Package 'dartle'

June 20, 2017

Type Package

Version 0.1.0

Title Air Quality Model Benchmarking

Author Giovanni Bonafè			
Maintainer Giovanni Bonafè < giovanni.bonafe@arpa.fvg.it>			
Description A toolkit of functions for air quality model benchmarking, inspired by the DELTA tool (JRC-IES) and the work of the FAIRMODE WP1.			
License MIT License + file LICENSE			
Encoding UTF-8			
LazyData true			
RoxygenNote 6.0.1			
Depends R (>= 2.10)			
Imports stats, dplyr, RcppRoll, data.table, ggplot2, tidyr			
Suggests knitr, rmarkdown			
VignetteBuilder knitr			
NeedsCompilation no			
R topics documented:			
daily_statistics			
indicators			
mod.data			
mod_uncertainty			
MPI			
MQI			
multiplot			
obs.no2			
obs.pm10			
obs.pm25			
obs_uncertainty			
parameters			
summary_plot			
target_plot			
Index 17			

2 indicators

Description

dMaxAvg8h: daily maximum of 8h rolling mean

dMean: daily average

Usage

```
dMaxAvg8h(data, value, time = "Time", point = "Point", req = 18)
dMean(data, value, time = "Time", point = "Point", req = 18)
```

Arguments

data	data frame
value	name of variable to be processed
time	column containing time (POSIXct)
point	column containing point ID
req	minimum valid required 8h averages to compute their daily max

Value

```
dMaxAvg8h: daily maxima of 8h rolling mean, for each point dMean: daily averages, for each point
```

indicators

Core Set of Statistical Indicators

Description

RMSE: Root Mean Square Error

R: Correlation coefficient

BIAS: Bias

NMB: Normalised Mean Bias

NMSD: Normalised Mean Standard Deviation
CRMSE: Centered Root Mean Square Error

indicators 3

Usage

RMSE (obs, mod)

R(obs, mod)

BIAS (obs, mod)

NMB (obs, mod)

NMSD (obs, mod)

CRMSE (obs, mod)

Arguments

obs numeric vector of observed values
mod numeric vector of modelled values

Value

RMSE: Root Mean Square Error as in eq.1, tab.1, p.18 in Janssen et al., 2017

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (M_i - O_i)^2}$$

R: Correlation coefficient as in eq.2, tab.1, p.18 in Janssen et al., 2017

$$R = \frac{\sum_{i=1}^{N} (O_i - \bar{O})(M_i - \bar{M})}{\sqrt{\sum_{i=1}^{N} (O_i - \bar{O})^2} \sqrt{\sum_{i=1}^{N} (M_i - \bar{M})^2}}$$

BIAS: bias as in eq.3, tab.1, p.18 in Janssen et al., 2017

$$BIAS = \bar{M} - \bar{O}$$

NMB: Normalised Mean Bias as in eq.3, tab.1, p.18 in Janssen et al., 2017

$$NMB = \frac{\bar{M} - \bar{O}}{\bar{O}}$$

NMSD: Normalised Mean Standard Deviation as in eq.4, tab.1, p.18 in Janssen et al., 2017

$$NMSD = \frac{\sigma_M - \sigma_O}{\sigma_O}$$

CRMSE: Centered Root Mean Square Error as in eq.31, p.29 in Janssen et al., 2017

$$CRMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} [(M_i - \bar{M}) - (O_i - \bar{O})]^2}$$

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

4 mod_uncertainty

mod.data

Forecasted concentrations

Description

A dataset containing hourly concentrations of PM10, PM2.5, NO2 and ozone forecasted at background sites in the region of Friuli Venezia Giulia (Italy)

Usage

```
mod.data
```

Format

A data frame with 658944 rows and 4 variables:

```
Time time in POSIXct format
```

```
Var "c_PM10" (PM10), "c_PM25" (PM2.5), "c_NO2" (NO2) or "c_O3" (ozone)
```

Point station code

Value concentration (in $\mu g/m^3$)

Source

```
http://www.arpa.fvg.it/
```

mod_uncertainty

Model Uncertainty

Description

```
RMS_U_mod: RMS uncertainty for model time series U_mod_year: Uncertainty for model yearly averages
```

Usage

```
RMS_U_mod(obs, mod, pollutant, ...)
U_mod_year(obs, mod, pollutant, ...)
```

Arguments

```
numeric vector of observed values (yearly averages in U_mod_year)

mod numeric vector of modelled values (yearly averages in U_mod_year)

pollutant one of "NO2", "O3", "PM10", "PM2.5"

... arguments to be passed to U_obs_95 in RMS_U_mod, to U_obs_95_year in U_mod_year
```

