行列輪講:第2回行列式,トレース

松谷研究室

June 2, 2024

目次

1 概要

② 行列式

③ トレース

目次

- ① 概要
- ② 行列式
- ③ トレース

このスライドの概要

- 行列式, トレースについて確認する
 - 行列式に関する公式 (転置, 行列積, 逆行列, 固有値, ブロック行列)
 - 行列式と余因子展開
 - トレースに関する公式

目次

- 1 概要
- ② 行列式
- ③ トレース

行列式 (Determinant)

- 行列式は、行列の大きさのようなもの
- $\{1,2,\ldots,n\}$ を適当に入れ替えて、 $\{\sigma(1),\sigma(2),\ldots,\sigma(n)\}$ を作る.
- ullet このような<mark>置換</mark> σ は、全部で n! 通りあって、まとめて S_n で表す.

$$S_3 = \{\{1, 2, 3\} \rightarrow \{1, 2, 3\}, \{1, 2, 3\} \rightarrow \{1, 3, 2\}, \{1, 2, 3\} \rightarrow \{2, 1, 3\}, \{1, 2, 3\} \rightarrow \{2, 3, 1\}, \{1, 2, 3\} \rightarrow \{3, 1, 2\}, \{1, 2, 3\} \rightarrow \{3, 2, 1\}\}$$

- $\{\sigma(1),\sigma(2),\ldots,\sigma(n)\}$ は、何度か入れ替えれば、元の $\{1,2,\ldots,n\}$ に 戻せる. 入れ替える回数の偶奇は、一意に定まる.
- 即ち, σ に対して, 以下の $sgn(\sigma)$ は一意に定まる.

$$\mathrm{sgn}(\sigma) = \left\{ egin{array}{ll} 1 & \textbf{偶数回の入れ替えで元に戻せる} \\ -1 & \textbf{奇数回の入れ替えで元に戻せる} \end{array}
ight.$$

行列式 (Determinant)

- $\sigma = \{1, 2, 3\} \rightarrow \{2, 3, 1\}$ とすると, $\mathrm{sgn}(\sigma) = 1$.
 - $\{2,3,1\} \to \{2,1,3\} \to \{1,2,3\}.$
- $\sigma = \{1, 2, 3\} \rightarrow \{3, 2, 1\}$ とすると, $sgn(\sigma) = -1$.
 - $\{3,2,1\} \rightarrow \{2,3,1\} \rightarrow \{2,1,3\} \rightarrow \{1,2,3\}.$
- A を n 次正方行列とする.
- ullet S_n と σ を使って, $oldsymbol{A}$ の行列式は次のようにかける.

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

- n=2 とすると, $S_n=\{\{1,2\},\{2,1\}\}$, $\mathrm{sgn}=(1,-1)$.
- $\bullet \det(\mathbf{A}) = a_{11}a_{22} a_{12}a_{21}.$
- 全部で, n! 個の項が現れる.

3次行列の行列式

- A を n 次正方行列とする.
- ullet S_n と σ を使って, $oldsymbol{A}$ の行列式は次のようにかける.

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

• $n = 3 \ \text{L} \ \text{J} \ \text{SL}$

$$S_{3} = \{\{1, 2, 3\}, \{1, 3, 2\}, \{2, 1, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{3, 2, 1\}\}\}$$

$$\operatorname{sgn} = (1, -1, -1, 1, 1, -1)$$

$$\det(\mathbf{A}) = a_{11} (a_{22}a_{33} - a_{23}a_{32}) + a_{12} (a_{23}a_{31} - a_{21}a_{33})$$

$$+a_{13} (a_{21}a_{32} - a_{22}a_{31})$$

これはサラスの公式とよばれる。

- 置換は全単射 (1 対 1 で対応する).
- 置換 σ の逆写像を, σ^{-1} とかく.

$$\sigma = \{1, 2, 3\} \to \{3, 1, 2\}, \sigma^{-1} = \{1, 2, 3\} \to \{2, 3, 1\}$$

• 以下の 6 つの置換 $\sigma_1, \ldots, \sigma_6$ は、同じものを指すことに注意.

