

(1) Veröffentlichungsnummer: 0 492 366 A2

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 91121622.4

•

(9) Int. Cl.⁵. **C07D 215/28**, A01N 25/32, C07F 7/18

② Anmeldetag: 17.12.91

(2)

Priorität: 21.12.90 DE 4041121

Veröffentlichungstag der Anmeldung: 01.07.92 Patentblatt 92/27

Benannte Vertragsstaaten:
 AT BE CH DE DK ES FR GB IT LI NL

Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 W-6230 Frankfurt am Main 80(DE)

Prinder: Schütze, Rainer, Dr.
Am Flachsland 54
W-6233 Keikheim (Taunus)(DE)
Erfinder: Löher, Heinz-Josef, Dr.
Ahornweg 14
W-6237 Liederbach(DE)
Erfinder: Ziemer, Frank, Dr.
Gerlachstrasse 30
W-6230 Frankfurt am Main(DE)
Erfinder: Bauer, Klaus, Dr.
Doorner Strasse 53d
W-6450 Hanau(DE)
Erfinder: Bieringer, Hermann, Dr.

Eichenweg 26 W-6239 Eppstein/Taunus(DE)

Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden.

⑤ Die Erfindung betrifft Herbizid-Safener der in Anspruch 1 gezeigten Formel I, worin R^1,R^2 H oder (C_1-C_4) -Alkyl, X O oder S oder NR^4 , wobei R^4 H, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet, A (C_1-C_6) -Alkylen, (C_4-C_8) -Alkenylen, (C_4-C_8) -Alkenylen, (C_3-C_8) -Cycloalkylen oder (C_3-C_8) -Cycloalkenylen,

 R^3 (C_3 - C_6)-Alkenyloxy, (C_3 - C_6)-Alkinyloxy, (subst.) Phenyl-(C_1 - C_4)-alkoxy, R^5 R^6 R^7 Si-, R^5 R^6 R^7 Si-O-, R^5 R^6 R^7 Si-(C_1 - C_4)-alkoxy, (C_3 - C_6)-Alkenyloxycarbonyl, (C_3 - C_6)-Alkinyloxycarbonyl, (subst.) Phenyl-(C_1 - C_4)-alkoxycarbonyl, R^5 R^6 C = N-O-CO-, R^5 R^6 C = N-O-, R^6 R^7 R^7

R⁵,R⁶,R⁷ H, (C₁-C₄)-Alkyl oder (subst.) Phenyl oder R⁵ und R⁶ zusammen mit dem sie verbindenden N- bzw. C-Atom einen (subst.) Ring mit 3 bis 7 Ringatomen, R⁸,R⁹ (C₁-C₄)-Alkyl oder R⁸ und R⁹ zusammen eine geradkettige oder verzweigte (C₁-C₄)-Alkylenbrücke und R¹⁰ H oder (C₁-C₄)-Alkyl bedeuten.

Die Erfindung betrifft das technische Gebiet der Pflanzenschutzmittel, speziell der Antidote oder Safener zum Schützen von Kultur-Pflanzen gegen unerwünschte Nebenwirkungen von Herbiziden.

Es ist bereits bekannt, Verbindungen aus der Reihe der Chinolinoxyalkancarbonsäurederivate als Antidote oder Safener zusammen mit Herbiziden einzusetzen (siehe z. B. EP-A-94 349 (US-A-4,902,340), EP-A-191 736 (US-4,881,966), EP-A-0159287 (US-A-4,851,031), DE-A-25 48 845, EP-A-159 290). Jedoch zeigte sich, daß die bekannten Verbindungen anwendungstechnische Nachteile haben, beispielsweise zu geringe Safener-Wirkung aufweisen oder die Wirkung der Herbizide gegen Schadpflanzen in unerwünschter Weise vermindern.

Gegenstand der Erfindung sind neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate der Formel I,

C1 C1 $CR^{1}R^{2} - CO - X - A - R^{3}$

10

worin unabhängig voneinander Wasserstoff oder (C1-C4)-Alkyl, vorzugsweise Wasserstoff oder R1,R2 25 Methyl, und ein Sauerstoff- oder Schwefelatom oder NR⁴, wobei R⁴ Wasserstoff, (C₁-C₆)-Alkyl, (C₁-C₆)-Х Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet, vorzugsweise O, NH oder NCH₃, insbesondere O, (C_1-C_6) -Alkylen, (C_4-C_8) -Alkenylen, (C_4-C_8) -Alkinylen, (C_3-C_8) -Cycloalkylen oder (C_3-C_8) -Alkinylen, (C_3-C_8) -Cycloalkylen oder (C_3-C_8) -Α 30 Cycloalkenylen, $(C_3-C_6)-Alkenyloxy, \ (C_3-C_6)-Alkinyloxy, \ Phenyl-(C_1-C_4)-alkoxy, \ worin \ der \ Phenylring \ unsub-leave to the property of the pro$ R3 stituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C4)-Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Haloalkyl und (C_1-C_4) -Haloalkoxy substituiert ist, $R^5R^6R^7Si$ -, $R^5R^6R^7S_1-O_ R^5R^6R^7S_1-(C_1-C_4)$ -alkoxy, (C_3-C_6) -Alkenyloxycarbonyl, (C_3-C_6) -Alkinyloxycarbonyl, 35 bonyl, Phenyl-(C1-C4)-alkoxycarbonyl, worin der Phenylring unsubstituiert oder ein- bzw. mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, (C1-C₄)-Haloalkyl oder (C₁-C₄)-Haloalkoxy substituient ist, $R^5R^6C=N$ -O-CO-, $R^5R^6C=N$ -O-. R^5R^6N-O- , $R^5R^6C=N-$, $(C_2-C_6)-Alkenylcarbonyl, <math>(C_2-C_6)-Alkinylcarbonyl$, 1-(Hydroxyimino)- (C_1-C_6) -alkyl, 1-[(C_1-C_4) -Alkylimino]- (C_1-C_6) -alkyl, 1-[(C_1-C_4) -Alkoxyimino]- (C_1-C_6) -alkyl, ein Rest der Formel R8O-CH(OR9)- oder R8O-CH(OR9)-(CH2)n-O-, worin n 0,1 oder 2 bedeutet, oder ein Alkoxy-Rest der Formel R8O-CHR10-CH(OR3)-(C1-C4)-alkoxy, (C1-C6)-Alkylcarbonyloxy, worin Alkyl unsubstituiert oder durch Halogen, Nitro, gegebenenfalls substituiertes Phenyl oder (C1-C4)-Alkoxy substituiert ist, (C2-C6)-Alkenylcarbonyloxy, (C2-C6)-Alkinylcarbonyloxy, (C1-C6)-Alkylcarbonylamino, (C2-C6)-Alkenylcarbonylamino, (C2-C6)-Alkinylcarbo-45 nylamino, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C1-C4)-alkylcarbonylamino, wobel Phenyl in den letztgenannten drei Resten jeweils unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, (C1- C_4)-Haloalkyl und (C_1-C_4) -Haloalkoxy substituiert ist, Aminocarbonyl, (C_1-C_6) -Alkylaminocarbonyl, (C₁-C₆)-Dialkylaminocarbonyl, (C₃-C₆)-Alkenylaminocarbonyl, (C₃-C₆)-Alkinylami-50 nocarbonyl, (C1-C6)-Alkoxycarbonylamino, (C1-C6)-Alkylaminocarbonylamino oder (C1-C6)-Alkylthiocarbonyl, (C_3-C_6) -Alkenylthio oder (C_3-C_6) -Alkinylthio, unabhängig voneinander H, (C1-C4)-Alkyl oder gegebenenfalls substituiertes Phenyl oder R5.R6.R7 R5 und R6 zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugsweise 5 oder 6 Ringatomen, der unsubstituiert oder durch (C1-C4)-55

R⁸,R⁹ unabhängig voneinander (C₁-C₄)-Alkyl oder R⁸ und R⁹ zusammen eine geradkettige oder verzweigte (C₁-C₄)-Alkylenbrücke und

Alkyl oder (C1-C4)-Alkoxy substituiert ist,

R¹⁰ Wasserstoff oder (C₁-C₄)-Alkyl bedeuten.

In den Formeln sind Alkyl, Alkenyl und Alkinyl geradkettig oder verzweigt; entsprechendes gilt für substituierte Alkyl-, Alkenyl- und Alkinylreste wie Haloalkyl, Hydroxyalkyl, Alkoxycarbonyl etc.; Alkyl bedeutet z. B. Methyl, Ethyl, n- und i-Propyl, n-, i-, t- und 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1,3-Dimethylbutyl, Heptyle, wie n-Heptyl, 1-Methylhexyl und 1,4-Dimethylpentyl; Alkenyl bedeutet z. B. Allyl, 1-Methylprop-2-en-1-yl, But-2-en-1-yl, But-3-en-1-yl, 1-Methyl-but-3-en und 1-Methylbut-2-en; Alkinyl bedeutet z. B. Propargyl, But-2-in-1-yl, But-3-in-1-yl, 1-Methyl-but-3-in; Halogen bedeutet Fluor, Chlor, Brom oder lod, vorzugsweise Fluor, Chlor oder Brom, besonders Fluor oder Chlor; Haloalkyl, -alkenyl und -alkinyl bedeuten durch Halogen substituiertes Alkyl, Alkenyl bzw. Alkinyl, z. B. CF₃, CHF₂, CH₂F, CF₃CF₂, CH₂FCHCl, CCl₂, CHCl₂, CH₂Cl; Haloalkoxy ist z. B. OCF₃, OCHF₂, OCH₂F, CF₃CF₂O, OCH₂CF₃; gegebenenfalls substituiertes Phenyl ist z. B. Phenyl, das unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Halogenalkyl, (C₁-C₄)-Halogenalkyl, (C₁-C₄)-Halogenalkyl, (C₁-C₄)-Halogenalkyl, (C₁-C₄)-Bloogenalkoxy und Nitro substituiert ist, z. B. o-, m- und p-Tolyl, Dimethylphenyle, 2-, 3- und 4-Chlorphenyl, 2-, 3- und 4-Trifluor- und -Trichlorphenyl, 2,4-, 3,5-, 2,5- und 2,3-Dichlorphenyl, o-, m- und p-Methoxyphenyl.

Manche Verbindungen der Formel I enthalten ein oder mehrere asymmetrische C-Atome oder Doppelbindungen, die in der allgemeinen Formel I nicht gesondert angegeben sind. Die durch ihre spezifische Raumform definierten möglichen Stereoisomeren, wie Enantiomere, Diastereomere, E- und Z-Isomere sowie deren Gemische sind jedoch alle von der Formel I umfaßt. Die reinen oder angereicherten Stereoisomeren können nach üblichen Methoden aus Gemischen der Stereoisomeren erhalten werden oder auch durch stereoselektive Reaktionen aus stereochemisch reinen Ausgangsstoffen hergestellt werden. Die genannten Stereoisomeren in reiner Form als auch ihre Gemische sind somit Gegenstand dieser Erfindung.

Von besonderem Interesse sind erfindungsgemäße Verbindungen der Formel (I), worin

(C₃-C₄)-Alkenyloxy, (C₃-C₄)-Alkinyloxy, Phenyl-(C₁-C₂)-alkoxy, worin der Phenylring unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C2)-Alkyl, (C_1-C_2) -Alkoxy, (C_1-C_2) -Haloalkyl und (C_1-C_2) -Haloalkoxy substituiert ist, $R^5R^5R^7Si$ - $R^5 R^6 R^7 Si-O-$, $R^5 R^6 R^7 Si-(C_1-C_2)$ -alkoxy, (C_3-C_4) -Alkenyloxycarbonyl, (C_3-C_4) -Alkinyloxycarbonyl, Phenyl-(C1-C2)-alkoxycarbonyl, worin der Phenylring unsubstituiert oder ein- bzw. mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C₁-C₂)-Alkyl, (C₁-C₂)-Alkoxy, (C₁-C₂)-Haloalkyl oder (C₁-C₂)-Haloalkoxy substituiert ist, $R^5R^6C = N-O-CO-$, $R^5R^6C = N-O-$, R^5R^6N-O- , $R^5R^6C=N-$, (C_2-C_4) -Alkenylcarbonyl, (C_2-C_4) -Alkinylcarbonyl 1-(Hydroxyimino)- (C_1-C_4) -alkyl, $1-[(C_1-C_4)$ -Alkylimino]- (C_1-C_4) -alkyl, $1-[(C_1-C_4)$ -Alkoxyimino]- (C_1-C_4) -alkyl, \mathbb{R}^8 Alkinylcarbonyloxy, (C₁-C₄)-Alkylcarbonylamino, (C₂-C₄)-Alkenylcarbonylamino, (C₃-C₄)-Alkinylcarbonylamino, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C1-C2)-alkylcarbonylamino, wobei Phenyl in den drei letztgenannten Resten gegebenenfalls substituiert ist, (C₁-C₄)-Alkylaminocarbonyl, Di-(C₁-C₄)-alkylaminocarbonyl, (C₃-C₄)-Alkenylaminocarbonyl, (C_1-C_4) -Alkylthiocarbonyl, (C_3-C_4) -Alkenylthio, (C_1-C_4) -Alkoxycarbonylamino, (C_1-C_4) -Alkylaminocarbonylaminooder ein Rest der Formel -O-CH2-CH(OR')-CH2-OR', worin die R' zusammen für die divalente Gruppe CH2, CHCH3 oder C(CH3)2 stehen,

R⁵,R⁶,R⁷ unabhängig voneinander H oder (C₁-C₂)-Alkyl oder R⁵ und R⁶ zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugswelse 5 oder 6 Ringatomen und

R⁸,R⁹ unabhängig voneinander (C₁-C₄)-Alkyl,

45 bedeuten.

