

Introducción y conceptos importantes

Cosas importantes

• Teoría estadística: 8:30–10:00, 10:30–12:00

• Práctica con R: 13:30–15:00, 15:30–17:00

• Café: 10:00–10:30 y 15h00-15h30

• Por favor, apagan los celulares

¡Preguntas bienvenidas en cualquier momento!

Agradecimientos

Use material amablemente provisto por:

Claude-Pierre Guillaume, EPHE, Montpellier, Francia
Damien Caillaud, UT, Austin, Texas, USA
Julien Dutheil, CNRS, Montpellier, Francia
Vladimir Grosbois, CIRAD, Montpellier, Francia

Correcciones, comentarios y sugerencias por
Eliana Bontti, FCD

Agradecimientos

Use también:

- Crawley, M.J. 2005. *Statistics, an introduction using R.* John Wiley & Sons.
- Quinn, G.P., and Keough, M.J. 2002. *Experimental design and data analysis for biologists*. Cambridge University Press.

5 / 1

Introducción a la estadística

¿Qué es la estadística?

- Principios y métodos para recoger, clasificar, resumir y analizar datos
- Aprender, hacer conclusiones y tomar decisiones

6/1

Introducción a la estadística

La verdadera estadística . . .

Evolución de salarios y empleados en una empresa

		Obreros	Ejecutivos	Promedio
Salario	2004	200	2000	1100
	2006	180	1800	990
Empleados	2004	1000	100	550
	2006	600	500	550

Periódico Salarios bajaron en un 10%

Empresa Salario promedio por empleado aumentó de

\$363.6 a \$916.3

Periódico Hubo despidos en la empresa

Empresa Igual número de empleados y reclutamiento

Introducción a la estadística

La estadística

Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

NO puede

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

7 / 1

8

Primer paso para entender datos: ¡describirlos!

- Distribución normal, poisson, binomial ...
- Media, mediana
- Varianza, desviación estándar y error estándar
- \Rightarrow Estadística descriptiva informa sobre forma, centro y amplitud de los datos

9/1

Introducción a la estadística

Describir no es suficiente

- No es suficiente averiguar que hay variación
- ¿Variación científicamente interesante o variación natural?

Estadística inferencial permite:

- Distinguir entre señal y ruido
- Deducir información y llegar a conclusiones

10 / 1

Introducción a la estadística

Lo más difícil es empezar

- ¿ Qué tipo de análisis?
- Depende de los datos y de la pregunta inicial
- ¿Cómo saber que hacer? ¡habiéndolo hecho miles de veces!

Introducción a la estadística

¿Estadística paramétrica o no?

Paramétrica

- Intervalos regulares
- Hipótesis de distribución normal
- Media y error/desviación estándar

No paramétrica

- Cualquier tipo de escala
- No hipótesis de distribución (independencia)
- Mediana y desviación mediana

11 / 1

¿Qué preguntarse para empezar?

- ¿Cuál es la variable dependiente?
- ¿De qué tipo es? ¿Medida continua, número, proporción, categoría?
- ¿Cuáles son las variables independientes?
- ¿Son continuas? ¿Categóricas? ¿Ambos?

13 / 1

Introducción a la estadística

¿Qué análisis? Guía de decisión

1) Variables independientes

- Todas continuas
- Todas categóricas
- Ambas continuas y categóricas

Regresión

Anova

Ancova

Introducción a la estadística

¿Qué análisis? Guía de decisión

2) Variable dependiente

Continua

Regresión normal, Anova, Ancova

• Proporción

Regresión logística

Número

Regresión log-lineal

• Binaria

Análisis logístico binario

• Tiempo hasta la muerte

Análisis de sobrevivencia

Introducción a la estadística

Por qué la estadística?

¡Porque Todo varia!

