			A				-111	
제안과제명	1. 시설 과채류			반 온실환경 모델				
	사업명		다부처패키지 술개발사업	내역사업			· 실증 연구사(
	과제유형	연	!구기간	총 연구비	21	22	23	24
과제개요	지정공모 (연구 단계)	2년9개월(1	년9개월 + 1년)	2,600백만원	800	900	900	-
	기술분류			작물과학-원예작 <mark>둘</mark> 동생명정보전자-유			화	
※ 제시된 과제명	및 예산은 가이드라?	민으로 연구자기	· - - - - - - - - - - - - - - - - - - -	·방향에 맞춰 과제명의	구체화	및 예산	·조정(축소	입 기능
연구목표	수직형 작물재배관리 최	에 대한 3차 적화	h원 작물 생육 및	¦의 생육·생리·수 ! 온실 환경 시뮬	레이션	SW 개	발 및	디지털
주요 연구내용	○ 기 개발 생육 예측모델 및 환경 빅데이터를 활용한 생장 및 수확량 예측 모델 고도화 - 작물별 생장/수확 예측 및 온실환경 모델 개발을 위한 데이터 수집 · 표준화 (환경요인: 온습도, 광, 00½ 농도, 배지양수분 등, 생육지표: 초장, 생체중, 건물중, 착과수 등) * 수집된 빅데이터를 기초로 계획된 실증 시험 :작목별 3농가(독립법인), 농가 당 5 plants(최소), 환경(자동수집), 생육 및 생리(주 1회 수동수집) - 작물별 생육모델 고도화를 위한 기 개발된 국외 모델 함수식 검증 및 보완 - 환경 및 생육조건을 활용한 작목별 생장 및 수확량 예측 모델 개발 ※ 대상작물 : 토마토, 방울토마토, 딸기, 파프리카, 고추 ○ 스마트 온실 작물의 작기별 생육 및 수확량 예측 모델 개발 - 작목별 생장/수확 예측 및 온실환경 모델 개발을 위한 데이터 수집 · 표준화 (환경요인: 온습도, 광, 002 농도, 배지양수분 등, 생육지표: 초장, 생체중, 건물중, 착과수 등) * 작물별 3농가(농가별,(독립)), 농가 당 5 plants(최소), 환경(자동수집), 생육 및 생리(주 1회 수동수집 등) - 빅데이터 기반의 환경조건을 고려한 생장/수확량 모델 함수식 개발 - 개발된 모델의 스마트팜 실증을 통한 검증 * 작물별 3농가 (독립법인) 실증 ※ 대상작물 : 오이, 멜론, 참외, 수박, 가지 ○ 작물생육 단계별(육묘·정식·착과·성숙기) 온실환경 모델 개발 - 3차원 작물 생육·온실환경 모델 개발을 위한 생육 이미지 수집 · 표준화 * 작목별(토마토, 파프리카, 오이) 2농가(독립법인), 농가 당 5주(최소)							

3차원 구조모델 DB 구축
- 작물 생장 모델과 연동되는 작물 생육모델 시각화(엽면적, 초장, 생육량, 착과수 등)
○ 3차원 작물 생육·온실환경 시뮬레이션 SW 개발
- 구축된 빅데이터 모델을 기반으로 재배기간·발육단계·작목별 특징 등을 고려한
작물 생육모델 시각화·3차원 시뮬레이션 SW 개발(작물의 생육, 온실 환경)
* 광환경, 온실의 열흐름, 온도 구배 등을 시각화하여 보광, 온도 조절 등에 활용
○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학,
연구소 등과 컨소시엄 구성 권장
○ 1단계 2년 종료 후 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
<핵심성과>
○ 특허 등록 3건, 논문 (SCI) 6편, 논문(비SCI) 4건, 유상 기술이전 4건, SW저작권 4건
<전략성과>
○ 디지털 재배관리를 위한 생육·수확량 예측 모델 5건, 3D 구조모델 기반 시설
과채류(5품목) 생육·수확량 예측 모델 5건, 표준화 2건
※ 제시한 핵심·전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성,

Keyword	한 글	빅데이터, 작물구조모델, 생장 모델, 수확량 예측, 시각화
	영 문	Big data, Crop structure model, Growth model, Yield prediction, Visualization

