

Alina Shaikhet



#### HeapSort is an in-place sorting algorithm

Given: min-heap as array a of n numbers



Given: min-heap as array a of n numbers

**Goal:** array a, containing the same elements but in sorted order.



HeapSort is an **in-place** algorithm!

# HeapSort(a)

a: heap part sorted part 0 i n-1

**Input:** array a of n numbers

**Output:** array a, containing the same elements in sorted order.

#### buildMinHeap(a);

```
i=n-1; while i \geq 1 do: swap a[0] and a[i]; i--; n--; minHeapify(0);
```

a[0...i] is a heap, a[i+1...n-1] contains the n-i-1smallest elements in sorted order

# HeapSort(a)

a: heap part sorted part 0 i n-1

**Input:** array a of n numbers

**Output:** array a, containing the same elements in sorted order.

#### buildMinHeap(a);

while  $n \ge 1$  do: swap a[0] and a[n-1]; n--; minHeapify(0); a[0...i] is a heap, a[i+1...n-1] contains the n-i-1smallest elements in sorted order

$$O(n) + O(\log(n-1) + \log(n-2) + \cdots + \log 3 + \log 2) = O(n \log n)$$
 build heap while loop

# HeapSort(a)

a: heap part sorted part 0 i n-1

**Input:** array a of n numbers

**Output:** array a, containing the same elements in sorted order.

#### buildMinHeap(a);

```
while n \ge 1 do:

swap a[0] and a[n-1];

n--;

minHeapify(0);
```

buildMinHeap(
$$a$$
);  
for ( $j = 0$ ;  $j < n$ ;  $i + +$ ) do:  
 $x = removeMin()$ ;  
 $a[n - 1 - j] = x$ ;

$$O(n) + O(\log(n-1) + \log(n-2) + \cdots + \log 3 + \log 2) = O(n \log n)$$
 build heap while loop

#### Theorem 11.4

The **HeapSort** algorithm sorts an array containing n elements in  $O(n \log n)$  worst-case time and performs at most  $2n \log n + O(n)$  comparisons.

#### How to build a heap in O(n) time?

$$2^0 + 2^1 + 2^2 + \dots + 2^k = 2^{k+1} - 1$$



#### How to build a heap in O(n) time?

All a[i],  $\lfloor n+1/2 \rfloor \leq i \leq n-1$ , are leaves.

minHeapify(i)

 $\boldsymbol{O}(\text{height of } \boldsymbol{i})$ 

height of the root is  $\lfloor \log n \rfloor$ 

height of a leaf is 0

Heap of size n has  $\lceil n/2 \rceil$  leaves.

Every node a[i], where  $\lfloor n+1/2 \rfloor \le i \le n-1$ , is a leaf

Most of the nodes have small height.



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor]$$
 downto  $0$ ): minHeapify( $i$ )



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor]$$
 downto  $0$ ): minHeapify( $i$ )



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \leq i \leq n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor]$$
 downto  $0$ ): minHeapify( $i$ )



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor]$$
 downto  $0$ ): minHeapify( $i$ )



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor \text{ downto } 0)$$
:  
minHeapify $(i)$ 



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \leq i \leq n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor \text{ downto } 0)$$
:  
minHeapify $(i)$ 



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor \text{ downto } 0)$$
:  
minHeapify $(i)$ 



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor \text{ downto } 0)$$
:  
minHeapify $(i)$ 



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor \text{ downto } 0)$$
:  
minHeapify $(i)$ 



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor]$$
 downto  $0$ ): minHeapify( $i$ )



A subtree rooted at a leaf is a heap!

All a[i],  $\lfloor n+1/2 \rfloor \le i \le n-1$ , are leaves.

