

CR-112249

(NASI-CE-112249) A STRUCTURAL DESIGN FOR
AN EXTERNALLY BLOWN FLAP (EBF) MEDIUM
STOL RESEARCH AIRCRAFT (LTV Aerospace
Corp.) 134 p HC \$9-.75
CSCC 01C

IT4-25548
G3/02 29696
Baclas

A STRUCTURAL DESIGN FOR
AN EXTERNALLY BLOWN FLAP (EBF)
MEDIUM STOL RESEARCH AIRCRAFT

BY THE
ADVANCED TRANSPORT TECHNOLOGY ENGINEERING STAFF

LTV AEROSPACE CORPORATION
HAMPTON TECHNICAL CENTER
DECEMBER 29, 1972

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NASA Langley Research Center
Contract NAS1-10900

FOREWARD

The work described herein was conducted by the Hampton Technical Center of LTV Aerospace Corporation, under NASA Advanced Transport Technology Project Manager, Mr. W. J. Alford, and Technical Monitor, Mr. T. F. Bonner, Systems Engineering Division, NASA Langley Research Center. The report was prepared by the Advanced Transport Technology Engineering Staff under the direction of Mr. R. R. Lynch, the Hampton Technical Center Advanced Aircraft Technology Manager.

TABLE OF CONTENTS

	<u>Page</u>
Summary	1
Introduction	2
Symbols	3
Section I. Structure	6
Wing	6
High Lift Devices	6
Engine Pylon	7
General Arrangement	8
Section II Loads	18
Static	18
Dynamic	18
Section III. Stress	44
Wing Box	44
Flap Loads	44
Flap Structure	45
Engine Pylon	103
Section IV. Weights	117

PRECEDING PAGE BLANK NOT FILMED

DRAWINGS, FIGURES, AND TABLES

Section I. STRUCTURE

Aircraft Three View PD-111-2-021 E.B.F. NASTRAN MODEL

Wing Box - PD-111-2-003 GENERAL ARRANGEMENT WING

PD-111-2-006 STRUCTURAL ARRANGEMENT WING

High Lift Devices

Krueger Flaps - Leading edge

PD-111-2-004 LEADING EDGE - OUTBOARD
KRUEGER FLAP - CONCEPT

PD-111-2-005 LEADING EDGE - INBOARD
KRUEGER FLAP - CONCEPT

Trailing Edge Flaps

PD-111-2-007 FLAP STRUCTURE - T. E.
PD-111-2-010 T. E. FLAPS AND FLAPRON
PD-111-2-011 FLAP STRUCTURE - T. E.

Engine Pylon

PD-111-2-008 ENGINE PYLON STRUCTURE

Section II. LOADS

Static

Figures II-1 through II-4

Dynamic

Figures II-5 through II-16

Tables II-1 through II-13

Section III. STRESS

Figures III-1 through III-24

Tables III-1 through III-7

Section IV. WEIGHTS

PD-111-2-009 MASS PROPERTIES LAYOUT

Figures IV-1, IV-2

Tables IV-1 through IV-9

SUMMARY

Recent studies have indicated certain principle high-lift systems that appear attractive for application to STOL aircraft. One of these is the externally blown flap (EBF) concept where engine air is directed over the wing and flap. In the design phase, an understanding of the dynamic characteristic of an externally blown flap high-lift wing is required. In order to generate a more thorough data base, a computer program to predict, by reference to structural drawings, the dynamic response of a high-lift STOL wing appears essential.

The primary objective of this report is to provide structural stiffness, weight and loads information to L. R. C. for input into a dynamic model analysis computer program. This data is presented in the form of sketches, weight and dynamic loads information graphs and tables for an external blown, triple-slotted flap, high-lift STOL transport wing.

The design of a full cantilever wing for an external blown flap (EBF) experimental STOL research aircraft was developed to the detail of locating major components of the wing such as engine locations, leading and trailing flap panel trim, and spoiler and aileron locations. Major load points were determined and primary structural load paths developed. The functional and structural design studies of the major components were investigated to assure feasibility and to permit structural analysis.

The structural analysis of the wing box and component parts was conducted at a preliminary design level. "Smear" analysis method was used to compute total cover thickness of wing bending material and arbitrary assumptions of allowable stress and percent effective material were applied to account for combined stresses and fatigue considerations. The flap tracks and support structure was sized at critical points with the flap in the extended position.

The engine pylon is a cantilever beam extending forward of the wing and supporting the concentrated load of the engine. Due to the critical nature of its dynamic response, a more detailed analysis is presented for the engine pylon. The wing was analyzed for nacelle total weights, exclusive of the mounts, with the nacelles both rigidly and elastically mounted.

Weight, mass distribution, and moment of inertia data is summarized in table form and presented pictorially by drawing layout. Weight data was obtained by three methods:

1. Actual known weight of components.
2. Determined from preliminary stress sizing.
3. Statistical weight estimating methods.

INTRODUCTION

NASA is engaged in a concerted effort to provide a firm technology foundation for the design, development, fabrication, and operation of safe, reliable, quiet, and economical fan-jet STOL transport. One phase, design, is concerned with the dynamic flutter characteristics of an external blown flap high-lift wing.

In order to generate a more thorough data base required by designers, it is necessary to establish a computer program to predict by reference to structural drawings, the dynamic response of a STOL wing.

The primary objective of this report is to supply structural stiffness, weight, and loads information to L. R. C. for a dynamic model analysis computer program. To meet this objective, drawings have been developed in sufficient detail to permit stress, dynamic loads and weight information graphs and tables to be prepared for an external blown, triple-slotted flap, high-lift STOL transport wing.

SYMBOLS

A	Area, in ²
Ae	Area enclosed, in ²
A _l	Area lower, in ²
A _u	Area upper, in ²
B	Box width, in
b	Wing span, feet
C.G.	Center of Gravity
C _{nCq}	Section normal force, lbs/in
C _{mC²q}	Section hinge moment, in-lbs/in
c	Distance from neutral axis, in
E	Modulus of elasticity, lbs/in ²
EI	Bending stiffness, in ² -lbs
F	Force, lbs
F _{sCR}	Shear buckling stress, lbs/in ²
f	Stress, lbs/in ²
G	Load factor or modulus of rigidity, lbs/in ² depending on use
GA	Shear stiffness, lbs
GJ	Torsional stiffness, in ² -lbs
h	Height, in
hz	Hertz, cycles per second
I	Area moment of inertia, in ⁴
I _{zo} , I _{yo} , I _{zo}	Mass moment of inertia, lbs-in about respective axis
I.D.	Inside diameter

$J = \sqrt{EI/P}$	Beam-column coefficient, in
k	Strouhal factor, for unsteady aerodynamics
K _s	Shear buckling constant
L	Length, in
M	Bending moment, in-lbs
N	Load, lbs/in
N.S.	Normal station, in
O.D.	Outside diameter
P	Load, lbs
PSI	Stress, lbs/in ²
q	Shear flow, lbs/in or dynamic pressure, lbs/in ² depending on use
R	Reaction load, lbs
S	Side load, lbs
T	Torque, in-lbs
T _c	Engine thrust, cruise, lbs
T _m	Engine thrust, max, lbs
t	Thickness, in
\bar{t}_l	Cover thickness lower (smeared), in
\bar{t}_u	Cover thickness upper (smeared), in
$t_{s1} = AL/2B$	Thickness of lower skin, in
$t_{su} = Au/2B$	Thickness of upper skin, in
v	Vertical shear or load, lbs - Velocity in knots in Dynamic Loads
w	Weight, lbs
w	Uniform load, lbs/in
\bar{x}	Distance of mass from x reference axis, in
y	Distance from centerline along wing, feet
y	Deflection, in
y	Distance of mass from y reference axis, in

α	Angle of attack, degrees
η , eta	Fraction of wing semi-span
x_1	Modal amplitude
$\rho = I/A$	Radius of gyration, in
ω	Circular frequency, radians/sec

SUBSCRIPTS

avg	Average
e	Effective
F	Critical speed, flutter speed
ult	Ultimate
tot	Total
w	Web
wb	Wing bending
x,y,z	Rectangular Cartesian coordinates
N	Normal - Nacelle, in Dynamic Loads
H	Horizontal
V	Vertical

MATHEMATICAL CONVENTIONS

Σ	Sum
=	Equal
+	Plus
-	Minus
\times	Multiply by
$\sqrt{\quad}$	Square root
\pm	Plus or minus

Section I. STRUCTURE

Wing

The wing for the experimental STOL transport research airplane has a 17% thickness supercritical airfoil. The wing span is 72.2 feet with a sweep angle of 25° at the 25% chord and a wing area of 725 square feet. The wing is a full cantilever construction with a centersection mounted on the upper portion of a Gulfstream II type airframe. The wing consists of:

- a. Main box structure
- b. Leading edge structure (fixed)
- c. Leading edge high-lift flaps (Krueger)
- d. Trailing edge structure (fixed)
- e. Trailing edge high-lift flaps (Tripple slotted)
- f. Spoiler system
- g. Aileron system

The main (structural) wing box consists of two spars and an upper and lower stringer reinforced skin. The front spar is located at 15% and the rear spar at 45% of the wing chord. Primary ribs are provided at structural load points as well as intermediate ribs for contour control and skin panel stabilization. Structural load point locations are the trailing edge flap tracks and actuators, aileron hinges and actuators, leading edge flap hinges and actuators, and engine pylons.

The wing box is a "state-of-the-art" fabricated assembly with provisions for attachment of leading and trailing edge fixed structure, leading and trailing edge high-lift devices, spoilers, and aileron systems. Attachment of wing to fuselage is provided by two machined fuselage bulkheads: one forward and one aft of the structural wing box. The wing general arrangement is depicted by drawing PD-111-2-003 and the structural arrangement is depicted by drawing PD-111-2-006.

High-Lift Devices

Leading Edge Krueger Flaps

Leading edge Krueger flaps were designed to sufficient detail in order to determine their dynamic load inputs to the wing box. These inputs will be used as parameters in a computer flutter analysis program.

The flap chords were described as being 25% of the wing chord outboard of the engine pylons and 15% of the wing chord inboard and between the engine pylons. Extended position is to be 60° to the wing reference plane. With these inputs, a leading edge section was

drawn and the mechanics of an articulated 25% chord flap was designed to retract into the wing forward of the front spar (15% chord). In addition, a one piece 15% chord flap was drawn.

Following a review by NASA, this concept was detailed on drawings PD-111-2-004 and PD-111-2-005. Actuators and hinge points, as well as spanwise trim lines, were determined utilizing the previously established wing box ribs as hard points where possible. This information is depicted on planform general arrangement drawing PD-111-2-003.

Trailing Edge Flaps

The trailing edge flap system consists of an inboard flap, center flap, and outboard flap. Each flap is made up of three (3) elements and is a triple-slot modified Fowler type. The first and second elements are the St. Cyr aerodynamic profile and the third element is a NACA 4412 profile modified to match the supercritical wing trailing edge. The chords of the three (3) elements are 10%, 20% and 22.5%, respectively. The trailing edge flap structure is depicted on drawings PD-111-007 and PD-111-2-011.

Data supplied by NASA dictated flap element deflections for a landing position setting and a take-off position setting with the three (3) slots held constant at .015C (see drawing No. PD-111-2-010, flap track station 84.90 take-off position, and flap track station 84.90 landing position). The third element rotates $\pm 20^\circ$ as flapron when positioned to the landing setting. The .015C slot remains constant throughout the $\pm 20^\circ$ flapron rotation.

The flaps translate between retracted and take-off positions with a conventional Fowler type motion. However, between landing position and take-off position, all flap elements rotate about a common fixed point (see drawing No. PD-111-2-010, notes 1 through 4).

Engine Pylon

Support of the TF-34 engines is provided by engine pylons cantilevered forward of the structural wing box and attached to the front spar. The pylon consists of:

- a. Forward engine/pylon mount fitting
- b. Pylon box structure
- c. Rear engine/pylon mount fitting
- d. Upper and lower splice fittings (pylon to wing box)

Drawing PD-111-2-008 depicts the structural arrangement of the closed box pylon.

The forward engine/pylon mount consists of a machined forged fitting attached to the box structure. A thermal expansion link is provided between this fitting and a spherical bearing support on the engine. The rear engine/pylon mount is also a machined forged fitting. An

integral machined pin engages the engine mount for thrust and side loads and two stabilizing links resist rotation about the longitudinal axis.

Structural attachment to the wing box is provided by two upper and two lower splice fittings. Upper splice fittings are bathtub type with tension bolts. Lower splice fittings transfer load through shear into the lower wing skin.

General Arrangement

A three view of the NASA EBF model is depicted on drawing PD-111-2-021.

