Minsuan Teh

minsuan1104@hotmail.com | https://www.linkedin.com/in/minsuan-teh-8a0a31199/ | +60129525568

Education	
University of Edinburgh	Edinburgh, United Kingdom
Master of Science in Computer Science	September 2022 – August 2023
 Class of award received: Passed with Merit 	
University of Edinburgh	Edinburgh, United Kingdom
Bachelor of Engineering with Honours in Computer Science	September 2018 – July 2022
 Class of award received: First Class 	
Experience	
Huawei Technologies	Kuala Lumpur, Malaysia
Global Technical Service Engineer	December 2023 – Present
 Involved in a harmonization project of 2 of the largest network opera 	tors in Malaysia.
University of Edinburgh	Edinburgh, United Kingdom
Java Tutor and Marker	January 2023 – May 2023
 Responsible for hosting weekly tutorial sessions and providing feedba 	ack to students.
Projects	

Projects

Undergraduate Dissertation

- Implemented the algorithm by Dang, Qi and Ye (2012), the algorithm by Fearnley, Palvogyi and Savani (2021), and a basic iteration algorithm to find Tarski's fixed point in a complete lattice.
- The algorithms were implemented in Python and several experiments have been performed to investigate the advantages of the algorithms in different scenarios.

MSc Dissertation

- Implemented the model by Eisenberg and Noe (2001) and the model by Jackson and Pernoud (2019) to compute clearing payments in financial networks.
- The models were implemented in Python to investigate the effectiveness of each model and the factors influencing bankruptcy rate in financial networks.
- The algorithm by Dang, Qi and Ye was also implemented to compare against the models, particularly its dependency on the convergence rate of the monotone function is discussed.

A Ray Tracing Image Generator

- A C++ program that can be used to generate an image using ray tracing when given a JSON file.
- Includes various shading models, texture mapping, custom shapes, reflection, refraction, depth of field, soft and hard shadow, random sampling with jittering and Bounding Volume Hierarchy for complex scenes.

Human Activity Recognition (HAR)

- This project aims to develop a real-time HAR app on Android devices using two sensors (Respeck and Thingy).
- Data from the sensors is processed and stored in custom format before feeding the data into three different 3-CNN models in which each model has different hyperparameters and input dimensions.
- The models are implemented using TensorFlow before being exported to the Android app implemented in Kotlin.

OpenAl Gymnasium

- Used Value Iteration and Policy Iteration of Dynamic Programming to solve randomly generated MDPs.
- Successfully solved Taxi-v3 of OpenAI Gymnasium using Q-learning and on-policy first visit Monte Carlo.
- Successfully solved CartPole and Acrobot of OpenAI Gymnasium using Deep Q-networks and REINFROCE algorithm.
- Successfully solved Bipedal Walker of OpenAl Gymnasium using Deep Deterministic Policy Gradient.
- Implemented using Python and PyTorch.

Twitter Sentiment Analysis

- This project aims to investigate the influence of varying kernel sizes, number of layers, and input dimensions in Convolutional Neural Network architectures on the performance of Twitter sentiment analysis tasks.
- Models used include Naïve Bayes, Maximum Entropy, Decision Tree, Random Forest, XGBoost, SVM, Multi-layer Perceptron, Recurrent Neural Network and Convolutional Neural Network.

Skills and Languages

Python: TensorFlow, PyTorch, scikit-learn, pandas, NumPy, NumPy, SciPy, Matplotlib, Seaborn **Machine Learning:** Neural Networks, Decision Trees, Principal Component Analysis, Temporal Difference and more **Other Skills and Languages:** Haskell, SQL, Java, Junit, Solidity, Kotlin, Git, Linux, Google Cloud GPUs