

### MA211 - LISTA 10

Campos Vetoriais E

### Integrais de Linha



15 de novembro de 2016

## EXERCÍCIOS RESOLVIDOS

1.  $\bigstar$  ([1], seção 16.1) Esboce o campo vetorial  $\mathbf{F}(x,y) = (x-y)\mathbf{i} + x\mathbf{j}$ , desenhando um diagrama.

**Solução:** Temos que o comprimento do vetor  $(x-y)\mathbf{i} + x\mathbf{j}$  é  $\sqrt{(x-y)^2 + x^2}$ . Logo, os vetores ao longo da reta y=x são verticais. Um esboço do campo vetorial  $\mathbf{F}$  é dado na figura abaixo:



2.  $\blacklozenge$  ([1], seção 16.1) Faça a correspondência entre o campo vetorial  $\mathbf F$  e a figura rotulada de I-IV. Justifique suas escolhas.

**a)** 
$$F(x,y) = (y,x)$$

**b)** 
$$\star$$
 **F** $(x, y) = (1, \sin y)$ 

c) 
$$\mathbf{F}(x,y) = (x-2,x+1)$$

$$\mathbf{d)} \ \mathbf{F}(x,y) = \left(y, \frac{1}{x}\right)$$









#### Solução:

- a)  $\mathbf{F}(x,y) = (y,x)$  corresponde ao gráfico II. No primeiro quadrante todos os vetores possuem componentes x e y positivas, no segundo quadrante todos os vetores possuem componente x positiva e componente y negativa, no terceiro quadrante todos os vetores possuem componentes x e y negativas e no quarto quadrante todos os vetores possuem componente x negativa e componente y positiva. Além disso, os vetores ficam mais curtos a medida que se aproximam da origem.
- b)  $\mathbf{F}(x,y) = (1, \sin y)$  corresponde ao gráfico IV uma vez que a componente x de cada vetor é constante, os vetores são independentes de x (vetores ao longo das retas horizontais são idênticos) e o campo vetorial parece repetir o mesmo padrão verticalmente.
- c)  $\mathbf{F}(x,y) = (x-2,x+1)$  corresponde ao gráfico I uma vez que os vetores são independentes de y (vetores ao longo das retas verticais são idênticos) e a medida que avançamos para a direita, ambas componentes x e y ficam maiores.
- d)  $\mathbf{F}(x,y) = (y,1/x)$  corresponde ao gráfico III. Como no item (a), todos os vetores no primeiro quadrante possuem componentes x e y positivas, no segundo quadrante todos os vetores possuem componente x positiva e componente y negativa, no terceiro quadrante todos os vetores possuem componentes x e y negativas e no quarto quadrante todos os vetores possuem componente x negativa e componente y positiva. Também, todos os vetores tornam-se maiores a medida que se aproximam do eixo y.
- 3. ([1], seção 16.2) ([2], seção 6.2) Calcule a integral de linha, onde C é a curva dada.
  - a)  $\star \int_C x \, dx y \, dy$ , C é o segmento de extremidades (1,1) e (2,3), percorrido no sentido de (1,1) para (2,3).

**b)** 
$$\bigstar \int_C x^2 y \sqrt{z} \, dz$$
,  $C: x = t^3, y = t, z = t^2, 0 \le t \le 1$ .

#### Solução:

a) Uma representação paramétrica para o segmento de reta C é

$$\begin{array}{l} x = 1 + t \\ y = 1 + 2t \end{array} \quad 0 \le t \le 1.$$

Logo,

$$dx = dt$$
$$dy = 2 dt$$

Assim.

$$\int_C x \, dx - y \, dy = \int_0^1 (1+t) \cdot (dt) + (1+2t) \cdot (2 \, dt) = \int_0^1 (1+t+2+4t) \, dt$$

$$= \int_0^1 (3+5t) dt = \left(3t + \frac{5}{2}t^2\right) \Big|_0^1 = 3 + \frac{5}{2} = \frac{11}{2}.$$

b) As equações paramétricas de C são

$$x = t^3$$
,  $y = t$ ,  $z = t^2$ ,  $0 \le t \le 1$ .

Logo,

$$dx = 3t^2 dt$$
,  $dy = dt$ ,  $dz = 2t dt$ .

