Sin material permitido. Duración: **2 horas. Respuestas únicas** Respuesta Bien=1, Mal=-0.5 Sin contestar=0. **Atención:** Si el número de respuesta Mal es mayor que 4, se resta 1 por cada una en lugar de 0.5.

Pregunta 1

Se considera la relación T en \mathbb{R}^2 definida por $(x,y)T(z,t) \iff |x|+|y|=|z|+|t|$. Entonces:

- \mathbf{A}) R no es una relación de equivalencia.
- B) La elementos de la clase [(1,2)] es el perímetro de una figura cuyo área es menor que 15.
- C) Ninguna de las otras respuestas.

Pregunta 2

Se considera la relación T en \mathbb{R}^2 definida por $(x,y)T(z,t) \iff |x|+|y|=|z|+|t|$. Entonces:

- **A)** Card([(x,y)]) es 2^{\aleph_0} .
- B) Existe una biyección entre el conjunto cociente $\mathbb{R}^2_{/T}$ y el intervalo $[0,2]\subset\mathbb{R}$.
- C) Ninguna de las otras respuestas.

Pregunta 3

En el conjunto \mathbb{R}^3 se consideran los conjuntos

$$A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid |x_1 - 1| \leqslant 1, |x_2 - 1| \leqslant 1, |x_3 - 1| \leqslant 1\}$$

$$B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid (x_1 - 1)^2 + (x_2 - 1)^2 + (x_3 - 1)^2 \leqslant 1\} \text{ y la relación } (x_1, x_2, x_3) S(y_1, y_2, y_3) \text{ si se cumple alguna de las condiciones siguientes}$$

$$x_1 < y_1 \text{ o } x_1 = y_1, \ x_2 < y_2 \text{ o } x_1 = y_1, \ x_2 = y_2, \ x_3 \leqslant y_3.$$

- A) S es una relación de orden total y min(A) = (0, 0, 0).
- **B)** S es una relación de orden parcial y $\inf(B) = (0, 1, 1)$.
- C) Ninguna de las otras respuestas.

Pregunta 4

En el conjunto \mathbb{R}^3 se consideran los conjuntos

$$A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid |x_1 - 1| \leq 1, |x_2 - 1| \leq 1, |x_3 - 1| \leq 1\}$$

 $B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid (x_1 - 1)^2 + (x_2 - 1)^2 + (x_3 - 1)^2 \leq 1\}$ y la relación $(x_1, x_2, x_3)S(y_1, y_2, y_3)$ si se cumple alguna de las condiciones siguientes $x_1 < y_1$ o $x_1 = y_1, x_2 < y_2$ o $x_1 = y_1, x_2 = y_2, x_3 \leq y_3$.

- **A)** S es una relación de orden parcial y $\sup(A) = (2, 2, 2)$.
- **B)** S es una relación de orden total y máx(B) = (2, 1, 1).
- C) Ninguna de las otras respuestas.

Pregunta 5

Sean las funciones $f:[0,1] \longrightarrow [1,2]$, $g:[1,2] \longrightarrow [3,4]$ y $h:[3,4] \longrightarrow [5,6]$. Si se sabe que $g \circ f$ es biyectiva y que $h \circ g$ también lo es, entonces:

- **A)** f es una función biyectiva entre [0,1] y f([0,1]).
- **B)** g no es una función biyectiva entre [1,2] y g([1,2]).
- C) Ninguna de las otras respuestas.

Pregunta 6

Sean las funciones $f:[0,1] \longrightarrow [1,2]$, $g:[1,2] \longrightarrow [3,4]$ y $h:[3,4] \longrightarrow [5,6]$. Si se sabe que $g \circ f$ es biyectiva y que $h \circ g$ también lo es, entonces:

- \mathbf{A}) f es una función biyectiva.
- **B)** Ni f ni g son funciones inyectivas.
- C) Ninguna de las otras respuestas.

Pregunta 7

Se consideran las raíces $z_1=a_1+ib_1$ y $z_2=a_2+ib_2$ del número $\sqrt{\frac{1}{3-4i}}$ en $\mathbb C$. Entonces:

- **A)** $a_1 a_2 = 0$.
- **B)** $(a_1^2 + b_1^2)(a_2^2 + b_2^2) = 1.$
- C) Ninguna de las otras respuestas.

Pregunta 8

Se consideran las raíces $z_1=a_1+ib_1$ y $z_2=a_2+ib_2$ del número $\sqrt{\frac{1}{3-4i}}$ en $\mathbb C$. Entonces:

- **A)** $b_1 b_2 = 0$.
- **B**) $\frac{|b_1|}{|b_2|} > 1$.
- C) Ninguna de las otras respuestas.

Pregunta 9

Se consideran las siguientes afirmaciones:

- 1. Los órdenes de $\mathbb Q$ y de $\mathbb R$ son órdenes divisibles.
- 2. $\aleph_0 < \operatorname{card}(\mathbb{R}) < 2^{\aleph_0}$
- 3. El orden lexicográfico en \mathbb{R}^2 es un orden parcial.
- 4. En un anillo pueden existir divisores de cero pero en un cuerpo no.
- 5. Para $n \in \mathbb{N}$ se dice de P_n como una propiedad que se cumple. Si se demuestra que se cumpla P_n implica que se cumpla P_{n+1} , entonces se puede asegurar que la propiedad P_k se cumple para todo $k \in \mathbb{N}$.

Entonces:

- A) Hay más de tres afirmaciones ciertas.
- B) Hay menos de tres afirmaciones falsas.
- C) Ninguna de las otras respuestas.

Pregunta 10

Se consideran las siguientes afirmaciones:

- 1. Los órdenes de \mathbb{Q} y de \mathbb{R} son órdenes divisibles.
- 2. $\aleph_0 < \operatorname{card}(\mathbb{R}) < 2^{\aleph_0}$
- 3. El orden lexicográfico en \mathbb{R}^2 es un orden parcial.
- 4. En un anillo pueden existir divisores de cero pero en un cuerpo no.
- 5. Para $n \in \mathbb{N}$ se dice de P_n como una propiedad que se cumple. Si se demuestra que se cumpla P_n implica que se cumpla P_{n+1} , entonces se puede asegurar que la propiedad P_k se cumple para todo $k \in \mathbb{N}$.

Entonces:

- A) Hay memos de dos afirmaciones ciertas.
- B) Hay más de dos afirmaciones falsas.
- C) Ninguna de las otras respuestas.