Package 'proBatch'

June 16, 2018

Type Package

```
Title Tools for Batch Effects Diagnostics and Correction
Version 1.1.0
Author Jelena Čuklina <chuklina.jelena@gmail.com>
Maintainer The package maintainer <chuklina.jelena@gmail.com>
Description The proBatch package contains functions for diagnosing and removing
      batch effects and other unwanted variation in high-thoughput experiment, primarily
      designed for DIA proteomics data.
      The diagnostic part of the package can be broadly divided in (1) Genome-wide
      and (2) Gene-specific functions, explained in corresponding vignettes. Since
      the diagnostic part for batch effects does require batch effect removal, here
      we provide a few convenience wrappers for common batch-effect removal approaches,
      namely, ComBat (Johnson et al. 2007 Biostatistics) and mean/median centering.
      However, proteomics data may require more complicated technical artifact
      correction approaches like non-linear fitting, which is also found in "normalization"
      section of this package.
      The approaches are described in (Čuklina et al. 2019, MCP)
License What license is it under?
URL https://github.com/jelenachuklina/proBatch
BugReports https://github.com/jelenachuklina/proBatch/issues
Depends R (>= 3.4.0),
      dplyr (>= 0.7.4),
      ggplot2
Encoding UTF-8
LazyData true
Imports Biobase,
      corrplot,
      ggfortify,
      data.table,
      lazyeval,
      lubridate,
      magrittr,
      pheatmap,
      preprocessCore,
      pvca,
      RColorBrewer,
```

2 R topics documented:

```
readr,
reshape2,
rlang,
scales,
sva,
tibble,
tidyverse (>= 1.2.1),
wesanderson,
WGCNA

Suggests knitr,
rmarkdown,
SWATH2stats

VignetteBuilder knitr

RoxygenNote 6.0.1
```

R topics documented:

boxplot_all_steps
clean_requants
color_list_to_df
convert_to_matrix
create_peptide_annotation
dates_to_posix
date_to_sample_order
define_batches_by_MS_pauses
define_batches_by_MS_pauses_within_instrument
example_peptide_annotation
example_proteome
example_sample_annotation1
generate_colors_for_numeric
get_peptide_corr_df
get_sample_corr_distrib
join_data_matrices
matrix_to_long
merge_rare_levels
normalize
plot_clustering
plot_corr_matrix
plot_heatmap
plot_iRTs
plot_pca
plot_peptides_of_one_protein
plot_peptide_correlation_distr_one_protein
plot_peptide_level
plot_protein_corrplot
plot_prot_corr_distribution
plot_pvca
plot_samples_corrplot
plot_sample_corr_distribution
plot_sample_means_or_boxplots
plot spike ins

boxplot_all_steps	3
boxplot_an_steps	5

	plot_within_prot_corr_distribution	30
	plot_with_fitting_curve	31
	proBatch	32
	quantile_normalize	33
	remove_peptides_with_missing_batch	33
	sample_annotation_to_colors	34
	sample_random_peptides	35
	summarize_peptides	35
		25
Index		37

boxplot_all_steps

Plot boxplots to compare various data normalization steps/approaches WARNING: extremely slow for big dataframes

Description

Plot boxplots to compare various data normalization steps/approaches WARNING: extremely slow for big dataframes

Usage

```
boxplot_all_steps(list_of_dfs, sample_annotation, batch_col, step = NULL)
```

Arguments

Value

ggplot object

See Also

plot_boxplot

4 clean_requants

clean_requants

Remove requanted and sparse features

Description

Cleans dataset df_long (proBatch) by removing requanted features and features not meeting user defined sparsness criterias.

Usage

```
clean_requants(df_long, sample_annotation, batch_col = "MS_batch.final",
 feature_id_col = "peptide_group_label", missing_frac_batch = 0.3,
 missing_frac_total = 0.3)
```

Arguments

df_long

data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_col and a measure_col, but usually also an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

batch_col

column in sample_annotation that should be used for batch comparison

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

missing_frac_batch

maximally tolerated fraction of missing values for a feature in a batch

missing_frac_total

maximally tolerated fraction of globally missing values for a feature

Value

df_long (proBatch) like data frame filtered as follow:

- · remove requant values
- remove features not meeting batch or global sparsness thresholds

See Also

Other dataset cleaning functions: remove_peptides_with_missing_batch, summarize_peptides

color_list_to_df 5

Description

Turn color list to df (some plotting functions require the latter)

Usage

```
color_list_to_df(color_list, sample_annotation)
```

Arguments

```
color_list list of colors
sample_annotation
```

factor-based configuration of the sample annotation

Value

a data frame representation of the input color list

convert_to_matrix Long to wide conversion

Description

Convert from a long data frame representation to a wide matrix representation

Usage

```
convert_to_matrix(df_long, feature_id_col = "peptide_group_label",
  measure_col = "Intensity", sample_id_col = "FullRunName")
```

Arguments

df_long	data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_col and a measure_col, but usually also an m_score (in OpenSWATH output result file)
feature_id_col	name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.
measure_col	if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency
sample_id_col	name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

Value

data_matrix (proBatch) like matrix (features in rows, samples in columns)

6 dates_to_posix

See Also

Other matrix manipulation functions: join_data_matrices, matrix_to_long

```
create_peptide_annotation
```

Create light-weight peptide annotation data frame for selection of illustrative proteins

Description

Create light-weight peptide annotation data frame for selection of illustrative proteins

Usage

```
create_peptide_annotation(df_long, peptide_col = "peptide_group_label",
    protein_col = c("Uniprot_ID", "Gene"))
```

Arguments

```
peptide_col column containing peptide ID
protein_col one or more columns contatining protein ID
```

See Also

plot_peptides_of_one_protein, plot_corrplot_protein, plot_within_prot_distribution

Examples

```
\donotrun{
peptide_annotation = create_peptide_annotation(example_proteome)
peptide_summary =
}
```

dates_to_posix

Convert data/time to POSIXct

Description

convert date/time column of sample_annotation to POSIX format required to keep number-like behaviour

