Misurazione Implicita in Psicologia Analizzare i dati IAT

Ottavia M. Epifania ottavia.epifania@unipd.it

Master di II Livello Psicologia quantitativa. Misurazione, valutazione e analisi di variabili psicosociali

22 Luglio 2022, Padova

Contenuti

① DScoreApp

implicitMeasures

Letture

Cosa usiamo

- download e seguire le istruzioni di installazione
- R Studio e seguire le istruzioni di installazione download

- per analizzare rapidamente e facilmente i dati (non serve installazione)
- Il pacchetto implicitMeasures di R

Disclaimer

Le illustrazioni seguenti assumono che sia stato usato Inquisit per raccogliere i dati

I dati che verranno usati per gli esempi sono disponibili qui

In entrambi i casi, si tratta dei dati raccolti su 142 partecipanti da uno IAT sul pregiudizio razziale

Sono state raccolte anche misure esplicite (i.e., orientamento politico e atteggiamento verso le persone Bianche e di colore)

Sia la app sia il pacchetto possono essere usati con data set ricavati da altri software

DScoreApp

DscoreApp è la soluzione migliore per calcolare i punteggi IAT in modo rapido e semplice

Pro

- Molto facile da usare
- Documentazione molto chiara e manintainer disponibile ad aiutare
- Si possono ispezionare i risultati durante il loro stesso calcolo
- Si può familiarizzare con la app attraverso un data set "giocattolo" interno alla app stessa

Contro

- I dati vanno preparati con software esterni (e.g., Excel)
- Si può calcolare solo un D score alla volta
- Se si vuole indagare la relazione tra misure implicite ed esplicite bisogna unire manualmente i data set su Excel (o altro)

DScoreApp

DScoreApp

DScoreApp

DScoreApp

Il data set deve essere salvato in csv e deve essere organizzato in 4 colonne, come segue:

- participant: Contiene gli ID dei partecipanti
- block: Contiene le etichette che identificano i blocchi dello IAT (pratica e test compatibile, pratica e test incompatibile)
- latency: Contiene i tempi di risposta
- correct: Contiene le risposte di accuratezza

Il data set

Da Inquisit solitamente si ottiene un file .dat:

```
shinyData.dat - Notepad
File Edit Format View Help
       time
               build subject blocknum
                                                blockcode
                                                                trialnum
                                                                                                 response
                                                                                                                 correct latency stimulusitem1
               3.0.6.0 1
                                                                consenso
                                                                                                                                                                 27280 0
121318 09:55
                                                                                Disponibile a partecipare alla ricerca nei termini sopra indicati
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                                reminder
                                                                                                        Controlla le categorie - premi SPAZIO per cominciare
               3.0.6.0 1
121318 09:55
                                        WhiteBlack
                                                                PlainWhiteleft 18
               3.0.6.0 1
121318 09:55
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                        bm56.ipg
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                                PlainWhiteleft 18
                                                                                                         wml.jpg
121318 09:55
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                         bf14.jpg
121318 09:55
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                         bm14.jpg
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                736
                                                                                                         bm23.jpg
121318 09:55
                                        WhiteBlack
                                                                PlainWhiteleft 18
                                                                                                         wf3.jpg
                                        WhiteBlack
                                                                PlainWhiteleft 23
                                                                                                         wm6.jpg
121318 09:55
                                        WhiteBlack
                                                                PlainWhiteleft 18
                                                                                                1380
                                                                                                        wf2.jpg
121318 09:55
                3.0.6.0 1
                                        WhiteBlack
                                                                PlainWhiteleft 18
                                                                                                         wm4.jpq
121318 09:55
                3.0.6.0 1
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                 704
                                                                                                        bf56.jpg
121318 09:55
                3.0.6.0 1
                                                                                                        bf23.jpg
                                        WhiteBlack
                                                                PlainBlackright 23
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                762
                                                                                                        bf14.jpg
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                         bm14.jpg
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                1096
                                                                                                        bf56.jpg
               3.0.6.0 1
                                        WhiteBlack
                                                                PlainBlackright 23
                                                                                                1033
121318 09:55
                                                                                                        bm56. pg
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                                PlainWhiteleft 18
                                                                                                967
                                                                                                         wm4.ipq
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                        36
                                                                PlainWhiteleft 18
                                                                                                         wf2.ipa
                                                                                                1139
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                        38
                                                                PlainWhiteleft 18
                                                                                                         wml.ipo
121318 09:55
               3.0.6.0 1
                                        WhiteBlack
                                                                PlainWhiteleft 18
                                                                                                719
                                                                                                         wf3.ipa
121318 09:55
               3.0.6.0 1
                                        badgood 1
                                                                                        3234
                                                        reminder
                                                                                                Controlla le categorie - premi SPAZIO per cominciare
121318 09:55
               3.0.6.0 1
                                        badgood 2
                                                        Plainbadleft
                                                                        18
                                                                                        1090
                                                                                                cattivo
121318 09:55
               3.0.6.0 1
                                        badgood 4
                                                        Plainbadleft
                                                                        18
                                                                                        675
```

