2 Problème

EITPE 1981

 $n\geqslant 1$ est un entier fixé. On note $(x_1,x_2,...,x_n)$ les coordonnées dans la base canonique de $x\in\mathbb{R}^n$.

 $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in M_n(\mathbb{R})$ désigne une matrice symétrique.

On note $\mathcal{C}^k(\mathbb{R}^n)$ l'ensemble des applications de classe C^k de \mathbb{R}^n dans \mathbb{R} .

 $D:\mathcal{C}^2(\mathbb{R}^n)\to\mathcal{C}^0(\mathbb{R}^n)$ désigne l'application définie par :

$$D(f) = \sum_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n} a_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j}$$

D est une application linéaire dont on notera $\mathcal N$ le noyau.

Le but de ce problème est d'étudier les applications $u:\mathbb{R}^n \to \mathbb{R}^n$ de classe C^2 qui conservent \mathcal{N} , c'est-à-dire qui vérifient : $\forall f \in \mathcal{C}^2(\mathbb{R}^n), f \in \mathcal{N} \implies f \circ u \in \mathcal{N}$.

Étant donnée $u:\mathbb{R}^n \to \mathbb{R}^n$ de classe C^1 , on note, pour tout $x \in \mathbb{R}$, $J_x(u) \in M_n(\mathbb{R})$ la matrice

$$J_x(u) = \left[\frac{\partial u_i}{\partial x_j}(x)\right]_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n}$$

Étant donnée $g \in \mathcal{C}^2(\mathbb{R}^n)$, on note, pour tout $x \in \mathbb{R}, H_x(g) \in M_n(\mathbb{R})$ la matrice

$$H_x(g) = \left[\frac{\partial^2 g}{\partial x_i \partial x_j}(x)\right]_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n}$$

2.1 Première partie

u désigne une application $\mathbb{R}^n \to \mathbb{R}^n$ de classe C^2 qui conserve \mathcal{N} . On pose $u = (u_1, u_2, ..., u_n)$ (donc $u_k \in \mathcal{C}^2(\mathbb{R}^n)$).

- 1. Montrer que chaque u_k est dans \mathcal{N} (on pourra considérer $f_k : \mathbb{R}^n \to \mathbb{R}$ définie par $f_k(x) = x_k$).
- 2. Soit $f \in \mathcal{C}^2(\mathbb{R}^n)$.
 - (a) Exprimer $\frac{\partial (f \circ u)}{\partial x_i}(x)$ en fonction des $\frac{\partial u_k}{\partial x_i}$, de u et x.
 - (b) En appliquant deux fois cette relation, montrer que, pour tous i, j vérifiant $1 \le i, j \le n$:

$$\frac{\partial^2 (f \circ u)}{\partial x_i \partial x_j}(x) = \left[\sum_{k=1}^n \sum_{l=1}^n \frac{\partial u_k}{\partial x_i}(x) \frac{\partial u_l}{\partial x_j}(x) \frac{\partial^2 f}{\partial x_k \partial x_l}(u(x)) \right] + \left[\sum_{k=1}^n \frac{\partial^2 u_k}{\partial x_i \partial x_j}(x) \frac{\partial f}{\partial x_k}(u(x)) \right]$$