Assim,

$$\int_C x^2 y \sqrt{z} \, dz = \int_0^1 ((t^3)^2 \cdot t \cdot \sqrt{t^2})(2t \, dt) = 2 \int_0^1 t^9 \, dt$$
$$= 2 \cdot \frac{t^{10}}{10} \Big|_0^1 = 2 \cdot \frac{1}{10} = \frac{1}{5}.$$

4.  $\bigstar$  (Prova, 2014) Determine o trabalho  $W = \int_C \mathbf{F} \cdot d\mathbf{r}$  realizado pelo campo de força

 $\mathbf{F}(x,y)=x\,\mathbf{i}+(x^3+3xy^2)\,\mathbf{j}$  em uma partícula que inicialmente está no ponto (-2,0), se move ao longo do eixo x para (2,0) e ao longo da semicircunferência  $y=\sqrt{4-x^2}$  até o ponto inicial.

**Solução:** A curva C é apresentada na figura abaixo:



Então uma parametrização para C é

$$x = 2 \cos t$$
,  $y = 2 \sin t$ ,  $0 \le t \le \pi$ .

Temos que o trabalho é dado por

$$W = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt.$$

Assim,

$$\mathbf{F}(\mathbf{r}(t)) = (2\cos t, 8\cos^3 t + 24\cos t \, \sin^2 t)$$

e

$$\mathbf{r}'(t) = (-2 \sin t, 2 \cos t)$$

Então 
$$W = \int_0^{\pi} (-4 \sin t \cos t + 16 \cos^4 t + 48 \cos^2 t \sin^2 t) dt$$

$$= -4 \int_0^{\pi} \sin t \cos t dt + 16 \int_0^{\pi} \cos^4 t dt + 48 \int_0^{\pi} \cos^2 t \sin^2 t dt$$

$$= -4 \int_0^0 u du + 16 \left( \frac{3}{8} t + \frac{1}{4} \sin(2t) + \frac{1}{32} \sin(4t) \right) \Big|_0^{\pi} + 48 \left( \frac{1}{4} \sin^3 t \cos t + \frac{1}{8} t - \frac{1}{16} \sin(2t) \right) \Big|_0^{\pi}$$

$$= 0 + 16 \cdot \frac{3}{8} \pi + 48 \cdot \frac{\pi}{8} = 6\pi + 6\pi = 12\pi$$

## EXERCÍCIOS PROPOSTOS

5.  $\blacklozenge$  ([1], seção 16.1) Esboce o campo vetorial  $\mathbf{F}$ , desenhando um diagrama.

**a)** 
$$\mathbf{F}(x,y) = \frac{1}{2}(\mathbf{i} + \mathbf{j})$$

**b)** 
$$\mathbf{F}(x,y) = y \, \mathbf{i} + \frac{1}{2} \, \mathbf{j}$$

c) 
$$\mathbf{F}(x,y) = \frac{y\mathbf{i} - x\mathbf{j}}{\sqrt{x^2 + y^2}}$$

**d)** 
$$\mathbf{F}(x,y) = \frac{y \mathbf{i} + x \mathbf{j}}{\sqrt{x^2 + y^2}}$$

6. ([1], seção 16.1) Determine o campo vetorial gradiente de f.

**a)** 
$$f(x,y) = \ln(x+2y)$$

b) 
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

7.  $\blacklozenge$  ([1], seção 16.1) Faça a correspondência entre o campo vetorial  $\mathbf{F}$  em  $\mathbb{R}^3$  e a figura rotulada de I-IV. Justifique suas escolhas.

a) 
$$F(x, y, z) = i + 2j + 3k$$

**b)** 
$$F(x, y, z) = i + 2j + zk$$

c) 
$$F(x, y, z) = x i + y j + 3 k$$

**d)** 
$$F(x, y, z) = x i + y j + z k$$









8. ([1], seção 16.1) Determine o campo vetorial gradiente<br/>  $\nabla f$  de fe o esboce.

a) 
$$f(x,y) = x^2 - y$$

**b)** 
$$f(x,y) = \sqrt{x^2 + y^2}$$

9. ([3], seção 13.2) Encontre um campo de vetores  $\mathbf{G} = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$  no plano xy com a propriedade de que, em qualquer ponto  $(a,b) \neq (0,0)$ ,  $\mathbf{G}$  é um vetor de magnitude  $\sqrt{x^2 + y^2}$  tangente à circunferência  $x^2 + y^2 = a^2 + b^2$  e aponta no sentido horário. (O campo é indefinido em (0,0).)

