4616 – Métodos Numéricos Computacionais

Larissa Oliveira oliveira.t.larissa@gmail.com

Na última aula...

MÉTODO DE ELIMINAÇÃO DE GAUSS

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

$$\begin{array}{c} \begin{array}{c} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + a_{13}^{(1)}x_3 + \cdots + a_{1,(n-1)}^{(1)} + a_{1n}^{(1)}x_n = b_1^{(1)} \\ & a_{22}^{(2)}x_2 + a_{23}^{(2)}x_3 + \cdots + a_{2,(n-1)}^{(2)} + a_{2n}^{(2)}x_n = b_2^{(2)} \\ & a_{33}^{(3)}x_3 + \cdots + a_{3,(n-1)}^{(3)} + a_{3n}^{(3)}x_n = b_3^{(3)} \\ & a_{3n}^{(n-1)}x_n + a_{(n-1),n}^{(n-1)}x_n = b_{n-1}^{(n-1)} \\ & a_{nn}^{(n)}x_n = b_n^{(n)} \end{array}$$

MÉTODO DE ELIMINAÇÃO DE GAUSS

Seja o sistema linear Ax = b, em que A possui todas as submatrizes principais não singulares. O método de eliminação de Gauss consiste em transformar o sistema dado num sistema triangular superior equivalente pela aplicação repetida da operação.

"subtrair de uma equação outra equação multiplicada por uma constante diferente de zero".

MÉTODO DE GAUSS COM PIVOTEAMENTO PARCIAL

O Método de Gauss com Pivoteamento Parcial consiste em transformar o sistema dado, através de operações elementares sobre as linhas, em sistema triangular superior, tomando como pivô em cada passo, o elemento de maior valor absoluto abaixo da diagonal de cada coluna da matriz **A**

MÉTODO DE GAUSS COM PIVOTEAMENTO TOTAL

O Método de Gauss com Pivoteamento Total consiste em transformar o sistema dado, em sistema triangular superior equivalente, tomando como pivô, em cada passo, o elemento de maior valor absoluto entre todos os elementos da submatriz abaixo da k-ésima linha e a partir da k-ésima coluna

Hoje...

O objetivo é fatorar a matriz dos coeficientes (A) em um produto de duas matrizes L e U

$$[L] = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{bmatrix} \qquad [U] = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

Dada a matriz coeficiente:

$$[A] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{bmatrix} \cdot \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

Teorema (Decomposição LU)

Seja A = (a_{ij}) uma matriz quadrada de ordem n, e A_k o menor principal, constituído das k primeiras linhas e k primeiras colunas de A.

Assumimos que $\det(A_R) \neq 0$, k = 1, 2, ..., n - 1. Então, existe uma única matriz triangular inferior $L = (l_{ij})$, com $l_{11} = l_{22} = ... = l_{nn} = 1$, e uma única matriz triangular superior $U = (u_{ij})$ tal que LU = A. Além disso, $\det(A) = u_{11} u_{22} ... u_{nn}$

✓ Para se obter os elementos da matriz L e da matriz U, deve-se calcular os <u>elementos das linhas de U</u> e os elementos da colunas de L alternadamente;

✓ Para obter os fatores l_{ij} e u_{ij} das matrizes L e U podemos aplicar a definição de produto e igualdade de matrizes, ou seja, A=LU

$$[A] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{bmatrix} \cdot \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{12} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

1ª linha de U: Faze-se o produto da 1ª linha de L por todas as colunas de U e a iguala com todos os elementos da 1ª linha de A:

$$\begin{cases} 1 \cdot u_{11} = a_{11} \Rightarrow u_{11} = a_{11}, \\ 1 \cdot u_{12} = a_{12} \Rightarrow u_{12} = a_{12}, \\ \vdots \\ 1 \cdot u_{1n} = a_{1n} \Rightarrow u_{1n} = a_{1n}, \\ u_{1j} = a_{1j}, j = 1, 2, ..., n. \end{cases}$$

1ª coluna de L: Faz-se o produto de todas as linhas de L, (da 2ª a até a nª), pela 1ª coluna de U e a iguala com os elementos da 1ª coluna de A, (abaixo da diagonal principal)

$$\begin{cases} l_{21} \cdot u_{11} = a_{21} \Rightarrow l_{21} = \frac{a_{21}}{u_{11}}, \\ l_{31} \cdot u_{11} = a_{31} \Rightarrow l_{31} = \frac{a_{31}}{u_{11}}, \\ \vdots \\ l_{l1} \cdot u_{11} = a_{l1} \Rightarrow l_{l1} = \frac{a_{l1}}{u_{11}}, \\ l_{l1} = \frac{a_{l1}}{u_{11}}, l = 1, 2, ..., n. \end{cases}$$

