آزمایشگاه مدارهای الکتریکی

گزارشکار آزماېش

بررسی امواج سینوسی توسط اسیلوسکوپ و محاسبه دوره تناوب سیگنالها به صورت عملی و تئوری

استاد: سرکار خانم پگاه امینی

دانشجو: پارسا یوسفی نثراد محمدی

شماره دانشجویی: ۱٤٠٠٥٣٦١١٠٤٨

تئورى آزمايش

در این آزمایش، هدف ما این است که با بهره گیری از یک دستگاه تولید کننده سیگنال، موجهای سینوسی با امواج مختلف در طولهای متفاوت را تولید نموده و سپس با اتصال این موجها به یک اسیلوسکوپ، به بررسی دقیق و اندازه گیری ویژگیهای آنها پرداخته و اطلاعاتی در خصوص فرکانس و دوره تناوب موجها را بدست آوریم.

در این آزمایش، ما از یک سیگنال ژنراتور بهره میبریم تا موجهای سینوسی با فرکانسها و طولهای مختلف را ایجاد کنیم. سپس، با اتصال به اسیلوسکوپ، موجها را به دقت بررسی میکنیم تا اطلاعاتی درباره فرکانس و دوره تناوب هر موج را بدست آوریم.

وسایل مورد نیاز

- → اسیلوسکوپ: این تجهیزات به ما این امکان را میدهند که موجهای سینوسی تولید شده را به صورت گرافیکی نمایش دهیم.
 - — سیگنال ژنراتور: این دستگاه برای تولید سیگنالها در فرکانسهای مختلف به ما کمک میکند.
 - سیمهای رابط: سیمها برای اتصال دستگاهها به یکدیگر استفاده میشوند.

شرح آزمایش

در این آزمایش، ابتدا با بهره گیری از دستگاه سیگنال ژنراتور، موجهای سینوسی با فرکانسهای مختلف را به ترتیب تولید میکنیم. این موجها به فرکانسهای زیر مرتبط میشوند:

$$f = 200Hz$$

$$f = 1000Hz$$

$$f = 3000Hz$$

$$f = 5000Hz$$

سپس، با بهره گیری از سیمهای رابط، هر یک از موجهای سینوسی تولید شده توسط دستگاه سیگنال ژنراتور را به اسیلوسکوپ میشود و به ما این امکان را میدهد که خصوصیات و ویژگیهای آنها را با دقت بررسی نماییم.

این آزمایش امکان مقایسه میان موجهای با فرکانسهای مختلف را فراهم میکند و به ما این امکان را میدهد تا تأثیر فرکانس بر ویژگیهای موجهای سینوسی را مورد بررسی قرار دهیم.

f = 200Hz (الف

در تصویر زیر، یک موج سینوسی با فرکانس ۱ کیلوهرتز نمایش داده شده است.

محاسبه دوره تناوب با اسیلوسکوپ:

$$T=2.5ms*2=5ms \Rightarrow f=200Hz=\frac{1}{5ms}$$

محاسبه دوره تناوب با روابط تئوری:

$$\mathbf{f} = \mathbf{200Hz} \Rightarrow \mathbf{f} = \frac{1}{T} \Rightarrow \mathbf{T} = (\mathbf{200Hz})^{-1} = \mathbf{5ms}$$

<mark>f = 1000Hz (ب</mark>

در تصویر زیر دوره تناوب سیگنال ۴ مربع به اندازه ۲۵۰ میکرو ثانیه است و از این رو دوره تناوب سیگنال ۱ میلی ثانیه بدست میاد چون فرکانسی که بر روی فانکشن ژنراتور تنظیم و به این اسیلوسکوپ وصل شده است، بر روی ۱ کیلوهرتز بود.

محاسبه دوره تناوب با اسیلوسکوپ:

$$T = 250us*4 = 1000us = 1ms \Rightarrow f = 1000Hz$$

محاسبه دوره تناوب با روابط تئورى:

$$\mathbf{f} = \mathbf{1}\mathbf{KHz} = \mathbf{1000Hz} \Rightarrow \mathbf{f} = \frac{1}{T} \Rightarrow \mathbf{T} = (\mathbf{1000Hz})^{-1} = \mathbf{1ms}$$

f = 3000Hz (پ

محاسبه دوره تناوب با اسیلوسکوپ:

$$T=100us*3.33=333us=0.333ms \Rightarrow f=3KHz$$

محاسبه دوره تناوب با روابط تئوری:

$$\mathbf{f} = 3\mathbf{KHz} = 3000\mathbf{Hz} \Rightarrow \mathbf{f} = \frac{1}{T} \Rightarrow \mathbf{T} = (3000\mathbf{Hz})^{-1} = 0.\overline{3}\mathbf{ms}$$

f = 5000Hz (ج

محاسبه دوره تناوب با اسیلوسکوپ:

 $T = 100us * 2 = 200us = 0.2ms \Rightarrow f = 5KHz$

محاسبه دوره تناوب با روابط تئوری:

$$\mathbf{f} = \mathbf{5KHz} = \mathbf{5000Hz} \Rightarrow \mathbf{f} = \frac{1}{\mathbf{T}} \Rightarrow \mathbf{T} = (\mathbf{5000Hz})^{-1} = \mathbf{0.2ms}$$

جمعبندي

در این آزمایش توانستیم که با کمک اسیلوسکوپ دوره تناوب سیگنال ورودی این دستگاه را با شمردن مربعهای تشکیل دهنده دوره تناوب سیگنال به دست بیاوریم و آن را با عددی که در فانکشن ژنراتور بود هم در تئوری و هم در عمل تطابق دهیم و به درستی روابط موجود دست پیدا بکنیم، و نحوه کار با قسمتهای مختلف سیگنال ژنراتور و اسیلوسکوپ را یاد گرفتیم