Mucha variabilidad temporal, espacial y entre individuos:

- Genética
- Factores ambientales
- Azar
- Errores de observación y medida

15 / 1

Una mejor medida de la variabilidad

- iQue pasa con SS si se agrega un punto?
- ullet SS aumenta por cada nuevo punto

•
$$MS = \frac{\sum (y - \bar{y})^2}{n}$$

• Desviación cuadrática media (Mean square deviation MS)

Introducción a la estadística

Grados de libertad

 \bullet Muestra de 5 números: $\bar{y}=4$, $\sum y=20$

2	7	4	0	7
---	---	---	---	---

- Total libertad en la selección de números 1-4 $\Rightarrow 4$ grados de libertad (degrees of freedom d.f.)
- df = n p
- ullet n= número de muestras, p= número de parámetros estimados por el modelo

19/1

Varianza (1)

Medida de la variabilidad

- $MS = \frac{\sum (y-\bar{y})^2}{n}$
- \bullet No se puede calcular MS antes de conocer \bar{y}
- *i* De donde se obtiene \bar{y} ?
- ullet g es un parámetro estimado de los datos
- Se pierde un grado de libertad

21 / 1

23 / 1

Introducción a la estadística

Varianza (2)

Formalización y definición

• Medida cuantitativa de la variabilidad:

Varianza =
$$\frac{\text{Suma de cuadrados}}{\text{Grados de libertad}} = \frac{SS}{df}$$

$$s^2 = \frac{\sum (y - \bar{y})^2}{n - 1}$$

22 / 1

Introducción a la estadística

Varianza y tamaño de muestra

Media: 10, Varianza: 4

Introducción a la estadística

Una medida de fiabilidad

¡Error estándar de la media!

- ¿Fiabilidad de estimaciones cuando $s^2 \nearrow$?
- Fiabilidad $\propto s^2$
- ¿Y qué tal del tamaño de la muestra?
- Fiabilidad $\propto \frac{s^2}{n}$
- Qué son las unidades?

$$SE_{\bar{y}} = \sqrt{\frac{s^2}{n}}$$

Intervalos de confianza

- Muestreo repetido → rango de valores
- Intervalo de confianza \propto Fiabilidad
- Distribución t de Student
- Nivel de confianza α y grados de libertad df
- Número de errores estándar que se espera
- $CI_{95\%} = \bar{y} \pm t_{\alpha,df} \sqrt{\frac{s^2}{n}}$

25 / 1

Introducción a la estadística

Diseño experimental

Conceptos claves

Replicación: aumenta fiabilidad Aleatorización: reduce sesgo

- Si replican y randomizan correctamente, ¡no hay problema!
- Diseño inadecuado \chi buenos resultados

26 / 1

Introducción a la estadística

Replicación

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
 - Ser independientes (individuos distintos)
 - No formar una serie temporal
 - No estar agrupadas juntas en un lugar
 - Tener escala espacial adecuada

Introducción a la estadística

Replicación (2)

 Idealmente: una réplica de cada tratamiento debe estar agrupada en un bloque y cada tratamiento debe estar repetido en varios bloques

27 / 1

¿Cuántas réplicas?

- Tantas como sea posible ©
- ¿Cómo saber? Estudios pilotos y experiencia ⇒ Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general): ≥ 30

Introducción a la estadística

Poder y réplicas

- Poder: probabilidad de rechazar H_0 cuando es falsa
- ¿Cuantas réplicas para detectar un efecto δ con 80%probabilidad de no cometer un error?
- Experiencia y/o estudio piloto
 - \Rightarrow Primera estimación del efecto δ y de la varianza s^2

$$n \approx \frac{8 * s^2}{\delta^2}$$

Introducción a la estadística

Seudoreplicación

Condición importante: independencia de los errores

- Medidas repetidas del mismo individuo → seudoreplicación temporal
- Varias medidas del mismo lugar → seudoreplicación spacial
- ¿Cuántos grados de libertad?

Introducción a la estadística

¿Qué hacer con seudoreplicación?