2ª linha de U: Faz-se o produto da 2ª linha de L por todas as colunas de U, (da 2ª até a nª), e igualando com os elementos da 2ª linha de A, (da diagonal principal em diante)

$$\begin{cases} l_{21} \cdot u_{12} + u_{22} = a_{22} \Rightarrow u_{22} = a_{22} - l_{21} \cdot u_{12}, \\ l_{21} \cdot u_{13} + u_{23} = a_{23} \Rightarrow u_{23} = a_{23} - l_{21} \cdot u_{13}, \\ \vdots \\ l_{21} \cdot u_{1n} + u_{2n} = a_{2n} \Rightarrow u_{2n} = a_{2n} - l_{21} \cdot u_{1n}, \\ u_{2j} = a_{2j} - l_{21} \cdot u_{1j}, j = 3, ..., n. \end{cases}$$

2ª coluna de L: Faz-se o produto de todas as linhas de L (da 3ª até a nª) pela 2ª coluna de U e a iguala com os elementos da 2ª coluna de A, (abaixo da diagonal principal)

$$\begin{cases} l_{31} \times u_{12} + l_{32} \times u_{22} = a_{32} l_{32} = \frac{a_{32} - l_{31} \times u_{12}}{u_{22}}, \\ l_{41} \times u_{12} + l_{42} \times u_{22} = a_{42} l_{42} = \frac{a_{42} - l_{41} \times u_{12}}{u_{22}}, \\ \vdots \\ l_{l1} \times u_{12} + l_{l2} \times u_{22} = a_{l2} l_{l2} = \frac{a_{l2} - l_{l1} \times u_{12}}{u_{22}}, \\ l_{l2} = \frac{a_{l2} - l_{l1} \times u_{12}}{u_{22}}, l = 3, ..., n. \end{cases}$$

Fórmula geral:

$$\begin{cases} u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} & i \leq j \\ l_{ij} = (a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}) / u_{jj} & i > j \end{cases}$$

Seja um sistema Ax = b de ordem n, onde A satisfaz as condições da fatoração LU. Então, o sistema Ax = b pode ser escrito como:

Exemplo

Utilizando o método de decomposição LU, resolver o sistema Ax = b e calcular o det(A):

$$\begin{pmatrix}
5 & 2 & 1 \\
3 & 1 & 4 \\
1 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
0 \\
-7 \\
-5
\end{pmatrix}$$

$$A = \begin{pmatrix}
5 & 2 & 1 \\
3 & 1 & 4 \\
1 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
5 & 2 & 1 \\
3 & 1 & 4 \\
1 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
5 & 2 & 1 \\
3 & 1 & 4 \\
1 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
6 & 0 \\
1 & 1 & 3 \\
4 & 1 & 4
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
1 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
1 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
1 & 1 & 3 \\
3 & 1 & 4 \\
4 & 3 & 4
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
1 & 1 & 3 \\
3 & 1 & 4 \\
4 & 3 & 4
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7 & 1 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix}
7 & 0 & 0 \\
7$$

$$\frac{1}{122} = \frac{1 - \frac{1}{5}(2)}{1 - \frac{1}{5}(2)} = \frac{1 - \frac{1}{5}(2)}{1 - \frac{1}{5}(2)} = \frac{\frac{3}{5}}{1 - \frac{3}{5}} = \frac{3}{5} = \frac{3}{5} = \frac{3}{5}$$

ZO L'NHA U

$$A_{33} = 9_{33} - ||_{31} ||_{43} - ||_{32} ||_{423}$$

$$= 3 - (4) ||_{5} ||_{1} - (-3) ||_{5} ||_{5}$$

$$= -\frac{15}{5} - \frac{1}{5} + \frac{51}{5} = \frac{65}{5} = \frac{13}{5}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 3/5 & 1 & 0 \\ 1/5 & -3 & 1 \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 3/5 & 1 & 0 \end{pmatrix}$$

$$V = \begin{pmatrix} 5 & 2 & 1 \\ 0 - 1/5 & 1/5 \\ 0 & 0 & 13 \end{pmatrix}$$

$$V = \begin{pmatrix} 5 & 2 & 1 \\ 0 - 1/5 & 1/5 \\ 0 & 0 & 13 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{5} & 1 & 0 \\ \frac{3}{5} & -3 & 1 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ -5 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ -7 \\ -24 \end{pmatrix}$$

OBSERVAÇÃO 1

Se det $A \neq 0$ e se tivermos $\det(A_k) = 0$ é possível trocar a linha k por uma linha abaixo dela e se $\det(A_k) \neq 0$ pode-se efetuar a decomposição.

