Model Documentation of the 'Terrain following model'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^7 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^1 z$ $\in \mathbb{R}^4 y \in \mathbb{R}^3$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value						
A	-1.0	0	0	0	0	0	0
	1.0	0	0	0	0	0	0
	0	1.0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	1.0	-1.0	0	0
	-0.088	0.0345	0	0	1.0	-0.0032	0
	0	_ 0	0.05	0	0	0	$-1.0 \cdot 10^{-5}$
B	$\begin{bmatrix} 1.0 & 0 \end{bmatrix}$]					
	0 0						
	0 0						
	0 0.09)					
	0 0						
	0 0						
	0 0						
B_1	1.0 0	1					
	0 0						
	0 0						
	0 0.09)					
	0 0						
	0 0						
	0 0						
C_1	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0 0	0	1.0			
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0 0	2.23	0			
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0 0	0	0			
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0 0	0	0			
	0 0 1.0		0 0	0			
C	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$		0 0	0			
Ç	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		0 0	1.0			
D_{11}	[0]	Ü	0 0	∪]			
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$						
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$						
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$						
D_{12}			0	٦			
			0				
	1.7320508	Ω 1	0				
	0 0.54772256						
	0.04	0.0	±11440	ο٦			
D_{21}	$\begin{bmatrix} 0.04 \\ 0 \end{bmatrix}$						
ν_{21}							

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

TF3 Another sensor matrix C for the terrain following model.

4 Simulation

Figure 1: Simulation of the Terrain following model.

References

[1] . Gershon, Shaked, Yaesh, Tech.-Rep. 2003 Uni. Tel-Aviv "Static output feedback of state multiplicative systems with application to terrain following"