Logik I Übungsblatt 6

Aufgabe 1. Sei \mathcal{A} ein Modell von ZFC. Ein Element a von A wird nichtstandard natürliche Zahl genannt, wenn $\mathcal{A} \models a \varepsilon \omega$ gilt, aber $\mathcal{A} \models \neg(a = \underline{n})$ für alle $n = 0, 1, \cdots$ Zeigen Sie:

- a) Wenn ZFC konsistent ist, gibt es ein Modell mit nichtstandard natürlichen Zahlen.
- b) Es gibt in \mathcal{A} keine kleinste nichtstandard natürliche Zahl.

Aufgabe 2. Für eine Menge A von Ordinalzahlen sei $\sup_{\alpha \in A}(\alpha)$, oder auch kurz $\sup(A)$, die kleinste obere Schranke von A in den Ordinalzahlen. Wir definieren Addition, durch folgende Rekursionsvorschrift:

- $\alpha + 0 := \alpha$
- $\alpha + (\beta + 1) := (\alpha + \beta) + 1$
- $\alpha + \lambda := \sup_{\beta < \lambda} (\alpha + \beta)$

Multiplikation ist rekursiv so definiert:

- $\bullet \ \alpha \cdot 0 := 0$
- $\alpha \cdot (\beta + 1) := (\alpha \cdot \beta) + \alpha$
- $\alpha \cdot \lambda := \sup_{\beta < \lambda} (\alpha \cdot \beta)$

Exponentiation hat die folgende Definition:

- $\alpha^0 := 1$
- $\bullet \ \alpha^{\beta+1} := \alpha^{\beta} \cdot \alpha$
- $\alpha^{\lambda} := \sup_{\beta < \lambda} (\alpha^{\beta})$

Zeigen Sie die folgenden Rechenregeln der Ordinalzahlarithmetik:

- a) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
- b) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$
- c) $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$
- d) $(\omega + 1) \cdot 2 \neq \omega \cdot 2 + 1 \cdot 2$
- e) $(\omega \cdot 2)^2 \neq \omega^2 \cdot 2^2$

Aufgabe 3. Welche Körperaxiome¹ gelten in $(\omega, +, \cdot)$? Geben Sie für jedes Axiom einen Beweis oder ein Gegenbeispiel an.

Aufgabe 4. Zeigen Sie, dass für jede Menge x ein α existiert, sodass $x \in V_{\alpha}$ ist.

Hinweis: wenn es ein x gäbe das in keinem V_{α} ist, dann gäbe es auch ein y das ebenfalls in keinem V_{α} wäre, mit der zusätzlichen Eigenschaft dass für jedes $z \in y$ eine Ordinalzahl α_z existiert mit $z \in V_{\alpha_z}$. Verwenden Sie nun Ersetzung um einen Widerspruch zu erhalten. Das ermöglicht die folgende Definition: der Rang einer Menge x, kurz $\mathrm{rk}(x)$, ist die kleinste Ordinalzahl α so dass $x \in V_{\alpha+1}$ ist. Zeigen Sie:

- a) falls $x \in y$ dann ist rk(x) < rk(y).
- b) $rk(\alpha) = \alpha$, für jede Ordinalzahl α .

¹ Vergleiche §1.1