Contents

Contents			7 Stringology 7.1 Hash
1	Basic 1.1 vimrc	1 1 1 2 2	7.7 Lexico Smallest Rotation
2	Data Structure 2.1 Dark Magic 2.2 Link-Cut Tree 2.3 LiChao Segment Tree 2.4 Treap 2.5 Linear Basis 2.6 Binary Search On Segment Tree	2 2 2 2 3 3 3	8 Misc 8.1 Theorems
3	Graph 3.1 BCC Edge 3.2 BCC Vertex 3.3 2-SAT (SCC) 3.4 Lowbit Decomposition 3.5 MaxClique 3.6 MaxCliqueDyn 3.7 Virtural Tree 3.8 Centroid Decomposition 3.9 Tree Hashing 3.10 Minimum Mean Cycle 3.11 Mo's Algorithm on Tree 3.12 Minimum Steiner Tree 3.13 Directed Minimum Spanning Tree 3.14 Manhattan Minimum Spanning Tree 3.15 Dominator Tree 3.16 Edge Coloring	3 3 4 4 4 5 5 6 6 6 6 7 7 7 8 8 8 8 9	8.1.7 Euler's planar graph formula 8.1.8 Pick's theorem 8.1.9 Lucas's theorem 8.1.10 Matroid Intersection 8.2 DP-opt Condition 8.2.1 totally monotone (concave/convex) 8.2.2 monge condition (concave/convex) 8.3 Convex 1D/1D DP 8.4 ConvexHull Optimization 8.5 Josephus Problem 8.6 Cactus Matching 8.7 DLX 8.8 Tree Knapsack 8.9 N Queens Problem 8.10 Aliens Optimization 8.11 Hilbert Curve
4	Matching & Flow 4.1 Kuhn Munkres	9 9 9	
	4.3 General Graph Matching . 4.4 Minimum Weight Matching (Clique version) 4.5 Minimum Cost Circulation 4.6 Flow Models 4.7 Dinic 4.8 Minimum Cost Maximum Flow 4.9 GomoryHu Tree 4.10 Global Min-Cut 4.11 Dijkstra Cost Flow	9 10 10 11 11 11 12 12	se cin cino+=j1 et sw=4 sts=4 tgc sc hls syn on colorscheme desert filetype indent on inoremap { <cr> {<cr>}</cr></cr>
5	Math 5.1 $\lfloor \frac{n}{t} \rfloor$ Enumeration 5.2 $ax+by=gcd$ 5.3 Pollard Rho 5.4 Pi Count (Linear Sieve) 5.5 Strling Number 5.5.1 First Kind	13 13 13 13 13	DKISEKI -Wall -Wextra -Wshadow -Wfatal-errors - Wconversion -fsanitize=address,undefined -g && ech success <cr> map <f9> <esc>:w<cr>:!g++ "%" -o "%<" -02 -std=c++17 & echo success<cr> map <f10> <esc>:!./"%<"<cr></cr></esc></f10></cr></cr></esc></f9></cr>
	5.9 Gauss Elimination	13 14 14 14 15 15 15 16 16 17 17 17	<pre>#define safe cerr<<pretty_function\ "<<line<<"="" #define="" <<"="" <typenamet="" a)="" debug(a)="" dvorak(#a,="" line="" orange(a)="" qwerty(#a,="" safe\n"="" std::cerr;="" template="" using=""> void qwerty(const char *s, Ta) { cerr << "\e[1;32m(" << s << ") = (";</pretty_function\></pre>
0	Geometry 6.1 Basic Geometry 6.2 2D Convex Hull 6.3 3D Convex Hull 6.4 2D Farthest Pair 6.5 2D Closest Pair 6.5 2D Closest Pair (3D ver.) 6.7 Simulated Annealing 6.8 Half Plane Intersection 6.9 Minkowski Sum	19	<pre>cerr << "]\e[0m\n"; } #else #define safe ((void)0) #define debug() ((void)0) #define orange() ((void)0) #endif</pre>
	6.9 Minkowski sum 6.10 Intersection of line and Circle 6.11 Intersection of Polygon and Circle 6.12 Intersection of Two Circle 6.13 Tangent line of Two Circle 6.14 Minimum Covering Circle 6.15 KDTree (Nearest Point) 6.16 Rotating Sweep Line 6.17 Circle Cover	20 20 20 20 20 20 20 21	<pre>register long rsp asm("rsp"); char *p = (char*)malloc(size)+size, *bak = (char*)rsp;asm("movq %0, %%rsp\n"::"r"(p)); // main</pre>

1.4 Pragma Optimization

```
#pragma GCC target("sse,sse2,sse3,ssse3,sse4")
#pragma GCC target("popcnt,abm,mmx,avx,tune=native")
1.5 IO Optimization
static inline int gc() {
  constexpr int B = 1 << 20;
  static char buf[B], *p, *q;
  if(p == a \&\&
    (q=(p=buf)+fread(buf,1,B,stdin)) == buf)
   return EOF;
  return *p++;
template < typename T >
static inline bool gn( T &x ) {
 int c = gc(); T sgn = 1; x = 0;
while(('0'>c||c>'9') && c!=EOF && c!='-') c = gc();
if(c == '-') sgn = -1, c = gc();
 if(c == EOF) return false;
 while('0'<=c&&c<='9') x = x*10 + c - '0', c = gc();
 return x *= sgn, true;
```

#pragma GCC optimize("Ofast,no-stack-protector")

#pragma GCC optimize("no-math-errno,unroll-loops")

2 Data Structure

2.1 Dark Magic

2.2 Link-Cut Tree

p->ch[dir]=c;

```
struct Node{
Node *par, *ch[2];
int xor_sum, v;
bool is_rev;
Node(int _v){
 v=xor_sum=_v;is_rev=false;
 par=ch[0]=ch[1]=nullptr;
inline void set_rev(){is_rev^=1;swap(ch[0],ch[1]);}
inline void down(){
 if(is_rev){
  if(ch[0]!=nullptr) ch[0]->set_rev();
   if(ch[1]!=nullptr) ch[1]->set_rev();
   is_rev=false;
 }
inline void up(){
 xor_sum=v;
  if(ch[0]!=nullptr){
  xor_sum^=ch[0]->xor_sum;
  ch[0]->par=this;
 if(ch[1]!=nullptr){
  xor_sum^=ch[1]->xor_sum;
  ch[1]->par=this;
inline bool is_root(){
 return par==nullptr ||\
   (par->ch[0]!=this && par->ch[1]!=this);
bool is_rch(){return !is_root() && par->ch[1]==this;}
} *node[maxn], *stk[maxn];
int top;
void to_child(Node* p,Node* c,bool dir){
```

```
p->up();
inline void rotate(Node* node){
 Node* par=node->par;
 Node* par_par=par->par;
 bool dir=node->is_rch()
 bool par_dir=par->is_rch()
 to_child(par, node->ch[!dir], dir);
 to_child(node,par,!dir);
 if(par_par!=nullptr && par_par->ch[par_dir]==par)
  to_child(par_par,node,par_dir);
 else node->par=par_par;
inline void splay(Node* node){
 Node* tmp=node;
 stk[top++]=node;
 while(!tmp->is_root()){
  tmp=tmp->par;
  stk[top++]=tmp;
 while(top) stk[--top]->down();
 for(Node *fa=node->par;
  !node->is_root();
  rotate(node), fa=node->par)
  if(!fa->is_root())
   rotate(fa->is_rch()==node->is_rch()?fa:node);
inline void access(Node* node){
 Node* last=nullptr;
 while(node!=nullptr){
  splay(node);
  to_child(node, last, true);
  last=node;
  node=node->par;
inline void change_root(Node* node){
 access(node);splay(node);node->set_rev();
inline void link(Node* x, Node* y){
 change_root(x);splay(x);x->par=y;
inline void split(Node* x,Node* y){
 change_root(x);access(y);splay(x);
 to_child(x,nullptr,true);y->par=nullptr;
inline void change_val(Node* node,int v){
access(node);splay(node);node->v=v;node->up();
inline int query(Node* x,Node* y){
 change_root(x);access(y);splay(y);
 return y->xor_sum;
inline Node* find_root(Node* node){
 access(node);splay(node);
 Node* last=nullptr:
 while(node!=nullptr){
  node->down();last=node;node=node->ch[0];
 return last;
set<pii> dic;
inline void add_edge(int u,int v){
 if(u>v) swap(u,v)
 if(find_root(node[u])==find_root(node[v])) return;
 dic.insert(pii(u,v))
link(node[u],node[v]);
inline void del_edge(int u,int v){
 if(u>v) swap(u,v);
 if(dic.find(pii(u,v))==dic.end()) return;
 dic.erase(pii(u,v))
 split(node[u],node[v]);
2.3 LiChao Segment Tree
struct Line{
 int m, k, id;
 Line() : id( -1 ) {}
Line('int a, int'b,'int c')
: m(a), k(b), id(c) {}
```

int at(int x) { return m * x + k; }

```
#undef sz
class LiChao {
 private:
                                                             2.5 Linear Basis
  int n; vector< Line > nodes;
  inline int lc( int x ) { return 2 * x + 1; }
                                                             template <int BITS>
  inline int rc( int x ) { return 2 * x + 2; }
                                                             struct LinearBasis {
  void insert( int 1, int r, int id, Line ln ) {
                                                              array<uint64_t, BITS> basis;
   int m = (1 + r) >> 1;
                                                              Basis() { basis.fill(0); }
                                                              void add(uint64_t x)
   if ( nodes[ id ].id == -1 ) {
    nodes[ id ] = ln;
                                                               for (int i = 0; i < BITS; ++i) if ((x >> i) & 1) {
                                                                if (basis[i] == 0) {
    return:
                                                                 basis[i] = x;
   bool atLeft = nodes[ id ].at( 1 ) < ln.at( 1 );</pre>
                                                                 return;
   if ( nodes[ id ].at( m ) < ln.at( m ) ) {</pre>
    atLeft ^= 1; swap( nodes[ id ], ln );
                                                                x ^= basis[i];
                                                               }
   if ( r - 1 == 1 ) return;
   if ( atLeft ) insert( l, m, lc( id ), ln );
                                                              bool ok(uint64_t x) {
   else insert( m, r, rc( id ), ln );
                                                               for (int i = 0; i < BITS; ++i)</pre>
                                                                if ((x >> i) & 1) x ^= basis[i];
  int query( int 1, int r, int id, int x ) {
                                                               return x == 0;
   int ret = 0;
   if ( nodes[ id ].id != -1 )
                                                             };
    ret = nodes[ id ].at( x );
                                                             2.6
                                                                   Binary Search On Segment Tree
   int m = (1 + r) >> 1;
   if ( r - l == 1 ) return ret;
                                                             // find_first = x -> minimal x s.t. check( [a, x) )
   else if (x < m )
                                                             // find_last = x \rightarrow maximal x s.t. check([x, b))
    return max( ret, query( 1, m, lc( id ), x ) );
                                                             template <typename C>
   else
                                                             int find_first(int 1, const C &check) {
    return max( ret, query( m, r, rc( id ), x ) );
                                                              if (1 >= n) return n;
                                                              1 += sz;
 public:
                                                              for (int i = height; i > 0; i--)
  void build( int n_ ) {
                                                               propagate(l >> i);
  n = n_; nodes.clear();
                                                              Monoid sum = identity;
   nodes.resize( n << 2, Line() );</pre>
                                                               while ((1 & 1) == 0) 1 >>= 1;
  void insert( Line ln ) { insert( 0, n, 0, ln ); }
                                                               if (check(f(sum, data[1]))) {
  int query( int x ) { return query( 0, n, 0, x ); }
                                                                while (1 < sz) {</pre>
                                                                 propagate(1);
                                                                 1 <<= 1;
2.4 Treap
                                                                 auto nxt = f(sum, data[1]);
namespace Treap{
                                                                 if (not check(nxt)) {
 #define sz( x ) ( ( x ) ? ( ( x )->size ) : 0 )
                                                                  sum = nxt;
 struct node{
                                                                  1++;
  int size;
                                                                 }
  uint32_t pri;
                                                                }
  node *lc, *rc, *pa;
                                                                return 1 + 1 - sz;
  node():size(0),pri(rand()),lc(0),rc(0),pa(0){}
  void pull() {
                                                               sum = f(sum, data[1++]);
  size = 1; pa = nullptr;
                                                              } while ((1 & -1) != 1);
   if ( lc ) { size += lc->size; lc->pa = this; }
if ( rc ) { size += rc->size; rc->pa = this; }
                                                              return n;
  }
                                                             template <typename C>
                                                             int find_last(int r, const C &check) {
node* merge( node* L, node* R ) {
  if ( not L or not R ) return L ? L : R;
                                                              if (r <= 0) return -1;
                                                              r += sz;
  if ( L->pri > R->pri ) {
                                                              for (int i = height; i > 0; i--)
  L->rc = merge( L->rc, R ); L->pull();
                                                               propagate((r - 1) >> i);
   return L;
                                                              Monoid sum = identity;
  } else {
                                                              do {
   R->lc = merge( L, R->lc ); R->pull();
   return R;
                                                               while (r > 1 \text{ and } (r \& 1)) r >>= 1;
  }
                                                               if (check(f(data[r], sum))) {
                                                                while (r < sz) {</pre>
 void split_by_size( node*rt,int k,node*&L,node*&R ) {
                                                                 propagate(r);
  if ( not rt ) L = R = nullptr;
                                                                 r = (r << 1) + 1;
  else if( sz( rt->lc ) + 1 <= k ) {
                                                                 auto nxt = f(data[r], sum);
                                                                 if (not check(nxt)) {
   split_by_size( rt->rc,k-sz(rt->lc)-1,L->rc,R );
                                                                  sum = nxt;
   L->pull();
                                                                  r--:
  } else {
                                                                 }
   R = rt;
   split_by_size( rt->lc, k, L, R->lc );
                                                                return r - sz;
   R->pull();
                                                               sum = f(data[r], sum);
  }
                                                              } while ((r & -r) != r);
 int getRank(node *o) {
                                                              return -1;
  int r = sz(o->lc);
  for (;o->pa != nullptr; o = o->pa)
   if (o->pa->rc != o) r += sz(o->pa->lc);
                                                                  Graph
  return r;
```

