Num
Intro - Uge 3 Onsdag

Nick Laursen

Københavns Universitet

15. september 2020

1. Opgaver

Introduktion til Conv. Rate

Vi har følgende ligninger.

$$x_n = \mathcal{O}(\alpha_n) \Leftrightarrow x_n \le C|\alpha_n|$$

 $x_n = \mathcal{O}(\alpha_n) \Leftrightarrow \lim_{n \to \infty} \frac{x_n}{\alpha_n} = 0.$

Vi kan lave følgende omskrivning for \mathcal{O} :

$$\lim_{n \to \infty} \frac{|x_n|}{|\alpha_n|} = L < \infty \Rightarrow x_n = \mathcal{O}(\alpha_n)$$
 (1)

$$\lim_{n \to \infty} \frac{|x_n|}{|\alpha_n|} = \infty \Rightarrow x_n \neq \mathcal{O}(\alpha_n)$$
 (2)

Beviset kan findes i de sidste slides. Lad mig også sige at dette ikke altid er korrekt, men de steder vi kan støde på dette ikke er korrekt, er ikke i det her kursus.

1.2.6) Er det sandt, at for parene (x_n, α_n) gælder der at $x_n = \mathcal{O}(\alpha_n)$, når $n \to \infty$?

- a) $x_n = 5n^2 + 9n^3 + 1$, $\alpha_n = n^2$.
- b) $x_n = 5n^2 + 9n^3 + 1$, $\alpha_n = 1$.
- c) $x_n = \sqrt{n+3}, \qquad \alpha_n = 1.$
- d) $x_n = 5n^2 + 9n^3 + 1$, $\alpha_n = n^3$.
- e) $x_n = \sqrt{n+3}$, $\alpha_n = \frac{1}{n}$.

1.2.6

a)

Lad $x_n = 5n^2 + 9n^3 + 1$ og lad $\alpha_n = n^2$. Vi bruger ligning (1) fra disse noter og får så følgende ligning:

$$\lim_{n \to \infty} \frac{5n^2 + 9n^3 + 1}{n^2} = \lim_{n \to \infty} 5 + 9n + \frac{1}{n^2} = \infty.$$

Så svaret er nej. $x_n \neq \mathcal{O}(\alpha_n)$.

b)

Lad $x_n = 5n^2 + 9n^3 + 1$ og lad $\alpha_n = 1$. Besvar nu selv hvorfor **b**) nu heller ikke kan være sand. (brug selv 2 minutter)

Svaret er fordi at $1 \le n^2$ som er sandt $\forall n \ge 1$. Så derved er 1 begrænset af n^2 , og derfor kan vi med samme x_n ikke begrænse ligningen pr **a**).

1.2.6

c)

Lad $x_n = \sqrt{n+3}$ og lad $\alpha_n = 1$. Lad os vise med den normale notation her. Lad $N \in \mathbb{N}$ være stort. Så $\forall n \geq N$ ved vi at følgende er sandt:

$$\sqrt{n+3} > C \cdot 1$$
, hvor $C \in \mathbb{R}_+$.

Herved kan c) heller ikke være sand.

 \mathbf{d}

Lad $x_n = 5n^2 + 9n^3 + 1$ og lad $\alpha_n = n^3$. Vi løser med ligning (1) og får så

$$\lim_{n \to \infty} = \frac{5n^2 + 9n^3 + 1}{n^3} = \lim_{n \to \infty} \frac{5}{n} + 9 + \frac{1}{n^3} = 9 < \infty.$$

Så det er sandt at $x_n = \mathcal{O}(\alpha_n)$.

 $(Lav \ selv \ e))$

1.2.7) Vis om følgende påstande er sande.

- a) $\frac{n+1}{n^2} = \mathcal{O}\left(\frac{1}{n}\right)$.
- b) $\frac{n+1}{\sqrt{n}} = O(1)$.
- c) $\frac{1}{\ln n} = \mathcal{O}\left(\frac{1}{n}\right)$.
- d) $\frac{1}{n \ln n} = \mathcal{O}\left(\frac{1}{n}\right)$.
- e) $\frac{e^n}{n^5} = \mathcal{O}\left(\frac{1}{n}\right)$.

Jeg gennemgår kun a) og d), da vi i forige opgave har kigget på \mathcal{O} -opgaver og \mathcal{O} -opgaver er generelt nemme for de fleste.

1.2.7)

a)
$$\frac{n+1}{n^2} = \mathcal{O}\left(\frac{1}{n}\right)$$
.

Vi bruger metoden for at finde ϕ . Herved får vi ligningen

$$\lim_{n \to \infty} \frac{\frac{n+1}{n^2}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^2 + n}{n^2} = \lim_{n \to \infty} 1 + \frac{1}{n} = 1 \neq 0.$$

Herved ser vi så at udsagnet $\frac{n+1}{n^2} = \mathcal{O}\left(\frac{1}{n}\right)$ ikke er sandt.

d)
$$\frac{1}{n \ln n} = \mathcal{O}\left(\frac{1}{n}\right)$$
.

