

Fachbereich Mathematik

Navier-Stokes-Gleichungen

Vorlesung von Dr. Patrick Tolksdorf im Sommersemester 2017

 $\label{thm:condition} In \ \ \underline{\text{IMTEX}} \ \ gesetzt \ \ von \ Fabian \ Gabel$ Fehlermeldungen an $\ \ gabel@mathematik.tu-darmstadt.de$

Inhaltsverzeichnis

O	Motivation	-4
	0.1 Existenz von Lösungen – skizzenhafte Darstellung	-2
1	Analytische Halbgruppen und gebrochene Potenzen	0
	1.1 Analytische Halbgruppen	0
	1.2 Gebrochene Potenzen	5
2	Die Stokes-Gleichungen auf ${\rm L}_{\sigma}^2$	8
	2.1 Der Stokes-Operator auf L^2_{σ}	8
	2.2 Wie man den Druck erhält	11
3	Die Ungleichung von Gagliardo-Nirenberg	17
4	Der Stokes-Operator auf \mathbb{L}^p_σ	24

Kapitel 0

Motivation

Die Navier-Stokes-Gleichungen sind ein Modell zur Beschreibung kompressibler, viskoser und Newton'scher Fluide (Flüssigkeiten/Gase). Viskos heißt, dass die Flüssigkeit aufgrund innerer Reibungseffekte zähe ist. Newton'sch ist z.B. Luft oder Wasser, aber nicht z.B. Blut, Ketchup oder Speisestärke in Wasser.

Die Navier-Stokes-Gleichungen sind ein System nicht-lineare pDGLen und sind gegeben durch:

$$\rho(\partial_t u + (u \cdot \nabla)u) - \mu \Delta u - (\lambda + \mu) \nabla \operatorname{div}(u) + \nabla \pi = f \quad t \in (0, T), x \in \Omega$$
$$\partial_t \rho + \operatorname{div}(u\rho) = 0 \quad t \in (0, t), x \in \Omega.$$

Hierbei sind

- $u: [0,T) \times \Omega \to \mathbb{R}^3$, Geschwindigkeit
- $\pi: [0,T) \times \Omega \to \mathbb{R}$, Druck
- $\rho: [0,T) \times \Omega \to \mathbb{R}$, Dichte
- $f: [0,T) \times \Omega \to \mathbb{R}^3$, (bekannte) Volumenkraftdichte
- $\bullet~\mu>0,$ dynamische Viskosität
- λ , Volumenviskosität, wobei $2\mu + 3\lambda > 0$.

Das System wird durch Anfangs- und Randbedingungen komplementiert:

$$u(0) = a \quad x \in \Omega$$

$$u|_{\partial\Omega} = 0 \quad t \in (0,T)$$

Die Bedingung $u|_{\partial\Omega}=0$ heißt no-slip Randbedingung oder auch Dirichlet-Randbedingung. Wir stellen uns ein Testvolumen V vor, welches sich mit der Strömung mitbewegt, wobei $V(t)=\phi(t,V(0))$ gelten soll. Hierbei ist $\phi(t,x)$ die Position des Fluidteilchens zum Zeitpunkt t, welches zum Zeitpunkt 0 bei x war. Die Abbildung $t\mapsto \phi(t,x)$ heißt Bahnkurve von x, also gilt $\frac{\mathrm{d}}{\mathrm{d}t}\phi(t,x)=u(t,\phi(t,x))$ (Lagrange Koordinaten)

Wir rechnen

$$\partial_t \det J_{\phi} = \partial_t \det(\nabla \phi_1, \nabla \phi_2, \nabla \phi_3)$$

$$= \det(\nabla \partial_t \phi_1, \nabla \phi_2, \nabla \phi_3) + \dots + \det(\nabla \phi_1, \nabla \phi_2, \nabla \partial_t \phi_3)$$

$$= \det(\sum_{i=1}^3 \partial_i u_1 \nabla \phi_i, \nabla \phi_2, \nabla \phi_3) + \dots + \det(\nabla \phi_1, \nabla \phi_2, \sum_{i=1}^3 \partial_i u_3 \nabla \phi_i)$$

$$= \det(u)(t, \phi(t, x)) \cdot \det J_{\phi}.$$

Da det $J_{\phi}(0,x)=1$, folgt

$$\det J_{\phi}(t,x) = \exp\Big(\int_0^t \operatorname{div}(u)(s,\phi(s,x)) \,\mathrm{d}x\Big).$$

Damit bestimmt $\operatorname{div}(u)$ die Kompressibilität, denn es gilt: Das Fluid ist inkompressibel, wenn folgende äquivalente Bedingungen erfüllt sind:

1)
$$|V(0)| = |V(t)| = \int_{\phi(t,V(0))} 1 \, dy = \int_{V(0)} \det J_{\phi}(t,x) \, dx$$

- 2) det $J_{\phi}(t,x) = 1$ für alle t,x.
- 3) $\int_0^t \operatorname{div}(u)(s,\phi(s,x)) ds = 0$ für alle t,x.
- 4) $\operatorname{div}(u)(t,\phi(t,x)) = 0$ für alle t,x.

Da Ω komplett mit Fluid ausgefüllt ist (d.h. $x \mapsto \phi(t,0)$ surjektiv) folgt: Das Fluid ist inkompressibel genau dann, wenn div (u) = 0 für alle $t \in (0,T), x \in \Omega$ gilt.

Wir definieren außerdem ein Fluid als homogen, falls $\rho(t,x)=\rho(t,y)$ für alle t und $x,y\in\Omega$ gilt. Für die Bernoulli-Gleichung gilt dann

$$\partial_t \rho = -\operatorname{div}(\rho u) = -\rho \operatorname{div}(u) - \nabla \rho \cdot u = 0,$$

fals das Fluid inkompressibel und homogen ist.

Teile nun die Navier-Stokes-Gleichungen durch ρ , ersetze $\frac{\pi}{\rho}$ durch π und $\frac{f}{\rho}$ durch ρ . Damit erhält man die Navier-Stokes-Gleichungen für homogene, inkompressible Fluide:

$$\begin{aligned} \partial_t u - \nu \Delta u + (u \cdot \nabla) u + \nabla \pi &= f & t \in (0,T), x \in \Omega \\ \operatorname{div}(u) &= 0 & t \in (0,T), x \in \Omega \\ u(0) &= a & x \in \Omega \\ u|_{\partial \Omega} &= 0 & t \in (0,T), \end{aligned}$$

wobei $\nu = \frac{\mu}{\rho}$ die kinematische Viskosität genannt wird.

Die Linearisierung ist die Stokes-Gleichung:

$$\partial_t u - \nu \Delta u + \nabla \pi = f$$

$$\operatorname{div}(u) = 0$$

$$t \in (0, T), x \in \Omega$$

$$t \in (0, T), x \in \Omega$$

$$u(0) = a$$

$$x \in \Omega$$

$$u|_{\partial \Omega} = 0$$

$$t \in (0, T).$$

In dieser Vorlesung werden wir das Anfagswertproblem, d.h. f=0, dieser Systeme betrachten. Außerdem setzen wir im Folgenden $\nu=1$.

0.1 Existenz von Lösungen – skizzenhafte Darstellung

1. Schritt

Konstruiere Operator A mit Definitionsbereich D(A) auf geeignetem Banachraum X, sodass $u \in D(A)$ gilt, genau dann, wenn div (u) = 0, $u|_{\partial\Omega}$ gelten und ein π existiert mit $Au = -\Delta u + \nabla \pi$. Die Stokes-Gleichungen können damit als gewöhnliche DGL auf X interpretiert werden:

$$u'(t) = Au(t) \quad 0 < t < T$$
$$u(0) = a.$$

Entwickle nun einen Formalismus, um diese gewöhnliche DGL zu lösen. Dazu gebe dem Ausdruck " $e^{tA}a$ " einen Sinn.

2.Schritt

Als Nächstes würde man gerne die Navier-Stokes-Gleichungen als Integralgleichung schreiben, d.h.

$$u(t) = e^{-tA}a - \int_0^t e^{-(t-s)A}(u(s) \cdot \nabla)u(s) dx.$$

ACHTUNG: $(u(s) \cdot \nabla)u(s)$ muss nicht in X liegen. Darum: Konstruiere Projektion \mathbb{P} mit Bild X, sodass das Bild $I - \mathbb{P}$ Gradientenfelder sind. Dies führt zur Helmholtz-Projektion.

3. Schritt

Löse die auf X projizierten Navier-Stokes-Gleichungen

$$u'(t) + Au(t) = -\mathbb{P}(u(t) \cdot \nabla)u(t) \quad t \in (0, T)$$
$$u(0) = a,$$

indem man die Integralgleichung

(*)
$$u(t) = e^{-tA}a - \int_0^t e^{-(t-s)A} \mathbb{P}(u(s) \cdot \nabla)u(s) ds$$

löst. Lösungen dieses Typs bezeichnet man auch als milde Lösung. Gehe hierzu iterativ vor: Starte mit linearem Problem

$$u_0(t) \coloneqq e^{-tA}a.$$

Löse danach (formal) die Gleichung

$$u'_{j+1}(t) + Au_{j+1} = \mathbb{P}(u_j(t) \cdot \nabla)u_j(t) \quad t \in (0, T)$$

 $u_{j+1}(0) = a,$

indem u_{j+1} definiert wird durch:

$$u_{j+1}(t) := u_0(t) - \int_0^t e^{-(t-s)A} \mathbb{P}(u_j(s) \cdot \nabla) u_j(s) \, \mathrm{d}s.$$

Falls $(u_j)_{j\in\mathbb{N}}$ (im geeigneten Sinne) konvergiert, so löst die Grenzfunktion u die Gleichung (*) Um Konvergenz zu zeigen, weden benötigt:

- Abbildungseigenschaften der Halbgruppe e^{tA} ;
- "Kleinheit" entweder von a oder T.
- Im 1. Fall ist u_0 sehr klein. Da der Integralterm quadratisch in u_0 ist folgt, das der Integralterm sogar sehr, sehr klein ist. Damit ist der Abstand zwischen u_0 und u_1 auch sehr, sehr klein und u_1 sehr klein. Dies geht für u_2 genauso weiter, bis zur Konvergenz.
- Im 2. Fall ist u_0 "fast" konstant in t fall T klein ist. Damit ist der Integrand "fast" konstant und folglich der Integralterm sehr, sehr klein, fals T sehr, sehr klein ist. Entsprechend ist der Abstand zwischen u_0 und u_1 sehr, sehr klein und u_1 "fast" konstant. Dies geht für u_2 genau so weiter, bis zur Konvergenz.

Kapitel 1

Analytische Halbgruppen und gebrochene Potenzen

In diesem Kapitel geht es darum, für eine möglichst große Klasse von abgeschlossenen Operatoren $A \colon \mathrm{D}(A) \subset X \to X$, wobei X ein Banachraum über $\mathbb C$ ist, die Ausdrücke e^{tA} und A^{α} , $\alpha > 0$, $\alpha \in \mathbb R$ zu definieren und ihre Eigenschaften zu untersuchen. Hauptgedanke ist hier, dass man für bestimmte holomorphe Funktionen f die Cauchysche Integralformel

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{\lambda - z} d\lambda$$

als Definition für f(A) nimmt, indem man $(\lambda - z)^{-1}$ durch $(\lambda - A)^{-1}$ ersetzt.

Sei $I \subset \mathbb{R}$ ein Intervall, X ein Banachraum und $f \colon I \to X$ stetig. Ist I kompakt, so konvergieren die Riemann-Summen $\sum_k l(\Delta_k) f(\xi_k)$, wobei $(\Delta_k)_k$ eine endliche Partition von I bildet, $\xi_k \in \Delta_k$ und $l(\Delta_k)$ die Länge von Δ_k bezeichnet, gegen ein eindeutiges Element $x \in X$. Definiere

$$\int_I f(t) \, \mathrm{d}t \coloneqq x.$$

Ist I nicht kompakt und $t \mapsto \|f(t)\|_X$ uneigentlich Riemann-integrierbar, so existiert für alle kompakten Intervalle I_k mit $I_k \subset I_{k+1} \subset I$ und $\bigcup_k I_k = I$ der eindeutige Grenzwert

$$\lim_{k\to\infty}\int_{I_k}f(t)dt=:\int_If(t)\,\mathrm{d}t\in X$$

In allen Fällen gilt

$$\left\| \int_{I} f(t) \, \mathrm{d}t \right\|_{X} \le \int_{I} \|f(t)\|_{X} \, \mathrm{d}t.$$

Ist $\Gamma \subset \mathbb{C}$ eine Kurve mit stückweise stetig differenzierbarer C^1 -Parametrisierung $\gamma \colon I \to \mathbb{C}$, $I \subset \mathbb{R}$ Interval, $f \colon \Gamma \to X$ stetig, sodass $t \mapsto \|\gamma'(t)f(\gamma(t))\|_X$ (uneigentlich) Riemann-integrierbar ist, so definiere

$$\int_{\Gamma} f(z) dz := \int_{I} \gamma'(t) f(\gamma(t)) dt.$$

1.1 Analytische Halbgruppen

Im Folgenden bezeichnet X immer einen Banachraum über \mathbb{C} .

Definition 1.1. Sei $A: D(A) \subset X \to X$ abgeschlossen und $\omega \in [0, \pi)$. A heißt sektoriell von Winkel ω , falls $\sigma(A) \subset \overline{S_{\omega}}$, wobei

$$S_{\omega} := \begin{cases} (0, \infty), & \omega = 0\\ \{z \in \mathbb{C} \setminus \{0\} \colon |\arg(z)| < \omega\}, & \omega \neq 0 \end{cases}$$

und für alle $\phi \in (\omega, \pi)$ ein $C_{\phi} > 0$ existiert, sodass für alle $\lambda \in \mathbb{C} \setminus \overline{S_{\phi}}$ gilt, dass

$$\|\lambda(\lambda - A)^{-1}\|_{\mathcal{L}(X)} \le C_{\phi}.$$

Notation 1.2. Für R > 0 und $\theta \in (0, \pi)$ bezeichne mit $\gamma_{R,\theta}$ die kanonische Parametrisierung der Kurve, welche durch $\partial(S_{\theta} \cup B(0, R))$ gegeben ist. Weiterhin bezeichne γ_1 die Parametrisierung des Geradenstücks in der oberen Halbebene, γ_3 in der unteren und γ_2 des Kreisbogens.

Beobachtung 1.3. Ist A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2}), \theta \in (\omega, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \theta}$, so ist

$$t \mapsto \|\gamma'_{R,\theta}(t)e^{-z\gamma_{R,\theta}(t)} (\gamma_{R,\theta}(t) - A)^{-1}\|_{\mathcal{L}(X)}$$

uneigentlich Riemann integrierbar: Wegen Symmetrie und Holomorphie der Resolvente auf $\mathbb{C}\backslash \overline{S_{\omega}}$ genügt es Integrierbarkeit auf γ_1 nachzuweisen. Aus der Sektorialität von A folgt zunächst

$$\int_{R}^{\infty} \| e^{i\theta} e^{-zte^{i\theta}} (te^{i\theta} - A)^{-1} \|_{\mathcal{L}(X)} dt \le C_{\theta} \int_{R}^{\infty} e^{-t\operatorname{Re}(ze^{i\theta})} t^{-1} dt.$$

Dieses Integral ist endlich, da

$$|\arg(ze^{i\theta})| \le |\arg(z)| + \theta < \frac{\pi}{2} - \theta + \theta = \frac{\pi}{2}$$

und damit Re $ze^{i\theta} < 0$ folgt.

