

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01			
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5			
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129			
Název projektu	SŠPU Opava – učebna IT			
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)			
Název sady vzdělávacích materiálů:	SPS II			
Popis sady vzdělávacích materiálů:	Stavba a provoz strojů II, 2. ročník			
Sada číslo:	C-07			
Pořadové číslo vzdělávacího materiálu:	03			
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_C-07-03			
Název vzdělávacího materiálu:	Šroubové spoje			
Zhotoveno ve školním roce:	2011/2012			
Jméno zhotovitele:	Ing. Hynek Palát			

Šroubové spoje

Materiál šroubů a matic

Normalizované šrouby a matice jsou vyráběny nejčastěji z konstrukčních ušlechtilých nízkolegovaných ocelí a materiál se udává značkami. Každá značka se skládá ze dvou čísel vzájemně oddělených tečkou. První číslo udává 1/100 meze pevnosti daného materiálu šroubu v MPa, druhé číslo udává desetinásobek poměru meze kluzu a meze pevnosti. Násobením obou čísel dostaneme 1/10 meze kluzu materiálu šroubu v MPa.

Ve starší výkresové dokumentaci se ještě docela běžně setkáváme i s dříve platnými značkami šroubů a matic. Tyto značky se skládaly z čísla a písmena. Číslo se významově prakticky shodovalo s prvním číslem dnešního označování, písmeno se vztahovalo na poměr meze pevnosti a meze kluzu a na tažnost materiálu.

Běžně užívané značky materiálu šroubů jsou v tabulce:

dřívější značka	4D	5D	5S	8G	10K	12k
dnešní značka	4.6	5.6	6.6	8.8	10.9	12.9
mez kluzu (MPa)	240	300	360	640	900	1080
mez pevnosti (MPa)	400	500	500	800	1000	1200

Druhy šroubových spojů

Na obrázcích jsou nejběžnější příklady užití šroubových spojů.

Rozložení sil v závitu

Pro odvození sil v závitech šroubu využíváme poznatky o smykovém tření, které byly odvozeny v mechanice. Závit je v podstatě nakloněnou třecí rovinou, stočenou do tvaru válce. Rozteč závitu určuje stoupáním této nakloněné roviny. Síly v závitu šroubu jsou

F_o – osová síla;

F₁ – obvodová síla;

 γ je úhel stoupání závitu.

Rovnováha bez tření

$$F_1 = F_0 \cdot \tan \gamma$$

kde $\tan \gamma = \frac{P}{\pi \cdot d_2}$

Utahování s třením

$$F_1 = F_0 \cdot \tan(\gamma + \varphi)$$

kde φ je třecí úhel

 F_1 je skutečná obvodová síla při

utahování.;

Uvolňování s třením

$$F_1 = F_0 \cdot \tan(\gamma - \varphi)$$

kde φ je třecí úhel

 ${\it F}_{1}$ je skutečná obvodová síla při

uvolňování.

K výše uvedeným výpočtům musíme ještě doplnit několik skutečností:

Mezi koeficientem smykového tření a třecím úhlem platí vztah $f = \tan \varphi$

Pro $\varphi=\gamma$ je F_t = 0. Protože u většiny šroubů je $\varphi>\gamma$, jejich F_t je pak záporná a tyto šrouby jsou samosvorné.

Určitá komplikace je u běžných metrických závitů, kde je nutno uvažovat se součinitelem tření v klínové drážce f'.

$$f^{I} = \tan \varphi^{I} = \frac{\tan \varphi}{\csc \frac{\alpha}{2}}$$

V praxi tedy zavedeme v rovnicích φ^I místo φ a osová síla F_o pak vlastně bude silou předpětí, které vznikne utažením šroubového spoje.

Utahovací moment

Při utahování nebo povolování šroubového spoje je třeba překonat moment tření v závitech, který je vyvolaný utahovacím momentem:

$$M_{UT} = F_o \cdot \frac{d_2}{2} \cdot \tan(\gamma + \varphi^I)$$

Pro běžné spojovací šrouby platí zjednodušená forma vzorce:

$$M_{IJT} = 0.18 \cdot F_o \cdot d$$

Pevnostní výpočet šroubů a matic

Běžné šrouby s výjimkou šroubů lícovaných jsou zpravidla namáhány osovou sílou na **tah**. Platí tedy u nich tahová pevnostní podmínka, při které ale zohledňujeme vrubový účinek závitů.

$$\sigma_t = \frac{F_{\S}}{S} \le \sigma_{t \, DOV}$$

Za plochu průřezu šroubu S pak musíme dosadit:

$$S = \frac{\pi}{4} \left(\frac{d_2 + d_3}{2} \right)^2$$

Nosná plocha průřezu šroubu je tedy určena vnitřním průřezem závitu zvětřeným o ¼ šířky závitu. Vlivem vrubové účinnosti dochází totiž v kořenech závitů ke koncentraci napětí, což je nutné při výpočtu zohlednit. Rozložení napětí v dříku šroubu znázorňuje následující obrázek:

Koncentrace napětí je příčinou většiny únavových lomů šroubů. K nim dochází v případech, kdy je šroub cyklicky namáhán (až desetitisíce cyklů). V praxi k destrukci šroubů dochází především v místě dotažení matice. Příčinou je hlavně únava materiálu. Nejsou výjimkou ani lomy šroubů v místě ukončení závitu nebo pod hlavou.

Obrázek ukazuje na místa výskytu únavových lomů a jejich četnost.

Kromě výpočtu velikosti šroubu z pevnostní podmínky je třeba ještě provést kontrolu tlaku mezi závity šroubu a matice, anebo se z dovoleného tlaku vypočte výška matice.

Tlak v závitu:

$$\sigma_{DOV} \geq \frac{F_o}{z \cdot \pi \cdot d_2 \cdot H}$$

kde **z** je počet závitů;

H je nosná hloubka závitu (viz. obrázek na další stránce).

Pro výpočet minimální výšky matice pak platí:

$$z = \frac{F_o}{\pi \cdot d_2 \cdot H \cdot \sigma_{DOV}}$$
$$m = z \cdot P$$

kde *m* je výška matice;

P je rozteč závitu.

Lícované šrouby jsou vždy namáhány radiálními silami na **smyk**. Jejich výpočet je identický s pevnostním výpočtem čepů a kolíků. Je vysvětlen v kapitole kolíky a čepy.

Pojištění šroubových spojů proti samovolnému uvolnění

V běžné praxi může velmi snadno dojít k uvolnění i dotaženého šroubového spoje. Příčinou jsou obvykle otřesy strojů během provozu a různé vibrace. Je proto nutné šroubové spoje zajišťovat. Nejběžnější způsoby jsou na níže uvedených obrázcích:

Opakovací otázky a úkoly

- Nakreslete alespoň tři druhy šroubových spojů.
- Popište rozložení sil na závitu šroubu bez tření, při utahování i při uvolňování spoje.
- Proveďte odvození pevnostního výpočtu běžného i lícovaného šroubu a odvození výpočtu výšky matice.
- Jakými způsoby šroubové spoje zajišťujeme proti samovolnému uvolnění?

Seznam použité literatury

- KŘÍŽ, R. a kol.: Stavba a provoz strojů I, Části strojů. Praha: SNTL, 1977.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 3. doplněné vydání. Praha: Albra, 2006. ISBN 80-7361-033-7.