# Arctic Mixed-Phase Cloud Dissipation and its Relationship to Low CCN Concentrations



Lucas Sterzinger, Adele L. Igel

Atmospheric Science Graduate Group

Department of Land, Air, and Water Resources - University of California, Davis



#### Overview

Can a lack of environmental CCN/aerosol be a primary factor for Arctic cloud dissipation?

- Persistent mixed-phase boundary layer clouds are important regulators for Arctic (and global) climate.
- Accurately modeling Arctic clouds are important to properly simulate the global climate system.
- Unlike in lower latitudes, Arctic aerosol concentrations have been hypothesized to be low enough to inhibit cloud formation
- Mauritsen et al. (2011) coined the term "tenuous clouds" in which cloud structure was limited by aerosol concentration

## Simulation Setup

Regional Atmospheric Modeling System (RAMS) in LES mode

- Harrington 2-stream radiation
- RAMS 2M bulk microphysics
- Prescribed aerosol concentration

#### Cases

Two potential cases have been identified where cloud dissipation occurred coincidentally with a surface aerosol concentration decrease:

- Oliktok Point May 12th, 2017 Northern slope of Alaska ocean/land boundary
- ASCOS August 31st, 2008 Arctic ocean ice floe

The plots below show radar reflectivity (a) and aerosol concentration (b).





## Simulation Results



Balloon soundings and observed aerosol concentrations used to initialize LES model

Two simulations per case:

- Stable-cloud control
- Aerosol concentration held constant throughout, no source/sink
- Aerosol Forcing Experiment
- Same as control, but aerosol forced to  $0 cm^{-3}$  at the time denoted by the red line

Compare LWP response to aerosol forcing against observed LWP at time of cloud dissipation.

#### Discussion

The extreme forcing simulations were done to ascertain whether or not aerosol-limited dissipation could be the cause of the observed dissipation cases. Ideally, these extreme aerosol forcings should

- If the modeled LWP response was slower than the observed, then other effects must be enhancing the dissipation rate
- If modeled LWP response was faster than observed, limited aerosol may be the primary cause of dissipation, but is not possible to say for certain

## Main Takeaways

- The Oliktok Point simulated LWP response was much slower than observed, indicating that other factors were likely forcing the cloud disspiation
- The ASCOS simulated LWP response matched closely with the observed decay, suggesting that the ASCOS case may have dissipated due to lack of aerosol