LSTM MEMORY BLOCK: ALL TOGETHER

GATED RECURRENT UNIT

GATED RECURENT UNIT (GRU)

- Proposed by Cho et al. [2014].
- It is similar to LSTM in using gating functions, but differs from LSTM in that it doesn't have a memory cell.
- Each GRU consists of:
 - update gate
 - reset get
- Model parameters:
 - λ_t is the input at time t
 - Weight matrices: W_z , W_r , W_H , U_z , U_r , U_H

$$z_{t} = \sigma(W_{z}x_{t} + U_{z}h_{t-1})$$

$$r_{t} = \sigma(W_{r}x_{t} + U_{r}h_{t-1})$$

$$H_{t} = \tanh(W_{H}x_{t} + U_{H}(r_{t} \cdot h_{t-1}))$$

$$h_{t} = (1 - z_{t})h_{t-1} + z_{t}H_{t}$$

 x_t

GRU: UPDATE GATE

• Update gate z_t decides how much unit update its activation or content

When r_t close to 0 (gate off), it makes the unit act as it's reading the first symbol from the input sequence, allowing it to forget previously computed states

GRU: CANDIDATE ACTIVITON

• Update gate z_t decides how much unit update its activation or content.

Activation at time t is the <u>linear</u> interpolation between previous activations h_{t-1} and candidate activation H_t

GRU: ALL TOGETHER

