निडेवेर्नीय वलाविह्या

For any suggestions or queries, please contact us.

Type 1 – Basic

বিষয়	মহাকর্ষ বল	তড়িৎ চুম্বকীয় বল	সবল নিউক্লিয় বল	দুর্বল নিউক্লিয় বল
ধর্ম	আকর্ষণধর্মী	আকর্ষণ ও বিকর্ষণ উভয় ধর্মী	আকৰ্ষণধৰ্মী	বিকৰ্ষণধৰ্মী
বিনিময় কণা/ কারণ	গ্রাভিটন	ভর ও চার্জহীন ফোটন	মেসন ও গ্লুকাগন	বোসন কণা
পাল্লা	অসীম; এ বলের মান কখনো শূণ্য হয় না	অসীম	নিউক্লিয়াসের অভ্যন্তরে সীমাবদ্ধ (10 ⁻¹⁵ m)	নিউক্লিয়াসের অভ্যন্তরে সীমাবদ্ধ (10 ⁻¹⁶)
প্রভাবিত কণা	সমস্ত পদার্থ	আধানযুক্ত কণা SLNC	প্রোটন ও নিউটন	লেপ্টন
ভূমিকা	পদার্থসমূহ কে যুক্ত করে গ্রহ, নক্ষত্র ও গ্যালাক্সি গঠন করে।	•অণু গঠন করে •পদার্থের কঠিন ও তরল অবস্থার জন্য দায়ী	প্রোটন ও নিউট্রনকে একত্রে আবদ্ধ করে নিউক্লিয়াস গঠন করে।	নিউক্লিয় বিটা ক্ষয়ের জন্য দায়ী
উদাহরণ	সূর্যের চারিদিকে গ্রহসমূহের ও পৃথিবীর আবর্তন	 স্থিতিস্থাপক বল আণবিক গঠন রাসায়নিক বিক্রিয়া ঘর্ষণ বল স্পর্শ বল 	নিউক্লিয়াস গঠনকারী বল	অধিকাংশ তেজস্ক্রিয় ভাঙ্গন

সক্রিয়তার ক্রম: স > ত > দু > ম সবল নিউক্লিয় বল > তড়িৎ চুম্বকীয় বল > দুর্বল নিউক্লিয় বল > মহাকর্ষ বল

গতির সমীকরণগুলো ও বলের সূত্রের সাহায্যে বেশ কিছু বেসিক ম্যাথ এসে থাকে।

প্रয়োজर्नीय সূত্রাবর্লी

- v = u + at
- $s = ut + \frac{1}{2} at^2$
- $v^2 = u^2 + 2as$
- F = ma

 $80~kmh^{-1}$ (বেগে চলন্ত একটি মোটরগাড়ির চালক 43.77m সামনে একটি বালক দেখতে পেয়ে ব্লেক চাপলেন। গাড়িটি বালকের 2m সামনে এমে থেকে গেল। আরোহীসহ গাড়ির ভর 1200~kg হলে ব্লেকজনিত বল নির্ণয় কর।

মমাধান:

এখানে, আদিবেগ,
$$v=80~kmh^{-1}=rac{80 imes1000}{3600}ms^{-1}$$

$$=22.22~ms^{-1}$$

অতিক্রান্ত দূরত্ব,
$$s = (43.77 - 2) m$$

$$= 41.77 m$$

ভর,
$$m=1200~kg$$

শেষবেগ,
$$v = 0 \ ms^{-1}$$

আমরা জানি,

$$v^2 = u^2 - 2as$$

$$a = \frac{u^2 - v^2}{2s} = \frac{(22.22)^2 - 0^2}{2 \times 41.77}$$
$$= 5.91 \, ms^{-2}$$

ব্ৰেকজনিত বল,
$$F=ma=(1200 \times 5.91)$$

= 7092.1 N

আণুভূমিক কাঠের উপর একটি পেরেক উলম্বভাবে রাখা আছে। 1 kg ভরের একটি হাতুড়ি দ্বারা পেরেকটিকে খাড়া নিচের দিকে $4 ms^{-1}$ বেগে আঘাত করা হলো। পেরেকটি কাঠের মধ্যে 0.015 m ঢুকে গেলে গড় বাধাদানকারী বল নির্ণয় কর। [RUET: '05-06]

মমাধান:

এখানে, হাতুড়ির ভর,
$$m=1\ kg$$
 আঘাতের বেগ, $v=4ms^{-1}$ পেরেকের সরণ, $s=0.015\ m$ এখন, $\frac{1}{2}\ mv^2=FS\cos\theta$ বা, $F\times 0.015\cos 0^\circ=\frac{1}{2}\times 1\times (4)^2$ বা, $F=533.33\ N$ \therefore গড় বাধাদানকারী, $R=mg+F=1\times 9.8+533.33$

= 543.13 N

৪ কেজি ভরের একটি বস্তু 10 মিটার উপর হতে পড়ে বালিতে 50 cm প্রবেশ করে থেমে গেল৷ বস্তুটির উপর বালির গড় বাঁধা নির্ণয় কর৷

মমাধান:

আমরা জানি,
$$v^2=u^2+2gh$$

বা, $v^2=2gh$ [যেহেতু $u=0\ ms^{-1}$]
বালুতে পড়ার মুহূর্তের বেগ, $v=\sqrt{2\times9.8\times10}$
 $=14ms^{-1}$
বালুর ভেতর মন্দন a হলে, $0=v^2-(2a\times0.5)$
বা, $a=\frac{14^2}{2\times0.5}=196\ ms^{-2}$
গড় বাঁধা R হলে, $R-mg=ma$
 $\therefore R=m(g+a)=8(9.8+196)$
 $=1646.4\ N$

 $200~ms^{-1}$ বেগে আগত 0.2~kg ভরের ক্রিকেট বলকে একজন খেলোয়াড় ক্যাচ ধরে 0.1~ মেকেন্ড মন্ত্রের মধ্যে থানিয়ে দিল৷ খেলোয়াড় কর্তৃক প্রযুক্ত গড় বল কত?

[RUET: '04-05]

মমাধান:

এখানে,
$$m=0.2~kg$$

$$u = 200 \ ms^{-1}$$

$$v = 0 ms^{-1}$$

$$t = 0.1 sec$$

$$F = ?$$

আমরা জানি,

$$F = ma = \frac{m(v-u)}{t} = \frac{0.2 \times (200-0)}{0.1}$$

একটি বস্তু স্থিরাবস্থায় 15 N বল 4 sec ধরে কাজ করে এবং তারপর আর কোন বল কাজ করল না। বস্তুটি এরপর 9 sec এ 54 m দূরত্ব গেল। বস্তুটির ভর বের কর।

মমাধান:

এখানে, s = 54 m এবং t = 9 sec

বল প্রয়োগ না হলে, a=0

অতএব, আমরা জানি,

$$s = vt$$

$$\therefore 54 = 9v$$

বা,
$$v = 6 \, ms^{-1}$$

এখানে,
$$v_0 = 0 m s^{-1}$$

$$v = 6 \, ms^{-1}$$

$$t = 4 sec$$

$$a = ?$$

আবার, $v = v_0 + at$

বা,
$$6 = 0 + a \times 4$$

$$\therefore a = \frac{3}{2}ms^{-2}$$

$$\therefore m = \frac{F}{a} = \frac{15}{\frac{3}{2}}$$
$$= 10 \ kg$$

APAR'S

SINCE 2018

নিউটনের সূত্রগুলো থেকে ছোট ছোট প্রশ্ন mcq তে চলে আসে । এগুলো একটু জেনে রাখো

১ম সূত্র	২য় সূত্ৰ	৩য় সূত্র
১. জড়তা • এই সূত্রকে বলের সংজ্ঞা নির্দেশক সূত্র বলে।	বলের অভিমুখ বলের পরিমাপ বলের গুণগত বৈশিষ্ট্য বলের সাথে ত্বরণের সম্পর্ক এই সূত্রকে বল পরিমাপের ও প্রকৃতি নির্দেশের সূত্রও বলে। এই সূত্র থেকে $F = ma$ প্রতিপাদন করা যায়।	>. ভরবেগের নিত্যতা সূত্র বা ভরবেগের সংরক্ষণ বিধি ২. রকেটের উড্ডয়ন ৩. ঘোড়ার গাড়ি টানা ৪. নৌকা চালানো/ নৌকার গুণ টানা ৫. বন্দুকের গুলি ছোঁড়া ৬. পাখির আকাশে উড়া ৭. অ্যাথলেটের লং জাম্প দেওয়া • এই সূত্রকে বল সমূহের মধ্যে বলের পারস্পরিক ক্রিয়ার সূত্র বলা যায়। • এই সূত্র থেকে ভরবেগের নিত্যতা সূত্র প্রতিপাদন করা যায়।

- নিউটনের গতিসূত্র হতে প্রতিপাদন করা যায়:
 - ২য় সূত্র হতে ১য় সূত্র
 - ৩য় সূত্র হতে ভরবেগের নিত্যতা সূত্র
 - ২য় সূত্র হতে F = ma
 - ২য় সূত্র হতে কেন্দ্রমুখী বলের রাশিমালা

ঘাত বল	বলের ঘাত
খুব অল্প সময়ের জন্য খুব বড় মানের যে বল কোন বস্তুর উপর প্রযুক্ত হয় তাকে ঘাত বল বলে।	বল ও বলের ক্রিয়াকালের গুণফলকে বলের ঘাত বলে।
ঘাত বল একটি স্কেলার রাশি	বলের ঘাত একটি ভেক্তর রাশি
ঘাত বলের একক = নিউটন ঘাত বলের মাত্রা = [MLT ⁻²]	বলের ঘাত এর একক $= Kgms^{-1}$ বলের ঘাত এর মাত্রা, $= [MLT^{-1}]$
উদাহরণ, ১. ব্যাট দ্বারা টেনিস বলকে আঘাত ২. ব্যাট দিয়ে বলকে আঘাত ৩. ইলেকট্রিক সুইচ অন/ অফ করা	বলের ঘাত, $\overrightarrow{J}=\overrightarrow{F} imes t$ $=m\overrightarrow{v}-m\overrightarrow{v_0}=\Delta P$ $=$ ভরবেগের পরিবর্তন

বলের ঘাত থেকে অনেক সময় প্রশ্ন চলে আসে । তাই ঘাত বল ও বলের ঘাতের মধ্যে পার্থক্য এর সাথে সাথে বলের ঘাতের কয়েকটা ম্যাথ করে ফেলো ।

বলের ঘাত,
$$\overrightarrow{J}=\overrightarrow{F} imes t$$

$$= m\overrightarrow{v} - m\overrightarrow{v_0} = \Delta P$$

$0.05\ kg$ ভরের একটি বস্তু $0.2\ ms^{-1}$ ভারুভূমিক বেগে একটি খাড়া দেয়ালে ধাক্কা দিয়ে $0.1\ ms^{-1}$ বেগে বিপর্রাভ দিকে ফিরে গেলা বলের ঘাত বের করা [ব.বো.' ০৬]

মমাধান:

এখানে,
$$m=0.05~{
m kg}$$
 $v_0=0.2~{
m ms}^{-1}$ $v=-0.1~{
m ms}^{-1}$ [আদি বেগের সাপেক্ষে শেষ বেগ বিপরীতমুখী] ধরি, বলের ঘাত, $=J$ আমরা পাই,
$$J=F\times t~{
m g}~F=\frac{m(v-v_0)}{t}$$

বা,
$$J=m(v-v_0)$$

বা, $J=0.05 imes(-0.01-0.2)$
 $=-0.0105~kg~ms^{-1}$
[ঋণাত্মকচিহ্ন প্রমাণ করে যে, J ও v এর অভিমুখ অভিমৃ

SINCE 2018

$$|J| = 0.0105 \, kg \, ms^{-1}$$

একটি হাত্নুড়ির ভর 1~kg হাত্নুড়িটি $500~ms^{-1}$ বেগে একটি পেরেকের মাথায় সজোরে আঘাত করে৷ এতে পেরেকটি একটি শক্ত কাঠের মধ্যে গেঁথে যায়৷ হাত্নুড়িটি যদি 0.01~s সময়ে গতিহীণ হয় তবে,

- i় ঘাত কত হবে?
- ii় গড় বল কত হবে?

