

Coding apparatus

QUART GUROLAGS

Coding apparatus

Fig. 3 (a)

All multiplexed format

1							
Header information	Priority for defining reproduction sequence	Priority for defining processing when overloaded	Picture data 1	Sound data 1	1	Picture data N	Sound data N
	;						

Information showing display sequence

* The information describing the relation between pictures or between sounds may be described in the header information.

3/16

Fig. 3 (b)

Multiplexed in individual media, and transmitted from respective communication ports

Header	Priority for defining Priority for defining	Priority for defining
information	reproduction	processing when
	sednence	overloaded

Control information

Picture data row

Picture data N

Picture data 1

information

Header

Sound data row

Sound data N

Sound data 1

Header information

13075 1754


```
Fig. 5
                              5/16
   В.
       struct shm_tspkt
            data_byte
                              188byte
                                                Packet data
       }
   C.
       struct shm_apkt
                                              Packet synchronous code
          DWORD
                  sync_code
                                       32bit
          WORD
                  pts
                                       16bit Display time
          WORD
                  frame_length
                                       16bit
                                              Frame length
          BYTE
                  data_byte
                                       Nbyte
                                              Sound data
                                               (N=frame_length)
       }
   D.
       struct shm_vpkt
          DWORD sync_code
                                       32bit
                                              Packet synchronous code
          BYTE
                  temporal_reference 8bit
                                              Frame number
                                       16bit Frame length
          WORD
                  frame length
          BYTE
                  data_byte
                                       Nbyte Picture data
                                               (N=frame_length)
       }
  E.
       struct shm_kanshi_lnfo
          WORD
                pts
                                                Display time
                                       16bit
                                                No. of objects
          BYTE
                number_of_object
                                      8bit
                      i<number_of_object:i++)
          for (i=0:
            BYTE
                    object_id
                                                       ID
                                          8bit
            BYTE
                    temporal_reference
                                                       Frame number
                                          8bit
            BYTE
                    object_priority
                                                       Priority (*1)
                                          4bit
                   reserved
                                          2bit
                    IPB_flag
                                          2bit
                                                       Frame type
            WORD
                    horizontal_offset
                                                  Display position, horizontal
                                          10bit
            WORD
                    vertical_offset
                                                  Display position, vertical
                                          10bit
            BYTE
                    layer
                                          4bit
                                                       Layer
          }
      }
```

(*1) Bits are assigned from the highest position sequentially by 4 bits (object_priority), 2 bits, 2 bits (IPB_flag)

```
Fig. 6
DEMUX thread
void demux ( )
      Shared memory (ring), semaphore generation process: for output
                 (2 for sound, 3 for picture, 1 for monitor table)
      Semaphore generation for monitor thread control (one)
              flag = TRUE: // State of ring buffer
      while (1) {
            if (flag) Reading from file or network
                                                                                 -(5-1)
            if (flag)
                 Analysis of 188-byte packet data, setting in specified structure
                                                                                 -(5-2)
                  (decomposed into information of sound, picture, monitor table)
                Exclusive control of ring buffer by semaphore
            if (Able to write in ring buffer?) {
                 Write into ring buffer (from earlier object ID, write sequentially
                                                                                 -(5-3)
                               into shared memory of earlier buffer number)
                  Advance write pointer of written buffer
                                                                                 -(5-4)
                  flag=TRUE:
            }else
                  flag=FALSE: // Prevent overflow of ring buffer
            if (flag)
                 After writing information of pictures and sounds for one monitor -(5-5)
                  table, advance the counter of semaphore for monitor thread control
      }
}
```