25

30

35

40

50

55

Vorzugsweise ist

R³ (C₃-C₄)-Alkenyloxy, (C₃-C₄)-Alkinyloxy, Benzyloxy, Trimethylsilyl, Triethylsilyl, Trimethylsilylmethoxy, 1-(Hydroxyimino)-(C₁-C₄)-alkyl, 1-[(C₁-C₄)-Alkylimino]-(C₁-C₄)-alkyl, 1-[(C₁-C₄)-Alkoxyimino]-(C₁-C₄)-alkyl, (C₃-C₄)-Alkenyloxycarbonyl, (C₃-C₄)-Alkinyloxycarbonyl oder R⁵R⁵C = N-O-, wobei R⁵ und R⁵ in dem letztgenannten Rest unabhängig voneinander Methyl oder Ethyl oder zusammen mit dem verbindenden C-Atom Cyclopentyliden oder Cyclohexyliden bedeutet.

Vorzugsweise ist

(C₁-C₄)-Alkylen oder (C₄-C₆)-Alkenylen, insbesondere CH₂CH₂, CH(CH₃)CH₂, C(CH₃)₂CH₂, CH-(CH₃)CH(CH₃).

Besonders bevorzugt bedeutet die Gruppe

-A-R³ (C₃-C₄)-Alkenyloxy-(C₂-C₄)-alkyl, (C₃-C₄)-Alkinyloxy-(C₂-C₄)-alkyl, Benzyloxy-(C₂-C₄)-alkyl, Trimethylsilyl-(C₁-C₄)-alkyl, -(C₂-C₄)-alkenyl oder -(C₂-C₄)-alkinyl, Triethylsilyl-(C₁-C₄)-alkyl,

-(C_2 - C_4)-alkenyl oder -(C_2 - C_4)-alkinyl, Trimethylsilylmethoxy-(C_2 - C_4)-alkyl, (C_3 - C_4)-Alkenyloxycarbonyl-(C_1 - C_4)-alkyl, (C_3 - C_4)-Alkinyloxycarbonyl-(C_1 - C_4)-alkyl oder R⁵ R⁶ C = N-O-(C_2 - C_4)-alkyl, wobei R⁵ und R⁵ in dem letztgenannten Rest unabhängig voneinander Methyl oder Ethyl oder zusammen mit dem verbindenden C-Atom Cyclopentyliden oder Cyclohexyliden bedeutet.

Bevorzugt sind erfindungsgemäße Verbindungen der Formel I, worin die Gruppe der Formel -A-R3 2-(Aliyloxy)-ethyl, 3-(Aliyloxy)-n-propyl, 4-(Aliyloxy)-n-butyl, 2-(Aliyloxy)-1-methyl-ethyl, 2-(2-Methylprop-2-en-1-yl)-ethyl, 2-(Propargyloxy)-ethyl, 2-(Propargyloxy)-1-methyl-ethyl, Propargyloxy-propyl, 4-Propargyloxybutyl, 2-Benzyloxy-ethyl, Allyloxycarbonylmethyl, 1-(Allyloxycarbonyl)-1-ethyl, 1-(Allyloxycarbonyl)-1,1-dimethylmethyl, Propargyloxycarbonylmethyl, 1-(Propargyloxycarbonyl)-1-ethyl, 3-Trimethylsilyl-prop-2-en-1-yl, 3-Trimethylsilyl-prop-2in-1-yl, 3-Trimethylsilyl-1-methyl-prop-2-in-1-yl, 3-Trimethylsilyl-1,1-dimethyl-prop-2-in-1-yl, Trimethylsilylmethoxycarbonylmethyl, Trimethylsilylmethoxyethyl, Trimethylsiloxyethyl. Cyclohexylidenaminoxy-ethyl oder -1-(methyl)-ethyl, Cyclopentylidenaminooxyethyl oder -1-(methyl)-ethyl, 2-Propylidenaminooxy-ethyl oder -1-(methyl)-ethyl, 3-Pentylidenaminooxy-ethyl oder -1-(methyl)-ethyl, 2-Propylidenaminooxycarbonylmethyl oder (2,2-Dimethyl-1,3-dioxolan-4-

yl)-methyl bedeutet. Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel I, dadurch gekennzeichnet, daß man

a) 5-Chlor-8-hydroxychinolin mit einem Alkancarbonsäurederivat der Formel II,

worin

5

10

15

20

25

30

35

····

eine Abgangsgruppe, wie z.B. Chlor, Brom, Methansulfonyl oder Toluolsulfonyl, bedeutet und

R¹,R²,R³, X und A wie bei der genannten Formel I definiert sind, oder

b) 5-Chlorchinolin-8-oxy-alkancarbonsäuren der Formel I, worin -X-A-R³ durch Hydroxy ersetzt ist, mit Alkoholen, Mercaptanen oder Aminen der Formel

H - X - A - R3

wobei X, A und R³ wie bei Formel I definiert sind, umsetzt.

Die in Variante b) eingesetzten 5-Chlorchinolin-8-oxy-alkancarbonsäuren erhält man beispielsweise aus dem Ethylester, der nach Variante a) hergestellt werden kann, durch alkalische Hydrolyse.

Die Umsetzung der Verbindung II mit 5-Chlor-8-hydroxychinolin nach Variante a) wird vorzugsweise in dipolar aprotischen Lösungsmitteln, wie Dimethylsulfoxid oder N,N-Dimethylformamid, bei erhöhter Temperatur, insbesondere zwischen 80 und 120 °C, in Gegenwart einer Base, insbesondere Alkalicarbonaten wie z.B. Kaliumcarbonat, durchgeführt.

Die Umsetzung nach Variante b) erfolgt vorzugsweise in dipolar aprotischen Lösungsmitteln insbesondere Ethern, wie z.B. Tetrahydrofuran oder 1,4-Dioxan, oder Halogenkohlenwasserstoffen, wie z.B. Chloroform oder Tetrachlorkohlenstoff, in Gegenwart eines die Carboxylgruppe in ein aktiviertes Derivat überführendes Reagenz, wie z.B. Thionylchlorid, N,N'-Carbonyldlimidazol oder Dicyclohexylcarbodiimid, bei Temperaturen von Raumtemperatur bis zum Siedepunkt des Reaktionsgemisches, insbesondere bei Rückflußtemperatur.

5-Chlor-8-hydroxychinolin ist kommerziell erhältlich. Die Bromalkancarbonsäurederivate der Formel II sind nach in der Literatur bekannten Verfahren aus Bromalkancarbonsäurechloriden und Verbindungen der Formel H-X-A-R³, wobei X, A und R³ wie in Formel I definiert sind, herstellbar. Alkohole, Mercaptane oder Amine der Formel H-X-A-R³ sind, sofern sie nicht ebenfalls kommerziell erhältlich sind, nach literaturbekannten Verfahren zugänglich; siehe z.B. Helv. Chim Acta 67, Seite 1470 ff. (1984); J. Am. Chem. Soc. 71, Seiten 1152 ff. (1949); J. Am. Chem. Soc. 60, Seiten 1472 ff. (1938); US-A-3 123 639; EP-A-52 798.

Verbindungen der Formel I reduzieren oder unterbinden phytotoxische Nebenwirkungen von Herbiziden, die beim Einsatz der Herbizide in Nutzpflanzenkulturen auftreten können, und können deshalb in üblicher 55 Weise als Antidote oder Safener bezeichnet werden.

Die erfindungsgemäßen Verbindungen der Formel I können zusammen mit herbiziden Wirkstoffen oder in beliebiger Reihenfolge ausgebracht werden und sind dann in der Lage, schädliche Nebenwirkungen dieser Herbizide bei Kulturpflanzen zu reduzieren oder völlig aufzuheben, ohne die Wirksamkeit dieser

Herbizide gegen Schadpflanzen zu beeinträchtigen.

Hierdurch kann das Einsatzgebiet herkömmlicher Pflanzenschutzmittel ganz erheblich erweitert werden. Herbizide, deren phytotoxische Nebenwirkungen auf Kulturpflanzen mittels Verbindungen der Formel I herabgesetzt werden können, sind z.B. Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxy-phenoxycarbonsäurederivate sowie Heteroaryloxy-phenoxyalkancarbonsäurederivate, wie Chinolyloxy-, Chinoxalyloxy-, Pyridyloxy-, Benzoxalyloxy- und Benzthlazolyloxy-phenoxyalkancarbonsäureester, Cyclohexandionabkömmlinge, Imidazolinone sowie Sulfonylharnstoffe. Bevorzugt sind dabei Phenoxyphenoxy- und Heteroaryloxy-phenoxycarbonsäureester und - salze, Sulfonylharnstoffe und Imidazolinone.

10 Geeignete Herbizide, die mit den erfindungsgemäßen Safenern kombiniert werden k\u00f6nnen sind beispielsweise:

- A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroarylphenoxycarbonsäure- (C_1-C_4) alkyl-, (C_2-C_4) -alkenyl- und (C_3-C_4) alkinylester wie
- A1) Phenoxy-phenoxy- und Benzyloxy-phenoxy-carbonsäure-derivate, z.B.
- 2-(4-(2,4-Dichlorphenoxy)-phenoxy)-propionsäuremethylester (Diclofop-methyl),
 - 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propionsäuremethylester (s. DE-A-2601548),
 - 2-(4-(4-Brom-2-fluorphenoxy)-phenoxy)-propionsäuremethylester (s. US-A-4808750),
 - 2-(4-(2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester (s. DE-A-2433067),
 - 2-(4-(2-Fluor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester (s. US-A-4808750),
- 20 2-(4-(2,4-Dichlorbenzyl)-phenoxy)propionsäuremethylester (s. DE-A-2417487),
 - 4-(4-(4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-säureethylester,
 - 2-(4-(4-Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester (s. DE-A-2433067),
 - A2) "Einkernige" Heteroaryloxy-phenoxy-alkancarbonsäurederivate, z.B.
 - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäureethylester (s. EP-A-2925),
- 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäurepropargylester (EP-A-3114),
 - 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy-propionsäure-methylester (s. EP-A-3890),
 - 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäure-ethylester (s. EP-A-3890),
 - 2-(4-(5-Chlor-3-fluor-2-pyridyloxy)-phenoxy)-propionsäurepropargylester (EP-A-191736),
 - 2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäurebutylester (Fluazifopbutyl),
- 30 A3) "Zweikernige" Heteroaryloxy-phenoxy-alkancarbonsäurederivate, z.B.
 - 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäuremethylester und -ethylester (Quizalofop-methyl und -ethyl),
 - 2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäuremethylester (s. J. Pest. Sci. Vol. 10,61 (1985)),
 - 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäure, -methylester, -tetrahydrofurfuryl-, und -2-isopropy-lidenaminoxyethylester (Propaguizafop u. verschiedenste Ester),
 - 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester (Fenoxapropethyl),
 - 2-(4-(6-Chlorbenzthiazol-2-yloxy)phenoxypropionsäureethylester (s. DE-A-2640730).
 - B) Herbizide aus der Sulfonylharnstoff-Reihe, wie z.B. Pyrimidin- oder Triazinylaminocarbonyl-[benzol-, pyridin-, pyrazol-, thiophen- und (alkylsulfonyl)alkylamino-]-sulfamide. Bevorzugt als Substituenten am
 - Pyrimidinring oder Triazinring sind Alkoxy, Alkyl, Haloalkoxy, Haloalkyl, Halogen oder Dimethylamino, wobei alle Substituenten unabhängig voneinander kombinierbar sind. Bevorzugte Substituenten im Benzol-, Pyridin-, Pyrazol-, Thiophen- oder (Alkylsulfonyl)alkylamino-Teil sind Alkyl, Alkoxy, Halogen, Nitro, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkoxyaminocarbonyl, Alkyl, Alkoxyaminocarbonyl, Haloalkoxy, Haloalkyl, Alkylcarbonyl, Alkoxyalkyl, (Alkansulfonyl)alkylamino.
- 45 Geeignete Sulfonylharnstoffe sind beispielsweise

35

- B1) Phenyl- und Benzylsulfonylharnstoffe und verwandte Verbindungen, z.B.
- 1-(2-Chlorphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Chlorsulfuron),
- 1-(2-Ethoxycarbonylphenylsulfonyl)-3-(4-chlor-6-methoxypyrimidin-2-yl)harnstoff (Chlorimuron-ethyl),
- 1-(2-Methoxyphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)hamstoff (Metsulfuron-methyl),
- 1-(2-Chlorethoxy-phenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Triasulfuron),
- 1-(2-Methoxycarbonyl-phenylsulfonyl)-3-(4,6-dimethyl-pyrimidin-2-yl)harnstoff (Sulfometuron-methyl.
- 1-(2-Methoxycarbonylphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3-methylharnstoff (Tribenuron-methyl)
- 1-(2-Methoxycarbonylbenzylsulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)harnstoff (Bensulfuron-methyl)
- 1-(2-Methoxycarbonylphenylsulfonyl)-3-(4,6-bis-(difluormethoxy)pyrimidin-2-yl)harnstoff (Primisulfuron-methyl)
- 3-(4-Ethyl-6-methoxy-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo[b]thiophen-7-sulfonyl)-harnstoff (s. EP-A-79683),

3-(4-Ethoxy-6-ethyl-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo[b]thiophen-7-sulfonyl)-harnstoff (s. EP-A-79683),

B2) Thienylsulfonylharnstoffe, z.B.

