Physics 3

March 22, 2022

Contents

1 Granularità della carica

1

2 Radiazione di corpo nero

5

Lecture 6

 $\begin{array}{cccc} lun & 21 & mar \\ 2022 & 14:30 \end{array}$

Si vuole ottenere g(E). L'energia cinetica è $E=\frac{1}{2}mv^2$. In tre dimensioni, il numero di configurazioni possibili dipende dalla direzione e del modulo della velocità, pertanto gli stati possibili S sono proporzionali al volume della sfera $\frac{4}{3}\pi v^3$. Inoltre $\mathrm{d}S \propto 4\pi v^2\,\mathrm{d}v$. Dato che $v^2=\frac{2E}{m}$ e $2v\,\mathrm{d}v=\frac{2}{m}\,\mathrm{d}E$ si ha

$$\mathrm{d}S \propto 4\pi \sqrt{\frac{2E}{m^3}} \,\mathrm{d}E$$

Quindi, la distribuzione di particelle nei livelli energetici è

$$n(E) dE = \frac{N}{Z} A \sqrt{E} e^{-\frac{E}{k_B T}} dE$$

quest'espressione si può confrontare con l'espressione trovata dalla teoria cinetica.

1 Granularità della carica

Si vedono degli esperimenti [r] che hanno portato alla misura della carica dell'elettrone. L'evidenza della granularità della carica viene notata da Faraday mentre lavora sulla sua cella elettrolitica: egli osserva che cambiando gli elettroliti, si misura la stessa corrente. Successivamente, Thomson osserva che, ponendo un oggetto tra un anodo ed un catodo, si proietta un'ombra di tale oggetto sulla parete di fronte il catodo: questi sono i raggi catodici. [r]

Esperimento di Thomson. [immagine] Si consideri l'esperimento di Thomson. Si ha un condensatore con due piatti paralleli distanti d in cui si ha un campo elettrico. Tali piatti hanno lunghezza L ed il loro estremo è a distanza D dallo schermo.[r]

L'accelerazione verticale è

$$a_y = \frac{qE}{m}$$

mentre il campo elettrico sul condensatore è $E=\frac{V}{d}$. La legge oraria risulta essere

$$y = \frac{1}{2}a_y t^2 = \frac{1}{2}\frac{qE}{m}t^2, \quad t = \frac{x}{v_x}$$

dove t è il tempo trascorso nel condensatore. Pertanto, la massima deviazione dentro il condensatore è

$$y_1 = \frac{1}{2} \frac{qE}{m} \frac{L^2}{v_x^2}$$

Quando la particella esce dal condensatore, essa procede in modo rettilineo fino ad una quota di

$$y_2 = D \tan \theta \implies \tan \theta = d_x y(L) = \frac{qEL}{mv_x^2} \implies y_2 = \frac{qELD}{mv_x^2}$$

Pertanto, la deviazione totale è

$$y = y_1 + y_2 = \frac{1}{2} \frac{qE}{m} \frac{L^2}{v_x^2} + \frac{qELD}{mv_x^2} = \frac{qEL}{mv_x^2} \left(\frac{L}{2} + D\right)$$

Per misurare la velocità si utilizza la forza di Lorentz: si vuole bilanciare la forza di Lorentz per ricavare la velocità. Per questo si aggiunge un campo magnetico di modo che le particelle siano deviate verso il basso. Infatti

$$F_E = F_B \iff qE = qv_xB \iff v_x = \frac{E}{B}$$

Pertanto, il rapporto carica-massa è

$$\frac{q}{m} = \frac{yv_x^2}{EL(\frac{L}{2} + D)} = \frac{yE}{B^2L(\frac{L}{2} + D)} = 1.7 \times 10^{11} \,\mathrm{C\,kg^{-1}}$$

[r] [immagine] Ora si consideri un campo magnetico tra le due armature orizzontali. La forza magnetica ha il ruolo di forza centripeta

$$qv_x B = m \frac{v_x^2}{R} \implies R = \frac{mv_x}{qB}$$

Si calcola ancora la deviazione totale come deviazione all'interno delle due lastre più moto rettilineo all'esterno. Nel campo magnetico, la particella compie un arco di circonferenza con raggio R. L'equazione di tale circonferenza è

$$x^{2} + (y+R)^{2} = R^{2} \implies R = -\frac{x^{2} + y^{2}}{2y} \approx -\frac{x^{2}}{2y} \implies y = -\frac{x^{2}}{2R}$$

