Open Source Framework & Score Aggregation

Miner Transparency and Score Utilization Strategies

Date: 2025-10-26

Purpose: Define open source requirements and score aggregation strategies

Overview

This document addresses:

- 1. Open source framework Miners publish code, models, and datasets
- 2. Score aggregation strategies How to use miner outputs
- 3. Address/transaction risk scoring Mapping alert scores to entity risk

Part 1: Open Source Miner Framework

1.1 Miner Publication Requirements

Required Artifacts

MINER PUBLICATION Source Code Repository (GitHub/GitLab) □ Training scripts ⊢ Inference code ⊢ Feature engineering Model architecture └─ README with full documentation Docker Image (Public Registry) ├ Dockerfile ├─ Reproducible build □ Deterministic execution └ Tagged by version 3. Model Weights ─ Trained model files (.txt, .pkl) ⊢ Feature importance □ Training metrics └─ Validation results 4. Training Configuration ⊢ Hyperparameters ─ Seeds ─ Training data specification

File: miner/MINER_MANIFEST.yaml

```
# Miner Publication Manifest
miner_id: "miner_abc123"
miner name: "DeepAML Labs"
version: "1.2.3"
# Source Code
source_code:
  repository: "https://github.com/deepaml/alert-scorer"
 commit: "f7e1c1a2b3d4e5f6"
 license: "MIT"
# Docker Image
docker_image:
  registry: "ghcr.io"
  image: "deepaml/alert-scorer"
 tag: "v1.2.3"
 digest: "sha256:2a7c8d9e..."
 build_reproducible: true
# Model Weights
model:
 type: "LightGBM"
 version: "4.3.0"
 weights_file: "models/alert_scorer_v1.2.3.txt"
 weights hash: "sha256:abc123..."
 training_date: "2025-10-15"
# Training Configuration
training:
 hyperparameters:
   num_leaves: 31
   learning_rate: 0.05
   num_iterations: 500
 features_used: 187 # Out of 200+ available
 feature_list: "config/features.json"
  seed: 42
# External Datasets
external data:
  - name: "Chainalysis Sanctions List"
```

```
source: "https://chainalysis.com/sanctions"
  license: "Commercial"
  usage: "Mixer proximity features"
  last_updated: "2025-10-01"

# Performance Metrics
performance:
  validation_auc: 0.87
  validation_brier: 0.12
  avg_inference_time_ms: 0.15 # per alert

# Contact
contact:
  team: "DeepAML Labs"
  email: "team@deepaml.io"
  website: "https://deepaml.io"
```

1.2 Repository Structure

```
miner-repo/
                             # Full documentation
- README.md
 - LICENSE
                             # Open source license

── MINER_MANIFEST.yaml # Publication manifest
── Dockerfile
                             # Reproducible build
                             # Python dependencies
— requirements.txt
├─ docker-compose.yml # Local testing
 — miner/
                              # Source code
    — __init__.py
    ─ miner_main.py # Main entry point
     — models/
       ─ alert_scorer.py
          - alert_ranker.py
       cluster_scorer.py
      - features/
         — feature engineering.py
       └─ feature_selection.py
     - utils/
       ├─ data_loader.py
       └─ validators.py
  - training/
                             # Training scripts
    ├── train_alert_scorer.py
      - train_ranker.py
    hyperparameter_search.py
                              # Trained model weights
  - models/
    alert_scorer_v1.2.3.txt
     — alert_scorer_v1.2.3.txt.meta
    feature_importance.json
```

1.3 Reproducibility Requirements

Determinism Checklist

```
# File: miner/utils/determinism_enforcer.py
class DeterminismEnforcer:
    Enforce deterministic execution
    @staticmethod
    def enforce():
        """Set all random seeds"""
        import os
        import random
        import numpy as np
        import lightgbm as lgb
        # Python random
        random.seed(42)
        # NumPy
        np.random.seed(42)
        # Environment variables
        os.environ['PYTHONHASHSEED'] = '0'
        os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
        # LightGBM
        os.environ['LIGHTGBM_SEED'] = '42'
    @staticmethod
    def verify_reproducibility(func):
        """Decorator to verify function is deterministic"""
```

