

Formulário de Eletromagnetismo

v. 1.0.0-a4-fv

julho de 2021

Apresentação

Este formulário traz inúmeras equações dos fundamentos do Eletromagnetismo, de forma categorizada por meio das seções e subseções.

Espera-se que ele possa auxiliar os estudantes na interpretação e na escolha das adequadas equações durante a resolução de cada tipo de problema.

Os professores também poderão fazer uso deste material como formulário de consulta durante avaliações, tanto na forma digital quanto impressa.

As notações utilizadas encontram-se conforme as apresentadas no livro Wentworth [2007].

O corrente formulário foi compilado para folha A4 frente e verso. Uma cópia em PDF poderá ser baixada no seguinte endereço, onde também encontrase a versão para brochura (livreto) A5 frente e verso, além de outros materiais. Neste mesmo endereço, sugestões poderão ser postadas.

https://www.engenhartis.com.br/materiais/materiais-abertos

A atual compilação foi produzida com base no material publicado em 2011, por Marcelo P. Trevizan, segundo a licença *Creative Commons Atribuição Compartilha Igual 3.0 Não Adaptada (CC BY-SA 3.0)* e é republicada agora segundo licença semelhante, em sua versão 4.0, pela *Engenhartis*, com a contribuição do mesmo autor. Ver a seção Produção na página 33 e a seção Licença na página 33 para mais informações.

Este material está disponibilizado segundo a licença Atribuição-CompartilhaIgual 4.0 Internacional (CC BY-SA 4.0).

Visite-nos na Engenhartis!

https://www.engenhartis.com.br

Sumário

Aı	orese	ntação	i
1	Elet	rostática	1
	1.1	Lei de Coulomb	1
	1.2	Campo Elétrico	1
	1.3		1
	1.4	Fluxo Elétrico	2
	1.5	Teorema da Divergência	2
	1.6	Lei de Gauss	2
	1.7	Potencial Elétrico	2
	1.8	Densidade de Corrente	3
	1.9	Corrente	3
	1.10	Resistência	3
	1.11	Lei de Joule	3
	1.12	Condições de Fronteira	3
	1.13	Equação de Poisson	4
			4
			4
	1.16	Energia Potencial Eletrostática	4
_	3.6		
2	_		4
	2.1		4
	2.2		4
	2.3	1 0	5
	2.4	1	6
	2.5		6
	2.6	0	6
	2.7	0	6
	2.8	1 0	6
	2.9	1 3	7
		3.	7
		1	7
		1	7
		,	8
			8
			8
			8
	2.17	Circuitos Magnéticos	8

SUMÁRIO

3	Can	npos Dinâmicos
	3.1	Equação da Continuidade da Corrente
	3.2	Variação da Densidade de Carga com o Tempo
	3.3	Tempo de Relaxação
	3.4	Lei de Faraday
	3.5	Densidade de Corrente de Dispersão (Deslocamento) 10
	3.6	Equações de Maxwell (gerais)
	3.7	Representações de Campo Harmônico
	3.8	Equações de Maxwell na Forma Fasorial (diferencial) 11
	3.9	Relações Constitutivas
	3.10	Equações Fundamentais do Eletromagnetismo
4	Ond	las Planas 12
	4.1	Equações de Onda de Helmholtz
	4.2	Relação entre Ondas Propagantes (em fasores)
	4.3	Constantes e Impedância Intrínseca
		4.3.1 Caso geral
		4.3.2 Dielétricos com baixas perdas $\left(\frac{\sigma}{\omega\epsilon} \ll 1\right)$ 13
		4.3.3 Bons condutores $\left(\frac{\sigma}{\omega\epsilon}\gg 1\right)$
	4.4	Velocidade de Propagação
	4.5	Comprimento de Onda
	4.6	Permissividade Complexa
	4.7	Condutividade Efetiva
	4.8	Tangente de Perdas
	4.9	Efeito Pelicular (em bons condutores)
	4.10	Teorema de Poynting
	4.11	Vetor de Poynting
	4.12	Potência
	4.13	Incidência de Um Meio para Outro
		4.13.1 Características da Incidência Normal
		4.13.2 Características da Incidência Oblíqua 16
5	Link	nas de Transmissão 17
	5.1	Parâmetros Distribuídos
	5.2	Equações Gerais de Linha de Transmissão
	5.3	Equações de Onda Harmônicas no Tempo
	5.4	Constantes de Propagação, Atenuação e de Fase
	5.5	Impedância Característica
	5.6	Potência
	5.7	Coeficiente de Reflexão
	5.8	Taxa de Onda Estacionária de Tensão

SUMÁRIO

	5.9 Impedância de Entrada	19
A	Definições Gerais	20
В	Constantes	22
\mathbf{C}	Conversões	2 3
D	Propriedades de Alguns Materiais	23
E	Elementos Diferenciais	24
\mathbf{F}	Transformação entre Sistemas de Coordenadas	27
\mathbf{G}	Derivadas Mais Comuns	28
Н	Integrais Indefinidas Mais Comuns	31
Ι	Produção	33
J	Histórico	33
K	Licença	33
L	Onde Adquirir Este Material	35
Re	eferências	35

1 Eletrostática

1.1 Lei de Coulomb

$$\vec{F}_{12} = \frac{Q_1 Q_2}{4\pi \epsilon R_{12}^2} \vec{\mathbf{a}}_{12} \tag{1}$$

1.2 Campo Elétrico

• Caso geral:

$$\vec{E}_1 = \frac{\vec{F}_{12}}{Q_2} \tag{2}$$

$$\vec{E} = \frac{Q}{4\pi\epsilon R^2} \vec{a}_R \tag{3}$$

• de distribuição contínua de cargas:

$$\vec{E} = \int \frac{dQ}{4\pi\epsilon R^2} \vec{a}_R \tag{4}$$

• de uma carga pontual na origem:

$$\vec{E} = \frac{Q}{4\pi\epsilon r^2} \vec{a}_r \tag{5}$$

• de uma linha infinita em z carregada com ρ_L :

$$\vec{E} = \frac{\rho_L}{2\pi\epsilon\rho} \vec{a}_{\rho} \tag{6}$$

• de uma lâmina infinita carregada com ρ_S :

$$\vec{E} = \frac{\rho_S}{2\epsilon} \vec{a}_N \tag{7}$$

1.3 Densidade de Fluxo Elétrico

$$\vec{D} = \epsilon \vec{E} \tag{8}$$

1.4 Fluxo Elétrico

• Que atravessa uma superfície:

$$\Psi = \int \vec{D} \cdot d\vec{S} \tag{9}$$

• que atravessa uma superfície fechada:

$$\Psi = \oint \vec{D} \cdot d\vec{S} \tag{10}$$

1.5 Teorema da Divergência

$$\oint \vec{D} \cdot d\vec{S} = \int \nabla \cdot \vec{D} dv \tag{11}$$

1.6 Lei de Gauss

• Forma integral:

$$\oint \vec{D} \cdot d\vec{S} = Q_{env} = \Psi_{resultante}$$
(12)

$$\oint \vec{D} \cdot d\vec{S} = \int \rho_v dv \tag{13}$$

• forma diferencial:

$$\nabla \cdot \vec{D} = \rho_v \tag{14}$$

1.7 Potencial Elétrico

• Diferença de potencial elétrico:

$$V_{ba} = -\int_{a}^{b} \vec{E} \cdot d\vec{L} = V_b - V_a \tag{15}$$

• potencial com referência no infinito:

$$V = \int \frac{\mathrm{d}Q}{4\pi\epsilon r} \tag{16}$$

• campo elétrico a partir de função potencial:

$$\vec{E} = -\nabla V \tag{17}$$

Densidade de Corrente 1.8

$$\vec{J} = \sigma \vec{E} \tag{18}$$

1.9 Corrente

$$I = \int \vec{J} \cdot d\vec{S} \tag{19}$$

1.10 Resistência

$$R = \frac{-\int \vec{E} \cdot d\vec{L}}{\int \sigma \vec{E} \cdot d\vec{S}}$$
 (20)