FOLDOUT FRAME

GEOMETRY	WING	HORIZ	VERT
AREA S FT ²	725.0	.2605	.203
SPAN b FT	72.2	.322	.225
ASPECT RATIO	7.2	4.0	1.65
SWEEP Δ AC	25°		
TAPER RATIO λ	.4	.4	.75
T/C	17% SC		
MAC FT	10.5	.6	11.0
VOLUME COEF V		1.27	.115

ENGINE TF 34
RATED THRUST, LBS. 9,100
NOMINAL GROSS WEIGHT, LBS. 56,000
RANGE OF GROSS WEIGHTS, LBS. 43,500 TO 72,500
NOMINAL WING LOADING, LB/FT² 60
RANGE OF WING LOADINGS, LB/FT² 60 TO 100

FOLDOUT FRAME

FOLD

2

FOLDOUT FRAMT

3

9

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LOWDRAFT FOLDOUT FRAME			
1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20
21	22	23	24
25	26	27	28
29	30	31	32
33	34	35	36
37	38	39	40
41	42	43	44
45	46	47	48
49	50	51	52
53	54	55	56
57	58	59	60
61	62	63	64
65	66	67	68
69	70	71	72
73	74	75	76
77	78	79	80
81	82	83	84
85	86	87	88
89	90	91	92
93	94	95	96
97	98	99	100
101	102	103	104
105	106	107	108
109	110	111	112
113	114	115	116
117	118	119	120
121	122	123	124
125	126	127	128
129	130	131	132
133	134	135	136
137	138	139	140
141	142	143	144
145	146	147	148
149	150	151	152
153	154	155	156
157	158	159	160
161	162	163	164
165	166	167	168
169	170	171	172
173	174	175	176
177	178	179	180
181	182	183	184
185	186	187	188
189	190	191	192
193	194	195	196
197	198	199	200
201	202	203	204
205	206	207	208
209	210	211	212
213	214	215	216
217	218	219	220
221	222	223	224
225	226	227	228
229	230	231	232
233	234	235	236
237	238	239	240
241	242	243	244
245	246	247	248
249	250	251	252
253	254	255	256
257	258	259	260
261	262	263	264
265	266	267	268
269	270	271	272
273	274	275	276
277	278	279	280
281	282	283	284
285	286	287	288
289	290	291	292
293	294	295	296
297	298	299	300
301	302	303	304
305	306	307	308
309	310	311	312
313	314	315	316
317	318	319	320
321	322	323	324
325	326	327	328
329	330	331	332
333	334	335	336
337	338	339	340
341	342	343	344
345	346	347	348
349	350	351	352
353	354	355	356
357	358	359	360
361	362	363	364
365	366	367	368
369	370	371	372
373	374	375	376
377	378	379	380
381	382	383	384
385	386	387	388
389	390	391	392
393	394	395	396
397	398	399	400
401	402	403	404
405	406	407	408
409	410	411	412
413	414	415	416
417	418	419	420
421	422	423	424
425	426	427	428
429	430	431	432
433	434	435	436
437	438	439	440
441	442	443	444
445	446	447	448
449	450	451	452
453	454	455	456
457	458	459	460
461	462	463	464
465	466	467	468
469	470	471	472
473	474	475	476
477	478	479	480
481	482	483	484
485	486	487	488
489	490	491	492
493	494	495	496
497	498	499	500
501	502	503	504
505	506	507	508
509	510	511	512
513	514	515	516
517	518	519	520
521	522	523	524
525	526	527	528
529	530	531	532
533	534	535	536
537	538	539	540
541	542	543	544
545	546	547	548
549	550	551	552
553	554	555	556
557	558	559	560
561	562	563	564
565	566	567	568
569	570	571	572
573	574	575	576
577	578	579	580
581	582	583	584
585	586	587	588
589	590	591	592
593	594	595	596
597	598	599	600
601	602	603	604
605	606	607	608
609	610	611	612
613	614	615	616
617	618	619	620
621	622	623	624
625	626	627	628
629	630	631	632
633	634	635	636
637	638	639	640
641	642	643	644
645	646	647	648
649	650	651	652
653	654	655	656
657	658	659	660
661	662	663	664
665	666	667	668
669	670	671	672
673	674	675	676
677	678	679	680
681	682	683	684
685	686	687	688
689	690	691	692
693	694	695	696
697	698	699	700
701	702	703	704
705	706	707	708
709	710	711	712
713	714	715	716
717	718	719	720
721	722	723	724
725	726	727	728
729	730	731	732
733	734	735	736
737	738	739	740
741	742	743	744
745	746	747	748
749	750	751	752
753	754	755	756
757	758	759	760
761	762	763	764
765	766	767	768
769	770	771	772
773	774	775	776
777	778	779	780
781	782	783	784
785	786	787	788
789	790	791	792
793	794	795	796
797	798	799	800
801	802	803	804
805	806	807	808
809	810	811	812
813	814	815	816
817	818	819	820
821	822	823	824
825	826	827	828
829	830	831	832
833	834	835	836
837	838	839	840
841	842	843	844
845	846	847	848
849	850	851	852
853	854	855	856
857	858	859	860
861	862	863	864
865	866	867	868
869	870	871	872
873	874	875	876
877	878	879	880
881	882	883	884
885	886	887	888
889	890	891	892
893	894	895	896
897	898	899	900
901	902	903	904
905	906	907	908
909	910	911	912
913	914	915	916
917	918	919	920
921	922	923	924
925	926	927	928
929	930	931	932
933	934	935	936
937	938	939	940
941	942	943	944
945	946	947	948
949	950	951	952
953	954	955	956
957	958	959	960
961	962	963	964
965	966	967	968
969	970	971	972
973	974	975	976
977	978	979	980
981	982	983	984
985	986	987	988
989	990	991	992
993	994	995	996
997	998	999	1000

FOLDOUT FRAMES

FOLDOUT FRAME

WORLDOUT FRAME

3

- ▲ OUTBOARD KRUEGER FLAP 25% CHORD-ARTICULATED
- ▲ INBOARD KRUEGER FLAP 15% CHORD
- ▲ AILERON ACTUATOR STATION
- ▲ AILERON HINGE STATION
- ▲ PYLON C
- ▲ END OF KRUEGER FLAP
- ▲ END OF FLAP
- ▲ CLOSEOUT RIB STATION
- ▲ PYLON RIB STATION
- ▲ KRUEGER FLAP ACTUATOR STATION
- ▲ KRUEGER FLAP HINGE STATION
- ▲ INTERMEDIATE RIB STATION
- ▲ FLAP TRACK & ACTUATOR STATION

NOTES:

10

5-00
11-1-9

STOL	GENERAL ARRANGEMENT	WING
PD-111-2-003		

FOLDOUT FRAME

SECTION J-J

	A	B	WING CHORD	D	E	F	G	H	I	K	L	M	N	FLAP CHORD	
WING STA 240.40			114.07	13.88				.90	1.90	10.81	14.56			25.25	
ACTUATOR STA 236.70	125	19	110.26	13.42	14.72	9.76	6.47	.81	.89	10.48	14.07	4.32	1.42	24.40	
WING STA 212.80			106.45	12.96				.84	.48	10.09	13.59			23.56	
WING STA 201.99			101.91	12.40				.81	3.93	9.66	13.01			22.55	
ACTUATOR STA 201.10	125	16	97.37	11.85	13.0	8.62	5.71	.77	1.50	9.23	12.43	3.82	1.25	21.55	
WING STA 189.59			93.06	11.33				.74	3.03	8.81	11.86			20.60	
WING STA 187.64			88.76	10.00				.70	9.57	9.41	11.93			19.64	
ACTUATOR STA 185.11	125	149	84.29	9.50	11.32	7.64	5.05	.68	2.30	8.18	11.01	3.38	1.11	19.10	
WING STA 180.58			83.19	10.20					.66	2.04	7.98	10.70			18.54
WING STA 180.53			78.84	9.60					.68	8.50	7.41	10.06			17.45
ACTUATOR STA 179.53	125	132	76.36	9.29	10.20	6.76	4.41	.60	3.23	7.23	9.18	2.93	.50	16.90	
WING STA 179.50			73.00	6.39					.58	7.91	1.06	9.43			16.35

FOLDOUT FRAMES

2

KRUECK & SONS ACTUARIES

ACTUATOR SURVEY 1 111116

ONT SPAR CAV REF

ACTUATOR BACKUP FITTING

100

~ RIB 51A REF

	K	L	M	N	FLAP CHRO
10.81	14.56				25.25
10.48	14.07	4.38	1.42		24.40
10.09	13.59				23.06
9.66	13.01				22.55
9.23	12.45	3.82	1.25		21.55
8.82	11.88				20.60
8.41	11.35				19.64
8.18	11.01	3.38	1.11		19.10
7.95	10.50				18.54
7.71	10.06				17.45
7.53	9.75	2.99	.98		16.90
7.36	9.49				16.35

SECTION C-C
TYPICAL KRUEGER ACTUATOR STATION
STATION BII.B REF

~~WING~~ DOW FRANL

SECTION C-C
AL KRUEGER ACTUATOR STATION
STATION 3111B REF

~~WINGOUT FRAME~~

OUTBOARD FRAME

	P	Q	S	T	V	W
1	6.49	2.71		12.42	6.56	2.57
2	6.12	2.71	1.43	11.59	6.12	2.10
3	5.90	2.46	1.37	11.02	5.96	2.30
4	5.50	2.25	1.25	12.13	5.36	2.10
5	5.00	2.15	1.19	9.61	5.10	2.00
6	4.77	2.03	1.13	9.12	4.02	1.87
7	4.63	1.91	1.05	8.54	4.53	1.78
8	4.21	1.72	.93	8.05	4.26	1.67

FOLDOUT FRAME

FOLDOUT FRAME

FOLDOUT FRAME

	WING CHORD	A	B	C	D	E	F	G	H	I	J	K	L	M	N
WING TIP	36.11			16.15	17.2	16.95	17.85	17.4	17.9	17.45	17.95	17.5	17.95	18.45	18.75
ACTUATOR				12.37	13.2	12.9	13.8	13.4	14.1	13.6	14.1	13.7	14.2	14.7	15.2
FLAP				12.51	13.0	12.65	13.15	12.8	13.3	12.95	13.45	13.1	13.65	14.15	14.6
FLAP TIP	36.11			16.15	17.2	16.95	17.85	17.4	17.9	17.45	17.95	17.5	17.95	18.45	18.75
FLAP ACTUATOR				12.37	13.2	12.9	13.8	13.4	14.1	13.6	14.1	13.7	14.2	14.7	15.2
FLAP ACTUATOR				12.51	13.0	12.65	13.15	12.8	13.3	12.95	13.45	13.1	13.65	14.15	14.6
FLAP ACTUATOR				12.51	13.0	12.65	13.15	12.8	13.3	12.95	13.45	13.1	13.65	14.15	14.6

FLAP ACTUATOR

ACTUATOR SUPPORT

FOLDOUT FRAME

2

SECTION C-C

SECTION B-B

SECTION A-A

FOLDOUT PAGE
3

SECTION C-C

P.S.
124.37

STA
201.40

FOLDOUT

DATA FRAME

EXHIBIT FRAME

۱

FOLDOUT FRAME

7

STOL WING
SCALE 1/40

This technical drawing illustrates the geometry of an aircraft wing section, specifically focusing on the Inboard Krueger Flap Segment 2. The drawing shows the leading edge (E) and trailing edge (F) of the wing. A dashed line represents the hinge line, which is labeled as being 1.25 units from the leading edge. The flap is shown in three positions: a lower position (STA 169.10), a middle position (STA 184.20), and an upper position (STA 133.12). The front spar datum is indicated by a line extending from the leading edge. The distance from the leading edge to the front spar datum is labeled as F.S. 90.87.

INBO KRUEGER FLAP
SEGMENT 2

E

F

FRONT SPAR DATUM

F.S.
90.87

STA
169.10

STA
184.20

STA
133.12

WING RIB STATION.

1. FLAP ROTATION 60°
2. HINGE LINE = 1.25
3. SECT BE & P.P.
NOTES

X FLAP ROTATION 60° FROM WRP EXTENDED
I HINGE LINE = 12% CHORD
I SECT BE & P.P. PERPENDICULAR TO HINGE LINE
NOTES

VIEW A

STOL	
WATERFALL CONCRETE	
PD-111-2-005	

OLDOUT FRAME

FOLDO

SECTION G-G

DETAIL F-F
LANDING CONFIGURATION

FOLDOUT FRAME

WINDOUT FRAME

3

FRONT AND REAR
FITTING

~~ROLL OUT FRAME~~

B-B
STATION 169.00 1/10

SECTION C-C
STATION 171.00 X0
TAKE OFF CONFIGURATION

SECTION A-A
STATION 169.00 1/10

~~SECRET FRAMES~~

~~SECRET~~ 5

WITHOUT FRAME

13

ROLLDOWN FRAME

BL 2470

BL 2470 - INDEX TRACK

BL 2470 - INDEX TRACK

BL 2470

REPRODUCIBILITY OF THE ORIGINAL PAGE IS DEPENDANT

FOLDOUT FRAME
2

EXODUS/BIKERS Of THE ORIGINAL PAGE IS PAGE

RECORDED BY

R.P.

WITHOUT FRAME

3

LEGIBILITY OF THE ORIGINAL PAGE IS POOR

1A-7 FN GULF III 19

STOP
OPEN CLAP TRUCK
REMOVED
PIU-111-112

SECTION A-A
%

REVISION	DATE	NOTES	STOL	ENGINE PYLON STRUCTURE
1	MARY 1981	7-1-81	PD-111-2-008	

8-000-111-5-008

FOLDOUT FRAME

FOLDOUT FRAME

PLAN VIEW

1/2 SCALE

~~WINGOUT FRAME~~

2

~~WINGOUT FRAME~~

1

WINGSPAN FRAME

SECTION D-D
1/2 SCALE

SECTION C-C
1/2 SCALE

ELEMENT NO.1
QUATE FLAP

ELEMENT NO.2 (REF)

ELEMENT NO.3 (REF)

PT.6

SECTION H-H
1/2 SCALE

SECTION J-J
1/2 SCALE

FLAP ELEMENT NO.1
FLAP ELEMENT NO.2

FLAP TRAIN

6

FLAP CANVAS

SECTION G-G
1/2 SCALE

TRACE, ROTATING

SECTION E
1/2 SCALE

ACTUATOR A

L TO ACTUATOR A

FLAP TRAIN FAIRING

TRACE AFT
BEAM REF PLANE

WING REF PLANE

X₁

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254</
---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-------

FOR DRAFT FRAME

SECTION E-E
1/2 SCALE

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FOLD

TRACE AFT
BEAM REF PLANE

FOLDOUT FRAME

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

THE ELEMENTS OF THE
TATTOO IN INDIA ARE AS FOLLOWS:
1. THE TATTOO IS A MARK OF HONOR.
2. IT IS A MARK OF DEDICATION.
3. IT IS A MARK OF SACRIFICE.
4. IT IS A MARK OF LOVE.
5. IT IS A MARK OF FAITH.
6. IT IS A MARK OF RESPECT.
7. IT IS A MARK OF HUMILITY.
8. IT IS A MARK OF DISCIPLINE.
9. IT IS A MARK OF OBEDIENCE.
10. IT IS A MARK OF SACRIFICE.

