LISTA DE EJERCICIOS BÁSICOS

Cap.1. Sec.1.3. Forma polar de números complejo (ver)

Ejemplo 1. Expresar $z=-\sqrt{3}-j$ en su forma polar (r,θ) con $r\geq 0$ y $-\pi<\theta\leq \pi$, para luego, graficar.

Ejemplo 2. Verificar las igualdades

$$arg(z_1z_2) = arg(z_1) + arg(z_2) \& arg(z_1/z_2) = arg(z_1) - arg(z_2)$$

para los números complejos $z_1 = j$, $z_2 = -\sqrt{3} - j$.

Notar. ¿Se puede garantizar las siguientes igualdades $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$, $Arg(z_1/z_2) = Arg(z_1) - Arg(z_2)$, para cualquier par de números complejos?

Ejemplo 3. Calcular $\left(-\sqrt{3}-j\right)^3$ usando la representación binomial y luego, usando la representación polar trigonométrica usando la fórmula de Moivre.

Ejemplo 4. Calcular $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}j\right)^3$ usando la representación binomial y luego, usando la representación polar trigonométrica usando la fórmula de Moivre.

Ejercicio 1 Escribir los siguientes números complejos en sus formas:

Ejercicio 2. Escribir los siguientes números complejos en su forma binomial

a)
$$z = 5 cjs\left(\frac{7\pi}{6}\right)$$
 c) $z = \left(4, \frac{-5\pi}{3}\right)$
b) $z = 6 cjs\left(\frac{\pi}{8}\right)$ d) $z = \left(2, \frac{\pi}{3}\right)$

Ejercicio 3. Calcular las siguientes operaciones entre números complejos

a)
$$\left[5 \ cjs\left(\frac{7\pi}{6}\right)\right]^3$$
 c) $\left[5 \ cjs\left(\frac{7\pi}{6}\right)\right] \div \left[6 \ cjs\left(\frac{\pi}{8}\right)\right]$
b) $\left[5 \ cjs\left(\frac{7\pi}{6}\right)\right] * \left[6 \ cjs\left(\frac{\pi}{8}\right)\right]$ d) $\left[cjs\left(\frac{\pi}{9}\right)^{12}\right] * \left[2 \ cjs\left(\frac{\pi}{6}\right)\right]^5$

Ejercicio 4. Si z = x + j, entonces calcular Arg(z) & arg(z). ¿Cuál es la diferencia?

Cap.1. Sec.1.4. Potencias y raíces (ver)

Ejemplo 1. Calcular todas las respectivas raíces:

a)
$$\sqrt{j}$$
 c) $\sqrt[3]{j}$ e) $\sqrt[4]{16 \ cjs\left(\frac{\pi}{4}\right)}$
b) $\sqrt{-1}$ d) $\sqrt[3]{-1}$ f) $\sqrt[4]{81 \ cjs(-\pi)}$

Ejercicio 1. Resolver las siguientes ecuaciones:

a)
$$z^2 + 1 = 0$$
 e) $z^3 - 1 = 0$ i) $z^2 - 8z + 16 = 0$
b) $z^2 - 1 = 0$ f) $z^3 + 1 = 0$ j) $z^2 - 8z + 16 = 8j$
c) $z^2 + j = 0$ g) $z^3 - j = 0$ k) $z^2 + z + 1 = 0$
d) $z^2 - j = 0$ h) $z^3 + j = 0$ m) $jz^2 + z + j = 0$

Cap.1. Sec.1.5. Conjuntos de puntos en el plano complejo (ver)

Ejemplo 1.

a. Determinar el radio, el centro y graficar las siguientes curvas en el plano

a)
$$|z| = 1$$
 b) $|z - 1 - 3i| = 5$

b. Graficar los siguientes conjuntos y determinar cuales de ellos tiene toda su frontera o parte de ella.

Ejercicio 1. Resolver las siguientes ecuaciones y graficar el conjunto solución en el plano :

a)
$$|z-4+3j| = 5$$
 c) $z^2 - \overline{z}^2 = 2$
b) $Im(z) = -2$ d) $arg(z) = \pi/4$

Ejercicio 2. Determinar por comprensión el conjunto solución y graficar en el plano:

a)
$$Re(z) \le 5$$
 c) $2 < |z - y|$