24. Conditioning of linear systems and iterative methods

Last time

- Singular-value decomposition
- Eigen-decomposition
- Power iteration for eigenvectors

Goals for today

- Condition number for solving a linear system
- Iterative methods for solving linear systems

Sensitivity of solving linear systems

- How sensitive to perturbations is solving A**x** = **b**?
- To answer this question we need to be able to talk about the norm ("size") of vectors and of matrices

Sensitivity of solving linear systems

- How sensitive to perturbations is solving Ax = b?
- To answer this question we need to be able to talk about the norm ("size") of vectors and of matrices

For vector $\mathbf{v} \in \mathbb{R}^m$ we will use 2-norm:

$$\|\mathbf{v}\|_2 := \sqrt{\sum_{i=1}^m v_i^2}$$

Induced matrix norm

- There are various ways of measuring the size (norm) of a matrix that are useful for different purposes
- We will focus on the so-called induced matrix norm, induced from a given norm on vectors

Induced matrix norm

- There are various ways of measuring the size (norm) of a matrix that are useful for different purposes
- We will focus on the so-called induced matrix norm, induced from a given norm on vectors

- Suppose A is a square $(m \times m)$ matrix
- For each x can measure length x and of its image Ax under A
- Natural to ask how much A can stretch x

Induced matrix norm II

lacktriangle Define induced matrix norm as smallest C such that

$$\|\mathbf{A}\| \leq C \|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbb{R}^m$$

Induced matrix norm II

lacktriangle Define induced matrix norm as smallest C such that

$$\|\mathbf{A}\| \le C \|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbb{R}^m$$

Hence

$$\|\mathbf{A}\| = \sup_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|$$

- i.e. biggest stretching on unit circle
- \blacksquare So for 2-norm, $\|\mathbf{A}\|=\sigma_1$, largest singular value
 - . . .
- Note that $\|A\mathbf{x}\| \leq \|A\|\|\mathbf{x}\|$

Condition number

How sensitive is solution of the problem

solve
$$A\mathbf{x} = \mathbf{b}$$
 to perturbations of the problem?

■ I.e. perturbations in A or **b**?

Condition number

How sensitive is solution of the problem

solve
$$A\mathbf{x} = \mathbf{b}$$
 to perturbations of the problem?

■ I.e. perturbations in A or **b**?

- lacksquare Simplest case: Perturb *input* $lackbr{b}$ to $lackbr{b}+\Deltalackbr{b}$
- How much is *output* **x** perturbed?

Condition number II

We have

$$A(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{b} + \Delta \mathbf{b}$$

 \blacksquare Since $A\mathbf{x} = \mathbf{b}$, we find

$$A(\Delta \mathbf{x}) \simeq \Delta \mathbf{b}$$

Hence to first order in perturbations:

$$\Delta \mathbf{x} = \mathbf{A}^{-1}(\Delta \mathbf{b})$$

Condition number III

So relative condition number is

$$\kappa = \frac{\|\Delta \mathbf{x}\|/\|\mathbf{x}\|}{\|\Delta \mathbf{b}\|/\|\mathbf{b}\|}$$

. . .

■ Using $\mathbf{b} = A\mathbf{x}$ we get

$$= \frac{\|\mathbf{A}^{-1}\Delta\mathbf{b}\|\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|\|\Delta\mathbf{b}\|}$$

Condition number IV

Have
$$\kappa = \frac{\|\mathbf{A}^{-1}\Delta\mathbf{b}\|\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|\|\Delta\mathbf{b}\|}$$

Now use $\|A\mathbf{x}\| \le \|A\| \|\mathbf{x}\|$ to get

$$\kappa \leq \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

Condition number IV

Have
$$\kappa = \frac{\|\mathbf{A}^{-1}\Delta\mathbf{b}\|\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|\|\Delta\mathbf{b}\|}$$

Now use $\|A\mathbf{x}\| \le \|A\| \|\mathbf{x}\|$ to get

$$\kappa \leq \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

■ Define condition number of matrix A as

$$\kappa(A) := \|A\| \|A^{-1}\|$$

Residual

- Suppose we are solving A**x** = **b**
- Suppose have approximate solution $\hat{\mathbf{x}}$

Residual

- Suppose we are solving A**x** = **b**
- Suppose have approximate solution $\hat{\mathbf{x}}$
- As usual, do not know how far x is from true solution
- \blacksquare i.e. forward error $\hat{\mathbf{x}} \mathbf{x}$
- Instead, only know the residual

$$\mathbf{r} := A\hat{\mathbf{x}} - \mathbf{b}$$

Backward error

■ We see that $\hat{\mathbf{x}}$ exactly solves a perturbed problem:

$$A\hat{\mathbf{x}} = \mathbf{b} - \mathbf{r}$$

Relative error is

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} = \frac{\|\hat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$$

Backward error

■ We see that $\hat{\mathbf{x}}$ exactly solves a perturbed problem:

$$A\hat{\mathbf{x}} = \mathbf{b} - \mathbf{r}$$

Relative error is

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} = \frac{\|\hat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$$

 \blacksquare So forward error can be large even when backward error is small, if $\kappa(A)$ is large

Literative methods for solving linear systems

Iterative methods for solving linear systems

Need for iterative methods

Although we have at least two exact, finite methods for solving linear systems, it may be useful to turn to an iterative method

Need for iterative methods

- Although we have at least two exact, finite methods for solving linear systems, it may be useful to turn to an iterative method
- Can get approximate solution faster
- May not even be able to store matrix since too large, e.g. discretization of PDE
- Some iterative methods just require to be able to compute Ax . . .

