

Configuration d'un routeur, adressage IP

Ahamada Mzé Andjib Abdillah

Paramèttres de transmission

Chaque fonction a des paramettres.

La communication numerique est une fonction. Elle a donc ses paramettres.

- CommunicationTéléphonique(numero-de-telephone);
- CommunicationInternet(@IP, masque, routeur);

Ces paramettres sont definis de deux façons.

- **Definition manuelle :** Administrateur réseaux
- Definition automatique : Serveur DHCP

On a donc 3 paramettres

- 1. L'adresse IP
- 2. Le masque de sous-reseau
- 3.La passerelle par defaut

On parle d'adresse IP (Internet protocol), car il s'agit du protocole qui permet d'ic entifier les machines et de router les informations sur Internet.

L'adresse IP

CHAQUE MACHINE EST IDENTIFIEE PAR UNE ADRESSE DE 4 CHIFFRES (@IP)

X.X.X.X

CHAQUE CHIFFRE EST CODE EN BINAIRE SUR SUR 8 BITS (OCTET)

192.224.240.2 = 11000000.11100000.1111000 0.00000010

ON UTILISE UNE SUITE DE DIVISION PAR DEUX OU LA TABLE SUIVANTE :

27	26	25	24	23	2 ²	2 1	20	
128	64	32	16	8	4	2	1	
1	1							192
1	1	1						224
1	1	1	1					240
							1	2

@IP = 192.224.240.2

L'adresse est donc codee sur 4 chiffres :

- 8bits x 4chifres = 1octet x 4chiffres = 4 Octets
- 8bits x 4chifres = 32 bits
- soit 2³² = 4 294 967 296 adresses possibles

On peut donc définir un peu plus de 4 milliards d'adresses ...

Ça fait beaucoup. Il faut donc classer un p'tit peu!

Nombre de machines

Indications binaire

10000000 . 00001010 . 11011000 . 001001011 : Classe B 11001001 . 11011110 . 01000011 . 011110101 : Classe C

Indications decimale

172.31.0.3 : Classe B 192.31.0.3 : Classe C

L'adresse IP a bien 4 chiffres mais ils sont repartis en deux:

- · Une partie identifie bien la machine
- L'autre partie indique dans quel reseau se trouve la machine II faut donc un separateur entre les deux partie !

C'est là qu'intervient le masque de sous reseau...

L'ensembles des adresses sont classees par categorie ou classe :

classe A 0	Н	Н	Н	0,0.0.0 - 127,255.255.254
classe B 1 0		н	Н	128 191.
claase C 1 1 0			Н	192 223.

Le premier chiffre de l'adresse indique sa classe d'appartenance

Classes d'adresses

2. Le masque de sous-reseaux

C'est quoi un masque?

C'est un séparateur entre la partie réseau et la partie machine d'une adresse IP . Il a le meme format que l'adresse IP (32 bits).

À quoi il sert?

La séparation d'un réseau en plusieurs sous-réseaux(pour limiter la congestion) c'est le masque qui détermine le nombre de machines d'un réseau

Comment l'utiliser?

Les bits à 1 représenteront la partie réseau de l'adresse. Les bits à 0, la partie machine. Par exemple pour 255.255.240.0 on peut savoir le nombre de machine ainsi:

2	25	25	24	2^{3}	22	2	2	
128	64	32	16	8	4	2	1	
1	1	1	1	1	1	1	1	255
1	1	1	1	1	1	1	1	255
1	1	1	1					240
								0

Masque = 255.255 240.0

240.0 = 11110000.00000000

nb hosts = 2^{12} - 2 = 4096 = 4094 machines possibles

nb nets = 24 = 16 sous-reseaux

Distinguer la partie hôte du masque

172 € [128 - 191] => classe B : 255.255.X.X

Station A: 172.31.0.3

Station B: 172.31.0.11

Communication possible

Pourquoi?

	Adresse IP	Numero de reseau	Numero de machine
Machine A	172.31.0.3	172.31	0.3
Machine B	172.31.0.11	172.31	0.11

Station A: 172.31.0.3

Station B: 172.32.0.11

Communication impossible

Pourquoi?

	Adresse IP	Numero de reseau	Numero de machine
Machine A	172.31.0.3	172.31	0.3
Machine B	172.32.0.11	172.32	0.11

Identifiant réseaux (les bits1 de la partie hôte)

Au premier coup d'oeil, on voit si un masque est valide ou non. Ce, parce qu' on a toujours les mêmes nombres pour les octets du masque: 128, 192, 224, 240, 248, 252, 254, 255, , et 0.

