Conditional Probabilities

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A|B)P(B)$$

$$P(A \cap B) = P(B|A)P(A)$$

Bayes and Naïve Bayes

$$P(S/1^{st}) = \frac{=P(1^{st} \& S)}{P(1st|S)P(S)}$$

$$P(1st) = \frac{P(1st)}{P(1st)}$$

$$= p(1s \& \sim s)$$

$$P(1st|\sim S)P(\sim S)$$

$$P(1st) = \frac{P(1st)}{P(1st)}$$

Bayes and Naïve Bayes

$$P(1st \& Female | S)P(S)$$

$$P(S/1^{st} \& Female) = \frac{}{P(1st \& Female)}$$

$$P(1st \& Female/\sim S)P(\sim S)$$

$$P(\sim S/1st \& Female) = \frac{}{P(1st \& Female)}$$

Naïve Bayes

$$P(S/1st\&Female) = P(1st\&Female|S)P(S) = \\ \frac{\text{Naive}}{P(1st/S)*p(Female|S)P(S)} \\ P(\sim S/1s\&Female) = P\left(1st\&\frac{Female}{\sim S}\right)P(\sim S) = \\ \frac{P(1st|\sim S)*P(Female/\sim S)P(\sim S)}{P(1st|\sim S)*P(Female/\sim S)P(\sim S)} \\ P(\sim S/1s\&Female) = P\left(1st\&\frac{Female}{\sim S}\right)P(\sim S) = \\ \frac{P(1st|\sim S)*P(Female/\sim S)P(\sim S)}{P(1st|\sim S)*P(Female/\sim S)P(\sim S)}$$

Titanic Survival

Survived

Cabin

	1st	2nd	3rd	Crew	Sub Total
Female	141	93	90	20	344
Male	62	25	88	192	367
Sub Total	203	118	178	212	711

Not Survived

Cabin

	1st	2nd	3rd	Crew	Sub Total
Female	4	13	106	3	126
Male	118	154	422	670	1,364
Sub Total	122	167	528	673	1490

Bayes and Naïve Bayes

Max of $P(\Theta 1|S)P(\Theta 2|S)P(S)$, Over all possible S