Si può copia & incollare in un file Excel. Se non si ha la virgola settata di default come separatore di colonne:

 $Dati \rightarrow Testo \ in \ colonne \rightarrow Delimitato \rightarrow virgola$

Per l'esercitazione su shiny, usate questo data set

Si possono cancellare le colonne che non servono

- date
- time
- build

La prima colonna che ci interessa è blockcode. Usando la funzione filtro si possono vedere tutti i valori contenuti nella colonna

I bloccchi che servono sono i blocchi "critici" dello IAT

- PracticeWhitegood
- TestWhitegood
- PracticeWhitebad
- TestWhitebad

I bloccchi che servono sono i blocchi "critici" dello IAT

- PracticeWhitegood
- TestWhitegood
- PracticeWhitebad
- TestWhitebad

White-Good/Black-Bad Condition (MappingA)

I bloccchi che servono sono i blocchi "critici" dello IAT

- PracticeWhitegood
- TestWhitegood
- PracticeWhitebad
- TestWhitebad

White-Good/Black-Bad Condition Black-Good/White-Bad Condition (MappingA) (MappingB)

Si selezionano i blocchi di interesse....Eliminado tutti gli altri!

Dal filtro sulla colonna blockcode, si selezionano tutti i blocchi tranne PracticeWhitegood, TestWhitegood, PracticeWhitebad, TestWhitebad:

Evidenziare e cancellare tutte le righe che rimangono dopo l'applicazione del filtro

Vedrete sparire tutte le righe... Niente panico!

Togliete il filtro dalla colonna blockcode

trialcode

Dopo avere selezionato i blocchi che ci interessano, ci potrebbero ancora essere dei trial che sono parte dell'esperimento ma che non servono per il calcolo del D score (e.g., reminders, instructions)

Mettete un filtro sulla colonna trialcode e selezionate tutti i trial non rilevanti:

trialcode

Selezionate tutte le righe che sono rimaste dopo che avete applicato il filtro

Cancellatele

(Niente panico)

Togliete il filtro dalla colonna trialcode

Ultimi ritocchi al dataset

Togliete ogni filtro rimasto dalle colonne

Togliete tutte le colonne non necessarie (blocknum, trialnum, trialcode, response, stimulusitem1)

Rinominate tutte le colonne rimaste a seconda delle istruzioni della app:

- ullet subject o participant
- blockcode \rightarrow block
- latency \rightarrow latency
- correct → correct

Il look finale

Δ	Α	В	С	D	Е		
1	participant	block	correct	latency			
2	1	PracticeWhitebad	1	725			
3	1	PracticeWhitebad	1	1052			
4	1	PracticeWhitebad	1	1517			
5	1	PracticeWhitebad	1	767			
6	1	PracticeWhitebad	1	985			
7	1	PracticeWhitebad	1	708			
8	1	PracticeWhitebad	1	689			
9	1	PracticeWhitebad	1	719			
10	1	PracticeWhitebad	1	550			
11	1	PracticeWhitebad	1	1101			
12	1	PracticeWhitebad	1	918			
13	1	PracticeWhitebad	1	812			
14	1	PracticeWhitebad	1	717			
15	1	PracticeWhitebad	1	1028			
16	1	PracticeWhitebad	1	823			
17	1	PracticeWhitebad	1	843			
18	1	PracticeWhitebad	1	764			
19	1	PracticeWhitebad	1	651			
20	1	PracticeWhitebad	1	1076			

