Les indispensables en mathématiques

Loris Caruhel

22/03/2025

Table des matières

1	Les fractions	3
2	Les puissances	4
3	Les identités remarquables 3.1 Puissance 2 :	5 5
4	Les racines	6
5	Exponentielles et logarithme	7
6	Trigonométrie 6.1 Fonctions trigonométriques	8
7	Les dérivés7.1 Rappel du principe des dérivés	10 10 12
8	Les primitives usuelles	14

1 Les fractions

— Addition :
$$\boxed{\frac{a}{b} + \frac{c}{d} = \frac{a \times d + b \times c}{b \times d}}$$

— Soustraction :
$$\frac{a}{b} - \frac{c}{d} = \frac{a \times d - b \times c}{b \times d}$$

— Multiplication :
$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

— Division :
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}$$

— Simplification :
$$\frac{a \times k}{b \times k} = \frac{a}{b}$$
, $k \neq 0$

— Puissance :
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

— Inverse :
$$\frac{1}{a} = a^{-1}$$

2 Les puissances

— Produit :
$$a^n \times a^m = a^{n+m}$$

— Inverse :
$$\boxed{\frac{1}{a^n} = a^{-n}}$$

— Quotient :
$$a^n \over a^m = a^{n-m}$$

— Puissance d'un quotient :
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

— Puissance de puissance :
$$(a^n)^m = a^{n \times m}$$

— Exposants identiques :
$$a^n \times b^n = (ab)^n$$

— Exposant fractionnaire :
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

— Pour
$$n$$
 impair $(-a)^n = -a^n$

— Pour
$$n$$
 pair $(-a)^n = a^n$

$$- a^0 = 1$$

3 Les identités remarquables

3.1 Puissance 2:

$$- \left[(a+b)^2 = a^2 + 2ab + b^2 \right]$$

$$- \left[(a-b)^2 = a^2 - 2ab + b^2 \right]$$

$$- \left[(a+b)(a-b) = a^2 - b^2 \right]$$

$$- \left[a^2 + b^2 = (a+b)^2 - 2ab \right]$$

3.2 Puissance 3:

$$- \left[(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \right]$$

$$- \left[(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \right]$$

$$- \left[a^3 + b^3 = (a+b)(a^2 - ab + b^2) \right]$$

$$- \left[a^3 - b^3 = (a - b)(a^2 + ab + b^2) \right]$$

4 Les racines

— Produit :
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

— Quotient :
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

— Racine d'une puissance :
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

— Produit de racines :
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

— Racine d'un carré parfait :
$$\sqrt{a^2 = |a|}$$

— Racine carrée de zéro :
$$\sqrt{0} = 0$$

— Racine carrée d'un nombre négatif (complexe) :
$$\sqrt{-a} = i\sqrt{a}$$
 (si $a > 0$)

— Racine carrée d'une somme :
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$

— Limites :

$$-\left[\lim_{x\to 0^+} \sqrt{x} = 0\right]$$

$$- \overline{\lim_{x \to +\infty} \sqrt{x} = +\infty}$$

5 Exponentielles et logarithme

— Produit :
$$ln(ab) = ln(a) + ln(b)$$

— Division :
$$n(\frac{a}{b}) = ln(a) - ln(b)$$

— Propriété 1 :
$$\boxed{ln(a^n) = nln(a)}$$

— Propriété 2 :
$$n(\sqrt{a}) = \frac{1}{2}ln(a)$$

— Propriété 3 :
$$\boxed{ln(\frac{1}{b}) = -ln(b)}$$

— Propriété 4 :
$$ln(e^x) = x$$

— Propriété 5 :
$$e^{ln(x)} = x$$

— Limites :

$$- \int_{x \to +\infty} \lim_{x \to +\infty} e^x = +\infty$$

$$- \left[\lim_{x \to -\infty} e^x = 0 \right]$$

$$- \left[\lim_{x \to 0^+} \ln(x) = -\infty \right]$$

$$- \left[\lim_{x \to -\infty} \ln(x) = +\infty \right]$$

6 Trigonométrie

6.1 Fonctions trigonométriques

$$sin(x)$$

$$-\cos(x)$$

$$-\left|tan(x) = \frac{sin(x)}{cos(x)}\right| \quad sur \quad x \neq \frac{\pi}{2} + k\pi \quad avec \quad k \in \mathbb{Z}$$