Vi bruger metoden for at finde $\mathcal{O}.$ Så vi får ligningen

$$\lim_{n \to \infty} \frac{\frac{1}{n \ln n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\ln n} = 0.$$

Derved er $\frac{1}{n \ln n} = \mathcal{O}\left(\frac{1}{n}\right)$ sandt.

2.2.15) Lad $f(x) = x^{-1} (1 - \cos x)$.

a) Hvad er den korrekte definition af f(0), i.e hvilken værdi skal f(0) have for at gøre f kontinuert?

pf:

Vi tjekker med grænseværdien og får følgende ligning:

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x)'} = \lim_{x \to 0} \frac{\sin x}{1} = 0.$$

Altså f(0) = 0.

b) Hvor henne sker der "Lost of Significance"?

pf:

Det sker omkring $x=2\pi n$ for $n\in\mathbb{Z}$. Dette er på grund af at

$$\cos x \approx 1 \Rightarrow \frac{1 - \cos x}{x} = 0.$$

9/16

2.2.15) Lad $f(x) = x^{-1} (1 - \cos x)$.

c) Find en metode som ikke involverer taylor serien til at "løse" b)

pf:

Lad os gøre ligesom i **Exampel 1, p.56** eller **2.2.8**. Så vi laver følgende skrivning:

$$\frac{1 - \cos x}{x} = \frac{1 - \cos x}{x} \left(\frac{1 + \cos x}{1 + \cos x} \right) = \frac{(1 - \cos x)(1 + \cos x)}{x(1 + \cos x)}$$
$$= \frac{1 - \cos^2 x}{x(1 + \cos x)} = \frac{\sin^2 x}{x(1 + \cos x)}.$$

Herved har vi vist det ønskede.

d) Hvis din løsning til den forgående opgave bruger subtraktiv "cancellation", beskriv hvordan vi kan undgå det.

pf:

Vi kan gøre to ting. Enten kan vi huske vores trigonometriske relationer, specifikt $1-\cos x=2\sin^2\left(\frac{x}{2}\right)$ og deved får vi

$$f(x) = \frac{2\sin^2(\frac{x}{2})}{x}$$
. Den anden ting du kan gøre er se når $\cos x \approx -1$, og så lave hele smørren som lavet i opgave **c**).

2.2.21) Find en måde at beregne $f(x) = x + e^x - e^{2x}$ præcist, for små værdier af x.

pf:

(En idé?) Vi bruger Taylor! (Altid en god måde at approksimere værdier præcist omkring et lille interval, f.eks $[0-\varepsilon,0+\varepsilon]$) Vi finder talyer serierne omkring 0:

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots$$

 $e^{2x} = 1 + 2x + \frac{(2x)^{2}}{2} + \frac{(2x)^{3}}{6} + \dots$

Lad os se hvad det giver os når vi kun kigger på de første fire termer:

$$f(x) = -\frac{1}{2}x^{2}\left(3 + \frac{1}{3}x\left(7 + \frac{1}{4}x\left(15 + \frac{31}{5}x\right)\right)\right).$$

_

2.3.7)

Vis at den rekurrente relation $x_n = 2x_{n-1} + x_{n-2}$ har en generel løsning på formen $x_n = A\lambda^n + B\mu^n$. Er den rekurrente relation en god måde at beregne x_n på ud fra arbitrær valgte x_0 og x_1 .

pf:

Vi finder rødderne af det karakteristiske polynomium.

$$\lambda^2 - 2\lambda - 1 = 0 \Rightarrow \lambda \in \left\{ 1 + \sqrt{2}, 1 - \sqrt{2} \right\}.$$

Så den generelle løsning er som følgende:

$$x_n = A\left(1 + \sqrt{2}\right)^n + B\left(1 - \sqrt{2}\right)^n$$

(Er den rekurrente relation en god måde at beregne x_n ud på, ved arbitrær valgte x_0, x_1 ?) Vi ser at vores rekurrente relation er ustabil da $1 + \sqrt{2} \ge 1$ og derved risikerer vi at vores x_n løber mod uendelig, da der er ingen garanti for at arbitrær valgte x_0, x_1 svarer over til $A = 0, B \in \mathbb{R}$. Derfor er det en dårlig idé at bruge den rekurrente relation ud fra arbitrær valgte x_0 og x_1 .

Vi har Fibonacci som er givet som $r_0 = 1, r_1 = 1$ og $r_{n+1} = r_n + r_{n-1}$. Vis at $\frac{2r_n}{r_{n-1}} \to 1 + \sqrt{5}$. Er konvergensen linær, superlinær eller kvadratisk?

