Assignment 2

EE24Btech11024 - G. Abhimanyu Koushik

<i>A</i> .	Mu	ltipl	e (roice	,
------------	----	-------	-----	--	-------	---

1) Let X be a random variable such that the probability function of a distribution given by $P(X=0)=\frac{1}{2}$, $P(X=j) = \frac{1}{3^j}$ $(j=1,2,3,\ldots,\infty)$. Then the mean of the distribution and P(X=j) is positive and even) respectively are:

(Jul 2021)

a) $\frac{3}{8}$ and $\frac{1}{8}$

b) $\frac{3}{4}$ and $\frac{1}{8}$

c) $\frac{3}{4}$ and $\frac{1}{9}$

d) $\frac{3}{4}$ and $\frac{1}{16}$

2) If the tangent to the ellipse $x^2 + 4y^2 = 4$ meets the tangents at the extremities of its major axis at **B** and C, then the circle with BC as diameter pass through the point:

(Jul 2021)

a) $(\sqrt{3}, 0)$

b) $(\sqrt{2},0)$

c) (1, 1)

d) (-1,1)

3) Let the equation of pair of lines , y = px and y = qx, can be written as (y - px)(y - qx) = 0. Then the equation of the pair of angle bisectors of the lines $x^2 - 4xy - 5y^2 = 0$ is:

(Jul 2021)

a) $x^2 - 3xy + y^2 = 0$ b) $x^2 + 4xy - y^2 = 0$ c) $x^2 + 3xy - y^2 = 0$ d) $x^2 - 3xy - y^2 = 0$

4) If ${}^{n}P_{r} = {}^{n}P_{r+1}$ and ${}^{n}C_{r} = {}^{n}C_{r+1}$, then the value of r is equal to:

(Jul 2021)

a) 1

b) 4

c) 2

d) 3

5) Let y = y(x) be the solution of the differential equation $xdy = (y + x^3 \cos x) dx$ with $y(\pi) = 0$, then $y\left(\frac{\pi}{2}\right)$ is equal to:

(Jul 2021)

a) $\frac{\pi^2}{4} + \frac{\pi}{2}$

b) $\frac{\pi^2}{2} + \frac{\pi}{4}$

c) $\frac{\pi^2}{2} - \frac{\pi}{4}$ d) $\frac{\pi^2}{4} - \frac{\pi}{2}$

B. Numericals

1) Let $n \in \mathbb{N}$ and [x] denote the greatest integer less than or equal to x. If the sum of (n+1) terms ${}^{n}C_{0}$, $3 \cdot {}^{n}C_{1}$, $5 \cdot {}^{n}C_{2}$, $7 \cdot {}^{n}C_{3}$... is equal to $2^{100} \cdot 101$, then $2\left[\frac{n-1}{2}\right]$ is equal to _____.

(Jul 2021)

2) Consider the function $f(x) = \begin{cases} \frac{P(x)}{\sin(x-2)} & x \neq 2, \\ 7 & x = 2. \end{cases}$ where P(x) is a polynomial such that P''(x) is always a constant and P(3) = 9. If f(x) is continuous at x = 2, then P(5) is equal to _____.

(Jul 2021)

3) The equation of a circle is $Re(z^2) + 2(Im(z))^2 + 2Re(z) = 0$, where z = x + iy. A line which passes through the centre of the given circle and the vertex of parabola, $x^2 - 6x - y + 13 = 0$, has y-intercept equal to _____.

4) If a rectangle is inscribed in an equilateral triangle of side length $2\sqrt{2}$ as shown in the figure, then the square of the largest area of such a rectangle is _____.

(Jul 2021)

5) If $(\mathbf{a} + 3\mathbf{b})$ is perpendicular to $(7\mathbf{a} - 5\mathbf{b})$ and $(\mathbf{a} - 4\mathbf{b})$ is perpendicular to $(7\mathbf{a} - 2\mathbf{b})$, then the angle between \mathbf{a} and \mathbf{b} (in degrees) is _____.

(Jul 2021)

6) Let a curve y = f(x) pass through the point $(2, (\log_e 2)^2)$ and have slope $\frac{2y}{x \log_e x}$ for all positive real values of x. Then the value of f(e) is equal to _____.

(Jul 2021)

- 7) If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of $a^4 + b^4 + c^4$ is equal to _____. (Jul 2021)
- 8) A fair coin is tossed n-times such that the probability of getting at least one head is at least 0.9. Then the minimum value of n is _____.

(Jul 2021)

9) If the co-efficient of x^7 and x^8 in the expansion of $\left(2 + \frac{x}{3}\right)^n$ are equal, then the value of n is equal to

(Jul 2021)

10) If the lines $\frac{x-k}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x+1}{3} = \frac{y+2}{2} = \frac{z+3}{1}$ are co-planar then, the value of k is _____. (Jul 2021)