SFERE E CIRCONFERENZE.

ESERCIZIO 1 Tra le seguente equazioni, dire quali rappresentano una sfera e, in caso affermativo, calcolarne centro e raggio.

1.
$$x^2 + y^2 + z^2 + 2x + 2y - 6z + 10 = 0$$
;

2.
$$x^2 + y^2 + z^2 + 2xy + 2yz - 6zx + 10 = 0$$
;

3.
$$x^2 + y^2 + z^2 - 2z + 10 = 0$$
;

4.
$$x^2 + y^2 = 1$$
.

ESERCIZIO 2

- 1. Scrivere l'equazione di una sfera che abbia centro in C(2,0,-1) e raggio R=3. Determinare poi l'equazione del piano tangente ad essa nel punto (1,2,1).
- 2. Scrivere l'equazione di una sfera con centro (0, -1, 0) e passante per A(1, 2, 3).

ESERCIZIO 3 Scrivere le equazioni della sfera di raggio R=2, tangente al piano x+y-z=0 nel punto (1,1,2).

ESERCIZIO 4 T.E. Siano dati in S_3 il piano $\pi: x+y-z-1=0$ e la sfera $S: x^2+y^2+z^2-4x-2y+4z=0$.

- 1. Calcolare il centro e il raggio di S.
- 2. Calcolare il centro e il raggio della circonferenza $S \cap \pi$.
- 3. Calcolare la sfera di raggio minimo che contiene la circonferenza (quante sono?)
- 4. Posto $\pi_h : x + y z + h = 0$, trovare i valori di $h \in \mathbb{R}$ per i quali π_h risulta tangente a S.

ESERCIZIO 5 Siano date le sfere di equazione

$$S: x^2 + y^2 + z^2 = 9$$
 $S': (x-1)^2 + y^2 + z^2 = h$

Determinare, al variare di h in \mathbb{R} , la posizione reciproca delle due sfere.

ESERCIZIO 6 Sia data in S_3 la circonferenza γ di equazioni:

$$\begin{cases} x - y + 2z = 2\\ (x - 1)^2 + (y - 1)^2 + z^2 = 1 \end{cases}$$

- 1. Determinare la retta tangente alla circonferenza nel punto (1, 1, 1).
- 2. Determinare le sfere passanti per (0,0,0) che contengono γ . (Utilizzare il fascio di sfere).
- 3. Determinare le sfere di raggio 3 che contengono γ . (Quante sono?)
- 4. Determinare le sfere di raggio minimo che contengono $\gamma.$ (Quante sono?)

ESERCIZIO 7 QUIZ

Q1. Nello spazio sia data la sfera ${\mathcal S}$ di equazione:

$$x^2 + y^2 + z^2 + 4x + 2y + 2z = 0.$$

Quale delle seguenti affermazioni è vera?

- 1. Il centro di \mathcal{S} è (2,1,1).
- 2. Il centro di \mathcal{S} ha distanza 1 dal punto (0,0,-2).
- 3. S è tangente al piano z = 0.
- 4. $(0,0,-2) \in \mathcal{S}$.