

# **Pattern Recognition**

**Lecture 4 : Support Vector Machine** 

Dr. Andreas Fischer andreas.fischer@unifr.ch

## **Support Vector Machine (SVM)**

- Discriminative classifier
- Statistical representation: X = R<sup>n</sup>
- SVM assumes linear boundaries and optimizes hyperplanes.
- In the following, we will distinguish the following cases:
  - Two linearly separable classes
  - Two non-linearly separable classes
  - Multi-Class SVM





# **Two Linearly Separable Classes**

#### **Goal of SVM**

- Consider two classes that are linearly separable.
- The goal of SVM is to find the hyperplane that:
  - Has the same distance to both classes
  - Maximizes the margin, that is the distance to both classes
- Link to Bayes classifier: hyperplane boundary was optimal for normal distribution and two classes with equal covariance.



## **Hyperplane Properties**

We consider a hyperplane in R<sup>n</sup>:

$$w'x + b = \sum_{i=1}^{n} w_i x_i + b = 0$$

Distance of the hyperplane to a vector x:

$$d_{(w,b)}(x) = \frac{|w'x + b|}{\|w\|}$$

- Two parameters (w,b):
  - w is the normal vector orthogonal to the hyperplane with length:

$$\|w\| = \sqrt{\sum_{i=0}^n w_i^2}$$

b corresponds with the distance of the hyperplane to the origin:

$$d_{(w,b)}(0) = \frac{|b|}{\|w\|}$$

#### **Same Distance To Both Classes**

• Training set S =  $\{(x_1, y_1), ..., (x_N, y_N)\}$  with

$$y_i = \begin{cases} -1 \Leftrightarrow x_i \in C_1 \\ +1 \Leftrightarrow x_i \in C_2 \end{cases}$$

Classify all samples correctly:

$$y_i(w'x_i+b) \ge 0$$

Same distance to both classes in canonical form:

$$\min_{x_i \in C_1} |w' x_i + b| = \min_{x_i \in C_2} |w' x_i + b| = 1$$
  
$$\Rightarrow y_i(w' x_i + b) \ge 1$$

- $h_1$ :  $x_1 + x_2 0.5 = 0 / h_2$ :  $2x_1 + 2x_2 1 = 0 / h_3$ :  $3x_1 + 3x_2 1 = 0$
- Both h<sub>1</sub> and h<sub>2</sub> have the same distance from both classes. The distance to class C<sub>1</sub> (origin) is:  $\frac{|b|}{\|w\|} = \frac{0.5}{\sqrt{2}} = \frac{1}{\sqrt{8}}$
- However, only h<sub>2</sub> is in canonical form.



### **Support Vectors and Margin**

- Select vectors  $\mathbf{x}^{(-1)} \in \mathbf{C}_1$  and  $\mathbf{x}^{(+1)} \in \mathbf{C}_2$  with minimum distance of the hyperplane, so-called *support vectors*.
  - Support vectors  $w'x^{(-1)} + b = -1$  lie in the hyperplane

$$h_1: w'x^{(-1)} + (b+1) = 0$$

Support vectors w'x<sup>(+1)</sup> + b = 1 lie in the hyperplane

$$h_2: w'x^{(+1)} + (b-1) = 0$$

• The *margin* is the distance between  $h_1$  and  $h_2$ . For example, the distance of  $h_2$  to the support vector  $\mathbf{x}^{(-1)}$ :

$$d_{(w,b-1)}(x^{(-1)}) = \frac{\left|wx^{(-1)} + b - 1\right|}{\|w\|} = \frac{\left|-1 - 1\right|}{\|w\|} = \frac{2}{\|w\|}$$

