

Institute of Primate Research

STANDARD OPERATING PROCEDURE (SOP) DOCUMENT

Development and validation of computational tools

SOP No.	Issue Number	Issue Date	Revision Status	Revision Date
SOP/KIPRE/RPD/DSAS/3.1.76	Version 01	October 2025	-	-

Approvals			
	Name	Signature	Date
Developed by:	_Patrick Waweru Mwaura_		6 th October; 2025
Reviewed by:			
Approved by:			

Table of Contents 4 1. PURPOSE 4 2. SCOPE 4 3. PERSONS RESPONSIBLE: 4 4. FREQUENCY 4 5. MATERIALS 4 6. PROCEDURE 4 7. REFERENCES 5

1. PURPOSE

To provide a standardized framework for the development, validation, and maintenance of computational tools—including algorithms, software, and machine learning models—used in DS&AS research, ensuring reproducibility, accuracy, usability, and compliance with institutional and regulatory standards (building on SOPs 4, 7, 8, 12, and 13).

2. SCOPE

Covers the design, development, testing, validation, deployment, and maintenance of all inhouse computational tools and customized open-source software applied in DS&AS research, including genomics, proteomics, epidemiology, and predictive modelling workflows.

3. PERSONS RESPONSIBLE:

- Computational Biologist / Data Scientist: Leads design, development, and validation of computational tools.
- Software Engineer / Data Engineer: Supports coding, optimization, workflow integration, and deployment.
- **Head of DS&AS:** Reviews and approves final tool release, ensures compliance with institutional and regulatory standards, and oversees maintenance.

4. FREQUENCY

- **Initial Validation:** All computational tools must be validated before deployment for use in any research project.
- Re-Validation: Required whenever major updates, methodological changes, or modifications to data inputs occur.
- **Periodic Review:** Tools should undergo scheduled reviews (e.g., annually) to ensure continued accuracy, reproducibility, and compliance.

5. MATERIALS

- **Coding Platforms:** Python, R, C++, Java, or other relevant programming environments.
- **Version Control:** Git, GitHub, GitLab, or equivalent for source code management and change tracking.

- **Test Datasets:** Benchmarking datasets, simulated or real, for tool validation and performance assessment.
- Continuous Integration / Deployment (CI/CD) Tools: For automated testing, build verification, and workflow deployment.
- **Documentation Templates:** Standard templates for recording tool specifications, validation results, and usage instructions.

6. PROCEDURE

- 1. **Development:** Design and implement prototype tools following reproducible coding standards and modular practices.
- 2. **Testing:** Evaluate tool functionality and performance using benchmark datasets; assess accuracy, efficiency, and reproducibility.
- 3. **Validation:** Conduct internal peer-review within DS&AS; document performance metrics, limitations, and compliance with institutional guidelines.
- 4. **Deployment:** Release validated tools for internal use or as open-source (if applicable), accompanied by comprehensive user manuals and documentation.
- 5. **Maintenance:** Continuously monitor tool usage, collect bug reports, implement updates, and track changes through version control.
- 6. **Archiving:** Maintain comprehensive records of all versions, validation reports, test datasets, and change logs in the DS&AS repository.

7. REFERENCES

- 1. ISO/IEC 25010:2011 Systems and software engineering: Software product quality requirements and evaluation (SQuaRE).
- FAIR Principles Wilkinson et al., 2016 (linked to SOP 1: Policies & Strategies; SOP 12: Genome and Proteome Data Management).
- 3. Kenya Data Protection Act (2019) (linked to SOP 2: Alignment with Institutional and National Regulations; SOP 6: Data Access and Authentication; SOP 9: Data Sharing and Anonymisation).

- 4. KIPRE Institutional Data Governance and Software Development Guidelines (linked to SOP 1: Policies & Strategies; SOP 7: Data Storage, Backup, Encryption, and Disaster Recovery; SOP 8: Database and Workflow Management).
- 5. Best practices for reproducible computational research: Sandve et al., 2013, PLoS Comput Biol (linked to SOP 3: Study Design and Statistical Consultation; SOP 4: Statistical Analysis Plans; SOP 5: Reporting Research Results; SOP 13: Bioinformatics Pipelines; SOP 14: Development and Validation of Computational Tools).
- Git/GitHub/GitLab documentation and version control guidelines (linked to SOP 4: Statistical Analysis Plans; SOP 13: Bioinformatics Pipelines; SOP 14: Development and Validation of Computational Tools).

8. APPENDIX

Appendix A: Computational Tool Development & Validation Forms

- 1. Tool Development Request Form Submitted by DS&AS team or PI.
- 2. Tool Validation Checklist Includes test datasets, expected outcomes, reproducibility metrics, and performance evaluation.
- 3. Peer-Review Record Documenting internal review comments, approvals, and recommendations.
- 4. Version Control Log Tracks all code versions, updates, and major changes.
- 5. Deployment & User Documentation Template Provides standardized user instructions and usage guidelines.