- (c) Interpréter ces égalités comme une identité matricielle qui exprime $H_x(f \circ u)$ en fonction de ${}^tJ_x(u),\,H_{u(x)}(f),\,J_x(u)$ et des $\frac{\partial f}{\partial x_k}(u(x))$ et $H_x(u_k)$.
- 3. On note $S_n(\mathbb{R})$ le sous-espace de $M_n(\mathbb{R})$ formé des matrices symétriques.
 - (a) Montrer que que $(A, B) \mapsto Tr(AB)$ est un produit scalaire sur $S_n(\mathbb{R})$.
 - (b) Soient A_1 et A_2 dans $S_n(\mathbb{R})$. Montrer que si, pour tout $S \in S_n(\mathbb{R})$, $Tr(A_1S) = 0 \implies Tr(A_2S) = 0$ alors il existe $\lambda \in \mathbb{R}$ tel que $A_2 = \lambda A_1$.
- 4. Soit $f \in \mathcal{C}^2(\mathbb{R}^n)$.
 - (a) Montrer que $D(f)(x) = Tr(AH_x(f))$.
 - (b) Montrer que $D(f \circ u)(x) = Tr(A^t J_x(u) H_{u(x)}(f) J_x(u))$.
- 5. Soit $S=(S_{i,j})\in S_n(\mathbb{R})$, et $Q\in\mathcal{C}^2(\mathbb{R}^n)$ définie par : $Q(x)=\sum_{1\leqslant i\leqslant n, 1\leqslant j\leqslant n}S_{i,j}x_ix_j$. Calculer $H_x(Q)$.
- 6. Déduire de ce qui précède l'existence, pour tout $x \in \mathbb{R}$, d'un réel $\lambda(x)$ vérifiant : $J_x(u)A^tJ_x(u) = \lambda(x)A$. Montrer alors : $\forall f \in \mathcal{C}^2(\mathbb{R}^n), \ D(f \circ u)(x) = \lambda(x)D(f)(u(x))$.
- 7. Résoudre complètement le problème lorsque n=2 et $D(f)=\frac{\partial^2 f}{\partial x_1^2}$.

2.2 Seconde partie

On suppose dans cette partie que la matrice A est inversible et l'on pose $B=A^{-1}$ ($B=(b_{i,j})$). $u:\mathbb{R}^n\to\mathbb{R}^n$ désigne maintenant une application de classe C^2 telle que :

i.
$$\forall k, \ 1 \leqslant k \leqslant n, D(u_k) = 0$$

ii.
$$\forall x \in \mathbb{R}^n, \ \exists \lambda(x); \ J_x(u)A^tJ_x(u) = \lambda(x)A$$

iii.
$$\forall x \in \mathbb{R}^n, \det(J_x(u)) \neq 0$$

1. Montrer, pour chaque x, l'unicité de $\lambda(x)$. Prouver que l'application λ ainsi définie ne s'annule pas et est de classe C^1 . Établir ensuite : ${}^tJ_x(u)BJ_x(u)=\lambda(x)B$.

5

2. Montrer que pour tous i, j, k dans [1, n],

$$\sum_{p=1}^{n} \sum_{q=1}^{n} b_{p,q} \frac{\partial u_p}{\partial x_k} \frac{\partial^2 u_q}{\partial x_i \partial x_j} = \frac{1}{2} \left[\frac{\partial \lambda}{\partial x_j} b_{k,i} - \frac{\partial \lambda}{\partial x_k} b_{i,j} + \frac{\partial \lambda}{\partial x_i} b_{j,k} \right]$$

Indication : Poser $T_{i,j,k} = \sum_{p=1}^n \sum_{q=1}^n b_{p,q} \frac{\partial u_p}{\partial x_k} \frac{\partial^2 u_q}{\partial x_i \partial x_j}$ et évaluer la dérivée partielle par rapport à x_k

$$de \sum_{p=1}^{n} \sum_{q=1^{n}} b_{p,q} \frac{\partial u_{p}}{\partial x_{i}} \frac{\partial u_{q}}{\partial x_{j}}$$

3. Prouver que : $\forall k, \ 1 \leqslant k \leqslant n, \ (n-2)\frac{\partial \lambda}{\partial x_k} = 0.$

Indication: Calculer
$$\sum_{i,j} \sum_{p,q} A_{i,j} b_{p,q} \frac{\partial u_p}{\partial x_k} \frac{\partial^2 u_q}{\partial x_i \partial x_j}$$
.

- 4. On suppose $n \neq 2$.
 - (a) Montrer que λ est constante et déduire de **2.** que, pour tous $i,j,q, \frac{\partial^2 u_q}{\partial x_i \partial x_j} = 0$.
 - (b) Prouver alors que u est affine.
- 5. Donner un exemple lorsque n=2 attestant que la conclusion de **4.** n'est pas valide dans ce cas.