Kernel Tuner Tutorial – Advanced Topics

netherlands Science center

Advanced topics session outline

- Performance portable applications
- Optimization strategies
- Observers
- Fourth hands-on session
- Closing

Performance portable applications

Performance portability

- The property that an application performance similarly on different hardware
- Auto-tuning may be used to achieve performance portability, if an application has been tuned on different hardware and we can select the right kernel based on the hardware at hand
- Kernel configuration selection can be done compile-time or runtime, based on earlier obtained tuning results

store_results

 The store_results function can be used to store information about the best performing configurations of a tunable kernel

- Stores the (e.g.) top 3% of tuning results for the specified combination of problem_size and GPU (retrieved from env) to the JSON file
 - The new results are appended to the JSON file
 - Results for the same problem_size and GPU are updated

Compile-time kernel selection

- Performs kernel selection at compile time
- Main advantage:
 - Can be done with very limited changes to the host application
- Limitation:
 - Limited to only selecting kernels based on properties known at compiletime, e.g. the target GPU


```
from kernel tuner.integration import store results, create device targets
store results("results.json", "vector add", "vector add.cu", tune params, size, results, env)
create_device_targets("vector_add.h", "results.json")
                                  vector add.h
                                  /* header file generated by Kernel Tuner, do not modify by hand */
                                  #pragma once
                                  #ifndef kernel tuner /* only use these when not tuning */
                                  #ifdef TARGET A100 PCIE 40GB
                                  #define block size x 672
                                  #elif TARGET RTX A6000
                                  #define block size x 160
                                  #else /* default configuration */
                                  #define block size x 352
                                  #endif /* GPU TARGETS */
                                  #endif /* kernel tuner */
```

```
from kernel_tuner.integration import store_results, create_device_targets

store_results("results.json", "vector_add", "vector_add.cu", tune_params, size, results, env)
create_device_targets("vector_add.h", "results.json")
```

Kernel Tuner always inserts

#define kernel_tuner

When compiling kernels for benchmarking

```
vector add.h
/* header file generated by Kernel Tuner, do not modify by hand */
#pragma once
#ifndef kernel tuner /* only use these when not tuning */
#ifdef TARGET A100 PCIE 40GB
#define block size x 672
#elif TARGET RTX A6000
#define block size x 160
#else /* default configuration */
#define block size x 352
#endif /* GPU TARGETS */
#endif /* kernel tuner */
```

```
from kernel_tuner.integration import store_results, create_device_targets

store_results("results.json", "vector_add", "vector_add.cu", tune_params, size, results, env)
create_device_targets("vector_add.h", "results.json")
```

This block_size_x value showed best performance ————on the A100

```
vector add.h
/* header file generated by Kernel Tuner, do not modify by hand */
#pragma once
#ifndef kernel tuner /* only use these when not tuning */
#ifdef TARGET A100 PCIE 40GB
#define block size x 672
#elif TARGET RTX A6000
#define block size x 160
#else /* default configuration */
#define block size x 352
#endif /* GPU TARGETS */
#endif /* kernel tuner */
```

```
from kernel_tuner.integration import store_results, create_device_targets

store_results("results.json", "vector_add", "vector_add.cu", tune_params, size, results, env)
create_device_targets("vector_add.h", "results.json")
```

```
This block_size_x value showed best performance on the A6000
```

```
vector add.h
/* header file generated by Kernel Tuner, do not modify by hand */
#pragma once
#ifndef kernel tuner /* only use these when not tuning */
#ifdef TARGET A100 PCIE 40GB
#define block size x 672
#elif TARGET RTX A6000
#define block size x 160
#else /* default configuration */
#define block size x 352
#endif /* GPU TARGETS */
#endif /* kernel tuner */
```

```
from kernel_tuner.integration import store_results, create_device_targets

store_results("results.json", "vector_add", "vector_add.cu", tune_params, size, results, env)
create_device_targets("vector_add.h", "results.json")
```

```
vector add.h
/* header file generated by Kernel Tuner, do not modify by hand */
#pragma once
#ifndef kernel tuner /* only use these when not tuning */
#ifdef TARGET A100 PCIE 40GB
#define block size x 672
#elif TARGET RTX A6000
#define block size x 160
#else /* default configuration */
#define block size x 352
#endif /* GPU TARGETS */
#endif /* kernel tuner */
```

This block_size_x value showed best performance overall, on all GPUs

```
#include "vector_add.h"

In Makefile:

TARGET_GPU = `nvidia-smi --query-gpu="gpu_name" --format=csv,noheader | sed -E 's/[^[:alnum:]]+/_/g'`
CU_FLAGS = -DTARGET_${TARGET_GPU}

vector_add.o: vector_add.cu
```


