(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-232649

(43)公開日 平成10年(1998)9月2日

(51) Int.Cl.6

G09G 3/30

識別記号

FI G09G 3/30

K

審査請求 未請求 請求項の数15 FD (全 11 頁)

(21)出願番号

特願平9-52543

(22)出願日

平成9年(1997)2月21日

(71)出願人 000001443

カシオ計算機株式会社

東京都渋谷区本町1丁目6番2号

(72)発明者 山田 裕康

東京都青梅市今井3丁目10番地6 カシオ

計算機株式会社青梅事業所内

(72)発明者 塩谷 雅治

東京都青梅市今井3丁目10番地6 カシオ

計算機株式会社青梅事業所内

(74)代理人 弁理士 杉村 次郎

(54) 【発明の名称】 電界発光表示装置およびその駆動方法

(57)【要約】

(修正有)

【課題】 制御性の良い階調表示が行え、低消費電力動作が可能な電界発光表示装置の駆動方法を提供する。

【解決手段】 電界発光素子がマトリクス状に配置され、この電界発光素子の選択トランジスタと駆動トランジスタとが接続された電界発光表示装置の1フレーム期間を8つのサブフレームに分割する。これらサブフレームは、発光設定時間Tonと、全サブフレームで同一時間のアドレス期間Taddと、からなり、それぞれのサブフレームで異なる発光駆動電圧或いは駆動電流が印加されるように設定されている。このため、8つのサブフレームのそれぞれで、画素が選択されたか選択されないかにより、画素毎の階調レベルを異にすることができ、階調表現が可能となる。

【特許請求の範囲】

【請求項1】 それぞれ一対の電極を有し、且つ電圧又は電流の印加に応じて発光する複数の電界発光素子と、1フレーム期間内に順次配置された複数のアドレス期間に、前記複数の電界発光素子から任意の電界発光素子を選択すると共に、それぞれの前記アドレス期間の後に設定された発光設定期間に、当該アドレス期間に選択された前記電界発光素子の前記一方の電極に、所定電圧値のコモン電圧を印加する第1スイッチング回路と、

前記各電界発光素子の前記一対の電極の他方の電極にそれぞれ接続され、前記各発光設定期間に、互いに異なる値の電圧に設定された複数の駆動電圧或いは互いに異なる値の電流に設定された駆動電流を、前記全電界発光素子に印加する第2スイッチング回路と、

を具備することを特徴とする電界発光表示装置。

【請求項2】 前記電界発光素子はマトリクス状に配列され、1フレーム期間は、前記複数のアドレス期間と、各アドレス期間にそれぞれ対応し且つ互いに同じ長さの時間に設定された前記複数の発光設定期間と、からなり、前記アドレス期間と前記発光設定期間とが交互に配置されたことを特徴とする請求項1記載の電界発光表示装置。

【請求項3】 前記第1スイッチング回路は、走査電圧が供給される走査ラインにゲート電極が接続され且つ信号電圧が供給される信号ラインにドレイン電極が接続された選択トランジスタと、ゲート電極が前記選択トランジスタのソース電極に接続され、且つドレイン電極が前記電界発光素子に接続されると共に、ソース電極が、コモン電源または可変駆動電源に接続された駆動トランジスタと、を備えることを特徴とする請求項1または請求項2に記載の電界発光表示装置。

【請求項4】 前記第2スイッチング回路は、走査電圧が供給される走査ラインにゲート電極が接続され且つ信号電圧が供給される信号ラインにドレイン電極が接続された選択トランジスタと、ゲート電極が前記選択トランジスタのソース電極に接続され、且つドレイン電極が前記電界発光素子に接続されると共に、ソース電極が、コモン電源または可変駆動電源に接続された駆動トランジスタと、を備えることを特徴とする請求項1または請求項2に記載の電界発光表示装置。

【請求項5】 前記走査電圧および前記信号電圧は、それぞれの特性に応じたオン/オフの2値信号であることを特徴とする請求項3または請求項4に記載の電界発光表示装置。

【請求項6】 前記1フレーム期間内の各発光設定期間の駆動電圧或いは駆動電流の大きさの比率は、それぞれ2のn乗(nは0以上の整数)のいずれかであることを特徴とする請求項1~請求項5のいずれかに記載の電界発光表示装置。

