Algebraic geometry 1 Exercise sheet 5

Solutions by: Eric Rudolph and David Čadež

16. November 2023

Exercise 1.

We make a pushout of the diagram $U_1 \leftarrow V_1 \rightarrow U_2$, where $V_1 \rightarrow U_1$ is the inclusion and $V_1 \rightarrow U_2$ and composition of φ and inclusion.

Let X be the pushout in terms of topological spaces and let $\alpha_1 \colon U_1 \to X$ and $\alpha_2 \colon U_2 \to X$ be the associated morphisms.

We define a sheaf \mathcal{O}_X in the following way. Take an open subset $Z \subseteq X$. Then $Z \cap \alpha_1(U_1) = Z_1$ and $Z \cap \alpha_2(U_2) = Z_2$ are an open cover of Z in X. Then let

1. Define

$$X:=U_1 \coprod U_2/\sim,$$

where $x \sim y$ if $x = \varphi(y)$ and for $i \in \{1, 2\}$

$$\pi_i \colon U_i \to X$$

$$x \mapsto \bar{x}.$$

We can now give X the topology by defining a subset $U \subset X$ to be open if $\pi_i^{-1}(U) \in$ are open in U_i .

We basically take X to be the pushout of $U_1 \leftarrow V_1 \rightarrow U_2$, where $V_1 \rightarrow U_1$ is the inclusion and $V_1 \rightarrow U_2$ and composition of φ and inclusion.

Notice, that π_i are homeomorphic onto open subsets of X. This will become important later. Next we want to define a structure sheaf on X that behaves well with restricting to U_i .

For $U \subset X$ open, let

$$\mathcal{O}_X(U) := \ker(\mathcal{O}_{U_1}(\pi^{-1}(U)) \oplus \mathcal{O}_{U_2}(\pi^{-1}(U)) \to \mathcal{O}_{U_1}(\pi^{-1}(U) \cap U_1)$$
$$(x, y) \mapsto x_{|\pi^{-1}(U) \cap V_1} - \varphi^{\sharp}(\pi_2^{-1}(U) \cap V_2)(y_{|\pi_2^{-1}(U) \cap V_2})),$$

where the substraction in the above term comes from the group structure of $\mathcal{O}_{U_1}(\pi^{-1}(U) \cap V_1)$. This is of course a group again, as the kernel of a ring map.

We conclude, that (X, \mathcal{O}_X) is a scheme, because $X = \pi_1(U_1) \cup \pi_2(U_2)$ can be covered by affine schemes using the cover from U_1 and U_2 and since by construction of the structure sheaf $\mathcal{O}_{X|U_1} = \mathcal{O}_{x_i}$. Here we finally used, as promised, that π_i are homeomorphisms onto open subsets of X.

Exercise 2.

1. Take two isomorphic open immersions (Z, \mathcal{O}_Z) and (W, \mathcal{O}_W) as schemes over (Y, \mathcal{O}_Y) . So we have a commutative diagram

$$(Z, \mathcal{O}_Z) \longleftrightarrow (Y, \mathcal{O}_Y)$$

$$\downarrow \cong \qquad \qquad (W, \mathcal{O}_W)$$

from which we get a diagram of topological spaces

from which it clearly follows that Z and W must be equal as sets.

For the other way, we want to show that for every open $Z\subseteq Y$ there is a unique sheaf \mathcal{O}_Z for which $(\varphi,\varphi^\#)\colon (Z,\mathcal{O}_Z)\hookrightarrow (Y,\mathcal{O}_Y)$ is an open embedding. Take any two sheaves \mathcal{O}_Z and \mathcal{O}_Z' on Z for which $(\mu,\mu^\#)\colon (Z,\mathcal{O}_Z')\hookrightarrow (Y,\mathcal{O}_Y)$ is also open embedding. Then by definition of an open embedding we have isomorphisms $\mu^{-1}\mathcal{O}_Y\to\mathcal{O}_Z$ and $\varphi^{-1}\mathcal{O}_Y\to\mathcal{O}_Z'$. But $\varphi^{-1}\mathcal{O}_Y$ and $\mu^{-1}\mathcal{O}_Y$ are the same, since $\varphi=\mu$, so $\mathcal{O}_Z'\cong\mathcal{O}_Z$. As for the existence: there clearly exists such a sheaf \mathcal{O}_Z simply by taking a restriction $\mathcal{O}_Y\mid_Z$. But (as it says in Davies/Scholze notes) it is not obvious. We have to show that we can cover Z with open subsets, where each of them is isomorphic to an affine scheme. Let $Y=\cup_i Y_i$, where $Y_i\cong\operatorname{Spec} B_i$. Then for every point $x\in Z$ we choose i such that $x\in Y_i\cap Z$. That means there exists some $f\in B_i$ such that $x\in D_{Y_i}(f)\subseteq V_i\cap U$. Since $D_{Y_i}(f)\cong B_[f^{-1}]$, we found a neighborhood of $x\in Z$ that is isomorphic to an affince scheme. We can do that for every $x\in Z$ and thus cover it. So Z is itself a scheme.

Exercise 4.

1. Let $F: C \to D$ be a functor with adjoints $G, G': D \to C$. By the definition of adjointness, for every arrow $f: Fc \to d$ we have unique arrows $\phi f: c \to Gd$ and $\mu f: c \to G'd$, such that ϕ and μ are natural. In this case take some $d \in D$ and c = Gd. Then we have a unique arrow $Gd \to G'd$.

We just have to show this is natural in d, so pick some other $e \in D$ and $FGe \to e$. Same as before we get an arrow $Gb \to G'b$. Using adjointness we have a commutative diagram

Then, using the naturality of μ gives that

$$\mu(FGa \to a \to b) = Ga \to G'a \to G'b$$

and

$$\mu(FGa \to FGb \to b) = Ga \to Gb \to G'b$$

Which proves that $a \mapsto (Ga \to G'a)$ is natural. We could easily construct an inverse $a \mapsto (G'a \to Ga)$ which would compose to identity.

2.