Les cartes graphiques

Julien Briot Edouard Eynard

Plan

- Introduction
- Principe et historiques des cartes graphiques
- Composants d'une carte graphique
- Architecture et fonctionnement du GPU
- Conclusions et perspectives

Introduction

Gestion de l'affichage

Calcul de rendu

Un ordinateur dans l'ordinateur

Utilisations multiples

Principe et historiques des cartes graphiques

Principe et historiques des cartes graphiques - Plan

- Principe de l'affichage
- Cartes d'affichage

Cartes accélératrices 2D

Cartes accélératrices 3D

La carte graphique actuelle

Principe d'affichage

Données numériques

Transformation

Données graphiques

Transmission

Périphérique d'affichage

Cartes d'affichage

2 modes:

Texte:

L'écran est un quadrillage où l'on peut mettre des caractères

Gestion de caractères et non de pixels

=>Limité

Table des caractères

Encore utilisé: blue screen

Cartes d'affichage

Graphique:

Gestion de pixel individuelle couleur intensité

Avancée technologique plus grande flexibilité

Cartes accélératrices 2D

Avant : affichage 2D géré par le processeur

Les cartes accélératrices décharges une partie des calculs

Gère dans un premier des figures géométriques simples

Cartes accélératrices 3D

Calcul d'une scène 3D

- le *script*: mise en place des éléments
- la *geometry*: création d'objets simples
- le *setup*: découpage en triangles 2D
- le *rendering*: C'est le rendu, c'est-à-dire le plaquage des textures

Comme pour la 2D, prise en charge des deux dernières étapes pour "soulager" le processeur

La carte graphique actuelle

Ajout de fonctionnalités pour améliorer le rendu

Antialiasing

La carte graphique actuelle

- Filtrage anisotrope
 - réduire l'effet de flou

- Turbo cache
 - entrée de gamme
 - peu de RAM interne, accés à la RAM externe
- Multi GPU
 - plusieurs cartes graphiques dans l'ordinateur

Composants d'une carte graphique

Composants d'une carte graphique - Plan

- Processeur graphique (GPU)
- Mémoire vidéo et hiérarchie mémoire
- Bus mémoire
- Bus graphique
- Connecteurs en sortie

Mémoire vidéo

Dédiée ou partagée

Stockage des données

 Différentes générations G-DDR2, G-DDR3, G-DDR4 ou G-DDR5

Bus mémoire

 Canal de communication entre le GPU et la mémoire vidéo

 Attention au phénomène du goulot d' étranglement

Bus graphique

Les différents types de bus :

- AGP
- PCI
- PCI-Express

Le principe de fonctionnement (PCI-E) :

- couche logicielle : codage/décodage des paquets de données.
- couche transaction : rajout/suppression d'un en-tête de début et d'un entête de séquencement ou de numérotation du paquet.
- couche liaison : rajout/suppression d'un code de correction d'erreur (contrôle de redondance cyclique).
- couche physique : transmission du paquet (transmission série « point to point »).

Connecteurs en sortie

Architecture et fonctionnement du GPU

Architecture et fonctionnement du GPU - Plan

- Pipeline non-programmable
- BIOS vidéo

- Capacité de calcul du processeur
- Performances et évolutions

Pipeline non-programmable

Principal circuit d'une carte graphique

Effectue des transformations:

translations

rotations

changement d'échelles

BIOS Vidéo

Comme le BIOS de la carte mère

Programme dans la ROM

Permet de démarrer la carte graphique

Capacité de calcul du processeur

Traitement massivement parallèles

Grande quantité de processeurs

 Exécution d'instruction sur un grand nombre de données simultanément

 Les calculs sur GPU sont 2 à 10 fois plus rapide que sur CPU

Performances et évolutions

Performances:

Le meilleur moyens de juger des performances d'une carte et de la tester

Sinon, pour se faire une idée :

- Puissance du GPU
- Taille et qualité de la mémoire
- Taille des Bus

Évolutions:

- Les firmes visent le "tout-programmable"
- Performances physiques
- Niveau logiciel

Conclusion et perspectives

Devenu indispensables

- Organe vitale de l'ordinateur
- Grandes perspectives d'évolution

Secteur actif de l'innovation