### **Maximum Margin Hyperplane**

- Accordingly, the problem of SVM can be stated as:
  - Find the hyperplane (w,b) that maximizes the margin

$$\frac{2}{\|w\|}$$

• Under the condition that, for  $1 \le i \le N$ :

$$y_i(w'x_i+b) \ge 1$$

• Can be solved, for example, by means of quadratic programming (not shown in this lecture). Let  $x^{(-1)}$  and  $x^{(+1)}$  be arbitrary support vectors. Then the optimal parameters (w\*,b\*) are:

$$w^* = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$b^* = -\frac{1}{2} w^* \left( x^{(-1)} + x^{(+1)} \right)$$

■ The coefficients  $α_i ≥ 0$  found by the optimization method are nonnegative Lagrange multipliers with  $∑α_iy_i=0$ . They are non-zero only for support vectors, hence only support vectors are relevant for the solution.

### **Geometric Interpretation**

- Find the convex hull for both classes.
- Find a straight segment with minimum length between the convex hulls.
- The maximum margin hyperplane cuts this segment in the middle and is orthogonal to it.



 4 support vectors (57%). The same result would be obtained when removing all non-support vectors from the training set.

| $x_2$ | y                              |
|-------|--------------------------------|
| 1     | -1                             |
| 3     | 1                              |
| 3     | 1                              |
| 1     | -1                             |
| 2.5   | 1                              |
| 2.5   | -1                             |
| 3     | -1                             |
|       | 1<br>3<br>3<br>1<br>2.5<br>2.5 |



# **Two Non-Linearly Separable Classes**

#### **Slack Variables**

- Introduce so-called slack variables  $\xi_i \ge 0$  (i=1,...,N) that correspond to the misclassification error.
- $\xi_i > 1$  if the sample  $x_i$  of the training set is misclassified.



#### **General SVM**

- In this general case, the problem of SVM can be stated as:
  - Find the hyperplane (w,b) that minimizes

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i$$

• Under the condition that, for  $1 \le i \le N$ :

$$y_i(w'x_i+b) \ge 1-\xi_i$$

- It can be solved with the same optimization methods.
  - Minimization of ||w||<sup>2</sup> / 2 corresponds to maximization of the margin.
  - Additionally, the classification error  $\sum \xi_i$  is minimized.
- The parameter C ≥ 0 balances the two criteria. It is often optimized experimentally with respect to the classification accuracy achieved on independent validation samples.

#### **Cross-Validation**

- To avoid an overfitting to the training samples, which reduces the generalization capability of a classifier, cross-validation is often used to optimize system parameters such as K for KNN and C for SVM.
- K-fold cross-validation:
  - Split the training samples into K independent parts and use each part once for testing; compute the average accuracy.
  - Experiment with different values for the system parameter and choose the one that achieves the best average accuracy.
  - Leave-one-out method: K equals the number of training samples.
     This method is particularly interesting for small data sets.



Parameter C=1: 3 misclassifications.



Parameter C=10<sup>5</sup>: 2 misclassifications.



Parameter C=10<sup>-8</sup>: 4 misclassifications.



# **Multi-Class SVM**

#### One vs One

 Each pair of classes is separated by means of a hyperplane. That is, compute m(m-1) / 2 hyperplanes d<sub>ii</sub>(x) such that

$$x \in \begin{cases} C_i \Leftrightarrow d_{ij}(x) > 0 \\ C_j \Leftrightarrow d_{ij}(x) < 0 \end{cases}$$

The classification rule is:

$$x \in C_i \Leftrightarrow d_{ij}(x) > 0 \text{ for all } j = 1, ..., m; j \neq i$$

- However, there are regions that are not assigned to a class:
  - If  $d_{ii}(x) > 0$  for some but not for all other classes.
- A possible resolution is to select the class with the most votes among the m(m-1) / 2 decisions.



### One vs All (with Rejection)

Separate each class from all others. That is, compute m hyperplanes d<sub>i</sub>(x) such that:

$$x \in \begin{cases} C_i \Leftrightarrow d_i(x) > 0 \\ \overline{C}_i \Leftrightarrow d_i(x) < 0; \overline{C}_i = \{C_1, \dots, C_m\} \setminus C_i \end{cases}$$

A possible classification rule is:

$$x \in C_i \Leftrightarrow d_i(x) > 0$$
 and  $d_j(x) < 0$  for all  $j = 1, ..., m; j \neq i$ 

- However, there are regions that are not assigned to a class:
  - If d<sub>i</sub>(x) < 0 for all classes.</p>
  - If d<sub>i</sub>(x) > 0 for more than one class.



