

EJERCICIOS UNIDAD 2

Indicaciones:

Se recomienda primero resolver cada ejercicio y después ver su solución.

1) Responde las siguientes preguntas:

- a) ¿Menciona al menos 3 características que presenta el álgebra booleana?
- b) ¿Qué operación representan las funciones OR, AND y NOT?
- c) ¿Qué es un valor o nivel lógico?
- d) ¿Qué es una tabla de verdad?
- e) Construya una tabla de verdad con tres variables de entrada y dibujar la tabla de verdad para R= BA+CB'
- 2) Dibuja la tabla de verdad para R= BA+CB'
- 3) Menciona 3 características de las compuertas OR.
- 4) ¿Cuál de las siguientes imágenes representa la compuerta OR?

- 5) Menciona 2 características de las compuertas AND.
- 6) ¿Cuál de las siguientes imágenes representa la compuerta AND?

- 7) Menciona 3 características de las compuertas NOT.
- 8) ¿Cuál de las siguientes imágenes representa la compuerta NOT?

Sistemas digitales.

Unidad II. Fundamentos de sistemas digitales

- 9) Escribe las salidas de cada una de las siguientes imágenes.
 - a)
- b)
 - $B \stackrel{A}{=} \bigcirc Y =$
- 10) De la siguiente tabla de verdad obtener los minitérminos y los maxitérminos.

Α	В	С	Salida (S)	
0	0	0	0	
0	0	1	0	
Ο	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	0	

- 11) De acuerdo a la siguiente tabla de verdad, utiliza los símbolos digitales para representar X.
- 12) De la siguiente tabla de verdad obtener los minitérminos y maxitérminos.

X	Υ	Z	Salida (S)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

13) Obtenen los maxiterminos a partir de la siguiente tabla de verdad y pasarlos a su forma estándar.

Α	В	С	X
0	0	0	1
0	0	1	1
0	1 0		0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

14) Escribe las salidas para los siguientes circuitos

a)

b)

c)

15) Genera la tabla de verdad para X a partir del diagrama

16) Diseña el diagrama correspondiente a la siguiente tabla de verdad.

Α	В	C	S=BC	T=A+B'	U=A'C	V=S+TU
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	1	1	0	1

17) Dibuja el diagrama equivalente de los siguientes circuitos.

b)
$$X \longrightarrow (X+Y+Z)'$$

18) A partir de la siguiente expresión, dibuja su correspondiente diagrama.

R=[(A+B+C)'(XYZ)]M'N'

- 19) Anota las leyes del algebra de Boole.
- 20) Anotar cuantos son y cuáles son los teoremas de De Morgan.
- 21) Simplifica las siguientes expresiones utilizando los teoremas de Boole.
 - a) S = xyz(x+y+z)
 - b) X= AB+ABC+ABCD
 - c) A= XYZ´+W´X+WXYZ
 - **d)** Z= (ABC´D)(A+B´+C´)+(AB´)(CD)

Sistemas digitales.

Unidad II. Fundamentos de sistemas digitales

22) Simplificar las siguientes expresiones, utilizando los teoremas de DeMorgan.

1.-
$$(x+y)'=x'y'$$
 2.- $(xy)'=x'+y'$

- **a)** W=[(ABC) ´+(A´B´C) ´] ´
- **b)** X=[(ABC) ´+(A ´B ´C)] ´+[AB ´C ´]
- **c)** Y=[(ABCD) ^ (AB) ^] ^*[(AC ^D)+(BD) ^] ^
- **d)** Z=[(A´C´D´)´+(AC)´]+[(BCD)+(BCD)´]
- 23) SIMPLIFICA y muestra EL CIRCUITO PARA Q=BC+(A+B')(A'C)
- 24) Simplifica las funciones utilizando mapas de Karnaugh.
 - a) S = xyz(x+y+z)
 - **b)** X= AB+ABC+ABCD
 - c) A= XYZ´+W´X+WXYZ
- 25) Obten la función Z de la tabla de verdad, y simplificarlas usando mapas de karnaugh.
- **26)** Simplifica la siguiente expresión usando mapas de Karnaugh. X=(A+B'+C)(A' B C')+A'BC'

27) A partir de la tabla de verdad reducir la función. Z.

	Α	В	С	D	Z
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
2 3 4	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	Χ
11	1	0	1	1	Χ
12	1	1	0	0	Χ
11 12 13 14	1	1	0	1	Χ
14	1	1	1	0	Χ
15	1	1	1	1	X

Cuando aparecen X en las tablas de verdad, estas también se agregan al mapa de karnaugh, y significa que la X puede tomar el valor que convenga para hacer la reducción, sin que se afecte el resultado final.

Sistemas digitales.

Unidad II. Fundamentos de sistemas digitales

28) A partir de la tabla de verdad siguiente hacer el circuito digital.

Α	В	С	D	Z
0	0	0	0	X
0	0	0	1	1
0	0	1	0	0
0	0	1	1	X
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

