MA 34100 Homework 3

Josh Park

Spring 2024

Section 2.2

2.2.2) If $a, b \in \mathbb{R}$, show that |a + b| = |a| + |b| iff $ab \ge 0$

To show this, we must prove both directions of the biconditional statement.

1) Assume $ab \ge 0$ is true.

This means that either a and b are both non-negative, or both non-positive. Then, we can split the proof into two cases.

- (i) If a and b are both non-negative, a+b is necessarily non-negative, and |a+b| = a+b. Because they are non-negative, we know |a| = a and |b| = b, so it follows that |a| + |b| = |a+b| is true.
- (ii) If a and b are both non-positive, notice that |a+b| = -(a+b). Also, it follows that |a| = -a and |b| = -b, so |a| + |b| = |a+b| is true.
- 2) Assume |a| + |b| = |a + b| is true.

From this, we know that a+b does not change signs, so a and b must be both non-positive or non-negative. If a and b have different signs, we know |a+b| must be less than the sum of |a| and |b|, because the negative and positive would partially cancel each other. This contradicts our assumption that |a|+|b|=|a+b|, so a and b must have the same sign. We have now shown that both directions of the biconditional statement are dependent on each other

2.2.9) Find all values that satisfy the following inequalities.

a) $|x-2| \le x+1$

For the first case, assume $x \leq 2$. Then, |x-2| = 2 - x, and the inequality becomes

$$2 - x \le x + 1 \quad \Rightarrow \quad \frac{1}{2} \le x. \tag{1}$$

Thus, case one gives us $\frac{1}{2} \le x \le 2$. For the second case, assume $x \ge 2$. Then, |x-2| = x-2 and the inequality becomes

$$x - 2 \le x + 1. \tag{2}$$

This simplifies to be trivially true, so the solution set is $x \in [\frac{1}{2}, \infty)$.

b) $3|x| \le 2 - x$

For the first case, assume $x \ge 0$. Then, 3|x| = 3x, and the inequality becomes

$$3x \le x - 2 \quad \Rightarrow \quad x \le -1. \tag{3}$$

This contradicts our assumption, so $x \ge 0$ must not be possible. Then, for the second case, assume x < 0. Then, 3|x| = -3x and the inequality becomes

$$-3x \le x - 2 \quad \Rightarrow \quad x \ge \frac{1}{2}.\tag{4}$$

This gives us that $0 \ge x \ge \frac{1}{2}$, so the expression is valid for all $x \in [0, \frac{1}{2}]$.

2.2.10) Find all $x \in \mathbb{R}$ that satisfy the following inequalities.

a) |x-1| > |x+1|

For the first case, consider x > 1. Then, |x - 1| = x - 1 and |x + 1| = x + 1, so the inequality becomes

$$x - 1 > x + 1. \tag{5}$$

This is trivially false, so x > 1 is not a valid solution. For the second case, consider x < 1. Then, |x - 1| = 1 - x and |x + 1| = 1 + x, so the inequality becomes

$$1 - x > 1 + x. \tag{6}$$

This simplifies to -x > x, which is true for all x < 0. Thus, the solution set is $x \in (-\infty, 1)$.

b) |x| + |x+1| < 2

For the first case, consider $x \ge 0$. Then, |x| = x and |x+1| = x+1, so the inequality becomes

$$x + x + 1 < 2 \quad \Rightarrow \quad x < \frac{1}{2}. \tag{7}$$

This gives us that $x \in [0, \frac{1}{2})$. For the second case, consider x < 0. Then, |x| = -x and |x + 1| = -(x + 1), so the inequality becomes

$$-x - x - 1 < 2 \quad \Rightarrow \quad x > -\frac{3}{2}. \tag{8}$$

This gives us that $x \in (-\infty, 0)$. Thus, the solution set is $x \in (-\infty, \frac{1}{2}]$.

2.2.12) Find all $x \in \mathbb{R}$ that satisfy the inequality 4 < |x+2| + |x-1| < 5.

