Examen d'Analyse 1 (Fonctions réelles d'une variable réelle)

Session 1 / Durée: 02 h 30 mn

Documents, calculatrices et toute machine électronique sont interdits. Il sera tenu compte de la rigueur et de la clarté de la rédaction. Une présentation générale soignée sera également appréciée.

EXERCICE 1. (04 pts)

Soient A une partie non vide et bornée de \mathbb{R} et k un nombre réel strictement positif. Soit f une application de A dans \mathbb{R} .

- 1. Donner les définitions des notions suivantes :
 - a) borne supérieure de A
 - b) f est k-lipschitzienne sur A.
- 2. Ecrire à l'aide des quantificateurs les assertions suivantes :
 - a) A est majorée
 - b) k n'est pas un minorant de A.

EXERCICE 2. (04 pts)

- 1. Enoncer le théorème des accroissements finis.
- 2. A l'aide du théorème des accroissements finis, montrer que pour tout x > 0 on a

$$\frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}.$$

3. En déduire la limite en $+\infty$ de la fonction f définie par $f(x) = \left(1 + \frac{1}{x}\right)^x$.

EXERCICE 3. (06 pts)

- 1. Ecrire le développement limité de $\frac{1}{1+e^x_{\ r}}$ au voisanage de 0 à l'ordre 3.
- 2. Soit f la fonction définie par $f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$.
 - a. Déterminer l'ensemble de définition de f.
 - b. Prouver qu'au voisinage de $+\infty$ la courbe représentative de f admet une asymptote dont on donnera l'équation.
 - c. Préciser la position de la courbe par rapport à cette asymptote.

EXERCICE 4. (06 pts)

Soit $(u_n)_{n\geq 0}$ la suite de nombres réels définie par $u_0=0,\,u_1=\frac{1}{2}$ et

$$u_{n+2} = u_{n+1} - \frac{1}{4}u_n \quad \forall n \in \mathbb{N}.$$

- 1. Déterminer pour tout entier n l'expression de u_n en fonction de n.
- 2. Etudier la monotonie de la suite $(u_n)_{n>0}$.
- 3. Calculer la limite de la suite $(u_n)_{n\geq 0}$.