# Logistic Regression Analysis for Breast Cancer

Name: Pooja Dave

**Roll Number: P24DS012** 

## Introduction

This notebook focuses on analyzing breast cancer data using logistic regression. It aims to predict whether a tumor is malignant or benign based on features obtained from images.

# Logistic Regression Analysis on Breast Cancer Dataset

This notebook performs a comprehensive analysis on the Breast Cancer dataset using Logistic Regression. The steps include:

- 1. Understanding the dataset with EDA
- 2. Data Preprocessing
- 3. Training the model
- 4. Evaluating the model
- 5. Hyperparameter tuning
- 6. Comparing the results with other models.

Let's dive in!

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LogisticRegression
```

```
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_curve, auc
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC

In [48]:
    data = load_breast_cancer()
    df = pd.DataFrame(data.data, columns=data.feature_names)
    df['target'] = data.target

In [49]:    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

| #                             | Column                  |         | .1 Count | Dtype   |  |  |  |
|-------------------------------|-------------------------|---------|----------|---------|--|--|--|
| 0                             | mean radius             |         | ı-null   | float64 |  |  |  |
| 1                             | mean texture            | 569 nor | ı-null   | float64 |  |  |  |
| 2                             | mean perimeter          | 569 nor | -null    | float64 |  |  |  |
| 3                             | mean area               | 569 nor | -null    | float64 |  |  |  |
| 4                             | mean smoothness         | 569 nor | -null    | float64 |  |  |  |
| 5                             | mean compactness        | 569 nor | -null    | float64 |  |  |  |
| 6                             | mean concavity          | 569 nor | -null    | float64 |  |  |  |
| 7                             | mean concave points     | 569 nor | -null    | float64 |  |  |  |
| 8                             | mean symmetry           | 569 nor | -null    | float64 |  |  |  |
| 9                             | mean fractal dimension  | 569 nor | -null    | float64 |  |  |  |
| 10                            | radius error            | 569 nor | -null    | float64 |  |  |  |
| 11                            | texture error           | 569 nor | -null    | float64 |  |  |  |
| 12                            | perimeter error         | 569 nor | -null    | float64 |  |  |  |
| 13                            | area error              | 569 nor | -null    | float64 |  |  |  |
| 14                            | smoothness error        | 569 nor | -null    | float64 |  |  |  |
| 15                            | compactness error       | 569 nor | -null    | float64 |  |  |  |
| 16                            | concavity error         | 569 nor | -null    | float64 |  |  |  |
| 17                            | concave points error    | 569 nor | ı-null   | float64 |  |  |  |
| 18                            | symmetry error          | 569 nor | ı-null   | float64 |  |  |  |
| 19                            | fractal dimension error | 569 nor | ı-null   | float64 |  |  |  |
| 20                            | worst radius            | 569 nor | ı-null   | float64 |  |  |  |
| 21                            | worst texture           | 569 nor | ı-null   | float64 |  |  |  |
| 22                            | worst perimeter         | 569 nor | ı-null   | float64 |  |  |  |
| 23                            | worst area              | 569 nor | ı-null   | float64 |  |  |  |
| 24                            | worst smoothness        | 569 nor | ı-null   | float64 |  |  |  |
| 25                            | worst compactness       | 569 nor | ı-null   | float64 |  |  |  |
| 26                            | worst concavity         | 569 nor | ı-null   | float64 |  |  |  |
| 27                            | worst concave points    | 569 nor | ı-null   | float64 |  |  |  |
| 28                            | worst symmetry          | 569 nor | ı-null   | float64 |  |  |  |
| 29                            | worst fractal dimension | 569 nor | -null    | float64 |  |  |  |
| 30                            | target                  | 569 nor | -null    | int32   |  |  |  |
| dtypes: float64(30), int32(1) |                         |         |          |         |  |  |  |

