MAY 0 7 2004 SERVICE STATE OF THE SERVICE STATE OF

Ahsan, Aarif

<400> 3

gatgcacagc tggggaacaa gacg

SEQUENCE LISTING

<120> A method of detection of predisposition to high altitude pulmonary edema (HAPE)	
<130> 09755-0018US1	
<140> US 10/713,137 <141> 2003-11-13	
<160> 3	
<170> FastSEQ for Windows Version 4.0	
<210> 1 <211> 258 <212> DNA <213> Human	
<pre><400> 1 cagcggagtg atggcaagca cgacttccgg gtgtggaatg ctcagctcat ccgctatgct ggctaccaga tgccagatgg cagcatcaga ggggaccctg ccaacgtgga attcactcag gtacccggcc cagcctcagc crccggccat tggggcgggg agccccgtgg tgagcgagtg acagagtgga gcccagagga gacacgcagc ccgggcttac agactcacag ggcccgtctt gttccccagc tgtgcatc</pre>	60 120 180 240 258
<210> 2 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 2 cagcggagtg atggcaagca cgac	24
<210> 3 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

24