Definition 1.4. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \omega}$. Wähle R > 0 und $\theta \in (\omega, \frac{\pi}{2} - |\arg(z)|)$. Definiere

$$e^{-zA} := \frac{1}{2\pi i} \int_{\gamma_{R,\theta}} e^{-z\lambda} (\lambda - A)^{-1} d\lambda$$

und $e^{-0A} := I$. Die Familie $(e^{-zA})_{z \in S_{\frac{\pi}{2} - \omega \cup \{0\}}}$ wird beschränkte analytische Halbgruppe genannt und falls A dicht definiert ist, wird -A Erzeuger/Generator von $(e^{-zA})_{z \in S_{\frac{\pi}{4} - \omega \cup \{0\}}}$ genannt.

Lemma 1.5. Die Definition von e^{-zA} is unabhängig von der Wahl von R und θ .

Beweis. Übung.
$$\Box$$

Proposition 1.6. Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to X$ stetig und uneigentlich Riemann integrierbar, Y ein Banachraum, $T \in \mathcal{L}(X,Y)$ und $A: D(A) \subset X \to Y$ abgeschlossen.

(i) Dann ist $Tf: I \to Y$ stetig und uneigentlich Riemann integrierbar und es gilt

$$T \int_{I} f(t) dt = \int_{I} T f(t) dt.$$

(ii) Falls $f(t) \in D(A)$ für alle $t \in I$ gilt und $Af: I \to Y$ stetig und uneigentlich Riemann-integrierbar ist, dann ist $\int_I f(t) dt \in D(A)$ und es gilt

$$A \int_{I} f(t) dt = \int_{I} Af(t) dt.$$

Beweis. Übung. \Box

Satz 1.7. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$. Dann ist für alle $z \in S_{\frac{\pi}{2} - \omega}$ der Operator e^{-zA} in $\mathcal{L}(X)$ und erfüllt

- (i) Für alle $0 \le \phi < \frac{\pi}{2} \omega$ ist $(e^{-zA})_{z \in S_{\phi}}$ gleichmäßig beschränkt.
- (ii) $z \mapsto e^{-zA}$ ist analytisch in $S_{\frac{\pi}{2}-\omega}$.
- (iii) Für alle $z, w \in S_{\frac{\pi}{2} \omega}$ gilt $e^{-(z+w)A} = e^{-zA}e^{-wA}$.
- (iv) Ist A zusätzlich dicht definiert, so ist für alle $0 \le \phi < \frac{\pi}{2} \omega$ die Abbildung

$$S_{\phi} \cup \{0\} \ni z \mapsto e^{-zA} \in \mathcal{L}(X)$$

stark stetig in z = 0, d.h. für alle $x \in X$ gilt

$$\lim_{\substack{z \to 0 \\ z \in \mathcal{S}_{\phi}}} \|\mathbf{e}^{-zA}x - x\|_X = 0.$$

Beweis. (i) Für festes ϕ wähle R > 0 und $\theta \in (\omega, \frac{\pi}{2} - \phi)$, sodass $|\arg(ze^{\pm i\theta})| \le \phi + \theta < \frac{\pi}{2}$ für alle $z \in S_{\phi}$. Mit Beobachtung 1.3 folgt für $j \in \{1, 3\}$

$$\begin{split} \left\| \int_{\gamma_j} \mathrm{e}^{-z\lambda} (\lambda - A)^{-1} \, \mathrm{d}\lambda \right\|_{\mathcal{L}(X)} &\leq C \int_R^\infty \mathrm{e}^{-t \operatorname{Re}(z\mathrm{e}^{\pm \mathrm{i}\theta})} t^{-1} \, \mathrm{d}t \leq C \int_R^\infty \mathrm{e}^{-t|z| \cos(\theta + \phi)} t^{-1} \, \mathrm{d}t \\ &= C \int_{R|z|}^\infty \mathrm{e}^{-t \cos(\phi + \theta)} t^{-1} \, \mathrm{d}t. \end{split}$$

Nach Lemma 1.5 hängt der Wert dieses Integrals nicht von der Wahl von R ab. Im Folgenden wähle daher $R = \frac{1}{|z|}$. Mit dieser Wahl gilt nun für das Kurvenintegral entlang γ_2

$$\left\| \int_{\gamma_2} e^{-z\lambda} (\lambda - A)^{-1} d\lambda \right\|_{\mathcal{L}(X)} \le C \int_{\theta}^{2\pi - \theta} \frac{1}{|z|} \left| e^{-\frac{z}{|z|}} e^{i\varphi} \right| |z| d\varphi \le C 2\pi e,$$

da $|e^z| \le e^{|z|}$. Folglich ist $e^{-zA} \in \mathcal{L}(X)$ und $(e^{-zA})_{z \in S_\phi}$ ist gleichmäßig beschränkt.

(ii) Wie in Beobachtung 1.3 zeigt man erst, dass $\lambda \mapsto \lambda e^{-z\lambda}(\lambda - A)^{-1}$ absolut integrierbar auf $\gamma_{\theta,R}$ für $\theta \in (\omega, \frac{\pi}{2} - \phi)$ ist, wobei ϕ wie in (i) gewählt sei. Außerdem ist für $z \in S_{\phi}$ und $h \in \mathbb{C} \setminus \{0\}$ mit $z + h \in S_{\phi}$

$$\left[\frac{1}{h}\left(e^{-(z+h)\lambda} - e^{-z\lambda}\right) - (-\lambda e^{-z\lambda})\right](\lambda - A)^{-1} = \left[\frac{1}{h\lambda}\left(e^{-h\lambda} - 1\right) + 1\right]\lambda e^{-z\lambda}(\lambda - A)^{-1}$$

auf jedem kompakten Teilweg von $\gamma_{\theta,R}$ gleichmäßig konvergent (mit Grenzwert 0), da $e^{-z\lambda}$ holomorph und damit insbesondere stetig komplex differenzierbar ist. Weiter gilt für |h| < c

$$\begin{split} \left| \frac{1}{h\lambda} (\mathrm{e}^{-h\lambda} - 1) + 1 \right| &= \left| \frac{1}{h\lambda} \left(\sum_{k=1}^{\infty} \frac{(-h\lambda)^n}{n!} + h\lambda \right) \right| \\ &= \left| \sum_{k=2}^{\infty} \frac{(-h\lambda)^{n-1}}{n!} \right| \leq \sum_{n=2}^{\infty} \frac{(|h| |\lambda|)^{n-1}}{n!} \\ &\leq \sum_{n=2}^{\infty} \frac{(c|z| |\lambda|)^{n-1}}{n!} = \frac{1}{c|z| |\lambda|} (\mathrm{e}^{c|z| |\lambda|} - 1) - 1, \end{split}$$

woraus wiederum

$$\left(\frac{1}{c|z||\lambda|} (e^{c|z||\lambda|} - 1) + 1\right) |\lambda e^{-z\lambda}| \|(\lambda - A)^{-1}\|$$

$$\stackrel{\text{(i)}}{\leq} \left(\frac{1}{c|z||\lambda|} (e^{c|z||\lambda|} - 1) - 1\right) |\lambda| e^{-|z|\cos(\phi + \theta)|\lambda|} \frac{C}{|\lambda|}$$

folgt. Wähle nun $c < \cos(\phi + \theta)$. Daraus folgt die uniforme Integrierbarkeit für |h| klein, was wiederum

$$\frac{1}{h} \left(e^{-(z+h)A} - e^{-zA} \right) \to \frac{1}{2\pi i} \int_{\gamma_{R,\theta}} \lambda e^{-z\lambda} (\lambda - A)^{-1} d\lambda, \quad \text{für } h \to 0$$

impliziert.

(iii) Sei $x \in X, x' \in X'$. Dann gilt mit $R_w < R_z$ und $\theta_w < \theta_z$:

$$\langle e^{-zA}e^{-wA}x, x'\rangle = \frac{1}{2\pi i} \langle \int_{\gamma_{R_z,\theta_z}} e^{-z\lambda} (\lambda - A)^{-1}e^{-wA}x \, d\lambda, x'\rangle$$

$$= \frac{1}{2\pi i} \int_{\gamma_{R_z,\theta_z}} e^{-z\lambda} \langle (\lambda - A)^{-1}e^{-wA}x, x'\rangle \, d\lambda$$

$$= \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} e^{-z\lambda}e^{-w\mu} \langle (\lambda - A)^{-1}(\mu - A)^{-1}x, x'\rangle \, d\mu \, d\lambda$$

$$= \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \frac{e^{-z\lambda}e^{-w\mu}}{\mu - \lambda} \langle (\lambda - A)^{-1}x, x'\rangle \, d\mu \, d\lambda$$

$$- \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \frac{e^{-z\lambda}e^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1}x, x'\rangle \, d\mu \, d\lambda$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{e^{-z\lambda}e^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1}x, x'\rangle \, d\lambda \, d\mu$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{e^{-z\lambda}e^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1}x, x'\rangle \, d\lambda \, d\mu$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{e^{-(z+w)\lambda}}{\mu - \lambda} \langle (\mu - A)^{-1}x, x'\rangle \, d\lambda \, d\mu$$

$$= \langle e^{-(z+w)A}x, x'\rangle.$$

Hahn-Banach liefert sodann $e^{-zA}e^{-wA}x = e^{-(z+w)A}x$ für alle $x \in X$.

(iv) Sei $z \in S_{\phi}$. Dann liefert die Cauchy-Integralformel (für unbeschränkte Integrale)

$$x = e^{-0z}x = \frac{1}{2\pi i} \int_{\gamma_1, a} \frac{e^{-\lambda z}}{\lambda - 0} x \,d\lambda$$
, für alle $x \in X$,

wobei $\theta \in (\omega, \frac{\pi}{2} - \phi)$. Für $x \in D(A)$ folgt damit

$$e^{-zA}x - x = \frac{1}{2\pi i} \int_{\gamma_{1,\theta}} e^{-z\lambda} \left((\lambda - A)^{-1}x - \frac{x}{\lambda} \right) d\lambda$$

und, da $(\lambda-A)^{-1}x-\lambda^{-1}x=\lambda^{-1}(\lambda(\lambda-A)^{-1}x-x)=\lambda^{-1}A(\lambda-A)-1$, folgt weiter

$$= \frac{1}{2\pi i} \int_{\gamma_{1,\theta}} \frac{e^{-z\lambda}}{\lambda} \lambda (\lambda - A)^{-1} Ax \, d\lambda$$
$$\to \frac{1}{2\pi i} \int_{\gamma_{1,\theta}} \frac{1}{\lambda} (\lambda - A)^{-1} Ax \, d\lambda, \quad \text{für } z \to 0.$$

Zudem gilt die folgende Majorisierung

$$\left\|\frac{1}{\lambda}(\lambda - A)^{-1}Ax\right\| \le \frac{C}{|\lambda|^2} \|Ax\|,$$

woraus

$$\frac{1}{2\pi \mathrm{i}} \int_{\gamma_{1,\theta}} \frac{1}{\lambda} (\lambda - A)^{-1} Ax \, \mathrm{d}\lambda = \lim_{R \to \infty} \frac{1}{2\pi \mathrm{i}} \int_{\gamma_{1,\theta}^R} \frac{1}{\lambda} (\lambda - A)^{-1} Ax \, \mathrm{d}\lambda.$$

Mit dem Cauchyschen Integralsatz (teste wieder mit $x' \in X'$) folgt

$$\frac{1}{2\pi i} \int_{\gamma_{1,0}^R} \frac{1}{\lambda} (\lambda - A)^{-1} Ax \, d\lambda = 0 \quad \text{für alle } R > 1.$$

Aus (i) und der Vorausgesetzten Dichtheit von D(A) ergibt sich schließlich

$$\lim_{\substack{z \to 0 \\ z \in \mathcal{S}_{\phi}}} \|\mathbf{e}^{-zA}x - x\| = 0 \quad \text{für alle } x \in X.$$

Bemerkung 1.8. Um Resultate von skalarwertigen Integralen auf banachraumwertige zu übertragen, ist es üblich mit Funktionalen zu testen, dann das skalarwertige Resultat zu benutzen und am Ende Hahn-Banach anzuwenden.

Satz 1.9. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \omega}$. Dann ist $Rg(e^{-zA}) \subset D(A)$ (Glättungseigenschaft) und falls $x \in D(A)$ gilt $Ae^{-zA}x = e^{-zA}Ax$. Weiterhin existiert C > 0, sodass $\sup_{t>0} \|tAe^{-tA}\|_{\mathcal{L}(X)} \leq C$.

Beweis. Sei R > 0 und $\theta \in (w, \frac{\pi}{2} - |\arg(z)|)$. Dann sind

$$\lambda \mapsto \mathrm{e}^{-z\lambda} (\lambda - A)^{-1} \quad \text{und} \quad \lambda \mapsto \mathrm{e}^{-z\lambda} A (\lambda - A)^{-1} = \mathrm{e}^{-z\lambda} (\lambda - A)^{-1} - \mathrm{e}^{-z\lambda} \, \mathrm{d}\lambda$$

auf $\gamma_{R,\theta}$ integrierbar. Proposition 1.6 liefert $\mathrm{Rg}(\mathrm{e}^{-zA})\subset\mathrm{D}(A)$ und

$$Ae^{-zA} = \frac{1}{2\pi i} \int_{\gamma_{R,\theta}} e^{-z\lambda} A(\lambda - A)^{-1} d\lambda.$$

Ist $x \in D(A)$ gilt folglich $Ae^{-zA}x = e^{-zA}Ax$. Für die zweite Aussage sei $t > 0, R = \frac{1}{t}$ und $\theta \in (w, \frac{\pi}{2})$. Dann gilt

$$Ae^{-tA} = \frac{1}{2\pi i} \int_{\gamma_{t-1,\theta}} (e^{-t\lambda} \lambda (\lambda - A)^{-1} - e^{-z\lambda}) d\lambda$$
$$= \frac{1}{2\pi i} \int_{\gamma_{t-1,\theta}} (e^{-t\lambda} \lambda (\lambda - A)^{-1} - e^{-z\lambda}) d\lambda.$$

Sektorialität liefert

$$||Ae^{-tA}||_{\mathcal{L}(X)} \le C \Big(\int_{t^{-1}}^{\infty} e^{-tr\cos\theta} dx + \int_{\theta}^{2\pi-\theta} t^{-1} e^{-tt^{-1}\cos\varphi} d\varphi \Big)$$

$$\le C \Big(\int_{1}^{\infty} t^{-1} e^{-s\cos\theta} ds + \int_{\theta}^{2\pi-\theta} t^{-1} e^{-\cos\varphi} d\varphi \Big). \qquad \Box$$

1.2 Gebrochene Potenzen

In diesem Abschnitt definieren und untersuchen wir gebrochene Potenzen A^{α} .

Proposition 1.10. Sei A sektoriell von Winkel $\omega \in [0, \pi)$ und $0 \in \rho(A)$. Dann existiert ein R > 0, sodass für alle $\theta \in (\omega, \pi)$ ein C > 0 existiert, sodass $B_R(0) \subset \rho(A)$ und für alle $\lambda \in \mathbb{C} \setminus \overline{S_{\theta}} \cup B_R(0)$

$$||(1+|\lambda|)(\lambda-A)^{-1}||_{\mathcal{L}(X)} \le C$$

gilt.

Beweis. Übung.

