Outsurvival statistic

Method and application to sex differences in lifespan

Marie-Pier Bergeron-Boucher

Interdisciplinary Center on Population Dynamics (CPop) Southern Denmark University

30 september 2022

A question and a gut feeling

James W. Vaupel asked sometimes in the Fall of 2019

"What is the probability that a male outlive a female?"

"My gut feeling is 40%!"

Distance and overlap of two distributions

Outsurvival relates to the overlap between two lifespan distributions.

Figure 1: Life table age at death distributions from age 65 for French males and females, 2018

Source: Vaupel et al. 2021

Distance and overlap of two distributions

Other related studies in demography:

- Edward and Tuljapurkar 2005: Kullback-Leibler(KL) divergence.
- Shi et al. 2022 : Measure of non-overlap as stratification index.

Method

Two angles, one approach

The probability that a random individuals from population A will outlive a random individual from population B:

• The life table perspective:

$$\Phi = \int_0^\infty d^B(x) l^A(x) dx$$

• The generalized perspective:

$$\phi = \int_0^\infty f^A(x) F^B(x) dx$$

The outsurvival statistic

The latter equation relates to the first with $f^A(x) = d^A(x)$ and $F^B(x) = \int_0^x d^B(x) dx = D^B(x)$.

It can be shown that

$$\int_0^\infty d^B(x)t^A(x)dx = \int_0^\infty d^A(x)D^B(x)dx$$

Complement

$$\Phi = \int_0^\infty d^B(x)l^A(x)dx = \int_0^\infty \mu^B(x)l^B(x)l^A(x)dx$$
$$1 - \Phi = \int_0^\infty d^A(x)l^B(x)dx = \int_0^\infty \mu^A(x)l^A(x)l^B(x)dx$$

If
$$\mu^A(x) = \mu^B(x)$$

$$\phi = \int_0^\infty d(x)l(x) = \int_0^\infty \mu(x)l^2(x) = 0.5$$

Bergeron-Boucher Outsurvival 30 september 2022 9/24

If
$$\mu^A(x) = \mu$$
 and $\mu^B(x) = \mu/2$

$$e^A(0)=1/\mu$$
 and $e^B(0)=2/\mu$
$$\phi=\int_0^\infty \mu^B e^{-\mu^B x} e^{-\mu^A x} dx=\frac{\mu^B}{\mu^A+\mu^B}=\frac{1}{3}$$

10/24

Bergeron-Boucher Outsurvival 30 september 2022

Reinventing the wheel

Similar statistics have been developed in many other fields:

- Expected failure probability in a stress-strength interference model.
- Probability of superiority
- Mann-Withney U test
- etc.

Discrete approximation

$$\phi \approx \sum_{x=0}^{\omega} d^{B}(x-n)l^{A}(x) + \bar{d}$$

where \bar{d} is the probability that individuals in populations A and B died in the same age group.

$$\bar{d} = \frac{\sum_{x=0}^{\omega} d^{A}(x)d^{B}(x)}{2}$$

Application to sex differences in lifespan

Data

- Human Mortality Database (HMD), life tables by sex 44 populations since 1751.
- World Population Prospects (WPP) 2019, abridged life tables by sex – 199 populations since 1950-1954.
- United States data by sex, marital status and education in 2015-2019:
 - Multiple Cause of Death Dataset (MCDD) from the National Vital Statistics System of the National Center for Health Statistics.
 - American Community Service (ACS) from the US Census Bureau.

Trends over time

Source: Bergeron-Boucher et al. 2022

Across the world

Source: Bergeron-Boucher et al. 2022

Correlation with life expectancy and lifespan variation

Source: Bergeron-Boucher et al. 2022

Lesson from the expected failure probability

If the distributions of both populations follow a normal distribution with mean \bar{x}_i and standard deviation s_i , the probability of failure is P(Z) with:

$$Z = -\frac{\bar{x}_B - \bar{x}_A}{\sqrt{s_A^2 + s_B^2}}$$

Variation by marital status

		Female		
		Married	Unmarried	
Male	Married	0.39	0.52	
	Unmarried	0.26	0.37	

Source: Bergeron-Boucher et al. 2022

Variation by education level

		Female			
		University	High school	< high school	
	University	0.43	0.51	0.53	
Male	High school	0.32	0.39	0.42	
	< high school	0.30	0.37	0.39	

Source: Bergeron-Boucher et al. 2022

Conclusive remarks

- How distinct are two lifespan distribution? vs How different are the mean lifespans?
- Overlap in lifespan distributions as results of their heterogeneity.
- Outsurvival statistics informative for public policies.

Possible extensions and future applications

- Outsurvival statistic for correlated/dependent populations.
- Outsurvival statistic for more than two populations.
- Applications to causes of death.
- Applications to income distribution, age-at-first-birth distribution, etc.
- And more...

Thank you! mpbergeron@sdu.dk

References

- Bergeron-Boucher, M. P., Alvarez, J. A., Kashnitsky, I., & Zarulli, V. (2022). Probability of males to outlive females: an international comparison from 1751 to 2020. BMJ open, 12(8), e059964.
- Edwards, R. D., & Tuljapurkar, S. (2005). Inequality in life spans and a new perspective on mortality convergence across industrialized countries. Population and Development Review, 31(4), 645-674.
- HMD. Human mortality database: University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany), 2021. Available: www.mortality.org [Accessed 15 Jul 2021].
- NCHS. National center for health statistics, multiple cause of death file 2015-2019: national vital statistics system, Washington D.C., United States, 2022. Available: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm#Mortality_Multiple [Accessed 13 Jan 2022].
- Shi, J., Aburto, J. M., Martikainen, P., Tarkiainen, L., & van Raalte, A. (2022). A distributional approach to measuring lifespan stratification. Population Studies, 1-19.
- United Nations. World Population Prospects 2019, online edition. rev.1.: Department of Economic and Social Affairs, Population Division, 2019. Available: https://population.un.org/wpp/Download/Standard/Mortality/ [Accessed 21 May 2022].
- U.S. Census Bureau. 2015-2019 American Community Survey 5-year estimates Public Use Microdata Sample, 2022.
 Available: https://data.census.gov/mdat/#/search?ds=ACSPUMS5Y2019 [Accessed 13 Jan 2022].
- Vaupel, J. W., Bergeron-Boucher, M. P., & Kashnitsky, I. (2021). Outsurvival as a measure of the inequality of lifespans between two populations. *Demographic Research*, 44, 853-864.