Understanding 2's complement representation is fundamental to learning about Computer Science. It allows us to write negative numbers in binary. The leftmost digit is used as a sign bit. If it is 1, we have a negative number and it is represented as the two's complement of its absolute value. Let's say you wrote down the 2's complement representation for each 32-bit integer in the inclusive range from a to b. How many a's would you write down in all?

For example, using an 8-bit byte rather than 32 bit integer, the two's complement of a number can be found by reversing all its bits and adding 1. The two's complement representations for a few numbers are shown below:

	Number		Representation in
Number	Binary	Inverse	Two's Complement
-3	00000011	11111100	11111101
-2	00000010	11111101	11111110
-1	00000001	11111110	11111111
0	0000000		00000000
1	00000001		00000001
2	00000010		00000010
3	00000011		00000011

To write down that range of numbers' two's complements in $\bf 8$ bits, we wrote $\bf 26 \ 1$'s. Remember to use $\bf 32$ bits rather than $\bf 8$ in your solution. The logic is the same, so the $\bf 8$ bit representation was chosen to reduce apparent complexity in the example.

Function Description

 $Complete \ the \ twosCompliment \ function \ in \ the \ editor \ below. \ It \ should \ return \ an \ integer.$

twosCompliment has the following parameter(s):

- a: an integer, the range minimum
- *b*: an integer, the range maximum

Input Format

The first line contains an integer T, the number of test cases.

Each of the next T lines contains two space-separated integers, a and b.

Constraints

• $T \le 1000$ • $-2^{31} \le a \le b \le 2^{31} - 1$

Output Format

For each test case, print the number of $\mathbf{1}$'s in the $\mathbf{32}$ -bit $\mathbf{2}$'s complement representation for integers in the inclusive range from \boldsymbol{a} to \boldsymbol{b} on a new line.

Sample Input 0

- 3
- -2 0
- -3 4 -1 4

Sample Output 0

63 99

99

Explanation 0

Test case 0

- -2 has 31 ones
- -1 has 32 ones
- 0 has 0 ones
- 31+32+0 = 63

```
Test case 1
-3 has 31 ones
-2 has 31 ones
-1 has 32 ones
0 has 0 ones
1 has 1 ones
2 has 1 ones
3 has 2 ones
4 has 1 ones
31+31+32+0+1+1+2+1 = 99
Test case 2
-1 has 32 ones
0 has 0 ones
1 has 1 ones
2 has 1 ones
3 has 2 ones
4 has 1 ones
32+0+1+1+2+1 = 37
```

Sample Input 1

Sample Output 1

Explanation 1

```
Test case 0
-5 has 31 ones
-4 has 30 ones
-3 has 31 ones
-2 has 31 ones
-1 has 32 ones
0 has 0 ones
31+30+31+31+32+0 = 155
Test case 1
1 has 1 ones
2 has 1 ones
3 has 2 ones
4 has 1 ones
5 has 2 ones
6 has 2 ones
7 has 3 ones
1+1+2+1+2+3=12
Test case 2
-6 has 30 ones
-5 has 31 ones
-4 has 30 ones
-3 has 31 ones
30+31+30+31 = 122
Test case 3
3 has 2 ones
4 has 1 ones
5 has 2 ones
6 has 2 ones
2+1+2+2=7
```