

Lasersicherheit

Lasersicherheit, Dipl.-Ing. Falk Florschütz 02.10.2014

Erklärung Laser

Laserstrahlung im Sinne dieser Unfallverhütungsvorschrift ist jede elektromagnetische Strahlung mit Wellenlängen im Bereich zwischen 100 nm und 1 mm, die als Ergebnis kontrollierter stimulierter Emission entsteht. (Definition nach §2 Abs.2 der BGV B2, entspricht auch den Anwendungsbereich der TROS-Laserstrahlung)

Laser Akronym für engl.

<u>Light Amplification by Stimulated Emission of Radiation</u>

"Lichtverstärkung durch stimulierte Emission von Strahlung", ist ein Begriff aus der Physik. Er bezeichnet sowohl den physikalischen Effekt als auch das Gerät, mit dem Laserstrahlen erzeugt werden. (Definition nach Wikipedia)

Elektromagnetische Strahlung (Wellen) im sichtbaren und nahe sichtbaren Bereich mit:

- gleicher Richtung (Parallelität)
- gleicher Wellenlänge (Monochromasie)
- gleicher Phasenlage (Kohärenz)

Übersicht der Regelwerke Lasersicherheit

Übersicht der Regelwerke Lasersicherheit

Bezeichnung	Titel	Fundstelle		
OStrV	Verordnung zum Schutz der Beschäftigten vor Gefährdungen durch künstliche optische Strahlung (Arbeitsschutzverordnung zu künstlicher optischer Strahlung - OStrV) – 19.07. 2010	www.bundesrecht.juris.de, www.baua.de		
TROS- Laserstrahlung (Entwurf) Allg.Teil, Teil 1 und 2	Technische Regeln zur Arbeitsschutzverordnung zu künstlicher optischer Strahlung	www.baua.de		
BGV B2	Laserstrahlung (2007 aktualisiert, veraltet)	www.bgetem.de, www.dguv.de		
BGI 5007	Laser-Einrichtungen für Show- oder Projektionszwecke	www.bgetem.de, www.dguv.de		
BGI 5031	Umgang mit Lichtwellenleiter-Kommunikations-Systemen	www.bgetem.de, www.dguv.de		
BGI 5092	Auswahl und Benutzung von Laser-Schutz- und Justierbrillen	www.bgetem.de, www.dguv.de		
DIN EN 60825 / VDE 0837	Sicherheit von Lasereinrichtungen (Normenreihe, bestehend aus mehreren Teilen)	www.beuth.de, www.vde.com		
DIN EN 207	Persönlicher Augenschutz - Filter und Augenschutzgeräte gegen Laserstrahlung (Laserschutzbrillen)	www.beuth.de		
DIN EN 208	Persönlicher Augenschutz - Augenschutzgeräte für Justierarbeiten an Lasern und Laseraufbauten (Laser- Justierbrillen)	www.beuth.de		

Laserklassen

Klasse 1	Die zugängliche Laserstrahlung ist ungefährlich oder der Laser ist in einem geschlossenen Gehäuse.		
Klasse 1M	Die zugängliche Laserstrahlung ist ungefährlich, solange keine optischen Instrumente, wie Lupen oder Ferngläser verwendet werden.		
Klasse 1C			
Klasse 2	Die zugängliche Laserstrahlung liegt nur im sichtbaren Spektralbereich (400 nm bis 700 nm). Sie ist bei kurzzeitiger Bestrahlungsdauer (bis 0,25 s) auch für das Auge ungefährlich.		
Klasse 2M	Wie Klasse 2, solange keine optischen Instrumente, wie Lupen oder Ferngläser, verwendet werden.		
Klasse 3R	Die zugängliche Laserstrahlung ist gefährlich für das Auge.		
Klasse 3B	Die zugängliche Laserstrahlung ist gefährlich für das Auge und in besonderen Fällen auch für die Haut. Diffuses Streulicht ist in der Regel ungefährlich.		
Klasse 4	Die zugängliche Laserstrahlung ist sehr gefährlich für das Auge und gefährlich für die Haut. Auch diffus gestreute Strahlung kann gefährlich sein. Beim Einsatz dieser Laserstrahlung besteht Brand- oder Explosionsgefahr.		

