Visualization for HW5

Enter Your Name here: Mili Shah

Instructions: This part of the assignment deals with visualizing the trends observed for the queries in the problem description. Run the associated cell for the specified query and convince yourself that what is presented in the output makes sense as per your expectations.

RUN THE BELOW CELL FIRST for dependecy resolution, before running any subsequent cell. ¶

```
In [1]: #Import all Dependencies

# http://pandas.pydata.org/
# Documentation available at https://pandas.pydata.org/pandas-docs/stable/
# Open source, BSD-licensed library providing high-performance, easy-to-use da
ta structures and data analysis tools for the Python programming language.
import pandas as pd

# http://matplotlib.org/
# De-facto standard
import matplotlib.pyplot as plt

# This module contains classes to support completely configurable tick locatin
g and formatting
# https://matplotlib.org/api/ticker_api.html
import matplotlib.ticker as ticker

# Setup matplotlib to work inside the notebook using
%matplotlib inline
```

Query 3: Distribution of publication types

Insert your query in the cell below (please put the query in "markdown" as plain text and do not execute the sql query as code):

----- INSERT QUERY 3 HERE ----- drop table if exists types;

create temp table types(type_id INTEGER primary key, type_name text); insert into types values(0, 'Journal Articles'); insert into types values(1, 'Conference and Workshop Papers'); insert into types values(3, 'Books and Thesis');

copy (select type_name as type, count(papers.id) as publications from papers join venue on papers.venue = venue.id join types on venue.type = types.type_id where year != 0 group by type_name) to '/tmp/papers_count_per_type.csv' with delimiter ',' csv header;

drop table if exists types;

```
In [2]: # File Statistics for Query 3 Answer
        # (where answer fileName of the query in the current directory is : "papers_co
        unt_per_type.csv")
        # Read CSV (comma-separated) file into DataFrame
        papers_count_per_type = pd.read_csv('papers_count_per_type.csv')
        # Concise summary of a DataFrame.
        # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.inf
        o.html
        papers_count_per_type.info()
        # Table Answer of the query
        # Return the first n rows.
        # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.hea
        d.html
        papers_count_per_type.head()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3 entries, 0 to 2
        Data columns (total 2 columns):
                        3 non-null object
        publications
                        3 non-null int64
        dtypes: int64(1), object(1)
```

Out[2]:

	type	publications
0	Journal Articles	1401693
1	Books and Thesis	6974
2	Conference and Workshop Papers	1740812

memory usage: 120.0+ bytes

In [3]: # Visualization for Query 3 (Pie Chart) # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html?highlight =subplots # Create a figure and one subplot. fig, ax = plt.subplots() # Set a title for the axes. # https://matplotlib.org/devdocs/api/ as gen/matplotlib.axes.Axes.set title.ht ax.set title('Distribution of publication types') # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html?highlight=matp lotlib%20pyplot%20pie ax.pie(papers_count_per_type['publications'], labels=papers_count_per_type['ty pe'], autopct='%1.2f%', shadow=True, startangle=90) # Equal aspect ratio ensures that pie is drawn as a circle. ax.axis('equal') # Plot lines and/or markers to the Axes. # https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html # By adding a semicolon at the end, the output is suppressed. ax.plot();

Query 4: Publications by type per year

Insert your query in the cell below (please put the query in "markdown" as plain text and do not execute the sql query as code):

----- INSERT QUERY 4 HERE ----- create extension tablefunc;

copy(with ans as (select * from crosstab ('select year, type, count(papers.id) as publications from papers join venue on papers.venue = venue.id where year != 0 group by year, type order by year, type', 'select distinct type from venue order by type') as res(year integer, "journal_articles_publications" integer, "conference_and_workshop_papers_publications" integer, "books_and_thesis_publications" integer)) select year, journal_articles_publications, coalesce(conference_and_workshop_papers_publications, 0) as conference_and_workshop_papers_publications, coalesce(books and thesis publications, 0) as books and thesis publications from ans

) to '/tmp/papers_count_per_type_per_year.csv' with delimiter ',' csv header; ;

```
In [4]: # File Statistics for Query 4 Answer
# (where answer fileName of the query in the current directory is : "papers_co
unt_per_type_per_year.csv")

papers_count_per_type_per_year = pd.read_csv('papers_count_per_type_per_year.c
sv')

papers_count_per_type_per_year.info()
papers_count_per_type_per_year.head()
```

Out[4]:

	year	journal_articles_publications	conference_and_workshop_papers_publications	books_and
0	1936	12	0	0
1	1937	15	0	0
2	1938	10	0	0
3	1939	18	0	0
4	1940	10	0	0

```
In [5]: # Visualization for Query 4 (Stacked-bar Graph)
        fig, ax = plt.subplots(figsize=(14, 6))
        p1 = ax.bar(papers_count_per_type_per_year['year'], papers_count_per_type_per_
        year['journal_articles_publications'])
        p2 = ax.bar(papers_count_per_type_per_year['year'], papers_count_per_type_per_
        year['conference_and_workshop_papers_publications'], bottom=papers_count_per_t
        ype_per_year['journal_articles_publications'])
        p3 = ax.bar(papers_count_per_type_per_year['year'], papers_count_per_type_per_
        year['books and thesis publications'], bottom=papers count per type per year[
        'journal_articles_publications'] + papers_count_per_type_per_year['conference_
        and_workshop_papers_publications'])
        ax.set xlabel('Year')
        ax.set ylabel('Publications')
        ax.set_title('Publications by type per year')
        ax.legend((p1[0], p2[0], p3[0]), ('Journal Articles', 'Conference and Workshop
         Papers', 'Books and Thesis'))
        # Control the major tick label formats.
        ax.xaxis.set major locator(ticker.MultipleLocator(base=5))
        ax.yaxis.set_major_locator(ticker.MultipleLocator(base=10000))
        # Turn the axes grids on or off.
        # https://matplotlib.org/devdocs/api/_as_gen/matplotlib.axes.Axes.grid.html
        ax.grid(axis='both', linestyle='-', linewidth=0.5)
        ax.plot();
```


