Problem Set 2

Samuel B. Hopkins

Last updated September 25, 2024

Due: 10/8, 11:59pm.

Please typeset your solutions in LaTeX.

Problem 1 (On \models , borrowed from Aaron Potechin). Consider the following polynomial equation in 3 variables, x, y, z.

$$(x^2+1)y=z^2.$$

Because it implies $y = \frac{z^2}{x^2+1}$, any solution (x, y, z) to the above must have $y \ge 0$. We will see if sum-of-squares can capture this reasoning.

- 1. Construct a degree 4 pseudoexpectation $\widetilde{\mathbb{E}}$ in variables x, y, z such that $\widetilde{\mathbb{E}} \models (x^2 + 1)y = z^2$ but $\widetilde{\mathbb{E}} y < 0$. (Computer-aided proofs are allowed.)
 - By $\widetilde{\mathbb{E}} \models (x^2 + 1)y = z^2$, we mean that for any polynomial p of degree at most 1 in x, y, z, $\widetilde{\mathbb{E}} p(x, y, z)(x^2 + 1)y = \widetilde{\mathbb{E}} p(x, y, z)z^2$.
- 2. Despite the above, show that there exists a sum-of-squares refutation to the following system of polynomial inequalities, for any c > 0: $\{(x^2 + 1)y = z^2, y \le -c\}$.

Problem 2. Suppose $\widetilde{\mathbb{E}}$ is a pseudoexpectation of degree d, with d even, and $\widetilde{\mathbb{E}} \models p \leq 0$, $p \geq 0$ for some polynomial p. (Informally, we have been writing $\widetilde{\mathbb{E}} \models p = 0$.) Show that for every q such that the degree of pq is at most d, we have $\widetilde{\mathbb{E}} pq = 0$.

Problem 3. Unreleased.