Notation 1.11. Seien a > 0 und $\theta \in (0, \pi)$. Dann definieren wir $\Gamma_{a,\theta} := \Gamma_1 - \Gamma_2$, wobei

$$\Gamma_1 \colon [0,\infty) \to \mathbb{C}, t \mapsto a + t e^{\mathrm{i}\theta} \quad \text{und} \quad \Gamma_2 \colon [0,\infty) \to \mathbb{C}, t \mapsto a + t e^{-\mathrm{i}\theta}.$$

Definition 1.12. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Sei $\theta \in (\omega, \pi)$ und 0 < a < R, mit R > 0 aus Proposition 1.10. Definiere für $\alpha > 0$

$$A^{-\alpha} := \frac{1}{2\pi i} \int_{\Gamma_{a,\theta}} \lambda^{-\alpha} (\lambda - A)^{-1} d\lambda.$$

Proposition 1.13. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Dann ist für $\alpha > 0$ die Definition von $A^{-\alpha}$ unabhängig von a und $A^{-\alpha} \in \mathcal{L}(X)$ und falls $\alpha \in \mathbb{N}$, so stimmt $A^{-\alpha}$ mit der α -ten Potenz von A^{-1} überein.

Beweis. Übung. \Box

Satz 1.14. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Weiterhin sei $n \in \mathbb{N}_0$ und $\alpha \in (0, n+1) \setminus \mathbb{N}$. Dann gilt

$$A^{-\alpha} = \frac{1}{\pi} \frac{n!}{\prod_{i=1}^{n} (i - \alpha)} \sin(\alpha \pi) \int_{0}^{\infty} t^{n-\alpha} (t + A)^{-(n+1)} dt.$$

Beweis. n-fache partielle Integration liefert

$$A^{-\alpha} = \frac{1}{2\pi i} \int_{\Gamma_{a,\theta}} \lambda^{-\alpha} (\lambda - A)^{-1} d\lambda$$
$$= \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i - \alpha)} \int_{\Gamma_{a,\theta}} \lambda^{n-\alpha} (\lambda - A)^{-(n+1)} d\lambda$$

und mit der Definition von $\Gamma_{a,\theta}$ gilt

$$= \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i-\alpha)} \left[\int_{0}^{\infty} e^{i\theta} (te^{i\theta} + a)^{n-\alpha} (te^{i\theta} + a - A)^{-(n+1)} dt - \int_{0}^{\infty} e^{-i\theta} (te^{-i\theta} + a)^{n-\alpha} (te^{-i\theta} + a - A)^{-(n+1)} dt \right],$$

woraus mit majorisierter Konvergenz dann

$$\stackrel{a\to 0}{\longrightarrow} \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i-\alpha)} \left[\int_{0}^{\infty} e^{i\theta} |t|^{n-\alpha} e^{i(n-\alpha)\theta} (te^{i\theta} - A)^{-(n+1)} dt - \int_{0}^{\infty} e^{-i\theta} |t|^{n-\alpha} e^{-i(n-\alpha)\theta} (te^{-i\theta} - A)^{-(n+1)} dt \right],$$

folgt und mit nochmaliger Anwendung des Satzes von der majorisierten Konvergenz schließlich

$$\stackrel{\theta \to \pi}{\longrightarrow} \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i-\alpha)} \left[e^{-i(n-\alpha)\pi} - e^{i(n-\alpha)\pi} \right] \int_{0}^{\infty} t^{n-\alpha} (-t-A)^{n+1} dt.$$

Hierbei wurde von der Tatsache gebrauch gemacht, dass sich $|te^{\pm i\theta} + a|$ bis auf Konstanten so verhält, wie |t| + |a| (siehe Lemma 2.4.

Satz 1.15. Sei A sektoriell von Winkel $\omega \in (0,\pi)$ und $0 \in \rho(A)$. Dann erfüllen die Operatoren $(A^{-\alpha})_{\alpha \geq 0}$, wobei $A^{-0} \coloneqq I$, das Halbgruppengesetz $A^{-\alpha-\beta} = A^{-\alpha}A^{-\beta}$, $\alpha, \beta \geq 0$. Ist A dicht definiert, so ist die Abbildung

$$[0,\infty)\ni \alpha\to A^{-\alpha}$$

stark stetig.

Beweis. Übung. \Box

Korollar 1.16. Die Identität in Satz 1.14 gilt sogar für alle $\alpha \in (0, n + 1)$, indem man für $\alpha \in \mathbb{N}$ beide Seiten stetig fortsetzt.

Proposition 1.17. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Dann ist $A^{-\alpha}$ für alle $\alpha > 0$ injektiv.

Beweis. Sei $n \in \mathbb{N}$ mit $n > \alpha$. Satz 1.15 liefert nun $A^{-n} = A^{-(n-\alpha)}A^{-\alpha}$. Nach Proposition 1.13 ist $A^{-n} = (A^{-1})^n$ und es folgt $A^nA^{-(n-\alpha)}A^{-\alpha} = I$. Damit ist $A^{-\alpha}$ injektiv. \square

Definition 1.18. Sei A sektoriell von Winkel $\omega \in (0,\pi)$ und $0 \in \rho(A)$. Für $\alpha > 0$ definiere

$$A^{\alpha} := (A^{-\alpha})^{-1}$$

mit $D(A^{\alpha}) := Rg(A^{-\alpha}).$

Satz 1.19. Sei A sektoriell von Winkel $\omega \in (0,\pi)$ und $0 \in \rho(A)$. Dann gilt für alle $\alpha, \beta \in \mathbb{R}$

$$A^{\alpha}A^{\beta}x = A^{\alpha+\beta}x$$
, für alle $x \in D(A^{\gamma})$.

wobei $\gamma = \max\{\alpha, \beta, \alpha + \beta\}.$

Beweis. Der Beweis folgt aus Kombination von Satz 1.15 und Definition 1.18. Zum Beispiel gilt für $\alpha, \beta \geq 0$

$$A^{\alpha}A^{\beta}x = A^{\alpha}A^{\beta}(A^{-(\alpha+\beta)}A^{\alpha+\beta})x = A^{\alpha}A^{\beta}(A^{-\beta}A^{-\alpha}A^{\alpha+\beta})x = A^{\alpha+\beta}x.$$

Satz 1.20 (Momentenungleichung). Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Für alle $\alpha < \beta < \gamma$ existiert $C = C(\alpha, \beta, \gamma)$, sodass

$$\|A^{\beta}x\|_{X} \leq C\|A^{\alpha}x\|_{X}^{\frac{\gamma-\beta}{\gamma-\alpha}} \|A^{\gamma}x\|_{X}^{\frac{\beta-\alpha}{\gamma-\alpha}}, \quad \textit{für alle } x \in \mathrm{D}(A^{\gamma}).$$

Beweis. Sei erst $\alpha_0 > \beta_0 > 0$ und $n \in \mathbb{N}$ mit $\alpha_0 \in (n, n+1]$. Dann gilt insbesondere $\beta_0 \in (0, n+1)$. Angenommen es gelten die Ungleichungen

(1)
$$||s^{n-\beta_0}(s+A)^{-(n+1)}x_0||_X \le Cs^{\alpha_0-\beta_0-1}||A^{-\alpha_0}x||_X$$

(2)
$$||s^{n-\beta_0}(s+A)^{-(n+1)}x_0||_X \le Cs^{-\beta_0-1}||x_0||_X$$

für alle $s < 0, x_0 \in X$. Sei $\tau > 0$ beliebig. Dann folgt mit Satz 1.14 und Korollar 1.16

$$||A^{-\beta_0}x_0||_X \le C \left\| \int_0^\infty s^{n-\beta_0} (s+A)^{-(n+1)} x_0 \, \mathrm{d}s \right\|_X$$

$$= C \left\| \int_0^\tau s^{n-\beta_0} (s+A)^{-(n+1)} x_0 \, \mathrm{d}s + \int_\tau^\infty s^{n-\beta_0} (s+A)^{-(n+1)} x_0 \, \mathrm{d}s \right\|_X$$

$$\stackrel{(1),(2)}{\le} C \left(\int_0^\tau s^{\alpha_0-\beta_0-1} ||A^{-\alpha_0}x_0||_X \, \mathrm{d}s + \int_\tau^\infty s^{-\beta_0-1} ||x_0||_X \, \mathrm{d}s \right)$$

$$= \frac{C}{\alpha_0 - \beta_0} \tau^{\alpha_0-\beta_0} ||A^{-\alpha_0}x_0||_X + \frac{C}{\beta_0} \tau^{-\beta_0} ||x_0||_X.$$

Nehme nun $\tau = \|A^{-\alpha_0}x\|_X^{-\frac{1}{\alpha_0}} \|x_0\|_X^{\frac{1}{\alpha_0}}$. Dann folgt

$$||A^{-\beta_0}x_0||_X \le C ||A^{-\alpha_0}x_0||_{\alpha_0}^{\frac{\beta_0}{\alpha_0}} ||x_0||_X^{1-\frac{\beta_0}{\alpha_0}}.$$

Wähle nun $x_0 = A^{\gamma}x$, $\alpha = \gamma - \alpha_0$, $\beta = \gamma - \beta_0$, dann folgt daraus die Ungleichung. Beweise nun die Ungleichungen (1) und (2). (2) Folgt aus (n+1)-facher Anwendung der Sektorialitätsabschätzung. Zu (1): Mit $(s+A)^{-(n+1)} = A^{-n-1+\alpha_0}A(s+A)^{-1}A^n(s+A)^{-n}A^{-\alpha_0}$ gilt

$$||s^{n-\beta_0}(s+A)^{-(n+1)}x_0||_X$$

$$\leq s^{\alpha_0-\beta_0-1}||A^{-n-1+\alpha_0}s^{n+1-\alpha}A(s+A)^{-1}||_{\mathcal{L}(X)}||A^n(s+A)^{-n}||_{\mathcal{L}(X)}||A^{-\alpha_0}x_0||_X$$

Falls $\alpha_0 = n + 1$ folgt daraus bereits die Behauptung. Sei also im Folgenden $\alpha_0 \in (n, n + 1)$. Mit Satz 1.14 ergibt sich

$$A^{-(n+1-\alpha_0)}s^{n+1-\alpha_0}A(s+A)^{-1} = -\frac{1}{\pi}\sin(\alpha\pi) \int_0^\infty s^{n+1-\alpha_0}t^{-(n+1-\alpha_0)}A(s+A)^{-1}(t+A)^{-1} dt$$

$$= -\frac{1}{\pi}\sin(\alpha\pi) \int_0^\infty s^{n+1-\alpha_0}\lambda^{-(n+1-\alpha_0)}sA(s+A)^{-1}(s\lambda+A)^{-1} d\lambda$$

$$= -\frac{1}{\pi}\sin(\alpha\pi) \Big[\int_0^1 \lambda^{-(n+1-\alpha_0)}s(s+A)^{-1}A(s\lambda+A)^{-1} d\lambda + \int_1^\infty \lambda^{-(n+2-\alpha_0)}A(s+A)^{-1}s\lambda(s\lambda+A)^{-1} d\lambda \Big].$$

Mit der Sektorialität von A ergibt sich Ungleichung (1).

Kapitel 2

Die Stokes-Gleichungen auf L^2_{σ}

In diesem Kapitel untersuchen wir Lösungen der (instationären) Stokes-Gleichungen

$$\begin{cases} \partial_t u - \Delta u + \nabla p &= 0, \quad x \in \Omega, t > 0 \\ \operatorname{div} u &= 0, \quad x \in \Omega, t > 0 \\ u(0) &= a, \quad x \in \Omega \\ u &= 0, \quad x \in \partial \Omega, t > 0, \end{cases}$$

wobe
i $a\in\mathrm{L}^2(\Omega,\mathbb{C}^d),\,d\geq 2$ und "div(a)=0 "gelten soll.

2.1 Der Stokes-Operator auf ${ m L}_{\sigma}^2$

Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ und 1 . Definiere

$$C_{0,\sigma}^{\infty}(\Omega) := \{ \varphi \in C_c^{\infty}(\Omega, \mathbb{C}^d) : \operatorname{div}(\varphi) = 0 \}.$$

Weiterhin sei

$$\mathrm{L}^p_\sigma(\Omega) \coloneqq \overline{\mathrm{C}^\infty_{c,\sigma}(\Omega)}^{\mathrm{L}^p} \quad \mathrm{mit} \quad \|\cdot\|_{\mathrm{L}^p_\sigma} = \|\cdot\|_{\mathrm{L}^p}$$

und

$$W_{0,\sigma}^{1,p} \coloneqq \overline{\mathbb{C}^{\infty}_{c,\sigma}(\Omega)}^{W^{1,p}} \quad \text{mit} \quad \|\cdot\|_{W_{0,\sigma}^{1,p}} \coloneqq \|\cdot\|_{W^{1,p}}.$$

Im Falle p=2 schreibt man auch $\mathrm{H}^1_{0,\sigma}(\Omega)$ für $\mathrm{W}^{1,2}_{0,\sigma}(\Omega)$. Um den Stokes-Operator zu definieren, definiere folgende Sesquilinearform

$$a \colon \mathrm{H}^1_{0,\sigma}(\Omega) \times \mathrm{H}^1_{0,\sigma}(\Omega) \to \mathbb{C}, \quad (u,v) \mapsto \int_{\Omega} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x = \sum_{i,j=1}^d \int_{\Omega} \partial_i u_j \, \partial_i \overline{v_j} \, \mathrm{d}x$$

Definition 2.1. Der Stokes-Operator A auf $L^2_{\sigma}(\Omega)$ ist gegeben durch

$$D(A) := \left\{ u \in H^1_{0,\sigma}(\Omega) \colon \exists ! f \in L^2_{\sigma}(\Omega) \colon \forall v \in H^1_{0,\sigma}(\Omega) \colon a(u,v) = \int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x \right\},$$
$$Au := f,$$

wobei f und u durch D(A) gegeben sind.

Proposition 2.2. Der Stokes-Operator auf $L^2_{\sigma}(\Omega)$ ist abgeschlossen und dicht definiert.

Beweis. Zur Abgeschlossenheit: Sei $u_n \in D(A)$ mit $u_n \to u$ in $L^2_{\sigma}(\Omega)$ und $f_n := Au_n \to f$ in $L^2_{\sigma}(\Omega)$. Dann

$$\|\nabla(u_n - u_m)\|_{L^2}^2 = a(u_n - u_m, u_n - u_m) = \int_{\Omega} (f_n - f_m) \overline{(u_n - u_m)} \, \mathrm{d}x \overset{\text{H\"older}}{\to} 0, \quad \text{f\"ur } u, m \to \infty.$$

Folglich ist $(u_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in $\mathrm{H}^1_{0,\sigma}(\Omega)$ und damit $u\in\mathrm{H}^1_{0,\sigma}(\Omega)$. Hiermit ergibt sich

$$a(u,v) = \lim_{n \to \infty} a(u_n,v) = \lim_{n \to \infty} \int_{\Omega} f_n \cdot \overline{v} \, dx = \int_{\Omega} f \cdot \overline{v} \, dx,$$

für alle $v \in H^1_{0,\sigma}(\Omega)$.

Zur Dichtheit: Für $u \in C^{\infty}_{c,0}(\Omega), v \in H^1_{0,\sigma}(\Omega)$ gilt

$$a(u,v) = -\int_{\Omega} \Delta u \cdot \overline{v} \, \mathrm{d}x.$$

Aus dem Satz von Schwartz folgt $\Delta u \in \mathcal{C}^{\infty}_{c,\sigma}(\Omega)$ und damit $\mathcal{C}^{\infty}_{c,\sigma}(\Omega) \subset \mathcal{D}(A)$.

