Logică și Structuri Discrete -LSD

Cursul 10 – Logică propozițională dr. ing. Cătălin Iapă catalin.iapa@cs.upt.ro

De data trecută:

Logică - noțiuni generale Logică Propozițională Sintaxa Semantica Diagrame de decizie binară Forma normală conjunctivă

Sintaxa logicii propoziționale

```
Un limbai e definit prin
  simbolurile sale
  si regulile după care combinăm corect simbolurile (sintaxa)
Simbolurile logicii propozitionale:
  propozitii: notate deobicei cu litere p, q, r, etc.
  operatori (conectori logici): negatie \neg, implicatie \rightarrow, paranteze ()
Formulele logicii propoziționale: definite prin inducție structurală
  (construim formule complexe din altele mai simple)
O formulă e:
  orice propoziție (numită și formulă atomică)
  (\neg a) dacă a este o formulă
  (a \rightarrow \beta) dacă a și \beta sunt formule (a, \beta \text{ numite subformule})
```

Alți operatori (conectori) logici

Deobicei, dăm definiții *minimale* (cât mai puține cazuri) (orice raționament ulterior trebuie făcut pe toate cazurile)

Operatorii cunoscuți pot fi definiți folosind \neg și \rightarrow :

$$a \wedge \beta^{d} = \neg (a \rightarrow \neg \beta)$$
 (ŞI)
 $a \vee \beta^{d} = \neg a \rightarrow \beta$ (SAU)
 $a \leftrightarrow \beta^{d} = (a \rightarrow \beta) \wedge (\beta \rightarrow a)$ (echivalență)

Omitem parantezele redundante, definind precedența operatorilor.

Ordinea precedenței:
$$\neg$$
, \land , \lor , \rightarrow , \leftrightarrow

Implicația e asociativă *la dreapta*! $p \rightarrow q \rightarrow r = p \rightarrow (q \rightarrow r)$

Semantica unei formule: functii de adevăr

Definim riguros cum calculăm valoarea de adevăr a unei formule = dăm o *semantică* (înțeles) formulei (formula=noțiune *sintactică*)

O *funcție de adevăr v* atribuie oricărei formule o *valoare de adevăr* ∈ {T, F} astfel încât:

$$v(p)$$
 e definită pentru fiecare *propoziție* atomică p .

$$v(\neg a) =$$
 T dacă $v(a) = F$ F dacă $v(a) = T$ $V(a \rightarrow \beta) =$ F dacă $v(a) = T$ Si $V(\beta) = F$ T Si Cas Cas

Arbore de decizie binar

$$f = (a \lor b) \land (a \lor \neg c) \land (\neg a \lor \neg b \lor c)$$

$$f|_{a=T} = T \wedge T \wedge (\neg b \vee c) = \neg b \vee c$$

 $f|_{a=F} = b \wedge \neg c \wedge T = b \wedge \neg c$

De la arbore la diagramă de decizie binară

Forma normală conjunctivă (conjunctive normal form)

folosită pentru a determina dacă o formulă e realizabilă (poate fi T)

```
Def: Forma normală conjunctivă (a \lor \neg b \lor \neg d) clauză = conjuncție \land de clauze \land (\neg a \lor \neg b) clauză clauză = disjuncție \lor de literali \land (\neg a \lor c \lor \neg d) ... literal = propoziție sau negația ei \land (\neg a \lor b \lor c) clauză (p sau \neg p)
```

Exemplu: forma normală conjunctivă

Lucrăm din exterior

- 1) ducem *negațiile înăuntru* până la propoziții r. *de Morgan* dubla negație dispare $\neg \neg A = A$ *înlocuim implicațiile* dinspre exterior când ajungem la ele $p \rightarrow q = \neg p \lor q \qquad \neg (p \rightarrow q) = p \land \neg q$
 - 2) ducem disjuncția v înăuntrul conjuncției \land distributivitate