MPI 5

Value

RMS_U_mod: root mean square uncertainty for model time series, as in eq.23, p.24 in Janssen et al., 2017

$$RMS_{U_M} = RMS_U \sqrt{\left(\frac{RMSE}{RMS_U}\right)^2 - 1}$$

MQI_ts: uncertainty for model yearly averages, as in eq.24, p.24 in Janssen et al., 2017

$$U(\bar{M}) = U_{95}(\bar{O})\sqrt{\left(\frac{BIAS}{U_{95}(\bar{O})}\right)^2 - 1}$$

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

MPI

Modelling Performance Indicators

Description

```
MPI_bias: MPI for bias
```

MPI_corr_time: temporal MPI for correlation

MPI_sdev_time: temporal MPI for standard deviation

MPI_corr_space: spatial MPI for correlation

MPI_sdev_space: spatial MPI for standard deviation

MPI_perc: MPI for high percentile values

Usage

```
MPI_bias(obs, mod, pollutant, beta = 2, ...)
MPI_corr_time(obs, mod, pollutant, beta = 2, ...)
MPI_sdev_time(obs, mod, pollutant, beta = 2, ...)
MPI_corr_space(obs, mod, pollutant, beta = 2, ...)
MPI_sdev_space(obs, mod, pollutant, beta = 2, ...)
MPI_perc(obs, mod, pollutant, beta = 2, ...)
```

Arguments

```
obs numeric vector of observed values (yearly averages in MPI_*_space) mod numeric vector of modelled values (yearly averages in MPI_*_space) pollutant one of "NO2", "O3", "PM10", "PM2.5" beta parameter \beta (default is 2) ... arguments to be passed to RMS_U_obs in MPI_bias and MPI_*_time, to U_obs_95_year in MPI_*_space, to U_obs_95 in MPI_perc
```

6 MQI

Value

MPI_bias: Modelling Performance Indicator for the bias, as in eq.26, tab.4, p.27 in Janssen et al., 2017

$$MPI_{bias} = \frac{BIAS}{\beta RMS_U}$$

MPI_corr_time: temporal Modelling Performance Indicator for the correlation, as in eq.27, tab.4, p.27 in Janssen et al., 2017

$$MPI_{corr,time} = \frac{1}{\left(R + \frac{\beta^2 RMS_U^2}{2\sigma_O \sigma_M}\right)}$$

MPI_sdev_time: temporal Modelling Performance Indicator for the standard deviation, as in eq.28, tab.4, p.27 in Janssen et al., 2017

$$MPI_{s.d.,time} = \frac{\sigma_M - \sigma_O}{\beta RMS_U}$$

MPI_corr_space: spatial Modelling Performance Indicator for the correlation, as in eq.29, tab.5, p.27 in Janssen et al., 2017

$$MPI_{corr,space} = \frac{1}{\left(R + \frac{\beta^2 RMS_{\tilde{U}}^2}{2\sigma_{\tilde{O}}\sigma_{\tilde{M}}}\right)}$$

MPI_sdev_space: spatial Modelling Performance Indicator for the standard deviation, as in eq.30, tab.5, p.27 in Janssen et al., 2017

$$MPI_{s.d.,space} = \frac{\sigma_{\bar{M}} - \sigma_{\bar{O}}}{\beta RMS_{\bar{U}}}$$

MPI_perc: Modelling Performance Indicator for high percentile values, as in eq.35, p.35 in Janssen et al., 2017

$$MPI_{perc} = \frac{M_{perc} - O_{perc}}{\beta U_{95}(O_{perc})}$$

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

MQI

Modelling Quality Indicators

Description

MQI_ts: MQI for a time series (vector)

MQI_ts_synth: MQI for a time series (synthetic scalar)

MQI_year: MQI for yearly average

multiplot 7

Usage

```
MQI_ts(obs, mod, pollutant, beta = 2, ...)
MQI_ts_synth(obs, mod, pollutant, beta = 2, ...)
MQI_year(obs, mod, pollutant, beta = 2, ...)
```

Arguments

numeric vector of observed values (yearly averages in MQI_year) mod numeric vector of modelled values (yearly averages in MQI_year) pollutant one of "NO2", "O3", "PM10", "PM2.5" beta parameter β (default is 2) arguments to be passed to U_obs_95 in MQI_ts and MQI_ts_synth, to U_obs_95_year in MQI_year

