		4
1.	What is the result of the following code?	1 point
	<pre>cross_val_predict (lr2e, x_data, y_data, cv=3)</pre>	
	O Performs multiple out-of-sample evaluations	
	○ The average R ² on the test data for each of the two folds	
	O Calculates the free parameter alpha	
	The predicted values of the test data using cross-validation	
2.	How would you organize the values 1, 10, and 100 as possible values of alpha for Grid Search?	1 point
	<pre>parameter = [{'alpha': [1,10,100]}]</pre>	
	<pre>parameter=[1,10,100]</pre>	
	<pre>parameter = Ridge(alpha=[1,10,100])</pre>	
	<pre>parameter = alpha(1,10,100)</pre>	

3.	You do the following steps with a data set:	1 point
	Divide a data set into testing and training sets.	
	2. Create a linear model with the training set.	
	3. Find the average R ² value on your training data. It is found to be 0.5.	
	4. Perform a 100th-order polynomial transform on your data.	
	5. Use these transformed values to train another model.	
	6. Find the new value for R ² . It is found to be 0.99.	
	Which of the following statements is correct?	
	100-th order polynomial will work better on the rest of your data	
	Oreate another linear model with all of the data and compare results	
	O You should use the simpler model	
	You should use your test data to test the model further	
4.	What is the purpose of "folding" your data sets?	1 point
	O To find the actual predicted values of the model before calculating R ²	
	Folds are used for cross-validation	
	O To find R ² values on a training set and a test set of data	
	O Folding is used primarily for polynomial transformations	

- O No conclusions can be drawn about the model
- It displays underfitting
- O The model is a good fit
- It displays overfitting