Key Concepts for this section

- 1: Lorentz force law, Field, Maxwell's equation
- 2: Ion Transport, Nernst-Planck equation
- 3: (Quasi)electrostatics, potential function,
- 4: Laplace's equation, Uniqueness
- 5: Debye layer, electroneutrality

Goals of Part II:

- (1) Understand when and why electromagnetic (E and B) interaction is relevant (or not relevant) in biological systems.
- (2) Be able to analyze quasistatic electric fields in 2D and 3D.

Example: BioMEMS systems

Differential form of Maxwell's equations

$$\oint_{S} \vec{A} \cdot d\vec{s} = \int_{V} (\nabla \cdot \vec{A}) dV$$
 Gauss' theorem
$$\oint_{C} \vec{A} \cdot \vec{dl} = \int_{S} (\nabla \times \vec{A}) \cdot \vec{ds}$$
 Stokes' theorem

$$\oint_{S} \varepsilon_{0} \vec{E} \cdot d\vec{s} = \int_{V} \rho_{e} dV \qquad \longrightarrow \nabla \cdot (\varepsilon_{0} \vec{E}) = \rho_{e}$$

$$\frac{1}{\mu_{o}} \oint_{C} \vec{B} \cdot d\vec{s} = \int_{S} \vec{J}_{e} \cdot d\vec{a} + \frac{d}{dt} \int_{S} \varepsilon_{o} \vec{E} \cdot d\vec{a} \qquad \longrightarrow \frac{1}{\mu_{0}} \nabla \times \vec{B} = \vec{J}_{e} + \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}$$

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s} \qquad \longrightarrow \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\oint_{C} \vec{B} \cdot d\vec{s} = 0 \qquad \longrightarrow \qquad \nabla \cdot \vec{B} = 0$$

Maxwell's equation in source-free space

General solution for the Wave equation

Figure 13.4.5 Plane electromagnetic wave propagating in the +x direction.

Image source: MIT 8.02 class notes.

Courtesy of Dr. Sen-ben Liao, Dr. Peter Dourmashkin, and Professor John W. Belcher. Used with permission.

Mass Spectrometry

Courtesy of Dr. Gary Siuzdak. Used with permission.

Gary Suizdak's tutorial page (http://masspec.scripps.edu/MSHistory/whatisms.php)

Related MIT links:

http://web.mit.edu/toxms/www/links2.htm

How good is this approximation?

$$\frac{E_{error}}{E} \sim \frac{L^2}{c^2 T^2} \sim \frac{L^2 \omega^2}{c^2} \sim \frac{L^2}{\lambda^2} \quad (\lambda : \text{wavelength EM wave})$$

Frequency (f)	$T \sim 1/f$	λ ∼cT
60 Hz	0.167 s	5000 k m
1 MHz	1 μs	300 m
100 MHz	10 ns	3 m
10 GHz	0.1 ns	3 cm

EQS approximation

Figure 3.5.1 H&M

Source: http://web.mit.edu/6.013 book/www/

EM interactions in media - polarization

Figure 5.5.1 Orientations of polar molecules when (a) $\vec{E}_0 = \vec{0}$ and (b) $\vec{E}_0 \neq 0$.

Image source: MIT 8.02 class notes.

Courtesy of Dr. Sen-ben Liao, Dr. Peter Dourmashkin, and Professor John W. Belcher. Used with permission.

Figure 5.5.2 Orientations of non-polar molecules when (a) $\vec{E}_0 = \vec{0}$ and (b) $\vec{E}_0 \neq \vec{0}$.

EM interactions in media - polarization (linear medium)

 ε_r : relative permittivity (dielectric constant) of the medium (=>1)

ε of various media

Medium	$\epsilon_{ m r}$
Water (pure)	~80
0.9% NaCl solution	~60
Ethanol	24
Methanol	34
Acetic acid	15~16
Gases	~1
Glass	3~4
Plastics and rubbers	2~9

Image source: MIT 8.02 class notes.

Courtesy of Dr. Sen-ben Liao, Dr. Peter Dourmashkin, and Professor John W. Belcher. Used with permission. **Figure 9.6.3** (a) Ferromagnetic domains. (b) Alignment of magnetic moments in the direction of the external field \vec{B}_0 .

$$\vec{B}_{mag} \propto \vec{B}_{ext} \longrightarrow \vec{B}_{media} = \vec{B}_{ext} + \vec{B}_{mag} = \mu_r \vec{B}_{ext} \ (\mu_r \ge 1)$$

$$\nabla \times \vec{B} = \mu_0 \mu_r \vec{J} + \mu_0 \mu_r \varepsilon_0 \varepsilon_r \frac{\partial \vec{E}}{\partial t} = \mu \vec{J} + \mu \varepsilon \frac{\partial \vec{E}}{\partial t}$$

 μ_r : relative magnetic permeability of the medium

 μ_o : free space permeability $(4\pi \times 10^{-7} \, \text{H/m})$

μ of various media

Materials	Magnetic susceptibility χ_m	Relative permeability $\kappa_m = 1 + \chi_m$	Magnetic permeability $\mu_m = \kappa_m \mu_0$
Diamagnetic	$-10^{-5} \sim -10^{-9}$	$\kappa_m < 1$	$\mu_m < \mu_0$
Paramagnetic	$10^{-5} \sim 10^{-3}$	$\kappa_m > 1$	$\mu_m > \mu_0$
Ferromagnetic	$\chi_m \gg 1$	$\kappa_m \gg 1$	$\mu_m \gg \mu_0$

 μ_r for water : very close to 1

 μ_r (Ni)~600, μ_r (Fe)~5000

Mobility of various ions in water

Species	Mobility	Diffusion coefficient
	U_i (cm ² /v/s)	D_i (cm ² /s)
Cations in H ₂ O (25°C)		
H^+	36.30×10 ⁻⁴	9.33×10 ⁻⁵
K^+	7.62×10 ⁻⁴	1.96×10 ⁻⁵
Na ⁺	5.19×10 ⁻⁴	1.33×10 ⁻⁵
Li ⁺	4.01×10^{-4}	1.03×10 ⁻⁵
Anions in H ₂ O (25°C)		
OH-	20.52×10 ⁻⁴	5.27×10 ⁻⁵
SO_4^{2-}	8.27×10 ⁻⁴	1.06×10 ⁻⁵
Cl-	7.91×10 ⁻⁴	2.03×10 ⁻⁵
NO ₃ -	7.40×10 ⁻⁴	1.90×10 ⁻⁵
Electrons in Si at 25°C	1500	38.55
Holes in Si at 25°C	600	15.42

Comparative Number densities and Conductivities

Material	$n_i (\#/cm^3)$	$\sigma \left(m^{-1}\Omega^{-1} \right)$
DI water	~10 ¹⁷	4 ×10 ⁻⁶
0.1M NaCl	6×10 ¹⁹	1.07
Copper	$\sim 10^{22}$	5.8 ×10 ⁷
Si (intrinsic)	$n=p\sim10^{10}$	3.36 ×10 ⁻⁴
Si (doped)	$n_{\rm e} = 10^{16}$	2.4
$N_d = 10^{16}$	$N_{p}=10^{4}$	
Quartz		10-18

In silicon (semiconductor), $n \times p \sim 10^{20}$ (constant) In aqueous solutions, $[H^+][OH^-] = 10^{-14} = K_w$ $(pH = -log_{10}[H^+])$