Il file deve essere salvato in .csv con la virgola settata come separatore di colonna

La virgola come separatore di colonna è un dettalio estremamente importante perché altrimenti la app non funziona ma soprattutto non vi dirà perché non funziona

Importare il data set

Cercate il file nel vostro computer e selezionatelo. Verrò caricato automaticamente

Preparate il dataset (sì, di nuovo)

Per cambiare l'ordine con cui viene calcolato il D score (i.e., M(A) - M(B) vs. $M(B) - M(A) \rightarrow$ selezionate le etichette corrispondenti all'ordine che volete seguire

Una volta selezionate le etichette desiderate \rightarrow click su "Prepare data" e aspettate che appaia il messaggio "Data are ready"

Selezionate il D score

Selezionate il D score che volete calcolare dal drop down menu, click su "Calculate & Update"... ed è fatta! I D score dei partecipanti appariranno a breve nel "Results panel"

(default) Results panel

Divertitevi con le rappresentazioni grafiche e le impostazioni

Download

Una volta finito \rightarrow Potete scaricare i risultati in un file .csv (Il file ha la virgola come separatore di colonna)

Il nome del file contiene l'etichetta dell'ultimo D score calcolato

Ad esempio, se D3 è l'ultimo algoritmo che è stato calcolato, il nome del file sarà: ShinyAPPDscore3.csv

implicitMeasures

implicitMeasures

Pro

- Molto facile da usare (se sapete usare R = 1)
- Ben documentato e la maintainer è sempre disponibile
- Si possono calcolare diversi D scores insieme
- Calcola il D score anche per il SC-IAT
- Il calcolo del D score ed eventuali altre analisi avvengono tutte nello stesso posto

Contro

- Richiede una medio-buona conoscenza di R

Install & Upload

Installare il pacchetto:

> install.packages("implicitMeasures")

Caricare il pacchetto:

> library(implicitMeasures)

Siete pronti/e

Importare il data set

Bisogna importare il file .dat ottenuto da Inquisit (il file è disponibile qui):

```
> data = read.table("IATdata.dat", header=TRUE, sep = "\t")
```

> head(data)

```
date time build subject blocknum blockcode trialnum
1 121318 09:55 3.0.6.0
                                          consenso
2 121318 09:55 3.0.6.0
                                     19 WhiteBlack
3 121318 09:55 3.0.6.0
                                     19 WhiteBlack
                                                             PlainW
4 121318 09:55 3.0.6.0
                                     19 WhiteBlack
                                                          4 PlainBl
5 121318 09:55 3.0.6.0
                                     19 WhiteBlack
                                                          6 PlainW
6 121318 09:55 3.0.6.0
                                     19 WhiteBlack
                                                          8 PlainBl
                                                           response
```

 ${\tt 1} \ {\tt Disponibile} \ {\tt a} \ {\tt partecipare} \ {\tt alla} \ {\tt ricerca} \ {\tt nei} \ {\tt termini} \ {\tt sopra} \ {\tt indicati}$

2 57

3 18 4 23

ς Ottavia M. Epifania ottavia.epifania Misurazione Implicita in Psicologia 22 Luglio 2022, Padova

> table(data\$blockcode)

PracticeWhit	demografica	consenso	badgood
	852	147	5985
WhiteB	TestWhitegood	TestWhitebad	PracticeWhitegood
	5863	5822	3003
			WhiteBlack2nd
			3003

We have a lot of stuff to get rid of....

trialcode

> table(data\$trialcode)

