Compilation d'exercices sur les complexes.

Exercice 1 : Nouvelle Calédonie novembre 2016

On se place dans le plan complexe rapporté au repère $(O; \vec{u}, \vec{v})$.

Soit f la transformation qui à tout nombre complexe z non nul associe le nombre complexe f(z) défini par :

$$f(z) = z + \frac{1}{z}.$$

On note M le point d'affixe z et M' le point d'affixe f(z).

- 1. On appelle A le point d'affixe $a = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.
 - a. Déterminer la forme exponentielle de a.
 - **b.** Déterminer la forme algébrique de f(a).
- 2. Résoudre, dans l'ensemble des nombres complexes, l'équation f(z) = 1.
- 3. Soit M un point d'affixe z du cercle $\mathcal C$ de centre O et de rayon 1.
 - a. Justifier que l'affixe z peut s'écrire sous la forme $z = e^{i\theta}$ avec θ un nombre réel.
 - **b.** Montrer que f(z) est un nombre réel.
- 4. Décrire et représenter l'ensemble des points M d'affixe z tels que f(z) soit un nombre réel.

Exercice 2 : Pondichéry avril 2017

On munit le plan complexe d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

1. On considère l'équation

$$(E): z^2 - 6z + c = 0$$

où c est un réel strictement supérieur à 9.

- a. Justifier que (E) admet deux solutions complexes non réelles.
- **b.** Justifier que les solutions de (E) sont $z_A = 3 + i\sqrt{c-9}$ et $z_B = 3 i\sqrt{c-9}$.
- 2. On note A et B les points d'affixes respectives $z_{\rm A}$ et $z_{\rm B}$.

Justifier que le triangle OAB est isocèle en O.

3. Démontrer qu'il existe une valeur du réel c pour laquelle le triangle OAB est rectangle et déterminer cette valeur.

Exercice 3 : Métropole juin 2015 1. Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation (E) d'inconnue z :

$$z^2 - 8z + 64 = 0.$$

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

2. On considère les points A, B et C d'affixes respectives $a = 4 + 4i\sqrt{3}$,

$$b = 4 - 4i\sqrt{3} \text{ et } c = 8i.$$

- **a.** Calculer le module et un argument du nombre a.
- **b.** Donner la forme exponentielle des nombres a et b.
- **c.** Montrer que les points A, B et C sont sur un même cercle ce de centre O dont on déterminera le rayon.
- **d.** Placer les points A, B et C dans le repère $(O; \vec{u}, \vec{v})$.

Pour la suite de l'exercice, on pourra s'aider de la figure de la question 2. d. complétée au fur et à mesure de l'avancement des questions.

- **3.** On considère les points A', B' et C' d'affixes respectives $a'=a\mathrm{e}^{\mathrm{i}\frac{\pi}{3}},\ b'=b\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}$ et $c'=c\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}$.
 - **a.** Montrer que b' = 8.
 - **b.** Calculer le module et un argument du nombre a'.

Pour la suite on admet que $a' = -4 + 4i\sqrt{3}$ et $c' = -4\sqrt{3} + 4i$.

- **4.** On admet que si M et N sont deux points du plan d'affixes respectives m et n alors le milieu I du segment [MN] a pour affixe $\frac{m+n}{2}$ et la longueur MN est égale à |n-m|.
 - **a.** On note r, s et t les affixes des milieux respectifs R, S et T des segments [A'B], [B'C] et [C'A]. Calculer r et s. On admet que $t = 2 2\sqrt{3} + \mathrm{i}\left(2 + 2\sqrt{3}\right)$.
 - **b.** Quelle conjecture peut-on faire quant à la nature du triangle RST ? Justifier ce résultat.

Exercice 4 : Centres étrangers juin 2017

Le plan est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$.

Pour tout entier $n \ge 4$, on considère P_n un polygone régulier à n côtés, de centre O et dont l'aire est égale à 1. On admet qu'un tel polygone est constitué de n triangles superposables à un triangle OA_nB_n donné, isocèle en O.

On note $r_n = OA_n$ la distance entre le centre O et le sommet A_n d'un tel polygone.

Partie A : étude du cas particulier n=6

On a représenté ci-contre un polygone P_6 .

- 1. Justifier le fait que le triangle OA_6B_6 est équilatéral, et que son aire est égale à $\frac{1}{6}$.
- 2. Exprimer en fonction de r_6 la hauteur du triangle OA_6B_6 issue du sommet B_6 .
- **3.** En déduire que $r_6 = \sqrt{\frac{2}{3\sqrt{3}}}$.

Partie B : cas général avec $n\geqslant 4$

Dans cette partie, on considère le polygone P_n avec $n \ge 4$, construit de telle sorte que le point A_n soit situé sur l'axe réel, et ait pour affixe r_n .

On note alors $r_n e^{i\theta_n}$ l'affixe de B_n où θ_n est un réel de l'intervalle 0; $\frac{\pi}{2}$.

- 1. Exprimer en fonction de r_n et θ_n la hauteur issue de B_n dans le triangle OA_nB_n puis établir que l'aire de ce triangle est égale à $\frac{r_n^2}{2}\sin(\theta_n)$.
- 2. On rappelle que l'aire du polygone P_n est égale à 1. Donner, en fonction de n, une mesure de l'angle $(\overrightarrow{OA_n}, \overrightarrow{OB_n})$, puis démontrer que :

$$r_n = \sqrt{\frac{2}{n\sin\left(\frac{2\pi}{n}\right)}}.$$

Partie C : étude de la suite (r_n)

On considère la fonction f définie pour tout réel x de l'intervalle]0; $\pi[$ par

$$f(x) = \frac{\sin x}{x}.$$

Ainsi, le nombre r_n , défini dans la partie B pour $n \geqslant 4$, s'exprime à l'aide de la fonction f par :

$$r_n = \sqrt{\frac{1}{\pi} f\left(\frac{2\pi}{n}\right)}.$$

On admet que la fonction f est strictement croissante sur l'intervalle]0; $\pi[$.