মমাধান:

দেওয়া আছে,

বস্তুর ভর, m=1~kg

হাতুড়ির আদি বেগ, $u = 500 \ ms^{-1}$

হাতুড়ির শেষ বেগ, v=?

ক্রিয়াকাল, t = 0.01 s

আমরা জানি, v = u - at

$$\therefore a = \frac{500 \, ms^{-1}}{0.01 \, s} = 50000 \, ms^{-2}$$

$$\therefore$$
 গড় বল, $F=ma=1~kg imes 50000~ms^{-2}$

$$= 50000 N$$
 SINCE 2018

(i) বলের ঘাত,
$$J = F \times t = 50000 \ N \times 0.01 \ s$$

$$= 500 \ N$$

(ii) গড় বল,
$$F = 50000 N$$

Type ২ – ভরবেগের নিত্যতার সূত্র

ভরবেগের সংরক্ষণ সূত্র থেকে গ নম্বরে বেশ কিছু প্রশ্ন আসে । এই টপিকের ম্যাথগুলো একটু ভালো মতো প্র্যাকটিস করো ।

প্रसाजर्नीय मूत्रावर्ली

ভরবেগের নিত্যতার সূত্র:

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

বন্দুকের পশ্চাৎ বেগ:

$$MV = -mv$$

এখানে, M বন্দুকের ভর ও V বন্দুকের বেগ এবং m গুলির ভর ও v গুলির বেগ

5 kg ভরের একটি বস্তু $10 ms^{-1}$ বেগে চলন্ত অবস্থায় $3 ms^{-1}$ বেগে একই দিকে গতির্সাল 2 kg ভরের অপর একটি বস্তুর সাথে মিলিত হয়ে এক হয়ে যায়৷ মিলিত হয়ে একটি বস্তুতে পরিণত হওয়ার পর এর বেগ কত হবে?

মমাধান :

SINCE 2018

এখানে,
$$m_1=5kg$$
 $u_1=10ms^{-1}$ $u_2=3\,ms^{-1}$ $m_2=2\,kg$ ধরি, মিলিত বস্তুর বেগ, v আমরা জানি, $m_1u_1+m_2u_2=m_1v+m_2v$ বা, $v=\frac{m_1u_1+m_2u_2}{m_1+m_2}$ $=\frac{5\times 10+2\times 3}{5+2}=\frac{56}{7}$ $=8\,ms^{-1}$

স্কেটিং জুতা পায়ে দাঁড়ানো রুমার কাছে নয়ন 3.3~kg ভরের একটি বল ছোঁড়ে। রুমার ভর 48~kg। বলটি লোফার মাথে মাথে রুমা $0.32~ms^{-1}$ বেগে গতির্সীল হয়। রুমা যখন বলটি ধরে তখন বলটির বেগ কত ছিল?

মমাধান:

এখানে,
$$m_1=3.3~kg$$
 $m_2=48~kg$ $u_2=0$ $v=0.32~ms^{-1}$ আমরা জানি, $m_1u_1+m_2u_2=(m_1+m_2)v$ বা, $u_1=\frac{m_1v_1+m_2v_2}{m_1}$ বা, $u_1=\frac{16.416}{3.3}=4.97~ms^{-1}$ (Ans)

 $300 \ kg$ ভরের কোনো নৌকার দুই গলুই থেকে $20 \ kg$ এবং $25 \ kg$ ভরের দুটি বালক যথাক্রমে $3.25 \ ms^1$ এবং $2 \ ms^{-1}$ বেগে দুদিকে লাফ দেয়। নৌকাটি কত বেগে কোন দিকে চলবে?

মমাধান :

এখানে, গলুই এর ভর, m=300~kg গলুই এর আদি বেগ, $u=0~ms^{-1}$ 20~kg বালকের ক্ষেত্রে ভর, $m_1=20~kg$ বেগ, $u_1=3.25~ms^{-1}$ 25~kg বালকের ক্ষেত্রে ভর, $m_2=25~kg$ বেগ, $u_2=-2~ms^{-1}$ মনে করি, নৌকাটি v বেগে চলবে। আমরা জানি, $m_1u_1+m_2u_2+mu=0$ বা, $20\times 3.25+25\times (-2)+mu=0$

বা,
$$mu = -15$$

বা,
$$u = -\frac{15}{300}$$

$$u = -0.05 \, ms^{-1}$$

সুতরাং, নৌকার গলুই $0.05\ ms^{-1}$ বেগে $25\ kg$ ভরের বালকের দিকে চলবে।

30~kg ভরের একটি শেল $48~ms^{-1}$ বেগে উড়ছে। শেলটি বিস্ফোরিত হয়ে দুই টুকরা रल 18 kg ज्वत प्रेक्ताि छित्र राप्त यात्र अवः वार्की प्रेक्ताि जेज यात्र। वार्क অংশের বেগ কত?

মমাধান:

এখানে,
$$m_1 = 30 \ kg$$

$$u_1 = 48 \ ms^{-1}$$

$$m_2 = 18 \, kg$$

$$v_2 = 0 \ ms^{-1}$$

$$m_3 = 12 kg$$

$$12 kg$$
 বস্তুর বেগ, $v_3 = ?$

 $m_1u_1 = m_2v_2 + m_3v_3$

আমরা জানি,

বা,
$$v_3 = \frac{m_1 u_1}{m_3}$$

$$= \frac{30 \, kg \times 48 \, ms^{-1}}{12 \, kg}$$

$$= 120 \ ms^{-1}$$

SINCE 2018

$30\ ms^{-1}$ বেগে চলন্ত $200\ kg$ ভরের একটি গাড়ির উপর $200\ g$ ভরের একটি পাখি উড়ে এমে বমল৷ গাড়ির চূড়ান্ত গতিশক্তি কত?

মমাধান:

এখানে,
$$v_1=30\ ms^{-1}$$
 $m_1=200\ kg$ পাখিসহ চূড়ান্ত ভর, $M=m_1+200\ g=200+0.2$ $=200.2\ kg$

ভরবেগের সংরক্ষণ সূত্র হতে, $m_1v_1=Mv_2$

বা,
$$200 \times 30 = 200.2 \times v_2$$

বা,
$$v_2 = 29.97 \, ms^{-1}$$

$$\therefore$$
 চূড়ান্ত গতিশক্তি, $=\frac{1}{2}\,Mv_2^2$ $=\frac{1}{2}\times 200.2\times (29.97)^2$ $=8.99\times 10^4\,J$

0.03~kg ভরের রাইফেলের পুলি $30~ms^{-1}$ বেগে বের হয়ে গেল। রাইফেলটি যদি $0.6~ms^{-1}$ বেগে পস্চাৎ দিকে আমতে চায় তবে রাইফেলের ভর নির্ণয় কর।

মমাধান:

এখানে, গুলির ভর, $m=0.03\ kg$

গুলির বেগ, $v = 30 \ ms^{-1}$

রাইফেলের পশ্চাৎ বেগ, $v=0.6\ ms^{-1}$

রাইফেলের ভর, M=?

আমরা জানি, MV = mv

বা,
$$M = \frac{mv}{V} = \frac{0.03 \ kg \times 30 \ ms^{-1}}{0.6 \ ms^{-1}}$$
$$= 1.5 \ kg$$

অতএব, রাইফেলের ভর, 1.5 kg

Type 3 – সংঘৰ্ষ

ঘ নাম্বারে স্যারদের একটি ফেভারিট টপিক সংঘর্ষ । সংঘর্ষটি স্থিতিস্থাপক না ও অস্থিতিস্থাপক তা নির্ণয় করতে বলবে । নিচে কখন স্থিতিস্থাপক ও কখন অস্থিতিস্থাপক হবে তার শর্তগুলো দেওয়া হলো ।

প্রয়োজনীয় সূত্রাবলী

অস্থিতিস্থাপক সংঘর্ষ:

- ভরবেগের সংরক্ষণ নীতি মেনে চলে
- গতিশক্তি সংরক্ষিত থাকে না।

$$\lambda. m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

$$4. \frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 \neq \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$$

স্থিতিস্থাপক সংঘর্ষ:

- ভরবেগের সংরক্ষণ নীতি মেনে চলে
- গতিশক্তি সংরক্ষিত হয়।

$$\text{9. } m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

8.
$$\frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$$

$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \left(\frac{2m_2}{m_1 + m_2}\right) u_2$$

৬.
$$v_2 = \left(\frac{m_2-m_1}{m_1+m_2}\right)u_2 + \left(\frac{2m_1}{m_1+m_2}\right)u_1$$

অর্থাৎ আমরা ভরবেগ ও গতিশক্তি বের করে দেখব যদি সংঘর্ষের আগে ও পরে সমান হয় তাহলে সে সংঘর্ষটি স্থিতিস্থাপক। আর নিচের যে দুটি সূত্র আছে এগুলো একটু ভালোমতো মাথায় রাখিও আরো অনেক সময় ডিরেক্ট এই সূত্রগুলো ফেলে বেগ নির্ণয় করতে হতে পারে।

একটি ক্যারামের পুটির ভর 15 g এবং স্ট্রাইকারের ভর 40 g। 20 ms⁻¹ বেণে স্ট্রাইকার একটি স্থির পুটিকে আঘাত করার ফলে পুটিটি স্ট্রাইকারের বেণের দিক বরাবর গতির্সাল হয়। সংঘর্ষটিকে স্থিতিস্থাপক ধরে আঘাতের পর স্ট্রাইকার ও পুটির বেণ নির্ণয় কর।

মমাধান:

এখানে, স্ট্রাইকারের ভর, $m_1=40\ g$

গুটির ভর, $m_2=15\ g$

স্ট্রাইকারের আদিবেগ, $u_1=20\ ms^{-1}$

গুটির আদিবেগ, $u_2=0$

স্ট্রাইকারের শেষবেগ, $v_1 = ?$

গুটির শেষবেগ, $v_2=?$

স্থিতিস্থাপক সংঘর্ষের ক্ষেত্রে,

$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \left(\frac{2m_2}{m_1 + m_2}\right) u_2$$

$$= \frac{40 - 15}{40 + 15} 20ms^{-1} + 0$$

$$= \frac{25}{55} \times 20 \ ms^{-1} = 9.09 \ ms^{-1}$$

$$v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) u_2 + \left(\frac{2m_1}{m_1 + m_2}\right) u_1$$
$$= \frac{2 \times 40}{40 + 15} \times 20 \ ms^{-1} + 0$$
$$= 29.09 \ ms^{-1}$$

সুতরাং, স্ট্রাইকারের বেগ $9.09~ms^{-1}$ এবং গুটির বেগ $29.09~ms^{-1}$

একটি মাল বোঝাই ট্রাক ব্লেক ফেল করে $35~ms^{-1}$ বেগে রাস্ভার পাশে দাঁড়িয়ে থাকা একটি পিকআপ ভ্যানকে ধাক্কা দিয়ে ঠেলে নিয়ে যাচ্ছে। ট্রাকের ভর 8000~kg ও পিকআপের ভর, 950~kg।

- (i) ট্রাক ও পিকআপের মিলিত বেগ কত হবে?
- (ii) সংঘর্ষটি কি স্থিতিস্থাপক না অস্থিতিস্থাপক সংঘর্ষ? গাণিতিকভাবে বিস্লেষণ কর৷

মমাধান:

(i) এখানে, ট্রাকের ভর, $m_1 = 8000 \ kg$

পিকআপের ভর, $m_2 = 950 \ mg$

ট্রাকের আদিবেগ, $u_1=35\ ms^{-1}$

পিকআপের আদিবেগ, $u_2=0$

ট্রাক ও পিকআপের মিলিত বেগ, v=?

