Vorlesung

Optimale Steuerung kontinuierlicher Prozesse

Dr.-Ing. Dipl.-Math. R. Bartholomäus

Inhaltsverzeichnis

A	bkürzungsverzeichnis	III
V	erzeichnis der Formelzeichen	V
S	ymbolverzeichnis	VII
Α	bbildungsverzeichnis	IX
Т	abellenverzeichnis	XI
1	Endlichdimensionale Optimierungsprobleme	1
	1.1 Wiederholung aus der Analysis: Optimierung unter Nebenbedingungen .	1
	1.2 Anwendungen auf quadratische Optimierungsaufgaben	12
	1.2.1 Vorbereitungen	12
	1.2.2 Aktive-Mengen-Strategie	15
2	Klassische Verfahren zur optimalen Steuerung	19
	2.1 Grundproblem der Variationsrechnung	19
	2.2 Formulierung des Optimierungsproblems und Lösung	20
	2.2.1 Prinzip der Herleitung notwendiger Bedingungen	20
	2.2.2 Notwendige Bedingungen für Optimallösung	20
	2.2.3 Numerische Lösung am Beispiel "Fall C und fester Endzeit t_b " $\ \ .$	20
	2.2.4 Anwebdung zur Umformung von Optimierungsproblemen am	
	Beispiel des linear-quadratischer Regler-Problems	21
3	Optimale Zustandsrückführung	23
	3.1 Zeitdiskrete Optimalsteuerung bei endlichen Zeithorizont	23
	3.2 Das zeitdiskrete linear-quadratischer Regler-Problem	23
	3.3 Zeitkontinuierliche Optimalsteuerng bei endlichen Zeithorizont	23
	3.4 Das zeitkontinuierliche linear-quadratischer Regler-Problem	23
4	Modellprädiktive Regelung	25
	4.1 Einleitung	25
	4.2 Formulierung der Regelungsaufgabe	26
	4.2.1 Grundprinzip der prädiktiven Regelung und Begriffe	26
	4.2.2 Prozessbeschreibung	28
	4.2.3 Darstellung des Gütefunktionals und der Beschränkungen für die	
	Steuer- und Regelgrößen	31

4.3 Darstellung der Steuerungsaufgabe als Optimierungsproblem un	nd	
numerische Lösung		33
4.3.1 Aufgabe mit $\ \cdot\ _2$ -Funktionial ohne Beschränukung der S	Steuer-	
und Regelgröße		33
4.3.2 Aufgabe mit $\ \cdot\ _2\text{-Funktionial und Beschränkung}$		35
4.3.3 Aufgabe mit $\ \cdot\ _1$ - und $\ \cdot\ _{\infty}$ -Funktionial		37
4.4 Stabilität prädiktiver Regelungen		38
4.4.1 Problembeschreibung		38
4.4.2 Stabilität des geschlossenen Kreises bei endlichem		
Optimierungshorizont durch eine Endbedingung für den		
Prozesszustand		40
4.4.3 Stabilität des geschlossenen Kreises bei endlichem Steuerl	horizont	
durch eine Gewichtung des Endzustandes		42
Literaturverzeichnis		45
Δnhang		A_1

Abkürzungsverzeichnis

NB Nebenbedingung

GNB Gleichungsnebenbedingungen

UNB Ungleichungsnebenbedingungen

KTB Kuhn-Tucker-Bedingungen

KTP Kuhn-Tucker-Punkt

LICQ linear independence constraint qualification

LQR linear-quadratischer Regler

AW Anfangswert

MPR Modellprädiktive Regelung

SISO Single Input Single Output

Verzeichnis der Formelzeichen

H Hesse-Matrix

 $L(\dot{\dot{,}})$ Lagrange-Funktion

 ${\cal H}$ Hamilton-Operator

 ∇ Nabla-Operator (Gradient)

jA Bild der Matrix A

 $\ker A$ Kern der Matrix A

Symbolverzeichnis

Notation Bedeutung

 \dot{x} , \ddot{x} bzw. $x^{(k)}$ erste, zweite bzw. k-te Ableitung

 \tilde{x} Schätzvektor

 \hat{x} Schätzfehlervektor

e Folgefehlervektor

Symbol Bedeutung

 \mathbb{R},\mathbb{N} Menge der reellen bzw. natürlichen Zahlen

t Zeit

 \boldsymbol{x} Zustandsvektor

 $oldsymbol{z}$ transformierte Zustandsvektor

u Systemeingang

v virtueller Eingang

 \boldsymbol{y}_f flacher Ausgang

y = h(x) Systemausgang, bzw. Regelgröße

f System-Vektorfelder

A Systemmatrix (lin. System)

n Systemordnung

r relatriver Grad

s Gleitfläche

au Tangentialvektor

u Normalenvektor

Abbildungsverzeichnis

1.1	Steuerung	1
1.2	Optimierungshorizont	1
1.3	Auffinden von Extremstellen: Geometrische Interpretation im Fall	
	n=2, m=1	3
1.4	Visualisierung von int G	4
1.5	Niveaulinien der Funktion f : $f = -\frac{1}{2}$ (Grün), $f = 0$ (Schwarz), $f = 1$	
	(Gelb), $f = \frac{9}{2}$ (Rot), $x^2 + y^2 = 1$ (Blau)	6
1.6	Optimalstelle mit $I_0(\overline{x}) = \emptyset$	7
1.7	Optimalstelle mit $I_0(\overline{x}) = \{1\}$	7
1.8	Optimalstelle mit $I_0(\overline{x}) = \{1,2\}$	7
1.9	Beispiel mit Kuhn-Tucker-Bedingungen (KTB): $f=-1$ (Gelb), $f=0$	
	(Schwarz), $f = 1$ (Grün), g_1 (Blau), g_2 (Rot), g_3 (Orange)	9
1.10	Konvexität	10
1.11	Konvexe Funktionen	10
1.12	Projektion	13
1.13	Projektion	14
4.1	Grundprinzip der prädiktiven Regelung	26
4.2	Übergang von den Steuergrößen zu den Steuergrößendifferenzen $\ \ldots \ \ldots$	29
4.3	Veranschaulichung der Nebenbedingungen zum Beispiel 4.2	33
4.4	Interpretation der Quadratmittellösung $Ax \cong b$	34
4.5	Struktur den Modellprädiktive Regelung (MPR)-Reglers zur	
	Minimierung von (4.14) bei unbeschränkten Steuer- und Regelgrößen $$.	36
4.6	Zur Abweichung zwischen der optimalen Trajektorie $x^*[k+i k]$ und	
	dem tatsächlichen Verlauf $x[k+i]$ $(i=1,\ldots,H_p)$	39
4.7	Optimale Trajektorie $x^*[k+i k]$ und dem tatsächlicher Verlauf $x[k+i]$	
	bei unendlichem Horizont	42

Tabellenverzeichnis				

1 Endlichdimensionale

Optimierungsprobleme

$$u \in U \qquad p \qquad y \in Y$$

Abbildung 1.1: Steuerung

Eingänge u können in ihren möglichen Werten auf eine Menge möglicher Werte U beschränkt werden.

$$K(u,y) \to \min_{u} \leadsto u^{\star}$$

 $K \dots Kostenfunktion$

 $u^{\star}\dots$ Steuerfunktion

Optimierung bzgl. eines zeitlich beschränkten Zeitraumes:

Möglichkeit

- Ausdehnung auf unendliche Zeit
- \bullet Verschiebung des Intervalls $[t_0,t_e]$ nach jedem Zeitpunkt

um einen Übergang zu einer kontinuierlichen Regelung zu ermöglichen.

Abbildung 1.2: Optimierungshorizont

1.1 Wiederholung aus der Analysis: Optimierung unter Nebenbedingungen

Definition 1. Sei $F: D \subset \mathbb{R}^n \to \mathbb{R}$. Eine Stelle $x_0 \in D$ heißt

- globale Minimumstelle von f auf D, wenn $f(x_0) \le f(x) \forall x \in D$
- lokale Minimumstelle von f auf D, wenn Umgebung $U_{\varepsilon}(x_0) := \{ y \in \mathbb{R}^n | \|y y_0\| < \varepsilon \}$ von x_0 existiert, so dass $f(x_0) \le f(x) \forall x \in D \cap U_{\varepsilon}(x_0)$
- isolierte lokale Minimumstelle von f auf D, wenn Umgebung $U_{\varepsilon}(x_0)$ existiert, so $dass\ f(x_0) < f(x) \forall x \in D \cap U_{\varepsilon}(x_0), x \neq x_0$
- Analog Maximum $mit \ge statt \le und > statt <$.

• Minimumstellen und Maximumstellen treten gemeinsam auf: Extremstellen

Beispiel 1.1.

$$f: [a,b] \subset \mathbb{R} \to \mathbb{R}$$

a: isolierte lokale Minimumstelle

 x_1 : isolierte lokale Maximumstelle

 x_2 : globale und isolierte lokale Minimumstelle

 x_3 : lokale Minimum- und Maximumstelle (nicht isoliert

Satz 1. Sei $f: D \in \mathbb{R}^n \to \mathbb{R}, x_0 \in \text{int } D^1 \text{ und } \nabla f(x_0) \text{ vorhanden. Dann gilt: } x_0 \text{ ist } eine lokale Extremstelle} \to \nabla f(x_0) = 0.$

Definition 2. Eine Stelle x_0 mit $\nabla f(x_0) = 0$ heißt kritische Stelle (stationärer Punkt) von f.

Satz 2. Sei $D \subset \mathbb{R}^n$ offen, $f \in C^2(D,\mathbb{R}), x_0 \in D$ und $\nabla f(x_0) = 0$. Dann gilt

$$Hf(x_0) = \left\{ \begin{array}{l} pos. \ definit \\ neg. \ definit \\ indefinit \end{array} \right\} \Rightarrow f \ ist \ in \ x_0 \left\{ \begin{array}{l} isol. \ lokale \ Minimum stelle \\ isol. \ lokale \ Maximum stelle \\ keine \ lokale \ Extremstelle \end{array} \right\}$$

Übungsaufgabe 1.1

Aufgabe: Bestimmen Sie von beiden Funktionen die Definitheit und die Extremstellen!

$$f_1(x_1, x_2) = \frac{1}{2} \left(ax_1^2 + bx_2^2 \right) \Rightarrow Hf_1 = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
$$f_2(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{6}x_2^3 \quad \Rightarrow Hf_2 = \begin{bmatrix} 1 & 0 \\ 0 & x_2 \end{bmatrix}$$

Lösung:

Definition 3. Sei $D \subset \mathbb{R}^n$ offen, $f: D \to \mathbb{R}, h_1, \ldots, h_m: D \to \mathbb{R}$. $\overline{x} \in D$ heisst lokale oder globale Extremstelle von f unter den Gleichungsnebenbedingungen (GNB) $h_1(x) = 0, \ldots, h_m(x) = 0$, wenn \overline{x} lokale oder globale Extremstelle von f auf

$$M := \{x \in D | h_1(x) = \ldots = h_m(x) = 0\}$$

ist.

Satz 3. (Lagrange Multiplikatorregel) Seien f, h_1, \ldots, h_m stetig differenzierbar, $\overline{x} \in M$ und $\nabla h_1(\overline{x}), \ldots, \nabla h_m(\overline{x})$ linear unabhängig, dann ist \overline{x} eine lokale Extremstelle von f $\overline{1}$ int... interior (Mengenoperator)

unter den GNB. So gibt es Zahlen $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ (Lagrangesche Multiplikatoren), so dass

$$\nabla f(\overline{x}) = \sum_{i=1}^{m} \lambda_i \nabla h_i(\overline{x})$$

qilt.1

Technik zum Auflisten von Extremstellen:

- 1. Definiere Langrange-Funktion $F(x,\lambda_1,\ldots,\lambda_m) := f(x) + \sum_{i=1}^m \lambda_i \nabla h_i(x)$.
- 2. Kanidaten für lokale Extremstelle unter den Lösungen von $F'(x,\lambda_1,\ldots,\lambda_m)=0$ suchen:

$$\nabla F(x,\lambda_1,\ldots,\lambda_m) = \begin{bmatrix} \nabla f(x) + \sum \lambda \nabla h_i(x) \\ h_1(x) \\ \vdots \\ h_m(x) \end{bmatrix} = 0 \in \mathbb{R}^{n+m}.$$

D.h. durch Einführung der Lagrange-Funktion kann man die Extremstellenbedingung für unbeschränkte Probleme verwenden.