Lei de Joule 1.11

$$P = \int \vec{E} \cdot \vec{J} dv \tag{21}$$

Condições de Fronteira 1.12

• Entre par de dielétricos:

$$\vec{E}_{T1} = \vec{E}_{T2} \tag{22}$$

$$\vec{a}_{21} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$$
 (23)

 $\bullet\,$ entre par de dielétricos, se $\rho_{\rm s}=0$:

$$\vec{E}_{T1} = \vec{E}_{T2}$$
 (24)
 $\vec{D}_{N1} = \vec{D}_{N2}$ (25)

$$\vec{D}_{N1} = \vec{D}_{N2} \tag{25}$$

• entre condutor e dielétrico:

$$\vec{E}_T = 0 \tag{26}$$

$$\vec{D}_N = \rho_{\rm s}$$
 (27)

1.13 Equação de Poisson

$$\nabla^2 V = -\frac{\rho_v}{\epsilon} \tag{28}$$

1.14 Equação de Laplace

$$\nabla^2 V = 0 \tag{29}$$

1.15 Capacitância

• Definição geral:

$$C = \frac{\mathrm{d}Q}{\mathrm{d}V} \tag{30}$$

• para capacitor de placas paralelas, desprezando-se efeitos de borda:

$$C = \frac{\epsilon S}{d} \tag{31}$$

1.16 Energia Potencial Eletrostática

$$W_E = \frac{1}{2} \int \vec{D} \cdot \vec{E} dv = \frac{1}{2} \int \epsilon E^2 dv = \frac{1}{2} CV^2$$
 (32)

2 Magnetostática

2.1 Analogia entre campo eletrostático e magnetostático

Vide Tabela 1.

2.2 Lei de Biot-Savart

$$d\vec{H}_2 = \frac{I d\vec{L}_1 \times \vec{a}_{12}}{4\pi R_{12}^2} \tag{33}$$

i 1. Milaiogia chine campo	o ciculostatico e magneto.
Campos elétricos	Campos magnéticos
\vec{E} (V/m)	\vec{H} (A/m)
$\vec{D}~(\mathrm{C/m^2})$	$\vec{B} \; (\mathrm{Wb/m^2})$
Ψ (C)	Φ (Wb)
$\epsilon \; (\mathrm{F/m})$	$\mu (\mathrm{H/m})$
$\vec{D} = \epsilon \vec{E}$	$\vec{B} = \mu \vec{H}$
$ abla \cdot ec{D} = ho_v$	$\nabla \cdot \vec{B} = 0$
$\nabla \times \vec{E} = 0$	$ abla imes ec{H} = ec{J}$
$\Psi = \int \vec{D} \cdot d\vec{S}$	$\Phi = \int \vec{B} \cdot d\vec{S}$
$\vec{F} = \vec{Q}\vec{E} \text{ (N)}$	$\vec{F} = Q\vec{u} \times \vec{B} \text{ (N)}$
$W_E = \frac{1}{2} \int \vec{D} \cdot \vec{E} dv $ (J)	$W_M = \frac{1}{2} \int \vec{B} \cdot \vec{H} dv (J)$

Tabela 1: Analogia entre campo eletrostático e magnetostático.

2.3 Campo Magnético Resultante

• Em termos de elementos diferenciais:

$$\vec{H} = \int \frac{I d\vec{L} \times \vec{a}_R}{4\pi R^2} \tag{34}$$

• em termos de densidade de corrente superficial:

$$\vec{H} = \int \frac{\vec{K} dS \times \vec{a}_R}{4\pi R^2} \tag{35}$$

• em termos de densidade de corrente volumétrica:

$$\vec{H} = \int \frac{\vec{J} dv \times \vec{a}_R}{4\pi R^2} \tag{36}$$

• devido a linha infinita de corrente:

$$\vec{H} = \frac{I\vec{a}_{\phi}}{2\pi\rho} \tag{37}$$

• devido a um solenóide:

$$\vec{H} = \frac{NI}{h}\vec{a}_z \tag{38}$$

• devido a uma lâmina infinita de corrente:

$$\vec{H} = \frac{1}{2}\vec{K} \times \vec{a}_N \tag{39}$$

2.4 Lei Circuital de Ampère

• Forma integral:

$$\oint \vec{H} \cdot d\vec{L} = I_{env}$$
(40)

• forma diferencial:

$$\nabla \times \vec{H} = \vec{J} \tag{41}$$

2.5 Teorema de Stokes

$$\oint \vec{H} \cdot d\vec{L} = \int (\nabla \times \vec{H}) \cdot d\vec{S}$$
(42)

2.6 Densidade de Fluxo Magnético

$$\vec{B} = \mu \vec{H} \tag{43}$$

2.7 Fluxo Magnético

• Que atravessa uma superfície:

$$\Phi = \int \vec{B} \cdot d\vec{S} \tag{44}$$

• que atravessa uma superfície fechada:

$$\oint \vec{B} \cdot d\vec{S} = 0$$
(45)

2.8 Lei de Gauss para Campos Magnéticos

Vide (45).

2.9 Equações de Maxwell para Campos Estáticos

• Forma integral:

$$\oint \vec{D} \cdot d\vec{S} = Q_{env}$$

$$\oint \vec{B} \cdot d\vec{S} = 0$$

$$\oint \vec{E} \cdot d\vec{L} = 0$$

$$\oint \vec{H} \cdot d\vec{L} = I_{env}$$

• forma diferencial:

$$\nabla \cdot \vec{D} = \rho_v
\nabla \cdot \vec{B} = 0
\nabla \times \vec{E} = 0
\nabla \times \vec{H} = \vec{J}$$

2.10 Força

• Força de Lorentz:

$$\vec{F} = q(\vec{E} + \vec{u} \times \vec{B}) \tag{46}$$

• força de campo magnético sobre linha de corrente:

$$\vec{F}_{12} = \int I_2 d\vec{\mathbf{L}}_2 \times \vec{B}_1 \tag{47}$$

2.11 Momento de Dipolo

$$\vec{m} = NIS\vec{a}_N \tag{48}$$

2.12 Torque

$$\vec{\tau} = \vec{m} \times \vec{B} \tag{49}$$

2.13 Condições de Fronteira

$$\vec{B}_{N_1} = \vec{B}_{N_2}$$
 (50)

$$\vec{a}_{21} \times (\vec{H}_1 - \vec{H}_2) = \vec{K}$$
 (51)

