Departement Informatik

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Prof. Dr. Emo Welzl

1. Zwischenklausur

Zürich, 2. November 2010

Aufgabe 1

(a) Konstruieren Sie einen (deterministischen) endlichen Automaten, der die Sprache

 $L = \{x \in \{0, 1\}^* \mid (2 \cdot |x|_1 + 3 \cdot |x|_0) \bmod 3 = 0 \bmod |x|_0 \ge 2\}$

akzeptiert.

(b) Geben Sie für jeden Zustand q Ihres in Aufgabenteil (a) konstruierten Automaten die Klasse $\mathrm{Kl}[q]$ an.

6+4 Punkte

Aufgabe 2

- (a) Sei $w_n = 0^{2^{2^{n^3}}}$ für alle $n \in \mathbb{N}$. Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität von w_n an, gemessen in der Länge von w_n .
- (b) Zeigen Sie, dass für alle $n \in \mathbb{N} \{0\}$ mehr als die Hälfte aller Wörter $x \in (\Sigma_{\text{bool}})^n$ eine Kolmogorov-Komplexität $K(x) \geq n 1$ hat.

5+5 Punkte

Aufgabe 3

Es seien die regulären Grammatiken $G_1 = (\{S, A, B\}, \{a, b\}, P_1, S)$ und $G_2 = (\{S, A, B, C\}, \{a, b\}, P_2, S)$ gegeben, wobei

$$P_1 = \{S \to bS, S \to aA, A \to aB, A \to b, B \to bB, B \to aS, B \to \lambda\},$$

$$P_2 = \{S \to aA, S \to bS, A \to aA, A \to bB, B \to a, B \to bC, C \to \lambda\}.$$

Sei weiter $L_1 = L(G_1)$ und $L_2 = L(G_2)$.

Konstruieren Sie aus G_1 und G_2 eine reguläre Grammatik für die Sprache $L_1L_2 \cup L_2 \cdot \{\#\}$ und erläutern Sie kurz informell die Korrektheit Ihrer Konstruktion. **10 Punkte**

(bitte wenden)

Aufgabe 4

Zeigen Sie, dass die folgenden Sprachen nicht regulär sind.

(a)
$$L_1 = \{0^n 1^n 0^n \mid n \ge 0\},\$$

(b)
$$L_2 = \{u1uv \mid u, v \in \{0, 1\}^*\}.$$

Hierfür dürfen Sie sich jeweils eine der folgenden drei Beweismethoden aussuchen, jedoch nicht dieselbe für beide Aufgabenteile.

- (i) Mit Hilfe eines angenommenen endlichen Automaten (Verwendung von Lemma 3.3 aus dem Buch oder direkt über den Automaten),
- (ii) mit Hilfe des Pumping-Lemmas, oder
- (iii) mit der Methode der Kolmogorov-Komplexität.

Bitte beachten Sie, dass bei Lösungen, die dieselbe Methode für beide Teilaufgaben verwenden, nur Teilaufgabe (a) bewertet wird. 5+5 Punkte