Was kann man von den Laserklassen ableiten

Einfaches Erkennungsmerkmal für die Gefährlichkeit von Lasern

Laser Klasse 1 nach DIN EN 60825-1:2008-05

Laserstrahlung
Nicht in den Strahl blicken
Laser Klasse 2
nach DIN EN 60825-1:2008-05

P≤1 mW

 $\lambda = 650 \text{ nm}$

Beispiele für die Kennzeichnung von Lasern DIN EN 60825-1:2008-05

 man kann entscheiden ob eine ausführliche eigenständige Gefährdungsbeurteilung notwendig ist oder ob die Gefährdungsbeurteilung anhand der Gebrauchsanleitung durchzuführen ist.

Eine Gefährdungsbeurteilung anhand der Gebrauchsanleitung ist in der Regel bei den Laserklassen 1 und 2 mit Klassifizierung nach DIN EN 60825 / VDE 0837-1:2008-5 möglich.

Bei Lasern der Klasse 1 mit Klassifizierung nach IEC 60825-1, Version, Ed 3.0, 2014 können die Expositionsgrenzwerte der Richtlinie 2006/25/EG deutlich überschritten werden. Deshalb ist eine Bewertung der Exposition notwendig.

Was kann man von den Laserklassen ableiten

Die Notwendigkeit eines Laserschutzbeauftragten (LSB)
 Für die Laserklassen 3R, 3B und 4 wird ein sachkundiger
 Laserschutzbeauftragter gefordert (OSTRV §5, BGV B2 §6).

Anforderungen und Aufgaben des LSB gemäß TROS-Laserstrahlung:

- abgeschlossene technische, naturwissenschaftliche, medizinische oder kosmetische Berufsausbildung + zwei Jahre Berufserfahrung
- · verfügt über entsprechenden Lehrgang mit Nachweis über die erfolgreiche Teilnahme
- ist schriftlich bestellt
- unterstützt den Arbeitgeber oder die fachkundige Person bei der Gefährdungsbeurteilung und hat für den sicheren Betrieb der genannten Lasereinrichtungen zu sorgen
- arbeitet mit der Fachkraft für Arbeitssicherheit und dem Betriebsarzt zusammen
- Kennt bezogen auf den Anwendungsbereich Gefährdungen, Schutzmaßnahmen und Regelwerke
- unterstützt den Arbeitgeber bei der Unterweisung der Beschäftigten

Fachkundige für die Gefährdungsbeurteilung (§ 5 OSTRV)

Die Beurteilung der Gefährdung durch Laserstrahlung verlangt Kenntnisse über:

- 1. der Rechtsgrundlagen,
- 2. zu den physikalischen Grundlagen der Laserstrahlung,
- 3. der geeigneten Informationsquellen,
- 4. zum für die Beurteilung notwendigen Stand der Technik,
- 5. der Wirkungen von Laserstrahlung (auf die Augen, Haut und Materialien),
- 6. des Vorgehens bei der Beurteilung von Wechsel- oder Kombinationswirkungen von verschiedenen Laserquellen,
- 7. zu den Tätigkeiten im Betrieb mit Exposition von Laserstrahlung
- 8. der technischen, organisatorischen und personenbezogenen Schutzmaßnahmen (insbesondere Berechnung und Auswahl der Laser-Schutzbrillen, Laser-Justierbrillen und Schutzeinhausungen),
- 9. der alternativen Arbeitsverfahren,
- 10. der Überprüfung der Wirksamkeit von Schutzmaßnahmen und
- 11. der Dokumentation der Gefährdungsbeurteilung (siehe TROS-Laserstrahlung Teil1 Pkt. 3.4)

Fachkundige für Messungen und Berechnungen (§ 5 OStrV)

Kenntnisse können u.a. durch Fortbildungsveranstaltung von Technischen Akademien, Unfallversicherungsträgern oder ähnlichen Institutionen erworben und aufgefrischt werden.

(TROS-Laserstrahlung Teil 1 Pkt.3.5)

Es ist möglich, dass die Funktionen des Fach- und Sachkundigen in einer Person vereint sind.

Beispiele für die Notwendigkeit der Fachkunde

Bestimmung des Grenzwertes der zugänglichen Strahlung (**GZS**) und somit Bestimmung der Laserklasse

gemäß **DIN EN 60825 / VDE 0837**

P_{G7S} in W

Bestimmung der
Expositionsgrenzwerte (EGW) gemäß
TROS-Laserstrahlung Teil 2 oder
der maximal zulässigen Bestrahlung
(MZB) gemäß DIN EN 60825 / VDE
0837 für die Exposition des Auges und
der Haut