আমরা জানি, $m_1u_1 + m_2u_2 = (m_1 + m_2)v$

বা, (280000 + 0) = 8950v

SINCE 2018

বা,
$$v = \frac{280000}{8950}$$

$$v = 31.28 \, ms^{-1}$$

 \therefore ট্রাক ও পিকআপের মিলিত বেগ হবে $31.28\,ms^{-1}$

(ii) স্থিতিস্থাপক সংঘর্ষ হতে হলে সংঘর্ষের পূর্বে এবং পরে মোট গতিশক্তি

সংরক্ষিত হতে হবে।

এখানে, $M_1 = 8000 \ kg$

পিকআপের ভর, $m_2 = 950 \ kg$

ট্রাকের আদিবেগ, $u_1 = 35 \; ms^{-1}$

পিকআপের আদিবেগ, $u_2 = ?$

এখন, ট্রাকের গতিশক্তি,
$$E_1=rac{1}{2}\ m_1u_1^2$$

$$=rac{1}{2} imes 8000 imes 35^2$$

$$=4.9 imes 10^6 J$$

পিকআপের গতিশক্তি,
$$E_2=rac{1}{2}\ m_2 u_2^2$$
 $=rac{1}{2} imes 950 imes 0=0$

 \therefore সংঘর্ষের পূর্বে মোট গতিশক্তি, $E=E_1+E_2=4.9 imes10^6 J+0$ আবার, এখানে, $M_1=8000~kg$

পিকআপের ভর, $m_2=950~kg$

ট্রাকের শেষবেগ, $v_1 = 31.28 \ ms^{-1}$

পিকআপের শেষবেগ, $v_2 = 31.28 \ ms^{-1}$

সংঘর্ষের পরে মোট গতিশক্তি:

ট্রাকের গতিশক্তি,
$$E_1=rac{1}{2}m_1v_1^2=rac{1}{2} imes 8000 imes (31.28)^2=3.91 imes 10^6 J$$

পিকআপের গতিশক্তি,
$$E_2=\frac{1}{2}\;m_2v_2^2=\frac{1}{2}\times 950\;kg\;(31.28ms^{-1})^2$$

$$=4.64\times 10^5\;J$$

সংঘর্ষের পরে মোট গতিশক্তি,

$$E = E_1 + E_2$$
= $(3.91 \times 10^6) J + (4.64 \times 10^5) J$
= $4.37 \times 10^6 J$

সুতরাং উপরের গাণিতিক বিশ্লেষণ থেকে দেখা যায়, সংঘর্ষের পূর্বে মোট গতিশক্তি

সংঘর্ষের পরে মোট গতিশক্তি। সুতরাং গতিশক্তি সংরক্ষিত থাকে না। অতএব, সংঘর্ষটি অস্থিতিস্থাপক সংঘর্ষ।

Type 4–প্রতিক্রিয়া

বস্তুর আপাত ওজন = তলের প্রতিক্রিয়া (R)

Case - 1: R = mg

Case - 2: মুক্তভাবে পড়ন্ত বস্তু, R = 0 (ওজনহীনতা)

Case − 3: বস্তকে টানা হচ্ছে,

SINCE 2018

Y অক্ষ বরাবর, $R + F \sin \theta = mg$

$$\therefore R = mg - F\sin\theta$$

X অক্ষ বরাবর, $F\cos\theta=ma$

বা,
$$a = \frac{F \cos \theta}{m}$$

Case — **4**: বস্তুকে ঠেলা হচ্ছে,

Y অক্ষ বরাবর, $R = mg + F \sin \theta$

X অক্ষ বরাবর, $F\cos\theta=ma$

আনত তল

Case - 1: স্থির বা সমবেগে থাকতে চাইলে,

Y অক্ষ বরাবর, $R=mg\cos heta$

X অক্ষ বরাবর, $F = mg \sin \theta$

Case - 2: a ত্বরণে উধর্বমুখী

Y অক্ষ বরাবর, $R=mg\cos heta$

X অক্ষ বরাবর, $F - mg \sin \theta = ma$

 $\therefore F = m(g\sin\theta + a)$

Case - 3: a ত্বরণে নিম্নমুখী

 $R = mg \sin \theta$

 $F = m(g\sin\theta - a)$

PAR'S

যদি এর মাথে ঘর্ষণ থাকে ভাহলে গতির বিপরীত দিকে ঘর্ষণ বলও যুক্ত হবে।

উলম্ব বরাবর বস্তুর গতি:

Case - 1: বস্তু স্থির কিংবা সমবেগ

টানবল, T=mg

Case - 2: বস্তু সমত্বরণে উপরে উঠলে,

T = m(g + a)

নিচে নামলে, T = m(g - a)

ঘর্ষণ: দুটি বস্তু পরস্পরের সংস্পর্শে থেকে যদি একের ওপর দিয়ে অপরটি চলতে চেষ্টা করে তাহলে বস্তুদ্বয়ের স্পর্শ তলে এই গতির বিরুদ্ধে একটা বাধার উৎপত্তি হয়, এই বাধাকে ঘর্ষণ বলে।

Some info about friction:

PAR 3

- 🕨 ঘর্ষণ হবে গতির বিপরীতে।
- **SINCE 2018**
- 🕨 ঘর্ষণ ত্বরণের দিকে হতে পারে।
- 🕨 ঘর্ষণ বেগের দিকে হতে পারেনা।
- > গতীয় ঘর্ষণ এর মান নির্দিষ্ট বস্তু ও Surface এর জন্য constant না।
- ≽ স্থিতি ঘর্ষণ এর মান ও নির্দিষ্ট বস্তু বা Surface এর জন্য constant না।

বিভিন্ন condition এ R এর Volume change হয়। $(f_u = \mu_k R$ বা $F_s = \mu_s R)$ তাই f_k ও f_s ও change হয়।

 $\triangleright \quad \boxed{\mu_{\scriptscriptstyle S} > \mu_{\scriptscriptstyle k}}$

আনত তল

Case - 1: স্থির বা সমবেগে থাকতে চাইলে,

Y অক্ষ বরাবর, $R=mg\cos heta$

X অক্ষ বরাবর, $F=mg\sin\theta$

Case - 2: a ত্বৰণে উধৰ্বমুখী

Y অক্ষ বরাবর, $R=mg\cos\theta$

X অক্ষ বরাবর, $F - mg \sin \theta = ma$

 $\therefore F = m(g\sin\theta + a)$

Case - 3: a ज्तरण निस्नभूशी

 $R = mg \sin \theta$

 $F = m(g\sin\theta - a)$

যদি এর মাথে ঘর্ষণ থাকে তাহলে গতির বিপরীত দিকে ঘর্ষণ বলও যুক্ত হবে। চলো কয়েকটি উদাহরণ দেখে নেওয়া যাক।

উলম্ব বরাবর বস্তুর গতি:

Case - 1: বস্তু স্থির কিংবা সমবেগ

টানবল, T=mg

Case - 2: বস্তু সমত্বরণে উপরে উঠলে,

T = m(g + a)

নিচে নামলে, T = m(g - a)

निফটে:

স্থির লিফট, R=mg

লিফট সমবেগে গতিশীল, R=mg

লিফট সমত্বরণে উপরে উঠলে, R=m(g+a)

নিচে নামলে, R = m(g - a)

টান:

$$a = \frac{F}{m_1 + m_2 + m_3}$$

 m_2 এর জন্য $T_1-T_2=m_2a$

$$T_2 = T_1 - m_2 a$$

 m_3 এর জন্য $F-T_1=m_3a$

$$T_1 = F - m_3 \ a$$

 $T_1 = (m_1 + m_2) imes a$ [এখানে, T_1 যাকে টানবে imes a] ৪

$$T_2 = m_1 a$$

কপিকল:

$$a = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) \times g$$

$$T = \frac{2m_1m_2}{m_1 + m_2} \times g$$

$$T' = 4 \frac{m_1 m_2}{m_1 + m_2} \times g$$

T M_1 M_2

घर्य :

$$F_k = \mu_k \times R$$

3~kg ভরের একটি ব্লককে একটি জানুভূমিক তলের উপর দিয়ে কত বলে টানলে বস্তুটি সমবেণে চলবে? [গর্তীয় ঘর্ষণ গুণাঙ্ক =0.1]

মমাধান:

এখানে, ব্লুকের ভর, m=3kg

গতীর ঘর্ষণ গুণাঙ্ক, $\mu_k=0.1$

অভিলম্ব প্রতিক্রিয়া, R=mg=(3 imes 9.8~)~N=29.4~N

প্রযুক্ত বল, $F_k=?$

আমরা জানি, $\mu_k=rac{F_k}{R}$

$$F_k = \mu_k \times R$$
$$= 0.1 \times 29.4 N = 2.94 N$$

 $1000\ kg$ ভরের একটি গাড়ির চাকা ও রাস্তার মধ্যবর্তী স্থিতি ঘর্ষণ মহগ 0.1 এবং গর্তীয় ঘর্ষণ মহগ 0.195। গাড়িটিকে $2\ ms^{-2}$ ত্বরণে গতির্সীল কর্ত্ত হলে মর্বনিম্ন কত্ত আনুভূমিক বল প্রয়োগ কর্ত্ত হবে?

মমাধান:

SINCE 2018

সর্বনিম্ন বল,
$$F = \mu \, mg$$

$$= 0.1 \times 1000 \times 9.8$$

$$= 980 \, N$$

 $2\ ms^{-2}$ ত্বরণে গতিশীল করার জন্য প্রয়োজনীয় বল,

$$F = ma + F_k = ma + \mu_k mg$$

= 1000 \times 2 + 0.04 \times 1000 \times 9.8
= 2392 N

10~kg ভরের একটি বাক্সের মাথে রশি বেঁধে রশিটিকে একটি ঘরের মেঝের মাথে 30° কোলে টানা হচ্ছে। বাক্সটি মেঝের ওপর মমবেগে চলছে। বাক্স ও মেঝের মধ্যবর্তী ঘর্ষণ বল 10~N হলে রশির টান কত?

মমাধান :

এখানে, ঘর্ষণ বল, $f_k=10\ N$

বস্তুর ভ্র, m=10~kg

ভূমির সাথে কোণ, $heta=30^\circ$

রশির টান, *T* =?

এখানে, $T\cos 30^\circ = f_k$ বা, $T\cos 30^\circ = 10~N$

$$\therefore T = \frac{10N}{\cos 30^{\circ}} = \frac{10N}{0.866} = 11.547N = 11.55N$$

একটি আনুভূমিক তলের ওপর 2.6~kg ভরের কোনো ব্লককে গতির্সীল করতে 20~N বলের প্রয়োজন হয়।

(ক) ব্লক ও তলের মধ্যকার μ_s কত?

(খ) যদি $19\ N$ মানের আনুভূমিক বল বস্তুটিকে সুষম বেগে গতির্খীল রাখে তাহলে ব্লক ও তলের মধ্যকার μ_k নির্ণয় কর।

মমাধান :

এখানে, বস্তুর ভর, m=2.6~kg

সীমাস্থ ঘর্ষণ বল, $f_s=20~N$

চল ঘর্ষণ বল, $f_k = 19 N$

স্থিতি ঘর্ষণ গুণাংক, $\mu_{\scriptscriptstyle S}=$?

চল ঘর্ষণ গুণাংক, $\mu_k = ?$

(
$$\Phi$$
) $R = mg = 2.6 \ kg \times 9.8 \ ms^{-2}$
= 25.48 N

$$\therefore \mu_{S} = \frac{f_{S}}{R} = \frac{20 \, N}{25.48 \, N}$$
$$= 0.78$$

(খ)
$$\mu_S=rac{f_k}{R}=rac{19N}{25.48\,N}\left[R$$
 এর মান বসিয়ে $m]$ $=0.745pprox0.75$

একটি বস্তু 0.2 ঘর্ষণ গুণাঙ্কের মমতলে ঘন্টায় 36 km বেগে পিছলিয়ে একমময়ে থেমে গেলা থামার আগে বস্তুটির অতিক্রান্ত দূরত্ব নির্ণয় কর।

মমাধান:

এখানে,
$$f_k = \mu_k R = \mu_k mg$$

$$u = 36kmh^{-1} = 10ms^{-1}$$

$$v = 0$$

$$\therefore$$
 তুর্ণ, $a = \frac{F_k}{m} = \mu_k g = 0.2 \times 9.8 \ ms^{-2}$ E 2 0 1 8

$$\therefore v^2 = u^2 - 2as$$

$$\therefore s = \frac{u^2 - v^2}{2a} = \frac{10^{-2}}{2 \times 0.2 \times 9.8} = 25.51 \, m$$

 \therefore থামার আগে বস্তুর অতিক্রান্ত দূরত্ব $25.51\,m$

মুতার সাহায্যে এক টুকরা পাথর বেঁধে মেঝের সাথে 30° কোলে 26 N বলে টানা হচ্ছে। এতে পাথরটি সমবেণে গতির্শীল আছে। পাথরের ভর $10\ kg$ হলে পাথর ও মেঝের মধ্যবর্তী গর্তীয় ঘর্ষণাঙ্ক কত?