**Input:** array a with n elements.

$$a = [11, 5, 9, 2, 16, 21, 6, 14, 8, 7], n = 10$$
  
 $i$  starts at  $\lfloor n+1/2 \rfloor - 1 = \lfloor n-1/2 \rfloor = 4$ 

for 
$$(i = \lfloor n-1/2 \rfloor \text{ downto } 0)$$
:  
minHeapify $(i)$ 



## Running Time of buildMinHeap(a)

#### minHeapify(i)

**0**(height of **i**)

$$T(n) \le 1 \cdot h + 2(h-1) + 2^2(h-2) + \dots + 2^{h-2} \cdot 2 + 2^{h-1} \cdot 1 =$$

$$= \sum_{i=1}^{h} 2^{h-i} \cdot i = 2^{h} \sum_{i=1}^{h} i \cdot \left(\frac{1}{2}\right)^{i}$$

$$\leq n \sum_{i=1}^{\infty} i \cdot \left(\frac{1}{2}\right)^{i} \leq O(n)$$

constant

 $h = \lfloor \log n \rfloor \le \log n$  $2^h \le 2^{\log n} = n$ 

| level | height | # of nodes            |
|-------|--------|-----------------------|
| 0     | h      | 1                     |
| 1     | h-1    | 2                     |
| 2     | h-2    | <b>2</b> <sup>2</sup> |
| 3     | h-3    | $2^3$                 |
| •••   | •••    | •••                   |
| h-1   | 1      | $2^{h-1}$             |
| h     | 0      | $\leq 2^h$            |

#### Randomized Meldable Heap

**MeldableHeap** is a priority **Queue** implementation in which the underlying structure is a heap-ordered binary tree with no restrictions on its shape.

• makeHeap(x) – returns a heap containing only x



• merge $(h_1,h_2)$  – returns a heap that contains all the elements in  $h_1$  and  $h_2$ 



# $merge(h_1, h_2)$

This operation can be defined recursively.

- If either  $h_1$  or  $h_2$  is null, then we are merging with an empty set, so we return  $h_2$  or  $h_1$ , respectively.
- Otherwise, assume  $h_1.x \le h_2.x$ .

if 
$$h_1.x > h_2.x$$
 then swap  $h_1 \leftrightarrow h_2$ 

- The root of the merged heap will contain  $h_1$ . x
- Recursively merge  $h_2$  with  $h_1$ .left or  $h_1$ .right, as we wish.

to decide we toss a coin



# $merge(h_1, h_2)$ (50) (8)

# $merge(h_1, h_2)$

```
merge(h_1, h_2):
    if (h_1 = \text{null}) then return h_2;
    if (h_2 = \text{null}) then return h_1;
    if (h_1, x > h_2, x) then swap h_1 \leftrightarrow h_2;
    if (coin comes up heads) then
        h_1.left = merge(h_1.left, h_2);
        h_1.left.parent = h_1;
    else
        h_1.right = merge(h_1.right, h_2);
        h_1.right.parent = h_1;
                                             O(\log n)
    return h_1;
```

# Analysis of merge( $h_1$ , $h_2$ )

#### A random walk in a binary tree

- starts at the root of the tree.
- at each step a coin is tossed and, depending on the result, the walk proceeds to the left or to the right child of the current node.
- the walk ends when it falls off the tree

#### Lemma 10.1:

The expected length of a random walk in a binary tree with n nodes is at most log(n + 1).



$$n_1+n_2=n-1$$

# add(x)

We create a new node u containing x and then merge u with the root of our heap

```
boolean add(x):

Node<T> u = newNode();

u. x = x;

r = merge(u, r);

r.parent = null;

n + +;

return true;
```

 $O(\log n)$  expected time

# removeMin()

The node we want to remove is the root, so we just merge its two children and make the result the root:

```
T removeMin():

T x = r.x;

r = merge(r.left, r.right);

if (r \neq null) then

r.parent = null;

n - -;

return x;
```

 $O(\log n)$  expected time

## remove(u)

Remove the node u (and its key u. x) from the heap:

```
T remove (u):
    \top x = u.x;
    Node h = merge(u.left, u.right);
    delete(u);
    r = merge(r, h);
    if (r \neq \text{null}) then
         r.parent = null;
    n--;
    return x;
```



 $O(\log n)$  expected time

#### Theorem 10.2

A **MeldableHeap** implements the (priority) **Queue** interface. A **MeldableHeap** supports the operations add(x) and removeMin() in  $O(\log n)$  expected time per operation.