Geometrische Interpretation im Fall n=2, m=1:

Der Tangentialraum $T_{\overline{x}}M = \{v \in \mathbb{R}^n | \nabla h_i^T(\overline{x})v = 0 \ (i = 1, ..., m)\}$ in \overline{x} an die Menge M ist gleich dem Tangentialraum $T_{\overline{x}}N = \{v \in \mathbb{R}^n | \nabla f(\overline{x})^T v = 0\}$ in \overline{x} an die Niveaumenge $N := \{x \in D \subset \mathbb{R}^n | f(x) = f(\overline{x})\}$

Abbildung 1.3: Auffinden von Extremstellen: Geometrische Interpretation im Fall $n=2,\ m=1$

1) $G \subset \mathbb{R}^n$: int $G := \{x \in \mathbb{R}^n | \exists \varepsilon > 0 : U_{\varepsilon}(x) \subset G\}$: Menge aller inneren Punkte von G. Wenn G offen: $\Leftrightarrow G = \operatorname{int} G$

Hinweis: Dimension von h ist n für linear unabhängige h_1, \ldots, h_m . Für h_1, \ldots, h_m muss gelten $m \leq n$. Meist ist sogar m < n, da sich sonst alle h_1, \ldots, h_m in genau einem Punkt schneiden würden. Eine Optimierung wäre dann sinnlos.

Abbildung 1.4: Visualisierung von int G

- 2) G offen. $C^k(G) :=$ Menge aller k-mal stetig differenzierbaren Funktionen auf G. Auch: $C^k(G,\mathbb{R}^m)$ zur Angabe des Bildraums.
- 3) $D \subset \mathbb{R}^n$ offen, $f \in C^2(D,\mathbb{R}) \Rightarrow Hf(x) = \begin{bmatrix} f_{11}(x) & \dots & f_{1n}(x) \\ \vdots & & \vdots \\ f_{n1}(x) & \dots & f_{nn}(x) \end{bmatrix}$ symmetrisch¹

Sei A reell und symmetrisch, d.h. $A = A^T$

Dann A possitiv definit, i.Z. $A > 0 :\Leftrightarrow x^T A x > 0 \forall x \neq 0 \Leftrightarrow \lambda_i(A) > 0 \forall i \text{ und } A$ positiv demidefinit, i.Z. $A \geq 0 :\Leftrightarrow x^T A x \geq 0 \forall x \Leftrightarrow \lambda_i(A) \geq 0 \forall i$.

Negativ definit bzw. semidefinit analog.

A indefinit: $\Leftrightarrow x^T A x$ kann so wohl positive als auch negative Werte annehmen. \Leftrightarrow Es gibt positive und negative Eigenwerte von A.

4) $M \subset \mathbb{R}^n$.

 $\operatorname{bd} M = \operatorname{cl} M \setminus \operatorname{int} M$: Rand von M

cl $M = \{x \in \mathbb{R}^n | \exists (x_n)_{n \in \mathbb{N}} \subset M : x_n \to x\}$: Abschluss der Menge M (auch: Menge der Berührungspunkte)

Beispiel: M = [0,1) cl M = [0,1]

$$int M = (0,1)$$

$$\operatorname{bd} M = \{0,1\}$$

5) $\{v_1, \dots, v_n\}$ linear unabhängig $:\Leftrightarrow [\lambda_1 v_1 + \dots + \lambda_n v_n = 0 \Rightarrow \lambda_1 = \dots = \lambda_n = 0]$ $\{v\}$ linear unabhängig $:\Leftrightarrow [\lambda v = 0 \Rightarrow \lambda = 0] \Leftrightarrow v \neq 0$

Beispiel 1.2. Gesucht ist die Extremstelle von $f(x,y) = 4x^2 - 3xy$ auf $K = \{(x,y)^T \in \mathbb{R} | x^2 + y^2 \le 1\}$. Nach Satz 1 findet man

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \nabla f = \begin{bmatrix} 8x - 3y \\ -3x \end{bmatrix}$$
$$\begin{bmatrix} 8x - 3y \\ -3x \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

1 Andere Schreibweise: $\nabla^2 f$, $\frac{\partial^2 f}{\partial x^2}$, $\nabla_{xx} f$

kritische Stelle von f im Inneren von K, jedoch

$$Hf(x,y) = \begin{bmatrix} 8 & -3 \\ -3 & 0 \end{bmatrix}$$
 mit $\det(Hf(0,0)) = -9 < 0$

Determinante ist Produkt der Eigenwerte $\rightarrow \lambda_1 > 0$, $\lambda_2 < 0 \rightarrow$ es negative Eigenwerte. Hf(0,0) ist indefinit, d.h. (0;0) keine lokalen Extremstellen existieren, nach Satz 2. Andererseits ist f stetig auf der kompakten Menge K, nach Satz von Weierstrass besitzt f auf dieser Menge Minimum und Maximum. Diese müssen auf dem Rand liegen.

$$\operatorname{bd} K = \{ (x,y)^T | h(x,y) := x^2 + y^2 - 1 = 0 \}$$
$$\operatorname{int} K = \{ (x,y)^T \in \mathbb{R}^2 | x^2 + y^2 < 1 \}$$
$$\operatorname{cl}(\operatorname{int} K) = K$$

Da b
d K^1 keine offene Menge ist, ist Satz 1 nicht anwendbar. Mit

$$M = \operatorname{bd} K \text{ ist } \nabla h(x,y) = 2 \begin{bmatrix} x \\ y \end{bmatrix} \neq 0 \ \forall (x,y)^T \in M$$

linear unabhängig. Nach Satz 3 existiert $\lambda \in \mathbb{R}$ mit

(3)
$$x^2 + y^2 - 1 = 0$$
 Erfüllung der Nebenbedingung (NB)en

Lösung:

$$x_{1/2} = \pm \frac{1}{\sqrt{10}}, \quad y_{1/2} = \pm \frac{3}{\sqrt{10}}, \quad \lambda_{1/2} = -\frac{1}{2}, \quad F(x_{1/2}, y_{1/2}) = -\frac{1}{2}$$

 $x_{3/4} = \mp \frac{3}{\sqrt{10}}, \quad y_{3/4} = \pm \frac{1}{\sqrt{10}}, \quad \lambda_{3/4} = \frac{9}{2}, \quad F(x_{3/4}, y_{3/4}) = \frac{9}{2}$

Technik:

$$F(x,y,\lambda) = f(x,y) + \lambda h(x,y) \Rightarrow \begin{bmatrix} F_x \\ F_y \\ F_\lambda \end{bmatrix} = 0$$

Abbildung 1.5 stellt die Niveaulinien der Ausgangsfunktion und der Berechnungen dar.

 \Diamond

Definition 4. Sei $D \in \mathbb{R}^n$ offen, $f: D \to \mathbb{R}, g_1, \ldots, g_m: D \to \mathbb{R}, \overline{x} \in D$ heisst (lokale bzw. globale) Extremstelle von f unter der Ungleichungsnebenbedingungen (UNB) $g_1(x) \leq 0, \ldots, g_m(x) \leq 0$, wenn \overline{x} (lokale oder globale) Extremstelle von f auf $G := \{x \in D | g_1(x) \leq 0, \ldots, g_m(x) \leq 0\}$.

¹ $\operatorname{bd} K \dots \operatorname{Rand} \operatorname{von} K$

Abbildung 1.5: Niveaulinien der Funktion f: $f = -\frac{1}{2}$ (Grün), f = 0 (Schwarz), f = 1 (Gelb), $f = \frac{9}{2}$ (Rot), $x^2 + y^2 = 1$ (Blau)

Definition 5. $I_0(x) := \{i \in \{1, ..., m\} \mid g_i(x) = 0\}$: Indexmenge der für $x \in G$ aktiven Restriktionen (für $x \in \int G$ gilt $I_0(x) \in \emptyset$)

$$L(x,u) = f(x) + \sum_{i=1}^{m} u_i g_i(x)$$
: Lagrange-Funktion zur Aufgabe $\min_{x \in G} f(x)$

Satz 4. (Kuhn-Tucker Bedinungen 1. Ordnung):

Sei f,g_1,\ldots,g_m stetig differenzierbar, $\overline{x} \in G$ und $\nabla g_i(x)$ mit $i \in I_0(\overline{x})$ linear unabhängig. Ist \overline{x} lokale Minimumstelle von f unter UNB, so gibt es $a_1,\ldots,a_m \in \mathbb{R}$ (Lagrange-Multiplikatoren) so, dass gilt

$$\nabla_x L(\overline{x}, u) = \nabla f(\overline{x}) + \sum_{i=1}^m u_i \nabla g_i(\overline{x}) = 0 \quad mit \quad \begin{bmatrix} g_i(\overline{x}) \le 0 \\ u_i \ge 0 \\ u_i g_i(\overline{x}) = 0 \end{bmatrix}, i = 1, \dots, m$$

Geometrische Interpretation der Kuhn-Tucker-Bedingungen

- a) zu (Abbildung 1.6): $u_i g_i(\overline{x}) = 0 \Rightarrow u_1 = u_2 = u_3 = 0 \Rightarrow \nabla f(\overline{x}) = 0$
- b) zu (Abbildung 1.7): $u_i g_i(\overline{x}) = 0 \Rightarrow u_2 = u_3 = 0 \Rightarrow \nabla f(\overline{x}) + u_1 \nabla g_1(\overline{x}) = 0$
- c) zu (Abbildung 1.8): $u_i g_i(\overline{x}) = 0 \Rightarrow u_3 = 0 \Rightarrow \nabla f(\overline{x}) + u_1 \nabla g_1(\overline{x}) + u_2 \nabla g_2(\overline{x}) = 0$

Abbildung 1.6: Optimalstelle mit $I_0(\overline{x}) = \emptyset$

Abbildung 1.7: Optimalstelle mit $I_0(\overline{x}) = \{1\}$

Abbildung 1.8: Optimalstelle mit $I_0(\overline{x}) = \{1,2\}$

 $mit u_1, u_2 \ge 0$

Bemerkung:

x ist Maximumstelle von f genau dann, wenn x Minimumstelle von -f ist.

 $f(x) = (x_1 + 1)^2 + x_2^2$ Gegenbeispiel 1.1. $g_1(x) = x_2 - x_1^3 \le 0$ $g_2(x) = -x_2 \le 0$

Minimumstelle: (0,0)

Bemerkung:

Die Forderung nach der Unabhängigkeit der Vektoren in $\nabla h_1(\overline{x}), \dots, \nabla h_m(\overline{x})$ in Satz 3 bzw. $\nabla g_i(\overline{x})$ mit $i \in I_0(\overline{x})$ in Satz 4 ist eine sogenannte Regularitätsbedingung (linear independence constraint qualification (LICQ)). Es gibt andere Regularitätsbedingungen, z.B. die Forderung das h_1, \dots, h_m bzw. g_1, \dots, g_m affine lineare Funktionen sind, d.h. eine Darstellung der Form

$$M = \{x \in \mathbb{R}^n : Ax = b\}$$
 bzw. $G = \{x \in \mathbb{R}^n : Ax \le b\}$

mit der Matrix $A \in \mathbb{R}^{m \times n}$ und dem Vektor $b \in \mathbb{R}^m$ möglich ist.

Für die Aufgabe min f(x) bei $g_i(x) \leq 0$ (i = 1, ..., m), $h_j(x) = 0$ (j = 1, ..., p) mit stetig differenzierbaren f, g_i , h_j lautet die KTB:

$$\nabla_x L(x, u, \lambda) = \nabla f(x) + \sum_{i=1}^m u_i g_i(x) + \sum_{j=1}^p \lambda_j h_j(x)$$

$$h(x) = 0, \ u \ge 0, \ g(x) \le 0, \ u_i g_i(x) = 0 \ (i = 1, \dots, m)$$
(1.1)

Ein Punkt $L(x,u,\lambda)$ der Gleichung (1.1) erfüllt, heisst Kuhn-Tucker-Punkt (KTP).

Beispiel 1.3. Gesucht ist die optimale Lösung der Aufgabe $f(x) = -x_1^2 + x_2^2 \to \min$ bei $(x_1 + 1)(x_2 + 2) \le 4$ mit $x_1 \ge 0$, $x_2 \ge 0$. Mit

$$g_1(x) = (x_1 + 1)(x_2 + 2) - 4 \le 0,$$

$$g_2(x) = -x_1 \le 0,$$

$$g_3(x) = -x_2 \le 0$$

erhält man

$$L(x,u) = f(x) + \sum_{i=1}^{3} u_i g_i(x)$$

und

$$\nabla_x L(x, u) = \begin{bmatrix} -2x_1 + u_1(x_2 + 2) - u_2 \\ 2x_2 + u_1(x_1 + 1) - u_3 \end{bmatrix}.$$

Die 5 nichtlinearen Gleichungen $\nabla_x L(x,u) = 0$, $u_i g_i(x) = 0$ mit i = 1,2,3 haben die reelen Lösungen:

- $u_1 = 0$, $u_2 = 0$, $u_3 = 0$, $x_1 = 0$, $x_2 = 0$
- $u_1 = -4$, $u_2 = 16$, $u_3 = 0$, $x_1 = 1$, $x_2 = 2$ erfällt wegen Nichterfüllen der Ungleichung
- $u_1 = 1$, $u_2 = 0$, $u_3 = 2$, $x_1 = 1$, $x_2 = 0$

Wegen f(0,0) = 0, f(1,0) = -1 ist $x = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$ die gesuchte Minimumstelle.