STOL
PARKING FEE
\$1.00 PER DAY

--BL 1702

FOLDOUT FRAME

BL 14620 - C OUTBD TR/

BL 84.90 - C INBD TRACK

BL 6200

INBD FLAP - STOWED POSITION

BL 1742

FOLDOUT FRAME

BL 148 10 - C OUTBD TRACK

FLAP ELEMENT NO. 1

FLAP ELEMENT NO. 2

FOLDOUT FRAME

3

F-F
ALTERNATE DESIGN
BEADED INTERNAL SKI

FLAP ELEMENT NO. 2

FLAP ELEMENT NO. 1

CUT FRAME.

3

MOUNTAIN TRAM

D-THIS-ON

FLAP ELEMENT NO 3

12345 STEEL CO	10	NATIONAL ADVERTISING & PROMOTIONAL LAW OFFICES OF THE U.S.
RECEIVED		STOL
		MAIL STRIKE MANAGEMENT
		PO-III-BOH

17

Section II. LOADS

Static

Cruise Configuration: The wing spanwise load distribution was assumed to be represented by an elliptical distribution. The spanwise load distribution was then integrated from the tip inboard to provide the local shear and bending moment at any given spanwise station. The engines, nacelles and pylons were treated as concentrated loads. This information is represented by Figure II-1 and Figure II-2.

High Lift Configuration: The loads acting on the high lift devices were established from empirical sources at the 180 knot flight condition without blowing. In the absence of more definitive data, the spanwise distribution of section normal force and hinge moment were assumed to vary with chord length. This information is represented by Figure II-3 and Figure II-4.

The loads with the externally blown flap were investigated at a low speed flight condition for which there is limited experimental data. The results showed that local pressures on the third flap element were slightly higher with blowing than were predicted for the high speed flight condition. However, total loads were higher for all elements in the high speed flight condition.

Dynamic

Using the wing geometrical data given on Figures III-2 and III-3, and the stiffness data given on Figures III-1, III-4, III-19, III-20 and III-21, and the inertial data shown in Section IV, a finite element analysis of the wing was synthesized. This model was used to obtain, first, the natural modes of vibration and, ultimately, the flutter characteristics.

The wing was analyzed for nacelle total weights, exclusive of the mounts, of 2015 and 3500 pounds, with the nacelles both rigidly and elastically attached to the wing; it was also analyzed without any nacelles. All results are for the wing cantilevered from the fuselage side.

Vibration natural frequencies are presented in Tables II-1 to II-5. These are for the empty wing (contains only residual fuel). Not all the vibration frequencies used in the flutter analysis are given since the material would be voluminous and probably not be of primary interest.

Presented in Table II-4 are wing bending natural frequencies for the wing with nacelles elastically attached. The frequencies were obtained from an eight degree-of-freedom, lumped parameter analysis. There are six degrees-of-freedom for the wing and one degree-of-freedom for each nacelle. Mode shapes, along the wing elastic axis, that correspond to these frequencies, are shown in Figures II-5 to II-12.

Coupled bending and torsion natural frequencies, for the wing with nacelles elastically attached, are presented in Table II-5. Six control points located on the wing elastic axis with two degrees-of-freedom, one in bending and one in torsion, at each control point, were used in a dynamically coupled analysis. Again, one bending degree-of-freedom was used for each nacelle.

Results of a flutter study are presented in Tables II-6 to II-13 and in Figures II-13 and II-14. In the tables, k is the Strouhal factor and ω_f is the flutter frequency. All flutter speeds are computed in terms of true airspeeds.

The flutter analysis used:

- (1) Subsonic, two dimensional, incompressible, Theodorsen theoretical aerodynamics using strip theory across the wing span
- (2) The dynamics of elastically suspended nacelles, with no aerodynamics on the nacelles.

Figures II-13 and II-14 show the flutter boundaries for the wing with elastically mounted nacelles. Flutter speeds are plotted versus the ratio of nacelle fundamental bending frequency to the uncoupled fundamental bending frequency of the empty wing. The points at the nacelle-to-wing bending frequency ratio of infinity, representing a rigid mounting, are points that were determined in the study. However, the dotted line represents a judgment between its two end points.

These flutter results should be compared to those obtained by different analyses and methods; they should also be corroborated or substantiated by tests of wind tunnel dynamic models. If aerodynamic parameters from wind tunnel tests are available, it is recommended that they be used in the same program used for this study.

STOL
WING SHEAR
(RIGID)
CRUISE CONFIGURATION

$$W = 79,750 \text{ LBS}$$

$$\eta = 2.5$$

$$\frac{b}{2} = 39 \text{ FT}$$

NOTE: INCLUDES RELIEF DUE
TO ENGINES, WING FUEL
AND WING STRUCTURE.

WING SHEAR - 10 LB

FIG II-1
 η = FRACTION OF WING STRUCTURAL SPAN - $\frac{b}{2}$

STOL
WING BENDING MOMENT
 (RIGID)
 CRUISE CONFIGURATION

WING BENDING MOMENT ~ 10⁶ IN LBS

$$W = 79,750 \text{ LBS}$$

$$\eta = 2.5$$

$$\frac{b}{2} = 39 \text{ FT}$$

NOTE : INCLUDES RELIEF DUE
TO ENGINES, WING FUEL
AND WING STRUCTURE.

γ = FRACTION OF WING STRUCTURAL SPAN ~ $\left(\frac{b}{2}\right)$

FIG. II-2

STOL

SPANWISE DISTRIBUTION OF
SECTION NORMAL FORCE
(NO BLOWING)

NOTE : STRUCTURAL SPAN
IS ALONG RESPEC-
TIVE HINGE LINE.

FIG. II-3

STOL
 SPANWISE DISTRIBUTION OF
 SECTION HINGE MOMENT
 (NO BLOWING)

NOTES: STRUCTURAL SPAN
 IS ALONG RESPEC-
 TIVE HINGE LINE.

MOMENT ABOUT .25 C.

FIG. II-4
 $\eta = \text{FRACTION OF WING. STRUCTURAL SPAN } \frac{(b)}{2}$

Figure II-5-Natural bending mode shape along wing elastic axis.
STOL wing (empty). $\omega = 18.49 \text{ rad/sec.}$

Figure II-6 Natural bending mode shape along wing elastic axis.
STOL wing (empty). $w = 35.68 \text{ rad/sec.}$

Figure II-7 Natural bending mode shape along wing elastic axis.
STOL wing (empty) $\omega = 58.73 \text{ rad/sec.}$

Figure II-8 Natural bending mode shape along wing elastic axis.
STOL wing (empty). $\omega = 104.9$ rad/sec.

Figure II-9 Natural bending mode shape along wing elastic axis.
STOL wing (empty). $w = 218.6 \text{ rad/sec}$

Figure II-10 Natural bending mode shape along wing elastic axis.
SIVL wing (empty). $\omega = 434.0 \text{ rad/sec.}$

Figure II-11 Natural bending mode shape along wing elastic axis.
STOL wing (empty). $\omega = 513.1 \text{ rad/sec.}$

Figure II-12 Natural bending mode shape along wing elastic axis.
STOL wing (empty). $\omega = 1163$ rad/sec.

H·E 10 X 10 TO THE CENTERLINE 4B 1512.
H·E 10 X 25 CM.
REPRODUCED BY KODAK CO.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Figure 11-14 Flutter Boundary, STOL Wing.
35. 1b. Nacelles
 $\omega_{WB} = 21.57 \text{ rad/sec}$

Table II-1 Uncoupled Natural Frequencies -
Wing with No Engines

<u>Mode</u>	<u>Bending</u>		<u>Torsion</u>	
	rad/sec	hz	rad/sec	hz
1	24.73	3.93	55.55	8.84
2	85.42	13.59	105.2	16.74
3	204.5	32.5	145.4	23.1
4	425.6	67.7	165.4	26.3

Table II-2 Uncoupled Natural Frequencies -
Wing with 2015 lb. Nacelles,
Attached Rigidly

<u>Mode</u>	<u>Bending</u>		<u>Torsion</u>	
	rad/sec	hz	rad/sec	hz
1	22.77	3.62	21.63	3.44
2	63.29	10.07	51.41	8.18
3	170.3	27.1	83.82	13.34
4	284.8	45.3	157.6	25.1

Table II-3 Uncoupled Natural Frequencies -
Wing with 3500 lb. Nacelles,
Attached Rigidly

<u>Mode</u>	<u>Bending</u>		<u>Torsion</u>	
	rad/sec	hz	rad/sec	hz
1	21.57	3.43	17.14	2.73
2	56.96	9.06	40.96	6.52
3	163.3	26.0	83.0	13.21
4	244.3	38.9	157.5	25.1

Table II-4 Bending Natural Frequencies - Wing with
2015 lb. Nacelles, Elastically Attached

<u>Mode</u>	<u>rad/sec</u>	<u>hz</u>
1	18.49	2.94
2	35.68	5.68
3	58.73	9.35
4	104.9	16.69
5	218.6	34.8
6	434.0	69.1
7	513.1	81.7
8	1163.3	185.1

Table II-5 Coupled Natural Frequencies - Wing with
2015 lb. Nacelles, Elastically Attached

<u>Mode</u>	<u>rad/sec</u>	<u>hz</u>
1	17.31	2.75
2	22.50	3.58
3	41.31	6.57
4	44.65	7.11
5	79.38	12.63
6	97.23	15.47
7	129.8	20.7
8	200.2	31.9
9	261.2	41.6
10	381.7	60.7
11	479.4	76.3
12	517.6	82.4
13	832.4	132.5
14	1969.0	313.4

Table II-6 STOL Wing Flutter Speeds - With 2015 lb. Nacelles,
Elastically Mounted on the Wing. Pylon stiffness
Reduced to 25% of Design Value.

Altitude ft.	Fuel	k	ω_F	V_F	knots
			rad/sec	ft/sec	
0	empty	.25	35.5	613	363
		.23	35.3	662	392
		.20	35.2	759	449
		.19	35.1	795	471
		.17	35.1	891	528
10000	25%	.27	34.8	556	329
		.24	34.7	624	369
		.21	34.6	711	421
		.19	34.6	785	465
		.18	34.6	828	490
20000	50%	.28	34.4	529	313
		.25	34.3	592	351
		.22	34.3	671	397
		.20	34.2	737	436
		.18	34.2	818	484
25000	75%	.28	34.0	524	310
		.25	34.0	587	348
		.21	33.9	697	413
		.19	33.9	769	455
		.18	33.9	812	481
30000	100%	.25	33.8	582	345
		.22	33.8	661	391
		.18	33.7	807	478
		.17	33.7	855	506
		.15	33.7	967	573

Table II-7 STOL Wing Flutter Speeds - With 3500 lb. Nacelles,
Elastically Mounted on the Wing. Pylon stiffness
Reduced to 25% of Design Value.

Altitude ft	Fuel	k	ω_F rad/sec	V_F ft/sec	knots
0	empty	.21	28.4	582	345
		.19	28.1	638	378
		.16	28.2	760	450
		.15	28.1	809	479
		.14	28.1	864	512
10000	25%	.22	27.9	546	323
		.19	27.8	631	374
		.17	27.7	702	416
		.16	27.6	743	440
		.15	27.5	791	468
20000	50%	.23	27.5	515	305
		.20	27.4	591	350
		.18	27.3	653	387
		.16	27.3	736	436
		.15	27.3	784	464
25000	75%	.23	27.2	509	301
		.21	27.1	557	330
		.18	27.1	648	384
		.17	27.0	685	405
		.15	27.0	777	460
30000	100%	.24	27.0	484	287
		.21	26.9	552	327
		.18	26.8	643	381
		.17	26.8	681	403
		.16	26.8	723	428

Table II-8 STOL Wing Flutter Speeds - With 2015 lb. Nacelles,
Elastically Mounted on the Wing. Pylon stiffness
Reduced to 50% of Design Value.

Altitude ft	Fuel	k	ω_F rad/sec	V_F	
				ft/sec	knots
0	empty	.33	41.0	535	317
		.30	41.0	588	348
		.26	40.9	679	402
		.25	40.9	706	418
		.23	40.9	767	454
10000	25%	.34	40.6	514	304
		.30	40.5	582	345
		.26	40.5	672	398
		.24	40.5	727	430
		.22	40.5	793	470
20000	50%	.26	40.0	663	393
		.23	40.0	749	443
		.15	30.8	887	525
		.14	30.9	952	564
		.12	29.4	1056	625
25000	75%	.18	29.5	481	418
		.16	29.4	540	469
		.13	28.0	635	552
		.12	27.9	683	593
		.11	27.6	738	641
30000	100%	.18	29.4	703	416
		.15	28.4	816	483
		.13	28.2	936	554
		.12	28.1	1010	598
		.11	27.9	1094	648

Table II-9 STOL Wing Flutter Speeds - With 3500 lb. Nacelles,
Elastically Mounted on the Wing. Pylon stiffness
Reduced to 50% of Design Value.

