

A Bilingual BERT Model Ensemble for English-based Multitask Fine-tuning

Ryan Dwyer, MS in Computer Science, Stanford University
CS 224N Default Final Project Extension, WInter 2024

StanfordComputer Science

Project Overview

- Goal
 - Fine-tune a model to perform well on 3
 English-based tasks:
 - Sentiment Classification
 - Paraphrase Detection
 - Semantic Similarity
- Theory
 - Transfer Learning through ensemble
 - Models can make up for each other's mistakes
 - Same task(s), different languages =
 diverse grammatical structures
 - Better understanding, better accuracy?
- Approach
 - English-pretrained +
 Multilingual-pretrained base BERT
 - English + French datasets, same 3 tasks similar language roots could help
 - Architecture/parameter tuning

Methods & Experiments

- Preliminary structure
 - Build underlying BERT structure (minBERT)
 - Pretrain/Finetune with SST and CFIMDB for sentiment (movie reviews)
- Extension Baseline
 - Just 3 main English datasets (no CFIMDB)
 - Each epoch loop through each dataset in batches
 - Sum together and average training loss across 3 tasks
 - Direct call to BERT layer in forward to get embedding
 - Followed by dropout (lower bias)
 - Followed by linear activation function to generate logits
 - Diff for sentiment (multilogit output) and paraphrase/similarity (single logit output)
- Multilingual Extension
 - English + French datasets
 - Same epoch loop format, just 3 more for French
 - Different preprocessing due to HuggingFace/dataset particularities
 - Bert-base-multilingual-uncased for French, bert-base-uncased for English
 - o Run main dev file "multilingual.py" with finetune option

Discussions & Future Research

Discussions:

- Potential downfall of multitask modeling and model ensemble = gradient conflict
 - Transfer learning can occur, but if learning is sometimes not complimentary can actually cause harm
- However, methodology still shows potential if more measures taken to counteract downfalls/more powerful ensemble structure is used

Future Research:

- With more compute, want to try more models (other papers used > 20) to ensemble to see more significant improvement
- Incorporate techniques like gradient surgery for better transfer learning, cosine embedding loss for better similarity comparisons, multiple rankings loss for others

Datasets & Architecture

- English datasets
 - Stanford Sentiment Treebank
 - Quora Paraphrase
 - SemEval Similarity
- French datasets (HuggingFace)
 - Book Review Sentiment
 - PAWS-X French Paraphrase
 - STS bank French similarity
- 1e-5 learning rate
- AdamW optimizer
- Cross-entropy Loss Function
- Batches of size 8

Results

- Better SST performance than baseline
- Worse paraphrase/STS

	Dev Accuracy			Test Accuracy		
	SST	Quora	STS	SST	Quora	STS
Baseline Fine-tune	0.477	0.753	0.347	0.476	0.755	0.284
Bilingual Fine-tune	0.510	0.467	0.334	0.526	0.466	0.2780