Lemma (Lax-Milgram). Sei H ein Hilbertraum über \mathbb{C} und $b: H \times H \to \mathbb{C}$ eine Sesquilinear-form, die stetig und koerziv ist, d.h., es existieren $\alpha, C > 0$, sodass

$$|b(u,v)| \le C \|u\|_H \|v\|_H$$
, für alle $u, v \in H$,
 $|b(u,v)| \ge \alpha \|u\|_H^2$, für alle $u \in H$.

Dann existiert für jedes $F \in H^*$ ein eindeutiges $u \in H$ mit

$$b(u,v) = F[v],$$
 für alle $v \in H.$

Proposition 2.3. Sei A der Stokes-Operator auf $L^2_{\sigma}(\Omega)$, wobei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ ein beschränktes Gebiet ist. Dann ist $0 \in \rho(A)$.

Beweis. Für $f \in L^2_\sigma(\Omega)$ ist $v \mapsto \int_\Omega f \cdot \overline{v} \, \mathrm{d}x \in \mathrm{H}^1_{0,\sigma}(\Omega)^*$ (Antidualraum). Weiterhin ist

$$a: \mathrm{H}^1_{0,\sigma}(\Omega) \times \mathrm{H}^1_{0,\sigma}(\Omega) \to \mathrm{C}, (u,v) \mapsto \int_{\Omega} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x$$

stetig. Außerdem folgt mit der Poincaré Ungleichung

$$|a(u,u)| = \|\nabla u\|_{\mathbf{L}^2}^2 \ge \frac{1}{2} \|\nabla u\|_{\mathbf{L}^2}^2 + \frac{1}{2c^2} \|u\|_{\mathbf{L}^2}^2$$

und damit die Koerzivität von a. Das Lemma von Lax-Milgram liefert sodann, dass genau ein $u \in H^1_{0,\sigma}(\Omega)$ mit $a(u,v) = \int_{\Omega} f \cdot \overline{v} \, dx$ für alle $v \in H^1_{0,\sigma}(\Omega)$ existiert. Daraus folgt schließlich $u \in D(A)$ mit Au = f und $0 \in \rho(A)$.

Lemma 2.4. Seien $\theta, \phi \in [0, \pi)$ mit $\theta + \phi < \pi$. Dann existiert $C = C(\phi, \theta) > 0$, sodass für alle $w \in S_{\theta}, z \in S_{\phi}$ gilt

$$|w| + |z| \le C|w + z|.$$

Beweis. Eigentlich Übung, aber empirische Studien haben gezeigt, dass die Vorlesungsbesucher nicht notwendigerweise über Kenntnisse des Rechnens mit komplexen Zahlen verfügen. Wir rechnen

$$|w+z|^2 = (w+z)(\overline{w}+\overline{z}) = w\overline{w} + w\overline{z} + z\overline{w} + z\overline{z} = |w|^2 + |z|^2 + 2\operatorname{Re}(w\overline{z})$$
$$= |w|^2 + |z|^2 + 2\cos(\phi + \theta)|w\overline{z}| = |w|^2 + |z|^2 + 2|w||z|(\cos(\phi)\cos(\theta) - \sin(\phi)\sin(\theta)).$$

Wir unterscheiden nun 2 Fälle:

1. $\phi + \theta \leq \frac{\pi}{2}$: Dann sind die Cosinusterme der obigen Gleichung positiv und wir schätzen weiter ab zu

$$|w+z|^2 \ge |w|^2 + |z|^2 - 2|w||z|\sin(\phi)\sin(\theta) \ge (1-\sin(\phi)\sin(\theta))(|w|^2 + |z|^2).$$

2. $\phi + \theta > \frac{\pi}{2}$: Dann gilt $\cos(\phi + \theta) < 0$ und wir schätzen wie folgt ab:

$$|w + z|^2 \ge (1 + \cos(\phi + \theta))(|w|^2 + |z|^2).$$

Die Behauptung folgt also für $C(\phi, \theta) \coloneqq \frac{1}{\sqrt{2}} \left(\min\{1 + \cos(\phi + \theta), 1 - \sin(\phi)\sin(\theta)\} \right)^{\frac{1}{2}}$.

Proposition 2.5. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$, offen und A der Stokes Operator auf $L^2_{\sigma}(\Omega)$. Dann gilt $\sigma(A) \subset [0, \infty)$ und für alle $\theta \in (0, \pi]$ existiert C > 0, sodass

$$\|\lambda(\lambda-A)^{-1}\|_{\mathcal{L}(L^2_{\sigma}(\Omega))} \leq C$$
, für alle $\lambda \in \mathbb{C} \setminus \overline{S_{\theta}}$

und

$$\||\lambda|^{\frac{1}{2}}\nabla(\lambda-A)^{-1}\|_{\mathcal{L}(L^{2}_{\sigma},L^{2})}\leq C,\quad \text{für alle }\lambda\in\mathbb{C}\setminus\overline{S_{\theta}}.$$

Beweis. Für $\lambda \in \mathbb{C} \setminus \overline{S_{\theta}}$ definiere

$$a_{\lambda} \colon \mathrm{H}^{1}_{0,\sigma}(\Omega) \times \mathrm{H}^{1}_{0,\sigma}(\Omega) \to \mathbb{C}, \quad (u,v) \mapsto \lambda \int_{\Omega} u \cdot \overline{v} \, \mathrm{d}x - \int_{\Omega} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x,$$

dann ist a_{λ} stetig. Für die Koerzivität beobachten wir, dass zunächst $-\mathbb{C}\setminus \overline{S_{\theta}}=S_{\pi-\theta}$ gilt, was

$$|a_{\lambda}(u,u)| = \Big|\underbrace{-\lambda \int_{\Omega} |u|^2 dx}_{\mathbf{S}_{\pi-\theta}} + \underbrace{\int_{\Omega} |\nabla u|^2 dx}_{\in \mathbf{S}_0} \Big| \ge \frac{1}{C} \left(|\lambda| \int_{\Omega} |u|^2 dx + \int_{\Omega} |\nabla u|^2 dx \right)$$

ergibt, woraus mittels Lemma von Lax-Milgram $\lambda \in \rho(A)$ folgt.

Um die Abschätzungen nachzuweisen, teste mit Lösung!

Sei $f \in L^2_{\sigma}(\Omega)$ und $u \in D(A)$ mit $(\lambda - A)u = f$. Teste mit u:

$$\lambda \int_{\Omega} |u|^2 \, \mathrm{d}x - \int_{\Omega} |\nabla u|^2 = \int_{\Omega} f \cdot \overline{u}.$$

Nehme Betrag und nutze obige Ungleichung, dann folgt

$$\frac{1}{C} |\lambda| \|u\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq \frac{1}{C} \left(|\lambda| \int_{\Omega} |u|^{2} \, \mathrm{d}x + \int_{\Omega} |\nabla u|^{2} \right) \leq \|f\|_{\mathrm{L}^{2}(\Omega)} \|u\|_{\mathrm{L}^{2}(\Omega)}$$

und damit gilt die Resolventenabschätzung. Weiterhin folgt mit Young's Ungleichung

$$\frac{1}{C} \left(|\lambda| \int_{\Omega} |u|^2 \, \mathrm{d}x + \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \right) \le \frac{1}{2\varepsilon} \|f\|_{\mathrm{L}^2(\Omega)}^2 + \frac{\varepsilon}{2} \|u\|_{\mathrm{L}^2(\Omega)}^2.$$

Wähle $\varepsilon = \frac{2|\lambda|}{C}$, dann gilt

$$\frac{1}{C} \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \le \frac{C}{4|\lambda|} ||f||_{\mathrm{L}^2(\Omega)}^2,$$

und damit auch die Gradientenabschätzung.

Satz 2.6. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ offen und A sei der Stokes-Operator auf $L^2_{\sigma}(\Omega)$. Dann erzeugt -A eine beschränkte analytische Halbgruppe $(e^{-tA})_{t\geq 0}$. Diese wird als Stokes-Halbgruppe bezeichnet. Weiterhin ist für jedes t > 0, $Rg(e^{-tA}) \subset H^1_{0,\sigma}(\Omega)$ und es existiert C > 0, sodass für alle t > 0 und $a \in L^2_{\sigma}(\Omega)$ gilt:

$$\|\nabla e^{-tA}a\|_{L^2(\Omega)} \le Ct^{\frac{1}{2}} \|a\|_{L^2_{\sigma}(\Omega)}$$

Beweis. Übung. \Box

2.2 Wie man den Druck erhält

Zuerst führen wir ein nützliches Handwerkszeug, den sogenannten Bogowskiĭ-Operator ein. Hierzu definieren wir für $1 und ein beschränktes Gebiet <math>\Omega \subset \mathbb{R}^d$ den Raum

$$\mathrm{L}_0^p(\Omega) \coloneqq \left\{ f \in \mathrm{L}^p(\Omega) \colon \frac{1}{|\Omega|} \int_{\Omega} f \, \mathrm{d}x = : \int_{\Omega} f \, \mathrm{d}x = : f_{\Omega} = 0 \right\}$$

der mittelwertfreien L^p -Funktionen.

Wegen $\int_{\Omega} \operatorname{div}(u) dx = 0$ für alle $u \in W_0^{1,p}(\Omega,\mathbb{C}^d)$ ist es notwendig, dass die rechte Seite f der folgenden Gleichung in $L_0^p(\Omega)$ liegt. Betrachte das Problem

$$\operatorname{div}(u) = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{auf } \partial\Omega.$$

Ist Ω ein beschränktes Lipschitz-Gebiet, so wurde ein Lösungsoperator (Bogowskiĭ-Operator) für diese Gleichung konstruiert.

Satz 2.7. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$, ein beschränktes Lipschitz-Gebiet, dann existiert ein Operator B, sodass für jedes 1 gilt:

B:
$$L_0^p(\Omega) \to W_0^{1,p}(\Omega, \mathbb{C}^d)$$
, $B \in \mathcal{L}(L_0^p(\Omega), W_0^{1,p}(\Omega, \mathbb{C}^d))$
div (Bf) = f, für alle $f \in L_0^p(\Omega)$.

Beweis. Siehe z.B. [Gal11, Seiten 161-172].

Für $u \in L^p(\Omega)$ definiere $\nabla u \in W^{-1,p}(\Omega, \mathbb{C}^d)$ durch

$$\langle v, \nabla u \rangle_{W_0^{1,p'}(\Omega), W^{-1,p}(\Omega)} = -\int_{\Omega} u \cdot \overline{\operatorname{div}(v)}, \quad \text{für alle } v \in W_0^{1,p'}(\Omega, \mathbb{C}^d),$$

wobei $\frac{1}{p} + \frac{1}{p'} = 1$.

Lemma 2.8. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$, ein beschränktes Lipschitz-Gebiet und 1 . Dann existiert <math>C > 0, sodass für alle $u \in L^p(\Omega)$

$$||u - u_{\Omega}||_{L^{p}(\Omega)} \le C ||\nabla u||_{W^{-1,p}(\Omega)}$$

gilt.

Beweis. Sei B der Bogowskiĭ-Operator aus Satz 2.7 und $f \in L^{p'}(\Omega)$, wobei $\frac{1}{p} + \frac{1}{p'} = 1$. Dann gilt

$$\left| \int_{\Omega} (u - u_{\Omega}) \, \overline{f} \, \mathrm{d}x \right| = \left| \int_{\Omega} (u - u_{\Omega}) \, (\overline{f - f_{\Omega}}) \, \mathrm{d}x \right| = \left| \int_{\Omega} u \, (\overline{f - f_{\Omega}}) \, \mathrm{d}x \right|$$

$$= \left| \int_{\Omega} u \, \mathrm{div} \left(\mathbf{B}(\overline{f - f_{\Omega}}) \right) \, \mathrm{d}x \right| \le \|\nabla u\|_{\mathbf{W}^{-1,p}(\Omega)} \|\mathbf{B}(\overline{f - f_{\Omega}})\|_{\mathbf{W}_{0}^{1,p'}(\Omega)}$$

$$\stackrel{\text{Satz 2.7}}{\le} C \|\nabla u\|_{\mathbf{W}^{-1,p}(\Omega)} \|f - f_{\Omega}\|_{\mathbf{L}^{p'}(\Omega)} \le C \|\nabla u\|_{\mathbf{W}^{-1,p}(\Omega)} \|f\|_{\mathbf{L}^{p'}(\Omega)},$$

wobei im letzten Schritt ausgenutzt wurde, dass Ω beschränkt ist. Daraus folgt nun die Behauptung.

Lemma 2.9. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$ ein beschränktes Lipschitz-Gebiet und $1 . Dann existiert für jedes Teilgebiet <math>\Omega_0 \subset \Omega$ mit $\Omega_0 \neq \emptyset$ ein C > 0, sodass für alle $u \in L^p(\Omega)$ mit $u_{\Omega_0} = 0$ gilt

$$||u||_{\mathcal{L}^{p}(\Omega)} \le C ||\nabla u||_{\mathcal{W}^{-1,p}(\Omega)}.$$

Beweis. Angenommen die Aussage wäre falsch. Dannn existiert für jedes $n \in \mathbb{N}$ ein $u_n \in L^p(\Omega)$ mit $(u_n)_{\Omega} = 0$ und

(*)
$$||u_n||_{L^p(\Omega)} > n||\nabla u_n||_{W^{-1,p}(\Omega)}$$

Sei ohne Einschränkung $||u_n||_{L^p(\Omega)} = 1$. Da $(u_n)_{n \in \mathbb{N}} \subset L^p(\Omega)$ beschränkt und $L^p(\Omega)$ reflexiv ist, besitzt $(u_n)_{n \in \mathbb{N}}$ eine schwach konvergente Teilfolge. Bezeichne diese Teilfolge ohne Einschränkung wieder mit $(u_n)_{n \in \mathbb{N}}$. Dann existiert ein $u \in L^p(\Omega)$ mit $\lim_{n \to \infty} \int_{\Omega} u_n \overline{v} \, dx = \int_{\Omega} u \overline{v} \, dx$ für alle $v \in L^{p'}(\Omega)$. Hieraus folgt, dass

$$\int_{\Omega_0} u \, \mathrm{d}x = \int_{\Omega} u \chi_{\Omega_0} \, \mathrm{d}x = \lim_{n \to \infty} \int_{\Omega} u_n \chi_{\Omega_0} \, \mathrm{d}x = 0.$$

Mit (*) folgt $\|\nabla u_n\|_{\mathrm{W}^{-1,p}(\Omega)} < \frac{1}{n} \to 0$ für $n \to \infty$. Weiterhin folgt für $v \in \mathrm{C}^\infty_\mathrm{c}(\Omega,\mathbb{C}^d)$

$$\left| \int_{\Omega} u \, \overline{\operatorname{div}(v)} \, \mathrm{d}x \right| = \lim_{n \to \infty} \left| \int_{\Omega} u_n \overline{\operatorname{div}(v)} \, \mathrm{d}x \right| \le \lim_{n \to \infty} \left| \langle v, \nabla u_n \rangle_{W_0^{1,p'}, W^{-1,p}(\Omega)} \right|$$

Folglich ist u schwach differenzierbar mit $\nabla u = 0$ und damit konstant. Mit (**) folgt hieraus u = 0. Aus Lemma 2.8 ergibt sich

$$1 = \|u_n\|_{\mathrm{L}^p(\Omega)} \le C \left[|(u_n)_{\Omega}| + \|\nabla u_n\|_{\mathrm{W}^{-1,p}(\Omega)} \right] \to 0, \quad \text{für } n \to \infty.$$

Das folgende Lemma ist die Rechtfertigung dafür, die Stokes/Navier-Stokes-Gleichungen erst auf $L^p_{\sigma}(\Omega)$ zu lösen und liefert den zugehörigen Druck.

