Somith Das

Assignment ASN8 due 12/05/2019 at 11:59pm PST

1. (6 points)

For the MOSFET in the circuit below $k'_n = \mu_n C_{ox} = 25 \frac{\mu A}{V^2}$, W=50 μ m, L=5 μ m, and V_t =3V. Also R=1 $M\Omega$ and V_{GS} =4V.

- a. Calculate i_D if v_D =0.5V.
- b. Calculate i_D if v_D =8.7V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) $i_D : _{\mu}A$
- **(b)** $i_D : _{\mu}A$

Correct Answers:

- 93.75
- 125

2. (6 points)

An N-MOSFET having V_t =1V is operated in the triode region with v_{DS} small. With v_{GS} =2.4V is found to have a resistance r_{DS} =970 Ω .

- a. What value of V_{GS} is required to obtain r_{DS} =190 Ω .
- b. With the previously computed value of V_{GS} , compute the resistance r_{DS} if the device W is doubled.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) V_{GS} : ____ V
- **(b)** r_{DS} : \square Ω

Correct Answers:

- 8.14737
- 95

3. (6 points)

An N-MOSFET having $V_t=1V$ and $k'_n(W/L)=0.17\frac{mA}{V^2}$ is operated in the saturation region.

- a. If i_D is to be 0.3mA find the required V_{GS} in volts.
- b. For the computed value of part a) find the minimum required v_{DS} in volts.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) v_{GS} : ____ V
- **(b)** v_{DS} : ____ V

Correct Answers:

- 2.87867
- 1.87867

4. (6 points)

For the MOSFET in the circuit below $k'_p(W/L)=80\frac{\mu A}{V^2}$, $V_t=-1.5V$, and $\lambda=-0.02V^{-1}$. Also $v_S=5V$.

- a. Calculate i_D if v_D =4.5V.
- b. Calculate i_D if v_D =-2.4V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a) $i_D : _{\mu}A$

(b) i_D : ____ μA

Correct Answers:

• 130

• 562.52

5. (6 points)

The MOSFET in the circuit shown is known to have a threshold voltage $0.9\text{V} \leq V_t \leq 3.1\text{V}$. Also $V_{DD}=15\text{V}$ and $R=710\Omega$. When $v_{GS}=4.1\text{V}$, $v_{DS}=14.89\text{V}$. When $v_{GS}=10\text{V}$, $v_{DS}=12.92\text{V}$. Find V_t . For this MOSFET $V_A=\infty$.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

 V_t : ____ V

Correct Answers:

• 2.338

6. (10 points)

The MOSFET in the circuit shown is known to have a threshold voltage V_t =-2V and $k_n'(W/L)$ =0.0001 $\frac{A}{V^2}$. Also V_{DD} =10V.

- a. Compute i_D when R_D =26300 Ω in μA .
- b. Compute v_{DS} when $R_D=26300\Omega$ in V.
- c. Compute i_D when $R_D=52000\Omega$ in μA .
- d. Compute v_{DS} when R_D =52000 Ω in V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- a) i_D : ___ μA
- **b**) v_{DS} : ____ V
- **c**) i_D : ____ μA
- **d**) v_{DS} : ____ V

Correct Answers:

- 200
- 4.74
- 168.991
- 1.21248

7. (10 points)

The MOSFET in the circuit shown is known to have a threshold voltage V_t =3V, $k_n'(W/L)$ =0.1 $\frac{mA}{V^2}$, and $V_A = \infty$. Also V_{DD} =12V, R_D =11600 Ω , R_1 =2 $M\Omega$, and R_2 =4 $M\Omega$.

- a. Compute i_D in mA.
- b. Compute v_{DS} in V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- a) i_D : ____ mA
- **b**) v_{DS} : ____ V

Correct Answers:

- 0.847913
- 2.16421

8. (12 points)

The MOSFET in the circuit shown is known to have a threshold voltage V_t =2.5V, $k_n'(W/L)$ =1 $\frac{mA}{V^2}$, and V_A = ∞ . Also V_{DD} =15V, R_D =12080 Ω , R_L =14300 Ω , R_1 =3.1 $M\Omega$, and R_2 =1 $M\Omega$.

- a. Compute I_D in μA .
- b. Compute V_{DS} in V.
- c. Compute the voltage gain v_o/v_s

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- **a**) I_D : ____ μA
- **b**) V_{DS} : ____ V
- **c)** v_o/v_s : ____ V/V

Correct Answers:

- 671.104
- 6.89307
- -7.58644

9. (12 points)

The MOSFET in the circuit shown is known to have a threshold voltage V_t =1V, $k_n'(W/L)$ =2 $\frac{mA}{V^2}$, and V_A = ∞ . Also V_{DD} =15V, R_D =7360 Ω , R_S =3480 Ω , R_L =10000 Ω , R_1 =10 $M\Omega$, and R_2 =5 $M\Omega$.

- a. Compute I_D in μA .
- b. Compute V_{DS} in V.
- c. Compute the voltage gain v_o/v_s

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- a) I_D : ___ μA
- **b**) V_{DS} : ____ V
- **c)** v_o/v_s : ____ V/V

Correct Answers:

- 879.88
- 5.46211
- -7.95371

10. (16 points)

The MOSFETs in the circuit shown are all identical with a threshold voltage V_l =2V, $k_n'(W/L)$ =1 $\frac{mA}{V^2}$, and V_A =100V. Also V_{DD} =15V, V_{SS} =-15V, R_R =50600 Ω , R_D =14800 Ω , R_i =10000 Ω , R_L =10700 Ω , and R_G =5 $M\Omega$.

- a. Compute I_D in μA for Q3.
- b. Compute V_{DS} in V for Q3.
- c. Compute the voltage gain v_o/v_i

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- **a**) I_D : ____ μA
- **b**) V_{DS} : ____ V
- **c)** v_o/v_i : ____ V/V

Correct Answers:

- 532.956
- 10.1447
- -6.1938

11. (5 points)

The MOSFET in the circuit shown has threshold voltage V_t =2V and $r_{SD(on)}$ =0.27 Ω . The motor can be represented in DC as a resistance R_M =4.3 Ω and V_{DD} =3.6V.

- a. Compute I_D in mA when the MOSFET is "on".
- b. Compute V_{SD} in V when the MOSFET is "on".
- c. Compute the smallest possible motor resistance that will keep the MOSFET in the triode region in Ω .

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- **a**) I_D : ____ mA
- **b**) V_{SD} : ____ V
- c) R_M : ___ Ω

Correct Answers:

- 787.746
- 0.212691
- 0.3375

12. (5 points)

The N-MOSFETs in the circuit shown have threshold voltage V_t =2V and $r_{DS(on)}$ =0.22 Ω . The P-MOSFETs in the circuit shown have threshold voltage V_t =3V and $r_{SD(on)}$ =0.25 Ω . The motor can be represented in DC as a resistance R_M =8.5 Ω and V_{DD} =5.2V.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- a. Compute the current motor in mA when it is turned on.
- b. Compute the maximun power disipated by the N-MOSFETs in mW.
- c. Compute the maximun power disipated by the P-MOSFETs in mW.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- **a**) I_D : ____ mA
- **b**) $P_N : ___ mW$
- c) P_P : ____ mW

Correct Answers:

- 579.71
- 73.934
- 84.016