

CJC4334

Stereo DAC with 24-Bit, 192 kHz Stereo D/A Converter

EDITION	AUTHOR	DATE	DESCRIPTION
V1.0	By TF	2019.4.25	The First Draft

目录

1. Description	3
2. Features	
3. Applications	3
4. Block diagram	
5. Pin description	
5.1 Pin description/function	
6. Specifications	
7. Absolute maximum ratings	5
8. Electrical characteristic	6
9. Filter characteristics	7
10. System clock timing	7
11. Audio interface timing	8
12. Audio interface format	
13. System clocking	9
14. External serial clock mode	10
15. De-emphasis control	10
16. Power-down sequence	
17. Absolute maximum ratings system design	
18. Package information	12

1. Description

The CJC4334 is a high quality stereo DAC designed for portable multimedia applications. The CJC4334 is a complete, stereo digital-to-analog output systems including interpolation, multi-bit D/A conversion and output analog filtering in a 8-pin package.

The CJC4334 support all major audio data interface formats, and the individual devices differ only in the supported interface format. The device including digital interpolation, third-order multi-bit delta-sigma digital-to-analog conversion, digital de-emphasis, analog filtering. the CJC4334 is available in a 8-pin SOP package in Commercial (-40°C to +85°C) grade.

2. Features

- DAC SNR 92dB ('A' weighted)
- THD -87dB
- Architecture
- Filtered Line-level Outputs
- Supports Sample Rates up to 192 kHz
- 24-Bit I²S Input
- Small 8-pin SOP8L(SOIC8) Package

3. Applications

- Handheld gaming
- Mobile multimedia
- DVD players
- Digital TVS

4. Block diagram

5. Pin description

5.1 Pin description/function

PIN NO	NAME	I/O	DESCRIPTION
1	SDIN	ı	Serial Audio Data Input - Input for two's complement serial audio
l l	SUIN	l	data.
2	SCLK	ĺ	Serial Clock - Serial clock for the serial audio interface.
3	LRCK	ı	Left / Right Clock - Determines which channel, Left or Right, is
٥	LINGIN	I	currently active on the serial audio data line.
4	MCLK	į	Master Clock - Clock source for the delta-sigma modulator and
4	IVICER	l	digital filters.
			Analog L Outputs - The full-scale analog line output level is
5	AOUTL	0	specified in the Analog Characters.
6	GND	I	Ground - Ground reference.
		0	Analog Power - Positive power supply for the analog and
7	VDD		regulator for the digital core logic sections.
8	AOUTR	0	Analog R Outputs - The full-scale analog line output level is
	ACOIN		specified in the Analog Characters.

6. Specifications

GND = 0 V; all voltages with respect to ground.(Note1)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
DC power supply Analog power	VDD	3.0	3.3.	3.6	V
Ambient operating temperature (power applied) -CSZ	TA	-40	-	+85	$^{\circ}$

Note 1: Device functional operation is guaranteed within these limits. Functionality is not guaranteed or implied outside of these limits. Operation outside of these limits may adversely affect device reliability.

7. Absolute maximum ratings

GND = 0 V; all voltages with respect to ground.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
DC power supply Low voltage analog power	VDD	-0.3	-	3.6	V
Input current, any pin except supplies	lin	1	ı	±10	mA
Digital input voltage (Note2) Digital interface	VIN-L	-0.3	1	VL+0.4	V

Normal operation is not guaranteed at these extremes.

Note 2: The maximum over/under voltage is limited by the input current except on the power supply pin.

8. Electrical characteristic

Test Conditions

VDD =3.3V, GND=0V, TA=+25°C, fs=48kHz, MCLK=256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analogue Output						
Output Level		0dBFS	2.7	2.8	2.9	VPP
Master Clock Frequency	fCLK		2		50	MHz
Duty Cycle	dCLK		45		55	%
Input Sample Rate		Fs	30		200	kHz
All MCLK/LRCK ratios combined						
Load Impedance				3		ΚΩ
Load Capacitance				100		pF
DAC to Line-Out						
Signal to Noise Ratio	SNR	RL = 10kΩ	87	91	92	dB
		A-weighted				
		RL = 10kΩ	85	89	90	dB
		Un-weighted				
Total Harmonic Distortion Plus	THD+N	RL = 10kΩ	83	85	87	dB
Noise						
Channel Separation		1kHz	100	114	-	dB
Power Supply Rejection Ratio	PSRR	1kHz	-	44.2	-	dB
Digital Logic Levels						
Input HIGH Level	VIH		0.9VD			V
			D			
Input LOW Level	VIL				0.3VD	V
					D	
Output HIGH Level	VOH	IOH = 1mA	0.9VD			V
			D			
Output LOW Level	VOL	IOL = -1mA			0.1VD	V
					D	
Input Capacitance						pF
Input Leakage					+/-0.9	Α

9. Filter characteristics

(1) (Ta=Tmin~Tmax;VDD=3.3V, fs=48kHz)

P/	SYMBOL	MIN	TYP	MAX	UNITS		
DAC Digital Filte	er:						
Passband (Note3	2)	±0.01dB	PB	0		20.0	kHz
rasspand (Notes	''	$-6.0 \mathrm{dB}$		-	22.05	-	kHz
Stopband (Note3)		SB	24.1			kHz
Passband Ripple			PR			±0.01	dB
Stopband Attenua	ation		SA	65			dB
Group Delay (No	te4)		GD	-	24.0	-	1/fs
Digital Filter + S	CF + CTF:						
Frequency	0~20 kHz		FR	-	±0.02	-	dB
Response	~40 kHz	(Note5)		-	±1.0	-	dB

Note 3. The passband and stopband frequencies is proportional to fs.