Hierzu definieren wir

 $f \in \mathrm{W}^{-1,p}_{\mathrm{loc}}(\Omega,\mathbb{C}^d) \iff f \in \mathrm{W}^{-1,p}(\Omega,\mathbb{C}^d)$ f. a. beschränkten Teilgebiete $\Omega_0 \subset \Omega$ mit $\overline{\Omega}_0 \subset \Omega$.

Lemma 2.10. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$, ein Gebiet und $\Omega_0 \subset \Omega$ ein beschränktes Teilgebiet mit $\overline{\Omega}_0 \subset \Omega$ und $\Omega_0 \neq \emptyset$. Weiterhin sei $1 und <math>f \in W^{-1,p}_{loc}(\Omega, \mathbb{C}^d)$ mit

$$\langle v, f \rangle_{\mathrm{W}_{0}^{1,p'}(\Omega), \mathrm{W}_{\mathrm{loc}}^{-1,p}(\Omega)} = 0 \quad \text{für alle } v \in \mathrm{C}_{\mathrm{c},\sigma}^{\infty}(\Omega).$$

Dann existiert ein eindeutiges $\pi \in L^p_{loc}(\Omega)$ mit

$$\nabla \pi = f$$

im Sinne von Distributionen und $\int_{\Omega_0} \pi \, dx = 0$.

Beweis. Wir beweisen erst folgende Aussage: Für jedes beschränkte Lipschitz-Teilgebiet $\Omega_1 \subset \Omega$ mit $\overline{\Omega}_0 \subset \Omega_1$ und $\overline{\Omega}_1 \subset \Omega$ existiert ein eindeutiges $\pi \in L^p(\Omega_1)$ mit $\nabla \pi = f$ im Sinne von Distributionen und $\int_{\Omega_0} \pi \, dx = 0$:

Sei Ω_2 ein weiteres beschränktes Lipschitzgebiet mit $\overline{\Omega}_1 \subset \Omega_2, \overline{\Omega}_2 \subset \Omega$ mit

$$\Omega_2 := (\Omega \cap \mathrm{B}(x_0, r)) \setminus \bigcup_{k=1}^N \mathrm{B}(x_n, \varepsilon)$$

so folgt aus $f \in W^{-1,p}_{loc}(\Omega, \mathbb{C}^d)$, dass $f \in W^{-1,p}(\Omega_2, \mathbb{C}^d)$. Da Ω_2 beschränkt ist, existiert (Übung) ein $F \in L^p(\Omega_2, \mathbb{C}^{d \times d})$ mit $f = \operatorname{div}(F)$, wobei

$$\operatorname{div} F = \sum_{i=1}^{d} \begin{pmatrix} \partial_{i} F_{i1} \\ \vdots \\ \partial_{i} F_{id} \end{pmatrix}.$$

Sei $\rho \in C_c^{\infty}(B(0,1))$ mit $\int_{B(0,1)} \rho \, dx = 1$, $\rho(x) = \rho(-x)$ und definiere für $0 < \varepsilon < \mathrm{dist}(\Omega_1, \partial \Omega_2)$

$$\rho_{\varepsilon}(x) \coloneqq \varepsilon^{-d} \rho\left(\frac{x}{\varepsilon}\right)$$

und

$$F^{\varepsilon} := \rho_{\varepsilon} * F$$

wobei F durch Null auf \mathbb{R}^d fortgesetzt wurde. Aus AnaIV wissen wir, dass F^{ε} glatt ist. Im Folgenden wollen wir zeigen, dass

$$\operatorname{div} F^{\varepsilon} = \nabla U_{\varepsilon} \quad \text{in } \Omega_1$$

für ein $U_{\varepsilon} \in C^{\infty}(\overline{\Omega}_1)$ gilt.

Sei $\gamma \colon [0,1] \to \overline{\Omega}_1$ ein stückweise stetig differenzierbarer Weg mit $\gamma(0) = \gamma(1)$. Aus Ana III wissen wir: div (F^{ε}) ist ein Gradientenfeld, falls für alle diese Wege gilt

$$\int_0^1 (\operatorname{div}(F^{\varepsilon}))(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t = 0.$$

Definiere

$$V_{\gamma,\varepsilon}(x) := \int_0^1 \rho_{\varepsilon}(x - \gamma(t)) \gamma'(t) dt$$
, für alle $x \in \Omega_2$.

Dann gilt $V_{\gamma,\varepsilon} \in C_c^{\infty}(\Omega_2, \mathbb{R}^d)$. Weiterhin gilt für alle $x \in \Omega_2$

$$\operatorname{div}(V_{\gamma,\varepsilon}(x)) = \int_0^1 \sum_{j=1}^d (\partial_j \rho_\varepsilon)(x - \gamma(t)) \gamma_j'(t) \, \mathrm{d}t = -\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \rho_\varepsilon(x - \gamma(t)) \, \mathrm{d}t$$
$$= \rho_\varepsilon(x - \gamma(0)) - \rho_\varepsilon(x - \gamma(1)) = 0.$$

Daraus folgt $V_{\gamma,\varepsilon} \in C^{\infty}_{c,\sigma}(\Omega_2)$ und weiter

$$\int_{0}^{1} (\operatorname{div}(F^{\varepsilon}))(\gamma(t)) \cdot \gamma'(t) \, dt = \int_{0}^{1} \int_{\Omega_{2}} \sum_{i,j=1}^{d} (\partial_{i} \rho_{\varepsilon}(\gamma(t) - x)) \gamma'_{j}(t) \, dt \, F_{ij}(x) \, dx$$

$$= -\int_{\Omega_{2}} \int_{0}^{1} \sum_{i,j=1}^{d} (\partial_{i} \rho_{\varepsilon})(\gamma(t) - x) \gamma'_{j}(t) \, dt \, F_{ij}(x) \, dx$$

$$= -\int_{\Omega_{2}} \sum_{i,j=1}^{d} \partial_{i} \left(\int_{0}^{1} \rho_{\varepsilon}(x - \gamma(t)) \gamma'_{j}(t) \, dt \right) F_{ij}(x) \, dx$$

$$= \langle V_{\gamma,\varepsilon}, \operatorname{div} F \rangle_{W_{0}^{1,p'}(\Omega_{2}), W^{-1,p}(\Omega_{2})}$$

$$= 0$$

Hieraus ergibt sich dass ein $U_{\varepsilon} \in C^{\infty}(\overline{\Omega}_{1})$ existiert mit $\nabla U_{\varepsilon} = \operatorname{div}(F^{\varepsilon})$, welches eindeutig bis auf eine additive Konstante ist. Wähle diese Konstante derart, dass $\int_{\Omega_{0}} U_{\varepsilon} dx = 0$. Lemma 2.9 liefert nun

$$||U_{\varepsilon}||_{L^{p}(\Omega_{1})} \leq C||\nabla U_{\varepsilon}||_{W^{-1,p}(\Omega_{1},\mathbb{C}^{d})} = C||\operatorname{div}(\mathcal{F}^{\varepsilon})||_{W^{-1,p}(\Omega_{1},\mathbb{C}^{d})}$$

$$= C \sup_{\substack{v \in \mathcal{C}_{c}^{\infty}(\Omega_{1},\mathbb{C}^{d}) \\ ||v||_{W^{1,p'}} \leq 1}} \left| \sum_{j=1}^{d} \langle F_{ij}^{\varepsilon}, \nabla v_{j} \rangle_{L^{p}(\Omega_{2}), L^{p'}(\Omega_{2})} \right|$$

$$\leq C||F^{\varepsilon}||_{L^{p}(\Omega_{1})}.$$

Mit demselben Argument zeigt man, dass für $0 < \eta < \varepsilon$ gilt

$$||U_{\varepsilon} - U_{\eta}||_{L^{p}(\Omega_{1})} \leq C||F^{\varepsilon} - F^{\eta}||_{L^{p}(\Omega_{1})}.$$

Aus Ana IV weiß man, dass $F^{\varepsilon} \to F$ in $L^p(\Omega_1, \mathbb{C}^{d \times d})$, für $\varepsilon \to 0$ gilt, woraus mittels obiger Abschätzung folgt, dass $(U_{\varepsilon})_{\varepsilon}$ ein Cauchy-Netz in $L^p(\Omega_1)$ ist. Daher existiert ein $U \in L^p(\Omega_1)$ mit $\int_{\Omega_0} U \, \mathrm{d}x = 0$, $\|u_{\varepsilon} - u\|_{L^p(\Omega_1)} \to 0$ für $\varepsilon \to 0$ und

$$\langle v, \nabla U \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})} = -\int_{\Omega_{1}} U \, \overline{\operatorname{div} v} \, \mathrm{d}x = -\lim_{\varepsilon \to 0} \int_{\Omega_{1}} U_{\varepsilon} \, \overline{\operatorname{div} v} \, \mathrm{d}x$$

$$= \lim_{\varepsilon \to 0} \langle v, \nabla U_{\varepsilon} \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})} = \lim_{\varepsilon \to 0} \langle v, \operatorname{div} (F^{\varepsilon}) \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})}$$

$$= \langle v, \operatorname{div} (F) \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})}.$$

Also gilt $\nabla U = \operatorname{div} F$ in $W^{-1,p}(\Omega_1, \mathbb{C}^d)$.

Schöpfe Ω nun durch beschränkte Lipschitzgebiete Ω_n aus, mit $\overline{\Omega}_0 \subset \Omega_1$ und $\overline{\Omega}_n \subset \Omega_{n+1}, n \in \mathbb{N}$. Auf jedem Ω_n erhält man ein eindeutiges $\pi_n \in L^p(\Omega_n)$ mit $\nabla \pi_n = f$ und $\int_{\Omega_0} \pi_n \, \mathrm{d}x = 0$. Aus der Eindeutigkeit folgt $\pi_n = \pi_{n-1}$ auf Ω_{n-1} . Also existiert ein $\pi \in L^p_{\mathrm{loc}}(\Omega)$ mit $\nabla \pi = f$ und $\int_{\Omega_0} \pi \, \mathrm{d}x = 0$.

Eine Anwendung für Lemma 2.10 sieht wie folgt aus: Sei A der Stokes-Operator auf $L^2_{\sigma}(\Omega)$ und $(e^{-tA})_{t\geq 0}$ die Stokes-Halbgruppe. Für $a\in L^2_{\sigma}(\Omega)$, t>0 gilt dann:

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\mathrm{e}^{-tA}a}_{=:u(t)} = -A \underbrace{\mathrm{e}^{-tA}a}_{=:u(t)}.$$

Mit der Definition des Stokes-Operators folgt einerseits

$$\int_{\Omega} u'(t)\overline{v} \, dx + \int_{\Omega} \nabla u(t)\overline{\nabla v} \, dx = 0, \quad \text{für alle } v \in H^1_{0,\sigma}(\Omega).$$

Andererseits ist für jedes t > 0

$$(v \mapsto \int_{\Omega} u'(t)\overline{v} \,dx + \int_{\Omega} \nabla u(t)\overline{\nabla v} \,dx) \in W^{-1,2}(\Omega, \mathbb{C}^d)$$

und mit Lemma 2.10 folgt daher, dass $\pi(t) \in L^2_{loc}(\Omega)$ existiert mit

$$\int_{\Omega} u'(t)\overline{v} \,dx + \int_{\Omega} \nabla u(t)\overline{\nabla v} \,dx = -\int_{\Omega} \pi(t)\overline{\operatorname{div}(v)} \,dx$$

und für alle $v \in C_c^{\infty}(\Omega, \mathbb{C}^d)$. D.h. u und π lösen im Sinne von Distributionen die Stokes-Gleichung:

$$u'(t) = -\Delta u(t) + \nabla \pi(t) = 0 \quad \text{in } \Omega,$$

$$\operatorname{div}(u(t)) = 0 \quad \text{in } \Omega,$$

$$u(0) = a \quad \text{in } \Omega,$$

$$u(t) = 0 \quad \text{auf } \partial \Omega.$$

Satz 2.11 (Helmholtz-Zerlegung). Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ ein Gebiet und

$$G(\Omega) := \{ f \in L^2(\Omega, \mathbb{C}^d) : \text{ es existiert } \pi \in L^2_{loc}(\Omega) \text{ mit } \nabla \pi = f \}.$$

Dann gilt $L^2_{\sigma}(\Omega)^{\perp} = G(\Omega)$. Insbesondere existiert für jedes $f \in L^2(\Omega, \mathbb{C}^d)$ eine eindeutige Zerlegung

$$f = f_0 + \nabla \pi$$

mit $f_0 \in L^2_{\sigma}(\Omega)$ und $\nabla \pi \in G(\Omega)$. Weiterhin gilt

$$||f_0||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)} \quad und \quad ||\nabla \pi||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)}.$$

Die orthogonale Projektion

$$\mathbb{P} \colon L^2(\Omega, \mathbb{C}^d) \to L^2(\Omega, \mathbb{C}^d), \quad f \to f_0,$$

wird als Helmholtz-Projektion und obige Zerlegung als Helmholtz-Zerlegung bezeichnet.

Beweis. Es genügt $L^2_{\sigma}(\Omega)^{\perp}=G(\Omega)$ zu zeigen. Die restlichen Aussagen folgen dann aus der Funktionalanalysis.

Sei $\nabla \pi \in G(\Omega)$ und $\varphi \in C^{\infty}_{c,\sigma}(\Omega)$. Dann gilt

$$\int_{\Omega} \varphi \cdot \overline{\nabla \pi} \, \mathrm{d}x = -\int_{\Omega} \operatorname{div} \varphi \, \overline{\pi} \, \mathrm{d}x = 0.$$

Ein Dichtheitsargument liefert $\nabla \pi \in L^2_{\sigma}(\Omega)^{\perp}$.

Nun sei $f\in \mathrm{L}^2_\sigma(\Omega)^\perp.$ Dann gilt

$$\int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x \in \mathrm{W}^{-1,2}(\Omega, \mathbb{C}^d), \quad \text{für alle } v \in \mathrm{L}^2_{\sigma}(\Omega).$$

Die Hölder-Ungleichung liefert nun, dass

$$(v \mapsto \int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x) \in \mathrm{W}^{-1,2}(\Omega, \mathbb{C}^d).$$

Mit Lemma 2.10 folgt sodann die Existenz von $\pi \in L^2_{loc}(\Omega)$ mit $\nabla \pi = f$ im Sinne von Distributionen, d.h.

$$\int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x = - \int_{\Omega} \pi \cdot \overline{\mathrm{div} \, v} \, \mathrm{d}x, \quad \text{für alle } v \in \mathrm{C}^{\infty}_{\mathrm{c}}(\Omega, \mathbb{C}^{d}).$$

Daraus folgt $f = \nabla \pi \in G(\Omega)$.

Kapitel 3

Die Ungleichung von Gagliardo-Nirenberg

Notation 3.1. Sei $-\infty < \frac{1}{p} \le 1$. Fall $0 \le \frac{1}{p} \le 1$, dann definiere

$$\|\cdot\|_{X_{\frac{1}{p}}}\coloneqq\|\cdot\|_{\mathbf{L}^p}$$

und falls $-\infty < \frac{1}{p} < 0$ sei $\alpha \in [0,1)$ und $k \in \mathbb{N}_0$ derart, dass $-\frac{d}{p} = k + \alpha$. Definiere

$$\|\cdot\|_{X_{\frac{1}{p}}} := \begin{cases} \|\nabla^k \cdot\|_{\mathbf{L}^{\infty}}, & \alpha = 0, \\ [\nabla^k \cdot]_{\alpha}, & \alpha \neq 0, \end{cases}$$

wobei $[\,\cdot\,]_{\alpha}$ die Hölder-Halbnorm zum Exponenten α bezeichne.

