BỘ GIÁO DỰC VÀ ĐÀO TẠO ĐỀ CHÍNH THỰC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỀN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2006 Môn: TOÁN, khối B (Đáp án - Thang điểm có 04 trang)

Câu	Ý	Nội dung	Điểm
I	1	Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1,00 điểm)	2,00
		$y = \frac{x^2 + x - 1}{x + 2} = x - 1 + \frac{1}{x + 2}.$ • Tập xác định: $\mathbb{R} \setminus \{-2\}$. • Sự biến thiên: $y' = 1 - \frac{1}{(x + 2)^2}$, $y' = 0 \Leftrightarrow x = -3$ hoặc $x = -1$.	0,25
		Bằng biến thiên:	0,25
		 Tiệm cận: - Tiệm cận đứng: x = -2. - Tiệm cận xiên: y = x - 1. 	0,25
		• Đồ thị (C): -3 -2 -1 0 1 x	0.25
	2	Viết phương trình tiếp tuyến vuông góc với tiệm cận xiên của đồ thị (C) (1,00 điểm) Tiệm cận xiên của đồ thị (C) có phương trình y = x - 1, nên tiếp tuyến vuông góc với tiệm cận xiên có hệ số góc là k = -1.	0,25
		Hoành độ tiếp điểm là nghiệm của phương trình: $y' = -1$ $\Leftrightarrow 1 - \frac{1}{(x+2)^2} = -1 \Leftrightarrow x = -2 \pm \frac{\sqrt{2}}{2}.$	0,25
		Với $x = -2 + \frac{\sqrt{2}}{2}$ \Rightarrow $y = \frac{3\sqrt{2}}{2} - 3$ \Rightarrow pt tiếp tuyến là (d ₁): $y = -x + 2\sqrt{2} - 5$,	0,25
		Với $x = -2 - \frac{\sqrt{2}}{2}$ \Rightarrow $y = -\frac{3\sqrt{2}}{2} - 3$ \Rightarrow pt tiếp tuyến là (d ₂): $y = -x - 2\sqrt{2} - 5$.	0,25

II			2,00
	1	Giải phương trình (1,00 điểm)	
		Điều kiện: $\sin x \neq 0$, $\cos x \neq 0$, $\cos \frac{x}{2} \neq 0$ (1).	0,25
		Phương trình đã cho tương đương với:	-
		$\frac{\cos x}{\sin x} + \sin x \frac{\cos x \cos \frac{x}{2} + \sin x \sin \frac{x}{2}}{\cos x \cos \frac{x}{2}} = 4$	
		$\Leftrightarrow \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = 4 \Leftrightarrow \frac{1}{\sin x \cos x} = 4 \Leftrightarrow \sin 2x = \frac{1}{2}$	0,50
		$\Leftrightarrow \begin{bmatrix} x = \frac{\pi}{12} + k\pi \\ x = \frac{5\pi}{12} + k\pi. \end{bmatrix} (k \in \mathbb{Z}), \text{ thỏa mãn (1)}.$	0,25
	2	Tìm m để phương trình có hai nghiệm thực phân biệt (1,00 điểm)	
		$\sqrt{x^2 + mx + 2} = 2x + 1 \tag{2}$	
		$\Leftrightarrow \begin{cases} 2x+1 \ge 0 \\ x^2 + mx + 2 = (2x+1)^2 \end{cases} \Leftrightarrow \begin{cases} x \ge -\frac{1}{2} \\ 3x^2 - (m-4)x - 1 = 0 \end{cases} (3)$	0,25
		(2) có hai nghiệm phân biệt \Leftrightarrow (3) có hai nghiệm x_1, x_2 thỏa mãn: $-\frac{1}{2} \le x_1 < x_2$	0,25
		$\Leftrightarrow \begin{cases} \Delta = (m-4)^2 + 12 > 0 \\ \frac{S}{2} = \frac{m-4}{6} > -\frac{1}{2} \\ f\left(-\frac{1}{2}\right) = \frac{3}{4} + \frac{m-4}{2} - 1 \ge 0, \text{ trong d\'o } f(x) = 3x^2 - (m-4)x - 1 \end{cases}$	0,25
