NETWORK COMMUNITIES

Network Communities

networks
are composed of
tightly connected
sets of nodes

■ Network communities:

Sets of nodes with lots of connoutside (the rest of the network)

Communities, clusters, groups, modules

Finding Network Communities

- How to automatically find such densely connected groups of nodes?
- Ideally such automatically detected clusters would then correspond to real groups

Social Network Data

Zachary's Karate club network:

- Observe social ties and rivalries in a university karate club
- During his observation, conflicts led the group to split

Community Detection

How to find communities?

We will work with undirected (unweighted) networks

Strength of Weak Ties

 Edge betweenness: Number of shortest paths passing over the edge

Edge betweenness in real network

Girvan-Newman

- Divisive hierarchical clustering based on the notion of edge betweenness:
 - Number of shortest paths passing through the edge
- Girvan-Newman Algorithm:
 - Undirected unweighted networks
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove the edge with the highest betweenness (if two or more edges tie for highest score, remove all of them)
 - Connected components are communities
 - Gives a hierarchical decomposition of the network

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan-Newman: Example Step 1: Step 2:

Girvan-Newman: Example 2

Girvan-Newman: Example 2

Girvan-Newman: Results

Girvan-Newman: Results

Zachary's Karate club:

Hierarchical decomposition

We need to resolve 2 questions

- 1. How to compute betweenness?
- 2. How to select the number of clusters?

 Want to compute betweenness of paths starting at node A

□ Breath first search starting from A:

- Count the number of shortest paths from A to all other nodes of the network:
 - Start from the first layer

- Compute betweenness by working up the tree
- Each node other than the root is given a credit of 1, representing the shortest path to that node
- This credit may be divided among nodes and edges above, since there could be several different shortest paths to the node.

Compute betweenness by working up the tree: If there are multiple paths count them fractionally

The algorithm:

- •Add edge **flows**:
 - -- node flow = 1+∑child edges
- -- split the flow up based on the parent value
- Repeat the BFS procedure for each starting node *U*
- •Sum up the flow values to get the betweenness
- Divide everything by two

- How to compute betweenness?
- 2. How to select the number of clusters?

Network Communities

- Communities: sets of tightly connected nodes
- □ Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a partitioning of the network into groups $S \in S$:

$$Q \propto \sum_{s \in S} [$$
 (# edges within group s) – (expected # edges within group s)]

Null Model

 Same degree distribution but random connections

- □ The expected number of edge between nodes i and j of degrees k_i and k_j equals to: $\frac{k_i k_j}{2m}$
 - m: total number of edges in the network

$$= \frac{1}{4m} 2m \cdot 2m = m$$

Note: $\sum_{u \in N} k_u = 2m$

Modularity

Modularity of partitioning S of graph G:

- Q $\propto \sum_{s \in S}$ [(# edges within group s) (expected # edges within group s)]

Q = 0: the number of within-community edges is no better than random

- It is positive if the number of edges within groups exceeds the expected number
 - possible presence of community structure
- 0.3<Q<0.7 means significant community structure</p>

Modularity: Number of clusters

Modularity is useful for selecting the number of clusters:

modularity