【請求項7】 前記コモン電圧は、接地電圧であること

を特徴とする請求項1~請求項6に記載の電界発光表示 装置。

【請求項8】 電圧又は電流の印加に応じて発光する複数の電界発光素子を有する電界発光表示装置の駆動方法において、1フレーム期間が、それぞれ任意の前記電界発光素子を選択する、複数のアドレス期間を備え、且つ前記各アドレス期間で選択された前記電界発光素子に、それぞれのアドレス期間の後に発光設定期間が設定されると共に、前記各アドレス期間で選択された前記電界発光素子に、1フレーム期間内のそれぞれの発光設定期間どうしで互いに異なる値の駆動電圧或いは互いに異なる値の駆動電流を供給することを特徴とする電界発光表示装置の駆動方法。

【請求項9】 前記複数の電界発光素子は、それぞれ一対の電極を有し、

1フレーム期間内に順次配置された複数のアドレス期間に、前記複数の電界発光素子から任意の電界発光素子を選択すると共に、それぞれの前記アドレス期間の後に設定された発光設定期間に、当該アドレス期間に選択された前記電界発光素子の前記一方の電極に、所定電圧値のコモン電圧を印加する第1スイッチング回路と、

前記各電界発光素子の前記一対の電極の他方の電極にそれぞれ接続され、前記各発光設定期間に、互いに異なる値の電圧に設定された複数の駆動電圧或いは互いに異なる値の電流に設定された駆動電流を、前記全電界発光素子に印加する第2スイッチング回路と、

を具備することを特徴とする請求項8記載の電界発光表 示装置の駆動方法。

【請求項10】 前記第1スイッチング回路は、走査電圧が供給される走査ラインにゲート電極が接続され且つ信号電圧が供給される信号ラインにドレイン電極が接続された選択トランジスタと、ゲート電極が前記選択トランジスタのソース電極に接続され、且つドレイン電極が前記電界発光素子に接続されると共に、ソース電極が、コモン電源または可変駆動電源に接続された駆動トランジスタと、を備えることを特徴とする請求項9記載の電界発光表示装置の駆動方法。

【請求項11】 前記第2スイッチング回路は、走査電圧が供給される走査ラインにゲート電極が接続され且つ信号電圧が供給される信号ラインにドレイン電極が接続された選択トランジスタと、ゲート電極が前記選択トランジスタのソース電極に接続され、且つドレイン電極が前記電界発光素子に接続されると共に、ソース電極が、コモン電源または可変駆動電源に接続された駆動トランジスタと、を備えることを特徴とする請求項9記載の電界発光表示装置の駆動方法。

【請求項12】 前記走査電圧および前記信号電圧それぞれの特性に応じたオン/オフの2値信号が入力されることを特徴とする請求項10または請求項11に記載の電界発光表示装置の駆動方法。

【請求項13】 前記電界発光素子はマトリクス状に配列され、前記1フレーム期間は、前記アドレス期間と発光設定期間とが交互に設定されることを特徴とする請求項8~請求項12のいずれかに記載の電界発光表示装置の駆動方法。

【請求項14】 前記各発光設定期間に印加される駆動電圧又は駆動電流の大きさの比率は、それぞれ2のn乗(nは0以上の整数)のいずれかであることを特徴とする請求項8~請求項13のいずれかに記載の電界発光表示装置の駆動方法。

【請求項15】 前記コモン電圧は、接地電圧であることを特徴とする請求項9~請求項14に記載の電界発光表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は電界発光表示装置 およびその駆動方法に関し、さらに詳しくは、エレクト ロルミネッセンス発光を行う表示装置の駆動方法に関す る。

[0002]

【従来の技術】従来、図9に示すような、1画素に2つ の薄膜トランジスタ (以下、TFTという) を備えた構 造の有機ELディスプレイ(電界発光表示装置)があ る。この有機 E L ディスプレイにおいては、選択 T F T 3が走査ラインXmからのスキャで選択に同期して、有 機EL素子1の発光輝度データに応じた階調信号が信号 ラインYnから供給されるようになっている。選択TF T3は、この階調信号に応じて駆動TFT2のゲートバ イアスを制御し、駆動TFT2は、このゲートバイアス に応じて有機 E L 素子 1 に注入するキャリア (電子或い は正孔) の量を制御し、所定の階調輝度で発光する。図 10は、このように書き込まれた駆動TFT2の、ゲー ト電圧(Vg)とチャネル抵抗との関係、所謂電界効果 トランジスタ (FET) の静特性を示すグラフである。 図11は、1画素における有機EL素子1と電圧制御手 段Vcと全画素共通EL電源4との関係を示す等価回路 図である。この電圧制御手段Vcは、選択トランジスタ 3と駆動トランジスタ2とから構成されている。

[0003]