dtypes: float64(30), int32(1)
memory usage: 135.7 KB

### Out[50]:

|       | mean<br>radius | mean<br>texture | mean<br>perimeter | mean area   | mean<br>smoothness | mean<br>compactness | mean<br>concavity | mean<br>concave<br>points | mean<br>symmetry | mean<br>fractal<br>dimension | ••• |    |
|-------|----------------|-----------------|-------------------|-------------|--------------------|---------------------|-------------------|---------------------------|------------------|------------------------------|-----|----|
| count | 569.000000     | 569.000000      | 569.000000        | 569.000000  | 569.000000         | 569.000000          | 569.000000        | 569.000000                | 569.000000       | 569.000000                   |     | 56 |
| mean  | 14.127292      | 19.289649       | 91.969033         | 654.889104  | 0.096360           | 0.104341            | 0.088799          | 0.048919                  | 0.181162         | 0.062798                     |     | 2  |
| std   | 3.524049       | 4.301036        | 24.298981         | 351.914129  | 0.014064           | 0.052813            | 0.079720          | 0.038803                  | 0.027414         | 0.007060                     |     |    |
| min   | 6.981000       | 9.710000        | 43.790000         | 143.500000  | 0.052630           | 0.019380            | 0.000000          | 0.000000                  | 0.106000         | 0.049960                     |     | 1  |
| 25%   | 11.700000      | 16.170000       | 75.170000         | 420.300000  | 0.086370           | 0.064920            | 0.029560          | 0.020310                  | 0.161900         | 0.057700                     |     | 2  |
| 50%   | 13.370000      | 18.840000       | 86.240000         | 551.100000  | 0.095870           | 0.092630            | 0.061540          | 0.033500                  | 0.179200         | 0.061540                     |     | 2  |
| 75%   | 15.780000      | 21.800000       | 104.100000        | 782.700000  | 0.105300           | 0.130400            | 0.130700          | 0.074000                  | 0.195700         | 0.066120                     |     | 2  |
| max   | 28.110000      | 39.280000       | 188.500000        | 2501.000000 | 0.163400           | 0.345400            | 0.426800          | 0.201200                  | 0.304000         | 0.097440                     |     | 4  |

8 rows × 31 columns

```
In [51]: sns.pairplot(df, hue='target', vars=['mean radius', 'mean texture', 'mean smoothness', 'mean area'], palette="Greys")
plt.title("Pairplot of Key Features")
plt.show()
```





In [52]: print(df.isnull().sum())

```
mean radius
                                   0
        mean texture
        mean perimeter
                                   0
                                   0
        mean area
        mean smoothness
        mean compactness
                                   0
        mean concavity
        mean concave points
                                   0
        mean symmetry
                                   0
        mean fractal dimension
                                   0
        radius error
                                   0
                                   0
        texture error
        perimeter error
                                   0
                                   0
        area error
        smoothness error
        compactness error
        concavity error
                                   0
        concave points error
        symmetry error
                                   0
        fractal dimension error
        worst radius
        worst texture
                                   0
        worst perimeter
                                   0
        worst area
        worst smoothness
        worst compactness
                                   0
        worst concavity
                                   0
        worst concave points
        worst symmetry
                                   0
        worst fractal dimension
                                   0
        target
                                   0
        dtype: int64
In [53]: X = df.drop(columns=['target'])
         y = df['target']
In [54]: scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
```

```
In [55]: train features, test features, train labels, test labels = train test split(X scaled, y, test size=0.2, random state=42)
In [56]: logreg = LogisticRegression(max iter=1000, random state=42)
         logreg.fit(train features, train labels)
Out[56]:
                         LogisticRegression
         LogisticRegression(max_iter=1000, random_state=42)
In [57]: y pred = logreg.predict(test features)
In [58]: accuracy = accuracy score(test labels, y pred)
         conf matrix = confusion matrix(test labels, y pred)
         class report = classification report(test labels, y pred)
        print(f"Accuracy: {accuracy}")
In [59]:
         print("Confusion Matrix:")
         print(conf matrix)
         print("Classification Report:")
         print(class report)
        Accuracy: 0.9736842105263158
        Confusion Matrix:
        [[41 2]
        [ 1 70]]
        Classification Report:
                      precision
                                   recall f1-score support
                                               0.96
                   0
                           0.98
                                     0.95
                                                           43
                           0.97
                                     0.99
                                               0.98
                                                           71
                                               0.97
                                                          114
            accuracy
                           0.97
                                               0.97
                                                          114
           macro avg
                                     0.97
        weighted avg
                           0.97
                                     0.97
                                               0.97
                                                          114
In [60]: sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
         plt.title("Confusion Matrix - Logistic Regression")
```

```
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```