Abbildung 1.9: Beispiel mit KTB: f = -1 (Gelb), f = 0 (Schwarz), f = 1 (Grün), g_1 (Blau), g_2 (Rot), g_3 (Orange)

Konvexe Optimierungsprobleme:

$$M \subset \mathbb{R}^n \text{ konvex} \Leftrightarrow [x_1, x_2 \in M \Rightarrow \lambda x_1 + (1 - \lambda)x_2 \in M \forall \lambda \in [0, 1]]$$

Sei $M \subset \mathbb{R}^n$ konvex: $f: M \to \mathbb{R}$ konvex auf M, wenn

$$[x_1, x_2 \in M \Rightarrow M(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \forall \lambda \in [0, 1]]$$

Abbildung 1.10: Konvexität

Abbildung 1.11: Konvexe Funktionen

streng konvex auf M:

Sei $M \subset \mathbb{R}^n$ offen, konvex, $f \in C^2(M,\mathbb{R})$:

- f konvex auf $M \Leftrightarrow \forall x \in M : Hf(x) \ge 0$
- f streng konvex auf $M \Leftrightarrow \forall x \in M : Hf(x) > 0$

Falls M konvex und f konvex auf M, so heisst $\min_{x \in M} f(x)$ konvexe Optimierungsaufgabe und es gilt:

- Falls $x^* \in M$ eine lokale Minimumstelle ist, so ist x^* auch globale Minimumstelle auf M.
- Ist f streng konvex, so gibt es höchstens ein globales Minimum von f über M.

Beispiel 1.4. Die streng konvexe Funktion $f(x) = e^x$ soll minimiert werden $\min_{x \in \mathbb{R}^1} e^x$. Es soll gezeigt werden, dass höchstens ein globales Minimum von f über M existiert.

Dabei ist zu beachten:

$$\begin{cases}
f: \mathbb{R}^n & \to \mathbb{R}^1 \\
g_i: \mathbb{R}^n & \to \mathbb{R}^1 \\
h_j: \mathbb{R}^n & \to \mathbb{R}^1
\end{cases}$$
 stetig differenzierbar mit $i = 1, \dots, n$ und $j = 1, \dots, p$

Damit lässt sich die lokale Minimumstelle

$$x^* \in G := \{ x \in \mathbb{R}^n : g_i(x) = 0 \ (i = 1, \dots, n), \ h_j(x) = 0 \ (j = 1, \dots, p) \}$$
$$\{ \nabla(x^*) \ (i \in I_0(x^*) := \{ i \in \{1, \dots, m\} \mid g_i(x^*) = 0 \}), \nabla h_j(x^*) \ (j = 1, \dots, p) \}$$

beschreiben und für die lokale Minimumstelle x^* von f auf G gilt $\Rightarrow \exists u^* \in \mathbb{R}^m$, $\exists \lambda^* \in \mathbb{R}^p$ mit der KTB

$$\nabla_x L(x^*, u^*) = \nabla f(x^*) + \sum_{i=1}^n u_i^* \nabla g_i(x^*) + \sum_{j=1}^p \lambda_j^* \nabla h_j(x^*) = 0$$

mit $g(x^*) \le 0$, $u^* \ge 0$, $u^{*T}g(x^*) = 0$, $h(x^*) = 0$ und dem KTP: (x^*, u^*, λ^*)

$$f(x) = (x_1 + 1)^2 + x_2^2$$
$$g_1(x) = x_2 - x_1^3 \le 0$$
$$g_2(x) = -x_2 \le 0$$

Gegenbeispiel 1.2.

Minimumstelle: $x^* = (0,0)$, aber KTB nicht erfüllt

 $\Rightarrow \nabla g_1(x^*), \nabla g_2x^*$ linear abhängig

Satz 5. Für die Aufgabe $\min_{x \in G} f(x)$ mit $G := \{x \in \mathbb{R}^n | g_i(x) \leq 0 \ (i = 1, ..., m)\}$ und f, g_i (i = 1, ..., m) stetig differenzierbar und konvex gilt:

- x^* ist Lösung und $\exists \tilde{x} \in \mathbb{R}^n : g_i(\tilde{x}) < 0 \ (i = 1, ..., m) \ (Slater Bedingung)$ $Rightarrow \exists u^* \in \mathbb{R}^m : (x^*, u^*) \ ist \ KTB$
- (x^*, u^*) sind $KTP \Rightarrow x^*$ ist Lösung für alle
- Falls alle g_i linear, d.h. $G = \{x \in \mathbb{R}^n : Ax \leq b\}$ mit $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, so gilt x^* ist Lösung $\Leftrightarrow \exists u^* \in \mathbb{R}^m : (x^*, u^*)$ ist KTP

Bei zusätzlichen linearen GNB, d.h. $G = \{x \in \mathbb{R}^n : Ax \leq b, Cx = d\}$ mit $C \in$

$$\mathbb{R}^{p \times n}, d \in \mathbb{R}^p$$
:
 $x^* \text{ ist L\"osung } \Leftrightarrow \exists u^* \in \mathbb{R}^m, \lambda^* \in \mathbb{R}^m : (x^*, u^*, \lambda^*) \text{ ist KTP}$

Übungsaufgabe 1.2

Aufgabe:

Finden Sie alle Lösungen von $f(x) = -x_1 - x_2 \to \min_{x \in \mathbb{R}^2}$ bei $g_1(x) = x_1 + x_2^2 \le 0$ (Skizze)!

Lösung:

1.2 Anwendungen auf quadratische Optimierungsaufgaben

Aufgabe

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + q^T x \text{ bei } Ax \leq b, \ Q > 0$$

mit $Q \in \mathbb{R}^{n \times n}, \ q \in \mathbb{R}^n, \ A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m \text{ (convex)}$

1.2.1 Vorbereitungen

(1) $\min_{x \in \mathbb{R}^n} f(x)$ mit $f(x) = \frac{1}{2}x^TQx + q^Tx$ und wegen $Hf(x) = Q \ge 0$ ist f convex auf \mathbb{R}^n . Damit gilt x^* ist Lösung $\Leftrightarrow x^*$ erfüllt KTB $\Leftrightarrow \nabla f(x^*) = 0$. Somit erhällt man die Lösung von (1-TODO) durch Lösen des linearen Gleichungssystems

$$\nabla f(x) = Qx + q = 0$$

Beachte: Lösung muss nicht existieren.

(2) $\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + q^T x$ bei Cx = d mit $C \in \mathbb{R}^{p \times n}, d \in \mathbb{R}^p$. Analog zu (1): x^* ist Lösung $\xrightarrow{\text{Satz 5}} \exists \lambda^* \in \mathbb{R}^p : (x^*, \lambda^*)$ ist KTB. Mit $L(x, \lambda) = \frac{1}{2} x^T Q x + q^T x + \lambda^T (Cx - d)$ liefert

$$\nabla L(x,\lambda) = \begin{bmatrix} Qx + q + C^T \lambda \\ Cx - d \end{bmatrix} = 0$$

unter den KTB $\nabla_x L(x,\lambda) = 0$ und h(x) = 0 liefert das lineare Gleichungssystem

$$\begin{bmatrix} Q & c^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} -q \\ d \end{bmatrix}$$

Beachte: Kann keine oder mehrdeutige Lösungen besitzen.

(3) Projektion auf Untervektorraum

$$A \in \mathbb{R}^{m \times n}, \, m \geq n, \, \mathrm{Rang} \, A = n, \, b \in \mathbb{R}^m$$

Abbildung 1.12: Projektion

$$jA := \{Ax : x \in \mathbb{R}^n\}$$

$$(jA)^{\perp} = \ker A^T := \{y \in \mathbb{R}^m : A^T y = 0\}$$

$$A^T (b - A\widehat{x}) = 0$$

$$A^T b = A^T A \widehat{x}$$

$$\widehat{x} = (A^T A)^{-1} A^T b$$

$$\to P = A(A^T A)^{-1} A^T \dots \text{ Projektor auf } jA$$

$$(1.2)$$

Projektion eines Vektors $v \in \mathbb{R}^n$ auf $M := \{x \in \mathbb{R}^n | Cx = d\}$ mit $C \in \mathbb{R}^{p \times n}$, $p \leq n$, Rang c = p, siehe (Abbildung 1.13) und man erhält den Projektor durch ersetzen von A^T durch C in (1.2)

$$\mathcal{P} = C^T (CC^T)^{-1} C \dots$$
 Projektor auf M .

Übungsaufgabe 1.3

Aufgabe:

Zeigen Sie, dass für min, d.h. $Q=0,\,q=1,$ keine Lösung exisiert.

Lösung:

Übungsaufgabe 1.4

Aufgabe:

Abbildung 1.13: Projektion

Wiederholen Sie den Algorithmus aus dem Beispiel mit $x^0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Lösung:

Übungsaufgabe 1.5

Aufgabe:

Seien
$$A = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Berechnen Sie Pb , $(I - P)b$, $(I - P)P$, $Pb + (I - P)b$, $(Pb)^T(I - P)b$.

Was ist das kleinste $\alpha \in \mathbb{R}$, so dass $||Pb||_2 \le \alpha ||b||_2$ erfüllt ist?

Lösung:

Übungsaufgabe 1.6

Aufgabe:

Für
$$C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
, $d = 1$ projiziere $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ auf M (Skizze)!

Für $C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ projiziere $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ auf M (Skizze)!

Lösung:

1.2.2 Aktive-Mengen-Strategie

Aufgabe:

$$f(x) = \frac{1}{2}x^TQx + q^Tx \to \min$$
 bei $Ax \le b$

Seien
$$Q \in \mathbb{R}^{n \times n}$$
, $Q > 0$ possitiv definit, $q \in \mathbb{R}^n$, $A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
Für $x \in G := \{x \in \mathbb{R}^n | Ax \le b\}$ bezeichne $I_a(x) = \{i \in (1, \dots, m) : a_i^T x = b_i\}^1$ und $M(I) = \{y \in \mathbb{R}^n | a_i^T y = b_i, i \in I_a(x)\}$.
Sei $\{a_i | i \in I_a(x)\}$ linear unabhängig $\forall x \in G$.

NB:

$$g_i(x) := a_i^T x - b_i \le 0$$
$$\nabla g_i(x) = a_i$$

Algorithmus der Aktive-Mengen-Strategie:

- (S1) Wähle ein $x^0 \in G$, setze $I_0 := I_a(x^0)$ und setze k := 0.
- (S2) Falls Projektion von $\nabla f(x^k) = Qx^k + q$ auf $M(I_k)$ gleich dem Nullvektor ist, so sind die zu x^k gehörigen Lagrange-Multiplikatoren u_i^k aus $\nabla f(x^k) + \sum_{i \in I_k} u_i^k a_i = 0$ zu bestimmen.
 - (S2a) Falls $u_i^k \geq 0$ mit $i \in I_k$, so ist x^k Optimalstelle. Stop!
 - (S2b) Andernfalls sind der Index $r \in I_k$ mit $u_i^k < 0$ zu bestimmen und es ist $I_k \leftarrow I_k \setminus \{r\}^2$ zu setzen.
- (S3) Bestimme $y^k := \arg \min f(y)^3$ bei $y \in M(I_k)$. Setze $\alpha_k = \max \left\{ \alpha \in [0,1] : x^k + \alpha(y^k - x^k) \in G \right\}, \ x^{k+1} = x^k + \alpha(y^k - x^k),$ $I_{k+1} := I_a(x^{k+1}) \text{ und gehe mit } k \to k+1 \text{ zu (S2)}$

Bemerkung zu (S3):

Die im Punkt x^k inaktive UNBen sind $a_j^T x^k \leq b_j, j \notin I_k$.

Wir bestimmen das maximale $\beta > 0$ derart, dass $\beta(y^k - x^k) + x^k$ noch zulässig ist, d.h. $a_j^T(\beta(y^k - x^k) + x^k) \leq b_j$.

¹ Menge der im Punkt $x \in G$ aktiven Restriktionen

² Interpretation: Entferne r aus der Indexmenge I_k

³ Bemerkung: $x^* = \arg\min f(x) \leftrightarrow x^* \dots$ Minimumstelle von f

Dies ist wegen $a_j^T x^k \leq b_j$ und $\beta a_j^T (y^k - x^k) \leq b_j - a_j^T x^k$ stets für diejenigen j erfüllt, für die $a_j^T (y^k - x^k) \leq 0$ gilt.

Also ergibt sich das gesuchte

$$\beta = \min \left\{ \left. gfracb_j - a_j^T x^k a_j^T (y^k - x^k) \right| \right. j \notin J_k \text{ mit } a_j^T (y^k - x^k) > 0 \right\}.$$

(S3) berechnet $\alpha_k = \min\{1,\beta\}$.

