Graph

Simple graph: $G=(V,E);\ V$ a set; E a set of two-subsets of V.

Isomorphism

Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. Bijection $f: V_1 \to V_2$ such that $f(E_1) = E_2$ where $f(E_1) = \{\{f(v_1), f(v_2)\} | \{v_1, v_2\} \in E_1\}$.

Example

$$f(E_1) = \{ \{f(a), f(b)\}, \{f(a), f(c)\},$$

$$\{f(a), f(d)\}, \{f(c), f(d)\} \}$$

$$= \{ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{3, 4\} \} = E_2$$

Non-isomorphism

No of maps

 $f(a) \to 6$ choices; $f(b) \to 5$ choices; $f(c) \to 4$ choices; etc. So, n! maps between the vertex sets of two graphs with n vertices.

Some invariants

- Degrees.
- Paths.
- Connection.

Adjacency matrix

Fix a listing of V. $[a_{ij}]$ where a_{ij} is 1 if $\{v_i, v_j\} \in E$ else 0.

Example

[0	1	1	0	0	1	[0	1	0	1	1	1
1	0	1	1	1	1	1	0	1	1	1	1
1	1	0	1	1	1	0	1	0	1	0	0
0						1	1	1	0	1	0
0	1	1	0	0	1	1	1	0	1	0	1
1	1	1	0	1	0	[1	1 0 1 1 1 1	0	0	1	0

Encoding