মমাধান:

এখানে, অভিলম্বিক প্রতিক্রিয়া,

$$\therefore R = mg - \sin 30 = 10 \ kg \times 9.8 \ ms^{-2} - 26 \times \frac{1}{2} \ N$$
$$= 98N - 13 \ N$$
$$= 85 \ N$$

$$\therefore$$
 ঘর্ষণ গুণাঙ্ক, $\mathbf{F}_k = \mu_k R$

বা,
$$\mu_k R = F_k$$

বা,
$$\mu_k = \frac{F_k}{R} = \frac{F \cos 30^\circ}{R}$$

$$= \frac{26 N \cos 30^\circ}{85 N}$$

SINCE
$$2018 = 0.265$$

অনুভূমিক মসূণ তলের উপর 80kg ভরের একটি লনরোলার অনুভূমিকের সাথে 30° কোণে 400~N মানের একটি বল দ্বারা ঠেলা হচ্ছে। লন রোলারটিতে ত্বরণ $3~ms^{-2}$ সৃষ্টি হচ্ছে। অনুভূমিক তল ও লন-রোলার মধ্যবর্তী গর্তীয় ঘর্ষণাঙ্ক কত?

মমাধান :

এখানে, চিত্র অনুসারে আমরা পাই,

$$R + 400 \sin 30^{\circ} = W$$
 কিলোগ্রাম ওজন = 80×9.8

$$\therefore R = 80 \times 9.8 - 400 \sin 30^{\circ}$$

$$= 584 N$$

আমরা জানি, $F_k = \mu_k \times R$

নিউটনের দ্বিতীয় সূত্রানুসারে কার্যকর বল, $ma=400\cos30^\circ-F_k$

বা,
$$F_k = 400 \cos 30^\circ - ma$$

বা,
$$\mu_k \times R = 400 \cos 30^{\circ} - 80 \times 3$$

বা,
$$\mu_k = \frac{400 \cos 30^{\circ} - 80 \times 3}{584} = 0.182$$

সুতরাং, গতীয় ঘর্ষণাঙ্ক 0.182

 $50 \ kg$ হেনার ভর মে র্সাত্তির ছুটিতে রাঙামাটি বেড়াতে যায়৷ 250 kg ভরের একটি গাড়িতে চড়ে 30° কোণে রাঙামাটির ঢালু পথে $5 \ ms^{-2}$ ত্বরণে উপরের দিকে আরোহণ করছে–

(ক) উপরের দিকে আরোহণের জন্য গাড়ি কর্তৃক প্রযুক্ত বলের মান নির্ণয় কর।

(খ) একই ত্বরণে নিচে নামার ক্ষেত্রে বলের মানের পরিবর্তন হবে কি না বিস্লেষণ করা

উত্তর: (ক) 2970 N; (খ) বলের মানের পরিবর্তন হবে।

60kg ভরবিশিষ্ট এক ব্যক্তি লিফটে করে $4 ms^{-2}$ ত্বরণে নিচে নামছে। লোকটি লিফটের মেঝেতে কী পরিমাণ বল প্রয়োগ করবে? লিফটিট যদি একই ত্বরণে উপরে উঠতে থাকে তাহলে ওই ব্যক্তি কত প্রতিক্রিয়া বল অনুভব করবে?

উত্তর: 348 N,828N

70 kg ওজনের একজন বিমান ব্যবহারকার্মী সমবেগে নিচের দিকে নামছে। তার ওপর বায়ুর বাধা কত?

উত্তর: 686 N

1000~kg ভরের একটি লিফট $3~ms^{-2}$ ত্বরূপে উপরের দিকে চললে লিফটের উপর-কে) লিফটের রশির টান কত হবে?

(খ) যদি $3 \ ms^{-2}$ নিচের দিকে নামে তাহলে টান কত হবে?

উত্তর: (ক) 12800 N; (খ) 6800 N

একটি অনুভূমিক তলের ওপর 2.6kg ভরের কোনো block গতির্শীল করতে 20N বলের প্রয়োজন হয়।

(ক) block ও তলের মধ্যকার μ_k কত?

(খ) যদি 19N মানের আনুভূমিক তল বস্তুটিকে সুষম বেগে গতির্সীল রাখে তাহলে block ও তলের মধ্যকার বল নির্ণয় কর।

উত্তর: (ক) 0.78R **(খ)** 0.75

3kg ভরের একটি অনুভূমিক তলের ওপর দিয়ে কত বলে টানলে বস্তুটি সমবেগে চলবে? (গর্তীয় ঘর্ষণ গুণাংক = 0.1)

উত্তর: 2.94 N

দুইটি তলের মধ্যকার স্থির ঘর্ষণ কোণ 60°। তাদের ঘর্ষণ গুণাংক কত?

উত্তর: 1.73

2 kg ভরের একটি বস্তুকে $10 ms^{-2}$ ত্বরণে গতির্সীল করতে কত বল প্রয়োগ করতে হবে? (পথের ঘর্ষণ বল = 10N; বাতামের বাধাজনিত বল = 5N)

উত্তর: 35 N

100 kg ভরের একটি গাড়ি 20 ms⁻¹ বেগে চলছিল। ব্রেক চেপে একে 50 m দূরত্বে থামিয়ে দেয়া হলো৷ গাড়িটির ব্রেক জনিত বল, ঘর্ষণ বল ও বাতামের বাঁধা এ তিনটি ক্রিয়ায় থেমে যায়৷ ব্রেকজনিত বল 250 N ও ঘর্ষণ বল 100 N হলে বাতামের বাধাজনিত বল কত?

10 kg ভরের একটি বাক্সের সাথে রশি বেধে রশিটিকে একটি ঘরের মেঝের সাথে 30° কোলে টানা হচ্ছে। বাক্সটি মেঝের ওপর সমবেগে চলছে। বাক্স ও মেঝের মধ্যবর্তী ঘর্ষণ বল 10 N হলে রশির টান কত?

উত্তর: 11.55N

একটি 70 kg ভরের বাক্সকে 400 N আনুভূমিক বল দ্বারা একটি মেঝের ওপর দিয়ে টানা হচ্ছে। যখন চলে তখন বাক্স ও মেঝের মধ্যে ঘর্ষণ মহণ 0.50 N। বাক্সের ত্বরণ নির্ণয় করো।

উত্তর: 0.81ms⁻²

মেঝে ও কাঠের মধ্যবর্তী স্থিতি ঘর্ষণাঙ্ক 0.45। ঘর্ষণ কোণ নির্ণয় করো৷ block 8 kg ভর এর হলে অনুভূমিক দিকে নূন্যতম কত বল প্রয়োগ করলে চলতে শুরু করবে?

উত্তর: 24,23 & 35,28 N

 $10ms^{-1}$ বেগে চলন্ত একজন বরফ স্কেটার বরফের ওপর 100m এর মধ্যে নিজেকে থামাতে পারলে বরফের মাথে বরফ স্কেটারের গর্তীয় ঘর্ষণ গুণাঙ্ক কত?

উত্তর: 0.05

54kmh⁻¹ বেণে গতির্শীল একটি বস্তুর সাথে রাস্তায় গর্তীয় ঘর্ষণ গুণাঙ্ক 0.3 হলে বস্তুটিকে কত দূরত্বে থামানো সম্ভব।

উত্তর: 38.3 m

 $3ms^{-1}$ বেগে চলন্ত 8kg ভরের একটি গতির্শীল বস্তুর উপর 60N বল 2s ধরে প্রয়োগ করা হলে শেষ বেগ কত?

উত্তর: 13.1 ms⁻¹

10kg ভরের একটি বস্তুকে ভানুভূমিকের সাথে 60° কোলে দড়ি বেধে 100N বল প্রয়োগ করে টানতে থাকলে বস্তুটি কত ত্বরণে চলতে থাকবে? ($\mu_k=0.2$)

উত্তর: 4.77 ms⁻²

50~kg ভরের একটি বস্তুকে 300~N বল অনুভূমিকভাবে 10 sec ধরে প্রয়োগ করা হলো৷ এ সময়ের মধ্যে বস্তুটির গড় বেগ কত হবে? ($\mu_k=0.2,\mu_S=0.6$)

উত্তর: 20.2ms⁻¹

লিফট

স্থির লিফট, R=mg

লিফট সমবেগে গতিশীল, R=mg

লিফট সমত্বরণে উপরে উঠলে, R=m(g+a)

নিচে নামলে, R = m(g - a)

লিফট

কোনো লিফট উপরের দিকে $1.2\ ms^{-2}$ ত্বরণে উঠেছে। লিফটের ভিতর কোনো ব্যক্তি একটি $2\ kg$ ভরের বল ধরে থাকলে বলের আপাত ওজন কত? যদি লিফটের তলা হতে $1.5\ m$ উপর হতে বলটি ছেড়ে দেওয়া হয় তবে বলটি পড়তে কত সময় লাগবে?

মমাধান:

উধর্বগামী লিফটের ক্ষেত্রে, আমরা জানি, আপাত ওজন, W=m(g+a) বা, $W=2kg\times(9.8\ ms^{-2}+1.2\ ms^{-2})$ $=2\ kg\times11\ ms^{-2}$ $=22\ N$ আবার, আমরা জানি, $h=\frac{1}{2}\ gt^2$ বা, $1.5\ m=\frac{1}{2}\times9.8\ ms^{-2}\times t^2$

বা,
$$t^2 = \frac{3 m}{9.8 m s^{-2}} = 0.30612245 s^2$$

বা, $t = \sqrt{0.30612245} s$ ∴ t = 0.55 s

অতএব, বলের আপাত ওজন 22 N এবং বলটি পড়তে সময় লাগবে $0.55 \, s$

1200~kg ভরের একটি লিফট $3~ms^{-2}$ ত্বরূপে উপরের দিকে চললে লিফটের উপর (i) লিফটের রশির টান কত হবে? (ii) যদি $3~ms^{-2}$ ত্বরূপে নিচের দিকে নামে তাহলে টান কি হবে?

মমাধান :

দেওয়া আছে, লিফটের ভর, $m=1200\ kg$

লিফটের ত্বরণ, $f = 3ms^{-2}$

(i) লিফটটি যখন উপরের দিকে চলে তখন লিফটের রশির টান, T=? এক্ষেত্রে, T-mg=mf

$$7, T = m(g+f) = 1200 \times (9.8+3)$$

$$: T = 15360 N$$

(ii) লিফটটি যখন নিচের দিকে নামে তখন লিফটের রশ্মির টান, T=?

একেত্রে,
$$mg - T = mf$$

$$\exists f, T = m(g - f) = 1200 \times (9.8 - 3)$$

$$\therefore T = 8160 \, N$$

একটি লিফট $14ms^{-2}$ ত্বরূপে উপরে উঠছে। লিফটের মেঝের 3m উপর হতে একটি বলকে স্থির অবস্থা হতে ছেড়ে দেয়া হল। $g=10ms^{-2}$ ধরা হলে লিফটের মেঝে স্পর্শ করতে বলটির কত সময় লাগবে?

মমাধান:

এখানে, উচ্চতা, $h=3\ m$ অভিকর্ষজ ত্বরণ, $g=10\ ms^{-2}$ লিফটের ত্বরণ, $a=14\ ms^{-2}$ মেঝে স্পর্শ করতে সময়, t=?

