Math 521 HW 8

Morgan Gribbins

Exercise 2.5.7. Extend the result proved in Example 2.5.3 to the case |b| < 1; that is, show $\lim(b^n) = 0$ if and only if -1 < b < 1.

Proof of (\Longrightarrow) by contrapositive. Assume that $|b| \ge 1$. This gives us 4 different cases.

Take the case b=1. This means that $b^n=1$ for all n, so $\lim(b^n)=1\neq 0$.

Take the case b > 1. This implies that the sequence b^n is unbounded, so this sequence is divergent.

Take the case b = -1. This means that $b^n = (-1)^n$, which alternates between -1 and 1 and is divergent.

Take the case b < -1. This implies that the sequence b^n is unbounded, so this sequence is divergent.

Therefore, $|b| \ge 1 \implies \lim(b^n) \ne 0$.

Proof of (\Leftarrow). Assume that -1 < b < 1. This implies that for all $n, -1 < b^n < 1$, so this sequence is bounded. Additionally, we have $|b^n| \ge |b^{n+1}|$, as |b| < 1. Given $\epsilon > 0$, let $N \in \mathbb{N}$ such that $b^N < \epsilon$. We then have, for $n \ge N$,

$$|b^n| < \epsilon$$
,

so this sequence converges to 0.

Exercise 2.5.9. Let (a_n) be a bounded sequence, and define the set

$$S = \{x \in \mathbb{R} : x < a_n \text{ for infinitely many terms } a_n\}.$$

Show that there exists as subsequence (a_{n_k}) converging to $s = \sup S$.

As S is nonempty and bounded above (as a_n is bounded), we can say $s = \sup S$. Let $\epsilon_k = 1/k$. By definition of a supremum, there must exists some $b_k \in S$ such that $b_k > s - 1/k$. As there are an infinite amount of a_n greater than b_k and s, there must be some a_{n_k} between s - 1/k and s, so there exists an increasing (1/k decreasing) bounded sequence with all

 $a_{n_k} < s$, so there exists a subsequence (a_{n_k}) converging to s.

Exercise 2.6.2. Give an example of each of the following, or argue that such a request is impossible.

(a) A Cauchy sequence that is not monotone.

A Cauchy sequence that is not monotone is $(-1)^n/n$, which varies by $(2n+1)/(n^2+n)$, which goes to zero (so its Cauchy), but it is not monotone.

(b) A Cauchy sequence with an unbounded subsequence.

This is not possible. A Cauchy sequence is necessarily bounded, so all of its subsequences are bounded.

(c) A divergent monotone sequence with a Cauchy subsequence.

This is not possible. A divergent monotone sequence must be unbounded, so a subsequence of this sequence must be unbounded. As this is monotone and unbounded, all subsequences are unbounded and not Cauchy.

(d) An unbounded sequence containing a subsequence that is Cauchy.

The sequence $a_n = (1, 0, -1, 0, 2, 0, -2, ...)$ has Cauchy subsequence uniformly composed of 0s, but is unbounded.

Exercise 2.6.3. If (x_n) and (y_n) are Cauchy sequences, then one easy way to prove that $(x_n + y_n)$ is Cauchy is to use the Cauchy Criterion. By Theorem 2.6.4, (x_n) and (y_n) must be convergent, and the Algebraic Limit Theorem then implies that $(x_n + y_n)$ is convergent and hence Cauchy.

(a) Give a direct argument that $(x_n + y_n)$ is a Cauchy sequence that does not use the Cauchy Criterion or the Algebraic Limit Theorem.

As x_n and y_n Cauchy, given $\epsilon/2 > 0$, there exists $N, M \in \mathbb{N}$ such that $b \geq a \geq N$ and $d \geq c \geq M$ implies

$$|x_a - x_b| < \epsilon/2$$

$$|y_c - y_d| < \epsilon/2.$$

Adding these gives us

$$|x_a - x_b| + |y_c - y_d| < \epsilon/2 + \epsilon/2$$

$$\implies |x_a - x_b + y_c - y_d| = |(x_a + y_c) - (x_b + y_d)| < \epsilon,$$

so for $m \geq n \geq \max(N, M)$, we have

$$|(x_n + y_n) - (x_m - y_m)| < \epsilon,$$

which means that this sequence is Cauchy.

(b) Do the same for the product (x_ny_n) .

As x_n and y_n Cauchy, given $\sqrt{\epsilon} > 0$, there exists $N, M \in \mathbb{N}$ such that $b \geq a \geq N$ and $d \geq c \geq M$ implies

$$|x_a - x_b| < \sqrt{\epsilon}$$

$$|y_c - y_d| < \sqrt{\epsilon}.$$

This implies that

$$|x_a - x_b||y_c - y_d| < \epsilon \implies |y_c(x_a - x_b) - y_d(x_a - x_b)| < \epsilon$$

which implies that for some $m \ge n \ge \max(N, M)$,

$$|(x_n y_n) - (x_m y_m)| < \epsilon,$$

so the sequence is Cauchy.

Exercise 2.6.4. Let (a_n) and (b_n) be Cauchy sequences. Decide whether each of the following sequences is a Cauchy sequence, justifying each conclusion.

(a)
$$c_n = |a_n - b_n|$$

This sequence is Cauchy. The sequence $a_n - b_n$ is Cauchy, which implies $||a_n - b_n| - |a_m - b_m|| \ge |(a_n - b_n) - (a_m - b_m)| < \epsilon$, so c_n is Cauchy.

(b)
$$c_n = (-1)^n a_n$$

This sequence is not necessarily Cauchy. The sequence $a_n = 1$ results in a non-Cauchy c_n , for instance.

(c) $c_n = [[a_n]]$, where [[x]] refers to the greatest integer less than or equal to x.

This sequence is not necessarily Cauchy. The sequence $a_n = 1 + (-1)^n/n$ is Cauchy, but $[a_n]$ alternates between 0 and 1, based on the value of n.