Global Explanations with Decision Rules: a Co-learning Approach

Géraldin Nanfack, Paul Temple and Benoît Frénay

June 10, 2021

Explainable Artificial Intelligence

► Models should not only provide accurate predictions but also explanations in human-understandable terms

Explainable Artificial Intelligence

► Models should not only provide accurate predictions but also explanations in human-understandable terms

Explainable Artificial Intelligence

► Models should not only provide accurate predictions but also explanations in human-understandable terms

Traditionally, train the black-box model and then use a surrogate rule learner to extract rule explanations

► Traditionally, train the black-box model and then use a surrogate rule learner to extract rule explanations

► Traditionally, train the black-box model and then use a surrogate rule learner to extract rule explanations

Traditionally, train the black-box model and then use a surrogate rule learner to extract rule explanations

The co-learning framework

- ▶ The black-box model is regularised by its rule explanations
- ► To alleviate the non-differentiability of rule models, we propose STruGMA, a probabilistic model embedding a set of rules

Co-learning for Global Explanations with Decision Rules Learning STruGMA

- The soft truncated Gaussian mixture analysis (STruGMA) to embed decision rules with learnable splits on $\alpha_{\iota}^{(1)}$ and $\alpha_{\iota}^{(2)}$
- ightharpoonup Training instances $m{X}$ are relabelled with the outputs $m{Y}_{ heta}$ of the black-box model and STruGMA is learned from that

Learning the black-box model

- ► Loss: $\lambda^* \times \mathcal{L}(\mathbf{X}, \mathbf{Y}, \boldsymbol{\theta}) + (1 \lambda^*) \times D_{\mathrm{KL}}(p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\beta})||p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\theta})),$
- ▶ Divergence term: $\approx \frac{1}{N_s} \sum_{i=1}^{N_s} \sum_{c=1}^{C} p(y = c | \hat{\mathbf{x}}_i; \beta) \log \frac{p(y=c | \hat{\mathbf{x}}_i; \beta)}{p(y=c | \hat{\mathbf{x}}_i; \theta)}$,
- $ightharpoonup \mathcal{L}(X,Y, heta)$ is the cross-entropy loss
- \triangleright λ^* is set using the multiple gradient descent algorithm (MGDA)¹

 $^{^{}m 1}$ Ozan Sener and Vladlen Koltun.Multi-task learning as multi-objective optimization. Neurips 2018.

Results with deep neural networks

▶ Co-learning improves fidelity of decision rule explanations

Dataset	TreeEx- plainer	TreeCoEx- plainerHR	TreeCoEx- plainerBB
Bank	95.97 (0.74)	96.18 (0.63)	96.49 (0.89)
Credit	77.3 (3.47)	81.25 (3.47)	81.5 (3.43)
Ionosphere	87.32 (3.25)	90.28 (3.42)	88.87 (5.69)
Gamma	93.31 (2.08)	93.15 (0.85)	95.6 (0.36)
Pima	88.44 (2.41)	88.9 (1.35)	92.01 (3.24)
Waveform	80.26 (1.53)	80.52 (1.87)	80.86 (1.28)
Wine	89.17 (4.62)	92.78 (4.93)	89.72 (2.64)

Results with deep neural networks

▶ Co-learning improves fidelity of decision rule explanations

Dataset	TreeEx- plainer	TreeCoEx- plainerHR	TreeCoEx- plainerBB
Bank	95.97 (0.74)	96.18 (0.63)	96.49 (0.89)
Credit	77.3 (3.47)	81.25 (3.47)	81.5 (3.43)
Ionosphere	87.32 (3.25)	90.28 (3.42)	88.87 (5.69)
Gamma	93.31 (2.08)	93.15 (0.85)	95.6 (0.36)
Pima	88.44 (2.41)	88.9 (1.35)	92.01 (3.24)
Waveform	80.26 (1.53)	80.52 (1.87)	80.86 (1.28)
Wine	89.17 (4.62)	92.78 (4.93)	89.72 (2.64)

Co-learning has a limited impact on the performance of the black-box model:

Dataset	coBB	BB
Bank	90.68 (0.77)	90.99 (0.84)
Credit	75.65 (3.88)	74.75 (3.5)
Ionosphere	90.98 (3.88)	90.56 (3.45)
Gamma	80.57 (0.49)	82.79 (2.53)
Pima	73.12 (2.31)	75.39 (1.77)
Waveform	85.97 (0.87)	86.15 (0.7)
Wine	96.94 (2.43)	97.5 (2.05)

Results with deep neural networks

► The co-learned black-box model continues to be competitive against the decision tree

Dataset	coBB	DT
Bank	90.68 (0.77)	90.81 (0.96)
Credit	75.65 (3.88)	71.05 (3.3)
Ionosphere	90.98 (3.88)	90.28 (4.43)
Gamma	80.57 (0.49)	82.72 (0.43)
Pima	73.12 (2.31)	72.02 (2.59)
Waveform	85.97 (0.87)	75.24 (1.23)
Wine	96.94 (2.43)	87.78 (4.93)

Results with deep neural networks

➤ The co-learned black-box model continues to be competitive against the decision tree

Dataset	coBB	DT
Bank	90.68 (0.77)	90.81 (0.96)
Credit	75.65 (3.88)	71.05 (3.3)
Ionosphere	90.98 (3.88)	90.28 (4.43)
Gamma	80.57 (0.49)	82.72 (0.43)
Pima	73.12 (2.31)	72.02 (2.59)
Waveform	85.97 (0.87)	75.24 (1.23)
Wine	96.94 (2.43)	87.78 (4.93)

- We also perform a qualitative evaluation with a medical doctor on two medical datasets
 - Explanations were mostly clinically correct

Thank you for your attention!

- ► Further details, see paper #231
- ▶ Questions?