5

10

20

25

30

35

40

45

1-(2-Methoxycarbonylthiophen-3-yl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Thifensulfuron-methyl),

B3) Pyrazolylsulfonylharnstoffe, z.B.

1-(4-Ethoxycarbonyl-1-methylpyrazol-5-yl-sulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)harnstoff (Pyrazosulfuron-methyl),

Methyl-3-chlor-5-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-1-methyl-pyrazol-4-carboxylat (s. EP 282613),

B4) Sulfondiamid-Derivate, z.B.

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(N-methyl-N-methylsulfonylaminosulfonyl)harnstoff (Amidosulfuron) und Strukturanaloge (s. EP-A-0131258 und Z. Pfl. Krankh. Pfl. Schutz, Sonderheft XII, 489-497 (1990)), B5) Pyridylsulfonylharnstoffe, z.B.

1-(3-N,N-Dimethylaminocarbonylpyridin-2-yl-sulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)harnstoff (Nicosulfuron).

1-(3-Ethylsulfonylpyridin-2-yl-sulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)harnstoff (DPX-E 9636, s. Brighton Crop Prot. Conf. - Weeds - 1989, S. 23 ff.),

Pyridylsulfonylharnstoffe, wie sie in WO 91/10660 und der deutschen Patentanmeldung P 4030577.5 beschrieben sind, vorzugsweise solche der Formel III oder deren Salze,

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{11}} \mathbb{N} \xrightarrow{\mathbb{R}^{13}} \mathbb{R} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{11}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{14}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{14}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{14}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{14}$$

worin

E CH oder N vorzugsweise CH,

R¹¹ lod oder NR¹⁶R¹⁷,

R¹² H, Halogen, Cyano, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-Haloalkyl, C₁-C₃-Haloalkoxy, C₁-C₃-Alkylthio, (C₁-C₃-Alkoxy)-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)-carbonyl, Mono- oder Di-(C₁-C₃-alkyl)-amino, C₁-C₃-Alkyl-sulfinyl oder -sulfonyl, SO₂-NR^aR^b oder CO-NR^aR^b, insbesondere H

 R^a , R^b unabhängig voneinander H, C_1 - C_2 -Alkyl, C_1 - C_3 -Alkenyl, C_1 - C_3 -Alkinyl oder zusammen -(CH_2)₄-, -(CH_2)₅- oder -(CH_2)₂-O-(CH_2)₂-,

R¹³ H oder CH₃,

Halogen, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, C₁-C₂-Haloalkyl, vorzugsweise CF₃, C₁-C₂-Haloalkoxy, vorzugsweise OCHF₂ oder OCH₂CF₃,

R¹⁵ C₁-C₂-Alkyl, C₁-C₂-Haloalkoxy, vorzugsweise OCHF₂, oder C₁-C₂-Alkoxy, und

R¹⁶ C₁-C₄-Alkyl und R¹⁷ C₁-C₄-Alkylsulfonyl oder R¹⁶ und R¹⁷ gemeinsam eine Kette der Formel -(CH₂)₃SO₂- oder -(CH₂)₄SO₂ bedeuten, z.B. 3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-N-methylsulfonyl-N-methylaminopyridin-2-yl)sulfonylharnstoff,

B6) Alkoxyphenoxysulfonylharnstoffe, wie sie in EP-A-0342569 beschrieben sind, vorzugsweise solche der Formel IV oder deren Salze,

$$(R^{19})_{n} = R^{18} \qquad R^{20} = R^{21}$$

$$(IV)$$

$$R^{29} = R^{21}$$

$$R^{20} = R^{20}$$

$$R^{20} = R^{20}$$

$$R^{20} = R^{20}$$

worin CH oder N. vorzugsweise CH, E R18 Ethoxy, Propoxy oder Isopropoxy. 15 Wasserstoff, Halogen, NO₂, CF₃, CN, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder (C₁-R19 C₃-Alkoxy)-carbonyl, vorzugsweise in 6-Position am Phenylring, 1, 2 oder 3, vorzugsweise 1, n Wasserstoff, C1-C4-Alkyl oder C3-C4-Alkenyl, R²⁰ unabhängig voneinander Halogen, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, C₁-C₂-Haloalkyl, C₁-C₂-R21,R22 20 Haloalkoxy oder (C1-C2-Alkoxy)-C1-C2-alkyl, vorzugsweise OCH3 oder CH3, bedeuten, z.B. 3-(4,6-Dimethoxypyrimidin-2-yl)-1-(2-ethoxyphenoxy)-sulfonylharnstoff,

und andere verwandte Sulfonylharnstoffderivate und Mischungen daraus;

C) Chloracetanilid-Herbizide wie

N-Methoxymethyl-2,6-diethyl-chloracetanilid (Alachlor),

N-(3'-Methoxyprop-2'-yl)-2-methyl-6-ethyl-chloracetanilid (Metolachlor),

N-(3-Methyl-1,2,4-oxdiazol-5-yl-methyl)-chloressigsäure-2,6-dimethylanilid,

N-(2,6-Dimethylphenyl)-N-(1-pyrazolylmethyl)-chloressigsäureamid (Metazachlor),

D) Thiocarbamate wie

25

30

35

40

45

S-Ethyl-N,N-dipropylthiocarbamat (EPTC) oder

S-Ethyl-N,N-diisobutylthiocarbamat (Butylate);

E) Cyclohexandion-Derivate wie

Methyl-3-(1-allyloxyimino)butyl)-4-hydroxy-6,6-dimethyl-2- oxocyclohex-3-encarboxylat (Alloxydim);

2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy-2-cyclohexen-1-on (Sethoxydim),

2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthlopropyl)-3-hydroxy-2-cyclohexen-1-on (Cloproxydim),

2-(1-(3-Chlorallyloxy)iminobutyl)-5-(2-ethylthio)propyl)-3-hydroxy-2-cyclohexen-1-on,

2-(1-(3-Chlorallyloxy)iminopropyl)-5-2-ethylthio)propyl)-3-hydroxy-cyclohex-2-enon (Clethodim),

2-(1-Allyloxyiminobutyl)-4-methoxycarbonyl-5,5-dimethyl-3-oxocyclohexenol,

2-(1-(Ethoxyimino)-butyl)-3-hydroxy-5-(thian-3-yl)-cyclohex-2-enon (Cycloxydim) oder

2-(1-Ethoxyiminopropyl)-5-(2,4,6-trimethylphenyl)-3-hydroxy-2-cyclohexen-1-on (Tralkoxydim);

F) 2-Carboxyphenyl- oder 2-Carboxyheteroaryl-imidazolinone, deren Salze und Ester (z.B. Alkylester), z.B. die Mischung von 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5-methylbenzoesäuremethylester und 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-4-methylbenzoesäuremethylester

(Imazamethabenz), 5-Ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-pyridin-3-carbonsäure (Imazethapyr), deren Ester und Salze (z. B. NH4-Salz), 2-(4-lsopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-chinolin-3-carbonsäure (Imazaquin), deren Ester und Salze (z.B. NH4-salz) und rac-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridin-carbonsäure (Imazethamethapyr), deren Ester und Salze.

Die obengenannten Herbizide der Gruppe A bis F sind dem Fachmann bekannt und in der Regel in "The Pesticide Manual", British Crop Protection Council, 9. Auflage 1991 oder 8. Auflage 1987 oder in "Agricultural Chemicals Book II, Herbicides", by W.T. Thompson, Thompson Publications, Fresno CA, USA 1990 oder in "Farm Chemicals Handbook '90", Meister Publishing Company, Willoughby OH, USA 1990 beschrieben. Imazethamethapyr ist aus Weed Techn. 1991, Vol. 5, 430-438 bekannt.

Die herbiziden Wirkstoffe und die erwähnten Safener können zusammen (als fertige Formulierung oder im Tank-mix-Verfahren) oder in beliebiger Reihenfolge nacheinander ausgebracht werden. Das Gewichtsverhältnis Safener:Herbizid kann innerhalb weiter Grenzen variieren und ist vorzugsweise im Bereich von 1:10 bis 10:1, insbesondere von 1:10 bis 5:1. Die jeweils optimalen Mengen an Herbizid und Safener sind vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden

Pflanzenbestandes abhängig und lassen sich von Fall zu Fall durch entsprechende Vorversuche ermitteln.

Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle und Sojabohne, vorzugsweise Getreide und Mais

Ein besonderer Vorteil der erfindungsgemäßen Safener der Formel I ist bei deren Kombination mit Herbiziden aus der Gruppe der Sulfonylharnstoffen und/oder Imidazolinone festzustellen. Herbizide der genannten Strukturklassen hemmen primär das Schlüsselenzym Acetolactatsynthase (ALS) in den Pflanzen und sind bezüglich des Wirkungsmechanismus daher zumindest partiell verwandt. Einige Herbizide dieser Strukturklassen können speziell in Getreidekulturen und/oder Mals nicht oder nicht genügend selektiv eingesetzt werden. Durch die Kombination mit den erfindungsgemäßen Safenern sind auch bei diesen Herbiziden in Getreide oder Mals hervorragende Selektivitäten zu erreichen.

Die Safener der Formel I je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht oder zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein. Bevorzugt ist die gemeinsame Anwendung mit dem Herbizid. Hierzu können Tankmischungen oder Fertigformulierungen eingesetzt werden.

Die benötigten Aufwandmengen der Safener können je nach Indikation und verwendetem Herbizid innerhalb weiter Grenzen schwanken und sind in der Regel im Bereich von 0,001 bis 5 kg, vorzugsweise 0,005 bis 0,5 kg Wirkstoff je Hektar.

Gegenstand der vorliegenden Erfindung ist deshalb auch ein Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, das dadurch gekennzeichnet ist, daß eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert wird.

Gegenstand der Erfindung sind auch pflanzenschützende Mittel, die einen Wirkstoff der Formel I und übliche Formulierungshilfsmittel enthalten, sowie herbizide Mittel, die einen Wirkstoff der Formel I und ein Herbizid sowie im Bereich des Pflanzenschutzes übliche Formulierungshilfsmittel enthalten.

Die Verbindungen der Formel I und deren Kombinationen mit einem oder mehreren der genannten Herbizide können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wasserlösliche Pulver (SP), wasserlösliche Konzentrate (SL), konzentrierte Emulsionen (EW) wie Öl-in-Wasser und Wasser-in- Öl-Emulsionen, versprühbare Lösungen oder Emulsionen, Kapselsuspenslonen (CS), Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen, Suspensionskonzentrate, Stäubemittel (DP), ölmischbare Lösungen (OL), Beizmittel, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, Granulate für die Boden- bzw. Streuapplikation, wasserlösliche Granulate (SG), wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln und Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie" Band 7, C. Hauser Verlag München, 4. Aufl. 1986; Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker N.Y., 1973; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v.Olphen "Intruduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y. Marsden "Solvents Guide", 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler "Chemische Technolgie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole und Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate oder Alkylarylsulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalinsulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel,

z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlen-wasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid Kondensationsprodukte (z.B. Blockpolymere), Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophillit, oder Diatomeenerde.

Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - oranuliert werden.

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gewichtsprozent, insbesondere 0,1 bis 95 Gew.-%, Wirkstoffe der Formel I (Antidot) oder des Antidot/Herbizid-Wirkstoffgemischs und 1 bis 99,9 Gew.-%, insbesondere 5 bis 99,8 Gew.-%, eines festen oder flüssigen Zusatzstoffes und 0 bis 25 Gew.-%, insbesondere 0,1 bis 25 Gew.-%, eines Tensides.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten beträgt die Wirkstoffkonzentration etwa 1 bis 80 Gew.-% Wirkstoffe. Staubförmige Formulierungen enthalten etwa 1 bis 20 Gew.-% an Wirkstoffen, versprühbare Lösungen etwa 0,2 bis 20 Gew.-% Wirkstoffe. Bei Granulaten wie wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt. In der Regel liegt der Gehalt bei den in Wasser dispergierbaren Granulaten zwischen 10 und 90 Gew.-%.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Granulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids u.a. variiert die erforderliche Aufwandmenge der "Antidots".

