Part 7. Ordinary Differential Equations Chapter 27. Boundary-Value & Eigenvalue Problems

Lecture 27

General Methods for Boundary Value Problems: Finite-Difference Method

27.1 (27.1.2)

Homeyra Pourmohammadali

Learning Outcomes

Understand Finite-Difference method

• Apply finite difference method to solve boundary-value problems (2nd –order differential equations)

Finite Differences Methods

- The most common alternatives to the shooting method.
- Finite differences are substituted for the derivatives in the original equation.

$$\frac{d^2T}{dx^2} = \frac{T_{i+1} - 2T_i + T_{i-1}}{\Delta x^2}$$

$$\frac{T_{i+1} - 2T_i + T_{i-1}}{\Delta x^2} - h'(T_i - T_a) = 0$$

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0$$

$$-T_{i-1} + (2 + h'\Delta x^2)T_i - T_{i+1} = h'\Delta x^2T_a$$

Finite Differences Methods

- Finite differences equation applies for each of the interior nodes.
- The first and last interior nodes, T_{i-1} and T_{i+1} , respectively, are specified by the boundary conditions.
- Thus, a linear equation transformed into a set of simultaneous algebraic equations can be solved efficiently.

$$-T_{i-1} + (2 + h'\Delta x^2) T_i - T_{i+1} = h'\Delta x^2 T_a$$

Example 1. Solve the following 2^{nd} order ODE, with the provided boundary values at x = 0 and x = 1.

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = e^{-x} y(0) = 2 y(1) = 1$$

- **Step 1.** Subdivide region into 5 subsections (or 4 nodes) ($\Delta x=0.2$)
- **Step 2.** Apply second order approximation (central difference) at x_i
- **Step 3.** Form finite difference equations at each non-boundary x_i value
- **Step 4.** Continue the process for all nodes (subsections) till x=1.
- Step 5. Solve system of equations using the method of your choice e.g. Gauss Elimination or Gauss Seidel

Notes

- "Shooting" and "Finite Difference" are two methods are for solving boundary-value problems
- Other methods for solving BVPs are:
 - ❖ Steady-state solution of 2D −BVPs
 - ❖ Transient solution of 2D-BVPs
 - ❖ Steady state solution of 1D problems with finiteelement approach

Part 8. Partial Differential Equations

Lecture 28

Introduction to Partial Differential Equations (PDEs)

PT 8.1, PT 8.2

Homeyra Pourmohammadali

Learning Outcomes

Understand difference between ODE and PDE

• Know the general form of linear, 2nd order PDE Recognize difference between elliptic, parabolic and hyperbolic PDEs.

• See development of 1D diffusion PDE equation for a heated rod as well as 2D and 3D equations.

Introduction to PDEs

Partial Differential Equation (PDE): equation containing partial derivatives

Partial Derivatives: derivatives of multivariable functions

Multivariable Function: function of more than one independent variable

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

Introduction to PDEs

- In solution of ODEs integration yielded constant values, C_1 , C_2 , etc.
- In solution of PDEs integration yields functions, f(x), g(x), etc.
- Particular solution includes boundary and/or initial conditions to find f(x), g(x), etc.
- Order of PDEs: The highest order partial derivative appearing in the equation
- Linear PDE: If it is linear in the unknown function and all its derivatives with coefficients depending only on the independent variables

Linear 2nd Order PDEs

$$A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + D = 0$$

$B^2 - 4AC$	Category	Example
< 0	Elliptic	Laplace equation (steady state with two spatial dimensions)
		$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$
= 0	Parabolic	Heat conduction equation (time variable with one spatial dimension)
		$\frac{\partial T}{\partial t} = k' \frac{\partial^2 T}{\partial x^2}$
>0	Hyperbolic	Wave equation (time variable with one spatial dimension)
		$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$

Engineering Applications of PDEs

Electro-magnetics

Heat transfer and fluid mechanics

Vibrations and acoustics

Quantum mechanics

Example. PDE. 1D Diffusion Equations

1D Diffusion Equation: heat conduction in uniform rod, length = L, area = A

Assumptions

- Boundary conditions
- Initial condition
- Insulated sides
- Constant properties

Example. PDE. 1D Diffusion Equations

Step 1: Sketch system element

Step 2: Apply conservation of energy

Step 3: Evaluate with Taylor series expansion

Step 4: Relate Q and T with physical laws

Step 5: Solve PDE with boundary conditions - what are limiting cases for the diffusion equation if $T_h > T_c = T_0$?

Example. PDE. 1D Diffusion Equations

Example. PDE. 2D and 3D Diffusion Equations

Step 1: Sketch system element

Step 2: Apply conservation of energy

Steps 3, 4: Evaluate with Taylor series expansion and Fourier's law

$$\frac{\partial T(x, y, t)}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

$$\frac{\partial T(x, y, z, t)}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

2D and 3D Diffusion Equations

Step 2: Apply conservation of energy

Steps 3, 4: Evaluate with Taylor series expansion and Fourier's law

$$\frac{\partial T(x, y, t)}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

$$\frac{\partial T(x, y, z, t)}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$