Summary

10M

Complete Data

Complete data describes data where we know the exact value of each observation and have a full dataset.

The steps to calculate the MLE of a parameter heta are:

1.
$$L(heta) = \prod_{ ext{all } i} p(x_i)$$
 (discrete) $= \prod_{ ext{all } i} f(x_i)$ (continuous)

$$l(\theta) = \ln L(\theta)$$

$$l'(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta}l(\theta)$$

$$l'(\theta) = 0$$

To estimate two parameters, take the first partial derivative of the likelihood/log-likelihood function with respect to each parameter. Then, set them both equal to zero and solve.

Incomplete Data

Left-truncation at d means the data below d was not recorded.

Right-truncation at $oldsymbol{u}$ means the data above $oldsymbol{u}$ was not recorded.

Left-censoring at $oldsymbol{d}$ means the data below $oldsymbol{d}$ is recorded as $oldsymbol{d}$.

Right-censoring at u means the data above u is recorded as u.

Case	Likelihood	
Left-truncated at $oldsymbol{d}$	$\frac{p(x)}{\Pr(X>d)}$	(discrete)
	$\frac{f(x)}{\Pr(X>d)}$	(continuous)
Right-truncated at $oldsymbol{u}$	$\frac{p(x)}{\Pr(X < u)}$	(discrete)
	$\frac{f(x)}{\Pr(X < u)}$	(continuous)
Left-censored at $oldsymbol{d}$	$\Pr(X \leq d)$	
Right-censored at $oldsymbol{u}$	$\Pr(X \geq u)$	
Grouped data on interval (a, b]	$\Pr(a < X \leq b)$	

Special Cases

Matching Moments

When we have complete data, the MLE of certain parameters can be calculated by matching the fitted moment to the sample moment.

Distribution	Shortcuts
Gamma, fixed $lpha$	$\hat{ heta} = rac{ar{x}}{lpha}$
Exponential	$\hat{ heta}=ar{x}$
Normal	$\hat{ ho}=rac{\hat{\mu}=ar{x}}{\hat{\sigma}^2=rac{\sum_{i=1}^nig(x_i-\hat{\mu}ig)^2}{n}}$
Lognormal	$\hat{\mu} = rac{\sum_{i=1}^n \ln x_i}{n} \ \hat{\sigma}^2 = rac{\sum_{i=1}^n \left(\ln x_i - \hat{\mu} ight)^2}{n}$
Poisson	$\hat{\lambda} = \bar{x}$
Binomial, fixed $m{m}$	$\hat{q}=rac{ar{x}}{m}$
Negative binomial, fixed $m{r}$	$\hat{eta} = rac{ar{x}}{r}$

Distribution	Shortcuts
Geometric	$\hat{\beta} = \bar{x}$

Uniform

$$X \sim ext{Uniform } (0, \, heta)$$

$$\hat{ heta} = \max(x_1,\,x_2,\,\ldots,\,x_n)$$

Other Shortcuts

In this table,

- *n* is the number of uncensored data points;
- c is the number of censored data points;
- $oldsymbol{\cdot}$ $oldsymbol{x_i}$ is the observed value, or the censoring point for censored data;
- d_i is the truncation point.

Distribution	Shortcut
Pareto, fixed $oldsymbol{ heta}$	$\hat{lpha} = rac{n}{\sum_{i=1}^{n+c} \left[\ln \left(x_i + heta ight) - \ln \left(d_i + heta ight) ight]}$
S-P Pareto, fixed $oldsymbol{ heta}$	$\hat{lpha} = rac{n}{\sum_{i=1}^{n+c} \left\{ \ln x_i - \ln \left[\max(heta, \ d_i) ight] ight\}}$
Exponential	$\hat{ heta} = rac{\sum_{i=1}^{n+c} \left(x_i - d_i ight)}{n}$
Inverse exponential	$\hat{ heta} = rac{n}{\sum_{i=1}^n 1/x_i}$
Weibull, fixed $ au$	$\hat{ heta} = \left(rac{\sum_{i=1}^{n+c} x_i^ au - \sum_{i=1}^{n+c} d_i^ au}{n} ight)^{1/ au}$
Beta, fixed $ heta$, $b=1$	$\hat{a} = rac{n}{n \ln heta - \sum_{i=1}^n \ln x_i}$
Beta, fixed $ heta$, $a=1$	$\hat{b} = rac{n}{n \ln heta - \sum_{i=1}^n \ln \left(heta - x_i ight)}$

Distribution	Shortcut
Uniform $[0, heta]$, grouped data	$\hat{ heta}=c_j\left(rac{n}{n-n_j} ight)$ n : total number of observations n_j : number of data points in the last interval $[c_j,\infty)$

From the table, the following shortcuts can be applied only when complete data is available:

- Inverse exponential
- Beta, fixed heta, b=1
- Beta, fixed θ , a=1

Also, the uniform shortcut cannot be used when there is a left-truncation on the