Hauptsatz 3.2 (Gagliardo-Nirenberg). Seien $1 \le q, r < \infty, d \ge 2$ und $j, m \in \mathbb{N}_0$ mit $0 \le j \le m$. Weiterhin sei

$$\begin{cases} \frac{j}{m} \leq \alpha \leq 1, & \text{falls } m - j - \frac{d}{r} \notin \mathbb{N}_0 \\ \frac{j}{m} \leq \alpha < 1, & \text{falls } m - j - \frac{d}{r} \in \mathbb{N}_0. \end{cases}$$

und

$$\frac{1}{p} := \frac{j}{d} + \alpha \left(\frac{1}{r} - \frac{m}{d} \right) + (1 - \alpha) \frac{1}{q}.$$

Dann ist $\frac{1}{p} \le 1$ und es existiert eine Konstante

$$C = C(d, m, j, q, r, \alpha) > 0,$$

sodass für alle $u \in C_c^m(\mathbb{R}^d)$ gilt

$$\|\nabla^j u\|_{X_{\frac{1}{n}}} \leq C \, \|\nabla^m u\|_{\mathrm{L}^r}^\alpha \, \|u\|_{\mathrm{L}^q}^{1-\alpha}.$$

Für den Beweis benötigen wir einige Vorbetrachtungen.

Lemma 3.3. Sei $r > d \ge 2$. Dann existiert C = C(d,r) > 0, sodass für alle $u \in C_c^1(\mathbb{R}^d)$ und $x, y \in \mathbb{R}^d$ gilt

$$\frac{|u(x) - u(y)|}{|x - y|^{1 - \frac{d}{r}}} < C \, \|\nabla u\|_{\mathbf{L}^r}.$$

Beweis. Sei $\delta \coloneqq |x-y|$ und $\mathbf{B} \coloneqq \mathbf{B}(x,\delta) \cap \mathbf{B}(y,\delta)$. Dann gilt

$$|u(x) - u(y)| \cdot |B| \le \int_{B} |u(x) - u(z)| dz + \int_{B} |u(z) - u(y)| dz.$$

Anwendung des Hauptsatzes liefert für das erste Integral

$$\begin{split} \int_{\mathbf{B}} |u(x) - u(z)| \, \mathrm{d}z &\leq \int_{\mathbf{B}(x,\delta)} \int_{0}^{|x-z|} \left| \frac{\mathrm{d}}{\mathrm{d}t} \Big[u(x + t \frac{z - x}{|z - x|}) \Big] \right| \, \mathrm{d}t \, \mathrm{d}z \\ &= \int_{\mathbf{B}(0,\delta)} \int_{0}^{|z'|} \left| \frac{\mathrm{d}}{\mathrm{d}t} \Big[u(x + t \frac{z'}{|z'|}) \Big] \right| \, \mathrm{d}t \, \mathrm{d}z' \\ &= \int_{\partial \mathbf{B}(0,1)} \int_{0}^{\delta} \left(\int_{0}^{\rho} \left| \frac{\mathrm{d}}{\mathrm{d}t} u(x + t\omega) \right| \, \mathrm{d}t \right) \rho^{d-1} \, \mathrm{d}\rho \, \mathrm{d}\sigma(\omega) \\ &= \int_{\partial \mathbf{B}(0,1)} \int_{0}^{\delta} \left(\int_{t}^{\delta} \rho^{d-1} \, \mathrm{d}\rho \right) \left| \frac{\mathrm{d}}{\mathrm{d}t} \big[u(x + t\omega) \big] \right| \, \mathrm{d}t \, \mathrm{d}\sigma(\omega) \\ &\leq \frac{\delta^{d}}{d} \int_{\mathbf{B}(0,\delta)} |z'|^{1-d} |\nabla u(x + z')| \, \mathrm{d}z' \\ &\leq \frac{\delta^{d}}{d} \left(\int_{\mathbf{B}(0,\delta)} |z'|^{\frac{r(1-d)}{r-1}} \, \mathrm{d}z' \right)^{\frac{r-1}{r}} \|\nabla u\|_{\mathbf{L}^{r}(\mathbf{B}(x,\delta))} \\ &\leq \frac{\delta^{d}}{d} \sigma(\mathbf{B}(0,1))^{\frac{r-1}{r}} \left(\int_{0}^{\delta} s^{d-1} s^{\frac{r(1-d)}{r-1}} \, \mathrm{d}s \right)^{\frac{r-1}{r}} \|\nabla u\|_{\mathbf{L}^{r}(\mathbf{B}(x,\delta))} \end{split}$$

und, da
$$d-1+\frac{r(1-d)}{r-1}=\frac{(d-1)(r-1)+r-rd}{r-1}=\frac{1-d}{r-1}$$
, folgt
$$=\sigma(\mathbf{B}(0,1))^{\frac{r-1}{r}}\frac{\delta^{d+1-\frac{d}{r}}}{d(\frac{r-d}{r-1})^{\frac{r-1}{r}}}\|\nabla u\|_{\mathbf{L}^r(\mathbf{B}(x,\delta))}.$$

Aus Symmetriegründen folgt

$$\int_{\mathcal{B}} |u(z) - u(y)| \, \mathrm{d}z \le C\delta^{d+1-\frac{d}{r}} \|\nabla u\|_{\mathrm{L}^{r}(\mathcal{B}(y,\delta))},$$

wobei $C := (d(\frac{r-d}{r-1})^{\frac{r-1}{r}})^{-1}$. Weiterhin folgt aus $B(\frac{1}{2}(x+y), \frac{\delta}{2}) \subset B$, dass $|B| \ge |B(0,1)|2^{-d}\delta^d$. Hieraus ergibt sich

$$|u(x) - u(y)|\delta^d \le C\delta^{d+1-\frac{d}{r}} \|\nabla u\|_{\mathrm{L}^r(\mathbb{R}^d)},$$

wobei
$$C = C(d, r)$$
.

Das folgende Lemma reduziert den Beweis von Haupsatz 3.2 auf wenige Spezialfälle.

Lemma 3.4. a) Angenommen die Ungleichung in Haupsatz 3.2 gelte für $\alpha = \frac{1}{m}$ mit j = 1 und m = 2, dann gilt die Ungleichung auch für $\alpha = \frac{j}{m}$ und jedes $0 \le j < m$.

- b) Angenommen die Ungleichung in Haupsatz 3.2 gelte für $\alpha = 1$, j = 0 und m = 1 (wobei $d \neq r$), dann gilt die Ungleichung auch für $\alpha = 1$ und jedes $0 \leq j < m$ vorausgesetzt $m j \frac{d}{r} \notin \mathbb{N}_0$.
- c) Für alle $-\infty < \lambda \le \mu \le \nu \le 1$ existiert $C = C(\lambda, \mu, \nu) > 0$, sodass für alle $f \in X_{\nu} \cap X_{\lambda}$ die sogennante Interpolationsungleichung

$$||f||_{X_{\mu}} \le C ||f||_{X_{\lambda}}^{\frac{\nu-\mu}{\nu-\lambda}} ||f||_{X_{\nu}}^{\frac{\mu-\lambda}{\nu-\lambda}}$$

gilt. Insbesondere ist $f \in X_{\mu}$.

d) Angenommen die Ungleichung in Haupsatz 3.2 gelte für $\alpha = \frac{j}{m}$ und $\alpha = 1$, dann gilt diese auch für jedes $\frac{j}{m} \leq \alpha \leq 1$.

Beweis. Übung für Ehrgeizige. Für Faule folgt der Beweis. Alle Ungleichungen sind bis auf Konstanten zu verstehen.

a) Angenommen, die Aussage gelte bis einschließlich m-1 für ein $m \in \mathbb{N}$. Sei 1 < j < m-1 und damit $\alpha = \frac{j}{m}$. Seien zusätzlich $1 \le q, r < \infty$ und damit

$$\frac{1}{p} = \frac{j}{d} + \alpha \left(\frac{1}{r} - \frac{m}{d}\right) + (1 - \alpha) \cdot \frac{1}{q} = \frac{j}{mr} + \left(1 - \frac{j}{m}\right) \frac{1}{q}$$

Insbesondere gilt also $0 \le \frac{1}{p} \le 1$. Wir setzen

$$j^* = 1$$
, $m^* = m - j + 1 \le m - 1$ und $\alpha^* = \frac{j^*}{m^*}$

sowie

$$j^{**} = j - 1$$
, $m^{**} = j$ und $\alpha^{**} = \frac{j^{**}}{m^{**}}$

und rechnen

$$\|\nabla^{j} u\|_{p} = \|\nabla^{1}(\nabla^{j-1} u)u\|_{p}$$

$$\leq \|\nabla^{m^{*}}(\nabla^{j-1})u\|_{r_{1}}^{\alpha^{*}}\|\nabla^{j-1} u\|_{q_{1}}^{(1-\alpha^{*})}$$

$$\leq \|\nabla^{m} u\|_{r_{1}}^{\alpha^{*}} \left[\|\nabla^{m^{**}} u\|_{r_{2}}^{\alpha^{**}}\|u\|_{q_{2}}^{(1-\alpha^{**})}\right]^{(1-\alpha^{*})},$$

wobei $r_i, q_i, i \in \{1, 2\}$ passend gewählt seien. Wir verechnen zunächst die Exponenten:

$$\alpha^{**}(1 - \alpha^{*}) = \frac{j^{**}}{m^{**}}(1 - \frac{j^{*}}{m^{*}})$$

$$= \frac{j-1}{j}(1 - \frac{1}{m-j+1})$$

$$= \frac{j(m-j+1) - (m-j+1) - j + 1}{j(m-j+1)}$$

$$= \frac{j(m-j+1) - m}{j(m-j+1)}$$

weiter erhalten wir

$$(1 - \alpha^{**})(1 - \alpha^{*}) = 1 - \alpha^{**} - \alpha^{*} + \alpha^{*}\alpha^{**}$$

$$= 1 - \frac{j-1}{j} - \frac{1}{m-j+1} + \frac{1}{m-j+1} \cdot \frac{j-1}{j}$$

$$= 1 + \frac{-(j-1)(m-j+1) - j + j + 1}{j(m-j+1)}$$

$$= \frac{j(m-j+1) + (m-j+1) - j(m-j+1) - 1}{j(m-j+1)}$$

$$= \frac{m-j}{j(m-j+1)}.$$

Setzen wir nun

$$\beta := 1 - \alpha^{**}(1 - \alpha^*) = \frac{m}{j(m - j + 1)},$$

so erhalten wir

$$\frac{\alpha^*}{\beta} = \frac{1}{m-j+1} \cdot \frac{j(m-j+1)}{m} = \frac{j}{m}$$

sowie

$$\frac{(1-\alpha^{**})(1-\alpha^{*})}{\beta} = \frac{m-j}{j(m-j+1)} \cdot \frac{j(m-j+1)}{m} = 1 - \frac{j}{m}$$

Nehmen wir zusätzlich an, dass

$$r_1 = r$$
, $r_2 = p$ und $q_2 = q$

gelten, so folgt

$$\|\nabla^{j}u\|_{p}^{\beta} \leq \|\nabla^{m}u\|_{r}^{\alpha^{*}}\|u\|_{q}^{(1-\alpha^{**})(1-\alpha^{*})}$$

und daraus durch $(\cdot)^{\frac{1}{\beta}}$ die Behauptung.

Wir prüfen nun, ob sich r_1 , r_2 und q_2 nach unserem Wunsch wählen lassen. Dazu müssen folgende Gleichunge erfüllt werden.

(I)
$$\frac{1}{p} = \frac{j}{mr} + (1 - \frac{j}{m})\frac{1}{q}$$

(II)
$$\frac{1}{p} = \frac{j^*}{m^*r} + \left(1 - \frac{j^*}{m^*}\right)\frac{1}{q_1} = \frac{1}{r(m-j+1)} + \left(1 - \frac{1}{m-j+1}\right)\frac{1}{q_1}$$

(III)
$$\frac{1}{q_1} = \frac{j^{**}}{m^{**}p} + \left(1 - \frac{j^{**}}{m^{**}}\right)\frac{1}{q} = \frac{j-1}{jp} + \left(1 - \frac{j-1}{j}\right)\frac{1}{q}.$$

Einsetzen von (III) in (II) ergibt:

(IV)
$$\frac{1}{p} \underbrace{\left[1 - (1 - \frac{1}{m - j + 1})(\frac{j - 1}{j})\right]}_{=:A} = \underbrace{\frac{1}{r(m - j + 1)}}_{=:B} + \underbrace{\left(1 - \frac{1}{m - j + 1})(1 - \frac{j - 1}{j}\right)}_{=:B} \underbrace{\frac{1}{q}}_{q}$$

Und weiter

$$A = 1 - \frac{j-1}{j} + \frac{j-1}{j(m-j+1)} = \frac{1}{j} + \frac{j-1}{j(m-j+1)} = \frac{m-j+1+j-1}{j(m-j+1)} = \frac{m}{j(m-j+1)}$$

sowie

$$B = \frac{m - j}{m - j + 1} \cdot \frac{1}{j} = \frac{m - j}{j(m - j + 1)}$$

Division durch A in (IV) ergibt

$$\frac{1}{p} = \frac{j(m-j+1)}{m} \cdot \frac{1}{m-j+1} \cdot \frac{1}{r} + \frac{j(m-j+1)}{m} \cdot \frac{m-j}{j(m-j+1)} \cdot \frac{1}{q}$$
$$= \frac{j}{m} \cdot \frac{1}{r} + (1-\frac{j}{m})\frac{1}{q}.$$

Im Falle j = 1 schätzen wir wie folgt ab:

$$\|\nabla u\|_{p} \leq \|\nabla^{m-1}u\|_{r_{1}}^{\alpha^{*}} \|u\|_{q_{1}}^{1-\alpha^{*}}$$

$$= \|\nabla^{m-2}\nabla u\|_{r_{1}}^{\alpha^{*}} \|u\|_{q_{1}}^{1-\alpha^{*}}$$

$$\leq \left[\|\nabla^{m-1}\nabla u\|_{r_{2}}^{\alpha^{**}} \|\nabla u\|_{q_{2}}^{1-\alpha^{**}}\right]^{\alpha^{*}} \|u\|_{q_{1}}^{1-\alpha^{*}}$$

Im Falle j = m - 1 schätzen wir ähnlich ab:

$$\begin{split} \|\nabla^{m-1}u\|_p &= \|\nabla^{m-2}\nabla u\|_p \\ &\leq \|\nabla^{m-1}\nabla u\|_{r_1}^{\alpha^*} \|\nabla u\|_{q_1}^{1-\alpha^*} \\ &\leq \|\nabla^m u\|_{r_1} \Big[\|\nabla^{m-1}u\|_{r_2}^{\alpha^{**}} \|u\|_{q_2}^{1-\alpha^{**}} \Big]^{1-\alpha^*} \end{split}$$

Analoge Rechnungen ergeben, dass sich r_i , q_i , $i \in \{1,2\}$ immer passend wählen lassen.

b) Angenommen, die Aussage gelte bis einschließlich m-1 für ein $m\in\mathbb{N}$. Sei $0\leq j< m$ und $\alpha=1$. Sei zusätzlich $1\leq r<\infty$ und damit

$$\frac{1}{p} = \frac{j}{d} + (\frac{1}{r} - \frac{m}{d}) = \frac{1}{d}(j - m + \frac{d}{r}),$$

wobei wir voraussetzen wollen, dass $-(j-m+\frac{d}{r})\notin\mathbb{N}_0.$ Wir rechnen

$$\|\nabla^j u\|_p \le \|\nabla^{m-1} u\|_{r_1} \le \|\nabla\nabla^{m-1} u\|_{r_2} = \|\nabla^m u\|_{r_2},$$

wobei wir gerne $r_2 = r$ wählen würden. Um zu gewährleisten, dass dies möglich ist müssen folgende Gleichungen erfüllt sein:

(I)
$$\frac{1}{p} = \frac{1}{d}(j - (m-1) + \frac{d}{r_1})$$

(II)
$$\frac{1}{r_1} = \frac{1}{d}(0 - 1 + \frac{d}{r}).$$

Einsetzen von (II) in (I) ergibt

$$\frac{1}{d}(j - (m-1) + (-1 + \frac{d}{r})) = \frac{1}{d}(j - m + \frac{d}{r}).$$

Somit ist die Behauptung erfüllt, falls $1-\frac{d}{r}\notin\mathbb{N}_0$ gilt. Angenommen, das Gegenteil wäre der Fall, so würde gelten

$$m - j - \frac{d}{r} = m - j - 1 + 1 - \frac{d}{r} \in \mathbb{N}_0$$

im Widerspruch zur Voraussetzung.

c) Für $0 \le \lambda \le \mu \le \nu \le 1$ ist dies gerade die aus Ana IV bekannte Interpolationsungleichung.

