PHASE 4 Development Part-2 (Covid-19 Cases Analysis)

Continue building the analysis by creating visualizations using IBM Cognos and deriving insights from the data.

- **Building Data Models**: In IBM Cognos, create data models that represent the data structure. Define dimensions (e.g., time, geography) and measures (e.g., confirmed cases, deaths) that you want to analyse.
- **Creating Visualizations**: Use the IBM Cognos tools to create visualizations that effectively convey the insights. Some common types of visualizations for COVID-19 analysis include:
- a. **Time Series Line Charts**: Show trends over time, such as daily new cases or cumulative cases.

• b. Bar Charts: Compare data across different categories, like cases by country.

c. **Heat Maps**: Visualize the spread of the virus geographically.

• d. **Pivot Tables**: Display detailed data with filtering and sorting options.

cases		Portugal	Romania	Slovakia	Slovenia	Spain	Sweden	Summary
17/05/2021	68	334	565	386	296	11,061	2,109	44,851
18/05/2021	11	199	392	552	114	3,988	4,646	52,261
19/05/2021	34	386	681	19	497	6,080	3,409	61,844
20/05/2021	37	511	707	512	532	5,733	3,165	62,409
21/05/2021	90	451	618	347	364	4,792	2,322	54,154
22/05/2021	80	559	484	354	331	0	1,909	49,452
23/05/2021	15	523	455	464	383	0	620	38,574
24/05/2021	76	413	307	376	159	11,067	1,195	39,728
25/05/2021	59	241	230	412	83	5,359	2,740	28,616
26/05/2021	06	375	381	132	325	5,007	1,419	29,670
27/05/2021	63	594	379	362	388	5,290	90	43,493
28/05/2021	02	572	307	335	362	5,482	297	46,796
29/05/2021	43	598	321	134	292	0	285	35,162
30/05/2021	76	609	265	355	353	0	1,949	31,680
31/05/2021	79	445	158	200	138	9,732	1,900	34,985
Summary	64	44,096	275,590	178,475	63,550	552,723	404,019	9,994,560

• e. Geospatial Maps: Represent data on a map to show regional variations.

Geospatial Maps

• Creating Dashboards: Build interactive dashboards that bring together multiple visualizations. This allows users to explore the data and gain insights in a user-friendly way.

• **Deriving Insights**: Use your visualizations and dashboards to answer specific questions, such as:

Create charts and graphs in IBM Cognos to visualize and compare the mean values and standard deviations of COVID-19 cases and associated deaths.

• **Create a New Report**: In IBM Cognos, create a new report that will serve as the canvas for your charts and graphs.

- **Insert a Table**: To display mean values and standard deviations, you can start with a simple table. Drag and drop the measures "COVID-19 Cases" and "COVID-19 Deaths" into the table's data items.
- Create Chart Visualizations: To visualize and compare the mean values and standard deviations, you can use different types of charts:

Analyse the visualizations to identify trends, variations, and potential correlations between cases and deaths.

- Import Libraries: Start by importing the necessary libraries:
- Load and Prepare Data: Load your COVID-19 data into a Pandas DataFrame and ensure its properly cleaned and formatted.

```
import pandas as pd
 import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv(r"/content/Covid_19_cases.csv")
print(data.head())
      dateRep day month year cases deaths countriesAndTerritories
0 31-05-2021 31 5 2021
1 30-05-2021 30 5 2021
                                366
                                       5
                                                              Austria
                                   570
                                            6
                                                              Austria
2 29-05-2021 29
                      5 2021
                                   538
                                                              Austria
                                           11
3 28-05-2021 28
                       5 2021
                                   639
                                            4
                                                              Austria
                                  405
                                           19
4 27-05-2021 27
                        5 2021
                                                              Austria
```

• **Visualize Trends**: Create visualizations to identify trends and variations in COVID-19 cases and deaths over time. You can use line plots for this purpose.

```
plt.figure(figsize=(12, 6))
    plt.plot(data['dateRep'], data['cases'], label='Cases')
    plt.title('COVID-19 Cases Over Time')
   plt.xlabel('Date')
   plt.ylabel('Cases')
   plt.xticks(rotation=45)
   plt.legend()
   plt.grid(True)
   plt.show()
   plt.figure(figsize=(12, 6))
   plt.plot(data['dateRep'], data['deaths'], label='Deaths', color='red')
   plt.title('COVID-19 Deaths Over Time')
   plt.xlabel('Date')
   plt.ylabel('Deaths')
   plt.xticks(rotation=45)
   plt.legend()
   plt.grid(True)
    plt.show()
```

OUTPUT:

- Identify Trends and Variations: Examine the line plots to identify trends and variations in COVID-19 cases and deaths over time. Look for patterns such as spikes, plateaus, or significant increases or decreases in the data.
- Correlation Analysis: To identify potential correlations between COVID-19 cases and deaths, calculate the correlation coefficient between these two variables. A positive correlation suggests that as cases increase, deaths tend to increase, while a negative correlation indicates an inverse relationship.

```
correlation_coefficient = data['cases'].corr(data['deaths'])
print(f"Correlation Coefficient: {correlation_coefficient}")
Correlation Coefficient: 0.766308878657635
```

A correlation coefficient close to 1 indicates a strong positive correlation, close to -1 indicates a strong negative correlation, and close to 0 indicates a weak correlation.

This shows the development part-2 for the COVID-19 Cases Analysis were successfully implemented with the following steps which is followed to execute the Data Analytics with

IBM Cognos and Python with the given procedure.