- Promediar seudoreplicación y hacer análisis sobre medias
- Hacer análisis separados por cada período de tiempo
- Usar análisis de series de tiempo o modelos de efectos mixtos

31 / 1

Aleatorización

• ¿Cómo seleccionar un árbol al azar en una selva?

• ¿Hojas accesibles?

• ¿Cerca del laboratorio?

• ¿Parece sano?

• ¿Sin insectos?

⇒ ¡Sesgo en la fotosíntesis!

Inferencia fuerte

• Formular una hipótesis clara
• Diseñar un test aceptable
• Sin replicación, aleatorización y controles, no hay progreso

Introducción a la estadística

Modelaje estadístico

- Datos: lo que pasó
- Descripción → patrones → mecanismos
- Modelo para explicar y predecir
- Varios (muchos) modelos están ajustados a los datos
- → Modelo mínimo y adecuado

38 / 1

Introducción a la estadística

Modelaje estadístico

Mínimo: Suficientemente simple

Adecuado: ¿Por qué usar modelo que no describe los

datos?

Mejor modelo: La menor proporción de varianza que no sea

explicada (desviación residual mínima)

Introducción a la estadística

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

En estadística significa que:

- Tan pocos parámetros como sea posible
- Modelos lineales > no lineales
- Pocas condiciones > muchas
- Pocas variables > muchas
- ullet 1 explicación simple > varias explicaciones complicadas

0 / 1

Noción de test estadístico

Introducción a la estadística

Distribución de probabilidad

• Representación de las probabilidades asociadas con los estados posibles de una variable aleatoria

Ejemplo: X= número de hijos en una familia de 2 niños

- 2♀, (1♂, 1♀), (1♀, 1♂), 2♂
- $p(X = 0 \ \text{o}) = 1/4$
- $p(X = 1 \ \text{o}) = 1/4 + 1/4$ $\sum p(X) = 1$
- $p(X = 2 \ \column{3}{c}) = 1/4$

50 / 1

Introducción a la estadística

Distribución binomial

Definición

- ullet Serie de n intentos independientes
- Cada intento → Éxito / Fracaso
- ullet Probabilidad de éxito: p
- Distribución discontinua
- $X \sim \mathcal{B}(n,p)$
- $P(r) = \binom{n}{r} p^r (1-p)^{n-r}$

Introducción a la estadística

Distribución Binomial (2)

- $\bullet~39\%$ de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(3, 0.39)$

51 / 1

Distribución binomial

¿Cuando se aplica?

- Porcentaje de mortalidad
- Tasa de infección
- Proporción: sexos, respuesta a un tratamiento, intenciones de voto . . .

Se necesita saber cuantos individuos hay en categoría *éxito* y cuantos hay en categoría *fracaso*

53 / 1

55 / 1

Introducción a la estadística

Distribución de Poisson

Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua
- $X \sim \mathcal{P}(\lambda)$
- $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

54 / 1

Introducción a la estadística

Distribución de Poisson

¿Cuando se aplica?

- Plantas en una parcela
- Semillas comidas por una ave por minuto
- Bebes naciendo por hora en un hospital
- Errores en un texto
- Degradación de substancia radioactiva

Introducción a la estadística

Distribución normal

Definición

- Teorema del límite central
- Suficientes muestras \rightarrow medias \rightarrow distribución normal
- Distribución continua
- $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$
- $f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$

Otras distribuciones de variables

- Lognormal (largo, peso . . .)
- Exponencial (Tiempo de fracaso)
- Gamma
- Distribución de Weibull
- Beta

1 / 1

Introducción a la estadística

Distribuciones de estadísticos

- Distribución z
- ullet Distribución t de Student
- Distribución del χ^2
- Distribución F de Fischer

62 / 1

Introducción a la estadística

¿Qué es un test estadístico?