노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장

연구팀 구성요건

목표성과

제안과제명	2. 2세대 스마트 온실 생산성 실증·고도화 및 지능형 환경제어 모델 개발						
	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업			실증 연구사?	
	과제 유형	연구기간	총 연구비	21	22	23	24
과제개요	지정공모 (연구 단계)	3년9개월(1년9개월 + 2년)	6,500백만원	1,400	1,700	1,700	1,700
	기술분류	농산-원예?	<u></u> 작물과학-원예작물	물재배상	l 산		
	동림식품융목합-동생명정보선자-유비쿼터스정보화						
※ 제시된 과제명 및 예산은 가이드라인으로 연구자가 계획서 제출시, 연구방향에 맞춰 과제명의 구체화 및 예산조정(축소) 가능							

	동림식품융목압-동생명성모선사-유비쿼터스성모화
※ 제시된 과제명	및 예산은 가이드라인으로 연구자가 계획서 제출시, 연구방향에 맞춰 과제명의 구체화 및 예산조정(축소) 가능
연구목표	○ 인공지능과 빅데이터, 클라우드 서비스가 융합된 2세대 스마트 온실(유리 및 비닐온실)의 구축 ○ 작물 생산성 향상(네덜란드 대비 80%) 및 에너지 30% 절감 목표
주요 연구내용	○ 2세대 스마트 온실의 생산성 실증 및 경영 의사결정 모델 개발을 위한 빅데이터 구축 - 인공지능 학습용 온실 핵심 빅데이터 수집 및 수집 체계 구축 - 실증 작물 재배 환경 및 생육 정보 항목 구성(수집 빅데이터): 환경(지상, 근권부), 생육, 생산량 등 - 작물 생육 및 생산량 예측기반 작물 생애주기별 온실 경영 정보 구체화 및 수집 - 경영정보 : 작기 내 온실 경영비, 난방 사용 에너지 빅데이터, 유통가격 등 ○ 2세대 스마트 온실의 생산성 실증 및 생산성 향상 모델 고도화 - 농가 맞춤형 생산성 실증을 위한 작물 생산성 향상 모델의 현장 적용 - 작요 지역별 생산성 향상 모델의 현장 적용 - 작요 지역별 생산성 향상 모델의 현장 성용 - 생산성 실증을 통한 생산성 향상 모델 고도화 및 운영 매뉴얼 개발 ※ 생산성 실증을 통한 생산성 향상 모델 고도화 및 운영 매뉴얼 개발 의 교도화 - 품목별 빅데이터 기반 에너지 및 노동력 절감 기술 요인 분석 및 개선 방안 도출 - 생산량, 에너지, 유통 빅데이터 기반 온실 경영 의사결정지원 모델 개발 및 고도화 - 품목별 빅데이터 기반 에너지 및 노동력 절감 기술 요인 분석 및 개선 방안 도출 - 생산량 증대 및 에너지 절감에 따른 온실 경영비 예측 등 에너지 관리 기술 개발 - 빅데이터 기반 스마트 온실 경영(노동력, 에너지, 생산량, 유통비, 예상 수익 등)을 위한 인공지능 기반 의사결정지원 모델 개발 및 고도화 - 클라우드 기반 온실 경영 의사결정시스템 서비스 플랫폼 개발 ○ 품목 맞춤형 2세대 스마트 온실 지능형 환경제어모델 개발 및 실증 - 품목별 광, 온습도, C02 농도 등 요소별 조합의 생육 최적화 기술 모듈화, 연동 기술 개발 및 지능형 복합 제어시스템 탑재 - 생산성 향상, 에너지 절감 등 온실 재배관리 및 경영을 위한 인공지능 기반 의사결정지원 모델의 복합환경 제어시스템 타재 - 생산성 향상 에너지 절감 등 온실 재배관리 및 경영을 위한 인공지능 기반 의사결정지원 모델의 복합환경 제어시스템의 테스트베드 구축 및 현장 실증 - 클라우드 기반 온실 복합환경 제어시스템 서비스 플랫폼 개발 ※ 실증 대상 작물 : 가지과(토마토, 방울토마토, 파프리카), 박과(멜론, 참외, 오이), 딸기, 화훼(국화, 장미, 호접난) 등 ※ 생산성 실증 및 의사결정모델 개발 품목: 실증 대상 작물 가지과, 박과, 화훼류, 딸기 각각 1개씩 5품목 이상 필수)
연구팀 구성요건	○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 ○ 1단계 2년 연구 종료 후 실증을 통한 사업화, 상용화, 수출 등을 위한 2단계 2년의 연구지원 가능함
목표성과	<핵심성과> ○ SCI 2건, 비SCI 3건, 특허 5건, 품목별 유상 기술이전 2건 이상, SW 저작권 2건 <전략성과> ○ 실증을 통한 생산성 및 에너지 절감(네덜란드 대비 80%) 및 에너지 30% 절감) ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장 ※ 2세대 기술 적용 생산성 항상 및 에너지 절감 모델 정책제안(농식품부 농산업정책과 협의)

