

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

Никишин Евгений Сергеевич

Снижение размерности больших массивов данных

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель: д.ф-м.н., профессор А.Г. Дьяконов

Москва, 2017

1 Постановка задачи

Дан набор данных $X \in \mathbb{R}^{N \times D}$, состоящий из векторов $\{x_1, \ldots, x_N\}$ размерности D. Предполагается, что существует некоторое представление данных размерности d (где d < D), которое вложено в исходное представление. Методы снижения размерности осуществляют преобразование выборки, получая новое представление $Y \in \mathbb{R}^{N \times d}$, как можно больше при этом сохраняя геометрию исходных данных.

2 Обзор существующих алгоритмов

2.1 PCA

Метод главных компонент (Principal Component Analysis) является классическим методом снижения размерности. Основным предположением метода является существование линейного многообразия, на котором или около которого лежат данные.

Алгоритм находит d ортогональных осей, вдоль которых данные имеют наибольшую дисперсию и осуществляет проекцию данных на них. Нахождение таких осей тесно связано с нахождением сингулярного разложения матрицы:

$$X = U \cdot \Sigma \cdot V^T,$$

где $U \in \mathbb{R}^{N \times N}$ и $V \in \mathbb{R}^{D \times D}$ — ортогональные матрицы, $\Sigma \in \mathbb{R}^{N \times D}$ — диагональная. При этом столбцы матриц U и V являются собственными векторами матриц XX^T и X^TX , а числа на диагонали Σ — корни из собственных значений этих двух матриц (наборы собственных значений у XX^T и X^TX совпадают), называемые сингулярными числами.

Если центрировать исходные данные, то матрица X^TX будет ковариационной матрицей, собственные вектора и собственные значения которой соответствуют осям и дисперсиям вдоль них. Как было сказано выше, метод находит d осей, вдоль которых дисперсия наибольшая. Поэтому, для получения представления размерности d необходимо умножить исходную матрицу X на матрицу, полученную из V выбором d вектор-столбцов, соответствующих наибольшим сингулярным числам:

$$Y = X \cdot V_d, \qquad V_d \in \mathbb{R}^{D \times d}$$

Если количество признаков меньше длины выборки (как и происходит обычно на практике), то сложность метода главных компонент составляет $O(ND^2)$. Однако существуют эффективные итерационные методы нахождения усечённого сингулярного разложения (т.е. сохраняющего лишь первые d максимальных сингулярных чисел и соответствующих им сингулярных векторов), сложность которых O(dDN).

Несмотря на то, что метод был предложен Карлом Пирсоном в 1901 году, PCA остаётся до сих пор одним из самых популярных методов снижения размерности.

2.2 Isomap

Данный метод снижения размерности базируется на построении попарных геодезических расстояний. По сути, геодезическое расстояние — расстояние, получаемое между точками посредством суммирования расстояний между ближайшими соседями. Соответственно, единственным параметром метода является количество соседей K для каждой точки. Алгоритм можно описать следующим образом:

- 1. Инициализировать матрицу D попарных расстояний евклидовыми расстояниями между точками $||x_i x_j||$
- 2. Если точка i не является одним из K ближайших соседей точки j, положить $D_{ij} = \infty$
- 3. Для каждой пары i, j и для каждого $k = 1, \ldots, N$ заменить $D_{ij} = min(D_{ij}, D_{ik} + D_{kj})$ (Алгоритм Флойда-Уоршелла)
- 4. Решить задачу минимизации $\sum\limits_{i,j}(D_{ij}-||y_i-y_j||)^2 o \min_{Y\in\mathbb{R}^{N imes d}}$

Отметим, что задача минимизации на последнем шаге является выпуклой и имеет глобальный оптимум.

Рис. 1: Демонстрация работы Isomap на наборе трёхмерных данных "Swiss Roll". На первой картинке пунктиром изображено евклидово расстояние между двумя случайными точками, а сплошной линией — расстояние "по многообразию". По центру изображены расстояния между этими точками после шага 3. На последней картинке получено двумерное представление исходных данных

Несмотря на то, что алгоритм справляется отлично с нахождением структуры в искусственных наборах данных (как в примере выше), на практике он обычно не применим из-за высокой вычислительной сложности шага 3.

2.3 LLE

Locally Linear Embedding представляет точку как линейную комбинацию её ближайших соседей, получая таким образом матрицу весов W, где W_{ij} — вклад j-го соседа в восстановление i-ой точки. Затем данные веса используются для построения низкоразмерного представления, сохраняющего соседство между точками.

Алгоритм сводится к двум задачам оптимизации:

$$||X - W \cdot X||_F^2 \to \min_{W \in \mathbb{R}^{N \times N}}$$

При следующих ограничениях:

- $W_{ij}=0$, если x_j не является одним из ближайших соседей x_i
- ullet $\sum_{j}W_{ij}=1$ для любой строки матрицы W

Последнее ограничение позволяет добиться инвариантности к сдвигам, поворотам и масштабированию точки и её соседей. Решив данную задачу, мы можем находить низкоразмерное представление, сохраняющее полученные веса:

$$||Y - W \cdot Y||^2 \to \min_{Y \in \mathbb{R}^{N \times d}}$$
.