Altitude ft	Fuel	k	F rad/sec	V_F	
				ft/sec	knots
0	empty	.24	32.2	578	342
		.22	32.2	631	374
		.19	32.2	730	432
		.18	32.2	770	456
		.17	32.2	815	483
10000	25%	.29	32.0	476	282
		.26	32.0	531	314
		.23	32.0	600	355
		.22	32.0	627	371
		.20	32.0	690	409
20000	50%	.33	31.8	416	246
		.29	31.8	473	280
		.26	31.8	527	312
		.24	31.8	571	338
		.22	31.8	623	369
25000	75%	.30	31.6	310	269
		.27	31.6	344	299
		.23	31.6	404	351
		.21	31.6	442	384
		.19	31.6	488	424
30000	100%	.21	31.3	438	381
		.19	31.3	484	420
		.16	31.3	575	499
		.14	31.2	656	570
		.13	31.2	706	613

Table II-10 STOL Wing Flutter Speeds ~ With 2015 lb. Nacelles,
Elastically Mounted on the Wing . Pylon stiffness
Reduced to 75% of Design Value.

Altitude ft	Fuel	k	ω_F	V_F	knots
			rad/sec	ft/sec	
0	empty	.35	43.7	538	319
		.32	43.7	588	348
		.29	43.7	649	384
		.27	43.7	697	413
		.25	43.6	752	445
10000	25%	.30	43.1	619	367
		.27	43.0	687	407
		.23	43.0	806	477
		.22	43.0	843	499
		.20	43.0	926	548
20000	50%	.20	32.2	695	412
		.17	31.5	797	472
		.15	31.5	905	536
		.13	30.1	998	591
		.12	29.9	1073	635
25000	75%	.18	30.3	724	429
		.16	30.3	815	483
		.13	28.9	958	567
		.12	28.7	1031	610
		.11	28.4	1115	660
30000	100%	.18	29.9	716	424
		.15	28.9	831	492
		.13	28.8	954	565
		.12	28.7	1030	610
		.10	26.8	1155	684

Table II-11 STOL Wing Flutter Speeds - With 3500 lb. Nacelles,
Elastically Mounted on the Wing. Pylon stiffness
Reduced to 75% of Design Value.

Altitude ft	Fuel	k	ω_F	V_F	
			rad/sec	ft/sec	knots
0	empty	.25	34.3	592	351
		.23	34.3	643	381
		.21	34.3	705	417
		.20	34.3	740	438
		.19	34.3	779	461
10000	25%	.33	34.1	445	263
		.31	34.1	474	281
		.28	34.1	525	311
		.26	34.1	566	335
		.24	34.1	612	362
20000	50%	.17	33.8	470	278
		.15	33.8	521	308
		.13	33.8	583	345
		.12	33.8	634	375
		.11	33.8	694	411
25000	75%	.17	26.2	664	393
		.15	26.0	747	442
		.13	25.8	854	506
		.12	25.6	920	545
		.11	25.4	995	589
30000	100%	.17	25.8	654	387
		.14	24.9	766	454
		.12	24.5	880	521
		.11	24.3	951	563
		.10	24.0	1033	612

Table II-12 STOL Wing Flutter Speeds - With 2015 lb. Nacelles,
Elastically Mounted on the Wing.

Altitude ft	Fuel	k	ω_F rad/sec	V_F ft/sec	vots
0 10000 20000 25000 30000	empty	.34	45.1	572	339
		.32	45.1	608	360
		.28	45.1	694	411
		.27	45.1	720	426
		.25	45.1	778	461
0 10000 20000 25000 30000	25%	.28	44.3	683	404
		.25	44.3	764	452
		.22	44.3	868	514
		.20	44.3	954	565
		.18	44.3	1058	626
0 10000 20000 25000 30000	50%	.20	32.6	479	416
		.17	31.7	549	477
		.14	30.5	642	557
		.13	30.4	687	596
		.12	30.1	738	641
0 10000 20000 25000 30000	75%	.18	30.5	731	433
		.16	30.6	823	487
		.13	29.2	967	573
		.12	29.0	1041	616
		.11	28.7	1126	667
0 10000 20000 25000 30000	100%	.17	42.0	752	445
		.15	29.6	849	503
		.13	29.4	976	578
		.11	27.6	1084	642
		.10	27.3	1176	696

Table II-13 STOL Wing Flutter Speeds - With 3500 lb. Nacelles,
Elastically Mounted on the Wing.

Altitude ft	Fuel	k	ω_F rad/sec	V_F ft/sec	vots
0	empty	.25	35.5	612	362
10000		.24	35.5	638	378
20000		.23	35.5	666	394
25000		.22	35.5	696	412
30000	empty	.20	35.5	766	454
0	25%	.34	35.3	447	265
10000		.32	35.3	475	281
20000		.29	35.3	524	310
25000		.27	35.2	563	333
30000	25%	.25	35.2	608	360
0	50%	.27	34.9	557	330
10000		.24	34.9	626	371
20000		.22	34.9	683	404
25000		.20	34.8	751	445
30000	50%	.18	34.8	834	494
0	75%	.17	26.4	670	397
10000		.15	26.3	754	446
20000		.13	26.1	864	512
25000		.11	25.1	984	583
30000	75%	.10	24.9	1074	636
0	100%	.16	25.4	684	405
10000		.14	25.1	773	458
20000		.12	24.7	889	526
25000		.11	24.5	959	568
30000	100%	.10	24.2	1042	617

Section III. STRESS

This section contains the preliminary analyses of the wing box, flaps and engine pylon structure. Included are the stiffnesses and approximate section properties required for the vibration and flutter analyses.

The wing box analysis begins on page 44. Bending, torsional and vertical shear stiffnesses are on pages 46 and 49. An internal bending load distribution in the box covers is on page 50.

The flap analysis begins on page 44. Pages 58 and 59 summarize the flap bending and torsional stiffnesses. Analysis and section properties of the flap support structure are provided on pages 73 through 100. The figure on page 100 identifies the typical sections for the inboard, center and outboard flap supports.

The pylon analysis begins on page 103. Vertical shear stiffness, bending stiffness and torsional stiffness are plotted versus pylon length on pages 106, 107, and 108, respectively.

Wing Box Structure

The wing box is a single cell box beam of skin-stringer construction. Material is aluminum alloy (2024-T3 and 7075-T6). Method of analysis is at a preliminary design level assuming an allowable bending tensile stress in the lower surface of 50,000 psi. Upper surface wing bending area is based on the lower surface area arbitrarily increased 20% to account for a normally higher area due to the upper surface being buckling critical. The allowable stress of 50,000 psi accounts for area out due to holes, combining bending stresses with shear stresses and fatigue considerations.

Resultant bending material determined the bending stiffness. The vertical shear stiffness is based on the total estimated spar web thicknesses. Torsional stiffness is based on the spar web thicknesses and the upper and lower skin thicknesses. Skin thicknesses were determined by assuming 50% of the bending material to be shear material.

Flap Loads

The normal force (F_N) and pitching moments on flap numbers 1, 2, and 3 for inboard, center and outboard sections were determined from the coefficients shown on pages 101 and 102. These forces and moments are reacted at the flap supports. Bending moments on the flaps are used to determine the skin gages. The bending and torsional rigidity curves for the flaps are shown on pages 58 and 59, respectively. The calculations for the forces and moments are shown on pages 61 through 72, and are summarized on page 60.

The reactive loads and moments are applied to the flap support beams and tracks to determine the size of the cross sections. Bearing sizes capable of carrying the required loads influence the initial sizing of the members. The bearing loads applied to the flanges of the beams and tracks are critical. The shape and sizes of several

critical cross sections are shown for each section of the flaps. In all cases the dimensions, cross sectional areas, moments of inertia of the beams and tracks are varying. In the absence of detailed drawings, it should be sufficiently accurate to consider a linear variation of properties from section to section.

Flap Structure

The material of construction for the skin and frames of the flaps is 17-7 PH stainless steel. The skins are brazed to a stainless steel honeycomb core. The tracks, supports, and fittings are made from 17-4 PH stainless steel. The mechanical properties for these materials are referenced in MIL-HDBK-5, and they are reproduced for convenience below.

17-7 PH stainless steel*

MIL-S-25043

Sheet

$$F_{tu} = 177 \text{ KSI}$$

$$F_{ty} = 150 \text{ KSI}$$

$$F_{cy} = 158 \text{ KSI}$$

$$F_{su} = 115 \text{ KSI}$$

$$E = 29.0 \times 10^6 \text{ PSI}$$

$$E_c = 30.0 \times 10^6 \text{ PSI}$$

17-4 PH Stainless Steel*

AMS 5643

Bar and Forging

$$F_{tu} = 190 \text{ KSI}$$

$$F_{ty} = 170 \text{ KSI}$$

$$F_{cy} = 178 \text{ KSI}$$

$$F_{su} = 123 \text{ KSI}$$

$$E = 29.0 \times 10^6 \text{ PSI}$$

$$E_c = 30.0 \times 10^6 \text{ PSI}$$

*Room temperature values

725 FT² STOL WING
BENDING & TORSIONAL STIFFNESS

FIG. III-1

BASIC DATA

WING SPARS AND
TRAILING EDGE FLAPS

FIG. III - 2

FIG. 115-5

725 FT² STOL WING BOX

VERTICAL SHEAR STIFFNESS

GA
SHEAR
STIFFNESS
 $\frac{1}{10^6}$ LBS

FIG. III-4

725 FT² STOL UING
INTERNAL ENDING LOADS (ULT.)

FIG III - 5.

TABLE II-1

STOL WING BOX						
η_l	N.S. τ_3 30% C	hang. IN.	he. IN.	B IN.	A_e IN. ²	MULT. 10^6 IN-LB. K.R.S.
.123	58.53	25.2	22.90	43.1	1087	13.58
.256	121.82	23.1	20.75	39.8	920	9.75
.310	147.51	22.2	20.20	36.5	555	8.32
.420	199.85	20.4	18.13	35.3	720	5.77
.530	247.44	18.8	17.00	32.2	605	3.90
.650	307.30	16.7	15.08	28.8	481	1.83
.800	360.67	14.3	12.90	24.4	349	0.45
1.000	475.84	11.1	9.90	18.8	209	0.00

 η_l = FRACTION OF SEMISPANN.S. = NORMAL STATION TO 30% CHORD LINE (INCHES) = 433.2 IN. / $c_0 = 24.44$ h_{av} = AVERAGE BOX HEIGHT h_e = EFFECTIVE BOX HEIGHT FOR BENDING = .85 \times h_{max} . B = BOX WIDTH A_e = ENCLOSED BOX AREA = $B \times h_{av}$

MULT = ULTIMATE BENDING MOMENT.

VULT = ULTIMATE VERTICAL LOAD.

卷之三

COST OF THE 1990 MIGRATION

STOL WING BOX

M	B	\bar{t}_L	\bar{t}_U	$\frac{(\bar{t}_L + \bar{t}_U) B^3}{12} = \frac{(A_L + A_U) B^3}{12}$	A_{ws}	$\frac{A_{ws} B^2}{2}$	$\frac{\Sigma I_z}{10^9 in^2 LBS}$	GA
.123	43.1	.275	.330	4039	1.44	1337	5273	11.2
.256	39.8	.234	.283	2723	1.31	1032	3769	10.2
.310	32.5	.214	.257	2239	1.27	941	3630	7.9
.420	35.3	.180	.216	1454	.91	567	2021	7.1
.520	32.2	.173	.171	873	.85	441	1314	6.6
.650	26.8	.100	.120	441	.75	311	752	5.3
.700	24.4	.100	.120	216	.41	122	388	3.2
1.000	18.8	.100	.120	122	.32	57	179	2.5

STOLEN WINGS FOX

THE ELLIPTIC FUNCTION

π	$A_u + A_c$ IN ²	A_u IN ²	h_e IN.	y_L IN.	y_u IN.	$A_u y_u^2$ IN. ⁴	$A_c y_e^2$ IN. ⁴	T_x $10^6 \text{ IN.}^3 - \text{L.F.}$	E 10^6 PSI
.173	26.09	14.23	22.90	12.49	10.41	1542	1850	3372	33.92
.251	20.68	11.23	20.75	11.32	9.43	1003	1205	22.66	22.66
.310	18.13	9.89	19.91	10.86	9.05	810	972	17.62	17.62
.420	14.00	7.67	16.12	7.69	6.24	519	622	11.41	11.41
.520	10.10	5.51	17.00	9.27	7.73	329	394	7.23	7.23
.650	6.38	3.48	15.08	8.23	6.85	163	196	3.59	3.59
.803	5.37	3.93	12.93	7.04	5.84	101	121	2.22	2.22
1.000	4.14	4.26	9.96	5.49	4.50	46	55	1.61	1.61

A_u = TOTAL UPPER COVER AREA
 A_c = TOTAL LOWER COVER AREA
 h_e = EFFECTIVE BOX HEIGHT = 85% OF MAX. BOX HEIGHT
 y_L = DISTANCE FROM BOX CENTROID TO COVER CENTROID
 y_u = " " "
 T_x = $A_u y_u^2 + A_c y_e^2$ (MOMENT OF INERTIA)
 E = 10.0×10^6 PSI MODULUS OF ELASTICITY ASSUMED FOR ALUM.

54

STOP LIVING EX

TABLE I

A_u/Z_B	ASSUMED 50% COVER AREA IN SKIN - BALAN
A_u/Z_S	" "
Z_S	" "
Z_u	ASSUMED EQUAL
σ_u	SPARE WEIGTHNESSES
σ_s	MODULES OF ELASTICITY FOR ALUM.

STOL
WING SHEAR
 (RIGID)

$$W = 79,750 \text{ LB}$$

$$\eta = 2.5$$

$$b/2 = 39 \text{ FT}$$

NOTE : INCLUDES RELIEF DUE
 TO ENGINE, WING FUEL
 AND WING STRUCTURE.

