

Faster Machine Learning with Custom Built TensorFlow on Eagle

Paul Diaz 04/26/2021

Outline

- 1 What is TensorFlow (TF)?
- 2 Optimized TF version for Eagle
- 3 How to install
- 4 How to test & benchmark TF
- 5 Available TF resources

What is TensorFlow?

A symbolic math library (fancy calculator) for machine learning

- Developed by Google in 2017
- Comparable to PyTorch (Facebook)
- Python and C APIs available for 64-bit Linux/macOS/Windows
- Without API backwards compatibility for: C++, GO, Java, and JS
- 3rd party packages for: C#,
 Haskell, Julia, MATLAB, R,
 Scala, Rust, Ocam, and Crystal

Why use TensorFlow?

TF includes build-in functionality for:

- Regression
- Clustering
- Classification
- Hidden Markov Models
- Neural Networks: Dense,
 Convolutional, Recurrent
- Reinforcement Learning
- Variety of activation functions, loss functions, and optimizers

TF is designed to run on CPUs and CUDA enabled GPUs

Keras integration for TF 2.0+

Installing TensorFlow

Generally, TensorFlow for Python can be installed with Pip or Conda, e.g.,

Conda (with the anaconda channel):

conda install -c anaconda tensorflow-gpu=2.2

Works for GPU computing with proper CUDA configuration*, not optimized for CPUs

Pip:

pip install --upgrade tensorflow==2.2.0

Optimized for CPUs, likely not compatible with GPUs/Eagle CUDA drivers

Optimized for CPU means the TF build is made such that it utilizes the AVX512 instructions

OR....

Optimized TensorFlow Builds for Eagle

Hardware-optimized versions

- 2.0.0, 2.2.0, 2.2.1, 2.3.2, and 2.4.0
- Easily installed from Eagle /nopt/

Benefits

- Compatible with Eagle CUDA drivers
- Optimized for AVX-512 chip architecture
- GPU Enabled

GPU AI Benchmark Scores (bigger is better!)

https://pypi.org/project/ai-benchmark/

https://ai-benchmark.com/ranking.html

Optimized TensorFlow Builds for Eagle

- 1. MobileNet-V2 [classification]
- 2. Inception-V3 [classification]
- 3. Inception-V4 [classification]
- 4. Inception-ResNet-V2 [classification]
- 5. ResNet-V2-50 [classification]
- 6. ResNet-V2-152 [classification]
- 7. VGG-16 [classification]
- 8. SRCNN 9-5-5 [image-to-image mapping]
- 9. VGG-19 [image-to-image mapping]
- 10. ResNet-SRGAN [image-to-image mapping]
- 11. ResNet-DPED [image-to-image mapping]
- 12. U-Net [image-to-image mapping]
- 13. Nvidia-SPADE [image-to-image mapping]
- 14. ICNet [image segmentation]
- 15. PSPNet [image segmentation]
- 16. DeepLab [image segmentation]
- 17. Pixel-RNN [inpainting]
- 18. LSTM [sentence sentiment analysis]
- 19. GNMT [text translation]

GPU AI Benchmark Scores (bigger is better!)

Al Benchmark Rankings

Deep Learning Hardware Ranking

Desktop GPUs and CPUs

View Detailed Results										
Model	TF Version	Cores	Frequency, GHz	Acceleration	Platform	RAM, GB	Year	Inference Score	Training Score	Al-Score
Tesla V100 SXM2 32Gb	2:1.0	5120 (CUDA)	129 / 153	CUDA 10.1	Debian 10	32	2018	17761	18030	35791
Tesla V100 SXM2 16Gb	2:1.0	5120 (CUDA)	131/153	CUDA 10.1	Red Hat 7.5	16	2017	17251	17836	35086
Tesla V100 PCIE 32Gb	2.1.0	5120 (CUDA)	123/138	CUDA 10.1	Debian 10	32	2018	16530	17865	34394
Tesla V100 PCIE 16Gb	2:1.0	5120 (CUDA)	125/138	CUDA 10.1	Red Hat 7.5	16	2017	16511	17837	34347
NVIDIA Quadro GV100	114.0	5120 (CUDA)	113/163	CUDA 10	Debian 10	32	2018	16748	17132	33880

How to install optimized TF for Eagle & How to test

https://github.com/NREL/HPC/tree/master/workshops/Optimized_TF

Interested users can follow the steps outlined in the README.md file

How to benchmark

Note: the output of the benchmark script will be in a file named 'output.txt' and any errors can be viewed in 'errors.txt'

Note: The file 'TFbenchmark.sh' must be modified to include the correct modules of your target TF version, as well as the account to charge Eagle hours to.

cd ~/HPC/workshops/Optimized_TF/

sbatch --account=<account_name> ./TFbenchmark.sh

How to build from source

An example build process can be found in ~/HPC/workshops/Optimized_TF/how_to_build_notes

Note: This process is considerably more involved. Additional information may be found here:

https://www.tensorflow.org/install/source

Additional Resources

TensorFlow API Documentation:

https://www.tensorflow.org/api docs

TensorFlow build from source & tested build configurations:

https://www.tensorflow.org/install/source

TensorFlow 2 intro to machine learning free course:

https://www.youtube.com/watch?v=tPYj3fFJGjk

Eagle HPC Documentation:

https://www.nrel.gov/hpc/eagle-system.html

Managing Conda environments:

Click here

Q&A, Thank you!

www.nrel.gov

