Discrete Structures

Previous Lecture Summery

- Sum/Difference of Two Functions
- Equality of Two Functions
- One-to-One Function
- Onto Function
- Bijective Function (One-to-One correspondence)

Today's Lecture

- Inverse Functions
- Finding an Inverse Function
- Composition of Functions
- Composition of Functions
- Composition of Functions defined on finite sets
- Plotting Functions

Inverse Functions

Theorem

Suppose $F: X \to Y$ is a one-to-one correspondence; that is, suppose F is one-to-one and onto. Then there is a function $F^{-1}: Y \to X$ that is defined as follows:

Given any element y in Y,

 $F^{-1}(y)$ = that unique element x in X such that F(x) equals y.

In other words,

$$F^{-1}(y) = x \Leftrightarrow y = F(x).$$

The function F^{-1} is called inverse function.

Inverse Functions

Given an arrow diagram for a function. Draw the arrow diagram for the inverse of this function

Finding an Inverse Function

The function $f: \mathbf{R} \to \mathbf{R}$ defined by the formula

$$f(x) = 4x - 1$$
, for all real numbers x

Solution For any [particular but arbitrarily chosen] y in **R**, by definition of f^{-1} ,

$$f^{-1}(y)$$
 = that unique real number x such that $f(x) = y$.

But f(x) = y $\Leftrightarrow 4x - 1 = y \qquad \text{by definition of } f$ $\Leftrightarrow x = \frac{y+1}{4} \qquad \text{by algebra.}$

Hence
$$f^{-1}(y) = \frac{y+1}{4}$$
.

Theorem

If X and Y are sets and $F: X \to Y$ is one-to-one and onto, then $F^{-1}: Y \to X$ is also one-to-one and onto.

Proof:

 F^{-1} is one-to-one: Suppose y_1 and y_2 are elements of Y such that $F^{-1}(y_1) = F^{-1}(y_2)$. [We must show that $y_1 = y_2$.] Let $x = F^{-1}(y_1) = F^{-1}(y_2)$. Then $x \in X$, and by definition of F^{-1} ,

$$F(x) = y_1$$
 since $x = F^{-1}(y_1)$

and

$$F(x) = y_2$$
 since $x = F^{-1}(y_2)$.

Consequently, $y_1 = y_2$ since each is equal to F(x). This is what was to be shown.

 F^{-1} is onto: Suppose $x \in X$. [We must show that there exists an element y in Y such that $F^{-1}(y) = x$.] Let y = F(x). Then $y \in Y$, and by definition of F^{-1} , $F^{-1}(y) = x$. This is what was to be shown.

Composition of Functions

Definition

Let $f: X \to Y'$ and $g: Y \to Z$ be functions with the property that the range of f is a subset of the domain of g. Define a new function $g \circ f: X \to Z$ as follows:

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in X$,

where $g \circ f$ is read "g circle f" and g(f(x)) is read "g of f of x." The function $g \circ f$ is called the **composition of** f and g.

Composition of Functions defined on finite sets

Let $X = \{1, 2, 3\}$, $Y' = \{a, b, c, d\}$, $Y = \{a, b, c, d, e\}$, and $Z = \{x, y, z\}$. Define functions $f: X \to Y'$ and $g: Y \to Z$ by the arrow diagrams below.

Draw the arrow diagram for $g \circ f$. What is the range of $g \circ f$?

Composition of Functions defined on finite sets

$$(g \circ f)(1) = g(f(1)) = g(c) = z$$

 $(g \circ f)(2) = g(f(2)) = g(b) = y$
 $(g \circ f)(3) = g(f(3)) = g(a) = y$

Composition of Functions defined on finite sets

Let $X = \{1, 2, 3\}$, $Y' = \{a, b, c, d\}$, $Y = \{a, b, c, d, e\}$, and $Z = \{x, y, z\}$.

To find the arrow diagram for $g \circ f$, just trace the arrows all the way across from X to Z through Y. The result is shown below.

The range of $g \circ f$ is $\{y, z\}$.

