

DEPARTMENT OF COMPUTER ENGINEERING

Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education
Under Autonomy - CBCGS-HME 2023
University of Mumbai

Experiment 2: Draw DFD (upto 2 levels)

<u>Learning Objective:</u> Students will able to identify the data flows, processes, source and destination for their mini-project and analyze and design the DFD up to 2 levels <u>Tools:</u> Draw.io, StarUML

Theory:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It can be manual, automated, or a combination of both.

The objective of a DFD is to show the scope and boundaries of a system as a whole. It may be used as a communication tool between a system analyst and any person who plays a part in the order that acts as a starting point for redesigning a system. The DFD is also called as a data flow graph or bubble chart.

The following observations about DFDs are essential:

- 1. All names should be unique. This makes it easier to refer to elements in the DFD.
- 2. Remember that DFD is not a flow chart. Arrows is a flow chart that represents the order of events; arrows in DFD represents flowing data. A DFD does not involve any order of events.
- 3. Suppress logical decisions. If we ever have the urge to draw a diamond-shaped box in a DFD, suppress that urge! A diamond-shaped box is used in flow charts to represents decision points with multiple exists paths of which the only one is taken. This implies an ordering of events, which makes no sense in a DFD.
- 4. Do not become bogged down with details. Defer error conditions and error handling until the end of the analysis.

Standard symbols for DFDs are derived from the electric circuit diagram analysis and are shown in fig:

Term	Notation	Remarks		
External entity	external entity	Name of the external entity is written inside the rectangle		
Process	process	Name of the process is written inside the circle		
Data store	data store	A left-right open rectangle is denoted as data store; name of the data store is written inside shape		
Data flow	data name ►	Data flow is represented by a directed arc with its data name		

DEPARTMENT OF COMPUTER ENGINEERING Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education Under Autonomy - CBCGS-HME 2023

University of Mumbai

- **Process:** Processes are represented by circle. The name of the process is written into the circle. The name of the process is usually given in such a way that represents the functionality of the process. More detailed functionalities can be shown in the next Level if it is required. Usually it is better to keep the number of processes less than 7. If we see that the number of processes becomes more than 7 then we should combine some the processes to a single one to reduce the number of processes and further decompose it to the next level.
- **External entity**: External entities only appear in context diagram. External entities are represented by a rectangle and the name of the external entity is written into the shape.
 - These send data to be processed and again receive the processed data.
- **Data store:** Data stores are represented by a left-right open rectangle. Name of the data store is written in between two horizontal lines of the open rectangle. Data stores are used as repositories from which data can be flown in or flown out to or from a process.
- **Data flow:** Data flows are shown as a directed edge between two components of a Data Flow Diagram. Data can flow from external entity to process, data store to process, in between two processes and vice-versa.

Levels in Data Flow Diagrams (DFD)

The DFD may be used to perform a system or software at any level of abstraction. Infact, DFDs may be partitioned into levels that represent increasing information flow and functional detail. Levels in DFD are numbered 0, 1, 2 or beyond. Here, we will see primarily three levels in the data flow diagram, which are: 0-level DFD, 1-level DFD, and 2-level DFD.

0-level DFD

It is also known as fundamental system model, or context diagram represents the entire software requirement as a single bubble with input and output data denoted by incoming and outgoing arrows. Then the system is decomposed and described as a DFD with multiple bubbles. Parts of the system represented by each of these bubbles are then decomposed and documented as more and more detailed DFDs. This process may be repeated at as many levels as necessary until the program at hand is well understood. It is essential to preserve the number of inputs and outputs between levels, this concept is called leveling by DeMacro. Thus, if bubble "A" has two inputs x_1 and x_2 and one output y, then the expanded DFD, that represents "A" should have exactly two external inputs and one external output as shown in fig:

Fig: Level-0 DFD.

University of Mumbai

DEPARTMENT OF COMPUTER ENGINEERING
Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education
Under Autonomy - CBCGS-HME 2023

1-level DFD

In 1-level DFD, a context diagram is decomposed into multiple bubbles/processes. In this level, we highlight the main objectives of the system and breakdown the high-level process of 0-level DFD into sub-processes.

2-Level DFD

2-level DFD goes one process deeper into parts of 1-level DFD. It can be used to project or record the specific/necessary detail about the system's functioning.

Steps in developing DFDs

- 1. List business activities to identify processes, external entities, data flows, and data stores
- 2. Create a context diagram 3. Create the next level diagram
 - 4. Create child diagrams.

Data Flow Diagram Layers

Draw data flow diagrams in several nested layers. A single process node on a high level diagram can be expanded to show a more detailed data flow diagram. Draw the context diagram first, followed by various layers of data flow diagrams.

The nesting of data flow layers

DEPARTMENT OF COMPUTER ENGINEERING
Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education
Under Autonomy - CBCGS-HME 2023 University of Mumbai

Result and Discussion:

Purpose: Provides a high-level overview of the restaurant application, focusing on the interaction between external entities (Customer) and the system.

> Key Components:

- o Customer: The external entity interacting with the system.
- o Restaurant App: The central system that handles all customer requests.

> Data Flows:

- o To App: Order Request, Reservation Request, Register/Login Request
- o From App: Order Status, Reservation Status, Register/Login Confirmation, Menu Details, Order Bill

DEPARTMENT OF COMPUTER ENGINEERING
Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education
Under Autonomy - CBCGS-HME 2023 **University of Mumbai**

Purpose: Breaks down the Restaurant App into major processes and shows how data flows between these processes and external databases.

Key Components:

- User Management: Handles registration, login, and user data, interacting with the Users DB.
- Menu Management: Fetches and provides menu details from the Menu DB.
- Order Management: Manages order requests, status updates, and interacts with the Orders DB.
- Reservation Management: Processes reservation requests and checks table availability with the Reservations DB.
- Bill Generation: Calculates and generates order bills.

Data Flows:

Users DB, Menu DB, Orders DB, Reservations DB

DEPARTMENT OF COMPUTER ENGINEERING
Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education
Under Autonomy - CBCGS-HME 2023 University of Mumbai

Purpose: Provides a detailed view of each process from Level 1, explaining specific internal operations.

Key Components:

- o Get Menu & Show Menu: Retrieves menu data from the Menu DB and displays it to the customer.
- o Get User Data & Confirm User Register/Login: Validates customer credentials with the Users DB.
- Take Order, Confirm Order, Update Order: Manages the entire order lifecycle, storing data in the Order DB.
- o Bill Generation: Generates the bill based on order details.

DEPARTMENT OF COMPUTER ENGINEERING
Choice Based Credit Grading Scheme with Holistic and Multidisciplinary Education
Under Autonomy - CBCGS-HME 2023
University of Mumbai

Confirm/Book Table & Check Table Status: Handles table reservations, checking availability in the Reservation DB.

Data Flows:

o Users DB, Menu DB, Orders DB, Reservations DB

<u>Learning Outcomes:</u> Students should have the ability to

LO1: Identify the data-flows, processes, source and destination for the project.

LO2: Analyze and design the DFD up to 2 levels

Outcomes: Upon completion of the course students will be able to prepare draw DFD (up to 2 levels)

Conclusion:

For Faculty Use

Correction	Formative	Timely completion	Attendance /	
Parameters	Assessment	of Practical [40%]	Learning	
	[40%]		Attitude [20%]	
Marks				
Obtained				