		$\Leftrightarrow m \geq \frac{9}{2}$.	0,25
III			2,00
	1	Viết phương trình mặt phẳng (P) qua A, song song với d ₁ và d ₂ (1,00 điểm)	0.2.
		Vector chỉ phương của d_1 và d_2 lần lượt là: $u_1 = (2; 1; -1)$ và $u_2 = (1; -2; 1)$.	0,25
		\Rightarrow vector pháp tuyến của (P) là: $\overrightarrow{n} = [\overrightarrow{u_1}, \overrightarrow{u_2}] = (-1; -3; -5)$. Vì (P) qua A(0; 1; 2) \Rightarrow (P): $x + 3y + 5z - 13 = 0$.	0,25
		Do B(0; 1; -1) \in d ₁ , C(1; -1; 2) \in d ₂ , nhưng B, C \notin (P), nên d ₁ , d ₂ // (P).	0,23
	2	Vậy, phương trình mặt phẳng cần tìm là (P): $x + 3y + 5z - 13 = 0$.	0,25
	<u> </u>	Tìm tọa độ các điểm $M \in d_1$, $N \in d_2$ sao cho A, M, N thẳng hàng $(1,00 \text{ diễm})$	
		Vì $M \in d_1$, $N \in d_2$ nên $M(2m; 1 + m; -1 - m)$, $N(1 + n; -1 - 2n; 2 + n)$ $\Rightarrow \overrightarrow{AM} = (2m; m; -3 - m)$; $\overrightarrow{AN} = (1 + n; -2 - 2n; n)$.	0,25
		$\Rightarrow [\overrightarrow{AM}, \overrightarrow{AN}] = (-mn - 2m - 6n - 6; -3mn - m - 3n - 3; -5mn - 5m)$	0,25
		A, M, N thẳng hàng $\Leftrightarrow [\overrightarrow{AM}, \overrightarrow{AN}] = \overrightarrow{0}$	0,25
		\Leftrightarrow m = 0, n = -1 \Rightarrow M(0; 1; -1), N(0; 1; 1).	0,25

IV			2,00
	1	Tính tích phân (1,00 điểm)	
		$I = \int_{\ln 3}^{\ln 5} \frac{dx}{e^x + 2e^{-x} - 3} = \int_{\ln 3}^{\ln 5} \frac{e^x dx}{e^{2x} - 3e^x + 2}.$	
		$\int_{\ln 3}^{1} e^{x} + 2e^{-x} - 3 \int_{\ln 3}^{1} e^{2x} - 3e^{x} + 2$	
		$\mathfrak{D}xt t = e^x \Rightarrow dt = e^x dx;$	0,25
		với $x = \ln 3$ thì $t = 3$; với $x = \ln 5$ thì $t = 5$.	0,25
		$\Rightarrow I = \int_{3}^{5} \frac{dt}{(t-1)(t-2)} = \int_{3}^{5} \left(\frac{1}{t-2} - \frac{1}{t-1}\right) dt$	0,25
		$= \ln \left \frac{t-2}{t-1} \right \Big _3^5 = \ln \frac{3}{2}.$	0,25
	2	Tìm giá trị nhỏ nhất của biểu thức A (1,00 điểm)	
		Trong mặt phẳng với hệ tọa độ Oxy, xét $M(x-1;-y)$, $N(x+1;y)$.	
		Do OM + ON \geq MN nên $\sqrt{(x-1)^2 + y^2} + \sqrt{(x+1)^2 + y^2} \geq \sqrt{4 + 4y^2} = 2\sqrt{1 + y^2}$.	
		Do đó: $A \ge 2\sqrt{1+y^2} + y-2 = f(y)$.	0,25
		• Với $y \le 2 \implies f(y) = 2\sqrt{1 + y^2} + 2 - y$	
		$\Rightarrow f'(y) = \frac{2y}{\sqrt{y^2 + 1}} - 1.$ $\frac{y - \infty}{f'(y)} - 0 +$	
		$f'(y) = 0 \Leftrightarrow 2y = \sqrt{1 + y^2}$ $f(y)$	
		$\Leftrightarrow \begin{cases} y \ge 0 \\ 4y^2 = 1 + y^2 \end{cases} \Leftrightarrow y = \frac{1}{\sqrt{3}}.$	0,50
		Do đó ta có bảng biến thiên như hình bên:	
		• Với $y \ge 2 \Rightarrow f(y) \ge 2\sqrt{1+y^2} \ge 2\sqrt{5} > 2+\sqrt{3}$.	
		Vậy $A \ge 2 + \sqrt{3}$ với mọi số thực x, y.	