2.14 Indutância

• Definição geral:

$$L = \frac{\lambda}{I} = N \frac{\Phi_{tot}}{I} \tag{52}$$

• para uma bobina com núcleo:

$$L = \frac{\mu N^2 \pi a^2}{h} \tag{53}$$

• para um cabo coaxial:

$$\frac{L}{h} = \frac{\mu}{2\pi} \ln \frac{b}{a} \tag{54}$$

2.15 Indutância Mútua

$$M_{12} = \frac{\lambda_{12}}{I_1} = \frac{N_2}{I_1} \int \vec{B}_1 \cdot d\vec{S}_2$$
 (55)

2.16 Energia Magnetostática

$$W_M = \frac{1}{2} \int \vec{B} \cdot \vec{H} dv = \frac{1}{2} L I^2$$

2.17 Circuitos Magnéticos

• Analogia entre circuitos elétricos e magnéticos: vide Tabela 2

3 Campos Dinâmicos

3.1 Equação da Continuidade da Corrente

$$\nabla \cdot J = -\frac{\partial \rho_v}{\partial t} \tag{56}$$

3.2 Variação da Densidade de Carga com o Tempo

$$\rho_v = \rho_0 e^{-t/\tau} \tag{57}$$

3.3 Tempo de Relaxação

$$\tau = \frac{\epsilon}{\sigma} \tag{58}$$

3.4 Lei de Faraday

• Forma geral:

$$V_{\text{fem}} = -\frac{\partial \lambda}{\partial t} \tag{59}$$

• para circuito de uma única espira:

$$V_{\text{fem}} = \oint \vec{E} \cdot d\vec{L} = -\frac{\partial \Phi}{\partial t} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{S}$$
 (60)

• forma diferencial:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{61}$$

Tabela 2: Analogia entre circuitos elétricos e magnéticos.

Circuitos elétricos			Circuitos magnéticos
Força eletromotriz (V)	V	V_m	Força magnetomotriz (Aesp)
Corrente (A)	I	Φ	Fluxo magnético (Wb)
Resistência (Ω)	R	\Re	Relutância (Aesp/Wb)
Condutividade (S/m)	σ	μ	Permeabilidade (H/m)
Lei de Ohm	V = RI	$V_m = \Re \Phi$	Lei de Ohm para circ. mag.

• para circuito com movimento e campo magnético constante:

$$V_{\text{fem}} = \oint (\vec{u} \times \vec{B}) \cdot d\vec{L}$$
 (62)

3.5 Densidade de Corrente de Dispersão (Deslocamento)

$$\vec{J}_d = \frac{\partial \vec{D}}{\partial t} \tag{63}$$

3.6 Equações de Maxwell (gerais)

• Forma integral:

$$\oint \vec{D} \cdot d\vec{S} = Q_{env}$$
(64)

$$\oint \vec{B} \cdot d\vec{S} = 0$$
(65)

$$\oint \vec{E} \cdot d\vec{L} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{S} \tag{66}$$

$$\oint \vec{H} \cdot d\vec{L} = \int \vec{J} \cdot d\vec{S} + \frac{\partial}{\partial t} \int \vec{D} \cdot d\vec{S}$$
 (67)

• forma diferencial:

$$\nabla \cdot \vec{D} = \rho_v \tag{68}$$

$$\nabla \cdot \vec{B} = 0 \tag{69}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{70}$$

$$\nabla \times \vec{H} = \vec{J}_{c} + \frac{\partial \vec{D}}{\partial t}$$
 (71)

3.7 Representações de Campo Harmônico

• No domínio do tempo:

$$\vec{E}(x, y, z, t) = \vec{E}(x, y, z) \cos(\omega t + \phi) \tag{72}$$

$$\vec{H}(x,y,z,t) = \vec{H}(x,y,z)\cos(\omega t + \phi)$$
 (73)

• no domínio da frequência:

$$\vec{E}_s = \vec{E}(x, y, z)e^{j\phi} \tag{74}$$

$$\vec{H}_s = \vec{H}(x, y, z)e^{j\phi} \tag{75}$$

• conversão do domínio da frequência para o domínio do tempo:

$$\vec{E}(x, y, z, t) = \text{Re}[\vec{E}_s e^{j\omega t}]$$
 (76)

$$\vec{H}(x, y, z, t) = \operatorname{Re}[\vec{H}_s e^{j\omega t}]$$
 (77)

3.8 Equações de Maxwell na Forma Fasorial (diferencial)

$$\nabla \cdot \vec{D}_s = \rho_{vs} \tag{78}$$

$$\nabla \cdot \vec{B}_s = 0 \tag{79}$$

$$\nabla \times \vec{E}_s = -j\omega \vec{B}_s \tag{80}$$

$$\nabla \times \vec{H}_s = \vec{J}_s + j\omega \vec{D}_s \tag{81}$$

3.9 Relações Constitutivas

$$\vec{D} = \epsilon \vec{E}$$

$$\vec{B} = \mu \vec{H}$$

$$\vec{J} = \sigma \vec{E}$$

3.10 Equações Fundamentais do Eletromagnetismo

São dadas por:

- Equações de Maxwell
 - Lei de Gauss (na página 2)
 - Lei de Gauss para Campos Magnéticos (na página 6)
 - Lei de Faraday (na página 9)
 - Lei Circuital de Ampère (na página 6)

- Equação da Força de Lorentz
- Equação da Continuidade da Corrente
- Relações Constitutivas

Ondas Planas 4

4.1 Equações de Onda de Helmholtz

• No domínio do tempo:

$$\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$
 (82)

$$\nabla^2 \vec{H} = \mu \sigma \frac{\partial \vec{H}}{\partial t} + \mu \epsilon \frac{\partial^2 \vec{H}}{\partial t^2}$$
 (83)

• no domínio da frequência (campos harmônicos):

$$\nabla^2 \vec{E}_s - \gamma^2 \vec{E}_s = 0 ag{84}$$

$$\nabla^2 \vec{H}_s - \gamma^2 \vec{H}_s = 0 \tag{85}$$

• solução das equações de onda de Helmholtz, para caso geral:

$$\vec{E}(z,t) = E_0^+ e^{-\alpha z} \cos(\omega t - \beta z) \vec{a}_x$$
 (86)

$$+E_0^- e^{\alpha z} \cos(\omega t + \beta z) \vec{\mathbf{a}}_x \tag{87}$$

$$+E_0^- e^{\alpha z} \cos(\omega t + \beta z) \vec{a}_x$$

$$\vec{H}(z,t) = H_0^+ e^{-\alpha z} \cos(\omega t - \beta z) \vec{a}_y$$

$$+H_0^- e^{\alpha z} \cos(\omega t + \beta z) \vec{a}_y$$
(88)
$$(89)$$

$$+H_0^- e^{\alpha z} \cos(\omega t + \beta z) \vec{\mathbf{a}}_y \tag{89}$$

Relação entre Ondas Propagantes (em fasores) 4.2

$$\vec{H}_s = \frac{1}{\eta} \vec{a}_\rho \times \vec{E}_s \tag{90}$$

$$\vec{E}_s = -\eta \vec{a}_\rho \times \vec{H}_s \tag{91}$$

Constantes e Impedância Intrínseca 4.3

4.3.1 Caso geral

• Constante de propagação:

$$\gamma = \sqrt{j\omega\mu(\sigma + j\omega\epsilon)} = \alpha + j\beta \tag{92}$$

