Probabilistic DIGing

I. BRIEF DESCRIPTION

The optimization problem is given by

(P1)
$$\Theta^* := \arg\min_{\Theta} \sum_{n=1}^{N} f_n(\Theta),$$
 (1)

where $\Theta \in \mathbb{R}^{d \times 1}$ is the model parameter and $f_n : \mathbb{R}^d \to \mathbb{R}$ is a local function composed of data stored at worker n.

A. Linear Regression

1) Loss Function: In this case, the local cost function at worker n is explicitly given by

$$f_n(\boldsymbol{\theta}) = \frac{1}{2} \| \boldsymbol{X}_n \boldsymbol{\theta} - \boldsymbol{y}_n \|^2, \tag{2}$$

where $X_n \in \mathbb{R}^{s \times d}$ and $y_n \in \mathbb{R}^{s \times 1}$ are private for each worker $n \in \mathcal{V}$ where s represents the size of the data at each worker.

- 2) Datasets: In this task, we will consider the following datasets (see Table 2 of http://cacr.uwaterloo.ca/techreports/2019/cacr2019-05.pdf):
 - Boston: https://github.com/benchopt/benchmark_ols/tree/master/datasets
 - Wine Quality: https://archive.ics.uci.edu/ml/datasets/wine+quality

B. Logistic Regression

1) Loss Function: In this subsection, we consider the L_2 -regularized binary logistic regression task. We assume that each worker n owns a data matrix $\mathbf{X}_n = (\mathbf{x}_{n,1}, \dots, \mathbf{x}_{n,s})^T \in \mathbb{R}^{s \times d}$ along with the corresponding labels vector $\mathbf{y}_n = (y_{n,1}, \dots, y_{n,s}) \in \{-1, 1\}^s$. The local cost function for worker n is then given by

$$f_n(\boldsymbol{\theta}) = \frac{1}{s} \sum_{j=1}^s \log \left(1 + \exp\left(-y_{n,j} \boldsymbol{x}_{n,j}^T \boldsymbol{\theta} \right) \right) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2,$$
 (3)

where λ is the regularization parameter.

1

- 2) Datasets: In this task, we will consider the following datasets:
- a1a: https://github.com/konstmish/opt_methods/tree/master/datasets
- mushrooms: https://github.com/konstmish/opt_methods/tree/master/datasets
- w8a: https://github.com/konstmish/opt_methods/tree/master/datasets
- madelon: https://github.com/benchopt/benchmark_logreg_12/tree/master/datasets
- covtype: https://github.com/benchopt/benchmark_logreg_12/tree/master/datasets

Dataset	Task	Model Size (d)	Number of Instances	Number of Workers (N)
	linear regression	50	1200	
	linear regression			
	logistic regression			
	logistic regression			

TABLE I: List of datasets used in the numerical experiments.

C. Websites for datasets

- https://www.openml.org/
- https://archive.ics.uci.edu/ml/datasets.php

D. Tasks

- Dataset preparation: download at least 4 datasets for each task (regression/classification) in the format X and y (as .npy files if possible, otherwise any format you are comfortable with).
- Strongly convex case
 - Start simple: implement DGD and DIGing for the linear regression + logistic regression cases.
 - Implement the probabilistic DIGing and experiment with different choice of the probability p.

(i)
$$p^k = \exp(-\frac{k}{T}), T > 0.$$

- Plots (need to think more about it):
 - (i) train/test loss (accuracy) or residuals vs. number of iterations.
- (ii) train/test loss (accuracy) or residuals vs. cumulative communication cost. How to define the cumulative communication cost in our context?

$$C_T^k = \sum_{n=1}^N d_n c^k \tag{4}$$

where c^k is the size of the variables exchanged at iteration k.

- Proof attempt.
- Stochastic version of above (double-check the literature).
- Non-convex case.