Nun sind wir in der Lage Haupsatz 3.2 zu beweisen.

Beweis von Haupsatz 3.2. Dass $\frac{1}{p} \le 1$ gilt, ist Übungsaufgabe. Lemma 3.4 reduziert den Beweis auf die folgenden Fälle

Fall 1:
$$\alpha = 1, j = 0, m = 1 \text{ (für } r \neq d).$$

Fall 2:
$$\frac{j}{m} < \alpha < 1$$
 und $m - j - \frac{d}{r} \in \mathbb{N}_0$.

Fall 3:
$$\alpha = \frac{1}{2}, j = 1, m = 2.$$

Fall 1: $\alpha=1,\,j=0,\,m=1$. Es gilt $\frac{1}{p}=\frac{1}{r}-\frac{1}{d}$. Sei erst r>d, und damit $\frac{1}{p}<0$ und $-\frac{d}{p}=1-\frac{d}{r}\quad (\text{H\"older-Exponent zu }X_{\frac{1}{p}})$

Dann folgt die Behauptung aus Lemma 3.3. Sei nun $r = 1 < d, x \in \mathbb{R}^d, 1 \le i \le d$ und $\gamma_i \colon (-\infty, \infty) \to \mathbb{R}^d$ definiert durch $\gamma_i(t) \coloneqq x + te_i$. Es sei $u \in C^1(\mathbb{R}^d)$ mit kompaktem Träger. Dann gilt

$$u(x) = \int_{-\infty}^{0} \frac{\mathrm{d}}{\mathrm{d}t} (u(\gamma_i(t))) \, \mathrm{d}t = -\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} (u(\gamma_i(t))) \, \mathrm{d}t.$$

Wir rechnen zunächst

$$|u(x)| \le \frac{1}{2} \int_{-\infty}^{\infty} \left| \frac{\mathrm{d}}{\mathrm{d}t} u(\gamma_i(t)) \right| \mathrm{d}t = \frac{1}{2} \int_{-\infty}^{\infty} \left| \partial_i u(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_d) \right| \mathrm{d}y_i$$

Daraus folgt

$$|u(x)|^{\frac{d}{d-1}} \le \frac{1}{2^{\frac{d}{d-1}}} \prod_{i=1}^{d} \left(\int_{-\infty}^{\infty} \left| \frac{\mathrm{d}}{\mathrm{d}t} u(\gamma_i(t)) \right| \mathrm{d}t \right)^{\frac{1}{d-1}}.$$

Integration über x_1 ergibt

$$\int_{-\infty}^{\infty} |u(x)|^{\frac{d}{d-1}} dx_1$$

$$\leq \frac{1}{2^{\frac{d}{d-1}}} \left(\int_{-\infty}^{\infty} \left| \frac{d}{dt} u(\gamma_1(t)) \right| dt \right)^{\frac{1}{d-1}} \int_{-\infty}^{\infty} \prod_{i=2}^{d} \left(\int_{-\infty}^{\infty} \left| \frac{d}{dt} u(\gamma_i(t)) \right| dt \right)^{\frac{1}{d-1}} dx_1$$

$$\leq \frac{1}{2^{\frac{d}{d-1}}} \left(\int_{-\infty}^{\infty} |\partial_i u(x)| dx_1 \right)^{\frac{1}{d-1}} \prod_{i=2}^{d} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \frac{d}{dt} u(\gamma_i(t)) \right| dx_1 dt \right)^{\frac{1}{d-1}}$$

Induktive Integration über x_1, \ldots, x_d liefert

(*)
$$\int_{\mathbb{R}^d} |u(x)|^{\frac{d}{d-1}} \, \mathrm{d}x \le \frac{1}{2^{\frac{d}{d-1}}} \prod_{i=1}^d \left(\int_{\mathbb{R}^d} |\partial_i u(x)| \, \mathrm{d}x \right)^{\frac{1}{d-1}}$$

Daraus ergibt sich die Behauptung für r=1. Sei nun 1 < r < d. Definiere $v \coloneqq |u|^{\frac{(d-1)r}{d-r}}$. Da $\frac{(d-1)r}{d-r} > 1$ folgt $v \in \mathrm{C}^1_{\mathrm{c}}(\mathbb{R}^d)$, somit ist (*) mit u=v anwendbar und wir rechnen

$$\left(\int_{\mathbb{R}^d} |u(x)|^{\frac{rd}{d-r}} dx\right)^{\frac{d-1}{d}} = \left(\int_{\mathbb{R}^d} |v(x)|^{\frac{d}{d-1}} dx\right)^{\frac{d-1}{d}}
\leq \frac{1}{2^{\frac{d-r}{r(d-1)}}} \prod_{i=1}^d \left(\int_{\mathbb{R}^d} |\partial_i v(x)| dx\right)^{\frac{1}{d}}
\leq C(d,r) \prod_{i=1}^d \left(\int_{\mathbb{R}^d} |\partial_i u(x)| |u(x)|^{\frac{d(r-1)}{d-r}} dx\right)^{\frac{1}{d}}
\leq C(d,r) \left[\prod_{i=1}^d \left(\int_{\mathbb{R}^d} |\partial_i u(x)|^r\right)^{\frac{1}{rd}} \right] \left(\int_{\mathbb{R}^d} |u(x)|^{\frac{rd}{d-r}} dx\right)^{\frac{(r-1)}{r}}.$$

Abschließend teilen wir durch das u Integral und erhalten

$$\left(\int_{\mathbb{R}^d} |u(x)|^{\frac{rd}{d-r}} \, \mathrm{d}x\right)^{\frac{d-r}{rd}} \le C(d,r) \prod_{i=1}^d \left(\int_{\mathbb{R}^d} |\partial_i u(x)|^r \, \mathrm{d}x\right)^{\frac{1}{rd}}.$$

Es gilt übrigens

$$C(d,r) = \frac{r}{2} \frac{d-1}{d-r}.$$

Damit wäre die Behauptung im Falle 1 < r < d gezeigt.

Fall 2:

Kapitel 4

Der Stokes-Operator auf L^p_{σ}

In diesem Kapitel geben wir einen Überblick über die L^p -Theorie der Helmholtz-Zerlegung und des Stokes-Operators.

Sei $\Omega \subset \mathbb{R}^d, d \geq 2$ offen, 1 und

$$G_p(\Omega) := \{ f \in L^p(\Omega, \mathbb{C}^d) : \text{ es ex. } \pi \in L^p_{loc}(\Omega) \text{ mit } \nabla \pi = f \}.$$

Wir sagen, dass auf Ω die Helmoltz-Zerlegung existiert, falls

$$L^p(\Omega; \mathbb{C}^d) = L^p_{\sigma}(\Omega) \oplus G_p(\Omega)$$

im Sinne einer algebraischen Summenzerlegung gilt.

Als nächstes betrachten wir folgendes Neumann-Problem (NP):

Gegeben sei $u \in L^p(\Omega; \mathbb{C}^d)$. Finde eine bis auf Konstanten eindeutige Funktion π in $L^p_{loc}(\Omega)$ mit $\nabla \pi \in L^p(\Omega; \mathbb{C}^d)$, sodass

$$\int_{\Omega} \nabla \pi \cdot \overline{f} \, \mathrm{d}x = \int_{\Omega} u \cdot \overline{f} \, \mathrm{d}x, \quad \text{für alle } f \in \mathrm{G}_{p'}(\Omega),$$

wobei $\frac{1}{p} + \frac{1}{p'} = 1$.

Formal gilt: Schreibt man $f = \nabla \phi$, wobei $\phi \in L^{p'}_{loc}(\Omega)$, so folgt durch partielle Integration

$$\begin{split} -\int_{\Omega} \Delta \pi \cdot \overline{\phi} \, \mathrm{d}x &= -\int_{\partial \Omega} n \cdot \nabla \pi \overline{\phi} \, \mathrm{d}s + \int_{\Omega} \nabla \pi \cdot \overline{\nabla \phi} \, \mathrm{d}x \\ &= -\int_{\partial \Omega} n \cdot \nabla \pi \overline{\phi} \, \mathrm{d}s + \int_{\Omega} u \cdot \overline{\nabla \phi} \, \mathrm{d}x \\ &= -\int_{\partial \Omega} n \cdot [u - \nabla \pi] \overline{\phi} \, \mathrm{d}x - \int_{\Omega} \mathrm{div} \, (u) \overline{\phi} \, \mathrm{d}x, \end{split}$$

d.h. ϕ löst (formal) das Neumann-Problem

$$\begin{cases}
-\Delta \pi = \operatorname{div}(u) & \text{in } \Omega \\
n \cdot \nabla \pi = n \cdot u & \text{auf } \partial \Omega.
\end{cases}$$

Hier bezeichnet n den äußeren Einheitsnormalenvektor von Ω .

Satz 4.1. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$, offen und $1 . Dann existiert genau dann die Helmholtz-Zerlegung auf <math>L^p(\Omega; \mathbb{C}^d)$, wenn (NP) für alle $u \in L^p(\Omega; \mathbb{C}^d)$ lösbar ist.

Beweis. " \Rightarrow ": Sei $u \in L^p(\Omega; \mathbb{C}^d)$. Dann existiert eine eindeutige Zerlegung

$$u = u_0 + \nabla \pi \text{ mit } u_0 \in L^p_\sigma(\Omega), \nabla \pi \in G_p(\Omega).$$

Weiterhin gilt für $f \in G_{p'}(\Omega)$

$$\int_{\Omega} \nabla \pi \cdot \overline{f} = \int_{\Omega} u \cdot \overline{f} \, dx - \int_{\Omega} u_0 \overline{f} \, dx = \int_{\Omega} u \cdot \overline{f} \, dx,$$

da $f = \nabla \phi$ für ein $\phi \in L^{p'}_{loc}(\Omega)$ und $\phi_n \to u_0$ in L^p für eine Folge $(\phi_n)_{n \in \mathbb{N}} \subset C^{\infty}_{c,\sigma}(\Omega)$.

Eindeutigkeit folgt aus der Rückrichtung des Beweises, denn existiert ein weiteres ϑ mit $\nabla \vartheta \in G_p(\Omega)$, das (NP) löst, liefert dies eine weitere Zerlegung von u, die nach Eindeutigkeit der Helmoltz-Zerlegung $\nabla(\vartheta - \pi) = 0$ impliziert.

" \Leftarrow ": Sei $u \in L^p(\Omega; \mathbb{C}^d)$. Dann existiert $\pi \in L^p_{loc}(\Omega)$ mit $\nabla \pi \in L^p(\Omega; \mathbb{C}^d)$, sodass

(*)
$$\int_{\Omega} \nabla \pi \cdot \overline{f} \, \mathrm{d}x = \int_{\Omega} u \cdot \overline{f} \, \mathrm{d}x, \quad \text{für alle } f \in G_{p'}(\Omega).$$

Definiere $u_0 := u - \nabla \pi$. Zeige nun $u_0 \in L^p_{\sigma}(\Omega)$: Aus (*) folgt zunächst $u_0 \in G_{p'}(\Omega)^{\perp}$. Gilt nun auch noch

so folgt die Behauptung aus nochmaliger Bildung des Annihilators, also

$$u_0 \in \mathcal{G}_{p'}(\Omega)^{\perp} \subset (\mathcal{L}^p_{\sigma}(\Omega)^{\perp})^{\perp} = \mathcal{L}^p_{\sigma}(\Omega).$$

Weise also (**) nach. Für $v \in L^p_\sigma(\Omega)^\perp$ gilt per definitionem $v \in L^{p'}(\Omega; \mathbb{C}^d)$ und

$$\int_{\Omega} v \cdot \overline{w} \, \mathrm{d}x = 0, \quad \text{für alle } w \in L^p_{\sigma}(\Omega).$$

Dann liefert Lemma 2.10, dass ein $\phi \in L^{p'}_{loc}(\Omega)$ existiert mit

$$\int_{\Omega} v \cdot \overline{\varphi} \, \mathrm{d}x = -\int_{\Omega} \phi \, \overline{\mathrm{div} \, (\varphi)} \, \mathrm{d}x, \quad \text{für alle } \varphi \in \mathrm{C}_{c}^{\infty}(\Omega; \mathbb{C}^{d}).$$

Da $v \in L^{p'}(\Omega; \mathbb{C}^d)$, folgt $\nabla \phi \in L^{p'}(\Omega; \mathbb{C}^d)$ und $v = \nabla \phi$. Hieraus ergibt sich $v \in G_{p'}(\Omega)$, womit die Inklusion $L^p_{\sigma}(\Omega)^{\perp} \subset G_{p'}(\Omega)$ bewiesen wäre.

Es bleibt die Eindeutigkeit der Zerlegung $u = u_0 + \nabla \pi$ zu zeigen. Angenommen

$$u_0 + \nabla \pi = \tilde{u}_0 + \nabla \tilde{\pi}$$
, für $u_0, \tilde{u}_0 \in L^p_{\sigma}(\Omega)$ und $\nabla \pi, \nabla \tilde{\pi} \in G_p(\Omega)$.

Dies ist äquivalent dazu, dass

$$v := u_0 - \tilde{u}_0 = \nabla(\tilde{\pi} - \pi) =: \phi.$$

Wegen $L^p_{\sigma}(\Omega) \subset G_{p'}(\Omega)^{\perp}$ folgt

$$\int_{\Omega} \nabla \phi \cdot \overline{f} \, \mathrm{d}x = 0, \quad \text{für alle } f \in \mathrm{G}_{p'}(\Omega).$$

Die Eindeutige Lösbarkeit (bis auf Addition von Konstanten) von (NP) liefert $\nabla \phi = 0$.

Satz 4.1 wird benutzt, um die Existenz der Helmholtz-Zerlegung auf $L^p(\Omega; \mathbb{C}^d)$ zu beweisen. Auf beschränkten Lipschitz-Gebieten wurde z.B. folgendes Resultat durch Fabes, Mendez und Mitrea im Jahr 1998 bewiesen.