• constante de atenuação:

$$\alpha = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2} - 1 \right)}$$
 (93)

• constante de fase:

$$\beta = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2} + 1 \right)}$$
 (94)

• impedância intrínseca:

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}} \tag{95}$$

Dielétricos com baixas perdas $(\frac{\sigma}{\omega\epsilon}\ll 1)$ 4.3.2

$$\alpha \approx \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$$

$$\beta \approx \omega \sqrt{\mu \epsilon}$$
(96)
$$(97)$$

$$\beta \approx \omega \sqrt{\mu \epsilon} \tag{97}$$

$$\eta \approx \sqrt{\frac{\mu}{\epsilon}}$$
(98)

Bons condutores $(\frac{\sigma}{\omega\epsilon}\gg 1)$

$$\alpha \approx \sqrt{\pi f \mu \sigma} \tag{99}$$

$$\beta \approx \sqrt{\pi f \mu \sigma} \tag{100}$$

$$\beta \approx \sqrt{\pi f \mu \sigma}$$

$$\eta \approx \sqrt{\frac{\omega \mu}{\sigma}} e^{j45^{\circ}} \approx \sqrt{2} \frac{\alpha}{\sigma} e^{j45^{\circ}}$$

$$(100)$$

4.4 Velocidade de Propagação

$$u_p = \frac{\omega}{\beta} \tag{102}$$

4.5 Comprimento de Onda

$$\lambda = \frac{u_p}{f} \tag{103}$$

Nota: não confundir o símbolo λ do comprimento de onda com o do fluxo concatenado na subseção 2.14, pois referem-se a grandezas distintas.

4.6 Permissividade Complexa

$$\epsilon_c = \epsilon' - j\epsilon'' \tag{104}$$

4.7 Condutividade Efetiva

$$\sigma_{ef} = \sigma + \omega \epsilon'' \tag{105}$$

4.8 Tangente de Perdas

$$tg \, \delta = \frac{\sigma + \omega \epsilon''}{\omega \epsilon'} = \frac{\sigma_{ef}}{\omega \epsilon'} \tag{106}$$

Nota: não confundir o símbolo δ da tangente de perdas com o da profundidade pelicular na subseção 4.9, pois referem-se a grandezas distintas.

4.9 Efeito Pelicular (em bons condutores)

• Profundidade pelicular:

$$\delta = \frac{1}{\alpha} \tag{107}$$

• resistência pelicular:

$$R_{pelicular} = \frac{1}{\sigma \delta \left(1 - e^{-t/\delta}\right)} \tag{108}$$

4.10 Teorema de Poynting

$$\oint \vec{E} \times \vec{H} \cdot d\vec{S} = -\int \vec{J} \cdot \vec{E} dv - \frac{\partial}{\partial t} \int \frac{1}{2} \epsilon E^2 dv - \frac{\partial}{\partial t} \int \frac{1}{2} \mu H^2 dv \qquad (109)$$

4.11 Vetor de Poynting

$$\vec{P} = \vec{E} \times \vec{H} \tag{110}$$

4.12 Potência

• Potência média temporal:

$$\vec{P}_{ave} = \frac{1}{2} \text{Re}[\vec{E}_s \times \vec{H}_s^*] \tag{111}$$

• quantidade de potência que atravessa uma superfície:

$$P = \int \vec{P}_{ave} \cdot d\vec{S} \tag{112}$$

4.13 Incidência de Um Meio para Outro

4.13.1 Características da Incidência Normal

• Coeficiente de reflexão:

$$\Gamma = \frac{E_0^r}{E_0^i} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \tag{113}$$

• coeficiente de transmissão:

$$\tau = \frac{E_0^t}{E_0^i} = \frac{2\eta_2}{\eta_2 + \eta_1} \tag{114}$$

• relação entre os coeficientes de reflexão e transmissão:

$$\tau = 1 + \Gamma \tag{115}$$

• taxa de onda estacionária (ROE, COE, TOE, VSWR):

$$ROE = \frac{E_{max}}{E_{min}} = \frac{V_{max}}{V_{min}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$
 (116)

4.13.2 Características da Incidência Oblíqua

• Coeficiente de reflexão:

$$\Gamma_{TE} = \frac{E_0^r}{E_0^i} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$
(117)

$$\Gamma_{TM} = \frac{E_0^r}{E_0^i} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$
(118)

• coefiente de transmissão:

$$\tau_{TE} = \frac{E_0^t}{E_0^t} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$
 (119)

$$\tau_{TM} = \frac{E_0^t}{E_0^i} = \frac{2\eta_2 \cos \theta_t}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$
 (120)

• Leis de Snell da reflexão e da refração:

$$\theta_i = \theta_r \tag{121}$$

$$\frac{\beta_1}{\beta_2} = \frac{\sin \theta_t}{\sin \theta_i} \tag{122}$$

• ângulo de Brewster para polarização TM:

$$sen \theta_{BA} = \sqrt{\frac{\beta_2^2(\eta_2^2 - \eta_1^2)}{\eta_2^2 \beta_1^2 - \eta_1^2 \beta_2^2}}$$
(123)

Linhas de Transmissão 5

5.1 Parâmetros Distribuídos

Para cabos coaxiais:

$$R' = \frac{1}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right) \sqrt{\frac{\pi f \mu}{\sigma_c}} \tag{124}$$

$$L' = \frac{\mu}{2\pi} \ln\left(\frac{b}{a}\right) \tag{125}$$

$$G' = \frac{2\pi\sigma_d}{\ln(b/a)} \tag{126}$$

$$C' = \frac{2\pi\epsilon}{\ln(b/a)} \tag{127}$$

• para cabos de condutores gêmeos:

$$R' = \frac{1}{a} \sqrt{\frac{f\mu}{\sigma_c}} \tag{128}$$

$$L' = \frac{\mu}{\pi} \cosh^{-1} \left(\frac{d}{2a} \right) \tag{129}$$

$$G' = \frac{\pi \sigma_d}{\cosh^{-1}(d/2a)} \tag{130}$$

$$G' = \frac{\pi \sigma_d}{\cosh^{-1}(d/2a)}$$

$$C' = \frac{\pi \epsilon}{\cosh^{-1}(d/2a)}$$
(130)

5.2 Equações Gerais de Linha de Transmissão

• No domínio do tempo:

$$-\frac{\partial v(z,t)}{\partial z} = i(z,t)R' + L'\frac{\partial i(z,t)}{\partial t}$$
 (132)

$$-\frac{\partial i(z,t)}{\partial z} = v(z,t)G' + C'\frac{\partial v(z,t)}{\partial t}$$
 (133)