$$\begin{split} &\sigma_1 = \{1,2,3\} \rightarrow \{2,3,1\} \,, \sigma_2 = \{1,3,2\} \rightarrow \{2,1,3\} \\ &\sigma_3 = \{2,1,3\} \rightarrow \{3,2,1\} \,, \sigma_4 = \{2,3,1\} \rightarrow \{3,1,2\} \,, \\ &\sigma_5 = \{3,1,2\} \rightarrow \{1,2,3\} \,, \sigma_6 = \{3,2,1\} \rightarrow \{1,3,2\} \end{split}$$

2 つの置換の合成 τοσ も, 新たな置換となる.

$$\sigma = \{1, 2, 3\} \to \{3, 1, 2\}, \tau = \{1, 2, 3\} \to \{2, 1, 3\}$$
$$\tau \circ \sigma = \{1, 2, 3\} \to \{3, 2, 1\}$$

2 つの置換の合成 τοσ も, 新たな置換となる.

$$\sigma = \{1, 2, 3\} \to \{3, 1, 2\}, \tau = \{1, 2, 3\} \to \{2, 1, 3\}$$
$$\tau \circ \sigma = \{1, 2, 3\} \to \{3, 2, 1\}$$

恒等置換を, ℓ とかく.

$$\iota = \{1, 2, 3\} \to \{1, 2, 3\}$$

- $\sigma^{-1}\sigma = \sigma\sigma^{-1} = \iota$, $\operatorname{sgn}(\tau\sigma) = \operatorname{sgn}(\tau)\operatorname{sgn}(\sigma)$
- $\operatorname{sgn}(\iota) = 1$, $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$
- $\mathbf{A} = \left(a_{ij}\right)$ を行列, σ を置換としたとき,

$$a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}\cdots a_{\sigma^{-1}(n)n} = a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$$

• $\sigma = \{1,2,3\} \rightarrow \{2,3,1\}$ とする. $\sigma^{-1} = \{2,3,1\} \rightarrow \{1,2,3\}$ となる.

$$\begin{aligned} a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}a_{\sigma^{-1}(3)3} &= a_{31}a_{12}a_{23} = a_{12}a_{23}a_{31} \\ &= a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} \end{aligned}$$

ullet ${f A}=\left(a_{ij}
ight)$ を行列, σ を置換としたとき,

$$a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}\cdots a_{\sigma^{-1}(n)n} = a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$$

• $\sigma = \{1,2,3\} \rightarrow \{2,3,1\}$ とする. $\sigma^{-1} = \{2,3,1\} \rightarrow \{1,2,3\}$ となる.

$$a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}a_{\sigma^{-1}(3)3} = a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)}$$

転置の行列式

転置の行列式

$$\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$$

• 行列式の定義から,

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$
$$\det(\mathbf{A}^\top) = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \left(\mathbf{A}^\top\right)_{1\tau(1)} \left(\mathbf{A}^\top\right)_{2\tau(2)} \left(\mathbf{A}^\top\right)_{n\tau(n)}$$
$$= \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{\tau(1)1} a_{\tau(2)2} \cdots a_{\tau(n)n}$$

転置の行列式

• 行列式の定義から,

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$
$$\det(\mathbf{A}^{\top}) = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{\tau(1)1} a_{\tau(2)2} \cdots a_{\tau(n)n}$$

- σ^{-1} について総和を取ることは, σ について総和を取ることと同じだから, $\tau=\sigma^{-1}$ とする.
- $\tau = \sigma^{-1}$ とおくと, $\operatorname{sgn}(\tau) = \operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$ であり、以下が成り立つので、 $\det(\mathbf{A}) = \det(\mathbf{A}^\top)$.

$$a_{\tau(1)1}a_{\tau(2)2}\cdots a_{\tau(n)n} = a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}\cdots a_{\sigma^{-1}(n)n}$$
$$= a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$$

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・恵 ・ かんで

対角行列の行列式

対角行列の行列式

n 次の対角行列があるとする. 行列式は, 対角成分 $\lambda_1,\dots,\lambda_n$ の積となる.

$$\det\left(\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}\right) = \prod_i \lambda_i$$

ullet 行列式の定義において,恒等置換 ι に対応する項だけが残る:

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$
$$= a_{11} a_{22} \cdots a_{nn} = \prod_i \lambda_i$$

