

Bias and Fairness In predicting severity of cyanobacteria blooms

by Fiona Chow and Jennah Gosciak

Data: Inputs

Metadata

23,570 rows of training and test data with latitude/longitude and date

Elevation Data

Copernicus Digital Elevation Model (DEM) with 30-meter resolution with data such as maximum elevation and difference in elevation

Satellite Data

Sentinel-2 Level-2A satellite imagery from the European Commission in partnership with the European Space Agency (ESA) with data such as spectral bands – red, blue and green

Auxiliary Data: US Census

American Community Survey (ACS) 2015-2019 5-year estimates at the census tract level with data such as race and ethnicity, median household income, and poverty rate

Process of Sampling Data

Because test data do not have labels, we conduct our audit using a sample of training data.

Filtered for training Data from 2017

Sample so as to ensure proportional levels in each region to the original data

Created 72 / 28% split of training and test data

Split the new training data (the 72%) further into a training and validation set

Outputs

Severity	Density range (cells/mL)		Low risk
1	< 20,000	Binary	
2	20,000 - < 100,000	classification	
3	100,000 - < 1,000,000		High risk
4	1,00,000 - < 10,000,000		
5	> 10,000,000		

Implementation

Validation: Original Competition

Region-averaged root mean squared error (RMSE) using the estimated and observed severity values for each region

$$RMSE = \sqrt{rac{1}{N}\sum_{i=0}^{N}(Y_i - \hat{Y}_i)^2}$$

$$\Rightarrow \frac{RMSE_{Midwest} + RMSE_{West} + RMSE_{South} + RMSE_{Northeast}}{4}$$

- ullet $Y_i={
 m true\ severity\ level\ for\ the}\ |i^{
 m th}|\ {
 m sample}$
- $\hat{Y}_i = ext{predicted severity level for the } |i^{ ext{th}}| ext{ sample}$
- N = total number of samples

DrivenData leaderboard performance: 0.76

Performance on sampled data: 0.73

Subpopulations

Above
the
statewide
average

Below
the
statewide
average

Performance

With only low and high severity labels, we use common metrics to evaluate the ADS like accuracy, precision, recall, and false negative and false positive rates

		Baseline	Overall	
	Accuracy	0.69	0.81	
	Precision	0.69	0.82	
	Recall	1	0.93	
	False Negative Rate	0	0.07	
	False Positive Rate	1	0.48	

Evaluation of Performance Overall in Comparison to the Baseline Classifier

Define a baseline classifier that always predicts the majority class

Evaluate the model on an unseen test set for a range of metrics

Identify high-priority metrics and compare performance to baseline

Aequitas Fairness Metrics

Why these fairness metrics?

FNR Disparity: ensure ADS does not fail to provide assistance to protected subgroups

Recall Disparity: ensure the results of the ADS is distributed in a representative way

	Poverty Rate	Low Income	Non-White	Hispanic/Latino
FNR Disparity	1.12	0.38	1.83	0.26
Recall Disparity	0.99	1.07	0.95	1.07
Predicted Prevalence Disparity	1.09	1.18	0.93	1.19

Results:

Recall / Predicted Prevalence parity across all subgroups

FNR disparity for the non-White subgroup is 1.83 and falls outside of the rule-of-thumb for fairness of $0.8 \le \text{disparity} \le 1.25$

Interpretability: Feature Importance

Summary

Data

Standard and **appropriate dataset** used on other contexts (e.g., computer vision for algae bloom prediction in oceans)

Performance

High recall and precision
Few disparities across subgroups

Deployment

Deployment in the **public sector** with **human oversight**

Recommendations

Collect more data from the **Northeast**Better account for spatial variation