• no domínio da frequência (para ondas harmônicas):

$$\frac{\mathrm{d}V_s(z)}{\mathrm{d}z} = -(R' + j\omega L')I_s(z) \tag{134}$$

$$\frac{\mathrm{d}V_s(z)}{\mathrm{d}z} = -(R' + j\omega L')I_s(z)$$

$$\frac{\mathrm{d}I_s(z)}{\mathrm{d}z} = -(G' + j\omega C')V_s(z)$$
(134)

5.3 Equações de Onda Harmônicas no Tempo

• No domínio do tempo:

$$v(z,t) = V_0^+ e^{-\alpha z} \cos(\omega t - \beta z) + V_0^- e^{+\alpha z} \cos(\omega t + \beta z)$$
(136)

$$i(z,t) = I_0^+ e^{-\alpha z} \cos(\omega t - \beta z) + I_0^- e^{+\alpha z} \cos(\omega t + \beta z)$$
(137)

• no domínio da frequência:

$$V_s(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$
 (138)

$$I_s(z) = I_0^+ e^{-\gamma z} + I_0^- e^{+\gamma z}$$
 (139)

ou

$$V_{s}(z) = V_{0}^{+}e^{-\alpha z}e^{-j\beta z} + V_{0}^{-}e^{+\alpha z}e^{+j\beta z}$$

$$I_{s}(z) = I_{0}^{+}e^{-\alpha z}e^{-j\beta z} + I_{0}^{-}e^{+\alpha z}e^{+j\beta z}$$

$$(140)$$

$$(141)$$

$$I_s(z) = I_0^+ e^{-\alpha z} e^{-j\beta z} + I_0^- e^{+\alpha z} e^{+j\beta z}$$
(141)

Constantes de Propagação, Atenuação e de Fase 5.4

$$\gamma = \sqrt{(R' + j\omega L')(G' + j\omega C')} = \alpha + j\beta \tag{142}$$

Impedância Característica 5.5

$$Z_0 = \frac{V_0^+}{I_0^+} = -\frac{V_0^-}{I_0^-} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}}$$
(143)

5.6 Potência

• Potência média em linha sem perdas:

$$P_{ave}^{+}(z) = \frac{(V_0^{+})^2}{2Z_0} \tag{144}$$

• ganho de potência:

$$G_{(dB)} = 10 \log \left(\frac{P_{out}}{P_{in}} \right) \tag{145}$$

• relação entre decibéis e neper:

$$1Np = 8,686dB$$
 (146)

5.7 Coeficiente de Reflexão

• Na carga:

$$\Gamma_L = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0} \tag{147}$$

• em qualquer ponto:

$$\Gamma = \frac{V_0^- e^{+\gamma z}}{V_0^+ e^{-\gamma z}} = \Gamma_L e^{+2\gamma z} \tag{148}$$

• exemplo $\rightarrow \Gamma$ em $z = -\ell$:

$$\Gamma = \Gamma_L e^{-2\gamma\ell} \tag{149}$$

5.8 Taxa de Onda Estacionária de Tensão

$$ROTE = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \tag{150}$$

5.9 Impedância de Entrada

• Para o caso geral:

$$Z_{in} = Z_0 \frac{Z_L + Z_0 \operatorname{tgh}(\gamma \ell)}{Z_0 + Z_L \operatorname{tgh}(\gamma \ell)}$$
(151)

• para linha sem perdas:

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \operatorname{tg}(\beta \ell)}{Z_0 + jZ_L \operatorname{tg}(\beta \ell)}$$
(152)

A Definições Gerais

• Vetores em coordenadas cartesianas, cilíndricas e esféricas:

$$\vec{A}_{cart} = A_x \vec{a}_x + A_y \vec{a}_y + A_z \vec{a}_z$$

$$\vec{A}_{cil} = A_\rho \vec{a}_\rho + A_\theta \vec{a}_\theta + A_z \vec{a}_z$$

$$\vec{A}_{esf} = A_r \vec{a}_r + A_\theta \vec{a}_\theta + A_\phi \vec{a}_\phi$$

• produto Escalar (em coordenadas cartesianas):

$$\vec{A} \cdot \vec{B} = \left| \vec{A} \right| \left| \vec{B} \right| \cos \theta_{AB} = A_x B_x + A_y B_y + A_z B_z$$

• operador Nabla:

$$\nabla = \frac{\partial}{\partial x}\vec{\mathbf{a}}_x + \frac{\partial}{\partial y}\vec{\mathbf{a}}_y + \frac{\partial}{\partial z}\vec{\mathbf{a}}_z$$

- divergência:
 - coordenadas cartesianas

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

- coordenadas cilíndricas

$$\nabla \cdot \vec{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

coordenadas esféricas

$$\nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \operatorname{sen} \theta} \frac{\partial}{\partial \theta} (A_{\theta} \operatorname{sen} \theta) + \frac{1}{r \operatorname{sen} \theta} \frac{\partial A_{\phi}}{\partial_{\phi}}$$

- gradiente:
 - coordenadas cartesianas

$$\nabla V = \frac{\partial V}{\partial x}\vec{\mathbf{a}}_x + \frac{\partial V}{\partial y}\vec{\mathbf{a}}_y + \frac{\partial V}{\partial z}\vec{\mathbf{a}}_z$$

coordenadas cilíndricas

$$\nabla V = \frac{\partial V}{\partial \rho} \vec{\mathbf{a}}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \vec{\mathbf{a}}_{\phi} + \frac{\partial V}{\partial z} \vec{\mathbf{a}}_{z}$$

- coordenadas esféricas

$$\nabla V = \frac{\partial V}{\partial r} \vec{\mathbf{a}}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \vec{\mathbf{a}}_\theta + \frac{1}{r \operatorname{sen} \theta} \frac{\partial V}{\partial \phi} \vec{\mathbf{a}}_\phi$$

- rotacional:
 - coordenadas cartesianas

$$\nabla \times \vec{A} = \begin{vmatrix} \vec{a}_x & \vec{a}_y & \vec{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \\ \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \vec{a}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \vec{a}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \vec{a}_z$$

- coordenadas cilíndricas

$$\begin{split} \nabla \times \vec{A} &= \\ \left[\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \right] \vec{\mathbf{a}}_\rho + \left[\frac{\partial \rho}{\partial z} - \frac{\partial A_z}{\partial \rho} \right] \vec{\mathbf{a}}_\phi + \frac{1}{\rho} \left[\frac{\partial (\rho A_\phi)}{\partial \rho} - \frac{\partial A_\rho}{\partial \phi} \right] \vec{\mathbf{a}}_z \end{split}$$

- coordenadas esféricas

$$\nabla \times \vec{A} = \frac{1}{r \operatorname{sen} \theta} \left[\frac{\partial (\operatorname{sen} \theta A_{\phi})}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \phi} \right] \vec{a}_r + \frac{1}{r} \left[\frac{1}{\operatorname{sen} \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial (r A_{\phi})}{\partial r} \right] \vec{a}_{\theta} + \frac{1}{r} \left[\frac{\partial (r A_{\theta})}{\partial r} - \frac{\partial (A_r)}{\partial \theta} \right] \vec{a}_{\phi}$$

- laplaciano:
 - coordenadas cartesianas

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

- coordenadas cilíndricas

$$\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

coordenadas esféricas

$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \mathrm{sen} \, \theta} \frac{\partial}{\partial \theta} \left(\mathrm{sen} \, \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \mathrm{sen} \, ^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$

B Constantes

A Tabela 3 contém constantes físicas de interesse em Eletromagnetismo.

