Матричные разложения

обзор методов и применение в машинном обучении для понижения размерности, заполнения пропусков и рекомендаций

Матричные разложения

$$X \approx U \cdot V^T$$

$$||X - U \cdot V^T|| \to \min$$

$$\sum_{i,j} (x_{ij} - \langle u_i, v_j \rangle)^2 \to \min$$

SVD в линейной алгебре

- $X = U \cdot \Sigma \cdot V^T$
- U, V ортогональные, Σ диагональная

Приближение матрицы с помощью SVD

$$egin{aligned} X &pprox U \cdot V^T \ \| imes ext{min} \ \| X - U \cdot V^T \| &
ightarrow ext{min} \ X &= ilde{U} \Sigma ilde{V}^T \ \|_{(m imes d)} & (m imes au) & (au imes au) & (au imes au) \ \|_{X_k} & |_{E_k} ilde{V}_k^T & |_{k} \ \|_{X_k} \end{aligned}$$

Приближение матрицы с помощью SVD

$$egin{aligned} & X & pprox U \cdot V^T \ \| imes _l imes _l imes _k imes _d \end{aligned} \ \| X - U \cdot V^T \| o \min _l X = ilde{U} \Sigma ilde{V}^T \end{aligned}$$

 $ilde{U}_{m{k}}$, $\Sigma_{m{k}}$, $ilde{V}_{m{k}}$ — усеченные матрицы из SVD

$$U = \tilde{U}_k \Sigma_k \qquad V = \tilde{V}_k$$

«SVD»

в машинном обучении

$$X_{l \times d} \approx U \cdot V^{T}$$

$$\sum_{i,j} (x_{ij} - \langle u_i, v_j \rangle)^2 o \min$$

- $oldsymbol{u_i}$ "профили" объектов
- \mathbf{v}_{j} "профили" исходных признаков

Матрица рейтингов и SVD

j

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Коля	3	?	4	5
Петя				4
Ваня		5	3	3

$$x_{ij} \approx \langle u_i, v_j \rangle$$

- u_i "интересы пользователей"
- v_j "параметры фильмов"

Градиентный спуск

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

$$rac{\partial Q}{\partial u_i} = \sum_j 2(\langle u_i, v_j
angle - x_{ij}) v_j$$

$$oldsymbol{arepsilon}_{ij} = (\langle u_i, v_j
angle - x_{ij})$$
 — ошибка на x_{ij}

$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \sum_j \varepsilon_{ij} v_j$$

SGD

SGL

GD: SGD:
$$u_{i}^{(t+1)} = u_{i}^{(t)} - \gamma_{t} \sum_{j} \varepsilon_{ij} v_{j} \qquad u_{i}^{(t+1)} = u_{i}^{(t)} - \gamma_{t} \varepsilon_{ij} v_{j}$$
$$v_{j}^{(t+1)} = v_{j}^{(t)} - \eta_{t} \sum_{i} \varepsilon_{ij} u_{i} \qquad v_{j}^{(t+1)} = v_{j}^{(t)} - \eta_{t} \varepsilon_{ij} u_{i}$$

Для случайных $m{i},m{j}$

Метод чередующихся наименьших квадратов (ALS)

$$Q o \min_{u_i,v_j}$$

Повторяем до сходимости:

$$\frac{\partial Q}{\partial u_i} = 0 \implies u_i \qquad \frac{\partial Q}{\partial v_j} = 0 \implies v_j$$

