1. The Duality of the ℓ_1 and ℓ_∞ Norms

For this problem, we will prove the duality of the ℓ_1 and ℓ_∞ norms. Recall that the ℓ_1 and ℓ_∞ norms, denoted by $\|\cdot\|_1$ and $\|\cdot\|_\infty$ respectively, are defined as follows for $\vec{x} \in \mathbb{R}^n$:

$$\|\vec{x}\|_1 = \sum_{i=1}^n |x_i|, \quad \|\vec{x}\|_{\infty} = \max_{i \in [n]} |x_i|.$$
 (1)

We will show that the ℓ_1 and ℓ_∞ norms are duals of each other; that is, we will show that:

$$\|\vec{x}\|_1 = \max_{\|\vec{y}\|_{\infty} = 1} \vec{y}^{\top} \vec{x} \text{ and } \|\vec{x}\|_{\infty} = \max_{\|\vec{y}\|_1 = 1} \vec{y}^{\top} \vec{x}.$$
 (2)

(a) To start, we will first prove the following inequality for all $\vec{x}, \vec{y} \in \mathbb{R}^n$:

$$\vec{x}^{\top} \vec{y} \le \|\vec{x}\|_{1} \|\vec{y}\|_{\infty} \,. \tag{3}$$

(b) Now, show that:

$$\max_{\|\vec{y}\|_{\infty}=1} \vec{y}^{\top} \vec{x} \ge \|\vec{x}\|_{1} \tag{4}$$

and using (a), conclude that $\|\vec{x}\|_1 = \max_{\|\vec{y}\|_\infty = 1} \vec{y}^\top \vec{x}.$

(c) Finally, show the following inequality:

$$\max_{\|\vec{y}\|_1=1} \vec{y}^\top \vec{x} \ge \|\vec{x}\|_{\infty} \tag{5}$$

and prove the second equality.

2. Sphere Enclosure

Let B_i , $i=1,\ldots,m$, be m Euclidean balls in \mathbb{R}^n , with centers \vec{x}_i , and radii $\rho_i \geq 0$. We wish to find a ball B of minimum radius that contains all the B_i , $i=1,\ldots,m$. Cast this problem as an SOCP.

3. A review of standard problem formulations

In this question, we review conceptually the standard forms of various problems and the assertions we can (and cannot!) make about each.

(a) Linear programming (LP).

(a) Write the most general form of a linear program (LP) and list its defining attributes.

	(b) Under what conditions is an LP convex?
(b)	Quadratic programming (QP). (a) Write the most general form of a quadratic program (QP) and list its defining attributes.
	(b) Under what conditions is a QP convex?
(c)	Quadratically-constrained quadratic programming (QCQP). (a) Write the most general form of a quadratically-constrained quadratic program (QCQP) and list its defining attributes.
	(b) Under what conditions is a QCQP convex?
(d)	Second-order cone programming (SOCP). (a) Write the most general form of a second-order cone program (SOCP) and list its defining attributes.

(b) Under what conditions is an SOCP convex?

(e) Relationships. Recall that

$$LP \subset QP_{\text{convex}} \subset QCQP_{\text{convex}} \subset SOCP \subset \{\text{all convex programs}\},$$
 (6)

where LP denotes the set of all linear programs, QP_{convex} denotes the set of all convex quadratic programs, etc. Which of these problems can be solved most efficiently? Why are these categorizations useful?