上三角行列,下三角行列の行列式

上三角行列, 下三角行列の行列式

n imes n の上三角,下三角行列があるとする.行列式は,対角成分 $\lambda_1,\dots,\lambda_n$ の積となる.

$$\det \begin{pmatrix} \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix} \end{pmatrix} = \prod_i \lambda_i$$

$$\det \begin{pmatrix} \begin{pmatrix} \lambda_1 & & & \\ * & \lambda_2 & & \\ \vdots & \ddots & \ddots & \\ * & \cdots & * & \lambda_n \end{pmatrix} \end{pmatrix} = \prod_i \lambda_i$$

上三角行列、下三角行列の逆行列の行列式

上三角行列、下三角行列の逆行列の行列式

元の対角成分の逆数 $\lambda_1^{-1},\ldots,\lambda_n^{-1}$ の積となる.

$$\det \begin{pmatrix} \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix}^{-1} = \prod_i \lambda_i^{-1}$$

$$\det \begin{pmatrix} \begin{pmatrix} \lambda_1 & & & \\ * & \lambda_2 & & \\ \vdots & \ddots & \ddots & \end{pmatrix}^{-1} \\ = \prod_i \lambda_i^{-1}$$

列の線形変換, 列の入れ替え, 行列のスカラー倍

列の線形変換, 列の入れ替え

列を入れ替えると、行列式の符号が反転する.

$$\det\left(\left(\mathbf{a}_{1},\ldots,\lambda\mathbf{a}_{i}+\mu\mathbf{b}_{i},\ldots,\mathbf{a}_{n}\right)\right) = \lambda\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{a}_{i},\ldots,\mathbf{a}_{n}\right)\right)$$
$$+\mu\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{b}_{i},\ldots,\mathbf{a}_{n}\right)\right)$$
$$\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{a}_{i},\ldots,\mathbf{a}_{j},\ldots,\mathbf{a}_{n}\right)\right) = -\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{a}_{j},\ldots,\mathbf{a}_{i},\ldots,\mathbf{a}_{n}\right)\right)$$

行列のスカラー倍

行列を c 倍すると, 行列式は c^n 倍になる.

$$\det(c\mathbf{A}) = c^n \det(\mathbf{A})$$

 $igoplus \det \left({{{f A}^ op}}
ight) = \det ({{f A}})$ であるから、列だけでなく、行についても同様のことがいえる。

←□ → ←□ → ← □ → ← □ → □

列の線形変換,列のスカラー倍

同じ列を含むとき

同じ列ベクトルを2箇所に含むとき,行列式は0となる.

$$\det\left(\left(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n\right)\right)=0$$

列のスカラー倍

列をc倍すると、行列式はc倍になる。

$$\det\left(\left(\mathbf{a}_1,\ldots,c\mathbf{a}_i,\ldots,\mathbf{a}_n\right)\right)=c\det\left(\left(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n\right)\right)$$

i 列目に, j 列目の c 倍を足しても (i
eq j), 行列式は変わらない.

$$\det((\mathbf{a}_1,\ldots,\mathbf{a}_i+c\mathbf{a}_j,\ldots,\mathbf{a}_j,\ldots,\mathbf{a}_n))=\det((\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_j,\ldots,\mathbf{a}_n))$$

ullet $\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$ であるから、列だけでなく、行についても同様のことがいえる。

行列積, 行列の累乗, 逆行列

行列積, 行列の累乗の行列式

$$det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$$
$$det(\mathbf{A}^n) = det(\mathbf{A})^n$$

逆行列の行列式

$$\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$$

以下の2つの式から分かる.

$$\det(\mathbf{A}\mathbf{A}^{-1}) = \det(\mathbf{A})\det(\mathbf{A}^{-1})$$
$$\det(\mathbf{A}\mathbf{A}^{-1}) = \det(\mathbf{I}) = 1$$

固有値と固有ベクトル

- ▲ を, n 次正方行列とする.
- 以下を満たすような λ を, A の固有値という。
- また x を, 固有値 λ に対する固有ベクトルという.

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

- ullet 上式は, $\det(\lambda \mathbf{I} \mathbf{A}) = 0$ と同値である (詳細は省略).
- ullet $\det(\lambda \mathbf{I} \mathbf{A}) = 0$ の左辺を展開すれば、 λ に関する n 次式となる:

$$(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n) = 0$$

- 上式は, 固有多項式という. 重複を許せば, 固有値は n 個ある.
- A が正則であれば (逆行列があれば), $\lambda_i \neq 0$.

