ANALÍTICA AVANZADA DE DATOS: VALIDACIÓN

A. Alejandra Sánchez Manilla asanchezm.q@gmail.com

En la actualidad se identifican varios métodos de validación que la comunidad científica prefiere utilizar en sus publicaciones JCR:

- En primer lugar, el método de validación K-fold cross-validation, siendo el valor de k más usado 10.
- En segundo lugar, el método de validación Leave-one-out cross-validation (LOOCV).
- En tercer lugar, el método de validación Hold-out. En este caso no hay una configuración de porcentajes definida de manera contundente; no obstante, entre las más usadas están: 80-20, 70-30 y 75-25.

Analítica Avanzada de Datos

Factor de Olvido (Resubstitution Error)

- No es propiamente un método de validación.
- Es el error en el conjunto de entrenamiento.
- Generalmente no es cero en los algoritmos de aprendizaje automático, pero esperamos que sea bajo.

Saltillo es la capital de Coahuila

¿Cuál es la capital de Coahuila?

Mexicalli

Factor de Olvido (Resubstitution Error)

Datos de entrenamiento = Datos de prueba

- Se utiliza para ajuste de parámetros
- El error en los datos de entrenamiento NO es un buen indicador de rendimiento sobre datos futuros ya que no mide ningún dato aún no visto

$$FO = \frac{Errores}{\# patrones \ del \ BD}$$

Factor de Olvido (Resubstitution Error)

Datos de entrenamiento = Datos de prueba

- Se utiliza para ajuste de parámetros.
- El error en los datos de entrenamiento NO es un buen indicador de rendimiento sobre datos futuros ya que no mide ningún dato aún no visto.

$$FO = \frac{Errores}{\# de \ patrones \ de \ BD}$$

Hold - out

1. Dividir el banco de datos en los subconjuntos de entrenamiento (E) y prueba(P), de la siguiente forma:

$$|E| = r * N \qquad \qquad |P| = N - (r * N)$$

donde:

N es el # de patrones del banco de datos

r porcentaje de entrenamiento: 0.7

- 2. Seleccionar aleatoriamente |E| patrones del banco de datos para crear el conjunto de entrenamiento
- 3. Seleccionar aleatoriamente |P| patrones del banco de datos para crear el conjunto de prueba
- 4. Entrenar el algoritmo con *E* y probar con *P*

Hold-out

Hold-out

Para entrenamiento, el 70 % de los patrones correspondería a:

$$|E| = 150 * 0.7 = 105 patrones$$

 $E = \{1,2,3...,5\}$
 $P = \{106,107,...,150\}$

En el conjunto de entrenamiento no existirían patrones representantes de la iris virginica, mientras que en el prueba no habría patrones de la setosa y versicolor

Hold-out Estratificado

1. Dividir el banco de datos en los subconjuntos de entrenamiento (E) y prueba (P), de la siguiente forma, por cada clase i:

$$|E| = \bigcup_{i \in C} r * |C_i| \qquad |P| = N - |E|$$

donde:

 $|C_i|$ es el # de patrones de la clase i

r es el porcentaje de entrenamiento: 0.7

- 2. Seleccionar aleatoriamente |E| patrones del banco de datos para crear el conjunto de entrenamiento
- 3. Seleccionar aleatoriamente |P| patrones del banco de datos para crear el conjunto de prueba
- 4. Entrenar el algoritmo con *E* y probar con *P*

Hold-out Estratificado

Analítica Avanzada de Datos

Hold-out Estratificado

Ejemplo con la irisPlant y r = 0.7

$$c_1$$
 = Iris Setosa 50 patrones

 c_2 = Iris Virginica 50 patrones

$$c_3$$
 = Iris Versicolor 50 patrones

$$r \times |c_1| = 0.7 \times 50 = 35 \ patrones$$

 $|c_1| - (r \times |c_1|) = 50 - 35 = 15$

Es decir que **35** patrones seleccionados al azar de la clase Iris Setosa deben usarse para el conjunto de entrenamiento y **15** patrones de la misma clase se deben usar para el de prueba

Se procede igual con las otras 2 clases y se juntan en un solo conjunto todos los patrones de las 3 clases, es decir:

- 105 patrones para el conjunto de entrenamiento
- 45 patrones para el conjunto de prueba