[r] L'approssimazione è giustificata dal fatto che la deviazione in y è molto minore della distanza percorsa in x. Pertanto

$$y = -\frac{qBx^2}{2mv_x}, \quad y_3 = -\frac{qBL^2}{2mv_x}$$

dove y_3 è la deviazione all'interno del campo magnetico. Mentre la quota percorsa all'esterno è

$$y_4 = D \tan \phi \implies \tan \phi = d_x y(L) = -\frac{qBL}{mv_x}$$

Per cui la deviazione totale è

$$y = y_3 + y_4 = -\frac{qBL}{mv_x} \left(\frac{L}{2} + D\right)$$

Da cui si ottiene

$$\frac{q}{m} = \frac{yv_x}{BL\left(\frac{L}{2} + D\right)}, \quad v_x = \frac{E}{B}$$

Effetto Zeeman. Tramite l'effetto Zeeman si determina il rapporto carica-massa attraverso la spettroscopia. [immagine] Due elettromagneti sono disposti ai lati di un gas. Zeeman osserva le righe spettrali in due direzioni per mezzo di un polarimetro ed uno spettrometro. Egli osserva due righe spettrali in posizioni $\nu_0 \pm \Delta \nu$. Esse erano polarizzate circolarmente.

In direzione ortogonale al campo magnetico, egli osserva tre righe spettrali in posizioni ν_0 e $\nu_0 \pm \Delta \nu$. La polarizzazione è lineare: verticale per quelle ai lati, orizzontale per quella centrale.

Si individua un sistema di riferimento con z parallelo al campo magnetico. Si lega la distanza in frequenza la rapporto massa-carica dell'elettrone. [r] Egli considera un moto armonico rispetto ai tre assi caratterizzato dalla stessa costante. La frequenza caratteristica dunque è

$$\nu_0 = \frac{1}{2\pi} \sqrt{\frac{b}{m}}$$

dove m è la massa della particella.

Si considerano i moti armonici uno per volta. L'oscillazione lungo z non produce nessun campo lungo la direzione di oscillazione. [r] Pertanto, si studiano i moti armonici solo lungo x ed y. Ciascun moto armonico lineare si può scomporre in due moti circolari contro-rotanti (con la stessa velocità): $x = x^+ + x^-$ e $y = y^+ + y^-$, dove la parte con + ruota in senso orario e la parte con - ruota in senso antiorario. Si ipotizza che la carica sia negativa. Pertanto, la forza di Lorentz sulla carica oraria è centrifuga, mentre sulla carica antioraria è centripeta. Quindi, si ha rispettivamente

$$m\frac{v^2}{r} = br - |q|vB, \quad m\frac{v^2}{r} = br + |q|vB$$

Si può già intuire la frequenza di rotazione. Nel caso del segno concorde, il periodo di rotazione è minore e quindi la velocità è maggiore [r].

Pertanto si ha rispettivamente $\nu' = \nu_0 - \Delta \nu < \nu_0$ e $\nu'' = \nu_0 + \Delta \nu > \nu_0$. La scomposizione vale sia per x che per y. Si considera il moto a coppie. In senso orario, $x^+ + y^+$, ci si aspetta una riga spettrale a $\nu' < \nu_0$. In senso antiorario, $x^- + y^-$, ci si aspetta una riga spettrale a $\nu'' > \nu_0$. Si osserva il moto in direzione perpendicolare al campo magnetico \vec{B} ed a z. Una particella che oscilla lungo z, non viene influenzata dal campo magnetico [r]. Si spiegano le altre righe spettrali. Una particella che oscilla lungo x non emette alcun campo elettromagnetico lungo tale direzione. Dunque, rimane solamente la direzione lungo y. [r] I due moti armonici contro-rotanti subiscono una variazione del proprio periodo di rotazione nella stessa maniera descritta quando si è osservato lungo z. [r]

