Entendiendo la teoría de nudos mediante la simulación y la informática gráfica.

Trabajo Fin de Grado

Cristina Zuheros Montes

Universidad de Granada. **Tutores:** Antonio Martínez López.

Antonio Martinez Lopez. Alejandro J. León Salas.

22 de diciembre de 2016

Tabla de contenidos.

- 1. Teoría de nudos.
- 2. Teoría de trenzas.
- 3. Toxtren.

Índice

Teoría de nudos.

Teoría de trenzas.

3 Toxtren.

Definición de nudo (I).

Nudo

Curva cerrada en \mathbb{R}^3 que no tiene auto-intersecciones.

Definición de nudo (I).

Nudo

Curva cerrada en \mathbb{R}^3 que no tiene auto-intersecciones.

Dos nudos son equivalentes si existe un homeomorfismo de \mathbb{R}^3 que nos lleve de un nudo al otro.

Definición de nudo (II).

Podemos representar un nudo en el plano visualizando su proyección. Obtenemos una serie de cruces.

Definición de nudo (II).

Podemos representar un nudo en el plano visualizando su proyección. Obtenemos una serie de cruces.

Un **enlace** es una o más curvas cerradas disjuntas en \mathbb{R}^3 . Cada curvas es una componente.

Historia y aplicaciones.

- Surge hace poco más de 200 años:
 Objetivo: crear tabla de nudos que reemplazaría la tabla periódica.
- Numerosas cuestiones abiertas:
 - Nudos de n-cruces.
 - Unkotting number.
 - Crossing number.
 - Equivalencia de nudos.
 - Dada una proyección, estudiar trivialidad.
- Aplicaciones en:
 - Biología: estructura ADN.
 - Criptografía: se aplica teoría de trenzas.

Composición de nudos (I).

Sean J y K proyecciones de nudos.

Suma conexa J#K

Nudo que obtenemos eliminando un arco de cada proyección y conectando los extremos finales mediante arcos sin añadir ni eliminar cruces.

Composición de nudos (II).

- Nudo primo: no puede ser expresado como la suma conexa de dos nudos (salvo factor nudo trivial).
- Nudo compuesto: no es el nudo trivial ni es un nudo primo.
- Nudo orientado: nudo que dispone de una dirección de viaje sobre él mismo. Se indica mediante flechas en la proyección.
- Nudo invertible: nudo que es equivalente a sí mismo con la orientación opuesta.

Equivalencia de nudos (I).

Teorema de Reidemeister

Sean P1 y P2 las proyecciones que representan a dos nudos K1 y K2, respectivamente. Entonces, K1 \sim K2 \leftrightarrow P1 y P2 están conectados por una secuencia finita de isotopías planas y movimientos de Reidemeister.

Equivalencia de nudos (I).

Teorema de Reidemeister

Sean P1 y P2 las proyecciones que representan a dos nudos K1 y K2, respectivamente. Entonces, K1 \sim K2 \leftrightarrow P1 y P2 están conectados por una secuencia finita de isotopías planas y movimientos de Reidemeister.

Isotopía plana de proyecciones P1 y P2:

Aplicación continua $F:\mathbb{R}^2 imes [0,1] o \mathbb{R}^2$ tal que

 $F_0(P1) = P1$, $F_1(P1) = P2$ y F_t es un homeomorfismo $\forall t$

Equivalencia de nudos (II).

• Primer Movimiento de Reidemeister.

$$| \leftrightarrow | \rightarrow | \rightarrow |$$

Equivalencia de nudos (II).

• Primer Movimiento de Reidemeister.

Segundo movimiento de Reidemeister.

Equivalencia de nudos (II).

Primer Movimiento de Reidemeister.

$$| \rightarrow | b |$$

Segundo movimiento de Reidemeister.

Tercer movimiento de Reidemeister.

Invariantes de nudos.

Invariante de nudo (o enlace)

Propiedad que no cambia cuando el nudo sufre deformaciones en el espacio.

Algunos invariantes básicos:

- Número de componentes.
- Crossing number.
- Unknotting number.
- Tricolorabilidad.
- Polinomio de Alexander.

Notación de nudos.

Notación de Dowker.

