POCKET COMPANION

CARNEGIE STEEL COMPANY PITTSBURGH, PA.

Presented to the
LIBRARY of the
UNIVERSITY OF TORONTO
from
the estate of

VERNOU R. DAVIER

The Office Flapper Sez-

"The Indian scalped his enemies but the white man skins his friends,"

--Maurine

Power Corporation of Canas Limited

NOTE

The following Structural Sections shown in the twenty-third and in previous editions of the Carnegie Pocket Companion are obsolete and the rolling of these sections has been discontinued.

Section Number	Dimensions, Inches	Weight, Pounds	Page	Section- Number	Dimensions, Inches	Weight, Pounds	Page
		SUPPLE	MENT	ARY BEAM	S		
B 61	27 x 9	90.0	7	B 65	15 x 6 34	37.3	12
B 62	24 x 9	74.2	9	B 66	12 x 6	27.9	13
B 63	21 x 8 14	60.4	9	B 67	$10 \times 5 \frac{1}{2}$	22.4	14
B 64	$18 \times 7^{+2}$	48.2	11	B 68	8 x 5	17.5	15
	SI	HIP BUIL	DING	BULB ANG	LES		
BA 195, 196, 197		35.2-24.9		BA 226, 23		20.0-15.3	
3A 205, 206	$-9.14 \times 3.1_2$	28.8 - 22.8	18	BA 229, 23		18.4-13.9	22,
$8A\ 201, 202,\ 203$		30.4-20.9		BA 233	6 1/2 x 3 1/2		
3A 208, 209				BA 236		15.0-12.9	23
3A 211, 212		23.4 - 18.1			6 x 3 1/2		23
3A 214, 215		23.2-18.0		BA 241, 24		16.8 - 12.2	23
3A 217, 218				BA 244, 24	155½ x 3	15.1-10.7	24
BA 220, 221	71/2 x 31/2			BA 251	5 x 2 1/2	10.4- 8.8	24
3A 223, 224	7½ x 3	20.3-15.6	21	BA 143	5 x 2 ½	8.3	24
		TEE	ES-Equ	ual Legs	11 2	//	1
			220000000	# T 17	1 ½ x 1 ½ 1 ½ x 1 ½	2.47	45
T 3	3 1/2 x 3 1/2	11.7	14	T 18	1 1/2 X 1 1/2	1:94	45
T 4	$3\frac{1}{2} \times 3\frac{1}{2}$	9,2	44	T 19	1 1/4 x 1 1/4	2.02	45
T 6	3 x 3	9.9	4-1	7 20	1 1/4 x 1 1/4	/ 1.59/	45
T 7 T 16	3 x 3 1 34 x 1 34	8.9	44 45	T 21 T 22	1 x 1 1 x 1	1.25 0.89	45 45
1 10	174 3 174	3.03	4.,	1122	1 11	0.86	- 147
	13	TEES	S-Une	qual Legs		1	
	18		136	T 70	3 12 x 3	8.5	49
T 51	5 x 212	10.9	46	T 71	3 ½ x 3	7.5	49
T 52	41/2 x 31/2	15.7	46	T 72	3 x 4	111.7	49
T 53	4 ½ x 3	8,4	46	T 73	3 x 4	10.5	49
T 54	41/2 x 3	9.8	46	T 74	3 x 4	9.2	49
T 55	4 ½ x 2 ½	77.8	47	T 75	3 x 3 ½		49
T 56 T 64	4 ½ x 2½	9.2	47	T 76	3 x 3 1/2		49
T 64 T 65	4 x 2	7.8	48	T 77	3 x 3 ½	8.5	49
T 66	4 x 2	6.7	48	T 78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.1	50 50
T 67	3½ x 4 3½ x 4	12. 6 9.8	48	T 82 T 86	2½ x 3 2½ x 1¼	$\begin{bmatrix} 7.1 \\ 2.87 \end{bmatrix}$	50 50
T 69	$\frac{3}{1}$ $\frac{1}{2}$ x 3	10.8	48	T 87	$\frac{2\frac{1}{2} \times 1\frac{1}{4}}{2 \times 1\frac{1}{2}}$	3.09	50 50
	TEEL SHEE	1		11	OSS TIE SE		
		R.A.					70
M 103	9 1/4 x 1/4	10.0	53	M 28A	$6\frac{1}{2}$ x 5, 10	29.8	76

Carnegie Steel Company, Pittsburgh, Pa.

FOA

January 1, 1927

Digitized by the Internet Archive in 2010 with funding from University of Toronto

CARNEGIE FLOOR PLATE

CARNEGIE STEEL COMPANY PITTSBURGH, PA.

January 1, 1928.

Printed in U.S.A.

The Carnegie Floor Plate is of the raised pattern type providing a maximum of flat-top tread surface. This insures long life, comfortable walking and high resistance to slipping. The design drains and cleans readily.

It is recommended for floors, sidewalk openings, stair and traffic treads where a safe, secure foothold is required.

This plate is offered in the following lengths, widths and thicknesses:

Index ness,	Thick-		Wid	th and L	ength, I	nches		Weight
		Over 6 to 12	Over 12 to 24	Over 24 to 36	Over 36 to 48	Over 48 to 60	Over 60 to 66	per Sq. Foot Pounds
	3/4		120	180	280	264	240	31.7
	5/8		180	200	300	300	260	26.6
	1/2	120	240	240	320	360	300	21.5
M 41	316	120	240	240	340	360	300	19.0
M 41	3/8	120	240	300	340	360	300	16.4
	516	120	240	300	320	360	300	13.9
	1/4	120	240	300	320	360	240	11.3
	316	120	240	300	320	360	240	8.8

The long dimension of the raised figure is in the direction of rolling and the length of plate required should always correspond to this direction.

The thickness of plate furnished is the thickness of the flat plate exclusive of the height of the raised figures.

The New Carnegie Floor Plate, Section M-41, supersedes and cancels Checkered Plates, Sections M-49 to M-56, inclusive.

OFFICES

GENERAL OFFICES:

Pittsburgh, Carnegie Building, 434 Fifth Avenue.

DISTRICT OFFICES:

Birmingham, Brown-Marx Building, 2000 First Avenue, North, Boston, The Statler Building, 20 Providence Street, Buffalo, The Marine Trust Co. Building, 233-239 Main Street,

Chicago, 208 South La Salle Street,

Cincinnati, Union Trust Building, Fourth and Walnut Streets, Cleveland, Rockefeller Building, 704 Superior Avenue, N. W., Denver, First National Bank Building, 17th and Stout Streets, Detroit, 2130 Buhl Building, 535 Griswold Street.

New Orleans, Maison Blanche, 921 Canal Street,

New York, Empire Building, 71 Broadway,

Philadelphia, Widener Building, Chestnut and Juniper Streets,

Pittsburgh, Carnegie Building, 434 Fifth Avenue,

St. Louis, 506 Olive Street,

 ${\bf St.}\,\,{\bf Paul,}\,\,1308\,{\rm Merchants}\,\,{\rm National}\,\,{\rm Bank}\,\,{\rm Building},\,4{\rm th}\,\,\&\,\,{\rm Robert}\,{\rm Sts}$

EXPORT REPRESENTATIVES:

UNITED STATES STEEL PRODUCTS CO., New York, Hudson Terminal, 30 Church Street.

PACIFIC COAST REPRESENTATIVES:

UNITED STATES STEEL PRODUCTS CO.. PACIFIC COAST DEPT. Los Angeles, 2087 East Slauson Avenue, Portland, Selling Building, Sixth and Alder Streets, San Francisco, Russ Building, Pine and Montgomery Streets, Seattle, Fourth Avenue South and Connecticut Street.

FOR

ENGINEERS, ARCHITECTS AND BUILDERS

CONTAINING

USEFUL INFORMATION AND TABLES

APPERTAINING TO THE USE OF

STEEL

MANUFACTURED BY

CARNEGIE STEEL COMPANY

PITTSBURGH, PA.

Copyright 1923 by Carnegie Steel Company Pittsburgh, Pa.

TA 685 P6 19:3

THE first edition of Carnegie Pocket Companion appeared in 1872 and was issued by Carnegie, Kloman & Company, Proprietors of the Union Iron Mills, Pittsburgh, Pa.

This book and its successive editions have served to advance the interests of standardization in structural practice and record the stages of development in the manufacture of structural steel and its fabrication into bridges, buildings, cars and ships.

In this, the twenty-third edition, the dimensions and weights of beams and channels conform to the action taken by the Association of American Steel Manufacturers effective September 1, 1920, by which fillets and roundings are included in the computation of weights. The properties of sections of intermediate and maximum thicknesses have been recomputed and the safe load tables have been exactly adjusted to the new properties.

Attention is called to changes in section numbers of standard beams and particularly in section numbers of angles. Purchasers are requested to show the new section numbers on all orders.

The sections shown in profiles and tables are those which are most suitable for use in bridge, building, car and ship construction. A complete list of all the sections rolled by Carnegie Steel Company, together with tables of weights and other data in regard to these products, is given in Carnegie Shape Book.

The specifications of the American Society for Testing Materials, published in previous editions of the Carnegie Pocket Companion, have been omitted in the present edition; these and other standard specifications pertaining to steel entering into the construction of bridges, buildings, ships, locomotives and cars, also specifications for wheels, axles and similar forgings, are published in a separate pamphlet entitled "Standard Specifications" issued by Carnegie Steel Company and sent to users of steel upon application.

ORDERING MATERIAL

General Instructions

Structural steel for bridges, buildings, cars and ships, steel reinforcement bars and rivet steel are rolled to permissible variations given in the specifications of the American Society for Testing Materials and of the Association of American Steel Manufacturers. In cases of design which require close fitting, allowance should be made for rolling variations so as to insure ample clearances between abutting or interfitting surfaces.

All dimensions given on profiles are theoretical. The exact dimensions of structural sections depend on conditions of rolls.

Wherever the profile applies to more than one weight of section. the dimensions are for the normal profile, which is the section of minimum thickness unless otherwise indicated in bold type. Sections having but one weight specified are rolled to that weight only.

Weights of rails are given per lineal yard of section but, unless otherwise indicated, all other weights are per lineal foot. Structural Sections should be ordered to weight per foot, length in feet and inches. Orders for Plates should specify all dimensions in inches. Orders for Rounds, Squares and other bar mill products should specify width and thickness in inches and length in feet and inches. Rails, Ties and other track accessories should be ordered by section number and not by linear weight.

Section number should be specified on orders for all sections.

The Association of American Steel Manufacturers has recommended certain angle sections as standard for bridge, car, ship and general building construction, and quicker deliveries can be obtained by ordering these standard sizes. Angles not standard are marked "special" on the profile pages.

The above figures show the method of increasing the sectional areas and weights of structural shapes. Cross hatched portions represent the minimum sections and the blank portions the added areas.

In the case of Channels, and I-Beams the enlargement of the section adds an equal amount to the thickness of the web and the width of the flanges. In the case of Angles and Zees, the effect of spreading the rolls is slightly to increase the length of the legs. In the case of Ship Building Bulb Angles, as a rule, each increase or decrease in web thickness carries with it about one-half that increase or decrease in flange thickness.

Inasmuch as the roll passes are modified in the wear of the rolls, the actual dimensions will not always conform to the theoretical, even in the case of the minimum weight sections. Designers and detailers of structural work should arrange for ample clearances.

STANDARD DIMENSIONS

Dimensions for Structural Beams are those adopted by the Association of American Steel Manufacturers and apply to all Structural Beams, except American Standard Sections B 1, B 2 and B 3, also Sections B 18 and B 19.

The dimensions of the Supplementary Beams, B 61 to B 68, inclusive, cannot be readily reduced to formulas. Slope of flange is 1:11=5° 11′ 40″.

Dimensions for Structural Channels are those adopted by the Association of American Steel Manufacturers and apply to all Structural Channels, except Sections C 20, C 60 and C 170.

Dimensions for Ship Building Channels are those adopted by the Association of American Steel Manufacturers and conform to the 1903 Standards of the British Engineering Standards Association; they apply to all Ship Building Channels.

9.00

0.524

90.0

*Supplementary Beam.

Section	Depth of Beam,	Weight per Foot,		Width, hes	Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
B 18 (Old No. B24)	24	120.0 115.0 110.0 105.9	8.048 7.987 7.925 7.875	8 ³ / ₆₄ 7 ⁶³ / ₆₄ 7 ⁵ / ₈	0.798 0.737 0.675 0.625	51/ ₆₄ 47/ ₆₄ 43/ ₆₄ 5/8
В 1	24	100.0 95.0 90.0 85.0 79.9	$\begin{array}{c} 7.247 \\ 7.186 \\ 7.124 \\ 7.063 \\ 7.000 \end{array}$	7½ 7¾6 7½ 7½ 7½6	0.747 0.686 0.624 0.563 0.500	3/4 11/16 5/8 9/16 1/2

STRUCTURAL BEAMS—Continued

Section Index	Depth of Beam,	Beam, per Foot.		Width,	Web Thickness, Inches	
Tudex	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
*B 62	24	74.2	9.00	9	0.476	15/32
*B 63	21	60.4	8.25	81/4	0.428	27/64

*Supplementary Beam.

STRUCTURAL BEAMS—Continued

Section Index Depth of Beam, Inches		Weight per Foot,		e Width, ches	Web Thickness, Inches	
	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
		100.0	7.273	71764	0.873	78
		95.0	7.200	713/84	0.800	51/64
$\mathbf{B} 2$	20	90.0	7.126	71/8	0.726	23/32
		85.0	7.053	73/64	0.653	21/32
		81.4	7.000	7	0.600	19/32
		75.0	3.391	625/64	0.641	41/64
B 3	20	70.0	6.317	6546	0.567	9/16
		65.4	6.250	634	0.500	1/2

STRUCTURAL BEAMS—Continued

Section Index	Depth of Beam, Inches	Weight per Foot,		Width,	Web Thickness, Inches		
		Pounds	Decimal	Fractional	Decimal	Fractiona	
	15	75.0	6.278	6%2	0.868	7,8	
B 6 Old No. B 5)		70.0	6.180	63/16	0.770	49/64	
		65.0	6.082	65/64	0.672	43/64	
		60.8	6.000	6	0.590	19/32	
		55.0	5.738	547/64	0.648	41/64	
в 7	15	50.0	5.640	541/64	0.550	35/64	
י ט	10	45.0	5.542 $'$	535/64	0.452	29/64	
		42.9	5.500	$5\frac{1}{2}$	0.410	13/32	
*B 65	15	37.3	6.750	634	0.332	21/64	

^{*}Supplementary Beam.

Section Index		Weight per Foot,		Width,	Web Thickness, Inches		
Index		Pounds	Decimal	Fractional	Decimal	Fractional	
(Old No. B II)	10	40.0 35.0 30.0 25.4	5.091 4.944 4.797 4.660	5\%2 4 ¹⁵ /16 4 ⁵¹ /64 4 ²¹ / ₈₂	0.741 0.594 0.447 0.310	47/64 19/82 29/64 5/16	
*B 67	10	22.4	5.500	51/2	0.252	1/4	
(Old No. B 13)	9	35.0 30.0 25.0 21.8	4.764 4.601 4.437 4.330	$\begin{array}{c} 44\%4\\ 41\%2\\ 47/16\\ 421/64 \end{array}$	0.724 0.561 0.397 0.290	28/82 9/16 25/64 19/64	

*Supplementary Beam.

STRUCTURAL BEAMS-Continued

Section Index	Depth of Beam.	Weight per Foot,		Width, ches	Web Thickness, Inches		
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional	
		25.5	4.262	417/64	0.532	17/32	
B 12	8	23.0	4.171	411/61	0.441	7/16	
Old No. B 15)	8	20.5	4.079	45%4	0.349	11/82	
		18.4	4.000	4	0.270	17/64	
*B 68	8	17.5	5.000	5	0.220	7/82	
		20.0	3.860	355/64	0.450	29/64	
B 13	7	17.5	3.755	3¾	0.345	11/82	
Old No. B 17)	•	15.3	3.660	321/32	0.250	1/4	

STRUCTURAL BEAMS—Concluded

Section	Depth of Beam,	Weight per Foot,		Width, ches	Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
		17.25	3,565	3%16	0.465	15/32
B 14	6	14.75	3.443	3746	0.343	11/32
(Old No. B 19)		12.5	3.330	$3^{21}/_{64}$	0.230	15/64
		14.75	3,284	39/82	0.494	1/2
B 15	5	12.25	3.137	3964	0.347	11/32
(Old No. B 21)		10.0	3.000	3	0.210	13/64
		10.5	2,870	27%	0.400	18/32
B 16		9.5	2.796	251/64	0.326	21/64
(Old No. B 23)	4	8.5	2.723	223/32	0.253	1/4
(0.00		7.7	2.660	$2^{2}\frac{1}{3}_{2}$	0.190	346
~		7.5	2.509	238/64	0.349	11/32
B 17	3	6.5	2.411	213/32	0.251	1/4
(Old No. B 77)	_	5.7	2.330	221/64	0.170	11/64

Section Index	Depth, Inches			e Width, .ches	Web T In	Weight per Foot,	
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
BA 195	10.000	10	3.500	3½	$0.725 \\ 0.675$	23% ₂ 43% ₄	35.2 33.2
BA 196	10.000	10	3.500	31/2	0.625 0.575	5% 37/64	31.1 29.1
BA 197 (BSBA 18)	10.000	10	3.500	31/2	0.5 25 0.475	$\frac{17}{32}$	26.9 24.9
BA 205	9.500	9½	3.500	3½	0.600 0.550	19/32 35/64	28.8 26.9
BA 206 (BSBA 17)	9.500	9½	3.500	3½	0.500 0.450	1/2 29/64	24.7 22.8

Dimensions of British Standard Sections are indicated in bold type.

Section Index		Depth, Inches		Flange Width, Inches		Web Thickness, Inches	
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
BA 201	9.000	9	3.500	3½	$0.675 \\ 0.625$	43/64 5/8	30.4 28.6
BA 202	9.000	9	3.500	31/2	0.575 0.525	3764 17/32	26.6 24.8
BA 203 (BSBA 16)	9.000	9	3.500	31/4	0.475 0.425	15/82 27/61	22.7 20.9
BA 208	8.500	8½	3.500	3½	$0.575 \\ 0.525$	87/64 17/82	25.3 23.5
BA 209 (BSBA 14)	8.500	8½	3.500	31/2	$0.475 \\ 0.425$	15/3 ₂ 27/64	21.6 19.8

Section Index	Depth, Inches			e Width, iches	Web T	Weight per Foot,	
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
BA 211	8.500	81/2	3.000	3	0.550 0.500	35/ ₆₄ 1/ ₂	$23.4 \\ 21.7$
BA 212 (BSBA 13)	8.500	8½	3.000	3	0.450 0.400	29/64 13/32	19.8 18.1
BA 214	8.000	8	3.500	3½	0.550 0.500	35/64 1/2	23.2 21.6
BA 215 (BSBA 12)	8.000	8	3.500	3½	0.450 0.400	29/64 18/32	19.6 18.0
BA 217	8.000	8	3.000	3	0.575 0.525	37/64 17/32	23.1 21.4

BULB ANGLES

Section Index	Depth, Inches		Flange Width, Inches		Web Thickness, Inches		Weight per Foot
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
BA 218 (BSBA 11)	8.000	8	3.000	3	0.475 0.425	15/ ₈₂ 27/ ₆₄	19.6 18.0
BA 220	7.500	$7\frac{1}{2}$	3.500	$3\frac{1}{2}$	$0.575 \\ 0.525$	87/64 17/82	22.8 21.2
BA 221 BSBA 10)	7.500	$7\frac{1}{2}$	3.500	3½	0.475 0.425	15/32 27/64	19.4 17.8
BA 223	7.500	$7\frac{1}{2}$	3.000	3	0.525 0.475	17/32 15/32	20.3 18.8
BA 224 (BSBA 9)	7.500	$7\frac{1}{2}$	3.000	3	0.425 0.375	27/64 8/8	17.1 15.6

Dimensions of British Standard Sections are indicated in bold type.

Section Index	Depth, Inches		Flange Width, Inches		Web Thickness, Inches		Weight per Foot,
	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
BA 226	7.000	7	3.500	$3\frac{1}{2}$	$0.525 \\ 0.475$	17/32 15/32	20.0 18.6
BA 227 (BSBA 8)	7.000	7	3.500	$3\frac{1}{2}$	0.425 0.375	27/64 8/8	16.8 15.3
BA 229	7.000	7	3.000	3	0.500 0.450	1/2 29/64	18.4 16.9
BA 230 (BSBA 7)	7.000	7	3.000	3	0.400 0.350	18/82 11/32	15.3 13.9
BA 233 (BSBA 6)	6.500	6½	3.500	3½	0.400 0.350	18/32 11/32	15.0 13.6

Dimensions of British Standard Sections are indicated in bold type.

Section Index	Depth, Inches		Flange Width, Inches		Web Thickness, Inches		Weight per Foot
	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
D L one					0.425	27/64	15.0
BA 236 (BSBA 5)	6.500	6½	3.000	3	0.375	3/8	13.6
(DSDA 3)					0.350	11/32	12.9
+ I land	6.000	6	3.500	3½	0.475	15/32	16.4
† Lloyd					0.425	27/64	14.8
÷114	6.000	6	3.500	3½	0.375	8/8	13.4
† Lloyd					0.350	11/32	12.8
BA 241	6.000	6	3.000	3	0.525	17/32	16.8
BA 241					0.475	15/32	15.6
					0.425	2764	14.1
BA 242	C 000		0.000		0.375	3/8	12.8
(BSBA 4)	6.000	6	3.000	3	0.350	11/32	12.2

†Rolled by Pencoyd Iron Works (60A).
Dimensions of British Standard Sections are indicated in **bold type**.

SHIP BUILDING BULB ANGLES-Concluded

Section Index	Depth, Inches		Flange Width, Inches		Web Thickness, Inches		Weight per Foot.
	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
BA 244	5.500	5½	3.000	3	$0.500 \\ 0.450$	½ 2%4	15.1 13.9
BA 245 (BSBA 3)	5.500	5½	3.000	3	0.400 0.350 0.325	$18/32 \ 11/32 \ 21/64$	12.5 11.3 10.7
BA 251 (BSBA 2)	5.000	5	2.500	21/2	0.375 0.325 0.300	3′8 21⁄64 19⁄64	10.4 9.3 8.8
BA 143	5.000	5	2.500	21/2	0.240	3/4	8.3

*Furnished only by special arrangement.
Dimensions of British Standard Sections are indicated in **bold type.**

BULB ANGLES

CAR BUILDING BULB ANGLES

Section Index	Depth, Inches		Flange Width, Inches		Web Thickness, Inches		Weight per Foot,
	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
BA 125	5.000	5	4.500	41/2	0.438	7/16	19.3
BA 124	5.000	5	3.500	31/2	0.375	8/8	13.2
BA 122	4.000	4	3.500	31/2	0.500	1/2	14.3
BA 123	4.000	4	3.500	31/2	0.375	3/8	11.9

Section	Depth of Channel.	Weight per Foot,		Width,	Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
†C 60	18	58.0 51.9 45.8 42.7	4.200 4.100 4.000 3.950	$4^{18/64}$ $4^{8/32}$ 4 $3^{61/64}$	$\begin{array}{c} 0.700 \\ 0.600 \\ 0.500 \\ 0.450 \end{array}$	15/64 19/92 1/2 29/64
C 1	15	55.0 50.0 45.0 40.0 35.0 33.9	3.814 3.716 3.618 3.520 3.422 3.400	$3^{18/16}$ $3^{28/82}$ $3^{5/8}$ $3^{38/4}$ $3^{27/64}$ $3^{13/82}$	$\begin{array}{c} 0.814 \\ 0.716 \\ 0.618 \\ 0.520 \\ 0.422 \\ 0.400 \end{array}$	18/10 28/82 5/8 88/64 27/64 18/92
†C 20	13	50.0 45.0 40.0 37.0 35.0 31.8	4.412 4.298 4.185 4.117 4.072 4.000	4^{13}_{32} 4^{19}_{64} 4^{3}_{16} 4^{7}_{64} 4^{5}_{64}	0.787 0.673 0.560 0.492 0.447 0.375	25/32 18/64 9/16 91/64 29/64 8/8

†C 60 is a Ship Building Channel (not an American Standard.) †C 20 is a Car Building Channel.

CHANNELS

Section	Depth of Channel,	Weight per Foot,	Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
		50.0	4.135	48/64	0.835	53/64
	1	48.6	4.100	43/82	0.800	51/64
		46.6	4.050	43/64	0.750	84
†C 170	12	44.5	4.000	4	0.700	4564
		40.0	3.890	35764	0.590	19432
		35.0	3.767	34%4	0.467	15/32
		40.0	3.415	327/64	0.755	84
		35.0	3.292	319/64	0.632	5%
C 2	12	30.0	3.170	311/64	0.510	88/64
		25.0	3.047	33/64	0.387	25/64
		20.7	2.940	215/16	0.280	9/a2
		35.0	3.180	3%6	0.820	1846
		30.0	3.033	31/82	0.673	48/64
C 3	10	25.0	2.886	257/64	0.526	17/82 8/8
		20.0	2.739	24764	0.379	8%
		15.3	2.600	219/32	0.240	1564

STRUCTURAL CHANNELS—Continued American Standard Sections

Section	Depth of Channel	Weight	Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
		25.0	2.812	218/16	0.612	89/64
G 4		20.0	2.648	$2^{4}\frac{1}{164}$	0.448	29/64
C 4	9	15.0	2.485	281/64	0.285	9/82
		13.4	2.430	27/16	0.230	15/64
		21.25	2.619	25%	0.579	37/64
		18.75	2.527	217/32	0.487	31/64
C 5	8	16.25	2.435	27/16	0.395	25/64
		13.75	2.343	211/32	0.303	19/64
		11.5	2.260	$2^{17}/64$	0.220	7/82
		19.75	2.509	233/64	0.629	5/8
	1	17.25	2.404	218/32	0.524	17/32
C 6	7	14.75	2.299	21%4	0.419	27/64
		12.25	2.194	2%16	0.314	5/16
	1	9.8	2.090	23/32	0.210	18/64

STRUCTURAL CHANNELS—Concluded American Standard Sections

Section Index				Width, thes		nickness, thes
index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
		15.5	2.279	2%32	0.559	9/16
C 7	. 6	13.0	2.157	25/82	0.437	7/16
0 1	. 0	10.5	2.034	21/32	0.314	5/16
		8.2	1.920	15%4	0.200	18/84
		11.5	2.032	21/32	0.472	15/82
C 8	5	9.0	1.885	157/84	0.325	21/64
		6.7	1.750	18/4	0.190	846
		7.25	1.720	128/32	0.320	5/16
C 9	4	6.25	1.647	141/64	0.247	1/4
		5.4	1.580	187/64	0.180	3/16
C 10		6.0	1.596	119/32	0.356	28/64
C 10	3	5.0	1.498	11/2	0.258	1/4
0ld No. C 72)		4.1	1.410	118/32	0.170	11/64

Section	Depth of Channel,			Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona	
		44.7	4.200	418/44	0.725	23/32	
C 21	12	40.6	4.100	43/32	0.625	5/8	
(BSC 26)	1.2	36.5	4.000	4	0.525	1732	
		34.5	3.950	361/64	0.475	15/82	
		41.1	3.700	345/64	0.700	45/64	
C 171	12	37.0	3.600	319/32	0.600	19/32	
(BSC 25)	12	32.9	3.500	3½	0.500	1/2	
		30.9	3.450	32%4	0.450	19/32 1/2 29/64	
		37.0	4.200	118/64	0.675	43/64	
C 26	10	33.6	4.100	43/82	0.575	87/64	
(BSC 21)	10	30.2	4.000	4	0.475	15/64 15/32	
		28.5	3.950	361/64	0.425	27/64	

SHIP BUILDING CHANNELS—Continued American Standard Sections

Section	Depth of Channel,			Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona	
		35.1	3.700	345/64	0.675	4864	
C 27		31.7	3.600	319/82	0.575	37/84	
(BSC 20)	10	28.3	3.500	$3\frac{1}{2}$	0.475	15/32	
(100 20)		26.6	3.450	329/61	0.425	27/64	
		24.9	3.400	313/32	0.375	8/8	
C 28		25.3	3.550	385/84	0.425	27/64	
(BSC 19)	10	23.6	3.500	31/2	0.375	38	
(150 15)		21.9	3.450	32%4	0.325	21/61	
		34.7	4.200	41864	0.675	13/64	
C 31	9	31.7	4.100	48/32	0.575	27/61	
(BSC 18)	.,	28.6	4.000	4	0.475	15/32	
		27.1	3.950	361/64	0.425	2764	

SHIP BUILDING CHANNELS-Continued

American Standard Sections

Section	Depth of Weight		Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
C 32	9	31.6 28.5	3.700 3.600	345/64 319/82	$0.650 \\ 0.550 \\ 450$	21/32 85/64
(BSC 17)		25.4 23.9	$\frac{3.500}{3.450}$	$\frac{31/2}{329/64}$	$\begin{array}{c} \textbf{0.450} \\ 0.400 \end{array}$	29/64 18/32
C 36 (BSC 13)	8	28.2 25.5 22.8 21.4	$3.700 \\ 3.600 \\ 3.500 \\ 3.450$	$ \begin{array}{r} 345/64 \\ 319/82 \\ 31/2 \\ 329/64 \end{array} $	$\begin{array}{c} 0.625 \\ 0.525 \\ 0.425 \\ 0.375 \end{array}$	55 1732 2764 85
C 37 (BSC 12)	8	25.5 22.7 20.0 19.3 18.7	3.225 3.125 3.025 3.000 2.975	37/82 31/8 31/82 3 281/82	$0.600 \\ 0.500 \\ 0.400 \\ 0.375 \\ 0.350$	19/32 1/2 13/32 13/3 11/82

SHIP BUILDING CHANNELS—Continued American Standard Sections

Section Index		Depth of Channel,	Weight per Foot,		Width,		nickness, ehes
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona	
	1	25.0	3.700	345/64	0.600	19/32	
C 41	7	22.7 20.3	3.600 3.500	$\frac{31\%_{32}}{31\%}$	$0.500 \\ 0.400$	18/32	
(BSC 10)		19.1	3.450	$\frac{3^{2}}{3^{2}\%4}$	0.350	11/32	
C 42		20.0	3.100	3%2	0.475	15/32	
(BSC 9)	7	17.6 16.4	3.000 2.950	3 261/64	$0.375 \\ 0.325$	3/8 21/64	
		22.0	3.700	345/64	0.575	a7/64	
C 46	6	20.0	3.600	319/82	0.475	15/82	
(BSC 8)		18.0 16.9	3.500 3.450	3½ 32%4	$0.375 \\ 0.325$	3/8 21/64	

SHIP BUILDING CHANNELS—Concluded American Standard Sections

Section Char	Depth of Channel,	Weight per Foot,		Width, hes		hickness, ehes
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
C 109	6	15.3	3.500	31/2	0.340	11/32
C 47 (BSC 7)	6	16.3 15.1	3.000 2.938	3 2 ¹⁵ / ₁₆	0.375 0.313	% %
C 48 (BSC 5)	6	13.3 12.0	2.563 2.500	2%s 2½	$0.375 \\ 0.313$	% %s

MISCELLANEOUS CAR BUILDING CHANNELS

Section Index	Depth of Channel,	Weight per Foot,		Width,	Web Th	nickness, ches
THUCK	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
*C 200	4	13.8	2.500	21/2	0.500	1/2
*C 190	3	7.1	1.984	163/64	0.250	1/4
*C 191	3	6.5 5.8	$\frac{1.875}{1.805}$	17/8 113/16	$0.250 \\ 0.180$	1/4 8/16

^{*}Furnished only by special arrangement.

Size, Inches	Thickness, Inches	Weight per Foot Pounds
	$1\frac{1}{16}$ $1\frac{1}{16}$ $1\frac{15}{75}$	56.9 54.0 51.0 48.1 45.0
8 x 8	13/16 3/1 11/16 5/5 9/16 1/2	$\begin{array}{c} 42.0 \\ 38.9 \\ 35.8 \\ 32.7 \\ 29.6 \\ 26.4 \end{array}$
6 x 6	1 15/16 7/8 13/16 3/4 11/18 5/8	37.4 35.3 33.1 31.0 28.7 26.5 24.2 21.9
,	*1 * 15/16	19.6 17.2 14.9 30.6 28.9
5 x 5	* 75 * 13/16 * 34 * 11/16 * 55 * 19/6 * 1/2 * 7/16 * 8/8	27.2 25.4 23.6 21.8 20.0 18.1 16.2
	8 x 8	Inches Inches Inches Inches Ilyi6 I 15/16 I 5/16 I 15/16 I 13/16 I

EQUAL ANGLES—Continued

Section Index	Size, Inches	Thickness, Inches	Weight per Foot Pounds
		*13/16	19.9
		3/4	18.5
		11/16	17.1
		58	15.7
A 4	4 x 4	%18	14.3
	- "	$\frac{1}{2}$	12.8
		7/16	11.3
		3/8	9.8
		546	8.2
		* 1/4	6.6
		*13/16	17.1
	21/ = 21/	* 3/4	16.0
		*11/16	14.8
		78	13.6
A 5		9/16	12.4
AJ	$3\frac{1}{2} \times 3\frac{1}{2}$	$\frac{1}{2}$	11.1
		7/16	9.8
		8/8	8.5
		5/14	7.2
		* 1/4	5.8
		* 58	11.5
		* 946	10.4
		$\frac{1}{2}$	9.4
A 7	3 x 3	7∕1 €	8.3
		3/8	7.2
		5/16	6.1
		1/4	4.9

EQUAL ANGLES—Concluded

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds
A 9	2½ x 2½	* ½ %6 %8 %8 %18 *4 %18 * 18	7.7 6.8 5.9 5.0 4.1 3.07 2.08
A 11	2 x 2	* 740 3/8 5/10 1/4 3/10 * 1/8	5.3 4.7 3.92 3.19 2.44 1.65
A 12	1¾ x 1¾	* 7/16 * 8/8 * 5/16 * 1/4 * 3/16 * 1/8	4.6 3.99 3.39 2.77 2.12 1.44
A 13	1½ x 1½	* 3/s 5/1 e 1/4 3/1 e 1/s	3.35 2.86 2.34 1.80 1.23
A 15	1¼ x 1¼	* 5/16 * 1/4 * 3/16 * 1/8	2.33 1.92 1.48 1.01
A 16	1 x 1	* 1/4 * 3/16 * 1/8	1.49 1.16 0.80

^{*}Special, see page 4.

UNEQUAL ANGLES

Section Index	Size, Inches	Thickness, Inches	Weight per Foot Pounds
A 18	8 x 6	*1 * 15/10 * 7/8 * 18/10 * 18/10 * 18/10 * 5/8 * 19/10 * 5/8 * 19/10 * 7/10	44.2 41.7 39.1 36.5 33.8 31.2 28.5 25.7 23.0 20.2
A 53	8 x 3½	*1 * 15/16 * 7/8 * 13/16 * 13/16 * 3/4 * 11/16 * 5/8 * 9/16 * 1/2 * 7/16	35.7 33.7 31.7 29.6 27.5 25.3 23.2 21.0 18.7 16.5
A 19	7 x 3½	*1 *15/16 * 75/8 * 13/16 * 36/8 * 11/16 * 5/8 * 7/16 * 7/16 * 3/6	32.3 30.5 28.7 26.8 24.9 23.0 21.0 19.1 17.0 15.0

UNEQUAL ANGLES—Continued

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds
A 20	6 x 4	*1 * 1646 75 1848 84 11/46 55 946 129 546 35	30.6 28.9 27.2 25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3
A 21	6 x 3½	*1 * 15/16 * 7/8 * 15/16 * 7/8 * 15/16 * 5/8 * 9/16 * 1/9 * 7/16 * 8/8 * 5/16 * 5/16	28.9 27.3 25.7 24.0 22.4 20.6 18.9 17.1 15.3 13.5 11.7 9.8
A 22	5 x 4	* 7\(\) * 13\(\) * 13\(\) * 3\(\) * 11\(\) * 5\(\) * 9\(\) * 1\(\) * 7\(\) * 7\(\) * 3\(\) * 3\(\)	24.2 22.7 21.1 19.5 17.8 16.2 14.5 12.8 11.0

UNEQUAL ANGLES-Continued

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds	
A 23	5 x 3½	* 7/4 *13/16 8/4 11/4/16 5/4 19/16 5/4 19/16 8/4 7/16 8/4 9/16	22.7 21.3 19.8 18.3 16.8 15.2 13.6 12.0 10.4 8.7	
A _. 24	, 5 x 3	*1346 * 34 1146 58 946 142 746 38 946	19.9 18.5 17.1 15.7 14.3 12.8 11.3 9.8 8.2	
A 25	4½ x 3	*1346 * 34 *1146 * 55 * 946 * 746 * 35 * 546	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	
A 26	4 x 3½	*1346 * 34 *1746 * 55 * 946 * 1746 * 35 * 35 * 36	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1	

^{*} Special, see page 4.

UNEQUAL ANGLES—Continued

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds
A 27	4 x 3	*13/16 * 8/4 *11/16 5/8 9/16 1/2 7/16 3/8 5/16 * 1/4	17.1 16.0 14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8
A 28	3⅓ x 3	*13/16 * 3/4 * 1/16 * 5/8 * 5/8 9/16 - 1/2 - 7/16 - 3/8 - 5/16 * 1/4	15.8 14.7 13.6 12.5 11.4 10.2 9.1 7.9 6.6 5.4
A 29	3½ x 2½	*11/16 * 5/5 * 9/16 1/2 7/16 3/5 5/16 1/4	12.5 11.5 10.4 9.4 8.3 7.2 6.1 4.9
A 32	3 x 2½	* 9/16 * 1/2 7/16 3/8 5/16 1/4	9.5 8.5 7.6 6.6 5.6 4.5
A 33 *Special, see page	° 3 x 2	* 1/2 * 7/16 * 3/8 * 5/16 * 1/4	7.7 6.8 5.9 5.0 4.1

UNEQUAL ANGLES-Concluded

Section Index	Size, Inches	Thickness, Inches	Weight per Foot Pounds
		* 1/2	6.8
		* 7/16	6.1
		3,4	5.3
A 35	$2\frac{1}{2} \times 2$	546	4.5
		1/4	3.62
		8/16	2.75
		* 1/8	1.86
		* 546	3.92
A 48	$2\frac{1}{2} \times 1\frac{1}{2}$	* 1/4	3.19
		* 3/16	2.44
		* 1/2	5.6
		* 7/16	5.0
A 270	2¼ x 1½	* 8%	4.4
21 270	274 X 172	* 5/16	3.66
		* 1/4	2.98
		* 3/16	2.28
		* 8/8	3.99
		* 5/16	3.39
A 37	$2 \times 1\frac{1}{2}$	* 1/4	2.77
		* 3/16	2.12
		* 1/8	1.44
A 645	2 x 1¼	* 1/	2,55
A 045	2 X 174	* 3/16	1.96
		* 1/4	2.34
A 39	134 x 114	* 3/10	1.80
		* 1/8	1.23
	•	* 5/16	2.59
A 624	1½ x 1¼	* 1/4	2.13
	- / <u>-</u> / -	* 8/16	1.64

Section	Size, I	nches	Thickness, Inches		Weight per Foot,
Index	Flange	Stem	Flange	Stem	Pounds
T 40 T 1 T 2 T 3 T 4 T 6 T 7	6 ½ 4 4 3 ½ 3 ½ 3 3 3	6½ 4 3½ 3½ 3½ 3 3	0.40 to 0.55 ½ to %6 % to %6 ½ to %6 ½ to %6 ¾ to %6 ¾ to %6 ¾ to ½ % to %6 % to %8 % to %8	0.45 1/2 to 9/16 3/8 to 7/16 1/2 to 9/16 8/8 to 7/16 1/2 to 9/16 1/2 to 9/16 1/4 to 1/2 3/8 to 7/16 1/4 to 3/8	19.8 13.5 10.5 11.7 9.2 9.9 8.9 7.8 6.7

EQUAL TEES—Concluded

Section	Size, I	nches	Thickness, Inches		Weight per Foot,
Index	Flange	Stem	Flange	Stem	Pounds
T 10	$2\frac{1}{2}$	$2\frac{1}{2}$	% to 7/16	% to %6	6.4
Т 11	$2\frac{1}{2}$	21/2	546 to 38	% to %	5.5
T 12	21/4	$2\frac{1}{4}$	5/16 to 3/8	% to %	4.9
Т 13	21/4	21/4	1/4 to 5/16	1/4 to 5/16	4.1
Т 14	2	2	5/16 to 3/8	% to %	4.3
T 15	2	2	1/4 to 5/16	1/4 to 5/16	3.56
T 16	134	134	1/4 to 5/16	1/4 to 5/16	3.09
Т 17	11/2	11/2	1/4 to 1/82	1/1 to 1/32	2.47
T 18	1 1/2	11/2	% to %2	3/16 to 7/32	1.94
T 19	11/4	11/4	1/4 to 1/32	1/4 to 1/32	2.02
T 20	11/4	11/4	346 to 7/32	3/16 to 7/32	1.59
T 21	1	1	% to %2	%16 to 7/32	1.25
Т 22	1	1	1/8 to 5/22	1/8 to 5/82	0.89

UNEQUAL TEES

Section	Size, I	Size, Inches		Thickness, Inches		
Index	Flange	Stem	Flange	Stem	per Foot, Pounds	
†T 50	5	3	3% to 746	13/32 to 5/8	11.5	
‡T 51	5	$2\frac{1}{2}$	3% to 746	7/16 to 21/32	10.9	
T 52	41/2	$3\frac{1}{2}$	7/16 to 9/16	11/16 to 7/8	15.7	
T 54	41/2	3	% to 7/16	3% to 7/16	9.8	
T 53	41/2	3	5/16 to 3/8	5/16 to 3/8	8.4	

† T 50 can be rolled with flange $\frac{1}{2}$ " to $\frac{9}{16}$ ", and stem $\frac{3}{8}$ "; weight 13.6 lbs. per foot. † T 51 can be rolled with flange $\frac{1}{2}$ " to $\frac{9}{16}$ ", and stem $\frac{2}{9}$ 6"; weight 13.0 lbs. per foot.

UNEQUAL TEES-Continued

Section Index	Size, 1	Size, Inches		Thickness, Inches	
	Flange	Stem	Flange	Stem	per Foot, Pounds
T 56	41/2	$2\frac{1}{2}$	8's to 7'16	% to 7/16	9.2
T 55	41/2	21/2	5/16 to 8/8	5/16 to 3/8	7.8
T 57	4	5	1/2 to 9/16	1/2 to 9/16	15.3
T 58	4	5	3% to 7/16	3% to 74e	11.9
T 59	4	41/2	1/2 to 9/16	1/2 to 9/16	14.4
T 60	· 4	41/2	3% to 748	3% to 7/16	11.2

UNEQUAL TEES—Continued

Section Index	Size, I	nches	Thickne	Thickness, Inches	
	Flange	Stem	Flange	Stem	per Foot Pounds
T 61	4	3	8's to 7'16	3's to 7'16	9.2
T 44	4	3	5/16 to 3/8	5/16 to 3/8	7.8
T 62	4	$2\frac{1}{2}$	3% to 7/16	% to 1/16	8.5
T 63	4	$2\frac{1}{2}$	516 to 38	516 to 38	7.2
T 64	4	2	3/8 to 7/18	84 to 346	7.8
T 65	4	2	5/16 to 3/8	5/16 to 3/9	6.7
T 66	31/2	4	½ to %16	½ to %16	12.6
T 67	31/2	4	8% to 746	3/s to 7/16 -	9.8

UNEQUAL TEES-Continued

Section Index	Size, Inches		Thickness, Inches		Weight per Foot.
	Flange	Stem	Flange	Stem	Pounds
T 69	31/2	3	½ to %6	½ to %6	10.8
T 70	31/2	3	34 to 7/16	36 to 7/16	8.5
T 71	31/2	3	546 to 38	3/8	7.5
T' 72	. 3	4	½ to %6	½ to %16	11.7
T 73	3	4	7/16 to 1/2	7/16 to 1/2	10.5
T 74	3	4	3% to 7/16	% to %	9.2
T 75	3	31/2	½ to %6	½ to %s	10.8
T 76	3	31/2	746 to 1/2	7/16 to 1/2	9.7
T 77	3	31/2	3% to 7/16	3/s to 7/16	8.5

UNEQUAL TEES-Concluded

Section Index	Size, I	nches	Thickne	ss, Inches	Weight per Foot,
	Flange	Stem	Flange	Stem	Pounds
T 78	3	21/2	3's to 7/16	% to 7/16	7.1
T 79	3	212	5/16 to 3/8	5/16 to 3/8	6.1
T 82	$2\frac{1}{2}$	3	8's to 7/16	3/8 to 7/16	7.1
T 83	$2\frac{1}{2}$	3	5/16 to 3/8	5/16 to 3/8	6.1
T 86	$2\frac{1}{2}$	1 1/4	346 to 9/32	%16 to 5/16	2.87
T 87	2	11/2	1/4 to 5/16	1/4 to 5/16	3.09
T 519	11/2	2	3/16 to 1/4	346 to 1/4	2.45
T 605	132	1 1/4	1/s to 5/32	1/8 to 5/82	1.25
*T 603	134	5/8	No. 9	1/8 to No. 7	0.88

^{*} Furnished only by special arrangement.

ZEES—Concluded

Section			Size, Inches		Thickness,	Weight per Foot.
Index	1	Flange	Web	Flange	Inches	Pounds
Z 9		$\frac{3\%_{16}}{3\%_{16}}$	$\frac{4\frac{1}{8}}{4\frac{1}{16}}$	3 ³ / ₁₆ 3 ¹ / ₈ 3 ¹ / ₁₆	3/4 11/16 5/5	$23.0 \\ 20.9 \\ 18.9$
Z 8		$\frac{3^{3}_{16}}{3^{1}_{18}}$	41/8 41/16 4	$\frac{3\frac{3}{16}}{3\frac{1}{8}}$	9/16 1/2 7/16	$18.0 \\ 15.9 \\ 13.8$
Z 7		$\frac{3^{3}_{16}}{3^{1}_{6}}$	41/8 41/16 4	$\frac{3\frac{3}{16}}{3\frac{1}{6}}$ $\frac{3\frac{1}{6}}{3\frac{1}{16}}$	3/8 5/16 1/4	$12.5 \\ 10.3 \\ 8.2$
Z 12		$\frac{284}{2^{11}16}$	3½ 3	$\frac{2\frac{3}{4}}{2^{11}/16}$	%1.6 1/2	$\frac{14.3}{12.6}$
Z 11		$\frac{2^{3/4}}{2^{11/4}}$ 16	$\frac{31}{3}$	$\frac{2\frac{3}{4}}{2^{11}\!\!/\!\!16}$	7/16 3/8	$\substack{11.5\\9.8}$
Z 10		$\frac{2\frac{9}{4}}{2^{1\frac{1}{1}}}$	3½6 3	23/4 211/16	5/16 1/4	$\frac{8.5}{6.7}$

UNITED STATES STEEL SHEET PILING

Section Index	Width, Inches	Web Thickness, Inches	Weight per Foot Pounds
M 105	131/4	1/2	42.5
M 104	13 1/4	3.8	38
M 103	91/4	1/4	16

Full information as to the properties and uses of these sections is given in a separate pamphlet entitled "Steel Sheet Piling."

CHECKERED PLATES

Section at Rib

Section	Thick-		Width and Length, Inches										
Index	ness, Inches	Over 6 to 12	Over 12 to 24	Over 24 to 36	Over 36 to 48	Over 48 to 60	Over 60 to 66	Sq. Foot, Pounds					
M 56	3/4		120	180	280	264	240	31.6					
M 55	5/8		180	200	300	300	260	26.5					
M 54	1/2	120	240	240	320	360	300	21.4					
M 53	7/16	120	240	240	340	360	300	18.9					
M 52	3/8	120	240	300	340	360	300	16.3					
M 51	5/16	120	240	300	320	360	300	13.8					
M 50	1/4	120	240	300	320	360	240	11.2					
M49	3/16	120	240	300	320	360	240	8.7					

Checkered plates of greater lengths than shown in above table may be submitted for special consideration.

RECTANGULAR UNIVERSAL PLATES—Carbon Steel UNIVERSAL MILL PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES

Thick-	Weight,				Wie	iths and	l Lengt	hs in In	ches			
ness, Inches	Lbs. per Sq. Ft.	48-46	45-41	40-36	35-31	30-26	25-20	19-17	16-15	14-12	11	10-61
1,4	10.20						1020	1020	1020	1020	540	540
5/16	12.75	1020	1020	1140	1260	1320	1320	1080	1080	1080	600	600
3/8	15.30	1200	1200	1320	1380	1380	1380	1080	1080	1080	900	840
7/16	17.85	1320	1320	1380	1380	1380	1380	1080	1080	1080	900	840
1/2	20.40	1380	1380	1380	1380	1380	1380	1080	1080	1080	1020	840
9/16	22.95	1380	1380	1380	1380	1380	1380	1080	1080	1080	1020	840
5/8	25.50	1380	1380	1380	1380	1380	1380	1080	1080	1080	1020	840
8/4	30.60	1353	1357	1363	1372	1380	1380	1080	1080	1080	900	840
7/8	35.70	1160	1163	1169	1177	1188	1203	1080	1080	1080	900	840
1	40.80	1015	1018	1023	1030	1039	1052	1080	1080	1080	900	840
11/8	45.90	903	905	910	916	924	936	1080	1080	1080	840	840
11/4	51.00	812	814	818	824	832	842	1071	1080	1080	840	840
13/8	56.10	738	740	744	749	756	766	973	1080	1080	840	840
11/2	61.20	677	679	682	687	693	702	892	1059	1080	840	840
15%	66.30	625	626	629	634	640	648	823	978	1080	840	840
13/4	71.40	580	581	584	588	594	601	765	908	1038	720	720
17/8	76.50	541	543	545	549	554	561	714	847	968	660	720
2	81.60	507	509	511	515	519	526	669	794	907	600	720

Plates of greater dimensions than shown in above table may be submitted for special consideration.

RECTANGULAR AND CIRCULAR PLATES—Carbon Steel SHEARED PLATES. THREE-SIXTEENTH INCH AND OVER. EXTREME SIZES

Thick-	Weight,			V	Vidths :	and Ler	igths in	Inches				Diam.
ness, Inches	Lbs. per Sq. Ft.	128	126	120	114	108	102	96	90	84	78	Inches
3/16	7.65								270	320	345	90
1/4	10.20		ĺ		175	250	280	300	330	375	400	115
5/16	12.75			240	270	320	360	380	420	440	460	120
3/8	15.30	220	240	270	320	365	380	410	450	500	550	130
7/16	17.85	240	270	300	360	370	410	430	460	510	550	130
1/2	20.40	260	270	320	365	400	450	480	510	550	580	130
9/16	22.95	260	270	330	373	420	470	500	530	570	600	130
5/8	25.50	260	300	350	390	450	500	520	540	600	620	130
11/16	28.05	260	300	360	420	450	500	520	540	600	620	130
3/4	30.60	260	300	360	400	450	490	520	540	600	620	130
13/16	33.15	260	300	340	385	440	490	510	530	600	620	130
7/8	35.70	260	300	330	375	440	480	510	530	600	620	130
1	40.80	250	300	300	340	440	460	500	530	580	600	130
11/8	45.90	250	300	300	330	410	440	450	500	550	580	130
11/4	51.00	240	270	300	310	380	400	420	490	530	550	130
11/2	61.20	220	230	260	280	330	320	340	420	440	480	130
134	71.40	200	200	220	240	280	270	300	380	380	410	130
2	81.60	180	180	190	210	240	240	260	320	330	360	130
$2\frac{1}{4}$	91.80	150	160	170	190	210	210	230	280	295	320	130
Thick- ness, Inches	Weight, Lbs. per Sq. Ft.	72	66	60	54	50	48	42	36	30	24	Diam. Inches
3/16	7.65	375	420	470	480	480	480	480	480	480	480	90
1/4	10.20	430	475	525	530	530	530	530	530	530	530	115
5/16	12.75	480	500	560	550	575	575	550	550	550	580	120
3/s	15.30	600	600	620	620	620	620	600	580	600	600	130
7/16	17.85	600	630	630	640	640	640	600	580	600	600	130
$\frac{1}{2}$	20.40	610	630	630	640	640	640	600	580	630	600	130
%16	22.95	620	640	640	640	640	640	600	580	630	600	130
5/8	25.50	620	640	640	640	640	640	600	580	600	600	130
11/16	28.05	620	640	. 640	640	640	640	600	580	600	580	130
3/4	30.60	620	640	640	640	640	640	600	580	600	580	130
13/16	33.15	620	640	640	640	640	640	600	580	570	550	130
7/8	35.70	620	640	640	640	640	640	600	580	550	550	130
1	40.80	600	630	630	640	640	640	580	580	520	530	130
11/8	45.90	580	620	620	640	640	640	580	580	520	500	130
11/4	51.00	550	600	600	600	600	600	560	560	520	450	130
$1\frac{1}{2}$	61.20	530	600	600	600	600	600	540	540	470	430	130
		450	490	550	550	550	550	540	540	430	380	130
184	71.40			1								
	71.40 81.60 91.80	400 350	440 390	480 420	500 450	500	500	500 450	500	400	$\frac{350}{200}$	130 130

Plates 48" wide and under can also be rolled on Universal Mills.

For greater length and Universal Mill Sizes, see Universal Mill Plate Table.

Plates of greater dimensions than shown in above table may be submitted for special consideration.

FLAT ROLLED STEEL

RECTANGULAR PLATES—Nickel Steel

SHEARED PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES

Thick-															
ness, Inches	102	96	90	84	78	72	66	60	54	50	48	42	36	30	24
1/4						240	240	260	280	280	280	280	280	260	260
546					260	260	270	300	310	310	340	340	340	310	310
38		280	340	390	420	450	500	500	500	500	480	450	450	430	430
316	260	300	360	400	430	480	520	520	520	520	500	490	490	480	480
1/2	270	320	380	420	460	485	520	520	520	520	500	490	490	480	480
946	270	320	380	420	460	485	520	520	520	520	500	490	490	480	480
5/8	270	300	355	390	440	480	520	520	520	520	500	500	500	480	450
11/16	260	300	355	390	440	460	490	500	500	500	500	500	480	480	450
34	260	300	355	390	440	450	460	500	500	500	500	500	480	480	450
13/16	260	300	355	390	440	440	460	480	500	500	500	500	480	460	440
78 .	260	300	355	390	440	440	460	480	480	480	480	480	480	450	440
1	260	290	320	370	400	430	440	460	480	480	480	480	440	420	420
11/8	250	270	295	330	375	400	410	420	440	440	440	440	440	420	420
11/4	240	260	290	315	330	350	360	380	390	400	400	420	420	400	400
$1\frac{1}{2}$	230	260	290	290	310	330	350	370	390	390	390	390	380	380	360
134	220	230	250	270	300	310	330	350	370	390	390	360	340	340	320
2	210	230	250	260	290	295	310	330	350	370	370	340	320	320	290

RECTANGULAR PLATES—Nickel Steel

UNIVERSAL MILL PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES

Thick-				W	idths an	d Length	s in Inc	hes			
ness, Inches	48-46	45-41	40-36	35-31	30-26	25-20	19-17	16-15	14-12	11	10-61/8
14							660	660	660	540	540
516	540	540	600	660	720	780	780	780	780	600	600
3/8	720	720	780	840	960	960	1020	1020	1020	900	840
40	840	840	960	1020	1080	1080	1020	1020	1020	900	840
1/2	960	960	1080	1140	1200	1200	1020	1020	1020	1020	840
16	960	960	1080	1140	1200	1200	1020	1020	1020	1020	840
1/8	900	900	1020	1080	1140	1140	1000	1000	1020	1020	840
4	840	840	960	1020	1080	1080	1000	1000	1020	900	840
s s	780	780	840	960	960	960	1000	1000	1000	900	840
	720	750	780	816	840	900	1000	1000	1000	900	840
8	640	667	693	725	744	800	1000	1000	1000	840	840
4	575	600	624	652	672	720	1000	1000	1000	840	840
ś	525	545	567	593	600	655	970	1000	1000	840	840
V ₂	480	500	520	544	540	600	890	1000	980	840	840
ś	444	461	480	502	504	554	820	978	980	840	840
4	410	428	445	466	480	514	765	908	980	720	720
8	384	400	416	435	444	480	710	847	968	660	720
	360	375	390	408	420	450	670	794	908	600	720

All sizes of Rectangular Nickel Steel Plates given in above tables under \mathcal{Y}_2'' thick should be specified to gage only. Plates \mathcal{Y}_2'' thick and over can be rolled to either gage or weight per square foot.

SQUARE EDGE FLATS


```
3%'' to 1"
                wide, x ½" to ½"
                                          61/8" to 63/8" wide, x 1/4" to 21/9"
Over 1" to 2" wide, x 3/16" to 13/4"
                                          6½" to 65%" wide, x ¼" to 23%"
Over 2" to 4\\\'' wide, x \\\\\'' to 2\\\\''
                                        63/11
                                                      wide, x ¼" to 2¼"
                                          67\%" to 71/4" wide, x 1/4" to 2"
Over 41/4" to 41/8" wide, x 1/4" to 2"
     5" to 5¼" wide, x ¼" to 3"
                                          73/8"
                                                      wide, x 1/4" to 13/4"
     53%''
                  wide, x 1/4" to 21/8"
                                          7½" to 7¾" wide, x ¼" to 15%"
     5½" to 55%" wide, x ¼" to 2¾"
                                          7\frac{1}{8}" to 8" wide, x\frac{1}{4}" to 1\frac{1}{8}"
     534" to 6" wide, x 14" to 25%"
```

Sizes not listed will be considered.

NUT STEEL FLATS

All sizes of Nut Steel Flats within the range of Square Edge Flats can be furnished. Some of the smaller sizes can be furnished in coils.

BAND EDGE FLATS

Sizes not listed will be considered.

SKELP

All sizes within the range of Sheared Plates, Universal Mill Plates, and Band Edge Flats can be furnished.

WEIGHTS OF FLAT ROLLED STEEL

WEIGHTS OF FLAT ROLLED STEEL

POUNDS PER LINEAL FOOT

Width,							Thi	ckness	, Inch	ies						
Inches	1/16	1/s	846	1,1	546	3/8	340	1/2	248	5/8	11/16	34	13/16	7/5	15/16	1
1/4 1/2 8/4 1	.053 .106 .159 .213	.106 .213 .319 .425	.159 .319 .478 .638	.213 .425 .638 .850	.27 .53 .80 1.06	.32 .64 .96 1.28	.37 .74 1.12 1.49	.43 .85 1.28 1.70	.45 .96 1.43 1.91	.53 1.06 1.59 2.13	.58 1.17 1.75 2.34		.69 1.38 2.07 2.76	.74 1.49 2.23 2.98	.80 1.59 2.39 3.19	.85 1.70 2.55 3.40
$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$ 2	.266 .319 .372 .425				1.33 1.59 1.86 2.13	1.59 1.91 2.23 2.55	1.86 2.23 2.60 2.98	2.13 2.55 2.98 3.40	2.39 2.87 3.35 3.83	3.19 3.72	3.51 4.09	3.83 4.46		3.72 4.46 5.21 5.95	3.98 4.78 5.58 6.38	4.25 5.10 5.95 6.80
$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$ 3	.584	$1.063 \\ 1.169$	1.434 1.594 1.753 1.913	$\frac{2.125}{2.338}$	2,39 2.66 2.92 3.19	2.87 3.19 3.51 3.83	4.09	4.25 4.68	4.78 5.26	5.31 5.84	5.84	6.38 7.01	6.91 7.60	7.44	7.97 8.77	$\begin{array}{c} 7.65 \\ 8.50 \\ 9.35 \\ 10.20 \end{array}$
$3\frac{1}{4}$ $3\frac{1}{2}$ $3\frac{3}{4}$ 4	.744 .797	$1.488 \\ 1.594$	2.072 2.231 2.391 2.550	$\frac{2.975}{3.188}$	3.45 3.72 3.98 4.25	4.14 4.46 4.78 5.10	5.21 5.58	$\frac{5.95}{6.38}$	6.69 7.17	7.44 7.97	7.60 8.18 8.77 9.35	8.93 9.56	8.98 9.67 10.36 11.05	$10.41 \\ 11.16$	11.95	$\frac{11.90}{12.75}$
41/4 41/2 43/4 5	0.956 0.000	$\frac{1.913}{2.019}$	2.709 2.869 3.028 3.188	$\frac{3.825}{4.038}$	4.52 4.78 5.05 5.31	5.42 5.74 6.06 6.38	6.69 7.07	7.65 8.08	8.61 9.08	$9.56 \\ 10.09$	$10.52 \\ 11.10$	$\frac{11.48}{12.11}$	11.74 12.43 13.12 13.81	$13.39 \\ 14.13$	$14.34 \\ 15.14$	$15.30 \\ 16.15$
51/2	$1.169 \\ 1.222$	$\frac{2.338}{2.444}$	3.347 3.506 3.666 3.825	4.675 4.888	5.58 5.84 6.11 6.38	6.69 7.01 7.33 7.65	8.18 8.55	9.35 9.78	$10.52 \\ 11.00$	11.69 12.22	12.86 13.44	14.03 14.66	14.50 15.19 15.88 16.58	16.36 17.11	17.53 18.33	18.70 19.55
$6\frac{1}{4}$ $6\frac{1}{2}$ $6\frac{3}{4}$	1.381 1.434	$\frac{2.763}{2.869}$	3.984 4.144 4.303 4.463	$5.525 \\ 5.738$	6.64 6.91 7.17 7.44	8.61	9.67 10.04	$\frac{11.05}{11.48}$	$12.43 \\ 12.91$	13.81 14.34	15.19 15.78	$16.58 \\ 17.21$	17.27 17.96 18.65 19.34	$19.34 \\ 20.08$	$20.72 \\ 21.52$	$\frac{22.10}{22.95}$
71/2	1.594 1.647	$\frac{3.188}{3.294}$	4.622 4.781 4.941 5.100	$6.375 \\ 6.588$		9.56 9.88	$\frac{11.16}{11.53}$	12.75 13.18	14.34 14.82	15.94 16.47	17.53 18.12	19.13 19.76	$\begin{array}{c} 20.03 \\ 20.72 \\ 21.41 \\ 22.10 \end{array}$	$\frac{22.31}{23.06}$	$\frac{23.91}{24.70}$	$\frac{25.50}{26.35}$
	1.806 1.859	$\frac{3.613}{3.719}$	5.259 5.419 5.578 5.738	7.225 7.438	9.03 9.30	10.84 11.16	12.64 13.02	14.45 14.88	16.26 16.73	18.06 18.59	19.87 20.45	$\frac{21.68}{22.31}$	22.79 23.48 24.17 24.86	$\frac{25.29}{26.03}$	$\frac{27.09}{27.89}$	$\frac{28.90}{29.75}$
91/4 91/2 93/4 10	2.019	4.038	5.897 6.056 6.216 6.375	8.075	10.09	12.11	14.13	16.15	18.17	20.19 20.72	22.21 22.79	24.23	26.24 26.93	28.26 29.01	$\frac{30.28}{31.08}$	32.30
101/4 101/5 103/4 11	2.231	4.463	6.534 6.694 6.853 7.013	8.925 9.138	11.16	13.39 13.71	15.62 15.99	17.85	20.08 20.56	22.31	24.54 25.13	26.78 27.41	29.01 29.70	31.24 31.98	33.47 34.27	$35.70 \\ 36.55$
$11\frac{1}{4}$ $11\frac{1}{2}$ $11\frac{3}{4}$ 12	2.444 2.497	4.888	7.172 7.331 7.491 7.650	9.775	12.22 12.48	14.66	17.11 17.48	19.55	21.99 22.47	24.44	26.88 27.47	29.33 29.96	$\frac{31.77}{32.46}$	34.21 34.96	36.66 37.45	39.10 39.95

WEIGHTS OF FLAT ROLLED STEEL—Continued

POUNDS PER LINEAL FOOT

Width,							7	hickn	ess, In	ches			_			
Inches	1/16	1/8	3/16	1/4	5/16	3/s	7/16	1/2	%16	5/8	11/16	3/4	13/16	7/8	15/16	1
$12\frac{1}{2}$ 13 $13\frac{1}{2}$ 14	2.66 2.76 2.87 2.98		8.29 8.61	$\frac{11.05}{11.48}$	$13.81 \\ 14.34$	$\frac{16.58}{17.21}$	$\frac{19.34}{20.08}$	21.25 22.10 22.95 23.80	$\begin{vmatrix} 24.86 \\ 25.82 \end{vmatrix}$	28.69	29.2 30.4 31.6 32.7		35.9 37.3	38.7 40.2	43.0	44.2 45.9
$14\frac{1}{2}$ 15 $15\frac{1}{2}$ 16	3.08 3.19 3.29 3.40		9.56 9.88	$\frac{12.75}{13.18}$	$15.94 \\ 16.47$	$19.13 \\ 19.76$	23.06	$\begin{array}{c} 24.65 \\ 25.50 \\ 26.35 \\ 27.20 \end{array}$	29.64	$31.88 \\ 32.94$		37.0 38.3 39.5 40.8	41.4 42.8	44.6 46.1		49.3 51.0 52.7 54.4
$16\frac{1}{2}$ 17 $17\frac{1}{2}$ 18	3.51 3.61 3.72 3.83	7.23 7.44	$10.84 \\ 11.16$	$14.45 \\ 14.88$	$18.06 \\ 18.59$	$21.68 \\ 22.31$	$\begin{array}{c} 25.29 \\ 26.03 \end{array}$	28.05 28.90 29.75 30.60	$32.51 \\ 33.47$	$\frac{36.13}{37.19}$	38.6 39.7 40.9 42.1	43.4		50.6 52.1	55.8	56.1 57.8 59.5 61.2
$18\frac{1}{2}$ 19 $19\frac{1}{2}$ 20	3.93 4.04 4.14 4.25	8.08 8.29	12.11 12.43	$16.15 \\ 16.58$	$\frac{20.19}{20.72}$	$24.23 \\ 24.86$	$28.26 \\ 29.01$	31.45 32.30 33.15 34.00	36.34 37.29	$40.38 \\ 41.44$	43.2 44.4 45.6 46.8	47.2 48.5 49.7 51.0	51.1 52.5 53.9 55.3	56.5 58.0	59.0 60.6 62.2 63.8	62.9 64.6 66.3 68.0
$20\frac{1}{2}$ 21 $21\frac{1}{2}$ 22	4.36 4.46 4.57 4.68	$8.93 \\ 9.14$	$13.39 \\ 13.71$	$17.85 \\ 18.28$	$\frac{22.31}{22.84}$	$26.78 \\ 27.41$	$\frac{31.24}{31.98}$	$34.85 \\ 35.70 \\ 36.55 \\ 37.40$	$\frac{40.16}{41.12}$	$44.63 \\ 45.69$	47.9 49.1 50.3 51.4	52.3 53.6 54.8 56.1	56.6 58.0 59.4 60.8	62.5 64.0		69.7 71.4 73.1 74.8
$22\frac{1}{2}$ 23 $23\frac{1}{2}$ 24	4.78 4.89 4.99 5.10	$9.78 \\ 9.99$	$\frac{14.66}{14.98}$	19.55 19.98	$24.44 \\ 24.97$	$\frac{29.33}{29.96}$	$\frac{34.21}{34.96}$	38.25 39.10 39.95 40.80	$\frac{43.99}{44.94}$	$\frac{48.88}{49.94}$	52.6 53.8 54.9 56.1	57.4 58.7 59.9 61.2	62.2 63.5 64.9 66.3	68.4 69.9	71.7 73.3 74.9 76.5	76.5 78.2 79.9 81.6
25 26 27 28	5.53 5.74	$11.05 \\ 11.48$	$\frac{16.58}{17.21}$	$\frac{22.10}{22.95}$	$27.63 \\ 28.69$	$33.15 \\ 34.43$	$38.68 \\ 40.16$	42.50 44.20 45.90 47.60	$\frac{49.73}{51.64}$	$55.25 \\ 57.38$	58.4 60.8 63.1 65.5	63.8 66.3 68.9 71.4	69.1 71.8 74.6 77.4	80.3	79.7 82.9 86.1 89.3	85.0 88.4 91.8 95.2
29 30 31 32	$6.38 \\ 6.59$	$12.75 \\ 13.18$	19.13 19.76	$25.50 \\ 26.35$	$\frac{31.88}{32.94}$	$\frac{38.25}{39.53}$	$44.63 \\ 46.11$	49.30 51.00 52.70 54.40	$57.38 \\ 59.29$	63.75 65.88	67.8 70.1 72.5 74.8	74.0 76.5 79.1 81.6	80.1 82.9 85.6 88.4	92.2		98.6 102.0 105.4 108.8
33 34 35 36	$7.23 \\ 7.44$	$14.45 \\ 14.88$	$\frac{21.68}{22.31}$	$28.90 \\ 29.75$	36.13 37.19	$\frac{43.35}{44.63}$	$50.58 \\ 52.06$	56.10 57.80 59.50 61.20	$65.03 \\ 66.94$	$72.25 \\ 74.38$	77.1 79.5 81.8 84.2	84.2 86.7 89.3 91.8	96.7	98.2 101.2 104.1 107.1	111.6	$115.6 \\ 119.0$
37 38 39 40	8.08 8.29	16.15 16.58	$24.23 \\ 24.86$	$\frac{32.30}{33.15}$	40.38 41.44	$\frac{48.45}{49.73}$	56.53 58.01	62.90 64.60 66.30 68.00	$72.68 \\ 74.59$	$80.75 \\ 82.88$	86.5 88.8 91.2 93.5	$96.9 \\ 99.5$	$105.0 \\ 107.7$	110.1 113.1 116.0 119.0	$121.1 \\ 124.3$	$129.2 \\ 132.6$
41 42 43 44	8.93 9.14	17.85 18.28	$26.78 \\ 27.41$	35.70 4 36.55 4	14.63 15.69	$53.55 \\ 54.83$	$62.48 \\ 63.96$		80.33 82.24	$89.25 \\ 91.38$	98.2 100.5	$107.1 \\ 109.7$	116.0 118.8	$\begin{array}{c} 122.0 \\ 125.0 \\ 127.9 \\ 130.9 \end{array}$	$133.9 \\ 137.1$	$142.8 \\ 146.2$
45 46 47 48	9.99	19.98	29.96	39.95	19.948	59.936	39.91	79.90	89.89	99.88	109.9	119.9	129.8	133.9 136.9 139.8 142.8	149.8	159.8

WEIGHTS OF FLAT ROLLED STEEL

WEIGHTS OF FLAT ROLLED STEEL—Concluded POUNDS PER LINEAL FOOT

Width,							Т	hickn	ess, In	ches						
Inches	316	1.8	3/16	1,4	51a	34	7/16	1/2	916	3/8	11/16	3/1	13/16	7/8	15/16	1
49 50 51 52	10.4 10.6 10.8 11.1	20.8 21.3 21.7 22.1	31.9	41.7 42.5 43.4 44.2	52.1 53.1 54.2 55.3	62.5 63.8 65.0 66.3	72.9 74.4 75.9 77.4	83.3 85.0 86.7 88.4	95.6 97.5	108.4	$116.9 \\ 119.2$	$127.5 \\ 130.1$	138.1 140.9	148.8 151.7		
53 54 55 56	11.3 11.5 11.7 11.9	22.5 23.0 23.4 23.8	34.4	45.1 45.9 46.8 47.6	56.3 57.4 58.4 59.5			93.5	$103.3 \\ 105.2$	112.6 114.8 116.9 119.0	126.2 128.6	$137.7 \\ 140.3$	$149.2 \\ 151.9$	160.7 163.6	172.1 175.3	180.2 183.6 187.0 190.4
57 58 59 60	12.1 12.3 12.5 12.8	24.2 24.7 25.1 25.5	36.3 37.0 37.6 38.3	48.5 49.3 50.2 51.0	60.6 61.6 62.7 63.8	72.7 74.0 75.2 76.5	87.8	$98.6 \\ 100.3$	$110.9 \\ 112.8$	125.4	$135.6 \\ 137.9$	$147.9 \\ 150.5$	$160.2 \\ 163.0$	$172.6 \\ 175.5$	184.9 188.1	193.8 197.2 200.6 204.0
61 62 63 64	13.0 13.2 13.4 13.6	25.9 26.4 26.8 27.2	38.9 39.5 40.2 40.8	51.9 52.7 53.6 54.4	64.8 65.9 66.9 68.0	77.8 79.1 80.3 81.6	92.2 93.7	$105.4 \\ 107.1$	$118.6 \\ 120.5$	$131.8 \\ 133.9$	144.9 147.3	158.1 160.7	$171.3 \\ 174.0$	184.5 187.4	194.4 197.6 200.8 204.0	$210.8 \\ 214.2$
65 66 67 68	13.8 14.0 14.2 14.5	$\begin{array}{c} 27.6 \\ 28.1 \\ 28.5 \\ 28.9 \end{array}$	41.4 42.1 42.7 43.4	55.3 56.1 57.0 57.8	69.1 70.1 71.2 72.3	82.9 84.2 85.4 86.7	$98.2 \\ 99.7$	$\frac{112.2}{113.9}$	$126.2 \\ 128.1$	$140.3 \\ 142.4$	$154.3 \\ 156.6$	$^{168.3}_{170.9}$	$182.3 \\ 185.1$	$196.4 \\ 199.3$	207.2 210.4 213.6 216.8	$\frac{224.4}{227.8}$
69 70 71 72	14.7 14.9 15.1 15.3	29.3 29.8 30.2 30.6	44.0 44.6 45.3 45.9	58.7 59.5 60.4 61.2	73.3 74.4 75.4 76.5	$89.3 \\ 90.5$	$104.1 \\ 105.6$	$\substack{119.0\\120.7}$	$133.9 \\ 135.8$	$148.8 \\ 150.9$	$163.6 \\ 166.0$	$178.5 \\ 181.1$	$193.4 \\ 196.1$	$208.3 \\ 211.2$		$238.0 \\ 241.4$
73 74 75 76	$\begin{array}{c} 15.5 \\ 15.7 \\ 15.9 \\ 16.2 \end{array}$	$31.0 \\ 31.5 \\ 31.9 \\ 32.3$	46.5 47.2 47.8 48.5	$\begin{array}{c} 62.1 \\ 62.9 \\ 63.8 \\ 64.6 \end{array}$	77.6 78.6 79.7 80.8	$\begin{array}{c} 94.4 \\ 95.6 \end{array}$	$110.1 \\ 111.6$	$^{125.8}_{127.5}$	$141.5 \\ 143.4$	159.4	$173.0 \\ 175.3$	188.7 191.3	$204.4 \\ 207.2$	$220.2 \\ 223.1$	232.7 235.9 239.1 242.3	255.0
77 78 79 80	16.4 16.6 16.8 17.0	$32.7 \\ 33.2 \\ 33.6 \\ 34.0$	$49.1 \\ 49.7 \\ 50.4 \\ 51.0$	65.5 66.3 67.2 68.0	83.9	$99.5 \\ 100.7$	$116.0 \\ 117.5$	$132.6 \\ 134.3$	$149.2 \\ 151.1$	165.8	$182.3 \\ 184.7$	$198.9 \\ 201.5$	$215.5 \\ 218.2$	$232.1 \\ 235.0$	245.4 248.6 251.8 255.0	265.2
81 82 83 84	17.2 17.4 17.6 17.9	$34.4 \\ 34.9 \\ 35.3 \\ 35.7$	51.6 52.3 52.9 53.6	68.9 69.7 70.6 71.4	87.1 88.2	$104.6 \\ 105.8$	$122.0 \\ 123.5$	$139.4 \\ 141.1$	$156.8 \\ 158.7$	172.1 174.3 176.4 178.5	191.7 194.0	$209.1 \\ 211.7$	$226.5 \\ 229.3$	$244.0 \\ 246.9$	$261.4 \\ 264.6$	275.4 278.8 282.2 285.6
85 86 87 88	18.1 18.3 18.5 18.7	$36.1 \\ 36.6 \\ 37.0 \\ 37.4$	$54.2 \\ 54.8 \\ 55.5 \\ 56.1$	72.3 73.1 74.0 74.8	$91.4 \\ 92.4$	109.7 110.9	$127.9 \\ 129.4$	$146.2 \\ 147.9$	$\begin{array}{c} 164.5 \\ 166.4 \end{array}$	180.6 182.8 184.9 187.0	$201.0 \\ 203.4$	$\frac{219.3}{221.9}$	$237.6 \\ 240.3$	$255.9 \\ 258.8$	$274.1 \\ 277.3$	289.0 292.4 295.8 299.2
89 90 91 92	18.9 19.1 19.3 19.6	$37.8 \\ 38.3 \\ 38.7 \\ 39.1$	56.7 57.4 58.0 58.7	73.7 76.5 77.4 78.2	$95.6 \\ 96.7$	$114.8 \\ 116.0$	133.9 135.4	153.0 154.7	$172.1 \\ 174.0$		210.4 212.7	$229.5 \\ 232.1$	$248.6 \\ 251.4$	$267.8 \\ 270.7$	283.7 286.9 290.1 293.3	
93 94 95 96	$\begin{array}{c} 19.8 \\ 20.0 \\ 20.2 \\ 20.4 \end{array}$	$39.5 \\ 40.0 \\ 40.4 \\ 40.8$	$\begin{array}{c} 59.3 \\ 59.9 \\ 60.6 \\ 61.2 \end{array}$	80.8	99.9 100.9	119.9 121.1	$129.8 \\ 141.3$	159.8 161.5	179.8 181.7	$199.8 \\ 201.9$	$219.7 \\ 222.1$	$239.7 \\ 242.3$	$259.7 \\ 262.4$	279.7 282.6	296.4 299.6 302.8 306.0	$319.6 \\ 323.0$
97 98 99 100	20.6 20.8 21.0 21.3	$\begin{array}{c} 41.2 \\ 41.7 \\ 42.1 \\ 42.5 \end{array}$	61.8 62.5 63.1 63.8	83.3	104.1	125.0	145.8	166.6	187.4	208.3	229.1	249.9	270.7	291.6	309.2 312.4 315.6 318.8	333.2

AREAS OF RECTANGULAR SECTIONS

SQUARE INCHES

Width,							Т	hickne	ess, In	ches						
Inches	1,16	½s	3/16	1/4	510	38	710	1/2	916	5,5	11/16	8/4	18/16	78	15/16	1
1,4 1,2 3,4 1	.016 .031 .047 .063	.031 .063 .094 .125	.047 .094 .141 .188	.063 .125 .188 .250	.078 .156 .234 .313	.188	.109 .219 .328 .438	.375	.141 .281 .422 .563	.156 .313 .469 .625	.172 .344 .516 .688	.188 .375 .563 .750	.406 .609		.23 .47 .70 .94	.25 .50 .75 1.00
$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$.078 .094 .109 .125	.156 .188 .219 .250		.313 .375 .438 .500	.391 .469 .547 .625	.656	.766		.703 .844 .984 1.125	1.094	.859 1.031 1.203 1.375	1.125 1.313	1.422		1.17 1.41 1.64 1.88	1.25 1.50 1.75 2.00
$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$ 3	.141 .156 .172 .188	.281 .313 .344 .375	.516	.563 .625 .688 .750		.938 1.031	1.094 1.203	$1.250 \\ 1.375$	1.266 1.406 1.547 1.688	$1.563 \\ 1.719$	1.719 1.891	$\frac{1.875}{2.063}$	$2.031 \\ 2.234$	$2.19 \\ 2.41$	2.11 2.34 2.58 2.81	2.25 2.50 2.75 3.00
$\frac{31_4}{31_2}$ $\frac{33_4}{4}$.203 .219 .234 .250	.406 .438 .469	.656 .703	.875 .938	$\frac{1.094}{1.172}$	1.313 1.406	1.531 1.641	$1.750 \\ 1.875$	$\begin{array}{c} 1.828 \\ 1.969 \\ 2.109 \\ 2.250 \end{array}$	$2.188 \\ 2.344$	$\frac{2.406}{2.578}$	2.625 2.813	2.844 3.047	3.28	3.05 3.28 3.52 3.75	3.25 3.50 3.75 4.00
$4\frac{1}{4}$ $4\frac{1}{2}$ $4\frac{3}{4}$ 5	.266 .281 .297 .313	.531 .563 .594 .625	.844	$\frac{1.125}{1.188}$	$1.406 \\ 1.484$	1.688 1.781	$\frac{1.969}{2.078}$	$\frac{2.250}{2.375}$	2.391 2.531 2.672 2.813	$\frac{2.813}{2.969}$	$3.094 \\ 3.266$	$\frac{3.375}{3.563}$	$3.656 \\ 3.859$		3.98 4.22 4.45 4.69	4.25 4.50 4.75 5.00
$5\frac{1}{4}$ $5\frac{1}{2}$ $5\frac{3}{4}$ 6	.328 .344 .359 .375	.719	1.031	$\frac{1.375}{1.438}$	1.719 1.797	$2.063 \\ 2.156$	$\frac{2.406}{2.516}$	$\frac{2.750}{2.875}$	2.953 3.094 3.234 3.375	$\frac{3.438}{3.594}$	$\frac{3.781}{3.953}$	$\frac{4.125}{4.313}$	$\frac{4.469}{4.672}$	4.59 4.81 5.03 5.25	4.92 5.16 5.39 5.63	5.25 5.50 5.75 6.00
$6\frac{14}{6\frac{1}{2}}$ $6\frac{3}{4}$ 7	.391 .406 .422 .438	.813 .844	$\frac{1.219}{1.266}$	$1.625 \\ 1.688$	$\frac{2.031}{2.109}$	2.438 2.531	$\frac{2.844}{2.953}$	$3.250 \\ 3.375$	3.516 3.656 3.797 3.938	$\frac{4.063}{4.219}$	$\frac{4.469}{4.641}$	$\frac{4.875}{5.063}$	5.281 5.484	5.47 5.69 5.91 6.13	5.86 6.09 6.33 6.56	6.25 6.50 6.75 7.00
$7\frac{1}{4}$ $7\frac{1}{2}$ $7\frac{3}{4}$ 8	.453 .469 .484 .500	.938 .969	$\frac{1.406}{1.453}$	$1.875 \\ 1.938$	2.344 2.422	$\frac{2.813}{2.906}$	$3.281 \\ 3.391$	$\begin{vmatrix} 3.750 \\ 3.875 \end{vmatrix}$	4.078 4.219 4.359 4.500	$\frac{4.688}{4.844}$	$5.156 \\ 5.328$	$5.625 \\ 5.813$	$6.094 \\ 6.297$	6.34 6.56 6.78 7.00	6.80 7.03 7.27 7.50	7.25 7.50 7.75 8.00
$ \begin{array}{c} 814 \\ 81/2 \\ 834 \\ 9 \end{array} $.531	1.063 1.094	$1.594 \\ 1.641$	$\frac{2.125}{2.188}$	$\frac{2.656}{2.734}$	3.188 3.281	$\frac{3.719}{3.828}$	$\frac{4.250}{4.375}$	4.641 4.781 4.922 5.063	5.313 5.469	5.844 6.016	$6.375 \\ 6.563$	$6.906 \\ 7.109$	7.22 7.44 7.66 7.88	7.73 7.97 8.20 8.44	8.25 8.50 8.75 9.00
$9\frac{1}{4}$ $9\frac{1}{2}$ $9\frac{3}{4}$ 10	.594 $.609$	$\frac{1.188}{1.219}$	$\frac{1.781}{1.828}$	$\frac{2.375}{2.438}$	$\frac{2.969}{3.047}$	$3.563 \\ 3.656$	$\frac{4.156}{4.266}$	4.750 4.875	5.203 5.344 5.484 5.625	$5.938 \\ 6.094$	$6.531 \\ 6.703$	$7.125 \\ 7.313$	7.719 7.922	8.09 8.31 8.53 8.75	8.67 8.91 9.14 9.38	9.25 9.50 9.75 10.00
$10\frac{1}{4}$ $10\frac{1}{2}$ $10\frac{3}{4}$ 11	$.656 \\ .672$	$\frac{1.313}{1.344}$	$\frac{1.969}{2.016}$	$\frac{2.625}{2.688}$	$\frac{3.281}{3.359}$	$\frac{3.938}{4.031}$	$\frac{4.594}{4.703}$	$5.250 \\ 5.375$	5.766 5.906 6.047 6.188	$6.563 \\ 6.719$	7.219 7.391	$7.875 \\ 8.063$	$8.531 \\ 8.734$			10.25 10.50 10.75 11.00
$11\frac{1}{4}$ $11\frac{1}{2}$ $11\frac{3}{4}$ 12	.719 .734	$\frac{1.438}{1.469}$	$\frac{2.156}{2.203}$	$\frac{2.875}{2.938}$	$\frac{3.594}{3.672}$	$\frac{4.313}{4.406}$	$5.031 \\ 5.141$	5.750 5.875	$6.328 \\ 6.469 \\ 6.609 \\ 6.750$	$7.188 \\ 7.344$	$7.906 \\ 8.078$	$8.625 \\ 8.813$	$9.344 \\ 9.547$	$10.06 \\ 10.28$	11.02	11.25 11.50 11.75 12.00

AREAS OF RECTANGLES

AREAS OF RECTANGULAR SECTIONS—Continued SQUARE INCHES

Width,							T	hickne	ss, In	ches						
Inches	718	1/8	816	1/1	516	3%	7/16	1/2	%16	5/8	11/16	3/4	13/16	7/8	15/16	1
12½ 13 13½ 14	.813 .844	$\frac{1.625}{1.688}$	2.344 2.438 2.531 2.625	3.13 3.25 3.38 3.50	3.91 4.06 4.22 4.38	4.69 4.88 5.06 5.25		6.75	7.03 7.31 7.59 7.88	7.81 8.13 8.44 8.75	9.28	$9.75 \\ 10.13$	10.56 10.97	11.38 11.81	11.72 12.19 12.66 13.13	$13.00 \\ 13.50$
$14\frac{1}{2}$ 15 $15\frac{1}{2}$ 16	.938 .969	$\frac{1.875}{1.938}$	2.719 2.813 2.906 3.000	3.75 3.88		5.44 5.63 5.81 6.00	6.78	7.50 7.75	8.16 8.44 8.72 9.00	$9.38 \\ 9.69$	$10.31 \\ 10.66$	$11.25 \\ 11.63$	$12.19 \\ 12.59$	13.13 13.56	13.59 14.06 14.53 15.00	$15.00 \\ 15.50$
17	1.033 1.094	$\frac{2.125}{2.188}$	3.094 3.188 3.281 3.375	4.25 4.38	$5.31 \\ 5.47$	6.56	7.44	8.50 8.75	$9.56 \\ 9.84$	$10.63 \\ 10.94$	$11.69 \\ 12.03$	12.75 13.13	$13.81 \\ 14.22$	14.88 15.31	15.47 15.94 16.41 16.88	$17.00 \\ 17.50$
19	1.188 1.219	2.375 2.438	3.469 3.563 3.656 3.750	4.75 4.88	5.94 6.09	7.13 7.31	8.31 8.53	9.50 9.75	$10.69 \\ 10.97$	11.88 12.19	13.06 13.41	14.25 14.63	15.44 15.84	16.63 17.06	17.81 18.28	18.50 19.00 19.50 20.00
21	1.313 1.344	2.688	3.844 3.938 4.031 4.125	5.25 5.38	$6.56 \\ 6.72$	7.88 8.06	$9.19 \\ 9.41$	$10.50 \\ 10.75$	$11.81 \\ 12.09$	13.13 13.44	14.44 14.78	15.75 16.13	17.06 17.47	18.38 18.81	19.69 20.16	20.50 21.00 21.50 22.00
23	1.438 1.469	2.875	4.219 54.313 54.406 64.500	5.75 5.88	7.19 7.34	8.63 8.81	10.06 10.28	11.50 11.75	$12.94 \\ 13.22$	14.38 14.69	15.81 16.16	17.25 17.63	18.69 19.09	20.13 20.56	21.56 22.03	22.50 23.00 23.50 24.00
25 26 27 28	1.625 1.688	3.250	4.688 4.875 5.063 5.250	6.50 6.75	8.13 8.44	9.75 10.13	11.38 11.81	13.00	14.63 15.19	16.25 16.88	17.88 18.56	19.50 20.25	21.13 21.94	22.73	24.38 25.31	25.00 26.00 27.00 28.00
29 30 31 32	1.875 1.938	3.75	5.438 5.625 5.813 6.000	7.50	9.38	11.25	13.13	15.00	16.88	18.73	20.63	22.50	24.38	26.2	28.13	29.00 30.00 31.00 32.00
33 34 35 36	2.125 2.188	4.25	5 6.188 0 6.375 5 6.563 0 6.750	8.50 8.75	10.63 10.94	12.75 13.13	14.88 15.31	17.00 17.50	19.13 19.69	21.25	23.38 24.06	25.50 26.25	27.63 28.44	30.63 30.63	$\frac{31.88}{32.81}$	33.00 34.00 35.00 36.00
37 38 39 40	2.375	4.75	57.313	9.50	11.88	14.25	16.63 17.06	$\frac{19.00}{19.50}$	21.38	23.75 24.38	$\frac{26.13}{26.81}$	28.50	30.88	33.2	35.63 36.56	37.00 38.00 39.00 40.00
41 42 43 44	2.625 2.688	5.25	0.7.875 $5.8.063$	10.50	13.13 13.44	15.75 16.13	$\frac{18.38}{18.81}$	$\frac{21.00}{21.50}$	$\frac{23.63}{24.19}$	26.28 26.88	28.88 29.56	31.50	34.13	36.73 37.63	39.38 40.31	41.00 42.00 43.00 44.00
45 46 47 48	2.873 2.938	5.75	08.625 58.813	$\frac{11.50}{11.75}$	14.38	17.23	$\frac{5}{2} \frac{20.13}{20.56}$	$\frac{1}{2}\frac{23.00}{23.50}$	25.88 26.44	28.73 29.38	31.63	34.50 35.25	37.38	40.2	5 43.13 3 44.06	45.00 46.00 47.00 48.00

AREAS OF RECTANGULAR SECTIONS—Concluded SQUARE INCHES

Width,							Т	hickne	ess, In	ches						
Inches	1/16	1/8	3/16	1/4	516	3/8	716	1/2	916	5/8	11/16	3/4	13/16	78	15/16	1
49 50 51 52	3.06 3.13 3.19 3.25	6.13 6.25 6.38 6.50	$9.38 \\ 9.56$	$12.50 \\ 12.75$	$15.63 \\ 15.94$	$18.75 \\ 19.13$	$\frac{21.88}{22.31}$	$\begin{array}{c} 24.50 \\ 25.00 \\ 25.50 \\ 26.00 \end{array}$	$\frac{28.13}{28.69}$	$\frac{31.25}{31.88}$	$\frac{34.38}{35.06}$	$\frac{37.50}{38.25}$	$\frac{40.63}{41.44}$	$43.75 \\ 44.63$	$\frac{46.88}{47.81}$	$50.00 \\ 51.00$
53 54 55 56	3.31 3.38 3.44 3.50	6.75 6.88	$10.13 \\ 10.31$	$13.50 \\ 13.75$	$\frac{16.88}{17.19}$	$20.25 \\ 20.63$	$23.63 \\ 24.06$	$\begin{array}{c} 26.50 \\ 27.00 \\ 27.50 \\ 28.00 \end{array}$	$30.38 \\ 30.94$	$\frac{33.75}{34.38}$	$\frac{37.13}{37.81}$	$\frac{40.50}{41.25}$	43.88 44.69	47.25 48.13	50.63 51.56	54.00 55.00
57 58 59 60	3.56 3.63 3.69 3.75	7.25 7.38	$\frac{10.88}{11.06}$	$14.50 \\ 14.75$	18.13 18.44	$\frac{21.75}{22.13}$	$25.38 \\ 25.81$	$\begin{array}{c} 28.50 \\ 29.00 \\ 29.50 \\ 30.00 \end{array}$	32.63 33.19	36.25 36.88	$\frac{39.88}{40.56}$	$\frac{43.50}{44.25}$	47.13 47.94	50.75 51.63	54.38 55.31	57.00 58.00 59.00 60.00
61 62 63 64	3.81 3.88 3.94 4.00	7.75 7.88	$\frac{11.63}{11.81}$	$15.50 \\ 15.75$	19.38 19.69	$23.25 \\ 23.63$	27.13 27.56	31.50	34.88 35.44	38.75 39.38	$\frac{42.63}{43.31}$	$\frac{46.50}{47.25}$	50.38 51.19	54.25 55.13	58.13 59.06	61.00 62.00 63.00 64.00
65 66 67 68	4.06 4.13 4.19 4.25	8.25 8.38	12.38 12.56	$16.50 \\ 16.75$	20.63 20.94	$24.75 \\ 25.13$	$28.88 \\ 29.31$	32.50 33.00 33.50 34.00	37.13 37.69	$\frac{41.25}{41.88}$	$\frac{45.38}{46.06}$	$\frac{49.50}{50.25}$	53.63 54.44	57.75 58.63	$61.88 \\ 62.81$	$66.00 \\ 67.00$
69 70 71 72	4.31 4.38 4.44 4.50	8.75 8.88	13.13 13.31	17.50 17.75	$\frac{21.88}{22.19}$	$\frac{26.25}{26.63}$	30.63 31.06	34.50 35.00 35.50 36.00	$\frac{39.38}{39.94}$	$\frac{43.75}{44.38}$	$\frac{48.13}{48.81}$	$52.50 \\ 53.25$	56.88 57.69	$61.25 \\ 62.13$	$65.63 \\ 66.56$	$70.00 \\ 71.00$
73 74 75 76	4.56 4.63 4.69 4.75	9.25 9.38	13.88 14.06	$18.50 \\ 18.75$	$\frac{23.13}{23.44}$	27.75 28.13	$\frac{32.38}{32.81}$	36.50 37.00 37.50 38.00	$\frac{41.63}{42.19}$	$\frac{46.25}{46.88}$	$50.88 \\ 51.56$	$55.50 \\ 56.25$	60.13 60.94	$64.75 \\ 65.63$	$69.38 \\ 70.31$	$74.00 \\ 75.00$
77 78 79 80		9.75 9.88	14.63 14.81	19.50 19.75	$24.38 \\ 24.69$	29.25 29.63	$34.13 \\ 34.56$	38.50 39.00 39.50 40.00	43.88 44.44	48.75 49.38	$53.63 \\ 54.31$	$58.50 \\ 59.25$	$63.38 \\ 64.19$	$68.25 \\ 69.13$	73.13 74.06	78.00 79.00
81 82 83 84	5.13 5.19	10.25 10.38	15.38 15.56	$20.50 \\ 20.75$	25.63 25.94	$30.75 \\ 31.13$	$35.88 \\ 36.31$	$\begin{array}{c} 40.50 \\ 41.00 \\ 41.50 \\ 42.00 \end{array}$	46.13 46.69	51.25 51.88	56.38 57.06	$61.50 \\ 62.25$	66.63 67.44	$71.75 \\ 72.63$	$76.88 \\ 77.81$	82.00 83.00
85 86 87 88	5.38 5.44	10.75 10.88	16.13 16.31	$\frac{21.50}{21.75}$	$\frac{26.88}{27.19}$	$32.25 \\ 32.63$	$37.63 \\ 38.06$	$\begin{array}{c} 42.50 \\ 43.00 \\ 43.50 \\ 44.00 \end{array}$	$\frac{48.38}{48.94}$	53.75 54.38	$59.13 \\ 59.81$	$64.50 \\ 65.25$	69.88 70.69	$75.25 \\ 76.13$	$80.63 \\ 81.56$	86.00 87.00
89 90 91 92	5.63 5.69	$11.25 \\ 11.38$	16.88 17.06	$\frac{22}{22.75}$	28.13 28.44	$33.75 \\ 34.13$	$\frac{39.38}{39.81}$	$\begin{array}{c} 44.50 \\ 45.00 \\ 45.50 \\ 46.00 \end{array}$	50.63 51.19	$56.25 \\ 56.88$	$61.88 \\ 62.56$	$67.50 \\ 68.25$	$73.13 \\ 73.94$	78.75 79.63	$84.38 \\ 85.31$	90.00 91.00
93 94 95 96	5.88 5.94	$11.75 \\ 11.88$	17.63 17.81	$\frac{23.50}{23.75}$	$\frac{29.38}{29.69}$	$35.25 \\ 35.63$	$\frac{41.13}{41.56}$	46.50 47.00 47.50 48.00	52.88 53.44	$58.75 \\ 59.38$	$64.63 \\ 65.31$	$70.50 \\ 71.25$	$76.38 \\ 77.19$	82.25 83.13	$88.13 \\ 89.06$	94.00 95.00
97 98 99 100	6.13 6.19	$\frac{12.25}{12.38}$	18.38 18.56	$\frac{24.50}{24.75}$	$\frac{30.63}{30.94}$	$\frac{36.75}{37.13}$	$\frac{42.88}{43.31}$	48.50 49.00 49.50 50.00	55.13 55.69	$61.25 \\ 61.88$	$67.38 \\ 68.06$	$73.50 \\ 74.25$	$79.63 \\ 80.44$	$85.75 \\ 86.63$	$91.88 \\ 92.81$	98.00 99.00

MERCHANT BARS

SQUARES

Size

Size ½" to 2", inclusive, advancing by 64ths. Size 2½2" to 3½", inclusive, advancing by 32ds. Size 3½" to 5½", inclusive, advancing by 16ths. Squares can also be rolled to decimal dimensions, if so arranged. Squares ¾" and smaller can be furnished in coils.

ROUND CORNERED SQUARES

Size

Size 1/4" to 3/4", inclusive, advancing by 64ths.

ROUNDS

Size 14" to 134", inclusive, advancing by 64ths. Size 12552" to 312", inclusive, advancing by 32ds. Size 3%6" to 7", inclusive, advancing by 16ths. Rounds can also be rolled to decimal dimensions, if so arranged. Rounds 34" and smaller can be furnished in coils.

HALF ROUNDS

Size

Size %'' to %'', inclusive, advancing by 64ths. Size $^{15/16''}$ to 1%'', inclusive, advancing by 16ths. Size 2'', 2%'', 3''.

HEXAGONS

Size $\frac{3}{4}$ " to $\frac{11}{16}$ ", inclusive, advancing by 32ds. Size $\frac{13}{4}$ " to $\frac{3}{16}$ ", inclusive, advancing by 16ths.

SQUARE AND ROUND BARS

WEIGHTS AND AREAS

Size, Inches		t, Lbs. Foot		Square hes	Size,	Weight per I		Area, Inc	Square ches
Inches		0		0	Inches				. 0
0 1/16 1/8 8/16	.013 .053 .120	.010 .042 .094	.0039 .0156 .0352	.0031 .0123 .0276	3 1/16 1/8 3/16	30.60 31.89 33.20 34.54	24.03 25.05 26.08 27.13	9.000 9.379 9.766 10.160	7.069 7.366 7.670 7.980
1/4 5/16 8/8 7/16	.213 .332 .478 .651	.167 .261 .376 .511	.0625 .0977 .1406 .1914	.0491 .0767 .1105 .1503	1/4 5/16 3/8 7/16	35.91 37.31 38.73 40.18	28.21 29.30 30.42 31.55	10.563 10.973 11.391 11.816	8.296 8.618 8.946 9.281
1/2 8/16 5/8 11/16	$ \begin{array}{r} .850 \\ 1.076 \\ 1.328 \\ 1.607 \end{array} $.668 .845 1.043 1.262	.2500 .3164 .3906 .4727	.1963 .2485 .3068 .3712	1/2 9/16 5/8 11/16	$\begin{array}{c} 41.65 \\ 43.15 \\ 44.68 \\ 46.23 \end{array}$	32.71 33.89 35.09 36.31	12.250 12.691 13.141 13.598	$\begin{array}{c} 9.621 \\ 9.968 \\ 10.321 \\ 10.680 \end{array}$
3/4 13/16 7/8 15/16	$\begin{array}{c} 1.913 \\ 2.245 \\ 2.603 \\ 2.988 \end{array}$	$\begin{array}{c} 1.502 \\ 1.763 \\ 2.044 \\ 2.347 \end{array}$.5625 .6602 .7656 .8789	.4418 .5185 .6013 .6903	3/4 13/16 7/8 15/16	47.81 49.42 51.05 52.71	37.55 38.81 40.10 41.40	14.063 14.535 15.016 15.504	11.045 11.416 11.793 12.177
1 1/16 1/8 5/16	3.400 3.838 4.303 4.795	2.670 3.015 3.380 3.766	$\begin{array}{c} 1.0000 \\ 1.1289 \\ 1.2656 \\ 1.4102 \end{array}$.7854 .8866 .9940 1.1075	4 1/16 1/8 3/16	54.40 56.11 57.85 59.62	42.73 44:07 45.44 46.83	$\begin{array}{c} 16.000 \\ 16.504 \\ 17.016 \\ 17.535 \end{array}$	12.566 12.962 13.364 13.772
1/4 5/16 8/8 7/16	5.313 5.857 6.428 7.026	$\begin{array}{c} 4.172 \\ 4.600 \\ 5.049 \\ 5.518 \end{array}$	$\begin{array}{c} 1.5625 \\ 1.7227 \\ 1.8906 \\ 2.0664 \end{array}$	$\begin{array}{c} 1.2272 \\ 1.3530 \\ 1.4849 \\ 1.6230 \end{array}$	1/4 · 5/16 8/8 7/16	61.41 63.23 65.08 66.95	$\begin{array}{c} 48.23 \\ 49.66 \\ 51.11 \\ 52.58 \end{array}$	18.063 18.598 19.141 19.691	14.186 14.607 15.033 15.466
1/2 9/16 5/8 11/16	7.650 8.301 8.978 9.682	$\begin{array}{c} 6.008 \\ 6.519 \\ 7.051 \\ 7.604 \end{array}$	$2.2500 \\ 2.4414 \\ 2.6406 \\ 2.8477$	$\begin{array}{c} 1.7671 \\ 1.9175 \\ 2.0739 \\ 2.2365 \end{array}$	1/2 9/16 5/8 11/16	68.85 70.78 72.73 74.71	54.07 55.59 57.12 58.67	$\begin{array}{c} 20.250 \\ 20.816 \\ 21.391 \\ 21.973 \end{array}$	15.904 16.349 16.800 17.257
34 13/16 7/8 15/16	$\begin{array}{c} 10.413 \\ 11.170 \\ 11.953 \\ 12.763 \end{array}$	8.178 8.773 9.388 10.024	3.0625 3.2852 3.5156 3.7539	$\begin{array}{c} 2.4053 \\ 2.5802 \\ 2.7612 \\ 2.9483 \end{array}$	3/4 13/16 7/8 15/16	76.71 78.74 80.80 82.89	60.25 61.85 63.46 65.10	$\begin{array}{c} 22.563 \\ 23.160 \\ 23.766 \\ 24.379 \end{array}$	17.721 18.190 18.665 19.147
$\frac{2}{\frac{1}{16}}$	13.600 14.463 15.353 16.270	$\begin{array}{c} 10.681 \\ 11.359 \\ 12.058 \\ 12.778 \end{array}$	4.0000 4.2539 4.5156 4.7852	3.1416 3.3410 3.5466 3.7583	5 1/16 1/8 3/16	85.00 87.14 89.30 91.49	66.76 68.44 70.14 71.86	$\begin{array}{c} 25.000 \\ 25.629 \\ 26.266 \\ 26.910 \end{array}$	19.635 20.129 20.629 21.135
1/4 5/16 8/8 7/16	17.213 18.182 19.178 20.201	13.519 14.280 15.062 15.866	5.0625 5.3477 5.6406 5.9414	3.9761 4.2000 4.4301 4.6664	1/4 5/16 8/8 7/16	93.71 95.96 98.23 100.53	73.60 75.36 77.15 78.95	$\begin{array}{c} 27.563 \\ 28.223 \\ 28.891 \\ 29.566 \end{array}$	$\begin{array}{c} 21.648 \\ 22.166 \\ 22.691 \\ 23.221 \end{array}$
1½ 1½ 1½ 1½ 1½ 1½	$\begin{array}{c} 21.250 \\ 22.326 \\ 23.428 \\ 24.557 \end{array}$	16.690 17.534 18.400 19.287	6.2500 6.5664 6.8906 7.2227	$\begin{array}{c} 4.9087 \\ 5.1572 \\ 5.4119 \\ 5.6727 \end{array}$	1/2 9/16 5/8 11/16	$\begin{array}{c} 102.85 \\ 105.20 \\ 107.58 \\ 109.98 \end{array}$	80.78 82.62 84.49 86.38	$30.250 \\ 30.941 \\ 31.641 \\ 32.348$	23.758 24.301 24.850 25.406
3/4 13/16 7/8 15/16	25.713 26.895 28.103 29.338	$\begin{array}{c} 20.195 \\ 21.123 \\ 22.072 \\ 23.042 \end{array}$	7.5625 7.9102 8.2656 8.6289	5.9396 6.2126 6.4918 6.7771	3/4 13/16 7/8 15/16	112.41 114.87 117.35 119.86	88.29 90.22 92.17 94.14	33.063 33.785 34.516 35.254	$\begin{array}{c} 25.967 \\ 26.535 \\ 27.109 \\ 27.688 \end{array}$
3	30.600	24.033	9.0000	7.0686	6	122.40	96.13	36.000	28.274

WEIGHTS OF BAR

SQUARE AND ROUND BARS

WEIGHTS AND AREAS

Size, Inches		hf, Lbs. Foot		Square ches	Size,	per	it, Lbs. Foot	Area, S	Square thes
Thenes		0		0	Inches		0		0
6 1/14 1/8 3/16	122.40 124.96 127.55 130.17	96.13 98.15 100.18 102.23	36.000 36.754 37.516 38.285	28.274 28.866 29.465 30.069	9 1/16 1/8 8/16	275.40 279.24 283.10 286.99	216.30 219.31 222.35 225.41	81.000 82.129 83.266 84.410	63.617 64.504 65.397 66.296
1/4 5/16 8/8 7/16	132.81 135.48 138.18 140.90	104.31 106.41 108.53 110.66	$ \begin{array}{r} 39.063 \\ 39.848 \\ 40.641 \\ 41.441 \end{array} $	$\begin{array}{c} 30.680 \\ 31.296 \\ 31.919 \\ 32.548 \end{array}$	1/4 5/16 3/8 7/16	290.91 294.86 298.83 302.83	$\begin{array}{c} 228.48 \\ 231.58 \\ 234.70 \\ 237.84 \end{array}$	85.563 86.723 87.891 89.066	67.201 68.112 69.029 69.953
1/2 9/16 5/8 11/16	143.65 146.43 149.23 152.06	112.82 115.00 117.20 119.43	42.250 43.066 43.891 44.723	33.183 33.824 34.472 35.125	1/2 9/16 5/8 11/16	306.85 310.90 314.98 319.08	$\begin{array}{c} 241.00 \\ 244.18 \\ 247.38 \\ 250.61 \end{array}$	90.250 91.441 92.641 93.848	70.882 71.818 72.760 73.708
3/4 13/16 7/8 15/16	154.91 157.79 160.70 163.64	121.67 123.93 126.22 128.52	45.563 46.410 47.266 48.129	$35.785 \\ 36.450 \\ 37.122 \\ 37.800$	3/4 13/16 7/8 15/16	331.55	$\begin{array}{c} 253.85 \\ 257.12 \\ 260.40 \\ 263.71 \end{array}$	95.063 96.285 97.516 98.754	74.662 75.622 76.589 77.561
7 1/16 1/8 -3/16	166.60 169.59 172.60 175.64	130.85 133.19 135.56 137.95	49.000 49.879 50.766 51.660	38.485 39.175 39.871 40.574	10 1/16 1/8 3/16	$340.00 \\ 344.26 \\ 348.55 \\ 352.87$	$\begin{array}{c} 267.04 \\ 270.38 \\ 273.75 \\ 277.14 \end{array}$	$\begin{array}{c} 100.000 \\ 101.254 \\ 102.516 \\ 103.785 \end{array}$	78.540 79.525 80.516 81.513
1/4 5/16 8/8 7/16	178.71 181.81 184.93 188.07	$\begin{array}{c} 140.36 \\ 142.79 \\ 145.24 \\ 147.71 \end{array}$	52.563 53.473 54.391 55.316	$\begin{array}{c} 41.282 \\ 41.997 \\ 42.718 \\ 43.445 \end{array}$	7/4 5/16 8/8 7/16	$\begin{array}{c} 357.21 \\ 361.58 \\ 365.98 \\ 370.40 \end{array}$	$\begin{array}{c} 280.55 \\ 283.99 \\ 287.44 \\ 290.91 \end{array}$	105.063 106.348 107.641 108.941	82.516 83.525 84.541 85.563
1/2 9/16 5/8 11/16	191.25 194.45 197.68 200.93	$\begin{array}{c} 150.21 \\ 152.72 \\ 155.26 \\ 157.81 \end{array}$	$\begin{array}{c} 56.250 \\ 57.191 \\ 58.141 \\ 59.098 \end{array}$	$\begin{array}{c} 44.179 \\ 44.918 \\ 45.664 \\ 46.415 \end{array}$	1/2 9/16 5/8 11/16	374.85 379.33 383.83 388.36	$\begin{array}{c} 294.41 \\ 297.92 \\ 301.46 \\ 305.02 \end{array}$	$\begin{array}{c} 110.250 \\ 111.566 \\ 112.891 \\ 114.223 \end{array}$	86.590 87.624 88.664 89.710
3/4 18/16 7/8 15/16	$\begin{array}{c} 204.21 \\ 207.52 \\ 210.85 \\ 214.21 \end{array}$	$\begin{array}{c} 160.39 \\ 162.99 \\ 165.60 \\ 168.24 \end{array}$	$\begin{array}{c} 60.063 \\ 61.035 \\ 62.016 \\ 63.004 \end{array}$	47.173 47.937 48.707 49.483	3/4 13/16 7/8 15/16	$392.91 \\ 397.49 \\ 402.10 \\ 406.74$	$\begin{array}{c} 308.59 \\ 312.19 \\ 315.81 \\ 319.45 \end{array}$	115.563 116.910 118.266 119.629	90.763 91.821 92.886 93.957
8 1/16 1/8 8/16	$\begin{array}{c} 217.60 \\ 221.01 \\ 224.45 \\ 227.92 \end{array}$	$\begin{array}{c} 170.90 \\ 173.58 \\ 176.29 \\ 179.01 \end{array}$	$\begin{array}{c} 64.000 \\ 65.004 \\ 66.016 \\ 67.035 \end{array}$	$\begin{array}{c} 50.265 \\ 51.054 \\ 51.849 \\ 52.649 \end{array}$	11 1/16 1/8 8/16	$\begin{array}{c} 411.40 \\ 416.09 \\ 420.80 \\ 425.54 \end{array}$	$\begin{array}{c} 323.11 \\ 326.80 \\ 330.50 \\ 334.22 \end{array}$	$\begin{array}{c} 121.000 \\ 122.379 \\ 123.766 \\ 125.160 \end{array}$	95.033 96.116 97.205 98.301
1/4 5/16 3/5 7/16	$\begin{array}{c} 231.41 \\ 234.93 \\ 238.48 \\ 242.05 \end{array}$	181.75 184.52 187.30 190.11	$\begin{array}{c} 68.063 \\ 69.098 \\ 70.141 \\ 71.191 \end{array}$	53.456 54.269 55.088 55.914	1/4 5/16 8/8 7/16	430.31 435.11 439.93 444.78	337.97 341.73 345.52 349.33	$\begin{array}{c} 126.563 \\ 127.973 \\ 129.391 \\ 130.816 \end{array}$	$\begin{array}{c} 99.402 \\ 100.510 \\ 101.623 \\ 102.743 \end{array}$
1/2 9/16 5/6 11/16	$\begin{array}{c} 245.65 \\ 249.28 \\ 252.93 \\ 256.61 \end{array}$	192.93 195.78 198.65 201.54	72.250 73.316 74.391 75.473	56.745 57.583 58.426 59.276	1/2 9/16 5/8 11/16	449.65 454.55 459.48 464.43	353.16 357.00 360.87 364.76	132.250 133.691 135.141 136.598	103.869 105.001 106.139 107.284
3/4 · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 260.31 \\ 264.04 \\ 267.80 \\ 271.59 \end{array}$	$\begin{array}{c} 204.45 \\ 207.38 \\ 210.33 \\ 213.31 \end{array}$	76.563 77.660 78.766 79.879	$\begin{array}{c} 60.132 \\ 60.994 \\ 61.863 \\ 62.737 \end{array}$	8/4 13/16 7/8 15/16	469.41 474.42 479.45 484.51	368.68 372.61 376.56 380.54	138.063 139.535 141.016 142.504	108.434 109.591 110.754 111.923
9	275.40	216.30	81.000	63.617		489.60	384.53	144.000	113.098

CONCRETE REINFORCEMENT BARS

COLD TWISTED SQUARE BARS

Section Index	Size, Inches	Weight per Foot, Pounds	Section Index	Size, Inches	Weight per Foot Pounds
			7%	0.7656	2.603
2	4.0000	13.600	13/16	0.6602	2.245
17/8	3.5156	11.953	3/4	0.5625	1.913
13/4	3.0625	10.413	11/16	0.4727	1.607
15%	2.6406	8.978	5/8	0.3906	1.328
11/2	2.2500	7.650	9/16	0.3164	1.076
13/8	1.8906	6.428	1/2	0.2500	0.850
114	1.5625	5.313	716	0.1914	0.651
11/8	1.2656	4.303	3%	0.1406	0.478
1	1.0000	.3.400	5/16	0.0977	0.332
15/16	0.8789	2.988	1/4	0.0625	0.213

Cold twisted bars will conform to Manufacturers' Standard Specifications, unless otherwise specified.

CUP BARS

Section Index	Size, Inches	Weight per Foot, Pounds	Section Index	Sizes, Inches	Weight per Foot Pounds
			*M 1533	7.5	2.60
*M 1528	11/2	7.65	*M 1534	34	1.91
*M 1530	11/4	5.31	*M 1535	5%	1.33
*M 1531	11/5	4.30	*M 1536	1,2	0.85
*M 1532	1	3.40	*M 1537	3%	0.48

^{*} Furnished only by special arrangement.

RAILS AND ACCESSORIES

ligH		T,	310	eke ike	One	One Rail Joint	int	Y	eessoric	Accessories for 1000 Tons of Rails	000 Tol	ns of 1	Sails	Į		Material for One Mile of Single Track	al for	One M	Tile of	Single	Trac	
		B) g 1	ds.	Weight	Weight in Pounds	apun		Number	-	Weigh	htinG	Weight in Gross Tons		N	Number	-		eight	Weight in Gross Tons	ss Ton	
	Base o	Leng	Size of	lo əziZ	ne Pair ened 99	bus and stu X	al Joint esplete	lo stis ste Bara	siuX ,si	pres	ice Bars		ikes	seriosse:	lo ari ice Bara		ikes	lice Bars ts, Xuts	pikes	Lotal Sessories	slis	l'isi/ ls etelque
Ë.	lu.	ln.	-i-	ln.	ilq2	B ^o	toT oO	d d		iqS		Bol	_	-		Io8		Bol				10T
51,	53%	_	1x478 51	51,5x9/16	85.65	9.70	95.35	2075	12.150	73312	79.33	8.98	19.25 107.56		326 16	$956 \overline{115}$	11520 12 11520 13	13.33 1.4	41 3.0	3.03 15.91	157.14	
- 44.		7.5	X45, 51,5x94,0		91.02	0.5	70 113.64	2075	12450		96.28		9.25 12			956,115			413.0	3.03 19.56		
0 413	200		1x4x5 515x916	91,6X5	72.74	07.6		2305	13830			•			_	956 11520		_	.37 3.0	3.03 14.99		3 156.42
517,61	8		144°8 51		77.53	9.70	87.23	2305	13830		79.78 9.98		21.39 11	111.15		956 11520		_ ,	0 c	3.03.15.72		
23			1x41.951/2x916	91,6xe	90.51	0.50		2305	13830		93.14 9.80		21.39 12			956 11520		13.17	39 5.0	2 02 17 50 5	199 57	5 159.02
5,16	5416		8X41 8 5 5 5 X 71 8	9x718	02.50) S	60.45	2441	14046	86248	13.62	7.02.7	94 06 10	103.79	320	956 11559			2.0	00 3 03 13 14		138.85
	4154 474 9	_1-	SAT (S. C.)	01/x2/	9 68 99			9503	15558		79.20 8.11	26.2	21.0012	_	-	956 115	-	-	23.0	02 3.03 14.01		
7 7		1-	Cx416.51	0 76 X5	73.99	9		2593	15558	91640	84.76.7.98	98.5	24.0611		326 115		_	-	00 3.0	3.03 14.69		1 140.40
	-	. 6-0,	15 4x2	5x19/10	57.97	6.74		2766	16596		71.58 8.32	3.32.2	25.67 10		_	956 11520			.98 3.0	3.03.12.45		
- 4		96	2,5	01/6Xe/	51.6	4.56		2964	177841	04728		3.03 27	27.50 10		_	956 11520	-		66 3.0	66 3.03 11.64		
=	1981	34 34	5	91/4x6	64.72	4.73		2964	177841			3.25 27	27.50 11		_	956 11520			39 3.0	69 3.03 13.14		
-4.	7	00,	1x38/ 51	91/6×5	63.73	4.56		2964	17784		84.33 6.03	3.03 27	27.50 11		_	956 11520		9.27	56 3.0	_		0.122.96
4.	91,1	33 S	x35,51	91,6x6	35.55	2.98		3192	12768	-	50.66 4.25	255		84.53	326	304 11520		7.0	45 5.05			0 109 47
7.6		3.2	02/20	3	32.40	2.03	30.00	5457	19950	3828 122170	50.00 4.92	200	20.00		-	204 115		_	43 3 03	200	07.70	9 103 09
	2.714.6	100	327.50 327.51	3 / C	40.05	0 0 0		2457	136961	-	63 15 4 60	9		_	-	_		_	43 3 03			9 103 71
17.5	17	00	130 S C	97.63	98.00	000		3779	15088	_	48.67.4	9		_	_	-		_			86.43	
	102	55	x31,51		25.50	1		4149	16596.1		47.23.5	2			_	-	1520 3	3.71	40 3.03			
311/16	311/18	**	(x3 5)		18.75	G-1		5148	205921	20592 149344	43.00 6.25	3.25 33			_	_	_	3.05	44 2.77	7 6.26		1 76.97
4.0	27.5	30 3/1	1x275,5	x1/2	16.10	2.66		5791	231641	23164 167992	41.65	3.88 30			_	_	- 1	7.05	26.1			
-	35/16 H	161,5 5/2	8x21/241	5x1/5	12.10 80	09.1		8199	264721	26472 192000	35.79 4.73	1.73 3	31.97		=	456 105		. 1	26 1.76			
		161,8 5,8	8x21/54	5/x	10.45		12.05	7722	308882		36.02 5.51	5.51 3		_	304	156 1056	1 090	0.0	e 1 92			
		65/8/91	2x21/84	x 1/2	2.70		6.56				23.57	3.56 4		67.13	364 14	10001 001	000	5 5				
. 4	25x	161/2/2	2x2 31	%x1/2	4.86	-		_			25.12 4.29	1.29		7.7		156 1056	000	? ;	_			
9.4.0		1618 72	2x1% 33	5x28	4.36			-			28.18	0.17 3	_	7,6		456 105	0000	102	20	100	20.14	02 20 0
9	27/16	16,8 1.5	5x1% 3	X.X	3.44	 S.		16545			25.41 5.91			_	_	450 105	000	00.5	1.5	1.0		
		16,8 75	2x1%13	X XX	3.44	Ş.	4.24	19300			23.04	6.89 37		_	100	00201 021	200	000	? ! ? !	_		000
_	- T	16,8 383	8X1 1/2 24	9x6/10	2.60	÷.	3.05	23155	92620		26.88 4.65	59.	20.99	58.52	304	20 108	000	_	_	•		200
=	19/14	161,5 3,5	8x11/251	PL; NG	5.00	45	-	2.45 28958	28958 115832 840096		25.86 5.82	5.82 3.	3.75 6	65.43	364 1	456 10560	10560, .33 .07	 -: -: -:	4.	42 .82 12.57 15	12.5/	13

A. S. C. E. RAILS AND LIGHT RAILS

Section	Weight per Yard,	a	b	c	d	e	f	g	h	i	j	k	I
Index	Pounds	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
10040	100	5%	5%	2¾	145/64	35/64	81/32	%16	265/128	5/16	1/4	1/16	1/16
9040	90	5%	5%	$25/_{8}$	11%2	$25\frac{64}{64}$	5%4	%16	$24\frac{5}{128}$	5/16	1/4	1/16	½1e
8540	85	5%16	5%16	2%16	$1^{35}/_{64}$	234	5764	%16	217/64	5∕16	1/4	1/16	1∕16
8040	80	5	5	21/2	$1\frac{1}{2}$	25/8	7/8	85/64	2%16	5/16	1/4	1/16	1/16
7540	75	413/16	413/16	215/32	$12\%_{4}$	235/64	27/82	17/82	$2^{15}/_{128}$	5/1€	1/4	1/16	1/16
7040	70	$45'_{8}$	45%	27/16	111/32	$2^{15/32}$	18/16	33/64	2%4	5/16	1/4	1/16	1/16
6540	65	47/16	47/16	213/32	1%2	$2\frac{3}{8}$	25/32	1/2	131/32	5/16	1/4	1/16	1/16
6040	60	41/4	41/4	$2\frac{3}{8}$	17/82	$2^{17}/_{64}$	49/64	81/64	1115/128	516	1/4	1/16	1/16
5540	55	41/16	41/16	21/4	$1^{11}/_{64}$	211/64	23/32	15/82	1103/128	546	1/4	1/16	1/16
5040	50	37/8	37/8	21/8	11/8	21/16	1146	7/16	123/32	5/16	1/4	1/16	146
4540	45	311/16	311/16	2	11/16	131/32	21/32	27/64	141/64	5/16	1/4	1/16	1/16
4040	40	31/2	31/2	17/8	11/64	155/64	5/8	25/64	171/128	5/16	34	1/16	1/16
> 3540	35	3546	35/16	184	61/64	125/82	37/64	23/64	115/32	5/16	1/4	1/16	1/16
3040	30	31/8	$3\frac{1}{8}$	111/16	7/8	123/32	17/32	21/64	$1^{25}/_{64}$	5/16	1/4	1/16	1/16
2540	25	234	234	11/2	25/32	131/64	31/64	1964	12%128	1/4	1/4	1/16	1/16
2040	20	25%	25/8	111/32	23/82	115/32	7/18	1/4	111/64	1/4	346		1/16
1640	16	23/8	28%	111/64	41/64	123/64	3/8	7/82	17/128	3/16	346		1/16
1440	14	21/16	21/16	11/16	5/8	13/82	11/32	1/4	57/64	5/32	346		1/16
1240	12	2	2	1	9/16	13/32	11/32	3/16	57/64	5/32	3/16		1/16
1040	10	184	13/4	15/16	83/64	15/16	19/64	3/16	49/64	5/32	3/16		146
840	8	1%16	1%16	13/16	15/82	13/16	9/32	5/82	11/16	5/32	3/16		1/16

SPLICE BARS

A. S. C. E. RAILS AND LIGHT RAILS

S 10040 to S 5540	S 5040 to S 3040	S 2540	S 2040	S 1640 to S 840
12 Rad.		6	Rad.	6 Rad.

	Section Index	Weight per Foot, Unfinished	a	b	с	d	e	f	g	h	i	j	k	1
	Tuucx	Pounds	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
S	10040	15.8	35%4	123/32	27/32	7/8	15/82	13%	1/2	15/128	27/32	9/82	31/8	1/2
S	9040	13.5	255/64	15%	1346	1346	15/32	15/16	1/2	119/128	51/84		215/16	1/2
S	8540	12.4	23/4	137/64	51/64	25/82	15/82	19/82	1/2	7/8	19/64	7/32	$2^{27/82}$	1/2
S	8040	11.5	$25/_{8}$	117/82	25/32	8/4	29/64	11/4	746	7/8	8/4	346	2%	7/16
S	7540	10.7	235/61	181/64	19/64	23/82	748	115/64	740	107/128	23/82	21/128	221/82	7/16
S	7040	10.0	215/32	127/64	47/84	11/16	27/64	17/32	7/16	51/64	23/32	11/64	21/2	7/16
S	6540	9.2	23%	123/64	45/61	21/82	13/32	113/64	748	8/4	11/18	5/82	218/82	7/16
S	6040	8.4	217/61	119/64	43/84	5/8	25/64	1346	7/16	89/128	18/64	21/128	25/16	3/8
S	5540	7.5	211/64	115/64	41/64	19/32	8/8	11/8	7/18	88428	5/8	5/82	27/32	3/8
S	5040	6.6	21/16	11/8	19/82	17/32	8/8	11/32	13/82	5/8	58	9/64	21/18	8/8
S	4540	5.8	131/32	13/64	3764	1/2	23/61	81/32	18/82	87/61	19/32	7/64	181/32	8/8
S	4040	5.0	155/64	81/32	1/2	15/32	11/82	29/32	13/32	67/128	948	9428	17/8	5/16
S	3540	4.6	125/82		29/64	7/16	5/16	27/32	11/32	35/64	33/84	7/64	125/32	5∕16
S	3040	3.97	123/82	27/32	740	13/32	5/16	25/82	13/32	29/64	1/2	5/64	111/16	5/16
S	2540	2.20	181/64	8/4	18/82	11/32	9/32	11/16	9/32	59/128				
S	2040	1.87	115/32	11/16	8/8	5/16								
S	1640	1.70	123/64	87/61	17/64	5/16								
S	1440	1.36	13/82	17/82	7/82	5/16							9	
S	1240	1.36	18/32	17/82		5/16			,					
S	1040	0.99	1546	15/82	7/82	3/4								
S	840	0.75	13/16	7∕1e	7/82	7/82								

Splice Bars S 10040 to S 5040, inclusive, are for A. S. C. E. Rails. Splice Bars S 4540 to S 840, inclusive, are for Light Rails.

AMERICAN RAILWAY ASSOCIATION RAILS

SERIES A

Section	Weight per Yard,	a	b	e	d	e	f	g	h	i	j	k	1
Index	Pounds	In.	In.	In.	In.	In.	In.	ln.	In.	In.	In.	In.	In.
10020	100	6	51/2	23/4	1%16	$33'_8$	11/16	%16	215/16	3/8	3/8	1/16	1/16
9020	90	5%	$5\frac{1}{8}$	2%16	115/82	35/32	1	946	$2^{29/\!\!/_{32}}$	3/8	3/8	1/16	146
8020	80	$5\frac{1}{8}$	$45/_{8}$	21/2	1346	$2^{23}/3_{2}$	31/32	83/64	2%16	88	3/8	346	1/16
7020	70	434	41/4	23/8	111/32	21/2	29/32	1/2	213/82	3/8	3/8	1/16	146
6020	60	$41/_{2}$	4	21/4	115/64	$2^{29}/64$	13/16	15/32	217_{64}	3/8	3/8	1/16	1/16

SERIES B

Section	Weight per Yard.	a	b	c	d	e	f	g	h	i	j	k	1
Index	Pounds	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
10030	100	541/64	5%4	221/32	145/64	$25{64}$	15/64	946	265/128	8/8	5/16	1/16	1/16
9030	90	517/64	449 64	2946	139/61	25%	11/32	9/16	211/32	3/8	5/16	1/16	346
8030	80	41546	4746	2746	115/32	215/32	1	35/64	215/64	3/8	5/16	146	1/16
*7030	70	435/64	43%4	$2\frac{3}{8}$	123/64	217/64	59/64	33/64	27/128	3/8	5/16	1/16	1/16
*6030	60	43/16	311/16	$2\frac{1}{8}$	11/4	21/16	7/8	81/64	12982	38	5/16	146	1/16
_)												

^{*}Not rolled by Carnegie Steel Company.

SPLICE BARS—Concluded

AMERICAN RAILWAY ASSOCIATION RAILS

Section Index	Weight per Foot, Unfinished	a In.	b In.	c In.	d In.	e In.	f In.	g In.	g1 In.	h In.	In.	j In.	k In.	l In.
S 10020 S 9020 *S 8020 S 7020 S 6020	16.6 13.4 11.6	$3\frac{5}{82}$ $2^{2}\frac{3}{82}$ $2\frac{1}{2}$	1^{23} 82 1^{21} 82 1^{17} 82 1^{27} 64 1^{21} 64	$^{15/16}_{7/8}$ $^{51/64}$	23/ ₃₂ 21/ ₃₂ 5/ ₈	$^{15}\!/_{32}$ $^{57}\!/_{128}$ $^{13}\!/_{32}$	1%2 1¼ 1%6	$\frac{11564}{1764}$	1%2 3%4 3%4	$^{23}\!\!/_{\!64}$ $^{25}\!\!/_{\!64}$	15/ ₁₆ 29/ ₃₂	15/32 7/16 25/64 23/64 45/128	3 2¾ 2%6	13/16 5/1 11/16

SERIES B

	ection	Weight per Foot, Unfinished		b	e	d	е	f	g	g1	h	i	j	k	1
,	ndex	Pounds	In.	In.	In.	In.	In.	ln.	In.	In.	In.	In.	In.	In.	In.
*S	10030	16.9	255/64	123/32	29/32	13/16	15/32	121/64	11/32	29/82	51/128	61/64	15/128	31/128	7/8
*S	9030	14.4	25/8	$1^{23}/82$	$^{29/\!\!\!/82}$	13/16	15/32	1%2	11/82	29/82	9/82	29/82	17/64	$2^{105}/_{128}$	27/82
*S	8030	12.6	$2^{15/82}$	$1^{19}/82$	27/82	8/4	$59/_{128}$	$1\frac{7}{82}$	11/128	27/82	29/128	7/8	17/64	$2^{21/82}$	13/16
*8	7030	11.9	217/81	1%16	13/16	3/4	$5\frac{9}{128}$	1%16	55/64	8/4	85/128	51/64	85/128	$2^{59}\!\!/_{128}$	8/4
*8	6030	9.5	$2\frac{1}{16}$	13/8	11/16	11/16	⁵¹ ⁄128	11/16	55/64	8/1	11/64	3/4	7/82	$2\%_{2}$	28/32

*Not rolled by Carnegie Steel Company.

RAILS AND SPLICE BARS

DIMENSIONS FOR STANDARD DRILLING AND PUNCHING IN INCHES

R	ails	Splice Bars	Н	m	n	R	ails	Splice Bars	Н	. m	n
A. S. C. E. Rails	10040 9040 8540 8040 7540 7040 6540 6040 5540 5040	\$10040 \$ 9040 \$ 8540 \$ 8040 \$ 7540 \$ 6540 \$ 6040 \$ 5540 \$ 5040	$2^{45/128}$ $2^{17/64}$ $2^{3/16}$ $2^{15/128}$ $2^{3/64}$ $1^{31/32}$ $1^{115/128}$ $1^{103/128}$		11/16 11/16	Light Rails	4540 4040 3540 3040 2540 2040 1640 1440 1240 1040 840	S 4540 S 4040 S 3540 S 3040 S 2540 S 2040 S 1640 S 1240 S 1040 S 840	$\begin{array}{c} 171/128 \\ 115/32 \\ 125/64 \\ 129/128 \\ 111/64 \\ 17/128 \\ 57/64 \\ 57/64 \end{array}$		9/16 1/2 1/2 1/2 1/2
A. R. A. Rails	10020 9020 8020 7020 6020	\$10020 \$ 9020 \$ 8020 \$ 7020 \$ 6020	$23764 \\ 22164 \\ 2582$	$\begin{array}{c} 2^{11}16 \\ 2^{83}64 \\ 2^{17}64 \\ 2^{3}82 \\ 1^{125}128 \end{array}$	13/8 15/16 11/4 13/16 11/8	A. R. A. Rails	10030 9030 8030 7030 6030	S10030 S 9030 S 8030 S 7030 S 6030	$2^{11/32}$ $2^{15/64}$ $2^{7/128}$	$\frac{2782}{2764}$	$1\frac{3}{8}$ $1\frac{1}{3}$ $1\frac{5}{16}$ $1\frac{1}{4}$ $1\frac{7}{8}$

Rails, Lb. per Yd.	Hole in Rail	Hole in Splice Bar	a	b	e	d	e	f	g	1	
90 and over 85 to 75 72 to 70 67 to 50 45 to 40	11/4 11/8 1 1 1	11/8 x 13/8 1 x 11/4 7/8 x 11/8 7/8 x 11/8 18/16 x 11/8	2½ 2½ 2½ 2½ 2½ 2½	5 5 5 5	6 6 6	51/16 51/16 51/16 51/16 51/18	7½ 7½ 7½ 7½ 6½ 3%	5½ 5½ 5½ 5½ 2½ 1½	11/16 11/16 11/16 11/16 11/16 8/4	34 34 34 24 20	
35 to 30 25 to 12 10 to 8	3/4 5/8 1/2	11/16 X 31/32 9/16 X 3/4 7/16 X 5/8	$\frac{2}{2}$	4 4 4		41/8 41/8 41/8				161/8 161/8 161/8	

AMERICAN RAILWAY ENGINEERING ASSOCIATION RAILS

	W-:-L4	Area of	Moment	Section	Modulus	Neutral Axis		
Section	Weight per Yard	Section	of Inertia	Base	Head	Base	Head	
Index	Yard	A	I	I/x	I/y .	X	У	
	Lb.	In.2	In.4	In.8	In.8	In.	In.	
*15025	150.45	14.75	121.1	35.1	28.2	32%4	419/64	
*14025	138.52	13.58	89.2	28.4	23.1	3%4	355/64	
†13025	129.64	12.71	77.4	25.6	20.8	$3\frac{1}{82}$	323/82	

^{*}Not rolled by C. S. Co., I. S. Co., or T. C. I. & R. R. Co. †Rolled by C. S. Co. and I. S. Co.

AMERICAN RAILWAY ENGINEERING ASSOCIATION RAILS

	TF 1.1.	Area of	Moment	Section	Modulus	Neutral Axis		
Section	Weight per	Section	of Inertia	Base	Head	Base	Head	
Index	Yard	A	I	I/x	I/y	X	У	
	Lb.	In.2	In.4	In.3	In.3	In.	In.	
*12025 †11025 †10025	120.87 110.36 101.49	11.85 10.82 9.95	67.6 57.0 49.0	23.1 20.1 17.8	18.9 16.7 15.1	$2^{5\%_{64}}$ $2^{5\%_{64}}$ $2^{3\%_{4}}$	387/64 327/64 31/4	

*Not rolled by C. S. Co., I. S. Co., or T. C. I. & R. R. Co. \dagger Rolled by I. S. Co. and T. C. I. & R. R. Co.

RAIL ACCESSORIES

Rail Clip No.	Size, Inches	Weight per Foot, Pounds	Weight of Finished Clip, Pounds	Rail Section
103	21/4 x2	4.4	0.64	100 to 60 lb. A. S. C. E. Rails.
114	111/16 x 11/2	2.3	0.25	50 to 20 lb. A. S. C. E. Rails.
118	21/2 x2	5.7	0.85	100 to 60 lb, R. B. Rails.
104	215/16 X2	7.3	1.10	100 to 60 lb. A.S.C.E. Angle Bars
108	21/4 x2	4.8	0.70	Girder Rails.

Clips can be furnished with 25/82" diameter holes.

		of Flanges	Web Thickness,	Weight per Foot,	
Depth, Inches	Top, Inches	Bottom, Inches	Inches	Pounds	
61/2	5	10	7/16	29.8	
$5\frac{1}{2}$	5	8	% to 3%4	24.0	
$5\frac{1}{2}$	4 1/2	8	1/4	20.0	
4 1/4	4	6	1/4	14.5	
3	3	5	13/64	9.5	
	6½ 5½ 5½ 5½ 4¼	1 Top, Inches 6 ½ 5 5 ½ 5 5 ½ 4 ½ 4 ¼ 4	1 Top, Inches Bottom, Inches 6½ 5 10 5½ 5 8 5½ 4½ 8 4¼ 4 6	1 top, inches Bottom, inches 6 1/2 5 10 7/16 5 1/2 5 8 3/4 to 33/64 5 1/2 8 1/4 4 6 1/4	

Full information as to uses of steel cross ties is given in a separate pamphlet on Steel Cross Ties.

CROSS TIE SECTIONS-Concluded

Section, Index	Depth, Inches	Width, Inches	Web Thickness, Inches	Weight per Foot Pounds
M 27	21/4	7	1/4	9.0
M 20	2	6	3/16	6.0
M 18	11/2	5	5/32	4.0
M 26	13/16	415/16	1/8	3.20
M 19	11/16	4	9/64	2.50

Full information as to uses of steel cross ties is given in a separate pamphlet on Steel Cross Ties.

PIPE—BLACK AND GALVANIZED

NATIONAL TUBE COMPANY STANDARD

STANDARD PIPE

G: -	Diam Incl		Thick-	Weight p		Threads		Couplings	
Size, In.	External	Internal	ness, Inches	Plain Ends	Threads and Couplings	per Inch	Diameter, Inches	Length, Inches	Weight Pound
1/8	.405	.269	.068	,244	.245	27	.562	7/8	.029
1/4	.540	.364	.088	.424	.425	18	.685	1	.04
3/8	.675	.493	.091	.567	.568	18	.848	11/8	.07
1/2	.840	.622	.109	.850	.852	14	1.024	13/8	.11
3/4	1.050	.824	.113	1.130	1.134	14	1.281	15/8	.20
1	1.315	1.049	.133	1.678	1.684	$11\frac{1}{2}$	1.576	17/8	.34
11/4	1.660	1.380	.140	2.272	2.281	$11\frac{1}{2}$	1.950	21/8	.53
11/2	1.900	1.610	.145	2.717	2.731	$11\frac{1}{2}$	2.218	$2\frac{3}{8}$.74
2	2.375	2.067	.154	3.652	3.678	11½	2.760	25/8	1.20
$2\frac{1}{2}$	2.875	2.469	.203	5.793	5.819	8	3.276	$2\frac{7}{8}$	1.72
3	3.500	3.068	.216	7.575	7.616	8	3.948	31/8	2.49
$3\frac{1}{2}$	4.000	3.548	.226	9.109	9.202	8	4.591	35/8	4.24
4	4.500	4.026	.237	10.790	10.889	8	5.091	35/8	4.74
$4\frac{1}{2}$	5.000	4.506	.247	12.538	12.642	8	5.591	35/8	5.24
5	5.563	5.047	.258	14.617	14.810	8	6.296	41/8	8.09
6	6.625	6.065	.280	18.974	19.185	8	7.358	41/8	9.55
7	7.625	7.023	.301	23.544	23.769	8	8.358	41/8	10.93
8	8.625	8.071	.277	24.696	25.000	8	9.358	45/8	13.90
8	8.625	7.981	.322	28.554	28.809	8	9.358	45/8	13.90
9	9.625	8.941	.342	33.907	34.188	8	10.358	$5\frac{1}{8}$	17.23
10	10.750	10.192	.279	31.201	32.000	8	11.721	61/8	29.87
10	10.750	10.136	.307	34.240	35.000	8	11.721	61/8	29.87
10	10.750	10.020	.365	40.483	41.132	8	11.721	61/8	29.87
11	11.750	11.000	.375	45.557	46.247	8	12.721	61/8	32.55
12	12.750	12.090	.330	43.773	45.000	8	13.958	61/8	43.09
12	12.750	12.000	.375	49.562	50.706	8	13.958	61/8	43.09
13	14.000	13.250	.375	54.568	55.824	8	15.208	61/8	47.15
14	15.000	14.250	.375	58.573	60.375	8	16.446	61/8	59.49
15	16.000	15.250	.375	62.579	64.500	8	17.446	61/8	63.29

The permissible variation in weight is 5 per cent. above and 5 per cent. below.

Furnished with threads and couplings and in random lengths unless otherwise ordered.

Taper of threads is 34" diameter per foot length for all sizes.

The weight per foot of pipe with threads and couplings is based on a length of 20 feet, including the coupling, but shipping lengths of small sizes will usually average less than 20 feet.

All weights and dimensions are nominal. On sizes made in more than one weight, weight desired must be specified.

PIPE-BLACK AND GALVANIZED-Concluded

NATIONAL TUBE COMPANY STANDARD

EXTRA STRONG PIPE

DOUBLE EXTRA STRONG PIPE

Size, In.	1	eters, hes	Thick-	Weight, per Foot, Pounds	Diameters, Inches		Thick-ness,	Weight per Foot, Pounds			
	External	Internal	Inches	Plain Ends			Internal	Inches	Plain Ends		
1/8 1/4 3/8 1/2	.405 .540 .675 .840	.215 .302 .423 .546	095 095 095 095 095 095 095 095	.314 .535 .738 1.087	1/2 3/4 1 1/4	.840 1.050 1.315 1.660	.252 .434 .599 .896	.294 .308 .358 .382	1.714 2.440 3.659 5.214		
$1 \frac{11_4}{11_2}$	1.050 1.315 1.660 1.900	.742 $.957$ 1.278 1.500	.154 .179 .191 .200	1.473 2.171 2.996 3.631	1½ 2 2½ 3	1.900 2.375 2.875 3.500	1.100 1.503 1.771 2.300	.400 .436 .552 .600	$\begin{array}{c} 6.408 \\ 9.029 \\ 13.695 \\ 18.583 \end{array}$		
$\begin{array}{c} 2 \\ 2 \frac{1}{2} \\ 3 \\ 3 \frac{1}{2} \end{array}$	2.375 2.875 3.500 4.000	$\begin{array}{c} 1.939 \\ 2.323 \\ 2.900 \\ 3.364 \end{array}$.218 .276 .300 .318	$\begin{array}{c} 5.022 \\ 7.661 \\ 10.252 \\ 12.505 \end{array}$	3½ 4 4½ 5	4.000 4.500 5.000 5.563	2.728 3.152 3.580 4.063	.636 .674 .710 .750	$\begin{array}{c} 22.850 \\ 27.541 \\ 32.530 \\ 38.552 \end{array}$		
$^{4}_{4\frac{1}{2}}_{5}$	$4.500 \\ 5.000 \\ 5.563 \\ 6.625$	3.826 4.290 4.813 5.761	.337 .355 .375 .432	$\begin{array}{c} 14.983 \\ 17.611 \\ 20.778 \\ 28.573 \end{array}$	6 7 8	6.625 7.625 8.625	4.897 5.875 6.875	.864 .875 .875	53.160 63.079 72.424		
7 8 9 10	7.625 8.625 9.625 10.750	6.625 7.625 8.625 9.750	.500 .500 .500 .500	38.048 43.388 48.728 54.735	lengths unless otherwise ordered. Permissible variation in weight, for establishment of the stong pipe, 5 per cent. above and 5 per cent.						
11 12 13 14	$11.750 \\ 12.750 \\ 14.000 \\ 15.000 \\ 16.000$	10.750 11.750 13.000 14.000	.500 .500 .500 .500	$\begin{array}{c} 60.075 \\ 65.415 \\ 72.091 \\ 77.431 \\ 82.771 \end{array}$	For		cent. belov	w.	per cent.		

LARGE O. D. PIPE

ſn.				W	eight per	Foot, Pou	inds							
Size, In					Thickn	css, Inches	3							
ŝ	1/4	1/4 5/16 8/8 7/16 1/2 9/16 9/8 3/4 7/8 1												
$\frac{15}{16}$		$\begin{array}{c} 49.020 \\ 52.357 \\ 55.695 \end{array}$	58.573 62.579 66.584 70.589 78.599 82.604 86.609	$96.079 \\ 100.752$	82.771 88.111 93.451 104.131 109.471 114.811	92.742	$\begin{array}{c} 95.954 \\ 102.629 \\ 109.304 \\ 115.979 \\ 129.330 \\ 136.005 \\ 142.680 \end{array}$	114.144 122.154 130.164 138.174 154.194 162.204 170.215	132.000 141.345 150.690 160.035 178.725					
26 28 30			102.629	$\frac{119.442}{128.787}$	136.172 146.852	152.818 164.833 176.848	169.380 182.730	$202.255 \\ 218.275$						

Furnished with plain ends and in random lengths, unless otherwise ordered. All weights and dimensions are nominal.

SCREW THREADS

AMERICAN BRIDGE COMPANY STANDARD

BOLTS, RODS, EYE BARS, TURNBUCKLES, SLEEVE NUTS, AND CLEVISES

Diar	neter	A	rea	Number of	Dian	neter	Aı	rea	Number of
Total d, In.	Net, c, In.	Total Dia., d, Sq. In.	Net Dia., c, Sq. ln.	Threads per Inch	Total, d, In.	Net, c, In.	Total Dia., d, Sq. In.	Net Dia., c, Sq. In.	Threads per Inch
1/4 3/8	.185	.049	.027 .068	20 16	$\frac{2\frac{1}{2}}{2\frac{5}{8}}$	$2.175 \\ 2.300$	4.909 5.412	$3.716 \\ 4.156$	4
1/2	.400	.196	.126	13	23/4	2.425	5.940	4.619	4
5/8 3/4	.507 .620	.307 $.442$.302	11 10	27/8 3	2.550	6.492 7.069	5.108	31/2
7/8	.731	.601	.419	9	314.	2.879	8.296	6.509	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$
11/8	.838 .939	.785 .994	.551 .693	8 7	$\frac{3\frac{1}{2}}{3\frac{3}{4}}$	$\begin{vmatrix} 3.100 \\ 3.317 \end{vmatrix}$	9.621 11.045	7.549 8.641	31/4 3
11/4 13/8	$1.064 \\ 1.158$	1.227 1.485	1.054	7 6	4	3.567	12.566		3
1½ 15/8	$1.283 \\ 1.389$	1.767 2.074	1.294 1.515	6 5½	41/4	$\begin{vmatrix} 3.798 \\ 4.028 \end{vmatrix}$		$11.330 \\ 12.741$	27/8° 23/4
134	1.490	2.405	1.744	5	434	4.255	17.721	14.221	25/8
17/8	1.615	2.761 3.142	2.049	5 41/2	5 534	$\frac{4.480}{4.730}$		15.766 17.574	$\frac{2\frac{1}{2}}{2\frac{1}{2}}$
21/8	1.836	3.547	2.649	41/2	$5\frac{1}{2}$	4.953	23.758	19.268	23/8
$\frac{2\frac{1}{4}}{2\frac{3}{8}}$	$1.961 \\ 2.086$	3.976 4.430	$3.021 \\ 3.419$	41/2	53/4	5.203 5.423	$\begin{vmatrix} 25.967 \\ 28.274 \end{vmatrix}$		23/8 21/4

BOLT HEADS AND NUTS

AMERICAN BRIDGE COMPANY STANDARD

Rough	Nut	Finishe	d Nut	Rough	Head	Finished Head		
f	g	f	g	f	h	f	h	
1.5d+1/8"	d	1.5d+1/16"	d-1/16"	1.5d+1/8"	0.5 f	1.5d+1/16"	0.5f—1/16"	

For Screw Threads, Bolt Heads and Nuts, the American Bridge Company has adopted the Franklin Institute Standard, commonly known as United States Standard.