Voyavord	한 글	온실, 스마트팜, 생산성, 에너지절감
Keyword	영 문	Greenhouse, Smart farm, Productivity, Energy reduction

제안과제명	3. 한우 개체별 경제형질 정밀 측정·관리·예측 모델링 기술							
	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업			실증 연구사(
	과제 유형	연구기간	총 연구비	21	22	23	24	
과제개요	지정공모 (연구 단계)	2년9개월(1년9개월 + 1년)	950백만원	250	350	350	-	
	기술분류		축산-동물사료·사육-동물영양·사양 농림식품융복합-농생명정보전자-농생물정보					

연구목표	및 예산은 가이느라인으로 연구사가 계획서 세술시, 연구망양에 맞춰 과세명의 구체화 및 예산소성(숙소) 가능 ○ 국가단위 한우 개량을 위한 한우 체형 및 체척 자동화 시스템을 구축
	○ 한우 체중, 체척 자동화 측정체계 구축 및 유전평가 기술 개발
	- 한우 체중, 체척, 외모심사 등 경제형질 기반정보 자동 수집체계 구축
	- 수동 실측 체중, 체척 등의 측정자료와 자동화 수집 자료 간 상관분석
	- 체중, 체척 자동측정 자료를 이용한 형질별 유전모수 추정 및 육종가 추정
	- 체중, 체척 자동화 시스템 적용에 따른 능력검정 효율성(인력, 시간, 예산 등) 검증
	- 한우 이력체계(이표 등) 대체를 위한 스마트 시스템 개발
T 0	○ 영상 분석 및 인공지능을 이용한 한우 체중, 체척 형질측정 기술 개발
주요 연구내용	- 이미지 분석을 통한 한우 개체식별 시스템 구축
	- 한우 개체별 이미지 및 동영상 분석을 통한 실시간 체중, 체척 측정 및 예측 프로그램 개발
	- 인공지능(AI)를 이용한 이미지 및 동영상 빅데이터 분석 알고리즘 개발
	- 체중 및 체척 자동측정 자료 수집 및 예측 분석용 DB 구축
	○ 한우 실시간 관리 프로그램 구축 및 농가 실증
	- 개체인식과 체형 자동 측정기술을 종합한 경제형질 분석 프로그램 개발
	- 분석 결과에 따른 기 구축된 가축 계량 시스템 연동 체계 구축
	- 농가를 위한 실시간 분석결과 및 연동체계 실증
연구팀	○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학,
구성요건	연구소 등과 컨소시엄 구성 권장 ○ 1단계 2년 연구 종료 후 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
목표성과	<핵심성과>
	○ SCI 3건, 비SCI 2건, 특허등록 3건, 유상 기술이전 1건, SW 저작권 등록 2건 <전략성과>
	○ 경제형질 분석 프로그램 개발 1건, 한우 다시점 체중 및 체척형질에 대한 유전
	능력평가 모형 개발 1건, DB 구축 1건 ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성,
	노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장

Koyword	한 글	한우, 빅데이터, 체중, 체척
Keyword	영 문	Hanwoo, Big data, Body weight, Body measurement traits

제안과제명	4. 젖소 외모 및 선형심사 자동화 시스템 기술개발							
	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업			실증 연구사(
	과제유형	연구기간	총 연구비	21	22	23	24	
과제개요	지정공모 (연구 단계)	2년9개월(1년9개월 + 1년)	1,200백만원	300	450	450	-	
	기술분류		축산-동물사료·사육-동물영양·사양 농림식품융복합-농생명정보전자-농생물정보					