Leave-one-out

1. Seleccionar un patrón del conjunto de datos x^1 para formar el conjunto de prueba,

es decir $P = x^1$. El resto de patrones, es decir N - 1, será el conjunto de

entrenamiento

2. Entrenar el algoritmo con *E* y probar el algoritmo con *P*

Leave-one-out

16

3. Repetir el proceso N veces variando el patrón $x^i \forall i \in N$

Analítica Avanzada de Datos

K-fold Cross-validation estratificado

- 1. Elegir un valor adecuado para k (generalmente 10)
- 2. Separar el conjunto de datos por clase y cada clase debe dividirse en k partes
- 3. Formar los conjuntos de entrenamiento (E) y prueba (P) de la siguiente forma:

$$E = (k-1)$$
 partes
$$P = 1k$$

- 4. Entrenar el algoritmo con E y probar el algoritmo con P
- 5. El proceso debe repetirse k veces variando que participaciones se usan en E y P

Analítica Avanzada de Datos

Analítica Avanzada de Datos

Analítica Avanzada de Datos

Ejemplo con k = 5

Ejecución l del algoritmo

Fold 1 (30 patrones)

Fold 2 (30 patrones)

Fold 3 (30 patrones)

Fold 4 (30 patrones)

Fold 5 (30 patrones)

Conjunto de entrenamiento

Conjunto de prueba

Ejecución 2 del algoritmo

Fold 1 (30 patrones)

Fold 2 (30 patrones)

Fold 3 (30 patrones)

Fold 4 (30 patrones)

Fold 5 (30 patrones)

Conjunto de entrenamiento

Conjunto de prueba

- Los folds 1,2,3,4 forman el conjunto de entrenamiento
- El fold 5 forma el conjunto de prueba

- Los folds 1,3,4,5 forman el conjunto de entrenamiento
- El fold 2 forma el conjunto de prueba

Analítica Avanzada de Datos

Ejemplo con k=5

Ejecución 4 del algoritmo Ejecución 3 del algoritmo Fold 1 (30 patrones) Fold 1 (30 patrones) Fold 2 (30 patrones) Fold 2 (30 patrones) Conjunto de Conjunto de entrenamiento entrenamiento Fold 3 (30 patrones) Fold 3 (30 patrones) Fold 4 (30 patrones) Fold 4 (30 patrones) Conjunto de Conjunto de Fold 5 (30 patrones) Fold 5 (30 patrones) prueba prueba

- Los folds 1,2,4,5 forman el conjunto de entrenamiento
- El fold 3 forma el conjunto de prueba

Los folds 1,2,3,5 forman el conjunto de entrenamiento

22

El fold 4 forma el conjunto de prueba

Ejemplo con k = 5

- Los folds 2,3,4,5 forman el conjunto de entrenamiento
- El fold 1 forma el conjunto de prueba

Analítica Avanzada de Datos

Matriz de confusión

Se le pasan estos datos a un algoritmo de aprendizaje automático y se obtienen los siguientes resultados:

Ejemplo:

Pacientes	Cantidad
Sanos	80
Enfermos	35

Enfermos → Clase positiva Sanos → Clase negativa

	P	N
P	28	7
N	5	75

Cuantificar el rendimiento - Clasificación

Matriz de confusión

Los nombres de los elementos de la matriz de confusión tienen su origen en la terminología médica, que nombra como **positivo** el caso de algún paciente que sí padece cierta enfermedad, que esta enfermo; y como **negativo** el caso de algún individuo sano, que no padece la enfermedad.

Cuidado con las representaciones de la matriz ya que en ocasiones cambia el orden

Cuantificar el rendimiento - Clasificación

Sensibilidad (Recall, TPR)

$$\frac{TP}{TP + FN}$$

Especificidad (TNR)

$$\frac{TN}{TN + FP}$$

Exactitud (Accuracy)

$$\frac{TP + TN}{TP + TN + FP + FN}$$

Precisión

$$\frac{TP}{TP + FP}$$

F1-score

$$2 \times \frac{Sensibilidad \times Precisión}{Sensiblidad + Precisión}$$

AUC (Área bajo la curva)

 $\frac{Sensibilidad \times especificidad}{2}$

Referencias

- 1.Russell, S. J. & Norvig, P. (2010). Artificial intelligence a modern approach. 3ra edición. Pearson Education, Inc.
- 2.Tom, T. (2019). Artificial IntelligenceBasics: A Non-TechnicalIntroduction.
 Monrovia, CA, USA: Appres.
- 3.Ertel, W. (2018). Introductiontoartificial intelligence. 2da edición. Springer.
- 4.Taulli, T. (2019). Artificial Intelligencebasics: A non-technicalintroduction. Apress.
- 5.Géron, A. (2017). Hands-on machine learning with scikit-learn and tensorflow: Concepts. Tools, and Techniques to build intelligent systems.
- 6.Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H. & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems With Applications, 73, 220-239.

Analítica Avanzada de Datos 27