BOLT HEADS AND NUTS, DIMENSIONS IN INCHES

AMERICAN BRIDGE COMPANY STANDARD

			HEAD						NUT		
Bolt,	Hexa	gonal	Hex. or Square	Squ	ıare	of Bolt,	Hexag	gonal	Hex. or Square	Squ	аге
Diameter of Bolt, Inches		>	9			Diameter of 1 Inches	(>>	\square		2)
Dia	Dian	neter	ل ا	Diar	neter	eter 🚊 Diameter		neter		Diar	neter
	Long	Short	Height	Long	Short		Long	Short	Height	Long	Short
14 3/8 1/2 5/8 3/4 7/8	58 1816 1 114 1716 11116	1½ 1½6 38 1¼6 1¼ 1¼ 1¾	1/4 8/8 7/16 9/16 5/8	$1\frac{11}{16}$ $1\frac{11}{4}$ $1\frac{11}{2}$ $1\frac{13}{16}$ $2\frac{1}{16}$	1/2 11/16 7/8 11/16 11/4 17/16	14 3/8 1/2 5/8 3/4 7/8	$^{5/8}_{18/16}$ $^{1}_{16}$ $^{1}_{14}$ $^{17/16}$ $^{11/16}$	1½ 1½16 7/8 1½16 1¼ 1¼ 1¾	1/4 3/8 1/2 5/8 3/4 7/8	11/16 1 11/4 11/2 118/16 21/16	1½ 1½6 78 1½6 1¼ 1¼
1 11/8 11/4 13/8 11/2 15/8 13/4 17/8	17% 21% 25/16 25/16 23/4 3 33/16 37/16	15% 113/16 2 28/16 23/8 29/16 23/4 215/16	13/16 15/16 1 11/8 13/16 15/16 13/4 11/2	25/16 29/16 213/16 31/8 33/8 35/8 37/8 43/16	15/8 118/16 2 23/16 28/8 29/16 28/4 215/16	$\begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \end{array}$	17/8 21/8 25/16 25/16 23/4 3 33/16 37/16	$\begin{array}{c} 15\% \\ 1^{12}/16 \\ 2 \\ 2^{3}/16 \\ 2^{3}/8 \\ 2^{9}/16 \\ 2^{3}/4 \\ 2^{15}/16 \end{array}$	1 11/8 11/4 13/8 11/2 15/9 13/4 17/8	25/16 29/16 213/16 31/8 33/8 35/8 35/8 43/16	15/8 118/16 2 28/16 28/8 29/16 28/4 215/16
$2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4}$	35/8 41/16 41/2 415/16	3½ 3½ 3½ 3½ 4¼	$^{1\%_{16}}_{1\%_{4}}_{1^{15}_{16}}_{2\%}$	$\begin{array}{c} 47/16 \\ 415/16 \\ 51/2 \\ 6 \end{array}$	31/8 31/2 37/8 41/4	$\begin{bmatrix} 2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{8}{4} \end{bmatrix}$	35% $41%$ $41%$ $41%$ $41%$ $415%$	3½ 3½ 3½ 4¼	2 2½ 2½ 2¾ 2¾	$4\frac{7}{16}$ $4\frac{15}{16}$ $5\frac{1}{2}$	31/8 31/2 37/8 41/4
3 3¼ 3½	58% 518/16 61/4	45% 5 5%	$\begin{array}{c} 25/16 \\ 21/2 \\ 211/16 \end{array}$	6%16 7½16 75%	45/s 5 53/s	3 3½ 3½ 3½	53/8 518/16 61/4	45% 5 5%	$\begin{array}{c} 3 \\ 3\frac{1}{4} \\ 3\frac{1}{2} \end{array}$	6% 7½ 6 7½ 7%	4% 5 5%

BOLT THREADS, LENGTH IN INCHES

AMERICAN BRIDGE COMPANY STANDARD

Length,		Diameter, Inches											
Inches	1/4	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4				
1 to 1½	3/4	3/4	1	11/4									
15% to 2	3/4	3/4	1	11/4	11/2	11/2							
21/8 to 21/2	3/4	3/4	1	11/4	11/2	13/4	13/4						
25% to 3	7/8	7/8	1	114	11/2	13/4	13/4	21/4	ĺ				
31/8 to 4	7/8	7/8	11/4	11/4	11/2	13/4	13/4	21/4	21/2				
41/8 to 8	1	1	11/4	11/2	13/4	2	21/4	21/2	23/4				
81/8 to 12	1	1	11/2	13/4	2	21/4	21/2	3	3				
21/8 to 20	1	1	11/2	2	2	21/4	21/2	3	3				

Bolts not listed are threaded about 3 times the diameter; in no case are standard bolts threaded closer to the head than $\frac{1}{4}$ inch.

BOLTS WITH SQUARE HEADS AND NUTS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHT IN POUNDS PER 100 BOLTS

Length Under	Diameter of Bolt, Inches											
Head, Inches	1/4	5/16	3/8	7/16	1/2	5/8	3/4	7/8	1			
1	4	7	11	15	22	37	56					
$1\frac{1}{4}$	4	7	11	16	23	39	59	}				
11/2	5	8	12	17	24	41	62	}				
13/4	5	8	13	18	26	43	64					
2	5	9	14	19	27	45	67	101	144			
$2\frac{1}{4}$	6	9	15	20	28	47	71	104	150			
$2\frac{1}{2}$	6	10	15	21	30	49	74	109	155			
$2\frac{3}{4}$	6	10	16	22	31	51	77	113	161			
3	7	11	17	24	33	54	80	117	167			
$3\frac{1}{2}$	7	12	18	25	35	58	86	126	178			
4	8	13	20	28	38	62	92	134	189			
$4\frac{1}{2}$	9	14	21	30	41	66	98	142	198			
5	10	15	23	32	43	71	104	151	209			
$5\frac{1}{2}$	10	16	25	34	46	75	111	159	220			
6	11	17	26	36	49	79	117	168	232			
$6\frac{1}{2}$			28	38	52	84	123	176	243			
7			29	40	55	88	129	185	254			
71/2			31	42	57	92	136	193	265			
8			32	45	60	97	142	202	276			
9			34	49	65	105	154	218	298			
10		1		53	71	114	167	235	320			
12		-		61	82	131	192	269	364			
14					93	148_	217	303	409			
Per Inch Additional	1.4	2.2	3.1	4.3	5.6	8.7	12.5	17.0	22.3			

SQUARE NUTS AND BOLT HEADS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHTS IN POUNDS FOR ONE HEAD AND ONE NUT

Diameter of Bolt, Inches	11/4	11/2	134	2	$2\frac{1}{2}$	3
Square Head and Nut	2.05	3.51	5.48	8.08	15.5	26.2
Weight of Shank per Inch	.3477	.5007	.6815	.8900	1.391	2.003

BOLTS WITH HEXAGON HEADS AND NUTS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHT IN POUNDS PER 100 BOLTS

Length Under	I	Diamete	r of Bol	t, Inch	e 8	Length Under	I	Diamete	r of Bol	t. Inche	8
Head, Inches	1/2	5/8	3/4	7/8	1	Head, Inches	1/2	5/8	8/4	7/8	1
1	19	33	52			8	58	92	137	194	264
11/4	20	34	54			81/2	60	96	143	202	274
11/2	22	36	57			9	63	100	149	210	285
134	23	38	60			91/2	66	105	156	219	296
2	24	40	63	93	132	10	68	109	162	227	307
21/4	26	43	66	97	137	101/2	71	114	168	236	318
21/2	27	45	69	101	143	11	74	118	174	244	329
234	29	47	72	105	148	111/2	77	122	181	253	341
3	30	49	75	109	154	12	80	127	187	261	352
31/4	31	51	78	114	160	$12\frac{1}{2}$	82	131	193	270	363
31/2	33	54	82	118	165	13	85	135	199	278	374
334	34	56	85	122	171	131/2	88	139	206	287	385
4	35	58	88	126	176	14	91	144	212	295	396
41/4	37	60	90	130	180	141/2	93	148	218	304	407
41/2	38	62	94	134	186	15	96	152	225	312	418
434	39	64	97	138	191	151/2	99	157	231	321	430
5	41	66	100	143	197	16	102	161	237	329	441
51/4	42	68	103	147	202	161/2	105	165	243	338	452
51/2	44	71	106	151	208	17	107	170	250	346	463
53/4	45	73	109	156	213	171/2	110	174	256	355	474
6	46	75	112	160	219	18	113	177	262	364	485
61/4	48	77	115	164	225	181/2	116	183	268	372	496
61/2	49	79	119	168	230	19	119	187	275	381	507
63/4	51	81	122	173	236	191/2	121	191	281	389	519
7	52	84	125	177	241	20	124	196	287	398	530
71/4	53	86	128	181	247	'					330
71/2	55	88	131	185	252				l		
734	56	90	134	190	258						
Per Inch Additional	5.6	8.7	12.5	17.0	22.3	Per Inch Additional	5.6	8.7	12.5	17.0	22.3

HEXAGON NUTS AND BOLT HEADS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHTS IN POUNDS FOR ONE HEAD AND ONE NUT

Diameter of Bolt, Inches	11/4	1½	1%	2	21/2	3
Hexagon Head and Nut	1.73	2.95	4.61	6.79	13.0	22.0
Weight of Shank per Inch	.3477	.5007	.6815	.8900	1.391	2.003

UPSET SCREW ENDS FOR SQUARE BARS

AMERICAN BRIDGE COMPANY STANDARD

Pitch and Shape of Thread A. B. Co. Standard

	BAR		UPSET .								
		Weight			Additional	Diameter	Ar	ea			
Side of Square d, Inches	Area, Sq. Inches	per b, a,		Length for Upset +10%, Inches	at Root of Thread C, Inches	At Root of Thread, Sq. Inches	Excess Over Area of Bar, %				
* 3/4	0.563	1.91	11/8	4	4	0.939	0.693	23.2			
* 7/8	0.766	2.60	11/4	4	31/2	1.064	0.890	16.2			
1	1.000	3.40	1½	4	4	1.283	1.294	29.4			
11/8	1.266	4.30	15/8	4	31/2	1.389	1.515	19.7			
11/4	1.563	5.31	17/8	$4\frac{1}{2}$	41/2	1.615	2.049	31.1			
$1\frac{3}{8}$	1.891	6.43	2	41/2	4	1.711	2.300	21.7			
$1\frac{1}{2}$	2.250	7.65	21/4	5	5	1.961	3.021	34.3			
15/8	2.641	8.98	23/8	5	41/2	2.086	3.419	29.5			
13/4	3.063	10.41	21/2	$5\frac{1}{2}$	$4\frac{1}{2}$	2.175	3.716	21.3			
$1\frac{7}{8}$	3.516	11.95	23/4	51/2	5	2.425	4.619	31.4			
2	4.000	13.60	27/8	6	5	2.550	5.108	2 7.7			
$2\frac{1}{8}$	4.516	15.35	3	6	41/2	2.629	5.428	20.2			
$2\frac{1}{4}$	5.063	17.21	314	61/2	51/2	2.879	6.509	28.6			
$2\frac{3}{8}$	5.641	19.18	31/2	7	61/2	3.100	7.549	33.8			
$2\frac{1}{2}$	6.250	21.25	334	7	7	3.317	8.641	38.3			
$2\frac{5}{8}$	6.891	23.43	334	7	$5\frac{1}{2}$	3.317	8.641	25.4			
$2\frac{3}{4}$	7.563	25.71	4	$7\frac{1}{2}$	61/2	3.567	9.993	32.1			
$2\frac{7}{8}$	8.266	28.10	414	8	$7\frac{1}{2}$	3.798	11.330	37.1			
3	9.000	30.60	414	8	6	3.798	11.330	25.9			
31/8	9.766	33.20	41/2	81/2	7	4.028	12.741	30.5			
$3\frac{1}{4}$	10.563	35.91	434	81/2	71/2	4.255	14.221	34.6			

Upsets marked * are special.

UPSET SCREW ENDS

UPSET SCREW ENDS FOR ROUND BARS AMERICAN BRIDGE GOMPANY STANDARD

Pitch and Shape of Thread A. B. Co. Standard

	BAR		UPSET								
					Additional	Diameter	Ar	ea			
Diameter d, Inches	Area, Sq. Inches	Weight per Foot, Lbs.	Diameter b, Inches	Length a, Inches	Length for Upset +10%, Inches	Root of Thread C, Inches	At Root of Thread, Sq. Inches	Excess Over Area of Bar,			
* 3⁄4 * 7⁄8	$0.442 \\ 0.601$	$1.50 \\ 2.04$	1 11/4	4 4	4 5	0.838 1.064	0.551 0.890	24.7 48.0			
1	0.785	2.67	13/8	4	4	1.158	1.054	34.2			
11/8	0.994	3.38	11/2	4	4	1.283	1.294	30.2			
$1\frac{1}{4}$	1.227	4.17	15/8	4	4	1.389	1.515	23.5			
$1\frac{3}{8}$	1.485	5.05	134	4	4	1.490	1.744	17.5			
11/2	1.767	6.01	2	41/2	41/2	1.711	2.300	30.2			
15/8	2.074	7.05	21/8	41/2	4	1.836	2.649	27.7			
13/4	2.405	8.18	21/4	5	4	1.961	3.021	25.6			
17/8	2.761	9.39	23/8	5	4	2.086	3.419	23.8			
2	3.142	10.68	21/2	51/2	4	2.175	3.716	18.3			
21/8	3.547	12.06	25/8	51/2	31/2	2.300	4.156	17.2			
$2\frac{1}{4}$	3.976	13.52	21/8	6	41/2	2.550	5:108	28.4			
23/8	4.430	15.06	3	6	41/2	2.629	5.428	22.5			
21/2	4.909	16.69	31/4	61/2	51/2	2.879	6.509	32.6			
25/8	5.412	18.40	31/4	61/2	41/2	2.879	6.509	20.3			
23/4	5.940	20.19	31/2	7	$5\frac{1}{2}$	3.100	7.549	27.1			
$2\frac{7}{8}$	6.492	22.07	3%	7	6	3.317	8.641	33.1			
3	7.069	24.03	38/4	7	5	3.317	8.641	22.2			
31/8	7.670	26.08	4	71/2	6	3.567	9.993	30.3			
31/4	8.296	28.21	4	71/2	5	3.567	9.993	20.5			
$3\frac{3}{8}$	8.946	30.42	41/4	8	51/2	3.798	11.330	26.6			
31/2	9.621	32.71	41/4	8	5	3.798	11.330	17.8			
35/8	10.321	35.09	41/2	81/2	51/2	4.028	12.741	23.4			
33/4	11.045	37.55	434	81/2	6	4.255	14.221	28.8			
31/8	11.793	40.10	43/4	81/2	51/2	4.255	14.221	20.6			

Upsets marked * are special.

EYE BARS

AMERICAN BRIDGE COMPANY STANDARD

ORDINARY EYE BAR

ADJUSTABLE EYE BAR

Minimum length of short end from center of pin to end of screw, 6'-6", preferably 7'-0". Thread on short end to be left hand.

Pitch and Shape of Thread A. B. Co. Standard.

BAR HEAD								BAR SCREW END						
	BAR			E	LEAD	1			1K	_	SC:	KEW E		
	Thicl	seeas	Dia.		imum 'in	Mate Ft. a	tional rial, a, nd In.		Min.	Dia.	Excess	Length	Mater	
Width In.	Max. In.	Min. In.	d, In.	Dia. In.	Excess Head over Bar,	order-	For figuring Weight	Width In.	thick- ness In.	u, In.	over Bar %	m, In.	For order- ing Bar	For figur- ing Wt.
2	1	1/2	$4\frac{1}{2}$ $5\frac{1}{2}$ $* 6\frac{1}{2}$	$1\frac{3}{4}$ $2\frac{3}{4}$ $3\frac{3}{4}$	37.5	$0-10\frac{1}{2}$ $1-2\frac{1}{2}$ $1-7\frac{1}{2}$	0-11 1- 4	2	* 5/8 3/4 7/8	$\frac{1\frac{3}{4}}{1\frac{7}{8}}$	$39.6 \\ 36.6 \\ 31.4$	$\begin{array}{c} 4 \\ 4\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	1- 0 1- 0 0-11	8 7½ 7½
2½	1	5/8	6 7 8	$\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	40.0	$1 - 13_4$ $1 - 53_4$ $1 - 103_4$	1- 2 1- 7	$2\frac{1}{2}$	* 3/4 7/8	2%	$ \begin{array}{r} 41.2 \\ 38.1 \\ 36.7 \end{array} $	$\frac{4\frac{1}{2}}{5}$	1- 0 1- 0 1- 0	$\frac{8}{8}$
3	1½	5/8	$7\frac{1}{2}$ $8\frac{1}{2}$ $* 9\frac{1}{2}$	$ \begin{array}{r} 3\frac{1}{4} \\ 4\frac{1}{4} \\ 5\frac{1}{4} \end{array} $	41.7	$1 - 4\frac{1}{2}$ $1 - 9\frac{1}{2}$ $2 - 2\frac{1}{2}$	1- 5	3	* 34 7/8	$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{r} 34.3 \\ 41.6 \\ 23.9 \end{array} $	$\begin{array}{c} 5 \\ 5\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	1- 0 1 -1 1- 1	$7\frac{1}{2}$ $9\frac{1}{2}$ $8\frac{1}{2}$
4	13/4	1 3/4 1/8	$^{10}_{11}_{*12}$	$ \begin{array}{c c} 4\frac{1}{2} \\ 5\frac{1}{2} \\ 6\frac{1}{2} \end{array} $	37.5	1- 9 2- 3 2- 8	1- 6 1-10 2- 2	4	* 3/4 7/8	$\frac{2\frac{1}{2}}{2\frac{3}{4}}$	$\begin{array}{c} 23.9 \\ 32.0 \\ 35.7 \end{array}$	$ \begin{array}{c} 5\frac{1}{2} \\ 5\frac{1}{2} \\ 6 \end{array} $	1- 1 0-11 1- 1	81/2 71/2 81/2
5	2	1 34 1	$^{12}_{13\frac{1}{2}}$ *15	$\begin{array}{r} 5\frac{1}{4} \\ 6\frac{3}{4} \\ 8\frac{1}{4} \end{array}$	35.0	1-10 ¹ ₂ 2- 6 3- 3	2- 2 2- 9		1½ * ¾ ½ 7/8	$\frac{3\frac{1}{4}}{2\frac{7}{8}}$	$\frac{44.6}{36.2}$ 24.1	$\frac{6\frac{1}{2}}{6}$	1- 2 1- 0 0-11	$\frac{9\frac{1}{2}}{8}$
6	2	1 34 1 4	$^{14}_{14\frac{3}{4}}$ $^{*}16\frac{1}{2}$	$ \begin{array}{r} 5\frac{3}{4} \\ 6\frac{1}{2} \\ 8\frac{1}{4} \end{array} $	37.5	2- 1 2- 4 3- 2	1-10 2- 1 2- 8	5	$\frac{1}{1\frac{1}{8}}$ $\frac{1\frac{1}{4}}{1\frac{1}{4}}$	$3\frac{1}{4}$ $3\frac{1}{2}$ $3\frac{3}{4}$	$30.2 \\ 34.2 \\ 38.3$	$\frac{6\frac{1}{2}}{7}$	1- 0 1- 1 1- 2	8 8½ 9
7	2	1 1½8 1½8	$16\frac{1}{2}$ $17\frac{1}{2}$ $*18\frac{1}{2}$	7 8 9	35.7	$\begin{array}{ccc} 2 - & 4\frac{1}{2} \\ 2 - 11 \\ 3 - & 4 \end{array}$	2- 6 2-11	6	$^{*1}_{1\frac{1}{8}}$ $^{1\frac{1}{8}}$	$3\frac{1}{2}$ $3\frac{3}{4}$ 4	$25.8 \\ 28.0 \\ 33.2$	7 7 7½	1- 0 1- 0 1- 1	7½ 8 8½ 9½
8	2		18 19 *20	7 8 9	37.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2- 6 2-11	7	$\frac{1\frac{3}{8}}{*1\frac{1}{8}}$ $\frac{1\frac{1}{4}}{1\frac{1}{4}}$	$\frac{4\frac{1}{4}}{4}$	$\frac{37.3}{26.9}$	$\frac{8}{7\frac{1}{2}}$	1- 2 1- 0 1- 1	8 8½·
9	2^{-}	$\frac{11}{8}$ $\frac{11}{4}$	$\frac{20}{22}$	$\frac{71_{2}}{91_{2}}$	38.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2- 6 3- 1		$\frac{1\frac{3}{8}}{1\frac{1}{2}}$	$\frac{4\frac{1}{2}}{4\frac{3}{4}}$	$\frac{32.4}{35.4}$	$\frac{81/2}{81/2}$	1- 2 1- 2	$\frac{9}{9\frac{1}{2}}$
10	2	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$	$22\frac{1}{24}$ *25	$\begin{array}{c} 9 \\ 10\frac{1}{2} \\ 11\frac{1}{2} \end{array}$	35.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-10 3- 3 3- 7	8	*1½ 1¼ 1¾ 1¾ 1½ 1½ 15/8	$4\frac{1}{4}$ $4\frac{1}{2}$ $4\frac{3}{4}$ 5	25.9 27.4 29.3 31.4	8 8½ 8½ 9	1- 0 1- 1 1- 1 1- 2	8 8½ 8½ 8½
12	2	$1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	$26\frac{1}{2}$ 28 $*29\frac{1}{2}$	$10 \\ 11\frac{1}{2} \\ 13$	37.5	3- 4 4- 2 4- 8	3- 3 3- 8 4- 1			51/4	35.2	9½		10
14	2	$\frac{1\frac{3}{8}}{1\frac{1}{2}}$ $\frac{1\frac{5}{8}}{1\frac{5}{8}}$	31 †33 *34	12 14 15		3-11 4- 7 5- 5	3- 9 4- 4 4- 8	abso Ded	lutely uct pir	unavo 1 hole	idable. when f	only be	weight	
		13/	26	1.4	97.5	4 7	1 5	+Ton	1411 D	ore 2	2// Has	d over	13/11	thiak

Deduct pin hole when figuring weight. 4-5 | †For 14" Bars, 33" Head, over 134" thick 4-10 add 4'-5½."

16 2

LOOP RODS

AMERICAN BRIDGE COMPANY STANDARD

ADDITIONAL LENGTH "A" IN FEET AND INCHES FOR ONE LOOP A=4.17p+5.89r

Diam.				Diamete	er or Side	e "r" of	Rod in	Inches			
Pin,	8/4	78	1	11/8	11/4	1%	1½	15%	184	17/8	2
11/8	0- 9½	0-10	0-11	0-11½							
11/4	0-10	0-10½	0-111/2	1- 0	1- 1						
		0-11½				1- 21/2					1
$1\frac{3}{4}$	1- 0	1- 0½	1- 11/2	1- 2	1- 3	1- 3½	1- 41/2	1- 5	1- 6		
2	1- 1	1- 11/2	1- 21/2	1- 3	1- 4	1- 4½	1- 5½	1- 6	1- 7	1- 7½	1- 81/2
$2\frac{1}{4}$	1- 2	1- 3	1- 31/2	1- 41/2	1- 5	1- 51/2	1- 61/2	1- 7	1-8	1- 81/2	1- 91/2
	1-3	1- 4	1- 41/2	1- 51/2			1- 71/2		1- 9	1- 91/2	1-101/2
		1- 5	1- 51/2	1- 61/2	1- 7	1-8	1- 81/2	1- 9½	1-10	1-11	1-111/2
3	1- 5	1- 6	1- 61/2	1- 7½	1- 8	1- 9	1- 9½	1-10½	1-11	2 - 0	2- 01/2
*31/4	1- 6	1- 7	1- 71/2	1- 81/2	1- 9	1-10	1-101/2	1-111/2	2- 0	2- 1	2- 11/2
	1- 71/2		1- 81/2			1-11		2- 01/2		2- 2	2- 21/2
*33/4	1- 81/2	1- 9	1-10	1-101/2	1-11	2- 0	2- 01/2	2- 11/2	2- 2	2- 3	2- 31/2
4	1- 9½	1-10	1-11	1-11½	2- 01/2	2- 1	2- 2	2- 21/2	2- 3	2- 4	2- 41/2
*41/4		1-11	2- 0	2- 01/6	2- 11/2	2- 2	2- 3	2- 31/2	2- 41/9	2- 5	2- 6
41/2		2- 0	2- 1		2- 21/2			2- 41/2			2- 7
*43/4		2- 1	2- 2		2- 31/2		2- 5	2- 51/2			2-8
5		2- 21/2	2- 3	2- 31/2	2- 41/2	2- 5	2- 6	2- 6½	2- 71/2	2- 8	2- 9
*51/4			2- 4	2- 5	2- 51/6	2- 6	2- 7	2- 71/2	2- 81/4	2- 9	2-10
51/2			2- 5	2- 6		2- 71/2			2- 91/2		2-11
*53/4			2- 6	2- 7		2- 81/2		2-10		2-111/2	
6			2- 7	2- 8	2- 81/2	2- 91/2	2-10	2-11	2-111/2	3- 01/2	3- 1
*61/4				2- 9	2- 91/2	2-101/2	2-11	3- 0	3- 01/2	3- 11/2	3- 2
61/2				2-10	2-101/2	2-111/2	3- 0	3- 1	3- 11/2	3- 21/2	3- 3
*63/4				2-11	3- 0	3- 01/2	3- 1	3- 2	3- 21/2	3- 31/2	3- 4
7				3- 0	3- 1	3- 11/2	3- 21/2	3- 3	3- 31/2	3- 41/2	3- 5

Pins marked * are special. Maximum shipping length of "1"=35 feet.

CLEVISES

AMERICAN BRIDGE COMPANY STANDARD Dimensions in Inches

Grip-thickness of plate + 1/4" but must not exceed dimension f

is				Н	ad	•					Nut				Fork		bt,
Clevis	d	w	t	Max.	Min.	r	X	у	n	c	Max. u	Min. u	e	f	a	8	Weigh
3	3	$1\frac{1}{2}$	1/2	1 1/2	1	$2\frac{1}{4}$	$2\frac{1}{4}$	3	1 1/2	214	11/8	1	3¼ ₆	11/4	5	4	4
4	-4	2	1/2	2	$1\frac{1}{4}$	3	3	4	$1\frac{3}{4}$	$2\frac{7}{8}$	$1\frac{5}{8}$	11/8	$3\frac{5}{8}$	1 3/4	6	5	8
5	5	$2\frac{1}{2}$	5/8	$2\frac{1}{2}$	$1\frac{1}{2}$	334	334	5	$2\frac{1}{4}$	334	$2\frac{1}{8}$	$1\frac{1}{2}$	$4\frac{1}{2}$	$2\frac{1}{4}$	7	6	16
6	6	3	3/4	3	2	41/2	4 1/2	6	21/2	4 3/8	$2\frac{5}{8}$	2	$5\frac{9}{8}$	234	8	7	26
_ 7	7	$3\frac{1}{2}$	7/8	$3\frac{1}{2}$	$2\frac{1}{2}$	$5\frac{1}{4}$	514	7	3	5	3	$2\frac{1}{4}$	6%	$3\frac{1}{4}$	9	8	36

CLEVIS NUMBERS FOR VARIOUS RODS AND PINS

	Rods		1					Pins	3				
Round	Square	Upset	1	11/4	1½	18/4	2	21/4	2½	23/4	3	31/4	3½
3,4		1	3	3	3								
	3/4	11/8	3	_3	3	4	4						
7/8	7/8	11/4		4	4	4	4						
1		13/8		4	4	4	4						
11/8	1	$1\frac{1}{2}$		4	4	4	4	5	5				
11/4	11/8	15/8		4	4	4_	4	5	5				
138		134			5	5	5	5	5				
	11/4	17/8			5	5	5	5	5				
$1\frac{1}{2}$	13/8	2			5	5	5	5	5	6	6		
15/8		$2\frac{1}{8}$			5	5	5	5	5	6	6		
13/4	1½	$2\frac{1}{4}$					6	6	6	6	6	7	7
$1\frac{7}{8}$	15/8	$2\frac{3}{8}$					6	6	6	6	6	7	7
2	13/4	$2\frac{1}{2}$					6	6	6	6	6	7	7
$2\frac{1}{8}$		25/8					6	6	6	6	-6	7	7
	17/8	$2\frac{3}{4}$							7	7	7	7	7
$2\frac{1}{4}$	2	$2\frac{7}{8}$							7	7	7	7	7
23/8	$2\frac{1}{8}$	3		1					7	7	7.	7	7

Clevises above and to right of zigzag line may be used with forks straight, those below and to left of this line should have forks closed so as not to overstrain pin.

TURNBUCKLES AND SLEEVE NUTS

TURNBUCKLES AND SLEEVE NUTS

AMERICAN BRIDGE COMPANY STANDARD

MANUFACTURERS STANDARD

Dimensions in Inches

TURNBUCKLES

SLEEVE NUTS

a=6"; a=9" for turnbuckles marked *.
Pitch and shape of thread, A. B. Co. Standard.

-	1									_	_				
Diam.		Stand	lard D	imensi	ons		Weight, Pounds	Diam.		Stan	dard	Dimens	sions		Weight, Pounds
Screw	d	1	c	t	g	b	We	Screw u	d	1	8	ь	c	t	Por
8/8	9/16	71/8	948	3/16	1/2	11/16	1								
7/16	21/82	75/18	5/8	1/4	5/8	13%	1								
1/2	8/4	71/2	5/8	1/4	5/8	1%	1								
%16	27/82	711/16	13/16	5∕18	8/4	1%	11/2								
5/8	15/18	77/8	18/18	5/16	8/4	1%18	11/2								
8/4	11/8	81/4	11/16	11/82	7/8	2	2								
7/8	15/18	85%	11/4	3/8	1	21/4	3	7/8	$1\frac{1}{2}$	7	$1\frac{5}{8}$	17/8	$1\frac{1}{8}$	1/4	3
1	$1\frac{1}{2}$	9	15/16	7/1e	11/4	27/18	4	1	11/2	7	15%	17/8	11/8	1/4	3
11/8	111/16	9%	17/16	1/2	11/4	2% 6	5	11/8	13/4	$7\frac{1}{2}$	2	25/1в	13/8	5⁄1e	4
11/4	11%	9%	1%16	1/2	11/2	23/4	6	11/4	1%	$7\frac{1}{2}$	2	25/16	13/8	5/1e	4
18%	21/18		111/16	1/2	15%	31/16	7	1%	2	8	23/8	23/4	15/8	8/8	5
11/2	$2\frac{1}{4}$	101/2	13/4	5/8	184	31/16	8	$1\frac{1}{2}$	2	8	$2\frac{3}{8}$	23/4	$1\frac{5}{3}$	8/8	6
15%	27/16		2	5/8	17%	31/2	10	15%	$2\frac{1}{4}$	$8\frac{1}{2}$		3346	$17_{8}'$	746	8
18/4	25%		$2\frac{1}{8}$	5/8	2	3%4	11	18/4	$2\frac{1}{4}$	81/2	2%	3%16	$1\frac{7}{8}$	7/16	9
17/8	213/16	115%	2%16	11/16	$2\frac{1}{8}$	37/8	12	17/s	$2\frac{1}{2}$	9	31/8	35/8	$2\frac{1}{8}$	1/2	10
2	3	12	$2\frac{8}{8}$	11,46	$2\frac{1}{4}$	41/4	14	2	$2\frac{1}{2}$	9	31/8	35/8	$2\frac{1}{8}$	1/2	11
21/8	3¾e	12%	$2\frac{1}{2}$	23/82	$2\frac{1}{2}$	41/2	17	21/8	23/4	$9\frac{1}{2}$	31/2		23/8	%16	14
21/4	3%	12¾	$2^{11/6}$	13/16	$2\frac{1}{2}$	434	20	$2\frac{1}{4}$	$2\frac{3}{4}$	$9\frac{1}{2}$	$3\frac{1}{2}$	41/16	$2\frac{9}{8}$	9/18	15
23/8	3%1e	$13\frac{1}{8}$	$2\frac{3}{4}$	13/16		47/8	22	23/8	3	10	37/8	41/2	25/8	5/8	18
$2\frac{1}{2}$	3%		$3\frac{1}{16}$	27/82		$5\frac{3}{8}$	25	$2\frac{1}{2}$	3	10	$3\frac{7}{8}$	$4\frac{1}{2}$	25/8	5/8	19
284	41/8	141/4	$3\frac{1}{4}$	15/18		5%	33	23/4	31/4	$10\frac{1}{2}$, -	415/16		11/18	23
27/8	45/16	$14\frac{5}{8}$	3748	$1\frac{1}{82}$	$3\frac{1}{4}$	61/16	36	27/8	$3\frac{1}{2}$	11	45%	5%	31/8	8/4	27
3	41/2	15	35/8	$1\frac{1}{82}$	$3\frac{1}{2}$	6%	40	3	31/2	11	45%	53%	31/8	8/4	28
31/4	47/8	15%	37/8		4	63/4	50	31/4	3%	111/2		51346		13/16	35
$3\frac{1}{2}$	$5\frac{1}{4}$	$16\frac{1}{2}$	41/4	17/82	4	71/4	65	31/2	4	12	5%	61/4	3%	7/8	40
$3\frac{3}{4}$	$5\frac{5}{8}$	171/4	47/16	15/18	5	81/4	95	3%	41/4	$12\frac{1}{2}$	$5\frac{3}{4}$	611/16	37/8	15/16	47
4	6	18	45/8	17/16	5	8%	108	4	41/2	13	61/8	7½1e	41/8	1	55
*41/4	61/4	$21\frac{1}{2}$	45%	15%	55/82		140	41/4	484	$13\frac{1}{2}$		$7\frac{1}{2}$	48/8	11/16	65
*41/2	63/4	221/2	$5\frac{1}{2}$	18/4	$6\frac{1}{2}$	10%	195	41/2	5	14	67/8	715/16	484	11/16	75
*43/4	71/4	$23\frac{1}{2}$	55/8	2	$6\frac{1}{2}$	111/4	205								
*5	71/2	24	6	21/4	$6\frac{1}{2}$	117/8	250								

RECESSED PIN NUTS

AMERICAN BRIDGE COMPANY STANDARD

Dimensions in Inches

To obtain grip, add 16'' for each bar.

Nuts threaded 6 threads per inch.

To obtain distance between shoulders, add amount given in table to grip.

		Pin					N	ut			
Diameter of Pin, d	Thr a	ead b	Add to Grip	Thick-	n	iamete m	r c	σ Depth	Diameter rough hole	Weight, Pounds	Pattern No.
2, 214 21 ₂ , 23 ₄ 3, *31 ₄ , 31 ₂ *33 ₄ , 4 *41 ₄ , 41 ₂ , *43 ₄ 51 ₂ , *53 ₄ , 6 *61 ₄ , *61 ₂ *63 ₄ , 7 *73 ₄ , *71 ₄ *73 ₄ , *81 ₄ *81 ₂ , 9 *91 ₂ , 10	$1\frac{1}{2}$ 2 $2\frac{1}{2}$ 3 $3\frac{1}{2}$ 4 $4\frac{1}{2}$ 5 $5\frac{1}{2}$ 6 6	1 11/8 11/4 13/8 11/2 15/8 13/4 17/8 2 2 21/4 23/8	14 14 14 12 12 12 12 12 12 12 12 12 12 12 12 12	7/8 1 11/8 11/4 13/8 11/2 15/8 13/4 17/8 21/8 21/8 21/8	215/16 39/16 45/16 45/16 45/16 53/4 61/4 7 75/8 81/8 85/8 93/8 101/4 111/4	38/8 41/8 5 55/8 65/8 73/16 81/8 83/8 10 107/8 117/8	25/8 31/8 37/8 43/8 53/4 67/2 71/2 8 83/4 95/8 105/8	1/4/8/8/8/2/2/8/8/8/4/4/4/4/4/8/8/8/2/2/8/8/8/4/4/4/4	15/16 113/16 25/16 213/16 35/16 313/16 45/16 413/16 55/16 55/16 513/16 513/16	3.7 4.6 6.2 7.8 9.9 11.8 14.3 18.6 23.8	PN 21 PN 22 PN 23 PN 24 PN 25 PN 26 PN 27 PN 28 PN 30 PN 31 PN 32 PN 32

Pins marked * are special.

COTTER PINS

AMERICAN BRIDGE COMPANY STANDARD

HORIZONTAL OR VERTICAL PIN FINISHED HORIZONTAL PIN ROUGH OR FINISHED

Pin	Head	g	Co	tter	Pin	$\mathbf{g_1}$	Cotter		
р	h		c d		p_1	- 51	С	d	
11/4 11/2 13/4 21/4 21/2 23/4 31/4 33/4 33/4	11/2 13/4 2 23/8 25/8 27/8 31/2 33/4 4 41/4	Net Grip $+\frac{1}{2}$ "	2 2½ 2¾ 3 3¼ 4 5 6 6	1,4,4,4,4,4,8,8,8,8,8,8,8,1,1,1,1,1,1,1,	11/4 11/2 13/4 21/4 21/4 23/4 31/4 31/4 33/4	Net Grip + ¾"	2 2 ¹ / ₂ 2 ³ / ₄ 3 3 ¹ / ₄ 4 5 5 6 6	1444488888877222	

STRUCTURAL RIVETS

AMERICAN BRIDGE COMPANY STANDARD

Dimensions in Inches

GENERAL FORMULAS FOR PROPORTIONS OF RIVETS, IN INCHES

STRUCTURAL RIVETS

AMERICAN BRIDGE COMPANY STANDARD

LENGTHS OF FIELD RIVETS FOR VARIOUS GRIPS Dimensions in Inches

Grip]	Diameter	r		Grip	Diameter						
a	1 2	5/8	3/4	7/8	1	b .	1/2	5/8	34	₹8	1		
1/2 5/8 8/4 7/8	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	$1\frac{3}{4}$ $1\frac{7}{8}$ 2 $2\frac{1}{8}$	$ \begin{array}{c} 1\frac{7}{8} \\ 2 \\ 2\frac{1}{8} \\ 2\frac{1}{4} \end{array} $	$\begin{array}{c} 2\\ 2^{1/8}\\ 2^{1/4}\\ 2^{3/8} \end{array}$	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$	1/2 5/8 3/4 7/8	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	$1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$	114 138 112 158	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	13/8 11/2 15/8 13/4		
1 1 8 1 4 3 8 8 1 2 2 5 8 3 4 4 7 8	$\begin{array}{c} 2\\ 2^{1/8}\\ 2^{1/4}\\ 2^{3/8}\\ 2^{5/8}\\ 2^{3/4}\\ 3\\ 3^{1/8} \end{array}$	$\begin{array}{c} 2\frac{1}{4} \\ 2\frac{3}{8} \\ 2\frac{1}{2} \\ 2\frac{5}{8} \\ 2\frac{7}{8} \\ 3\frac{3}{4} \\ 3\frac{3}{8} \end{array}$	$\begin{array}{c} 2^{3}/8 \\ 2^{1}/2 \\ 2^{5}/8 \\ 2^{3}/4 \\ 3 \\ 3^{1}/8 \\ 3^{1}/2 \end{array}$	2½ 25/8 23/4 27/8 31/8 31/4 31/2 35/8	25/8 28/4 21/8 3 31/4 33/8 35/8 33/4	1 1/8 1/4 3/8 1/2 5/8 3/4 7/8	15/8 13/4 17/8 2 21/8 21/4 21/2 25/8	$\begin{array}{c} 1\frac{3}{4} \\ 1\frac{7}{8} \\ 2 \\ 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{3}{8} \\ 2\frac{5}{8} \\ 2\frac{3}{4} \end{array}$	$\begin{array}{c} 1^{3}_{1} \\ 1^{7}_{8} \\ 2 \\ 2^{1}_{8} \\ 2^{3}_{8} \\ 2^{1}_{2} \\ 2^{3}_{8} \\ 2^{1}_{8} \\ 2^{7}_{8} \end{array}$	$1\frac{7}{8}$ 2 $2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{3}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{3}{8}$	17/8 21/8 21/8 21/8 21/8 21/8 3		
2 1 8 1,4,3 3 8 1,2,5 8,3,4,7,8	31/4 33/8 31/2 35/8 33/4 37/8 4 41/8	31/2 35/8 33/4 37/8 4 41/8 41/4 43/8	35/8 33/4 37/8 4 41/8 41/4 43/8 41/2	33/4 37/8 4 41/8 41/4 43/8 41/2 45/8	37/8 4 41/8 41/4 43/8 41/2 45/8 43/4	2 1/8 1/4 3/8 1/2 5/8 3/4 7/8	2 ³ / ₄ 2 ⁷ / ₈ 3 3 ¹ / ₈ 3 ¹ / ₄ 3 ³ / ₈ 3 ¹ / ₂ 3 ⁵ / ₈	27/8 3 31/8 31/4 33/8 31/2 35/8 33/4	3 3½ 3½ 3½ 33% 3½ 35% 35% 33¼ 37%	3 3½ 3½ 3½ 33/8 3½ 35/8 35/8 37/8	31/4 31/4 33/8 31/2 35/8 33/4 37/8		
3 1/8 1/4 3/8 1/2 5/8 8/4 7/8	43 8 412 45 8 43 4 47 8 51 8 51 4	45/8 43/4 47/8 5 51/8 51/4 55/8 51/2	$4\frac{3}{4}$ $4\frac{7}{8}$ 5 $5\frac{1}{4}$ $5\frac{3}{8}$ $5\frac{1}{2}$ $5\frac{5}{8}$	47/8 5 51/8 51/4 53/8 51/2 55/8 53/4	5 5 ¹ / ₈ 5 ¹ / ₄ 5 ³ / ₈ 5 ¹ / ₂ 5 ⁵ / ₈ 5 ³ / ₄ 5 ⁷ / ₈	3 1/8 1/4 3/8 1/2 5/8 3/4 7/8	37/8 4 41/8 41/4 43/8 41/2 45/8 48/4	4 11/8 41/4 43/8 41/2 45/8 43/4 47/8	4 41/8 41/4 43/8 41/2 45/8 43/4 47/8	4½ 4½ 4¾ 4¾ 4½ 458 4¾ 4¼ 478 5	41, 13, 41, 45, 43, 47, 5		
4 1/8 1/4 3/8 1/2 5/8 3/4 7/8	53/8 55/8 53/4 6 61/8 61/4 63/8 61/2	55/8 57/8 6 61/4 63/8 61/2 65/8 63/4	534 6 618 635 61.2 658 634 678	$\begin{array}{c} 57.8 \\ 61.8 \\ 61.4 \\ 61.2 \\ 65.8 \\ 63.4 \\ 67.8 \\ 7 \end{array}$	6 6 ¹ / ₄ 6 ³ / ₈ 6 ⁵ / ₈ 6 ⁷ / ₈ 7 ¹ / ₈	1 1 8 1 1 4 1 3 8 1 1 2 2 8 8 3 4 1 8 1 7 8 8 1 7 8	47/8 51/8 51/4 51/2 55/8 53/4 6	5 514 538 558 558 534 578 6 618	5 5½ 5½ 5½ 558 558 534 578 6 6½	51/8 53/8 51/2 55/8 53/4 57/8 61/8	51,4 51,5 53,5 53,5 57,6 61,4		
5 1/8 1/4 3/8 1/2/8 3/4 7/8	65/8	67/8	$\begin{array}{c} 7\\ 7\frac{1}{8}\\ 7\frac{1}{4}\\ 7\frac{3}{8}\\ 7\frac{5}{8}\\ 7\frac{3}{4}\\ 7\frac{3}{8}\\ 8\\ \end{array}$	71/8 71/4 73/8 71/2 73/4 77/8 8 81/8	714 738 712 758 778 8 818 814	5 1/8 1/4 3/8 1/2 5/8 3/4 7/8	61/8	61/4	61/4 63/8 61/2 65/8 67/8 71/8 71/4	614 63.8 61.2 65.8 67.8 71.8 71.4	63/161/165/165/165/165/165/165/165/165/165		

STRUCTURAL RIVETS

AMERICAN BRIDGE COMPANY STANDARD

Weight in Pounds per 100 Rivets with Button Heads

Length Under		Diameter of Rivet, Inches								Diameter of Rivet, Inches							
Head, Inches	8/8	1,2	5'5	31	Tá	1	11/9	114	Head, Inches	8%	1/2	5/8	34	7/8	1	11/8	11/4
									5	18	33	53	78	109	146	190	252
									1/8	18	34	54	80	111	149	193	256
11/4	6	12			1				1/4	19	34	55	82	113	152	197	260
3/8	7	13							3/8	19	35	56	83	115	155	200	265
1/2	7	13	23	35	50	68	91	130	1/2	20	36	57	85	118	157	204	269
5/8	7	14	24	36	52	71	95	134	5/8	20	36	58	86	120	160	207	273
3/4	8	15	25	37	54	74	98	139	3/4	20	37	60	88	122	163	211	278
7/8	8	15	26	39	56	77	102	143	7/8	21	38	61	89	124	166	214	282
2	9	16	27	41	58		105		6	21	38	62	91	126	169	218	287
1/8	9	17	28	43	60		109		1/8	22	39	63	93	128	171	222	291
1/4	9	18	29	44	62	85	112	156	1/4	22	40	64	94	130	174	225	295
3/8	10	18	30	46	64	88	116	161	3/8	22	40	65	96	132	177	229	300
1/2	10	19	31	47	67	91	119	165	1/2	23	41	66	97	135	180	232	304
5/8	11	20	32	49	69	93	123	169	5/8	23	42	67	99	137	182	236	308
34	11	20	34	50	71	96	126	174	3,4	24	43	68	100	139	185	239	313
7/8	11	21	35	52	73	99	130	178	7/8	24	43	69	102	141	188	243	317
3	12	22	36	54	75	102	133	182	7	24	44	70	104	143	191	246	321
1/8	12	22	37	55	77	105	137	187	1/8	25	45	71	105	145	194	250	326
1/4	13	23	38	57	79	107	141	191	1/4	25	45	73	107	147	196	253	330
3/8	13	24	39	58	81	110	144	195	3/8	26	46	74	108	149	199	257	334
1/2	13	24	40	60	84	113	148	200	1/2	26	47	75	110	152	202	260	339
5/8	14	25	41	61	86	116	151	204	5/8	26	47	76	111	154	205	264	343
3/4	14	26	42	63	88	118	155	208	3/4	27	48	77	113	156	207	267	347
7/8	15	27	43	64	90	121	158	213	7/8	27	49	78	114	158	210	271	352
4	15	27	44	66		124			8	27	50	79	116	160	213	274	356
1/8	15	28	45	68	94	127	165	221	1/8	28	50	80	118	162	216	278	360
1/4	16	29	47	69	96	130	169	226	1/4	28	51	81	119	164	219	281	365
3/8	16	29	48	71	98	132	172	230	3/8	29	52	82	121	166	221	285	369
1/2	16	30	49	72	101	135	176	234	12	29	52	83	122	169	224	288	373
5/8	17	31	50	74	103	138	179	239	5/8	29	53	84	124	171	227	292	378
3/4	17	31	51	75	105	141	183	243	3/4	30	54	86	125	173	230	295	382
7/8	18	32	52	77	107	143	186	247	7/8	30	54	87	127	175	232	299	386

Button Heads	Diameter of Rivets, Inches										
Button Heads	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4			
100 Heads as made on rivets, Pounds 100 Heads as driven in work, Pounds											

AMERICAN BRIDGE COMPANY

SPECIFICATIONS

FOR

STEEL STRUCTURES

DESIGN, DETAILS OF CONSTRUCTION AND WORKMANSHIP

ADOPTED 1912

DESIGN

- 1. Loads. The steel frame of all structures shall be designed so as to safely support the dead and live loads. The dead load shall consist of the weight of all permanent construction and fixtures, such as walls, floors, roofs, interior partitions, and fixed or permanent appliances. The live load shall consist of movable loads on floors, loads due to machinery or other appliances, and the exterior loads due to snow on the roof and to wind.
- 2. For structures earrying traveling machinery, such as cranes, conveyors, etc., 25 per cent shall be added to the stresses resulting from such live load, to provide for the effect of impact and vibrations.
 - 3. The wind pressure shall be assumed acting horizontally in any direction as follows:—

First: For finished structures—A pressure of 20 pounds per square foot on the sides and ends of buildings and on the vertical projection of roof surfaces, or

Second: In process of construction—A pressure of 30 pounds per square foot on vertical surfaces and the vertical projection of inclined surfaces of all exposed metal or other frame work.

CONSTRUCTION SPECIFICATIONS

4. Unit Stresses. All parts of structures shall be proportioned so that the sum of the dead and live loads, together with the impact, if any, shall not cause the stresses to exceed the following unit stresses in pounds per square inch:

Tension, net section, rolled steel
Direct compression, rolled steel and steel castings16000
Bending, on extreme fibers of rolled shapes,
built sections, girders, and steel castings16000
Bending on extreme fibers of pins24000
Shear on shop rivets and pins12000
Shear on bolts and field rivets10000
Shear—average—on webs of plate girders and
rolled beams, gross section
Bearing pressure on shop rivets and pins24000
Bearing on bolts and field rivets20000

Pressure per linear inch on expansion rollers shall not exceed 600 times the diameter of rollers in inches.

e tenective length of member in inches,

r=corresponding radius of gyration of section in inches.

For ratios of l/r up to 120, and for greater ratios up to 200, use the maximum stresses given in the following table. For intermediate ratios, proportional amounts are used.

Unit Stress	: 19000—100 l/r	Unit Stress: 13000—50 l/r					
Ratio, l/r	Max. Stress, lb./sq. in.	Ratio, l/r	Max. Stress, lb./sq. in				
60	13000	130	6500				
70	12000	140	6000				
80	11000	150	5500				
90	10000	160	5000				
100	9000	170	4500				
110	8000	180	4000				
120	7000	190	3500				

5. For bracing and combined stresses due to wind and other loading, the permissible working stresses may be increased 25 per cent—provided the section thus found is not less than that required by the dead and live loads alone.

PROPORTION OF PARTS

- 6. General. The effective or unsupported length of main compression members shall not exceed 120 times and for secondary members 200 times the least radius of gyration.
- 7. In proportioning columns, provision must be made for eccentric loading.
- 8. In proportioning tension members, net section must be used. Rivet holes deducted must be taken $\frac{1}{8}$ inch larger than the nominal size of rivets.
- 9. Members subject to the action of both axial and bending stresses shall be proportioned so that the greatest fiber stress will not exceed the allowed limits in that member.
- 10. Members subject to alternate stresses of tension and compression shall be proportioned for the stress giving the largest section, but their connections shall be proportioned for the sum of the stresses.
- 11. Girders. Rolled beams and channels, and built-up members used as beams and girders shall be proportioned by the moment of inertia of their gross sections.
- 12. Plate girder webs shall have a thickness not less than ½60 of the unsupported distance between flange angles. The webs shall have stiffeners, generally in pairs, over bearings, at points of concentrated loading, and at other points where the thickness of the web is less than ½60 of the unsupported distance between flange angles, generally not farther apart than the depth of the web plate, with a maximum limit of 6 feet.
- 13. The lateral unsupported length of beams and girders shall not exceed forty times the width of the compression flange. When the unsupported length (l) exceeds ten times the width (b) of the compression flange, the stress per square inch in the compression flange shall not exceed 19000—300 l/b.

DETAILS OF STEEL CONSTRUCTION

- 14. General. Adjustable members in any part of structures shall preferably be avoided.
 - 15. Sections shall preferably be made symmetrical.
 - 16. No connection, except lattice bars, shall have less than two rivets.

- 17. Trusses shall preferably be riveted structures. Heavy trusses of long span, where the riveted field connections would become unwieldy, or for other good reasons, may be designed as pin-connected structures.
- 18. Abutting joint in compression members faced for bearing shall be spliced sufficiently to hold the connecting members accurately in place. All other joints in riveted work, whether in tension or compression, shall be fully spliced.
- 19. Lateral, longitudinal and transverse bracing in all structures shall preferably be composed of rigid members, and shall be designed to be sufficient to withstand wind and other lateral forces when building is in process of erection as well as after completion.
- 20. Girders. When two or more rolled beams are used to form a girder, they shall be connected by bolts and separators at intervals of not more than 5 feet. All beams having a depth of 12 inches and more shall have at least two bolts to each separator.
- 21. The flange plates of all girders shall be limited in width, so as not to extend more than 6 inches beyond the outer line of rivets connecting them to the angles, or eight times the thickness of the thinnest plate.
- 22. Web stiffeners shall be in pairs and shall have a close bearing against the flange angles. Those over the end bearing or forming the connection between girder and column shall be on fillers. Intermediate stiffeners may be on fillers or crimped over the flange angles.
- 23. Web plates of girders must be spliced at all points by a plate on each side of the web, capable of transmitting the full stress through splice rivets.
- 24. Riveting. The minimum distance between centers of rivet holes shall be three diameters of the rivet; but the distance shall preferably be not less than 3 inches for ½-inch rivets, $2\frac{1}{2}$ inches for ¾-inch rivets, 2 inches for ½-inch rivets, and $1\frac{3}{4}$ inches for ½-inch rivets. The maximum pitch in the line of stress of compression members composed of plates and shapes will not exceed sixteen times the thinnest outside plate with a maximum of 12 inches, or twenty times the thinnest enclosed plate with a maximum of 15 inches. Rivets used to stitch two or more plates or shapes together, not in line of stress, will be spaced not to exceed twenty-four times the thinnest plate or shape.
- 25. For angles in built sections with two gage lines, with rivets staggered, the maximum pitch in the line of stress in each gage line shall not exceed twenty-four times the thinnest plate, with a maximum of 18 inches.

- 26. The minimum distance from the center of any rivet hole to a sheared edge shall be $1\frac{1}{2}$ inches for $\frac{7}{8}$ -inch rivets, $1\frac{1}{4}$ inches for $\frac{3}{4}$ -inch rivets, $1\frac{1}{8}$ inches for $\frac{5}{8}$ -inch rivets, and 1 inch for $\frac{1}{2}$ -inch rivets; and to a rolled edge, $1\frac{1}{4}$, $1\frac{1}{8}$, 1, and $\frac{7}{8}$ inches, respectively.
- 27. The maximum distance from any edge shall be eight times the thickness of the plate.
- 28. The pitch of rivets at the ends of built compression members shall not exceed four diameters of the rivets for a length equal to one and one-half times the maximum width of the member.
- 29. Latticing. The open sides of compression members shall be provided with lattice bars, having tie plates at each end and at intermediate points where the lattice is interrupted. The tie plates shall be as near the ends as practicable. In main members carrying calculated stresses, the end tie plates shall have a length not less than the distance between the lines of rivets connecting them to the flanges, and intermediate ones not less than half this distance. Their thickness shall not be less than \(\frac{1}{50}\) of the same distance.
- 30. The latticing of compression members shall be proportioned to resist a shearing stress equal to 2 per cent of the direct stress. The minimum thickness of lattice bars shall be for single lattice, \(\frac{1}{2}\)60, and for double lattice, \(\frac{1}{2}\)60 of the distance between the end rivets. Their minimum width shall be as follows:

For 15-inch channels, or

built sections with 3½ and 4-inch angles, 2½ inches (7/8-inch rivets).

For 12-10-and 9-inch channels, or

built sections with 3-inch angles 21/4 inches (3/4-inch rivets).

For 8-and 7-inch channels, or

built sections with $2\frac{1}{2}$ -inch angles 2 inches ($\frac{5}{8}$ -inch rivets).

For 6-and 5-inch channels, or built sections with 2-inch angles 1¾ inches (½-inch rivets).

- 31. The inclination of lattice bars with the axis of the member shall generally be not less than 45 degrees. When the distance between the rivet lines in the flanges is more than 15 inches, if a single rivet bar is used, the lattice shall be double.
- 32. The pitch of lattice connections, along the flange, divided by the least radius of gyration of the member between connections, shall be less than the corresponding ratio of the member as a whole.

- 33. Pins. Pin holes shall be reinforced by plates where necessary. At least one plate shall be as wide as the projecting flanges will allow; where angles are used, this plate shall be on the same side as the angles. The plates shall contain sufficient rivets to distribute their portion of the pin pressure to the full cross section of the member.
- 34 Pins shall be long enough to insure a full bearing of all parts connected upon the turned-down body of the pin. Members packed on pins shall be held against lateral movement.

WORKMANSHIP

- 35. General. The workmanship shall be equal to the best practice in modern structural works. Shearing shall be done accurately, and all portions of the work exposed to view shall be neatly finished.
- 36. Punching. The diameter of the punch shall not be more than ½6 inch, nor that of the die more than ½8 inch, larger than the diameter of the rivet. Punching shall be done accurately, but an occasional slight inaccuracy in the matching of holes may be corrected with reamer. Drifting to enlarge unfair holes will not be allowed.
- 37. Riveting. The size of rivets shall be as called for on the plans. Rivets shall be driven by pressure tools wherever possible. Pneumatic hammers shall be used in preference to hand driving. Rivets shall look neat and finished, with heads of approved shape, full and of equal size. They shall be centered on the shank and shall grip the assembled pieces firmly.
- 38. Assembling. Riveted members shall have all parts well pinned up and firmly drawn together with bolts before riveting is commenced. Contact surfaces shall be painted. Abutting joints shall be cut or dressed true and straight and fitted closely together. In compression joints depending on contact bearing, the surfaces shall be truly faced, so as to have even bearing after they are riveted up complete and when perfectly aligned. The several pieces forming one built member shall be straight and shall fit closely together, and finished members shall be free from twists, bends or open joints.

- 39. Eye Bars. Eye bars shall be straight and true to size, and shall be free from twists, folds in the neck or head, or any other defect. Heads shall be made by upsetting, rolling or forging. Welding will not be allowed. Before boring, each eye bar shall be perfectly annealed and carefully straightened. Pin holes shall be in the center line of bars and in the center of heads. Bars of the same length shall be bored so accurately that, when placed together, pins ½2 inch smaller in diameter than the pin holes can be passed through the holes at both ends of the bars at the same time.
- 40. Pins. Pins and rollers shall be turned accurately to gages, and shall be straight, smooth and entirely free from flaws. Pin holes shall be bored true to gages, smooth and straight, at right angles to the axis of the member and parallel to each other, unless otherwise called for. Wherever possible, the boring shall be done after the member is riveted up. The distance from center to center of pin holes shall be correct within ½2 inch, and the diameter of the hole not more than ½60 inch larger than that of the pin for pins up to 5 inches diameter, and ½2 inch for larger pins.
- 41. Bed Plates. Expansion bed plates shall be planed true and smooth. The cut of the planing tool shall correspond with the direction of expansion.
- 42. Annealing. Steel, except in minor details, which has been partially heated, shall be properly annealed. Welds in steel will not be allowed. All steel castings shall be annealed.
- 43. Painting. Steel work, before leaving the shop, shall be thoroughly cleaned and given one good coating of such paint as may be called for, well worked into all joints and open spaces.
- 44. In riveted work, the surfaces coming in contact shall be painted before being riveted together.
- 45. Machine-finished bearing surfaces coming in contact with similar surfaces should be coated with white lead and tallow before shipment.
- 46. Inspection. The manufacturer shall furnish all facilities for inspecting and testing the weight, quality of material and workmanship. He shall furnish a suitable testing machine for testing the specimens, as well as prepare the pieces for the machine free of charge.
- 47. He shall give the inspector for the purchaser free access to all parts of the works where the material under inspection is manufactured.

In the computation of the values of structural shapes for the various conditions under which they are subjected to stress, certain mathematical expressions are used. In the tables of Elements of Sections, which follow, these values or properties are given in inch-units.

Neutral Axis. The line, in the cross section of a beam or column in a state of flexure, on which there is neither tension nor compression; the neutral axis passes through the center of gravity of the section when unit stresses do not exceed the elastic limit of the material. In the usual position of structural sections there are two neutral axes, perpendicular to each other, their normal distance from extreme fiber of the section being designated by x and y.

Moment of Inertia—I. The sum of the products obtained by multiplying each of the elementary areas of which the section is composed, by the square of its normal distance from a neutral axis of the section or from any axis of moments assumed for purposes of calculation.

Section Modulus—S. The moment of inertia divided by the normal distance from the axis to which it refers to extreme fiber of the section. For the two moments of inertia, corresponding to the two principal axes of a section, there are also two section moduli.

The section modulus is used to determine the stress in the extreme fiber of a section, subjected to bending stresses, by dividing the bending moment by the section modulus referred to neutral axis normal to line of force, both values being expressed in like units of measure; the section modulus of a section, is obtained by dividing the bending stress by the allowable fiber stress, both values also in like units of measure; the proper section is then obtained from this section modulus by reference to the tables of Elements of Sections.

Radius of Gyration—r. The normal distance from a neutral axis to the center of gyration, the point where the entire area is considered to be concentrated and have the same moment of inertia as the actual area. The radius of gyration of a section referred to a neutral axis, or any axis of moments, is equal to the square root of (moment of inertia, referred to that axis, divided by the area).

The radius of gyration of a section is used to ascertain the safe load this section will sustain when used in compression, as a strut or column. The unbraced length of the section divided by the least radius of gyration is denominated the Ratio of Slenderness.

The elements and also the areas of structural sections on pages 110 to 129 have been computed from theoretical straight-line dimensions in accordance with formulas given on pages 106 and 107, and no account has been taken of fillets and roundings.

SQUARE

Axis of moments through center

$$A = d^2$$

$$x = \frac{d}{2}$$

$$S_{1-1} = \frac{d^8}{6}$$

$$r_{1-1} = \frac{d}{\sqrt{12}} = 0.288675d$$

SQUARE

Axis of moments on base

$$A = d^2$$

$$I_{1-1} = \frac{d^4}{3}$$

$$S_{1-1} = \frac{d^3}{3}$$

$$r_{1-1} = \frac{d}{\sqrt{3}} = 0.577350d$$

SQUARE

Axis of moments on diagonal

$$A = d^2$$

$$x = \frac{d}{\sqrt{2}} = 0.707107d$$

$$I_{1-1} = \frac{d^4}{12}$$

$$\frac{1}{12} = \frac{1}{12}$$

$$S_{1-1} = \frac{d^3}{6\sqrt{2}} = 0.117851 d^3$$

$$r_{1-1} = \frac{d}{\sqrt{12}} = 0.288675d$$

HOLLOW SQUARE

Axis of moments through center

$$A = d_2 - d_{1^2}$$

$$x = \frac{d}{2}$$

$$I_{1-1} = \frac{d^{4}-d_{1}^{4}}{12}$$

$$d^{4}-d_{1}^{4}$$

$$\mathbf{r}_{1-1} = \sqrt{\frac{d^2+d_1}{12}}$$

HOLLOW SQUARE

Axis of moments on diagonal

$$A = d^2 - d_1^2$$

$$x = \frac{d}{\sqrt{2}}$$

$$I_{1-1} = \frac{d^4 - d_{1}^4}{12}$$

$$S_{1-1} = \frac{d^4 - d_1^4}{6d \sqrt{2}} = 0.117851 \frac{d^4 - d_1^4}{d}$$

$$r_{1-1} = \sqrt{\frac{d^2 + d_1^2}{12}} = 0.288675 \sqrt{d^2 + d_1^2}$$

RECTANGLE

Axis of moments through center

$$A = bd$$

$$a = \frac{1}{2}$$

$$a_{1-1} = \frac{bd^3}{12}$$

$$S_{1-1} = \frac{bd^2}{6}$$

$$r_{1-1} = \frac{d}{\sqrt{12}} = 0.288675d$$

RECTANGLE

$$A = bd$$

$$x = d$$

$$I_{1-1} = \frac{bd^3}{a}$$

$$S_{1-1} = \frac{bd^2}{3}$$

$$r_{1-1} = \frac{d}{\sqrt{3}} = 0.577350d$$

RECTANGLE

Axis of moments on diagonal

$$a = \frac{bd}{\sqrt{b^2 + d^2}}$$

$$I_{1-1} = \frac{b^3 d^3}{6 (b^2 + d^2)}$$

$$S_{--} = \frac{b^2 d^2}{6 (b^2 + d^2)}$$

$$b_{1-1} = \frac{6\sqrt{b^2 + d^2}}{6\sqrt{b^2 + d^2}}$$

RECTANGLE

Axis of moments any line through center of gravity

$$A = bd$$

r₁₋₁ =

$$x \quad = \quad \frac{\mathrm{b}\,\sin\,\alpha + \mathrm{d}\,\cos\,\alpha}{2}$$

 $\sqrt{6 (b^2 + d^2)}$

$$I_{1-1} = \frac{bd (b^2 \sin^2 \alpha + d^2 \cos^2 \alpha)}{12}$$

$$S_{I-1} = \frac{bd (b^2 \sin^2 \alpha + d^2 \cos^2 \alpha)}{6 (b \sin \alpha + d \cos \alpha)}$$

$$r_{1-1} = \sqrt{\frac{b^2 \sin^2 \alpha + d^2 \cos^2 \alpha}{12}}$$

HOLLOW RECTANGLE

Axis of moments through center

$$A = bd-b_1 d_1$$

$$x = -\frac{a}{2}$$

$$I_{1-1} = \frac{bd^3-b_1 \ d_1^3}{12}$$

$$S_{1-1} = \frac{bd^3 - b_1 \ d_1^3}{6d}$$

$$\mathbf{r}_{1-1} = \sqrt{\frac{\mathbf{b}\mathbf{d}^3 - \mathbf{b}_1 \ \mathbf{d}_1^8}{12 \ (\mathbf{b}\mathbf{d} - \mathbf{b}_1 \ \mathbf{d}_1)}}$$

TRIANGLE Axis of moments through center of gravity × 1- £ \dot{x}_1 اد---- b-----TRIANGLE Axis of moments on base

$$A = \frac{bd}{2}$$

$$x = \frac{2d}{2}$$

$$a = \frac{bd^3}{3}$$

$$S_{1-1} = \frac{bd^2}{24}$$

$$r_{1-1} = \frac{d}{\sqrt{18}} = 0.235702d$$

 $x_1 = \frac{d}{3}$

$$A = \frac{bd}{2}$$

$$x = d$$
 bd^3

$$\begin{array}{ccc}
1 & 1 & 12 \\
3 & 1 & \frac{\text{bd}^2}{2}
\end{array}$$

$$r_{1-1} = \frac{d}{\sqrt{6}} = 0.408248d$$

TRAPEZOID

Axis of moments through center of gravity ~-b₁>

$$A = \frac{d(b+b_1)}{2}$$

$$x = \frac{d(b_1 + 2b)}{3(b + b_1)}$$

$$x_1 = \frac{d (b + 2b_1)}{3 (b + b_1)}$$

$$I_{1-1} = \frac{\frac{d^3 (b^2 + 4 bb_1 + b_1^2)}{36 (b + b_1)}}{\frac{d^2 (b^2 + 4 bb_1 + b_1^2)}{6}}$$

$$S_{1-1} = \frac{\frac{d^2 (b^2 + 4 bb_1 + b_1^2)}{12 (b_1 + 2 b)}}{\frac{d}{6 (b + b_1)} \sqrt{2 (b^2 + 4 bb_1 + b_1^2)}}$$

$$A = \frac{d(b+b_1)}{2}$$

$$x = d$$

$$I_{1-1} = \frac{d^3 (b + 3 b_1)}{12}$$

$$S_{1-1} = \frac{d^2 (b + 3 b_1)}{12}$$

$$r_{1-1} = \frac{d}{\sqrt{6}} \sqrt{\frac{b+3b_1}{b+b_1}}$$

REGULAR POLYGON

Axis of moments through

$$A = \frac{1}{4} na^2 \cot \phi = \frac{1}{2} nR^2 \sin 2 \phi = nR_1^2 \tan \phi$$

$$x = R = \frac{a}{2 \sin \phi} \quad x_1 = R_1 = \frac{a}{-2 \tan \phi}$$

$$I_{1-1} = \frac{A (6 R^2 - a^2)}{24} = I_{2-2} = \frac{A (12 R_1^2 + a^2)}{48}$$

$$S_{1\text{--}1} = \begin{array}{c} \frac{A(6R^2 - a^2)}{24R} & S_{2\text{--}2} = \frac{A(12R_1^2 + a^2)}{48R_1} \end{array}$$

$$r_{1-1} = \sqrt{\frac{6 R^2 - a^2}{24}} = r_{2-2} = \sqrt{\frac{12 R_1^2 + a^2}{48}}$$

$$A = \frac{\pi d^2}{4} = 0.785398 d^2$$

$$c = \frac{d}{2}$$

$$I_{1-1} = \frac{\pi \, d^4}{64} = 0.049087 \, d^4$$

$$\pi \, d^3 = 0.008175 \, d^3$$

$$S_{1-1} = \frac{\pi d^3}{32} = 0.098175 d^3$$

 $r_{1-1} = \frac{d}{1}$

HOLLOW CIRCLE

$$A = \frac{\pi (d^2 - d_1^2)}{4} = 0.785398 (d^2 - d_1^2)$$

$$x = \frac{d}{2}$$

x

$$I_{1-1} = \frac{\pi (d^4 - d_1^4)}{64} = 0.049087 (d^4 - d_1^4)$$

 $S_{1-1} = \frac{\pi (d^4 - d_1^4)}{32d} = 0.098175 \frac{(d^4 - d_1^4)}{d}$

$$\mathbf{r}_{1-1} = \sqrt{\frac{\mathbf{d}^2 + \mathbf{d}_1^2}{4}}$$

HALF CIRCLE Axis of moments through

$$A = \frac{\pi \ d^2}{8} = 0.392699 \ d^2$$

$$= \frac{\frac{8}{4(3\pi^{-4})}}{6\pi} = 0.287793d. \quad x_1 = \frac{2d}{3\pi} = 0.212207d$$

$$\begin{split} \mathbf{I}_{1\text{-}1} &= \frac{\mathrm{d}^4(9 \, \pi^2 - 64)}{1152 \, \pi} = 0.006860 \, \mathrm{d}^4 \\ \mathbf{S}_{1\text{-}1} &= \frac{\mathrm{d}^3(9 \, \pi^2 - 64)}{192 \, (3 \, \pi - 4)} = 0.023836 \, \mathrm{d}^3 \\ \mathbf{r}_{1\text{-}1} &= \mathrm{d} \, \sqrt{\frac{(9 \, \pi^2 - 64)}{12\pi}} = 0.132168 \, \mathrm{d} \end{split}$$

---d ----

$$A = \frac{\pi(d^2-d_1^2)}{8} = 0.392699 (d^2-d_1^2)$$

$$\begin{array}{lll} x & = & \frac{2}{3} \frac{(\mathrm{d}^3 - \mathrm{d_1}^3)}{3 \, \pi \, (\mathrm{d}^2 - \mathrm{d_1}^2)} & x_1 = \frac{3 \, \pi \, \mathrm{d} \, (\mathrm{d}^2 - \mathrm{d_1}^2) - 4 \, (\mathrm{d}^3 - \mathrm{d_1}^8)}{6 \, \pi \, (\mathrm{d}^2 - \mathrm{d_1}^2)} \\ \mathrm{I}_{1\text{-}1} & = & \frac{9 \, \pi^2 \, (\mathrm{d}^4 - \mathrm{d_1}^4) \, (\mathrm{d}^2 - \mathrm{d_1}^2) - 64 \, (\mathrm{d}^3 - \mathrm{d_1}^8)^2}{1152 \, \pi \, (\mathrm{d}^2 - \mathrm{d_1}^2)} \end{array}$$

$$S_{1-1} = \frac{I}{X}$$
 if $X > X_1$ $S_{1-1} = \frac{I}{X_1}$ if $X_1 > X$

$$r_{1\text{--}1} \! = \! \begin{array}{c} \frac{1}{12\,\pi}\,\sqrt{\frac{9\,\pi^2\,(d^4\!-\!d_1^4)\,\,(\overline{d}^2\!-\!d_1^2)\!-\!64\,\,(d^3\!-\!d_1^3)^2}{(d^2\!-\!d_1^2)^2}} \\ \end{array}$$

ELLIPSE

Axis of moments through center

$$A = \frac{\pi \, dd_1}{4} = 0.785398 \, dd_1$$

$$x = \frac{d}{2}$$

$$\begin{array}{ll} I_{1\text{--}1} = & \frac{\pi \ d^3 \ d_1}{64} \ = 0.049087 \ d^3 \ d_1 \\ S_{1\text{--}1} = & \frac{\pi \ d^2 \ d_1}{32} \ = 0.098175 \ d^2 \ d_1 \end{array}$$

$$\mathbf{r}_{1-1} = \frac{\mathbf{d}}{4}$$

$$A = t (b+c)$$

$$x = \frac{b^2+ct}{2(b+c)}$$

$$y = x$$
 $a = 45^{\circ}$

$$I_{1-1} = \frac{t(b-x)^3+bx^3-a(x-t)^3}{3}$$

$$I_{2-2} = I_{1-1}$$

$$I_{\,3\text{--}3} \; = \; \; \frac{ct^3 + c^3t + 3ct(b - 4x + 2t)^2 + t^4 + 6t^2(2x - t)^2}{12}$$

$$\frac{ct^3 + c^3t + 3ctb^2 + t^4}{12}$$

UNEQUAL ANGLE

 $I_{4-4} =$

$$A = t(b+c)$$

$$x = \frac{t(b+2c)+c^2}{2(b+c)}$$

$$y = \frac{t(2a+d)+a^2}{2(a+d)}$$

$$Tan 2a = \frac{t[(2y-t)d(d-2x) + a(2x-t)(b+t-2y)]}{2(I_{1-1}-I_{2-2})}$$

$$I_{1-1} = \frac{t(d-x)^3 + bx^3 - a(x-t)^3}{3}$$

$$I_{2-2} = \frac{t(b-y)^3+dy^3-c(y-t)^3}{3}$$

$$I_{3-3} = \frac{I_{2-2}\cos^2\alpha + I_{1-1}\sin^2\alpha}{\cos 2\alpha}$$

$$I_{4-4} = \frac{I_{1-1}\cos^2\alpha - I_{2-2}\sin^2\alpha}{\cos 2\alpha}$$

TEE

$$A = \frac{e(t+u)}{2} + mt + a(m+n)$$

$$x \quad = \quad \frac{6an^2 + 2a(m-n)\;(m+2n) + 3td^2 - e(t-u)\;(3d-e)}{6A}$$

$$y = \frac{b}{2}$$

$$I_{1-1} = \frac{e^3(3u+t)+4hm^3-23(m-n)^3}{12}-A(x-m)^2$$

$$I_{2-2} = \frac{nb^3 + (m-n)t^3 + eu^3}{12}$$

 $+ \tfrac{a(m-n)[2a^2+(2a+3\mathbf{t})^2]}{36}$

 $+\frac{e(t-u)[(t-u)^2+2(t+2u)^2]}{144}$

COMPOUND SECTIONS

MOMENTS OF INERTIA, SECTION MODULI, AND RADII OF GYRATION

The moment of inertia of a compound section about its neutral axis is equal to the sum of the moment of inertia, I, of the component parts about axes through their own centers of gravity, plus the areas A, of the component parts multiplied by the squares of the distances d, of their own centers of gravity from the neutral axis of the compound section, or

Moment of Inertia I¹ = I+Ad²

Section Modulus S¹ =
$$\frac{I^1}{n}$$

Radius of Gyration $\mathbf{r}^1 = \sqrt{\frac{I^1}{M}}$

EXAMPLE 1. Required the moments of inertia and the section moduli about axes 1-1 and 2-2 of a compound section to be used as a girder, composed of

2 Flange Plates 14"x34"

basing the properties on the gross area of the section.

Determine the distances, of the center lines of gravity of plates and angles, from the neutral axes of the compound section, from the dimensions given, then for

AXIS 1-1
$$I_{1-1}$$
 of $4-6"x4"x5\%"$ Angles = $4 \times 7.5 = 30.00$ Inches 4 Ad² of $4-6"x4"x5\%"$ " = $4 \times 5.86x15.72^2 = 5792.46$ = $4 \times 5.86x15.72^2 = 5792.46$

If it is desired to calculate the properties of the net section, viz., to deduct the area of the rivet holes, proceed as follows, assuming that $\frac{7}{3}$ holes for $\frac{3}{4}$ rivets are to he deducted and that not more than one rivet will be driven in any one leg of the angles in the same plane of the section.

	be differ in any one led or the magnetic	
AXIS 1-1	I_{1-1} of gross section = 13479.40 Inches 4	
Deduct	I_{1-1} of 4-0.875"x1.375"Rectangles= 4 x $\frac{0.875 \times 1.375^3}{12}$ = 0.76 "	
6.6	$Ad^2 \text{ of } 4\text{-}0.875'' \text{x} 1.375''$ " = 4 x 1.203x16.81252 = 1360.16 "	
**	$I_{1-1} \text{ of } 2\text{-}0.875'' \text{x} 1.75''$ " $= 2 \text{ x} - \frac{1.75 \text{x} 0.875^3}{12} = 0.20$ "	
44	Ad ² of 2-0.875''x1.75'' " = $2x1.531x14.25^2 = 621.77$ "	
	Moment of Inertia, net section 11496.51 Inches 4	
	Section Modulus, " = $\frac{11496.51}{17.50}$ = 656.94 Inches 3	
AXIS 2-2	I_{2-2} of gross section = 549.59 Inches 4	
Deduct	I_{2-2} of 4-0.875" x1.375" Rectangles = $4 \times \frac{1.375 \times 0.875^3}{12} = 0.31$ "	
4.4	Ad2 of 4 - 0.875 fgr 1.375 fgr 1.203 x 3.75 gr = 67.67 fgr	
44	I_{2-2} of 2-0.875"x1.75" " =2 x $\frac{0.875x1.75^{8}}{12}$ = 0.78 "	
	Moment of Inertia, net section 480.83 Inches 4	
	Section Modulus, " = $\frac{480.83}{7}$ = 68.69 Inches 3	

COMPOUND SECTIONS-Concluded

EXAMPLE 2. Required the moments of inertia and radii of gyration about axes 1-1 and 2-2 of a column section composed as follows:—

- 2 Channels 12"x30 pounds per foot,
- 2 Flange Plates 14"x 34",

I properties to be based on the gross section, no deduction being made for holes.

Determine the distances, d, of center lines of gravity for the various sections from the neutral axes 1-1 and 2-2, in accordance with the dimensions given, then for

AXIS 2-2
$$I_{2\cdot 2}$$
 of 2-12" Channels 30 lbs. = 2 x 5.2 = 10.40 Inches 4
Ad² of 2-12" Channels 30 lbs. = 2 x 8.79 x 4.17² = 305.70 "

 $I_{2\cdot 2}$ of 2-14" x 34" Plates = x $\frac{0.75 \text{ x } 14^3}{12}$ = 343.00 "

Moment of Inertia, gross section

Radius of Gyration. " = $\sqrt{\frac{659.10}{28.5\%}}$ = 4.13 Inches

21

Example 3. Required the radii of gyration about axes 1-1 and 2-2 of a strut section composed as follows:—

4-6"x4"x 3%" Angles latticed by 548" bars,

properties to be based on the gross section of angles, no deductions being made for rivet holes nor any allowance for lattice bars.

Determine the distances, d, of center lines of gravity of angles from neutral axes 1-1 and 2-2 in accordance with the dimensions given, then for

AXIS 1-1 I₁₋₁ of
$$4-6''x4''x\%'$$
 Angles = 4×4.9 = 19.60 Inches 4
Ad² of $4-6''x4''x\%'$ " = $4 \times 3.61 \times 5.06^2$ = 369.72 "

Moment of Inertia, gross section 389.32 Inches 4
Radius of Gyration, " = $\sqrt{\frac{389.32}{14.44}}$ = 5.19 Inches

AXIS 2-2 From tables of radii of gyration for 2 angles placed back to back page 133, axis 2-2, $\frac{5}{8}$ " apart, $\frac{7}{2-2}$ of 4-6" $\frac{2}{8}$ " angles = 2.97 Inches.

Where sections are assembled without any web or flange plates, as, for example, latticed channel columns or latticed angle struts, the radius of gyration, r₁₋₁ can be readily obtained, without considering the moment of inertia, from the radius of gyration, r of one section about its neutral axis, and the distance, d, between the center of gravity of the section and the neutral axis parallel to the axis of section.

$$r_{1-1}=\sqrt{rac{I+Ad^2}{A}}$$
 , where $rac{I}{A}=r^2$, and $r_{1-1}=\sqrt{r^2+d^2}$

Thus, in the above example, $r_{1-1} = \sqrt{1.17^2 + 5.06^2} = 5.19$ Inches

ELEMENTS OF STRUCTURAL BEAMS

Castin-	Depth of	Weight	Area of	Width of	Thick- ness of		Axis 1-1			Axis 2-	2
Section Index	Beam	Foot	Section	Flange	Web	Ι.	r	S	I	r	S
	ln.	Lbs.	In.2	In.	In.	In.4	In.	In.3	In.4	In.	In.a
B 61	27	90.0	26.34	9.000	0.524	2958.3	10.60	219.1	75.3	1.69	16.7
В 18	24	120.0 115.0 110.0 105.9	35.13 33.67 32.18 30.98	8.048 7.987 7.925 7.875	$\begin{array}{c} 0.798 \\ 0.737 \\ 0.675 \\ 0.625 \end{array}$	$3010.8 \\ 2940.5 \\ 2869.1 \\ 2811.5$	9.26 9.35 9.44 9.53	$\begin{array}{c} 250.9 \\ 245.0 \\ 239.1 \\ 234.3 \end{array}$	84.9 82.8 80.6 78.9	1.56 1.57 1.58 1.60	21.1 20.7 20.3 20.0
B 1	24	100.0 95.0 90.0 85.0 79.9	29.25 27.79 26.30 24.84 23.33	7.247 7.186 7.124 7.063 7.000	$0.624 \\ 0.563$	$\begin{array}{c} 2371.8 \\ 2301.5 \\ 2230.1 \\ 2159.8 \\ 2087.2 \end{array}$	9.05 9.08 9.21 9.33 9.46	197.6 191.8 185.8 180.0 173.9	$\begin{array}{c} 48.4 \\ 47.0 \\ 45.5 \\ 44.2 \\ 42.9 \end{array}$	1.29 1.30 1.32 1.33 1.36	13.4 13.0 12.8 12.5 12.2
B 62	24	74.2	21.70	9.000	0.476	1950.1	9.48	162.5	61.2	1.68	13.6
B 63	21	60.4	17.68	8.250	0.428	1235.5	8.36	117.7	43.5	1.57	10.6
B 2	20	100.0 95.0 90.0 85.0 81.4	29.20 27.74 26.26 24.80 23.74	7.273 7.200 7.126 7.053 7.000	$\begin{bmatrix} 0.800 \\ 0.726 \\ 0.653 \end{bmatrix}$	1648.3 1599.7 1550.3 1501.7 1466.3	7.51 7.59 7.68 7.78 7.86	$\begin{array}{c} 164.8 \\ 160.0 \\ 155.0 \\ 150.2 \\ 146.6 \end{array}$	52.4 50.5 48.7 47.0 45.8	1.34 1.35 1.36 1.38 1.39	14.4 14.0 13.7 13.3 13.1
B 3	20	75.0 70.0 65.4	$\begin{array}{c} 21.90 \\ 20.42 \\ 19.08 \end{array}$	6.391 6.317 6.250	$\begin{array}{c} 0.641 \\ 0.567 \\ 0.500 \end{array}$	$\begin{array}{c} 1263.5 \\ 1214.2 \\ 1169.5 \end{array}$	$7.60 \\ 7.71 \\ 7.83$	$\begin{array}{c} 126.3 \\ 121.4 \\ 116.9 \end{array}$	$30.1 \\ 28.9 \\ 27.9$	$1.17 \\ 1.19 \\ 1.21$	9.4 9.2 8.9
B 19	18	90.0 85.0 80.0 75.6	26.29 24.81 23.34 22.04	7.236 7.154 7.072 7.000	$0.714 \\ 0.632$	$\begin{array}{c} 1256.5 \\ 1216.6 \\ 1176.8 \\ 1141.8 \end{array}$	$\begin{array}{c} 6.91 \\ 7.00 \\ 7.10 \\ 7.20 \end{array}$	$\begin{array}{c} 139.6 \\ 135.2 \\ 130.8 \\ 126.9 \end{array}$	51.9 49.8 47.9 46.3	1.40 1.42 1.43 1.45	14.3 14.0 13.6 13.2
В 4	18	70.0 65.0 60.0 54.7	$\begin{array}{c} 20.46 \\ 18.98 \\ 17.50 \\ 15.94 \end{array}$	6.251 6.169 6.087 6.000	$\begin{array}{c} 0.711 \\ 0.629 \\ 0.547 \\ 0.460 \end{array}$	917.5 877.7 837.8 795.5	6.70 6.80 6.92 7.07	$101.9 \\ 97.5 \\ 93.1 \\ 88.4$	$\begin{array}{c} 24.5 \\ 23.4 \\ 22.3 \\ 21.2 \end{array}$	1.09 1.11 1.13 1.15	7.8 7.6 7.3 7.1
B 64	18	48.2	14.09	7.500	0.380	737.1	7.23	81.9	30.0	1.46	8.0
В 6	15	75.0 70.0 65.0 60.8	$\begin{array}{c} 21.85 \\ 20.38 \\ 18.91 \\ 17.68 \end{array}$	6.278 6.180 6.082 6.000	$\begin{array}{c} 0.868 \\ 0.770 \\ 0.672 \\ 0.590 \end{array}$	$687.2 \\ 659.6 \\ 632.1 \\ 609.0$	5.61 5.69 5.78 5.87	91.6 87.9 84.3 81.2	$30.6 \\ 28.8 \\ 27.2 \\ 26.0$	1.18 1.19 1.20 1.21	9.8 9.3 8.9 8.7
в 7	15	55.0 50.0 45.0 42.9	16.06 14.59 13.12 12.49	5.738 5.640 5.542 5.500	$\begin{array}{c} 0.648 \\ 0.550 \\ 0.452 \\ 0.410 \end{array}$	508.7 481.1 453.6 441.8	5.63 5.74 5.88 5.95	$\begin{array}{c} 67.8 \\ 64.2 \\ 60.5 \\ 58.9 \end{array}$	$17.0 \\ 16.0 \\ 15.0 \\ 14.6$	1.03 1.05 1.07 1.08	5.9 5.7 5.4 5.3
B 65	15	37.3	10.91	6.750	0.332	405.5	6.10	54.1	19.9	1.35	5.9

ELEMENTS OF STRUCTURAL BEAMS—Concluded

G 4:	of	Weight	of	Width of	Thick- ness of	A	xis 1-1		4	Axis 2-2	
Section Index	Beam	Foot	Section	Flange	Web	I	r	S	I	r	S.
	In.	Lbs.	In.2	In.	In	In.4	In.	In.3	In.4	In.	In.3
В 8	12	55.0 50.0 45.0 40.8	16.04 14.57 13.10 11.84	5.600 5.477 5.355 5.250	$\begin{array}{c} 0.810 \\ 0.687 \\ 0.565 \\ 0.460 \end{array}$	$319.3 \\ 301.6 \\ 284.1 \\ 268.9$	4.46 4.55 4.66 4.77	53.2 50.3 47.3 44.8	17.3 16.0 14.8 13.8	1.04 1.05 1.06 1.08	6.2 5.8 5.5 5.3
В 9	12	35.0 31.8	$10.20 \\ 9.26$	5.078 5.000	$0.428 \\ 0.350$	$\frac{227.0}{215.8}$	$\frac{4.72}{4.83}$	$\frac{37.8}{36.0}$	10.0 9.5	$0.99 \\ 1.01$	$\frac{3.9}{3.8}$
B 66	12	27.9	8.15	6.000	0.284	199.4	4.95	33.2	12.6	1.24	4.2
B 10	10	$40.0 \\ 35.0 \\ 30.0 \\ 25.4$	11.69 10.22 8.75 7.38	5.091 4.944 4.797 4.660	$\begin{array}{c} 0.741 \\ 0.594 \\ 0.447 \\ 0.310 \end{array}$	$\begin{array}{c} 158.0 \\ 145.8 \\ 133.5 \\ 122.1 \end{array}$	$3.68 \\ 3.78 \\ 3.91 \\ 4.07$	31.6 29.2 26.7 24.4	$9.4 \\ 8.5 \\ 7.6 \\ 6.9$	$0.90 \\ 0.91 \\ 0.93 \\ 0.97$	3.7 3.4 3.2 3.0
B 67	10	22.4	6.54	5.500	0.252	113.6	4.17	22.7	9.0	1.17	3.3
B 11	9	$35.0 \\ 30.0 \\ 25.0 \\ 21.8$	10.22 8.76 7.28 6.32	4.764 4.601 4.437 4.330	$\begin{array}{c} 0.724 \\ 0.561 \\ 0.397 \\ 0.290 \end{array}$	111.3 101.4 91.4 84.9	$3.30 \\ 3.40 \\ 3.54 \\ 3.67$	$\begin{array}{c} 24.7 \\ 22.5 \\ 20.3 \\ 18.9 \end{array}$	7.3 6.4 5.6 5.2	0.84 0.85 0.88 0.90	3.0 2.8 2.5 2.4
B 12	8	25.5 23.0 20.5 18.4	7.43 6.71 5.97 5.34	4.262 4.171 4.079 4.000	$\begin{array}{c} 0.532 \\ 0.441 \\ 0.349 \\ 0.270 \end{array}$	68.1 64.2 60.2 56.9	$3.03 \\ 3.09 \\ 3.18 \\ 3.26$	17.0 16.0 15.1 14.2	4.7 4.4 4.0 3.8	$\begin{bmatrix} 0.80 \\ 0.81 \\ 0.82 \\ 0.84 \end{bmatrix}$	2.2 2.1 2.0 1.9
B 68	8	17.5	5.13	5.000	0.220	58.4	3.38	14.6	6.2	1.10	2.5
В 13	7	$20.0 \\ 17.5 \\ 15.3$	5.83 5.09 4.43	$3.860 \\ 3.755 \\ 3.660$	$\begin{array}{c} 0.450 \\ 0.345 \\ 0.250 \end{array}$	$ \begin{array}{r} 41.9 \\ 38.9 \\ 36.2 \end{array} $	$2.68 \\ 2.77 \\ 2.86$	$12.0 \\ 11.1 \\ 10.4$	$\begin{array}{c} 3.1 \\ 2.9 \\ 2.7 \end{array}$	$0.74 \\ 0.76 \\ 0.78$	$1.6 \\ 1.6 \\ 1.5$
B 14	6	$17.25 \\ 14.75 \\ 12.5$	5.02 4.29 3.61	$3.565 \\ 3.443 \\ 3.330$	$\begin{array}{c} 0.465 \\ 0.343 \\ 0.230 \end{array}$	26.0 23.8 21.8	$2.28 \\ 2.36 \\ 2.46$	8.7 7.9 7.3	2.3 2.1 1.8	$0.68 \\ 0.69 \\ 0.72$	$1.3 \\ 1.2 \\ 1.1$
B 15	5	$14.75 \\ 12.25 \\ 10.0$	4.29 3.56 2.87	$3.284 \\ 3.137 \\ 3.000$	$\begin{array}{c} 0.494 \\ 0.347 \\ 0.210 \end{array}$	15.0 13.5 12.1	$1.87 \\ 1.95 \\ 2.05$	$6.0 \\ 5.4 \\ 4.8$	1.7 1.4 1.2	$0.63 \\ 0.63 \\ 0.65$	$1.0 \\ 0.91 \\ 0.82$
B 16	4	10.5 9.5 8.5 7.7	3.05 2.76 2.46 2.21	2.870 2.796 2.723 2.660	$\begin{array}{c} 0.400 \\ 0.326 \\ 0.253 \\ 0.190 \end{array}$	7.1 6.7 6.3 6.0	1.52 1.56 1.60 1.64	3.5 3.3 3.2 3.0	1.0 0.91 0.83 0.77	$\begin{array}{c} 0.57 \\ 0.58 \\ 0.58 \\ 0.59 \end{array}$	$0.70 \\ 0.65 \\ 0.61 \\ 0.58$
В 17	3	7.5 6.5 5.7	2.17 1.88 1.64	$2.509 \\ 2.411 \\ 2.330$	$0.349 \\ 0.251 \\ 0.170$	$2.9 \\ 2.7 \\ 2.5$	$1.15 \\ 1.19 \\ 1.23$	1.9 1.8 1.7	$0.59 \\ 0.51 \\ 0.46$	$0.52 \\ 0.52 \\ 0.53$	$0.47 \\ 0.43 \\ 0.40$

ELEMENTS OF H BEAMS

Section	Depth	Weight per	Area of	Width	Thick-		Axis 1-1			Axis 2-2	:
Section Index	Beam	Foot		Flange		I	r	S.	I	r	s
	In.	Lbs.	In.2	In.	In.	In.4	In.	In.3	In.4	In.	In.3
		37.7	11.00	8.125	0.500	120.8	3.31	30.2	36.9	1.83	9.1
H 4	8	34.3	10.00	8.000	0.375	115.5	3.40	28.9	35.1	1.87	8.8
H 4	J	32.6	9.50	7.938	0.313	112.8	3.45	28.2	34.2	1.90	8.6
		26.7	7.76	6.125	0.438	47.4	2.47	15.8	15.7	1.42	5.1
H 3	6	24.1	7.01	6.000	0.313	45.1	2.54	15.0	14.7	1.45	4.9
		22.8	6.63	5.938	0.250	44.0	2.58	14.7	14.2	1.46	4.8
H 2	5	18.9	5.47	5.000	0.313	23.8	2.08	9.5	7.8	1.20	3.1
H 1	4	13.8	3.99	4.000	0.313	10.7	1.64	5.3	3.6	0.95	1.8

ELEMENTS OF U. S. STEEL SHEET PILING SECTIONS

		Dimen	sions		Weight	Area of	Axis 1-1				
Section Index	b	С	d	t	Foot	Section	I	r	S		
	In.	In.	In.	In.	Lbs.	In.2	In.4	In.	In.8		
M 105	131/4	315/16	21/2	1/2	42.5	12.51	8.56	0.83	4.35		
M 104	13 14	315/16	21/2	3/8	38	11.30	8.50	0.87	4.32		
M 103	$9\frac{14}{4}$	2%6	15/8	1/4	16	4.71	1.45	0.56	1.13		

ELEMENTS OF STRUCTURAL CHANNELS

American Standard Sections

	Depth	Weight	Area of	Width	Thick- ness of	A	xis 1-1			Axis	2-2	
Section Index	Channel		Section		Web	I	r	S	1	r	S	У
	In.	Lbs.	In.2	In.	In.	In.	In.	In.3	In.4	In.	In.3	In.
C 1	15	55.0 50.0 45.0 40.0 35.0 33.9	16.11 14.64 13.17 11.70 10.23 9.90	3.814 3.716 3.618 3.520 3.422 3.400	$\begin{array}{c} 0.814 \\ 0.716 \\ 0.618 \\ 0.520 \\ 0.422 \\ 0.400 \end{array}$	401.4 373.9 346.3 318.7	5.24 5.33 5.44 5.58	53.6		$\begin{array}{c} 0.87 \\ 0.87 \\ 0.88 \\ 0.89 \\ 0.91 \\ 0.91 \end{array}$	$3.8 \\ 3.6 \\ 3.4 \\ 3.2$	$0.82 \\ 0.80 \\ 0.79 \\ 0.78 \\ 0.79 \\ 0.79$
C 2	12	$\begin{array}{c} 40.0 \\ 35.0 \\ 30.0 \\ 25.0 \\ 20.7 \end{array}$	$\begin{array}{c} 11.73 \\ 10.26 \\ 8.79 \\ 7.32 \\ 6.03 \end{array}$	3.292	$0.510 \\ 0.387$	178.8	$4.18 \\ 4.28 \\ 4.43$	$\frac{29.8}{26.9}$ $\frac{23.9}{23.9}$	6.6 5.9 5.2 4.5 3.9	0.75 0.76 0.77 0.79 0.81	$\frac{2.1}{1.9}$	$\begin{array}{c} 0.72 \\ 0.69 \\ 0.68 \\ 0.68 \\ 0.70 \end{array}$
C 3	10	35.0 30.0 25.0 20.0 15.3	10.27 8.80 7.33 5.86 4.47	3.180 3.033 2.886 2.739 2.600	$\begin{array}{c} 0.820 \\ 0.673 \\ 0.526 \\ 0.379 \\ 0.240 \end{array}$	78.5		20.6 18.1 15.7	4.6 4.0 3.4 2.8 2.3	$\begin{array}{c} 0.67 \\ 0.67 \\ 0.68 \\ 0.70 \\ 0.72 \end{array}$	1.3	$\begin{array}{c} 0.69 \\ 0.65 \\ 0.62 \\ 0.61 \\ 0.64 \end{array}$
C 4	9	25.0 20.0 15.0 13.4	7.33 5.86 4.39 3.89	2.812 2.648 2.485 2.430	$\begin{array}{c} 0.612 \\ 0.448 \\ 0.285 \\ 0.230 \end{array}$	60.6 50.7	$\frac{3.22}{3.40}$	15.7 13.5 11.3 10.5	$\begin{array}{c} 3.0 \\ 2.4 \\ 1.9 \\ 1.8 \end{array}$	$\begin{array}{c} 0.64 \\ 0.65 \\ 0.67 \\ 0.67 \end{array}$	1.2	$\begin{array}{c} 0.61 \\ 0.59 \\ 0.59 \\ 0.61 \end{array}$
C 5	8	21.25 18.75 16.25 13.75 11.5	6.23 5.49 4.76 4.02 3.36	2.619 2.527 2.435 2.343 2.260	$\begin{array}{c} 0.579 \\ 0.487 \\ 0.395 \\ 0.303 \\ 0.220 \end{array}$	$\begin{array}{r} 43.7 \\ +39.8 \\ +35.8 \end{array}$	2.77 2.82 2.89 2.99 3.10	$\begin{vmatrix} 10.9 \\ 9.9 \\ 9.0 \end{vmatrix}$	$\frac{2.0}{1.8}$ $\frac{1.5}{1.5}$	0.62		0.59 0.57 0.56 0.56 0.58
C 6	7	19.75 17.25 14.75 12.25 9.8	5.79 5.05 4.32 3.58 2.85	$\begin{array}{c} 2.509 \\ 2.404 \\ 2.299 \\ 2.194 \\ 2.090 \end{array}$	$0.419 \\ 0.314$	$30.1 \\ 27.1 \\ 24.1$	2.39 2.44 2.51 2.59 2.72	8.6 7.7 6.9	$1.6 \\ 1.4 \\ 1.2$	$0.56 \\ 0.57 \\ 0.58$	$0.96 \\ 0.86 \\ 0.79 \\ 0.71 \\ 0.63$	$\begin{array}{c} 0.58 \\ 0.55 \\ 0.53 \\ 0.53 \\ 0.55 \end{array}$
C 7	6	15.5 13.0 10.5 8.2	4.54 3.81 3.07 2.39	$\frac{2.157}{2.034}$	$0.437 \\ 0.314$	17.3 15.1	$\begin{array}{c} 2.07 \\ 2.13 \\ 2.22 \\ 2.34 \end{array}$	5.8 5.0	$\begin{array}{c c} 1.1 \\ 0.87\end{array}$	$0.53 \\ 0.53$	$0.73 \\ 0.65 \\ 0.57 \\ 0.50$	$\begin{array}{c} 0.55 \\ 0.52 \\ 0.50 \\ 0.52 \end{array}$
C 8	5	$ \begin{array}{c} 11.5 \\ 9.0 \\ 6.7 \end{array} $	3.36 2.63 1.95	1.885	0.325	8.8	1.76 1.83 1.95	3.5	0.64	0.49	$0.54 \\ 0.45 \\ 0.38$	$0.51 \\ 0.48 \\ 0.49$
C 9	4	7.25 6.25 5.4		1.647	0.247	4.1	$\begin{array}{c} 1.47 \\ 1.50 \\ 3.1.56 \end{array}$	2.1	0.38	0.45	$\begin{array}{c} 0.35 \\ 0.32 \\ 0.29 \end{array}$	$0.46 \\ 0.46 \\ 0.46$
C 10	3	6.0 5.0 4.1	1.75 1.46 1.19		0.258	1.8	1 1.08 8 1.12 6 1.17	1.2	0.25	0.41	$\begin{array}{c} 0.27 \\ 0.24 \\ 0.21 \end{array}$	

ELEMENTS OF SHIP BUILDING CHANNELS American Standard Sections

0	Depth of	Wt.	Area of		Thick- ness of		xis 1-1			Axis	2-2	
Section Index	Chan- nel	Foot	Sec- tion	Flange		I	r	S	I	r	s	y
	In.	Lbs.	In.2	In.	In.	In.4	In.	In.3	In.4	In.	In.3	In.
†C 60	18	$\frac{51.9}{45.8}$	16.98 15.18 13.38 12.48	$\frac{4.100}{4.000}$.600 .500	$670.7 \\ 622.1 \\ 573.5 \\ 549.2$	$6.40 \\ 6.55$	74.5 69.1 63.7 61.0	18.5 17.1 15.8 15.0	$1.04 \\ 1.06 \\ 1.09 \\ 1.10$	$5.6 \\ 5.3 \\ 5.1 \\ 4.9$	0.88 0.87 0.89 0.90
C 21 (BSC 26)	12	40.6 36.5	13.05 11.85 10.65 10.05	$\frac{4.100}{4.060}$.625	245.0 230.6 216.2 209.0	$\frac{4.41}{4.51}$	40.8 38.4 36.0 34.8	16.8 15.5 14.2 13.5	1.14 1.15 1.16 1.16	5.3 5.1 4.8 4.7	1.04 1.04 1.06 1.07
C 171 (BSC 25)	12		12.00 10.80 9.60 9.00		.600	217.8 203.4 1 89.0 181.8	$\frac{4.34}{4.44}$	36.3 33.9 31.5 30.3	11.3 10.3 9.4 8.9	0.97 0.98 0.99 0.99	4.0 3.8 3.6 3.5	0.89 0.89 0.89 0.90
C 26 (BSC 21)	10	37.0 33.6 30.2 28.5	8.81	$\begin{array}{c} 4.200 \\ 4.100 \\ 4.000 \\ 3.950 \end{array}$.575	146.3 138.0 1 29.7 125.5	3.75 3.84	29.3 27.6 25.9 25.1	14.9 13.7 12.5 11.8	1.18 1.18 1.19 1.19	4.8 4.6 4.3 4.2	1.10 1.11 1.13 1.15
C 27 (BSC 20)	10	35.1 31.7 28.3 26.6 24.9	9.23 8.23 7.73	3.700 3.600 3.5 00 3.450 3.400	.575 .475 .425	133.6 125.2 116.9 112.7 108.6	3.69 3.77 3.82	26.7 25.0 23.4 22.5 21.7	10.4 9.5 8.6 8.1 7.6	$\begin{array}{c} 1.01 \\ 1.01 \\ \textbf{1.02} \\ 1.02 \\ 1.03 \end{array}$	3.8 3.6 3.4 3.3 3.2	0.95 0.95 0.96 0.97 0.98
C 28 (BSC 19)	10	25.3 23.6 21.9	6.88	$3.550 \\ 3.500 \\ 3.450$.375	$106.0 \\ 101.8 \\ 97.6$	3.85	21.2 20.4 19.5	7.9 7.5 7.0	$1.04 \\ 1.04 \\ 1.05$	$\frac{3.0}{2.9}$ $\frac{3.8}{2.8}$	0.94 0.96 0.98
C 31 (BSC 18)	9	34.7 31.7 28.6 27.1	9.23 8.33	4.200 4.100 4.000 3.950	.575	$\begin{array}{c} 113.0 \\ 106.9 \\ 100.9 \\ 97.8 \end{array}$	$\frac{3.40}{3.48}$	25.1 23.8 22.4 21.7	14.5 13.3 12.1 11.4	1.20 1.20 1.20 1.20	4.8 4.5 4.3 4.2	1.15 1.16 1.18 1.20
C 32 (BSC 17)	9	31.6 28.5 25.4 23.9	8.31 7.41	$3.700 \\ 3.600 \\ 3.500 \\ 3.450$.550	93.4 87.3	3.29 3.35 3.43 3.48	22.1 20.7 19.4 18.7	9.7 8.8 8.0 7.5	1.03 1.03 1.04 1.04	3.6 3.4 3.2 3.1	$0.98 \\ 0.98 \\ 1.00 \\ 1.01$
C 36 (BSC 13)	8	28.2 25.5 22.8 21.4	7.43 6.63	3.700 3.600 3.50 0 3.450	.525	67.6 63.3	2.95 3.02 3.09 3.13	18.0 16.9 15.8 15.3	9.0 8.2 7.4 6.9	1.05 1.05 1.05 1.05	3.4 3.2 3.0 2.9	$1.02 \\ 1.02 \\ 1.04 \\ 1.05$
C 37 (BSC 12)	8	25.5 22.7 20.0 19.3 18.7	6.63 5.83 5.63 5.43	3.225 3.125 3.025 3.000 2.975	.500 .400 .375 .350	58.3 54.0 53.0 51.9	3.05 3.07 3.09	15.6 14.6 13.5 13.2 13.0	5.8 5.3 4.7 4.5 4.4	0.89 0.89 0.90 0.90 0.90	2.5 2.3 2.2 2.1 2.1	0.86 0.85 0.86 0.87 0.88

Dimensions and properties of the British Standard Sections are indicated in **bold type**. †C 60 is not an American Standard Section; profile is shown on page 66 with Structural Channels.

ELEMENTS OF SHIP BUILDING CHANNELS American Standard Sections

	Depth	no.	Area		Thick- ness of		Axis 1-1			Axis	2-2	
Section Index	Chan- nel	Foot	Sec- tion	Flange	Web	1	r	S	1	r	S	У
	In.	Lbs.	$In.^2$	In.	In.	In.4	In.	In.3	In.4	In.	In.3	In.
C 41 (BSC 10)	7	$\begin{array}{c} 25.0 \\ 22.7 \\ \textbf{20.3} \\ 19.1 \end{array}$	6.60 5.90	$\frac{3.600}{3.500}$	$\begin{array}{c} 0.600 \\ 0.500 \\ 0.400 \\ 0.350 \end{array}$	$\frac{47.1}{44.2}$	2.62 2.67 2.74 2.78	14.3 13.5 12.6 12.2	8.3 7.5 6.7 6.3	1.07 1.07 1.07 1.07	$3.2 \\ 3.0 \\ 2.8 \\ 2.7$	1.06 1.07 1.09 1.11
C 42 (BSC 9)	7	20.0 17.6 16.4	5.12	3.000	$\begin{array}{c} 0.475 \\ 0.375 \\ 0.325 \end{array}$	37.3	2.63 2.70 2.74	$11.5 \\ 10.7 \\ 10.2$	4.7 4.2 3.9	0.90 0.90 0.90	$2.1 \\ 2.0 \\ 1.9$	$0.88 \\ 0.90 \\ 0.91$
C 46 (BSC 8)	6	$\begin{array}{c} 22.0 \\ 20.0 \\ 18.0 \\ 16.9 \end{array}$	5.82 5.22	3.600 3.500	$\begin{array}{c} 0.575 \\ 0.375 \\ 0.475 \\ 0.325 \end{array}$	31.2 29.4	2.27 2.32 2.38 2.41	11.0 10.4 9.8 9.5	7.6 6.9 6.1 5.7	1.09 1.09 1.08 1.08	2.9 2.8 2.6 2.5	1.12 1.13 1.15 1.17
C 109	6	15.3	4.48	3.500	0.340	25.3	2.38	8.4	5.1	1.08	2.1	1.08
C 47 (BSC 7)	6	16.3 15.1			0. 37 5 0.313		2.33 2.38	8.6 8.2	4.0 3.6	0.91 0.91	1.9 1.8	0.95 0.97
C 48 (BSC 5)	6				$0.375 \\ 0.313$			6.6 6.2	$\frac{2.1}{2.0}$	$0.74 \\ 0.75$	1.2 1.1	$0.71 \\ 0.72$

Dimensions and properties of the British Standard Sections are indicated in bold type.

ELEMENTS OF CAR BUILDING CHANNELS

†C 20	13	$45.0 \\ 40.0 \\ 37.0$	13.18 11.71 10.82 10.24	4.298 4.185 4.117 4.072	0.673 0.560 0.492 0.447	312.9 292.0 271.4 258.9 250.7 237.5	4.71 4.82 4.89 4.95	$44.9 \\ 41.7 \\ 39.8 \\ 38.6$	15.3 13.9 13.0	1.07 1.08 1.09 1.10 1.11	4.9 4.6 4.3 4.2 4.0 3.9	$\begin{array}{c} 0.98 \\ 0.97 \\ 0.97 \\ 0.98 \\ 0.99 \\ 1.01 \end{array}$
†C 170	12	48.6 46.6 44.5 40.0	14.22 13.62 13.02 11.70	$4.100 \\ 4.050 \\ 4.000 \\ 3.890$	$\begin{array}{c} 0.800 \\ 0.750 \\ 0.700 \\ 0.590 \end{array}$	$\begin{array}{c} 268.1 \\ 263.0 \\ 255.8 \\ 248.6 \\ 232.8 \\ 215.1 \end{array}$	4.30 4.33 4.37 4.46	44.7 43.8 42.6 41.4 38.8 35.8	17.8 17.3 16.6 16.0 14.5 12.9	$1.11 \\ 1.11 \\ 1.12$	5.8 5.7 5.5 5.4 5.1 4.8	1.06 1.05 1.05 1.05 1.05 1.07
C 200	4	13.8	4.00	2.500	0.500	8.8	1.49	4.4	2.2	0.74	1.4	0.86
C 190	3	7.1	2.06	1.984	0.250	2.8	1.17	1.9	0.75	0.60	0.60	0.72
C 191	3	6.5 5.8			$0.250 \\ 0.180$		$\frac{1.17}{1.20}$		$0.63 \\ 0.53$	$0.58 \\ 0.56$		$0.67 \\ 0.68$

†Profiles of C 20 and C 170 are shown with Structural Channels.

ELEMENTS OF SHIP BUILDING BULB ANGLES

American Standard Sections

Section	Size	Thick- ness	Wt.	Area of		Axis	s 1-1			Axis	3 2-2	
Index		of Web	Foot	Sec- tion	1	r	s	X	1	r	S	У
	Inches	In.	Lbs.	In.2	1n.4	ln.	In.3	ln.	In.4	In.	ln.8	In.
BA 195	10 x 3½	$0.725 \\ 0.675$	$35.2 \\ 33.2$		122.0 115.9		$\frac{22.3}{21.2}$	$\frac{4.53}{4.52}$	6.3 5.8	0.78 0.77	2.3 2.1	0.76 0.74
BA 196	10 x 3½	$0.625 \\ 0.575$	$31.1 \\ 29.1$		$110.4 \\ 104.3$		$20.3 \\ 19.2$	$\frac{4.56}{4.56}$	$5.6 \\ 5.1$	0.78 0.77	2.0 1.9	$0.72 \\ 0.70$
BA 197 (BSBA 18)	10 x 3½	$0.525 \\ 0.475$	26.9 24.9	7.90 7.32		3.53 3.55	$\begin{array}{c} \textbf{18.3} \\ \textbf{17.2} \end{array}$	4.62 4.63	4.8 4.4	0.78 0.78	1.7 1.6	0.69 0.68
BA 205	9½ x 3½	$0.600 \\ 0.550$		8.47 7.91		$\frac{3.32}{3.33}$	$17.9 \\ 16.9$	4.30 4.29	$\frac{5.3}{4.9}$	0.79 0.79	1.9 1.8	$0.73 \\ 0.71$
BA 206 (BSBA 17)	$9\frac{1}{2} \times 3\frac{1}{2}$	$0.500 \\ 0.450$		7.28 6.72		3.37 3.39	16.0 15.1	4.36 4.36	4.6 4.2	0.79 0.79	1.6 1.5	0.69 0.68
BA 201	9 x 3½	$0.675 \\ 0.625$		8.95 8.41		$\frac{3.11}{3.12}$	$17.2 \\ 16.4$	$\frac{4.00}{3.98}$	5.8 5.4	0.81 0.80	$\frac{2.1}{2.0}$	0.76 0.74
BA 202		0.020	24.0	7.82 7.29		$3.15 \\ 3.17$	$15.6 \\ 14.8$	$\frac{4.03}{4.03}$	$\frac{5.1}{4.7}$	$0.81 \\ 0.80$	1.8 1.7	$0.73 \\ 0.71$
BA 203 (BSBA 16)		$0.475 \\ 0.425$	22.7 20.9	6.68 6.14		$\frac{3.20}{3.22}$	13.9 13.1	4.10 4.10	4.3 3.9	0.81 0.80	1.5 1.4	0.70 0.68
BA 208	8½ x 3½	$0.575 \\ 0.525$		7.43 6.92		$2.97 \\ 2.98$	$13.8 \\ 13.0$	$\frac{3.74}{3.73}$	$\frac{5.0}{4.6}$	$0.82 \\ 0.82$	1.8 1.7	$0.74 \\ 0.72$
BA 209 (BSBA 14)	8½ x 3½	$0.475 \\ 0.425$		6.34 5.83		3.02 3.04	12.3 11.5	3.80 3.80	4.3 3.9	0.82 0.82	1.5 1.4	0.71 0.69
BA 211	8½ x 3	$0.550 \\ 0.500$		6.89 6.39		$\frac{2.96}{2.97}$	$13.1 \\ 12.3$	3.89 3.89	$\frac{3.1}{2.8}$	$0.67 \\ 0.66$	$\frac{1.3}{1.2}$	$0.63 \\ 0.61$
BA 212 (BSBA 13)	8½ x 3	0.450 0.400		5.84 5.34		3.00 3.03	11.6 10.8	3.96 3.96	2.6 2.3	0.67 0.66	1.1 0.99	0.60 0.58
Dimens	ions and p	ropertie	s of the	Britis	h Stand	ard Sec	tions a	re indic	ated in	bold ty	pe.	

ELEMENTS OF SHIP BUILDING BULB ANGLES American Standard Sections

Section Index	Size	Thick- ness of	Wt.	Area of		Axis	s 1-1			Axis	3 2-2	
		Web.	Foot	Sec- tion	I	r	s	x	I	r	S	y
	Inches	In.	Lbs.	In.2	ln.4	ln.	1n.3	In.	In.4	In.	In.3	In.
BA 214	8 x3½2	$0.550 \\ 0.500$	$23.2 \\ 21.6$	6.83 6.34	53.7 50.4	$\frac{2.81}{2.82}$	11.9 11.2	3.49 3.48	4.8 4.4	0.84 0.83	1.7 1.6	$0.75 \\ 0.73$
BA 215 (BSBA 12)	8 x 3½	$0.450 \\ 0.400$	19.6 18.0	5.78 5.29	47.1 43.8	2.85 2.88	10.6 9.8	3.54 3.54	4.0 3.7	0.84 0.83	1.4 1.3	$\begin{array}{c} \textbf{0.71} \\ \textbf{0.70} \end{array}$
BA 217	0 1 2	$0.575 \\ 0.525$		$6.78 \\ 6.31$	$52.4 \\ 49.2$		$\frac{12.0}{11.3}$	3.64 3.63	$\frac{3.2}{2.9}$	$\begin{array}{c} \textbf{0.69} \\ \textbf{0.68} \end{array}$	1.3 1.2	$0.65 \\ 0.63$
BA 218 (BSBA 11)	8 x 3	0.475 0.425		5.78 5.30	46.1 42.9		10.6 10.0	3.70 3.70	2.7 2.4	0.69	1.1 1.0	$\begin{array}{c} \textbf{0.62} \\ \textbf{0.60} \end{array}$
BA 220	7½ x 3½	$0.575 \\ 0.525$	$\frac{22.8}{21.2}$	$6.71 \\ 6.24$		$\frac{2.63}{2.64}$	$10.8 \\ 10.2$	3.24 3.23	4.9 4.5	$0.86 \\ 0.85$	1.8 1.7	$0.77 \\ 0.75$
BA 221 (BSBA 10)	7½ x 3½	$0.475 \\ 0.425$	19.4 17.8	5.70 5.24	40.6 37.8		9.6 9.0	3.29 3.29	4.2 3.8	0.85 0.85	1.5 1.4	0.73 0.72
BA 223	7½ x 3	$0.525 \\ 0.475$		5.98 5.53	41.0 38.4		9.9 9.3	3.36 3.35	$\frac{2.9}{2.6}$	0.69 0.69	1.2 1.1	$0.64 \\ 0.62$
BA 224 (BSBA 9)	7½ x 3	0.425 0.375		5.02 4.57	35.7 33.1	2.67 2.69	8.8 8.2	3.42 3.42	2.4 2.2	0.69 0.69	1.0 0.92	0.61 0.60
BA 226	7 x 3½	$0.525 \\ 0.475$	$20.0 \\ 18.6$	5.90 5.46	35.5 33.2	$\frac{2.45}{2.47}$	8.8 8.2	$2.95 \\ 2.94$	4.5 4.1	$0.87 \\ 0.88$	1.6 1.5	$\begin{array}{c} 0.77 \\ 0.75 \end{array}$
BA 227 (BSBA 8)	7 x 3½	0.425 0.375	$16.8 \\ 15.3$	4.94 4.50		2.50 2.52	7.7 7.2	3.00 2.99	3.7 3.4	0.87 0.87	1.4 1.2	$\begin{array}{c} \textbf{0.74} \\ \textbf{0.72} \end{array}$
BA 229		$0.500 \\ 0.450$	18.4	5.41 4.98	32.5 30.3	$2.45 \\ 2.46$	8.3 7.8	3.09 3.08	$\frac{2.7}{2.5}$	$0.71 \\ 0.70$	1.3 1.2	$0.65 \\ 0.63$
BA 230 (BSBA 7)		0.400 0.350		4.50 4.07	28.1 25.9	2.50 2.52	7.3 6.7	3.14 3.14	2.3 2.0	0.71 0.70	1.1	0.61

ELEMENTS OF SHIP BUILDING BULB ANGLES

American Standard Sections

Section	Size	Thick- ness	Wt.	Area of		Axis	1-1			Axi	s 2-2	
Index		of Web	Foot	Sec- tion	1	r	s	x	I	r	s	У
	Inches	In.	Lbs.	In.2	In.4	In.	In.3	In.	In.4	In.	In.3	In.
BA 233 (BSBA 6)	6½ x 3½	0.400 0.350	15.0 13.6	4.42 4.01	23.9 22.1	2.33 2.35	6.3 5.9	2.72 2.71	3.5 3.1	0.89 0.89	1.3 1.2	0.75 0.73
BA 236 (BSBA 5)	6½ x 3	0.425 0.375 0.350	13.6	4.40 4.00 3.80	23.5 21.7 20.8	2.31 2.33 2.34	6.4 6.0 5.7	2.87 2.87 2.86	2.3 2.1 2.0	0.73 0.72 0.72	0.97 0.88 0.84	0.64 0.62 0.61
*Lloyd	6 x 3½	$0.475 \\ 0.425$	$16.4\\14.8$	4.82 4.34	21.4 19.9	$2.11 \\ 2.14$	$6.0 \\ 5.6$	2.44 2.49	4.0 3.6	$0.91 \\ 0.92$	1.5 1.3	0.80 0.78
*Lloyd	6 x 3½	0.375 0.350	$13.4 \\ 12.8$	3.95 3.76	18.4 17.6	2.16 2.17	5.2 5.0	2.49 2.48	3.3 3.1	0.91	1.2 1.1	0.76 0.76
BA 241	6 x 3	$0.525 \\ 0.475$		$\frac{4.95}{4.58}$	21.7 20.2	$2.09 \\ 2.10$	$6.3 \\ 5.9$	$2.56 \\ 2.55$	$\frac{2.8}{2.5}$	$0.75 \\ 0.74$	1.2 1.1	0.69 0.67
BA 242 (BSBA 4)	6 x 3	0.425 0.375 0.350	12.8	4.14 3.76 3.58	18.8 17.4 16.6	2.13 2.15 2.16	5.5 5.1 4.9	2.60 2.60 2.59	2.3 2.1 1.9	0.75 0.74 0.74	0.96 0.87 0.83	0.66 0.64 0.63
BA 244	5½ x 3	$0.500 \\ 0.450$		$4.45 \\ 4.10$	16.5 15.3	$1.92 \\ 1.93$	$\frac{5.1}{4.8}$	2.31 2.30	$\frac{2.6}{2.4}$	$0.76 \\ 0.76$	1.1 1.0	0.71
BA 245 (BSBA 3)	5½ x 3	$0.400 \\ 0.350 \\ 0.325$		3.68 3.33 3.16	14.2 13.0 12.5	1.96 1.98 1.99	4.5 4.1 4.0	2.35 2.35 2.34	2.1 1.9 1.8	0.76 0.76 0.75	0.90 0.81 0.77	0.67 0.65 0.64
BA 251 (BSBA2)	5 x 2½	0.375 0.325 0.300	10.4 9.3 8.8	3.06 2.74 2.59	9.7 8.8 8.4	1.78 1.79 1.80	3.4 3.1 3.0	2.20 2.19 2.19	1.2 1.0 0.95	0.62 0.61 0.61	0.58 0.52 0.49	0.56 0.54 0.53

^{*}Lloyd section, rolled by Pencoyd Iron Works (Pencoyd 60A).

Dimensions and properties of the British Standard Sections are indicated in **bold type**.

ELEMENTS OF SHIP BUILDING BULB ANGLES

Miscellaneous Sections

	Sizes	Thick- ness	** 6.	Area of		Axi	s 1-1			Axis	2-2	
Section Index	Sizes	of Web	per Foot	Sec- tion	I	г	s	x	I	r	s	y
	Inches	In.	Lbs.	In.2	In.4	In.	In.3	In.	In.4	In.	In.3	In.
BA 143	5 x 2½	20.240	8.3	2.44	8.6	1.89	3.4	2.41	0.91	0.61	0.47	0.55

ELEMENTS OF CAR BUILDING BULB ANGLES

	Sizes	Thick- ness	W E.	Area of		Axis	1-1			Axis	2-2	
Section Index	01265	of Web	Foot	Sec- tion	I	r	S	x	1	r	s	у
	Inches	In.	Lbs.	In.2	In.4	In.	In.3	In.	In.4	In.	In.3	In.
BA 125	5 x 4½	0.438	19.3	5.66	20.8	1.91	7.9	2.39	7.9	1.18	2.4	1.23
BA 124	5 x 3½	0.375	13.2	3.82	13.5	1.88	4.9	2.22	3.3	0.92	1.2	0.86
BA 122	4 x 3½	0.500	14.3	4.21	8.7	1.44	3.7	1.65	3.9	0.96	1.5	0.99
BA 123	4 x 3½	0.375	11.9	3.48	7.9	1.50	3.5	1.77	3.1	0.94	1.2	0.94
				1]						l	

ELEMENTS OF EQUAL ANGLES

Section	Size	Phickness	Weight	Area		Axis 1-1 a	nd Axis 2	-2	Axis 3-3
Index		Th	Foot	Section	I,	r	S	X	r min.
	Inches	In.	Pounds	In.2	In.4	In.	In.3	In.	In.
A 1	8 x 8	11/8 11/16 1 15/16 7/8 13/16 3/4 11/16 5/8	56.9 54.0 51.0 48.1 45.0 42.0 38.9 35.8 32.7 29.6 26.4	16.73 15.87 15.00 14.12 13.23 12.34 11.44 10.53 9.61 8.68 7.75	98.0 93.5 89.0 84.3 79.6 74.7 69.7 64.6 59.4 54.1 48.6	2.42 2.43 2.44 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51	17.5 16.7 15.8 14.9 14.0 13.1 12.2 11.2 10.3 9.3 8.4	2.41 2.39 2.37 2.34 2.30 2.28 2.25 2.23 2.21 2.19	1.55 1.56 1.56 1.56 1.56 1.57 1.57 1.58 1.58 1.58
A 2	6 x 6	15/16 7/8 13/16 3/4 11/16 5/8 9/16 1/2 7/16 3/8	37.4 35.3 33.1 31.0 28.7 26.5 24.2 21.9 19.6 17.2 14.9	11.00 10.37 9.73 9.09 8.44 7.78 7.11 6.43 5.75 5.06 4.36	35.5 33.7 31.9 30.1 28.2 26.2 24.2 22.1 19.9 17.7 15.4	1.80 1.80 1.81 1.82 1.83 1.83 1.84 1.85 1.86 1.87	8.6 8.1 7.6 7.2 6.7 6.2 5.7 5.1 4.6 4.1 3.5	1.86 1.84 1.82 1.80 1.78 1.75 1.73 1.71 1.68 1.66 1.64	1.16 1.16 1.17 1.17 1.17 1.17 1.17 1.18 1.18 1.19 1.19
A 3	5 x 5	1 15/16 7 5 13/16 3/4 11/16 5/8 9/16 1/2 7/16 3/8	30.6 28.9 27.2 25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3	9.00 8.50 7.98 7.47 6.94 6.40 5.86 5.31 4.75 4.18 3.61	19.6 18.7 17.8 16.8 15.7 14.7 13.6 12.4 11.3 10.0 8.7	1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56	5.8 5.5 5.2 4.5 4.2 3.5 3.2 2.8 2.4	1.61 1.59 1.57 1.55 1.52 1.50 1.48 1.46 1.43 1.41 1.39	0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98
A 4	4 x 4	18/16 3/4 11/16 5/8 9/16 1/2 7/16 3/8 5/16 1/4	19.9 18.5 17.1 15.7 14.3 12.8 11.3 9.8 8.2 6.6	5.84 5.44 5.03 4.61 4.18 3.75 3.31 2.86 2.40 1.94	8.1 7.7 7.2 6.7 6.1 5.6 5.0 4.4 3.7 3.0	1.18 1.19 1.19 1.20 1.21 1.22 1.23 1.23 1.24 1.25	3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.5 1.3	1.29 1.27 1.25 1.23 1.21 1.18 1.16 1.14 1.12 1.09	0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.79 0.79

ELEMENTS OF EQUAL ANGLES—Concluded

Section	Size ·	용	eight per	Area of	A	xis 1-1 an	d Axis 2-	2	Axis 3-
Index		E I	Foot	Section	1	r	S	X	r min
	Inches	In. Po	ounds	In.2	In.4	In.	In.3	In.	In.
		3/4 10 11/16 11 5/8 13 9/4 11	7.1 6.0 4.8 3.6 2.4	5.03 4.69 4.34 3.98 3.62	5.3 5.0 4.7 4.3 4.0	1.02 1.03 1.04 1.04 1.05	2.3 2.1 2.0 1.8 1.6	1.17 1.15 1.12 1.10 1.08	0.67 0.67 0.67 0.68 0.68
A 5	3½ x 3½	1/2 1 7/16 8/8 5/16	1.1 9.8 8.5 7.2 5.8	3.25 2.87 2.48 2.09 1.69	3.6 3.3 2.9 2.5 2.0	1.06 1.07 1.07 1.08 1.09	1.5 1.3 1.2 0.98 0.79	1.06 1.04 1.01 0.99 0.97	0.68 0.69 0.69 0.69
A 7	3 x 3	%16 11 1/2 1/16 3/8 5/16	1.5 0.4 9.4 8.3 7.2 6.1 4.9	3.36 3.06 2.75 2.43 2.11 1.78 1.44	2.6 2.4 2.2 2.0 1.8 1.5 1.2	$\begin{array}{c} 0.88 \\ 0.89 \\ 0.90 \\ 0.91 \\ 0.91 \\ 0.92 \\ 0.93 \end{array}$	1.3 1.2 1.1 0.95 0.83 0.71 0.58	0.98 0.95 0.93 0.91 0.89 0.87 0.84	0.57 0.58 0.58 0.58 0.58 0.59 0.59
A 9	2½ x 2½	1/2 7/16 8/8 5/16 1/4 3/16	7.7 6.8 5.9 5.0 4.1 3.07 2.08	2.25 2.00 1.73 1.47 1.19 0.90 0.61	1.2 1.1 0.98 0.85 0.70 0.55 0.38	0.74 0.75 0.75 0.76 0.77 0.78 0.79	0.33 0.65 0.57 0.48 0.39 0.30 0.20	0.81 0.78 0.76 0.74 0.72 0.69 0.67	0.47 0.48 0.48 0.49 0.49 0.49 0.50
A 11	2 x·2	7/16 8/8 5/16 1/4 8/16	5.3 4.7 3.92 3.19 2.44 1.65	1.56 1.36 1.15 0.94 0.71 0.48	0.54 0.48 0.42 0.35 0.28 0.19	$\begin{array}{c} 0.59 \\ 0.59 \\ 0.60 \\ 0.61 \\ 0.62 \\ 0.63 \end{array}$	$0.40 \\ 0.35 \\ 0.30 \\ 0.25 \\ 0.19 \\ 0.13$	0.66 0.64 0.61 0.59 0.57 0.55	0.39 0.39 0.39 0.39 0.40 0.40
A 12	1¾ x 1¾	3% 5/16 1/4 8/16 1/8	4.6 3.99 3.39 2.77 2.12 1.44	$\begin{array}{c} 1.34 \\ 1.17 \\ 1.00 \\ 0.81 \\ 0.62 \\ 0.42 \end{array}$	0.35 0.31 0.27 0.23 0.18 0.13	$\begin{array}{c} 0.51 \\ 0.51 \\ 0.52 \\ 0.53 \\ 0.54 \\ 0.55 \end{array}$	$0.30 \\ 0.26 \\ 0.23 \\ 0.19 \\ 0.14 \\ 0.10$	0.59 0.57 0.55 0.53 0.51 0.48	0.33 0.34 0.34 0.34 0.35 0.35
A 13	1½ x 1½	5/16 1/4 8/16 1/8	3.35 2.86 2.34 1.80 1.23	0.98 0.84 0.69 0.53 0.36	$0.19 \\ 0.16 \\ 0.14 \\ 0.11 \\ 0.08$	0.44 0.44 0.45 0.46 0.46	$0.19 \\ 0.16 \\ 0.13 \\ 0.10 \\ 0.07$	$0.51 \\ 0.49 \\ 0.47 \\ 0.44 \\ 0.42$	0.29 0.29 0.29 0.29 0.30
A 15	1¼ x 1¼	1/4 3/16 1/8	2.33 1.92 1.48 1.01	$\begin{array}{c} 0.68 \\ 0.56 \\ 0.43 \\ 0.30 \end{array}$	$0.09 \\ 0.08 \\ 0.06 \\ 0.04$	$0.36 \\ 0.37 \\ 0.38 \\ 0.38$	$0.11 \\ 0.09 \\ 0.07 \\ 0.05$	$egin{array}{c} 0.42 \\ 0.40 \\ 0.38 \\ 0.35 \\ \end{array}$	$0.24 \\ 0.24 \\ 0.24 \\ 0.25$
A 16	1 x 1	1/4 3/10	$1.49 \\ 1.16 \\ 0.80$	$0.44 \\ 0.34 \\ 0.23$	$0.04 \\ 0.03 \\ 0.02$	$0.29 \\ 0.30 \\ 0.31$	$0.06 \\ 0.04 \\ 0.03$	$0.34 \\ 0.32 \\ 0.30$	0.19 0.19 0.19

ELEMENTS OF UNEQUAL ANGLES

uc x	Size	Thickness	Weight per Foot	Area of		Axis	1-1			Axis	3 2-2		Axis 3-3
Section Index		Thic	We	Sec- tion	I	r	s	x	I	r	s	у	r min.
0.2	Inches	In.	Lbs.	In.2	In.4	In.	In.3	In.	In.4	In.	In.3	In.	In.
A 18	8 x 6	78 13/16 3/4	44.2 41.7 39.1 36.5 33.8 31.2 28.5 25.7 23.0 20.2	13.00 12.25 11.48 10.72 9.94 9.15 8.36 7.56 6.75 5.93	80.8 76.6 72.3 67.9 63.4 58.8 54.1 49.3 44.3 39.2	2.49 2.50 2.51 2.52 2.53 2.54 2.54 2.55 2.56 2.57	15.1 14.3 13.4 12.5 11.7 10.8 9.9 8.9 8.0 7.1	2.65 2.63 2.61 2.59 2.56 2.54 2.52 2.50 2.47 2.45	38.8 36.8 34.9 32.8 30.7 28.6 26.3 24.0 21.7 19.3	1.73 1.74 1.75 1.76 1.77 1.77 1.78 1.79 1.80	8.9 8.4 7.9 7.4 6.9 6.4 5.9 5.3 4.8 4.2	1.65 1.63 1.61 1.59 1.56 1.54 1.52 1.50 1.47 1.45	1.28 1.28 1.28 1.29 1.29 1.30 1.30 1.30
A 53	8 x 3½	7/8 13/16 3/4	$\begin{array}{c} 35.7 \\ 33.7 \\ 31.7 \\ 29.6 \\ 27.5 \\ 25.3 \\ 23.2 \\ 21.0 \\ 18.7 \\ 16.5 \end{array}$	10.50 9.90 9.30 8.68 8.06 7.43 6.80 6.15 5.50 4.84	66.2 62.9 59.4 55.9 52.3 48.5 44.7 40.8 36.7 32.5	2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.57 2.58 2.59	13.7 12.9 12.2 11.4 10.6 9.8 9.0 8.2 7.3 6.4	3.17 3.14 3.12 3.10 3.07 3.05 3.03 3.00 2.98 2.95	7.8 7.4 7.1 6.7 6.3 5.9 5.4 5.0 4.5	0.86 0.87 0.87 0.88 0.88 0.89 0.90 0.90 0.91 0.92	3.0 2.9 2.7 2.5 2.3 2.2 2.0 1.8 1.5	$\begin{array}{c} 0.92 \\ 0.89 \\ 0.87 \\ 0.85 \\ 0.82 \\ 0.80 \\ 0.78 \\ 0.75 \\ 0.73 \\ 0.70 \end{array}$	0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.74 0.74
A 19	7 x 3½	75 13/16 3/4	24.9	9.50 8.97 8.42 7.87 7.31 6.75 6.17 5.59 5.00 4.40 3.80	$\begin{array}{c} 45.4 \\ 43.1 \\ 40.8 \\ 38.4 \\ 36.0 \\ 33.5 \\ 30.9 \\ 28.2 \\ 25.4 \\ 22.6 \\ 19.6 \end{array}$	2.19 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.25 2.26 2.27	10.6 10.0 9.4 8.8 8.2 7.6 7.0 6.3 5.7 5.0 4.3	2.71 2.69 2.66 2.64 2.62 2.60 2.57 2.55 2.53 2.48	7.5 7.2 6.8 6.5 6.1 5.7 5.3 4.9 4.4 4.0 3.5	$\begin{array}{c} 0.89 \\ 0.89 \\ 0.90 \\ 0.91 \\ 0.91 \\ 0.92 \\ 0.93 \\ 0.93 \\ 0.94 \\ 0.95 \\ 0.96 \end{array}$	3.0 2.8 2.6 2.5 2.3 2.1 2.0 1.8 1.6 1.4	$\begin{array}{c} 0.96 \\ 0.94 \\ 0.91 \\ 0.89 \\ 0.87 \\ 0.85 \\ 0.82 \\ 0.80 \\ 0.78 \\ 0.75 \\ 0.73 \end{array}$	$\begin{array}{c} 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.76 \\ 0.76 \\ \end{array}$
A 20	6 x 4	1 15/16 7/8 13/16 34 11/16 5/8 9/16 1/2 7/16	23.6	9.00 8.50 7.98 7.47 6.94 6.40 5.86 5.31 4.75 4.18 3.61	30.8 29.3 27.7 26.1 24.5 22.8 21.1 19.3 17.4 15.5 13.5	1.85 1.86 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93	8.0 7.6 7.2 6.7 6.2 5.8 4.8 4.3 3.8 3.3	$\begin{array}{c} 2.17 \\ 2.14 \\ 2.12 \\ 2.10 \\ 2.08 \\ 2.06 \\ 2.03 \\ 2.01 \\ 1.99 \\ 1.96 \\ 1.94 \end{array}$	10.8 10.3 9.8 9.2 8.7 8.1 7.5 6.9 6.3 5.6 4.9	1.09 1.10 1.11 1.11 1.12 1.13 1.13 1.14 1.15 1.16 1.17	3.8 3.6 3.4 3.2 3.0 2.8 2.5 2.3 2.1 1.6	$\begin{array}{c} 1.17 \\ 1.14 \\ 1.12 \\ 1.10 \\ 1.08 \\ 1.06 \\ 1.03 \\ 1.01 \\ 0.99 \\ 0.96 \\ 0.94 \\ \end{array}$	0.85 0.86 0.86 0.86 0.86 0.86 0.87 0.87 0.87

ELEMENTS OF UNEQUAL ANGLES—Continued

on ex	Size	Thickness	Weight per Foot	Area of Sec-		Axis	1-1			Axis	2-2		Axis 3-3
Section Index		Thic	W	tion	1	r	S	X	I	r	S	y	rmin.
	Inches	In.	Lbs.	In.2	In.4	Iņ.	In.3	In.	In.4	In	In.3	In.	In.
A 21	6 x 3½	1 15/16 78 13/16 3/4 11/16 5/8 9/16 1/2 7/16 8/8 5/16	28.9 27.3 25.7 24.0 22.4 20.6 18.9 17.1 15.3 13.5 11.7 9.8	8.50 8.03 7.55 7.06 6.56 6.06 5.55 5.03 4.50 3.97 3.42 2.87	29.2 27.8 26.4 24.9 23.3 21.7 20.1 18.4 16.6 14.8 12.9 10.9	1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95	7.8 7.4 7.0 6.6 6.1 5.6 4.2 3.7 4.2 3.7	2.26 2.24 2.22 2.20 2.18 2.15 2.13 2.11 2.08 2.06 2.04 2.01	7.2 6.9 6.6 6.2 5.8 5.5 4.7 4.3 3.8 3.9	0.92 0.93 0.93 0.94 0.95 0.96 0.96 0.97 0.98 0.99	2.9 2.7 2.6 2.4 2.3 2.1 1.9 1.8 1.6 1.4 1.2	1.01 0.99 0.97 0.95 0.93 0.90 0.88 0.86 0.83 0.81 0.79	$\begin{array}{c} 0.74 \\ 0.74 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.76 \\ 0.76 \\ 0.77 \\ 0.77 \end{array}$
A 22	5 x 4	7/8 13/16 3/4 11/16 5/8 9/16 1/2 7/16	21.1	$\begin{array}{c} 7.11 \\ 6.65 \\ 6.19 \\ 5.72 \\ 5.23 \\ 4.75 \\ 4.25 \\ 3.75 \\ 3.23 \end{array}$	16.4 15.5 14.6 13.6 12.6 11.6 10.5 9.3 8.1	1.52 1.53 1.54 1.54 1.55 1.56 1.57 1.58 1.59	5.0 4.7 4.4 4.1 3.7 3.4 3.1 2.7 2.3	1.71 1.68 1.66 1.64 1.62 1.60 1.57 1.55 1.53	$9.2 \\ 8.7 \\ 8.2 \\ 7.7 \\ 7.1 \\ 6.6 \\ 6.0 \\ 5.3 \\ 4.7$	1.14 1.15 1.15 1.16 1.17 1.18 1.18 1.19 1.20	3.3 3.1 2.9 2.7 2.5 2.3 2.0 1.8 1.6	1.21 1.18 1.16 1.14 1.12 1.10 1.07 1.05 1.03	0.84 0.84 0.84 0.84 0.85 0.85 0.85
.A 23	5 x 3½	7/8 13/16 3/1 11/16 5/8 9/16 1/2 7/16 3/8 5/16	22.7 21.3 19.8 18.3 16.8 15.2 13.6 12.0 10.4 8.7	6.67 6.25 5.81 5.37 4.92 4.47 4.00 3.53 3.05 2.56	15.7 14.8 13.9 13.0 12.0 11.0 10.0 8.9 7.8 6.6	1.53 1.54 1.55 1.56 1.56 1.57 1.58 1.59 1.60 1.61	4.9 4.6 4.3 4.0 3.7 3.3 3.0 2.6 2.3 1.9	1.79 1.77 1.75 1.72 1.70 1.68 1.66 1.63 1.61 1.59	6.2 5.9 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.7	0.96 0.97 0.98 0.98 0.99 1.00 1.01 1.01 1.02 1.03	2.5 2.4 2.2 2.1 1.9 1.7 1.6 1.4 1.2 1.0	1.04 1.02 1.00 0.97 0.95 0.93 0.91 0.88 0.86 0.84	$\begin{array}{c} 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.76 \\ 0.76 \\ 0.76 \end{array}$
Λ 24	5 x 3	13/16 3/4 11/16 5/8 9/16 1/2 7/16 3/8 5/16	19.9 18.5 17.1 15.7 14.3 12.8 11.3 9.8 8.2	5.84 5.44 5.03 4.61 4.18 3.75 3.31 2.86 2.40	14.0 13.2 12.3 11.4 10.4 9.5 8.4 7.4 6.3	1.55 1.55 1.56 1.57 1.58 1.59 1.60 1.61	4.5 4.2 3.9 3.5 3.2 2.9 2.6 2.2 1.9	1.86 1.84 1.82 1.80 1.77 1.75 1.73 1.70 1.68	3.7 3.5 3.3 3.1 2.8 2.6 2.3 2.0 1.8	0.80 0.80 0.81 0.81 0.82 0.83 0.84 0.84 0.85	1.7 1.6 1.5 1.4 1.3 1.1 1.0 0.89 0.75	0.86 0.84 0.82 0.80 0.77 0.75 0.73 0.70 0.68	0.64 0.64 0.64 0.65 0.65 0.65 0.65 0.65

ELEMENTS OF UNEQUAL ANGLES—Continued

ex ex	Size	Thickness	Weight per Foot	Area of Sec-		Axis	s 1-1			Axi	s 2-2		Axis 3-3
Section Index		Thi	H	tion	1	r	S	X	I	г	s	y	rmin.
	Inches	In.	Lbs.	In.2	In.4	In.	In.3	In.	In.4	In.	In.3	In.	In.
A 25	4½x 3	13/16 3/4 11/16 5/8 9/16 1/2 7/16 3/8 5/16	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	5.43 5.06 4.68 4.30 3.90 3.50 3.09 2.67 2.25	10.3 9.7 9.1 8.4 7.8 7.0 6.3 5.5 4.7	1.38 1.39 1.39 1.40 1.41 1.42 1.43 1.44	3.6 3.4 3.1 2.9 2.6 2.4 2.1 1.8	1.65 1.63 1.60 1.58 1.56 1.54 1.51 1.49 1.47	3.6 3.4 3.2 3.0 2.8 2.5 2.3 2.0 1.7	0.81 0.82 0.83 0.83 0.85 0.85 0.85 0.86 0.87	1.7 1.6 1.5 1.4 1.3 1.1 1.0 0.88 0.75	0.90 0.88 0.85 0.83 0.81 0.79 0.76 0.74 0.72	$\begin{array}{c} 0.64 \\ 0.64 \\ 0.64 \\ 0.64 \\ 0.65 \\ 0.65 \\ 0.66 \\ 0.66 \end{array}$
A 26	4 x3½	13/16 3/4 11/16 5/8 9/16 1/2 1/16 3/8 5/16	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	$\begin{array}{c} 5.43 \\ 5.06 \\ 4.68 \\ 4.30 \\ 3.90 \\ 3.50 \\ 3.09 \\ 2.67 \\ 2.25 \end{array}$	7.8 7.3 6.9 6.4 5.9 5.3 4.8 4.2 3.6	1.19 1.20 1.21 1.22 1.23 1.23 1.24 1.25 1.26	2.9 2.8 2.6 2.4 2.1 1.9 1.7 1.5 1.3	1.36 1.34 1.32 1.29 1.27 1.25 1.23 1.21 1.18	5.5 5.2 4.9 4.5 4.2 3.4 3.0 2.6	$\begin{array}{c} 1.01 \\ 1.01 \\ 1.02 \\ 1.03 \\ 1.03 \\ 1.04 \\ 1.05 \\ 1.06 \\ 1.07 \end{array}$	2.3 2.1 2.0 1.8 1.7 1.5 1.3 1.2 1.0	1.11 1.09 1.07 1.04 1.02 1.00 0.98 0.96 0.93	$\begin{array}{c} 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.73 \\ 0.73 \end{array}$
A 27	4 x 3	13/16 3/4 11/16 5/8 9/16 1/2 7/16 3/8 5/16 1/4	17.1 16.0 14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8	5.03 4.69 4.34 3.98 3.62 3.25 2.87 2.48 2.09 1.69	7.3 6.9 6.5 6.0 5.6 5.0 4.5 4.0 3.4 2.8	1.21 1.22 1.22 1.23 1.24 1.25 1.25 1.26 1.27 1.28	2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.5 1.2	1.44 1.42 1.39 1.37 1.35 1.30 1.28 1.26 1.24	3.5 3.3 3.1 2.9 2.7 2.4 2.2 1.9 1.7	0.83 0.84 0.84 0.85 0.86 0.86 0.87 0.88 0.89 0.89	1.7 1.6 1.5 1.4 1.2 1.1 1.0 0.87 0.74 0.60	$\begin{array}{c} 0.94 \\ 0.92 \\ 0.89 \\ 0.87 \\ 0.85 \\ 0.83 \\ 0.80 \\ 0.76 \\ 0.76 \\ 0.74 \end{array}$	$\begin{array}{c} 0.64 \\ 0.64 \\ 0.64 \\ 0.64 \\ 0.64 \\ 0.64 \\ 0.65 \\ 0.65 \end{array}$
A 28	3½x 3	13/16 3/4 11/16 5/8 9/16 1/2 7/16 3/8 5/16 1/4	$\begin{array}{c} 15.8 \\ 14.7 \\ 13.6 \\ 12.5 \\ 11.4 \\ 10.2 \\ 9.1 \\ 7.9 \\ 6.6 \\ 5.4 \end{array}$	4.62 4.31 4.00 3.67 3.34 3.00 2.65 2.30 1.93 1.56	5.0 4.7 4.4 4.1 3.8 3.5 3.1 2.7 2.3 1.9	1.04 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11	$\begin{array}{c} 2.2 \\ 2.1 \\ 1.9 \\ 1.8 \\ 1.6 \\ 1.5 \\ 1.3 \\ 1.1 \\ 0.96 \\ 0.78 \end{array}$	1.23 1.21 1.19 1.17 1.15 1.13 1.10 1.08 1.06 1.04	3.3 3.1 3.0 2.8 2.5 2.3 2.1 1.6 1.3	0.85 0.85 0.86 0.87 0.87 0.88 0.90 0.90 0.90	1.7 1.5 1.4 1.3 1.2 1.1 0.98 0.85 0.72 0.58	0.98 0.96 0.94 0.92 0.90 0.88 0.85 0.83 0.81 0.79	$\begin{array}{c} 0.62 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.63 \\ 0.63 \end{array}$
A 29	3½x2½	11/16 5/8 9/16 1/2 7/16 3/8 5/16 1/4	12.5 11.5 10.4 9.4 8.3 7.2 6.1 4.9	3.65 3.36 3.06 2.75 2.43 2.11 1.78 1.44	4.1 3.8 3.6 3.2 2.9 2.6 2.2 1.8	1.06 1.07 1.08 1.09 1.10 1.11 1.12	1.9 1.7 1.6 1.4 1.3 1.1 0.93 0.75	1.27 1.25 1.23 1.20 1.18 1.16 1.14 1.11	1.7 1.6 1.5 1.4 1.2 1.1 0.94 0.78	0.69 0.69 0.70 0.70 0.71 0.72 0.73 0.74	0.99 0.92 0.84 0.76 0.68 0.59 0.50 0.41	0.77 0.75 0.73 0.70 0.68 0.66 0.64 0.61	0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54

