

4.0 Greedy Algorithm

- √ Build up a solution in small steps
- \checkmark Choosing a decision myopically to optimize some criterion.
- \checkmark Not always find the global optimal solution
- \checkmark Challenge 1: how to choose the criterion used at each step
- ✓ Challenge 2: how to prove it works when it does find the
 optimal solution

Coin Changing

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: \$2.89.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

coins selected

S \leftarrow \phi

while (x \neq 0) {

let k be largest integer such that c_k \leq x

if (k = 0)

return "no solution found"

x \leftarrow x - c_k

S \leftarrow S \cup \{k\}

}

return S
```

Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100. Pf. (by induction on x)

- Consider optimal way to change $c_k \le x < c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must also take coin k.
 - if not, it needs enough coins of type $c_1, ..., c_{k-1}$ to add up to x
 - table below indicates no optimal solution can do this
- Problem reduces to coin-changing $x c_k$ cents, which, by induction, is optimally solved by greedy algorithm. ■

k	c _k	All optimal solutions must satisfy	Max value of coins 1, 2,, k-1 in any OPT
1	1	P ≤ 4	-
2	5	N ≤ 1	4
3	10	N + D ≤ 2	4 + 5 = 9
4	25	Q ≤ 3	20 + 4 = 24
5	100	no limit	75 + 24 = 99

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

■ Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

■ Optimal: 70, 70.

4.1 Interval Scheduling

Interval Scheduling

Interval scheduling.

- \blacksquare Job j starts at s_j and finishes at f_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_i .
- \blacksquare [Earliest finish time] Consider jobs in ascending order of finish time f_i .
- [Shortest interval] Consider jobs in ascending order of interval length $f_j s_j$.
- [Fewest conflicts] For each job, count the number of conflicting jobs c_i . Schedule in ascending order of conflicts c_i .

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

11

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

/ jobs selected

A \leftarrow \phi

for j = 1 to n {

   if (job j compatible with A)

   A \leftarrow A U {j}

}

return A
```

Implementation. O(n log n).

- \blacksquare Remember job j* that was added last to A.
- Job j is compatible with A if $s_i \ge f_{i^*}$.

Interval Scheduling: Analysis Theorem. Greedy algorithm is optimal. Pf. (by contradiction) Assume greedy is not optimal, and let's see what happens. Let $i_1, i_2, ... i_k$ denote set of jobs selected by greedy. Let $j_1, j_2, ... j_m$ denote set of jobs in the optimal solution with $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$ for the largest possible value of r. Greedy: i_1 i_r i_{r+1} why not replace job j_{r+1} with job j_{r+1} ?

4.1b Interval Partitioning

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_i and finishes at f_i.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning

Interval partitioning.

- \blacksquare Lecture j starts at s_i and finishes at f_i .
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = $3 \Rightarrow$ schedule below is optimal. a, b, c all contain 9:30

Q. Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s_1 \le s_2 \le \ldots \le s_n. d \leftarrow 0 \leftarrow \text{number of allocated classrooms}

for j = 1 to n {
   if (lecture j is compatible with some classroom k) schedule lecture j in classroom k
   else
      allocate a new classroom d + 1 schedule lecture j in classroom d + 1 d d \leftarrow d + 1
}
```

Implementation. O(n log n).

- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.

19

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

- Let d = number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms.
- \blacksquare Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_i .
- Thus, we have d lectures overlapping at time $s_i + \epsilon$.
- Key observation \Rightarrow all schedules use \ge d classrooms. \blacksquare

4.2 Scheduling to Minimize Lateness

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_i .
- \blacksquare [Earliest deadline first] Consider jobs in ascending order of deadline d_i .
- \blacksquare [Smallest slack] Consider jobs in ascending order of slack d_j t_j .

23

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 \blacksquare [Shortest processing time first] Consider jobs in ascending order of processing time t_j .

counterexample

 \blacksquare [Smallest slack] Consider jobs in ascending order of slack $d_i - t_i$.

	1	2
† _j	1	10
d _j	2	10

counterexample

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

```
Sort n jobs by deadline so that d_1 \le d_2 \le \dots \le d_n

t \leftarrow 0

for j = 1 to n

Assign job j to interval [t, t + t_j]

s_j \leftarrow t, f_j \leftarrow t + t_j

t \leftarrow t + t_j

output intervals [s_j, f_j]
```


Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that: $d_i < d_i$ but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Consider the four jobs: i, i+1,...j-1, j with deadline $d_{i,}$ $d_{i+1,...}$, d_{j-1} , d_{j} If job i and j is an inversion, $\rightarrow d_{i}$ > d_{j} , then one of the following must be true:

- 1 job i, i+1 is another inversion
- 2. job j-1, j is another inversion
- 3. job i+1, j-1 is another inversion (if they are not consecutive, repeat the reasoning process)

2

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the $\underline{\text{max lateness}}$.

Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the <u>max lateness</u>.

Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards.

- $\blacksquare \ell'_{k} = \ell_{k}$ for all $k \neq i, j$
- $\blacksquare \ell_{j} \leq \ell_{i}$
- $\blacksquare \ell_i$ (new max) $\leq \ell_i$ (old max)
- If job j is late:

$$\ell'_{j} = f'_{j} - d_{j}$$
 (definition)
 $= f_{i} - d_{j}$ (j finishes at time f_{i})
 $\leq f_{i} - d_{i}$ $d_{i} < d_{j}$
 $\leq \ell_{i}$ (definition)

2

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.

- Can assume S* has no idle time.
- \blacksquare If S* has no inversions, then S = S*.
- If S* has an inversion, let i-j be an adjacent inversion.
 - swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
 - this contradicts definition of S* .

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.

• Example: interval scheduling

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

• Example: scheduling to minimize lateness

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

• Example: interval partition