Bemerkung zum Algorithmus:

- Die Voraussetzungen "C > 0" und " $\{a_i | i \in I_a(x)\}$ linear unabhängig $\forall k \in G$ " sichern die eindeutige Lösbarkeit des linearen Gleichungssystems in (S2) und (S3)
- Alle Iterationen x^k sind zulässig. In der Praxis gilt bei jedem Durchlauf von (S3): $f(x^{k+1}) < f(x^k)$. Der Algorithmus ist endlich (gutartiger, schneller Algorithmus).

Finden eines zulässigen Startpunktes:

Zur Aufgabe

$$f(x) = \frac{1}{2}x^T Q x + q^T x \to \min_{x \in \mathbb{R}^n} \text{ bei } Ax \le b$$
 (1.3)

bildet Aufgabe

$$y \to \min_{\substack{x \in \mathbb{R}^n \\ y \in \mathbb{R}^1}} \text{bei } Ax \le b + \mathbb{1}_m y, \ 0 \le y$$
 (1.4)

mit: $\mathbb{1}_m$... Einheitsmatrix

$$\Leftrightarrow \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \to \min \text{ bei } \begin{bmatrix} A & -\mathbb{1}_m \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \le \begin{bmatrix} b \\ 0 \end{bmatrix}$$
 (1.5)

Zulässiger Startwert:

$$x^0$$
 beliebig und $y^0 := \max([0; Ax^0 - b])$

$$\left\lceil \overline{x} \atop \overline{y} \right\rceil$$
sei Lösung der linearen Optimierungsaufgabe (1.5).

Falls $\overline{y} = 0$, so gilt $A\overline{x} \le b$, d.h. \overline{x} ist zulässig von (1.3).

Erweiterungen des Algorithmus:

- Falls Q = 0, d.h. $f(x) = q^T x \to \min$ bei $Ax \leq b$, so liegt eine Aufgabe der linearen Optimierung vor. In (S3) wir dann $\alpha_k := \max \{\alpha \geq 0 : x^k + \alpha s^k \in G\}$ wobei s^k der auf $M(I_k)$ projizierte negative Gradient $-\nabla f(x^k) = -q$ ist.
- Treten UNB und GNB gleichzeitig auf, d.h. $f(x) = \frac{1}{2}x^TQx + q^Tx \rightarrow \min$ bei

 $Ax \leq b$ und Cx = d so werden die GNB wie aktive UNB behandelt.

Beispiel 1.5. Seien
$$A = \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & 1 \\ -1 & 0 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, Q = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, q = \begin{bmatrix} -2 \\ -4 \end{bmatrix}.$$

(S1) Mit
$$x^0 := \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 ist $I_0 = \{3\}$.

(S2) Projektion von
$$\nabla f(x^0) = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$$
 auf $M(I_0) = \left\{ \begin{bmatrix} 0 \\ x_2 \end{bmatrix} : x_2 \in \mathbb{R} \right\}$ ist $\begin{bmatrix} 0 \\ -4 \end{bmatrix} \neq 0$.

(S3) Man findet
$$y^0 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
, $x^1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $I_1 = \{2,3\}$.

(S2) Projektion von
$$\nabla f(x^1) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
 auf $M(I_1) = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}^1$ ist $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ an der Stelle an der beide Restriktionen wirken mit $I_1 = \{2,3\}$.

Lagrange-Multiplikatoren $\begin{bmatrix} u_1^1 \\ u_3^1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$, setze $I_1 \leftarrow I_1 \setminus \{3\} = \{2\}$.

(S3) Man findet
$$y^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $x^2 = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$, $I_2 = \{1, 2\}$.

(S2) Projektion von
$$\nabla f(x^2) = \begin{bmatrix} -\frac{2}{3} \\ -2 \end{bmatrix}$$
 auf $M(x^2)$ ist $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Lagrange-Multiplikatoren $\begin{bmatrix} u_1^2 \\ u_2^2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{16}{9} \end{bmatrix} \geq 0$. Stop!

 \Diamond

Grafische Darstellung der Optimierungsaufgabe und deren Lösung:

¹ Bemerkung: d.h. nur ein Punkt! Projektion auf 1 Punkt ist immer der Nullvektor.

Zielfunktion:

$$f(x) = (x_1 - 1)^2 + (x_2 - 2)^2 - 5$$

Zulässiger Bereich:

Bild folgt

- (1) $x_1 + \frac{x_2}{3} \le 1$
- (2) $x_2 \le 1$
- (3) $x_1 \ge 0$

Übungsaufgabe 1.7

Aufgabe:

Erweitern Sie den Algorithmus um die Auffindung eines zulässigen Startpunktes!

Lösung:

Übungsaufgabe 1.8

Aufgabe:

Erweitern Sie den Algorithmus um die Aufgabe der linearen Optimierung und die Verwendung von GNB als aktive UNB!

Lösung:

2 Klassische Verfahren zur optimalen Steuerung

2.1 Grundproblem der Variationsrechnung

Aufgabe:

Finden einer stetig differenzierbaren Funktion $x:[t_0,t_e]\to\mathbb{R}$ mit den Randbedingungen $x(t_0)=x_0,\ x(t_e)=x_e$, so dass ein Gütefunktional $J=\int\limits_{t_0}^{t_e}f(t,x,\dot{x})dt$ minimal wird.

Vorgehensweise von Euler:

Angenommen man hätte eine optimale Lösung x^* gefunden. Konstruiere eine einparametrige Schar von Vergleichskurven $x(t) = x^* + \varepsilon \tilde{x}(t)$, wobei $\varepsilon \in (-\varepsilon_0, + \varepsilon_0)$ ein Parameter ($\varepsilon > 0$ gegeben) und \tilde{x} eine gegebene, stetig differenzierbare Funktion mit $\tilde{x}(t_0) = 0$, $\tilde{x}(t_e) = 0$ ist.

TODO BILD

Die Funktion $\delta x^* := \varepsilon \tilde{x}$ heisst Variation von x^* .

Einsetzen in J liefert

$$F(\varepsilon) := \int_{t_0}^{t_e} f(t, x^*(t) + \varepsilon \tilde{x}(t), \dot{x}^*(t) + \varepsilon \dot{\tilde{x}}(t)) dt.$$

Sei f zweifach stetig differenzierbar. Die Funktion $F:(-\varepsilon_0,+\varepsilon_0)\to\mathbb{R}$ hat für $\varepsilon=0$ ein Minimum, also muss gelten

$$\frac{\mathrm{d}F}{\mathrm{d}\varepsilon}\bigg|_{\varepsilon_0} = \int_{t_0}^{t_e} \left[\frac{\partial f}{\partial x} \tilde{x}(t) + \frac{\partial f}{\partial \dot{x}} \dot{\tilde{x}}(t) \right] dt = 0.$$

Mit partieller Integration

$$\int_{t_0}^{t_e} \underbrace{\frac{\partial F}{\partial \dot{x}} \dot{\tilde{x}}(t)}_{u \cdot v'} dt = \left[\underbrace{\frac{\partial F}{\partial \dot{x}} \tilde{x}}_{u \cdot v}\right]_{t=t_0}^{t=t_e} - \int_{t_0}^{t_e} \underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial F}{\partial \dot{x}} \tilde{x}(t)}_{u' \cdot v} dt$$

ergibt sich

$$\int_{t_0}^{t_e} \left[\frac{\partial F}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial F}{\partial \dot{x}} \right] \tilde{x}(t) dt = 0$$

und da \tilde{x} (bis auf die Randwerte) beliebig muss

$$\frac{\partial F}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial F}{\partial \dot{x}} = 0 \tag{2.1}$$

gelten.

2.2 Formulierung des Optimierungsproblems und Lösung

2.2.1 Prinzip der Herleitung notwendiger Bedingungen

2.2.2 Notwendige Bedingungen für Optimallösung

2.2.3 Numerische Lösung am Beispiel "Fall C und fester Endzeit t_b "

• Zur Lösung der "Endwertaufgabe" $\dot{\psi} = \nabla_x \mathcal{H}$ mit gegeben Endwert $\psi(t_b)$ und unter der Annahme, dass x(t) und u(t) gegeben sind.

Wir setzen $t = t(\tau) = t_b + t_a - \tau$ und mit

$$\Psi(\tau) := \psi(t(\tau)) = \psi(t_b + t_a - \tau)$$

erhält man

$$\dot{\Psi}(\tau) = \frac{d\psi(t(\tau))}{d\tau} = \frac{d\psi(t)}{dt} \bigg|_{t=t(\tau)} \frac{dt}{d\tau}$$

$$= -\frac{d\psi(t)}{dt} \bigg|_{t=t(\tau)} = -\dot{\psi}(t) \bigg|_{t=t(\tau)}$$

$$= \nabla_x \mathcal{H}(x(t), u(t), \psi(t), t) \bigg|_{t=\tau}$$

TODO BILD

Damit ist die Anfangswertaufgabe

$$\dot{\Psi}(\tau) = \nabla_x \mathcal{H}(x(t_b + t_a - \tau), u(t_b + t_a - \tau), \Psi(\tau), t_b + t_a - \tau)$$

mit dem Anfangswert (AW) $\Psi(t_a)=\psi(t_b)$ zu lösen für $\tau\in[t_a,t_b]$ und es gilt

$$\psi(t) = \Psi(t_b + t_a - \tau).$$

• Zur Lösung des nichtlinearen Gleichungssystems $\nabla_u \mathcal{H} = 0$ unter der Verwendung des NEWTON-Verfahrens

2.2.4 Anwebdung zur Umformung von Optimierungsproblemen am Beispiel des linear-quadratischer Regler-Problems

Minimiere das Gütefunktional

$$J = \frac{1}{2}x^{T}(t_{b})Gx(t_{b}) + \frac{1}{2}\int_{t_{a}}^{t_{b}} \left[x^{T}(t)Q(t)x(t) + u^{T}R(t)u(t)\right]dt$$

bei dem Prozess

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

mit den gegebenen Werten $x(t_a) = x_a$, t_a , x_a , t_b , wobei der Zustandswert zur Endzeit $x(t_b)$ frei ist. Weiterhin sollen $G \ge 0$, $Q(t) \ge 0$ (semipositiv defintit), R(t) > 0 (positiv definit) und Q(t), sowie R(t) stetig differenzierbar sein.

- 3 Optimale Zustandsrückführung
- 3.1 Zeitdiskrete Optimalsteuerung bei endlichen Zeithorizont
- 3.2 Das zeitdiskrete linear-quadratischer Regler-Problem
- 3.3 Zeitkontinuierliche Optimalsteuerng bei endlichen Zeithorizont
- 3.4 Das zeitkontinuierliche linear-quadratischer Regler-Problem

4 Modellprädiktive Regelung

4.1 Einleitung

Die im Abschnitt 3.3 beschriebene Vorgehensweise zur Lösung eines Optimalsteuerproblems auf Basis der Dynamsichen Programmierung ist selbst für lineare Prozesse mit quadratischem Kostenfunktional mit einem hohen Aufwand verbunden, wenn Beschränkungen im Steuer- und Zustandsraum auftreten (was die Anwendung des linearquadratischer Regler (LQR)-Entwurfs verhindert) und dabei der Zustands- und Steuerraum keine geringe Dimension aufweisen oder der Optimeirungshorizont nicht klein ist. Bei der numerischen Lösung stellt die Vorwärtsrechnung dann durch die Fallunterscheidungen hohe Anforderungen an die Rechenleistung und die erforderliche Speicherung der berechneten Zustandsrückführungen u_{κ}^* wird bei einer ausreichend feinen Diskretisierung des Zustandsraumes im Allgemeinen einen hohen Speicherplatzbedarf verursachen.

Eine Alternative zu dieser Vorgehensweise ist die Berechnung der optimales Steuergrößen $u^*[0], u^*[1], \ldots, u^*[k-1]$ durch eine Lösung des Optimierungsproblems? für den gegebenen Anfangszustand x[0] durch numerische Optimierung in Echtzeit. Da hierbei zum Zeitpunkt $\kappa=0$ eine Steuerfolge $u[\kappa]$ für den gesamten Horizont $\kappa=0,1,\ldots,k-1$ berechnet wird, tritt anders als bei den Zustandsrückführungen u^*_{κ} keine Rückkopplung des tatsächlich erreichten Prozesszustandes mehr auf. Praktisch wird dann, z.B. aufgrund von Modellunbestimmtheiten oder einwirkenden Störgrößen, eine Abweichung der erreichten Zustände von der bei der Optimeierung berechneten optimalen Zustandstrajektorie auftreten. Man wird deshalb die Lösung des Optimierungsproblems? in jedem Zeitschritt mit dem aktiellen Prozesszustand als Anfangszustand wiederholen und somit eine Rückführung, also Regelung, erreichen. Dieser Lösungszugang ist unter der Bezeichnung MPR bekannt und soll im Weiteren einführend für lineare Mehrgrößenprozesse mit Beschränkungen im Steuer- und Zustandsraum dargestellt werden.