Query 5: Publications per coauthors between 1995 and 2015

Insert your query in the cell below (please put the query in "markdown" as plain text and do not execute the sql query as code):

----- INSERT QUERY 5 HERE ----- create extension tablefunc;

copy(with ans as (select * from crosstab (' with coauthors as (select paperid, count(authid) as coauthors from paperauths group by paperid) , some_coauthors as (select paperid, coauthors, year from coauthors join papers on paperid = papers.id join venue on papers.venue = venue.id where year >= 1995 and year <= 2015) select coauthors, year, count(paperid) from some_coauthors group by coauthors, year order by coauthors, year', ' with coauthors as (select paperid, count(authid) as coauthors from paperauths group by paperid) , some_coauthors as (select paperid, coauthors, year from coauthors join papers on paperid = papers.id join venue on papers.venue = venue.id where year >= 1995 and year <= 2015) select distinct year from some_coauthors order by year') as res(coauthors integer, year_1995 integer, year_1996 integer, year_1997 integer, year_1998 integer, year_1999 integer, year_2000 integer, year_2001 integer, year_2002 integer, year_2003 integer, year_2004 integer, year_2005 integer, year_2006 integer, year_2007 integer, year_2008 integer, year_2009 integer, year_2010 integer, year_2011 integer, year_2012 integer, year_2013 integer, year_2014 integer, year_2015 integer)

) select coauthors as coauthors, coalesce(year_1995, 0) as year_1995, coalesce(year_1996, 0) as year_1996, coalesce(year_1997, 0) as year_1997, coalesce(year_1998, 0) as year_1998, coalesce(year_1999, 0) as year_1999, coalesce(year_2000, 0) as year_2000, coalesce(year_2001, 0) as year_2001, coalesce(year_2002, 0) as year_2002, coalesce(year_2003, 0) as year_2003, coalesce(year_2004, 0) as year_2004, coalesce(year_2005, 0) as year_2005, coalesce(year_2006, 0) as year_2006, coalesce(year_2007, 0) as year_2007, coalesce(year_2008, 0) as year_2008, coalesce(year_2009, 0) as year_2009, coalesce(year_2010, 0) as year_2010, coalesce(year_2011, 0) as year_2011, coalesce(year_2012, 0) as year_2012, coalesce(year_2013, 0) as year_2013, coalesce(year_2014, 0) as year_2014, coalesce(year_2015, 0) as year_2015 from ans) to '/tmp/papers_count_per_coauthors_between_1995_and_2015.csv' with delimiter ',' csv header; ;

In [6]: # File Statistics for Query 4 Answer
 # (where answer fileName of the query in the current directory is : "papers_co
 unt_per_coauthors_between_1995_and_2015.csv")

papers_count_per_coauthors_between_1995_and_2015 = pd.read_csv('papers_count_p
 er_coauthors_between_1995_and_2015.info()
 papers_count_per_coauthors_between_1995_and_2015.head()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 77 entries, 0 to 76 Data columns (total 22 columns): coauthors 77 non-null int64 year_1995 year_1996 year_1997 year_1998 year_1999 year_2000 year_2001 year_2002 year_2003 year_2004 year_2005 year_2006 year_2007 year_2008 year_2009 year_2010 year_2011 year_2012 year_2013 year_2014 year_2015 77 non-null int64 dtypes: int64(22) memory usage: 13.3 KB

Out[6]:

	coauthors	year_1995	year_1996	year_1997	year_1998	year_1999	year_2000	year_2001	year_
0	1	11511	12157	13013	13591	14953	16368	17227	1790
1	2	14901	15840	17026	18621	20776	23672	25078	2767
2	3	7939	8664	10153	11603	13394	15681	17250	2001
3	4	2909	3297	4107	4831	5677	6828	7906	9465
4	5	1105	1150	1490	1731	2100	2551	3024	3687

5 rows × 22 columns

In [7]: # Visualization for Query 5 (only between 1-5 #co-authors) (Multiple Bar plot s) x = list(range(1995, 2016)) $author_ctr = 0$ results_to_display = 5 for coauthors in papers_count_per_coauthors_between_1995_and_2015['coauthors' h = papers count per coauthors between 1995 and 2015.loc[papers count per coauthors between 1995 and 2015['coauthors'] == coauthors].drop('coauthors', 1 fig, ax = plt.subplots(figsize=(20, 6)) ax.set_xlabel('Year') ax.set_ylabel('Publications') ax.set_title('Publications per year with %d #coauthors' % (coauthors,)) ax.xaxis.set_major_locator(ticker.MultipleLocator(base=1)) ax.grid(axis='y', linestyle='-', linewidth=0.5) ax.bar(x, h.iloc[0].values) ax.plot(); $author_ctr += 1$ if author_ctr == results_to_display: break