]	occupazio	età	edu	consenso
	142	142	142	147
Pla	PlainWhiteleft	Plaingoodright	PlainBlackright	PlainBlackleft
	3560	7125	3561	3575
	reminder1	reminder	pol2	pol1
	285	857	142	142

Preparare il data set

```
> data clean = clean iat(
    data,
                        # nome del data set
    sbj_id = "subject", # colonna con gli ID dei soggetti
+
    block_id = "blockcode", # Colonna con le etichette dei blocchi
+
   mapA practice = "PracticeWhitegood",
+
   mapA_test = "TestWhitegood",
   mapB_practice = "PracticeWhitebad",
+
   mapB_test = "TestWhitebad",
+
+
    latency_id = "latency", # colonna delle latenze
    accuracy id = "correct", # colonna delle accuratezze
+
+
    trial_id = "trialcode",  # colonna con le etichette dei trial
    trial_eliminate = c("reminder", "reminder1"), # trial da eliminare
+
    demo id = "blockcode", # colonna con le etichette dei blocchi
+
    trial_demo = "demografica" # etichette dei trial demografica
+
+ )
```

Cosa contiene data clean?

- > names(data_clean)
- [1] "data_keep" "data eliminate" "demo"
 - data keep: il data set su cui viene calcolato il D (con classe data.frame, iat clean)
 - data eliminate: I trial che sono stati scartati
 - demo: Il data set che contiene le informazioni socio-demografiche

```
Cosa contiene data clean?
```

- > names(data_clean)
- [1] "data_keep" "data_eliminate" "demo"
 - data keep: il data set su cui viene calcolato il D (con classe data.frame, iat clean)
 - data eliminate: I trial che sono stati scartati
 - demo: Il data set che contiene le informazioni socio-demografiche

Se esportate l'oggetto data_keep in .csv, lo potete usare in DScoreApp!

- write.table(data_clean[[1]], "cleanIAT.csv",
- sep = ", ",row.names = FALSE)

Calcolare il D score

```
> iat = data_clean[[1]] # selezionare il data set pulito
usando la funzione compute_iat() e specificando l'algoritmo desiderato:
> d3 = compute_iat(iat, # il data set pulito
                     Dscore = "d3") # l'alooritmo desidearto
+
> head(d3[, 1:5]) # prime 5 colonne
  participant n_trial nslow10000 nfast400 nfast300
1
                  120
                                     0.01
2
                  120
                                     0.03
3
            3
                  120
                                     0.14
4
                  120
                                     0.07
5
            5
                                     0.00
                  120
```

0

120

6

0.00

> head(d3[, 6:10]) # colonna da 6 a 10

	accuracy.practice_MappingA	accuracy.practice_MappingB	accuracy.tes
1	1.00	1.00	
2	1.00	0.95	
3	0.95	0.75	
4	1.00	0.95	
5	0.95	1.00	
6	0.95	0.90	

	accuracy.test_MappingB	accuracy.MappingA
1	0.950	0.9833333
2	1.000	0.9833333
3	0.900	0.9000000
4	0.950	0.9666667
5	0.925	0.9333333
6	0 975	0 9166667

> head(d3[, 11:15]) # colonna da 11 a 15

```
accuracy. MappingB RT_mean. MappingA RT_mean. MappingB mean_practice
                                                738,7075
1
          0.9666667
                             597.6649
2
          0.9833333
                             598.3324
                                               649.2085
3
          0.8500000
                                               721.7637
                             575.2006
4
          0.9500000
                             606.2957
                                                645.4930
5
          0.9500000
                             849.8184
                                               1011.9773
6
          0.9500000
                             914.6978
                                                981.7482
 mean test MappingA
1
            585.7973
2
            589.5736
3
            585.2044
4
            618.3685
5
            695.3284
```

911.1501

6

> head(d3[, 16:19]) # colonna da 16 a 19

	mean_practice_MappingB	mean_test_MappingB	$d_practice_d3$	d_test_d
	l 851.5500	682.2862	1.00062841	0.6082558
:	2 840.5754	553.5250	0.62762704	-0.231817
;	973.0089	596.1411	1.16298569	0.0550429
4	1 746.2660	595.1065	0.70572685	-0.1628654
į	1134.5500	950.6909	-0.04599615	0.691086
(1152.3929	896.4259	0.50668795	-0.034255

