PRACTICE A

Snell's Law

- **1.** Find the angle of refraction for a ray of light that enters a bucket of water from air at an angle of 25.0° to the normal. (Hint: Use **Table 1.**)
- **2.** For an incoming ray of light of vacuum wavelength 589 nm, fill in the unknown values in the following table. (Hint: Use **Table 1.**)

	from (medium)	to (medium)	$ heta_i$	θ_r
a.	flint glass	crown glass	25.0°	?
b.	air	?	14.5°	9.80°
c.	air	diamond	31.6°	· .

3. A ray of light of vacuum wavelength 550 nm traveling in air enters a slab of transparent material. The incoming ray makes an angle of 40.0° with the normal, and the refracted ray makes an angle of 26.0° with the normal. Find the index of refraction of the transparent material. (Assume that the index of refraction of air for light of wavelength 550 nm is 1.00.)

SECTION REVIEW

- **1.** Sunlight passes into a raindrop at an angle of 22.5° from the normal at one point on the droplet. What is the angle of refraction?
- **2.** For each of the following cases, will light rays be bent toward or away from the normal?
 - **a.** $n_i > n_r$, where $\theta_i = 20^\circ$
 - **b.** $n_i < n_r$, where $\theta_i = 20^\circ$
 - c. from air to glass with an angle of incidence of 30°
 - **d.** from glass to air with an angle of incidence of 30°
- **3.** Find the angle of refraction of a ray of light that enters a diamond from air at an angle of 15.0° to the normal. (Hint: Use **Table 1.**)
- **4. Critical Thinking** In which of the following situations will light from a laser be refracted?
 - **a.** traveling from air into a diamond at an angle of 30° to the normal
 - **b.** traveling from water into ice along the normal
 - c. upon striking a metal surface
 - **d.** traveling from air into a glass of iced tea at an angle of 25° to the normal