Folgende Beispiele dienen zur Erläuterung der Erfindung:

A. Formulierungsbeispiele

- a) Ein Stäubmittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und eine Verbindung der Formel I und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I, 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I, 6 Gew.-Teilen Alkylphenolpolyglykolether (*Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.- Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277 °C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I, 75 Gew.-Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
- e) Ein in Wasser dispergierbares Granulat wird erhalten, indem man

55

45

50

75 GewTeile	einer Verbindung der Formel I oder eines Wirkstoffgemischs aus
·	einem Herbizid und einem Safener der Formel 1,

- ligninsulfonsaures Calcium, 10
 - 5 Natriumlaurylsulfat,
 - Polyvinylalkohol und
- 10 Kaolin

15

20

30

35

mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.

- f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
 - 25 Gew.-Teile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I.
 - 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, 5
 - 2 oleoylmethyltaurinsaures Natrium,
- Polyvinylalkohol, 1 25
 - Calciumcarbonat und 17
 - 50 Wasser

auf einer Kolloidmühle hornogensiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

- B. Herstellungsbeispiele
- 5-Chlorchinolin-8-oxyessigsäure-1-isopropylidenaminooxy-2-propylester (Beispiel 33 in Tabelle 1)
- 4,75 g (0,02 mol) 5-Chlorchinolin-8-oxyessigsäure werden in 50 ml THF suspendiert und 3,2 g (0,02 mol) N,N'-Carbonyldiimidazol hinzugefügt und die Suspension auf 50°C erwärmt, bis die Gasentwicklung beendet ist. Zu dieser Suspension tropft man eine Lösung aus 2,62 g (0,02 mol) 1-Isopropylidenamino-oxy-2-propanol und 50 mg Natrium in 10 ml Tetrahydrofuran (THF) hinzu und erwärmt zum Rückfluß. Nach der Umsetzung wird das THF unter reduziertem Druck abgezogen, der Rückstand in Essigsäureethylester aufgenommen und die Lösung mit 5 % NaOH und NaCl-Lösung gewaschen. Die organische Phase wird über MgSO4 getrocknet, eingeengt und der Rückstand aus Heptan umkristallisiert. Man erhält 3,6 g (45,6 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-1-isopropylidenaminooxy-2-propylester vom Schmp. 102 °C.
- 5-Chlorchinolin-8-oxyessigsäure-3-(allyloxy)propylester (Bsp. 19 in Tabelle 1)
- 3,78 g (0,021 mol) 5-Chlor-8-hydroxychinolin und 2,91 g (0,021 mol) Kallumcarbonat werden in 100 ml Dimethylsulfoxid (DMSO) für 30 min auf 60°C erwärmt. Man läßt wieder auf Raumtemperatur abkühlen und tropft dann 5,0 g (0,021 mol) Bromessigsäure-3-(allyloxy)propylester hinzu und erwärmt die Lösung anschließend für 4 h auf 90°C. Das DMSO wird dann Im Vakuum abdestilliert, der Rückstand in Essigsäureethylester aufgenommen und die Lösung mit Wasser und 5 proz. Natriumhydroxidlösung gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet, das Trockenmittel abfiltriert und das Lösungsmittel unter reduziertem Druck abgezogen. Nach Umkristallisieren des Rückstandes aus n-Heptan erhält man 5,4 g (76,3 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-3-(allyloxy)propylester vom Schmp. 69 °C.

5-Chlorchinolin-8-oxyessigsäure-2-(propargyloxy)ethylester (Bsp. 18 in Tabelle 1)

5,0 g (0,021 mol) 5-Chlorchinolin-8-oxyessigsäure werden in 70 ml Thionylchlorid eine Stunde lang auf 70°C erwärmt. Anschließend wird das Überschüssige Thionylchlorid im Vakuum abdestilliert und der Rückstand in 150 ml Tetrachlorkohlenstoff suspendiert. Zu dieser Suspension fügt man 2,10 g (0,021 mol) 2-Propargyloxyethanol hinzu, tropft dann 2,30 g (0,023 mol) Triethylamin hinzu und erhitzt 12 h zum Rückfluß. Anschließend wäscht man die Suspension mit je 70 ml 2 n HCl und 5 proz. Natronlauge, trocknet die org. Phase Über Magnesiumsulfat und zieht das Lösungsmittel i. Vak. ab. Der Rückstand wird aus n-Heptan umkristallisiert. Man erhält so 1,1 g (16,3 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-2-(propargyloxy)ethylester vom Schmp. 53°C.

5-Chlorchinolin-8-oxyessigsäure-2-allyloxy-1-methylethylester (Bsp. 24 in Tabelle 1)

5,0 g (0,021 mol) 5-Chlorchinolin-8-oxyessigsäure und 2,44 g (0,021 mol) 2-Allyloxy-1-methylethanol werden in einem Gemisch aus 40 ml Dichlormethan und 40 ml Dimethylformamid suspendiert und auf 0°C abgekühlt. Bei dieser Temperatur werden 4,78 g (0,023 mol) Dicyclohexylcarbodiimid in 10 ml Dichlormethan gelöst hinzugetropft und dann 200 mg 3-(N,N-Dimethylamino)-pyridin hinzugegeben. Man rührt 15 h bei Raumtemperatur und saugt den ausgefallenen Niederschlag ab und wäscht ihn mit 50 ml Dichlormethan nach. Das Filtrat wird mit 100 ml 0,5 n HCl, mit 100 ml Kaliumhydrogencarbonatlösung und 3 mal mit je 50 ml Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum abgezogen. Der Rückstand wird aus n-Heptan umkristallisiert. Auf diese Weise erhält man 5,1 g (72,4 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-2-allyloxy-1-methylethylester vom Schmelzpunkt 59°C.

In den folgenden Tabellen 1a und 1b sind die obengenannten Herstellungsbeispiele mit weiteren Beispielen für Verbindungen der Formel I aufgeführt, die in analoger Weise hergestellt werden.

25

30

35

40

45

50

Tabelle 1

ÇI '
N
, ģ - ^
R^1 $O-A-R$
Ř΄ Π

. 5

	Beispiel	R ¹	R ²	A-R ³	Smp.[⁰ C]
20	1	н	н	CH ₂ -Si(CH ₃) ₃	79
	2	н	Н	CH ₂ -CH ₂ -O-N=C(n.C ₄ H ₉) ₂	,
25	3	н	н	CH-CH ₂ -O-N=C(C ₂ H ₅) ₂	46
30	4	н	н	CH ₃ CH-CH ₂ -O-N=C n.C ₅ H ₁₁ C ₂ H ₅	Harz
35					
40	5	н	н	$CH_2-C \equiv C-Si(CH_3)_3$	122

EP 0 492 366 A2

	Beispiel	R ¹	R²	A-R ³	Smp.[⁰ C]
. 5	6	CH ₃	H	$CH_2 \cdot C \equiv C - Si(CH_3)_3$	95
	7	н	н	CH-C = C - Si(CH ₃) ₃ H ₃ C	72
10	8	CH₃	н	CH— C === C Si(CH ₃) ₃ H ₃ C	Oel
15	9	н	н	$C(CH_3)_2$ — $C \equiv C - Si(CH_3)_3$	75
20	10	CH ₃	н	$C(CH_3)_2$ — $C = C - Si(CH_3)_3$	Oel
					06
25	11 -	н	H	CH ₂ -CO ₂ -CH ₂ -CH=CH ₂	85
	12	н	н	CH ₂ - CO ₂ - CH ₂ - C ≡ CH	
30	13	н	н	CH ₂ -CO ₂ -CH ₂ -Si(CH ₃) ₃	<u> </u>
	14	CH ₃	н	CH ₂ -CO ₂ -CH ₂ -CH=CH ₂	
oe.	15	CH ₃	н	CH ₂ - CO ₂ - CH ₂ - C ≡ CH	
35	16	CH ₃	н	CH ₂ -CO ₂ -CH ₂ -Si(CH ₃) ₃	
	17	н	н	CH ₂ -CH ₂ -O-CH ₂ -CH=CH ₂	
40	18	н	н	CH ₂ - CH ₂ - O — CH ₂ - C ≡ CH	53
45	19	н	н	CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH=CH ₂	69

EP 0 492 366 A2

	Beispiel	R ¹	R ²	A-R³	Smp.[⁰ C]
5	20	н	. н	CH ₂ - CH ₂ - CH ₂ O — CH ₂ - C ≡ CH	73
	21	н	н	(CH ₂) ₄ -O-CH ₂ -CH=CH ₂	61
10	22	н	н	$(CH_2)_4 - O - CH_2 - C \equiv CH$	•
	23	н	н	(CH ₂) ₅ -O-CH ₂ -CH=CH ₂	63
15	24	н	н	CH-CH ₂ -O-CH ₂ -CH=CH ₂ CH ₃	59
20	25	н	н	CH— CH ₂ - O — CH ₂ - C ≡ CH H ₃ C	·
25	26	Н	Н	CH_3 CH_2 - CH_2 - CH_2 - CH_2 - CH_2	66
30	27	н	н	CH ₃ CH ₃ I CH— CH ₂ — O — CH ₂ — C — CH ₂	
	28	н	н	CH ₂ -CH ₂ -O-CH ₂ -Si(CH ₃) ₃	56
35	29	Ĥ	н	$CH_2-CH_2-O-N=CH_3$ CH_3	93
40	30	н	Н	$CH_{2} CH_{2}-O-N = CH_{3}$ CH_{3}	58
45	31	н	Н	CH ₂ -CH ₂ -0-N=	79

EP 0 492 366 A2

	- Beispiel	R1	R²	A-R ³	Smp.[⁰ C]
5	32	н	H	CH ₂ · CH ₂ - 0 - N =	83
10	33	н	н	CH- CH ₂ -O-N (CH ₃)	102
15	34	н	н	CH- CH ₂ -O - N = CH ₃	87
20	35	н	н	CH- CH ₂ - O - N =	
25	36	н	н	CH- CH ₂ - O - N = CH ₃ CH ₃ C CH ₃	ŏı _.
30	37	н	н	CH— CO ₂ — CH ₂ — CH== CH ₂ I H ₃ C	Öl
35	38	н	н	$CH_{2} < CH_{3}$ CH_{3} CH_{3}	
40	39	н	н	CH ₂ CH ₂ O-CH ₂	76
45					

EP 0 492 366 A2

	Beispiel	R ¹	R ²	A-R ³	Smp.[⁰ C]
5	40	н	Н	CH- CH ₂ -0-N=	64
10	41	н	н	CH ₂ - CH ₂ - O - N =	87
15	42	н	н	CH- CH ₂ -O-N= CH ₂ - CH ₃	Oel
20	43	н	Н	CH- CH ₂ O - N = CH ₂ CH ₃	
25					·.
30	44	Н	н	CH ₂ —(O-N=	
35	4 5	Н	н	CH ₂ —O —N —	
40	46	н	н	CH ₂ —0	·
4 5	47	н	н	CH-O-N=	

EP 0 492 366 A2

	Beispiel	R ¹	R ²	A-R ³	Smp.[⁰ C]
5	48	H ·	Н	CH2 CH2 O - CO-	126
10	49	н	н	$CH_2 CH_2 N = CH_3$ CH_3	·
15	50	н	н	$N - O - CH_3$ CH_2 CH_3	90
20	51	н	H-	O CH ₂ ————————————————————————————————————	
25	52	н	н	CH ₂ —CH ₂ —CH= CH ₂	
30	53	н	н	N n.C ₄ H ₉ CH ₂ CH ₃	
35	54	н	н	N —— OH	
40 45	55	н	н	CH ₃	

EP 0 492 366 A2

	Beispiel	R ¹	R ²	A-R ³	Smp.[⁰ C]
5	56	н	н	CH ₂ N O CH ₃	
10	57	Н	н	O CH ₂ · CH ₂ · NH- ¹¹ NH- CH ₂ CH: CH ₂	
15	58	н	н	CH ₂ - CH ₂ - O CH ₂ - CH ₂ -	
20	59	н	Н	$\begin{array}{c c} O \longrightarrow C_2H_5\\ CH_2 \longrightarrow O \longrightarrow C_2H_5\\ CH_3 \end{array}$	
25					
30	60	н	н	CH ₂ - CH ₂ · N CH ₃	
	61	н	н	CH ₂ - CH ₂ - CH ₂ - O — CH ₂ Si(CH ₃) ₃	
35	62	н	н	$O - C_2H_5$ $CH_2 - CH_2 - CH_2 - CH_2 - CH_2$ $O - C_2H_5$	
40				,	
45	63	н	н	CH ₂ —CH==CH ₂ CH ₂ —CH==CH ₂	
		ŀ		1	1

