac{n(n-1)}{2} + n = \frac{n(c+2)}{2}$$

Vera se esiste qualche $c \ge 1$ tale che $\frac{n(c+2)}{2} \le cn \Rightarrow c \ge 2$