

Breast Cancer Survival Prediction

Caltran Lorenzo

Careddu Luca

Francario Felice

Mariethoz Jean Zacharie

Statistical Methods for High Dimensional Data (2023 / 2024)

Project Presentation

- Problem: What is the probability of survival given these data?
- Method: We use both Survival analysis and binary classification methods to solve the problem and use Shrinkage penalization terms to get the most important variables

METABRIC

It contains 1904 samples of 693 variables

The variables

31	Clinical
489	Genes
173	Mutated Genes

Sparsity in the mutated genes variables

 Therefore, whenever possible, we use sparse matrix formats to speed up cross-validations

Frequencies: Survival

Frequencies: Correlations

Survival Analysis

In this first part we want to investigate how the 29 clinical variables affect the survival probability. To do that we observe at the Kaplan-Meier curve for the features "Age at diagnosis", "Tumor size" and "Cancer stage"

From this plot it appears that Chemotherapy and the combination of Chemotherapy and Radiotherapy are the most effective.

We can also observe that some of the most aggressive forms of therapy seem to guarantee a lower survival probability, which is an unexpected result.

The reason why this happens is because the most aggressive types of therapy are used for patients more at risk and that affect negatively the survival probability.

Survival Models

In this section we extract the genomic part of the dataset to test Cox Hazard Proportional model with different types of regularization: Lasso, Ridge and Elastic Net. For each type of regularization we get a series of models with different values of regularization parameters and degrees of freedom

We then selected the model with regularization parameter that results in the minimum partial likelihood deviance by using 5-fold Cross Validation

Elastic Net (alpha = 0.5)

To evaluate the performance of the models we use the Harrell's concordance index. The concordance index assesses the ability of the model to correctly order pairs of individuals with respect to their survival times

Type of regularization	C-index
Lasso	0.5974989
Elastic Net	0.5992224
Ridge	0.6355165

According to this metric, it appears that the best model is the Cox Hazard proportional model with Ridge regularization.

Logistic Regression and SVM'S

Ridge Regression

☐ Accuracy=70.87%

Ridge Regression

The 20 most significant Ridge Coefficients

Lasso

- ☐ Accuracy=75.85%
- ☐ 38 non-zero coefficients

Non-zero Lasso Coefficients

Elastic Net

- ☐ Accuracy=76.38%
- □ 64 non-zero coefficients

Elastic Net

Non-zero Elastic Net Coefficients

Sparse SVM

- ☐ Accuracy=69.55%
- ☐ 17 non-zero coefficients

Non-zero sparse SVM Coefficients

Squared Hinge Loss

- ☐ Accuracy=74.8%
- 21 non-zero coefficients

Squared Hinge Loss

Non-zero SQ-SVM Coefficients

We use three different groupings to create our models:

- □ Grouping 1: We consider each variable as a group. For the continuous variable the groups will contain only the variable itself. For the categorical variable, the groups will contain the corresponding indicator variables
- □ Grouping 2: Same groups as grouping 1 + every variable representing the m-RNA z-scores of a gene is grouped together
- ☐ Grouping 3: Same groups as grouping 1 + every variable representing a mutated gene is grouped with the variable representing the m-RNA z-scores of the same gene

Grouping 1:

- Accuracy = 74.54%
- Cross-Validation error: 0.2458909
- Non-zero coefficients: 82

Grouping 2:

- Accuracy = 76.64%
- Cross-Validation error: 0.2419461
- Non-zero coefficients: 502

Grouping 3:

- Accuracy = 75.59%
- Cross-Validation error: 0.2504931
- Non-zero coefficients: 92

Difference of the coefficients

Difference of the coefficients

First 10 biggest coefficients:

Grouping 1	Grouping 2	Grouping 3
stat5a	type_of_breast_surgeryBREAST CONSERVING	casp6
tsc1	type_of_breast_surgeryMASTECTOMY	ccnb1
casp8	hormone_therapy	stat5a
ccnb1	neoplasm_histologic_grade	тус
sf3b1	cohort	tsc1
nrarp	lymph_nodes_examined_positive	nrarp
aff2	radio_therapy	hsd17b4
arid1a	age_at_diagnosis	mlh1
casp6	aff2	mmp10
mmp10	casp8	type_of_breast_surgeryBREAST CONSERVING

Adaptive Lasso

We applied the two-stage approach using as weights the initial estimates obtained by:

- Ridge
- Lasso
- Elastic Net with alpha = 0.5

Initial Estimates	Accuracy	Non-zero coef	C-V Error
Ridge	43.25%	4137	0.2991453
Lasso	74.54%	245	0.1900066
Elastic Net	76.64%	77	0.2163051

BONUS: Relaxed Lasso

	Results
Non-zero coeff min (Vanilla Lasso)	499
Non-zero coeff 1SE	10
Accuracy (1SE)	0.7559055

	1SE non-zero coefficients:
1	age_at_diagnosis
2	type_of_breast_surgeryBREAST CONSERVING
3	$type_of_breast_surgeryMASTECTOMY$
4	overall_survival_months
5	myc
6	jak1
7	casp8
8	$\mathrm{kmt}2\mathrm{c}$
9	cdkn2c
10	hsd17b11

Thanks for your attention