RECURRENCE RELATION

$$T(n) = 2T(n/2) + n$$

Solution:

Iteration 1:

Put n=n/2, then

$$T(n/2) = 2T(n/4) + n/2$$

Put the value of T(n/2) from B to A, then

$$T(n) = 2{2T(n/2^2) + n/2} + n$$

$$T(n) = 2^2T(n/2^2) + n + n$$

Iteration 2:

Put $n = n/2^2$ in A, then

$$T(n/2^2) = 2T(n/2^3) + n/2^2$$

Put the value of $T(n/2^2)$ from D to C, then

$$T(n) = 2^{2}{2T(n/2^{3}) + n/2^{2}} + n + n$$

$$T(n) = 2^3T(n/2^3) + n + n + n$$

Iteration 3:

Put $n = n/2^3$ in A, then

$$T(n/2^3) = 2T(n/2^4) + n/2^3$$

Put the value of $T(n/2^3)$ from F to E, then

$$T(n) = 2^{3}{2T(n/2^{4}) + n/2^{3}} + n + n + n$$

$$T(n) = 2^4T(n/2^4) + n + n + n + n$$
 G

RECURRENCE RELATION

Iteration 4:

Put $n = n/2^4$ in A, then

$$T(n/2^4) = 2T(n/2^5) + n/2^4$$

Н

Put the value of $T(n/2^4)$ from H to G, then

$$T(n) = 2^4 \{2T(n/2^5) + n/2^4\} + n + n + n + n$$

$$T(n) = 2^5T(n/2^5) + n + n + n + n + n$$

Now, for "k" terms, it will be

$$T(n) = 2^{k}T(n/2^{k}) + n + n + n + n + n + n + \dots + k'$$
 times

$$T(n) = 2^k T(n/2^k) + n^* k$$

Assume:

$$\frac{n}{2^k} = 1 => n = 2^k$$

and **T(1) = 0**

Taking log₂ both sides

$$=> \log_2 n = \log_2 2^k => \log_2 n = k * \log_2 2$$

$$=> \log_2 n = k$$

for base 2 log

$$\frac{loga}{logb} = 1 \ if \ a = b$$

Then,
$$T(n) = n*0 + n*logn$$

for n >>>>1

Answer: $T(n) = \Theta(n*log n)$

Homework:

$$1.T(n) = 2T(n/2) + 1$$

$$3.T(n) = 2T(n/2) + n^2$$

$$2.T(n) = T(n/2) + n$$

$$4.T(n) = T(n/2) + n^2$$