Resultados dos Problemas de Otimização - Método do Gradiente Espelhado

Análise Computacional

16 de setembro de 2025

O Gradiente Espelhado (também conhecido como Mirror Descent) é um algoritmo de otimização que generaliza o método do gradiente descendente clássico. Ele é particularmente útil para problemas de otimização em espaços não-euclidianos e quando queremos incorporar informações sobre a geometria do problema através de uma função de distância.

1 Conceitos Fundamentais

1.1 Divergência de Bregman

O algoritmo do gradiente espelhado baseia-se na divergência de Bregman, que é uma generalização da distância euclidiana. Para uma função convexa ϕ , a divergência de Bregman é definida como:

$$D_{\phi}(x,y) = \phi(x) - \phi(y) - \langle \nabla \phi(y), x - y \rangle \tag{1}$$

onde $\nabla \phi(y)$ é o gradiente de ϕ no ponto y.

1.2 Função de Distância

No nosso algoritmo, utilizamos a função euclidiana:

$$\phi(x) = \frac{1}{2} ||x||^2 = \frac{1}{2} \sum_{i=1}^{n} x_i^2$$
 (2)

$$\nabla \phi(x) = x \tag{3}$$

Para esta função, a divergência de Bregman se reduz à distância euclidiana ao quadrado:

$$D_{\phi}(x,y) = \frac{1}{2} \|x - y\|^2 \tag{4}$$

2 Algoritmo do Gradiente Espelhado

2.1 Formulação do Problema

Dado um problema de minimização:

$$\min_{x \in \mathbb{R}^n} f(x) \tag{5}$$

onde f é uma função diferenciável.

2.2 Algoritmo

O algoritmo do gradiente espelhado funciona da seguinte forma:

[label=Passo 2:]

- 1. **Inicialização:** Escolha um ponto inicial x_0 e parâmetros $\eta > 0$ (taxa de aprendizado) e tolerância ϵ .
- 2. Iteração k:

$$[label=(b)]$$

- (a) Calcule o gradiente: $g_k = \nabla f(x_k)$
- (b) Resolva o subproblema:

$$x_{k+1} = \arg\min_{x} \left\{ \langle g_k, x \rangle + \frac{1}{\eta} D_{\phi}(x, x_k) \right\}$$
 (6)

(c) Verifique convergência: se $||x_{k+1} - x_k|| < \epsilon$, pare.

2.3 Resolução do Subproblema

Para a função euclidiana $\phi(x) = \frac{1}{2}||x||^2$, o subproblema se torna:

$$x_{k+1} = \arg\min_{x} \left\{ \langle g_k, x \rangle + \frac{1}{2\eta} ||x - x_k||^2 \right\}$$
 (7)

$$= \arg\min_{x} \left\{ \langle g_k, x \rangle + \frac{1}{2\eta} ||x||^2 - \frac{1}{\eta} \langle x_k, x \rangle + \frac{1}{2\eta} ||x_k||^2 \right\}$$
 (8)

Tomando o gradiente e igualando a zero:

$$g_k + \frac{1}{\eta}(x_{k+1} - x_k) = 0 (9)$$

Portanto:

$$x_{k+1} = x_k - \eta g_k \tag{10}$$

3 Implementação no Código

3.1 Estrutura Principal

O algoritmo implementado segue a seguinte estrutura:

def gradiente_espelhado(f, x0, eta, max_iter, tol, phi, phi_grad):
 x = x0
 fo = f(x0) # Valor inicial da função

for k in range(max_iter):
 # 1. Calcular gradiente
 grad_f = calcular_gradiente(f, x)

2. Resolver subproblema

```
x_novo, f_novo = resolver_subproblema(grad_f, x, eta, phi, phi_grad)

# 3. Verificar convergência
if ||x_novo - x|| < tol:
    break

x = x_novo
fo = f(x)

return x, fo, k</pre>
```

3.2 Cálculo do Gradiente

O gradiente é calculado numericamente usando diferenças finitas centrais:

```
def calcular_gradiente(f, x):
    n = len(x)
    grad = zeros(n)

for i in range(n):
    h = 1e-6
    x_plus = x.copy()
    x_plus[i] += h
    x_minus = x.copy()
    x_minus[i] -= h

    grad[i] = (f(x_plus) - f(x_minus)) / (2 * h)

return grad
```

3.3 Resolução do Subproblema

O subproblema é resolvido usando o otimizador BFGS do SciPy:

```
def resolver_subproblema(grad_f, x_atual, eta, phi, phi_grad):
    def funcao_subproblema(x):
        bregman_div = phi(x) - phi(x_atual) - dot(phi_grad(x_atual), x - x_atual)
        return dot(grad_f, x) + (1/eta) * bregman_div

resultado = minimize(funcao_subproblema, x0=x_atual)
    return resultado.x, resultado.fun
```

4 Vantagens do Gradiente Espelhado

- Generalização: Funciona em espaços não-euclidianos
- Flexibilidade: Permite incorporar informações geométricas através da função ϕ
- Convergência: Garante convergência para funções convexas
- Estabilidade: Mais robusto que o gradiente descendente clássico em alguns casos

5 Parâmetros do Algoritmo

No código implementado, os parâmetros utilizados são:

• Taxa de aprendizado (η): 0.01 (padrão)

• Máximo de iterações: 1000 (padrão)

• Tolerância: 10^{-6} (padrão)

• Precisão do gradiente: $h = 10^{-6}$ (diferenças finitas)

6 Problemas de Otimização

O algoritmo foi testado em 16 problemas de otimização da coleção Liu-Nocedal:

A tabela 1 apresenta os problemas de otimização não-linear resolvidos usando o método do Gradiente Espelhado (Mirror Descent) e o número de variáveis de cada problema.

