🙎 Calcula el área y volumen de piramides, prismas y cilindros rec-

Soluciones propuestas

3° de Secundaria Unidad 2 2024-2025

Practica la Unidad 2

Nombre del alumno:	Fecha:										
Aprendizajes:	Puntuación:										
Usa e interpreta las medidas de tendencia central (moda, media aritmética y mediana) y el rango de un conjunto de datos, y decide cuál de ellas conviene más en el análisis de los datos en cuestión	Pregunta	1	2	3	4	5	6	7	8	9	
	Puntos	2	4	3	4	4	10	6	3	5	
	Obtenidos										
	Pregunta	10	11	12	13	14	15	16	17	Total	
Formula expresiones de primer grado para representar propieda- des (perímetros y áreas) de figuras geométricas y verifica equi- valencia de expresiones, tanto algebraica como geométricamente (análisis de las figuras).	Puntos	7	3	8	6	10	10	10	5	100	
	Obtenidos										
Resuelve problemas mediante la formulación y solución algebraica de ecuaciones lineales.											

In	dice			3.3. Ecuación de una recta	7
1.	Probabilidad y estadística 1.1. Media, Mediana, Moda y Desviación media .	3		3.4. Pendiente y ordenada3.5. Pendiente dados dos puntos	
	1.2. Eventos mutuamente excluyentes	3	4.	Ecuación lineal	8
2.	Figuras y cuerpos geométricos	4			8
	2.1. Perímetro y Área2.2. Resolución de problemas	4			9
	2.3. Área lateral, Área total y Volumen	5		4.4. Ecuaciones lineales con fracciones	9
3.	Plano cartesiano y recta	6	5.	Sistemas de ecuaciones	10
	3.1. Ubicación en el plano cartesiano	6		5.1. Sistema de ecuaciones 3x3	11
	3.2 Cuadrantes en el plane cartesiano	6		5.2 Sistema de ecuaciones con fracciones	19

1 Probabilidad y estadística

1.1 Media, Mediana, Moda y Desviación media

Ejercicio 1 ____ de 2 puntos

Determina la mediana y la moda en los siguientes conjuntos de datos:

Los puntajes obtenidos en un juego son: 54, 55, 59, 61, 77, 58, 55, 71, 59, 55, 60, 53, 56 y 60.

La media es:

$$\frac{54 + 55 + 59 + \ldots + 56 + 60}{14} = \frac{823}{14} = 59.5$$

La mediana es: 58.5. La moda es: 55.

La desviación media es:

Para calcular la desviación media:

$$\frac{|54 - 59.5| + |55 - 59.5| + \ldots + |60 - 59.5|}{14} = 4.5$$

b 22, 25, 21, 23, 29, 30, 28, 27, 23, 26.

La media es:

$$\frac{22 + 25 + 21 + \ldots + 23 + 26}{10} = \frac{254}{10} = 25.4$$

La mediana es: 25.5.

La moda es: 23.

La desviación media es:

Para calcular la desviación media:

$$\frac{|22 - 25.4| + |25 - 25.4| + \dots + |26 - 25.4|}{10} = 2.6$$

1.2 Eventos mutuamente excluyentes

Ejercicio 2 ____ de 4 puntos

Resuelve los siguientes problemas:

En un salón hay 24 niñas, de las cuales 8 son extranjeras y 16 son mexicanas y hay 22 niños, de los cuales 18 son mexicanos y 4 son extranjeros. Calcula la probabilidad de elegir a un niño extranjero.

Para calcular la probabilidad de elegir a un niño extranjero, hay que calcular la probabilidad de elegir a un niño, que es de $\frac{22}{46}$ y la probabilidad de elegir a un extranjero, que es de $\frac{4}{22}$. Por lo tanto, la probabilidad de elegir a un niño extranjero es de $\frac{4}{46} = \frac{2}{23}$

b En una urna hay 8 pelotas moradas, 12 naranjas, 7 rojas, 11 azules y 7 blancas. Calcula la probabilidad de sacar una pelota roja o azul.

