Predicting Visits of Digital Newspaper Articles

Analysis for a German publisher (Frankfurter Allgemeine Zeitung)

METIS - Regression Fabian Paul, 19/04/2022

Introduction

Business Problem

- Newspaper firms: Audience reach important for ad and subscription revenue
- Release >100 articles per day
- Insights on article characteristics crucial for:
 - ... journalists to tailor texts to audience needs
 - ... editors to decide on pay vs. free articles and release times

Objective

- Which article features are <u>significantly correlated</u> to article visits?
- Which publishing time features are <u>significantly</u> <u>correlated</u> to article visits?
- Is it possible to <u>predict article audience</u> before an article is even published?

Methodology

Published articles

Articles with URLs

Department, author, body-length, publishing time, social shares, ID

Overall daily traffic

Visits per day of faz.net

Article visits (target)

ID, visits

Feature Engineering

- Normalize article visits for overall website daily visits
- Features for texts on specific topics
- Bins for reflecting time series and article sources
- Converting categorical features to dummy variables
- Log-transform count-data

0.984232

Results

Regression Assumptions

 Regression is linear in parameters

2) No perfect multicollinearity

3) Residuals are normally distributed

4) Errors uncorrelated across observations

5) Equal variance of errors

	coef	P> t	[0.
Intercept ukraine ressort_finanzen ressort_stil source_weekday_print partofweek_weekend partofweek_monday timeofday_time_16_21 visits_norm_ressort_prevday author_altenbockum author_knop length_body im_color_red author_link_personal_site premium	6.5316 0.4471 0.6353 0.8544 -0.2582 0.2862 0.1415 -0.8325 2.135e-07 1.6855 -1.4947 0.0004 0.1400 1.5284	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	6. 0. 0. 0. 0. 0. 1.6e 1. -2. 0.
Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.	-F. 9397	14	1.879 96.196 0.00 79e+07

	features	vif
0	ukraine	1.374584
1	ressort_finanzen	1.067039
2	ressort_stil	1.025103
3	source_weekday_print	3.391542
4	partofweek_weekend	1.227778
5	partofweek_monday	1.167582
6	timeofday_time_16_21	2.169754
7	length_body	3.076015
8	visits_norm_ressort_prevday	1.826100
9	author_altenbockum	1.014736
10	author_knop	1.009439
11	im_color_red	1.489527
12	author_link_personal_site	2.185529
13	premium	2.964761

Results

Model Selection – Random Forest Regressor

Focus prediction – without social shares and comments

Focus correlation – with social shares and comments

Random Forest Regressor MAE: 3.1121 Random Forest Regressor RMSE: 1.1650 Random Forest Regressor R2: 0.8422

Conclusions

Results

- Article features:
 - Link to authors personal website, text length, author Altenbockum, departments Stil or Finanzen, Ukraine war, text length, images with red color, comments, social shares
 - Paid-articles, author Knop, source weekday print
- Publishing time features:
 - + Publishing day Monday or weekend
 - Publishing time 4pm-9pm
- It is possible to <u>predict article visits</u> before an article is published with a MAE of 19.6 visits using a random forest regression

Limitations

- No information on position individual articles were placed on website
- No information on total amount of time articles were placed on website
- Time series trends may not be properly captured
- Count data (Poisson distributions) may require specialized models beyond pure log-transformations of features

Future Work

- Include information on position of articles on website
- Include information on amount of time articles were placed on website
- 3 → Apply ARIMA model to a wider time window (at least 1y) to capture trends
- ◆ Apply specific Poisson Regression Models

Thank you for your attention!