УЛК 576.895.121

МИГРАЦИЯ И РАЗВИТИЕ ЛИЧИНОК HYMENOLEPIS NANA В БРЫЖЕЕЧНЫХ ЛИМФАТИЧЕСКИХ УЗЛАХ ЛАБОРАТОРНЫХ КРЫС

И. Г. Солоненко

Научно-исследовательская лаборатория экспериментально-биологических моделей АМН СССР, Московская область

Экспериментально установлены случаи миграции личинок *Hymenolepis nana* в брыжеечные лимфатические узлы и печень лабораторных нелинейных крыс. В лимфатических узлах личинки карликового цепня могут развиваться до молодых особей.

О способности личинок карликового пепня мигрировать во внутренние органы окончательного хозяина в литературе имеется ряд работ. в которых авторы описывают нахождение цистицеркоидов $H.\ nana$ в солитарных фолликулах (Котова, 1950), в брыжеечных лимфатических узлах (Гаркави, 1956; Гаркави и Глебова, 1957; Суслов, 1961; Астафьев, 1966), в печени (Mahon, 1954; Астафьев, 1966). Необходимо отметить, что объектом исследований в своих работах вышеупомянутые авторы выбирали мышь. Лишь Мехон обнаружила цистицеркоиды H. nana fraterna в печени грызуна Cryphomus darlingi. По данным Астафьева, после первичного заражения мышей яйцами *H. nana* цистицеркоиды развились в брыжеечных лимфатических узлах у 40%, а в результате спонтанной экзогенной суперинвазии — у 94%. Максимальное число цистицеркоидов, обнаруженное в брыжеечных лимфатических узлах белых мышей при спонтанной суперинвазии гименолеписами, достигало 606. В печени и на плевре диких крыс Астафьев находил белесоватые образования, напоминающие инкапсулированные цистицеркоиды Н. папа. Однако при дальнейшей гистологической обработке печени этих крыс цистицеркоиды или какие-либо отдельные элементы их им не были найдены.

В предыдущем сообщении (Солоненко, 1969) описан случай обнаружения цистицеркоидов *Н. папа* в брыжеечных лимфатических узлах экспериментально и спонтанно зараженных лабораторных крыс. В представленной работе экспериментально изучена миграция личиночных стадий карликового цепня в брыжеечные лимфатические узлы и печеньнелинейных крыс.

материал и методика

Опыты проводили в лабораторных условиях на нелинейных крысах, экспериментально зараженных яйцами H. nana. Крыс 3-недельного возраста отсаживали от самок в клетки по 5-6 штук в каждую. Для выявления возможной спонтанной инвазии фецес опытных крыс в течение 15 дней до экспериментального заражения и после него через каждые 3-4 дня проверяли на яйца гельминтов, пользуясь методом Фюллеборна. Животные получали следующую диету: автоклавированный брикет для крыс, хлеб, тщательно вымытые овощи, воду.

Материалом для заражения служили яйца, полученные из стробил карликового цепня, извлеченных из кишечника спонтанно зараженных лабораторных крыс. Стробилы цестод измельчали в ступке. Полученную водную суспензию профильтровывали через слой марли, набирали в шприц и при помощи канюли вводили крысам непосредственно в пищевод. Каждое животное получало приблизительно по 2000 зрелых яиц Н. папа. Брыжеечные лимфатические узлы и печень экспериментально зараженных крыс просматривали в препаратах, приготовленных компрессионным методом, под малым увеличением микроскопа.

РЕЗУЛЬТАТЫ ОПЫТОВ

Первичное заражение. В опыте находилось 69 крыс 35—40-дневного возраста. Начиная с 8-го и по 12-й день после заражения крыс забивали. В печени крыс личиночных стадий карликового цепня не обнаружили. При исследовании брыжеечных лимфатических узлов у 3 из 69 крыс (4.3%) было найдено по одному цистицеркоиду *Н. папа*. В тонком отделе кишечника у 64 крыс (92.8%) присутствовало большое число молодых особей карликового цепня.

Спонтанная суперинвазия. Опыты были поставлены на 168 крысах 35—40-дневного возраста. Через 13—16 дней после заражения 154 крысы начали выделять яйца карликового цепня. Крысы, у которых не обнаружено яиц данного гельминта, были изъяты из дальнейшего опыта. С момента выделения животными яиц *H. nana* появилась возможность возникновения спонтанной суперинвазии, а также внутрикишечной аутосуперинвазии. Подопытных животных забивали начиная с 18-го по 35-й день после первичного заражения. Из 154 исследованных крыс у 29 (18.8%) в мезентериальных лимфатических узлах были обнаружены цистицеркоиды *H. nana*. Наибольшее число находок приходилось на 21-24-й день после первичного заражения. Интенсивность заражения равнялась 1—18 цистицеркоидам. Они, как правило, располагались в краевых синусах, но изредка обнаруживались и в глубоких слоях лимфатического узла. При макроскопическом исследовании на поверхности пораженного брыжеечного лимфатического узла даже невооруженным глазом мы находили узелки, в которых располагались цистицеркоиды карликового цепня. В отдельных случаях на поверхности мезентериального лимфатического узла обнаруживали точечные ранки, заполненные кровью. При исследовании печени зараженных крыс в четырех случаях (2.6%) были обнаружены цистицеркоиды H. nana.