- How can we turn $A\mathbf{x} = \mathbf{b}$ into an iterative method?
- Recall from start of course:

■ To do this we try to **split** A into two pieces:

$$\mathbf{A}\mathbf{x} = (\mathbf{A}_1 + \mathbf{A}_2)\mathbf{x} = \mathbf{b}$$

Hence

$$\mathsf{A}_1\mathbf{x} = \mathbf{b} - \mathsf{A}_2\mathbf{x}$$

■ To do this we try to **split** A into two pieces:

$$\mathbf{A}\mathbf{x} = (\mathbf{A}_1 + \mathbf{A}_2)\mathbf{x} = \mathbf{b}$$

Hence

$$A_1\mathbf{x} = \mathbf{b} - A_2\mathbf{x}$$

Convert into an iterative method:

$$\mathsf{A}_1\mathbf{x}_{n+1} = \mathbf{b} - \mathsf{A}_2\mathbf{x}_n$$

■ To do this we try to **split** A into two pieces:

$$\mathbf{A}\mathbf{x} = (\mathbf{A}_1 + \mathbf{A}_2)\mathbf{x} = \mathbf{b}$$

Hence

$$A_1\mathbf{x} = \mathbf{b} - A_2\mathbf{x}$$

Convert into an iterative method:

$$\mathsf{A}_1\mathbf{x}_{n+1} = \mathbf{b} - \mathsf{A}_2\mathbf{x}_n$$

Seems like harder problem than we started with!

■ To do this we try to **split** A into two pieces:

$$Ax = (A_1 + A_2)x = b$$

Hence

$$A_1 \mathbf{x} = \mathbf{b} - A_2 \mathbf{x}$$

Convert into an iterative method:

$$\mathsf{A}_1\mathbf{x}_{n+1} = \mathbf{b} - \mathsf{A}_2\mathbf{x}_n$$

- Seems like harder problem than we started with!
- But easier if choose A₁ to be easy to invert / solve

Convergence

We have

$$\mathbf{x}_{n+1} = \mathsf{A}_1^{-1}(-\mathsf{A}_2\mathbf{x}_n + b)$$

- \blacksquare Convergence depends on properties of $\mathsf{R} := \mathsf{A}_1^{-1} \mathsf{A}_2$
- Namely how much it stretches vectors

Convergence

We have

$$\mathbf{x}_{n+1} = \mathsf{A}_1^{-1}(-\mathsf{A}_2\mathbf{x}_n + b)$$

- lacksquare Convergence depends on properties of $\mathsf{R} := \mathsf{A}_1^{-1} \mathsf{A}_2$
- Namely how much it stretches vectors
- lacksquare Can show that convergence if ho(R) < 1
- Where $\rho(R)$ is **spectral radius** of R

$$\rho(\mathbf{R}) = \max_i |\lambda_i(\mathbf{R})|$$

 $\lambda_i(R)$ are eigenvalues of R

 $\hbox{\bf E.g. choose $\mathsf{A}_1:=\mathsf{D}$ and $\mathsf{A}_2:=\mathsf{A}-\mathsf{D}$ }$ where $\mathsf{D}:=\operatorname{diag}(\mathsf{A})$ is diagonal part of A

- $\hbox{\bf E.g. choose $\mathsf{A}_1:=\mathsf{D}$ and $\mathsf{A}_2:=\mathsf{A}-\mathsf{D}$ }$ where $\mathsf{D}:=\operatorname{diag}(\mathsf{A})$ is diagonal part of A
- Jacobi method

- $\hbox{\bf E.g. choose $\mathsf{A}_1:=\mathsf{D}$ and $\mathsf{A}_2:=\mathsf{A}-\mathsf{D}$ }$ where $\mathsf{D}:=\operatorname{diag}(\mathsf{A})$ is diagonal part of A
- Jacobi method

lacksquare Each iteration is $\mathcal{O}(n^2)$ steps

- E.g. choose $A_1 := D$ and $A_2 := A D$ where D := diag(A) is diagonal part of A
- Jacobi method

- lacksquare Each iteration is $\mathcal{O}(n^2)$ steps
- Only works for certain matrices A
- In particular when diagonally dominant:

$$|A_{i,i}| > \sum_{j \neq i} |A_{i,j}|$$

■ I.e. diagonal term is > sum of off-diagonals in same row

Gauss-Seidel

- Instead decompose A = L + U
- \blacksquare Same as Jacobi except uses already updated $x_i\mathbf{s};$ twice as fast

Krylov methods

■ Methods that use only Ax

Summary

- Defined induced norm for a matrix
- Condition number for solving linear system is

$$\kappa = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

Can find iterative methods for solving linear systems