Introduction to Machine Learning

Evaluation: Introduction and Remarks

Learning goals

- Understand the goal of performance estimation
- Know the definition of generalization error
- Understand the difference between outer and inner loss

PERFORMANCE ESTIMATION

- After training our model, we are naturally interested in its performance.
- We recall what supervised learning is about:

$$\mathcal{I}: \mathbb{D} imes \mathbf{\Lambda} o \mathcal{H}, \quad (\mathcal{D}, oldsymbol{\lambda}) \mapsto \hat{\mathit{f}}_{\mathcal{D}, oldsymbol{\lambda}}$$

- \mathcal{I} minimizes the empirical risk resulting from L(y, f).
- This so-called inner loss, however, is only a statistical proxy to what we are really interested in: the true expected loss for new, unlabeled data.
- After all, we chose our model precisely so it would be loss-minimal on the data we trained it on, but we cannot hope for it to perform equally well on general data from \mathbb{P}_{xy} .
- → The inner loss is optimistically biased.

GENERALIZATION ERROR

- The true expected loss for a model $\hat{t}_{\mathcal{D}_n,\lambda}$, learned on $\mathcal{D}_n \sim \mathbb{P}_{xy}$, is measured w.r.t. to previously unseen data $(\mathbf{x},y) \sim \mathbb{P}_{xy}$.
- We refer to this as generalization error or outer loss:

$$\mathrm{GE}(\hat{\mathit{f}}_{\mathcal{D}_{n},\boldsymbol{\lambda}}) := \mathbb{E}_{(\boldsymbol{x},y) \sim \mathbb{P}_{xy}} \left[L\left(y,\hat{\mathit{f}}_{\mathcal{D}_{n},\boldsymbol{\lambda}}(\boldsymbol{x})\right) \right]$$

- The goal of **performance evaluation** is to measure $GE(\hat{t}_{\mathcal{D}_n,\lambda})$. \to As \mathbb{P}_{xy} is unknown to us, we can only estimate it.
- Bild (Caro)

INNER VS OUTER LOSS

- Supervised learning thus implies the following dichotomy:
 - Learning: train $\hat{f}_{\mathcal{D}_n, \lambda}$ minimizing inner loss
 - Evaluation: evaluate $\hat{f}_{\mathcal{D}_n, \lambda}$ estimating *outer* loss
- Beyond evaluating a single learner, the outer loss lends itself to comparing different types of learners, or learners with varying hyperparameter configurations λ.
- Ideally, we have inner loss = outer loss.
- This is not always possible sometimes we use inner losses that are hard to optimize or do not even specify one directly, as in:
 - Logistic regression: minimize binomial loss
 - k-NN: no explicit loss minimization
- On the other hand, there are some special metrics for evaluation, such as those derived from ROC curves.

TRAINING AND TEST DATA

- For reliable estimates of $GE(\hat{t}_{\mathcal{D}_n,\lambda})$ we need **test data** that are independent of the data we trained our model on.
- Such test sets are not always available, but we will learn about techniques of **resampling** that allow us to carve out test sets from the data at hand.

- Note that this paradigm is different from classical statistical model diagnosis where we typically do not set aside test data.
- The goodness-of-fit measures employed there are based solely on the inner loss (such as R² or information criteria).