CS181 Assignment 3 - Clustering and Parameter Estimation

Lexi Ross & Ye Zhao

2013/03/09

1 High Dimensional Clustering

(a) Given that $\rho = P(\max_m |x_m - y_m| \le \epsilon)$, the probability that all the M dimensions of \mathbf{xy} are between $-\epsilon$ and ϵ , we can find out ρ by finding the probability p_m of having each individual dimension of \mathbf{xy} , ie $p_m = P(\epsilon \le x_m y_m \le \epsilon)$. Since y_m is a uniform distribution on [0,1], we have

$$P(-\epsilon \le x_m - y_m \le \epsilon) = 2\epsilon \tag{1}$$

From the independence of each component, we have

$$\rho = \prod_{m=1}^{M} p_m = (2\epsilon)^M \tag{2}$$

- (b) In this case since \mathbf{x} is some arbitrary point in the hypercube, it is possible that the at least one of the components of \mathbf{x} is within ϵ far away from the surface of the cube. Let the dimension that has x_m near to the bound, ie $x_m < \epsilon or x_m > (1\epsilon)$, then we know that the probability of $|y_m x_m| \le \epsilon$ will be strictly less than 2ϵ since at least one side of the point is being truncated. Hence the total probability will be less than that of ρ .
- (c) The Euclidean distance is given by

$$||\mathbf{x} - \mathbf{y}|| = \sqrt{\sum_{m=1}^{M} (x_m - y_m)^2}$$
(3)

Let x_m and y_m be the component that maximizes $|x_m y_m|$, hence we have

$$||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_m - y_m)^2 + \sum_{m \neq m^*, m \in M}^{M} (x_m - y_m)^2} > \sqrt{(x_m - y_m)^2} = |x_m - y_m|$$
 (4)

$$||\mathbf{x} - \mathbf{y}|| > \max_{m} |x_m - y_m| \tag{5}$$

where the inequality comes from the fact that the summed square must always be bigger than or equal to zero.

Considering the geometry, $||\mathbf{x} - \mathbf{y}|| < \epsilon$ represents a hypersphere of radius ϵ centered around the point \mathbf{x} and $\max_m |x_m - y_m| < \epsilon$ represents a hypercube of side 2ϵ centered around \mathbf{x} . In this

case the probability of y falling into these two different regions is just equal to the M-dimensional volume of the hypercube and hypersphere respectively. We know that the hypersphere of radius ϵ can always be circumscribed within the hypercube of side 2ϵ . Hence we have

$$P(||\mathbf{x} - \mathbf{y}|| < \epsilon) < P(\max_{m} |x_m - y_m| < \epsilon) \le \rho$$
(6)

(d) Let p be the probability that the nearest neighbor of a point x to be not within a radius of ϵ , ie

$$p = 1 - P(||\mathbf{x} - \mathbf{y}|| \le \epsilon \le 1 - \rho \tag{7}$$

Since each individual point is independent of each other, hence the probability that none of the Npoints will have its nearest neighbour within a radius of ϵ is p^N . Therefore, the complement of it, which is the probability that at least one of the N points will have its nearest neighbor within a radius ϵ of it will just be $1-p^N$ which gives

$$1 - p^N \le 1 - \delta \tag{8}$$

$$(1 - \rho)^N \ge \delta \tag{9}$$

(10)

$$\implies 1 - \delta \le \qquad 1 - (1 - \rho)^{N} \qquad (11)$$

$$\delta \ge \qquad (1 - \rho)^{N} \qquad (12)$$

$$\delta \ge (1 - \rho)^N \tag{12}$$

$$\frac{\log \delta}{\log (1 - \rho)} \ge \tag{13}$$

$$N \ge \frac{\log \delta}{\log \left(1 - 2^M \epsilon^M\right)} \tag{14}$$

ML vs MAP vs FB 2