3.1 BCC Edge

```
class BCC_Bridge {
                                                                  for (int i = 0; i < n; ++i)
                                                                   if (not dfn[i]) dfs(i, i);
private:
 int n, ecnt;
  vector<vector<pair<int,int>>> G;
                                                                 int get_id(int x) { return bcc[x]; }
 vector<int> dfn, low;
                                                                 int count() { return ecnt; }
  vector<bool> bridge;
                                                                 bool is_ap(int x) { return ap[x]; }
 void dfs(int u, int f) {
  dfn[u] = low[u] = dfn[f] + 1;
                                                              } bcc_ap;
                                                               3.3 2-SAT (SCC)
   for (auto [v, t]: G[u]) {
  if (v == f) continue;
                                                              class TwoSat{
    if (dfn[v]) {
                                                                private:
     low[u] = min(low[u], dfn[v]);
                                                                 int n:
     continue;
                                                                 vector<vector<int>> rG,G,sccs;
                                                                 vector<int> ord,idx;
    dfs(v, u);
                                                                 vector<bool> vis,result;
   low[u] = min(low[u], low[v]);
if (low[v] > dfn[u]) bridge[t] = true;
                                                                 void dfs(int u){
                                                                  vis[u]=true
                                                                  for(int v:G[u])
  }
                                                                   if(!vis[v]) dfs(v);
public:
                                                                  ord.push_back(u);
  void init(int n_) {
   G.clear(); G.resize(n = n_);
                                                                 void rdfs(int u){
   low.assign(n, ecnt = 0);
                                                                  vis[u]=false;idx[u]=sccs.size()-1;
                                                                  sccs.back().push_back(u);
   dfn.assign(n, 0);
                                                                  for(int v:rG[u])
  void add_edge(int u, int v) {
                                                                   if(vis[v])rdfs(v);
  G[u].emplace_back(v, ecnt);
   G[v].emplace_back(u, ecnt++);
                                                                public:
                                                                 void init(int n_){
  void solve() {
                                                                  n=n_;G.clear();G.resize(n);
  bridge.assign(ecnt, false);
                                                                  rG.clear();rG.resize(n)
   for (int i = 0; i < n; ++i)
                                                                  sccs.clear();ord.clear();
    if (not dfn[i]) dfs(i, i);
                                                                  idx.resize(n);result.resize(n);
  bool is_bridge(int x) { return bridge[x]; }
                                                                 void add_edge(int u,int v){
} bcc_bridge;
                                                                  G[u].push_back(v);rG[v].push_back(u);
3.2 BCC Vertex
                                                                 void orr(int x,int y){
class BCC_AP {
                                                                  if ((x^y)==1)return
                                                                  add_edge(x^1,y); add_edge(y^1,x);
private:
 int n, ecnt;
 vector<vector<pair<int,int>>> G;
                                                                 bool solve(){
  vector<int> bcc, dfn, low, st;
                                                                  vis.clear();vis.resize(n);
  vector<bool> ap, ins;
                                                                  for(int i=0;i<n;++i)</pre>
 void dfs(int u, int f) {
  dfn[u] = low[u] = dfn[f] + 1;
                                                                   if(not vis[i])dfs(i);
                                                                  reverse(ord.begin(),ord.end());
   int ch = 0;
                                                                  for (int u:ord){
   for (auto [v, t]: G[u]) if (v != f) {
                                                                   if(!vis[u])continue:
    if (not ins[t]) {
                                                                   sccs.push_back(vector<int>());
     st.push_back(t);
                                                                   rdfs(u);
     ins[t] = true;
                                                                  for(int i=0;i<n;i+=2)</pre>
    if (dfn[v]) {
                                                                   if(idx[i]==idx[i+1])
     low[u] = min(low[u], dfn[v]);
                                                                    return false;
                                                                  vector<bool> c(sccs.size());
    } ++ch; dfs(v, u);
                                                                  for(size_t i=0;i<sccs.size();++i){</pre>
    low[u] = min(low[u], low[v]);
                                                                   for(size_t j=0;j<sccs[i].size();++j){</pre>
                                                                    result[sccs[i][j]]=c[i]
    if (low[v] >= dfn[u]) {
     ap[u] = true;
                                                                    c[idx[sccs[i][j]^1]]=!c[i];
     while (true) {
      int eid = st.back(); st.pop_back();
      bcc[eid] = ecnt;
                                                                  return true;
      if (eid == t) break;
     }
                                                                 bool get(int x){return result[x];}
                                                                 inline int get_id(int x){return idx[x];}
     ecnt++;
                                                                 inline int count(){return sccs.size();}
    }
                                                              } sat2;
   if (ch == 1 and u == f) ap[u] = false;
                                                               3.4 Lowbit Decomposition
public:
                                                              class LowbitDecomp{
  void init(int n_) {
                                                               private:
  G.clear(); G.resize(n = n_);
                                                                int time_, chain_, LOG_N;
   ecnt = 0; ap.assign(n, false);
                                                                vector< vector< int > > G, fa;
                                                                vector< int > tl, tr, chain, chain_st;
// chain_ : number of chain
   low.assign(n, 0); dfn.assign(n, 0);
                                                                // tl, tr[ u ] : subtree interval in the seq. of u
  void add_edge(int u, int v) {
                                                                // chain_st[ u ] : head of the chain contains u // chian[ u ] : chain id of the chain u is on
   G[u].emplace_back(v, ecnt);
   G[v].emplace_back(u, ecnt++);
                                                                void predfs( int u, int f ) {
  void solve() {
                                                                 chain[ u ] = 0;
   ins.assign(ecnt, false);
                                                                 for ( int v : G[ u ] ) {
                                                                  if ( v == f ) continue;
   bcc.resize(ecnt); ecnt = 0;
```

```
predfs( v, u );
                                                              class MaxClique{
   if( lowbit( chain[ u ] ) < lowbit( chain[ v ] ) )</pre>
                                                              private:
    chain[ u ] = chain[ v ];
                                                               using bits = bitset< MAXN >;
                                                               bits popped, G[ MAXN ], ans;
size_t deg[ MAXN ], deo[ MAXN ], n;
  if ( not chain[ u ] )
   chain[ u ] = chain_ ++;
                                                               void sort_by_degree() {
                                                                popped.reset();
                                                                for ( size_t i = 0 ; i < n ; ++ i )</pre>
 void dfschain( int u, int f ) {
  fa[ u ][ 0 ] = f;
for ( int i = 1 ; i < LOG_N ; ++ i )
                                                                  deg[ i ] = G[ i ].count();
                                                                for ( size_t i = 0 ; i < n ; ++ i ) {
    size_t mi = MAXN, id = 0;</pre>
   fa[u][i] = fa[fa[u][i-1]][i-1];
                                                                  for ( size_t j = 0 ; j < n ; ++ j )
  if ( not popped[ j ] and deg[ j ] < mi )
    mi = deg[ id = j ];</pre>
  tl[ u ] = time_++;
  if ( not chain_st[ chain[ u ] ] )
   chain_st[ chain[ u ] ] = u;
                                                                  popped[ deo[ i ] = id ] = 1;
  for ( int v : G[ u ] )
   if ( v != f and chain[ v ] == chain[ u ] )
                                                                  for( size_t u = G[ i ]._Find_first() ;
  dfschain( v, u );
for ( int v : G[ u ] )
                                                                   u < n ; u = G[ i ]._Find_next( u ) )</pre>
                                                                     -- deg[ u ];
   if ( v != f and chain[ v ] != chain[ u ] )
                                                                }
    dfschain( v, u );
                                                               void BK( bits R, bits P, bits X ) {
  tr[ u ] = time_;
                                                                if (R.count()+P.count() <= ans.count()) return;</pre>
                                                                if ( not P.count() and not X.count() ) {
 bool anc( int u, int v )
 return tl[ u ] <= tl[ v ] and tr[ v ] <= tr[ u ];</pre>
                                                                 if ( R.count() > ans.count() ) ans = R;
                                                                 return:
public:
                                                                }
                                                                /* greedily chosse max degree as pivot
 int lca( int u, int v ) {
  if ( anc( u, v ) ) return u;
                                                                bits cur = P | X; size_t pivot = 0, sz = 0;
  for ( int i = LOG_N - 1 ; i >= 0 ; -- i )
                                                                for ( size_t u = cur._Find_first() ;
   if ( not anc( fa[ u ][ i ], v ) )
                                                                 u < n ; u = cur._Find_next( u )
    u = fa[ u ][ i ];
                                                                  if ( deg[ u ] > sz ) sz = deg[ pivot = u ];
                                                                cur = P & ( ~G[ pivot ] );
  return fa[ u ][ 0 ];
                                                                 */ // or simply choose first
                                                                bits cur = P & (~G[ ( P | X )._Find_first() ]);
 void init( int n ) {
  fa.assign( ++n, vector< int > ( LOG_N ) );
                                                                for ( size_t u = cur._Find_first()
  for (LOG_N = 0 ; (1 << LOG_N ) < n ; ++ LOG_N );
                                                                 u < n ; u = cur._Find_next( u ) ) {
                                                                 if ( R[ u ] ) continue;
  G.clear(); G.resize( n );
  tl.assign( n, 0 ); tr.assign( n, 0 )
                                                                 R[u] = 1;
  chain.assig( n, 0 ); chain_st.assign( n, 0 );
                                                                 BK( R, P & G[ u ], X & G[ u ] );
                                                                 R[u] = P[u] = 0, X[u] = 1;
 void add_edge( int u , int v ) {
  // 1-base
  G[ u ].push_back( v );
                                                              public:
  G[ v ].push_back( u );
                                                               void init( size_t n_ ) {
                                                                n = n_{-};
 }
 void decompose(){
                                                                for ( size_t i = 0 ; i < n ; ++ i )
                                                                 G[ i ].reset();
 chain_ = 1;
 predfs( 1, 1 );
                                                                ans.reset();
  time_{-} = 0;
 dfschain( 1, 1 );
                                                               void add_edges( int u, bits S ) { G[ u ] = S; }
                                                               void add_edge( int u, int v ) {
 PII get_subtree(int u) { return {tl[ u ],tr[ u ] }; }
                                                                G[u][v] = G[v][u] = 1;
 vector< PII > get_path( int u , int v ){
  vector< PII > res;
                                                               int solve() {
  int g = lca( u, v );
                                                                sort_by_degree(); // or simply iota( deo... )
  while ( chain[ u ] != chain[ g ] ) {
                                                                for ( size_t i = 0 ; i < n ; ++ i )</pre>
   int s = chain_st[ chain[ u ] ];
                                                                 deg[ i ] = G[ i ].count();
   res.emplace_back( tl[ s ], tl[ u ] + 1 );
                                                                bits pob, nob = 0; pob.set();
   u = fa[ s ][ 0 ];
                                                                for (size_t i=n; i<MAXN; ++i) pob[i] = 0;</pre>
                                                                for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
  res.emplace_back( tl[ g ], tl[ u ] + 1 );
while ( chain[ v ] != chain[ g ] ) {
                                                                 size_t v = deo[ i ];
                                                                 bits tmp; tmp[ v ] = 1;
  int s = chain_st[ chain[ v ] ];
                                                                 BK( tmp, pob & G[ v ], nob & G[ v ] );
   res.emplace_back( tl[ s ], tl[ v ] + 1 );
                                                                 pob[v] = 0, nob[v] = 1;
   v = fa[ s ][ 0 ];
                                                                return static_cast< int >( ans.count() );
  res.emplace_back( tl[ g ] + 1, tl[ v ] + 1 );
                                                               }
  return res;
                                                              };
  /* res : list of intervals from u to v
                                                                   MaxCliqueDyn
   \star ( note only nodes work, not edge )
                                                              constexpr int kN = 150;
   * vector< PII >& path = tree.get_path( u , v )
                                                              struct MaxClique { // Maximum Clique
                                                               bitset<kN> a[kN], cs[kN];
   * for( auto [ 1, r ] : path ) {
   * 0-base [ 1, r )
                                                               int ans, sol[kN], q, cur[kN], d[kN], n;
   * }
                                                               void init(int _n) {
   */
                                                               n = n, ans q = 0;
                                                                for (int i = 0; i < n; i++) a[i].reset();</pre>
} tree;
                                                               void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
3.5 MaxClique
                                                               void csort(vector<int> &r, vector<int> &c) {
// contain a self loop u to u, than u won't in clique
                                                                int mx = 1, km = max(ans - q + 1, 1), t = 0,
                                                                  m = int(r.size());
template < size_t MAXN >
```

```
cs[1].reset(); cs[2].reset();
                                                                 addEdge(stk[i], stk[i + 1]);
  for (int i = 0; i < m; i++) {
  int p = r[i], k = 1;</pre>
                                                               3.8 Centroid Decomposition
   while ((cs[k] & a[p]).count()) k++;
   if (k > mx) cs[++mx + 1].reset();
                                                               struct Centroid {
   cs[k][p] = 1;
                                                                vector<vector<int64_t>> Dist;
   if (k < km) r[t++] = p;
                                                                vector<int> Parent, Depth;
                                                                vector<int64_t> Sub, Sub2;
  c.resize(m);
                                                                vector<int> Sz, Sz2;
  if (t) c[t - 1] = 0;
                                                                Centroid(vector<vector<pair<int, int>>> g) {
  for (int k = km; k <= mx; k++) {</pre>
                                                                 int N = g.size()
  for (int p = int(cs[k]._Find_first());
                                                                 vector<bool> Vis(N);
      p < kN; p = int(cs[k]._Find_next(p))) {</pre>
                                                                 vector<int> sz(N), mx(N);
    r[t] = p; c[t++] = k;
                                                                 vector<int> Path;
                                                                 Dist.resize(N)
                                                                 Parent.resize(N);
                                                                 Depth.resize(N)
 void dfs(vector<int> &r, vector<int> &c, int 1,
                                                                 auto DfsSz = [\&](auto dfs, int x) -> void {
  bitset<kN> mask) {
                                                                  Vis[x] = true; sz[x] = 1; mx[x] = 0;
  while (!r.empty()) {
                                                                  for (auto [u, w] : g[x]) {
                                                                   if (Vis[u]) continue;
   int p = r.back(); r.pop_back();
   mask[p] = 0;
                                                                   dfs(dfs, u)
   if (q + c.back() <= ans) return;</pre>
                                                                   sz[x] += sz[u];
   cur[q++] = p;
                                                                   mx[x] = max(mx[x], sz[u]);
   vector<int> nr, nc;
   bitset<kN> nmask = mask & a[p];
                                                                  Path.push_back(x);
   for (int i : r)
                                                                 };
    if (a[p][i]) nr.push_back(i);
                                                                 auto DfsDist = [&](auto dfs, int x, int64_t D = 0)
   if (!nr.empty()) {
                                                                  -> void {
                                                                  Dist[x].push_back(D);Vis[x] = true;
    if (1 < 4) {
     for (int i : nr)
                                                                  for (auto [u, w] : g[x]) {
                                                                   if (Vis[u]) continue;
      d[i] = int((a[i] & nmask).count());
     sort(nr.begin(), nr.end(),
                                                                   dfs(dfs, u, D + w);
      [&](int x, int y)
       return d[x] > d[y];
      });
                                                                 auto Dfs = [&]
                                                                  (auto dfs, int x, int D = 0, int p = -1)->void {
   csort(nr, nc); dfs(nr, nc, 1 + 1, nmask);
} else if (q > ans) {
                                                                  Path.clear(); DfsSz(DfsSz, x);
                                                                  int M = Path.size();
    ans = q; copy(cur, cur + q, sol);
                                                                  int C = -1:
                                                                  for (int u : Path) {
   c.pop_back(); q--;
                                                                   if (max(M - sz[u], mx[u]) * 2 <= M) C = u;
  }
                                                                   Vis[u] = false;
 int solve(bitset<kN> mask) { // vertex mask
                                                                  DfsDist(DfsDist, C);
                                                                  for (int u : Path) Vis[u] = false;
  vector<int> r, c;
  for (int i = 0; i < n; i++)
                                                                  Parent[C] = p; Vis[C] = true;
  if (mask[i]) r.push_back(i);
for (int i = 0; i < n; i++)</pre>
                                                                  Depth[C] = D;
                                                                  for (auto [u, w] : g[C]) {
  d[i] = int((a[i] & mask).count());
                                                                   if (Vis[u]) continue;
  sort(r.begin(), r.end(),
                                                                   dfs(dfs, u, D + 1, C);
   [&](int i, int j) { return d[i] > d[j]; });
  csort(r, c);
  dfs(r, c, 1, mask);
                                                                 Dfs(Dfs, 0); Sub.resize(N); Sub2.resize(N);
  return ans; // sol[0 ~ ans-1]
                                                                 Sz.resize(N); Sz2.resize(N);
} graph;
                                                                void Mark(int v) {
                                                                 int x = v, z = -1
3.7 Virtural Tree
                                                                 for (int i = Depth[v]; i >= 0; --i) {
                                                                  Sub[x] += Dist[v][i]; Sz[x]++;
inline bool cmp(const int &i, const int &j) {
                                                                  if (z != -1) {
return dfn[i] < dfn[j];</pre>
                                                                   Sub2[z] += Dist[v][i];
void build(int vectrices[], int k) {
                                                                   Sz2[z]++;
 static int stk[MAX_N];
 sort(vectrices, vectrices + k, cmp);
                                                                  z = x; x = Parent[x];
 stk[sz++] = 0;
                                                                 }
 for (int i = 0; i < k; ++i) {
  int u = vectrices[i], lca = LCA(u, stk[sz - 1]);
  if (lca == stk[sz - 1]) stk[sz++] = u;</pre>
                                                                int64_t Query(int v) {
                                                                 int64_t res = 0;
                                                                 int x = v, z = -1
                                                                 for (int i = Depth[v]; i >= 0; --i) {
  res += Sub[x] + 1LL * Sz[x] * Dist[v][i];
   while (sz \ge 2 \&\& dep[stk[sz - 2]] \ge dep[lca]) {
    addEdge(stk[sz - 2], stk[sz - 1]);
                                                                  if (z != -1) res-=Sub2[z]+1LL*Sz2[z]*Dist[v][i];
                                                                  z = x; x = Parent[x];
   if (stk[sz - 1] != lca) {
   addEdge(lca, stk[--sz]);
                                                                 return res;
    stk[sz++] = lca, vectrices[cnt++] = lca;
                                                               };
   stk[sz++] = u;
                                                               3.9 Tree Hashing
  }
                                                              |uint64_t hsah(int u, int f) {
 for (int i = 0; i < sz - 1; ++i)
                                                              uint64_t r = 127;
```

```
for (int v : G[ u ]) if (v != f) {
  uint64_t hh = hsah(v, u);
                                                                        stk[stk_+ ++] = u;
  r=(r+(hh*hh)%1010101333)%1011820613;
                                                                       bool inPath[ N ];
                                                                       void Diff( int u ) {
return r:
                                                                        if ( inPath[ u ] ^= 1 ) { /*remove this edge*/ }
}
                                                                        else { /*add this edge*/ }
3.10 Minimum Mean Cycle
/* minimum mean cycle O(VE) */
                                                                       void traverse( int& origin_u, int u ) {
                                                                        for ( int g = lca( origin_u, u )
struct MMC{
                                                                         origin_u != g ; origin_u = parent_of[ origin_u ] )
#define FZ(n) memset((n),0,sizeof(n))
#define E 101010
                                                                          Diff( origin_u );
#define V 1021
                                                                        for (int v = u; v != origin_u; v = parent_of[v])
#define inf 1e9
                                                                         Diff( v );
 struct Edge { int v,u; double c; };
                                                                        origin_u = u;
 int n, m, prv[V][V], prve[V][V], vst[V];
                                                                       void solve() {
 Edge e[E];
                                                                        dfs( 1, 1 );
 vector<int> edgeID, cycle, rho;
 double d[V][V];
                                                                        while ( stk_ ) block_id[ stk[ -- stk_ ] ] = block_;
                                                                        sort( que, que + q, [](const Que& x, const Que& y) {
  return tie( block_id[ x.u ], dfn[ x.v ] )
 void init( int _n ) { n = _n; m = 0; }
// WARNING: TYPE matters
 void add_edge( int vi , int ui , double ci )
                                                                              < tie( block_id[ y.u ], dfn[ y.v ] );
 { e[ m ++ ] = { vi , ui , ci }; }
void bellman_ford() {
                                                                        } );
                                                                        int U = 1, V = 1;
  for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {
  fill(d[i+1], d[i+1]+n, inf);</pre>
                                                                        for ( int i = 0 ; i < q ; ++ i ) {
  pass( U, que[ i ].u );
  pass( V, que[ i ].v );</pre>
   for(int j=0; j<m; j++) {</pre>
                                                                         // we could get our answer of que[ i ].id
    int v = e[j].v, u = e[j].u;
if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
                                                                      }
                                                                       /*
     d[i+1][u] = d[i][v]+e[j].c;
      prv[i+1][u] = v;
                                                                      Method 2:
      prve[i+1][u] = j;
                                                                      dfs u:
                                                                       push u
                                                                        iterate subtree
                                                                       Let P = LCA(u, v), and St(u) \le St(v)
                                                                      if (P == u) query[St(u), St(v)]
 double solve(){
  // returns inf if no cycle, mmc otherwise
                                                                       else query[Ed(u), St(v)], query[St(P), St(P)]
  double mmc=inf;
  int st = -1;
                                                                       3.12 Minimum Steiner Tree
  bellman_ford();
  for(int i=0; i<n; i++) {</pre>
                                                                      // Minimum Steiner Tree
   double avg=-inf;
                                                                       // 0(V 3^T + V^2 2^T)
                                                                      struct SteinerTree{
   for(int k=0; k<n; k++) {</pre>
    if(d[n][i]<inf-eps)</pre>
                                                                       #define V 33
      avg=max(avg,(d[n][i]-d[k][i])/(n-k));
                                                                       #define T 8
                                                                       #define INF 1023456789
     else avg=max(avg,inf);
                                                                        int n , dst[V][V] , dp[1 << T][V] , tdst[V];</pre>
                                                                        void init( int _n ){
   if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
                                                                         n = _n;
                                                                         for( int i = 0 ; i < n ; i ++ ){
  for( int j = 0 ; j < n ; j ++ )
  dst[ i ][ j ] = INF;</pre>
  FZ(vst);edgeID.clear();cycle.clear();rho.clear();
  for (int i=n; !vst[st]; st=prv[i--][st]) {
   vst[st]++
   edgeID.PB(prve[i][st]);
                                                                          dst[ i ][ i ] = 0;
   rho.PB(st);
  while (vst[st] != 2) {
  int v = rho.back(); rho.pop_back();
                                                                        void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
   cycle.PB(v);
                                                                         dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
   vst[v]++;
                                                                        void shortest_path(){
  reverse(ALL(edgeID));
                                                                         for( int k = 0 ; k < n ; k ++ )</pre>
                                                                          for( int i = 0 ; i < n ; i ++ )
for( int j = 0 ; j < n ; j ++ )
dst[ i ][ j ] = min( dst[ i ][ j ],
  edgeID.resize(SZ(cycle));
  return mmc;
} mmc;
                                                                                 dst[ i ][ k ] + dst[ k ][ j ] );
3.11 Mo's Algorithm on Tree
                                                                        int solve( const vector<int>& ter ){
                                                                         int t = (int)ter.size();
int q; vector< int > G[N];
                                                                         for( int i = 0 ; i < (1 << t) ; i ++ )
for( int j = 0 ; j < n ; j ++ )
struct Que{
 int u, v, id;
                                                                            dp[ i ][ j ] = INF;
} que[ N ];
int dfn[N], dfn_, block_id[N], block_, stk[N], stk_;
void dfs( int u, int f ) {
                                                                         for( int i = 0 ; i < n ; i ++ )</pre>
                                                                          dp[0][i] = 0;
 dfn[ u ] = dfn_++; int saved_rbp = stk_;
                                                                         for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){</pre>
 for ( int v : G[ u ] ) {
  if ( v == f ) continue;
                                                                          if( msk == ( msk & (-msk) ) ){
                                                                           int who = __lg( msk );
  dfs( v, u );
                                                                            for( int i = 0 ; i < n ; i ++ )</pre>
  if ( stk_ - saved_rbp < SQRT_N ) continue;
for ( ++ block_ ; stk_ != saved_rbp ; )
  block_id[ stk[ -- stk_ ] ] = block_;</pre>
                                                                             dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];
                                                                            continue;
```

```
National Taiwan University - ckiseki
   for( int i = 0 ; i < n ; i ++ )</pre>
    for( int submsk = ( msk - 1 ) & msk ; submsk ;
          submsk = ( submsk - 1 ) & msk )
       dp[ msk ^ submsk ][ i ] );
   for( int i = 0 ; i < n ; i ++ ){</pre>
    tdst[ i ] = INF;
    for( int j = 0 ; j < n ; j ++ )
tdst[ i ] = min( tdst[ i ],
    dp[ msk ][ j ] + dst[ j ][ i ] );</pre>
   for( int i = 0 ; i < n ; i ++ )
dp[ msk ][ i ] = tdst[ i ];</pre>
  int ans = INF;
  for( int i = 0 ; i < n ; i ++ )
ans = min( ans , dp[ ( 1 << t ) - 1 ][ i ] );
  return ans;
} solver;
      Directed Minimum Spanning Tree
struct DirectedMST { // find maximum
 struct Edge {
  int u, v;
  int w;
  Edge(int u, int v, int w) : u(u), v(v), w(w) {}
 vector<Edge> Edges;
 void clear() { Edges.clear(); }
```

```
void addEdge(int a, int b, int w) { Edges.emplace_back
 (a, b, w); }
int solve(int root, int n) {
  vector<Edge> E = Edges;
  int ans = 0;
  while (true) {
   // find best in edge
   vector<int> in(n, -inf), prv(n, -1);
   for (auto e : E)
    if (e.u != e.v && e.w > in[e.v]) {
     in[e.v] = e.w;
     prv[e.v] = e.u;
   in[root] = 0;
   prv[root] = -1;
   for (int i = 0; i < n; i++)
    if (in[i] == -inf)
     return -inf;
   // find cycle
   int tot = 0;
   vector<int> id(n, -1), vis(n, -1);
for (int i = 0; i < n; i++) {</pre>
    ans += in[i];
    for (int x = i; x != -1 && id[x] == -1; x = prv[x])
     if (vis[x] == i) {
      for (int y = prv[x]; y != x; y = prv[y])
       id[y] = tot;
      id[x] = tot++;
      break;
     vis[x] = i;
    }
   if (!tot)
    return ans;
   for (int i = 0; i < n; i++)</pre>
    if (id[i] == -1)
     id[i] = tot++;
   // shrink
   for (auto &e : E) {
    if (id[e.u] != id[e.v])
     e.w -= in[e.v];
    e.u = id[e.u], e.v = id[e.v];
   n = tot:
   root = id[root];
  assert(false);
} DMST;
```