4.2 Formulierung der Regelungsaufgabe

4.2.1 Grundprinzip der prädiktiven Regelung und Begriffe

Gegeben sei der lineare zeitinvariante Prozess

$$x[\kappa + 1] = Ax[\kappa] + Bu[\kappa]$$

$$y[\kappa] = Cx[\kappa]$$
(4.1)

in diskreter Zeit. Mit $\kappa=0,1,2,\ldots$ werden die diskreten Zeitpunkte bezeichnet und k bezeichnet den aktuellen Zeitpunkt. Die Steuergrößen $u[\kappa]$ seien für $\kappa< k$ und die Prozessausgänge $y[\kappa]$ für $\kappa\leq k$ bekannt. Die Aufgabe besteht in der Bestimmung der aktuellen Steuergröße $u[\kappa]$. Dazu bezeichne

$$y_f[\kappa + i|k] := CAx[k] \qquad (i \ge 0) \tag{4.2}$$

die freie Bewegung des Prozessausganges ab dem Zeitpunkt k und

$$\hat{y}[k+1|k] := CAx[k] + C\sum_{j=0}^{i-1} A^{i-j-1}B\hat{u}[k+j|k] \qquad (i=1,2,\dots,H_p)$$
(4.3)

die Prädiktion des Prozessausganges über dem Prädiktionshorizont der Länge H_p .

Beispiel 4.1 (Prädiktionshorizont $H_p = 2$).

$$x[k+2] = Ax[k+1] + Bu[k+1]$$

$$= A^{2}x[k] + ABu[k] + Bu[k+1]$$

$$y[k+2] = CA^{2}x[k] + \underbrace{C(ABu[k] + Bu[k+1])}_{C\sum_{j=0}^{1} A^{1-j}Bu[k+j]}$$

 \Diamond

Weiter wird der Steuerhorizont der Länge H_u definiert, es gelte $H_p \ge H_u \ge 1$ und die Steuergröße verändere sich ab dem Zeitpunkt $k + H_u$ nicht mehr¹, d.h. es sei

$$\hat{u}[k+j|k] = \hat{u}[k+H_u-1|k] \qquad (H_u \le j \le H_p-1). \tag{4.4}$$

In Abb. 4.5 sind die bekannten Verläufe des Prozessausganges und der Steuergröße bis

Abbildung 4.1: Grundprinzip der prädiktiven Regelung

¹ Die Bedingung $H_p \geq H_u$ sichert, dass die Auswirkungen eines Steuereingriffs aud den Prozessausgang über einen ausreichend großen Horizont $H_o - H_u$ berücksichtigt werden. Praktisch gilt aus diesem Grund sogar oft $H_p \gg H_u$.

zum Zeitpunkt k zu sehen. Wenn ab dem Zeitpunkt k die Steuergrößen $\hat{u}[k+i-1|k]$ $(i=1,2,\ldots,H_p)$ auf den Prozess gegeben würden, so würde sich unter der Annahme eines Haltegliedes 0. Ordnung für die Steuergrößen gemäß (4.3) in den Abtastzeitpunkten der Prozessausgang $\hat{y}[k+i|k]$ ergeben. Durch ein numerisches Optimeirungsverfahren wird eine Steuerfolge so bestimmt, dass vorgegebene Forderungen erfüllt werden. Beispielhaft für solche Forderungen sind in Abb. 4.5 konstante Schranken \underline{u} und \overline{u} für die Steuergröße

$$\underline{u} \le \hat{u}[k+i-1|k] \le \overline{u} \tag{4.5}$$

und eine konstante obere Schranke $\overline{y}[k+i|k]$ und eine zeitabhängige untere Schranke $\underline{y}[k+i|k]$ für den Prozessausgang

$$y[k+i|k] \le \hat{y}[k+i|k] \le \overline{y}[k+i|k] \tag{4.6}$$

darstellt. Darüber hinaus ist eine Solltrajektorie $s[\kappa]$ für den Prozessausgang eingezeichnet. Aus dieser Solltrajektorie und dem Wert des Prozessausganges zum Zeitpunkt k wird die Referenztrajektorie r[k+i|k] abgeleitet, z.B. mit einer gegeben Zeitkonstante $T_c > 0$ in der Form

$$r[k+i|k] := s[k+i] - (s[k] - y[k])e^{-iT_c}, (4.7)$$

und die Zielstellung verfolgt, den Abstand (mit einem noch zu definierendem Abstandsmaß) des Prozessausganges von der Referenztrajektorie zu minimieren¹. Wenn eine optimale Steuerfolge $u^*[k+i-1|k]$ $(i=0,1,\ldots,H_u-1)$ berechnet ist, so wird das erste Glied der optimalen Steuerfolge als Steuergröße im Schritt k ausgegeben. Im Schritt k+1 wird dann die gesamte Prozedur wiederholt. Der Prädiktionshorizont, der wie aud der Steuerhorizont in seiner Länge unverändert bleibt, wird dabei mit dem aktuellen Zeitpunkt weiterverschoben. Man spricht von einem gleitenden Horizont. Insgesamt ergibt sich die folgende Vorgehensweise.

Prinzipieller Algorithmus der Modellprädiktiven Regelung:

Der Prozessausgang wird nicht (direkt) der Sollwerttrajektorie, sondern der Referenztrajektorie nachgeführt. Die Referenztrajektorie gibt an, wie ein von der Sollwerttrajektorie abweichender Prozessausgang wieder zur Sollwerttrajektorie zurückkehren soll. Die Verwendung der Referenztrajektorie anstelle der Sollwerttrajektorie zur Vorgabe des Verlaufes des Prozessausganges hat im Wesentlichen eine praktische Motivation: Da die Regelabweichung $r[k+i|k] - \hat{y}[k+i|k]$ hinsichtlich des Betrages im Allgemeinen kleiner ist als $s[k+i] - \hat{y}[k+i|k]$ kann man erwarten, dass bei den in der Praxis stets vorliegenden nichtlinearen Prozessen ein um die Referenztrajektorie linearisiertes Prozessmodell eine genauere Prozessbeschreibung darstellt, als ein Modell, dass durch eine Linearisierung um die Sollwerttrajektorie gewonnen wird.

- (S1) Minimiere über alle Steuerfolgen u[k+i|k] $(i=0,1,\ldots,H_u-1)$ ein Maß für den Abstand zwischen r[k+i|k] und $\hat{y}[k+i|k]$ $(i=1,2,\ldots,H_p)$ unter den Nebenbedingungen (4.5) und (4.6).
- (S2) Setze für die Steuergröße $u[k] := u^*[k|k]$.
- (S3) Warte einen Zeitschritt, setzte k := k + 1 und gehe zu (S1).

Folgende Merkmale einer modellprädiktiven Regelung können hervorgehoben werden.

- Vorhandensein eines expliziten Prozessmodells
 Das Prozessmodell dient im Rahmen der Lösung des Optimierungsproblems im Schritt (S1) zur Bestimmung des für eine vorgegebene Steuerfolge u[k+i|k] (i = 0,1,...,H_u-1) resultierendes Prozessausganges. Das Prozessmodell muss nicht notwendig ein parametrisches Modell sein, sondern kann z.B. auch durch eine Sprungantwort beschrieben sein.
- Optimierung in Echtzeit
 Die optimale Steuerfolge, von der jeweils nur das erste Glied als Steuergröße an den Prozess auch tatsächlich ausgegeben wird, wird in jedem diskreten Zeitschritt durch ein numerisches Optimeirungsverfahren in Echtzeit berechnet.
- Gleitender Optimierungshorizont
 Im Gegensatz zur Vorgehensweise im Abschnitt?, bei dem der aktuelle Zeitpunkt in jedem Schritt n\u00e4her an den Endzeitpunkt heranr\u00fcckt, gleiten hier der Steuerund Pr\u00e4diktionshorizont mit dem aktuellen Zeitpunkt weiter.

4.2.2 Prozessbeschreibung

Für die weiteren Darstellungen wird von den Steuergrößen $u[\kappa]$ zu den Steuergrößendifferenzen

$$\Delta u[\kappa] := u[\kappa] - u[\kappa - 1] \tag{4.8}$$

übergegangen, womit sich eine Regelkreisstruktur wie in Abb. 4.2 ergibt¹. Eine mögliche Zustandsraumdarstellung des MPR-Prozesses kann aus (4.1) mit

$$\xi[\kappa] := \begin{bmatrix} x[\kappa] \\ u[\kappa - 1] \end{bmatrix} \tag{4.9}$$

in der Form ("erweitertes Modell")

$$\xi[\kappa+1] = \begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \xi[\kappa] + \begin{bmatrix} B \\ I \end{bmatrix}$$

$$y[\kappa] = \begin{bmatrix} C & 0 \end{bmatrix} \xi[\kappa]$$
(4.10)

gewonnen werden. Stellt man nun die Gleichung für die Prädiktion des Zustandsvektors

Abbildung 4.2: Übergang von den Steuergrößen zu den Steuergrößendifferenzen

auf

$$\hat{x}[k+i|i] = Ax[k] + \sum_{j=0}^{i-1} A^{i-j-1}B\hat{u}[k+j|k]$$
(4.11)

und ersetzt die Steuergröße $\hat{u}[k+j|k]$ durch die Steuergrößendifferenz

$$\Delta \hat{u}[k|k] = \hat{u}[k|k] - u[k-1]$$

$$\Delta \hat{u}[k+i|k] = \hat{u}[k+i|k] - \hat{u}[k+i-1|k] \quad \text{für } i = 1,2,\dots, H_u - 1$$

$$\Delta \hat{u}[k+i|k] = 0 \quad \text{für } i = H_u - 1,\dots, H_p - 1$$
(4.12)

¹ Dies hat in erster Linie prakische Gründe, denn da der MPR-Regler nur Steuergrößendifferenzen ("Steuergrößenkorrekturen") erarbeitet, kann z.B. ein stoßfreies Umschalten zwischen verschiedenen Reglern problemlos realisiert werden und auch eine Regelung um einen Arbeitspunkt (wie z.B. bei der Regelung nichtlinearer Prozesse) ist einfacher realisierbar.

so erhält man aus (4.1) die Darstellung des MPR-Prozesses

die man mit

$$\mathcal{Y}[k] := \begin{bmatrix} \hat{y}[k+1|k] \\ \vdots \\ \hat{y}[k+H_p|k] \end{bmatrix}, \, \Delta \mathcal{U}[k] := \begin{bmatrix} \Delta \hat{u}[k|k] \\ \vdots \\ \Delta \hat{u}[k+H_u-1|k] \end{bmatrix}$$

und entsprechender Defintion der Matrizen Υ, Ψ und Θ kürzer in der Form

$$\mathcal{Y}[k] = \underbrace{\Psi x[k] + \Upsilon u[k-1]}_{\text{freie Bewegung}} + \Theta \Delta \mathcal{U}[k]$$
(4.13)

schreiben kann.

Mit der (4.13) ist bei gegebenen Werten x[k] und u[k-1] die Prädiktion des Prozessausganges als lineare Funktion der Steuergrößendifferenzen $\mathcal{U}[k]$ dargestellt. Im aktuellen Schritt k ist die im vorhergehenden Schritt k-1 an den Prozess ausgegebene Steuergröße u[k-1] bekannt. Der Zustand x[k] wird im Weiteren ebendalls als bekannt vorausgesetzt. Sollte x[k] nicht direkt messbar sein, so wird x[k] in (4.13) durch einen Schätzwert $\hat{x}[k|k]$ eines Zustandsbeobachters ersetzt. Sollte im MPR-Prozess (4.1) darüber hinaus eine direkt gemessene Störgröße $d_m[k]$ oder eine durch einen erweiterten

Beobachter ermittelte Störgröße mit dem Wert $\hat{d}[k|k]$ auftreten, so kommt auf der rechten Seite von (4.13) zusätzlich ein Summand

$$\mathcal{D}_{m} \begin{bmatrix} d_{m}[k] \\ \hat{d}_{m}[k+1|k] \\ \vdots \\ \hat{d}_{m}[k+H_{p}-1|k] \end{bmatrix} \quad \text{bzw.} \quad \mathcal{D} \begin{bmatrix} \hat{d}[k|k] \\ \hat{d}[k+1|k] \\ \vdots \\ \hat{d}[k+H_{p}-1|k] \end{bmatrix}$$

mit den Matrizen \mathcal{D} und \mathcal{D}_m hinzu. Dabei bezeichnen $\hat{d}_m[k+i|k]$ und $\hat{d}[k+i|k]$ die Prädiktion der direkt gemessen bzw. beobachteten Störgröße, die z.B. unter der Annahme konstanter Störgrößen gemäß $\hat{d}_m[k+i|k] := d_m[k]$ bzw. $\hat{d}[k+i|k] := \hat{d}[k|k]$ bestimmt werden $(i=1,\ldots,H_p-1)$. Die Modellgleichung (4.13) bleibt in diesem Fall linear in den Steuergrößendifferenzen $\Delta \mathcal{U}[k]$, so dass auch bei auftretenden Störgrößen die im Weiteren beschriebene Vorgehensweise anwendbar ist.