Si calcola la distanza tra le righe spettrali. Si ha

$$m\frac{v_1^2}{r} = br + |q|v_1B, \quad m\frac{v_2^2}{r} = br - |q|v_2B$$

Sottraendo un'equazione all'altra si ha

$$m\frac{v_1^2 - v_2^2}{r} = |q|(v_1 + v_2)B \implies m\frac{v_1 - v_2}{r} = |q|B \implies m(\omega_1 - \omega_2) = |q|B$$

ricordando che $v = \omega r$. Si pone $\omega_1 - \omega_2 \equiv \Delta \omega$, che è la distanza tra le due frequenze laterali (e non la distanza tra quella centrale). Pertanto

$$\frac{\Delta\omega}{B} = \frac{|q|}{m} = 1.6 \times 10^{11} \,\mathrm{C\,kg^{-1}}$$

Lecture 7

 $\begin{array}{ccc} mar & 22 & mar \\ 2022 & 15:30 \end{array}$

Esperimento di Millikan. [immagine] L'apparto sperimentale è costituito da due piatti a cui viene applicata una differenza di potenziale. Vi sono presenti dei fori in cui iniettare dell'olio nebulizzato. Dal lato si fanno entrare dei raggi X e dalla parte opposte si può osservare l'apparato.

A potenziale nullo, le gocce di olio cadono in aria. I raggi X servono a ionizzare l'aria, così liberando elettroni che vanno a caricare le gocce di olio. Una volta che le gocce approcciano il fondo, si fornisce un potenziale fino a quando la goccia non si ferma e poi risale. Ripetendo molte volte l'esperimento, Millikan misura vari multipli della carica elementari che gli permettono di dedurre il valore proprio della carica elementare.

A campo nullo, la goccia di olio sferica è soggetta alla forza di gravità mg, alla spinta archimedea dovuta all'aria m'g, all'attrito viscoso $6\pi\eta rv_g$. Fornendo un potenziale, la goccia d'olio è soggetta alla forza di gravità mg, alla spinta archimedea m'g, alla forza elettrica qE ed all'attrito viscoso $4\pi\eta rv_E$. A campo acceso, la goccia risale, dunque il verso della forza di attrito viscoso è verso il basso. [r]

Pertanto, nel primo caso il bilancio delle forze a moto rettilineo uniforme (in quanto la forza viscosa aumenta fino a quando non bilancia le altre e così non si ha più accelerazione):

$$mg - m'g - 6\pi\eta r v_g = 0 \implies mg - m'g = 6\pi\eta r v_g$$

mentre nel secondo caso è

$$mg - m'g + 6\pi\eta r v_E - qE = 0 \implies 6\pi\eta r (v_g + v_E) = qE$$

Da cui si ottiene

$$q = \frac{6\pi\eta r}{E}(v_E + v_g)$$

Dato che si conosce il tratto percorso L, si può scrivere tale relazione in funzione del tempo:

$$v_E = \frac{L}{T_E}, \quad v_g = \frac{L}{T_g}$$

Pertanto

$$q = \frac{6\pi\eta rL}{E} \left(\frac{1}{T_E} + \frac{1}{T_g} \right)$$

Si ricava la carica elementare sfruttando più misure di suoi multipli.

Ogni discesa, a prescindere dal numero di elettroni passati sulla goccia, è identica, dunque T_g è fissato. Quello che può succedere è che nella risalita, il tempo T_E dipende da quante cariche sono state trasferite. Pertanto

$$ne = \frac{6\pi\eta rL}{E}\left(\frac{1}{T_E} + \frac{1}{T_g}\right) \implies n = \frac{6\pi\eta rL}{eE}\left(\frac{1}{T_E} + \frac{1}{T_g}\right) = a\frac{1}{T_E} + b$$

Tutte le quantità sono costanti, tranne T_E . Sottra
endo due misure si ha

$$\Delta n \equiv n' \equiv n_0 - n_1 = a \left(\frac{1}{T_{E,0}} - \frac{1}{T_{E,1}} \right) \implies \frac{1}{a} = \frac{1}{n'} \left(\frac{1}{T_{E,0}} - \frac{1}{T_{E,1}} \right) = \text{cost}$$

La costante a è incognita, tuttavia si può ricavare come rapporto. [r] Facendo la differenza tra altre misure si ha

$$\frac{1}{n''} \left(\frac{1}{T_{E,1}} - \frac{1}{T_{E,2}} \right) = \text{stessa cost}$$

Egli misura

$$e = 1.5961 \times 10^{-19} \,\mathrm{C}$$

Da cui dal rapporto carica-massa di Thomson si ricava la massa dell'elettrone

$$m_e = 9.11 \times 10^{-31} \,\mathrm{kg} = \frac{1}{1836} m_H$$

dove m_H è la massa dell'idrogeno.