> head(d3[, 20:21]) # colonna 20 e 21

dscore_d3 cond ord

- 1 0.8044421 MappingB First
- 2 0.1979047 MappingA_First
- 3 0.6090143 MappingB First
- 4 0.2714307 MappingA First
- 5 0.3225454 MappingA_First
- 6 0.2362163 MappingB_First

> head(d3[, 22:23]) # colonna 22 e 23

legendMappingA

legendMapp

- 1 PracticeWhitegood and TestWhitegood PracticeWhitebad and TestWhite
- 2 PracticeWhitegood and TestWhitegood PracticeWhitebad and TestWhite 3 PracticeWhitegood and TestWhitegood PracticeWhitebad and TestWhite
- 4 PracticeWhitegood and TestWhitegood PracticeWhitebad and TestWhite
- 5 PracticeWhitegood and TestWhitegood PracticeWhitebad and TestWhite
- 6 PracticeWhitegood_and_TestWhitegood PracticeWhitebad_and_TestWhite

Distribuzioni

```
d_density(d3,
          graph =
  "violin")
```


Punti

```
> d_point(d3, x_values =
   FALSE,
          order_sbj =
    "D-increasing")
```

Diversi algoritmi allo stesso tempo

```
> dscores = multi_dscore(iat, # data set pulito
                         ds = "error-inflation") # quali
+
  algoritmi
Attenzione!
> names(dscores)
[1] "dscores" "graph"
```

> head(dscores[[1]])

> dscores[[2]]

Ci siamo dimenmicati di demo...?

```
> demo raw = data clean[[3]] # data set con le info. demografiche
> str(demo_raw)
'data.frame': 852 obs. of 12 variables:
               : int 121318 121318 121318 121318 121318 121318 12
$ date
               : chr "09:55" "09:55" "09:55" "09:55" ...
$ time
$ build
               : chr "3.0.6.0" "3.0.6.0" "3.0.6.0" "3.0.6.0" ...
               : int 1111112222...
$ participant
$ blocknum
               : int
                     57 57 57 57 57 57 57 57 57 57 ...
$ blockcode
               : chr "demografica" "demografica" "demografica" "de
                     1 1 1 1 4 4 1 1 1 1 ...
$ trialnum
               : int
$ trialcode
               : chr
                     "sesso" "età" "occupazio" "edu" ...
               : chr "Maschio" "21" "stud" "sup" ...
$ response
$ correct
               : int
                     1111111111...
$ latency
               : int
                     19185 19185 19185 19185 28866 28866 24586 24
                     "0" "0" "0" "0" ...
$ stimulusitem1: chr
```

Selezioniamo solo le colonne che servono:

"Giriamo" il data set

In modo che soggetto sia su una riga singola:

```
> demo <- reshape(demo_raw,</pre>
                 timevar = "trialcode",
+
                 idvar = "participant",
+
                  direction = "wide")
> str(demo)
'data.frame': 142 obs. of 7 variables:
 $ participant : int 1 2 3 4 5 6 7 8 9 10 ...
 $ response.sesso : chr "Maschio" "Maschio" "Femmina" "Fer
                           "21" "31" "21" "21" ...
 $ response.età : chr
 $ response.occupazio: chr "stud" "stud" "stud" "stud" ...
 $ response.edu : chr "sup" "magistrale" "sup" "sup" ...
 $ response.pol1 : chr
                           "3" "3" "3" "2" ...
                           "2" "5" "2" "3" ...
 $ response.pol2 : chr
```

