1. (12 Punkte) Sind folgende Polynome irreduzibel in $\mathbb{Q}[x]$? Geben Sie alle Kriterien, die Sie verwenden, detailliert wieder.

a)
$$x^3 + 3x^2 - 5x - 2$$

b)
$$x^{2019} + 2018x^2 + 10x + 14$$

- 2. (12 Punkte) a) Sei K ein Körper, $f \in K[x]$ irreduzibles Polynom. $\mathbb{Z}: K[x]/(f)$ ist ein Körper.
 - b) R, S kommutative Ringe mit $1, I \subset S$ ein Ideal von $S, f : R \longrightarrow S$ Morphismus. $Z_I: f^{-1}(I)$ ist Ideal von R und $f^{-1}(I)$ ist Primideal $\Leftrightarrow I$ Primideal.
- 3. (12 Punkte) $K \subset L \subset M$ Körpererweiterungen.
 - a) Definiere [L:K].
 - b) Gegeben $S \subset L$, definiere K(s).
 - c) Definiere: Was bedeutet L/K algebraisch?
 - d) Seien L/K und M/L algebraisch. \mathbb{Z} : M/K algebraisch.
- 4. (12 Punkte) Betrachte $\alpha = \sqrt{3} + \sqrt{7}$
 - a) Identifiziere die Galois-Gruppe $\operatorname{Gal} \mathbb{Q}(\alpha)/\mathbb{Q}$.
 - b) Bestimme alle Zwischenkörper $\mathbb{Q} \subsetneq K \subsetneq \mathbb{Q}(\alpha)$ und bestimme für jeden Zwischenkörper K ein Element β_K , sodass $K = \mathbb{Q}(\beta_K)$
- 5. (12 Punkte) a) Definition: normale Untergruppe
 - b) Beispiel (mit Beweis): Gruppe G und normale Untergruppe $N\subset G$, wobei $N\neq\{1\}$ und $N\neq G$.
 - c) G eine endliche Gruppe, die auf einer Menge M wirkt. Wähle $x \in M$. $\mathbb{Z}_{\mathcal{I}}: \#(G \cdot x) \mid \#G$
 - d) G eine Gruppe, Z das Zentrum von G. $Z_{Z}: G/Z$ ist zyklisch $\Rightarrow G$ abelsch.

Ergebnis:

Aufgabe:	1	2	3	4	5	Summe:
Punkte:	12	12	12	12	12	60