Research Methods

Exploratory Data Analysis

Dr. Sven Magg, Prof. Dr. Stefan Wermter

http://www.informatik.uni-hamburg.de/WTM/

Plan for today!

- 1. What is exploratory data analysis?
- 2. Descriptive Statistics for one variable
- 3. Measures for central tendency, shape and dispersion
- 4. Useful uni-variate visualisations
- 5. The Big Apple Experiment!

Exploratory Data Analysis

- Fundamental Model of Data: $y = f(x, \varepsilon)$
 - what factors strongly or weakly influence y and how do they combine?
 - is there evidence of important factors in ε, maybe hidden factors?
- Once we have evidence, we can use confirmatory studies to test whether x really is a causal factor influencing y
- EDA helps to
 - find the causal story hidden in the data (⇒ modelling)
 - understand phenomena and find structure in the data

Exploratory Data Analysis

- Structure in data is evidence of causal influences
- EDA can uncover and clarify this structure
- "What do I see and what does it mean?"
- EDA needs lots of practice!
 - Depending on the start, you might end up on different paths of exploration
 - Misinterpretations can cost time
 - EDA is like archaeology: You find a stone and it might be a fossil or some petrified dirt. It needs a good eye to spot the difference!

Univariate visualisations

- Frequency histogram
 - Display relative frequency of values in data
 - works with all data scales
 - Values are "binned" into a number of bins

Descriptive Statistics

- Measures of central tendency: Mean, median, mode
- Mean: Arithmetic mean
- Median
 - Element that splits a ordered sample in two equal parts
 - With even number of elements (3,4,5,6), either,
 - Take average of nearest neighbours, i.e. 4.5, or
 - select one of the nearest neighbours, i.e. 4
- What's better, median or mean?
 - Outliers: Mean is sensitive, median is robust
 - Possible solution: Trimmed mean (trim top and bottom of ordered list, calculate mean of the rest)
 - Median can be used with ordinal data!

Measures of central tendency

- Mode
 - Most common value in a distribution (mode(1,2,2,6) = 2)
 - With continuous data, often not useful
 - With binned data, denotes bin with most values
 - Often used to denote number of areas with high frequency
- In a symmetric, unimodal distribution, all 3 are the same
- Example:
 - Bi-modal or tri-modal distribution
 - Mean expected to be right of median
 - Where is the calculated mode?

Measures of shape

Skew

- Measures lack of symmetry
- Positively skewed: frequent values on left with tail to the right
- Negatively skewed: frequent values on right with tail to the left

- Skew measures deviation from a symmetric distribution
- Skew positive: Left-skewed, negative: Right-skewed

Measures of shape

- Kurtosis
 - Measures weight of tails
 - Leptokurtic vs. Platykurtic: Heavy vs. Light-tailed distribution

Weight of tails compared to normal distribution (kurtosis=0)

Measures of shape

- Kurtosis ≠ Standard Deviation
- Skew and Kurtosis can be used to measure divergence from a normal distribution

Measures of dispersion

- Standard deviation & variance
- Maximum, minimum, Range
- Quartiles
 - Divide ordered distribution into four equal parts, quartiles are the values that split those parts
 - Quartiles are numbered in ascending order
 - Q2 = median(x), Q1=median(x| x<Q2), Q3=median(x| x>Q2)
 - e.g. $(1,2,2,4,4,5,6,8,8,8,9,100) = (1,2,2),(4,4,5),(6,8,8),(8,9,100) \Rightarrow Q1=3; Q2=5.5; Q3=8$
 - Q1-3 also 25th, 50th and 75th percentile
 - Interquartile Range IQR: Range between Q1 and Q3 in example: Range = 99, IQR=5

Measures of dispersion

- Quartiles displayed in Boxplot
- Command to calculate statistics for one variable:
 - octave>statistics(x)
 - Displays:
 - minimum,
 - 1st, 2nd, and 3rd quartile,
 - maximum,
 - mean, standard deviation,
 - skewness, and kurtosis

More interesting data

Bin size matters!

What can we see?

- 2 bumps
- 1 outlier bump
- Evidence of two sub populations?
- Evidence of another factor?
- Interesting areas around 2.5 and 10 or in between
- Don't forget the outliers!

What can we see?

- Robot returned
 - Success: red
 - Failure: blue
- Experiment aborted: green
- Continue search with sub-matrices

Treerings

Line or no line?

- Always plot data points!
- Watch out for interpolated gaps!

More lines

- Some flat areas at 0
- 0 is a special number!
- Evidence of missing data
- Better to use "NA"

Comparing graphs

- Graphs look similar due to different axis
- Always make sure the axis match!

Comparing graphs

- If possible, plot into the same figure
- Open questions:
 - are the differences significant?

What have we learned?

- 1. EDA can reveal structure in data and help tell the causal story behind the data
- 2. With EDA you can find weak or strong influences of x on y, or identify hidden factors in ε
- 3. Tools that can be used for univariate distributions:
 - 1. Frequency histogram
 - 2. Line plots / Bar charts
 - 3. Descriptive statistics to quantify/check what you see
- 4. Look for and try to explain unusual phenomena
- 5. Use all tools available, like colours, transformations, etc.