- 1 Find the slope of the tangent line to the polar curve $r = \cos(3\theta)$ at $\theta = \frac{3}{4}\pi$ (8%)
- 2 Find the area of the region that is inside the cardioid $r = 2 + 2\cos\theta$ and outside the circle r = 3 (10%)
- 3 Find the linear approximation (linearization) of the function $f(x,y) = \sqrt{20 x^2 7y^2}$ and use it to approximate f(1.95,1.08) (10%)
- 4(a) If the electric potential at a point (x, y) in the xy-plane is V(x, y), then the electric intensity vector at the point (x, y) is $\vec{E} = -\nabla V(x, y)$. Suppose that $V(x, y) = e^{-2x} \cos(2y)$. Find the electric intensity vector at $(\frac{\pi}{4}, 0)$ (8%)
- (b) Let $r = \sqrt{x^2 + y^2}$. Show that $\nabla r = \frac{\vec{r}}{r}$, where $\vec{r} = x\vec{i} + y\vec{j}$ (8%)
- 5 If $e^{xy}\cos(yz) e^{yz}\sin(xz) 2 = 0$, find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ (10%)
- 6 Find the tangent plane and the normal line to the ellipsoid surface $x^2 + y^2 + 4z^2 = 12$ at the point (2,2,1) (10%)
- 7 Locate all relative extrema and saddle points(if any) of $f(x, y) = 4xy x^4 y^4$ (12%)
- 8 Find the shortest distance from the origin to the surface $xyz^2 = 2(10\%)$
- 9 Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^3} dxdy$ (10%) (Hint: change the order of integration)
- 10 Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$ (10%) (Hint: change to polar coordinates)
- 11 Use cylindrical coordinates to find the volume of the solid enclosed by the paraboloid $z = x^2 + y^2$ and the plane z = 9 (10%)