### Discrete Mathematics

# Rules of Inference

Shin Hong

# Textbook coverage

• Chapter I.6

Rules of Inference

Discrete Math.





How can we know an argument true?

Rules of Inference

Discrete Math.

### Inference

- **Inference** is to find a implication statement (conclusions) from the given statements (premises)
  - deductive reasoning: derive a conclusion based on already accepted statements (axioms, assumptions, hypotheses)
  - inductive reasoning: derive a generalized conclusion from the observations on particular cases
- An argument is a sequence of statements connected with inference rules
- An **argument form** is a valid proposition in a form of  $P_1 \wedge P_2 \dots \wedge P_n \to Q$  where  $P_i$  and Q are compound propositions

- example: 
$$p \rightarrow q$$
 
$$\vdots \frac{p}{q}$$

Rules of Inference

Discrete Math.

### **Proof**

- An argument is **valid** if all initial statements are known to be true, and for every non-initial statement, there is an argument form that connects the preceding statements with **it** 
  - a conclusion follows the premises
  - such a sequence of argument is called **proof**
- It is impossible that all preceding statements are true, and the inference rules are all valid, and the final statement is false at the same time

Rules of Inference

### Rules of Inferences

premise<sub>1</sub> premise<sub>2</sub>

•••

#### conclusion

| Rule of Inference                                                              | Tautology                                   | Name                   |
|--------------------------------------------------------------------------------|---------------------------------------------|------------------------|
| $p \\ p \to q \\ \therefore \overline{q}$                                      | $(p \land (p \to q)) \to q$                 | Modus ponens           |
|                                                                                | $(\neg q \land (p \to q)) \to \neg p$       | Modus tollens          |
| $p \to q$ $q \to r$ $\therefore p \to r$                                       | $((p \to q) \land (q \to r)) \to (p \to r)$ | Hypothetical syllogism |
| $ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $ | $((p \lor q) \land \neg p) \to q$           | Disjunctive syllogism  |

Rules of Inference

Discrete Math.

### Rules of Inferences

premise<sub>1</sub>
premise<sub>2</sub>
...

conclusion

| Rule of Inference                                           | Tautology                                           | Name           |
|-------------------------------------------------------------|-----------------------------------------------------|----------------|
| $\therefore \frac{p}{p \vee q}$                             | $p \to (p \lor q)$                                  | Addition       |
| $\therefore \frac{p \wedge q}{p}$                           | $(p \land q) \to p$                                 | Simplification |
| $p \\ \frac{q}{p \wedge q}$                                 | $((p) \land (q)) \to (p \land q)$                   | Conjunction    |
| $p \vee q$ $\neg p \vee r$ $\therefore \overline{q \vee r}$ | $((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$ | Resolution     |

Rules of Inference

Discrete Math.

| $ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $                     | Modus ponens           | <ul> <li>If there is fire, fire alarm rings.</li> <li>There is fire.</li> <li>Thus, fire alarm rings</li> </ul>                                                 | Intuitive<br>Examples | 8                         |
|----------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|
|                                                                                              | Modus tollens          | <ul> <li>Fire alarm rings if there's fire.</li> <li>There is no fire alarm.</li> <li>Thus, there is no fire.</li> </ul>                                         | LAampies              |                           |
| $p \to q$ $q \to r$ $\therefore p \to r$                                                     | Hypothetical syllogism | <ul> <li>If one is a man, the one eventually dies.</li> <li>If one is a philosoper, the one is a man.</li> <li>Thus, a philosoper eventually dies.</li> </ul>   |                       |                           |
| $ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $               | Disjunctive syllogism  | riids, a prinosoper eventually dies.                                                                                                                            |                       |                           |
| $\therefore \frac{p}{p \vee q}$                                                              | Addition               |                                                                                                                                                                 |                       |                           |
| $\therefore \frac{p \wedge q}{p}$                                                            | Simplification         |                                                                                                                                                                 |                       |                           |
| $ \begin{array}{c} p \\ q \\ \vdots  p \wedge q \end{array} $                                | Conjunction            | <ul> <li>I will take a taxi tonight if it rains.</li> <li>Otherwise, I will take a bus tonight.</li> <li>Thereby, I will take a taxi or bus tonight.</li> </ul> |                       | Rules of<br>Inference     |
| $ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore \overline{q \lor r} \end{array} $ | Resolution             |                                                                                                                                                                 |                       | Discrete Math. 2021-09-10 |