- Réciproques :

$$- \left[arcsin(x) = y \Leftrightarrow sin(y) = x \right] \quad sur \quad x \in [-1, 1]$$

$$- \left[arccos(x) = y \Leftrightarrow cos(y) = x \right] \quad sur \quad x \in [-1, 1]$$

$$- \left[arctan(x) = y \Leftrightarrow tan(y) = x \right] \quad sur \quad x \in \mathbb{R}$$

— Hyperboliques:

$$- sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$-- \left| cosh(x) = \frac{e^x + e^{-x}}{2} \right|$$

$$- \left| tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \right|$$

— Hyperboliques réciproques :

$$- \left| arsinh(x) = \ln \left(x + \sqrt{x^2 + 1} \right) \right|$$

$$-\left[arcosh(x) = \ln\left(x + \sqrt{x^2 - 1}\right)\right] \quad sur \quad x \ge 1$$

$$- \left| \operatorname{artanh}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \right| \quad \operatorname{sur} \quad |x| < 1$$

— Complémentaires (secondaires) :

— Cotangente :
$$cot(x) = \frac{1}{tan(x)} = \frac{cos(x)}{sin(x)}$$
 $sur \quad x \neq k\pi$

— Sécante :
$$sec(x) = \frac{1}{cos(x)}$$
 $sur \quad x \neq \frac{\pi}{2} + k\pi$

— Cosécante : $csc(x) = \frac{1}{sin(x)}$

$$csc(x) = \frac{1}{sin(x)}$$

$$sur \quad x \neq k\pi$$

- Complémentaires hyperboliques :

$$- \left[coth(x) = \frac{1}{tanh(x)} = \frac{cosh(x)}{sinh(x)} \right] \quad sur \quad x \neq 0$$

$$-- sech(x) = \frac{1}{\cosh(x)}$$

$$- \left[csch(x) = \frac{1}{sinh(x)} \right] \quad sur \quad x \neq 0$$

7 Les dérivés

7.1 Rappel du principe des dérivés

La dérivée d'une fonction f(x) représente le taux de variation de cette fonction. Elle peut être dénotée f'(x) ou encore $\frac{df}{dx}$. Le calcul et l'étude de la dérivée sont des notions importantes dans l'étude des fonctions.

FIGURE 1 – Représentation d'une tangente

Le signe de la dérivée permet d'indiquer les variations de la fonction f. C'est ce qui représente la tangente à la fonction. Et la dérivée elle-même représente le coefficient directeur de la tangente à f au point.

Une dérivé est représenter par le coefficient directeur de la tangente :

Figure 2 – Représentation du coefficient directeur

Donc par déduction, c'est la limite de ce coefficient directeur vers le point $(x_0, f(x_0))$ Nous avons donc :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Une fonction peut ne pas avoir de dérivé en tout point de celle-ci.

FIGURE 3 — Déduire le signe de la fonction

Grâce à f'(x) nous pouvons voir ici que les points où elle s'annule sont les changements de variation de la fonction f(x).