3.14 Manhattan Minimum Spanning Tree

```
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
 rep(k, 0, 4) {
  sort(all(id), [&](int i, int j) {
   return (ps[i] - ps[j]).x < (ps[j] - ps[i]).y;</pre>
  });
  map<int, int> sweep;
  for (int i : id) {
   for (auto it = sweep.lower_bound(-ps[i].y);
      it != sweep.end(); sweep.erase(it++)) {
    int j = it->second;
    P d = ps[i] - ps[j];
    if (d.y > d.x) break;
    edges.push_back(\{d.y + d.x, i, j\});
   sweep[-ps[i].y] = i;
  for (P &p : ps)
   if (k \& 1) p.x = -p.x;
   else swap(p.x, p.y);
 return edges; // [{w, i, j}, ...]
}
```

```
Dominator Tree
3.15
namespace dominator {
vector<int> g[maxn], r[maxn], rdom[maxn];
int dfn[maxn], rev[maxn], fa[maxn], sdom[maxn];
int dom[maxn], val[maxn], rp[maxn], tk;
void init(int n) {
 // vertices are numbered from 0 to n-1
 fill(dfn, dfn + n, -1); fill(rev, rev + n, -1);
 fill(fa, fa + n, -1); fill(val, val + n, -1);
 fill(sdom, sdom + n, -1); fill(rp, rp + n, -1);
 fill(dom, dom + n, -1); tk = 0;
 for (int i = 0; i < n; ++i) {
  g[i].clear(); r[i].clear(); rdom[i].clear();
void add_edge(int x, int y) { g[x].push_back(y); }
void dfs(int x) {
 rev[dfn[x] = tk] = x;
 fa[tk] = sdom[tk] = val[tk] = tk; tk ++;
 for (int u : g[x]) {
  if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
  r[dfn[u]].push_back(dfn[x]);
void merge(int x, int y) { fa[x] = y; }
int find(int x, int c = 0) {
 if (fa[x] == x) return c ? -1 : x;
 int p = find(fa[x], 1);
if (p == -1) return c ? fa[x] : val[x];
 if (sdom[val[x]]>sdom[val[fa[x]]]) val[x]=val[fa[x]];
 fa[x] = p;
 return c ? p : val[x];
vector<int> build(int s, int n) {
// return the father of each node in the dominator tree
// p[i] = -2 if i is unreachable from s
 dfs(s);
 for (int i = tk - 1; i >= 0; --i) {
  for (int u:r[i]) sdom[i]=min(sdom[i],sdom[find(u)]);
  if (i) rdom[sdom[i]].push_back(i);
  for (int &u : rdom[i]) {
   int p = find(u);
   if (sdom[p] == i) dom[u] = i;
   else dom[u] = p;
  if (i) merge(i, rp[i]);
 vector<int> p(n, -2); p[s] = -1;
for (int i = 1; i < tk; ++i)</pre>
  if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];
 for (int i = 1; i < tk; ++i) p[rev[i]] = rev[dom[i]];</pre>
 return p;
}}
```

3.16 Edge Coloring

```
// \max(d_u) + 1 edge coloring, time: O(NM)
int C[kN][kN], G[kN][kN]; // 1-based, G: ans
void clear(int N) {
for (int i = 0; i <= N; i++)
 for (int j = 0; j <= N; j++)
C[i][j] = G[i][j] = 0;</pre>
void solve(vector<pair<int, int>> &E, int N) {
int X[kN] = {}, a;
auto update = [&](int u)
 for (X[u] = 1; C[u][X[u]]; X[u]++);
auto color = [&](int u, int v, int c) {
 int p = G[u][v];
G[u][v] = G[v][u] = c;
 C[u][c] = v, C[v][c] = u;
 C[u][p] = C[v][p] = 0;
  if(p) X[u] = X[v] = p
 else update(u), update(v);
 return p;
 };
auto flip = [&](int u, int c1, int c2) {
 int p = C[u][c1];
 swap(C[u][c1], C[u][c2]);
if (p) G[u][p] = G[p][u] = c2;
 if (!C[u][c1]) X[u] = c1;
 if (!C[u][c2]) X[u] = c2;
  return p;
for (int i = 1; i <= N; i++) X[i] = 1;
for (int t = 0; t < E.size(); t++) {
 auto [u, v] = E[t];
  int v0 = v, c = X[u], c0 = c, d;
  vector<pair<int,
                    int>> L; int vst[kN] = {};
 while (!G[u][v0]) {
   L.emplace_back(v, d = X[v]);
   if (!C[v][c]) for(a=L.size()-1;a>=0;a--)
     c = color(u, L[a].first, c);
   else if(!C[u][d])for(a=L.size()-1;a>=0;a--)
     color(u, L[a].first, L[a].second);
   else if (vst[d]) break
   else vst[d] = 1, v = C[u][d];
 if (!G[u][v0]) {
   for (; v; v = flip(v, c, d), swap(c, d));
   if (C[u][c0]) { a = int(L.size()) - 1;
    while (--a >= 0 \&\& L[a].second != c)
    for(;a>=0;a--)color(u,L[a].first,L[a].second);
   } else t--;
```

4 Matching & Flow

4.1 Kuhn Munkres

```
class KM {
private:
static constexpr 1ld INF = 1LL << 60;</pre>
vector<lld> hl,hr,slk;
vector<int> fl,fr,pre,qu;
vector<vector<lld>> w;
vector<bool> v1,vr;
int n, ql, qr;
bool check(int x) {
 if (vl[x] = true, fl[x] != -1)
  return vr[qu[qr++] = fl[x]] = true;
 while (x != -1) swap(x, fr[fl[x] = pre[x]]);
 return false;
 void bfs(int s) {
 fill(slk.begin(), slk.end(), INF);
 fill(v1.begin(), v1.end(), false);
 fill(vr.begin(), vr.end(), false);
  ql = qr = 0;
  qu[qr++] = s;
 vr[s] = true;
  while (true) {
  11d d;
   while (ql < qr) {</pre>
```

```
if(!vl[x]\&slk[x]>=(d=hl[x]+hr[y]-w[x][y])){
      if (pre[x] = y, d) slk[x] = d;
      else if (!check(x)) return;
    }
   d = INF;
   for (int x = 0; x < n; ++x)
    if (!v1[x] \&\& d > s1k[x]) d = s1k[x];
   for (int x = 0; x < n; ++x) {
    if (v1[x]) h1[x] += d;
    else slk[x] -= d;
    if (vr[x]) hr[x] -= d;
   for (int x = 0; x < n; ++x)
    if (!v1[x] && !slk[x] && !check(x)) return;
 }
public:
 void init( int n_ ) {
  n = n_{;} qu.resize(n);
  fl.clear(); fl.resize(n, -1);
fr.clear(); fr.resize(n, -1);
hr.clear(); hr.resize(n); hl.resize(n);
  w.clear(); w.resize(n, vector<lld>(n));
  slk.resize(n); pre.resize(n);
  vl.resize(n); vr.resize(n);
 void set_edge( int u, int v, lld x ) {w[u][v] = x;}
 1ld solve() {
  for (int i = 0; i < n; ++i)</pre>
   hl[i] = *max_element(w[i].begin(), w[i].end());
  for (int i = 0; i < n; ++i) bfs(i);</pre>
  11d res = 0;
  for (int i = 0; i < n; ++i) res += w[i][f1[i]];</pre>
  return res;
 }
} km;
4.2 Bipartite Matching
class BipartiteMatching{
private:
 vector<int> X[N], Y[N];
 int fX[N], fY[N], n;
 bitset<N> walked;
 bool dfs(int x)
  for(auto i:X[x]){
   if(walked[i])continue;
   walked[i]=1
   if(fY[i]==-1||dfs(fY[i])){
    fY[i]=x;fX[x]=i;
    return 1:
  return 0;
public:
 void init(int _n){
  n=_n; walked.reset();
  for(int i=0;i<n;i++){</pre>
   X[i].clear();Y[i].clear();
   fX[i]=fY[i]=-1;
  }
 void add_edge(int x, int y){
  X[x].push_back(y); Y[y].push_back(y);
 int solve(){
  int cnt = 0;
  for(int i=0;i<n;i++){</pre>
   walked.reset();
   if(dfs(i)) cnt++;
  // return how many pair matched
  return cnt;
};
4.3 General Graph Matching
```

namespace matching {

int fa[kN], pre[kN], match[kN], s[kN], v[kN];

for (int x = 0, y = qu[q1++]; x < n; ++x)

bool SPFA(int u){

```
vector<int> g[kN];
                                                                 if (onstk[u]) return true;
queue<int> q;
                                                                 stk.PB(u); onstk[u] = 1;
                                                                 for (int v=0; v<n; v++){</pre>
void Init(int n) {
for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;
for (int i = 0; i < n; ++i) g[i].clear();</pre>
                                                                  if (u != v && match[u] != v && !onstk[v]){
                                                                   int m = match[v]
                                                                   if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
void AddEdge(int u, int v) {
                                                                    dis[m] = dis[u] - edge[v][m] + edge[u][v];
                                                                    onstk[v] = 1;
g[u].push_back(v);
 g[v].push_back(u);
                                                                     stk.PB(v)
                                                                    if (SPFA(m)) return true;
int Find(int u) {
                                                                    stk.pop_back();
return u == fa[u] ? u : fa[u] = Find(fa[u]);
                                                                    onstk[v] = 0;
int LCA(int x, int y, int n) {
static int tk = 0; tk++;
                                                                 onstk[u] = 0; stk.pop_back();
 x = Find(x), y = Find(y);
 for (; ; swap(x, y)) {
  if (x != n) {
                                                                 return false;
   if (v[x] == tk) return x;
                                                                int solve() { // find a match
   v[x] = tk;
                                                                 for (int i=0; i<n; i+=2){</pre>
   x = Find(pre[match[x]]);
                                                                  match[i] = i+1;
  }
                                                                  match[i+1] = i;
                                                                 while (true){
                                                                  int found = 0;
void Blossom(int x, int y, int 1) {
 while (Find(x) != 1) {
                                                                  for (int i=0; i<n; i++)</pre>
  pre[x] = y, y = match[x];
                                                                   dis[i] = onstk[i] = 0;
 if (s[y] == 1) q.push(y), s[y] = 0;
if (fa[x] == x) fa[x] = 1;
if (fa[y] == y) fa[y] = 1;
                                                                  for (int i=0; i<n; i++){</pre>
                                                                   stk.clear()
                                                                   if (!onstk[i] && SPFA(i)){
  x = pre[y];
                                                                    found = 1;
 }
                                                                    while (SZ(stk)>=2){
                                                                     int u = stk.back(); stk.pop_back();
bool Bfs(int r, int n) {
                                                                     int v = stk.back(); stk.pop_back();
for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;
                                                                     match[u] = v;
                                                                     match[v] = u;
 while (!q.empty()) q.pop();
 q.push(r);
                                                                   }
 s[r] = 0;
 while (!q.empty()) {
  int x = q.front(); q.pop();
                                                                  if (!found) break;
  for (int u : g[x]) {
  if (s[u] == -1) {
                                                                 int ret = 0;
    pre[u] = x, s[u] = 1;
                                                                 for (int i=0; i<n; i++)</pre>
    if (match[u] == n) {
                                                                  ret += edge[i][match[i]];
     for (int a = u, b = x, last; b != n; a = last, b =
                                                                 return ret>>1:
     pre[a])
      last = match[b], match[b] = a, match[a] = b;
                                                               } graph;
     return true;
                                                               4.5 Minimum Cost Circulation
                                                               struct Edge { int to, cap, rev, cost; };
    q.push(match[u]);
    s[match[u]] = 0;
                                                               vector<Edge> g[kN];
   } else if (!s[u] && Find(u) != Find(x)) {
                                                               int dist[kN],
                                                                             pv[kN], ed[kN];
    int 1 = LCA(u, x, n);
                                                               bool mark[kN];
    Blossom(x, u, 1);
                                                               int NegativeCycle(int n) {
                                                                memset(mark, false, sizeof(mark));
memset(dist, 0, sizeof(dist));
    Blossom(u, x, 1);
  }
                                                                int upd = -1;
                                                                for (int i = 0; i <= n; ++i) {
 return false;
                                                                 for (int j = 0; j < n; ++j) {
                                                                  int idx = 0;
                                                                  for (auto &e : g[j]) {
int Solve(int n) {
                                                                   if(e.cap > 0 && dist[e.to] > dist[j] + e.cost){
 int res = 0;
 for (int x = 0; x < n; ++x) {
                                                                    dist[e.to] = dist[j] + e.cost;
  if (match[x] == n) res += Bfs(x, n);
                                                                    pv[e.to] = j, ed[e.to] = idx;
                                                                     if (i == n) {
 return res;
                                                                     upd = j;
}}
                                                                     while(!mark[upd])mark[upd]=1,upd=pv[upd];
                                                                     return upd;
      Minimum Weight Matching (Clique version)
                                                                    }
struct Graph {
 // 0-base (Perfect Match)
                                                                   idx++;
 int n, edge[MXN][MXN];
 int match[MXN], dis[MXN], onstk[MXN];
                                                                 }
 vector<int> stk;
 void init(int _n) {
                                                                return -1;
  for (int i=0; i<n; i++) for (int j=0; j<n; j++)</pre>
                                                               int Solve(int n) {
                                                                int rt = -1, ans = 0;
   edge[i][j] = 0;
                                                                while ((rt = NegativeCycle(n)) >= 0) {
                                                                 memset(mark, false, sizeof(mark));
 void set_edge(int u, int v, int w) {
  edge[u][v] = edge[v][u] = w; 
                                                                 vector<pair<int, int>> cyc;
```

while (!mark[rt]) {

```
cyc.emplace_back(pv[rt], ed[rt]);
  mark[rt] = true;
  rt = pv[rt];
 reverse(cyc.begin(), cyc.end());
 int cap = kInf;
 for (auto &i : cyc) {
  auto &e = g[i.first][i.second];
  cap = min(cap, e.cap);
 for (auto &i : cyc) {
  auto &e = g[i.first][i.second];
  e.cap -= cap;
  g[e.to][e.rev].cap += cap;
  ans += e.cost * cap;
return ans;
```

4.6 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source ${\cal S}$ and sink ${\cal T}$.

 - 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l.

 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v) > 0, connect $S \to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect t o s with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the
 - maximum flow from s to t is the answer. To minimize, let f be the maximum flow from S to T. Connect t o s with capacity ∞ and let the flow from S to T be f'. If $f+f'\neq \sum_{v\in V, in(v)>0}in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching ${\cal M}$ on bipartite graph(X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise. 2. DFS from unmatched vertices in X.