(1,-4), (3,-6) , (5,2)
$$\rightarrow$$
 -4 -6 2

Notación de Gauss.

Conexiones con teorías - Teoría de grafos.

Grafo: par (V, A) de conjuntos, junto con la aplicación

$$\gamma: A \to \{\{u,v\} / u, v \in V\}$$

De proyección a grafo.

De grafo a proyección.

Conexiones con teorías - Teoría de trenzas.

Trenza: Conjunto de n cadenas que son atadas a un tope imaginario arriba y abajo.

De trenza a nudo.

De nudo a trenza.

Teorema de Alexander.

Todo nudo puede ser representado como una trenza cerrada.

Índice

Teoría de nudos.

Teoría de trenzas.

3 Toxtren

Definición de trenza (I).

Trenza

Sea $\mathbb{D} = \{(x, y, z)/0 \le x, y, z \le 1\}.$

Situamos A_i y B_i puntos en las caras superior e inferior:

$$A_1 = (\frac{1}{2}, \frac{1}{n+1}, 1), A_2 = (\frac{1}{2}, \frac{2}{n+1}, 1), ..., A_n = (\frac{1}{2}, \frac{n}{n+1}, 1), B_1 = (\frac{1}{2}, \frac{1}{n+1}, 0), B_2 = (\frac{1}{2}, \frac{2}{n+1}, 0), ..., B_n = (\frac{1}{2}, \frac{n}{n+1}, 0).$$

Unimos cada A_i con cierto B_k con arcos poligonales simples d_i tal que:

- 0 $d_1, d_2, ..., d_n$ sean disjuntos.
- ② Los arcos d_i no pueden conectar puntos A_i o B_i entre sí.
- Al cortar por planos horizontales, cada arco toca en un sólo punto al plano.

Cadena: cada arco poligonal. Trenza: conjunto de las n-cadenas.

Definición de trenza (II).

Conjunto de todas las trenzas de n cadenas.

Equivalencia y proyección de trenzas (I).

Movimiento elemental: operación Ω que intercambia el segmento AB por los segmentos AC \cup CB (y su inversa).

Dos trenzas son equivalentes ($\beta \sim \beta'$) si existe una cadena finita de trenzas $\beta = \beta_0 \rightarrow \beta_1 \rightarrow ... \rightarrow \beta_m = \beta'$

B_n :

Conjunto de todas las trenzas de n cadenas no equivalentes entre sí.

$$B_n = \mathscr{B}_n/\sim$$

Equivalencia y proyección de trenzas (II).

Proyectando visualizaremos las cadenas como curvas poligonales simples sobre el plano-yz.

Notación de trenzas (I).

Consideramos la proyección de una trenza.

Seleccionamos los segmentos de cadenas que producen la intersección en la proyección. Supongamos que unen las posiciones posiciones i con la i+1 y las posiciones i+1 con la i. El intercambio de posiciones produce un **cruce**:

- Cruce negativo (σ_i^{-1}) : El segmento que parte de la posición i cruza por delante al segmento que inicialmente parte en la posición i+1.
- Cruce positivo (σ_i^{+1}) : El segmento que parte de la posición i cruza por detrás al segmento que inicialmente parte en la posición i+1.

Grupo no abeliano.

Sean las trenzas β , $\beta' \in \mathcal{B}_n$.

Trenza producto $\beta\beta'$: n-trenza creada uniendo los extremos finales de las cadenas de β con los extremos iniciales de β' .

Teorema

El conjunto B_n , dotado del producto de trenzas, es un grupo.

Notación de trenzas (II).

Palabra: Secuencia de cruces de la trenza.

Figura: Trenza $\sigma 3\sigma 2^{-1}\sigma 4$.

n-trenza trivial (1_n) : n-trenza que no realiza ningún cruce.

Equivalencia de trenzas.

Dos palabras serán equivalentes \leftrightarrow podemos pasar de una palabra a otra mediante un secuencia de estos tres movimientos:

Teorema.