Para calcular la probabilidad de sacar una pelota roja o azul, hay que calcular la probabilidad de sacar una pelota roja, que es de $\frac{7}{45}$ y la probabilidad de sacar una pelota azul, que es de $\frac{11}{45}$. Por lo tanto, la probabilidad de sacar una pelota roja o azul es de $\frac{7}{45} + \frac{11}{45} = \frac{18}{45} = \frac{2}{5}$

2 Figuras y cuerpos geométricos

2.1 Perímetro y Área

Ejercicio 3

de 3 puntos

Encuentra el perímetro y el área de las siguientes figuras:

Perímetro: $31 \times 3 = 93$

Área: $\frac{31 \times 24}{2} = 372$

Perímetro: $3.14 \times 88 = 276.32$

Área: $3.14 \times 44^2 = 6079.04$

Perímetro: 2(42.9 + 21) = 127.8

Área: $42.9 \times 21 = 900.9$

2.2 Resolución de problemas

Ejercicio 4

de 4 puntos

Resuelve los siguientes problemas:

Calcula la altura de un prisma que tiene como área de la base 6 m² y 66 m³ de capacidad.

Ya que el volumen de un prisma es: $V = A_b \cdot h$, entonces la altura del prisma es:

$$h = \frac{V}{A_h} = \frac{66}{6} = 11$$
m

b ¿Cuál es el perímetro de un campo de fútbol que mide 95.12 metros de largo y 45.27 metros de ancho?

Ya que el perímetro de un rectángulo es:

$$P = 2(l+a)$$

entonces el perímetro del campo de fútbol es:

$$P = 2(95.12 + 45.27) = 280.78$$
m

Calcula la altura de un prisma que tiene como área de la base 8 m² y 120 m³ de capacidad.

Ya que el volumen de un prisma es: $V = A_b \cdot h$, entonces la altura del prisma es:

$$h = \frac{V}{A_b} = \frac{120}{8} = 15$$
m

d Ricardo quiere poner una barda alrededor de un terreno pentagonal que mide 15 metros por lado. ¿Cuánta barda necesitará Ricardo para poner barda en todo el terreno?

Se sabe que el perímetro de un pentágono es: P=5l, entonces el perímetro del terreno es:

$$P = 5(15) = 75$$
m

2.3 Área lateral, Área total y Volumen

Ejercicio 5 de 4 puntos

Calcula el volumen, el área lateral y el área total de las siguientes figuras:

Pirámide hexagonal cuyos lados "l"de la base miden 8 cm, su apotema mide 7 cm y la altura mide 21 cm.

$$V = \frac{1}{3}A_b \cdot h = \frac{1}{3}\left(\frac{nla}{2}\right)h = \frac{6(8)7}{6}(21) = 1176$$

A. Lateral:

$$A_L = n\frac{lh}{2} = 6 \cdot 8 \cdot 21 = 1008$$

A. Total:

$$A_T = A_L + \frac{nla}{2} = 840 + 64 = 904$$

Pirámide pentagonal de 19 cm de altura cuya base es un pentágono cuyos lados "l"miden 8 cm y su apotema mide 5 cm.

Volumen:

$$V = \frac{1}{3}A_b \cdot h = \frac{1}{3}\left(\frac{nla}{2}\right)h = \frac{5(8)5}{2}(19) = 950$$

A. Lateral:

$$A_L = n\frac{lh}{2} = 5 \cdot 8 \cdot 19 = 760$$

A. Total:

$$A_T = A_L + \frac{nla}{2} = 760 + 100 = 860$$

Cilindro con altura h = 17 cm y un radio r = 4 cm.

Pirámide cuadrada cuyos lados "l"de la base miden $16~{\rm cm}$ y la altura "h"mide $27~{\rm cm}$.