E in W/m² oder H in J/m²

Beispiele für die Notwendigkeit der Fachkunde

Bestimmung des Augensicherheitsabstands **NOHD** bei direkter Reflexion

Bestimmung des Augensicherheitsabstands **NOHD** bei diffuser Reflexion

Berechnungsbeispiel EGW-Wert für das Auge

Geg.: He:Ne-Dauerstrichlaser

Wellenlänge $\lambda = 633 \text{ nm}$

Einwirkungszeit t = 0.25 sec

Strahldurchmesser $d_{63} = 3.5 \text{ mm}$

Laserleistung P = 1 mW

Strahlendivergenz kann vernachlässigt werden

Betrachtung von kleinen Quellen $\alpha < \alpha_{min}$

$$E = P/A Wm^{-2} = P/(\pi/4 d_{63}^2) Wm^{-2}$$

$$E = 1*10^{-3}/(\pi/4 * 0.007 ^{2}) Wm^{-2}$$

 $E = 25,98 \text{ Wm}^{-2} \approx 26 \text{ Wm}^{-2}$

werden.

$$H_{EGW} = 18*t^{0.75*}C_E \text{ Jm}^{-2}$$
 $E_{EGW} = H_{EGW} / t \text{ Wm}^{-2}$ $E_{EGW} = 18*0.25^{0.75}*\text{ Jm}^{-2}$ $E_{EGW} = 6.4 \text{ Jm}^{-2} / 0.25 \text{ s}$ $E_{EGW} = 6.4 \text{ Jm}^{-2} \approx 26 \text{ Wm}^{-2}$

Für gepulste Laser müssen unter Umständen 3 unterschiedliche Betrachtungsfälle ermittelt

Parameter	Winkelausdehnung / mrad	Wert
	$\alpha \le \alpha_{min}$	1
C _E	$\alpha_{min} < \alpha \le 100$	α / α_{min}
	α > 100	$\begin{array}{c} \alpha_{max} / \alpha_{min} \\ \text{bei } \alpha_{max} = 100 \text{ mrad} \end{array}$

 $E = E_{EGW} \rightarrow Grenzwerteinhaltung$

Auszug Tab. A4.3 TROS-Laserstrahlung Teil 2 Expositionsgrenzwerte für das Auge

		der		Expositionsdauer t / s					
Wello nm (sieh	enlänge λ / e a)	Durchmesser d Messblende D	10 ⁻¹³ - 10 ⁻¹¹	10 ⁻¹¹ - 10 ⁻⁹	10 ⁻⁹ - 10 ⁻⁷	10 ⁻⁷ - 1,8-10 ⁻⁵	1,8·10 ⁻⁵ - 5·10 ⁻⁵	5·10 ⁻⁵ - 10 ⁻³	10 ⁻³ - 10
Sicht-	400-700		H=1,5·10 ⁻⁴ ·C _E J·m ⁻²	$H = 2.7 \cdot 10^4 t^{0.75} \cdot C_E J \cdot m^{-2}$	H=5·1	0 ⁻³ ·C _E J·m ⁻²		H=18t ^{0,75} ·C _E J	ŀm ⁻²
bar und	bar 700-1050 E		H = 1,5·10 ⁻⁴ ·C _A ·C _E J·m ⁻²	$H = 2.7 \cdot 10^4 \cdot t^{0.75} \cdot C_A \cdot C_E J \cdot m^{-2}$	H=5·10 ⁻³ C _A ·C _E J·m ⁻² H=		H=18t ^{0,75} ·C _A ·C	= 18 t ^{0,75} ·C _A ·C _E J·m ⁻²	
IR-A	1050-1400	7	H = 1,5·10 ⁻³ ·C _C ·C _E J·m ⁻²	$H = 2,7 \cdot 10^5 t^{0,75} \cdot C_C \cdot C_E J \cdot m^{-2}$	Н	$= 5.10^{-2} \cdot C_C \cdot C_E $	J·m ⁻²	H=90t	^{0,75} ·C _C ·C _E J·m ⁻²
	1400-1500		E=1	0 ¹² W·m ⁻²		H=10	0 ³ J·m ⁻²		$H = 5,6 \cdot 10^3 \cdot t^{0.25} \text{ J} \cdot \text{m}^{-2}$
IR-B und IR-C	1500-1800	o e	E=1	0 ¹³ W·m ⁻²	$H = 10^4 \text{ J} \cdot \text{m}^{-2}$				
	1800-2600	siehe	E=1	0 ¹² W·m ⁻²		H = 10	0 ³ J·m ⁻²		$H = 5,6 \cdot 10^3 \cdot t^{0.25} \text{ J} \cdot \text{m}^{-2}$
	2 600 -10 ⁶		E=1	0 ¹¹ W·m ⁻²	H = $100 \text{ J} \cdot \text{m}^{-2}$ H = $5,6 \cdot 10^3 \cdot \text{t}^{0.25} \text{ J} \cdot \text{m}^{-2}$				