আমরা জানি,
$$t=\sqrt{\frac{2h}{g+a}}=\sqrt{\frac{2\times 3}{14+10}}=\sqrt{\frac{6}{24}}=\frac{1}{2}$$

Practice CQ

400~kg ভরের একটি গাড়ি $60~kmh^{-1}$ মমবেগে 10° কোণে নত তল বরাবর উপরে উঠে। [ঘর্ষণ গুণাঙ্ক μ এর মান 0.3 এবং g এর মান $9.8~ms^{-2}$]

- (গ) গাড়ির উপর ক্রিয়ার্সীল বিরুদ্ধ বলের মান নির্ণয় করো।
- (ঘ) গাড়ির ইঞ্জিনের ক্ষমতা কত হলে গাড়িটি সমবেগে না চলে বরং ত্বরণ প্লাপ্ত হবে? গাণিতিক বিশ্লেষণ দাও।

 $3 ms^{-1}$ বেগে 2 kg ভরের একটি বস্তু 0.5 kg ভরের অন্য একটি স্থির বস্তুর মঙ্গে মোজামুজি স্থিতিস্থাপক সংঘর্ষে লিপ্ত হয়৷

- (গ) সংঘর্ষের পর স্থির বস্তুর শেষ বেগ কত? নির্ণয় কর।
- (ঘ) উদ্দীপকের গতির্শীল বস্তুর ভর স্থির বস্তুর ভরের তুলনায় অনেক বেশি হলে সংঘর্ষের পর বস্তুদ্বয়ের পরিণতি কী হবে? গাণিতিকভাবে যাচাই কর৷

5000~kg ভরের একটি বালুভর্তি ট্রাক ঘন্টায় 72~km (বেগে চলছে) ট্রাক হতে প্রতি মেকেন্ডে 200~gm বালু ছিদ্র পথে পড়ে যাচ্ছে৷ ব্রেক চেপে $20~\min$ পরে ট্রাকটিকে 20~m দূরত্বে থামানো হলো৷

- (গ) যাত্রা শুরুর 15 min পরে ট্রাকের বেগের মান বের করো।
- (ঘ) ট্রাকটিকে থামানোর জন্য প্রয়োজনীয় বলের মান হিমাব করা মন্ডব-বিস্লেষণ করে দেখাও।

2 kg এবং 3 kg ভরের দুটি বস্তু যথাক্রমে $8.8 ms^{-1}$ এবং $1.2 ms^{-1}$ বেগে বিপরীত দিক হতে এমে সংঘর্ষের পর বস্তু দুটি একত্রে মিলিত হয়ে নির্দিষ্ট দিকে চলতে লাগল৷

- (গ) সংযুক্ত বস্তু দুটির চূড়ান্ত বেগ কত?
- (ঘ) উক্ত সংঘর্ষ স্থিতিস্থাপক না অস্থিতিস্থাপক– গাণিতিক বিশ্লেষণের মাধ্যমে তোমার মতামত দাও।

 $72~kmh^{-1}$ (বেণে চলমান 1800~kg ভরের একটি বড় গাড়ি মামনে দাঁড়িয়ে থাকা 1000~kg ভরের একটি ছোট গাড়িকে পিছন দিক থেকে মজোরে ধাক্কা দিলো৷ ধাক্কার পর গাড়ি দু'টি একত্রিত হয়ে 60~m গিয়ে থেমে গেলো৷ রাস্তার পাশে দাঁড়িয়ে থাকা বিজ্ঞানের ছাত্র মার্হী, দুর্ঘটনাটি পর্যবেক্ষণ করে বলল এটি একটি অস্থিতিস্থাপক সংঘর্ষা

- (গ) উদ্দীপকের গাড়ি দু'টি থামাতে যে বাঁধাদানকারী বল ক্লিয়ার্শীল ছিল তার মান নির্ণয় কর৷
- (ঘ) মার্হী'র মন্তব্যের মত্যতা গাণিতিক বিস্লেষণের মাধ্যমে যাচাই কর।

Type 5 – রকেটের গতি

জ্বালানি ধনের ফলে উৎপন্ন গ্যাস তীব্র বেগে পেছনের দিকে বেরিয়ে যায় বলে রকেট বা জেট প্লেন সমান ভরবেগ নিয়ে সামনের দিকে এগিয়ে যায়।

$$F = V_r \frac{dm}{dt}$$

অভিকর্ষজ প্রভাবের ক্ষেত্রে, $F = V_r \frac{dm}{dt} - mg$

 $a=rac{1}{m}$. $V_rrac{dm}{dt}$ [রকেটের ভর জ্বালানীর ভরের সাপেক্ষে নগন্য ধরে]

অভিকর্ষজ প্রভাবের ক্ষেত্রে,

$$a = \frac{1}{m} \cdot V_r \frac{dm}{dt} - g$$

যেকোনো মূহুর্তে বেগ , $\mathrm{v}=v_o+v_rlnrac{m_0}{m}-gt$

$$m = m_0 - \left(\frac{dm}{dt}\right) \times t$$

 $v_r=$ রকেটের সাপেক্ষে জ্বালানী নির্গমনের বেগ SINCE 2018

 $t = \overline{\omega}$ তিক্রান্ত সময়

 $v_0=$ সময় গণনার শুরুতে বেগ

 $m_0=$ জ্বালানিসহ রকেটের আদি ভর

m=t সময় পর রকেটের ভর

মহাকাশে অবস্থিত একটি সাটল মহাকাস যানের ভর $3 \times 10^3 \text{ kg}$ এবং জ্বালার্নী ভর 50000 gm। জ্বালার্নী $15 \text{ } kgs^{-1}$ হারে ব্যবহৃত হলে এবং $150ms^{-1}$ মুষম দ্রুতিতে নির্গত হলে সাটল যানের উপর ধাক্কা নির্ণয় কর৷ [BUTex: '08-09]

মমাধান:

এখানে, জ্বালানি ব্যবহারের হার, $\frac{\Delta m}{\Delta t}=15~kgs^{-1}$ রকেটের বেগ, $v=150~ms^{-1}$ ধারু, F=? আমরা জানি,

$$F = \left(\frac{\Delta m}{\Delta t}\right) v = 15 \, kg s^{-1} \times 150 \, m s^{-1}$$
$$= 2250 \, kg m s^{-1} = 2250 \, N$$

একটি রকেট তার উড্চয়নের প্রথম মেকেন্ডে তার ভরের $\frac{1}{60}$ ভাগ হারায়৷ রকেট হতে গ্যাম $2400~ms^{-1}$ বেগে বের করে দেয়৷ রকেটিটির ত্বরণ কত হবে?

SINCE 2018

মমাধান:

$$a = \frac{v_r}{m} \left(\frac{dm}{dt}\right) - g$$

$$= \frac{2400}{m} \times \left(\frac{m}{60 \times 1}\right) - g$$

$$= \left(\frac{2400}{60} - 9.8\right) \text{ms}^{-2}$$

$$= 30.2 \text{ms}^{-2}$$

অতএব, রকেটটির ত্বরণ $30.2 \mathrm{ms}^{-2}$ ।

এখানে
$$dm=rac{m}{60}$$
 $dt=1s$ বেগ, $v_r=2400 ext{ms}^{-1}$ রকেটের ত্বরণ, $a=?$

$36 \ kg$ **હતુ** a **ત** a **હ** a

মমাধান:

দেওয়া আছে, ভর, m=36~kg

সময় ব্যবধান, $\Delta t = 1 \min = 1 \times 60s = 60 s$

বেগ বৃদ্ধি,
$$\Delta v = 15~kmh^{-1} = \frac{15 \times 1000}{3600} = 4.167~ms^{-1}$$

বের করতে হবে, বল, F=?

আমরা জানি,

$$F = m\frac{\Delta v}{\Delta t} = 36 \times \frac{4.17}{60}$$
$$= 2.5 \ kgms^{-2} = 2.5 \ N$$

একটি রকেট মহাসূন্যে প্রতি মেকেণ্ডে 0.07~kg জ্বালানি খরচ করে৷ রকেট থেকে নির্গত গ্যামের বেগ $100~kms^{-1}$ হলে রকেটের উপর কত বল ক্রিয়া করে?

মমাধান:

SINCE 2018 যা আছে

দেওয়া আছে,

প্রতি সেকেণ্ডে জ্বালানি খরচ, $\frac{dm}{dt}=0.07~kgs^{-1}$

এবং নির্গত গ্যাসের বেগ, $r^1=100 km s^{-1}$

$$= 1 \times 10^5 ms^{-1}$$

আমরা জানি, $F = v_r \frac{dm}{dt} - mg$

অভিকর্ষ বলের প্রভাব না থাকলে (g=0), রকেটের উপর ক্রিয়াশীল বল,

$$F = v_r \frac{dm}{dt} = 1 \times 10^5 ms^{-1} \times 0.07 \ kg$$
$$= 7 \times 10^3 \ N$$

Type 6 – কৌণিক অংশ

সরণ
$$\rightarrow s \rightarrow \theta$$

বেগ
$$\rightarrow v \rightarrow \omega$$

ত্বরণ
$$\rightarrow a \rightarrow \infty$$

একটি ঘড়ির মেকেণ্ডের কাঁটার, মিনিটের কাঁটার এবং ঘন্টার কাঁটার কৌলিক বেগ নির্ণয় কর্।

মমাধান:

$$\omega = \frac{\theta}{t} = \frac{2\pi}{T}$$

$$\omega_{s} = \frac{2\pi}{60} = \frac{\pi}{30} \ rad \ s^{-1}$$

$$\omega_m = \frac{2\pi}{3600} = \frac{\pi}{1800} \ rad \ s^{-1}$$

$$\omega_h = \frac{2\pi}{43200} = \frac{\pi}{21600} \ rad \ s^{-1}$$

একটি চাকতি মমকৌণিক ত্বরূপে তার অক্ষের চারদিকে ঘুরতে শুরু করে। যদি দুই পাকের শেষে চাকতিটির কৌণিক বেগ $2\pi \ rad\ s^{-1}$ হয় তবে ঘোরা শুরুর $8\ s$ পরে মেটি মোট কত পাক ঘুরবে?

মমাধান:

$1rev = 2\pi rad$

$$\omega_1 = 0 \; rads$$

$$\theta = 2rev = (2 \times 2\pi) rad$$

$$\omega_f = 2\pi \, rads^{-1}$$

$$\omega_f^2 = \omega_i^2 + 2 \propto \theta$$

$$\propto = \frac{\pi}{2} rad s^{-2}$$

$$t = 8s \, \mathfrak{A}$$

$$\theta = \omega_i t + \frac{1}{2} \alpha t^2 = 0 + \frac{1}{2} \frac{\pi}{2} \times 8^2$$

$$=50.265 \, rad$$

$$= 8 rev$$

মূর্চীপত্রে ফেরত

কেন্দ্রমুখী এবং কেন্দ্র বিমুখী বল

$$\mathbf{S.} \; \boldsymbol{F} = \frac{mv^2}{r}$$

২. $F=m\omega^2 r$ এই সমীকরণগুলো ব্যবহার করা যায়। বলের (F) এর পরিবর্তে টান (T)ও বলতে পারে। যাইহোক, টান আর বল একই।

একটি মুতা মর্বোচ্চ 5N টান মহ্য করতে পারে। 1.2~kg ভরের একটি ঢিলকে ওই মুতায় বেঁধে 2m ব্যামার্ধের বৃত্তাকার পথ প্রতি মিনিটে মর্বোচ্চ কত বার ঘুরানো মন্দব?