Volumen:

b

$$V = \pi r^2 h = (3.14)4^2 \cdot 17 = 857.12$$

A. Lateral:

$$A_L = 2\pi rh = 2(3.14)4 \cdot 17 = 2(3.14)68 = 428.48$$

A Total

$$A_T = A_L + 2\pi r^2 = 428.48 + 2(3.14)16 = 528.96$$

Volumen:

$$V = \frac{1}{3}A_b h = \frac{1}{3}l^2 h = \frac{1}{3}16^2(27) = 2304$$

A. Lateral:

$$A_L = n\frac{lh}{2} = 4 \cdot \frac{16 \times 27}{2} = 864$$

$$A_T = A_L + l^2 = 864 + 16^2 = 864 + 256 = 1120$$

de 10 puntos

de 6 puntos

3 Plano cartesiano y recta

3.1 Ubicación en el plano cartesiano

Ejercicio 6

Observa la siguiente figura e indica las coordenadas y el cuadrante para cada uno de los puntos:

- Coordenadas del punto A (1,5)(A) Eje x(B) Eje y(C) Cuad. I
 (E) Cuad. III
 (F) Cuad. IV
- b Coordenadas del punto B (-3,6)
 - (A) Eje x (B) Eje y (C) Cuad. I (D) Cuad. II (E) Cuad. III (F) Cuad. IV
- c Coordenadas del punto C (5, -3)
 - (A) Eje x (B) Eje y (C) Cuad. I (D) Cuad. II (E) Cuad. III (F) Cuad. IV
- d Coordenadas del punto D (-5,0)
- e Coordenadas del punto E (0, -7)

3.2 Cuadrantes en el plano cartesiano

Selecciona la respuesta correcta:

Ejercicio 7

- \bullet El punto A(0, 8.24), ¿está ubicado sobre el eje y?
- **b** El punto A(0, -10), gestá ubicado sobre el eje x?
 - ☐ Verdadero ☑ Falso
- c El punto $\mathsf{A}(2,0)$, ¿está ubicado sobre el eje y?
 - ☐ Verdadero ☑ Falso

- d El punto A(0, -5.19), gestá ubicado sobre el eje x?
 - ☐ Verdadero ☑ Falso
- **e** El punto A(-1.5,0), ¿está ubicado sobre el eje x?
 - **✓ Verdadero** ☐ Falso
- **f** El punto A(1,0), ¿está ubicado sobre el eje x?
 - ✓ Verdadero □ Falso

3.3 Ecuación de una recta

Ejercicio 8

de 3 puntos

Escribe la ecuación de las recta para dada uno de los siguientes incisos:

lacktriangle Escribe la ecuación de la recta que pasa por los puntos A(3,-2) y B(4,6).

Para obtener la ecuación necesitamos calcular la pendiente de la recta, que es:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - (-2)}{4 - 3} = \frac{8}{1} = 8$$

- , y la ordenada al origen, que es: b=y-mx=-2-8(3)=-2-24=-26. Por lo tanto, la ecuación de la recta es: y = 8x - 26.
- **b** Escribe la ecuación de la recta que pasa por los puntosA(1,6) y B(2,1)

Para obtener la ecuación necesitamos calcular la pendiente de la recta, que es:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 6}{2 - 1} = \frac{-5}{1} = -5$$

- , y la ordenada al origen, que es: b = y mx = 6 5(1) = 6 5 = 1. Por lo tanto, la ecuación de la recta es: y = -5x + 1.
- **c** Escribe la ecuación de la recta que pasa por los puntos A(-2,3) y B(1,0)

Para obtener la ecuación necesitamos calcular la pendiente de la recta, que es:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 3}{1 - (-2)} = \frac{-3}{3} = -1$$

, y la ordenada al origen, que es: b = y - mx = 3 - (-1)(-2) = 3 + 2 = 5. Por lo tanto, la ecuación de la recta es: y = -x + 5.

3.4 Pendiente y ordenada

Ejercicio 9

de 5 puntos

Identifica la pendiente y ordenada de las siguientes rectas:

a y = -2x + 1

b
$$y = \frac{1}{2}x - 3$$

c y = -3x + 3

Pendiente = -2

Ordenada = 1

Pendiente = -3

Ordenada = 3

Ordenada = 3Pendiente =

Pendiente = -2

Ordenada = 0

3.5 Pendiente dados dos puntos

Ejercicio 10

de 7 puntos

Calcula la pendiente en cada uno de los siguientes incisos:

Calcula la pendiente de la recta que pasa por los puntos A(0,-3) y B(5,1).

