PROBABILITY THEORY - EXERCISES SESSION Nº 1

SOLUTIONS

<u>TD1 – 1</u> *:

TD1 - 2:

a) Considering the total probability law:

$$P(B) = P(B \cap A) + P(B \cap \overline{A}),$$

then:

$$P(B \cap \overline{A}) = P(B) - P(B \cap A)$$

$$P(B \cap \overline{A}) = P(B) - P(B)P(A)$$
 (because A and B are independent)

$$P(B \cap \overline{A}) = P(B)(1 - P(A) = P(B)P(\overline{A})$$

Then, $\overline{\mathbf{A}}$ and \mathbf{B} are independent.

b) Application

b.1) 0.045

b.2) 0.855

<u>TD1 – 3</u>:

- a) For 4 tires 24 and for 5 tires 120
- b) 336
- c) 201376
- d) 60

<u>TD1 – 4</u>:

a) 1/3

b) 3/11

<u>TD1 – 5</u>:

- a) It's the probability that a call comes from outside and that Lisa refuses to transfer to her boss
- b) 0,8.
- c) The tree

d) 0.8

<u>TD1 – 6</u>:

a) 1/4

- **b)** 5/8
- <u>TD1 7</u>:
- **a)** 0,435
- **b)** 0, 517
- **c)** 0,531

PROBABILITY THEORY – EXERCISES SESSION N° 2

TD2 - 1:

a)

X is an integer between 0 and n

X/n is the relative frequency of A;

- **b)** $P(X = k) = C_n^k p^k (1-p)^{n-k}$ for k = 0, 1, ..., n the binomial distribution
- c) We have:
 - $\forall k, P(X = k) \ge 0$ and
 - the probability of the certain event is : $\sum_{k=1}^{n} P(X=k) = (p+1-p)^n = 1$
 - Then, : $\forall k, P(X = k) \leq 1$.

TD2 - 2:

- a) $P(X = k) = \frac{21-2k}{100}$ for k between 1 and 10
- b) Let Y denote the expected gain E(Y). We have $E(Y) = \frac{3}{10}$

The game favorable to the player

TD2 - 3:

If 0≤p<2/3 choose A. If p=2/3, choose either A or B, and if 2/3<p<1, choose B.

TD2 - 4:

- a) $P(X = Y) = \frac{1}{n}$
- b) $P(X \ge Y) = \frac{1}{2} + \frac{1}{2n}$

There are two possibilities:

- a. If $k \le n$, $P(X + Y = k) = \frac{k-1}{n^2}$ b. If k > n, $P(X + Y = k) = \frac{2n+1-k}{n^2}$

TD2 - 5:

- greater than 20? 0.0099
- less than 5? 0,0038
- comprised between 12 and 14? 0,2586
- greater than 12?: 0,6293
- minimal threshold grade 16,84

<u>TD2 – 6</u>:

Probability	Value
7(0.1(1)	0.00
$P(0 \le X \le 1)$	0,33
P(X ≤ 1)	0,83
P(X > 1)	0,17
P(X = 1)	0
P(X ≥ 1)	0,17
P(X ≤ 1)	0,66
$P(X^2 \le 1)$	0,66
$P(X^3 \le 1)$	0,83

Х

PROBABILITY THEORY - EXERCISES SESSION N° 3

SOLUTIONS

<u>TD3 – 1</u>:

a) Probability distribution of X

X	-2	1	2	3
P(x)	1/2	1/6	1/6	1/6

The cumulative distribution function (CDF) Fx:

$$F_X(x) = \begin{cases} 0 & \text{si } x < -2, \\ \frac{1}{2} & \text{si } -2 \le x < 1, \\ \frac{2}{3} & \text{si } 1 \le x < 2, \\ \frac{5}{6} & \text{si } 2 \le x < 3, \\ 1 & \text{si } x \ge 3. \end{cases}$$

b)
$$E(X) = 0$$

c)
$$V(X) = \frac{13}{3}$$
.

d) Sample set:

$$\Omega = \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\}$$

Possible outcomes:

(u, v)	1	2	3	4	5	6
1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	3	3	3	-5	-5	-5
5	3	3	3	-5	-5	-5
6	3	3	3	-5	-5	-5

e)

Y	-5	1	2	3
P _Y (y)	9/36	6/36	6/36	15/36
		$E(Y) = \frac{1}{2}$	1 2	

f) Given that E(Y) > E(X), on average the second variant is more advantageous than the 1st one.