Usage

```
dates_to_posix(sample_annotation, time_column = c("RunDate", "RunTime"),
    new_time_column = NULL, dateTimeFormat = c("%b_%d", "%H:%M:%S"))
```

date_to_sample_order 7

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

time_column

name of the column(s) where run date & time are specified. These will be used to determine the run order

new_time_column

name of the new column to which date&time will be converted to

dateTimeFormat POSIX format of the date and time. See as.POSIXct from base R for details

Value

sample annotation file with column names as 'new_time_column' with POSIX-formatted date

Description

Converts date/time columns fo sample_annotation to POSIXct format and calculates sample run rank in order column

Usage

```
date_to_sample_order(sample_annotation, time_column = c("RunDate", "RunTime"),
    new_time_column = "DateTime", dateTimeFormat = c("%b_%d",
    "%H:%M:%S"), order_col = "order", instrument_col = "instrument")
```

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

time_column

name of the column(s) where run date & time are specified. These will be used to determine the run order

new_time_column

name of the new column to which date&time will be converted to

dateTimeFormat POSIX format of the date and time. See as . POSIXct from base R for details

Value

sample annotation file with column names as 'new_time_column' with POSIX-formatted date & order_col used in some diagnostic plots (e.g. plot_iRTs, plot_sample_mean)

```
define_batches_by_MS_pauses
```

Batch by date/time and instrument

Description

Identify long stretches of time between samples on a per instrument basis and split them into batches.

Usage

```
define_batches_by_MS_pauses(sample_annotation, threshold,
  runtime_col = "RunDateTime", minimal_batch_size = 5,
  instrument_col = "instr", batch_name = "MS_batch")
```

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

threshold time difference that would mean there was an interruption

runtime_col POSIX or numeric-like column corresponding to the sample MS profile acqui-

sition timepoint

minimal_batch_size

minimal number of samples in a batch

instrument_col column specifying MS instrument used to acquired data (to account for the pres-

ence of multiple instruments in sample_annotation)

batch_name string with a self-explanatory name for the batch (e.g. 'MS_batch' for MS-

proteomics) to which batch number will be added

Value

sample_annotation data matrix with an additional column to indicate sample batching by MS run time and instrument.

Description

Identify long stretches of time between samples and split them into batches. Most users are going to want to call define_batches_by_MS_pauses, rather then this function

Usage

```
define_batches_by_MS_pauses_within_instrument(date_vector, threshold,
    minimal_batch_size = 5, batch_name = "MS_batch")
```

Arguments

date_vector POSIX or numeric-like vector corresponding to the sample MS profile acquisi-

tion timepoint

threshold time difference that would mean there was an interruption

minimal_batch_size

minimal number of samples in a batch

batch_name string with a self-explanatory name for the batch (e.g. 'MS_batch' for MS-

proteomics) to which batch number will be added

Value

vector of batches for each sample

example_peptide_annotation

Peptide annotation data

Description

This is data from Evan's aging study annotated with gene names

Usage

```
example_peptide_annotation
```

Format

A data frame with 200625 rows and 8 variables:

Peptide peptide group label ID, identical to 'peptide_group_label' in 'example_proteome'

Gene HUGO gene ID

ProteinName protein group name as specified in 'example_proteome' ... other parameters determined by 'summarize_peptides' function

example_proteome

Example protein data

Description

This is data from Evan's aging study with all iRT, spike-in peptides, few random peptides and QTL proteins for biological signal improvement demonstration

Usage

example_proteome

Format

A data frame with 200625 rows and 8 variables:

peptide_group_label peptide ID, which is regular feature level. This column is mostly used as 'feature_id_col'

RT retention time. Relevant to identify retention time related bias

Intensity peptide group intensity in given sample. Used in function as 'measure_col'

ProteinName Protein group ID, specified as N/UniProtID1|UniProtID2|..., where N is number of protein peptide group maps to. If 1/UniProtID, then this is proteotypic peptide

assay_rt retention time as in DIA library

m_score peptide group identification FDR as determined by pyProphet

FullRunName name of the file, in most functions used for 'sample_id_col' #' ...

Source

PRIDE ID will be added in future

example_sample_annotation1

Sample annotation data version 1

Description

This is data from Evan's aging study with mock instruments to show how instrument-specific functionality works

Usage

example_sample_annotation1

Format

A data frame with 375 rows and 18 variables:

FullRunName name of the file, in most functions used for 'sample_id_col'

MS_batch.final mass-spectrometry batch: 7-level factor of manually annotated batches

EarTag mouse ID, i.e. ID of the biological object

Strain mouse strain ID - biological covariate #1

Diet diet - either 'HFD' = 'High Fat Diet' or 'CD' = 'Chow Diet'. 'Mix' stands for mixture of several samples

Sex mice sex - 3-level biological covariate. Possible values - "

Age_Days mice age at sampling - numeric biological covariate

RunDate mass-spectrometry running date. In combination with 'RunTime' used for running order determination

RunTime mass-spectrometry running time. In combination with 'RunDate' used for running order determination

SacrificeDate date of mouse sacrifice - technical covariate

ProteinPrepDate date of protein preparation - technical covariate ...

```
generate_colors_for_numeric
```

Generates color list

Description

Generates a list of colors for a vector of numeric, POSIXct (i.e. the (signed) number of seconds since the beginning of 1970, or factors

Usage

```
generate_colors_for_numeric(num_col, palette_type = "brewer", i = 1,
   granularity = 10)
```

Arguments

num_col a vector of type numeric of factor to generate colors for

palette_type 'brewer' or 'viridis'

i if palette_type is 'brewer' the palette argument to brewer_pal. If palette_type

is 'viridis' the option argument to virids_pal ()

granularity the breaks to use when generating colors for num_col

Value

list, containing the following items:

