

### Classification and The Bayes Theorem

Leandro L. Minku

# Machine Learning and Probabilities

We can assume that this process generates data based on an unknown joint probability distribution.



Data are generated from some underlying process.

# Distributions on Multiple Random Variables

Conditional probability distribution of dependent variable Y given independent variables **X** 

Probability distribution of dependent variable Y



Joint probability distribution of independent variables **X** and dependent variable Y

Conditional probability distribution of independent variables **X** given dependent variable Y

### Observed Values



Probability of observing input values **a** with output class c

Probability of input values being a given that the output class is c

## Bayes Theorem



## Learning Probabilities

Intuitively, if we ignore the variable Wash, the probability of Cavity = yes when Pain = yes based on the data above should be larger than the probability of Cavity = yes when Pain = no.

| Person | x <sub>1</sub> (Wash) | x <sub>2</sub> (Pain) | y (Cavity) |
|--------|-----------------------|-----------------------|------------|
| P1     | no                    | yes                   | yes        |
| P2     | no                    | yes                   | yes        |
| Р3     | yes                   | yes                   | yes        |
| P4     | yes                   | no                    | no         |
| P5     | yes                   | no                    | no         |
| P6     | no                    | no                    | no         |

We can learn probabilities by keeping track of the frequencies associated to different input and output values.

### Illustrative Example for One Independent Variable

| ra | ini | in | g | Set |
|----|-----|----|---|-----|
|    |     |    |   |     |

| Person | x <sub>1</sub> (Wash) | y (Cavity) |  |
|--------|-----------------------|------------|--|
| P1     | no                    | yes        |  |
| P2     | no                    | yes        |  |
| P3     | yes                   | yes        |  |
| P4     | yes                   | no         |  |
| P5     | yes                   | no         |  |
| P6     | no                    | no         |  |

Model

| Frequency<br>Table | Cavity = no | Cavity = yes | Total: |
|--------------------|-------------|--------------|--------|
| Wash = no          | 1           | 2            | 3      |
| Wash = yes         | 2           | 1            | 3      |
| Total:             | 3           | 3            | 6      |

# Illustrative Example for One Independent Variable

### Training Set

| Person | x <sub>1</sub> (Wash) | y (Cavity) |
|--------|-----------------------|------------|
| P1     | no                    | yes        |
| P2     | no                    | yes        |
| P3     | yes                   | yes        |
| P4     | yes                   | no         |
| P5     | yes                   | no         |
| P6     | no                    | no         |

$$P(Wash=no|Cavity=no) = 1/3$$

$$P(Wash=yes|Cavity=no) = 2/3$$

$$P(Wash=no|Cavity=yes) = 2/3$$

### Model

| Frequency<br>Table | Cavity = no | Cavity = yes | Total: |
|--------------------|-------------|--------------|--------|
| Wash = no          | 1           | 2            | 3      |
| Wash = yes         | 2           | 1            | 3      |
| Total:             | 3           | 3            | 6      |

$$P(Cavity=no) = 3/6$$

$$P(Cavity=yes) = 3/6$$

$$P(Wash=no) = 3/6$$

$$P(Wash=yes) = 3/6$$

## How to Make Predictions For An Example With Input Value a?

$$P(c|a) = \frac{P(c) P(a|c)}{P(a)}$$

**Apply Bayes Theorem:** Calculate P(c|a) for each class c and then predict the class associated to the maximum P(c|a).

#### Model

| Frequency<br>Table | Cavity = no | Cavity = yes | Total: |
|--------------------|-------------|--------------|--------|
| Wash = no          | 1           | 2            | 3      |
| Wash = yes         | 2           | 1            | 3      |
| Total:             | 3           | 3            | 6      |

New example: (Wash=no, y=?)

$$P(c|a) = \frac{P(c) P(a|c)}{P(a)}$$

#### Model

| Frequency<br>Table | Cavity = no | Cavity = yes | Total: |
|--------------------|-------------|--------------|--------|
| Wash = no          | 1           | 2            | 3      |
| Wash = yes         | 2           | 1            | 3      |
| Total:             | 3           | 3            | 6      |

New example: (Wash=no, y=?)

$$P(c|a) = \frac{P(c) P(a|c)}{P(a)}$$

P(Cavity=no | Wash=no) = ?

P(Cavity=yes | Wash=no) = ?