Value

MQI_ts: Modelling Quality Indicator for a time series, as in eq.15, p.22 in Janssen et al., 2017

$$MQI = \frac{|O_i - M_i|}{\beta U_{95}(O_i)}$$

 MQI_ts_synth : scalar synthetic Modelling Quality Indicator for a time series, as in eq.17, p.23 in Janssen et al., 2017

$$MQI = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_i - M_i)^2}}{\beta \sqrt{\frac{1}{N} \sum_{i=1}^{N} U_{95}(O_i)^2}}$$

MQI_year: Modelling Quality Indicator for yearly average, as in eq.18, p.23 in Janssen et al., 2017

$$MQI = \frac{|\bar{O} - \bar{M}|}{\beta U_{95}(\bar{O})}$$

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

multiplot

Multiple plot function

Description

Multiple plot function

Usage

```
multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
```

8 obs.no2

Arguments

... ggplot objects to plot

plotlist list of ggplot objects to plot cols number of columns in layout

layout a matrix specifying the layout. If present, 'cols' is ignored. If the layout is some-

thing like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in the upper left, 2 will go in the upper right, and 3 will go all the way

across the bottom.

Value

a ggplot object

obs.no2

Observed NO2 concentrations

Description

A dataset containing hourly concentrations of NO2 measured at background sites in the region of Friuli Venezia Giulia (Italy)

Usage

```
obs.no2
```

Format

A data frame with 202752 rows and 8 variables:

Time time (POSIXct format)

ID station code

Station station name

Value concentration (in $\mu g/m^3$)

ZoneType "URB" (urban), "SBR" (suburban) or "RUR" (rural)

StationType always "BKG" (background)

Lat latitude

Lon longitude

Source

```
http://www.arpa.fvg.it/
```

obs.o3

obs.o3

Observed ozone concentrations

Description

A dataset containing hourly concentrations of ozone measured at background sites in the region of Friuli Venezia Giulia (Italy)

Usage

obs.o3

Format

A data frame with 215424 rows and 8 variables:

Time time (POSIXct format)

ID station code

Station station name

Value concentration (in $\mu g/m^3$)

ZoneType "URB" (urban), "SBR" (suburban) or "RUR" (rural)

StationType always "BKG" (background)

Lat latitude

Lon longitude

Source

```
http://www.arpa.fvg.it/
```

obs.pm10

Observed PM10 concentrations

Description

A dataset containing daily concentrations of PM10 measured at background sites in the region of Friuli Venezia Giulia (Italy)

Usage

obs.pm10

0bs.pm25

Format

```
A data frame with 9504 rows and 8 variables:
```

```
Time day (POSIXct format)
```

ID station code

Station station name

Value concentration (in $\mu g/m^3$)

ZoneType "URB" (urban), "SBR" (suburban) or "RUR" (rural)

StationType always "BKG" (background)

Lat latitude
Lon longitude

Source

```
http://www.arpa.fvg.it/
```

obs.pm25

Observed PM2.5 concentrations

Description

A dataset containing daily concentrations of PM2.5 measured at background sites in the region of Friuli Venezia Giulia (Italy)

Usage

```
obs.pm25
```

Format

A data frame with 1056 rows and 8 variables:

Time day (POSIXct format)

ID station code

Station station name

Value concentration (in $\mu g/m^3$)

ZoneType "URB" (urban), "SBR" (suburban) or "RUR" (rural)

StationType always "BKG" (background)

Lat latitudeLon longitude

Source

```
http://www.arpa.fvg.it/
```

obs_uncertainty 11

Description

U_obs_95: Measurements uncertainty

RMS_U_obs: Root Mean Square Uncertainty

U_obs_95_year: Measurements uncertainty for yearly averaged values

Usage

```
U_obs_95(obs, pollutant = NULL, U_RV95r = NULL, alpha = NULL, RV = NULL)

RMS_U_obs(obs, pollutant = NULL, U_RV95r = NULL, alpha = NULL,
   RV = NULL)

U_obs_95_year(obs, pollutant = NULL, U_RV95r = NULL, alpha = NULL,
   RV = NULL, Np = NULL, Nnp = NULL)
```

Arguments

obs	numeric vector of observed values (yearly averaged for U_obs_95_year)
pollutant	one of "NO2", "O3", "PM10", "PM2.5"
U_RV95r	parameter $U_{95,r}^{RV}$; optional if pollutant is given, otherwise compulsory
alpha	parameter α ; optional if pollutant is given, otherwise compulsory
RV	parameter RV ; optional if pollutant is given, otherwise compulsory
Ир	parameter N_p ; optional if pollutant is given, otherwise compulsory
Nnp	parameter N_{np} ; optional if pollutant is given, otherwise compulsory