WING SHEAR ~ 10^3 LB

FIG III-7
 2-25-72

η ~ FRACTION OF WING STRUCTURAL SPAN

STOL
WING BENDING MOMENT
(RIGID)

$$W = 79,750 \text{ LB}$$

$$\gamma = 2.5$$

$$b/2 = 39 \text{ FT}$$

NOTE: INCLUDES RELIEF DUE TO
 ENGINE, WING FUEL AND
 WING STRUCTURE.

WING BENDING MOMENT ~ 10^{6} IN-LB

η ~ FRACTION OF WING STRUCTURAL SPAN ~ $2/(b/2)$
 FIG. II-8

2-21-72

STOL

BENDING STIFFNESS, $L_B \cdot 10^6$

FIG III-9

FIG. III-10

TORSIONAL STIFFNESS, $\times 10^7$ LB. IN²

FLAP SUPPORT LOADS
AT QUARTER CHORD.

SECTION	FLAP NO.	F_N INBOARD I.B.(LIM.)	F_N OUTB'D. L.B.(LIM.)	M INBOARD IN-LB LIMIT	M OUTB'D IN-LB LIMIT
INBOARD	1	3826	3473	-17104	-14784
	2	5077	4558	-30292	-26542
	3	2325	2124	-13204	-10907
CENTER	1	3412	3179	-10750	-9350
	2	3440	3164	-19065	-16275
	3	1572	1480	-3095	-7170
OUTB'D	1	1679	1540	-6293	-5248
	2	2153	2019	-10965	-9155
	3	1004	935	-4676	-3934

NOTE: INBOARD & OUTBOARD LOADS REFER TO LOADS AT
INBOARD & OUTBOARD SUPPORTS.

NORMAL FORCES AND MOMENTS AT EACH SUPPORT WERE DETERMINED BY ASSUMING AN AVERAGE OF THE DISTRIBUTION (SEE LOAD SECTION) OVER HALF OF THE FLAP LENGTH.

TABLE III-6 STOL - TRAILING EDGE FLAP LOADS

FLAP NO. 1
INBOARD

ANGLE OF SWEET $19^{\circ}50'$

$$\cos \alpha = .94068$$

STA. 143.20

RIGHT HAND RULE

$$\frac{109.12}{.94068} = 115.99 \quad \frac{22.90}{.94068} = 24.34 \quad \frac{63.30}{.94068} = 67.29$$

$$\frac{54.55}{.94068} = 57.98 \text{ IN.}$$

$$F_N = 57.98 \times 60 \text{ LB./IN} = 3478 \text{ LB. (LIMIT) OUTB'D SUPPORT}$$

$$F_N = 57.98 \times 66 \text{ LB./IN.} = 3826. \text{ LB. (LIMIT) INBOARD SUPPORT}$$

$$M_i = 57.98 \times -295 = -17,104 \text{ IN-LB. (LIMIT) INBOARD SUPPORT}$$

$$M_o = 57.98 \times -255 = -14,784 \text{ IN-LB. (LIMIT) OUTB'D SUPPORT}$$

STOL - TRAILING EDGE
INBOARD FLAP

FIGURE 113. 2
INBOARD

ANGLE OF SWEET 19°
 $\cos \lambda = .94552$
 STA. 148.20

$$\frac{Q}{22.90}$$

$$L = 63.30$$

$$\frac{109.12}{.94552} = 115.40 \quad \frac{22.90}{.94552} = 24.22 \quad \frac{63.30}{.94552} = 66.75$$

$$\frac{54.55}{.94552} = 57.70$$

$$30.18 \times 54.55 = 1646. \text{ SQ. IN.}$$

$$F_N = 57.70 \times 88 \text{ LB./IN.} = 5077. \text{ LB. (LIMIT) INB'D SUPPORT}$$

$$F_H = 57.70 \times 79 \text{ LB./IN} = 4558 \text{ LB. (LIMIT) OUTB'D. SUPPORT}$$

$$M = 57.70 \times -52.5 = -30,292 \text{ IN-LB. (LIMIT) INB'D. SUPPORT}$$

$$M = 57.70 \times -460 = -26,542 \text{ IN-LB. (LIMIT) OUTB'D SUPPORT}$$

STOL - TRAILING EDGE
INBOARD FLAP

INBOARD
INBOARD

ANGLE OF SWEEP $13^{\circ}10'$

$\cos \alpha = .95015$

STA. 148.20

31.37

STA. 84.90

$$\frac{109.12}{.95015} = 114.85 \quad \frac{22.90}{.95015} = 24.10 \quad \frac{63.30}{.95015} = 66.62$$

$$\frac{54.55}{.95015} = 57.41$$

$$F_N = 57.41 \times 37.0 = 2124 \text{ LB. (LIMIT) OUTBOARD SUPPORT}$$

$$F_N = 57.41 \times 40.5 = 2325 \text{ LB. (LIMIT) INBOARD SUPPORT}$$

$$M = 57.41 \times -230 = -13,204 \text{ IN-LB. (LIMIT) INBOARD SUPPORT}$$

$$M = 57.41 \times -190 = -10,907 \text{ IN-LB. (LIMIT) OUTBOARD SUPPORT}$$

STOL - TRAILING EDGE
INBOARD FLAP

INBOARD FLAP
TORSIONAL MOMENT DISTRIBUTION*

* NOTE: TORSIONAL MOMENT DISTRIBUTION IS ASSUMED LINEAR FOR SIMPLIFICATION.

STOL - TRAILING EDGE
INBOARD FLAP

FOR NO. 1
CENTER

$$\frac{37.95}{.94063} = 93.496 \quad \frac{18.50}{.94068} = 19.67 \quad \frac{51.0}{.94068} = 54.21$$

$$F_N^I = 54 \times 93.496 = 5050 \text{ LB. (LIMIT) TOTAL}$$

$$F_N^I = 3412 \text{ LB. (LIMIT) INB'D. } F_N^O = 3179 \text{ LB. (LIMIT) OUTB'D SUPPORT}$$

$$M = -10752 \text{ IN-LB (LIMIT) INB'D}$$

$$M = -9350 \text{ IN-LB. (LIMIT) OUTB'D.}$$

STOL - TRAILING EDGE
CENTER FLAP

PLATE NO. 2
CENTER

$$\frac{87.95}{.94552} = 93.016 \quad \frac{18.50}{.94552} = 19.56 \quad \frac{51.0}{.94552} = 53.94$$

$$F_N = 71.0 \times 93.016 = 6604 \text{ LB. (LIMIT) TOTAL}$$

$$F_N = 3440 \text{ LB. (LIMIT) INB'D.}$$

$$F_N = 3164 \text{ LB. (LIMIT) OUTB'D.}$$

$$M = -19065 \text{ IN-LB (LIMIT) INB'D.}$$

$$M = -16275 \text{ IN-LB (LIMIT) OUT'D.}$$

STOL - TRAILING EDGE
CENTER FLAP

FLAP NO. 3
CENTER

$$\frac{27.95}{.95015} = 92.52 \quad \frac{18.50}{.95015} = 19.47 \quad \frac{51.00}{.95015} = 53.67$$

$$F_N = 1572.2 \text{ LB. (LIMIT) IN } 8'D. \quad F_N = 1430. \text{ LB. (LIMIT) OUT } 8'D.$$

$$F_N = 33. \times 92.52 = 3053 \text{ LB. (LIMIT) TOTAL}$$

$$M = -8095.111 \text{ IN-LB. (LIMIT) IN } 8'D.$$

$$M = -7170. \text{ IN-LB. (LIMIT) OUT } 8'D.$$

STOL - TRAILING EDGE
CENTER FLAP

CHORD FLAP
POSITIONAL MOMENT DISTRIBUTION

INBOARD —

STOL - TRAILING EDGE
CENTER FLAP

FLAP NO. 1
OUTER

$$\frac{55.83}{.94068} = 69.93 \quad \frac{13.72}{.94068} = 14.58 \quad \frac{38.38}{.94068} = 40.50$$

$$F_N = 46 \times 69.93 = 3219 \text{ LB. (LIMIT) TOTAL}$$

$$F_{N1} = 1679 \text{ LB. (LIMIT) INB'D.}$$

$$F_{N2} = 1540 \text{ LB. (LIMIT) OUTB'D.}$$

$$M = -6298 \text{ IN-LB. (LIMIT) INB'D.}$$

$$M = -5243 \text{ IN-LB. (LIMIT) OUTB'D.}$$

STOL - TRAILING EDGE
OUTER FLAP

FLAP NO. 2
OUTER

$$\frac{65.83}{.94552} = 69.62 \quad \frac{13.72}{.94552} = 14.51 \quad \frac{38.38}{.94552} = 40.59$$

$$F_N = 60 \times 69.62 = 4177 \text{ LB. (LIMIT) TOTAL}$$

$$F_N = 2158 \text{ LB. (LIMIT) IN B'D.}$$

$$F_N = 2019 \text{ LB. (LIMIT) OUT B'D.}$$

$$M = -10965 \text{ IN-LB. (LIMIT) IN B'D.}$$

$$M = -9155 \text{ IN-LB (LIMIT) OUT B'D.}$$

STOL - TRAILING EDGE
OUTER FLAP

11,12 NO. 3
OUTER

$$\frac{65.83}{.95015} = 69.23 \quad \frac{13.72}{.95015} = 14.44 \quad \frac{38.38}{.95015} = 40.39$$

$F_N = 1004$ LB. (LIMIT) INB'D.

$F_N = 935$ LB. (LIMIT) OUTB'D.

$F_N = 28. \times 69.23 = 1937$ LB. (LIMIT) TOTAL

$M = -4676$ IN-LB. (LIMIT) INB'D.

$M = -3984$ IN-LB. (LIMIT) OUTB'D.

STOL - TRAILING EDGE
OUTER FLAP

WING FLAP
TRAILING EDGE MOMENT DISTRIBUTION

INBOARD —

STOL - TRAILING EDGE
OUTER FLAP

INBOARD FLAP

F_N (INBOARD SUPPORT)	M (INBOARD SUPPORT)
2325 LB. FLAP NO. 3	-13,204 IN-LB. (LIMIT)
5077 LB. FLAP NO. 2	-30,272 IN-LB.
3826 LB. FLAP NO. 1	-17,104 IN-LB.

TAKING MOMENTS ABOUT THE PIVOT POINT ON
FLAP NO. 1

$$\begin{aligned}\Sigma M = 0 &= 17.7 R_B - 43.5 \times 2325 \cos 22^\circ - 14.3 \times 5077 \cos 42^\circ \\ &\quad - 1.0 \times 3826 \cos 63^\circ - 32.0 \times 2325 \sin 22^\circ \\ &\quad - 16.0 \times 5077 \sin 42^\circ - 1.6 \times 3826 \sin 63^\circ \\ &\quad - 19249 - 55677 - 17104 = 0\end{aligned}$$

$$17.7 R_B - 323,926 = 0$$

$$R_B = 18,583 \text{ LB. (ROLLER LOAD)}$$

$$\begin{aligned}13,835 \sin 54^\circ &= 14700 \text{ LB.} \\ 13,835 \cos 54^\circ &= 10800 \text{ LB.}\end{aligned}$$

$$\begin{array}{rcl} \Sigma F_H & & \Sigma F_V \\ \hline 3760 & & 3410 \\ 1740 & & 3390 \\ 2160 & & 870 \\ \hline -7660 & & 7670 \end{array}$$

$$\begin{array}{ll} 10,880 - 7660 = 3140 & \text{ACTUATOR LOAD} \\ 14,700 - 7670 = 7030 & \text{REACTION AT TRI-POD} \end{array}$$

$F_N \neq M$ = FORCE ≠ MOMENT PER SUPPORT.

FOR SIMPLICITY, THE MOMENTS WERE USED DIRECTLY
IN THE EQUATIONS OF EQUILIBRIUM WITHOUT
CONSIDERATION THAT THIS PLANS IS NOT NORMAL TO
THE FLAP QUARTER CHORD (6% ERROR)

STOL - TRAILING EDGE
INBOARD FLAP

DIMENSIONS SHOWN ARE THOSE FOR THE INBOARD SUPPORT.

MOMENTS SHOWN RESULT FROM TRANSFERRING \bar{m} FORWARD.

STOL - TRAILING EDGE
INBOARD FLAP

INBOARD FLAPS

FIND MOMENTS ABOUT THE LOWER REAR SPAR
TO FIND HORIZONTAL REACTION AT UPPER SPAR CAP.
 $\Sigma M = 0 = 21.3 R_U - 2320 \times 63.5 - 5077 \times 55.5$
 $- 3823 \times 42.0 - 13,234 - 30,292 - 17,104$

$$21.3 R_U - 159,262 - 281,773 - 163,344 - 60600 = 0$$

$$R_U = \frac{667,977}{21.3} = 31,454 \text{ LB.}$$

R_U = HORIZONTAL REACTION AT REAR SPAR (UPPER)

CHECK:

$$21.3 R_U - 18,335 \times 54.4 + 7030 \times 48$$

$$R_U = \frac{-657,134}{21.3} = 31,454 \text{ LB.}$$

STOL - TRAILING EDGE
INBOARD FLAP

INBOARD FLAPS

$L = 37.0$	$A = 2.403$	$I = 4604$
O.D. 1.750		
I.D. 1.500	<u>1.767</u>	2485
	.636	.2119

$$\rho = \sqrt{\frac{I}{A}} = \sqrt{300} = .55$$

$$\frac{L}{\rho} = \frac{37}{.550} = 67.3$$

$$F_{CR} = 65,000 \text{ PSI}$$

$$\frac{49,500}{.636 \times 2} = 38,900 \text{ PSI}$$

$$J = \sqrt{\frac{EI}{P}} = \sqrt{\frac{30.0 \times 10^6 \times .2119}{24.75 \times 10^3}} = 16$$

$$\frac{L}{J} = \frac{37}{16} = 2.31$$

$$\frac{M}{J^2} = 2.7$$

$$M_1 = 2475 \text{ IN-LB.}$$

$$M = 6682 \text{ IN-LB}$$

$$f = \frac{6682 \times .875}{.2119} = -27,592 \text{ PSI}$$

$$-38900 - 27592 = -66,500$$

DUE TO THE REDUNDANCY OF THE SUPPORT, THE TUBE IS CONSIDERED TO BE ADEQUATELY SIZED.

