Отчет по лабораторной работе No.8

Дисциплины: Архитектура компьютера

Нджову Нелиа

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16
Сп	исок литературы	17

Список иллюстраций

3.1	Рис 1	•	•	•	•	•					•	•			•	•	•	•	•	•	•	•		•	•	•	•	7
3.2	Рис 2																											8
3.3	Рис 3																											8
3.4	Рис 4																											9
3.5	Рис 5																											9
3.6	Рис 6		•													•								•				10
3.7	Рис 7																										•	10
3.8	Рис 8		•			•											•	•		•				•				10
3.9	Рис 9		•			•											•	•		•				•				11
3.10	Рис 10		•								•					•								•		•		11
3.11	Рис 11												•				•		•	•	•				•			12
3.12	Рис 12		•								•					•								•		•		12
3.13	Рис 13		•								•					•								•		•		12
3.14	Рис 14	•	•	•	•	•	•	•	•	•		•			•	•	•	•	•	•	•			•	•	•	•	13
3.15	Рис 15		•								•					•								•		•		13
3.16	Рис 16		•								•					•								•		•		13
3.17	Рис 17		•								•					•								•		•		14
3.18	Рис 18																											14

Список таблиц

1 Цель работы

Целью лабораторной работы является приобретение навыков написания программ с использованием циклов и обработки аргументов командной строки.

2 Задание

- 1. Реализация циклов в NASM
- 2. Обработка аргументов командной строки
- 3. Задание для самостоятельной работы

3 Выполнение лабораторной работы

1. Реализация циклов в NASM

Я создам каталог для программ лабораторных работ 8, зайду в него и создам файл lab8-1.asm(рис 1)

```
nelianjovu@nelianjovu-Aspire-57556:~$ mkdir ~/work/arch-pc/lab08
nelianjovu@nelianjovu-Aspire-57556:~$ cd ~/work/arch-pc/lab08
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ touch lab8-1.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ls
lab8-1.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$
```

Рис. 3.1: Рис 1

При реализации циклов в NASM с помощью инструкции цикла важно помнить, что эта инструкция использует регистр есх в качестве счетчика и уменьшает его значение на единицу на каждом шаге. Теперь я открою созданный мной файл, затем скопирую и изучу текст данной программы(рис 2)

Рис. 3.2: Рис 2

Теперь я создам исполняемый файл и запущу его(рис 3)

Рис. 3.3: Рис 3

Я изменю текст программы, меняя в цикле значение регистра есх(рис 4)

Рис. 3.4: Рис 4

Я создам исполняемый файл и проверю его работу(рис 5)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-
1 lab8-1.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 4
3
1
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$
```

Рис. 3.5: Рис 5

Когда я запускаю программу, она отображает значения 3 и 1, количество циклов не соответствует значению п

Чтобы использовать регистр есх в цикле и обеспечить правильную работу программы, мне нужно использовать стек. Поэтому я внесу изменения в текст программы, добавив команды push и рор (добавление в стек и извлечение из стека), чтобы сохранить значение счетчика цикла(рис 6)

Рис. 3.6: Рис 6

Я создам исполняемый файл и проверю его работу(рис 7)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-
1 lab8-1.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ./lab8-1
Bведите N: 4
3
2
1
0
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$
```

Рис. 3.7: Рис 7

B этом случае количество проходов цикла соответствует значению N, введенному с клавиатуры

2. Обработка аргументов командной строки

Я создам файл lab8-2.asm с помощью команды touch(рис 8)

```
0
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ touch lab8-2asm
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$
```

Рис. 3.8: Рис 8

Когда вы запускаете программу, аргументы располагаются в стеке, поэтому, чтобы использовать аргументы в программе, их просто нужно извлечь из стека. Аргументы должны обрабатываться в цикле. Сначала вам нужно извлечь количество аргументов из стека, а затем просмотреть логику программы для каждого аргумента. Чтобы показать это, я скопирую данную программу в файл, который я только что создал(рис 9)

Рис. 3.9: Рис 9

Я создам исполняемый файл и проверю его работу(рис 10)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-
2 lab8-2.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ./lab8-2
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ./lab8-2 4 5 3
4
5
3
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$
```

Рис. 3.10: Рис 10

Я ввела три аргумента, и программа обработала количество введенных мной

аргументов.

Я создам файл lab8-2.asm с помощью команды touch(рис 11)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ touch lab8-3.asm
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$
```

Рис. 3.11: Рис 11

Я открою его и скопирую в него заданную программу, программа отображает сумму чисел, которые передаются программе в качестве аргументов(рис 12)

Рис. 3.12: Рис 12

Я создам исполняемый файл и проверю его работу(рис 13)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ ./lab8-3 4 5 3
Результат: 12
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$
```

Рис. 3.13: Рис 13

Я изменю программу так, чтобы она вычисляла произведение аргументов командной строки(рис 14)

Рис. 3.14: Рис 14

Я создам исполняемый файл и проверю его работу(рис 15)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ ./lab8-3 4 5 3 Результат: 60 nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$
```

Рис. 3.15: Рис 15

3. Задание для самостоятельной работы

Я создам файл lab8-4.asm с помощью команды touch(рис 16)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$ touch lab8-4.asm
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab08$
```

Рис. 3.16: Рис 16

В созданном мной файле я напишу программу, которая находит сумму значений функции f(x) для x = x1, x2,x3.... и т. д. Программа должна вывести значение f(x1) + f(x2) + ... + f(xn). Значения x передаются в качестве аргументов. Тип функции f(x) я выберу из данной таблицы вариантов задания в соответствии с вариантом, полученным мной в ходе лабораторной работы 6.Мой вариант — вариант 14;f(x) = 7(x+1)(рис 17)

Рис. 3.17: Рис 17

Я создам исполняемый файл и проверю его работу(рис 18)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-
4 lab8-4.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$ ./lab8-4 4 5 3
f(x) = 7(x + 1)
Результат: 105
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab08$
```

Рис. 3.18: Рис 18

Текстовая программа для самостоятельной работы

%include 'in_out.asm'

SECTION .data

 $msg1 db "f(x) = 7(\boxtimes + 1) ",0$

msg db "Результат: ",0

SECTION .text

global _start

_start:

mov eax,msg1

call sprintLF

pop ecx

pop edx

sub ecx,1

mov esi,0

next:

cmp ecx, 0

jz _end

pop eax

call atoi

add eax,1

mov ebx,7

mul ebx

add esi,eax

loop next

_end:

mov eax, msg

call sprint

mov eax, esi

call iprintLF

call quit

4 Выводы

Выполняя эту лабораторную работу, я приобрел навыки написания программ с использованием циклов и обработки аргументов командной строки.

Список литературы

Архитектура ЭВМ