Math 255A Lecture 3 Notes

Daniel Raban

October 3, 2018

1 Proof of the Geometric Hahn-Banach Theorem

1.1 Gauges and the real geometric Hahn-Banach theorem

Theorem 1.1 (geometric Hahn-Banach). Let V be a real normed vector space with $A, B \subseteq V$ convex, nonempty and disjoint. Also assume A is open. Then there exists a closed affine hyperplane separating A and B.

Before we prove this, we need a bit of background.

Definition 1.1. Let $C \subseteq V$ be convex and open such that $0 \in C$. Define the **gauge** of C as

$$p(x) = \inf\{t > 0 : x/t \in C\}.$$

Lemma 1.1. The gauge of C satisfies the following properties:

- 1. $p(\lambda x) = \lambda p(x)$ for $\lambda > 0$ and $x \in V$
- 2. $p(x+y) \le p(x) + p(y)$ for $x, y \in V$
- 3. there exists M > 0 such that $p(x) \le M||x||$ for all $x \in V$ ($\implies p$ is continuous at 0).
- 4. $C = \{x \in V : p(x) < 1\}$

Proof. (i) is clear. (iii) Let r > 0 be such that $\{x : ||x|| \le r\} \subseteq C$. Then for all x with ||x|| = 1, $rx \in C$, so $p(x) \le 1/r$. So $p(x) \le ||x||/r$ for all $x \in V$. (iv) $C \subseteq \{x : p(x) < 1\}$. If $x \in C$, then $(1 + \varepsilon x \in C \text{ for } \varepsilon \text{ small.}]$ So $p(x) \le 1/(1 + \varepsilon) < 1$. On the other hand, if p(x) < 1, then $x/t \in C$ for some 0 < t < 1. So $x = t(x/t) + (1 - t)0 \in C$ (by convexity of C). (ii) Let $x, y \in V$ and $\varepsilon > 0$. Then $x/(p(x) + \varepsilon), y/(p(y) + \varepsilon) \in C$, and their convex combination

$$t\frac{x}{p(x)+\varepsilon} + (1-t)\frac{y}{p(y)+\varepsilon}$$

is also in C for $0 \le t \le 1$. Take $t = (p(x) + \varepsilon)/(p(x) + p(y) + 2\varepsilon)$. So

$$\frac{x+y}{p(x)+p(y)+2\varepsilon} \in C$$

which gives us that $p(x+y) < p(x) + p(y) + 2\varepsilon$. So p is subadditive.

Lemma 1.2. Let $C \subseteq V$ be open, convex, and nonempty, and let $x_0 \notin C$. Then there exists a continuous linear form $f: V \to \mathbb{R}$ such that $f(x) < f(x_0)$ for all $x \in C$. In particular, the closed affine hyperplane $H = f^{-1}(f(x_0))$ separates x_0 and C.

Proof. By translation, we may assume that $0 \in C$. Let $g: \mathbb{R}x_0 \to \mathbb{R}$ send $tx_0 \mapsto t$. Then $g(tx_0) \leq p(x_0)$ for any $t \in \mathbb{R}$, where p is the gauge of C; indeed, for $t \leq 0$, this is ok, and if t > 0, this is also ok, as $p(x_0) \geq 1$. By the analytic version of the Hahn-Banach theorem, g extends to a linear form $f: V \to \mathbb{R}$ such that $f(x_0) = 1$ and $f(x) \leq p(x)$ for any $x \in V$. In particular, $f(x) < 1 = f(x_0)$ for $x \in C$. The function f is continuous as $f(x) \leq p(x) \leq M||x||$ for all $x \in V$.

We are now ready to prove the geometric Hahn-Banach theorem.

Proof. Let $C = A - B = \{x - y : x \in A, y \in B\}$. Then C is convex because A, B are convex, $0 \notin C$, and C is open (because $C = \bigcup_{y \in B} (A - y)$, which is a union of open sets). By the previous lemma, there exists a linear continuous form f such that f < 0 on C. Then f(x) < f(y) for $x \in A$ and $y \in B$. If $\sup_{x \in A} f(x) \le \alpha \le \inf_{y \in B} f(y)$, then $f^{-1}(\alpha)$ separates A and B.

1.2 The complex geometric Hahn-Banach theorem

Definition 1.2. Let V be a vector space over $K = \mathbb{R}$ or \mathbb{C} . We say that $M \subseteq V$ is **balanced** if $\lambda x \in M$ for all $x \in M$ and $\lambda \in K$ with $|\lambda| \leq 1$.

Proposition 1.1. Let V be a normed vector space over \mathbb{C} , and let $C \subseteq V$ be open, convex, nonempty, and balanced. Let $x_0 \notin C$. Then there exists a complex linear continuous map $f: V \to \mathbb{C}$ such that $f(x_0) \neq f(x)$ for all $x \in C$. In particular, the closed affine hyperplane $H = f^{-1}(f(x_0))$ contains x_0 and does not meet C.

Proof. Since C is balanced, $0 \in C$. Let p be the gauge of C. Then $C = \{x : p(x) < 1\}$, and p is a seminorm; i.e. $p(\lambda x) = |\lambda| p(x)$ and $p(x+y) \le p(x) + p(y)$. We can now conclude that there is a continuous linear form $f : V \to \mathbb{C}$ such that $f(x_0) = 1$ and $|f| \le p$ on V. Then |f| < 1 on C, so f is continuous.

Remark 1.1. The gauge p of C (convex, open, balanced, contains 0) satisfies the following inequality:

$$|p(x+y) - p(y)| \le p(x) \le M||x||.$$

So p is Lipschitz continuous on V.

Corollary 1.1. Let V be a normed vector space over \mathbb{C} , and let $A \subseteq V$ be a closed, convex, noempty, and balanced. Let $x \notin A$. We can find a continuous linear forms f on V such that $\inf_{y \in A} |f(y) - f(z)| > 0$.

Proof. Let $\varepsilon > 0$ be so small that $(x+B(0,\varepsilon)) \cap A = \emptyset$. The set $B(0,\varepsilon) + A$ is open, convex, balanced, and does not contain x, so by the previous lemma, there is a continuous linear form f such that $f(x) \neq f(y) + f(z)$, where $y \in A$ and $z \in B(0,\varepsilon)$. Here, $f(B(0,\varepsilon)) \neq \{0\}$ is a balanced subset of \mathbb{C} , so it contains a neighborhood of 0.