固有値と固有ベクトル

- ullet A の逆行列の固有値は,A の固有値の逆数 $\lambda_1^{-1},\dots,\lambda_n^{-1}$ である.
- また, A の逆行列は, A と共通の固有ベクトルをもつ.
- A の固有値は以下を満たす.

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

• これを式変形すればよい (A は正則なので, $\lambda \neq 0$).

$$\mathbf{x} = \lambda \mathbf{A}^{-1} \mathbf{x} \qquad \rightarrow \qquad \lambda^{-1} \mathbf{x} = \mathbf{A}^{-1} \mathbf{x}$$

固有値と行列式

固有値と行列式

 ${f A}$ を, n 次正方行列とする. ${f A}$ の固有値 $\lambda_1,\ldots,\lambda_n$ の積は, ${f A}$ の行列式となる.

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

• 以下の固有多項式について, $\lambda = 0$ とする.

$$\det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

- 左辺は, $\det(-\mathbf{A}) = (-1)^n \det(\mathbf{A})$.
- 右辺は, $\prod_i (-\lambda_i) = (-1)^n \prod_i \lambda_i$.

固有値と行列式

固有値と行列式

 ${f A}$ を, n 次正方行列とする. ${f A}$ の固有値の逆数 $\lambda_1^{-1},\dots,\lambda_n^{-1}$ の積は, ${f A}^{-1}$ の行列式となる.

$$\det(\mathbf{A}^{-1}) = \prod_{i=1}^{n} \lambda_i^{-1}$$

• $\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$ と, $\det(\mathbf{A}) = \prod_i \lambda_i$ から分かる.

ブロック上三角行列,下三角行列の行列式

ブロック上三角行列、下三角行列の行列式

$$\begin{split} \det\left(\begin{pmatrix}\mathbf{I} & \mathbf{X} \\ \mathbf{0} & \mathbf{I}\end{pmatrix}\right) &= 1, \quad \det\left(\begin{pmatrix}\mathbf{I} & \mathbf{0} \\ \mathbf{X} & \mathbf{I}\end{pmatrix}\right) = 1 \\ \det\left(\begin{pmatrix}\mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{D}\end{pmatrix}\right) &= \det(\mathbf{A}) \det(\mathbf{D}) \\ \det\left(\begin{pmatrix}\mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{D}\end{pmatrix}\right) &= \det(\mathbf{A}) \det(\mathbf{D}) \\ \det\left(\begin{pmatrix}\mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A}\end{pmatrix}\right) &= \det(\mathbf{A} + \mathbf{B}) \det(\mathbf{A} - \mathbf{B}) \end{split}$$

● 証明は省略.

ブロック対角行列の行列式

ブロック対角行列の行列式

$$\det\begin{pmatrix}\begin{pmatrix}\mathbf{A}_1 & & \\ & \mathbf{A}_2 & & \\ & & \ddots & \\ & & \mathbf{A}_n\end{pmatrix}\end{pmatrix} = \det(\mathbf{A}_1)\det(\mathbf{A}_2)\cdots\det(\mathbf{A}_n)$$

$$\det\begin{pmatrix}\begin{pmatrix}\mathbf{A}_1 & & \\ & \mathbf{A}_2 & & \\ & & \ddots & \\ & & & \mathbf{A}_n\end{pmatrix}^{-1}\end{pmatrix} = \det(\mathbf{A}_1)^{-1}\det(\mathbf{A}_2)^{-1}\cdots\det(\mathbf{A}_n)^{-1}$$

ブロック行列の行列式

ブロック行列の行列式

$$\det \left(\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \right) = \det(\mathbf{A}) \det(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})$$
 A が距則 $\det \left(\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \right) = \det(\mathbf{D}) \det(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})$ D が距則

• シューア補行列による表現から導出できる (上側).

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{C}\mathbf{A}^{-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

- 3 つの行列の行列式の積を求める。
- 最初と最後の行列の行列式は1である.

