

Vv186 Recitation

Week 7 By Yahoo

Outline

- Properties of Continuous Function
- Inverse function
- Uniform continuity
- Comment on Hw3

Properties of Continuous Function

- 1. Unchanged sign
- Boundedness of Continuous Functions
- 3. Existence of max and min on closed interval
- Closed interval mapped to closed interval

Unchanged sign

Unchanged sign in a small region

Let Ω (a subset of R) be some set, $f:\Omega\to R$ a function that is continuous at some point a in Ω and assume that f(a)>0. Then there exists a $\epsilon>0$ such that f(x)>0 for all x in $(a-\epsilon,a+\epsilon)$ in Ω .

Bolzano Intermediate Value Theorem

Let a < b and f : [a, b] \rightarrow R be a continuous function with f (a) < 0 < f (b). Then there exists some x in [a, b] such that f (x) = 0.

Proof

Consider $A := \{x \in [a, b] : f(y) < 0 \text{ for } y \in [a, x]\}$

- 1. Sup A exsits (α): A is bounded (for all x in A, a \leq x \leq b) and A is non-empty (a in A)
- 2. α < b. $(b \delta)$ is an upper bound for A where f (x) > 0 for all x in $(b \delta)$, b
- 3. $f(\alpha) = 0$: $f(\alpha) > 0$ and $f(\alpha) < 0$ lead to contradictions (Sup A might not be in A!)

Bolzano Intermediate Value Theorem

Let a < b and f : [a, b] \rightarrow R be a continuous function. Then for y in [min{ f (a), f (b)}, max{ f (a), f (b)}] there exists some x in [a, b] such that y = f (x).

Practice

If a continuous function is not equal to zero at any point in R, then f(x) is always positive or always negative.

A Fixed Point Theorem

Let $f : [a, b] \rightarrow R$ be a continuous function with ran f is a subset of [a, b]. Then f has a fixed point, i.e., there exists some x in [a, b] such that f(x) = x.

Boundedness of Continuous Functions

Boundedness in a small region

Let Ω (a subset of R) be some set and $f: \Omega \to \mathbb{R}$ a function that is continuous at some point a in Ω . Then there exists a $\varepsilon > 0$ such that f is bounded above on $(a - \varepsilon, a + \varepsilon)$ in Ω .

Boundedness on a closed interval

Let a < b and f : [a, b] \rightarrow R be a continuous function. Then f is bounded above.

Caution

This is not always true for an open interval!

Example:

1.
$$F(x) = \frac{1}{x}$$
 for $0 < x < \infty$

2.
$$F(x) = \frac{1}{x}$$
 for $1 < x < \infty$

3.
$$F(x) = \frac{1}{x}$$
 for $1 < x < 100$

Practice

F(x) is continuous on $[a, +\infty)$, and $\lim f(x) = c < \infty$, as $x \to \infty$. Then f(x) is bounded on $[a, +\infty)$.

Existence of max and min on closed interval

Existence of max on closed interval

Let a < b and f : [a, b] \rightarrow R be a continuous function. Then there exists a y in [a, b] such that f (x) \leq f (y) for all x in [a, b]. Hence max{ f (x) : x in [a, b] } exists.

Closed interval mapped to closed interval

Continuity on closed interval

Let Ω (a subset of R) and $f: \Omega \to R$ continuous. Suppose that I (a subset of Ω) is a closed interval. Then

$$f(I) = \left\{ y \in \mathbb{R} : \exists_{x \in I} f(x) = y \right\}$$

is also a closed interval.

Compact sets

A closed and bounded set K (a subset of R) is called compact.

Continuity on compact sets

Let K (a subset of R) be a compact set and f : $K \rightarrow R$ be continuous. Then f is uniformly continuous on K, f is bounded and has a maximum and minimum. Furthermore, the image f (K) is also compact.

- Injective if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ for all $x_1, x_2 \in \Omega$
- Surjective: range of f = domain
- Bijective: injective and surjective

A bijective function f has an inverse function, denoted by f^{-1} .

$$f^{-1}\colon \widetilde{\Omega}\to \Omega$$
,

$$f(x) \mapsto x$$
.

A strictly increasing and continuous function must have an inverse function.

A continuous function that has an inverse function is strictly monotonic.

Proof

Suppose $f(a_0) < f(b_0)$ for a continuous function on I and a_0 , b_0 are in I. For $0 \le t \le 1$

$$x_t := (1-t)a_0 + ta_1,$$

$$y_t := (1-t)b_0 + tb_1.$$

where $a_1 < b_1$. Then

$$x_t < y_t$$

for
$$t \in [0.1]$$

Define the function g : [0, 1] in R, $g(t) = f(y_t) - f(x_t)$. Then $g(t) \neq 0$, g(t) > 0 since g(0) > 0.

Uniform continuity

Uniform continuity

Let I (a subset of R) be an interval and $f : \Omega$ \rightarrow R a function with I (a subset of Ω). Then f is called uniformly continuous on I if and only if

$$\forall \exists_{\varepsilon>0} \forall |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$$

Continuity V.S. Uniform continuity

If f is uniformly continuous on I, then f is also continuous on I.

Continuity V.S. Uniform continuity

Let $f: \Omega \to R$ a function with I = [a, b] (a subset of Ω). If f is continuous on [a, b], then f is also uniformly continuous on [a, b].

Example

- 1. $F(x) = \frac{1}{x}$ is continuous on (0,1), but not uniformly continuous on (0,1). $(\frac{1}{n}, \frac{1}{n+1})$
- 2. Given uniformly continuous function f(x) and g(x) on (a,b), then f(x)+g(x) and f(x)g(x) are also uniformly continuous on (a,b).

Comments on Hw

Ex 3.5.4 upper limit

Let (x_n) be a bounded real sequence and A be the set of all accumulation points of (x_n) . Prove that $\min A$, $\max A$ exist and

$$\underline{\lim_{n\to\infty}} x_n = \min A$$

and

$$\overline{\lim}_{n \to \infty} x_n = \max A.$$

Proof

- Step 1: Sup A exsit.
- Step 2: Sup A = max A. (Sup A is also an accumulation point of x_n !)
- Step 3: Upper limit ≥ max A
- Step 4: Upper limit $\leq \max A$ (Upper limit is also an accumulation point of x_n !)

Thank you for your attention!