Total	l No.	of Questions : 6] SEAT No. :			
P-5	387	[Total No. of Pages : 2			
		[6186] 513			
S.E. (Electronics/Computer Engineering/E&TC) (Insem.)					
DIGITAL CIRCUITS					
		(2019 Pattern) (Semester - III) (204182)			
		Hour] [Max. Marks : 30			
Instr		ons to the candidates:			
	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.			
	2)	Figures to the right indicate full marks.			
	<i>3)</i>	Neat diagrams must be drawn wherever necessary.			
	<i>4) 5)</i>	Use of non-programmable calculator is allowed. Assume suitable data, if necessary.			
	3)	Assume suitable utilit, if necessary.			
Q 1)	a)	Explain the following characteristics of digital IC's: [6]			
		i) Fan In and Fan Out			
		ii) I_{II} and I_{OH}			
		iii) Propagation delay			
	b)	Draw and explain the operation of CMOS inverter for LOW and HIGH			
		inputs. [4]			
		OR			
<i>Q</i> 2)	a)	Draw and explain the working of 2-input CMOS NAND gate. [6]			
	b)	Explain the following characteristics of digital IC's: [4]			
		i) Noise Margin			
		ii) Power Dissipation			
02)	,				
<i>Q</i> 3)	a)	Implement and explain the working of full adder using basic gates. [5]			
	b)	Minimize the following expression using K ₇ map and implement using			
	U)	logic gates: [5]			
		d() indicates don't care conditions			
		$Y = \Sigma m(1, 3, 7, 11, 15) + \Sigma d(0, 2, 5)$			
		P.T.O.			

Q4) a)	Design 3-bit	Gray to Binary	y code converter.
----------------	--------------	----------------	-------------------

[6]

Design full subtractor using half subtractors. b)

[4]

- Design and implement BCD to Excess-3 code converter using logic **Q5**) a) gates.
 - Draw and explain the working of 2-input TTL NAND gate. b) **[4]**

OR

- Explain the difference between current sourcing and current sinking in **Q6**) a) TTL logic.
 - Minimize the following function using Quine Mc Clusky method.[6] b)

 $F(A, B, C, D) = \Sigma m(0, 1, 2, 3, 5, 7, 8, 9, 11, 14)$