- a Sind für eine Wellenlänge zwei Expositionsgrenzwerte aufgeführt, so ist unter Einbeziehung der zugeordneten Messverfahren das Ergebnis anzuwenden, welches den strengeren Wert darstellt.
 - Expositionsgrenzwerte für Zeiten unterhalb 10⁻¹³ s werden dem jeweiligen Expositionsgrenzwert bei 10⁻¹³ s, ausgedrückt in Einheiten der Bestrahlungsstärke, gleichgesetzt.
- **b** Die in der Tabelle angegebenen Werte gelten für einzelne Laserimpulse. Bei mehrfachen Laserimpulsen müssen die Laserimpulsdauern, die innerhalb der Expositionsdauer t liegen, addiert werden. Die daraus resultierende Expositionsdauer muss in die Formel H = 5,6 · 10³ · t^{0,25} für t eingesetzt werden.
- c Wenn 1 400 nm $\leq \lambda < 10^5$ nm, dann gilt:
 - für t ≤ 0,35 s³⁾, D = 1 mm
 - für 0,35 s < t < 10 s, D = 1,5 \cdot t^{0,375} mm.

Wenn 10^5 nm $\leq \lambda < 10^6$ nm, dann ist D = 11 mm.

Beispiele für die Notwendigkeit der Fachkunde bei der Auswahl von Laserschutzbrillen

- Die Bestimmung von Laserschutzbrillen erfolgt gemäß der Norm DIN EN 207 (04/2012) oder BGI 5092 (10/2007)
- Hierbei werden mit komplexen
 Auswahl- und Berechnungsverfahren
 Schutzstufen für Einwirkungen von
 Dauerstrichlasern und gepulsten Lasern ermittelt.
- Beispiel Kennzeichnung von Laserschutzbrillen:

Beispiele für die Notwendigkeit der Fachkunde bei der Auswahl von Laser-Justierbrillen

Laserstrahl

- Die Bestimmung von Laser-Justierbrillen erfolgt gemäß der Norm DIN EN 208 (04/2010) oder BGI 5092 (10/2007)
- für Einwirkungen von Dauerstrichlasern und gepulsten Lasern ermittelt.
- Justierbrillen:

diffus reflektierende Oberfläche

Max. Laserleistung Max. Impulsenergie in J Wellenlänge in nm Schutzstufe RB3 Kennbuchstabe (n) des Herstellers Zertifizierungszeichen der Prüfstelle Kennzeichen für mechanische Festigkeit ←

Hinweis für die Benutzung von Laser-Justierbrillen

Laser-Justierbrillen sind so ausgelegt, dass die Strahlungsleistung auf Werte unter 1 mW reduzieren (Grenzwert der Laser Klasse 2).

Deshalb ist ein Blick in den direkten Strahl bzw. in den direkt reflektierten Strahl zu vermeiden.

Beim versehentlichen Hineinsehen ist eine Abwendung vom Laserstrahl notwendig.

Beispiel Materialbearbeitungslaser

 Bei Materialbearbeitungslasern werden in der Regel stark fokussierte Laserstrahlen erzeugt. Direkte Reflektionen werden schon durch die Auswahl und Konstruktion der Maschine vermieden, da die Bearbeitungsenergie hierdurch vom Material abgeleitet wird.

Beispiel Materialbearbeitungslaser

- Bei Materialbearbeitungslasern werden in der Regel stark fokussierte Laserstrahlen erzeugt. Direkte Reflektionen werden schon durch die Auswahl und Konstruktion der Maschine vermieden, da die Bearbeitungsenergie hierdurch vom Material abgeleitet wird.
- Im Regelfall liegt eine diffuse Reflexion mit möglichst niedrigem Reflexionsgraden vor.
- Der Hersteller hat vorrangig technische Schutzmaßnahmen wie, Schutzeinhausungen (ggf. mit Sichtfenstern) einzusetzen, so dass im Normalbetrieb die Schutzklasse 1 vorliegt.
- Andernfalls ist zu ermitteln, welche Körperteile bzw. Gliedmaßen in den Bearbeitungsbereich eindringen können und welche Schutzmittel bzw. welche PSA zum Finsatz kommen

