Reelle Funktionen: Teil 2

Andreas Henrici

MANIT1 IT18ta ZH

8. Oktober 2018

Überblick

- Eigenschaften von Funktionen
- 2 Operationen mit Funktionen

Koordinatentransformationen

Operationen mit Funktionen

Nullstellen von Funktionen

Repetition:

Definition

Ein $x_0 \in D \subseteq \mathbb{R}$ einer Funktion $f : D \to \mathbb{R}$ heisst *Nullstelle* von f, falls

$$f(x_0)=0$$

gilt.

Bemerkung

Graphisch bedeutet dies, dass an der Stelle x_0 die Funktionskurve von f die x-Achse schneidet.

Beispiel

Nullstellen der Funktion $f(x) = x^2 - 9$: $x_1 = 3$, $x_2 = -3$

Symmetrie von Funktionen

Definition

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heisst

• *gerade*, wenn für alle $x \in \mathbb{R}$ gilt:

$$f(-x)=f(x)$$

Operationen mit Funktionen

• *ungerade*, wenn für alle $x \in \mathbb{R}$ gilt:

$$f(-x) = -f(x)$$

- Die Funktionen $y = x^n$ für $n \in \mathbb{N}$ sind
- Die Funktionen $y = \cos(x)$ ist eine

Symmetrie von Funktionen: Geometrie

Symmetrie anhand von Graphen:

- Gerade Funktion: Graph achsensymmetrisch zur y-Achse
- Ungerade Funktion: Graph punktsymmetrisch zum Ursprung

Bemerkung

Die meisten Funktionen sind weder gerade noch ungerade!

Periodische Funktionen

Definition

Eine Funktion $f : \mathbb{R} \to \mathbb{R}$ heisst *T-periodisch*, wenn gilt:

$$f(x + T) = f(x)$$
 für alle $x \in \mathbb{R}$

Beispiel

Die Funktionen $y = \cos(x)$ und $y = \sin(x)$ sind 2π -periodische Funktionen.

Monotone Funktionen

Definition

Eine Funktion $f: D \to \mathbb{R}$ heisst

• monoton wachsend, wenn für alle $x_1, x_2 \in D$ mit $x_1 < x_2$ gilt:

$$f(x_1) \leq f(x_2)$$

• monoton fallend, wenn für alle $x_1, x_2 \in D$ mit $x_1 < x_2$ gilt:

$$f(x_1) \geq f(x_2)$$

Bemerkung

Strenge Monotonie: < / > statt \le / \ge

Injektiv, surjektiv, bijektiv

Definition

Eine Funktion $f: D \rightarrow W$ heisst

- *injektiv*, wenn aus $x_1 \neq x_2$ mit $x_1, x_2 \in D$ stets $f(x_1) \neq f(x_2)$ folgt.
- *surjektiv*, wenn es zu jedem $y \in W$ ein $x \in D$ gibt mit f(x) = y.
- bijektiv, wenn sie injektiv und surjektiv ist.

Abbildung: Injektiv

Abbildung: Surjektiv

Abbildung: Bijektiv

Grundoperationen mit Funktionen

Definition

Seien zwei Funktionen $f: D \to \mathbb{R}$, $x \mapsto f(x)$ und $g: D \to \mathbb{R}$, $x \mapsto g(x)$ gegeben. Dann können wir die folgenden Operationen definieren:

Operationen mit Funktionen

$$f+g: D \to \mathbb{R} \quad \text{mit} \quad x \mapsto \quad f(x) + g(x)$$

 $f-g: D \to \mathbb{R} \quad \text{mit} \quad x \mapsto \quad f(x) - g(x)$

$$f \cdot g \colon D \to \mathbb{R} \text{ mit } x \mapsto f(x) \cdot g(x)$$

$$\frac{f}{g}$$
: $D \to \mathbb{R}$ mit $x \mapsto \frac{f(x)}{g(x)}$ falls $g(x) \neq 0$ für alle $x \in D$

$$c \cdot f$$
: $D \to \mathbb{R}$ mit $x \mapsto c \cdot f(x)$ für ein festes $c \in \mathbb{R}$.