ELEMENTS OF UNEQUAL ANGLES—Concluded

a	Size	Thickness	Weight per Foot	Area of Sec-		Axis	s 1-1			Axis	2-2		Axis 3-3
Section Index		Thi	W.	tion	1	r	s	x	i	r	S	У	rmin.
	Inches	In.	Lbs.	In.	In.4	In.	In.3	In.	In.4	In.	In.3	In.	In.
A 32	3 x2½	%16 3/2 7/16 3/8 5/16 1/4	9.5 8.5 7.6 6.6 5.6 4.5	2.78 2.50 2.21 1.92 1.62 1.31	2.3 2.1 1.9 1.7 1.4 1.2	$\begin{array}{c} 0.91 \\ 0.91 \\ 0.92 \\ 0.93 \\ 0.94 \\ 0.95 \end{array}$	$\begin{array}{c} 1.2 \\ 1.0 \\ 0.93 \\ 0.81 \\ 0.69 \\ 0.56 \end{array}$	$\begin{array}{c} 1.02 \\ 1.00 \\ 0.98 \\ 0.96 \\ 0.93 \\ 0.91 \end{array}$	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.2 \\ 1.0 \\ 0.90 \\ 0.74 \end{array}$	$\begin{array}{c} 0.72 \\ 0.72 \\ 0.73 \\ 0.74 \\ 0.74 \\ 0.75 \end{array}$	$\begin{array}{c} 0.82 \\ 0.74 \\ 0.66 \\ 0.58 \\ 0.49 \\ 0.40 \end{array}$	$\begin{array}{c} 0.77 \\ 0.75 \\ 0.73, \\ 0.71 \\ 0.68 \\ 0.66 \end{array}$	$\begin{array}{c} 0.52 \\ 0.52 \\ 0.52 \\ 0.52 \\ 0.53 \\ 0.53 \end{array}$
A 33	3 x 2	1/2 7/16 8/8 5/16 1/4	7.7 6.8 5.9 5.0 4.1	2.25 2.00 1.73 1.47 1.19	1.5	$\begin{array}{c} 0.92 \\ 0.93 \\ 0.94 \\ 0.95 \\ 0.95 \end{array}$	1.0 0.89 0.78 0.66 0.54	1.08 1.06 1.04 1.02 0.99	$\begin{array}{c} 0.67 \\ 0.61 \\ 0.54 \\ 0.47 \\ 0.39 \end{array}$	$\begin{array}{c} 0.55 \\ 0.55 \\ 0.56 \\ 0.57 \\ 0.57 \end{array}$	$\begin{array}{c} 0.47 \\ 0.42 \\ 0.37 \\ 0.32 \\ 0.26 \end{array}$	$\begin{array}{c} 0.58 \\ 0.56 \\ 0.54 \\ 0.52 \\ 0.49 \end{array}$	0.43 0.43 0.43 0.43 0.43
Α 35	2½x 2	15 746 38 548 548 14 846 18	6.8 6.1 5.3 4.5 3.62 2.75 1.86	$\begin{array}{c} 2.00 \\ 1.78 \\ 1.55 \\ 1.31 \\ 1.06 \\ 0.81 \\ 0.55 \end{array}$	$\begin{array}{c} 1.1 \\ 1.0 \\ 0.91 \\ 0.79 \\ 0.65 \\ 0.51 \\ 0.35 \end{array}$	$\begin{array}{c} 0.75 \\ 0.76 \\ 0.77 \\ 0.78 \\ 0.78 \\ 0.79 \\ 0.80 \end{array}$	$\begin{array}{c} 0.70 \\ 0.62 \\ 0.55 \\ 0.47 \\ 0.38 \\ 0.29 \\ 0.20 \end{array}$	$\begin{array}{c} 0.88 \\ 0.85 \\ 0.83 \\ 0.81 \\ 0.79 \\ 0.76 \\ 0.74 \end{array}$	$\begin{array}{c} 0.64 \\ 0.58 \\ 0.51 \\ 0.45 \\ 0.37 \\ 0.29 \\ 0.20 \end{array}$	$\begin{array}{c} 0.56 \\ 0.57 \\ 0.58 \\ 0.58 \\ 0.59 \\ 0.60 \\ 0.61 \end{array}$	$\begin{array}{c} 0.46 \\ 0.41 \\ 0.36 \\ 0.31 \\ 0.25 \\ 0.20 \\ 0.13 \end{array}$	$\begin{array}{c} 0.63 \\ 0.60 \\ 0.58 \\ 0.56 \\ 0.54 \\ 0.51 \\ 0.49 \end{array}$	0.42 0.42 0.42 0.42 0.42 0.43 0.43
Λ 48	2½x1½	5/16 1/1 3/16	3.92 3.19 2.44	$1.15 \\ 0.94 \\ 0.72$	$0.71 \\ 0.59 \\ 0.46$	$0.79 \\ 0.79 \\ 0.80$	$0.44 \\ 0.36 \\ 0.28$	$\begin{array}{c} 0.90 \\ 0.88 \\ 0.85 \end{array}$	$0.19 \\ 0.16 \\ 0.13$	$0.41 \\ 0.41 \\ 0.42$	$0.17 \\ 0.14 \\ 0.11$	$0.40 \\ 0.38 \\ 0.35$	$0.32 \\ 0.32 \\ 0.33$
A 270	2½x1½	1/ <u>5</u> 7/16 3/8 5/16 1/4 3/16	5.6 5.0 4.4 3.66 2.98 2.28	1.63 1.45 1.27 1.07 0.88 0.67	$\begin{array}{c} 0.75 \\ 0.68 \\ 0.61 \\ 0.53 \\ 0.44 \\ 0.34 \end{array}$	$\begin{array}{c} 0.68 \\ 0.69 \\ 0.69 \\ 0.70 \\ 0.71 \\ 0.72 \end{array}$	$\begin{array}{c} 0.54 \\ 0.48 \\ 0.42 \\ 0.36 \\ 0.30 \\ 0.23 \end{array}$	$\begin{array}{c} 0.86 \\ 0.83 \\ 0.81 \\ 0.79 \\ 0.77 \\ 0.75 \end{array}$	$\begin{array}{c} 0.26 \\ 0.24 \\ 0.21 \\ 0.19 \\ 0.16 \\ 0.12 \end{array}$	$\begin{array}{c} 0.40 \\ 0.41 \\ 0.41 \\ 0.42 \\ 0.42 \\ 0.43 \end{array}$	$\begin{array}{c} 0.26 \\ 0.23 \\ 0.20 \\ 0.17 \\ 0.14 \\ 0.11 \end{array}$	$\begin{array}{c} 0.48 \\ 0.46 \\ 0.44 \\ 0.42 \\ 0.39 \\ 0.37 \end{array}$	$\begin{array}{c} 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.33 \end{array}$
A 37	2 x1½	3/8 5/16 1/4 3/16 1/8	3.99 3.39 2.77 2.12 1.44	$\begin{array}{c} 1.17 \\ 1.00 \\ 0.81 \\ 0.62 \\ 0.42 \end{array}$	$\begin{array}{c} 0.43 \\ 0.38 \\ 0.32 \\ 0.25 \\ 0.17 \end{array}$	$\begin{array}{c} 0.61 \\ 0.62 \\ 0.62 \\ 0.63 \\ 0.64 \end{array}$	$\begin{array}{c} 0.34 \\ 0.29 \\ 0.24 \\ 0.18 \\ 0.13 \end{array}$	$\begin{array}{c} 0.71 \\ 0.69 \\ 0.66 \\ 0.64 \\ 0.62 \end{array}$	$\begin{array}{c} 0.21 \\ 0.18 \\ 0.15 \\ 0.12 \\ 0.09 \end{array}$	$\begin{array}{c} 0.42 \\ 0.42 \\ 0.43 \\ 0.44 \\ 0.45 \end{array}$	$\begin{array}{c} 0.20 \\ 0.17 \\ 0.14 \\ 0.11 \\ 0.08 \end{array}$	$\begin{array}{c} 0.46 \\ 0.44 \\ 0.41 \\ 0.39 \\ 0.37 \end{array}$	$\begin{array}{c} 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.33 \\ \end{array}$
A 645	2 x11/4	1/4 3/16	$\frac{2.55}{1.96}$	$0.75 \\ 0.57$	$0.30 \\ 0.23$	$0.63 \\ 0.64$	$0.23 \\ 0.18$	$0.71 \\ 0.69$	0.09 0.07	$0.34 \\ 0.35$	$0.10 \\ 0.08$	$0.33 \\ 0.31$	$0.27 \\ 0.27$
A 39	1%x1¼	1/4 3/16 1/8	$2.34 \\ 1.80 \\ 1.23$	$0.69 \\ 0.53 \\ 0.36$	$0.20 \\ 0.16 \\ 0.11$	$0.54 \\ 0.55 \\ 0.56$	$0.18 \\ 0.14 \\ 0.09$	$0.60 \\ 0.58 \\ 0.56$	$0.09 \\ 0.07 \\ 0.05$	$0.35 \\ 0.36 \\ 0.37$	$0.10 \\ 0.08 \\ 0.05$	$0.35 \\ 0.33 \\ 0.31$	$0.27 \\ 0.27 \\ 0.27$
A624	1½x1¼	5/16 1/4 8/16	$\begin{vmatrix} 2.59 \\ 2.13 \\ 1.64 \end{vmatrix}$	$0.76 \\ 0.63 \\ 0.48$	$0.16 \\ 0.13 \\ 0.10$	$0.45 \\ 0.46 \\ 0.46$	$0.16 \\ 0.13 \\ 0.10$	$0.52 \\ 0.50 \\ 0.48$	$0.10 \\ 0.08 \\ 0.07$	$0.35 \\ 0.36 \\ 0.37$	$0.11 \\ 0.09 \\ 0.07$		0.26

ELEMENTS OF EQUAL TEES

		Si	ze			Area		Axi	s 1-1			Axis 2-2	
Section Index	Flange	Stem	Mini Thiel		Weight per Foot	of Sec- tion	I	r	s	x	1	r	s
index			Flange	Stem		поц							
	In.	In.	In.	In.	Lbs.	In.2	In.4	In.	In.3	In.	In.4	In.	In.3
T 40	6½	61/2	0.40	0.45	19.8	5.80	23.5	2.01	5.0	1.76	10.1	1.32	3.1
T 1	4	4	1/2	1/2	13.5	3.97	5.7	1.20	2.0	1.18	2.8	0.84	1.4
T 2	4	4	3/8	3/8	10.5	3.09	4.5	1.21	1.6	1.13	2.1	0.83	1.1
T 3	$3\frac{1}{2}$	$3\frac{1}{2}$	1/2	1/2	11.7	3.44	3.7	1.04	1.5	1.05	1.9	0.74	1.1
T 4	3½	$3\frac{1}{2}$	3/8	8/8	9.2	2.68	3.0	1.05	1.2	1.01	1.4	0.73	0.8
T 6	3	3	1/2	1/2	9.9	2.91	2.3	0.88	1.1	0.93	1.2	0.64	0.8
T 7	3	3	746	746	8.9	2.59	2.1	0.89	0.98	0.91	1.0	0.63	0.7
T 8	3	3	34	8/8	7.8	2.27	1.8	0.90	0.86	0.88	0.90	0.63	0.6
Т 9	3	3	5/16	5/16	6.7	1.95	1.6	0.90	0.74	0.86	0.75	0.62	0.5
T 10	21/2	$2\frac{1}{2}$	8/8	3/8	6.4	1.87	1.0	0.74	0.59	0.76	0.52	0.53	0.4
Т 11	$2\frac{1}{2}$	$2\frac{1}{2}$	5/16	5/1 e	5.5	1.60	0.88	0.74	0.50	0.74	0.44	0.52	0.3
T 12	21/4	21/4	5/16	5/16	4.9	1.43	0.65	0.67	0.41	0.68	0.33	0.48	0.2
Т 13	21/4	$2\frac{1}{4}$	1/4	1/4	4.1	1.19	0.52	0.66	0.32	0.65	0.25	0.46	0.2
T 14	2	2	5/16	5/16	4.3	1.26	0.44	0.59	0.31	0.61	0.23	0.43	0.2
Т 15	2	2	1/4	1/4	3.56	1.05	0.37	0.59	0.26	0.59	0.18	0.42	0.1
Т 16	13/4	1%	14	1/4	3.09	0.91	0.23	0.51	0.19	0.54	0.12	0.37	0.1
Т 17	$1\frac{1}{2}$	1½	1/4	1/4	2.47	0.73	0.15	0.45	0.14	0.47	0.08	0.32	0.1
T 18	11/2	11/2	3/16	810	1.94	0.57	0.11	0.45	0.11	0.44	0.06	0.32	0.0
T 19	11/4	11/4	1/4	1/4	2.02	0.59	0.08	0.37	0.10	0.40	0.05	0.28	0.0
T 20	11/4	11/4	8/16	3/16	1.59	0.47	0.06	0.37	0.07	0.38	0.03	0.27	0.0
T 21	1	1	3/16	3/16	1.25	0.37	0.03	0.29	0.05	0.32	0.02	0.22	0.0
T 22	1	1	1/8	1/8	0.89	0.26	0.02	0.30	0.03	0.29	0.01	0.21	0.0

ELEMENTS OF UNEQUAL TEES

		8	Size		- Weight	Area		Axi	s 1-1		A	xis 2-2	
Section Index	Flange	Stem	Mini Thiel Flange	mum kness	per Foot	of Sec- tion	I	r	s	x	I	г	\mathbf{s}
	In.	In.	In.	In.	Lbs.	In.2	In.4	In.	In.8	In.	In.4	In.	In.3
T 50	5	3	3;	1839	11.5	3.37	2.4	0.84	1.1	0.76	3.9	1.10	1.6
T 51		21,	2,	7/16	10.9	3.18	1.5	0.68	0.78	0.63	4.1	1.14	1.6
T 52		31,	74.6	1146	15.7	4.60	5.1	1.05	2.1	1.11	3.7	0.90	1.7
T 54		3	3,	35	9.8	2.88	2.1	0.84	0.91	0.74	3.0	1.02	1.3
T 53		3	546	546	8.4	2.46	1.8	0.85	0.78	0.71	2.5	1.01	1.1
T 56		216	3.	2.5	9.2	2.68	1.2	0.67	0.63	0.59	3.0	1.05	1.3
T 55		215	54.6	546	7.8	2.29	1.0	0.68	0.54		2.5	1.05	1.1
T 57		5	1.5	1/2	15.3	4.50	10.8	1.55	3.1	1.56	2.8	0.79	1.4
T 58		5	3/8	35	11.9	3.49	8.5	1.56	2.4	1.51	2.1	0.78	
T 59		412	1/2	1,2	14.4	4.23	7.9	1.37	2.5	1.37	2.8	0.81	1.4
T 60		41/2	3/8	3/8	11.2	3.29	6.3	1.39	2.0	1.31	2.1	0.80	1.1
T 61		3	3/8	36	9.2	2.68	2.0		0.90		2.1	0.89	1.1
T 44		3	5/16	5/16	7.8	2.29	1.7		0.77		1.8	0.88	
T 62		$\frac{3}{2^{1/2}}$		3/8	8.5	2.48	1.2		0.62		2.1		1.0
T 63	4	21/2	3/8		7.2	2.12	1.0		0.53		1.8	0.92	0.88
T 64			5/16	5/16	7.8		0.60		0.33		2.1		
T 65		2	3%	3/8		2.27						0.96	1.1
		2	5/16	5/16	6.7	1.95	0.53		0.34		1.8	0.95	0.8
		4	1/2	1/2	12.6	3.70	5.5	1.21		1.24	1.9	0.72	1.1
T 67	315	4	35	3/8	9.8	2.88	4.3	1.23		1.19	1.4		0.8
T 69		3	16	1/2	10.8	3.17	2.4	0.87		0.88	1.9	0.77	1.1
T 70		3	84	3/8	8.5	2.48	1.9		0.89		1.4		0.8
T 71	31/2	3	5/16	3/5	7.5	2.20	1.8		0.85		1.2	0.74	0.6
T 72		4	1/2	1/2	11.7	3.44	5.2	1.23		1.32	1.2	0.59	
T 73		4	746	7/16	10.5	3.06	4.7	1.23		1.29	1.1	0.59	0.70
T 74		4	34	8,4	9,2	2.68	4.1		1.5	1.27	0.90	0.58	0.60
T 75		$3\frac{1}{2}$	1,/2	1/2	10.8	3.17	3.5		1.5	1.12	1.2	0.62	0.80
T 76		$3\frac{1}{2}$	540	316	9.7	2.83	3.2	1.06	1.3	1.10	1.0	0.60	0.69
T 77	3	31/2	3,5	85	8.5	2.48	2.8	1.07	1.2	1.07	0.93	0.61	0.63
T 78		$2\frac{1}{2}$	85	88	7.1	2.07	1.1	0.72	0.60	0.71	0.89	0.66	0.59
T 79		$2\frac{1}{2}$	5/16	546	6.1	1.77	0.94	0.73	0.52	0.68	0.75	0.65	0.50
T 82		3	34	84	7.1	2.07	1.7	0.91	0.84	0.95	0.53	0.51	0.42
T 83		3	5/16	5/10	6.1	1.77	1.5		0.72		0.44	0.50	0.35
T 86	21/2	11/4	3/16	8/16	2.87	0.84	0.08	0.31	0.09	0.32	0.29	0.58	0.23
T 87	2	11/2	1/4	1/4	3.09			0.42			0.18	0.45	0.18
T 519		2	346	346		0.72	0.27		0.19		0.06	0.92	0.08
T 605		11/4	1/8	1/5		0.37		0.37	0.05		0.04	0.32	0.05
T 603		5/8		1/8	0.88					0.16			

ELEMENTS OF ZEES

		Size		Weight	OI	-	Axis 1-1			Axis 2-2		Axis 3-3
Section Index	Depth	Flanges	Thick- ness	per Foot	Sec- tion	I	r	\mathbf{s}	I	r ·	\mathbf{s}	r min.
	In.	In.	In.	Lbs.	In.2	In.4	In.	In.s	In.4	In.	In.s	In.
Z 3	$^{6\frac{1}{8}}_{6\frac{1}{16}}_{6}$	35% 3% 3% $3\frac{1}{2}$	7/8 13/16 3/4	$34.6 \\ 32.0 \\ 29.4$	$10.17 \\ 9.40 \\ 8.63$	$50.2 \\ 46.1 \\ 42.1$	$2.22 \\ 2.22 \\ 2.21$	$16.4 \\ 15.2 \\ 14.0$	$19.2 \\ 17.3 \\ 15.4$	1.37 1.36 1.34	$6.0 \\ 5.5 \\ 4.9$	$0.83 \\ 0.82 \\ 0.81$
Z 2	$^{6\frac{1}{8}}_{6\frac{1}{16}}_{6}$	$3\frac{5}{8}$ $3\frac{1}{6}$ $3\frac{1}{2}$	11/16 5/8 9/16	$28.1 \\ 25.4 \\ 22.8$	$8.25 \\ 7.46 \\ 6.68$	$43.2 \\ 38.9 \\ 34.6$	$2.29 \\ 2.28 \\ 2.28$	$14.1 \\ 12.8 \\ 11.5$	16.3 14.4 12.6	$1.41 \\ 1.39 \\ 1.37$	$5.0 \\ 4.4 \\ 3.9$	$0.84 \\ 0.82 \\ 0.81$
Z 1	61/8 61/16 6	$3\frac{5}{8}$ $3\frac{9}{16}$ $3\frac{1}{2}$	1/2 7/16 3/8	$21.1 \\ 18.4 \\ 15.7$	$6.19 \\ 5.39 \\ 4.59$	$34.4 \\ 29.8 \\ 25.3$	$2.36 \\ 2.35 \\ 2.35$	11.2 9.8 8.4	$12.9 \\ 11.0 \\ 9.1$	$1.44 \\ 1.43 \\ 1.41$	3.8 3.3 2.8	0.84 0.83 0.83
Z 6	51/8 51/16 5	3% 35/16 31/4	18/16 8/4 11/16	$28.4 \\ 26.0 \\ 23.7$	$8.33 \\ 7.64 \\ 6.96$	$28.7 \\ 26.2 \\ 23.7$	$1.86 \\ 1.85 \\ 1.84$	$11.2 \\ 10.3 \\ 9.5$	14.4 12.8 11.4	$1.31 \\ 1.30 \\ 1.28$	4.8 4.4 3.9	$0.76 \\ 0.74 \\ 0.73$
Z 5	51/8 51/16 5	$3\frac{8}{8}$ $3\frac{5}{16}$ $3\frac{1}{4}$	5/8 9/16 1/2	$22.6 \\ 20.2 \\ 17.9$	$6.64 \\ 5.94 \\ 5.25$	$24.5 \\ 21.8 \\ 19.2$	1.92 1.91 1.91	9.6 8.6 7.7	$12.1 \\ 10.5 \\ 9.1$	1.35 1.33 1.31	3.9 3.5 3.0	0.76 0.75 0.74
Z 4	51/8 51/16 5	$3\frac{3}{5}$ $3\frac{5}{16}$ $3\frac{1}{4}$	7/16 3/8 5/16	16.4 14.0 11.6	$4.81 \\ 4.10 \\ 3.40$	$19.1 \\ 16.2 \\ 13.4$	1.99 1.99 1.98	7.4 6.4 5.3	9.2 7.7 6.2	$1.38 \\ 1.37 \\ 1.35$	$2.9 \\ 2.5 \\ 2.0$	0.77 0.76 0.75
Z 9	41/8 41/16 4	$3\frac{1}{6}$ $3\frac{1}{8}$ $3\frac{1}{16}$	3/4 11/16 5/8	$23.0 \\ 20.9 \\ 18.9$	6.75 6.14 5.55	$15.0 \\ 13.5 \\ 12.1$	$1.49 \\ 1.48 \\ 1.48$	7.3 6.7 6.1	11.2 10.0 8.7	1.29 1.27 1.25	$\frac{4.0}{3.6}$ $\frac{3.6}{3.2}$	0.68 0.67 0.66
Z 8	41/8 41/16 4	$3\frac{3}{16}$ $3\frac{1}{8}$ $3\frac{1}{16}$	%16 1/2 7/16	18.0 15.9 13.8	$5.27 \\ 4.66 \\ 4.05$	$12.7 \\ 11.2 \\ 9.7$	1.55 1.55 1.55	6.2 5.5 4.8	9.3 8.0 6.7	1.33 1.31 1.29	$3.2 \\ 2.8 \\ 2.4$	0.68 0.67 0.66
Z 7	41/8 41/16 4	$3\frac{3}{16}$ $3\frac{1}{8}$ $3\frac{1}{16}$	3/8 5/16 1/4	12.5 10.3 8.2	$3.66 \\ 3.03 \\ 2.41$	9.6 7.9 6.3	$1.62 \\ 1.62 \\ 1.62$	$\begin{array}{c} 4.7 \\ 3.9 \\ 3.1 \end{array}$	$6.8 \\ 5.5 \\ 4.2$	1.36 1.34 1.33	2.3 1.8 1.4	0.69 0.68 0.67
Z 12	3½6 3	2¾ 21¼ 6	%16 1/2	14.3 12.6	$\frac{4.18}{3.69}$	$\frac{5.3}{4.6}$	$1.12 \\ 1.12$	$\frac{3.4}{3.1}$	5.7 4.9	$1.17 \\ 1.15$	$\frac{2.3}{2.0}$	0.54 0.53
Z 11	31/16	2¾ 2 ¹ 1⁄ ₁₆	7/16 3/8	11.5 9.8	$\frac{3.36}{2.86}$	4.6 3.9	$1.17 \\ 1.16$	$\frac{3.0}{2.6}$	4.8 3.9	1.19 1.17	1.9 1.6	$0.55 \\ 0.54$
Z 10	3½6 3	$2\frac{3}{4}$ $2^{11}/16$	5/16 1/4	8.5 6.7	$\frac{2.48}{1.97}$	3.6 2.9	1.21 1.21	2.4 1.9	3.6 2.8	$1.21 \\ 1.19$	1.4 1.1	0.56 0.55

ELEMENTS OF CROSS TIES

	Depth	Wt.	Area		th of	Thick-		Axis	3 1-1			Axis 2-	2
Section Index	Sec- tion	pe r Foot	Sec- tion	Top	Bottom	ness of Web	I	r	s	x	I	r	\mathbf{s}
	In.	Lbs.	In.2	In.	In.	In.	In.4	In.	In.3	In.	In.4	In.	In.3
M 28A	6.50	29,8	8.76	5.0	10.0	.438	59.4	2.47	15.0	2.55	30.8	1.88	6.2
M 29	5.50	24.0	7.01	5.0	8.0	.375	35.4	2.25	11.3	2.38	16.8	1.55	4.2
M 21	5.50	20.0	5.71	4.5	8.0	.250	30.9	2.33	9.7	2.33	14.9	1.62	3.7
M 25	4.25	14.5	4.10	4.0	6.0	.250	13.0	1.78	5.5	1.88	6.1	1.22	2.0
M 24	3.00	9.5	2.80	3.0	5.0	.203	4.3	1.24	2.5	1.27	3.1	1.05	1.2

Section Index	Depth	Wt.	Area	Width of Section				Axis	1-1	Axis 2-2			
	Sec- tion	per Foot	of Sec- tion	Top	Bottom	Thick- ness	I	I r s	s	x	1	r	s
	In.	Lbs.	In.2	In.	In.	In.	In.4	In.	In.8	In.	In.4	In.	In.8
M 27	2.25	9.0	2.62	5.5	7.0	.250	1.28	0.70	0.79	1.62	16.8	2.53	4.8
M 20	2.00	6.0	1.72	4.5	6.0	.188	0.71	0.64	0.51	1.41	8.4	2.22	2.8
M 18	1.50	4.0	1.21	3.4	5.0	.156	0.31	0.50	0.31	1.00	3.6	1.73	1.5

Section Index	Depth	Wt.	Area	Width	m : 1		Axis	1-1	Axis 2-2			
	Sec- tion	per Foot	Sec- tion	of Sec- tion	Thick- ness	I	r	s	x	I	r	s
	In.	Lbs.	In.2	In.	In.	In.4	In.	In.8	In.	In.4	In.	In.3
M 26	18/16	3.20	0.97	415/16	.125	0.059	0.25	0.110	0.54	2.44	1.58	0.99
M 19	11/16	2.51	0.74	4	.141	0.024	0.18	0.057	0.43	1.15	1.25	0.58

ELEMENTS OF RAILS AND SPLICE BARS

	Weight	Depth	Area	Axis 1-1				Weight per	Depth	Area of	Axis 1-1		
Section Index		Section		I	s	x	Section Index	Foot	Section		*1	*S	x
	Lbs.	In.	In.2	In.4	In.3	In.	Index	Lbs.	In.	In.2	In.4	In.3	In.
	Α.	s. c.	E. RA	ILS				A. S.	C. E.	SPLIC	E BA	RS	
10040	100	5%	0.84	43.97	14.55	2 73	S10040	15.8	47/32	4.65	13.43	1 89	1 91
9040	90	588	8.83	34.39			S 9040		361/64		10.30		
8540	85	58/16		30.07			S 8540		318/16			4.02	
8040	80	5		26.38			S 8040		321/32		7.39	93.75	1.68
7540.	75	413/16	7.33	22.86					31/5	3.15		3.28	
7040	70	458	6.81	19.70			S 7040	10.0	315/32	2.95	5.82	3.15	1.6
6540	65	47/16		16.90		2.14		9.2	311/82	2.71		2.73	
6040	60	41/4	5.93	14.56			S 6040	8.4	318/64	2.47		2.38	
5540	55	41/16	5.38	12.03			S 5540	7.5	31/16	2.21		2.07	
5040	50	3 %	4.87	9.94	4.98	1.88	S 5040	6.6	215/16	1.95	2.72	1.74	1.37
	A. R.	A. R.	AILS—	Түре	A		A. R. A. SPLICE BARS-TYPE A						
10020	100	6	9.84	48.94	15.01	0.75	S10020	10.0	428/32	5.60	21.30	7 00	2.09
9020	90	55%		38.70					47/16		16.10		
8020	80	51/8		28.80		9.94	S 8020		315/16		10.13		
7020	70	434		21.05					317/32	3.43		3.63	
6020	60	41/2		15.41	6.50	2.13	S 6020		31/2	3.13	6.22	3.16	1.52
	A. R.	A. R.	AILS-	Түре	В		A. R. A. SPLICE BARS-TYPE B						В
10000	100	~ 41/	0.05	41.00	10.50	0.00	210000	10.0	47/	1.00	1 4 0 4	C 200	1.00
10030	100	541/64					\$10030		35364	$\frac{4.98}{4.24}$	14.34		
9030 8030	90 80			25.10			S 9030 S 8030	19.6	35/84	$\frac{4.24}{3.72}$	10.16	3.79	
8030	30	415/16	7.91	25.10	9.58	2.21	5 8050	12.0	398	3.12	7.70	3.79	1.58
		Light	RAIL	s			LIGHT RAIL SPLICE BARS						
4540	45	311/16	4.40	8.13	4.25		S 4540	5.8	225/32	1.70			1.29
4040	40	31/2	3.94	6.57	3.62		S 4040	5.0	25%	1.47			1.27
3540	35	35/16	3.44	5.17	3.02				231/64	1.35			1.19
3040	30	$3\frac{1}{8}$	3.00	4.06	2.53		S 3040		213/32	1.17			1.10
2540	25	$2\frac{3}{4}$	2.39	2.50	-1.77		S 2540		151/64	0.65			0.90
2040	20	25/8	2.00	1.94	1.43	1.27	S 2040			0.55			0.86
1640	16	23/8	1.55	1.24	1.01	1.15	S 1640			0.50			0.79
1440	14	21/16	1.34	0.76	0.73	1.02	S 1440		119/64	0.40			0.65
1240	12	2	1.18	0.66	0.63		S 1240		119/64	0.40			0.65
$\frac{1040}{840}$	10	13/4	0.96	0.40	0.46		S 1040		17/64	0.29			0.56
	- 8	1%16	0.771	0.26	0.32	1 (5)	8 840	$0.75 \pm$	OLna	-0.22		1	0.49

RADII OF GYRATION FOR TWO EQUAL ANGLES

Sir	ngle Angl	e	Area	Radii of Gyration of Two Angles, Inches								
Size.	Thick-	Weight,	Two	Axis 1-1	Axis 2-2							
Inches	ness, Inches	Pounds per Foot	Angles, Inches ²		In Contact	1/4" Apart	3/8" Apart	½" Apart	3/4 "Apart			
8 x 8	1½ 13/16 1/2	56.9 42.0 26.4	$33.46 \\ 24.68 \\ 15.50$	$2.42 \\ 2.46 \\ 2.50$	3.42 3.37 3.33	$3.51 \\ 3.46 \\ 3.41$	3.55 3.50 3.45	3.60 3.55 3.50	3.69 3.64 3.59			
6 x 6	1 11/16 3/8	37.4 26.5 14.9	$22.00 \\ 15.56 \\ 8.72$	1.80 1.83 1.88	$2.59 \\ 2.54 \\ 2.49$	$2.68 \\ 2.63 \\ 2.58$	$2.72 \\ 2.67 \\ 2.62$	$ \begin{array}{c c} 2.77 \\ 2.71 \\ 2.66 \end{array} $	2.87 2.81 2.75			
5 x 5	1 11/16 3/8	$30.6 \\ 21.8 \\ 12.3$	$18.00 \\ 12.80 \\ 7.22$	1.48 1.51 1.56	2.19 2.13 2.09	$2.28 \\ 2.22 \\ 2.17$	2.33 2.26 2.21	2.38 2.31 2.26	2.47 2.40 2.35			
4 x 4	18/16 1/4	$\frac{19.9}{6.6}$	$\frac{11.68}{3.88}$	$\frac{1.18}{1.25}$	1.75 1.66	1.85 1.75	1.89 1.79	1.94 1.84	2.04 1.93			
3½x3½	13/16 1/4	17.1 5.8	$\frac{10.06}{3.38}$	$\frac{1.02}{1.09}$	1.55 1.46	$\frac{1.65}{1.55}$	1.70 1.59	1.75 1.64	1.85 1.73			
3 x 3	5/8 1/4	11.5 4.9	$\frac{6.72}{2.88}$	$0.88 \\ 0.93$	1.32 1.25	1.41 1.34	$\frac{1.46}{1.38}$	1.51 1.43	1.61 1.53			
2½x2½	1/2	7.7 4.1	$\frac{4.50}{2.38}$	0.74 0.77	$1.09 \\ 1.05$	1.19 1.14	1.24 1.19	$1.29 \\ 1.24$	1.39 1.34			
2 x 2	7/16	5.3 3.19	3.12 1.88	$0.59 \\ 0.61$	0.88 0.85	$0.98 \\ 0.94$	1.03 0.99	1.08	1.19			

This table and the two following are employed in computing the safe resistance to compressive stress of two angles, back to back, used as a strut or as the compression chord of a roof truss, etc., as follows:

Obtain from the compression formula in use the allowed stress per square inch corresponding to the ratio of slenderness of the section, and multiply that value by the area. The result will be the allowable compressive stress.

Example 1. Section given. Required the safe load in compression as per formula f=19000-100 1/r on a strut composed of two angles 4" x 4" x $\frac{1}{4}$ ", back to back, with an unsupported length of 9 feet.

Area of Section, A=3.88 square inches; Least Radius, r=1.25.

Ratio of Slenderness, $1/r = 9 \times 12 \div 1.25 = 86.4$.

Allowed Unit Stress, $f = 19000 - 100 \times 86.4 = 10360$ pounds per square inch.

Safe Load, $Af = 3.88 \times 10360 = 40200$ pounds.

Example 2. Stress given. Required a section for a member in compression 12' 3" long, made of two angles separated by ½ inch gusset plates, to resist a total stress of 35000 pounds; ratio of slenderness not to exceed 120.

Assume 2 angles, 5" x 3" x $\frac{5}{16}$ ", long legs, back to back.

Area of Section, A = 4.80 square inches; Least Radius, r = 1.26 inches.

Ratio of Slenderness, $1/r = 12.25 \times 12 \div 1.26 = 116.7$.

Allowed Unit Stress, $f = 19000 - 100 \times 116.7 = 7330$ pounds per square inch. Safe Stress, $Af = 4.80 \times 7330 = 35200$ pounds.

In the first case the least radius is that about axis 1-1; in the second case about axis 2-2; in all cases the least radius determines the ratio of slenderness and therewith the allowed safe compressive stress. In all cases also the two angles are to be secured together by stay rivets so spaced as to insure that the section acts as a unit. The ratio of slenderness of any single angle between rivets must always be less than that of the strut or compression chord.

RADII OF GYRATION FOR TWO UNEQUAL ANGLES

Long Legs Vertical

Sing	le Angle		Area of	Radii of Gyration of Two Angles, Inches							
Size, Inches	Thick- ness, Inches	Weight, Pounds per Foot	Two Angles, Inches ²	Axis I-1	In Contact	¼′′Apart	Axis 2-2	$1_2^{\prime\prime}$ Apart	34" Apart		
8 x 6	1 84 7/16	44.2 33.8 20.2	26.00 19.88 11.86	$2.49 \\ 2.53 \\ 2.57$	2.39 2.35 2.31	2.48 2.44 2.39	2.52 2.48 2.43	2.57 2.52 2.48	$2.66 \\ 2.61 \\ 2.56$		
8 x3½	1 8/4 7/16	$35.7 \\ 27.5 \\ 16.5$	$21.00 \\ 16.12 \\ 9.68$	$2.51 \\ 2.55 \\ 2.59$	$1.26 \\ 1.20 \\ 1.15$	1.35 1.29 1.23	$1.40 \\ 1.34 \\ 1.28$	$1.45 \\ 1.39 \\ 1.32$	1.55 1.49 1.41		
7 x3½	1 11/16 3/8	32.3 23.0 13.0	$19.00 \\ 13.50 \\ 7.60$	2.19 2.23 2.27	1.31 1.25 1.20	$1.40 \\ 1.34 \\ 1.28$	$1.45 \\ 1.39 \\ 1.33$	$1.50 \\ 1.44 \\ 1.37$	1.60 1.53 1.46		
6 x 4	1 11/16 8/8	$30.6 \\ 21.8 \\ 12.3$	$18.00 \\ 12.80 \\ 7.22$	1.85 1.89 1.93	1.60 1.55 1.50	$1.69 \\ 1.63 \\ 1.58$	$1.74 \\ 1.68 \\ 1.62$	$1.79 \\ 1.73 \\ 1.67$	1.89 1.82 1.76		
6 x3½	1 11/16 5/16	$28.9 \\ 20.6 \\ 9.8$	$17.00 \\ 12.12 \\ 5.74$	1.85 1.89 1.95	1.37 1.31 1.25	$1.47 \\ 1.41 \\ 1.33$	1.51 1.45 1.37	1.56 1.49 1.42	$1.66 \\ 1.60 \\ 1.50$		
5 x 4	76 86	24.2 11.0	$14.22 \\ 6.46$	$\frac{1.52}{1.59}$	$\frac{1.66}{1.58}$	$\frac{1.76}{1.66}$	$\frac{1.80}{1.70}$	1.85 1.75	$\frac{1.95}{1.85}$		
5 x3½	7/8 5/16	22.7 8.7	$13.34 \\ 5.12$	1.53 1.61	1.42 1.33	$\frac{1.51}{1.41}$	$\frac{1.56}{1.45}$	$\frac{1.61}{1.50}$	$\frac{1.71}{1.59}$		
5 x 3	18/16 5/16	19.9 8.2	$11.68 \\ 4.80$	1.55 1.61	1.18 1.09	$\frac{1.27}{1.17}$	$\frac{1.32}{1.22}$	$\frac{1.37}{1.26}$	1.47 1.35		
4½x 3	13/16 5/16	18.5 7.7	10.86 4.50	1.38 1.44	$\frac{1.21}{1.13}$	$\frac{1.31}{1.22}$	$\frac{1.36}{1.26}$	$\frac{1.41}{1.30}$	$\frac{1.51}{1.40}$		
4 x3½	18/16 5/16	18.5 7.7	$10.86 \\ 4.50$	1.19 1.26	$1.50 \\ 1.42$	1.59 1.51	$\frac{1.64}{1.55}$	1.69 1.60	$\frac{1.79}{1.69}$		
4 x 3	18/16 1/4	17.1 5.8	10.06 3.38	1.21 1.28	1.25 1.16	1.35 1.24	$\frac{1.40}{1.28}$	$\frac{1.45}{1.33}$	$\frac{1.55}{1.43}$		
3½x 3	18/16 1/4	15.8 5.4	$9.24 \\ 3.12$	1.04 1.11	1.30 1.20	1.40 1.29	$\frac{1.45}{1.34}$	1.50 1.38	1.60 1.48		
3½x2½	11/16	12.5 4.9	$7.30 \\ 2.88$	$\frac{1.06}{1.12}$	$\frac{1.03}{0.95}$	1.13 1.04	$\frac{1.18}{1.09}$	1.23 1.13	1.33 1.23		
3 x2½	9/16 1/4	$9.5 \\ 4.5$	$5.56 \\ 2.64$	$0.91 \\ 0.95$	1.05 1.00	1.15 1.09	1.20 1.13	$\frac{1.25}{1.18}$	1.35 1.28		
3 x 2	1/2 1/4	7.7 4.1	4.50 2.38	$0.92 \\ 0.95$	$0.80 \\ 0.74$	0.89 0.84	$0.94 \\ 0.88$	$\frac{1.00}{0.93}$	1.10 1.03		
2½x 2	1/2 1/4	$\frac{6.8}{3.62}$	$\frac{4.00}{2.12}$	$0.75 \\ 0.78$	$0.84 \\ 0.80$	$0.94 \\ 0.89$	$0.99 \\ 0.93$	1.04 0.98	1.15 1.08		

ELEMENTS OF SECTIONS

RADII OF GYRATION FOR TWO UNEQUAL ANGLES

Short Legs Vertical

Sing	gle Angle		Area	R	adii of G	yration of	Two Ang	gles, Inch	8
Size, Inches	Thick- ness, Inches	Weight, Pounds per Foot	of Two Angles, Inches ²	Axis 1-1	In Contact	1/4" Apart	Axis 2-2 3/8" Apart	½" Apart	3/4" A part
8 x 6	1 8/4 7/16	44.2 33.8 20.2	26.00 19.88 11.86	1.73 1.76 1.80	3.64 3.60 3.55	3.73 3.69 3.64	3.78 3.73 3.68	3.83 3.78 3.73	3.92 3.87 3.82
8 x3½	1 3/4 7/16	35.7 27.5 16.5	$21.00 \\ 16.12 \\ 9.68$	$0.86 \\ 0.88 \\ 0.92$	4.04 3.99 3.93	4.14 4.09 4.02	4.19 4.13 4.07	4.24 4.18 4.12	4.34 4.28 4.22
7 x3½	1 11/16 3/8	32.3 23.0 13.0	$19.00 \\ 13.50 \\ 7.60$	0.89 0.92 0.96	3.48 3.42 3.36	3.58 3.52 3.46	3.63 3.57 3.50	3.68 3.62 3.55	$3.78 \\ 3.72 \\ 3.65$
6 x 4	1 11/16 3/8	$30.6 \\ 21.8 \\ 12.3$	$18.00 \\ 12.80 \\ 7.22$	1.09 1.13 1.17	$2.85 \\ 2.79 \\ 2.74$	2.95 2.89 2.83	2.99 2.93 2.87	3.04 2.98 2.92	$3.14 \\ 3.08 \\ 3.02$
6 x3½	1 11/16 5/16	28.9 20.6 9.8	17.00 12.12 5.74	$0.92 \\ 0.95 \\ 1.00$	$2.92 \\ 2.87 \\ 2.81$	$3.02 \\ 2.96 \\ 2.90$	$3.07 \\ 3.01 \\ 2.95$	$3.12 \\ 3.06 \\ 3.00$	$3.22 \\ 3.16 \\ 3.09$
5 x 4	7/8 3/8	24.2 11.0	$\frac{14.22}{6.46}$	$\frac{1.14}{1.20}$	$\frac{2.29}{2.20}$	$\frac{2.38}{2.29}$	$\frac{2.43}{2.34}$	2.48 2.38	$2.58 \\ 2.48$
5 x3½	7/8 5/16	22.7 8.7	$13.34 \\ 5.12$	$0.96 \\ 1.03$	$\frac{2.36}{2.26}$	$\frac{2.45}{2.35}$	$\frac{2.50}{2.39}$	$2.55 \\ 2.44$	$2.65 \\ 2.54$
5 x 3	13/16 5/16	19.9 8.2	$\frac{11.68}{4.80}$	$0.80 \\ 0.85$	$\frac{2.42}{2.33}$	$\frac{2.52}{2.42}$	$2.57 \\ 2.47$	$\frac{2.62}{2.52}$	2.72 2.61
4½x 3	13/16 5/16	18.5 7.7	$10.86 \\ 4.50$	0.81 0.87	$\frac{2.15}{2.06}$	$\frac{2.25}{2.15}$	$\frac{2.30}{2.20}$	$2.35 \\ 2.25$	$\frac{2.45}{2.34}$
4 x3½	18/16 5/16	18.5 7.7	$10.86 \\ 4.50$	1.01 1.07	1.81 1.73	1.91 1.81	1.96 1.86	2.01 1.91	2.11 2.00
4 x 3	18/16 1/1	17.1 5.8	10.06 3.38	0.83 0.89	1.88 1.78	1.98 1.87	2.03 1.92	2.08 1.96	2.18 2.06
3½x 3	13/16 1/4	15.8 5.4	$9.24 \\ 3.12$	$0.85 \\ 0.91$	$\frac{1.61}{1.52}$	1.71 1.61	1.76 1.65	1.81 1.70	1.91 1.80
3½x2½	11/16 1/4	12.5 4.9	7.30 2.88	$0.69 \\ 0.74$	1.66 1.58	1.75 1.67	1.80 1.71	1.86 1.76	1.96 1.86
3 x2½	9/16 1/4	9.5 4.5	$5.56 \\ 2.64$	$0.72 \\ 0.75$	1.37 1.31	1.46 1.40	1.51 1.45	1.56 1.50	1.66 1.59
3 x 2	1/2 1/4	7.7 4.1	$\frac{4.50}{2.38}$	$0.55 \\ 0.57$	1.42 1.38	1.52 1.47	$1.57 \\ 1.52$	1.62 1.57	1.72 1.67
2½x 2	1/2 1/4	6.8 3.62	$\frac{4.00}{2.12}$	$0.56 \\ 0.59$	1.15 1.11	$\frac{1.25}{1.20}$	1.30 1.25	1.35 1.30	1.46 1.40

MOMENTS OF INERTIA OF RECTANGLES

Neutral Axis Through Center Normal to Depth

This and the following table may be used in computing the Moments of Inertia of Plate Girders, Columns and other compound sections in which plates are used; see pages 108 and 109.

th,				Widt	h, Inches			
Depth, Inches	1/4	5/16	3,5	740	1/2	946	5/8	1
1	.021	.026	.031	.037	.042	.047	.052	.083
2	.167	.208	.250	.292	.333	.375	.417	.667
$\frac{2}{3}$.563 1.333	1.667	2.000	2.333	$\frac{1.125}{2.667}$	$\frac{1.266}{3.000}$	$\frac{1.406}{3.333}$	2.250 5.333
				2.555				
5 6 7 8	2.604	3.255	3.906	4.557	5.208	5.859	6.510	10.417
5	$\begin{array}{r} 4.500 \\ 7.146 \end{array}$	$5.625 \\ 8.932$	$6.750 \\ 10.719$	7.875 12.505	$9.000 \\ 14.292$	$10.125 \\ 16.078$	$11.250 \\ 17.865$	$18.000 \\ 28.583$
6	10.667	13.333	16.000	18.667	$\frac{14.292}{21.333}$	24.000	26.667	42.667
9	15.188	18.984	22.781	26.578	$\frac{21.335}{30.375}$	34.172	37.969	60.750
_								
10	$20.833 \\ 27.729$	$26.042 \\ 34.662$	$31.250 \\ 41.594$	36.458	$\frac{41.667}{55.458}$	$46.875 \\ 62.391$	$52.083 \\ 69.323$	83.333 110.917
11 12	36.000	45.000	54.000	$\frac{48.526}{63.000}$	72.000	81.000	90.000	144.000
13	45.771	57.214	68.656	80.099	91.542	102.984	114.427	183.083
14	57.167	71.458	85.750	100.042	114.333	128.625	142.917	228.667
15	70.313	87.891	105.469	123.047	140.625	158.203	175.781	281.250
16	85.333	106.667	128.000	149.333	170.667	192,000	213.333	341.333
17	102.354	127.943	153.531	179.120	204.708	230.297	255.885	409.417
î8	121,500	151.875	182.250	212.625	243.000	273.375	303.750	486.000
19	142.896	178.620	214.344	250.068	285.792	321.516	357.240	571.583
20	166,667	208.333	250.000	291.667	333.333	375.000	416.667	666.667
21	192.938	241.172	289.406	337.641	385.875	434.109	482.344	771.750
22	221.833	277.292	332.750	388.208	443.667	499.125	554.583	887.333
23	253.479 288.000	$316.849 \\ 360.000$	380.219 432.000	$443.589 \\ 504.000$	506.958 576.000	570.328 648.000	633.698 720.000	1013.917 1152.000
24	200.000	300.000	452.000	304.000	370.000			
25	325.521	406.901	488.281	569.662	651.042	732.422	813.802	1302.083
26	366.167	457.708		640.792	732.333	823.875	915.417	1464.667
$\frac{27}{28}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$512.578 \\ 571.667$	$615.094 \\ 686.000$	$717.609 \\ 800.333$	820.125 914.667	922.641 1029.000	$1025.156 \\ 1143.333$	$1640.250 \\ 1829.333$
$\frac{28}{29}$	508.104	635.130			1016.208	1143.234	1270.260	
				1				
30	562.500				1125.000	1265.625	1406.250	2250.000
$\frac{32}{34}$	682.667		$1024.000 \\ 1228.250$			$\begin{array}{c} 1536.000 \\ 1842.375 \end{array}$	1706.667 2047.083	$2730.667 \\ 3275.333$
$\frac{34}{36}$			1228.230 1458.000			2187.000	2430.000	3888.000
38			1714.750			2572.125	2857.917	4572.667
40	1000 200	1000 007	2000.000	0222 222	2666 667	3000.000	3333.333	5333.333
$\frac{40}{42}$			2315.250			3472.875	3858.750	
44	1774.667	2218.333	2662.000	3105.667	3549.333	3993.000	4436.667	7098.667
46	2027.833	2534.792	3041.750	3548.708	4055.667	4562.625	5069.583	8111.333
48	2304.000	2880.000	3456.000	4032.000	4608.000	5184.000	5760.000	9216.000
50	2604.167	3255,208	3906.250	4557.292	5208,333	5859.375	6510.417	10416.667
52			4394.000			6591.000	7323.333	11717.333
54			4920.750			7381.125		13122.000
56			5488.000			8232.000	9146.667	14634.667
58 60	4064.833	5625,000	6097.250	7113.458 7875 000	5129.667 0000.000	9145.875 10125.000	10162.083	18000 000
00	7500.000	0000000	0100.000	1010.000	2000.000	10120.000	11200.000	10000.000

MOMENTS OF INERTIA OF RECTANGLES

IN WIDTHS OF 1 INCH

Neutral Axis Through Center Normal to Depth

To obtain the Moment of Inertia of any rectangle, multiply the tabular value for its depth by its width in inches. For deeper rectangles of tabular thickness, multiply the tabular values for half their depth by 8; or for one-third their depth by 27, etc.

Depth, Inches	I ₁₋₁ Inches 4	Depth, Inches	I ₁₋₁ Inches 4	Depth, Inches	I ₁₋₁ Inches ⁴	Depth, Inches	I ₁₋₁ Inches 4	Depth, Inches	I _{1 1} Inches 4	Depth, Inches	l ₁₋₁ Inches 4
0	.000	6	18.000	12	144.000	18	486.000	24	1152.000	30	2250.000
1/8 1/4 3/8 1/2 5/8 3/4 7/8	.000 .001 .004 .010 .020 .035 .056	1/8 1/4 3/8 1/2 5/8 3/4 7/8	$\begin{array}{c} 19.149 \\ 20.345 \\ 21.590 \\ 22.885 \\ 24.231 \\ 25.629 \\ 27.079 \end{array}$	1/8 1/4 3/8 1/2 5/8 3/4 7/8	148.547 153.189 157.926 162.760 167.692 172.723 177.853	1/8 1/4 3/8 1/2 5/8 3/4 7/8	496.195 506.533 517.012 527.635 538.403 549.317 560.376	1/4 3/8 1/2 5/8 3/4	$\begin{array}{c} 1170.094 \\ 1188.376 \\ 1206.848 \\ 1225.510 \\ 1244.364 \\ 1263.410 \\ 1282.650 \end{array}$	1/4 3/8 1/2 5/8 3/4	$\begin{array}{c} 2278.243 \\ 2306.721 \\ 2335.434 \\ 2364.385 \\ 2393.575 \\ 2423.004 \\ 2452.674 \end{array}$
1	.083	7	28.583	13	183.083	19	571.583	25	1302.083	31_	2482.583
1/8 1/4 3/8 1/2 5/8 3/4 8	.119 .163 .217 .281 .358 .447 .549	1/8 1/4 3/8 1/2 5/8 3/4 7/8	30.142 31.757 33.428 35.156 36.944 38.790 40.698	1/8 1/4 3/8 1/2 5/8 3/4 7/8	$\begin{array}{c} 188.416 \\ 193.850 \\ 199.389 \\ 205.031 \\ 210.779 \\ 216.634 \\ 222.596 \end{array}$	1/8 1/4 3/8 1/2 5/8 3/4 7/8	582.939 594.444 606.099 617.906 629.866 641.978 654.245	3/8 1/2 5/8 3/4 7/8	$\begin{array}{c} 1321.713 \\ 1341.538 \\ 1361.561 \\ 1381.781 \\ 1402.202 \\ 1422.821 \\ 1443.644 \end{array}$	3/8 1/2 5/8 3/4 7/8	$\begin{array}{c} 2512.737 \\ 2543.132 \\ 2573.771 \\ 2604.656 \\ 2635.787 \\ 2667.165 \\ 2698.792 \end{array}$
2	667_	8	42.667	14	228.667	20	666.667		1464.667	32	2730.667
1/8 1/4 3/8 1/2/5/8 3/4/8	.800 .949 1.116 1.302 1.507 1.733 1.980	1/8 1/4 3/8 1/2 5/8/4 7/8	44.698 46.793 48.952 51.177 53.468 55.827 58.254	1/8 1/4 3/8 1/2 5/8 3/4 7/8	$\begin{array}{c} 234.847 \\ 241.137 \\ 247.538 \\ 254.052 \\ 260.679 \\ 267.421 \\ 274.277 \end{array}$	1/8/1/4/3/8/1/2/5/8/4/8	679.245 691.840 704.874 717.927 731.141 744.514 758.051	1/4 3/8 1/2 5/8 3/1	1485.893 1507.324 1528.961 1550.802 1572.851 1595.108 1617.575	1/8 1/4 3/8 1/2 5/8 3/4 7/8	2762.792 2795.168 2827.797 2860.677 2893.812 2927.202 2960.849
3	2.250	9_	$_{60.750}$	15	281.250	21	771.750	27	1640.250	33	2994.750
1/8 1/4 3/8 1/2 5/8 3/4 7/8	2.543 2.861 3.204 3.573 3.970 4.395 4.849	1/8 1/4 3/8 1/2 5/8 3/4 7/8	63.317 65.954 68.665 71.448 74.305 77.238 80.247	1/8 1/4 3/8 1/2 5/8 3/4 7/8	288.340 295.548 302.875 310.323 317.891 325.582 333.396	1/8/1/4 3/8/1/2 5/8/3/4 7/8	785.613 799.652 813.836 828.198 842.727 857.426 872.294	1/4 3/8 1/2 5/8 3/4	1663.136 1686.236 1709.547 1733.073 1756.814 1780.770 1804.943	5/2	3028.911 3063.329 3098.009 3132.948 3168.150 3203.614 3239.341 3275.333
4	5.333	10	83.333	16	341.333	22	887.333	28	1829.333		
1/8 1/4 3/8 1/2 5/8 3/4 7/8	5.849 6.397 6.978 7.594 8.244 8.931 9.655	1/8 1/4 3/8 1/2 5/8 3/4 7/8	86.498 89.741 93.064 96.469 99.955 103.525 107.178	1/8 1/4 3/8 1/2 5/8 3/4 7/8	$\begin{array}{c} 349.396 \\ 357.585 \\ 365.900 \\ 374.344 \\ 382.916 \\ 391.618 \\ 400.452 \end{array}$	1/8 1/4 3/8 1/2 5/8 3/4 7/8	902.545 917.928 933.486 949.219 965.127 981.212 997.475	1/4 3/8 1/2 5/8 3/1	1853.943 1878.773 1903.823 1929.094 1954.588 1980.305 2006.249	5/8 3/4 7/8	3311.592 3348.117 3384.909 3421.969 3459.300 3496.900 3534.772
5	10.417	11	110.917	17	409.417	23_	1013.917		2032.417	35_	3572.917
1/8 1/4 3/8 1/2 5/8 3/4 7/8	11.218 12.059 12.941 13.865 14.832 15.843 16.898	1/8 1/4 3/8 1/2 5/8 3/4 7/8	114.741 118.652 122.652 126.740 130.918 135.186 139.547	1/8 1/4 3/8 1/2 5/8 3/4 7/8	418.515 427.746 437.113 446.615 456.253 466.030 475.945	1/4 3/8 1/2 5/8 3/4 7/8	1030.538 1047.340 1064.323 1081.490 1098.839 1116.374 1134.094	1/4 3/8 1/2 5/8 3/4 7/8	2058.811 2085.434 2112.285 2139.365 2166.676 2194.218 2221.992	1/4 3/8 1/2 5/8 3/4 7/8	3611.334 3650.027 3688.994 3728.240 3767.763 3807.561 3847.641
0 1	18.000	12	144.000	(18	486.000	24	1152.000	30	2250.000	30	3888.00 0

HOLLOW ROUND SECTIONS

Areas and Radii of Gyration

Area =
$$\frac{\pi(D^2-d^2)}{4}$$
 = 0.7854 (D²-d²) sq. in.

Dia.	ents	Thickness in Inches															
D, Inches	Elements	1/4	5/16	3/8	1,/2	5/8	8/4	7/8	1	11/8	11/4	1%	11/2	15's	13/4	17/8	2
2	A	1.37															
	r	0:63							_								
3	A	2.16	_										-				
4	A	2.95		4.27		_			_		=						
4	r	1.33	1.31	1.29							_						
5	A	3.73	4.60	5.45	_		10.01	_	_				_				
	r	1.68		1.64	1.60		1.53	14.09	15.74								
6	_A_	4.52	5.58	1.99		1.91				_							_
	r	2.03	6.57		1.95			16.84		20.76	22 58						
7	A	2.39		2.35	2.30		2.23		2.15		2.08		_				
	$\frac{r}{A}$	6.09	7.55	8.98				19.59				28.62	30.63				
8	r	2.74	2.72			_	_	_		2.46		2.39	2.36				
	A	6.87			13.35							32.94	35.34	37.65	39.86		_
9,	r	3.09			3.01		2.93		2.85	2.81	2.78	2.74	2.70	2.67	2.64		
	Ā	7.66			14.92	18.41	21.79	25.08	28.27	31.37	34.36	37.26	40.06	42.76	45.36	47.86	50.
10	r	3.45								3.16		3.09	3.05	3.02	2.98	2.95	2.
	A	8.44	10.49	12.52	16.49	20.37	24.15	27.83	31.42	34.90	38.29	41.58	44.77	47.86	50.85	53.75	56.
11	r		3.78							3.51		3.44	3.40	3.36		3.29	3.
10	A	9.23	11.47	13.70	_			30.58				45.90	49.48	52.97	56.35		62.
12	r		4.13	4.11		4.03			3.91			3.79	3.75	3.71	3.68	3.64	3.
19	A	10,01	12.46							_		50.22	54.19	58.07	61.85	65.59	69.
13	Г	4.51					4.34					4.14	4.10	4.06		5.99	3.
14	A							36.08				54.54	58.91	63.18		71.42	75.
1.1	r		4.84						4.61	4.57		4.49	4.45	4.41	4.38	4.34	4.
15	A							38,83				58.86	63.62	68.28		77.31	81.
	Г	5.22	5.19	5.17	5.13	5.09	5.05		4.96			4.84	4.80	4.76		4.69	87.
16	A						_	41.58	5.32			63.18 5.19	68.33 5.15	73.39	5.08		5.
	r		5.55					44.33				67.50	73.04	78.49			
17	A		_									5.55	5.51	5.47	5.43	5.39	5.
	- <u>r</u>	5.92		5.88				47.07				71.82	77.75	83.60		94.98	_
18	A	6.28			6.19					5.98		5.90	5.86	5.82			5.
	A							49.82				76.13	82.47	88.70		100.87	_
19	r	6.63	_		6.54					6.33		6.25	6.21	6.17	-		
	A							52.57							100.33		
20	r		_		6.90		_							_			

HOLLOW SQUARE SECTIONS

Areas and Radii of Gyration

Side	Elements							77	nickn	ess, t	, Inc	hes					
D, Inches	Elen	1/4	516	3'8	1/2	5%	84	īŝ	1	11/8	11/4	1%	11/2	15%	134	11/8	2
2	A	1.75			_				_	_							
3	A	2.75	_		_	_	_	_		\equiv							
4	A	3.75	4.61	5.44	7.00	_				_							
 5	$\frac{r}{\Lambda}$	1.53 4 75				10.94				_							
	A	1.94 5.75		8.44	11.00	1.80	15.75	17.94			_	_	_	_			
7	A	6.75	8.36	9.94	13.00	15.94	18.75	21.44	2.08								_
s	A	7.75	9.61	11.44	15.00	18.44	21.75	24.94		30.94	33.75	36.44	39.00	_	_		
9	$\frac{r}{A}$		10.86	12.94	17.00		24.75	28,44	32.00	35.44	38.75	2.76 41.94	45.00	47.94	50.75		_
10	<u>r</u> A	9.75		14.44	19.00		27.75	31.94	36.00		43.75	3.16 47.44	3.12 51.00 3.52	3.08 54.44 3.48	3.05 57.75 3.44		64.00
11	A	10.75	3.96 13.36 4.37	15.94	21,00	3.84 25.94 4.24	30.75	35.44	40.00			3.57 52.94 3.97	57.00 3.93	60.94 3.88	3.44 64.75 3.84		72.00
12	$\frac{r}{\Lambda}$	11.75		17.44	23.00		33.75	38.94	44.00	48.94		58.44 4.37	63.00		71.75	75.94	
13	A		15.86	18.94	25.00		36.75	42.44	48.00	53.44	58.75	63.94	69.00	73.94	78.75 4.65	83.44	88.00
14	A		17.11	20.44	27.00	33.44	39.75	45.94		57.94	63.75	69.44 5.18	75.00 5.14	80.44 5.10	85.75 5.05	90.94	96.00
15	A	14.75	18.36	21.94	29.00	35.94	42.75	49.44		62.44	68.75	74.94	81.00	86.94 5.50	92.75	98.44	104.00
16	A		19.61	23.44	31.00	38.44	45.75	52.94	60.00	66.94	73.75	80.44	87.00 5.95	93.44		105.94	_
17			20.86	24.94 6.79	33.00	40.94	48.75	56.44	64.00	71.44	78.75	85.94 6.40	93.00			113.44 6.23	
18	A		22.11	26.44 7.20	35.00	43.44	51.75	59.94	68.00	75.94	83.75	91.44				120.94 6.63	128.00
19	A	18.75	23.36	27.94 7.61	37.00	45.94	54.75	63.44		80.44	88.75	96.94			120.75	7.03	
20	A	19.75	24.61		39.00	48.44	57.75	66.94	76.00	84.94	93.75	102.44	111.00			135.94 7.44	

STRESSES IN BEAMS

In the application of the principles of structural mechanics to determine what sections should be used safely to sustain superimposed loads under specified conditions of loading, it is necessary to ascertain, first, the effects produced on the structure by the loads under those conditions; second, to decide what unit strength the material, the use of which is contemplated, has to resist the stresses produced within the structure by the loading; and, third, to select a section whose section modulus is equivalent to the ratio found to exist between the stresses tending to cause deformation within the structure and the unit strength of the material to resist them.

In the simple case of a beam supported at both ends. each support reacts with an upward pressure called the reaction of the support. The sum of these two reactions is equal to the total load on the beam.

The loads and the reactions of the supports are vertical forces tending to shear or cut the beam across and the stresses they produce within the beam are, therefore, called shearing stresses. The shear at each support is equal to the reaction of the support: the shear at any point between the supports is equal to the reaction of a support less the total load between that support and the point; or, if the reaction acting upward is considered as positive and the loads, acting downwards, as negative, the shear at any point is the algebraic sum of the vertical forces acting on the beam between that point and either support.

If such a simple beam supported at both ends carries a load uniformly distributed over its entire length, the reaction and the shear at each support is equal to one-half the total load on the beam, but the shear decreases uniformly to zero at the center of the span; if the load is concentrated at the center of the span, the reaction and the shear at each support are also equal to one-half the total load, but the shear is uniform throughout the entire length of the beam.

The loads on the beam and the reactions of the Bending Moment. supports constitute external forces which produce bending stress in the beam. The summation of the moments of the external forces about any point is called the bending moment and varies from point to point. It attains a maximum value at a point where the shear is either zero or changes from positive to negative or vice versa. If the loads are concentrated at several points, the maximum bending moment always occurs at the point of application of one of the loads so located that the sum of all the loads on the beam between one support up to and including that load is equal to or greater than the reaction of the support.

Vertical Deflection. Bending stress within a beam produces flexure, and the deflection, or the amount of its departure from a straight line, is the measure of the deformation which the beam has undergone in its resistance to bending stress. So long as the stress is within the safe limits allowed for the material, the deflection is negligible so far as concerns the beam itself; it may, however, be of sufficient magnitude to cause the disruption of other materials in contact with or supported by the beam but of less strength, such as plaster. In such cases the limit of allowable deflection may determine or at least influence the choice of a section.

Lateral Deflection. The stresses within a beam under transverse loading are compressive on one side of the neutral axis and tensile on the other. The tensile stresses tend to hold the beam in a straight line between the supports, while the compressive stresses tend to deflect it in a lateral direction, just as the bending stresses as a whole tend to deflect it in a vertical plane. On long spans unsupported against sidewise deflection, this consideration may influence the choice of sections.

Method of Computation. A complete investigation of the strength of beams under transverse loading must take into account all the elements, the bending moment, the vertical deflection, the lateral deflection and the shearing stress; though under the usual loading conditions the first alone determines the size and weight of section.

In the calculation of bending stresses, the loads are usually expressed in pounds, the span length and the distance between the loads in feet; the resulting bending moments are in terms of foot pounds, which necessitates conversion to inch pounds before the section can be selected from the tables. The section modulus of the required section is obtained by dividing the maximum bending moment in inch pounds by the allowed fiber stress in pounds per square inch. In such calculations it is assumed that the neutral axis of the section is normal to the line of action of the load. When this is not the case, correction must be made for the eccentricity of the loading.

In the pages which immediately follow are given general formulas for the bending moments and vertical deflections of beams under the usual conditions of loading, and also diagrams illustrative of those conditions. The general method for the computation of the maximum bending moment of a beam supported at its ends and loaded at various points is as follows:—

First. Find the reaction at the left (right) support by multiplying each load by its distance from the right (left) support and dividing the sum of these products by the length of the span.

Second. Starting from the left (right) end of the beam, add the successive loads until a point is reached where the sum of the loads equals or exceeds the reaction of the left (right) support; the point of maximum bending moment is located at this point.

Third. Multiply the reaction at the left (right) support by its distance from the point of maximum bending moment and subtract the sum of the products of all loads to the left (right) of this point by the corresponding distance from this point; the difference between these moments is then the maximum bending moment.

Example: Required the size of a steel beam to support the following quiescent loads over a clear span of 16 feet between supports, at a maximum fiber stress not to exceed 16000 pounds per square inch.

 $W_1 = 16000$ pounds, 4 feet from left support.

W₂=18000 " 9 " " " "

 $W_3 \! = \! 2000$ $\,$ " $\,$ per foot, uniform up to 4 feet from right support.

 $W_4 = 60$ " " assumed weight of beam uniformly distributed over entire span.

Left Reaction, $\frac{16000 \times 12 + (60 \times 16) \times 18000 \times 7 + (2000 \times 4) \times 2}{16} = 21355 \text{ lbs.}$ Pright Reaction $\frac{16000 \times 4 + (60 \times 16) \times 18000 \times 9 + (2000 \times 4) \times 14}{16} = 21605 \text{ lbs.}$

Right Reaction, $\frac{10000 \times 4 + (00 \times 10) \times + 18000 \times 9 + (2000 \times 4) \times 11}{16} = 21605 \text{ lbs.}$ Sum of reactions—sum of loads= $W_1 + W_2 + W_3 + W_4 = 42960 \text{ lbs.}$ Points of maximum moment $(60 \times 4) + 16000 = 16240 < 21355$

Points of maximum moment (60 x 4) + 16000 = 16240 < 21355(60 x 9) + 16000 + 18000 = 34540 > 21355

therefore the point of maximum bending moment is at point of load W₂.

Maximum bending moment, 21355x9-16000x5-(60x9)x4.5 =109765 ft. lbs. or, 21605x7-(2000x4)x5-(60x7)x3.5 =109765 ft. lbs.

Required section modulus = $\frac{109765 \times 12}{16000} = \frac{1317180}{16000} = 82.4$

As the section modulus of the 15 inch 65 pound or the 18 inch 54.7 pound beam is greater than this, either of these sections may be used. If it is decided that the 18 inch 48.2 pound supplementary beam is strong enough for the purpose, the actual fiber stress on that section would be $\frac{1317180}{81.9} = 16082$ pounds per square inch. If the allowed fiber stress were 12500 pounds per square inch, the required section modulus would be $\frac{109765 \times 12}{12500} = \frac{1317180}{12500} = 105.38$ and the permissible minimum sections would be 20 inch 65.4 pound, 21 inch 60.4 pound beams, etc.

NOTATION USED IN FORMULAS

- A =Area of section, in square inches.
- n =Distance from center line of gravity to extreme fiber, in inches.
- I =Moment of inertia about center line of gravity, in inches4.
- Ms=Static moment, in inches3.
- S =Section modulus=I/n, in inches3.
- r = Radius of gyration = $\sqrt{I/A}$, in inches.
- f =Bending stress in extreme fiber, in pounds per square inch.
- fb =Resistance of web, in pounds per square inch.
- E = Modulus of elasticity, in pounds per square inch.
- L =Length of section, in feet.
- l =Length of section, in inches.
- d =Depth of section, in inches.
- b =Width of section, in inches.
- t =Thickness of section, in inches.
- W, W₁, W₂=Superimposed loads supported by beam, in pounds.
- w =Superimposed load, in pounds per unit length or area.
- W max = Maximum safe load at point given, in pounds.
- R, R₁ =Reactions at points of support, in pounds.
- V =Vertical shear, in pounds.
- M, M_1 , M_2 =Bending moments at points given, in inch pounds.
- M max = Maximum bending moment, in inch pounds.
- $M_r = Maximum resisting moment, in inch pounds=f I/n = f S.$
- D, D₁ =Deflections at points given, in inches.
- D max = Maximum deflection at point given, in inches.

CARNEGIE STEEL COMPANY

COMPARISON OF VARIOUS LOADING CONDITIONS

The formulas and diagrams on pages 143 to 146 give the various stresses in sections used as beams, resulting from usual conditions of loading.

Taking as a unit of comparison a uniformly distributed safe load on beams of equal length and section, supported at the extreme ends, the following table gives the relative maximum safe loads or bending moments and deflections.

As a check on the accuracy of a computation, the safe load obtained from the formula for any condition of loading may be multiplied by the reciprocal given in the table corresponding to such loading condition; the result should be the maximum allowable uniform load as taken from beam safe load tables.

Conditions of Loading	Case		mum Safe Load	Maximum Deflection
	No.	Relative	Reciprocal	Relative
BEAM SUPPORTED AT ENDS				
Load uniformly distributed over span	IX	1	1	1
Load concentrated at center of span	\mathbf{v}	1/2	2	.80
Two equalloads symmetrically concentrated	VII	1/4a	14a/l	
Load increasing uniformly to one end	X	.9743	1.0264	.976
Load increasing uniformly to center	XII	3/4	11/3	.96
Load decreasing uniformly to center	XI	%	2/3	1.08
BEAM FIXED AT ONE END, CANTILEVER				
Load uniformly distributed over span	11	1/4	4	2.40
Load concentrated at end	I	1/8	8	3.20
Load increasing uniformly to fixed end	III	3/8	$2\frac{2}{7}$ 8	1.92
BEAM CONTINUOUS OVER TWO SUPPORTS EQUIDISTANT FROM ENDS				
Load uniformly distributed over span	XVI			
1. If distance a >0.2071 1		$l^2/4a^2$	$4a^{2}/l^{2}$	
2. If distance a <0.2071 l		1	<u>1-4a</u>	
3. If distance a ==0.2071 1		1-4a 5.8285	.1716	
Two equal loads concentrated at ends	xv	1/4a	4a/l	

BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFLECTIONS

CANTILEVER BEAM-Concentrated load at free end I.

$$R_1(max. shear)$$

W max.
$$=\frac{15}{1}$$

D max.
$$=\frac{WI^3}{3EI}$$

CANTILEVER BEAM-Uniformly distributed load II.

$$R_1(\max. shear)$$

$$= W$$

$$= \frac{Wx^2}{2!}$$

$$M$$
, distance x
 M max. at R_1

$$=\frac{Wl}{2}$$

$$=\frac{2f}{1}$$

$$=\frac{Wl^3}{8EI}$$

CANTILEVER BEAM-Load increasing uniformly to fixed end

$$\mathrm{R}_{1}(\mathrm{max.\ shear})$$

$$= \mathbf{w}$$

$$\mathbf{M}$$
, distance \mathbf{x}

$$=\frac{W}{3}\frac{x^3}{l^2}$$

$$=\frac{W1}{2}$$

$$=\frac{3fS}{1}$$

IV. BEAM SUPPORTED AT ENDS-Concentrated load near one end

$$R(\max, \text{ shear if } b>a) = \frac{Wb}{1}$$

$$R_1(\text{max. shear if a>b}) = \frac{Wa}{1}$$

M, distance
$$x = \frac{WDX}{1}$$
Wab

M max., at point of load =
$$\frac{\text{Wab}}{1}$$

W max. = $\frac{\text{fSl}}{\text{ab}}$

D max. =
$$\frac{\text{Wab (a+2b)} \sqrt{3a (a+2b)}}{27 \text{EI I}}$$

BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFLECTIONS

V. BEAM SUPPORTED AT ENDS-Concentrated load at center

VI. BEAM SUPPORTED AT ENDS-Two unsymmetrical concentrated loads

VII. BEAM SUPPORTED AT ENDS-Two symmetrical concentrated loads

VIII. BEAM SUPPORTED AT ENDS-Three concentrated loads

BEAMS UNDER VARIOUS LOADING CONDITIONS

BENDING MOMENTS AND DEFLECTIONS

IX. BEAM SUPPORTED AT ENDS—Uniformly distributed load

$$R(\text{max. shear}) = R_1 = \frac{W}{2}$$

$$M, \text{ distance } x = \frac{Wx}{2} (1 - \frac{x}{1})$$

M max. at center
$$= \frac{W1}{8}$$
W max.
$$= \frac{818}{8}$$

$$D \max = \frac{5Wl^3}{}$$

X BEAM SUPPORTED AT ENDS—Load increasing uniformly to one end

R

R₁(max. shear)
$$= \frac{2W}{3}$$
X. M. distance $x = \frac{Wx}{3} (1 - \frac{x^2}{1^2})$
M max., distance
$$\frac{1\sqrt{3}}{3} = \frac{2WI}{9\sqrt{3}}$$

M max., distance
$$\frac{3}{3} = \frac{3}{9\sqrt{3}}$$
W max.
$$= \frac{2718}{21\sqrt{3}}$$

D max.
$$= \frac{.013044 \text{ W}^{18}}{\text{E1}}$$

XI. BEAM SUPPORTED AT ENDS-Load decreasing uniformly to center

$$R(max. shear) = R_1 \qquad = \frac{W}{2}$$

M. distance x =
$$Wx(\frac{1}{2} - \frac{x}{1} + \frac{2x^2}{3l^2})$$

M max., distance
$$\frac{1}{2} = \frac{Wl}{12}$$

W max.
$$= \frac{1215}{1}$$
D max.
$$= \frac{3Wl}{290V}$$

XII. BEAM SUPPORTED AT ENDS-Load increasing uniformly to center

$$R(\max, \text{shear}) = R_1 = \frac{W}{2}$$

M, distance
$$\mathbf{x} = \mathbf{W}\mathbf{x}(\frac{1}{2} - \frac{2\mathbf{x}^2}{3l^2})$$

M max., distance
$$\frac{1}{2} = \frac{W1}{6}$$

$$W \max = \frac{6fS}{I}$$

$$D \max = \frac{Wl^{5}}{60E}$$

BEAMS UNDER VARIOUS LOADING CONDITIONS

BENDING MOMENTS AND DEFLECTIONS—Concluded

XIII. BEAM SUPPORTED AT ENDS-Uniform load partially distributed

R (max. shear if a < c) =
$$\frac{W(2c+b)}{2l}$$

$$R_1 = \frac{W(2a+b)}{2l}$$

M, dist. x=a or

$$M_1 \text{ dist. } x > a,$$
 $= Rx - \frac{W(x-a)^2}{2B}$

$$M_2$$
, dist. $x>(a+b)$, $=Rx-\frac{W(2x-2a-b)}{2}$

M max., dist.
$$a + \frac{Rb}{W} := \frac{W(2c+b)[4al+b(2c+b)]}{8l^2}$$

W max. $\equiv \frac{8l^2fS}{8l^2}$

W max. $= \frac{(2c+b)[4al+b(2c+b)]}{(2c+b)[4al+b(2c+b)]}$

XIV. BEAM SUPPORTED AT ENDS-Uniform load partially discontinuous

$$R(\text{max. shear if } W>W_1) = \frac{W(2l-a)+W_1c}{2l}$$

$$R_1 = \frac{W_1(2l-c)+W_2c}{2l}$$

$$M_1 \text{ distance } x < 2$$

$$= Px - \frac{Wx^2}{2l}$$

M, distance x = Rx - \frac{Wx^2}{2a}
M₁ distance x >a,
$$= Rx - \frac{W(2x-a)}{2a}$$

M max. dist.x
$$\frac{2\text{Wal-Wa}^2 + \text{W}_1\text{ca}}{2\text{Wl}} = \frac{\text{R}^2\text{a}}{2\text{W}}$$

M max. dist.x
$$= 2W1$$
 $= \frac{2}{2}W$
W max. $= \frac{R^2a}{2fS}$

XV. BEAM CONTINUOUS OVER TWO SUPPORTS—Two exterior symmetrical loads

$$R(\text{max. shear}) = R_1$$
 $= \frac{W}{2}$
 $M, \text{ distance } x$ $= \frac{Wx}{2}$

M max., from R to R₁ =
$$\frac{\text{Wa}}{2}$$

W max.
$$=\frac{2fS}{a}$$

D, distance a
$$= \frac{\text{Wa}(3\text{al}-4\text{a}^2)}{12 \text{ EI}}$$

$$D_1$$
, distance $\frac{1}{2}$ –a $\frac{Wa(I-2a)^2}{16EI}$

XVI. BEAM CONTINUOUS OVER TWO SUPPORTS—Uniformly distributed load $\frac{W}{M_0} = R_1 = \frac{W}{2}, \text{ max. shear } \frac{Wa}{V} \text{ or } \frac{W}{V} (\frac{1}{2} - a)$

$$M_1$$
 M, distance $x = \frac{W(x^2 - |x + a|)}{2l}$ o, if $x = \frac{1}{2} + \sqrt{\frac{|(1-4a)|}{4}}$
 M_1 at R and $R_1 = \frac{Wa^2}{2l}$ max. if $a > l(\sqrt{\frac{1}{2}} - \frac{1}{2})$

$$M_1$$
 at R and $R_1 = \frac{1}{21}$ max. if $a > l(\sqrt{\frac{1}{2} - \frac{1}{2}})$
 M_2 at center $= \frac{W(l-4a)}{8}$ max. if $a < l(\sqrt{\frac{1}{2} - \frac{1}{2}})$

M₂ at center =
$$\frac{1}{8}$$
 max. if a < $1(\sqrt{\frac{1}{2}-\frac{1}{2}})$
W₁ max. = $\frac{21fS}{a^2}$ max. if a > $1(\sqrt{\frac{1}{2}-\frac{1}{2}})$

$$W_2 \text{ max.} = \frac{8fS}{1-4a}$$
 max. if $a < l(\sqrt{1/2}-1/2)$

SAFE LOADS FOR SECTIONS USED AS BEAMS

EXPLANATION OF TABLES

The tables of safe loads for structural and supplementary beams, H-beams, cross tie sections and channels, used as beams under conditions of transverse loading, give the uniformly distributed safe loads in thousands of pounds for spans customary in bridge and building construction based upon an extreme fiber stress of 16,000 pounds per square inch. The tables of safe loads for angles, tees and zees give the values at the same fiber stress on spans of one foot from which the safe load for any span length may be obtained by direct division and also the values for those spans at which the allowed safe load will produce a deflection of \(\frac{1}{2}\)600 of the span length. The loads in all cases include the weight of the section, which should be deducted in order to arrive at the net load which the section will support.

In addition to these usual tables of safe loads, there follow, on the same basis, tables of the allowable uniform load in pounds per foot on beams and channels for various span lengths, which may be used in proportioning the floor systems of buildings. The choice between various weights and depths of sections for any given span or any uniform load per running foot may be made on inspection.

It is assumed in all eases that the loads are applied normal to the axis 1-1 as shown in the tables of elements of sections, and that the beam deflects vertically in the plane of bending only. If the conditions of loading involve the introduction of forces outside this plane of loading, the allowable safe loads must be determined from the general theory of flexure in accordance with the mode of application of the load and its character. This applies particularly to unsymmetrical sections, such as zee bars and angles, which should be used only under those conditions of loading where the section can deflect vertically only, being rigidly secured against lateral deflection or twisting throughout the entire span. In all such cases of eccentric loading, the actual safe loads would be considerably lower than the tabulated safe loads which have been based upon the most favorable conditions of loading.

Vertical Deflection of Beams. In the case of beams intended to earry plastered eeilings, experience indicates that the vertical deflection to avoid eracking the plaster should be limited to not more than \(\frac{1}{3}60 \) of the span length. This span limit for steel beams is approximately in feet twice the depth in inches and is indicated in the tables by the lower zigzag line. Beams intended for such purposes

CARNEGIE STEEL COMPANY

should not be used for greater spans unless the allowable tabular safe loads exceeds the actual load to be supported. As the dead load of the floor is supported by the beams before the plaster is applied, only the deflection due to the live load really needs to be considered.

The coefficients given below may be used to obtain the deflection, in inches, of sections subjected to transverse stresses due to uniformly distributed loads at various fiber stresses and are based upon the following formulas, using the notation given on page 141,

Deflection, D=
$$\frac{Wl^3}{76.8EI}$$
, when Wl= $\frac{8fl}{n}$ or D= $\frac{8fl^2}{76.8En}$ = $\frac{15fL^2}{E} \times \frac{1}{n}$.
For symmetrical sections, n= $\frac{d}{2}$, D= $\frac{30fL^2}{E} \times \frac{1}{d}$ = $\frac{Coefficient}{depth in inches}$

COEFFICIENTS OF DEFLECTION UNIFORMLY DISTRIBUTED LOADS

Span,	Fibre Stress	, Pounds per	Square Inch	Span,	Fibre Stress	, Pounds per	Square In
Feet	16000	14000	12500	Feet	16000	14000	12500
1	0.017	0.014	0.013	26	11.189	9.790	8.741
2	0.066	0.058	0.052	27	12.066	10.558	9.427
3	0.149	0.130	0.116	28	12.977	11.354	10.138
4	0.265	0.232	0.207	29	13.920	12.180	10.875
5	0.414	0.362	0.323	30	14.897	13.034	11.638
6	0.596	0.521	0.466	31	15.906	13.918	12.427
7	0.811	0.710	0.634	32	16.949	14.830	13.241
8	1.059	0.927	0.828	33	18.025	15.772	14.082
9	1.341	1.173	1.047	34	19.134	16.742	14.948
10	1.655	1.448	1.293	35	20.276	17.741	15.841
11	2.003	1.752	1.565	36	21.451	18.770	16.759
12	2.383	2.086	1.862	37	22.659	19.827	17.703
13	2.797	2.448	2.185	38	23.901	20.913	18.672
14	3.244	2.839	2.534	39	25.175	22.028	19.668
15	3.724	3.259	2.909	40	26.483	23.172	20.690
16	4.237	3.708	3.310	41	27.823	24.346	21.737
17	4.783	4.186	3.737	42	29.197	25.548	22.810
18	5.363	4.692	4.190	43	30.604	26.779	23.909
19	5.975	5.228	4.668	44	32.044	28.039	25.034
20	6.621	5.793	5.172	45	33.517	29.328	26.185
21	7.299	6.387	5.703	46	35.023	30.646	27.362
22	8.011	7.010	6.259	47	36.562	31.992	28.565
23	8.756	7.661	6.841	48	38.135	33.368	29.793
24	9.534	8.342	7.448	49	39.741	34.773	31.047
25	10.345	9.052	8.082	50	41.379	36.207	32.328

To find the deflection in inches of a section symmetrical about the neutral axis, such as beams, channels, zees, etc., divide the coefficient in the table corresponding to given span and fiber stress by the depth of the section in inches. To find the deflection in inches of a section not symmetrical about the neutral axis, such as angles, tees, etc., divide the coefficient corresponding to given span and fiber stress by twice the distance of extreme fiber from neutral axis obtained from table of elements of sections, pages 110 to 130, inclusive.

To find the deflection in inches of a section for any other fiber stress than these given, multiply this fiber stress by any of the coefficients in the table for the given span and divide by the fiber stress corresponding to the coefficient used.

Lateral Deflection of Beams. The tabular safe loads are based on the assumption that the compression flanges of the various sections are secured against lateral deflection by the use of tie rods or by other means at proper intervals. According to the Construction Specifications, page 96, the lateral unbraced length of beams and girders should not exceed forty times the width of the compression flanges. Full tabular loads may be used up to a span length equal to ten times the flange width, but when the unbraced length exceeds ten times the width, the tabular safe loads should be reduced in accordance with the ratios given in the following table in order to insure that the stresses in the compression flanges should not exceed the allowed unit stresses, derived from formula: 19000—300 l/b, as follows:—

Unbraced Span,	Percent of	Unbraced Span,	Percent of	Unbraced Span,	Percent of
1, inches	Tabular Load	1, inches	Tabular Load	l, inches	Tabular Load
15 x Flange, b	90.63 % 81.25 %	25 x Flange, b	71.87% $62.50%$	35 x Flange, b 40 x "	53.13 % 43.75 %

In addition to this lateral deflection which is induced within the beam by the action of pure bending stresses, lateral deflection may be induced by the thrust of floor arches or other loading acting on an axis perpendicular to the line of principal bending stress. The thrust of these arches should either be neutralized by tie rods, or the safe carrying capacity of the beam should be computed in accordance with the general formulas of flexure to provide for the combined stresses due to the action of both vertical and horizontal forces; that is to say, the safe loads should be figured around both the axes 1-1 and 2-2, and the unit stress computed so as not to exceed 16,000 pounds per square inch.

Effect of Impact on Stresses. The formulas upon which the tables of safe loads are based assume all loads to be quiescent or static. The effect of moving loads may be taken care of either by reducing the allowable unit stresses, or else by increasing the theoretical loads. See Construction Specifications, page 94, paragraph 2.

When a load is suddenly applied, the resultant stresses are twice as great than those due an equal quiescent load.

When an instantaneously applied load produces impact or percussion, the resultant stresses are dynamic and are measured by the laws governing the energy of bodies in motion. The following formulas give the fiber stress and deflection due to a load falling on center of a beam rigidly supported at both ends when the weight of beam is negligible as compared with that of falling load, and when no account is taken of the local distortion due to impact or percussion at point of application of load; but when the weight of the beam is a real factor, theoretical formulas do not agree even approximately with observed results and are far less than those indicated by theoretical formulas; this is notably true in proof drop-tests of axles:—Let

W =Weight of falling load, in pounds.

h =Height of fall, in inches.

f —Extreme fiber stress due to static effect of load, W, in pounds per square inch.

f_d ==Extreme fiber stress due to impact of load, W, in pounds per square inch.

D =Deflection due to static effect of load, W, in inches.

D_d=Deflection due to impact of load, W, in inches.

$$f_{\mathrm{d}} = \!\! f \left(1 + \sqrt{\frac{2\mathrm{h}}{\mathrm{D}} + 1}\right) \qquad \qquad D_{\mathrm{d}} \! = \!\! D \left(1 + \sqrt{\frac{2\mathrm{h}}{\mathrm{D}} + 1}\right)$$

Shearing Stresses. The safe load tables for beams and channels are computed solely with reference to safe unit stresses due to flexure, and the safe loads uniformly distributed on the spans given will not produce average shearing stresses in the web greater than the 10,000 pounds per square inch allowed by the Construction Specifications. When, however, beams are loaded with heavy loads concentrated near the supports, or when beams of short span are loaded with uniformly distributed loads to their full carrying capacity as regards flexure, the bending moments may be small in comparison with the reactions at the supports, and the beams may fail along the neutral plane as a result of longitudinal shearing stresses, or may buckle as a result of the combined longitudinal and vertical web stresses. On such spans the safe shearing or buckling strength of the web may limit the carrying capacity of the beam rather than the resistance of the flanges to bending stresses.

Longitudinal Shear. At any point in any section of a beam, the horizontal and vertical components of the web stress are equal to each other and proportional to the vertical shear; their intensities are dependent upon the distance of the point from the neutral axis. In order to determine the intensity of the vertical shearing stress at a given point in a vertical section of the beam, therefore, it is sufficient to find the equal intensity of the horizontal shearing stress at the same point in the horizontal plane.

The longitudinal unit shear is zero at the upper and lower flanges of the beam and a maximum at the neutral plane. It is greatest at the supports and zero where there is no vertical shear.

The intensity of the longitudinal shear at any point in any section is the product of the vertical shear, V, for that section and the statical moment, $M_{\rm S}$ of the section included between the horizontal plane of shear through that point and the extreme fibers on the same side of the neutral plane divided by the product of the moment of inertia of the beam around the proper axis and the thickness at the plane of shear; or

Longitudinal shear per square inch $=\frac{V M_s}{t I}$.

Example—Required the maximum longitudinal shear per square inch in a 24" 79.9 lb. beam loaded with two symmetrical loads of 100.000 pounds each, disregarding the weight of the beam.

 M_S of Flange Rectangle=7x.60x11.7 = 49.14 M_S of Flange Triangles=3.25x.542x11.219= 19.76 M_S of Web. 11.40x 50x7.70 29.40

M_S of Web =11.40x.50x5.70 = 32.49 Total Static Moment 101.39

Moment of Inertia of Beam I=2087.2

Longitudinal Shear= $\frac{100000x101.39}{2087.2x.50}$

=9715 pounds per square inch.

Under usual conditions of loading, the longitudinal shear need not be taken into consideration.

Buckling Values of Beam Webs. The vertical shearing stresses or the vertical compressive components of the web stress may under some conditions exceed the safe resistance of the beam to buckling, and there remains the possibility that a web or web plate which is amply secure as against the safe allowed shear of 10,000 pounds per square inch will not be of sufficient strength when considered as a column. In such cases provision must be made for security against buckling either in the way of stiffeners or by increasing the thickness of the web or web plate.

A series of experiments have been carried out on beams of various depths and web thicknesses to arrive at a basis for a simpler method of computation to use in the investigation of the safe buckling resistance of beams with unsupported webs, and from these experiments the following formulas have been deduced:

In formulas R is the end reaction, W the concentrated load, t the web thickness, d the depth of the beam, at half the distance over which the concentrated load is applied and a the whole distance over which the end reaction is applied, while fb is the safe resistance of the web to buckling in pounds per square inch by the formula 19000—100 d/2r (d/2—l in column formula)=19000—173 d/t.

The first formula is general and applies to any condition of loading. The second formula covers the case of a single load concentrated at the center of a span; it can be extended to cover a system of concentrated loads provided the sum of the distances a¹ is not less than a.

The tables give for beams and channels with unsupported webs:

- 1. Allowed web resistance fb, in pounds per square inch computed from this compression formula.
- 2. The distance a, or the distance over which the end reaction must be distributed when the shearing stress, V, in the web is the maximum allowable of 10,000 pounds per square inch.
- 3. The allowable end reaction (R) when a is taken at $3\frac{1}{2}$ " which is the usual length of beam actually resting on the 4" angles ordinarily used in building construction for beam seats.
- 4. The allowable shear V, on the gross area of beam or channel webs at 10,000 pounds per square inch.

In addition to these data which have to do with the maximum loads on beams and channels as computed from the web resistance, these tables also give the maximum bending moments in foot pounds, obtained by the multiplication of the section modulus of each section by the allowed fiber stress of 16,000 pounds and the division of the product by 12 in order to reduce to a foot pound basis. These maximum bending moments may be used on inspection instead of the table of properties to ascertain the proper size section to be used in any particular instance.

Examples of the Use of Beam Safe Load Tables

1. Direct Bending. Required the proper size of a beam laterally braced to support a superimposed or net load of 30,000 pounds uniformly distributed over a clear span of 20 feet.

From the table of safe loads on page 159, it is found that a 15 inch 42.9 pound beam will support a gross load of 31,400 pounds. The weight of a beam 20 feet long is 858 pounds. The net safe load is, therefore, 31,400 –858=30,542 pounds. A 15 inch 42.9 pound beam will, therefore, carry the net load specified.

2. Shear. Required the maximum load which a 20 inch 85 pound beam can support without exceeding the safe web resistance of the section.

From table on page 158, the maximum load for this section given in small figures above the upper zigzag line is found to be 261,200 pounds.

3. Vertical Deflection. Required the proper size and the deflection of a channel supporting a net load of 10,000 pounds concentrated in the middle of a 14-foot span, assuming that the channel is braced against lateral deflection.

The specified load is equivalent on the given span to a uniformly distributed load of 2 x 10,000=20,000 pounds.

In table on page 167, it is found that a 12 inch 30 pound channel will support a gross load of 20,500 pounds or a net load of $20,500-14 \times 30=20,080$ pounds. The net safe load concentrated at the middle of the span will be one-half this, or 10,040 pounds.

The deflection produced by a uniformly distributed load of 20,500 pounds is found from the coefficient given in the same table and page 148 to be $\frac{3.24}{12}$ =0.270". The deflection for the specified load concentrated in the middle of the span, page 142, is approximately $\frac{0.270 \times 4}{5}$ =0.216".

4. Vertical Deflection. Required the deflection of a riveted girder 37 inches deep for a span of 35 feet and a fiber stress of 14,000 pounds.

Required deflection, table on page $148, = \frac{17.741}{37} = 0.479$ ".

5. Vertical Deflection. Required the deflection of an angle 6 x 4 x 5/6° about an axis parallel to the short leg for a span of 14 feet and a fiber stress of 16,000 pounds.

Required deflection, pages 148 and 149, is $\frac{3.244}{2 \text{ x } (6-1.96)} = 0.401''$.

6 Vertical Deflection. Required the deflection of a 10 inch beam for a span of 18 feet with a fiber stress of 11,000 pounds.

Required deflection, pages 148 and 149, $=\frac{11.000 \text{ x}}{16,000 \text{ x}} \cdot \frac{5.363}{10} = 0.369$ ".

7. Lateral Deflection. Required the reduced safe load on a 12 inch 31.8 pound beam for a span of 16 feet without any lateral support or bracing.

Tabular load, page 160,=24,000 pounds.

Ratio Length of span = $\frac{16 \times 12}{5}$ = 38.4

Reduced safe load, page 149, 24,000 x 0.468=11,232 pounds.

CARNEGIE STEEL COMPANY

BEAMS

MAXIMUM BENDING MOMENTS AND WEB RESISTANCES

Depth	Weight	Thickness	Maximum	II.	eb Resistar	ice	Minimum	End
of Beam	per Foot	of Web	Bending Moment	Web Shear	Minimum Span	Web Buckling	End Bearing	Reaction, a=3½"
d		t	Mmax	V		$f_{\mathbf{b}}$	a	R
Inches	Pounds	Inches	Foot Pounds	Pounds	Feet	Pounds per Sq. n.	Inches	Pounds
27	90.0	.524	292180	141480	8.26	10080	20.04	54120
24	120.0 115.0 110.0 105.9	.798 .737 .675 .625	334530 326730 318790 312390	$\begin{array}{c} 191520 \\ 176880 \\ 162000 \\ 150000 \end{array}$	6.99 7.39 7.87 8.33	13790 13360 12840 12350	11.40 11.96 12.69 13.44	104560 93550 82350 73320
24	100.0 95.0 90.0 85.0 79.9	.747 .686 .624 .563 .500	263530 255720 247790 239980 231920	$179280 \\ 164640 \\ 149760 \\ 135120 \\ 120000$	5.88 6.21 6.62 7.10 7.73	13430 12940 12340 11620 10680	$11.87 \\ 12.55 \\ 13.45 \\ 14.66 \\ 16.46$	95330 84320 73130 62120 50750
24	74.2	.476	216680	114240	7.59	10270	17.38	46420
21	60.4	.428	156890	89880	6.98	10510	14.74	39340
20	100.0 95.0 90.0 85.0 81.4	.873 .800 .726 .653 .600	$\begin{array}{c} 219780 \\ 213290 \\ 206710 \\ 200220 \\ 195510 \end{array}$	174600 160000 145200 130600 120000	5.04 5.33 5.69 6.13 6.52	15030 14670 14230 13700 13230	8.31 8.63 9.06 9.60 10.12	111550 99750 87810 76010 67450
20	75.0 70.0 65.4	.641 .567 .500	168470 161890 155930	$\begin{array}{c} 128200 \\ 113400 \\ 100000 \end{array}$	5.26 5.71 6.24	13590 12890 12070	$\begin{array}{c} 9.71 \\ 10.52 \\ 11.57 \end{array}$	74070 62130 51300
18	90.0 85.0 80.0 75.6	.796 .714 .632 .560	186140 180240 174340 169150	$\begin{array}{c} 143280 \\ 128520 \\ 113760 \\ 100800 \end{array}$	5.20 5.61 6.13 6.71	15090 14630 14070 13440	7.43 7.80 8.29 8.89	96080 83580 71140 60210
18	70.0 65.0 60.0 54.7	.711 .629 .547 .460	135930 130030 124120 117860	127980 113220 98460 82800	4.25 4.59 5.04 5.69	14620 14050 13310 12230	$\begin{array}{c} 7.81 \\ 8.31 \\ 9.03 \\ 10.22 \end{array}$	83160 70690 58230 45010
18	48.2	.380	109200	68400	6.39	10810	12.16	32850
15	75.0 70.0 65.0 60.8	.868 .770 .672 .590	122170 117270 112370 108270	$\begin{array}{c} 130200 \\ 115500 \\ 100800 \\ 88500 \end{array}$	3.75 4.06 4.46 4.89	16010 15630 15130 14600	5.62 5.85 6.16 6.53	100730 87230 73730 62430
15	55.0 50.0 45.0 42.9	.648 .550 .452 .410	90430 85530 80620 78530	97200 82500 67800 61500	3.72 4.15 4.76 5.11	14990 14280 13250 12670	6.26 6.76 7.57 8.09	70430 56930 43430 37650
15	37.3	.332	72090	49800	5.79	11170	9.68	26890
				154				

BEAM SAFE LOADS

BEAMS

MAXIMUM BENDING MOMENTS AND WEB RESISTANCES

Depth	Weight		Maximum	W	eb Resistan	ice '	Minimum	End
of Beam	per Foot	of Web	Bending Moment	Web Shear	Minimum Span	Web Buckling	End Bearing	Reaction a=3½"
d		t	Mmax	V		$f_{\mathbf{b}}$	a	\mathbf{R}
Inches	Pounds	Inches	Foot Pounds	Pounds	Feet	Pounds per Sq. In.	Inches	Pounds
	55.0	.810	70970	97200	2.92	16430	4.30	86530
10	50.0	.687	67030	82440	$\frac{3.25}{3.72}$	15970	4.51	71330
12	45.0	.565	63130	67800	3.72	15320	4.83	56270
	40.8	.460	59770	55200	4.33	14480	5.29	43300
	35.0	.428	50460	51360	3,93	14150	5.48	39350
12	31.8	.350	47960	42000	4.57	13060	6.19	29710
12	27.9	.284	44310	34080	5.20	11680	7.27	21570
	40.0	.741	42140	74100	2.27	16660	3.50	74080
10	35.0	.594	38870	59400	2.62	16090	3.72	57330
10	30.0	.447	35600	44700	3.19	15120	4.11	40560
	25.4	.310	32560	31000	4.20	13410	4.96	24950
10	22.4	.252	30300	25200	4.81	12120	5.75	18330
	35.0	.724	32970	65160	2.02	16850	3.09	70130
43	30.0	.561	30040	50490	2.38	16220	3.30	52320
9	25.0	.397	27090	35730	3.03	15070	3.72	34410
	21.8	.290	25160	26100	3.86	13620	4.36	22720
	25.5	.532	22680	42560	2.13	16400	2.88	47970
	23.0	.441	21390	35280	2.43	15860	3.05	38460
8	20.5	,349	20080	27920	2.88	15030	3.32	28850
	18.4	.270	18960	21600	3.51	13870	3.77	20590
8	17.5	.220	19460	17600	4.42	12700	4.30	15370
	90.0	450	15000	0.1500	0.00	10010	0.71	99590
-	20.0	.450	15980	31500	2.03	16310	2.54	38520
7	17.5	.345	14840	24150	2.46	13490	2.77	28050
	15.3	.250	13800	17500	3.15	14150	3.20	18570
	$17.25 \\ 14.75$.465	11560	27900	1.66	16770	2.08	38980
6	14.75	.343	10590	20580	2.06	15970	2.26	27390
	12.50	.230	9680	13800	2.81	14480	2.64	16650
	14.75	.494	8030	24700	1.30	17250	1.65	40470
5	12.25	.347	7210	17350	1.66	16510	1.78	27200
	10.0	.210	6450	10500	2.46	14880	2.11	14840
	10.5	.400	4720	16000	1.18	17970	1.32	31080
	9.5	.326	4720	13040	1.37	-17270 -16870	1.37	$\frac{51080}{24750}$
4	8.5	.253		10120	1.66	16260	1.46	18510
	7.7	.190	$\frac{4200}{3980}$	7600	$\frac{1.00}{2.09}$	15350	1.46	13120
		0.10	0500	10.55	0.00		0.00	0505-
. 3	7.5	.349	2560	10470	0.98	17510	0,96	25970
ن	6.5	.251	2370	7530	1.26	16930	1.02	18060
	5.7	.170	2210	5100	1.73	15950	1.13	-11520

CARNEGIE STEEL COMPANY

CHANNELS

MAXIMUM BENDING MOMENTS AND WEB RESISTANCES

Depth	Weight	Thickness		W	eb Resistar	ice	Minimum	End
of Channel	per Foot	of Web	Bending Moment	Web Shear	Minimum Span	Web Buckling	End Bearing	Reaction a=3½"
d		t	Mmax	V		$f_{\mathbf{b}}$	a	R
Inches	Pounds	Inches	Foot Pounds	Pounds	Feet	Pounds per Sq. In.	Inches	Pounds
	55.0 50.0	.814 .716	76270 71420	122100 107400	2.50 2.66	15810 15370	5.74 6.01	93290 79790
15	$45.0 \\ 40.0 \\ 35.0 \\ 33.9$.618 .520 .422 .400	66470 61570 56670	92700 78000 63300 60000	$egin{array}{c} 2.87 \ 3.16 \ 3.58 \ 3.70 \ \end{array}$	14800 14000 12840 12510	6.39 6.96 7.93	66290 52790 39290
	50.0	.787	55570 64190	102310		16140	8.24 4.81	36270 85730
13	45.0 40.0 37.0 35.0	.673 .560 .492 .447	59910 55660 53110 51420	87490 72800 63960 58110	2.51 2.74 3.06 3.32 3.54	15660 14980 14420 13960	5.05 5.43 5.76 6.06	71120 56620 47900 42120
12	31.8 40.0 35.0 30.0	.375 .755 .632 .510	48720 43670 39730 35830	48750 90600 75840 61200	4.00 1.93 2.10 2.34	$ \begin{array}{r} 13000 \\ 16250 \\ 15710 \\ 14920 \end{array} $	6.75 4.39 4.64 5.04	32900 79740 64540 49470
	$\frac{25.0}{20.7}$.387 .280	31890 28470	46440 33600	2.34 2.75 3.39	13630 11570	$\frac{5.81}{7.37}$	$\frac{34280}{21060}$
10	$35.0 \\ 30.0 \\ 25.0 \\ 20.0$.820 .673 .526 .379	30720 27460 24190 20920	82000 67300 52600 37900	1.50 1.63 1.84	16890 16430 15710 14430	3.42 3.59 3.87 4.43	83090 66330 49570 32810
	15.3	.240	17830	24000	2.21 2.97	11790	5.98	16970
9	$25.0 \\ 20.0 \\ 15.0 \\ 13.4$.612 ,448 .285 .230	$\begin{array}{c} 20900 \\ 17950 \\ 15010 \\ 14020 \end{array}$	55080 40320 25650 20700	1.52 1.78 2.34 2.71	$\begin{array}{r} 16450 \\ 15520 \\ 13530 \\ 12220 \end{array}$	3.22 3.55 4.40 5.11	57900 39980 22180 16160
8	$\begin{array}{c} 21.25 \\ 18.75 \\ 16.25 \\ 13.75 \\ 11.5 \end{array}$.579 .487 .395 .303 .220	15870 14570 13260 11950 10770	46320 38960 31600 24240 17600	1.37 1.50 1.68 1.97 2.45	$\begin{array}{c} 16610 \\ 16160 \\ 15490 \\ 14430 \\ 12700 \end{array}$	2.82 2.95 3.16 3.55 4.30	52880 43270 33650 24040 15370
7	$19.75 \\ 17.25 \\ 14.75 \\ 12.25 \\ 9.8$.629 .524 .419 .314 .210	$\begin{array}{c} 12590 \\ 11450 \\ 10310 \\ 9170 \\ 8030 \end{array}$	$\begin{array}{c} 44030 \\ 36680 \\ 29330 \\ 21980 \\ 14700 \end{array}$	1.14 1.25 1.21 1.67 2.19	17070 16690 16110 15140 13220	2.35 2.44 2.60 2.87 3.54	56380 45910 35430 24950 14580
6	$15.5 \\ 13.0 \\ 10.5 \\ 8.2$.559 .437 .314 .200	8650 7670 6690 5780	$33540 \\ 26220 \\ 18840 \\ 12000$	1.03 1.17 1.42 1.93	17140 16620 15690 13800	2.00 2.11 2.32 2.85	$\begin{array}{c} 47910 \\ 36320 \\ 24630 \\ 13800 \end{array}$
5	$^{11.5}_{9.0}_{6.7}$.472 .325 .190	$\begin{array}{c} 5520 \\ 4710 \\ 3950 \end{array}$	$\begin{array}{c} 23600 \\ 16250 \\ 9500 \end{array}$	$0.94 \\ 1.16 \\ 1.67$	17170 16340 14440	$1.66 \\ 1.81 \\ 2.21$	38490 25220 13030
4	$7.25 \\ 6.25 \\ 5.4$.320 .247 ,180	$3030 \\ 2770 \\ 2530$	$^{12800}_{\ 9880}_{\ 7200}$	0.95 1.12 1.40	16840 16200 15150	$1.38 \\ 1.47 \\ 1.64$	$\begin{array}{c} 24240 \\ 18000 \\ 12270 \end{array}$
3	6.0 5.0 4.1	.356 .258 .170	1830 1630 1450	$\begin{array}{c} 10680 \\ 7740 \\ 5100 \end{array}$	$0.68 \\ 0.84 \\ 1.14$	17540 16990 15950	$0.96 \\ 1.02 \\ 1.13$	26540 18630 11520

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

~	The second	Depth and Weight of Sections											at on
Span	27 ln.					24	Inch					21 In.	Coefficient of Deflection
Feet	90 lbs.	120 lbs.	115 lbs.	110 lbs.	105.9 lbs.	100 lbs.	95 lbs.	90 lbs.	85 lbs.	79.9 lbs.	74.2 lbs.	60.4 lbs.	S 4
6 7 8 9	$\begin{array}{r} 283.0 \\ \hline{259.7} \\ 233.7 \end{array}$	297.4	$\frac{326.7}{290.4}$		277.7	$\begin{array}{r} 858.6 \\ \hline 351.4 \\ 301.1 \\ 263.5 \\ 234.2 \\ 210.8 \end{array}$	$292.3 \\ 255.7 \\ 227.3$	220.2	213.3	206.1	192.6	139.5	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	212.5 194.8 179.8 167.0 155.8	$223.0 \\ 205.9 \\ 191.2$	$217.8 \\ 201.1 \\ 186.7$	$212.5 \\ 196.2 \\ 182.2$	208.3 192.2 178.5	191.6 175.7 162.1 150.6 140.6	$170.5 \\ 157.4 \\ 146.1$	$165.2 \\ 152.5 \\ 141.6$	160.0.147.7 137.1	154.6 142.7 132.5	$144.5 \\ 133.3 \\ 123.8$	114.1 104.6 96.5 89.7 83.7	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	146.1 137.5 129.9 123.0 116.9	$157.4 \\ 148.7 \\ 140.9$	$153.8 \\ 145.2 \\ 137.6$	$150.0 \\ 141.7 \\ 134.2$	$147.0 \\ 138.8 \\ 131.5$	131.8 124.0 117.1 110.9 105.4	$120.3 \\ 113.7 \\ 107.7$	$116.6 \\ 110.1 \\ 104.3$	112.9	109.1	$\begin{array}{c} 108.3 \\ 102.0 \\ 96.3 \\ 91.2 \\ 86.7 \end{array}$	78.4 73.8 69.7 66.1 62.8	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	$106.2 \\ 101.6 \\ 97.4$	121.6 116.4 111.5	124.5 118.8 113.6 108.9 104.6	115.9 110.9 106.2	113.6 108.7 104.1	100.4 95.8 91.7 87.8 84.3	97.4 93.0 89.0 85.3 81.8	94.4 90.1 86.2 82.6 79.3	91.4 87.3 83.5 80.0 76.8	88.3 84.3 80.7 77.3 74.2	82.5 78.8 75.4 72.2 69.3	59.8 57.1 54.6 52.3 50.2	7.30 8.01 8.76 9.53 10.35
26 27 28 29 30	89.9 86.6 83.5 80.6 77.9	$102.9 \\ 99.1 \\ 95.6 \\ 92.3 \\ 89.2$	96.8 93.4 90.1	98.1 94.5 91.1 87.9 85.0	96.1 92.6 89.2 86.2 83.3	81.1 78.1 75.3 72.7 70.3	78.7 75.8 73.1 70.6 68.2	76.2 73.4 70.8 68.4 66.1	73.8 71.1 68.6 66.2 64.0	71.4 68.7 66.3 64.0 61.8		44.8 43.3	11.19 12.07 12.98 13.92 14.90
31 32 33 34 35	75.4 73.0 70.8 68.7 66.8	86.3 83.6 81.1 78.7 76.5	81.7 79.2 76.9	82.3 79.7 77.3 75.0 72.9	73.5	68.0 65.9 63.9 62.0 60.2		63.9 62.0 60.1 58.3 56.6	61.9 60.0 58.2 56.5 54.9	59.8 58.0 56.2 54.6 53.0	$52.5 \\ 51.0$	40.5 39.2 38.0 36.9 35.9	15.91 16.95 18.03 19.13 20.28
36 37 38 39 40	64.9 63.2 61.5 59.9 58.4	74.3 72.3 70.4 68.6 66.9	70.6 68.8 67.0 65.3	70.8 68.9 67.1 65.4 63.8	62.5	57.0 55.5 54.1	56.8 55.3 53.8 52.5 51.1	53.6	53.3 51.9 50.5 49.2 48.0	51.5 50.1 48.8 47.6 46.4	48.2 46.8 45.6 44.4 43.3	34.9 33.9 33.0 32.2 31.4	25.18
41 42 43 44 45	57.0 55.7 54.4 53.1 52.0	60.8 59.5	62.2 60.8 59.4 58.1	62.2 60.7 59.3 58.0 56.7	59.5 58.1 56.8 55.5	50.2 49.0 47.9 46.8	45.5	48.4 47.2 46.1 45.1 44.1	44.6 43.6 42.7	42.2 41.2	41.3 40.3 39.4 38.5	30.6 29.9 29.2 28.5	27.82 29.20 30.60 32.04 33.52
46 47 48 49 50	50.8 49.7 48.7 47.7 46.7	58.2 56.9 55.8 64.6 53.5	55.6	55.4 54.3 53.1 62.1 51.0	53.2		43.5	43.1 42.2 41.3 40.5 89.6		40.3 39.5 38.7 87.9 87.1			35.02 36.56 38.14 39.74 41.38

Loads above upper horizontal lines will produce maximum allowable shear in webs.

Loads below lower horizontal lines will produce excessive deflections.

For maximum safe loads see tables of Maximum Bending Moments and Web Resistances.

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Maximum Bending Stress, 16,000 Pounds per Square Inch

	1			I	epth a	and We	ight of	Section	ns				n nt
Span				20 I	nch					18 I	nch		Coefficient of Deflection
Feet	100 lbs.	95 lbs.	90 lbs.	85 lbs.	81.4 lbs.	75 lbs.	70 lbs.	65.4 lbs.	90 lbs.	85 lbs.	80 lbs.	75.6 lbs.	Coe
	349.2	320.0	290.4			256.4	226.8		286.6	257.0			
6	293.0	284.4	275.6	261.2	240.0	224.6	215.9	200,0	248.2				0.60
7									212.7				
8									186.2				
9 10									$165.5 \\ 148.9$				1.34 1.66
													2.00
$\frac{11}{12}$	159.9	140.0	100.0	122.5	120.2	119 9	107.0	113.4	$135.4 \\ 124.1$	131.1	116 9	1123.0	
13	125.9	121 9	197.9	193.0	190.3	$\frac{112.5}{103.7}$	99.6		114.5				2.80
14		121.5					92.5		106.4			96.7	3.24
15	117.2	113.7	110.3	106.8	104.3					96.1	93.0		3.72
16	109.9	106.6	103.4	100.1	97.8	84.2	81.0	78.0	93.1	90.1	87.2	84.6	4.24
17		100.4	97.3	94.2	92.0	$\frac{84.2}{79.3}$	76.2	73.4	87.6		82.0		4.78
18	97.7			.89.0	86.9	74.9	72.0	69.3	82.7	80.1	77.5		
19	92.5	89.8	87.0		82.3	70.9		65.7		75.9		71.2	5.98
20	87.9	85.3	82.7	80.1	78.2	67.4	64.8	62.4	74.5	72.1	69.7	67.7	6.62
21	83.7		78.8	76.3	74.5	64.2	61.7	59.4	70.9	68.7	66.4		
22	79.9	77.6	75.2	72.8	71.1				67.7	65.5			
23 24	76.4		$\frac{71.9}{68.9}$	$\frac{69.7}{66.7}$	$68.0 \\ 65.2$				64.7	$\frac{62.7}{60.1}$	$\frac{60.6}{58.1}$	$ 58.8 \\ 56.4$	
25	73.3 70.3		66.2	64.1			$54.0 \\ 51.8$		62.1 59.6	57.7	55.8		10.35
26	67.6			61.6	60.2	51.8	49.8	48.0	57.3	55,4	53.6	59.0	11.19
27	65.1			59.3					55.2	53.4	51.6		12.07
28	62.8			57.2	55.9				53.2	51.5			12.98
29	60.6			$\frac{57.2}{55.2}$	53.9			43.0	51.4	49.7	48.1	46.7	13.92
30	58.6			53.4	52.1	44.9		41.6	49.6		46.5		14.90
31	56.7	55.0	53.4	51.7	50.5	43.5	41.8		48.5	46.5	45.0		15.91
32	54.9	53.3	51.7	50.1	48.9			39.0	46.5	45.1	43.6		16.95
33	53.3	51.7		48.5	47.4			37.8	45.1	43.7	42.3	41.0	18.03
34	51.7	50.2	48.6		46.0			36.7	43.8	42.4			19.13
35	50.2	48.8	47.2	45.8	44.7	38.5	37.0	35.6	42.5	41.2	39.9	38.7	20.28
36	48.8				43.4				41.4	40.0			21.45
37	47.5			43.3					40.2	39.0	37.7	36.6	22.66
38	46.3				41.2	35.5	34.1	32.8	39.2	87.9	36.7	85.6	$\frac{23.90}{25.18}$
39	45.1		42.4	41.1		34.6		32.0					$\frac{25.18}{26.48}$
40	44.0	42.7	41.3	40.0	39.1	33.7	32.4	31.2	5				20.48
41	42.9	41.6	49.3	39.1	38.1	32.9	31.6	30.4					27.82
42	41.9	40.6	39.4	38.1	37.2	32.1	30.8	29.7					29.20

Loads above upper horizontal lines will produce maximum allowable shear in webs.

Loads below horizontal lines will produce excessive deflections.

For maximum safe loads see tables of Maximum Bending Moments and Web Resistance

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

	1)]	Depth	and W	eight o	f Section	ns					ent
Span		1	8 Inch						15 Inc	h				Coefficient of Deflection
Feet	70 lbs.	65 lbs.	60 lbs.	54.7 lbs.	48.2 lbs.	75 lbs.	70 lbs.	65 lbs.	60.8 lbs.	55 lbs.	50 lbs.	45 lbs.	42.9 lbs.	ට ලී
4 5	$\frac{256.0}{217.5}$	$\frac{226.4}{208.0}$				$\frac{260.4}{244.3}$ 195.5				$\frac{194.4}{180.9}$				$0.27 \\ 0.41$
6 7 8 9 10	$155.3 \\ 135.9$	$148.5 \\ 130.0 \\ 115.6$	141.8 124.1 110.3	134.7 117.9 104.8	124.8 109.2	162.9 139.7 122.2 108.6 97.7	134.0 117.3 104.2	$128.4 \\ 112.4 \\ 99.9$	$123.7 \\ 108.3$	$103.3 \\ 90.4$	$97.7 \\ 85.5 \\ 76.0$	$92.1 \\ 80.6 \\ 71.7$	$89.7 \\ 78.5 \\ 69.8$	0.60 0.81 1.06 1.34
11 12 13 14 15	98.9 90.6 83.7 77.7 72.5	$\frac{80.0}{74.3}$	82.7 76.4 70.9	78.6 72.5 67.3	79.4 72.8 67.2 62.4 58.2	88.9 81.5 75.2 69.8 65.2	78.2 72.2 67.0	$69.1 \\ 64.2$	$\begin{array}{c c} 72.2 \\ 66.6 \\ 61.9 \end{array}$	60.3 55.6 51.7	57.0 52.6 48.9	$\frac{53.7}{49.6}$	$52.4 \\ 48.3 \\ 44.9$	2.38 2.80 3.24
16 17 18 19 20	68.0 64.0 60.4 57.2 54.4	$61.2 \\ 57.8 \\ 54.8$	58.4 55.2 52.3	55.5 52.4	54.6 51.4 48.5 46.0 43.7	61.1 57.5 54.3 51.4 48.9	$52.1 \\ 49.4$	52.9 49.9 47.3	50.9 48.1 45.6	42.6 40.2 38.1	$\frac{40.2}{38.0}$ $\frac{36.0}{36.0}$	37.9 35.8 33.9	$37.0 \\ 34.9 \\ 33.1$	$\begin{array}{c} 4.78 \\ 5.36 \\ 5.98 \end{array}$
$21 \\ 22 \\ 23 \\ 24 \\ 25$	51.8 49.4 47.3 45.3 43.5	$47.3 \\ 45.2 \\ 43.3$	$45.1 \\ 43.2 \\ 41.4$	$\frac{41.0}{39.3}$	41.6 39.7 38.0 36.4 34.9	46.5 44.4 42.5 40.7 39.1	42.7	$\frac{39.1}{37.5}$	39.4 37.7 36.1	$32.9 \\ 31.5 \\ 30.1$	$\frac{31.1}{29.8}$ $\frac{28.5}{2}$	30.7 29.3 28.0 26.9 25.8	$28.6 \\ 27.3 \\ 26.2$	$8.01 \\ 8.76 \\ 9.53$
26 27 28 29 30	41.8 40.3 38.8 37.5 36.2	$38.5 \\ 37.1 \\ 35.9$	$\frac{36.8}{35.5}$	$\begin{vmatrix} 34.9 \\ 33.7 \\ 32.5 \end{vmatrix}$	33.6 32.3 31.2 30.1 29.1	37.6 36.2 34.9 33.7 32.6	$\begin{vmatrix} 34.7 \\ 33.5 \\ 32.3 \end{vmatrix}$	$\frac{32.1}{31.0}$	$32.1 \\ 30.9 \\ 29.9$	$26.8 \\ 25.8 \\ 24.9$	$25.3 \\ 24.4 \\ 23.6$	$23.9 \\ 23.0 \\ 22.2$	$23.3 \\ 22.4 \\ 21.7$	11.19 12.07 12.98 13.92 14.90
31 32 33 34 35	35.1 34.0 33.0 32.0 31.0	$32.5 \\ 31.5 \\ 30.6$	$\frac{31.0}{30.1}$	$ \begin{array}{c c} 29.5 \\ 28.6 \\ 27.7 \end{array} $	28.2 27.3 26.5 25.7 25.0	31.5 30.5	30,3 29.3	29.0 28.1	27.9 27.1	23.3 22.6	22.1 21.4	20.8 20.2	20.3 19.6	$\begin{array}{c} 15.91 \\ 16.95 \\ 18.03 \\ 19.13 \\ 20.28 \end{array}$
36 37 38	30.2 29.4 28.6	28.9 28.1 27.4	27.6 26.8 26.1	25.5	24.3 23.6 23.0			-						$21.45 \\ 22.66 \\ 23.90$

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 154.

CARNEGIE STEEL COMPANY

BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

a					Dept	h and	Weigh	nt of S	ections					nt ng
Span	15ln.			12	2 Inch					1	0 Inch	1		Coefficient of Deffection
Feet	37.3 lbs.	55 lbs.	50 lbs.	d5 lbs.	40.8 lbs.	35 lbs.	31.8 lbs.	27.9 lbs.	40 lbs.	35 lbs.	30 lbs.	25.4 lbs.	22.4 lbs.	Coe
· 3 4 5		141.9	$\frac{164.9}{134.1}$ 107.2	126.3	$\frac{110.4}{95.6}$	$\begin{array}{c} 102.7 \\ \hline 100.9 \\ 80.7 \end{array}$	$\frac{84.0}{76.7}$		$ \begin{array}{r} \frac{148.2}{112.4} \\ 84.3 \\ 67.4 \end{array} $	$\frac{103.7}{77.7}$	$\frac{89.4}{71.2}$ 57.0	$\frac{62.0}{52.1}$	$\frac{50.4}{48.5}$	$0.15 \\ 0.27 \\ 0.41$
6 7 8 9 10	$\begin{array}{r} 99.6 \\ \hline 96.1 \\ 82.4 \\ 72.1 \\ 64.1 \\ 57.7 \end{array}$	94.6 81.1 71.0 63.1 56.8	76.6 67.0 59.6	$ \begin{array}{r r} 72.1 \\ 63.1 \\ 56.1 \end{array} $	$68.3 \\ 59.8 \\ 53.1$	$57.6 \\ 50.5 \\ 44.9$	63.9 54.8 48.0 42.6 38.4	50.6 44.3 39.4	56.2 48.1 42.1 37.5 33.7	$\frac{44.4}{38.9}$ $\frac{34.6}{34.6}$	47.5 40.7 35.6 31.6 28.5	$37.2 \\ 32.6 \\ 28.9$	$34.6 \\ 30.3 \\ 26.9$	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	52.4 48.1 44.4 41.2 38.4	51.6 47.3 43.7 40.6 37.8	$\begin{vmatrix} 44.7 \\ 41.2 \\ 38.3 \end{vmatrix}$	$ \begin{array}{r} 42.1 \\ 38.8 \\ 36.1 \end{array} $	$39.8 \\ 36.8 \\ 34.2$	$33.6 \\ 31.0 \\ 28.8$	34.9 32.0 29.5 27.4 25.6	$29.5 \\ 27.3 \\ 25.3$	30.6 28.1 25.9 24.1 22.5	25.9 23.9 22.2	25.9 23.7 21.9 20.3 19.0	$21.7 \\ 20.0 \\ 18.6$	$ \begin{array}{c} 20.2 \\ 18.6 \\ 17.3 \end{array} $	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	36.0 33.9 32.0 30.4 28.8	35.5 33.4 31.5 29.9 28.4	$ \begin{array}{r} 31.5 \\ 29.8 \\ 28.2 \end{array} $	$ \begin{array}{r} 29.7 \\ 28.1 \\ 26.6 \end{array} $	$28.1 \\ 26.6 \\ 25.2$	23.7	$\begin{array}{c} 24.0 \\ 22.6 \\ 21.3 \\ 20.2 \\ 19.2 \end{array}$	20.9	21.1 19.8 18.7 17.7 16.9	18.3 17.3 16.4	17.8 16.8 15.8 15.0 14.2	$15.3 \\ 14.5 \\ 13.7$	$14.3 \\ 13.5 \\ 12.8$	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	$\begin{array}{c} 27.5 \\ 26.2 \\ 25.1 \\ 24.0 \\ 23.1 \end{array}$	27.0 25.8 24.7 23.7	24.4	$\frac{23.0}{22.0}$	$\frac{21.7}{20.8}$	$\frac{18.3}{17.5}$	18.3 17.4 16.7 16.0 15.3	$\begin{array}{c} 16.1 \\ 15.4 \end{array}$	16.1 15.3	14 8 14.1	13.6 12.9	12.4 11.8	11.5 11.0	7.30 8.01 8.76 9.53 10.35
26 27 28 29 30	$\begin{array}{c} 22.2 \\ 21.4 \\ 20.6 \\ 19.9 \\ 19.2 \end{array}$		20.6	19.4	18.4	15.5	14.8	13.6						11.19 12.07 12.98 13.92 14.90
$\frac{31}{32}$	18.6 18.0													15.91 16.95

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 155.

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

					Depth a	and We	ight of	Section	ns				t of
Span		9 I	nch		1		8 Inch			1	7 Inch		fficient o
Feet	35 lbs.	30 lbs.	25 lbs.	21.8 lbs.	25.5 Ibs.	23 lbs.	20.5 lbs.	18.4 lbs.	17.5 Ibs.	20 lbs.	17.5 lbs.	15.3 lbs.	Coefficient of Deflection
3 4 5	$\begin{array}{r} 130.8 \\ \hline 87.9 \\ 66.0 \\ 52.8 \end{array}$	101.0 80.1 60.1 48.1	$\frac{71.5}{54.2}$ $\frac{43.3}{43.3}$	50.3 40.3	$\begin{array}{r} 85.1 \\ \hline 60.5 \\ 45.4 \\ 36.3 \end{array}$	$\begin{array}{r} 70.6 \\ \hline 57.0 \\ 42.8 \\ 34.2 \end{array}$	55.8 53.5 40.2 32.1	48.2 37.9 30.3	85.2 31.1	$\begin{array}{r} \underline{63.0} \\ 42.6 \\ 32.0 \\ 25.6 \end{array}$	48.3 39.6 29.7 23.7	85.0 27.6 22.1	$0.15 \\ 0.27 \\ 0.41$
$\begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	44.0 37.7 33.0 29.3 26.4	40.1 34.3 30.0 26.7 24.0	36.1 31.0 27.1 24.1 21.7	33.6 28.8 25.2 22.4 20.1	30.2 25.9 22.7 20.2 18.1	28.5 24.4 21.4 19.0 17.1	26.8 22.9 20.1 17.9 16.1	$\begin{array}{c} 25.3 \\ 21.7 \\ 19.0 \\ 16.9 \\ 15.2 \end{array}$	25.9 22.2 19.5 17.3 15.6	21.3 18.3 16.0 14.2 12.8	19.8 17.0 14.8 13.2 11.9	18.4 15.8 13.8 12.3 11.0	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	24.0 22.0 20.3 18.8 17.6	21.8 20.0 18.5 17.2 16.0	19.7 18.1 16.7 15.5 14.4	18.3 16.8 15.5 14.4 13.4	16.5 15.1 14.0 13.0 12.1	15.6 14.3 13.2 12.2 11.4	14.6 13.4 12.4 11.5 10.7	13.8 12.6 11.7 10.8 10.1	14.2 13.0 12.0 11.1 10.4	11.6 10.7 9.8 9.1	10.8 9.9 9.1 8.5 7.9	10.0 9.2 8.5 7.9	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	16.5 15.5 14.7 13.9 13.2	$15.0 \\ 14.1 \\ 13.3 \\ 12.6 \\ 12.0$	13.5 12.7 12.0 11.4 10.8	12.6 11.8 11.2 10.6 10.1	11.3 10.7 10.1	10.7 10.1 9.5	10,0 9.5 8.9	9.5 8.9 8.4	9.7 9.2 8.6	8.0	7.4	6.9	4.24 4.78 5.36 5.98 6.62

				E	epth a	nd Weig	ht of S	ection	3					t of
Span in		6 Inch			5 Inch			4 In	ch		3	Inch		oefficient Deflection
Feet	17.25 lbs.	14.75 lbs.	12.5 lbs.	14.75 lbs.	12.25 lbs.	10 lbs.	10.5 lbs.	9.5 lbs.	8.5 lbs.	7.7 lbs.	7.5 lbs.	6.5 lbs.	5.7 lbs.	Coefficient
1 2 3 4 5	55.8 46.3 30.8 23.1 18.5	41.2 28 2 21.2 16.9	$ \begin{array}{r} 27.6 \\ \hline 25.8 \\ 19.4 \\ 15.5 \end{array} $	$\begin{array}{r} 49.4 \\ \hline 32.1 \\ 21.4 \\ 16.1 \\ 12.8 \end{array}$	84.7 28.8 19.2 14.4 11.5	21.0 17.2 12.9 10.3	82.0 18.9 12.6 9.4 7.6		$\begin{array}{c} 20.2 \\ \hline 16.8 \\ 11.2 \\ 8.4 \\ 6.7 \end{array}$	10.6		$9.5 \\ 6.3 \\ 4.7$	10.2 8.8 5.9 4.4 3.5	0.02 0.03 0.13 0.23 0.4
6 7 8 9 10	15.4 13.2 11.6 10.3 9.3	14.1 12.1 10.6 9.4 8.5	12.9 11.1 9.7 8.6 7.7	10.7 9.2 8.0 7.1 6.4	9.6 8.2 7.2 6.4 5.8	8.6 7.4 6.4 5.7 5.2	6.3 5.4 4.7 4.2 3.8	6.0 5.1 4.5 4.0 8.6	5.6 4.8 4.2 3.7 3.4	5.3 4.5 4.0 8.5 3.2	3.4 2.9 2.6	3.2 2.7 2.4	2.9 2.5 2.2	$0.6 \\ 0.8 \\ 1.0 \\ 1.3 \\ 1.6$
11 12 13 14	8.4 7.7 7.1 6.6	7.7 7.1 6.5 6.1	7.0 6.5 6.0 5.5	5.8 5.4	5.2 4.8	4.7								2.00 2.3 2.80 3.2

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 155.

R FOOT
PER
Pounds
Z
LOAD
UNIFORM
BEAMS—ALLOWABLE

	30	2600		2340 2240 2200 2200 2130 2060		1950 1900 1840 1780 1740 1500 1390	1650 1600 1550 1500 1200 1100 1050
	28	2980	3410 3330 3250 3190	2690 2690 2690 2530 2450 2370	1600	2410 2240 2330 2330 2350 2110 2250 2010 2110 1850 1720 1730 1650 1730 1650 1710 1590	1900 1840 1780 1730 1330 1270 1210
	27	3460 3210 2980	3670 3590 3500	28890 28810 2720 2630 2540 2380	1720	2410 2340 2270 2200 2150 1850 1710	2040 1980 1910 1860 1490 1430 1360 1290 1200
	26	3460	3960 3870 3770	3120 3030 2930 2840 2740 2560	1860	2600 2520 2520 2450 2370 2310 1990 1990 1850	2380 2200 2310 2130 2230 2060 2170 2000 1740 1610 1590 1470 1510 1390 1400 1290
	25	3740	4280 4180 4080	3370 3120 2890 2 3270 3030 2810 2 3170 2830 2720 2 3070 2840 2630 2 2970 2740 2540 2	2010	2810 2730 2650 2560 2560 2160 2070	2380 22310 2230 2170 11740 11590 11510 1400
	24	4060	4540 4540 43430	35556 33556 3322 3010	2180	3320 3230 3230 3230 330 3030 2270 2960 2720 2550 2450 2360 2170	88900 88900 88900 88900 88000
	133	5840 5300 4830 4420 4060	5060 4940 4820 4720	3980 3750 3750 3510 3280	4900 4340 3870 3480 3140 2850 2590 2370 2180 2010 1860 1720 1600	33320 33230 33230 33030 2450 2450	3380 3080 2810 2 3270 2880 2730 2 3160 2880 2730 2 3170 2800 2560 2 2470 2800 2560 1970 1 2250 2150 1970 1 2250 2050 1880 1 2140 1950 1780 1 1980 1800 1650 1
	65	4830	5530 5400 5270 5160	4360 4100 4100 3970 3530 3580	2590	3630 3530 3530 3530 35310 2523 2580	3080 2980 2880 2880 2880 2250 2250 2150 2050 1950
	21	5300	6070 5930 5780 5670	4780 4640 4490 4350 3930	2850	3990 3870 3750 3630 3550 2940 2830	0 4600 4120 3720 3380 33 0 4450 3390 3450 22 0 4310 3860 3450 2 0 4180 3750 3380 3070 2 0 3210 2880 2600 2360 2 0 3600 2750 2480 2256 2 0 2910 2610 2360 2 0 2910 2610 2360 2
eet	20	5840	7410 6690 7240 6530 7060 6380 6920 6250	5840 5270 5670 5110 5490 4960 5320 4800 5140 4640 4800 4330	3140	4870 4400 4730 4270 4580 4130 4440 4000 4330 3910 3730 3370 3590 3210 3460 3120	3720 3450 3480 3380 2720 2720 2780 2780
Span in Feet	19	9130 8090 7210 6470	8260 7410 8070 7240 7870 7060 7710 6920	6510 5840 6310 5670 6120 5490 5930 5320 5730 5140 5350 4800	3480	5430 4870 5270 4730 5100 4580 4940 4440 4830 4330 4160 3730 4000 3590 3850 3460	4450 4120 4450 3990 4310 3860 4180 3750 3210 2880 2910 2610 2700 2420
Spi	18	7210	8260 8070 7870 7710	6510 6310 6120 5930 5730 5350	3870	5430 5270 5100 4940 4830 4160 4000 3850	4600 4450 4310 4180 3360 3210 3210 2210 2700
	17	8000	9260 9040 8820 8650	7290 7080 6860 6640 6420 6000	4340	6870 6080 6660 5900 6460 5720 6260 5540 6110 5410 5410 5500 4860 5500 4880 4870 4870 4870	215 1999 183 1683 1683 1683 1683 1683 1683 1683
	16	9130	10210 10210 9960 9760			6870 6660 6460 6260 6110 5260 5060	5820 5630 5630 5280 4250 3880 3680 3410
	15	10390	11890 11620 11340		5580	7810 7580 7350 7120 6950 5990 5760	6620 6410 6200 6200 6010 4830 4410 4410 3880
	14	11930	13660 13330 13010 12750		6400	8970 8700 8440 8170 7980 6880 6610 6370	7600 7360 7120 6900 5550 5310 5070 4460
	13	13830	15840 15470 15090 14790	12470 12110 11730 11360 10980 10260	7430	10400 10100 9790 9480 9480 7980 7660 7380	8810 8530 8250 8010 6440 6160 5580 5170
	12	16230	18590 18150 17710 17360	14640 14200 13760 13330 12880 12040	8720	12210 11850 111480 11120 10860 9360 8990 8660	10340 10010 9690 9400 7550 7220 6900 6550
	11	23370 19320 16230 13830 11930 10390	22120 21600 21600 21080 20650	21080 17420 20460 16910 19820 16380 19200 15870 18550 15330 17330 14330	10370	14530 14100 13670 13240 12930 11140 10700	12310 11920 11530 111530 11180 8990 8600 8210 7790 7220
	10	23370	26760 26140 25500 24990	100 21080 1 95 20460 1 90 19820 1 85 19200 1 79.918550 1 74.217330 1	60.4 12550 10370	100 17580 14 95 17060 14 90 16540 18 85 16640 18 81.4 15640 18 75 13480 11 70 12950 10	14890 14420 13950 13530 13530 10870 10400 9930 9430 8740
a per	Pound Fo	06	20 15 10 05.9	00 95 90 79.9 74.2	60.4	00 95 90 85 81.4 75 70	90 885 880 775.61 770 665 148.2
-	Depth,			24	21	20	18

BEAMS-Allowable Uniform Load in Pounds per Foot

	-1	27150 19950 15270 96060 19150 14660	2.1970 18350 14040	$24060\ 17650\ 13$ $20100\ 14760\ 11$	13960	17910 13160 10	11770	11590	3 07601	10310	0076	_	1000	0427	0889	6350 4	-2	0000	4990	5380	4910	4420	55 90 4110 3
	6 8	270 12070		13530 10690 11310 8930		0800 7760					•		•	5540 4380					2990				3150 2490
	10	8 0770 9770 8	20668	8660	0840	7960 6450 5	5770	5680 4690 3940	5360 4430 3720 3170 2740	5050	087	1040	5540	3550	3370	3110	2850	2000	2420	2640	2400	2170 1790 1500 1280 1110	2010 1660 1400 1190 1030
	=	8080 6790	7430 6240	7160 6010 5130 4420 5980 5020 4280 3690	5650 4	5330 4480	4770 4010 3410 2940	1690	1430 3	11703	3950 3	3340 2800	3170 2660	2930 2460	2790 2	2570 2160 1840 1590	2350 1980 1690	2150 1810 1540 1330	2000	2180 1830 1560 1350	1 0661	1280 1	1660 1
	27	790 5	2405	010 5	4750 4	180 3	010	940	720 3	510 2					340 1	160 1	980	810 1	1680 1430	830 1	670 1	500	400
	- 23	5780 4990	5320 4590	5130 4	4050 3	3820 3290	34102	3360 2900	$\frac{2}{170}$	2990 2	2830 2	2330 2	2260 1960	2100 1810	990 1	840 1	1690 1	540 1	430 1	560 1	420 1	1280 1	190 1
	14														120 1				1240 1			1110	1030
Span	15	4340 3820 3380 3020	3990 3	3850 3380	3040 2	2870 2	2560 2250 2000	2530 2220 1960 1750 1570	2380 2090 1860	2240 1	2130 1	1790		1580 1	1500 1	1380 1			1080	1170 1	1070	960	006
Span in Feet	91	3820	3510 3	3380 3	2670 2	2520 2	2250 E	2220 1	2000	1970 1	1870 1650	1580 1	1500	1380	1320 1		0111	0501	920	1030	940	850	190
ب	17	3380	3510 3110 2770 2490	3000 2670 2400	2370 2110 1900	2230 1990 1790	2000 1780	1960	860 1					1230 1	1170	0801	066	006	840	016	830	750	200
	18	3020	2000	0292	2110	0661	1780	1750	1650 1490	1560				0001	1040	960	880	800	750	\$10	740	670	620
	61	2710	000				1600	1570		1400	1320	1120	0901	086	930	860	290	720	670	730	_	-	260
	30	2440	2250	2170		1610	1570	1.420	1340	1260	1200	1010	096		8.10	780	710	650	610	099	009		500
	51	2220 2020 1850 1700 1560 1450	2130 1940 2040 1860	1960 1790	1550 1410	1460 1330	1420 1300 1310 1190	1290 1170	1220 1110	11501	1080	920		800	760	210	650	590	550	Loads within heavy horizontal lines	are m	Loads below dotted horizontal lines	MIII I
	81	020				330			110	1040	990	830	290	730	200	040	590	540	200	within	are maximum loads for web shear	below	will produce excessive denection
	23	1850	00/1	1640	1290	1220	1190 1090 1010 1090 1000 920	1070	010	950	900	260	730	670						heav	n load	dotte	excess
	1 2	1700	1560	1500	1190	1120 1	1090 1000 1	066	930	880	830	700	670	620						y bori	s for w	d horn	ave der
	255	1560	15001390 14401330	1390 1280	0.0010010101010101010101010101010101010	1030	920	910	860	810	770	650	610	570						zontal	eb she	sonta	ection

Foor
PER
Pounds
Z
LOAD
UNIFORM
-ALLOWABLE L
EAMS
മ

	12 13 14 15 16 17 18	13970_10690 8450_6840 5660_4750_4360 3700_2830 2240_11810 1500_1260 1070_930 510_630 560 3705_560 1310_10040 1700_630 1100_1180 1100_1190 1010 870_760 670_550 530 530 2310_250 1310_1100 1120_1100 870_760 760_760 670_550 530 530 2310_250 1310_1130 1120_91 1010_870 760_760 670_550 530_530 1310_80 1320_80 1310_80 1310_80 1310_80 130_80 1310_80 1310_80 130_80 1310_80 1310_80 130_80 1310_80 1310_80 130_80 1310_80 1310_80 1310_80 1310_80 1310_80 1310_80 1320_80 1310_80 1320_80 <th>890 760 650 570 500 820 700 610 530 460 770 650 560 490 430</th> <th>650 550 470 590 500 430 540 460 400</th> <th>450 400 360</th> <th>Loads within heavy horizontal lines are maximum loads for web shear. Loads, below dotted, horizontal lines</th> <th>will produce excessive deflection.</th>	890 760 650 570 500 820 700 610 530 460 770 650 560 490 430	650 550 470 590 500 430 540 460 400	450 400 360	Loads within heavy horizontal lines are maximum loads for web shear. Loads, below dotted, horizontal lines	will produce excessive deflection.
	11	10340 89607260 6000 5040 4300 3700 2830 2240 1810 1500 1260 10690 84506840 5660 4750 4050 3490 2670 2110 1710 1410 1190 10040 7930 6430 5310 4460 3800 3280 2310 1980 1610 1330 1120 9480 7490 6070 5010 4210 3590 3100 2370 1870 1520 1250 1050 8800 7690 6230 5150 4320 3880 3180 2430 1920 1560 1290 1080	$\begin{array}{c} 7990 \left(6310 \right) 110 \\ 4230 \left(3550 \right) 3030 \left(2610 \right) 2000 \left(1580 \right) 1280 \left(1000 \right) \\ 7420 \left(5860 \right) 4750 \left(3920 \right) 3300 \left(2810 \right) 2420 \left(1850 \right) 1470 \left(1190 \right) \\ 6900 \left(5450 \right) 4420 \left(3650 \right) 3070 \left(2610 \right) 2250 \left(1730 \right) 1360 \left(1100 \right) \\ 910 \end{array}$	760 700 640	530 480 430		
	10	1810 1710 1610 1520 1560	1280 11190 11100	930 850 770	640 580 520	380 360 340 320	
	6	2240 2110 1980 1870 1920	1580 1470 1360	1140 1050 960	790 710 640	470 440 420 390	<u>-</u>
Feet	oo	2830 2670 2510 2370 2430	2000 1850 1730	1450 1320 1210	1000 900 810	590 580 530 500	
Span in F	7	3700 3490 3280 3100 3180	2610 2420 2250	1890 1730 1580	1310 1180 1050	770 730 690 650	420 390 360
Spa	61/2	4300 4050 3800 3590 3680	3030 2810 2610	2190 2000 1830	1520 1360 1230	890 840 800 750	450 420
	9	5040 4750 4460 4210 4320	3550 3300 3070	2570 2350 2150	1780 1600 1430	1050 990 930 880	570 530 490
	51/2	6000 5660 5310 5010 5150	7990 (5310 5110 4230) 3550 3030 2610 2000 1580 1280 7420 5860 4750 3920 3300 2810 2420 1850 1470 1190 6900 5450 4420 3650 3070 2610 2250 1730 1360 1100	5780 4570 3700 3060 2570 2190 1890 1450 1140 5290 4180 3390 2800 2350 2000 1730 1320 1050 4840 3830 3100 2560 2150 1830 1580 2110 900	4010 3170 2570 2120 1780 1520 1310 1000 3600 2850 2310 1910 1600 1360 1180 900 3220 2550 2600 1710 1430 1230 1050 810	2360 18701510 1250 1050 2230 17601430 1180 990 2100 16601340 1110 930 1990 15701270 1050 880	680 630 580
	73	7260 6840 6430 6070 6230	5110 4750 4420	3700 3390 3100	2570 2310 2060	1510 1430 1340 1270	820 760 710
	41/2	8960 8450 7930 7490 7690	6310 5860 5450	4570 4180 3830	3170 2850 2550	1870 1760 1660 1570	1280 1010 1180 940 1100 870
	4	11340 10690 10040 9480 8800					
	31/2		$\frac{31500}{241501899013190} \frac{104300}{14000} \frac{104200}{11670} \frac{104300}{9010}$	7550 6910 6320	5240 4710 4210	3080 2910 2740 2600	1670 1550 1440
	6	20160 19010 17850 14400 11730	14200 13190 11670	10280 9410 8610	7130 6410 5730	4200 3960 3730 3530	2280 2100 1960
The second secon	21/2	22560 25040 20160 22380 2340 17850 221600 17280 1400 1730 1730 1730 1730 1730 1730 1730 17	$\frac{31500}{24150} 20460 14200$ $24150 18990 13190$ $17500 14000 11670$	$\begin{array}{c} 23130 \\ 14800 \\ 10280 \\ \hline 11040 \\ \hline \end{array} \hspace{0.2cm} 8610$	16050 10280 14420 9230 10500 8250	6050 5710 5380 5090	3280 3030 2820
	63	42560 20040 20160 25280 27380 19010 27920 22340 17850 21600 17280 14400 17600 14080 11730	$\frac{31500}{24150} \underbrace{20460}_{18990} \underbrace{14200}_{11670}$	23130 20580 13800		9450 8920 8400 7600	5130 4740 4410
19d	sbano TooT	25.5 23. 20.5 18.4 17.5	20. 17.5 15.3	17.25 14.75 12.5	14.75 12.25 10.	10.5 9.5 8.5 7.7	6.5
səqət	Depth, In	× ×	-1	9	rO	4	က

MISCELLANEOUS BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 pounds per Square Inch

H BEAMS

Span			Dep	th and We	ight of Sec	tions			Coeffi-
in Feet		8 Inch		1	6 Inch		5 Inch	4 Inch	cients of
1000	37.7 lb.	34.3 lb.	32.6 lb.	26.7 lb.	24.1 lb.	22.8 lb.	18.9 lb.	13.8 lb.	Deflection
3 4 5	80,0	60.0		52.5 42.1 33.7	37.5 32.1	30,0	$\begin{array}{r} 31.3 \\ \hline 25.4 \\ 20.3 \end{array}$	$\begin{array}{r} 25.0 \\ \hline 19.0 \\ 14.3 \\ 11.4 \end{array}$	$0.15 \\ 0.27 \\ 0.41$
6 7 8 9 10	53.7 46.0 40.3 35.8 32.2	51,4 44.0 38.5 34.2 30.8	43.0 37.6 33.4 30.1	28.1 24.1 21.1 18.7 16.8	$\begin{array}{c} 26.7 \\ 22.9 \\ 20.1 \\ 17.8 \\ 16.0 \end{array}$	26.1 22.3 19.6 17.4 15.6	16.9 14.5 12.7 11.3 10.1	9.5 8.1 7.1 6.3 5.7	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	29.3 26.8 24.8 23.0 21.5	28.0 25.7 23.7 22.0 20.5	27.3 25.1 23.1 21.5 20.1	15.3 14.0 13.0 12.0	14.6 13.4 12.3 11.5	14.2 13.0 12.0 11.2	9.2 8.5		2.00 2.38 2.80 3.24 3.72
16 17 18	20.1 18.9 17.9	19.3 18.1 17.1	18.8 17.7 16.7			•			4.24 4.78 5.36

CROSS TIE SECTIONS

Span		Depth a	and Weight of	Sections		Coefficients
in Feet	6.5 Inch 29.8 Pounds	5.5 Inch 24.0 Pounds	5.5 Inch 20.0 Pounds	4.25 Inch 14.5 Pounds	3 Inch 9.5 Pounds	of Deflection*
		41 8		21 3	12.2	
3 4 5	40.6	40.3	27.5	19.6	8.9	0.15
4	40.1	30.3	26.0	14.7	6.7	0.27
5	32.1	24.2	20.8	11.7	5.3	0.41
6	26.7	20.2	17.3	9.8	4.5	0.60
6 7 8 9	22.9	17.3	14.8	8.4	3.8	0.81
8	20.0	15.1	13.0	7.3	3.3	1.06
	17.8	13.4	11.5	6.5	3.0	1.34
10	16.0	12.1	10.4	5.9	2.7	1.66
11	14.6	11.0	9.4	5.8		2.00
12	13.4	10.1	8.7	0.0		2.38
13	12.3	9.3	8.0			2.80
14	11.5	8.6	7.4			3.24
15	10.7			1		3.72

Loads above upper horizontal lines will produce maximum allowable shear in webs.

Loads below lower horizontal lines will produce excessive deflections.

*To obtain deflection divide coefficient by twice the distance of neutral axis from greatest distance of extreme fiber, obtained from table on page 129.