Сравнивая полученные результаты, видим, что при наступлении спонтанной суперинвазии (включая и внутрикишечную аутосуперинвазию) интенсивность поражения брыжеечных лимфатических узлов цистицеркоидами *H. папа* увеличивается. Данное явление можно расценивать как иммунологическое состояние хозяина. Очевидно, оно оказывает существенное влияние на проникновение личинок карликового цепня в мезентериальные лимфатические узлы и печень лабораторных крыс.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Анализируя данные о миграции личинок карликового цепня во внутренние органы мышей и сравнивая их с результатами собственных исследований, выполненных на крысах, видим, что интенсивность и экстенсивность поражения брыжеечных лимфатических узлов у крыс значительно меньше, чем это имеет место у мышей. Гаркави и Глебова (1957), Астафьев (1966) и другие находили в брыжеечных лимфатических узлах белых мышей личинки карликового цепня до фазы цистицеркоида. У крыс мы также обнаруживали свободные, инкапсулированные и погибшие цистицеркоиды *Н. папа* (рис. 1). Кроме этого, в двух случаях в брыжеечных лимфатических узлах крыс нами обнаружены молодые особи карликового цепня (рис. 2). Наличие их дает основание предполо-

жить, что мезентериальные лимфатические узлы являются средой, в которой возможно развитие личинок не только до стадии цистицеркоида, но и до стадии молодых особей Н. папа. Мы полагаем, что зрелые цистпцеркоиды и молодые формы карликового цепня, паразитирующие в бры-

Рис. 1. Цистицеркоид И. папа в брыжеечном лимфатическом узле экспериментально зараженной крысы. Компрессионный неокрашенный препарат.

Увел. 8×7.

Рис. 2. Молодая особь карликового цепня в брыжеечном лимфатическом узле экспериментально зараженной крысы. Компрессионный препарат.

Увел, 8×7.

жеечных лимфатических узлах, в отдельных случаях могут выходить из последних в брюшную полость. Найденные нами на поверхности брыжеечных лимфатических узлов точечные ранки, по-видимому, являются результатом выхода зрелых цистицеркоидов в брюшную полость. Однако это требует дальнейшего изучения.

выводы

1. При первичном заражении крыс яйцами *H. nana* установлена миграция личинок карликового цепня в брыжеечные лимфатические узлы в 3 случаях из 69 (4.3%).

2. При наступлении спонтанной суперинвазии миграция личиночных стадий *H. nana* в брыжеечные лимфатические узлы крыс составляла 18.8%. Максимальное число цистицеркоидов, обнаруженное в брыжеечных лимфатических узлах, равнялось 18.

3. В брыжеечных лимфатических узлах лабораторных крыс личинки карликового цепня могут развиваться до молодых форм.

4. Установлена локализация цистицеркоидов Н. папа в печени нелинейных крыс.

Литература

Астафьев Б. А. 1966. Новые данные по миграции яиц и личиночных стадий Hymenolepis nana (Siebold, 1852) у белых мышей. Мед. паразитол. и паразитарн. болезни, 2:149—153.

Астафьев Б. А. 1966. Экспериментальное изучение некоторых вопросов биоло-

Астафьев Б. А. 1966. Экспериментальное изучение некоторых вопросов опологии карликового цепня и патогенеза гименолепидоза. Канд. дисс., М. Гаркави Б. Л. 1956. Способность личинок ленточного гельминта Hymenolepis fraterna (Stiles, 1906) развиваться в мезентериальных лимфатических узлах. ДАН СССР, 3 (1): 240—241.

Гаркави Б. Л. и Глебова И. Я. 1957. Развитие цестод Hymenolepis fraterna (Stiles, 1906) и Hymenolepis nana (Siebold, 1852) в организме белых мышей. Зоол. журн., 36 (7): 986—991.

Котова З. Н. 1950. Патологические изменения при экспериментальном гименоленидозе. Мед. паразитол. и паразитарн. болезни, 19 (5): 447—454.

Солоненко И. Г. 1969. Обнаружение цистицеркоидов Hymenolepis nana в брыжеечных лимфатических узлах лабораторных крыс. Паразитол., 3 (1): 74—75.

Суслов И. М. 1961. Некоторые вопросы биологии Hymenolepis fraterna (Stiles, 1906) и иммунитета при гименолепидозе у белых мышей. Канд. дисс. Курск. Маhon J. 1954. Observations on the abnormal occurence of Hymenolepis nana fraterna cysticercoids in the liver of a rodent. Proc. Zool. Soc., London, 124 (3): 527—529.

MIGRATION AND DEVELOPMENT OF LARVAE OF HYMENOLEPIS NANA IN MESENTERIC LYMPH GLANDS OF RATS

I. G. Solonenko

SUMMARY

Experimental studies were carried out of the migration and development of larvae of *Hymenolepis nana* in mesenteric lymph glands and liver of laboratory rats after their eating of eggs of helminths. It was established that in the lymph glands larvae of *H. nana* can develop to young adults.