【発明が解決しようとする課題】上記した従来の1画素2セルTFT構造の有機ELディスプレイでは、駆動TFT2のゲートバイアスの変化によってチャネルに流れる電流を変えることにより、画素ELの発光輝度を変化させることで階調を表現している。すなわち、有機EL素子1の発光輝度は、信号ラインYnに供給される階調信号と、駆動TFT2及び選択TFT3の電気的特性に依存している。このため、たとえば256階調を実現しようとすると、パネル内の各画素の駆動TFT2の線形領域での特性バラツキが256階調の制御に要求される範囲内になければならず、そのような均一な特性のTF

Tパネルの製造は実現が困難であるという問題がある。 【0004】この発明が解決しようとする課題は、制御性のよい階調表示が行えると共に、低消費電力動作が可能な電界発光表示装置の駆動方法を得るにはどのような手段を講じればよいかという点にある。

[0005]

【課題を解決するための手段】請求項1記載の発明は、 電界発光表示装置であって、それぞれ一対の電極を有 し、且つ電圧の印加に応じて発光する複数の電界発光素 子と、 1 フレーム期間内に順次配置された複数のアドレ ス期間に、前記複数の電界発光素子から任意の電界発光 素子を選択すると共に、それぞれの前記アドレス期間の 後に設定された発光設定期間に、当該アドレス期間に選 択された前記電界発光素子の前記一方の電極に、接地電 圧、或いは互いに異なる値の電圧に設定された複数の駆 動電圧のうちのいずれか、の一方を印加する第1スイッ チング回路と、前記各電界発光素子の前記一対の電極の 他方の電極にそれぞれ接続され、前記各発光設定期間 に、前記接地電圧、或いは互いに異なる値の電圧に設定 された複数の駆動電圧のうちのいずれか、の他方を、前 記全電界発光素子に印加する第2スイッチング回路と、 を具備することを特徴としている。

【0006】請求項1記載の発明では、各アドレス期間に発光すべき電界発光素子を予め選択して、対応する各発光設定期間に、選択された電界発光素子の一方の電極に、所定電圧値のコモン電圧を印加し、全電界発光素子の一対の電極の他方に、互いに異なる値の電圧に設定された複数の駆動電圧又は互いに異なる値の電流に設定された駆動電流のいずれかを印加すれば、選択された電界発光素子のみが各発光設定期間に発光することができる。したがって、複数の発光設定期間中に選択的に電界発光素子を発光することにより、言い換えれば、1フレーム期間内での総発光設定期間での総発光量に応じて、各電界発光素子の見かけ上の発光輝度を制御することができる。

【0007】請求項2記載の発明は、前記電界発光素子がマトリクス状に配列され、1フレーム期間が、前記複数のアドレス期間と、各アドレス期間にそれぞれ対応し且つ互いに同じ長さの時間に設定された前記複数の発光設定期間と、からなり、前記アドレス期間と前記発光設定期間とが交互に配置されたことを特徴としている。請求項2記載の発明では、発光設定期間を一定としたので、発光設定期間と印加電圧又は印加電流との積によるそれぞれの発光輝度を組み合わせることで多くの輝度階調数の発光を実現することができる。

【0008】請求項3、4記載の発明はそれぞれ、第1 スイッチング回路、第2スイッチング回路が、走査電圧 が供給される走査ラインにゲート電極が接続され且つ信 号電圧が供給される信号ラインにドレイン電極が接続さ れた選択トランジスタと、ゲート電極が前記選択トラン ジスタのソース電極に接続され、且つドレイン電極が前記電界発光素子に接続されると共に、ソース電極が、コーン電源または可変駆動電源に接続された駆動トランジスタと、を備えることを特徴としている。これらの発明では、アドレス期間に選択された電界発光素子に、発光設定期間中に容易にコモン電圧を印加できるようチャージできる。

【0009】請求項5記載の発明は、前記走査電圧および前記信号電圧が、それぞれの特性に応じたオン/オフの2値信号であることを特徴としている。

【0010】請求項5記載の発明では、走査電圧および信号電圧がオン/オフの2値信号で制御できるので、選択トランジスタおよび駆動トランジスタのV-I特性に多少のばらつきがあっても、飽和電流領域の電圧を印加すれば、良好に輝度階調を制御することができる。

【0011】請求項6記載の発明は、1フレーム期間内の各発光設定期間の駆動電圧或いは駆動電流の大きさの比率は、それぞれ2のn乗(nは0以上の整数)のいずれかであることを特徴としている。請求項6記載の発明では、駆動電圧或いは駆動電流の大きさの比率が、それぞれ2のn乗としているので、異なる電圧値の数を最小限にして良好な階調発光を実現することができる。