1.4 Validation Before Publication

```
# File: scripts/validate_publication.py
Validate miner publication before submission
import yaml
import json
import subprocess
from pathlib import Path
from loguru import logger
class PublicationValidator:
    Validate miner meets publication requirements
    def validate(self, repo_path: Path) -> dict:
        """Full validation"""
        checks = \{\}
        # Check 1: Manifest exists
        checks['manifest'] = self._check_manifest(repo_path)
        # Check 2: Docker builds successfully
        checks['docker_build'] = self._check_docker_build(repo_path)
        # Check 3: Determinism test
        checks['determinism'] = self._check_determinism(repo_path)
        # Check 4: License compliance
        checks['license'] = self._check_license(repo_path)
        # Check 5: Documentation
```

```
checks['documentation'] = self._check_documentation(repo_path)
    # Check 6: Model weights exist
    checks['model_weights'] = self._check_model_weights(repo_path)
    all_passed = all(checks.values())
    return {
        'passed': all_passed,
        'checks': checks
    }
def _check_determinism(self, repo_path: Path) -> bool:
    Run same input twice, verify identical output
    logger.info("Testing determinism...")
    # Run Docker container twice
    result1 = subprocess.run([
        'docker', 'run', '--rm',
        '-v', f'{repo_path}/test_data:/input:ro',
        '-v', f'{repo_path}/output1:/output',
        'miner:latest'
    ], capture_output=True)
    result2 = subprocess.run([
        'docker', 'run', '--rm',
        '-v', f'{repo_path}/test_data:/input:ro',
        '-v', f'{repo_path}/output2:/output',
        'miner:latest'
    ], capture output=True)
    # Compare outputs
    import pandas as pd
    scores1 = pd.read_parquet(f'{repo_path}/output1/scores.parquet')
    scores2 = pd.read_parquet(f'{repo_path}/output2/scores.parquet')
    return scores1.equals(scores2)
```

Part 2: Score Aggregation Strategies

Strategy 1: Best Miner Wins (Champion Selection)

Concept

```
STRATEGY 1: BEST MINER WINS
```

```
Daily Cycle:
1. All miners submit scores
2. Validator evaluates all submissions (T+0 + T+\tau)
3. Rank miners by performance
4. Select #1 miner as "champion"
5. Use champion's scores as canonical
Advantages:

√ Simple to implement

√ Clear winner/loser

✓ Fast (one model runs)

√ Easy to explain

Disadvantages:
X Winner-takes-all (discourages participation)
X No diversity benefit
X Vulnerable if champion fails
X Abrupt changes when champion changes
```

Implementation

```
# File: validator/aggregation/champion_selector.py
class ChampionSelector:
    0.00
    Select best miner as canonical scorer
    def select_champion(
        self,
        miner_scores: dict, # {miner_id: performance_score}
        window days: int = 30
    ) -> str:
        0.00
        Select champion miner based on rolling performance
        # Get performance over last 30 days
        rolling_scores = {}
        for miner_id, history in miner_scores.items():
            recent = history[-window_days:]
            rolling_scores[miner_id] = {
                'mean': np.mean(recent),
                'std': np.std(recent),
                'min': np.min(recent),
                'consistency': 1.0 - (np.std(recent) / np.mean(recent))
            }
        # Composite score: 70% mean performance + 30% consistency
        composite scores = {
```

```
miner_id: 0.7 * metrics['mean'] + 0.3 * metrics['consistency']
            for miner_id, metrics in rolling_scores.items()
        }
        # Select best
        champion_id = max(composite_scores, key=composite_scores.get)
        logger.info(f"Champion selected: {champion_id} (score=
{composite_scores[champion_id]:.3f})")
        return champion_id
   def use_champion_scores(
       self,
        champion_id: str,
        submission_path: str
    ) -> pd.DataFrame:
        Load and use champion's scores as canonical
        scores = pd.read_parquet(f"
{submission_path}/{champion_id}/scores.parquet")
        # Add provenance
        scores['source_miner'] = champion_id
        scores['aggregation_method'] = 'champion'
        return scores
```

Strategy 2: Weighted Ensemble (Recommended)

Concept

```
Daily Cycle:

1. All miners submit scores

2. Validator evaluates all submissions

3. Compute weights based on performance

4. Aggregate scores using weighted average

5. Top miners get higher weight

Weight Calculation:

w_i = (performance_i)^α / Σ(performance_j)^α

where α controls concentration (α=2 recommended)

Advantages:

✓ Diversity benefit (ensemble wisdom)

✓ Robust to single miner failure
```