 $m = \frac{4}{5}$

b Calcula la pendiente de la recta que pasa por los puntos A(-8,6) y B(-3,8).

 $m = \frac{2}{5}$

c Calcula la pendiente de la recta que pasa por los puntos A(1,1) y B(5,-3).

m = -1

d Calcula la pendiente de la recta que pasa por los puntos A(-7,-3) y B(6,10).

m = 1

e Calcula la pendiente de la recta que pasa por los puntos A(-7,-3) y B(-5,7).

m = 5

f Calcula la pendiente de la siguiente recta:

m = -1

9 Calcula la pendiente de la siguiente recta:

 $m = -\frac{1}{2}$

4 Ecuación lineal

4.1 Ecuaciones lineales

Ejercicio 11

de 3 puntos

Resuelve las siguientes ecuaciones lineales

6x - 2 = 10

6x - 2 = 10

6x = 10 + 2

6x = 12

 $x = \frac{12}{6}$

x = 2

b 9x - 8 = 5x + 4

9x - 8 = 5x + 4

9x - 5x = 4 + 8

4x = 12

 $x = \frac{12}{4}$

x = 3

32x + 24 = 5(2x - 4)

32x + 24 = 5(2x - 4)

32x + 24 = 10x - 20

32x - 10x = -20 - 24

22x = -44

x = -2

4.2 Lenguaje algebraico

Ejercicio 12

de 8 puntos

Escribe la expresión algebraica correcta para los siguientes enunciados

- lacktriangle La cuarta parte de un número cualquiera. $\frac{x}{4}$ o $\frac{1}{4}x$
- e El recíproco de un número cualquiera. $\frac{1}{x}$
- **b** El cuadrado de la diferencia de dos números cualquiera. $(x-y)^2$
- f El triple de un número cualquiera. 3x
- c El cubo de un número cualquiera aumentado en 10. $x^3 + 10$
- 9 La mitad del cubo de la suma de dos números cualquiera. $\frac{1}{2}(x+y)^3$
- d El cuadrado de la suma de dos números cualquiera. $(x+y)^2$
- h Dos novenas partes de un número cualquiera. $\frac{2}{9}x$

4.3 Resolución de problemas

Ejercicio 13

de 6 puntos

Resuelve los siguientes problemas de ecuaciones lineales

- La suma de tres números consecutivos es 195. Halla estos números
- b La suma de dos números es 215 y el mayor excede al menor en 31 unidades. ¿Cuáles son estos dos números?

$$x + (x + 1) + (x + 2) = 195$$

 $3x + 3 = 195$
 $3x = 192$

x = 64

$$x + (x + 31) = 215$$

$$2x + 31 = 215$$

$$2x = 184$$

$$x = 92$$

4.4 Ecuaciones lineales con fracciones

Ejercicio 14

de 10 puntos

Resuelve las siguientes ecuaciones lineales con fracciones

 $\left| \begin{array}{c} \mathbf{a} \\ \end{array} \right| -\frac{1}{2}x - \frac{1}{4}x = \frac{5}{6}$

b
$$-\frac{x}{6} = \frac{7}{54}$$

$$-\frac{2}{4}x - \frac{1}{4}x = \frac{5}{6}$$
$$-\frac{3}{4}x = \frac{5}{6}$$
$$x = \frac{5}{6} \div -\frac{3}{4}$$

$$-\frac{x}{6} = \frac{7}{54}$$
$$-\frac{54}{6}x = 7$$
$$-9x = 7$$
$$x = -\frac{7}{2}$$

$$x = -\frac{1}{2}$$

5 Sistemas de ecuaciones

Ejercicio 15

de 10 puntos

Utilizando el método de tu preferencia, encuentra el valor de x y y para cada uno de los siguientes sistemas de ecuaciones lineales:

