SEQUENCE LISTING

IAP20 Rec'd PCT/PTO 23 JUN 2006

<110>	Kinch, Michael S.	
<120>	EphA2 VACCINES	
<130>	10271-148	
<150> <151>	US 60/532,696 2003-12-24	
<150> <151>	US 60/602,588 2004-08-18	
<150> <151>	2004-10-01	
<150> <151>	2004-10-07	
<160>	72	
<170>	PatentIn version 3.2	
<210> <211> <212> <213>	1 3963 DNA Homo sapiens	
<220> <221> <222>		
<400> attaag	1 ggact cggggcagga ggggcagaag ttgcgcgcag gccggcgggc gggagcggac	60
accgag	ggccg gcgtgcaggc gtgcgggtgt gcgggagccg ggctcggggg gatcggaccg	120
agagc	gagaa gcgcggc atg gag ctc cag gca gcc cgc gcc tgc ttc gcc Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala 1 5 10	170
ctg cl Leu Le	tg tgg ggc tgt gcg ctg gcc gcg gcg gcg g	218
gaa g Glu V	tg gta ctg ctg gac ttt gct gca gct gga ggg gag ctc ggc tgg al Val Leu Leu Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp 30 35 40	266
ctc a Leu T	ca cac ccg tat ggc aaa ggg tgg gac ctg atg cag aac atc atg hr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met 5 50 55	314
aat g Asn A 60	ac atg ccg atc tac atg tac tcc gtg tgc aac gtg atg tct ggc sp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly 65 70 75	362
gac c Asp G	ag gac aac tgg ctc cgc acc aac tgg gtg tac cga gga gag gct In Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala	410

80 85 90

				•					•							
gag Glu	cgt Arg	atc Ile	ttc Phe 95	att Ile	gag Glu	ctc Leu	aag Lys	ttt Phe 100	act Thr	gta Val	cgt Arg	gac Asp	tgc Cys 105	aac Asn	agc Ser	458
ttc Phe	cct Pro	ggt Gly 110	ggc Gly	gcc Ala	agc Ser	tcc Ser	tgc Cys 115	aag Lys	gag Glu	act Thr	ttc Phe	aac Asn 120	ctc Leu	tac Tyr	tat Tyr	506
gcc Ala	gag Glu 125	tcg Ser	gac Asp	ctg Leu	gac Asp	tac Tyr 130	ggc Gly	acc Thr	aac Asn	ttc Phe	cag Gln 135	aag Lys	cgc Arg	ctg Leu	ttc Phe	554
acc Thr 140	aag Lys	att Ile	gac Asp	acc Thr	att Ile 145	gcg Ala	ccc Pro	gat Asp	gag Glu	atc Ile 150	acc Thr	gtc Val	agc Ser	agc Ser	gac Asp 155	602
ttc Phe	gag Glu	gca Ala	cgc Arg	cac His 160	gtg Val	aag Lys	ctg Leu	aac Asn	gtg Val 165	gag Glu	gag Glu	cgc Arg	tcc Ser	gtg Val 170	GJÀ aaa	650
ccg Pro	ctc Leu	acc Thr	cgc Arg 175	aaa Lys	ggc Gly	ttc Phe	tac Tyr	ctg Leu 180	gcc Ala	ttc Phe	cag Gln	gat Asp	atc Ile 185	ggt Gly	gcc Ala	698
tgt Cys	gtg Val	gcg Ala 190	ctg Leu	ctc Leu	tcc Ser	gtc Val	cgt Arg 195	gtc Val	tac Tyr	tac Tyr	aag Lys	aag Lys 200	tgc Cys	ccc Pro	gag Glu	746
ctg Leu	ctg Leu 205	cag Gln	ggc Gly	ctg Leu	gcc Ala	cac His 210	ttc Phe	cct Pro	gag Glu	acc Thr	atc Ile 215	gcc Ala	ggc	tct Ser	gat Asp	794
gca Ala 220	Pro	tcc Ser	ctg Leu	gcc Ala	act Thr 225	Val	gcc Ala	ggc Gly	acc Thr	tgt Cys 230	gtg Val	gac Asp	cat His	gcc Ala	gtg Val 235	842
gtg Val	cca Pro	ccg Pro	ggg	ggt Gly 240	Glu	gag Glu	ccc Pro	cgt Arg	atg Met 245	His	tgt Cys	gca Ala	gtg Val	gat Asp 250	Gly	890
gag Glu	tgg Trp	ctg Leu	gtg Val 255	Pro	att Ile	ggg Gly	cag Gln	tgc Cys 260	Leu	tgc Cys	cag Gln	gca Ala	ggc Gly 265	Tyr	gag Glu	938
aag Lys	gtg Val	gag Glu 270	ı Asp	gcc Ala	tgc Cys	cag Gln	gcc Ala 275	Cys	tcg Ser	cct Pro	gga Gly	ttt Phe 280	Phe	aag Lys	ttt Phe	986
gag Glu	gca Ala 285	Ser	gag Glu	ago Ser	Pro	tgc Cys 290	Lev	gag Glu	tgo Cys	cct Pro	gag Glu 295	ı His	acg Thr	ctg Lev	cca Pro	1034
tcc Ser 300	Pro	gaç Glu	g ggt 1 Gly	gco Ala	acc Thr 305	: Ser	tgo Cys	gag Glu	ı tgt ı Cys	gag Glu 310	ı Glu	ggo Gly	tto Phe	tto Phe	cgg Arg 315	1082
gca Ala	a cct	caq Gli	g gac n Asp	cca Pro 320) Ala	y tcg a Sei	g ato Met	cct Pro	tgo Cys 325	Thr	cga Arg	a cco	e ccc	s tcc Ser 330	gcc Ala	1130

cca Pro	cac His	tac Tyr	ctc Leu 335	aca Thr	gcc Ala	gtg Val	ggc Gly	atg Met 340	ggt Gly	gcc Ala	aag Lys	gtg Val	gag Glu 345	ctg Leu	cgc Arg	1178
tgg Trp	acg Thr	ccc Pro 350	cct Pro	cag Gln	gac Asp	agc Ser	ggg Gly 355	ggc Gly	cgc Arg	gag Glu	gac Asp	att Ile 360	gtc Val	tac Tyr	agc Ser	1226
gtc Val	acc Thr 365	tgc Cys	gaa Glu	cag Gln	tgc Cys	tgg Trp 370	ccc Pro	gag Glu	tct Ser	G1A aaa	gaa Glu 375	tgc Cys	GJA aaa	ccg Pro	tgt Cys	1274
gag Glu 380	gcc Ala	agt Ser	gtg Val	cgc Arg	tac Tyr 385	tcg Ser	gag Glu	cct Pro	cct Pro	cac His 390	gga Gly	ctg Leu	acc Thr	cgc Arg	acc Thr 395	1322
agt Ser	gtg Val	aca Thr	gtg Val	agc Ser 400	gac Asp	ctg Leu	gag Glu	ccc Pro	cac His 405	atg Met	aac Asn	tac Tyr	acc Thr	ttc Phe 410	acc Thr	1370
gtg Val	gag Glu	gcc Ala	cgc Arg 415	aat Asn	ggc Gly	gtc Val	tca Ser	ggc Gly 420	ctg Leu	gta Val	acc Thr	agc Ser	cgc Arg 425	agc Ser	ttc Phe	1418
cgt Arg	act Thr	gcc Ala 430	agt Ser	gtc Val	agc Ser	atc Ile	aac Asn 435	cag Gln	aca Thr	gag Glu	ccc Pro	ccc Pro 440	aag Lys	gtg Val	agg Arg	1466
ctg Leu	gag Glu 445	ggc Gly	cgc Arg	agc Ser	acc Thr	acc Thr 450	tcg Ser	ctt Leu	agc Ser	gtc Val	tcc Ser 455	tgg Trp	agc Ser	atc Ile	ccc Pro	1514
ccg Pro 460	Pro	cag Gln	cag Gln	agc Ser	cga Arg 465	gtg Val	tgg Trp	aag Lys	tac Tyr	gag Glu 470	gtc Val	act Thr	tac Tyr	cgc Arg	aag Lys 475	1562
aag Lys	gga Gly	gac Asp	tcc Ser	aac Asn 480	agc Ser	tac Tyr	aat Asn	gtg Val	cgc Arg 485	Arg	acc Thr	gag Glu	ggt Gly	ttc Phe 490	Ser	1610
gtg Val	acc Thr	ctg Leu	gac Asp 495	gac Asp	ctg Leu	gcc Ala	cca Pro	gac Asp 500	Thr	acc Thr	tac Tyr	ctg Leu	gtc Val 505	cag Gln	gtg Val	1658
cag Gln	gca Ala	ctg Leu 510	Thr	cag Gln	gag Glu	ggc Gly	cag Gln 515	Gly	gcc Ala	ggc Gly	agc Ser	aag Lys 520	Val	cac	gaa Glu	1706
tto Phe	cag Gln 525	Thr	ctg Leu	tcc Ser	ccg Pro	gag Glu 530	Gly	tct Ser	ggc Gly	aac Asn	ttg Leu 535	Ala	gtg Val	att Ile	ggc	1754
ggc Gly 540	v Val	gct Ala	gtc Val	ggt	gtg Val 545	Val	ctg Leu	ctt Leu	ctg Leu	gtg Val 550	Leu	gca Ala	gga Gly	gtt Val	ggc Gly 555	1802
tto Phe	ttt Phe	ato lle	cac His	cgc Arg 560	, Arg	agg Arg	aag Lys	aac Asn	cag Gln 565	Arg	gco Ala	cgc Arg	cag Gln	Ser 570	ccg Pro	1850

gag Glu	gac Asp	gtt Val	tac Tyr 575	ttc Phe	tcc Ser	aag Lys	tca Ser	gaa Glu 580	caa Gln	ctg Leu	aag Lys	ccc Pro	ctg Leu 585	aag Lys	aca Thr	1898
tac Tyr	gtg Val	gac Asp 590	ccc Pro	cac His	aca Thr	tat Tyr	gag Glu 595	gac Asp	ccc Pro	aac Asn	cag Gln	gct Ala 600	gtg Val	ttg Leu	aag Lys	1946
ttc Phe	act Thr 605	acc Thr	gag Glu	atc Ile	cat His	cca Pro 610	tcc Ser	tgt Cys	gtc Val	act Thr	cgg Arg 615	cag Gln	aag Lys	gtg Val	atc Ile	1994
gga Gly 620	gca Ala	gga Gly	gag Glu	ttt Phe	ggg Gly 625	gag Glu	gtg Val	tac Tyr	aag Lys	ggc Gly 630	atg Met	ctg Leu	aag Lys	aca Thr	tcc Ser 635	2042
tcg Ser	ggg Gly	aag Lys	aag Lys	gag Glu 640	gtg Val	ccg Pro	gtg Val	gcc Ala	atc Ile 645	aag Lys	acg Thr	ctg Leu	aaa Lys	gcc Ala 650	ggc Gly	2090
tac Tyr	aca Thr	gag Glu	aag Lys 655	cag Gln	cga Arg	gtg Val	gac Asp	ttc Phe 660	ctc Leu	ggc Gly	gag Glu	gcc Ala	ggc Gly 665	atc Ile	atg Met	2138
ggc Gly	cag Gln	ttc Phe 670	agc Ser	cac His	cac His	aac Asn	atc Ile 675	atc Ile	cgc Arg	cta Leu	gag Glu	ggc Gly 680	gtc Val	atc Ile	tcc Ser	2186
aaa Lys	tac Tyr 685	aag Lys	ccc Pro	atg Met	atg Met	atc Ile 690	atc Ile	act Thr	gag Glu	tac Tyr	atg Met 695	gag Glu	aat Asn	GJA aaa	gcc Ala	2234
ctg Leu 700	Asp	aag Lys	ttc Phe	ctt Leu	cgg Arg 705	gag Glu	aag Lys	gat Asp	ggc Gly	gag Glu 710	ttc Phe	agc Ser	gtg Val	ctg Leu	cag Gln 715	2282
ctg Leu	gtg Val	ggc Gly	atg Met	ctg Leu 720	cgg Arg	ggc	atc Ile	gca Ala	gct Ala 725	ggc	atg Met	aag Lys	tac Tyr	ctg Leu 730	gcc Ala	2330
aac Asn	atg Met	aac Asn	tat Tyr 735	gtg Val	cac His	cgt Arg	gac Asp	ctg Leu 740	Ala	gcc Ala	cgc Arg	aac Asn	atc Ile 745	Leu	gtc Val	2378
aac Asn	ago Ser	aac Asn 750	Leu	gtc Val	tgc Cys	aag Lys	gtg Val 755	Ser	gac Asp	ttt Phe	ggc	ctg Leu 760	Ser	cgc	gtg Val	2426
ctg Lev	gag Glu 765	Asp	gac Asp	ccc Pro	gag Glu	gcc Ala 770	Thr	tac Tyr	acc Thr	acc Thr	agt Ser 775	Gly	ggc	aag Lys	atc Ile	2474
9r0 780	Il€	cgc Arg	tgg Trp	acc Thr	gcc Ala 785	Pro	gag Glu	gco Ala	att Ile	tcc Ser 790	Туг	cgg Arg	aag Lys	tto Phe	acc Thr 795	2522
tct Sei	gco Ala	ago Ser	gac Asp	gtg Val 800	. Trp	ago Ser	ttt Phe	ggc Gly	att / Ile 805	val	ato Met	j tgg : Trp	gag Glu	gtg Val 810	g atg . Met)	2570
aco	tat	ggo	gag	cgg	ccc	tac	tgg	g gag	g ttg	tcc	aac	cac	gag	gto	g atg	2618

Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met 815 820 825	
aaa gcc atc aat gat ggc ttc cgg ctc ccc aca ccc atg gac tgc ccc Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro 830 835 840	2666
tcc gcc atc tac cag ctc atg atg cag tgc tgg cag cag gag cgt gcc Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala 845 850 855	2714
cgc cgc ccc aag ttc gct gac atc gtc agc atc ctg gac aag ctc att Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile 860 865 870 875	2762
cgt gcc cct gac tcc ctc aag acc ctg gct gac ttt gac ccc cgc gtg Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val 880 885 890	2810
tct atc cgg ctc ccc agc acg agc ggc tcg gag ggg gtg ccc ttc cgc Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg 895 900 905	2858
acg gtg tcc gag tgg ctg gag tcc atc aag atg cag cag tat acg gag Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu 910 915 920	2906
cac ttc atg gcg gcc ggc tac act gcc atc gag aag gtg gtg cag atg His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met 925 930 935	2954
acc aac gac gac atc aag agg att ggg gtg cgg ctg ccc ggc cac cag Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln 940 945 950 955	3002
aag cgc atc gcc tac agc ctg ctg gga ctc aag gac cag gtg aac act Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr 960 965 970	3050
gtg ggg atc ccc atc tga gcctcgacag ggcctggagc cccatcggcc Val Gly Ile Pro Ile 975	3098
aagaatactt gaagaaacag agtggcctcc ctgctgtgcc atgctgggcc actggggact	3158
ttatttattt ctagttettt ceteceetg caaetteege tgaggggtet eggatgaeae	3218
cctggcctga actgaggaga tgaccaggga tgctgggctg ggccctcttt ccctgcgaga	3278
cgcacacagc tgagcactta gcaggcaccg ccacgtccca gcatccctgg agcaggagcc	3338
ccgccacage ettcggacag acatatagga tattcccaag ccgacettee etccgcette	3398
tcccacatga ggccatctca ggagatggag ggcttggccc agcgccaagt aaacagggta	3458
cctcaagccc catttcctca cactaagagg gcagactgtg aacttgactg ggtgagaccc	3518
aaagcggtcc ctgtccctct agtgccttct ttagaccctc gggccccatc ctcatccctg	3578
actggccaaa cccttgcttt cctgggcctt tgcaagatgc ttggttgtgt tgaggttttt	3638

aaatatatat	tttgtacttt	gtggagagaa	tgtgtgtgtg	tggcaggggg	ccccgccagg	3698
gctggggaca	gagggtgtca	aacattcgtg	agctggggac	tcagggaccg	gtgctgcagg	3758
agtgtcctgc	ccatgcccca	gtcggcccca	tctctcatcc	ttttggataa	gtttctattc	3818
tgtcagtgtt	aaagattttg	ttttgttgga	cattttttc	gaatcttaat	ttattatttt	3878
ttttatattt	attgttagaa	aatgacttat	ttctgctctg	gaataaagtt	gcagatgatt	3938
caaaccgaaa	aaaaaaaaa	aaaaa				3963

<210> 2

<211> 976

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys 1 5 10 15

Ala Leu Ala Ala Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu 20 . 25 30

Asp Phe Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr 35 40 45

Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile 50 55 60

Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp 65 70 75 80

Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile 85 90 95

Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala 100 105 110

Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu 115 120 125

Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr 130 135 140

Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His 145 150 155 160

Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys

165 170 175

Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu 180 185 190

Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu 195 200 205

Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala 210 215 220

Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly 225 230 235 240

Glu Glu Pro Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro 245 250 255

Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala 260 265 270

Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser 275 280 285

Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala 290 295 300

Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro 305 310 315 320

Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr 325 330 335

Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln 340 345 350

Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln 355 360 365

Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg 370 375 380

Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser 385 390 395 400

Asp Leu Glu Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn 405 410 415

- Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val 420 425 430
- Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser 435 440 445
- Thr Thr Ser Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser 450 455 460
- Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn 465 470 475 480
- Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp 485 490 495
- Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln
 500 505 510
- Glu Gly Gln Gly Ala Gly Ser Lys Val His Glu Phe Gln Thr Leu Ser
- Pro Glu Gly Ser Gly Asn Leu Ala Val Ile Gly Gly Val Ala Val Gly 530 535 540
- Val Val Leu Leu Leu Val Leu Ala Gly Val Gly Phe Phe Ile His Arg
- Arg Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe 565 570 575
- Ser Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His 580 585 590
- Thr Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile 595 600 605
- His Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe 610 615 620
- Gly Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu 625 630 635 640
- Val Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln 645 650 655

Arg Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His 660 665 670

- His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met 675 680 685
- Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu 690 695 700
- Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu 705 710 715 720
- Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val 725 730 735
- His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val 740 745 750
- Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro 755 760 765
- Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr 770 775 780
- Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val 785 790 795 800
- Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg 805 810 815
- Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp 820 825 830
- Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln 835 840 845
- Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe 850 855 860
- Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser 865 870 875 880
- Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro 885 890 895

Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp 905 900 Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala 920 915 Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile 935 930 Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr 950 945 Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 970 965 <210> 3 <211> 12 <212> PRT <213> Homo sapiens <400> 3 Thr Leu Ala Asp Phe Asp Pro Arg Val Pro Arg Thr 5 <210> 4 <211> 9 <212> PRT <213> Homo sapiens <400> 4 Val Leu Leu Val Leu Ala Gly Val 5 <210> 5 <211> 9 <212> PRT <213> Homo sapiens <400> 5 Val Leu Ala Gly Val Gly Phe Phe Ile 5 <210> 6 <211> 9 <212> PRT <213> Homo sapiens <400> 6

```
Ile Met Asn Asp Met Pro Ile Tyr Met
<210> 7
<211> 9
<212> PRT
<213> Homo sapiens
<400> 7
Ser Leu Leu Gly Leu Lys Asp Gln Val
<210> 8
<211> 9
<212> PRT
<213> Homo sapiens
<400> 8
Trp Leu Val Pro Ile Gly Gln Cys Leu
1 5
<210> 9
<211> 9
<212> PRT
 <213> Homo sapiens
 <400> 9
 Leu Leu Trp Gly Cys Ala Leu Ala Ala
 <210> 10
 <211> 9
 <212> PRT
 <213> Homo sapiens
. <400> 10
 Gly Leu Thr Arg Thr Ser Val Thr Val
 1 5
 <210> 11
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 11
 Asn Leu Tyr Tyr Ala Glu Ser Asp Leu
             5
 <210> 12
```