Отметим, что матрица W является сильно разреженной, поэтому вычислительная сложность данного метода составляет лишь $O(pN^2)$, где p — доля ненулевых элементов W. Однако, как следует из названия и описания, метод направлен на сохранение локальных особенностей данных, не всегда находя близкую к реальной глобальную геометрию данных.

2.4 Autoencoder

Автокодировщиком называется нейронная сеть, целевой вектор которой полагается равным её входу. То есть это модель, выучивающая приближение для тождественной функции. Накладывая различные ограничения, мы можем обнаружить структурные закономерности в данных. К примеру, такими ограничениями могут быть ограничение на число нейронов в скрытых слоях нейронной сети или ограничение разреженности на нейроны скрытого слоя.

Рис. 2: Пример архитектуры автокодировщика

2.5 t-SNE

t-distributed Stochastic Neighborhood Embedding является методом снижения размерности, основным предназначением которого является визуализация данных (иначе говоря, предполагается d=2 или d=3).

Первым шагом метода является преобразование евклидовых расстояний между точками в условные вероятности $p_{i|i}$ того, что x_i выберет x_j в качестве своего соседа, если бы соседи выбирались с вероятностями, пропорциональными плотности вероятности нормального распределения с центром в x_i :

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2 / 2\sigma_i^2)}.$$

Так как нам интересна только попарная схожесть, $p_{i|i}$ полагается равным нулю. Способ выбора σ_i^2 обговорим позже. Далее мы хотели бы максимизировать схожесть между условными вероятностями $p_{i|i}$ в исходном пространстве и условными вероятностями $q_{j|i}$ в пространстве новой размерности, способ вычисления которых будет дан ниже. Естественным для этого кажется минимизировать дивергенцию Кульбака-Лейблера (обратим внимание, что вероятности $p_{j|i}$ образуют распределение для каждого i).

В прародителе данного метода, SNE, для подсчёта условных вероятностей в новом пространстве также использовались гауссианы:

$$q_{j|i} = \frac{\exp(-||x_i - x_j||^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2)},$$

однако авторы модификации, t-SNE, отмечают, что при таком способе подсчёта схожестей возникает проблема со скоплением точек в одном месте (crowding problem в оригинальной статье). К примеру, если точки равномерно распределены вокруг точки i в десятимерном пространстве, и мы пытаемся моделировать расстояние от i до других точек в двумерном пространстве, то для аккуратного отображения небольших расстояний в двумерном пространстве необходимо поместить все точки, расположенные на умеренном расстоянии, достаточно далеко от точки і. Но при использовании нормального распределения, основная вероятностная масса которого расположена рядом с центром, в низкоразмерном представлении все точки скучиваются, нивелируя зазоры между кластерами данных. Поэтому в t-SNE было предложено использовать распределение Стьюдента с одной степенью свободы (распределение Коши) для моделирования схожести между низкоразмерными представлениями точек:

$$q_{ij} = \frac{(1+||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1+||y_k - y_l||^2)^{-1}}.$$

Ещё одним отличием модификации от оригинального метода является переход к совместным вероятностям, добиваясь таким образом симметрии схожести между точками: для этого при подсчёте q_{ij} нормировка происходит по всем точкам, а p_{ij} полагается равным $\frac{p_{j|i}+p_{i|j}}{2}$. Представление Y находится градиентными методами, минимизируя диверген-

цию Кульбака-Лейблера между полученными распределениями:

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}},$$

частная производная по y_i которой имеет простой вид:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij})(y_i - y_j)(1 + ||y_i - y_j||^2)^{-1}.$$

Получаемое представление более терпимо к большим расстояниям между точками из-за тяжёлых хвостов распределения Коши, благодаря чему похожие точки оказываются рядом, а различные — далеко.

До сих пор мы не обговорили способ нахождения параметров σ_i^2 . Так как плотность точек может варьироваться в разных участках пространства, кажется нелогичным брать единую дисперсию для каждой из гауссиан. Метод находит бинарным поиском значения σ_i , для которых распределение P_i имеет перплексию, заданную пользователем:

$$Perp(P_i) = 2^{H(P_i)}, \qquad H(P_i) = -\sum_{j} p_{j|i} \log p_{j|i}.$$

Резюмируя, получаем следующий алгоритм:

Data: Набор данных X, перплексия Perp, количество итераций T, длина шага η , моментум $\alpha(t)$. **Result:** Низкоразмерное представление данных $Y^{(T)}$. **begin**

```
Посчитать близости p_{j|i}, имеющие заданную перплексию Perp; Положить p_{ij} = \frac{p_{j|i} + p_{i|j}}{2}; Инициализировать Y^{(0)} = \{y_1, \dots, y_N\}, сэмплируя из \mathcal{N}(0, 10^{-4}I); for t = 1 to T do

Посчитать q_{ij};
Посчитать \frac{\partial C}{\partial Y};
Положить Y^{(t)} = Y^{(t-1)} + \eta \frac{\partial C}{\partial Y} + \alpha(t)(Y^{(t-1)} - Y^{(t-2)}); end
end
```

Algorithm 1: t-distributed Stochastic Neighborhood Embedding