Contrastive Language Prompting to Ease False Positives in Medical Anomaly Detection

YeongHyeon Park Myung Jin Kim Hyeong Seok Kim
SK Planet Co., Ltd.

Poster No. P02-003

INTRODUCTION

Ground-truth A_{CLAP} (Ours) Input $A_{positive}$ $A_{negative}$ False positives True negatives Brain MRI Normal True negatives False positives Brain MRI True negatives False positives Abnormal False positives True negatives

- False positives hinders accurate detection of disease regions.
- CLAP refines attention by leveraging both positive and negative text prompts.

METHODS

(a) Attention map generation by Contrastive LAnguage Prompting (CLAP)

(b) Unsupervised anomaly detection (UAD) scheme

Anatomy	P/N	Language prompt			
Brain MRI	P	Glioma, Astrocytoma, Oligodendroglioma			
	N	Normal, Healthy gray matter			
Liver CT	P	Malignant cells, Dysplasia, Hyperplasia			
	N	Normal, Healthy, Benign			
Retinal OCT	P	Retinal fluid, Drusen, Retinal detachment			
	N	Normal, Healthy, Clear			
Chest X-ray	P	Consolidation, Fibrosis, Atelectasis			
	N	Healthy, Clear fields, Normal			
Lymph node	P	Metastatic carcinoma, Tumor metastasis			
	N	Normal, Healthy tissue			

Examples of positive (P) and negative (N) language prompts

EXPERIMENTAL SETUP

- **Dataset**: BMAD benchmark covering MRI, CT, X-ray, OCT, and histopathology images.
- Models: EAR (U-Net), CLIP with positive language prompting (PLP) alone, and CLAP (ours).
- Evaluation: Image-level AUROC scores.

RESULTS

CLAP suppresses false positives effectively

Anatomy	Brain MRI	Liver CT	Retin	al OCT	Chest X-ray	Lymph node	Average
Dataset	BraTS2021	BTCV + LiTs		OCT2017	RSNA	CAMELYON16	,
EAR [2]	77.37	72.51	86.42	97.46	71.69	63.39	78.21
PLP	73.54	72.76	90.08	96.77	65.23	64.98	77.23
CLAP (ours)	78.55	72.60	91.66	96.38	65.76	68.42	78.89

CLAP improves image-level disease detection

CONCLUSION

- CLAP effectively reduces false positives to find suspected disease regions.
- Outperforms existing EAR and PLP methods in medical anomaly detection.
- Future work aims to automate fine prompt generation to enhance usability.

REFERENCES

- [1] Sheng Zhang, et al., "BiomedCLIP: a multi-modal biomedical foundation model pretrained from fifteen million scientific image-text pairs," arXiv, 2023.
- [2] YeongHyeon Park, et al., "Visual defect obfuscation based self-supervised anomaly detection," Scientific Reports, 2024.
- [3] Jinan Bao, et al., "BMAD: Benchmarks for medical anomaly detection," CVPR, 2024

Google Scholar

Poster No.

(a) Attention map generation by Contrastive LAnguage Prompting (CLAP)

(b) Unsupervised anomaly detection (UAD) scheme

Personal Page

Google Scholar