মমাধান:

এখানে, সুতার টান, F=5N

ভর, m=1.2 kg

ব্যাসার্ধ, r=2 m

 $\therefore \omega = \frac{1.44rad}{1s} \times \frac{60sec}{1min} \times \frac{1rev}{2\pi rad}$

 $\omega = ?$

 $= 13.78 \, rev \, min^{-1}$

SINCE 2018

আমরা জানি, $F=m\omega^2 r$ \therefore প্রতি মিনিটে সর্বোচ্চ 13.78 বার ঘুরানো সম্ভব।

বা,
$$\omega^2 = \frac{F}{mr} = \frac{5}{1.2 \times 2}$$

$$= 2.08 \, s^{-2}$$

 $\therefore \omega = 1.44 rad \, s^{-1}$

2 gm ভর বিশিষ্ট একটি বস্তুকে র্দীর্ঘ 1m মুতার মাহায্যে বৃত্তাকার পথে ঘোরানো হচ্ছে এবং বস্তুটি 3 s এ 15 বার পূর্ণ আবর্তন করে। মুতার টান নির্ণয় করে।

মমাধান:

দেওয়া আছে, বস্তুর ভর, m=2 gm=0.002 kg বৃত্তাকার ব্যাসার্ধ, r=1 m কৌণিক বেগ, $\omega=\frac{15\times 2\pi}{3}$ rad s^{-1} = 31.4 rad s^{-1} বের করতে হবে, সুতার টান, F=? এখন, $F=m\omega^2r=0.002$ $kg\times (31.4$ rad $s^{-1})^2\times 1$ m=1.972 N

Type 7 – জড়তার ভ্রামক

লম্ব অক্ষ উপপাদ্য: $I_z = I_x + I_y$ সমান্তরাল অক্ষ উপপাদ্য: $I = I_z + MR^2$

- \checkmark রিং আকৃতির বস্তুর জন্য $=mr^2$
- \checkmark সব দণ্ডের মধ্যবিন্দুগামী অক্ষ: $\frac{1}{12} ML^2$
- \checkmark সব দণ্ডের প্রান্তবিন্দুগামী অক্ষ: $\frac{1}{3}$ ML^2
- \checkmark নিরেট বৃত্তাকৃতির কেন্দ্রবিন্দুগামী: $\frac{1}{2}$ MR^2
- \checkmark নিরেট গোলক $=rac{2}{5}MR^2$
- \checkmark ফাপা গোলক $=rac{2}{3}~MR^2$
- \checkmark সিলিগুরের কেন্দ্রগামী $=rac{1}{2}mr^2$ \mid N C E \mid 2 O 1 8
- \checkmark চতুর্ভুজ প্লেট আকৃতির মধ্যবিন্দুগামী $=rac{1}{12}M\left(a^2+b^2
 ight)$
- \checkmark চতুর্ভুজ প্লেট আকৃতির সমান্তরাল $=rac{1}{3}ML^2$

টৰ্ক

$$\checkmark \quad \tau = I \propto$$

$$\checkmark$$
 $\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$ $[\overrightarrow{\tau} = \mathrm{dF}$ এখানে, $dF =$ লম্দূরত্ব]

$$\checkmark$$
 $\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$

 \checkmark লম্ব বরাবর না হলে, $au=r\,F\sin heta$

(clockwise হলে ' – ' এবং anticlockwise হলে '+')

কোনো অক্ষ মাপেক্ষে একটি লৌহ নির্মিত বস্তুর চক্রগতির ব্যামার্ধ 0.5। বস্তুটির ভর 0.5 kg হলে এর জড়তার হামক নির্ণয় কর।

মমাধান:

এখানে, চক্রগতির ব্যাসার্ধ, K=0.5m

বস্তুর ভর, m=0.5~kg

জড়তার ভামক I=?

আমরা জানি,

 $I = MK^2 = 0.5 kg \times (0.5 m)^2$ $= 0.125 kgm^2$

 \therefore জড়তার ভ্রামক $=0.125~kgm^2$

একটি চাকতির ব্যাস 2 m ও ভর 20 kg। 1800 rpm কৌনিক দ্রুতিতে চাকতির কৌনিক ভরবেগ কত হবে?

মমাধান:

এখানে, চাকার ব্যাসার্ধ, $r=rac{2}{2}=1~m$ SINCE 2018

ভর, m=20~kg

কৌণিক দ্রুতি $\omega=1800\,rpm$

$$=\frac{1800\times2\pi}{60}=60\pi$$

কৌণিক ভরবেগ, L=?

চাকতির জড়তার ভ্রামক,
$$I=rac{1}{2}mr^2=rac{1}{2} imes 20 imes 1^2$$
 $=10kgm^2$

কৌণিক ভরবেগ,
$$L=I\omega=10 imes60\pi$$
 $=600\pi\,kgm^2s^{-1}$

মূর্চীপত্রে ফেরত

একটি ধাত্তব চাকতির ব্যাম 0.2 m ও ভর 25 kg ইহার ভারকেল্স দিয়ে বেগ পৃষ্ঠের অভিলম্বভাবে অতিক্রান্ত অক্ষের মাপেক্ষে জড়তার দ্রামক ও চক্রগতির ব্যামার্ধ নির্নয় কর।

মমাধান:

দেওয়া আছে.

ধাতব চাকতির ব্যাস, d=0.2~m

ধাতব চাকতির ব্যাসার্ধ, $r=rac{0.2}{2}m$

$$\therefore r = 0.1 m$$

ভর, m=25 kg

বের করতে হবে, ভারকেন্দ্র দিয়ে এবং পৃষ্ঠের অভিলম্বভাবে অতিক্রান্ত অক্ষের সাপেক্ষে জড়তার ভ্রামক, I=?

চক্রগতির ব্যাসার্ধ, K=?

আমরা জানি, পাতলা গোলাকার চাকতির ক্ষেত্রে ভারকেন্দ্রসহ যেকোনো ব্যাসার্ধের সাপেক্ষে, জড়তার ভ্রামক,

$$I = \frac{1}{2}mr^2$$
$$= \frac{1}{2} \times 25 \ kg \times (0.1m)^2$$

 $: I = 0.125 \, kgm^2$

আবার, আমরা জানি,

চক্রগতির ব্যাসার্ধ,
$$k=\sqrt{rac{I}{m}}$$

$$=\sqrt{\frac{0.125\,kgm^2}{25\,kg}}$$

$$\therefore k = 0.07 m$$

একটি ধাত্তব গোলকের ভর 6g। এটিকে 3m র্দীর্ঘ একটি সুতার এক প্লান্তে বেঁধে প্রতি মেকেণ্ডে 4 বার ঘুরানো হচ্ছে। এর কৌনিক ভরবেগ কত?

মমাধান:

এখানে,
$$m=6g=6\times 10^{-3}~kg$$
 $r=3~m$ $T=\frac{t}{N}=\frac{1}{4}s$ $\omega=\frac{2\pi}{T}=8\pi~rads^{-1}$ আমরা জানি, $L=I\omega$ আবার, $I=mr^2$

$$\therefore L = mr^2 \omega$$

$$= 6 \times 10^{-3} \times 3^2 \times 8\pi$$

$$= 1.356 \, kgm^2 s^{-1}$$

একটি চাকার ভর 5 kg এবং চক্রগতির ব্যামার্থ 25 cm। এর ঘূর্ণন জড়তা [জড়তার দ্রামক] কত? চাকাটিকে $4 rad s^{-1}$ কৌণিক ত্বরণ সৃষ্টি করতে কত মানের টর্ক প্রয়োগ করতে হবে?

মমার্থান : এখানে,
$$m=5ka$$

$$K = 25cm = 0.25 m$$

জড়তার ভামক,
$$I=?$$

কৌণিক ত্বরণ,
$$\alpha = 4 \ rads^{-2}$$

টৰ্ক,
$$\tau = ?$$

আমরা জানি,

$$I = MK^2 = 5kg \times (0.25m)^2 = 0.3125 \ kgm^2$$

আবার, টর্ক,
$$\tau = I\alpha = 0.3125 \ kgm^2 \times 4 \ rads^{-2} = 1.25 \ Nm$$

$$\therefore$$
 জড়তার ভ্রামক $= 0.3125~kgm^2$

টৰ্ক =
$$1.25 Nm$$

(1,-1,2) বিন্দুতে ক্রিয়ার্শীল বল $\overrightarrow{F}=3\,\widehat{i}\,+2\,\widehat{j}\,-4\,\widehat{k}\,$ । (2,-1,3) বিন্দুর মাপেক্ষে বলের ত্রামক নির্ণয় করো।

মমাধান:

দেওয়া আছে, বল, $\overrightarrow{F}=3\,\widehat{i}\,+2\,\widehat{j}\,-4\,\widehat{k}$ (2,-1,3) বিন্দুর সাপেক্ষে (1,-1,2) বিন্দুর অবস্থান ভেক্টর, রৈখিক ভরবেগ, $\overrightarrow{r}=(1-2)\,\widehat{i}\,+(-1+1)\,\widehat{j}\,+(2-3)\,\widehat{k}\,=-\,\widehat{i}\,-\,\widehat{k}$ বলের ভ্রামক, $\overrightarrow{\tau}=?$ এখন, $\overrightarrow{\tau}=\overrightarrow{r}\times\overrightarrow{F}$

$$= \begin{vmatrix} \widehat{i} & \widehat{j} & \widehat{k} \\ -1 & 0 & -1 \\ 3 & 2 & -3 \end{vmatrix}$$
$$= \widehat{i} (0+2) - \widehat{j} (4+3) + \widehat{k} (-2-0)$$
$$= 2 \widehat{i} - 7 \widehat{j} - 2 \widehat{k}$$

SINCE 2018

একটি চাকার ভর 4 kg এবং চক্রগতির ব্যামার্ষ 25 cm। এর ঘূর্ণন জড়তা কত? চাকাটিতে $2 \ rads^{-2}$ কৌনিক ত্বরণ মৃষ্টি করতে কত মানের টক্ প্রয়োগ করতে হবে? উত্তর: টক্ = $0.5 \ Nm$

হাইড্রোজেন নিউক্লিয়ামকে কেন্দ্র করে ইলেকট্রন $5.3 \times 10^{-11} \, m$ ব্যামার্ষের বৃত্তাকার পথে চলে $1.51 \, imes \, 10^{-16} s$ এ একবার ঘুরে আসে৷ কৌনিক ভরবেগ নির্ণয় করো৷

উত্তর: $1.07 \times 10^{-34} kgm^2 s^{-1}$

পৃথিবী মূর্যকে কেল্প করে $1.45 \times 10^{11} \mathrm{m}$ ব্যামার্ধের বৃত্তাকার পথে 365 দিনে একবার ঘুরে আমে। পৃথিবীর ভর $6.0 \times 10^{24}~kg$ হলে, এর কৌনিক ভরবেগ নির্ণয় করো।

উত্তর: $25.12 \times 10^{39} kgm^2 s^{-1}$

একটি বৃত্তাকার চাকতির ব্যামার্ধ 10cm হলে চাকতির পরিধিস্থ। বিন্দু ও চাকতির তলের মাথে লম্ব বরাবর অক্ষের মাপেক্ষে জড়তার দ্রামক কত? [চাকতির ভর = 2 kg]

উত্তর: 0.03 kgm²

একটি 5kg ভরের, 5cm ব্যামের বৃত্তাকার চাকতির কোনো ব্যামের মাপেক্ষে জড়তার শ্রামক কত?

উত্তর: $3.125 \times 10^{-3} \, kgm^2$

কোনো অক্ষ মাপেক্ষে একটি বস্তুর জড়তার দ্রামক $100\ kgm^{-1}$ । উক্ত অক্ষ মাপেক্ষে বস্তুটির চক্রগতির ব্যামার্ধ নির্ণয় কর৷ (বস্তুটির ওজন $29.4\ N$)

উত্তর: 5.77 m

কৌণিক ভরবেগের সংরক্ষণশীলতা

$$I_1\omega_1=I_2\omega_2$$

কৌণিক গতিশক্তি

$$E_k = \frac{1}{2} I\omega^2$$
 [মেহেতু $\omega = \frac{2\pi}{T}$]

SINCE 2018

বস্তুটিতে যদি কৌণিক ও রৈখিক দুটি বেগই থাকে তাহলে মোট শক্তি,

$$E_k = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

$$mv \rightarrow I\omega$$

$$F = ma \rightarrow \tau = I\alpha$$

$$E = \frac{1}{2} mv^2 \rightarrow E_k = \frac{1}{2} I \omega^2$$

$$\omega = \frac{\theta}{t} = \frac{2\pi}{T} = 2\pi f$$

$$F_c = \frac{mv^2}{r} = m\omega^2 r$$

$$1rev \rightarrow 1rps = 2\pi rad$$

$$1rpm = \frac{2\pi}{60} \ rads^{-1}$$

একটি চাকার ভর 10 kg এবং চক্লগতির ব্যামার্ষ 0.5m। এর ঘূর্ণন জড়তা [জড়তার স্থামক] কত? চাকাটিকে $5 rad s^{-1}$ কৌণিক বেগে ঘুরলে এর ঘূর্ণন গতিশক্তি নির্ণয় কর।

মমাধান:

দেওয়া আছে, ভর, $m=10\ kg$

চক্রগতির ব্যাসার্ধ, K=0.5~m

জড়তার ভামক, I=?