4.2.3 Darstellung des Gütefunktionals und der Beschränkungen für die Steuer- und Regelgrößen

Die BEstimmung der Steuergrößen $\Delta \hat{u}[k+i|k]$ für den MPR-Prozess $(i=0,1,\ldots,H_u-1)$ erfolgt so, dass ein vorgegebenes Gütefunktional minimiert wird und dabei vorgegebene Schranken für die Steuergrößen und für die Regelgrößen eingehalten werden.

Im Folgenden werden drei Klassen von Gütefunktionalen betrachtet, das quadratische Gütefunktional ($\|\cdot\|_2$ -Funktional)

$$V[k] = \sum_{i=1}^{H_p} \|Q_y[i] \left(\hat{y}[k+i|k] - r[k+i|k]\right)\|_2^2 + \sum_{i=0}^{H_u - 1} \|Q_{\Delta u}[i] \Delta \hat{u}[k+i|k]\|_2^2,$$
(4.14)

das 1-Norm-Gütefunktional ($\|\cdot\|$)

$$V[k] = \sum_{i=1}^{H_p} \|Q_y[i] \left(\hat{y}[k+i|k] - r[k+i|k]\right)\|_1 + \sum_{i=0}^{H_u-1} \|Q_{\Delta u}[i] \Delta \hat{u}[k+i|k]\|_1,$$
(4.15)

und das Maximum-Norm-Gütefunktional ($\|\cdot\|_{\infty}$ -Funktional)

$$V[k] = \max_{i=1,\dots,H_p} \|Q_y[i] \left(\hat{y}[k+i|k] - r[k+i|k]\right)\|_{\infty}$$
(4.16)

bzw.

$$V[k] = \max_{i=0,\dots,H_u-1} \|Q_{\Delta u}[i]\Delta \hat{u}[k+i|k]\|_{\infty}.$$
(4.17)

Hierbei sind die Gewichtsmatrizen $Q_y[i]$ positiv semidefinit und $Q_{\Delta u}[i]$ positiv definit, oft werden sie sogar als Diagonalmatrizen gewählt. Quadratische Gütefunktionale sind bereits aus dem Abschnitt? bekannt und haben wichtige Anwendungen bei statistische Aufgabenstellungen. Das 1-Norm-Gütefunktional tritt z.B. bei der Verbrauchsoptimierung auf, während Probleme, bei denen der ungünstigste Fall (Worst-Case) betrachtet wird, oft auf Maximum-Norm-Gütefunktional führen.

Beispiel 4.2. Falls für den Prozess (4.1) bzw. das quadratische Funktional (4.14) speziell die Bedingungen

$$H_u = H_p$$
, $C = I$, $r[k+i|k] = 0$, $Q_y[i] = Q_y$, $Q_{\Delta u}[i] = Q_{\Delta u} \ \forall i$

erfüllt sind, so kann (4.14) mit $\bar{Q}_x := Q_y^T Q_y$ und $\bar{Q}_{\Delta u} := Q_{\Delta u}^T Q_{\Delta u}$ in der Form

$$V[k] = \sum_{i=1}^{H_p - 1} \hat{x}[k+i|k]^T \bar{Q}_x \hat{x}[k+i|k] + \sum_{i=0}^{H_p - 1} \Delta \hat{u}[k+i|k]^T \bar{Q}_{\Delta u} \Delta \hat{u}[k+i|k] + \hat{x}[k+H_p|k]^T \bar{Q}_x \hat{x}[k+H_p|k]$$
(4.18)

geschrieben werden. Abgesehen von dem Term $\hat{x}[k|k]^T \bar{Q}_x \hat{x}[k|k]$, der aber durch die Wahl der $\Delta \hat{u}[k+i|k]$ $(i=0,\ldots,H_p-1)$ nicht beeinflusst wird, ist das Gütefunktional (4.18) gleich dem aus dem Abschnitt? bekannten LQR-Funktional (angewendet auf den MPR-Prozess).

Die Beschränkungen der Regelgröße, der Steuergrößendifferenzen und der Steuergrößen werden nachfolgend durch lineare Nebenbedingungen in der Form

$$M[k] \begin{bmatrix} \mathcal{Z}[k] \\ \Delta \mathcal{U}[k] \\ \mathcal{U}[k] \\ 1 \end{bmatrix} \le 0 \tag{4.19}$$

dargestellt.

Beispiel 4.3. Gegeben seien ein Single Input Single Output (SISO)-Prozess, das Gütefunktional

$$V[k] = \max_{i=0,...,H_u-1} |\Delta \hat{u}[k+i|k]|$$

und die Nebenbedingungen

$$|\hat{y}[k+i|k] - r[k+H_p|k]| \le \frac{1}{i+1} |y[k] - r[k+H_p|k]| \quad (i=1,\dots,H_p)$$

$$\hat{y}[k+H_p|k] = r[k+H_p|k]. \tag{4.20}$$

Durch das Gütefunktional wird das Maximum der Steuergrößenänderung minimiert. Diese Aufgabenstellung kann für ein mechanisches System dessen Steuergrößen Kräfte oder Momente sind, als eine Minimierung der sogenannten maximalen Rucks (das ist die Ableitung der Kraft bzw. des Momentes) interpretiert werden. Die Nebenbedin-

Abbildung 4.3: Veranschaulichung der Nebenbedingungen zum Beispiel 4.2

gungen der Aufgabe sind Forderungen an den Verlauf der Regelgröße. Wie in der Abb. 4.3 veranschaulicht, wird eine fortschreitende Annäherung an den Wert $r[k + H_p|k]$ der Referenztrajektorie am Ende des Prädiktionshorizontes erzwungen sowie für den Zeitpunkt $k + H_p$ ein exaktes Erreichen dieses Wertes verlangt. Die eingezeichnete Trajektorie $z^{(1)}[k+i|k]$ ist ein Beispiel für einen diesbezüglich zulässigen Verlauf. Stellt man zusätzlich die Monotonieforderung

$$\hat{y}[k+i+1|k] \ge \hat{y}[k+i|k],\tag{4.21}$$

so darf die Regelgröße den Wert $r[k+H_p|k]$ nicht überschreiten. Der Verlauf $z^{(2)}[k+i|k]$ ist dann in diesem Sinne zulässig.

4.3 Darstellung der Steuerungsaufgabe als Optimierungsproblem und numerische Lösung

4.3.1 Aufgabe mit $\|\cdot\|_2$ -Funktionial ohne Beschränukung der Steuer- und Regelgröße

Betrachtet werden Aufgaben, bei denen das Funktional (4.14) zu minimieren ist und als Nebenbedingung allein die Prozessgleichung (4.13) auftritt. Mit den Abkürzungen

$$\mathcal{Q}_y[k] := \begin{bmatrix} Q_y[1] & & & \\ & \ddots & & \\ & & Q_y[H_p] \end{bmatrix}, \, \mathcal{Q}_{\Delta\mathcal{U}}[k] := \begin{bmatrix} Q_{\Delta\mathcal{U}}[0] & & & \\ & \ddots & & \\ & & Q_{\Delta\mathcal{U}}[H_u - 1] \end{bmatrix}$$

und

$$\mathcal{T}[k] := \begin{bmatrix} r[k+1|k] \\ \vdots \\ r[k+H_p|k] \end{bmatrix}$$

gilt

$$V(k) = \|Q_y(\mathcal{Z}[k] - \mathcal{T}[k])\|_2^2 + \|Q_{\Delta \mathcal{U}}\Delta \mathcal{U}[k]\|_2^2$$
(4.22)

Mit $\mathcal{E}[k] := \mathcal{T}[k] - \mathcal{Y}u[k] - \mathcal{Y}u[k-1]$ wird die Differenz zwischen der Referenztrajektorie $\mathcal{T}[k]$ und der freien Bewegung $\Psi x[k] + \mathcal{Y}u[k-1]$ des MPR-Prozesses (nicht des Prozesses!) bezeichnet. Somit gilt

$$V[k] = \|Q_y \left(\Theta \Delta \mathcal{U}[k] - \mathcal{E}[k]\right)\|_2^2 + \|Q_{\Delta \mathcal{U}} \Delta \mathcal{U}[k]\|_2^2$$

$$= \left\| \begin{bmatrix} Q_y \left(\Theta \Delta \mathcal{U}[k] - \mathcal{E}[k]\right) \\ Q_{\Delta \mathcal{U} \Delta \mathcal{U}[k]} \end{bmatrix} \right\|_2^2$$
(4.23)

und man erhält die Lösung $\Delta \mathcal{U}^*[k]$ der unbeschränkten Optimierungsaufgabe

$$\min_{\Delta \mathcal{U}[k]} V[k] \tag{4.24}$$

als Quadratmittellösung eines überbestimmten linearen Gleichungssystems

$$\begin{bmatrix} \mathcal{Q}_y \Theta \\ \mathcal{Q}_{\Delta \mathcal{U}} \end{bmatrix} \Delta \mathcal{U}[k] \cong \begin{bmatrix} \mathcal{Q}_y \mathcal{E}[k] \\ 0 \end{bmatrix}. \tag{4.25}$$

Da $\mathcal{Q}_{\Delta\mathcal{U}}$ positiv definit ist, ist die Lösung eindeutig.

Bemerkung 4.1. Die Matrix $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ habe vollen Spaltenrang und es sei $b \in \mathbb{R}^m$. Dann ist im generischen Dall die Lösungsmenge des Gleichungssystems Ax = b leer. Die Aufgabe der Bestimmung der Quadratmittellösung, i.Z.

$$Ax \cong b$$
 bzw. $||Ax - b||_2 \to \min,$ (4.26)

hat dann die eindeutige Lösung $x^* = A^+b$. Die Matrix $A^+ := (A^TA)^{-1}A^T$ heisst Pseudoinverse zu A und die Matrix $P := AA^+$ heißt Projektor auf das Bild j $A := \{Ax : x \in \mathbb{R}^n\}$ von A. Die Berechnung von x^* kann z.B. mit der Singulärwertzerlegung oder der QR-Zerlegung von A erfolgen. In MATLAB verwendet man zur Bestimmung der Quadratmittellösung x^* den Backslash-Operator: $x^* = A \setminus b$.

Abbildung 4.4: Interpretation der Quadratmittellösung $Ax \cong b$

Bemerkung 4.2 (Struktur des MPR-Reglers). Seien $A \in \mathbb{R}^{m \times n}, B = \begin{bmatrix} b_1 & \dots & b_p \end{bmatrix} \in$

 $\mathbb{R}^{m \times p}, \alpha_i \in \mathbb{R} (i = 1, \dots, p)$. Weiter sei x Lösung von

$$Ax \cong B \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_p \end{bmatrix}.$$

Dann gilt

$$x = A \setminus (B \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_p \end{bmatrix}) = \begin{bmatrix} A \setminus b_1 & \dots & A \setminus b_p \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_p \end{bmatrix}. \tag{4.27}$$

Aus (4.25) folgt damit

$$\Delta \mathcal{U}^*[k] = \begin{bmatrix} \Delta u^*[k|k] \\ \vdots \\ \Delta u^*[k+H_u-1|k] \end{bmatrix} = \bar{K}\mathcal{E}[k] \quad \text{mit } \bar{K} := \begin{bmatrix} \mathcal{Q}_y \Theta \\ \mathcal{Q}_{\Delta \mathcal{U}} \end{bmatrix} \setminus \begin{bmatrix} \mathcal{Q}_y \\ 0 \end{bmatrix}.$$

Sei $K := \bar{K}(1:n_{\mathcal{U}},:)$, wobei $n_{\mathcal{U}}$ die Länge des Vektors u[k] ist. Gemäß dem Schritt (S2) des Algorithmus der modellprädiktiven Regelung aus Abschnitt 4.2.1 ist die im Schritt k ausgegebene Steuergröße gleich

$$\Delta u[k] = \Delta u^*[k|k] = K\mathcal{E}[k] = K\left(\mathcal{T}[k] - \Psi x[k] - \Upsilon u[k-1]\right).$$

Die Multiplikation der Signale $\mathcal{T}[k]$, x[k] und u[k-1] mit zeitunabhängigen Matrizen zur Ermittlung der optimalen Steuergröße $u^*[k]$ stellt ein lineares und zeitinvariantes Regelgesetz dar. Die Struktur des realisierten Reglers ist in der Abb. 4.4 dargestellt. Man stellt fest, dass durch die geschickte Nutzung der Gleichung (4.27) zur Berechnung der optimalen Steuergröße im jeweils aktuellen Schritt keine Online-Optimierung mehr erforderlich ist.