Beispiele Einrichten eines Laserbereiches

- möglichst technische Schutzmaßnahmen einsetzen
- andernfalls Benutzung von PSA z.B. in Form von Laserschutzbrillen
- Benutzung von Schutzwänden oder Schutzvorhängen
- Einrichten von Laserbereichen in separaten Räumen mit optischer Signalisierung des Laserbetriebs
- Beachtung von möglichen Auskoppelungen der Laserstrahlung aufgrund Reflexionen durch spiegelnde Oberflächen oder Gegenständen und Auskoppelungen durch Fenster

Arbeitsmedizinische Vorsorge

Der Arbeitgeber hat Beschäftigten nach § 11 ArbSchG bzw. § 5a ArbMedVV arbeitsmedizinische Vorsorge zu ermöglichen, sofern ein Gesundheitsschaden im Zusammenhang mit der Tätigkeit nicht ausgeschlossen werden kann (Wunschvorsorge). Pflicht- oder Angebotsuntersuchungen sind für Laserstrahlungsexponierte nicht vorgeschrieben.

Wellenlängen- bereich	Auge	Haut
UV-C	Fotokeratitis Fotokonjunktivitis	Erythem Präkanzerosen Karzinome
UV-B	Fotokeratitis Fotokonjunktivitis Katarakt	Verstärkte Pigmentierung (Spätpigmentierung) Beschleunigte Prozesse der Hautalterung Erythem Präkanzerosen Karzinome
UV-A	Katarakt	Bräunung (Sofortpigmentierung) Beschleunigte Prozesse der Hautalterung Verbrennung der Haut Karzinome
Sichtbare Strahlung	Fotochemische und fotothermische Schädigung der Netzhaut	Fotosensitive Reaktionen Thermische Schädigung der Haut
IR-A	Katarakt Thermische Schädigung der Netzhaut	Thermische Schädigung der Haut
IR-B	Katarakt Thermische Schädigung der Hornhaut	Thermische Schädigung der Haut Blasenbildung auf der Haut
IR-C	Thermische Schädigung der Hornhaut	Thermische Schädigung der Haut

TROS-Laserstrahlung Allg. Teil Tab. A3.1 Mögliche Auswirkungen von optischer Strahlung auf Auge und Haut

Ende

Strahldivergenz – Öffnungswinkel – Numerische Apertur

$$\varphi = 2 \arctan \frac{d_{10} - d_0}{2 r}$$

- φ Strahldivergenz
- r Beobachtungsabstand
- d₀ Strahldurchmesser (d´₆₃) an der Austrittsstelle
- d₁₀ Strahldurchmesser (d₆₃) am Beobachtungsort

$$\Theta_A$$
 = arcsin N_A

 Θ_{Δ} – Akzeptanzwinkel

N_A – Numerische Apertur

Die <u>Strahldivergenz</u> ϕ entspricht dem <u>ganzen Öffnungswinkel</u> und somit dem <u>Zweifachen des Akzeptanzwinkels</u> Θ_A der Numerischen Apertur beim LWL.

Herleitung des Akzeptanzwinkels

Lichtaustritt am Lichtwellenleiter (LWL)

- n_M Brechzahl des LWL-Mantel
- n_K Brechzahl des LWL-Kerns
- n₀ Brechzahl des Umgebungsmediums (Luft) am Strahlaustritt

Berechnung des Strahldurchmessers in der Strahlentalje bei fokussiertem Strahlengang

- λ Wellenlänge
- d Strahldurchmesser der Strahlungsquelle
- d₀ Strahldurchmesser im Fokus bzw. in der Strahltaille
- **d**_x Strahldurchmesser am Ort der Exposition
- **f** Brennweite des Objektivs
- x Abstand zwischen dem Fokus und den Ort der Exposition
- Θ_{0q} Öffnungswinkel (ganzer Öffnungswinkel)
- ω_0 Strahlradius im Fokus bzw. in der Strahltaille

$$d_0 = \frac{4 \cdot \lambda}{\pi \cdot \Theta_{0\alpha}}$$

$$\Theta_{0g} \approx \frac{\mathbf{d}}{\mathbf{f}}$$

Bestimmung des Augensicherheitsabstands NOHD bei diffuser Reflexion

Diffuse Reflexion mit Reflexionsgrad ρ

- r NOHD
- ε Winkel gegen die Flächennormale
- ρ Reflexionsgrad
- P Laserleistung

E_{EGW} Expositionsgrenzwert

$$r = \sqrt{\rho \frac{\cos \varepsilon}{\pi} \cdot \frac{P}{E_{EGW}}}$$

Beispiel Impulsgruppensummierung