5

- 10. ([1], seção 16.1) Uma partícula se move em um campo de velocidade  $\mathbf{V}(x,y) = (x^2, x+y^2)$ . Se ela está na posição (2, 1) no instante t=3, estime sua posição no instante t=3,01.
- 11. ([1], seção 16.1) As linhas de escoamento (ou linhas de corrente) de um campo vetorial são as trajetórias seguidas por uma partícula cujo campo de velocidade é um campo vetorial dado. Assim, os vetores do campo vetorial são tangentes a suas linhas de escoamento.
  - a) Use um esboço do campo vetorial  $\mathbf{F}(x,y) = x\,\mathbf{i} y\,\mathbf{j}$  para desenhar algumas linhas de escoamento. Desses seus esboços é possível descobrir qual é a equação das linhas de escoamento?
  - b) Se as equações paramétricas de uma linha de escoamento são x = x(t) e y = y(t), explique por que essas funções satisfazem as equações diferenciais dx/dt = x e dy/dt = -y. Resolva então as equações de forma a obter uma equação da linha de escoamento que passe pelo ponto (1, 1).
- 12. ([1], seção 16.1) Faça uma correspondência entre as funções f e os desenhos de seus campos vetoriais gradientes (rotulados de I-IV). Justifique.

a) 
$$f(x,y) = x^2 + y^2$$

**b)** 
$$f(x,y) = x(x+y)$$

-4

c) 
$$f(x,y) = (x+y)^2$$

c) 
$$f(x,y) = \sin \sqrt{x^2 + y^2}$$



- 13. ([1], seção 16.1)
  - a) Esboce o campo vetorial  $\mathbf{F}(x,y) = \mathbf{i} + x\mathbf{j}$  e algumas linhas de escoamento. Qual é o formato que essas linhas de escoamento parecem ter?
  - b) Se as equações paramétricas das linhas de escoamento são x=x(t) e y=y(t), que equações diferenciais essas funções satisfazem? Deduza que dy/dx=x.
  - ${f c}$ ) Se uma partícula está na origem no instante inicial e o campo de velocidade é dado por  ${f F}$ , determine uma equação para a trajetória percorrida por ela.
- 14.  $\blacklozenge$  ([1], seção 16.2) ([2], seção 6.2) (Prova, 2013) Calcule a integral de linha, onde C é a curva dada.
  - a)  $\int_C y^3 ds$ ,  $C: x = t^3, y = t, 0 \le t \le 2$ .
  - **b)**  $\int_C xy^4 ds$ , C é a metade direita do círculo  $x^2 + y^2 = 16$ .
  - c)  $\int_C x \sin y \, ds$ , C é o segmento de reta que liga (0,3) a (4,6).
  - d)  $\bigstar \int_C x \, dx y \, dy$ , C é o segmento de extremidades (1,1) e (2,3), percorrido no sentido de (1,1) para (2,3).
  - e)  $\int_C (x^2y^3 \sqrt{x}) \, dy$ , C é o arco da curva  $y = \sqrt{x}$  de (1,1) a (4,2).
  - f)  $\int_C xy \, dx + (x y) \, dy$ , C consiste nos segmentos de reta de (0,0) a (2,0) e de (2,0) a (3,2).
  - g)  $\int_C x \, dx + y \, dy$ ,  $C: x = t^2, y = \operatorname{sen} t, 0 \le t \le \pi/2$ .
  - h)  $\int_C xy^3 ds$ ,  $C: x = 4 \operatorname{sen} t$ ,  $y = 4 \operatorname{cos} t$ , z = 3t,  $0 \le t \le \pi/2$ .
  - i)  $\int_C xe^{yz} ds$ , C é o segmento de reta de (0,0,0) a (1,2,3).
  - j)  $\int_C x dx + y dy + z dz$ , C é o segmento de extremidades (0,0,0) e (1,2,1), percorrido no sentido de (1,2,1) para (0,0,0).
  - 1)  $\int_C (2x+9z) ds$ ,  $C: x=t, y=t^2, z=t^3, 0 \le t \le 1$ .
  - **m)**  $\int_C xyz \, ds$ , onde C é a hélice  $\mathbf{r}(t) = (\cos t, \sin t, 3t), 0 \le t \le 4\pi$ .
  - n)  $\bigstar \int_C x^2 y \sqrt{z} \, dz$ ,  $C: x = t^3, y = t, z = t^2, 0 \le t \le 1$ .
  - o)  $\int_C (x+yz) dx + 2x dy + xyz dz$ , C consiste nos segmentos de reta de (1,0,1) a (2,3,1) e de (2,3,1) a (2,5,2).