কৌণিক বেগ, $\omega = 5rads^{-1}$

ঘূর্ণন গতিশক্তি, $E_k=$?

আমরা জানি.

$$I = mK^2 = 10 \times (0.5)^2$$

= 2.5 kgm²

আবার,
$$E_k = \frac{1}{2}I\omega^2 = \frac{1}{2} \times 2.5 \times 5^2$$

$$= 31.25 J$$

একটি মিলিণ্ডারের ভর 50~kg এবং ব্যামার্থ 0.20~m। মিলিণ্ডারটির অক্ষের মাপেক্ষে এর জড়তার দ্রামক $1.0~kgm^2$ । মিলিণ্ডারটি যখন $2ms^{-1}$ বেণে অনুভূমিকভাবে গড়াতে থাকে তখন তার মোট গতিখক্তি কত হবে?

মমাধান :

দেওয়া আছে, ভর,
$$m=50\ kg$$

ব্যাসার্ধ, $r=0.20\ m$
জড়তার ভ্রামক, $I=1\ kgm^2$
বেগ, $v=2ms^{-1}$
গতিশক্তি, $E_T=?$

$$E_T=$$
 সাধারণ গতিশক্তি $+$ ঘূর্ণণ গতিশক্তি $=rac{1}{2}\,mv^2+rac{1}{2}\,I\omega^2$ $=rac{1}{2}mv^2+rac{1}{2}\,Irac{v^2}{r^2}$ $=rac{1}{2} imes50 imes2^2+rac{1}{2} imes I imesrac{2^2}{(0.2)^2}$ $=150\,J$

মূচীপত্রে ফেরত

একজন বেলে নর্তর্কী হস্ত প্রমারিত অবস্থায় উলদ্ব অক্ষের চারপান্সে $1 \ rev \ s^{-1}$ বেগে ঘূর্ণায়মান। হাত গুটিয়ে নিলে তার জড়তার ত্রামক 60 ভাগ কমে যায়। হাত গুটানো অবস্থায় পুতি মেকেণ্ড ঘূর্ণন সংখ্যা কত হবে?

মমাধান:

দেওয়া আছে.

আদি ঘূর্ণন বেগ, $\omega_1 = 1 \ revs^{-1} = 2\pi \ rads^{-1}$

আদি জড়তার ভ্রামক, $I_1=I$

পরবর্তী জড়তার ভ্রামক, $I_2=(1-0.6)I=0.4I$

পরবর্তী ঘূর্ণনবেগ, $\omega_2 = ?$

আমরা জানি,

কৌণিক ভরবেগের সংরক্ষণ নীতি অনুসারে.

$$I_1\omega_1=I_2\omega_2$$

$$\therefore \omega_2 = \frac{l_1 \omega_1}{l_2}$$

$$= \frac{1 \times 2\pi}{0.41}$$
SINCE 2018

 $= 2.5 \, rev \, s^{-1}$

7 metre উঁচু হতে 2kg ভরের একটি পিতলের নিরেট গোলক একটি নতি তলে গড়াতে গড়াতে ভূমিতে এমে পড়ে৷ ভূমি স্পর্শ করার মুহুর্তে গোলকটির ভরকেন্সের গতিখক্তি ও কৌনিক গতিখক্তি কত ছিল? [g = 9.8ms²][BUET: '04-05]

SINCE 2018

মমাধান:

ভূমি স্পর্শ করার মুহুর্তে গতিশক্তি = 7 মিটার উচ্চতায় বিভব শক্তি

$$\therefore K.E = mgh$$

$$= 2 \times 9.8 \times 7$$

$$= 137.2 \text{ joules}$$

নিরেট গোলকের জন্য $I=rac{2}{r}Mr^2$

এবং কৌণিক গতিশক্তি
$$=$$
 $\frac{1}{2}$ I ω^2 $=$ $\frac{1}{2} \times \frac{2}{5}$ $Mr^2 \omega^2$ $=$ $\frac{1}{5}$ mv^2

আবার,
$$\frac{1}{2}mv^2 + \frac{1}{5}mv^2 = 137.2$$

বা,
$$\left(\frac{1}{2} + \frac{1}{5}\right) \times 2 \times v^2 = 137.2$$

বা, $v = 9.89 \, ms^{-1}$

$$\therefore$$
 কৌণিক গতিশক্তি $=\frac{1}{5}mv^2=\frac{1}{5}\times 2\times (9.89)^2$ $=39.12\ Joules$

$$\therefore$$
 ভরকেন্দ্রের গতিশক্তি $=\frac{1}{2}mv^2=\frac{1}{2}\times 2\times (9.899)^2$
 $=98\,I$

একটি চাকার ভর 6 kg এবং চক্রগতির ব্যামার্ষ 40 cm। চাকাটি প্রতি মিনিটে 300 বার ঘুরে। এর জড়তার ভ্রামক এবং ঘূর্ণন গতিশক্তি বের কর।

মমাধান :

দেওয়া আছে, চাকার ভর, M=6~kg

চক্রগতির ব্যাসার্ধ $K=40\ cm=0.4\ m$

চাকার কৌণিক বেগ,
$$\omega = \frac{300 \times 2\pi}{60} \ rad \ s^{-1} = 31.4 \ rad \ s^{-1}$$

বের করতে হবে, জড়তার ভ্রামক I=?

আমরা জানি,
$$I = MK^2 = 6kg \times (0.4)^2$$

= 0.96 $kg m^2$

এবং
$$E = \frac{1}{2}I \omega^2$$

= $\frac{1}{2} \times 0.96 kgm^2 \times (31.4 \ rad \ s^{-1})^2$
= $473.26 \ J$

5 kg ভরের একটি দৃঢ় বস্তু ঘূর্ণন অক্ষ থেকে 1.5 m দূরে $5 rads^{-1}$ কৌণিক দ্রুতিতে ঘুরছে৷ এর জড়তার দ্রামক এবং ঘূর্ণন গতিশক্তি নির্ণয় কর৷

উত্তর: 11.25 kgm² **ও** 140.625 J

একটি 1m লম্বা লাঠি $15 ms^{-1}$ (বেগে গড়িয়ে যাচ্ছে। লাঠিটির পুরুত্ব 0.5cm হলে, মোট শক্তি কত? লাঠিটির ঘনত্ব (2000 kgm³)।

উত্তর: 6.63 J

একটি ফাঁপা গোলককে গড়িয়ে দিলে মোট শক্তি 50/ হলে কৌনিক গতিশক্তি ও রৈখিক গতিশক্তির পরিমাণ বের কর।

উত্তর: 20*J* **3** 30*J*

5~kg ভরের একটি দৃঢ় বস্কু ঘূর্ণন অক্ষ থেকে 1.5~m দূরে $5~rads^{-1}$ কৌণিক দ্রুতিতে ঘুরছে৷ এর জড়তার দ্রামক এবং ঘূর্ণন গতিশক্তি নির্ণয় কর৷

উত্তর: 11.25 kgm² **ও** 140.625 J

Type 8 – ব্যাংকিং

heta= উলম্বের সাথে কোণ কিন্তু বিমানের পাখা হলে অনুভূমিকের সাথে কোণ

•
$$\sin \theta = \frac{h}{x}$$

• $\tan \theta = \sin \theta$ [যখন θ এর মান খুব ছোট]

 $100\ m$ ব্যাস বিশিষ্ট একটি বৃত্তাকার পথে $60\ kmh^{-1}$ বেগে গাড়ি চালাতে হলে পথটিকে কত ডিগ্নি কোণে আনত রাখতে হবে?

মমাধান:

এখানে ব্যাস, = 100 m

 \therefore ব্যাসার্ধ, $r = \frac{100}{2} = 50 \ m$

বেগ,
$$v=60~kmh^{-1}=\frac{60\times1000}{3600}~ms^{-1}$$
 $=\frac{50}{3}~ms^{-1}$

আনত কোণ, $\theta = ?$

আমরা জানি,
$$\tan \theta = \frac{v^2}{rg}$$

বা,
$$\tan \theta = \frac{\left(\frac{50}{3} m s^{-1}\right)^2}{50 m \times 9.8 m s^{-2}}$$

বা,
$$\tan \theta = \frac{250}{441}$$

বা,
$$\theta = \tan^{-1}\left(\frac{250}{441}\right) = 29.55^{\circ}$$

অতএব, আনত কোণ, 29.55°

 $25.2 \ kmh^{-1}$ বেগে চলা একজন সাইকেল আরোর্হী $5 \ m$ ব্যাসার্ধের একটি বৃত্তাকার মোড় ঘুরছিল৷ কোন দুর্ঘটনা এড়াতে ভূমির সাথে কতটা হেলে তাকে চলতে হবে? [RUET: 04-05]

মমাধান:

$$\tan\theta = \frac{v^2}{rg}$$

$$\therefore \theta = \tan^{-1}\left(\frac{v^2}{rg}\right) = \tan^{-1}\left(\frac{7^2}{5 \times 9.8}\right) = 45^{\circ}$$

এখানে, θ হচ্ছে উলম্বের সাথে কোণ।

সুতরাং, ভূমির সাথে $(90-45)^\circ=45^\circ$ কোণে হেলে থাকতে হবে।

একটি রেললাইনের বাঁকের ব্যামার্ষ $250\,m$ এবং রেললাইনের পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1m। ঘন্টায় $50km^{-1}$ বেগে চলন্ত গার্ড়ীর ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং–এর জন্য বাইরের লাইনের পাতকে ভিতরের লাইনের পাত অপেক্ষা কতটুকু উঁচু করতে হবে? [CUET: '13–14, '07–08, BUTex: '11–12, RUET: '05–06]

মমাধান :

SINCE 2018

এখানে,
$$v = 50 \; kmh^{-1} = \frac{50}{3.6} \; ms^{-1} = 13.89 \; ms^{-1}$$

$$r = 250 \ m$$

$$\tan\theta = \frac{v^2}{rg} = 0.0787$$

 θ ক্ষুদ্র বলে $\tan \theta = \sin \theta$

$$\sin\theta = \frac{h}{OB} = \frac{h}{1m}$$

$$\therefore h = 0.0787 m$$

$$= 7.87 cm$$

একটি রেল লাইনের বাঁকের ব্যামার্ঘ $300\ m$ এবং ভিতরের পাত অপেক্ষা বাইরের পাত 0.03 m উঁচু৷ পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1.5 m হলে ঐ বাকে রেলগাড়ির যথোপযুক্ত বেগ কত?

মমাধান:

এখানে, বাঁকের ব্যাসার্ধ, r=300~m

অভিকর্ষজ ত্বরণ, $g=9.8\ ms^{-2}$

বেগ, v = ?

চিত্র হতে,
$$\sin \theta = \frac{0.03}{1.5}$$

বা, $\sin \theta = 0.02$

$$\theta = 1.15^{\circ}$$

এখানে, খুব ক্ষুদ্র হওয়ায়, $\sin \theta = \tan \theta = 0.02$

আমরা জানি, $\tan\theta=\frac{v^2}{rg}$ বা, $v=\sqrt{300m\times9.8~ms^{-2}\times0.02}$

বা, $v^2 = rg \tan \theta$ $\therefore v = 7.67 \, ms^{-1}$

বা,
$$v^2 = rg \tan \theta$$

SINCE 2018

 $0.03 \, m$

একটি রাস্তা $60\ m$ ব্যামার্ষে বাক নিয়েছে। $oldsymbol{2}$ স্থানে রাস্তাটি 6m চওড়া এবং এর ভিত্তরের কিনারা হতে বাইরের কিনারা 0.6m উঁচু৷ মর্বোচ্চ কত বেগে ঐ স্থানে নিরাপদ বাক নেওয়া সম্ভব? [CUET: '08-09]

মমাধান:

এখানে,
$$r=60\ m,\ h=0.6\ m$$
 এবং $x=6\ m$

$$\tan \theta = \sin \theta = \frac{h}{x}$$

আমরা জানি,
$$\tan \theta = \frac{v^2}{rg}$$

$$\therefore \frac{v^2}{rq} = \frac{h}{x}$$

$$\therefore v = \sqrt{\frac{hrg}{x}} = \sqrt{\frac{0.6 \times 60 \times 9.8}{6}} \ ms^{-1} = 7.66 \ ms^{-1}$$

দোট চলাচলের একটি রাস্তার বাঁকের ব্যাসার্ধ 1km। রাস্তাটি অনুভূমিকের সাথে 4° কোন করে ঢালু করা আছে। একটি মোটর গাড়ি নিরাপদে সর্বোচ্চ কত বেগে এই বাক অতিক্রম করতে পারে।

উত্তর: 26.18 ms⁻¹

রেললাইনের বাঁকের ব্যামার্ঘ 100m এবং ভিতরের পাত অপেক্ষা বাইরের পাত $0.1\ m$ উঁচু। পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1m হলে রেলগার্ড়ীর বেগ কত হবে?

