Homework Set #1

- 1. Consider the function $f(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$, where $x \in \mathbf{R}^n$, $b_i \in \mathbf{R}$ and $a_i \in \mathbf{R}^n$. Compute ∇f and $\nabla^2 f$. Write down the first three terms of the Taylor series expansion of f(x) around some x_0 .
- 2. Problem 2.5 of Boyd and Vandenberghe
- 3. Problem 2.14(a) of Boyd and Vandenberghe
- 4. Problem 3.14 of Boyd and Vandenberghe
- 5. Problem 3.16(a-c) of Boyd and Vandenberghe
- 6. Problem 3.32(a) of Boyd and Vandenberghe
- 7. Consider the function $f(x,y) = x^2 + y^2 + \beta xy + x + 2y$. Find (x^*,y^*) for which $\nabla f = 0$. Express your answer as a function of β . For which values of β is the (x^*,y^*) a global minimum of f(x,y)?
- 8. A function f(x) is strongly convex with a positive factor m if $\nabla^2 f(x) \succeq mI$, for all x, where I denotes the identity matrix. Another equivalent definition of a m-strongly convex function, with respect to ℓ_2 -norm $\|\cdot\|_2$, is given by $f(y) \geq f(x) + \nabla f(x)^T (y-x) + \frac{m}{2} \|y-x\|_2^2$ for all x, y.
 - (a) Assume f(x) is a strongly convex function with factor m. Is f(x) also a strictly convex function?
 - (b) Assume g(x) is a strictly convex function. Is g(x) also a strongly convex function? Find the largest factor of strong convexity.
 - Hint: You may assume that the eigen values of the hessian matrix, represented by $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$, are given and known. You may describe the largest strong convexity factor in terms of the eigen values of the hessian matrix.
- 9. In this problem, we are given a set of data points (x_i, y_i) , $i = 1 \cdots 100$. We wish to fit a quadratic model, $y_i = ax_i^2 + bx_i + c + n_i$, to the data. Here, (a, b, c) are the parameters to be determined and n_i is the unknown observation noise. The (x_i, y_i) points are contained in a file hwldata.mat available on the course webpage. You may load the data to MATLAB using the command load hwldata and view them using scatter(x,y,'+'). Please use the same data set and find the maximum likelihood estimate of (a, b, c) assuming n_i 's are i.i.d., and
 - (a) $n_i \sim \mathcal{N}(0,1);$
 - (b) n_i is always positive and $n_i \sim e^{-z}$ for $z \geq 0$.

Please plot the data and the models on the same MATLAB figure and submit the figure as a part of your solution.

(MATLAB has built-in functions to solve many optimization problems. For example, linprog solves a linear programming problem, quadprog solves a quadratic programming problem. You may use help linprog to get more details. Hint: part (a) has an analytic solution.)