. 55

-	Beispiel	R¹	R²	A-R³	Smp. [°C]
5	64	Ι	н	CH(CH ₃)-CH(CH ₃)-OCH ₂ CH=CHCH ₃	Wachs
	65	СН₃	H	CH(CH ₃)-CH(CH ₃)-OCH ₂ CH=CHCH ₃	Öl
	66	CH3	H	CH ₂ -CH ₂ -O-CH ₂ -CH=CH-CH ₃	ÖI
10	67	CH ₃	Н	CH ₂ -CH ₂ -O-CH ₂ -CH=CH ₂	ŌI
	68	CH ₃	н	CH(CH ₃)-CH(CH ₃)-OCH ₂ CH=CH ₂	Öl
	69	Н	H	CH ₂ -CH(CH ₃)-OCH ₂ CH=CH ₂	53
15	70	Н	Ή	CH₂-C≖C-CH₂-O-CO-CH₃	116
	71	СН₃	Н	CH ₂ -CH=CH-CH ₂ -O-CH ₂ -CH=CH-CH ₃	Ōł
	72	н	н	CH ₂ -CH=CH-CH ₂ -O-CH ₂ -CH=CH-CH ₃	43
20	73	CH ₃	Н	$(CH_2)_4$ -O-CH ₂ -CH = CH_2	Öl
20	74	Н	H	CH(CH ₃)-CH(CH ₃)-O-CO-CH ₃	Ō۱
	75	H	H	CH(CH3)-CH(CH3)-O-CO-1-C4H9	Öi
	76	н	Н	CH ₂ -CH ₂ -O-CH ₂ -CH=CH-CH ₃	83
25	77	Н	Н	CH(CH ₃)-CH(CH ₃)-OCH ₂ CH=CH ₂	ÔΙ
	78	н	Н	CH ₂ -CH ₂ -N=	155
30	79	н	н	CH(C2H5)-CH2-OCH2C≡CH	ŌΙ
	80	н	Н	CH ₂ -CH ₂ -O-CO-t-C ₄ H ₈	38
	81	н	н	CH ₂ -CH ₂ -O-N=C(CH ₃)C ₂ H ₅	68
35	82	н	н	CH(C ₂ H ₅)-CH ₂ -OCH ₂ CH=CH ₂	Öl
	83	Н	Н	CH(C ₂ H ₅)-CH ₂ -O-N=C(CH ₃) ₂	ŌΙ
	84	н	Н	CH ₂ -CH ₂ -O-CO-CH ₃	87
40	85	Н	н	CH ₂ -CH=CH-CH ₂ -O-CO-CH ₃	73
	86	н	Н	CH ₂ -CH ₂ -NH-CO-CF ₃	117
	87	н	н	CH ₂ -CH=CH-CH ₂ -O-CH ₂ -CH=CH ₂	47
45	88	н	Н	CH(CH ₃)-CH ₂ -O-N=C(C ₂ H ₅)n-C ₅ H ₁₁	Harz
	89	н	Н	CH ₂ -CH ₂ -CH ₃ -NH-CO-CH ₃	133
	90	Н	Н	CH ₂ -CH ₂ -CH ₂ -NH-CO-CH ₂ -CH ₃	105
50	91	н	Н	CH ₂ -CH ₂ -NH-CO-CH ₂ -CH ₃	119

EP 0 492 366 A2

Beispiel	R¹	R²	A-R³	Smp. [°C]
92	Н	Н	CH_2 - CH_2 - O - $N = C(n$ - $C_4H_0)$ C_2H_5	
93	H	н	$CH_2-CH_2-O-CH_2-CH=C(CH_3)_2$	67
94	н	Н	CH ₂ -CH ₂ -O-CH ₂	38
·			CH - O CH,	
95	CH₃	Н	CH(CH ₃)-CH ₂ -OCH ₂ -CH=CH ₂	Öi
96	Н	Н	CH ₃ CH ₂ - CH ₂ - CH ₂ - C=N-OH	84
97	Н	н	CH ₂ -C(CH ₃) ₂ -CH ₂ -NH-CO-C ₆ H ₆	Öl
98	Н	Н	CH ₂ -CH ₂ -NH-CO-C ₆ H ₅	122
99	Н	н	CH₃ CH₂-CH₂-CH₂ — C == N-O-CO-CH₃	85
100	Н	H	CH(CH ₃)-CH(CH ₃)-O-CO-CH ₂ -O-CH ₃	92
101	Н	H	$(CH_2)_2OCH_2CH = C(CH_3)CH_2CH_2CH = C(CH_3)_2$	39
102	Н	H	CH ₂ -CH = CH-CH ₂ -O-CO-CH ₃	75
103	Н	I	CH ₂ -CH ₂ -CH ₂ -NH-CO-C ₆ H ₆	
104	н	Н	CH ₂ -CH ₂ -O-CO-CH ₂ -CH ₃	55
105	н	CH,	CH ₂ -CO-O-CH ₂ -CH=CH ₂	ÖI
106	CH ₃	Н	CH ₂ -CH=CH-CH ₂ -O-CH ₂ -CH=CH ₂	
107	CH ₃	СН	CH ₂ -CH = CH-CH ₂ -O-CH ₂ -CH = CH ₂	<u> </u>
108	CH ₃	н	CH ₂ -CH ₂ -NH-CO-CF ₃	
109	CH₃	Н	CH ₂ -CH = CH-CH ₂ -O-CO-CH ₃	
110	CH ₃	н	CH ₂ -CH ₂ -O-CO-CH ₃	
111	CH ₃	Н	$CH(C_2H_5)-CH_2-O-N=C(CH_3)_2$	
112	CH ₃	н	CH(C ₂ H ₆)-CH ₂ -O-CH ₂ -CH=CH ₂	
113	CH ₃	н	CH2-CH2-O-N=C(CH3)C2H6	
114	CH,	н	CH ₂ -CH ₂ -O-CO-t-C ₄ H ₆	
115	CH ₃	Η٠	CH(C₂H₅)-CH₂-O-CH₂-C≡CH	
116	сн,	н	CH ₂ -CH ₂ -N =	
117	СН,	н	CH(CH ₃)-CH(CH ₃)-O-CH ₂ -CH=CH ₂	

Beispiel	R¹	R²	A-R³	Smp. [°C]
118	CH ₃	Н	CH ₂ -CH ₂ -O-CH ₂ -CH=CH-CH ₃	
119	CH,	H	CH ₂ -CH ₂ -O-CO-CH ₂ -O-CH ₃	
120	CH ₃	н	ÇH₃ CH₂-CH₂-CH₂ —— C≃N-O-CO-CH₃	
121	CH ₃	Н	CH ₂ -CH ₂ -NH-CO-C ₆ H ₅	
122	CH ₃	н	CH ₂ -C(CH ₃) ₂ -CH ₂ -NH-CO-C ₆ H ₅	
123	CH ₃	Н	CH ₂ -CH ₂ -CH ₂ — C = N-OH	
124	н	н	CH ₂ -CH ₂ -CH ₂ -NH-CO-CH = CH ₂	
125	Н	Н	CH ₂ -CH ₂ -CH ₂ -NH-CO-C≡CH	
126	CH,	H	CH ₂ -CH ₂ -CH ₂ -NH-CO-CH=CH ₂	
127	CH,	Η	CH ₂ -CH ₂ -CH ₂ -NH-CO-C≡CH	
128	н	н	CH ₂ -CH=CH-CH ₂ -NH-CO-CH ₃	
129	н	H	O-CH ₂ -CH=CH ₂	
130	н	Н	O-CH₂-C⊫CH	
131	CH₃	н	O-CH ₂ -CH=CH ₂	
132	СН	н	O-CH ₂ -CH=CH ₂	
133	н	н	O-N = C(CH ₃) ₂	
134	н	Н	CH ₂ -CH ₂ -O-CH ₂ -p-C ₆ H ₄ -Br	
135	Н	Н	CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -p-C ₆ H ₄ -NO ₂	
136	Н	н	CH(CH ₃)-CH ₂ -O-CH ₂ -m-C ₆ H ₄ -CH ₃	
137	Н	н	CH ₂ -CH(CH ₃)-O-CH ₂ -p-C ₆ H ₄ -CF ₃	
138	Н	н	CH ₂ -CH ₂ -O-CH ₂ -p-C ₆ H ₄ -O-CHF ₂	
139	н	н	CH ₂ -CH ₂ -O-CO-CH ₂ -C ₆ H ₅	
	118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	118 CH ₃ 119 CH ₃ 120 CH ₃ 121 CH ₃ 122 CH ₃ 123 CH ₃ 124 H 125 H 126 CH ₃ 127 CH ₃ 128 H 129 H 130 H 131 CH ₃ 131 CH ₃	118	118 CH ₃ H CH ₂ -CH ₂ -O-CH ₂ -CH=CH-CH ₃ 119 CH ₃ H CH ₂ -CH ₂ -O-CO-CH ₂ -O-CH ₃ 120 CH ₃ H CH ₂ -CH ₂ -O-CO-CH ₂ -O-CO-CH ₃ 121 CH ₃ H CH ₂ -CH ₂ -CH ₂ — C=N-O-CO-CH ₃ 122 CH ₃ H CH ₂ -CH ₂ -NH-CO-C ₀ H ₅ 123 CH ₃ H CH ₂ -C(CH ₃) ₂ -CH ₂ -NH-CO-C ₀ H ₅ 124 H H CH ₂ -CH ₂ -CH ₂ — C=N-OH 125 H H CH ₂ -CH ₂ -CH ₂ -NH-CO-CH=CH ₂ 126 CH ₃ H CH ₂ -CH ₂ -CH ₂ -NH-CO-CH=CH ₂ 127 CH ₃ H CH ₂ -CH ₂ -CH ₂ -NH-CO-CH=CH ₂ 128 H H CH ₂ -CH ₂ -CH ₂ -NH-CO-CH=CH ₃ 129 H H O-CH ₂ -CH ₂ -CH ₂ -NH-CO-CH ₃ 129 H H O-CH ₂ -CH ₃ 130 H H O-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ 131 CH ₃ H O-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ 132 CH ₃ H CH ₂ -CH ₂ -O-CH ₂ -C ₀ -C ₀ -C ₀ -C ₀ -C ₀ -CH ₂ -CH ₃ -CH ₃ 133 H H CH ₂ -CH ₂ -O-CH ₂ -C ₀ -C ₀ -C ₀ -C ₀ -C ₀ -CH ₃ -CH ₃ -CH ₃ 135 H H CH ₂ -CH ₂ -O-CH ₂ -D-C ₀ -C ₀ -C ₀ -C-CH ₃ -CH ₃ 136 H H CH ₂ -CH ₂ -O-CH ₂ -D-C ₀ -C ₀ -C ₀ -C-CH ₃ -C-CH ₃ 137 H H CH ₂ -CH ₂ -O-CH ₂ -D-C ₀ -C ₀ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C

	Beispiel	R¹	R²	A-R³	Smp. [°C]
5	140	н	н	CH ₃ -CH ₂ -CH ₃ -	-
10	141	Н	н	CH ₂ -CH ₂ — CH ₃	
1	142	Н	Н	CH ₂ -CH ₂ -CH ₂ -O-CO-CH ₂ -Cl	
	143	Н	Н	CH ₂ -CH ₂ -NH-CO-2,4-Cl ₂ C ₆ H ₃	
15	144	Н	Н	CH ₂ -C(CH ₃) ₂ -CH ₂ -NH-CO-CH ₂ -C ₆ H ₅	
	145	Н	Н	CH ₂ -CH ₂ -CO-N(CH ₃) ₂	
	146	H	Н	CH ₂ -CO-NH-CH ₂ -CH=CH ₂	
20	147	Н	н	CH(CH ₃)-CO-NH-n-C ₄ H ₉	
	148	Н	Н	CH₂-CH₂-CH₂-CO-NH-CH₂-C≡CH	
	149	Н	Н	CH ₂ -CH ₂ -CH ₂ -C(=S)-CH ₃	
25	150	Н	Н	CH(CH ₃)-CH ₂ -CH ₂ -S-CH ₂ -CH=CH ₂	
	151	Н	Н	CH ₂ -CH=CH-CH ₂ -CO-N(CH ₃) ₂	
	152	Н	Н	CH ₂ -CH = CH-CH ₂ -S-CH ₂ -CH = CH ₂	
30	153	Н	н	CH ₂ -CH=CH-CH ₂ -O-CO-CH ₂ -Cl	
	154	Н	н	CH ₂ -CH=CH-CH ₂ -O-CO-CH ₂ -C ₆ H ₅	
	155	н	н	CH ₂ -CH = CH-CH ₂ -NH-CO-CH ₂ -C ₈ H ₆	
35	156	н	н	CH ₂ -CH=CH-CH ₂ -CO-NH-CH ₂ -CH=CH ₂	
	157	н	н	CH ₂ -CH = CH-CH ₂ -O-CH ₂ -p-C ₆ H ₄ -OCHF ₂	
	158	Н	н	CH ₂ -CH=CH-CH ₂ -O-N=C(CH ₃) ₂	
	159	н	н	CH ₂ -CH = CH-CH ₂ -O-CH ₂ -C=CH	
40	160	н	Н	CH ₂ -CH = CH-CH ₂ -O-CH ₂ -C(CH ₃) = CH ₂	
	161	Н	H	CH₂-C≡C-CH₂-O-CO-C₀H₅	
	162	н	н	CH₂-C≡C-CH₂-NH-CO-CH₃	
45	163	H	Ι	CH₂-C≡C-CH₂-NH-CO-CH₂-OCH₃	
	164	Н	Н	CH ₂ -C:::C-CH ₂ -O-N = C(CH ₃) ₂	
	165	Н	Н	CH₂-C∞C-CH₂-O-CH₂-C∞CH	
50					