In vector add.cu:

nvcc \${CU_FLAGS} -c \$< -o \$@</pre>

Typing 'make' will now use different block_size_x values on A100, A6000, and on other GPUs

Run-time kernel selection

- More flexible, allows also to select kernels based on data size or other properties
- Requires more significant modification of the host application
- Depends on the programming language of the host application

Run-time kernel selection Python

```
In Python:
from kernel tuner.integration import store results
store_results("vector_add_results.json", "vector_add", "vector_add.cu", tune_params, size, results, env)
In the Python host application:
from kernel tuner import kernelbuilder
# create a kernel using the stored results
vector add = kernelbuilder.PythonKernel(kernel_name, kernel_string, n, args,
                                        results file=test results file)
# call the kernel
vector add(c, a, b, n)
```

Run-time kernel selection C++ example

```
In Python:
from kernel tuner.integration import store results
store results("vector add results.json", "vector add", "vector add.cu", tune params, size, results, env)
In vector add.cpp:
#include "kernel launcher.h"
using namespace kernel_launcher;
auto vector add = CudaKernel<float*, float*, float*, int>::compile best for current device(
            "vector add results.json", 800000000, "vector add.cu", {"-std=c++11"});
int grid size = (n + vector add.get block dim().x - 1) / vector add.get block dim().x;
vector add(grid size)(dev C, dev A, dev B, n);
```

Uses Kernel Launcher header-only C++ library: https://github.com/stijnh/kernel_launcher

Optimization strategies

Large search space of kernel configurations

Auto-tuning a Convolution kernel on Nvidia A100

Optimization strategies in Kernel Tuner

- Local optimization
 - Nelder-Mead, Powell, CG, BFGS, L-BFGS-B, TNC, COBYLA, and SLSQP
- Global optimization
 - Basin Hopping
 - Simulated Annealing
 - Differential Evolution
 - Genetic Algorithm
 - Particle Swarm Optimization
 - Firefly Algorithm
 - Bayesian Optimization
 - Multi-start local search

• ...

Speeding up auto-tuning

Auto-tuning GEMM on GTX Titan X (Maxwell)

Your mileage may vary

- Active topic of research
- Different optimizers seem to perform differently for certain combinations of tunable kernel + GPU + input
- Nearly all methods are stochastic, meaning that they do not always return the global optimum or even the same result
- It is all a matter of how much time you have versus how strongly you want guarantees of finding an optimal configuration
- Experiment!

How to use a search strategy

- By passing strategy="string_name", where "string_name" is any of:
 - "brute_force": Brute force search
 - "random_sample": random search
 - "minimize": minimize using a local optimization method
 - "basinhopping": basinhopping with a local optimization method
 - "diff_evo": differential evolution
 - "genetic_algorithm": genetic algorithm optimizer
 - "mls": multi-start local search
 - "pso": particle swarm optimization
 - "simulated_annealing": simulated annealing optimizer
 - "firefly_algorithm": firefly algorithm optimizer
 - "bayes_opt": Bayesian Optimization
- Note that nearly all methods have specific options or hyperparameters that can be set using the strategy_options argument of tune_kernel

Observers

Observers introduction

- Observers allow to modify the behavior during benchmarking and measure quantities other than time
- It follows the 'observer' programming pattern, allowing an observer object to observe certain events
- Also used internally for measuring time in the various backends

Observer base class

```
class BenchmarkObserver(ABC):
    """Base class for Benchmark Observers"""
   def register_device(self, dev):
        """Sets self.dev, for inspection by the observer at various points during benchmarking"""
        self.dev = dev
   def before start(self):
        """before start is called every iteration before the kernel starts"""
        pass
   def after start(self):
        """after start is called every iteration directly after the kernel was launched"""
        pass
   def during(self):
        """during is called as often as possible while the kernel is running"""
        pass
   def after finish(self):
        """after finish is called once every iteration after the kernel has finished execution"""
        pass
   @abstractmethod
   def get results(self):
           get results should return a dict with results that adds to the benchmarking data
            get_results is called only once per benchmarking of a single kernel configuration and
            generally returns averaged values over multiple iterations.
        pass
```

NVMLObserver

- NVML is the NVIDIA Management Library for monitoring and managing GPUs
- Kernel Tuner's NVMLObserver supports the following observable quantities: "power_readings", "nvml_power", "nvml_energy", "core_freq", "mem_freq", "temperature"
- If you pass an NVMLObserver, you can also use the following special tunable parameters to benchmark GPU kernels under certain conditions: nvml_pwr_limit, nvml_gr_clock, nvml_mem_clock
- Requires NVML, nvidia-ml-py3, and certain features may require root access

