Team Name: The Spark

Challenge Name: Gen AI-Based Email Classification and OCR

Solution Design Document

Prepared by:

- Thiru
- Praveen
- Magdaleen
- Selvasathya

Al Engine Name: Finspark Insights

1. Overview

The Email Analyzer is a Streamlit-based Al-powered tool designed to analyze commercial banking emails, categorize them, extract key attributes, and generate structured responses. The solution leverages OpenAI's GPT model for text processing and categorization.

2. Models Explored

Models were explored to identify the most efficient AI framework for accurate email categorization, key attribute extraction, and confidence scoring, ensuring optimal performance and reliability.

- LLAMA downloaded format for llama-2-7b-chat.Q4_K_M.gguf
 - Had initial success with smaller sampled
 - o Due to computation limitation on personal system unable to proceed further
- Microsoft/ phi-2
- TinyLlama-1.1B-Chat-v1.0

3. Architecture

Components

1. User Interface

- o Built using Streamlit.
- Accepts email content via text input or file upload (Single / Multiple)
- o Output generation, instantly visible on UI and download option in csv format

2. Preprocessing Layer

- Cleans email content by removing redundant spaces and formatting inconsistencies.
- o Extracts an existing Service Request (SR) number, if present.
- o Generates a new SR number if no existing one is found.

 Extracting the attachment content from the email along with key fields (Sender, From, Subject, Body)

3. Al Model Layer

- o Uses OpenAI's GPT model (gpt-4o-mini) for analyzing email content.
- Extracts structured information such as request type, sub-request type, key attributes, intent, and confidence score.

4. Confidence Scoring Mechanism

• Calculates a confidence score based on lexical match, key attribute presence, intent clarity, and ambiguity.

5. Storage & Processing

- o Stores input emails and outputs structured data.
- o Processes uploaded .txt, .eml, .msg, and .pdf files.

6. Configuration & Extensibility

- Uses config.json for predefined request types and attributes.
- o Supports future API integrations.

4. Workflow

Step 1: Input Handling

- User enters email content manually or uploads a file.
- If a file is uploaded, the system extracts text from it.
- Email content is displayed for review.

Step 2: Email Preprocessing

- Standardizes text format.
- Checks for an existing SR number.
- Generates a new SR number if none is found.

Step 3: AI Processing & Categorization

- Constructs a prompt for OpenAI's GPT model.
- GPT returns a JSON response with:
 - request_type
 - sub_request_type
 - key_attributes
 - o main_intent
 - o confidence_score
 - o confidence_explanation

Step 4: Confidence Scoring

- Confidence is calculated using weighted parameters:
 - o Lexical match: 25%

Key attributes: 30%Intent match: 20%Ambiguity penalty: 25%

3 4 7 7 4 4 7

- JSON output is displayed.
 - SR number is generated and shown.
 - Confidence score is displayed as a metric.

Step 6: File Processing

Step 5: Output & Display

- Processes files stored in the input folder.
- Extracts text, analyzes content, and presents results.

5. Key Features & Enhancements

- Multi-file support (TXT, EML, MSG, PDF)
- Automated categorization based on AI analysis
- SR number tracking for follow-ups
- Confidence scoring for reliable outputs
- Extensible architecture for API integrations

6. Technologies Used

- Programming Language: Python
- Framework: Streamlit
- Al Model: OpenAl GPT-4o-mini
- Data Processing: Regex, JSON
- Storage: Local File System (with potential for API integration)
- Environment Management: dotenv (for API keys)

7. Future Enhancements

- Integration with commercial banking systems via API.
- Improved SR tracking with a database backend.
- Enhanced confidence scoring with machine learning models.
- Web-based UI for email management.

8. Conclusion

This solution provides a streamlined approach to commercial banking email analysis, automating categorization and data extraction while ensuring accurate SR tracking. The architecture allows for scalability, making it a future-ready tool for banking operations.