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 12
Lys Leu Asn Val Glu Glu Arg Ser Val
<210> 13
<211> 9
<212> PRT
<213> Homo sapiens
<400> 13
Ile Met Gly Gln Phe Ser His His Asn
1 5
<210> 14
<211> 9
<212> PRT
<213> Homo sapiens
<400> 14
Tyr Ser Val Cys Asn Val Met Ser Gly
<210> 15
<211> 9
<212> PRT
<213> Homo sapiens
<400> 15
Met Gln Asn Ile Met Asn Asp Met Pro
1 5
<210> 16
<211> 15
<212> PRT
<213> Homo sapiens
<400> 16
Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg
                                   10
                5
<210> 17
<211> 13
 <212> PRT
 <213> Homo sapiens
 <400> 17
```

Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly 10

<210> 18 <211> 16

<212> PRT

<213> Homo sapiens

<400> 18

Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser 15 5

<210> 19

<211> 3105

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion construct

atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacc aattgcgcaa 60 caaactgaag caaaggatgc atctgcattc aataaagaaa attcaatttc atccatggca 120 ccaccagcat ctccgcctgc aagtcctaag acgccaatcg aaaagaaaca cgcggatctc 180 gagetecagg cageeegege etgettegee etgetgtggg getgtgeget ggeegeggee 240 gcggcggcgc agggcaagga agtggtactg ctggactttg ctgcagctgg aggggagctc 300 ggctggctca cacacccgta tggcaaaggg tgggacctga tgcagaacat catgaatgac 360 420 atgccgatct acatgtactc cgtgtgcaac gtgatgtctg gcgaccagga caactggctc 480 cgcaccaact gggtgtaccg aggagaggct gagcgtatct tcattgagct caagtttact 540 gtacgtgact gcaacagctt ccctggtggc gccagctcct gcaaggagac tttcaacctc tactatgccg agtcggacct ggactacggc accaacttcc agaagcgcct gttcaccaag 600 attgacacca ttgcgcccga tgagatcacc gtcagcagcg acttcgaggc acgccacgtg 660 aagctgaacg tggaggagcg ctccgtgggg ccgctcaccc gcaaaggctt ctacctggcc 720 ttccaggata tcggtgcctg tgtggcgctg ctctccgtcc gtgtctacta caagaagtgc 780 cccgagctgc tgcagggcct ggcccacttc cctgagacca tcgccggctc tgatgcacct 840 900 tecetggeca etgtggeegg cacetgtgtg gaceatgeeg tggtgecaee ggggggtgaa 960 gagccccgta tgcactgtgc agtggatggc gagtggctgg tgcccattgg gcagtgcctg tgccaggcag gctacgagaa ggtggaggat gcctgccagg cctgctcgcc tggattttt 1020

aagtttgagg catctgagag cccctgcttg gagtgccctg agcacacgct gccatcccct

1080

gagggtgcca cctcctgcga gtgtgag	gaa ggcttcttcc	gggcacctca	ggacccagcg	1140
togatgoott gcacacgacc cocctco	gcc ccacactacc	tcacagccgt	gggcatgggt	1200
gccaaggtgg agctgcgctg gacgccc	cct caggacagcg	ggggccgcga	ggacattgtc	1260
tacagegtea eetgegaaca gtgetgg	ccc gagtctgggg	aatgcgggcc	gtgtgaggcc	1320
agtgtgcgct actcggagcc tcctcac	gga ctgacccgca	ccagtgtgac	agtgagcgac	1380
ctggagcccc acatgaacta caccttc	acc gtggaggccc	gcaatggcgt	ctcaggcctg	1440
gtaaccagcc gcagcttccg tactgcc	agt gtcagcatca	accagacaga	gcccccaag	1500
gtgaggctgg agggccgcag caccacc	tcg cttagcgtct	cctggagcat	cccccgccg	1560
cagcagagcc gagtgtggaa gtacgag	gtc acttaccgca	agaagggaga	ctccaacagc	1620
tacaatgtgc gccgcaccga gggtttc	tcc gtgaccctgg	acgacctggc	cccagacacc	1680
acctacctgg tccaggtgca ggcactg	acg caggagggcc	agggggccgg	cagcagggtg	1740
cacgaattee agaegetgte ceeggag	gga tctggcaact	tggcggtgat	tggcggcgtg	1800
gctgtcggtg tggtcctgct tctggtg	ctg gcaggagttg	gcttctttat	ccaccgcagg	1860
aggaagaacc agcgtgcccg ccagtco	ccg gaggacgttt	acttctccaa	gtcagaacaa	1920
ctgaagcccc tgaagacata cgtggac	ccc cacacatatg	aggaccccaa	ccaggctgtg	1980
ttgaagttca ctaccgagat ccatcca	tcc tgtgtcactc	ggcagaaggt	gatcggagca	2040
ggagagtttg gggaggtgta caagggc	atg ctgaagacat	cctcggggaa	gaaggaggtg	2100
ccggtggcca tcaagacgct gaaagcc	ggc tacacagaga	agcagcgagt	ggacttcctc	2160
ggcgaggccg gcatcatggg ccagtto	cage caccacaaca	tcatccgcct	agagggcgtc	2220
atctccaaat acaagcccat gatgato	catc actgagtaca	tggagaatgg	ggccctggac	2280
aagtteette gggagaagga tggegag	gttc agcgtgctgc	agctggtggg	catgctgcgg	2340
ggcatcgcag ctggcatgaa gtacctg	ggcc aacatgaact	atgtgcaccg	tgacctggct	2400
gcccgcaaca tcctcgtcaa cagcaa	cctg gtctgcaagg	g tgtctgactt	tggcctgtcc	2460
cgcgtgctgg aggacgaccc cgaggc	cacc tacaccacca	a gtggcggcaa	gatccccatc	2520
cgctggaccg ccccggaggc cattte	ctac cggaagttca	a cctctgccag	cgacgtgtgg	2580
agetttggca ttgtcatgtg ggaggt	gatg acctatggcg	g agcggcccta	ctgggagttg	2640
tccaaccacg aggtgatgaa agccat	caat gatggcttco	ggctccccac	acccatggac	2700
tgcccctccg ccatctacca gctcat	gatg cagtgctgg	c agcaggagcg	tgcccgccgc	2760
cccaagttcg ctgacatcgt cagcat	cctg gacaagctca	a ttcgtgcccc	tgactccctc	2820
aagaccctgg ctgactttga cccccg	cgtg tctatccgg	c tececageae	gagcggctcg	2880
gagggggtgc ccttccgcac ggtgtc	cgag tggctggag	t ccatcaagat	gcagcagtat	2940

acggagcact tcatggcggc cggctacact gccatcgaga aggtggtgca gatgaccaac 3000 gacgacatca agaggattgg ggtgcggctg cccggccacc agaagcgcat cgcctacagc 3060 ctgctgggac tcaaggacca ggtgaacact gtggggatcc ccatc 3105

- <210> 20
- <211> 1035
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Predicted fusion protein
- <400> 20
- Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
 1 10 15
- Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30
- Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45
- Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu Leu Gln Ala 50 55 60
- Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys Ala Leu Ala Ala 65 70 75 80
- Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala Ala 85 90 95
- Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp 100 105 110
- Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val 115 120 125
- Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp 130 135 140
- Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr 145 150 155 160
- Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu 165 170 175

Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn 180 185 190

- Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu 195 200 205
- Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val 210 215 220
- Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala 225 230 235 240
- Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr 245 250 255
- Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu 260 265 270
- Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr 275 280 285
- Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met 290 295 300
- His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu 305 310 315 320
- Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser 325 330 335
- Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys 340 345 350
- Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys 355 360 365
- Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys 370 375 380
- Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly 385 390 395 400
- Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg 405 410 415

Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser 420 425 430

- Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro 435 440 445
- His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His 450 455 460
- Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu 465 470 475 480
- Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr 485 490 495
- Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser 500 505 510
- Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr 515 520 525
- Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg 530 535 540
- Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr 545 550 555 560
- Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala 565 570 575
- Gly Ser Arg Val His Glu Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly 580 585 590
- Asn Leu Ala Val Ile Gly Gly Val Ala Val Gly Val Val Leu Leu Leu 595 600 605
- Val Leu Ala Gly Val Gly Phe Phe Ile His Arg Arg Arg Lys Asn Gln 610 615 620
- Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln 625 630 635 640
- Leu Lys Pro Leu Lys Thr Tŷr Val Asp Pro His Thr Tyr Glu Asp Pro 645 650 655

Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val 660 665 670

Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys 675 680 685

Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile 690 695 700

Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu 705 710 715 720

Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg 725 730 735

Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu 740 745 , 750

Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly 755 760 765

Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala 770 775 780

Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala 785 790 795 800

Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp 805 810 815

Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr 820 825 830

Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile 835 840 845

Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile 850 855 860

Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu 865 870 875 880

Ser Asn His Glu Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro 885 890 895

Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys

900 905 910

Trp Gln Glu Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser 915 920 925

Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala 930 935 940

Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser 945 950 955 960

Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp Leu Glu Ser Ile Lys 965 970 975

Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile 980 985 990

Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val 995 1000 1005

Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly 1010 1015 1020

Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 1025 1030 1035

<210> 21 <211> 1506

<212> DNA

<213> Homo sapiens

<400> 21 cagggcaagg aagtggtact gctggacttt gctgcagctg gaggggagct cggctggctc 60 acacaccegt atggcaaagg gtgggacctg atgcagaaca tcatgaatga catgccgatc 120 180 tacatgtact ccgtgtgcaa cgtgatgtct ggcgaccagg acaactggct ccgcaccaac tgggtgtacc gaggagaggc tgagcgtatc ttcattgagc tcaagtttac tgtacgtgac 300 tgcaacagct tccctggtgg cgccagctcc tgcaaggaga ctttcaacct ctactatgcc 360 gagtcggacc tggactacgg caccaacttc cagaagcgcc tgttcaccaa gattgacacc attgcgcccg atgagatcac cgtcagcagc gacttcgagg cacgccacgt gaagctgaac 420 gtggaggagc gctccgtggg gccgctcacc cgcaaaggct tctacctggc cttccaggat 480 atcggtgcct gtgtggcgct gctctccgtc cgtgtctact acaagaagtg ccccgagctg 540 ctgcagggcc tggcccactt ccctgagacc atcgccggct ctgatgcacc ttccctggcc 600

actgtggccg	gcacctgtgt	ggaccatgcc	gtggtgccac	cggggggtga	agagccccgt	660
atgcactgtg	cagtggatgg	cgagtggctg	gtgcccattg	ggcagtgcct	gtgccaggca	720
ggctacgaga	aggtggagga	tgcctgccag	gcctgctcgc	ctggattttt	taagtttgag	780
gcatctgaga	gcccctgctt	ggagtgccct	gagcacacgc	tgccatcccc	tgagggtgcc	840
acctcctgcg	agtgtgagga	aggcttcttc	cgggcacctc	aggacccagc	gtcgatgcct	900
tgcacacgac	cccctccgc	cccacactac	ctcacagccg	tgggcatggg	tgccaaggtg	960
gagctgcgct	ggacgccccc	tcaggacagc	gggggccgcg	aggacattgt	ctacagcgtc	1020
acctgcgaac	agtgctggcc	cgagtctggg	gaatgcgggc	cgtgtgaggc	cagtgtgcgc	1080
tactcggagc	ctcctcacgg	actgacccgc	accagtgtga	cagtgagcga	cctggagccc	1140
cacatgaact	acaccttcac	cgtggaggcc	cgcaatggcg	tctcaggcct	ggtaaccagc	1200
cgcagcttcc	gtactgccag	tgtcagcatc	aaccagacag	agccccccaa	ggtgaggctg	1260
gagggccgca	gcaccacctc	gcttagcgtc	tcctggagca	teccecegee	gcagcagagc	1320
cgagtgtgga	agtacgaggt	cacttaccgc	aagaagggag	actccaacag	ctacaatgtg	1380
cgccgcaccg	agggtttctc	cgtgaccctg	gacgacctgg	ccccagacac	cacctacctg	1440
gtccaggtgc	aggcactgac	gcaggagggc	cagggggccg	gcagcagggt	gcacgaattc	1500
cagacg						1506

<210> 22 <211> 1506

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Human sequence optimized for codon usage in Listeria

<400> 22 caaggtaaag aagttgtttt attagatttt gcagcagcag gtggtgaatt aggttggtta 60 120 acacatccat atggtaaagg ttgggattta atgcaaaata ttatgaatga tatgccaatt tatatgtata gtgtttgtaa tgttatgagt ggtgatcaag ataattggtt acgtacaaat 180 tgggtttatc gtggtgaagc agaacgtatt tttattgaat taaaatttac agttcgtgat 240 tgtaatagtt ttccaggtgg tgcaagtagt tgtaaagaaa catttaattt atattatgca 300 gaaagtgatt tagattatgg tacaaatttt caaaaacgtt tatttacaaa aattgataca 360 420 gttgaagaac gtagtgttgg tccattaaca cgtaaaggtt tttatttagc atttcaagat 480 attggtgcat gtgttgcatt attaagtgtt cgtgtttatt ataaaaaatg tccagaatta 540

ttacaaggtt	tagcacattt	tccagaaaca	attgcaggta	gtgatgcacc	aagtttagca	600
acagttgcag	gtacatgtgt	tgatcatgca	gttgttccac	caggtggtga	agaaccacgt	660
atgcattgtg	cagttgatgg	tgaatggtta	gttccaattg	gtcaatgttt	atgtcaagca	720
ggttatgaaa	aagttgaaga	tgcatgtcaa	gcatgtagtc	caggtttttt	taaatttgaa	780
gcaagtgaaa	gtccatgttt	agaatgtcca	gaacatacat	taccaagtcc	agaaggtgca	840
acaagttgtg	aatgtgaaga	aggtttttt	cgtgcaccac	aagatccagc	aagtatgcca	900
tgtacacgtc	caccaagtgc	accacattat	ttaacagcag	ttggtatggg	tgcaaaagtt	960
gaattacgtt	ggacaccacc	acaagatagt	ggtggtcgtg	aagatattgt	ttatagtgtt	1020
acatgtgaac	aatgttggcc	agaaagtggt	gaatgtggtc	catgtgaagc	aagtgttcgt	1080
tatagtgaac	caccacatgg	tttaacacgt	acaagtgtta	cagttagtga	tttagaacca	1140
catatgaatt	atacatttac	agttgaagca	cgtaatggtg	ttagtggttt	agttacaagt	1200
cgtagttttc	gtacagcaag	tgttagtatt	aatcaaacag	aaccaccaaa	agttcgttta	1260
gaaggtcgta	gtacaacaag	tttaagtgtt	agttggagta	ttccaccacc	acaacaaagt	1320
cgtgtttgga	aatatgaagt	tacatatcgt	aaaaaaggtg	atagtaatag	ttataatgtt	1380
cgtcgtacaç	g aaggttttag	tgttacatta	gatgatttag	caccagatac	aacatattta	1440
gttcaagtto	aagcattaac	: acaagaaggt	. caaggtgcag	gtagtcgtgt	tcatgaattt	1500
						1506
caaaca						

<210> 23

<400> 23

Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Gly Glu 1 5 10 15

Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln 20 25 30

Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val 35 40 45

Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg 50 55 60

Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp

<211> 502

<212> PRT

<213> Homo sapeins

70

75

80

Cys	Asn	Ser	Phe	Pro 85	Gly	Gly	Ala	Ser	Ser 90	Cys	Lys	Glu	Thr	Phe 95	Asn
Leu	Tyr	Tyr	Ala 100	Glu	Ser	Asp	Leu	Asp 105	Tyr	Gly	Thr	Asn	Phe 110	Gln	Lys
Arg	Leu	Phe 115	Thr	Lys	Ile	Asp	Thr 120	Ile	Ala	Pro	Asp	Glu 125	Ile	Thr	Val
Ser	Ser 130	Asp	Phe	Glu	Ala	Arg 135	His	Val	Lys	Leu	Asn 140	Val	Glu	Glu	Arg
Ser 145	Val	Gly	Pro	Leu	Thr 150	Arg	Lys	Gly	Phe	туr 155	Leu	Ala	Phe	Gln	Asp 160
Ile	Gly	Ala	Cys	Val 165	Ala	Leu	Leu	Ser	Val 170	Arg	Val	Tyr	туг	Lys 175	Lys
Суз	Pro	Glu	Leu 180	Leu	Gln	Gly	Leu	Ala 185	His	Phe	Pro	Glu	Thr 190	Ile	Ala