Herramienta para tomar decisión

- ullet Calcular un estadístico T_{obs} de una muestra
- Comparar T_{obs} con la distribución de T_{teo} cuando la hipótesis es verdadera
- $\bullet\,$ La posición de T_{obs} informa sobre la probabilidad de que la hipótesis sea verdadera

Introducción a la estadística

Test estadístico: procedimiento

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- ${f 2}$ Pregunta estadística: Hipótesis H_0
- 3 Elección del test estadístico: ¿Cuál usar?
- 4 Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

63 / 1

Introducción a Introducción a la estadística la estadística Test estadístico: procedimiento Buenas y malas hipótesis • Una buena hipótesis se puede rechazar/falsear 6 ¡Colección de los datos! 6 Cálculo de el estadístico del test • Hay cóndores en el parque ${f 0}$ Decisión estadística: ¿Se puede rechazar H_0 o no? 2 No hay cóndores en el parque 8 Inferencia y explicación biológica • ¡Ausencia de prueba no es prueba de ausencia!

Introducción a la estadística	Hipótesis nula	
	 "Nada está pasando" "Las medias de dos muestras son las mismas" "La pendiente de la relación es cero" ⇒ La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable 	
		67 / 1

Introducción a la estadística	Elección del test	
	 Tipo de variables: cualitativas, cuantitativas Número y tamaño de las muestras Condiciones de cada test 	
	68/1	

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

Tipo II : Aceptar H_0 cuando es falsa

_	Situación real		
Hipótesis nula	Verdadera	Falsa	
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo β	
Rechaza	Tipo I Riesgo $lpha$	Decisión correcta	

Introducción a la estadística

Hay que comprometer . . .

Poder: Probabilidad de rechazar \mathcal{H}_0 cuando es falsa

 $\bullet\,$ Error I: rechazar H_0 cuando es verdadera α

• Error II: aceptar H_0 cuando es falsa β

• Poder: $1 - \beta$

• α y β relacionados

• Cuando $\alpha \searrow \beta \nearrow$

71 / 1

Introducción a la estadística ¿Cuando α debe ser alto? Ejemplo: Efectos secundarios de una droga • Test final antes de comercializar • Grupo A: droga | Grupo B: placebo • H_0 : no hay diferencia entre grupos A y B ullet H_1 : A tiene mayor frecuencia de anomalías que B

Colección de los datos

¡Acuérdense!

• Aleatorización

• Replicación

Dependencia — Asociación
Tests asociados

• Muestras asociadas: vienen del mismo grupo
• Relacionadas por correlación o por regresión
• Conexión espacial
• Conexión temporal

⇒ Usar tests específicos: e.g., "paired t-test"

Comparar una muestra con una distribución teórica $\Rightarrow \text{Test de conformidad}$ $\bullet \text{ Test } t \text{ de conformidad}$ $\bullet \text{ Test de Wilcoxon}$ $\bullet \text{ Test binomial}$ $\bullet \text{ Test } \chi^2 \text{ de conformidad}$ $\bullet \dots$

Comparar $m\acute{a}s$ de dos muestras $\Rightarrow \text{Test de comparación (continuación)}$ • Anova / Manova
• Test de Kruskal-Wallis
• Test de Friedman
• Test χ^2 •

Introducción a la estadística

Evaluar el grado de asociación entre variables

Muestras independientes

⇒ Correlación y regresión

- Correlación de Pearson / de Spearman (n=2)
- Regresión simple / regresión logística (n=2)
- Regresión no paramétrica
- Regresión múltiple / regresión logística múltiple (n > 2)
- . . .

