신경망

perceptron peural kohonen self-organizing learning weight vector cross-product thinking understanding grouping classifying it to excitative dave neuron brain thinking sigmoid competition input training back propogation quantized by the complete of the co

뇌 - 신경망

scientists hope to build a computational working model of the human brain

- ◈ 1천억~ 개의 뉴런이 100조~ 서로 얽혀 있음
- ◈ 접속 부위에서는 매초마다 무수한 화학 반응

뇌 - 학습, 잘 배워야…

김홍도의 씨름에서 마방진, 천•지•인(13•7•2) 패턴 학습?

9 Months

2 Years

◈ 학습-시냅스의 연결; 유전, 환경, 랜덤 현상

European Union's Human Brain Project

new treatments for brain disease and build revolutionary new computing technologies

컴퓨터는 스스로 고양이를 식별할 수 있을까요?

- ◆ 딥러닝이 몰려온다
- ♦ 스스로 패턴을 인식하여 학습하고 추론
- ◈ 딥 러닝으로 고양이 학습

인공지능이 뜨는 이유

빅데이터(big data) 때문이야…

- ◈ 빅데이터 '얽매여있지 않고 구조화되어 있지 않으며(비정형), (기가·테라·페타·엑사·제타· 요타)
- 정확하지는 않지만 예측할 수 있으며,
- ◈ 인과관계를 설명할 수는 없지만 <mark>상관관계</mark>는 보여 줄 수 있다'
- ♦ 빅데이터를 통해 통찰력을 얻기 위한 분석 도구 가 요구됨

스스로 학습하며 진화 AI 인간의 腦에 도전 딥러닝 - 이미지 검색에 주로 사용

- ◈ '심층신경망(Deep Neural Network)'
- ◈ 2006 캐나다 토론토대 제프리 힌튼 교수 개발

IT 기업의 딥러닝 경쟁

IT업체들이 대거 집결하는 격전지

- 구글: 전 세계의 정보를 모아서 정리(organize)한다.
- 페이스북: 전 세계를 연결한다.
- 아마존: 세계 최대의 상점 (Earth's Biggest Store)
- 애플: 세계 최고의 visionary가 창업해서 키운 회사.
- 도전 -
 - 1) 알리바바 2) 테슬라 3) 우버 4) 마이크로소프트 5) AirBnB

'님 침스키 Nim Chimpsky' (1973~2000) 사람 말을 배우다가 버려진 침팬지

- ♦ 유인원 언어 실험 '프로젝트 님' 놈 촘스키에 대한 도전이자 조롱
 - 언어는 인간 만의 고유한 특징이라는 놈 촘스키의 주장에 반박하기 위해 구상 컬럼비아 대 심리학과 허버트 테라스 교수

- 4년간 침스키에게 수화 학습 침스키는 간단한 어휘 습득
- 실험 실패 더 이상 학습의 진전 없이 연구비 소진
- 오클라호마대 영장류연구소로 이송 후 27살의 짧은 생애 마감
- 1979년 테라스 교수 "침스키는 언어를 배운 게 아니라 단지 조 련사의 행동을 흉내 낸 것", "언어는 인간 종을 규정하는 결정적인 특징"이라고 발표, '사이언스'

10 01012 22, 7,1012

- ◈ 신경망과 침스키 한계의 공통점 > 딥러닝
 - 구조적 단순성 자체 학습 능력의 한계
 - 통찰력 부재 지능이 아닌 흉내에 그침

metacognitive learnings - 뇌과학과의 접목

- ✓ 메타인지 모니터 시스템 (dACC 및 AIC)과 메타인지 제어 시스템 (IFPC) 으로 구성
- ✓ 의사결정 신경시스템과 메타인지 신경시스템은 closed-loop system 을 형성

L. Qiu, J. Su, Y. Ni, Y. Bai, X. Zhang, X. Li, and X. Wan, "The neural system of metacognition accompanying decision-making in the prefrontal cortex." PLoS Biology, 16(4), e2004037, 2018.

