Tight Upper Bounds on the Error Probability of Spinal Codes over Fading Channels

Xiaomeng Chen
Harbin Institute of Technology (Shenzhen)

Spinal Codes

Spinal codes are a family of rateless codes that have been proved to achieve Shannon capacity over both the AWGN channel

and the BSC.

High-performance
Channel coding techniques

channel conditions

capacity-achieving nature for short codes

Low decoding complexity

Simple Easy to **Encoding** achiecve **Structure** Reliable and **Capacity**high-efficiency Spinal Codes achieving information **Nature** delivery Suitable for Rateless complex or Codes unknown channels

Motivation: Error probability analysis of Spinal codes

Current Analysis^[1]

- ✓ Sequentially encoding under a tree structure for Spinal codes
- ✓ ML decoding rules and other decoding process
- ✓ Characterizing the error probability as the volume of a hypersphere divided by the volume of a hypercube
- ✓ Over **AWGN** channels and **Rayleigh** fading channels (no CSI)

Rayleigh fading channels (no CSI)

At a low SNR, the approximation of the upper bound needs to be improved.

[1] LI A, WU S, JIAO J, et al. Spinal codes over fading channel: error probability analysis and encoding structure improvement [J]. IEEE Transactions on Wireless Communications, 2021, 20 (12): 8288-8300.

Motivation

> The derived bound over the Rayleigh fading channel is not strictly explicit

The convergence of the upper bound is probability-dependent

> Nakagami-m and Rician channels have not been considered in the available error probability analyses

Both of them are common in practical wireless communication scenarios

➤ There is not yet an upper bound that achieves uniform tight approximations over a wide range of signal-to-noise ratio (SNR)

Either over the fading channel or over the AWGN channel

Encoding process of Spinal codes

The encoding process of Spinal codes

- > Segmentation: Divide an n-bit message \mathbf{M} into k-bit segments $\mathbf{m}_i \in \{0,1\}^k$, where $i=1,2,\cdots,n/k$
- Sequentially Hashing: The hash function sequentially generates v-bit spine values

$$\mathbf{s}_{i} = h(\mathbf{s}_{i-1}, \mathbf{m}_{i}), i = 1, 2, \dots, n / k, \mathbf{s}_{0} = \mathbf{0}^{v}$$

 $ightharpoonup {
m RNG}$: Each spine value s_i is used to seed an RNG to generate a binary pseudo-random uniform distributed sequence

RNG:
$$\mathbf{s}_{i} \to \{\mathbf{x}_{i,j}\}, j = 1, 2, 3, \dots$$

ightharpoonup Constellation Mapping: The constellation mapper maps each c-bit symbol $\mathbf{x}_{i,j}$ to a channel input set Ψ:

$$f: \mathbf{x}_{i,j} \to \Psi$$

In this paper, f is a uniform constellation mapping function.

Transmission and decoding process of Spinal codes

Transmission over fading channels

Received signal $y_{i,j} = h_{i,j} f(\mathbf{x}_{i,j}(\mathbf{M})) + n_{i,j}$

ML decoding

Selecting the one with the lowest decoding cost from the candidate sequence space.

$$\hat{\mathbf{M}} \in \underset{\bar{\mathbf{M}} \in \{0,1\}^n}{\operatorname{arg\,min}} \sum_{i=1}^{n/k} \sum_{j=1}^{L} \left(y_{i,j} - h_{i,j} \, \mathbf{f}(\mathbf{x}_{i,j}(\bar{\mathbf{M}})) \right)^2$$

 $\hat{\mathbf{M}}$ is the decoding result, $\bar{\mathbf{M}}$ is the candidate sequence, L is the number of pass.

Cost of the correct decoding sequence

$$\mathscr{D}(\mathbf{M}) \triangleq \sum_{i=1}^{n/k} \sum_{j=1}^{L} (y_{i,j} - h_{i,j} f(\mathbf{x}_{i,j}(\mathbf{M})))^2 = \sum_{i=1}^{n/k} \sum_{j=1}^{L} n_{i,j}^2.$$

Cost of wrong decoding sequences

$$\mathscr{D}(\mathbf{M}') \triangleq \sum_{i=1}^{n/k} \sum_{j=1}^{L} (y_{i,j} - h_{i,j} f(\mathbf{x}_{i,j}(\mathbf{M}')))^{2}.$$

where
$$\mathbf{M}' = \left(\mathbf{m}'_1, \mathbf{m}'_2, \cdots, \mathbf{m}'_{n/k}\right) \in \mathcal{W}$$

$$\mathcal{W} \triangleq \left\{ \left(\mathbf{m}'_1, \mathbf{m}'_2, \cdots, \mathbf{m}'_{n/k}\right) : \exists 1 \leq i \leq n/k, \mathbf{m}'_i \neq \mathbf{m}_i \right\}$$

Analysis of Error Probabilities under finite code length conditions

- \mathcal{E}_a The event that there exists an error in the $a^{ ext{th}}$ segment
- $\overline{\mathcal{E}}_a$ The complement of \mathcal{E}_a