Bajo las siguientes relaciones, se tiene la igualdad final.

$$\bullet \quad \sigma_{i+1}\sigma_i\sigma_{i+1} = \sigma_i\sigma_{i+1}\sigma_i \text{ siendo } i=2,..,n-2$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 siendo $1 \le i < j \le n-1$, $j-i \ge 2$

$$B_n = \langle \sigma 1, \sigma 2, ..., \sigma_{n-1} / \text{ las relaciones } 1 \text{ y } 2 \text{ se verifican} \rangle$$

Equivalencia de trenzas cerradas - Makov equivalentes.

Trenzas Markov-equivalentes: cierres producen el mismo enlace.

Teorema de Markov.

Dos trenzas son Markov-equivalentes ↔ podemos pasar de una trenza a otra mediante una secuencia de las tres operaciones anteriores y los movimientos de Markov (conjugación y estabilización):

Invariantes de trenzas (I).

Invariante de trenza.

Propiedad que no cambia cuando la trenza sufre deformaciones.

Algunos invariantes básicos:

- Exponente.
- Permutación.
- Polinomio de Alexander.

Invariantes de trenzas (I).

Invariante de trenza.

Propiedad que no cambia cuando la trenza sufre deformaciones.

Algunos invariantes básicos:

- Exponente.
- Permutación.
- Polinomio de Alexander.

Exponente: +1, Permutación: 1 2 4 3

Invariantes de trenzas (II) - Polinomio de Alexander.

Matriz de Burau.

Sea la trenza $\beta=\sigma_{i_1}^{e_1}\sigma_{i_2}^{e_2}...\sigma_{i_m}^{e_m}$ donde $e_i\in\{-1,1\}$, $1\leq i_1,i_2,..,i_m\leq$ n-1. Podemos definir el homomorfismo

$$\phi_n: B_n \to M(n, \mathbb{Z}[t, t^{-1}])$$

$$\phi_n(\sigma_i) = \begin{bmatrix} I_{i-1} & & & \\ & 1 - t & t & \\ & 1 & 0 & \\ & & I_{n-i-1} \end{bmatrix}$$

Teorema

Supongamos que la trenza cerrada de β genera el nudo K. Entonces $\exists k \in \mathbb{Z}$ tal que el polinomio $(\pm t^k)det[\phi_n(\beta) - I_n]_{1,1}$ es un invariante de K. (Se conoce como polinomio de Alexander, $\triangle_k(t)$).

Problema de las palabras.

Problema de las palabras del grupo de las trenzas:

Dadas dos palabras de trenzas $\beta 1, \beta 2 \in B_n$ tratamos de encontrar algún método que nos permita confirmar si son o no equivalentes.

- El problema de las palabras se puede reducir a distinguir si una palabra es equivalente o no a la palabra vacía.
- Usamos el método de Patrick Dehornoy.

Índice

Teoría de nudos.

Teoría de trenzas.

Toxtren.

Software disponible para trabajar con nudos y/o trenzas:

- braidlab
- knotilus
- braid program

Problemas: Visualización, documentación, no intuitivos...

Solución: Toxtren.

Toxtren.

- Toolbox creado en Matlab R2005a.
- Instalación muy simple mediante toxtren.mltbx.
- Diseño orientado a objetos.
- Documentación mediante help o mediante Supplemental Software.

Toxtren.

- Toolbox creado en Matlab R2005a
- Instalación muy simple mediante toxtren.mltbx.
- Diseño orientado a objetos.
- Documentación mediante help o mediante Supplemental Software.

```
--- help for trenza/dehornoy ---
dehornoy Reduccion Dehornoy de una trenza dada.
Entrada: trenza, numero de cortes, radio de la trenza y bool
para representar o no las transformaciones.
Salida: bool que indica si la trenza es trivial y reducción dehornov de la
trenza.
See also Simplifica, encuentra handle, reduccion base, transicion braids
```

>> help dehornov

Search Documentation

Ejemplo de uso de la clase trenza.

Contents

- Constructor y representar_trenza.
- get n
- aet indices
- lenath
- inver
- set n
- set indices
- perm
- pura
- exp
- matriz burau
- asignar trenza
- equivalentes
- dehornoy
- es trivial
- pote
- producto
- Constructor y representar trenza.

%Creamos una trenza y la representamos. trenza a = trenza([2 -1])trenza a.representar trenza