- p)  $\int_C x \, dx + dy + 2 \, dz$ , C é a interseção do paraboloide  $z = x^2 + y^2$  com o plano z = 2x + 2y 1; caminhe no sentido anti-horário.
- q)  $\int_C dx + xy \, dy + z \, dz$ , C é a interseção de  $x^2 + y^2 + z^2 = 2$ ,  $x \ge 0$ ,  $y \ge 0$  e  $z \ge 0$ , com o plano y = x; o sentido de percurso é do ponto  $(0, 0, \sqrt{2})$  para (1, 1, 0).
- r)  $\int_C 2 dx dy$ , C tem por imagem  $x^2 + y^2 = 4$ ,  $x \ge 0$  e  $y \ge 0$ ; sentido de percurso é de (2,0) para (0,2).
- s)  $\int_C \frac{-y}{4x^2+y^2} \, dx + \frac{x}{4x^2+y^2} \, dy, C \text{ tem por imagem a elipse } 4x^2+y^2=9 \text{ e}$ o sentido de percurso é o anti-horário.
- 15.  $\blacklozenge$  ([1], seção 16.2)([2], seção 6.1) (Prova, 2010) Calcule a integral de linha  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , onde C é dada pela função vetorial  $\mathbf{r}(t)$ .
  - a)  $\mathbf{F}(x,y) = xy \,\mathbf{i} + 3y^2 \,\mathbf{j}, \,\mathbf{r}(t) = 11t^4 \,\mathbf{i} + t^3 \,\mathbf{j}, \, 0 \le t \le 1.$
  - **b)**  $\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y z)\mathbf{j} + z^2\mathbf{k}, \mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}, 0 \le t \le 1.$
  - c)  $\mathbf{F}(x, y, z) = \sin x \, \mathbf{i} + \cos y \, \mathbf{j} + xz \, \mathbf{k}, \, \mathbf{r}(t) = t^3 \, \mathbf{i} t^2 \, \mathbf{j} + t \, \mathbf{k}, \, 0 \le t \le 1.$
  - d)  $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}, \ \mathbf{r}(t) = (\cos t, \sin t, t), \ 0 \le t \le 2\pi.$
  - e)  $\star \mathbf{F}(x, y, z) = (x + y + z) \mathbf{k}, \mathbf{r}(t) = (t, t, -t^2), 0 \le t \le 1.$
  - f)  $\mathbf{F}(x,y) = x^2 \mathbf{j}, \ \mathbf{r}(t) = (t^2,3), \ -1 \le t \le 1.$
  - g)  $\mathbf{F}(x,y) = x^2 \mathbf{i} + (x-y) \mathbf{j}, \mathbf{r}(t) = (t, \sin t), 0 \le t \le \pi.$
  - h)  $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}, \ \mathbf{r}(t) = (2\cos t, 3\sin t, t), \ 0 \le t \le 2\pi.$
  - i)  $\mathbf{F}(x,y) = (e^{-y} 2x, -xe^{-y} \sin y), \ \mathbf{r}(t) = (t, \operatorname{tg} t), \ 0 \le t \le \pi/4.$
- 16. ♦ ([2], seção 6.4) (Prova, 2010,2013) Calcule as integrais de linha.
  - a)  $\star \int_C \sqrt[3]{x} dx + \frac{dy}{1+y^2}$ , onde C é a curva



- **b)**  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , onde  $\mathbf{F}(x,y) = (x+y^2)\mathbf{j}$  e C é a curva do item (a).
- c)  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , onde  $\mathbf{F}(x,y,z) = (yz,xz,xy+2y)$  e C é o segmento de reta que liga o ponto (1,0,1) ao ponto (-2,2,2).

- d)  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , onde  $\mathbf{F}(x,y) = (y,3x)$  e C é a elipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , percorrida no sentido anti-horário.
- e)  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , onde  $\mathbf{F}(x,y,z) = (yz,2xz,xy+2z)$  e C é o segmento de reta que liga o ponto (1,0,1) ao ponto (-2,2,2).
- f)  $\int_C (x-y) dx + e^{x+y} dy$ , onde C é a fronteira do triângulo de vértices (0,0), (0,1) e (1,2), orientada no sentido anti-horário.
- g)  $\int_C dx + dy$ , onde C é a poligonal de vértices  $A_0 = (0,0)$ ,  $A_1 = (1,2)$ ,  $A_2 = (-1,3)$ ,  $A_3 = (-2,1)$  e  $A_4 = (-1,-1)$ , sendo C orientada de  $A_0$  para  $A_4$ .
- h)  $\int_C y^2 dx + x dy dz$ , onde C é a poligonal de vértices  $A_0 = (0, 0, 0)$ ,  $A_1 = (1, 1, 1), A_2 = (1, 1, 0)$ , orientada de  $A_0$  para  $A_2$ .
- i)  $\int_C x^2 dx + y^2 dy + z^2 dz$ , onde C é a curva do item (e).
- 17. ([2], seção 6.4) Verifique que

$$\int_{C} P dx + Q dy = \iint_{B} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

onde B é o triângulo de vértices (0,0), (1,0) e (1,1), C é a fronteira de B orientada no sentido anti-horário,  $P(x,y) = x^2 - y$  e  $Q(x,y) = x^2 + y$ .