【0012】請求項8記載の発明は、電圧又は電流の印加に応じて発光する複数の電界発光素子を有する電界発光表示装置の駆動方法において、1フレーム期間が、それぞれ任意の前記電界発光素子を選択する、複数のアドレス期間を備え、且つ前記各アドレス期間で選択された前記電界発光素子に、それぞれのアドレス期間の後に発光設定期間が設定されると共に、前記各アドレス期間で選択された前記電界発光素子に、1フレーム期間で選択された前記電界発光素子に、1フレーム期間内のそれぞれの発光設定期間どうしで互いに異なる値の駆動電圧或いは互いに異なる値の駆動電流を供給することを特徴としている。

【0013】請求項8記載の発明では、各アドレス期間に、次の発光設定期間に発光すべき電界発光素子を予め選択して、発光設定期間に発光させるが、各発光設定期間での印加電圧または印加電流の値が異なるので、それぞれの画素での総発光量が、階調に応じるように発光設定期間を選択すれば少ない段階の電圧値の変化にもかかわらず、1フレーム期間全体では多くの輝度階調数の発光を実現することができる。

[0014]

【発明の実施の形態】以下、この発明に係る電界発光表示装置の駆動方法の詳細を図面に示す実施形態に基づいて説明する。なお、駆動方法の説明に先駆けて、電界発光表示装置の構成について説明する。図1は本実施形態に係る電界発光表示装置の駆動回路図である。同図に示すように、電界発光素子としての有機EL素子101が、X-Yマトリクス状に配置されたそれぞれの画素領域に形成されている。これらの画素領域は、複数の走査

ラインXと複数の信号ラインYとがそれぞれ交差する部 分に形成されている。 1 つの画素領域には、走査ライン Xおよび信号ラインYに接続された選択トランジスタQ 1と、この選択トランジスタQ1に接続されたキャパシタ Cp₁及びゲートが接続された駆動トランジスタQ₂とが 設けられている。この駆動トランジスタQ2は、有機 E L素子101の一方の電極(図ではカソード電極)に接 続されている。そして、選択トランジスタ♀₁が走査ラ インXからの選択信号により選択され、且つ信号ライン Yより駆動信号が出力されると駆動トランジスタ Q_2 が オン状態になるように設定されている。この選択信号及 び駆動信号は、ON/OFFの2値信号である。なお、 駆動トランジスタQ₂は、オフ状態では有機EL素子 1 01に比べて充分高抵抗で、オン状態では有機 EL素子 101に比べて無視できるほど充分低抵抗となるように その特性が設定されている。

【0015】図2は、この電界発光表示装置の1画素部分の等価回路図である。同図に示すスイッチ S_1 は有機 E L素子101の一方の電極に接続されており、このスイッチ S_1 の閉じている状態で、有機E L素子101の発光が可能となる。また、スイッチ S_2 は、有機E L素子101の他方の電極側に接続されており、全画素に共通に用いられるとともに、後記するサブフレーム期間内の発光時間および発光駆動電圧或いは発光駆動電流(各サブフレーム期間に固有の値の電圧或いは電流)に従って全画素を同時にオン/オフし得るようになっている。なお、図2中Ps は各サブフレーム期間に固有の値の電圧値或いは電流値を可変的に出力するように制御された可変駆動電源を示している。

【0016】ここで、本実施形態における電界発光表示装置の更に具体的な構成を、図3および図4を用いて説明する。図3は、本実施形態における電界発光表示装置の1画素部分を示す平面図である。図4は、図3のAーA断面図である。図中100は電界発光表示装置を示している。

【0017】本実施形態の電界発光表示装置100は、ガラス或いは樹脂フィルムからなる基板102の上に例えばアルミニウム(A1)でなるゲートメタル膜がパターニングされてなる、所定方向(X方向)に沿って平行かつ等間隔をなす複数の走査ライン103と、この走査ライン103に一体的な、選択トランジスタQ1のゲート電極103Aと、駆動トランジスタQ2のゲート電極103Bと、が形成されている。なお、これらゲート電極103A、103Bおよび走査ライン103、ゲート電極103A、103Bおよび基板102の上には、窒化シリコンでなるゲート絶縁膜105が形成されている。さらに、ゲート電極103A、103Bの上方のゲート絶縁膜105A、105Bの上には、アモルファスシリコン(a-Si)でなる半

