1. Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}2\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

⊘ Correcto

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- [1.
 - ✓ Correcto

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- - ✓ Correcto

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- None of the above.
- 2. Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

1 / 1 punto

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}3&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}3\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 0 \end{bmatrix}$$

⊘ Correcto

This eigenvector has eigenvalue 3, which means that it stays in the same direction but triples in size.

⊘ Correcto

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

None of the above.

3. Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

unchanged by this transformation.	
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	

Well done! This eigenvector has eigenvalue 1 - which means that it is

4. Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

None of the above.

1 / 1 punto

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T? Select all correct answers.

- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- None of the above.
 - **⊘** Correcto

None of the three original vectors remain on the same span after the linear transformation. In fact, this linear transformation has no eigenvectors in the plane.

5. Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear

transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

✓ Correcto

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 - **⊘** Correcto

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

- None of the above
- **6.** Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

1 / 1 punto

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

⊘ Correcto

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- None of the above.