4.3.2 Aufgabe mit $\|\cdot\|_2$ -Funktionial und Beschränkung

Die in Abschnitt 4.3.1 betrachtete Aufgabe wird nun auf den Fall beschränkter Steuerund Regelgrößen erweitert. Die Aufgabe besteht nun in der Minimierung von

$$V[k] = \left\| \begin{bmatrix} Q_y \left(\Theta \Delta \mathcal{U}[k] - \mathcal{E}[k] \right) \\ \mathcal{U}_{\Delta \mathcal{Q}} \Delta \mathcal{U}[k] \end{bmatrix} \right\|_2^2$$
(4.28)

unter der Nebenbedingung (4.19), d.h.

Abbildung 4.5: Struktur den MPR-Reglers zur Minimierung von (4.14) bei unbeschränkten Steuer- und Regelgrößen

$$M[k] \begin{bmatrix} \mathcal{Z} \\ \Delta \mathcal{U}[k] \\ \mathcal{U}[k] \\ 1 \end{bmatrix} \le 0. \tag{4.29}$$

Mit $\mathcal{Z}[k] = \Psi x[k] + \Upsilon u[k-1] + \Theta \Delta \mathcal{U}[k]$ und

$$\mathcal{U}[k] = egin{bmatrix} I & \dots & 0 \\ \vdots & \ddots & \dots \\ I & \dots & I \end{bmatrix} \Delta \mathcal{U}[k] + egin{bmatrix} u[k-1] \\ \vdots \\ u[k-1] \end{bmatrix}$$

kann man (4.29) in die Form

$$\Xi \Delta \mathcal{U}[k] \le \xi \tag{4.30}$$

mit einer Matrix $\Xi=\Xi[k]$ und einem Vektor $\xi=\xi[k]$ überführen. Weiter gilt füt die Zielfunktion

$$V[k] = (\Theta \Delta \mathcal{U}[k] - \mathcal{E}[k])^{T} \mathcal{Q}_{y}^{T} \mathcal{Q}_{y} (\Theta \Delta \mathcal{U}[k] - \mathcal{E}[k]) + \Delta \mathcal{U}[k]^{T} \mathcal{Q}_{\Delta \mathcal{U}}^{T} \mathcal{Q}_{\Delta \mathcal{U}} \Delta \mathcal{U}[k]$$
$$= \Delta \mathcal{U}[k]^{T} H \Delta \mathcal{U}[k] - \Delta \mathcal{U}[k]^{T} G + F$$

mit $H := \Theta^T \mathcal{Q}_y^T \mathcal{Q}_y \Theta + \mathcal{Q}_{\Delta \mathcal{U}}^T \mathcal{Q}_{\Delta \mathcal{U}}, G := 2\Theta^T \mathcal{Q}_y^T \mathcal{Q}_y \mathcal{E}[k]$ und $F := \mathcal{E}[k]^T \mathcal{Q}_y^T \mathcal{Q}_y \mathcal{E}[k]$. Also ist V[k] eine quadratische Zielfunktion und mit der linearen Nebenbedingung (4.30) ist

$$\min_{\Delta \mathcal{U}[k]} V[k] \text{ bei } \Xi \Delta \mathcal{U}[k] \le \xi \tag{4.31}$$

eine Aufgabe der Quadratischen Optimierung. Die Lösung kann im Allgemeinen nur durch numeirsche Verfahren bestimmt werden. Der zulässige Bereich der Aufgabe ist aufgrund der ausschließlich linearen Nebenbedingungen konvex und es gibt weiter

$$\frac{\partial^2 V[k]}{\partial \Delta \mathcal{U}[k]^2} = 2H \ge 0.$$

Damit ist (4.31) ein konvexes Optimeirungsproblem, d.h. falls eine Lösung dieser Aufgabe exisitert, ist jede lokale Minimalstelle auch stets eine globale Minimalstelle. Darüber hinaus ist aufgrund von $\mathcal{Q}_{\Delta\mathcal{U}} > 0$ sogar H > 0 erfüllt und daher ist die Zielfunktion V[k] streng konvex, d.h. im Falle der Existenz ist die Lösung von (4.31) dann sogar eindeutig. Unter diesen Umständen kann die Lösung $\Delta\mathcal{U}^*[k]$ der Aufgabe (4.31) numerisch

effizient mit Algorithmen der Quadratischen Optimierung bestimmt werden¹.

4.3.3 Aufgabe mit $\|\cdot\|_1$ - und $\|\cdot\|_{\infty}$ -Funktionial

Bei Aufgaben mit dem Funktional (4.15) oder (4.16) bzw. (4.17) muss man nicht zwischen dem Fall unbeschränkter Steuer- und Regelgrößen und dem Fall beschränkter Steuer- und Regelgrößen unterscheiden, da sich in jedem Fall ein Optimierungsproblem mit Beschränkungen ergibt. Formt man die Zielfunktion V[k] analog dem Abschnitt 4.3.2 um, so erhält man für das Gütefunktional (4.15)

$$V[k] = \left\| \begin{bmatrix} Q_y \left(\Theta \Delta \mathcal{U}[k] - \mathcal{E}[k] \right) \\ Q_{\Delta \mathcal{U}} \Delta \mathcal{U}[k] \end{bmatrix} \right\|_1 = \left\| \begin{bmatrix} Q_y \Theta \\ Q_{\Delta \mathcal{U}} \end{bmatrix} \Delta \mathcal{U}[k] - \begin{bmatrix} Q_y \mathcal{E}[k] \\ 0 \end{bmatrix} \right\|_1$$
(4.32)

und für die Gütefunktionale (4.16) und (4.17) erhält man

$$V[k] = \|Q_y \Theta \Delta \mathcal{U}[k] - Q_y \mathcal{E}[k]\|_{\infty}$$
(4.33)

bzw.

$$V[k] = \|Q_{\Delta \mathcal{U}} \Delta \mathcal{U}[k]\|_{\infty} \tag{4.34}$$

Die Minimierung von V[k] unter der Nebenbedingung (4.30) kann dann als Aufgabe der Linearen Optimierung dargestellt werden², denn mit Matrizen F und C sowie Vektoren f und d passender Dimension kann die Aufgabe

$$\min_{x \in \mathbb{R}^n} \|Fx - f\|_1$$

durch

$$\min_{\substack{\mu \in \mathbb{R}^1 \\ \eta \in \mathbb{R}^m \\ x \in \mathbb{R}^n}} \mu \text{ bei } \mu \geq 0, \ \mathbb{1}^T \eta \leq \mu, \ -\eta \leq Fx - f \leq \eta, \ Cx \leq d$$

und die Aufgabe

$$\min_{x \in \mathbb{R}^n} \|Fx - f\|_{\infty}$$

¹ In MATLAB ist zur Lösung der Aufgabe der Quadratischen Programmierung die Routine quadprog implementiert, die speziell für den durch Ungleichungsbeschränkungen gekennzeichneten Problemtyp (4.31) einer Aktiven-Mengen-Strategie nach [GMW81] verwendet. Der Aufruf erfolgt mit $\Delta \mathcal{U}[k] = \mathtt{quadprog}(2H,G,\Xi,\xi)$

Die numerische Lösung von Aufgaben der Linearen Optimierung kann wie für Aufgaben der Quadratischen Optimierung durch eine Aktive-Mengen-Strategie erfolgen. In MATLAB erfolgt die Lösung von $\min_{x \in \mathbb{R}^n} c^T x$ bei $Ax \leq b$ durch $x = \mathtt{linprog}(c, A, b)$

durch

$$\min_{\substack{\delta \in \mathbb{R}^1 \\ x \in \mathbb{R}^n}} \delta \text{ bei } \delta \geq 0, \ -1\!\!1^T \delta \leq Fx - f \leq 1\!\!1 \delta, \ Cx \leq d$$

gelöst werden (Beweis Übungsaufgabe!). Hierbei ist $\mathbb{1} := \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^T$.

4.4 Stabilität prädiktiver Regelungen

4.4.1 Problembeschreibung

Der in Abschnitt 4.2.1 beschriebene prinzipielle Algorithmus der modellprädiktiven Regelung stellt eine rückführung dar, womit potenziell die Gefahr der Instabilität des entstehenden Regelkreises besteht. Zur Erläuterung wird als eine einfache Form des quadratischen Gütefunktionals das Funktional

$$V[k] = \sum_{i=1}^{H_p} \|\hat{x}[k+i|k]\|_2^2$$
(4.35)

betrachtet, wobei für die Länge des Steuer- und des Prädiktionshorizonts $H_u = H_p$ gelten soll. Beschränkungen hinsichtlich der Steuer- und Zustandsgröße sollen nicht vorliegen. Im Zeitpunkt k wird die optimale Steuerfolge $(\Delta u^*[k+i|k])_{i=0,\dots,H_p-1}$ berechnet, die dann die optimale Zustandstrajektorie $(x^*[k+i|k])_{i=1,\dots,H_p}$ liefert. Gemäß dem Algorithmus der modellprädiktiven Regelung wird dann $\Delta u[k] := \Delta u^*[k|k]$ gesetzt und mit dieser Steuergröße ergibt sich (unter der Annahme das keine Störgrößen oder Modellunbestimmtheiten auftreten) der Folgezustand $x[k+1] = x^*[k+1|k]$. Würde man dann im Zeitpunkt k+1 das Gütefunktional

$$\tilde{V}[k] = \sum_{i=1}^{H_p - 1} \|\hat{x}[k+1+i|k+1]\|_2^2$$
(4.36)

minimieren, so würde nach dem Bellmanschen Optimalitätsprinzip für die optimale Zustandstrajektorie $\tilde{x}^*[k+1+i|k+1] = x^*[k+1+i|k]$ $(i=1,\ldots,H_p-1)$ gelten. Jedoch löst man im Zeitpunkt k+1 die Aufgabe mit dem Gütefunktional

$$V[k+1] = \sum_{i=1}^{H_p} \|\hat{x}[k+1+i|k+1]\|_2^2$$
(4.37)

und bestimmt damit den im Allgemeinen von $\tilde{x}^*[k+1+i|k+1]$ abweichenden Verlauf $x^*[k+1+i|k+1]$. Weiter gilt dann $x[k+2]=x^*[k+2|k+1]$. Setzt man diese

Überlegung fort, so erhält man eine Trajektorie x[k+i] $(i=1,\ldots,H_p)$ des Zustandes im MPR-Regelkreis, die im Normalfall von der zum Zeitpunkt k bestimmten optimalen Prädiktion $x^*[k+i|k]$ abweichen wird (siehe Abb. 4.6).

Hätte der Prädiktionshorizont eine unendliche Länge, so würde der tatsächliche Verlauf der Zustandstrajektorie x[k+i] mit dem Verlauf der optimalen Prädiktion $x^*[k+i|k]$ übereinstimmen (falls keine Störgrößen wirken und keine Modellunbestimmtheiten auftreten). Bei einer endlichen Länge werden x[k+i] und $x^*[k+i|k]$ jedoch im Allgemeinen voneinander verschieden sein, so dass sich dann nicht nur die Güte des Regelkreises (gegenüber der aufgrund der Vorhersage $x^*[k+i|k]$ über dem Prädiktionshorizont erwarteten Güte) verschlechtern wird, sondern sogar ein instabiler Regelkreis resultieren kann.

Abbildung 4.6: Zur Abweichung zwischen der optimalen Trajektorie $x^*[k+i|k]$ und dem tatsächlichen Verlauf x[k+i] $(i=1,\ldots,H_p)$

Beispiel 4.4. Gegeben seien ein stabiler Prozess

$$x[k+1] = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} x[k] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[k]$$

und das quadratische Gütefunktional

$$V[k] = \hat{x}[k+1|k]^T \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix} \hat{x}[k+1|k].$$

Beschränkungen seien nicht vorhanden. Mit den Prozessgleichungen $\hat{x}_1[k+1|k] = \hat{u}[k|k]$ und $\hat{x}_2[k+1|k] = x_1[k|k] = x_1[k]$ erhält man

$$V[k] = \hat{x}_1[k+1|k]^2 + 6\hat{x}_2[k+1|k]^2 + 4\hat{x}_1[k+1|k]\hat{x}_2[k+1|k]$$
$$= \hat{u}[k|k]^2 + 6x_1[k]^2 + 4\hat{u}[k|k]x_1[k]$$

und weiter

$$\frac{\partial V[k]}{\partial \hat{u}[k|k]} = 2\hat{u}[k|k] + 4x_1[k] = 0 \quad \Leftrightarrow \quad \underbrace{\hat{u}[k|k]}_{=:u^*[k]} = -2x_1[k].$$

Der mit diesem (optimalen) Regelgesetz geschlossene Regelkreis wird durch die Differenzengleichung $x[k+1] = \begin{bmatrix} -2 & 0 \\ 1 & 0 \end{bmatrix} x[k]$ beschrieben und ist offensichtlich instabil. \Diamond

4.4.2 Stabilität des geschlossenen Kreises bei endlichem Optimierungshorizont durch eine Endbedingung für den Prozesszustand

Der folgende Satz liefert eine erste Aussage über die Stabilität einer modellprädiktiven Regelung.

