

Part II Introduction

- Part II (Chapter 3-14) addresses process definition, process performance, and the quantification of variability.
- · KPOVs and KPIVs are identified through consensus.
- · Basic analysis tools are introduced:
 - Probability Distributions
 - Six Sigma measures
 - Measurement systems analysis (MSA)
 - Failure mode and effects analysis (FMEA)
 - Quality function deployment (QFD)

COLUMN TO THE PROPERTY OF

Chapter 3 Measurements and S⁴/IEE Measure Phase

Sections 3.1-4

COLLEGE OF ENGINEERING

Chapter 3 Introduction

An objective of the measure phase is the development of a reliable and valid measurement system of the business process identified in the define phase.

- · Overview of basic descriptive statistics;
- Data gathering, presentation, and simple statistics;
- Introductory discussion of confidence interval and hypothesis testing;
- · Attribute vs. continuous data;
- · Ineffectiveness of visual inspections;
- · Examples of experiment traps.

COLUMN TO THE PROPERTY OF

3.1 Voice of the Customer

- VOC assessment is needed up front when executing S⁴/IEE projects at the 30,000-foot level.
 - · Define your customer.
 - · Obtain customer wants, needs, and desires.
 - Ensure that focus of project is addressing customer needs.

COLLEGE OF ENGINEERING

3.1 Voice of the Customer

- · Important customer key process output categories are often classified with regard to their area of impact:
 - Critical to quality (CTQ): flatness, diameter, etc.
 Critical to delivery (CTD): on-time, accuracy, etc.
 Critical to cost (CTC)

 - Critical to satisfaction (CTS)
- · Important key process input issues are classified as critical to process (CTP)

Understanding Variation

- · All processes have variation. No two outputs will ever be exactly the same.
- In processes, there are many causes of variation combining to produce an overall effect.
- · Variation can be inherent within a system, or can act upon a system to change the system characteristics.

Understanding Variation

Types of variation:

- · Common Cause
 - From a stable system
 - Exhibits random behavior
- Special Cause
 - From outside influences

W. Edwards Deming nomenclature (Deming 1986).

Understanding Variation

System

Measurement

Driving a car

Gas mileage

common cause -

What can cause gas mileage to vary with normal use of the car?

special cause -

What might cause an abnormal variation to gas mileage?

11

Understanding Variation

Requires understanding of

- · Response over time
- Central tendency
- · Spread of data
- · Shape of the distribution

13

Understanding Variation

- A process that is operating with only common causes of variation present is said to be in statistical control.
 - Random process within identifiable bounds
 - Process stable over time
- · Other commonly used terms:
 - Common causes = chance causes
 - Stable system = system in statistical control

14

Improving a process

- Where special causes are identified attempts need to be made to avoid the source of special cause, or prevent it from happening again (assuming negative impact).
 - Investigate
 - · Determine cause/s
 - · Fix current issue
 - · Take action to prevent reoccurrence in the future.

18

Improving a process

- If variability is too large because of common causes, the process needs to be changed.
 - · Fully understand the process
 - · Determine causes of variation in the process
 - · Reduce variation to improve process.

(If a process metric is too high or too low, that also requires a process change.)

19

3.3 Common vs. Special Causes and Chronic vs. Sporadic problems

J. M. Juran (Juran and Gryna 1980) considers the corrective action strategy for sporadic and chronic problems.

- Sporadic problems are defined as unexpected changes in the normal operating level of a process.
 - Sporadic problems = due to special causes
- Chronic problems exist when the process is at a longterm unacceptable operating level.
 - Chronic problems = due to common causes

COLUMN OF THE PROPERTY.

3.3 Common vs. Special Causes and Chronic vs. Sporadic problems

Breakthrough sequence for solving chronic problems

- Convince those responsible that a change in quality level is desirable and feasible.
- 2. Identify the vital few projects; that is, determine which quality problem areas are most important.
- 3. Organize for breakthrough in knowledge; that is, define the organization mechanisms for obtaining missing knowledge.
- Conduct the analysis; that is, collect and analyze the facts that are required and recommend the action needed.
- 5. Determine the effect of proposed changes on the people involved and find ways to overcome the resistance to change.
- 6. Take action to institute the changes.
- Institute controls to hold the new level.

COLLEGE OF ENGINEERIN

The Deming Funnel Experiment

Tampering – adjusting a process based on a sample measurement

Examples

- Adjusting machine setting after each part is run to "get back to target"
- Increasing advertising because sales are down in a month

If a process is stable, tampering will lead to greater variation, NOT improvement!