Comparar un grupo con una distribución teórica

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial

Comparar 2 grupos no asociados

	$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
_	Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
	Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2

Comparar $\geqslant 3$ grupos no asociados

	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2

${\sf Comparar}\ 2\ {\sf grupos}\ {\sf asociados}$

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar

${\sf Comparar}\geqslant 3 \ {\sf grupos} \ {\sf asociados}$

	$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
_	Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
	Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
	Test t asociado	Test de Wilcoxon	Test de McNemar
	Anova simple	Test de Kruskal-Wallis	Test χ^2
	Anova con medidas repetidas	Test de Friedman	Test ${\cal Q}$ de Cochran

Cuantificar asociación entre 2 variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia

Predecir valor desde varias variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple
Regresión (no)lineal multiple		Regresión logística multiple
• ,		•

Predecir valor desde 1 variable

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial	
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial	
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2	
Test t asociado	Test de Wilcoxon	Test de McNemar	
Anova simple	Test de Kruskal-Wallis	Test χ^2	
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$	
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia	
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple	

Introducción a la estadística

Más recursos para elegir un test

- Handbook of Biological Statistics: http://udel.edu/~mcdonald/statbigchart.html
- Statistics Online Computational Resources: www.socr.ucla.edu/Applets.dir/ChoiceOfTest.html
- GraphPad / Intuitive Biostatistics: www.graphpad.com/www/Book/Choose.htm
- Social Research Methods: www.socialresearchmethods.net/selstat/ssstart.htm
- James D. Leeper, University of Alabama: http://bama.ua.edu/~jleeper/627/choosestat.html
- S. Holttum, B. Blizard, Canterbury Christ Church University: www.whichtest.info/index.html

Introducción a Introducción a la estadística la estadística Dos categorías de tests estadísticos Correlación y regresión Tests de comparación : 1 variable, ≥ 2 poblaciones Tests de relación : ≥ 2 variables, 1 población

Introducción a la estadística

 $\geqslant 2$ variables es común en biología

2 variables para el mismo individuo

- ullet Presión sanguínea X_1 , peso X_2
- Abundancia de una especie de planta X_1 , nivel del pH en el suelo X_2 , temperatura X_3
- Datos bivariados o multivariados
- \Rightarrow ¿Cuál es la relación entre las variables?

Introducción a la estadística

Relación entre ≥ 2 variables

La estadística correlacional

Varios tipos de relación

- No conexión
- Relación |handout: 1 > 0 / < 0, causal / no
- $\bullet \;\; \mathsf{Conexi\'{o}n} \;\; \mathsf{funcional} \; \to \; \mathsf{predicci\'{o}n}$

Objetivo de la estadística correlacional

- Determinar validez y fuerza de la relación entre las variables
- Determinar la dirección de la relación

99 / 1

Estadística correlacional

Correlación: ¿Cómo 2 variables varían juntas?

Regresión: Relación entre 1 variable dependiente y

 $\geqslant 1$ variable independiente

Análisis multivariados: Relación entre ≥ 2 variables

independientes / dependientes / ambos

101 / 1

Introducción a la estadística

Noción de correlación

Ejemplo

- 1 población: 2 variables continuas
- Presión sanguínea X_1 , peso X_2
- ullet Cada muestra i : 1 valor por cada variable: x_{i_1} y x_{i_2}
- ¿La presión sanguínea y el peso son correlativas?

102 / 1

Introducción a la estadística

Noción de correlación (2)

Definición

Correlación se define en terminos de:

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1, X_2)$
 - ⇒ Coeficiente de correlación

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Introducción a la estadística

El coeficiente de correlación r

Correlación de Pearson (paramétrica)

- No unidad
- $r \in [-1, 1]$
- Magnitud: fuerza de la relación
- Signo: dirección de la relación
- Muestra: r, Población: ρ

103 / 1

¿Qué test para chequear la correlación?

 X_1 : Presión sanguínea y X_2 : peso

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$
- Cuando H_0 es verdadera, $r \rightsquigarrow \mathcal{N}(\mu, \sigma)$
 - \Rightarrow uso de test t de Student

105 / 1

Introducción a la estadística

Correlación no paramétrica

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ρ de Kendall: τ
- ¡Más conservadores!