	Beispiel	R¹	R²	A-R ³	Smp.
5	166	Н	Н	CH₂-C⊭C-CH₂-NH-CO-CH₂-C₀H₅	
	167	Н	Н	CH₂-C≡C-CH₂-CS-CH₃	
	168	Н	CH ₃	CH ₂ -CH ₂ -O-CH ₂ -p-C ₆ H ₄ Br	
10	169	Н	СН3	CH ₂ CH ₂ CH ₂ -O-CH ₂ -p-C ₆ H ₄ NO ₂	
	170	н	CH _s	CH(CH ₃)-CH ₂ -CH ₂ -O-CH ₂ -m-C ₆ H ₄ -CH ₃	
	171	н	CH ²	CH ₂ -CH(CH ₃)-O-CH ₂ -p-C ₆ H ₄ -CF ₃	
15	172	н	CH ₃	CH ₂ -CH ₂ -CO-O-CH ₂ -C ₆ H ₅	
	173	н	CH ₃	CH ₂ -CH ₂ -C(OCH ₂ -CH ₃) ₂ (CH ₃)	
20	174	н	CH3	CH₂-CH₂-C-O-7 O7	
	175	Н	CH ₃	CH ₂ -CH ₂ -CH ₂ -O-CO-CH ₂ -CI	
:	176	н	СН3	CH ₂ -CH ₂ -NH-CO-2,4-Cl ₂ C ₆ H ₃	
25	177	H	CH3	CH ₂ -C(CH ₃) ₂ -CH ₂ -NH-CO-CH ₂ -C ₆ H ₅	
25	178	Н	CH ₃	CH ₂ -CH ₂ -CO-N(CH ₃) ₂	
	179	Н	CH ₃	CH ₂ -CO-NH-CH ₂ -CH=CH ₂	
	180	н	CH ₃	CH(CH ₃)-CO-NH-n-C ₄ H ₈	
-30	181	CH ₃	Н	CH₂-CH₂-CO-NH-CH₂-C≡CH	
	182	н	CH ₃	CH ₂ -CH ₂ -CH ₂ -CS-CH ₃	
	183	Н	CH ₃	CH(CH ₃)-CH ₂ -CH ₂ -S-CH ₂ -CH=CH ₂	
35	184	н	CH ₃	CH ₂ -CH=CH-CH ₂ -CO-N(CH ₃) ₂	
	185	Н	CH ₃	CH2-CH=CH-CH2-S-CH2-CH=CH2	
	186	н	CH ₃	CH ₂ -CH=CH-CH ₂ -O-CO-CH ₂ -CI	
40 `	187	н	CH ₃	CH ₂ -CH = CH-CH ₂ -NH-CO-CH ₂ -C ₆ H ₆	
	188	Н	CH ₃	CH ₂ -CH=CH-CH ₂ -O-N=C(CH ₃) ₂	
	189	н	CH ₃	CH ₂ -CH = CH-CH ₂ -O-CH ₂ -C=CH	
45	190	н	CH,	CH ₂ -CH = CH-CH ₂ -O-CH ₂ -C(CH ₃) = CH ₂	
	191	н	CH,	CH ₂ -C=C-CH ₂ -O-N=C(CH ₃) ₂	
	192	Н	CH ₃	CH₂-C≡C-CH₂-NH-CO-CH₃	
50	193	н	CH3	CH ₂ -C=C-CH ₂ -NH-CO-CH ₂ -O-CH ₃	

Beispiel	R¹	R²	A-R³	Smp. [°C]
194	Н	CH ₃	CH2-C=C-CH2-O-CH2-C=CH	
195	Н	CH ₃	CH₂-C≡C-CH₂-NH-CO-CH₂-C ₆ H ₅	
196	Н	CH ₃	CH₂-C≡C-CH₂-O-CO-CH₃	
197	Н	Н	CH ₂ -CH ₂ -CH ₂ -O-CO-t-C ₄ H ₉	82
198	Н	Н	CH2-CH2-CH2-O-CO-CH2-CH3	76
199	н	н	CH2-CH2-CH2-O-CO-CH3	113
200	Н	н	CH2-CH2-O-CO-CO-CH2-CH(CH3)2	61
201	Н	Н	CH ₂ -CH ₂ -O-CO-CH ₂ -Cl	90
202	Н	Н	CH ₂ -CH ₂ -O-CO-CF ₃	103
203	Н	Н	CH ₂ -CH ₂ -O-CO-cyclo-C ₃ H ₅	72

Tabelle 1b

 $\begin{array}{c|c}
Cl & & \\
N & & \\
R^{1} & N - A - R^{3}
\end{array}$

Beispiel	R¹	R²	A-R³	Smp. [℃]
204	Ξ	H	CH2-CH2-O-CO-CH3	106
205	H	Н	CH ₂ -CH ₂ -O-CO-t-C ₄ H ₆	96
206	Н	Н	CH ₂ -CH ₂ -CH ₂ -O-CO-CH = C(CH ₃) ₂	Öl
207	н	Н	CH ₂ -CH ₂ -NH-CO-C ₂ H ₅	164
208	Н	Н	CH ₂ -CH ₂ -CH ₂ -NH-CO-CH ₃	81
209	Н	н	CH(CH ₃)-CH ₂ -O-CH ₂ -CH=CH ₂	
210	Н	Н	CH ₂ -CH ₂ -O-N=C(CH ₃) ₂	
211	Н	Н	CH ₂ -CO-O-CH ₂ -CH=CH ₂	
212	Н	Н	CH₂-CO-O-CH₂-C≡CH	
213	н	н	CH ₂ -CH(CH ₃)-O-CH ₂ -CH=CH ₂	
214	н	н	CH ₂ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH=CH ₂	
215	Н	н	CH2-CH2-O-CH2-CH=CH2	
216	Н	н	CH2-CH2-CH2-O-CH2-CH=CH2	
217	Н	Н	CH₂-CH₂-O-CH₂-C≡CH	
218	Н	н	CH₂-CH₂-CH₂-C=CH	
219	Н	н	CH₂-CH₂-CH₂-CH₂-O-CH₂-C≡CH	
220	н	Н	CH ₂ -CH ₂ -CO-NH-CH ₂ -C ₈ H ₅	
221	н	Н	CH ₂ -CH=CH-CH ₂ -O-CH ₂ -CH=CH ₂	
222	н	Н	CH2-CH=CH-CH2-O-CH2-C=CH	
223	Н	Н	CH2-CH=CH-CH2-O-CH2-C8H8	

	Beispiel	R¹	R²	A-R³	Smp.
5 .	224	Н	Н	CH ₂ -CH ₂ -O-CO-CH ₂ -C ₆ H ₅	
-	225	Н	H .	CH ₂ -CH ₂ -N=	
10	226	н	н	O-CH ₂ -CH=CH ₂	
15	227	н	н	O-CH₂-C≖CH	
20	228	н	н	OC₂H₅ CH₂-CH₂— C-OC₂H₅ CH₃	
	229	Н	н	сн₂-сн₂— сн₃ о—7	
25	230	Ι	Н	CH₂-CH₂-NH-CO-C≡CH	
	231	н	Н	CH ₂ -CH ₂ -O-CH-p-C ₆ H ₄ -NO ₂	
	232	Н	Н	CH ₂ -CH ₂ -O-CO-CH ₂ -O-CH ₃	
30	233	н	Н	CH ₂ -CH ₂ -CO-N(CH ₃) ₂	
30	234	н	н	CH(CH3)-CO-NH-C4H	
	235	н	н	CH ₂ -CH=CH-CH ₂ -CO-N(CH ₃) ₂	
	236	н	н	CH₂-C¤C-CH₂-CO-NH-CH₂-C₀H₅	
35 ·	237	н	CH ₃	CH ₂ -CH ₂ -CH ₂ -NH-CO-CH ₃	
	238	н	CH ₃	CH ₂ -CH ₂ -O-N=C(CH ₃) ₂	
	239	н	CH ₃	CH ₂ -CH ₂ -O-CH ₂ -C=CH	
40	240	Н	CH ₃	CH(CH ₃)-CH ₂ -O-CH ₂ -CH=CH ₂	
	241	н	CH ₃	CH ₂ -CO-O-CH ₂ -CH=CH ₂	
	242	н	CH ₃	CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH=CH ₂	
45	243	н	CH ₃		
	244	Н	CH ₃	CH ₂ -CH = CH-CH ₂ -O-CH ₂ -CH = CH ₂	
	245	Н	CH ₃	<u> </u>	
50	246	Н	CH ₃	CH ₂ -CH=CH-CH ₂ -NH-CO-C ₆ H ₅	ll

	Beispiel	R¹	R²	A-R³	Smp.
5	247	Н	CH ₃	CH ₂ -CH ₂ -N=	
10	248	н	CH ₃	CH ₂ -CH ₂ -CH ₂ - C=N-O-CO-CH ₃	
	249	Ħ	CH ₃	CH ₂ -CH ₂ -CH ₂ - C=N-OH	
	250	Н	СН₃	CH₂-CH₂-NH-CO-C≡CH	
15	251	Н	CH,	CH ₂ -C(CH ₃) ₂ -CH ₂ -NH-CO-CH ₂ -C ₆ H ₅	
	252	Н	CH₃	CH ₂ -CH ₂ -NH-CO-CF ₃	,
	253	н	CH ₃	CH ₂ -CH ₂ -O-CH ₂ -Si(CH ₃) ₃	
20	254	Н	CH₃	CH ₂ -C=C-CH ₂ -O-CH ₂ -CH=CH ₂	
·	255	Н	CH3	CH₂-C≡C-CH₂-NH-CO-CH₃	
	256	Н	CH₃	CH ₂ -C=C-CH ₂ -O-CH ₂ -C ₆ H ₅	
25	257	Н	CH3	CH ₂ -C=C-CH ₂ -CS-CH ₃	
	258	Н	CH,	CH_2 - $C = C - CH_2$ - $O - N = C (CH_3)_2$	
••	259	CH ₃	CH3	CH₂-CH₂-O-CH₂-C≡CH	
30	260	CH ₃	CH ₃	CH ₂ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH=CH ₂	
	261	CH3	CH ₃	CH ₂ -CH ₂ -O-CH ₂ -Si(CH ₃) ₃	
	262	CH ₃	СН	CH(CH ₃)-CH ₂ -O-CH ₂ -CH=CH ₂	
35	263	CH ₃	CH ₃	CH_2 - CH_2 - O - $N = C(CH_3)_2$	
	264	CH ₃	CH ₃	CH ₂ -CO-O-CH ₂ -CH=CH ₂	
-	265	CH ₃	CH,	CH₂-CO-NH-CH₂-C≡CH	
40	266	н	Н	CH ₂ CH ₂ CH ₂ -O-CO-CH ₂ -O-CH ₃	ŌI
70	267	Н	Н	CH ₂ CH ₂ CH ₂ -O-CO-CH ₂ -O-C ₂ H ₆	81
	268	н	Н	CH2CH2-NH-CO-NH-C6H5	158

C. Biologische Beispiele

Beispiel 1

50

Weizen und Gerste wurden im Gewächshaus in Plastiktöpfen bis zum 3-4 Blattstadium herangezogen und dann nacheinander mit den erfindungsgemäßen Verbindungen und den getesteten Herbiziden im Nachauflaufverfahren behandelt. Die Herbizide und die Verbindungen der Formel I wurden dabei in Form wässriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 I/ha ausgebracht. 3-4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde. Die Bewertung erfolgte in Prozentwerten im Vergleich zu unbehandelten Kontrollen.

Die Ergebnisse aus Tabelle 2 veranschaulichen, daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an Kulturpflanzen effektiv reduzieren können.

Selbst bei starken Überdosierungen des Herbizids werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert, geringere Schäden völlig aufgehoben.

Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in ausgeziechneter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

Pflanzenart	Wachsstadium	Wuchshöhe (cm)
TRAE - Triticum aestivum (Sommer)	13 - 21	23 - 25
HOVU - Hordeum vulgare (Sommer)	13 - 21	30 - 32
TRDU - Triticum durum	21 - 22	18 - 20
ALMY - Alopecurus myosuroides	21 - 22	12 - 14

Tabelle 2

5	
•	

._

55 ´

Wirkstoff(e)	Dosis		% Schä	idigung a	1	•
	kg AS/h	na .	TRAE	HOVU	TRDU	ALMY
Н	0,8		0	100	93	•
	0,4		0	100	50	-
	0,2	1	0	100	40	•
	0,1		0	99	20	70
	0,05		-	-	-	10
	0,025			•	•	0
H + 39	0,8	+0,2	0	10	0	•
·	0,4	+0,1	0	10	0	•
	0,2	+0,05	0	10	0	-
	0,1	+0,025	0	10	0	95
	0,5	+0,012	-	•	-	93
	0,025	+0,006	-	•	•	85
H + 19	0,8	+0,2	0	0	0	•
	0,4	+0,1	0	0	0	-
	0,2	+0,05	0	0 -	0	-
	0,1	+0,025	0	0	0	97
	0,05	+0,012	-	-	-	85
	0,025	+0,006	·	•	•	30
H + 11	0,8	+0,2	0	0	0	•
	0,4	+0,05	0	0	0	-
	0,2	+0,05	0	0	0	-
	0,1	+0,025	0	0	0	95
	0,05	+0,012		-	-	95
	0,025	+0,006	-	•	<u>-</u>	60

EP 0 492 366 A2

Wirkstoff(e)	Dosis		% Schädigung an				
	kg AS/ha		TRAE	HOVU	TRDU	ALMY	
H + 20	0,8	+0,2	0	0	0	· <u>-</u>	
	0,4	+0,1	0	0	0	-	
	0,2	+0,05	0	0	0	•	
	0,1	+0,025	0	0	0	95	
•	0,05	+0,012	-	-	-	93	
	0,025	+0,006	-	•	-	70	
H + 28	0,8	+0,2	0	10	35	-	
	0,4	+0,1	0	10	40	•	
·	0,2	+0,05	0	0	10	-	
	0,1	+0,025	0	0,	0	85	
	0,05	+0,012	 -	-	•	85	
	0,025	+0,006		-	•	70	
H + 24	0,8	+0,2	0	0	0	-	
	0,4	+0,1	0	0	0	-	
	0,2	+0,05	0	0	0	-	
	0,1	+0,025	0	0	0	99	
-	0,05	+0,012	-	-	-	95	
	0,025	+0,006	-	-	•	80	
H + 23	0,8	+0,2	0	0	0	-	
	0,4	+0,1	0	0	0	-	
	0,2	+0,05	0	0	0	•	
	0,1	+0,025	0	0	0	93	
	0,05	+0,012	-	-	-	93	
	0,025	+0,006	-	•	• .	55	

EP 0 492 366 A2

	Wirkstoff(e)	Dosis		% Schädigung an			
		kg AS/h	ıa l	TRAE	HOVU	TRDU	ALMY
5	H + 21	0,8	+0,2	0	0	0 .	•
		0,4	+0,1	0	0	0	-
· 10		0,2	+0,05	0	0	0	-
		0,1	+0,025	0	0	0	95
		0,05	+0,012	-	-	-	93
15		0,025	+0,006		-	• -	45
	H + 29	0,8	+0,2	0	0	0	
		0,4	+0,1	0	0	0	-
20		0,2	+0,05	0	0	0	-
	·	0,1	+0,025	0	0	0	98
		0,05	+0,012	-	-	-	90
25		0,025	+0,006		-	•	90
-	H + 18	0,8	+0,2	0	10	0	
		0,4	+0,1	0	0	0	•
30		0,2	+0,05	0	0	0	-
		0,1	+0,025	0	0	0	98
		0,05	+0,012	-	-	-	90
35		0,025	+0,006	-	•	-	60
	H + 22	0,8	+0,2	0	5	5	-
40		0,4	+0,1	0	0	0	· -
		0,2	+0,05	0	0	0	•
		0,1	+0,025	.0	0	0	•
45	H + 98	0,8	+0,2	0	10	0	•
		0,4	+0,1	0	0	0	•
		0,2	+0,05	0	0	0	-
50		0,1	+0,025	0	0	0	-
	A						

EP 0 492 366 A2

Wirkstoff(e)	Dosis kg AS/ha		% Schä	% Schädigung an			
			TRAE	HOVU	TRDU	ALMY	
H + 99	0,8	+0,2	0	10	10	•	
	0,4	+0,1	0	0	0	•	
	0,2	+0,05	0	0	0	•	
H + 100	0,8	+0,2	0	0	5	•	
,	0,4	+0,1	0	0	0	• .	
	0,2	+0,05	0	0	0 .	-	
H + 96	0,8	+0,2	0	10	5	•	
,	0,4	+0,1	0	0	0	-	
	0,2	+0,05	0	0	0	•	
H + 201	0,8	+0,2	0	10	15	-	
	0,4	+0,1	0	10	5 ,	. •	
	0,2	+0,05	0	0	0	-	
H +	0,8	+0,2	0	0	35	•	
Vergleichs-	0,4	+0,1	0	0	10	-	
beispiel aus	0,2	+0,05	0	0	0		
EP 191 736	0,1	+0,025	0	0	0	95	
	0,05	+0,012	÷	-	•	90	
	0,025	+0,006	-	•	• ·	25	
H +	0,8	+0,2	0	0	5	-	
Vergleichs-	0,4	+0,1	0	0	5	-	
beispiel aus	0,2	+0,05	0	0	0	•	
EP 94 349	0,1	+0,025	0	0	0	95	
	0,05	+0,012	-	-	-	95	
	0,024	+0,006	1-	-	-	35	

Abkürzungen zu Tabelle 2:

AS = Aktive Substanz (bezogen auf reinen Wirkstoff)

- = nicht geprüft
- H = 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäure-ethylester
- ⁵ (Zahl) = Antidot mit gleicher Zahl (oder Nummer) aus Tabellen 1a bzw. 1b Vergleichsbeispiel aus EP-191 736 entspricht Formel I, worin R¹=R²=H bedeutet und X-A-R³ durch 2-Phenoxyethoxy ersetzt ist
- Vergleichsbeispiel aus EP-94 349 entspricht Formel I, worin R¹=R²=H bedeutet und 2X-A-R³ durch Ethoxy ersetzt ist.

Beispiel 2

Die Maispflanzen, Unkräuter und Ungräser wurden im Freiland oder im Gewächshaus in Plastiktöpfen bis zum 4- bis 5-Blattstadium herangezogen und nacheinander mit Herbiziden und erfindungsgemäßen Verbindungen der Formel I im Nachauflaufverfahren behandelt. Die Wirkstoffe wurden dabei in Form wäßriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 I/ha ausgebracht. 4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshermnung berücksichtigt wurde. Die Bewertung erfolgte in Prozentwerten im Vergleich zu unbehandelten Kontrollen.

Die Ergebnisse zeigen (siehe z. B. Tabelle 3), daß die erfindungsgemäßen eingesetzten Verbindungen der Formel I starke Herbizidschäden an den Maispflanzen effektiv reduzieren können. Selbst bei starken Überdosierungen der Herbizide werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert und geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und Verbindungen der Formel I eigenen sich deshalb in ausgezeichneter Weise zur selektiven Unkrautbekämpfung in Mais.

35

40

45

50

Tabelle 3

•	adelle 3		
	Wirkstoff(e)	Dosis [kg AS/ha]	% Schädigung am Mais
5	SH1	50	90
		25	75
10		12	35
	SH1 + 1	50 + 50	10
		25 + 25	0
15		12 + 12	0
	SH1 + 11	50 + 50	5
		25 + 25	0
20		12 + 12	0
	SH1 + 21	50 + 50	10
		25 + 25	0
25		12 + 12	0
•	SH1 + 24	50 + 50	5
		25 + 25	0
30		12 + 12	0
	SH1 + 17	50 + 50	0
		25 + 25	0
35		12 + 12	0
	SH1 + 50	50 + 50	10
40		25 + 25	0
-		12 + 12	0
	SH1 + 70	50 + 50	10
45		25 + 25	0
		12 + 12	0
	SH1 + 84	50 + 50	5
50		25 + 25	0

	Wirkstoff(e)	Dosis [kg AS/ha]	% Schädigung am Mais
5.	SH1 + 86	50 + 50	15
		25 + 25	0
10	SH1 + 87	50 + 50	20
		25 + 25	0
	SH1 + 95	50 + 50	15
15		25 + 25	0
	SH1 + 96	50 + 50	5
20		25 + 25	0
	SH1 + 98	50 + 50	5
		25 + 25	0
25	SH1 + 99	50 + 50	10
	·	25 + 25	0
30	SH1 + 100	50 + 50	10
30		25 + 25	0
	SH1 + 201	50 + 50	15
35		25 + 25	0
•	SH1 + 204	50 + 50	5
40		25 + 25	0
	SH1 + 207	50 + 50	15
		25 + 25	0
45	IM1	200	60
		100	30
		50	20

ſī		Desig [kg AS/ba]	% Schädigung am Mais
	Wirkstoff(e)	Dosis [kg AS/ha]	78 Schladigerig arr mais
5	IM1 + 24	200 + 200	5
•		100 + 100	0
		50 + 50	0
10	IM1 + 96	200 + 200	5
		100 + 100	0
•		50 + 50	0
15	IM1 + 95	200 + 200	10
		100 + 100	0 :
		50 + 50	0
20	IM2	100	40
		50	25
25	IM2 + 21	100 + 100	0
25		50 + 50	0
	IM2 + 24	100 + 100	0
30		50 + 50	0
	IM2 + 96	100 + 100	10
35		50 + 50	0

Abkürzungen zu Tabelle 3:

- Aktive Substanz (bezogen auf reinen Wirkstoff) AS =
- SH1 = 3-(4,6-Dimethoxypyrimidin-2-yl)-1-[3-(N-methyl-N-methylsulfonyl-amino)-2pyridyl-sulfonyl]-harnstoff
- 5-Ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-pyridin-3-IM1 = carbonsäure-ammoniumsalz (Imazethapyr-ammonium)
- rac-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-IM2 =methyl-3-pyridin-carbonsaure (Imazethamethapyr)
- (Zahl) = Antidot mit gleicher Zahl (oder Nummer) aus Tabellen 1a bzw. 1b 50

