Using axonal measurements of calcium to explore the role of parallel fiber excitation by GABA_A receptors in a circuit dedicated to precise timing.

Ray Luo. lab of Tom Otis. UCLA neuroscience IDP.

Future experiments.

- More physiological evoked enhancement.
- Uncage GABA in the molecular layer.
- Chloride indicator (MEQ, Clomeleon).
- Using TEA or high external K to increase signal.

In the Tom Otis lab, we do lots of experiments then sit there and think.

- Activation of GABA_ARs leads to excitation of parallel fibers of the molecular layer.
- Excitation may help synchronize granule layer activity or enhance contrast in the system.
- Persistence of NKCC1 chloride transporters may provide a mechanism for GABAergic excitation.

In the Tom Otis lab, we study lots of cool stuff you can write home to mom about.

- Making it all possible:
 - Tom Otis.
- Big thank-yous:
 - Meera Pratap, Patty Araj.
 - Shlomo Dellal, Ka Hung Lee.
 - Paul Dodson (Edinburgh).
 - Movses Karakossian (Allergan, Irvine).
 - Sal Stella (Brecha lab).
 - Felix Schweizer lab.

Stell et al, 2007.

- 50uM GABA -> slow outward fast inward MLI.
- 2uM NBQX blocked fast inward -> glu release.
- Double exponential fit to events -> bursts.
- CV w/i bursts > CV of sEPSCs -> single fiber.
- Fatigue of effect to 10 min -> Cl concentration.
- Not diffusion of muscimol to granule layer b/c moving away from ML attenuates response.
- 20mM K -> no change sEPSC freq -> not MLI K.