- 1. 'color_vector' string-like vector of colors
- 2. 'new_annotation' factor representation of numeric vector (factor with number of levels equal to "granularity")

Description

Transform square correlation matrix into long data frame of correlations

Usage

```
get_peptide_corr_df(peptide_cor, peptide_annotation,
   protein_col = "ProteinName", feature_id_col = "peptide_group_label")
```

Arguments

feature_id_col

```
get_sample_corr_distrib
```

Calculates correlation distribution for all pairs of the replicated samples

Description

Calculates correlation distribution for all pairs of the replicated samples

Usage

```
get_sample_corr_distrib(cor_proteome, sample_annotation,
  sample_id_col = "sample_id", biospecimen_id_col = "EarTag",
  batch_col = "batch")
```

Arguments

```
cor_proteome sample correlation matrix (square)
sample_annotation
```

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

batch_col column in 'sample_annotation' that should be used for batch comparison

join_data_matrices 13

Value

dataframe with the following columns, that are suggested to use for plotting in plot_sample_corr_distribution as plot_param:

- 1. replicate
- 2. batch_the_same
- 3. batch_replicate
- 4. batches

other columns are:

- 1. sample_id_1 & sample_id_2, both generated from sample_id_col variable
- 2. correlation correlation of two corresponding samples
- 3. batch_1 & batch_2 or analogous, created the same as sample_id_1

join_data_matrices

Join data matrices

Description

Joins 2 or more data matrices

Usage

```
join_data_matrices(matrices_list, step = NULL, sample_annotation = NULL,
 feature_id_col = "peptide_group_label", measure_col = "Intensity",
  sample_id_col = "FullRunName")
```

Arguments

matrices_list list of matrices in data_matrix (proBatch) format to be joined

sten

normalization step (e.g. 'Raw' or 'Quantile_normalized' or 'qNorm_ComBat'). Useful if consecutive steps are compared in plots. Note that in plots these are usually ordered alphabetically, so it's worth naming with numbers, e.g. '1_raw', '2_quantile'

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

measure_col

if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency

sample_id_col

name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

14 matrix_to_long

Value

df_long (proBatch) like data frame with a row, having entries for:

```
1. feature_id_col (e.g. peptide name)
```

- 2. sample_id_col (e.g. filename)
- 3. measure_col (e.g. intensity/expression)
- 4. step (e.g. 'raw', 'quantile_norm')

See Also

Other matrix manipulation functions: convert_to_matrix, matrix_to_long

matrix_to_long

Wide to long conversion

Description

Convert from wide matrix to a long data frame representation

Usage

```
matrix_to_long(data_matrix, sample_annotation = NULL,
  feature_id_col = "peptide_group_label", measure_col = "Intensity",
  sample_id_col = "FullRunName", step = NA)
```

Arguments

data_matrix

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. Usually the log transformed version of the original data

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

measure_col

if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency

sample_id_col

name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

step

normalization step (e.g. 'Raw' or 'Quantile_normalized' or 'qNorm_ComBat'). Useful if consecutive steps are compared in plots. Note that in plots these are usually ordered alphabetically, so it's worth naming with numbers, e.g. '1_raw', '2_quantile'

merge_rare_levels 15

Value

```
df_long (proBatch) like data frame
```

See Also

Other matrix manipulation functions: convert_to_matrix, join_data_matrices

merge_rare_levels

Replaces rare levels with other

Description

Replaces levels with a maximal occurence of 1 with other

Usage

```
merge_rare_levels(column)
```

normalize

Data normalization and batch adjustment methods

Description

Data normalization and batch adjustment methods

Median normalization of the data (per batch median)

Median normalization of the data (global)

normalize with the custom (continuous) fit

Standardized input-output ComBat normalization ComBat allows users to adjust for batch effects in datasets where the batch covariate is known, using methodology described in Johnson et al. 2007. It uses either parametric or non-parametric empirical Bayes frameworks for adjusting data for batch effects. Users are returned an expression matrix that has been corrected for batch effects. The input data are assumed to be cleaned and normalized before batch effect removal.

Usage

```
normalize_medians_batch(data_long, sample_annotation = NULL,
    sample_id_col = "FullRunName", batch_col = "MS_batch.final",
    feature_id_col = "peptide_group_label", measure_col = "Intensity")

normalize_medians_global(data_long, sample_id_col = "FullRunName",
    measure_col = "Intensity")

normalize_custom_fit(data_matrix, sample_annotation,
    batch_col = "MS_batch.final", feature_id_col = "peptide_group_label",
    sample_id_col = "FullRunName", measure_col = "Intensity",
    sample_order_col = "order", fit_func = fit_nonlinear, ...)

correct_with_ComBat(data_matrix, sample_annotation,
    batch_col = "MS_batch.final", par.prior = TRUE)
```

plot_clustering

Arguments

sample_annotation		
	data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) biological and 3) technical covariates (batches etc)	
sample_id_col	name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)	
batch_col	column in 'sample_annotation' that should be used for batch comparison	
measure_col	if 'df_long' is among the parameters, it is the column with expression/abundance/intensity, otherwise, it is used internally for consistency	
data_matrix	features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. Usually the log transformed version of the original data	
sample_order_col		
	column, determining the order of sample MS run, used as covariate to fit the non-linear fit	
fit_func	function to fit the (non)-linear trend	
	other parameters, usually those of the 'fit_func'	
par.prior		
return_long	whether the result should be the "long" data frame (as 'df_long') or "wide" (as 'data_matrix')	

Value

'data_matrix'-size data matrix with batch-effect corrected by 'ComBat'

