

ASTROCHALLENGE FORMULA BOOK

INSTRUCTIONS

- This booklet consists of 5 printed pages, excluding this cover page.
- Do NOT MAKE ANY MARKINGS ON THIS BOOKLET.
- Return this booklet to the invigilator at the end of this round of competition together with your answer script.

1 Useful Constants

Table 1: Physical and orbital characteristics of selected bodies in the Solar System

Property	Sun ⊙	Mercury 🌣	Venus Q	Earth ⊕	Moon 🕻	Mars o	Jupiter 4	Saturn '?	Uranus ð	Neptune Ψ
Mass m/ kg	1.989×10^{30}	3.302×10^{23}	4.868×10^{24}	5.972×10^{24}	7.348×10^{22}	6.419×10^{23}	1.899×10^{27}	5.685×10^{26}	8.681×10^{25}	1.024×10^{26}
Radius R / m	6.963×10^{8}	2.439×10^{6}	6.051×10^{6}	6.370×10^{6}	1.738×10^{6}	3.396×10^{6}	7.149×10^{7}	6.027×10^7	2.556×10^{7}	2.476×10^{7}
Orbital Semi- major axis a / m	-	5.791×10^{10}	1.082×10^{11}	1.496×10^{11}	3.843×10^{8}	2.279×10^{11}	7.785×10^{11}	1.433×10^{12}	2.877×10^{12}	4.503×10^{12}
Orbital period T	-	87.97 days	224.70 days	365.24 days	27.322 days (sidereal) 29.531 days (synodic)	686.97 days	11.86 years	29.46 years	84.32 years	164.79 years
Orbital Eccentricity ϵ	-	0.205	0.0067	0.0167	0.0549	0.0933	0.0488	0.0557	0.0444	0.0112

Table 2: Commonly used fundamental constants and unit definitions

Units and Physical Quantities	Universal Constants
1 Astronomical Unit (AU) = $1.49597870700 \times 10^{11}$ m	Planck's Constant $h = 6.62606957 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$
1 light year (ly) = $c \times 1$ year = 9.4605284×10^{15} m	Reduced Planck's Constant $\hbar = \frac{h}{2\pi}$
1 parsec (pc) = 3.26163344 ly	Gravitational Constant $G = 6.67384 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
1 electron-volt (eV) = $1.60217657 \times 10^{-19} \text{ J}$	Speed of Light $c = 2.99792458 \times 10^8 \text{ m s}^{-1}$
Avogadro's Number $N_A = 6.0221413 \times 10^{23}$	Boltzmann's Constant $k_B = 1.3806488 \times 10^{-23} \text{ J K}^{-1}$
Average Solar Luminosity = 3.846×10^{26} W	Boltzmann's Constant $k_B = 1.3806488 \times 10^{-23} \text{ J K}^{-1}$ Coulomb Constant $k_e = \frac{1}{4\pi\epsilon_0} = 8.98755179 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Average Solar Temperature $= 5778 \text{ K}$	Stefan-Boltzmann Constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
Atomic mass unit $u = 1.660539 \times 10^{-27} \text{ kg}$	Electronic charge $q_e = 1.602 \times 10^{-19} \text{ C}$
Proton Mass = $1.672622 \times 10^{-27} \text{ kg} = 1.007276u$	Fine structure constant $\alpha = \frac{k_e(q_e)^2}{\hbar c} \approx \frac{1}{137}$ Wien's Displacement Constant $b = 2.89776829 \times 10^{-3}$ m K
Neutron Mass = $1.674927 \times 10^{-27} \text{ kg} = 1.008665u$	Wien's Displacement Constant $\overset{nc}{b} = 2.89776829 \times 10^{-3} \text{ m K}$
Electron Mass = $9.10938 \times 10^{-31} \text{ kg}$	Hubble Constant $H_0 = 67.80 \pm 0.77 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (as of } 03/13)$

2 Useful Formulae

Table 3: Mathematical formulae

Description	Formula
Arc length on a circle is proportional to circular angle in radians	$s = r\theta$ (Gives the circumference when $\theta = 2\pi$)
Law of sines	$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = 2R \text{ (on a plane)}$ $\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c} \text{ (on a sphere)}$
Law of cosines	$c^{2} = a^{2} + b^{2} - 2ab \cos C \text{ (on a plane)}$ $\cos c = \cos a \cos b + \sin a \sin b \cos C \text{ (on a sphere)}$
Small-angle approximations $(x \ll 1, x \text{ in radians})$	$\sin x \approx x$ $\cos x \approx 1 - \frac{x^2}{2}$ $\tan x \approx x$
First-order binomial expansion	$(1+x)^y \approx 1 + xy$