For the first case, consider x < -2, so |x + 2| = -x - 2 and |x - 1| = -x + 1. Then, the inequality becomes

$$4 < -x - 2 - x + 1 = -2x - 1 < 5 \quad \Rightarrow \quad -3 < x < -\frac{5}{2}. \tag{9}$$

This gives that $x \in (-3, -\frac{5}{2})$. For the second case, consider $-2 \le x < 1$, so |x+2| = x+2 and |x-1| = -x+1. Then, the inequality becomes

$$4 < x + 2 - x + 1 = 3 < 5. (10)$$

This is trivially false, so $-2 \le x < 1$ is not a valid solution. For the third case, consider $x \ge 1$, so |x+2| = x+2 and |x-1| = x-1. Then, the inequality becomes

$$4 < x + 2 + x - 1 = 2x + 1 < 5 \quad \Rightarrow \quad \frac{3}{2} < x < 2.$$
 (11)

This gives that $x \in (\frac{3}{2}, 2)$. Thus, the solution set is $x \in (-3, -\frac{5}{2}) \cup (\frac{3}{2}, 2)$.

Section 2.3

2.3.5) Find the infimum and supremum, if they exist, of the following sets.

a) $A := \{x \in \mathbb{R} : 2x - 5 > 0\}$

inf $A = -\frac{5}{2}$, and sup A does not exist.

b) $B := \{x \in \mathbb{R} : x + 2 \ge x^2\}$

 $\inf B = -2$, and $\sup B = 2$.

c) $C := \{x \in \mathbb{R} : x < 1/x\}$

inf C = -1, and sup C = 1.

d) $D := \{x \in \mathbb{R} : x^2 - 2x - 5 < 0\}$

inf $D = 1 - \sqrt{6}$, and sup $D = 1 + \sqrt{6}$.

2.3.6) Let S be a nonempty subset of \mathbb{R} that is bounded below.

Prove that inf $S = -\sup\{-s : s \in S\}$

If S is a nonempty subset of \mathbb{R} that is bounded below, then we know that $\inf S$ exists. Then, we can define the set $T := \{-s : s \in S\}$. Obviously, $\inf S \in S$, so $-\inf S$ is $\inf T$. By definition of infimum, there are no smaller elements in S, so $-\inf S$ is the largest element in T. Thus, $-\inf S = \sup T$. Then, by definition of T, we know that $\sup T = \sup \{-s : s \in S\}$, so $\inf S = -\sup \{-s : s \in S\}$

2.3.10) Show that if A and B are bounded subsets of R, then $A \cup B$ is a bounded set. Show that $\sup(A \cup B) = \sup\{\sup A, \sup B\}$.

If A and B are bounded subsets of \mathbb{R} , then we know that $\sup A$ and $\sup B$ exist. Then, we can define the set $C := A \cup B$. By definition of supremum, we know that $\sup A$ and $\sup B$ are the least upper bounds of A and B, respectively. Then, by definition of least upper bound, we know that $\sup A$ and $\sup B$ are greater than or equal to all elements in A and B, respectively. Thus, $\sup A$ and $\sup B$ are greater than or equal to all elements in C. Then, by definition of supremum, we know that $\sup A$ and $\sup B$ are the least upper bounds of C. Thus, $\sup A \cup B = \sup \{\sup A, \sup B\}$

2.3.11) Let S be a bounded set in \mathbb{R} and let S_0 be a nonempty subset of S. Show that $\inf S \leq \inf S_0 \leq \sup S$

If S is a bounded set in \mathbb{R} , then we know that $\inf S$ and $\sup S$ exist. Then, we can define the set $T := S_0$. By definition of infimum, we know that $\inf S$ is the greatest lower bound of S, so it is less than or equal to all elements in S_0 . Then, by definition of infimum, we know that $\inf S_0$ is the greatest lower bound of S_0 , so it is less than or equal to all elements in S_0 . Then, by definition of supremum, we know that $\sup S_0$ is the least upper bound of S_0 , so it is greater than or equal to all elements in S_0 . Then, by definition of supremum, we know that $\sup S$ is the least upper bound of S, so it is greater than or equal to all elements in S_0 . Thus, $\inf S \leq \inf S_0 \leq \sup S_0 \leq \sup S$. \square