導体層106A、106Bがパターン形成されている。 また、それぞれの半導体層106A、106Bの中央に ' は、チャネル幅方向に沿って形成されたブロッキング層 107A、107Bが形成されている。そして、半導体 層106Aの上には、ブロッキング層107A上でソー ス側とドレイン側とに分離されたオーミック層108 A、108Aが形成されている。さらに、選択トランジ スタQ1においては、ドレイン側のオーミック層108 Aに積層されて接続する信号ライン109Aと、ソース 側のオーミック層108Aに積層されて接続するソース 電極109Bとが形成されている。このソース電極10 9 Bは、図3に示すように、駆動トランジスタQ。のゲ ート電極103Bに対して、ゲート絶縁膜105に開口 したコンタクトホール110を介して接続されている。 駆動トランジスタQっにおいては、ソース側のオーミッ ク層108Bに積層されて接続するGND線111と、 一端がドレイン側のオーミック層108Bに積層されて 接続し、且つ他端が有機EL素子101の後記するカソ ード電極114に接続するドレイン電極112が形成さ れている。これら選択トランジスタQ1と駆動トランジ スタ Q_2 は、図2に示したスイッチ S_1 を構成している。 また、ゲート電極103Bとゲート絶縁膜105とGN D線とでキャパシタCp₁が構成される。

【0018】次に、有機EL素子101の構成を説明す る。まず、上記した選択トランジスタQ₁、駆動トラン ジスタQ2およびゲート絶縁膜105の上に、電界発光 表示装置100の発光表示領域全域に亙って、層間絶縁 膜113が堆積されている。そして、上記した駆動トラ ンジスタQ。のドレイン電極112の端部上の層間絶縁 膜113にコンタクトホール113Aが形成されてい る。なお、本実施形態では、駆動トランジスタQ。のド レイン電極112の端部は、1画素領域の略中央に位置 するように設定されている。そして、層間絶縁膜113 の上に、可視光に対し反射性を示す、例えばMgInで なるカソード電極114が略1画素領域全域に亙って矩 形状に形成されている。すなわち、カソード電極114 は、相隣接する信号ライン109A、109Aと相隣接 する走査ライン103、103とで囲まれる領域(1画 素領域)を略覆うように形成されている。このため、選 択トランジスタ Q_1 と駆動トランジスタ Q_2 とは、カソー ド電極114で全面的に覆われている。

【0019】さらに、図4に示すように、各画素毎にパターン形成されたカソード電極114、および層間絶縁膜113の上に、有機E L層115が発光表示領域全域に亙って形成されている。さらに、有機E L層115の上には、透明なITOでなるアノード電極116が全有機E L素子101の発光表示領域全域に亙って形成されている。また、各有機E L素子101のアノード電極116は、スイッチ S_2 を介してそれぞれ異なる値に設定された駆動電圧V d $d1\sim V$ d d n或いは駆動電流I d d

 $1 \sim I \; d \; d \; n$ を供給する可変駆動電源 $P \; s$ に接続されている。

【0020】ここで、上記した構成の電界発光表示装置 100の作用について説明する。本実施形態において は、カソード電極114が、相隣接する信号ライン10 9A、109Aと相隣接する走査ライン103、103 とで囲まれる領域(1画素領域)を略覆うように形成さ れているため、有機EL素子101は1画素領域の略全 域に亙って発光を行うことができる。また、カソード電 極114が光反射性を有するMgInで形成されている ため、カソード電極114とアノード電極116との間 に駆動電圧或いは駆動電流が印加された場合に、有機 E L層115で発生した表示光は、下方(ガラス基板10 2側)に漏れることなくアノード電極116側に出射さ れる。このため、選択トランジスタQ₁および駆動トラ ンジスタQ。の半導体層106A、106Bへ不要に光 が入射するのを防止することができ、各トランジスタの 光起電力による誤動作が生じるのを回避することができ る。また、表示光は、透明なアノード電極116側から 出射されるため、ガラス基板102などにより光吸収さ れることがなく、輝度の高い状態で出射される。

【0021】次に、本実施形態の電界発光表示装置10 0の駆動回路系を説明する。図2の等価回路図が示すよ うに、有機EL素子101とスイッチS1、S2と可変駆 動電源Psとから1画素部分のEL表示回路が構成され ている。また、上記したように、第1スイッチング回路 としてのスイッチS」は、選択トランジスタQ」と駆動ト ランジスタQっとから構成され、有機EL素子101に 選択的に接地電圧(コモン電圧)を供給(出力)するこ とができる。有機EL素子101においては、アノード 電極側に正極性の互いに異なる電圧値の駆動電圧Vdd 1~Vddn或いは駆動電流Iddl~Iddnを供給 する可変駆動電源 P s が第 2 スイッチング回路としての スイッチS $_2$ を介して接続され、カソード電極側にスイ ッチ S_1 が接続され、スイッチ S_1 を構成する駆動トラン ジスタQ2のソース電極側は図1に示すようにGND線 111を介して接地されている。