Exemplu:

$$\neg((a \land b) \lor ((a \rightarrow (b \land c)) \rightarrow c))$$
= $\neg(a \land b) \land \neg((a \rightarrow (b \land c)) \rightarrow c))$
= $(\neg a \lor \neg b) \land ((a \rightarrow (b \land c)) \land \neg c)$
= $(\neg a \lor \neg b) \land (\neg a \lor (b \land c)) \land \neg c$
= $(\neg a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor c) \land \neg c$

În cursul de azi

Cum determinăm dacă o formulă e *realizabilă*? *algoritm* folosit în rezolvarea multor probleme

Ce înseamnă o *demonstrație* logică?

Realizabilitatea unei formule în logică propozițională (SAT-problem/ satisfiability)

Demonstrație vs consecință logică

Realizabilitatea unei formule propoziționale (satisfiability)

Se dă o formulă în logică propozițională.

Există vreo atribuire de valori de adevăr care o face adevărată ? = e realizabilă (engl. satisfiable) formula ?

$$(a \lor \neg b \lor \neg d)$$

$$\land (\neg a \lor \neg b)$$

$$\land (\neg a \lor c \lor \neg d)$$

$$\land (\neg a \lor b \lor c)$$

Găsiți o atribuire care satisface formula?

Formula e în *formă normală conjunctivă* (conjunctive normal form) = conjuncție de disjuncții de *literali* (pozitiv sau negat)

Fiecare conjunct (linie de mai sus) se numește clauză

Reguli în determinarea realizabilității

Simplificăm problema, știind că vrem formula adevărată (NU se aplică la simplificarea formulelor în formule echivalente!)

R1) Un literal singur într-o clauză are o singură valoare utilă:

în
$$a \wedge (\neg a \vee b \vee c) \wedge (\neg a \vee \neg b \vee \neg c)$$
 a trebuie să fie T în $(a \vee b) \wedge \neg b \wedge (\neg a \vee \neg b \vee c)$ b trebuie să fie F (altfel formula are valoarea F)

Reguli pentru determinarea realizabilității (cont.)

R2a) Dacă un literal e T, *pot fi șterse clauzele* în care apare (ele sunt adevărate, le-am rezolvat)

R2b) Dacă un literal e F, *el poate fi șters* din clauzele în care apare (nu poate face clauza adevărată)

Exemplele anterioare se simplifică:

$$a \wedge (\neg a \vee b \vee c) \wedge (\neg a \vee \neg b \vee \neg c) \stackrel{a=\mathsf{T}}{\to} (b \vee c) \wedge (\neg b \vee \neg c)$$
 $(a \vee b) \wedge \neg b \wedge (\neg a \vee \neg b \vee c) \stackrel{b=\mathsf{F}}{\to} a$
(si de aici $a = T$, deci formula e realizabilă)

Reguli pentru determinarea realizabilității (cont.)

R3) Dacă *nu mai sunt clauze*, formula e realizabilă (cu atribuirea construită)

Dacă obținem o *clauză vidă*, formula *nu e realizabilă* (fiind vidă, nu putem s-o facem T)

$$(a \lor b) \land a \land (a \lor \neg b \lor c)^{a = T} (T \lor b) \land T \land (T \lor \neg b \lor c) \stackrel{R2a}{\rightarrow}$$

stergem toate clauzele (contin T, le-am rezolvat)
 \Rightarrow formulă realizabilă (cu $a = T$)

$$a \wedge (\neg a \vee b) \wedge (\neg b \vee c) \wedge (\neg a \vee \neg b \vee \neg c)$$

$$\stackrel{a = \mathsf{T}}{=} b \wedge (\neg b \vee c) \wedge (\neg b \vee \neg c)$$

$$\stackrel{b = \mathsf{T}}{=} c \wedge \neg c \stackrel{c = \mathsf{T}}{=} \varnothing \quad (\neg c \text{ devine clauza vidă} \Rightarrow \text{nerealizabilă})$$

Reguli pentru determinarea realizabilității (cont.)