연구목표	○ 국가단위 표준 젖소 외모 및 선형심사 형질에 대한 보다 객관적인 점수화 체계를 구축○ 선발의 정확도를 항상시켜 지속가능한 젖소 개량체계 구축
주요 연구내용	○ 젖소 외모, 선형심사 자동화 체계 구축 및 유전평가 기술 개발 - 젖소 외모 및 선형심사 자동화 체계 구축 - 실측·목측 외모, 선형심사 형질과 자동화 수집 자료 간 상관분석 - 외모, 선형심사 자동측정 자료를 이용한 형질별 유전모수 추정 및 육종가 추정 ○ 영상 분석 및 인공지능을 이용한 젖소 외모, 선형심사 기술 개발 - 영상 분석을 통한 젖소 개체식별 시스템 구축 - 젖소 개체별 3D 영상 분석을 통한 실시간 외모 및 선형심사 프로그램 개발 - 젖소 동영상 분석을 통한 젖소 보행성(Locomotion) 평가 프로그램 개발 - 인공지능(AI)를 이용한 빅데이터 분석 알고리즘 개발 - 외모 및 선형심사 자동측정 자료 수집 및 점수화 DB 구축 ○ 젖소 외모 및 선형심사 자료 생산 및 자동화 기술 실증 연구 - 외모 및 선형심사 자동화 시스템 적용 결과에 대한 실효성 및 정확성 검증 - 외모, 선형심사 자동화 시스템 적용에 따른 능력검정 효율성(인력, 시간, 예산 등) 검증 - 외모, 선형심사 자동화 시스템 및 유성분 분석 결과의 국가 검정 시스템 연계 체계 구축 - 젖소 육종농가 대상 외모, 선형심사 자동화 시스템 실증
연구팀 구성요건	 ○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 - 자동화 기술 현장적용・실증을 위한 젖소 외모 및 선형심사 전문 수행기관 참여 ○ 1단계 2년 연구 종료 후 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
목표성과	<핵심성과> ○ SCI 3건, 비SCI 3건, 특허등록 2건, 유상 기술이전 2건, 프로그램 SW 저작권 등록 3건 <전략성과> ○ 국가 검정 시스템 연계 체계 구축 1건, 사업화 2건 ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장

Voyagerd	한 글	젖소외모심사, 체형형질, 자동화 시스템
Keyword	영 문	Judging dairy cattle, Conformation traits, Automated system

제안과제명	5. 돼지 경제형질 체중, 체척 및 외모심사 정밀 측정·관리 시스템 구축						
과제개요	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업			실증 ! 연구사업	
	과제유형	연구기간	총 연구비	21	22	23	24
	지정공모 (연구 단계)	2년9개월(1년9개월 + 1년)	1,100백만원	300	400	400	-
	기술분류	. —	나료·사육-동물양 - 농생명정보전지			己	

※ 제시된 과제명	및 예산은 가이드라인으로 연구자가 계획서 제출시, 연구방향에 맞춰 과제명의 구체화 및 예산조정(축소) 가능
연구목표	○ 종돈의 체중 및 체형 등 경제형질 정보를 자동 측정 기술을 개발 ○ 영상정보 및 인공지능 기술을 활용한 개체별 정밀 측정 모델을 통한 종돈 선발의 정확도 향상
주요 연구내용	 ○ 돼지 체착, 체중, 외모심사 자동화 체계 구축 및 유전평가기술개발 - 체중, 체척 및 외모심사 형질과 자동화 수집 자료 간 상관분석 - 자동측정 자료를 이용한 형질별 유전모수 추정 및 육종가 추정 - 종돈의 정밀 선발체계 구축을 위한 선발 예측 모델 개발 - 국가 능력검정 시스템 연계한 실시간 평가시스템 구축 ○ 인공지능 활용 종돈의 체중·체형 정밀측정 자동화 기술 개발 - 빅데이터 기반 인공지능 학습용 원천 데이터 선정·정제·응용 서비스 개발 - 인공지능을 이용한 빅데이터 분석 알고리즘 및 활용 서비스 개발 - 돼지 개체식별 및 개체별 형질측정 자동화 기술 개발 ○ 돼지 체중, 체척, 외모심사 자료 측정 및 자동화 기술 실증연구 - 품종별 생체를 활용한 체중, 체척 및 외모심사 등 능력검정을 통한 실측자료데이터베이스 확보 - 종돈의 품종별 개체별 실시간 생체 영상자료 확보, 사양정보 및 이미지 스캔을 통한 데이터베이스 확보 - 품종별 개체별 실측자료와 이미지 스캔자료 통합 표준화 기준 마련 - 품종별 돼지의 체중, 체척 및 외모심사 자동화 기술 실증 시험 - 국가 능력 검정 시스템과 연계한 실시간 측정 자동화 체계 구축
연구팀 구성요건	○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 ○ 1단계 2년 연구 종료 후 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
목표성과	<핵심성과> ○ SCI 3건, 비SCI 3건, 특허등록 2건, 유상 기술이전 3건, SW 저작권 등록 2건 <전략성과> ○ 국가 검정 시스템 연계 체계 구축, DB 구축 1건, 표준화 1건, 사업화 1건 ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장