See Also

fit_nonlinear

plot_clustering

cluster the data matrix to visually inspect which confounder dominates

Description

cluster the data matrix to visually inspect which confounder dominates

Usage

```
plot_clustering(data_matrix, color_df, distance = "euclidean",
   agglomeration = "complete", label_samples = T, label_font = 0.2,
   plot_title = NULL, ...)
```

plot_corr_matrix 17

Arguments

data_matrix features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data color_df data frame of colors, as created by 'sample_annotation_to_colors' distance distance metric used for clustering agglomeration agglomeration methods as used by 'hclust' label_samples if TRUE sample IDs (column names of data_matrix) will be printed label_font size of the font. Is active if label_samples is TRUE, ignored otherwise Title of the plot (usually, processing step + representation level (fragments, tranplot_title sitions, proteins)) other parameters of 'plotDendroAndColors' from 'WGCNA' package

See Also

hclust, sample_annotation_to_colors, plotDendroAndColors

Description

Plot correlation of selected samples or peptides

Usage

```
plot_corr_matrix(corr_matrix, flavor = "corrplot", filename = NULL,
  width = NA, height = NA, unit = c("cm", "in", "mm"), plot_title = "",
   ...)
```

Arguments

corr_matrix square correlation matrix flavor either corrplot from 'corrplot' package or heatmap, as in 'pheatmap' filename path where the results are saved. If null the object is returned to the active window; otherwise, the object is save into the file. Currently only pdf and png format is supported option determining the output image width width option determining the output image width height units: 'cm', 'in' or 'mm' unit plot_title Title of the plot (usually, processing step + representation level (fragments, transitions, proteins)) parameters for the corrplot.mixed or pheatmap visualisation, for details see examples and help to corresponding functions

See Also

pheatmap, corrplot.mixed

18 plot_heatmap

plot_heatmap

Plot the heatmap of samples

Description

Plot the heatmap of samples

Usage

```
plot_heatmap(data_matrix, sample_annotation = NULL, fill_the_missing = T,
    cluster_rows = T, cluster_cols = F, annotation_color_list = NA,
    heatmap_color = colorRampPalette(rev(RColorBrewer::brewer.pal(n = 7, name =
    "RdYlBu")))(100), color_for_missing = "black", filename = NA,
    plot_title = NA, ...)
```

Arguments

data_matrix

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data

sample_annotation

data matrix with

- 1. 'sample_id_col' (this can be repeated as row names)
- 2. biological and
- 3. technical covariates (batches etc)

; each column of sample annotation will get it's own row. If 'cluster_cols = T' this will indicate, whether sample proximity is driven by one of biolical or technical factors

fill_the_missing

boolean value determining if missing values should be substituted with -1 (and colored with black)

cluster_rows

boolean value determining if rows should be clustered

cluster_cols

boolean value determining if columns should be clustered

annotation_color_list

list specifying colors for columns (samples). Best created by 'sample_annotation_to_colors'

heatmap_color

vector of colors used in heatmap (typicall a gradient)

color_for_missing

special color to make missing values. Usually black or white, depending on 'heatmap_color'

filename

filepath where to save the image

plot_title

Title of the plot (usually, processing step + representation level (fragments, tran-

sitions, proteins))

... 0

other parameters of link[pheatmap]{pheatmap}

Value

```
object returned by link[pheatmap]{pheatmap}
```

plot_iRTs 19

See Also

sample_annotation_to_colors, pheatmap

Description

Creates a iRT facetted ggplot2 plot of the value in measure_col vs order_col using plot_peptide_level. Additionally, the resulting plot can also be facetted by batch.

Usage

```
plot_iRTs(df_long, sample_annotation, order_col = NULL, irt_pattern = "iRT",
    sample_id_col = "FullRunName", batch_col = "MS_batch.final",
    measure_col = "Intensity", feature_id_col = "peptide_group_label",
    requant = NULL, plot_title = "iRT peptide profile", ...)
```

Arguments

df_long

data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_col and a measure_col, but usually also an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

order_col column in sample_annotation that determines sample order. It is used for

certain diagnostics and normalisations.

irt_pattern substring used to identify irts proteins in the column 'ProteinName'

sample_id_col name of the column in sample_annotation file, where the filenames (colnames

of the data matrix are found)

batch_col column in sample_annotation that should be used for batch comparison

measure_col if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

 ${\tt feature_id_col} \quad {\tt name} \ of \ the \ column \ with \ feature/gene/peptide/protein \ ID \ used \ in \ the \ long \ format$

representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

requant if data frame: requant values; if logical: whether to indicate requant values

(requires 'requant' or 'm_score' column in df_long)

plot_title the string indicating the source of the peptides

... additional arguments to plot_peptide_level function

Value

ggplot2 type plot of measure_col vs order_col, faceted by irt_pattern containing proteins and (optionally) by batch_col

20 plot_pca

See Also

Other feature-level diagnostic functions: plot_peptide_level, plot_peptides_of_one_protein, plot_spike_ins, plot_with_fitting_curve

plot_pca

plot PCA plot

Description

```
plot PCA plot
```

Usage

```
plot_pca(data_matrix, sample_annotation,
  feature_id_col = "peptide_group_label", color_by = "MS_batch",
 PC_to_plot = c(1, 2), fill_the_missing = 0, colors_for_factor = NULL,
  theme = "classic", plot_title = NULL)
```

Arguments

data_matrix

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data

sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) biological and 3) technical covariates (batches etc)

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

color_by

column name (as in 'sample_annotation') to color by

PC_to_plot

principal component numbers for x and y axis

fill_the_missing

boolean value determining if missing values should be substituted with -1 (and colored with black)

colors_for_factor

named vector of colors for the 'color_by' variable

theme

ggplot theme, by default 'classic'. Can be easily overriden (see examples)

plot_title

Title of the plot (usually, processing step + representation level (fragments, tran-

sitions, proteins))

Value

ggplot scatterplot colored by factor levels of column specified in 'factor_to_color'

See Also

```
autoplot.pca_common, ggplot
```

```
plot_peptides_of_one_protein

Plot peptides of one protein
```

Description

Creates a spike-in facetted ggplot2 plot of the value in measure_col vs order_col using plot_peptide_level. Additionally, the resulting plot can also be facetted by batch.