CARNEGIE STEEL COMPANY

CHANNELS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Maximum Bending Stress, 16,000 Pounds per Square Inch

-					Depth	and W	eight of Sections							
Span			15 I	nch				cien						
Feet	55 lbs.	50 1bs.	45 lbs.	40 lbs.	35 lbs.	33.9 lbs.	50 lbs.	45 lbs.	40 lbs.	37 lbs.	35 lbs.	31.8 lbs.	Coefficient of Deflection	
	244.2	214.8	185.4				204.6	175.0						
3	203.4	190.4	177.2	156.0	126.6		171.2			127.9	$\frac{116.2}{102.8}$	97.5	$0.15 \\ 0.27$	
$\frac{4}{5}$	152.5 $ 122.0 $	$142.8 \\ 114.3$	$132.9 \\ 106.3$	98.5	90.7	88.9	$128.4 \\ 102.7$	95.9	89.1	85.0	82.3		0.27	
6	101.7	95.2	88.6	82.1	75.6	74.1	85.6	79.9	74.2	70.8	68.6	65.0	0.60	
7	87.1	81.6	75.9	70.3	64.7	63.5	73.3	68.4				55.7	0.81	
8	$\frac{76.3}{67.8}$		$66.5 \\ 59.1$	$61.6 \\ 54.7$	$56.7 \\ 50.4$			59.9 53.2		53.1 47.2	51.4	48.7 43.3	1.06	
$\begin{array}{c} 9 \\ 10 \end{array}$	61.0	57.1	53.1	49.3	$\frac{30.4}{45.3}$	44.5	51.3	$\frac{55.2}{47.9}$			41.1		1.66	
11	55.5	51.9	48.3	44.8	41.2	40.4	46.7	43.6	40.5	38.6	37.4	35.4	2.00	
12	50.9	47.6	44.3	41.1	37.7	37.0	42.8		37.1			32.5	2.38	
13	47.0				$\frac{34.9}{32.4}$		$39.5 \\ 36.7$				$\begin{array}{r} 31.6 \\ 29.4 \end{array}$	$\frac{30.0}{27.8}$	$\begin{array}{c c} 2.80 \\ 3.24 \end{array}$	
14 15	43.6 40.7	38.1	35.5		30.2	29.6	34.2	31.9		$\frac{30.3}{28.3}$	$\frac{23.4}{27.4}$		3.72	
16	38.1	35.7	33.2	30.8	28.3	27.8		30.0	27.8		25.7		4.24	
17	35.9				26.7	26.1	30.2		26.2	25.0	24.2	$\frac{22.9}{21.7}$	4.78 5.36	
$\frac{18}{19}$	$\begin{vmatrix} 33.9 \\ 32.1 \end{vmatrix}$	$\begin{vmatrix} 31.7 \\ 30.1 \end{vmatrix}$	29.5	$\frac{27.4}{25.9}$	$\frac{25.2}{23.9}$		$28.5 \\ 27.0$					$\frac{21.7}{20.5}$	5.98	
20	30.5				22.7	22.2	25.7	24.0		21.2	20.6		6.62	
21	29.1	27.2			21.6						19.6	18.6	7.30	
22	27.7			22.4	20.6							17.7	8.01	
$\frac{23}{24}$	$26.5 \\ 25.4$						$\begin{vmatrix} 22.3 \\ 21.4 \end{vmatrix}$					$16.9 \\ 16.2$	9.53	
$\frac{25}{25}$	24.4		21.3	19.7		17.8			17.8		16.5		10.35	
26	23.5	22.0	20.5	18.9	17.4	17.1	19.8	18.4	17.1	16.3	15.8	15.0	11.19	
27	22.6	21.2	19.7	18.2	16.8		19.4	17.7	16.5	15.7	15.2	14.4	12.07	
28	21.8		19.0 18.3					17.1	15.9	15.2	14.7	18.9	$12.98 \\ 13.92$	
$\frac{29}{30}$	$\begin{vmatrix} 21.0 \\ 20.3 \end{vmatrix}$		17.7	16.4		14.8							14.90	
31	19.7	18.4	17.2	15.9	14.6	14.3							15.91	
32	19.1	17.9		15.4	14.2								16.95	

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 156.

CHANNELS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

0				Depth :	and Wei	ght of Se	ient				
Span in	,		12 Inch				Coefficient of Deflection				
Feet	10 lbs.	35 lbs.	30 1bs.	25 1bs.	20.7 1bs.	35 lbs.	30 1bs.	25 lbs.	20 1bs.	15.3 lbs.	රී දී
2 3 4 5	181.2 174.7 116.4 87.3 69.9	151.7 105.9 79.5 63.6	122.4 95.5 71.7 57.3	92.9 85.0 63.8 51.0	67.2 56.9 45.5	164.0 122.9 81.9 61.4 49.2	134.6 109.8 73.2 54.9 43.9	105.2 96.8 64.5 48.4 38.7	75.8 55.8 41.8 33.5	48.0 47.6 35.7 28.5	0.07 0.15 0.27 0.41
6 7 8 9 10	58.2 49.9 43.7 38.8 34.9	53.0 45.4 39.7 35.3 31.8	47.8 40.9 35.8 31.8 28.7	42.5 36.4 31.9 28.3 25.5	38.0 32.5 28.5 25.3 22.8	$\begin{array}{c} 41.0 \\ 35.1 \\ 30.7 \\ 27.3 \\ 24.6 \end{array}$	$\begin{array}{c} 36.6 \\ 31.4 \\ 27.5 \\ 24.4 \\ 22.0 \end{array}$	32.3 27.6 24.2 21.5 19.4	27.9 23.9 20.9 18.6 16.7	23.8 20.4 17.8 15.9 14.3	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	31.7 29.1 26.9 25.0 23.3	28.9 26.5 24.5 22.7 21.2	26.1 23.9 22.0 20.5 19.1	23.2 21.3 19.6 18.2 17.0	20.7 19.0 17.5 16.3 15.2	22.3 20.5 18.9 17.6 16.4	20.0 18.3 16.9 15.7 14.6	17.6 16.1 14.9 13.8 12.9	15.2 13.9 12.9 12.0 11.2	13.0 11.9 11.0 10.2 9.5	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	21.8 20.6 19.4 18.4 17.5	19.9 18.7 17.7 16.7 15.9	17.9 16.9 15.9 15.1 14.3	15.9 15.0 14.2 13.4 12.8	14.2 13.4 12.7 12.0 11.4	15.4 14.5 13.7 12.9 12.3	13.7 12.9 12.2 11.6 11.0	12.1 11.4 10.7 10.2 9.7	10.5 9.9 9.3 8.8 8.4	8.9 8.4 7.9 7.5 7.1	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	16.6 15.9 15.2 14.6 14.0		13.6 13.0 12.5 11.9	12.1 11.6 11.1 10.6 10.2	10.8 10.4 9.9 9.5 9.1	11.7 11.2	10.5 10.0	9.2 8.8	8.0 7.6	6.8 6.5	7.30 8.01 8.76 9.53 10.35

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 156.

CHANNELS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

		Depth and Weight of Sections													t of
Span in				8 Inch				eien							
Feet	25 Ibs.	20 lbs.	15 lbs.	13.4 lbs.	21.25 lbs.	18.75 lbs.	16.25 lbs.	13.75 lbs.	11.5 lbs.	19.75 lbs.	17.25 lbs.	14.75 lbs.		9.8 1 bs.	Coefficient o Deffection
2 3 4 5	55.7	$\frac{71.8}{47.8}$	40.0	$\frac{41.4}{37.4}$ 28.0	42.3	38.8	35.3		28.7	33.6		27.5	24.4	21.4	$0.07 \\ 0.15 \\ 0.27$
5				$\frac{23.0}{22.4}$											
6 7 8 9 10	$ \begin{array}{r} 23.9 \\ 20.9 \\ 18.6 \end{array} $	$\frac{20.5}{17.9}$ $\frac{16.0}{1}$	$17.2 \\ 15.0 \\ 13.3$	18.7 16.0 14.0 12.5 11.2	$18.1 \\ 15.9 \\ 14.1$	$16.6 \\ 14.6 \\ 12.9$	$15.1 \\ 13.3 \\ 11.8$	$13.7 \\ 11.9 \\ 10.6$	$12.3 \\ 10.8 \\ 9.6$	$\frac{14.4}{12.6}$	$13.1 \\ 11.4 \\ 10.2$	11.7	$ \begin{array}{c} 10.5 \\ 9.2 \\ 8.2 \end{array} $	$ \begin{array}{c c} 9.2 \\ 8.0 \\ 7.1 \end{array} $	$0.81 \\ 1.06 \\ 1.34$
11 12 13 14 15	$13.9 \\ 12.9$	$12.0 \\ 11.0 \\ 10.3$	$ \begin{array}{c} 10.0 \\ 9.2 \\ 8.6 \end{array} $	8.6 8.0	$\frac{10.6}{9.8}$	9.7 9.0 8.3	9.6 8.8 8.2 7.6 7.1	$\frac{8.0}{7.4}$	$\begin{array}{c} 7.2 \\ 6.6 \\ 6.2 \end{array}$	9.2 8.4 7.8 7.2 6.7		7.5 6.9 6.3 5.9	6.1 5.6	5.4 4.9	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	10.4 9.8 9.3 8.8 8.4	9.0 8.4 8.0 7.6 7.2	$\begin{array}{c} 7.5 \\ 7.1 \\ 6.7 \\ 6.3 \\ 6.0 \end{array}$	$\begin{array}{c} 7.0 \\ 6.6 \\ 6.2 \\ \hline 5.9 \\ 5.6 \end{array}$	7.9 7.5 7.1	7.3 6.9 6.5	6.6 6.2 5.9	6.0 5.6 5.3	5.4 5.1 4.8	6.3	5.7	5.2	4.6	4.0	$\begin{array}{c} 4.24 \\ 4.78 \\ 5.36 \\ 5.98 \\ 6.62 \end{array}$

		Depth and Weight of Sections												
Span in		6 I	nch		5 Inch			4 Inch				ient		
Feet	15.5 lbs.	13 lbs.	10.5 lbs.	8.2 lbs.	11.5 lbs.	9 lbs.	6.7 lbs.	7.25 lbs.	6.25 lbs.	5.4 lbs.	lbs.	bs.	4.1 lbs.	Coefficient of Deflection
1 2 3 4 5	$\begin{array}{r} \frac{67.1}{34.6} \\ 23.1 \\ 17.3 \\ 13.8 \end{array}$	$\begin{array}{r} \underline{52.4} \\ 30.7 \\ 20.5 \\ 15.3 \\ 12.3 \end{array}$	13.4	$ \begin{array}{r} 24.0 \\ \hline 23.1 \\ 15.4 \\ 11.6 \\ 9.2 \end{array} $	$\frac{14.7}{11.0}$	$\begin{array}{r} 32.5 \\ \hline 18.8 \\ 12.5 \\ 9.4 \\ 7.5 \end{array}$	$\frac{10.5}{7.9}$	6.1	$\begin{array}{r} 19.8 \\ \hline 11.1 \\ 7.4 \\ 5.5 \\ 4.4 \end{array}$	$\begin{array}{r} 14.4 \\ \hline 10.1 \\ 6.7 \\ 5.1 \\ 4.1 \end{array}$	$\frac{4.9}{3.7}$	4.3 3.3	10.2 5.8 3.9 2.9 2.3	0.02 0.07 0.15 0.27 0.41
6 7 8 9 10	11.5 9.9 8.6 7.7 6.9		8.9 7.6 6.7 5.9 5.4	7.7 6.6 5.8 5.1 4.6	7.4 6.3 5.5 4.9 4.4	6.3 5.4 4.7 4.2 3.8	$\begin{array}{r} 4.5 \\ 4.0 \\ 3.5 \end{array}$	3.5	3.7 3.2 2.8 2.5 2.2	3.4 2.9 2.5 2.2 2.0		2.2 1.9 1.6	1.9 1.7 1.5	0.60 0.81 1.06 1.34 1.66
11 12 13 14	6.3 5.8 5.3 4.9	5.6 5.1 4.7 4.4	4.9 4.5 4.1 3.8	$\frac{4.2}{3.9}$ $\frac{3.6}{3.3}$	4.0	3.4	2.9 2.6				,			2.00 2.38 2.80 3.24

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 156.

CHANNELS—Allowable Uniform Load in Pounds per Foor

Inches 194 sb	Pound	55 50 45 45 40 335 33.9	50 45 45 40 37 35 31.8	12 35 25 25 20.7	35 30 30 25 15.3	9 20 15 13.4
_	ę	16950 15870 14770 13680 12590 12350	14260 13310 12370 11800 11430 10830	9700 8830 7960 7090 6330	6830 6100 5380 4650 3960	4640 3990 3340 3120
	7	12450 11660 10850 10050 9250 9070	10480 9780 9090 8670 8400 7950	7130 6490 5850 5210 4650	5020 1480 3950 3420 2910	3410 2930 2450 2290
	∞	9540 8920 8310 7700 7080 6950	8020 7490 6960 6640 6430 6430	5460 4970 4480 3990 3560	3840 3430 3020 2620 2230	2610 2240 1880 1750
	6	7530 7050 6560 6080 5600 5490	63-10 5920 5500 5250 5080 4810	4310 3490 3920 3180 3540 2870 3150 2550 2810 2280	3030 2710 2330 2070 1760	2060 1770 1480 1380
	01	7530 6100 5040 4240 3610 3110 2710 2380 2110 7050 5710 4720 3970 3380 2910 2540 2230 1980 6560 5230 4300 5000 18710 23710 2380 280 1980 6860 1930 4070 3420 2910 2510 2130 1920 1720 1700 5600 4530 3750 3150 2680 2310 2010 1770 1570 5490 4450 3670 3670 2680 2270 1970 1740 1540	5130 4790 34450 34150 3300 3300 3300	3490 3180 22570 22550 2250 2250 2250	2460 2200 1940 1670 1430	
	=	5040 4240 3610 3110 2710 2380 2110 4720 3370 3380 2910 2540 2230 1980 4390 5030 3380 2910 2540 2230 1980 4070 3320 2310 2010 2510 2310 1920 1770 1570 3750 3350 2630 2270 1970 1770 1570	42.10 3570 3040 2620 2280 2010 1780 3860 3330 2840 2450 2130 1870 1660 3860 3890 2630 2270 1880 1740 1540 3400 2860 2430 2101 1890 1601 1470 3400 2860 2430 2400 1830 1610 1420 3220 2710 2310 1990 1730 1520 1350	2890 2430 2070 1780 1550 1360 2550 22 10 1880 1620 4410 1240 2370 1990 1700 1460 1270 1120 2410 1770 1510 1300 1300 1300 1880 1880 1850 1460 1010 890	2030 1710 1460 1250 1090 1820 1530 1300 1120 980 1600 1340 1150 990 850 1180 990 840 730 630 1180 990 840 730 630 1180 990 840 730 630 1180 990 840 730 630 1180 990 840 730 630 1180 990 840 730 630 1180 990 840 730 630 1180 990 840 730 630 1180 900 840 730 630 1180 900 840 730 630 1180 900 840 730 630 1180	1380 1160 1190 1000 990 830 930 780
	- 21	2450 650 650 150 050 050 050 050 050 050 050	250 250 250 250 250 250 250 250 250 250	430 2 210 1 990 1 770 1 580 1	1710 1530 1340 1160 990	
	13	200810 20	3570 3040 2620 2230 3330 2840 2450 2130 3000 2630 2270 1980 2550 2510 2170 1830 2860 2430 2100 1830 2710 2310 1990 1730	880 700 700 510 350	1150 1150 1150 840	850 710 660
	Ξ	010000 010000 010000 010000	2500 250 250 250 250 250 250 250 250 250	1780 1 1620 1 1460 1 1300 1 1160 1	1250 1120 990 730	850 730 610 570
Ž	12	2110 2710 2380 2910 2540 2230 2710 2360 2080 2510 2190 1920 2310 2010 1770 2270 1970 1710	2130 2130 2130 2130 230 230 230 230	1550 1410 1270 1130 1010	090 980 740 630	740 640 530 500
Span in Fect	2	2380 2230 2080 2080 770 740	2010 1870 1740 1740 1660 1610 1520		960 760 560 560	650 560 470 440
cet	1-			210 100 980 990 880 790 790 700	850 750 670 580 490	580 500 420 390
	2	1880 1760 1640 1620 1400 1370	12580 1270 1270 1270	080 380 720 700	760 680 680 520 440	520 440 370 350
	61	1580 1580 12860 1380 1380	11330 11330 1140 1140 1140 1140 1140 114	970 880 790 710 630	680 610 540 460	460 400 330 310
	02	130 130 110 110 110 110	280 1200 1110 030 970 970	870 800 720 640 570	610 550 420 360	300 300 280 280
	2	1380 1380 1030 1030 1010 1010	1160 1090 1010 1010 930 830 830	790 720 650 520	560 500 380 320	Loads are m Loads will p
	51	1100 120 100 100 100 100 100 100 100 100	880 850 810 810	720 660 590 470	510 450 350 300	Londs within heavy horizontal lines are maximum londs for web shear. Londs below dotted horizontal lines will produce excessive deflection.
	ñ	860 860 860 860 860 860	970 910 910 1780 140	80 5 4 4 00 5 5 6 0 6 7 6 7 6		heavy m load dotter excess
	តី	000 000 000 000 000 000 000 000 000 00	830 770 710 680	610 610 610 610 610 610		for was for was horized
	22	980 910 730 710 710	820 770 710 680 660 620	5560 510 460 360 360		contal eb she contal lection
	36	900 850 730 670 660	760 710 660 630 610 580	520 470 420 380 340		lines ar. lines

CHANNELS—Allowable Uniform Load in Pounds per Foot

	18	390 360 300 270					
	17	440 400 370 330				l lines ar. l lines	
	16	500 460 410 370 340	390 380 320 220 250			izonta b shea izonta	ction.
	15	560 520 470 430 380	450 410 370 330 290			vy hor for we ed hor	e defle
	41	650 590 440 440	510 470 420 370 330	350 310 270 240		Loads within heavy horizontal lines are maximum loads for web shear. Loads below dotted horizontal lines	will produce excessive deflection
	13	750 690 630 570 510	590 540 490 430 380	410 360 320 270		s with imum is belov	duce e
	12	880 810 740 660 600	700 640 570 510 450	480 430 370 320	310 260 220	Load re max Load	ill pro
	=	1050 960 880 790 710	\$30 760 680 610 530	570 510 440 380	370 310 260	ಸ	*
	10	270 1 170 1060 960 860	1010 920 820 730 640	690 610 540 460	440 380 320	240 220 200	
	6	1570 1440 1310 1180 1060	1240 1130 1020 910 790	850 760 660 570	550 470 390	300 270 250	
Feet	00	980 820 660 490 350	570 1430 290 150	960 960 840 720	690 590 490	380 350 320	
Span in Feet	7	2590 1 2380 1 2160 1 1950 1 1760 1	2060 1 1870 1 1680 1 1500 1	1410 1250 1090 940	900 770 650	500 450 410	300 270 240
32	61/3	3010 2760 2510 2510 2260 2040	2380: 2170 1950 1740 1520	1640 1450 1270 1090	1050 890 750	570 520 480	350 310 280
	9	3530 3 3240 2 3950 2 2660 2 2390 2	2540 2540 2290 2040 1780	1920 1700 1490 1280	1230 1050 880	670 620 560	$\frac{410}{320}$
	51/2	\$550 3 \$510 3 \$160 3 \$850 3	3330 3030 2730 2420 2120	2290 2030 1770 1530	1460 1240 1050	\$00 730 670	480 430 390
	5	12403 12403 12403 38203 3450	40303 36603 33003 29303	2770 2450 2140 1850	1770 1510 1270	970 890 810	-590 520 470
	41/2	5270 (5240) 5240 1720 (1250)	1980 1520 1070 3620 3170	3420 3000 2640 2280	2180 1860 1560	1200 1090 1000	720 640 580
	4	7940 (7280 2) (7280 2	6300,4980 403033302800 238020601570 5720 4520 366030302540 217018701430 5150 4070 330027302290 19501680 1290 4580 3620 293024202040 17401500 1150 4020 3170 25702120 1780 1520 1310 1000	4320 3840 3340 2890	2760 2350 1980	1980 1520 1200 1810 1380 1090 1650 1260 1000	910 820 730
	31/2	$\begin{array}{c} 0370 \ 7940 \ 6270 \ 5080 \ 4200 \ 3530 \ 3010 \ 2590 \ 1980 \ 1570 \ 1440 \ 1170 \\ 8660 \ 6630 \ 5240 \ 4240 \ 3510 \ 2560 \ 2560 \ 1360 \ 1660 \ 1310 \ 1060 \\ 7800 \ 5970 \ 4720 \ 3820 \ 3160 \ 2660 \ 2860 \ 1560 \ 1490 \ 1180 \ 960 \\ 7800 \ 5380 \ 4250 \ 3850 \ 2850 \ 2990 \ 2040 \ 1760 \ 1350 \ 1060 \ 860 \end{array}$	8220 6300 4980 4030 3330 2880 23802050 1570 1240 1010 7480 5720 4520 3660 3030 2540 2170 1870 1430 1130 920 6730 5150 4070 3300 2730 2230 1950 1680 1290 1020 820 5900 4580 3620 2330 2420 2040 1740 1500 1150 910 730 5250 4580 3620 2350 2420 2040 1740 1500 1150 910 730	5650 4320 3420 27702390 1920 1640 1410 1080 5010 3840 3000 24502030 1700 14501250 960 4370 3340 2640 2140 1770 1490 1270 1090 840 3770 2890 2280 1850 1530 1280 1090 940 720	3610 2760 2180 1770 1460 1230 1050 3070 2350 1860 1510 1240 1050 890 2580 1980 1560 1270 1050 880 750	1980 1520 1810 1380 1650 1260	1190 1060 950
	8	41110 1 2950 11780 10620 9570	11190 10180 9160 8150 7140	7690 6820 5950 5130	4910 4180 '3520	2700 2460 2250	1630 1450 1290
	21/2	20320 14110 18640 12950 16970 11780 15290 10620 13780 9570		11070 9820 8560 7390	7070 6020 5060	$\frac{3880}{3540}$	2340 2090 1860
	c,	$\begin{array}{c} 21.25 \ 31750 \ 20320 \ 14110 \ 10370 \ 7940 \ 6270 \ 5080 \ 4200 \ 3530 \ 3240 \ 2560 \ 2380 \ 18640 \ 12950 \ 9510 \ 7280 \ 5750 \ 4660 \ 3580 \ 3240 \ 2760 \ 2380 \ 1340 \ 1440 \ 1170 \ 960 \ 1350 \ 16970 \ 11780 \ 8660 \ 6630 \ 5240 \ 4240 \ 3510 \ 2950 \ 2510 \ 2160 \ 1601 \ 601 \ 1310 \ 1060 \ 880 \ 13.75 \ 23800 \ 15290 \ 16520 \ 79$	$\begin{array}{c} 19.75 \ 25190 \ \ 16120 \ \ 11190 \\ 17.25 \ 222900 \ \ 14650 \ \ 10180 \\ 14.75 \ \ 20620 \ \ \ 13190 \ \ \ 9160 \\ 12.25 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	17300 11070 15340 9820 13380 8560 11550 7390	11040 9410 7910	6060 5530 5060	3660 3260 2910
to per	onnoq oA	21.25 31750 18.75 29130 16.25 26510 13.75 23900 11.5	19.75 25190 17.25 22900 14.75 20620 12.25 18330 9.8 14700	15.5 1 13.0 1 10.5 1 8.2 1	9.0 6.7	7.25 6.25 5.4	6.0
Inches	Depth,	<u>∞</u>	4	9	2	4	ಣ

EQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Either Leg

Size,	Thick-	1 Foot Span		um Span eflection	Size,	Thick-	1 Foot Span	Maximo 360 x I	um Span Deflection
Inches	ness, Inches	Safe Load	Safe Load	Length, Fcet	Inches	ness, Inches	Safe Load	Safe Load	Length Feet
	118	186.99	8.31	22.5		13/16	24.00	2.55	9.4
	11/16	177.81	7.87	22.6		8/4	22.51	2.37	9.5
	1	168.53	7.43	22.7		11/16 5/8	$20.91 \\ 19.31$	$\frac{2.18}{2.00}$	9.6 9.7
	15/16	159.15	6.98	22.8	014 - 014	9/18	17.60	1.81	9.7
8 x 8	7.8 13.16	$149.55 \\ 139.84$	$6.53 \\ 6.08$	22.9 23.0	$3\frac{1}{2}$ x $3\frac{1}{2}$	%16 1/2 7/16	15.89	1.62	9.8
3 A O	84	130.03	5.63	23.1		748	14.08	1.42	9.9
	11/16	120.00	5.18	23.2		8/8	12.27	1.23	10.0
	56	109.87	4.73	23.2		5/18 1/4	10.45 8.43	$\frac{1.04}{0.83}$	$\begin{array}{c} 10.1 \\ 10.2 \end{array}$
	9/16	99.63	4.28	23.3					
	1/2	89.28	3.82	23.4		5/8 8/16	$13.87 \\ 12.69$	$\frac{1.69}{1.53}$	8.2 8.3
						1/2	11.41	1.37	8.3
	1	91.41	5.48	16.7	3 x 3	7/10	10.13	1.21	8.4
	1546	86.51	5.16	16.8	ļ j	3/8	8.85	1.04	8.5
	7/8 13/16	81.39 76.27	$\frac{4.84}{4.51}$	16.8 16.9		5/18 1/4	$\frac{7.57}{6.19}$	$0.88 \\ 0.71$	8.6
	8/4	71.04	4.18	17.0)				8.7
5 x 6	11/18	65.81	3.85	17.1	1	1/2	$\frac{7.79}{6.93}$	1.15	6.8
J 14 U	56	60.37	3.51	17.2	1	7/16 8/8	6.08	$\frac{1.01}{0.87}$	6.9
	%18	54.83	3.17	17.3	2½ x 2½	5/18	5.12	0.72	7.1
	1/2	49.17	2.83	17.4	-/2/2	1/4	4.16	0.58	7.2
	7/16	43.41	2.48	17.5		8/16	$\begin{array}{c} 3.20 \\ 2.13 \end{array}$	0.44	7.3
	8/8	37.65	2.14	17.6		1/8		0.29	7.4
	1	C1 07	4	10.0		7/16 3/8	4.27 3.73	$0.79 \\ 0.68$	5.4 5.5
	15/16	61.87 58.56	$\frac{4.55}{4.28}$	$13.6 \\ 13.7$		5/16	3.20	0.57	5.6
	7/8	55.15	$\frac{4.28}{4.00}$	13.8	2 x 2	1/4	2.67	0.46	5.7
	13/16	51.73	3.73	13.9		8/18	2.03	0.35	5.8
	8/1	48.32	3.45	14.0		1/8	1.39	0.24	5.8
5 x 5	11/16	44.80	3.18	14.1	1	7/16	3.20	0.68	4.7
	5/8	41.17	2.90	14.2		8/8 5/16	2.77	0.60	4.7
	%16	37.44	2.62	14.3	134 x 134	%16 1/4	$\frac{2.45}{2.03}$	$0.51 \\ 0.41$	4.8 4.9
	1/2	33.60	2.34	14.4		8/16	1.49	0.30	5.0
	7/16 8/2	$29.76 \ 25.81$	2.06	14.5		1/8	1.07	0.21	5.1
	8/8	25.81	1.78	14.5		3/8	2.03	0.51	4.0
	13/16	32.11	2.95	10.9		%16	1.73	0.42	4.1
	8/4	29.97	$\frac{2.93}{2.73}$	11.0	$1\frac{1}{2} \times 1\frac{1}{2}$	1/4	1.43	0.34	4.2
	11/18	27.84	$\frac{2.13}{2.51}$	11.1		8/16 1/8	1.11	$0.26 \\ 0.18$	4.3
	5/8	25.60	2.29	11.2	1		0.77		4.4
x 4	%16	23.36	2.07	11.3		5∕16 1∕4	$\begin{bmatrix} 1.19 \\ 0.97 \end{bmatrix}$	$0.36 \\ 0.29$	3.3
t A 4	1/2	21.01	1.85	11.4	11/4 x 11/4	3/16	0.76	$0.29 \\ 0.22$	3.5
	7/16	18.67	1.63	11.4		1/8	0.52	0.14	3.6
	8/8	16.21	1.41	11.5		1/4	0.60	0.22	2.6
	5/16	13.76	1.19	11.6	1 x 1	8/16	0.47	0.17	2.7
	1/4	11.20	0.96	11.7	J I	1/8	0.33	0.12	2.8

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Shorter Leg

Size.	Thick-	1 Foot Span		m Span effection	Size,	Thick-	1 Foot Span	Maximu 360x De	m Span effection
Inches	ness, Inches	Safe Load	Safe Load	Longth, Feet	Inches	ness, Inches	Safe Load	Safe Load	Length Feet
	1	161.17	7.49	21.5		1	83.52	5.57	15.0
	15/16	152.21	7.04	21.6		15/16	79.04	5.24	15.1
	7/8	143.04	6.59	21.7		7/s	74.45	4.90	15.2
	13/16	133.87	6.14	21.8		13/16	69.87	4.57	15.3
	3/4	124.48	5.68	21.9		3/4	65.07	4.23	15.4
x 6	11/16	114.88	5.22	22.0	0 01/	11/16	60.27	3.89	15.5
	5/8	105.28	4.76	22.1	6 x 3½	5/8	55.36	3.55	15.6
	9/16	95.47	4.30	22.2		9/16	50.35	3.21	15.7
	1/2	85.55	3.84	22.3		1/2	45.23	2.86	15.8
	7/16	75.41	3.37	22.4		7/16	40.00	2.52	15.9
		146 09	7.53	19.4		3/8	34.67	2.17	16.0
	1	146.03	7.08	19.5		5/16	29.23	1.83	16.0
	15/16	138.03	6.63	19.6					
	7/8	129.92	6.03	19.0		7/8	53.23	4.00	13.3
	13/16	121.60	5.72	19.8		13/16	50.03	3.73	13.4
x 3½	3/4	113.17	5.23	19.9		8/4	46.61	3.46	13.5
, , .	11/16	104.58	4.78	20.0		11/16	43.20	3.19	13.5
	5/8	95.79	4.78	20.0	5 x 4	5/8	39.79	2.92	13.6
	9/16	86.93	3.86	20.1	0 1	9/16	36.16	2.64	13.7
	1/2	77.97	3.39	20.2		1/2	32.53	2.36	13.8
	7/16	68.80				7/16	28.80	2.07	13.9
	1	112.85	6.52	17.3		3/8	24.96	1.78	14.0
	15/16	106.67	6.13	17.4	1	/8	21.00	1.,0	14.0
	7/s	100.48	5.75	17.5		7/8	52.05	4.04	12.9
	13/16	94.08	5.36	17.6		18/16		3.76	13.0
	3/4	87.68	4.97	17.6		3/4	45.65	3.49	13.1
$7 \times 3\frac{1}{2}$	11/16	81.07	4.58	17.7		11/16	42.35	3.21	13.2
	5/8	74.35	4.18	17.8		5/8	38.93	2.93	13.3
	%16	67.52	3.77	17.9	5 x $3\frac{1}{2}$	9/16	35.41	2.64	13.4
	1/2	60.59	3.37	18.0		1/2	31.89	2.36	13.5
	7/16	53.44	2.96	18.1		7/16	28.16	2.07	13.6
	3/8	46.19	2.54	18.2	1	3/8	24.43	1.79	13.7
	1	85.55	5.56	15.4		5/16	20.69	1.51	13.7
	1 15/-		5.22	15.5	1	/10		1.51	1
	15/16	76.27	4.89	15.6		13/16	47.47	3.77	12.6
	7/8 13/16	71.47	4.55	15.7		8/4	44.37	3.49	12.7
	3/4	66.67	4.22	15.8		11/16		3.22	12.8
6 x 4	11/16	61.65	3.88	15.9		5/8	37.87	2.94	12.9
. A T	5/8	56.64	3.54	16.0	5 x 3	9/16	34.45	2.65	13.0
	98 9/16	51.52	3.20	16.0	, , ,	1/2	31.04	2.37	13.1
	1/2	46.19	2.85	16.2	1	7/16	27.52	2.09	13.2
	72 7/16	40.19	2.51	16.2		3/8	23.89	1.80	13.3
	3/8	35.41		16.4		5/16	20.16	1.51	13.4

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Shorter Leg

Size.	Thick-	1 Foot Span		m Span eflection	Size.	Thick-	1 Foot Span	Maximum Span 360x Deflection		
Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Inches	ness, Inches	Safe Load	Safe Load	Length Feet	
	13/16	38.61	3.36	11.5		%16	12.27	1.53	8.0	
	3/4	36.05	3.11	11.6		1/2	11.09	1.37	8.1	
	11/16	33.49	2.87	11.7	3 x 2½	7/16	9.92	1.22	8.1	
	0/8	30.83	2.62	11.8	3 A2/2	3/8	8.64	1.06	8.2	
4½ x 3	9/16	28.16	2.38	11.8		5/18	7.36	0.89	8.3	
	1/2	25.28	2.13	11.9		3/1	5.97	0.71	8.4	
	7/18	22.40	1.87	12.0						
	3/8	19.52	1.61	12.1		1/2	10.67	1.39	7.7	
	.5/16	16.43	1.35	12.2		7∕16	9.49	1.22	7.8	
			2.01		3 x 2	3/8	8.32	1.05	7.9	
	1346	31.15	2.94	10.6		5/18	7.04	0.88	8.0	
	34	29.33	2.74	10.7		1/4	5.76	0.71	8.1	
	11/18	27.31	2.52	10.8	1			l		
4 - 21/	55	$25.07 \\ 22.93$	$\frac{2.30}{2.08}$	$10.9 \\ 11.0$		1/2	7.47	1.15	6.5	
4 x 3½	%16 1/2	20.59	1.86	11.0		7/10	6.72	1.02	6.6	
	7/18	18.35	1.64	11.2	014 0	3/8	5.87	0.88	6.7	
	8/8	16.00	1.41	11.3	2½x 2	5/16	5.01	0.74	6.8	
	5/16	13.44	1.18	11.4	i I	1/4	4.05	0.59	6.9	
	710	10.11	1.10	11.1		3/16	3.09	0.44	7.0	
	13/16	30.61	2.97	10.3		1/8	2.13	0.30	7.1	
	8/4 8/4	28.59	2.75	10.4	1	5/16	4.69	0.73	6.4	
	11/16	26.56	2.53	10.5	91/ - 11/	916 1/4	3.84	0.73	6.5	
	5,4	24.53	2.31	10.6	$2\frac{1}{2}$ x $1\frac{1}{2}$	3/16	2.99	0.35	6.6	
4 - 0	%16	22.40	2.09	10.7	li i	716	2.33	0.40	Ų.U	
4 x 3	1/2	20.16	1.87	10.8	'	1/	F 70	1.00	F 0	
	7/16	17.92	1.64	10.9		1/2	5.76	1.02	$\frac{5.6}{5.7}$	
	3/8	15.57	1.42	11.0		7/18	$\frac{5.12}{4.48}$	$0.90 \\ 0.77$	5.8	
	5/16	13.12	1.19	11.0	21/4 x 11/2	8/8 5/16	3.84	0.65	5.9	
	1/4	10.67	0.96	11.1		1/4	3.20	0.53	6.0	
						8/16	2.45	0.40	6.0	
	18/16	23.47	2.57	9.1		/10	2.10	0.10	0.0	
	8/4	21.87	2.38	9.2	l	8/8	3.63	0.70	5.2	
	11/18	20.37	2.19	9.3		5/16	3.09	0.58	5.3	
	5/8	18.77	2.00	9.4	2 x 1½	1/4	2.56	0.47	5.4	
31/4 x 3	9/16	17.17	$\frac{1.81}{1.62}$	9.5	2 11/2	8/16	1.92	0.35	5.5	
	1/2 7/16	$15.47 \\ 13.76$	1.43	$\frac{9.5}{9.6}$		1/8	1.33	0.24	5.6	
	88	12.05	1.24	9.7		70	1,0	0.21	0.0	
	5/18	10.24	1.05	9.8		1/4	2.44	0.47	5.2	
	1/4	8.32	0.84	9.9	2 x11/4	8/16	1.89	0.36	5.3	
	11/	10.70	0.16	0.6						
	11/16	19.73	2.19	9.0		1/4	1.88	0.41	4.6	
	5/8 9/16	$18.24 \\ 16.64$	$\frac{2.00}{1.82}$	$9.1 \\ 9.1$	13/4 x 11/4	8/16	1.46	0.31	4.7	
	1/2	15.04	1.63	9.1	- '-	1/8	1.00	0.21	4.8	
31/2 x 21/2	7/16	13.44	1.44	9.3					1	
	8/8	11.73	1.24	9.4		5/16	1.71	0.44	3.9	
	5/16	9.92	1.04	9.5	1½ x 1¼	718 1/4	1.39	0.35	4.0	
	1/4	8.00	0.83	9.6	-/2 4 -/4	8/16		0.26	4.1	

CARNEGIE STEEL COMPANY

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Longer Leg

Size.	Thick-	1 Foot Span		m Span	Size.	Thick-	1 Foot Span		ım Span eflection
Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Inches	ness, Inches	Safe Load	Safe Load	Length Feet
	1	95.15	5.44	17.5		1	30.93	3.09	10.0
	15/16	89.92	5.11	17.6	1	15/16	29.23	2.90	10.1
	7/8	84.69	4.79	17.7		7/8	27.63	2.71	10.2
	13/16	79.36	4.45	17.8		13/16	25.92	2.52	10.3
	3/4	73.92	4.13	17.9		3/4	24.21	2.33	10.4
8 x 6	11/16	68.37	3.80	18.0		11/16	22.51	2.14	10.5
	5/8	62.72	3.48	18.0	6 x 3½	5/8	20.69	1.95	10.6
	9/16	56.96	3.15	18.1		%16	18.88	1.76	10.7
	1/2	51.09	2.81	18.2		1/2	16.96	1.57	10.8
	7/16	45.12	2.47	18.3		7/16	15.04	1.38	10.9
						3/8	13.12	1.19	11.0
	1	32.21	3.10	10.4		5/16	11.09	1.00	11.1
	15/16	30.40	2.90	10.5		,			
	7/8	28.69	2.71	10.6		7/8	35.31	3.15	11.2
	13/16	26.88	2.52	10.7		13/16	33.17	2.93	11.3
3 x 3½	3/4	25.07	2.33	10.8	la .	3/4	30.93	2.71	11.4
10/2	11/16	23.15	2.13	10.9		11/16	28.69	2.50	11.5
	5/8	21.33	1.94	11.0	5 x 4	5/8	26.45	2.28	11.6
	%16	19.41	1.74	11.1	O A 1	9/16	24.11	2.16	11.7
	1/2	17.49	1.57	11.2		1/2	21.76	1.84	11.8
	7/16	15.57	1.38	11.3		7/16	19.31	1.62	11.9
	1	31.57	3.10	10.2		3/8	16.75	1.40	12.0
	15/16	29.87	2.90	10.2	i	/ 6	10.70	1.10	
		28.16	2.71	10.3		7/8	26.88	2.71	9.9
	7/8 13/16	26.45	2.52	10.4		13/16	25.28	2.53	10.0
	3/4	24.64	2.33	10.5		3/4	23.68	2.34	10.1
7 - 21/	11/16	22.83	2.14	10.7		11/16	21.97	2.15	10.2
$7 \times 3\frac{1}{2}$	5/8	21.01	1.95	10.8		5/	20.27	1.97	10.3
	9/16	19.20	1.76	10.9	5 x 3½	9/16	18.45	1.78	10.4
	1/2	17.28	1.57	11.0	H	1/2	16.64	1.60	10.4
	7/16	15.36	1.38	11.1	1	7/16	14.83	1.41	10.5
	3/8	13.44	1.19	11.2	1	3/8	12.91	1.22	10.6
	/8	10.11	1.10	11.2		5/16	10.88	1.02	10.7
	1	40.43	3.55	11.4		716	10.00	1.00	
	15/16	38.29	3.33	11.5		13/16	18.56	2.16	8.6
	7/s	36.16	3.12	11.6		8/4	17.39	2.00	8.7
	13/16	33.92	2.90	11.7		11/16	16.11	1.83	8.8
		31.68	2.69	11.8 11.9		5/8	14.83	1.67	8.9
	3/4	00.41		1 11 0			13.55	1.51	9.0
6 x 4	3/4 11/18	29.44	2.47		1 5 x 3				
6 x 4	3/4 11/ ₁₆ 5/8	27.09	2.26	12.0	5 x 3	9/16 1/5			9.1
6 x 4	3/4 11/16 5/8 9/16	$27.09 \\ 24.64$	$2.26 \\ 2.05$	$12.0 \\ 12.0$	5 X 3	1/2	12.27	1.35	
6 x 4	3/4 11/ ₁₆ 5/8	27.09	2.26	12.0	5 x 3				9.1

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Longer Leg

Size.	Thick-	1 Foot Span		ım Span eflection	Size.	Thick-	1 Foot Span		ım Span effection
Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Inches	ness, Inches	Safe Load	Safe Load	Length, Fcet
	18/16	18.24	2.15	8.5		%16	8.75	1.25	7.0
	8.4	17.07	1.99	8.6		1,6	7.89	1.12	7.0
í	1146	15.89	1.83	8.7		7/16	7.04	0.99	7.1
	54	14.61	1.67	8.8	3 x 2½	98	6.19	0.85	7.2
4½ x 3	9/16	13.33	1.51	8.8	5	5/18	5.23	0.72	7.3
	1/2	12.05	1.35	8.9		1/4	4.27	0.58	7.4
	716	10.77	1.19	9.0					
1	34	9.39	1.03	9.1		1/2	5.01	0.88	5.7
	5/16	8.00	0.87	9.2		7/16	4.48	0.77	5.8
					3 x 2	3/8	3.95	0.67	5.9
	13/16	24.53	2.56	9.6		5/16	3.41	0.57	6.0
	34	22.93	2.37	9.7		1/4	2.77	0.46	6.1
	11.16	21.33	2.18	9.8	V.	/ =			
	58	19.63	1.98	9.9		1,/2	4.91	0.89	5.5
4 x 3½	916	17.92	1.79	10.0	8	7/16	4.37	0.78	5.6
	1,2	16.21	1.60	10.1		3/8	3.84	0.67	5.7
	716	14.40	1.41	10.2	2½x 2	5/16	3.31	0.57	5.8
	85	12.59	1.22	10.3	-/2	1/4	2.67	0.46	5.9
	5/16	10.67	1.03	10.4	I .	3/16	2.13	0.35	6.0
					1	1/8	1.44	0.24	6.1
1	1346	17.92	2.15	8.3	Ú.	7.0	2.2.2		
	3,	16.75	1.99	8.4		5/16	1.81	0.41	4.4
i	1146	15.57	1.83	8.5	2½x1½	1/1	1.49	0.33	4.5
	58	14.40	1.67	8.6	272X172	8/16	1.17	0.25	4.6
4 x 3	9/16	13.12	1.51	8.7	1	716	1.1.	0.20	1.0
	1/2	11.84	1.35	8.8		1/	0.77	0.67	4.1
	7/16	10.56	1.19	8.9	1	1/2	2.77	0.67	4.1
l l	3/8 5/16	9.28 7.89	1.03	8.9	4	7/16	2.45	0.58	4.2 4.3
	716 1/1	6.40	$0.87 \\ 0.70$	9.0	21/4 x 11/2	8/8	2.13	0.50	4.4
	71	0.40	0.70	9.1		5/16 1/4	$\frac{1.81}{1.49}$	$0.41 \\ 0.33$	4.5
	18/16	17.60	2.17	8.1		3/16	1.17	0.35	4.6
	34	16.43	2.01	8.2	1	716	1.17	0.23	4.0
	11/16	15.36	1.85	8.3		3/8	2.13	.51	4.2
	54	14.19	1.69	8.4	1	5/16	1.81	0.42	4.3
3½ x 3	9/16	12.91	1.52	8.5	2 x1½	1/4	1.49	0.34	4.4
3/2 X 3	1,5	11.73	1.36	8.6	2 X172	8/16	1.17	0.26	4.5
	716 84	10.45	1.20	8.7		1/8	0.80	0.17	4.6
	94	9.07	1.04	8.7		78	0.00	0.17	4.0
	5/18	7.68	0.87	8.8		1/4	1.03	0.28	3.7
	1/1	6.19	0.70	8.9	2 x 11/4	3/16	0.80	0.23	3.8
	11/16	10.56	1.51	7.0	lı .				
	5,8	9.81	1.39	7.1		1/4	1.01	0.28	3.6
	9/16	8.96	1.26	7.1	134 x 11/4	8/16	0.80	0.22	3.7
3½ x 2½	1/2	8.11	1.13	7.2		1/8	0.56	0.15	3.8
0 /2 X 2 /2	7/18	7.25	0.99	7.3	i i				
	3/8	6.29	0.85	7.4		5/16	1.21	0.35	3.4
	5/16	5.33	0.71	7.5	11/2 x 11/4	1/4	0.99	0.28	3.5
	1/4	4.37	0.58	7.6		3/16	0.78	0.22	3.6

CARNEGIE STEEL COMPANY

TEES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Flange

Maximum Bending Stress, 16,000 Pounds per Square Inch

EQUAL TEES

Siz	ze		1 Foot	Maximu		Si	ze				ım Span
		Weight per	Span	360 x D	eflection			Weight _per	Span	360 x D	eflection
Flange, Inches	Stem, Inches	Foot, Pounds	Safe Load	Safe Load	Length, Feet	Flange, Inches	Stem, Inches	Foot, Pounds	Safe Load	Safe Load	Length, Feet
61/2	61/2	19.8	52.80	2.77	19.1	214	21/4	4.9	4.37	0.69	6.3
4	4	13.5	21.55	1.90	11.4	$2\frac{1}{4}$	$2\frac{1}{4}$	4.1	3.41	0.53	6.4
4	4	10.5	16.85	1.46	11.6	2	2	4.3	3.31	0.59	5.6
$3\frac{1}{2}$	31/2	11.7	16.32	1.65	9.9	2	2	3.56	2.77	0.49	5.7
$3\frac{1}{2}$	31/2	9.2	12.69	1.27	10.0	1 3/4	1 3/4	3.09	2.03	0.42	4.9
3	3	9.9	11.73	1.41	8.3	$1\frac{1}{2}$	1 1/2	2.47	1.53	0.37	4.1
. 3	3	8.9	10.45	1.24	8.4	1 1/2	11/2	1.94	1.15	0.27	4.3
3	3	7.8	9.17	1.07	8.5	11/4	11/4	2.02	1.01	0.30	3.4
3	3	6.7	7.89	0.92	8.6	11/4	11/4	1.59	0.78	0.22	3.5
21/2	21/2	6.4	6.29	0.90	7.0	1	1	1.25	0.49	0.18	2.7
21/2	$2\frac{1}{2}$	5.5	5.33	0.75	7.1	1	11	0.89	0.35	0.12	2.9

UNEQUAL TEES

Si	ze		1 Foot	Maxim	ım Span	Si	ze		1 Foot	Maxim	um Span
		Weight per	Span		eflection			Weight per	Span	360 x D	eflection
Flange, Inches	Stem, Inches	Foot, Pounds	Safe Load	Safe Load	Length, Feet	Flange, Inches	Stem, Inches	Foot, Pounds	Safe Load	Safe Load	Length, Feet
5	3	11.5	11.33	1.25	9.0	3 1/2	3	10.8	12.05	1.41	8.5
5	21/2	10.9	8.96	1.11	7.5	$3\frac{1}{2}$	3	8.5	9.49	1.09	8.7
4 1/2	31/2	15.7	22.72	2.36	9.6	31/2	3	7.5	9.07	1.05	8.7
4 1/2	3	9.8	9.71	1.07	9.1	3	4	11.7	20.69	1.92	10.8
4 1/2	3	8.4	8.32	0.90	9.2	3	4	10.5	18.35	1.68	10.9
$4\frac{1}{2}$	21/2	9.2	6.72	0.87	7.7	3	4	9.2	16.11	1.47	11.0
4 1/2	21/2	7.8	5.76	0.74	7.8	3	$3\frac{1}{2}$	10.8	15.89	1.66	9.6
4	5	15.3	33.39	2.41	13.9	3	$3\frac{1}{2}$	9.7	14.19	1.47	9.7
4	5	11.9	25.92	1.84	14.1	3	$3\frac{1}{2}$	8.5	12.37	1.26	9.8
4	4 1/2	14.4	27.09	2.15	12.6	3	$2\frac{1}{2}$	7.1	6.40	0.89	7.2
4	41/2	11.2	21.12	1.64	12.8	3	$2\frac{1}{2}$	6.1	5.55	0.76	7.3
4	3	9.2	9.60	1.07	8.9	$2\frac{1}{2}$	3	7.1	8.96	1.09	8.3
4	3	7.8	8.21	0.91	9.1	21/2	3	6.1	7.68	0.92	8.4
4	21/2	8.5	6.61	0.87	7.6	$2\frac{1}{2}$	134	2.87	0.93	0.25	3.7
4	21/2	7.2	5.65	0.74	7.7	2	1 1/2	3.09	1.58	0.36	4.4
4	2	7.8	4.27	0.70	6.1	1 1/2	2	2.45	2.03	0.38	5.5
4	2	6.7	3.63	0.59	6.2	$1\frac{1}{2}$	11/4	1.25	0.57	0.15	3.7
$3\frac{1}{2}$	4	12.6	21.12	1.90	11.1	1 14	5/8	0.88	0.14	0.08	1.9
$3\frac{1}{2}$	4	9.8	16.53	1.46	11.3	+					}

BEAM SAFE LOADS

ZEES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Flanges

	Size			1 Foot	Maximum Span 360 x Deflection		
Depth, Inches	Flanges, Inches	Thickness, Inches	Weight per Foot, Pounds	Span Safe Load	Safe Load	Length, Feet	
618	35%	78	34.6	174.93	14.18	12.3	
61/16	3%6	1346	32.0	162.35	13.30	12.2	
6	31/2	3/1	29.4	149.76	12.40	12.1	
6½s	35%	11,16	28.1	150.40	12.19	12.3	
61/16	3%16	5/8	25.4	136.75	11.20	12.2	
6	31/2	9/16	22.8	123.20	10.20	12.1	
618	35%	1/2	21.1	119.68	9.70	12.3	
61/16	3%16	7/16	18.4	104.85	8.59	12.2	
6	$3\frac{1}{2}$	8/8	15.7	90.03	7.45	12.1	
51/8	388	13/16	28.4	119.47	11.58	10.3	
51/16	35/16	8/4	26.0	110.29	10.82	10.2	
5	31/4	11/16	23.7	101.01	10.03	10.1	
51/8	3%	5%	22.6	102.08	9.89	10.3	
51/16	35/16	9/16	20.2	91.95	9.02	10.2	
5	31/4	1/2	17.9	81.92	8.14	10.1	
51/8	33/8	7/16	16.4	79.36	7.69	10.3	
$5\frac{1}{16}$	35/16	3/8	14.0	68.16	6.69	10.2	
5	31/4	5/16	11.6	56.96	5.66	10.1	
41/8	3%16	- 3/4	23.0	77.44	9.32	8.3	
41/16	31/8	11/16 .	20.9	70.93	8.67	8.2	
4	31/16	5/8	18.9	64.53	8.01	8.1	
41/5	33/16	9/16	18.0	65.92	7.93	8.3	
41/16	31/8	1/2	15.9	58.67	7.17	8.2	
4	31/16	7/16	13.8	51.52	6.40	8.1	
41/5	33/16	3/8	12.5	49.81	6.00	8.3	
4346	31/8	5/16	10.3	41.71	5.10	8.2	
4	31/16	1/4	8.2	33.49	4.16	8.1	
31/16	23/4	9/16	14.3	36.59	5.93	6.2	
3	211/16	1/2	12.6	32.64	5.40	6.1	
31/16	2¾	7/16	11.5	31.79	5.15	6.2	
3	211/16	3/8	9.8	- 27.41	4.54	6.1	
31/16	23/4	5/16	8.5	25.39	4.12	6.2	
3	211/16	1/4	6.7	20.48	3.39	6.1	

STANDARD GAGES AND DIMENSIONS FOR BEAMS

Nominal dimensions are:—flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by $\frac{1}{2}$ web thickness. Standard gages may be varied if conditions require.

Depth of	Weight per	Flange	Web Thick-	1 ₂ Web Thick-	Gage	Grip		Distance	:	Max. Rivet in
Beam	Foot	Width	ness	ness	g	p	f	0	h	Flange
In.	Lbs.	In.	In.	In.	In.	In.	In.	In.	_In.	In.
27	90.0	9	1/2	1/4	5	3/4	$22\frac{1}{2}$	*21/4	5/16	7/8
24	$120.0 \\ 115.0 \\ 110.0 \\ 105.9$	8 8 71% 71%	13/16 3/4 11/16 5/8	3/8 3/8 5/16 5/16	5 5 5 5	11/8 11/8 11/8 11/8	$\begin{array}{c} 20\frac{1}{4} \\ 20\frac{1}{4} \\ 20\frac{1}{4} \\ 20\frac{1}{4} \\ 20\frac{1}{4} \end{array}$	178 178 178 178	$^{1\frac{7}{2}}_{7\frac{16}{16}}$	7/8
24	$\begin{array}{c} 100.0 \\ 95.0 \\ 90.0 \\ 85.0 \\ 79.9 \end{array}$	71/4 .71/8 71/8 71/8 71/8	3/4 11/16 5/8 9/16 1/2	3/8 5/16 5/16 5/16 1/4	4 4 4 4 4	75 75 75 75 75	$\begin{array}{c} 2084 \\ 2034 \\ 2034 \\ 2034 \\ 2034 \\ 2034 \end{array}$	15% 15% 15% 15% 15% 15%	7/16 7/16 3/8 3/8 5/16	7/8
24	74.2	9	1,6	$1{4}^{\prime}$	4	5/8	20	2	5/16	7/8
21	60.4	81/4	74e	346	4	9/16	17½	1%	1/4	7/8
20 ·	100.0 95.0 90.0 85.0 81.4	71/4 71/4 71/8 7	75 1846 34 55 58	74_{16} 35_{8} 35_{8} 5_{16} 5_{16}	4 4 4 4 4	1 1 1 1	$\begin{array}{c} 16\frac{1}{2} \\ 16\frac{1}{2} \\ 16\frac{1}{2} \\ 16\frac{1}{2} \\ 16\frac{1}{2} \\ 16\frac{1}{2} \end{array}$	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$	1/2 1/2 7/16 3/8 3/8	7/8
20	75.0 70.0 65.4	6% 6% 6¼	5/8 9/16 1/2	5/16 5/16 1/4	4 4 4	3/4 3/4 3/4	17 17 17	$\frac{1\frac{1}{2}}{1\frac{1}{2}}$	3/8 3/8 5/16	7∕8
18	90.0 85.0 80.0 75.6	71/4 71/8 71/8 7	13/16 11/16 3/5 9/16	3/8 3/8 5/16 3/4	4 4 4 4	1 1 1 1	141 <u>6</u> 141 <u>6</u> 141 <u>6</u> 141 <u>6</u>	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$	7/16 3/8 3/8	7/8
18	70.0 65.0 60.0 54.7	61/4 61/8 61/8 6	11/16 5/8 9/16 7/16	3/8 5/16 1/4 1/4	3% 3% 3% 3% 3%	3/4 3/4 3/4 3/4	15¼ 15¼ 15¼ 15¼	13% 13% 13% 13%	7/16 3/5 8/8 5/16	7/8
18	48.2	71/2	3/8	3/16	3¾	1/2	14%	15/8	1/4	7/8
15	75.0 70.0 65.0 60.8	61/4 61/8 61/8 6	7/8 3/4 11/16 9/16	7/16 3/8 5/16 5/16	$ \begin{array}{r} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	7/s 7/s 7/s 7/s	$11\frac{3}{4}$ $11\frac{3}{4}$ $11\frac{3}{4}$ $11\frac{3}{4}$	15/8 15/8 15/8 15/8	7/16 7/16 7/16 3%	3/4
15	55.0 50.0 45.0 42.9	5¾ 5½ 5½ 5½	5% 9/16 7/16 7/16	5/16 1/4 1/4 3/16	3½ 3½ 3½ 3½ 3½	5/8 5/8 5/8 5/8	$\begin{array}{c} 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \end{array}$	1½ 1½ 1¼ 1¼ 1¼	3/8 3/8 5/16 1/4	3/4
15	37.3	6%	%1c	3/16	31/2	7/16	121/4	1%	1/4	3/4

STRUCTURAL DETAILS

STANDARD GAGES AND DIMENSIONS FOR BEAMS

Nominal dimensions are:—flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by ½ web thickness. Standard gages may be varied if conditions require.

Depth of	Weight per	riange	Web	12 Web Thick-	Gage	Grip		Distance		Max. Rivet in
Beam	Foot	Width	ness	ness	g	p	f	0	h	Flange
In.	Lbs.	In.	In.	In.	In.	In.	In.	In.	In.	In.
12	55.0 50.0 45.0 40.8	55% 51½ 59s 5¼	13/16 11/16 9/16 7/16	3/8 5/16 5/16 1/4	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3}{3}$	3/4 3/4 3/4 3/4 3/4	91/4 91/4 91/4 91/4	13/8 13/8 13/8 13/8	1/2 7/16 3/8 5/16	3/4
12	$\frac{35.0}{31.8}$	51/s 5	746 38	3/16 3/16	3 3	$\frac{9/16}{9/16}$	$\frac{93/4}{93/4}$	1½ 1½	5/16 1/4	3/4
12	27.9	6	5/16	1/8	3	716	$9\frac{1}{2}$	11/4	3/16	8/4
10	40.0 35.0 30.0 25.4	51% 5 $43% 45%$	34 5/8 74 6 5/16	3/8 5/16 1/4 1/8	284 234 284 284	1/2 1/2 1/2 1/2 1/2	8 8 8	1 1 1 1	7/16 3/8 5/16 1/4	3/4
10	22.4	51/2	1/4	1/8	$2\frac{3}{4}$	3%	$7\frac{3}{4}$	11/8	3/16	3/4
9	$\begin{array}{c} 35.0 \\ 30.0 \\ 25.0 \\ 21.8 \end{array}$	43/ ₁ 45/ ₈ 41/ ₂ 43/ ₈	3/4 9/16 3/4 5/16	3/8 1/4 8/16 1/8	$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	1/2 1/2 1/2 1/2 1/2	7 7 7 7	1 1 1	7/16 3/8 1/4 3/16	8⁄4
8	$\begin{array}{c} 25.5 \\ 23.0 \\ 20.5 \\ 18.4 \end{array}$	41/4 41/5 41/5 4	9/16 7/16 8/8 1/4	1/4 1/4 3/16 1/8	21/4 21/4 21/4 21/4	1/2 1/16 1/16 1/16	$6\frac{1}{4}$ $6\frac{1}{4}$ $6\frac{1}{4}$ $6\frac{1}{4}$	7/8 7/8 7/8 7/8	5/16 5/16 1/1 3/16	8/4
8	17.5	5	1,4	1/8	$2\frac{1}{4}$	9/8	6	1	3/16	34
7	$20.0 \\ 17.5 \\ 15.3$	378 384 358	7/16 3/8 1/4	3/16 3/16 1/8	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$	3/8 3/8 3/8	51/4 51/4 51/4	7/8 7/8 7/8 7/8	5/16 1/4 8/16	5/8
6 ·	17.25 14.75 12.5	35/s 31/2 33/s	7/16 3/8 1/4	1/4 3/16 1/8	$\frac{2}{2}$	8/8 8/8 8/8	$\frac{4\frac{1}{2}}{4\frac{1}{2}}$ $\frac{4\frac{1}{2}}{4\frac{1}{2}}$	3/4 3/4 8/4	5/16 1/1 3/16	5/8
5	14.75 12.25 10.0	33/8 31/8 3	1/2 3/8 8/16	3/16 1/8	184 134 184	3/8 3/8 3/8 3/8	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	3/4 3/4 3/4	5/16 1/4 3/16	1/9
4	10.5 9.5 8.5 7.7	27/ ₈ 23/ ₄ 23/ ₄ 25/ ₈	3/8 5/16 1/4 3/16	3/16 3/16 1/8 1/8	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	5/16 5/16 5/16 5/16	2¾ 2¾ 2¾ 2¾ 2¾	5/8 5/8 5/8 5/8	1/4 1/4 8/16 8/16	1/2
3	7.5 6.5 5.7	2½ 23/8 23/8	3/8 1/4 3/16	8/16 1/8 1/16	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	5/16 5/16 5/16	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$	5/8 5/8 5/8	1/4 8/16 1/8	3/5

CARNEGIE STEEL COMPANY

STANDARD GAGES AND DIMENSIONS FOR CHANNELS

Nominal dimensions are:—flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by web thickness. Standard gages may be varied if conditions require.

Gages for channels in riveted channel columns are given on pages 224 to 234

Depth	Weight	Flange	Web Thick-	12 Web Thick-	Gage	Grip		Distance		Max. Rivet in
Channel	per Foot	Width	ness	ness	g	р	f	0	h	Flange
In.	Lbs.	In.	In.	In.	In.	In.	In.	In.	In.	In.
15	55.0 50.0 45.0 40.0 35.0 33.9	37/8 33/4 35/8 31/2 37/16 38/8	13/16 11/16 5/8 1/2 7/16 3/8	7/16 8/8 5/16 1/4 8/16 3/16	2½ 2½ 2 2 2 2 2 2	11/16 11/16 5/8 5/8 5/8 5/8	$\begin{array}{c} 12\frac{1}{4} \\ 12\frac{1}{4} \\ 12\frac{1}{4} \\ 12\frac{1}{4} \\ 12\frac{1}{4} \\ 12\frac{1}{4} \end{array}$	13/s 13/s 13/s 13/s 13/s 13/s	7/8 13/16 11/16 9/16 1/2 1/2	7∕8
13	50.0 45.0 40.0 37.0 35.0 31.8	43/8 41/4 41/8 41/8 41/8 4	13/16 11/16 9/16 1/2 7/16 3/8	3/8 5/16 1/4 1/4 1/4 1/4 3/16	$3 \\ 2\frac{3}{4} \\ 2\frac{3}{4} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} $	%16 %16 %16 %16 %16 %16 %16	$\begin{array}{c} 10\frac{1}{2} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \end{array}$	11/4 11/4 11/4 11/4 11/4 11/4	7/8 3/4 5/8 9/16 1/2 7/16	7∕s
12	$\begin{array}{c} 40.0 \\ 35.0 \\ 30.0 \\ 25.0 \\ 20.7 \end{array}$	3\\\ 3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8/4 5/8 1/2 8/8 1/4	38 5/16 1/4 3/16 1/8	$\begin{array}{c} 2 \\ 2 \\ 1\% \\ 1\% \\ 1\% \end{array}$	5/8 5/8 1/2 1/2 1/2	10 10 10 10 10	1 1 1 1	13/16 11/16 9/16 7/16 3/8	7∕8
10	$ \begin{array}{r} 35.0 \\ 30.0 \\ 25.0 \\ 20.0 \\ 15.3 \end{array} $	3½8 3 2½8 2¾ 2½8	18/16 11/16 1/2 8/8 1/4	7/16 5/16 1/4 3/16 1/8	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{1}{2}$ $1\frac{1}{2}$	1/2 1/2 1/2 1/2 1/16 1/16	81/4 81/4 81/4 81/4 81/4	7/8 7/8 7/8 7/8 7/8	7/8 3/4 9/16 7/16 5/16	3/4
9	$25.0 \\ 20.0 \\ 15.0 \\ 13.4$	27/8 25/8 21/2 23/8	5/8 7/16 5/16 1/4	5/16 1/4 1/8 1/8	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{8}{8}$ $1\frac{8}{8}$	1/2 1/2 1/16 1/16	71/4 71/4 71/4 71/4	7/8 7/8 7/8 7/8	11/ ₁₆ 1/ ₂ 3/ ₈ 5/ ₁₆	3/4
8	21.25 18.75 16.25 13.75 11.5	25/8 21/2 23/8 23/8 21/4	9/16 1/2 3/8 5/16 1/4	5/16 1/4 3/16 1/8 1/8	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{8}$ $1\frac{3}{8}$	7/16 7/16 7/16 3/8 3/8	61/4 61/4 61/4 61/4 61/4	7/8 7/8 7/8 7/8 7/8	11/16 9/16 1/2 3/8 5/16	3/4
7	19.75 17.25 14.75 12.25 9.8	$2\frac{1}{2}$ $2\frac{3}{8}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{8}$	5/8 1/2 7/16 5/16 3/16	5/16 1/4 8/16 8/16 1/8	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{4}$ $1\frac{1}{4}$	7/16 7/16 7/16 3/8 3/8	5½ 5½ 5½ 5½ 5½ 5½	3/4 3/4 3/4 3/4 3/4	11/16 9/16 1/2 3/8 5/16	5/s
6	15.5 13.0 10.5 8.2	2½ 2½ 2 1%	9/16 7/16 5/16 3/16	1/4 1/4 8/16 1/8	13/8 13/8 11/8 11/8	3/8 3/8 3/8 5/16	$4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$	3/4 3/4 3/4 3/4	5/8 1/2 3/8 1/4	5/8
5	$\begin{array}{c} 11.5 \\ 9.0 \\ 6.7 \end{array}$	$\begin{array}{c} 2 \\ 1\% \\ 1\% \end{array}$	1/2 5/16 8/16	1/4 8/16 1/8	11/8 11/8 11/8	5/16 5/16 5/16	3¾ 3¾ 3¾	5/8 5/8 5/8	9/16 3/8 1/4	1/2
4	$\begin{array}{c} 7.25 \\ 6.25 \\ 5.4 \end{array}$	1% 1% 1% 1%	5/16 1/4 8/16	3/16 1/8 1/16	1 1 1	5/16 5/16 5/16	$2\frac{3}{4}$ $2\frac{3}{4}$ $2\frac{3}{4}$	5/8 5/8 5/8	3/8 5∕1 a 1∕4	1/2
3	$\begin{array}{c c} 6.0 \\ 5.0 \\ 4.1 \end{array}$	$1\frac{1}{8}$ $1\frac{1}{2}$ $1\frac{3}{8}$	3/8 1/4 3/16	3/16 1/8 1/16	7/8 7/8 7/8	1/4 1/4 1/4	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$	5/8 5/8 5/8	7/16 5/16 1/4	1/2

BEAM CONNECTIONS

2 L^s 4"x 4"x ½"x 1'-8½" Weight 46 lbs.

2 L⁸ 4"x 4"x ½"x 1'-2½" Weight 33 lbs.

2 L^s 4"x 4"x ½6"x 0-8½" Weight 17 lbs,

2 L³ 6"x 4"x 3%"x 0'-3" Weight 7 lbs.

2 L^s 4"x 4"x ½"x 1-5½" Weight 39 lbs.

2 L's 4"x 4"x 1/16"x 0'-111/2" Weight 23 lbs,

2 L⁸ 6"x 4"x %"x 0-51/2" Weight 13 lbs.

2 L⁸ 6"x 4"x %"x 0-2" Weight 5 lbs.

Rivets and bolts 34" diameter.
Weights given are for 34-inch shop rivets and angle connections; about 20 per cent should be added for field rivets or bolts.

BEAM CONNECTIONS—Concluded

LIMITING VALUES OF BEAM CONNECTIONS

		Value of	Val	ues of Outstan	ding L	egs of Connec	tion Angles	
1 B	eams	Web Connection	Fi	eld Rivets		F	ield Bolts	
Depth, Inches	Weight Pounds per Foot		34" Rivets or Turned Bolts, Single Shear, Pounds	Allowable	t, In.	Rough Bolts, Single Shear, Pounds	Minimum Allowable Span in Feet, Uniform Load	t, In.
27	90.0	82530	61900	18.9	5/8	49500	23.6	5/8
24	$79.9 \\ 74.2$	$67500 \\ 64260$	53000 53000	17.5 16.4	5/8 5/8	42400 42400	21.9 20.4	5/8 5/8
21	60.4	48150	44200	14.2	5/8	35300	17.8	5/8
20	65.4	45000	35300	17.6	5/8	28300	22,1	5/8
18	54.7 48.2	41400 34200	35300 35300	13.3 12.8	5/8 %16	28300 28300	16.7 15.4	5/8 5/8
15	42.9 37.3	36900 29880	35300 35300	8.9 9.7	5/8 1/2	28300 28300	11.1 10.2	5/8 9/16
12	31.8 27.9	23600 19170	$26500 \\ 26500$	8.1 9.2	%16 %16	21200 21200	9.0 9.2	5/8 1/2
10	$25.4 \\ 22.4$	27900 22680	17700 17700	7.4 6.8	5/8 5/8	14100 14100	9.2 8.6	5/8 5/8
9	21.8	26100	17700	5.7	5/s	14100	7.1	5/8
8	18.4 17.5	24300 19800	17700 17700	4.3 4.4	5/8 5/8	14100 14100	5.4 5.5	5/s 5/s
7	15.3	11300	8800	6.2	5/8	7100	7.8	5/8
6	12.5	10400	8800	4.4	5/8	7100	5.5	5/8
5	10.0	9500	8800	2.9	5/8	7100	3.6	5/8
4	7.7	8600	8800	1.9	946	7100	2.7	5/8
3	5.7	7700	8800	1.2	1/2	7100	1.4	5/8

ALLOWABLE UNIT STRESS IN POUNDS PER SQUARE INCH

Single Shear	Rivets	12000 10000 8000	Bearing	Rivets—enclosed Shop 30000 Rivets—one side Shop 24000 Rivets and Turned Bolts, Field 20000 Rough Bolts	0
-----------------	--------	------------------------	---------	---	---

t=Web thickness, in bearing, to develop max. allowable reactions, when beams frame opposite. Connections are figured for bearing and shear (no moment considered).

The above values agree with tests made on beams under ordinary conditions of use.

Where web is enclosed between connection angles (enclosed bearing), values are greater because of the increased efficiency due to friction and grip.

Special connections shall be used when any of the limiting conditions given above are exceeded special reaction from loaded beam being greater than value of connection; shorter span with beam fully loaded; or a less thickness of web when maximum allowable reactions are used.

STRUCTURAL DETAILS

BEAM SEPARATORS

AMERICAN BRIDGE COMPANY STANDARD

_	Beams				S	ерага	tor			84	" Bo		
Depth, Inches	Weight per Foot, Pounds	Center to Center of Beams, Inches	Out to Out of Flanges, Inches	w In.	h In.	d In.	t In	Weight, Pounds	Increase in Weight for 1" Add. Width	Length, Inches	Weight, Pounds Hex. Head and Nut	Increase in Weight for 1" Add. Length	Diagrams
24	120 to 105.9	834	163/4		20	12	5/8			$10\frac{1}{2}$		0.25	
24	95 and 90 85 79.9	8 8 8	$15\frac{1}{2}$ $15\frac{1}{4}$ $15\frac{1}{4}$ 15	$7\frac{1}{4}$ $7\frac{1}{4}$ $7\frac{1}{2}$ $7\frac{1}{2}$	$20 \\ 20 \\ 20 \\ 20$	12 12 12 12	5/8 5/8 5/8 5/8	$\frac{28}{28}$ $\frac{29}{29}$	3.6 3.6 3.6 3.6	$10 \\ 10 \\ 9\frac{1}{2} \\ 9\frac{1}{2}$	$ \begin{array}{c} 3.2 \\ 3.2 \\ 3.1 \\ 3.1 \end{array} $	$0.25 \\ 0.25 \\ 0.25 \\ 0.25$	
20	100 and 95 90 85 and 81.4		$15\frac{1}{4}$ $14\frac{3}{4}$ $14\frac{1}{2}$	$ \begin{array}{r} 7 \\ 634 \\ 634 \end{array} $	16 16 16	12 12 12	5/8 5/8 5/8	$\frac{22}{22}$	$\frac{2.9}{2.9}$	$^{10}_{\substack{9\frac{1}{2}\\9}}$		$0.25 \\ 0.25 \\ 0.25$	
20	75 70 65.4	7½ 7			16 16	12 12 12		$\frac{22}{21}$	$\frac{2.9}{2.9}$	9 9 8½	$\frac{3.0}{3.0}$	$0.25 \\ 0.25 \\ 0.25$	11/6 2 116
18	90 85 and 80 75.6	8 8	15	$7\frac{1}{2}$	14	9 9			$2.5 \\ 2.5 \\ 2.5$	10 10 10		$0.25 \\ 0.25 \\ 0.25$	1" 5 118 5 118 1 5 118 1 5 1 5 1 5 1 5 1 5
18	70 and 65 60 54.7	$\frac{7}{7}$.	$13\frac{1}{4}$ $13\frac{1}{4}$ 13	$\frac{6\frac{1}{4}}{6\frac{1}{2}}$	14	9 9 9	5/8 5/8 5/8	18 19 19	$\frac{2.5}{2.5}$	$ \begin{array}{c} 9 \\ 8\frac{1}{2} \\ 8\frac{1}{2} \end{array} $	$\frac{3.0}{3.0}$	$0.25 \\ 0.25 \\ 0.25$	
15	$75 \\ 70 \text{ and } 65 \\ 60.8$	7 7 6½	$13\frac{1}{4}$ $13\frac{1}{4}$ $12\frac{1}{2}$	$\frac{6\frac{1}{4}}{5\frac{3}{4}}$	$\frac{12}{12}$ $\frac{12}{12}$	9 9 9	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{12}{12}$	$\frac{1.6}{1.6}$	9 9 8	2.7	$0.25 \\ 0.25 \\ 0.25$	111/16 W
15	55 50 and 45 42.9	$6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$		6	12 12 12	9 9 9	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{12}{12}$	$\frac{1.6}{1.6}$	8 8	$\frac{2.7}{2.7}$	$\begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \end{array}$	7∕8" Cored Holes
12	55 50	6	$\frac{11\frac{3}{4}}{11\frac{1}{2}}$	$\frac{5\frac{1}{4}}{5\frac{1}{4}}$	9	6 6	$\frac{1}{2}$ $\frac{1}{2}$	9	$\frac{1.3}{1.3}$	8	2.7	$0.25 \\ 0.25$	
12	45 40.8 and 35 31.8	6 6 6	11¼ 11¼ 11		9 9 9	6 6 6	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	9 9 9	$\frac{1.3}{1.3}$	$7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$	2.6	$\begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \end{array}$	
10	40 35 30 25.4	$5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$		5	$7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$		1/2 1/2 1/2 1/2 1/2	6 7 7	1.1 1.1 1.1 1.1	7½ 7 7 7	$1.3 \\ 1.3 \\ 1.3$	$0.13 \\ 0.13 \\ 0.13 \\ 0.13$	11½'' 1½''
9	$\begin{array}{r} 35 \\ 30 \\ 25 \\ 21.8 \end{array}$	5555	$ \begin{array}{c} 10 \\ 9\frac{1}{2} \\ 9\frac{1}{2} \\ 9\frac{1}{4} \end{array} $	$4\frac{1}{4}$ $4\frac{1}{4}$ $4\frac{1}{2}$ $4\frac{1}{2}$	$6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$		1/2 1/2 1/2 1/2 1/2	5 5 5 5	$0.9 \\ 0.9 \\ 0.9 \\ 0.9$	$ 7 $ $ 6\frac{1}{2} $ $ 6\frac{1}{2} $ $ 6\frac{1}{2} $	$\frac{1.3}{1.2}$ $\frac{1.2}{1.2}$	$\begin{array}{c} 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \end{array}$	1/8
8	25.5 23 20.5 and 18.4	$4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$	9 8¾ 8½	4 4 4	5½ 5½ 5½		1/2 1/2 1/2	4 4 4	$0.8 \\ 0.8$	6 6 6	1.1	$\begin{array}{c} 0.13 \\ 0.13 \\ 0.13 \end{array}$	
7	20 17.5 15.3	$4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$	8½ 8¼ 8¼	41/4	5 5 5		1/2 1/2 1/2	4 4	$0.7 \\ 0.7$	6 6	1.1 1.1 1.1	$0.13 \\ 0.13 \\ 0.13$	1 ¹¹ / ₁₆ .
6	17.25 14.75 12.5	4 4 4	$\begin{vmatrix} 7\frac{3}{4} \\ 7\frac{1}{2} \\ 7\frac{1}{2} \end{vmatrix}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	$ \begin{array}{c c} 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \end{array} $		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	4 4	0.6	$5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$	1.1 1.1 1.1	$0.13 \\ 0.13 \\ 0.13$	₹%" Cored Hole

For 5", 4" and 3" beams, use 1" gas pipe $3\frac{1}{4}$ ", 3" and $2\frac{3}{4}$ " long respectively.

TIE RODS AND ANCHORS

AMERICAN BRIDGE COMPANY STANDARD

34 INCH TIE RODS

LENGTHS AND WEIGHTS FOR VARIOUS DISTANCES C. TO C. OF BEAMS

Weights include two Nuts

C. to C.	Length	Weight									
FtIn.	FtIn.	Pounds	FtIn.	FtIn.	Pounds	FtIn.	FtIn.	Pounds	FtIn.	FtIn.	Pound s
1-0	1-3	2.30	1-3	1-6	2.67	1-6	1-9	3.05	1-9	2-0	3.42
2-0	2-3	3.80	2-3	2-6	4.17	2-6	2-9	4.55	2-9	3-0	4.92
3-0	3-3	5.30	3-3	3-6	5.67	3-6	3-9	6.05	3-9	4-0	6.42
4-0	4-3	6.80	4-3	4-6	7.17	4-6	4-9	7.55	4-9	5-0	7.92
5-0	5-3	8.30	5-3	5-6	8.67	5-6	5-9	9.05	5-9	6-0	9.42
6-0	6-3	9.80	6-3	6-6	10.17	6-6	6-9	10.55	6-9	7-0	10.92
7-0	7-3	11.30	7-3	7-6	11.67	7-6	7-9	12.05	7-9	8-0	12.42
8-0	8-3	12.80	8-3	8-6	13.17	8-6	8-9	13.55	8-9	9-0	13.92

ANCHORS

SWEDGE BOLT

Weight includes Nut

Diameter	Length	Weight
Inches	Feet - Inches	Pounds
34	0-9	1.3
1 8	1-0 1-0	$\frac{2.3}{3.1}$
11/4	1-3	6.1

BUILT-IN ANCHOR BOLTS

When center to center of anchors is less than width of washer, use washer with two holes.

GOVERNMENT ANCHOR

3/4" Rod 1'9" long. Wt., 3 lbs.

ANGLE ANCHOR

2 Angles 6" x 4" x7/16" x 0' 2½" Weight with ¾" bolts, 7 lbs.

BEARING PLATES

The size and thickness of steel bearing plates depend on the end reaction, length of bearing, and unit pressure. The following table gives sizes for beams of usual spans, the allowable safe loads in thousands of pounds and the span of beams giving equivalent end reactions.

STANDARD BEARING PLATES

Be	am	ing,	Bearin	g Plate		Lim.	Ве	am	ng,	Beari	ng Pla	ate	Lim.
Depth, In.	Wt., Lbs. per Ft.	Wall Beari Inches	Size, In.	Wt., Lbs.	Max. Safe Load	Span of Beam, Ft.	Depth, In.	Wt., Lbs. per Ft.	Wall Beari Inches	Size, In.	Wt., Lbs.		Span of Beam, Ft.
$\frac{27}{24}$	$90.0 \\ 79.9 \\ 60.4$	16	16x16x1 16x16x1 16x16x1	73 73 73	$\frac{48.8}{37.9}$ $\frac{44.0}{44.0}$	24.5	10 9 8	25.4 21.8 18.4	8 8 8	12x8x¾ 12x8x¾ 8x8x¾	17	$\frac{13.1}{8.7}$ $\frac{16.7}{16.7}$	$9.9 \\ 11.6 \\ 4.5$
	$65.4 \\ 54.7 \\ 60.8$	16 16	16x16x 1 16x16x 1 16x16x 1	73 73 73	$35.0 \\ 34.1 \\ 34.1$		7 6 5	15.3 12.5 10.0	8 6 6	8x8x ⁵ / ₈ 6x6x ¹ / ₂ 6x6x ¹ / ₂	12 5	15.4 12.0 10.7	3.6 3.2 2.4
	$\frac{42.9}{31.8}$		16x12x1 12x12x¾	55 31	$\frac{24.4}{20.6}$	12.9 9.3	4 3	7.7 5.7	4	4x4x3/8 4x4x3/8	2	$\frac{9.0}{7.2}$	1.8

Allowable loads given for standard beams will apply also to supplementary and other beams of equal depth and end reactions.

Plates of special sizes may be taken from the table of projection coefficients given below, calculated from the following formula. Let

- A =length of bearing plate, in inches.
- B =width of bearing plate, in inches.
- t =thickness of bearing plate, in inches.
- b = flange width of beam, in inches.

 R = reaction on bearing plate, in pounds.
- $\mathbf{I} = \frac{\mathbf{R}(\mathbf{B} \mathbf{b})}{8} = \frac{\mathbf{w} + \mathbf{A} \cdot \mathbf{B}}{8} = \mathbf{f} \mathbf{S} = \frac{\mathbf{f} \mathbf{A} \cdot \mathbf{t}^2}{6}; \ \mathbf{B}(\mathbf{B} \mathbf{b}) = \frac{\mathbf{4} \mathbf{f} \mathbf{t}^2}{3\mathbf{w}}, \text{ or when } \mathbf{f} = 16000,$

B (B-b) =
$$\frac{64000 \text{ t}^2}{3\text{w}}$$
, the same as the formula for rolled steel slabs, page 253.

Rule:—Take from table on following page the proper size bearing plate for the reaction and unit pressure. Multiply the width of the plate by the width minus the width of the beam flange and select from the table below the thickness corresponding to the value for the given unit pressure.

Projection Coefficients

Unit Pressure,					Thick	ness of	Beari	ng Pla	tes, in	Inche	8			
Lbs. per Sq. In.	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4	13/8	1½	$1\frac{5}{8}$	13/4	17/8	2
75	40.0	71.1	111.1	160	218	284	360	444	538	640	751	871	1000	1138
100	30.0	53.3			163	213	270	333	403	480	563	653	750	853
125	[24.0]		67.7	96	131	171	216	267	323	384	451	523	600	683
150		35.6			109	142	180	222	269	320	376	436	500	
175	17.1		47.6	69	93	122	154	190	230	274	322	373	429	488
200		26.7	41.7	60	82	107	135	167	202	240	282	327	375	427
250	12.0	21.3	33.3	48	65	85	108	133	161	192	225	261	300	341
300	10.0	17.8	27.8	40	54	71	90	111	134	160	188	218	250	284
350	8.6	15.2	23.8	34	47	61	77	95	115	137	161	187	214	244
400	7.5	13.3	20.8	30	41	53	68	83	101	120	141	163	188	213

CARNEGIE STEEL COMPANY

BEARING PLATES

SAFE RESISTANCE IN THOUSANDS OF POUNDS

Wall	Bearing	g Plates			I	ressure	in Poun	ds per S	Square I	nch		
Bear- ing,	Length Inches		75	100	125	150	175	200	250	300	350	400
-4	4	4	1.2	1.6	2.0	2.4	2.8	3.2	4.0	4.8	5.6	6.4
4	4	6	1.8	2.4	3.0	3.6	4.2	4.8	6.0	7.2	8.4	9.6
4	4	8	2.4	3.2	4.0	4.8	5.6	6.4	8.0	9.6	11.2	12.8
6	6	6	2.7	3.6	4.5	5.4	6.3	7.2	9.0	10.8	12.6	14.4
6	6	8	3.6	4.8	6.0	7.2	8.4	9.6	12.0	14.4	16.8	19.2
6	6	10	4.5	6.0	7.5	9.0	10.5	12.0	15.0	18.0	21.0	24.0
8	8	8	4.8	6.4	8.0	9.6	11.2	12.8	16.0	19.2	22.4	25.6
8	8	10	6.0	8.0	10.0	12.0	14.0	16.0	20.0	24.0	28.0	32.0
8	8	12	7.2	9.6	12.0	14.4	16.8	19.2	24.0	28.8	33.6	38.4
10	10	10	7.5	10.0	12.5	15.0	17.5	20.0	25.0	30.0	35.0	40.0
10	10	12	9.0	12.0	15.0	18.0	21.0	24.0	30.0	36.0	42.0	48.0
10	10	14	10.5	14.0	17.5	21.0	24.5	28.0	35.0	42.0	49.0	56.0
12	12	12	10.8	14.4	18.0	21.6	25.2	28.8	36.0	43.2	50.4	57.6
12	12	14	12.6	16.8	21.0	25.2	29.4	33.6	42.0	50.4	58.8	67.2
12	12	16	14.4	19.2	24.0	28.8	33.6	38.4	48.0	57.6	67.2	76.8
14	14	14	14.7	19.6	24.5	29.4	34.3	39.2	49.0	58.8	68.6	78.4
14	14	16	16.8	22.4	28.0	33.6	39.2	44.8	56.0	67.2	78.4	89.6
14	14	18	18.9	25.2	31.5	37.8	44.1	50.4	63.0	75.6	88.2	100.8
14	14	20	21.0	28.0	35.0	42.0	49.0	56.0	70.0	84.0	98.0	112.0
16	16	16	19.2	25.6	32.0	38.4	44.8	51.2	64.0	76.8		102.4
16	16	18	21.6	28.8	36.0	43.2	50.4	57.6	72.0		100.8	1
16	16	20	24.0	32.0	40.0	48.0	56.0°	64.0	80.0	96.0		128.0
16	16	22	26.4	35.2	44.0	52.8	61.6	70.4	88.0	105.6	123.2	140.8
18	18	18	24.3	32.4	40.5	48.6	56.7	64.8	81.0		113.4	
18	18	20	27.0	36.0	45.0	54.0	63.0	72.0	90.0		126.0	
18	18	22	29.7	39.6	49.5	59.4	69.3	79.2	99.0		138.6	
18	18	24	32.4	43.2	54.0	64.8	75.6				151.2	
20	20	20	30.0	40.0	50.0	60.0	70.0		100.0		140.0	
20	20	22	33.0	44.0	55.0	66.0	77.0				154.0	
20	20	24	36.0	48.0	60.0	72.0	84.0				168.0	
20	20	26	39.0	52.0	65.0	78.0	91.0	104.0	130.0	156.0	182.0	208.0
22	22	22	36.3	48.4	60.5	72.6	84.7				169.4	
22	22	24	39.6	52.8	66.0	79.2		105.6				
22	22	26	42.9	57.2	71.5			114.4	143.0	171.6	200.2	228.8
22	22	28	46.2	61.6	77.0	1		123.2			215.6	
24	24	24	43.2	57.6	72.0			115.2			201.6	
24	24	26	46.8	62.4	78.0			124.8				
24	24	28	50.4	67.2	84.0	100.8	117.6	134.4	168.0	201.6	235.2	268.8
24	24	30	54.0	72.0	□ 90.0	108.0	126.0	144.0	180.0	216.0	252.0	288.0

DETAILS FOR PUNCHING AND RIVETING

AMERICAN BRIDGE COMPANY STANDARD

CONVENTIONAL SIGNS FOR RIVETING

Sho	p Ri	vets		F	ield	Rive	ts_
		nters I chip				unter d chip	
Two full heads	Near side	Far side	Both sides	Two full heads	Near side	Far side	Both sides
1-11-0	- XX	8			- <u>@</u>	® -	Ð.

			Sho	p R	ivets			
		nk but ped " nt. 14"		atten 1¼" h d 5g"	ed igh Rívets	Fl to 34",7	atten	ed igh Rivets
Near side	Far side	Both sides	Near side	Far side	Both sides	Near side	Far side	Both sides
Ø	-0-	· Ø-	Ø			D'	·	Ø

GAGES FOR ANGLES, INCHES

Leg	8	7	6	5	4	$3\frac{1}{2}$	3	$2\frac{1}{2}$	2	$1\frac{3}{4}$	$1\frac{1}{2}$	13/8	$1\frac{1}{4}$	1	3/1
g1	$4\frac{1}{2}$	4	31/2	3	$2\frac{1}{2}$	2	134	13/8	$1\frac{1}{8}$	1	7/8	7/8	34	5/8	$\frac{1}{2}$
g2	3	$2\frac{1}{2}$	$2\frac{1}{2}$	2											
g_3	3	3	$2\frac{1}{4}$	$1\frac{3}{4}$	1										
Max. rivet	11/8	1	7/8	7/8	7/8	7/8	7/8	3/4	5/8	1/2	3/8	3/8	38	1/4	14

For column details, $6'' \log (\frac{1}{2})$ inch thick or less) against column shaft, $g^2 = 134''$, $g^3 = 3''$. For diagonal angles, etc., gage in middle, where riveted leg equals or exceeds 3'' for 34'' rivets $3\frac{1}{2}''$ for 78'' rivets.

Use special gages to adapt work to multiple punch, or to secure desirable details.

CLEARANCE FOR WEB RIVETING

RIVETS IN CRIMPED ANGLES

Distance x should be $1\frac{1}{2}$ " plus thickness of chord angles, but never less than 2".

STANDARD RIVET DIES

CLEARANCE FOR COVER PLATE RIVETING

	Dimensions in Theres													
e	1/2	1_	11/2	2_	2½	3_	31/2	4_	41/2	_5_	51/2	_6_		
d	$2\frac{1}{2}$	$2\frac{5}{8}$	$2\frac{3}{4}$	$2\frac{3}{4}$	$2\frac{7}{8}$	27/8	3	31/8	$3\frac{1}{8}$	31/4	31/4	33/8		
f	0	1/2	1_	11/2	2	21/2								
d	2 1/2	21/4	21/8	2	11/2	0								

Dimensions in Inches

RIVET SPACING

AMERICAN BRIDGE COMPANY STANDARD

MINIMUM STAGGER FOR RIVETS

Diameter of Rivet, Inches		Minimum stagger, d, Inches															
meto	c, Inches																
Dia	11/8	13/16	11/4	15/16	18/8	17/16	11/2	1%6	15%	111/16	134	113/16	17%	115/16	21/16	23/16	2546
5/8	15/10	7/8	18/16	11/16	1/2	5/16	0										
8/4	11/4	13/16	11/8	11/16	15/1e	7/8	3/1	946	3/8	0							
7/8	$1\frac{1}{2}$	17/16	13/8	15/16	11/4	13/16	11/8	1	15/16	13/16	5/8	7/16	0				
1	113/16	13/4	111/16	$1\frac{5}{8}$	19/16	11/2	17/1в	1%	1546	13/16	11/8	1	78	3/4	0		
$1\frac{1}{8}$	21/16	2	115/16	115/16	17/8	113/16	13/4	111/16	15%	1%16	11/2	18/8	1546	11/4	1	11/16	0

DISTANCE CENTER TO CENTER OF STAGGERED RIVETS Values of x for varying values of a and b

Values below and to right of upper zigzag line are large enough for 34" rivets. Values below and to right of lower zigzag line are large enough for 28" rivets.

MINIMUM RIVET SPACING

Dia. of Rivet, Inches									
x, Minimum, Inches.	1	11/4	13/4	2	21/4	25/8	3	33/8	

STRUCTURAL DETAILS

REDUCTION OF AREA FOR RIVET HOLES

Area in Square Inches=Diameter of Hole by Thickness of Metal

Thickness	Diameter of Hole in Inches													
of Metal, Inches	1/1	1/2	916	58	11/16	8/4	18/16	74	15/16	1	11/16	11/8		
316	.05	.09	.11	.12	.13	.14	.15	.16	.18	.19	.20	.21		
1,4	.06	.13	.14	.16	.17	.19	.20	.22	.23	.25	.27	.28		
916	.08	.16	.18	.20	.21	.23	.25	.27	.29	.31	.33	.35		
38	.09	.19	.24	.23	.26	.28	.30	.33	.35	.38	.40	.42		
716	.11	.22	.25	.27	.30	.33	.36	.38	.41	.44	.46	.49		
12	.13	.25	.28	.31	.34	.38	.41	.44	.47	.50	.53	.56		
9/16	.14	.28	.32	.35	.39	.42	.46	.49	.53	.56	.60	.63		
58	.16	.31	.35	.39	.43	.47	.51	.55	.59	.63	.66	.70		
11/16	.17	.34	.39	.43	.47	.52	.56	.60	.64	.69	.73	.77		
3/1	.19	.38	.42	.47	.52	.56	.61	.66	.70	.75	.80	.84		
1316	.20	.41	.46	.51	.56	.61	.66	.71	.76	.81	.86	.91		
78	.22	.44	.49	.55	.60	.66	.71	.77	.82	.88	.93	.98		
1516	.23	.47	.53	.59	.64	.70	.76	.82	.88	.94	1.00	1.05		
1	.25	.50	.56	.63	.69	.75	.81	.88	.94	1.00	1.06	1.13		
11/16	.27	.53	.60	.66	.73	.80	.86	.93	1.00	1.06	1.13	1.20		
11/8	.28	.56	.63	.70	.77	.84	.91	.98	1.05	1.13	1.20	1.27		
18/16	.30	.59	.67	.74	.82	.89	.96	1.04	1.11	1.19	1.26	1.34		
11/4	.31	.63	.70	.78	.86	.94	1.02	1.09	1.17	1.25	1.33	1.41		
15/16	.33	.66	.74	.82	.90	.98	1.07	1.15	1.23	1.31	1.39	1.48		
13/8	.34	.69	.77	.86	.95	1.03	1.12	1.20	1.29	1.38	1.46	1.55		
17/16	.36	.72	.81	.90	.99	1.08	1.17	1.26	1.35	1.44	1.53	1.62		
11/2	.38	.75	.84	.94	1.03	1.13	1.22	1.31	1.41	1.50	1.59	1.69		

STAGGER OF RIVETS TO MAINTAIN NET SECTION

AMERICAN BRIDGE COMPANY STANDARD

y=diameter of rivet	+ ½"
$\mathbf{a}\mathbf{-y}\mathbf{=}\sqrt{\mathbf{a}^2+\mathbf{b}^2}\mathbf{-}2\mathbf{y}$	$a^{1}-2y = \sqrt{a^{2}+b^{2}}-3$
$b = \sqrt{2ay + y^2}$	$b = \sqrt{2ay + y^2}$

a,	84" Rivet	7/8" Rivet	a1	8/4" Rivet	R R
	b	b		b	

Dimensions in Inches

a	Rivet b	Rivet b	a ¹	Rivet b	7/8" Rivet
1 1½ 2 2½ 3 3½ 4 4½	$\begin{array}{c} 1\% \\ 1\% \\ 1\% \\ 21/16 \\ 21/4 \\ 2\% 16 \\ 2\% 16 \\ 218/16 \\ 218/16 \\ 215/16 \end{array}$	$1\frac{3}{4}$ 2 $2\frac{1}{4}$ $2\frac{7}{16}$ $2\frac{5}{8}$ $2\frac{18}{16}$ $3\frac{3}{16}$	5 5½ 6 6½ 7 7½ 8 8½	3½ 3¼ 3¾ 3½ 35% 3¾ 37% 4	35/16 31/2 35/8 38/4 37/8 4 41/8 41/4

a=sum of gages minus thickness of angle. 5%" rivets, can be taken at ½" less than for ¾" rivets. 1" rivets, can be taken at ½" more than for ½" rivets.

STRESSES IN RIVETS AND PINS

Rivets. In transmitting stresses between riveted pieces, it is customary to disregard friction and to proportion rivets to the entire stress to be transmitted. They must be of sufficient size and number to resist shear and to afford such bearing area as not to cause distortion of the metal at the rivet holes. In the case of beams which frame opposite and of single web girders, this latter condition often necessitates a greater thickness of web than required by the shearing stresses. In a plate girder with \(\frac{5}{16}'' \) web, \(\frac{3}{4}'' \) rivets connecting the web with the flange angles would have a bearing value at 24,000 pounds unit stress of 5,630 pounds per rivet, while their value in double shear at 12,000 pounds unit stress is 10,600 pounds per rivet; and it might be necessary to increase the web thickness to \(\frac{3}{6}'' \) or more in order that the pressure of the rivets upon the metal be not excessive.

Pins. Pins must be calculated for shearing, bending and bearing stresses, but one of the latter two will in most cases determine the size. When groups of bars are connected to the same pin, as in the lower chord of truss bridges, the size of the bars must be so chosen and the bars so placed that at no point on the pin will there be any excessive bending stress. When the size of pin has been determined from the bending stress, the thickness of the bars or web of the post should be investigated to provide sufficient bearing area, the bars being thickened or pin plates added if necessary.

The following is the formula for flexure applied to pins: $M = f \pi d^3 \div 32$ or $= f A d \div 8$, in which M = moment of forces for any section through pin, f = fiber stress per square inch in bending, A = the area of section, d = diameter, $\pi = 3.14159$. The forces are assumed to act in a plane passing through the axis of the pin.

EXAMPLE 1.—A pin, see figure, has to carry a load of 64,000 pounds; required the size at 24,000 pounds fiber stress, assuming the distance between points of support to be 5 inches.

Bending moment=64,000 x 5 \div 4=80,000 inch pounds; use a $3\,\%$ inch pin; allowed moment: 80,900 inch pounds.

EXAMPLE 2.—Required the thickness of metal in the top chord of a bridge to give sufficient bearing area to a 33/4-inch pin, having to transmit a stress of 121,400 pounds at an allowed bearing pressure of 24,000 pounds per square inch.

The bearing value of a 3%-inch pin for 1 inch thickness of metal is 81,000 pounds; therefore, the thickness of metal required= $121,400 \div 81,000=1\frac{1}{2}$ inch, or each web of the chord must be $\frac{3}{4}$ inch thick, including pin plates.

STRESSES IN RIVETS AND PINS

RIVETS

SHEARING AND BEARING VALUES

Values in Pounds, all Dimensions in Inches

3	6-	IΝ	CH	RIVE	TS-	Area	1104	Square	Inch
7	×-	Ι	\sim 11	111111	, I 13—	Zu Ca	*1104	Suuare	THULL

Unit	, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000
Sing	le Shear per Rivet	770	880	990	1100	1210	1320
Doub	ole Shear per Rivet	1540	1760	1980	2200	2420	2640
Uni	t, Lbs. per Sq. ln.	14000	16000	18000	20000	22000	24000
ches	1/8	660	750	840	940	1030	1130
	316	980	1130	1270	1410	1550	1690
.88	1/4	1310	1500	1690	1880	2060	2250
kno	716	1640	1880	2110	2340	2580	2810
E	3,	1910	2250	2530	2810	3090	3380
	Sing Doub Uni	E 916	Single Shear per Rivet 770	Single Shear per Rivet 770 S80 Double Shear per Rivet 1540 1760 Unit, Lbs. per Sq. In. 14000 16000 15 660 750 316 980 1130 16 1310 1500	Single Shear per Rivet 770 880 990 Double Shear per Rivet 1540 1760 1980 Unit, Lbs. per Sq. In. 14000 16000 18000 1/2 660 750 840 3/16 980 1130 1270 1/2 1/3 1500 1600	Single Shear per Rivet 770 880 990 1100 Double Shear per Rivet 1540 1760 1980 2200 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 gg 1/s 660 750 840 940 316 980 1130 1270 1410 1/s 130 1500 1800 1800	Single Shear per Rivet 770 880 990 1100 1210 Double Shear per Rivet 1540 1760 1980 2200 2420 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 1/2 660 750 840 940 1030 1/3 980 1130 1270 1410 1550 1/4 1310 1500 1890 1890 1990 1990

½-INCH RIVETS—Area .1963 Square Inch

L	Uni	t, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000
Shear	Sing	gle Shear per Rivet	1370	1570	1770	1960	2160	2360
	Dou	ble Shear per Rivet	2750	3140	3530	3930	4320	4710
	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000
	nches	8/16	1310	1500	1690	1880	2060	2250
ng	Ī	1,4	1750	2000	2250	2500	2750	3000
Ë	.5	716	2190	2500	2810	3130	3440	3750
Bearing	10.88	3/8	2630	3000	3380	3750	4130	4500
	Thickness	7/16	3060	3500	3940	4380	4810	5250
	4	1/2	3500	4000	4500	5000	5500	6000

5%-INCH RIVETS-Area .3068 Square Inch

	Uni	t, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000
Shear	Sing	gle Shear per Rivet	2150	2450	2760	3070	3370	3680
0.1	Dou	ble Shear per Rivet	4300	4910	5520	6140	6750	7360
	Unit, Lbs. per Sq. In.		14000	16000	18000	20000	22000	24000
		8∕1 €	1640	1880	2110	2340	2580	2810
	nches	3/4	2190	2500	2810	3130	3440	3750
ng	Ĭ	5/16	2730	3130	3520	3910	4300	4690
Bearing	.≘	8%	3280	3750	4220	4690	5160	5630
ğ	688	₹/16	3830	4380	4920	5470	6020	6560
	Thickness	1/2	4380	5000	5630	6250	688Q	7500
	물	%16	4920	5630	6330	7030	7730	8440
		5/8	5470	6250	7040	7810	8590	9380

Values below dotted lines are greater than double shear.

RIVETS

SHEARING AND BEARING VALUES

Values in Pounds, Dimensions in Inches

3/4-INCH RIVETS—Area .4418 Square Inch

-	Uni	t, Lbs. per Sq. In	7000	8000	9000	10000	11000	12000
Shear	Sing	le Shear per Rivet	3090	3530	3980	4420	4860	5300
σ	Dou	ole Shear per Rivet	6190	7070	7950	8840	9720	10600
****	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	, 24000
	in Inches	1/4	2630	3000	3380	3750	4130	4500
Bearing		5/16 8/8	3280 3940	3750 4500	4220 5060	4690 5630	5160 6190	5630 6750
Bea		7/16	4590	5250	5910	6560 7500	7220 8250	7880 9000
	Thickness	1/2 9/16	$5250 \\ 5910$	6000 6750	6750 7590	8440	9280	10130
	E	5/8	6560	7500	8440	9380	10310	11250

$\frac{7}{8}$ -INCH RIVETS—Area .6013 Square Inch

-	Uni	t, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000
Shear	Sing	le Shear per Rivet	4210	4810	5410	6010	6610	7220
203	Doa	ble Shear per Rivet	8420	9620	10820	12030	13230	14430
-	Un	it, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000
	sec	1/4	3060	3500	3940	4380	4810	5250 6560
60	Inches	5/16	3830	4380	4920	5470	6020	
Bearing	ij.	8/8 ₹/16	$\frac{4590}{5360}$	5250 6130	5910 6890	6560 7660	7220 8420	7880 9190
Be	Thickness	1/2	6130	7000	7880	8750	9630	10500
	망	%16	6890	7880	8860	9840	10830	11810
	E	5/8	7660	8750	9840	10940	12030	13130
		11/16	8420	9630	10830	12030	13230	14430

1-INCH RIVETS-Area .7854 Square Inch

	Uni	t, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000
Shear	Sing	le Shear per Rivet	5500	6280	7070	7850	8640	9420
ďΩ	Dou	ble Shear per Rivet	11000	12570	14140	15710	17280	18850
	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000
	-	1/4	3500	4000	4500	5000	5500	6000
	gg	5/16	4380	5000	5630	6250	6880	7500
	Inches	8/8	5250	6000	6750	7500	8250	9000
Bearing		7/16	6130	7000	7880	8750	9630	10500
6	.5	1/2	7000	8000	9000	10000	11000	12000
Ã	88	9/16	7880 '	9000	10130	11250	12380	13500
	ğ	- 5/8	8750	10000	11250	12500	13750	15000
	Thickness	11/16	9630	11000	12380	13750	15130	16500
	E	8/4	10500	12000	13500	15000	16500	18000
	1	18/16	11380	13000	14630	16250	17880	19500

Values above upper dotted lines are less than single shear. Values below lower dotted lines are greater than double shear.

STRESSES IN RIVETS AND PINS

PINS

BEARING VALUES IN POUNDS ON METAL ONE INCH THICK

Bearing Value—Diameter of Pin x Bearing Stress per Square Inch

P	in	I	Bearing Stresse	s in Pounds p	er Square Incl	h
Diameter, Inches	Area, Sq. In.	12000	15000	20000	22000	24000
1	.785	12000	15000	20000	22000	24000
1 1/4	1.227	15000	18800	25000	27500	30000
113	$\frac{1.227}{1.767}$	18000	22500	30000	33000	36000
1 1/4 1 1/2 1 3/4	2.405	21000	26300	35000	38500	42000
2	3.142	24000	30000	40000	44000	48000
21/4	3.976	27000	33800	45000	49500	54000
21/2	4.909	30000	37500	50000	55000	60000
2 2 1/4 2 1/2 2 3/4	5.940	33000	41300	55000	60500	66000
3 3 ¹ / ₄ 3 ¹ / ₂ 3 ³ / ₄	7.069	36000	45000	60000	66000	72000
31/4	8.296	· 39000	48800	65000	71500	78000
31/2	9.621	42000	52500	70000	77000	84000
3 3/4	11.045	45000	56300	75000	82500	90000
4	12.566	48000	60000	80000	88000	96000
4 14	14.186	51000	63800	85000	93500	102000
4 14 4 1/2 4 3/4	15.904	54000	67500	90000	99000	108000
4%	17.721	57000	71300	95000	104500	114000
5 514 512 534	19.635	60000	75000	100000	110000	120000
51/4	21.648	63000	78800	105000	115500	126000
5 1/2	23.758	66000	82500	110000	121000	132000
3%	25.967	69000	86300	115000	126500	138000
6	28.274	72000	90000	120000	132000	144000
614	30.680	75000	93800	125000	137500	150000
6 1/4 6 1/2 6 3/4	$\frac{33.183}{35.785}$	78000 81000	97500 101300	130000 135000	143000 148500	156000 162000
	30.760	81000	101300	133000	146500	102000
7 7 1/4 7 1/2 7 3/4	38.485	84000	105000	140000	154000	168000
713	41.282	87000	108800	145000	159500	174000 180000
7 32	$\frac{44.179}{47.173}$	90000 93000	$112500 \\ 116300$	150000 155000	165000 170500	186000
	17.175	93000	110300	100000	170500	100000
8 8 ½ 8 ½ 8 ¾ 8 ¾	50.265	96000	120000	160000	176000	192000
8 1/4	53.456	99000	123800	165000	181500	198000
8 1/2	$\frac{56.745}{60.132}$	102000 105000	127500 131300	170000 175000	187000 192500	$204000 \\ 210000$
	00.152	103000	131300	175000	192500	210000
9	63.617	108000	135000	180000	198000	216000
9 9 14 9 3/2 9 3/4	67.201	111000	138800	185000	203500	222000
9 3/2	70.882	114000	142500	190000	209000	228000
9%	74.662	117000	146300	195000	214500	234000
10	78.540	120000	150000	200000	220000	240000
1014	82.516	123000	153800 157500	205000	225500	246000 252000
10 ¼ 10 ¼ 10 ¾ 10 ¾	$86.590 \\ 90.763$	126000 129000	161300	210000 215000	231000 236500	258000
	95.033	132000	165000	220000	242000	264000
11 11 ½ 11 ½ 11 ¾ 12 ¾	99,402	135000	165000 168800	220000 225000	242000	270000
1115	103.869	138000	172500	230000	253000	276000
1134	108.434	141000	176300	235000	258500	282000
12	113.097	144000	180000	240000	264000	288000

PINS

*BENDING MOMENTS IN INCH POUNDS

Bending Moment=(Diameter of Pin)³ x 0.098175 x Stress per Square Inch

Pi	n		Fi	ber Stress i	n Pounds p	er Square I	Inch	
Diameter, Inches	Area, Sq. In.	15000	18000	20000	22000	22500	24000	25000
$1 \\ 1 \frac{1}{4} \\ 1 \frac{1}{2} \\ 1 \frac{3}{4}$.785 1.227 1.767	1500 2900 5000	1800 3500 6000	2000 3800 6600	2200 4200 7300	2200 4300 7500	2400 4600 8000	250 480 830
	2.405	7900	9500	10500	11600	11800	12600	1320
$\begin{array}{c} 2 \\ 2 \frac{1}{4} \\ 2 \frac{1}{2} \\ 2 \frac{3}{4} \end{array}$	3.142 3.976 4.909 5.940	11800 16800 23000 30600	$\begin{array}{c} 14100 \\ 20100 \\ 27600 \\ 36800 \end{array}$	15700 22400 30700 40800	$\begin{array}{c} 17300 \\ 24600 \\ 33700 \\ 44900 \end{array}$	$\begin{array}{c} 17700 \\ 25200 \\ 34500 \\ 45900 \end{array}$	18800 26800 36800 49000	1960 2800 3830 5100
$\frac{3}{3\frac{1}{4}}$ $\frac{3}{3\frac{1}{4}}$ $\frac{3}{3\frac{3}{4}}$	7.069 8.296	39800 50600	47700 60700	53000 67400	58300 74100	59600 75800	63600 80900	6630 8430
$\frac{3\frac{7}{2}}{3\frac{3}{4}}$	$9.621 \\ 11.045$	63100 77700	$75800 \\ 93200$	84200 103500	$92600 \\ 113900$	$94700 \\ 116500$	$101000 \\ 124300$	$10520 \\ 12940$
4 4 1/4 4 1/2 4 3/4	$\begin{array}{c} 12.566 \\ 14.186 \\ 15.904 \end{array}$	94200 113000 134200	113100 135700 161000	125700 150700 178900	138200 165800 196800	$\begin{array}{c} 141400 \\ 169600 \\ 201300 \end{array}$	$\begin{array}{c} 150800 \\ 180900 \\ 214700 \end{array}$	$\begin{array}{c} 15710 \\ 18840 \\ 22370 \end{array}$
4 3/4	17.721	157800	189400	210400	231500	236700	252500	26300
5 5 1/4 5 1/2 5 3/4	$\begin{array}{c} 19.635 \\ 21.648 \\ 23.758 \end{array}$	184100 213100 245000	$\begin{array}{c} 220900 \\ 255700 \\ 294000 \end{array}$	$\begin{array}{c} 245400 \\ 284100 \\ 326700 \end{array}$	$\begin{array}{c} 270000 \\ 312500 \\ 359300 \end{array}$	$\begin{array}{c} 276100 \\ 319600 \\ 367500 \end{array}$	294500 340900 392000	$30680 \\ 35520 \\ 40830$
5 3/4	25.967	280000	336000	373300	410600	419900	447900	46660
$ \begin{array}{c} 6 \\ 6 \\ 4 \\ 6 \\ \hline 6 \\ 3 \\ \end{array} $	28.274 30.680 33.183	318100 359500 404400	381700 431400 485300	424100 479400 539200	$\begin{array}{c} 466500 \\ 527300 \\ 593100 \end{array}$	$477100 \\ 539300 \\ 606600$	508900 575200 647100	53010 59920 67400
6 3 4	35.785	452900	543500	603900	664300	679400	724600	75480
7 7 ½ 7 ½ 7 ¾ 7 ¾	38.485 41.282	505100 561200	606100 673400	673500 748200	740800 823100	757700 841800	808200 897900	
$7\frac{1}{2}$ $7\frac{3}{4}$	$44.179 \\ 47.173$	621300 685500	745500 822600	828400 914000	$911200 \\ 1005400$	$\begin{array}{c} 931900 \\ 1028200 \end{array}$	$\frac{994000}{1096800}$	
8 8 ½ 8 ½ 8 ¾	50.265 53.456	754000 826900	-992300	1005300 1102500	1212800	1240400	1323000	137820
$\frac{8\frac{1}{2}}{8\frac{3}{4}}$	$ 56.745 \\ 60.132 $	904400 986500	$1085300 \\ 1183900$	$\frac{1205800}{1315400}$	$1326400 \\ 1446900$	$\frac{1356600}{1479800}$	1447000 1578500	164420
9 9 ½ 9 ½ 9 ¾	63.617 67.201	11165500	1398600	1431400 1554000	1709400	1748300	1864800	194250
$9\frac{1}{2}$ $9\frac{3}{4}$	$70.882 \\ 74.662$	11969600	1515100	1683500 1819900	118518001	1893900	2020100	210430
10	78,540	1472600	1767100	$\begin{array}{c} 1963500 \\ 2114500 \\ 2273000 \end{array}$	2159800	2208900	2356200	245440 264310
$10\frac{1}{4}$ $10\frac{1}{2}$ $10\frac{3}{4}$	82.516 86.590 90.763	$ \begin{array}{r} 1383300 \\ 1704700 \\ 1829400 \end{array} $	2045700 2195300	$\begin{array}{c} 2114300 \\ 2273000 \\ 2439200 \end{array}$	2500300 2683200	$2557100 \\ 2744100$	$\frac{2727600}{2927100}$	$\frac{284120}{304910}$
11 11 ½	95.033 99.402	1960100 2096800	$2352100 \\ 2516100$	2613400 2795700	2874800 3075200	2940100 3145100	3136100 3354800	326680 349460
$11\frac{1}{4}$ $11\frac{1}{2}$ $11\frac{3}{4}$ 12	103.869 108.434 113.097	$\begin{array}{c} 1960100 \\ 2096800 \\ 2239700 \\ 2388900 \\ 2544700 \end{array}$	$2687600 \\ 2866700$	$2986200 \\ 3185300$	$3284900 \\ 3503800$	3583400	3822300	398160

BEAM AND PLATE AND ANGLE GIRDERS

Where single rolled beams are insufficient to earry the loads, the required eapacity may be obtained by various methods.

Two beams, connected with bolts and cast iron separators, or, for greater rigidity, with riveted plate and angle separators, can be used. The total strength of these is twice that of the single beam provided that the loads are applied equally on the two sections, otherwise their strength must be computed separately.

Single beam girders with plates riveted on top and bottom are often more economical than two beams connected with separators.

Box girders formed of two beams with plates riveted across the beam flanges are frequently used for supporting interior walls in buildings, but they are not as economical as single beams with flange plates or as plate girders. Box girders should not be used in exposed places, as their interior surfaces do not admit of repainting.

The most economical section is the single web plate girder; if not of sufficient strength, two single web plate girders may be used, with tie plates extending across the angles, or box girders may be made of four flange angles, two web plates and top and bottom flange plates. If the loads are not equally distributed, the two half-girders must be figured as separate units.

In the design of beam or plate girders the web must be of sufficient thickness to resist buckling stress and attention is called to the Construction Specifications and to the remarks made on page 151 as to shearing stresses in general.

At the ends of plate girders a sufficient number of rivets must be provided in each flange to properly transfer to both flanges the stresses due to total end shear, over a distance equal to the effective depth of girder, which is the distance between centers of rivets in upper and lower flange for angles with one line of rivets, and between centers of rivet lines for angles with two lines of rivets. In the following tables maximum allowable reactions have been based upon the maximum shearing or bearing values of 34-inch flange rivets.

The tables which follow give: first, a selected number of riveted beam girders of approximately twice the carrying capacity of corresponding single beams; second, a selected number of riveted plate girders of various depths and carrying capacities customary in building work; third, elements of riveted plate girders of various depths.

In accordance with the Construction Specifications, these girder tables are based upon the section modulus of the gross area of the section, with bending stress allowed at 16,000 pounds per square inch.

RIVETED BEAM GIRDERS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Span in	782	12"	2572	1.	1	10"	211/2	10"	Coefficients of Deflection
in Feet	I-Beam 2 2-Plates Safe Loads	7"x90 lbs. 12"x¾4" Increase in Safe Loads for ¼16 Inch Increase in Thickness of Plates		"x79.9 lbs. 12"x34" Increase in Safe Loads for 1/16 Inch Increase in Thickness of Plates	I-Beam24 2-Plates Safe Loads	"x79.91bs. 10"x5%" Increase in Safe Loads for 1/16 Inch Increase in Thickness of Plates	1-Beam20 2-Plates Safe Loads	"x\$1.4lbs. 10"x34" Increase in Safe Loads for 1/16 Inch Increase in Thickness of Plates	Coefficients
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	283.0 240.4 229.0 218.6 209.1 209.1 185.0 178.1 171.7 165.8 160.3 155.1 150.3 145.7 141.4 133.6 123.3 120.2 117.3 106.9 104.5 102.3 100.9 98.1 96.2	10.4 9.9 9.4 9.0 8.6 8.3 7.7 7.1 6.5 6.7 6.5 5.8 5.6 5.5 5.3 5.2 4.9 4.8 4.7 4.6 4.4 4.3 4.2 4.1	240.0 202.7 193.0 184.2 176.2 168.9 162.1 155.9 150.1 144.8 135.1 122.8 119.2 115.8 119.2 115.8 119.2 115.8 119.2 115.8 119.3 106.7 103.9 96.5 94.3 92.1 98.1 88.1 88.1 98.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 88.1 98.1 9	9.2 8.8 8.4 7.7 7.1 6.8 6.6 6.4 6.1 5.9 5.6 5.4 5.3 4.7 4.5 4.4 4.3 4.2 4.1 4.3 8.3 8.3 8.3 8.3	249.0 168.2 160.2 152.9 146.3 140.2 134.6 129.4 124.6 120.2 116.0 96.1 102.0 96.1 99.0 96.3 99.9 98.5 90.9 88.5 86.3 84.1 80.1 78.3 76.5 74.8 77.8 77.8 77.8 77.8 77.8 77.8	7.6 7.2 6.6 6.6 6.3 6.1 5.9 5.4 5.2 4.8 4.6 4.5 4.3 4.2 4.1 4.0 3.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	240.0 152.9 145.6 139.9 127.4 122.3 117.6 113.2 105.4 101.9 98.6 95.6 95.6 95.6 92.7 89.9 87.4 76.4 60.5 67.8 66.5 67.9 66.5	6.3 6.0 5.5 5.5 5.0 4.8 4.5 4.3 4.2 4.1 3.9 3.7 3.6 3.5 3.3 3.2 3.1 3.0 2.9 2.7 2.7	6.62 7.30 8.01 8.76 9.53 10.35 11.19 12.07 14.90 15.91 16.95 18.03 19.13 20.28 22.66 23.90 25.18 22.66 23.90 25.18 24.90 25.18 27.82 29.20 33.06 32.04 33.50 36.56 38.14 41.38
Area S 1-1 Weight		nches ² nches ³ bs. per ft.	380.0 i	nches ² nches ³ bs. per ft.	35.83 i 315.5 i 122.4 l			nches ² nches ³ bs. per ft.	

Loads exceeding those given above horizontal lines will produce maximum allowable shear in webs and stiffeners should be provided in accordance with Construction Specifications. Weights given for girders do not include stiffeners, rivet heads or other details.

RIVETED GIRDERS

RIVETED BEAM GIRDERS-Concluded

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Span in Feet	I-Beam2(2-Plates	"x65.4lbs. 10"x5%" Increase in Safe Loads for Via Inch Increase in Thickness of Plates	I-Beam Is 2-Plate Safe Loads	5"x54.7lbs. s 9"x5%" Increase in Safe Loads for V _{is} Inch Increase in Thickness of Plates	2-Plate	5"x60.8 lbs. s 9"x5/s" Increase in Safe Loads for Via Inch Increase in Thickness of Plates		5"x42.9 lbs. s S"x\2" Increase in Safe Loads for line Increase in Thi-kness of Plates	Coefficients of Deflection
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 44 44 45	90.0 167.3 156.8 147.6 139.4 132.1 125.5 119.5 114.0 100.4 96.5 92.9 89.6 86.5 83.6 86.5 83.6 76.0 73.8 71.7 67.8 66.3 62.7 61.3 62.7 61.3 62.7 65.8	8.5 8.0 7.5 7.1 6.7 6.4 6.1 5.8 5.5 5.3 4.9 4.6 4.4 4.2 4.1 4.0 3.7 3.6 3.3 3.1 3.0 3.0 2.9 2.8	165 6 130.9 122.7 1115.5 109.1 103.3 98.2 93.5 89.2 93.5 87.5 75.5 72.7 76.1 67.7 65.4 59.5 57.7 56.1 54.5 53.1 51.7 50.3 49.1	6.9 6.5 6.1 5.7 5.4 5.2 4.9 4.5 4.3 4.1 4.0 3.8 3.7 3.6 3.1 3.0 3.0 3.0 2.8 2.7 2.6 2.5	177.0 113.4 106.3 100.1 94.5 89.5 85.1 81.0 77.3 74.0 76.9 65.4 63.0 66.8 58.7 56.7 56.9 53.2 53.2 60.4	5.7 5.3 5.0 4.7 4.3 4.0 3.9 3.7 3.5 3.4 3.3 3.1 2.9 2.8 2.7 2.7 2.6 2.4 2.4	123.0 82.0 76.9 72.3 68.3 64.7 61.5 58.6 55.9 53.5 51.2 47.3 45.6 43.9 42.4 41.0 39.7 38.4 37.3 66.2 36.1 34.2	5.18 4.5 4.2 4.0 3.8 3.6 3.5 3.3 3.1 2.9 2.7 2.6 2.5 2.4 2.2 2.2 2.2	3.72 4.24 4.78 5.36 5.98 6.62 7.30 8.01 10.35 11.19 12.07 12.98 13.92 14.90 15.91 16.95 18.03 20.28 21.45 22.66 23.90 21.45 22.66 23.90 24.82 27.82 29.20 30.60 33.50 33
Area S 1-1 Weight		nches ² nches ² bs. per ft.		nches ² nches ³ bs. per ft.	28.93 is 159.5 is 99.1 lb		115.3 i	nches ² nches ⁸ bs. per ft.	

Loads exceeding those given above horizontal lines will produce maximum allowable shear in webs and stiffeners should be provided in accordance with Construction Specifications.

Weights given for girders do not include stiffeners, rivet heads or other details.

CARNEGIE STEEL COMPANY

RIVETED PLATE GIRDERS

SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED

	14"	-14"-	14"	14"	r-123%"	r-12″→	-14"	14"	
Span	31%,	313,	31%,	311/2	30,/2	291/2"	29%	29%	Deflection
Span in Feet	Web Plate Flange Angles Flange Plates	Wcb Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles	1-28x ³ / ₈ Web Plate 4-5x3 ¹ / ₂ x ³ / ₈ Flange Angles 2-12x ¹ / ₂ Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Coefficients of Deflection
	1-30x1/2 4-6x6x1/2 2-14x5/8	1-30x3/8 4-6x4x5/8 2-14x5/8	1-30x3/8 4-6x4x1/2 2-14x5/8	$\frac{1-30x^3}{4-6x4x^1}$ $\frac{4-6x4x^1}{2-14x^1}$	1-30x3% 4-6x4x58	1-28x3/8 4-5x3/2x3/2 2-12x/2	$\frac{1-28x^{1/2}}{4-6x6x^{1/2}}$ $\frac{4-6x6x^{1/2}}{2-14x^{5/6}}$	$\begin{array}{c} 1-28x\frac{3}{3}\frac{3}{8}\\ 4-6x4x\frac{1}{2}\\ 2-14x\frac{5}{8} \end{array}$	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	288,0 260,1 250,1 240,9 232,3 224,3 2216,8 209,8 209,8 197,1 191,3 185,8 180,6 175,8 162,6 154,8 144,8 144,8 144,8 144,8 144,8 144,1 138,4	148.5 147.1 143.9 140.9 135.1 132.8 127.3 124.9 122.6 120.4	148.5 147.0 143.5 140.2 137.0 134.0 128.3 125.6 118.2 123.0 120.6 118.9 113.7 111.6 109.6	148.5 144.3 140.6 137.1 133.7 130.6 127.5 124.6 121.8 119.2 116.7 114.9 109.7 105.4 103.5 101.5 99.7	148.5 145.4 140.2 135.4 130.9 126.7 119.0 115.5 112.2 109.1 103.3 100.7 98.2 93.5 93.5 93.5 89.2 87.2 87.4 83.5 80.1 77.0 75.5 74.1 72.7 71.4	185.0 134.9 130.4 126.2 118.5 115.1 1111.8 108.7 102.9 100.3 97.8 95.4 93.1 91.0 86.9 86.9 86.9 87.2 77.8 77.8 77.8 77.8 77.8 77.8 77.8	270.0 239.2 239.0 221.5 213.6 216.2 1192.9 186.9 175.9 176.9 166.1 161.6 157.3 149.5 142.4 139.1 132.9 130.0 127.3 124.6 122.1 119.6 117.3 115.0 112.6 110.6	135.0 132.6 129.5 126.5 123.7 121.0 118.5 116.0 111.3 109.2 107.1 105.0 103.1 101.2	10.35 11.19 12.07 12.98 13.92 14.90 15.91 16.95 18.03 19.13 20.28 21.45 22.66 23.90 25.18 26.48 27.82 29.20 33.060 32.04 33.50 33.50 34.74 41.38 44.76 46.49 48.26 50.07
Area S ₁₋₁ Wt. per Ft.	55.50 609.7 188.9	52.19 620.6 177.8	47.75 565.1 162.6	44.25 514.0 150.7	34.69 268.1 118.3	34.70 366.7 118.1	54.50 560.7 185.5	47.00 521.9 160.0	In. ² In. ³ Lbs.

Loads above horizontal lines correspond to end reactions based on maximum allowable stresses in flange rivets. Web stiffeners should be provided in accordance with Construction Specifications. Weights given for girders do not include stiffeners, rivet heads or other details.

RIVETED GIRDERS

RIVETED PLATE GIRDERS-Continued

SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED

Span in Feet	1-28x3 web Plate 4-6x4x5 Flume Andres 291%	1-28x3 / Web Plate 4-6x4x3 / Plange Andes 2-14x12 Flange Plates	1-28x3 Web Plate +0x4xy2 Flange Angles	1-28x ³ k Web Plate 4-5x ³ / ₂ x/ ₂ Flange Angles	1-26x3 & Web Plate 4-6x4x12 Flange Angles 2-14x15 Flange Plates	1-26x3 6 Web Plate 4-6x4x3 8 Flange Angles 2-14x1 2 Flange Plates	1-26x3% Web Plate 4-6x4x3% Flange Angles 2-14x3% Flange Plates	1-28x3 Web Plate 4-5x3/5x3/5x3/5 Flange Miles 5 12x3/5 Flange Plates 5 12x3/5	Coefficients of Deflection
25 26 27 28 30 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 54 55	185.0 133.1 129.5 126.5 123.4 120.5 117.7 115.0 110.0 107.7 105.4 103.3 101.2 99.2 97.3 95.5 93.7 92.0	135.0 132.0 128.3 124.7 121.3 118.1 115.1 112.2 109.5 104.4 102.9 97.6 95.5 91.6 89.8 88.0 86.3 84.7 83.1 81.6	185.0 121.3 116.7 112.3 108.3 109.8 94.8 94.8 94.8 94.9 86.7 84.2 86.7 84.2 86.7 79.8 77.8 77.8 77.8 74.0 72.5 68.9 64.5 65.9 64.5 65.9	135.0 106.3 102.2 98.4 94.9 94.9 88.6 85.7 78.1 75.9 73.8 69.9 68.1 66.4 64.8 60.4 55.5 55.4 54.2 55.1 51.1 50.1 49.2 48.3	135.0 132.6 128.9 125.4 122.1 119.0 116.0 113.2 110.5 107.9 105.5 100.9 98.7 94.7 92.8 91.0 89.2 87.6 85.9 84.4	185.0 132.9 128.7 124.8 121.1 117.7 114.4 111.3 108.4 105.0 100.5 98.1 98.1 95.8 93.6 91.5 87.6 85.8 81.0 82.4 80.8 79.2 77.7 76.3 74.9	135.0 134.9 130.1 125.6 121.4 117.5 113.8 110.4 107.1 104.1 104.1 104.1 104.1 104.1 104.1 105.9 95.9 93.4 91.1 88.9 86.7 82.8 80.9 74.3 72.9 74.3 72.9 74.3 76.4 66.2	79.5 77.5 75.7 73.9 72.2 70.6 69.1 67.6 66.2 64.9 63.6 62.3 61.1 60.0 58.9 57.8	10.35 11.19 11.207 12.982 14.90 15.91 18.03 19.13 20.28 21.45 22.66 23.90 25.18 26.48 27.82 22.66 33.05 33.05 33.05 33.05 33.05 33.05 33.05 44.76 44.76 44.76 46.26
Area S ₁₋₁ Wt. per Ft.	43.50 474.3 148.1	38.94 420.8 132.5	29.50 284.3 100.5	26.50 249.1 90.1	42.75 435.1 145.6	38.19 386.1 130.0	34.69 341.5 118.1	30.95 298.0 105.4	In. ² In. ⁸ Lbs.

Loads above horizontal lines correspond to end reactions based on maximum allowable stresses in flange rivets. Web stiffeners should be provided in accordance with Construction Specifications. Weights given for girders do not include stiffeners, rivet heads or other details.

RIVETED PLATE GIRDERS-Concluded

SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED

Span in Feet	Web Plate	1-20x8 Web Plate 4-5x3) 2x12 Flange Angles	1-24x8 Web Plate 4-5x3/2x/5 Flange Angles 2-12x8 Flange Plates	1-24x3 web Plate 4-5x3 xx y Flange Angles 2-12x)2 Flange Plates	1-24x3 Web Platte 4-5x3/5x3/5x3/8/Flange Angles	1-24x3/ Web Plate 4-5x3/5x3/5x3/5x3/ Hange Andles 2-12x3/5 Flange Plates	1-24x3 Web Plate 4-5x3/5x1.2 Flange Angles	1-24x3g Web Plate 4-5x3)2x3g Flange Angles	Coefficients of Deflection
	1-26x3/8 4-6x4x1/2	1-26x ³ 4-5x3 ³	1-24x ³ 4-5x ³ 2-12x ⁵	1-24x3/8 4-5x31/2 2-12x1/2	1-24x 4-5x3 2-12x	1-24x3/8 4-5x3/2/2 2-12x3/8			
20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	135.0 131.5 125.5 120.1 110.2 110.2 110.2 10	135.0 120.8 115.1 109.8 105.1 100.7 92.9 92.9 89.5 86.3 80.6 78.0 67.1 69.0 67.1 65.3 63.6 62.0 60.4 58.9 57.5 56.2 54.9 55.3 56.2 56.2 56.2 56.2 56.3 67.3 67.5 56.2 56.2 56.2 56.3 67.3 67.3 67.5 67.5 56.2 56.2 56.2 57.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3 6	121.5 118.8 115.4 112.2 109.1 106.3 103.5 96.1 93.9 91.8 89.7 87.8 85.9 84.1 82.4 40.00	121.5 118.2 114.5 111.1 107.8 104.7 101.8 99.1 94.0 91.6 89.4 87.3 85.2 83.3 81.4 79.7 78.0 76.4 74.8 73.3	121.5 120.9 116.6 108.8 105.3 102.0 98.9 96.0 93.3 90.7 88.2 88.2 85.9 83.7 75.9 74.2 72.5 71.0 69.5 68.0 66.6 65.3	121.5 120.4 115.6 111.1 107.0 103.2 99.6 96.3 93.2 90.3 87.6 82.6 80.3 78.1 76.0 74.1 72.2 70.5 68.8 67.2 65.7 64.2 62.8 61.5 60.2 57.8	121.5 109.1 99.2 94.9 90.9 87.3 80.8 77.9 66.1 68.2 62.3 60.6 57.4 55.9 54.5 53.2 50.7 44.5 44.5 44.5 44.5	121.6 88.3 84.1 80.2 76.8 76.6 70.6 67.9 65.4 63.0 60.9 58.8 56.9 55.2 53.5 50.4 49.0 47.7 46.5 45.3 44.1 43.1 42.0 41.1 43.6 36.8 36.8 36.8 36.8	6.62 7.30 8.01 8.76 9.53 10.35 11.19 12.07 12.98 13.92 14.90 16.95 18.03 20.28 21.45 22.66 23.90 22.66 23.90 30.60 33.52 35.02 36.03 36.04 37.44 41.38
S ₁₋₁ Wt. per Ft.	258.9 98.0	226.6 87.6	378.5 136.0	343.6 125.8	306.1 113.0	270.9 102.8	204.6 85.0	165.5 72.2	In.2 In.3 Lbs.

Loads above horizontal lines correspond to end reactions based on maximum allowable stresses in flange rivets. Web stiffeners should be provided in accordance with Construction Specifications. Weights given for girders do not include stiffeners, rivet heads or other details.

RIVETED PLATE GIRDERS

To obtain a girder suitable to carry any specified loading, determine the maximum end reaction in pounds and the maximum bending moment in inch-pounds.

Sclect from the table a girder having the desired depth, a thickness of web as determined by the maximum end reaction and a suitable section modulus as determined by dividing the bending moment by the permissible stress per square inch.

For limiting conditions see explanatory notes and Construction Specifications.

Weights given do not include stiffeners, rivet heads, or other details.