	돼지, 인공지능, 빅데이터, 체중, 체척, 외모심사, 예측모델	
Keyword	영 문	Pig, Artificial intelligence, body weight, body size, Conformation traits, Big data, Prediction model

제안과제명	6. 축사(양돈, 양계) 복합환경 센싱 및 국내 적합형 양돈·양계 표준 모델 개발						
과제개요	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업		:마트팜 1도화 (. — — .	1.1
	과제유형	연구기간	총 연구비	21	22	23	24
	내요 지정공모 (연구 단계)	2년9개월(1년9개월 + 1년)	2,460백만원	700	880	880	-
	기술분류	농림식품기계 · 시스템-축산업 농림식품융복합	업기계 · 시스템-축 합-농생명정보전지	. — —	. – –	경기계	시스템

연구목표	○ 축사 복합환경 진단 센싱 기술 및 국내 적합형 양돈·양계 표준 축사 모델 개발
주요 연구내용	 ○ 스마트 축사 생육・작업 환경 측정을 위한 센싱 기술 및 장치 개발 축사 생육 환경 진단을 위한 센싱 기술 고도화(내구성, 통신) * 열악한 축사 환경에서 내구성, 정확도가 검증된 센싱 기술 및 장치류 개발 - 센서 정확도 평가 및 센서 운용에 따른 빅데이터 통합관리 방안 도출 * 센서 설치방안, 통신, 빅데이터 통합관리 방안 제시 - 축사 환경 계측 센서의 PIM 기반 건전성 관리 기술 개발 - 농가 보급형 실시간 작업 환경 측정 장치(온도, 습도, 공기질 등) 개발 및 활용 기술 실증 ○ 가축 생체정보, 환경정보 기반 고온 스트레스 센싱 및 관리 기술 고도화 - 가축 생체정보 연계, 고온스트레스의 정밀 진단을 위한 알고리즘 고도화 및 실증 * 생체, 환경정보 활용 고온스트레스의 적밀 진단을 위한 알고리즘 고도화 및 실증 * 생체, 환경정보 활용 고온스트레스의 여축 및 선제 대응을 위한 알고리즘 도출 ○ 강제환기식 무창 양돈・양계 시설의 부하 진단 및 시설 유형별, 지역별 설계 기준 제시 - 에너지 발생, 순환 기작을 고려한 양돈(자돈, 비육돈), 양계(육계, 산란계) 사육 시설 냉・난방 부하 정밀 진단 - 시설유형별, 지역별 양돈, 양계 사육시설 건축물 설계 기준 마련 ○ 강제환기식 무창 양돈・양계 시설의 축사 표준 모델 설계 검증 및 운영 기준 제시 - 국내 적합형 강제환기식 양돈・양계 사육시설의 표준모델 개발 - 기후변화, 사육형태를 고려한 국내 지역별 양돈, 양계 사육시설의 환기 운영 가이드라인 설정 * 국내 기후 특성, 동물복지 등 사육형태를 고려한 국내 적합형 환기 운영을 위한 가이드라인의 설정 및 보급 ○ 스마트 축사 구조 개선을 위한 환기, 냉난방 시뮬레이터 개발 - 강제환기식 양돈・양계 사육시설의 스마트 축사 구조개선 컨설팅을 위한 시뮬레이터 프로그램 개발 및 실증
연구팀 구성요건	 ○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 - 축사 설계 및 모델 검증 등이 가능한 기관 참여 ○ 1단계 2년 연구 종료 후 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
목표성과	 <핵심성과> ○ SCI 4건, 비SCI 4건, 특허 등록 3건, 유상기술이전 3건, SW 저작권 2건 <전략성과> ○ 상용화 2건(매출액 발생), 기후변화 등을 고려한 국내 적합형 축사표준설계 모델 4종(자돈, 비육돈, 육계 산란계) ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장

	한 글	센싱, 고온스트레스, 표준설계도, 돼지, 육계, 산란계, 시뮬레이터
Keyword	영 문	Sensing, thermal stress, Standard livestock house model, Pig, broiler, Layer, Simulator