Patentansprüche

45

55

1. Verbindungen der Formel I,

$$C1$$

$$CR^{1}R^{2} - CO - X - A - R^{3}$$

$$C1$$

50

55

R3

worin unabhängig voneinander Wasserstoff oder (C1-C4)-Alkyl, vorzugsweise Wasserstoff R1.R2 oder Methyl, und 15 ein Sauerstoff- oder Schwefelatom oder NR⁴, wobei R⁴ Wasserstoff, (C₁-C₆)-Alkyl, (C₁-Х C₆)-Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet, (C_1-C_6) -Alkylen, (C_4-C_8) -Alkenylen, (C_4-C_8) -Alkinylen, (C_3-C_8) -Cycloaikylen oder (C_3-C_8) -Cycloaikylen oder (C_3-C_8) -Alkylen, (C_4-C_8) -Alkylen, (C_4-C_8) -Alkylen, (C_3-C_8) -Cycloaikylen oder (C_3-C_8) -Alkylen, (C_4-C_8) -Alkylen C₈)-Cycloalkenylen. (C3-C6)-Alkenyloxy, (C3-C6)-Alkinyloxy, Phenyl-(C1-C4)-alkoxy, worin der Phenylring R³ 20 unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Haloalkyl und (C_1-C_4) -Haloalkoxy substituiert ist, R⁵ R⁶ R⁷ Si-, R⁵ R⁶ R⁷ Si-O-, R⁵ R⁶ R⁷ Si-(C₁-C₄)-alkoxy, (C₃-C₆)-Alkenyloxycarbonyl, (C₃-C₆)-Alkinyloxycarbonyl, Phenyl-(C₁-C₄)-alkoxycarbonyl, worin der Phenylring unsubstitulert oder ein- bzw. mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C4)-25 Alkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkyl oder (C1-C4)-Haloalkoxy substituiert ist, $R^5R^6C = N-O-CO-$, $R^5R^6C = N-O-$, R^5R^6N-O- , $R^5R^6C = N-$, (C_2-C_6) -Alkenylcarbonyl, (C_2-C_6) -Alkenylcarbonyl, (C_2-C_6) -Alkenylcarbonyl, C_6)-Alkinylcarbonyl, 1-(Hydroxyimino)-(C_1 - C_6)-alkyl, 1-[(C_1 - C_4)-Alkylimino]-(C_1 - C_6)-alkyl, 1-[(C1-C4)-Alkoxyimino]-(C1-C6)-alkyl, ein Rest der Formel R8O-CH(OR9)-oder R8 O-CH(OR3)-(CH2)n-O-, worin n 0,1 oder 2 bedeutet, oder ein Alkoxy-Rest der Formel 30 $R^8O\text{-}CHR^{10}\text{-}CH(OR^9)\text{-}(C_1\text{-}C_4)\text{-}alkoxy, (C_1\text{-}C_6)\text{-}Alkylcarbonyloxy, worin Alkyl unsubstitutes}$ iert oder durch Halogen, Nitro, gegebenenfalls substituiertes Phenyl oder (C1-C4)-Alkoxy substituiert ist, (C_2-C_6) -Alkenylcarbonyloxy, (C_2-C_6) -Alkinylcarbonyloxy, (C_1-C_6) -Alkylcarbonylamino, (C2-C6)-Alkenylcarbonylamino, (C2-C6)-Alkinylcarbonylamino, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C1-C4)-alkylcarbonylamino, wobei Phe-35 nyl in den letztgenannten drei Resten jeweils unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkyl und (C1-C4)-Haloalkoxy substituiert ist, Aminocarbonyl, (C1-C6)-Alkylaminocarbonyl, (C1-C6)-Dialkylaminocarbonyl, (C3-C6)-Alkenylaminocarbonyl, (C3-C6)-Alkinylaminocarbonyl, (C₁-C₆)-Alkoxycarbonylamino, (C₁-C₆)-Alkylaminocarbonylamino oder 40 (C₁-C₆)-Alkylthiocarbonyl, (C₃-C₆)-Alkenylthio oder (C₃-C₆)-Alkinylthio, unabhängig voneinander H, (C1-C4)-Alkyl oder gegebenenfalls substituiertes Phenyl R5.R6.R7 oder R5 und R5 zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugsweise 5 oder 6 Ringatomen, der unsubstituiert oder durch (C1-C4)-Alkyl oder (C1-C4)-Alkoxy substituiert ist, 45 unabhängig voneinander (C₁-C₄)-Alkyl oder R⁸ und R⁹ zusammen eine geradkettige R8, R9 oder verzweigte (C₁-C₄)-Alkylenbrücke und Wasserstoff oder (C1-C4)-Alkyl R¹⁰ bedeuten.

2. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß

 (C_3-C_4) -Alkenyloxy, (C_3-C_4) -Alkinyloxy, Phenyl- (C_1-C_2) -alkoxy, worin der Phenylring unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkoxy, (C_1-C_2) -Haloalkyl und (C_1-C_2) -Haloalkoxy substituiert ist, $R^5R^6R^7Si$ -, $R^5R^6R^7Si$ -O-, $R^5R^6R^7Si$ -(C_1-C_2)-alkoxy, (C_3-C_4) -Alkenyloxycarbonyl, Phenyl- (C_1-C_2) -alkoxycarbonyl, worin der Phenylring unsubstituiert oder ein- bzw. mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkoxy, (C_1-C_2) -Haloalkyl oder (C_1-C_2) -Haloalkoxy substituiert ist,

R5,R6,R7

10

15

20

25

30

35

40

unabhängig voneinander H oder (C₁-C₂)-Alkyl oder R⁵ und R⁶ zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugsweise 5 oder 6 Ringatomen und

R⁸,R⁹

unabhängig voneinander (C1-C4)-Alkyl,

bedeuten.

3. Verbindung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß

- R³ (C₃-C₄)-Alkenyloxy, (C₃-C₄)-Alkinyloxy, Benzyloxy, Trimethylsilyl, Triethylsilyl, Trimethylsilyl, methoxy, 1-(Hydroxyimino)-(C₁-C₄)-alkyl, 1-[(C₁-C₄)-Alkylimino]-(C₁-C₄)-alkyl, 1-[(C₁-C₄)-Alkoxyimino]-(C₁-C₄)-alkyl, (C₃-C₄)-Alkenyloxycarbonyl, (C₃-C₄)-Alkinyloxycarbonyl oder R⁵R⁶C=N-O-, wobei R⁵ und R⁵ in dem letztgenannten Rest unabhängig voneinander Methyl oder Ethyl oder zusammen mit dem verbindenden C-Atom Cyclopentyliden oder Cyclohexyliden bedeutet.
- 4. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1, dadurch gekennzeichnet, daß man
 - a) 5-Chlor-8-hydroxychinolin mit einem Alkancarbonsäurederivat der Formel II,

Y - CR1R2 - CO - X - A - R3

worin Y

eine Abgangsgruppe, wie z.B. Chlor, Brom, Methansulfonyl oder Toluolsulfonyl, bedeutet und

R¹ R² R³ X und A wie bei der genannten Formel I definiert sind, oder

b) 5-Chlorchinolin-8-oxy-alkancarbonsäuren der Formel I, worin -X-A-R³ durch Hydroxy ersetzt ist, mit Alkoholen, Mercaptanen oder Aminen der Formel

H - X - A - R3

wobei X, A und R³ wie bei Formel I definiert sind,

- Pflanzenschützende Mittel, dadurch gekennzeichnet, daß sie eine oder mehrere Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 3 und übliche Formulierungshilfsmittel enthalten.
 - 6. Herbizide Mittel, dadurch gekennzeichnet, daß sie ein oder mehrere Herbizide und ein oder mehrere Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 3 enthalten.
 - Mittel nach Anspruch 6, dadurch gekennzeichnet, daß die Herbizide aus der Gruppe Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxyphenoxyalkancarbonsäurederivate, Cyclohexandionabkömmlinge, Imidazolinone und Sulfonylharnstoffe sind.
- Mittel nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß Verbindungen der Formel I (Safener) und Herbizide im Gewichtsverhältnis 1:10 bis 10:1 enthalten sind.
 - 9. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch

gekennzeichnet, daß eine wirksame Menge einer oder mehrerer Verbindungen der Formel I (Safener) nach einem oder mehreren der Ansprüche 1 bis 3 vor, nach oder gleichzeitig mit dem Herbizid auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert wird.

10. Verwendung von Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 3 zur Reduzierung von phytotoxischen Nebenwirkungen von Herbiziden an Kulturpflanzen.

① Veröffentlichungsnummer: 0 492 366 A3

®

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 91121622.4

Anmeldetag: 17.12.91

(9) Int. Cl.5: C07D 215/28, A01N 25/32, C07F 7/18

- Priorität: 21.12.90 DE 4041121
- Veröffentlichungstag der Anmeldung: 01.07.92 Patentblatt 92/27
- Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB IT LI NL
- Veröffentlichungstag des später veröffentlichten Recherchenberichts: 25.11.92 Patentblatt 92/48
- (7) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 W-6230 Frankfurt am Main 80(DE)
- Erfinder: Schütze, Ralner, Dr. Am Flachsland 54 W-6233 Keikheim (Taunus)(DE) Erfinder: Löher, Heinz-Josef, Dr. Ahornweg 14 W-6237 Liederbach(DE) Erfinder: Zlemer, Frank, Dr. Gerlachstrasse 30 W-6230 Frankfurt am Main(DE) Erfinder: Bauer, Klaus, Dr. **Doorner Strasse 53d** W-6450 Hanau(DE) Erfinder: Bleringer, Hermann, Dr.

Elchenweg 26

W-6239 Eppstein/Taunus(DE)

- Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden.
- Die Erfindung betrifft Herbizid-Safener der in Anspruch 1 gezeigten Formel I, worin R1,R2 H oder (C1-C4)-Alkyl, X O oder S oder NR4, wobei R4 H, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet, A (C1-C6)-Alkylen, (C4-C8)-Alkenylen, (C4-C8)-Alkinylen, (C3-C8)-Cycloalkylen oder (C3-C8)-Cycloalkenylen,

 R^3 (C_3 - C_6)-Alkenyloxy, (C_3 - C_6)-Alkinyloxy, (subst.) Phenyl-(C₁-C₄)-alkoxy, R⁵R⁶R⁷Si-, R⁵R⁶R⁷Si-O-, $R^5R^6R^7Si-(C_1-C_4)$ -alkoxy, (C_3-C_6) -Alkenyloxycarbonyl, (C3-C5)-Alkinyloxycarbonyl, (subst.) Phenyl-(C1-C₄)-alkoxycarbonyl, R⁵R⁶C = N-O-CO-, R⁵R⁶C = N-O- R^5R^6N-O- , $R^5R^6C=N-$, $(C_2-C_6)-Alkenylcarbonyl$, (C2-C6)-Alkinylcarbonyl, 1-(Hydroxyimino)-(C1-C6)-alkyl, $1-[(C_1-C_4)-Alkylimino]-(C_1-C_6)-alkyl, 1-((C_1-C_4)-alkyl)$ Alkoxyimino]-(C₁-C₆)-alkyl, ein Rest der Formel R⁸ O-CH(OR⁹)- oder R⁸O-CH(OR⁹)-(CH₂)_n-O-, worin n 0,1 oder 2 bedeutet, oder ein Alkoxy-Rest der Formel R8O-CHR10-CH(OR9)-(C1-C4)-alkoxy, (subst.) (C₁-C₆)-Alkylcarbonyloxy, (C₂-C₆)-Alkenylcarbonyloxy, (C2-C6)-Alkinylcarbonyloxy, (C1-C6)-Alkylcarbonylamino, (C2-C6)-Alkenylcarbonylamino, (C2-C6)-Al-Phenylcarbonyloxy, kinylcarbonylamino, (subst.) (subst.) Phenylcarbonylamino, (subst.) Phenyl-(C1-C₄)-alkylcarbonylamino, Aminocarbonyl, (C₁-C₆)-Alkylaminocarbonyl, (C1-C6)-Dialkylaminocarbonyl, (C₃-C₆)-Alkenylaminocarbonyl, (C₃-C₆)-Alkinylaminocarbonyl, (C_1-C_6) -Alkoxycarbonylamino, (C_1-C_6) -Alkylaminocarbonylamino oder (C1-C6)-Alkylthiocarbonyl, (C₃-C₆)-Alkenylthio, (C₃-C₆)-Alkinylthio,

R⁵,R⁶,R⁷ H, (C₁-C₄)-Alkyl oder (subst.) Phenyl oder R5 und R6 zusammen mit dem sie verbindenden Nbzw. C-Atom einen (subst.) Ring mit 3 bis 7 Ringatomen, R8,R9 (C1-C4)-Alkyl oder R8 und R9 zusammen eine geradkettige oder verzweigte (C1-C4)-Alkylenbrücke und R¹⁰ H oder (C₁-C₄)-Alkyl bedeuten.

91 12 1622 EP

EINSCHLÄGIGE DOKUMENTE						
Kategorie	Kennzeichnung des Dokuments der maßgeblicher	mit Angabe, soweit e Teile	eferderlich,	Betrifft Ansgruch	ANMELDUNG (Let. CLS)	
A	EP-A-0 258 184 (CIBA- * Ansprüche; Tabelle	GEIGY AG)		1-10	CO7D215/28 CO7D405/12 CO7F7/18	
A,D	EP-A-0 191 736 (CIBA- * das ganze Dokument	-GEIGY AG)	:	1-10	A01N43/42 //(C07D405/12, 317:00, 215:00)	
A,D	EP-A-0 159 290 (CIBA- * Ansprüche; Tabelle	-GEIGY AG)		1-10	32.100, 2 20700,	
A	EP-A-0 138 773 (CIBA * Ansprüche; Tabelle	-GEIGY AG)		1-10		
A,D	EP-A-O 094 349 (CIBA * das ganze Dokument	-GEIGY AG)		1-10	·	
					SACHGERIETE (tat. Cl.5)	
1					C07D	
		·				
. .			•			
1				ļ		
			•]		
Ì				1		
ļ ·						
}						
1						
1						
1.						
-	C 4. Book - short-shift	An filtr alla Patentanen	rüche erstellt			
Der vorliegende Rocherchenbericht wurde für alle Patentansgrüche erstellt Abschrößens der Reduche				Prefer		
26 SEPTEMBER 1992					P. BOSMA	
EATEGORIE DER GENANNTEN DOKUMENTE X: von besonderer Bedestung allein betrachtet Y: von besonderer Bedestung in Verbindung tall einer mehren Veröffentlichung dernelben Ketegoris A: tachnologischer Hüstergrund O: alchtschriftliche Offenbarung P: Zwischanliterstur			T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: Siteres Patentiekunsent, das jedoch erst am oder nach dem Amzeidestatun veröffentlicht werden ist D: in der Amzeidestatun veröffentlicht werden ist L: aus andern Gründem angeführtes Dokument			
A O P	A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur			å : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument		

- X : von bezonderer Bedeutung allein betrachtet Y : von bezonderer Bedeutung in Verbindung talt einer underen Veröffentlichung derneiben Kategorie A : uchnologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischmilterstur

- & : Mitglied der girlichen Patentfamilie, übereinstimmenden Dokument