Usage

```
plot_peptides_of_one_protein(proteinName, protein_col = "ProteinName",
    df_long, sample_annotation, peptide_annotation = NULL,
    order_col = "order", sample_id_col = "FullRunName",
    batch_col = "MS_batch", measure_col = "Intensity",
    feature_id_col = "peptide_group_label", requant = NULL,
    plot_title = sprintf("Peptides of %s protein", proteinName), ...)
```

name of the protein as defined in ProteinName

Arguments

proteinName

processinance	name of the protein as defined in 11 occimum.
protein_col	column where protein names are specified
df_long	data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_col and a measure_col, but usually also an m_score (in OpenSWATH output result file)
sample_annotati	lon
	data matrix with:
	 sample_id_col (this can be repeated as row names)
	2. biological covariates
	3. technical covariates (batches etc)
order_col	column in sample_annotation that determines sample order. It is used for certain diagnostics and normalisations.
sample_id_col	name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)
batch_col	column in sample_annotation that should be used for batch comparison
measure_col	if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency
feature_id_col	name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.
requant	if data frame: requant values; if logical: whether to indicate requant values (requires 'requant' or 'm_score' column in df_long)
plot_title	the string indicating the source of the peptides
	additional arguments to plot_peptide_level function

22 plot_peptide_level

Value

ggplot2 type plot of measure_col vs order_col, faceted by spike_ins containing proteins and (optionally) by batch_col

See Also

```
Other feature-level diagnostic functions: plot_iRTs, plot_peptide_level, plot_spike_ins, plot_with_fitting_curve
```

```
plot_peptide_correlation_distr_one_protein

Plot distribution curves for each step to see if they shift by data normalization
```

Description

Plot distribution curves for each step to see if they shift by data normalization

Usage

```
plot_peptide_correlation_distr_one_protein(data_matrix_list, protein_name,
    peptide_annotation, protein_col = "ProteinName",
    feature_id_col = "peptide_group_label",
    plot_title = sprintf("Distribution of peptide correlation at different correction steps,\n
    protein_name), theme = "classic")
```

Arguments

```
protein_name name of the protein, as specified in protein_col of peptide_annotation theme
```

Description

Creates a peptide facetted ggplot2 plot of the value in measure_col vs order_col. Additionally, the resulting plot can also be facetted by batch.

Usage

```
plot_peptide_level(pep_name, df_long, sample_annotation, order_col = NULL,
    sample_id_col = "FullRunName", batch_col = "MS_batch.final",
    measure_col = "Intensity", feature_id_col = "peptide_group_label",
    geom = c("point", "line"), color_by_batch = F, facet_by_batch = F,
    requant = NULL, plot_title = NULL, theme = "classic")
```

plot_protein_corrplot 23

Arguments

pep_name name of the peptide for diagnostic profiling

df_long data frame where each row is a single feature in a single sample. It minimally

has a sample_id_col, a feature_id_col and a measure_col, but usually also

an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

1. sample_id_col (this can be repeated as row names)

2. biological covariates

3. technical covariates (batches etc)

order_col column in sample_annotation that determines sample order. It is used for

certain diagnostics and normalisations.

sample_id_col name of the column in sample_annotation file, where the filenames (colnames

of the data matrix are found)

batch_col column in sample_annotation that should be used for batch comparison

measure_col if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format

representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

geom whether to show the feature as points and/or connect by lines

color_by_batch (logical) whether to color points by batch

facet_by_batch (logical) whether to plot each batch in its own facet

requant if data frame: requant values; if logical: whether to indicate requant values

(requires 'requant' or 'm_score' column in df_long)

plot_title the string indicating the source of the peptides

theme plot theme (default is 'classical'; other options not implemented)

Value

ggplot2 type plot of measure_col vs order_col, faceted by pep_name and (optionally) by batch_col

See Also

Other feature-level diagnostic functions: plot_iRTs, plot_peptides_of_one_protein, plot_spike_ins, plot_with_fitting_curve

plot_protein_corrplot Peptide correlation matrix (heatmap)

Description

Plots correlation plot of peptides from a single protein

Usage

```
plot_protein_corrplot(data_matrix, protein_name, peptide_annotation,
    protein_col = "ProteinName", peptide_col_name = "peptide_group_label",
    flavor = "corrplot", filename = NULL, width = NA, height = NA,
    unit = c("cm", "in", "mm"), plot_title = "peptide correlation matrix",
    ...)
```

Arguments

data_matrix features (in rows) vs samples (in columns) matrix, with feature IDs in rownames

and file/sample names as colnames. Usually the log transformed version of the

original data

protein_name the name of the protein

peptide_annotation

df with peptides and their corresponding proteins

peptide_col_name

the column name in peptide_annotation with peptide names

flavor either corrplot from 'corrplot' package or heatmap, as in 'pheatmap'

filename path where the results are saved. If null the object is returned to the active

window; otherwise, the object is save into the file. Currently only pdf and png

format is supported

width option determining the output image width height option determining the output image width

unit units: 'cm', 'in' or 'mm'
plot_title The title of the plot

... parameters for the corrplot visualisation

Examples

```
plot_prot_corr_distribution
```

Plot distribution of peptide correlations within one protein and between proteins

Description

Plot distribution of peptide correlations within one protein and between proteins

plot_pvca 25

Usage

```
plot_prot_corr_distribution(data_matrix, peptide_annotation,
    protein_col = "ProteinName", feature_id_col = "peptide_group_label",
    plot_title = "Distribution of peptide correlation", theme = "classic")
```

Arguments

theme

plot_pvca

Plot variance distribution by variable

Description

Plot variance distribution by variable

Usage

```
plot_pvca(data_matrix, sample_annotation, sample_id_col = "FullRunName",
  feature_id_col = "peptide_group_label",
  technical_covariates = c("MS_batch", "instrument"),
  biological_covariates = c("cell_line", "drug_dose"), fill_the_missing = 0,
  threshold_pca = 0.6, threshold_var = 0.01, colors_for_bars = NULL,
  theme = "classic", plot_title = NULL)
```