제안과제명	7. 스마트 축사 정보 수집 및 통신 기술 표준화 연구							
과제개요	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업		:마트팜 2도화 (
	과제유형	연구기간	총 연구비	21	22	23	24	
	제개요 지정공모 (연구 단계)	2년9개월(1년9개월 + 1년)	2,250백만원	650	800	800	-	
	기술분류	축산-동물/ 농림식품융복합-	나료 · 사육-동물양 동생명정보전자-유			화		

※ 제시된 과제명	및 예산은 가이드라인으로 연구자가 계획서 제출시, 연구방향에 맞춰 과제명의 구체화 및 예산조정(축소) 가능
연구목표	○ 스마트 축산기술 확산을 위한 사양관리기기, 통신 프로토콜, 빅데이터 및 모델에 대한 단체, 국가, 국제 표준제정 ○ 표준기반 스마트 축사 ICT장치 호환성 검정 체계 구축
주요 연구내용	○ 축사 환경 및 사양관리용 ICT 기기 상태수집 빅데이터 표준화 및 실증 - 스마트 축사 사양정보 수집 빅데이터 표준화 연구 - 사양관리기기 단체표준 고도화를 통한 국가표준(안) 개발 및 제정 - 생체정보, 사양정보, 환경정보 메타데이터 단체표준(안) 개발 및 제정 ※ 대상 축종 : 한우, 젖소, 양돈, 양계, 오리 ○ 표준기반 축산 스마트팜 ICT 장치 호환성 검인정 체계 및 이상탐지 기술 고도화 - ICT장치 호환성 검인정 절차 정립 및 검인정 매뉴얼 개발 - 장치 호환성 검정장치 및 프로그램 개발 및 실증 - 축사환경 및 사양관리용 ICT 기기 이상징후 자동탐지 및 예측시스템 개발 및 실증 - 검인증 시설 시운전 결과 제시 ○ 스마트 축사 ICT 장치 통신 인터페이스 및 국내표준 국제표준화 연구 - 생체정보, 사양정보, 환경정보의 통신 인터페이스 정립 및 표준 제정 - 기 제정 국내표준 기반 국제표준화 표준요소 발굴 및 국제표준 제정 - 제정된 국제 표준들의 등록 신청
연구팀 구성요건	○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 - 사업화, 지속적인 A/S 관리 체계가 구축된 기업 참여 - 축산분야 표준 제정 가능한 기관 및 기업 참여 필수 ○ 1단계 2년 연구 종료 후 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
목표성과	<핵심성과> ○ SCI 4건, 비SCI 4건, 특허 등록 3건, 유상기술이전 3건, SW 저작권 2건 <전략성과> ○ 표준 신규제정 5건(단체 3, 국가 1, 국제 1건), 기존표준 개정 3건(단체 1, 국가 1, 국제 1), ICT장치 검정 장치 개발 및 프로그램 1건, 정책제안 2건 ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장

	한 글	축산 스마트팜, 표준, 호환성, 신뢰성, 검정
Keyword	영 문	Animal Smart-farm, Standard, Interoperability, Reliability, Qualification

제안과제명	8. 스마트 온실용 저전력·경량 다중 센서 시스템 개발 및 실증						
	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업	차세대	융합 ·	원천기	술 연구
과제개요	과제 유형	연구기간	총 연구비	21	22	23	24
	지정공모 (연구 단계)	3년 9개월(1년9개월 + 2년)	2,300백만원	500	600	600	600
	기술분류	농산-원예2 농림식품융복합-능	작물과학-원예작물 5생명정보전자-유			화	