Gly	Ser	Asp 195	Ala	Pro	Ser	Leu	Ala 200	Thr	Val	Ala	Gly	Thr 205	Суз	Val	Asp
His	Ala 210		Val	Pro	Pro	Gly 215	Gly	Glu	Glu	Pro	Arg 220	Met	His	Суз	Ala
Val 225	_	Gly	Glu	Trp	Leu 230	Val	Pro	Ile	Gly	Gln 235	Cys	Leu	Cys	Gln	Ala 240
Gly	Туr	Glu	Lys	Val 245		Asp	Ala	Суѕ	Gln 250		Cys	Ser	Pro	Gly 255	Phe
Phe	. Lys	Phe	Glu 260		Ser	Glu	Ser	Pro 265		Leu	Glu	Cys	Pro 270		His
Thr	Leu	275		Pro	Glu	Gly	Ala 280		Ser	Cys	Glu	Cys 285		Glu	Gly
Phe	Phe 290		, Ala	Pro	Gln	Asp 295		Ala	Ser	Met	Pro 300		Thr	Arg	Pro
Pro 305	_	Ala	a Pro) His	310		ı Thr	Ala	val	l Gly 315		Gly	Ala	Lys	Val 320

Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile 330 325 Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys 345 Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr 380 375 370 Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser 390 Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro 410 405 Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp 425 420 Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr 440 445 435 Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu 455 450 Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu 475 470 465 Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg 495 490 485 Val His Glu Phe Gln Thr 500 <210> 24 <211> 1689 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Fusion protein construct

atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacc aattgcgcaa

<400> 24

PCT/US2004/034693 WO 2005/067460

caaactgaag	caaaggatgc	atctgcattc	aataaagaaa	attcaatttc	atccatggca	120
						180
		aagteetaag				
gagcagggca	aggaagtggt	actgctggac	tttgctgcag	ctggagggga	gctcggctgg	240
ctcacacacc	cgtatggcaa	agggtgggac	ctgatgcaga	acatcatgaa	tgacatgccg	300
atctacatgt	actccgtgtg	caacgtgatg	tctggcgacc	aggacaactg	gctccgcacc	360
aactgggtgt	accgaggaga	ggctgagcgt	atcttcattg	agctcaagtt	tactgtacgt	420
gactgcaaca	gcttccctgg	tggcgccagc	tcctgcaagg	agactttcaa	cctctactat	480
gccgagtcgg	acctggacta	cggcaccaac	ttccagaagc	gcctgttcac	caagattgac	540
accattgcgc	ccgatgagat	caccgtcagc	agcgacttcg	aggcacgcca	cgtgaagctg	600
aacgtggagg	agcgctccgt	ggggccgctc	acccgcaaag	gcttctacct	ggccttccag	660
gatatcggtg	cctgtgtggc	gctgctctcc	gtccgtgtct	actacaagaa	gtgccccgag	720
ctgctgcagg	gcctggccca	cttccctgag	accatcgccg	gctctgatgc	accttccctg	780
gccactgtgg	ccggcacctg	tgtggaccat	gccgtggtgc	caccgggggg	tgaagagccc	840
cgtatgcact	gtgcagtgga	tggcgagtgg	ctggtgccca	ttgggcagtg	cctgtgccag	900
gcaggctacg	agaaggtgga	ggatgcctgc	caggcctgct	cgcctggatt	ttttaagttt	960
gaggcatctg	agagcccctg	cttggagtgc	cctgagcaca	cgctgccatc	ccctgagggt	1020
gccacctcct	gcgagtgtga	ggaaggcttc	ttccgggcac	ctcaggaccc	agcgtcgatg	1080
ccttgcacac	gacccccctc	cgccccacac	tacctcacag	ccgtgggcat	gggtgccaag	1140
gtggagctgc	gctggacgcc	ccctcaggac	agcgggggcc	gcgaggacat	tgtctacagc	1200
gtcacctgcg	aacagtgctg	gcccgagtct	ggggaatgcg	ggccgtgtga	ggccagtgtg	1260
cgctactcgg	agcctcctca	cggactgacc	cgcaccagtg	tgacagtgag	cgacctggag	1320
ccccacatga	actacacctt	caccgtggag	gcccgcaatg	gcgtctcagg	cctggtaacc	1380
agccgcagct	tccgtactgc	cagtgtcagc	atcaaccaga	cagagccccc	caaggtgagg	1440
ctggagggcc	gcagcaccac	ctcgcttagc	gtctcctgga	gcatccccc	gccgcagcag	1500
agccgagtgt	ggaagtacga	ggtcacttac	cgcaagaagg	gagactccaa	cagctacaat	1560
gtgcgccgca	ccgagggttt	ctccgtgacc	ctggacgacc	tggccccaga	caccacctac	1620
ctggtccagg	tgcaggcact	gacgcaggag	ggccaggggg	ccggcagcag	ggtgcacgaa	1680
ttccagacg						1689

<210> 25 <211> 563 <212> PRT <213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Predicted fusion protein

<400> 25

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu Gln Gly Lys 50 55 60

Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp 70 75 80

Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met 85 90 95

Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly
100 105 110

Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala 115 120 125

Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser 130 135 140

Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 145 150 155 160

Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe 165 170 175

Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp 180 185 190

Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly

Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala 210 215 220

Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu 235 225 Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp 245 Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val 265 260 Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp Gly 280 Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu 295 Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe 315 310 305 Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro 330 325 Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg 345 Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala 360 Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg 375 370 Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser 395 390 385

Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys 405 410 415

Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr 420 425 430

Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe Thr 435 440 445

Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe 450 455 460

Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg 475 470 465 Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile Pro 490 485 Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys 505 Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser 520 515 Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val 540 530 Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg Val His Glu 555 545 Phe Gln Thr <210> 26 1989 <211> <212> DNA Artificial Sequence <213> <220> Description of Artificial Sequence: Fusion protein construct <223> <400> 26 60 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 180 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 aaaaaaataa tgctagtttt tattacactt atattagtta gtctaccaat tgcgcaacaa 300 actgaagcaa aggatgcatc tgcattcaat aaagaaaatt caatttcatc catggcacca 360 ccagcatctc cgcctgcaag tcctaagacg ccaatcgaaa agaaacacgc ggatggatcc 420 gattataaag atgatgatga taaacaaggt aaagaagttg ttttattaga ttttgcagca 480 gcaggtggtg aattaggttg gttaacacat ccatatggta aaggttggga tttaatgcaa 540

600

660

aatattatga atgatatgcc aatttatatg tatagtgttt gtaatgttat gagtggtgat

caagataatt ggttacgtac aaattgggtt tatcgtggtg aagcagaacg tattttatt

PCT/US2004/034693 WO 2005/067460

gaattaaaat	ttacagttcg	tgattgtaat	agttttccag	gtggtgcaag	tagttgtaaa	720
gaaacattta	atttatatta	tgcagaaagt	gatttagatt	atggtacaaa	ttttcaaaaa	780
cgtttattta	a caaaaattga	tacaattgca	ccagatgaaa	ttacagttag	tagtgatttt	840
gaagcacgt	atgttaaatt	aaatgttgaa	gaacgtagtg	ttggtccatt	aacacgtaaa	900
ggtttttat	t tagcatttca	agatattggt	gcatgtgttg	cattattaag	tgttcgtgtt	960
tattataaa	a aatgtccaga	attattacaa	ggtttagcac	attttccaga	aacaattgca	1020
ggtagtgat	g caccaagttt	agcaacagtt	gcaggtacat	gtgttgatca	tgcagttgtt	1080
ccaccaggt	g gtgaagaacc	acgtatgcat	tgtgcagttg	atggtgaatg	gttagttcca	1140
attggtcaa	t gtttatgtca	agcaggttat	gaaaaagttg	aagatgcatg	tcaagcatgt	1200
agtccaggt	t tttttaaatt	tgaagcaagt	gaaagtccat	gtttagaatg	tccagaacat	1260
acattacca	a gtccagaagg	tgcaacaagt	tgtgaatgtg	aagaaggttt	ttttcgtgca	1320
ccacaagat	c cagcaagtat	gccatgtaca	cgtccaccaa	gtgcaccaca	ttatttaaca	1380
gcagttggt	a tgggtgcaaa	agttgaatta	cgttggacac	caccacaaga	tagtggtggt	1440
cgtgaagat	a ttgtttatag	tgttacatgt	gaacaatgtt	ggccagaaag	tggtgaatgt	1500
ggtccatgt	g aagcaagtgt	tcgttatagt	gaaccaccac	atggtttaac	acgtacaagt	1560
gttacagtt	a gtgatttaga	accacatatg	aattatacat	ttacagttga	agcacgtaat	1620
ggtgttagt	g gtttagttac	aagtcgtagt	tttcgtacag	caagtgttag	tattaatcaa	1680
acagaacca	c caaaagttcg	tttagaaggt	cgtagtacaa	caagtttaag	tgttagttgg	1740
agtattcca	c caccacaaca	aagtcgtgtt	tggaaatatg	aagttacata	tcgtaaaaaa	1800
ggtgatagt	a atagttataa	tgttcgtcgt	acagaaggtt	ttagtgttac	attagatgat	1860
ttagcacca	g atacaacata	ı tttagttcaa	gttcaagcat	taacacaaga	aggtcaaggt	1920
gcaggtagt	c gtgttcatga	atttcaaaca	gaacaaaaat	taattagtga	agaagattta	1980
tgagagcto	•					1989

<210> 27

<211> 581 <212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 27

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 5 10

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

- Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45
- Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60
- Asp Asp Asp Lys Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala 65 70 75 80
- Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly 85 90 95
- Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr
 100 105 110
- Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr 115 120 125
- Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys 130 135 140
- Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys
 145 150 155 160
- Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly
 165 170 175
- Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro 180 185 190
- Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu 195 200 205
- Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr 210 215 220
- Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg 225 230 235 240
- Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe 245 250 255

Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala 260 265 270

- Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro 275 280 285
- Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln 290 295 300
- Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala 305 310 315 320
- Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu 325 330 335
- Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys 340 345 350
- Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met 355 360 365
- Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly 370 375 380
- Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly 385 390 395 400
- Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro 405 410 415
- Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu 420 425 430
- Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu 435 440 445
- Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser 450 455 460
- Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn 465 470 475 480
- Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser 485 490 495
- Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp

510 505 500

Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn 525 520 515

Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro 535 530

Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln 560 555 545 550

Gly Ala Gly Ser Arg Val His Glu Phe Gln Thr Glu Gln Lys Leu Ile 575 565

Ser Glu Glu Asp Leu 580

<210> 28

<211> 1989

<212> DNA

<213> Artificial Sequence

<220>

Description of Artificial Sequence: Construct for fusion protein <223>

<400> 28 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 120 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 180 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 300 aaaaaaatta tgttagtttt tattacatta attttagtta gtttaccaat tgcacaacaa 360 acagaagcaa aagatgcaag tgcatttaat aaagaaaata gtattagtag tatggcacca ccagcaagtc caccagcaag tccaaaaaca ccaattgaaa aaaaacatgc agatggatcc 420 480 gattataaag atgatgatga taaacaaggt aaagaagttg ttttattaga ttttgcagca 540 gcaggtggtg aattaggttg gttaacacat ccatatggta aaggttggga tttaatgcaa 600 aatattatga atgatatgcc aatttatatg tatagtgttt gtaatgttat gagtggtgat caagataatt ggttacgtac aaattgggtt tatcgtggtg aagcagaacg tatttttatt 660 gaattaaaat ttacagttcg tgattgtaat agttttccag gtggtgcaag tagttgtaaa 720 gaaacattta atttatatta tgcagaaagt gatttagatt atggtacaaa ttttcaaaaa 780 cgtttattta caaaaattga tacaattgca ccagatgaaa ttacagttag tagtgatttt 840 gaagcacgtc atgttaaatt aaatgttgaa gaacgtagtg ttggtccatt aacacgtaaa 900

PCT/US2004/034693 WO 2005/067460

ggtttttatt	tagcatttca	agatattggt	gcatgtgttg	cattattaag	tgttcgtgtt	960
		attattacaa				1020
						1080
ggtagtgatg	caccaagttt	agcaacagtt	geaggtacat	gigitgatta	tycayttytt	1000
ccaccaggtg	gtgaagaacc	acgtatgcat	tgtgcagttg	atggtgaatg	gttagttcca	1140
attggtcaat	gtttatgtca	agcaggttat	gaaaaagttg	aagatgcatg	tcaagcatgt	1200
agtccaggtt	tttttaaatt	tgaagcaagt	gaaagtccat	gtttagaatg	tccagaacat	1260
acattaccaa	gtccagaagg	tgcaacaagt	tgtgaatgtg	aagaaggttt	ttttcgtgca	1320
ccacaagatc	cagcaagtat	gccatgtaca	cgtccaccaa	gtgcaccaca	ttatttaaca	1380
gcagttggta	tgggtgcaaa	agttgaatta	cgttggacac	caccacaaga	tagtggtggt	1440
cgtgaagata	ttgtttatag	tgttacatgt	gaacaatgtt	ggccagaaag	tggtgaatgt	1500
ggtccatgtg	aagcaagtgt	tcgttatagt	gaaccaccac	atggtttaac	acgtacaagt	1560
gttacagtta	gtgatttaga	accacatatg	aattatacat	ttacagttga	agcacgtaat	1620
ggtgttagtg	gtttagttac	aagtcgtagt	tttcgtacag	caagtgttag	tattaatcaa	1680
acagaaccac	caaaagttcg	tttagaaggt	cgtagtacaa	caagtttaag	tgttagttgg	1740
agtattccac	caccacaaca	aagtcgtgtt	tggaaatatg	aagttacata	tcgtaaaaaa	1800
ggtgatagta	atagttataa	tgttcgtcgt	acagaaggtt	ttagtgttac	attagatgat	1860
ttagcaccag	atacaacata	tttagttcaa	gttcaagcat	taacacaaga	aggtcaaggt	1920
gcaggtagtc	gtgttcatga	atttcaaaca	gaacaaaaat	taattagtga	agaagattta	1980
tgagagete						1989

<210> 29

<211> 581 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted Fusion protein

<400> 29

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 10 5

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 45 40 35

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60

- Asp Asp Asp Lys Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala 65 70 75 80
- Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly 85 90 95
- Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr 100 105 110
- Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr 115 120 125
- Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys 130 135 140
- Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys 145 150 155 160
- Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly
 165 170 175
- Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro 180 185 190
- Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu 195 200 205
- Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr 210 215 220
- Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg 225 230 235 240
- Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe 245 250 255
- Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala 260 265 270
- Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro 275 280 285

Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln 290 295 300

- Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala 305 310 315 320
- Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu 325 330 335
- Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys 340 345 350
- Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met 355 360 365
- Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly 370 375 380
- Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly
 385 390 395 400
- Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro 405 410 415
- Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu 420 425 430
- Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu 435 440 445
- Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser 450 455 460
- Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn 465 470 475 480
- Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser 485 490 495
- Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp 500 505 510
- Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn 515 520 525

PCT/US2004/034693 WO 2005/067460

Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro 535

Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln 555 545

Gly Ala Gly Ser Arg Val His Glu Phe Gln Thr Glu Gln Lys Leu Ile 570 565

Ser Glu Glu Asp Leu 580

<210> 30

<211> 1968

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion protein construct

<400> 30 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 180 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 gcatacgaca gtcgttttga tgaatgggta cagaaactga aagaggaaag ctttcaaaac 300 aatacgtttg accgccgcaa atttattcaa ggagcgggga agattgcagg actttctctt 360 ggattaacga ttgcccagtc ggttggggcc tttggatccg attataaaga tgatgatgat 420 aaacaaggta aagaagttgt tttattagat tttgcagcag caggtggtga attaggttgg 480 ttaacacatc catatggtaa aggttgggat ttaatgcaaa atattatgaa tgatatgcca 540 atttatatgt atagtgtttg taatgttatg agtggtgatc aagataattg gttacgtaca 600 aattgggttt atcgtggtga agcagaacgt atttttattg aattaaaatt tacagttcgt 660 gattgtaata gttttccagg tggtgcaagt agttgtaaag aaacatttaa tttatattat 720 gcagaaagtg atttagatta tggtacaaat tttcaaaaac gtttatttac aaaaattgat 780 acaattgcac cagatgaaat tacagttagt agtgattttg aagcacgtca tgttaaatta 840 aatgttgaag aacgtagtgt tggtccatta acacgtaaag gtttttattt agcatttcaa 900 960 gatattggtg catgtgttgc attattaagt gttcgtgttt attataaaaa atgtccagaa ttattacaag gtttagcaca ttttccagaa acaattgcag gtagtgatgc accaagttta 1020 1080 gcaacagttg caggtacatg tgttgatcat gcagttgttc caccaggtgg tgaagaacca

PCT/US2004/034693 WO 2005/067460

cgtatgcatt gtgcagttga tggtgaatgg ttagttccaa ttggtcaatg tttatgtcaa 1140 gcaggttatg aaaaagttga agatgcatgt caagcatgta gtccaggttt ttttaaattt 1200 gaagcaagtg aaagtccatg tttagaatgt ccagaacata cattaccaag tccagaaggt 1260 gcaacaagtt gtgaatgtga agaaggtttt tttcgtgcac cacaagatcc agcaagtatg 1320 ccatgtacac gtccaccaag tgcaccacat tatttaacag cagttggtat gggtgcaaaa 1380 gttgaattac gttggacacc accacaagat agtggtggtc gtgaagatat tgtttatagt 1440 1500 gttacatgtg aacaatgttg gccagaaagt ggtgaatgtg gtccatgtga agcaagtgtt 1560 cgttatagtg aaccaccaca tggtttaaca cgtacaagtg ttacagttag tgatttagaa ccacatatga attatacatt tacagttgaa gcacgtaatg gtgttagtgg tttagttaca 1620 agtcgtagtt ttcgtacagc aagtgttagt attaatcaaa cagaaccacc aaaagttcgt 1680 ttagaaggtc gtagtacaac aagtttaagt gttagttgga gtattccacc accacaacaa 1740 agtcgtgttt ggaaatatga agttacatat cgtaaaaaag gtgatagtaa tagttataat 1800 gttcgtcgta cagaaggttt tagtgttaca ttagatgatt tagcaccaga tacaacatat 1860 ttagttcaag ttcaagcatt aacacaagaa ggtcaaggtg caggtagtcg tgttcatgaa 1920 1968 tttcaaacag aacaaaaatt aattagtgaa gaagatttat gagagctc

<220>

<223> Description of Artificial Sequence: Predicted Fusion Protein

<400> 31

Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu

Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly 20

Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser 35

Val Gly Ala Phe Gly Ser Asp Tyr Lys Asp Asp Asp Lys Gln Gly

Lys Glu Val Val Leu Leu Asp Phe Ala Ala Gly Gly Glu Leu Gly 70 65

<210> 31 <211> 574

<212> PRT

Artificial Sequence <213>

Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile 85 90 95

- Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser 100 105 110
- Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu 115 120 125
- Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn 130 135 140
- Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr 145 150 155 160
- Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu 165 170 175
- Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser 180 185 190
- Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val 195 200 205
- Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly 210 215 220
- Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro 225 230 235 240
- Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser 245 250 255
- Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala 260 265 270
- Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp 275 280 285
- Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr 290 295 300
- Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys 305 310 315 320

Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu 325 330 335

- Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe 340 345 350
- Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser 355 360 365
- Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val Glu Leu 370 375 380
- Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr 385 390 395 400
- Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro 405 410 415
- Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg 420 425 430
- Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe 435 440 445
- Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser 450 455 460
- Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val 465 470 475 480
- Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile 485 490 495
- Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg 500 505 510
- Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe 515 520 525
- Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln 530 535 540
- Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg Val His 545 550 555 560
- Glu Phe Gln Thr Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu

565 570

<210> 32 <211> 1254 <212> DNA <213> Homo sapiens

<400> 32 caccgcagga ggaagaacca gcgtgcccgc cagtccccgg aggacgttta cttctccaag 60 tcagaacaac tgaagcccct gaagacatac gtggaccccc acacatatga ggaccccaac 120 caggetgtgt tgaagttcac taccgagate catecatect gtgtcacteg geagaaggtg 180 atcggagcag gagagtttgg ggaggtgtac aagggcatgc tgaagacatc ctcggggaag 240 aaggaggtgc cggtggccat caagacgctg aaagccggct acacagagaa gcagcgagtg 300 gacttcctcg gcgaggccgg catcatgggc cagttcagcc accacaacat catccgccta 360 gagggcgtca tctccaaata caagcccatg atgatcatca ctgagtacat ggagaatggg 420 gecetggaea agtteetteg ggagaaggat ggegagttea gegtgetgea getggtggge 480 atgctgcggg gcatcgcagc tggcatgaag tacctggcca acatgaacta tgtgcaccgt 540 gacctggctg cccgcaacat cctcgtcaac agcaacctgg tctgcaaggt gtctgacttt 600 ggcctgtccc gcgtgctgga ggacgacccc gaggccacct acaccaccag tggcggcaag 660 atccccatcc gctggaccgc cccggaggcc atttcctacc ggaagttcac ctctgccagc 720 gacgtgtgga gctttggcat tgtcatgtgg gaggtgatga cctatggcga gcggccctac 780 tgggagttgt ccaaccacga ggtgatgaaa gccatcaatg atggcttccg gctccccaca 840 cccatggact gcccctccgc catctaccag ctcatgatgc agtgctggca gcaggagcgt 900 gecegeegee ecaagttege tgacategte ageateetgg acaageteat tegtgeeeet 960 gactccctca agaccctggc tgactttgac ccccgcgtgt ctatccggct ccccagcacg 1020 ageggetegg agggggtgee etteegeacg gtgteegagt ggetggagte cateaagatg 1080 cagcagtata cggagcactt catggcggcc ggctacactg ccatcgagaa ggtggtgcag 1140 atgaccaacg acgacatcaa gaggattggg gtgcggctgc ccggccacca gaagcgcatc 1200 gcctacagcc tgctgggact caaggaccag gtgaacactg tggggatccc catc 1254

<220>

<210> 33 <211> 1254

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: Sequence Optimized for codon
usage in Listeria

PCT/US2004/034693 WO 2005/067460

<400> 33 cacagacgta	gaaaaaatca	acgtgctcga	caatccccag	aagatgtgta	tttttcgaaa	60
agtgaacaat	taaaaccatt	aaaaacttat	gttgatccgc	atacgtacga	agacccaaat	120
caagcagtat	taaaatttac	aacagaaata	cacccaagtt	gtgttacaag	acaaaaagtt	180
attggagcag	gtgaattcgg	agaggtatat	aaaggtatgt	taaaaacatc	atcaggtaaa	240
aaagaagttc	cggttgcaat	taaaacctta	aaggcaggat	atacagaaaa	acagcgagtt	300
gattttttag	gtgaagcagg	aattatgggt	caatttagcc	atcataatat	tattcgtttg	360
gaaggagtaa	taagtaaata	taaaccaatg	atgattatta	cagaatacat	ggaaaacggt	420
gctttagata	aatttttacg	tgaaaaggat	ggtgaattta	gtgttttaca	attggttggt	480
atgttaagag	gaattgctgc	aggtatgaaa	tatttagcta	atatgaatta	tgttcaccgt	540
gatttggcag	caagaaatat	cctagtcaat	tccaatttag	tatgtaaagt	tagtgatttt	600
ggtttaagca	gagtattaga	agacgatcca	gaggcaacct	atacaacatc	gggaggtaaa	660
attcctattc	gttggacagc	accagaagct	atcagttacc	gtaaatttac	aagtgcatca	720
gacgtgtgga	gttttgggat	tgtaatgtgg	gaagttatga	catatggaga	aagaccatat	780
tgggaattaa	gtaatcatga	agttatgaaa	gcaattaacg	atggatttag	attaccaact	840
ccgatggatt	gtccatctgc	catttatcaa	ctaatgatgc	aatgttggca	acaagaaaga	900
gcacgacgtc	caaaatttgc	agatattgtt	agtattttag	acaaattaat	tcgtgcacca	960
gatagtttaa	aaactttagc	agactttgat	cctcgtgtta	gtattcgatt	accaagtacg	1020
tcaggttccg	aaggagttcc	atttcgcaca	gtctccgaat	ggttggaatc	aattaaaatg	1080
caacaataca	ccgaacactt	tatggcagca	ggttacacag	r caatcgaaaa	agttgttcaa	1140
atgacaaatg	g atgatattaa	acgtattgga	gttagattac	: caggccacca	gaaacgtatt	1200
gcatattctt	tattaggttt	aaaagatcaa	gttaataccg	g tgggaattco	aatt	1254

<210> 34 <211> 456

<212> PRT

<213> Homo sapiens

<400> 34

Val His Glu Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly Asn Leu Ala 10 5

Val Ile Gly Gly Val Ala Val Gly Val Val Leu Leu Leu Val Leu Ala ⁻ 25

Gly Val Gly Phe Phe Ile His Arg Arg Arg Lys Asn Gln Arg Ala Arg 35 40

Gln Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro 50 55 60

- Leu Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala 65 70 75 80
- Val Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln 85 90 95
- Lys Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu 100 105 110
- Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu 115 120 125
- Lys Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala 130 135 140
- Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly 145 150 155 160
- Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu 165 170 175
- Asn Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser 180 185 190
- Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys 195 200 205
- Tyr Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn 210 215 220
- Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu 225 230 235 240
- Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly 245 250 255
- Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg 260 265 270
- Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp 275 280 285

Gl		Val 290	Met	Thr	Tyr	Gly	Glu 295	Arg	Pro	Tyr	Trp	Glu 300	Leu	Ser	Asn	His	
G1 30		Val	Met	Lys	Ala	Ile 310	Asn	Asp	Gly	Phe	Arg 315	Leu	Pro	Thr	Pro	Met 320	
As	q	Сув	Pro	Ser	Ala 325	Ile	Tyr	Gln	Leu	Met 330	Met	Gln	Сув	Trp	Gln 335	Gln	
Gl	.u	Arg	Ala	Arg 340	Arg	Pro	Lys	Phe	Ala 345	Asp	Ile	Val	Ser	Ile 350	Leu	Asp	
L	/S	Leu	Ile 355		Ala	Pro	Asp	Ser 360	Leu	Lys	Thr	Leu	Ala 365	Asp	Phe	Asp	
Pı	0	Arg 370		Ser	Ile	Arg	Leu 375	Pro	Ser	Thr	Ser	Gly 380	Ser	Glu	Gly	Val	
	ro 85	Phe	Arg	Thr	Val	Ser 390		Trp	Leu	Glu	Ser 395	Ile	Lys	Met	Gln	Gln 400	
Т	yr	Thr	Glu	His	Phe 405		Ala	Ala	Gly	Tyr 410		· Ala	Ile	Glu	Lys 415	Val	
V	al	Gln	Met	Thr 420		Asp	Asp	Ile	Lys 425		Ile	e Gly	Val	Arg 430	Leu	Pro	
G	ly	His	Gln 435		a Arg	Ile	e Ala	Tyr 440		Leu	Lev	ı Gly	Leu 445	Lys	Asp	Gln	
v	al	Asn 450		val	. Gly	/ Ile	Pro 455		:								
<	21 21	2>	1437 DNA		ial S	Seque	ence										
		0> 3>	Des	crip	cion	of A	Artif	Eicia	al Se	equei	nce:	Fu	sion	Prot	ein		
a	:40 itg	0> aaaa	35 aaaa	taa	tgcta	agt 1	tttta	attad	ca ct	tata	atta	g tta	agtc	tacc	aatt	gcgcaa	60
c	aa	act	gaag	caa	agga	tgc (atcto	gcati	cc aa	ataa	agaa	a at	tcaa	tttc	atco	catggca	120
c	ca	ıcca	gcat	ctc	cgcc	tgc (aagto	ccta	ag a	egee	aatc	g aa	aaga	aaca	cgc	ggatctc	180

PCT/US2004/034693 WO 2005/067460

gagcaccgca ggag	gaagaa ccagco	stgcc cgcca	gtccc cggagga	cgt ttacttct	ec 240
aagtcagaac aact	gaagcc cctgaa	agaca tacgto	ggacc cccacac	ata tgaggacc	ec 300
aaccaggctg tgtt	gaagtt cacta	cgag atcca	ccat cctgtgt	cac tcggcaga	ag 360
gtgatcggag cagg	gagagtt tggggg	aggtg tacaa	gggca tgctgaa	gac atcctcgg	gg 420
aagaaggagg tgcc	eggtgge catca	agacg ctgaa	agccg gctacac	aga gaagcagc	ga 480
gtggacttcc tcgg	gegagge eggea	tcatg ggcca	gttca gccacca	caa catcatco	ge 540
ctagagggcg tcat	ctccaa ataca	agccc atgat	gatca tcactga	igta catggaga	at 600
ggggccctgg acaa	agtteet teggg	agaag gatgg	cgagt tcagcgt	gct gcagctgg	tg 660
ggcatgctgc gggg	gcatcgc agctg	gcatg aagta	cctgg ccaacat	gaa ctatgtgc	ac 720
cgtgacctgg ctgc	cccgcaa catcc	tcgtc aacag	caacc tggtctq	gcaa ggtgtctg	ac 780
tttggcctgt ccc	gegtget ggagg	acgac cccga	ggcca cctacad	ccac cagtggcg	gc 840
aagatcccca tcc					
agcgacgtgt ggag	gctttgg cattg	tcatg tggga	ggtga tgaccta	atgg cgagcggc	cc 960
tactgggagt tgt	ccaacca cgagg	tgatg aaagc	catca atgatg	gett ceggetee	cc 1020
acacccatgg act	gcccctc cgcca	tctac cagct	catga tgcagt	gctg gcagcagg	ag 1080
cgtgcccgcc gcc	ccaagtt cgctg	acatc gtcag	catcc tggaca	agct cattcgtg	rcc 1140
cctgactccc tca	agaccct ggctg	acttt gacco	ccgcg tgtcta	tccg gctcccca	gc 1200
acgagcggct cgg	agggggt gccct	tccgc acggt	gtccg agtggc	tgga gtccatca	ag 1260
atgcagcagt ata	cggagca cttca	tggcg gccgg	octaca ctgcca	tcga gaaggtgg	ıtg 1320
cagatgacca acg	acgacat caaga	ıggatt ggggt	gegge tgeeeg	gcca ccagaago	gc 1380
ategeetaca gee	tgctggg actca	aggac caggt	gaaca ctgtgg	ggat ccccatc	1437

<210> 36

<211> 479 <212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted Protein Sequence

