Lab 5: Mapping Malaria Risk Using AI-Based Clustering in Google Earth Engine with ChatGPT

Goal of the Lab

In this lab, you will use environmental data (NDVI and rainfall) to identify areas with similar conditions that could support malaria transmission. You'll perform **unsupervised classification** (specifically, **K-means clustering**) using **Google Earth Engine** (**GEE**) and use **ChatGPT** to assist with writing, understanding, and modifying code. You'll also learn how to export the resulting malaria risk map for visualization in **QGIS**.

This lab builds directly on Lab 3 (NDVI and Rainfall visualization) and Lab 4 (ChatGPT-assisted coding).

Tools and Requirements

- Google Earth Engine (GEE): for accessing and analyzing NDVI and rainfall data
- ChatGPT: for generating and modifying GEE code
- QGIS: for visualizing the exported cluster map (optional but recommended)
- Datasets:
 - o **NDVI**: MODIS/006/MOD13Q1
 - o Rainfall: UCSB-CHG/CHIRPS/DAILY
 - o **Boundary**: usdos/lsib simple/2017 (Uganda)

(Second Part 1: Use ChatGPT to Generate a Clustering Script)

Step 1: Open ChatGPT

- 1. Go to https://chat.openai.com/
- 2. Start a new chat session.

Step 2: Type the Following Prompt

"Write a GEE script to perform k-means clustering on stacked NDVI and rainfall data for Uganda to map malaria risk zones."

Step 3: Review ChatGPT's Output

It should generate something like:

```
// Load NDVI and rainfall data
var ndvi = ee.ImageCollection('MODIS/006/MOD13Q1')
  .filterDate('2022-01-01', '2022-12-31')
  .select('NDVI')
  .mean();
var rainfall = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY')
  .filterDate('2022-01-01', '2022-12-31')
  .sum();
// Load Uganda boundary
var uganda = ee.FeatureCollection('USDOS/LSIB SIMPLE/2017')
  .filter(ee.Filter.eq('country na', 'Uganda'));
// Stack the layers
var input = ndvi.addBands(rainfall).clip(uganda);
// Sample the data
var training = input.sample({
 region: uganda,
 scale: 5000,
 numPixels: 5000
});
// Perform k-means clustering
var clusterer = ee.Clusterer.wekaKMeans(3).train(training);
var result = input.cluster(clusterer);
// Visualize the clusters
Map.centerObject(uganda, 6);
Map.addLayer(result.randomVisualizer(), {}, 'Malaria Risk Clusters');
```

Step 4: Copy and Paste into GEE

- 1. Open https://code.earthengine.google.com/
- 2. Create a new script: Lab5 Clustering Malaria.js
- 3. Paste the code into the editor.
- 4. Click **Run** to visualize clusters.

Part 2: Modify and Explore Using ChatGPT

Example Prompts

Copy-paste these into ChatGPT:

- "Change the number of clusters to 5 and re-run the script."
- "How can I export the malaria risk map to Google Drive?"
- "Can I mask a specific cluster to highlight high-risk areas only?"

What You Learn:

- How to adjust the number of clusters (change .wekaKMeans (3) to .wekaKMeans (5))
- How to use Export.image.toDrive() to export data
- How to filter or mask raster values for specific cluster classes

Part 3: Export Risk Zones to Google Drive

Sample Prompt:

"Help me export the malaria cluster map from GEE as a GeoTIFF to Google Drive."

Sample Code from ChatGPT:

```
Export.image.toDrive({
  image: result,
  description: 'Malaria_Risk_Clusters',
  folder: 'GEE exports',
  fileNamePrefix: 'malaria risk uganda',
  region: uganda.geometry(),
  scale: 5000,
  crs: 'EPSG:4326',
 maxPixels: 1e13
});
```

Instructions:

- 1. Paste the Export.image.toDrive block at the bottom of your script.
- 2. Click **Run**, then **Tasks**, and click **Run** in the task panel.
- 3. The map will be exported to your Google Drive.

💓 Part 4: Visualize the Cluster Map in QGIS

Step-by-Step:

- 1. Open **QGIS**.
- 2. Use Layer \rightarrow Add Layer \rightarrow Add Raster Layer.
- 3. Browse to the downloaded GeoTIFF file (from Google Drive).
- 4. Load the raster.

Customize:

- Go to Layer Properties \rightarrow Symbology
- Set render type to **Categorized**
- Choose a color palette (Color Brewer recommended)
- Add Legend, Title, and Labels

Save:

Export the final map as a **PDF or PNG** for presentations.

W Understanding the Concepts

What is Clustering?

Clustering is an unsupervised machine learning technique. In this case, **K-means** divides Uganda into areas with similar environmental features (NDVI + rainfall) that might indicate similar malaria suitability.

Normalized Difference Vegetation Index indicates plant health/greenness, relevant because mosquitoes prefer vegetated environments.

○ What is CHIRPS Rainfall Data?

CHIRPS provides daily precipitation estimates—important because water bodies enable mosquito breeding.

Expected Outcome

You will generate a thematic malaria risk map showing zones with similar vegetation and rainfall patterns—potential malaria hotspots. You will:

- Understand and apply clustering in GEE
- Use ChatGPT for AI-assisted geospatial coding
- Export and visualize results in QGIS

🚹 Important Disclaimer

The clusters are **not confirmed malaria zones**, but rather areas with **similar environmental risk conditions**. To confirm actual transmission risk, field validation or overlaying epidemiological data is needed.