Misura dei raggi positivi. Thomson osserva che il catodo è forato e dall'anodo provengono raggi capaci di impressionare una lastra fotografica. [r] Si vede la misura della carica-massa per ioni positivi.

. [immagine] L'apparato sperimentale è simile a quello usato per i raggi catodici: si ha un catodo forato succeduto all'esterno da un condensatore di lunghezza L e da una parete distante D dal condensatore. Il tutto è nel vuoto. Thomson pone le bobine del campo magnetico in modo che questi sia parallelo al campo elettrico.

La deviazione di quota è data da

$$y = \frac{qEL}{mv_x^2} \left(\frac{L}{2} + D\right)$$

Per i raggi catodici, si è introdotto un campo magnetico per bilanciare la forza elettrica così da dedurre la velocità. [r] Il discorso implicito nei raggi catodici è dato dalla presenza di un'unica velocità (dovuta alla stessa massa). Tuttavia, per i raggi positivi non è più così: si ha un gas rarefatto le cui molecole sono urtate dagli elettroni del catodo a distanze diverse dalla parete dell'apparato [r], quindi non esiste una v_x univoca per tutti gli ioni generati all'interno del volume. Per far fronte al nuovo grado di libertà, Thomson decide di misurare la traiettoria e alla dimensione z per determinare il rapporto carica-massa.

Dato che il campo magnetico è parallelo al campo elettrico, esso devia le particelle nella direzione z e non più y:

$$z = \frac{qBL}{mv_x} \left(\frac{L}{2} + D\right) \implies \frac{qBL}{mz} \left(\frac{L}{2} + D\right)$$

Da cui si ottiene

$$y = \frac{qEL}{m} \frac{m^2 z^2}{q^2 B^2 L^2} \frac{\left(\frac{L}{2} + D\right)}{\left(\frac{L}{2} + D\right)^2} = \frac{Em}{qB^2 L} \frac{z^2}{\left(\frac{L}{2} + D\right)}$$

si ha una parabola nel piano yz. Nel disegno ci si aspetta che i punti sperimentali si trovino nel terzo quadrante. Thomson osserva proprio questo. Il coefficiente di z^2 dipende solamente da $\frac{q}{m}$ e quindi dalla specie di gas utilizzato. Pertanto, m e q (cioè il gas particolare utilizzato) determinano la curvatura della parabola.

Gli studenti di Thomson utilizzano del neon ed osservano due parabole questo perché il gas utilizzato è formato da due isotopi: Neon-20 e Neon-22. La curvatura della seconda è più pronunciata della prima, perché la massa è maggiore. La parabola limite è data dall'idrogeno. Thomson verifica l'assenza del bias nel suo apparato cambiando le direzioni di campo elettrico e di campo magnetico ottenendo una parabola per ogni quadrante.

Appunto sull'effetto Zeeman. L'effetto Zeeman per altre specie chimiche oltre l'idrogeno è diverso e la teoria sviluppata non funziona più: bisogna raffinare il modello atomico. [r] Infatti si chiama "lamina quarto d'onda" proprio perché sfasa di 90°.

2 Radiazione di corpo nero

Si vuole studiare la radiazione termica, cioè la radiazione emessa da qualunque corpo per il solo fatto di avere una temperatura. Qualunque corpo emette uno spettro elettromagnetico. Misurando la forma spettrale dell'onda emessa, si nota essere uno spettro continuo che presenta un'emissione massima ad una particolare lunghezza d'onda.