- 18. ([1], seção 16.2) Calcule a integral de linha  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , onde  $\mathbf{F}(x,y) = e^{x-1}\mathbf{i} + xy\mathbf{j}$  e C é dada por  $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j}$ ,  $0 \le t \le 1$ .
- 19. ([2], seção 6.2) Seja  $C: \mathbf{r}(t) = (R \cos t, R \sin t), \ 0 \le t \le 2\pi \, (R>0).$  Mostre que

$$\int_C \frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

não depende de R.

- 20. ([5], seção 18.2) Calcule  $\int_C (x+y+z) dx + (x-2y+3z) dy + (2x+y-z) dz$ , onde C é a curva de (0,0,0) a (2,3,4) se
  - a) C consiste em três segmentos de reta, o primeiro paralelo ao eixo x, o segundo paralelo ao eixo y e o terceiro paralelo ao eixo z.
  - b) C consite em três segmentos de reta, o primeiro paralelo ao eixo z, o segundo ao eixo x e o terceiro paralelo ao eixo y.
  - c) C é um segmento retilíneo.
- 21.  $\blacklozenge$  ([2], seção 6.1) Seja  $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$  um campo vetorial contínuo tal que, para todo (x,y),  $\mathbf{F}(x,y)$  é paralelo ao vetor  $x\mathbf{i} + y\mathbf{j}$ . Calcule  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , onde  $\mathbf{r}: [a,b] \to \mathbb{R}^2$  é uma curva de classe  $C^1$ , cuja imagem está contida na circunferência de centro na origem e raio r > 0. Interprete geometricamente.

- 22. ([1], seção 16.2) Determine o trabalho realizado pelo campo de força  $\mathbf{F}(x,y) = x^2 \mathbf{i} + xy \mathbf{j}$  sobre uma partícula que dá uma volta no círculo  $x^2 + y^2 = 4$  no sentido anti-horário.
- 23. (Prova, 2014) Determine o trabalho  $W = \int_C \mathbf{F} \cdot d\mathbf{r}$  realizado pelo campo de força  $\mathbf{F}(x,y) = x^2(x-y)\mathbf{i} + xy^2\mathbf{j}$  em uma partícula que se move da origem ao longo do eixo x para (1,0), em seguida ao longo de um segmento de arco de circunferência  $x^2 + y^2 = 1$  até (0,1) e então volta à origem ao longo do eixo y.
- 24.  $\blacklozenge$  (Prova, 2006) Calcule o trabalho realizado por uma partícula andando sobre a espiral dada por  $C: x = t \cos t, y = t \sin t, \cos 0 \le t \le 2\pi$ , sob a ação do campo  $\mathbf{F}(x,y) = (x,y)$ , ou seja, calcule a integral  $\int_C x \, dx + y \, dy$ .
- 25. (Prova, 2014) Calcule o trabalho realizado pela força  $\mathbf{F}(x,y) = xy\,\mathbf{i} + y^2\,\mathbf{j}$  ao mover uma partícula da origem ao longo da reta y = x até (1,1) e então de volta à origem ao longo da curva  $y = x^2$ .
- 26. ([2], seção 6.1) Uma partícula move-se no plano de modo que no instante t sua posição é dada por  $\mathbf{r}(t) = (t, t^2)$ . Calcule o trabalho realizado pelo campo de forças  $\mathbf{F}(x,y) = (x+y)\mathbf{i} + (x-y)\mathbf{j}$  no deslocamento da partícula de  $\mathbf{r}(0)$  até  $\mathbf{r}(1)$ .
- 27. ([2], seção 6.1) Uma partícula desloca-se em um campo de forças dado por  $\mathbf{F}(x,y,z) = -y\,\mathbf{i} + x\,\mathbf{j} + z\,\mathbf{k}$ . Calcule o trabalho realizado por  $\mathbf{F}$  no deslocamento da partícula de  $\mathbf{r}(a)$  até  $\mathbf{r}(b)$ , sendo dados:
  - a)  $\mathbf{r}(t) = (\cos t, \sin t, t), a = 0 \text{ e } b = 2\pi.$
  - **b)**  $\mathbf{r}(t) = (2t+1, t-1, t), a = 1 e b = 2.$
  - c)  $\mathbf{r}(t) = (\cos t, 0, \sin t), a = 0 e b = 2\pi.$
- 28.  $\bigstar$  (Prova, 2010) Sejam A=(3,0), B=(1,1) e C=(0,3) pontos de  $\mathbb{R}^2$  e C a trajetória que vai em linha reta de A até B e em seguida de B até C. Determine o trabalho ao longo de C do campo de forças  $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ , sendo