#### Model

| Frequency<br>Table | Cavity = no | Cavity = yes | Total: |
|--------------------|-------------|--------------|--------|
| Wash = no          | 1           | 2            | 3      |
| Wash = yes         | 2           | 1            | 3      |
| Total:             | 3           | 3            | 6      |

New example: (Wash=no, y=?)

$$P(c|a) = \frac{P(c) P(a|c)}{P(a)}$$

$$P(Cavity=no \mid Wash=no) = \frac{P(Cavity=no) P(Wash=no \mid Cavity=no)}{P(Wash=no)} = \frac{3/6 * 1/3}{3/6} = 0.33$$

#### Model

| Frequency<br>Table | Cavity = no | Cavity = yes | Total: |
|--------------------|-------------|--------------|--------|
| Wash = no          | 1           | 2            | 3      |
| Wash = yes         | 2           | 1            | 3      |
| Total:             | 3           | 3            | 6      |

New example: (Wash=no, y=?)

$$P(c|a) = \frac{P(c) P(a|c)}{P(a)}$$

$$P(Cavity=yes \mid Wash=no) = \frac{P(Cavity=yes)P(Wash=no \mid Cavity=yes)}{P(Wash=no)} = \frac{3/6 \times 2/3}{3/6} = 0.67$$

# Example of Prediction Based on the Bayes Theorem

New example: (Wash=no, y=?)

$$P(Cavity=no \mid Wash=no) = \frac{P(Cavity=no) P(Wash=no \mid Cavity=no)}{P(Wash=no)} = \frac{3/6 * 1/3}{3/6} = 0.33$$

$$P(Cavity=yes \mid Wash=no) = \frac{P(Cavity=yes)P(Wash=no \mid Cavity=yes)}{P(Wash=no)} = \frac{3/6 \times 2/3}{3/6} = \frac{0.67}{3}$$

Predicted class = yes

# Example of Prediction Based on the Bayes Theorem

New example: (Wash=no, y=?)

$$P(Cavity=no \mid Wash=no) = \frac{P(Cavity=no) P(Wash=no \mid Cavity=no)}{P(Wash=no)} = \frac{3/6 * 1/3}{3/6} = 0.33$$

$$P(Cavity=yes \mid Wash=no) = \frac{P(Cavity=yes)P(Wash=no \mid Cavity=yes)}{P(Wash=no)} = \frac{3/6 \times 2/3}{3/6} = 0.67$$

P(Wash=no) is a normalising factor, to make the probabilities sum up to 1. We could replace its computation by:

β = P(Cavity=no)P(Wash=no | Cavity=no) + P(Cavity=yes)P(Wash=no | Cavity=yes)

### Normalisation Factor a

$$\beta = \sum_{C \in Y} P(C) P(a|C)$$

$$P(c|\mathbf{a}) = \frac{P(c) P(\mathbf{a}|c)}{P(\mathbf{a})} \qquad P(c|\mathbf{a}) = \frac{P(c) P(\mathbf{a}|c)}{\beta}$$

$$P(c|a) = \alpha P(c) P(a|c)$$
 where  $\alpha = 1/\beta$ 

## Bayes Theorem for d Independent Variables, where d ≥ 1

$$P(c|\mathbf{a}) = \alpha P(c) P(\mathbf{a}|c)$$



$$P(c|a_1,...,a_d) = \alpha P(c) P(a_1,...,a_d|c)$$

#### where

- P represents a probability calculated based on the frequency tables,
- c represents a class,
- a<sub>i</sub> represents the value of independent variable x<sub>i</sub>, i ∈ {1, 2,...,d},
- d is the number of independent variables and
- α is the normalisation factor.

## Example

### Training Set

| Perso | x <sub>1</sub> (Wash) | x <sub>2</sub> (Pain) | y (Cavity) |
|-------|-----------------------|-----------------------|------------|
| P1    | no                    | yes                   | yes        |
| P2    | no                    | yes                   | yes        |
| P3    | yes                   | yes                   | yes        |
| P4    | yes                   | no                    | no         |
| P5    | yes                   | no                    | no         |
| P6    | no                    | no                    | no         |

Problem: number of possible combinations of input values becomes very large when the number of independent variables and values is large.

#### Model

| Frequency Table          | Cavity = no | Cavity = yes | Total: |
|--------------------------|-------------|--------------|--------|
| Wash=no and<br>Pain=no   | 1           | 0            | 1      |
| Wash=no and<br>Pain=yes  | 0           | 2            | 2      |
| Wash=yes and<br>Pain=no  | 2           | 0            | 2      |
| Wash=yes and<br>Pain=yes | 0           | 1            | 1      |
| Total:                   | 3           | 3            | 6      |

### Quiz

### Training Set

#### Day x<sub>1</sub> (Wind) y (Play) D1 strong no D2 strong no D3 weak no D4 strong yes D5 strong yes

### Model

| Frequency<br>Table | Play = yes | Play = no | Total: |
|--------------------|------------|-----------|--------|
| Wind = strong      | A          | В         | С      |
| Wind = weak        | D          | Е         | F      |
| Total:             | G          | Н         | I      |

What is the value of A,B,C,D,E,F,G,H,I in the frequency table above based on the training set provided?

And what is the value of P(Play=yes|Wind=strong)?

## Further Reading

#### Essential:

 Leandro Minku's notes on "Naive Bayes — The Relationship Between The Bayes Theorem and Classification".