Modelo lineal: concepto general

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - $\geqslant 1$ variable explicativa / predictiva / independiente / covariable X_1, X_2, \ldots
- Cada unidad de muestra: $y_i, x_{1_i}, x_{2_i} \dots$
- ullet Explicar el patrón de Y con X

109 / 1

Introducción a la estadística

Modelo lineal

Forma general de los modelos estadísticos

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos
- Error: parte de la variable dependiente que no esta explicada por el modelo
- \bullet Se supone una distribución para el componente del error, y de ahi para la variable dependiente Y

110 / 1

Introducción a la estadística

¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros
- No exponente, no multiplicación por otro parámetro
- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

Introducción a la estadística

Análisis de regresión lineal

Contexto

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas
- Altura, peso, volumen, temperatura ...
- ullet Nube de puntos ightarrow regresión lineal

111 / 1

Análisis de regresión lineal Objetivos

- ullet Describir la relación lineal entre Y y X
- ullet Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

113 / 1

Introducción a la estadística

Análisis de regresión lineal

Varios tipos de regresión

- Regresión lineal: lo más simple y frecuente
- Regresión polinomial: chequear si una relación es no lineal
- Regresión no lineal
- Regresión no parámetrica: si no hay forma funcional

114 / 1

Introducción a la estadística

Principio de la regresión lineal (2)

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Varianza explicada

 r^2 : coeficiente de determinación

- ullet Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de parámetros diferentes

121 / 1

Introducción a la estadística

Comparar varios modelos

- Evaluar varias hipótesis → varios modelos
- H_0 : modelo simple, H_1 : modelo más complejo
- Hay que comparar los modelos

122 / 1

Introducción a la estadística

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Máxima verosimilitud (ML)

- Ajuste: tamaño de la verosimilitud
- \Rightarrow Prueba de la razón de verosimilitud (Likelihood Ratio Test o AIC)

Introducción a la estadística

Comparar modelos de regresión (2)

Siempre la misma lógica

- Medir el ajuste de cada modelo
- Comparar los ajustes de diferente modelos para examinar hipótesis sobre los parámetros

Ejemplo: presión sanguínea y peso

- Modelo 1: $P = \beta_0 + \varepsilon$
- Modelo 2: $P = \beta_0 + \beta_1 * peso + \varepsilon$
- Comparar M_1 y M_2 es equivalente a evaluar $H_0: \beta_1 = 0$

100

Condiciones del análisis de regresión (1)

- Involucran de los términos de errores (ε_i)
- ullet De la variable dependiente Y
- Importantes para intervalos de confianza
- \bullet Importantes para tests de hipótesis con distribución t o F
- Residuales importantes para chequear condiciones

L25 / 1

Introducción a la estadística

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2=\sigma_2^2=\ldots=\sigma_i^2=\ldots=\sigma_\varepsilon^2$
- Independencia: ε son independientes: Los valores de Y para cualquier x_i no influyen los valores de Y para otra x_i

¿Qué hacer si las condiciones no cumplen?

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp ...
 - Modelo lineal generalizado (Generalized Linear Model GLM)
- Heterogeneidad de la varianza:
 - GLM

29 / 1

Introducción a la estadística

Si el modelo es inadecuado, se puede...

- Transformar variable dependiente
- Transformar $\geqslant 1$ variable explicativa
- Probar otras variables explicativas
- Usar una estructura de error diferente (GLM)
- Usar alternativa no parámetrica (smoothing)
- ullet Usar pesos diferentes por diferentes valores de y

Regresión polinomial Ejemplo: Desintegración radioactiva

• Regresión lineal: y = ax + b• Regresión polinómica
• $x_2 = x^2$ • $y = ae^{-bx}$ • [Descripción, no explicación!

(No) enamorarse de su modelo . . .

