A Basic Introduction to Machine Learning

Machine Learning Basics

Sudeshna Sarkar

17 – 18 Sep 2020

Machine Learning

 Provide systems the ability to automatically learn and improve from experience

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

- Decision Trees
- Support Vector Machine
- Neural Networks

The Machine Learning Solution

- Collect many examples that specify the correct output for a given input
- ML to get the mapping from input to output

Machine Learning: Definition

Learning is the ability to evolve behaviours based on data (experience).

- Machine Learning explores algorithms that can
 - Learn from data such as build a model from data
 - Use the model or experience for prediction, decision making or solving some tasks

Components of a learning problem

- Task: The behaviour or task being improved.
 - For example: classification, acting in an environment
- Data: The experiences that are being used to improve performance in the task.
- Measure of improvement :
 - For example: increasing accuracy in prediction, acquiring new, improved speed and efficiency

Designing a Learner

- 1. Choose the training experience
- 2. Choose the target function (that is to be learned)
- 3. Choose how to represent the target function
- 4. Choose a learning algorithm to inferthe the target function

Components of a ML application

Representation

- Features: Data specification
- Function class: Model form

Optimization

• Model Training

Evaluation

Performance measure

1A. Representation of Data

- 1. How is the data specified?
 - A. Features
 - Feature vector of *n* features

$$\bar{x} = (x_1, x_2, \dots, x_n)$$

B. Convert input to a vector of basis functions

$$\left(\phi_0(\bar{x}),\phi_1(\bar{x}),\ldots,\phi_p(\bar{x})\right)$$

Feature Choice

- Input Data comprise features
 - Structured features (numerical or categorical values)
 - Unstructured (text, speech, image, video, etc)
- Use only relevant features
- Too many features?
 - Select feature subset (reduction)
 - Extract features.
 - Transform features

1B. Model Representation

- The richer the representation, the more useful it is for subsequent problem solving.
- The richer the representation, the more difficult it is to learn.

$$y = f(\bar{x})$$

$$y = g(\bar{\phi}(\bar{x}))$$

- Linear function
- Decision Tree
- Graphical Model
- Neural Network

1B. Model Representation Hypothesis space

$$y = f(\bar{x})$$

2. Evaluation

- 1. Accuracy = $\frac{\text{# correctly classified}}{\text{# all test examples}}$
- 2. Logarithmic Loss:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

$$L = \sum_{c=1}^{M} y_{oc} \log(p_{oc})$$

3. Mean Squared error

$$MSE = \frac{1}{m} \sum (y_{pred} - y_{true})^2$$

3. Optimization

- Define loss function
- Optimize loss function

- Stochastic Gradient Descent (Convex functions)
- Combinatorial optimization
 - E.g.: Greedy search
- Constrained optimization
 - E.g.: Linear programming

Broad types of machine learning

- Supervised Learning
 - Training Data with labels: X,y (pre-classified)
 - Given an observation x, what is the best label for y?
- Unsupervised learning
 - Training Data without labels: X
 - Given a set of x's, find hidden structure

- Semi-supervised Learning
 - Training Data + some Labels
- Reinforcement Learning
 - Given: observations and periodic rewards as the agent takes sequential action in an environment
 - Determine optimum policy

Supervised Learning

Given data containing the inputs and outputs:

Training Data:

$$\{(\overline{x_1}, y_1), (\overline{x_2}, y_2), \dots, (\overline{x_m}, y_m)\}$$

• Learn a function f(x) to predict y given x

Training: Learn the model from the Training Data

Given Test instance $\overline{x'}$, predict $y' = f_{\theta}(\overline{x'})$

Supervised Learning

Regression

Y is numeric / continuous

Supervised Learning

Classification Example

Training Samples

x1 (Ave sentence length)	x2 (personal pronouns)	 X4 (mentions of slang)	Category
15	10	No	F
16	15	Yes	M
10	12	No	M

Train a model to minimize loss

Test Instances

x1 (Ave sentence length)	x2 (personal pronouns)	•••	X4 (mentions of slang)	Category
12	10 No		No	?
18	15		No	?
15	15	.5 Yes		Ś
9	12		No	?

Probabilistic Classification

x1 (Ave sentence length)	x2 (personal pronouns)	•••	X4 (mentions of slang)	Category
15	10		No	SN
16	15		Yes	RK
10	12		No	PH

Predict a probability distribution over the set of classes **Pr (Y|X)**

x1 (Ave sentence length)	x2 (personal pronouns)	•••	X4 (mentions of slang)	SN	RK	AZ
12	10		No			
18	15		No			
15	15		Yes			
9	12		No			

Evaluation for Classification problems

• Accuracy = $\frac{\text{# correctly classified}}{\text{# all test examples}}$

$$= \frac{\text{#predicted true pos} + \text{#predicted true } neg}{\text{#all test examples}}$$

Loss Function

Classification problems

Loss indicates how bad the model's prediction is.

1. Fraction of Misclassifications

$$Error = \sum_{i=1}^{m} \frac{I(y_i \neq \widehat{y}_i)}{m}$$

2. Logarithmic Loss: Maximize the log likelihood. For a loss function, minimize the negative log likelihood of the correct class:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

Logarithmic Loss Function

2. Logarithmic Loss:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

$$L = \sum_{c=1}^{M} y_{oc} \log(p_{oc})$$

M - number of classes

y - binary indicator (0 or 1) if class label c is the correct classification for observation o

p - predicted probability observation o is of class c

2. Evaluation for regression problem

Mean Squared error

Unsupervised Learning (Clustering)

- Given $\{\overline{x_1}, \overline{x_2}, ... \overline{x_m}, \}$ without labels
- Find hidden structure in the data
 - Clustering
 - Dimensionality Reduction
- Clustering: Grouping similar objects

Clustering Problems

How to evaluate clustering?

- Internal Evaluation:
 - Intra-cluster distances are minimized
 - Inter-cluster distances are maximized
- External Evaluation

Dimensionality Reduction

Semi-Supervised Learning

- Supervised learning + Additional unlabeled data
- Unsupervised learning + Additional labeled data
- Learning Algorithm:
 - Start from the labeled data to build an initial classifier
 - Use the unlabeled data to enhance the model

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy.
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards

- Examples:
 - Dialog systems
 - Information retrieval
 - Personalized recommendation

Goal: Constantly learn to make 'optimal' predictions based on real-time feedback from past predictions