

Answer Keys and Solutions

(1)	2. (3)	3. (1)	4. (2)	5. (4)	6. (3)	7. (3)	8. (4)
1)mathon	10. (2) athon						
(1) Civan 1	:						
(1) Given 1 $\Rightarrow 2\hat{i} = 2\hat{i}$	$3\hat{i} \perp \hat{k} \perp \sqrt{\hat{i} \perp 4}$	$\hat{i} + 3\hat{k}$ mathongo					
,	$(\hat{i}-\hat{j}+2\hat{k})+\mu(\hat{i}+\hat{j}+\hat{k})$,					
			B)./// mathongo				
: Angle be	etween these lines is $a_1a_2+b_1b_2+c_1c_2$	S					
$\cos \theta = \frac{1}{\sqrt{2}}$	$\frac{a_1a_2+b_1b_2+c_1c_2}{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}$ $\frac{4\times2+3\times(-3)}{3^2}\sqrt{1^2+2^2+(-3)^2}$						
$=\frac{1\times 1+}{\sqrt{2}}$	$4 \times 2 + 3 \times (-3)$						
$\sqrt{1^2+4^2+1+8}$	$3^{2}\sqrt{1^{2}+2^{2}+(-3)^{2}}$						
$=\frac{1}{\sqrt{1+16+9}}$	$\frac{1}{\sqrt{1+4+9}} = 0$ mathon						
$\Rightarrow \theta = \frac{\pi}{2}$							
(3)							
- 0	$\frac{1}{2} = \frac{z-1}{4} = \lambda_1(\text{Let})$						
	$=rac{y-\lambda}{2}=rac{z}{1}=\lambda_2$ (L	et) (ii)					
	point on line (i) is						
	$(\lambda_1 - 1, 4\lambda_1 + 1)$ and (ii)	id any point on line (ii) i	$\mathbf{s} (\lambda_2 + 3, \lambda_2 + \lambda, \lambda_3)$	N 2)			
		$(\lambda_2+3,2\lambda_2+\lambda,\lambda_2)$					
	particular value of λ						
_							
and $4\lambda_1$ +	$1=\lambda_2$ rhathon	go Mathongo					
$\Rightarrow 2\lambda_1 - \lambda_2$	$\lambda_2=2, 3\lambda_1-2\lambda_2=$	$=\lambda+1$ and $4\lambda_1-\lambda_2=$	· -1				
after solvir	ng equations $2\lambda_1$ –	$\lambda_2=2$ and $4\lambda_1-\lambda_2=$	=1. mathongo				
We get λ_1	$=-rac{3}{2}$ and $\lambda_1=-rac{3}{2}$	5					
Now, putti	ng the values of λ_1	and λ_2 in					
$3\lambda_1-2\lambda_2$	$=\lambda+1$ mathon	go /// mathongo					
\ /	$-2(-5)=\lambda+1\Rightarrow$	$\lambda = \frac{-9}{2} + 10 = \lambda + 1$					
$\Rightarrow \lambda + 1 =$	$=rac{11}{2} \Rightarrow \lambda = rac{9}{2}$						
(1) Variabl	e points on the 1^{st} a	and the 2^{nd} line can be t	aken as $(t+3,\ 3t-$	1, -t+6) and (7.	s-5, -6s+2, 4s	(s+3) respectively. I	If both the lines intersect
	me value of t and s						
7s - 5 = t	+3, -6s + 2 =	3t - 1 and 4s + 3 = -t	+6 mathongo				
<i>→ t</i> – –	1 and s = 1.						
		(2, -4, 7) and its ima					
	$2, -2\lambda -3, -2\lambda$	– 5)					
	(2, -3, -5)						
$\Rightarrow PQ^2 =$							
-		$(3)^{2}+(2\lambda-5+5)^{2}=$	= 36				
$\Rightarrow 9\lambda^2 = 3$	36 /// mathon	go /// mathongo	/// mathongo				
$\Rightarrow \lambda^2 = 4$							
→ 1 — ± ·	2						
\therefore From λ	$=2,~\mathrm{P}\equiv (4,-7,-$	9). /// mathongo					
And from .	$\lambda = -2, \; \mathrm{P} \; \equiv \! (0, \; 1$	-1).					

Answer Keys and Solutions

Answer Keys and Solutions