<400> 36

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 15 5

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 25 20

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

- Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu His Arg Arg 50 55 60
- Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe Ser 65 70 75 80
- Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His Thr 85 90 95
- Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile His 100 105 110
- Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe Gly 115 120 125
- Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val 130 135 140
- Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln Arg 145 150 155 160
- Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His His 165 170 175
- Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met 180 185 190
- Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu Arg 195 200 205
- Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg 210 215 220
- Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val His 225 230 235 240
- Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys 245 250 255
- Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu 260 265 270

Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala 275 280 285

Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp 290 295 300

Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro 305 310 315 320

Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp Gly 325 330 335

Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu 340 345 350

Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe Ala 355 360 365

Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser Leu 370 375 380

Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro Ser 385 390 395 400

Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp Leu 405 410 415

Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala Gly 420 425 430

Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile Lys 435 440 445

Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr Ser 450 455 460

Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 465 470 475

<210> 37

<211> 1737

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion protein sequence

<400> 37

ggtacctcct	ttgattagta	tattcctatc	ttaaagttac	ttttatgtgg	aggcattaac	60
atttgttaat	gacgtcaaaa	ggatagcaag	actagaataa	agctataaag	caagcatata	120
atattgcgtt	tcatctttag	aagcgaattt	cgccaatatt	ataattatca	aaagagaggg	180
~t~~~~~~~	grafffggga	ttattaggtt	aaaaaatgta	gaaggagagt	gaaacccatg	240
						300
		tattacactt				
		tgcattcaat				360
ccagcatctc	cgcctgcaag	tcctaagacg	ccaatcgaaa	agaaacacgc	ggatggatcc	420
gattataaag	atgatgatga	taaacacaga	cgtagaaaaa	atcaacgtgc	tcgacaatcc	480
ccagaagatg	tgtattttc	gaaaagtgaa	caattaaaac	cattaaaaac	ttatgttgat	540
ccgcatacgt	acgaagaccc	aaatcaagca	gtattaaaat	ttacaacaga	aatacaccca	600
agttgtgtta	caagacaaaa	agttattgga	gcaggtgaat	tcggagaggt	atataaaggt	660
atgttaaaaa	catcatcagg	taaaaaagaa	gttccggttg	caattaaaac	cttaaaggca	720
ggatatacag	aaaaacagcg	agttgatttt	ttaggtgaag	caggaattat	gggtcaattt	780
agccatcata	atattattcg	tttggaagga	gtaataagta	aatataaacc	aatgatgatt	840
attacagaat	acatggaaaa	cggtgcttta	gataaatttt	tacgtgaaaa	ggatggtgaa	900
tttagtgttt	tacaattggt	tggtatgtta	agaggaattg	ctgcaggtat	gaaatattta	960
gctaatatga	attatgttca	ccgtgatttg	gcagcaagaa	atatcctagt	caattccaat	1020
ttagtatgta	aagttagtga	ttttggttta	agcagagtat	tagaagacga	tccagaggca	1080
acctatacaa	catcgggagg	taaaattcct	attcgttgga	cagcaccaga	agctatcagt	1140
taccgtaaat	ttacaagtgc	atcagacgtg	tggagttttg	ggattgtaat	gtgggaagtt	1200
atgacatatg	gagaaagacc	atattgggaa	ttaagtaatc	atgaagttat	gaaagcaatt	1260
aacgatggat	ttagattacc	aactccgatg	gattgtccat	ctgccattta	tcaactaatg	1320
atgcaatgtt	ggcaacaaga	aagagcacga	cgtccaaaat	ttgcagatat	tgttagtatt	1380
ttagacaaat	: taattcgtgc	accagatagt	ttaaaaactt	tagcagactt	tgatcctcgt	1440
gttagtatto	gattaccaag	tacgtcaggt	tccgaaggag	ttccatttcg	cacagtetee	1500
gaatggttgg	, aatcaattaa	aatgcaacaa	tacaccgaac	actttatggc	agcaggttac	1560
acagcaatcg	g aaaaagttgt	tcaaatgaca	aatgatgata	ttaaacgtat	tggagttaga	1620
ttaccaggco	c accagaaacg	tattgcatat	tctttattag	gtttaaaaga	tcaagttaat	1680
accgtgggaa	a ttccaattga	acaaaaatta	atttccgaag	aagacttata	agagctc	1737

<210> 38

- <211> 497
- <212> PRT
- <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 38

- Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15
- Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30
- Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45
- Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60
- Asp Asp Asp Lys His Arg Arg Lys Asn Gln Arg Ala Arg Gln 65 70 75 80
- Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu 85 90 95
- Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val 100 105 110
- Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln Lys 115 120 125
- Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu Lys 130 135 140
- Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys 145 150 155 160
- Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala Gly
 165 170 175
- Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val 180 185 190
- Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn 195 200 205

Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val 210 215 220

Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr 225 230 235 240

Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 245 250 255

Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser 260 265 270

Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly 275 280 285

Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys 290 295 300

Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu 305 310 315 320

Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu 325 330 335

Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp 340 345 350

Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu 355 360 365

Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys 370 375 380

Leu Ile Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro 385 390 395 400

Arg Val Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser Glu Gly Val Pro 405 410 415

Phe Arg Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr 420 425 430

Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val Val
435 440 445

Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly

450 455 460

His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val 465 470 475 480

Asn Thr Val Gly Ile Pro Ile Glu Gln Lys Leu Ile Ser Glu Glu Asp 485 490 495

Leu

<210><211><212><213>	39 1737 DNA Arti	ficial Sequ	ience				
<220> <223>	Desc	ription of	Artificial	Sequence:	Fusion prot	ein construct	
<400> ggtacc	39 tcct	ttgattagta	tattcctatc	ttaaagttac	ttttatgtgg	aggcattaac	60
atttgt	taat	gacgtcaaaa	ggatagcaag	actagaataa	agctataaag	caagcatata	120
atattg	cgtt	tcatctttag	aagcgaattt	cgccaatatt	ataattatca	aaagagaggg	180
gtggca	aacg	gtatttggca	ttattaggtt	aaaaaatgta	gaaggagagt	gaaacccatg	240
aaaaaa	atta	tgttagtttt	tattacatta	attttagtta	gtttaccaat	tgcacaacaa	300
acagaa	gcaa	aagatgcaag	tgcatttaat	aaagaaaata	gtattagtag	tatggcacca	360
ccagca	agtc	caccagcaag	tccaaaaaca	ccaattgaaa	aaaaacatgc	agatggatcc	420
gattat	aaag	acgatgatga	taaacacaga	cgtagaaaaa	atcaacgtgc	tcgacaatcc	480
ccagaa	ıgatg	tgtattttc	gaaaagtgaa	caattaaaac	cattaaaaac	ttatgttgat	540
ccgcat	acgt	acgaagaccc	aaatcaagca	gtattaaaat	ttacaacaga	aatacaccca	600
agttgt	gtta	caagacaaaa	agttattgga	gcaggtgaat	tcggagaggt	atataaaggt	660
			taaaaaagaa				720
			agttgatttt				780
			, tttggaagga				840
			a cggtgcttta				900
			tggtatgtta				960
			a ccgtgatttg				1020
			a ttttggttta				1080
			g taaaattcct				1140
			-				

taccgtaaat ttacaagtgc atcagacgtg tggagttttg ggattgtaat gtgggaagtt 1200 atgacatatg gagaaagacc atattgggaa ttaagtaatc atgaagttat gaaagcaatt 1260 aacgatggat ttagattacc aactccgatg gattgtccat ctgccattta tcaactaatg 1320 atgcaatgtt ggcaacaaga aagagcacga cgtccaaaat ttgcagatat tgttagtatt 1380 ttagacaaat taattcgtgc accagatagt ttaaaaactt tagcagactt tgatcctcgt 1440 gttagtattc gattaccaag tacgtcaggt tccgaaggag ttccatttcg cacagtctcc 1500 gaatggttgg aatcaattaa aatgcaacaa tacaccgaac actttatggc agcaggttac 1560 acagcaatcg aaaaagttgt tcaaatgaca aatgatgata ttaaacgtat tggagttaga 1620 ttaccaggcc accagaaacg tattgcatat tctttattag gtttaaaaga tcaagttaat 1680 accgtgggaa ttccaattga acaaaaatta atttccgaag aagacttata agagctc 1737

<220>

<223> Description of Artificial Sequence: Predicted Fusion Protein

<400> 40

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60

Asp Asp Asp Lys His Arg Arg Lys Asn Gln Arg Ala Arg Gln 65 70 75 80

Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu 85 90 95

Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val 100 105 110

Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln Lys

<210> 40

<211> 497

<212> PRT

<213> Artificial Sequence

115 120 125

Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu Lys 130 135 140

Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys 145 150 155 160

Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala Gly
165 170 175

Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val 180 185 190

Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn 195 200 205

Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val 210 215 220

Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr 225 230 235 240

Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 245 250 255

Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser 260 265 270

Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly 275 280 285

Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys 290 295 300

Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu 305 310 315 320

Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu 325 330 335

Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp 340 345 350

Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu 355 360 365

Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys 375 370 Leu Ile Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro 395 385 390 Arg Val Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser Glu Gly Val Pro 415 410 405 Phe Arg Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr 425 430 420 Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val Val 445 440 435 Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly 455 460 450 His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val 480 475 470 465 Asn Thr Val Gly Ile Pro Ile Glu Gln Lys Leu Ile Ser Glu Glu Asp 495 490 Leu <210> 41 <211> 1716 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Fusion protein construct <400> 41 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 180 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 gcatacgaca gtcgttttga tgaatgggta cagaaactga aagaggaaag ctttcaaaac 300 aatacgtttg accgccgcaa atttattcaa ggagcgggga agattgcagg actttctctt 360

420

ggattaacga ttgcccagtc ggttggggcc tttggatccg attataaaga tgatgatgat

aaacacagac gtagaaa	aaa tcaacgtgct	cgacaatccc	cagaagatgt	gtatttttcg	480
aaaagtgaac aattaaa	acc attaaaaact	tatgttgatc	cgcatacgta	cgaagaccca	540
aatcaagcag tattaaa	att tacaacagaa	atacacccaa	gttgtgttac	aagacaaaaa	600
gttattggag caggtga	att cggagaggta	tataaaggta	tgttaaaaac	atcatcaggt	660
aaaaaagaag ttccggt	tgc aattaaaacc	ttaaaggcag	gatatacaga	aaaacagcga	720
gttgattttt taggtga	agc aggaattatg	ggtcaattta	gccatcataa	tattattcgt	780
ttggaaggag taataag	staa atataaacca	atgatgatta	ttacagaata	catggaaaac	840
ggtgctttag ataaatt	ttt acgtgaaaag	gatggtgaat	ttagtgtttt	acaattggtt	900
ggtatgttaa gaggaat	tgc tgcaggtatg	aaatatttag	ctaatatgaa	ttatgttcac	960
cgtgatttgg cagcaag	gaaa tatcctagtc	aattccaatt	tagtatgtaa	agttagtgat	1020
tttggtttaa gcagagt	att agaagacgat	ccagaggcaa	cctatacaac	atcgggaggt	1080
aaaattccta ttcgttg	ggac agcaccagaa	gctatcagtt	accgtaaatt	tacaagtgca	1140
tcagacgtgt ggagtt	tgg gattgtaatg	tgggaagtta	tgacatatgg	agaaagacca	1200
tattgggaat taagtaa	atca tgaagttatg	aaagcaatta	acgatggatt	tagattacca	1260
actccgatgg attgtc	catc tgccatttat	caactaatga	tgcaatgttg	gcaacaagaa	1320
agagcacgac gtccaa	aatt tgcagatatt	gttagtattt	tagacaaatt	aattcgtgca	1380
ccagatagtt taaaaa	cttt agcagacttt	gatcctcgtg	ttagtattcg	attaccaagt	1440
acgtcaggtt ccgaage	gagt tccatttcgc	acagtctccg	aatggttgga	atcaattaaa	1500
atgcaacaat acaccg	aaca ctttatggca	gcaggttaca	cagcaatcga	aaaagttgtt	1560
caaatgacaa atgatg	atat taaacgtatt	ggagttagat	taccaggcca	ccagaaacgt	1620
attgcatatt ctttat	tagg tttaaaagat	caagttaata	ccgtgggaat	tccaattgaa	1680
caaaaattaa tttccg	aaga agacttataa	gagctc			1716

<210> 42

Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu 1 5 10 15

Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly

<211> 490

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 42

20 25 30

Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser 35 40 45

Val Gly Ala Phe Gly Ser Asp Tyr Lys Asp Asp Asp Lys His Arg
50 60

Arg Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe 65 70 75 80

Ser Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His 85 90 95

Thr Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile 100 105 110

His Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe 115 120 125

Gly Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu 130 135 140

Val Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln 145 150 155 160

Arg Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His 165 170 175

His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met 180 185 190

Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu 195 200 205

Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu 210 215 220

Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val 225 230 235 240

His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val 245 250 255

Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro 260 265 270

Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr 275 280 285

Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val 290 295 300

Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg 305 310 315 320

Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp 325 330 335

Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln 340 345 350

Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe 355 360 365

Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser 370 375 380

Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro 385 390 395 400

Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp 405 410 415

Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala 420 425 430

Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile 435 440 445

Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr 450 455 460

Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 465 470 475 480

Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 485 490

<210> 43 <211> 9808

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Fusion Protein Construct <400> 43 ctttaaacgt ggatcatttt ctttaaattt atgctgacga cctttgaatt tgccttttt 60 cttagcaatt tcgattcctt gtgcctgacg ttccttaatt ttttttcgtt ctgattctgc 120 ttgatacttg tacaattcaa tgacaaggct attaatcaaa cgccttaaat tttcatcttc 180 aataccattc attgagggta aatttaagac ttccagggtt gcccccttaa tttgaatttg 240 attcatcaat totgttaatt otttattatt togtootaat ogatotaatt cagtaacaat 300 aacaatatcc ccttcacgaa tatagttaag catagcttgt aattgtgggc gttcgaccga 360 ttgaccgctt aatttgtctg aaaagacctt agaaacgccc tgtaacgctt gtaattgccg 420 atctaagttc tgttctttgc tactgacacg tgcataacca attttagcca ttttcaacca 480 acctctaaaa ttctctcggt tgcaataacc aatcagcaat atctactttt tcaatttcaa 540 attgcttatc agaaattgtc ttttcgtaag cgataaaatc ttgcgcatat tgttgctcat 600 taaaaatagc caccacttcg tcattttcta aaactcgata aataaatttt ttcattttac 660 tectectatt atgeceaact taaatgaeet atteaceaag teaattatae tgetaaaate 720 atattaggac aaataggtat actctattga cctataaatg atagcaactt aaaagatcaa 780 840 gtgttcgctt cgctctcact gcccctcgac gttttagtag cctttccctc acttcgttca gtccaagcca actaaaagtt ttcgggctac tctctccttc tccccctaat aattaattaa 900 aatcttactc tgtatatttc tgctaatcat tcactaaaca gcaaagaaaa acaaacacgt 960 atcatagata taaatgtaat ggcatagtgc gggttttatt ttcagcctgt atcgtagcta 1020 aacaaatcga gttgtgggtc cgttttgggg cgttctgcca atttgtttag agtttcttga 1080 ataaatgtac gttctaaatt aaacgaagct gtcagcgcct ttatatagct ttctcgttct 1140 1200 tcttttttta atttaatgat cgatagcaac aatgatttaa cactagcaag ttgaatgcca ccatttcttc ctggtttaat cttaaagaaa atttcctgat tcgccttcag taccttcagc 1260 aatttatcta atgtccgttc aggaatgcct agcacttctc taatctcttt tttggtcgtc 1320 1380 gctaaataag gcttgtatac atcgcttttt tcgctaatat aagccattaa atcttctttc cattctgaca aatgaacacg ttgacgttcg cttcttttt tcttgaattt aaaccaccct 1440 tgacggacaa ataaatcttt actggttaaa tcacttgata cccaagcttt gcaaagaatg 1500 1560 gtaatgtatt ccctattagc cccttgatag ttttctgaat aggcacttct aacaattttg attacttctt tttcttctaa gggttgatct aatcgattat taaactcaaa catattatat 1620 tcgcacgttt cgattgaata gcctgaacta aagtaggcta aagagagggt aaacataacg 1680

ctattgcgcc ctactaaacc cttttctcct gaaaatttcg tttcgtgcaa taagagatta 1740 aaccagggtt catctacttg ttttttgcct tctgtaccgc ttaaaaccgt tagacttgaa 1800 cgagtaaagc ccttattatc tgtttgtttg aaagaccaat cttgccattc tttgaaagaa 1860 taacggtaat tgggatcaaa aaattctaca ttgtccgttc ttggtatacg agcaatccca 1920 aaatgattgc acgttagatc aactggcaaa gactttccaa aatattctcg gatattttgc 1980 gagattattt tggctgcttt gacagattta aattctgatt ttgaagtcac atagactggc 2040 gtttctaaaa caaaatatgc ttgataacct ttatcagatt tgataattaa cgtaggcata 2100 aaacctaaat caatagctgt tgttaaaata tcgcttgctg aaatagtttc tttttccgtg 2160 tgaatatcaa aatcaataaa gaaggtattg atttgtctta aattgttttc agaatgtcct 2220 ttagtgtatg aacggttttc gtctgcatac gtaccataac gataaacgtt tggtgtccaa 2280 tgcgtaaatg tatcttgatt ttcgtgaatc gcttcttcgg aagtcagaac aacgccacgt 2340 ccgccaatca tgctttttt tgagcgatac gcaaaaatag cccctttact tttacctggc 2400 ttggtagtga ttgagcgaat tttactattt ttaaatttgt actttaacaa gccgtcatga 2460 agcacagttt ctacaacaaa agggatattc attcagctgt tctcctttct tacgaaaatt 2520 aattagttag aagctacgat caaagttgaa tcacaacaaa aaaggcaatc aactaagttt 2580 ttcttaattg attgcctggt atcttcttaa agacttgaaa tcccctcaaa aacccgatat 2640 aatgggttta cagatattta agtatctgat taataaagta attaaatact ttaccaaatt 2700 ttgggtctcg acttctttaa ttgattggtg gtaatcaatt aaggctcgca gttaaaattt 2760 ctcaggettt aactggtegt ggetettttt ttgtattett tattcagtte gttgtttegt 2820 tatatctagt atatcgcttt ttaaaaaaat aagcaatgat ttcgtgcatt attcacacga 2880 aatcattget tttttettet teeattteta aeteeaatgt taettgttet gtttetggtt 2940 ctggttctgt tggctcattt gggattaaat ccactactag cgttgagtta gttccgtctc 3000 taatagccgg ttaagtaata gccggttaag tggtcaaact ttgggaaaat ctcaacccgc 3060 attaagtttt gatgccatga caatcgttgg aaatttgaac aaaactaatg ctaaaaagct 3120 atctgacttt atgagtgtag agccacaaat acgactttgg gatatacttc aaacaaagtt 3180 taaagctaag gcacttcaag aaaaagttta tatcgaatat gacaaagtaa aagcagatac 3240 ttgggataga cgtaatatgc gtgttgaatt taatcccaat aaactcacac atgaagaaat 3300 gatttggtta aaacaaaata ttatcgacta catggaagat gacggtttta caagattaga 3360 cttagctttt gattttgaag atgatttgag cgattactat gcaatgactg ataaagcagt 3420 taagaaaact gtttttatg gtcgtaatgg caagccagaa acaaaatatt ttggtgtccg 3480

tgatagtgat agatttatta gaatttataa taaaaaacaa gaacgtaaag ataacgcaga	3540
tgttgaagtt gtgtttgaac atttatggcg tgtagaagtt gaattaaaaa gagatatggt	3600
tgattactgg aatgattgtt ttaatgattt acacatcttt gaaacctgcg tgggctactt	3660
tagaaaaaat taatgagcaa gctatggttt atactttgtt gcatgaagaa agtatgtggg	3720
gaaagctaag taagaatact aagactaaat ttaaaaaaatt gattagagaa atatctccaa	3780
ttgatttaac ggaattaatg aaatcgactt taaaagcgaa cgaaaaacaa ttgcaaaagc	3840
agattgattt ttggcaacgt gaatttaggt tttggaagta aaataagttt tatttgataa	3900
aaattgctaa ttcagtataa ttaatattta cgaggtgaca taacgtatga aaaaatcaga	3960
ggattattcc tcctaaatat aaaaatttaa aatttaggag gaagttatat atgactttta	4020
atattattga attagaaaat tgggatagaa aagaatattt tgaacactat tttaatcagc	4080
aaactactta tagcattact aaagaaattg atattacttt gtttaaagat atgataaaaa	4140
agaaaggata tgaaatttat ccctctttaa tttatgcaat tatggaagtt gtaaataaaa	4200
ataaagtgtt tagaacagga attaatagtg agaataaatt aggttattgg gataagttaa	4260
atcctttgta tacagttttt aataagcaaa ctgaaaaatt tactaacatt tggactgaat	4320
ctgataaaaa cttcatttct ttttataata attataaaaa tgacttgctt gaatataaag	4380
ataaagaaga aatgtttcct aaaaaaccga tacctgaaaa caccataccg atttcaatga	4440
ttccttggat tgattttagt tcatttaatt taaatattgg taacaatagc agctttttat	4500
tgcctattat tacgataggt aaattttata gtgagaataa taaaatttat ataccagttg	4560
ctctgcaact tcatcattct gtatgtgatg gttaccatgc ttcactattt atgaatgaat	4620
ttcaagatat aattcatagg gtagatgatt ggatttagtt tttagatttt gaaagtgaat	4680
ttaattttat acacgtaagt gatcataaaa tttatgaacg tataacaacc acattttttg	4740
gttgcttgtg gttttgattt tgaatttggt tttgaactta tggactgatt tattcagtcc	4800
attttttgtg cttgcacaaa aactagcctc gcagagcaca cgcattaatg acttatgaaa	4860
cgtagtaaat aagtctagtg tgttatactt tacttggaag atgcaccgaa taaaaaatat	4920
tgaagaacaa ctagcaaaag attttaaaga gttattttat tttaagtctt tataacatga	4980
gtgaagcgaa tttttaaatt tcgatagaaa tttttacatc aaaaagcccc ctgtcaaaat	5040
tgacgaaggg ggttttttgg cgcacgcttt tcgttagaaa tatacaagat tgaaaatcgt	5100
gtataagtgc gccctttgtt ttgaacttag cacgttacat caatttttta aaatgatgta	5160
taagtgcgcc cttttaaatt ttgagtgatt atattttttg agttagaaaa agggattggg	5220
aaaatttccc aaaataattt aaaaaataag caaaaatttt cgatagagaa tgtgctattt	5280
tttgtcaaag gtgtatacct tgactgtgct tgctgttaca ttaagtttat ttttaagtta	5340

ttaaaaaaga aatagctttt	aaagtttggc	tegetgtege	tttataaagc	tgattgactt	5400
ttgattgcaa actacttaaa	gaaaacaaac	tcggactatt	cgttttcttc	tctttggttt	5460
gaacatcagc aattatcccc	tcttgattgc	ctattttagc	ttgtttagaa	gaaacaaaag	5520
ctaaaagctc ctcttgggtt	ttaaaacgct	gtgtggggct	tagaacgccc	ttaaacgacc	5580
cttggtttac ttttatacta	gcttccacct	cgaaaaaagg	ttctttttta	aaattctcta	5640
tggcttcctg gcgctgaaaa	aataaggtat	aaggtgggcg	tttgaacacg	tcctagtgaa	5700
aatgtacctt gtacgcccct	tctgttgtaa	atttaacgta	tacaaagggc	ttgcgttcat	5760
gccgatcaac caatcggcaa	tttggcgtgt	ttgcgcttct	tgataaaagg	gatagtaatt	5820
cattccaggt tgcaaatttt	gaaaaccgct	tcggattaca	tctttttcta	agctattgat	5880
ccatagtctt ttaaatgttt	tatcttttga	aaaggcattt	gctttatgga	taatcgacca	5940
ggcgatattt tcaccttctc	tgtcgctatc	tgttgcaaca	ataattgtat	ttgccttttt	6000
gagaagttct gcaacaattt	taaactgctt	tcccttatct	tttgcaactt	caaaatcgta	6060
tcgatcagga aaaatcggca	aagattcaag	tttccaattt	tgccactttt	cgtcataatg	6120
acctggttct gctaattcca	ctaaatgccc	aaaaccaaag	gtgataaacg	tttcatctgt	6180
aaatagtggg tctttgatct	caaaataacc	gtcttttttg	gtgctttgtt	ttaaagcact	6240
tgcgtaggct aatgcctggc	ttggtttttc	agctaaaata	accgtactca	ttaactatcc	6300
ctcttttcat tgttttttct	ttgatcgact	gtcacgttat	atcttgctcg	ataccttcta	6360
aacgttcggc gattgattcc	agtttgttct	tcaacttctt	tatcggataa	accattcaaa	6420
aacaaatcga aagcatggat	gcgccgcgtg	cggctgctgg	agatggcgga	. cgcgatggat	6480
atgttctgcc aagggttggt	ttgcgcattc	acagttctcc	gcaagaattg	attggctcca	6540
attcttggag tggtgaatcc	gttagcgagg	tgccgccggc	ttccattcag	gtcgaggtgg	6600
cccggctcca tgcaccgcga	. cgcaacgcgg	ggaggcagac	aaggtatagg	geggegeeta	6660
caatccatgc caacccgtto	catgtgctcg	ccgaggcggc	ataaatcgcc	gtgacgatca	6720
gcggtccagt gatcgaagtt	. aggctggtaa	gageegegag	g cgatccttga	agctgtccct	6780
gatggtcgtc atctacctgo	ctggacagca	tggcctgcaa	cgcgggcato	ccgatgccgc	6840
cggaagcgag aagaatcata	atggggaagg	g ccatccagco	tcgcgtcgca	a atacgactca	6900
ctatagggcg aattgggtad	cgggccccc	ctcgaggtcg	g acggtatcga	a taagcttgat	6960
atcgaattcc tgcagcccgg	g gggatccact	agttctagag	g cggccgcca	cgcggtggag	7020
ctccagcttt tgttcccttt	agtgagggtt	t aatgctagaa	a atatttat	c tgattaataa	7080
gatgatette ttgagateg	t tttggtctg	c gcgtaatct	c ttgctctga	a aacgaaaaaa	7140

ccgccttgca gggcggtttt	tcgaaggttc	tctgagctac	caactctttg	aaccgaggta	7200
actggcttgg aggagcgcag	tcaccaaaac	ttgtcctttc	agtttagcct	taaccggcgc	7260
atgacttcaa gactaactcc	tctaaatcaa	ttaccagtgg	ctgctgccag	tggtgctttt	7320
gcatgtcttt ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcggac	7380
tgaacggggg gttcgtgcat	acagtccagc	ttggagcgaa	ctgcctaccc	ggaactgagt	7440
gtcaggcgtg gaatgagaca	aacgcggcca	taacagcgga	atgacaccgg	taaaccgaaa	7500
ggcaggaaca ggagagcgca	cgagggagcc	gccaggggga	aacgcctggt	atctttatag	7560
tcctgtcggg tttcgccacc	actgatttga	gcgtcagatt	tcgtgatgct	tgtcaggggg	7620
gcggagccta tggaaaaacg	gctttgccgc	ggccctctca	cttccctgtt	aagtatcttc	7680
ctggcatctt ccaggaaatc	tccgccccgt	tcgtaagcca	tttccgctcg	ccgcagtcga	7740
acgaccgagc gtagcgagtc	agtgagcgag	gaagcggaat	atatcctgta	tcacatattc	7800
tgctgacgca ccggtgcagc	cttttttctc	ctgccacatg	aagcacttca	ctgacaccct	7860
catcagtgcc aacatagtaa	gccagtatac	actccgctag	cgctgatgtc	cggcggtgct	7920
tttgccgtta cgcaccacco	cgtcagtagc	tgaacaggag	ggacagctga	tagaaacaga	7980
agccactgga gcacctcaaa	aacaccatca	tacactaaat	cagtaagttg	gcagcatcac	8040
ccgacgcact ttgcgccgaa	taaatacctg	tgacggaaga	tcacttcgca	gaataaataa	8100
atcctggtgt ccctgttgat	accgggaagc	cctgggccaa	cttttggcga	aaatgagacg	8160
ttgatcggca cgtaagaggt	tccaactttc	accataatga	aataagatca	ctaccgggcg	8220
tattttttga gttatcgaga	ttttcaggag	ctaaggaagc	taaaatggag	aaaaaaatca	8280
ctggatatac caccgttgat	atatcccaat	ggcatcgtaa	agaacatttt	gaggcatttc	8340
agtcagttgc tcaatgtaco	c tataaccaga	ccgttcagct	ggatattacg	gcctttttaa	8400
agaccgtaaa gaaaaataag	g cacaagtttt	atccggcctt	tattcacatt	cttgcccgcc	8460
tgatgaatgc tcatccggaa	a ttccgtatgg	caatgaaaga	cggtgagctg	gtgatatggg	8520
atagtgttca cccttgtta	c accgttttcc	atgagcaaac	tgaaacgttt	tcatcgctct	8580
ggagtgaata ccacgacga	ttccggcagt	ttctacacat	atattcgcaa	gatgtggcgt	8640
gttacggtga aaacctggc					8700
cagccaatcc ctgggtgag					8760
tettegeece egtttteae					8820
cgctggcgat tcaggttca					8880
atgaattaca acagtactg					8940
attggtgccc ttaaacgcc	t ggtgctacgc	: ctgaataagt	: gataataago	ggatgaatgg	9000

PCT/US2004/034693 WO 2005/067460

cagaaattcg	aaagcaaatt	cgacccggtc	gtcggttcag	ggcagggtcg	ttaaatagcc	9060
gcttatgtct	attgctggtt	taccggttta	ttgactaccg	gaagcagtgt	gaccgtgtgc	9120
ttctcaaatg	cctgaggcca	gtttgctcag	gctctccccg	tggaggtaat	aattgacgat	9180
atgatcattt	attctgcctc	ccagagcctg	ataaaaacgg	ttagcgcttc	gttaatacag	9240
atgtaggtgt	tccacagggt	agccagcagc	atcctgcgat	gcagatccgg	aacataatgg	9300
tgcagggcgc	ttgtttcggc	gtgggtatgg	tggcaggccc	cgtggccggg	ggactgttgg	9360
gcgctgccgg	cacctgtcct	acgagttgca	tgataaagaa	gacagtcata	agtgcggcga	9420
cgatagtcat	geceggege	caccggaagg	agctaccgga	cagcggtgcg	gactgttgta	9480
actcagaata	agaaatgagg	ccgctcatgg	cgttgactct	cagtcatagt	atcgtggtat	9540
caccggttgg	ttccactctc	tgttgcgggc	aacttcagca	gcacgtaggg	gacttccgcg	9600
tttccagact	ttacgaaaca	cggaaaccga	agaccattca	tgttgttgct	caggtcgcag	9660
acgttttgca	gcagcagtcg	cttcacgttc	gctcgcgtat	cggtgattca	ttctgctaac	9720
cagtaaggca	accccgccag	cctagccggg	tcctcaacga	caggagcacg	atcatgcgca	9780
cccgtggcca	ggacccaacg	ctgcccga				9808

<210> 44 <211> 26 <212> PRT <213> Listeria monocytogenes

<400> 44

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp 25 20

<210> 45 <211> 59 <212> PRT <213> Listeria monocytogenes

<400> 45

Met Thr Asp Lys Lys Ser Glu Asn Gln Thr Glu Lys Thr Glu Thr Lys 10

Glu Asn Lys Gly Met Thr Arg Arg Glu Met Leu Lys Leu Ser Ala Val 30 20 25

Ala Gly Thr Gly Ile Ala Val Gly Ala Thr Gly Leu Gly Thr Ile Leu

35 40 45

Asn Val Val Asp Gln Val Asp Lys Ala Leu Thr 50 55

<210> 46

<211> 53

<212> PRT

<213> Bacillus subtillus

<400> 46

Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu
1 5 10 15

Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly 20 25 30

Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser 35 40 45

Val Gly Ala Phe Gly 50

<210> 47

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 47

gtcaaaacat acgctcttat c

21

24

<210> 48

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 48

acataatcag tccaaagtag atgc

<210> 49

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> ctctggt	49 cacc tcctttgatt agtatattc	29
<210><211><212><212><213>		
<220> <223>	Description of Artificial Sequence: Primer	
<400> ctctgga	50 atcc atccgcgtgt ttcttttcg	29
<210><211><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: Epitope insert	
<400> gattat	51 aaag atgatgatga taaa	24
<210><211><211><212><213>	8	
<220> <223>	Description of Artificial Sequence: Epitope	
<400>	52	
Asp Ty 1	r Lys Asp Asp Asp Lys 5	
<210><211><211><212><213>	30	
<220>		
<223>	Description of Artificial Sequence: Epitope insert	
<400> gaacaa	53 maaat taattagtga agaagattta	30
<210><211><211><212><213>	10	
<220>		

