|                | Lecture 1: Basic Set Notation                                        |
|----------------|----------------------------------------------------------------------|
|                |                                                                      |
| Defn           | Set                                                                  |
|                | A set is a collection of objects                                     |
| Ex.            | S = \ \  2, 3 \}                                                     |
|                | _                                                                    |
|                | $N = \{1, 2, 3, 4, 5,\}$                                             |
|                | $Q = \frac{5}{n} \frac{m}{n}$ where $m, n$ are natural $\frac{7}{n}$ |
|                | numbers, n to                                                        |
| Defn           | . Set Mambership                                                     |
|                | suy that "X is in S" denoted                                         |
|                | 7ce S                                                                |
| if (           | S contains X as an element.                                          |
| G <sub>X</sub> | 5 E N                                                                |
|                |                                                                      |
|                | 2/3€                                                                 |
|                | 2/3 & IN read: not In                                                |
|                |                                                                      |
| Defn'          | Containment (Subset)                                                 |
|                | e say A is a subset of B, denoted                                    |
|                | h c 12                                                               |

|         | ACB «~                                         |
|---------|------------------------------------------------|
| ìf      | XEA implies XEB. ACB ACB ACB                   |
|         |                                                |
|         | Set Egrality                                   |
| We      | say A is reguel to B if                        |
| We      | ACB ad BCA.  write  A = B.                     |
|         | A = 13.                                        |
| Se      | et Operations                                  |
| John    |                                                |
| Defn!   |                                                |
| The     | 2 union of A ad B, denoted                     |
|         | A U 13                                         |
| کړ      |                                                |
| ·<br>   | $AUB = \{x \mid x \in A \text{ or } x \in B\}$ |
|         | A B                                            |
|         |                                                |
|         |                                                |
| <u></u> | $A = N, B = \{-1, -2, -3,\}$                   |
|         | then AUB = \{\pm\}_1,\pm\2,\pm\3,\\}           |

~ real numbers Ex. QUR=R b/cQCR Fact: ACB the AUB = B Fact! AUA = A Defu: Intersection The intersection of A ad B, denoted AnB or AB is defined as AB= \x | x LA and x LB?  $3 = \{-1, -2, -3, ...\}$ AB = 0 empty set

| Ex. QN = N b/c NCQ                                                      |
|-------------------------------------------------------------------------|
| Fact! ACB then AB = A                                                   |
| Fact! $AA = A$                                                          |
| Defu: Set D'ifference                                                   |
|                                                                         |
| We say the difference blum A ad B                                       |
| is defined as                                                           |
| $A \setminus B = \{ \chi \mid \chi \in A \text{ and } \chi \notin B \}$ |
| AB                                                                      |
| BA                                                                      |
| A B SAMMA                                                               |
| Ex., A= \$1,2,3}                                                        |
| $B = \{3, 4, 5\}$                                                       |
| then A \ B = \$1,23 and B \ A = \$4,53.                                 |
|                                                                         |



() (AUB) = AB

$$(2)(AB)^{C} = A^{C} \cup B^{C}$$

Countably Infinite Set Operations

let A, Az, Az, ... be a seg of sets A; CS notation! (A;) i=1

Defui Cantable Union

 $\bigcup_{i=1}^{\infty} A_i = \{ \chi \in S \mid \chi \in A_i \text{ for some } i \}$ 

Ex. S = (0,1)

(et A; = [/i, 1]

 $A_1 = 513$ ,  $A_2 = [1/2, 1]$ ,  $A_3 = [1/3, 1]$ 

 $\bigcup_{i=1}^{\infty} A_i = (0,1) = S$ 

0 8 1/3 1/2

17 /2 >> /: < E >> E & A;

$$\bigcap_{i=1}^{\infty} A_i = \{1\}$$

Defu: Disjoint

We say A and B are disjoint if



$$\frac{Ex}{B} = \{1, 2, 3\}$$
 $B = \{4, 5, 6\}$  then  $AB = \beta$ 

Defui Pairwise Disjoint A seg (A) is pairwise disjoint if  $A_i A_j = \emptyset \quad \forall i \neq j$ Ex. A: = [i, i+1) - L A1 ) L A3 ) A; A; = Ø I i t j there are pairwise disjoint. Defn: Partition We say a sog (Ai) where AiCB are a partition of Bif 1) the Ai are (pairwise) disjoint 2) (Ai = B

Defn: Power Set A pomer set of a set A is the set of notation! P(A) or 2 1.2. 2A = {B | B CA} Ex, A= \$1,23 2A = { 513, 323, A, Ø} Cardinality: 1B = Card. = # eleenets Fact: | 2 A ( = 2 | A )