- Ainsi, un masque en 255.255.224.0 sera correct,
- alors qu'un masque en 255.255.232.0 ne le sera pas

Masque valide/invalide:Chiffres remarquables

Nombre de reseaux | nombre de machines determinent le masque

Si **nbre de sous-réseaux** connus : Ajouter des **bit1** à la partie hôte Si **nbre de machines** connus : Ajouter des **bit0** à la partie hôte

Si on decoupe notre reseau(de masque 255.255.240.0) en 8 sous reseaux; on peut determiner le nouveau masque ainsi :

- Partie Hôte du masque: classe B (R.R.H.H) => PH du masque = 224.0
- Nbre de bit à ajouter: 2^x >= nb-nets (8 sous-reseaux) => 2³ = 8

Donc on ajoute **trois** bit1 à la partie **hôte du masque**

Nouveaux masque de sous-reseau

On compare les partites hôtes (du reseau et du masque)

- On garde (tel qu'il sont) les bits correspondant aux bits l du masque
- Et onmet les autres bit à 0

Toujours dans notre réseau de masque 255.255.240.0, si une machine par exemple a pour adresse IP 150.56.188.80, on peut (en 2 etapes) determiner son adresse reseau ainsi:

Etape.1 Partie hôte de l'@IP 150.56.188.80

```
150 € [ 128 - 191 ] => classe B => Partie hôte = 188.80
```

Etape.2 @Reseau

```
Masque = 240.0 = 11110000.00000000
P.H = 188.0 = 10111100.01010000 => 10110000.00000000 = 176.0
```

@Reseau = 150.56.176.0

Adresse reséaux/Adresses de diffusion

Apres comparaison(Masque/PH)

- On garde les bits correspondants au bit1 du masque
- Et nn change les autres bits selon le cas :

Pour une @Reseau : on met les autres des bit à 0

Pour une @Broadcast: on met les autres des bit à 1

Le découpage des réseaux se fait ainsi.

Malheureusement, la séparation d'un réseau en plusieurs sous-réseaux n'a pas que des avantages. Étant donné le plus grand nombre de réseaux à router, les tables de routages deviennent compliquees.

3. Passerelle par défaut

C'est ce qui permet de relier deux réseaux différents

• Passerelle de niveau 1 : <u>répéteur</u>

• Passerelle de niveau 2 : Pont

Passerelle de niveau 3 : Routeur

Une passerelle effectue donc le <u>routage</u> des <u>paquets</u> mais , elle pe ut servir de

- Pare-feu ,
- Proxy, ...etc

Exemple de passerelle jouant le rôle de pare-feu.

Passerelle applicative (IGP, BGP, ...etc) niveau IP)

Il s'agit de routage de niveau3

Configuration d'un routeur

Objectif:

Trouver le meilleur chemin pour transmettre les donnees.

- Routage statique de base
- Routage dynamique

- Routage statique de base
- 1. Repérer les réseaux cibles
- 2. Commande:

> ip route @IP-dest masque [interface de sortie|prochain routeur]

de routage (pour chaque route trouvé par la cmd)

Dans les 2 cas, on remplit la table de routage avec les chemins trouvés

Configuration dynamique

- Actualisation des chemins de routage
- Capacité à trouver un nouveau meilleur chemin si le chemin actuel n'est plus disponible

Configuration dynamique

- Reportez l'adresse ip "WAN IP" dans le champs Gateway
- Allez dans Wireless, puis Wireless
 Security, entrez le type de cryptage et la clé secrète
- Sauvegardez puis appliquez les paramètres

Conclusion

Adressage IP

- Adressage manuel : Administrateur
- Adressage automatique:

Serveur DHCP

Configuration d'un routeur

- Configuration statique: Commande " ip route"
- ComfigurationDynamique:

Firmware

Bibliographie

- Transmission Control Protocol/ Internet Protocol Anis ROJBI
- Réseaux Télécoms Claude SERVIN
- Architecture des réseaux Danièle DROMARD
- Architecture des réseaux Bertrand Petit
- Partage TCP/IP : https://www.frameip.com
- Configuration d'un routeur : http://www.tutos.eu
- Cisco networking : https://nyuplanet.eu