Implementation

```
# File: validator/aggregation/weighted_ensemble.py
class WeightedEnsembleAggregator:
    Aggregate miner scores using weighted ensemble
    def __init__(self, alpha: float = 2.0, min_weight: float = 0.01):
        self.alpha = alpha # Concentration parameter
        self.min_weight = min_weight # Minimum weight threshold
    def compute_weights(
        self,
        performance_scores: dict # {miner_id: performance_score}
    ) -> dict:
        Compute miner weights based on performance
        Uses power law: w_i = (score_i)^\alpha / \Sigma(score_j)^\alpha
        # Apply power
        powered = {
            miner_id: score ** self.alpha
            for miner id, score in performance scores.items()
            if score > 0
        }
        # Normalize
        total = sum(powered.values())
        weights = {
            miner_id: value / total
            for miner_id, value in powered.items()
        }
        # Filter low weights
        weights = {
            miner_id: weight
            for miner_id, weight in weights.items()
            if weight >= self.min_weight
```

```
# Renormalize after filtering
        total = sum(weights.values())
        weights = {
            miner_id: weight / total
            for miner_id, weight in weights.items()
        }
        logger.info(f"Computed weights for {len(weights)} miners")
        for miner_id, weight in sorted(weights.items(), key=lambda x: x[1],
reverse=True):
            logger.info(f" {miner_id}: {weight:.3f}")
        return weights
   def aggregate_scores(
        self,
       miner_submissions: dict, # {miner_id: scores_df}
        weights: dict # {miner_id: weight}
    ) -> pd.DataFrame:
        Compute weighted average of miner scores
        # Get common alert_ids (all miners must score these)
        alert_ids = set(miner_submissions[list(miner_submissions.keys())[0]]
['alert_id'])
        for scores_df in miner_submissions.values():
            alert_ids &= set(scores_df['alert_id'])
        logger.info(f"Computing ensemble for {len(alert ids)} common alerts")
        # Aggregate
        ensemble_scores = []
        for alert_id in alert_ids:
            # Get scores from all miners
            miner scores = {}
            for miner_id, scores_df in miner_submissions.items():
                if miner_id in weights:
                    score = scores df[scores df['alert id'] == alert id]
['score'].iloc[0]
                    miner_scores[miner_id] = score
            # Weighted average
            ensemble_score = sum(
                weights[miner_id] * score
                for miner_id, score in miner_scores.items()
            )
            # Metadata
            ensemble_scores.append({
                'alert_id': alert_id,
                'score': ensemble score,
```

```
'num_miners': len(miner_scores),
                'score_std': np.std(list(miner_scores.values())),
                'contributing_miners': list(miner_scores.keys())
            })
        return pd.DataFrame(ensemble_scores)
   def save ensemble(
       self,
       ensemble_scores: pd.DataFrame,
       weights: dict,
       output_path: str
   ):
       Save ensemble results with metadata
        # Save scores
        ensemble_scores.to_parquet(f"{output_path}/ensemble_scores.parquet",
index=False)
       # Save weights
       with open(f"{output_path}/ensemble_weights.json", 'w') as f:
            json.dump(weights, f, indent=2)
       # Save metadata
       metadata = {
            'timestamp': pd.Timestamp.now().isoformat(),
            'num_alerts': len(ensemble_scores),
            'num_miners': len(weights),
            'alpha': self.alpha,
            'top 5 miners': sorted(weights.items(), key=lambda x: x[1],
reverse=True)[:5]
       }
       with open(f"{output_path}/ensemble_metadata.json", 'w') as f:
            json.dump(metadata, f, indent=2)
        logger.info(f"Ensemble saved to {output path}")
```

Strategy Comparison

Aspect	Strategy 1: Champion	Strategy 2: Ensemble
Performance	Good (best single model)	Better (ensemble wisdom)
Robustness	Vulnerable to champion failure	Robust to individual failures
Simplicity	Very simple	Moderate complexity
Speed	Fast (one model)	Slower (aggregate)
Miner Incentives	Winner-takes-all	Rewards top performers

Aspect	Strategy 1: Champion	Strategy 2: Ensemble
Generalization	Depends on champion	Better (diverse models)
Stability	Can have abrupt changes	Smooth transitions
Recommended For	Prototype/testing	Production