$$\mathbf{F}(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

- 29. ([1], seção 16.2) Um arame fino é entortado no formato da semicircunferência  $x^2 + y^2 = 4$ ,  $x \ge 0$ . Se a densidade linear for uma constante k, determine a massa e o centro de massa do arame.
- 30. ([1], seção 16.2) Se um arame com densidade linear  $\rho(x,y)$  está sobre uma curva plana C, seus **momentos de inércia** em relação aos eixos x e y são definidos por

$$I_x = \int_C y^2 \rho(x, y) ds$$
  $I_y = \int_C x^2 \rho(x, y) ds$ .

Determine os momentos de inércia de um arame com o formato de um semicírculo  $x^2+y^2=1,\ y\geq 0$ , que é mais grosso perto da base do que perto do topo, se a função densidade linear em qualquer ponto for proporcional à sua distância à reta y=1.

- 31. ([1], seção 16.2) Determine o trabalho realizado pelo campo de força  $\mathbf{F}(x,y) = x\mathbf{i} + (y+2)\mathbf{j}$  sobre um objeto que se move sobre um arco de cicloide  $\mathbf{r}(t) = (t \sin t)\mathbf{i} + (1 \cos t)\mathbf{j}$ ,  $0 \le t \le 2\pi$ .
- 32.  $\blacklozenge$  ([5], seção 18.2) A força em um ponto (x,y) de um plano coordenado é  $\mathbf{F}(x,y) = (x^2 + y^2)\mathbf{i} + xy\mathbf{j}$ . Ache o trabalho realizado por  $\mathbf{F}(x,y)$  ao longo do gráfico de  $y = x^3$  de (0,0) a (2,8).
- 33. ([5], seção 18.2) A força em um ponto (x, y, z) em três dimensões é dada por  $\mathbf{F}(x, y, z) = y \mathbf{i} + z \mathbf{j} + x \mathbf{k}$ . Ache o trabalho realizado por  $\mathbf{F}(x, y, z)$  ao longo da cúbica reversa x = t,  $y = t^2$ ,  $z = t^3$  de (0, 0, 0) a (2, 4, 8).
- 34. ([1], seção 16.2) Determine o trabalho realizado pelo campo de força  $\mathbf{F}(x, y, z) = (y+z)\mathbf{i} + (x+z)\mathbf{j} + (x+y)\mathbf{k}$  sobre uma partícula que se move ao longo do segmento de reta (1,0,0) a (3,4,2).
- 35. ([1], seção 16.2) Um homem pesando 160 lb carrega uma lata de tinta de 25 lb por uma escada helicoidal em torno de um silo com raio de 20 pés. Se o silo tem 90 pés de altura e o homem dá três voltas completas em torno do silo, quanto trabalho é realizado pelo homem contra a gravidade para subir ao topo?
- 36. ([1], seção 16.2) Suponha que exista um furo na lata de tinta do exercício anterior, sendo que 9 lb de tinta vazam da lata de modo contínuo e uniforme durante a subida do homem. Quanto trabalho é realizado?
- 37. ([1], seção 16.2)
  - a) Mostre que um campo de força constante realiza trabalho nulo sobre um partícula que dá uma única volta completa uniformemente na circunferência  $x^2 + y^2 = 1$ .
  - b) Isso também é verdadeiro para um campo de força  $\mathbf{F}(\mathbf{x}) = k\mathbf{x}$ , onde k é uma constante e  $\mathbf{x} = x\mathbf{i} + y\mathbf{j}$ ?
- 38. ([2], seção 6.1) Calcule  $\int_C \mathbf{E} \cdot d\mathbf{l}$ , onde  $\mathbf{E}(x,y) = \frac{1}{x^2 + y^2} \frac{x \, \mathbf{i} + y \, \mathbf{j}}{\sqrt{x^2 + y^2}} \, \mathbf{e} \, C : \mathbf{r}(t) = (t,1),$ -1 \le t \le 1. (Oldesempenha aqui o mesmo papel que  $\mathbf{r} : \mathbf{l}(t) = \mathbf{r}(t)$ .)
- 39. ([1], seção 16.2) Experiências mostram que uma corrente contínua I em um fio comprido produz um campo magnético  ${\bf B}$  que é tangente a qualquer círculo em um plano perpendicular ao fio cujo centro seja o eixo do fio (como na figura). A *Lei de Ampère* relaciona a corrente elétrica ao campo magnético criado e afirma que