Tabala	2.	Constantes	ficience
- Laneia	.7.	Constantes	s fisicas

Constante	abeia 3: Constantes fisi Valor	Unidade
ϵ_0	$8.854 \times 10^{-12} \approx \frac{10^{-9}}{36\pi}$	F/m
μ_0	$4\pi \times 10^{-7}$	$ m H^{'}/m$
η_0	$120\pi \approx 377$	Ω
q	-1.602×10^{-19}	\mathbf{C}
c	2.998×10^{8}	m/s
g	9.78	$\mathrm{m/s^2}$
h	6.63×10^{-34}	$J \cdot s$
k	1.38×10^{-23}	J/K
N_A	6.02×10^{23}	${\rm \acute{a}tomos/mol}$

C Conversões

$$1 \text{ Np} = 8.686 \text{ dB}$$

D Propriedades de Alguns Materiais

Nas tabelas 4, 5, 6 e 7, listam-se propriedades de alguns materiais.

Tabela 4: Condutividade aproximada de alguns materiais (note-se que esta condutividade depende de impurezas, umidade e temperatura).

Material	$\sigma(S/m)$
Alumínio	3.8×10^{7}
Carbono	3×10^4
Cobre	5.8×10^{7}
Ouro	4.1×10^{7}
Grafite	7×10^7
Ferro	1×10^{7}
Chumbo	5×10^6
Nicrômio	1×10^6
Níquel	1.5×10^{7}
Prata	6.2×10^{7}
Solda	7×10^6
Aço inoxidável	1.1×10^{6}
Estanho	8.8×10^{6}
Tungstênio	1.8×10^7

Tabela 5: Propriedades para alguns dielétricos (note-se que para condutores, normalmente, $\epsilon_r = 1$).

Dielétrico	ϵ_r	$E_{br}(V/m)$	$\operatorname{tg}\delta$ em 1MHz	$\sigma(S/m)$
Ar	1.0005	3×10^{6}	≈ 0	≈ 0
Vidro	10	30×10^{6}	0.004	$\approx 10^{-12}$
Gelo	4.2		0.12	10^{-15}
Mica	5.4	200×10^{6}	0.0003	
Silício (puro)	11.8			4.4×10^{-4}
Solo (seco)	3-4		0.017	2×10^{-3}
Teflon	2.1	60×10^{6}	< 0.0002	10^{-15}
Água (destilada)	81		0.04	10^{-4}
Água do mar	72		0.9	5

Tabela 6: Permeabilidade relativa para alguns materiais ferromagnéticos (note-se que a permeabilidade dependerá fortemente da pureza dos materiais; ainda, lembra-se que a curva $B \times H$ não é linear na grande maioria dos materiais ferromagnéticos).

μ_r
250
600
3500
5000
10^{5}
10^{6}

Tabela 7: Condutividade e permissividade complexa de alguns materiais.

Material	$\sigma({ m S/m})$	ϵ_r'	ϵ_r''
Cobre	5.8×10^{7}	1	0
Água do mar	5	72	12
Vidro	10^{-12}	10	0.010

E Elementos Diferenciais

Nota: deve-se tomar muito cuidado e cautela ao se usar as relações seguintes; um esboço do elemento diferencial, conforme os eixos adotados para o problema, é altamente recomendado.

- Linha
 - coordenadas cartesianas

$$d\vec{L}_{1} = dx \vec{a}_{x}$$

$$d\vec{L}_{2} = dy \vec{a}_{y}$$

$$d\vec{L}_{3} = dz \vec{a}_{z}$$

$$d\vec{L}_{4} = -d\vec{L}_{1} = -dx \vec{a}_{x}$$

$$d\vec{L}_{5} = -d\vec{L}_{2} = -dy \vec{a}_{y}$$

$$d\vec{L}_{6} = -d\vec{L}_{3} = -dz \vec{a}_{z}$$

coordenadas cilíndricas

$$\begin{array}{rcl} \mathrm{d}\vec{L}_{1} & = & \mathrm{d}\rho\,\vec{a}_{\rho} \\ \mathrm{d}\vec{L}_{2} & = & \rho\,\mathrm{d}\phi\,\vec{a}_{\phi} \\ \mathrm{d}\vec{L}_{3} & = & \mathrm{d}z\,\vec{a}_{z} \\ \mathrm{d}\vec{L}_{4} & = & -\mathrm{d}\vec{L}_{1} = -\mathrm{d}\rho\,\vec{a}_{\rho} \\ \mathrm{d}\vec{L}_{5} & = & -\mathrm{d}\vec{L}_{2} = -\rho\,\mathrm{d}\phi\,\vec{a}_{\phi} \\ \mathrm{d}\vec{L}_{6} & = & -\mathrm{d}\vec{L}_{3} = -\mathrm{d}z\,\vec{a}_{z} \end{array}$$

- coordenadas esféricas

$$\begin{array}{rcl} \mathrm{d}\vec{\mathrm{L}}_1 &=& \mathrm{d}r\,\vec{\mathrm{a}}_r \\ \mathrm{d}\vec{\mathrm{L}}_2 &=& r\,\mathrm{d}\theta\,\vec{\mathrm{a}}_\theta \\ \mathrm{d}\vec{\mathrm{L}}_3 &=& r\,\mathrm{sen}\,\theta\,\mathrm{d}\phi\,\vec{\mathrm{a}}_\phi \\ \mathrm{d}\vec{\mathrm{L}}_4 &=& -\mathrm{d}\vec{\mathrm{L}}_1 = -\mathrm{d}r\,\vec{\mathrm{a}}_r \\ \mathrm{d}\vec{\mathrm{L}}_5 &=& -\mathrm{d}\vec{\mathrm{L}}_2 = -r\,\mathrm{d}\theta\,\vec{\mathrm{a}}_\theta \\ \mathrm{d}\vec{\mathrm{L}}_6 &=& -\mathrm{d}\vec{\mathrm{L}}_3 = -r\,\mathrm{sen}\,\theta\,\mathrm{d}\phi\,\vec{\mathrm{a}}_\phi \end{array}$$