উত্তর: 9.924 ms⁻¹

একটি রেললাইনের বাঁকের ব্যামার্ষ 200m এবং রেল লাইনের পাতদ্বয়ের মধ্যবর্তী দূরত্ব 0.5 m। ঘণ্টায় 36 km বেগে চলন্ত রেলের ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং এর জন্য বাইরের পাত ভিতরের পাতঅপেক্ষা কতটুকু উঁচু করতে হবে?

উত্তর: 0.02547m

একটি রাস্তা 0.6m প্রশস্ত এবং কোনো এক জায়গায় ইউটার্ন নিয়েছে। ইউটার্ন নেওয়া রাস্তাদ্বয়ের মধ্যবর্তী দূরত্ব 500m. কোনো গাড়ি ঐ রাস্তায় বাঁক নেওয়ার সময় গাড়ি থেকে খমে যাওয়া কোনো বস্তু ভূমিতে পড়ার সময় গাড়ি থেকে এর দূরত্ব হয় 50m। রাস্তার বাহিরের দিক ভিতরের দিক থেকে কতটুকু উঁচু হবে?

SINCE 2018

উত্তর: $\frac{\sqrt{3}}{2}$ m

100kg ভরের একটি রেলগাড়ি 600m ব্যামার্ধবিখিন্ট একটি বৃত্তাকার পথে $90kmh^{-1}$ গতিতে চলে। লাইনের দুইটি পাটির মধ্যবর্তী দূরত্ব যদি 2m হয়, তবে বাইরের পাটিটি ভেতরটি হতে কত উঁচু হলে এদের মধ্যে কোনো পার্শ্বচাপ পড়বে না?

উত্তর: 0.212m

50m ব্যামার্ধের একটি বাঁকের মুখে 60 kmh⁻¹ ক্লতিমঙ্গন্ন গাড়ি যেতে হলে রাস্তার ব্যাংকিং এর কোণ কত হওয়া প্রয়োজন?

উত্তর: 29.56°

একজন সাইকেল চালক ঘন্টায় 35.28km বেগে চলাকার্লীন 32.6m ব্যামার্ধের একটি মোড় বাঁক নেয়৷ উলম্বের সাথে তার আনত কোণের ট্যানজেন্ট বের করো৷ $[g=9.8ms^{-2}]$

মূর্চীপত্রে ফেরত

উত্তর: 0.3

5 m প্রশস্ত একটি রাস্তার একটি নির্দিষ্ট স্থানের বাঁকের বক্সতার ব্যামার্ষ 80 m। রাস্তার উভয় পাশের উচ্চতার পার্থক্য 0.4 m। বাঁক অতিক্রমের পূর্বে একটি গাড়ি 54 kmh^{-1} বেগে চলছিল।

- (গ) বাঁকের স্থানে রাস্ভার ব্যাংকিং কোণ নির্ণয় করো।
- (ঘ) উদ্দীপক অনুযায়ী গাড়িটি উক্ত বেগে নিরাপদে বাঁক নিতে পারবে কি? গাণিতিকভাবে বিস্লেষণ করো৷

500 kg ভরের একটি গাড়ি 3900 J গতিশক্তি নিয়ে রাস্তায় চলছিল। হঠাৎ গাড়িটি 120 m ব্যামার্ধের একটি বাঁকের মধ্মুর্থীন হলো। রাস্তায় কোনো ব্যাংকিং ছিল না। রাস্তার ও গাড়ির চাকার ঘর্ষণ গুণাঙ্ক 0.2

- (গ) রাস্ভার বাঁকে গাড়ির উপর ক্রিয়ার্শীল কেন্দ্রবিদ্বর্খী ত্বরণের মান নির্ণয় করো৷
- (ঘ) মর্বোচ্চ বেগ নিয়ে বাঁক অতিক্রম করতে হলে চালককে তার গাড়ির বেগে কী পরিমান পরিবর্তন করতে হবে- গাণিতিক বিস্লেষ্ণনের মাধ্যমে নির্ণয় করো৷

গ্লামের একটি মমতল রাস্ভার এক জাযগায় 3m ব্যামার্ধের একটি বাঁক রয়েছে। একজন মাইকেল আরোর্যী $20 \ kmh^{-1}$ বেগে হেলে মাইকেল চালিয়ে বাঁক অতিক্রম করল। না হেলে একজন মাইকেল ত্যারোর্যী যেন নিরাপদে বাঁক অতিক্রম করতে পারে মে ব্যাপারে বাঁকে একটি মত্রকীকরণ প্লেটে মর্বোচ্চ গতির্মীমা $6 \ kmh^{-1}$ উল্লেখ আছে। [রাস্ভার বাঁকে ব্যাংকিং করা ছিল না এবং টায়ার ও রাস্ভার স্থিতি ঘর্ষণ গুণাঙ্ক $0.1 \ agg = 10ms^{-2}$]

- (গ) মাইকেল আরোর্য় কত কোণে হেলে মাইকেল চালিয়ে বাঁক অতিক্রম করেছিল? নির্ণয় কর৷
- (ঘ) মতর্কীকরণ প্লেটে উল্লিখিত গতির্মী**দার যথার্থতা যাচাই কর**।

একটি ভারি চাকার ভর 40~kg এবং জড়তার দ্রামক $4000~kgm^2$ । চাকাটি প্রতি মিনিটে 100 বার ঘুরছে। রহমান মাহেব চাকাটিকে 2 মিনিটে থামানোর জন্য 300~Nm বাধাদানকারী টক প্রয়োগ করলা।

- (গ) উর্দ্দীপকে চাকাটির ঘূর্ণন গতিশক্তি নির্ণয় কর।
- (ঘ) উদ্দীপকৈ রহমান সাহেব নির্দিষ্ট সময়ে চাকাটি থামাতে সক্ষম হবে কি না? গাণিতিক বিস্লেষণের মাধ্যমে তোমার মতামত দাও।

 $P ext{ } ext{Q}$ দুটি গোলকের ভর যথাক্রমে $0.025 \ kg$ $ext{S}$ 0.05kg। $P ext{ } ext{Q}$ গোলকদ্বয়কে 2টি পৃথক মুভার মাহায্যে (বঁধে যথাক্রমে $0.909 \ m$ $ext{S}$ $0.709 \ m$ ব্যামার্থের বৃত্তাকার পথে আনুভূমিকভাবে মিনিটে 30 বার ঘুরানো হচ্ছে। মুভাটি মর্বাচ্চ $0.275 \ N$ বল মহ্য করতে পারে।

- (গ) P গোলকের কৌনিক ভরবেগ কত?
- (ঘ) P ও Q গোলকের মুতার মধ্যে কোন মুতাটি ছিঁড়ে যাবে? গাণিতিভাবে বিস্লেষণপূর্বক যুক্তি দাও।

 $60~kmh^{-1}$ গতিমম্পন্ন একটি ট্রেন 328~m ব্যামার্ঘবিশিষ্ট। রেল লাইনে বাঁক নেয়ার মনয় লাইনচ্যুত হয়ে বগিমহ উল্টে যায়। দুর্ঘটনাস্থলে লাইনের পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1~m এবং ভেতরের পাত অপেক্ষা বাহিরের পাতটির উচ্চতা ছিল 7~cm

- (গ) উক্ত স্থানে রাস্ভার ব্যাংকিং কোন নির্ণয় কর।
- (ঘ) রেল দুর্ঘটনার কারণ গাণিতিকভাবে ব্যাখ্যা কর।

উপরের চিত্রের মরু ও মুষম দণ্ডের দৈর্ঘ্য AB=1m এবং ভর 2kg. দণ্ডটি তার দির্ঘ্যের মাথে লম্বভাবে গমনকার্মী PQ অক্ষের মাপেক্ষে মুষম কৌণিক বেগে ঘূর্ণায়মান।

- (গ) উদ্দীপকের দশুটির জড়তার ত্রামক নির্ণয় করা।
- (ঘ) উদ্দীপকের দশুটির ঘূর্ণন ভাক্ষ মধ্যবিন্দু । থেকে প্লান্তের A বিন্দুতে স্থানান্তর হলে চকুগতির ব্যামার্ধের কীরূপ পরিবর্তন। হবে? গাণিতিকভাবে ব্যাখ্যা কর।

একজন ব্যক্তি 300 প্লাম ভরের একটি বস্তুকে 70 cm দৈর্ঘ্যের একটি রশির এক প্লান্তে বেঁধে অনুভূমিক তলে বৃত্তাকার পথে প্লতি মিনিটে 60 বার ঘুরাচ্ছে। হঠাৎ বস্তুটির এক-ভূতীয়াংশ খুলে পড়ে গেলে তিনি তাৎক্ষণিকভাবে রশির দৈর্ঘ্য 10 cm কমিয়ে এবং প্লতি মিনিটে ঘূর্ণন সংখ্যা 10 বার বৃদ্ধি করে বস্তুর অবশিষ্টাংশকে ঘুরাতে থাকেন।

- (গ) প্রাথমিক অবস্থায় বস্তুটির কৌনিক ভরবেগ নির্ণয় কর।
- (ঘ) পরিবর্তিত অবস্থায় রিশির উপর প্রযুক্ত টানের কীরূপ পরিবর্তন করতে হবে? গাণিতিকভাবে বিস্লেষণ কর৷

 $2\ m$ প্রশস্ত এবং $200\ m$ ব্যামার্ধ বিশিষ্ট একটি ব্যাংকিং যুক্ত বাঁকা পথে একটি গাড়ি $50.4\ kmh^{-1}$ বেগে চলে নিরাপদের বাঁক নিতে পারে৷ $[g=9.8\ ms^{-2}$ এবং রাস্তার ঘর্ষণ গুণান্ধ $\mu=0.5]$

- (গ) রাম্ভার ব্যাংকিং উচ্চতা নির্ণয় কর।
- (ঘ) উদ্দীপকের রাস্তাটি ব্যাংকিংহীন হলে তখন গাড়িটি নিরাপদে বাঁক নিতে পারবে কি না? গাণিতিকভাবে যাচাই করে তোমার মতামত দাও।

৪ m প্রস্থের রাস্তা দিয়ে একটি গাড়ি যথাক্রমে $100 \ m$ ও $80 \ m$ ব্যামার্ধের দুইটি বাঁক অতিক্রম করলো। রাস্তার ভিত্তরের ও বাইরের প্লান্ডের উচ্চতার বাঁক অতিক্রম করলো। রাস্তার ভিত্তরের ও বাইরের প্লান্ডের উচ্চতার পার্থক্য $0.4 \ m$ ।

- (গ) উদ্দীপকে উল্লিখিত রাস্তার ব্যাংকিং কোন নির্ণয় করে।
- (ঘ) গাড়িটি উভয় বাঁক কি মমান বেগে অতিক্রম করতে পারবে- গাণিতিকভাবে ব্যাখ্যা করো।

 $1000\ kg$ ভরের একটি বাম $75000\ J$ গতিশক্তি নিয়ে চলার মময় $100\ m$ ব্যামার্ষ বিশিষ্ট্র একটি বাঁকের মমুর্খীন হলো৷ রাস্তার প্রস্থ $10\ m$ এবং রাস্তার প্রান্তদ্বয়ের মধ্যবর্তী উচ্চতার ব্যবধান 0.2m.

- (গ) বাসটির ভরবেগ নির্ণয় কর৷
- (ঘ) গতিবেগ না কমিয়ে বামটি নিরাপদে বাঁকটি অতিক্রম করতে পারবে কি? গাণিতিকভাবে বিস্লেষণ কর৷