| $ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $            | Modus ponens           | • Premises I. $\neg p \land q$                                         | Example                         |
|-------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------|---------------------------------|
|                                                                                     | Modus tollens          | 2. $r \rightarrow p$ 3. $\neg r \rightarrow s$                         |                                 |
| $p \to q$ $q \to r$ $\therefore p \to r$                                            | Hypothetical syllogism | 4. $s \rightarrow t$ • Concolusion • $t$                               |                                 |
| $ \begin{array}{c} p \lor q \\ \neg p \\ \hline \vdots \\ q \end{array} $           | Disjunctive syllogism  | • Inference step  I. $\neg p \land q$                                  | os (proof)<br>Premise I         |
| $\therefore \frac{p}{p \vee q}$                                                     | Addition               | $\begin{array}{ccc} 1. & \exists p \land q \\ 2. & \neg p \end{array}$ | Simplification I                |
| $\therefore \frac{p \wedge q}{p}$                                                   | Simplification         | 3. $r \rightarrow p$ 4. $\neg r$                                       | Premise 2<br>Modus tollens 2, 3 |
| $p$ $q$ $p \wedge q$                                                                | Conjunction            | 5. $\neg r \rightarrow s$                                              | Premise 3                       |
| $ \begin{array}{c} \therefore p \wedge q \\ p \vee q \\ \neg p \vee r \end{array} $ | Resolution             | 6. $s$ 7. $s \rightarrow t$                                            | Modus ponens 4, 5 Premise 4     |
| $\therefore \frac{q \vee r}{q \vee r}$                                              |                        | <b>8</b> . <i>t</i>                                                    | Modus ponens 6, 7               |

Rules of

Inference

Discrete Math.

### Quantified Statements

- Valid arguments for quantified statements are a sequence of statements where each statement is either a premise or follows from previous statements by rules of inference
  - rules of inference for propositional logic
  - rules of inference for quantified statements
    - Universal Instantiation (UI)
    - Universal Generalization (UG)
    - Existential Instantiation (EI)
    - Existential Generalization (EG)

Rules of Inference

## Universal Instantiation (UI)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

- c is a specific instance of the domain, or
- c is a variable representing an arbitrary value of the domain

#### **Example**:

Our domain consists of all dogs and Bingo is a dog.

"All dogs are cuddly."

"Therefore, Bingo is cuddly." "Therefore, dog d is cuddly"

Rules of Inference

Discrete Math.

# Universal Generalization (UG)

$$P(c)$$
 for an arbitrary  $c$   
 $\therefore \forall x P(x)$ 

Used often implicitly in Mathematical Proofs.

Rules of Inference

# Existential Instantiation (EI)

$$\exists x P(x)$$

 $\therefore P(c)$  for some element c

#### **Example**:

"There is someone who got an A in the course."

"Let's call her a and say that a got an A"

Rules of Inference

Discrete Math.

# Existential Generalization (EG)

$$P(c)$$
 for some element  $c$   
 $\therefore \exists x P(x)$ 

#### **Example**:

"Michelle got an A in the class."

"Therefore, someone got an A in the class."

Rules of Inference

Discrete Math.

### Using Rules of Inference

Construct a valid argument to show that

"John Smith has one wife" is a consequence of the premises:

"Every married man has one wife." "John Smith is a married man."

Solution: Let M(x) denote "x is a married man", and L(x) denote "x has one wife", and let / be an element representing John Smith.

#### Step

- 1.  $\forall x (M(x) \to L(x))$
- 2.  $M(J) \to L(J)$  UI from (1)
- 3. M(J)
- 4. L(J)

#### Reason

Premise

Premise

Modus Ponens using

(2) and (3)

Rules of Inference

### Using Rules of Inference

- Construct a valid argument showing that the conclusion:
  - "Someone who passed the first exam has not read the book." follows from
    - "A student in this class has not read the book."
    - "Everyone in this class passed the first exam."
- Solution: Let C(x) denote "x is in this class," B(x) denote "x has read the book," and P(x) denote "x passed the first exam."

$$\frac{\exists x (C(x) \land \neg B(x))}{\forall x (C(x) \to P(x))}$$

$$\therefore \exists x (P(x) \land \neg B(x))$$

#### Step

- 1.  $\exists x (C(x) \land \neg B(x))$
- 2.  $C(a) \wedge \neg B(a)$  EI from (1)
- 3. C(a)
- 4.  $\forall x (C(x) \to P(x))$
- 5.  $C(a) \rightarrow P(a)$
- 6. P(a)
- 7.  $\neg B(a)$
- 9.  $\exists x (P(x) \land \neg B(x))$

#### Reason

Premise

Simplification from (2)

Premise

UI from (4)

MP from (3) and (5)

Simplification from (2)

8.  $P(a) \wedge \neg B(a)$  Conj from (6) and (7)

EG from (8)

Rules of Inference

Discrete Math.