Arguments

data_matrix features (in rows

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data

sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) biological and 3) technical covariates (batches etc)

sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

technical_covariates

vector 'sample_annotation' column names that are technical covariates

biological_covariates

vector 'sample_annotation' column names, that are biologically meaningful covariates

threshold_pca the percentile value of the minimum amount of the variabilities that the selected principal components need to explain

threshold_var the percentile value of weight each of the covariates needs to explain (the rest will be lumped together)

colors_for_bars

four-item color vector, specifying colors for the following categories: c('residual',

'biological', 'biol:techn', 'technical')

theme ggplot theme, by default 'classic'. Can be easily overriden (see examples)

plot_title Title of the plot (usually, processing step + representation level (fragments, tran-

sitions, proteins))

sample_id_col name of the column in sample_annotation file, where the filenames (colnames

of the data matrix are found)

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format

representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

Value

list of two items: plot =gg, df = pvca_res

See Also

```
sample_annotation_to_colors, ggplot
```

```
plot_samples_corrplot Sample correlation matrix (heatmap)
```

Description

Plot correlation of selected samples

Usage

```
plot_samples_corrplot(data_matrix, samples_to_plot = NULL,
  flavor = "corrplot", filename = NULL, width = NA, height = NA,
  unit = c("cm", "in", "mm"), plot_title = "Correlation matrix of samples",
  ...)
```

Arguments

data_matrix features (in rows) vs samples (in columns) matrix, with feature IDs in rownames

and file/sample names as colnames. Usually the log transformed version of the

original data

samples_to_plot

string vector of samples in data_matrix to be used in the plot

filename path where the results are saved. If null the object is returned to the active

window; otherwise, the object is save into the file. Currently only pdf and png

format is supported

width option determining the output image width height option determining the output image width

plot_title Title of the plot (usually, processing step + representation level (fragments, tran-

sitions, proteins))

... parameters for the corrplot.mixed or pheatmap visualisation, for details see

examples and help to corresponding functions

See Also

```
pheatmap, corrplot.mixed
```

Examples

```
### Example 1: Plot heatmap of pre-specified samples
#'\dontrun{specified_samples = sample_annotation %>%
filter(RunID %in% paste('Run', 110:115, sep = '')) %>%
pull(FullRunName)
plot_samples_corr_heatmap(data_matrix, sample_to_plot = specified samples,
    flavor = 'pheatmap', cluster_rows = F, cluster_cols = F)
}
### Example 2: Plot corrplot of pre-specified samples
#' #'\dontrun{specified_samples = sample_annotation %>%
filter(RunID %in% paste('Run', 110:115, sep = '')) %>%
pull(FullRunName)
plot_samples_corr_heatmap(data_matrix, sample_to_plot = specified samples,
    flavor = 'corrplot', lower = "ellipse", upper = "number",
    tl.col = "black", diag = 'l', tl.pos = "lt", number.cex=0.75, tl.cex = .75)
}
```

```
plot_sample_corr_distribution
```

Create violin plot of correlation distribution

Description

Useful to visualize within batch vs within replicate vs non-related sample correlation

Usage

```
plot_sample_corr_distribution(data_matrix, sample_annotation,
  repeated_samples = NULL, sample_id_col = "sample_id",
  batch_col = "batch", biospecimen_id_col = "EarTag",
  plot_title = "Correlation distribution", plot_param = "batch_replicate")
```

Arguments

```
repeated_samples

if 'NULL', only repeated sample correlation is plotted

sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

batch_col column in sample_annotation that should be used for batch comparison

plot_title Title of the plot (usually, processing step + representation level (fragments, transitions, proteins))

plot_param columns, defined in correlation_df, which is output of get_sample_corr_distrib, specifically, #'

1. replicate
2. batch_the_same
```

```
    batch_replicate
    batches
```

Value

ggplot type object with violin plot for each plot_param

See Also

```
get_sample_corr_distrib, ggplot
```

```
plot_sample_means_or_boxplots
```

Plot per-sample average or boxplot (distribution) vs order (if the real running order available)

Description

Plot per-sample average or boxplot (distribution) vs order (if the real running order available)

Usage

```
plot_sample_mean(data_matrix, sample_annotation = NULL,
    sample_id_col = "FullRunName", order_col = "order", batch_col = NULL,
    facet_col = "instrument", color_by_batch = F, color_scheme = "brewer",
    theme = "classic", plot_title = NULL, order_per_facet = F)

plot_boxplot(df_long, sample_annotation = NULL,
    sample_id_col = "FullRunName", measure_col = "Intensity",
    order_col = "order", batch_col = "MS_batch.final",
    facet_col = "instrument", color_by_batch = T, color_scheme = "brewer",
    theme = "classic", plot_title = NULL, order_per_facet = F)
```

Arguments

data_matrix features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data

sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) biological and 3) technical covariates (batches etc)

sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

order_col column where running order is specified.

batch_col column in 'sample_annotation' that should be used for batch comparison

facet_col recommended if more than one batch covariate is present. Faceting is most

suited to examine instruments separately

color_by_batch should the each batch be represented with its own color?

plot_spike_ins 29

color_scheme named vector, names corresponding to unique batch values as specified in 'sam-

ple_annotation'

theme ggplot theme, by default 'classic'. Can be easily overriden (see examples)

plot_title Title of the plot (usually, processing step + representation level (fragments, tran-

sitions, proteins))

order_per_facet

if order is defined ignoring facets (usually instrument), re-define order per-batch

df_long data frame where each row is a single feature in a single sample, thus it has min-

imally, 'sample_id_col', 'feature_id_col' and 'measure_col', but usually also

'm_score' (in OpenSWATH output result file)

measure_col if 'df_long' is among the parameters, it is the column with expression/abundance/intensity,

otherwise, it is used internally for consistency

Details

functions for quick visual assessment of trends associated, overall or specific covariate-associated (see 'batch_col' and 'facet_col')

Value

ggplot2 class object. Thus, all aesthetics can be overriden

See Also

ggplot

plot_spike_ins

Plot spike-in measurements

Description

Creates a spike-in facetted ggplot2 plot of the value in measure_col vs order_col using plot_peptide_level. Additionally, the resulting plot can also be facetted by batch.