<u>pf:</u>

Lad os starte med at løse det karakteristiske polynomium:

$$\lambda^2 - \lambda - 1 = 0 \Rightarrow \lambda_1 = \frac{1 + \sqrt{5}}{2}, \ \lambda_2 = \frac{1 - \sqrt{5}}{2}.$$

Dette giver os $r_n = A\lambda_1^n + B\lambda_2^n$. 2 ligninger, 2 ubekendte senere, så får vi

$$A = \frac{\frac{1+\sqrt{5}}{2}}{\sqrt{5}} B = \frac{\frac{1-\sqrt{5}}{2}}{-\sqrt{5}}.$$

Vi har Fibonacci som er givet som $r_0 = 1, r_1 = 1$ og $r_{n+1} = r_n + r_{n-1}$. Vis at $\frac{2r_n}{r_{n-1}} \to 1 + \sqrt{5}$. Er konvergensen linær, superlinær eller kvadratisk?

pf:

Så finder vi nu grænsen.

$$\lim_{n \to \infty} \frac{2r_n}{r_{n-1}} = \lim_{n \to \infty} \frac{2\left(\frac{\frac{1+\sqrt{5}}{2}}{\sqrt{5}} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{\frac{1-\sqrt{5}}{2}}{-\sqrt{5}} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n\right)}{\frac{\frac{1+\sqrt{5}}{2}}{\sqrt{5}} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + \frac{\frac{1-\sqrt{5}}{2}}{-\sqrt{5}} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}$$

$$= \lim_{n \to \infty} \frac{\frac{\frac{1+\sqrt{5}}{2}}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1-\sqrt{5}}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n}{\frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \frac{1-\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}$$

$$= \dots = 1 + \sqrt{5}.$$

Vi har Fibonacci som er givet som $r_0 = 1, r_1 = 1$ og $r_{n+1} = r_n + r_{n-1}$. Vis at $\frac{2r_n}{r_{n-1}} \to 1 + \sqrt{5}$. Er konvergensen linær, superlinær eller kvadratisk?

pf:

Nemmere metode at finde grænsen på. Lad $\lim_{n\to\infty}\frac{r_{n+1}}{r_n}=L$. Dette medfører at $\lim_{n\to\infty}\frac{r_{n-1}}{r_n}=\frac{1}{L}$. Fra $r_{n+1}=r_n+r_{n-1}$, så får vi:

$$\lim_{n\to\infty}\frac{r_{n+1}}{r_n}=1+\lim_{n\to\infty}\frac{r_{n-1}}{r_n}\Leftrightarrow L=1+\frac{1}{L}\Leftrightarrow L^2-l-1=0.$$

Derved ser vi dette er vores karakteristiske polynomium og da raten er positiv, så vil

$$\lim_{n\to\infty}\frac{r_{n+1}}{r_n}=\frac{1+\sqrt{5}}{2}\Rightarrow 2\cdot\lim_{n\to\infty}\frac{r_{n+1}}{r_n}=2\cdot\frac{1+\sqrt{5}}{2}=1+\sqrt{5}.$$

Vi har Fibonacci som er givet som $r_0 = 1, r_1 = 1$ og $r_{n+1} = r_n + r_{n-1}$. Vis at $\frac{2r_n}{r_{n-1}} \to 1 + \sqrt{5}$. Er konvergensen linær, superlinær eller kvadratisk?

<u>pf:</u>

Lad os nu vise den er linær. Lad $r_n = a\lambda^n + b(-\lambda)^{-n}$, hvor $\lambda = \frac{1+\sqrt{5}}{2}$ og ydeligere at $(-\lambda)^{-1} = \frac{1-\sqrt{5}}{2}$. Derved har vi så følgende:

$$\frac{r_{n+1}}{r_n} = \lambda \frac{a+b\left(-\lambda^2\right)^{-n-1}}{a+b\left(-\lambda^2\right)^n} \Rightarrow \frac{r_{n+1}}{r_n} - \lambda = \lambda \frac{b\left(-\lambda^2\right)^{-n-1}\left(1-\lambda^2\right)}{a+b\left(-\lambda^2\right)^{-n}}.$$

Derved har vi så at

$$\frac{\frac{r_{n+1}}{r_n} - \lambda}{\frac{r_{n-1}}{r_{n-1}} - \lambda} = -\lambda^{-2} \frac{a + b\left(-\lambda^2\right)^{-n+1}}{a + b\left(-\lambda^2\right)^{-n}}.$$

Derved har vi så at:

$$\lim_{n\to\infty} \frac{\frac{r_{n+1}}{r_n} - \lambda}{\frac{r_n}{r_{n-1}} - \lambda} = -\lambda^{-2} \approx 0.38197.$$