E ELEMENTOS DIFERENCIAIS

- área
 - coordenadas cartesianas

$$\begin{array}{rcl} \mathrm{d}\vec{\mathrm{S}}_{1} & = & \mathrm{d}y\,\mathrm{d}z\,\vec{\mathrm{a}}_{x} \\ \mathrm{d}\vec{\mathrm{S}}_{2} & = & \mathrm{d}x\,\mathrm{d}z\,\vec{\mathrm{a}}_{y} \\ \mathrm{d}\vec{\mathrm{S}}_{3} & = & \mathrm{d}x\,\mathrm{d}y\,\vec{\mathrm{a}}_{z} \\ \mathrm{d}\vec{\mathrm{S}}_{4} & = & -\mathrm{d}\vec{\mathrm{S}}_{1} = -\mathrm{d}y\,\mathrm{d}z\,\vec{\mathrm{a}}_{x} \\ \mathrm{d}\vec{\mathrm{S}}_{5} & = & -\mathrm{d}\vec{\mathrm{S}}_{2} = -\mathrm{d}x\,\mathrm{d}z\,\vec{\mathrm{a}}_{y} \\ \mathrm{d}\vec{\mathrm{S}}_{6} & = & -\mathrm{d}\vec{\mathrm{S}}_{3} = -\mathrm{d}x\,\mathrm{d}y\,\vec{\mathrm{a}}_{z} \end{array}$$

coordenadas cilíndricas

$$\begin{split} \mathrm{d}\vec{\mathrm{S}}_1 &= \rho \, \mathrm{d}\phi \, \mathrm{d}z \, \vec{\mathrm{a}}_\rho \\ \mathrm{d}\vec{\mathrm{S}}_2 &= \mathrm{d}\rho \, \mathrm{d}z \, \vec{\mathrm{a}}_\phi \\ \mathrm{d}\vec{\mathrm{S}}_3 &= \rho \, \mathrm{d}\rho \, \mathrm{d}\phi \, \vec{\mathrm{a}}_z \\ \mathrm{d}\vec{\mathrm{S}}_4 &= -\mathrm{d}\vec{\mathrm{S}}_1 = -\rho \, \mathrm{d}\phi \mathrm{d}z \, \vec{\mathrm{a}}_\rho \\ \mathrm{d}\vec{\mathrm{S}}_5 &= -\mathrm{d}\vec{\mathrm{S}}_2 = -\mathrm{d}\rho \, \mathrm{d}z \, \vec{\mathrm{a}}_\phi \\ \mathrm{d}\vec{\mathrm{S}}_6 &= -\mathrm{d}\vec{\mathrm{S}}_3 = -\rho \, \mathrm{d}\rho \, \mathrm{d}\phi \, \vec{\mathrm{a}}_z \end{split}$$

coordenadas esféricas

$$\begin{split} \mathrm{d}\vec{\mathrm{S}}_1 &= r^2 \operatorname{sen} \theta \, \mathrm{d}\phi \, \mathrm{d}\theta \, \vec{\mathrm{a}}_r \\ \mathrm{d}\vec{\mathrm{S}}_2 &= r \operatorname{sen} \theta \, \mathrm{d}r \, \mathrm{d}\phi \, \vec{\mathrm{a}}_\theta \\ \mathrm{d}\vec{\mathrm{S}}_3 &= r \, \mathrm{d}r \, \mathrm{d}\phi \, \vec{\mathrm{a}}_\phi \\ \mathrm{d}\vec{\mathrm{S}}_4 &= -\mathrm{d}\vec{\mathrm{S}}_1 = -r^2 \operatorname{sen} \theta \, \mathrm{d}\phi \, \mathrm{d}\theta \, \vec{\mathrm{a}}_r \\ \mathrm{d}\vec{\mathrm{S}}_5 &= -\mathrm{d}\vec{\mathrm{S}}_2 = -r \operatorname{sen} \theta \, \mathrm{d}r \, \mathrm{d}\phi \, \vec{\mathrm{a}}_\theta \\ \mathrm{d}\vec{\mathrm{S}}_6 &= -\mathrm{d}\vec{\mathrm{S}}_3 = -r \, \mathrm{d}r \, \mathrm{d}\phi \, \vec{\mathrm{a}}_\phi \end{split}$$

F TRANSFORMAÇÃO ENTRE SISTEMAS DE COORDENADAS

- volume
 - coordenadas cartesianas

$$dv = dx dy dz$$

coordenadas cilíndricas

$$dv = \rho d\rho d\phi dz$$

- coordenadas esféricas

$$dv = r^2 \operatorname{sen} \theta \, dr \, d\theta \, d\phi$$

F Transformação entre Sistemas de Coordenadas

• Cartesianas para cilíndricas

$$P(x, y, z) \rightarrow P(\rho, \phi, z)$$

$$\rho = \sqrt{x^2 + y^2}$$

$$\phi = \arctan\left(\frac{y}{x}\right)$$

$$z = z$$

• cilíndricas para cartesianas

$$P(\rho, \phi, z) \rightarrow P(x, y, z)$$

$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$
$$z = z$$

• cartesianas para esféricas

$$P(x, y, z) \rightarrow P(r, \theta, \phi)$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \arccos\left(\frac{z}{r}\right)$$

$$\phi = \arctan\left(\frac{y}{r}\right)$$

• esféricas para cartesianas

$$P(r, \theta, \phi) \rightarrow P(x, y, z)$$

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

G Derivadas Mais Comuns

Dadas as funções u=f(x) e v=g(x) e as constantes a, c, m e n, a derivada de y,y', é apresentada na Tabela 8. Na Tabela 9 têm-se as derivadas quando y for uma função hiperbólica.

Nota: para obter as derivadas das funções elementares, basta fazer u=x e u'=1. Por exemplo:

$$y = \sqrt[n]{u} \implies y = \sqrt{x} \implies y' = \frac{1}{2\sqrt{x}}$$

Tabela 8: Tabela de derivadas de funções comuns.

	8: Tabela de derivadas de funço	
Função	Derivada	$Condiç\~ao$
y = c	y'=0	$c \in \mathbb{R}$
y = x	y'=1	
$y = u \pm v$	$y' = u' \pm v'$	
y = uv	y' = u'v + uv'	
y = cu	y' = cu'	$c \in \mathbb{R}$
$y = \frac{u}{v}$	$y' = \frac{u'v - uv'}{v^2}$	
$y = \frac{c}{v}$	$y' = -\frac{\mathrm{c}v'}{v^2}$	$c \in \mathbb{R}$
$y = u^v$	$y' = v \cdot u^{v-1} \cdot u' + u^v \cdot \ln u \cdot v'$	u > 0
$y = u^{\mathrm{m}}$	$y' = \mathbf{m} \cdot u^{\mathbf{m} - 1} \cdot u'$	$m \in \mathbb{R}$
$y = \sqrt[n]{u}$	$y' = \frac{u'}{n^{\frac{1}{N}/u^{n-1}}}$	$n \in \mathbb{N}^* - \{1\}$
$y = a^u$	$y' = \overset{\text{n V } a}{\text{u}} u' \cdot \ln a$	$a \in \mathbb{R}, \ 0 < a \neq 1$
$y = e^u$	$y' = u' \cdot e^u$	
$y = \log_{\mathbf{a}} u$	$y' = \frac{u'}{u:\ln a} = \frac{u'}{u} \log_a e$	$a \in \mathbb{R}, \ 0 < a \neq 1$
$y = \ln u$	$y' = \frac{u'}{u}$	
$y = \operatorname{sen} u$	$y' = u' \cdot \cos u$	
$y = \cos u$	$y' = -u' \cdot \operatorname{sen} u$	
v C	$y' = u' \cdot \sec^2 u$	
•	$y' = -u' \cdot \operatorname{cossec}^2 u$	
0	$y' = u' \cdot \sec u \cdot \operatorname{tg} u$	
	$y' = -u' \cdot \operatorname{cossec} u \cdot \operatorname{cot} u$	
y = arcsen u	$y' = \frac{u'}{\sqrt{1-u^2}}$	
$y = \arccos u$	$y' = -\frac{u'}{\sqrt{1-u^2}}$	
$y = \operatorname{arctg} u$	$y' = \frac{u'}{\sqrt{1 - u^2}}$ $y' = -\frac{u'}{\sqrt{1 - u^2}}$ $y' = \frac{u}{1 + u^2}$	
$y = \operatorname{arccotg} u$	$y' = -\frac{u'}{1+u^2}$	
$y = \operatorname{arcsec} u$	$y' = \frac{\dot{y}'}{y_1, y_2 - 1}$	
$y = \operatorname{arccotg} u$ $y = \operatorname{arcsec} u$ $y = \operatorname{arccossec} u$	$y' = -\frac{u' \cdot v \cdot u^{-1}}{u \cdot \sqrt{u^2 - 1}}$	

