[3470 : 589/489] Time Series Analysis

Week 9: Regression in Time Series

Contents

9.1 Regressing Stationary TS	2	
9.1.1 OLS and GLS	3	
9.1.2 Regressing TS to TS	7	
9.1.3 ARMAX model	10	
9.2 Cointegration	12	
9.2.1 Cointegration and Spurious correlation	13	

9.1

Regressing Stationary TS

[top]

9.1.1 OLS and GLS

From week 2 p.28,

OLS

• From model

$$Y = X\beta + \epsilon$$

• Minimizes sum of squares, $(Y - X\beta)'(Y - X\beta)$,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}.$$

GLS

• Minimizes weighted sum of squares,

$$(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})' \Gamma_n^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

•

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{\Gamma}_n^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\Gamma}_n^{-1}\boldsymbol{Y}.$$

If X is non-random, we have $E(\hat{\beta}) = \beta$ and

$$V(\hat{\boldsymbol{\beta}}) = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\Sigma}\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}.$$

For OLS, $\Sigma = \sigma^2 \boldsymbol{I}$, and

$$V(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}' \boldsymbol{X})^{-1}.$$

For GLS, $\Sigma = \Gamma_n$, and

$$V(\hat{\boldsymbol{\beta}}) = (\boldsymbol{X}' \boldsymbol{\Gamma}_n^{-1} \boldsymbol{X})^{-1}.$$

It can be shown that GLS estimator is the best linear unbiased estimator of β . Therefore, GLS is better than OLS, but we need Γ_n .

Iterative Regression Scheme

- 1. Compute OLS. Get residuals.
- 2. Fit ARMA model to the residuals by Gaussian Maximum Likelihood.
- 3. Using the fitted model, calculate Γ_n . Go back to the original series, compute GLS.
- 4. Repeat from 2).

9.1.2 Regressing TS to TS

Sometimes, you want to model your TS lniarly dependaent on other time series.

- Sales depends on Global Economy
- Utility Demand depends on Temparature
- Level of toxin depends on local industory production

In that case, your Model is that the time series of interest X_t , has linear relstionship with your independent series B_t , plus stationary noise. In the vector notation,

$$X_t = \beta \mathbf{B}_t + Y_t$$
$$Y_t \sim ARMA$$

where x_t contains the "explanatory" TS.

In scalar notation,

$$X_t = a + bB_t + Y_t \qquad Y_t \sim ARMA$$

where x_t contains the "explanatory" TS.

Example

See TS-09_R.txt

9.1.3 ARMAX model

ARMAX(2,1) is the model

$$Y_t = \beta x_t + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t + \theta_1 e_{t-1}$$

Don't confuse this with additive model

$$K_t = \beta x_t + Y_t$$

$$Y_t \sim ARMA(2,1)$$

If we write ARMAX using backwards operator,

$$Y_t = \beta \mathbf{x}_t + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t + \theta_1 e_{t-1}$$

$$\Phi(B) Y_t = \beta \mathbf{x}_t + \Theta(B) e_t$$

$$Y_t = \frac{\beta \mathbf{x}_t}{\Phi(B)} + \frac{\Theta(B)}{\Phi(B)} e_t$$

which is very hard to interpret.

Currently, there is no package that directly deal with ARMAX model.

9.2

Cointegration

[top]

9.2.1 Cointegration and Spurious correlation

Notation:

$$X_t \sim I(1) := X_t$$
 is integrated series of order 1
$$= \nabla X_t \text{ is stationary}$$

e.g. If X_t is ARIMA(2,1,2), then $X_t \sim I(1)$.

Cointegrated Relationship

Two I(1) series have linear relationship?

$$W_t \sim I(1)$$

$$U_t = a + bW_t + Y_t$$

where Y_t is a stationary series.

Cointegration

Many Economic Theory implies cointegrated relationship

- Money Demand Model
- Permanent Income Model
- Unbiased Forward Rates Hypothesis
- Fisher Equation

What to do?

$$W_t \sim I(1)$$

$$U_t = a + bW_t + Y_t$$

Just regress W_t on U_t . It should give you \hat{a} and \hat{b} .

Spurious correlation

Now imagine two I(1) series

$$W_t = W_{t-1} + e_t \qquad e_t \sim WN(0, 1)$$

 $U_t = U_{t-1} + v_t \qquad v_t \sim WN(0, 1)$

These two RW have nothing to do with each other. So if you model relationship between these two as

$$U_t = a + bW_{t-1} + Y_t,$$

you should not find \hat{a} and \hat{b} significant, at least most of times, because in true relationship, a=0 and b=0.

However, if we regress W_t on U_t , we get what's called spurious correlation.

Example

See TS-09_R.txt