Cyber Glove

System architecture and implementation plan

- Preetham Reddy G

- 1. Objectives revisited
- 2. System configuration
- 3. Human Hand anatomy
- 4. Mechanical design
- 5. Hardware architecture
- 6. Software architecture

Objectives Revisited

Integration of haptic feedback in the glove

Proposed Solution:

- Use of Exoskeleton with Ratchet mechanism to provide digital force feedback.
- Use of vibration motors for tactile feedback (touch)

Communication between Glove and robotic hand

Proposed Solution:

- WIFI connectivity for Line of sight connectivity
- Use of internet for Long distance communication through wifi

Proposed Solution:

- Use of Exoskeleton with rotational encoders for finger kinematics
- And IMU for Yaw ,Pitch and Roll motion capturing

Ergonomic design of glove

Proposed Solution:

 Design of exoskeleton without affecting any DOF of hand

Human Hand anatomy

Figure 1. Human hand model.

System Configuration

Exoskeleton configuration: Mechanical system designed around dynamic system(hand) which mimics the motion of that dynamic system(hand) without

restricting the DOFs.

- Easy to apply rigid body dynamics and kinematics to estimate the finger kinematics.
- Rotary encoders can be used which are very cheap (potentiometer)
- Excellent for "Force feedback".
 exoskeleton helps in restricting the motion of fingers in controlled manner

Mechanical Design

• 3 DOF exoskeleton for each finger

 Controllable Ratchet Mechanism for digital passive force feed back

Hardware architecture

Software Architecture

Small demo of active feedback