Section		Size in Inches		Weight p Pou		Maximum End Reaction
Modulus, Axis 1-1, Inches ³	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
136.6 168.6 198.7 236.1 338.0 372.9 408.5	24 x 518	4x 3 x 3/4 4x 3 x 1/2 5x 31/2 x 1/2 5x 31/2 x 5/8 5x 31/2 x 1/2 5x 31/2 x 1/2 5x 31/2 x 5/8	12 x ½ 12 x 5% 12 x 5%	59.5 69.9 79.9 92.7 79.9 79.9 92.7	40.8 51.0 51.0	50.6 50.6 50.6 50.6 50.6 50.6 50.6
142.5 165.5 174.5 204.5 204.6 242.0 270.9 306.1 343.6 378.5 414.1	24 x 3/8	4 x 3 x 3/4 5 x 3/2 x 3/4 4 x 3 x 3/2 4 x 3 x 3/2 5 x 3/2 x 3/4 5 x 3/2 x 3/4 5 x 3/2 x 3/4 5 x 3/2 x 3/4 5 x 3/2 x 3/2 5 x 3/2 x 3/2	12 x 3% 12 x ½ 12 x ½ 12 x ½ 12 x 5%	64.6 72.2 75.0 85.0 85.0 97.8 72.2 72.2 85.0 85.0 97.8	30.6 40.8 40.8 51.0 51.0	60.8 60.8 60.8 60.8 60.8 60.8 60.8 60.8
151.5 176.8 186.6 201.2 219.6 252.0 260.7 291.3 301.0 329.5 334.8 370.7 379.4 408.6	26 x 5/18	4x 3 x 3/4 5x 3 1/2 x 3/4 4x 3 x 3/6 6x 4 x 3/4 6x 5 x 3/4 x 3/4 6x 6 x 4 x 3/4 6x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x	12 x 3/8 12 x 1/2 14 x 3/8 12 x 1/2 14 x 1/2 14 x 1/2	61.6 69.2 72.0 76.8 82.0 92.4 94.8 69.2 107.6 69.2 76.8 82.0 76.8	30.6 40.8 35.7 40.8 47.6 51.0	56.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3

CARNEGIE STEEL COMPANY

RIVETED PLATE GIRDERS—Continued

Section Modulus.		Size in Inches		Weight po Pour		Maximum End Reaction
Axis 1-1, Inches ³	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
428.4		6x 4 x ½	14 x ½	92.4	47.6	56.3
447.9	1	5 x 3½ x 5/8	12 x ½	94.8	51.0	56.3
472.7	26 x 1/16	6x 4 x ½	14 x 3/8	92.4	59.5	56.3
519.5		6x 4 x 5/8	14 x %	107.6	59.5	56.3
563.4		6x 4 x 5/8	14 x ¾	107.6	71.4	56.3
158.5		4x 3 x3/8		67.2		67.5
183.8		5x3½x3/8		74.8		67.5
193.5		4x 3 x ½		77.6		67.5
208.1	1	6x 4 x 3/8		82.4		67.5
226.5	1	4x 3 x 5/8		87.6		67.5
226.6		5x3½x½		87.6		67.5
258.9		6x 4 x½		98.0		67.5
267.6		5 x 3½ x 5/8		100.4		67.5
298.0		5 x 3½ x 3/8	12 x 3/8	74.8	30.6	67.5
307.9		6x 4 x 5/8		113.2		67.5
336.2		5x3½x3/8	12 x ½	74.8	40.8	67.5
341.5	26 x 3/8	6 x 4 x 3/8	14 x 3/8	82.4	35.7	67.5
354.4	1	6x 4 x 3/4		127.6		67.5
377.4		5 x 3½ x ½	$12 \times \frac{1}{2}$	87.6	40.8	67.5
386.1		6x 4 x 3/8	14 x ½	82.4	47.6	67.5
415.2		$5 \times 3\frac{1}{2} \times \frac{1}{2}$	12 x 5/8	87.6	51.0	67.5
435.1	1	6x 4 x ½	$14 \times \frac{1}{2}$	98.0	47.6	67.5
454.5	1	5 x 3½ x 5/8	12 x 5/8	100.4	51.0	67.5
479.3	1	6x 4 x ½	14 x 5/8	98.0	59.5	67.5
526.1	1	6x 4 x 5/8	14 x 5/8	113.2	59.5	67.5
569.9		6x 4 x 5/8	14 x 34	113.2	71.4	67.5
613.9		6x 4 x 3/4	14 x ¾	127.6	71.4	67.5
200.4	1	4x 3 x½		83.1		78.8
233.4	1	4x 3 x 5/8		93.1		78.8
233. 5	j	$5 \times 3\frac{1}{2} \times \frac{1}{2}$		93.1		78.8
265.8		6x 4 x ½		103.5		78.8
274.5		5x3½x5%		105.9		78.8
314.8		6x 4 x 5/8		118.7		78.8
361.3		6x 4 x 34		133.1		78.8
384.0	26 x 7/16	$5x3\frac{1}{2}x\frac{1}{2}$	12 x ½	93.1	40.8	78.8
421.8		5x3½x½	12 x 5/8	93.1	51.0	78.8
441.7		6 x 4 x ½	14 x ½	103.5	47.6	78.8
461.1		$5 \times 3\frac{1}{2} \times \frac{5}{8}$	12 x 5/8	105.9	51.0	78.8
485.9		6x 4 x ½	14 x 5/8	103.5	59.5	78.8
532.7		6x 4 x 5/8	14 x 5/8	118.7	59. 5	78.8
576. 5	1	6x 4 x 5/8	14 x 3/4	118.7	71.4	78.8
620.5	1	6x 4 x 3/4	14 x 3/4	133.1	71.4	78.8

RIVETED GIRDERS

RIVETED PLATE GIRDERS—Continued

Section		Size in Inches		Weight p Pour	er Foot, nds	Maximum End Reaction
Modulus, Axis 1-1, Inches ⁸	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds
185.6		5 x 3½ x 3/8		70.3		56.3
211.0		6x 4 x 3/8		77.9		56.3
230.3		5x3½x½		83.1		56.3
264.1		6x 4 x ½		93.5		56.3
273.2		5 x 3½ x 5/8		95.9		56.3
304.5		5 x 3½ x 3/8	12 x 3/8	70.3	30.6	56.3
315.3		6x 4 x 5/8		108.7		56.3
344.2	07 5/	5 x 3½ x 3/8	12 x ½	70.3	40.8	56.3
349.8	27 x 5/16	6 x 4 x 3/8	14 x 3/8	77.9	35.7	56.3
387.3		5 x 3 ½ x ½	12 x ½	83.1	40.8	56.3
396.2		6x 4 x 3/8	14 x ½	77.9	47.6	56.3
426.7		5 x 3 ½ x ½	12 x 5/8	83.1	51.0	56.3
447.4		6x 4 x 1/2	$14 \times \frac{1}{2}$	93.5	47.6	56.3
467.7		5 x 3½ x 5/8	12 x 5/8	95.9	51.0	56.3
493.4		6x 4 x ½	14 x 5/8	93.5	59.5	56.3
542.4		6x 4 x 5/8	14 x 5/8	108.7	59.5	56.3
588.0		6 x 4 x 5/8	14 x 3/4	108.7	71.4	56.3
193.1		5 x 3½ x 3/8		76.0		67.5
218.5		6 x 4 x 3/8		83.6		67.5
237.8		5 x 3½ x ½		88.8		67.5
271.5		6x 4 x ½		99.2		67.5
280.6		5 x 3½ x 5%		101.6		67.5
311.7		5 x 3½ x 3/8	12 x 3/8	76.0	30.6	67.5
322.7		6x 4 x 5/8		114.4		67.5
351.4		5 x 3½ x 3/8	12 x ½	76.0	40.8	67.5
357.1	27 x 3/8	6x 4 x 3/8	14 x 3/8	83.6	35.7	67.5
371.4		6x 4 x 34	10 - 1/	128.8	40.0	67.5
394.5		5 x 3½ x ½	12 x ½	88.8	40.8	67.5
403.4		6 x 4 x 3/8	14 x ½	83.6 143.2	47.6	67.5 67.5
417.9 433.8		$6x 4 x \frac{7}{8}$ $5x3\frac{1}{2}x\frac{1}{2}$	12 x 5/8	88.8	51.0	67.5
454.6		$\begin{bmatrix} 3x3\frac{7}{2}x\frac{7}{2} \\ 6x4x\frac{1}{2} \end{bmatrix}$	12 x % 14 x ½	99.2	47.6	67.5
474.8		5 x 3 ½ x 5/8	12 x 5/8	101.6	51.0	67.5
500.5		$6x \ 4 \ x \frac{1}{2}$	14 x 5/8	99.2	59.5	67.5
549.5		6x 4 x 5/8	14 x 5/8	114.4	59.5	67.5
595.1		6x 4 x 5%	14 x 3/4	114.4	71.4	67.5
641.2	1	6x 4 x3/4	14 x 3/4	128.8	71.4	67.5
245.2	1	5 x 3½ x ½		94.6		78.8
279.0	0.00	$ \begin{vmatrix} 5 \times 3 /_2 \times /_2 \\ 6 \times 4 \times 1/2 \end{vmatrix} $		105.0		78.8
288.1	27 x 1/16	5 x 3 ½ x 5%		107.4		78.8
330.2		$6 \times 4 \times \frac{5}{8}$		120.2		78.8

CARNEGIE STEEL COMPANY

RIVETED PLATE GIRDERS-Continued

Section Modulus, Axis 1-1, Inches ³	Size in Inches			Weight per Foot, Pounds		Maximum End
	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Reaction in Thousands of Pounds
378.8		6x 4 x¾	-	134.6		78.8
401.7		$5x3\frac{1}{2}x\frac{1}{2}$	12 x ½	94.6	40.8	78.8
425.3		6x 4 x 1/8		149.0		78.8
440.9		5 x 3½ x ½	12 x 5/8	94.6	51.0	78.8
461.8	27 x 1/16	6x 4 x ½	$14 \times \frac{1}{2}$	105.0	47.6	78.8
482.0		$5 \times 3\frac{1}{2} \times \frac{5}{8}$	$12 \times \frac{5}{8}$	107.4	51.0	78.8
507.7		6x 4 x ½	14 x ½	105.0	59.5	78.8
556.6		6x 4 x 5/8	14 x ½	120.2	59.5	78.8
602.4		6x 4 x 5/8	14 x ¾	120.2	71.4	78.8
648.2		6x 4 x 34	14 x ¾	134.6	71.4	78.8
194.5		5 x 3½ x 3/8		71.4		56.3
221.0	Í	6x 4 x 3/8		79.0		56.3
241.1	ļ	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$		84.2		56.3
276.3	Ì	6x 4 x ½		94.6		56.3
285.8		5 x 3½ x 5/8		97.0		56.3
317.8		$5 \times 3\frac{1}{2} \times \frac{3}{8}$	12 x 3/8	71.4	30.6	56.3
329.7	1	6x 4 x 5/8		109.8		56.3
359.0		5x3½x3/8	12 x ⅓	71.4	40.8	56.3
365.0	28 x 5/16	6x 4 x 3/8	14 x 3/8	79.0	35.7	56.3
404.0		5 x 3½ x ½	12 x ½	84.2	40.8	56.3
413.1		6x 4 x 3/8	14 x ½	79.0	47.6	56.3
444.8		$5 \times 3\frac{1}{2} \times \frac{1}{2}$	12 x 5/8	84.2	51.0	56.3
466.5		6x 4 x ½	14 x ½	94.6	47.6	56.3
487.6		5 x 3½ x 5/8	$12 \times \frac{5}{8}$	97.0	51.0	56.3
514.2		6x 4 x ½	14 x ½	94.6	59.5	56.3
$565.4 \\ 612.7$		6x 4 x 5/8 6x 4 x 5/8	14 x 5/8 14 x 3/4	109.8 109.8	$59.5 \\ 71.4$	56.3 56.3
202.5		5x3½x¾		77.3		67.5
202.5 229.0		$6x \ 4 \ x\frac{3}{8}$		84.9		67.5
249.0	ł	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$		90.1		67.5
284.3		$6x 4 x \frac{1}{2}$		100.5		67.5
293.8		$5x3\frac{1}{2}x\frac{5}{8}$		102.9		67.5
325.6		5x3½x3/8	12 x 3/8	77.3	30.6	67.5
337.7	28 x 3/8	$6x \ 4x \ \frac{5}{8}$	12 A /8	115.7	50.0	67.5
366.7	20 1 78	5 x 3 ½ x 3/8	12 x ½	77.3	40.8	67.5
372.8		$6x \ 4x \ \frac{3}{8}$	14 x 3/8	84.9	35.7	67.5
388.5		6x 4 x 34	4 /8	130.1		67.5
411.7		5x3½x½	12 x ½	90.1	40.8	67.5
420.8	1	6x 4 x 3/8	14 x ½	84.9	47.6	67.5
437.0		6x 4 x 7/8	/4	144.5		67.5
452.5		5 x 3 ½ x ½	12 x 5/8	90.1	51.0	67.5

RIVETED GIRDERS

Section		Size in Inches		Weight p Poun		Maximum End Reaction
Modulus, Axis I-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Thousands of Pounds
474.3		6x 4 x ½	14 x ½	100.5	47.6	67.5
495.3		5 x 3½ x 5/8	12 x 5/8	102.9	$51.0 \\ 59.5$	67.5
521.9	28 x 3/8	6x 4 x ½	14 x 5/8	115.7	59.5 59.5	67.5 67.5
573.1 620.4		6x 4 x 5/8 6x 4 x 5/8	14 x 5/8 14 x 3/4	115.7	71.4	67.5
620.4 668.6		$6x \ 4 \ x\frac{3}{4}$	14 x 3/4	130.1	71.4	67.5
257.1		5 x 3½ x ½		96.1		78.8
292.4		6x 4 x ½		106.5		78.8
301.8		5 x 3 ½ x 5/8		108.9		78.8
345.8		6x 4 x 5/8		121.7		78.8
396.5		6 x 4 x 34	10 17	136.1	40.0	78.8
419.5		5 x 3½ x ½	$12 \times \frac{1}{2}$	96.1	40.8	78.8
445.1	28 x 7/16	6x 4 x 7/8	10 - 5/	150.5	£1.0	78.8
460.2		5 x 3½ x ½	12 x 5/8	96.1	$51.0 \\ 47.6$	78.8
482.0		6x 4 x ½	14 x ½	106.5	47.6 51.0	78.8
503.0 529.6		5 x 3½ x 5%	12 x 5/8 14 x 5/8	108.9 106.5	51.0 59.5	78.8 78.8
529.6 580.8		6x 4 x ½ 6x 4 x 5%	14 x 5/8	121.7	59.5	78.8
628.0		6x 4 x 5/8	14 x 3/4	121.7	71.4	78.8
676.2		6x 4 x 34	14 x 3/4	136.1	71.4	78.8
221.8		5 x 3 ½ x 3/8		79.9		74.3
250.5		6x 4 x 3/8		87.5		74.3
272.1		5x3½x½		92.7		74.3
310.3		6x 4 x ½		103.1		74.3
320.5		5 x 3½ x 5/8	10 1/	105.5	20.6	74.3
353.8		5 x 3½ x 3/8	12 x 3/8	79.9	30.6	74.3
366.2		5x3½x¾		117.5		74.3
368.1		6x 4 x 5/8	io 17	118.3	40.0	74.3
397.S 404.7		5 x 3 ½ x 3/8	12 x ½	79.9	40.8	74.3 74.3
423.1	20 = 3/	6x 4 x 3/8 6x 4 x 3/4	14 x 3/8	87.5 132.7	35.7	74.3
446.6	30 x 3/8	5x3½x½	12 x ½	92.7	40.8	74.3
456.1		$6x \ 4 \ x\frac{3}{8}$	12 x ½ 14 x ½	87.5	40.5	74.3
475.8		6x 4 x 7/8	14 A 72	147.1	71.0	74.3
490.3		5x3½x½	12 x 5/8	92.7	51.0	74.3
514.0		6x 4 x ½	14 x ½	103.1	47.6	74.3
536.7	l	5 x 3 ½ x 5/8	12 x 5%	105.5	51.0	74.3
565.1		6x 4 x 1/2	14 x 5/8	103.1	59.5	74.3
620.6		6x 4 x 5%	14 x 5/8	118.3	59.5	74.3
671.3		6x 4 x 5/8	14 x 3/4	118.3	71.4	74.3
723.8		6x 4 x 34	14 x 3/4	132.7	71.4	74.3

CARNEGIE STEEL COMPANY

Section Modulus.		Size in Inches		Weight p Pou	er Foot, nds	Maximun End Reaction
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds
281.4 319.5 329.7 375.5 377.3 432.3 455.5 485.0 499.2 523.0 545.6 574.0	30 x 7/16	5x3½x½ 6x 4 x½ 5x3½x¾ 5x3½x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾ 5x3½x½ 6x 4 x¾ 5x3½x½ 6x 4 x¾ 5x3½x½ 6x 4 x¾ 6x 4 x¾	12 x ½ 12 x ½ 14 x ½ 12 x ½ 14 x ½ 14 x ½	99.0 109.4 111.8 123.8 124.6 139.0 99.0 153.4 99.0 109.4 111.8 109.4	40.8 51.0 47.6 51.0 59.5	86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6
629.5 680.1 732.6		6x 4 x 5/8 6x 4 x 5/8 6x 4 x 3/4	14 x 5/8 14 x 5/8 14 x 3/4 14 x 3/4	124.6 124.6 139.0	59.5 71.4 71.4	86.6 86.6 86.6
290.6 328.8 338.9 384.7 386.5 441.5 464.4 494.2 508.0 531.9 554.5 582.8 638.3 688.9 741.3	30 x ½	5x3 ½x ½ 6x 4 x ½ 5x3 ½x ¾ 6x 4 x ¾ 6x 4 x ¾ 6x 4 x ¾ 6x 4 x ½ 5x3 ½x ½ 6x 4 x ½ 5x3 ½x ½ 6x 4 x ½ 6x 4 x ½ 6x 4 x ½ 6x 4 x ¾ 6x 4 x x x x x x x x x x x x x x x x x x	12 x ½ 12 x ½ 14 x ½ 12 x ½ 14 x ½ 14 x ½ 14 x ¾ 14 x ¾	105.4 115.8 118.2 130.2 131.0 145.4 105.4 169.8 105.4 115.8 118.2 115.8 131.0 131.0	40.8 51.0 47.6 51.0 59.5 59.5 71.4 71.4	99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0
251.7 283.7 307.7 308.4 350.3 361.5 383.6 396.9 412.5 414.7	33 x ¾	5x3½x¾ 6x 4 x¾ 5x3½x½ 6x 6 x¾ 6x 4 x½ 5x3½x¾ 6x 6 x½ 5x3½x¾ 6x 6 x½ 5x3½x¾ 6x 4 x5%	12 x ¾	83.7 91.3 96.5 101.7 106.9 109.3 120.5 83.7 121.3 122.1	30.6	81.0 81.0 81.0 121.5 81.0 81.0 121.5 81.0 81.0
445.5 453.4		5x3½x¾8 6x 4 x¾8	12 x ½ 14 x ¾	83.7 91.3	40.8 35.7	81.0 81.0

RIVETED GIRDERS

Section Modulus,		Size in Inches		Weight r Ponr		Maximum End Reaction
Axis 1-1, Inches ³	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Thousand of Pounds
455.9		6x 6 x 5 8		138.9		121.5
476.1		6x 4 x34		136.5		81.0
477,6		6x 6 x 3 8	14 x 38	101.7	35.7	121.5
499.8		5 x 31 2 x 12	$12 \times 1_2$	96.5	40.8	81.0
510.0		6x 4 x 3 8	14×12	91.3	47.6	81.0
525.4		6 x 6 x 34		156.9		121.5
534.1		6x 6 x 3 8	$14 \times \frac{1}{2}$	101.7	47.6	121.5
548.0		$5x3\frac{1}{2}x\frac{1}{2}$	12 x 5/8	96.5	51.0	81.0
574.7		6x 4 x 1 2	14 x ½	106.9	47.6	81.0
590.6	22 - 27	$6x + 6 + x^{\frac{3}{2}}$	14 x 5/8	101.7	59.5	121.5
592.6	33 x 3/8	6x 6 x 78		174.5		121.5
599.9		5 x 3 ½ x 5 8	12 x 5/8	109.3	51.0	81.0
607.1		6x 6 x 1/2	14 x $\frac{1}{2}$	120.5	47.6	121.5
630.9		6x 4 x ½	14 x 5/8	106.9	59.5	81.0
663.1		6x 6 x ½	14 x 5/8	120.5	59.5	121.5
693.0		6x 4 x 5/8	14 x 5/8	122.1	59.5	81.0
719.2		6x 6 x 1/2	14 x 3/4	120.5	71.4	121.5
732.7		6x 6 x 5/8	14 x 5/8	138.9	59.5	121.5
748.9		6 x 4 x 5/8	14 x 3/4	122.1	71.4	81.0
788.3		6x 6 x 5/8	14 x 34	138.9	71.4	121.5
807.6		6x 4 x 34	14 x 3/4	136.5	71.4	81.0
854.9		6x 6 x 34	14 x ¾	156.9	71.4	121.5
318.9		5 x 3½ x ½		103.5		94.5
361.5 372.7		6x 4 x ½		113.9		94.5
394.8		5 x 3½ x 5/8		116.3		94.5
423.7		6x 6 x ½		127.5		141.8
425.8		5x3½x¾ 6x 4 x¾		128.3		94.5
467.0		6x 6 x 5%		$129.1 \\ 145.9$		94.5 141.8
487.2		6x + 6x + 34		143.5		
510.7	33 x 7/16	$5x3\frac{1}{2}x\frac{1}{2}$	12 x ½	103.5	10.0	94.5 94.5
536.6	35 X 716	6x 6 x 34	12 X /2	163.9	40.8	141.8
558.8		$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	12 x 5/8	103.5	51.0	94.5
585.6		6x 4 x 1/2	14 x ½	113.9	51.0 47.6	94.5
603.8		6x 6 x 7/8	11 A 72	181.5	47.0	141.8
610.6		5x3½x5%	12 x 5/8	116.3	51.0	94.5
617.9		6x 6 x ½	14 x ½	127.5	47.6	141.8
641.7		6x 4 x 1/4	14 x 5%	113.9	59.5	94.5
673.9		6x 6 x ½	14 x 5/8	127.5	59.5	141.8
703.8		6x 4 x 5%	14 x 5%	129.1	59.5	94.5

CARNEGIE STEEL COMPANY

Section Modulus,	-	Size in Inches	-	Weight per Pour	· Foot,	Maximum End Reaction
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
729.9 743.5 759.6 799.0 818.3 865.6	33 x 1⁄1 ₆	6x 6 x ½ 6x 6 x 5/8 6x 4 x 5/8 6x 6 x 5/8 6x 4 x 3/4 6x 6 x 3/4	14 x 34 14 x 56 14 x 34 14 x 34 14 x 34 14 x 34	127.5 145.9 129.1 145.9 143.5 163.9	71.4 59.5 71.4 71.4 71.4	141.8 141.8 94.5 141.8 94.5 141.8
330.0 372.6 383.9 406.0 434.9 437.0 478.2 498.4 521.5 517.8 569.5 596.4 615.0 621.4 628.8 652.5 684.6 714.5 740.6	33 x ½	5x3½x½ 6x 4 x½ 5x3½x¾ 6x 6 x½ 6x 4 x¾ 6x 6 x¾ 6x 6 x¾ 6x 6 x¾ 5x3½x½ 6x 6 x¾ 6x 6 x¾ 6x 6 x¾ 6x 6 x½ 6x 6 x½	12 x ½ 12 x 5% 14 x ½ 12 x 5% 14 x ½ 14 x 5% 14 x 5% 14 x 5% 14 x 5%	110.5 120.9 123.3 134.5 135.3 136.1 152.9 150.5 110.5 120.9 188.5 123.3 134.5 120.9 134.5 136.1	40.8 51.0 47.6 51.0 47.6 59.5 59.5 59.5	108.0 108.0
754.3 770.3 809.7 829.0 876.3 318.0 344.4 346.9 391.4 403.7 430.3 460.0 462.4 503.3 510.5 530.2 531.6	36 x ¾	6x 6 x 5/4 6x 4 x 5/4 6x 6 x 5/4 6x 6 x 5/4 6x 6 x 3/4 6x 4 x 3/4 6x 4 x 3/4 6x 4 x 3/4 6x 6 x 3/4 6x 4 x 3/4 6x 6 x 3/4 6x 4 x 3/4 6x 6 x 3/4	14 x % 14 x 34	152.9 136.1 152.9 150.5 170.9 95.1 100.3 105.5 110.7 113.1 124.3 125.1 125.9 95.1 142.7 140.3 105.5	59.5 71.4 71.4 71.4 71.4 71.4 35.7	162.0 108.0 162.0 108.0 162.0 162.0 87.8 87.8 135.0 87.8 135.0 87.8 87.8 135.0 87.8 135.0 87.8 135.0

RIVETED GIRDERS

Section Modulus,		Size in Inches		Weight p		Maximum End Reaction
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
554.3		5 x 3½ x ½	12 x ½	100.3	40.8	87.8
565.1		6x 4 x 3/8	14 x ½	95.1	47.6	87.8
593.2		6 x 6 x 3/8	14 x ½	105.5	47.6	135.0
595.3		6x 4 x 7/8		154.7		87.8
606.8		5 x 3 ½ x ½	12 x 5%	100.3	51.0	87.8
636.5		6x 4 x 1/2	14 x ½	110.7	47.6	87.8
654.9		6x 6 x 3/8	14 x 5/8	105.5	59.5	135.0
664.2	36 x 34	5 x 3 ½ x 5/8	12 x 1/8	113.1	51.0	87.8
674.4	50 X 78	6x 6 x 12	14 x ½	124.3	47.6	135.0
698.0		6x 4 x 1/2	14 x 5/8	110.7	59.5	87.8
735.5		6x 6 x 12	14 x 5/8	124.3	59.5	135.0
766.6		6x 4 x 5%	14 x 5%	125.9	59.5	87.8
796.8		6x 6 x ½	14 x 34	124.3	71.4	135.0
813.1	1	6x 6 x 5/8	14 x 5%	142.7	59.5	135.0
827.6		6x 4 x 5/8	14 x 34	125.9	71.4	87.8
873.8		6x 6 x 5/8	14 x 3/4	142.7	71.4	135.0
892.8		6x 4 x 34	14 x ¾	140.3	71.4	87.8
357.7		5 x 3½ x ½		108.0		102.4
404.7		6x 4 x ½		118.4		102.4
417.0		5x3½x5%		120.8		102.4
443.6		6x 6 x 1/2		132.0		157.5
473.3	1	5x3½x¾		132.8		102.4
475.7		6 x 4 x 3/8		133.6		102.4
523.8	1	6x 6 x 5/8		150.4		157.5
543.5		6x 4 x 34	10 11	148.0	40.0	102.4
567.2		5 x 3 ½ x ½	12 x ½	108.0	40.8	102.4 102.4
608.6	36 x 1/16	6x 4 x 7/8	10 . 11	162.4	£1.0	102.4
619.7		5x3½x½	12 x 5/8	108.0 118.4	51.0 47.6	102.4
649.5		6x 4 x ½	14 x ½	118.4	51.0	102.4
677.1 687.3		5 x 3 ½ x 5%	12 x 5/8	132.0	47.6	157.5
		6x 6 x 1/2	14 x ½	132.0	59.5	102.4
710.8	1	$6x \ 4 \ x\frac{1}{2}$	14 x 5/8	132.0	59.5 59.5	157.5
748.4		6x 6 x ½	14 x 3/8	132.0	59.5	102.4
779.5 809.5		6x 4 x 5/8 6x 6 x 1/2	14 x 5/8	132.0	71.4	157.5
809.5		6x 6 x 5%	14 x ¾ 14 x ⅓	150.4	59.5	157.5
840.4		$6x \ 6 \ x \ 4 \ x \ 5 \ 8$	14 x 3/4	133.6	71.4	102.4
886.6		6x 6 x 5%	14 x 3/4 14 x 3/4	150.4	71.4	157.5
905.5		$6x \ 6 \ x^{\frac{1}{2}}$		148.0	71.4	102.4

CARNEGIE STEEL COMPANY

Section		Size in Inch	28	Weight per Pour		Maximum End
Modulus, Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Reaction in Thousand of Pounds
418.0		6 x 4 x ½		126.0		117.0
456.9		6 x 6 x ½		139.6		180.0
489.0		6 x 4 x 5/8		141.2		117.0
537.1		6 x 6 x 5/8		158.0		180.0
556.9		6 x 4 x 3/4		155.6		117.0
614.5		6 x 6 x 3/4		176.0		180.0
621.9		6 x 4 x 1/8		170.0		117.0
662.5		6 x 4 x ½	14 x ½	126.0	47.6	117.0
689.2		6 x 6 x 1/8		193.6		180.0
700.3		6 x 6 x ½	14 x ½	139.6	47.6	180.0
723.7		6 x 4 x ½	14 x 5/8	126.0	59.5	117.0
761.3	36 x ½	6 x 6 x ½	14 x 5/8	139.6	59.5	180.0
792.3		6 x 4 x 5/8	14 x 5/8	141.2	59.5	117.0
822.3		6 x 6 x ½	14 x 3/4	139.6	71.4	180.0
838.8		6 x 6 x 5/8	14 x 5/8	158.0	59.5	180.0
853.2		6 x 4 x 5/8	14 x 3/4	141.2	71.4	117.0
899.4		6 x 6 x 5/8	14 x 3/4	158.0	71.4	180.0
918.3		6 x 4 x 3/4	14 x 3/4	155.6	71.4	117.0
973.7		6 x 6 x 34	14 x 34	176.0	71.4	180.0
1039.4		6 x 4 x 3/4	14 x 1	155.6	95.2	117.0
1094.1		6 x 6 x 34	14 x 1	176.0	95.2	180.0
1101.1		6 x 4 x 7%	14 x 1	170.0	95.2	117.0
1164.9		6 x 6 x 7%	14 x 1	193.6	95.2	180.0
444.7		6 x 4 x ½		141.3		146.3
483.5		6 x 6 x ½		154.9		225.0
515.7		6 x 4 x 5/8		156.5		146.3
563.7		6 x 6 x 5/8		173.3		225.0
583.5		6 x 4 x 34		170.9		146.3
641.2		6 x 6 x 34		191.3		225.0
648.5		6 x 4 x 7/8		185.3		146.3
688.4	36 x 5%	6 x 4 x ½	$14 \times \frac{1}{2}$	141.3	47.6	146.3
715.8		6 x 6 x 78		208.9	457.0	225.0
726.2		6 x 6 x ½	14 x ½	154.9	47.6	1 4 6 0
749.4		6 x 4 x ½	14 x 5/8	141.3	59.5	146.3 225.0
787.0 818.1		6 x 6 x ½	14 x 5%	154.9 156.5	59.5 59.5	$\frac{225.0}{146.3}$
818.1		6 x 4 x 5/8	14 x 5/8	154.9	59.5 71.4	225.0
864.6		6 x 6 x ½ 6 x 6 x 5 %	14 x 34	173.3	71.4 59.5	225.0
878.8		6 x 4 x 5%	14 x 5/8 14 x 3/4	173.3	71.4	146.3
924.9		6 x 6 x 5/8	14 x % 14 x %	173.3	71.4	225.0

RIVETED GIRDERS

Section Modulus.		Size in Inches		Weight p Pour	er Foot, nds	Maximum End Reaction
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Thousand of Pounds
943.9		6 x 4 x 3/4	14 x ¾	170.9	71.4	146.3
999.3		6 x 6 x 34	14 x 3/4	191.3	71.4	225.0
1045.9		6 x 6 x 5/8	14 x 1	173.3	95.2	225.0
1064.7	36 x 5/8	6 x 4 x 3/4	14 x 1	170.9	95.2	146.3
1119.3		6 x 6 x 3/4	14 x 1	191.3	95.2	225.0
1126.3		6 x 4 x 7/8	14 x 1	185.3	95.2	146.3
1190.1		6 x 6 x 7/8	14 x 1	208.9	95.2	225.0
390.2		бх4х ¾		102.8		101.3
427.5		6 x 6 x 3/8		113.2		157.5
477.2		6 x 4 x ½		118.4		101.3
527.2		6 x 6 x ½		132.0		157.5
561.4		6 x 4 x 5/8		133.6		101.3
606.6		6 x 4 x 3/8	14 x 3/8	102.8	35.7	101.3
623.5		6 x 6 x 5/8		150.4		157.5
638.3		6 x 4 x 3/8	16 x 3/8	102.8	40.8	101.3
642.1		6 x 4 x 34		148.0		101.3
643.2		6 x 6 x 3 g	14 x 3 8	113.2	35.7	157.5
675.1		6 x 6 x 3/8	16 x 3/8	113.2	40.8	157.5
678.6		6 x 4 x 3/8	14 x ½	102.8	47.6	101.3
715.2		6 x 6 x 3/8	14 x ½	113.2	47.6	157.5
716.5		6 x 6 x 3/4		168.4		157.5
719.5		6 x 4 x 1/8		162.4		101.3
757.7		6 x 6 x 3/8	16 x ½	113.2	54.4	157.5
763.7	42 x 3/8	6 x 4 x ½	14 x ½	118.4	47.6	101.3
787.2		6 x 6 x 3/8	14 x 5/8	113.2	59.5	157.5
806.2		6 x 4 x ½	16 x ½	118.4	54.4	101.3
806.4		6 x 6 x 7/8		186.0		157.5
812.7		6 x 6 x ½	14 x ½	132.0	47.6	157.5
835.5		6 x 4 x ½	11 x 5/8	118.4	59.5	101.3
855.2		6 x 6 x ½	16 x ½	132.0	54.4	157.5
884.2		6 x 6 x ½	14 x 5/8	132.0	59.5	157.5
917.3 937.3		6 x 4 x 5/8	14 x 5/8	133.6	59.5	101.3
937.3 955.7		6 x 6 x ½	16 x 5/8	132.0	68.0	157.5
$955.7 \\ 970.4$		6 x 6 x ½	14 x 3/4	132.0	71.4 68.0	157.5 101.3
970.4		6 x 4 x 5/8 6 x 6 x 5/8	16 x 5/8	133.6		
977.6		6 x 4 x 5/8	14 x 5/8 14 x 3/4	150.4 133.6	59.5 71.4	157.5
1030.8				150.4	68.0	157.5
1048.6		6 x 6 x 5/8 6 x 6 x 5/8	16 x 5/8		71.4	157.5
1048.6		6 x 4 x 3/4	14 x ¾ 14 x ¾	150.4 148.0	71.4	101.3
			, .			
1112.4		6 x 6 x 5/8	16 x 34	150.4	81.6	157.5

CARNEGIE STEEL COMPANY

Section Modulus,		Size in Inches		Weight pe	er Foot, nds	Maximum End Reaction
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
1130.4 1138.5 1194.1 1202.3 1283.5	42 x 3/8	6 x 4 x 34 6 x 6 x 34 6 x 6 x 58 6 x 6 x 34 6 x 6 x 34	16 x 3/4 14 x 3/4 16 x 7/8 16 x 3/4 16 x 7/8	148.0 168.4 150.4 168.4 168.4	81.6 71.4 95.2 81.6 95.2	101.3 157.5 157.5 157.5 157.5
1286.4 1369.9		6 x 4 x 7/8 6 x 6 x 7/8	16 x ½ 16 x ½	162.4 186.0	$95.2 \\ 95.2$	101.3 157.5
495.3 545.4 579.5 641.6 660.2 734.7 737.6 824.0 824.6 830.4 853.1 872.9 901.8 934.9 954.9 953.2 988.1 995.3 1006.2 1048.4 1129.9 1147.9 1147.9 1156.0 1211.6 1219.8 1300.9 1387.3	42 x 3/16	6 x 4 x ½ 6 x 6 x ½ 6 x 6 x ½ 6 x 6 x ¾ 6 x 6 x ¾ 6 x 6 x ¾ 6 x 4 x ½ 6 x 6 x ¾	14 x ½ 16 x ½ 14 x ½ 16 x ¾ 14 x ¾ 16 x ¾ 14 x ¾ 16 x ¾ 14 x ¾ 16 x ¾	127.3 140.9 142.5 159.3 177.3 171.3 127.3 194.9 140.9 140.9 142.5 159.3 140.9 142.5 159.3 156.9 159.3 156.9 177.3 177.3 177.3	47.6 54.4 47.6 59.5 54.4 59.5 59.5 68.0 71.4 68.0 59.5 71.4 81.6 81.6 81.6 95.2 81.6 95.2	118.1 183.8 118.1 183.8 118.1 118.1 118.1 118.1 118.1 118.3 118.1 183.8 118.1
513.5 563.5 597.7 659.8	42 x ½	6 x 4 x ½ 6 x 6 x ½ 6 x 4 x 5% 6 x 6 x 5%	 / o	136.2 149.8 151.4 168.2		135.0 210.0 135.0 210.0
678.4		$\begin{array}{c c} 6 \times 6 \times \frac{9}{8} \\ 6 \times 4 \times \frac{3}{4} \end{array}$		165.8		135.0

RIVETED GIRDERS

Section Modulus,		Size in Inches		Weight p	per Foot, ads	Maximum End Reaction
Axis 1-1, Inches ³ ,	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Thousands of Pounds
752.8		6 x 6 x 34		186.2		210.0
755.8		6 x 4 x 7/8		180.2		135.0
799.2		6 x 4 x 1/2	14 x ½	136.2	47.6	135.0
841.7		6 x 4 x ½	16 x ½	136.2	54.4	135.0
842.7		6 x 6 x 7/8		203.8		210.0
848.1		6 x 6 x ½	14 x ½	149.8	47.6	210.0
870.8		6 x 4 x ½	14 x 5/8	136.2	59.5	135.0
890.6		6 x 6 x ½	16 x ½	149.8	54.4	210.0
919.4		6 x 6 x ½	14 x 5/8	149.8	59.5	210.0
952.6		6 x 4 x 5/8	14 x 5/8	151.4	59.5	135.0
972.6		6 x 6 x ½	16 x 5/8	149.8	68.0	210.0
990.8	ļ	6 x 6 x ½	14 x 34	149.8	71.4	210.0
1005.7		6 x 4 x 5/8	16 x 5/8	151.4	68.0	135.0
1012.9	42 x ½	6 x 6 x 5/8	14 x 5/8	168.2	59.5	210.0
1023.7		6 x 4 x 5/8	14 x 34	151.4	71.4	135.0
1066.0		6 x 6 x 5/8	16 x 5/8	168.2	68.0	210.0
1083.7		6 x 6 x 5/8	14 x 34	168.2	71.4	210.0
1101.7		6 x 4 x 3/4	14 x 3/4	165.8	71.4	135.0
1147.5		6 x 6 x 5/8	16 x 34	168.2	81.6	210.0
1165.4		6 x 4 x 3/4	16 x 3/4	165.8	81.6	135.0
1173.6		6 x 6 x 34	14 x 3/4	186.2	71.4	210.0
1229.0		6 x 6 x 5/8	16 x 7/8	168.2	95.2	210.0
1237.4		6 x 6 x 34	16 x 3/4	186.2	81.6	210.0
1318.4		6 x 6 x 34	16 x 7/8	186.2	95.2	210.0
1321.2	}	6 x 4 x 7/8	16 x 7/8	180.2	95.2	135.0
1404.7		6 x 6 x 1/8	16 x 1/8	203.8	95.2	210.0
466.9		6 x 4 x 3/8		110.4		121.5
512.7		6 x 6 x 3/8		120.8		180.0
567.4		6 x 4 x ½		126.0		121.5
628.9		6 x 6 x ½		139.6		180.0
664.9		6 x 4 x 5/8		141.2		121.5
714.4		6 x 4 x 3/8	14 x 3/8	110.4	35.7	121.5
741.3		6 x 6 x 5/8		158.0		180.0
750.8		6 x 4 x 3/8	16 x 3/8	110.4	40.8	121.5
758.5	48 x 3/8	6 x 4 x 34		155.6		121.5
759.5		6 x 6 x 3/8	14 x 3/8	120.8	35.7	180.0
795.9		6 x 6 x 3/8	16 x 3/8	120.8	40.8	180.0
797.0	ļ.	6 x 4 x 3/8	14 x ½	110.4	47.6	121.5
841.9	ŀ	6 x 6 x 3/8	$14 \times \frac{1}{2}$	120.8	47.6	180.0
848.3		6 x 4 x 7/8		170.0		121.5
850.1		6 x 6 x 3/4		176.0		180.0
890.4	1	6 x 6 x 3/8	16 x ½	120.8	54.4	180.0
895.5	1	6 x 4 x ½	14 x ½	126.0	47.6	121.5

CARNEGIE STEEL COMPANY

Section Modulus,		Size in Inches	Size in Inches			Maximum End Reaction	
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds	
924.3		6 x 6 x 3/8	14 x 5/8	120.8 126.0	59.5 54.4	180.0 121.5	
944.0		6 x 4 x ½ 6 x 6 x %	16 x ½	193.6	94.4	180.0	
955.2		6 x 6 x ½	14 x ½	139.6	47.6	180.0	
955.8		6 x 4 x ½	14 x ½ 14 x ½	126.0	59.5	121.5	
977.7 1004.3		6 x 6 x ½	16 x ½	139.6	54.4	180.0	
1004.5 1037.6		6 x 6 x 1/2	14 x 5%	139.6	59.5	180.0	
1037.0		6 x 4 x 5/8	14 x 5/8	141.2	59.5	121.5	
1072.7		6 x 6 x ½	16 x 5/8	139.6	68.0	180.0	
1119.5		6 x 6 x ½	14 x 3/4	139.6	71.4	180.0	
1133.3		6 x 4 x 5/8	16 x 5/8	141.2	68.0	121.5	
1147.1	48 x 3/8	6 x 6 x 5/8	14 x 5%	158.0	59.5	180.0	
1154.4	, ,	6 x 4 x 5/8	14 x 3/4	141.2	71.4	121.5	
1207.8		6 x 6 x 5/8	16 x 5%	158.0	68.0	180.0	
1228.4		6 x 6 x 5%	14 x 3/4	158.0	71.4	180.0	
1245.2		6 x 4 x 34	14 x 34	155.6	71.4	121.5	
1301.2		6 x 6 x 5/8	16 x 34	158.0	81.6	180.0	
1317.9		6 x 4 x 3/4	16 x ¾	155.6	81.6	121.5	
1334.0		6 x 6 x 34	14 x 34	176.0	71.4	180.0	
1394.7		6 x 6 x 5/8	16 x ½	158.0	95.2	180.0	
1406.7		6 x 6 x 34	16 x ¾	176.0	81.6	180.0	
1498.1		6 x 4 x 1/8	16 x 1/8	170.0	95.2	121.5	
1499.7		6 x 6 x 3/4	16 x 1/8	176.0	95.2	180.0	
1601.3		6 x 6 x 7/8	16 x 1/8	193.6	95.2	180.0	
591.2		6 x 4 x ½		136.2		141.8	
652.7	l	6 x 6 x ½		149.8		210.0	
688.7		6 x 4 x 5/8		151.4		141.8	
765.0		6 x 6 x 5/8		168.2		210.0	
782.3	1	6 x 4 x 34		165.8		141.8	
872.1		6 x 4 x 7/8		180.2		141.8	
873.8		6 x 6 x 34		186.2	47.0	210.0	
918.8	İ	6 x 4 x ½	14 x ½	136.2	47.6	141.8 141.8	
967.3	48 x 7/16	6 x 4 x ½	16 x ½	136.2	54.4	210.0	
979.0	710	6 x 6 x 3/8	14 = 17	203.8 149.8	47.6	210.0	
979.0		$6 \times 6 \times \frac{1}{2}$ $6 \times 4 \times \frac{1}{2}$	14 x ½ 14 x ½	136.2	59.5	141.8	
1000.8 1027.6		$6 \times 6 \times \frac{1}{2}$	14 x ½ 16 x ½	149.8	54.4	210.0	
1060.8		$\begin{bmatrix} 6 \times 6 \times \frac{7}{2} \\ 6 \times 6 \times \frac{1}{2} \end{bmatrix}$	10 x ½ 14 x ½	149.8	59.5	210.0	
1095.8		$ \begin{vmatrix} 6 \times 4 \times \frac{5}{8} \\ 6 \times 4 \times \frac{5}{8} \end{vmatrix} $	14 x 5/8	151.4	59.5	141.8	
1121.4		$\begin{bmatrix} 6 \times 4 \times 78 \\ 6 \times 6 \times \frac{1}{2} \end{bmatrix}$	16 x 5%	149.8	68.0	210.0	
1142.5		6 x 6 x ½	14 x 34	149.8	71.4	210.0	
1156.5	l	6 x 4 x 5/8	, -	151.4	68.0	141.8	

RIVETED GIRDERS

Section Modulus,		Size in Inches		Weight pour		Maximum End Reaction
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds
1170.3		6 x 6 x 5 8	14 x 5 s	168.2	59.5	210.0
1177.4		6 x 4 x 5 8	14 x 3 ₄	151.4	71.4	141.8
1230.9		6 x 6 x 5 8	16 x 5 c	168.2	68.0	210.0
1251.5		6 x 6 x 5 8	14 x 34	168.2	71.4	210.0
1268.2		$6 \times 4 \times {}^{3}_{4}$	14 x 3 i	165.8	71.4	141.8
1324.3		6 x 6 x 5 8	16 x 34	168.2	81.6	210.0
1341.0	48 x 7/16	6 x 4 x 34	16 x 3,	165.8	81.6	141.8
1357.0		6 x 6 x 34	14 x 34	186.2	71.4	210.0
1417.7		6 x 6 x 5 8	16 x / 8	168.2	95.2	210.0
1429.8		6 x 6 x 31	16 x 34	186.2	81.6	210.0
1521.0		6 x 4 x 7 ₈	16 x 78	180.2	95.2	141.8
1522.7		6 x 6 x 34	16 x 7 ₈	186.2	95.2	210.0
1624.2		6 x 6 x 78	16 x 7%	203.8	95.2	210.0
615.0		6 x 4 x ½		146.4		162.0
676.4		6 x 6 x 1/2		160.0		240.0
712.4		6 x 4 x 5 8		161.6		162.0
788.8		6 x 6 x 5 8	*	178.4		240.0
806.0		6 x 4 x 34		176.0		162.0
895.S		6 x 4 x 7 8		190.4		162.0
897.6		6 x 6 x 3 ₄		196.4		240.0
942.1		6 x 4 x 1 2	$\frac{14 \text{ x}}{16 \text{ x}} \frac{12}{16}$	146.4	47.6	162.0
990.6		6 x 4 x 12	16 X 12	146.4	54.4	162.0
$1002.3 \\ 1002.7$		6 x 6 x ½ 6 x 6 x 7	$14 \times \frac{1}{2}$	160.0	47.6	$240.0 \\ 240.0$
1002.7		6 x 6 x 7 8 6 x 4 x 12	11 . 54	$214.0 \\ 146.4$	50.5	162.0
1050.8		6 x 6 x 1/2	14 x 56 16 x 12	160.0	$59.5 \\ 54.4$	240.0
1083.9		$6 \times 6 \times \frac{1}{2}$	14 x 58	160.0	59.5	240.0
1119.0		6 x 4 x 5 6	14 x 5/8	161.6	59.5	162.0
1144.5	48 x 1/2	6 x 6 x 12	16 x 5%	160.0	68.0	240.0
1165.6	10 % /2	6 x 6 x 12	1.4 v 3.	160.0	71.4	240.0
1179.6		6 x 4 x 5 6	16 x 5-8	161.6	68.0	162.0
1193.4		6 x 6 x 5 x	14 x 5/8	178.4	59.5	240.0
1200.5		6 x 4 x 58	14 x 34	161.6	71.4	162.0
1254.1		6 x 6 x 56	16 x 58	178.4	68.0	240.0
1274.5		6 x 6 x 5/8	14 x 34	178.4	71.4	240.0
1291.2		6 x 4 x 34	14 x 34	176.0	71.4	162.0
1347.3		6 x 6 x 5 8	16 x 34	178.4	81.6	240.0
1364.0		6 x 4 x 34	16 x 34	176.0	81.6	162.0
1380.0		6 x 6 x 34	14 x 34	196.4	71.4	240.0
1440.6		6 x 6 x 5/8	16 x 7/8	178.4	95.2	240.0
1452.8		6 x 6 x 34	16 x 34 16 x 78	196,4	81.6	240.0
1543.9		6 x 4 x 78	16 x 78	190.4	95.2	162.0
1545.6		6 x 6 x 34	16 x 7/8	196.4	95.2	240.0
1647.1		6 x 6 x 1/8	16 x 1/8	214.0	95.2	240.0

CARNEGIE STEEL COMPANY

Section Modulus		Size in Inches	-	Weight pe Pour	er Foot,	Maximun End
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Reaction in Thousand of Pounds
194.7 245.7 294.2 340.7	24 x 5/1e	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		85.1 103.9 122.3 140.3		67.5 67.5 67.5 67.5
$\begin{array}{c} 200.6 \\ 251.5 \\ 300.1 \\ 346.6 \end{array}$	24 x 3/8	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		90.2 109.0 127.4 145.4		81.0 81.0 81.0 81.0
$\begin{array}{c} 216.6 \\ 272.9 \\ 326.7 \\ 378.2 \end{array}$	26 x 5/1e	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		87.2 106.0 124.4 142.4		78.8 78.8 78.8 78.8
223.5 279.8 333.6 385.2	26 x 3/8	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		92.8 111.6 130.0 148.0		94.5 94.5 94.5 94.5
230.4 286.7 340.5 392.1	26 x 7/16	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		98.3 117.1 135.5 153.5		110.3 110.3 110.3 110.3
227.8 286.8 343.1 397.3	27 x ½6	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		88.3 107.1 125.5 143.5		78.8 78.8 78.8 78.8
$\begin{array}{c} 235.2 \\ 294.2 \\ 350.6 \\ 404.7 \end{array}$	27 x 3/8	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		94.0 112.8 131.2 149.2		94.5 94.5 94.5 94.5
$\begin{array}{c} 242.7 \\ 301.7 \\ 358.1 \\ 412.2 \end{array}$	27 x 7/16	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		99.8 118.6 137.0 155.0		110.3 110.3 110.3 110.3
$\begin{array}{c} 271.2 \\ 338.3 \\ 402.6 \\ 464.4 \end{array}$	30 x 3/8			97.9 116.7 135.1 153.1		108.0 108.0 108.0 108.0
$280.4 \\ 347.5 \\ 411.8 \\ 473.6$	30 x 7/16	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		104.2 123.0 141.4 159.4		126.0 126.0 126.0 126.0
289.6 356.7 421.0 482.8	30 x ½	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		110.6 129.4 147.8 165.8		144.0 144.0 144.0 144.0

STRESSES IN COLUMNS AND STRUTS

Compression members in structures are called posts, struts or columns. No exact theoretical formula has been found which will give the strength of such members under various conditions of loading. The formulas in current use are based on the assumption that the members under stress may fail by direct compression, by compression and bending combined, or by bending alone. The empirical formulas based on these assumptions practically agree with results obtained by experiment on full size members. These experiments show that steel columns of ordinary sizes and lengths fail at nearly a constant stress which corresponds to the yield point of that material, and that the load which will cause a column to fail decreases in the ratio of its length to its least lateral dimension.

Radius of Gyration. As the strength of a column depends on its ability to resist flexural stress, the moment of inertia of its cross section is an important factor in the determination of its carrying capacity. For the purpose of computation, however, it is much more convenient to use the radius of gyration which depends on the moment of inertia.

Ratio of Slenderness. The ratio of slenderness is ratio of the unsupported length of a compression member to its radius of gyration, generally the least radius, excepting when the unsupported length of a column is rigidly braced in such a manner as to prevent deflection of the column in the direction which corresponds to the least radius of gyration. Columns, excepting those of square or circular section, have two principal radii of gyration. It is, therefore, necessary to determine the radii of gyration of such columns and to use the proper ratio of slenderness in any particular case.

The unit stresses for different ratios of slenderness, given in the Construction Specifications and on page 220, are consistent with present practice in column construction, and their use does not involve the refinements of the more complicated formulas, which refinements are often vitiated by uncertainties in the application of loads or other practical features.

The Construction Specifications limit the maximum ratio of slenderness to 120 for main members under steady stresses. For secondary members under temporary stress, such as those used in wind bracing, higher ratios may be used, but in no case should the ratio exceed 200.

Form and Size of Section. Important as it may be to have the metal in the column section distributed as far as possible from the neutral axis, that is, with as large a radius of gyration as possible, considerations of ease in fabrication and simplicity in connections are of The economical column section is not that which greater weight. affords the least weight of metal in the shaft, but that which, with a reasonable radius of gyration, provides the least weight of member, shaft and details with the minimum amount of riveting. Modern practice, therefore, eliminates earlier forms of construction which represented the minimum amount of metal for the maximum radius of gyration, such, for example, as the column composed of three I-beams or one I-beam and two channels placed either with the flanges in or the flanges out. The Z-bar column has also fallen into disuse, likewise a number of patented sections and other sections shown in earlier editions of this publication.

- The most practical column is one the surfaces of which are readily accessible for painting and, therefore, it is desirable to use open angle and plate columns rather than closed channel and plate columns.

The column sections should be of such size as to permit ready framing of beams and girders thereto and so placed in the construction as to permit the simplest details. Experience indicates that eight inches is the smallest desirable dimension in ordinary building work. For struts and light loads, smaller angle columns are still in use, while the H-beams are excellent for such purposes. I-beams and single angles may be used with economy where the conditions of lengths and loading permit.

Explanation of Tables. The tables which immediately follow give the safe loads in thousands of pounds on H-beam and I-beam columns and on a selected line of channel and angle columns which, in the light of experience, seem to be desirable for use in ordinary building and bridge construction. In addition to the safe loads, they give moments of inertia and radii of gyration about both axes of symmetry, areas of sections, and weights in pounds per foot without allowance for rivet heads or other details.

These tables have been computed for the least radius of gyration in accordance with the formula given in the construction specifications. The values may be adjusted to other formulas or to different values of the ratio of slenderness by use of the comparative tables on pages 220 and 221. These tables are also suitable for use in figuring columns so braced against flexure, that their safe strength may be computed for the greater radius of gyration.

Combined Bending and Compression Stresses. It is assumed in the tables that the loads are direct and equally distributed over the cross section of the column or balanced on opposite sides thereof. In the case of beams carried on brackets or other forms of eccentric loading, bending stresses are produced which should be taken into consideration and the column sections so proportioned that the combined fiber stresses do not exceed the allowable axial compressive stresses. There is no direct simple solution of this problem; the following trial method is suited to the tables:—

W = Direct load, in pounds.

W1=Eccentric load, in pounds.

M = Bending moment due to eccentric load, in inch pounds = W,x

I = Moment of inertia of column in direction of bending.

n = Extreme fiber distance in direction of bending.

A = Area of column section, in square inches.

f = Allowable axial unit compression, in pounds per square inch; then f should be equal to or greater than $\frac{W+W_1}{A}+\frac{Mn}{I}$ the fiber stresses due to compression and bending respectively.

Rule:—Assume a section in excess of that required for the direct compression $W+W_1$ and compute the combined fiber stress. If it works out too large or too small, try again.

EXAMPLE:—Required to select a plate and angle column 20 feet long to sustain a balanced load of 210,000 pounds and an eccentric load of 40,000 pounds applied 15 inches from the column center on axis 1-1.

Assume a section made up of 14''x%'' web plate, four angles $6''x4''x\%_6''$ and two flange plates 14''x%'', page 240.

A = 32.47, $I_{1-1} = 1351$, $r_{2-2} = 3.09$, ratio of slenderness $= 20x12 \div 3.09 = 77$.

Allowable fiber stress, 19,000-100 l/r = 11,300 pounds per square inch.Actual fiber stress = $\frac{210,000+40,000}{40,000} + \frac{40,000 \times 15 \times 7.625}{40,000 \times 15 \times 7.625} = 7.700+3.390 = 1.000 \times 10^{-1}$

11,090 pounds per square inch.

COMPARISON OF COMPRESSION FORMULAS

ALLOWABLE UNIT STRESSES IN POUNDS PER SQUARE INCH

Ratio	American Bridge Co.	A. R. E. Association	New York, 1917	Chicago, 1919	Philadelphia, 1919	St. Louis 1917
l r	Construction Specification, Page 95	16000-70 1	16000-70-1	16000-70 l	$\frac{16250}{1 + \frac{12}{11000r^2}}$	16000-70-
0 5 10 15 22 23 30 335 445 50 65 60 65 77 80 80 80 80 105 115 125 130 145 140 145 140 145 140 145 140 140 140 140 140 140 140 140	13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 12500 11500 11000 10500 10500 10500 7500 7	14000 14000 14000 14000 14000 14000 13550 13200 12550 12550 1250 1150 11450 11450 10750 10400 10055 9700 9350 9000 8650 8300 7950 7600	16000 15650 15850 15800 14950 14600 14250 13900 13550 12500 12550 12500 12150 11800 11450 10750 10400 10050 9700 9350 9000 8650 8300 7950 7600	14000 14000 14000 14000 14000 14000 14000 13900 13550 12550	16250 16213 16104 15924 15680 15376 15020 14622 14186 13724 13241 12745 12243 11741 11242 10752 9808 9359 8926 8512 8116 7738 7378 7037 6714 6407 6116 5842	14000 14000 14000 14000 14000 13550 13200 12550 12500 11800 11450 11100 10750 9700 9350 9000 8650 8300 7250 6900 6550 6200 5850 5500 4450 4450 4100
180 185 190 195 200	4000 3750 3500 3250 3000					3400 3050 2700 2350 2000

Maximum Ratio of $\frac{l}{r}$

Compression Formula	Main Members	Secondary Members	Compression Formula		Secondary Members
American Bridge Company.	120	200	Chicago Bldg. Law, 1919	120	150
American R'y Engrg. Ass'n.	100	120	Phila. Bldg. Law, 1919	140	140
New York Bldg. Law, 1917.	120	120	St. Louis Bldg. Law, 1917.	120	200

COMPARISON OF COMPRESSION FORMULAS

ALLOWABLE UNIT STRESSES IN POUNDS PER SQUARE INCH

Ratio	Boston, 1919	Cleveland, 1920	Baltimore, 1908	Pittsburgh, 1914	Cincinnati, 1917	Rankine	
$\frac{1}{r}$	20000-100 1	Cleveland Building Code Part 2	$1 + \frac{15000}{1^2} \\ 1 + \frac{12}{13500r^2}$	19000-100-1 and 13000-50-1 r	17100-57 	$1 + \frac{\frac{12500}{1^2}}{36000r^2}$	
0	12000	15000	15000	13000	13000	12500	
5	12000	14910	14972	13000	13000	12492	
10	12000	14930	14890	13000	13000	12465	
15	12000	14870	14754	13000	13000	12422	
20	12000	14770	14568	13000	13000	12363	
25	12000	14630	14336	13000	13000	12287	
30	12000	14460	$\begin{array}{c} 14062 \\ 13752 \\ 13411 \\ 13043 \\ 12657 \end{array}$	13000	13000	12195	
35	12000	14250		13000	13000	12088	
40	12000	14000		13000	13000	11968	
45	12000	13700		13000	13000	11834	
50	12000	13350		13000	13000	11688	
55 60 65 70 75	12000 12000 12000 12000 12000	$\begin{array}{c} 12950 \\ 12500 \\ 12030 \\ 11540 \\ 11000 \end{array}$	$\begin{array}{c} 12254 \\ 11842 \\ 11425 \\ 11005 \\ 10588 \end{array}$	$13000 \\ 13000 \\ 12500 \\ 12000 \\ 11500$	13000 13000 13000 13000 12825	11531 11364 11187 11002 10811	
80	12000	10440	10176	11000	12540	10313	
85	11500	9850	9771	10500	12255	10410	
90	11000	9290	9375	10000	11970	10204	
95	10500	8750	8990	9500	11685	9995	
100	10000	8220	8617	9000	11400	9784	
105	9500	7720	8257	8500	11115	9571	
110	9000	7240	7910	8000	10830	9356	
115	8500	6800	7577	7500	10545	9142	
120	8000	6380	7258	7000	10260	8929	
125	7500	5980	6953	6750	9975	8717	
130	7000	5600	6661	6500	9690	8507	
135	6500	5260	6383	6250	9405	8299	
140	6000	4950	6118	6000	9120	8094	
145	5500	4660	5865	5750	8835	7892	
150	5000	4390	5625	5500	8550	7692	
155 160 165 170 175	4500 4000	4140 3900 3690 3520 3340	5396 5179 4972 4776 4589		8265 7980 7695 7410 7125	7495 7305 7118 6934 6754	
180 185 190 195 200		3170 3010 2870 2740 2620	4412 4243 4083 3930 3785		6840	6579 6408 6242 6080 5921	

MAXIMUM RATIOS OF 1

Compression Formula		Secondary Members	Compression Formula		Secondary Members
Boston Bldg, Law, 1919	160	160	Pittsburgh Bldg. Law, 1914	120	150
Cleveland Bldg, Law, 1920.	120	200	Cincinnati Bldg. Law, 1917	180	180
Baltimore Bldg. Law, 1908.	120		Rankine	200	200

BEAM COLUMNS

SAFE LOAD IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

· Weights do not include details.

	I-Beams											
Effective Length	24	in.	20	in.	18	in.	15	in.	12	in.	10 in.	9 in.
in Feet	105.9 Ib.	79.9 lb.	81.4 lb.	65.4 lb.	75.6 lb	54.7 Ib.	60.8 lb.	42.9 lb.	40.8 lb.	31.8 lb.	25.4 1 b.	21.8 1b.
3 4 5	402.7	303.2	308.5	248.0	286.5 286.5 286.5	207.1	229.7	162.3	153.9	120.3	95.9	82.1
6 7 8 9 10	402.7	298.0 278.0 257.4	307.4 286.9 266.4	229.8 210.9 192.0	286.5 286.5 272.7 254.5 236.2	186.7 170.1 153.5	213.3 195.8 178.3	$140.3 \\ 126.4 \\ 112.6$	132.9	99.1 88.2 77.2	$\begin{array}{c} 85.1 \\ 76.0 \\ 66.8 \\ 57.7 \\ \hline 50.1 \end{array}$	$61.3 \\ 52.9 \\ 44.5$
11 12 13 14 15	$309.1 \\ 285.8 \\ 262.5$	$\frac{195.4}{174.8}$ $\frac{158.7}{1}$	204.9 184.4 165.0	$\frac{135.1}{124.8}$ $\frac{115.4}{115.4}$	218.0 199.7 181.5 163.2 149.6	107.6 99.3 91.1	125.8		81.6 75.0 68.4 61.8 55.3	54.5 49.1 43.6	45.5 40.9 36.3 31.7 27.2	$31.8 \\ 27.6 \\ 23.4$
16 17 18 19 20	$\frac{204.7}{193.1}$	138.1 127.8 117.4 107.1 96.8	$134.3 \\ 124.0$	86.9 77.5 68.0	$140.5 \\ 131.4 \\ 122.2 \\ 113.1 \\ 104.0$	74.5 66.2 57.9 49.6	\$9.8 \$1.0 72.3 63.5 54.8	51.5 44.6 37.7	48.7 42.1 35.5	32.6 27.1	22.6	
21 22 23 24 25	158.2 146.5 134.9 123.2 111.6	\$6.5 76.2 65.8	93.3 83.0 72.7		94.9 85.7 76.6 67.5							
26 27 28 29 30	99.9 88.3											
Area, in.2	30.98	23.33	23.74	19.08	22.04	15.94	17.68	12.49	11.84	9.26	7.38	6.32
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	2811.5 9.53 78.9 1.60	9.46 42.9	7.86 45.8	1169.5 7.83 27.9 1.21	1141.8 7.20 46.3 1.45	795.5 7.07 21.2 1.15	609.0 5.87 26.0 1.21	441.8 5.95 14.6 1.08	268.9 4.77 13.8 1.08	215.8 4.83 9.5 1.01	$122.1 \\ 4.07 \\ 6.9 \\ 0.97$	84.9 3.67 5.2 0.90
Weight, Lbs. per Foot	105.9	79.9	81.4	65.4	75.6	54.7	60.8	42.9	40.8	31.8	25.4	21.8

Safe load values above upper zigzag line are for ratios of 1/r not over 60, those between the zigzag line are for ratios up to $120\ 1/r$ and those below lower zigzag line are for ratios not over $200\ 1/r$.

BEAM COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include details.

	ļ	· I	Beam	3					H Bean	18			
Effective Length	S in.	7 in.	6 in.	5 in.	4 in.		S in.			6 in.		5 in.	4 in.
in Feet	18.4 lb.	15.3 lb.	12.5 lb.	10.0 1b.	7.7 lb.	37.7 lb.	34.3 Ib.	32.6 lb.	26.7 Ib.	24.1 lb.	22.8 lb.	18.9 lb.	13.8 lb.
3 4 5	69.3	56.7	44.4	33.5	24.0	143.0 143.0 143.0	130.0	123.6	100.9	91.1		71.1 71.1 71.1	51.9
6 7 8 9 10	$\frac{48.1}{40.5}$	36.2	$\frac{26.2}{22.7}$ 19.7	22.9 18.9 16.3 13.6 11.0	13.0	$143.0 \\ 143.0 \\ 143.0 \\ 143.0 \\ \hline 136.9$	130.0 130.0 130.0	$123.6 \\ 123.6$	100.9 95.1 SS.5	$\frac{91.1}{86.7}$	$86.2 \\ 82.5$	$65.6 \\ 60.1 \\ 54.6$	$\frac{40.4}{35.3}$
11 12 13 14 15	23.7	19,9 16.5 13.1		5.3		129.7 122.5 115.3 108.1 100.9	113.2	$\begin{array}{c} 114.5 \\ 108.5 \\ 102.5 \\ 96.5 \\ 90.4 \end{array}$	68.9 62.4 55.8	$57.6 \\ 51.8$	$60.8 \\ 55.4 \\ 49.9$	$\frac{38.2}{35.5}$ 32.7	$19.0 \\ 16.4$
16 17 18 19 20						93.7 86.4 79.2 74.5 70.9	87.5 81.1 74.7 69.2 66.0	84.4 78.4 72.4 66.5 63.5	$\begin{vmatrix} 45.2 \\ 42.0 \\ 38.7 \end{vmatrix}$	44.6 41.7 38.8 35.9 33.0	$\frac{40.0}{37.3}$ $\frac{34.6}{34.6}$	$\frac{21.8}{19.1}$	
21 22 23 24 25						67.3 63.7 60.1 56.5 52.9	62.8 59.6 56.4 53.2 50.0	60.5 57.5 54.4 51.4 48.4	28.9 25.6	$30.1 \\ 27.2 \\ 24.3 \\ 21.4$	29.2 26.5 23.7 21.0		
26 27 28 29 30						49.3 45.7 42.1 38.5 34.9	46.8 43.6 40.4 37.2 33.9	45.4 42.4 39.4 36.4 33.4					
Area,in.	5.34	4.43	3.61	2.87	2.21	11.00	10.00	9.50	7.76	7.01	6.63	5.47	3.99
I ₁₋₁ , in. 4 r ₁₋₁ , in. I ₂₋₂ , in. 4 r ₂₋₂ , in.	3.26	33.2 2.86 2.7 0.78	21.8 2.46 1.8 0.72	12.1 2.05 1.2 0.65	6.0 1.64 0.77 0.59	120.8 3.31 36.9 1.83	115.5 3.40 35.1 1.87	112.8 3.45 34.2 1.90	47.4 2.47 15.7 1.42	45.1 2.54 14.7 1.45	44.0 2.58 14.2 1.46	23.8 2.08 7.8 1.20	10.7 1.64 3.6 0.95
Weight, Lbs. per Foot		15.3	12.5	10.0	7.7	37.7	34.3	32.6	26.7	24.1	22.8	18.9	13.8

Safe load values above upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r and those below lower zigzag line are for ratios not over 200 1/r.

10-INCH CHANNEL COLUMNS

Safe Loads in Thousands of Pounds

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

Feet		in. C					2-	10 in	. Cha	nnels	, 2-	12 in	. Plat	es			
Effective Length in Feet	15.3 lb.Channels, Single Lattice	201b. Channels, Single Lattice	25 lb. Channels, Single Lattice	15.3 lb. Channels,	15.31b.Channels, 3/8 in. Plates	15.31b. Channels, 71s in. Plates	15.3 lb. Channels,	20 lb. Channels, 716 in. Plates	20 lb. Channels, 12 in. Plates	201b. Channels, 9/1α in. Plates	20 lb. Channels, 5/8 in. Plates	25 lb. Channels, ⁹ 1α in. Plates	251b. Channels, 58 in. Plates	301b. Channels,	301b. Channels, 5/8 in. Plates	35 lb. Channels, 9/16 in. Plates	351b. Channels, 5% in. Plates
11 12 13 14 15	116 116 116 116 116	$\frac{152}{152}$	191 191 191 191 191	$\begin{array}{c} 214 \\ 214 \\ 214 \\ 214 \\ 214 \\ 214 \end{array}$	233 233 233 233 233	253 253 253 253 253	272 272 272 272 272 272	289 289 289 289 289	$\frac{308}{308}$	328 328 328 328 328	347 347 347 347 347	$\frac{366}{366}$	$\frac{386}{386}$	$\frac{404}{404}$	$424 \\ 424 \\ 424$	443	$\begin{array}{c} 462 \\ 462 \\ 462 \\ 462 \\ 462 \\ 462 \end{array}$
16 17 18 19 20		147	$191 \\ 191 \\ 186 \\ 181 \\ 175$	$\frac{214}{208}$	$233 \\ 233 \\ 233 \\ 227 \\ 221$	$\frac{253}{252}$	$\frac{272}{272}$	$\frac{289}{285}$	308	315	$\tfrac{347}{343}$	$\frac{366}{358}$ $\frac{348}{348}$	$\frac{386}{386}$ $\frac{377}{367}$ $\frac{367}{357}$		$\frac{423}{411}$ $\frac{399}{11}$	443 436 424 412 399	$\frac{462}{456}$ $\frac{443}{430}$ $\frac{430}{418}$
21 22 23 24 25	109 106 104 101 98		170 165 160 155 150	$\frac{192}{186}$	197	$\frac{226}{219}$	$243 \\ 236 \\ 229$	$255 \\ 247 \\ 240$	$\frac{272}{264}$	$\begin{array}{c} 298 \\ 289 \\ 281 \\ 272 \\ 264 \end{array}$	$\frac{306}{297}$ $\frac{288}{288}$	329 319 309 299 289	$336 \\ 326 \\ 315$	$\frac{347}{336}$ $\frac{325}{325}$	$\frac{365}{353}$	387 374 362 350 337	405 392 379 366 353
26 27 28 29 30	95 92 89 86 83	$\frac{116}{112}$ $\frac{108}{108}$	$\frac{134}{129}$	$164 \\ 159 \\ 153 \\ 148$	179 173 167 161	$193 \\ 187 \\ 180 \\ 174$	208 201 194 187	217 209 202 194	232 224 216 207	$\begin{array}{c} 255 \\ 246 \\ 238 \\ 229 \\ 221 \end{array}$	260 251 242 233	$\frac{250}{240}$	284 274 263 253	292 281 270 259	307 295 284 272	$325 \\ 313 \\ 300 \\ 288 \\ 275$	340 327 314 302 289
31 32 33 34 35	80 78 75 72 69	96 92 88	119 113 108 103	142 137 132 126 121	$149 \\ 143 \\ 137$	$161 \\ 154 \\ 148$	$173 \\ 166 \\ 159$	$179 \\ 171 \\ 164$	$191 \\ 183 \\ 175$	212 203 195 186 177	$\frac{215}{205}$ $\frac{196}{1}$	221	$232 \\ 222 \\ 212$	248 237 225 216 211	$261 \\ 249 \\ 237 \\ \hline 227 \\ 221$	$\begin{array}{c} 263 \\ 251 \\ 238 \\ \hline 232 \\ 226 \\ \end{array}$	276 263 250 243 237
Area, in.2	!															34.04	
I_{1-1} , in. 4 r_{1-1} , in. I_{2-2} , in. 4 r_{2-2} , in.	134 3.87 124 3.72	157 3.66 148 3.55	3.52 171	333 4.50 214 3.60	4.58 232	250	268	4.47 274	4.54 292	4.60 310	328	558 4.45 333 3.44	351	583 4.33 353 3.37	630 4.40 371 3.38	607 4.22 372 3.30	654 4,29 390 3,31
Weight, Lbs. per Foot	38,4	47.8	57.8	56.1	61.2	66,3	71,4	75.7	80.8	85.9	91.0	95.9	101.0	105.9	111.0	115.9	121.0

Safe load values above upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to $120\,l/r$, and those below lower zigzag line are for ratios not over $200\,l/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

gth in Feet	2-1	0 in. C Latti		els	2-10 in. Channels, 2.14 in. Plates										
Effective Length in Feet	15.3 lb. Channels, Single Lattice	20 lb. Channels, Single Lattice	25 lb. Channels, Single Lattice	30 lb. Channels, Single Lattice	15.31b. Channels, 3/8 in. Plates	15.3 lb. Channels, 7/1a in. Plates	15.31b. Channels,	20 lb. Channels, 740 in. Plates	20 lb. Channels, ½ in. Plates	20 lb. Channels, 9/16 in. Plates	20 lb. Channels, 5% in. Plates	25 lb. Channels, 9/16 in. Plates	251b. Channels, 58 in. Plates	25 lb. Channels, 14/16 in. Plates	25 lb. Channels, % in. Plates
11 12 13 14 15	116 116 116 116 116	152 152 152 152 152 152	191 191 191 191 191	229 229 229 229 229	253 253 253 253 253 253	275 275 275 275 275 275	298 298 298 298 298	312 312 312 312 312 312	334 334 334 334 334	357 357 357 357 357 357	380 380 380 380 380	395 395 395 395 395 395	418 418 418 418 418	441 441 441 441 441	464 464 464 464
16 17 18 19 20		152 152 152 150 146		$\begin{array}{c} 229 \\ 229 \\ \hline 223 \\ 217 \\ 211 \\ \end{array}$	253 253 253 253 253	275 275 275 275 275 275	298 298 298 298 298	312 312 312 312 312	334 334 334 334 334	357 357 357 357 357	380 380 380 380 380	395 395 395 395 395	418 418 418 418 418	441	464
21 22 23 24 25	112 109 106 103 101	142 138 134 130 127	174 169 164 159 154	205 199 192 186 180	253 252 246 241 236	275 273 268 262 256	298 295 289 283 276	$\frac{312}{308}$ $\frac{301}{295}$ $\frac{288}{288}$	334 330 322 315 308	357 352 344 336 328	380 374 365 357 349	395 388 379 370 362	418 409 400 391 382	441 431 421 412 402	463 453 443 432 422
26 27 28 29 30	98 95 92 89 87	123 119 115 111 107	149 144 139 134 129	174 168 161 155 149	230 225 220 214 209	250 244 238 232 226	270 263 257 251 244	281 274 268 261 254	301 294 286 279 272	321 313 305 298 290	341 332 324 316 308	353 344 336 327 318	373 364 354 345 336	392 383 373 363 354	412 402 392 381 371
31 32 33 34 35	84 81 78 76 73	104 100 96 92 88	124 119 114 109 104	143 137 131 121	203 198 193 187 182	221 215 209 203 197	238 231 225 219 212	248 241 231 227 221	265 257 250 243 236	282 274 267 259 251	299 291 283 275 266	310 301 292 284 275	327 318 309 299 290	344 334 325 315 305	361 351 341 330 320
Area, in.2	8.94	11.72	14.66	3 17.60	19.44	21.19	22.91	23.97	25.72	27.47	29.22	30.41	32.16	33.91	35.66
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	134 3.87 198 4.70	157 3.66 241 4.53	181 3.52 284 4.40		416 4.63 369 4.36	468 4.70 398 4.33	520 4.76 426 4.31	491 4.52 441 4.29	543 4.60 470 4.27	597 4.66 498 4.26	651 4.72 527 4.25	621 4.52 541 4.22	676 4.58 569 4.21	732 4.65 598 4.20	789 4.70 627 4.19
Weight, Lbs. per Foot	40.0	49.4	59.4	69.4	65.3	72.3	78.2	81.7	87.6	93.6	99.5	103.6	109.5	115.5	121.4

Safe load values above upper zigzag line are for ratios of l/r not over 60, those between the zigzag lines are for ratios up to 120 l/r, and those below lower zigzag line are for ratios not over 200 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

in Feet				2-10	in. Ch	annels,	2-14 i	n. Plat	es			
Effective Length in Feet	30 lb. Channels, 11/16 in. Plates	30 lb. Channels, 3/4 in. Plates	30 lb. Channels, 13/16 in. Plates	30 lb. Channels, 7/8 in. Plates	30 lb. Channels, 15/16 in. Plates	30 lb. Channels, 1 in. Plates	35 lb. Channels, 15/16 in. Plates	35 lb. Channels, I in. Plates	35 lb. Channels, 1½ in. Plates	35 lb. Channels, 1½ in. Plates	35 lb. Channels, 13/16 in. Plates	35 lb. Channels, 1½ in. Plates
11 12 13 14 15	479 479 479 479 479	$\begin{array}{c} 502 \\ 502 \\ 502 \\ 502 \\ 502 \end{array}$	525 525 525 525 525	547 547 547 547 547	570 570 570 570 570	593 593 593 593 593	608 608 608 608	631 631 631 631 631	654 654 654 654 654	677 677 677 677 677	699 699 699 699	722 722 722 722 722 722
16 17 18 19 20	479 479 479 479 479	502 502 502 502 502	525 525 525 525 525	547 547 547 547 547	570 570 570 570 570	593 593 593 593 593	608 608 608 608	631 631 631 631 631	$\begin{array}{c} 654 \\ 654 \\ 654 \\ 654 \\ 654 \\ 654 \end{array}$	677 677 677 677 677	699 699 699 699	722 722 722 722 722 722
21 22 23 24 25	477 466 456 445 434	499 488 477 466 454	522 510 498 487 475	544 531 519 507 495	566 554 541 528 515	589 576 562 549 536	601 588 574 560 547	624 610 596 581 567	646 632 617 602 588	669 654 638 623 608	691 675 659 643 627	713 697 680 664 648
26 27 28 29 30	424 413 403 392 381	443 432 421 410 399	463 452 440 428 417	483 470 458 446 434	503 490 477 465 452	523 510 496 483 470	533 519 506 492 478	553 539 524 510 496	573 558 543 529 514	593 578 562 547 532	596 580 564 549	632 615 599 583 566
31 32 33 34 35	371 360 349 339 328	387 376 365 354 343	405 393 382 370 358	422 409 397 385 373	439 426 414 401 388	457 443 430 417 404	$\begin{array}{c} 464 \\ 451 \\ 437 \\ 423 \\ 410 \end{array}$	482 468 453 439 425	499 485 470 455 440	517 501 486 471 456	533 517 501 485 470	550 534 518 501 485
Area,in.2	36.85	38.60	40.35	42.10	43.85	45.60	46.79	48.54	50.29	52.04	53.79	55.54
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	756 4.53 637 4.16	814 4.59 666 4.15	872 4.65 694 4.15	932 4.70 723 4.14	993 4.76 751 4.14	1055 4.81 780 4.14	1017 4.66 787 4.10	1080 4.72 816 4.10	1143 4.77 845 4.10	1208 4.82 873 4.10	1275 4.87 911 4.09	1342 4.92 930 4.09
Weight, Lbs. per Foot	125.5	131.4	137.4	143.3	149.3	155.2	159.3	165.2	171.2	177.1	183.1	189.0

Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line are for ratios not over 120 1/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

n Feet	2-	12 in. (Latt	Chann iced	els	1		2-12	in. Ch	annels	, 2-	14 in. l	Plates		
Effective Length in Feet	20.7 lb. Channels, Single Lattice	25 lb. Channels, Single Lattice	30 lb. Channels, Single Lattice	35 Ib. Channels, Single Lattice	20.7 lb. Channels, 3,8 in. Plates	20.7 lb. Channels, 7/16 in. Plates	20.7 lb. Channels, ½ in. Plates	20.71b. Channels, 9/16 in. Plates	20.7 lb. Channels. 58 in. Plates	25 lb. Channels, 9/16 in. Plates	25 lb. Channels, 5g in. Plates	25 lb. Channels, 11/16 in. Plates	25 lb. Channels, 34 in. Plates	25 lb. Channels, 18/16 in. Plates
11 12 13 14 15	157 157 157 157 157	190 190 190 190 190	229 229 229 229 229	267 267 267 267 267	293 293 293 293 293	316 316 316 316 316 316	339 339 339 339 339	362 362 362 362 362	384 384 384 384 384	395 395 395 395 395	418 418 418 418 418	441 441 441 441 441	463 463 463 463 463	486 486 486 486 486
16 17 18 19 20	157 157 157 157 157	190 190 190 190 190	229 229 229 229 229	267 267 267 267 267	293 293 293 293 293	316 316 316 316 316	339 339 339 339 339	362 362 362 362 362	384 384 384 384 384	395 395 395 395 395	418 418 418 418 418	441 441 441 441 441	463 463 463 463 463	486 486 486 486 486
21 22 23 24 25	$\begin{array}{r} 157 \\ \underline{157} \\ 155 \\ 152 \\ 149 \end{array}$	190 190 185 181 177	229 225 220 215 210	267 259 253 247 241	293 290 283 277 271	$\frac{316}{312}$ $\frac{305}{298}$ $\frac{291}{291}$	$\frac{339}{334}$ $\frac{326}{319}$ $\frac{312}{312}$	$\frac{362}{355}$ $\frac{347}{339}$ $\frac{332}{332}$	384 377 369 360 352	395 386 378 369 360	417 408 399 390 381	440 430 420 410 401	462 452 442 432 421	484 474 463 452 441
26 27 28 29 30	146 142 139 136 133	$\begin{array}{c} 173 \\ 169 \\ 165 \\ 161 \\ 157 \end{array}$	205 200 195 190 185	235 229 223 217 211	265 258 252 246 239	284 277 271 264 257	304 297 290 282 275	$\begin{array}{c} 324 \\ 316 \\ 308 \\ 300 \\ 292 \end{array}$	344 335 327 318 310	352 343 334 326 317	371 362 353 344 335	$ \begin{array}{r} 391 \\ 381 \\ 371 \\ 362 \\ 352 \end{array} $	411 401 391 380 370	431 420 409 398 388
31 32 33 34 35	$129 \\ 126 \\ 123 \\ 120 \\ 117$	153 149 145 141 137	180 175 170 165 160	205 199 193 187 181	233 227 220 214 208	250 243 236 230 223	268 260 253 246 238	284 277 269 261 253	302 293 285 277 268	308 300 291 282 274	325 316 307 298 288	342 333 323 313 303	360 350 340 329 319	377 366 355 345 334
Area, in.2	12.06		17.58	20.52	22.56	24.31	26.06	27.81	29.56	30.39	32.14	33.89	35.64	37.39
I_{1-1} , in.4 r_{1-1} , in. I_{2-2} , in.4 r_{2-2} , in.	256 4.61 244 4.50	287 4.43 279 4.36	322 4.28 316 4.24	358 4.18 350 4.13	658 5.40 415 4.29	730 5.48 444 4.27	803 5.55 473 4.26	878 5.62 501 4.25	954 5.68 530 4.23	909 5.47 536 4.20	985 5.54 564 4.19	1062 5.60 593 4.18	1141 5.66 622 4.18	1222 5.72 650 4.17
Weight, Lbs. per Foot	50.8	59.4	69.4	79.4	77.1	83.1	89.0	95.0	100.9	103.6	109.5	115.5	121.4	127.4

Safe load values above zigzag line are for ratios of l/r not over 60, those below zigzag line are for ratios not over 120 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

in Feet		2-12 in. Channels, 2-14 in. Plates													
Effective Length in Feet	30 lb. Channels, 3/4 in. Plates	30 lb. Channels, 13/16 in. Plates	30 lb. Channels, 7/s in. Plates	30 lb. Channels, 15/16 in. Plates	30 lb. Channels, 1 in. Plates	35 lb. Channels, 15/16 in. Plates	35 lb. Channels, 1 in. Plates	35 lb. Channels, 14,16 in. Plates	35 lb. Channels, 1½ in. Plates	35 lb. Channels, 13/16 in. Plates	35 lb. Channels, 11/4 in. Plates	35 lb. Channels, 15/16 in. Plates	35 lb. Channels, 1% in. Plates	35 lb. Channels, 17/16 in. Plates	35 lb. Channels, 1½ in. Plates
11 12 13 14 15	502 502 502 502 502	524 524 524 524 524 524	547 547 547 547 547	570 570 570 570 570	593 593 593 593 593	608 608 608 608	631 631 631 631 631	654 654 654 654 654	676 676 676 676 676	699 699 699 699	722 722 722 722 722 722	745 745 745 745 745 745	767 767 767 767 767	790 790 790 790 790	813 813 813 813 813
16 17 18 19 20	502 502 502 502 502	$\begin{array}{c} 524 \\ 524 \\ 524 \\ 524 \\ 524 \\ 524 \end{array}$	547 547 547 547 547	570 570 570 570 570	593 593 593 593 593	608 608 608 608	631 631 631 631 631	$\begin{array}{c} 654 \\ 654 \\ 654 \\ 654 \\ 654 \\ 654 \end{array}$	676 676 676 676 676	699 699 699 699	722 722 722 722 722 722	745 745 745 745 745	767 767 767 767 767	790 790 790 790 790	813 813 813 813 813
21 22 23 24 25	498 486 475 464 453	520 508 497 485 473	542 530 518 505 493	565 552 539 526 514	587 574 561 547 534	600 586 572 558 545	622 608 594 579 565	$\begin{array}{c} 645 \\ 630 \\ 615 \\ 600 \\ 585 \end{array}$	$\begin{array}{c} 667 \\ 652 \\ 636 \\ 621 \\ 606 \end{array}$	690 674 658 642 626	712 696 679 663 647	734 717 700 683 666	756 739 721 704 686	778 760 743 725 707	801 782 764 745 727
26 27 28 29 30	$\begin{array}{c} 442 \\ 430 \\ 419 \\ 408 \\ 397 \end{array}$	$\begin{array}{c} 462 \\ 450 \\ 438 \\ 426 \\ 415 \end{array}$	$\begin{array}{c} 481 \\ 469 \\ 456 \\ 444 \\ 432 \end{array}$	501 488 475 463 450	521 508 494 481 468	531 517 503 490 476	551 537 522 508 494	$\begin{array}{c} 571 \\ 556 \\ 541 \\ 526 \\ 512 \end{array}$	591 575 560 545 529	610 595 579 563 547	630 614 598 581 565	649 632 615 598 582	669 652 634 617 599	689 671 653 635 617	709 690 672 653 635
31 32 33 34 35	386 374 363 352 341	403 391 380 368 356	420 407 395 383 371	437 424 411 399 386	$\begin{array}{c} 454 \\ 441 \\ 428 \\ 415 \\ 401 \end{array}$	$\begin{array}{c} 462 \\ 448 \\ 435 \\ 421 \\ 407 \end{array}$	$\begin{array}{c} 479 \\ 465 \\ 451 \\ 437 \\ 422 \end{array}$	$\begin{array}{c} 497 \\ 482 \\ 467 \\ 452 \\ 438 \end{array}$	$\begin{array}{c} 514 \\ 499 \\ 483 \\ 468 \\ 453 \end{array}$	531 516 500 484 468	549 532 516 500 483	565 548 531 514 497	582 565 547 530 512	599 581 563 545 528	616 598 580 561 543
Area,in.2	38.58	40.33	42.08	43.83	45.58	46.77	48.52	50.27	52.02	53.77	55.52	57.27	59.02	60.77	62.52
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	1177 5.52 659 4.13	687	1339 5.64 716 4.12	5.70	5.75 773	1458 5.58 779 4.08	5.64 807	5.69 836	865	1807 5.80 893 4.08	5.85 922	1991 5.90 950 4.07	2085 5.94 979 4.07	2181 5.99 1008 4.07	2279 6.04 1036 4.07
Weight, Lbs. per Foot	131.4	137.4			<u> </u>			ļ			·				

Safe load values above heavy line are for ratios of l/r not over 60, those below heavy line are for ratios not over 120 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details,

1 Feet	2-12 in. Channels, 2-16 in. Plates													
Effective Length in Feet	30 lb. Channels,	30 lb. Channels, 1 in. Plates	30 lb. Channels, 1½0 in. Plates	30 lb. Channels, 1½ in. Plates	30 lb. Channels, 18/16 in. Plates	30 lb. Channels, 1½ in. Plates	35 lb. Channels, 1%10 in. Plates	35 lb. Channels, 1½ in. Plates	35 lb. Channels, 15/16 in. Plates	35 lb. Channels, 1% in. Plates				
11 12 13 14 15	619 619 619 619	645 645 645 645 645	671 671 671 671 671	697 697 697 697 697	723 723 723 723 723 723	749 749 749 749 749	761 761 761 761 761	787 787 787 787 787 787	813 813 813 813 813	839 839 839 839 839				
16 17 18 19 20	619 619 619 619 619	645 645 645 645 645	671 671 671 671 671	697 697 697 697 697	723 723 723 723 723 723	749 749 749 749 749	761 761 761 761 761	787 787 787 787 787 787	813 813 813 813 813	839 839 839 839 839				
21 22 23 24 25	619 619 619 619	645 645 645 645	$ \begin{array}{r} 671 \\ 671 \\ 671 \\ 671 \\ \hline 660 \end{array} $	697 697 697 697 685	$\begin{array}{r} 723 \\ 723 \\ 723 \\ \hline 723 \\ \hline 710 \\ \end{array}$	$ \begin{array}{r} 749 \\ 749 \\ 749 \\ \hline 735 \end{array} $	$ \begin{array}{r} 761 \\ 761 \\ 761 \\ \hline 761 \\ \hline 746 \end{array} $	787 787 787 786 771	813 813 813 812 796	839 839 839 837 821				
26 27 28 29 30	598 586 574 563 551	622 610 598 586 573	647 634 621 608 596	672 659 645 632 619	696 682 669 655 641	721 706 692 677 663	732 717 702 688 673	756 741 725 710 695	781 765 749 734 718	805 789 772 756 740				
31 32 33 34 35	539 527 516 504 492	561 549 536 524 512	583 570 557 544 532	605 592 579 565 552	627 613 599 586 572	649 634 620 606 591	658 644 629 614 600	680 665 650 634 619	702 687 671 655 640	724 708 691 675 659				
Area,in.2	47.58	49.58	51.58	53.58	55.58	57.58	58.52	60.52	62.52	64.52				
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. ⁴ r ₁₋₂ , in. ⁴ r ₂₋₂ , in. ⁴	1580 5.76 1120 4.85	1677 5.82 1162 4.84	1776 5.87 1205 4.83	1877 5.92 1248 4.83	1979 5,97 1290 4.82	2083 6.02 1333 4.81	2014 5.87 1348 4.80	2118 5.92 1391 4.79	2224 5.96 1433 4.79	2332 6.01 1476 4.78				
Weight, Lbs. per Foot	162.0	168.8	175.6	182.4	189.2	196.0	199.2	206.0	212.8	219.6				

Safe load values above heavy line are for ratios of l/r not over 60, those below heavy line are for ratios not over 120 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details,

in Feet			,	2-12 in.	Channel	s, 2-16 i	n. Plates			
Effective Length in Feet	35 lb. Channels, 17/16 in. Plates	35 lb. Channels, 1½ in. Plates	35 lb. Channels, 19/16 in. Plates	35 lb. Channels, 158 in. Plates	35 lb. Channels, 111/16 in. Plates	35 lb. Channels, 154 in. Plates	35 lb. Channels, 11% in. Plates	35 lb. Channels, 17,8 in. Plates	35 lb. Channels, 115/10 in. Plates	35 lb. Channels, 2 in. Plates
11 12 13 14 15	865 865 865 865 865	\$91 891 891 891 891	917 917 917 917 917	943 943 943 943 943	969 969 969 969 969	995 995 995 995 995	1021 1021 1021 1021 1021	1047 1047 1047 1047 1047	1073 1073 1073 1073 1073	1099 1099 1099 1099 1099
16 17 18 19 20	865 865 865 865 865	891 891 891 891 891	917 917 917 917 917 917	943 943 943 943 943	969 969 969 969 969	995 995 995 995 995	1021 1021 1021 1021 1021 1021	1047 1047 1047 1047 1047	1073 1073 1073 1073 1073	1099 1099 1099 1099 1099
21 22 23 24 25	865 865 865 863 846	891 891 891 888 871	917 917 917 914 896	943 943 943 940 922	969 969 969 965 946	995 995 995 991 972	$\begin{array}{c} 1021 \\ 1021 \\ 1021 \\ \hline 1016 \\ 996 \\ \end{array}$	$1047 \\ 1047 \\ 1047 \\ 1042 \\ 1021$	1073 1073 1073 1068 1047	$ \begin{array}{r} 1099 \\ 1099 \\ 1099 \\ \hline 1092 \\ 1071 \end{array} $
26 27 28 29 30	830 813 796 780 763	854 836 819 802 785	879 861 843 825 808	904 885 867 849 831	927 909 890 871 852	952 933 914 894 875	976 956 936 917 897	1001 981 960 940 920	1026 1005 984 963 942	1050 1028 1007 985 964
31 32 33 34 35	746 730 713 696 679	768 750 733 716 699	790 772 754 737 719	812 794 776 758 739	\$33 \$15 796 777 758	856 837 817 798 779	877 857 837 817 798	899 879 859 838 818	922 901 880 859 838	943 921 900 878 857
Area,in.2	66.52	68.52	70.52	72.52	74.52	76.52	78.52	80.52	82.52	84.52
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	2442 6.06 1519 4.78	2554 6.10 1561 4.77	2667 6.15 1604 4.77	2782 6.19 1647 4.77	2900 6.24 1689 4.76	3019 6.28 1732 4.76	3140 6.32 1775 4.75	3263 6.37 1817 4.75	3388 6.41 1860 4.75	3515 6.45 1903 4.74
Weight, Lbs. per Foot	226.4	233.2	240.0	246.8	253.6	260.4	267.2	274.0	280.8	287.6

Safe load values above heavy line are for ratios of l/r not over 60, those below heavy line are for ratios over 120 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

Feet	2-	15 in. Latt		els			2-15	in. Ch	annels	, 2-10	in. P	lates		
Effective Length in Feet	33.91b. Channels, Single Lattice	35 lb. Channels, Single Lattice	40 lb. Channels, Single Lattice	45 lb. Channels, Single Lattice	33.91b. Channels 3 s in. Plates	33.91b. Channels. 740 in. Plates	33.91b. Channels, 12 in. Plates	33.91b. Channels, 946 in. Plates	33.91b. Channels, 58 in. Plates	35 lb. Channels, 5% in. Plates	35 lb. Channels 14/16 in. Plates	351b. Channels, 34 in. Plates	35 lb. Channels 13/16 in. Plates	35 lb. Channels, 78 in. Plates
11 12 13 14 15	257 257 257 257 257 257	266 266 266 266		$ \begin{array}{r} 342 \\ 342 \\ 342 \\ 342 \\ 342 \\ 342 \end{array} $	413 413 413 413 413	439 439 439 439 439	$\begin{array}{c} 465 \\ 465 \\ 465 \\ 465 \\ 465 \\ 465 \end{array}$	491 491 491 491 491	517 517 517 517 517	526 526 526 526 526 526	552 552 552 552 552 552	578 578 578 578 578 578	604 604 604 604 604	630 630 630 630 630
16 17 18 19 20	257 257 257 257 257 257	266 266 266 266 266	304 304 304 304 304	$342 \\ 342 \\ 342 \\ 342 \\ 342 \\ 342$	413 413 413 413 413	439 439 439 439 439	$\begin{array}{c} 465 \\ 465 \\ 465 \\ 465 \\ 465 \\ 465 \end{array}$	491 491 491 491 491	517 517 517 517 517	526 526 526 526 526	552 552 552 552 552 552	578 578 578 578 578	604 604 604 604 604	630 630 630 630 630
21 22 23 24 25	257 257 257 257 257 257	$ \begin{array}{r} 266 \\ 266 \\ 266 \\ 266 \\ \hline 265 \\ \end{array} $	304 304 304 304 300	342 342 342 342 334	$413 \\ 413 \\ 413 \\ 413 \\ \hline 407$	439 439 439 439	$465 \\ 465 \\ 465 \\ 465 \\ \hline 457$	$491 \\ 491 \\ 491 \\ 491 \\ \hline 482$	517 517 517 517 517	526 526 526 525 515	552 552 552 551 540	578 578 578 577 566	604 604 604 591	630 630 630 628 615
26 27 28 29 30	252 247 243 238 238 233	260 255 250 245 240	294 288 282 277 271	327 321 314 307 301	400 392 384 376 368	424 415 407 399 390	448 440 431 422 413	473 464 454 445 435	498 488 478 468 458	505 495 485 475 465	530 519 508 498 487	555 543 532 521 510	579 567 555 544 532	603 591 579 566 554
31 32 33 34 35	228 224 219 214 209	235 230 225 220 215	265 259 254 248 242	294 288 281 274 268	360 352 345 337 329	382 373 365 357 348	404 395 386 377 368	426 416 407 398 388	448 438 428 418 408	455 444 434 424 414	476 466 455 444 434	499 488 476 465 454	520 509 497 486 474	542 530 518 505 493
Area, in. 2	19.80	20.46	23.40	26.34	31.80	33.S0	35.80	37.80	39.80	40.46	42.46	44.16	46.46	48.46
I_{1-1} , in. ⁴ r_{1-1} , in. I_{2-2} , in. ⁴ r_{2-2} , in.	625 5.62 491 4.98	637 5.58 502 4.95	693 5.44 550 4.85	748 5.33 595 4.75	1334 6.48 747 4.85	1459 6.57 789 4.83	1586 6.66 832 4.82	1715 6.74 875 4.81	1846 6.81 917 4.80	1859 6.78 928 4.79	1992 6.85 971 4.78	2127 6.92 1014 4.78	2264 6.98 1056 4.77	2403 7.04 1099 4.76
Weight, Lbs. per Foot	82.0	84.2	92.1	102.2	108.6	115.4	122.2	129.0	135.8	138.0	144.8	151.6	158.4	165.2

Safe load values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over $120\ 1/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

in Feet					2-15	Chanr	nels, í	2-16 in	. Plate	s				
Effective Length in Feet	40 lb. Channels, 13/16 in. Plates	40 lb. Channels, 7/s in. Plates	40 lb. Channels, 15/16 in. Plates	40 lb. Channels, 1 in. Plates	40 in. Channels, 1½σ in. Plates	40 lb. Channels, 1½ in. Plates	45 lb. Channels, 1½ in. Plates	45 lb. Channels, 1½ in. Plates	45 lb. Channels, 1% in. Plates	45 lb. Channels, 1½ in. Plates	45 lb. Channels, 15/16 in. Plates	45 lb. Channels, 13% in. Plates	45 lb. Channels, 17/16 in. Plates.	45 lb. Channels, 1½ in. Plates
11 12 13 14 15	642 642 642 642 642	668 668 668 668	694 694 694 694 694	720 720 720 720 720 720	746 746 746 746 746	772 772 772 772 772 772	784 784 784 784 784	810 810 810 810 810	836 836 836 836 836	862 862 862 862 862	888 888 888 888 888	914 914 914 914 914	940 940 940 940 940 940	966 966 966 966 966
16 17 18 19 20	$\begin{array}{c} 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \end{array}$	668 668 668 668	694 694 694 694 694	$\begin{array}{c} 720 \\ 720 \\ 720 \\ 720 \\ 720 \\ 720 \end{array}$	$\begin{array}{c} 746 \\ 746 \\ 746 \\ 746 \\ 746 \\ 746 \end{array}$	772 772 772 772 772	784 784 784 784 784	810 810 810 810 810	836 836 836 836 836	862 862 862 862 862	888 888 888 888	914 914 914 914 914	$\begin{array}{c} 940 \\ 940 \\ 940 \\ 940 \\ 940 \\ 940 \end{array}$	966 966 966 966 966
21 22 23	$\begin{array}{c} 642 \\ 642 \\ 642 \end{array}$	$^{668}_{668} \\ ^{668}$	$\begin{array}{c} 694 \\ 694 \\ 694 \end{array}$	$\begin{array}{c} 720 \\ 720 \\ 720 \end{array}$	$\begin{array}{c} 746 \\ 746 \\ 746 \end{array}$	$\begin{array}{c} 772 \\ 772 \\ 772 \end{array}$	$784 \\ 784 \\ 784$	$\begin{array}{c} 810 \\ 810 \\ 810 \end{array}$	836 836 836	$\begin{array}{c} 862 \\ 862 \\ 862 \end{array}$	888 888 888	$\begin{array}{c} 914 \\ 914 \\ 914 \end{array}$	$\begin{array}{c} 940 \\ 940 \\ 940 \end{array}$	966 966 966
$\frac{24}{25}$	$\frac{638}{625}$	$\frac{663}{650}$	689 675	715 700	$\frac{740}{725}$	765 750	775 760	$\frac{801}{785}$	826 809	$851 \\ 834$	877 859	$\frac{903}{885}$	$\frac{928}{910}$	$954 \\ 935$
26 27 28 29 30	613 600 588 575 563	637 624 611 598 585	$\begin{array}{c} 662 \\ 648 \\ 634 \\ 621 \\ 607 \end{array}$	686 672 658 644 630	710 696 681 667 652	735 720 705 690 675	$744 \\ 729 \\ 713 \\ 698 \\ 682$	$769 \\ 753 \\ 737 \\ 721 \\ 705$	793 776 760 743 726	817 800 783 766 749	842 824 807 789 772	867 848 830 812 794	891 873 854 835 817	916 897 878 858 839
31 32 33 34 35	550 538 525 512 500	571 558 545 532 519	594 580 567 553 539	616 602 588 574 560	637 623 608 593 579	$\begin{array}{c} 659 \\ 644 \\ 629 \\ 614 \\ 599 \end{array}$	$\begin{array}{c} 667 \\ 651 \\ 636 \\ 620 \\ 605 \end{array}$	$\begin{array}{c} 689 \\ 673 \\ 657 \\ 641 \\ 625 \end{array}$	710 693 677 660 644	$\begin{array}{c} 732 \\ 715 \\ 698 \\ 681 \\ 664 \end{array}$	754 737 719 701 684	776 758 740 722 704	798 780 761 742 724	820 801 782 763 744
Area,in.2	49.40	51.40	53.40	55.40	57.40	59.40	60.34	62.34	64.34	66.34	68.34	70.34	72.34	74.34
I_{1-1} , in. ⁴ r_{1-1} , in. I_{2-2} , in. ⁴ r_{2-2} , in.	2319 6.85 1104 4.73	2459 6.92 1147 4.72	2600 6.98 1190 4.72	2743 7.04 1232 4.72	2889 7.09 1275 4.71	3037 7.15 1318 4.71	2944 6.99 1320 4.68	3092 7.04 1363 4.68	3242 7.10 1406 4.67	3394 7.15 1448 4.67	3548 7.21 1491 4.67	3704 7.26 1534 4.67	3863 7.30 1576 4.67	4024 7.36 1619 4.67
Weight, Lbs. per Foot	168.4	175.2	182.0	188.S	195.6	202.4	205.6	212.4	219.2	226.0	232.8	239.6	246.4	253.2

Safe load values above heavy line are for ratios of l/r not over 60, those below heavy line are for ratios not over 120 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

Feet					2	-15 in	. Cha	nnels,	2-1	8 in.	Plates	3				
Effective Length in	33.9 lb. Channels,	33.91b. Channels, 7/10 in. Plates	33.91b. Channels, 12 in. Plates	33.91b. Channels, 9/16 in. Plates	33.91b. Channels, 58 in. Plates	35 lb. Channels, 5's in. Plates	35 lb. Channels, 11/10 in. Plates	35 lb. Channels,	35 lb. Channels, 13 to in. Plates	35 lb. Channels, 7s in. Plates	40 lb. Channels, 13 to in. Plates	40 lb. Channels, 7/8 in. Plates	40 lb. Channels,	40 lb. Channels, I in. Plates	40 lb. Channels, 11/16 in. Plates	401b. Channels, 11/8 in. Plates
11 12 13 14 15	$\frac{433}{433}$	$\begin{array}{c} 462 \\ 462 \\ 462 \\ 462 \\ 462 \\ 462 \end{array}$	491 491 491 491 491			558 558 558	588 588 588	617 617 617 617 617		676	$684 \\ 684 \\ 684$	714 714 714 714 714 714	743 743 743 743 743	772	801 801 801 801 801	831 831 831 831 831
16 17 18 19 20	$\frac{433}{433}$ $\frac{433}{433}$	$\begin{array}{c} 462 \\ 462 \\ 462 \\ 462 \\ 462 \\ 462 \end{array}$	491 491 491 491 491	$\begin{array}{c} 521 \\ 521 \\ 521 \\ 521 \\ 521 \\ 521 \\ 521 \end{array}$	550 550 550 550 550	558 558 558 558 558	588 588 588	617 617 617 617 617	$\begin{array}{c} 646 \\ 646 \\ 646 \\ 646 \\ 646 \end{array}$	676 676	$684 \\ 684 \\ 684$	714 714 714 714 714 714	743 743 743 743 743	772 772 772	801 801 801 801 801	831 831 831 831 831
21 22 23 24 25	433 433 433 433 433	$\begin{array}{c} 462 \\ 462 \\ 462 \\ 462 \\ 462 \\ 462 \end{array}$	491 491 491 491 491	521 521 521 521 521 521	550 550 550 550 550	558 558 558 558 558	588 588 588 588 588	617 617 617 617 617	$\begin{array}{c} 646 \\ 646 \\ 646 \\ 646 \\ 646 \end{array}$	676 676 676	684 684 684 684 684	714 714 714 714 714 714	743 743 743 743 743	772 772 772	801 801 801 801 801	831 831 831 831 831
26 27 28 29 30	$433 \\ 433 \\ 433 \\ \hline 428 \\ 421$	$\begin{array}{r} 462 \\ 462 \\ \underline{462} \\ 456 \\ 449 \end{array}$	$\frac{491}{484}$	521 521 520 512 503	550 550 549 539 530	558 558 557 547 538	588 585 575	$\begin{array}{r} 617 \\ 617 \\ \hline 613 \\ 603 \\ 593 \\ \end{array}$	$\frac{646}{641}$	676 670 658	684 684 678 667 655	$\begin{array}{r} 714 \\ 714 \\ \hline 706 \\ 694 \\ 682 \end{array}$	743 743 735 722 710	$772 \\ 763 \\ 750$	801 801 791 778 764	831 819 805
31 32 33 34 35	$\frac{407}{400}$ $\frac{393}{393}$	441 433 426 418 411	$\frac{451}{443}$	494 486 477 469 460	$512 \\ 503 \\ 494$		$546 \\ 536 \\ 526$	572 562 552	598 587 576	$\frac{624}{613}$	644 632 621 609 598	670 658 646 634 622	$685 \\ 672 \\ 660$	$\frac{698}{685}$	710	
Area, in. ² I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , ia. Weight, Lbs. per Foot	1423 6.54 1069 5.67	6.63	1707 6.72 1190 5.61	1852 6.80 1251 5.59	1999 6.87 1312 5.57	2012 6.84 1329 5.56	2161 6.91 1390 5.54	2313 6.98 1450 5.53	2467 7.05 1511 5.51	2624 7.11 1572 5.50	2523 6.92 1586 5.49	2679 6.99 1646 5.48	283S 7.05 1707 5.47	3000 7.11 1768 5.46	3163 7.16 1829 5.45	3330 7.22 1889 5.44

Safe load values above zigzag line are for ratios of l/r not over 60, those below zigzag line are for ratios not over $120\ l/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch. 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

in Feet						2-15 ii	n. Chai	mels,	2-18 i	n. Plat	es			
Effective Length in Feet	45 lb. Channels, 1446 in. Plates	45 lb. Channels, 148 in. Plates	45 lb. Channels, 13/1α in. Plates	45 lb. Channels, 11/4 in. Plates	45 lb. Channels, 15/10 in. Plates	45 lb. Channels, 1% in. Plates	45 lb. Channels, 1746 in. Plates	45 lb. Channels, 1½ in. Plates	45 lb. Channels, 19/16 in. Plates	45 lb. Channels, 15,8 in. Plates	45 lb. Channels, 111/10 in. Plates	45 lb. Channels, 13/1 in. Plates	45 lb. Channels, 178 in. Plates	45 lb. Channels, 2 in. Plates
11 12 13 14 15	840 840 840 840 840	869 869 869 869 869	898 898 898 898 898	927 927 927 927 927 927	957 957 957 957 957	986	1015 1015 1015	$1044 \\ 1044 \\ 1044$	$1074 \\ 1074 \\ 1074$	1103 1103 1103 1103 1103	$1132 \\ 1132 \\ 1132$	1161	$\frac{1220}{1220}$	1278
16 17 18 19 20	840 840 840 840 840	869 869 869 869	898 898 898 898 898	927 927 927 927 927	957 957 957 957 957	986 986 986 986 986	$\frac{1015}{1015}$	$1044 \\ 1044 \\ 1044$	$1074 \\ 1074 \\ 1074$	1103 1103 1103 1103 1103	$1132 \\ 1132 \\ 1132$	$\frac{1161}{1161}$	1220 1220 1220 1220 1220 1220	1278 1278 1278 1278 1278 1278
21 22 23 24 25	840 840 840 840 840	869 869 869 869 869	898 898 898 898	927 927 927 927 927	957 957 957 957 957	986 986 986	$1015 \\ 1015 \\ 1015$	$1044 \\ 1044 \\ 1044$	$1074 \\ 1074 \\ 1074$	1103 1103 1103 1103 1103	$1132 \\ 1132 \\ 1132$	$1161 \\ 1161 \\ 1161$	$\begin{array}{c} 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \end{array}$	1278 1278 1278 1278 1278 1278
26 27 28 29 30	840 840 827 813 798	869 869 856 841 826	898 898 884 868 853	$\begin{array}{r} 927 \\ \underline{927} \\ 912 \\ 896 \\ 880 \\ \end{array}$	$\begin{array}{c} 957 \\ 957 \\ \hline 940 \\ 924 \\ 908 \\ \end{array}$	986 985 968 951 934	$\frac{1014}{997}$	1043 1025 1007	$1072 \\ 1053 \\ 1035$		$\frac{1129}{1110}$	$\frac{1157}{1137}$ $\frac{1117}{1117}$	$\begin{array}{c} 1220 \\ 1215 \\ 1194 \\ 1173 \\ 1152 \end{array}$	$\begin{array}{c} 1278 \\ \hline 1273 \\ 1251 \\ 1229 \\ 1207 \end{array}$
31 32 33 34 35	784 770 755 741 727	811 796 782 767 752	838 822 807 792 776	864 848 832 816 801	891 875 859 842 826	918 901 884 867 850	945 927 910 893 875	971 953 935 917 899		1005	1051 1032 1012 993 974	1017	1130 1109 1088 1067 1046	1185 1163 1141 1119 1096
Area,in.2	64.59		69.09	71.34	73.59	75.84	78.09	80.34	82.59	84.84	87.09	89.34	93.84	98.34
I_{1-1} , in.4 r_{1-1} , in. I_{2-2} , in.4 r_{2-2} , in.	3219 7.06 1900 5.42	3385 7.12 1961 5.42	$\begin{array}{c} 3553 \\ 7.17 \\ 2022 \\ 5.41 \end{array}$	3724 7.23 2082 5.40	3898 7.28 2143 5.40	4074 7.33 2204 5.39	4252 7.38 2265 5.39	4433 7.43 2325 5.38	4617 7.48 2386 5.38	4803 7.52 2447 5.38	4991 7.57 2508 5.37	5183 7.62 2568 5.36	5573 7.71 2690 5.35	5974 7.79 2811 5.35
Weight Lbs.per Foot	220.1	227.7	235.4	243.0	250.7	258.3	266.0	273.6	281.3	288.9	296.6	304.2	319.5	334.8

Safe load values above zigzag line are for ratios of l/r not over 60, those below zigzag line are for ratios not over 120 l/r.

15-INCH CHANNEL COLUMNS-Concluded

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

	2-15	in. Ch	annels				2-15 in	45 lb	. Chanz	nele			
eet	35	lb.	45 lb.							-0.0			
Effective Length in Feet	2-18 x 2 Flange Plates 2-14 x 3/8 Web Plates	2-18 x 2 Flange Plates 2-14 x 9/16 Web Plates	2-18 x 2 Flange Plates 2-14 x 9/16 Web Plates	2-20 x 175 Flange Plates 2-14 x 98 Web Plates	2-20 x 2 Flange Plates 2-14 x 5/8 Web Plates	2-20 x 24% Flange Plates 2-14 x 5% Web Plates	2-20 x 24, Flange Plates 2-14 x 58 Web Plates	2-20 x 23% Flange Plates 2-14 x 5% Web Plates	2-20 x 21.5 Flange Plates 2-14 x 58 Web Plates	2-20 x 25% Flange Plates 2-14 x 5% Web Plates	2-20 x 234 Flange Plates 2-14 x 58 Web Plates	2-20 x 27,8 Flange Plates 2-14 x 5,8 Web Plates	2-20 x 3 Flange Plates 2-14 x 58 Web Plates
11 12 13 14 15	1338 1338 1338	1407 1407 1407 1407	1483 1483 1483 1483 1483	1545 1545 1545 1545	1610 1610	1675 1675 1675 1675	1740 1740 1740 1740	1805 1805 1805 1805		1935 1935 1935 1935	2000 2000 2000 2000	2065 2065 2065 2065	2130 2130 2130 2130 2130 2130
16 17 18 19 20	1338 1338 1338	$1407 \\ 1407 \\ 1407 \\ 1407 \\ 1407 \\ 1407$	1483 1483 1483 1483 1483	$1545 \\ 1545 \\ 1545$	$\frac{1610}{1610}$	$1675 \\ 1675 \\ 1675$	1740 1740 1740 1740 1740	1805	$1870 \\ 1870 \\ 1870$	1935 1935 1935 1935 1935	2000 2000 2000 2000 2000 2000		2130 2130 2130 2130 2130 2130
21 22 23 24 25	$\frac{1338}{1338}$	1407	1483 1483 1483 1483 1483	$1545 \\ 1545$	$\frac{1610}{1610}$	$1675 \\ 1675 \\ 1675$	$1740 \\ 1740 \\ 1740$	$1805 \\ 1805 \\ 1805$	1870	$\frac{1935}{1935}$	$2000 \\ 2000 \\ 2000$	2065 2065 2065 2065 2065	2130 2130 2130 2130 2130 2130
26 27 28 29 30	$\begin{array}{c} 1338 \\ \hline 1329 \\ 1306 \\ 1283 \\ 1260 \\ \end{array}$	1393 1369 1344	1438	$1545 \\ 1545 \\ 1545$	$\frac{1610}{1610}$	$1675 \\ 1675 \\ 1675$	$1740 \\ 1740 \\ 1740$	$1805 \\ 1805 \\ 1805$	1870	1935 1935 1935	$2000 \\ 2000 \\ 2000$	2065 2065 2065 2065 2052	$\begin{array}{c} 2130 \\ 2130 \\ 2130 \\ 2130 \\ \hline 2130 \\ \hline 2117 \end{array}$
31 32 33 34	1236 1213 1190	1295 1271 1246 1221	1359 1333 1307 1281 1255	1517 1494 1470 1446	1580 1555 1530 1505	$\begin{array}{c} 1644 \\ 1618 \\ 1592 \\ 1566 \end{array}$	$\begin{array}{c} 1706 \\ 1679 \\ 1652 \\ 1625 \end{array}$	1768 1740 1712 1684	1832 1803 1774 1745	1894 1864 1834 1804	$1958 \\ 1927 \\ 1896$	2020 1988 1955 1923	2083 2050 2017 1984 1951
Area, in.2	102.96	108.21	114.09	118.84	123.84	128.84	133.84	138.84	143.84	148.84	153.84	158.84	163.84
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	6035 7.66 2917 5.32	6121 7.52 3028 5.29		6395	6840 7.43 4402		7767 7.62 4736	8248 7.71 4902 5.94	8742 7.80 5069	9248 7.88	9767 7.97 5402	10299 8.05 5569	10844 8.14 5736 5.92
Weight Lbs.per Foot	350.5	368.4	388.4	404.5	421.5	438.5	455.5	472.5	489.5	506.5	523.5	540.5	557.5

PLATE AND ANGLE COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details

	Web	Plate	6 x ½	W	eb Pla	ite 8 x	1/4	W	eb Pla	te 8 x	5/16	Web	Plate	8 x 3/8
Effective Length in Feet	4 Angles 2½x2 x 1/4	4 Angles 3 x2 x 1/4	4 Angles 3 x2½x 1/4	4 Angles 3 x21/2x 1/4	4 Angles 3 x2½x5/10	4 Angles 3½x2½x 1/4	4 Angles 31/2x21/2x5/16	4 Angles 31/2x21/2x5/16	4 Angles 31/2x21/2x 3/8	4 Angles 4 x3 x5/16	4 Angles 4 x3 x 3/s	4 Angles 4 x3 x 3/8	4 Angles 4 x3 x7/10	4 Angles 4 x3 x ½
6 7 8 9 10	69 63 56 49 43	81 78 72 66 60	88 82 76 69 63	94 86 79 72 65	110 103 95 87 78	101 101 96 89 83	119 119 115 107 100	$\begin{array}{r} 125 \\ \underline{125} \\ 120 \\ 112 \\ 104 \\ \end{array}$	142 142 138 130 121	141 141 141 136 128	161 161 161 158 149	168 168 168 163 154	188 188 188 185 175	208 208 208 206 196
11 12 13 14 15	38 35 32 28 25	54 49 43 40 37	56 50 45 42 39	57 50 47 43 39	70 62 56 52 48	76 70 63 57	92 85 78 70 63	$ \begin{array}{r} 96 \\ 89 \\ 81 \\ 73 \\ \hline 66 \end{array} $	112 104 95 86 77	121 113 105 97 89	140 131 123 114 105	145 136 127 118 109	165 155 145 135 124	185 174 163 152 141
16 17 18 19 20	22 18	34 32 29 26 23	35 32 29 26 22	36 32 28 25	44 40 36 32 28	49 46 43 39 36	60 56 52 49 45	62 58 54 50 47	73 68 64 60 55	75 71 67 63	97 88 83 79 74	$ \begin{array}{r} 100 \\ 90 \\ \hline 86 \\ 81 \\ 77 \end{array} $	114 104 98 93 88	130 120 110 105 100
21 22 23 24 25		20				33 30 27 23	41 38 34 30	43 39 35 31	51 47 42 38 34	59 55 51 48 44	70 66 61 57 53	72 68 63 59 54	83 78 73 68 63	94 89 83 78 72
26 27 28 29 30										40 36	48 44 39	49 45 40	58 53 48	67 62 56 51
Area, in.2	5.74	6.26	6.74	7.24	8.48	7.76	9.12	9.62	10.94	10.86	12.42	12.92	14.48	16.00
I ₁₋₁ , in.4 r ₁₋₁ , in. I ₂₋₂ , in.4 r ₂₋₂ , in.	34.3 2.45 6.2 1.04	39.1 2.50 10.3 1.28	42.6 2.51 10.3 1.24	81.2 3.35 10.3 1.19	$\begin{array}{c} 96.9 \\ 3.38 \\ 12.9 \\ 1.23 \end{array}$	$\begin{array}{c} 90.1 \\ 3.41 \\ 16.0 \\ 1.44 \end{array}$	$\begin{array}{c} 107 \\ 3.43 \\ 20.2 \\ 1.49 \end{array}$	110 3.38 20.7 1.47	$\begin{array}{c} 127 \\ 3.40 \\ 24.9 \\ 1.51 \end{array}$	122 3.35 30.3 1.67	141 3.36 36.3 1.71	143 3.33 37.2 1.70	161 3.34 43.5 1.73	178 3.33 50.2 1.77
Weight, Lbs. per Foot	19.6	21.5	23.1	24.8	29.2	26.4	31.2	32.9	37.3	37.3	42.5	44.2	49.4	54.6

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between zigzag lines are for ratios up to $120\ l/r$, and those below lower zigzag line are for ratios not over $200\ l/r$.

PLATE AND ANGLE COLUMNS—Continued

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

				_								_	_				
Feet		eb P			eb Pl: 0 x 5/1			7	Veb I	Plate	10 x 3	ś			eb Pl 10 x ½		Web PL 10x5%
Effective Length in	les 3 x2½x ½	les 3½x2½x ¼	les 3½x2½x5/10	les 3½x2½x5/10	les 4 x 3 x5/16	lee 4 x 3 x 3/s	les 4 x 3 x 3/s	les 4 x 3 x7/16	les 5 х3½х 3/s	les 5 x3½x7/1a	les 6 x 4 x 3/8	les 6 x 4 x7/10	les 6 x 4 x 1/2	les 6 x 4 x 1/2	les 6 x 4 x ⁹ / ₁₆	les 6 x 4 x 5/8	les 6 x 4 x 5/8
Effe	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles
6 7 8* 9	91	107 100 93	125 125 119 111 103	$\frac{133}{125}$ $\frac{117}{117}$	$149 \\ 149 \\ 142$	$\frac{170}{164}$	$\begin{array}{c} 178 \\ 178 \\ \underline{178} \\ 170 \\ 160 \end{array}$	$\frac{198}{198}$	$207 \\ 207 \\ 207$	$ \begin{array}{r} 232 \\ 232 \\ 232 \end{array} $	$\frac{236}{236}$	$\begin{vmatrix} 266 \\ 266 \\ 266 \end{vmatrix}$	$\frac{296}{296}$	$\frac{312}{312}$	341 341 341	370 370 370 370 370	386
11 12 13 14 15	$ \begin{array}{r} 58 \\ 52 \\ 48 \\ 44 \\ 40 \end{array} $	79 71 64 57 54	95 87 79 71 65	99 91 82 73 68	116 108 99	135	130 121	$160 \\ 149 \\ 138$	$194 \\ 185 \\ 175$	220	$\frac{236}{235}$	$266 \\ 266 \\ 257$	$\frac{296}{296}$	$\frac{312}{312}$	$\frac{341}{341}$	370 370 370 363 350	386 386 386 378 365
16 17 18 19 20	36 32 28 24	50 47 43 40 36	61 57 53 49 45	64 60 55 51 47	82 77 73 69 64	98 90 85 81 76	101 93 88 83 78	$\frac{101}{95}$	$\frac{148}{139}$ $\frac{130}{130}$	180 170 160 150 140	$\frac{201}{192}$ $\frac{184}{184}$	$\frac{229}{220}$ $\frac{210}{210}$	$\frac{257}{247}$	247	$297 \\ 285 \\ 274$	337 325 312 299 287	351 338 325 312 298
21 22 23 24 25		33 29 25	41 37 34 30	42 38 34	60 56 51 47 43	71 67 62 57 52	73 68 63 58 53	84 79 74 68 63	$\frac{107}{103}$	113	$158 \\ 150 \\ 141$	191 182 172 163 154	$\frac{206}{195}$	$\frac{214}{203}$	$238 \\ 226 \\ 214$	274 261 249 236 223	285 272 258 245 232
26 27 28 29 30					39 34	48 43	48 43	57 52 47	89 84 80 75 71	98 93 88	$121 \\ 117 \\ 113$	134	$157 \\ 152 \\ 146$	164 158 153	$181 \\ 175 \\ 169$	210 198 192 186 179	218 207 200 193 187
Area, in.2	7.74	8.26	9.62	10.25	11.49	13.05	13.67	15.23	15.95	17.87	18.19	20.47	22.75	24.00	26.24	28.44	29.69
$I_{1-1,in.4}$ $r_{1-1,in.}$ $I_{2-2,in.4}$ $r_{2-2,in.4}$	4.16 10.3	4.23	4.28 20.2	181 4.20 20.7 1.42	201 4.18 30.3 1.62	232 4.22 36.3 1.67	237 4.17 37.2 1.65	267 4.19 43.5 1.69	279 4.18 70.6 2.10	315 4.20 82.3 2.15	319 4.19 119 2.56	361 4.20 139 2.61	401 4.20 160 2.65	412 4.14 165 2.62	451 4.15 186 2.66	489 4.15 206 2.69	500 4.10 213 2.68
Weight, Lbs. per Foot		28.1	32.9	35.0	39.4	44.6	46.8	52.0	54.4	60.8	62.0	70.0	77.6	81.8	89.4	97.0	101.3

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 120, those between zigzag lines are for ratios up to $120\ 1/r$, and those below lower zigzag line are for ratios not over $200\ 1/r$.

PLATE AND ANGLE COLUMNS—Continued

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

eet		eb Pl 2 x ½			о Pl. 5⁄16		Web	Pla	te 12	x 3/8		W	eb P	late	12 x	1/2		Plate
Effective Length in Feet	3½x2½x ½	3½x2½x2½x5/16	4 x 3 x5/16	4 x 3 x5/16	4 x 3 x 3%	4 x 3 x 3 8	5 x3/2x 3/8	5 x3½x7,1a	5 x3½x ½	$6 \times 4 \times 7/16$	6 x 4 x ½	6 x 4 x ½	6 x 4 x ⁹ / ₁₆	6 x 4 x 5/8	6 x 4 x ¹¹ / ₁₆	6 x 4 x 34	6 x 4 x 34	6 x 4 x 34
Effectiv	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles
$\begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{bmatrix}$	112 104 96	132 123 115	$\frac{148}{148}$	$\frac{157}{157}$ $\frac{147}{147}$	$\frac{178}{178}$ $\frac{169}{169}$	$\frac{187}{187}$	$\frac{217}{217}$	$242 \\ 242 \\ 242$	$\frac{266}{266}$	$276 \\ 276 \\ 276$	305 305 305	$\frac{325}{325}$	$\frac{354}{354}$	383 383 383	$\frac{411}{411}$	439	$\frac{458}{458}$	478 478 478 478 478
11 12 13 14 15	81 73 65 59 55	89	$\frac{114}{106}$	$\frac{120}{111}$ $\frac{101}{101}$	139 129 119	$145 \\ 134 \\ 124$	201 191 181	$\frac{226}{215}$ $\frac{205}{205}$	$252 \\ 241 \\ 229$	$\frac{276}{274}$ $\frac{264}{264}$	$\frac{305}{305}$	$\frac{325}{323}$	$\frac{354}{354}$	$\frac{383}{383}$	$\frac{411}{403}$	$\frac{439}{433}$	$\frac{458}{458}$	$\begin{array}{c} 478 \\ 478 \\ 478 \\ \hline 469 \\ 452 \end{array}$
16 17 18 19 20	52 48 44 40 36	63 58 54 50 45	80 76 71 67 63	84 79 75 70 65	99 92 87 82 77	96 91 85	$\frac{152}{142}$ $\frac{132}{132}$	$\frac{173}{162}$ $\frac{152}{152}$	$\frac{195}{184}$ $\frac{172}{172}$	$234 \\ 224 \\ 214$	$263 \\ 252 \\ 241$	$\frac{277}{265}$ $\frac{253}{253}$	$\frac{305}{292}$ $\frac{280}{280}$	$\frac{333}{319}$ $\frac{306}{306}$	$\frac{361}{347}$	403 388 373 358 344	388 372	
21 22 23 24 25	32 28	41 37 33	59 55 50 46 42	61 56 52 47 42	72 67 62 57 52	$\frac{69}{64}$	110 105 100	$\frac{125}{120}$ $\frac{114}{114}$	$\frac{141}{135}$ $\frac{129}{129}$	$184 \\ 174 \\ 164$	$\frac{209}{198}$ $\frac{187}{187}$	$\frac{218}{207}$ $\frac{195}{1}$	$\frac{242}{230}$ $\frac{217}{217}$	$\frac{266}{253}$ $\frac{239}{239}$	$\frac{290}{276}$ $\frac{262}{262}$	$\frac{299}{284}$	341 325 310 294 278	$\frac{321}{305}$
26 27 28 29 30			38	38	47 42	48	91 86 81 76 71	98 93 88	$\frac{112}{106}$	$\frac{142}{137}$ $\frac{132}{132}$	$160 \\ 154 \\ 149$	$167 \\ 162 \\ 156$	$\frac{185}{179}$ $\frac{173}{173}$	$\frac{203}{196}$ $\frac{189}{189}$	$\frac{220}{213}$ $\frac{206}{206}$	$\frac{239}{230}$ $\frac{223}{223}$	$\begin{array}{c} 262 \\ \underline{247} \\ \underline{239} \\ 231 \\ \underline{223} \end{array}$	$\frac{248}{240}$
Area, in.2	8.76	10.12	11.36	12.11	13.67	14.42	16.70	18.62	20.50	21.22	23.50	25.00	27.24	29.44	31.60	33.76	35.26	36.76
I_{1-1} , in.4 r_{1-1} , in. I_{2-2} , in.4 r_{2-2} , in.	5.04 16.0 1.35	5.11 20.2	5.09	30.3	5.06 36.3	4.99	5.02 70.6	5.05 82.3	5.07	5.06 139	5.07 160	4.99	5.01 186	5.02	5.01 228	5.01	867 4.96 257 2.70	885 4.91 266 2.69
Weight, Lbs. per Foot			39.0		46.8	ľ					ļ	ji .]			114.8	119.9	Ĺ

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between zigzag lines are for ratios up to $120 \ l/r$ and those below lower zigzag line are for ratios not over $200 \ l/r$.

PLATE AND ANGLE COLUMNS—Continued

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

ب	V	eb Plat	e 12 x 3	8	V	eb Plat	e 12 x }	2	V	Veb Pla	te 12 x	1/8
Effective Length in Feet	4 Angles 6 x 4 x 3/8 2 Plates 14 x 3/8	4 Angles 6 x 4 x 3/8 2 Plates 14 x 1/2	4 Angles 6 x 4 x 7/10 2 Plates 14 x 1/2	4 Angles 6 x 4 x ½ 2 Plates 14 x ½	4 Angles 6 x 4 x ½ 2 Plates 14 x ½	4 Angles 6 x 4 x ½ 2 Plates 14 x 58	4 Angles 6 x 4 x 9/16 2 Plates 14 x 5/3	4 Angles 6 x 4 x 5 s 2 Plates 14 x 5 s	4 Angles 6 x 4 x 5 8 2 Plates 14 x 5 8	4 Angles 6 x 4 x 5 3 2 Plates 14 x 34	4 Angles 6 x 4 x 5 s 2 Plates 14 x 7 s	4 Angles 6 x 4 x 5 s 2 Plates 14 x 1
11 12 13 14 15	383 383 383 383 383	428 428 428 428 428	458 458 458 458 458	487 487 487 487 487 487	507 507 507 507 507 507	553 553 553 553 553	582 582 582 582 582 582	610 610 610 610 610	630 630 630 630 630	675 675 675 675 675 675	721 721 721 721 721 721	766 766 766 766 766 766
16 17 18 19 20	379 368 357 346 334	428 419 407 395 383	$\begin{array}{r} 458 \\ 447 \\ 434 \\ 421 \\ 407 \end{array}$	487 475 461 447 433	506 491 476 461 447	553 542 526 510 495	582 569 553 536 520	596 579 562 544	630 613 594 576 558	675 663 644 625 606	721 714 694 674 654	766 763 742 721 700
21 22 23 24 25	323 312 301 289 278	370 358 346 334 322	$394 \\ 381 \\ 368 \\ 355 \\ 342$	419 405 391 377 363	432 417 403 388 373	479 463 448 432 416	503 487 470 454 437	527 509 492 475 457	540 522 504 486 468	587 568 548 529 510	634 614 594 574 554	679 658 637 616 595
26 27 28 29 30	267 256 244 233 222	310 297 285 273 261	$329 \\ 316 \\ 303 \\ 290 \\ 277$	349 335 321 307 293	358 344 329 314 299	401 385 369 354 338	$\begin{array}{c} 421 \\ 404 \\ 388 \\ 371 \\ 354 \end{array}$	440 422 405 388 370	450 431 413 395 377	491 472 453 434 415	534 514 494 474 454	574 553 532 511 490
31 32 33 34 35	211 203 197 191 186	249 237 228 221 215	$\begin{array}{c} 264 \\ 250 \\ \hline 242 \\ 235 \\ 229 \\ \end{array}$	279 265 257 250 243	285 272 264 257 249	$ \begin{array}{r} 323 \\ \hline 307 \\ \hline 294 \\ 287 \\ \hline 279 \\ \end{array} $	338 321 309 301 293	353 336 323 315 306	359 341 331 322 313	396 377 361 351 342	434 414 394 381 371	469 448 427 409 399
Area, in. ² I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	29.44 916 5.58 291 3.14	32.94 1073 5.71 348 3.25	35.22 1136 5.68 368 3.23	37.50 1197 5.65 388 3.22	39.00 1215 5.58 394 3.18	42.50 1377 5.69 451 3.26	1437 5.67 472 3.25	1495 5.64 492 3.24	1513 5.59 499 3.21	51.94 1682 5.69 556 3.27	55.44 1856 5.79 613 3.33	58.94 2037 5.88 671 3.37
Weight, Lhs. per Foot	100.2	112.1	120.1	127.7	132.8	144.7	152.3	159.9	165.0	176.9	188.8	200.7

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r.

PLATE AND ANGLE COLUMNS-Continued

Safe Loads in Thousands of Pounds

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

+			W	eb Pla	te 12 x	5/8				Web	Plate 1	4 x 3/8	
Effective Length in Feet	4 Angles 6 x 4 x 5/8 2 Plates 14 x 1 1/8	4 Angles 6 x 4 x 5/8 2 Plates 14 x 11/4	4 Angles 6 x 4 x 5/8 2 Plates 14 x 13/8	4 Angles 6 x 4 x 5/8 2 Plates 14 x 11/2	4 Angles 6 x 4 x 5/8 2 Plates 14 x 15/8	4 Angles 6 x 4 x 5/8 2 Plates 14 x 13/4	4 Angles 6 x 4 x 5/8 2 Plates 14 x 17/8	4 Angles 6 x 4 x 5/8 2 Plates 14 x 2	4 Angles 6 x 4 x 3/8 2 Plates 14 x 3/8	4 Angles 6 x 4 x 7/10 2 Plates 14 x 3/8	4 Angles 6 x 4 x ½ 2 Plates 14 x %	4 Angles 6 x 4 x ½ 2 Plates 14 x ¼0	4 Angles 6 x 4 x 1/2 2 Plates 14 x 1/2
11 12 13 14 15	812 812 812 812 812	857 857 857 857 857	903 903 903 903 903	948 948 948 948 948	994 994 994 994 994	1039	$1085 \\ 1085 \\ 1085$	$\begin{vmatrix} 1130 \\ 1130 \end{vmatrix}$	392 392 392 392 392	422 422 422 422 422	452 452 452 452 452 452	474 474 474 474 474	497 497 497 497 497
16 17 18 19 20	$\begin{array}{r} 812 \\ 812 \\ \hline 791 \\ 769 \\ 747 \end{array}$	857 857 840 817 794	903 903 888 864 840	$\begin{array}{c} 948 \\ 948 \\ \hline 937 \\ 912 \\ 887 \\ \end{array}$	994 994 986 960 934	1039	$\frac{1085}{1082}$ $\frac{1085}{1054}$	$\begin{array}{c} 1130 \\ 1130 \\ 1130 \\ \hline 1101 \\ 1072 \\ \end{array}$	363	415 403 390 377 365	444 431 417 404 390	470 456 442 428 415	497 482 468 453 439
21 22 23 24 25	725 703 681 659 637	$771 \\ 748 \\ 725 \\ 702 \\ 679$	817 793 769 745 721	862 837 812 787 762	908 882 856 830 805	953 926 899 872 845	970	$985 \\ 956$	328 317 305 293 281	352 340 327 314 302	377 363 350 336 323	401 387 373 359 345	425 410 396 381 367
26 27 28 29 30	615 593 571 549 527	657 634 611 588 565	697 673 649 625 601	738 713 688 663 638	779 753 727 701 675	818 791 764 737 710	830 802 774	840 811	$\begin{array}{c} 270 \\ 258 \\ 246 \\ 235 \\ 223 \end{array}$	$\begin{array}{c} 289 \\ 276 \\ 264 \\ 251 \\ 239 \end{array}$	309 296 282 269 255	331 317 303 289 275	353 338 324 309 295
31 32 33 34 35	505 483 461 439 427	$542 \\ 519 \\ 496 \\ 473 \\ 456$	577 553 529 505 484	613 588 563 538 513	649 623 597 571 545	684 657 630 603 576	634	753 725 696 667 638	$\begin{array}{c} 211 \\ 205 \\ 200 \\ 194 \\ 188 \end{array}$	227 220 214 208 201	243 236 229 222 216	261 251 244 237 230	$\begin{array}{r} 281 \\ \hline 267 \\ 260 \\ 253 \\ 245 \\ \end{array}$
Area,in.2 I ₁₋₁ , in.4	62.44	65.94 2418	69.44	72.94 2825	76.44 3038	79.94	83.44 3486	86.94	30.19	32.47 1351	34.75 1436	36.50 1539	38.25 1643
f ₁₋₁ , in. f ₂₋₂ , in. ⁴ r ₂₋₂ , in.	5.97 728 3.41	6.06 785 3.45	6.14 842 3.48	6.22 899 3.51	6.30 956 3.54	6.38 1014 3.56	6.46 1071 3.58	6.54 1128 3.60	6.46 291 3.10	6.45 311 3.09	6.43 331 3.09	6.49 360 3.14	6.55 388 3.19
Weight, Lbs. per Foot	212.6	224.5	236.4				284.0	295.9	102.8	110.8	118.4	124.3	130.3

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between zigzag lines are for ratios up to $120\ 1/r$, and those below lower zigzag line are for ratios not over $200\ 1/r$.

PLATE AND ANGLE COLUMNS—Continued

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

eet	Web 14	Plate x 3 s		eb Pla 14 x ½	te			Web P	late 14	x 5/8		
Effective Length in Pect	Angles $6 \times 4 \times 1/2$ Plates $14 \times 9/6$	Angles 6 x 4 x ½ Plates 14 x 58	Angles 6 x 4 x ¹ 2 Plates - 14 x 55	Angles 6 x 4 x 9/1a Plates 14 x 5/8	Angles $6 \times 4 \times 55$ Plates 14×55	Angles 6 x 4 x 5/8 Plates 14 x 5/8	Angles 6 x 4 x 5/5 Plates 14 x 3/1	Angles 6 x 4 x 5% Plates 14 x 7%	Angles 6 x 4 x 58. Plates 14 x 1	Angles 6 x 4 x 5 x Plates 14 x 11 x	Angles 6 x 4 x 5% Plates 14 x 1%	Angles $6 \times 4 \times \frac{5}{6}$ Plates 14×1^{3} S
2	4 2 1 7	4.52 V.1	± 61	~ 63 ≺ ∴	- :1 	4.7	4 61	- 61	÷ 01	40 P	÷ 01	4 69 A 9
11 12 13 14 15	520 520 520 520 520 520	543 543 543 543 543	566 566 566 566 566	595 595 595 595 595	623 623 623 623 623	646 646 646 646 646	691 691 691 691	737 737 737 737 737 737	782 782 782 782 782 782	828 828 828 828 828	873 873 873 873 873	919 919 919 919 919
16 17	$\frac{520}{507}$	543 533	$\frac{566}{551}$	$\frac{595}{578}$	623 605	643 624	$\frac{691}{675}$	$\frac{737}{726}$	$\frac{782}{776}$	828 826	873	919
18 19 20	493 478 463	517 502 487	535 518 502	$561 \\ 544 \\ 527$	587 569 551	606 587 568	655 635 615	705 684 664	754 733 711	803 780 758	873 852 829 805	919 901 876 851
21 22 23 24 25	448 433 418 403 388	$\begin{array}{c} 472 \\ 456 \\ 441 \\ 426 \\ 410 \end{array}$	486 470 454 437 421	510 493 476 459 442	533 515 497 479 461	549 530 511 493 474	596 576 556 536 517	643 622 602 581 560	689 668 646 625 603	735 713 690 667 645	782 758 734 711 687	827 802 778 753 728
26 27 28 29 30	374 359 344 329 314	395 380 364 349 334	389 373 356 340	424 407 390 373 356	443 425 407 390 372	455 436 417 399 380	497 477 457 438 418	540 519 498 477 457	581 560 538 516 495	$\begin{array}{c} 622 \\ 600 \\ 577 \\ 554 \\ 532 \end{array}$	664 640 617 593 569	704 679 655 630 605
31 32 33 34 35	299 284 275 267 260	318 303 290 282 275	324 308 298 290 282	339 322 312 304 295	354 336 327 318 309	361 345 336 326 317	$\frac{398}{378}$ $\frac{365}{356}$ $\frac{346}{346}$	436 415 396 385 375	$\begin{array}{r} 473 \\ 452 \\ 430 \\ \hline 415 \\ 404 \\ \end{array}$	509 487 464 444 432	546 522 499 475 461	581 556 532 507 489
Area, in.2	40.00	41.75	43.50	45.74	47.94	49.69	53.19	56.69	60.19	63.69	67.19	70.69
I ₁₋₁ ,in. ⁴ r ₁₋₁ ,in. I ₂₋₂ ,in. ⁴ r ₂₋₂ ,in.	1749 6.61 417 3.23	1857 6.67 446 3.27	1885 6.58 451 3.22	1970 6.56 472 3.21	2053 6.54 492 3.20	2081 6.47 499 3.17	2302 6.58 556 3.23	2529 6.68 613 3.29	2764 6.78 671 3.34	3006 6.87 728 3.38	3255 6.96 785 3.42	3512 7.05 842 3.45
Weight, Lbs. per Foot	136.2	142.2	148.1	155.7	163.3	169.3	181.2	193.1	205.0	216.9	228.8	240.7

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r.

PLATE AND ANGLE COLUMNS-Continued

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

						Web Pla	te 14 x	5/8				
Effective Length in Feet	x 5/8 11/2	x 5/8 15/8	13.4 8	x 5/8 17/8	K 61	x 5/8 17/8	23 × 58	× 62	x 5/8 8/23/8	x 5/2 214	× 62 8 8 8 8	x 5/8
碧	4 X	4 ×	4. ×	4 X	44 X	4. X	44 X	9 ×	9 ×	9 X	9 X	9 M
- Fe	6 x 14	6 x	6 x	6 x 14	6 x 14	6 x 16	6 x 16					
, e										26 as		80 gg
cti	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates
Effe												
	4.01	4.5	4.01	40	4.01	4.03	4.01	40	4.01	4.03	4.01	4.01
11	964	1010	1055	1101	1146	1198	1250	1315	1367	1419	1471	1523
12	964	1010	1055	1101	1146	1198	1250	1315	1367	1419	1471	$1523 \\ 1523$
13	$964 \\ 964$	$\frac{1010}{1010}$	$\frac{1055}{1055}$	$\frac{1101}{1101}$	$\frac{1146}{1146}$	1198 1198	$\frac{1250}{1250}$	$\frac{1315}{1315}$	$1367 \\ 1367$	$ 1419 \\ 1419 $	$ \frac{1471}{1471} $	1523
14 15	964	1010	1055	1101	1146	1198	1250	1315	1367	1419	1471	1523
16	964	1010	1055	1101	1146	1198	$\frac{1250}{1250}$	1315	1367 1367	$\frac{1419}{1419}$	1471 1471	$1523 \\ 1523$
17 . 18	$\frac{964}{949}$	$\frac{1010}{998}$	$\frac{1055}{1046}$	$\frac{1101}{1095}$	$\frac{1146}{1144}$	1198 1198	1250	$\frac{1315}{1315}$	1367	1419		1523
19	924	971	1018	1067	1114	1198	1250	1315	1367	1419		1523
20	898	945	991	1038	1084	1198	1250	1308	1364	1419	1471	1523
21	872	918	963	1010	1055	1174	1229	1277	1333	1388	1443	1497
22	847 821	892 865	935 908	$\frac{981}{953}$	$\frac{1025}{996}$	$\frac{1146}{1119}$	$\frac{1201}{1172}$	$\frac{1246}{1216}$	$ 1301 \\ 1269 $	$1356 \\ 1323$	$1409 \\ 1375$	$\frac{1463}{1428}$
$\frac{23}{24}$	796	839	880	924	966	1091	1144	1185	1237	1290	1342	1393
$\overline{25}$	770	812	853	895	937	1064	1115	1154	1206	1258	1308	1359
26	744	786	825	867	907	1036	1087	1123	1174	1225	1274	1324
27	719	759	797	838	877	1009	1058	1093	$\frac{1142}{1111}$	$\frac{1192}{1160}$	$\frac{1241}{1207}$	$\frac{1289}{1254}$
28 29	693 668	$732 \\ 706$	$\frac{770}{742}$	$\frac{810}{781}$	848 818	$981 \\ 954$	$\frac{1030}{1001}$	$\frac{1062}{1031}$	1079	1127	1173	1220
30	642	679	715	753	789	926	973	1000	1047	1094	1139	1185
31	617	653	687	724	759	899	944	970	1015	1062	1106	1150
32 33*	591	626	659	696	$\frac{730}{700}$	871 843	$\frac{916}{887}$	939	$984 \\ 952$	1029 996	$\frac{1072}{1038}$	$\frac{1115}{1081}$
33	$\frac{565}{540}$	573	632	$\frac{667}{639}$	671	816	859	877	920	964	1005	1046
35	517	546	577	610	641	788	830	847	889	931	971	1011
Area, in.2	74.19	77.69	81.19	84.69	88.19	92.19	96.19	101.19	105.19	109.19	113.19	117.19
I ₁₋₁ , in.4	3776	4048	4327	4615	4910	5120	5457	5484	5830	6187	6552	6928
r ₁₋₁ , in.	7.13	7.22	7.30	7.38	7.46	7.45	7.53	7.36	7.44	7.53	7.61	7.69
I_{2-2} , in.4 r_{2-2} , in.	899 3.48	95 6 3.51	1014 3.53	1071 3.56	1128 3.58	$\frac{1493}{4.02}$	$\frac{1579}{4.05}$	1581 3.95	1666 3.98	1752 4.01	1837 4.03	1922 4.05
	9.40	0.01	0.00	0.00	0.00	1.02		3.00				1.00
Weight, Lbs. per Foot	252.6	264.5	276.4	288.3	300.2	313.8	327.4	344.2	357.8	371.4	385.0	398.6

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r and those below lower zigzag line are for ratios not over 200 1/r.

PLATE AND ANGLE COLUMNS—Concluded

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

ديد		Two	Web I	lates 1	1 x ½			Two	Web P	lates 14	x 5/8	
Feet							!					
.9	2000	200 (51	200	200 (01	2000	10/4	100/4	100	700/4	2000	200	13/00
Effective Length in	× 21	× 27	× 61	× 2,	× 61	× 63	× 67	× 63	× 61	× 63	N 00	× 25,
gu	9 x	9 x	9 X	8 x 6	9 x	9 x	9 x	х (9 x	9 x	9 x	x 6
- 1	6 x 16	8 x 16	8 x 18	8 x 8	8 x 8	8 × 8	8 x 8	8 x 20	8 20	8 x 20	8 x 20	8 x 20
ive	Angles Plates											
ect	lat	nglat	a g	nglat	lat	latel	ngl	lat	lat	a ta	lat	nglat
E	4-21	4-2 P P	40	4:01 PA	4.21 P.A.	4.01 A.T.	46 46	4 A B	4-01 A T	42 P P	4.01 A T	4-21 A-12
	4.04	40.04	4.44	-17.04	-3.04	4.04		400		4.04	4.04	4.04
11	1592	1657	1728	1787	1845	1904	1949	2027	2092	2157	2222	2287
12 13	1592	1657	1728	1787	1845	1904	1949	2027	2092	2157	2222 2222	2287
13	1592	1657	1728	1787	1845	1904	1949	2027	2092	2157	2222	2287
14 15	$\frac{1592}{1592}$	$\frac{1657}{1657}$	$\frac{1728}{1728}$	$\frac{1787}{1787}$	$\frac{1845}{1845}$	$\frac{1904}{1904}$	1949 1949	$\frac{2027}{2027}$	$\frac{2092}{2092}$	$\frac{2157}{2157}$	$\frac{2222}{2222}$	$\frac{2287}{2287}$
						1904	1949				1	
16	1592	1657	1728	1787	1845	1904	1949	2027	2092	2157	2222	2287
17 18	$\frac{1592}{1592}$	$\frac{1657}{1657}$	$\frac{1728}{1728}$	1787	$\frac{1845}{1845}$	$\frac{1904}{1904}$	$1949 \\ 1949$	$\frac{2027}{2027}$	$\frac{2092}{2092}$	$\frac{2157}{2157}$	$\frac{2222}{2222}$	$\frac{2287}{2287}$
19	1592	1657	1728	$\frac{1787}{1787}$	1845	$1904 \\ 1904$	1949	2027	2092	$\frac{2157}{2157}$	2222	2287
20	1590		1728	1787	1845	1904	1949	2027	2092	2157	2222	2287
21	1553	1653	1728	1787	1845	1904	1949	2027	2092	2157	2222	2287
$\frac{22}{23}$	1516	1616	1728	1787	1845	1904	1949	2027	2092	2157	2222	$\frac{2287}{2287}$
	1479		1728	1787	1845	1904	1949		2092	2157	2222	2287
$\frac{24}{25}$	$\frac{1443}{1406}$	1543	1695	$\frac{1756}{1721}$	1818	1879	1918	2027	2092	2157	2222	2287
		1507	1661		1781	1842		2027	2092	2157	2222	2287
26	1369	1470	1626	1685	1744	1804	1841	2009	2077	2146	2214	2283
27 28	$\frac{1332}{1295}$	$\frac{1434}{1397}$	$\frac{1592}{1557}$	$\frac{1650}{1614}$	$\frac{1708}{1671}$	1766	1802	$\frac{1972}{1935}$	$\frac{2039}{2002}$	$\frac{2107}{2068}$	$\frac{2175}{2135}$	$\frac{2242}{2202}$
29	1258	1360	1522	1578	$\frac{1671}{1635}$	$\frac{1729}{1691}$	$\frac{1763}{1724}$	1899	1964	2008	2095	2161
30	1222	1324	1488	1543	1598	1653	1686	1862	1926	1991	2055	2120
31	1185	1287	1453	1507	1561	1616	1647	1825	1889	1952	2016	2079
32 .	1148	1251	1419	1471	1525	1578	1608	1789	1851	1913	1976	2039
33	1111	1214	1384	1436	1488	1541	1569	1752	1813	1874	1936	1998
34 35	$\frac{1074}{1038}$	$\frac{1177}{1141}$	$\frac{1349}{1315}$	$\frac{1400}{1365}$	$\frac{1451}{1415}$	$\frac{1503}{1465}$	$1530 \\ 1492$	$1715 \\ 1679$	1775 1738	$\frac{1836}{1797}$	1896 1857	1957 1916
99	1000	1141	1313	1909	1410	1405	1492	1079	1700	1797	1897	1910
Area, in.2	122.44	127.44	132.94	137.44	141 94	146.44	149.94	155.94	160.94	165.94	170.94	175.94
	7014	7254	7559	7981				9248		10248		
I ₁₋₁ ,in.4 r ₁₋₁ ,in.	7.57	7.54	7.54	7.62	8415 7.70	8859 7.78	8916 7.71	7.70	9741 7.78	7.86	10767 7.94	11298 8.01
I ₂₋₂ , in.4	1946	2229	2831	2953	3074	3196	3222	4049	4216	4383	4549	4716
r ₂₋₂ ,in.	3.99	4.18	4.61	4.63	4.65	4.67	4.64	5.10	5.12	5.14	5.16	5.18
Weight, Lbs. per Foot	416.4	433.6	452.3	467.6	482.9	498.2	510.1	530.5	547.5	564.5	581.5	598.5

Safe load values above and to right of zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r.

TYPICAL COLUMN DETAILS

OFFICE BUILDING CONSTRUCTION

244

Bearing on Masonry

Bearing on Steel

TYPICAL COLUMN DETAILS

OFFICE BUILDING CONSTRUCTION

TYPICAL SPLICE

Angle Column to Channel Column

TYPICAL SPLICE
Angle Columns, different sizes

TYPICAL CHANNEL COLUMN

Bearing on Steel

TYPICAL SPLICE

Channel Columns, different sizes

TYPICAL COLUMN DETAILS

MILL BUILDING COLUMN

Simplicity in details is essential to economical construction. To climinate bending or secondary stresses, it is desirable in making designs and details that loads be transmitted from beams, girders and trusses to columns directly and with the minimum number of connecting pieces, rivets, or bolts, and that the rivets or bolts be stressed in shear or bearing only.

The column connections shown on this page and the two pages which precede, represent the best modern practice and conform to these fundamental conditions and cover the range of eases met with in ordinary mill and office building construction.

Where columns rest on steel slabs or castings, the loads are transmitted directly into the footing, and shoe angles may be provided for proper anchorage. Where they rest on masonry, gusset plates may be required to distribute the load.

Columns should be milled to accurate bearing at joints, with splice plates sufficient to hold the sections in line and to resist bending stresses. Horizontal bearing plates must be used between column sections of different forms or general dimensions. Rivet spacing in column shafts and at beam connections should be uniform to permit the use of multiple punches; spacing should be in multiples of one-quarter inch.

Erection requirements should not be overlooked; beams should frame with ample clearances, particularly to column webs, and rivets should be countersunk or flattened where necessary to swing beams into position.

CAST IRON COLUMNS

ALLOWABLE UNIT STRESSES IN POUNDS PER SQUARE INCH

BY NEW YORK BUILDING LAW, 1917

9000-40 l/r lbs. per square inch

1/r	Lbs. per Sq. In.	l/r	Lbs. per Sq. In.	l/r	Lbs. per Sq. In
0	9000	30	7800	51	6960
10	8600	31	7760	52	6920
11	8560	32	7720	53	6880
12	8520	33	7680	54	6840
13	8480	34	7640	55	6800
14	8440	35	7600	56	6760
15	8400	36	7560	57	6720
16	8360	37	7520	58	6680
17	8320	38	7480	59	6640
18	8280	39	7440	60	6600
19	8240	40	7400	61	6560
20	8200	41	7360	62	6520
21	8160	42	7320	63	6480
22	8120	43	7280	64	6440
23 •	8080	44	7240	65	6400
24	8040	45	7200	66	6360
25	8000	46	7160	67	6320
26	7960	47	7120	68	6280
27	7920	48	7080	69	6240
28	7880	49	7040	70	6200
29	7840	50	7000		

The safe load for a cast iron column of given dimensions is determined from the above table by obtaining the ratio of l/r and multiplying the corresponding unit stress by the sectional area of column.

Example:—Required the safe load of a cast iron column, 15 inches square, % inch in thickness, and 16 feet long.

From table of Hollow Square Sections, page 137, the radius of gyration is 5.78 inches and the sectional area is 49.44 square inches; hence the ratio of $1/r = 16 \times 12 \div 5.78 = 33.2$, corresponding to a stress of 7672 pounds per square lnch, giving a total safe load of $49.44 \times 7672 = 379300$ pounds.

The minimum size of a cast iron column of a certain length to safely support a given load is determined as follows:

Divide the length in inches by 70; the quotient is the minimum allowable radius of gyration required. Divide the total load by 6200 pounds; the quotient is the minimum sectional area.

Example:—Required the minimum size of a round cast iron column, 20 feet long, to support a load of 235000 pounds.