$$\int_C \mathbf{B} \cdot d\mathbf{r} = \mu_0 I,$$

onde I é a corrente total que passa por qualquer superfície limitada por uma curva fechada C e  $\mu_0$  é uma constante, chamada permeabilidade no vácuo.

Tomando C como um círculo de raio r, mostre que o módulo  $B=|\mathbf{B}|$  do campo magnético a uma distância r do centro do fio é dado por

$$B = \frac{\mu_0 I}{2\pi r}.$$



- 40. ([2], seção 6.1) Seja  ${\bf E}$ o campo do exercício 38 e seja Ca curva dada por x=t e  $y=1-t^4,\,-1\leq t\leq 1.$ 
  - a) Que valor é razoável esperar para  $\int_C \mathbf{E} \cdot d\mathbf{l}?$  Por quê?
  - **b)** Calcule  $\int_C \mathbf{E} \cdot d\mathbf{l}$ .
- 41. ([2], seção 6.1) Calcule  $\int_C \mathbf{E} \cdot d\mathbf{l}$ , onde  $\mathbf{E}(x,y) = \frac{1}{x^2 + y^2} \frac{x \mathbf{i} + y \mathbf{j}}{\sqrt{x^2 + y^2}}$  e C é a curva dada por  $x = 2 \cos t$ ,  $y = \sin t$ , com  $0 \le t \le \frac{\pi}{2}$ .

# RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

5. **a**) .



b) .



**c**) .



**d**) .



- 6. a)  $\nabla f(x,y) = \frac{\mathbf{i} + 2\mathbf{j}}{x + 2y}.$ b)  $\nabla f(x,y,z) = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}}.$
- 7. a) IV.
  - **b**) I.
  - c) III.
  - **d**) II.

8. a)  $\nabla f(x,y) = 2x\mathbf{i} - \mathbf{j};$ 



 $\mathbf{b)} \nabla f(x,y) = \frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}};$ 



- 9.  $\mathbf{G} = \frac{y\mathbf{i} x\mathbf{j}}{\sqrt{x^2 + y^2}}.$
- 10. (2,04;1,03).
- 11. a) As linhas de fluxo se aproximam de hipérboles  $y = \frac{C}{x}$ :



- **b)**  $y = \frac{1}{x}, x > 0.$
- 12. **a)** III.
  - **b**) IV.
  - c) II.
  - d) I.
- 13. a) As linhas de fluxo parecem parábolas:



b) Note que como os vetores velocidade coincidem com os vetores no campo vetorial, temos  $x'(t)\mathbf{i} + y'(t)\mathbf{j} = \mathbf{i} + x\mathbf{j}$ , de onde x'(t) = 1, y'(t) = x. Segue que

$$\frac{dy}{dx} = \frac{x'(t)}{y'(t)} = x.$$

- **c)**  $y = \frac{1}{2}x^2$ .
- 14. a)  $\frac{1}{54} (145^{3/2} 1)$ .
  - **b**)  $\frac{2^{13}}{5}$ .
  - c)  $\frac{20}{6} (\sin(6) 3\cos(6) \sin(3))$ .
  - **d**)  $-\frac{5}{2}$ .
  - e)  $\frac{243}{8}$ .
  - f)  $\frac{17}{3}$ .
  - **g**)  $\frac{\pi^4}{32} + \frac{1}{2}$ .
  - **h)** 320.
  - i)  $\frac{\sqrt{14}}{12} (e^6 1)$ .
  - **j**) -3.
  - l)  $\frac{1}{6} \left(14^{3/2} 1\right)$ .
  - m)  $-3\sqrt{10}\pi$ .
  - **n**)  $\frac{1}{5}$ .
  - o)  $\frac{97}{3}$ .
  - **p**) 0.
  - **q**)  $\frac{1}{3}$ .

