Real-Time Volume Graphics

[07] Global Volume Illumination

Why Global Illumination

Local illumination

- might sufficient for many application areas in scientific visualization (e.g medicine)
- Not sufficient for visual arts/photorealism!
- Appearance of many common objects is dominated by scattering effects
 - Smoke, clouds
 - Wax, skin, translucent materials

Surface vs Volume Illumination

Surface Lighting

Volume Lighting

- Light transport in participating medium
- Lighing Calculation at every point
- Scattering from phase function

Surface vs Volume Illumination

Surface Lighting

- Light transport in vacuum
- Lighting calculation is performed at surface points
- Reflectivity from BRDF

Volume Lighting

- Light transport in participating medium
- Lighing Calculation at every point
- Scattering from phase function

Surface Illumination

The incoming radiance L_i , at a point \vec{x} from direction

$$\omega_i = (\theta_i, \phi_i)$$

will partially be reflected into direction

$$\omega_o = (\theta_o, \phi_o)$$

To obtain the radiance at \vec{x} , we must account for all possible incoming directions:

$$L_o(\vec{x}, \vec{\omega_o}) = \int_{\Omega} f(\vec{x}, \vec{\omega_i} \to \vec{\omega_o}) L_i(\vec{x}, \vec{\omega_i}) \cos \theta_i \, d\omega_i$$

Phase Functions

- For **surfaces**, the BRDF describes the probability of light being reflected from one direction ω_i on the hemisphere into another direction ω_o .
- For **volumes**, the phase function $p(\mathbf{x}, \omega_o, \omega_i)$ describes the probability of light being scattered from direction into direction

Physical Model of Radiative Transfer

REAL-TIME VOLUME GRAPHICS

Physical Model of Radiative Transfer

In-scattering

Phase function

Incoming radiance

$$j(\mathbf{x}, \omega) = \frac{1}{4\pi} \int_{\text{sphere}} \sigma(\mathbf{x}, \omega') p(\mathbf{x}, \omega', \omega) I(\mathbf{x}, \omega') d\omega'$$

Volume Rendering Equation:

$$\begin{split} \boldsymbol{\omega} \cdot \nabla_{\mathbf{x}} I(\mathbf{x}, \boldsymbol{\omega}) &= -(\kappa(\mathbf{x}, \boldsymbol{\omega}) + \sigma(\mathbf{x}, \boldsymbol{\omega})) I(\mathbf{x}, \boldsymbol{\omega}) + q(\mathbf{x}, \boldsymbol{\omega}) \\ &+ \int_{\mathrm{sphere}} \sigma(\mathbf{x}, \boldsymbol{\omega}') p(\mathbf{x}, \boldsymbol{\omega}', \boldsymbol{\omega}) I(\mathbf{x}, \boldsymbol{\omega}') \; \mathrm{d}\boldsymbol{\omega}' \end{split}$$

Volume Illumination

- Up until now: External light is not attenuated
- Now: Attenuation of light as it travels through the volume

Single scattering, no attenuation.

- Light reaches every point unimpededly
- Light is scattered once before it reaches the eye
- Not physically plausible

Volume Illumination

- Up until now: External light is not attenuated
- Now: Attenuation of light as it travels through the volume

Single scattering with attenuation.

- Light is attenuated along ist way through the volume (Volumetric shadows)
- Light is scattered once before it reaches the eye

For Volume Rendering:

Update image and shadow buffer slice-by-slice

Need proxy geometry, that can be rendered from two

different views.

For Volume Rendering:

Update image and shadow buffer slice-by-slice

Need proxy geometry, that can be rendered from two

different views.

For Volume Rendering:

Update image and shadow buffer slice-by-slice

Need proxy geometry, that can be rendered from two different views.

- For Volume Rendering:
 - Update image and shadow buffer slice-by-slice
 - Need proxy geometry, that can be rendered from two different views.

Half Angle Slicing

1. Draw slice into light buffer

1. Draw slice into light buffer 2. Draw slice into image buffer

1. Draw slice into light buffer 2. Draw slice into image buffer 3. Proceed with next slice

Example:

Visible Human CT Head

Direct Light + Attenuation

Volume Illumination

Up until now: External light is attenuated by volume

Single scattering with attenuation.

 Light is attenuated along ist way through the volume (Volumetric shadows)

 Light is scattered once before it reaches the eye

Volume Illumination

- Up until now: External light is attenuated by volume
- Now: Light is scattered inside the volume

Multiple scattering

 Light is scattered multiple times before it reaches the eye (Global illumination)

2. Draw slice into image buffer

2. Draw slice into image buffer Sample light buffer multiple times jittered around the original position

Scattering part:

$$j(\mathbf{x}, \omega) = \frac{1}{4\pi} \int_{\text{sphere}} \sigma(\mathbf{x}, \omega') p(\mathbf{x}, \omega', \omega) I(\mathbf{x}, \omega') d\omega'$$

• Chromatic out-scattering term $\sigma(\mathbf{x},\omega')$ can be used to change color of light as it travels throught the

volume

REAL-TIME VOLUME GRAPHICS

Photograph of real wax block

Volumetric
Scattering
+ Chromatic
Attenuation

Bright blue reflective color

Direct attenuation only

Examples Phase Function

Direct light only

Achromatic indirect light

Chromatic indirect light

Surface Shading

Direct Light + Shadows

Direct Light+ Indirect Light

Direct Light+ Indirect Light

Surface shading on the leaves only