• 신경망의 6가지 특징

- 1. 패턴인식에 필요한 **많은 양의 데이터**를 병렬처리
- 2. 패턴인식과 같은 수학적 알고리즘의 적용이 곤란한 문제 를 **학습** 방법에 의하여 효과적으로 해결
- 3. 패턴인식에 자주 발생하는 잡음이나 **애매한 데이터를 효 과적으로 처리**
- 4. 학습과 기억을 통하여 패턴을 인식하는 동적인 시스템
- 5. 간단한 학습에 의해 개발이 가능해서 개발 기간이 단축
- 6. 학습시키는데 많은 시간이 필요하지만 **실행 시에는 빠른 결과**를 얻을 수 있다

디지털 컴퓨터와 신경망의 비교

月亚	디지털 컴퓨터	신경 망
처리하는 데이터의 종류	디지털 데이터	아날로그 데이터
의사 결정 시스템	예 또는 아니오 수학적 또는 논리적 함수사용	불완전, 또는 모호하고 상충되는 데이터로부터 결정
해답 접근 방법	정확한 해답 (Precise Solution)	근사한 해답 (Approximate Solution)
데이터베이스 검색 방법	특정 데이터에 대한 정확한 검색 (Exact Match)	전체적인 정보에 의한 근사 검색 (Closed Match)
저장 방법	외부 저장 장치	연결강도 조정

신경세포(neuron)의 구조

신경세포를 구현한 Processing Unit의구조

- ◈ 지도학습(supervised learning) 패턴의 대표적 인 신경망 모델
- ◆ 오차 역전(error back propagation)기법을 processing unit에 적용한 것
- ◇ 각 processing unit 간의 연결강도(weights)를 수정함으로써 다음 학습 시 목표 값에 더욱 접근 된 출력 값을 갖게 한다.
- ◈ 출력값이 목표값과 유사하게 될 때까지 학습을 반복하게 되며, 학습이 끝나면 학습한대로 출력 을 하게 된다.

Backpropagation 신경망 구조

• BP 신경망의 3 단계 학습

1. 제 1 단계(전방향 단계): 입력층에서 입력을 받아 출력층으로 출력하는 과정 활성값(activations)이 출력됨

- 제 2 단계: 오차를 구하는 단계
 오차 목표값과 활성값과의 차
 목표값 출력층의 각 신경세포들에게 학습을 위해 미리 설정한 값
- 3. 제 3 단계: 오차를 이용하여 오차신호를 계산하여 은닉층과 입력층에 역방향으로 되돌리면서 신경세 포들 간의 연결강도들(weights)을 조율

시그모이드(S-shaped sigmoid) 함수

활성값 *yi*를 구한다

$$sum_{j} = \sum_{i=1}^{n} x_{i} w_{ij} + \Theta_{j}$$

$$y_j = f(sum_j) = \frac{1}{1 + e^{-sum_j}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

S-형 시그모이드(S-shaped sigmoid) 함수

two inputs and one output

 y_n : output signal of neuron n

Propagation of signals through the hidden layer.

Propagation of signals through the hidden layer.

the weights coefficients of input node may be modified.

df(e)/de: derivative of neuron activation function

 η (Eta) affects network teaching speed

$$w'_{(x1)2} = w_{(x1)2} + \eta \delta_2 \frac{df_2(e)}{de} x_1$$

$$w'_{(x2)2} = w_{(x2)2} + \eta \delta_2 \frac{df_2(e)}{de} x_2$$

$$x_1 \qquad \qquad f_{4}(e) \qquad \qquad f_{5}(e) \qquad \qquad f_{5}(e) \qquad \qquad y$$

$$x_2 \qquad \qquad f_{5}(e) \qquad \qquad f_{5}(e) \qquad \qquad y$$

$$w'_{14} = w_{14} + \eta \delta_4 \frac{df_4(e)}{de} y_1$$

$$w'_{24} = w_{24} + \eta \delta_4 \frac{df_4(e)}{de} y_2$$