Dacă *nu mai putem face reduceri* după aceste reguli ? $a \wedge (\neg a \vee b \vee c) \wedge (\neg b \vee \neg c) \stackrel{a=T}{\rightarrow} (b \vee c) \wedge (\neg b \vee \neg c)$?

R4) Alegem o variabilă și despărțim pe cazuri (încercăm):

- cu valoarea F
- cu valoarea T

O soluție pentru *oricare* caz e bună (nu căutăm o soluție anume).

Dacă *niciun caz* nu are soluție, formula *nu e realizabilă*.

Realizabilitatea unei formule în logică propozițională (SAT-problem/ satisfiability)

Demonstrație vs consecință logică

Sintaxă și semantică

Pentru logica propozițională, am discutat:

```
Sintaxa: o formulă are forma: propoziție sau (¬ formulă) sau (formulă → formulă)
```

Semantica: calculăm valoarea de adevăr (înțelesul), pornind de la cea a propozițiilor

$$v(\neg a) = egin{array}{ll} T & \operatorname{dacă} \ v(a) = F \\ F & \operatorname{dacă} \ v(a) = T \end{array}$$
 $v(a \rightarrow \beta) = egin{array}{ll} F & \operatorname{dacă} \ v(a) = T \ ext{si} \ v(\beta) = F \\ T & ext{in caz contrar} \end{array}$

Deducții logice

Deducția ne permite să demonstrăm o formulă în mod *sintactic* (folosind doar structura ei)

E bazată pe o regulă de inferență (de deducție)

$$\frac{A \quad A \rightarrow B}{B}$$
 modus ponens

(din $A ext{ si } A o B ext{ deducem/inferăm } B$; $A, B ext{ formule oarecare}$)

și un set de axiome (formule care pot fi folosite ca premise/ipoteze)

A1: $a \rightarrow (\beta \rightarrow a)$

A2: $(a \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((a \rightarrow \beta) \rightarrow (a \rightarrow \gamma))$

A3: $(\neg \beta \rightarrow \neg a) \rightarrow (a \rightarrow \beta)$

în care a, β etc. pot fi înlocuite cu *orice* formule

A1 - A3 sunt tautologii

Deducție (demonstrație)

Informal, o deducție (demonstrație) e o *înșiruire de afirmații* în care fiecare *rezultă* (poate fi derivată) din cele *anterioare*.

Riguros, definim:

Fie *H* o mulțime de formule (ipoteze).

O *deducție* (demonstr.) din H e un șir de formule $A_1, A_2,..., A_n$, astfel ca $\forall i \in [1, n]$

- 1. Ai este o axiomă, sau
- 2. Ai este o ipoteză (o formulă din H), sau
- 3. A_i rezultă prin *modus ponens* din A_j , A_k anterioare (j, k < i)

Spunem că A_n rezultă din H (e deductibil, e o consecință). Notăm: $H \vdash A_n$

Exemplu de deducție

Demonstrăm că
$$A \rightarrow A$$
 pentru orice formulă A
(1) $A \rightarrow ((A \rightarrow A) \rightarrow A))$ A1 cu $a = A$, $\beta = A \rightarrow A$
(2) $A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$
 $A2$ cu $a = \gamma = A$, $\beta = A \rightarrow A$
(3) $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$ MP(1,2)
(4) $A \rightarrow (A \rightarrow A)$ A1 cu $a = \beta = A$
(5) $A \rightarrow A$ MP(3,4)

Verificarea unei demonstrații e un proces simplu, mecanic (verificăm motivul indicat pentru fiecare afirmație; o simplă comparație de șiruri de simboluri).

Găsirea unei demonstrații e un proces mai dificil.