STOL - TRAILING EDGE
INBOARD FLAPS

STOL
FLAPS

DEFLECTION ANALYSIS

THE FLAPS CONSISTS OF THREE SECTIONS: INBOARD, CENTER, AND OUTBOARD. EACH SECTION HAS THREE AIRFOIL SHAPE PARTS SUPPORTED BY TWO SETS OF TRACKS.

AD REPRESENTS THE FLAPS, WITH B AND C REPRESENTING THE TRACK SUPPORTS.

$$\sum M_c = 0 = R_1 L + \frac{w a^2}{2} - \frac{w}{2} (a + L)^2$$

$$R_1 = \frac{wL}{2} + wa$$

THE BENDING MOMENT BETWEEN B AND C IS

$$M_x = R_1 x - \frac{w(a+x)^2}{2} = R_1 x - \frac{w a^2}{2} - w a x - \frac{w x^2}{2}$$

$$= -\frac{w x^2}{2} + \frac{w L x}{2} - \frac{w a^2}{2}$$

FOR ALL POINTS BETWEEN B AND C

$$M_x = EI \frac{d^2 y}{dx^2} = -\frac{w x^2}{2} + \frac{w L x}{2} - \frac{w a^2}{2}$$

ASSUME THAT THE MOMENT OF INERTIA IS CONSTANT, USING I_{av} , THEN THIS EQUATION CAN BE INTEGRATED.
B.C.

$$y' = \left(\frac{L}{2}\right) = 0 \text{ AND } y(0) = 0$$

$$y = y_{MAX} = \Delta \text{ WHEN } x = \frac{L}{2}$$

THE ELASTIC CURVE OF THE CENTRAL PORTION OF THE FLAP

$$EI y = -\frac{w x^4}{24} + \frac{w L x^3}{12} - \frac{w a^2 x^2}{4} - \frac{w L^3 x}{24} + \frac{w a^2 L x}{4}$$

FOR MAXIMUM DEFLECTION $x = L/2$

$$EI y = \frac{-w L^4}{384} + \frac{w L^4}{96} - \frac{w a^2 L^2}{16} - \frac{w L^4}{48} + \frac{w a^2 L^2}{8}$$

$$= -\frac{5 w L^4}{384} + \frac{w a^2 L^2}{16}$$

STOL - TRAILING EDGE
DEFLECTION ANALYSIS

STRESS

DEFLECTION

MAX. NO. 1 (END LOAD)

$$W = 63 \text{ LB./IN} \quad (\text{U.V.})$$

$$Q = 24.34 \text{ IN.} \quad L = 67.29 \text{ IN.}$$

$$I = 2.4 \text{ IN.}^4 \quad t = .030 \text{ IN.}$$

$$M_x = -\frac{Wx^2}{2} + \frac{WLx}{2} - \frac{Wa^2}{2}$$

$$M_{x=0} = -\frac{Wa^2}{2} = -\frac{63}{2}(24.34)^2 = -13,661 \text{ IN-LB.}$$

$$M_x = \frac{L}{2} = -31.5(33.64)^2 + 31.5(67.29)(33.64) - 13,661 = 17,061$$

THE STRESS AT THE SUPPORT

$$f_b = \frac{Mc}{I} = \frac{-13,661 \times 1.55}{2.4} = \pm 12,051 \text{ PSI}$$

$$\frac{q}{c} = \frac{M}{2At^2} = \frac{9631}{2 \times 56 \times .030} = 2881 \text{ PSI}$$

MAX. DEFLECTION

$$EIy = -\frac{5wl^4}{384} + \frac{wa^2l^2}{16} = -\frac{5 \times 63 \times (67.29)^4}{384} + \frac{63 \times (24.34)^2 (67.29)^2}{16}$$

$$y = -\frac{6.27 \times 10^6}{30.0 \times 10^6 \times 2.4} = -0.0833 \text{ IN.}$$

$$t = .030 \text{ IN.} \quad E = 30.0 \times 10^6 \text{ PSI}$$

STOL - TRAILING EDGE
INBOARD FLAPS

STOL - TRAILING EDGE

INBOARD FLAPS

FLAP NO. 2 (INBOARD)

W = 33.5 LB./IN. (AV.)

a = 24.21 IN. L = 66.94 IN

t = .030 IN.

$$E = 30.0 \times 10^6 \text{ PSI}$$

$$M_X = -\frac{Wx^2}{2} + \frac{WLx}{2} - \frac{Wa^2}{2}$$

$$M_{X=0} = -\frac{Wa^2}{2} = -\frac{83.5}{2}(24.22)^2 = -24,197 \text{ IN-LB.}$$

$$\begin{aligned} M_{X=\frac{L}{2}} &= -41.75(16.73)^2 + 41.75(66.95)(16.73) - 24,197 \\ &= -11545 + 46200 - 24,197 = 10,458 \text{ IN-LB.} \end{aligned}$$

$$\begin{aligned} M_{X=\frac{L}{2}} &= -41.75(33.47)^2 + 41.75(66.95)(33.47) - 24,197 \\ &\quad - 46,200 + 92,400 - 24,197 = 22,003 \text{ IN-LB.} \end{aligned}$$

$$\sigma = \frac{Mc}{I} = \frac{24197 \times 1.5}{4.66} = \pm 7735 \text{ PSI}$$

$$\frac{\sigma}{E} = \frac{M}{24t} = \frac{17214}{2 \times 91 \times 0.030} = 3152 \text{ PSI}$$

MAX. DEFLECTION

$$\delta_{max} = -\frac{5 \times 33.5 \times (66.94)^4}{384} + \frac{33.5 \times (24.21)^2 \times (66.94)^2}{16}$$

$$u = -\frac{8.03 \times 10^6}{30.0 \times 10^6 \times 4.2} = -.0637 \text{ IN.}$$

STOL - TRAILING EDGE
INBOARD FLAPS

APPENDIX

DEFLECTIONS

DATA NO. 3

$$W = 38.5 \text{ LB/IN. (AV.)}$$

$$a = 24.10 \text{ IN.} \quad L = 53.62 \text{ IN.}$$

$$\frac{I}{b} = .030$$

$$E = 30.0 \times 10^6 \text{ PSI}$$

$$M_x = -\frac{wx^2}{2} + \frac{wLx}{2} - \frac{wa^2}{2}$$

$$M_{x=0} = -\frac{wa^2}{2} = -\frac{38.5}{2}(24.10)^2 = -11,130 \text{ IN-LB.}$$

$$M_{x=\frac{L}{4}} = -19.25(16.65)^2 + 19.25(66.62)(16.65) - 11130 \\ = -5336 + 21,352 - 11130 = 4836 \text{ IN-LB.}$$

$$M_{x=\frac{L}{2}} = -19.25(33.31)^2 + 19.25(66.62)(33.31) - 11130 \\ = 21353 + 42,717 - 11130 = 10,179 \text{ IN-LB}$$

$$\sigma_b = \frac{Mc}{I} = \frac{11,130 \times 1.60}{3.28} = 5,453 \text{ PSI}$$

$$\frac{\sigma}{E} = \frac{T}{2At} = \frac{7613}{2 \times 10^3 \times 0.030} = 1230 \text{ PSI}$$

MAX. DEFLECTION

$$EIy = -\frac{5 \times 38.5 \times (66.62)^4}{384} + \frac{38.5 \times (24.10)^2 \times (66.62)^2}{16}$$

$$y_f = -\frac{3.472 \times 10^6}{30.0 \times 10^6 \times 4.92} = -.0249 \text{ IN.}$$

STOL - TRAILING EDGE
INBOARD FLAP

INBOARD FLAP
BEAM

A-A
 $\text{AREA} = 5.475 \text{ IN.}^2$
 $I_{YY} = 3.940 \text{ IN.}^4$
 $I_{ZZ} = 16.92 \text{ IN.}^4$

B-B
 $\text{AREA} = 5.195 \text{ IN.}^2$
 $I_{YY} = 17.80 \text{ IN.}^4$
 $I_{ZZ} = 27.90 \text{ IN.}^4$

STOL. - TRAILING EDGE
INBOARD FLAP

INBOARD FLAP
BEAM

CC
 $\text{AREA} = 6.067 \text{ IN.}^2$
 $I_{YY} = 47.90 \text{ IN.}^4$
 $I_{ZZ} = 20.32 \text{ IN.}^4$

$\text{AREA} = 5.20 \text{ IN.}^2$
 $I_{YY} = 5.97 \text{ IN.}^4$
 $I_{ZZ} = 13.30 \text{ IN.}^4$

D - D

STOL - TRAILING EDGE
INBOARD FLAP

INBOARD FLAP
BEAM

$$A = 2.49 \text{ IN}^2$$

$$I = 43.53 \text{ IN}^4$$

H - H

EACH OF THESE SECTIONS ARE SYMMETRICAL WITH RESPECT
TO A VERTICAL \mathbb{C}

STOL - TRAILING EDGE
INBOARD FLAP

$$A = 1.61 \text{ IN}^2$$

$$I = 8.24 \text{ IN}^4$$

INBOARD FLAP
TRACK

E-E

$$A = 3.62 \text{ IN.}^2$$

$$I_{YY} = 7.07 \text{ IN.}^4$$

$$I_{ZZ} = 2.25 \text{ IN.}^4$$

F-F *

$$A = 5.42$$

$$I_{YY} = 13.38 \text{ IN.}^4$$

$$I_{ZZ} = 3.60 \text{ IN.}^4$$

G-G

$$A = 4.50 \text{ IN.}^2$$

$$I_{YY} = 12.56 \text{ IN.}^4$$

$$I_{ZZ} = 2.70 \text{ IN.}^4$$

I-I

$$A = 2.97 \text{ IN.}^2$$

$$I_{YY} = 8.71 \text{ IN.}^4$$

$$I_{ZZ} = 1.57 \text{ IN.}^4$$

* SECTION F-F IS IN A TRANSITION REGION,

STOL - TRAILING EDGE
INBOARD FLAP

CENTER FLAP

F_N (TOTAL LOAD)

3053 FLAP NO. 3

6604 FLAP NO. 2

5050 FLAP NO. 1

M (TOTAL MOMENT)

-15,265 IN-LB. (LIMIT)

-35,346 IN-LB.

-20,100 IN-LB.

TAKING MOMENTS ABOUT THE PIVOT POINT ON
FLAP NO. 1 TO FIND HORIZONTAL & VERTICAL COMP.
ONENTS OF THE REACTION AT B

$$\Sigma M = 0 = 9.66 R_{B_y} + H_1 \times 1526 \sin 75^\circ + H_2 \times 3302 \sin 55^\circ \\ + H_3 \times 2525 \sin 35^\circ$$

$$9.66 R_{B_y} + 2.50 \times 1470 + 19.02 \times 2700 + 36.57 \times 1450 = 0$$

$$R_{B_y} = \frac{108053}{9.66} = 11,135 \text{ LB.}$$

$$10.94 R_{B_H} + V_1 \times 1526 \cos 75^\circ + V_2 \times 3302 \cos 55^\circ \\ + V_3 \times 2525 \cos 35^\circ = 0$$

$$10.94 R_{B_H} + .3 \times 395 + 14.45 \times 23.25 + 29.53 \times 2070 = 0$$

$$R_{B_H} = \frac{95142}{10.94} = 8696 \text{ LB.}$$

$$R_B = \sqrt{(11,135)^2 + (8696)^2} + \frac{70711}{2 \times 14.63} = 16,570 \text{ LB.}$$