ALS

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

)
$$rac{\partial Q}{\partial u_i} = \sum_j 2(\langle u_i, v_j
angle - x_{i,j})v_j = 0$$
 $\sum_j v_j \langle v_j, u_i
angle = \sum_j x_{ij}v_j$

$$\sum_{j} v_{j} v_{j}^{T} u_{i} = \sum_{j} x_{ij} v_{j}$$

$$\sum_{j} v_{j} v_{j}^{T} u_{i} = \sum_{j} x_{ij} v_{j}$$

ALS

 $oldsymbol{i}$ Повторяем по случайным i,j до сходимости:

$$igg(\sum_{j} v_{j} v_{j}^{T}igg) u_{i} = \sum_{j} x_{ij} v_{j} \implies u_{i}$$
 $igg(\sum_{i} u_{i} u_{i}^{T}igg) v_{j} = \sum_{i} x_{ij} u_{i} \implies v_{j}$

(решение системы линейных уравнений)

Регуляризация

$$P Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 + \alpha \sum_{i} ||u_i||^2 + \beta \sum_{i} ||v_j||^2 \to \min_{u_i, v_j}$$

 $oldsymbol{\lambda} \ lpha \$ и $oldsymbol{eta} \$ — небольшие положительные числа (0.001, 0.01, 0.5)

Постановка задачи рекомендации

 \boldsymbol{j}

		Пила	Улица Вязов	Ванильное небо	1+1
	Маша	5	4	1	2
	Юля	5	5	2	
	Вова			3	5
	Коля	3	?	4	5
	Петя				4
	Ваня		5	3	3

$$x_{ij} \approx \langle u_i, v_j \rangle$$

 $oldsymbol{u_i}$ — «интересы пользователей»

 $\boldsymbol{v_j}$ — «параметры фильмов»

Оптимизируемый функционал

$$x_{ij} \approx \langle u_i, v_j \rangle$$

$$\sum_{i,j:x_{ij}\neq 0} (\langle u_i,v_j\rangle - x_{ij})^2 \to \min$$

Оптимизируемый функционал

$$egin{aligned} &\sum_{i,j} (\mu + b_i^u + b_j^v + \langle u_i, v_j
angle - x_{ij})^2 + \\ &+ lpha \sum_i \|u_i\|^2 + eta \sum_j \|v_j\|^2 + \\ &+ \gamma \sum_i b_i^{u^2} + \delta \sum_j b_j^{v^2}
ightarrow \min \end{aligned}$$

- Добавили сдвиг µ, базовые предикторы пользователя и фильма b
- L2-регуляризация

Рекомендации товаров

j

	Вечернее платье	Поднос для писем	iPhone 6s	Шуба D&G
Маша	1		1	
Юля	1	1		1
Вова		1	1	
Коля	1	(?)	1	
Петя			1	
Ваня			1	1

$$x_{ij} = 1 pprox \langle u_i, v_j
angle \qquad \qquad u_i = rac{1}{\sqrt{d}} (1 \dots 1) \ \sum_{i,j: x_{ij}
eq 0} (\langle u_i, v_j
angle - x_{ij})^2
ightarrow \min \qquad v_j = rac{1}{\sqrt{d}} (1 \dots 1)$$

Explicit u implicit

- Explicit feedback: есть положительные и отрицательные примеры (например, низкие и высокие оценки фильмов, лайки и дизлайки)
- Implicit feedback: есть только положительные (покупки, просмотры, лайки) или только отрицательные примеры (дизлайки)

Implicit матричное разложение

$$\sum_{i,j} \mathbf{w}_{ij} (\langle u_i, v_j \rangle - x_{ij})^2 o \min$$

Сумма по всем индексам (не только по известным элементам матрицы)

 ${f w}_{ij}$ принимает большие значения для $x_{ij}
eq {f 0}$ и значительно меньшие для $x_{ij} = {f 0}$