✓ Lembre-se de trocar também o termo independente.

Exemplo:

Resolver o sistema utilizando a decomposição LU

$$\begin{cases} 2x_1 + 2x_2 - x_3 = 3 \\ 3x_1 + 3x_2 + x_3 = 7 \\ x_1 - x_2 + 5x_3 = 5 \end{cases}$$

$$A' = \begin{pmatrix} 2 & 2 & -1 \\ 1 & -1 & 5 \\ 3 & 3 & 1 \end{pmatrix}$$

$$At(A'_2) = 2 + 1$$

$$At(A'_2) = -4 + 0$$

$$\begin{pmatrix}
2 & 2 & -1 \\
1 & -1 & 5, \\
3 & 3, & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0$$

$$\begin{pmatrix}
 1 & 0 & 0 \\
 1/2, & 1 & 0
 \end{pmatrix}
 \begin{pmatrix}
 2 & 2, & -1 \\
 0 & -2 & 11/2 \\
 0 & 0 & 5/2
 \end{pmatrix}$$

$$\begin{cases} 1/2 & 5 \\ 1/2 & 1 & 0 \\ 3/2 & 0 & 1 \end{cases} \begin{pmatrix} 1/4 & 1 & 0 \\ 1/2 & 1 & 0 \\ 1/3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/4 & 1 & 1 \\ 1/2 & 1 & 0 \\ 1/3 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 1 \\ 5 & 3 & 1 \\ 3/2 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 2 & -1 \\
0 & -2 & \frac{11}{2} \\
0 & 8 & \frac{5}{2}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
3 \\
+\frac{1}{2} \\
5/2
\end{pmatrix}$$

OBSERVAÇÃO 2

O método de Eliminação de Gauss também pode ser utilizado para a obtenção dos coeficientes l_{ij} e u_{ij} das matrizes da decomposição LU.

Matriz L: $l_{ij} = m_{ij}$ do método de Eliminação de Gauss e $l_{ii} = 1$ e $l_{ij} = 0$ se i < j.

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ m_{21} & 1 & 0 & 0 & 0 \\ m_{31} & m_{32} & 1 & 0 & 0 \\ \cdots & \cdots & \cdots & 0 \\ m_{n1} & m_{n2} & m_{n3} & \cdots & 1 \end{pmatrix} = L$$

Matriz U: é a matriz resultante do processo de Eliminação de Gauss (matriz escalonada) .

OBSERVAÇÃO 2

Exemplo:

Determinar a solução do sistema pelo utilizando o método de Gauss e a decomposição <u>L</u>U:

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ x_1 + 1x_2 + 2x_3 = 2 \\ 4x_1 + 3x_2 + 2x_3 = 3 \end{cases}$$

$$A^{(2)} = \begin{pmatrix} 3 & 2 & 4 & 1 & 1 \\ 1 & 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 1 & 3 \end{pmatrix}$$

$$M^{(2)} = \begin{pmatrix} 3 & 2 & 4 & 1 & 1 \\ 0 & 1/3 & 2/3 & 1 & 5/3 \\ 0 & 1/3 & -10/3 & 1 & 5/3 \end{pmatrix}$$

$$A^{(3)} = \begin{pmatrix} 3 & 2 & 4 & 1 & 1 \\ 0 & \frac{1}{3} & \frac{2}{3} & \frac{15}{3} \\ 0 & 0 & -4 & 0 \end{pmatrix}$$

$$M_{32} = 1$$

$$\begin{pmatrix}
0 & 73 & 73 & 73 \\
0 & 0 & -4 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 2 & 4 \\
0 & 1/3 & 2/3 \\
0 & 0 & -4
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{vmatrix}
5/3 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{vmatrix}
5/3 \\
0
\end{pmatrix}$$

LU

$$\begin{pmatrix}
3 & 2 & 4 \\
1 & 1 & 2 \\
4 & 3 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
1 & 3 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
1 & 3 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
1 & 3 & 2
\end{pmatrix}
\begin{pmatrix}
3 & 2 & 4 \\
0 & 1/3 & 2/3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
3 & 2 & 4 \\
0 & 1/3 & 2/3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
3 & 2 & 4 \\
0 & 1/3 & 2/3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
3 & 2 & 4 \\
0 & 1/3 & 2/3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 2 & 4 \\
0 & 1/3 & 2/3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 2 & 4 \\
0 & 1/3 & 2/3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/3 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1$$