 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect $x\to y$ with (cost,cap)=(c,1) if c>0, otherwise connect $y\to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c < 0, sum these cost as K, then increase d(y)
 - by 1, decrease d(x) by 1 4. For each vertex v with d(v) > 0, connect $S \to v$ with (cost, cap) =
 - (0, d(v))
 - 5. For each vertex v with d(v) < 0, connect $v \to T$ with (cost, cap) =(0, -d(v))
 - 6. Flow from S to T, the answer is the cost of the flow C+K
- · Maximum density induced subgraph

 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$ 2. Construct a max flow model, let ${\cal K}$ be the sum of all weights
 - Connect source $s \to v$, $v \in G$ with capacity K
 - For each edge (u,v,w) in G, connect $u \to v$ and $v \to u$ with capacity
 - 5. For $v \in G$, connect it with sink $v \to t$ with capacity K + 2T - $\left(\sum_{e \in E(v)} w(e)\right) - 2w(v)$
 - 6. T is a valid answer if the maximum flow f < K |V|
- · Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- · Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge
 - (v,t) with capacity $-p_v.$ 2. Create edge (u,v) with capacity w with w being the cost of choosing \boldsymbol{u} without choosing \boldsymbol{v}
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x \bar{y} + x' \bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with ca-
- pacity c_y .

 2. Create edge (x,y) with capacity c_{xy} .

 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

4.7 Dinic

```
template <typename Cap = int64_t>
class Dinic{
private:
  struct E{
    int to, rev;
    Cap cap;
  int n, st, ed;
  vector<vector<E>> G;
  vector<int> lv, idx;
  bool BFS(){
    lv.assign(n, -1);
    queue<int> bfs;
    bfs.push(st); lv[st] = 0;
    while (not bfs.empty()){
      int u = bfs.front(); bfs.pop();
       for (auto e: G[u]) {
         if (e.cap <= 0 or lv[e.to]!=-1) continue;
         bfs.push(e.to); lv[e.to] = lv[u] + 1;
      }
    }
    return lv[ed] != -1;
  Cap DFS(int u, Cap f){
  if (u == ed) return f;
    Cap ret = 0;
    for(int &i = idx[u]; i < int(G[u].size()); ++i) {</pre>
       auto &e = G[u][i];
       if (e.cap <= 0 or lv[e.to]!=lv[u]+1) continue;</pre>
      Cap nf = DFS(e.to, min(f, e.cap));
ret += nf; e.cap -= nf; f -= nf;
      G[e.to][e.rev].cap += nf;
       if (f == 0) return ret;
    if (ret == 0) lv[u] = -1;
    return ret;
public:
  void init(int n_) { G.assign(n = n_, vector<E>()); }
  void add_edge(int u, int v, Cap c){
  G[u].push_back({v, int(G[v].size()), c});
    G[v].push_back({u, int(G[u].size())-1, 0});
  Cap max_flow(int st_, int ed_){
    st = st_, ed = ed_; Cap ret = 0;
    while (BFS()) {
      idx.assign(n, 0);
      Cap f = DFS(st, numeric_limits<Cap>::max());
       ret += f;
       if (f == 0) break;
     return ret;
```

Minimum Cost Maximum Flow 4.8

```
class MiniCostMaxiFlow{
 using Cap = int; using Wei = int64_t;
 using PCW = pair<Cap,Wei>
 static constexpr Cap INF_CAP = 1 << 30;</pre>
 static constexpr Wei INF_WEI = 1LL<<60;</pre>
private:
 struct Edge{
  int to, back;
  Cap cap; Wei wei;
  Edge() {}
  Edge(int a,int b, Cap c, Wei d):
   to(a),back(b),cap(c),wei(d)
  {}
 int ori, edd;
 vector<vector<Edge>> G;
 vector<int> fa, wh;
 vector<bool> inq;
 vector<Wei> dis;
 PCW SPFA(){
  fill(inq.begin(),inq.end(),false);
  fill(dis.begin(), dis.end(), INF_WEI);
  queue<int> qq; qq.push(ori);
  dis[ori] = 0;
```

```
while(not qq.empty()){
                                                                  if (del[i] || v[i]) continue;
   int u=qq.front();qq.pop();
                                                                 if (c == -1 \mid | g[i] > g[c]) c = i;
   inq[u] = false
                                                                if (c == -1) break;
   for(int i=0;i<SZ(G[u]);++i){</pre>
    Edge e=G[u][i];
                                                                v[s = t, t = c] = true;
                                                                for (int i = 0; i < n; ++i) {
  if (del[i] || v[i]) continue;</pre>
    int v=e.to; Wei d=e.wei;
    if(e.cap<=0||dis[v]<=dis[u]+d)</pre>
                                                                 g[i] += w[c][i];
     continue
    dis[v] = dis[u] + d;
    fa[v] = u, wh[v] = i;
if (inq[v]) continue;
                                                               return make_pair(s, t);
    qq.push(v);
    inq[v] = true;
                                                              int mincut(int n) {
                                                               int cut = 1e9;
                                                               memset(del, false, sizeof(del));
  if(dis[edd]==INF_WEI) return {-1, -1};
                                                               for (int i = 0; i < n - 1; ++i) {
                                                                int s, t; tie(s, t) = phase(n);
del[t] = true; cut = min(cut, g[t]);
  Cap mw=INF_CAP;
  for(int i=edd;i!=ori;i=fa[i])
   mw=min(mw,G[fa[i]][wh[i]].cap);
                                                                for (int j = 0; j < n; ++j) {
  for (int i=edd;i!=ori;i=fa[i]){
                                                                 w[s][j] += w[t][j]; w[j][s] += w[j][t];
   auto &eg=G[fa[i]][wh[i]];
   eg.cap -= mw;
                                                               }
   G[eg.to][eg.back].cap+=mw;
                                                               return cut;
  return {mw, dis[edd]};
                                                              4.11 Dijkstra Cost Flow
public:
                                                              // kN = #(vertices)
 void init(int a,int b,int n){
                                                              // MCMF.{Init, AddEdge, MincostMaxflow}
  ori=a,edd=b;
                                                              // MincostMaxflow(source, sink, flow_limit, &cost)
  G.clear();G.resize(n);
                                                              // => flow
  fa.resize(n);wh.resize(n);
                                                              using Pii = pair<int, int>;
                                                              constexpr int kInf = 0x3f3f3f3f, kN = 500;
  inq.resize(n); dis.resize(n);
                                                              struct Edge {
 void add_edge(int st, int ed, Cap c, Wei w){
                                                               int to, rev, cost, flow;
  G[st].emplace_back(ed,SZ(G[ed]),c,w);
  G[ed].emplace_back(st,SZ(G[st])-1,0,-w);
                                                              struct MCMF { // 0-based
                                                               int n{}, m{}, s{}, t{};
 PCW solve(){
                                                               vector<Edge> graph[kN];
  Cap cc=0; Wei ww=0;
                                                               // Larger range for relabeling
                                                               int64_t dis[kN] = {}, h[kN] = {};
  while(true){
   PCW ret=SPFA();
                                                               int p[kN] = {};
   if(ret.first==-1) break;
                                                               void Init(int nn) {
   cc+=ret.first;
                                                                n = nn;
   ww+=ret.first * ret.second;
                                                                for (int i = 0; i < n; i++) graph[i].clear();</pre>
  return {cc,ww};
                                                               void AddEdge(int u, int v, int f, int c) {
                                                                graph[u].push_back({v,
} mcmf;
                                                                  static_cast<int>(graph[v].size()), c, f});
                                                                graph[v].push_back(
4.9 GomoryHu Tree
                                                                  {u, static_cast<int>(graph[u].size()) - 1,
int g[maxn];
                                                                   -c, 0});
vector<edge> GomoryHu(int n){
 vector<edge> rt;
                                                               bool Dijkstra(int &max_flow, int64_t &cost) {
 for(int i=1;i<=n;++i)g[i]=1;</pre>
                                                                priority_queue<Pii, vector<Pii>, greater<>> pq;
 for(int i=2;i<=n;++i){</pre>
                                                                fill_n(dis, n, kInf);
                                                                dis[s] = 0
  int t=g[i];
  flow.reset(); // clear flows on all edge
                                                                pq.emplace(0, s);
 rt.push_back({i,t,flow(i,t)});
flow.walk(i); // bfs points that connected to i (use
                                                                while (!pq.empty()) {
                                                                 auto u = pq.top();
    edges not fully flow)
                                                                 pq.pop();
  for(int j=i+1;j<=n;++j){</pre>
                                                                  int v = u.second;
                                                                  if (dis[v] < u.first) continue;</pre>
   if(g[j]==t && flow.connect(j))g[j]=i; // check if i
    can reach j
                                                                  for (auto &e : graph[v]) {
  }
                                                                   auto new_dis =
                                                                    dis[v] + e.cost + h[v] - h[e.to];
 return rt;
                                                                   if (e.flow > 0 && dis[e.to] > new_dis) {
                                                                   dis[e.to] = new_dis;
                                                                   p[e.to] = e.rev;
4.10 Global Min-Cut
                                                                   pq.emplace(dis[e.to], e.to);
const int maxn = 500 + 5;
int w[maxn][maxn], g[maxn];
                                                                 }
bool v[maxn], del[maxn];
void add_edge(int x, int y, int c) {
                                                                if (dis[t] == kInf) return false;
w[x][y] += c; w[y][x] += c;
                                                                for (int i = 0; i < n; i++) h[i] += dis[i];</pre>
                                                                int d = max_flow;
                                                                for (int u = t; u != s;
pair<int, int> phase(int n) {
memset(v, false, sizeof(v));
memset(g, 0, sizeof(g));
                                                                   u = graph[u][p[u]].to) {
                                                                  auto &e = graph[u][p[u]];
 int s = -1, t = -1;
                                                                 d = min(d, graph[e.to][e.rev].flow);
 while (true) {
  int c = -1;
                                                                max_flow -= d;
  for (int i = 0; i < n; ++i) {
                                                                cost += int64_t(d) * h[t];
```

```
for (int u = t; u != s;
    u = graph[u][p[u]].to) {
    auto &e = graph[u][p[u]];
    e.flow += d;
    graph[e.to][e.rev].flow -= d;
}
    return true;
}
int MincostMaxflow(
    int ss, int tt, int max_flow, int64_t &cost) {
    this->s = ss, this->t = tt;
    cost = 0;
    fill_n(h, n, 0);
    auto orig_max_flow = max_flow;
    while (Dijkstra(max_flow, cost) && max_flow) {}
    return orig_max_flow - max_flow;
}
};
```

5 Math

5.1 $\lfloor \frac{n}{i} \rfloor$ Enumeration

$T_0 = 1, T_{i+1} = \lfloor \frac{n}{\lfloor \frac{n}{T_i+1} \rfloor} \rfloor$ 5.2 ax+by=qcd

```
// ax+ny = 1, ax+ny == ax == 1 (mod n)
void exgcd(lld x,lld y,lld &g,lld &a,lld &b) {
  if (y == 0) g=x,a=1,b=0;
  else exgcd(y,x%y,g,b,a),b==(x/y)*a;
}
```

5.3 Pollard Rho

```
// does not work when n is prime
// return any non-trivial factor
llu pollard_rho(llu n){
    static auto f=[](llu x,llu k,llu m){
        return add(k,mul(x,x,m),m);
    };
    if (!(n&1)) return 2;
    mt19937 rnd(120821011);
    while(true){
        llu y=2,yy=y,x=rnd()%n,t=1;
        for(llu sz=2;t==1;sz<<=1) {
            for(llu i=0;i<sz;++i){
                if(t!=1)break;
                yy=f(yy,x,n);
                t=gcd(yy>y?yy-y:y-yy,n);
        }
        y=yy;
    }
    if(t!=1&&t!=n) return t;
}
```

5.4 Pi Count (Linear Sieve)

```
static constexpr int N = 1000000 + 5;
11d pi[N];
vector<int> primes;
bool sieved[N];
11d cube_root(11d x){
lld s=cbrt(x-static_cast<long double>(0.1));
while(s*s*s <= x) ++s;
return s-1;
11d square_root(11d x){
lld s=sqrt(x-static_cast<long double>(0.1));
while(s*s <= x) ++s;</pre>
return s-1;
void init(){
primes.reserve(N);
primes.push_back(1);
 for(int i=2;i<N;i++) {</pre>
 if(!sieved[i]) primes.push_back(i);
  pi[i] = !sieved[i] + pi[i-1];
  for(int p: primes) if(p > 1) {
  if(p * i >= N) break;
   sieved[p * i] = true;
   if(p % i == 0) break;
```

```
11d phi(11d m, 11d n) {
 static constexpr int MM = 80000, NN = 500:
 static lld val[MM][NN];
 if(m<MM&&n<NN&&val[m][n])return val[m][n]-1;</pre>
 if(n == 0) return m;
 if(primes[n] >= m) return 1;
lld ret = phi(m,n-1)-phi(m/primes[n],n-1);
 if(m < MM\&n < NN) val[m][n] = ret+1;
 return ret;
1ld pi_count(1ld);
11d P2(11d m, 11d n) {
 11d sm = square_root(m), ret = 0;
 for(lld i = n+1;primes[i]<=sm;i++)</pre>
  ret+=pi_count(m/primes[i])-pi_count(primes[i])+1;
 return ret;
11d pi_count(11d m) {
 if(m < N) return pi[m];</pre>
 11d n = pi_count(cube_root(m));
 return phi(m, n) + n - 1 - P2(m, n);
```

5.5 Strling Number

5.5.1 First Kind

 $S_1(n,k)$ counts the number of permutations of n elements with k disjoint cycles.

$$S_1(n,k) = (n-1) \cdot S_1(n-1,k) + S_1(n-1,k-1)$$

$$x(x+1) \dots (x+n-1) = \sum_{k=0}^{n} S_1(n,k) x^k$$

$$g(x) = x(x+1) \dots (x+n-1) = \sum_{k=0}^{n} a_k x^k$$

$$\Rightarrow g(x+n) = \sum_{k=0}^{n} \frac{b_k}{(n-k)!} x^{n-k},$$

$$b_k = \sum_{i=0}^{k} ((n-i)! a_{n-i}) \cdot (\frac{n^{k-i}}{(k-i)!})$$

5.5.2 Second Kind

 $S_2(n,k)$ counts the number of ways to partition a set of n elements into k nonempty sets.

$$S_2(n,k) = S_2(n-1,k-1) + k \cdot S_2(n-1,k)$$

$$S_2(n,k) = \sum_{i=0}^k {k \choose i} i^n (-1)^{k-i} = \sum_{i=0}^k \frac{(-1)^i}{i!} \cdot \frac{(k-i)^n}{(k-i)!}$$

5.6 Range Sieve

```
const int MAX_SQRT_B = 50000;
const int MAX_L = 200000 + 5;
bool is_prime_small[MAX_SQRT_B], is_prime[MAX_L];
void sieve(lld l, lld r){ // [l, r)
    for(lld i=2;i*i<r;i++) is_prime_small[i] = true;
    for(lld i=1;i<r;i++) is_prime[i-1] = true;
    if(l==1) is_prime[0] = false;
    for(lld i=2;i*i<r;i++){
        if(!is_prime_small[i]) continue;
        for(lld j=i*i;j*j<r;j+=i) is_prime_small[j]=false;
        for(lld j=std::max(2LL, (l+i-1)/i)*i;j<r;j+=i)
        is_prime[j-1]=false;
    }
}</pre>
```