Graphische Addition von Funktionen: siehe Abbildung im Skript!

$$f(x) = -3x + 4, g(x) = x^2; \dots$$

Komposition von Funktionen

Definition

Für zwei gegebene Funktionen $f:A\to B$ und $g:B\to C$, ist die Funktion $g\circ f:A\to C$ definiert durch

$$(g\circ f)(x)=g(f(x)).$$

Diese neue Funktion heisst *Komposition* von *f* und *g*. (Andere Bezeichnungen: *Verkettung*, *Hintereinanderschaltung*.)

Komposition von Funktionen

Bemerkung

- Bei der Komposition (g ∘ f)(x) wird zuerst diejenige Funktion ausgeführt, die rechts steht.
- Zudem ist die Operation "Verkettung von Funktionen" nicht kommutativ.
- D.h. $g \circ f \neq f \circ g!$

$$f(x) = 3x + 7, g(x) = \sqrt{x}.$$

$$\bullet (f \circ g)(x) =$$

•
$$(g \circ f)(x) =$$

Umkehrfunktion

Definition

Sei $f: D \to W$ eine bijektive Funktion. Die *Umkehrfunktion* $g: W \to D$ ist definiert durch

$$g(y) = x$$
, wobei x durch $f(x) = y$ eindeutig definiert wird.

Diese Funktion g heisst wird auch als f^{-1} bezeichnet; diese Bezeichnung ist aber nicht mit dem Kehrwert zu verwechseln!

Umkehrfunktion: Rechnerische Bestimmung

Satz

Sei $f: D \to W$ eine bijektive Funktion mit Umkehrfunktion $g: W \to D$. Dann gilt

Operationen mit Funktionen

$$(g \circ f)(x) = x,$$
 $(f \circ g)(y) = y$ für alle $x \in D, y \in W$

Bestimmung der Umkehrfunktion:

- Gegeben: v = f(x)
- y = f(x) nach x auflösen ergibt x = g(y)
- Variablen vertauschen ergibt y = g(x)
- g ist die Umkehrfunktion von f.

- y = 0.8x + 3:
- $y = \frac{3x}{2x-5}$:

Umkehrfunktion: Graphische Bestimmung

Methode zur graphischen Bestimmung der Umkehrfunktion: Graph von y = f(x) an der Geraden y = x spiegeln!

Abbildung: Umkehbare Funktion

Abbildung: Nicht umkehrbare Funktion

Koordinatentransformation: Beispiel

Beispiel

Abhängigkeit der Höhe von der Weite:

$$y = f(x) = 8 - \frac{g}{450} \cdot x^2 \quad (g = 9.81...)$$

Neue Formel im Fall:

- a) Abwurf 2 m höher?
- b) Abwurf 3 m weiter hinten?
- c) Angaben auf der x-Achse neu in dm statt in m angegeben?

Koordinatentransformation: Überblick

Koordinatentransformation: Verschiebung in y-Richtung

Alte Funktion:

$$y = f(x)$$

Neue Funktion:

$$y = f(x) + c$$

Koordinatentransformation: Verschiebung in x-Richtung

Alte Funktion:

$$y = f(x)$$

Neue Funktion:

$$y = f(x + c)$$

Bemerkung

Vorsicht: Die neue Funktion f(x + c) ist um c in die *negative* x-Richtung verschoben!

Koordinatentransformation: Streckung in y-Richtung

Alte Funktion:

$$y = f(x)$$

Neue Funktion:

$$y = c \cdot f(x)$$

Alte Funktion:

Überblick

$$y = f(x)$$

Neue Funktion:

$$y = f(c \cdot x)$$

Bemerkung

Vorsicht: Die neue Funktion $f(c \cdot x)$ ist um den Faktor c in x-Richtung gestaucht!