ブロック行列の行列式

Weinstein-Aronszajn Identity

A を $m \times n$, B を $n \times m$ の行列とする.

$$\det(\mathbf{I}_m + \mathbf{A}\mathbf{B}) = \det(\mathbf{I}_n + \mathbf{B}\mathbf{A})$$

a, b が m 次ベクトルであるとき,

$$\det \left(\mathbf{I}_m + \mathbf{a} \mathbf{b}^\top \right) = 1 + \mathbf{b}^\top \mathbf{a}$$

• 先ほどの式において $(\mathbf{I}_m, \mathbf{I}_n$ は正則であるので),

$$\det \begin{pmatrix} \begin{pmatrix} \mathbf{I}_m & -\mathbf{A} \\ \mathbf{B} & \mathbf{I}_n \end{pmatrix} \end{pmatrix} = \det(\mathbf{I}_m) \det(\mathbf{I}_n + \mathbf{B}\mathbf{I}_m^{-1}\mathbf{A}) = \det(\mathbf{I}_n + \mathbf{B}\mathbf{A})$$
$$= \det(\mathbf{I}_n) \det(\mathbf{I}_m + \mathbf{A}\mathbf{I}_n^{-1}\mathbf{B}) = \det(\mathbf{I}_m + \mathbf{A}\mathbf{B})$$

余因子展開

余因子展開

A を, n 次正方行列とする. 各 i 行目と j 列目について,

$$\det(\mathbf{A}) = a_{i1}\Delta_{i1} + a_{i2}\Delta_{i2} + \dots + a_{in}\Delta_{in} = \sum_{j} a_{ij}\Delta_{ij}$$
$$\det(\mathbf{A}) = a_{1j}\Delta_{1j} + a_{2j}\Delta_{2j} + \dots + a_{nj}\Delta_{nj} = \sum_{j} a_{ij}\Delta_{ij}$$

• 上式の Δ_{ij} は、 \mathbf{A} の (i,j) 余因子 (Cofactor) とよぶ.

$$\Delta_{ij} = (-1)^{i+j} \det\left(\tilde{\mathbf{A}}_{ij}\right)$$

- $oldsymbol{\bullet}$ $ilde{\mathbf{A}}_{ij}$ は、 \mathbf{A} から i 行目と j 列目を取り除いた、n-1 次行列である.
- ullet Δ_{ij} は, i 行目と j 行目の成分には依存しない.

余因子展開

余因子展開

 ${f A}$ を, n 次正方行列とする. Δ_{ij} を ${f A}$ の (i,j) 余因子とする.

$$a_{i1}\Delta_{k1} + a_{i2}\Delta_{k2} + \dots + a_{in}\Delta_{kn} = \begin{cases} \det(\mathbf{A}) & i = k \\ 0 & \text{Otherwise} \end{cases}$$

$$a_{1j}\Delta_{1k} + a_{2j}\Delta_{2k} + \dots + a_{nj}\Delta_{nk} = \begin{cases} \det(\mathbf{A}) & j = k \\ 0 & \text{Otherwise} \end{cases}$$

余因子行列

余因子行列

 ${f A}$ を, n 次行列とする. ${f A}$ の (i,j) 余因子 Δ_{ij} を並べた行列 ${
m adj}$ ${f A}$ を, ${f A}$ の余因子行列という.

$$\operatorname{adj} \mathbf{A} = \begin{pmatrix} \Delta_{11} & \Delta_{21} & \cdots & \Delta_{n1} \\ \Delta_{12} & \Delta_{22} & \cdots & \Delta_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{1n} & \Delta_{2n} & \cdots & \Delta_{nn} \end{pmatrix}$$

• $\operatorname{adj} \mathbf{A} \mathbf{O}(i,j)$ 成分は, (j,i) 余因子 Δ_{ji} となる.

余因子行列, 行列式, 逆行列

余因子行列, 行列式, 逆行列

 ${f A}$ の余因子行列 ${
m adj}\,{f A}$, 行列式 ${
m det}({f A})$, 逆行列 ${f A}^{-1}$ について,

$$(\operatorname{adj} \mathbf{A})\,\mathbf{A} = \mathbf{A}\,(\operatorname{adj} \mathbf{A}) = (\det(\mathbf{A}))\,\mathbf{I}$$

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \operatorname{adj} \mathbf{A}$$

目次

- ① 概要
- ② 行列式
- ③ トレース

行列のトレース

- ▲ を, n 次正方行列とする.
- A の対角成分 a_{ii} の和を, A のトレースとよぶ.
- トレースを, tr(A) とかく.

$$\operatorname{tr}(\mathbf{A}) = \sum_{i} a_{ii}$$

- 歪対称行列 $(\mathbf{A}^{\top} = -\mathbf{A})$ の対角成分は 0 なので、トレースは 0.
- 単位行列 I_n のトレースは n.