5.7 Miller Rabin

```
return a!=1;
                                                                 VL convolution(const VI &a, const VI &b) {
 if(x<2)return 0;</pre>
                                                                  // Should be able to handle N <= 10^5, C <= 10^4
 if(!(x&1))return x==2;
                                                                  int sz = 1;
 11u \times 1=x-1; int t=0;
                                                                  while (sz < a.size() + b.size() - 1) sz <<= 1;</pre>
 while(!(x1&1))x1>>=1,t++;
                                                                  vector<cplx> v(sz);
 for(llu m:magic)if(witn(m,x1,x,t))return 0;
                                                                  for (int i = 0; i < sz; ++i) {
                                                                   double re = i < a.size() ? a[i] : 0;</pre>
 return 1;
                                                                   double im = i < b.size() ? b[i] : 0;</pre>
                                                                   v[i] = cplx(re, im);
5.8 Extended Euler
     a^b \equiv \begin{cases} a^b \mod \varphi(m) + \varphi(m) & \text{if } (a,m) \neq 1 \land b \geq \varphi(m) \\ a^b \mod \varphi(m) & \text{otherwise} \end{cases}
                                                                  fft(v, sz);
                                                  (\text{mod } m)
                                                                  for (int i = 0; i <= sz / 2; ++i) {
                                                                   int j = (sz - i) & (sz - 1);
                                                                   cplx x = (v[i] + v[j].conj()) * (v[i] - v[j].conj())
5.9 Gauss Elimination
                                                                   * cplx(0, -0.25);
if (j != i) v[j] = (v[j] + v[i].conj()) * (v[j] - v[i
void gauss(vector<vector<double>> &d) {
 int n = d.size(), m = d[0].size();
                                                                      ].conj()) * cplx(0, -0.25);
 for (int i = 0; i < m; ++i) {
                                                                   v[i] = x;
  int p = -1;
  for (int j = i; j < n; ++j) {
                                                                  ifft(v, sz);
   if (fabs(d[j][i]) < eps) continue;</pre>
                                                                  VL c(sz);
   if (p == -1 || fabs(d[j][i])>fabs(d[p][i])) p=j;
                                                                  for (int i = 0; i < sz; ++i) c[i] = round(v[i].re);</pre>
                                                                  return c:
  if (p == -1) continue;
  for (int j = 0; j < m; ++j) swap(d[p][j], d[i][j]);
                                                                 VI convolution_mod(const VI &a, const VI &b, int p) {
  for (int j = 0; j < n; ++j) {
                                                                  int sz = 1;
   if (i == j) continue;
                                                                  while (sz + 1 < a.size() + b.size()) sz <<= 1;</pre>
                                                                  vector<cplx> fa(sz), fb(sz);
for (int i = 0; i < (int)a.size(); ++i)</pre>
   double z = d[j][i] / d[i][i];
   for (int k = 0; k < m; ++k) d[j][k] -= z*d[i][k];
                                                                   fa[i] = cplx(a[i] & ((1 << 15) - 1), a[i] >> 15);
                                                                  for (int i = 0; i < (int)b.size(); ++i)
fb[i] = cplx(b[i] & ((1 << 15) - 1), b[i] >> 15);
                                                                  fft(fa, sz), fft(fb, sz);
5.10
      Fast Fourier Transform
                                                                  double r = 0.25 / sz;
                                                                  cplx r2(0, -1), r3(r, 0), r4(0, -r), r5(0, 1);
for (int i = 0; i <= (sz >> 1); ++i) {
const int mod = 1000000007;
const int M1 = 985661441; // G = 3
const int M2 = 998244353;
                                                                   int j = (sz - i) & (sz - 1);
const int M3 = 1004535809;
                                                                   cplx a1 = (fa[i] + fa[j].conj());
                                                                   cplx a2 = (fa[i] - fa[j].conj()) * r2;
int superBigCRT(int64_t A, int64_t B, int64_t C) {
                                                                   cplx b1 = (fb[i] + fb[j].conj()) * r3;
 static_assert (M1 <= M2 && M2 <= M3);
                                                                   cplx b2 = (fb[i] - fb[j].conj()) * r4;
 constexpr int64_t r12 = modpow(M1, M2-2, M2);
                                                                   if (i != j) {
  constexpr int64_t r13 = modpow(M1, M3-2, M3);
                                                                    cplx c1 = (fa[j] + fa[i].conj());
cplx c2 = (fa[j] - fa[i].conj()) * r2;
cplx d1 = (fb[j] + fb[i].conj()) * r3;
 constexpr int64_t r23 = modpow(M2, M3-2, M3);
 constexpr int64_t M1M2 = 1LL * M1 * M2 % mod;
 B = (B - A + M2) * r12 % M2;
 C = (C - A + M3) * r13 % M3;
                                                                     cplx d2 = (fb[j] - fb[i].conj()) * r4;
                                                                     fa[i] = c1 * d1 + c2 * d2 * r5;
 C = (C - B + M3) * r23 % M3
                                                                     fb[i] = c1 * d2 + c2 * d1;
  return (A + B * M1 + C * M1M2) % mod;
                                                                   fa[j] = a1 * b1 + a2 * b2 * r5;
namespace fft {
                                                                   fb[j] = a1 * b2 + a2 * b1;
using VI = vector<int>;
using VL = vector<long long>;
                                                                  fft(fa, sz), fft(fb, sz);
                                                                  vector<int> res(sz);
const double pi = acos(-1);
                                                                  for (int i = 0; i < sz; ++i) {
cplx omega[maxn + 1];
void prefft() {
                                                                   long long a = round(fa[i].re), b = round(fb[i].re),
                                                                         c = round(fa[i].im);
for (int i = 0; i <= maxn; i++)</pre>
                                                                   res[i] = (a+((b \% p) << 15)+((c \% p) << 30)) \% p;
  omega[i] = cplx(cos(2 * pi * j / maxn),
     sin(2 * pi * j / maxn));
                                                                  return res;
                                                                 }}
void fft(vector<cplx> &v, int n) {
 int z = __builtin_ctz(n) - 1;
                                                                 5.11 Chinese Remainder
 for (int i = 0; i < n; ++i) {
                                                                 lld crt(lld ans[], lld pri[], int n){
  int x = 0, j = 0;
  for (;(1 << j) < n;++j) x^=(i >> j & 1)<<(z - j);
                                                                  lld M = 1, ret = 0;
                                                                  for(int i=0;i<n;i++) M *= pri[i];</pre>
  if (x > i) swap(v[x], v[i]);
                                                                  for(int i=0;i<n;i++)</pre>
                                                                   lld iv = (gcd(M/pri[i],pri[i]).FF+pri[i])%pri[i];
 for (int s = 2; s <= n; s <<= 1) {
                                                                   ret += (ans[i]*(M/pri[i])%M * iv)%M;
  int z = s \gg 1;
                                                                   ret %= M:
  for (int i = 0; i < n; i += s) {
   for (int k = 0; k < z; ++k) {
    cplx x = v[i + z + k] * omega[maxn / s * k];
                                                                  return ret;
    v[i + z + k] = v[i + k] - x;
                                                                 }
                                                                 /*
    v[i+k] = v[i+k] + x;
                                                                 Another:
  }
                                                                 x = a1 \% m1
                                                                 x = a2 \% m2
                                                                 g = gcd(m1, m2)
void ifft(vector<cplx> &v, int n) {
                                                                 assert((a1-a2)%g==0)
fft(v, n); reverse(v.begin() + 1, v.end());
for (int i=0;i<n;++i) v[i] = v[i] * cplx(1. / n, 0);</pre>
                                                                 [p, q] = exgcd(m2/g, m1/g)
```

return a2+m2*(p*(a1-a2)/g)

```
0 <= x < lcm(m1, m2)
                                                                 LL *data() { return coef.data(); }
                                                                 const LL *data() const { return coef.data(); }
                                                                 LL &operator[](size_t i) { return coef[i]; }
5.12 Berlekamp Massey
                                                                 const LL &operator[](size_t i)const{return coef[i];}
                                                                 Poly(initializer_list<LL> a) : coef(a) { }
// x: 1-base, p[]: 0-base
                                                                 explicit Poly(int _n = 1) : coef(_n) { }
template<size_t N>
                                                                 Poly(const LL *arr, int _n) : coef(arr, arr + _n) {}
Poly(const Poly &p, int _n) : coef(_n) {
vector<llf> BM(llf x[N],size_t n){
 size_t f[N]={0},t=0;11f d[N];
                                                                  copy_n(p.data(), min(p.n(), _n), data());
 vector<llf> p[N];
 for(size_t i=1,b=0;i<=n;++i) {</pre>
                                                                 Poly& irev(){return reverse(data(),data()+n()),*this;}
  for(size_t j=0;j<p[t].size();++j)</pre>
                                                                 Poly& isz(int _n) { return coef.resize(_n), *this; }
   d[i]+=x[i-j-1]*p[t][j];
                                                                 Poly& iadd(const Poly &rhs) { // n() == rhs.n()
  if(abs(d[i]-=x[i])<=EPS)continue;</pre>
                                                                  fi(0, n()) if ((coef[i]+=rhs[i]) >= P)coef[i]-=P;
  f[t]=i;if(!t){p[++t].resize(i);continue;}
                                                                  return *this;
  vector<llf> cur(i-f[b]-1);
  11f k=-d[i]/d[f[b]];cur.PB(-k);
                                                                 Poly& imul(LL k) {
  for(size_t j=0;j<p[b].size();j++)</pre>
                                                                  fi(0, n()) coef[i] = coef[i] * k % P;
   cur.PB(p[b][j]*k)
                                                                  return *this:
  if(cur.size()<p[t].size())cur.resize(p[t].size());</pre>
  for(size_t j=0;j<p[t].size();j++)cur[j]+=p[t][j];</pre>
                                                                 Poly Mul(const Poly &rhs) const {
  if(i-f[b]+p[b].size()>=p[t].size()) b=t;
                                                                  const int _n = n2k(n() + rhs.n() - 1);
 p[++t]=cur;
                                                                  Poly X(*this, _n), Y(rhs, _n);
ntt(X.data(), _n), ntt(Y.data(),
fi(0, _n) X[i] = X[i] * Y[i] % P;
 return p[t];
                                                                  ntt(X.data(), _n, true);
                                                                  return X.isz(n() + rhs.n() - 1);
5.13 NTT
template <int mod, int G, int maxn>
                                                                 Poly Inv() const { // coef[0] != 0
struct NTT {
                                                                  if (n() == 1) return {ntt.minv(coef[0])};
 static_assert (maxn == (maxn & -maxn));
                                                                  const int _n = n2k(n() * 2);
 int roots[maxn];
                                                                  Poly Xi = Poly(*this, (n() + 1)/2).Inv().isz(_n);
 NTT () {
                                                                  Poly Y(*this, _n);
ntt(Xi.data(), _n), ntt(Y.data(), _n);
  int r = modpow(G, (mod - 1) / maxn);
  for (int i = maxn >> 1; i; i >>= 1) {
                                                                  fi(0, _n) {
Xi[i] *= (2 - Xi[i] * Y[i]) % P;
   roots[i] = 1;
   for (int j = 1; j < i; j++)
roots[i + j] = modmul(roots[i + j - 1], r);</pre>
                                                                   if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
   r = modmul(r, r);
                                                                  ntt(Xi.data(), _n, true);
                                                                  return Xi.isz(n());
 }
 // n must be 2^k, and 0 \le F[i] < mod
                                                                 Poly Sqrt() const { // Jacobi(coef[0], P) = 1
void inplace_ntt(int n, int F[], bool inv = false) {
  for (int i = 0, j = 0; i < n; i++) {
    if (i < j) swap(F[i], F[j]);
}</pre>
                                                                  if (n()==1) return {QuadraticResidue(coef[0], P)};
                                                                  Poly X = Poly(*this, (n()+1) / 2).Sqrt().isz(n());
                                                                  return X.iadd(Mul(X.Inv()).isz(n())).imul(P/2+1);
   for (int k = n > 1; (j^k < k; k > = 1);
                                                                 pair<Poly, Poly> DivMod(const Poly &rhs) const {
  for (int s = 1; s < n; s *= 2) {
                                                                  // (rhs.)back() != 0
   for (int i = 0; i < n; i += s * 2) {
                                                                  if (n() < rhs.n()) return {{0}, *this};</pre>
    for (int j = 0; j < s; j++) {
                                                                  const int _n = n() - rhs.n() + 1;
     int a = F[i+j];
                                                                  Poly X(rhs); X.irev().isz(_n);
     int b = modmul(F[i+j+s], roots[s+j]);
                                                                  Poly Y(*this); Y.irev().isz(_n);
     F[i+j] = modadd(a, b); // a + b
F[i+j+s] = modsub(a, b); // a - b
                                                                  Poly Q = Y.Mul(X.Inv()).isz(_n).irev();
                                                                  X = rhs.Mul(Q), Y = *this
                                                                  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
   }
                                                                  return {Q, Y.isz(max(1, rhs.n() - 1))};
  if (inv) {
                                                                 Poly Dx() const {
   int invn = modinv(n);
                                                                  Poly ret(n() - 1);
   for (int i = 0; i < n; i++)</pre>
                                                                  fi(0, ret.n()) ret[i] = (i + 1) * coef[i + 1] % P;
    F[i] = modmul(F[i], invn);
                                                                  return ret.isz(max(1, ret.n()));
   reverse(F + 1, F + n);
                                                                 Poly Sx() const {
                                                                  Poly ret(n() + 1);
                                                                  fi(0, n()) ret[i + 1]=ntt.minv(i + 1)*coef[i] % P;
const int P=2013265921, root=31;
                                                                  return ret;
const int MAXN=1<<20;</pre>
NTT<P, root, MAXN> ntt;
                                                                 Poly _tmul(int nn, const Poly &rhs) const {
                                                                  Poly Y = Mul(rhs).isz(n() + nn - 1);
      Polynomial Operations
                                                                  return Poly(Y.data() + n() - 1, nn);
using VL = vector<LL>
                                                                 VL _eval(const VL &x, const auto up)const{
#define fi(s, n) for (int i=int(s); i<int(n); ++i)</pre>
#define Fi(s, n) for (int i=int(n); i>int(s); --i)
                                                                  const int _n = (int)x.size();
                                                                  if (!_n) return {};
int n2k(int n) {
                                                                  vector<Poly> down(_n * 2);
int sz = 1; while (sz < n) sz <<= 1;
                                                                  down[1] = DivMod(up[1]).second;
 return sz;
                                                                  fi(2,_n*2) down[i]=down[i/2].DivMod(up[i]).second;
/* down[1] = Poly(up[1]).irev().isz(n()).Inv().irev()
template<int MAXN, LL P, LL RT> // MAXN = 2^k
                                                                      _tmul(_n, *this);
struct Poly { // coefficients in [0, P)
                                                                  fi(2, _n * 2) down[i] = up[i ^ 1]._tmul(up[i].n() -
 static NTT<MAXN, P, RT> ntt;
 VL coef;
                                                                     1, down[i / 2]); */
int n() const { return coef.size(); } // n()>=1
                                                                  VL y(_n);
```

```
fi(0, _n) y[i] = down[_n + i][0];
                                                                     * x = (x0, x1) , y = (y0, y1)
                                                                     *z = (x0y0 + x1y1 , x0y1 + x1y0 )
   return y;
                                                                     * =>
 static vector<Poly> _tree1(const VL &x) {
  const int _n = (int)x.size();
                                                                    * x' = (x0+x1, x0-x1), y' = (y0+y1, y0-y1)
* z' = ((x0+x1)(y0+y1), (x0-x1)(y0-y1))
                                                                     *z = (1/2) *z''
   vector<Poly> up(_n * 2);
  fi(0, _n) up[_n + i] = \{(x[i] ? P - x[i] : 0), 1\};

Fi(0, _n-1) up[i] = up[i * 2].Mul(up[i * 2 + 1]);
                                                                     * or convolution:
                                                                     * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
                                                                     * and convolution:
                                                                   * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */const LL MOD = 1e9+7;
 VL Eval(const VL&x)const{return _eval(x,_tree1(x));}
 static Poly Interpolate(const VL &x, const VL &y) {
                                                                   inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
                                                                     for( int d = 1 ; d < N ; d <<= 1 ) {</pre>
   const int _n = (int)x.size();
   vector<Poly> up = _{tree1(x), down(_n * 2);}
                                                                      int d2 = d << 1;
                                                                      for( int s = 0 ; s < N ; s += d2 )
   VL z = up[1].Dx()._eval(x, up);
                                                                       for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
  LL ta = x[ i ] , tb = x[ j ];
  x[ i ] = ta+tb;</pre>
   fi(0, _n) z[i] = y[i] * ntt.minv(z[i]) % P;
   fi(0, _n) down[_n + i] = {z[i]};
Fi(0, _n-1) down[i]=down[i * 2].Mul(up[i * 2 + 1])
    .iadd(down[i * 2 + 1].Mul(up[i * 2]));
                                                                        x[ j ] = ta-tb;
   return down[1];
                                                                        if( x[ i ] >= MOD ) x[ i ] -= MOD;
                                                                        if (x[j] < 0) x[j] += MOD;
 Poly Ln() const { // coef[0] == 1
                                                                       }
   return Dx().Mul(Inv()).Sx().isz(n());
                                                                     if( inv )
                                                                     for( int i = 0 ; i < N ; i++ ) {
  x[ i ] *= inv( N, MOD );</pre>
 Poly Exp() const \{ // coef[0] == 0 \}
   if (n() == 1) return {1};
                                                                       x[ i ] %= MOD;
   Poly X = Poly(*this, (n() + 1)/2).Exp().isz(n());
   Poly Y = X.Ln(); Y[0] = P - 1;
   fi(0, n()) if((Y[i] = coef[i] - Y[i]) < 0)Y[i]+=P;
   return X.Mul(Y).isz(n());
                                                                          DiscreteLog
 Poly Pow(const string &K) const {
                                                                   template<typename Int>
                                                                   Int BSGS(Int x, Int y, Int M) {
   int nz = 0;
   while (nz < n() && !coef[nz]) ++nz;</pre>
                                                                     // x^? \equiv y (mod M)
   LL nk = 0, nk2 = 0;
                                                                      Int t = 1, c = 0, g = 1;
   for (char c : K) {
                                                                      for (Int M<sub>_</sub> = M; M<sub>_</sub> > 0; M<sub>_</sub> >>= 1)
   nk = (nk * 10 + c - '0') % P;
                                                                        g = g * x % M;
    nk2 = nk2 * 10 + c - '0';
                                                                      for (g = gcd(g, M); t % g != 0; ++c) {
                                                                        if (t == y) return c;
t = t * x % M;
    if (nk2 * nz >= n()) return Poly(n());
    nk2 \ = P - 1:
   if (!nk && !nk2) return Poly({1}, n());
                                                                      if (y % g != 0) return -1;
   Poly X(data() + nz, n() - nz * nk2);
                                                                      t /= g, y /= g, M /= g;
   LL x0 = X[0];
                                                                      Int h = 0, gs = 1;
                                                                     for (; h * h < M; ++h) gs = gs * x % M;
unordered_map<Int, Int> bs;
   return X.imul(ntt.minv(x0)).Ln().imul(nk).Exp()
    .imul(ntt.mpow(x0, nk2)).irev().isz(n()).irev();
                                                                      for (Int s = 0; s < h; bs[y] = ++s)
 Poly InvMod(int L) { // (to evaluate linear recursion)
Poly R{1, 0}; // *this * R mod x^L = 1 (*this[0] ==
                                                                        y = y * x % M;
                                                                      for (Int s = 0; s < M; s += h) {
                                                                        t = t * gs % M;
   for (int level = 0; (1 << level) < L; ++level) {</pre>
                                                                        if (bs.count(t)) return c + s + h - bs[t];
    Poly 0 = R.Mul(Poly(data(), min(2 << level, n())));
    Poly Q(2 \ll level); Q[0] = 1;
                                                                      return -1:
    for (int j = (1 << level); j < (2 << level); ++j)
Q[j] = (P - O[j]) % P;</pre>
                                                                   5.17
                                                                          FloorSum
    R = R.Mul(Q).isz(4 << level);
                                                                   // @param n `n < 2^32`
   return R.isz(L);
                                                                   // @param m `1 <= m < 2^32`
                                                                   // @return sum_{i=0}^{n-1} floor((ai + b)/m) mod 2^64
 }
 static LL LinearRecursion(const VL&a,const VL&c,LL n){
                                                                   1lu floor_sum_unsigned(llu n, llu m, llu a, llu b) {
   // a_n = \sum_{j=0}^{n-j} a_{n-j}
                                                                     11u ans = 0:
   const int k = (int)a.size();
                                                                     while (true)
   assert((int)c.size() == k + 1);
                                                                      if (a >= m) {
   Poly C(k + 1), W(\{1\}, k), M = \{0, 1\}; fi(1, k + 1) C[k - i] = c[i] ? P - c[i] : 0;
                                                                       ans += n * (n - 1) / 2 * (a / m); a %= m;
   C[k] = 1;
                                                                      if (b >= m) {
   while (n) {
                                                                       ans += n * (b / m); b %= m;
    if (n % 2) W = W.Mul(M).DivMod(C).second;
    n /= 2, M = M.Mul(M).DivMod(C).second;
                                                                      llu y_max = a * n + b;
                                                                      if (y_max < m) break;</pre>
   LL ret = 0;
                                                                      // y_max < m * (n + 1)
   fi(0, k) ret = (ret + W[i] * a[i]) % P;
                                                                      // floor(y_max / m) <= n
   return ret;
                                                                      n = (11u)(y_max / m), b = (11u)(y_max % m);
                                                                     swap(m, a);
};
 #undef fi
                                                                     return ans;
 #undef Fi
 using Poly_t = Poly<131072 * 2, 998244353, 3>;
                                                                   11d floor_sum(11d n, 11d m, 11d a, 11d b) {
 template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
                                                                    llu ans = 0;
                                                                     if (a < 0) {
       FWT
 5.15
                                                                     11u \ a2 = (a \% m + m) \% m;
                                                                      ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
//* xor convolution:
```

```
a = a2;
if (b < 0) {
    llu b2 = (b % m + m) % m;
 ans -= 1ULL * n * ((b2 - b) / m);
return ans + floor_sum_unsigned(n, m, a, b);
```