a

 $2x - y = 3 \tag{1}$

 $3x - y = 3 \tag{2}$

Usando el método de eliminación, multiplicamos la ecuación (1) por -1 para obtener x:

$$-2x+y \quad = \quad -3$$

$$3x - y = 3$$

Sumamos las ecuaciones (2) y (3) para obtener x:

$$x = 0$$

Sustituimos el valor de x en la ecuación (1) para obtener y:

$$2(0) - y = 3$$

$$-y = 3$$

$$y = -3$$

b

13x - 6y = 22 (1)

$$x = y + 6 \tag{2}$$

Usando el método de sustitución, sustituimos la ecuación (4) en la ecuación (5) para obtener x:

$$13(y+6) - 6y = 22$$

$$13y + 78 - 6y = 22$$

$$7y = -56$$

$$y = -8$$

Sustituimos el valor de y en la ecuación (5) para obtener x:

$$x = -8 + 6$$

$$x = -2$$

5.1 Sistema de ecuaciones 3x3

Ejercicio 16 de 10 puntos

Resuelve el siguiente sistema de ecuaciones lineales:

$$x + 2y + 3z = 12 \tag{1}$$

$$x - 3y + 4z = 27 \tag{2}$$

$$-x + y + 2z = 7 \tag{3}$$

Para resolver el sistema de ecuaciones lineales, sumamos las ecuaciones (1) y (3) para eliminar a x y obtener una ecuación (4):

$$\begin{array}{rcl}
 x + 2y + 3z & = & 12 \\
 -x + y + 2z & = & 7 \\
 \hline
 3y + 5z & = & 19
 \end{array}$$
(4)

Despues sumamos las ecuaciones (1) y (2) para obtener una ecuación (5).

$$\begin{array}{rcl}
 x + 2y + 3z & = & 12 \\
 x - 3y + 4z & = & 27 \\
 \hline
 -y + z & = & 15
 \end{array} \tag{5}$$

Ahora se resuelve el sistema conformado por las ecuaiones (4) y (5), mediante el método de sustitución, despejando la variable z de la ecuación (5) y sustituyendo en la ecuación (4) para obtener el valor de y:

$$-y + z = 15$$

$$z = 15 + y$$

$$3y + 5(15 + y) = 19$$

$$3y + 75 + 5y = 19$$

$$8y = -56$$

$$y = -7$$

Sustituimos el valor de y en la ecuación (5) para obtener el valor de z:

$$-(-7) + z = 15$$
$$7 + z = 15$$
$$z = 8$$

Finalmente, sustituimos los valores de y y z en la ecuación (1) para obtener el valor de x:

$$x + 2(-7) + 3(8) = 12$$

$$x - 14 + 24 = 12$$

$$x + 10 = 12$$

$$x = 2$$

5.2 Sistema de ecuaciones con fracciones

Ejercicio 17 de 5 puntos

Resuelve el siguiente sistema de ecuaciones lineales con fracciones:

$$12x + 5y = -6 (1)$$

$$\frac{5}{3}x - \frac{7}{6}y = -12 \tag{2}$$

Para resolver el sistema de ecuaciones lineales, multiplicamos la ecuación (1) por 7/6 y la ecuación (2) por 5 para eliminar a y y obtener la variable x:

$$14x + \frac{35}{6}y = -7$$

$$14x + \frac{35}{6}y = -7$$
$$\frac{25}{3}x - \frac{35}{6}y = -60$$

Sumamos las ecuaciones (1) y (2) para obtener x:

$$14x + \frac{35}{6}y = -7$$

$$\frac{25}{3}x - \frac{35}{6}y = -60$$

$$\frac{67}{3}x = -67$$

$$\frac{67}{3}x = -67$$

$$x = -3$$

Sustituimos el valor de x en la ecuación (1) para obtener y:

$$12(-3) + 5y = -6$$

$$-36 + 5y = -6$$

$$5y = 30$$

$$y = 6$$