ASTROCHALLENGE 2 FORMULA BOOKLET

Table 4: Classical Astrophysics

Description	Formula
Kinetic Energy	$E_{\rm kin} = \frac{1}{2}mv^2$
Newton's Universal Law of Gravitation	$\vec{\mathbf{F}} = -\frac{Gm_1m_2}{r^2}\hat{\mathbf{r}}$
Gravitational Potential Energy	$E_{\rm pot} = -\frac{Gm_1m_2}{r}$
Gravitational binding energy of a uniform sphere	$U = -\frac{3}{5} \frac{GM^2}{R}$
Roche Limit for a small, rigid body of density ρ_2 approaching a larger body of density ρ_1 and radius R	$d_{\mathrm{Roche}} = 1.26R \times \left(\frac{\rho_1}{\rho_2}\right)^{\frac{1}{3}}$
Angular Velocity ω and angular momentum l	$v = r\omega; \ \omega = 2\pi f = \frac{2\pi}{T}; \ l = I\omega = mr^2\omega \text{ (for orbiting bodies)}$
Centripetal acceleration and force	$a_c = \omega^2 r = \frac{v^2}{r}; \ F_c = ma_c$
Kepler's 3 rd Law	$T^2 = \frac{4\pi^2}{G(m_1 + m_2)}a^3$
Hydrostatic Equilibrium	$\frac{\mathrm{d}P}{\mathrm{d}R} = -\rho_r \frac{GM_r}{R^2}$
Quantisation of energy-momentum	$E = hf = \hbar\omega; \ p = \frac{h}{\lambda} = \hbar k$
Planck's Law for intensity per unit frequency	$I_f = \frac{2\pi h f^3}{c^2} \frac{1}{e^{\frac{hf}{kT}} - 1}$
Stefan-Boltzmann Law	$L = 4\pi R^2 \sigma T^4$
Wien's Displacement Law	$\lambda_{max} = \frac{b}{T}$
Jeans Length	$R_J = \sqrt{\frac{15k_BT}{4\pi G\langle m\rangle \cdot \langle \rho\rangle}}$

ASTROCHALLENGE 3 FORMULA BOOKLET

Table 5: Relativistic Expressions

Description	Formula
Lorentz Factor	$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$
Velocity Addition	$u' = \frac{u+v}{1+\frac{uv}{c^2}}$
Time Dilation and Length Contraction	$\Delta t' = \gamma \Delta t$ and $L' = \frac{L}{\gamma}$
Relativistic Doppler Effect	$f_{\text{observed}} = f_{\text{source}} \cdot \sqrt{\frac{c-v}{c+v}}$
Relativistic Redshift	$z = \sqrt{\frac{c+v}{c-v}} - 1 \approx \frac{v}{c}$
Schwarzschild Radius	$r_s = \frac{2GM}{c^2}$
Redshift	$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$

Table 6: Practical Astronomy

Description	Formula
Keplerian orbital ellipse as a function of angular deviation from periapsis	$r = \frac{a(1 - \epsilon^2)}{1 + \epsilon \cos \phi}$
Orbital Eccentricity in terms of other parameters	$\epsilon = \frac{a - r_{\text{periapsis}}}{a} = \frac{r_{\text{apoapsis}} - a}{a} = \frac{r_{\text{a}} - r_{\text{p}}}{r_{\text{a}} + r_{\text{p}}}$
Rayleigh resolution criterion with aperture diameter ${\cal D}$	$\sin \Delta \phi_{min} = 1.220 \frac{\lambda}{D}$
Beam divergence angle with initial beam width D	$\delta = \frac{4\lambda}{\pi D}$
Rocket Equation	$\Delta v = v_{\rm exh} \log_e \frac{m_i}{m_f}$

ASTROCHALLENGE 4 FORMULA BOOKLET

Table 7: Distance Determination and Some Empirical Results

Description	Formula
Absolute Bolometric Magnitude	$M_{\rm bol} = -2.5 \log_{10} \frac{L}{L_{\odot}} + 4.7554$
Distance modulus: difference between apparent and absolute magnitude	$m - M = 5\log_{10}\frac{d}{10 \text{ pc}}$
Relationship between Luminosity and Absolute Magnitude	$\frac{L_1}{L_2} = 10^{\frac{M_2 - M_1}{2.5}}$
Determining distance d in parsecs using an observed parallax p in arc seconds	$d \approx \frac{1}{p}$
Period-Luminosity relationship for Cepheid variable stars, with period P in days	$M = -2.76 \log_{10} P - 1.4$
Absolute magnitude of RR Lyrae stars	$M \sim 0.75$
Absolute magnitude of Type Ia supernovae (at peak)	$M \sim -19.3$
Tully-Fisher Relation	$L \propto V^4$
Mass-Luminosity Relation for Main Sequence stars	$L \propto M^{3.5}$
Hubble's Law	$v = H_0 d$

ASTROCHALLENGE 5 FORMULA BOOKLET