Todos los modelos son incorrectos
Algunos modelos son mejores que otros
El modelo correcto nunca se puede conocer con certeza
Cuanto mas simple el modelo mejor

Análisis de varianza

Comparar ≥ 2 muestras
Control biológico de las plagas del maíz

Ejemplo: 5 tratamientos

Nematodos del suelo
Avispas parásitas
Nematodos y avispas
Bacterias
Control

Control biológico (2)

• Muestra aleatoria por cada tratamiento
• Medida del peso de las mazorcas $\Rightarrow \text{Media: } \mu_i, \text{ desviación estándar: } \sigma_i$ • ¿Cuál tratamiento produce más choclo?
• ¿Como comparar las medias entre tratamientos?

¿Tests t repetidos?

- **1** $H_0: \mu_1 = \mu_2$
- **2** $H_0: \mu_1 = \mu_3$
- **3** $H_0: \mu_1 = \mu_4$
- **4** $H_0: \mu_1 = \mu_5$
- **6** $H_0: \mu_2 = \mu_3$
- **6** $H_0: \mu_2 = \mu_4$
- $\mathbf{0} H_0: \mu_2 = \mu_5$
- **8** $H_0: \mu_3 = \mu_4$
- **9** $H_0: \mu_3 = \mu_6$
- $\mathbf{0} H_0: \mu_4 = \mu_5$

- Cada hipótesis: riesgo de error de tipo I
- Con 1 hipótesis: $\alpha = 0.05$
- ¿Valor de α con 2 hipótesis?
- ¿0.025, 0.05, 0.0725, 0.0975, 0.10?
- $1 Pr(no\ error\ de\ tipo\ I)$
- $1 0.95 \cdot 0.95 = 0.0975$

141 /

Introducción a la estadística

¿Tests t repetidos?

¡Amplifica el riesgo de error de tipo I!

número de muestras i	número de hipótesis j	Riesgo total $1 - 0.95^j$
2	1	0.05
3	3	0.14
4	6	0.26
5	10	0.40
6	15	0.54
10	45	0.90

142 / 1

Introducción a la estadística

El problema con tests t multiples

- Riesgo de error de tipo I más grande
- Solo considera variación para 2 muestras al mismo tiempo ⇒ precisión baja
- No es posible considerar estructuras complicadas (e.g. 2 factores experimentales)
 - ⇒ El análisis de varianza se encarga de estos problemas

Introducción a la estadística

Concepto del Anova

- Variables explicativas categóricas = factores
- $\bullet \geqslant 2$ niveles / grupos / tratamientos
- Dividir entre variación no explicada y variación explicada por las variables explicativas
- Ajustar modelos lineales para explicar o predecir valores de la variable dependiente

143 / 1

Objetivos del Anova

- Examinar la contribución relativa de diferentes fuentes de variación sobre la cantidad total de variación de la variable dependiente
- Evaluar la hipótesis H_0 que las medias de los grupos / tratamientos son iguales

145 / 1

Introducción a la estadística

Varios tipos de anova

- 1 factor, 2 niveles \rightarrow test t
- 1 factor, ≥ 3 niveles \rightarrow anova simple (one-way anova)
- $\geqslant 2$ factores \rightarrow anova de 2 or 3 factores (two/three-way anova)
- Replicación por cada nivel → diseño factorial ⇒ permite estudiar las interacciones entre variables

146 / 1

Introducción a la estadística

Análisis de varianza ¿para comparar medias?

Ejemplo: Cantidad de ozono

- Variable dependiente Y: concentración de ozono
- Variable explicativa: 1 factor JARDÍN, 2 niveles A y B
- 10 réplicas por jardín
- ¿La concentración de ozono es la misma?

- Mucha dispersión
- Concentración media
- $SSY = \sum (y_i \bar{y})^2$
- Residuales: suma total de los cuadrados (total sum of squares SSY)
- Variación entre los tratamientos

Principio del Anova (2)

- ullet Jardín A
- ullet Jardín B
- $C_B > C_A$
- ¿La diferencia es significativa o no?