7.2 Dérivés des fonctions usuelles

TABLE 1: Tableau des dérivés usuelles

Fonction f	Dérivé f'	Domaine de définition D_f
f(x) = a	f'(x) = 0	\mathbb{R}
f(x) = x	f'(x) = 1	\mathbb{R}
$f(x) = x^n$	$f'(x) = nx^{n-1}$	$\mathbb{R}, n \in \mathbb{N}^*$
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$]-\infty,0[\cup]0,+\infty[$
$f(x) = \frac{1}{x^n}$	$f'(x) = -\frac{n}{x^{n+1}}$	$]-\infty,0[\cup]0,+\infty[$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	\mathbb{R}_+
f(x) = ln(x)	$f'(x) = \frac{1}{x}$	\mathbb{R}_+^*
$f(x) = e^x$	$f'(x) = e^x$	\mathbb{R}
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	\mathbb{R}
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	\mathbb{R}
f(x) = tan(x)	$f'(x) = 1 + tan^2(x) = \frac{1}{cos^2(x)}$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$
f(x) = u	f'(x) = u'	
$f(x) = u^n$	$f'(x) = nu'u^{n-1}$	
$f(x) = \frac{1}{u}$	$f'(x) = -\frac{u'}{u^2}$	
$f(x) = \frac{1}{u^n}$	$f'(x) = -\frac{nu'}{u^{n-1}}$	
$f(x) = \sqrt{u}$	$f'(x) = \frac{u'}{2\sqrt{u}}$	
f(x) = ln(u)	$f'(x) = \frac{u'}{u}$	
$f(x) = e^u$	$f'(x) = u'e^u$	
$f(x) = \sin(u)$	f'(x) = u'cos(u)	
$f(x) = \cos(u)$	f'(x) = -u'sin(u)	
f(x) = tan(u)	$f'(x) = u'(1 + tan^2(u))$	

Fonction f	Dérivé f'	Domaine de définition D_f
f(x) = u + v	f'(x) = u' + v'	
f(x) = uv	f'(x) = u'v + uv'	
$f(x) = \frac{u}{v}$	$f'(x) = \frac{u'v - uv'}{v^2}$	
f(x) = au	f'(x) = au'	
$f(x) = (f \circ g)(x)$	$f'(x) = g'(x)(f'(x) \circ g(x))$	

8 Les primitives usuelles

Table 2: Tableau des primitives usuelles

Fonction f	Primitives F	Domaine de définition D_f
f(x) = k	F(x) = kx + C	\mathbb{R}
f(x) = x	$F(x) = \frac{x^2}{2}$	\mathbb{R}
$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1} + C$	$n \in \mathbb{Z} \backslash \{-1; 0\}$
$f(x) = a^x$	$F(x) = \frac{a^x}{\ln(a)} + C$	\mathbb{R}
$f(x) = \frac{1}{x}$	F(x) = ln(x) + C	ℝ*
$f(x) = \frac{1}{x^n}$	$F(x) = -\frac{1}{(n-1)x^{n-1}} + C$	$]-\infty,0[\cup]0,+\infty[$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x} + C$	\mathbb{R}_+
f(x) = ln(x)	F(x) = xln(x) - x + C	\mathbb{R}_+^*
$f(x) = e^x$	$F(x) = e^x + C$	\mathbb{R}_+^*
$f(x) = \sin(x)$	$F(x) = -\cos(x) + C$	\mathbb{R}
$f(x) = \cos(x)$	$F(x) = \sin(x) + C$	\mathbb{R}
f(x) = tan(x)(x)	F(x) = -ln(cos(x)) + C	$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$
$f(x) = 1 + tan^{2}(x) = \frac{1}{\cos^{2}(x)}$	F(x) = tan(x) + C	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$
$f(x) = u'u^n$	$F(x) = \frac{u^{n+1}}{n+1} + C$	$n \in \mathbb{Z} \backslash \{-1; 0\}$
$f(x) = \frac{u'}{\sqrt{u}}$	$F(x) = 2\sqrt{u} + C$	\mathbb{R}
$f(x) = \frac{u'}{u^2}$	$F(x) = -\frac{1}{u} + C$	$n \in \mathbb{N}, n \ge 2$
$f(x) = \frac{u'}{u^n}$	$F(x) = -\frac{1}{(n-1)u^{n-1}} + C$	$n \in \mathbb{N}, n \ge 2$
$f(x) = \frac{u'}{u}$	F(x) = ln(u) + C	\mathbb{R}
$f(x) = u'e^u$	$F(x) = e^u + C$	\mathbb{R}
f(x) = u'cos(u)	$F(x) = \sin(u) + C$	\mathbb{R}
f(x) = u'sin(u)	$F(x) = -\cos(u) + C$	\mathbb{R}

Fonction f	Primitives F	Domaine de définition D_f
f(x) = u'tan(u)	$F(x) = -\ln \cos(u) + C$	$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$