Implicit ALS

$$\sum_{i,j} w_{ij} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min$$

$$\mathbf{w}_{ij} = 1 + \alpha |x_{ij}| \qquad \alpha = 10, 100, 1000$$

 u_i,v_j оцениваем с помощью ALS

Вероятностный подход

$$\sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

Распределение Пуассона и матричные разложения

- $x_{ij} \sim Poiss\langle u_i, v_j \rangle$
- $P(x_{ij}) = \frac{\langle u_i, v_j \rangle^{x_{ij}}}{x_{ij}!} e^{-\langle u_i, v_j \rangle}$ $\prod_{i,j} \frac{\langle u_i, v_j \rangle^{x_{ij}}}{x_{ij}!} e^{-\langle u_i, v_j \rangle} \to \max$
 - $\sum \langle u_i, v_j \rangle x_{ij} \ln \langle u_i, v_j \rangle \ln x_{ij}! \to \min$
 - $\sum \langle u_i, v_j \rangle x_{ij} \ln \langle u_i, v_j \rangle \to \min$

SGD для неотрицательного матричного разложения (NMF)

)
$$Q = \sum_{i,j} \langle u_i, v_j
angle - x_{ij} \ln \langle u_i, v_j
angle
ightarrow \min$$

$$egin{aligned} rac{\partial Q}{\partial u_i} &= \sum_j v_j - rac{x_{ij}}{\langle u_i, v_j
angle} v_j = \ &= \sum_j rac{\langle u_i, v_j
angle - x_{ij}}{\langle u_i, v_j
angle} v_j
ightarrow \min \ & ilde{arepsilon}_{ij}$$
- "относительная ошибка прогноза"

SGD:
$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t ilde{arepsilon}_{ij} v_j$$
 $v_j^{(t+1)} = v_j^{(t)} - \eta_t ilde{arepsilon}_{ij} u_i$

Проблемы NMF

- Некорректно поставлена: если U_0, V_0 решение, то $U = U_0 \cdot Y, \ V = V_0^T \cdot Y^{-T}$ тоже может быть решением
- $Q(X,UV^T)$ не выпукла по совокупности аргументов (U, V), не можем использовать методы, которые находят глобальный минимум

Блочно-покоординатные методы минимизации

- Вход: $U_0 \ge 0, V_0 \ge 0$
- Цикл
 - $V \leftarrow f(X, U, V)$
 - $U \leftarrow g(X, U, V)$
- $f(X,U,V) = g^T(X^T,V^T,U^T)$, поскольку задача симметрична

NMF с нормой Фробениуса

• Оптимизационная задача:

$$\min_{U \ge 0, V \ge 0} ||X - UV^T||_F^2 \Rightarrow (U^*, V^*)$$

- Без ограничения неотрицательности SVD
- Базовый метод поочерёдный градиентный спуск.

Мультипликативные обновления

• Идея: выбрать шаги GD так, чтобы обновления стали мультипликативными

$$\frac{\partial Q}{\partial v_{jk}} = \sum_{i=1}^{n} u_{ik} \hat{x}_{ij} - \sum_{i=1}^{n} u_{ik} x_{ij}, \ \eta_{jk} = \frac{v_{jk}}{\sum u_{ik} \hat{x}_{ij}}$$

$$v_{jk}^{(t+1)} = v_{jk}^{(t)} - \eta_{jk} \left(\sum_{i=1}^{n} u_{ik} \hat{x}_{ij} - \sum_{i=1}^{n} u_{ik} x_{ij} \right)$$

$$= v_{jk} \cdot \frac{\sum u_{ik} x_{ij}}{\sum u_{ik} \hat{x}_{ij}}$$

• В матричном виде: $V \leftarrow V \otimes (X^T U) \oslash (\hat{X}^T U)$

ALS и ANLS

- 1. На каждом шаге находится решение задачи LS по одной из компонент и проецируется на неотрицательную область.
 - Быстрый, но грубый: итерационный процесс не сходится, функция потерь осциллирует.
- 2. На каждом шаге точно находится покомпонентный минимум в неотрицательной области
 - Точный, но медленный.

HALS

- На каждом шаге точно находится минимум по столбцу u_k или строке v_k
 - на каждом шаге небольшие вычислительные затраты
 - сходится быстрее мультипликативных обновлений
 - Чувствителен к начальному приближению