

Circuit With Multiple **Independent** Sources: Solve **partial solutions** for one source at a time, set all other independent sources to zero. **Combined Solution** is the sum of partial solutions for every node and branch.

 $v_{\text{OUT}} = v_{\text{IN}} G_{ni}$

 $G_{ni} = 1 + \frac{R_F}{R_I}$

 $v_n \approx v_p = v_{\rm IN}$

Example:

First: Set $i_B = 0$, solve voltages v'_k and currents i'_j in the circuit. Next: Set $v_A = 0$, solve voltages v''_k and currents i''_j in the circuit. Combine: sum $v_k = v'_k + v''_k$ and $i_j = i'_j + i''_j$.

Voltage cannot change instantaneously. Steady-state: **open circuit**. Stored energy: $E = \frac{1}{2}Cv_c^2$

 $v_{\ell} = L \frac{d i_{\ell}}{dt}$ $v_{\ell} = I_{0} + \frac{1}{L} \int_{0}^{t} v_{\ell} d\tau$ $- \bigvee_{i\ell} i_{\ell} \quad \phi_{\ell} = Li_{\ell}$ B **Current** cannot change instantaneously.
Steady-state: **short circuit**.
Stored energy: $E = \frac{1}{2}Li_{\ell}^{2}$

Energy oscillates between inductor and capacitor, $v(t) = V_I \cos(\omega t)$

 10^{12}

Frequency:
$$\omega = \sqrt{\frac{1}{LC}} \text{ rad/sec}$$

$$f = \frac{\omega}{2\pi} \text{ Hz}$$

Current: $i(t) = V_I \sqrt{\frac{C}{L}} \sin(\omega t)$

T "terra"

 $v_{\rm OUT} = V_I - \frac{1}{R_I C_F} \int_0^t v_{\rm IN}(\tau) d\tau$ Initial voltage is V_I at time zero. Switch or resistor can be inserted across C_F to define initial conditions.

——————————————————————————————————————		Basic Units—		
SI Prefix	Scale	Thing	Unit	Equivalent Units
a "atto"	10^{-18}	Charge	Q or C "Coulomb"	
f "femto"	10^{-15}	Energy	J "Joule"	
p "pico"	10^{-12}	Power	W "Watt"	$\mathrm{J/s}$
n "nano"	10^{-9}	Voltage	V "Volt"	J/Q
u or μ "micro"	10^{-6}	Current	A "Amp(ere)"	m Q/s
m "milli"	10^{-3}	Flux Linkage	Wb "Weber"	$ m V \cdot s$
c "centi"	10^{-2}	Frequency	Hz (cycles per second)	radians/sec = $2\pi \times Hz$
d "deci"	10^{-1}	Resistance	Ω "Ohm"	V/A
da "deka"	10^{1}	Conductance	υ "Mho" or S "Siemens"	A/V
h "hecto"	10^{2}	Capacitance	F "Farad"	m V'/Q
k "kilo"	10^{3}	Inductance	H "Henry"	Wb/A
M "mega"	10^{6}			, , , , , , , , , , , , , , , , , , ,
G "giga"	10^{9}			