Part 3: Mapping Alert Scores to Address/Transaction Risk

3.1 The Relationship

```
HOW ALERT SCORES → ADDRESS/TRANSACTION RISK

Alert Score (Miner Output):

"This specific alert has 0.87 probability of being illicit"

↓ AGGREGATION ↓

Address Risk Score (Derived):

"This address has accumulated risk from multiple alerts"

↓ CONTEXTUALIZATION ↓

Transaction Risk Score (Specific):

"This transaction involves a high-risk address"
```

3.2 Address Risk Scoring

File: validator/scoring/address_risk_scorer.py

```
"""
Compute address-level risk scores from alert scores
"""

import pandas as pd
import numpy as np
from loguru import logger

class AddressRiskScorer:
    """
    Aggregate alert scores to address-level risk
    """

def compute_address_risk(
    self,
```

```
alert_scores: pd.DataFrame, # From ensemble or champion
    alerts: pd.DataFrame, # Original alerts
   window_days: int = 7
) -> pd.DataFrame:
    Compute risk score for each address
    Strategy: Combine multiple alerts per address
    # Merge scores with alert metadata
    scored_alerts = alerts.merge(
        alert_scores[['alert_id', 'score']],
        on='alert_id'
    )
    # Group by address
    address_risks = []
    for address in scored_alerts['address'].unique():
        addr_alerts = scored_alerts[scored_alerts['address'] == address]
        # Compute address risk
        risk_score = self._aggregate_alert_scores(addr_alerts)
        address_risks.append({
            'address': address,
            'risk_score': risk_score,
            'num_alerts': len(addr_alerts),
            'max_alert_score': addr_alerts['score'].max(),
            'mean_alert_score': addr_alerts['score'].mean(),
            'alert_types': addr_alerts['typology_type'].tolist(),
            'window days': window days
        })
    return pd.DataFrame(address risks)
def _aggregate_alert_scores(self, addr_alerts: pd.DataFrame) -> float:
    Aggregate multiple alert scores for an address
   Methods:

    Maximum (most conservative)

    Average (balanced)
    3. Weighted average by severity
    4. Probabilistic independence
    scores = addr_alerts['score'].values
    severities = addr_alerts['severity'].map({
        'low': 0.25, 'medium': 0.5, 'high': 0.75, 'critical': 1.0
   }).values
    # Method 1: Maximum (if ANY alert is high risk, address is high risk)
    max_score = np.max(scores)
```

3.3 Transaction Risk Scoring

File: validator/scoring/transaction_risk_scorer.py

```
Compute transaction-level risk scores
class TransactionRiskScorer:
   Score individual transactions based on address risks
   def score transaction(
        self,
        transaction id: str,
       from_address: str,
       to_address: str,
        amount_usd: float,
       address_risks: pd.DataFrame,
       alert_scores: pd.DataFrame
    ) -> dict:
        Compute risk score for a specific transaction
        # Get address risks
        from risk = self. get address risk(from address, address risks)
       to_risk = self._get_address_risk(to_address, address_risks)
        # Get alerts related to this transaction (if any)
        tx_alerts = self._get_transaction_alerts(
```

```
transaction_id,
        alert_scores
    )
    # Compute base risk
    # Use maximum of from/to address risk
    base_risk = max(from_risk, to_risk)
    # Adjust for transaction-specific factors
    amount_factor = self._compute_amount_factor(amount_usd)
    alert_factor = self._compute_alert_factor(tx_alerts)
    # Final transaction risk
    tx_risk = base_risk * amount_factor * alert_factor
    tx_risk = np.clip(tx_risk, 0, 1)
    return {
        'transaction_id': transaction_id,
        'risk_score': float(tx_risk),
        'from_address': from_address,
        'to_address': to_address,
        'from_address_risk': from_risk,
        'to_address_risk': to_risk,
        'amount_usd': amount_usd,
        'amount_factor': amount_factor,
        'alert_factor': alert_factor,
        'related_alerts': len(tx_alerts),
        'risk_category': self._categorize_risk(tx_risk)
    }
def _get_address_risk(
    self,
    address: str,
    address_risks: pd.DataFrame
) -> float:
    """Get risk score for address"""
    addr_data = address_risks[address_risks['address'] == address]
    if len(addr data) == 0:
        return 0.1 # Default low risk for unknown addresses
    return float(addr data['risk score'].iloc[0])
def _compute_amount_factor(self, amount_usd: float) -> float:
    Adjust risk based on transaction amount
    Higher amounts = higher concern
    if amount_usd < 1000:</pre>
        return 0.8
    elif amount usd < 10000:
        return 1.0
    elif amount_usd < 100000:
        return 1.2
```

```
else:
        return 1.5
def _compute_alert_factor(self, tx_alerts: list) -> float:
    Adjust risk based on transaction-specific alerts
    if len(tx alerts) == 0:
        return 1.0
    # If transaction has alerts, boost risk
    max_alert_score = max(alert['score'] for alert in tx_alerts)
    # 1.0 to 2.0 multiplier based on max alert
    return 1.0 + max_alert_score
def _categorize_risk(self, risk_score: float) -> str:
    """Categorize risk into bands"""
    if risk score < 0.3:
        return 'low'
    elif risk_score < 0.6:
        return 'medium'
    elif risk_score < 0.8:
        return 'high'
    else:
        return 'critical'
```