Il primo approccio allo studio del problema è utilizzare le leggi di Maxwell. Esse si sono dimostrate valide in intervalli di frequenze e lunghezze d'onda estremamente vasti. Si è tentato di spiegare in modo classico la radiazione di corpo nero tramite la legge di Rayleigh-Jeans, tuttavia essa non corrisponde ai dati empirici. La semplicità del problema [r] Quindi, Planck mette in discussione alcuni principi fondamentali e grazie alla revisione di alcune credenze, egli riesce a formulare un modello da principi primi che fosse in grado di descrivere perfettamente la radiazione termica. [r] la nascita della fisica quantistica che poi si è evoluta con Bohr tramite postulati fino al 1926, senza una teoria matematica coerente della fisica quantistica. Poi Schrödinger provvede ad una spiegazione più coerente ed accettabile dai fisici. Si studia in dettaglio lo spettro della radiazione termica.

Ogni corpo emette uno spettro continuo di radiazione elettromagnetica e due corpi con la stessa temperatura hanno anche uno spettro simile. Risulta tipico rappresentare lo spettro in un grafico λ , R dove la variabile indipendente λ è la lunghezza d'onda, mentre la variabile dipendente R è la radianza o emittenza con unità di misura W m⁻².

Si definisce l'assorbanza a come la frazione di radiazione incidente assorbita; l'assorbanza t come la frazione di radiazione incidente trasmessa; e la riflettanza r come la frazione di radiazione incidente riflessa. La relazione che lega tali tre efficienti, per la conservazione dell'energia è

$$a+t+r=1$$

Inoltre, si definisce corpo opaco quel corpo che non trasmette, t=0 e dunque a+r=1. In questo corso ci si occupa sostanzialmente di corpi opachi.

Legge di Kirchhoff. Si studiano le relazioni di questi coefficienti con la radianza. Si trova la legge di Kirchhoff (lo stesso dei circuiti). Si considerino diversi corpi opachi (t=0) in equilibrio termico tra loro. Essi vengono investiti da un'intensità I di radiazione elettromagnetica; essa ha unità di misura $[I] = W m^{-2}$. Sia $E_{\rm in}$ l'energia entrante e $E_{\rm out}$ l'energia uscente. Esse devono essere uguali perché i corpi sono in equilibrio termico. Si formalizza il bilancio energetico. Per un i-esimo corpo, l'energia risulta essere [r]

$$E_{\rm in} = E_{\rm out} \iff IA_i \Delta t \, a_i = R_i A_i \Delta t$$

Andando a dividere a due a due si ha

$$\frac{R_1}{R_2} = \frac{a_1}{a_2} \implies \frac{R_1}{a_1} = \frac{R_2}{a_2} = \dots = \frac{R_i}{a_i} = \text{cost}$$

Parentesi. L'energia elettromagnetica riflessa differisce dalla radianza. L'energia riflessa mantiene la stessa forma spettrale dell'energia incidente, sebbene possa cambiare l'ampiezza. Tuttavia, lo spettro di radiazione termica irradiato ha una forma particolare e specifica a prescindere dalla forma dell'energia incidente.

Corpo nero. Il corpo nero è un corpo che assorbe tutta la radiazione elettromagnetica, pertanto ha assorbanza $a_{\rm BB}=1$ ("BB" per "black body"). Il rapporto costante $\frac{R_i}{a_i}=\frac{R_{\rm BB}}{1}$ è la radianza di corpo nero. Inoltre, $R_x < R_{\rm BB}$, la radianza di

corpo nero è la massima (alla stessa temperatura).

Il corpo in sé, per come definito, non esiste in natura, però esiste un modo per ottenere la sua stessa distribuzione spettrale. Si consideri una cavità (detta cavità isoterma) all'interno di un corpo opaco. Lo spettro all'interno di tale cavità è lo stesso spettro del corpo nero. La radiazione emessa del corpo opaco è costretta a rimanere nella cavità a meno di una piccola fessura per mezzo della quale si può osservare la radiazione.

Si anticipano dei concetti utili per la fine della trattazione del corpo nero e per l'osservazione della radiazione microonde del fondo cosmico. La radiazione è in equilibrio in dinamico con la materia. Dunque, si può immaginare la cavità in un altro modo: come materia dispersa, diffusa all'interno di una regione di radiazione [r] (essa non fugge perché è presente tanta massa che non ci si preoccupa degli effetti di bordo).

Si dimostra che la cavità ha lo stesso spettro del corpo nero.