Satz 6. Gegeben seien der Prozess $x[\kappa + 1] = f(x[\kappa], u[\kappa])$ mit stetigem f und einem stationären Punkt für $(x[\kappa], u[\kappa]) = (0,0)$. Das Gütefunktional sei

$$V[k] = \sum_{i=1}^{H_p} l(\hat{x}[k+i|k], \hat{u}[k+i-1|k])$$

mit stetigem $l,l(x,u) \geq 0$ und l(x,u) = 0 genau dann, wenn (x,u) = (0,0). Als Endbedingung sei $\hat{x}[k+H_p|k] = 0$ gegeben und die Beschränkungen seien $\hat{u}[k+i|k] \in U$ und $\hat{x}[k+i|k] \in X$ für gegebene Mengen U und X. Für jedes k existiert eine optimale Stellfolge $(u^*[k+1|k])_{i=0,1,\ldots,H_p-1}$ und es sei $u^*[k|k]$ die im Schritt k auf den Prozess aufgeschaltete Steuergröße.

Dann ist (x,u) = (0,0) eine asymptotische stabile Gleichgewichtslage des geschlossenen Kreises.

Beweis. O.B.d.A. sei $f(x[k],0) \neq 0$ für $x[k] \neq 0$. Die Funktion

$$(x[k],\hat{u}[k|k],\ldots,\hat{u}[k+H_p-1|k]) \mapsto V[k]$$

ist stetig und damit ist der Minimalwert

$$\mathcal{V}(x[k]) := \min_{\hat{u}[k|k], \dots, \hat{u}[k+H_p-1|k]} V[k]$$

stetig in x[k]. Wir zeigen jetzt, das \mathcal{V} eine strikte Ljapunov-Funktion für $x[k+1] = f(x[k], u^*[k|k])$ ist.

- 1. ", \mathcal{V} ist positiv definit":
 - Aus $l \geq 0$ folgt die Ungleichung $\mathcal{V}(x) \geq 0$.
 - Sei x[k] = 0. Setze $u^*[k|k] := 0$, dann folgt $x^*[k+1|k] = 0$, setze $u^*[k+1|k] := 0$, dann ist $x^*[k+2|k] = 0$ usw. Somit gilt $\mathcal{V}(x[k]) = 0$. Umgekehrt sei $\mathcal{V}(x[k]) = 0$. Wegen $f(x[k],0) \neq 0$, $l \geq 0$ und $l = 0 \Leftrightarrow (x,u) = (0,0)$ ist dann x[k] = 0. Also gilt $\mathcal{V}(x) \Leftrightarrow x = 0$.

2.
$$, \mathcal{V}(x[k+1]) < \mathcal{V}(x[k])$$
 für $x[k] \neq 0^{\circ}$:
$$\mathcal{V}(x[k+1]) = \min_{\hat{u}[k+1|k],...,\hat{u}[k+H_p|k]} \sum_{i=1}^{H_p} l\left(\hat{x}[k+i+1|k],\hat{u}[k+i|k]\right)$$

$$= \min_{...} \left\{ \sum_{i=1}^{H_p} l\left(\hat{x}[k+i|k],\hat{u}[k+i-1|k]\right) - l\left(\hat{x}[k+1|k],\hat{u}[k|k]\right) + l\left(\hat{x}[k+H_p+1|k],\hat{u}[k+H_p|k]\right) \right\}$$

$$\leq \min_{\hat{u}[k+1|k],...,\hat{u}[k+H_p-1|k]} \left\{ \sum_{i=1}^{H_p} l\left(\hat{x}[k+i|k],\hat{u}[k+i-1|k]\right) - l\left(\hat{x}[k+1|k],\hat{u}[k|k]\right) \right\} +$$

$$= \min_{\hat{u}[k+H_p|k]} \sum_{i=1}^{H_p} l\left(\hat{x}[k+H_p+1|k],\hat{u}[k+H_p|k]\right)$$

$$= \min_{\hat{u}[k+H_p|k]} \sum_{i=1}^{H_p} l\left(\hat{x}[k+H_p+1|k],\hat{u}[k+H_p|k]\right) - l\left(\hat{x}[k+H_p|k],\hat{u}[k+H_p|k]\right)$$

$$= \underbrace{\nu(x[k])}_{\hat{u}[k+H_p|k]} \sum_{i=1}^{H_p} l\left(\hat{x}[k+H_p+1|k],\hat{u}[k+H_p|k]\right)$$

$$= \underbrace{\nu(x[k])}_{\hat{u}[k+H_p|k]} \sum_{i=1}^{H_p} l\left(\hat{x}[k+H_p+1|k],\hat{u}[k+H_p|k]\right)$$

$$= \underbrace{\nu(x[k])}_{\hat{u}[k+H_p|k]} \sum_{i=1}^{H_p} l\left(\hat{x}[k+H_p+1|k],\hat{u}[k+H_p|k]\right)$$

$$= \underbrace{\nu(x[k])}_{\hat{u}[k+H_p|k]} \sum_{i=1}^{H_p} l\left(\hat{x}[k+H_p+1|k],\hat{u}[k+H_p|k]\right)$$

Bemerkung 4.3. Für den Satz 6 gibt es allgemeinere Formulierungen. So kann dieser Satz z.B. auf die Endbedingung $\hat{x}[k+H_p|k]=r[k+H_p|k]\neq 0$, d.h. auf den Dall beliebiger Referenztrajektorien, und auf die Bewertung der Steuergrößendifferenz Δu (anstelle bzw. zusätzlich zur Steuergröße u) erweitert werden.

Die Voraussetzung der Existenz einer optimalen Steuerfolge mit der in H_p Schritten der Zustand x=0 erreicht wird, ist eine sehr starke Voraussetzung, die z.B. bei einem kurzen Horizont H_p und bei Steuergrößenbeschränkungen häufig nicht erfüllt ist. Wie im nächsten Abschnitt gezeigt wird, kann diese Voraussetzung insbesondere für lineare Prozesse abgeschwächt werden, indem der Endzustand lediglich geeignet gewichtet wird.

4.4.3 Stabilität des geschlossenen Kreises bei endlichem Steuerhorizont durch eine Gewichtung des Endzustandes

Wie betrachten zunächst die Aufgabe mit quadratischem Gütefunktional bei unendlichem Optimierungshorizont (d.h. einem unendlichen Steuer- und Prädiktionshorizont)

$$V[k] = \sum_{i=1}^{\infty} \|Q_x \hat{x}[k+i|u]\|_2^2 + \sum_{i=0}^{\infty} \|Q_{\Delta u}[k+i|k]\|_2^2 \to \min.$$
 (4.38)

Nach den Überlegungen in Abschnitt 4.4.1 gilt aufgrund des unendlichen Horizonts

$$x[k+i] = x^*[k+i|k]$$
 $(i=1,2,...),$ (4.39)

d.h. es kann aus dem Verlauf der optimalen Prädiktion auf das Verhalten (speziell auf die Stabilität) des MPR-Regelkreises geschlossen werden, denn falls V[k] einen endlichen Wert aufweist, so impliziert dies $x[k+i] \to 0$ für $i \to \infty$. Betrachtet man

Abbildung 4.7: Optimale Trajektorie $x^*[k+i|k]$ und dem tatsächlicher Verlauf x[k+i] bei unendlichem Horizont

hingegen einen endlichen Steuerhorizont und einen unendlichen Prädiktionshorizont

$$V[k] = \sum_{i=1}^{\infty} \|Q_y \hat{y}[k+i|k]\|_2^2 + \sum_{i=0}^{H_u-1} \|Q_{\Delta u}[i] \Delta \hat{u}[k+i|k]\|_2^2 \to \min.$$
 (4.40)

so gilt aufgrund von $H_u < \infty$ die Gleichung (4.39) im Allgemeinen nicht mehr. Im Weiteren wird vorausgesetzt, dass der Prozess stabil sei, das Paar (A,Q_yC_y) beobachtbar ist und für die Steuergröße am Ende des Steuerhorizontes $\hat{u}[k+H_u|k]=0$ gilt, was dann wegen (4.4) auch $\hat{u}[k+H_u+i|k]=0 \forall i\geq 0$ impliziert. Somit gelten

$$\hat{y}[k + H_u + i|k] = C_y A^i \hat{x}[k + H_u|k]$$
 $(i = 1, 2, ...)$

und

$$\sum_{i=H_u}^{\infty} \|Q_y \hat{y}[k+i|k]\|_2^2 = \hat{x}[k+H_u|k]^T \underbrace{\left(\sum_{i=0}^{\infty} \left(A^T\right)^i C_y^T Q_y^T Q_y C_y A^i\right)}_{=:\bar{O}} \hat{x}[k+H_u|k].$$

Da die Matrix A stabil ist, existiert die Matrix \bar{Q} und kann als eindeutige Lösung der Ljapunov-Gleichung

$$A^T \bar{Q} A = \bar{Q} - C_y^t Q_y^T Q_y C_y \tag{4.41}$$

bestimmt werden. Da (A,Q_yC_y) beobachtbar ist, ist \bar{Q} positiv definit. Damit gilt

$$V[k] = \hat{x}[k + H_u|k]^T \bar{Q}\hat{x}[k + H_u|k] + \sum_{i=1}^{H_u-1} \|Q_y\hat{y}[k+i|k]\|_2^2 + \sum_{i=0}^{H_u-1} \|Q_{\Delta u}[i]\Delta \hat{u}[k+i|k]\|_2^2 < +\infty$$

$$(4.42)$$

also ist insbesondere auch

$$\mathcal{V}(x[k]) := \min_{\Delta \hat{u}[k|k],\dots,\Delta \hat{u}[k+H_u-1|k]} V[k] < +\infty. \tag{4.43}$$

Man findet

$$\mathcal{V}(x[k+1]) \le \mathcal{V}(x[k]) - \|Q_y z^*[k+1|k]\|_2^2 - \|Q_{\Delta u} \Delta u^*[k|k]\|_2^2.$$

also gilt $\mathcal{V}(x[k+1]) \leq \mathcal{V}(x[k])$. Weiter wird in ? gezeigt, dass es im Fall $x[k] \neq 0$ ein $i_0 \in \{1, \ldots, n_x\}$ gibt, wobei n_x die Länge des Vektors x[k] bezeichnet, so dass sogar $\mathcal{V}(x[k+i_0]) < \mathcal{V}(x[k])$ erfüllt ist. Wegen $\mathcal{V} \geq 0$ und \mathcal{V} stetig, ist \mathcal{V} eine Ljapunov-Funktion zur Gleichgewichtslage x=0. Und bei geeigneter Indizierung ist \mathcal{V} sogar eine strikte Ljapunov-Funktion. Weiter folgt aus $||x[k]||_2 \to +\infty$ dann $\mathcal{V}(x[k]) \to +\infty$. Also ist der geschlossene Regelkreis asymptotisch stabil!

Bemerkung 4.4. Wegen (4.42) ergibt sich eine Aufgabe mit endlichem Prädiktionshorizont bzw. Steuerhorizont und einer Gewichtung des Endzustandes durch die positiv definite Matrix \bar{Q} . Diese Gewichtungsmatrix kann gemäß (4.41) durch das MAT-LAB-Kommando $\bar{Q} = \mathtt{dlyap}\left(A^T, C_y^T Q_y^T Q_y C_y\right)$ bestimmt werden. Die Gewichtung des Endzustandes ist praktisch eine wesentlich schwächere Voraussetzung als das Einführen einer Endbedingung der Form $\hat{x}[k+H_u|k]=0$ wie in Abschnitt 4.4.2.

Die beschriebene Vorgehensweise kann auf instabile Prozesse, auf von Null verschiedene Referenztrajektorien, auf beschränkte Steuer- und Regelgrößen sowie auf $\|.\|_1$ - und $\|\cdot\|_{\infty}$ -Gütefunktionale erweitert werden.

Literaturverzeichnis

[GMW81] GILL, P.E.; MURRAY, W.; WRIGHT, M.H.:

 $Practical\ optimization.$

Academic Press, 1981 https://books.google.de/books?

id=xUzvAAAAMAAJ. -

ISBN 9780122839504

Anhang

Α	Übungen	A-3
	Kapitel 1	A-3
	Kapitel 2	A-3
	Kapitel 3	A-3
	Kapitel 4	A?

A Übungen

Kapitel 1

Kapitel 2

Kapitel 3

Kapitel 4