STOL - TRAILING EDGE
CENTER FLAPS

FLAP NO. 1 (CENTER)

$$M_x = -\frac{wx^2}{2} + \frac{wlx}{2} - \frac{wa^2}{2}$$

$$M_{x=0} = -\frac{wa^2}{2} = -\frac{52}{2}(19.67)^2 = -10059 \text{ IN.-LB.}$$

$$w = 52 \text{ LB/IN.}, a = 19.67 \text{ IN.}, l = 54.21 \text{ IN.}, t = .025$$

$$f_b = \frac{Mc}{I} = \frac{-10059 \times 1.05}{2.6} = \pm 4062 \text{ PSI}$$

$$\frac{\sigma}{E} = \frac{T}{2At} = \frac{6128}{2 \times 39 \times .025} = 3142 \text{ PSI}$$

$$y = -.0648 \text{ IN.} \quad E = 30.0 \times 10^6 \text{ PSI}$$

FLAP NO. 2 (CENTER)

$$M_{x=0} = -\frac{wa^2}{2} = \frac{-70 \times (19.67)^2}{2} = -13541 \text{ IN-LB.}$$

$$w = 70. \text{ LB./IN.}$$

$$f_b = \frac{Mc}{I} = \frac{13541 \times 1.2}{2.1} = \pm 7737 \text{ PSI}$$

$$\frac{\sigma}{E} = \frac{T}{2At} = \frac{10850}{2 \times 65 \times .025} = 3,338 \text{ PSI}$$

$$y = -.046 \text{ IN.} \quad E = 30.0 \times 10^6 \text{ PSI}$$

FLAP NO. 3 (CENTER)

$$M_{x=0} = -\frac{wa^2}{2} = -\frac{33 \times (19.67)^2}{2} = -6384 \text{ IN-LB.}$$

$$w = 33. \text{ LB/IN.}$$

$$f_b = \frac{Mc}{I} = \frac{6384 \times 1.31}{2.4} = \pm 3492 \text{ PSI}$$

$$\frac{\sigma}{E} = \frac{T}{2At} = \frac{4591}{2 \times 75 \times .025} = 1224 \text{ PSI}$$

$$y = -.019 \text{ IN.} \quad E = 30.0 \times 10^6 \text{ PSI}$$

STOL - TRAILING EDGE
CENTER FLAP

CENTER FLAP - BEAM

A - A

$$\text{AREA} = 3.90 \text{ IN.}^2$$

$$I_{YY} = 2.90 \text{ IN.}^4$$

$$I_{ZZ} = 28.43 \text{ IN.}^4$$

B - B

$$\text{AREA} = 3.35 \text{ IN.}^2$$

$$I_{YY} = 7.63 \text{ IN.}^4$$

$$I_{ZZ} = 22.45 \text{ IN.}^4$$

STOL - TRAILING EDGE
CENTER FLAP

CENTER FLAP
TRACK

E - E

$$A = 2.54 \text{ IN.}^2$$

$$I_{YY} = 3.36 \text{ IN.}^4$$

$$I_{ZZ} = 1.46 \text{ IN.}^4$$

I - I

$$A = 2.42$$

$$I_{YY} = 2.66 \text{ IN.}^4$$

$$I_{ZZ} = 1.17 \text{ IN.}^4$$

G - G

$$A = 3.07 \text{ IN.}^2$$

$$I_{YY} = 5.84 \text{ IN.}^4$$

$$I_{ZZ} = 1.68 \text{ IN.}^4$$

STOL - TRAILING EDGE
CENTER FLAP

CENTER FLAP - BEAM

C - C

$$\text{AREA} = 3.15 \text{ IN.}^2$$

$$I_{yy} = 16.50 \text{ IN.}^4$$

$$I_{zz} = 13.70 \text{ IN.}^4$$

D - D

$$\text{AREA} = 3.24 \text{ IN.}^2$$

$$I_{yy} = 3.08 \text{ IN.}^4$$

$$I_{zz} = 14.13 \text{ IN.}^4$$

STOL - TRAILING EDGE
CENTER FLAP

STOL TRAILING FLAP

$$A = 3.56 \text{ IN.}^2 \text{ (TOTAL)}$$

$$I = 22.54 \text{ IN.}^4 \text{ (TOTAL)}$$

$$A = 1.718 \text{ IN.}^2$$

$$I = 15.59 \text{ IN.}^4$$

J-J

H-H

$$\text{TOTAL } A = 4.55 \text{ IN.}^2$$

$$\text{TOTAL } I = 31.19 \text{ IN.}^4$$

EACH OF THESE SECTIONS ARE SYMMETRICAL WITH
RESPECT TO A VERTICAL C.

STOL - TRAILING EDGE

OUTBOARD FLAP

	L (TOTAL LOAD)
1439	FLAP NO. 3
4177	FLAP NO. 2
6219	FLAP NO. 1

	M (TOTAL MOMENT)
	8360 IN-LB. (LIMIT)
	20,190
	11,547

TAKING MOMENTS ABOUT THE PIVOT POINT ON
FLAP NO. 1

$$\Sigma M = 0$$

$$7.45 R_{B_V} + H_1 1610 \sin 75^\circ + H_2 2083 \sin 55^\circ + H_3 969 \sin 35^\circ = 0$$

$$7.45 R_{B_V} + 2.03 \times 1555 + 14.31 \times 1710 + 23.36 \times 552 = 0$$

$$7.45 R_{B_V} + 3156 + 25325 + 15824 = 0$$

$$R_{B_V} = \frac{44307}{7.45} = 5947$$

$$11.13 R_{B_H} + V_1 1610 \cos 75^\circ + V_2 2083 \cos 55^\circ + V_3 969 \cos 35^\circ = 0$$

$$11.13 R_{B_H} + 2.02 \times 417 + 3.55 \times 1430 + 22.74 \times 795 = 0$$

$$11.13 R_{B_H} + 842 + 12,654 + 18078 = 0$$

$$R_{B_H} = \frac{31574}{11.13} = 2836$$

$$R_{B_C} = 6600$$

$$11.13 R_{B_M} + 4330 + 10,095 + 5787$$

$$R_{B_M} = 1,790$$

$$R_B = 6600 + 1790 = 8390 \text{ LBS. (LIMIT)}$$

STOL - TRAILING EDGE
OUTBOARD FLAP

FLAP NO. 1 (OUTBOARD)

$$W = 46.0 \text{ LB./IN.}$$

$$a = 14.44 \text{ IN. } L = 40.29 \text{ IN.}$$

$$I = .022 \text{ IN. }^4 \quad I = 30.6 \times 10^4 \text{ IN-}^4 \text{ PSI}$$

$$M_x = -\frac{Wa^2}{2} + \frac{Wlx}{2} + \frac{Wa^2}{2}$$

$$M_{x=0} = -\frac{Wa^2}{2} = -\frac{46.0}{2} (14.44)^2 = -4316 \text{ IN-LB.}$$

$$f_b = \frac{Mc}{I} = \frac{4316 \times .84}{.60} = \pm 6742 \text{ PSI}$$

$$\frac{q}{t} = \frac{M}{2Ae} = \frac{3601}{2 \times 27 \times .020} = 3334 \text{ PSI}$$

$$y = -.0342 \text{ IN.}$$

FLAP NO. 2 (OUTBOARD)

$$W = 60 \text{ LB./IN.}$$

$$a = 14.44 \text{ IN. } L = 40.59$$

$$M_{x=0} = -\frac{Wa^2}{2} = -\frac{60 \times (14.44)^2}{2} = -6255 \text{ IN-LB.}$$

$$f_b = \frac{Mc}{I} = \frac{6255 \times .95}{1.05} = 5659 \text{ PSI}$$

$$\frac{q}{t} = \frac{6250}{2 \times 47 \times .020} = 3324 \text{ PSI}$$

$$y = -.0260 \text{ IN.}$$

FLAP NO. 3 (OUTBOARD)

$$W = 28 \text{ LB/IN.}$$

$$M_{x=0} = -\frac{Wa^2}{2} = -\frac{28 \times (19.67)^2}{2} = 5416 \text{ IN-LB.}$$

$$f_b = \frac{5416 \times 1.03}{1.15} = 4850 \text{ PSI}$$

$$\frac{q}{t} = \frac{2655}{2 \times 55 \times .020} = 1207 \text{ PSI}$$

$$y = -.0113 \text{ IN.}$$

STOL - TRAILING EDGE
OUTBOARD FLAP

OUTBOARD FLAP - BEAM

$$\begin{aligned}
 &C - C \\
 &\text{AREA} = 3.25 \text{ IN.}^2 \\
 &I_{YY} = 12.42 \text{ IN.}^4 \\
 &I_{ZZ} = 12.39 \text{ IN.}^4
 \end{aligned}$$

$$\begin{aligned}
 &D - D \\
 &\text{AREA} = 2.98 \text{ IN.}^2 \\
 &I_{YY} = 2.13 \text{ IN.}^4 \\
 &I_{ZZ} = 14.16 \text{ IN.}^4
 \end{aligned}$$

STOL - TRAILING EDGE
OUTBOARD FLAP

13024211 1162
110111

STOL - TRAILING EDGE
OUTBOARD FLAP

STANDARD FLAP
TRACK

E - E

$$A = 1.76 \text{ IN.}^2$$

$$I_{YY} = 1.49 \text{ IN.}^4$$

$$I_{ZZ} = .78 \text{ IN.}^4$$

I - I

$$A = 1.59 \text{ IN.}^2$$

$$I_{YY} = 2.09 \text{ IN.}^4$$

$$I_{ZZ} = .65 \text{ IN.}^4$$

G - G

$$A = 2.17 \text{ IN.}^2$$

$$I_{YY} = 2.76 \text{ IN.}^4$$

$$I_{ZZ} = .91 \text{ IN.}^4$$

STOL - TRAILING EDGE
OUTBOARD FLAP

OUTBOARD FLAP

H-H

$$A = 3.24 \text{ IN.}^2$$

$$I = 11.72 \text{ IN.}^4$$

$$I_{Z_2} = 2.98$$

J-J

$$A = 2.52 \text{ IN.}^2$$

$$I = 7.37 \text{ IN.}^4$$

$$I_{Z_2} = .098 \text{ IN.}^4$$

EACH OF THESE SECTION ARE SYMMETRICAL WITH
RESPECT TO A VERTICAL CENTER LINE.

STOL - TRAILING EDGE
OUTBOARD FLAP

SIDE VIEW OF FLAP TRACK AND SUPPORT BEAMS

THE SAME RELATIVE SECTION LOCATIONS ARE USED FOR
INBOARD, CENTER, AND OUTBOARD FLAP MECHANISM.
REF.DWG. PD-III-2-010

FIG. E - 15

STOL
 SPANWISE DISTRIBUTION OF
 SECTION HINGE MOMENT
 (NO BLOWING)

NOTES : STRUCTURAL SPAN
 IS ALONG RESPEC-
 TIVE HINGE LINE.

MOMENT ABOUT .25 C.

$\gamma =$ FRACTION OF WING STRUCTURAL SPAN — $\frac{Y}{(b/2)}$

FIG. 7-16.

STOL

**SPANWISE DISTRIBUTION OF
SECTION NORMAL FORCE
(NO BLOWING)**

NOTE : STRUCTURAL SPAN IS ALONG RESPECTIVE HINGE LINE.

FIG. 17-17

η = FRACTION OF WING STRUCTURAL SPAN $\sim \frac{1}{\left(\frac{b}{2}\right)}$

PYLON STRUCTURE

The pylon structure consists of aluminum alloy skin and longerons. The four longerons form the corners of the box beam and torque box. The pylon is internally stiffened with frames and bulkheads. The skin gage is 0.070 inches, except for the bottom panel aft of the thrust mount and side load fitting which is .080 inch.

A criteria was established for the outboard engine nacelle under the following conditions:

1. Flight pullup with roll and 1.5 cruise thrust.
2. Negative G flight maneuver with 1.5 cruise thrust.
3. Landing condition, positive G.
4. Roll condition, 2.5 side
5. Landing condition, negative G
6. Takeoff condition, negative G, with 1.5 x maximum thrust.
7. Engine seizure.

A summary load sheet is presented showing the distribution of loads applied to the pylon at the front, thrust, vertical, and side mounts.

Three critical conditions design the pylon structure:

1. Landing condition, positive G, designs the lower longerons.
2. Takeoff condition, negative G, with 1.5 times maximum thrust designs the upper longerons.
3. Engine seizure condition designs the shear panels aft of the thrust mount.

STOL
OUTBOARD JACKET - OUTBOARD DESIGN LOADS

CONDITION	FRONT MOUNT			THRUST MOUNT			REAR LEFT		REAR RIGHT	
	VERT.	SIDE	AXIAL	SIDE	SIDE	VERT.	SIDE	VERT.	SIDE	VERT.
FLIGHT, 5.25 \downarrow 1.5 T_C	2038	0	10,125	0	1287	2987	-1287	2987		
FLIGHT, 3.0 \downarrow 1.5 T_C	-5187	0	10,125	0	323	555	323	555		
LANDING 6.0G \downarrow	5256	0	0	0	2574	3414	-2574	3414		
ROLL, 2.5 \downarrow	0	2060		2920	0	-10990	0	10026		
LANDING -2.5V	-2190	0	0	0	-1072	-1422	1072	-1422		
TAKEOFF, -1.5Y 1.5 TM	-4771	0	13950	0	-900	974	900	874		
ROLL, 2.5 \downarrow + 1.5 T_C	-2561	2060	10125	2960	-11954		10026			
ENGINE SEIZURE	315,000 IN-LB.									

$T_C = 6750$ LB. (LIMIT) ENGINE THRUST - POSITIVE FORWARD
 $T_H = 9100$ LB. (LIMIT) MAX. ENGINE THRUST - POSITIVE FORWARD
 $V = 2015$ LB. (LIMIT) ONE FACTOR VERTICAL LOAD - POSITIVE DOWNWARD
 $S = 2015$ LB. (LIMIT) ONE FACTOR SIDE LOAD - POSITIVE INBOARD
 LOADS GIVEN AS A GROUP HAVE BEEN COMBINED.
 1. VERTICAL FLIGHT LOAD FACTORS ARE BASED ON COMBINATIONS OF THE DESIGN
 SYMMETRICAL MANEUVER LOAD FACTOR (3.75 G, ULT.) AND LOAD FACTORS
 RESULTING FROM AN ASSUMED ROLLING ACCELERATION OF 1.75 RAD./SEC.
 2. ALL OTHER FACTORS ARE BASED ON BOEING 707 DESIGN CRITERIA.