行列の和、転置とトレース

行列の和、転置とトレース

$$\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$$

 $\operatorname{tr}(\mathbf{A}^{\top}) = \operatorname{tr}(\mathbf{A})$

トレースの定義から、以下のように確認できる。

$$\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \sum_{i} (\mathbf{A} + \mathbf{B})_{ii} = \sum_{i} (a_{ii} + b_{ii}) = \sum_{i} a_{ii} + \sum_{i} b_{ii}$$
$$= \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$$
$$\operatorname{tr}(\mathbf{A}^{\top}) = \sum_{i} (\mathbf{A}^{\top})_{ii} = \sum_{i} a_{ii} = \operatorname{tr}(\mathbf{A})$$

行列の積とトレース

行列の積とトレース

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$

トレースの定義から、以下のように確認できる。

$$\operatorname{tr}(\mathbf{A}\mathbf{B}) = \sum_{i} (\mathbf{A}\mathbf{B})_{ii} = \sum_{i} \sum_{k} a_{ik} b_{ki} = \sum_{k} \sum_{i} b_{ki} a_{ik}$$
$$= \sum_{k} (\mathbf{B}\mathbf{A})_{kk} = \operatorname{tr}(\mathbf{B}\mathbf{A})$$

トレースの循環性

トレースの循環性

$$tr(\mathbf{ABC}) = tr(\mathbf{BCA}) = tr(\mathbf{CAB})$$

 $tr(\mathbf{X}^{-1}\mathbf{AX}) = tr(\mathbf{A})$

トレースの定義から、以下のように確認できる。

$$tr(\mathbf{ABC}) = \sum_{i} (\mathbf{ABC})_{ii} = \sum_{i} \sum_{k} \sum_{l} a_{ik} b_{kl} c_{li}$$
$$= \sum_{k} \sum_{l} \sum_{i} b_{kl} c_{li} a_{ik} = tr(\mathbf{BCA})$$
$$= \sum_{l} \sum_{i} \sum_{k} c_{li} a_{ik} b_{kl} = tr(\mathbf{CAB})$$

たらい回しのような公式である。

行列,ベクトル積とトレース

行列,ベクトル積とトレース

A を, n 次正方行列, b, c を n 次ベクトルとする.

$$\operatorname{tr}\left(\mathbf{A}\mathbf{b}\mathbf{c}^{\top}\right) = \mathbf{c}^{\top}\mathbf{A}\mathbf{b}$$

$$\operatorname{tr}\left(\mathbf{b}\mathbf{c}^{\top}\right) = \mathbf{c}^{\top}\mathbf{b}$$

b, c がベクトルで、上のような形であれば、順序を入れ替えることでトレース tr を除去できる。

固有値とトレース

固有値とトレース

 ${f A}$ を, n 次正方行列とする. ${f A}$ の固有値 $\lambda_1,\ldots,\lambda_n$ の和は, ${f A}$ のトレースとなる.

$$\operatorname{tr}(\mathbf{A}) = \sum_{i} \lambda_{i}$$

以下の固有多項式について、 λ^{n-1} の係数を考える.

$$\det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

- 左辺は、-tr(A).
 - $\det(\lambda \mathbf{I} \mathbf{A})$ には、 $(\lambda a_{11})(\lambda a_{22}) \cdots (\lambda a_{nn})$ という項が現れる.
 - λ^{n-1} の係数は、 $-(a_{11}+a_{22}+\cdots+a_{nn})$ となる.
- 右辺は、 $-\sum_i \lambda_i$.