Hauptsatz 4.2. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 3$, ein beschränktes Lipschitz-Gebiet. Dann existiert $\varepsilon = \varepsilon(\Omega, d) > 0$, sodass für alle $\frac{3}{2} - \varepsilon die Helmholtz-Zerlegung auf <math>L^p(\Omega; \mathbb{C}^d)$ existiert. Weiterhin ist die Projektion

$$\mathbb{P} \colon \mathrm{L}^p(\Omega; \mathbb{C}^d) \to \mathrm{L}^p(\Omega; \mathbb{C}^d)$$

stetig.

Bemerkung 4.3. • Im Falle d = 2 gilt Hauptsatz 4.2 für $\frac{4}{3} - \varepsilon .$

- Das Intervall $\frac{3}{2} \varepsilon in Haupsatz 4.2 ist scharf, d.h., für jedes <math>p \in (1, \infty) \setminus [\frac{3}{2}, 3]$ existiert ein beschränktes Lipschitz-Gebiet Ω , sodass die Helmholtz-Zerlegung auf $L^p(\Omega; \mathbb{C}^d)$ nicht existiert.
- Ist Ω beschränkt mit C¹-Rand oder konvex, so gilt Hauptsatz 4.2 für 1 .
- Es existieren unbeschränkte C^{∞} -Gebiete, sodass die Helmholtz-Zerlegung für p genügend groß (aber auch für p genügend nah bei 1) nicht existiert.

Proposition 4.4. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$, ein beschränktes Gebiet und $1 derart, dass die Helmholtz-Zerlegung auf <math>L^p(\Omega; \mathbb{C}^d)$ existiert und die zugehörige Projektion \mathbb{P}_p mit Bild $L_p^{\sigma}(\Omega)$ beschränkt ist. Dann existiert die Helmholtz-Zerlegung auf $L^{p'}(\Omega; \mathbb{C}^d)$, wobei $\frac{1}{p} + \frac{1}{p'} = 1$, die zugehörige Projektion $\mathbb{P}_{p'}$ mit Bild $L_{\sigma}^{p'}(\Omega)$ ist beschränkt, es gilt $(\mathbb{P}_p)' = \mathbb{P}_{p'}$ in dem Sinne, dass die Adjungierte von \mathbb{P}_p kanonisch als Operator auf $L^{p'}(\Omega; \mathbb{C}^d)$ aufgefasst wird. Weiterhin gilt $(L_{\sigma}^p(\Omega))' \simeq L_{\sigma}^{p'}(\Omega)$.

Beweis. Wir wissen, dass aus der Beschränktheit von \mathbb{P}_p auch die Beschränktheit von $(\mathbb{P}_p)'$ folgt. Ist \mathbb{P}_p eine Projektion, so ist insbesondere $(\mathbb{P}_p)'$ eine Projektion. Sei nun $\mathbb{P}_{p'}$ die kanonische Identifizierung von $(\mathbb{P}_p)'$ auf $L^{p'}(\Omega; \mathbb{C}^d)$. Seien $\varphi \in C_{c,\sigma}^{\infty}(\Omega)$, $f \in C_c^{\infty}(\Omega; \mathbb{C}^d)$. Dann gilt

$$\int_{\Omega} \mathbb{P}_{p'} \, \varphi \cdot \overline{f} = \int_{\Omega} \varphi \cdot \overline{\mathbb{P}_p \, f} \, \mathrm{d}x,$$

nach Definition der dualen Abbildung,

$$=\int_{\Omega} \varphi \cdot \overline{\mathbb{P}_2 f} \, \mathrm{d}x,$$

da Ω beschränkt und die Helmholtz-Zerlegung eindeutig ist und schließlich

$$= \int_{\Omega} \varphi \cdot \overline{f} \, \mathrm{d}x,$$

da \mathbb{P}_2 selbstadjungiert ist. Hieraus ergibt sich $\mathbb{P}_{p'} \varphi = \varphi$. Da $C_{c,\sigma}^{\infty}(\Omega)$ dicht liegt in $L_{\sigma}^{p'}(\Omega)$ $\mathbb{P}_{p'}$ beschränkt ist und zudem als Projektion ein abgeschlossenes Bild besitzt, folgt

$$\mathrm{L}^{p'}_\sigma(\Omega)\subset\mathrm{Rg}(\mathbb{P}_{p'}).$$

Da per constructionem $L^{p'}_{\sigma}(\Omega)$ abgeschlossen ist, gilt

$$\operatorname{Rg}(\mathbb{P}_{p'}) \subset \operatorname{L}_{\sigma}^{p'}(\Omega)$$
 genau dann, wenn $\operatorname{L}_{\sigma}^{p'}(\Omega)^{\perp} \subset \operatorname{Rg}(\mathbb{P}_{p'})^{\perp}$.

Zeige nun die rechte Seite der Äquivalenz für die noch ausstehende Inklusion. Sei $f \in L^{p'}_{\sigma}(\Omega)^{\perp}$. Dann gilt

$$\int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x = 0, \quad \text{für alle } v \in \mathrm{L}_{\sigma}^{p'}(\Omega)$$

und $f \in L^p(\Omega; \mathbb{C}^d)$. Mit Lemma 2.10 folgt nun die Existenz eines $\phi \in L^p_{loc}(\Omega)$ mit

$$\int_{\Omega} f \cdot \overline{v} = -\int_{\Omega} \varphi \, \operatorname{\overline{div}}(v) \, \mathrm{d}x \quad \text{für alle } v \in C_c^{\infty}(\Omega; \mathbb{C}^d),$$

woraus sich $\nabla\varphi=f\in\mathrm{L}^p(\Omega;\mathbb{C}^d)$ ergibt. Nun gilt für $g\in\mathrm{L}^{p'}(\Omega;\mathbb{C}^d)$

$$\int_{\Omega} \nabla \phi \cdot \overline{\mathbb{P}_{p'} g} \, \mathrm{d}x = \int_{\Omega} \mathbb{P}_{p} \, \nabla \phi \cdot \overline{g} \, \mathrm{d}x = 0,$$

da $\nabla \phi \in G_p(\Omega) = \ker(\mathbb{P}_p)$. Daraus folgt $f \in \operatorname{Rg}(\mathbb{P}_{p'})^{\perp}$ und folglich gilt

$$\operatorname{Rg}(\mathbb{P}_{p'}) = \operatorname{L}_{\sigma}^{p'}(\Omega).$$

Wir bestimmen nun den Kern von $\mathbb{P}_{p'}$. Genauer zeigen wir

$$\ker(\mathbb{P}_{p'}) = \mathcal{G}_{p'}(\Omega).$$

Sei hierzu $\nabla \phi \in \mathcal{G}_{p'}(\Omega)$, dann gilt für $f \in \mathcal{C}_c^{\infty}(\Omega; \mathbb{C}^d)$

$$\int_{\Omega} \mathbb{P}_{p'}(\nabla \phi) \cdot \overline{f} \, \mathrm{d}x = \int_{\Omega} \nabla \phi \cdot \overline{\mathbb{P}_{p} f} \, \mathrm{d}x = \lim_{n \to \infty} \int_{\Omega} \nabla \phi \cdot \overline{\varphi_{n}} \, \mathrm{d}x = 0,$$

wobei $(\varphi_n)_{n\in\mathbb{N}}\subset C^{\infty}_{c,\sigma}(\Omega)$ mit $\lim_{n\to\infty}\varphi_n=\mathbb{P}_p$ $f\in L^p_{\sigma}(\Omega)$. Daraus folgt $G_{p'}(\Omega)\subset \ker(\mathbb{P}_{p'})$. Sei nun $f\in \ker(\mathbb{P}_{p'})$ und $\varphi\in C^{\infty}_{c,\sigma}(\Omega)$. Dann gilt

$$\int_{\Omega} f \cdot \overline{\varphi} \, \mathrm{d}x = \int_{\Omega} f \cdot \overline{\mathbb{P}_p \, \varphi} \, \mathrm{d}x = \int_{\Omega} \mathbb{P}_{p'} \, f \cdot \overline{\varphi} \, \mathrm{d}x = 0.$$

Mit Lemma 2.10 folgt somit, dass ein $\phi \in \mathcal{L}^{p'}_{\mathrm{loc}}(\Omega)$ existiert mit

$$\int_{\Omega} f \cdot \overline{\varphi} \, \mathrm{d}x = -\int_{\Omega} \phi \, \overline{\mathrm{div}(\varphi)} \, \mathrm{d}x$$

für alle $\varphi \in \mathrm{C}_c^{\infty}(\Omega; \mathbb{C}^d)$. Daraus folgt $f = \nabla \phi \in \mathrm{L}^{p'}(\Omega; \mathbb{C}^d)$, also $\ker(\mathbb{P}_{p'}) \subset \mathrm{G}_{p'}(\Omega)$. Damit ist $\mathbb{P}_{p'}$ die Helmholtz-Zerlegung auf $\mathrm{L}^{p'}(\Omega; \mathbb{C}^d)$.

Zeige nun, dass $(L^p_{\sigma}(\Omega))' \simeq L^{p'}_{\sigma}(\Omega)$. Die Inklusion $L^{p'}_{\sigma}(\Omega) \subseteq (L^p_{\sigma}(\Omega))'$ folgt aus Hölders Ungleichung. Sei $f \in (L^p_{\sigma}(\Omega))'$. Setze f auf $L^p(\Omega; \mathbb{C}^d)$ fort durch

$$F(g) := f(\mathbb{P}_p g).$$

Dann ist $F \in (L^p(\Omega; \mathbb{C}^d))'$. Weiterhin existiert ein $\tilde{f} \in L^{p'}(\Omega; \mathbb{C}^d)$ mit

$$\int_{\Omega} \tilde{f} \, \overline{g} \, \mathrm{d}x = f(g), \quad \text{für alle } g \in \mathcal{G}_p(\Omega)$$

und

$$\int_{\Omega} \tilde{f} \, \overline{g} \, \mathrm{d}x = 0, \quad \text{für alle } g \in \mathrm{G}_p(\Omega).$$

Folglich ist

$$\int_{\Omega} (I - \mathbb{P}_{p'}) \tilde{f} \, \overline{g} \, \mathrm{d}x = \int_{\Omega} \tilde{f} \, \underbrace{\overline{(I - \mathbb{P}_p)g}}_{\in G_p(\Omega)} \, \mathrm{d}x = 0, \quad \text{für alle } g \in \mathrm{L}^p(\Omega; \mathbb{C}^d).$$

Dies liefert $(I - \mathbb{P}_{p'})\tilde{f} = 0$ woraus wiederum $\tilde{f} \in L^{p'}_{\sigma}(\Omega)$ folgt.

Definition 4.5. Sei X ein Banachraum. Ein Operator $B: D(B) \subset X \to X$ heißt abschließbar in X, falls für alle Folgen $(x_n)_{n \in \mathbb{N}} \subset D(B)$ mit $x_n \to 0$ und für die $(Bx_n)_{n \in \mathbb{N}} \subset X$ eine Cauchy-Folge ist, auch $\lim_{n \to \infty} Bx_n = 0$ folgt.

In diesem Fall ist der Abschluss \overline{B} : $D(\overline{B}) \subset X \to X$ von B definiert durch

$$D(\overline{B}) := \{x \in X : \text{ es ex. } (x_n)_{n \in \mathbb{N}} \subset D(B) \text{ mit } x_n \to x \text{ und } (Bx_n)_{n \in \mathbb{N}} \text{ ist C.F.} \},$$

 $\overline{B}x := \lim_{n \to \infty} Bx_n, \text{ für alle } x \in D(\overline{B})$

ein wohldefinierter abgeschlossener Operator.

Definition 4.6. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$ ein beschränktes Gebiet und 1 . Ist <math>p > 2, so ist der Stokes-Operator A_p auf $L^p_{\sigma}(\Omega)$ definiert als der *Teil von* A_2 *in* $L^p_{\sigma}(\Omega)$, d.h.

$$D(A_p) := \{ u \in D(A_2) \cap L^p_{\sigma}(\Omega) \colon A_2 u \in L^p_{\sigma}(\Omega) \}$$
$$A_p u := A_2 u, \quad \text{für alle } u \in D(A_p).$$

Ist p < 2 und falls A_2 abschließbar ist in $L^p_{\sigma}(\Omega)$, so ist der Stokes-Operator A_p auf $L^p_{\sigma}(\Omega)$ definiert als der Abschluss von A_2 in $L^p_{\sigma}(\Omega)$.

Proposition 4.7. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ ein beschränktes Gebiet und $2 derart, dass die Helmholtz-Zerlegung auf <math>L^p(\Omega; \mathbb{C}^d)$ existiert und die Helmholtz-Projektion beschränkt ist. Sei $\frac{1}{p'} + \frac{1}{p} = 1$. Dann ist $D(A_2)$ dicht in $L^{p'}_{\sigma}(\Omega)$ und es sind äquivalent:

- i) A_2 ist abschließbar in $L^{p'}_{\sigma}(\Omega)$.
- ii) A_p ist dicht definiert.

Ist entweder i) oder ii) erfüllt, so gilt

$$(A_{n'})' = A_p.$$

Insbesondere ist A_p abgeschlossen.

Folgendes Resultat liefert auf einem abstrakten Weg die Dichtheit eines Definitionsbereiches, falls man in der Lage ist Resolventenabschätzungen zu beweisen. (Siehe *Haase, The functional calculus of sectorial operators.*)

Satz 4.8. Sei A ein sekotrieller Operator auf einem reflexiven Banachraum X. Dann ist A dicht definiert.

Folgendes Durchbruchresultat ist von Shen, 2012.

Hauptsatz 4.9. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 3$ ein beschränktes Lipschitz-Gebiet und $\theta \in [0, \pi)$. Dann existiert $\varepsilon(\theta, d, \Omega) > 0$, sodass für alle

$$\frac{2d}{d+1} - \varepsilon$$

der Stokes-Operator A_p auf $\mathcal{L}^p_{\sigma}(\Omega)$ sektoriell von Winkel θ ist. Insbesondere ist A_p abgeschlossen, dicht definiert, $0 \in \rho(A_p)$ und $-A_p$ erzeugt eine exponentiell stabile analytische Halbgruppe.

Bemerkung 4.10. Deuring hat 2002 im Falle d = 3 bewiesen: Für jedes p < 3 existiert ein beschränktes Lipschitz-Gebiet, sodass $-A_p$ keine C_0 -Halbgruppe auf $L^p_{\sigma}(\Omega)$ erzeugt.

Folgendes Resultat ist von Tolksdorf, 2017.

Hauptsatz 4.11. Sei $\Omega \subset \mathbb{R}^d, d \geq 3$ ein beschränktes Lipschitz-Gebiet. Dann existiert $\varepsilon = \varepsilon(d,\Omega) > 0$, sodass für alle $\frac{2d}{d+1} - \varepsilon gilt:$

$$D(A_p^{\frac{1}{2}}) = W_{0,\sigma}^{1,p}(\Omega).$$

Insbesondere existiert C > 0, sodass für alle $u \in D(A_p^{\frac{1}{2}})$ gilt, dass

$$C^{-1} \|\nabla u\|_{\mathbf{L}^p} \le \|A^{\frac{1}{2}}u\|_{\mathbf{L}^p} \le C \|\nabla u\|_{\mathbf{L}^p}.$$

Literaturverzeichnis

- [Gal11] Giovanni P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations: steady-state problems. New York [u.a.], 2. ed. edition, 2011.
- [Haa06] Markus Haase. The functional calculus for sectorial operators, volume 169 of Operator theory. 2006.