【0022】以下、本実施形態の電界発光表示装置100の駆動方法について説明する。まず、本実施形態は、電界発光表示装置100における走査ライン103の本数を例えば480本、信号ライン109Aの本数を例えば640本に設定する。そして、本実施形態では図5

(a)、(b)に示すような階調表示方式を用いる。同図(a)のように、1フレーム期間(1 画面の表示を保持する期間)が16.7 m s として、1フレーム期間を8つのサブフレーム期間(サブフレーム1 ~ 8)に分割する。各サブフレーム期間は、2.1 m s であり、アドレス書込みを行うためのアドレス期間 T a d d (1.0 m s)とそれぞれのサブフレーム期間固有の値の駆動電圧或いは駆動電流を印加する発光設定期間 T o n (1.

1 m s) とからなる。有機 E L 素子 1 0 1 は、図 5 (c) に示すように印加される電圧に対して発光輝度 (cd/m²)が直線性を示しており、発光輝度の比は 発光駆動電圧値の比或いは発光駆動電流値の比に比例す る。各サブフレーム期間に固有の発光駆動電圧の比率或 いは駆動電流の比率は、サブフレーム1で1とすると、 サブフレーム2は2、サブフレーム3は4、サブフレー ム4は8、サブフレーム5は16、サブフレーム6は3 2、サブフレーム7は64、サブフレーム8は128と なる。このような発光設定期間において、1の発光設定 期間で1という輝度を表示するとすると、サブフレーム 1のみを点灯することで1の輝度が得られる。輝度2の ときはサブフレーム2のみを、輝度3のときはサブフレ ーム1とサブフレーム2を、4のときはサブフレーム3 のみを点灯するというように、以下同様にして組み合わ せにより合計256の階調を表示することが可能とな る。

【0023】各サブフレームにおいては、アドレス期間 Taddにアドレス書込みが終了した後に発光設定期間 Tonの間アドレス選択された電界発光素子101にこ の発光設定期間に固有の値の電圧或いは駆動電流を同時 に印加させる。その次のサブフレームではアドレス期間 Tadd中にアドレス書き換えを行って発光設定期間T onにアドレス選択された電界発光素子101にこの発 光設定期間に固有の値の電圧或いは電流を同時に印加さ せる。このようにサブフレーム1からサブフレーム8ま で1フレーム期間内に行う。アドレス選択のタイミング は、図2に示したスイッチS₁で制御し、駆動電圧駆動 電流供給のタイミングはスイッチS2で制御することが できる。すなわち、1つのサブフレーム期間内におい て、走査ラインと信号ラインとの線順次走査により、こ のサブフレーム特有の発光量で点灯すべき画素の選択ト ランジスタ〇,がオン状態となる。そして、選択トラン ジスタ Q_1 がオンになると信号ラインから選択トランジ スタQ₁を介して駆動トランジスタQ₂のゲート電極への 書込みが行われ、アドレス期間 Tadd内においては駆 動トランジスタQ2にチャネルが形成された状態が保持 される。このアドレス期間で点灯すべき画素がすべて選 択された後、すなわちアドレス期間Tadd終了後の発 光設定期間Tonまで選択状態が保持される。発光設定 期間Ton中には、アノード電極116に接続されたそ れぞれの発光設定期間Tonに固有の値に設定された駆 動電圧或いは駆動電流を供給する可変駆動電源Psがス イッチS₂でオンされる。この発光設定期間での駆動電 圧或いは駆動電流の値は、上記したようにそれぞれのサ ブフレームでその髙さ設定されている。ここで、1フレ ーム期間中の全アドレス期間 T a d d の時間の長さと全 発光設定期間Tonの時間の長さを等しくすると、各ア ドレス期間Taddは、1.04ms程度となり、各走 査ラインX1~X480の1発光設定期間で選択される 時間は、2.1 μs程度となる。