逆行列とトレース

逆行列とトレース

 ${f A}$ を, n 次正方行列とする. ${f A}$ の逆行列のトレースは, ${f A}$ の固有値 $\lambda_1,\ldots,\lambda_n$ の逆数の和となる.

$$\operatorname{tr}(\mathbf{A}^{-1}) = \sum_{i} \lambda_{i}^{-1}$$

- Aは,ユニタリ行列Pにより,P⁻¹APと三角化できる(後述).
- ullet $\mathbf{P}^{-1}\mathbf{AP}$ の対角成分は、 \mathbf{A} の固有値 $\lambda_1,\ldots,\lambda_n$ である.
- ullet $\mathbf{P}^{-1}\mathbf{AP}$ の逆行列も三角行列で、 $\lambda_1^{-1},\dots,\lambda_n^{-1}$ を対角成分にもつので、

$$\operatorname{tr}\left(\left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)^{-1}\right) = \sum_{i} \lambda_{i}^{-1}$$
$$= \operatorname{tr}\left(\mathbf{P}^{-1}\mathbf{A}^{-1}\mathbf{P}\right) = \operatorname{tr}\left(\mathbf{A}^{-1}\mathbf{P}\mathbf{P}^{-1}\right) = \operatorname{tr}\left(\mathbf{A}^{-1}\right)$$

対角行列のトレース

対角行列のトレース

 $\mathbf{A} = \operatorname{diag}(a_1, a_2, \dots, a_n)$ を n 次対角行列とする. $\mathbf{A}, \mathbf{A}^{-1}$ のトレースは, 次のようになる.

$$\operatorname{tr}(\mathbf{A}) = \operatorname{tr}\left(\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}\right) = \sum_i a_i$$
$$\operatorname{tr}(\mathbf{A}^{-1}) = \operatorname{tr}\left(\begin{pmatrix} a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1} \end{pmatrix}\right) = \sum_i a_i^{-1}$$

上三角行列、下三角行列の逆行列のトレース

上三角行列, 下三角行列の逆行列のトレース

元の対角成分の逆数 $\lambda_1^{-1},\ldots,\lambda_n^{-1}$ の和となる.

$$\operatorname{tr}\left(\begin{pmatrix} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{pmatrix}^{-1}\right) = \sum_{i} \lambda_{i}^{-1}$$

$$\operatorname{tr}\left(\begin{pmatrix} \lambda_{1} & & & \\ * & \lambda_{2} & & \\ \vdots & \ddots & \ddots & \\ * & \cdots & * & \lambda_{n} \end{pmatrix}^{-1}\right) = \sum_{i} \lambda_{i}^{-1}$$

ブロック行列のトレース

ブロック行列のトレース

$$\operatorname{tr}\left(\begin{pmatrix}\mathbf{A}_{1} & * & \cdots & * \\ * & \mathbf{A}_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ * & \cdots & * & \mathbf{A}_{n}\end{pmatrix}\right) = \sum_{i} \operatorname{tr}(\mathbf{A}_{i})$$

固有値,対角化,三角化に関するまとめ

- A を, n 次正方行列とする.
- A に n 個の線形独立な固有ベクトルがあれば、それを並べた行列 ${f P}$ で、 ${f P}^{-1}{f A}{f P}$ と対角化できる (対角成分は ${f A}$ の固有値).
- 任意の A は、ユニタリ行列 P で、P⁻¹AP と三角化できる (上三角行列、対角成分は A の固有値).
- ullet A が正規行列 $(\mathbf{A}\mathbf{A}^{\mathrm{H}}=\mathbf{A}^{\mathrm{H}}\mathbf{A})$ なら, ユニタリ行列で対角化できる.
 - A^H は, A の共役転置.
 - 正規行列: ユニタリ行列 $(\mathbf{A}\mathbf{A}^{\mathrm{H}}=\mathbf{I})$, エルミート行列 $(\mathbf{A}^{\mathrm{H}}=\mathbf{A})$, 歪エルミート行列 $(\mathbf{A}^{\mathrm{H}}=-\mathbf{A})$, 直交行列 $(\mathbf{A}\mathbf{A}^{\mathrm{T}}=\mathbf{I})$, 対称行列 $(\mathbf{A}^{\mathrm{T}}=\mathbf{A})$, 歪対称行列 $(\mathbf{A}^{\mathrm{T}}=-\mathbf{A})$.
- A が実対称行列なら, 直交行列で対角化できる.
- エルミート行列と対称行列の固有値は、全て実数である.