VITERBI

IN2110 V23 liljacs@uio.no

VITERBI-DEKODING

- Dekodingsalgoritme: Beregner den mest sannsynlige sekvensen av skjulte tilstander ved hjelp av en HMM
- Lineær kompleksitet: Behandler hver sekvens ord for ord
 - Mye raskere enn eksempelet fra forrige gang!
- Beregner sannsynligheten for neste tilstand t basert på den forrige tilstanden t-l

VITERBIFORMELEN

emisjonsmodellen

$$v_t(x) = \max_{1 \le y \le N} v_{t-1}(y) P(s_t = x | s_{t-1} = y) P(o_t | s_t = x)$$

Velg den mest sannsynlige ordklassen y for forrige ord

transisjonsmodellen

KORT SAGT:

- Første steg:
 - Beregn sannsynligheten for starttilstandene ved transisjon * emisjon
 - Ta vare på den høyeste sannsynligheten ved hjelp av en backpointer
- Resten av stegene:
 - Beregn sannsynligheten for tilstandene ved transisjon * emisjon * forrige resultat
- Siste steg:
 - Følg den mest sannsynlige stien av skjulte sekvenser baklengs, via backpointers
 - Dette er svaret vårt!

BEREGNINGSEKSEMPEL

Hva er den mest sannsynlige sekvensen av skjulte tilstander for setningen Kari studerer informatikk?

IN2110 V23 liljacs@uio.no

Steg 2

- Finn sannsynligheten for hver mulige starttilstand For hver neste tilstand, beholder vi en "backpointer" til den mest sannsynlige forrige tilstand
- Vi lagrer sannsynligheten til den tilstanden som mest sannsynlig tilhører stærttilstanden

emisjon_Kari	studerer	informatikk
transisjon 0.5 = 0.35 O.7 Subst.	o.o1 Subst.	0.5 Subst
25) 0.3 0.01 Verb	1 Verb.	0.01 Verb

For å finne den mest sannsynlige etterfølgende tilstanden ganger vi transisjon med emisjon.

$$PC \text{ subst} | \text{cstart} > 0 = 0.7 \times 0.5 = 0.35$$

 $PC \text{ yerb} | \text{ cstart} > 0.3 \times 0.01 = 0.003$

Steg 3

Gjenta steg 2 for resten av setningen Ctilstandene/merkelappene), slik at vi sitter igjen med "stier" ov backpointers gjennom setningen

Vi ganger det høyeste resultatet for hver tilstand med utregningen av neste tilstand, som igjen er transisjon x emisjon:

Steg 4

Til slutt, starter vi bakent i sekvensen var, og følger den mest sannsynlige stien til vi er kommet til start. Dette gjor vi ved å velge den stien med det høyeste resultatet for hvert steg.

Den mest sannsynlige selevensen er: (Subst./Kari) (verb/studerer) (Subst./informatikk)

Utregning i pdf: her