Tabela 9: Tabela de derivadas de funções hiperbólicas.

Função	Derivada	Condição
		Conaição
$y = \sinh u$	$y' = u' \cdot \cosh u$	
$y = \cosh u$	$y' = u' \cdot \sinh u$	
$y = \operatorname{tgh} u$	$y' = u' \cdot \operatorname{sech}^2 u$	
$y = \operatorname{sech} u$	$y' = -u' \cdot \operatorname{sech} u \cdot \operatorname{tgh} u$	
$y = \operatorname{cossech} u$	$y' = -u' \cdot \operatorname{cossech} u \cdot \operatorname{cotg} u$	
$y = \cot g u$	$y' = -u' \cdot \operatorname{cossech}^2 u$	
$y = \arg \sinh u$	$y' = \frac{u'}{\sqrt{1+u^2}}$	
$y = \arg \cosh u$	$y' = \frac{u'}{\sqrt{u^2 - 1}}$	u > 1
$y = \arg \operatorname{tgh} u$	$y' = \frac{u'}{1 - u^2}$	u < 1
$y = \operatorname{arg} \operatorname{sech} u$	$y' = -\frac{u'}{u\sqrt{1-u^2}}$	0 < v < 1
$y = \arg \operatorname{cossech} u$	$y' = -\frac{u'}{ u \sqrt{1+u^2}}$	$v \neq 0$
$y = \operatorname{arg} \operatorname{cotg} u$	$y' = \frac{u'}{1 - u^2}$	u > 1

H Integrais Indefinidas Mais Comuns

Dadas as funções u=f(x) e v=g(x), as constantes a, c, m, n e a constante de integração C, apresentam-se as integrais de diversas funções na Tabela 10.

Nota: para obter as integrais das funções elementares, basta fazer u = x e du = dx, como, por exemplo:

$$\int \frac{\mathrm{d}u}{u} \Rightarrow \int \frac{\mathrm{d}x}{x} = \ln|x| + C$$

ou, então, definir u e encontrar du, fazendo os devidos ajustes para não alterar a expressão original, como no exemplo:

$$\int \operatorname{sen}(2x) \, \mathrm{d}x$$

$$u = 2x$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 2 \implies \mathrm{d}u = 2 \cdot \mathrm{d}x$$

$$\therefore \int \operatorname{sen} u \, \mathrm{d}u = \int 2 \operatorname{sen}(2x) \, \mathrm{d}x$$

$$\therefore \int \operatorname{sen}(2x) \, \mathrm{d}x = \frac{1}{2} \int \operatorname{sen} u \, \mathrm{d}u = -\frac{1}{2} \cos(u) = -\frac{1}{2} \cos(2x)$$

Tabela 10: Tabela de integrais indefinidas (notar que as duas últimas equações não foram generalizadas, para simplificar).

$$\int u \, dv = uv - \int v \, du$$

$$\int u^n \, du = \frac{1}{n+1} u^{n+1} + C$$

$$\int \frac{du}{u} = \ln |u| + C$$

$$\int e^u \, du = e^u + C$$

$$\int a^u \, du = \frac{1}{\ln a} a^u + C$$

$$\int \sin u \, du = -\cos u + C$$

$$\int \cos u \, du = \sin u + C$$

$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln \left(u + \sqrt{u^2 + a^2} \right) + C$$

$$\int \frac{du}{(u^2 + a^2)^{3/2}} = \frac{u}{a^2 \sqrt{u^2 + a^2}} + C$$

$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} \left(a \cos bx + b \sin bx \right) + C$$

$$\int e^{ax} \cos (c + bx) dx = \frac{e^{ax}}{a^2 + b^2} \left[a \sin (c + bx) - b \cos (c + bx) \right] + C$$

I Produção

Autor: Prof. Marcelo P. Trevizan¹

Editor: Prof. Marcelo P. Trevizan

Revisores: Prof. Arnaldo Megrich (da versão de 2011)², Prof. Marcelo P.

Trevizan (da versão de 2011 e da atual)

Livro de Referência: Wentworth [2007]

J Histórico

v. 1.0.0 (julho de 2021)

- Complementações de leiaute.
- Nova redação para a seção de apresentação.
- Alteração da licença.
- Retiradas as informações para obtenção do código-fonte e compilação do material.
- Algumas correções de pormenores.
- Publicação em conjunto com a *Engenhartis*.

v. 0.1.0 (março de 2011)

Versão publicada anterior.

K Licença

Este documento é disponibilizado sob a licença abaixo descrita.

¹Professor da Escola de Engenharia Mauá.

²Professor da Escola de Engenharia Mauá e da Universidade São Judas Tadeu.

Atribuição-CompartilhaIgual 4.0 Internacional (CC BY-SA 4.0)

Esta licença é aceita para trabalhos culturais livres. Com ela, pode-se:

Compartilhar: copiar e redistribuir o material em qualquer suporte ou formato.

Adaptar: remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.

Sob as seguintes condições:

Atribuição: você deve dar o crédito apropriado, prover um *link* para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.

CompartilhaIgual: Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.

Sem restrições adicionais: Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.

Nota

NENHUMA GARANTIA É FORNECIDA. Os materiais são disponibilizados "no estado em que se encontram" ("as-is") e "como disponível" ("as-available"). USE-OS SOB SEUS PRÓ-PRIOS RISCOS. Veja o texto da licença para mais informações.

Mais Informações sobre a Licença

O resumo da licença pode ser obtido em:

Português: https://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR

Inglês: https://creativecommons.org/licenses/by-sa/4.0/deed.en

A licença completa pode ser obtida em:

Português: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pt

Inglês: https://creativecommons.org/licenses/by-sa/4.0/legalcode

L Onde Adquirir Este Material

O corrente material foi compilado para folha A4 frente e verso. Uma cópia em PDF poderá ser baixada no seguinte endereço, onde também encontra-se a versão para folha A5 frente e verso, além de outros materiais:

https://www.engenhartis.com.br/materiais/materiais-abertos

Referências

Stuart M. Wentworth. *Eletromagnetismo Aplicado*. Bookman, 2007. ISBN 978-85-7780-290-6. i, 33