- r) -6.
- s)  $\pi$ .
- 15. **a)** 45.
  - **b**)  $\frac{17}{15}$ .
  - c)  $\frac{6}{5} \cos(1) \sin(1)$ .
  - d)  $2\pi^2$ .
  - **e**)  $-\frac{11}{6}$ .
  - **f**) 0.
  - g)  $\frac{\pi^3}{3} 2$ .
  - h)  $\frac{8\pi^3}{3}$ .
  - i)  $\cos(1) \frac{\pi}{4}e^{-1} \frac{\pi^2}{16} 1$ .
- 16. **a)** 0.
  - **b**) 4.
  - **c**) -6.
  - **d)**  $-2\pi ab$ .
  - e) -7.
  - $\mathbf{f)} \ \frac{e^3}{6} \frac{e}{2} + \frac{5}{6}.$
  - **g**) -2.
  - h)  $\frac{5}{6}$ .
  - i)  $\frac{2}{3}$ .

17. 
$$\int_{C} P dx + Q dy = \frac{7}{6} = \iint_{B} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

- 18.  $\frac{11}{8} \frac{1}{e}$ .
- 19. Note que o valor da integral é  $2\pi,$  independente de R.
- 20. **a)** 19.
  - **b**) 35.
  - c) 27.
- 21. 0.
- 22. 0.

- 23.  $\frac{\pi}{8}$ .
- 24.  $2\pi^2$ .
- 25.  $\frac{1}{12}$ .
- 26. 1.
- 27. **a)**  $2\pi(1+\pi)$ .
  - **b**)  $\frac{9}{2}$ .
  - **c**) 0.
- 28.  $2\arctan(2) + \arctan\left(\frac{1}{2}\right) \arctan\left(\frac{1}{3}\right)$ .
- 29. Massa:  $k2\pi$ ; centro de massa:  $\left(\frac{4}{\pi}, 0\right)$ .
- 30.  $I_x = k\left(\frac{\pi}{2} \frac{4}{3}\right) \in I_y = k\left(\frac{\pi}{2} \frac{2}{3}\right).$
- 31.  $2\pi^2$ .
- 32.  $\frac{1592}{21}$ .
- 33.  $\frac{412}{15}$ .
- 34. 26.
- 35. 16650 ft-lb.
- 36. 16245 ft-lb.
- 37. a) Dica: tome a parametrização do círculo C dada por x = cos(t) e y = sin(t), com  $t \in [0, 2\pi]$  e considere um campo constante arbitrário  $\mathbf{F} = (a, b)$ . Segue que  $W = \int_C F \cdot d\mathbf{r} = 0$ .
  - **b)** Sim. Realize o mesmo cálculo com  $\mathbf{F}(x,y) = (kx,ky)$ .
- 38. 0.
- 39. Note que  $\mathbf{B}$  é tangente a qualquer círculo que está no plano perpendicular ao fio. Logo,  $\mathbf{B} = |\mathbf{B}|\mathbf{T}$ , onde  $\mathbf{T}$  é a tangente unitária ao círculo  $\mathbf{C}$  parametrizado por  $x = r\cos(\theta), \ y = r\sin(\theta)$ . Daí,  $\mathbf{B} = |\mathbf{B}| \ (-\sin(\theta), \cos(\theta))$  e

$$\int_{C} \mathbf{B} \cdot d\mathbf{r} = \int_{0}^{2\pi} |\mathbf{B}| \left( -\sin(\theta), \cos(\theta) \right) \cdot \left( \left( -r\sin(\theta), r\cos(\theta) \right) \right) d\theta = 2\pi r |\mathbf{B}|.$$

- 40. 0.
- 41.  $-\frac{1}{2}$ .

# Referências

- [1] J. Stewart. *Cálculo*, Volume 2, 6<sup>a</sup> Edição, São Paulo, Pioneira/ Thomson Learning.
- [2] H. L. Guidorizzi. Um Curso de C'alculo, Volume 3,  $5^a$  Edição, 2002, Rio de Janeiro.
- [3] G. B. Thomas.  $C\'{a}lculo$ , Volume 2,  $10^a$  edição, São Paulo, Addison-Wesley/Pearson, 2002.
- [4] C. H. Edwards Jr; D. E. Penney. Cálculo com Geometria Analítica, Volumes 2 e 3, Prentice Hall do Brasil, 1997.
- [5] E. W. Swokowski. *Cálculo com Geometria Analítica*, Volume 2, 2<sup>a</sup> Edição, Markron Books, 1995.