	\$ 1100 PM - 100-1 01 PM - 110
연구목표	○ 스마트팜의 다양한 유용 정보를 로봇을 통해 무인 자동으로 취득할 수 있는 센싱봇 개발 ○ 열화상/미기상환경 센싱, 근권 환경센싱, 엽록소 형광 기법을 이용한 작물 생리 센싱 기술을 개발
주요 연구내용	 ○ 열화상/멀티센서 기반 스마트 온실 내부환경 및 작물 생리활성 맵핑 시스템 개발 - 온실 구역별 온/습도, 작물 생장점 표면온도 측정을 위한 멀티센싱 무인 로봇 시스템 개발 - 센싱 최적화 및 영상 결합 인공지능 알고리즘을 이용한 생장점 부근의 유용정보 측정을 위한 멀티 센싱 자동 구동부 개발 - 정보 기반 실시간 온실 증발산량 및 환경/작물 VPD 맵핑 정보 가시화 구현 - 원격에서 모바일 앱으로 로봇 무인 운영 구동이 가능한 온실 배지 작물의 자동 맵핑 시스템 개발 - 무인 운영을 위한 스마트 온실 내부 환경 및 맵핑 시스템 관리 소프트웨어 개발 - 생체모방 감지 물질 등으로 구성된 센서 매트릭스 개발 - 맹트릭스를 활용한 작물 근권환경 멀티 센싱 시스템 개발 - 저전력・저비용 근권환경 데이터 수집 임베디드 시스템 개발 - 작물 캐노피 입체영상 기반 이동식 현장 적용형 엽록소 형광 측정 시스템 개발 - 작물 캐노피 입체영상 기반 이동식 현장 적용형 엽록소 형광 측정 시스템 개발 - 유용 정보 추출 및 활용을 위한 구동 및 측정 시나리오 제시 - 엽록소 형광 기반 작물 생체정보 맵핑 정보 가시화 구현 ○ 통합계축 시스템 구축 및 실증 - 계측 시스템 통합 - 측정된 센서의 실시간 영상 및 계측 빅데이터를 스마트폰과 스마트 온실 중앙 컴퓨터로 전송하는 기술 개발 및 실증 - 테스트베드를 활용한 멀티센싱 시스템 실증
연구팀 구성요건	 ○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 - 실증을 위한 기반 시설을 갖춘 기관 및 기업 참여 ○ 1단계 2년 연구 종료 후 실증을 통한 시업화, 상용화, 수출 등을 위한 2단계 2년의 연구지원 가능함
목표성과	 <핵심성과> ○ SCI 6건 비SCI 3건, 특허 등록 6건, PCT 출원 2건. 유상 기술이전 2건, SW 저작권 등록 3건 <전략성과> ○ 멀티센싱 무인 로봇 시스템 개발 1건, 센서 상품화(매출액 발생) 2건, ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장 ※개발 시스템 국내 산업화/현장 보급 정책제안(농식품부 농산업정책과 등과 협의)

Voyavord	한 글	다중센싱, 생육·생체정보, 센싱봇, 자동화
Keyword	영 문	Multi-sensing, Phenotype information, Sensing-bot, Automation

제안과제명	9. 스마트팜용 탄소연료전지 기반 초고효율 열병합발전 시스템 개발						
과제개요	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업	차세대	융합 ·	원천기술	술 연구
	과제유형	연구기간	총 연구비	21	22	23	24
	지정공모 (연구 단계)	2년9개월(1년9개월 + 1년)	3,200백만원	900	1,150	1,150	-
	기술분류	농림식품융복합-농업에너지자원-농산에너지생산활용 농림식품융복합-농생명정보전자-농생물정보					

II IL 1 IO	· 보이 에는 이어트라인으로 한 마시가 계획이 제출이, 한 마당당에 롯해 최제당의 마세와 및 에인포당(국고) 기당
연구목표	○ 스마트팜(원예, 축산) 적용을 위한 탄소기반 연료전지 열병합발전시스템 개발
주요 연구내용	○ 탄소연료기반 신개념 연료전지 핵심 요소 기술 개발 - 중・고온형 탄소 연료전지 핵심 요소 기술 개발 - 탄소연료전지용 연료공급 모듈 및 연료 자동공급시스템 개발 - 농업시설 난방열 공급을 위한 배열 회수장치 설계 및 개발 * 농업시설 최대ㆍ기간 난방부하 및 연료전지 운용효율 고려 등 ○ 탄소기반 연료전지 열병합발전 시스템 개발 - 탄소기반 연료전지 이용 발전ㆍ배열 생산 열병합발전 시스템 개발 - 고온배열 이용 비전력 방식 냉방 이용 시스템 개발(Cooling by heat, 흡수식 냉방 등) - 초고효율 열병합 발전(발전> 55%, 종합효율> 85%) 기술 개발 ○ 스마트팜 부산물 탄소 연료화 이용 기술 개발 - 농산부산물의 반탄화 연료화 기술 개발 - 태양열-연료전지 배열 연계 부산물 연료화 저장기술 개발 ○ 개발된 탄소연료전지 발전 시스템 실증 실험 - 스마트팜(비닐온실, 유리온실, 수직농장, 밀폐형 축사)에서 성능 실험 후 상품화 및 사업 가능성(판매 가격, 예상 매출액 등) 제시 - 실제 스마트팜 농가에 보급 가능한 성과물 및 가격 경쟁력 제시 - 기존 난방 장치와의 열효율 성능 비교 결과 제시 - 열병합 발전 시스템에 대한 환경오염 지표 제시
연구팀 구성요건	 ○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 - 실제 농업 현장적용을 위한 실증 가능 기관 또는 기업 참여 ○ 1단계 2년 연구 종료 후 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
목표성과	<해심성과> ○ SCI 10건, 특허 등록 8건, PCT 출원 4건, 유상 기술이전 3건 <전략성과> ○ 농가 보급용 열병합발전 시스템 개발 및 사업화(매출액 발생) 1건 ※ 제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장 ※ 개발 시스템 국내 산업화/현장 보급 정책제안(농식품부 농산업정책과 등과 협의)