Composition of Functions defined on Infinite Sets

Let $f: \mathbb{Z} \to \mathbb{Z}$, and $g: \mathbb{Z} \to \mathbb{Z}$ be two functions. s.t., f(n)=n+1 for all $n \in \mathbb{Z}$ and $g(n)=n^2$ for all $n \in \mathbb{Z}$.

- a. Find the compositions $g \circ f$ and $f \circ g$.
- b. Is $g \circ f = f \circ g$? Explain.

a. The functions $g \circ f$ and $f \circ g$ are defined as follows:

$$(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1)^2$$
 for all $n \in \mathbf{Z}$,
 $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$ for all $n \in \mathbf{Z}$.

Composition of Functions defined on Infinite Sets

Let $f: \mathbb{Z} \to \mathbb{Z}$, and $g: \mathbb{Z} \to \mathbb{Z}$ be two functions. s.t., f(n)=n+1 for all $n \in \mathbb{Z}$ and $g(n)=n^2$ for all $n \in \mathbb{Z}$.

- b. Is $g \circ f = f \circ g$? Explain.
- Two functions from one set to another are equal if, and only if, they always take the same values. In this case,

$$(g \circ f)(1) = (1+1)^2 = 4$$
, whereas $(f \circ g)(1) = 1^2 + 1 = 2$.

Thus the two functions $g \circ f$ and $f \circ g$ are not equal:

$$g \circ f \neq f \circ g$$
.

Composition with Identity Function

Let $X = \{a, b, c, d\}$ and $Y = \{u, v, w\}$, and suppose $f: X \rightarrow Y$ is given by the arrow diagram

Find $f \circ I_X$ and $I_Y \circ f$.

$$(f \circ I_X)(a) = f(I_X(a)) = f(a) = u$$

 $(f \circ I_X)(b) = f(I_X(b)) = f(b) = v$
 $(f \circ I_X)(c) = f(I_X(c)) = f(c) = v$
 $(f \circ I_X)(d) = f(I_X(d)) = f(d) = u$

Composition with Identity Function

Note that for all elements x in X,

$$(f \circ I_X)(x) = f(x).$$

By definition of equality of functions, this means that $f \circ I_X = f$.

Similarly, the equality $I_Y \circ f = f$ can be verified by tracing through the arrow diagram below for each x in X and noting that in each case, $(I_Y \circ f)(x) = f(x)$.

More generally, the composition of any function with an identity function equals the function.

Composing a Function with its Inverse

Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Define $f: X \to Y$ by the following arrow diagram.

Then f is one-to-one and onto. Thus f^{-1} exists and is found by tracing the arrows backwards, as shown below.

Composing a Function with its Inverse

In a similar way, we can show that

$$f \circ f^{-1} = I_Y$$
.

Composition of One-to-One Functions

TABLE 1.1 Types of intervals

	Notation	Set description	Туре	Picture
Finite:	(a,b)	$\{x a < x < b\}$	Open	$\stackrel{\circ}{a} \stackrel{\circ}{b} \longrightarrow$
	[a,b]	$\{x a \le x \le b\}$	Closed	$\stackrel{\bullet}{a} \stackrel{\bullet}{b}$
	[a,b)	$\{x a \le x < b\}$	Half-open	$\stackrel{\circ}{a} \stackrel{\circ}{b} \rightarrow$
	(a,b]	$\{x a < x \le b\}$	Half-open	$\stackrel{\circ}{a} \stackrel{b}{\longrightarrow}$
Infinite:	(a,∞)	$\{x x>a\}$	Open	a
	$[a,\infty)$	$\{x x \ge a\}$	Closed	a
	$(-\infty,b)$	$\{x x < b\}$	Open	b b
	$(-\infty,b]$	$\{x x \le b\}$	Closed	<u>b</u>
	$(-\infty,\infty)$	\mathbb{R} (set of all real numbers)	Both open and closed	

FIGURE 1.5 Cartesian coordinates in the plane are based on two perpendicular axes intersecting at the origin.

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0) \cup (0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Domain =
$$(-\infty, \infty)$$
 Range = $[0, \infty)$

Lecture Summery

- One-to-One Function
- Onto Function
- Bijective Function (One-to-One correspondence)
- Inverse Functions