Principio del Anova (3)

- ¿Qué pasa con los residuales si $\bar{y}_A = \bar{y}_B$?
- ¿Y si $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$?
- $SSE = \sum_{j=1}^{k} \sum (y_{ij} \bar{y}_j)^2$
- Suma de cuadrados del error (Error sum of squares SSE)
- Variación dentro de los tratamientos
- ξSSE versus SSY ?
- |SSE| < SSY!

Principio del Anova (3)

- ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$
- ¿Y si $\bar{y}_A \neq \bar{y}_B$?
- $SSE = \sum_{j=1}^{k} \sum (y_{ij} \bar{y}_j)^2$
- Suma de cuadrados del error (Error sum of squares SSE)
- Variación dentro de los tratamientos
- |SSE| < SSY!

Introducción a la estadística

Para resumir

Análisis de varianza para comparar medias

- Cuando $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$, SSE < SSY
- ullet Variación total = modelo + error
- SSY = SSA + SSE
- SSA: proporción de varianza explicada
- Si $SSE < SSY \Rightarrow \bar{y}_A \neq \bar{y}_B$

De vuelta al jardín . . .

- SSY = 44
- ¿Cuanto es atribuible a la diferencia entre $\bar{y}_{\scriptscriptstyle A}$ y $\bar{y}_{\scriptscriptstyle B}$?
- Jardín A: $SSE_A = 12$, Jardín B: $SSE_B = 12$
- Suma de cuadrados de error $SSE = SSE_A + SSE_B = 12 + 12 = 24$
- Suma de cuadrados del tratamiento:

SSA = SSY - SSE = 44 - 24 = 20

153 / 1

Introducción a la estadística

Tabla de Anova

Fuente	Suma de cuadrados	Grados de libertad	Cuadrado medio	Razón-F
Jardín	SSA = 20.0	1	20.0	15.0
Error	SSE = 24.0	18	$s^2 = 1.33$	
Total	SSY = 44.0	19		

- $F_{teo} = 4.41$, ¿Qué se puede concluir?
- No se puede aceptar H_0
- $\bar{y}_A \neq \bar{y}_B$
- ullet Concentración de ozono es diferente entre los jardines A y B

154 / 1

Introducción a la estadística

Condiciones del anova

¡Las mismas que por la regresión!

- Independencia
- Homogeneidad de las varianzas
- Normalidad

 $\label{eq:condiciones} \mbox{iCondiciones sobre los residuales!} \Rightarrow \mbox{hacer los tests} \\ \mbox{despues del análisis}$

Introducción a la estadística

Diseños factoriales

- $\geqslant 2$ factores
- $\geqslant 2$ niveles per factor
- Replicación para cada combinación de niveles
- Interacciones: respuesta a un factor depende del nivel de otro factor

155 / 1

Reconocer diseños complicados para evitar seudoreplicación

(Nested design and Split plots)

- Muestreo jerárquico: medidas repetidas del mismo individuo o estudios con varias escalas espaciales
- Parcelas subdivididas: diferentes tratamientos en diferentes parcelas de diferentes tamaños

57 / 1

Introducción a la estadística Un ejemplo de diseño "split plot" Si Baia No Alta Media NP N Densidad de Campos Irrigación semillas Fertilizante (bloques) (parcelas) (sub-plots)

Introducción a la estadística

Factores fijos

(Fixed effects)

- Todos los niveles estan incluidos.
- No extrapolación fuera de estos niveles
- Si se repite el estudio → mismos niveles
- Modelos con efectos fijos (fixed effects models)
- Anova tipo I
- Ejemplo: nivel de zinc (Fondo, bajo, medio alto), fertilizantes

Introducción a la estadística

Factores aleatorios

(Random effects)

- Muestra aleatoria de los niveles posibles
- Inferencia (extrapolación) sobre todos los grupos
- Si se repite el estudio \rightarrow otros niveles
- Modelos de efectos aleatorios (random effect models)
- Anova tipo II
- Ejemplo: Sitios de estudio, ...

159 / 1