Value

U_obs_95: measurements uncertainty U_{95} , as in eq.10, p.20 in Janssen et al., 2017

$$U_{95}(O_i) = U_{95,r}^{RV} \sqrt{(1-\alpha^2)O_i^2 + \alpha^2 \cdot RV^2}$$

RMS_U_obs: root mean square uncertainty RMS_U , as in eq.11, p.20 in Janssen et al., 2017

$$RMS_U = U_{95,r}^{RV} \sqrt{(1-\alpha^2)(\bar{O}^2 + \sigma_O^2) + \alpha^2 \cdot RV^2}$$

U_obs_95_year: measurements uncertainty for yearly averaged values U_{95} , as in eq.12, p.20 in Janssen et al., 2017

$$U_{95}(\bar{O}) \cong U_{95,r}^{RV} \sqrt{\frac{(1-\alpha^2)}{N_p} \bar{O}^2 + \frac{\alpha^2 \cdot RV^2}{N_{np}}}$$

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

12 parameters

Examples

```
# concentrations
cc <- 1:400
# uncertainties for time series
Uo3 <- U_obs_95(cc, pollutant = "03")</pre>
Upm10 <- U_obs_95(cc, pollutant = "PM10")</pre>
Upm25 <- U_obs_95(cc, pollutant = "PM2.5")</pre>
Uno2 <- U_obs_95(cc, pollutant = "NO2")</pre>
plot(cc, Uo3, type="1", log = "xy", xlab="measured concentration",
ylab="uncertainty", ylim=c(1,100))
lines(cc,Upm10,lty=2)
lines(cc, Upm25, lty=3)
lines(cc,Uno2,lty=4)
legend("topleft",lty=1:4,legend=c("03", "PM10", "PM2.5", "NO2"))
# uncertainties for yearly averages
    <- U_obs_95_year(cc, pollutant = "03")
Upm10 <- U_obs_95_year(cc, pollutant = "PM10")</pre>
Upm25 <- U_obs_95_year(cc, pollutant = "PM2.5")</pre>
Uno2 <- U_obs_95_year(cc, pollutant = "NO2")</pre>
plot(cc, Uo3, type="1", log = "xy", xlab="measured concentration",
ylab="uncertainty", ylim=c(1,100))
lines(cc, Upm10, lty=2)
lines(cc,Upm25,lty=3)
lines(cc,Uno2,lty=4)
legend("topleft", lty=1:4, legend=c("03", "PM10", "PM2.5", "N02"))
```

parameters

Pollutant-dependent parameters

Description

Parameters used to calculate the measurement uncertainty

Usage

```
params_U(pollutant = c("NO2", "O3", "PM10", "PM2.5"))
perc(pollutant = c("NO2", "O3", "PM10", "PM2.5"))
threshold(pollutant = c("NO2", "O3", "PM10", "PM2.5"))
```

Arguments

```
pollutant one of "NO2", "O3", "PM10", "PM2.5"
```

Value

params_U: numeric list of parameters U_RV95r, alpha, RV, Np, Nnp, as in tab.2, p.21 in Janssen et al., 2017

summary_plot 13

perc: numeric value in [0,1], corresponding to the high percentile selected for the pollutant (if possible, according to legislation): for hourly NO2 99.8%, for the 8h daily maximum of ozone 92.9%, for daily PM10 and PM2.5 90.4%

threshold: numeric values (in $\mu g/m^3$) of the threshold used to calculate exceedances, according to legislation: 200 for hourly NO2, 120 for the 8h daily maximum of ozone, 50 for daily PM10, NA otherwise

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

summary_plot

summary plot

Description

```
summary_report: prepare input
summary_plot: summary plot
```

Usage

Arguments

data a data frame including observations and model forecasts obs name of the column with observed data mod name of the column with forecasts point name of the column with station ID pollutant one of "NO2", "O3", "PM10", "PM2.5" beta parameter β (default is 2) s_rep output of summary_report

Value

```
summary_report returns a list of 3:

summary_points a data frame with 8 variables for each station

Point station ID

Obs.ave annual mean of observations (paired with forecasts)

Mod.ave annual mean of forecasts (paired with observations)

mpi_bias Model Performance Indicator for the bias (see MPI_bias)

mpi_corr_time Model Performance Indicator for the correlation in time (see MPI_corr_time)

mpi_sdev_time Model Performance Indicator for the standard deviation in time (see MPI_sdev_time)
```

