NUMERICAL OPTIMIZATION

Sheet 3: Convexity

D:A set S is convex if $\forall \lambda \in [0,1]$ and $\forall x \in S, y \in S$ we have that $\lambda x + (1-\lambda)y \in S$.

D:A set C is a *cone* if for any element $v \in C$ and $\forall \alpha \geq 0$, we have that $\alpha v \in C$.

D:We say a set is a *convex cone* if it is convex and a cone.

EXERCISE ONE Prove the following equivalence:

A set C is a convex cone if and only if it satisfies the following property: $\forall a \in C, b \in C$ and $\forall \alpha \geq 0, \beta \geq 0$ it holds that $\alpha a + \beta b$ must lie in C.

EXERCISE TWO Use the second-order convexity criterion to check whether the following function is convex, concave, or neither:

$$f(x, y, z) = 12.5x^2 + 9y^2 + 5.5z^2 + 15xy - 5xz.$$

D: A hyperplane is any affine space in \mathbb{R}^d of dimension d-1. Thus, on a 2D plane, any line is a hyperplane. In the 3D space, any plane is a hyperplane, and so on.

Any hyperplane can be written as $HP = \{x \in \mathbb{R}^d | c^T x = d\}$ for some scalar d and a vector c.

A hyperplane splits the space \mathbb{R}^d into two halfspaces. We count the hyperplane itself as a part of both halfspaces.

Any halfspace can thus be written as $HS = \{x \in \mathbb{R}^d | c^T x \leq d\}$ for some scalar d and a vector c.

T(Hyperplane separation lemma): If $A, B \subset \mathbb{R}^n$ are convex sets, $A \cap B = \emptyset$, then there exists a linear function c^Tx and $b \in \mathbb{R}$ such that $c^Tx \leq b$ for $x \in A$ and $c^Tx \geq b$ for $x \in B$. If A is open, then $c^Tx < b$ for $x \in A$. If A is closed and B is compact, then we can choose c and b so that $c^Tx \leq b$ for $x \in A$ and $c^Tx > b$ for $x \in B$.

EXERCISE THREE Prove the following:

A closed set $S \subseteq \mathbb{R}^n$ is convex if and only if there exists a family \mathcal{F} of halfspaces in \mathbb{R}^n such that $S = \bigcap_{F \in \mathcal{F}} F$.

Hint: The hard implication is that if we have a convex set S, then we can generate the family \mathcal{F} . This family can (and sometimes must) be of infinite size. To get \mathcal{F} , use the hyperplane separation lemma and separate S from "everything else".

EXERCISE FOUR Use the second-order convexity criterion to check whether the following function is convex, concave, or neither:

$$f(x,y) = x^2/y^4$$
 where $y > 0$.

EXERCISE FIVE Write the gradient and the Hessian matrix of the function $g(x_1, x_2, ..., x_n) = \log(\sum_{i=1}^n e^{x_i})$.

EXERCISE SIX The Powell's optimization problem can be described as minimizing the following function:

$$\min f(x_1, x_2, x_3, x_4) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4.$$

Your task is:

1. Without doing any complicated math, show that the global minimum of this function is at (0,0,0,0).

2.	Use the second-order neither.	convexity cr	riterion	to check	whether	the fun	ction is	convex,	concave or