Alte reguli de deducție

Modus ponens e suficient pentru a formaliza logica propozițională dar sunt și alte reguli de deducție care simplifică demonstrațiile

$$\frac{p \to q \quad \neg q}{\neg p} \qquad \text{modus tollens (reducere la absurd)}$$

$$\frac{p}{p \lor q} \qquad \text{generalizare (introducerea disjuncției)}$$

$$\frac{p \land q}{p} \qquad \text{specializare (simplificare)}$$

$$\frac{p \lor q \quad \neg p}{q} \qquad \text{eliminare (silogism disjunctiv)}$$

$$\frac{p \to q \quad q \to r}{p \to r} \qquad \text{tranzitivitate (silogism ipotetic)}$$

Deducția (exemplu)

```
Fie H = \{a, \neg b \lor d, a \to (b \land c), (c \land d) \to (\neg a \lor e)\}.
Arătati că H \vdash e.
(1) a
                                                                       ipoteză, H₁
(2) a \rightarrow (b \wedge c)
                                                                       ipoteză, H<sub>3</sub>
(3) b \wedge c
                                                           modus ponens (1, 2)
                                                                  specializare (3)
(4) b
                                                                eliminare (4, H_2)
(5) d
                                                                  specializare (3)
(6) c
                                                                         (5) si (6)
(7) c \wedge d
                                                         modus ponens (7, H_4)
(8) ¬a ∨ e
                                                                 eliminare (1, 8)
(9) e
```

Consecința logică (semantică)

Interpretare = atribuire de adevăr pentru propozițiile unei formule. O formulă poate fi adevărată sau falsă într-o interpretare.

Def.: O mulțime de formule $H = \{H_1, \ldots, H_n\}$ implică o formulă C dacă orice interpretare care satisface (formulele din) H satisface C Notăm: $H \models C$

(C e o consecință logică / consecință semantică a ipotezelor H)

Consecința logică (semantică)

Ca să stabilim consecința semantică trebuie să interpretăm formule (cu valori/funcții de adevăr) ⇒ lucrăm cu semantica (înțelesul) formulelor

Exemplu: arătăm $\{A \lor B, C \lor \neg B\} \models A \lor C$

Cazul 1: v(B) = T. Atunci $v(A \lor B) = T$ și $v(C \lor \neg B) = v(C)$. Dacă v(C) = T, atunci $v(A \lor C) = T$, deci afirmația e adevărată.

Cazul 2: v(B) = F. La fel, reducem la $\{A\} \models A \lor C$ (adevărat).

Consistență și completitudine

 $H \vdash C$: deducție (pur sintactică, din axiome și reguli de inferență) $H \models C$: implicatie, consecintă semantică (valori de adevăr)

Consistență:

Dacă H e o mulțime de formule, și C este o formulă astfel ca $H \vdash C$, atunci $H \models C$

(Orice teoremă e *validă*; orice afirmație obținută prin deducție e *întotdeauna adevărată*).

Consistență și completitudine

 $H \vdash C$: deducție (pur sintactică, din axiome și reguli de inferență)

 $H \models C$: implicație, consecință semantică (valori de adevăr)

Completitudine:

Dacă H e o mulțime de formule, și C e o formulă astfel ca $H \vdash C$, atunci $H \vdash C$.

(Orice tautologie e o teoremă, orice consecință semantică poate fi *dedusă* din *aceleași ipoteze*).

Consistență și completitudine

 $H \vdash C$: deducție (pur sintactică, din axiome și reguli de inferență)

 $H \models C$: implicație, consecință semantică (valori de adevăr)

Logica propozițională e consistentă și completă:

Ca să demonstrăm o formulă, putem arăta că e *validă*.

Pentru aceasta, verificăm că *negația ei nu e realizabilă*.

Vă mulțumesc!

Bibliografie

Conținutul cursului se bazează pe materialele de anii trecuți de la cursul de LSD, predat de conf. dr. ing.Marius Minea și ș.l. dr. ing. Casandra Holotescu (http://staff.cs.upt.ro/~marius/curs/lsd/index.html)