【0024】次に、本実施形態の駆動方法で階調表示が 行える原理を図6を用いて説明する。この図は、簡略化 するために、1フレーム期間を3つのサブフレームに分 割した例であり、サブフレーム1の発光設定期間の発光 量は1、サブフレーム2の発光量は2、サブフレーム3 の発光量は4とした。図6は、網状の斜線を付した部分 の画素13、22、24、31、35、42、44、5 3の輝度が高くなるように表示された例を示している。 具体的には、サブフレーム1で全画素が選択されて輝度 1の発光を行ったとすると、サブフレーム2、3では線 順次走査により画素13、22、24、31、35、4 2、44、53のみが選択され、発光量2と発光量4が 加算されたと設定する。このため、3つのサブフレーム が終了した(1フレーム期間が終了した)状態では、画 素13、22、24、31、35、42、44、53が 発光量7となり、他の画素が発光量1であるのと比較し て高輝度となる。このように、 1 フレーム期間を複数の サブフレームに分割したことにより、電界発光表示装置 100の階調表示が可能となる。このような原理は、1 フレーム期間を8つのサブフレームに分割した場合での 同様に適用できるものであり、256階調の表現も可能 となる。

【0025】上記したように、本実施形態によれば、駆 動電圧Vdd1~Vddn或いは駆動電流Idd1~I d d n のスイッチングに、オン/オフの 2 値信号で制御 するスイッチS₂を用い、且つ選択トランジスタQ₁と駆 動トランジスタ Q_2 にもオン/オフの2値信号をいずれ かを選択的に出力するため、図9のソース・ドレイン間 電圧VSDをソース・ドレイン間電流が飽和電流になる範 囲に設定するので、各トランジスタの電圧 V SDの 1 V~ 5 V間でのV-I特性に多少のばらつきがあっても、良 好に輝度階調を制御することができ、安定した階調制御 を行うことが可能となる。このように、1つの有機EL 素子に対し選択トランジスタQ1、駆動トランジスタ Q₂、スイッチS₂の3つのスイッチング素子が構成して いる場合、それぞれのわずかな電気的特性のずれが相乗 され、1つの画素として大きく輝度階調がずれてします 恐れがあるが、選択トランジスタQ₁や駆動トランジス ϕQ_2 およびスイッチ S_2 は、飽和電流領域での電圧値を 用いオン/オフ制御を行うだけであるため、特性に多少 のバラツキがあった場合でもその影響を受けにくいとい う利点がある。また、有機 E L 素子 101 にとって発光 効率のよい電圧値の駆動電圧、或いは発光効率のよい電 流値の駆動電流として設定できるため、低消費電力化を 達成することができる。さらに、可変駆動電源Psでの 電圧或いは電流の制御は、電界発光表示装置100が得 ようとする階調数に比較して非常に少ない数の種類(階 調数が256に対して8)の値に電圧或いは電流制御す るだけでよいため、制御性を髙めることができる。

【0026】以上、本実施形態について説明したが、本 発明はこれに限定されるものではなく、構成の要旨に付 随する各種の設計変更が可能である。例えば、上記した 実施形態においては、サブフレーム期間におけるアドレ ス期間内でアドレス選択状態を保持するために、選択ト ランジスタQ」と駆動トランジスタQ2とを備えた構成と したが、図7の1画素等価回路で示すような構成として もアドレス選択状態を保持することができる。同図にお いてQ3は選択トランジスタQ₄は駆動トランジスタ、 C p₂は容量を示している。なお、この駆動トランジス $otag Q_4$ は別途容量 $otag C_{p_2}
otag p_2
otag p_3
otag p_4
otag p_5
otag p_5
otag p_6
otag p_7
otag$ OM機能を有しないTFTを用いることができる。駆動 トランジスタQ4のソース・ドレインの一方が各有機 E L素子101の各カソード電極に接続され、他方がスイ ッチS2を介して負電位Vdd′或いは負の電流Id d'を供給する直流電源Ps'に接続されている。有機 E L 素子 1 0 1 は、発光表示領域全域に亙って形成され たアノード電極が接地され構造であり、駆動トランジス タO₄が選択され、スイッチS₂がオンすると発光する。 また、上記した実施形態においては、電界発光素子とし て直流電界で発光できる有機EL素子101に特に有効 であるが、無機EL素子やその他の電界発光素子を適用 することも勿論可能である。本実施形態では、有機 E L 素子の発光層は電荷輸送性の異なる2層以上の有機層か ら構成されてもよく、アノード電極116上に酸素およ び水の侵入を防止する封止層を設けてもよい。また、基 板102側からアノード電極116、有機EL層11 5、カソード電極114の順に積層した構造としてもよ