The minimum radius of gyration is $20 \times 12 + 70 = 3.43$ inches; the minimum area is $235000 \div 6200 = 37.90$ square inches. From table of Hollow Round Sections, page 136, the nearest minimum size for this radius of gyration and this area is found to be a column 11 inches in diameter and $1\frac{1}{2}$ inches in thickness:

ROUND CAST IRON COLUMNS

ALLOWABLE LOADS IN THOUSANDS OF POUNDS

By New York Building Law, 1917 Weights do not include details

Outer	Thick-		Weight	Least	ĺ		Effe	ctive	Leng	th of	Colur	nn in	Feet		
Dia., Inches		Area, Inches ²	per Foot, Pounds	Radius, Inches	8	10	12	14	16	18	20	22	24	26	28
6	1/2 5/8 3/4 7/8	8.64 10.55 12.37 14.09	27.0 33.0 38.7 44.0	1.95 1.91 1.88 1.84	61 74 86 97	56 68 80 90									
7	5/8 3/4 7/8	12.52 14.73 16.84 18.85	39.1 46.0 52.6 58.9	2.27 2.23 2.19 2.15	$\begin{array}{c} 92 \\ 107 \\ 122 \\ 136 \end{array}$	86 101 115 128	81 95 107 119								
8	3/4 7/8 1 1 1/8	$17.08 \\ 19.59 \\ 21.99 \\ 24.30$	53.4 61.2 68.7 75.9	2.58 2.54 2.50 2.46	$\frac{147}{164}$	$\begin{array}{c} 122 \\ 139 \\ 156 \\ 171 \end{array}$	$116 \\ 132 \\ 147 \\ 162$	$109 \\ 124 \\ 139 \\ 152$							
9	7/8 1 1 1/8 1 1/4	22.34 25.13 27.83 30.43	69.8 78.5 87.0 95.1	2.89 2.85 2.81 2.78	$\begin{array}{c} 171 \\ 192 \\ 212 \\ 232 \end{array}$	$164 \\ 184 \\ 203 \\ 221$	157 175 193 211	$149 \\ 167 \\ 184 \\ 200$	142 158 174 190						
10	1 1½ 1¼ 1¾ 1¾	28.28 31.37 34.36 37.26	88.4 98.0 107.4 116.4	3.20 3.16 3.13 3.09	$221 \\ 244 \\ 267 \\ 289$	$\frac{235}{257}$	$204 \\ 225 \\ 246 \\ 266$	$\begin{array}{c} 195 \\ 216 \\ 235 \\ 254 \end{array}$	187 206 225 243	$178 \\ 197 \\ 214 \\ 231$					
11	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	$34.90 \\ 38.29 \\ 41.58 \\ 44.77$	109.1 119.7 129.9 139.9	3.51 3.48 3.44 3.40	$\frac{302}{328}$	$266 \\ 292 \\ 316 \\ 340$	$257 \\ 281 \\ 305 \\ 327$	$247 \\ 271 \\ 293 \\ 314$	$238 \\ 260 \\ 281 \\ 302$	$228 \\ 250 \\ 270 \\ 289$	219 239 258 277				
12	1 1/4 1 3/8 1 1/2 1 5/8	$\begin{array}{c} 42.22 \\ 45.90 \\ 49.48 \\ 52.97 \end{array}$	131.9 143.4 154.6 165.5	3.83 3.79 3.75 3.71	395	$327 \\ 355 \\ 382 \\ 408$	343		$295 \\ 320 \\ 344 \\ 367$		$274 \\ 297 \\ 319 \\ 340$	$264 \\ 285 \\ 306 \\ 326$			
13	$\begin{array}{c} 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \end{array}$	50.22 54.19 58.07 61.85	156.9 169.4 181.5 193.3	4.14 4.10 4.06 4.03	$\frac{437}{468}$	394 424 454 483	$\frac{412}{440}$	$370 \\ 399 \\ 427 \\ 454$	$\frac{386}{413}$	399	$336 \\ 361 \\ 385 \\ 409$	$\frac{348}{372}$	312 335 358 380	٠	
14	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \end{array}$	58.91 63.18 67.35 71.42	$184.1 \\ 197.4 \\ 210.5 \\ 223.2$	4.45 4.41 4.38 4.34	547	467 500 532 564	$454 \\ 486 \\ 518 \\ 548$	$\begin{array}{c} 441 \\ 472 \\ 503 \\ 532 \end{array}$	429 459 488 516	416 445 473 501	403 431 459 485	390 417 444 469	378 404 429 453		
15	$ \begin{array}{c c} 158 \\ 134 \\ 178 \\ 2 \end{array} $	68.29 72.85 77.31 81.68	$\begin{array}{c} 213.4 \\ 227.6 \\ 241.6 \\ 255.3 \end{array}$	4.76 4.73 4.69 4.65	$\frac{597}{632}$	$546 \\ 582 \\ 617 \\ 651$	$532 \\ 567 \\ 601 \\ 634$	$\frac{552}{585}$	504 537 569 600	$491 \\ 523 \\ 553 \\ 583$	477 508 538 566	$463 \\ 493 \\ 522 \\ 550$	$449 \\ 478 \\ 506 \\ 533$	436 463 490 516	
. 16	$\begin{array}{c} 1{}^{3}4\\ 1{}^{7}8\\ 2\\ 2{}^{1}8\end{array}$	78.34 83.20 87.97 92.63	$\begin{array}{c} 244.8 \\ 260.0 \\ 274.9 \\ 289.5 \end{array}$	5.08 5.04 5.00 4.96	$\frac{685}{724}$	707	654 690	673	587 622 657 690	$606 \\ 640$	623	606	589	$513 \\ 543 \\ 572 \\ 601$	$\frac{527}{555}$

SQUARE CAST IRON COLUMNS

Allowable Loads in Thousands of Pounds

By New York Building Law, 1917 Weights do not include details

Outer	Thick-		Weight	Least			Effec	tive I	Lengtl	h of C	olum	n in F	eet		
Width,	ness, Inches	Area, Inches ²	per Foot, Pounds	Radius,	8	10	12	14	16	18	20	22	24	26	28
6	1/2 5/8 3/4 7/8	11.00 13.44 15.75 17.94	34.4 42.0 49.2 56.1	2.26 2.21 2.17 2.12		76 92 107 121									
7	5/8 8/4 7/8	15.94 18.75 21.44 24.00	49.8 58.6 63.9 75.0	2.62 2.57 2.53 2.48	$\frac{141}{153}$	114 134 145 170	137	103 120 130 151							
8	1 1 1/8	21.75 24.94 28.00 30.94	68.0 77.9 87.5 96.7	2.98 2.93 2.89 2.84	$\frac{192}{215}$	$\frac{184}{205}$	$\begin{array}{c} 175 \\ 196 \end{array}$	$147 \\ 167 \\ 187 \\ 205$	$\frac{159}{178}$						
9	7/8 1 1 1/8 1 1/4	27.44 32.00 35.44 38.75	85.8 100.0 110.8 121.1	3.34 3.29 3.25 3.21	$\frac{251}{277}$	$\frac{241}{267}$	$\frac{232}{256}$	$\begin{array}{c} 192 \\ 223 \\ 246 \\ 268 \end{array}$	$\frac{213}{235}$	$\frac{204}{225}$					
10	$\begin{array}{c} 1 \\ 1 \frac{1}{8} \\ 1 \frac{1}{4} \\ 1 \frac{3}{8} \end{array}$	$\frac{39.94}{43.75}$	112.5 124.8 136.7 148.3	3.70 3.65 3.61 3.57	$\frac{317}{347}$	$\begin{array}{c} 307 \\ 336 \end{array}$	$\frac{296}{324}$	$259 \\ 286 \\ 312 \\ 338$	$\frac{275}{301}$	$\frac{265}{289}$	$\frac{254}{277}$				
11	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	$48.75 \\ 52.94$	138.9 152.3 165.4 178.1	4.06 4.01 3.97 3.93	$\frac{392}{425}$	$\frac{380}{412}$	400	$326 \\ 357 \\ 387 \\ 416$	$\frac{345}{374}$	361	$\frac{322}{348}$	$\frac{310}{336}$			
12	$\begin{array}{c} 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \end{array}$	58.44 63.00	168,1 182,6 196,9 210,8	4.42 4.37 4.33 4.29	475 511	$\begin{array}{c} 462 \\ 497 \end{array}$	$\frac{449}{483}$	$402 \\ 436 \\ 469 \\ 501$	$\frac{423}{455}$	$\begin{array}{c} 410 \\ 441 \end{array}$	$\frac{398}{427}$		$\frac{372}{399}$		
13	$\begin{array}{c} 1\frac{3}{8}\\ 1\frac{1}{2}\\ 1\frac{5}{8}\\ 1\frac{3}{4} \end{array}$	69.00	$199.8 \\ 215.6 \\ 231.1 \\ 246.1$	4.78 4.74 4.69 4.65	$\frac{565}{605}$	551 590	575	523	$\frac{509}{544}$	$\begin{array}{c} 460 \\ 495 \\ 529 \\ 562 \end{array}$	$\frac{481}{514}$	$\frac{467}{499}$	484	$\frac{439}{469}$	
14	$\begin{array}{c c} 1 \frac{1}{2} \\ 1 \frac{3}{8} \\ 1 \frac{3}{4} \\ 1 \frac{7}{8} \end{array}$	80.44 85.75	234.4 251.4 267.9 284.2	$5.14 \\ 5.10 \\ 5.05 \\ 5.01$	663 707	648 690	$\begin{array}{c} 633 \\ 674 \end{array}$	577 618 658 696	$\frac{603}{641}$	$\frac{588}{625}$	$\frac{572}{609}$	557 593	$\frac{542}{576}$	$\frac{527}{560}$	$\frac{512}{544}$
15	1 5/8 1 3/4 1 7/8 2	92.75	271.7 289.8 307.6 325.0	5.50 5.46 5.41 5.37	769 816	$\frac{753}{799}$	$\frac{737}{782}$	676 721 764 806	$\frac{704}{746}$	$\frac{688}{729}$	$\frac{672}{711}$	655 694	$\frac{639}{676}$	$\frac{623}{659}$	570 606 642 676
16	$\begin{array}{c c} 1 \frac{3}{4} \\ 1 \frac{7}{8} \\ 2 \\ 2 \frac{1}{8} \end{array}$	99.75 105.94 112.00 117.94	311.7 331.1 350.0 368.6	5.86 5.82 5.77 5.73	884 934	$866 \\ 915$	849 896	783 831 878 923	814 859	796 840	734 779 822 864	761 803	$\frac{744}{785}$	$\frac{726}{766}$	$\frac{709}{747}$

CARNEGIE STEEL COMPANY

2 3 2½ 2 11,2	00 3.500 2.875 2.375 1.900 6 .216 .203 .154 .145	29.0 21.6 1 28.6 19.4 1 26.3 17.3 24.0 15.1 10.3 17.1 10.3	1 15.2 9.2 4.1 15.2 9.2 4.1 15.2 9.2 4.1 15.2 9.2 4.1 15.0 8.1 1.7 6.0 6.0 7.1 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	Allowable Fiber Stress per square inch. 11.0 13,000 pounds for lengths of 60 radii. 9.7 or under, reduced for length over 60 radiis see construction Specifications. Weights do not include details. Safe loads above upper zigazg line see for ratios of 1/r not over 60, between zigazg lines for ratios up to 129 1/r. below lower zigazg lines for ratios not over 200 1/r.	38 2.23 1.70 1.08 0.80	
4 31/2	4.500 4.000		7	12.3 All 11.0 13.0 9.7 or radio W Safe loads ratios of l/l for ratios of l/l for ratios of l/l for ratios of l/l for ratios of l/l	3.17 2.68	
412	5.000	48.0 48.0 48.0 48.0 46.4 46.4 11.3	2.00 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17.7 16.4 16.4 17.7 17.7 17.7 17.7	3.69	
9	6.625 5.563 280 258	ļ <u>.</u>		38.3 24.3 36.8 22.9 35.3 21.6 33.8 20.2 32.3 18.8 30.8 17.4 20.9 31.6 17.4 27.8 14.7	5.58 4.30	
2	7.625 6.6			557.8 38 554.6 36 551.4 35 551.4 35 46.7 32 445.1 30 41.9 27	6.93	
× ×	8.625		109.2 109.2 108.1 104.7 101.3 97.8 94.4 91.0	80.7 77.3 73.8 70.4 67.0 63.5 60.1	8.40	
6	50 9.625	1		8 105.7 9 102.0 0 98.4 1 94.7 3 91.1 87.5 6 80.2	11 9.97	
11 10	11.750 10.750 375 365	1		162.7 136.8 158.7 132.9 154.7 129.0 150.7 125.1 146.7 121.3 142.7 117.4 138.7 113.5 134.7 109.6	13.40 11.91	
2	11.750 11		1	185.1 16 181.1 15 177.1 15 173.1 15 169.1 14 165.1 14 161.1 13 157.1 13	14.58 13	
13	14.000	208.7 208.7 208.7 208.7 208.7 208.7	2008.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	208.7 208.7 205.0 205.0 197.0 189.0 185.0	16.05	
17	00 15.000			22 22 4.0 22 22 4.0 22 22 3.2 22 24.0 20 22 23 4.0 20 21 2.1 2.4 4.0 20 21 2.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	17.23	
ze, In 15	a. ln. 16.000	1		22 239.3 22 239.3 24 239.3 27 239.3 27 239.3 29 237.9 20 223.9	18.41	
Nominal Size, In	External Dia. In		ective Length in Feet		Area, in.2	

STEEL PIPE COLUMNS

STEEL PIPE COLUMNS—Extra Strong Pipe

Nominal Size, In. 15 External Dia, In. 16,000 Thickness, In. 500 6 316,6 7 316,6 9 316,6 10 316,6 III 316,6	15.000 -500 -500 -500 -500 -506.1 -59				10.750	9.625	8 8.625 .500	7.625	6.625	5.563	4).5	4.500	312	3.500	21/2	2.375	17/2
16.000 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6	()				10.750	9.625	8.625	7.625	6.625	5.563	5.000	4.500	4.000	3.500	2.875	2.375	1 000
.500 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6 316.6			,		200		.500	200	000	-							3.500
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2		000.	.500			785	.379	.355	337	.318	.300	.276	.218	.200
6 316.6 8 3 316.6 9 9 316.6 10 316.6 11 316.6 13 316.6 14 316.6 16 316.6 17 316.6 18 316.6 19 316.6						186.3	165.9	-	109.3	79.4	67.3	57.3	47.8	39.3	28.2	16.5	9.7
2 2 3 3 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					209.3		6.531	115,5	109.3	79.4	67.3	57.3	47.8	38.2	25.3	2.1.2	2.6
8 316.6 11 316.6 12 316.6 12 316.6 14 316.6 15 316.6 15 316.6 16 6 17 6 18 6 18 6 18 6 18 6 18 6 18 6 18 6 18					209.3	186.3	_	1.15.5	8.601	1.67	67.3	57.3	46.3	35.0	55	6.11	6.5
9 316.6 10 316.6 11 316.6 12 316.6 14 316.6 15 316.6 16 316.6					209.3	186.3		_	8.601	1.6.	67.33	55.1	6.54	31.8	1.61	0.01	5,4
10 316.6 11 316.6 12 316.6 13 316.6 14 316.6 15 316.6					200.3	186.3	6229	145.5	109.3	1.62	6.1.5	51.5	39.5	28.6	16.5	×.	7.7
11 316.6 12 316.6 13 316.6 14 316.6 15 316.6					209.3	186.3			8.001	76.3	2.09	47.9	36.1	25.4	14.7	7.6	3.3
12 13 316.6 14 316.6 15 316.6				229.7	209.3	186.3	165.9	145.5	109.1	52.3	56.9	7.4.4	32.7	25.55	13.2	6.5	
13 316.6 14 316.6 15 316.6						186.3	6.591		9.101	68.3	53.1	S.G.	59.4	1.02	11.7	5.3	
14 316.6 15 316.6 16 316.6					-		6.651		0.001	54.3	1.61	37.5	0.98	 	10.3	ı.	
15 316.6					_		165.9	138.2	9.5.4	60.3	45.6	33.6	24.5	6.91	x x		
16 3166				229.7			9.791	132.9	8.06	56.3	41.S	30.4	22.5	15.3	· 1		
					209.3	186.3	157.3	27.5	86.2	52.3	38.0	3.0	20.8	13.7			
17 316.6					209.3	SIS	_	25.5	81.6	48.3	35.3	26.9	19.1	-2.5			
18 316.6			250.1		500.3	176.5		116.9	0.77	4-1.3	33.4	15.	17.4	10.5			
19 316,6					201.7	171.2	141.4	111.6	72.4	41.6	31.5	533	15.7	6.8			
20 316.6		275.7					136.0	106.3	8.79	39.6	29.6	5.12	0.1.1		-		
21 316.6		275.7		223.9	_	160.5	130.7	6.001	63.2	37.6	27.7	19.7	12.4				
22 316.6		275.7	218.4	218.5	-	155.2	125.4	95.6	58.6	35.6	25.8	0.71					
23 316.6				213.2		149.9	150.1	06	56.4	33.6	23.9	16.1	Allow	oldo Eila	Mountaine Filter Stress age and allowed	DOF COLLE	roingh
24 316.6		275.1		907.9	178.1	144.5	114.8	85.0	54.1	31.6	55	14.3	13.000 1	spunoe	3.000 pounds for lengths of 60 radii or	1 09 Jo st	radii or
25 316.6	296.1		232.4	_	175.S	139.2	109.4	79.7	21.s	5.65	20.5		under, 1	reduced	under, reduced for lengths over 60 radii	ls over 6	0 radii:
	294.3		227.1			133.9	104.1	76.4	49.5	97.7	18.3		see Cor	astructio	see Construction Specifications.	cations.	
316.6				_		128.6	S.S.	73.7	61.17	25.6	16.4	_	Weigh	its do ne	t includ	e details	
313.4		253.8	216.4	186.6	156.8	123.3	93.5	71.0	44.9	23.6		Safe	oads a	dn axoc	Safe loads above upper zigzag line are for	ag line	are for
308.1	278.3		211.1	181.3	151.5	117.9	SS. 7	68.4	45.6	21.6		ratios	of 1/r m	t over	ratios of 1/r not over 60, between zigzag lines	een zigza	ng lines
302.8	273.0		205.8	175.9	146.2	112.6	86.1	65.7	40.3	19.6		for rati	ios up os not o	to 120 ver 200	for ratios up to 120 $1/r$, below for ratios not over 200 I/r .	ow zigzag	ag line
Area, in.2 24.35	22.78	21.21	19.24	17.67	16.10	14.33	12.76	11.19	8.40	6.11	5.18	1.41	3.68	3.02	2.25	1.48	1.07
L. in. 1	599.3	483.8	361.5	280.1	212.0	149.6	105.7	71.4	40.5	20.7	14.0	9.61	6.38	3.89	1.92	898.0	0.391
r, in. 5.483	5.130	4.776	4.335	3.981	_	3.231	2.878	2.525	2.195	1.839	1.647	1.477	1.307	1.136	0.924	0.767	0.605
Weight Ib ft 89 77	77.43	25.09	65 49	80 09	54.74	48.73	43.39	38.05	28.57	20.78	17.61	14.98	12.51	10.25	5.66	5.05	3.63

GRILLAGE FOUNDATIONS

Grillage Beams. In the design of foundations for columns, piers and walls, provision must be made for the uniform distribution of the load over the footing. This is best done by the use of a grillage of steel beams and concrete. This method of construction eliminates deep excavations and large masses of masonry and is, therefore, truly economical. For heavy loads on soils of small bearing capacity, three tiers of beams may be necessary; while for lighter loads or better soils two tiers, or even one, may suffice.

The lower tier should rest upon a solid bed of concrete of sufficient thickness to distribute the load to the soil. Good practice requires the spaces between the beams in all the tiers to be filled with, and the beams enclosed in, concrete not less than four inches thick.

The clear distance between the flanges of the beams in each tier should not be less than $2\frac{1}{2}$ inches, nor more than three times the flange width. The first requirement is necessary to permit the introduction and proper tamping of the concrete, the second, to insure uniform distribution of the load. When separators are used to hold the beams in position, they should be of gas pipe, as cast iron separators tend to break the continuity of the concrete. Grillage beams should not be painted, as concrete does not adhere well to painted surfaces but is itself an excellent preservative of steel.

To determine the area in square feet required for the foundation, divide the total load on the column, pier or wall by the allowable pressure per square foot on the soil. This gives the area of the footing, the shape of which is determined by local conditions. On the assumption that the loads on the soil are uniformly distributed, the number, size and weight of the beams required are determined from the maximum bending moment, the maximum shear, or the maximum web resistance to buckling, as follows:—Let

W=Total load on the foundation, in pounds. $\frac{L^{-a}}{2}$ L=Length of beam, in feet.

a =Length of loaded portion, in feet.

d =Depth of beam, in inches.

t =Thickness of beam web, in inches.

n =Number of beams in a tier.

fb=Allowable unit web buckling resistance.

The maximum bending moment occurs at the center of the beam and is equal in foot pounds to W (L-a) + s; this formula is identical with the formula of maximum bending moment for a beam of length (L-a) under a uniformly distributed load, W.

The proper size of beam in any tier as regards flexure at a fiber stress of 16,000 pounds per square inch may be found in the beam

safe load table for the length corresponding to (L—a), by dividing the total load by the number of beams.

Or may be found from the table of maximum bending moments, by dividing the total bending moment by the number of beams;

Or from the table of properties, by dividing by the number of beams in the tier the total section modulus required, which is equal to $\frac{3 \text{ W (L-a)}}{32,000}$

Note, however, that the load on the beam for any span must not exceed the maximum tabular safe load for shear.

The maximum vertical shear occurs at the edge of the column base or at a distance in feet of $\frac{L-a}{2}$ from each end of the beam and is equal to $\frac{W}{L} \times \frac{L-a}{2}$

Web thickness, t, to resist average shear $\frac{W}{L} \times \frac{L-a}{2} \times \frac{1}{n \times d \times 10,000}$ Or, the average vertical shear $\frac{W}{L} \times \frac{L-a}{2} \times \frac{1}{n \times d \times t}$, which must not exceed 10,000 pounds per square inch.

The maximum buckling stress occurs on a length in inches of $12 \, a + d/2$ and is equal in total per lineal inch of web to $\frac{W}{12 \, a + d/2}$.

The required thickness of web, t, to resist buckling $\frac{W}{\ln x(12 \text{ a} + d/2)x \text{ fb.}}$

Or the average web resistance per square inch to buckling $\frac{W}{n\,x\,(12\,a+d/2)\,x\,t}$ which must not exceed the tabular values for the allowable buckling resistance on beam webs.

Rolled Steel Slabs. To distribute the loads from columns over girders, grillage beams, etc., solid slabs of rolled steel may be advantageously used in the place of cast iron or riveted steel bases, etc. The size of the slab is usually fixed by the dimensions of the column and its thickness is determined from the maximum bending moment, on the assumption of uniform loading, as follows:—Let

W=Total load, in pounds.

 $\Lambda =$ Width of slab, in inches.

B =Length of slab, in inches.

t =Thickness of slab, in inches.

a =Outside dimension of column, in inches.

b =Outside dimension of column, in inches.

The maximum bending moment will occur at the center of the slab and equals, in inch pounds, $\frac{W(A-a)}{8}$ or $\frac{W(B-b)}{8}$, and at a fiber stress of 16,000 pounds per square inch, the required thickness

of slab, t, =
$$\sqrt{\frac{3 \text{ W (A - a)}}{64,000 \text{ B}}}$$
 or = $\sqrt{\frac{3 \text{ W (B - b)}}{64,000 \text{ A}}}$

Example: Required to design a grillage foundation for a column load of 1,040,000 pounds on soil with an allowable bearing capacity of 6,000 pounds per square foot. Column composed of 1 web plate, $14'' \times 5_8'''$, 4 flange angles, $6'' \times 4'' \times 5_8'''$ and 4 flange plates, $14'' \times 7_8'''$, outside dimensions $14'' \times 18''$.

13-15" 60.8 lb. Beams 13'-6" long

Required area of footing= $1,040,000 \div 6,000$ =173.33 square feet.

Use area 12'-0" x 15'-0"=180 square feet.

Assume 3'-0" square as the dimensions of the rolled steel slab or column base and allow 9" for concrete on the sides and ends of beams, then the dimensions of the steel grillage will be 10'-6" x 13'-6", concrete being assumed of sufficient thickness and strength to distribute to the edges.

GRILLAGE FOUNDATIONS

Beams-Section Modulus Method.

Bottom tier-L=13.5 feet; a= 3.0 feet.

Required total section modulus, S,= $\frac{3 \times 1.040,000 \times 10.5}{32,000}$ = 1.023.75 in.³

Use 13-15" 60.8 lb. beams-Total section modulus=1,055.6 in.3

$$\mbox{Average shear} = \frac{1.040,000}{13.5} \ \mbox{x} \ \frac{10.5}{2} \ \mbox{x} \ \frac{1}{13 \ \mbox{x} \ 15 \ \mbox{x} \ .59} \ = 3.515 \mbox{ lbs. per sq. in.}$$

Average buckling stress= $\frac{1,040,000}{13 \times 43.5 \times .59}$ =3,120 lbs. per sq. in.

Top tier-L=10.5 feet; a=3.0 feet.

Required total section modulus, S,= $\frac{3 \times 1.040,000 \times 7.5}{32,000}$ =731.25 in.3

Use 4-24" 90 lb. beams-Total section modulus=743.2 in.3

Average shear =
$$\frac{1,040,000}{10.5}$$
 x $\frac{7.5}{2}$ x $\frac{1}{4$ x $\frac{1}{24}$ x $\frac{1}{624}$ = 6,200 lbs, per sq. in

Average buckling stress= $\frac{1.040,000}{4 \times 48 \times 0.624}$ =8,680 lbs. per sq. in.

Plate Girder Grillage Foundations. In those cases where columns carry very heavy loads, plate girders are used for the top tier of the grillage rather than beams. In the case of symmetrical foundations, the method of computation is the same as has already been illustrated in the case of beams. The following example indicates the procedure in the quite frequent case of unsymmetrical loading conditions:

EXAMPLE:—Required to design a grillage foundation under an exterior or wall column carrying a load of 840,000 pounds, and an interior column with a load of 1,260,000 pounds, on soil with an allowable bearing capacity of 8.000 pounds per square foot.

Required footing area of wall column =
$$\frac{840,000}{8,000}$$
 =105 square feet.

Use area 8'-0" x 14'-0"= 112 square feet.

Required area of interior column footing=
$$\frac{1,260,000}{8,000}$$
 =157.5 square feet.

Use area 12'-0" x 14'-0"=168 square feet.

With these dimensions and areas, the load on the soil will be uniform at 7,500 pounds per square foot, and the footings the same width, both of which are desirable from the standpoint of uniform settlement.

Rolled Steel Slabs for Column Footings: Assume a width of 30" and a length of 32", then the required thickness will be as follows:-

Wall column,
$$t_1 = \sqrt{\frac{3 \times 840,000 \times (32 - 14)}{64,000 \times 30}} = 4.86 \text{ in.; use } 5''$$

Wall column,
$$t_1 = \sqrt{\frac{3 \times 840,000 \times (32 - 14)}{64,000 \times 30}} = 4.86 \text{ in.; use } 5''.$$

Interior column, $t_1 = \sqrt{\frac{3 \times 1,260,000 \times (32 - 16)}{64,000 \times 30}} = 5.61 \text{ in.; use } 5\frac{3}{4}''.$

Plate Girders: Maximum bending moment occurs at the inner beams of the respective footings, and is equal to the load on the column multiplied by the distance of its center from the center of moments.

M max, from wall column = 840,000 x 2'-6"=2,100,000 foot pounds. M max. from interior column=1,260,000 x 1'-8"=2,100,000 foot pounds.

Required section modulus of two girders=
$$\frac{2,100,000 \times 12}{16,000}$$
=1,575.0 in.3

Select from girder safe load table, page 210, two girders composed each of 1 web plate 36" x ½", 4 angles 6" x 4" x 5%", and 2 flange plates 14" x 5%";— Total section modulus, $S=2 \times 792.3 = 1.584.6 \text{ in.}^3$

Maximum shear occurs at the inside edge of the steel slab under the interior column, and is equal in total for the two girders to the load carried by the portion of the footing between that point and the inside edge of the footing, or $\frac{1,260,000 \times 68}{680,000}$ = 680,000 or 340,000 pounds per girder.

At 10,000 pounds per square inch, the 36" x ½" plate girder web is good for 180,000 pounds; therefore, it is necessary to use reinforcing web plates where the shear exceeds that amount.

Beams, Lower Tier, Interior Column:

Required total section modulus, S,
$$=\frac{3 \times 1,260,000 \times 9.67}{32,000} = 1,142.3 \text{ in.}^3$$

Use 13-18" 54.7 lb. beams — Total section modulus = 1,149.2 in.³

Average shear =
$$\frac{1,260,000}{12.5}$$
 x $\frac{9.67}{2}$ x $\frac{1}{13 \times 18 \times .46}$ = 4,520 lbs. per sq. in.

Average buckling stress =
$$\frac{1,260,000}{13 \times 43 \times .46}$$
 = 4,900 lbs. per sq. in.

For exterior column use 9-18" 54.7 lb. beams.

Note.—In order to facilitate manufacture and shipment, it is desirable to use for the entire foundation as few sizes and weights of beams as possible, and the rolled steel slabs should be of the same thickness or at least of as few thicknesses as really convenient.

STEEL SHEET PILING

The introduction of steel sheet piling in substitution for wood has made possible the extension of the cofferdam method of making excavations. Its use has led to greater economies, greater safety in working and to the extension in size and depth of open excavations to limits which otherwise were regarded as impossible of attainment.

Steel sheet piling in the construction of cellular cofferdams, first used in the Black Rock Lock, Buffalo, affords a very successful method for the climination of the expensive, slow and not always reliable, pneumatic caisson on work of large magnitude. It is also used in the construction of curtain walls, sea walls and loading slips, foundations for cylinder piers, sewers, trenches, etc.

Steel sheet piling by its positive interlock enables the sub-surface cut-off walls of diaphragm dams to be made with a certainty not possible with wooden sheet piling, and with an economy not possible with ordinary puddle core, concrete core or masonry core walls. A diaphragm made of such imperishable materials fulfills all the requirements of the ordinary core wall, with the additional advantage of accommodating itself, by its flexibility, to slight irregularities of settlement in the dam.

In addition to temporary cofferdams, steel sheet piling has found large use in the construction of permanent retaining walls for buildings. Driven before excavation in soils containing quicksand or water-bearing strata, its use prevents the undermining of adjacent building foundations by movement of the strata. It also prevents in many cases the delay, expense and danger of underpinning adjacent buildings. It may be employed in this way alone or reinforced by steel buckstays as shown in the illustration, which represents a method followed in the construction of retaining walls for a building, where sheeting with its attached buckstays was driven its full depth and the basement and sub-basement floors placed as the excavation went forward. The rigidity of the buckstays with the bracing supported by the floors eliminated the necessity and expense of shoring. After excavation, concrete was filled in between the buckstays, and the total expense did not exceed 60 per cent of its cost by the ordinary method.

Type. Carnegic Steel Company manufactures United States Steel Sheet Piling, in three sizes and weights.

United States Steel Sheet Piling is a simple, plain, rolled section ready for use as it comes from the mill without further fabrication. Each piece is complete in itself and all pieces of the same width are interchangeable. Its profile incorporates the advantages of the ball and socket joint, with sufficient clearance in the interlock for ease in driving and sufficient space for the use of a packing substance between its adjacent edges to insure watertightness. United States Steel Sheet Piling is more easily driven and pulled than any other section hitherto placed on the market. The reason for this is believed to be the absence of a leading groove combined with the line contact obtained in the joints.

The sections have positive interlocks continuous throughout the entire length in both lateral and horizontal directions, affording maximum strength against sidewise deflection, distortion or separation of the pieces due to pressures and deformation in driving.

Strength of Sections. When driven and under pressure, steel sheet piling must have strength similar to that possessed by a beam subjected to earth or water pressure, and the resistance of the piling to transverse bending can be calculated in accordance with laws of flexure from the properties of the sections given in the following table. In the case of United States Steel Sheet Piling, the properties of the individual pieces are the same as the properties of the sections interlocked in place.

ELEMENTS OF SECTIONS, AXIS x-x

	Descrip	tion		In	terlocke	ed or Si	ngle Se	etion	Regular Corner, Weight
Width	1					9	O.t.	h	Pounds
b, Inches	Lbs. per Lin. Ft.	Area, Sq. In.	Lbs. per Sq. Ft.	In.4	In.	In.3	In.3	In.	Lineal Foot
$\frac{13\frac{14}{4}}{13\frac{14}{4}}$	42.5 38	$\frac{12.51}{11.30}$	38 35		0.87	4.32	3.91	$13\frac{1}{4}$ $13\frac{1}{4}$	42.5 38 16
	b, Inches	Width b. Lbs. per Lin. Ft. 13 14 42.5 13 14 38	Width b. Libs. per Area, Lin. Ft. Sq. In. 13 14 42.5 12.51 13 34 38 11.30	Width b. Lbs. per Area, Lbs. per Sq. In. Ft. 13 14 42.5 12.51 38 11.30 35	Width b. Lbs. per Area, Lbs. per Lin. Ft. Sq. In. Sq. Ft. In.4 13 14 42.5 12.51 38 8.56 11.30 35 8.50		Width b. Lbs. per Area, Lin. Ft. Sq. In. 314 42.5 12.51 38 8.56 0.83 4.35 13.34 38 11.30 35 8.50 0.87 4.32	Width b. Inches Single Section Requirement Weight, Sq. In. I brack I brack I brack I brack I lin. I lin.	

S* is the average section modulus per horizontal foot of wall interlocked in place.

During driving, the sections are forced to act as columns, and the tables, therefore, show the radius of gyration of the sections for computing their compressive resistance under load or the blow of the pile driving hammer. The radius of gyration of the section, however, need not bear any definite proportion to its length, if blocks of wood are bolted to the leads of the pile driver in case the piling shows a tendency to spring. As the piling actually enters the earth, it is supported laterally and stiffened by the adjacent soil, and the blows of the hammer need but overcome the friction. In an ordinary cofferdam braced in the usual manner, strength in the interlock to resist the tearing apart of the sections by direct tension in a longitudinal direction is not often required, but if it is, as in the case of a cellular cofferdam, United States Steel Sheet Piling is recommended on account of its great longitudinal strength. interlock strength in a longitudinal direction depends on the type of section, the opening of the jaw, the character of the soil, etc., and can only be determined by tests. The average longitudinal strength per lineal inch of medium steel sections is as follows:

13¼" United States Steel Sheet Piling9,800 pounds9¼" United States Steel Sheet Piling5,600

Steel sheet piling is usually made of medium open-hearth steel manufactured to standard specifications.

Full information is given in a separate pamphlet entitled "Steel Sheet Piling," copies of which can be had on request.

FLOORS AND FLOOR LOADS

Kinds of Loads. Two kinds of loads are carried by structures. Live loads consist of the weight of machinery, merchandise, persons or other moving objects, or of cranes or other handling devices and their loads, the support of which is the purpose of the structure, including also wind stresses. Dead loads consist of the actual weight of the structure itself with the walls, floors, partitions, roofs, and all other permanent construction and fixtures. The dead loads stress the structure at all times and it must, therefore, be proportioned to sustain them at all times without reduction. The live loads may be taken at their full values or reduced in accordance with the probabilities that the structure as a whole or its principal members will not be subject at all times to the full theoretical live loading.

Dead Loads. The permanent load should be calculated from known weights per unit of the material composing floors, partitions, walls, or other permanent construction. The weight assumed for the steel frame itself should be checked after the sections are determined and then the sizes readjusted if necessary.

Live Loads. Live loads vary with the character of the structures. In buildings they consist of uniform loads per square foot of floor area, concentrated loads, such as heavy safes, which may be applied at any point of the floor, and uniform loads per lineal foot of beams or girders. The load which produces the maximum bending moment or reaction is to be used in proportioning sections. The floor system between beams must of course be of sufficient strength to transmit any concentrated load to the beam.

In cities the minimum live loads to be used on the various classes of buildings are fixed by public ordinances, and are given on page 265 for the principal cities of the United States in accordance with the most recent building laws, which are intended to cover general conditions and do not include machinery or other concentrations. If such concentrations, like safes, armatures, generators, or printing presses, occur on floors, special provision should be made for them in the floor framing. Flat roofs of buildings which may be loaded with people, should be treated the same as floors and the same uniform live loads used as given in the table for dwellings, hotels or assembly rooms.

Reduced Live Loads. Floor beams in buildings should be computed to sustain floor by floor the full live and dead loads. It is not probable that all the floors will be fully loaded at all times, and, therefore, good practice permits a reduction of the theoretical live load in the computations of column sections. The New York and Pittsburgh building laws do not permit any reduction on columns supporting the roof and top floor. These building laws permit for buildings more than five stories in height on columns supporting each succeeding floor a reduction of 5 per cent of the total live floor load until 50 per cent is reached, which reduced load is to be used for the columns supporting the remaining floors. The Chicago building law requires columns to sustain the full live load on roofs, 85 per cent of the full live floor load on the top floor with a 5 per cent reduction on each succeeding floor down to 50 per cent.

When the character of the loading will permit, the live load on the main girders to which the primary supporting beams are framed. may be reduced. The amount of the reduction will depend on the probable distribution of the loads.

Foundation Loads. Footings should be so designed that the loads they sustain per unit of area shall be as nearly uniform as possible. and the dead loads carried by the footings should include the actual weight of the superstructure and foundations down to the bottom of the footing. The live load should be assumed to be the same as the live load in the lowest tier of columns or in the footings under The area of the footing is determined by dividing the total load by the unit resistance of the soil. From the area thus calculated all the other footings of the building are proportioned according to the ratios of their respective dead loads only. In no case should the load per square foot under any portion of any footing due to the combined dead, live and wind loads, exceed the safe sustaining power of the soil upon which the footing rests.

Fireproof Floor Systems. A modern office or mercantile building is essentially a steel framed structure which supports the dead load of the building and its contents, and is itself protected on all sides by refractory materials. The floors are made fireproof by the use of terra cotta tiles or arches or of a composite flooring made of concrete or reinforced concrete. While brick arches may still be used in special locations where great floor strength is needed, and concrete arches are sometimes thrown between the beams, modern practice is limited substantially to the hollow tile arch sprung between the beams and the reinforced concrete slab laid on their tops, the ceiling construction being modified to suit. Each system has advantages of its own.

Terra Cotta Arches. Hollow tile arches fill the total depth of the floor beams, and, therefore, tend to stiffen and brace the building; their weight per square foot is light as compared with other forms of fireproof floor construction of equal strength. Hollow terra cotta floor arches are made either flat or segmental. The segmental arch will develop much greater strength than the flat arch of the same width and depth, and may be designed to carry a given load with tile of less depth than flat arches. They are, therefore, more economical, though not always acceptable from the standpoint of architectural appearance. In office buildings the ceilings under such arches are usually suspended. A correctly designed and constructed flat arch will always develop the full strength of the steel beam which supports it.

When arch blocks are the same depth as the beams, they are usually laid to project 1½ inches below the bottom of the beams, and the space above the arch is filled in either with cinder concrete, in which can be laid pipes, conduits, and wooden nailing strips supporting wood flooring, or with thin terra cotta blocks made for this purpose, or with a layer of plastic composition of cement, which forms the wearing surface for the floor.

Thrust of Floor Arches. All forms of terra cotta arches produce side thrust on the floor beams. In the flat arch the blocks have tapered faces and the central block or key wedges the others together; in the segmental arch the thrust is that due to all arch action. thrusts it is found necessary to counterbalance by means of tie rods which connect the floor beams and relieve them from the tendency to deflect sidewise. In the central bays, owing to the action of adjacent arches, the tie rods are sometimes omitted, but it is necessary to investigate outer beams and channels around openings for additional thrust stresses so that the combined fiber stresses produced by vertical loading and horizontal thrusts may not be excessive. With flat arches 3/4 inch tie rods spaced apart not over fifteen times the width of the beam flanges will usually be sufficient. The total thrust of arch, the net area of tie rods required, the maximum distance between tie rods and the section of outer beams for any condition, may be found as follows:

Let

w = unit load on arch, in pounds per square foot.

D = distance of arch span, in feet.

L = length of floor beam supporting the arch, in feet.

R = effective rise of arch, in inches.

p = thrust of arch per lineal foot, in pounds.

P = total thrust of arch per panel, in pounds.

A = total net area of tie rods per panel, in square inches.

a = net area of one tie rod, in square inches.

T = spacing of tie rods, center to center, in feet.

f = allowable combined fiber stress, in pounds per sq. inch.

 S_{1-1} = Section Modulus of beam, axis 1-1, in inches³.

 S_{2-2} = Section Modulus of beam, axis 2-2, in inches².

 M_{1-1} = Bending Moment for vertical loading, in inch pounds.

M₂₋₂ = Bending Moment for arch thrust, in inch pounds; then—

$$\begin{array}{lll} p & = & \frac{3wD^2}{2R} & P = pL \\ A & = & \frac{3wD^2L}{2fR} & = & \frac{P}{f} \\ T & = & \frac{2afR}{3wD^2} & = & \frac{af}{p} \\ M_{1-1} & = & \frac{12L}{8} & \frac{(1/2wDL)}{8} & = & \frac{3wD}{4} & L^2 \\ M_{2-2} & = & \frac{12T(pT)}{12} & = & pT^2 \\ f & = & \frac{M_{1-1}}{S_{1-1}} + \frac{M_{2-2}}{S_{2-2}} \end{array}$$

In formula given for $M_{2.2}$, the beam is considered continuous, supported at intervals by the tie rods. In segmental arches the effective rise is equal to the vertical distance between highest point of concave surface and springing line or chord; the effective rise of a flat arch may be taken at 2.4 inches less than the arch depth.

The allowable combined fiber stress in tie rods should not exceed 16,000 pounds, and tie rods should be placed in line of thrust, usually 3 inches above the bottom of the beam.

The net areas of usual sizes of tie rods are as follows:-

Diameter of Rod, Inches	5/8	3/1	7/8	1
Net area, a, square inches	0.202	0.302	0.420	0.550

CARNEGIE STEEL COMPANY

Example.—A floor panel 18 feet by 6 feet, of 12 inch flat terra cotta blocks, is to support a uniform live and dead load of 150 pounds per square foot. Required the total thrust, total area of rods per panel, maximum spacing of rods, and the proper size beam to carry one-half of the panel without other lateral support than the tie rods.

Entire panel load is 18x6x150=16,200 pounds. Assuming a beam, 12 inch 31.8 pounds, and $\frac{3}{4}$ -inch tie rods, then—

 $3x150x6^{2}$ Thrust of arch per lineal foot, 2(12-2.4) = 844 pounds. Total thrust of arch. 844x18 = 15.200 pounds. 15,200 Total area of tie rods, $= 0.95 \,\mathrm{sg.}$ inches. 16,000 0.302x16,000 = 5.75 feet. Maximum spacing of tie rods. 844 $3x150x6x18^{2}$ Bending Moment, vertical loading, $M_{1-1} =$ = 218.700 in. lbs.Bending Moment, horizontal thrust, $M_{2-2} = 844x5.75^2$ $= 27,900 \, \text{in.lbs.}$ $=\frac{218,700}{36.0} + \frac{27,900}{3.8} = 13,420 \, \text{lbs./in.}^2$ Combined fiber stress in tie rods, f If tie rods are spaced 6'-0" centers, then = Bending Moment, horizontal thrust, $M_{2-2} =$ $844x6^{2}$ = 30.400 in. lbs. $=\frac{218,700}{36.0} + \frac{30,400}{3.8!} = 14,080 \, \text{lbs./in.}^2$ Combined fiber stress in tie rods

MAXIMUM SPACING OF 3/4 INCH TIE RODS,

LOADS OF 100 POUNDS PER SQUARE FOOT

Span,				Ef	fective	Rise of	Arch, R	, in Inc	hes			
Feet	4	5	6	7	8	9	10	11	12	13	14	15
3	14.3											
4	8.1	10.1	12.1	14.1								
5	5.2	6.4	7.7	9.0	10.3	11.6	12.9	14.2				
6	3.6	4.5	5.4	6.3	7.2	8.1	8.9	9.8	10.7	11.6	12.5	13.
7		3.3	3.9	4.6	5.3	5.9	6.6	7.2	7.9	8.5	9.2	9.
8	1		3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.
9					3.2	3.6	4.0	4.4	4.8	5.2	5.6	6.
10		Ι.,			i .		3.2	3.5	3.9	4.2	4.5	4.

For any other loading, multiply tabular values by 100 and divide by total new load per square foot.

The tables which follow give the weights per square foot for terra cotta arches, both flat and segmental, of various depths, their area in square inches, and the safe loads they will sustain on various spans. These tables should be used as a general guide only, as conditions may make it possible to design more economical arches for a given load than indicated by the tables. Where a paneled ceiling is not objectionable, for example, a shallow arch may be used on raised skewbacks with a considerable economy in material.

FLOORS AND ROOFS

MINIMUM LIVE LOADS, POUNDS PER SQUARE FOOT By Building Laws of Various Cities

Description of Building	New York, 1917	Chicago, 1919	Philadelphia, 1919	St. Louis, 1917	Boston, 1919	Cleveland, 1920	Baltimore, 1908	Pittsburgh, 1914	Cincinnati, 1917
Floors for Rooms									
Apartments and Dwellings. Asylums, Hospitals, etc Detention Buildings, etc Factories:	40 100 100	40 50 50	70 70	50 50	50 50c 50c	70a 80	60	50 70	40 40 60
Light manufacture Heavier manufacture	120d	100d			125d 250d		125d 175d	125d	100d 150d
Hotels, Lodging Houses	40	50	70	50	50c	70	60	70	40b
Office Buildings, etc	60	50	100	60b	75b	70b	75b	70	50b
Public Buildings:									
Municipal Buildings	100		100			100		105	100
Churches Libraries, Museums	100	100	120	75	100 100	$\frac{80}{125}$	75	$\frac{125}{200}$	100
Theaters	100	100	120	100	100	80	75	125	100
Schools, Colleges, etc	75	75	120	75	50	70	75	70	60
Stores, light goods	120	100	120	100	125	100b		125	100
" heavier goods			150	150	250		175		150
Warehouses		i	150	150	250		250	200	150
Floors for Assembly Halls, etc.									
Auditoriums, fixed seats	100	100	120	100	100	80	75	125	100
" movable seats	100	100	120	100	100	125	125	125	100
Armories, Dance Halls, etc.	100	100			100	150		150	150
Miscellaneous									
Garages, Stables	120	100e		100	150e	150e	100		75
Corridors, Hallways	100	100		100	75f	70g	100		80g
Stairways, Fire Escapes	100	100		100		100h			80g
Sidewalks	300				250	200	200		300
Roofs:		1		i					
Flat, slope up to 20° (1/8)	40	25	30i	30	40	35i	40	50k	25
Steep, slope over 20° (1/8) Wind Pressure	30 301	25 20	30i 30m	30	25j 10-20n	30i 20o	20	50k	25
Willia Fressure	301	20	30m	30	10-20n	200	30	25	20 p

a Dwellings, Cleveland, 60.

b First floors: St. Louis, 100; Boston, 125; Cleveland, 125; Baltimore, 150; Cincinnati, 100.

c Public floors of Hospitals, Hotels, Public Buildings, etc.: Boston, 100.

d Floor loads do not include the weight or the impact load of machinery.
e Garages, private: Chicago, 40; Boston, 75; Garages; public, upper floors: Cleveland, 100;
Stables: Cleveland, 80.

f Corridors, stairways, etc., for Assembly Halls, Armories, etc.: Boston, 100.

- g Except in Dwellings where floor loads are less.

 h Stairways, etc., for Assembly Halis, Armones, etc.: Boston, 100. g Except in Dwellings where floor loads are less.

 h Stairways, etc., for Apartment Houses, 80; Dwellings, 60.

 i Loads per square foot of superficial roof area; other roof loads are for the projected area.

 j Loads include Wind Pressure: 10 pounds up to 3s slope, 15 up to 1/s slope, 20 over 1/s slope, 20 and 1/s load; snow load 25 pounds, reduced 1 pound each degree between 20° and 45°.

 For buildings ages 150 feet, but, or when height in any 4 timesless the instal 2 invariant. For buildings over 150 feet high, or where height is over 4 times least horizontal dimension.

 m Wind pressure for high buildings in built-up districts: 25 pounds at tenth story, 2½ pounds less for each story below and 2½ pounds more for each story above, up to 35 pounds.

 n For buildings 40 feet high, 10 pounds; up to 80 feet, 15 pounds; over 80 feet, 20 pounds.

o Wind pressure on curtain walls, 30 pounds.

p For buildings over 100 feet high, or where height is over 3 times the average width of base.

FLAT TERRA COTTA ARCHES

MANUFACTURERS' STANDARD

SAFE LOADS IN POUNDS PER SQUARE FOOT
Factor of Safety = 7

			Depth of .	Arch Blocks,	Inches		
Span of	6	7	8	9	10	12	15
Arch, FtIn.			Area of Arch	Blocks, Sq	uare Inches		
rtIn.	31	34	37	40	43	49	58
3-0	458	588	735	901	1084	1487	2210
3-3	386	496	622	763	916	1262	1877
3-6	330	424	531	653	785	1083	1612
3-9	284	365	459	565	679	938	1398
4-0	247	318	399	493	593	820	1223
4-3	216	278	350	433	521	722	1079
4-6	190	245	309	382	461	640	951
4-9	168	217	274	340	410	571	855
5-0	149	193	244	304	367	511	767
5-3		172	218	272	330	460	691
5-6		154	196	245	297	416	626
5-9		139	176	222	269	378	569
6-0			159	201	244	344	518
6-3			144	183	222	314	474
6-6			131	166	203	287	435
6-9				152	186	264	400
7-0				139	170	243	369
7-6					144	206	315
8-0						177	272
8-6						153	236
9-0						132	205
9-6							180
10-0							158

This table and the two following are employed in computing the safe loads of floor arches of hollow terra cotta blocks. The area given is that of a cross section at right angles to the webs, and, generally, end-construction blocks of various shapes but of the same depth and cross-sectional area have equal strength.

The weight of the terra cotta arch has been deducted from the safe load given in the tables, so that only the dead load of the concrete fill, plastering, etc., must be deducted to obtain the net safe live load for any arch and span; blocks of different areas and for other factors of safety are calculated as follows:

EXAMPLE.—Required the load per square foot for a 5'-6" span and 8 inch arch blocks with three horizontal and four vertical webs, 34 inch thick, set in end construction, cross-section through webs of blocks parallel to webs of beams.

Sectional area of the blocks is $8''x\frac{3}{4}''x4+(12''-4x\frac{3}{4}'')x\frac{3}{4}''x3=44.25$ sq. in. at 0.06 pounds per cu. in., the weight is 44.25x12x0.06=32 pounds.

The net safe load of the 8 inch block given in the table is 196 pounds. Adding the weight of the block, 37x12x0.06=26 pounds, the total safe load is 222 pounds. The net safe load for blocks with an area of 44.25 sq. in. and a safety factor of 5 is $(44.25 \div 37x222x7/5)=32=340$ pounds per sq. ft.

SAFE LOADS IN POUNDS PER SQUARE FOOT SEGMENTAL TERRA COTTA ARCHES MANUFACTURERS' STANDARD .

Hise Depth of Arch Blocks, in Spin Rus Depth of Arch Blocks, in Ord Or	In. 36 43 47 FtIn. In. 36	14 344 441 449 1 225 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	2 783 184 1857 1853 1854 1854 1855 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 185 616 615 615 615 615 615 615 615 615 61	1 421 8/18 5/19 194 142 1895 1995 1995 1995 1995 1995 1995 1995	1	1	34 240 287 1 326 390 116 406 485
of of of Arch, Arch,		10-0	0-6	2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	12-0 114	13-0	34-0
.1 1.							
8 10 10 ch Blocks, Sq. In		873 1089 1280				604 677 842 990 1137 1275	\$9.83
Arch Blocks,	£	99 7 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	741 1510 1510 1510 1510 1510 1510 1510 15	25 7 25 25 25 25 25 25 25 25 25 25 25 25 25	810 810 810 1106 1239	619 770 906 1041	135 584 726
6 Area of Ar		869 834 834 848	1124 1264 171 774 774 1049	439 588 724 859 987 1099	411 551 678 806 926 926	3%6 518 645 758 871	364 489 608
Rise of Arch,	i.	e ⁷ _222		%_ <u>225</u> 2%	2222	~ ~ ~	<u> </u>
	į.	-			9	0-6	9-6
Spar Arch	Ė	۲.	9	0-8	9-8	٠	•
10 of of Arch,	47	1178 1545 1939 7-1					719 944 1177
1 10	47		2015 2015 1034 1736 2009 2318 2578			·	
locks, Sq. In	43 47	1178 1545 1939 2272	24.45 22045 2407 2815 946 1034 1247 1303 1888 2009 2121 2318 2359 2578	926 1249 1530 1800 2078 2315	766 837 1032 1128 1269 1387 1512 1652 1719 1879	609 764 1041 8028 1157 1265 1379 8716 1570 8716 1763 1927	658 719 864 944 1077 1177
1 10	36 43 47	1078 1178 1411 1545 1774 1939 2272 2272	2233 2845 2845 2845 2233 2847 2845 2845 2845 2845 2845 2845 2845 2845	709 847 926 877 1143 1249 877 1440 1530 1879 1647 1800 1692 2078 8773 2118 2315	766 837 1032 1128 1269 1387 1512 1652 1719 1879	685 609 764 788 941 1025 105 1151 1265 11815 11570 1716 1476 1763 1927	719 944 1177

TERRA COTTA ARCHES

For

Floor Load of 150 Pounds per Square Foot

		Depth	Depth	Depth	Span	App	rox. W		, Lbs.	per S	q. Ft.
	of beam	of Beam, Inches	of Arch Blocks, Inches	of Floor, Inches	of Arch, Feet	Steel	Terra Cotta	Concrete	Flooring	Ceiling	Total
		6	6	11	$5\frac{1}{4}$	6	22	30	4	5	67
	-2.5	7	6	12	$5\frac{1}{4}$	7	22	38	4	5	76
H 100	<u> </u>	8	6	13	$5\frac{1}{4}$	8	22	45	4	5	84
Авсн	Construction elow bottom	7	7	12	6	8	24	30	4	5	71
E D	st ×	8	7	13	6	8	24	38	4	5	79
1100	50	9	7	14	6	8	24	45	4	5	86
H	0	8	8	13	$6\frac{1}{2}$	8	27	30	4	5	74
FLAT	Typical of arch l	9	8	14	$6\frac{1}{2}$	- 8	27	38	4	5	82
F W.	<u>:</u>	10	8	15	6 1/2	8	27	45	4	5	89
	ಹಿಡ	9	9	14	$7\frac{1}{2}$	8	29	30	4	5	76
	ĘΉ	10	9	15	$7\frac{1}{2}$	9	29	38	4	5	85
		12	9	17	71/2	9	29	53	4	5	100
0	00	10	10	15	8	9	31	30	4	5	79
1,000	#	12	10	17	8	9	31	45	4	5	94
	Bottom	12	12	17	91/2	10	35	30	4	5	84
Marian	_	15	12	20	91/2	10	35	53	4	5	107
		15	15	20	11	12	42	30	4	5	93

For flat arches on raised skews, where the top of the arch is level with the top of the floor beam, deduct about 7 pounds per inch of difference between the height of the floor beam and the arch.

deduct about 7 pou	nus per i	nen or on	rerence be	tween the	neight of	the n	001 00	am a	IG the	arcu.	
FIE		Depth	Depth	Rise	Span	App	rox. W		, Lbs.	per S	q. Ft.
	beam	of Beam, Inches	of Arch Blocks, Inches	of Arch, Inches	of Arch, Feet	Steel	Terra Cotta	Concrete	Flooring	Ceiling	Total
	uction top of	6	4	3/4	4 ½	7	20	27	4	5	63
5	ij či	7	4	1	5	7	20	28	4	5	64 .
Авсн	ğτ	8	4	1 1/4	$5\frac{1}{2}$	7	20	29	4	5	65
▼	it.	9	4	1 ½	6	8	20	30	4	5	67
4 100	onstra	8	6	3/4	5	8	26	27	4	5	70
2 1000	ರೌ	9	6	1	$5\frac{1}{2}$	8	26	28	4	5	71
SEGMENTAL	cal Cc Hevel	10	6	11/4	6	9	26	29	4	5	73
	e Z	12	6	$1\frac{1}{2}$	$6\frac{1}{2}$	9	26	30	4	5	74
a linn	l'ypic arch	10	8	3/4	$5\frac{1}{2}$	9	31	27	4	5	76
H III	L'y ar	12	8	1	6	9	31	28	4	5	77
02 (DI::/DU	ر ا	12	8	11/4	$6\frac{1}{2}$	10	31	29	4	5	79
16:0:1001		15	8	$1\frac{1}{2}$	7	10	31	30	4	5	80
1000	$_{ m Top}$	12	10	3/4	$5\frac{3}{4}$	10	34	27	4	5	80
	1	12	10	1	$6\frac{1}{2}$	11	34	28	4	5	82
h		15	10	11/4	7	11	34	29	4	5	83
		15	10	$1\frac{1}{2}$	$7\frac{1}{2}$	12	34	30	4	5	85

TERRA COTTA PARTITION, CEILING, ROOFING AND FURRING BLOCKS

Thick-	Approx.	Weight, P	ounds per	Sq. Foot		Approx.	Weight, P	ounds per	Sq. Foot
ness, Inches	Partition	Ceiling	Roofing	Furring	ness, Inches	Partition	Ceiling	Roofing	Furring
1 1/2				9	4	16-18		22	
2	12-14	12		10	5	18-20			
3	15-17	20	20		6	24-26			

REINFORCED CONCRETE BEAMS AND FLOOR SLABS

For a complete mathematical analysis of the stresses occuring in reinforced concrete structures, reference may be made to standard text books on the theory and practice of reinforced concrete.

Girders and Floor Beams. The arrangement of girders and floor beams follows the same principles as in structural steel construction. On short spans floor cross beams may be omitted or used only at columns to secure lateral stiffness. Beams are usually designed as tee beams, and thereby a part of the floor slab is utilized as a part of the beam. The width of the slab thus considered to act as part of the beam should not exceed one-fourth of the span length, and the overhanging width on either side of the web should not be over six times the thickness of the slab.

Floor Slabs. Reinforcement may be of small rods, wires or metal fabric, the latter especially on short spans. Cross reinforcement of small rods or wires about two feet apart laid parallel to the beam supporting the slab should be used to prevent cracks, shrinkage, etc. If the length of the slab exceeds $1\frac{1}{2}$ times its width, the entire load should be carried by transverse reinforcement. For rectangular slabs, the length of which does not exceed $1\frac{1}{2}$ times the width and which are supported on four sides and reinforced in both directions, the proportion of the load is determined by the formula: R=1/b=0.5, where R is the ratio of the load, I the length and b the width of the slab. An effective bond should be provided at the junction of beam and slab, and if the principal reinforcement of the slab is parallel to the beam, transverse reinforcement should be used extending over the beam and well into the slab.

Spacing of Reinforcing Bars. The lateral spacing of parallel bars should not be less than 3 diameters, nor should the clear vertical space between layers of bars be less than 1 inch; distance from edge or side of beam or slab should not be less than 2 diameters.

Shear or Web Reinforcement. In the calculation of web reinforcement, concrete may be assumed to carry $\frac{1}{3}$ of the total shear; the remaining $\frac{2}{3}$ to be taken by additional reinforcement arranged in intervals equal to the depth of the beam. The usual method of reinforcing beams against failure by diagonal tension or shear is to use bent rods or stirrups in either vertical or inclined position. The longitudinal spacing of such rods or stirrups should not exceed $\frac{3}{4}$ of depth of beam if inclined, and $\frac{1}{2}$ of depth if vertical.

Formulas. The following formulas are those given by the Committee of the American Society of Civil Engineers on Concrete and Reinforced Concrete (Transactions, Vol. LXXXI—No. 1398, December, 1917.)

REINFORCED CONCRETE BEAMS—NOTATION

Rectangular Beams, Reinforcement for Tension only.

- f_s = Tensile unit stress in steel, in pounds per sq. inch.
- f_c =Compressive unit stress in concrete, in pounds per sq. inch.
- E_s =Modulus of elasticity of steel, in pounds per sq. inch.
- E_c =Modulus of elasticity of concrete, in pounds per sq. inch.
- n =Elasticity ratio, Es÷Ec
- M =Bending moment or Moment of Resistance, in inch pounds.
- M_s=Moment of resistance of steel, in inch pounds.
- M_c=Moment of resistance of concrete, in inch pounds.
- A_s =Area of steel in tension, in square inches.
- b =Width of beam, in inches.
- d = Depth of beam to center of steel in tension, in inches.
- k =Ratio of depth of neutral axis to effective depth, d.
- =Ratio of lever arm of resisting couple to depth, d.
- z = Distance, from top to resultant of compression, in inches.
- id =Arm of resisting couple, in inches=d-z.
- p =Ratio of areas, steel in tension to rectangle, bd,=A÷bd.
- kd =Distance from top of beam to neutral axis, in inches.

Tec Beams, Reinforced for Tension only.

- b =Width of flange, in inches.
- b' =Width of stem, in inches.
- t =Thickness of flange, in inches.

Rectangular Beams, Reinforced for Tension and Compression.

- A' =Area of steel in compression, in square inches.
- p' =Ratio of areas, steel in compression to rectangle, bd,=A'÷bd.
- f'_s = Compressive unit stress in steel, in pounds per sq. inch.
- C =Total compressive stress in concrete, in pounds per sq. inch.
- C' =Total compressive stress in steel, in pounds per sq. inch.
- d' = Depth to center of steel in compression, in inches.
- z = Depth to resultant of C+C', in inches.

Shear and Bond.

- V =Total shear, in pounds.
- V' =Total Shear producing stress in reinforcement, in pounds,=2/3 V.
- v =Shearing unit stress, in pounds per sq. inch.
- u' =Bond stress per unit surface of bar, in pounds per sq. inch.
- $\Sigma_0 = \text{Sum of perimeters of tension bars, in inches.}$
- T =Total stress in single reinforcing member, in pounds.
- s = Horizontal spacing of reinforcing members, in inches.

REINFORCED CONCRETE BEAMS—FORMULAS

Rectangular Beams, Reinforced for Tension only,

$$\begin{array}{lll} kd & = d \left(\sqrt{2pn + (pn)^2} - pn \right) \\ z & = \frac{1}{3}kd & jd = d(l - \frac{1}{3}k) \\ M & = f_S A_S jd & = f_S p jb d^2 \end{array}$$

 $M = \frac{1}{2} f_c k j b d^2$

$$f_{S} = \frac{M}{A_{S}jd} = \frac{M}{pjbd^{2}}$$
 $f_{C} = \frac{2M}{4(bbd)^{2}} = \frac{2pf_{S}}{b}$

Balanced Reinforcement:

Reinforcement: Steel ratio,
$$p = 2 \frac{\overline{f_S}}{f_C} \left[\frac{f_S}{nf_C} + 1 \right]$$
 $bd^2 = \frac{M}{f_S pj} = \frac{M}{\frac{1}{2}f_C kj}$

$$bd^2 = rac{M}{f_S p j} = rac{M}{\frac{1}{2} fc \ k j}$$

Tee Beams, Reinfored for Tension only.

$$kd = \frac{2ndA_S + bt^2}{2nA_S + 2bt}$$

Neutral axis in flange-(use formulas for rectangular beams.)

Neutral axis in stem-

$$z = \frac{t(3kd-2t)}{3(2kd-t)}$$
 jd =

$$f_s = \frac{M}{A_s j d} = \frac{f_c n(1-k)}{k}$$

$$\mathbf{M} = \frac{\mathbf{f}_{c}\mathbf{b}\mathbf{t} \ (\mathrm{kd} - \frac{1}{2}\mathbf{t})\mathbf{j}\mathbf{d}}{\mathbf{b}}$$

$$f_{c} = \frac{Mkd}{bt(kd-\frac{1}{2}t)id} = \frac{f_{s}k}{n(1-k)}$$

Rectangular Beams, Reinforced for Tension and Compression.

$$kd = d \left[\sqrt{2n(p+p'\frac{d'}{d}) + n^2(p+p')^2} - n(p+p') \right]$$

$$\begin{split} f_{s} &= \frac{M}{pjbd^{2}} = \frac{nf_{c}(1-k)}{k} \\ f'_{s} &= \frac{nf_{c}(k-\frac{d'}{d})}{k} \end{split}$$

$$f_{c} = \frac{6M}{bd^{2} \left[3k - k^{2} + \frac{6p'n}{k} (k - \frac{d'}{d}) (l - \frac{d'}{d}) \right]}$$

Shear and Bond.

Rectangular Beams

$$v = \frac{V}{bjd} \quad T = \frac{V'_{S}}{jd} \quad u = \frac{V}{jd\Sigma_{0}}$$

$$v = \frac{V}{b'jd} \quad T = \frac{V'_{S}}{jd} \quad u = \frac{V}{jd\Sigma_{0}}$$

T Beams

If reinforcing bars are bent up at angles between 20° and 45°, and web members inclined at 45°.

$$T = \frac{8 \, V'_S}{4 j d}$$

The formulas are based upon the following assumptions:

- 1. The applied forces are perpendicular to the neutral plane.
- 2. The deformation of any fiber is proportional to its distance from the neutral axis.
- 3. The resisting moment of the beam is the sum of the moments above the neutral axis, due to the concrete area in compression, and of those below the neutral axis, due to the steel area in tension.
 - 4. The tensile strength of the concrete is negligible.

Bending Moments. If slabs and girders are reinforced over supports to take care of negative bending moments, they act as continuous beams, and the bending moment at the center of the span will be reduced. It is considered good practice to use the following values:

Floor slabs, M at center and at supports=12 wl2.

Beams, M at center and at supports= $\frac{1}{12}$ wl² for interior spans, and $\frac{1}{10}$ wl² for end spans.

If beams are freely supported at ends, $M=\frac{1}{8}$ wl².

Columns. Columns may be reinforced by means of longitudinal bars, by bands or hoops, or by both. The general effect of the banding or hooping is to permit the use of somewhat higher working stresses; the values of As and p given in the formula which follows, refer to longitudinal steel reinforcement only:

P =total load on columns, in pounds.

A =total area of column section, in square inches.

Ac=area of concrete, in square inches.

As = area of steel, in square inches.

p = ratio of steel area to total section, $A_s \div A$.

fc =unit compressive stress in concrete, in pounds per sq. inch:

$$P = f_{\mathbf{c}}(A_{\mathbf{c}} + nA_{\mathbf{s}}) = f_{\mathbf{c}}A[1 + (n-1)p]. \quad f_{\mathbf{c}} = \frac{P}{A[1 + (n-1)p].}$$

Working Stresses. The following working stresses are in current use for reinforcing bars of medium structural steel and good Portland cement and gravel concrete of a 1:2:4 mixture:

$f_c =$ unit compressive stress of concrete	650 lb.	sq.	in.
fy=unit shearing stress of concrete,			
straight horizontal reinforcement	40 ''		
special shear reinforcement	90 to 120 "	"	"
fu=unit bond stress of concrete, smooth			
rods and deformed bars	80 to 100 "	"	"
fs =unit tensile stress of steel	16 000 ''	"	66
rod reinforcement	16,000 "	"	".
wire reinforcement	20,000 "	"	"
f_k =unit compressive stress of steel	16,000 "	"	"
$n = E_s \div E_c = 15$.			

FLOOR CONSTRUCTION

Substituting in the formulas given for rectangular beams, reinforced for tension only, the values for fc=650, fs=16,000 and 20,000, and n=15, the following constants are obtained for equal moments of resistance M_c = M_s .

Notation	fe=	=65 0	Notation	fe==650		
Notation	fs==16,000	fs==20,000	Notation	fs==16,000	fs==20,000	
p k j	0.00769 0.37864 0.87379	0.00533 0.32773 0.89076	pj kj fspj=½fckj	0.00672 0.33085 107,526	0.00474 0.29193 94.877	

For approximate calculations, the arm of the resisting couple, jd, may be taken at 0.9d, and ordinarily accepted working stresses of 16,000 for steel and 650 for concrete will not be exceeded if the steel ratio, p, does not exceed 0.00S.

Explanation of Tables. Reinforced Concrete Slabs: The tables given on page 274 are based upon the preceding formulas for rectangular beams reinforced for tension only, and upon fiber stresses of 650 pounds per square inch for concrete, 16,000 pounds for steel bar or rod reinforcement, 20,000 pounds for steel wire reinforcement, and for an elasticity ratio of n=15.

The bending moments are given in foot pounds per foot of width; below and to the left of the zigzag lines the values are determined by the maximum allowable fiber stress on steel; above and to the right they are determined by the maximum allowable stresses in concrete.

The first column gives the total thickness of the slab, the second, the distance from the center of the steel to the bottom of the slab, and the third the approximate weight of concrete slabs one foot square.

Example.—Required the reinforcement for a slab continuous at four sides and 5 inches thick to carry a superimposed load of 150 pounds per square foot over a clear span of 8 feet.

Assuming the weight of the concrete slab in pounds at twelve times the thickness of the slab in inches, then the weight of the slab per foot is 12x5=60 pounds, and the total weight, W, for a span of 8 feet is (60+150)x8=1680 pounds.

 $M=WL \div 12=1680x8 \div 12=1120$ foot-pounds.

If medium structural steel bars or rods are used, the required area, by the upper table, page 274, is, by interpolation, 0.235 square inches, and the sizes may be taken from page 66.

If triangle mesh is used, the steel area required by lower table, page 274, computed for a 5 inch slab, is, by interpolation, 0.188 square inches, requiring by table, page 275, triangle mesh style number 208.

CARNEGIE STEEL COMPANY

REINFORCED CONCRETE SLABS

BENDING MOMENTS IN FOOT POUNDS PER FOOT OF WIDTH

Allowable Fiber Stress: Steel, 16,000 and Concrete 650 Pounds per Sq. Inch

	Slab			Aı	ea of	Steel R	einfor	rement	in Sq	uare I	nches 1	er Fo	ot of '	Width	
Thickness, Inches	Distance, a, Inches	Weight, Lb./Sq.Ft.	.10	.20	.30	.40	.50	.60	.70	.80	.90	1.00	1.10	1.25	1.50
2½ 3 3½ 4 4½ 5 5½ 6½ 7 7½ 8½ 9 9½	3/4 3/4 3/4 3/4 1 1 1 1 1 1 1/4 1 ¹ /4 1 ¹ /4 1 ¹ /4 1 ¹ /4 1 ¹ /2 1 ¹ /2	30 36 42 48 54 60 66 72 78 84 90 96 102 108	209 272 335 398 461 497 558 621 686 751 783	353 525 650 775 900 961 1087 1213 1340 1466 1531 1658 1785 1849 1977	599 858 1135 1235 1412 1600 1787 1975 2162 2257 2446 2634 2730 2919	1245 1584 1766 2101 2349 2596 2844 2969 3218 3467 3594 3845	1894 2312 2760 3205 3515 3669 3977 4288 4444 4757	2922 3431 3974 4254 4728 5099 5283 5656	4173 4465 5097 5734 6069 6543	5309 5982 6338 7063	5494 6206 6574 7330	6790			,
$ \begin{array}{c} 10 \\ 10 \frac{1}{2} \\ 11 \\ 11 \frac{1}{2} \\ 12 \end{array} $	$\begin{array}{c c} 1\frac{1}{2} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \\ 2 \end{array}$	120 126 132 138 144		2104	3109 3205 3395 3586 3681	4096 4222 4475 4726 4852	5068 5224 5537 5850 6007	6027 6213 6588 6960 7148	6974 7192 7625 8058 8276	8163 8652 9145	8120 8525 9359 10224 10500	8817 9681 10575	9079 9972 10898	1036 9 11337	10936 11969

Allowable Fiber Stress: Steel, 20,000 and Concrete, 650 Pounds per Sq. Inch

	Slab			A	rea of	Steel	Reinf	orcen	ent ii	a Squ	are In	ches	per F	oot of	Widt	h	
Thickness, Inches	Distance,	Weight, Lb./Sq.Ft.	.04	.06	.08	.10	.12	.14	.16	.18	.20	.25	.30	.35	.40	.45	.50
21/2	3/4	30	108	160	211	261	295	311	325	342	353	377		İ			
3	3/4	36	140	207	273	338	404	468				574	599				
31/2	34	42	173	256	338	419	499	578			750		858				
4	34	48	205	304	401	498	594	689	783					1194			
41/2	34	54	237	352	465	577	688	798						1516			1004
5	1	60		377	500	621	740	857	972					1690 2056			
51/2	1	66		421	560	697	832							2056			
6	1	72			624	777	928							2858			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	78 84			691	859 939								3131			
71/2	11/4	90				978								3268			
8	114	96				310								3542			
81/2		102					1358							3815			
9	11/2	108					- 300							3955			
91/2		114												4230			
10	11/2	120			,				2119	2375	2630	3261	3886	4506	5120	5730	6335

TRIANGLE MESH CONCRETE REINFORCEMENT

AMERICAN STEEL AND WIRE COMPANY STANDARD

Triangle Mesh is a woven fabric of cold drawn steel wire, providing a continuous reinforcement, an even distribution of metal, and a perfect bond. Made with both single and stranded tension members in lengths up to 300 feet and in widths up to 56 inches.

TRIANGLE MESH-STYLES, AREAS, AND WEIGHTS

Longitudinal and Cross Wires (No. 14 A. S. & W. Co. Gage), Spaced 4 Inches.

m:))()		Longitudi	nal Wi	re	Triangl	e Mesh
Triangle Mesh Style Number	Number of Strands	Thick A.S. & Wire	W. Co.	Net Area per Foot Width, Sq. Inches	Total Area per Foot Width, Sq. Inches	Approx. Weight per 100 Sq. Ft. Pounds
032	1	No	12	.026	.032	22
040	1	14	11	.034	.040	25
049	1	**	10	.043	.049	28
058	1	**	9	.052	058	32
068	1	**	8	.062	.068	35
080	1		7	.074	.080	40
093	1	**	6	.087	.093	45
107	1	**	5	.101	.107	50
126	1		4	.120	.126	57
146	1	**	3	.140	.146	65
153	1		14"	.147	.153	68
168	1	**	2	.162	.168	74
180	2 2 2 3 3		6	174	.180	78
208	2	4.4	5	.202	.208	89
245	2	**	4	.239	.245	103
267	3	**	6	.261	.267	111
287	3	**	$5\frac{1}{2}$.281	.287	119
309	3 3		5	303	.309	128
336	3	**	41/2	.330	.336	138
365	3	- "	4	.359	.365	149
395	3	- "	$3\frac{1}{2}$.389	.395	160

Length of Rolls: 150, 200 and 300 feet.
Width of Rolls: 16, 20, 24, 28, 32, 36, 40, 44, 48, 52 and 56 inches, approximately.

Triangle Mesh is furnished either with or without galvanizing; unless otherwise specified material will be shipped not galvanized.

BUCKLE PLATES

Buckle Plates, as generally used on highway bridges with paved floors, are subjected to a concentrated live load due to the weight of a wagon or truck wheel and to a uniform dead load due to the weight of the roadway paving.

Buckle Plates should be placed with the buckle turned down; then the live load which can be placed on a buckle in addition to the uniform dead load can be obtained from the following formula. Let:

P =Total allowable concentrated load on buckle plate, in pounds.

w = Uniform load, in pounds per square foot.

d =Rise of buckle, in inches.

1 =Length of buckle, in inches.

b = Width of buckle, in inches.

t =Thickness of buckle plate, in inches,

$$P = t \left(\frac{300 \text{ fdt} - 0.525 \text{ wlb}}{6 \text{ d} + 15 \text{ t}} \right)$$
 pounds, per buckle.

The following table gives, for a fiber stress of 9000 pounds, the maximum concentrated live load in pounds allowed on buckles (turned down), in addition to a uniform load assumed to be the average weight of paving, etc., of 120 pounds per square foot.

Thickness of Buckle Plate,	Rise, d, in Inches								
Inches	2	$2\frac{1}{2}$	3	31/2					
1/4	20000	22000	22000	22500					
5/16	30000	33000	34000	34000					
3/8	41000	45000	47000	47500					
7/16	53000	58000	61000	63000					

The total allowable uniformly distributed load which a buckle plate will safely support may be obtained from the formula:

W == 12 fdt pounds, per buckle.

When the buckles are turned up, use one-third of above values.

BUCKLE PLATES

AMERICAN BRIDGE COMPANY STANDARD

umber	Size of Buckle	Rise	Rise Radii of Buckle		Number of Buckles	Widths of Flanges and Finets				
Die Number	Side l, Side b FtIn. FtIn	d, In.	Side l, FtIn.	Side b, FtIn.	in One Plate	End Flanges	Fillets	Side Flanges b ₁ , b ₂		
1 2 3 4 4 5 6 7 8 9 9 10 11 12 11 12 21 22 22 24 25 26 27 28 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	3-11 4-6 3-11 3-6 3-1 3-6 3-1 3-9 3-9 3-1 3-9 3-1 3-9 3-1 3-9 3-1 3-9 3-1 3-9 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1	3 1/2 1/2 2 1/2 2 1/2 3 3 3 3 3 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	6- 85% 8- 97% 7- 9½ 6- 37- 17% 4-105% 7- 17% 10- 2 5- 5 5 10- 2 3- 71½ 4- 71% 4- 71% 3-10½ 4- 71% 3-10½ 4- 71% 3-10½ 4- 71% 3-10½ 4- 71½ 2- 6½ 6- 3 1- 1½	$ \begin{vmatrix} 5 - 1^{21}/83 \\ 4 - 105/8 \\ 4 - 7\frac{1}{2} \\ 2 - 6\frac{1}{16} \\ 3 - 10\frac{1}{4} \\ 5 - 4\frac{3}{4} \end{vmatrix} $	1 to 8 1 to 7 1 to 8 1 to 10 1 to 8 1 to 11 1 to 8 1 to 14 1 to 12 1 to 14 1 to 12 1 to 10 1 to 12 1 to 10 1 t	Preferably made alike inimum == 2" Maximum f wider than 1'-6" use angles riveted ac plate for stiffeners	Minimum = $2''$ Maximum = $6''$ 4'' or less preferred	Preferably made allico Maximum = $2''$ for fraction of the profession of the greater wide enough to make two flanges of the greater width, the marrower flange to be sheared to required width after buckling.		

Thickness of Plates, 1/4", 5/16", 3/8" or 7/16".

Plates of greater length than given in table may be made by splicing with bars, angles, or tees.

All plates are made with buckles up, unless otherwise ordered. When buckles are turned down, a drain hole should be punched in the center of each buckle and should be shown on sketch.

Buckles of different sizes should not be used as it increases the cost of the plate.

Connection holes are generally for $\frac{5}{4}$ ", $\frac{3}{4}$ " or $\frac{7}{6}$ " rivets or bolts. Holes of different sizes in same plate will increase the cost of the plate.

Spacing for holes lengthwise of plate should be in multiples of 3" and should not exceed 12". Odd spaces to be at end of plate and in even $\frac{1}{4}$ ". Minimum spacing crosswise $\frac{4}{2}$ ", usually 6".

Die number must be shown on drawings.

Sketches for Buckle Plates should indicate allowable overrun in length and width.

Elements of Checkered Plates

Section Index	Wid	th, a	Thickness,	Weight per	Section Modulus for
			t, Inches	Square Foot, Pounds	One Foot Width Inches ³
M 56	Over 12	66	3/4	31.6	1.125
M 55	Over 12	66	5/8	26.5	0.781
M 54	Over 6	66	1/2	21.4	0.500
M 53	Over 6	66	746	18.9	0.383
M 52	Over 6	66	3/8	16.3	0.281
M 51	Over 6	66	5/16	13.8	0.195
M 50	Over 6	66	1/4	11.2	0.125
M 49	Over 6	66	346	8.7	0.070

Allowable Uniform Load in Pounds per Square Foot

Span	Fibe	r Stre	ss, 160	000 Po	unds	pe r Sc	uare l	nch	Fib	er Stre	ess, 12	000 P	ounds	per Sc	quare I	nch
Feet	3/1	5/8	1,/2	7/16	3/8	5/16	1/4	316	3/4	5/8	1/2	7/16	3/8	5/16	1/4	346
1	12000	8333	5333	4083	3000	2083	1333	750	9000	6250	4000	3063	2250	1563	1000	563
2	3000	2083	1333	1021	750	521	333	188	2250	1563	1000	766	563	391	250	141
3	1333	926	593	454	333	232	148	83	1000	694	444	340	250	174	111	63
4	750	521	333	259	188	130	83	47	563	391	250	191	141	- 98	63	35
5	486	333	213	163	120	83	53	30	360	250	160	123	90	63	40	23
6	333	232	148	113	83	58	37	21	250	174	111	85	63	43	28	
7	245	170	109	83	61	43	27		184	128	82	63	46	32		
8	188	130	83	64	47	33			141	98	63	48	35			
9	148	103	66	50	37				112	77	49	38				
10	120	83	53	41					90	63	40					
11	99	69	44						74	- 52						
12	83	58							63	43						

The values given in above table are the safe loads per square foot of plates supported on two sides only and are based upon the resistance of rectangular sections, 12 inches by the net thickness, t.

The weight of the plate is included in the safe loads and must be deducted to obtain the net superimposed safe load.

Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses.

ROOFS AND ROOF LOADS

The design of roofs and the selection of suitable roofing materials depend on the character of the building, whether monumental, public, residence, mill or shop; permanent or temporary; geographical location as regards allowance for snow and wind loads, and also availability of materials and familiarity of workmen with the construction; atmospheric conditions as concerns presence of industrial or other plants producing deleterious gases; watertightness or resistance of the roof layers to penetration of water, snow or ice under storm and long continued exposure; wind resistance or the strength of materials to resist displacement of the entire surface or disruption between points of support; type and pitch of roof, whether self-supporting on wide spans or requiring the use of sheathing, and whether materials can be laid safely on steep surfaces.

A good roof on a permanent structure should be fireproof from within as well as without, made of refractory materials supported by equally refractory framing. It should last without repair as long as the building stands without repair. Its maintenance cost should be low and its materials purchased on the probable life and service of the structure.

Snow Loads. The snow loads on roofs vary with the geographical location, the altitude and humidity of the place, and with the slope of the roof. Where snow is likely to occur, the minimum load per horizontal square foot of roof should be taken at 25 pounds for all slopes up to 20 degrees; this load to be reduced one pound for each degree of increase in slope up to 45 degrees, above which no snow load need be considered. In severe climates these loads should be increased in accordance with actual conditions. Regard should also be taken to the possibility of partial snow load with local concentration.

Wind Loads. These vary also with the geographical location and the slope of the roof, and, when not fixed by building laws, are usually taken as acting horizontally at 40 pounds per square foot on vertical surfaces of the most exposed structures, and 30 pounds on less exposed structures. On inclined surfaces only the normal components of the wind pressure need be considered. The following normal pressures are based on the formula given by Duchemin: $P = P_1 \frac{2 \sin \alpha}{1 + \sin^2 \alpha}, \text{ where } P_1 \text{ is the direct horizontal pressure assumed at 30 pounds per square foot on the vertical surface and P the normal pressure on a unit of surface, sloping at angle <math>\alpha$ with the horizontal.

NORMAL WIND PRESSURE, IN POUNDS PER SQUARE FOOT

Slope a O	Pressure per Square Foot, Pounds	Slope a °	Pressure per Square Foot, Pounds	Slope a O	Pressure per Square Foot, Pounds	Slope a O	Pressure per Square Foot, Pounds
5	5.19	20	18.37	35	25.90	50	28.97
10	10.11	25	21.51	40	27.29	55	29.41
15	14.55	30	24.00	45	28.28	60	29.69

For other pressures than 30 pounds per square foot, the values given above change in proportion. For slopes over 60° the values assumed for horizontal pressure are applied.

Combined Roof Loads. In climates corresponding to that of Pittsburgh, and where the roof loads are not fixed by building laws, ordinary roofs up to 80 feet span should carry the following minimum loads per square foot of exposed surface, applied vertically, to provide for dead, wind and snow loads combined.

Roof Covering .	Roof Load per Square Foot, Pounds
Gravel or (on boards, flat slope, 1 to 6 or less	. 50
Composition on boards, steep slope, more than 1 to 6	
Roofing on 3 inch flat tile or cinder concrete	. 60
Corrugated sheeting on boards or purlins	
Slate on boards or purlins	. 50
on 3 inch flat tile or cinder concrete	. 65
Tile on steel purlins	. 55
Glass	. 45

For roofs in climates where no snow is likely to occur, reduce these loads by 10 pounds per square foot, but no roof or any part thereof should be designed for a total live and dead load less than 40 pounds per square foot.

Roof Covering. As stated above, suitable protection of a building against rain, snow, etc., depends on the character and location of the building, and the slope or pitch of the roof. Tin, tar, gravel, asphalt roofings and similar compositions are used for flat roofs; slate, tiles, and tin are used for slant roofs of public buildings and residences, shingles for smaller dwelling houses, and corrugated sheeting for shops and warehouses. Slate, tile, tin, and shingles are usually attached to a layer of planking, called sheathing, which in turn is supported by rafters, often called jack rafters, resting upon the roof purlins, or placed directly upon the purlins of the roof.

ROOF CONSTRUCTION

APPROXIMATE WEIGHT OF ROOFING MATERIAL

Roofing Material	Weight per Sq. Foot, Pounds
Copper, No. 22 B. W. G	11/4
Corrugated galvanized iron, No. 20 B. W. G	21/4
Corrugated galvanized iron, No. 26 B. W. G	11/4
Felt, 2 layers	
Felt and asphalt or coal-tar	2
Glass, 1/8 inch thick	1 3/4
Lath and plaster ceiling	6-8
Lead, 1/8 inch thick	71/2
Sheathing, hemlock, 1 inch thick	2
Sheathing, white pine, spruce, 1 inch thick	21/4-21/2
Sheathing, yellow pine, 1 inch thick	3 1/2
Shingles, 6x18 inches, 6 inches to weather	2
Skylight, glass 3/16 to 1/2 inch, including frame	4-10
Slag roof, 4-ply, with cement and sand	4
Slate, 1/8 inch thick, 3 inch double lap	4 1/2
Slate, % inch thick, 3 inch double lap	634
Terneplate, IC	
Terneplate, IX	
Tiles (plain), 10 1/2 x 6 1/4 x 3/4 inches, 5 1/4 inches to weather	
Tiles (Spanish), 14½x10½ inches, 7¼ inches to weather	81/2
Zinc, No. 20 B. W. G	11/2

Roof Trusses. Trusses are used where wide roof openings are to be spanned; they form a structure of compression and tension members and produce vertical reactions under vertical loads; the total load of the roof, that is, the weight of the truss, purlins, roof covering, ceiling, and often also the snow and wind load, is usually considered a uniformly distributed load, equally divided between the two supports and producing equal and vertical end reactions.

The purlins usually rest on the upper chord of the truss, transmitting to the latter the load of the roof covering, the wind and snow load, that of the jack rafters and their own, and are often so arranged as to carry the dead load directly to the truss joints or panel points to avoid transverse stresses. The distance between two consecutive joints of the top chord is the panel length, the distance between two adjacent trusses the bay length.

The transverse strength of the sheathing or of the corrugated iron used for the roof covering generally determines the spaces between the jack rafters or the purlins. These purlins or rafters are small steel shapes, such as beams, channels and angles, or wooden beams, if the roof is not of fireproof construction.

TRUSSES-Formula for Stresses and Lengths

<]	[
W	,	n → T./	H — 9	cot i

Member	Stress		Length
Aa	+ % √n²+4	x W	¼ L sec a
Bb	$+\frac{1}{\sqrt{n^2+4}}(3_4n^2+$	l) x W	¼ L sec a
La Le	%n %n	x W	¹ 4 L sec ² a L (1—½ sec ² a)
ab	$+\frac{n}{\sqrt{n^2+4}}$	x W	% L seca tana
be	- 1/4n	x W	V₄ L sec² a

	DIMILLE	111000
lem ber	Stress	Length
Aa	$+\frac{1}{\sqrt{n^2+4}}(54n^2+5) \times V$	V 16 L seca
Вь	$+\frac{1}{2\sqrt{n^2+4}}(^{13}6n^2+6)x$	V 's L sec a
Ce	$+\frac{1}{\sqrt{n^2+4}}(54n^2+1) \times V$	V Va L seca
La	%n x \	V 14 L sec²α V L (1—14 sec²α)
Ld	%nx \	V L (1-1/2 sec2 a)
ab, bc		$V = L \sqrt{\frac{\sec^2 \alpha}{9} + \sec^2 \alpha \tan^2 \alpha}$
ed	4an x 1	V V ₄ L see ² a

SIMPLE FAN TRUSS

Ŵ		$n = L/H = 2 \cot$
	COMPOUND FINE TRUE	a I

	COMPOUND	FINK 7	CRUSS	COMPOUND FAN TRUSS				
Member	Stress		Length	Member	Stress	Length		
Aa	$+ \sqrt[3]{4} \sqrt{n^2 + 4}$	x W Is	L seca	Aa	$\sqrt{n^2+4}$ (1½n ² +11)x	W 1/12 L sec a		
·Bb	$+\frac{1}{\sqrt{n^2+4}}(74n^2+5)$	x W	L seca	Bb	$+\frac{1}{\sqrt{n^2+4}}(3y_{12}n^2+9)x$	W 1/12 L sec a		
Ce	$+\frac{1}{\sqrt{n^2+4}}(\sqrt[3]{n^2+3})$	- 1	L sec a	Cc	$+\frac{1}{\sqrt{n^2+4}}(1V_4n^2+7)$ x	W Viz L seca		
Dſ	$+\frac{1}{\sqrt{n^2+4}}(\sqrt{n^2+1})$	1	L sec a	Df	$+\frac{1}{\sqrt{n^2+4}}(1/4n^2+5)$ x	W 1/12 L sec a		
La			L sec ² a	Eg	$+\frac{1}{\sqrt{n^2+4}}(3/(2n^2+3)x)$	W ₁₂ L sec a		
Le Lg			L sec²a L (11/2 sec²a)	Fh	$+\frac{1}{\sqrt{n^2+4}}(1/4n^2+1) \times$	W 412 L sec a		
ab, ef	" _n		L secatana	La Ld Li	%n x %n x	W % L sec ² a W L sec ² a U(1-½ sec ² a)		
cđ	$+\frac{2n}{\sqrt{n^2+4}}$		L secatana	nb, bc,} fg, gh	$+\frac{n\sqrt{n^4+40n^2+144}}{6(n^2+4)}x$	$W = \frac{1}{3} L \sqrt{\frac{\sec^2 \alpha}{\alpha} + \sec^2 \alpha \tan^2 \alpha}$		
be, de dg		^ "	L sec²a L sec²a	de	$+\frac{3n}{\sqrt{n^2+4}}$ x	W 4 L secatana		
(g			L sec ² a	ed, ef ei hi	½n x ¾n x	W 1/4 L sec ² a W 1/4 L sec ² a W 1/4 L sec ² a		

Coefficients for	Calculating	Lengths of	Truss	Members

Values of n	3	24/7	$2 \cot 30^{\circ}$	4	24/5	5	6
Values of α	33°41'24"	30°15′23″	30°	26°33′54"	22°37′12″	21°48′ 5″	18°26′ 6′′
sec a	1.2018	1.1577	1.1547	1.1180	1.0833	1.0770	1.0541
sec ² a	1.4444	1.3403	1.3333	1.2500	1.1736	1.1600	1.1111
sec a tan a	0.8012	0.6753	0.6667	0.5590	0.4514	0.4308	0.3514
$\sqrt{\frac{\sec^2\alpha}{9} + \sec^2\alpha \tan^2\alpha}$	0.8958	0.7778	0.7698	0.6718	0.5781	0.5608	0.4969

TRUSSES-COEFFICIENTS OF STRESSES

n	=	T.	/H	=	9	cot.	а

	n	=S _I	an ÷	Heig	ht=	2 cot	а		n	=Sp	an ÷	Heig	ht=	2 cot	а
Member	3	24/7	2 cot 30°	4	24/5	5	6	Member	3	24/7	2 cot 30°	4	24/5	5	6
Aa	2.70	2.98	3.00	3.35	3.90	4.04	4.74	Aa	4.51	4.98	5.00	5.59	6.50	6.73	7.91
Bb	2.15	2.47	2.50	2.91	3.52	3.67	4.43	Bb	3.54	3.96	4.00	4.55	5.38	5.59	6.64
La	2.25	2.57	2.60	3.00	3.60	3.75	4.50	Ce	3.40	3.95	4.00	4.70	5.73	5.99	7.27
Le	1.50	1.71	1.73	2.00	2.40	2.50	3.00	La	3.75	4.30	4.33	5.00	6.00	6.25	7.50
ab	0.83	0.86	0.87	0.89	0.92	0.93	0.95	Ld	2.25	2.57	2.60	3.00	3.60	3.75	4.50
be							1.50		0.93	0.99	1.00	1.08	1.18	1 21	1.34
-								ed	1.50	1.71	1.73	2.00	2.40	2.50	3.00

	n	= Sp	an ÷	Heig	ht=	2 cot	a		n	= Sp	an ÷	Heigh	nt ==	2 cot	a
Member	3	24/7	2 cot 30°	4	24/5	5	6	Member	3	24/7	2 cot 30°	4	24/5	5	6
Aa	6.31	6.95	7.00	7.83	9.10	9.42	11.07	Aa	9.92	10.91	11.00	12.30	14.30	14.81	17.39
Bb	5.76	6.44	6.50	7.38	8.72	9.05	10.75	Bb	8.95						16.13
Ce	5.20	5.94	6.00	6.93	8.33	8.68	10.43	Cc	8.81	9.91	10.00	11.40	13.53	14.07	16.76
Df	4.65	5.43	5.50	6.48	7.95	8.31	10.12	Df	8.25	9.40	9.50	10.96	13.15	13.70	16.44
La	5.25	6.00	6.07	7.00	8.40	8.75	10.50	Eg	7.28	8.41	8.50	9.91	12.02	12.55	15.18
Lc	4.50	5.14	5.20	6.00	7.20	7.50	9.00	Fh	7.14	8.40	8.50	10.06	12.38	12.95	15.93
Lg	3.00	3.43	3.46	4.00	4.80	5.00	6.00	La	8.25	9.43	9.53	11.00	13.20	13.75	16.50
ab, ef	0.83	0.86	0.87	0.89	0.92	0.93	0.95	Ld	6.75	7.71	7.79	9.00	10.80	11.25	13.50
cd	1.66	1.73	1.73	1.79	1.85	1.86	1.90	Li	4.50	5.14	5.20	6.00	7.20	7.50	9.00
bc, de	0.75	0.86	0.87	1.00	1.20	1.25	1.50	ab, bc, fg, gh	0.93	0.99	1.00	1.08	1.18	1.21	1.34
dg	1.50	1.71	1.73	2.00	2.40	2.50	3.00	de	2.50	2.59	2.60	2.68	2.77	2.79	2.85
fg	2.25	2.57	2.60	3.00	3.60	3.75	4.50	ed, ef	1.50	1.71	1.73	2.00	2.40	2.50	3.00
								ei	2.25	2.57	2.60	3.00	3.60	3.75	4.50
	i .)						hi	3.75	4.29	4.33	5.00	6.00	6.25	7.50

The pitch of a truss is the ratio of the rise or height to the span length of the truss. Pitch = H/L = 1/n, n = L/H = 1/pitch.

To obtain the stress in any member of a given truss, multiply the corresponding coefficient by the panel load W.

Compression members are designated by + and tension members by -

TRUSSES-Formulas for Stresses and Lengths

n =	L/H	=2	cot	0

	PRAT	r tru	SS-4	PAN	ELS		PRA	TT TRUS	S-6	PAN	ELS
Member		Stress			Length	Member		Stress			Length
Aa, Bb La Lc ab bc	$-\frac{3}{4}$ $-\frac{1}{2}$ $+ 1$	n n	xW xW xW	1/4 1/2 1/2	$egin{array}{c} \mathbf{L} & \mathbf{sec} \ a \\ \mathbf{L} \\ \mathbf{L} \\ \mathbf{h} \\ \mathbf{L}^2 + 16 \mathbf{h}^2 \end{array}$	Aa, Bb Cd La Lc Le ab cd bc	+ 1/ -5/4 - -3/4 + 1 +8/2	n n n	xW xW xW xW xW xW	1/6 1/6 1/6 1/8 1/3 1/3 3/8	L sec a L sec a L L h h $\frac{h}{L^2+16h^2}$
						de					L^2+36h^2

F	PRATT	TRU	SS-8 P	AN:	ELS	ļ	PRAT	T TRU	JSS-10	PAN	IELS
Member		Stress			Length	Member		Stress			Length
Aa, Bb	+7/41/	n2+	$\overline{4}_{X}W$	1/8	L sec a	Aa, Bb	+%1/	$n^{2}+4$	xW	1/10	L sec a
Cd	+3/21/	n2+	4xW	1/8	$\mathbf{L}\sec a$	Cd	+ 2 _V	$\overline{n^2+4}$	xW	140	L sec a
\mathbf{Df}	+5/41/	n^2+	4xW	1/8	L sec a	Df	+341/	$\overline{n^2+4}$	xW	1/10	L sec a
La	-7/4	n	xW	1/8	\mathbf{L}	Eh	+3/21/	$\overline{n^2+4}$	xW	1/10	L sec a
$_{ m Lc}$	-3/2	n	xW	1/8	L	La	-9/4	\mathbf{n}	xW	1/10	L
Le	5/4	n	xW	1/8	L	Lc	-2	n	xW	1/10	L
$_{ m Lg}$		n	xW	1/4	L	Le	-74	n	xW	1/10	L
$\mathbf{a}\mathbf{b}$	+ 1		xW	1/4	h	Lg	$-8/_{2}$	n	$_{x}w$	140	L
$^{\rm cd}$	_3/2		xW	$\frac{1}{2}$	h	Li	-5/4	\mathbf{n}	xW	1/5	L
\mathbf{ef}	+2		xW	3/4	h	ab	+ 1		xW	15	h
\mathbf{bc}	-1/41/	$\frac{1}{n^2+}$	16xW	1/8ν	$L^2 + 16h^2$	cd	+85		xW	3/5	h
de					$\sqrt{\mathrm{L^2+36h^2}}$		+2		xW	85	h
$_{ m fg}$					$^{/} \overline{ m L^2 + 64 h^2}$		+5/2		xW	1/5	h
	,			ľ		bc	$-\frac{1}{4}\nu$	$n^{2}+$	16xW	140 V	$L^2+16 h^2$
						de	$-\frac{1}{4}V$	n^2+	36xW	1/107	L2+ 36h2
						fg					L^2 + 64 h^2
						hi	$-\frac{1}{4}v$	$\overline{n^2+1}$	$\overline{00}$ xW	1/101	$L^2 + 100h^2$

ROOF CONSTRUCTION

TRUSSES—Coefficients of Stresses

n =	L	\mathbf{H}	=2	cot	c

	n	= Sp	an ÷	Heig	ht=	2 cot	α .		n	— Sp	an ÷	Heig	ht =	2 cot	a
Member	3	24/7	2 cot 30°	4	24/5	5	6	Member	3	24/7	2 cot 30°	4	24/5	5	6
Aa, Bb	2.70	2.98	3.00	3.35	3.90	4.04	4.74	Aa, Bb	4.51	4.96	5.00	5.59	6.50	6.73	7.91
La	2.25	2.57	2.60	3.00	3.60	3.75	4.50	Cd	3.61	3.97	4.00	4.47	5.20	5.39	6.32
Lc	1.50	1.71	1.73	2.00	2.40	2.50	3.00	La	3.75	4.29	4.33	5.00	6.00	6.25	7.50
ab	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Lc	3.00	3.43	3.46	4.00	4.80	5.00	6.00
be	1.25	1.32	1.32	1.41	1.56	1.60	1.80	Le	2.25	2.57	2.60	3.00	3.60	3.75	4.50
								ab	1.00	1.00	1.00	1.00	1.00	1.00	1.00
								cd	1.50	1.50	1.50	1.50	1.50	1.50	1.50
								bc	1.25	1.32	1.32	1.41	1.56	1.60	1.80
								de	1.68	1.73	1.73	1.80	1.92	1.95	2.12

n = I			

	n	= Sp	an ÷	Heigh	ht == 1	2 cot	a		n		an ÷	Heig	ht ==	2 cot	а
Member	3	24/7	2 cot 30°	4	24/5	5	6	Member	3	24/7	2 cot 30°	4	24/5	5	6
Aa, Bb							11.07	Aa, Bb	8.11	8.93	9.00	10.06	11.70	12.12	14.23
Cd					7.80			Cd	7.21	7.94	8.00	8.94	10.40	10.77	12.65
Df	4.51	4.97	5.00	5.59	6.50	6.73	7.91	Df	6.31	6.95	7.00	7.83	9.10	9.42	11.07
La	5.25	6.00	6.06	7.00	8.40	8.75	10.50	Eh	5.41	5.95	6.00	6.71	7.80	8.08	9.49
Lc	4.50	5.14	5.20	6.00	7.20	7.50	9.00	La	6.75	7.71	7.79	9.00	10.80	11.25	13.50
Le	3.75	4.29	4.33	5.00	6.00	6.25	7.50	Lc	6.00	6.86	6.93	8.00	9.60	10.00	12.00
Lg	3.00	3.43	3.46	4.00	4.80	5.00	6.00	Le	5.25	6.00	6.06	7.00	8.40	8.75	10.50
ab					1.00			Lg	4.50	5.14	5.20	6.00	7.20	7.50	9.00
cd	1.50	1.50	1.50	1.50	1.50	1.50	1.50	Li	3.75	4.29	4.33	5.00	6.00	6.25	7.50
ef	2.00	2.00	2.00	2.00	2.00	2.00	2.00	ab	1.00	1.00	1.00	1.00	1.00	1.00	1.00
be	1.25				1.56		1.80	cd	1.50	1.50	1.50	1.50	1.50	1.50	1.50
de	1.68	1.73	1.73	1.80	1.92	1.95	2.12	ef	2.00	2.00	2.00	2.00	2.00	2.00	2.00
fg	2.14	2.18	2.18	2.24	2.33	2.36	2.50	gh	2.50	2.50	2.50	2.50	2.50	2.50	2.50
								bc	1.25	1.32	1.32	1.41	1.56	1.60	1.80
								de	1.68	1.73	1.73	1.80	1.92	1.95	2.12
						j	1	fg	2.14	2.18	2.18	2.24	2.33	2.36	2.50
	İ	3	}	1	İ	1		hi	2.61	2.64	2.65	2.69	2.77	2.80	2.92

CORRUGATED SHEETS

Corrugated sheets are used for roofs and sides of buildings. They are usually laid directly upon the roof purlins and held in place by means of clips of steel hoops which encircle the purlin and are placed about 12 inches apart. Special care must be taken that the projecting edges of the sheets at the eaves and gable ends of the roof are well secured, otherwise the wind will loosen the sheets.

Corrugated sheets are made in the sizes given on opposite page, the size most generally used has nominally $2\frac{1}{2}$ -inch corrugations, actual width $2\frac{1}{2}$ inches, about $\frac{1}{2}$ inch in depth. The gages frequently used for roofing are Nos. 20 and 22, U. S. Standard Gage.

By one corrugation is meant the double curve between corresponding points, and by depth of corrugation the greatest deviation of the curved surfaces from the straight line.

One and one-half corrugations are allowed for lap in the width of the sheet and 6 inches in the length for the usual quarter pitch roof; one corrugation in width and 4 inches in the length of the sheet is usually allowed for sidings.

Corrugated sheets of 2, $2\frac{1}{2}$ and 3 corrugations are furnished in standard lengths of 5, 6, 7, 8, 9 and 10 feet and with a standard covering width of 24 inches, when laid with a lap of either one or one and one-half corrugations.

By experiment it has been determined that corrugated sheet steel, $\frac{5}{8}$ inch deep and No. 20 gage spanning 6 feet, began to give a permanent deflection with a load of 30 pounds per sq. foot, and that it collapsed with a load of 60 pounds per sq. foot. The distance between centers of purlins should, therefore, not exceed 6 feet and should preferably be less than this.

Approximately the uniformly distributed safe load of corrugated sheets may be obtained from the formulas given below, using the following notations:—

W=Total allowable uniform load, in pounds.

b=Curvilinear width of sheet, in inches (b=1.075 x covering width).

I=Unsupported length of sheet, in inches.

t=Thickness of sheet, in inches.

d=Depth of corrugations, in inches.

f=Allowable fiber stress, in pounds per sq. inch.

Then: W=
$$\frac{8fS}{l} = \frac{8f}{l} \times \frac{4bdt}{15} = \frac{32fbdt}{15l}$$

for f= 12000, W= $\frac{25,600 \text{ bdt}}{l}$

CORRUGATED SHEETS

AMERICAN SHEET AND TIN PLATE COMPANY

DESCRIPTION OF SHEETS

Areas of Sheets

	Corr	igations		Width,	Inches	of	Sq.	Ft. in 1	Sheet	Shects	in 100 S	q. Ft.
	Inches	Depth,	Num- ber	Full	Cover-	ngth		orrugatio			orrugatio	
Nomi- nal	Actual	Inches	per Sheet	Sheet	ing	Sheet	5''	3",2½", 2"	1¼", 5/8"	5′′	3",2½", 2"	1½", 5'8",
5 3	5 3	7's 9'16	6	28 26	$\frac{25}{24}$		$11.67 \\ 14.00$	$10.83 \\ 13.00$			$\frac{9.23}{7.69}$	9.60 8.00
*2½ 2½ 2½ 2	$\frac{223}{223}$	$\frac{1_{2}}{1_{2}}$	$\frac{10\frac{1}{2}}{10}$	27 ½ 26	$\frac{24}{24}$	84	$\frac{16.33}{18.67}$	15.17	$\frac{14.58}{16.67}$	$\frac{6.12}{5.36}$		$\frac{6.86}{6.00}$
2 1 ¹ / ₄ ⁵ / ₈	2 1¼	716 85	$\frac{13}{20}$	$\frac{26}{25}$	$\frac{24}{23\%}$	120	$\frac{21.00}{23.33}$	21.67	$\frac{18.75}{20.83}$	4.29	$\frac{5.13}{4.62}$	$\frac{5.33}{4.80}$
5/8	5 8	816	40	25	2438	144	28.00	26.00	25.00	3.57	-3.85	4.00

Standard lengths 5, 6, 7, 8, 9 and 10 ft. Maximum length, 12 ft. except for $\frac{5}{5}\zeta''$ corrugation. Sizes denoted *2½ are for the 27½" width.

Painted Sheets—Weights in Pounds per 100 Square Feet.

Cor-					Thic	kness,	Unite	d Sta	tes Sta	andard	Gage				
In.	10	12	14	16	18	20	21	22	23	24	25	26	27	28	29
5 3 *2½ 2½ 2 1¼	615 607	470 472 478 472	336 338 342 338	269 270 274 270 270 270		162 163 165 163 163 169		135 136 137 136 136 141	122 122 124 122 122 122 127	108 109 110 109 109 113	95 95 97 95 95 99	81 82 83 82 82 85 85	75 75 76 75 78 78	68 68 69 68 68 71	

Galvanized Sheets-Weights in Pounds per 100 Square Feet.

Cor-				Thic	kness,	Unite	ed Sta	tes St	andard	Gage				
rug., In. 10	12	14	16	18	20	21	22	23	24	25	26	27	28	29
5 3 *2½ 63 2½ 623 1¼		352 353 358 353		231 232 235 232 232 232	178 178 181 178 178 178 186	164 165 167 165 165 172	151 151 153 151 151 151 158	137 138 140 138 138 144	124 125 126 125 125 130 130	111 111 113 111 111 116	97 98 99 98 98 102 102	90 91 92 91 91 95 95	84 84 85 84 84 88 88	77 77 78 77 77 81

The weights per 100 square feet given in preceding tables do not include allowances for end or side laps. The following table gives the approximate number of square feet of sheeting necessary to cover an area of 100 square feet and is based on sheets of standard width, 96 inches long. If longer or shorter sheets are used, the number of square feet required will vary accordingly.

Sq. Feet of 21/2 In. Standard Sheets to Cover Area of 100 Sq. Ft.

Side Lap			End La	p, Inches		
eide Lap	1	2	3	4	5	6
1 Corrugation	109	111	112	113	114	116
11/2 "	$\frac{116}{123}$	117 124	$\frac{118}{126}$	$\frac{120}{127}$	$\frac{121}{129}$	123 130

STRUCTURAL TIMBER

The strength of structural timbers depends upon a number of factors; the kind of wood, the age of the tree, the time of the year in which it was felled, the method of sawing, the character of the seasoning and therewith its moisture content, the proportion of heartwood to sapwood and the proportion of knots to clear wood.

In consequence of these variable factors, the working unit stresses approved by the building laws of different cities vary widely, as well also as the unit stresses given in the proceedings of the various engineering associations. They go back in some cases to the studies made in 1895 by the Association of Railway Superintendents of Bridges and Buildings.

The most recent studies in this direction have been made by the American Railway Engineering Association, and the tables for wooden beams and columns which follow are based on the working unit stresses for structural timbers adopted by that Association. The table of working unit stresses has been reprinted, by permission, from the Manual, edition of 1911.

These unit stresses vary with the class of construction. They are intended, as noted, for railway bridges and trestles. For highway bridges and trestles and for buildings and similar structures, the unit stresses may be increased in accordance with the more quiescent character of the loading and freedom from deleterious weather conditions. The values are based on carefully selected timber purchased in accordance with the standard specifications of the Association and subject to careful inspection.

The commercial timbers which are in common use in building construction will not meet these specifications, and, therefore, the unit stresses approved by good building practice as evidenced in the building laws of various cities are rightly lower. The tables as they stand are in accord with the average practice as represented by these building laws, and may, therefore, be used as they stand for ordinary building work executed with the commercial grades of timber, such as can be purchased in the open market.

The allowable loads may be adjusted to other species of wood than those stated in the headings of the tables and to other unit stresses by the direct proportion which such unit stresses bear to those for which the tables are computed. In the case of columns the values may be adjusted to any working unit stress by direct proportion based on the relations of 1/d.

WORKING UNIT STRESSES FOR STRUCTURAL TIMBER

ADOPTED BY THE AMERICAN RAILWAY ENGINEERING ASSOCIATION

The working unit stresses given in the table are intended for railroad bridges and trestles. For highway bridges and trestles, the unit stresses may be increased 25 per cent. For buildings and similar structures, in which the timber is protected from the weather and practically free from impact, the unit stresses may be increased 50 per cent. To compute the deflection of a beam under long continued loading instead of that when the load is first applied, only 50 per cent. of the corresponding modulus of elasticity given in the table is to be employed.

			Dending		SHC	Sucaring				-	Compression	ession	
Kind	Extr	Extreme Fiber Stress	Modulus of Elasticity		Parallel to the Grain	Long inal h in B,	Longitud- inal Shear in Beams	Perpe ular t Gra	Perpendie- ular to the Grain	Parallel to the Grain	llel in	=	Working Stresses for Columns
Timber	Average Ultimate	Working Stress	Аустаge	Average Ultimate	Working sants	Average Ultimate	Working Stress	Elastic Limit	Working Stress	Average Ultimate	Working Stress	Length under 15 x d	Length over 15 x d
Douglas Fir	6100	1200	6100 1200 1510000 690	069	170	170 270	110	630		310 3600	1200	006	1200 900 1200(1—1/60d)
Longleaf Pine	6500	1300	6500 1300 1610000 720	720	180 300	300	120	520		260 3800	1300	975	1300 975 1300(1—1/60d)
Shortleaf Pine	5600	1100	560011001480000710	710	170 330	330	130	340	170	170 3400	1100	825	1100 825 1100(1—1/60d)
White Pine	1400		900 1130000 400	100	100	180	02	290	150	3000	1000	750	1000 750 1000(1—1/60d)
Spruce	4800	1000	4800 1000 1310000 600	009	150 170	170	20	370		180 3200	1100	825	1100 825 1100(1-1/60d)
Norway Pinc	1200		800 1190000 590*	590*	130	250	100		150	150 2600*		800 600	S00(1-1/60d)
Tamarack	4600		900 1220000 670	670	170	260	100		220	3200*	1000	750	3200*1000 750 1000(1—1/60d)
Western Hemlock 5800 1100 1480000 630	5800	1100	1480000	630	160	160 270*	100	440	220	3500	1200	006	1200 900 1200(1—1/60d)
Redwood	2000	900	800000 300	300	80			400		150 3300	900	900 675	900(1—1/60d)
Bald Cypress	4800		900 1150000 500	500	120			340	170	3900	1100	825	1100 825 1100(1—1/60d)
Red Cedar	4200	800	200000					470	230	2800	900	900 675	900(1-1/60d)
White Oak	5700	1100	570011001150000840	840	210 270	270	110	920	450	450 3500	1300 975		1300(1—1/60d)

Unit Stresses in Pounds per Square Inch

WOODEN BEAMS

The safe load tables of wooden beams which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the uniformly distributed safe loads for rectangular sections one inch thick; the safe load for a beam of any thickness is found by multiplying the tabular value by the thickness of the beam in inches. The safe loads include the weight of the beams and are computed on the assumption that the beams are braced against lateral deflection. These tables also give minimum and maximum spans and coefficients of deflection.

The maximum safe loads as limited by the allowable shearing stresses along horizontal axes of beams have been calculated from the formula: Maximum safe load = \% x area of section x safe unit stress for longitudinal shear. These limits, indicated also by horizontal lines in the tables, should not be exceeded to avoid failure of the beam in horizontal direction of the grain of the wood.

The theoretical deflection in the center of the span for uniformly distributed and permanently applied loads is obtained from the coefficients of deflection by dividing the depth of the beam, in inches, into the corresponding coefficient; the result obtained only approximates the actual deflection, as the modulus of elasticity varies with the moisture content of the wood.

The deflection of beams intended to carry plastered ceilings should not exceed ½600 of the span; the table gives the maximum spans for this limit, for uniformly distributed and permanently applied loads.

For loads concentrated in the center of the span, use one-half the values for the tabular loads and four-fifths of the coefficients of deflection. For special cases of loading, see pages 141 to 146.

EXAMPLE 1.—Required the thickness and the approximate deflection of a beam of white oak, 14 inches deep, supporting a uniformly distributed and permanent dead and live load of 10,000 pounds over a span of 19 feet.

The tabular value for a beam one inch thick and for a span of 19 feet is 1,261 pounds; the required thickness is therefore $10,000 \div 1,261 = 8$ inches, and the deflection is $20.72 \div 14 = 1.48$ inches.

EXAMPLE 2.—Required the safe load of a beam of white pine, 8 inches deep and 6 inches thick, without exceeding the longitudinal shearing stress.

The table gives for a corresponding beam 1 inch thick a safe load of 747 pounds; the total safe load is therefore 6 x 747=4,482 pounds, or the safe load which can be safely supported over a span of 8.6 feet.

EXAMPLE 3.—Required the safe load, concentrated in the center of a span 26 feet long, and the deflection of a beam of longleaf pine, 18 inches deep and 12 inches thick.

The table gives for a corresponding beam 1 inch thick a uniformly distributed safe load of 1,800 pounds, or for a load in center of span 1,800+2=900 pounds; for a beam 12 inches wide the safe load is therefore 900 x 12=10,800 pounds, and the deflection is approximately $\frac{4}{5}$ x 32.75+18=1.46 inches.

RECTANGULAR WOODEN BEAMS-ONE INCH THICK

MAXIMUM SAFE LOADS AND LIMITING SPANS

Beam,	Wh Oa		Long Pi		Short Pin		Wh Pin		Dou Fi		West Hem		Spri	ice
Depth of Besm Inches			Max. Load, Lbs.				Max. Load, Lbs.	Span,	Max. Load, Lbs.				Max. Load, Lbs.	
2 4 6 8 10 12 14 16 18 20 22	2347 2640 2933 3227	6.7 8.4 10.0 11.7 13.4 15.0 16.7 18.4	960 1280 1600 1920 2240 2560 2880 3200 3520	3.6 5.4 7.2 9.0 10.8 12.6 14.4 16.3 18.1	693 1040 1387 1733 2080 2427 2773 3120 3467 3813	4.2 5.6 7.1 8.5 9.9 11.3 12.7 14.1 15.5	$1307 \\ 1493 \\ 1680$	6.4 8.6 10.7 12.9 15.0 17.1 19.3 21.4 23.6	880 1173 1467 1760 2053 2347 2640 2933 3227	7.3 9.1 10.9 12.8 14.6 16.4 18.2 20.0	800 1067 1333 1600 1867 2133 2400 2667 2933	5.5 7.3 9.2 11.0 12.8 14.7 16.5 18.3 20.2	373 560 747 933 1120 1307 1493 1680 1867 2053	7.1 9.5 11.9 14.3 16.7 19.0 21.4 23.8 26.2

COEFFICIENTS OF DEFLECTION FOR PERMANENT LOADS

Span in Feet	White Oak	Long- leaf Pine	Short- leaf Pine, Western Hem- lock	White Pine, Douglas Fir	Spruce	Span in Feet	White Oak	Long- leaf Pine	Short- leaf Pine, Western Hem- lock	White Pine, Douglas Fir	Spruce
1	0.06	0.05	0.05	0.05	0.05	21	25.31	21.37	19.67	21.05	20.20
2	0.23	0.19	0.18	0.19	0.18	22	27.78	23.44	21.59	23.10	22.17
$\frac{2}{3}$	0.52		0.40	0.43	0.41	23	30.37	25.63	23.59	25.25	
4 5 6 7 8 9	0.92	0.78	0.71	0.76	0.73	24	33.06	27.91	25.69	27.49	26.38
5	1.44	1.21	1.12	1.19	1.15	25	35.88	30.28	27.88	29.83	28.63
6	2.07	1.74	1.61	1.72	1.65	26	38.80	32.75			30.96
7	2.81	2.37	2.19	2.34	2.24	27	41.85	35.32	32.51	34.80	33.39
8	3.67	3.10	2.85	3.06	2.93	28	45.00	37.99		37.42	35.91
	4.65	3.92	3.61	3.87	3.71	29	48.27	40.75	37.51	40.14	
10	5.74	4.85	4.46	4.77	4.58	30	51.66	43.61		42.96	
11	6.95	5.86	5.40	5.78	5.54	31	55.16	46.56		45.87	44.01
12	8.27	6.98	6.42	6.87	6.60	32	58.78	49.61	45.67	48.88	
13	9.70	8.19	7.54	8.07	7.74	33	62.51	52.76		51.98	
14	11.25	9.50	8.74	9.36	8.98	34	66.35	56.01	51.56	55.18	52.95
15	12.92	10.90	10.04	10.74	10.31	35	70.32	59.35	54.64	58.47	56.11
16	14.69	12.40	11.42	12.22	11.73	36	74.39	62.79	57.80	61.86	
17	16.59	14.00	12.89		13.24	37	78.58	66.33	61.06	65.34	62.70
18	18.60	15.70	14.45		14.84	38	82.89	69.96		68.92	66.14
19		17.49			16.53	39	87.31	73.69			69.66
20	22.96	19.38	17.84	19.09	18.32	40	91.84	77.52	[71.36]	76.37	73.28

MAXIMUM SPANS IN FEET FOR DEFLECTIONS = 1/360 SPAN

Species of Timber				1	Depth	of Be	am ir	Inch	es			
Species of Timber	2	4	6	8	10	12	14	16	18	20	22	24
White Oak Longleaf Pine Shortleaf Pine, Hemlock White Pine, Douglas Fir Spruce	1.4 1.5 1.4	$\frac{2.8}{3.0}$ $\frac{2.8}{2.8}$	$\frac{4.5}{4.2}$	5.5 6.0 5.6	6.9 7.5 7.0	$ \frac{9.0}{8.4} $	$9.6 \\ 10.5 \\ 9.8$	11.0 12.0 11.2	$12.4 \\ 13.5 \\ 12.6$	$13.8 \\ 15.0 \\ 14.0$	12.8 15.1 16.4 15.4 16.0	$16.5 \\ 17.9 \\ 16.7$

RECTANGULAR WOODEN BEAMS—ONE INCH THICK DOUGLAS FIR

ALLOWABLE UNIFORM LOAD IN POUNDS

Maximum Bending Stress, 1200 Pounds per Square Inch

Span					Dept	h of Bea	ım in Ir	iches				
in Feet	2	4	6	8	10	12	14	16	18	20	22	24
2 3 4 5	298 267 178 133 107	587 533 427	990									
6 7 8 9 10	89 76 67	356 305 267 237 213	880 800 686 600 533 480	1178 1067 948 853	1467 1333							
11 12 13 14 15		194 178	436 400 369 343 320	776 711 656 610 569	1212 1111 1026 952 889	$\begin{array}{r} 1760 \\ \hline 1745 \\ 1600 \\ 1477 \\ 1371 \\ 1280 \\ \end{array}$	2053 2010 1867 1742	2317 2276				
16 17 18 19 20			300	533 502 474 449 427	833 784 741 702 667	1200 1129 1067 1011 960	1633 1537 1452 1375 1307	2133 2008 1896 1796 1707	$\begin{array}{r} 2640 \\ \hline 2541 \\ 2400 \\ 2274 \\ 2160 \\ \end{array}$	2933 2807 2667	3227 3227	
21 22 23 24 25	-				635 606 580 556	914 873 835 800 768	1244 1188 1136 1089 1045	1625 1552 1484 1422 1365	2057 1964 1878 1800 1728	2540 2424 2319 2222 2133	3073 2933 2806 2689 2581	349 333 320 307
26 27 28 29 30						738 711 686	1005 968 933 901 871	1313 1264 1219 1177 1138	1662 1600 1543 1490 1440	2051 1975 1905 1839 1778	2482 2390 2305 2225 2151	295 284 274 264 256
31 32 33 34 35							843 817	1101 1067 1034 1004 975	1394 1350 1309 1271 1234	1720 1667 1616 1569 1524	2082 2017 1956 1898 1844	247 240 232 225 219
36 37 38 39 40								948	1200 1168 1137 1108 1080	1481 1441 1404 1368 1333	1793 1744 1698 1655 1613	213 207 202 196 192

TIMBER SAFE LOADS

RECTANGULAR WOODEN BEAMS—ONE INCH THICK LONGLEAF PINE

ALLOWABLE UNIFORM LOAD IN POUNDS

Maximum Bending Stress, 1300 Pounds per Square Inch

Span					Dept	h of Be	am i n I ı	nches				
Feet	2	4	6	8	10	12	14	16	18	20	22	21
2 3	289 193	640										
$\frac{4}{5}$	144 116	578 462		-								
6 7 8 9	96 83 72	385 330 289 257 231	960 867 743 650 578 520	1280 1156 1027 924	1600 1444							
11 12 13 14 15		210 193	473 433 400 371 347	840 770 711 660 616	1313 1204 1111 1032 963	1920 1891 1733 1600 1486 1387	2240 2178 2022 1887	$\frac{2560}{2465}$				
16 17 18 19 20			325	578 544 514 487 462	903 850 802 760 722	1300 1224 1156 1095 1040	1769 1665 1573 1490 1416	2311 2175 2054 1946 1849	2880 2753 2600 2463 2340	8200 3041 2889	8520 3496	
21 22 23 24 25					688 657 628 602	991 945 904 867 832	1348 1287 1231 1180 1132	1761 1681 1608 1541 1479	2229 2127 2035 1950 1872	2751 2626 2512 2407 2311	3329 3178 3040 2913 2796	378: 361: 346: 332:
26 27 28 29 30						800 770 743	1089 1049 1011 976 944	1422 1370 1321 1275 1233	1800 1733 1671 1614 1560	2222 2140 2064 1992 1926	2689 2589 2497 2411 2330	3200 3082 2971 2869 2773
31 32 33 34 35							913 885	1193 1156 1121 1088 1057	1510 1463 1418 1377 1337	1864 1806 1751 1699 1651	$\begin{array}{c} 2255 \\ 2185 \\ 2119 \\ 2056 \\ 1998 \end{array}$	2684 2600 2521 2447 2377
36 37 38 39 40	1							1027	1300 1265 1232 1200 1170	1605 1562 1521 1482 1444	1942 1890 1840 1793 1748	2311 2249 2189 2133 2080

Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

RECTANGULAR WOODEN BEAMS—ONE INCH THICK SHORTLEAF PINE, WESTERN HEMLOCK AND WHITE OAK

ALLOWABLE UNIFORM LOAD IN POUNDS

Maximum Bending Stress, 1100 Pounds per Square Inch

Span					Dept	h of Be	am in Ir	iches				
Feet	2	4	6	8	10	12	14	16	18	20	22	24
	347											
2	245	693										
3	163	652										
4	122	489	1040									
5	98	391	880	1387								
6	82	326	733	1304								
7	70	279	629	1117	1733							
8	61	245	550	978	1528	2050						
9		217	489	869	1358	1956	2427					
10		196	440	782	1222	1760	2396					
11		178	400	711	1111	1600	2178	2773				
12		163	367	652	1019	1467	1996		3120			
13			338	602	940	1354	1843	2407	3046			
14			314	559	873	1257	1711	2235	2829	3467		
15			293	522	816	1173	1597	2086	2640	3259	3813	
16		İ	275	489	764	1100	1497	1956	2475	3055	3697	416
17				460	719	1035	1409	1841	2329	2876	3480	414
18				435	679	978	1331	1738	2200	2716	3287	391
19				412	643	926	1261	1647	2084	2573	3113	370
20				391	611	880	1198	1564	1980	2444	2958	352
21					583	838	1141	1490	1886	2328	2817	335
22					556	800	1089	1422	1800	2222	2689	320
23					531	765	1042	1361	1722	2126	2572	306
24					509	733	998	1304	1650	2037	2465	293
25						704	958	1252	1584	1956	2366	281
26						677	921	1203	1523	1880	2275	270
27						652	887	1159	1467	1811	2191	260
28						629	856	1118	1414	1746	2113	251
29							826	1079	1366	1686	2040	242
30							799	1043	1320	1630	1973	234
31							773	1009	1278	1577	1908	227
32							749	978	1238	1528	1849	220
33			ì		,			948	1200	1482	1793	213
34								920	1165	1438	1740	207
35						Ì		894	1131	1397	1690	201
36								869	1100	1358	1643	195
37				1					1070	1321	1599	190
38			1						1042	1287	1557	185
39									1015	1254	1517	180
40											1479	

Upper, middle, and lower horizontal lines indicate the limits for resistance to shear in the horizontal direction of the grain of Shortleaf Pine, White Oak, and Hemlock respectively.

TIMBER SAFE LOADS

RECTANGULAR WOODEN BEAMS—ONE INCH THICK WHITE PINE

ALLOWABLE UNIFORM LOAD IN POUNDS

Maximum Bending Stress, 900 Pounds per Square Inch

Span					Dept	h of Be	am in 1r	nches	-			
in Feet	2	4	6	8	10	12	14	16	18	20	22	24
2	187											
3 4	$\frac{133}{100}$	373										
5	80	320										
6	67	267	560									
7 8	57 50	229 200	514 450	747								
9	00	178	400	711								
10		160	360	640	933							
11		145	327	582 533	909 833							
12 13		133	$\begin{vmatrix} 300 \\ 277 \end{vmatrix}$	492	769	1120 1108						
14			257	457	714	1029	1307					
15			240	427	667	960	1307					
$\frac{16}{17}$			225	$\frac{400}{377}$	625 588	900 847	$\frac{1225}{1153}$	1,00				
18				356	556	800	1089	$\frac{1493}{1422}$				
19				337	526	758	1032	1347	1680			
20				320	500	720	980	1280	1620			
21					476	686	933	1219	1543	1867		ĺ
$\frac{22}{23}$					455 435	$655 \\ 626$	891 852	$\frac{1164}{1113}$	$1473 \\ 1409$	$1818 \\ 1739$	2053	
$\frac{24}{25}$					417	600	817	1067	1350	1667	2017	
25						576	784	1024	1296	1600	1936	0040
26						554	754	985	1246	1538	$\frac{1862}{1793}$	$\frac{2240}{2215}$
27 28						533 514	$\frac{726}{700}$	948	$\frac{1200}{1157}$	1481	$1793 \\ 1729$	$\frac{2133}{2057}$
29						314	676	883	1117	$\frac{1429}{1379}$	1669	1986
30							653	853	1080	1333	1613	1920
31							$\frac{632}{613}$	826 800	1045 1013	$\frac{1290}{1250}$	$\frac{1561}{1513}$	1858 1800
32 33							013	776	982	1212	1467	1746
$\frac{34}{35}$								753 731	953 926	$1176 \\ 1143$	$ 1424 \\ 1383 $	$1694 \\ 1646$
36					1			711	900	1111	1344	1600
36 37									876	1081	1308	1557
38 39									853 831	$1053 \\ 1026$	$ 1274 \\ 1241 $	1516 1477
40									810	1000	1210	1440

Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

RECTANGULAR WOODEN BEAMS—ONE INCH THICK SPRUCE

ALLOWABLE UNIFORM LOAD IN POUNDS Maximum Bending Stress, 1000 Pounds per Square Inch

Span					Dept	h of Be	am in Ir	nches				
in Feet	2 ·	4	6	8	10	12	14	16	18	20	22	24
2 3 4 5	187 148 111 89	373 356										
6 7 8 9	74 63 56	296 254 222 198 178	500 500 444 400	747 711	A STATE OF THE STA							
11 12 13 14 15		162 148	364 333 308 286 267	646 593 547 508 474	933 926 855 794 741	1120 1067						
16 17 18 19 20			250	444 418 395 374 356	694 654 617 585 556	1000 941 889 842 800	$\begin{array}{r} 1307 \\ 1281 \\ 1210 \\ 1146 \\ 1089 \end{array}$	1498 1422				
21 22 23 24 25					529 505 483 463	762 727 696 667 640	1037 990 947 907 871	1354 1293 1237 1185 1138	1680 1636 1565 1500 1440	1867 1852 1778		
26 27 28 29 30						615 593 571	838 807 778 751 726	1094 1053 1016 981 948	1385 1333 1286 1241 1200	1709 1646 1587 1533 1481	2053 1992 1921 1854 1793	2240 220 213
31 32 33 34 35							703 681	918 889 862 837 813	$\begin{array}{c} 1161 \\ 1125 \\ 1091 \\ 1059 \\ 1029 \end{array}$	1434 1389 1347 1307 1270	1735 1681 1630 1582 1537	2068 2000 1938 1888 1829
36 37 38 39 40								790	1000 973 947 923 900	$\begin{array}{c} 1235 \\ 1201 \\ 1169 \\ 1140 \\ 1111 \end{array}$	1494 1453 1415 1379 1344	177 173 168 164 160

Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

WOODEN COLUMNS

The safe load tables of wooden columns which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the allowable direct compressive loads for square and round columns.

The safe loads of rectangular columns may be found from the safe loads of square columns by direct proportion of areas, using the safe load unit stress of the square column whose side is equal to the least side of the rectangular section.

The following table gives the safe load in pounds per square inch of sectional area for ratios of

 $\frac{1}{d} = \frac{\text{effective length of column, in inches}}{\text{least side or diameter, in inches}},$

ranging between limits of 15 and 30.

Unit Working Stresses in Pounds per Square Inch

$\frac{1}{d}$	Longleaf Pine, White Oak	Douglas Fir, Western Hemlock	Shortleaf Pine, Spruce, Bald Cypress	White Pine, Tamarack	Red Cedar, Redwood	Norway Pine
	1300 (1—1/d60)	1200 (1—l/d60)	1100 (1—1/d60)	1000 (1—1/d60)	900 (1—l/d60)	800 (1—l/d60
15	975	900	825	750	675	600
16	953	880	807	733	660	587
17	931	860	788	717	645	573
18	910	840	770	700	630	560
19	888	820	752	683	615	547
20	867	800	733	667	600	533
21	845	780	715	650	585	520
22	823	760	697	633	570	507
23	802	740	678	617	555	493
24	780	720	660	600	540	480
25	758	700	642	583	525	467
26	737	680	623	567	510	553
27	715	660	605	550	495	440
28	693	640	587	533	480	427
29	672	620	568	517	465	413
30	650	600	550	500	450	400

Example 1.—Required the allowable load for a column of white oak 10" x 8", 14 feet long.

The safe load given in the table for a square white oak column 8" x 8", 14 feet long, is 54,100 pounds. The load for the 10" x 8" section is 10 x 54,100 \div 8 = 67,600 pounds.

Example 2.--Required the allowable load for a spruce pile, $9^{\prime\prime}$ diameter and 18 feet long.

The unit stress given in the above table for the corresponding ratio of 1/d, $18 \times 12 \div 9 = 24$ is 660 pounds, and the sectional area for a 9" round is 63.62 square inches. The safe load, therefore, is 63.62 x 660=42,000 pounds.

SQUARE WOODEN COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

American Railway Engineering Association Formulas

	Length,				Side of	Square,	Inches			
	Feet	4	6	8	10	12	14	16	18	20
LONGLEAF PINE WHITE OAK 1300 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	15.6 15.6 14.6 13.5 12.5 11.4 10.4	35.1 34.3 32.8 31.2 29.6 28.1 25.0	62.4 62.4 60.3 58.2 54.1 49.9 45.8 41.6	97.5 93.6 88.4 83.2 78.0	140.4 137.3 131.0 124.8	191.1 189.3 182.0	249.6 249.6	315.9	390.0
DOUGLAS FIR WESTERN HEMLOCK 1200 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	14.4 14.4 13.4 12.5 11.5 10.6 9.6	32.4 31.7 30.2 28.8 27.4 25.9 23.0	57.6 57.6 55.7 53.8 49.9 46.1 42.2 38.4	90.0 86.4 81.6 76.8 72.0	129.6 126.7 121.0 115.2	176.4 174.7 168.0	230.4 230.4	291.6	360.0
SHORTLEAF PINE SPRUCE 1100 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	13.2 12.3 11.4 10.6 9.7 8.8	29.7 29.0 27.7 26.4 25.1 23.8 21.1	52.8 52.8 51.0 49.3 45.8 42.2 38.7 35.2	82.5 79.2 74.8 70.4 66.0	118.8 116.2 110.9 105.6	161.7 160.2 154.0	211.2 211.2	267.3	330.0
WHITE PINE TAMARACK 1000 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	12.0 12.0 11.2 10.4 9.6 8.8 8.0	27.0 26.4 25.2 24.0 22.8 21.6 19.2	48.0 48.0 46.4 44.8 41.6 38.4 35.2 32.0	75.0 72.0 68.0 64.0 60.0	108.0 105.6 100.8 96.0	145.6	192.0 192.0	248.0	800.0

TIMBER SAFE LOADS

ROUND WOODEN COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

American Railway Engineering Association Formulas

	Length,				Dia	ameter, In	ches			
	Feet	4	6	8	10	12	14	16	18	20
LONGLEAF PINE, WHITE OAK 1300 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	12.3 12.3 11.4 10.6 9.8 9.0 8.2	27.6 27.0 25.7 24.5 23.3 22.1 19.6	49.0 49.0 47.4 45.7 42.5 39.2 35.9 32.7	76.6 73.5 69.4 65.3 61.3	$ \begin{array}{r} 110.3 \\ \hline 107.8 \\ 102.9 \\ 98.0 \end{array} $	150.1 148.7 142.9	196 0 196.0	248 1	306.3
DOUGLAS FIR, WESTERN HEMLOCK 1200 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	11.3 10.6 9.8 9.1 8.3 7.5	25.4 24.9 23.7 22.6 21.5 20.4 18.1	45.2 45.2 43.7 42.2 39.2 36.2 33.2 30.2	70.7 67.9 64.1 60.3 56.5	101.8 99.5 95.0 90.5	138.5 137.2 132.0	181.0 181.0	229,0	282.7
SHORTLEAF PINE, SPRUCE 1100 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	10.4 10.4 9.7 9.0 8.3 7.6 6.9	23.3 22.8 21.8 20.7 19.7 18.7 16.6	41.5 41.5 40.1 38.7 35.9 33.2 30.4 27.6	64.8 62.2 58.7 55.3 51.8	93.3 91.2 87.1 82.9	127.0 125.8 121.0	165.9 165.9	209,9	259.2
WHITE PINE, TAMARACK 1000 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	9.4 9.4 8.8 8.2 7.5 6.9 6.3	21.2 20.7 19.8 18.9 17.9 17.0 15.1	37.7 36.4 35.2 32.7 30.2 27.6 25.1	58.9 56.5 53.4 50.3 47.1	84.8 82.9 79.2 75.4	115.5 114.4 110.0	150.8 150.8	190.9	235.6

SPECIFIC GRAVITIES AND WEIGHTS

Substance	Specific Gravity	Weight, Pounds per Cu. Ft.	Substance	Specific Gravity	Weight, Pounds per Cu. Ft.
Metals, Alloys, Ores			Timber, U. S. Seasoned		
Aluminum, cast-hammered	2.55-2.75 7.7 6.62-6.72	165 481 416	Ash, white-red	$0.62 - 0.65 \\ 0.32 - 0.38 \\ 0.66$	40 22 41
Antimony	5.73 9.70–9.78	358 608	Chestnut	0.48 0.51	30 32
Brass, cast-rolled Bronze, 7.9 to 14% Sn	8.4-8.7 7.4-8.9	534 509	" eastern	0.40	25 45
Chromium	6.80-6.92 8.72-8.95	428 552	Hemlock	0.42-0.52 0.74-0.84 0.73	29 49 46
Copper, cast-rolled	8.8-9.0 4.1-4.3 19.25-19.35	556 262 1205	Locust. Maple, hard. white.	0.68 0.53	43
Iron, cast, pig wrought		450 485	Oak, chestnut	0.86 0.95	54 59
" steel spiegel-eisen	7.8-7.9 7.5	490 468	" red, black	0.65 0.74	41 46
" ferro-silicon " ore, hematite " " in bank.	6.7-7.3 5.2	437 325 160-180	Pine, Oregon	0.51 0.48 0.41	32 30 26
" " limonite	3.6-4.0	130-160	" white " yellow, long-leaf " short-leaf	0.70 0.61	44 38
" magnetite	4.9-5.2 $2.5-3.0$	315 172	Poplar	0.48	30 26
Lead ore, galena	11.28-11.35 7.3-7.6 1.74	706 465 109	Spruce, white, black Walnut, black " white	0.40-0.46 0.61 0.41	27 38 26
Magnesium	7.20-7.42 3.7-4.6	456 259	Moisture Contents: Seasoned timber 15 to 20%	0111	
Mercury	13.59 9.01	848 562	Green timber up to 50%		
Nickel monel metal	8.57-8.90 8.8-9.0	545 556	Various Liquids Alcohol, 100%	0.79	49
Platinum, cast-hammered Silver, cast-hammered	21.1-21.5 10.4-10.6 7.2-7.5	1330 656 459	Acids, muriatic 40%	1.20 1.50	75 94
Tin, cast-hammered babbit metal ore, cassiterite	7.1 6.4-7.0	443 418	Acids, muriatic 40% " nitric 91% " sulphuric 87% Lye, soda66%	1.80 1.70	112 106
TungstenVanadium	18.7-19.1 5.5-5.7	1180 350	" mineral, lubricants	0.91-0.94 0.90-0.93 0.88	58 57 55
Zinc, cast-rolled	6.9-7.2 3.9-4.2	440 253	Petroleum. Gasoline Water, 4°C, max. density	0.66-0.69	42 62,428
Various Solids		100	" 100°C	0.9584 0.88-0.92	59.830 56
Carbon, amorphous, graphitic Cork	1.88-2.25 0.24 1.22	129 15 76	" snow, fresh fallen " sea water	.125 1.02-1.03	8 64
Fats	0.92-0.94 2.40-2.72	58 160	Gases, Air $= 1$		
" crystal	2.90-3.00 3.15-3.90	184 220	Air, 0°C, 760 mm	1.0 0.5920	.08071 .0478
Phosphorus, white	1.83 $2.30-2.50$ 1.07	114 150 67	Carbon dioxide Carbon monoxide Gas, illuminating	1.5291 0.9673 0.35-0.45	.1234 .0781 .028036
Rubber, caoutchouc	0.93 2.49	58 155	" natural	0.47-0.48 0.0693	.038039
Sulphur, amorphous Wax	2.05	128	Nitrogen Oxygen	0.9714 1.1056	.0784

The specific gravities of solids and liquids refer to water at 4°C., those of gases to air at 0°C. and 760 mm pressure. The weights per cubic foot are derived from average specific gravities, except where stated that weights are for bulk, heaped or loose material, etc.

PHYSICAL PROPERTIES OF SUBSTANCES

SPECIFIC GRAVITIES AND WEIGHTS

Substance	Specific Gravity	Weight, Pounds per Cu. Ft.		Specific Gravity	Weight Pounds per Cu. Ft
Minerals			Ashlar Masonry		
Asbestos	2.1-2.8	153	Granite, syenite, gneiss	2.3-3.0	165
Barytes	4.50	281	Limestone, marble	2.3 - 2.8	160
Basalt	$2.7-3.2 \\ 2.55$	184 159	Sandstone, bluestone	2.1 - 2.4	140
Borax	1.7-1.8	109	Mortar Rubble Masonry		
Chalk	1.8-2.6	137	Granite, syenite, gneiss	2.2 - 2.8	155
Clay, marl	1.8 - 2.6	137	Limestone, marble	2.2-2.6 2.0-2.2	150
Dolomite	2.9	181	Sandstone, bluestone	2.0-2.2	130
Feldspar, orthoclase	2.5-2.6	159	Dry Rubble Masonry		
Gneiss, serpentine Granite	2.4-2.7 $2.5-2.7$	159 162	Granite, syenite, gneiss	1.9 - 2.3	130
Greenstone, trap	2.8-3.2	187	Limestone, marble	1.9-2.1	125
Gypsum, alabaster	2.3-2.8	159	Sandstone, bluestone	1.8-1.9	110
Hornbleude	3.0	187	Brick Masonry		
Limestone	2.3 - 2.7	156	Pressed brick	2.2 - 2.3	140
Magnesite	3.0	187	Common brick	1.8 - 2.0	120
Marble	$\frac{2.7-2.85}{3.2}$	173 200	Soft brick	1.5 - 1.7	100
Phosphate rock, apatite Porphyry	2.6-2.9	172	Concrete Masonry		
Pumice, natural	0.37-0.90	40	Cement, stone, sand	2.2 - 2.4	144
Quartz, flint	2.5 - 2.8	165	" slag, etc	1.9-2.3	130
Sandstone, bluestone	2.2 - 2.5	147	" cinder, etc	1.5-1.7	100
late, shale	2.7 - 2.8	172	Various Building Mat'l		
Soapstone, talc	2.6-2.8	169	Ashes, cinders		40-45
Stone, Quarried, Piled			Cement, portland, loose	0 7 0 0	90
Basalt, granite, gneiss		96	Lime, gypsum, loose	2.7 - 3.2	183 65-75
imestone, marble, quartz.		95	Mortar, set	1.4-1.9	103
Sandstone		82	Slags, bank slag		67-72
hale		92	" screenings		98-11
Greenstone, hornblende		107	machine stag		96
Bituminous Substances			" slag sand Earth, etc., Excavated		49-55
Asphaltum	1.1-1.5	81	Clay, dry		63
Coal, anthracite	1.4-1.7	97	" damp, plastie		110
" bituminous!	1.2-1.5 1.1-1.4	84 78	Clay and gravel, dry		100
" peat, turf, dry	0.65-0.85	47	Earth, dry, loose		76
" charcoal, pine	0.28-0.44	23	packed		95
" oak	0.47-0.57	33	" moist, loose		78 96
coke	1.0-1.4	75	" packed " mud, flowing		108
raphite	1.9-2.3 0.87-0.91	131 56	" paeked		115
etroleum, crude	0.88	55	Riprap, limestone		80-85
" refined	0.79-0.82	50	sandstone		90
" benzine	0.73-0.75	46	snate,		105
gasolene	0.66-0.69	42	Sand, gravel, dry, loose		90-105 100-120
Pitch	1.07-1.15 1.20	69 75	" " packed. " wet		118-120
Coal and Coke, Piled	1.20	1.9	Excavations in Water		
		47 70	Sand or gravel		60
Coal, anthracite		47-58 40-54	Clay		65
" peat turf		20-26	River mud		80 90
" charcoal		10-14	Soil		90 70
'' coke	1		Stone riprap		65

The specific gravities of solids and liquids refer to water at 4°C., those of gases to air at 6°C. and 760 mm pressure. The weights per cubic foot are derived from average specific gravities, except where stated that weights are for bulk, heaped or loose material, etc.

CONTENTS OF STORAGE WAREHOUSES

Material	Pounds per Cubic Foot of Space,	Height of Pile, Feet	Pounds per Square Foot of Floor	Recommended Live Loads, Pounds per Square Foot
Produce, Grain, Fruit, Etc.				
Grain, in bulk Barley and Corn Oats	37 26	8 8	296 208	
Rye and WheatFruit and Vegetables, in bulk	48	8	384	
Apples, Pears, etc Potatoes, Turnips, etc	38 44	8 8	304 352	
Miscellaneous Produce, packed Beans, in bags	40 31	8	320 248	250 to 300
Corn, in bags	37 26	$\frac{6\frac{1}{2}}{9}$	240 234	
Rice, in bags	58 39	5 8 7 9	290 312	
Wheat Flour, in barrels	40 14	7 9	280 126	
Hay, in bales, compressed Straw, in bales, compressed	24 19	9	216 171	
Groceries				
Miscellaneous Articles, packed Butter, Lard, etc., in barrels	32	6	192)
Canned Goods, Preserves, etc.,in cases Cheese	58 30	6 8	348 240	
Coffee, green, in bags	39 33	8 8	312 264	
Dates and Figs, in cases, average Meat, Beef, Pork, etc., in barrels	65 37	5 5	325 185	250 to 300
Molasses, in barrels	48 60	8 8 5 5 5 5 8 7 5	240 300	
Soap Powder, in cases	38 25	8 7	288 175	
Sugar, in barrels	43 25 48	5 8 5	215 200 240	
Dry Goods, Cotton, Wool, Etc.				,
Cotton, in bales, compressed, average	25	9	225)
" unbleached goods, in bales tickings and duck, in bales	24 35	9 8	216 280	
" printed goods, in bales printed goods, in cases	19 31	9 8	171 248	
" quilts and flannels, in cases yarn, in cases	16 25	9 8 8	144 200	
Hemp, in bales, compressed Manila, in bales, compressed	22 26	9	176 234	
"Sisal, in bales, compressed Tow, in bales, compressed	24 29	9	216 261	200 to 250
Jute, in bales, compressed	43 41	6 6	258 246	
Linen, bleached goods, in cases	35 50	6 7 5 9 5	245 250	
Wool, in bales, not compressed in bales, compressed	13 48	9 5	117 240	
" worsted goods, in cases	18 27	9	162 243	
Rags, in bales, compressed Excelsior, in bales, compressed	19 19	9	171 171	

PHYSICAL PROPERTIES OF SUBSTANCES

CONTENTS OF STORAGE WAREHOUSES

Material	Pounds per Cubic Foot of Space,	Height of Pile, Feet	Pounds per Square Foot of Floor	Recommended Live Loads, Pounds per Square Foot
Drugs, Oils, Paints, Etc.				
Chemicals:		****		
Acids, Muriatic and Nitric, in carboys "Sulphuric, in carboys	45 60	12% 12%	75 100	
Ammonia, in earboys	30	13%	50	
Alum, Pearl Alum, in barrels	33	7	231	
Bleaching Powder, in hogsheads CopperSulphate, Blue Vitriol, in bbls.	31 45	31/s 5	103 225	
Soda, Caustie Soda, in iron drums	88	31/8	294	
Soda, Soda Ash, in hogsheads	62	234	170	
Soda Crystals, Sal Soda, in barrels Soda Nitrate, Niter, in barrels	30 45	5	150 225	
Soda Silicate, in barrels	53	5	265	
Zine Sulphate, White Vitriol, in barrels	40	5	200	
Oils, Fats, Resins, etc.:	52	c	010	1
Glycerine, in cases	34 34	6 6	312 204	
" Vegetable, Linseed, in barrels	36	6	216	200 to 250
Mineral, Lubricants, in Darreis.	35	6	210	
" Petroleum, Kerosene, in barrels." Naphtha, Gasolene, in barrels.	33 28	6 6	198 168	
Rosin, in barrels	48	6	288	
Shellac Gum, in boxes	38	6	228	
Tallow, in barrels Dye Stuffs, Paints, etc.:	37	6	222	
Indigo, in boxes	43	6	258	
Logwood Extract, in boxes	70	$4\frac{1}{2}$	315	
Red Lead, Litharge, dry, in barrels.	132	5 334	195	
White Lead, dry, in barrels	86	43/	495 409	l I
White Lead, paste, in cans	174	$3\frac{1}{2}$	609	
Building Materials				
Cement, Natural, in barrels	59	6	354	
" Portland, in barrels	73	6	438	300 to 400
Lime, Quick Lime, ground, in barrels Plaster of Paris, ground, in barrels	50 53	5 5	250 265	000 00 100
Sheet Metal and Wire				
Sheet Tin, in boxes	278	114	417	
Wire, insulated copper, in coils	63	$\frac{11/2}{5}$	315	200 400
" galvanized iron, in coils	74	41/2	333	300 to 400
" magnet wire on spools	75	6	450	
Miscellaneous				
Chinaware, Glassware, in cratesin casks	40 14	8	320	
Glass, in boxes	60	9	126 360	
Hardware, door and sash checks, in cases	46	6	276	
" hinges, in cases	64 31	6	384	
" serews, in boxes	101	6 4	186 404	
Hides, raw, not compressed, in bales	13	10	130	300 to 400
raw, compressed, in bales	23 16	10	230	
Leather, in bales	50	10 6	160 300	
newspaper, manila, strawboards.	35	6	210	
" writing paper	64 42	6	384	
Rope in Coils	42	6	252	

STRENGTH OF MATERIALS

STRESSES PER SQUARE INCH

	Stre	sses in T	housand	ls of Pou	ınds	٠. ا	ď
Metals and Alloys	Tension, Ultimate	Elastie Limit	Compression, Ultimate	Bending, Ultimate	Shearing, Ultimate	Modulus of Elasticity, Pounds	Elongation,
Aluminum, east	15 24-28 30-65 20-35 40-50 75	6.5 12-14 16-30 14 25 40	12 120		12	11,000,000	
Copper, cast	85-100 25	60 6	40	22	30	10,000,000	
" plates, rods, bolts." " wire, hard " wire, annealed	32-35 55-65 36 32.6 28.1	10 10 8.2 7.6 8.6	32 42	23.2 22.3 26.9		18,000,000 15,000,000	26.7 35.8 20.7
" 39% "	41.1 31 18-24 80	17.4 17.9 6	75 117 30	39 33.5 20	36	9,000,000	20.7 5.0
anneated	50 28.5 29.4 33 22	16 19 20	42 53 78	43.7 34.5 56.7 32		14,000,000 10,000,000	5.5 3.3 0.0
" 30%" " gun metal, 9 Cu, 1 Sn. " Manganese, cast \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.6 25-55 60 100 50 100 55 75 108	5.6 10 30 80 24	114 147 125	32 12.1 52		10,000,000	0
$ \begin{array}{cccc} \text{`` Tobin, cast} & 38\% \ Zn. \\ \text{`` '' rolled} & 112\% \ Sn. \\ \text{`` cold rolled} & 12\% \ Sn. \\ \text{`` cold rolled} & 12\% \ Sn. \\ \text{Delta Metal, cast} & 55-60\% \ Cu. \\ \text{`` '' bars} & 58-40\% \ Cu. \\ \text{`` '' bars} & 2-4\% \ Fe. \\ \text{`` '' wire} & 1-2\% \ Sn. \\ \text{German Silver}, 25\% \ Zn. \ 20\% \ Ni. \\ \end{array} $	66 80 100 45 68 85 100	40					
Iron, see next page	20 30	4				s,000,000	
" copper, 5 Au, 1 Cu	50 1 8 2.2-2.5 3.3 53 32 40					1,000,000 1,000,000 720.000	
Silver, cast		1.5-1.S	6	4	1	4,000,000	
" antimony, 10 Sn, 1 Sb	3.3-4.6 11 4-6 7-16	4	18	7		13,000,000	

PHYSICAL PROPERTIES OF SUBSTANCES

STRENGTH OF MATERIALS

Stresses per Square Inch

	Str	esses in 7	Thousan	ds of Po	unds		
Metal and Alloys	Tension, Ultimate	Flastic Limit	Compression, Ultimate	Bending, Ultimate	Shearing, Ultimate	Modulus of Elasticity, Pounds	$\dot{\mathbb{K}} \text{longation,} \\ \dot{v_c}$
Steel							
Shapes, Plates, Bars*					-		
" bridges	55-65 55-65	12 tens.	tensile	tensile	34 tens.	29,000,000 29,000,000	27.3-23.0 25.4-21.5
" cars		**		4.	4.	29,000,000	30.0-23.0
" locomotives	55-65		**	44	**	29,000,000	27.3-23.0
" ships	58-68	"	''		"	29,000,000	25.9-22.1
" fire box	55-65	1 o tens.	tensile	tensile	34 tens.	29,000,000	27.3-23.0
" "flange plates	52-62	2 11		**	1	29,000,000	28.8-24.2
Rivets*			,		9/	20 000 000	000000
" bridges	45-55 46-56	12 tens.	tensile	tensile	34 tens.	29,000,000	33.3-27.3 32.6-26.8
" buildings	46-56	64	44	4.	**	29,000,000	30.4-25.0
cars	48-58	4.	44	41	44	29,000,000	31.3-25.9
" ships	55-65	١	. "	. "	٠٠.	29,000,000	27.3-23.0
" plain, structural grade	55-70	33	tensile	tensile	8∕4 tens.	29,000,000	25.4-20.0
" intermediate	70-85	40	44	11	/= ::	29,000,000	18.6-15.3
nard	80	50	**		**	29,000,000	15.0
" deformed.struct'l grade " intermediate	55-70 70-85	33 40	**		**	29,000,000 29,000,000	22.7-17.9 16.1-13.2
" " hard	80	50	64		**	29,000,000	12.5
" cold twisted		55	**	- "	**	29,000,000	5.0
Castings*	60	27	4	4	2/ 1	20,000,000	22.0
" soft	70	31.5	tensile	tensile	3/4 tens.	29,000,000 29,000,000	18.0
" hard	80	36	44		4.	29,000,000	15.0 .
Forgings*				[
Steel Alloys							1
Nickel Steel, 3.25% Ni.							
" shapes, plates, bars	85-100 70-80	50 45	tensile	tensile	34 tens.	29,000,000 29,000,000	17.6-15.0 21.4-18.8
" eye bars, unannealed	95-110		44	44	**	29,000,000	15.8-13.6
" " annealed	90-105	52	44		41	29,000,000	20.0
Copper Steel, 0.50% Cu	60-68	37-38	''	"	"	29,000,000	29.0-23.0
Steel Springs and Wire							
Springs, untempered	65-110	40-70		<i></i>			
Wire, unannealed	120	60					
" annealed	80 200	40 95					
	2.70	33					
Wrought Iron	4.0						
ShapesBars	48 50	26 27	tensile	tensile	% tens	28,000,000 25,000,000	
Wire, unannealed	80					15,000,000	
" annealed	60	27				25,000,000	
Cast Iron							
Common	15-18	6	80	30	18-20	12.000.000	
Gray	18-24			25-33			
Malleable	27-35	15-20	46	30	40		

^{*} See Specifications of the Society of Testing Materials.