}

7/16

```
Fig. 7
```

```
Monitor thread
void Watch Process ()
     BYTE disp_TR[i]: // Picture serial number (shared memory)
     BOOL skip_flag[i]: // Skip flag to which decoding process refers
                                  (shared memory)
    Shared memory (ring buffer: monitor table 1)
                        Semaphore open: used by determining priority of processing
    Shared memory (single buffer: monitor table 1)
                        Semaphore generation: transfer to synthesis side
    Generation of semaphore for process monitor
    Semaphore open for monitor thread control (one)
    Start of picture decoding process
    Confirm start of process
    while {skip flag[i]=FALSE: // Not skipped }
    while (1)
        Reading of monitor table (read pointer update, from DEMUX)
        Check of object priority
                                                               -(6-1) -(6-2)
        Writing of monitor table (to synthesis side)
                                                                        -(6-3)
        Wait for creation of data for one monitor table from DEMUX
                                                                        -(6-4)
        From highest priority
            disp_TR[i] =TR:
                                                                        -(6-5)
            if (Present time > display time (pts)) {
                                                                        -(6-6)
                    Not skipped if I frame
                    skip_flag[i]=FALSE
            }else{
                    P, B frames are skipped
                    skip_flag[i] =TRUE
           Release of semaphore of corresponding process
                                                                        -(6-7)
           Wait for release of semaphore of corresponding process
                                                                        -(6-8)
                                     (process completion check)
        }
    }
```

}

8/16

```
Fig. 8
```

```
Decoding process

void main(int argc, char *argv[])
{
```

Value received from main process:

Shared memory to be opened, name of semaphore

Shared memory (ring), open processing of semaphore: for input (from MUX)
Shared memory (single), open processing of semaphore: for output (to synthesis side)

```
while (1)
                                                                -(7-1)
    Monitor thread waits for release of semaphore
                                                                - (7-2)
     Input picture state check:
            Picture serial number (TR), skip input frame?
    Wait for picture data to be decoded
                                                                -(7-3)
    Is TR present in shared memory? {
                                                                -(7-4)
         Skip decoding if not present
          Advance read pointer for ring buffer (for input)
    }
        (Skip one input frame) {
            Decoding process
                                                                - (7-5)
            Advance read pointer for ring buffer (for input)
    }
    Output of decoding result (*1)
                                                                -(7-6)
    Release semaphore to monitor thread (process end notice)
                                                                -(7-7)
}
```

(*1) When skipping input frame process, send signal to main process without decoding process and output of decoding result

Fig. 9

```
Picture synthesis thread
void Watch Sync ()
     Shared memory (single), semaphore generation process: for input (from decoder)
     Shared memory (single), semaphore generation process: for input (from monitor
                                                                     thread)
     Shared memory (single), semaphore generation process: for output (to display
                                                                      monitor: 2)
     BOOL flag=TRUE:
     while (1)
         Wait for monitor table from monitor thread
                                                                     -(8-1)
         Check priority order of object
                                                                      -(8-2)
         From highest priority order {
                                                                      -(8-3)
                Wait for picture of decoding result (accumulated in shared memory)
                // Totally black if empty
         Synthesis of image adjusting to display position
                                                                     -(8-4)
              Double buffer
         if (flag)
                                                                      -(8-5)
              Write synthesis result into shared memory (to display monitor) #1
              flag=FALSE:
         } else
                Write synthesis result into shared memory (to display monitor) #2
                flag=TRUE:
}
```

Fig. 10

Display monitor thread

```
void Watch Disp ()
    Shared memory (single), open processing of semaphore: for input
                                           (from synthesis thread: 2)
           flag = TRUE:
    BOOL
    while (1)
          // Double buffer
          if (flag)
               Wait for synthesis picture from shared memory (from synthesis thread)#1
               flag = FALSE:
                                                                          -(9-1)
             else {
               Wait for synthesis picture from shared memory (from synthesis thread)#2
               flag = TRUE:
          }
              (Initial display)
               Acquire display start time from timer
                                                                          -(9-2)
         Sleep (pts-nowtime):
                                                                          -(9-3)
           Display of synthesis picture
}
```

Fig. 11

Three-dimensional picture (foreground: helicopter)

Three-dimensional picture (foreground: balloon)

Background picture (night sky)

Foreground picture (building)
Synthesis ratio: 0.5

Foreground picture (man)

Fig. 12 (a)

System of hardware base

Fig. 12 (b)

System of software base

* Sound compression apparatus can be set similarly

BELUAD" ZASTGDED

Fig. 14

Picture size	Camera control	Other terminal control request	Quantization step
QCIF	Pan	Buffer over	16
CIF	None	None	16
QCIF	None	None	18
QCIF	Tilt	None	14

15095 F18.15

Fig. 16

16/16

O Feedback relating to response between transmission terminal and reception terminal (case 1)

Feedback of reproduction situation to transmission side terminal (case 2)