Usage

```
plot_spike_ins(df_long, sample_annotation, order_col = "order",
   spike_ins = "BOVIN", sample_id_col = "FullRunName",
   batch_col = "MS_batch", measure_col = "Intensity",
   feature_id_col = "peptide_group_label", requant = NULL,
   plot_title = "Spike-in BOVINE protein peptides", ...)
```

Arguments

df_long

data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_col and a measure_col, but usually also an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

1. sample_id_col (this can be repeated as row names)

	 biological covariates technical covariates (batches etc)
order_col	column in sample_annotation that determines sample order. It is used for certain diagnostics and normalisations.
spike_ins	substring used to identify spike-in proteins in the column 'ProteinName'
sample_id_col	name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)
batch_col	column in sample_annotation that should be used for batch comparison
measure_col	if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency
feature_id_col	name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.
requant	if data frame: requant values; if logical: whether to indicate requant values (requires 'requant' or 'm_score' column in df_long)
plot_title	the string indicating the source of the peptides

Value

ggplot2 type plot of measure_col vs order_col, faceted by spike_ins containing proteins and (optionally) by batch_col

additional arguments to plot_peptide_level function

See Also

 $Other feature-level \ diagnostic \ functions: \ plot_iRTs, \ plot_peptide_level, \ plot_peptides_of_one_protein, \ plot_with_fitting_curve$

```
plot\_within\_prot\_corr\_distribution \\ Plot \ distribution \ of \ median \ correlations \ of \ peptides \ within \ same \ protein
```

Description

Plot distribution of median correlations of peptides within same protein

Usage

```
plot_within_prot_corr_distribution(data_matrix_list, peptide_annotation,
    protein_col = "ProteinName", feature_id_col = "peptide_group_label",
    plot_title = "Distribution of peptide correlation", theme = "classic")
```

Arguments

theme

```
plot_with_fitting_curve
```

Plot peptide measurements across multi-step analysis

Description

Plot Intensity of a few representative peptides for each step of the analysis including the fitting curve

Usage

```
plot_with_fitting_curve(pep_name, data_df_all_steps, sample_annotation, fit_df,
  fit_value_var = "fit", fit_step = "3_loess_fit", order_col = NULL,
  sample_id_col = "FullRunName", batch_col = "MS_batch",
  measure_col = "Intensity", feature_id_col = "peptide_group_label",
  geom = c("point", "line"), color_by_batch = F, facet_by_batch = F,
  plot_title = NULL, requant = NULL, theme = "classic")
```

Arguments

data frame, similar to df_long proBatch, where each row is a single feature in a single sample, at a certain step of the analysis (minimally raw and after linear normalization) thus it has minimally the following columns: sample_id_col, feature_id_col, measure_col, and fit_step, but usually also m_score

sample_annotation

batch_col

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

order_col column in sample_annotation that determines sample order. It is used for certain diagnostics and normalisations.

sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

column in sample_annotation that should be used for batch comparison

measure_col if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format

representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

geom for the intensity measure_col profile:

color_by_batch (logical) whether to color points by batch

plot_title the string indicating the source of the peptides

facet_by_batch (logical) whether to plot each batch in its own facet

requant if data frame: requant values; if logical: whether to indicate requant values

(requires 'requant' or 'm_score' column in df_long)

theme plot theme (default is 'classical'; other options not implemented)

proBatch proBatch

Value

ggplot-class plot with minimally two facets (before and after non-linear fit) with measure_col (Intensity) vs order_col (injection order) for selected peptides (specified in pep_name)

See Also

 $Other \ feature-level \ diagnostic \ functions: \ plot_iRTs, \ plot_peptide_level, \ plot_peptides_of_one_protein, \ plot_spike_ins$

proBatch	proBatch: A package for diagnostics and correction of batch effects,
	primarily in proteomics

Description

It adresses the following needs:

- prepare the original data (e.g. OpenSWATH output matrix and sample annotation file) for analysis. However, you might need to use 'SWATH2stats' additionally
- Diagnose batch effects, sample-wide and feature-level
- Correct for batch effects (normalize the data). Other useful package for this purpose is 'Normalyzer'.

Arguments

df_long	data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_col and a measure_col, but usually also an m_score (in OpenSWATH output result file)
data_matrix	features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. Usually the log transformed version of the original data
sample_annotat	ion
	data matrix with:
	 sample_id_col (this can be repeated as row names)
	2. biological covariates
	3. technical covariates (batches etc)
sample_id_col	name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)
batch_col	column in sample_annotation that should be used for batch comparison
order_col	column in sample_annotation that determines sample order. It is used for certain diagnostics and normalisations.
measure_col	if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency
feature_id_col	name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.
plot_title	Title of the plot (usually, processing step + representation level (fragments, transitions, proteins))
theme	ggplot theme, by default 'classic'. Can be easily overriden (see examples)

quantile_normalize 33

Details

To learn more about proBatch, start with the vignettes: 'browseVignettes(package = "proBatch")'

quantile_normalize

Quantile normalization of the data, ensuring that the row and column names are retained

Description

Quantile normalization of the data, ensuring that the row and column names are retained

Usage

```
quantile_normalize(data_matrix)
```

Arguments

data_matrix

log transformed data matrix (features in rows and samples in columns)

Value

'data_matrix'-size matrix, with columns quantile-normalized

```
{\tt remove\_peptides\_with\_missing\_batch}
```

Remove features missing in at least one batch

Description

Cleans dataset df_long (proBatch) by removing all features that are not present in every batch

Usage

```
remove_peptides_with_missing_batch(df_long, batch_col = "MS_batch.final",
    feature_id_col = "peptide_group_label")
```