STRENGTH OF MATERIALS STRESSES IN POUNDS PER SQUARE INCH

Building Materials	Ultimate	Average	Streases	Modulus	Safe V	Vorking S	tresses		
	Compress.	Tension	Bending	Elasticity	Compress.	Bearing	Shearing		
Stone Granite, gneiss, bluestone Limestone, marble Sandstone Slate	12,000 8,000 5,000 10,000	1,200 800 150 3,000	1,600 1,500 1,200 5,000	7,000,000 7,000,000 3,000,000 14,000,000	1,200 800 500 1,000	1,200 800 500 1,000	200 150 150 175		
Masonry Granite	10,000 15,000 6,000 5,000				420 350 280 140 170 170 210	600 500 400 250 250 300 300			
Cement, Portland									
Neat, 28 days. " 90 days. 1:3 sand, 28 days. " 90 days.	7,040 7,350 1,290 1,490	740 740 320 340							
Concrete, P. C.				Reinforce	d Conara	t o			
Granite, trap rock Furnace Slag Llime and Sandstone, hard Llime and Sandstone, soft Cinders	3,300 3,000 3.000 2,200 800	Modu of Elastic	lns 2	,000,000 for ,500,000 for ,000,000 for 750,000 for	ult. compr ult. compr ult. compr	ession ove ession up ession up	to 2,900 to 2,200		
Granite, trap rock. Furnace Slag. Lime and Sandstone, hard Lime and Sandstone, soft Cinders.	2,500			Safe Work	imate Con	pression			
Granite, trap rock	2,200 2,000	Compre	ssion { R R	Plain Concre Reinforced C Reinforced B	te Piers, ie olumns, eams,	ength 4 c	" 22.56 32.59		
Lime and Sandstone, hard Lime and Sandstone, soft	1,500	Beari		urface twice					
Cinders. Granite, trap rock. Furnace Slag. Lime and Sandstone, hard Lime and Sandstone, soft	1,800 1,600 1,600 1,200	Shear Diag.Te	(S	ars,no web: vertical d vertical ly attached		6.09			
(Granite, trap rock	1,400 1,300	Bond S	tress { I	lain reinfore Deformed Ba	eing bars ars, best ty	pe	5.09		
		1,300 For complete data see Transactions of t 1,000 Society of Civil Engineers, Vol. LXXXI-No. 13							
Lime and Sandstone, hard Lime and Sandstone, soft							1		
Elime and Sandstone, hard									

EXPANSION OF BODIES BY HEAT

The linear coefficient of expansion of a body is the rate at which the unit of length changes, under constant pressure, with an increase of unit or one degree of temperature; the square surface coefficient of expansion is, approximately, two times, and the cubical or volumetric coefficient three times the linear coefficient of expansion. A bar, if not fixed, undergoes a change in length—ltn, where I is the length of the bar in inches, t the number of degrees, n the corresponding linear coefficient; if fixed at both ends, the internal stress per unit of area—tnE, pounds per square inch, where E is the modulus of elasticity, and the total temperature stress—AtnE, pounds, where A is the cross section of the bar in square inches.

To find the increase of a bar due to an increase in temperature, from the table, multiply the length of the bar by the increase in degrees and by the coefficient for 100 degrees, and divide by 100.

Coefficients of Expansion for 100 Degrees=100n

Substance	Linear E	xpansion	0	Linear E	xpansion
Substance	Centigrade	Fahrenheit	Substance	Centigrade	Fahrenheit
Metals and Alloys Aluminum, wrought. Brass. "wire. Bronze. Copper. Gorman Silver. Gold. Iron, cast, gray. "wrought. wire. Lead. Nickel. Platinum. Platinum. Platinum-Iridium, 15% Ir Silver. Steel, cast. "hard. "medium." soft. Tin. Zinc, rolled.	.00192 .00110 .00132	.00128 .00104 .00107 .00101 .00093 .00102 .00083 .00069 .00069 .00069 .00159 .00070 .00045 .00107 .00061 .00073 .00061 .00061 .00061	Stone and Masonry Ashlar masonry Brick masonry Cement, portland Concrete "masonry Granite Limestone Marble Plaster Rubble masonry Sandstone Slate Timber Fir Maple Oak Pine Fir Maple Oak Pine Fir Maple Oak Pine Fir Maple Oak Pine Fir Maple Oak Pine Fir Maple Oak Pine Fir Maple Oak Pine Fir Maple Oak Pine Fir Maple Oak Pine	.00063 .00053 .000107 .001107 .00120 .00084 .00080 .00100 .00116 .00110 .001104 .00037 .00064 .00058 .0058 .0058	.00035 .00035 .00059 .00079 .00067 .00047 .00044 .00056 .00092 .00061 .00058
Miscellaneous Solids			Liquid Substances	Volumetric	
Glass	.00085 .00079 .05980 .02785 .00036	.00047 .00044 .03322 .01547 .00020	Alcohol Acid, nitric sulphuric Mercury Oil, turpentine	.104 .110 .063 .018	.058 .061 .035 .010 .050

EXPANSION OF WATER, MAXIMUM DENSITY=1

Co	Volume	C°	Volume	C°	Volume	C°	Volume	C°	Volume	C°	Volume
0	1.000126 1.000000	$\frac{10}{20}$	1.000257 1.001732	30 40	1.004234 1.007627	50 60	1.011877 1.016954	70 80	1.022384 1.029003	90 100	1.035829 1.043116

EQUIVALENTS OF MEASURE

LENGTHS

1 meter, m = 10 decimeters, dm = 100 centimeters, cm = 1000 millimeters, mm. 1 meter, m=0.1 decameter, dkm=0.01 hectometer, hm=0.001 kilometer, km. 1 meter, m=39.37 inches, U. S. Standard=39.370113 inches, British Standard. 1 millimeter, mm = 1000 microns, μ = 0.03937 inch = 39.37 mils.

Meters.	Inches.	Feet.	Yard.	Rods.	Chains,	Miles,	U. S.	Kilo-
m	in.	ft.	yd.	r.	eh.	Statute	Nautical	meters, km.
1	39.37	3.28083	1.09361	0.19884	0.04971	0.36214	0.85396	0.001
0.02540	1	0.08333	0.02778			$0.^{4}_{0}1578$		
0.30480	12	1	0.33333	0.06061	0.01515	0.31894	0.01645	0.33048
0.91440	36	3	1	0.18182	0.04545	0.35682	0.54934	0.09144
5.02921	198	16.5	5.5	1	0.25	0.73125	0.52714	0.5029
20.1168	792	66	22	4	1	0.01250	0.01085	0.02012
1609.35	63360	5280	1760	320	80	1	0.86839	1.60935
1853.25	72962.5	6080.20	2026.73	368.497	92.1243	1.15155	1	1.85325
1000	39370	3280.83	1093.61	198.838	49.7096	0.62137	0.53959	1

- 1 yard, U.S. = 1.0000029 yards British 1 yard British = 0.9999971 yard U.S. 1 chain, Gunter's = 100 links 1 link = 7.92 inches. 1 cable length, U.S. = 120 fathoms = 960 spans = 720 feet = 219.457 meters.
- 1 capue lengui, U.S. = 120 fathoms = 900 spans = 720 feet = 21 1 league, U.S. = 3 statute miles = 24 furlongs. 1 international geographical mile = ½5° at equator = 7422 m =4.611808 U.S. statute miles.

- =4.611808 U. S. statute finites.
 international nautical mile = $1/60^{\circ}$ at meridian =1852 m
 =0.999326 U. S. nautical miles.
 1 U. S. nautical mile= $1/60^{\circ}$ of circumference of sphere whose surface equals that of the earth = 6080.27 feet=1.15155 statute miles=1853.27 meters.
 1 British nautical mile=6080.00 feet=1.15152 statute miles=1853.19 meters.

Surfaces and Areas

- 1 sq. meter, $m^2 = 100$ sq. decimeters, $dm^2 = 10000$ sq. centimeters, cm^2 . 1 sq. meter, $m^2 = 0.01$ are, a = 0.0001 hectare, ha. 1 sq. millimeter, $mm^2 = 0.01$ cm² = 0.00155 sq. inch = 1973.5 circular mils.
- 1 are, a = 1 sq. decameter, dkm = 0.0247104 acre.

Sq.Meters,	Sq. Inches,	Sq. Feet, sq. ft.	Sq. Yards, sq. yd.			Hectares, ha.	Sq. Miles, Statute	Sq. Kilo- meters, km ²
1	1550.00	10.7639	1.19599	0.03954	0.82471	0.0001	0.03861	0.51
0.36452	1	0.06944	0.37716	0.52551	0.01594	0.56452	0.92491	0.06452
0.09290		1	0.11111	0.3673	$0{0}^{4}2296$	0.59290	0.73587	0.79290
0.83613	1296	9	1		0.32066			
25.2930	39204	272.25	30.25	1	0.00625	0.02529	0.59766	0.52529
4046.87	6272640	43560	4840		1	0.40469	$0.^{2}_{0}1563$	$0.\overline{0}4047$
10000	15499969	107639	11959.9	395.366	2.47104	1	0.23861	0.01
2589999		27878400	3097600	102400	640	259.000	1	2.59000
1000000		10763867	1195985	39536.6	247.104	100	0.38610	1

- 1 sq. rod, sq. pole, or sq. perch=625 sq. links=\\(\frac{1}{160}\) acre.
 1 sq. chain, Gunter's=16 sq. rods=\(\frac{1}{10}\) acre.
- Square of 1 acre = 208.7103 feet square. 1 acre = 4 sq. roods = 160 sq. rods.

Notations $\stackrel{2}{0},\stackrel{3}{0},\stackrel{4}{0},$ etc., indicate that the $\stackrel{2}{0},\stackrel{3}{0},\stackrel{4}{0},$ etc., are to be replaced by 2, 3, 4, etc., ciphers.

 $E_{XAMPLE}-1$ sq. rod = 0.09766 = 0.090009766 sq. miles.

EQUIVALENTS OF MEASURE VOLUME AND CAPACITY

1 cu. meter, $m^3 = 1000$ cu. decimeter, $dm^8 = 1000000$ cu. centimeters, cm^3 . 1 liter, l = 10 deciliters, dl = 100 centiliters, cl = 1000 milliliters, ml = 1000 cu. centimeters, cm^3 . or cc.

1 liter, l = 0.1 decaliter, dkl = 0.01 hectoliter, hl = 1 cu. decimeter, dm^{s} .

Cubic	Cubic	Cubic		U. S.	Quarts	U. S. (Gallons	U. S.	
Decimeter, dm ³ , l	Inches, cu. in.	Feet, cu. ft.	Yards, cu. yd.	Liquid, l. qt.	Dry, d. qt.	Liquid, l. gal.	Dry, d. gal.	Bushels, bu.	
1	61.0234	0.03531	$0.\frac{2}{0}1308$	1.05668	0.90808	0.26417	0.22702	0.02838	
0.01639	1	0.35787	0.02143	0.01732	0.01488	0.04329	0.03720	0.34650	
28.3170	1728	1	0.03704	29.9221	25.7140	7.48055	6.42851	0.80356	
764.559	46656	27	1	807.896	694.279	201.974	173.570	21.6962	
0.94636	57.75	0.03342	$0.\frac{2}{6}1238$	1	0.85937	0.25	0.21484	0.02686	
1.10123	67.2006	0.03889	0.51440	1.16365	1	0.29091	0.25	0.03125	
3.78543	231	0.13368	0.54951	4	3.43747	1	0.85937	0.10742	
4.40492				4.65460	4	1.16365	1	0.125	
35.2393	2150.42	1.24446	0.04609	37.2368	32	9.30920	8	1	

U. S. Dry Measure: 1 bushel = 4 pecks = 8 gallons = 32 quarts = 64 pints.

U. S. Liquid Measure: 1 gallon=4 quarts=8 pints=32 gills=128 fluid ounces. U. S. Apoth. Measure: 1 fl. ounce, $f_3 = 8$ fl. drams, $f_5 = 480$ minims, m_{c} =29.574 cu. cm³.

British Imperial gallon dry and liquid measure = 1.03202 U.S. dry gal. = 1.2091 U.S. liquid gal.
British Imperial gallon = 277,410 cu. in. = 4545,9631 cm³.

Weight of water at maximum density, 4° C, 45° Lat., and sea level. 1 cu. ft. =62.4233 lbs. av. =28.3170 kg. 1 cu. in. =0.57804 oz. av. =16.3872 g. 1 gal., U. S. liquid =8.34545 lbs. =3.78543 kg. 1 gal., British Imperial =10.0221 lbs. =4.5459631 kg.

Masses and Weights

1 gram, g = 10 decigrams, dg = 100 centigrams, cg = 1000 milligrams, mg. 1 gram, g = 0.1 decagram, dkg = 0.01 hectogram, hg = 0.001 kilogram, kg. 1 kilogram, kg = 1 cu. decimeter of water or liter, 4°C, 45° Lat. and sea level = 15432.35639 grains, U. S. and British Standard.

Kilo-		Our	ces	Pou	nds .		Tons	
grams, kg.	Grains, gr.	Troy, oz. t.	Avoir., oz. av.	Troy, lb. t.	Avoir., lb. av.	Net, Short, 2000 lbs.	Gross, Long, 2240 lbs.	Metric, 1000 kg.
1	15432.4	32.1507	35.2740	2.67923	2.20462	$0.\frac{2}{0}1102$	0.09842	0.001
0.046480	1	0.52083	0.02286					
0.03110	480	1	1.09714	0.08333	0.06857	0.43429	0.3061	0.43110
0.02835	437.5	0.91146	1	0.07595	0.06250	0.33125	0.52790	0.52835
0.37324	5760	12	13.1657	1	0.82286	0.84114	0.33674	0.33732
0.45359	7000	14.5833	16	1.21528	1	0.00050	0.34464	0.34536
907.185	14000000	29166.7	32000	2430.56	2000	1	0.89286	0.90719
1016.05	15680000	32666.7	35840	2722.22	2240	1.12	1	1.01605
1000	15432356	32150.7	35274.0	2679.23	2204.62	1.10231	0.98421	1

1 ounce avoir. = 16 drams, avoir. 1 ounce troy = 20 pennyweight, dwt. 1 ounce apoth. $\frac{3}{5}$ = 8 drams, 3=24 scruples, $\frac{5}{9}$ = 480 grains, gr = 31.1035 g. 1 hundredweight = 1/20 long ton = 4 quarters = 8 stone = 112 lbs. = 50.8024 kg.

Notations $\frac{2}{0}$, $\frac{3}{0}$, $\frac{4}{0}$, etc., indicate that the $\frac{2}{0}$, $\frac{3}{0}$, $\frac{4}{0}$, etc., are to be replaced by 2, 3, 4, etc., ciphers.

EQUIVALENTS OF MEASURE

FORCES OR WEIGHTS PER UNITS OF LENGTH, LINEAR WEIGHTS

1 dyne per centimeter = 0.00101979 g/cm = 0.000183719 poundal/in. 1 gram per centimeter = 980.5966 dynes/cm = 0.180154 poundal/in. 1 poundal per inch = 5443.11 dynes/cm = 5.55081 g/cm = 0.0310832 pound/in.

Grams Gross per Centi-Grains Kilograms Net Tons. Pounds Pounds Pounds Tons, Tons. per Inch. per Inch. per Foot, per Yard, per Meter, 2000 lbs.. 1000 kg. 2240 lbs.. gr./in. meter lb./in. lb./ft. lb./yd. kg/m per Mile per per Mile Kilometer g/cm 39.1983 | 0.25600 | 0.06720 | 0.20159 1 0.10 0.177400.158390.10 $0.\frac{3}{6}1429 | 0.\frac{7}{6}1714 | 0.\frac{7}{6}5143 | 0.\frac{7}{6}2551 | 0.\frac{7}{6}4526 | 0.\frac{7}{6}4041$ 0.525510.02551178.579 7000 12 36 17.8579 31.6800 28.2857 17.8579 14.8816 583,333 0.08333 1.48816 2.64000 2.35714 1.48816 4.96054 194.444 0.02778 0.33333 0.49605 | 0.88000 | 0.78571 | 0.49605 1 391.983 0.05600 0.67197 2.01591 1.77400 1.58393 10 220.960 0.03157 0.37879 1.13636 0.56370 5.63698 1 0.89286 0.56370

Forces or Weights per Units of Area, Pressure 1 dynepersq.centimeter=0.00101979 g/cm² = 0.000466646 poundals/in². 1 grampersq.centimeter=980.5966 dynes/cm²=0.457592 poundals/in². 1 poundal persq. inch =2142.95 dynes/cm²=2.18536 g/cm²=0.0316832 pound/in²,

1.12

1.77400 1.58393

0.63134

247.475 | 0.03535 | 0.42424 | 1.27273 | 0.63134

391.983 0.05600 0.67197 2.01591

6.31342

10

Kilograms per Sq. Centi-	per	Pounds per	Net Tons, 2000 lbs.	Atmos- pheres,	Hg. 13.59	f Mercury, 593 Sp. G.	Columns Max. Den	of Water, sity 4°C
meter, kg/cm ²	Sq. 1nch, lb./in.2	Sq. Foot, lb./ft. ²	per Sq. Foot	Standard, 760 mm	Milli- meters	Inches	Meters	Feet
1	14.2234	2048.17	1.02408	0.96778	735.514	28.9572	10	32.8083
0.07031	_ 1	144	0.07200	0.06804	51.7116	2.03588	0.70307	2.30665
0.54882	0.06944	1	0.00050	0.34725	0.35911	0.01414	0.34882	0.01602
0.97648	13.8889	2000	1	0.94502	718.216	28.2762	9.76482	32.0367
1.03329	14.6969	2116.35	1.05818	1	760	29.9212	10.3329	33.9006
$0.^{2}_{0.1360}$	0.01934	2.78468	10^21392	0.21316	1	0.03937	0.01360	0.04461
0.03453	0.49119	70.7310	0.03537	0.03342	25.4001	1	0.34534	1.13299
0.10			0.10241			2.89572	1	3.28083
0.03048	0.43353	62.4283	0.03121	0.02950	22.4185	0.88262	0.30480	1

Forces or Weights per Units of Volume, Density I dyne per cu. centimeter=0.00101979 gram/cm³ =0.00118528 poundals/in³. 1 gram per cu. centimeter=980.5966 dynes/cm³ = 1.162283 poundals/in³. 1 poundal per cu. inch =843.683 dynes/cm³=0.860378 g/cm³=0.031032 pound/in³.

Grams per Cu. Centi- meter, g/cm ³	Pounds per Cu. Inch, lb./in. ³	Pounds per Cu. Foot, lb./ft.3	Pounds per Cu. Yard, lb./yd. ³	Kilograms per Cu. Meter, kg/m³	per	Pounds per Gallon, Dry, U. S.	Pounds per Gallon, Liquid, U. S.	Kilograms per Hectoliter, kg/hl
1	0.03613	62.4283	1685.56	1000	77.6893	9.71116	8.34545	100
27.6797	1	1728	46656	27679.7	2150.42	268.803	231	2767.97
45	0.55787	_	27	16.0184	1.24446	0.15556	0.13368	1.60184
0.35933	0.52143	0.03704	1	0.59327	0.04609	0.55762	0.04951	0.05933
		0.06243				0.59711	0.08345	0.10
0.01287	$0.\frac{3}{0}4650$	0.80356	21.6962	12.8718	1	0.125	0.10742	1.28718
0.10297	$0.\frac{2}{9}3720$	6.42851	173.570	102.974	8	1	0.85937	10.2974
0.11983	0.54329	7.48052	201.974	119.826	9.30920	1.16365	1	11.9826
		0.62428					0.08345	

Notations ${}^{2}_{0}$, ${}^{3}_{0}$, ${}^{4}_{0}$, etc., indicate that the ${}^{2}_{0}$, ${}^{3}_{0}$, etc., are to be replaced by 2, 3, 4, etc. ciphers. Example—1 kg/m³ = 0.43613 = 0.00003613 lb./in³.

EQUIVALENTS OF MEASURE ENERGY, WORK, HEAT

- 1 dyne-centimeter=1 erg=0.00101979 gram-centimeter=0.7737612 foot-pound.
- 1 gram-centimeter=980.5966 ergs=0.47233 foot-pound.
- 1 foot-pound = 13557300 ergs = 13825.5 gram-centimeters.

Kilogram-	Foot-	Horsepo	wer-hour	Poncelet-	Kilowatt-			al Units
meters, kg-m	Pounds, ftlbs.	U. S., H. Ph	Metric, 75 kg-m-h	hours, 100 kg-m-h	hours, kw-h	107 ergs, j-s	B. T. U. b. t. u.	Calorie, kg-cal
1				0.52778				
0.13826	1	0.05051	0.65121	0.53840	0.63766	1.35573	0.1285	0.33239
273745	1980000			0.76040				
270000		0.98632					2509.83	
	2603880						3346.44	
367123	2655403			1.01979			3412.66	859.975
0.10198	0.73761			0.52833			0.39480	0.32389
	778.104			0.02988				0.25200
426.900	3087.77	$0.\tilde{5}1559$	0.51581	0.31186	0.51163	4186.17	3.96832	1

POWER, RATE OF ENERGY AND HEAT

1 erg per sec.=1 dyne-cm/sec.=0.00101979 gram-cm/sec.=0.7737612 foot-pounds/sec. I gram-centimeter per second = 980.5966 ergs/sec. = 0.47238 foot-pounds/sec.

T TOOL DO	root pound per second—1888/800 ergs/800—18020.0 grum em/sec.											
Kilogram- meters	Foot- pounds		power	Poncelet,	TZ'1	Watts,		al Units Sec.				
per Second, kg-m/s	per Second, ftlbs./s	U. S., 550 ftlbs./s	Metric, 75 kg-m/s	kg-m/s Kilowatt,		107ergs/s	B. T. U. btu/s	Calorie kg-cal/s				
1	7.23300			0.01			$0.\frac{2}{6}9296$					
0.13826	1	0.51818	0.51843	$0.\frac{2}{6}1383$								
76.0404	550	1	1.01387	0.76040			0.70685					
75	542.475	0.98632	1	0.75	0.73545	735.448	0.69718	0.17569				
100	723.300	1.31509	1.33333	1	0.98060		0.92957					
101.979	737.612	1.34111	1.35972	1.01979	1	1000	0.94796					
0.10198	0.73761	0.01341	0.51360	0.020	0.001	1	0.89480	0.32389				
107.577				1.07577			1	0.25200				
426.900	3087.77	5.61412	5.69200	4.26900	4.18617	4186.17	3.96832	1				

Velocities and Accelerations

1 kine=1 centimeter per second=0.0328083 foot per second. 1 radian per second=57.2958 degrees per sec.=0.159155 revolutions per sec. 1 gravity=980.5966 centimeters per sec. per sec.=32.1717 feet per sec. per sec.

Meters per Second, m/s	Feet per Second, ft./s	Miles per Hour, M/h	Knots per Hour, U. S.	Kilo- meters Hour, km/h	Meter per sec/sec m/s ²	Feet per sec/sec ft./s ²	Miles per hour/sec M/h-s	Kilometer per hour/sec km/h-s
0.51479		1 1.15155	$0.59209 \\ 0.86839 \\ 1$	$\begin{array}{c} 1.09728 \\ 1.60935 \\ 1.85325 \end{array}$				
1							$\begin{array}{c} 2.23693 \\ 0.68182 \\ 1 \\ 0.62137 \end{array}$	3.6 1.09728 1.60935 1

Notations $\stackrel{?}{0}$, $\stackrel{?}{0}$, $\stackrel{4}{0}$, etc., indicate that the $\stackrel{?}{0}$, $\stackrel{3}{0}$, $\stackrel{4}{0}$, etc., are to be replaced by 3, 4, etc., ciphers. Example—1 Caloric = $\stackrel{?}{0}$. $\stackrel{?}{0}$. $\stackrel{?}{0}$ 1163 = 0.001163 kilowatt-hours. 2, 3, 4, etc., ciphers.

METRIC CONVERSION TABLES

INCHES	то	CENTIMETERS-1 in.=2.540005 cm
INCHES	TO	CENTIMETERS—1 III.=2.540005 CI

Tens Units	0	1	2	3	4	5	6	7	s	9
0		2.540	5.080	7.620	10.160	12.700	15.240	17.780	20.320	22.860
1	25.400	27.940	30.480	33.020	35.560	38.100	40.640	43.180	45.720	48.260
2	50.800	53.340	55.880	58.420	60.960	63.500	66.040	68.580	71.120	73.660
3	76.200	78.740	81.280	83.820	86.360	88.900	91.440	93.980	96.520	99.060
4	101.600	104.140	106.680	109.220	111.760	114.300	116.840	119.380	121.920	124.460
5	127.000	129.540	132.080	134.620	137.160	139.700	142.240	144.780	147.320	149.860
6	152.400	154.940	157.480	160.020	162.560	165.100	167.640	170.180	172.720	175.260
7	177.800	180.340	182.880	185.420	187.960	190.500	193.040	195.580	198.120	200.660
8	203.200	205.740	208.280	210.820	213.360	215.900	218.440	220.980	223.520	226.060
9	228.600	231.140	233.680	236.220	238.760	241.300	243.840	246.380	248.920	251.46

INCHES² TO CENTIMETERS²—1 in.²=6.451625 cm²

Tens Units	0	1	2	3	4	5	6	7	8	9
0	1	6.452	12.903	19.355	25.807	32.258	38.710	45.161	51.613	58.065
1	64.516	70.968	77.420	83.871	90.323	96.774	103.226	109.678	116.129	122.581
2	129.033	135.484	141.936	148.387	154.839	161.291	167.742	174.194	180.646	187.097
3	193.549	200.000	206.452	212.904	219.355	225.807	232.259	238.710	245.162	251.613
4	258.065	264.517	270.968	277.420	283.872	290.323	296.775	303.226	309.678	316.130
5	322.581	329.033	335.485	341.936	348.388	354.839	361.291	367.743	374.194	380.646
6	387.098	393.549	400.001	406.452	412.904	419.356	425.807	432.259	438.711	445.162
7	451.614	458.065	464.517	470.969	477.420	483.872	490.324	496.775	503.227	509.678
8	516.130	522.582	529.033	535.485	541.937	548.388	554.840	561.291	567.743	574.195
9	580.646	587.098	593.550	600.001	606.453	612.904	619.356	625.808	632.259	638.711

INCHES³ TO CENTIMETERS³—1 in.³=16.38716 cm³

Tens Chits	0	1	2	3	4	5	6	7	8	9
0		16.39	32.77	49.16	65.55	81.94	98.32	114.71	131.10	147.48
1	163.87	180.26	196.65	213.03	229.42	245.81	262.19	278.58	294.97	311.36
2	327.74	344.13	360.52	376.90	393.29	409.68	426.07	442.45	458.84	475.23
3	491.61	508.00	524.39	540.78	557.16	573.55	589.94	606.32	622.71	639.10
4	655.49	671.87	688.26	704.65	721.04	737.42	753.81	770.20	786.58	802.97
5	819.36	835.75	852.13	868.52	884.91	901.29	917.68	934.07	950.46	966.84
6	983.23	999.62	1016.00	1032.39	1048.78	1065.17	1081.55	1097.94	1114.33	1130.71
7	1147.10	1163.49	1179.88	1196.26	1212.65	1229.04	1245.42	1261.81	1278.20	1294.59
8	1310.97	1327.36	1343.75	1360.13	1376.52	1392.91	1409.30	1425.68	1442.07	1458.46
9	1474.84	1491.23	1507.62	1524.01	1540.39	1556.78	1573.17	1589.55	1605.94	1622.33

INCHES4 TO CENTIMETERS4-1 in.4-41.62347 cm4

Tens Unit	9 0	1	2	3	4	5	6	7	s	9
0	+	41.62	83.25	124.87	166.49	208.12	249.74	291.36	332.99	374.61
1	416.23	457.86	499.48	541.11	582.73	624.35	665.98	707.60	749.22	790.85
2	832.47	874.09	915.72	957.34	998.96	1040.59	1082.21	1123.83	1165.46	1207.08
3	1248.70	1290.33	1331.95	1373.57	1415.20	1456.82	1498.44	1540.07	1581.69	1623.32
4	1664.94	1706.56	1748.19	1789.81	1831.43	1873.06	1914.68	1956.30	1997.93	2039.55
5	2081.17	2122.80	2164.42	2206.04	2247.67	2289.29	2330.91	2372.54	2414.16	2455.78
6	2497.41	2539.03	2580.66	2622.28	2663.90	2705.53	2747.15	2788.77	2830.40	2872.02
7	2913.64	2955.27	2996.89	3038.51	3080.14	3121.76	3163.38	3205.01	3246.63	3288.25
8	3329.88	3371.50	3413.12	3454.75	3496.37	3537.99	3579.62	3621.24	3662.87	3704. 49
9	3746.11	3787.74	3829.36	3870.98	3912.61	3954.23	3995.85	4037.48	4079.10	4120.72

MEASURES AND WEIGHTS

METRIC CONVERSION TABLES CENTIMETERS TO INCHES—1 cm=0.3937 in.

Tens	0	1	2	3	4	5	6	7	8	9
0		0.3937	0.7874	1.1811	1.5748	1.9685	2.3622	2.7559	3.1496	3.5433
1	3.9370	4.3307	4.7244	5.1181	5.5118	5.9055	6.2992	6.6929	7.0866	7.4803
2	7.8740	8.2677	8.6614	9.0551	9.4488	9.8425	10.2362	10.6299	11.0236	11.4173
3	11.8110	12.2047	12.5984	12.9921	13.3858	13.7795	14.1732	14.5669	14.9506	15.3543
4	15.7480	16.1417	16.5354	16.9291	17.3228	17.7165	18.1102	18.5039	18.8976	19.2913
5	19.6850	20.0787	20.4724	20.8661	21.2598	21.6535	22.0472	22.4409	22.8346	23.2283
6	23.6220	24.0157	24.4094	24.8031	25.1968	25.5905	25.9842	26.3779	26.7716	27.1653
7	27.5590	27.9527	28.3464	28.7401	29.1338	29.5275	29.9212	30.3149	30.7086	31.1023
8	31.4960	31.8897	32.2834	32.6771	33.0708	33.4645	33.8582	34.2519	34.6456	35.0393
9	35.4330	35.8267	36.2204	36.6141	37.0078	37.4015	37.7952	38.1889	38.5826	38.9763

Centimeters² to Inches²—lem²=0.15499969 in.².

Tens Units	0	1	2	3	4	5	6	7	8	9
0		0.1550	0.3100	0.4650	0.6200	0.7750	0.9300	1.0850	1.2400	1.3950
1	1.5500	1.7050	1.8600	2.0150	2.1700	2.3250	2.4800	2.6350	2.7900	2.9450
2	3.1000	3.2550	3.4100	3.5650	3.7200	3.8750	4.0300	4.1850	4.3400	4.4950
3	4.6500	4.8050	4.9600	5.1150	5.2700	5.4250	5.5800	5.7350	5.8900	6.0450
4	6.2000	6.3550	6.5100	6.6650	6.8200	6.9750	7.1300	7.2850	7.4400	7.5950
5	7.7500	7.9050	8.0600	8.2150	8.3700	8.5250	8.6800	8.8350	8.9900	9.1450
6	9.3000	9.4550	9.6100	9.7650	9.9200	10.0750	10.2300	10.3850	10.5400	10.6950
7	10.8500	11.0050	11.1600	11.3150	11.4700	11.6250	11.7800	11.9350	12.0900	12.2450
8	12.4000	12.5550	12.7100	12.8650	13.0200	13.1750	13.3300	13.4850	13.6400	13.7950
9	13.9500	14.1050	14.2600	14.4150	14.5700	14.7250	14.8800	15.0350	15.1900	15.3450

CENTIMETERS³ TO INCHES³—l cm³=0.0610234 in.³.

Tens Units	0	1	2	3	4	5	6	7	8	9
0		0.06102	0.12205	0.18307	0.24409	0.30512	0.36614	0.42716	0.48819	0.54921
1	0.61023	0.67126	0.73228	0.79330	0.85433	0.91535	0.97637	1.03740	1.09842	1.15944
2	1.22047	1.28149	1.34251	1.40354	1.46456	1.52559	1.58661	1.64763	1.70866	1.76968
3	1.83070	1.89173	1.95275	2.01377	2.07480	2.13582	2.19684	2.25787	2.31889	2.37991
4	2.44094	2.50196	2.56298	2.62401	2.68503	2.74605	2.80708	2.86810	2.92912	2.99015
5	3.05117	3.11219	3.17322	3.23424	3.29526	3.35629	3.41731	3.47833	3.53936	3.60038
6	3.66140	3.72243	3.78345	3.84447	3.90550	3.96652	4.02754	4.08857	4.14959	4.21061
7	4.27164	4.33266	4.39368	4.45471	4.51573	4.57675	4.63778	4.69880	4.75983	4.82085
8	4.88187	4.94290	5.00392	5.06494	5.12597	5.18699	5.24801	5.30904	5.37006	5.43108
9	5.49211	5.55313	5.61415	5.67518	5.73620	5.79722	5.85825	5.91927	5.98029	6.04132

CENTIMETERS⁴ TO INCHES⁴—lcm⁴=0.0240249 in.⁴.

Teng Units	0	1	2	3	4	5	6	7	8	9
0		0.02402	0.04805	0.07207	0.09610	0.12012	0.14415	0.16817	0.19220	0.21622
1	0.24025	0.26427								
2		0.50452								
3		0.74477								
4	0.96100	0.98502	1.00905	1.03307	1.05710	1.08112	1.10515	1.12917	1.15320	1.17722
5		1.22527								
6	1.44149	1.46552	1.48954	1.51357	1.53759	1.56162	1.58564	1.60967	1.63369	1.65772
7		1.70577								
8		1.94602								
9		2.18627								

METRI	CONVERSION	TABLE	ES
FEET TO	METERS-1 ft.=0	.3048006	\mathbf{m}

1			PEE	1 10	MEIL	no 1	100.	304300	ощ						
0	Tens	0	1	2	3	4	5	6	7	8	9				
1 3.0480 3.3328 3.6576 3.9624 4.2672 4.5720 4.8768 5.1816 5.4864 5.7912 2 6.0960 6.4008 6.7056 7.0104 7.3155 7.6200 7.9248 8.2396 8.5344 8.5302 3 9.1440 9.4488 9.7536 10.0584 10.3602 10.6680 10.9728 11.2776 11.5824 11.8872 4 12.1920 12.4968 12.8016 13.1064 13.4112 13.7160 14.0208 14.3256 14.6304 14.9352 5 15.2940 15.5448 15.8496 16.1544 16.4592 16.7640 17.0688 17.3736 14.6304 14.9352 6 18.2880 18.5928 18.8976 19.2024 19.5072 19.8120 20.1168 20.4216 20.7264 21.0312 7 21.3360 21.6469 21.9456 22.504 22.5552 22.58600 23.6488 23.468			0.3048	0.6096	0.9144	1.2192	1.5240	1.8288	2.1336	2.4384	2.7432				
2 6.0000 6.4008 6.7056 7.0104 7.3162 7.6200 7.9248 8.2296 8.5344 8.8392 3 9.1440 9.4488 9.7536 10.0584 10.3632 10.6680 10.9728 11.2776 11.5824 11.8872 12.1920 12.4968 12.8016 13.1064 13.4112 13.7160 14.0208 14.3256 14.6304 14.9352 5 15.2400 15.5448 15.8496 16.1544 16.4592 16.7640 17.0688 17.3736 17.6784 17.9832 6 18.2880 18.2892 18.8976 19.2024 19.5072 19.8120 20.1168 20.4216 20.7264 21.0312 7 21.3360 21.6408 21.9466 22.2504 22.5552 22.8600 23.1648 23.4666 23.7744 24.0792 8 24.3840 24.6888 24.9936 25.2984 25.6033 25.9081 26.2129 26.5177 26.8225 27.1273 9 27.4321 27.7369 28.0417 28.3465 28.6513 28.9561 29.2609 29.5657 29.8705 30.1753 POUNDS PER FOOT TO KILOGRAMS PER METER—1 lb./ft. 1.488161 kg/m 1 14.882 16.370 17.808 19.346 20.834 22.322 23.811 25.299 26.5787 28.275 2 29.703 31.251 32.740 34.225 35.716 37.204 38.692 40.140 41.669 43.157 3 44.645 46.133 47.621 49.109 50.579 5.20.865 55.574 55.062 56.803 4 59.526 61.015 62.503 63.991 65.479 66.967 68.355 60.944 71.432 72.920 5 74.408 75.896 77.384 78.873 80.361 81.849 83.337 84.825 86.313 87.026 8 9.290 90.778 92.266 93.734 95.242 96.730 98.219 99.707 101.139 102.683 7 104.171 105.659 107.148 108.636 110.124 111.612 113.100 114.588 116.077 117.565 8 119.053 120.541 122.029 133.517 125.006 12.049 12.798 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328 POUNDS PER SQ. Inch to Kg. Per Sq. Cm.—1 lb./in. 2 = 0.0703067 kg/cm² 4.2912 2.88257 2.95288 3.02319 3.09349 3.16380 3.23411 3.30441 3.37472 3.44503 5 3.1533 3.35564 3.65505 3.72626 3.79656 1.86807 3.93718 3.0411 3.0041 3.37472 3.44503 5 3.1533 3.85564 3.65505 3.72626 3.79656 1.86807 3.93718 3.0041 3.37472 3.44503 5 3.2524 4.25404 4.28127 2.88257 2.95288 3.02319 3.09349 3.16380 3.23411 3.00441 3.37472 3.44503 5 3.25245 4.56948 4.56505 3.86807 3.93718 3.0041 3.37472 3.44503 5 3.25245 4.56948 4.5675 1.64769 4.2932 4.49963 4.50949 4.64024 4.71055 4.7808 4.5516 7 4.02147 4.99178 5.06020 5.13239 5.20270 5.27300 5.33315 4.19580 5.2545 5.0096 6.25730 6.25730 6.25730		3.0480													
1									8.2296						
12.1920 12.4968 12.5016 13.1064 13.4112 13.7160 14.0208 14.3256 14.6304 14.9352 15.2400 15.5448 15.8496 16.1544 16.4592 16.7640 17.0688 17.3736 17.6784 17.9832 17.4741 17.985 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741 17.4741															
6 18.2800 15.5448 15.8496 16.1544 16.4592 16.7640 17.0688 17.3736 17.6784 17.9832 6 18.2880 18.5978 18.5976 19.2024 19.5072 19.8120 20.1168 20.4216 20.7264 21.0312 7 21.3360 21.6408 21.9456 22.2504 22.5562 22.8600 23.1648 23.4696 23.7744 24.0792 8 24.3840 24.6888 24.9936 25.2984 25.6033 25.9081 26.2129 26.5177 26.8225 27.1273 7 27.7369 28.0417 28.3465 28.6513 28.9561 29.2669 29.5657 29.8705 30.1753 20.0000 20.00															
6 18.2850 18.5928 18.5926 19.2024 19.5072 19.8120 20.1168 20.4216 20.7264 21.0312 7 21.3360 21.6408 21.9456 22.2504 22.5552 22.8600 23.1648 23.4696 23.7744 24.0702 8 24.3840 24.6858 24.9936 25.2984 25.6033 25.9081 26.2129 26.5177 26.8225 27.1273 9 27.4321 27.7369 28.0417 28.3465 28.6513 28.961 29.2609 29.5657 29.8705 30.1753 POUNDS PER FOOT TO KILOGRAMS PER METER—I lb./ft.—1.488161 kg/m 1 14.882 16.370 17.858 19.346 20.834 22.322 23.511 25.299 26.787 28.275 2 29.703 31.251 32.740 34.228 33.716 37.204 38.662 40.180 41.669 43.157 3 44.645 46.133 47.621 49.109 50.597 52.086 53.574 55.062 56.550 58.038 4 59.526 61.015 62.503 63.991 65.479 66.967 68.455 69.941 71.422 72.205 5 74.408 75.896 77.834 108.636 10.124 11.612 113.100 11.458 116.71 17.655 8 119.053 120.541 122.029 123.517 125.006 126.494 127.982 129.470 130.958 132.446 9 133.934 135.433 136.911 138.399 139.887 141.375 142.863 144.332 145.840 147.328 POUNDS PER SQ. INCH TO KG. PER SQ. CM.—I 1b./in. 2=0.0703067 kg/cm² Volume of the color of the c															
7 21.3360 21.6408 21.9456 22.2504 22.5562 22.8500 23.1648 23.4696 23.7744 24.0792 9 27.4321 27.7369 28.0417 28.3465 28.6513 28.9661 29.2609 29.6567 129.8705 30.1753 POUNDS PER FOOT TO KILOGRAMS PER METER—I lb./ft.—1.488161 kg/m POUNDS PER FOOT TO KILOGRAMS PER METER—I lb./ft.—1.488161 kg/m 1 14.882 16.370 17.858 19.346 20.834 22.322 23.611 25.299 26.787 28.275 2 29.763 31.251 32.740 34.228 35.716 37.204 38.602 40.180 41.669 43.157 3 44.645 46.133 47.621 49.109 50.597 52.086 53.574 55.062 56.550 56.555 5 5.550 5 5.5	5														
S															
POUNDS PER FOOT TO KILOGRAMS PER METER—I lb./ft.=:1.488161 kg/m 1															
Pounds Per Foot to Kilograms Per Meter—1 lb./ft.=1.488161 kg/m															
1.488															
1		S PER	Гоот :	ro Kil	OGRAM	S PER	Мете	R—1 lb	./ft.==	1.48816	1 kg/m				
1	Tens Units	0	1	2	3	4	5	6	7	8	9				
1			1.488	2.976	4.464	5.953	7.441	8.929	10.417	11.905	13.393				
29.763 31.251 32.740 34.228 35.716 37.204 38.692 40.180 41.669 43.157 3 44.645 46.133 47.621 49.109 50.597 52.086 53.574 55.062 56.550 58.038 4 59.526 61.015 62.503 63.991 65.479 66.967 68.455 69.944 71.432 72.920 5 74.408 75.896 77.384 78.873 80.361 81.849 83.337 84.825 86.313 87.802 6 89.290 90.778 92.266 93.754 95.242 96.730 98.219 99.707 101.195 102.683 7 104.171 105.659 107.148 108.636 110.124 111.612 131.100 114.585 116.077 117.565 8 119.053 120.541 122.029 123.517 125.006 126.494 127.982 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328	1	14.882													
44.645 46.133 47.621 49.109 50.597 52.086 53.574 55.062 56.505 58.038 4 59.526 61.015 62.503 63.991 65.479 66.967 68.455 69.944 71.432 72.920 5 74.408 73.896 77.384 78.873 80.361 81.849 83.337 84.825 86.313 87.802 6 89.290 90.778 92.266 93.754 95.242 96.730 98.219 99.707 101.195 102.683 7 104.171 105.659 107.148 108.636 110.124 111.612 113.100 114.588 116.077 117.565 8 119.053 120.541 122.029 123.517 125.006 126.494 127.982 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328 POUNDS PER SQ. INCH TO KG. PER SQ. CM.—1 lb./in.2 = 0.0703067 kg/cm² 1 0.70307 0.77337 0.84368 0.91399 0.9842 1.05460 1.12491 1.19521 1.26552 1.33583 2 1.40613 1.47644 1.54675 1.61705 1.68736 1.75767 1.82797 1.89828 1.96859 2.03889 3 2.10920 2.17951 2.24981 2.32012 2.39043 2.46073 2.53104 2.60135 2.67165 2.74196 4 2.81227 2.88257 2.92288 3.02319 3.09349 3.16808 3.23411 3.30441 3.37471 3.34508 5 3.51534 3.55864 3.65595 3.72626 3.79656 3.86687 3.93718 4.00748 4.07779 4.14810 6 4.21840 4.28871 4.35902 4.42932 4.49963 4.56994 4.64024 4.71055 5.48320 5.55423 8 5.62454 5.60484 5.76515 5.83546 5.90576 5.90676 6.04638 6.11669 5.86906 6.96036 INCH-POUNDS TO KILOGRAM-CENTIMETERS 1 in-lb. =1.152127 kg-cm 1 11.521 12.673 13.826 14.978 16.130 17.282 18.434 19.586 2.9230 3.4412 3.34544 4.6854 4.55.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 44.6854 45.5716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 44.6854 47.237 48.389 49.541 50.6094 51.846 52.998 54.150 55.326 56.9366 50.9666 50.9666 50.9666 50.9666 50.9666 50.9666 50.9666 50.9666	2														
4 59,526 61.015 62,503 63,991 63,479 66,967 68,455 69,944 71,432 72,926 5 74,408 75,896 77,384 78,873 80,361 81,849 83,337 84,825 86,313 87,802 6 89,290 90,778 92,266 93,754 95,249 96,730 98,219 99,707 101,195 102,683 7 104,171 105,659 107,148 108,636 110,124 111,612 113,100 114,588 116,077 117,565 8 192,470 130,958 132,446 9 133,934 135,423 136,911 138,399 139,887 141,375 142,863 144,352 145,840 147,328 POUNDS PER SQ. INCH TO KG. PER SQ. CM.—1 lb./in.2=0,0703067 kg/cm² 1 0.07037 0.74386 0.91399 0.98429 1.05460 1,12491 1,19521 1,26552 1,33583 2 1.40613 1.47644 1.54675 1,61705 1,65736 1,75767	3														
5 74.408 75.896 77.384 78.873 80.361 81.849 83.337 84.825 86.313 87.802 6 89.290 90.778 92.266 93.754 95.242 96.730 98.219 99.707 101.195 102.683 7 104.171 105.659 107.148 108.636 110.124 111.612 113.100 114.585 116.077 117.565 8 119.053 120.541 122.029 123.517 125.006 126.494 127.982 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328 POUNDS PER SQ. Inch to KG. PER SQ. Cm. —I lb./in. 2 —0.0703067 kg/cm² 1 0.70307 0.77337 0.84368 0.91399 0.98429 1.05460 1.12491 1.19521 0.63276 1 0.70307 0.77337 0.84368 0.91391 0.98429 1.05460 1.12491 1.19521	4														
6 89.290 90.778 92.266 93.754 95.242 96.730 98.219 99.707 101.195 102.683 104.171 105.659 107.148 108.636 110.124 111.612 113.100 114.588 116.073 117.565 119.053 120.541 122.092 123.517 125.006 126.494 127.982 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328															
The image															
8 119.053 120.541 122.029 123.517 125.006 126.404 127.982 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328 POUNDS PER SQ. INCH TO KG. PER SQ. CM.—I lb./in.²=0.0703067 kg/cm² 0															
POUNDS PER SQ. INCH TO KG. PER SQ. CM.—1 lb./in.2=0.0703067 kg/cm² Color															
Pounds Per Sq. Inch to Kg. per Sq. Cm.—1 lb./in.2=0.0703067 kg/cm² The color of the color of		122.023	125 499	126 011	120.017	120.000	141 375								
0	9	100.904	130.420	130.311	100.000	100.007	141.070	112.000	111.002	110.010	111.020				
0.07031 0.14061 0.21092 0.28123 0.35153 0.42184 0.49215 0.56245 0.63276 1 0.70307 0.77337 0.84368 0.91399 0.98429 1.05460 1.12491 1.19521 1.26552 1.33583 2.10920 2.17951 2.24981 2.39012 2.39043 2.46073 2.53104 2.60135 2.67165 2.74196 4 2.8127 2.88257 2.93288 3.02319 3.03349 3.16380 3.23411 3.30441 3.37472 3.44503 5 3.51534 3.58564 3.65595 3.76266 3.76656 3.86687 3.93718 4.00748 4.07749 4.14810 6 4.21840 4.28871 4.35902 4.42932 4.49963 4.56994 4.64024 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34331 5.41362 5.48392 5.55423 8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 6.81975 6.89006 6.96036 1 11.521 12.673 13.826 14.978 16.130 17.282 18.434 19.586 20.738 21.890 1 11.521 12.673 13.826 14.978 16.130 17.282 18.434 19.586 20.738 21.890 1 11.521 12.673 13.826 14.978 16.130 17.282 18.434 19.586 20.738 21.890 2 23.043 24.195 25.347 26.499 27.651 28.803 29.955 31.107 32.260 33.412 3 34.564 35.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 44.6085 47.237 48.389 49.541 50.694 51.896 52.998 54.150 55.302 56.454 55.666 58.758 59.911 61.063 62.215 63.367 64.519 65.299 54.150 55.302 56.454 55.666 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 78.0649 81.801 82.933 84.105 82.935															
0	Tens Units	0	1	2	3	4	5	6	7	8	9				
1 0.70307 0.77337 0.84368 0.91399 0.98429 1.05460 1.12491 1.19521 1.26552 1.33583 2 1.40613 1.47644 1.54675 1.161705 1.68736 1.75767 1.82797 1.89828 1.96859 2.03889 3 2.10920 2.17951 2.24981 2.32012 2.39043 2.46073 2.53104 2.60135 2.67165 2.74196 4 2.81227 2.88257 2.95288 3.02319 3.09349 3.16380 3.23411 3.30441 3.37472 3.44503 5 3.51534 3.58564 3.65595 3.76266 3.86687 3.93718 4.00748 4.0774 4.14810 6 4.21840 4.28871 4.35902 4.42932 4.49963 4.6994 4.64024 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34331 5.41362 5.48392 5.55423 8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.13699 6.25730 9 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 6.81975 6.89006 6.96036 1 1.152 2.304 3.456 4.6085 6.7914 6.74944 6.81975 6.89006 6.96036 1 1.152 12.673 13.826 14.978 16.130 17.282 18.434 19.556 20.738 21.890 2 23.043 24.195 25.347 26.499 27.651 28.803 29.955 31.107 32.260 33.412 3 34.564 35.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 4 46.085 47.237 48.389 49.541 50.694 51.846 52.998 54.150 53.02 56.454 5.7666 58.758 59.911 61.063 62.215 63.367 64.519 65.571 66.823 67.975 6 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 78.0649 81.801 82.935 84.105 82.257 86.410 87.561 87.935 79.896 6 91.018 8 92.170 83.229 18.302 94.474 95.627 66.779 97.991 90.9083 100.235 100.235 100.235 100.235 100.235 100.357 102.539			0.07031	0.14061	0.21092	0.28123	0.35153	0.42184	0.49215	0.56245	0.63276				
2 1.40613 1.47644 1.54675 1.61705 1.68736 1.75767 1.82797 1.88928 1.96859 2.03889 3 2.10920 2.17951 2.24981 2.32012 2.32012 2.3043 2.46073 2.53104 2.60135 2.67165 2.74196 4 2.8127 2.882857 2.95288 3.02319 3.09349 3.6350 3.23411 3.30441 3.37472 3.44503 5 3.51534 3.58564 3.65595 3.72626 3.79656 3.86687 3.93718 4.00748 4.07779 4.14810 6 4.21840 4.28871 4.35902 4.42932 4.49963 4.56994 4.64024 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34311 5.41362 5.48392 5.5423 8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 6.81975 6.89006 6.96036 1.000000000000000000000000000000000000		0.70307													
3 2.10920 2.17951 2.24981 2.32012 2.33043 2.46073 2.53104 2.60135 2.67165 2.74196 4 2.81227 2.88257 2.95288 3.02319 3.09349 3.16380 3.23411 3.30441 3.37472 3.44508 5 3.51534 3.58564 3.65595 3.72626 3.79656 3.86687 3.93718 4.00748 4.71079 4.14810 6 4.21840 4.28871 4.35902 4.42932 4.49963 4.56994 4.64024 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34331 5.41362 5.48392 5.55423 8 5.62454 5.60484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 6.81975 6.89006 6.96036 INCH-POUNDS TO KILOGRAM-CENTIMETERS—1 in-lb. =1.152127 kg-cm	9						1 75767								
4 2.81227 2.88257 2.95288 3.02319 3.09349 3.16330 3.23411 3.30441 3.37472 3.44503 5 3.51634 3.55564 3.65595 3.76266 3.76656 3.86867 3.93718 4.00748 4.07779 4.14810 6 4.21840 4.25871 4.35902 4.42923 4.49963 4.66924 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34331 5.41362 5.48392 5.55423 8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 6.81975 6.89006 6.96036 1 1.152 2.304 3.456 4.609 5.761 6.913 8.065 9.217 10.369 1 11.521 12.673 13.826 14.978 16.130 17.282 18.434 19.556 20.738 21.890 2 23.043 24.195 25.347 26.499 27.651 28.803 29.955 31.107 32.260 33.412 3 34.564 35.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 4 46.085 47.237 48.389 49.541 50.694 51.846 52.998 54.150 5.302 56.454 5.7666 68.758 59.911 61.063 62.215 63.367 64.519 65.571 66.823 67.975 6 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 78.0649 81.801 82.953 84.105 82.257 86.410 87.561 87.561 88.766 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 78.0649 81.801 82.953 84.105 82.257 86.410 87.562 88.714 89.866 91.018 8 92.170 83.322 44.74 95.627 66.779 79.991 90.9083 100.235 101.235	2														
5 3.51534 3.58564 3.65595 3.72626 3.79656 3.86887 3.93718 4.00748 4.07779 4.14810 6 4.21840 4.258971 4.35902 4.42932 4.4963 4.66024 4.71055 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06080 5.12399 5.20270 5.23730 5.34331 5.41832 5.48392 5.55423 8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 6.32760 6.39791 6.46822 6.538521 6.60853 6.67914 6.74944 6.81975 6.89006 6.96036 INCH-POUNDS TO KILOGRAM-CENTIMETERS—1 in-lb.=1.152127 kg-cm 0 1.152 2.304 3.456 4.609 5.761 6.913 8.065 9.217 10.369 1 11.521 12.673 13.826 1.4981 16.130 17.282 18.434 19.566 20.738						3 00310	3 16380								
6 4.21840 4.28871 4.35902 4.42932 4.49963 4.56994 4.64024 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34331 5.41362 5.4832 5.55423 8 5.62454 5.60484 5.76515 5.83546 6.590576 5.97607 6.04638 6.11669 6.25730 9 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 6.81975 6.89006 6.96036 INCH-POUNDS TO KILOGRAM-CENTIMETERS —1 in-lb. —1.152127 kg-cm															
7	9					4.40062	4 56004								
8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 6.32760 6.39791 6.46822 6.538521 6.60833 6.67914 6.74944 6.81975 6.89006 6.96036 INCH-POUNDS TO KILOGRAM-CENTIMETERS—1 in-lb.=1.152127 kg-cm 0 1 2 3 4 5 6 7 8 9 0 1.152 2.304 3.456 4.609 5.761 6.913 8.065 9.217 10.369 1 1.1521 12.673 13.826 14.978 16.130 17.282 18.434 19.586 20.738 21.890 2 23.043 24.195 25.347 26.499 27.651 28.803 29.955 31.107 32.260 33.412 3 34.564 35.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 4 46.085 47.237															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4.92147	4.99178					0.04001	C 11CCO						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	5.62454	0.09484	0.70010	0.83040	0.90070	0.97007	6.74044	6 01075	6.10099	6.06036				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-9														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pouni	DS TO I	LILOGE	RAM-CI	ENTIM:	ETERS-	-1 m-	16.=1.	152127	kg-cm				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tensnits	0	1	2	3	4	5	6	7	8	9				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	1.152	2.304	3.456	4.609	5.761	6.913	8.065	9.217	10.369				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.521													
3 34.564 35.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.933 4 46.085 47.237 48.389 49.541 50.694 51.846 52.998 54.150 55.302 56.454 5 57.606 58.758 59.911 61.603 62.215 63.367 64.519 65.671 66.823 67.975 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 7 80.649 81.801 82.933 84.105 85.257 86.410 87.562 88.714 89.866 91.018 8 92.170 33.322 94.474 95.627 96.779 97.931 99.935 102.235 102.253	2														
4 46.085 47.237 48.389 49.541 50.694 51.846 52.998 54.150 55.302 56.454 5 57.606 58.758 59.911 61.063 62.215 63.367 64.519 65.671 66.823 67.975 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 7 80.649 81.801 82.953 84.105 85.257 86.410 87.562 88.714 89.866 91.018 8 92.170 93.322 94.474 95.627 96.779 97.931 99.083 100.235 101.387 102.539	3														
5 57.606 58.758 59.911 61.063 62.215 63.367 64.519 65.671 66.823 67.975 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 7 80.649 81.801 82.953 84.105 85.257 86.410 87.562 88.714 89.866 91.018 8 92.170 93.322 94.474 95.627 96.779 97.931 99.083 100.235 101.387 102.539	4														
6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 7 80.649 81.501 82.953 84.105 85.257 86.410 87.562 88.714 89.866 91.018 8 92.170 93.322 94.474 95.627 96.779 97.931 99.083 100.235 101.337 102.539															
7 80.649 81.801 82.953 84.105 85.257 86.410 87.562 88.714 89.866 91.018 8 92.170 93.322 94.474 95.627 96.779 97.931 99.083 100.235 101.387 102.539	6														
8 92.170 93.322 94.474 95.627 96.779 97.931 99.083 100.235 101.387 102.539															
9 103.691 104.844 105.996 107.148 198.300 109.452 110.604 111.756 112.908 114.061															
9 105.091 104.844 105.996 107.148 198.500 109.452 110.004 111.756 112.908 114.001		92.170	93.322	94.4/4	95.027	100.200	100 459	110 604	111 750	119 000	114.061				
	¥	103.691	104.844	105.996	107.148	198.300	109.4521	110.004	111./301	112.9081	114.001				

MEASURES AND WEIGHTS

METRIC	$\mathbf{C}^{\mathbf{c}}$	ONVERS	SION	TABL	ES
METERS	то	FEET-1	m=3	2808333	ft.

Tens Units	0	1	2	3	4	5	6	7	8	9
0		3.281	6.562	9.843	13.123	16.404	19.685	22.966	26.247	29.528
1	32.808	36.089	39.370	42.651	45.932	49.213	52.493	55.774	59.055	62.336
2	65.617	68.898	72.178	75.459	78.740	82.021	85.302	88.583	91.863	95.144
3	98.425	101.706	104.987	108.268	111.548	114.829	118.110	121.391	124.672	127.953
4	131.233	134.514	137.795	141.076	144.357	147.638	150.918	154.199	157.480	160.761
5	164.042	167.323	170.603	173.884	177.165	180.446	183.727	187.008	190.288	193.569
6	196.850	200.131	203.412	206.693	209.973	213.254	216.535	219.816	223.097	226.378
7	229.658	232.939	236.220	239.501	242.782	246.063	249.343	252.624	255.905	259.186
8	262.467	265.748	269.028	272.309	275.590	278.871	282.152	285.433	288.713	291.994
9	295.275	298.556	301.837	305.118	308.398	311.679	314.960	318.241	321.522	324.803
Teng Dits	0	PER M	2	3	4	5	6	7	8	9
0		0.6720	1.3439	2.0159	2.6879	3.3599	4.0318	4.7038	5.3758	6.0477
1	6.7197	7.3917	8.0636	8.7356	9.4076		10.7515	11.4235	12.0955	12.7674
2	13.4394	14.1114	14.7833	15.4553	16.1273		17.4712	18.1432		19.4871
3	20.1591	20.8311	21.5030	22.1750	22.8470		24.1909	24.8629	25.5349	26.2068
4	26.8788	27.5508	28.2227	28.8947	29.5667	30.2387	30.9106	31.5826	32.2546	32.9265
5 6	33.5985	34.2705	34.9424	35.6144	36.2864			38.3022		39.6462
6	40.3182				43.0061			45.0220		
7	47.0379						51.0697			53.0856
	53.7576				56.4455			58.4614		
9	60.4773	61.1493	61.8212	62.4932	63.1652	63.8372	64.5091	65.1811	65.8531	66.5250
		См. то	[l	1				<u> </u>	
-10	0	1	2	3	4	5	6	7	8	9
0		14.22	28.45	42.67	56.89	71.12	85.34	99.56	113.79	128.0
1	142.23	156.46	170.68	184.90	199.13	213.35	227.57	241.80	256.02	270.2
2	284.47	298.69	312.91	327.14	341.36	355.59	369.81	384.03	398.26	412.48
3	426.70	440.93	455.15	469.37	483.60	497.82	512.04	526.27	540.49	554.71
4	568.94	583.16	597.38	611.61	625.83	640.05		668.50	682.72	696.95
5	711.17	725.39	739.62	753.84	768.06	782.29	796.51	810.73	824.96	839.18
6	853.40	867.63	881.85	896.07	910.30		938.74	952.97	967.19	981.41
7	995.64	1009.86	1024.08	1038.31	1052.53			1095.20		
8	1137.87	1152.10	1166.32	1180.54	1194.77	1208.99	1223.21	1237.44		
9	1280.11	1294.33	1308.55	1322.78	1337.00	1351.22	1365.45	1379.67	1393.89	1408.12

Kilogram	-Centim	ETERS	s то I	nсн - Р	OUNDS	—l kg	/cm=0	0.86796	in./lb.
2 Unit					_	1			

ens its	0	1	2	3	4	5	6	7	8	9
0		0.8680	411000		3.4718				6.9437	
1	8.6796	9.5476	10.4155	11.2835	12.1514	13.0194	13.8874	14.7553	15.6233	16.4912
2	17.3592	18.2272	19.0951	19.9631	20.8310	21.6990	22.5670	23.4349	24.3029	25.1708
3	26.0388	26.9068	27.7747	28.6427	29.5106	30.3786	31.2466	32.1145	32.9825	33.8504
4	34.7184	35.5864	36.4543	37.3223	38.1902	39.0582	39.9262	40.7941	41.6621	42.5300
5	43.3980	44.2660	45.1339	46.0019	46.8698	47.7378	48.6058	49.4737	50.3417	51.2096
6	52.0776	52.9456	53.8135	54.6815	55.5494	56.4174	57.2854	58.1533	59.0213	59.8892
7	60.7572	61.6252	62.4931	63.3611	64.2290	65.0970	65.9650	66.8329	67.7009	68.5688
8	69.4368	70.3048	71.1727	72.0407	72.9086	73.7766	74.6446	75.5125	76.3805	77.2484
9	78.1164	78.9844	79.8523	80.7203	81.5882	82.4562	83.3242	84.1921	85.0601	85.9280

METRIC CONVERSION TABLE

INCHES TO MILLIMETERS

39.37 inches, U. S. Standard=1 meter=100 centimeters=1000 millimeters.

Inches	0	1/16	1/8	3/16	1/4	5/16	3/8	716
0 1 2 3 4 5	0.00 25.40 50.80 76.20 101.60	1.59 26.99 52.39 77.79 103.19	3.18 28.58 53.98 79.38 104.78	4.76 30.16 55.56 80.96 106.36	6.35 31.75 57.15 82.55 107.95	7.94 33.34 58.74 84.14 109.54	9.53 34.93 60.33 85.73 111.13	11.11 36.51 61.91 87.31 112.71
5 6 7 8 9	127.00 152.40 177.80 203.20 228.60 254.00	128.59 153.99 179.39 204.79 230.19 255.59	130.18 155.58 180.98 206.38 231.78 257.18	131.76 157.16 182.56 207.96 233.36 258.76	133.35 158.75 184.15 209.55 234.95 260.35	134.94 160.34 185.74 211.14 236.54 261.94	136.53 161.93 187.33 212.73 238.13 263.53	138.11 163.51 188.91 214.31 239.71 265.11
11 12 13 14 15	279.40 304.80 330.20 355.60 381.00	280.99 306.39 331.79 357.19 382.59	282.58 307.98 333.38 358.78 384.18	284.16 309.56 334.96 360.36 385.76	285.75 311.15 336.55 361.95 387.35	287.34 312.74 338.14 363.54 388.94	288.93 314.33 339.73 365.13 390.53	290.51 315.91 341.31 366.71 392.11
16 17 18 19 20	$\begin{array}{c} 406.40 \\ 431.80 \\ 457.20 \\ 482.60 \\ 508.00 \end{array}$	407.99 433.39 458.79 484.19 509.59	409.58 434.98 460.38 485.78 511.18	$\begin{array}{c} 411.16 \\ 436.56 \\ 461.96 \\ 487.36 \\ 512.76 \end{array}$	412.75 438.15 463.55 488.95 514.35	414.34 439.74 465.14 490.54 515.94	415.93 441.33 466.73 492.13 517.53	417.51 442.91 468.31 493.71 519.11
$21 \\ 22 \\ 23 \\ 24 \\ 25$	533.40 558.80 584.20 609.60 635.00	534.99 560.39 585.79 611.19 636.59	536.58 561.98 587.38 612.78 638.18	538.16 563.56 588.96 614.36 639.76	539.75 565.15 590.55 615.95 641.35	541.34 566.74 592.14 617.54 642.94	542.93 568.33 593.73 619.13 644.53	544.51 569.91 595.31 620.71 646.11
26 27 28 29 30	660.40 685.80 711.20 736.60 762.00	661.99 687.39 712.79 738.19 763.59	663.58 688.98 714.38 739.78 765.18	$\begin{array}{c} 665.16 \\ 690.56 \\ 715.96 \\ 741.36 \\ 766.76 \end{array}$	666.75 692.15 717.55 742.95 768.35	$\begin{array}{c} 668.34 \\ 693.74 \\ 719.14 \\ 744.54 \\ 769.94 \end{array}$	669.93 695.33 720.73 746.13 771.53	671.51 696.91 722.31 747.71 773.11
31 32 33 34 35	787.40 812.80 838.20 863.60 889.00	788.99 814.39 839.79 865.19 890.59	790.58 815.98 841.38 866.78 892.18	792.16 817.56 842.96 868.36 893.76	793.75 819.15 844.55 869.95 895.35	$\begin{array}{c} 795.34 \\ 820.74 \\ 846.14 \\ 871.54 \\ 896.94 \end{array}$	796.93 822.33 847.73 873.13 898.53	798.51 823.91 849.81 874.71 900.11
36 37 38 39 40	914.40 939.80 965.20 990.60 1016.00	915.99 941.39 966.79 992.19 1017.59	$\begin{array}{c} 917.58 \\ 942.98 \\ 968.38 \\ 993.78 \\ 1019.18 \end{array}$	$\begin{array}{c} 919.16 \\ 944.56 \\ 969.96 \\ 995.36 \\ 1020.76 \end{array}$	920.75 946.15 971.55 996.95 1022.35	$\begin{array}{c} 922.34 \\ 947.74 \\ 973.14 \\ 998.54 \\ 1023.94 \end{array}$	923.93 949.33 974.73 1000.13 1025.53	$\begin{array}{c} 925.51 \\ 950.91 \\ 976.31 \\ 1001.71 \\ 1027.11 \end{array}$
41 42 43 44 45	$\begin{array}{c} 1041.40 \\ 1066.80 \\ 1092.20 \\ 1117.60 \\ 1143.00 \end{array}$	1042.99 1068.39 1093.79 1119.19 1144.59	$\begin{array}{c} 1044.58 \\ 1069.98 \\ 1095.38 \\ 1120.78 \\ 1146.18 \end{array}$	$\begin{array}{c} 1046.16\\ 1071.56\\ 1096.96\\ 1122.36\\ 1147.76 \end{array}$	1047.75 1073.15 1098.55 1123.95 1149.35	$\begin{array}{c} 1049.34 \\ 1074.74 \\ 1100.14 \\ 1125.54 \\ 1150.94 \end{array}$	1050.93 1076.33 1101.73 1127.13 1152.53	$\begin{array}{c} 1052.51 \\ 1077.91 \\ 1103.31 \\ 1128.71 \\ 1154.11 \end{array}$
46 47 48 49 50	1168.40 1193.80 1219.20 1244.60 1270.00	$\begin{array}{c} 1169.99 \\ 1195.39 \\ 1220.79 \\ 1246.19 \\ 1271.59 \end{array}$	$\begin{array}{c} 1171.58 \\ 1196.98 \\ 1222.38 \\ 1247.78 \\ 1273.18 \end{array}$	1173.16 1198.56 1223.96 1249.36 1274.76	$\begin{array}{c} 1174.75 \\ 1200.15 \\ 1225.55 \\ 1250.95 \\ 1276.35 \end{array}$	$\begin{array}{c} 1176.34 \\ 1201.74 \\ 1227.14 \\ 1252.54 \\ 1277.94 \end{array}$	1177.93 1203.33 1228.73 1254.13 1279.53	$\begin{array}{c} 1179.51 \\ 1204.91 \\ 1230.31 \\ 1255.71 \\ 1281.11 \end{array}$

MEASURES AND WEIGHTS

METRIC CONVERSION TABLE

INCHES TO MILLIMETERS

39.37 inches, U. S. Standard=1 meter=100 centimeters=1000 millimeters

Inches	1/2	9/16	58	11/16	84	18/16	7/4	15/18
0	12.70	14.29	15.88	$\begin{array}{c} 17.46 \\ 42.86 \\ 68.26 \\ 93.66 \\ 119.06 \\ 144.46 \end{array}$	19.05	20,64	22.23	23.81
1	38.10	39.69	41.28		44.45	46.04	47.63	49.21
2	63.50	65.09	66.68		69.85	71.44	73.03	74.61
3	88.90	90.49	92.08		95.25	96.84	98.43	100.01
4	114.30	115.89	117.48		120.65	122.24	123.83	125.41
5	139.70	141.29	142.88		146.05	147.64	149.23	150.81
6 7 8 9 10	165.10 190.50 215.90 241.30 266.70	166.69 192.09 217.49 242.89 268.29	168.28 193.68 219.08 244.48 269.88	$\begin{array}{c} 169.86 \\ 195.26 \\ 220.66 \\ 246.06 \\ 271.46 \end{array}$	$\begin{array}{c} 171.45 \\ 196.85 \\ 222.25 \\ 247.65 \\ 273.05 \end{array}$	173.04 198.44 223.84 249.24 274.64	174.63 200.03 225.43 250.83 276.23	$\begin{array}{c} 176.21 \\ 201.61 \\ 227.01 \\ 252.41 \\ 277.81 \end{array}$
11	292.10	293.69	295.28	$\begin{array}{c} 296.86 \\ 322.26 \\ 347.66 \\ 373.06 \\ 398.46 \end{array}$	298.45	300.04	301.63	303.21
12	317.50	319.09	320.68		323.85	325.44	327.03	328.61
13	342.90	344.49	346.08		349.25	350.84	352.43	354.01
14	368.30	369.89	371.48		374.65	376.24	377.83	379.41
15	393.70	395.29	396.88		400.05	401.64	403.23	404.81
16	419.10	420.69	422.28	$\begin{array}{c} 423.86 \\ 449.26 \\ 474.66 \\ 500.06 \\ 525.46 \end{array}$	425.45	427.04	428.63	430.21
17	444.50	446.09	447.68		450.85	452.44	454.03	455.61
18	469.90	471.49	473.08		476.25	477.84	479.43	481.01
19	495.30	496.89	498.48		501.65	503.24	504.83	506.41
20	520.70	522.29	523.88		527.05	528.64	530.23	531.81
21	546.10	547.69	549.28	550.86	552.45	554.04	555.63	557.21
22	571.50	573.09	574.68	576.26	577.85	579.44	581.03	582.61
23	596.90	598.49	600.08	601.66	603.25	604.84	606.43	608.01
24	622.30	623.89	625.48	627.06	628.65	630.24	631.83	633.41
25	647.70	649.29	650.88	652.46	654.05	655.64	657.23	658.81
26	673.10	674.69	676.28	677.86	679.45	681.04	682.63	684.21
27	698.50	700.09	701.68	703.26	704.85	706.44	708.03	709.61
28	723.90	725.49	727.08	728.66	730.25	731.84	733.43	735.01
29	749.30	750.89	752.48	754.06	755.65	757.24	758.83	760.41
30	774.70	776.29	777.88	779.46	781.05	782.64	784.23	785.81
31	800.10	801.69	803.28	804.86	806.45	808.04	809.63	811.21
32	825.50	827.09	828.68	830.26	831.85	833.44	835.03	836.61
33	850.90	852.49	854.08	855.66	857.25	858.84	860.43	862.01
34	876.30	877.89	879.48	881.06	882.65	884.24	885.83	887.41
35	901.70	903.29	904.88	906.46	908.05	909.64	911.23	912.81
36	927.10	928.69	$\begin{array}{c} 930.28 \\ 955.68 \\ 981.08 \\ 1006.48 \\ 1031.88 \end{array}$	931.86	933.45	935.04	936.63	938.21
37	952.50	954.09		957.26	958.85	960.44	962.03	963.61
38	977.90	979.49		982.66	984.25	985.84	987.43	989.01
39	1003.30	1004.89		1008.06	1009.65	1011.24	1012.83	1014.41
40	1028.70	1030.29		1033.46	103 5. 05	1036.64	1038.23	1039.81
41	1054.10	1055.69	1057.28	1058.86	1060.45	1062.04	1063.63	1065.21
42	1079.50	1081.09	1082.68	1084.26	1085.85	1087.44	1089.03	1090.61
43	1104.90	1106.49	1108.08	1109.66	1111.25	1112.84	1114.43	1116.01
44	1130.30	1131.89	1133.48	1135.06	1136.65	1138.24	1139.83	1141.41
45	1155.70	1157.29	1158.88	1160.46	1162.05	1163.64	1165.23	1166.81
46	1181.10	1182.69	1184.28	1185.86	1187.45	1189.04	$\begin{array}{c} 1190.63 \\ 1216.03 \\ 1241.43 \\ 1266.83 \\ 1292.23 \end{array}$	1192.21
47	1206.50	1208.09	1209.68	1211.26	1212.85	1214.44		1217.61
48	1231.90	1233.49	1235.08	1236.66	1238.25	1239.84		1243.01
49	1257.30	1258.89	1260.48	1262.06	1263.65	1265.24		1268.41
50	1282.70	1284.29	1285.88	1287.46	1289.05	1290.64		1293.81

METRIC CONVERSION TABLE

Pounds Avoirdupois to Kilograms

1 Pound=0.45359 Kilograms

Tens Units	0	1	2	3	4	5	6	7	8	9
0 1 2 3 4 5	$\begin{array}{c} 4.54 \\ 9.07 \\ 13.61 \\ 18.14 \\ 22.68 \end{array}$	0.45 4.99 9.53 14.06 18.60 23.13	$\begin{array}{c} 0.91 \\ 5.44 \\ 9.98 \\ 14.51 \\ 19.05 \\ 23.59 \end{array}$	1.36 5.90 10.43 14.97 19.50 24.04	$\begin{array}{c} 1.81 \\ 6.35 \\ 10.89 \\ 15.42 \\ 19.96 \\ 24.49 \end{array}$	$\begin{array}{c} 2.27 \\ 6.80 \\ 11.34 \\ 15.88 \\ 20.41 \\ 24.95 \end{array}$	$\begin{array}{c} 2.72 \\ 7.26 \\ 11.79 \\ 16.33 \\ 20.87 \\ 25.40 \end{array}$	3.18 7.71 12.25 16.78 21.32 25.85	3.63 8.16 12.70 17.24 21.77 26.31	$\begin{array}{c} 4.08 \\ 8.62 \\ 13.15 \\ 17.69 \\ 22.23 \\ 26.76 \end{array}$
$\begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{array}{c} 27.22 \\ 31.75 \\ 36.29 \\ 40.82 \\ 45.36 \end{array}$	$\begin{array}{c} 27.67 \\ 32.21 \\ 36.74 \\ 41.28 \\ 45.81 \end{array}$	28.12 32.66 37.19 41.73 46.27	28.58 33.11 37.65 42.18 46.72	29.03 33.57 38.10 42.64 47.17	29.48 34.02 38.56 43.09 47.63	29.94 34.47 39.01 43.54 48.08	30.39 34.93 39.46 44.00 48.53	30.84 35.38 39.92 44.45 48.99	31.30 35.83 40.37 44.91 49.44
11 12 13 14 15	49.90 54.43 58.97 63.50 68.04	50.35 54.88 59.42 63.96 68.49	50.80 55.34 59.87 64.41 68.95	51.26 55.79 60.33 64.86 69.40	51.71 56.25 60.78 65.32 69.85	52.16 56.70 61.23 65.77 70.31	52.62 57.15 61.69 66.22 70.76	53.07 57.61 62.14 66.68 71.21	53.52 58.06 62.60 67.13 71.67	53.98 58.51 63.05 67.59 72.12
16 17 18 19 20	72.57 77.11 81.65 86.18 90.72	73.03 77.56 82.10 86.64 91.17	73.48 78.02 82.55 87.09 91.63		74.39 78.93 83.46 88.00 92.53	88.45		75.75 80.29 84.82 89.36 93.89	76,20 80,74 85,28 89,81 94,35	76.66 81.19 85.73 90.26 94.80
21 22 23 24 25	104.33 108.86	$\begin{array}{c} 95.71 \\ 100.24 \\ 104.78 \\ 109.32 \\ 113.85 \end{array}$	$105.23 \\ 109.77$	$101.15 \\ 105.69$	106.14 110.68	106.59	107.05			99.34 103.87 108.41 112.94 117.48
26 27 28 29 30	$\begin{array}{c} 122.47 \\ 127.01 \\ 131.54 \end{array}$	118.39 122.92 127.46 132.00 136.53	123.38 127.91 132.45		124.28 128.82 133.36		$ \begin{array}{r} 125.19 \\ 129.73 \\ 134.26 \end{array} $	$\begin{array}{c} 125.65 \\ 130.18 \\ 134.72 \end{array}$	$130.63 \\ 135.17$	$122.02 \\ 126.55 \\ 131.09 \\ 135.62 \\ 140.16$
31 32 33 34 35	$140.61 \\ 145.15 \\ 149.69 \\ 154.22 \\ 158.76$	$ 145.60 \\ 150.14 \\ 154.68$	$\begin{array}{c} 146.06 \\ 150.59 \\ 155.13 \end{array}$	$146.51 \\ 151.05$	$\begin{array}{c} 146.96 \\ 151.50 \\ 156.04 \end{array}$	142.88 147.42 151.95 156.49 161.03	147.87 152.41 156.94	$\begin{array}{c} 148.32 \\ 152.86 \\ 157.40 \end{array}$	148.78	$153.77 \\ 158.30$
36 37 38 39 40	167.83 172.37 176.90	168.28 172.82 177.35	168.74 173.27 177.81	169.19 173.73 178.26	169.64 174.18 178.72	$\begin{array}{c} 170.10 \\ 174.63 \\ 179.17 \end{array}$	175.09	$\begin{array}{c} 171.00 \\ 175.54 \\ 180.08 \end{array}$	$\begin{array}{c} 171.46 \\ 175.99 \\ 180.53 \end{array}$	171.91
41 42 43 44 45	199.58	$\begin{array}{c} 190.96 \\ 195.50 \\ 200.03 \end{array}$	$\begin{array}{c} 191.42 \\ 195.95 \\ 200.49 \end{array}$	$\begin{array}{c} 191.87 \\ 196.41 \\ 200.94 \end{array}$	$\begin{array}{c} 192.32 \\ 196.86 \\ 201.40 \end{array}$	$\begin{array}{c} 188.24 \\ 192.78 \\ 197.31 \\ 201.85 \\ 206.38 \end{array}$	$\begin{array}{c} 193.23 \\ 197.77 \\ 202.30 \end{array}$	193.68 198.22	$\begin{array}{c} 194.14 \\ 198.67 \\ 203.21 \end{array}$	$\begin{array}{c} 194.59 \\ 199.13 \\ 203.66 \end{array}$
46 47 48 49	213.19	213.64	214.10	214.55	$\frac{215.00}{219.54}$	$\begin{array}{c} 210.92 \\ 215.46 \\ 219.99 \\ 224.53 \end{array}$	215.91 220.45	216.36 220.90	216.82 221.35	217.27

MEASURES AND WEIGHTS

METRIC CONVERSION TABLE

Pounds Avoirdupois to Kilograms

1 Pound=0.45359 Kilograms

T----

Tens Units	0	1	2	3	4	5	6	7	8	9
50						229.06			230.42	
51							234.05			235.41
52	235.87	236.32	236.78	237.23	237.68	238.14			239.50	
53	240.40	240.86	241.31	241.76	242.22	242.67	243.13		244.03	244.49
54				246.30				248.12		249.02
55						251.74				253.56
56 57						$256.28 \\ 260.82$				$258.09 \\ 262.63$
58	263.08	263.54	263.99	261 44	264 90	265.35	265.81	266.26	266.71	267.17
59	267.62	268.07	268.53	268.98	269.43	269.89	270.34		271.25	271.70
60							274.88		275.78	
61	276.69	277.14	277.60	278.05	278.51	278.96	279.41	279.87	280.32	280.77
62	281.23	281.68	282.13	282.59	283.04	283.50	283.95	284.40	284.86	285.31
63						288.03		288.94		
64	290.30	290.75	291.21	291.66	292.11	292.57	293.02	293.47		294.38
65	294.84	295.29	295.74	296.20	296.65	297.10	297.56	298.01	298.46	298.92
66	299.37	299.82	300.28	300.73	301.19	301.64	302.09	302.55	303.00	303.45
67									307.54	
68						310.71			312.07	
69	312.98	313.43	313.89	314.34	314.79	315.25	315.70	316.15	316.61	317.06
70	317.31	317.97	318.42	318.88	319.33	319.78	320.24	320.69	321.14	321.60
71	322.05	322.50	322.96	323.41	323.86	324.32	324.77		325.68	326.13
72	326.59	327.04	327.49	327.95	328.40	$\frac{328.85}{333.39}$	329.31		330.22	330.6 7
73	331.12	331.58	332.03	332.48	332.94	333.39	333.84	334.30	334.75	335.20
74	333.00	336.11	336.57	337.02	337.47	337.93	338.38	338.83	339.29	
75	340.19	340.05	341.10	341.56	342.01	342.46	342.92	343.37	343.82	344.28
76							347.45			
77	349.27	349.72	350.17	350.63	351.08	351.53	351.99			
78	353.80	354.26	354.71	355.16	355.62	356.07	356.52	356.98		357.88
79 80	269.67	308.79	359,25	359.70	360.15	360.61	361.06	361.51		362.42
									366.50	366.96
81	367.41	367.86	368.32	368.77	369.22	369.68	370.13	370.59	371.04	371.49
82	371.95	372.40	372.85	373.31	373.76	374.21	374.67	375.12	$375.57 \\ 380.11$	376.03
83	376.48	376.94	377.39	377.84	378.30	378.75	379.20	379.66	380.11	380.56
84 85	205 55	200.01	381.92	382.33	382.83	383.29	383.74 388.28	384.19	384.65	
				- 1		i	- 1	355.13	389.18	389.04
86	390.09	390.54	391.00	391.45	391.90	392,36	392.81	393.26	393.72	394.17
87	394.63	395.08	395.53	395.99	396.44	396.89	397.35	397.80	398.25	
88	399.16	399.61	400.07	400.52	400.98	401.43	401.88	402.34	402.79	
89	403.78	404.15	404.60	405.06	405.51	405.97	406.42	406.87	407.33	407.78
90	408.23	408.09	409.14	409,59	410.05	410.50	410.95	411.41	411.86	412.32
91	412.77	413.22	413.68	414.13	414.58	415.14	415.49	415.94	416.40	
92 93	417.31	417.76	418,21	418.67	419.12	419.57	420.03	420.48		421.39
93	421.89	422.29	422,75	423.20	423.66	424.11	424.56	425.02	425.47	
95	430.91	431.37	431.82	432.27	$428.19 \\ 432.73$	428.64	$\frac{429.10}{433.63}$	$429.55 \\ 434.09$	$430.01 \\ 434.54$	435.00
96				1		1		- 1		
96	430.45	430.90	436.36	436.81	437.26	437.72	438.17	438,62	$\begin{array}{c} 439.08 \\ 443.61 \end{array}$	439.53
98	444 59	4.1.1 07	445.69	441.50	441.80	442.20	442.71	443.16	$443.61 \\ 448.15$	444.07
99	449.06	449.51	449 96	450.49	450.87	451 39	451 79	459 99	$448.15 \\ 452.69$	453 14
	110.00	110.01	**0.00	100.42,	100.01	101.02	401.10	102.20	102.00	300.13

PROPERTIES OF THE CIRCLE

Circumference of Circle of Dia. $1 = \pi = 3.14159265$

Circumference of Circle = $2 \pi r$

Dia. of Circle = Circumference x 0.31831

Diameter of Circle of equal periphery as square = side x 1.27324 Side of Square of equal periphery as circle = diameter x 0.78540 Diameter of Circle circumscribed about square = side x 1.41421 Side of Square inscribed in Circle = diameter x 0.70711

Are,
$$a = \frac{\pi r A^{\circ}}{180} = 0.017453 \text{ r A}^{\circ}$$

Angle, $A = \frac{180^{\circ} \text{ a}}{\pi r} = 57.29578 \frac{\text{a}}{r}$

Radius, $r = \frac{4 \text{ b}^2 + \text{c}^2}{8 \text{ b}}$ Diameter, $d = \frac{4 \text{ b}^2 + \text{c}^2}{4 \text{ b}}$

Chord, $c = 2\sqrt{2 \text{ b r} - \text{b}^2} = 2 \text{ r sin } \frac{A^{\circ}}{2}$

Rise, $b = r - \frac{1}{2}\sqrt{4 r^2 - \text{c}^2} = \frac{c}{2} \tan \frac{A^{\circ}}{4} = 2 \text{ r sin}^2 \frac{A}{4}$

Rise, $b = r + y - \sqrt{r^2 - x^2}$. $y = b - r + \sqrt{r^2 - x^2}$ $x = \sqrt{r^2 - (r + y - b)^2}$
 $\pi = 3.14159265$, $\log = 0.4971499$
 $\frac{1}{\pi} = 0.3183099$, $\log = \overline{1.5028501}$
 $\pi^2 = 9.8696044$, $\log = 0.9942997$
 $\frac{1}{\pi^2} = 0.1013212$, $\log = \overline{1.0057003}$
 $\sqrt{\pi} = 1.7724539$, $\log = 0.2485749$
 $\sqrt{\frac{1}{\pi}} = 0.5641896$, $\log = \overline{1.7514251}$
 $\frac{\pi}{180} = 0.0174533$, $\log = \overline{2.2418774}$
 $\frac{180}{\pi} = 57.2957795$, $\log = 1.7581226$

MENSURATION TABLES

AREA OF PLANE FIGURES

Triangle: Base x ½ perpendicular height.

 $\sqrt{s(s-a) (s-b) (s-c)}$,

s=12 sum of the three sides a, b and c.

Trapezium: Sum of area of the two triangles.

Trapezoid: ½ sum of parallel sides x perpendicular height.

Parallelogram: Base x perpendicular height.

Regular Polygon: 1/2 sum of sides x inside radius.

Circle: $\pi r^2 = 0.78540 \text{ x dia.}^2 = 0.07958 \text{ x circumference}^2$

Sector of Circle: $\frac{\pi r^2 A^{\circ}}{360}$ = 0.0087266 $r^2 A^{\circ}$ = are $x \frac{1}{2}$ radius.

Segment of Circle: $\frac{r^2}{2} \left(\frac{\pi A^{\circ}}{180} - \sin A^{\circ} \right)$

Ellipse:

Circle of same area as square: diameter = side x 1.12838

Square of same area as circle: side = diameter x 0.88623

Parabola: Base x 2/3 perpendicular height.

Irregular plane surface.

Long diameter x short diameter x 0.78540

Divide any plane surface A, B, C, D, along a line a-b into an even number, n, of parallel and sufficiently small strips, d, whose ordinates are h_1 , h_2 , h_3 , h_4 , h_5 h_{n-1} , h_n , h_{n+1} , and considering contours between three ordinates as parabolic curves, then for section ABCD,

$$Area = \frac{d}{3} \left[h_1 + h_{n+1} + 4(h_2 + h_4 + h_6 \dots + h_n) + 2(h_3 + h_5 + h_7 \dots + h_{n-1}) \right]$$

or, approximately, Area = Sum of ordinates x width, d.

TRIGONOMETRIC FORMULAS

Radius,
$$1 = \sin^2 A + \cos^2 A$$

= $\sin A \csc A = \cos A \sec A = \tan A \cot A$

$$A = \frac{\cos A}{\cot A} = \frac{1}{\cot A} = \cos A \quad \tan A = \sqrt{1 - \cos^2 A}$$

$$a = \frac{\sin A}{\tan A} = \frac{1}{\sec A} = \sin A \cot A = \sqrt{1 - \sin^2 A}$$

$$a = \frac{\sin A}{\cot A} = \frac{1}{\cot $

Cosine
$$A = \frac{\sin A}{\tan A} = \frac{\Gamma}{\sec A} = \sin A \cot A = \sqrt{1 - \sin^2 A}$$

Tangent $A = \frac{\sin A}{\cos A} = \frac{1}{\cot A} = \sin A \sec A$

Cotangent
$$A = \frac{\cos A}{\sin A} = \frac{1}{\tan A} = \cos A \csc A$$

Cotangent
$$A = \frac{\cos A}{\sin A} = \frac{1}{\tan A} = \cos A \csc A$$

Secant $A = \frac{\tan A}{\sin A} = \frac{1}{\cos A}$

Cosecant
$$A = \frac{\cot A}{\cos A} = \frac{1}{\sin A}$$

$$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\sin A - \sin B = 2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$

$$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\cos B - \cos A = 2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$

$$\cos 2 A = \cos^2 A - \sin^2 A$$

$$\sin \frac{1}{2} A = \sqrt{\frac{1-\cos A}{2}} \quad \cos \frac{1}{2} A = \sqrt{\frac{1+\cos A}{2}}$$

$$\sin^2 A = \frac{1-\cos 2 A}{2} \cos^2 A = \frac{1+\cos 2 A}{2}$$

$$\sin^2 A - \sin^2 B = \sin (A + B) \sin (A - B)$$

$$\frac{\sin A + \sin B}{\sin A + \sin B} = \tan^{-1} 6(A + B)$$

$$\frac{\sin A \pm \sin B}{\cos A + \cos B} = \tan \frac{1}{2} (A \pm B)$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 + \tan A \tan B}$$

$$\cot (A + B) = \frac{\cot A \cot B + 1}{\cot B + \cot A}$$

$$\tan A + \tan B = \frac{\sin (A + B)}{\cos A \cos B}$$

$$\tan A - \tan B = \frac{\sin (A - B)}{\cos A \cos B}$$

$$\cot A + \cot B = \frac{\sin (B + A)}{\sin A \sin B}$$

$$\cot A - \cot B = \frac{\sin (B-A)}{\sin A \sin B}$$

$$\tan 2 A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\cot 2 A = \frac{\cot^2 A - 1}{2 \cot A}$$

$$\tan \frac{1}{2} A = \frac{\sin A}{1 + \cos A} \qquad \cot \frac{1}{2} A = \frac{\sin A}{1 - \cos A}$$

$$\tan^2 A = \frac{1-\cos 2 A}{1+\cos 2 A}$$
 $\cot^2 A = \frac{1+\cos 2 A}{1-\cos 2 A}$

$$\cos^2 A - \sin^2 B = \cos (A + B) \cos (A - B)$$

$$\frac{\sin A + \sin B}{\cos B - \cos A} = \cot \frac{1}{2} (A + B)$$

Quadrant	1	11	111	IV		Angle	
Angles	0° 10 90°	90° to 180°	180° to 270°	270° to 360°	300	450	600
Functions		Values v	ary from		Equ	ivalent v	alues
sin	+0 to +1	+1 to +0	-0 to -1	−1 to −0	12	$\frac{1}{2}\sqrt{2}$	½√3
cos	+1 to +0	-0 to -1	-1 to -0	+0 to +1	½√3	½√2	1/2
tan	+0 to+∞	-∞ to-0	+0to+∞	-∞ to-0	⅓ √3	1	√3
cot	+∞ to+0	-0 to-∞	+∞ to+0	-0to-∞	$\sqrt{3}$	1	1⁄3 √3

	A	ngle a <	90°	
Angle	sin	cos	tan	cot
φ°	φ°	φ°	φ°	φ°
0°±a	±sin a	+cos a	±tan a	±cot a
90°±a	+cos a	∓sin a	∓cot a	∓tan a
180°±a	∓sin a	—cos a	±tan a	±cot a
270°±a	—cos a	±sin a	∓cot a	∓tan a

TRIGONOMETRIC SOLUTION OF TRIANGLES

Given Sought

Formulae

Given	Sought	Formulae
		RIGHT-ANGLED TRIANGLES
а, с	A, B, b	$\sin A = \frac{a}{c}$, $\cos B = \frac{a}{c}$, $b = \sqrt{c^2 - a^2}$
	Area	Area $=\frac{a}{2}\sqrt{c^2-a^2}$
a, b	А, В, с	$ an A = \frac{a}{b}$, $ an B = \frac{b}{a}$, $ an C = \sqrt{a^2 + b^2}$
		$Area = \frac{a b}{2}$
A, a	В, b, с	$B = 90^{\circ}-A$, $b = a \cot A$, $c = \frac{a}{\sin A}$
	Area	$Area = \frac{a^2 \cot A}{2}$
A, b	В, а, с	$B = 90^{\circ}-A$, $a = b \tan A$, $c = \frac{b}{\cos A}$.
	Area	$Area = \frac{b^2 \tan A}{2}$
A, c	B, a, b	$B = 90^{\circ}-A$, $a = c \sin A$, $b = c \cos A$
	Area	Area = $\frac{c^2 \sin A \cos A}{2}$ or $\frac{c^2 \sin 2 A}{4}$
		Oblique-Angled Triangles
a, b, c	A	$\sin \frac{1}{2} A = \sqrt{\frac{(s-b) (s-c)}{b c}}, \cos \frac{1}{2} A = \sqrt{\frac{s (s-a)}{b c}}, \tan \frac{1}{2} A = \sqrt{\frac{(s-b) (s-c)}{s (s-a)}}$
	В	$\frac{\sin \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{a c}}, \cos \frac{1}{2} B = \sqrt{\frac{s(s-b)}{a c}}, \tan \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$
	C	$\sin \frac{1}{2} C = \sqrt{\frac{(s-a)(s-b)}{ab}}, \cos \frac{1}{2} C = \sqrt{\frac{s(s-c)}{ab}}, \tan \frac{1}{2} C = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$
	Area	$Area = \sqrt{s (s-a) (s-b) (s-c)}$
a, A, B	b, c	$b = \frac{a \sin B}{\sin A} \qquad c = \frac{a \sin C}{\sin A} = \frac{a \sin (A + B)}{\sin A}$
	Area	$Area = \frac{1}{2} a b \sin C = \frac{a^2 \sin B \sin C}{2 \sin A}$
a, b, A	В	$\sin B = \frac{b \sin A}{a}$
	С	$c = \frac{a \sin C}{\sin A} = \frac{b \sin C}{\sin B} = \sqrt{a^2 + b^2 - 2 ab \cos C}$
	Area	Area $= \frac{1}{2}$ a b sin C
a, b, C	A	$\tan A = \frac{a \sin C}{b - a \cos C}, \qquad \tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} \cot \frac{1}{2} C$
	С	$c = \sqrt{a^2 + b^2 - 2 \text{ ab } \cos C} = \frac{a \sin C}{\sin A}$
	Area	Area = ½ ab sin C
$\mathbf{a}^2 = \mathbf{b}^2$	+ c2-2t	oc cos A, b ² = $a^2 + c^2-2$ a c cos B $c^2 = a^2 + b^2-2$ ab cos C

AREA OF CIRCULAR SECTIONS

Circular Sector, mon p

Area=1/2 (length of arc, mpn x radius, r) =area of circle x arc, mpn, in degrees =0.0087266 x square of radius, r2, x angle of arc, mpn, in degrees.

Circular Segment, m pn. less than half circle.

Area=area of sector, monp-area of triangle, mon =(length of arc, mpn, x radius, r) - (radius, r, - rise, b) x chord, c

Circular Segment, m q n, greater than half circle.

Area=area of circle-area of segment, mnp

Circular Segment, from Table I, page 325.

 \mathbf{q}

Given: rise, b, and chord, c.

Area=product of rise and chord, bxc, multiplied by the coefficient given opposite the quotient of $\frac{b}{a}$: Intermediate coefficients for values of $\frac{b}{c}$ not given in tables are obtained by interpolation.

Example - Given: rise = 1.49 and chord = 3.52.

 $\frac{1.49}{3.52} = 0.4233$. Coefficient = 0.7542. Area=b x c x coeff.=1.49 x 3.52 x 0.7542=3.9556.

Circular Segment, from Table II, pages 326 and 327.

Given: rise, b, and diameter, d = 2r.

Area-square of diameter, d2, multiplied by the coefficient given opposite the quotient of $\frac{b}{d}$

Intermediate coefficients for values of b not given in tables are obtained by interpolation.

Example - Given: rise = 25/16 and diameter = 53/32.

$$\frac{b}{d} = 2\%_6 \div 5\%_2 = 0.478528.$$

Coefficient by interpolation = 0.371233. $Area=d^2 \times coeff$, = 25.94629 x 0.371233 = 9.6321.

Circular Zone, tuwv

Area = area of circle - (area of segment, t p u + area of segment, v q w).

Circular Lune, mpns

Area—segment, mpn-segment, msn.

AREAS OF CIRCULAR SEGMENTS

TABLE 1-FOR RATIOS OF RISE AND CHORD

Area=C x b x coefficient

_											
Λ°	Coeffi- cient	<u>b</u> .	A°	Coeffi- cient	b C	A°	Coeffi- cient	b C	Α°	Coeffi- cient	<u>b</u>
1 2 3 4 5	.6667 .6667 .6667 .6667	.0022 .0044 .0066 .0087 .0109	46 47 48 49 50	$\begin{array}{c} .6722 \\ .6724 \\ .6727 \\ .6729 \\ .6732 \end{array}$.1017 .1040 .1063 .1086 .1109	91 92 93 94 95	.6895 .6901 .6906 .6912 .6918	$\begin{array}{c} .2097 \\ .2122 \\ .2148 \\ .2174 \\ .2200 \end{array}$	136 137 138 139 140	.7239 .7249 .7260 .7270 .7281	.3373 .3404 .3436 .3469 .3501
$\begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$.6667 .6668 .6668 .6669 .6670	$\begin{array}{c} .0131 \\ .0153 \\ .0175 \\ .0197 \\ .0218 \end{array}$	51 52 53 54 55	.6734 .6737 .6740 .6743 .6746	.1131 .1154 .1177 1200 .1224	96 97 98 99 100	$\begin{array}{c} .6924 \\ .6930 \\ .6936 \\ .6942 \\ .6948 \end{array}$.2226 .2252 .2279 .2305 .2332	141 142 143 144 145	.7292 .7303 .7314 .7325 .7336	.3534 .3567 .3600 .3633 .3666
11 12 13 14 15	.6670 .6671 .6672 .6672 .6673	$\begin{array}{c} .0240 \\ .0262 \\ .0284 \\ .0306 \\ .0328 \end{array}$	56 57 58 59 60	.6749 .6752 .6755 .6758 .6761	$\begin{array}{c} .1247 \\ .1270 \\ .1293 \\ .1316 \\ .1340 \end{array}$	101 102 103 104 105	$\begin{array}{c} .6954 \\ .6961 \\ .6967 \\ .6974 \\ .6980 \end{array}$.2358 .2385 .2412 .2439 .2466	146 147 148 149 150	.7348 .7360 .7372 .7384 .7396	.3700 .3734 .3768 .3802 .3837
16 17 18 19 20	.6674 .6674 .6675 .6676 .6677	$\begin{array}{c} .0350 \\ .0372 \\ .0394 \\ .0416 \\ .0437 \end{array}$	$61 \\ 62 \\ 63 \\ 64 \\ 65$.6764 .6768 .6771 .6775 .6779	.1363 .1387 .1410 .1434 .1457	106 107 108 109 110	.6987 .6994 .7001 .7008 .7015	.2493 .2520 .2548 .2575 .2603	151 152 153 154 155	.7408 .7421 .7434 .7447 .7460	.3871 .3906 .3942 .3977 .4013
21 22 23 24 25	$\begin{array}{c} .6678 \\ .6679 \\ .6680 \\ .6681 \\ .6682 \end{array}$	$\begin{array}{c} .0459 \\ .0481 \\ .0504 \\ .0526 \\ .0548 \end{array}$	66 67 68 69 70	.6782 .6786 .6790 .6794 .6797	$\begin{array}{c} .1481 \\ .1505 \\ .1529 \\ .1553 \\ .1577 \end{array}$	$111 \\ 112 \\ 113 \\ 114 \\ 115$	$\begin{array}{c} .7022 \\ .7030 \\ .7037 \\ .7045 \\ .7052 \end{array}$.2631 .2659 .2687 .2715 .2743	$\begin{array}{c} 156 \\ 157 \\ 158 \\ 159 \\ 160 \end{array}$.7473 .7486 .7500 .7514 .7528	$\begin{array}{c} .4049 \\ .4085 \\ .4122 \\ .4159 \\ .4196 \end{array}$
26 27 28 29 30	.6684 .6685 .6687 .6688 .6690	$\begin{array}{c} .0570 \\ .0592 \\ .0614 \\ .0636 \\ .0658 \end{array}$	71 72 73 74 75	.6801 .6805 .6809 .6814 .6818	$\begin{array}{c} .1601 \\ .1625 \\ .1649 \\ .1673 \\ .1697 \end{array}$	116 117 118 119 120	.7060 .7068 .7076 .7084 .7092	.2772 .2800 .2829 .2858 .2887	$\begin{array}{c c} 161 \\ 162 \\ 163 \\ 164 \\ 165 \end{array}$.7542 .7557 .7571 .7586 .7601	.4233 .4270 .4308 .4346 .4385
31 32 33 34 35	.6691 .6693 .6694 .6696 .6698	.0681 .0703 .0725 .0747 .0770	76 77 78 79 80	.6822 $.6826$ $.6831$ $.6835$ $.6840$.1722 .1746 .1771 .1795 .1820	121 122 123 124 125	.7100 .7109 .7117 .7126 .7134	.2916 .2945 .2975 .3004 .3034	166 167 168 169 170	.7616 .7632 .7648 .7664 .7680	.4424 .4463 .4502 .4542 .4582
36 37 38 39 40	.6700 .6702 .6704 .6706 .6708	$\begin{array}{c} .0792 \\ .0814 \\ .0837 \\ .0859 \\ .0882 \end{array}$	81 82 83 84 85	.6844 .6849 .6854 .6859 .6864	$\begin{array}{c} .1845 \\ .1869 \\ .1894 \\ .1919 \\ .1944 \end{array}$	$\begin{array}{c} 126 \\ 127 \\ 128 \\ 129 \\ 130 \end{array}$.7143 .7152 .7161 .7170 .7180	.3064 .3094 .3124 .3155 .3185	171 172 173 174 175	.7696 .7712 .7729 .7746 .7763	.4622 .4663 .4704 .4745 .4787
41 42 43 44 45	.6710 .6712 .6714 .6717 .6719	$\begin{array}{c} .0904 \\ .0927 \\ .0949 \\ .0972 \\ .0995 \end{array}$	86 87 88 89 90	.6869 .6874 .6879 .6884 .6890	$\begin{array}{c} .1970 \\ .1995 \\ .2020 \\ .2046 \\ .2071 \end{array}$	131 132 133 134 135	.7189 .7199 .7209 .7219 .7229	.3216 .3247 .3278 .3309 .3341	176 177 178 179 180	.7781 .7799 .7817 .7835 .7854	.4828 .4871 .4914 .4957 .5000

AREAS OF CIRCULAR SEGMENTS TABLE II, FOR RATIOS OF RISE AND DIAMETER

Area=d2 x Coefficient

2			1						
$\frac{b}{d}$	Coefficient	$\frac{\mathbf{b}}{\mathbf{d}}$	Coefficient	$\frac{\mathbf{b}}{\mathbf{d}}$	Coefficient	$\frac{b}{d}$	Coefficient	$\frac{\mathbf{b}}{\mathbf{d}}$	Coefficient
.001	.000042	.051	.015119	.101	.041477	.151	.074590	.201	.112625
.002	.000119	.052	.015561	.102	.042081	.152	.075307	.202	.113427
.003	.000219	.053	.016008	.103	.042687	.153	.076026	.203	.114231
.004	.000337	.054	.016458	.104	.043296	.154	.076747	.204	.115036
.005	.000471	.055	.016912	.105	.043908	.155	.077470	.205	.115842
.006	.000619	.056	.017369	.106	.044523	.156	.078194	.206	.116651
.007	.000779	.057	.017831	.107	.045140	.157	.078921	.207	.117460
.008	.000952	.058	.018297	.108	0.045759	.158	.079650	.208	.118271
.009	.001135	.059	.018766	.109	.046381	.159	.080380	.209	.119084
.010	.001329	.060	.019239	.110	.047006	.160	.081112	.210	.119898
.011	.001533	.061	.019716	.111	.047633	.161	.081847	.211	.120713
.012	.001746	.062	.020197	.112	.048262	.162	.082582	.212	.121530
.013	.001969	.063	$0.020681 \\ 0.021168$.113	$0.048894 \\ 0.049529$.163	.083320	.213	.122348
.014 $.015$.002199	0.064	.021660	.114	.050165	.164 .165	.084801	.215	.123988
	.002685		.022155		.050805		.085545	.216	.124811
.016	.002083	.066	.022653	.116	.051446	.166	.086290	.217	.125634
.018	.003202	.068	.023155	.118	.052090	.168	.087037	.218	.126459
.019	.003472	.069	.023660	.119	.052737	.169	.087785	.219	.127286
.020	.003749	.070	.024168	.120	.053385	.170	.088536	.220	.128114
.021	.004032	.071	.024680	.121	.054037	.171	.089288	.221	.128943
.022	.004322	.072	.025196	.122	.054690	.172	.090042	.222	,129773
.023	.004619	.073	.025714	.123	.055346	.173	.090797	.223	.130605
.024	.004922	.074	.026236	.124	.056004	.174	.091555	.224	.131438
.025	.005231	.075	.026761	.125	.056664	.175	.092314	.225	.132273
.026	.005546	.076	.027290	.126	.057327	.176	.093074	.226	.133109
.027	.005867	.077	.027821	.127	.057991	.177	.093837	.227	.133946
.028	.006194	.078	.028356	.128	.058658	.178	.094601	.228	.134784
.029 $.030$.006527	079	$0.028894 \\ 0.029435$.130	0.059328 0.059999	.179	0.095367 0.096135	.230	.136465
	1				1		.096904	,231	.137307
0.031 0.032	$\begin{bmatrix} .007209 \\ .007559 \end{bmatrix}$.081	0.029979 0.030526	.131	.060673	.181	.097675	.232	.138151
.033	.007913	.083	.031077	.133	.062027	.183	.098447	.233	.138996
.034	.008273	.084	.031630	.134	.062707	.184	.099221	.234	.139842
.035	.008638	.085	.032186	.135	.063389	.185	.099997	.235	.140689
.036	.009008	.086	.032746	.136	.064074	.186	.100774	.236	.141538
.037	.009383	.087	.033308	.137	.064761	.187	.101553	.237	.142388
.038	.009764	.088	.033873	.138	.065449	.188	.102334	.238	.143239
.039	.010148	.089	.034441	.139	.066140	.189	.103116	.239	144091
.040	.010538	.090	.035012	.140	.066833	.190	.103900	.240	.144945
.041	.010932	.091	.035586	.141	.067528	.191	.104686	.241	.145800
.042	.011331	.092	.036162	.142	.068225	.192	.105472	.242	.146656
.043	.011734	.093	036742 037324	.143	0.068924 0.069626	.193	.106261	.243 .244	.147513
.044 $.045$	$0.012142 \\ 0.012555$	0.094	.037909	.145	.070329	.195	.107843	.245	.149231
.046	.012971	.096	.038497	.146	.071034	.196	.108636	.246	.150091
.047	.012371	.097	.039087	.147	.071741	.197	.109431	.247	.150953
.048	.013818	.098	.039681	.148	.072450	.198	.110227	.248	.151816
.049	.014248	.099	.040277	.149	.073162	.199	.111025	.249	.152681
.050			.040875	.150	.073875	.200	.111824	.250	.153546

AREAS OF CIRCULAR SEGMENTS

TABLE II, FOR RATIOS OF RISE AND DIAMETER-Concluded

Area=d2 x coefficient

				-					
b	Coefficient	$\frac{b}{d}$	Coefficient	$\frac{\mathbf{b}}{\mathbf{d}}$	Coefficient	$\frac{\mathbf{b}}{\mathbf{d}}$	Coefficient	$\frac{b}{d}$	Coefficient
.251 .252 .253 .254 .255	.154413 $.155281$ $.156149$ $.157019$ $.157891$.301 .302 .303 .304 .305	.199085 .200003 .200922 .201841 .202762	.351 .352 .353 .354 .355	$ \begin{array}{r} .245935 \\ .246890 \\ .247845 \\ .248801 \\ .249758 \end{array} $.401 .402 .403 .404 .405	.294350 .295330 .296311 .297292 .298274	.451 .452 .453 .454 .455	.343778 .344773 .345768 .346764 .347760
.256 .257 .258 .259 .260	$\begin{array}{c} .158763 \\ .159636 \\ .160511 \\ .161386 \\ .162263 \end{array}$.306 .307 .308 .309 .310	$\begin{array}{c} .203683 \\ .204605 \\ .205528 \\ .206452 \\ .207376 \end{array}$.356 .357 .358 .359 .360	.250715 .251673 .252632 .253591 .254551	.406 .407 .408 .409 .410	.299256 .300238 .301221 .302204 .303187	.456 .457 .458 .459 .460	.348756 .349752 .350749 .351745 .352742
.261 .262 .263 .264 .265	$\begin{array}{c} .163141 \\ .164020 \\ .164900 \\ .165781 \\ .166663 \end{array}$.311 .312 .313 .314 .315	$\begin{array}{c} .208302 \\ .209228 \\ .210155 \\ .211083 \\ .212011 \end{array}$.361 .362 .363 .364 .365	.255511 $.256472$ $.257433$ $.258395$ $.259358$.411 .412 .413 .414 .415	.304171 $.305156$ $.306140$ $.307125$ $.308110$.461 .462 .463 .464 .465	.353739 .354736 .355733 .356730 .357728
.266 .267 .268 .269 .270	$\begin{array}{c} .167546 \\ .168431 \\ .169316 \\ .170202 \\ .171090 \end{array}$.316 .317 .318 .319 .320	.212941 $.213871$ $.214802$ $.215734$ $.216666$.366 .367 .368 .369 .370	$\begin{array}{c} .260321 \\ .261285 \\ .262249 \\ .263214 \\ .264179 \end{array}$.416 .417 .418 .419 .420	.309096 .310082 .311068 .312055 .313042	.466 .467 .468 .469 .470	.358725 .359723 .360721 .361719 .362717
.271 .272 .273 .274 .275	.171978 .172868 .173758 .174650 .175542	.321 .322 .323 .324 .325	$\begin{array}{c} .217600 \\ .218534 \\ .219469 \\ .220404 \\ .221341 \end{array}$.371 .372 .373 .374 .375	$ \begin{array}{r} .265145 \\ .266111 \\ .267078 \\ .268046 \\ .269014 \end{array} $.421 .422 .423 .424 .425	.314029 .315017 .316005 .316993 .317981	.471 .472 .473 .474 .475	.363715 .364714 .365712 .366711 .367710
.276 .277 .278 .279 .280	.176436 .177330 .178226 .179122 .180020	.326 .327 .328 .329 .330	$\begin{array}{c} .222278 \\ .223216 \\ .224154 \\ .225094 \\ .226034 \end{array}$.376 .377 .378 .379 .380	.269982 .270951 .271921 .272891 .273861	.426 .427 .428 .429 .430	.318970 .319959 .320949 .321938 .322928	.476 .477 .478 .479 .480	.368708 .369707 .370706 .371705 .372704
.281 .282 .283 .284 .285	.180918 .181818 .182718 .183619 .184522	.331 .332 .333 .334 .335	$\begin{array}{c} .226974 \\ .227916 \\ .228858 \\ .229801 \\ .230745 \end{array}$.381 .382 .383 .384 .385	.274832 .275804 .276776 .277748 .278721	.431 .432 .433 .434 .435	.323919 .324909 .325900 .326891 .327883	.481 .482 .483 .484 .485	.373704 .374703 .375702 .376702 .377701
.286 .287 .288 .289 .290	.185425 .186329 .187235 .188141 .189048	.336 .337 .338 .339 .340	.231689 .232634 .233580 .234526 .235473	.386 .387 .388 .389 .390	.279695 .280669 .281643 .282618 .283593	.436 .437 .438 .439 .440	.328874 .329866 .330858 .331851 .332843	.486 .487 .488 .489 .490	.378701 .379701 .380700 .381700 .382700
.291 .292 .293 .294 .295	$\begin{array}{c} .189956 \\ .190865 \\ .191774 \\ .192685 \\ .193597 \end{array}$.341 .342 .343 .344 .345	.236421 .237369 .238319 .239268 .240219	.391 .392 .393 .394 .395	.284569 .285545 .286521 .287499 .288476	.441 .442 .443 .444 .445	.333836 .334829 .335823 .336816 .337810	.491 .492 .493 .494 .495	.383700 .384699 .385699 .386699 .387699
.296 .297 .298 .299 .300	.194509 .195423 .196337 .197252 .198168	.346 .347 .348 .349 .350	$ \begin{array}{r} .241170 \\ .242122 \\ .243074 \\ .244027 \\ .244980 \end{array} $.396 .397 .398 .399 .400	.289454 .290432 .291411 .292390 .293370	.446 .447 .448 .449 .450	.338804 .339799 .340793 .341788 .342783	.496 .497 .498 .499	.388699 .389699 .390699 .391699 .392699

SURFACE AND VOLUME OF SOLIDS

S=Lateral or Convex Surface. V=Volume

 $V=V_6$ (sum of three edges, a b a x perpendicular height, hx perpendicular width, d): V_6 d h (2a + b)

Prismatoid

V=1% perp. height, h (sum of areas of base, B, and top b, + 4 x area of section, M, parallel to bases and midway between them):

The Prismatoid formula applies also to any of the foregoing solids with parallel bases, to pyramids, cones, spherical sections, and to many solids with irregular surfaces.

SURFACE AND VOLUME OF SOLIDS—Concluded S=LATERAL OR CONVEX SURFACE. V=Volume

Sphere

$$S = 4 \pi r^2 = \pi d^2 = 3.14159265 d^2$$

 $V = \frac{1}{3} \pi r^3 = \frac{1}{6} \pi d^3 = 0.52359878 d^3$

.

$$S = \frac{1}{2} \pi r (4 b + c)$$

Spherical Sector

Spherical Segment

S=2
$$\pi$$
 r b = $\frac{1}{4}$ π (4 b² + c²)
V= $\frac{1}{3}$ π b² (3 r-b) = $\frac{1}{2}$ $\frac{1}{4}$ π b (3 c² + 4 b²)

$$S=2 \pi r b$$

 $V=\frac{1}{24} \pi b (3 a^2 + 3 c^2 + 4 b^2)$

Circular Ring

Spherical Zone

--a--

Rr

$$S=4 \pi^2 R r$$

 $V=2 \pi^2 R r^2$

Ungula of Right, Regular Cylinder

Base=Half Circle

 $S = (2 \text{ r m-o x arc, b a b}) \frac{h}{r-o}$

S=2 r lı

V=(2'3 m³-o x area, b a b) h
r-o
Base=Segment, c a c

V=% r² h Base=Circle

Base=Segment, c a c S= $(2 r n + p x arc, c a c) \frac{h}{r+p}$

- S-rab

$$V=0\%$$
 n³ + p x area, c a c) $\frac{h}{r+p}$ $V=\frac{1}{2}$ r² π h

Ellipsoid

Paraboloid

Bodies Generated by Partial or Complete Revolution

 $\label{eq:lemma:$

 $\frac{2 r \pi a^{\circ}}{360}$ =length of arc described by center of gravity.

V=area of plane x length of are about axis

Variety of plane x length of are about axis $= A \frac{2 r \pi a^{\circ}}{360} \quad \text{For complete revolution V} = 2 r \pi A$

Functions of Numbers, 1 to 49

-				1		1000	No. =	Diameter
No.	Square	Cube	Square Root	Cubic Root	Logarithm	х.		J.
						Reciprocal	Circum.	Area
1	1	1	1.0000	1.0000	0.00000	1000.000	3.142	0.7854
$\bar{2}$	4	8	1.4142	1.2599	0.30103	500.000	6.283	3.1416
3	9	27	1.7321	1.4422	0.47712	333.333	9.425	7.0686
4	16	64	2.0000	1.5874	0.60206	250.000	12.566	12.5664
5	25	125	2.2361	1.7100	0.69897	200.000	15.708	19.6350
6	36	216	2.4495	1.8171	0.77815	166.667	18.850	28.2743
7	49	343	2.6458	1.9129	0.84510	142.857	21.991	38.4845
8	64	512	2.8284	2.0000	0.90309	125.000	25.133	50.2655
9 10	81 100	729 1000	3.0000 3.1623	$2.0801 \\ 2.1544$	0.95424 1.00000	111.111 100.000	28.274 31.416	63.6173 78.5398
10	100	1000	3.1023	2.1344	1.00000	100.000	31.410	10.0090
11	121	1331	3.3166	2.2240	1.04139	90.9091	34.558	95.0332
12	144	1728	3.4641	2.2894	1.07918	83.3333	37.699	113.097
13 14	169 196	2197	3.6056	2.3513	1.11394	76.9231	40.841	132.732
15	225	.2744 3375	3.7417 3.8730	$2.4101 \\ 2.4662$	1.14613 1.17609	71.4286 66.6667	43.982 47.124	153.938 176.715
16	256	4096	4.0000	2.5198	1.20412	62.5000	50.265	201.062
17	289	4913	4.1231	2.5713	1.23045	58.8235	53.407	226.980
18	324	5832	4.2426	2.6207	1.25527	55.5556	56.549	254.469
19	361	6859	4.3589	2.6684	1.27875	52.6316	59.690	283.529
20	400	8000	4.4721	2.7144	1.30103	50.0000	62.832	314.159
21	441	9261	4.5826	2.7589	1.32222	47.6190	65.973	346.361
22	484	10648	4.6904	2.8020	1 34242	45.4545	69.115	380.133
23	529	12167	4.7958	2.8439	1.36173	43.4783	72.257	415.476
24	576	13824	4.8990	2.8845	1.38021	41.6667	75.398	452.389
, 25	625	15625	5.0000	2.9240	1.39794	40.0000	78.540	490.874
√ 26	676	17576	5.0990	2.9625	1.41497	38.4615	81.681	530.929
27 28	729 784	19683 21952	5.1962 5.2915	3.0000	$1.43136 \\ 1.44716$	37.0370 35.7143	84.823 87.965	572.555
29	841	24389	5.3852	3.0723	1.46240	34.4828	91.106	615.752 660.520
30	900	27000	5.4772	3.1072	1.47712	33.3333	94.248	706.858
31	961	29791	5.5678	3.1414	1.49136	32.2581	97.389	754.768
32	1024	32768	5.6569	3.1748	1.50515	31.2500	100.531	804.248
33	1089	35937	5.7446	3.2075	1.51851	30.3030	103.673	855.299
34	1156	39304	5.8310	3.2396	1.53148	29.4118	106.814	907.920
35	1225	42875	5.9161	3.2711	1.54407	28.5714	109.956	962.113
36	1296	46656	6.0000	3.3019	1.55630	27.7778	113.097	1017.88
37	1369	50653	6.0828	3.3322	1.56820	27.0270	116.239	1075.21
38	1444	54872	6.1644	3.3620	1.57978	26.3158	119.381	1134.11
39	1521	59319	6.2450	3.3912	1.59106	25.6410	122.522	1194.59
40	1600	64000	6.3246	3.4200	1.60206	25.0000	125.66	1256.64
41	1681	68921	6.4031	3.4482	1.61278	24.3902	128.81	1320.25
42	1764	74088	6.4807	3.4760	1.62325	23.8095	131.95	1385.44
43	1849	79507	6.5574	3.5034	1.63347	23.2558 $22,7273$	135.09 138.23	1452.20
$\frac{44}{45}$	1936 2025	85184 91125	6.6332 6.7082	3.5303 3.5569	$1.64345 \\ 1.65321$	22.7273	138.23	1520.53 1590.43
46	2116	97336	6.7823	3.5830	1.66276	21,7391	144.51	1661.90
47	2209	103823	6.8557	3.6088	1.67210	21.2766	147.65	1734.94
48	2304	110592	6.9282	3.6342	1.68124	20.8333	150.80	1809.56
49		117649			1.69020	20.4082		1885.74

Functions of Numbers, 50 to 99

			1	1		1000	N-	Diameter
No.	Square	Cube	Square	Cubic	Logarithm	1000 x	No.==	Diameter
	Equare		Root	Root	Logarithm	Reciprocal	Circum.	Area
50	2500	125000	7.0711	3.6840	1.69897	20.0000	157.08	1963.50
51	2601	132651	7.1414	3.7084	1.70757	19.6078	160.22	2042.82
52	2704	140608	7.2111	3.7325	1.71600	19.2308	163.36	2123.72
53	2809	148877	7.2801	3.7563	1.72428	18.8679	166.50	2206.18
54	2916	157464	7.3485	3.7798	1.73239	18.5185	169.65	2290.22
55	3025	166375	7.4162	3.8030	1.74036	18.1818	172.79	2375.83
56	3136	175616	7.4833	3.8259	1.74819	17.8571	175.93	2463.01
57	3249	185193	7.5498	3.8485	1.75587	17.5439	179.07	2551.76
58	3364	195112	7.6158	3.8709	1.76343	17.2414	182.21	2642.08
59	3481	205379	7.6811	3.8930	1.77085	16.9492	185.35	2733.97
60	3600	216000	7.7460	3.9149	1.77815	16.6667	188.50	2827.43
61	3721	226981	7.8102	3.9365	1.78533	16.3934	191.64	2922.47
62	3844	238328	7.8740	3.9579	1.79239	16.1290	194.78	3019.07
63	3969	250047	7.9373	3.9791	1.79934	15.8730	197.92	3117.25
64	4096	262144	8.0000	4.0000	1.80618	15.6250	201.06	3216.99
65	4225	274625	8.0623	4.0207	1.81291	15.3846	204.20	3318.31
66	4356	287496	8.1240	4.0412	1.81954	15.1515	207.35	3421.19
67	4489	300763	8.1854	4.0615	1.82607	14.9254	210.49	3525.65
68	4624	314432	8.2462	4.0817	1.83251	14.7059	213.63	3631.68
69	4761	328509	8.3066	4.1016	1.83885	14.4928	216.77	3739.28
70	4900	343000	8.3666	4.1213	1.84510	14.2857	219.91	3848.45
71	5041	357911	8.4261	4.1408	1.85126	14.0845	223.05	3959.19
72	5184	373248	8.4853	4.1602	1.85733	13.8889	226.19	4071.50
73	5329	389017	8.5440	4.1793	1.86332	13.6986	229.34	4185.39
74	5476	405224	8.6023	4.1983	1.86923	13.5135	232.48	4300.84
75	5625	421875	8.6603	4.2172	1.87506	13.3333	235.62	4417.86
76	5776	438976	8.7178	4.2358	1.88081	13.1579	238.76	4536.46
77	5929	456533	8.7750	4.2543	1.88649	12.9870	241.90	4656.63
78	6084	474552	8.8318	4.2727	1.89209	12.8205	245.04.	4778.36
79	6241	493039	8.8882	4.2908	1.89763	12.6582	248.19	4901.67
80	6400	512000	8.9443	4.3089	1.90309	12.5000	251.33	5026.55
81	6561	531441	9.0000	4.3267	1.90849	12.3457	254.47	5153.00
82	6724	551368	9.0554	4.3445	1.91381	12.1951	257.61	5281.02
83	6889	571787	9.1104	4.3621	1.91908	12.0482	260.75	5410.61
84	7056	592704	9.1652	4.3795	1.92428	11.9048	263.89	5541.77
85	7225	614125	9.2195	4.3968	1.92942	11.7647	267.04	5674.50
86	7396	636056	9.2736	4.4140	1.93450	11.6279	270.18	5808.80
87	7569	658503	9.3274	4.4310	1.93952	11.4943	273.32	5944.68
88	7744	681472	9.3808	4.4480	1.94448	11.3636	276.46	6082.12
89	7921	704969	9.4340	4.4647	1.94939	11.2360	279.60	6221.14
90	8100	729000	9.4868	4.4814	1.95424	11.1111	282.74	6361.73
91	8281	753571	9.5394	4.4979	1.95904	10.9890	285.88	6503.88
92	8464	778688	9.5917	4.5144	1.96379	10.8696	289.03	6647.61
93	8649	804357	9.6437	4.5307	1.96848	10.7527	292.17	6792.91
94	8836	830584	9.6954	4.5468	1.97313	10.6383	295.31	6939.78
95	9025	857375	9.7468	4.5629	1.97772	10.5263	298.45	7088.22
96 97	9216 9409	884736	9.7980	4.5789	1.98227	10.4167	301.59	7238.23
98	9604	$912673 \\ 941192$	9.8489 9.8995	4.5947 4.6104	1.98677	10.3093	304.73 307.88	7389.81 7542.96
99		970299			$ 1.99123 \\ 1.99564 $	$\frac{10.2041}{10.1010}$	311.02	7697.69
- 33	7001	010200	0.0400	7.0201	1.99504	10.1010	011.02	1001.00

Functions of Numbers, 100 to 149

	~		Square	Cubic		1000	No.==	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
100	10000	1000000	10.0000	4.6416	2.00000	10.0000	314.16	7853.98
101	10201	1030301	10.0499	4.6570	2.00432	9.90099	317.30	8011.85
102	10404	1061208	10.0995	4.6723	2.00860	9.80392	320.44	8171.28
103	10609	1092727	10.1489	4.6875	2.01284	9.70874	323.58	8332.29
104	10816	1124864	10.1980	4.7027	2.01703	9.61538	326.73	8494.87
105	11025	1157625	10.2470	4.7177	2.02119	9.52381	329.87	8659.01
106	11236	1191016	10.2956	4.7326	2.02531	9.43396	333.01	8824.73
107	11449	1225043	10.2330 10.3441	4.7475	2.02938	9.34579	336.15	8992.02
108	11664	1259712	10.3923	4.7622	2.02938		339.29	
109	11881	1295029	10.3923	4.7769	2.03342	9.25926 9.17431	342.43	9160.88 9331.32
						İ		
110	12100	1331000	10.4881	4.7914	2.04139	9.09091	345.58	9503.32
111	12321	1367631	10.5357	4.8059	2.04532	9.00901	348.72	9676.89
1 12	12544	1404928	10.5830	4.8203	2.04922	8.92857	351.86	9852.03
113	12769	1442897	10.6301	4.8346	2.05308	8.84956	355.00	10028.7
114	12996	1481544	10.6771	4.8488	2.05690	8.77193	358.14	10207.0
115	13225	1520875	10.7238	4.8629	2.06070	8.69565	361.28	10386.9
116	13456	1560896	10.7703	4.8770	2.06446	8.62069	364.42	10568.3
117	13689	1601613	10.8167	4.8910	2.06819	8.54701	367.57	10751.3
118	13924	1643032	10.8628	4.9049	2.07188	8.47458	370.71	10935.9
119	14161	1685159	10.9087	4.9187	2.07555	8.40336	373.85	11122.0
120	14400	1728000	10.9545	4.9324	2.07918	8.33333	376.99	11309.7
121	14641	1771561	11.0000	4.9461	2.08279	8.26446	380.13	11499.0
122	14884	1815848	11.0454	4.9597	2.08636	8.19672	383.27	11689.9
	15129	1860867	11.0905	4.9732	2.08991	8.13008	386.42	11882.3
123 124	15376	1906624	11.1355	4.9866	2.03931	8.06452	389.56	12076.3
		1953125			2.09342		392.70	12271.8
125	15625		11.1803	5.0000		8.00000		
126	15876	2000376	11.2250	5.0133	2.10037	7.93651	395.84	12469.0
127	16129	2048383	11.2694	5.0265	2.10380	7.87402	398.98	12667.7
$\frac{128}{129}$	16384 16641	2097152 2146689	11.3137 11.3578	5.0397 5.0528	2.10721 2.11059	7.81250 7.75194	402.12 405.27	12868.0 13069.8
120	10011	2110000	11.0010	0.0020	2.11000	10101	100.2	
130	16900	2197000	11.4018	5.0658	2.11394	7.69231	408.41	13273.2
131	17161	2248091	11.4455	5.0788	2.11727	7.63359	411.55	13478.2
132	17424	2299968	11.4891	5.0916	2.12057	7.57576	414.69	13684.8
133	17689	2352637	11.5326	5.1045	2.12385	7.51880	417.83	13892.9
134	17956	2406104	11.5758	5.1172	2.12710	7.46269	420.97	14102.6
135	18225	2460375	11.6190	5.1299	2.13033	7.40741	424.12	14313.9
136	18496	2515456	11.6619	5.1426	2.13354	7.35294	427.26	14526.7
137	18769	2571353	11.7047	5.1551	2.13672	7.29927	430.40	14741.1
138	19044	2628072	11.7473	5.1676	2.13988	7.24638	433.54	14957.1
139	19321	2685619	11.7898	5.1801	2.14301	7.19424	436.68	15174.7
140	10000	9744000	11 0200	F 1007	0.14610	7 14990	120.00	15202 0
140	19600	2744000	11.8322	5.1925	2.14613	7.14286	439.82	15393.8 15614.5
141	19881	2803221	11.8743	5.2048	2.14922	7.09220	442.96	15836.8
142	20164	2863288	11.9164	5.2171	2.15229	7.04225		
143	20449	2924207	11.9583	5.2293	2.15534	6.99301	449.25	16060.6
144	20736	2985984	12.0000	5.2415	2.15836	6.94444	452.39	16286.0
145	21025	3048625	12.0416	5.2536	2.16137	6.89655	455.53	16513.0
146	21316	3112136	12.0830	5.2656	2.16435	6.84932	458.67	16741 5
147	21609	3176523	12.1244	5.2776	2.16732	6.80272	461.81	16971.7
148	21904	3241792	12.1655	5.2896		6.75676	464.96	17203.4
149	± 22201	3307949	12.2066	5.3015	12.17319	6.71141	468.10	17436.6

Functions of Numbers, 150 to 199

¥7.		Cu.L.	Square	Cubic		1000	No.==	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
150	22500	3375000	12.2474	5.3133	2.17609	6.66667	471.24	17671.
151	22801	3442951	12.2882	5.3251	2.17898	6.62252	474.38	17907.9
152	23104	3511808	12.3288	5.3368	2.18184	6.57895	477.52	18145.
153	23409	3581577	12.3693	5.3485	2.18469	6.53595	480.66	18385.
154	23716	3652264	12.4097	5.3601	2.18752	6.49351	483.81	18626.
	24025							18869.
155		3723875	12.4499	5.3717	2.19033	6.45161	486.95	
156	24336	3796416	12.4900	5.3832	2.19312	6.41026	490.09	19113.
157	24649	3869893	12.5300	5.3947	2.19590	6.36943	493.23	19359.
158	24964	3944312	12.5698	5.4061	2.19866	6.32911	496.37	19606.
159	25281	4019679	12.6095	5.4175	2.20140	6.28931	499.51	19855.
160	25600	4096000	12.6491	5.4288	2.20412	6.25000	502.65	20106.
161	25921	4173281	12.6886	5.4401	2.20683	6.21118	505.80	20358.
162	26244	4251528	12.7279	5.4514	2.20952	6.17284	508.94	20612.
163	26569	4330747	12.7671	5.4626	2.21219	6.13497	512.08	20867.
164	26896	4410944	12.8062	5.4737	2.21484	6.09756	515.22	21124.
165	27225	4492125	12.8452	5.4848	2.21748	6.06061	518.36	21382.
166	27556	4574296	12.8841	5.4959	2.22011	6.02410	521.50	21642.
167	27889	4657463	12.9228	5.5069	2.22272	5.98802	524.65	21904.
168	28224	4741632	12.9615	5.5178	2.22531	5.95238	527.79	22167.
169	28561	4826809	13.0000	5.5288	2.22789	5.91716	530.93	22431.
170	28900	4913000	13.0384	5.5397	2.23045	5.88235	534.07	22698.
171	29241	5000211	13.0767	5.5505	2.23300	5.84795	537.21	22965.
172	29584	5088448	13.1149	5.5613	2.23553	5.81395	540.35	23235.
173	29929	5177717	13.1529	5.5721	2.23805	5.78035	543.50	23506.
174	30276	5268024	13.1909	5.5828	2.24055	5.74713	546.64	23778.
175	30625	5359375	13.2288	5.5934	2.24304	5.71429	549.78	24052.
176	30976	5451776	13.2665	5.6041	2.24551	5.68182	552.92	24328.
177	31329	5545233	13.3041	5.6147	2.24797	5.64972	556.06	24605.
178	31684	5639752	13.3417	5.6252	2.25042	5.61798	559.20	24884.
179	32041	5735339	13.3791	5.6357	2.25285	5.58659	562.35	25164.
180	32400	5832000	13.4164	5.6462	2.25527	5.55556	565.49	25446.
181	32761	5929741	13.4536	5.6567	2.25768	5.52486	568.63	25730.
182	33124	6028568	13.4907	5.6671	2.26007	5.49451	571.77	26015.
183	33489	6128487	13.5277	5.6774	2.26245	5.46448	574.91	
184	33856	6229504	13.5647	5.6877	2.26482	5.43478	578.05	26302.
185	34225	6331625	13.6015	5.6980	2.26717			26590.
186	34596	6434856	13.6382	5.7083	2.26951	5.40541 5.37634	581.19	26880.
	34969	6539203					584.34	27171.
187			13.6748	5.7185	2.27184	5.34759	587.48	27464.
188	35344	6644672	13.7113	5.7287	2.27416	5.31915	590.62	27759.
189	35721	6751269	13.7477	5.7388	2.27646	5.29101	593.76	28055.
190	36100	6859000	13.7840	5.7489	2.27875	5.26316	596.90	28352.
191	36481	6967871	13.8203	-5.7590	2.28103	5.23560	600.04	28652.
192	36864	7077888	13.8564	5.7690	2.28330	5.20833	603.19	28952.
193	37249	7189057	13.8924	5.7790	2.28556	5.18135	606.33	29255.
194	37636	7301384	13.9284	5.7890	2.28780	5.15464	609.47	29559.
195	38025	7414875	13.9642	5.7989	2.29003	5.12821	612.61	29864.
196	38416	7529536	14.0000	5.8088	2.29226	5.10204	615.75	30171.
197	38809	7645373	14.0357	5.8186	2.29447	5.07614	618.89	30480.
198	39204	7762392	14.0712	5.8285	2.29667	5.05051	622.04	30790.
199	39601	7880599	14.1067	5.8383		5.02513		

Functions of Numbers, 200 to 249

	AT.	n.		Square	Cubic		1000	No.—I	Diameter
	No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
								,	
	200	40000	8000000	14.1421	5.8480	2.30103	5.00000	628.32	31415.9
	201	40401	8120601	14.1774	5.8578	2.30320	4.97512	631.46	31730.9
	202	40804	8242408	14.2127	5.8675	2.30535	4.95050	634.60	32047.4
	203	41209	8365427	14.2478	5.8771	2.30750	4.92611	637.74	32365.5
	204	41616	8489664	14.2829	5.8868	2.30963	4.90196	640.88	32685.1
	205_{\sim}	42025	8615125	14.3178	5.8964	2.31175	4.87805	644.03	33006.4
	200	42436	8741816	14.3527	5.9059	2.31387	4.85437	647.17	33329.2
	207	42849	8869743	14.3875	5.9155	2.31597	4.83092	650.31	33653.5
	208	43264	8998912	14.4222	5.9250	2.31806	4.80769	653.45	33979.5
	209	43681	9129329	14.4568	5.9345	2.32015	4.78469	656.59	34307.0
	210	44100	9261000	14.4914	5.9439	2.32222	4.76190	659.73	34636.1
	211	44521	9393931	14.5258	5.9533	2.32428	4.73934	662.88	34966.7
	212	44944	9528128	14.5602	5.9627	2.32634	4.71698	666.02	35298.9
	213	45369	9663597	14.5945	5.9721	2.32838	4.69484	669.16	35632.7
								672.30	35968.1
	214	45796	9800344	14.6287	5.9814	2.33041	4.67290		
	215	46225	9938375	14.6629	5.9907	2.33244	4.65116	675.44	36305.0
	216	46656	10077696	14.6969	6.0000	2.33445	4.62963	678.58	36643.5
	217	47089	10218313	14.7309	6.0092	2.33646	4.60829	681.73	36983.6
	218	47524	10360232	14.7648	6.0185	2.33846	4.58716	684.87	37325.3
ľ	219	47961	10503459	14.7986	6.0277	2.34044	4.56621	688.01	37668.5
1	220	48400	10648000	14.8324	6.0368	2.34242	4.54545	691.15	38013.3
	221	48841	10793861	14.8661	6.0459	2.34439	4.52489	694.29	38359.6
	222	49284	10941048	14.8997	6.0550	2.34635	4.50450	697.43	38707.6
	223	49729	11089567	14.9332	6.0641	2.34830	4.48430	700.58	39057.1
	224	50176	11239424	14.9666	6.0732	2.35025	4.46429	703.72	39408.1
	225	50625	11390625	15.0000	6.0822	2.35218	4.44444	706.86	39760.8
	226	51076	11543176	15.0333	6.0912	2.35411	4.42478	710.00	40115.0
	227	51529	11697083	15.0665	6.1002	2.35603	4.40529	713.14	40470.8
	228	51984	11852352	15.0997	6.1091	2.35793	4.38596	716.28	40828.1
	229	52441	12008989	15.1327	6.1180	2.35984	4.36681	719.42	41187.1
	230	52900	12167000	15.1658	6.1269	2.36173	4.34783	722.57	41547.6
	231	53361	12326391	15.1987	6.1358	2.36361	4.32900	725.71	41909.6
	232	53824	12487168	15.2315	6.1446	2.36549	4.31034	728.85	42273.3
	233	54289	12649337	15.2643	6.1534	2.36736	4.29185	731.99	42638.5
	234	54756	12812904	15.2971	6.1622	2.36922	4.27350	735.13	43005.3
	235	55225	12977875	15.3297	6.1710	2.37107	4.25532	738.27	43373.6
	$\frac{236}{236}$	55696	13144256	15.3623	6.1797	2.37291	4.23729	741.42	43743.5
	$\frac{230}{237}$	56169	13312053	15.3948	6.1885	2.37475	4.21941	744.56	44115.0
	238	56644	13481272	15.4272	6.1972	2.37658	4.20168	747.70	44488.1
	239	57121	13651919	15.4596	6.2058	2.37840	4.18410	750.84	44862.7
	200	0.121	10001010	10.1000	0.2000	2.0.010	1110110		
	240	57600	13824000	15.4919	6.2145	2.38021	4.16667	753.98	45238.9
	241	58081	13997521	15.5242	6.2231	2.38202	4.14938	757.12	45616.7
	242	58564	14172488	15.5563	6.2317	2.38382	4.13223	760.27	45996.1
	243	59049	14348907	15.5885	6.2403	2.38561	4.11523	763.41	46377.0
	244	59536	14526784	15.6205	6.2488	2.38739	4.09836	765.55	46759.5
	245	60025	14706125	15.6525	6.2573	2.38917	4.08163	769.69	47143.5
	246	60516	14886936	15.6844	6.2658	2.39094	4.06504	772.83	47529.2
	247	61009	15069223	15.7162	6.2743	2.39270	4.04858	775.97	47916.4
	248	61504	15252992	15.7480	6.2828	2.39445	4.03226	779.12	48305.1
	249	62001	15438249	15.7797	6.2912	2.39620	4.01606	782.26	48695.5
<u></u>									

Functions of Numbers, 250 to 299

			Square	Cubic		1000	No. =	Diameter
No.	Square	Cube	- Root	Root	Logarithm	Reciprocal	Circum.	Area
250	62500	15625000	15.8114	6.2996	2.39794	4.00000	785.40	49087.4
251	63001	15813251	15.8430	6.3080	2.39967	3.98406	788.54	49480.9
252	63504	16003008	15.8745	6.3164	2.40140	3.96825	791.68	49875.9
253	64009	16194277	15.9060	6.3247	2.40312	3.95257	794.82	50272.6
254	64516	16387064	15.9374	6.3330	2.40483	3.93701	797.96	50670.7
255	65025	16581375	15.9687	6.3413	2.40654	3.92157	801.11	51070.5
256	65536	16777216	16.0000	6.3496	2.40824	3.90625	804.25	51471.9
257	66049	16974593	16.0312	6.3579	2.40993	3.89105	807.39	51874.8
258	66564	17173512	16.0624	6.3661	2.40555 2.41162	3.87597	810.53	52279.2
259	67081	17373979	16.0935	6.3743	2.41330	3.86100	813.67	52685.3
260	67600	17576000	16.1245	6.3825	2.41497	3.84615	816.81	53092.9
261	68121	17779581	16.1555	6.3907	2.41664	3.83142	819.96	53502.1
262	68644	17984728	16.1864	6.3988	2.41830	3.81679	823.10	53912.9
263	69169	18191447	16.2173	6.4070	2.41996	3.80228	826.24	54325.2
264	69696	18399744	16.2481	6.4151	2.42160	3.78788	829.38	54739.1
265	70225	18609625	16.2788	6.4232	2.42325	3.77358	832.52	55154.6
266	70756	18821096	16.3095	6.4312	2.42488	3.75940	835.66	55571.6
67	71289	19034163	16.3401	6.4393	2.42651	3.74532	838.81	55990.2
268	71824	19248832	16.3707	6.4473	2.42813	3.73134	841.95	56410.4
69	72361	19465109	16.4012	6.4553	2.42975	3.71747	845.09	56832.2
70	72900	19683000	16.4317	6.4633	2.43136	3.70370	848.23	57255.5
271	73441	19902511	16.4621	6.4713	2.43297	3.69004	851.37	57680.4
72	73984	20123648	16.4924	6.4792	2.43457	3.67647	854.51	58106.9
73	74529	20346417	16.5227	6.4872	2.43616	3.66300	857.65	58534.9
74	75076	20570824	16.5529	6.4951	2.43775	3.64964	860.80	58964.6
75	75625	20796875	16.5831	6.5030	2.43933	3.63636	863.94	59395.7
276	76176	21024576	16.6132	6.5108	2.44091	3.62319	867.08	59828.5
277	76729	21253933	16.6433	6.5187	2.44248	3.61011	870.22	60262.8
278	77284	21484952	16.6733	6.5265	2.44404	3.59712	873.36	60698.7
79	77841	21717639	16.7033	6.5343	2.44560	3.58423	876.50	61136.2
80	78400	21952000	16.7332	6.5421	2.44716	3.57143	879.65	61575.2
81	78961	22188041	16.7631	6.5499	2.44871	3.55872	882.79	62015.8
82	79524	22425768	16.7929	6.5577	2.45025	3.54610	885.93	62458.0
83	80089	22665187	16.8226	6.5654	2.45179	3.53357	889.07	62901.8
84	80656	22906304	16.8523	6.5731	2.45332	3.52113	892.21	63347.1
85	81225	23149125	16.8819	6.5808	2.45484	3.50877	895.35	63794.0
86	81796	23393656	16.9115	6.5885	2.45637	3.49650	898.50	64242.4
87 88	82369 82944	23639903 23887872	16.9411 16.9706	6.5962 6.6039	2.45788 2.45939	$3.48432 \\ 3.47222$	901.64 904.78	64692.5 65144.1
89	83521	24137569	17.0000	6.6115	2.45939 2.46090	3.46021	904.78	65597.2
90	84100	24389000	17.0294	6.6191	2.46240	3,44828	911.06	66052.0
91	84681	24642171	17.0587	6.6267	2.46389	3.43643	914.20	66508.3
92	85264	24897088	17.0880	6.6343	2.46538	3.42466	917.35	66966.2
293	85849	25153757	17.1172	6.6419	2.46687	3.41297	920.49	67425.6
294	86436	25412184	17.1464	6.6494	2.46835	3.40136	923.63	67886.7
95	87025	25672375	17.1756	6.6569	2.46982	3.38983	926.77	68349.3
296	87616	25934336	17.2047	6.6644	2.47129	3.37838	929.91	68813.4
297	88209	26198073	17.2337	6.6719	2.47276	3.36700	933.05	69279.2
298	88804	26463592	17.2627	6.6794	2.47422	3.35570	936.19	69746.5
299								

Functions of Numbers, 300 to 349

						1000	No.=I	Diameter
No.	Square	Cube	Square Koot	Cubic Root	Logarithm	X Reciprocal	Circum.	Area
200	00000	2700000	17 2205	6.6943	2.47712	3.33333	942.48	70685.8
300	90000 90601	27000000 27270901	17.3205 17.3494	6.7018	2.47857	3.32226	945.62	71157.9
$\frac{301}{302}$	91204	27543608	17.3494	6.7092	2.48001	3.31126	948.76	71631.5
303	91809	27818127	17.4069	6.7166	2.48144	3.30033	951.90	72106.6
304	92416	28094464	17.4356	6.7240	2.48287	3.28947	955.04	72583.4
305	93025	28372625	17.4642	6.7313	2.48430	3.27869	958.19	73061.7
306	93636	28652616	17.4929	6.7387	2.48572	3.26797	961.33	73541.5
307	94249	28934443	17.5214	6.7460	2.48714	3.25733	964.47	74023.0
308	94864	29218112	17.5499	6.7533	2.48855	3.24675	967.61	74506.0
309	95481	29503629	17.5784	6.7606	2.48996	3.23625	970.75	74990.6
310	96100	29791000	17.6068	6.7679	2.49136	3.22581	973.89	75476.8
311	96721	30080231	17.6352	6.7752	2.49276	3.21543	977.04	75964.5
312	97344	30371328	17.6635	6.7824	2.49415	3.20513	980.18	76453.8
313	97969	30664297	17.6918	6.7897	2.49554	3.19489	983.32	76944.7
314	98596	30959144	17.7200	6.7969	2.49693	3.18471	986.46	77437.1
315	99225	31255875	17.7482	6.8041	2.49831	3.17460	989.60	77931.1
316	99856	31554496	17.7764	6.8113	2.49969	3.16456	992.74	78426.7
317	100489	31855013	17.8045	6.8185	2.50106	3.15457	995.88	78923.9
318	101124	32157432	17.8326	6.8256	2.50243	3.14465	999.03	79422.6
319	101761	32461759	17.8606	6.8328	2.50379	3.13480	1002.2	79922.9
320	102400	32768000	17.8885	6.8399	2.50515	3.12500	1005.3	80424.8
321	103041	33076161	17.9165	6.8470	2.50651	3.11526	1008.5	80928.2
322	103684	33386248	17.9444	6.8541	2.50786	3.10559	1011.6	81433.2
323	104329	33698267	17.9722	6.8612	2.50920	3.09598	1014.7	81939.8
324	104976	34012224	18.0000	6.8683	2.51055	3.08642	1017.9	82448.0
325	105625	34328125	18.0278	6.8753	2.51188	3.07692	1021.0	82957.7
326	106276	34645976	18.0555	6.8824	2.51322	3.06749	1024.2	83469.0
327	106929	34965783	18.0831	6.8894	2.51455	3.05810	1027.3	83981.8
328 329	107584 108241	35287552 35611289	18.1108 18.1384	6.8964 6.9034	2.51587 2.51720	3.04878 3.03951	1030.4 1033.6	84496.3 85012.3
								1
330	108900	35937000	18.1659	6.9104	2.51851	3.03030	1036.7	85529.9
331	109561	36264691	18.1934	6.9174	2.51983	3.02115	1039.9	86049.0
332	110224	36594368	18.2209	6.9244	2.52114	3.01205	1043.0	86569.7
333	110889	36926037	18.2483	6.9313	2.52244	3.00300	1046.2 1049.3	87092.0 87615.9
334	111556	37259704 37595375	18.2757 18.3030	$\begin{vmatrix} 6.9382 \\ 6.9451 \end{vmatrix}$	2.52375 2.52504	$\begin{bmatrix} 2.99401 \\ 2.98507 \end{bmatrix}$	1049.3	88141.3
335	112225			6.9431	2.52634	2.97619	1055.6	88668.3
336	112896 113569	37933056 38272753	18.3303 18.3576	6.9589	2.52763	2.96736	1058.7	89196.9
337	114244	38614472	18.3848	6.9658	2.52892	2.95858	1061.9	89727.0
338 339	114244	38958219	18.4120	6.9727	2.53020	2.94985	1065.0	90258.7
240	115000	39304000	18.4391	6.9795	2.53148	2.94118	1068.1	90792.0
340	115600 116281	39304000	18.4391	6.9864	2.53148	2.94118	1003.1	91326.9
341	116964		18.4932	6.9932	2.53403	2.92398	1074.4	91863.3
343	117649		18.5203	7.0000	2.53529	2.91545	1077.6	92401.3
343	118336	40353607	18.5203	7.0068	2.53656	2.90698	1080.7	92940.9
345	119025		18.5742	7.0136	2.53782	2.89855	1083.8	93482.0
346	119716			7.0203		2.89017	1087.0	94024.7
347	120409		18.6279	7.0271	2.54033	2.88184	1090.1	94569.0
348	121104		18.6548	7.0338	2.54158	2.87356	1093.3	95114.9
349		42508549				2.86533		95662.3