Sistemiamo il dataset

```
> colnames(demo) <- gsub("response.", '', colnames(demo))</pre>
> demo[, c(3, 6:7)] \leftarrow apply(demo[, c(3, 6:7)], 2, as.integer)
> str(demo)
'data.frame': 142 obs. of 7 variables:
$ participant: int 1 2 3 4 5 6 7 8 9 10 ...
$ sesso : chr "Maschio" "Maschio" "Femmina" "Femmina" ...
$ età : int 21 31 21 21 20 20 19 20 20 ...
$ occupazio : chr "stud" "stud" "stud" "stud" ...
$ edu : chr "sup" "magistrale" "sup" "sup" ...
$ pol1 : int 3 3 3 2 4 3 2 3 3 3 ...
             : int 2523423212...
$ pol2
```

Qualche info

- participant: ID dei partecipanti
- sesso: Sesso dei partecipanti
- età: Età
- occupazio: Occupazione (stud, stud/lav, lavD, lavA, dis)
- edu: Istruzione (sup, magistrale, triennale, dottorato)
- pol1: Atteggiamento verso le persone Bianche/di colore (1 = Preferisco molto le persone bianche rispetto alle persone di colore, 6=Preferisco molto le persone nere rispetto alle persone bianche)
- pol2: Orientamento politico (1 Left wing orientation, 6 Right wing orientation)

Unire demo with d3

```
> d3complete = merge(d3, # data set con i D score
      +
                                                                            demo, # data set con le info. demografiche
                                                                            by = "participant") # id della variabole per
      +
                unire
      > str(d3complete[17:29])
       'data.frame': 142 obs. of 13 variables:
         $ mean test MappingB: num 682 554 596 595 951 ...
         $ d_practice_d3
                                                                            : num
                                                                                                   1.001 0.628 1.163 0.706 -0.046 ...
         $ d test d3
                                                                                                   0.608 -0.232 0.055 -0.163 0.691 ...
                                                                            : num
         $ dscore d3
                                                                                                   0.804 0.198 0.609 0.271 0.323 ...
                                                                            : niim
         $ cond_ord
                                                                            : chr
                                                                                                   "MappingB_First" "MappingA_First" "Mapp
         $ legendMappingA : chr
                                                                                                   "PracticeWhitegood and TestWhitegood" "
         $ legendMappingB : chr
                                                                                                   "PracticeWhitebad and TestWhitebad" "PracticeWhitebad" "PracticeWhiteb
         $ sesso
                                                                             : chr
                                                                                                 "Maschio" "Maschio" "Femmina" "Femmina"
         $ età
                                                                             : int
                                                                                                   21 31 21 21 21 20 20 19 20 20 ...
         $ occupazio
                                                                             : chr
                                                                                                   "stud" "stud" "stud" "stud" ...
                                                                                                   "sup" "magistrale" "sup" "sup" ...
         $ edu
                                                                             : chr
Ottavia M. Epifania ottavia.epifania Misurazione Implicita in Psicologia 22 Luglio 2022, Padova 49/53
```

Calcolo delle correlazioni

```
> correlazioni <- data.frame(cor(d3complete[,</pre>
                                                 c("dscore d3",
   "pol1", "pol2")]))
> correlazioni <- round(correlazioni, 2)</pre>
> correlazioni[upper.tri(correlazioni, diag = TRUE)] <- ""</pre>
```

Results are in Table 1:

Table 1: Race IAT correlations

	$dscore_d3$	pol1	pol2
$dscore_d3$			
pol1	0		
pol2	0.12	-0.34	

> cor.test(~ pol1 + dscore_d3, data = d3complete)

Significatività delle correlazioni

```
Pearson's product-moment correlation
     pol1 and dscore d3
t = 0.03199, df = 140, p-value = 0.9745
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.1620959 0.1673563
sample estimates:
        cor
0.002703599
```

Letture

DScoreApp:

Epifania, O. M., Anselmi, P., & Robusto, E. (2020). Dscoreapp: A shiny web application for the computation of the implicit association test D score. Frontiers in Psychology, 10, 2938. doi: 10.3389/fpsyg.2019.02938

implicitMeasures:

Epifania, O. M., Anselmi, P., & Robusto, E. (2020). plicit measures with reproducible results: The implicit measures package. Journal of Open Source Software, 5(52), 2394. doi: 10.21105/joss.02394