5.18 ExtendedFloorSum

```
g(a, b, c, n) = \sum_{i=0}^{n} i \lfloor \frac{ai + b}{c} \rfloor
                                 \left( \left\lfloor \frac{a}{c} \right\rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \left\lfloor \frac{b}{c} \right\rfloor \cdot \frac{n(n+1)}{2} \right)
                               \begin{cases} +g(a \bmod c, b \bmod c, c, n), \\ 0, \end{cases}
                                                                                                                           a \geq c \vee b \geq c
                                                                                                                           n<0\vee a=0
                              \begin{cases} 0, \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1)) \end{cases}
                                -h(c, c-b-1, a, m-1)),
                                                                                                                            otherwise
h(a,b,c,n) = \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2
                               \left( \left\lfloor \frac{a}{c} \right\rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \left\lfloor \frac{b}{c} \right\rfloor^2 \cdot (n+1) \right)
                                 +\lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1)
                                 +h(a\bmod c,b\bmod c,c,n)
                                 +2\lfloor\frac{a}{c}\rfloor\cdot g(a\bmod c,b\bmod c,c,n)
                                +2\lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n),
                                                                                                                            a \geq c \vee b \geq c
                                                                                                                            n < 0 \lor a = 0
```

nm(m+1) - 2g(c, c-b-1, a, m-1)

-2f(c, c-b-1, a, m-1) - f(a, b, c, n), otherwise

5.19 Quadratic residue

```
struct S {
int MOD, w;
int64_t x, y;
S(int m, int w_=-1, int64_t x_=1, int64_t y_=0)
: MOD(m), w(w_), x(x_), y(y_) {}
S operator*(const S &rhs) const {
 int w_ = w;
  if (w_ == -1) w_ = rhs.w;
  assert(w_ != -1 and w_ == rhs.w);
  return { MOD, w_,
(x * rhs.x + y * rhs.y % MOD * w) % MOD,
(x * rhs.y + y * rhs.x) % MOD };
int get_root(int n, int P) {
  if (P == 2 or n == 0) return n;
  if (qpow(n, (P - 1) / 2, P) != 1) return -1;
  auto check = [&](int x) {
  return qpow(x, (P - 1) / 2, P); };
if (check(n) == P-1) return -1;
  int64_t a; int w; mt19937 rnd(7122);
do { a = rnd() % P;
    w = ((a * a - n) % P + P) % P;
  } while (check(w) != P - 1);
  return qpow(S(P, w, a, 1), (P + 1) / 2).x;
```

5.20 De-Bruijn

```
int res[maxn], aux[maxn], sz;
void db(int t, int p, int n, int k) {
if (t > n) {
 if (n \% p == 0)
  for (int i = 1; i <= p; ++i)
    res[sz++] = aux[i];
} else {
  aux[t] = aux[t - p];
 db(t + 1, p, n, k);
 for (int i = aux[t - p] + 1; i < k; ++i) {
  aux[t] = i:
  db(t + 1, t, n, k);
 }
int de_bruijn(int k, int n) {
// return cyclic string of len k^n s.t. every string
// of len n using k char appears as a substring.
if (k == 1) {
 res[0] = 0;
 return 1;
```

```
for (int i = 0; i < k * n; i++) aux[i] = 0;
 sz = 0;
 db(1, 1, n, k);
return sz:
}
```

5.21 Simplex Construction

Standard form: maximize $\sum_{1 < i < n} c_i x_i$ such that for all $1 \le j \le m$, $\sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j$ and $x_i \geq 0$ for all $1 \leq i \leq n$.

- 1. In case of minimization, let $c_i' = -c_i$
- 2. $\sum_{1 < i < n} A_{ji} x_i \ge b_j \to \sum_{1 < i < n} -A_{ji} x_i \le -b_j$
- $3. \sum_{1 \le i \le n} A_{ji} x_i = b_j$
 - $\sum_{1 < i < n} A_{ji} x_i \leq b_j$
 - $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

5.22 Simplex

```
namespace simplex {
// maximize c^Tx under Ax <= B
// return VD(n, -inf) if the solution doesn't exist
// return VD(n, +inf) if the solution is unbounded
using VD = vector<double>;
using VVD = vector<vector<double>>;
const double eps = 1e-9;
const double inf = 1e+9;
int n, m;
VVD d;
vector<int> p, q;
void pivot(int r, int s) {
 double inv = 1.0 / d[r][s];
 for (int i = 0; i < m + 2; ++i)
  for (int j = 0; j < n + 2; ++j)
if (i != r && j != s)
d[i][j] -= d[r][j] * d[i][s] * inv;</pre>
 for(int i=0;i<m+2;++i) if (i != r) d[i][s] *= -inv;
for(int j=0;j<n+2;++j) if (j != s) d[r][j] *= +inv;</pre>
 d[r][s] = inv; swap(p[r], q[s]);
bool phase(int z) {
 int x = m + z;
 while (true) {
  int s = -1;
  for (int i = 0; i <= n; ++i) {
   if (!z && q[i] == -1) continue;
   if (s == -1 \mid | d[x][i] < d[x][s]) s = i;
  if (d[x][s] > -eps) return true;
  int r = -1;
  for (int i = 0; i < m; ++i) {</pre>
   if (d[i][s] < eps) continue;</pre>
   if (r == -1 || \
    d[i][n+1]/d[i][s] < d[r][n+1]/d[r][s]) r = i;
  if (r == -1) return false;
  pivot(r, s);
VD solve(const VVD &a, const VD &b, const VD &c) {
 m = b.size(), n = c.size();
 d = VVD(m + 2, VD(n + 2));
 for (int i = 0; i < m; ++i)
  for (int j = 0; j < n; ++j) d[i][j] = a[i][j];
 p.resize(m), q.resize(n + 1);
 for (int i = 0; i < m; ++i)
 p[i] = n + i, d[i][n] = -1, d[i][n + 1] = b[i];
for (int i = 0; i < n; ++i) q[i] = i, d[m][i] = -c[i];
 q[n] = -1, d[m + 1][n] = 1;
 int r = 0;
 for (int i = 1; i < m; ++i)</pre>
  if (d[i][n + 1] < d[r][n + 1]) r = i;
 if (d[r][n + 1] < -eps) {
  pivot(r, n);
  if (!phase(1) || d[m + 1][n + 1] < -eps)
  return VD(n, -inf);
for (int i = 0; i < m; ++i) if (p[i] == -1) {
   int s = min_element(d[i].begin(), d[i].end() - 1)
```

```
- d[i].begin();
   pivot(i, s);
if (!phase(0)) return VD(n, inf);
VD x(n);
for (int i = 0; i < m; ++i)
 if (p[i] < n) x[p[i]] = d[i][n + 1];
5.23
      Charateristic Polynomial
vector<vector<int>> Hessenberg(const vector<vector<int
    >> &A) {
int N = A.size();
 vector<vector<int>> H = A;
for (int i = 0; i < N - 2; ++i) {
  if (!H[i + 1][i]) {
   for (int j = i + 2; j < N; ++j) {
  if (H[j][i]) {</pre>
     for (int k = i; k < N; ++k) swap(H[i + 1][k], H[j
    ][k]);
     for (int k = 0; k < N; ++k) swap(H[k][i + 1], H[k
    ][j]);
     break:
    }
   }
  if (!H[i + 1][i]) continue;
  int val = fpow(H[i + 1][i], kP - 2);
  for (int j = i + 2; j < N; ++j) {
  int coef = 1LL * val * H[j][i] % kP;</pre>
   for (int k = i; k < N; ++k) H[j][k] = (H[j][k] + 1LL
 * H[i + 1][k] * (kP - coef)) % kP;
   for (int k = 0; k < N; ++k) H[k][i + 1] = (H[k][i +
    1] + 1LL * H[k][j] * coef) % kP;
return H;
vector<int> CharacteristicPoly(const vector<vector<int
    >> &A) {
 int N = A.size();
auto H = Hessenberg(A);
for (int i = 0; i < N; ++i) {
  for (int j = 0; j < N; ++j) H[i][j] = kP - H[i][j];
 vector<vector<int>> P(N + 1, vector<int>(N + 1));
P[0][0] = 1;
 for (int i = 1; i <= N; ++i) {
  P[i][0] = 0;
  for (int j = 1; j \le i; ++j) P[i][j] = P[i - 1][j -
    1];
  int val = 1;
  for (int j = i - 1; j >= 0; --j) {
   int coef = 1LL * val * H[j][i - 1] % kP;
   for (int k = 0; k <= j; ++k) P[i][k] = (P[i][k] + 1
LL * P[j][k] * coef) % kP;
   if (j) val = 1LL * val * (kP - H[j][j - 1]) % kP;
  }
if (N & 1) {
  for (int i = 0; i \le N; ++i) P[N][i] = kP - P[N][i];
return P[N];
5.24
        Partition Number
int b = sqrt(n);
ans[0] = tmp[0] = 1;
                                                                    now.emplace_back(2,1,0);
for (int i = 1; i <= b; i++) {
                                                                    for (int i=3; i<n; i++){
for (int rep = 0; rep < 2; rep++)
for (int j = i; j <= n - i * i; j++)</pre>
modadd(tmp[j], tmp[j-i]);
for (int j = i * i; j <= n; j++)
modadd(ans[j], tmp[j - i * i]);
```

6 Geometry

Basic Geometry

```
using coord_t = int;
using Real = double;
using Point = std::complex<coord_t>;
int sgn(coord_t x) {
return (x > 0) - (x < 0); }
coord_t dot(Point a, Point b) {
return real(conj(a) * b); }
coord_t cross(Point a, Point b) {
 return imag(conj(a) * b); }
int ori(Point a, Point b, Point c) {
 return sgn(cross(b - a, c - a)); }
bool operator<(const Point &a, const Point &b) {</pre>
 return real(a) != real(b)
  ? real(a) < real(b) : imag(a) < imag(b);
int argCmp(Point a, Point b) {
 // -1 / 0 / 1 <-> < / == / > (atan2)
 int qa = (imag(a) == 0
   ? (real(a) < 0 ? 3 : 1) : (imag(a) < 0 ? 0 : 2));
 int qb = (imag(b) == 0
   ? (real(b) < 0 ? 3 : 1) : (imag(b) < 0 ? 0 : 2));
 if (qa != qb) return sgn(qa - qb);
 return sgn(cross(b, a));
template <typename V> Real area(const V & pt) {
 coord_t ret = 0;
 for (int i = 1; i + 1 < (int)pt.size(); i++)</pre>
  ret += cross(pt[i] - pt[0], pt[i+1] - pt[0]);
 return ret / 2.0;
6.2 2D Convex Hull
template<typename PT>
vector<PT> buildConvexHull(vector<PT> d) {
 sort(ALL(d), [](const PT& a, const PT& b){
   return tie(a.x, a.y) < tie(b.x, b.y);});</pre>
 vector<PT> s(SZ(d)<<1);</pre>
 int o = 0;
 for(auto p: d) {
  while(o \ge 2 \& cross(p-s[o-2], s[o-1]-s[o-2]) <= 0)
  s[o++] = p;
 for(int i=SZ(d)-2, t = o+1;i>=0;i--){
  while(o>=t&&cross(d[i]-s[o-2],s[o-1]-s[o-2])<=0)
  s[o++] = d[i];
 s.resize(o-1);
 return s;
6.3
    3D Convex Hull
// return the faces with pt indexes
int flag[MXN][MXN];
struct Point{
ld x,y,z;
 Point operator * (const 1d &b) const {
  return (Point) {x*b,y*b,z*b};}
 Point operator * (const Point &b) const {
  return(Point) {y*b.z-b.y*z,z*b.x-b.z*x,x*b.y-b.x*y};
Point ver(Point a, Point b, Point c) {
  return (b - a) * (c - a);}
vector<Face> convex_hull_3D(const vector<Point> pt) {
 int n = SZ(pt), ftop = 0;
 REP(i,n) REP(j,n) flag[i][j] = 0;
 vector<Face> now
 now.emplace_back(0,1,2);
```

ftop++; vector<Face> next; REP(j, SZ(now)) {
 Face& f=now[j]; int ff = 0;

ld d=(pt[i]-pt[f.a]).dot(

if (d > 0) ff=ftop; else if (d < 0) ff=-ftop;</pre>

ver(pt[f.a], pt[f.b], pt[f.c])); if (d <= 0) next.push_back(f);</pre>

flag[f.a][f.b]=flag[f.b][f.c]=flag[f.c][f.a]=ff;

```
if (dis(v[p], v[i]) < d) {
  d = dis(v[p], v[i]);</pre>
  REP(j, SZ(now)) {
   Face& f=now[j]
   if (flag[f.a][f.b] > 0 &&
                                                                     found = true;
     flag[f.a][f.b] != flag[f.b][f.a])
    next.emplace_back(f.a,f.b,i);
   if (flag[f.b][f.c] > 0 &&
                                                                  }
     flag[f.b][f.c] != flag[f.c][f.b])
    next.emplace_back(f.b,f.c,i);
                                                                 if (found) rebuild_m(i + 1);
   if (flag[f.c][f.a] > 0 &&
                                                                 else m[kx][ky][kz] = i;
     flag[f.c][f.a] != flag[f.a][f.c])
    next.emplace_back(f.c,f.a,i);
                                                                return d;
 now=next:
                                                               6.7 Simulated Annealing
 return now;
                                                               11f anneal() {
                                                                mt19937 rnd_engine( seed );
6.4 2D Farthest Pair
                                                                uniform_real_distribution< llf > rnd( 0, 1 );
                                                                const llf dT = 0.001;
// stk is from convex hull
                                                                // Argument p
n = (int)(stk.size());
                                                                llf S_{cur} = calc(p), S_{best} = S_{cur};
for ( llf T = 2000 ; T > EPS ; T -= dT ) {
int pos = 1, ans = 0; stk.push_back(stk[0]);
for(int i=0;i<n;i++) {</pre>
                                                                 // Modify p to p_prime
 while(abs(cross(stk[i+1]-stk[i],
                                                                 const llf S_prime = calc( p_prime );
   stk[(pos+1)%n]-stk[i])) >
                                                                 const llf delta_c = S_prime - S_cur;
llf prob = min( ( llf ) 1, exp( -delta_c / T ) );
   abs(cross(stk[i+1]-stk[i],
   stk[pos]-stk[i]))) pos = (pos+1)%n;
                                                                 if ( rnd( rnd_engine ) <= prob )</pre>
 ans = max({ans, dis(stk[i], stk[pos])},
                                                                 S_cur = S_prime, p = p_prime;
if ( S_prime < S_best ) // find min</pre>
  dis(stk[i+1], stk[pos])});
                                                                  S_best = S_prime, p_best = p_prime;
6.5 2D Closest Pair
                                                                return S_best;
struct cmp_y {
 bool operator()(const P& p, const P& q) const {
  return p.y < q.y;</pre>
                                                                    Half Plane Intersection
                                                               // NOTE: Point is complex<Real>
multiset<P, cmp_y> s;
                                                               // cross(pt-line.st, line.dir)<=0 <-> pt in half plane
void solve(P a[], int n) {
                                                               struct Line {
 sort(a, a + n, [](const P& p, const P& q) {
                                                                 Point st, ed;
  return tie(p.x, p.y) < tie(q.x, q.y);</pre>
                                                                 Point dir;
                                                                 Line (Point _s, Point _e)
 11f d = INF; int pt = 0;
                                                                  : st(_s), ed(_e), dir(_e - _s) {}
 for (int i = 0; i < n; ++i) {
                                                               };
 while (pt < i \text{ and } a[i].x - a[pt].x >= d)
   s.erase(s.find(a[pt++]));
                                                               bool operator<(const Line &lhs, const Line &rhs) {</pre>
  auto it = s.lower_bound(P(a[i].x, a[i].y - d));
                                                                 if (int cmp = argCmp(lhs.dir, rhs.dir))
  while (it != s.end() and it->y - a[i].y < d)</pre>
                                                                   return cmp == -1;
                                                                 return ori(lhs.st, lhs.ed, rhs.st) < 0;</pre>
   d = min(d, dis(*(it++), a[i]));
  s.insert(a[i]);
                                                               Point intersect(const Line &A, const Line &B) {
                                                                 Real t = cross(B.st - A.st, B.dir) /
                                                                  cross(A.dir, B.dir);
6.6 kD Closest Pair (3D ver.)
                                                                 return A.st + t * A.dir;
                                                               }
11f solve(vector<P> v) {
 shuffle(v.begin(), v.end(), mt19937());
                                                               Real HPI(vector<Line> &lines) {
 unordered_map<lld, unordered_map<lld,
                                                                 sort(lines.begin(), lines.end());
  unordered_map<lld, int>>> m;
                                                                 deque<Line> que;
 llf d = dis(v[0], v[1]);
                                                                 deque<Point> pt;
 auto Idx = [&d] (llf x) -> lld {
  return round(x * 2 / d) + 0.1;
                                                                 que.push_back(lines[0]);
                                                                 for (int i = 1; i < (int)lines.size(); i++) {</pre>
 auto rebuild_m = [&m, &v, &Idx](int k) {
                                                                   if (argCmp(lines[i].dir, lines[i-1].dir) == 0)
  m.clear():
  for (int i = 0; i < k; ++i)
m[Idx(v[i].x)][Idx(v[i].y)]</pre>
                                                                    continue;
                                                               #define POP(L, R) \
                                                                   while (pt.size() > 0 \
    [Idx(v[i].z)] = i;
                                                                     && ori(L.st, L.ed, pt.back()) < 0) \
 }; rebuild_m(2);
                                                                     pt.pop_back(), que.pop_back(); \
 for (size_t i = 2; i < v.size(); ++i) {
  const lld kx = Idx(v[i].x), ky = Idx(v[i].y),
                                                                   while (pt.size() > 0 \
                                                                     && ori(R.st, R.ed, pt.front()) < 0) \
     kz = Idx(v[i].z); bool found = false;
                                                                     pt.pop_front(), que.pop_front();
  for (int dx = -2; dx <= 2; ++dx) {
   const 11d nx = dx + kx
                                                                   POP(lines[i], lines[i])
                                                                   pt.push_back(intersect(que.back(), lines[i]));
   if (m.find(nx) == m.end()) continue;
                                                                   que.push_back(lines[i]);
   auto& mm = m[nx];
   for (int dy = -2; dy \leq 2; ++dy) {
                                                                 POP(que.front(), que.back())
    const 11d ny = dy + ky;
    if (mm.find(ny) == mm.end()) continue;
                                                                 if (que.size() <= 1 ||</pre>
                                                                   argCmp(que.front().dir, que.back().dir) == 0)
    auto& mmm = mm[ny];
                                                                   return 0:
    for (int dz = -2; dz <= 2; ++dz) {
                                                                 pt.push_back(intersect(que.front(), que.back()));
     const 11d nz = dz + kz;
                                                                 return area(pt);
     if (mmm.find(nz) == mmm.end()) continue;
     const int p = mmm[nz];
```

