딥러닝 기반 객체인식을 활용한 엔진 호스 체결 누락 탐지

Data analytics & intelligent Systems Lab

김창영, 최준혁, 조현건

지도교수 : 이수동

목차

- 1. 프로젝트 개요
- 2. 모델 훈련
- 3. ID fixing (Tracking)
- 4. 렌치 체결 전환
- 5. Multi Angle
- 6. 결과 분석
- 7. 결론

프로젝트 개요

1. 문제 정의

기존 호스 체결 확인 방식

작업자가 경험에 의한 엔진 호스 체결 확인하는 방식은 작업자의 착오로 인한 렌치 작업 미실시가 종종 발생 따라서 기존 엔진 호스 체결 확인 방식의 한계점을 개선하기 위한 **엔진 호스 체결 자동화 탐지** 기술 개발 필요

프로젝트 개요

- 1. 문제 정의
 - 작업이 완료되지 않은 홀을 구분하여 탐지
 - 단순한 이미지 탐지로는 **최종 체결 여부 구분** 어려움

오픈

호스 체결

렌치 작업 완료

• 작업자의 작업 또는 기타 물체에 의한 가림으로 인해 사각 지대 발생

프로젝트 개요

- 2. 과업 정의
 - 작업이 완료되지 않은 홀을 구분하여 탐지
 - -> ID Tracking
 - 단순한 이미지 탐지로는 최종 체결 여부 구분 어려움
 - -> 렌치 작업 완료 **룰 적용**
 - 작업자의 작업 또는 기타 물체에 의한 가림으로 인해 사각 지대 발생
 - -> 여러 방향(Multi-Angle)에서 촬영된 실시간 작업에 대한 탐지

1. Train 결과

• CAM 1

1. Train 결과

• CAM 2

2. Validation 결과

CAM 1

Confidence threshold를 기존 0.45에서 0.8로 바꾼 후 Test 진행

2. Validation 결과

• CAM 2

Confusion Matrix 0.01 -0.0{0: 'open'} {2: 'wrench_head'}

[그림8] CAM2 Confusion Matrix

Confidence threshold를 기존 0.45에서 0.8로 바꾼 후 Test 진행

ID Fixing (Tracking)

Center-based clustering 기반 ID Fixing

[그림11] ID Fixing 알고리즘

렌치 체결 전환

Rule based 전환

• 거리기반 룰

해당 frame에서 탐지된 hole과 탐지된 wrench head의 거리가 Epsilon 보다 작은 경우 Epsilon = 100 pixel

해당 frame에서 탐지된 hole과 탐지된 wrench head의 겹치는 면적이 IOU threshold 보다 큰 경우 IOU threshold = 0.5

Wrench stay time 조건

위의 조건을 부합하는 frame이 Wrench stay time보다 클 경우 Wrench stay time = 3 frame

Completed 전환

CAM1 test result

0_Open

Hole_num	ТР	FP
H1	814	0
H2	814	0
Н3	953	0
H4	2323	0
H5	4271	0
H6	4073	0
H7	2107	0
Total	15355	0

1_Closed

Hole_num	TP	FP
H1	1578	0
H2	1874	0
Н3	52	0
H4	4289	0
H5	84	0
H6	297	0
H7	336	0
Total	8505	0

4_Completed

Hole_num	TP	FP
H1	0	0
H2	5720	0
Н3	0	0
H4	0	0
H5	344	0
H6	1873	0
H7	2241	0
Total	10178	0

□ : y label
□ : y pred

Completed 전환

CAM2 test result

0_Open

Hole_num	TP	FP
H1	57	0
H2	444	0
Н3	402	0
H4	681	0
H5	710	0
Total	2294	0

1_Closed

Hole_num	TP	FP
H1	26	0
H2	223	0
Н3	79	0
H4	0	0
H5	0	0
Total	328	0

4_Completed

Hole_num	TP	FP
H1	182	0
H2	4903	0
Н3	0	0
H4	109	0
H5	3394	0
Total	8588	0

□ : y label□ : y pred

Multi Angle

Multi Angle 방법론

[그림12] Multi Angle 알고리즘

Multi Angle

Multi Angle 결과

[丑1] CAM 1

Hole_num	Class (상태)
H1	4
H2	1
Н3	1
H4	1
H5	4
Н6	4
H7	4

Hole_num	Class (상태)
H1	4
H2	4
Н3	0
H4	4
H5	1
Н6	0
H7	0

[표3] Multi-Angle 최종 결과

Hole_num	Class (상태)
H1	4
H2	4
Н3	1
H4	4
H5	4
H6	4
H7	4

Class name

- 0 : open

- 1 : closed

- 4 : completed

결과 분석

Hole 3의 경우

작업자 또는 장애물에 의해 CAM1과 CAM2 모두 탐지되지 않는 것을 확인. 작업자의 추가적인 룰을 부여하여 해결해야 할 필요성이 보임.

[그림12] CAM 1

[그림13] CAM 2

결론

감사합니다.