```
In [61]: param_grid = {
    'C': [0.1, 1, 10, 100],
    'solver': ['liblinear', 'lbfgs'],
    'penalty': ['12']
}
In [62]: grid_search = GridSearchCV(LogisticRegression(max_iter=1000, random_state=42), param_grid, cv=5, scoring='accuracy')
    grid_search.fit(train_features, train_labels)
```

```
Out[62]:
                      GridSearchCV
          ▶ best estimator : LogisticRegression
                  ► LogisticRegression
In [63]: print("Best Parameters from Grid Search:", grid search.best params )
         print("Best Cross-Validation Score:", grid search.best score )
        Best Parameters from Grid Search: {'C': 0.1, 'penalty': '12', 'solver': 'liblinear'}
        Best Cross-Validation Score: 0.9780219780219781
In [64]: best logreg = grid search.best estimator
         best logreg.fit(train features, train labels)
         y pred best = best logreg.predict(test features)
In [65]: accuracy best = accuracy score(test labels, y pred best)
         conf matrix best = confusion_matrix(test_labels, y_pred_best)
         class report best = classification report(test labels, y pred best)
        print(f"Accuracy after Hyperparameter Tuning: {accuracy best}")
In [66]:
         print("Confusion Matrix:")
         print(conf matrix best)
         print("Classification Report:")
         print(class report best)
```

```
Accuracy after Hyperparameter Tuning: 0.9912280701754386
        Confusion Matrix:
        [[42 1]
         [ 0 71]]
        Classification Report:
                      precision
                                   recall f1-score support
                   0
                           1.00
                                     0.98
                                               0.99
                                                           43
                   1
                           0.99
                                     1.00
                                               0.99
                                                           71
                                               0.99
                                                          114
            accuracy
           macro avg
                           0.99
                                     0.99
                                               0.99
                                                          114
        weighted avg
                           0.99
                                               0.99
                                                          114
                                     0.99
In [67]: | lr models = {
             "DecisionTree": DecisionTreeClassifier(random state=42),
             "KNN": KNeighborsClassifier(),
             "SVM": SVC(random state=42)
In [68]: for name, lr model in lr models.items():
             lr model.fit(train features, train labels)
             y pred lr model = lr model.predict(test features)
             acc = accuracy score(test labels, y pred lr model)
             print(f"{name} Model Accuracy: {acc}")
        DecisionTree Model Accuracy: 0.9473684210526315
        KNN Model Accuracy: 0.9473684210526315
        SVM Model Accuracy: 0.9736842105263158
In [69]: results df = pd.DataFrame({
             "Model": ["Logistic Regression", "Decision Tree", "KNN", "SVM"],
             "Accuracy": [accuracy best, accuracy score(test labels, lr models["DecisionTree"].predict(test features)),
                          accuracy score(test labels, lr models["KNN"].predict(test features)),
                          accuracy score(test labels, lr models["SVM"].predict(test features))]
         results df.head()
```

## Out[69]:

|   | Model               | Accuracy |
|---|---------------------|----------|
| 0 | Logistic Regression | 0.991228 |
| 1 | Decision Tree       | 0.947368 |
| 2 | KNN                 | 0.947368 |
| 3 | SVM                 | 0.973684 |