DESIGN OF SOFTWARE FOR EMBEDDED SYSTEMS (SWES)

Dr. Peter Tröger Operating Systems Group, TU Chemnitz

EMBEDDED SYSTEM

- Create abstract models for a controlled process
 - Typical challenge in ,connected' embedded systems
 - Focus on static and dynamic behavior
 - Results in the behavioral design of a controller
- Abstraction from specific implementation details (e.g. car speed control) creates a dedicated mathematical problem
 - How to consider measured input to control some regulation output
 - Mathematical principles as glue between engineering disciplines
 - Everybody has some kind of ,control problem'
 - Example: Control unit (Steuergerät) in automotive systems

- Open loop / non-feedback control ("Steuerung")
 - Controller activity based on current state
 - Output of the controlled system is not observed
 - External deviations must be considered at design-time
 - Example: Power supply for electric motor with constant load

- Closed loop / feedback control ("Regelung")
 - Feedback from system output used to adjust controller operation
 - Error between output and reference used to adopt the operation
 - System can react on external disturbances
 - Instability can happen

CLOSED LOOP CONTROL

- Regulatory control: Manage with respect to a reference value (w)
- Disturbance rejection: Eliminate effect of a disturbance (z)
- Optimization: Achieve the ,,best" value of the outputs (x)

CLOSED LOOP CONTROL

Symbols differ in German DIN notation and English notations!

DIGITAL CONTROLLER

Symbols differ in German DIN notation and English notations!

CLOSED LOOP CONTROL

- Set point given by user, or higher-level system, or both
- Examples
 - · Biology: Upright walk, body temperature, eye adaption on light
 - Home devices: Heating based on internal temperature sensor, fridges
 - Industry: ABS in cars, power grid control, servo systems
- Time dependency of set point
 - Constant set point: Fixed set point control
 - Example: Boiler temperature control
 - Varying set point: Follow-up control
 - Example: Weather-compensated temperature control

EXAMPLE

EXAMPLE

- I Outside temperature sensor
- 2 Heating curve setting
- 3 Supply temperature sensor
- 4 Supply temperature controller
- 5 Control valve (actuator + control element)
- w Supply temperature setpoint (open-loop control variable I)
- x₁ Supply temperature actual value (closed-loop controlled variable)
- x₂ Room temperature actual value (open-loop control variable 2)
- z_I Interference variable I (external heat gain)
- z₂ Interference variable 2 (fluctuating boiler water temperature)
- y Manipulated variable

VARIATIONS

Disturbance feed-forward control

- Disturbance is directly used by controller, allows faster reaction
- Disturbance must be locatable and measurable

Cascade control

One controller feeding another one

Robust control, adaptive control

- Modification of controller through self-feedback
- Example: Flying missile with decreasing fuel mass

STABILITY

- Control loop is an oscillatory system
 - Controlled and manipulated variable influence each other
 - System therefore may escalate into oscillation -> unstable system
- Bounded input / bounded output (BIBO) stability
 - Output signal should not grow indefinitely when the input is limited
 - Mandatory condition for every serious control system

CONTROL QUALITY

- Places of disturbance may vary
 - Influence on measured output, system input or system output
- Control deviation should be minimized over time
 - Especially relevant for real-time systems

[Wilkipedia]

CONTROLLER

- How to create a reasonable controller?
 - Desired value of controlled variable given by set point
 - Compute new value of a control variable to correct the error between measured variable and set point
 - Often, controlled variable is physical, while measured variable is the representation of it r(t)
- Create a control path from basic elements
 - Proportional (P) element
 - Integral (I) element
 - Derivative (D) element

ELEMENTS

Proportional (P) element

- Perform immediate proportional reaction to error at output
- Adjusted by gain factor k_P
- Integral (I) element
 - Accumulate past errors and react on them
 - Adjusted by gain factor k_I
- Derivative (D) element
 - Based on current rate of change of the error, predict the future
 - Adjusted by gain factor k_D

PROPORTIONAL ELEMENT

- Output is proportional to the current error
- Gain factor too low:
 Reaction not good enough to fix the error
- Gain factor too high: Reaction to error is too extreme (stability)
- Only instantaneous reaction, therefore steady-state error

P CONTROLLER

- Example: Mechanical water level control systems
 - Adjustable inflow with valve I
 - Variable outflow with valve 2
 - Float sensor 3
 - Gate valve as control element
 - Controlled variable is water level x
 - Output variable y is position of gate valve
 - Keep water level constant, regardless of water drawing
 - Desired water level (set point) defined by lever attachment height h

INTEGRAL ELEMENT

- Output is proportional to past error behavior
- Delayed reaction to accumulated errors
- Can fix steady-state error resulting from proportional reaction
- May produce output that exceeds the target (overshoot)

I CONTROLLER

- Integral-action controller
 - Output variable formed from sum of consecutive input variables over time
- Example: Tank with inlet and outlet
 - Flow rate at inlet as input variable
 - Level at output as output variable
 - With constant flow rate, level remains constant
 - With increased incoming flow, output flow is the same
 - · With input greater than discharge rate, level will raise
 - Proportional reaction no longer suitable
 - Needs integral reaction

200 l/h

CONTROLLERS

- P controllers are load-dependent
 - Controlled variable cannot be kept constant at all loads
 - Output variable is proportional to the input variable
 - Quick reaction
 - Residual derivation: Steady-state deviation
- I controllers are load-independent
 - Control action builds up slowly, therefore time-dependent
 - Manipulated variable changes as long as deviation is given

PI CONTROLLER

- Combine best of both worlds:
 Pl controller
 - Remove steady-state error, get medium speed of reaction
 - Fast P controller + loadindependent I controller
 - Can be implemented in different ways
 - Mechanical / hydraulic / electrical / electronic solution

 Δyp P-component Δyl I-component ΔyPl P-component and I-component

DERIVATIVE ELEMENT

- Compute derivative (,,slope of change'') of the error
- Again adjusted by gain factor
- Initially, the error changes dramatically, so D-element compensates directly
- Afterwards, influence reduces and P+I parts are ,taking over'

PID CONTROLLER

- Initial charge by D
- Reduction almost to P level
- Rises again from I influence [Siemens]

PID CONTROLLER

- Date back to 1890 governor design and ship steering
- Based on observation of human ship controller
 - Compensates based on current error, past error and change rate
- Optimum behavior
 - Disturbance rejection Stay at a given setpoint
 - Command tracking Implement setpoint changes
 - Rise time How fast going close to the final value
 - Settling time -How fast settling into some range around the final value

DIGITAL PID CONTROLLER

- Digital microcontrollers implement control function
 - Easier realization of non-linear behavior and adaptive control
 - Reconfiguration of software possible
 - Time-discrete, quantized behavior
- A/D and D/A conversion requires sampling
 - Danger of instability through phase shift
 - Restricted data word length
 - Accumulation of rounding errors
 - Quantization errors
 - Overflow in calculation with wrap-around

ADJUSTING THE CONTROLLER

- Controller adjustment by determining gain factors / coefficients
- Heuristic method by Ziegler / Nichols for P / PI / PID controllers
 - Only suitable for stable systems, focus on disturbance compensation
 - I-gain and D-gain set to zero, increase P-gain until oscillation
 - · Table lookup for gain parameters, based on oscillation period
- Empirical method
 - Response too slow:-> Increase influence of P component, reduce influence of I component afterwards
 - Response oscillates slowly towards goal signal -> Increase influence of P component, reduce influence of D component afterwards
 - Overshooting -> Reduce influence of P component, increase influence of I component afterwards