```
<223> Description of Artificial Sequence: Epitope
<400> 54
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
               5
<210> 55
<211> 9
<212> PRT
<213> Mus sp.
<400> 55
Ser Pro Ser Tyr Val Tyr His Gln Phe
               5
<210> 56
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Epitope
<400> 56
Ser Pro Ser Tyr Ala Tyr His Gln Phe
<210> 57
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 57
                                                                     29
ctctggtacc tcctttgatt agtatattc
<210> 58
 <211> 36
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 58
                                                                      36
 caatggatcc ctcgagatca taatttactt catccc
 <210>
        59
 <211> 32
 <212> DNA
```

WO 2005/067460

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 59
atttctcgag tccatggggg gttctcatca tc 32

<210> 60 <211> 25 <212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: Primer

<400> 60

ggtgctcgag tgcggccgca agctt

<210> 61
<211> 37

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 61
cgattcccct agttatgttt accaccaatt tgctgca 37

<210> 62
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 62

gcaaattggt ggtaaacata actaggggaa t
<210> 63

<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Epitope insert

<211> 27

<400> 63

agtccaagtt atgcatatca tcaattt 27

<210> 64 <211> 33 <212> DNA

PCT/US2004/034693 WO 2005/067460 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer <400> 64 33 cgatagtcca agttatgcat atcatcaatt tgc <210> 65 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer <400> 65 34 gtcgcaaatt gatgatatgc ataacttgga ctat <210> 66 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Consensus Sequence <220> <221> misc_feature <222> (1)..(1) <223> n is a, c, g, or u <400> 66 8 naggaggu <210> 67 <211> 19 <212> DNA <213> Listeria monocytogenes <400> 67 19 aaggagagtg aaacccatg <210> 68 <211> 240 <212> DNA <213> Listeria monocytogenes ggtacetect ttgattagta tatteetate ttaaagtgae ttttatgttg aggeattaae 60 atttgttaac gacgataaag ggacagcagg actagaataa agctataaag caagcatata 120

180

240

atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg

gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg

```
<210> 69
<211> 240
<212> DNA
<213> Listeria monocytogenes
<400> 69
ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac
                                                                  60
atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata
                                                                   120
atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg
                                                                   180
gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg
                                                                   240
<210> 70
<211> 5
<212> PRT
<213> Listeria monocytogenes
<400> 70
Thr Glu Ala Lys Asp
               5
<210> 71
<211> 5
<212> PRT
<213> Listeria monocytogenes
<400> 71
Asp Lys Ala Leu Thr
<210> 72
<211> 5
<212> PRT
<213> Bacillus subtillus
<400> 72
Val Gly Ala Phe Gly
                5
```