3.4 Complete Flow Example

```
# Daily Risk Scoring Pipeline
from validator.aggregation.weighted_ensemble import WeightedEnsembleAggregator
from validator.scoring.address_risk_scorer import AddressRiskScorer
from validator.scoring.transaction risk scorer import TransactionRiskScorer
def daily_risk_scoring_pipeline(processing_date: str):
    Complete pipeline from miner submissions to transaction scores
    .....
    # Step 1: Load miner submissions
    miner_submissions = load_all_miner_submissions(processing_date)
    miner_weights = load_miner_weights(processing_date)
    # Step 2: Aggregate alert scores (Strategy 2: Ensemble)
    aggregator = WeightedEnsembleAggregator(alpha=2.0)
    alert_scores = aggregator.aggregate_scores(
        miner_submissions,
        miner_weights
    )
```

```
# Step 3: Compute address-level risk
address_scorer = AddressRiskScorer()
address_risks = address_scorer.compute_address_risk(
    alert_scores,
    alerts=load_alerts(processing_date),
    window_days=7
# Step 4: Score transactions on demand
tx_scorer = TransactionRiskScorer()
# Example: Score a specific transaction
tx_score = tx_scorer.score_transaction(
    transaction_id="0xabc123...",
    from_address="0x123...",
    to_address="0x456...",
    amount_usd=50000,
    address risks=address risks,
    alert_scores=alert_scores
)
# Save results
save_address_risks(address_risks, processing_date)
return {
    'alert_scores': alert_scores,
    'address_risks': address_risks,
    'example_tx_score': tx_score
}
```

3.5 API Endpoints for Risk Queries

```
# File: validator/api/risk_api.py

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel

app = FastAPI()

class AddressRiskRequest(BaseModel):
    address: str
    window_days: int = 7

class TransactionRiskRequest(BaseModel):
    from_address: str
    to_address: str
    amount_usd: float

@app.get("/api/v1/risk/address/{address}")
def get_address_risk(address: str, window_days: int = 7):
    """
```

```
Get risk score for an address
    address_risks = load_latest_address_risks(window_days)
    addr data = address risks[address risks['address'] == address]
    if len(addr_data) == 0:
        return {
            'address': address,
            'risk_score': 0.1,
            'risk_category': 'unknown',
            'message': 'No alerts found for this address'
        }
    return addr_data.iloc[0].to_dict()
@app.post("/api/v1/risk/transaction")
def score_transaction(request: TransactionRiskRequest):
    Score a transaction in real-time
    address_risks = load_latest_address_risks()
    alert_scores = load_latest_alert_scores()
    scorer = TransactionRiskScorer()
    tx_score = scorer.score_transaction(
        transaction_id=None, # Real-time, no ID yet
        from_address=request.from_address,
        to_address=request.to_address,
        amount usd=request.amount usd,
        address_risks=address_risks,
        alert_scores=alert_scores
    )
    return tx_score
```

Summary

Open Source Framework

- All miners publish: code, Docker images, models, parameters, datasets
- Full transparency: reproducible builds, determinism verification
- Publication checklist: manifest, tests, documentation

Score Aggregation

- Strategy 1 (Champion): Use best miner's scores simple but vulnerable
- Strategy 2 (Ensemble): Weighted average robust, better performance 🗹 RECOMMENDED

```
Alert Scores (Miner Output)
↓
Address Risk Scores (Aggregate multiple alerts per address)
↓
Transaction Risk Scores (Combine address risks + transaction context)
```

Key Insight: Alert scores are the foundation. Address and transaction scores are derived by aggregating and contextualizing alert-level predictions.