TABLE III-7 STOL - ENGINE PYLON LOADS

A black and white photograph of a document page. A large, diagonal black bar runs from the bottom-left corner towards the top-right. The text "REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR" is printed in white capital letters along this bar.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

PIRON STRUCTURE

(BAC. DM. 75.231)

(BAC. DM. 75.231)

STOL - ENGINE PYLON STRUCTURE

PYLON
WING PANEL

CHECK THE SHEAR PANELS FOR THE ENGINE
SEIZURE CONDITION

ENGINE SEIZURE TORQUE = 315,000 IN-LB. (ULT.)

$$q = \frac{T}{2A} = \frac{315,000}{2 \times 230} = 684 \text{ LB./IN.}$$

THE SHEAR STRESS

$$f_s = \frac{q}{t} = \frac{684}{.070} = 9770 \text{ PSI}$$

THE ALLOWABLE STRESS

$$F_{sc,r} = K_E \left(\frac{t}{b} \right)^2 = 7.10 \times 10.3 \times 10^6 \times \left(\frac{.070}{5.0} \right)^2 = 14,300 \text{ PSI}$$

STOL - ENGINE PYLON STRUCTURE

AVION

LEAR JET 45

CHECK THE SHEAR PANELS AFT OF THE THRUST MOUNT AND
FOR TORSITING

TRANSFER THE 2980 LB. LOAD TO THE CENTER OF THE FRAME
AS A SHEAR AND A MOMENT

$$T = 14.5 \times 2980 + 10307 \times 10 = 146,230 \text{ IN-LB.}$$

$$\bar{\sigma}_1 = \frac{T}{2A} = \frac{146,230}{2 \times 230} = 319 \text{ LB./IN.}$$

$$\bar{\sigma}_2 = \frac{2980}{2 \times 10} = 154 \text{ LB./IN. (SIDE LOAD - SHEAR FLOW)}$$

$$\frac{\sigma_1}{t} = \frac{321}{.070} = 4543 \text{ PSI. (STRESS IN VERTICAL PANELS)}$$

$$F_{SCR} = 7.1 \times 10.3 \times 10^6 \times \left(\frac{.070}{5.0}\right)^2 = 14300 \text{ PSI (VERTICAL PANEL)}$$

THE BOTTOM PANEL IS LOADED BY $\bar{\sigma}_1$ AND $\bar{\sigma}_2$

$$\frac{\sigma_1 + \sigma_2}{t} = \frac{472}{.070} = 6740 \text{ PSI (STRESS IN BOTTOM PANEL)}$$

THE ALLOWABLE STRESS IN THE BOTTOM PANEL

$$F_{SCR} = 3.0 \times 10.3 \times 10^6 \times \left(\frac{.070}{5.0}\right)^2 = 16150 \text{ PSI}$$

PANELS ARE ASSUMED MIDWAY BETWEEN CLAMPED AND
SIMPLY SUPPORTED EDGES

STOL - ENGINE PYLON STRUCTURE

PYLON
WALL PANELS

WALL PANELS NORMAL TO 2.2 FRONT WING AREA.
CONDITIONS ROLL, 2.5 G

$$q = \frac{T}{2A} = \frac{144,230}{2 \times 180} = 405 \text{ L.B./IN.}$$

$$\frac{q}{E} = \frac{405}{.070} = 5785 \text{ PSI (VERTICAL PANEL)}$$

$$F_{SCR} = 7.2 \times 10.3 \times 10^7 \times \left(\frac{.070}{5.0}\right)^2 = 14532 \text{ PSI (VERTICAL PANEL)}$$

$$\frac{405 + 154}{.070} = 7985 \text{ PSI (BOTTOM PANEL)}$$

$$F_{SCR} = 16150 \text{ PSI (BOTTOM PANEL)}$$

PANELS ARE ASSUMED MIDWAY BETWEEN CLAMPED
AND SIMPLY SUPPORTED EDGES.

THE SHEAR STRESS FOR THE ENGINE SEIZURE
CONDITION INCREASES TO

$$\frac{q}{E} = \frac{T}{2A_s} = \frac{315,000}{2 \times 180 \times .070} = 12,500 \text{ PSI}$$

BY COMPARISON WITH THE PREVIOUS CHECK FOR
THE ENGINE SEIZURE CONDITION IT CAN BE
SEEN THAT THE STRUCTURE IS ADEQUATE.

STOL - ENGINE PYLON STRUCTURE

SECTION

VEHICLE PYLON AREA

ADDITIONAL WEIGHT = 3Y, 1.5 T₂,
1.5 + 2K LARGER PANEL FORWARD OF THRUST OF 2100 LB.
TOTAL VERTICAL SHOCK = 4938 LB.

$$q = \frac{V}{2A} = \frac{4938}{2 \times 20} = 123 \text{ LB/IN.}$$

LET $\frac{E}{2} = .070$

$$\frac{\sigma}{E} = \frac{123}{.070} = 1760 \text{ PSI (VERTICAL PANEL)}$$

$$\sigma_{max} = 5.7 \times E \times \left(\frac{t}{b}\right)^2 = 5.7 \times 10.0 \times 10^6 \times \left(\frac{.07}{10}\right)^2 = 2790 \text{ PSI}$$

$$\frac{Q}{b} = \frac{20}{10} = 2$$

$$K_s = 5.7$$

STOL - ENGINE PYLON STRUCTURE

POSITIVE BENDING MOMENT PRODUCES COMPRESSION ON THE LONGERONS.

TYPE - 300 TONNEAU PYLON
BENDING MOMENT V/S PYLON STATION
LANDING GEAR CONDITION

NEGATIVE BENDING MOMENT PRODUCES COMPRESSION ON LONGERONS,
LONGERONS.

FIG. 27

TF-34 ENGINE PYLON
BENDING MOMENT VS. PYLON STATION

FIG. 10.12

Section IV. WEIGHTS

The weight, mass distribution, and moment of inertia data for the STOL wing is based on a combination of structural and deterministic estimating methods.

The following components were evaluated deterministically based on preliminary stress sizing.

Wing Box shell structure

Trailing edge flap support tracks and carriages

The engine and nacelle weight is based on the S-3A actual weight data. All other component weights were obtained from conventional preliminary design statistical weight estimating methods.

The centrodial locations of the wing components are shown on Drawing PD-111-2-009 mass properties layout.

Tables IV-1 through IV-9 are summary tables indicating weights, centroid location and inertias of wing and components.

Figures IV-1 and IV-2 are mass weight distribution plots for the wing box and complete wing per side, respectively.

FIXED LEADING EDGE

STOL

REFERENCE AXIS: X = F.S.

Y = B.L. O

ELEMENT NO.	η STA	WEIGHT LBS.	\bar{X} IN.	\bar{Y} IN.	MOMENT OF INERTIA LB-IN. C.G.		
					I_{x0}	I_{y0}	I_{z0}
OUTBOARD							
1	.984-.888	17	218.0	401.0	3.48	.34	3.48
2	.888-.795	18	198.0	361.0	3.55	.51	3.55
3	.795-.669	28	173.0	313.0	9.88	.92	9.88
4	.669-.546	30	146.0	259.0	10.13	1.13	10.13
	Σ	93					
INBOARD							
1	.483-.327	28	98.3	171.0	14.30	3.36	12.58
2	.274-.165	23	56.2	89.0	7.43	2.95	6.06
	Σ	51					

LEADING EDGE FLAPS

STOL

REFERENCE AXIS: X = F.S.		Y = B.L.O.		Y = B.L.O.		Y = B.L.O.	
ELEMENT NO.	% STA	WEIGHT LBS.	\bar{X} IN.	\bar{Y} IN.	MOIMENT OF INERTIA LB-IN. O	INERTIA TORS	
OUTBOARD							
1	.984-.888	17	218.0	401.0	.34	3.48	
2	.888-.795	18	198.0	361.0	.51	3.55	
3	.795-.669	28	173.0	313.0	.92	9.88	
4	.669-.546	30	146.0	259.0	10.13	10.13	
	Σ	93					
INBOARD							
1	.483-.327	28	98.3	171.0	14.30	3.36	
2	.274-.165	23	56.2	89.0	7.43	2.95	
	Σ	51					

WING BOX

१
८

FEED FORCE AXIS: X=F.S. — Y=b.L.O

三

REFERENCE AXIS: X=F.S.		Y=B.L.O		MOIMENT OF INERTIA LB-IN. C.R.			
ELEMENT NO.	# STA	WEIGHT LBS.	X IN.	Y IN.	I _{x0}	I _{y0}	I _{z0}
1	10-.9	53.	237.5	408.	9.87	2.84	12.00
2	.9-.8	58.	217.5	365.	11.29	4.02	14.31
3	.8-.7	68.	198.5	322.	13.92	5.93	18.38
4	.7-.6	83.	178.8	279.	17.90	8.89	27.43
5	.6-.5	111.	158.7	236.	25.28	14.31	36.03
6	.5-.4	150.	139.0	193.	36.14	22.91	53.35
7	.4-.3	192.	119.6	150.	49.01	34.31	74.78
8	.3-.2	235.	100.2	107.	63.61	48.55	100.08
9	.2-.1	270.	79.7	64.	78.06	64.79	126.75
10	.1-.0	282.	78.7	21.7	88.51	71.81	135.71
				Σ	1502.		

WING FIXED TRAILING EDGE

STOL

REFERENCE AXIS: X = F.S.

Y = B.L.O.

ELEMENT NO.	# STA	WEIGHT LBS.	\bar{X} IN.	\bar{Y} IN.	MOIMENT OF INERTIA LB-IN. C.M. ²		
					I_{xx}	I_{yy}	I_{zz}
1	1.0 — .9	9	253.5	411.3	1.660	.254	1.660
2	.9 — .8	13	237.0	367.0	2.518	.487	2.518
3	.8 — .7	17	222.0	324.0	3.473	.819	3.473
4	.7 — .6	21	203.0	281.0	4.545	1.264	4.545
5	.6 — .5	26	185.8	232.0	6.359	2.058	6.359
6	.5 — .4	30	168.8	194.0	7.333	2.645	7.333
7	.4 — .3	34	151.8	150.2	8.854	3.541	8.854
8	.3 — .2	38	134.8	107.8	10.553	4.616	10.533
9	.2 — .138	24	121.5	73.4	4.514	3.136	4.514
	Σ	212					

SPOILERS

STOL

REFERENCE AXIS: X = F.S.		Y = B.L.O		MOIMENT OF INERTIA L.B.-R. O. I.			
ELEMENT NO.	# STA	WEIGHT LBS.	X IN.	\bar{X} IN.	I_{x_0}	I_{y_0}	I_{z_0}
1	1.0-.914	9.5	276.0	413.6	1.27	.14	1.40
2	.914-.829	10.3	251.0	376.0	1.38	.15	1.52
3	.829-.744	11.1	239.0	340.0	1.48	.16	1.63
4	.744-.658	11.8	226.5	305.0	1.58	.18	1.74
5	.658-.573	12.6	213.0	269.0	1.69	.19	1.86
6	.573-.488	13.4	199.0	231.0	1.79	.20	1.97
7	.488-.402	14.1	186.0	194.0	1.90	.21	2.08
8	.402-.316	14.9	172.0	156.0	2.00	.22	2.20
9	.316-.231	16.0	157.0	108.0	2.15	.24	2.36
10	.231-.143	16.4	144.0	81.0	2.20	.24	2.42
		Σ	130.1				

TRAILING EDGE FLAPS

STOL

REFERENCE AXIS: X = F.S.

Y = B.L.O

MOMENT OF INERTIA LB-IN. C.R.D.

ELEMENT NO.	STA	WEIGHT LBS.	\bar{X} IN.	\bar{Y} IN.	MOMENT OF INERTIA LB-IN. C.R.D.	
					IN	OUT
OUTBOARD FLAPS						
1	.750-.598	43	225.2	289.0	15.7	8
2	.750-.598	58	233.3	289.0	21.3	2.1
3	.750-.598	65	238.5	289.0	24.0	3.0
INTERMEDIATE FLAPS						
1	.598-.395	68	198.4	212.8	44.1	1.9
2	.598-.395	91	208.2	212.8	59.1	4.6
3	.598-.395	102	214.0	212.8	66.4	6.4
INBOARD FLAPS						
1	.395-.143	100	163.5	114.0	99.4	3.9
2	.395-.143	135	175.0	114.0	134.3	9.5
3	.395-.143	151	182.2	114.0	150.4	13.4
	Σ	813				

DISCRETE MASSES

STOL

REFERENCE AXIS: X=F.S.	Y=B.I. 0	WEIGHT LBS.	X IN.	Y IN.	MOMENT OF INERTIA LB-FT. 0
ELEMENT NO.	N STA		\bar{X}	\bar{Y}	I_{x_0} I_{y_0}
AILERON SUPPORT ACTUATOR					
1	.948	25	263.0	410.7	.5 .3.8
2	.803	30	247.0	348.0	.6 .4.6
L.E. FLAP ACTUATORS					
OUTBOARD	.926	10.0	218.0	401.0	.341 .741
1	.833	12.5	198.0	361.0	.426 .926
2	.723	15.0	173.0	313.0	.512 1.112
3	.598	17.5	146.0	259.0	.597 1.297
INBOARD	.395	20.0	98.3	171.0	.682 1.482
1	.205	22.5	56.2	89.0	.768 1.668
ENGINE PYLONS					
OUTBOARD	.499	145	98	216.0	6.0 81.6
INBOARD	.290	145	53	125.6	6.0 81.6

DISCRETE MASSES

DIFFERENCE AXIS: X = F.S.

11

二
四

ELEMENT		\bar{Y} STA	WEIGHT LBS.	\bar{X}	\bar{Y}	MOMENT OF INERTIA LB-FT. ²
ELEMENT NO.	1	IN.	IN.	IN.	IN.	IN.
ENGINE						
OUTBOARD	.499	1870	81	216.0	584.4	4,281.5
ENGINE						
INBOARD	.290	1870	35.3	125.6	584.4	4,281.5
T.E.FLAP TRACKS / ACTUATORS						
OUTBOARD						
1	.718	165	237.0	311.0	5.8	63.4
2	.630	191	224.0	273.0	6.9	84.4
INTERMEDIATE						
1	.558	237	213.0	241.8	8.3	104.8
2	.438	263	194.0	189.8	9.2	116.3
INBOARD						
1	.342	309	180.0	148.2	10.9	136.5
2	.192	335	158.0	83.2	12.0	148.0

STOL
WING BOX SPANWISE WT DISTRIBUTION

FIG. II-1

eta STATION — FRACTION OF SEMI-SPAN

FIG. JV-2.

WEIGHT DISTRIBUTION — LBS / INCH OF SEMI-SPAN

STOL
WING WT DISTRIBUTION

WEIGHT DISTRIBUTION — LBS / INCH OF SEMI-SPAN

FINAL PAGE IS POOR