CS & IT ENGINEERING

C Programming

Pointers & Arrays

Lecture No.- 06

Recap of Previous Lecture

- Assays Memory Layout
 - -RMO
 - -cMO
 - Pointers & Arrays
 - Pointer, to an individual Element of array
 - Pointer to whole array
 - Array of Pointers

Topics to be Covered

- PYQ solving
- Pointers & 2-D arrays
- Array of Pointers

#Q. What does the following fragment of C-program print?

- (A) GATE2011
- P+ 71-69 (B) ATE2011
- (C) TE2011 P+2
- (D) 2011

$$P[0] = *(P+0) = G'$$
 $P[3] = *(P+3) = E'$


```
#Q. What is printed by the following
C program?
#include <stdio.h>
int f(int x, int *py, int **ppz)
                               PPZ
int y, z;
                 47
                                AW
 **ppz += 1;
 z = **ppz;
             Z=5
 *py += 2;
 y = *py;
 x += 3; x=x+3
             メニナ
 return x + y + z;
        7+7+5=19
```

```
void main()
                           A
 int c, *b, **a;
  c = 4;
  b = &c;
  a = \&b;
  printf( "%d", f(c,b,a));
  getchar();
                deturned 19
                B. 19
A. 18
                D. 22
C. 21
```

Let B=1000, 1 int = 4 Bytes

Pointers & 2-D arrays

int A[3][4] = { 2,4,6,8,10,12,14,16,18,20, 22,24};

A+1 = 1016 = A[i][]A+2 = 1032 = A[2][]A+i = A[2][] ellers
ellers
ellers

A+0=1000= PA[0]

 $A \Rightarrow 1000$ $(A+0)+1 \Rightarrow 1004 = \{A[0][1]$ $(A+1)+2 \Rightarrow 1024 = \{A[1][2]$ $(A+2)+3 \Rightarrow 1044 = \{A[2][3]^{2}$ $(A+\lambda)+j \Rightarrow \{A[\lambda][j]$

	0	1			2_		3
	1000		1004		1008		1012
2		4		6		8	
	1016		1020		1024		1028
10		12		14		16	
	1032		1036		1040		1044
18		20		22		4	

V	6	1	2	3
X = A+0	2	4	6	8
loc X+c	00	1004 X+1	8 out	1012 X+3
V -	0	1	2	3
=A+1	10	12-	14	16
A+0		020 1+1	1024 y+2 2	1028
A+2	18	20	22	24
los	2	1036	040	1044

Int A[3][4] = {2,4,6,8,10,12,14,16,18,20,22,243;

A+0 == *(A+0) == Pointer Pointing to row 0 == 1000 A+1 == *(A+1) == Pointer Pointing to row 1 == 1016 Row-1 A+2 == *(A+2) == Pointer Pointing to row 2 == 1032 A+2 == *(A+2) == Pointer Pointing to row 2 == 1032

among Ati == *(Ati) == Pointer Pointing to Row i == {A[i][]

$$(A+i) == *CA+i) == {A[i][]} = Addren of Rowi, Colidarian of Rowi, Colidarian of Rowi, Colidarian of Afilian of Rowi, Colidarian of Afilian of Rowi, Colidarian of Rowin, Colidarian of Rowin,$$

9nt
$$X[4][5] = \begin{cases} \begin{cases} 10, 15, 5, 9, 76, \\ 1, 3, 5, 7, 96, \end{cases}$$

 $\begin{cases} 2, 4, 6, 8, 106, \\ 11, 22, 33, 44, 55 \end{cases}$

1	ر	U	1	2	3	4
		2000	2004	2008	12012	(2016
ROND	10		15	5	9	7
)	1	2020	3	5 2028	7 2032	9 2036
2	2	2040	4 2044	6	8 (2052	10 2056
		2060	(2064	2068	(2072	2076
3	h		27	33	44	22

**
$$x+2== *(*(x+0)+0)+2= x[0][0]+2=10+2=12$$

($x+1$)+2== *(*($x+0$)+1)+2= $x[0][1]+2==15+2=17$

$$\frac{X+2+6}{\pm}$$
 \pm $(x+2)+6$ $==x+8 \Rightarrow$ Ron 8 Bage address (out of bounds)

$$*(*x+3) = = *(*(x+0)+3) = x[0][3] = = 9$$

$$**x+2+1== **x+3=10+3=13$$

 $(**x+2)+1== (10+2)+1=13$

#Q. What is the output of the following C code? Assume that the address of x is 2000 (in decimal) and an integer requires four bytes of memory.

```
#include <stdio.h>
int main()
                                                                                           2018
                                                                                  2004
                                                                         2000
                                                                         2012
                                                                                  2016
                                                                                           2020
 unsigned int x[4][3] = \{\{1, 2, 3\}, \{4, 5, 6\},
                                                                                  2028
                                                                                           2032
                                                                        2024
                  {7, 8, 9}, {10, 11, 12}};
                                                     Pointer to Row2
  printf("%u, %u, %u", x+3, *(x+3), *(x+2)+3);
                                                                                  2040
                                                                        2036
                                                                                            2044
                                                          X+3 7
                                           2024 +3*4
                          RON 3
                                                      * (*+3)
                                   2036
                          =2036
                                           = 2036
                                                        Pointer to Row 3
```

A. 2036, 2036, 2036

B. 2012, 4, 2204

C. 2036, 10, 10

D. 2012, 4, 6

#Q. What will be the output of the C program, if executed on a 32-bit processor?

is Pointer, Pointing to array of 5 Elements,

int x[5]= {1,22,33,44,559, *P, (*9)[5];

Let B=1000 ps

P++; //1004 P++; //1020

Prints ("/u", P); // 1000 Prints ("/u", 9); // 1000

X 11 22 33 44 55 P 9

2 mins Summary

- PYA Practice
- Pointers with 2-Darrays
- Pointer to an Element
- Pointer to whole array

To be contd ...

THANK - YOU