Keyword	한 글	연료전지, 열병합발전, 배열, 반탄화, 태양열
	영 문	Fuelcell, Cogeneration, Exhaust heat, Torrefraction, Solar heat

제안과제명	10. 가축분뇨 반건식 혐기소화 고도화 및 수소전환 기술 개발						
과제개요	사업명	스마트팜 다부처패키지 혁신기술개발사업	내역사업	차세대	융합 ·	원천기	술 연구
	과제유형	연구기간	총 연구비	21	22	23	24
	지정공모 (연구 단계)	2년9개월(1년9개월 + 1년)	3,600백만원	1,000	1,300	1,300	-
	기술분류	농림식품융복합-농업에너지자원-농산에너지생산활용 농림식품융복합-농생명정보전자-농생물정보					

W -11 15 -1-10	및 에산는 기에드다인으로 연구자가 계획시 제출시, 연구당왕에 낮춰 파제당의 구제와 및 에산조성(국고) 가능 -
연구목표	○ 가축분뇨 활용 반건식 혐기소화 안정운전기술 구축○ 바이오가스 활용 수소 생산 기술 개발○ 혐기소화액 재활용 기술 개발○ 가축분뇨 바이오가스 생산 시설 온실가스 배출량 조사
	○ 가축분뇨(돈분슬러리 및 우분 혼합) 바이오가스화 반건식 혐기소화 기술 고도화 - 가축분뇨(돈분슬러리 및 우분 혼합) 반건식 혐기소화를 위한 전처리 기술 개발 - 돈분슬러리 및 우분 혼합 가축분뇨 반건식 혐기소화 운전조건 최적화 ○ 혐기소화 바이오가스 유래 수소전환 기술 개발 - 바이오가스 수소전환 개질시스템 개발 - 고순도 수소생산을 위한 정제 기술 개발
주요 연구내용	○ 혐기소화액 고형 잔재물의 연료화 기술 개발 및 실증 - 가축분뇨 및 혐기소화액 고형물 활용 고체연료 펠렛화 기술 개발 - 가축분뇨 및 혐기소화액 고형물 활용 고체연료 연소 기술 개발
	 ○ 환경 부하 저감을 위한 전기 화학적 고도 산화기술 개발 및 실증 - 혐기소화액 내 고농도 질소 저감화 기술 개발 - 전기화학적 고도 산화 기술 효과성 및 경제성 평가 - 전기 화학적 고도 산화기술 현장 실증
	○ 국내 바이오가스 생산 시설 및 부대시설 유래 온실가스 배출량 측정 - 국내 혐기소화시설(투입구, 고액분리조, 액비조 등 부대시설포함)의 온실가스 배출량 측정
연구팀 구성요건	○ 상기 연구과제 관련하여 선행연구결과(특허, 시작품 등)를 보유하고 있는 기업, 대학, 연구소 등과 컨소시엄 구성 권장 ○ 1단계 2년 연구 종료 후 실증을 통한 사업화, 상용화, 수출 등을 위한 2단계 1년의 연구지원 가능함
목표성과	<핵심성과> ○ SCI 13건, 특허 등록 8건, PCT 출원 10건, 유상 기술이전 5건, SW 등록 4건 <전략성과> ○ 사업화(매출액 발생) 3건 ※제시한 핵심・전략성과 외 추가로 성과목표를 제시할 수 있으며, 경제·사회적성과(생산성, 노동력, 수출협약, 표준화)의 성과목표 추가 제시 권장

Keyword	한 글	가축분뇨, 바이오가스, 수소, 온실가스
	영 문	Livestock manure, Biogas, Hydrogen, Greenhouse gas