"Bees?"

A Large Scale, Co-operative Simulation Weighing Altruism and Selfishness

A. Simms, R. Thielstrom

Swarthmore College

Adaptive Robotics, Spring 2014

Presentation Roadmap

- 1 Overview
 - Hypothesis
 - Model
- 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
- 3 General Discussion
- 4 Q & A

- 1 Overview
 - Hypothesis
 - Model
- 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
- 3 General Discussion
- 4 Q & A

Abstract

- Motivations: The Prisoner's Dilemna
- Attempting to investigate conditions for selfishness and altruism in a community of neural-net agents.
- Can we get co-operation from a large number of independent agents?

Hypothesis

The amount of altruism and selfishness demonstrated in NEAT-trained agents will be most affected by an individual fitness relying on overall group fitness.

The Bee model

- Many individual "bees" in a "hive".
- Each bee is an individual NEAT agent.
- The hive has some "nectar reserves".
- The nectar reserves are maintained by taking some nectar from the bees that brought back nectar.
- A penalty is assessed to the fitness of all bees if nectar drops below a certain level.

A day in the life of a bee

Every "day" in the simulation:

- Each bee goes out to get "nectar"
- Has the decision to eat the nectar there, or bring it back to the hive
- At the hive, the nectar brought back by the bees is shared equally between the bees that brought back nectar.

Fitness is determined by the average nectar that a bee accumulates throughout its lifetime.

- 1 Overview
 - Hypothesis
 - Model
- 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
- 3 General Discussion
- 4 Q & A

NEAT Wiring

It is possible: Explicit Penalty

- 1 Overview
 - Hypothesis
 - Model
- 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
- 3 General Discussion
- 4 Q & A

Applied to Both Bees

Hive Fitness

Nectar Reserves Over Time

Why are the bees still selfish?

- 0.005 is still better than 0.001
- Insurance only works if there are a large number of people paying in

It is possible: Apply to only one bee

- 1 Overview
 - Hypothesis
 - Model
- 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
- 3 General Discussion
- 4 Q & A

Rationale

- Bees live more than one day, why shouldn't our simulated bees?
- Drawing inspiration from evolutionary game theory
 - Iterated prisoner's dilemma.

Recurrent Experiment

NEAT Wiring

- Bees live for a "week"
- Each "day", they go out to find nectar
- In addition to the nectar they find, they also have a number of recurrent inputs
- Fitness calculations then proceed as normal

NEAT Wiring

Recurrent Bees?

Nectar Reserves Over Time

Just altruistic enough

- The majority of the bees oscillate just enough to maintain the hive.
- Relatively stable behavior.
- Does not show up in every single trial, but in the majority.

- . .
 - 1 Overview
 - Hypothesis
 - Model
 - 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
 - 3 General Discussion
 - 4 Q & A

Interbee Communication

- So far, bees do not have any direct iteraction with each other.
- Second output specifies whether or not the bee wants to direct the next bee to the same nectar source.
- Nectar found by next bee depends on the last bee's decision AND the amount of nectar they had found on their turn

NEAT Wiring

Results

Results

Discussion

- The guidance itself doesn't especially encourage bees to not make selfish decisions. It does often prompt either:
 - Selfish bees "helping" altruistic bees keep the hive fitness up
 - OR Guided bees realizing the above-average amount of found nectar is more beneficial to them if they are selfish.

- 1 Overview
 - Hypothesis
 - Model
- 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
- 3 General Discussion
- 4 Q & A

Conclusions

- Unless explicity rewarded for doing so, artificial agents will not exhibit cooperation/altruism in a community.
- However, agents can learn to balance selfishness with altruism, if only to briefly combat negative effects of selfishness.
- Agents prefer a selfish nature even when fitness is negligible rather than chance an action whose fitness relies on others.

- 1 Overview
 - Hypothesis
 - Model
- 2 Experiments
 - Trivial Case
 - Hive Fitness
 - Recurrent Experiment
 - Gossiping Bees
- 3 General Discussion
- 4 Q & A

Questions?

"Bees?"

A Large Scale, Co-operative Simulation Weighing Altruism and Selfishness

A. Simms, R. Thielstrom

Swarthmore College

Adaptive Robotics, Spring 2014