Arguments

df_long data frame where each row is a single feature in a single sample. It minimally

has a sample_id_col, a feature_id_col and a measure_col, but usually also

an m_score (in OpenSWATH output result file)

batch_col column in sample_annotation that should be used for batch comparison

feature_id_col name of the column with feature/gene/peptide/protein ID used in the long format

representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

Details

useful for some downstream functions as ComBat normalization, that would not work otherwise

Value

df_long (proBatch) like data frame freed of features that were not detected in each batch

See Also

Other dataset cleaning functions: clean_requants, summarize_peptides

```
sample_annotation_to_colors
```

Generate colors for sample annotation

Description

Convert the sample annotation data frame to list of colors the list is named as columns included to use in potting functions

Usage

```
sample_annotation_to_colors(sample_annotation, columns_for_plotting = NULL,
  sample_id_col = "FullRunName", factor_columns = c("subtype",
  "caseControl"), not_factor_columns = c("RunDate", "ProteinPrepDate"),
  rare_categories_to_other = T, numerics_to_log = F,
  numeric_palette_type = "brewer", granularity = 10)
```

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

columns_for_plotting

only consider these columns from sample_annotation

sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

factor_columns of sample_annotation to be treated as factors. Note that factor and character columns are treated as factors by default.

not_factor_columns

don't treat these columns as factors. This can be used to override the default behaviour of considering factors and character columns as factors.

rare_categories_to_other

if True rare categories will be merged as 'other'

numerics_to_log

NOT IMPLEMENTED!

numeric_palette_type

palette to be used for numeric values coloring

granularity number of colors to map to the number vector (equally spaced between minimum and maximum)

Value

list of colors

```
sample_random_peptides
```

sample random peptides for diagnostics

Description

sample random peptides for diagnostics

Usage

```
sample_random_peptides(proteome, seed = 1, pep_per_group = 3,
  groups_RT = 10, groups_intensity = 5)
```

Arguments

proteome

required columns:

- 1. m_score
- 2. Intensity
- 3. peptide_group_label
- 4. RT

pep_per_group number of peptides to sample per group
groups_intensity

summarize_peptides

Summarize run features

Description

Summarizes various peptide properties on a per sample basis. By default will summarize RT, Intensity and m_score. If your feature does not have some of these set them to NULL when calling.

Usage

```
summarize_peptides(df_long, sample_id_col = "FullRunName",
  feature_id_col = "peptide_group_label", RT = "RT",
  measure_col = "Intensity", m_score = "m_score")
```

Details

summarize peptides by sample (ranking) and on the contrary, across peptide-wise across samples

36 summarize_peptides

Value

a data frame summarizing features in a dataset on a per sample basis. The following columns are returned: 'RT_mean', 'Int_mean', 'numb_requants', 'median_m_score', 'mean_m_score', 'median_good_m_score' (median of 'm_score' excluding requants)

See Also

Other dataset cleaning functions: clean_requants, remove_peptides_with_missing_batch

Index

```
*Topic datasets
                                                 pheatmap, 17, 19, 26, 27
    example_peptide_annotation, 9
                                                 plot_boxplot, 3
    example_proteome, 10
                                                 plot_boxplot
    example_sample_annotation1, 10
                                                         (plot_sample_means_or_boxplots),
as.POSIXct, 7
                                                 plot_clustering, 16
autoplot.pca_common, 20
                                                 plot_corr_matrix, 17
                                                 plot_corrplot_protein, 6
boxplot_all_steps, 3
                                                 plot_heatmap, 18
                                                 plot_iRTs, 7, 19, 22, 23, 30, 32
clean_requants, 4, 34, 36
                                                 plot_pca, 20
color_list_to_df, 5
                                                 plot_peptide_correlation_distr_one_protein,
convert_to_matrix, 5, 14, 15
correct_with_ComBat (normalize), 15
                                                 plot_peptide_level, 19-22, 22, 29, 30, 32
corrplot.mixed, 17, 26, 27
                                                 plot_peptides_of_one_protein, 6, 20, 21,
create_peptide_annotation, 6
                                                         23, 30, 32
                                                 plot_prot_corr_distribution, 24
date_to_sample_order, 7
                                                 plot_protein_corrplot, 23
dates_to_posix, 6
                                                 plot_pvca, 25
define_batches_by_MS_pauses, 8
                                                 plot_sample_corr_distribution, 13, 27
define_batches_by_MS_pauses_within_instrument_plot_sample_mean, 7
                                                 plot_sample_mean
                                                         (plot_sample_means_or_boxplots),
example_peptide_annotation, 9
example_proteome, 10
                                                 plot_sample_means_or_boxplots, 28
example_sample_annotation1, 10
                                                 plot_samples_corrplot, 26
                                                 plot_spike_ins, 20, 22, 23, 29, 32
fit_nonlinear, 16
                                                 plot_with_fitting_curve, 20, 22, 23, 30,
generate_colors_for_numeric, 11
                                                 plot_within_prot_corr_distribution, 30
get_peptide_corr_df, 12
                                                 plot_within_prot_distribution, 6
get_sample_corr_distrib, 12, 28
                                                 plotDendroAndColors, 17
ggplot, 20, 26, 28, 29
                                                 proBatch, 4, 5, 13–15, 31, 32, 33, 34
                                                 proBatch-package (proBatch), 32
hclust. 17
                                                 quantile_normalize, 33
join_data_matrices, 6, 13, 15
                                                 remove_peptides_with_missing_batch, 4,
matrix_to_long, 6, 14, 14
                                                         33, 36
merge_rare_levels, 15
                                                 sample_annotation_to_colors, 17, 19, 26,
normalize, 15
normalize_custom_fit (normalize), 15
                                                 sample_random_peptides, 35
normalize_medians_batch (normalize), 15
                                                 summarize_peptides, 4, 34, 35
normalize_medians_global (normalize), 15
```