Seja o sistema linear Ax = b, de ordem n, em que A possui todas as submatrizes não singulares. O Método de Gauss Compacto é uma maneira prática de se obter as matrizes L e U da de decomposição LU, armazenando-a de forma compacta. Os termos independentes b_i , i = 1, ..., n são obtidos da mesma maneira que os elementos u_{ij} e serão chamados de $u_{i,n+1}$, i = 1, ..., n.

Construção do método

Seja o sistema linear

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Primeiramente, montamos a matriz de ordem $n \times (n+1)$:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & a_{1,n+1} \\ a_{21} & a_{22} & \dots & a_{2n} & a_{2,n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & a_{n,n+1} \end{pmatrix}$$

$$\begin{pmatrix} a_{1,n+1} \\ a_{2,n+1} \\ \vdots \\ a_{n,n+1} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Em seguida, construímos a matriz n × (n+1), em que os termos independentes b_i , i = 1, 2, ..., n, por serem obtidos da mesma maneira que os elementos u_{ij} , serão chamados de $u_{i'n+1}$, i = 1, 2, ..., n. Assim, sobre a matriz original armazenamos a matriz:

$$egin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} & u_{1,n+1} \\ l_{21} & u_{22} & \dots & u_{2n} & u_{2,n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & u_{nn} & u_{n,n+1} \end{pmatrix}$$

Para determinar os termos u_{ij} e l_{ij} , utilizamos as mesmas expressões da decomposição LU, entretanto, i = 1, 2, ..., n e j = 1, 2, ..., n, (n+1):

Para determinar os termos u_{ij} e l_{ij} , utilizamos as mesmas expressões da decomposição LU, entretanto, i = 1, 2, ..., n e j = 1, 2, ..., n, (n+1):

$$\begin{cases} u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} & i \leq j \\ l_{ij} = (a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}) / u_{jj} & i > j \end{cases}$$

Determinados os elementos u_{ij} e l_{ij} , resolvemos o sistema Ux = b', em que $b_i' = u_{i,n+1}$, i = 1, 2, ..., n.

Observação:

No caso em que y é determinado pelo Gauss Compacto, não é necessário resolver o sistema Ly = b, basta resolver diretamente Ux = y, em que

$$y = \begin{pmatrix} u_{1,n+1} \\ u_{2,n+2} \\ \vdots \\ u_{n,n+1} \end{pmatrix}$$

Uma das vantagens do método de Gauss Compacto, é que podemos resolver de uma só vez vários sistemas associados.

Exemplo:

Utilizando o método de Gauss-Compacto, resolver o sistema matricial:

$$\begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ 4 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 3 & 4 \\ 2 & 7 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & -1 & 0 & 3 \\
1 & 0 & 2 & 3 & 4 \\
2 & 1 & -1 & 2 & 3
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
M_{11} & M_{12} & M_{13} & M_{14} & M_{15} \\
L_{21} & M_{22} & M_{23} & M_{24} & M_{25} \\
M_{31} & M_{32} & M_{33} & M_{34} & M_{35}
\end{pmatrix}$$

$$N_{33} = a_{33} - l_{31} M_{13} - l_{32} M_{23} = -1 - 2(1) - 2(5/2) = -4$$

$$M_34 = \alpha_{34} - l_{31}M_{14} - l_{32}M_{24} = 2 - 2(0) - 2(3) = -4$$

$$\begin{pmatrix}
2 & 1 & -1 \\
0 & -\frac{1}{2} & \frac{5}{2} \\
0 & 0 & -4
\end{pmatrix}
\begin{pmatrix}
x_1 & y_1 \\
x_2 & y_2 \\
y_3 & y_3
\end{pmatrix}
=
\begin{pmatrix}
0 & 3 \\
3 & \frac{5}{2} \\
-4 & -4
\end{pmatrix}$$

$$\begin{pmatrix} X_1 & Y_1 \\ Y_2 & Y_2 \\ X_3 & Y_3 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ -1 & 0 \\ 1 & 1 \end{pmatrix}$$

Atividade para contabilizar presença - método de decomposição LU - 13/07/2020

Usando o método de decomposição LU, resolva o sistema de equações lineares:

$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 5 \end{bmatrix}$$