Functions of Numbers, 350 to 399

			C.	0.1:		1000	No. =1	Diameter
No.	Square	Cube	Square Root	Cubic Root	Logarithm	X Reciprocal	Circum.	Area
250	100500	40077000	10.7000	7.0479	0.54407	0.05714	1000.0	00011.9
350	122500	42875000	18.7083	7.0473	2.54407	2.85714	1099.6	96211.3
351	123201	43243551	18.7350	7.0540	2.54531	2.84900	1102.7	96761.8
352	123904	43614208	18.7617	7.0607	2.54654	2.84091	1105.8	97314.0
353	124609	43986977	18.7883	7.0674	2.54777	2.83286	1109.0	97867.7
354	125316	44361864	18.8149	7.0740	2.54900	2.82486	1112.1	98423.0
355	126025	44738875	18.8414	7.0807	2.55023	2.81690	1115.3	98979.8
356	126736	45118016	18.8680	7.0873	2.55145	2.80899	1118.4	99538.2
357	127449	45499293	18.8944	7.0940	2.55267	2.80112	1121.5	100098
358	128164	45882712	18.9209	7.1006	2.55388	2.79330	1124.7	100660
359	128881	46268279	18.9473	7.1072	2.55509	2.78552	1127.8	101223
360	129600	46656000	18.9737	7.1138	2.55630	2.77778	1131.0	101788
361	130321	47045881	19.0000	7.1204	2.55751	2.77008	1134.1	102354
362	131044	47437928	19.0263	7.1269	2.55871	2.76243	1137.3	102922
363	131769	47832147	19.0526	7.1335	2.55991	2.75482	1140.4	103491
364	132496	48228544	19.0788	7.1400	2.56110	2.74725	1143.5	104062
365	133225	48627125	19.1050	7.1466	2.56229	2.73973	1146.7	104635
366	133956	49027896	19.1311	7.1531	2.56348	2.73224	1149.8	105209
367	134689	49430863	19.1572	7.1596	2.56467	2.72480	1153.0	105785
368	135424	49836032	19.1833	7.1661	2.56585	2.71739	1156.1	106362
369	136161	50243409	19.2094	7.1726	2.56703	2.71003	1159.2	106941
370	136900	50653000	19.2354	7.1791	2.56820	2.70270	1162.4	107521
371	137641	51064811	19.2614	7.1855	2.56937	2.69542	1165.5	108103
372	138384	51478848	19.2873	7.1920	2.57054	2.68817	1168.7	108687
373	139129	51895117	19.3132	7.1984	2.57171	2.68097	1171.8	109272
374	139876	52313624	19.3391	7.2048	2.57287	2.67380	1175.0	109858
375	140625	52734375	19.3619	7.2112	2.57403	2.66667	1178.1	110447
376	141376	53157376	19.3907	7.2177	2.57519	2.65957	1181.2	111036
377	142129	53582633	19.4165	7.2240	2.57634	2.65252	1184.4	111628
378	142884	54010152	19.4422	7.2304	2.57749	2.64550	1187.5	112221
379	143641	54439939	19.4679	7.2368	2.57864	2.63852	1190.7	112815
380	144400	54872000	19.4936	7.2432	2.57978	2.63158	1193.8	113411
381	145161	55306341	19.5192	7.2495	2.58093	2.62467	1196.9	114009
382	145924	55742968	19.5448	7.2558	2.58206	2.61780	1200.1	114608
383	146689	56181887	19.5704	7.2622	2.58320	2.61097	1203.2	115209
384	147456	56623104	19.5959	7.2685	2.58433	2.60417	1206.4	115812
385	148225	57066625	19.6214	7.2748	2.58546	2.59740	1209.5	116416
386	148996	57512456	19.6469	7.2811	2.58659	2.59067	1212.7	117021
387	149769	57960603	19.6723	7.2874	2.58771	2.58398	1215.8	117628
388	150544	58411072	19.6977	7.2936	2.58883	2.57732	1218.9	118237
389	151321	58863869	19.7231	7.2999	2.58995	2.57069	1222.1	118847
390	152100	59319000	19.7484	7.3061	2.59106	2.56410	1225.2	119459
391	152881	59776471	19.7737	7.3124	2.59218	2.55754	1228.4	120072
392	153664	60236288	19.7990	7.3124	2.59329	2.55102	1231.5	120672
393			19.7930					
394	154449	60698457		7.3248	2.59439	2.54453	1234.6	121304
	155236	61162984	19.8494	7.3310	2.59550	2.53807	1237.8	121922
395	156025	61629875	19.8746	7.3372	2.59660	2.53165	1240.9	122542
396	156816	62099136	19.8997	7.3434	2.59770	2.52525	1244.1	123163
397	157609	62570773	19.9249	7.3496	2.59879	2.51889	1247.2	123786
398	158404	63044792	19.9499		2.59988	2.51256	1250.4	
399	159201	63521199	19.9750	7.3619	2.60097	2.50627	1253.5	125036

Functions of Numbers 400 to 449

NT.		0.1	Square	Cubic	T	1000	No.==	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
400	160000	64000000	20.0000	7.3681	2.60206	2.50000	1256.6	125664
401	160801	64481201	20.0250	7.3742	2.60314	2.49377	1259.8	126293
402	161604	64964808	20.0499	7.3803	2.60423	2.48756	1262.9	126923
403	162409	65450827	20.0749	7.3864	2.60531	2.48139	1266.1	127556
404	163216	65939264	20.0998	7.3925	2.60638	2.47525	1269.2	128190
405	164025	66430125	20.1246	7.3986	2.60746	2.46914	1272.3	128825
406	164836	66923416	20.1240	7.4047	2.60853	2.46305	1275.5	129462
407	165649	67419143	20.1742	7.4108	2.60959	2.45700	1278.6	130100
408	166464	67917312	20.1990	7.4169	2.61066	2.45098	1281.8	130741
409	167281	68417929	20.1330	7.4229	2.61172	2.44499	1284.9	131382
47.0	100100	60001000	00.040#	7 4000	0.01070	0.40000	1000.1	122025
410	168100	68921000	20.2485	7.4290	2.61278	2.43902	1288.1	132025
411	168921	69426531	20.2731	7.4350	2.61384	2.43309	1291.2	132670
412	169744	69934528	20.2978	7.1410	2.61490	2.42718	1294.3	133317
413	170569	70444997	20.3224	7.4470	2.61595	2.42131	1297.5	133965
414	171396	70957944	20.3470	7.4530	2.61700	2.41546	1300.6	134614
415	172225	71473375	20.3715	7.4590	2.61805	2.40964	1303.8	135265
416	173056	71991296	20.3961	7.4650	2.61909	2.40385	1306.9	135918
$\frac{417}{418}$	173889 174724	72511713	20.4206	7.4710	2.62014	2.39808	$1310.0 \\ 1313.2$	$136572 \\ 137228$
418	175561	73034632	20.4450	7.4770	2.62118 2.62221	2.39234 2.38663	1316.3	137885
419	173301	73560059	20.4695	7.4829	2.02221	2.38003	1510.5	137333
420	176400	74088000	20.4939	7.4889	2.62325	2.38095	1319.5	138544
421	177241	74618461	20.5183	7.4948	2.62428	2.37530	1322.6	139205
422	178084	75151448	20.5426	7.5007	2.62531	2.36967	1325.8	139867
423	178929	75686967	20.5670	7.5067	2.62634	2.36407	1328.9	140531
424	179776	76225024	20.5913	7.5126	2.62737	2.35849	1332.0	141196
425	180625	76765625	20.6155	7.5185	2.62839	2.35294	1335.2	141863
426	181476	77308776	20.6398	7.5244	2.62941	2.34742	1338.3	142531
427	182329	77854483	20.6640	7.5302	2.63043	2.34192	1341.5	143201
428	183184	78402752	20.6882	7.5361	2.63144	2.33645	1344.6	143872
429	184041	78953589	20.7123	7.5420	2.63246	2.33100	1347.7	144545
430	184900	79507000	20.7364	7.5478	2.63347	2.32558	1350.9	145220
431	185761	80062991	20.7605	7.5537	2.63448	2.32019	1354.0	145896
432	186624	80621568	20.7846	7.5595	2.63548	2.31481	1357.2	146574
433	187489	81182737	20.8087	7.5654	2.63649	2.30947	1360.3	147254
434	188356	81746504	20.8327	7.5712	2.63749	2.30415	1363.5	147934
435	189225	82312875	20.8567	7.5770	2.63849	2.29885	1366.6	148617
436	190096	82881856	20.8806	7.5828	2.63949	2.29358	1369.7	149301
437	190969	83453453	20.9045	7.5886	2.64048	2.28833	1372.9	149987
438	191844	84027672	20.9284	7.5944	2.64147	2.28311	1376.0	150674
439	192721	84604519	20.9523	7.6001	2.64246	2.27790	1379.2	151363
440	193600	85184000	20.9762	7.6059	2.64345	2.27273	1382.3	152053
441	194481	85766121	21.0000	7.6117	2.64444	2.26757	1385.4	152745
442	195364	86350888	21.0238	7.6174	2.64542	2.26244	1388.6	153439
443	196249	86938307	21.0476	7.6232	2.64640	2.25734	1391.7	154134
444	197136	87528384	21.0713	7.6289	2.64738	2.25225	1394.9	154830 155528
445	198025	88121125	21.0950	7.6346	2.64836	2.24719 2.24215	$1398.0 \\ 1401.2$	156228
$\frac{446}{447}$	198916	88716536	21.1187	7.6403	2.64933 2.65031	$\frac{2.24215}{2.23714}$	1401.2 1404.3	156930
448	200704	89314623 89915392	21.1424 21.1660	7.6517	2.65128	2.23214	1407.4	157633
		90518849						
***	, 201001	1 20010049	21.1030	, , , , , , , ,	1 22.00220			

Functions of Numbers, 450 to 499

			Square	Cubie		1000	No.==E	lameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
450	202500	91125000	21.2132	7.6631	2.65321	2.22222	1413.7	159043
451	203401	91733851	21.2368	7.6688	2.65418	2.21729	1416.9	159751
452	204304	92345408	21.2603	7.6744	2.65514	2.21239	1420.0	160460
453	205209	92959677	21.2838	7.6801	2.65610	2.20751	1423.1	161171
454	206116	93576664	21.3073	7.6857	2.65706	2.20264	1426.3	161883
455	207025	94196375	21.3307	7.6914	2.65801	2.19780	1429.4	162597
456	207936	94818816	21.3542	7.6970	2.65896	2.19298	1432.6	163313
457	208849	95443993	21.3776	7.7026	2.65992	2.18818	1435.7	164030
458	209764	96071912	21.4009	7.7082	2.66087	2.18341	1438.8	164748
459	210681	96702579	21.4243	7.7138	2.60181	2.17865	1442.0	165468
460	211600	97336000	21.4476	7.7194	2.66276	2.17391	1445.1	166190
461	212521	97972181	21.4709	7.7250	2.66370	2.16920	1448.3	166914
462	213444	98611128	21.4942	7.7306	2.66464	2.16450	1451.4	167639
463	214369	99252847	21.5174	7.7362	2.66558	2.15983	1454.6	168365
464	215296	99897344	21.5407	7.7418	2.66652	2.15517	1457.7	169093
465	216225	100544625	21.5639	7.7473	2.66745	2.15054	1460.8	169823
466	217156	101194696	21.5870	7.7529	2.66839	2.14592	1464.0	170554
467	218089	101847563	21.6102	7.7584	2.66932	2.14133	1467.1	171287
468	219024	102503232	21.6333	7.7639	2.67025	2.13675	1470.3	172021
469	219961	103161709	21.6564	7.7695	2.67117	2.13220	1473.4	172757
470	220900	103823000	21.6795	7.7750	2.67210	2.12766	1476.5	173494
47 I	221841	104487111	21.7025	7.7805	2.67302	2.12314	1479.7	174234
472	222784	105154048	21.7256	7.7860	2.67394	2.11864	1482.8	174974
473	223729	105823817	21.7486	7.7915	2.67486	2.11416	1486.0	175716
474	224676	106496424	21.7715	7.7970	2.67578	2.10970	1489.1	176460
475	225625	107171875	21.7945	7.8025	2.67669	2.10526	1492.3	177205
476	226576	107850176	21.8174	7.8079	2.67761	2.10084	1495.4	177952
477	227529	108531333	21.8403	7.8134	2.67852	2.09644	1498.5	178701
478	228484	109215352	21.8632	7.8188	2.67943	2.09205	1501.7	179451
479	229441	109902239	21.8861	7.8243	2.68034	2.08768	1504.8	180203
480	230400	110592000	21.9089	7.8297	2.68124	2.08333	1508.0	180956
481	231361	111284641	21.9317	7.8352	2.68215	2.07900	1511.1	181711
482	232324	111980168	21.9545	7.8406	2.68305	2.07469	1514.2	182467
483	233289	112678587	21.9773	7.8460	2.68395	2.07039	1517.4	183225
484	234256	113379904	22.0000	7.8514	2.68485	2.06612	1520.5	183984
485	235225	114084125	22.0227	7.8568	2.68574	2.06186	1523.7	184745
486	236196	114791256	22.0454	7.8622	2.68664	2.05761	1526.8	185508
487	237169	115501303	22.0681	7.8676	2.68753	2.05339	1530.0	186272
488	238144	116214272	22.0907	7.8730	2.68842	2.04918	1533.1	187038
489	239121	116930169	22.1133	7.8784	2.68931	2.04499	1536.2	187805
490	240100	117649000	22.1359	7.8837	2.69020	2.04082	1539.4	188574
491	241081	118370771	22.1585	7.8891	2.69108	2.03666	1542.5	189345
492	242064	119095488	22.1811	7.8944	2.69197	2.03252	1545.7	190117
493	243049	119823157	22.2036	7.8998	2.69285	2.02840	1548.8	190890
494	244036	120553784	22.2261	7.9051	2.69373	2.02429	1551.9	191665
495	245025	121287375	22.2486	7.9105	2.69461	2.02020	1555.1	192442
496	246016	122023936	22.2711	7.9158	2.69548	2.01613	1558.2	193221
497	247009	122763473	22.2935	7.9211	2.69636	2.01207	1561.4	194000
498	248004	123505992	22.3159	7.9264	2.69723	2.00803	1564.5	194782
499	249001	124251499	22.3383	7.9317	2.69810	2.00401	1567.7	195565

Functions of Numbers 500 to 549

			Square	Cubic		1000	No.=I	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
500	250000	125000000	22.3607	7.9370	2.69897	2.00000	1570.8	196350
501	251001	125751501	22.3830	7.9423	2.69984	1.99601	1573.9	197136
502	252004	126506003	22.4054	7.9476	2.70070	1.99203	1577.1	197923
503	253009	127263527	22.4277	7.9528	2.70157	1.98807	1580.2	198713
504	254016	128024064	22.4499	7.9581	2.70243	1.98413	1583.4	199504
505	255025	128787625	22.4722	7.9634	2.70243	1.98020	1586.5	200296
506	256036	129554216	22.4944	7.9686	2.70415	1.97628		
507	257049	130323843	22.4344	7.9739	2.70413 2.70501	1.97239	$1589.6 \\ 1592.8$	$201090 \\ 201886$
508	258064			7.9791	2.70501 2.70586	1.96850		
		131096512	22.5389				1595.9	202683
509	259081	131872229	22.5610	7.9843	2.70672	1.96464	1599.1	203482
510	260100	132651000	22,5832	7.9896	2.70757	1.96078	1602.2	204282
511	261121	133432831	22.6053	7.9948	2.70842	1.95695	1605.4	205084
512	262144	134217728	22.6274	8.0000	2.70927	1.95312	1608.5	205887
513	263169	135005697	22.6495	8.0052	2.71012	1.94932	1611.6	206692
514	264196	135796744	22.6716	8.0104	2.71096	1.94553	1614.8	207499
515	265225	136590875	22.6936	8.0156	2.71181	1.94175	1617.9	208307
516	266256	137388096	22.7156	8.0208	2.71265	1.93798	1621.1	209117
517	267289	138188413	22.7376	8.0260	2.71349	1.93424	1624.2	209928
518	268324	138991832	22.7596	8.0311	2.71433	1.93050	1627.3	210741
519	269361	139798359	22.7816	8.0363	2.71517	1.92678	1630.5	211556
520	270400	140608000	22.8035	8.0415	2.71600	1.92308	1633.6	212372
521	271441	141420761	22.8254	8.0466	2.71684	1.91939	1636.8	213189
522	272484	142236648	22.8473	8.0517	2.71767	1.91571	1639.9	214008
523	273529	143055667	22.8692	8.0569	2.71850	1.91205	1643.1	214829
524	274576	143877824	22.8910	8.0620	2.71933	1.90840	1646.2	215651
525	275625	144703125	22.9129	8.0671	2.72016	1.90476	1649.3	216475
526	276676	145531576	22.9347	8.0723	2.72099	1.90114	1652.5	217301
527	277729	146363183	22.9565	8.0774	2.72181	1.89753	1655.6	218128
528	278784	147197952	22.9783	8.0825	2.72263	1.89394	1658.8	218956
529	279841	148035889	23.0000	8.0876	2.72346	1.89036	1661.9	219787
530	280900	148877000	23.0217	8.0927	2.72428	1.88679	1665.0	220618
531	281961	149721291	23.0434	8.0978	2.72509	1.88324	1668.2	221452
532	283024	150568768	23.0651	8.1028	2.72591	1.87970	1671.3	222287
533	284089	151419437	23.0868	8.1079	2.72673	1.87617	1674.5	223123
534	285156	152273304	23.1084	8.1130	2.72754	1.87266	1677.6	223961
535	286225		23.1301	8.1180	2.72835	1.86916	1680.8	224801
536	287296	153990656	23.1517	8,1231	2.72916	1.86567	1683.9	225642
537	288369	154854153	23.1733	8.1281	2.72997	1.86220	1687.0	226484
538	289444	155720872	23.1948	8.1332	2.73078	1.85874	1690.2	227329
539	290521	156590819	23.2164	8.1382	2.73159	1.85529	1693.3	228175
540	291600	157464000	23.2379	8.1433	2.73239	1.85185	1696.5	229022
541	292681	158340421	23.2594	8.1483	2.73320	1.84843	1699.6	229871
542	293764	159220088	23.2809	8.1533	2.73400	1.84502	1702.7	230722
543	294849	160103007	23.3024	8.1583	2.73480	1.84162	1705.9	231574
544	295936	160989184	23.3238	8.1633	2.73560	1.83824	1709.0	232428
545	297025	161878625	23.3452	8.1683	2.73640	1.83486	1712.2	233283
546	298116	162771336	23.3666	8.1733	2.73719	1.83150	1715.3	234140
547	299209	163667323	23.3880	8.1783	2.73799	1.82815	1718.5	234998
548	300304	164566592	23.4094	8.1833	2.73878	1.82482	1721.6	235858
549	301401	165469149	23.4307	8.1882	12.73957	1.82149	1724.7	236720

Functions of Numbers, 550 to 599

			~			1000	$No = \Gamma$	Diameter
No.	Saunec	Cube	Square	Cubic	Logorithm	X		
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
						recipiecai	On cum.	Alea
550	302500	166375000	23.4521	8.1932	2.74036	1.81818	1727.9	237583
551	303601	167284151	23.4734	8.1982	2.74115	1.81488	1731.0	238448
552	304704	168196608	23.4947	8.2031	2.74194	1.81159	1734.2	239314
553	305809	169112377	23.5160	8.2081	2.74273	1.80832	1737.3	240182
554	306916	170031464	23.5372	8.2130	2.74351	1.80505	1740.4	241051
555	308025	170953875	23.5584	8.2180	2.74429	1.80180	1743.6	241922
556	309136	171879616	23.5797	8.2229	2.74507	1.79856	1746.7	242795
557	310249	172808693	23.6008	8.2278	2.74586	1.79533	1749.9	213669
558	311364	173741112	23.6220	8.2327	2.74663	1.79211	1753.0	244545
559	312481	174676879		8.2377	2.74741			
999	912491	174070879	23.6432	8.2011	2.74741	1.78891	1756.2	245422
. 560	313600	175616000	23.6643	8.2426	2.74819	1.78571	1759.3	246301
561	314721	176558481	23.6854	8.2475	2.74896	1.78253	1762.4	247181
562	315844	177504328	23.7065	8.2524	2.74974	1.77936	1765.6	248063
563	316969	178453547	23.7276	8.2573	2.75051	1.77620	1768.7	248947
564	318096	179406144	23.7487	8.2621	2.75128	1.77305	1771.9	249832
565	319225	180362125	23.7697	8.2670	2.75205	1.76991	1775.0	250719
566	320356	181321496	23.7908	8.2719	2.75282	1.76678	1778.1	251607
567	321489	182284263	23.8118	8.2768	2.75358	1.76367	1781.3	252497
568	322624	183250432	23.8328	8.2816	2.75435	1.76056	1784.4	253388
569	323761	184220009	23.8537	8.2865	2.75511	1.75747	1787.6	254281
570	324900	185193000	23.8747	8.2913	2.75587	1.75439	1790.7	255176
571	326041	186169411	23.8956	8.2962	2.75664	1.75131	1793.8	256072
572	327184	187149248	23.9165	8.3010	2.75740	1.74825	1797.0	256970
573	328329	188132517	23.9374	8.3059	2.75815	1.74520	1800.1	257869
574	329476	189119224	23.9583	8.3107	2.75891	1.74216	1803.3	258770
575	330625	190109375	23.9792	8.3155	2.75967	1.73913	1806.4	259672
576	331776	191102976	24.0000	8.3203	2.76042	1.73611	1809.6	260576
577	332929	192100033	24.0208	8.3251	2.76118	1.73310	1812.7	261482
578	334084	193100552	24.0416	8.3300	2.76193	1.73010	1815.8	262389
579	335241	194104539	24.0624	8.3348	2.76268	1.72712	1819.0	263298
	000100	107110000						201202
580	336400	195112000	24.0832	8.3396	2.76343	1.72414	1822.1	264208
581	337561	196122941	24.1039	8.3443	2.76418	1.72117	1825.3	265120
582	338724	197137368	24.1247	8.3491	2.76492	1.71821	1828.4	266033
583	339889	198155287	24.1454	8.3539	2.76567	1.71527	1831.6	266948
584	341056	199176704	24.1661	8.3587	2.76641	1.71233	1834.7	267865
585	342225	200201625	24.1868	8.3634	2.76716	1.70940	1837.8	268783
586	343396	201230056	24.1303	8.3682	2.76790		1841.0	269703
587	344569	202262003	24.2281	8.3730	2.76864	1.70358	1844.1	270624
588	345744	203297472	24.2487	8.3777	2.76938	1.70068	1847.3	271547
589	346921	204336469	24.269?	8.3825	2.77012	1.69779	1850.4	272471
	1				i			
590	348100	205379000	24.2899	8.3872	2.77085	1.69492	1853.5	273397
591	349281	206425071	24.3105	8.3919	2.77159		1856.7	274325
592	350464	207474688	24.3311	8.3967	2.77232	1.68919	1859.8	275254
593	351649	208527857	24.3516	8.4014	2.77305	1.68634	1863.0	276184
594	352836	209584584	24.3721	8.4061	2.77379		1866.1	277117
595	354025	210644875	24.3926	8.4108	2.77452	1.68067	1869.2	278051
596	355216	211708736	24.4131	8.4155	2.77525	1.67785	1872.4	278986
597	356409	212776173	24.4336	8.4202	2.77597		1875.5	279923
598	357604	213847192	24.4540	8.4249	2.77670		1878.7	280862
		214921799			2.77743		1881.8	
009	1 300001	214941799	24.443	0.4230	. 2.11143	11.00540	1001.0	1 201002

Functions of Numbers, 600 to 649

		FUNCTI	ONS OF	LYUMBE	ns, 000	10 040		
N-	C	Cuba	Square	Cubic		1000	No.==I	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
600	360000	216000000	24.4949	8.4343	2.77815	1.66667	1885.0	282743
601	361201	217081801	24.5153	8.4390	2.77887	1.66389	1888.1	283687
602	362404	218167208	24.5357	8.4437	2.77960	1.66113	1891.2	284631
603	363609	219256227	24.5561	8.4484	2.78032	1.65837	1894.4	285578
604	364816	220348864	24.5764	8.4530	2.78104	1.65563	1897.5	286526
605	366025	221445125	24.5967	8.4577	2.78176	1.65289	1900.7	287475
606	367236	222545016	24.6171	8.4623	2.78247	1,65017	1903.8	288426
607	368449	223648543	24.6374	8.4670	2.78319	1.64745	1906.9	289379
608	369664	224755712	24.6577	8.4716	2.78390	1.64474	1910.1	290333
609	370881	225866529	24.6779	8.4763	2.78462	1.64204	1913.2	291289
610	372100	226981000	24.6982	8.4809	2.78533	1.63934	1916.4	292247
611	373321	228099131	24.7184	8.4856	2.78604	1.63666	1919.5	293206
612	374544	229220928	24.7386	8.4902	2.78675	1.63399	1922.7	294166
613	375769	230346397	24.7588	8.4948	2.78746	1.63132	1925.8	295128
614	376996	231475544	24.7790	8.4994	2.78817	1.62866	1928.9	296092
615	378225	232608375	24.7992	8.5040	2.78888	1.62602	1932.1	297057
616	379456	233744896	24.8193	8.5086	2.78958	1.62338	1935.2	298024
617	380689	234885113	24.8395	8.5132	2.79029	1.62075	1938.4	298992
618	381924	236029032	24.8596	8.5178	2.79099	1.61812	1941.5	299962
619	383161	237176659	24.8797	8.5224	2.79169	1.61551	1944.6	300934
620	384400	238328000	24.8998	8.5270	2.79239	1.61290	1947.8	301907
621	385641	239483061	24.9199	8.5316	2.79309	1.61031	1950.9	302882
622	386884	240641848	24.9399	8.5362	2.79379	1.60772	1954.1	303858
623	388129	241804367	24.9600	8.5408	2.79449	1.60514	1957.2	304836
624	389376	242970624	24.9800	8.5453	2.79518	1.60256	1960.4	305815
625	390625	244140625	25.0000	8.5499	2.79588	1.60000	1963.5	306796
626	391876	245314376	25.0200	8.5544	2.79657	1.59744	1966.6	307779
627	393129	246491883	25.0400	8.5590	2,79727	1.59490	1969.8	308763
628	394384	247673152	25.0599	8.5635	2.79796	1.59236	1972.9	309748
629	395641	248858189	25.0799	8.5681	2.79865	1.58983	1976.1	310736
630	396900	250047000	25.0998	8.5726	2.79934	1.58730	1979.2	311725
631	398161	251239591	25.1197	8.5772	2.80003	1.58479	1982.3	312715
632	399424	252435968	25.1396	8.5817	2.80072	1.58228	1985.5	313707
633	400689	253636137	25.1595	8.5862	2.80140	1.57978	1988.6	314700
634	401956	254840104	25.1794	8.5907	2.80209	1.57729	1991.8	315696
635	403225	256047875	25.1992	8.5952	2.80277	1.57480	1994.9	316692
636	404496	257259456	25.2190	8.5997	2.80346	1.57233	1998.1	317690
637	405769	258474853	25.2389	8.6043	2.80414	1.56986	2001.2	318690
638	407044	259694072	25.2587	8.6088	2.80482	1.56740	2004.3	319692
639	408321	260917119	25.2784	8.6132	2.80550	1.56495	2007.5	320695
640	409600	262144000	25.2982	8.6177	2.80618	1.56250	2010.6	321699
641	410881	263374721	25.3180	8.6222	2.80686	1.56006	2013.8	322705
642	412164	264609288	25.3377	8.6267	2.80754	1.55763	2016.9	323713
643	413449	265847707	25.3574	8.6312	2.80821	1.55521	2020.0	324722
644	414736	267089984	25.3772	8.6357	2.80889	1.55280	2023.2	325733
645	416025	268336125	25.3969	8.6401	2.80956	1.55039	2026.3	326745
646	417316	269586136	25.4165	8.6446	2.81023	1.54799	2029.5	327759
647	418609	270840023	25.4362	8.6490	2.81090	1.54560	2032.6	328775
648	419904	272097792	25.4558	8.6535	2.81158	1.54321	2035.8	329792
649	101001	273359449			2.81224	1.54083		

Functions of Numbers, 650 to 699

	1	1	1	1	1	1	1	
No.	Square	Cube	Square	Cubic	Logarithm	1000 x	No.=I	Diameter
No.	square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
650	422500	274625000	25.4951	8.6624	2.81291	1.53846	2042.0	331831
651	423801	275894451	25.5147	8.6668	2.81358	1.53610	2045.2	332853
652	425104	277167808	25.5343	8.6713	2.81425	1.53374	2048.3	333876
653	426409	278445077	25.5539	8.6757	2.81491	1.53139	2051.5	334901
654	427716	279726264	25.5734	8.6801	2.81558	1.52905	2054.6	335927
655	429025	281011375	25.5930	8.6845	2.81624	1.52672	2057.7	336955
656	430336	282300416	25.6125	8.6890	2.81690	1.52439	2060.9	337985
657	431649	283593393	25.6320	8.6934	2.81757	1.52207	2064.0	339016
658	432964	284890312	25.6515	8.6978	2.81823	1.51976	2067.2	340049
659	434281	286191179	25.6710	8.7022	2.81889	1.51745	2070.3	341084
660	435600	287496000	25.6905	8.7066	2.81954	1.51515	2073.5	342119
661	436921	288804781	25.7099	8.7110	2.82020	1.51313	2076.6	343157
662	438244	290117528	25.7099 25.7294			1.51286	2076.6	344196
6 63	439569			8.7154	2.82086			
664	440896	291434247 292754944	25.7488 25.7682	8.7198 8.7241	2.82151	1.50830 1.50602	2082.9 2086.0	345237 346279
665	442225	294079625			2.82217			
666			25.7876	8.7285	2.82282	1.50376	2089.2	347323
	443556	295408296	25.8070	8.7329	2.82347	1.50150	2092.3	348368
667	444889	296740963	25.8263	8.7373	2.82413	1.49925	2095.4	349415
668	446224	298077632	25.8457	8.7416	2.82478	1.49701	2098.6	350464
6 69	4.17561	299418309	25.8650	8.7460	2.82543	1.49477	2101.7	351514
670	448900	300763000	25.8844	8.7503	2.82607	1.49254	2104.9	352565
671	450241	302111711	25.9037	8.7547	2.82672	1.49031	2108.0	353618
672	451584	303464448	25.9230	8.7590	2.82737	1.48810	2111.2	354673
673	452929	304821217	25.9422	8.7634	2.82802	1.48588	2114.3	355730
674	454276	306182024	25.9615	8.7677	2.82866	1.48368	2117.4	356788
675	455625	307546875	25.9808	8.7721	2.82930	1.48148	2120.6	357847
676	456976	308915776	26.0000	8.7764	2.82995	1.47929	2123.7	358908
677	458329	310288733	26.0192	8.7807	2.83059	1.47710	2126.9	359971
678	459684	311665752	26.0384	8.7850	2.83123	1.47493	2130.0	361035
679	461041	313046839	26.0576	8.7893	2.83187	1.47275	2133.1	362101
680	462400	314432000	26.0768	8.7937	2.83251	1.47059	2136.3	363168
681	463761	315821241	26.0960	8.7980	2.83315	1.46843	2139.4	364237
682	465124	317214568	26.1151	8.8023	2.83378	1.46628	2142.6	365308
683	466489	318611987	26.1343	8.8066	2.83442	1.46413	2145.7	366380
684	467856	320013504	26.1534	8.8109	2.83506	1.46199	2148.8	367453
685	469225	321419125	26.1725	8.8152	2.83569	1.45985	2152.0	368528
686	470596	322828856	26.1916	8.8194	2.83632	1.45773	2155.1	369605
687	471969	324242703	26.2107	8.8237	2.83696	1.45560	2158.3	370684
688	473344	325660672	26.2298	8.8280	2.83759	1.45349	2161.4	371764
689	474721	327082769	26.2488	8.8323	2.83822	1.45138	2164.6	372845
690	4761CO	328509000	26.2679	8.8366	2.83885	1.44928	2167.7	373928
691	477481	329939371	26.2869	8.8408	2.83948	1.44718	2170.8	375013
692	478864	331373888	26.3059	8.8451	2.84011	1.44509	2174.0	376099
693	480249	332812557	26.3249	8.8493	2.84073	1.44300	2177.1	377187
694	481636	334255384	26.3439	8.8536	2.84136	1.44092	2180.3	378276
695	483025	335702375	26.3629	8.8578	2.84198	1.43885	2183.4	379367
696	484416	337153536	26.3818	8.8621	2.84261	1.43678	2186.5	380459
697	485809	338608873	26.4008	8.8663				381553
698	487204	340068392	26.4008		2.84323	1.43472	2189.7	
699	488601			8.8706 8.8748	$\begin{bmatrix} 2.84386 \\ 2.84448 \end{bmatrix}$	1.43266	2192.8	382649 383746
033	1 400001	341332039	20,4380	10.0148	4.84448	1.43062	1 2190.0	1 000740

Functions of Numbers, 700 to 749

No. Paper									
No. Page Page Root Root Reciprocal Circum. Area	37.	C1		Square	Cubic	T 101	1	NoI	Diameter
701 491401 344472101 26.4764 8.8833 2.84572 1.42653 2202.3 385945 702 492804 345048408 26.4953 8.88757 2.84634 1.42450 2205.4 387047 703 494209 347428927 26.5141 8.8917 2.84606 1.42248 2208.5 388151 704 495616 348913664 26.53707 8.9093 2.84819 1.41844 2211.8 309362 707 499843 353393243 26.58575 8.9055 2.84961 1.41443 2221.1 393567 709 502681 356400829 26.6271 8.9169 2.85065 1.41044 2221.2 394805 710 504100 357911000 26.658 8.9211 2.85126 1.40845 223.5 359199 711 505521 35945431 26.6684 8.9233 2.85127 1.40449 223.8 398153 712 506941 360941128 26.6833 8.9252 <td< td=""><td>No.</td><td>equare</td><td>Cube</td><td></td><td>Root</td><td>Logarithm</td><td></td><td>Circum.</td><td>Area</td></td<>	No.	equare	Cube		Root	Logarithm		Circum.	Area
701 491401 344472101 26.4764 8.8833 2.84572 1.42653 2202.3 385945 702 492804 345048408 26.4953 8.88757 2.84634 1.42450 2205.4 387047 703 494209 347428927 26.5141 8.8917 2.84606 1.42248 2208.5 388151 704 495616 348913664 26.53707 8.9093 2.84819 1.41844 2211.8 309362 707 499843 353393243 26.58575 8.9055 2.84961 1.41443 2221.1 393567 709 502681 356400829 26.6271 8.9169 2.85065 1.41044 2221.2 394805 710 504100 357911000 26.658 8.9211 2.85126 1.40845 223.5 359199 711 505521 35945431 26.6684 8.9233 2.85127 1.40449 223.8 398153 712 506941 360941128 26.6833 8.9252 <td< td=""><td>700</td><td>490000</td><td>343000000</td><td>26.4575</td><td>8 8790</td><td>2 84510</td><td>1 42857</td><td>2199.1</td><td>384845</td></td<>	700	490000	343000000	26.4575	8 8790	2 84510	1 42857	2199.1	384845
702 492804 \$45948408 26.4938 8.8875 2.84696 1.42450 2205.4 887047 703 494209 347428927 26.5141 8.8917 2.84696 1.42448 2208.5 388151 704 495616 348913664 26.5330 8.8959 2.84757 1.42045 2211.7 389256 706 49843 353893243 26.5856 8.9081 2.84889 1.41443 221.1 392580 708 501264 354894912 26.6083 8.9127 2.85003 1.41443 2221.1 392580 700 502681 356400829 26.6271 8.9169 2.85065 1.41443 2221.1 393692 710 504100 357911000 26.6458 8.9211 2.85126 1.40647 2233.5 398959 711 505931 359425431 26.6271 8.9169 2.85127 1.40647 2233.7 397035 712 566943 3694442 26.7203 8.9232 2.									
703 494209 347428027 26.5141 8.8917 2.84606 1.42248 2208.5 388151 704 495616 348913664 26.5308 8.8959 2.84757 1.42045 2211.7 389256 705 497025 350402625 26.5718 8.9001 2.84819 1.41841 2211.8 39363 706 498436 351895816 26.5718 8.9001 2.8480 1.41643 2211.7 392580 707 499849 353393243 26.5858 8.9985 2.85003 1.41243 2221.2 393692 709 502681 356400829 26.6271 8.9169 2.85003 1.41041 2227.4 394805 710 504100 357911000 26.6458 8.9211 2.85103 1.40647 2233.5 395919 711 505563 359425431 26.6646 8.9233 2.85187 1.4044 2236.8 389153 712 506944 36041128 26.7255 8.9373 2.									
704 495616 348013664 26.5330 8.8959 2.84757 1.42045 221.17 389256 705 497025 350402625 26.5518 8.9001 2.84819 1.41844 2214.8 390363 706 49849 353393243 26.5895 8.9085 2.84849 1.41643 2218.0 393692 708 50164 354894912 26.6808 8.9272 2.85005 1.41044 2221.1 393692 709 502681 356400829 26.6271 8.9169 2.85065 1.41044 2221.1 393692 710 504100 357911000 26.6458 8.9211 2.85127 1.40647 2233.7 397035 711 505521 359425431 26.6646 8.9253 2.85187 1.40647 2233.7 397035 713 508369 362467097 2.7021 8.9378 2.85309 1.40252 2240.0 399272 714 509766 367661696 26.7525 8.9462 2									
705 497025 350402625 26.5518 8.9001 2.84819 1.41844 2214.8 3931471 706 498436 351895816 26.5805 8.9085 2.84880 1.41643 2218.0 391471 707 499849 353393243 26.5805 8.9085 2.84942 1.41443 2221.1 392580 709 502681 356400829 26.6271 8.9169 2.85063 1.41443 2221.2 393692 710 504100 357911000 26.6466 8.9263 2.85187 1.40647 2233.5 395919 711 505944 360944128 26.6833 8.9265 2.85248 1.4044 2236.8 397035 712 506943 360447097 26.7021 8.9373 2.85309 1.40252 2240.0 399272 714 509796 363994344 26.7208 8.9378 2.85307 1.40656 2243.1 40639 715 511225 365525875 26.7395 8.9420 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
706 498436 351895816 26.5707 8.9043 2.84880 1.41643 2218.0 391471 707 499849 353393243 26.5895 8.9085 2.84942 1.41443 2221.1 392580 708 501264 354894912 26.6683 8.9127 2.85003 1.41243 2221.2 393692 710 502681 356400829 26.6871 8.9109 2.85187 1.40845 2230.5 395919 711 505521 359425431 26.6863 8.9211 2.85187 1.40647 2233.7 397035 712 506944 360944128 26.6833 8.9295 2.85281 1.40440 2236.8 398153 713 508369 362467097 26.7021 8.9337 2.85309 1.40252 2240.0 399214 714 509796 363994344 26.7208 8.9420 2.85431 1.39860 2246.2 401515 716 514890 368681813 26.7552 8.9462 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
707 499849 353393243 26.5895 8.9085 2.84942 1.41443 2221.1 393692 708 502681 354894912 26.6083 8.9127 2.85003 1.41243 2224.2 393692 709 502681 356400829 26.6271 8.9169 2.85065 1.41044 2227.3 394805 710 504100 357911000 26.6468 8.9253 2.85187 1.40647 2233.7 397035 712 506944 360944128 26.66833 8.9253 2.85239 1.40647 2233.7 397035 713 508369 36394344 26.7021 8.93378 2.85309 1.40056 2240.0 399272 714 509796 365525875 26.7358 8.9462 2.85431 1.39860 2246.2 401515 715 514089 368601813 26.7769 8.9503 2.85491 1.39665 22441 402639 717 514089 36652587 8.9550 2.85791 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
708 501264 354804912 26.6083 8.9127 2.85065 1.41044 2227.4 394802 710 504100 356400829 26.6271 8.9169 2.85065 1.41044 2227.4 394802 710 504100 357911000 26.6458 8.9211 2.85126 1.40845 2233.5 395919 711 505521 359425431 26.6833 8.9295 2.85187 1.40647 2233.7 397035 713 508369 362467097 26.7021 8.9337 2.85387 1.40649 2230.8 398153 715 51255 365525875 26.7395 8.9420 2.85431 1.39860 2246.2 401515 716 512656 367061696 26.7552 8.9462 2.85491 1.39865 2249.4 402637 717 514689 36868183 26.7755 8.9545 2.85612 1.39276 2255.7 404892 719 516961 37146232 26.7955 8.9545 2									
709 502681 356400829 26.6271 8.9169 2.85065 1.41044 2227.4 394805 710 504100 357911000 26.6458 8.9211 2.85126 1.40845 2230.5 395919 711 5056944 360944128 26.6833 8.9295 2.85248 1.40449 2233.7 397035 713 508964 360944128 26.6833 8.9295 2.85309 1.40049 2236.8 398153 713 508969 363994344 26.7208 8.9378 2.85309 1.40056 2246.2 401515 715 511255 365525875 26.7368 8.9460 2.85431 1.39860 2246.2 401515 716 512656 36704666 26.7768 8.9503 2.85512 1.39470 2255.7 40359 717 514089 37248000 26.8328 8.9628 2.85612 1.39470 2255.7 404892 720 51840 37248000 26.8328 8.9628 2.									
710 504100 357911000 26.6458 8.9211 2.85126 1.40845 2233.5 395919 711 505521 359425431 26.6646 8.9253 2.85187 1.40647 2233.7 397035 712 506944 360944128 26.6833 8.9295 2.85370 1.40647 2233.3 398153 713 508369 362467097 26.7202 8.9378 2.85370 1.40056 2240.0 399272 714 509796 36399434 26.7208 8.9378 2.85370 1.40056 2243.1 400393 715 51405 365601813 26.7582 8.9462 2.85491 1.39466 2240.4 402639 717 51408 368601813 26.7769 8.9503 2.85572 1.39470 2252.5 403765 718 516961 37146932 26.7582 8.9563 2.85673 1.39980 2255.8 406020 720 518400 37348000 26.8328 8.9628 2.8									
711 505521 359425431 26.6646 8.9263 2.85248 1.40647 2233.7 397035 712 506944 360944128 26.6833 8.9295 2.85248 1.40449 2230.8 398153 713 508369 362467097 26.7021 8.9337 2.85309 1.40252 2240.0 399272 714 509796 36394344 26.7208 8.9378 2.85370 1.40066 2243.1 400393 715 511255 365525875 26.7362 8.9462 2.85491 1.39665 2240.4 402639 717 514089 368601813 26.7769 8.9503 2.85552 1.39470 2252.5 403765 718 515601 37146232 26.7595 8.9545 2.85602 1.39866 2255.7 404892 719 516961 371694959 26.8142 8.9578 2.85733 1.38889 2265.1 406922 721 519841 374805361 26.8714 8.9676	709	502681	356400829	26.6271	8.9169	2.85065	1.41044	2227.4	394805
712 506944 360944128 26.6833 8.9295 2.85248 1.40449 2236.8 398153 713 508369 362467097 20.7021 8.9337 2.85370 1.40056 2240.0 399272 714 509796 363994844 26.7208 8.9378 2.85370 1.40056 2243.1 400393 715 511225 365525875 26.7395 8.9460 2.85431 1.39860 2246.2 401515 716 51698 36701606 26.7769 8.9503 2.85552 1.39470 2252.5 403765 717 516981 370146232 26.7955 8.9503 2.85552 1.39470 2252.5 403765 719 516961 371694959 26.8142 8.9587 2.85612 1.39276 2255.7 404892 720 518400 373248000 26.8328 8.9628 2.85733 1.38889 2261.9 407150 721 519841 374805361 26.8874 8.9670	710		357911000	26.6458	8.9211	2.85126	1.40845		395919
713 508360 362467097 26.7021 8.9337 2.85300 1.40252 2240.0 399272 714 509796 363994344 26.7208 8.9378 2.85370 1.40056 2243.1 400393 715 511225 365525875 26.7385 8.9462 2.85491 1.39665 2246.2 401515 717 514089 368601813 26.7769 8.9563 2.85552 1.39470 2252.5 403765 718 515524 370146232 26.7955 8.9545 2.85612 1.39276 2252.5 704369 719 516961 371694959 26.8142 8.9587 2.85673 1.39082 2258.8 406020 720 518400 373248000 26.8328 8.9628 2.85733 1.38889 2261.9 407150 721 51841 374505361 8.9671 2.85874 1.38594 2265.1 408282 722 521284 376367048 26.8701 8.9712 2.85914 <td< td=""><td></td><td></td><td>359425431</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			359425431						
714 509796 36394844 26.7208 8.9378 2.85370 1.40056 2243.1 400393 715 512255 365525875 26.7395 8.9402 2.85491 1.39665 2240.2 401515 716 512656 367661696 26.7552 8.9462 2.85491 1.39665 2249.4 402639 717 514089 368601813 26.7769 8.9503 2.85552 1.39470 2252.5 403765 718 515061 371694959 26.8142 8.9587 2.85672 1.39276 2255.7 404892 719 516961 371694959 26.8142 8.9587 2.85673 1.39082 2255.8 406020 720 518400 373248000 26.8328 8.9628 2.85733 1.38882 2255.8 406020 720 518401 374805361 26.8714 8.9670 2.85794 1.38696 2265.1 408282 721 51941 374806 26.2214 40155 4045			360944128						
715 511225 365525875 26,7305 8,9420 2,85431 1,39860 2246.2 401515 716 512656 367061696 26,7858 8,9462 2,85431 1,39860 2240.4 402639 717 514089 368601813 26,7769 8,9503 2,85552 1,39470 2252.5 403765 719 516961 371694959 26,8142 8,9587 2,85612 1,39276 2255.7 404892 720 518400 373248000 26,8328 8,9628 2,85733 1,38889 2261.9 407150 721 519841 374805361 26,8874 8,9670 2,85854 1,38696 2265.1 408282 722 521284 376367048 26,8701 8,9711 2,85854 1,38313 2271.4 410550 724 524176 379503424 26,9972 8,9752 2,85914 1,38132 2274.5 411687 725 525625 381078182 26,9258 8,9835 <t< td=""><td>713</td><td>508369</td><td>362467097</td><td>26.7021</td><td>8.9337</td><td>2.85309</td><td>1.40252</td><td>2240.0</td><td>399272</td></t<>	713	508369	362467097	26.7021	8.9337	2.85309	1.40252	2240.0	399272
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	714	509796	363994344	26.7208	8.9378	2.85370	1.40056	2243.1	400393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	715	511225	365525875	26.7395	8.9420	2.85431	1.39860	2246.2	401515
718 515524 370146232 26,7955 8,9545 2,85612 1,39276 2255.7 404892 719 516961 371694959 26,8142 8,9587 2,85673 1,39082 2258.8 406020 720 518400 373248000 26,8328 8,9628 2,85733 1,38889 2261.9 407150 721 519841 374805361 26,8874 8,9670 2,85794 1,38696 2265.1 408282 722 521284 376367048 26,8761 8,9712 2,85854 1,38504 2268.2 409415 724 524176 379503424 26,9972 8,9794 2,85974 1,38122 2274.5 411687 725 525625 381078125 26,9258 8,9835 2,86034 1,37931 2277.7 412825 726 525025 38167815 26,9815 8,9955 2,86034 1,37931 2277.7 412825 725 525993 384240583 26,9915 8,9959 <td< td=""><td>716</td><td>512656</td><td>367061696</td><td>26.7582</td><td>8.9462</td><td>2.85491</td><td>1.39665</td><td>2249.4</td><td>402639</td></td<>	716	512656	367061696	26.7582	8.9462	2.85491	1.39665	2249.4	402639
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717	514089	368601813	26.7769	8.9503	2.85552	1.39470	2252.5	403765
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								2258.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	720	518400	373248000	26.8328	8.9628	2.85733	1.38889	2261.9	407150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
723 522729 377933067 26.8887 8.9752 2.85914 1.38313 2271.4 410550 724 524176 379503424 26.9072 8.9794 2.85974 1.38123 2274.5 411687 725 525625 381078125 26.9258 8.9883 2.86034 1.37931 227.7 412825 726 528529 384240583 26.9629 8.9918 2.86153 1.37552 2283.9 415106 728 529984 385828352 26.9815 8.9959 2.86213 1.37363 2287.1 416248 729 531441 387420489 27.0000 9.0000 2.86213 1.37636 2297.1 416248 730 532900 389017000 27.0185 9.0041 2.86321 1.36986 2293.4 418539 731 534361 390617801 27.0370 9.0082 2.86392 1.36799 2296.5 419686 732 535824 39223168 27.0555 9.0123									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
725 525625 381078125 26.9258 8.9835 2.86034 1.37931 2277.7 412825 726 527076 382657176 26.9444 8.9876 2.86094 1.37741 2280.8 413965 727 528529 384240583 26.9629 8.9918 2.86153 1.37562 2283.9 415106 728 529984 385828352 26.9815 8.9959 2.86213 1.37363 2287.1 416248 729 531441 387420489 27.0000 9.0000 2.86213 1.37363 2287.1 416248 731 532900 389017000 27.0185 9.0041 2.86332 1.36986 2293.4 418539 731 534361 390617891 27.0370 9.0082 2.86392 1.36612 2290.6 420835 732 535824 392223168 27.0555 9.0123 2.86451 1.36612 2290.6 420835 733 537289 393832837 27.0740 9.0164 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
726 527076 382657176 26.9444 8.9876 2.86094 1.37741 2280.8 413965 727 528529 384240583 26.9629 8.9918 2.86153 1.37562 2283.9 415106 728 529984 385828352 26.9815 8.9959 2.86213 1.37363 2287.1 416248 729 531441 387420489 27.0000 9.0000 2.86273 1.37174 2290.2 417393 730 532900 389017000 27.0185 9.0041 2.86332 1.36986 2293.4 418539 731 534361 390617891 27.0370 9.0082 2.86392 1.36799 2296.5 419686 732 535824 392223168 27.0555 9.0123 2.86451 1.36426 2302.8 420835 733 537828 393832837 27.0740 9.0164 2.86510 1.36426 2302.8 421986 735 541696 398688275 27.1109 9.0246 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
729 531441 387420489 27.0000 9.0000 2.86273 1.37174 2290.2 417393 730 532900 389017000 27.0185 9.0041 2.86332 1.36986 2293.4 418539 731 534361 390617891 27.0370 9.0082 2.86392 1.36799 2296.5 419686 732 535824 392223168 27.0555 9.0123 2.86451 1.36426 2299.6 420835 733 537289 393832837 27.0740 9.0164 2.86510 1.36426 2302.8 421986 734 538756 395446904 27.0924 9.0205 2.86570 1.36240 2305.9 423138 735 541696 398688256 27.193 9.0287 2.86689 1.35570 2312.2 425447 737 543169 400315553 27.1477 9.0328 2.86747 1.35685 2315.4 426604 738 546121 403583419 27.1846 9.0410 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	720	£22000	20017000	97.0195	0.0011	0 06990	1 20000	9909.4	410520
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	739	546121	403583419	27.1846	9.0410	2.86864	1.35318	2321.6	428922
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	740	547600	405224000	27.2029	9.0450	2.86923	1.35135	2324.8	430084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		549081	406869021	27.2213	9.0491	2.86982	1.34953	2327.9	431247
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
748 559504 418508992 27.3496 9.0775 2.87390 1.33690 2349.9 439433									

Functions of Numbers, 750 to 799

No.	Sauara	0.1	Square	Cubic		1000	No.=1	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
750	562500	421875000	27.3861	9.0856	2.87506	1.33333	2356.2	441786
751	564001	423564751	27.4014	9.0896	2.87564	1.33156	2359.3	442965
752	565504	425259008	27,4226	9.0937	2.87622	1.32979	2362.5	444146
753	567009	426957777	27.4408	9.0977	2.87680	1.32802	2365.6	445328
754	568516	428661064	27.4591	9.1017	2.87737	1.32626	2368.8	446511
755	570025	430368875	27.4773	9.1057	2.87795			
						1.32450	2371.9	447697
756	571536	432081216	27.4955	9.1098	2.87852	1.32275	2375.0	448883
757	573049	433798093	27.5136	9.1138	2.87910	1.32100	2378.2	450072
758	574564	435519512	27.5318	9.1178	2.87967	1.31926	2381.3	451262
759	576081	437245479	27.5500	9.1218	2.88024	1.31752	2384.5	452453
760	577600	438976000	27.5681	9.1258	2.88081	1.31579	2387.6	453646
761	579121	440711081	27.5862	9.1298	2.88138	1.31406	2390.8	454841
762	580644	442450728	27.6043	9.1338	2.88196	1.31234	2393.9	456037
763	582169	444194947	27.6225	9.1378	2.88252	1.31062	2397.0	457234
764	583696	445943744	27.6405	9.1418	2.88309	1.30890	2400.2	458434
765	585225	447697125	27.6586	9.1458	2.88366	1.30719	2403.3	459635
766	586756	449455096	27.6767	9.1498	2.88423	1.30548	2406.5	460837
767	588289	451217663	27.6948	9.1537	2.88480	1.30378	2409.6	462041
768	589824	452984832	27.7128	9.1577	2.88536	1.30208	2412.7	463247
769	591361	454756609	27.7308	9.1617	2.88593	1.30039	2415.9	464454
770	592900	456533000	27.7489	9.1657	2.88649	1.29870	2419.0	105609
771	594441	458314011	27.7489	9.1696	$\frac{2.887049}{2.88705}$		2413.0	465663
772	595984	460099648				1.29702		466873
			27.7849	9.1736	2.88762	1.29534	2425.3	468085
773	597529	461889917	27.8029	9.1775	2.88818	1.29366	2428.5	469298
774	599076	463684824	27.8209	9.1815	2.88874	1.29199	2431.6	470513
775	600625	465484375	27.8388	9.1855	2.88930	1.29032	2434.7	471730
776	602176	467288576	27.8568	9.1894	2.88986	1.28866	2437.9	472948
777	603729	469097433	27.8747	9.1933	2.89042	1.28700	2441.0	474168
778 779	605284 606841	$\frac{470910952}{472729139}$	27.8927 27.9106	$9.1973 \\ 9.2012$	2.89098 2.89154	$1.28535 \\ 1.28370$	$2444.2 \\ 2447.3$	475389 476612
					,			
780	608400	474552000	27.9285	9.2052	2.89209	1.28205	2450.4	477836
781	609961	476379541	27.9464	9.2091	2.89265	1.28041	2453.6	479062
782	611524	478211768	27.9643	9.2130	2.89321	1.27877	2456.7	480290
783	613089	480048687	27.9821	9.2170	2.89376	1.27714	2459.9	481519
784	614656	481890304	28.0000	9.2209	2.89432	1.27551	2463.0	482750
785	616225	483736625	28.0179	9.2248	2.89487	1.27389	2466.2	483982
786	617796	485587656	28.0357	9.2287	2.89542	1.27226	2469.3	485216
787	619369	487443403	28.0535	9.2326	2.89597	1.27065	2472.4	486451
788	620944	489303872	28.0713	9.2365	2.89653	1.26904	2475.6	487688
789	622521	491169069	28.0891	9.2404	2.89708	1.26743	2478.7	488927
790	624100	493039000	28.1069	9.2443	2.89763	1.26582	2481.9	400167
791	625681	494913671	28.1247	9.2482				490167
792					2.89818	1.26422	2485.0	491409
793	627264	496793088	28.1425	9.2521	2.89873	1.26263	2488.1	492652
	628849	498677257	28.1603	9.2560	2.89927	1.26103	2491.3	493897
794	630436	500566184	28.1780	9.2599	2.89982	1.25945	2494.4	495143
795	632025	502459875	28.1957	9.2638	2.90037	1.25786	2497.6	496391
796	633616	504358336	28.2135	9.2677	2.90091	1.25628	2500.7	497641
797	635209	506261573	23.2312	9.2716	2.90146	1.25471	2503.8	498892
798	636804	508169592	28.2489	9.2754	2.90200	1.25313	2507.0	500145
799	638401	510082399	28.2666	9.2793				

Functions of Numbers, 800 to 849

27	G.		Square	Cubic		1000	No.==I	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
000	640000	-10000000	00 00 10	0.0000	0.00000	1.07000	0519.9	502655
800	640000	512000000	28.2843	9.2832	2.90309	1.25000	2513.3	
801	641601	513922401	28.3019	9.2870	2.90363	1.24844	2516.4	503912
802	643204	515849608	28.3196	9.2909	2.90417	1.24688	2519.6	505171
803	644809	517781627	28.3373	9.2948	2.90472	1.24533	2522.7	506432
804	646416	519718464	28.3549	9.2986	2.90526	1.24378	2525.8	507694
805	648025	521660125	28.3725	9.3025	2.90580	1.24224	2529.0	508958
806	649636	523606616	28.3901	9.3063	2.90634	1.24069	2532.1	510223
807	651249	525557943	28.4077	9.3102	2.90687	1.23916	2535.3	511490
808	652864	527514112	28.4253	9.3140	2.90741	1.23762	2538.4	512758
809	654481	529475129	28.4429	9.3179	2.90795	1.23609	2541.5	514028
810	656100	531441000	28.4605	9.3217	2.90849	1.23457	2544.7	515300
811	657721	533411731	28.4781	9.3255	2.90902	1.23305	2547.8	516573
812	659344	535387328	28.4956	9.3294	2.90956	1.23153	2551.0	517848
813	660969	537367797	28.5132	9.3332	2.91009	1.23001	2554.1	519124
814	662596	539353144	28.5307	9.3370	2.91062	1.22850	2557.3	520402
815	664225	541343375	28.5482	9.3408	2.91116	1.22699	2560.4	521681
816	665856	543338496	28.5657	9.3447	2.91169	1.22549	2563.5	522962
817	667489	545338513	28.5832	9.3485	2.91222	1.22399	2566.7	524245
818	669124	547343432	28.6007	9.3523	2.91275	1.22249	2569.8	525529
819	670761	549353259	28.6182	9.3561	2.91328	1.22100	2573.0	526814
010	0.0.01	040000200	20.0102	3.0001	2.01020	1.22100	20.0.0	0.20011
820	672400	551368000	28.6356	9.3599	2.91381	1.21951	2576.1	528102
821	674041	553387661	28.6531	9.3637	2.91434	1.21803	2579.2	529391
822	675684	555412248	28.6705	9.3675	2.91487	1.21655	2582.4	530681
823	677329	557441767	28.6880	9.3713	2.91540	1.21507	2585.5	531973
824	678976	559476224	28.7054	9.3751	2.91593	1.21359	2588.7	533267
825	680625	561515625	28.7228	9.3789	2.91645	1.21212	2591.8	534562
826	682276	563559976	28.7402	9.3827	2.91698	1.21065	2595.0	535858
827	683929	565609283	28.7576	9.3865	2.91751	1.20919	2598.1	537157
828	685584	567663552	28.7750	9.3902	2.91803	1.20773	2601.2	538456
829	687241	569722789	28.7924	9.3940	2.91855	1.20627	2604.4	539758
830	688900	571787000	28.8097	9.3978	2.91908	1.20482	2607.5	541061
831	690561	573856191	28.8271	9.4016	2.91960	1.20337	2610.7	542365
832	692224	575930368	28.8444	9.4053	2.92012	1.20192	2613.8	543671
833	693889	578009537	28.8617	9.4091	2.92065	1.20048	2616.9	544979
834	695556	580093704	28.8791	9.4129	2.92117	1.19904	2620.1	546288
835	697225	582182875	28.8964	9.4166	2.92169	1.19760	2623.2	547599
836	698896	584277056	28.9137	9.4204	2.92221	1.19617	2626.4	548912
837	700569	586376253	28.9310	9.4241	2.92273	1.19474	2629.5	550226
838	702244	588480472	28.9482	9.4279	2.92324	1.19332	2632.7	551541
839	703921	590589719	28.9655	9.4316	2.92376	1.19190	2635.8	552858
000	100021	330333713	20.3033	3.4510	2.32370	1.13130	2000.0	002000
840	705600	592704000	28.9828	9.4354	2.92428	1.19048	2638.9	554177
841	707281	594823321	29.0000	9.4391	2.92480	1.18906	2642.1	555497
842	708964	596947688	29.0172	9.4429	2.92531	1.18765	2645.2	556819
843	710649	599077107	29.0345	9.4466	2.92583	1.18624	2648.4	558142
844	712336	601211584	29.0517	9.4503	2.92634	1.18483	2651.5	559467
845	714025	603351125	29.0689	9.4541	2.92686	1.18343	2654.6	560794
846	715716	605495736	29.0861	9.4578	$\cdot 2.92737$	1.18203	2657.8	562122
847	717409	607645423	29.1033	9.4615	2.92788	1.18064	2660.9	563452
848	719104	609800192	29.1204	9.4652	2.92840	1.17925	2664.1	564783
849	720801	611960049	29.1376	9.4690	2.92891	1.17786	2667.2	566116

Functions of Numbers, 850 to 899

-			Square	Cubic		1000	No.=	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
850	722500	614125000	29.1548	9.4727	2.92942	1.17647	2670.4	567450
851	724201	616295051	29.1719	9.4764	2.92993	1.17509	2673.5	568786
852	725904	618470208	29.1890	9.4801	2.93044	1.17371	2676.6	570124
853	727609	620650477	29.2062	9.4838	2.93095	1.17233	2679.8	571463
854	729316	622835864	29.2233	9.4875	2.93146	1.17096	2682.9	572803
855	731025	625026375	29.2404	9.4912	2.93197	1.16959	2686.1	574146
856	732736	627222016	29.2575	9.4949	2.93247	1.16822	2689.2	575490
857	734449	629422793	29.2746	9.4986	2.93298	1.16686	2692.3	576835
858	736164	631628712	29.2916	9.5023	2.93349	1.16550	2695.5	578182
859	737881	633839779	29.3087					
000	101001	055555775	29.5061	9.5060	2.93399	1.16414	2698.6	579530
860	739600	636056000	29.3258	9.5097	2.93450	1.16279	2701.8	580880
861	741321	638277381	29.3428	9.5134	2.93500	1.16144	2704.9	582232
862	743044	640503928	29.3598	9.5171	2.93551	1.16009	2708.1	583585
863	744769	642735647	29.3769	9.5207	2.93601	1.15875	2711.2	584940
864	746496	644972544	29.3939	9.5244	2.93651	1.15741	2714.3	586297
865	748225	647214625	29.4109	9.5281	2.93702	1.15607	2717.5	58 7655
866	749956	649461896	29.4279	9.5317	2.93752	1.15473	2720.6	589014
867	751689	651714363	29.4449	9.5354	2.93802	1.15340	2723.8	590375
868	753424	653972032	29.4618	9.5391	2.93852	1.15207	2726.9	591738
869	755161	656234909	29.4788	9.5427	2.93902	1.15075	2730.0	59310 2
870	756900	658503000	29.4958	9.5464	2.93952	1.14943	2733.2	594468
871	758641	660776311	29.5127	9.5501	2.94002	1.14811	2736.3	595835
872	760384	663054848	29.5296	9.5537	2.94052	1.14679	2739.5	597204
873	762129	665338617	29.5466	9.5574	2.94101	1.14548	2742.6	598575
874	763876	667627624	29.5635	9.5610	2.94151	1.14416	2745.8	599947
875	765625	669921875	29.5804	9.5647	2.94201	1.14286	2748.9	601320
876	767376	672221376	29.5973	9.5683	2.94250	1.14155	2752.0	602696
877	769129	674526133	29.6142	9.5719	2.94300	1.14025	2755.2	604073
878	770884	676836152	29.6311	9.5756	2.94349	1.13895	2758.3	605451
879	772641	679151439	29.6479	9.5792	2.94399	1.13766	2761.5	606831
880	774400	681472000	29.6648	9.5828	2.94448	1.13636	2764.6	608212
881	776161	683797841	29.6816	9.5865	2.94498	1.13507	2767.7	609595
882	777924							
883	779689	686128968 688465387	29.6985 29.7153	9.5901 9.5937	$\begin{bmatrix} 2.94547 \\ 2.94596 \end{bmatrix}$	1.13379	2770.9 2774.0	610980
884	781456	690807104				1.13250		612366
885	783225	693154125	29.7321 29.7489	9.5973	2.94645	1.13122	2777.2	613754
886	784996	695506456	29.7489	9.6010	2.94694 2.94743	1.12994	2780.3	615143
887				9.6046		1.12867	2783.5	616534
888	786769 788544	697864103	29.7825	9.6082	2.94792	1.12740	2786.6	617927
889		700227072	29.7993	9.6118	2.94841	1.12613	2789.7	619321
309	790321	702595369	29.8161	9.6154	2.94890	1.12486	2792.9	620717
890	792100	704969000	29.8329	9.6190	2.94939	1.12360	2796.0	622114
891	793881	707347971	29.8496	9.6226	2.94988	1.12233	2799.2	623513
892	795664	709732288	29.8664	9.6262	2.95036	1.12108	2802.3	624913
893	797449	712121957	29.8831	9.6298	2.95085	1.11982	2805.4	626315
894	799236	714516984	29.8998	9.6334	2.95134	1.11857	2808.6	627718
895	801025	716917375	29.9166	9.6370	2.95182	1.11732	2811.7	629124
896	802816	719323136	29.9333	9.6406	2.95231	1.11607	2814.9	630530
897	804609	721734273	29.9500	9.6442	2.95279	1.11483	2818.0	631938
898	806404	724150792	29.9666	9.6477	2.95328	1.11359	2821.2	633348
899	808201	726572699					2824.3	

Functions of Numbers, 900 to 949

			Square	Cubic		1000		Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
900	810000	729000000	30.0000	9.6549	2.95424	1.11111	2827.4	636173
901	811801	731432701	30.0167	9.6585	2.95472	1.10988	2830.6	637587
902	813604	733870808	30.0333	9.6620	2.95521	1.10865	2833.7	639003
903	815409	736314327	30.0500	9.6656	2.95569	1.10742	2836.9	640421
904	817216	738763264	30.0666	9.6692	2.95617	1.10619	2840.0	641840
	819025	741217625	30.0832	9.6727	2.95665	1.10497	2843.1	643261
905 906	820836	743677416	30.0332		2.95713	1.10375	2846.3	644683
907	822649	746142643	30.1164	9.6799	2.95761	1.10254	2849.4	646107
908	824464	748613312	30.11330	9.6834	2.95809	1.10234	2852.6	647533
909	826281	751089429	30.1496	9.6870	2.95856	1.10011	2855.7	648960
910	828100	753571000	30.1662	9.6905	2.95904	1.09890	2858.8	650388
911	829921	756058031	30.1828	9.6941	2.95952	1.09769	2862.0	651818
912	831744	758550528	30.1993	9.6976	2.95999	1.09649	2865.1	653250
913	833569	761048497	30.2159	9.7012	2.96047	1.09529	2868.3	654684
914	835396	763551944	30.2324	9.7047	2.96095	1.09409	2871.4	656118
915	837225	766060875	30.2490	9.7082	2.96142	1.09290	2874.6	657555
916	839056	768575296	30.2655	9.7118	2.96190	1.09170	2877.7	658993
917	840889	771095213	30.2820	9.7153	2.96237	1.09051	2880.8	660433
918	842724	773620632	30.2985	9.7188	2.96284	1.08932	2884.0	661874
919	844561	776151559	30.3150	9.7224	2.96332	1.08814	2887.1	663317
920	846400	778688000	30.3315	9.7259	2.96379	1.08696	2890.3	664761
921	848241	781229961	30.3480	9.7294	2.96426	1.08578	2893.4	666207
922	850084	783777448	30.3645	9.7329	2.96473	1.08460	2896.5	667654
923	851929	786330467	30.3809	9.7364	2.96520	1.08342	2899.7	669103
924	853776	788889024	30.3974	9.7400	2.96567	1.08225	2902.8	670554
925	855625	791453125	30.4138	9.7435	2.96614	1.08108	2906.0	672006
926	857476	794022776	30.4302	9.7470	2.96661	1.07991	2909.1	673460
927	859329	796597983	30.4467	9.7505	2.96708	1.07875	2912.3	674915
928	861184	799178752	30.4631	9.7540	2.96755	1.07759	2915.4	676372
929	863041	801765089	30.4795	9.7575	2.96802	1.07643	2918.5	677831
930	864900	804357000	30.4959	9.7610	2.96848	1.07527	2921.7	679291
931	866761	806954491	30.5123	9.7645	2.96895	1.07411	2924.8	680752
932	868624	809557568	30.5287	9.7680	2.96942	1.07296	2928.0	682216
933	870489	812166237	30.5450	9.7715	2.96988	1.07181	2931.1	683680
934	872356	814780504	30.5614	9.7750	2.97035	1.07066	2934.2	685147
935	874225	817400375	30.5778	9.7785	2.97081	1.06952	2937.4	686615
936	876096	820025856	30.5941	9.7819	2.97128	1.06838	2940.5	688084
937	877969	822656953	30.6105	9.7854	2.97174	1.06724	2943.7	689555
938	879844	825293672	30.6268	9.7889	2.97220	1.06610	2946.8	691028
9 39	881721	827936019	30.6431	9.7924	2.97267	1.06496	2950.0	692502
940	883600	830584000	30.6594	9.7959	2.97313	1.06383	2953.1	693978
941	885481	833237621	30.6757	9.7993	2.97359	1.06270	2956.2	695455
942	887364	835896888	30.6920	9.8028	2.97405	1.06157	2959.4	696934
943	889249	838561807	30.7083	9.8063	2.97451	1.06045	2962.5	698415
944	891136	841232384	30.7246	9.8097	2.97497	1.05932	2965.7	699897
945	893025	843908625	30.7409	9.8132	2.97543	1.05820	2968.8	701380
946	894916	846590536	30.7571	9.8167	2.97589	1.05708	2971.9	702865
947	896809	849278123	30.7734	9.8201	2.97635	1.05597	2975.1	704352
948	898704	851971392	30.7896	9.8236	2.97681	1.05485	2978.2	705840
949	900601	854670349	30.8058	9.8270	2.97727	1.05374	2981.4	70733 0

MATHEMATICAL TABLES

Functions of Numbers, 950 to 999

		1	~			1000	No.==L	Diameter
No.	Square	Cube	Square	Cubic	Logarithm	X		
,		2.300	Root	Root		Reciprocal	Circum.	Area
-								
0.57	000500	057975000	20 0001	9.8305	2.97772	1.05263	2984.5	708822
$-950 \\ -951$		857375000	30.8221		2.97818	1.05265	2987.7	710315
952		860085351	30.8383 30.8545	9.8339 9.8374	2.97864	1.05152 1.05042	2990.8	711809
953			30.8545	9.8408	2.97909	1.03042 1.04932	2993.9	711305
954			30.8869	9.8443	2.97955	1.04532	2997.1	714803
958		870983875	30.9031	9.8477	2.98000	1.04712	3000.2	716303
956		873722816	30.9192	9.8511	2.98046	1.04603	3003.4	717804
957		876467493	30.9354	9.8546	2.98091	1.04493	3006.5	719306
958		879217912	30.9516	9.8580	2.98137	1.04384	3009.6	720810
959		881974079	30.9677	9.8614	2.98182	1.04275	3012.8	722316
	1							
960	921600	884736000	30.9839	9.8648	2.98227	1.04167	3015.9	723823
961		887503681	31.0000	9.8683	2.98272	1.04058	3019.1	725332
962		890277128	31.0161	9.8717	2.98318	1.03950	3022.2	726842
963		893056347	31.0322	9.8751	2.98363	1.03842	3025.4	728354
964		895841344	31.0483	9.8785	2.98408	1.03734	3028.5	729867
963		898632125	31.0644	9.8819	2.98453	1.03627	3031.6	731382
966		901428696	31.0805	9.8854	2.98498	1.03520	3034.8	732899
967		904231063	31.0966	9.8888	2.98543	1.03413	3037.9	734417
968		907039232	31.1127	9.8922	2.98588	1.03306	3041.1	735937
969	9 938961	909853209	31.1288	9.8956	2.98632	1.03199	3044.2	737458
970	940900	912673000	31.1448	9.8990	2.98677	1.03093	3047.3	738981
97		915498611	31.1609	9.9024	2.98722	1.02987	3050.5	740506
97		918330048	31.1769	9.9058	2.98767	1.02881	3053.6	742032
973		921167317	31.1929	9.9092	2.98811	1.02775	3056.8	743559
97		924010424	31.2090	9.9126	2.98856	1.02669	3059.9	745088
97		926859375	31.2250	9.9160	2.98900	1.02564	3063.1	746619
970		929714176	31.2410	9.9194	2.98945	1.02459	3066.2	748151
97		932574833	31.2570	9.9227	2.98989	1.02354	3069.3	749685
973		935441352	31.2730	9.9261	2.99034	1.02249	3072.5	751221
97	9 958441	938313739	31.2890	9.9295	2.99078	1.02145	3075.6	752758
986	960400	941192000	31.3050	9.9329	2.99123	1.02041	3078.8	754296
98		944076141	31.3209	9.9363	2.99167	1.01937	3081.9	755837
98:		946966168	31.3369	9.9396	2.99211	1.01833	3085.0	757378
98		949862087	31.3528	9.9430	2.99255	1.01729	3088.2	758922
98		952763904	31.3688	9.9464	2.99300	1.01626	3091.3	760466
98		955671625	31.3847	9.9497	2.99344	1.01523	3094.5	762013
98		958585256	31.4006	9.9531	2.99388	1.01420	3097.6	763561
98		961504803	31.4166	9.9565	2.99432	1.01317	3100.8	765111
98		964430272	31.4325	9.9598	2.99476	1.01215	3103.9	766662
98		967361669	31.4484	9.9632	2.99520	1.01112	3107.0	768214
00	0.00100	070000000	01 4010	0.0000	0.0050	1.01012	01100	700700
99		970299000	31.4643	9.9666	2.99564	1.01010	3110.2	769769
99		973242271	31.4802	9.9699	2.99607	1.00908	3113.3	771325
99		976191488	31.4960	9.9733	2.99651	1.00806	3116.5	772882
99		979146657	31.5119	9.9766	2.99695	1.00705	3119.6	774441
99		982107784 985074875	31.5278 31.5436	9.9800 9.9833	$\begin{vmatrix} 2.99739 \\ 2.99782 \end{vmatrix}$	1.00604	$3122.7 \\ 3125.9$	776002 777564
99		988047936	31.5595	9.9866	2.99826	1.00303	3129.0	779128
99		991026973	31.5753	9.9900	2.99870	1.00301	3132.2	780693
99		994011992	31.5911	9.9933	2.99913	1.00200	3135.3	782260
99		997002999	31.6070		2.99957	1.00100		783828
			,	,	,		, 30.0	,

Degrees				SINES				Cosines
Deg	0%	10′	20′	30′	40′	50′	60′	Cosi
0 1 2 3 4	$\begin{array}{c} 0.00000 \\ 0.01745 \\ 0.03490 \\ 0.05234 \\ 0.06976 \end{array}$	$\begin{array}{c} 0.00291 \\ 0.02036 \\ 0.03781 \\ 0.05524 \\ 0.07266 \end{array}$	$\begin{array}{c} 0.00582 \\ 0.02327 \\ 0.04071 \\ 0.05814 \\ 0.07556 \end{array}$	$\begin{array}{c} 0.00873 \\ 0.02618 \\ 0.04362 \\ 0.06105 \\ 0.07846 \end{array}$	0.01164 0.02908 0.04653 0.06395 0.08136	$\begin{array}{c} 0.01454 \\ 0.03199 \\ 0.04943 \\ 0.06685 \\ 0.08426 \end{array}$	$\begin{array}{c} 0.01745 \\ 0.03490 \\ 0.05234 \\ 0.06976 \\ 0.08716 \end{array}$	89 88 87 86 85
5 6 7 8 9	$\begin{array}{c} 0.08716 \\ 0.10453 \\ 0.12187 \\ 0.13917 \\ 0.15643 \end{array}$	$\begin{array}{c} 0.09005 \\ 0.10742 \\ 0.12476 \\ 0.14205 \\ 0.15931 \end{array}$	$\begin{array}{c} 0.09295 \\ 0.11031 \\ 0.12764 \\ 0.14493 \\ 0.16218 \end{array}$	$\begin{array}{c} 0.09585 \\ 0.11320 \\ 0.13053 \\ 0.14781 \\ 0.16505 \end{array}$	$\begin{array}{c} 0.09874 \\ 0.11609 \\ 0.13341 \\ 0.15069 \\ 0.16792 \end{array}$	$\begin{array}{c} 0.10164 \\ 0.11898 \\ 0.13629 \\ 0.15356 \\ 0.17078 \end{array}$	$\begin{array}{c} 0.10453 \\ 0.12187 \\ 0.13917 \\ 0.15643 \\ 0.17365 \end{array}$	84 83 82 81 80
10 11 12 13 14	$\begin{array}{c} 0.17365 \\ 0.19081 \\ 0.20791 \\ 0.22495 \\ 0.24192 \end{array}$	$\begin{array}{c} 0.17651 \\ 0.19366 \\ 0.21076 \\ 0.22778 \\ 0.24474 \end{array}$	$\begin{array}{c} 0.17937 \\ 0.19652 \\ 0.21360 \\ 0.23062 \\ 0.24756 \end{array}$	$\begin{array}{c} 0.18224 \\ 0.19937 \\ 0.21644 \\ 0.23345 \\ 0.25038 \end{array}$	$\begin{array}{c} 0.18509 \\ 0.20222 \\ 0.21928 \\ 0.23627 \\ 0.25320 \end{array}$	$\begin{array}{c} 0.18795 \\ 0.20507 \\ 0.22212 \\ 0.23910 \\ 0.25601 \end{array}$	$\begin{array}{c} 0.19081 \\ 0.20791 \\ 0.22495 \\ 0.24192 \\ 0.25882 \end{array}$	79 78 77 76 75
15 16 17 18 19		$\begin{array}{c} 0.26163 \\ 0.27843 \\ 0.29515 \\ 0.31178 \\ 0.32832 \end{array}$	$\begin{array}{c} 0.26443 \\ 0.28123 \\ 0.29793 \\ 0.31454 \\ 0.33106 \end{array}$	$\begin{array}{c} 0.26724 \\ 0.28402 \\ 0.30071 \\ 0.31730 \\ 0.33381 \end{array}$	$\begin{array}{c} 0.27004 \\ 0.28680 \\ 0.30348 \\ 0.32006 \\ 0.33655 \end{array}$	$\begin{array}{c} 0.27284 \\ 0.28959 \\ 0.30625 \\ 0.32282 \\ 0.33929 \end{array}$	$\begin{array}{c} 0.27564 \\ 0.29237 \\ 0.30902 \\ 0.32557 \\ 0.34202 \end{array}$	74 73 72 71 70
20 21 22 23 24		$\begin{array}{c} 0.34475 \\ 0.36108 \\ 0.37730 \\ 0.39341 \\ 0.40939 \end{array}$	$\begin{array}{c} 0.34748 \\ 0.36379 \\ 0.37999 \\ 0.39608 \\ 0.41204 \end{array}$	$\begin{array}{c} 0.35021 \\ 0.36650 \\ 0.38268 \\ 0.39875 \\ 0.41469 \end{array}$	$\begin{array}{c} 0.35293 \\ 0.36921 \\ 0.38537 \\ 0.40142 \\ 0.41734 \end{array}$	$\begin{array}{c} 0.35565 \\ 0.37191 \\ 0.38805 \\ 0.40408 \\ 0.41998 \end{array}$	$\begin{array}{c} 0.35837 \\ 0.37461 \\ 0.39073 \\ 0.40674 \\ 0.42262 \end{array}$	69 68 67 66 65
25 26 27 28 29	$ \begin{array}{c} 0.42262 \\ 0.43837 \\ 0.45399 \\ 0.46947 \\ 0.48481 \end{array} $	$\begin{array}{c} 0.42525 \\ 0.44098 \\ 0.45658 \\ 0.47204 \\ 0.48735 \end{array}$	$\begin{array}{c} 0.42788 \\ 0.44359 \\ 0.45917 \\ 0.47460 \\ 0.48989 \end{array}$	$\begin{array}{c} 0.43051 \\ 0.44620 \\ 0.46175 \\ 0.47716 \\ 0.49242 \end{array}$	$\begin{array}{c} 0.43313 \\ 0.44880 \\ 0.46433 \\ 0.47971 \\ 0.49495 \end{array}$	$\begin{array}{c} 0.43575 \\ 0.45140 \\ 0.46690 \\ 0.48226 \\ 0.49748 \end{array}$	$\begin{array}{c} 0.43837 \\ 0.45399 \\ 0.46947 \\ 0.48481 \\ 0.50000 \end{array}$	64 63 62 61 60
30 31 32 33 34		0.50252 0.51753 0.53238 0.54708 0.56160	$\begin{array}{c} 0.50503 \\ 0.52002 \\ 0.53484 \\ 0.54951 \\ 0.56401 \end{array}$	$\begin{array}{c} 0.50754 \\ 0.52250 \\ 0.53730 \\ 0.55194 \\ 0.56641 \end{array}$	$\begin{array}{c} 0.51004 \\ 0.52498 \\ 0.53975 \\ 0.55436 \\ 0.56880 \end{array}$	$\begin{array}{c} 0.51254 \\ 0.52745 \\ 0.54220 \\ 0.55678 \\ 0.57119 \end{array}$	$\begin{array}{c} 0.51504 \\ 0.52992 \\ 0.54464 \\ 0.55919 \\ 0.57358 \end{array}$	59 58 57 56 55
35 36 37 38 39	$\begin{array}{c} 0.57358 \\ 0.58779 \\ 0.60182 \\ 0.61566 \\ 0.62932 \end{array}$	$\begin{array}{c} 0.57596 \\ 0.59014 \\ 0.60414 \\ 0.61795 \\ 0.63158 \end{array}$	$\begin{array}{c} 0.57833 \\ 0.59248 \\ 0.60645 \\ 0.62024 \\ 0.63383 \end{array}$	$\begin{array}{c} 0.58070 \\ 0.59482 \\ 0.60876 \\ 0.62251 \\ 0.63608 \end{array}$	$\begin{array}{c} 0.58307 \\ 0.59716 \\ 0.61107 \\ 0.62479 \\ 0.63832 \end{array}$	$\begin{array}{c} 0.58543 \\ 0.59949 \\ 0.61337 \\ 0.62706 \\ 0.64056 \end{array}$	$\begin{array}{c} 0.58779 \\ 0.60182 \\ 0.61566 \\ 0.62932 \\ 0.64279 \end{array}$	54 53 52 51 50
$\begin{array}{c} 40 \\ 41 \\ 42 \\ 43 \\ 44 \end{array}$	$\begin{array}{c} 0.64279 \\ 0.65606 \\ 0.66913 \\ 0.68200 \\ 0.69466 \end{array}$	$\begin{array}{c} 0.64501 \\ 0.65825 \\ 0.67129 \\ 0.68412 \\ 0.69675 \end{array}$	$\begin{array}{c} 0.64723 \\ 0.66044 \\ 0.67344 \\ 0.68624 \\ 0.69883 \end{array}$	$\begin{array}{c} 0.64945 \\ 0.66262 \\ 0.67559 \\ 0.68835 \\ 0.70091 \end{array}$	$\begin{array}{c} 0.65166 \\ 0.66480 \\ 0.67773 \\ 0.69046 \\ 0.70298 \end{array}$	$\begin{array}{c} 0.65386 \\ 0.66697 \\ 0.67987 \\ 0.69256 \\ 0.70505 \end{array}$	$\begin{array}{c} 0.65606 \\ 0.66913 \\ 0.68200 \\ 0.69466 \\ 0.70711 \end{array}$	49 48 47 46 45
es	60′	50'	40'	30′	20'	10′	0'	soa
Sines				COSINES	3			Degrees

MATHEMATICAL TABLES

rees				COSINES				Sines
Degrees	O'	10′	20'	30′	40′	50′	60′	Si
0 1 2 3	1.00000 0.99985 0.99939 0.99863	1.00000 0.99979 0.99929 0.99847	0.99998 0.99973 0.99917 0.99831	0,99996 0,99966 0,99905 0,99813	0.99993 0.99958 0.99892 0.99795	0.99989 0.99949 0.99878 0.99776	0.99985 0.99939 0.99863 0.99756	89 88 87
4	0.99756	0.99736	0.99714	0.99692	0.99668	0.99644	0.99619	85
5 6 7 8 9	$\begin{array}{c} 0.99619 \\ 0.99452 \\ 0.99255 \\ 0.99027 \\ 0.98769 \end{array}$	$\begin{array}{c} 0.99594 \\ 0.99421 \\ 0.99219 \\ 0.98986 \\ 0.98723 \end{array}$	$\begin{array}{c} 0.99567 \\ 0.99390 \\ 0.99182 \\ 0.98944 \\ 0.98676 \end{array}$	$\begin{array}{c} 0.99540 \\ 0.99357 \\ 0.99144 \\ 0.98902 \\ 0.98629 \end{array}$	$\begin{array}{c} 0.99511 \\ 0.99324 \\ 0.99106 \\ 0.98858 \\ 0.98580 \end{array}$	0.99482 0.99290 0.99067 0.98814 0.98531	$\begin{array}{c} 0.99452 \\ 0.99255 \\ 0.99027 \\ 0.98769 \\ 0.98481 \end{array}$	84 83 82 81
10 11 12 13		$\begin{array}{c} 0.98430 \\ 0.98107 \\ 0.97754 \\ 0.97371 \\ 0.96959 \end{array}$	0.98378 0.98050 0.97692 0.97304 0.96887	0.98325 0.97992 0.97630 0.97237 0.96815	0.98272 0.97934 0.97566 0.97169 0.96742	0.98218 0.97875 0.97502 0.97100 0.96667	0.98163 0.97815 0.97437 0.97030 0.96593	79 78 77 76 75
15 16 17 18	0.96593 0.96126 0.95630 0.95106 0.94552	0.96517 0.96046 0.95545 0.95015 0.94457	$\begin{array}{c} 0.96440 \\ 0.95964 \\ 0.95459 \\ 0.94924 \\ 0.94361 \end{array}$	0.96363 0.95882 0.95372 0.94832 0.94264	0.96285 0.95799 0.95284 0.94740 0.94167	0.96206 0.95715 0.95195 0.94646 0.94068	0.96126 0.95630 0.95106 0.94552 0.93969	74 72 72 71 70
20 21 22 23 24	$\begin{array}{c} 0.93969 \\ 0.93358 \\ 0.92718 \\ 0.92050 \\ 0.91355 \end{array}$	$\begin{array}{c} 0.93869 \\ 0.93253 \\ 0.92609 \\ 0.91936 \\ 0.91236 \end{array}$	$\begin{array}{c} 0.93769 \\ 0.93148 \\ 0.92499 \\ 0.91822 \\ 0.91116 \end{array}$	0.93667 0.93042 0.92388 0.91706 0.90996	$ \begin{array}{c} 0.93565 \\ 0.92935 \\ 0.92276 \\ 0.91590 \\ 0.90875 \end{array} $		0.93358 0.92718 0.92050 0.91355 0.90631	69 68 67 66 65
25 26 27 28 29	0.90631 0.89879 0.89101 0.88295 0.87462	0.90507 0.89752 0.88968 0.88158 0.87321	0.90383 0.89623 0.88835 0.88020 0.87178	$\begin{array}{c} 0.90259 \\ 0.89493 \\ 0.88701 \\ 0.87882 \\ 0.87036 \end{array}$	$\begin{array}{c} 0.90133 \\ 0.89363 \\ 0.88566 \\ 0.87743 \\ 0.86892 \end{array}$		0.89879 0.89101 0.88295 0.87462 0.86603	64 63 62 61 60
30 31 32 33 34	0.86603 0.85717 0.84805 0.83867 0.82904	0.86457 0.85567 0.84650 0.83708 0.82741	$\begin{array}{c} 0.86310 \\ 0.85416 \\ 0.84495 \\ 0.83549 \\ 0.82577 \end{array}$	0.86163 0.85264 0.84339 0.83389 0.82413	$\begin{array}{c} 0.86015 \\ 0.85112 \\ 0.84182 \\ 0.83228 \\ 0.82248 \end{array}$	0.85866 0.84959 0.84025 0.83066 0.82082	0.85717 0.84805 0.83867 0.82904 0.81915	59 58 57 56 55
35 36 37 38 39	0.81915 0.80902 0.79864 0.78801 0.77715	$\begin{array}{c} 0.81748 \\ 0.80730 \\ 0.79688 \\ 0.78622 \\ 0.77531 \end{array}$	$\begin{array}{c} 0.81580 \\ 0.80558 \\ 0.79512 \\ 0.78442 \\ 0.77347 \end{array}$	$\begin{array}{c} 0.81412 \\ 0.80386 \\ 0.79335 \\ 0.78261 \\ 0.77162 \end{array}$	$\begin{array}{c} 0.81242 \\ 0.80212 \\ 0.79158 \\ 0.78079 \\ 0.76977 \end{array}$	$\begin{array}{c} 0.81072 \\ 0.80038 \\ 0.78980 \\ 0.77897 \\ 0.76791 \end{array}$	$\begin{array}{c} 0.80902 \\ 0.79864 \\ 0.78801 \\ 0.77715 \\ 0.76604 \end{array}$	54 53 52 51 50
40 41 42 43 44	$\begin{array}{c} 0.76604 \\ 0.75471 \\ 0.74314 \\ 0.73135 \\ 0.71934 \end{array}$	$\begin{array}{c} 0.76417 \\ 0.75280 \\ 0.74120 \\ 0.72937 \\ 0.71732 \end{array}$	$\begin{array}{c} 0.76229 \\ 0.75088 \\ 0.73924 \\ 0.72737 \\ 0.71529 \end{array}$	$\begin{array}{c} 0.76041 \\ 0.74896 \\ 0.73728 \\ 0.72537 \\ 0.71325 \end{array}$	0.75851 0.74703 0.73531 0.72337 0.71121	$\begin{array}{c} 0.75661 \\ 0.74509 \\ 0.73333 \\ 0.72136 \\ 0.70916 \end{array}$	$\begin{array}{c} 0.75471 \\ 0.74314 \\ 0.73135 \\ 0.71934 \\ 0.70711 \end{array}$	49 48 47 46 45
nea	60′	50'	40'	30′	20′	10′	0'	səa
Cosines				SINES				Degrees

Degrees			Т	ANGENT	S			gent
Degr	0'	10′	20'	30′	40'	50′	60′	Cotangents
0	0.00000	0.00291	9.00582	0.00873	0.01164	0.01455	0.01746	89
1	0.01746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88
1 2 3	$0.03492 \\ 0.05241$	0.03783	0.04075	0.04366	0.04658	0.04949	0.05241	87
4	0.05241 0.06993	$0.05533 \\ 0.07285$	$\begin{array}{c} 0.05824 \\ 0.07578 \end{array}$	$0.06116 \\ 0.07870$	$0.06408 \\ 0.08163$	$0.06700 \\ 0.08456$	$0.06993 \\ 0.08749$	86 88
5	0.08749	0.09042	0.09335	0.09629	0.09923	0.10216	0.10510	84
6 7 8	$0.10510 \\ 0.12278$	$0.10805 \\ 0.12574$	$0.11099 \\ 0.12869$	$0.11394 \\ 0.13165$	$0.11688 \\ 0.13461$	$0.11983 \\ 0.13758$	$0.12278 \mid 0.14054 \mid$	- 83 - 82
ś	0.14054	0.14351	0.14648	0.14945	0.15243	0.15753 0.15540	0.15838	81
9	0.15838	0.16137	0.16435	0.16734	0.17033	0.17333	0.17633	, 80
10 11	$0.17633 \\ 0.19438$	$0.17933 \\ 0.19740$	$0.18233 \\ 0.20042$	$0.18534 \\ 0.20345$	$\begin{array}{c} 0.18835 \\ 0.20648 \end{array}$	$\begin{array}{c} 0.19136 \\ 0.20952 \end{array}$	$\begin{array}{c} 0.19438 \\ 0.21256 \end{array}$	79 78
12	0.19458 0.21256	0.13740	0.20042 0.21864	0.20345 0.22169	$0.20048 \\ 0.22475$	0.20932 0.22781	$0.21230 \\ 0.23087$	77
13	0.23087	0.23393	0.23700	0.24008	0.24316	0.24624	0.24933	76
1-1	0.24933	0.25242	0.25552	0.25862	0.26172	0.26483	0.26795	75
15	0.26795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	-74
16 17	0.28675 0.30573	$0.28990 \\ 0.30891$	$0.29305 \\ 0.31210$	0.29621 0.31530	0.29938 0.31850	$0.30255 \\ 0.32171$	$0.30573 \\ 0.32492$	72 72
18	0.32492	0.32814	0.33136	0.33460	0.33783	0.34108	0.34433	71
19	0.34433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397	70
20 21	0.36397	$\begin{array}{c} 0.36727 \\ 0.38721 \end{array}$	$0.37057 \\ 0.39055$	$0.37388 \\ 0.39391$	$\begin{array}{c} 0.37720 \\ 0.39727 \end{array}$	0.38053	$0.38386 \\ 0.40403$	69
22	0.38386	0.40741	0.41081	0.53591 0.41421	0.39727	$0.40065 \\ 0.42105$	0.40403	- 68 - 67
23	0.42447	0.42791	0.43136	0.43481	0.43828	0.44175	0.44523	- 66
24	0.44523	0.44872	0.45222	0.45573	0.45924	0.46277	0.46631	6.
25	0.46631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	64
26 27	0.48773 0.50953	$0.49134 \\ 0.51320$	$0.49495 \\ 0.51688$	$0.49858 \\ 0.52057$	$0.50222 \\ 0.52427$	$0.50587 \\ 0.52798$	$0.50953 \\ 0.53171$	63 63
28	0.53171	0.53545	0.53920	0.54296	0.54674	0.55051	0.55431	61
29	0.55431	0.55812	0.56194	0.56577	0.56962	0.57348	0.57735	60
30	0.57735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086	59
$\frac{31}{32}$	0.60086 0.62487	$0.60483 \\ 0.62892$	$0.60881 \\ 0.63299$	$0.61280 \\ 0.63707$	$0.61681 \\ 0.64117$	$0.62083 \\ 0.64528$	$0.62487 \\ 0.64941$	58 57
33 33	0.64941	0.65355	0.65771	0.66189	0.66608	0.67028	0.67451	56
34	0.67451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	,5,
35	0.70021	0.70455	0.70891	$0.71329 \\ 0.73996$	$0.71769 \\ 0.74447$	$0.72211 \\ 0.74900$	$\begin{array}{c} 0.72654 \\ 0.75355 \end{array}$	5. 58
36 \ 37	$\begin{array}{c} 0.72654 \\ 0.75355 \end{array}$	$0.73100 \\ 0.75812$	$0.73547 \\ 0.76272$	0.73996 0.76733	0.77196	0.74900	0.78129	5:
38	0.78129	0.78598	0.79070	0.79544	0.80020	0.80498	0.80978	51
39	0.80978	0.81461	0.81946	0.82434	0.82923	0.83415	0.83910	50
40 41	$0.83910 \\ 0.86929$	$0.84407 \\ 0.87441$	$0.84906 \\ 0.87955$	$0.85408 \\ 0.88473$	$0.85912 \\ 0.88992$	$0.86419 \\ 0.89515$	0.86929 0.90040	49
42	0.90040	0.90569	0.91099	0.91633	0.92170	0.92709	0.93252	47
43	0.93252	0.93797	0.94345	0.94896	0.95451	0.96008	0.96569	4
44	0.96569	0.97133	0.97700	0.98270	0.98843	0.99420	1.00000	-1
œ	60′	50′	40'	30′	20'	10'	0'	7
Tangents		50	-10	50	~			Degrees
ž				OTANGEN				3

MATHEMATICAL TABLES

Degrees			сот	ANGENTS	;			cnts
Deg	0'	10'	20'	30′	40′	50′	60′	Tangents
0 1 2 3 4	x 57.28996 28.63625 19.08114 14.30067	343.77371 49.10388 26.43160 18.07498 13.72674	171.88540 42.96408 24.54176 17.16934 13.19688	38 18816	85.93979 34.36777 21.47040 15.60478 12.25051	21.24158	.98 63625	89 88 87 86 85
5 6 7 8 9	11.43005 9.51436 8.14435 7.11537 6.31375	11.05943 9.25530 7.95302 6.96823 6.19703	10.71191 9.00983 7.77035 6.82694 6.08444	10.38540 8.77689 7.59575 6.69116 5.97576	6.56055	9,78817 8,34496 7,26873 6,43484 5,76937	7.11537 6.31375	84 83 82 81 80
10 11 12 13 14	5.67128 5.14455 4.70463 4.33148 4.01078	$\begin{array}{c} 5.57638 \\ 5.06584 \\ 4.63825 \\ 4.27471 \\ 3.96165 \end{array}$	5.48451 4.98940 4.57363 4.21933 3.91364	5.39552 4.91516 4.51071 4.16530 3.86671	$\begin{array}{r} 4.84300 \\ 4.44942 \\ 4.11256 \end{array}$	$\frac{4.38969}{4.06107}$	$\begin{array}{c} 4.70463 \\ 4.33148 \\ 4.01078 \end{array}$	79 78 77 76 75
15 16 17 18 19	3.73205 3.48741 3.27085 3.07768 2.90421	3.68909 3.44951 3.23714 3.04749 2.87700	3.64705 3.41236 3.20406 3.01783 2.85023	3.60588 3.37594 3.17159 2.98869 2.82391	$3.34023 \\ 3.13972$	$3.10842 \\ 2.93189$	3.27085 3.07768 2.90421	74 73 72 71 70
20 21 22 23 24	2.74748 2.60509 2.47509 2.35585 2.24604	2.72281 2.58261 2.45451 2.33693 2.22857	2.69853 2.56046 2.43422 2.31826 2.21132	2.67462 2.53865 2.44421 2.29984 2.19430	2.51715 2.39449 2.28167	2.49597 2.37504 2.26374	2.47509 2.35585 2.24604	69 68 67 66
25 26 27 28 29	2.14451 2.05030 1.96261 1.88073 1.80405	2.12832 2.03526 1.94858 1.86760 1.79174	$\begin{array}{c} 2.11233 \\ 2.02039 \\ 1.93470 \\ 1.85462 \\ 1.77955 \end{array}$	2.09654 2.00569 1.92098 1.84177 1.76749	1.99116 1.90741 1.82907	$^{\circ}$ 1.89400 $^{\circ}$ 1.81649	1.96261 1.88073 1.80405	64 63 62 61 60
30 31 32 33 34	1.73205 1.66428 1.60033 1.53987 1.48256	$\begin{array}{c} 1.72047 \\ 1.65337 \\ 1.59002 \\ 1.53010 \\ 1.47330 \end{array}$	$\begin{array}{c} 1.70901 \\ 1.64256 \\ 1.57981 \\ 1.52043 \\ 1.46411 \end{array}$	$\begin{array}{c} 1.69766 \\ 1.63185 \\ 1.56969 \\ 1.51084 \\ 1.45501 \end{array}$	1.62125 1.55966 1.50133	1.61074 1.54972 1.49190	1.60033 1.53987 1.48256	59 58 57 56 55
35 36 37 38 39	1.42815 1.37638 1.32704 1.27994 1.23490	1.41934 1.36800 1.31904 1.27230 1.22758	1.41061 1.35968 1.31110 1.26471 1.22031	1.40195 1.35142 1.30323 1.25717 1.21310	$\frac{1.34323}{1.29541}$	$\begin{array}{c} 1.33511 \\ 1.28764 \\ 1.24227 \end{array}$	1.32704 1.27994	54 53 52 51 50
40 41 42 43 44	1.19175 1.15037 1.11061 1.07237 1.03553		$\begin{array}{c} 1.17777 \\ 1.13694 \\ 1.09770 \\ 1.05994 \\ 1.02355 \end{array}$	1.17085 1.13029 1.09131 1.05378 1.01761	1.12369 1.08496 1.04766	1.11713 1.07864 1.04158	1.11061 1.07237 1.03553	49 48 47 46 45
Cotangents	60'	50′	40'	30'	20'	10'	0'	893.
Cotan			Т	ANGENTS	1			Degrees

Degrees			8	SECANTS				4
Deg	0′	10'	20′	30′	40′	50′	60′	Connection
$0 \\ 1 \\ 2 \\ 3 \\ 4$	1.00000 1.00015 1.00061 1.00137 1.00244	1.00000 1.00021 1.00072 1.00153 1.00265	1.00002 1.00027 1.00083 1.00169 1.00287	1.00004 1.00034 1.00095 1.00187 1.00309	1.00007 1.00042 1.00108 1.00205 1.00333	$\begin{array}{c} 1.00011 \\ 1.00051 \\ 1.00122 \\ 1.00224 \\ 1.00357 \end{array}$	1.00015 1.00061 1.00137 1.00244 1.00382	8 8 8 8
5 6 7 8 9	1.00382 1.00551 1.00751 1.00983 1.01247	$\begin{array}{c} 1.00408 \\ 1.00582 \\ 1.00787 \\ 1.01024 \\ 1.01294 \end{array}$	$\begin{array}{c} 1.00435 \\ 1.00614 \\ 1.00825 \\ 1.01067 \\ 1.01342 \end{array}$	1.00463 1.00647 1.00863 1.01111 1.01391	$\begin{array}{c} 1.00491 \\ 1.00681 \\ 1.00902 \\ 1.01155 \\ 1.01440 \end{array}$	$\begin{array}{c} 1.00521 \\ 1.00715 \\ 1.00942 \\ 1.01200 \\ 1.01491 \end{array}$	1.00551 1.00751 1.00983 1.01247 1.01543	8 8 8 8
10 11 12 13	$\begin{array}{c} 1.01543 \\ 1.01872 \\ 1.02234 \\ 1.02630 \\ 1.03061 \end{array}$	$\begin{array}{c} 1.01595 \\ 1.01930 \\ 1.02298 \\ 1.02700 \\ 1.03137 \end{array}$	$\begin{array}{c} 1.01649 \\ 1.01989 \\ 1.02362 \\ 1.02770 \\ 1.03213 \end{array}$	$\begin{array}{c} 1.01703 \\ 1.02049 \\ 1.02428 \\ 1.02842 \\ 1.03290 \end{array}$	$\begin{array}{c} 1.01758 \\ 1.02110 \\ 1.02494 \\ 1.02914 \\ 1.03368 \end{array}$	$\begin{array}{c} 1.01815 \\ 1.02171 \\ 1.02562 \\ 1.02987 \\ 1.03447 \end{array}$	$\begin{array}{c} 1.01872 \\ 1.02234 \\ 1.02630 \\ 1.03061 \\ 1.03528 \end{array}$	77777
15 16 17 18 19	$\begin{array}{c} 1.03528 \\ 1.04030 \\ 1.04569 \\ 1.05146 \\ 1.05762 \end{array}$	$\begin{array}{c} 1.03609 \\ 1.04117 \\ 1.04663 \\ 1.05246 \\ 1.05869 \end{array}$	$\begin{array}{c} 1.03691 \\ 1.04206 \\ 1.04757 \\ 1.05347 \\ 1.05976 \end{array}$	$\begin{array}{c} 1.03774 \\ 1.04295 \\ 1.04853 \\ 1.05449 \\ 1.06085 \end{array}$	$\begin{array}{c} 1.03858 \\ 1.04385 \\ 1.04950 \\ 1.05552 \\ 1.06195 \end{array}$	$\begin{array}{c} 1.03944 \\ 1.04477 \\ 1.05047 \\ 1.05657 \\ 1.06306 \end{array}$	$\begin{array}{c} 1.04030 \\ 1.04569 \\ 1.05146 \\ 1.05762 \\ 1.06418 \end{array}$	7 7 7 7
20 21 22 23 24	$\begin{array}{c} 1.06418 \\ 1.07115 \\ 1.07853 \\ 1.08636 \\ 1.09464 \end{array}$	$\begin{array}{c} 1.06531 \\ 1.07235 \\ 1.07981 \\ 1.08771 \\ 1.09606 \end{array}$	$\begin{array}{c} 1.06645 \\ 1.07356 \\ 1.08109 \\ 1.08907 \\ 1.09750 \end{array}$	$\begin{array}{c} 1.06761 \\ 1.07479 \\ 1.08239 \\ 1.09044 \\ 1.09895 \end{array}$	$\begin{array}{c} 1.06878 \\ 1.07602 \\ 1.08370 \\ 1.09183 \\ 1.10041 \end{array}$	1.06995 1.07727 1.08503 1.09323 1.10189	1.07115 1.07853 1.08636 1.09464 1.10338	66
25 26 27 28 29	1.10338 1.11260 1.12233 1.13257 1.14335	$\begin{array}{c} 1.10488 \\ 1.11419 \\ 1.12400 \\ 1.13433 \\ 1.14521 \end{array}$	$\begin{array}{c} 1.10640 \\ 1.11579 \\ 1.12568 \\ 1.13610 \\ 1.14707 \end{array}$	1.10793 1.11740 1.12738 1.13789 1.14896	$\begin{array}{c} 1.10947 \\ 1.11903 \\ 1.12910 \\ 1.13970 \\ 1.15085 \end{array}$	$\begin{array}{c} 1.11103 \\ 1.12067 \\ 1.13083 \\ 1.14152 \\ 1.15277 \end{array}$	1.11260 1.12233 1.13257 1.14335 1.15470	6 6 6
30 31 32 33 34	$\begin{array}{c} 1.15470 \\ 1.16663 \\ 1.17918 \\ 1.19236 \\ 1.20622 \end{array}$	$\begin{array}{c} 1.15665 \\ 1.16868 \\ 1.18133 \\ 1.19463 \\ 1.20859 \end{array}$	$\begin{array}{c} 1.15861 \\ 1.17075 \\ 1.18350 \\ 1.19691 \\ 1.21099 \end{array}$	$\begin{array}{c} 1.16059 \\ 1.17283 \\ 1.18569 \\ 1.19920 \\ 1.21341 \end{array}$	1.16259 1.17493 1.18790 1.20152 1.21584	$\begin{array}{c} 1.16460 \\ 1.17704 \\ 1.19012 \\ 1.20386 \\ 1.21830 \end{array}$	1.16663 1.17918 1.19236 1.20622 1.22077	55555
35 36 37 38 39	1.22077 1.23607 1.25214 1.26962 1.28676	$\begin{array}{c} 1.22327 \\ 1.23869 \\ 1.25489 \\ 1.27191 \\ 1.28980 \end{array}$	$\begin{array}{c} 1.22579 \\ 1.24134 \\ 1.25767 \\ 1.27483 \\ 1.29287 \end{array}$	$\begin{array}{c} 1.22833 \\ 1.24400 \\ 1.26047 \\ 1.27778 \\ 1.29597 \end{array}$	1.23089 1.24669 1.26330 1.28075 1.29909	$\begin{array}{c} 1.23347 \\ 1.24940 \\ 1.26615 \\ 1.28374 \\ 1.30223 \end{array}$	$\begin{array}{c} 1.23607 \\ 1.25214 \\ 1.26902 \\ 1.28676 \\ 1.30541 \end{array}$	55555
40 41 42 43 44	1.30541 1.32501 1.34563 1.36733 1.39016	1.30861 1.32838 1.34917 1.37105 1.39409	1.31183 1.33177 1.35274 1.37481 1.39804	1.31509 1.33519 1.35634 1.37860 1.40203	$\begin{array}{c} 1.31837 \\ 1.33864 \\ 1.35997 \\ 1.38242 \\ 1.40606 \end{array}$	$\begin{array}{c} 1.32168 \\ 1.34212 \\ 1.36363 \\ 1.38628 \\ 1.41012 \end{array}$	$\begin{array}{c} 1.32501 \\ 1.34563 \\ 1.36733 \\ 1.39016 \\ 1.41421 \end{array}$	4 4 4 4
nts	60′	50'	40′	30′	20′	10′	. 0'	
Secants			C	OSECANI	rs			Desamo

MATHEMATICAL TABLES

Degrees			C	OSECANTS				
Deg	0'	10′	20′	36′	40′	50′	60 ′	Č
$0 \\ 1 \\ 2 \\ 3 \\ 4$	57.29869 28.65371 19.10732 14.33559	343.77516 49.11406 26.45051 18.10262 13.76312	171.88831 42.97571 24.56212 17.19843 13.23472	38.20155 22.92559 16.38041	34.38232 21.49368 15.63679	$\begin{array}{c} 68.75736 \\ 68.75736 \\ 31.25758 \\ 20.23028 \\ 14.95788 \\ 11.86837 \end{array}$	$\begin{array}{c} 28.65371 \\ 19.10732 \\ 14.33559 \end{array}$	88888
5 6 7 8 9	$\begin{array}{c} 11.47371 \\ 9.56677 \\ 8.20551 \\ 7.18530 \\ 6.39245 \end{array}$	$\begin{array}{c} 11.10455 \\ 9.30917 \\ 8.01565 \\ 7.03962 \\ 6.27719 \end{array}$	$\begin{array}{c} 10.75849 \\ 9.06515 \\ 7.83443 \\ 6.89979 \\ 6.16607 \end{array}$			8.40466 7.33719 6.51208	8.20551 7.18530 6.39245	8: 8: 8: 8:
10 11 12 13	5.75877 5.24084 4.80973 4.44541 4.13357	5.66533 5.16359 4.74482 4.39012 4.08591	5.57493 5.08863 4.68167 4.33622 4.03938	5.48740 5.01585 4.62023 4.28366 3.99393	5.40263 4.94517 4.56041 4.23239 3.94952	4.87649 4.50216 4.18238	4.80973 4.44541 4.13357	7 7 7 7
15 16 17 18 19	3.86370 3.62796 3.42030 3.23607 3.07155	3.82223 3.59154 3.38808 3.20737 3.04584	3.78166 3.55587 3.35649 3.17920 3.02057	3.74198 3.52094 3.32551 3.15155 2.99574	3.70315 3.48671 3.29512 3.12440 2.97135	$\begin{array}{c} 3.45317 \\ 3.26531 \\ 3.09774 \end{array}$	3.62796 3.42030 3.23607 3.07155 2.92380	7: 7: 7: 7:
20 21 22 23 24	2.92380 2.79043 2.66947 2.55930 2.45859	$\begin{array}{c} 2.90063 \\ 2.76945 \\ 2.65040 \\ 2.54190 \\ 2.44264 \end{array}$	$\begin{array}{c} 2.87785 \\ 2.74881 \\ 2.63162 \\ 2.52474 \\ 2.42692 \end{array}$	$\begin{array}{c} 2.85545 \\ 2.72850 \\ 2.61313 \\ 2.50784 \\ 2.41142 \end{array}$	$\begin{array}{c} 2.83342 \\ 2.70851 \\ 2.59491 \\ 2.49119 \\ 2.39614 \end{array}$		2.66947	6 6 6 6
25 26 27 28 29	2.36620 2.28117 2.20269 2.13005 2.06267		$\begin{array}{c} 2.33708 \\ 2.25432 \\ 2.17786 \\ 2.10704 \\ 2.04128 \end{array}$	2.09574	$\begin{array}{c} 2.30875 \\ 2.22817 \\ 2.15366 \\ 2.08458 \\ 2.02039 \end{array}$	2.07356	$\begin{array}{c} 2.28117 \\ 2.20269 \\ 2.13005 \\ 2.06267 \\ 2.00000 \end{array}$	6: 6: 6: 6:
30 31 32 33 34	2.00000 1.94160 1.88708 1.83608 1.78829	1.98998 1.93226 1.87834 1.82790 1.78062	1.98008 1.92302 1.86970 1.81981 1.77303	$\begin{array}{c} 1.97029 \\ 1.91388 \\ 1.86116 \\ 1.81180 \\ 1.76552 \end{array}$	1.96062 1.90485 1.85271 1.80388 1.75808	1.89591 1.84435 1.79604	$\begin{array}{c} 1.94160 \\ 1.88709 \\ 1.83608 \\ 1.78829 \\ 1.74345 \end{array}$	59 50 50 50
35 36 37 38 39	1.74345 1.70130 1.66164 1.62427 1.58902	$1.69452 \\ 1.65526$	$\begin{array}{c} 1.72911 \\ 1.68782 \\ 1.64894 \\ 1.61229 \\ 1.57771 \end{array}$	$\begin{array}{c} 1.72205 \\ 1.68117 \\ 1.64268 \\ 1.60639 \\ 1.57213 \end{array}$	$\begin{array}{c} 1.71506 \\ 1.67460 \\ 1.63648 \\ 1.60054 \\ 1.56661 \end{array}$	$\begin{array}{c} 1.70815 \\ 1.66809 \\ 1.63035 \\ 1.59475 \\ 1.56114 \end{array}$	$\begin{array}{c} 1.70130 \\ 1.66164 \\ 1.62427 \\ 1.58902 \\ 1.55572 \end{array}$	5: 5: 5: 5:
40 41 42 43 44	1.55572 1.52425 1.49448 1.46628 1.43956	1.55036 1.51918 1.48967 1.46173 1.43524	$\begin{array}{c} 1.54504 \\ 1.51415 \\ 1.48491 \\ 1.45721 \\ 1.43096 \end{array}$	$\begin{array}{c} 1.53977 \\ 1.50916 \\ 1.48019 \\ 1.45274 \\ 1.42672 \end{array}$	$\begin{array}{c} 1.53455 \\ 1.50422 \\ 1.47551 \\ 1.44831 \\ 1.42251 \end{array}$	$\begin{array}{c} 1.52938 \\ 1.49933 \\ 1.47087 \\ 1.44391 \\ 1.41835 \end{array}$	$\begin{array}{c} 1.52425 \\ 1.49448 \\ 1.46628 \\ 1.43956 \\ 1.41421 \end{array}$	49 47 46 48
Cosecants	60′	50′	40′	30′	20'	10′	0'	Dogress
Сове				SECANTS				Deg

BIRMINGHAM WIRE GAGE (B. W. G.)

Equivalents in Inches and Millimeters Corresponding Weights of Flat Rolled Steel

Gage		Thickness		We	ight
Number	Decimal Inches	Fractional Inches	Millimeters	Pounds per Square Foot	Kilograms per Square Meter
0000	.454	29/44	11.532	18.523	90.438
000	.425	29/61 27/61	10.795	17.340	84.661
00	.380	49/198	9.652	15.504	75.697
0	.340	11/32	8.636	13.872	67.729
1	.300	19/64	7.620	12.240	59.761
3	.284	9/32	7.214	11.587	56.573
3	.259	83/128	6.579	10.567	51.593
4	.238	15,64	6.045	9.710	47.410
5 6.	.220	7/82	5.588	8.976	43.825
6.	.203	13/64 23/128	5.156	8.282	40.438
7	.180	28/128	4.572	7.344	35.856
8	.165	21/128	4.191	6.731	32.868
9	.148	19/128	3.759	6.038	29.482
10	.134	17/128	3.404	5.467	26.693
11	.120	15/128	3.048	4.896	23.904
12	.109	7/64	2.769	4.447	21.713
13	.095	3/82	2.413	3.876	18.924
14	.083	$\frac{21/256}{87/512}$	2.108	3.386	16.534
15	.072	37/512	1.829	2.938	14.343
16	.065	88/512	1.651	2.652	12.948
17	.058	15/256	1.473	2.366	11.554
18	.049	25/512	1.245	1.999	9.761
19	.042	11/256	1.067	1.714	8.366
20	.035	9/256	.889	1.428	6.972
21	.032	1/32	.813	1.306	6.374
22	.028	7/256	.711	1.142	5.578 4.980 °
23	.025	18712	.635 .559	1.020	4.382
24	.022	11/512	.559	0.898	4.082
25	.020	5/256	.508	0.816	3.984
26	.018	9512	.457	0.734	3.586
27	.016	7/64 7/512	.406	0.653	3.187
28	.014	7512	.356	0.571	2.789
29	.013	13/1024	.330	0.530	2.590
30	.012	3/256	.305	0.490	2.390
31	.010	5/512	.254	0.408	1.992 1.793
32	.009	%1024	.229	0.367	1.793
33	.008	1/128	.203	0.326	1.594
34	.007	7/1024	.178	0.286	1.394
35	.005	51024	.127	0.204	0.996
36	.004	1256	.102	0.163	0.797

Unless otherwise specified, all orders for flat rolled steel in gages will be executed by Carnegie Steel Company to Birmingham Wire Gage.

UNITED STATES STANDARD GAGE

FOR SHEET AND PLATE IRON STEEL

Gage		Approximate Th	ickness	Weight per	Weight per	Weight per
Number	Fractional Inches	Decimal Inches	Millimeters	Square Foot Ounces, Av.	Square Foot Pounds, Av.	Sq. Meter, Kilograms
000000 000000 0000 0	1½ 15¾2 716	.5 .46875 .4375	12.7 11.90625 11.1125	320 300 280	20.00 18.75 17.50	$\begin{array}{c} 97.65 \\ 91.55 \\ 85.44 \end{array}$
0000 000 00 0	13/82 3-8 11/82 5/16	.40625 .375 .34375 .3125	10.31875 9.525 8.73125 7.9375	260 240 220 200	16.25 15.00 13.75 12.50	79.33 73.24 67.13 61.03
$\begin{array}{c}1\\2\\3\\4\end{array}$	9/32 17/64 1/4 15/64	.28125 .265625 .25 .234375	7.14375 6.746875 6.35 5.953125	180 170 160 150	11.25 10.625 10.00 9.375	54.93 51.88 48.82 45.77
5 6 7 8	182 1864 816 1131	.21875 .203125 .1875 .171875	$\begin{array}{c} 5.55625 \\ 5.159375 \\ 4.7625 \\ 4.365625 \end{array}$	140 130 120 110	8.75 8.125 7.5 6.875	$\begin{array}{c} 42.72 \\ 39.67 \\ 36.62 \\ 33.57 \end{array}$
$9 \\ 10 \\ 11 \\ 12$	782 964 18 764	.15625 .140625 .125 .109375	$egin{array}{c} 3.96875 \ 3.571875 \ 3.175 \ 2.778125 \end{array}$	100 90 80 70	6.25 5.625 5.00 4.375	30.52 27.46 24.41 21.36
13 14 15 16	9/32 5/64 9/128 1/16	.09375 .078125 .0703125 .0625	$\begin{array}{c} 2.38125 \\ 1.984375 \\ 1.7859375 \\ 1.5875 \end{array}$	60 50 45 40	3.75 3.125 2.8125 2.50	18.31 15.26 13.73 12.21
$17 \\ 18 \\ 19 \\ 20$	9/160 1/20 7 160 3/80	.05625 .05 .04375 .0375	1.42875 1.27 1.11125 $.9525$	36 32 28 24	2.25 2.00 1.75 1.50	$\begin{array}{c} 10.99 \\ 9.765 \\ 8.544 \\ 7.324 \end{array}$
21 22 23 24	11/320 1/32 9/320 1/40	.034375 .03125 .028125 .025	.873125 .793750 .714375 .635	22 20 18 16	1.375 1.25 1.125 1.00	6.713 6.103 5.493 4.882
25 26 27 28	7820 3160 11640 161	.021875 .01875 .0171875 .015625	.555625 .47625 .4265625 .396875	14 12 11 10	.875 .75 .6875 .625	4.272 3.662 3.357 3.052
29 30 31 32	9640 180 7640 131250	$\begin{array}{c} .0140625 \\ .0125 \\ .0109375 \\ .01015625 \end{array}$.3571875 .3175 .2778125 .25796875	9 8 7 6½	.5625 .50 .4375 .40625	2.746 2.441 2.136 1.983
33 34 35 36	3/320 11/1280 5/640 9/1280	.009375 .00859375 .0078125 .00703125	.238125 .21828125 .1984375 .17859375	$\begin{array}{c} 6 \\ 5\frac{1}{2} \\ 5 \\ 4\frac{1}{2} \end{array}$.375 .34375 .3125 .28125	1.831 1.678 1.526 1.373
37 38	17 ₂₅₆₀	.006640625 .00625	.168671875 .15875	4 14	.265625 .25	$1.297 \\ 1.221$

The United States Standard Gage is a weight gage based upon the weights per square foot, in ounces avoirdupois and approximate thicknesses based upon 480 pounds per cubic foot.

Unless otherwise specified, all orders for flat rolled steel in gages will be executed by Carnegie Steel Company 'o Birmingham Wire Gage,

In the practical use and application of the United States Standard Gage, a weight variation of 21/2 per cent either way may be allowed.

STANDARD GAGES

COMPARATIVE TABLE

		Thic	kness in Dec	imals of an	Inch	
Gage Number	Birmingham Wire (B. W. G.) also known as Stubs Iron Wire	American Wire or Browne & Sharpe	American Steel & Wire Co. formerly Washburn & Moen	Trenton Iron Company	British Imperial Standard Wire (S. W. G.)	Standard Birmingham Sheet and Hoop (B. G.)
0000000 000000 00000 0000 000 000		.580000 .516500 .460000 .409642 .364796 .324861 .289297 .257627 .229423 .204307 .181940 .162023 .144285 .128490 .114423 .101897 .080508 .071962 .040303 .035890 .040303 .035890 .025462 .025572 .020101 .017900 .015941 .011257 .010025 .008928 .007950 .007080 .006305 .007080 .006305 .005615 .005000 .004453 .003965 .005615	.4900 .4615 .4305 .4305 .3938 .3625 .3310 .3065 .2830 .2625 .2437 .2253 .2070 .1770 .1620 .1483 .1350 .1205 .1055 .0800 .0720 .0625 .0540 .0475 .0410 .0348 .03175 .0286 .0258 .0230 .0181 .0173 .0162 .0150 .0140 .0132 .0162 .0150 .0140 .0132 .0162 .0128 .0118 .0162 .0128 .0118 .0104 .0128 .0128 .0104 .0095 .0090 .0085 .0090		.500 .464 .432 .400 .372 .348 .324 .300 .276 .252 .232 .212 .176 .160 .144 .128 .116 .092 .080 .072 .064 .036 .048 .040 .036 .032 .028 .024 .022 .020 .018 .0164 .0148 .0124 .0116 .0108 .0108 .0109 .0092 .0084 .0076 .0088 .0092 .0084 .0108 .01095 .0092 .0084 .0076 .0088 .0092 .0084 .0076 .0088 .0092 .0084 .0076 .0088 .0060 .0092 .0084 .0076	.5000 .4452 .3964 .3532 .3147 .2804 .2500 .2225 .1981 .1764 .1570 .1398 .1250 .1113 .0991 .0882 .0785 .0699 .0625 .0495 .0495 .0495 .0495 .0495 .0495 .01961 .01961 .01961 .01962 .01962 .01963 .01963 .01963 .01963 .01963 .01964 .01964 .01964 .01964 .01966

Unless otherwise specified, all orders for flat rolled steel in gages will be executed by Carnegie Steel Company to Birmingham Wire Gage.

MEASURES AND WEIGHTS

DECIMAL OF AN INCH AND OF A FOOT

	ractions of h or Foot	Inch Equiva- lents to Foot Fractions		ractions of h or Foot	Inch Equiva- lents to Foot Fractions	Inc	ractions of h or Foot	Inch Equiva- lents to Foot Fractions		Fractions of ch or Foot	Inch Equiva- lents to Foot Fractions
	0.0052 0.0104	1/16 1.8		$.2552 \\ .2604$	3½6 3½8		$.5052 \\ .5104$	61/16 61/8		$.7552 \\ .7604$	91/16 91/8
L ₆₄	.015625 .0208 .0260	3/16 1/4 5/16	1764	$\substack{.265625\\.2708\\.2760}$	3%6 3¼ 3%6	38/64	.515625 .5208 .5260	$6\frac{6}{6}$	49/64	.765625 .7708 .7760	9% 6 9% 9% 6
282	.03125 $.0365$ $.0417$	85 74 1/2	⁹ /82	$\substack{.28125 \\ .2865 \\ .2917}$	3% 3% 3% 3½	17/32	.53125 .5365 .5417		25/82	.78125 .7865 .7917	93/8 97/16 91/2
3/64	$.046875 \\ .0521 \\ .0573$	% 5/8 11/16	19/64	$\substack{.296875\\.3021\\.3073}$	3% 3% 31½	35/64	$\substack{ .546875 \\ .5521 \\ .5573 }$	6 ¹ / ₁₆ 6 ⁵ / ₈ 6 ¹ / ₁₆	51/84	.796875 .8021 .8073	9% 9% 91%
716	.0625 $.0677$ $.0729$	3/4 13/16 7/8	5/16	.3125 $.3177$ $.3229$	384 3134 376	946	.5625 .5677 .5729	68/4 613/16 67/6	13/16	.8125 .8177 .8229	984 9184 978
264	$.078125 \\ .0833 \\ .0885$	15/16 1 11/16	$^{21/64}$	$\substack{ .328125 \\ .3333 \\ .3385 }$	315/16 4 41/16	87/84	$\substack{.578125 \\ .5833 \\ .5885}$	$\frac{6^{15}16}{7}$	58/64	.828125 .8333 .8385	9 ¹⁵ / ₁ 10 10 ¹ / ₁₈
82	$.09375 \\ .0990 \\ .1042$	11/8 13/16 11/4	11/82	$\begin{array}{c} .34375 \\ .3490 \\ .3542 \end{array}$	41/s 43/16 41/4	19/82	$\begin{array}{c} .59375 \\ .5990 \\ .6042 \end{array}$	71/8 78/16 71/4	27/82	.84375 .8490 .8542	101/8 103/16 101/4
64	$.109375 \\ .1146 \\ .1198$	15/16 18/8 17/16	28/64	$\substack{ .359375 \\ .3646 \\ .3698 }$	45/16 43/8 47/16	39/64	$\substack{.609375 \\ .6146 \\ .6198}$	75/16 78/6 77/16	55/64	.859375 .8646 .8698	10% 6 10% 10%
16	.1250 .1302 .1354	1½ 1% 1% 1%	3/s	.3750 $.3802$ $.3854$	4½ 4½ 4½ 45%	5 _H	$.6250 \\ .6302 \\ .6354$	7½ 7% 7% 75%	7/8	.8750 $.8802$ $.8854$	10½ 10% 10%
) is 1	$\substack{.140625 \\ .1458 \\ .1510}$	111/16 13/4 113/16	25/64	$\substack{ .390625 \\ .3958 \\ .4010 }$	41½ 4¾ 41¾ 413/16		$\substack{.640625\\ .6458\\ .6510}$	$7^{13/16}$ $7^{3/4}$ $7^{13/16}$	57/64	$\begin{array}{c} .890625 \\ .8958 \\ .9010 \end{array}$	$\begin{array}{ c c c c }\hline 10^{11} & \\ 10^{8} & \\ 10^{18} & \\ 10^{18} & \\ \end{array}$
782	.15625 .1615 .1667	17/8 115/16	13/82	.40625 .4115 .4167	$\frac{47'_8}{4^{15}_{16}}$	21/82	$\substack{.65625 \\ .6615 \\ .6667}$	77/8 715/16 8	29/82	.90625 .9115 .9167	10% 10 ¹⁵ / ₁ 11
1/64	.171875 .1771 .1823	2½6 2½ 2½ 2¾6	27/64	.421875 .4271 .4323	51/16 51/8 58/16	48/64	$\substack{.671875 \\ .6771 \\ .6823}$	81/16 81/8 81/16	59/64	$\begin{array}{c} .921875 \\ .9271 \\ .9323 \end{array}$	11½ 11½ 11½ 11¾
% 16	.1875 .1927 .1979	21/4 25/16 28/8	7/1 a	.4375 .4427 .4479	51/4 55/16 58/8	11/16	.6875 $.6927$ $.6979$	81/4 85/16 88/8	¹⁵ ⁄16	.9375 .9427 .9479	$11\frac{1}{1}$ $11\frac{1}{6}$ $11\frac{1}{8}$
264	.203125 .2083 .2135	2½ 2½ 2½ 2%	29/64	$\substack{ .453125 \\ .4583 \\ .4635 }$	51/16 51/2 51/16	15/61	.703125 .7083 .7135	87/16 81/2 89/16	⁶¹ / ₆₄	.953125 .9583 .9635	$\begin{array}{ c c c c }\hline 11\%_{6} \\ 11\%_{6} \\ 11\%_{6} \\\hline \end{array}$
7/82	.21875 .2240 .2292	25/8 211/16 28/4	15/82	.46875 .4740 .4792	55% 511/16 584	28/32	.71875 .7240 .7292	85% 811/16 83/4	81/82	.96875 .9740 .9792	115% 1111/1 1184
5∕64	.234375 .2396 .2448	218/16 27/8 215/16	81/04	.484375 .4896 .4948	518/16 57/8 515/16		.734375 .7396 .7448	813/16 87/8 815/16	63/64	.984375 .9896 .9948	1118/1 117/8 1115/1
1/4	.2500		1/2	.5000	6	8/1	.7500	9	1	1.0000	12

SUBJECT INDEX

	PAGE
American Bridge Co	specifications for steel structures 94-100
	standard wall and pier anchors
	elements of sections
	profiles, dimensions and weights 36-43
	safe loads, explanatory notes
	safe load tables
	standard beam connections
	structural details, punching and riveting187-189
Angles, Back to Back	radii of gyration
	explanatory notes
inches, i not menes	terra cotta, safe load tables and weights265-268
Aresa	circles, diameters 1 to 999
III Cas	circular segments
	method of increasing sectional areas
	Printer and the contract of th
	rectangular sections
	reduction of area for rivet holes
	square and round bars
	structural shapes, rails, etc110-130
	surface of solids328, 329
Danid Pilata	list of sizes
Bars	00-44 7 11 10 10 10 10 10 10 10 10 10 10 10 10
	cup bars, sizes and weights
	eye bars, sizes and dimensions
	flats, list of sizes
	lattice bars, dimensions for columns 98
	merchant bars, list of sizes
	rounds and squares, weights and areas 66,67
	splice bars, profiles, dimensions and weights71, 73, 74
	upset screw ends, sizes and dimensions 84, 85
Dealing, II Dealing.	see H-Beams
Beams, I-Beams	bending moments, tables
	details, connection angles181, 182
	" bearing plates
	" separators 183
	" standard gages for punching 178, 179
	elements of sections110, 111
	grillage, notes and calculations252-256
	profiles, weights and dimensions 7-16
	safe loads, explanation of tables147-153
	safe load tables
	standard dimensions 6
	web resistance, tables154, 155

INDEX

		PAGE
Ream Columns safe	e load tables	222, 223
	ndard angles	
	iting values	
	ndard	
Ream Girders ext	danatory notes	195
safe	e load tables	196, 197
Beam Safe Loads exp	lanation of tables	147-153
Beam Stresses exp	danatory notes	138 - 153
bei	ding stresses	138 - 140
buc	ekling stresses	151, 152
def	lection, lateral	139, 149
	" vertical	143-148
	ture formulas, various loading conditions	
	oact stresses	
	aring stresses, longitudinal and vertical	
	sile and compressive stresses	
	danatory notes	
	e resistance	
	ndard for beams	
	s and rivets, explanatory notes	
•	s, tables	
	ets, tables	
	danatory notes	
	ims, tables	
	umels, tables	
	s, tablesrious loading conditions, formulas	
	ndard dimensions	
	ights, hexagon heads and nuts	
	ights, square heads and nuts	
	ndard dimensions	
	ghts	-
	planatory notes	
-	e load table	
	es and dimensions	
	planatory notes	
	b resistance of beams and channels	
Building Laws ext	ract from building laws of various cities	265
Bulb Angles bul	b angles18-25,	116-119
bu	lb angles, elements	116-119
**	" profiles, weights and dimensions	18-25
B. W. Gage Bir	rmingham Wire Gage	356
•		
Car Bidg. Bulb Angles pro	offles and properties	25, 119
Car Building Channels. Dre	offles and properties,	35, 115
Cast Iron Columns all	owable unit stresses	247
	llow round and square, elements	
	sale loads	
	dection of plastered ceilings	
	ight of ceilings	
center of Gravity See	Neumai Axis	110-130

		PAGE
Channels	bending moments, table	
Oliverine State of the State of	standard dimensions	
	details, standard gages for punching	
	elements of sections,	
	profiles, weights and dimensions	
	safe loads, explanation of tables	
	safe load tables	
	web resistance, table	
Checkered Plates	elements and safe loads	
Checkered riates	profiles, weights and dimensions	
Girala.	areas and circumferences, dia. 1 to 999	
Circles		
Cincolo District	properties of the circleextreme sizes, carbon steel	55, 56
	areas, tables of coefficients	
	sizes and weights	
Coefficients	circular segments	
	deflection under uniform load	
	expansion due to heat	
	sizes and weights	
Columns, Cast Iron	allowable unit stresses	_
	hollow round and square, elements	
	sate loads	
Columns, Steel	explanatory notes	
	calculation of elements	
	" stresses	
	compression formulas	
	safe loads, angle and plate columns	
	channel and plate columns	
	miscellaneous beam columns	
	pipe columns	
	typical details for mill and office buildings	
Columns, Wood		
	square and round, safe loads	298, 299
	calculation of elements	
Concrete, Masonry	strength, unit fiber stresses	
	specific gravity and weight	
Concrete, Reinforced	explanatory notes	
	beams and slabs, formulas	
	bending moments of slabs	
	columns, formulas	
	reinforcements, deformed bars, etc	
	" round and square bars	
	triangle mesit	
	standard for beams	
Construction Specif'ns	American Bridge Company	
	measures, metric and U.S. Standard	
Corrugated Sheets	explanatory notes	
	sizes and weights	
	sizes and dimensions	
Cross Tie Sections	elements of sections	
	profiles, weights and dimensions	
	safe load tables	. 165
Cubes and Cube Roots	numbers 1 to 999	330-349

INDEX

	PAGE
Deflection, Lateral	equivalents of an inch and of a foot
Deformed Bars	limit for plastered ceilings
Elasticity	elastic limit of substances
Elements of Sections	explanatory notes
Expansion, Heat	structural shapes, rails. etc. 110–130 metric and U. S. standard. 308–319 table of coefficients. 307 sizes, dimensions and weights. 86
Fiber Stresses	concrete, reinforced concrete
	masonry, stone306metals, alloys304, 305miscellaneous substances306
_	structural steel. 95, 305 structural timber. 289
	see Floor Construction 260–278 list of sizes 55–58 tables of weights 59–61
	explanatory notes and formulas 138-146 explanatory notes 260-264
	live loads, various building laws
Floor Plates	thrust in arches
Formulas	checkered plates 54, 278 bending moments and deflection 141-146 elements of sections 102-109
	geometric and trigonometric
	stresses in beams, bending 138-140 """ buckling 151, 152 """ impact 149, 150
Formulas	**
	" " structural steel
Functions	numbers 1 to 999

_	PAGE	
		300
Gages for Punching	3	187
	beams and channels	180
	splice bars	74
Gages, Standard	Birmingham wire gage	356
		357
		358
Girders, Riveted		195
	angle and plate girders, safe loads	
	beam and plate girders, safe loads	
6 W P 1 C	elements of compound sections	
	explanatory notes and calculation252-5	
Grips of Rivets	length of field rivets	92
H-Beams	beam safe load tables	165
	column safe load tables	223
	elements of sections	112
	profiles, dimensions and weights	17
Half Pounds	list of sizes	65
	list of sizes	65
	rounds and squares, elements	-
nonow Sections	cast iron columns	
	steel pipe columns250, 2	:91
	m)	0
	effect on beams149,	
Increase of Sections	method of rolling	5
	explanatory notes and formula96, 139,	149
Lattice Bars	dimensions for columns	98
Liquids	coefficients of expansion	307
<u> </u>	specific gravity and weight	300
Live Loads Floors	building laws of various cities	265
	numbers 1 to 999	349
	explanation and formula150,	
	sizes and dimensions	87
Loop Rods	sizes and dimensions	01
10.	coefficients of expansion	307
Masonry and Stone		301
	opening Branch, and werder the contract of the	
		306
Materials		307
	specific gravity and weight300, 3	
	strength, unit fiber stresses304-3	
Measures and Weights.	equivalents of U. S. and metric308-3	319
Mensuration	mathematical formulas320-3	329
Metals and Alloys	coefficients of expansion	307
•	specific gravity and weight	300
	strength, unit fiber stresses	305
Metric Tables	weights and measures	
		301
	various substances	
proments of Inertia	definition and formulas101-1	
	rectangles, tables	
	structural sections, rails, etc., tables	130

INDEX

		PAGE
Neutral Axis	definition and formulas	101-107
	structural shapes, rails, etc., tables	
Vuts.	dimensions and weights	80-83
	recessed pin nuts, sizes and dimensions	
	sleeve nuts, sizes and dimensions	
Not Carel Elea-	list of sizes.	
Nut Steel Flats	not of sizes	00
Ordering Materials	general instructions	4
Piling, Steel Sheet	explanatory notes	257-259
	elements	112, 263
	profiles	53
Pine	explanatory notes	190
	bearing values, tables	
	bending moments, tables	194
	cotter pins, sizes and dimensions	90
Pine	black and galvanized, sizes	78, 79
	-	250, 251
	see Girders, Riveted	
-	extreme sizes	55-57
riates	carbon steel, sheared, rectangular and circular,	
	", universal rectangular	55
	nickel steel, sheared, rectangular	57
	" , universal, rectangular	57
District Files District		
Plates, Floor Plates	buckle plates, explanatory notes and sizes	
	checkered plates, elements and safe loads	278
	promes, weights, dimensions	
	see Bearing Plates	
	dimensions and weights7-54, 6	
Punching	details for punching and riveting	
	construction specifications	
Purlins	explanatory notes	281
Pading of Gyration	definition	101
Madius of Cytation	angles back to back, tables	131-133
	formulas for elements of sections	
	structural shapes, tables	
Rails	elements of sections	130
Italia	profiles, weights and dimensions	70, 72
	standard drilling for splice bars	74
Pails and Assessation	weights and dimensions	69
	profiles, dimensions and weights	75
	definition	
natio of Sienderness	unit stresses for compression formulas	
Paggod Din Vnts		,
	sizes and dimensions	
	numbers 1 to 999	
	extreme sizes, carbon-and nickel steel	
nectangular Sections	areas	
D	moments of inertia	
Reinforcea Concrete		209-275

	PAGE
Rivets and Riveting	areas of rivet holes
	construction specifications 97, 98
	conventional signs
	dimensions
	lengths for various grips
	stresses, shearing and bearing values190-192
	structural details for riveting187–189
	weights, with button heads
Roofs	explanatory notes
	live loads, building laws of various cities 265
	snow and wind loads
	trusses, stresses and length of members282-285
	weights, roof covering and roof trusses280, 281
Rounds	list of sizes
	weights and areas 66, 67
	Franklin Institute, U. S. and A. B. Co. standards 80
Section Modulus	definition and formulas101–109
	structural shapes, rails, etc
	coefficients of areas
	standard for beams
_	longitudinal and vertical
	extreme sizes, carbon-and nickel steel 55–57
	tables
	profiles and properties
	profiles and properties
	list of sizes
	sizes and dimensions
	roofs and trusses
	American Bridge Company
	various substances
Splice Bars	elements of sections
	profiles, dimensions and weights
S D 1 D 1 D	standard punching for rails
	list of sizes
	list of sizes. 65
Squares	weights and areas
Sausres Sauare Roots	numbers 1 to 999
	beams and channels
	elements
	explanatory notes
	profiles
Strength of Materials	unit fiber stresses
_	see Beam Stresses and Fiber Stresses
Tees	elements of sections
	profiles, weights and dimensions 44-50
	safe load tables
Terra Cotta	arches, ceilings, furring, partition, roofing262-268
Threads	length of bolt threads
	standard dimensions of screw thread 80
Thrust in Arches	effect in floor construction

INDEX

		PAGE
Tie Rods	length and weight	184
	spacing	264
Timber, Structural	A. R. E. A. unit stresses and explanatory notes.	288, 289
	beams, deflections, limiting loads and spans,	291
	" explanatory notes	290
	" safe load tables	292-296
	coefficients of expansion	307
	columns, explanatory notes	297
	" safe load tables	298, 299
	specific gravity and weight	300
	concrete reinforcement	275
-	functions of angles and triangles	
	natural	350-355
Trusses	explanatory notes	281
	stresses and length of members	282-285
Turnbuckles	size and dimensions	89
V. 1. G	see Fiber Stresses	
	extreme sizes, carbon- and nickel steel square and round bars	55, 57
		84, 85
	sheet and plate iron steel	357
U. S. Sheet Piling		
	explanatory notes.	
	profiles	53
Vertical Shear	explanation	150
1	formulas for various conditions of loading	143-146
Volume and Surface	solids	328, 329
		,
	h	
	beams and channels	
Weights	flat rolled steel, tables	
	rounds and squares	66, 67
	structural shapes, rails, etc7-54	•
*** 1	various substances	
	metric and U. S. Standard	
Wind Loads, Pressure.	building specifications of various citles	265
	roofs and trusses	279
	standard gages	
wooden Beams, Columns	see Timber, Structural	290-299
Zee Bars	elements of sections	128
	profiles, weights and dimensions	51, 52
	safe load tables	177

PRODUCTS

Blast Furnace Products.

Bessemer and Basic Pig Iron Ferro-Manganese, Spiegeleisen

Semi-Finished Open-Hearth and Bessemer Products. Ingots, Blooms, Billets, Slabs, Sheet Bars

Structural Mill Products.

Beams, Channels, Angles, Tees and Zees
Ship and Car Building Channels and Bulb Angles
Beam and Channel Cross Tie Sections
If-Beams for Steel Mine Timber
Steel Sheet Piling Sections
Miscellaneous Sections for Special Manufacture

Bar Mill Products.

Bar-size, Channels, U-Bars, Angles, Tees and Zees
Square Root and Round Back Angles
Merchant Bars and Flat Rolled Steel
Squares, Rounds, Half Rounds, Hexagons, Ovals
Square Edge, Band Edge and Round Edge Flats
Cooperage Steel, Hoop and Band Steel, Cotton Ties
Tire Steel, Round Edge and Oval Edge, Toe Calk Steel
Spring Steel, Round Edge and Round Edge Concave
Automobile, Vehicle and Railway Spring Steel
Tongue and Groove Spring Steel
Bevel Edge, Bevel Nose, Round Bevel Edge Sections

Bevel Edge, Bevel Nose, Round Bevel Edge Sections Miscellaneous Bevels, Scarfed Skelp, Drill Point Steel Agricultural Sections

Cultivator and Harrow Beams and Channels Channel Tire and Miscellaneous Vehicle Tire Automobile Rim Sections

Barrel Sections, Can Ring Sections, Beaded Band Sections Casement and Window Sash Sections Concrete Reinforcement Bars

Squares, Rounds, Cold-Twisted Squares and Deformed Bars Crescents, Hame, Neck Yoke and Pole Cap Sections Strap and Clip Sections

Hame Straps, Box Straps, Bit Mouth Clips, etc.
Magneto and Pole Sections
Pipe Sections, Locking Bar Sections
Miscellaneous Sections for Special Manufacture

PRODUCTS

Plate Mill Products.

Sheared Plates, Rectangular and Circular Universal Mill Plates, Rectangular Checkered Floor Plates ' Skelp

Rail Mill Products and Track Accessories.

Heavy Rails, Standard and Miscellaneous
Standard Light Rails, 45 pounds per yard and under
Angle Splice Bars and Fish Plates
Rail and Track Accessories, Miscellaneous Sections
Rail Frog Fillers and Reinforcing Bars
Beam, Channel or Trough Cross Ties
Heavy Types for Railroad Tracks
Lighter Types for Mines and Industrial Purposes
Portable Tracks

Alloy Steels for Various Purposes.

Wrought and Forged Steel Products.

Axles, Untreated, Annealed or Quenched and Tempered Electric and Steam Railway Car Axles
Locomotive Driving and Trailing Axles, Tender Axles
Wheels, Solid Wrought, Carbon Steel
Wheels for Electric and Steam Railway Service
Wheels for Industrial and Mine Locomotives and Cars
Crane Tracks, Wheel Blanks
Miscellaneous Circular Sections
Flywheel and Brake Drum Blanks for Motor Trucks
Locomotive Piston Blanks

Fabricated Steel Products.

Steel Mine Timber, Gangway Sets and Mine Props Framing for Underground Construction Steel Sheet Piling

Coke and Coke By-Products.

Clairton Nut Coke
Ammonia Liquor, Ammonium Sulphate,
Solvent Naphtha, Naphthalene, Benzol and Toluol

Blast Furnace Slag.

Crushed, Granulated, Sand and Concrete Slag

PUBLICATIONS

Carnegic Pocket Companion
Structural Steel Shapes
Carnegie Shape Book
Flat Rolled Steel and Merchant Bars
Round Steel Bars
Rails and Angle Bars
Light Rails and Fastenings
Steel Cross Ties
Wrought Steel Wheels and other Circular Sections
Forged Steel Axles
Standard Specifications
Steel Sheet Piling
Steel Mine Timber

WORKS

BLA		

Carrie Furnaces Rankin, Pa.
lsabella Furnaces Etna, Pa.
Lucy Furnaces Pittsburgh, Pa.
Neville Furnace Neville Island Pa

STEEL WORKS, FURNACES AND ROLLING MILLS

Bellaire Steel Works and Furnaces.

Clairton Steel Works and Furnaces.

Clairton, Pa.

Clairton, Pa.

Duquesne Steel Works and Furnaces.

Edgar Thomson Steel Works and Furnaces

Farrell, Pa.

Homestead Steel Works.

Mingo Steel Works and Furnaces.

Mingo Steel Works and Furnaces.

New Castle Steel Works and Furnaces.

Ohio Steel Works and Furnaces.

Youngstown, O.

ROLLING MILLS

McCutcheon Mills. Pittsburgh, N. S., Pa.
McDonald Bar Mills. McDonald, O.
Upper Union Mills. Youngstown, O.
Lower Union Mills. Youngstown, O.

FORGE AND WHEEL WORKS

COKE WORKS

WAREHOUSES

 Baltimore Warehouse
 Baltimore, Md.

 Cleveland Warehouse
 Cleveland, O.

 New England Warehouse
 Boston, Mass.

 Pittsburgh Warehouse
 Pittsburgh, Pa.

 Texas Warehouse
 Houston, Tex.

 Waverly Warehouses
 Newark, N. J.

OFFICES

GENERAL OFFICES:

Pittsburgh, Carnegie Building, 434 Fifth Avenue.

DISTRICT OFFICES:

Birmingham, Brown-Marx Building, 2000 First Avenue, North, Boston, The Statler Building, 20 Providence Street.
Buffalo, The Marine Trust Co. Building, 233-239 Main Street, Chicago, 208 South La Salle Street,
Cincinnati, Union Trust Building, Fourth and Walnut Streets,
Cleveland, Rockefeller Building, 704 Superior Avenue, N. W.,
Denver, First National Bank Building, 17th and Stout Streets,
Detroit, 2130 Buhl Building, 535 Griswold Street,
New Orleans, Maison Blanche, 921 Canal Street,
New York, Empire Building, 71 Broadway,
Philadelphia, Widener Building, Chestnut and Juniper Streets,
Pittsburgh, Carnegie Building, 434 Fifth Avenue,
St. Louis, 506 Olive, Street,

St. Paul, 1308 Merchants National Bank Building, 4th & Robert Sts. ENPORT REPRESENTATIVES:

UNITED STATES STEEL PRODUCTS CO., New York, Hudson Terminal, 30 Church Street.

PACIFIC COAST REPRESENTATIVES:

UNITED STATES STEEL PRODUCTS CO., PACIFIC COAST DEPT.

Los Angeles, 2087 East Slauson Avenue,

Portland, Selling Building, Sixth and Alder Streets,

San Francisco, Russ Building, Pine and Montgomery Streets,

Seattle, Fourth Avenue South and Connecticut Street.

mr. Fortin. Chare though Broke Och 31.

TA 685 P6 1923 Pocket companion

Engin Serials

ENGIN STORAGE