Note 4. The delay occurred by digital counter, this time is the time from setting the 16/24bit data of input register to analog signal outputting from both channels.

Note 5. fs=96kHz.

10. System clock timing

System Clock Timing Requirements

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
System Clock Timing Information					
MCLK System clock pulse width high	TMCLKL	21			ns
MCLK System clock pulse width low	Тмськн	21			ns
MCLK System clock cycle time	TMCLKY	54			ns
MCLK duty cycle	TMCLKDS	60:40		40:60	ns

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
System Clock Timing Information					
MCLK System clock pulse width high	TMCLKL	10			ns
MCLK System clock pulse width low	Тмськн	10			ns
MCLK System clock cycle time	Тмську	27			ns

11. Audio interface timing

Digital Audio Data Timing

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
SCLK cycle time	tBCY	50			ns
SCLK pulse width high	tBCH	20			ns
SCLK pulse width low	tBCL	20			ns
LRCK set-up time to SCLK rising edge	tLRSU	10			ns
LRCK hold time from SCLK rising edge	tLRH	10			ns
SDIN hold time from SCLK rising edge	tDH	10			ns

Note: SCLK period should always be greater than or equal to MCLK period.

12. Audio interface format

In I2S mode, the MSB is available on the second rising edge of SCLK following a LRCLK transition. The other bits up to the LSB are then transmitted in order. Depending on word length, SCLK frequency and sample rate, there may be unused SCLK cycles between the LSB of one sample and the MSB of the next.

I2S Justified Audio Interface (assuming n-bit word length)

13. System clocking

The external clocks, which are required to operate the CJC4334, are MCLK, BICK and LRCK. The master clock (MCLK) should be synchronized with LRCK, but the phase is not critical. The MCLK is used to operate the digital interpolation filter and the Delta-Sigma modulator.

The system clocking have two operate MODE, are AUTO detect MODE and I2C Setting MODE.

The MCLK frequency is detected from the relation between MCLK and LRCK automatically.

AUTO detect MODE

LRCK					MCL	(MHz)				
(kHz)	64x	96x	128x	192x	256x	384x	512x	768x	1024x	1152x
32	-	-	-	-	8.1920	12.288	-	-	32.768	36.864
						0			0	0
44.1	-	-	-	-	11.289	16.934	22.579	33.868	45.158	-
					6	4	2	8	0	
48	-	-	-	-	12.288	18.432	24.576	36.864	49.152	-
					0	0	0	0	0	
64	-	-	8.1920	12.288	-	-	32.768	49.152	-	-
				0-			0	0		
88.2	-	-	11.289	16.934	22.579	33.868	-	-	-	-
			6	4	2	8				
96	-	-	12.288	18.432	24.576	36.864	-	-	-	-
			0	0	0	0				
128	8.19	12.288	-	-	32.768	49.152	-	-	-	-
	20	0			0	0				
176.4	11.2	16.934	22.579	33.868	-	-	-	-	-	-
	896	4	2	8						
192	12.2	18.432	24.576	36.864	-	-	-	-	-	-
	880	0	0	0						

14. External serial clock mode

The CJC4334 will enter the External Serial Clock Mode when 16 low to high transitions are detected on the DEM/SCLK pin during any phase of the LRCK period. When this mode is enabled, the Internal Serial Clock Mode and de-emphasis filter are disabled.

In the External Serial Clock Mode, the CJC4334 will support I²S data up to 24-bit, with data valid on the rising edge of SCLK.

15. De-emphasis control

The device includes on-chip digital de-emphasis. The frequency response of the de-emphasis curve scales with changes in the sample rate, Fs. The de-emphasis error will increase for sample rates other than 44.1 kHz.

When the SCLK/DEM pin is connected to VL (internal SCLK mode), the 44.1 kHz de-emphasis filter is activated. When the SCLK/DEM pin is connected to GND, the de-emphasis filter is disabled.

16. Power-down sequence

Follow the power-down sequence below:

- 1. For minimal pops, set the input digital data (SDIN) to zero for at least 8192 consecutive samples.
- 2. Remove the MCLK signal without applying any glitches pulses to the MCLK pin.
- 3. Remove the power supply voltages.

Note: A glitches pulse is any pulse that is shorter than the period defined by the minimum/maximum MCLK signal duty cycle specification and the nominal frequency of the input MCLK signal. A transient may occur on the analog outputs if the MCLK signal duty cycle specification is violated when the MCLK signal is removed during normal operation.

17. Absolute maximum ratings system design

18. Package information

8-pin SOIC/SOP8L (150mil) Outline Dimensions

Controling Dimension is Millimeters

Symbols	Dim	nensions (inch)	Dim	nensions (r	mm)
	Min	TYP	Max	Min	TYP	Max
Α	0.2300		0.2440	5.842		6.198
В		0.050			1.270	
C	0.0600	-	0.0680	1.524		1.727
D	0.0138	-	0.0200	0.351		0.508
E	0.1890		0.1950	4.801	6 <u>1.00</u> 8	4.953
F	0.055		0.061	1.397		1.549
G	0.0040		0.0098	0.102		0.249
Н	0.0160		0.0350	0.406	66 <u>1.1318</u> 8	0.889
1	0.1520		0.1574	3.861		3.998
J	0.0100x45°		0.0160 x45°	0.254 x45°		0.406 x45°
K	0.0075		0.0098	0.190	18 <u>2.22</u> 8	0.250
L	0°		8°	0°		8°