## One vs All (without Rejection)

A unique assignment is obtained with the maximum rule:

$$x \in C_i \Leftrightarrow d_i(x) > d_j(x)$$
 for all  $j = 1, ..., m; j \neq i$ 

This decision rule is a special case of the One vs One rule with

$$d_{ij}(x) = d_i(x) - d_j(x)$$



# **Kernel SVM**

#### **Brief Introduction to Kernel Methods**

- For a comprehensive introduction, see for example:
   J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
   Cambridge University Press, 2004.
- Idea: Problem might be simpler to solve in a different, possibly higher dimensional feature space.
- Example in R<sup>2</sup>:

$$d(x) = -x_1^2 - x_2^2 + 1 = 0$$

$$x \in \begin{cases} C_1 \Leftrightarrow d(x) \ge 0 \\ C_2 \Leftrightarrow d(x) < 0 \end{cases}$$

• Map the features  $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ 

$$\varphi(x) = (x_1^2, x_2^2)$$

$$\hat{d}(x) = -\hat{x}_1 - \hat{x}_2 + 1 = 0$$



 In the new feature space, the classes are linearly separable. Note that in this example the dimension of the new feature space is still 2.

#### **Kernel Trick**

- Avoid an explicit, possibly costly mapping into the new feature space.
- Instead, calculate only the dot product:

$$\kappa(x, y) = \langle \varphi(x), \varphi(y) \rangle$$



#### Kernelization

- Theorem: For every valid kernel function such a feature space exists.
- Replace standard dot product with any valid kernel to solve the problem implicitly in a different feature space.
- Algorithms that can be expressed in terms of dot products only are called *kernelizable*.
- KNN is kernelizable:

$$\begin{aligned} & \|\varphi(x) - \varphi(y)\|^2 = \langle \varphi(x) - \varphi(y), \varphi(x) - \varphi(y) \rangle \\ &= \langle \varphi(x), \varphi(x) \rangle + \langle \varphi(y), \varphi(y) \rangle - 2\langle \varphi(x), \varphi(y) \rangle \\ &= \kappa(x, x) + \kappa(y, y) - 2\kappa(x, y) \end{aligned}$$

#### **Kernel SVM**

SVM is kernelizable:

$$w\varphi(x) + b = \left(\sum_{i=1}^{N} \alpha_{i} y_{i} \varphi(x_{i})\right) \varphi(x) + b$$

$$= \sum_{i=1}^{N} \alpha_{i} y_{i} \langle \varphi(x_{i}), \varphi(x) \rangle + b$$

$$= \sum_{i=1}^{N} \alpha_{i} y_{i} \kappa(x_{i}, x) + b$$

#### **Common Kernels**

Common kernels include:

$$\kappa(x,y) = \langle x,y \rangle$$
 linear kernel 
$$\kappa(x,y) = (\gamma \langle x,y \rangle + r)^d, \ \gamma > 0 \text{ polynomial kernel}$$
 
$$\kappa(x,y) = \exp(-\gamma ||x-y||^2), \ \gamma > 0 \text{ RBF (Gaussian) kernel}$$
 
$$\kappa(x,y) = \tanh(\gamma \langle x,y \rangle + r) \text{ sigmoid kernel}$$

- One of the most frequently used kernels for SVM is the radial basis function (RBF) kernel. Note that the kernel parameter γ > 0 has to be optimized carefully together with the SVM parameter C.
- Fundamental property of non-linear kernel SVM: The linear class boundary in the implicit feature space H corresponds with a non-linear class boundary in the original feature space R<sup>n</sup>.