Tabela 1: Problemas de otimização e número de variáveis

Problema	Número de Variáveis
ROSENBROCK	10
PENALTY	5
TRIGONOMETRIC	10
EXTENDED ROSENBROCK	10
EXTENDED POWELL	12
QOR	50
GOR	50
PSP	50
TRIDIAGONAL	10
ENGGVAL1	10
LINEAR MINIMUM SURFACE	9
SQUARE ROOT 1	16
SQUARE ROOT 2	16
FREUDENTHAL ROTH	10
SPARSE MATRIX SQRT	10
ULTS0	64

7 Resultados

A tabela 2 apresenta os resultados de convergência para cada problema, incluindo o número de iterações necessárias, o valor mínimo da função objetivo encontrado e a precisão da solução (norma do gradiente).

A tabela 3 apresenta as primeiras 5 variáveis da solução encontrada para cada problema. Para problemas com menos de 5 variáveis, apenas as variáveis disponíveis são mostradas.

Tabela 2: Resultados de convergência dos problemas de otimização

Problema	Iterações	Valor Mínimo	Precisão ($ \nabla f(x^*) $)	Tempo (s)
ROSENBROCK	0	0.0000000e+00	3.999688e-10	0.000s
PENALTY	332	9.147106e-02	9.737285 e - 05	0.336s
TRIGONOMETRIC	999	1.709066e-04	$6.868246 \mathrm{e}\text{-}03$	1.002s
EXTENDED ROSENBROCK	0	0.0000000e+00	8.943575 e-10	0.000s
EXTENDED POWELL	7	1.430492e + 35	1.591747e + 27	0.106s
QOR	716	1.175472e + 03	2.819951e-04	169.942s
GOR	999	1.381140e + 03	1.061535 e-01	209.612s
PSP	999	2.029601e+02	1.339710e+01	164.278s
TRIDIAGONAL	713	3.499057e-09	9.660990 e-05	0.659s
ENGGVAL1	464	9.177470e+00	9.722345 e-05	0.445s
LINEAR MINIMUM SURFACE	999	3.469804e+00	6.846937 e-01	15.453s
SQUARE ROOT 1	999	1.075595e-04	7.032637e-03	1.780s
SQUARE ROOT 2	999	4.521564 e-04	3.954493e-03	1.716s
FREUDENTHAL ROTH	3	8.915542e + 81	0.000000e+00	0.069s
SPARSE MATRIX SQRT	999	1.799093e-04	8.526912 e-03	1.451s
ULTS0	3	5.086273e + 28	0.000000e+00	1.047s

Tabela 3: Primeiras 5 variáveis das soluções encontradas

Problema	x1	x2	x 3	x4	x 5
ROSENBROCK	1.000000e+00	1.000000e+00	1.000000e+00	1.0000000e+00	1.000000e+00
PENALTY	9.815904e-01	9.815905e-01	9.815905 e-01	9.815904 e-01	9.815906e-01
TRIGONOMETRIC	6.055791e-02	6.273479e-02	6.530700 e-02	6.847020 e-02	7.277235e-02
EXTENDED ROSENBROCK	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00
EXTENDED POWELL	1.764691e+00	-9.190465e+07	1.895674e + 08	1.336783e+00	1.764693e+00
QOR	5.923306e-01	-7.111491e-01	6.285711 e- 02	-2.651213e+00	1.583524e+00
GOR	-1.789059e+00	-3.514595e-01	-3.031726e+00	-1.043714e-01	7.394256e+00
PSP	4.999685e+00	4.943255e+00	5.002957e+00	2.903052e+00	4.995765e+00
TRIDIAGONAL	1.000054e+00	5.000361e-01	2.500240 e-01	1.250159e-01	6.251044e-02
ENGGVAL1	9.010301e-01	5.458806e-01	6.512110 e-01	6.240699e-01	6.319669e-01
LINEAR MINIMUM SURFACE	3.404830e+00	6.562140e+00	6.361524e+00	6.568676e+00	4.510520e+00
SQUARE ROOT 1	8.316581e-01	-1.267529e-01	-6.284486e-01	-5.949608e-01	-7.664529e-01
SQUARE ROOT 2	7.378219e-01	-2.573644e-01	-6.349570e-02	-6.657820e -01	-7.189708e-01
FREUDENTHAL ROTH	-6.970890e-01	-3.857246e+11	-3.382124e+11	-3.381847e+11	-3.382064e+11
SPARSE MATRIX SQRT	8.316120e-01	-7.320686e-01	4.043655e-01	-2.611206e-01	-1.323311e-01
ULTS0	1.679770e + 06	-2.082768e+06	2.461385e+06	1.893953e + 06	6.565687e + 05