- 1. Montrer que la suite (r_n) est décroissante. On pourra pour cela commencer par démontrer que pour tout $n \geqslant 4$, on a $0 < \frac{2\pi}{n+1} < \frac{2\pi}{n} < \pi$.
- 2. En déduire que la suite (r_n) converge. On ne demande pas de déterminer sa limite L, et on admet dans la suite de l'exercice que $L=\frac{1}{\sqrt{\pi}}$.
- 3. On considère l'algorithme suivant.

VARIABLES: n est un nombre entier

TRAITEMENT : n prend la valeur 4

Tant que $\sqrt{\frac{2}{n\sin\left(\frac{2\pi}{n}\right)}} > 0,58$ faire

n prend la valeur n+1

Fin Tant que

SORTIE : Afficher n

Quelle valeur numérique de n va afficher en sortie cet algorithme ?

Exercice 5 : Centres étrangers juin 2016

On veut modéliser dans le plan la coquille d'un nautile à l'aide d'une ligne brisée en forme de spirale. On s'intéresse à l'aire délimitée par cette ligne.

On munit le plan d'un repère orthonormal direct $(O ; \overrightarrow{u} ; \overrightarrow{v})$.

Soit n un entier supérieur ou égal à 2. Pour tout entier k allant de 0 à n, on définit les nombres complexes $z_k = \left(1 + \frac{k}{n}\right) e^{i\frac{2k\pi}{n}}$ et on note M_k le point d'affixe z_k .

Dans ce modèle, le pourtour du nautile est la ligne brisée reliant tous les points M_k avec $0 \le k \le n$. Par exemple, pour les entiers n = 6, n = 10 et n = 20, on obtient les figures ci-dessous.

Partie A : Ligne brisée formée à partir de sept points

Dans cette partie, on suppose que n=6. Ainsi, pour $0 \le k \le 6$, on a $z_k = \left(1 + \frac{k}{6}\right) e^{i\frac{2k\pi}{6}}$.

- 1. Déterminer la forme algébrique de z_1 .
- **2.** Vérifier que z_0 et z_6 sont des entiers que l'on déterminera.
- 3. Calculer la longueur de la hauteur issue de M_1 dans le triangle OM_0M_1 puis établir que l'aire de ce triangle est égale à $\frac{7\sqrt{3}}{24}$.

Partie B: Ligne brisée formée à partir de n+1 points

Dans cette partie, n est un entier supérieur ou égal à 2.

- 1. Pour tout entier k tel que $0 \le k \le n$, déterminer la longueur OM_k .
- **2.** Pour k entier tel que $0 \le k \le n-1$, déterminer une mesure des angles $(\overrightarrow{u}; \overrightarrow{OM_k})$ et $(\overrightarrow{u}; \overrightarrow{OM_{k+1}})$. En déduire une mesure de l'angle $(\overrightarrow{OM_k}; \overrightarrow{OM_{k+1}})$.
- **3.** Pour k entier tel que $0 \le k \le n-1$, démontrer que la longueur de la hauteur issue de M_{k+1} dans le triangle OM_kM_{k+1} est égale à $\left(1+\frac{k+1}{n}\right) \times \sin\left(\frac{2\pi}{n}\right)$.

4. On admet que l'aire du triangle OM_kM_{k+1} est égale à

$$a_k = \frac{1}{2}\sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right)\left(1 + \frac{k+1}{n}\right)$$
 et que l'aire totale délimitée par la ligne brisée est égale à $A_n = a_0 + a_1 + \dots + a_{n-1}$.

L'algorithme suivant permet de calculer l'aire A_n lorsqu'on entre l'entier n:

$$\begin{array}{lll} \text{VARIABLES} & A \text{ est un nombre r\'eel} \\ & k \text{ est un entier} \\ & n \text{ est un entier} \\ & n \text{ est un entier} \\ & Lire \text{ la valeur de } n \\ & A \text{ prend la valeur 0} \\ & Pour \text{ k allant de 0 \`a n-1} \\ & A \text{ prend la valeur } A + \frac{1}{2} \sin \left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right) \left(1 + \frac{k+1}{n}\right) \\ & \text{Fin Pour} \\ & \text{SORTIE} & \text{Afficher A} \end{array}$$

On entre dans l'algorithme n = 10

L13

SORTIE:

Recopier et compléter le tableau ci-dessous qui illustre le fonctionnement de l'algorithme.

k	0	1	2	3	4	5	6	7	8	9
A	0,323	0,711	1,170	1,705	2,322	3,027	3,826	4,726		

5. On admet que $A_2 = 0$ et que la suite (A_n) converge et que $\lim_{n \to +\infty} A_n = \frac{7\pi}{3} \approx 7, 3$.

Recopier et compléter les lignes L6 et L13 de l'algorithme ci-après qui permet de déterminer le plus petit entier n tel que $A_n \ge 7, 2$. On ne demande pas de déterminer n.

L1	VARIABLES:	A est un nombre réel
L2		k est un entier
L3		n est un entier
L4	TRAITEMENT:	n prend la valeur 2
L5		A prend la valeur 0
L6		Tant que
L7		n prend la valeur $n+1$
L8		A prend la valeur 0
L9		Pour k allant de 0 à $n-1$
L10		A prend la valeur
		$A + \frac{1}{2}\sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right)\left(1 + \frac{k+1}{n}\right)$
		Fin Pour
L12		Fin Tant que

Afficher ...