14 target_plot

```
mpi perc Model Performance Indicator for high percentile values (see MPI perc)
     n valid no. of valid data
summary_overall a data frame with 3 overall indicators
     mpi_corr_space Model Performance Indicator for the correlation in space (see MPI_corr_space)
    mpi_sdev_space Model Performance Indicator for the standard deviation in space (see
         MPI_sdev_space)
     n_points no. of valid stations
parameters a list of 7 parameters
     U_RV95r see params_U
     alpha see params_U
    RV see params_U
    Np see params U
    Nnp see params_U
    pollutant same as in input, one of "NO2", "O3", "PM10", "PM2.5"
    beta same as in input
summary_plot returns a summary plot (object of class ggplot and gg)
```

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

Examples

target_plot

Target plot

Description

```
target_report: prepare input for target plot
target_plot: target plot
```

target_plot 15

Usage

Arguments

data a data frame including observations and model forecasts obs name of the column with observed data mod name of the column with forecasts point name of the column with station ID pollutant one of "NO2", "O3", "PM10", "PM2.5" beta parameter β (default is 2) t_rep output of target_report

Value

```
target_report returns a list of 3:
quality_points a data frame with 9 variables for each station
    Point station ID
    Obs.ave annual mean of observations (paired with forecasts)
    Mod.ave annual mean of forecasts (paired with observations)
    rmsu RMS_U (see RMS_U_obs)
    crmse_norm CRMSE/(\beta*RMS_U)
    r R (see R)
    crmse_ratio abs(NMSD)/sqrt(2*(1-R)) as in eq.34, p.30 in Janssen et al., 2017
    bias_norm BIAS/(\beta * RMS_U)
    mqi_ts Model Quality Indicator RMSE/(\beta*RMS_U) (see MQI_ts_synth)
    mqi_year Model Quality Indicator for yearly averages (see MQI_year)
    n_valid no. of valid data
quality_overall a data frame with 3 overall indicators
    mqi_ts_p90 90th percentile of mqi_ts
    mqi_year_p90 90th percentile of mqi_year
    n_points no. of valid stations
parameters a list of 7 parameters
    U RV95r see params U
    alpha see params_U
    RV see params_U
    Np see params_U
    Nnp see params_U
    pollutant same as in input, one of "NO2", "O3", "PM10", "PM2.5"
    beta same as in input
target_plot returns a target plot (object of class ggplot and gg)
```

16 target_plot

References

Janssen et al., 2017. "Guidance Document on Modelling Quality Objectives and Benchmarking. Version 2.1"

Examples

Index

*Topic datasets	obs.pm10,9
mod.data,4	obs.pm25, 10
obs.no2,8	obs_uncertainty, 11
obs.o3,9	
obs.pm10,9	parameters, 12
obs.pm25, 10	params_U, <i>14</i> , <i>15</i>
	params_U(parameters),12
BIAS (indicators), 2	perc(parameters), 12
CRMSE (indicators), 2	R, 15
	R(indicators), 2
daily_statistics, 2	RMS_U_mod(mod_uncertainty),4
dMaxAvg8h (daily_statistics), 2	RMS_U_obs, <i>15</i>
dMean(daily_statistics),2	RMS_U_obs(obs_uncertainty),11
indicators, 2	RMSE (indicators), 2
	summary_plot, 13
mod.data,4	summary_report(summary_plot), 13
<pre>mod_uncertainty,4</pre>	1 1 1 1 1 (11 1 1 1 1 1 1 1 1 1 1 1 1 1
MPI, 5	target_plot, 14
MPI_bias, 13	target_report (target_plot), 14
MPI_bias (MPI), 5	threshold (parameters), 12
MPI_corr_space, 14	
MPI_corr_space (MPI), 5	<pre>U_mod_year(mod_uncertainty),4</pre>
MPI_corr_time, 13	U_obs_95(obs_uncertainty),11
MPI_corr_time (MPI), 5	U_obs_95_year(<i>obs_uncertainty</i>)
MPI_perc, 14	11
MPI_perc(MPI), 5	
MPI_sdev_space, 14	
MPI_sdev_space (MPI), 5	
MPI_sdev_time, 13	
MPI_sdev_time (MPI), 5	
MQI, 6	
$MQI_ts(MQI), 6$	
MQI_ts_synth, 15	
MQI_ts_synth (MQI), 6	
MQI_year, 15	
$MQI_year(MQI), 6$	
multiplot, 7	
NMB (indicators), 2	
NMSD (indicators), 2	
obs.no2,8	
obs. $03,9$	