6.9 Minkowski Sum

6.10 Intersection of line and Circle

6.11 Intersection of Polygon and Circle

```
// Divides into multiple triangle, and sum up
// test by HDU2892
const double PI=acos(-1);
double _area(pdd pa, pdd pb, double r){
if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
 if(abs(pb)<eps) return 0;</pre>
double S, h, theta;
double a=abs(pb), b=abs(pa), c=abs(pb-pa);
double cosB = dot(pb, pb-pa) / a / c, B = acos(cosB);
double cosC = dot(pa, pb) / a / b, C = acos(cosC);
if(a > r){
 S = (C/2)*r*r
 h = a*b*sin(C)/c;
 if (h < r && B < PI/2)
  S -= (acos(h/r)*r*r - h*sqrt(r*r-h*h));
else if(b > r){
 theta = PI - B - asin(sin(B)/r*a);
 S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
else S = .5*sin(C)*a*b;
return S;
double area_poly_circle(const vector<pdd> poly,
  const pdd &0,const double r){
 double S=0:
for(int i=0;i<SZ(poly);++i)</pre>
 S+=_area(poly[i]-0,poly[(i+1)%SZ(poly)]-0,r)
    *ori(0,poly[i],poly[(i+1)%SZ(poly)]);
 return fabs(S);
```

6.12 Intersection of Two Circle

```
bool CCinter(Cir &a, Cir &b, pdd &p1, pdd &p2) {
  pdd o1 = a.0, o2 = b.0;
  double r1 = a.R, r2 = b.R, d2 = abs2(o1 - o2),
      d = sqrt(d2);
  if(d < max(r1, r2) - min(r1, r2) || d > r1 + r2)
  return 0;
  pdd u = (o1 + o2) * 0.5
      + (o1 - o2) * ((r2 * r2 - r1 * r1) / (2 * d2));
  double A = sqrt((r1 + r2 + d) * (r1 - r2 + d)
      * (r1 + r2 - d) * (-r1 + r2 + d));
  pdd v = pdd(o1.Y - o2.Y, -o1.X + o2.X) * A
  / (2 * d2);
  p1 = u + v, p2 = u - v;
  return 1;
}
```

6.13 Tangent line of Two Circle

```
vector<Line> go(const Cir& c1,
  const Cir& c2, int sign1){
 // sign1 = 1 for outer tang, -1 for inter tang
 vector<Line> ret;
 double d_sq = norm2( c1.0 - c2.0 );
 if( d_sq < eps ) return ret;</pre>
 double d = sqrt( d_sq );
 Pt v = (c2.0 - c1.0) / d;
 double c = ( c1.R - sign1 * c2.R ) / d;
 if( c * c > 1 ) return ret;
 double h = sqrt( max( 0.0 , 1.0 - c * c ) );
for( int sign2 = 1 ; sign2 >= -1 ; sign2 -= 2 ){
  Pt n = \{ v.X * c - sign2 * h * v.Y ,
   v.Y * c + sign2 * h * v.X };
  Pt p1 = c1.0 + n * c1.R;
  Pt p2 = c2.0 + n * (c2.R * sign1);
  if( fabs( p1.X - p2.X ) < eps and
fabs( p1.Y - p2.Y ) < eps )</pre>
   p2 = p1 + perp(c2.0 - c1.0);
  ret.push_back( { p1 , p2 } );
 return ret;
}
```

6.14 Minimum Covering Circle

```
template<typename P>
Circle getCircum(const P &a, const P &b, const P &c){
 Real a1 = a.x-b.x, b1 = a.y-b.y;
 Real c1 = (a.x+b.x)/2 * a1 + (a.y+b.y)/2 * b1;
 Real a2 = a.x-c.x, b2 = a.y-c.y;
 Real c2 = (a.x+c.x)/2 * a2 + (a.y+c.y)/2 * b2;
 Circle cc;
 cc.o.x = (c1*b2-b1*c2)/(a1*b2-b1*a2);
 cc.o.y = (a1*c2-c1*a2)/(a1*b2-b1*a2);
 cc.r = hypot(cc.o.x-a.x, cc.o.y-a.y);
 return cc;
}
template<typename P>
Circle MinCircleCover(const vector<P>& pts){
 random_shuffle(pts.begin(), pts.end());
 Circle c = \{ pts[0], 0 \};
 for(int i=0;i<(int)pts.size();i++){</pre>
  if (dist(pts[i], c.o) <= c.r) continue;</pre>
  c = { pts[i], 0 };
for (int j = 0; j < i; j++) {</pre>
   if(dist(pts[j], c.o) <= c.r) continue;</pre>
   c.o = (pts[i] + pts[j]) / 2;
   c.r = dist(pts[i], c.o)
   for (int k = 0; k < j; k++) {
    if (dist(pts[k], c.o) <= c.r) continue;</pre>
    c = getCircum(pts[i], pts[j], pts[k]);
  }
 return c;
```

6.15 KDTree (Nearest Point)

```
const int MXN = 100005:
struct KDTree {
 struct Node {
  int x,y,x1,y1,x2,y2;
  int id,f;
***R;
 } tree[MXN], *root;
 int n:
 LL dis2(int x1, int y1, int x2, int y2) {
  LL dx = x1-x2, dy = y1-y2;
  return dx*dx+dy*dy;
 static bool cmpx(Node& a, Node& b) {return a.x<b.x;}</pre>
 static bool cmpy(Node& a, Node& b){return a.y<b.y;}</pre>
 void init(vector<pair<int,int>> ip) {
  n = ip.size();
  for (int i=0; i<n; i++) {</pre>
   tree[i].id = i;
   tree[i].x = ip[i].first;
   tree[i].y = ip[i].second;
```

```
root = build_tree(0, n-1, 0);
                                                                }
                                                                 6.17 Circle Cover
Node* build_tree(int L, int R, int d) {
  if (L>R) return nullptr
                                                                 const int N = 1021;
 int M = (L+R)/2; tree[M].f = d%2;
                                                                 struct CircleCover {
  nth_element(tree+L,tree+M,tree+R+1,d%2?cmpy:cmpx);
                                                                  int C
  tree[M].x1 = tree[M].x2 = tree[M].x;
                                                                  Cir c[N]
 tree[M].y1 = tree[M].y2 = tree[M].y;
                                                                  bool g[N][N], overlap[N][N];
  tree[M].L = build_tree(L, M-1, d+1);
                                                                  // Area[i] : area covered by at least i circles
  if (tree[M].L) {
                                                                  double Area[ N ];
   tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
                                                                  void init(int _C){ C = _C;}
   tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
                                                                  struct Teve {
   tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
                                                                    pdd p; double ang; int add;
                                                                    Teve() {}
                                                                    Teve(pdd _a, double _b, int _c):p(_a), ang(_b), add(
 tree[M].R = build_tree(M+1, R, d+1);
                                                                      _c){}
  if (tree[M].R) {
                                                                    bool operator<(const Teve &a)const
   tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
                                                                    {return ang < a.ang;}
   tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
                                                                   }eve[N * 2];
   tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
                                                                   // strict: x = 0, otherwise x = -1
                                                                  bool disjuct(Cir &a, Cir &b, int x)
                                                                  {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
bool contain(Cir &a, Cir &b, int x)
  return tree+M;
                                                                   \{return sign(a.R - b.R - abs(a.0 - b.0)) > x;\}
int touch(Node* r, int x, int y, LL d2){
                                                                  bool contain(int i, int j) {
 LL dis = sqrt(d2)+1;
                                                                    /* c[j] is non-strictly in c[i]. */
 if (x<r->x1-dis || x>r->x2+dis ||
                                                                    return (sign(c[i].R - c[j].R) > 0 \mid \mid (sign(c[i].R - c
    y<r->y1-dis || y>r->y2+dis)
                                                                      [j].R) == 0 && i < j)) && contain(c[i], c[j], -1);
   return 0;
  return 1;
                                                                  void solve(){
                                                                    fill_n(Area, C + 2, 0);
void nearest(Node* r,int x,int y,int &mID,LL &md2) {
                                                                    for(int i = 0; i < C; ++i)</pre>
  if (!r || !touch(r, x, y, md2)) return;
                                                                     for(int j = 0; j < C; ++j)
 LL d2 = dis2(r->x, r->y, x, y);
                                                                      overlap[i][j] = contain(i, j);
  if (d2 < md2 \mid | (d2 == md2 \&\& mID < r->id)) {
                                                                    for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)
   mID = r->id;
   md2 = d2;
                                                                      g[i][j] = !(overlap[i][j] || overlap[j][i] ||
                                                                        disjuct(c[i], c[j], -1));
  // search order depends on split dim
                                                                    for(int i = 0; i < C; ++i){
 if ((r->f == 0 && x < r->x) ||
                                                                     int E = 0, cnt = 1;
    (r->f == 1 && y < r->y))
                                                                     for(int j = 0; j < C; ++j)
  if(j != i && overlap[j][i])</pre>
   nearest(r->L, x, y, mID, md2);
   nearest(r->R, x, y, mID, md2);
                                                                     for(int j = 0; j < C; ++j)</pre>
   nearest(r->R, x, y, mID, md2);
                                                                      if(i != j && g[i][j]) {
   nearest(r->L, x, y, mID, md2);
                                                                       pdd aa, bb;
                                                                       CCinter(c[i], c[j], aa, bb);
Ilf A = atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X);
Ilf B = atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X);
int query(int x, int y) {
 int id = 1029384756;
                                                                       eve[E++] = Teve(bb,B,1), eve[E++]=Teve(aa,A,-1);
 LL d2 = 102938475612345678LL;
                                                                       if(B > A) ++cnt;
 nearest(root, x, y, id, d2);
  return id;
                                                                     if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
                                                                     else{
} tree;
                                                                      sort(eve, eve + E);
                                                                      eve[E] = eve[0];
      Rotating Sweep Line
                                                                      for(int j = 0; j < E; ++j){
  cnt += eve[j].add;</pre>
void rotatingSweepLine(pair<int, int> a[], int n) {
vector<pair<int, int>> 1;
                                                                       Area[cnt] += cross(eve[j].p, eve[j + 1].p) * .5;
1.reserve(n * (n - 1) / 2);
                                                                       double theta = eve[j + 1].ang - eve[j].ang;
for (int i = 0; i < n; ++i)
                                                                       if (theta < 0) theta += 2. * pi;</pre>
 for (int j = i + 1; j < n; ++j)
                                                                       Area[cnt]+=(theta-sin(theta))*c[i].R*c[i].R*.5;
   1.emplace_back(i, j);
 sort(1.begin(), 1.end(), [&a](auto &u, auto &v){
 1ld udx = a[u.first].first - a[u.second].first;
 11d udy = a[u.first].second - a[u.second].second;
  1ld vdx = a[v.first].first - a[v.second].first;
  11d vdy = a[v.first].second - a[v.second].second;
  if (udx == 0 \text{ or } vdx == 0) \text{ return not } udx == 0;
                                                                       Stringology
                                                                 7
  int s = sgn(udx * vdx);
  return udy * vdx * s < vdy * udx * s;</pre>
                                                                 7.1 Hash
 });
vector<int> idx(n), p(n);
                                                                 class Hash {
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&a](int i, int j){
                                                                  private:
                                                                    static constexpr int P = 127, Q = 1051762951;
 return a[i] < a[j]; });</pre>
                                                                    vector<int> h, p;
for (int i = 0; i < n; ++i) p[idx[i]] = i;
for (auto [i, j]: 1) {</pre>
                                                                  public:
                                                                    void init(const string &s){
 // do here
                                                                     h.assign(s.size()+1, 0); p.resize(s.size()+1);
                                                                     for (size_t i = 0; i < s.size(); ++i)
h[i + 1] = add(mul(h[i], P), s[i]);</pre>
 swap(p[i], p[j]);
  idx[p[i]] = i, idx[p[j]] = j;
                                                                     generate(p.begin(), p.end(),[x=1,y=1,this]()
```

```
mutable{y=x;x=mul(x,P);return y;});
                                                                int max_len;
                                                                Node(const int _max_len)
  int query(int 1, int r){ // 1-base (1, r]
                                                                 : green(NULL), max_len(_max_len){
   return sub(h[r], mul(h[1], p[r-1]));}
                                                                 memset(edge, 0, sizeof(edge));
                                                               } *ROOT, *LAST;
7.2 Suffix Array
                                                               void Extend(const int c) {
namespace sfxarray {
                                                                Node *cursor = LAST;
bool t[maxn * 2];
                                                                LAST = new Node((LAST->max_len) + 1);
int hi[maxn], rev[maxn];
int _s[maxn * 2], sa[maxn * 2], c[maxn * 2];
                                                                for(;cursor&!cursor->edge[c]; cursor=cursor->green)
                                                                 cursor->edge[c] = LAST;
int x[maxn], p[maxn], q[maxn * 2];
                                                                if (!cursor)
                                                                 LAST->green = ROOT;
// sa[i]: sa[i]-th suffix is the \
// i-th lexigraphically smallest suffix.
                                                                else {
                                                                 Node *potential_green = cursor->edge[c];
// hi[i]: longest common prefix \
// of suffix sa[i] and suffix sa[i - 1].
                                                                 if((potential_green->max_len)==(cursor->max_len+1))
void pre(int *sa, int *c, int n, int z) {
                                                                  LAST->green = potential_green;
memset(sa, 0, sizeof(int) * n);
 memcpy(x, c, sizeof(int) * z);
                                                               //assert(potential_green->max_len>(cursor->max_len+1));
                                                                  Node *wish = new Node((cursor->max_len) + 1);
void induce(int *sa,int *c,int *s,bool *t,int n,int z){
                                                                  for(;cursor && cursor->edge[c]==potential_green;
memcpy(x + 1, c, sizeof(int) * (z - 1));
for (int i = 0; i < n; ++i)
if (sa[i] && !t[sa[i] - 1])
                                                                     cursor = cursor->green)
                                                                   cursor->edge[c] = wish;
                                                                  for (int i = 0; i < 26; i++)
   sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
                                                                   wish->edge[i] = potential_green->edge[i];
 memcpy(x, c, sizeof(int) * z);
for (int i = n - 1; i >= 0; --i)
                                                                  wish->green = potential_green->green;
                                                                  potential_green->green = wish;
  if (sa[i] && t[sa[i] - 1])
                                                                  LAST->green = wish;
   sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
                                                                 }
void sais(int *s, int *sa, int *p, int *q,
 bool *t, int *c, int n, int z) {
                                                               char S[10000001], A[10000001];
 bool uniq = t[n - 1] = true;
                                                               int N;
 int nn=0, nmxz=-1, *nsa = sa+n, *ns=s+n, last=-1;
                                                               int main(){
                                                                scanf("%d%s", &N, S);
 memset(c, 0, sizeof(int) * z);
 for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
                                                                ROOT = LAST = new Node(0);
 for (int i = 0; i < z - 1; ++i) c[i + 1] += c[i];
                                                                for (int i = 0; S[i]; i++)
                                                                                'a');
 if (uniq) {
                                                                 Extend(S[i] -
                                                                while (N--){
  for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;
                                                                 scanf("%s", A);
  return;
                                                                 Node *cursor = ROOT;
 for (int i = n - 2; i >= 0; --i)
t[i] = (s[i]==s[i + 1] ? t[i + 1] : s[i]<s[i + 1]);
                                                                 bool ans = true;
                                                                 for (int i = 0; A[i]; i++){
 pre(sa, c, n, z);
                                                                  cursor = cursor->edge[A[i] - 'a'];
 for (int i = 1; i <= n - 1; ++i)</pre>
                                                                  if (!cursor) {
  if (t[i] && !t[i - 1])
                                                                   ans = false;
                                                                   break;
   sa[--x[s[i]]] = p[q[i] = nn++] = i;
 induce(sa, c, s, t, n, z);
for (int i = 0; i < n; ++i)
                                                                  }
  if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
                                                                puts(ans ? "Yes" : "No");
  bool neq = last < 0 || \
   memcmp(s + sa[i], s + last,
                                                                return 0;
   (p[q[sa[i]] + 1] - sa[i]) * sizeof(int));
  ns[q[last = sa[i]]] = nmxz += neq;
                                                               7.4 KMP
 sais(ns, nsa, p+nn, q+n, t+n, c+z, nn, nmxz+1);
                                                               vector<int> kmp(const string &s) {
 pre(sa, c, n, z);
                                                                vector<int> f(s.size(), 0);
 for (int i = nn ·
                   - 1; i >= 0; --i)
                                                                /* f[i] = length of the longest prefix
  sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
                                                                  (excluding s[0:i]) such that it coincides with the suffix of s[0:i] of the same length */
 induce(sa, c, s, t, n, z);
                                                                /* i + 1 - f[i] is the length of the
void build(const string &s) {
                                                                  smallest recurring period of s[0:i] */
for (int i = 0; i < (int)s.size(); ++i) _s[i] = s[i];</pre>
                                                                int k = 0;
 _s[(int)s.size()] = 0; // s shouldn't contain 0
                                                                for (int i = 1; i < (int)s.size(); ++i) {</pre>
 sais(_s, sa, p, q, t, c, (int)s.size() + 1, 256);
                                                                 while (k > 0 \&\& s[i] != s[k]) k = f[k - 1];
 for(int i = 0; i < (int)s.size(); ++i) sa[i]=sa[i+1];</pre>
                                                                 if (s[i] == s[k]) ++k;
 for(int i = 0; i < (int)s.size(); ++i) rev[sa[i]]=i;</pre>
                                                                 f[i] = k;
 int ind = 0; hi[0] = 0;
 for (int i = 0; i < (int)s.size(); ++i) {</pre>
                                                                return f;
  if (!rev[i]) {
   ind = 0;
                                                               vector<int> search(const string &s, const string &t) {
   continue;
                                                                // return 0-indexed occurrence of t in s
                                                                vector<int> f = kmp(t), r;
  while (i + ind < (int)s.size() && \</pre>
   s[i + ind] == s[sa[rev[i] - 1] + ind]) ++ind;
                                                                for (int i = 0, k = 0; i < (int)s.size(); ++i)</pre>
                                                                 while(k > 0 && (k==(int)t.size() \mid \mid s[i]!=t[k]))
  hi[rev[i]] = ind ? ind-- : 0;
                                                                 k = f[k - 1]
                                                                 if (s[i] == t[k]) ++k;
}}
                                                                 if (k == (int)t.size()) r.push_back(i-t.size()+1);
7.3 Suffix Automaton
struct Node{
                                                                return res;
Node *green, *edge[26];
```

```
7.5 Z value
```

```
char s[MAXN];
int len,z[MAXN];
void Z_value() {
  int i,j,left,right;
  z[left=right=0]=len;
  for(i=1;i<len;i++) {
    j=max(min(z[i-left],right-i),0);
    for(;i+j<len&&s[i+j]==s[j];j++);
    if(i+(z[i]=j)>right)right=i+z[left=i];
  }
}
```

