Problem Set 1: Exterior algebras and the Koszul complex

Let R be a commutative ring, V a free R-module with basis e_1, \ldots, e_n , and $f_1, \ldots, f_n \in R$. Recall that the Koszul complex on f_1, \ldots, f_n , denoted $K(f_1, \ldots, f_n)$, is the complex

$$0 \leftarrow \Lambda_R^0 V \xleftarrow{\partial_1} \Lambda_R^1 V \xleftarrow{\partial_2} \cdots \xleftarrow{\partial_n} \Lambda_R^n V \leftarrow 0$$

with differential

$$\partial_j(e_{i_1}\cdots e_{i_j}) = \sum_{\ell=1}^j (-1)^{\ell-1} f_{i_\ell} e_{i_1} \cdots \widehat{e_{i_\ell}} \cdots e_{i_j}.$$

1. (Short exercise) Compute $K(f_1, f_2, f_3)$.

Solution.

$$0 \leftarrow R \xleftarrow{\left(f_1 \quad f_2 \quad f_3\right)} R^3 \xleftarrow{\left(-f_2 \quad -f_3 \quad 0\right)} R^3 \xleftarrow{\left(f_3 \quad -f_2\right)} R^3 \leftarrow R \leftarrow 0,$$

where the bases have been ordered lexicographically with respect to e_1, e_2, e_3 .

2. Prove that $\partial_{j-1}\partial_j = 0$ for all j.

Solution. Fix j and a basis element $e_{i_1} \cdots e_{i_j} \in \Lambda_R^j V$. Applying $\partial_{j-1} \partial_j$ to $e_{i_1} \cdots e_{i_j}$ gives:

$$\sum_{\ell=1}^{j} (-1)^{\ell-1} f_{i_{\ell}} \left(\sum_{1 \leq k < \ell} (-1)^{k-1} f_{i_{k}} e_{i_{1}} \cdots \widehat{e_{i_{k}}} \cdots \widehat{e_{i_{\ell}}} \cdots e_{i_{j}} + \sum_{\ell < k \leq j} (-1)^{k-2} f_{i_{k}} e_{i_{1}} \cdots \widehat{e_{i_{\ell}}} \cdots \widehat{e_{i_{k}}} \cdots e_{i_{j}} \right),$$

which is equal to

$$\sum_{1 \le k < \ell \le j} \left((-1)^{\ell + k - 2} f_{i_\ell} f_{i_k} e_{i_1} \cdots \widehat{e_{i_k}} \cdots \widehat{e_{i_\ell}} \cdots e_{i_j} + (-1)^{\ell + k - 3} f_{i_k} f_{i_\ell} e_{i_1} \cdots \widehat{e_{i_k}} \cdots \widehat{e_{i_\ell}} \cdots e_{i_j} \right) = 0.$$

3. Given two complexes C and D of R-modules with differentials d_C and d_D , their tensor product $C \otimes_R D$ has terms $(C \otimes D)_m = \bigoplus_{i+j=m} C_i \otimes_R D_j$ and differential that sends an element $c \otimes d \in C_i \otimes D_j \subseteq (C \otimes D)_m$ to $d_C(c) \otimes d + (-1)^i c \otimes d_D(d)$. Prove that, for all $n \geq 1$, there is an isomorphism

$$K(f_1,\ldots,f_n)\cong K(f_1)\otimes_R\cdots\otimes_R K(f_n).$$

Solution. We argue by induction on n. This is trivial for n = 1. Assume n > 1 and that $K(f_1, \ldots, f_k) \cong K(f_1) \otimes_R \cdots \otimes_R K(f_k)$ for all $k \leq n - 1$. We will give an isomorphism

$$K(f_1,\ldots,f_{n-1})\otimes_R K(f_n) \xrightarrow{\cong} K(f_1,\ldots,f_n).$$

Let ∂_K denote the Koszul differential. The differential for the complex on the left acts as follows:

$$e_{i_1}\cdots e_{i_j}\otimes 1\mapsto \partial_K(e_{i_1}\cdots e_{i_j})\otimes 1,$$

and

$$e_{i_1}\cdots e_{i_i}\otimes e_n\mapsto \partial(e_{i_1}\cdots e_{i_i})\otimes e_n+(-1)^je_{i_1}\cdots e_{i_i}\otimes f_n.$$

One now checks that the map

$$K(f_1,\ldots,f_{n-1})\otimes_R K(f_n)\to K(f_1,\ldots,f_n)$$

given by $e_{i_1} \cdots e_{i_j} \otimes 1 \mapsto e_{i_1} \cdots e_{i_j}$ and $e_{i_1} \cdots e_{i_j} \otimes e_n \mapsto e_{i_1} \cdots e_{i_j} \cdot e_n$ is an isomorphism of complexes.

4. Recall that T(V) denotes the tensor algebra on V, and the exterior algebra $\Lambda_R(V)$ is the quotient of T(V) by the two-sided ideal I generated by v^2 for all $v \in V$. Prove that, when $2 \in R$ is invertible, we have $\Lambda_R(V) \cong T(V)/J$, where J is the two-sided ideal generated by vw + wv for $v, w \in V$.

Solution. In fact, we have I = J. Given $v \in V$, we have $2v^2 = vv + vv \in J$, and so, since $2 \in R$ is invertible, we conclude $v^2 \in J$. On the other hand, for $v, w \in V$, we have $vw + wv = (v + w)^2 - v^2 - w^2 \in I$.

5. Suppose R is a field, which we will denote by k. Assume n=1, so that $\Lambda_k(V)$ is isomorphic to $k[x]/(x^2)$. Prove that this ring has the following property: every finitely generated $\Lambda_k(V)$ -module is either free or has infinite projective dimension.

Hint: use the structure theorem for finitely generated modules over PID's.

In fact, this is true for any exterior algebra over a field. If you want a more challenging exercise, try and prove this. Hint: as we will see later, E is injective as an E-module; you can take this fact for granted for now. It follows that the functor $\operatorname{Hom}_E(-,E)$ is exact. Therefore, given a finite length minimal free resolution F of a finitely generated E-module N, the quasi-isomorphism $F \xrightarrow{\simeq} N$ induces a quasi-isomorphism $\operatorname{Hom}_E(N,E) \xrightarrow{\simeq} \operatorname{Hom}_E(F,E)$. Prove that this forces N to be free.

Solution. The only nonzero proper ideal of $E = k[x]/(x^2)$ is generated by the class of x. By the structure theorem of finitely generated modules over PIDs, the only indecomposable modules over E are therefore E and k. Now observe that k has the minimal free resolution

$$0 \leftarrow E \xleftarrow{x} E \xleftarrow{x} E \leftarrow \cdots \tag{1}$$

Thus, any indecomposable module is either free or has infinite projective dimension, and so the same is true for any finitely generated module.

(Note: this is also immediate from the Auslander-Buchsbaum formula.)

As for the case of a general exterior algebra: say N is a finitely generated E-module with finite minimal free resolution F. By way of contradiction, suppose N is not free, so that F has the form $0 \to F_n \to \cdots \to F_0 \to 0$, where n > 0. Since $\operatorname{Hom}_E(-, E)$ is exact, we conclude that the induced map

$$\operatorname{Hom}_E(F_{n-1}, E) \to \operatorname{Hom}_E(F_n, E)$$

is surjective. But this map takes values in $\mathfrak{m} \cdot \operatorname{Hom}_E(F_n, E)$, where \mathfrak{m} denotes the homogeneous maximal ideal of E. By Nakayama's Lemma, we conclude that $\operatorname{Hom}_E(F_n, E) = 0$, i.e. $F_n = 0$, a contradiction.