Topic 5 – Trigonometry

Trigonometry (from Greek trigonon "triangle" + metron "measure")

- sketch and use graphs of the sine, cosine and tangent functions (for angles of any size, and using either degrees or radians);
- use the exact values of the sine, cosine and tangent of 30°, 45°, 60°, and related angles, e.g. cos 150° = −½√3°;
- use the notations sin"'x, cos"'x, tan"'x to denote the principal values of the inverse trigonometric relations;
- use the identities sin θ / cos θ = tan θ and sin² θ + cos² θ = 1;
- find all the solutions of simple trigonometrical equations lying in a specified interval (general forms of solution are not included).

The three most common functions in trigonometry are Sine, Cosine and Tangent You will use them a lot!

Example 1

A right-angled triangle ABC has $\tan \theta = 2$, find $\sin \theta$ and $\cos \theta$.

Triangles Contain 180°

In a triangle, the three angles always add to 180°: A + B + C = 180°

General Angles

Names

• Quadrants

III IV

• Positive and Negative angles

For any angle θ ,

$$cos(-\theta) = cos\theta$$

$$sin(-\theta) = -sin\theta$$

$$tan(-\theta) = -tan\theta$$

Graphs of the Sine, Cosine and Tangent Functions

Graph of Sine Function

Graph of Cosine Function

Graph of Tangent Function

Exercise 10A - Pure Mathematics 1(page 141) Question 5 and 6

Minimum and Maximum of a Trigonometric Function

Example 2

If $0^{\circ} \le \theta \le 360^{\circ}$, find the minimum and maximum values of

a)
$$7\sin\theta - 3$$
 b) $5\cos\theta$

b) $5\cos\theta + 2$

c)
$$4 - 3\sin \theta$$

Example 3

If $0^{\circ} \le \theta \le 360^{\circ}$, find the range of values of $3 - 2\cos\theta$.

Exercise 10A – Pure Mathematics 1(page 141) Question 2

Trigonometric Ratios of Complementary Angles

In the triangle PQR, angle P and angle R are complementary angles as

$$\angle P + \angle R = 90^{\circ}$$
.

Example 3

By referring to the right-angled triangle below, show that $\sin{(90^{\circ} - \theta)} = \cos{\theta}$. Hence deduce the $\cos{20^{\circ}}$

value of $\frac{\cos 20^{\circ}}{\cos 20^{\circ} + \sin 70^{\circ}}$

Note: $\sin (90^{\circ} - \theta) = \cos \theta$

and $\cos(90^{\circ} - \theta) = \sin \theta$

Solving Equations Involving Trigonometric Functions

Simple Identities

1.
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
, $\cos \theta \neq 0$

$$2. \quad \sin^2\theta + \cos^2\theta = 1$$

Example 4

Given that $\cos \theta = \frac{3}{5}$, find the possible values of (a) $\sin \theta$, (b) $\tan \theta$.

Example 5

Given $x = 2 \sin \theta$ and $y = \cos \theta + 1$, show that $x^2 + 4(y - 1)^2 = 4$.

Example 6

Find all the angles between 0° and 360° which satisfy the equation $3 \cos x + 2 \sin x = 0$.

Example 7

Find all the angles between 0° and 360° inclusive for which

(a)
$$2 \sin x \cos x = \sin x$$
,

(b)
$$\cos^2 y - \cos y = 2$$
.

Example 8

Find all the angles between 0° and 360° which satisfy the equation $\sin y = 4 \tan y$.

Example 9

Find all the angles between 0° and 360° which satisfy the equation $2 \cos^2 y - 1 = \sin y$.

Example 10

Find all the angles between 0° and 360° which satisfy the equation

- (a) $\cos(x + 30^\circ) = -0.3$,
- **(b)** $\sin 2x = 0.866$,
- (c) $\tan (2x 50^\circ) = -0.7$.

Exercise 10C – Pure Mathematics 1(page 148) Question 1, 2, 3, 4, 7, 8 and 9

Exercise 10D – Pure Mathematics 1(page 152) Question 2, 3, 4 and 5

Miscellaneous Exercise 10 – Pure Mathematics 1(page 141) Question 10, 11 and 12