Theorem

Let $\phi:G \Rightarrow G'$ be a g.h. ω /

Kernel H + $\alpha \in G$ Then $\alpha H = H\alpha = \phi^{-1}(\{ \phi(\alpha) \})$ $= \{ x \in G \mid \phi(x) = \phi(\alpha) \}$

Proof

Need to show at =
$$\phi^{-1}(\phi(a))$$

Let $x \in aH$, then $x = ah$ $h \in H$

Consider $\phi(x) = \phi(ah) = \phi(a) \cdot \phi(h)$
 $consider$

 $= b(a) \cdot e'$ ~ heH = Ker b = 0 (a) hence $x \in \phi^{-1}(\phi(a))$ $aH \subseteq \phi^{-1}(\phi(a))$ Let $x \in \phi'(p(a))$ then $\phi(x) = \phi(a)$ Since \$(a) \in G', \(\frac{1}{2} \phi(a)^{-1} \) st. \$\psi(a) \phi(a)^{\frac{1}{2}} \end{align*} $\phi(a)^{-1}\cdot\phi(x)=e^{x}$ $\phi(\bar{a}') \cdot \phi(x) = e'$ $\phi(a^{-1} \cdot x) = e'$ for $a^{-1} \cdot x \in G$ then a x EH = Ker \$ a-1x=h hell so x=ah Eall Thus $\phi^{-1}(\phi(a)) \in a + 1$ $\cdot \cdot \cdot \varphi^{-1}(\varphi(a)) = aH$ and $\varphi^{-1}(\varphi(a)) = Ha$

Examples

i)
$$\phi: S_n \to \mathbb{Z}_2$$

$$\phi(\sigma) = \begin{cases} 0 & \text{if even} \\ 1 & \text{if odd} \end{cases}$$

g.h.
$$\omega$$
/ Kernel $H = A_n \leq S_n$
 ω / cosets $H = i\partial H = H i \partial i \partial = (12)(21)$

2)
$$\phi: GL_n(R) \rightarrow R^*$$
 $\phi(A) = \det A$

g.h. ω / Kernel

 $H = \{\{\{A\} \in GL_n(R) \mid \det A = 1\}\}$
 $= I_n \cdot H = H \cdot I_n$ $I_n = [\cdot, \cdot]$

other cosets of form

 $B \cdot H = H \cdot B = \{\{A\} \in GL_n(R) \mid \phi(A) = \phi(B)\}\}$

for $B \in GL_n(R) \setminus H$ (\det B \neq 0 1 \det B \neq 1)

cosets

$$(1+0i) \cdot H = H \cdot (1+0i)$$

 $z' \cdot H = H \cdot z' = 2z \in C^* \setminus |z| = |z'|^3$

G,x..xGn
H:
$$G_{i}$$
 G_{k} , $\Phi((g_{1},...,g_{n})) = g_{k}$ $k=1,...,n$
 $g.h.$ $w.$ Kernel
 $H = \Xi(g_{1},...,g_{n}) \in \Pi G$; $g_{k} = e_{k} \Im G$
 $g_{k} = e_{k} \Im G$

other cosets

$$(g_1'..g_n') \cdot H = H \cdot (g_1'..g_n')$$

= $\{(g_1..g_n) \in \prod_{i=1}^{n} G_i \mid \phi((g_1..g_n)) = \phi(g_1'..g_n')\}$

5)
$$\phi: F \rightarrow \mathbb{R}$$
 $\phi(f) = f(c)$ $c\in D \subseteq \mathbb{R}$
 $f(g) = g(c)$ $c\in D \subseteq \mathbb{R}$
 $f(g) = g(c)$
 $f(g) = g(g)$
 $f(g) = g(g)$
 $f(g) = g(g)$

Fact

Let:
$$\phi: G \rightarrow G'$$
 be a group

homomorphism w / Kernel | H

Then ϕ is injective if f

the kernel of ϕ is trivial

Proof \Rightarrow Assume φ is injective

Since $\varphi(e) = e^{1} - (\exists a \in G \setminus \{e\}, \varphi(a) = e^{\epsilon})$ \Rightarrow Assume $\ker \varphi$ is trivial $H = \ker \varphi = \{e\}$

since aH=Ha= {ae} = {a} ae6 \$\phi-injective\$

Note: To show D:G->G' is a group isomorphism, show:

1) & - group homomorphism

2) Ker d is trivial (\$ \$ \phi-injective

3) b(G) = G' & d - ruijectue