Assignment 2

SUB-SET SUM

Matjaž Mav (63130148)

May 23, 2020

1 DYN

This approach has time complexity of $\mathcal{O}(nk)$ and space complexity of $\mathcal{O}(k)$. It is greatly effected by the size of array \boldsymbol{A} and/or targeted sum \boldsymbol{k} . If we introduce big numbers this problem becomes really hard for this approach. Example of such problem would be:

2 EXH

This approach has time and space complexity of $\mathcal{O}(2^n)$. The worst case scenario is when the input is a long array \mathbf{A} of some relatively small numbers and some really big targeted sum \mathbf{k} . If the targeted sum \mathbf{k} is greater or equal then sum of the whole array \mathbf{A} , this approach will perform exhaustive search without any kind of pruning. Example of such problem would be:

3

3 GREEDY

This approach has time complexity of $\mathcal{O}(n \log n)$ and space complexity of $\mathcal{O}(n)$. In the worst case this algorithm returns at most 2 times worse result. Example of such problem would be:

In this case optimal result is 1000000 but the algorithm would return 500001. The result is almost 2 times worse then the optimal $(500001 \approx 1000000/2)$.

4 FPTAS

First, we compared how the ϵ parameter effect the execution time of this algorithm on sorted lists. For this evaluation we have generated random inputs using code listed in the Listing 1 and then sort the elements in ascending and descending order. We observed (Figure 1 and Figure 2) that on list sorted in descending order algorithm performs quicker and have much more stable execution time.

Figure 1: Elements are sorted in ascending order. Execution time compared to the parameter ϵ

Figure 2: Elements are sorted in descending order. Execution time compared to the parameter ϵ

Second, we upgrade our FPTAS implementation and first sorted elements in descending order. Then we generated exponential inputs using code listed in the Listing 2. From the Figure 3 we can observe that FPTAS algorithm on the exponential generated inputs runs nearly 10 times slower on the random generated inputs.

Figure 3: Execution time compared to the parameter ϵ

Listing 1: Random problem generator

```
1 def generate(n: int) -> Tuple[List[int], int]:
2    A = []
3    for _ in range(n):
4     A.append(randint(1, int(n/2)))
5     k = sum(sample(A, int(n*random())))
7    return (A, k)
```

Listing 2: Exponential problem generator

```
1 def generate(n: int) -> Tuple[List[int], int]:
2    A = list(map(lambda x: x**2, range(n)))
3    k = sum(sample(A, int(n*random())))
4    return (A, k)
```