NVMLObserver example

```
tune_params["nvml_pwr_limit"] = [250, 225, 200, 175]
nvmlobserver = NVMLObserver(["nvml energy", "temperature"])
metrics = OrderedDict()
metrics["GFLOPS/W"] = lambda p: (size/1e9) / p["nvml energy"]
results, env = tune_kernel("vector_add", kernel_string, size, args,
                           tune_params, observers=[nvmlobserver],
                           metrics=metrics, iterations=32)
```

GPU Memory management

- Kernel Tuner reuses the same data on the GPU for benchmarking all kernel configurations
- When you use output verification, GPU data is refreshed from the host to the GPU right before calling the kernel once for output verification, before benchmarking
- This assumes the kernels are idempotent or at least that running the kernel multiple times on the same data does not significantly impact performance

Breadth First Search (BFS)

- For some kernels, like BFS, this assumption does not hold
- The BFS kernel in the Rodinia Benchmark Suite works as follows:
 - Threads are created for each node in the graph, each thread checks the g_graph_mask Boolean array to see if it is active in this computation
 - If so, it iterates over all edges of this node to set the g_updating_graph_mask for all neighbors to true and sets its own g_graph_mask to false
 - A separate kernel is used to update g_graph_mask based on the g_updating_graph_mask
- What happens when you call the first kernel multiple times?

Tuning BFS with Kernel Tuner

- Problem:
 - We cannot execute the first BFS kernels multiple times on the same data
- Not working solutions:
 - Use iterations=1, does not solve our problem because data is reused for multiple kernel configurations
 - Enable output verification and set iterations=1, does not work either because output verification calls the kernel once outside of benchmarking
- Real solution: Use an observer!

BFSObserver

```
class BFSObserver(BenchmarkObserver):

    def __init__(self, args):
        self.args = args

    def before_start(self):
        for i, arg in enumerate(self.args):
            if not arg is None:
                self.dev.memcpy_htod(self.dev.allocations[i], arg)

    def get_results(self):
        return {}
```

dev is set by Kernel Tuner to each observer to have access to the device functions interface of the backend

Tuning the BFS kernel

Fourth hands-on session

Advanced hands-on

- The fourth hands-on notebook is:
 - https://github.com/benvanwerkhoven/kernel_tuner_tutorial/blob/master/hands-on/cuda/03_Kernel_Tuner_Advanced.ipynb

- The goal of this hands-on is to experiment with search optimization strategies and custom observers
 - Copy the notebook to your Google Colab and work there

- Please follow the instructions in the Notebook
- Feel free to ask questions to instructors and mentors

Optional hands-on

Done with the fourth hands-on already?

- Keep playing with this notebook
 - https://github.com/benvanwerkhoven/kernel_tuner_tutorial/blob/master/hands-on/cuda/Kernel_Tuner_Tutorial.ipynb
- Keep experimenting with your own code

Feel free to ask questions to instructors and mentors

Closing remarks

Kernel Tuner – developed open source

- We are developing Kernel Tuner as an open source project
- GitHub repository:
 - https://github.com/benvanwerkhoven/kernel_tuner
- License: Apache 2.0
- If you use Kernel Tuner in a project, please cite the paper:
 - B. van Werkhoven, Kernel Tuner: A search-optimizing GPU code auto-tuner, Future Generation Computer Systems, 2019

Feature Roadmap

- Allow tuning objectives other than time
- Remote/parallel tuning
- Multi-objective optimization
- Further support for integrating kernels into applications
- API for plotting/analysis of tuning results
- Tuning compiler flags

Contributions are welcome!

- Contributions can come in many forms: tweets, blog posts, issues, pull requests
- Before making larger changes, please create an issue to discuss

 For the full contribution guide, please see: https://benvanwerkhoven.github.io/kernel_tuner/contributing.html

Thanks to all contributors!

Netherlands eScience Center

- Collaborate with us:
 - Open calls
 - Partner in EU projects
 - Direct collaboration
 - See: https://www.esciencecenter.nl/collaborate-with-us/
- We are hiring:
 - Research Software Engineers (RSEs)
 - See: https://www.esciencecenter.nl/vacancies/

Funding

The CORTEX project has received funding from the Dutch Research Council (NWO) in the framework of the NWA-ORC Call (file number NWA.1160.18.316).

This work is funded in part by the Netherlands eScience Center.

Thanks!

If you have any further questions or would like to reach out, please feel free to contact me at:

Ben van Werkhoven b.vanwerkhoven@esciencecenter.nl