7.6 Manacher

```
int z[maxn];
int manacher(const string& s) {
    string t = ".";
    for(char c: s) t += c, t += '.';
    int l = 0, r = 0, ans = 0;
    for (int i = 1; i < t.length(); ++i) {
        z[i] = (r > i ? min(z[2 * l - i], r - i) : 1);
        while (i - z[i] >= 0 && i + z[i] < t.length()) {
        if(t[i - z[i]] == t[i + z[i]]) ++z[i];
        else break;
    }
    if (i + z[i] > r) r = i + z[i], l = i;
}
for(int i=1;i<t.length();++i) ans = max(ans, z[i]-1);
    return ans;
}</pre>
```

7.7 Lexico Smallest Rotation

```
string mcp(string s){
  int n = s.length();
  s += s;
  int i=0, j=1;
  while (i<n && j<n){
    int k = 0;
    while (k < n && s[i+k] == s[j+k]) k++;
    if (s[i+k] <= s[j+k]) j += k+1;
    else i += k+1;
    if (i == j) j++;
}
int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

7.8 BWT

```
struct BurrowsWheeler{
#define SIGMA 26
#define BASE 'a
 vector<int> v[ SIGMA ];
 void BWT(char* ori, char* res){
  // make ori -> ori + ori
  // then build suffix array
 }
 void iBWT(char* ori, char* res){
  for( int i = 0 ; i < SIGMA ; i ++ )</pre>
   v[ i ].clear();
  int len = strlen( ori );
  for( int i = 0 ; i < len ; i ++ )</pre>
   v[ ori[i] - BASE ].push_back( i );
  vector<int> a;
  for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )</pre>
   for( auto j : v[ i ] ){
    a.push_back( j );
ori[ ptr ++ ] = BASE + i;
  for( int i = 0 , ptr = 0 ; i < len ; i ++ ){
  res[ i ] = ori[ a[ ptr ] ];</pre>
   ptr = a[ ptr ];
  res[ len ] = 0;
} bwt;
```

7.9 Palindromic Tree

```
struct palindromic_tree{
  struct node{
  int next[26],f,len;
  int cnt,num,st,ed;
```

```
node(int 1=0):f(0),len(1),cnt(0),num(0) {
  memset(next, 0, sizeof(next)); }
 vector<node> st;
 vector<char> s:
 int last,n;
 void init(){
 st.clear();s.clear();last=1; n=0;
  st.push_back(0);st.push_back(-1);
 st[0].f=1;s.push_back(-1); }
 int getFail(int x){
  while(s[n-st[x].len-1]!=s[n])x=st[x].f;
  return x;}
 void add(int c){
  s.push_back(c-='a'); ++n;
  int cur=getFail(last);
  if(!st[cur].next[c]){
   int now=st.size();
   st.push_back(st[cur].len+2);
   st[now].f=st[getFail(st[cur].f)].next[c];
   st[cur].next[c]=now;
   st[now].num=st[st[now].f].num+1;
 last=st[cur].next[c];
  ++st[last].cnt;}
 void dpcnt() {
  for (int i=st.size()-1; i >= 0; i--)
   st[st[i].f].cnt += st[i].cnt;
 int size(){ return st.size()-2;}
} pt;
int main() {
 string s; cin >> s; pt.init();
 for (int i=0; i<SZ(s); i++)</pre>
 int prvsz = pt.size(); pt.add(s[i]);
  if (prvsz != pt.size()) {
  int r = i, 1 = r - pt.st[pt.last].len + 1;
   // pal @ [l,r]: s.substr(l, r-l+1)
 }
 return 0;
```

8 Misc

8.1 Theorems

8.1.1 Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|{\rm det}(\tilde{L}_{rr})|.$

8.1.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniform randomly) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

8.1.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there're $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

8.1.4 Erdős-Gallai theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

holds for all $1 \le k \le n$.

8.1.5 Havel-Hakimi algorithm

find the vertex who has greatest degree unused, connect it with other greatest vertex.

8.1.6 Hall's marriage theorem

Let ${\cal G}$ be a finite bipartite graph with bipartite sets ${\cal X}$ and ${\cal Y}.$ For a subset ${\cal W}$ of X, let $N_G(W)$ denote the set of all vertices in Y adjacent to some element of W. Then there is an X-saturating matching iff $\forall W\subseteq X, |W|\leq |N_G(W)|$

8.1.7 Euler's planar graph formula

```
V - E + F = C + 1, E \le 3V - 6(?)
```

8.1.8 Pick's theorem

For simple polygon, when points are all integer, we have ${\cal A}$ #{lattice points in the interior} + $\frac{\text{#{lattice points on the boundary}}}{2} - 1$

8.1.9 Lucas's theorem

```
\binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \pmod{p}, where m=m_k p^k + m_{k-1} p^{k-1} + \cdots + m_1 p + m_0,
and n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0.
```

8.1.10 Matroid Intersection

Given matroids $M_1=(G,I_1), M_2=(G,I_2)$, find maximum $S\in I_1\cap I_2$. For each iteration, build the directed graph and find a shortest path from s to t.

- $s \rightarrow x : S \sqcup \{x\} \in I_1$
- $x \to t : S \sqcup \{x\} \in I_2$
- $y \to x : S \setminus \{y\} \sqcup \{x\} \in I_1$ (y is in the unique circuit of $S \sqcup \{x\}$)
- $x \to y : S \setminus \{y\} \sqcup \{x\} \in I_2$ (y is in the unique circuit of $S \sqcup \{x\}$)

Alternate the path, and |S| will increase by 1. Let R $\min(\mathrm{rank}(I_1),\mathrm{rank}(I_2)),N=|G|$. In each iteration, |E|=O(RN). For weighted case, assign weight -w(x) and w(x) to $x \in S$ and $x \notin S$, resp. Use Bellman-Ford to find the weighted shortest path. The maximum iteration of Bellman-Ford is 2R+1.

8.2 DP-opt Condition

8.2.1 totally monotone (concave/convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j', B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}
```

8.2.2 monge condition (concave/convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}
```

8.3 Convex 1D/1D DP

```
struct segment {
int i, 1, r;
segment() {}
segment(int a, int b, int c): i(a), l(b), r(c) {}
inline 1ld f(int 1, int r){return dp[1] + w(1+1, r);}
void solve() {
dp[0] = 0;
deque<segment> dq; dq.push_back(segment(0, 1, n));
for (int i = 1; i <= n; ++i) {
 dp[i] = f(dq.front().i, i);
  while(dq.size()&&dq.front().r<i+1) dq.pop_front();</pre>
  dq.front().l = i + 1;
  segment seg = segment(i, i + 1, n);
  while (dq.size() &&
  f(i, dq.back().1) < f(dq.back().i, dq.back().1))
    dq.pop_back();
  if (dq.size())
  int d = 1 << 20, c = dq.back().1;</pre>
   while (d >>= 1) if (c + d <= dq.back().r)</pre>
    if(f(i, c+d) > f(dq.back().i, c+d)) c += d;
   dq.back().r = c; seg.l = c + 1;
  if (seg.1 <= n) dq.push_back(seg);</pre>
```

8.4 ConvexHull Optimization

```
struct Line {
mutable int64_t a, b, p;
bool operator<(const Line &rhs) const { return a < rhs</pre>
bool operator<(int64_t x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>> {
static const int64_t kInf = 1e18;
bool Isect(iterator x, iterator y)
 auto Div = [](int64_t a, int64_t b) {
    return a / b - ((a ^ b) < 0 && a % b); }
```

```
if (y == end()) { x->p = kInf; return false; }
  if (x->a == y->a) x->p = x->b > y->b ? kInf : -kInf;
  else x->p = Div(y->b - x->b, x->a - y->a);
  return x->p >= y->p;
 void Insert(int64_t a, int64_t b) {
  auto z = insert({a, b, 0}), y = z++, x = y;
while (Isect(y, z)) z = erase(z);
  if (x != begin() \&\& Isect(--x, y)) Isect(x, y = erase)
    (y));
  while ((y = x) != begin() \&\& (--x)->p >= y->p) Isect(
    x, erase(y));
 int64_t Query(int64_t x) {
  auto 1 = *lower_bound(x);
  return 1.a * x + 1.b;
};
```

Josephus Problem

```
// n people kill m for each turn
int f(int n, int m) {
 int s = 0;
 for (int i = 2; i <= n; i++)
  s = (s + m) \% i;
 return s:
// died at kth
int kth(int n, int m, int k){
 if (m == 1) return n-1;
 for (k = k*m+m-1; k >= n; k = k-n+(k-n)/(m-1));
 return k:
```

8.6 Cactus Matching

```
vector<int> init_g[maxn],g[maxn*2];
int n,dfn[maxn],low[maxn],par[maxn],dfs_idx,bcc_id;
void tarjan(int u){
 dfn[u]=low[u]=++dfs_idx;
 for(int i=0;i<(int)init_g[u].size();i++){</pre>
  int v=init_g[u][i];
  if(v==par[u]) continue;
  if(!dfn[v]){
   par[v]=u;
   tarjan(v);
   low[u]=min(low[u],low[v]);
   if(dfn[u]<low[v]){</pre>
    g[u].push_back(v)
    g[v].push_back(u);
  }else{
   low[u]=min(low[u],dfn[v]);
   if(dfn[v]<dfn[u]){</pre>
    int temp_v=u;
    bcc_id++;
    while(temp_v!=v){
     g[bcc_id+n].push_back(temp_v);
     g[temp_v].push_back(bcc_id+n);
     temp_v=par[temp_v];
    g[bcc_id+n].push_back(v);
    g[v].push_back(bcc_id+n);
    reverse(g[bcc_id+n].begin(),g[bcc_id+n].end());
int dp[maxn][2], min_dp[2][2], tmp[2][2], tp[2];
void dfs(int u,int fa){
 if(u<=n){
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
   dfs(v,u);
   memset(tp,0x8f,sizeof tp);
   if(v<=n){
    tp[0]=dp[u][0]+max(dp[v][0],dp[v][1]);
    tp[1]=max(
     dp[u][0]+dp[v][0]+1
     dp[u][1]+max(dp[v][0],dp[v][1])
   }else{
```

```
tp[0]=dp[u][0]+dp[v][0];
                                                                       for(int j = R[i]; j != i; j = R[j]) {
                                                                        U[\hat{D}[j]] = U[j];

D[U[j]] = D[j];
    tp[1]=max(dp[u][0]+dp[v][1],dp[u][1]+dp[v][0]);
   dp[u][0]=tp[0],dp[u][1]=tp[1];
                                                                        --S[col[j]];
                                                                     }
}else{
  for(int i=0;i<(int)g[u].size();i++){</pre>
                                                                     void resume(int c) {
                                                                      L[R[c]] = c; R[L[c]] = c;
   int v=g[u][i];
   if(v==fa) continue;
                                                                      for(int i = U[c]; i != c; i = U[i])
                                                                       for (int j = \tilde{L}[i]; j != i; j = \tilde{L}[j]) {
U[D[j]] = j;
   dfs(v,u);
  min_dp[0][0]=0;
                                                                        D[U[j]] = j
  min_dp[1][1]=1;
min_dp[0][1]=min_dp[1][0]=-0x3f3f3f3f3f;
                                                                        ++S[col[j]];
  for(int i=0;i<(int)g[u].size();i++){</pre>
                                                                     void dance(int d) {
   int v=g[u][i];
   if(v==fa) continue;
                                                                      if(d>=ansd) return;
   memset(tmp,0x8f,sizeof tmp);
                                                                      if(R[0] == 0) {
   tmp[0][0]=max(
                                                                       ansd = d:
    \min_{dp[0][0]+\max(dp[v][0],dp[v][1])}
                                                                       return;
    min_dp[0][1]+dp[v][0]
                                                                      int c = R[0];
                                                                      for(int i = R[0]; i; i = R[i])
   tmp[0][1]=min_dp[0][0]+dp[v][0]+1;
                                                                       if(S[i] < S[c]) c = i;
   tmp[1][0]=max(
    \min_{dp[1][0]+\max(dp[v][0],dp[v][1])}
                                                                      remove(c);
    min_dp[1][1]+dp[v][0]
                                                                      for(int i = D[c]; i != c; i = D[i]) {
                                                                       ans[d] = row[i];
   tmp[1][1]=min_dp[1][0]+dp[v][0]+1;
                                                                       for(int j = R[i]; j != i; j = R[j])
   memcpy(min_dp,tmp,sizeof tmp);
                                                                        remove(col[j]);
                                                                       dance(d+1);
  dp[u][1]=max(min_dp[0][1], min_dp[1][0]);
                                                                       for(int j = L[i]; j != i; j = L[j])
  dp[u][0]=min_dp[0][0];
                                                                        resume(col[j]);
                                                                      resume(c);
                                                                     }
int main(){
                                                                   } sol;
int m,a,b;
scanf("%d%d",&n,&m);
                                                                    8.8
                                                                         Tree Knapsack
for(int i=0;i<m;i++) {
  scanf("%d%d",&a,&b);</pre>
                                                                   int dp[N][K];PII obj[N];
  init_g[a].push_back(b);
                                                                   vector<int> G[N];
  init_g[b].push_back(a);
                                                                    void dfs(int u, int mx){
                                                                     for(int s: G[u]) {
par[1]=-1;
                                                                      if(mx < obj[s].first) continue;</pre>
tarjan(1);
                                                                      for(int i=0;i<=mx-obj[s].FF;i++)</pre>
                                                                      dp[s][i] = dp[u][i];
dfs(s, mx - obj[s].first);
dfs(1,-1);
printf("%d\n",max(dp[1][0],dp[1][1]));
return 0;
                                                                      for(int i=obj[s].FF;i<=mx;i++)</pre>
                                                                       dp[u][i] = max(dp[u][i],
                                                                        dp[s][i - obj[s].FF] + obj[s].SS);
8.7 DLX
                                                                     }
struct DLX {
const static int maxn=210;
                                                                    int main(){
const static int maxm=210;
                                                                     int n, k; cin >> n >> k;
const static int maxnode=210*210;
                                                                     for(int i=1;i<=n;i++){</pre>
int n, m, size, row[maxnode], col[maxnode];
int U[maxnode], D[maxnode], L[maxnode], R[maxnode];
                                                                      int p; cin >> p;
                                                                      G[p].push_back(i);
 int H[maxn], S[maxm], ansd, ans[maxn];
                                                                      cin >> obj[i].FF >> obj[i].SS;
void init(int _n, int _m) {
  n = _n, m = _m;
                                                                     dfs(0, k); int ans = 0;
  for(int i = 0; i <= m; ++i) {
                                                                     for(int i=0;i<=k;i++) ans = max(ans, dp[0][i]);
   S[i] = 0;

U[i] = D[i] = i;
                                                                     cout << ans << '\n';
                                                                     return 0:
   L[i] = i-1, R[i] = i+1;
                                                                    8.9 N Queens Problem
  R[L[0] = size = m] = 0;
  for(int i = 1; i <= n; ++i) H[i] = -1;</pre>
                                                                   vector< int > solve( int n ) {
                                                                     // no solution when n=2, 3
void Link(int r, int c) {
 ++S[col[++size] = c];
                                                                     vector< int > ret;
                                                                     if ( n % 6 == 2 ) {
  for ( int i = 2 ; i <= n ; i += 2 )</pre>
  row[size] = r; D[size] = D[c];
  U[D[c]] = size; U[size] = c; D[c] = size;
if(H[r] < 0) H[r] = L[size] = R[size] = size;</pre>
                                                                       ret.push_back( i );
                                                                      ret.push_back( 3 ); ret.push_back( 1 );
for ( int i = 7 ; i <= n ; i += 2 )</pre>
  else {
   R[size] = R[H[r]];
                                                                       ret.push_back( i );
   L[R[H[r]]] = size;
                                                                      ret.push_back( 5 );
   L[size] = H[r];
R[H[r]] = size;
                                                                     } else if ( n % 6 == 3 ) {
                                                                      for ( int i = 4 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  }
                                                                      ret.push_back( 2 );
void remove(int c) {
   L[R[c]] = L[c]; R[L[c]] = R[c];
                                                                      for ( int i = 5 ; i <= n ; i += 2 )
                                                                       ret.push_back( i );
  for(int i = D[c]; i != c; i = D[i])
                                                                      ret.push_back( 1 ); ret.push_back( 3 );
```

```
} else {
  for ( int i = 2 ; i <= n ; i += 2 )
   ret.push_back( i );
  for ( int i = 1 ; i <= n ; i += 2 )
  ret.push_back( i );
return ret;
}
8.10 Aliens Optimization
long long Alien() {
long long c = kInf;
for (int d = 60; d >= 0; --d) {
// cost can be negative, depending on the problem.
  if (c - (1LL << d) < 0) continue;</pre>
  long long ck = c - (1LL \ll d);
 pair<long long, int> r = check(ck);
if (r.second == k) return r.first - ck * k;
 if (r.second < k) c = ck;</pre>
 pair<long long, int> r = check(c);
return r.first - c * k;
8.11 Hilbert Curve
long long hilbert(int n, int x, int y) {
 long long res = 0;
 for (int s = n / 2; s; s >>= 1) {
 int rx = (x \& s) > 0, ry = (y \& s) > 0;
  res += s * 111 * s * ((3 * rx) ^ ry);
  if (ry == 0) {
  if (rx == 1) x = s - 1 - x, y = s - 1 - y;
   swap(x, y);
 }
 }
return res;
8.12 Binary Search On Fraction
struct Q {
11 p, q;
Q go(Q b, 11 d) { return {p + b.p*d, q + b.q*d}; }
bool pred(Q);
// returns smallest p/q in [lo, hi] such that
// pred(p/q) is true, and 0 \le p,q \le N
Q frac_bs(11 N) {
 Q lo{0, 1}, hi{1, 0};
 if (pred(lo)) return lo;
 assert(pred(hi));
 bool dir = 1, L = 1, H = 1;
 for (; L || H; dir = !dir) {
  ll len = 0, step = 1;
  for (int t = 0; t < 2 && (t ? step/=2 : step*=2);)
if (Q mid = hi.go(lo, len + step);</pre>
     mid.p > N || mid.q > N || dir ^ pred(mid))
   t++;
else len += step;
  swap(lo, hi = hi.go(lo, len));
  (dir ? L : H) = !!len;
return dir ? hi : lo;
```