		Khi x = 0 và y = $\frac{1}{\sqrt{3}}$ thì A = 2+ $\sqrt{3}$ nên giá trị nhỏ nhất của A là 2+ $\sqrt{3}$.	0,25
V.a	1	V. \(\) \(2,00
	1	Viết phương trình đường thẳng đi qua các tiếp điểm T_1 , T_2 (1,00 điểm) Đường tròn (C) có tâm $I(1; 3)$ và bán kính $R = 2$. $MI = 2\sqrt{5} > R$ nên M nằm ngoài	
		Evrong tron (C) có tam $I(1; 3)$ và ban kinh $R = 2$. $MI = 2\sqrt{3} > R$ nên M nam ngoại (C). Nếu $T(x_0; y_0)$ là tiếp điểm của tiếp tuyến kẻ từ M đến (C) thì	
		$ \begin{cases} T \in (C) \\ \overrightarrow{MT} \perp \overrightarrow{IT} \end{cases} \Rightarrow \begin{cases} T \in (C) \\ \overrightarrow{MT}.\overrightarrow{IT} = 0 \end{cases} $	0,25
		$\overrightarrow{MT} = (x_0 + 3; y_0 - 1), \overrightarrow{IT} = (x_0 - 1; y_0 - 3).$ Do đó ta có:	
		$\begin{cases} x_o^2 + y_o^2 - 2x_o - 6y_o + 6 = 0\\ (x_o + 3)(x_o - 1) + (y_o - 1)(y_o - 3) = 0 \end{cases}$	0,25
		$\Rightarrow \begin{cases} x_o^2 + y_o^2 - 2x_o - 6y_o + 6 = 0 \\ x_o^2 + y_o^2 + 2x_o - 4y_o = 0 \end{cases} \Rightarrow 2x_o + y_o - 3 = 0 $ (1)	0,25
		$\left(x_o^2 + y_o^2 + 2x_o - 4y_o = 0 \right)$	0,23
		Vậy, tọa độ các tiếp điểm T_1 và T_2 của các tiếp tuyến kẻ từ M đến (C) đều thỏa mãn đẳng thức (1). Do đó, phương trình đường thẳng T_1T_2 là: $2x + y - 3 = 0$.	0,25
		man dang thuc (1). Do do, phuong thin duong thang 1_11_2 ia. $2x \pm y - 3 = 0$.	•

	2	Tìm lợc (1.2 m) gọc cho số tôn con gồm lợn bồn tử của A là lớm nhất (1.00 điểm)	
	L	Tìm $k \in \{1, 2,, n\}$ sao cho số tập con gồm k phần tử của A là lớn nhất $(1,00 \text{ diễm})$	
		Số tập con k phần tử của tập hợp A bằng C_n^k . Từ giả thiết suy ra: $C_n^4 = 20C_n^2$	0,25
		$\Leftrightarrow n^2 - 5n - 234 = 0 \Leftrightarrow n = 18 \text{ (vi } n \ge 4)$	0,25
		Do $\frac{C_{18}^{k+1}}{C_{18}^k} = \frac{18-k}{k+1} > 1 \iff k < 9$, nên $C_{18}^1 < C_{18}^2 < < C_{18}^9 \implies C_{18}^9 > C_{18}^{10} > > C_{18}^{18}$.	
		Vậy, số tập con gồm k phần tử của A là lớn nhất khi và chỉ khi $k = 9$.	0,50
V.b			2,00
	1	Giải bất phương trình (1,00 điểm) Bất phương trình đã cho tương đương với	
		$\log_5(4^x + 144) - \log_5 16 < 1 + \log_5(2^{x-2} + 1)$	
		$\Leftrightarrow \log_5(4^x + 144) < \log_5 16 + \log_5 5 + \log_5(2^{x-2} + 1)$	
		$\Leftrightarrow \log_5(4^x + 144) < \log_5[80(2^{x-2} + 1)]$	0,50
		$\Leftrightarrow 4^{x} + 144 < 80(2^{x-2} + 1) \Leftrightarrow 4^{x} - 20.2^{x} + 64 < 0$	0.25
			0,25
	2	$\Leftrightarrow 4 < 2^{x} < 16 \Leftrightarrow 2 < x < 4.$ Tính thể tích của khối tứ diện ANIB (1,00 điểm)	0,25
		That the tien edd khof tu diện Th (1)	
		$\begin{array}{c} A \\ A \\ \end{array}$	
		Xét ΔABM và ΔBCA vuông có $\frac{AM}{AB} = \frac{1}{\sqrt{2}} = \frac{BA}{BC} \Rightarrow \Delta ABM$ đồng dạng ΔBCA $\Rightarrow \widehat{ABM} = \widehat{BCA} \Rightarrow \widehat{ABM} + \widehat{BAC} = \widehat{BCA} + \widehat{BAC} = 90^{\circ} \Rightarrow \widehat{AIB} = 90^{\circ}$	
		$\Rightarrow ABM = BCA \Rightarrow ABM + BAC = BCA + BAC = 90 \Rightarrow AB - 90$ $\Rightarrow MB \perp AC (1)$	0,25
		$SA \perp (ABCD) \Rightarrow SA \perp MB \qquad (2).$	
		$T\mathring{u}$ (1) $v\mathring{a}$ (2) \Rightarrow MB \perp (SAC) \Rightarrow (SMB) \perp (SAC).	0,25
		Gọi H là trung điểm của AC \Rightarrow NH là đường trung bình của Δ SAC	
		$\Rightarrow \text{NH} = \frac{\text{SA}}{2} = \frac{\text{a}}{2} \text{ và NH//SA nên NH} \perp \text{(ABI), do đó } V_{\text{ANIB}} = \frac{1}{3} \text{NH.S}_{\Delta \text{ABI}}.$	0,25
		$\frac{1}{\text{AI}^2} = \frac{1}{\text{AB}^2} + \frac{1}{\text{AM}^2} \Rightarrow \text{AI} = \frac{a\sqrt{3}}{3}, \text{ BI}^2 = \text{AB}^2 - \text{AI}^2 \Rightarrow \text{BI} = \frac{a\sqrt{6}}{3} \Rightarrow \text{S}_{\Delta \text{ABI}} = \frac{a^2\sqrt{2}}{6}$	
		$\Rightarrow V_{ANIB} = \frac{1}{3} \cdot \frac{a}{2} \cdot \frac{a^2 \sqrt{2}}{6} = \frac{a^3 \sqrt{2}}{36}.$	0,25