

planetmath.org

Math for the people, by the people.

properties of states

Canonical name PropertiesOfStates
Date of creation 2013-03-22 17:45:24
Last modified on 2013-03-22 17:45:24
Owner asteroid (17536)
Last modified by asteroid (17536)

Numerical id 5

Author asteroid (17536)

Entry type Theorem Classification msc 46L30 Classification msc 46L05 Let \mathcal{A} be a http://planetmath.org/CAlgebra C^* -algebra and $x \in \mathcal{A}$. Let $S(\mathcal{A})$ and $P(\mathcal{A})$ denote the http://planetmath.org/Statestate space and the pure state space of \mathcal{A} , respectively.

0.1 States

The space is sufficiently large to reveal many of elements of a C^* -algebra. Theorem 1- We have that

- S(A) separates points, i.e. x = 0 if and only if $\phi(x) = 0$ for all $\phi \in S(A)$.
- x is http://planetmath.org/InvolutaryRingself-adjoint if and only if $\phi(x) \in \mathbb{R}$ for all $\phi \in S(A)$.
- x is positive if and only if $\phi(x) \geq 0$ for all $\phi \in S(\mathcal{A})$.
- If x is http://planetmath.org/InvolutaryRingnormal, then $\phi(x) = ||x||$ for some $\phi \in S(\mathcal{A})$.

0.2 Pure states

The pure state space is also sufficiently large to the of Theorem 1. Hence, we can replace S(A) by P(A), or by any other family of linear functionals F such that $P(A) \subset F \subset S(A)$, in the previous result.

Theorem 2 - We have that

- P(A) separates points, i.e. x = 0 if and only if $\phi(x) = 0$ for all $\phi \in P(A)$.
- x is if and only if $\phi(x) \in \mathbb{R}$ for all $\phi \in P(A)$.
- x is positive if and only if $\phi(x) \geq 0$ for all $\phi \in P(A)$.
- If x is , then $\phi(x) = ||x||$ for some $\phi \in P(A)$.
- Every multiplicative linear functional on ${\mathcal A}$ is a pure state.