【0027】なお、本実施形態では、1フレーム期間中 の全アドレス期間 Taddの時間の長さと総発光設定期 間Tonの時間の長さを等しくしたが、選択トランジス g_{Q_1} 、 Q_3 、駆動トランジスタ Q_2 、 Q_4 の特性に応じ て、アドレス期間 Tadd、発光設定期間 Tonの一方 を長くしたり、他方を短くしたりしてもよい。また、各 駆動電圧Vdd駆動電流Iddは小さい順(Ton1、 Ton2、…、Ton8) に印加されるがこれに限ら ず、大きい順(Ton8、Ton7、…、Ton1)で もよく、或いはTon8、Ton1、Ton5、Ton 4、Ton7、Ton2、Ton6、Ton3の順のよ うに電圧値或いは電流値の大きさの順番通りでなくても よい。また、可変駆動電源Psが供給する駆動電圧Vd d1~Vddnは、交流でもよい。さらに、階調数は2 56階調に限らず、複数の階調であれば256階調より 多くても少なくてもよい。

【0028】本実施形態では、選択トランジスタ Q_1 と駆動トランジスタ Q_2 とからなるスイッチ S_1 がGND線111に接続され、発光設定期間Tにオンするスイッチ S_2 が可変駆動電源 P_S に接続されているが、図Sに示すように、有機 S_1 と、 S_2 01のアノード電極側のスイ

ッチ S_2 が可変駆動電源 P_S を介さずに直接接地した構成とし、有機 E_L 素子101のカソード電極側のスイッチ S_1 の駆動トランジスタ Q_2 を G_ND 線111の代わりに負極性の駆動電圧 V_d_d で、は駆動電流 I_d_d を供給する可変駆動電源 P_S に接続させてもよい。この場合であっても、走査ラインX、信号ラインYに、それぞれ2値信号のいずれかを出力し、有機 E_L 素子101のアノード電極に接続されたスイッチ S_2 を2値信号でオン、オフ制御することができる。すなわち、アドレス期間 $T_a_d_d$ には、選択された有機 E_L 素子101のカソード電極側に駆動電圧 V_d_d 或いは駆動電流 I_d_d が供給され、発光設定期間 T_0_n に全スイッチ S_2 がオンされ、有機 E_L 素子101のアノード電極が接地され発光する。

【0029】さらに、本実施形態では、有機EL素子101をスイッチ S_1 の上方に形成したが、スイッチ S_1 と同一平面上に形成してもよい。なお、この場合は、基板102側からアノード電極116、有機EL層115、カソード電極114の順に積層して形成すれば、仕事関数の低く酸化されやすい材料からなるカソード電極114をアノード電極116、有機EL層115の形成工程により劣化させることがない。

[0030]

【発明の効果】以上の説明から明らかなように、この発明によれば、電界発光表示装置を制御性よく階調表示できる共に、低消費電力動作を可能にするという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施形態に係る電界発光表示装置の駆動回路図。

【図2】本実施形態における電界発光表示装置の1画素 部分の等価回路図。

【図3】本実施形態における電界発光表示装置の平面 図。

【図4】図3のA-A断面図。

【図5】(a)、(b)は本実施形態の駆動方法を示す 説明図であり、(c)は電界発光表示装置の印加電圧ー 輝度特性を示す図。

【図6】1フレーム期間を3サブフレームに分割した場合の階調表示原理を説明する説明図。

【図7】本発明を適用し得る電界発光表示装置の1画素 部分を示す等価回路図。

【図8】本発明の他の実施形態に電界発光表示装置の駆動回路図。

【図9】従来の電界発光表示装置の1 画素部分を示す等 価回路図。

【図10】従来の電界発光表示装置における駆動TFT2の、ゲート電圧(Vg)とチャネル抵抗との関係を示すグラフ。

【図11】従来の電界発光表示装置の1画素における有

機EL素子1と電圧制御手段Vcと全画素共通EL電源4との関係を示す等価回路図。

【符号の説明】

100 電界発光表示装置

101 有機EL素子

103 走査ライン

109A 信号ライン

Q₁ 選択トランジスタ

Q2 駆動トランジスタ

S₂ スイッチ

Ps 可変駆動電源

【図1】

【図2】

【図3】

【図4】

【図7】 【図6】 サブフレーム1 での階調レベル サブフレーム2 での階調レベル サブフレーム3 での階調レベル 1フレームでの陪譲レベルの合計 Xm-Y5 Q4 Ps' CP₂ ,21 X2 【図9】 Хз Xmo

【図5】

[図8]

【図10】