TD3 - 2:

a)
$$p^2(3 - 2p)$$
.

b)
$$q^2(3q^2 - 8q + 6)$$
.

c) Si p = q the solution with redundant power supplies is more interesting.

TD3 - 3:

a)
$$e^{-4} \approx 0.0183$$

b)
$$e^{-4} \frac{4^5}{51} \approx 0.156$$

c)
$$1 - e^{-4} \sum_{k=0}^{5} \frac{4^k}{k!} \approx 0.215$$

<u>TD3 – 4</u>:

a) Conditions
$$f(x) \ge 0$$
 et $\int_{-\infty}^{+\infty} f(x) dx = 1$

This implies $a \in \left[-\frac{3}{2}, 3\right]$ et $b = 1 - \frac{a}{3}$

b)
$$a=3$$
 and $b=0$

c)
$$E(X) = \frac{3}{4}$$
 and $V(X) = \frac{3}{80}$

<u>TD3 – 5</u>:

a)
$$\frac{1}{4}$$

<u>TD3 – 6</u>:

The minimum average lifespan of a hard disk is 99,5 years!

TD3 - 7 *:

a)
$$f_X(x) = \frac{1}{\pi} \frac{a}{a^2 + x^2}$$
 It is the Cauchy distribution.

a) Not, because de derivative of $\phi_X(t)$ is undefined at the point X=0.

TD3 - 8:

$$P(X<7 \text{ ou } X>19) \approx 0.0454$$

Using the Tchebychev inequality, we find the upper bound:

$$P(|X - 13| > 6) \le \frac{3^2}{6^2} = 0.25$$

PROBABILITY THEORY - EXERCISES SESSION N° 4

SOLUTIONS

<u>TD4 – 1</u>:

<u>a)</u>

For y < 0,

$$f_Y(y) = 0$$

For $0 \le y < 1$

$$f_Y(y) = e^{-y}$$

For
$$y = 1$$
 $P(Y = 1) = \frac{1}{2e}$

For
$$y > 1$$
 $f_Y(y) = \frac{1}{2}e^{-y}$

<u>b)</u>

For y < 0, $F_{Y}(y) = 0$

$$F_Y(v) = 0$$

For
$$0 \le y < 1$$
 $F_Y(y) = 1 - \frac{1}{e^y}$

For
$$y = 1$$
 $F_Y(y) = 1 - \frac{1}{2e}$

For
$$y > 1$$
 $F_Y(y) = 1 - \frac{1}{2e^y}$

Verify that this function lies between 0 and 1, it is monotonically non-decreasing and right continuous.

<u>TD4 – 2</u> :

a) $\alpha = 0.05$

b) Marginal of X;

X	x=-2	x=0	x=1
P(X=x)	0.45	0.25	0.3

Marginal of Y:

У	y=-1	y=1	y=2
P(Y=y)	0.5	0.3	0.2

c) Counter-example, $P(X=1,Y=1) = 0 \neq P(X=1) \times P(Y=1) = 0.3 \times 0.3$.

d)

Х	2	0	1
P(X=x Y=1)	2/3	1/3	0

e)

Х	2	0	1
$P(X=x Y\neq 2)$	0.4/0.8=1/2	0.2/0.8=1/4	0.2/0.8=1/4

f)

$$P(Z = -3) = 0.2$$

$$P(Z = -1) = 0.3$$

$$P(Z = 0) = 0.25$$

$$P(Z = 1) = 0.1$$

$$P(Z = 2) = 0.05$$

$$P(Z = 3) = 0.1$$

<u>TD4 – 3</u>:

a)
$$A = 2$$
, so

$$f_{X,Y}(x,y) = 2xy$$
 for $(x,y) \in D$

b) Marginal density of X

$$f_X(x) = 4x^3 \text{ for } 0 \le x \le 1$$

Marginal density of Y

$$f_Y(y) = \frac{4y - y^3}{4}$$
 for $0 \le y \le 2$

For both functions you should verify that they are positive and their integral in their definition domain is equal to 1.