The Error Probability of Spinal codes

$$P_e = \Pr\left(\bigcup_{a=1}^{n/k} \mathcal{E}_a\right) = 1 - \Pr\left(\bigcap_{a=1}^{n/k} \overline{\mathcal{E}}_a\right)$$
$$= 1 - \prod_{a=1}^{n/k} \left[1 - \Pr\left(\mathcal{E}_a \middle| \bigcap_{i=1}^{a-1} \overline{\mathcal{E}}_i\right)\right].$$

$$\Pr\left(\mathcal{E}_{a} \middle| \bigcap_{i=1}^{a-1} \overline{\mathcal{E}}_{i}\right) = \Pr\left(\exists \mathbf{M}' \in \mathcal{W}_{a} : \mathscr{D}(\mathbf{M}') \leq \mathscr{D}(\mathbf{M})\right)$$
$$\leq \sum_{\mathbf{M}' \in \mathcal{W}_{a}} \Pr\left(\mathscr{D}(\mathbf{M}') \leq \mathscr{D}(\mathbf{M})\right)$$

where

$$\mathcal{W}_a \triangleq \{\left(\mathbf{m}_1', \cdots, \mathbf{m}_a'\right) : \mathbf{m}_1' = \mathbf{m}_1, \cdots, \mathbf{m}_{a-1}' = \mathbf{m}_{a-1}, \mathbf{m}_a' \neq \mathbf{m}_a\} \subseteq \mathcal{W}$$

The probability that the $a^{
m th}$ segment is wrong while the previous (a – 1) segments are correct.

Analysis of Error Probabilities under finite code length conditions

 \mathcal{E}_a The event that there exists an error in the $a^{ ext{th}}$ segment. $\overline{\mathcal{E}}_a$ The complement of \mathcal{E}_a

The Error Probability of Spinal codes

$$P_e = \Pr\left(\bigcup_{a=1}^{n/k} \mathcal{E}_a\right) = 1 - \Pr\left(\bigcap_{a=1}^{n/k} \overline{\mathcal{E}}_a\right)$$
$$= 1 - \prod_{a=1}^{n/k} \left[1 - \Pr\left(\mathcal{E}_a \middle| \bigcap_{i=1}^{a-1} \overline{\mathcal{E}}_i\right)\right].$$

The probability that the $a^{\rm th}$ segment is wrong while the previous (a – 1) segments are correct.

$$\Pr\left(\mathcal{E}_{a} \middle| \bigcap_{i=1}^{a-1} \overline{\mathcal{E}}_{i}\right) = \Pr\left(\exists \mathbf{M}' \in \mathcal{W}_{a} : \mathscr{D}(\mathbf{M}') \leq \mathscr{D}(\mathbf{M})\right)$$

$$\leq \sum_{\mathbf{M}' \in \mathcal{W}_{a}} \Pr\left(\mathscr{D}(\mathbf{M}') \leq \mathscr{D}(\mathbf{M})\right)$$

where $\mathcal{W}_a \triangleq \{(\mathbf{m}_1', \cdots, \mathbf{m}_a') : \mathbf{m}_1' = \mathbf{m}_1, \cdots, \mathbf{m}_{a-1}' = \mathbf{m}_{a-1}, \mathbf{m}_a' \neq \mathbf{m}_a\} \subseteq \mathcal{W}$

The Average Error Probability on Fading Channels

Upper Bounds on Rayleigh Fading Channels

Rayleigh fading: $g_1(h) = \frac{2h}{\Omega} \exp\left(\frac{-h^2}{\Omega}\right)$

 Ω is the mean square

$$\mathcal{F}(\theta; \sigma, L_a) = \left(\sum_{u} p_U(u) \int_{\mathbb{R}} \exp\left(-\frac{h^2 u^2}{8\sigma^2 \sin^2 \theta}\right) g(h) dh\right)^{L_a}$$

For Rayleigh fading channels: $P_e \le 1 - \prod (1 - \epsilon_a)$

$$\epsilon_a = \min \left\{ 1, \left(2^k - 1 \right) 2^{n - ak} \cdot \mathscr{F}_{\text{Rayleigh}}(L_a, \sigma) \right\}$$

$$\mathscr{F}_{\text{Rayleigh}}(L_a,\sigma) = \sum_{i} b_r \mathcal{F}_{\text{Rayleigh}}(\theta_r;\sigma,L_a)$$

$$\mathcal{F}_{\text{Rayleigh}}(\theta; \sigma, L_a) = \left(\sum_{i \in \Psi} \sum_{j \in \Psi} 2^{-2c} \frac{8\sigma^2 \sin^2 \theta}{\Omega(i-j)^2 + 8\sigma^2 \sin^2 \theta} \right)^{L_a}$$

Upper Bounds on Nakagami-m Fading Channels

Nakagami-m fading:
$$g_2(h) = \frac{2m^m}{\Gamma(m)\Omega^m} h^{2m-1} \exp\left(\frac{-mh^2}{\Omega}\right)$$

$$\mathcal{F}_{\text{Nakagami}}(\theta_r; \sigma, L_a)$$

$$= \left(\sum_{i \in \Psi} \sum_{j \in \Psi} 2^{-2c} \left(\frac{8m\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8m\sigma^2 \sin^2 \theta_r}\right)^m\right)^{L_a}$$

Upper Bounds on Rician Fading Channels

Rician fading:
$$g_3(h) = \frac{2(K+1)h}{\Omega \exp\left(K + \frac{(K+1)h^2}{\Omega}\right)} I_0\left(2\sqrt{\frac{K(K+1)}{\Omega}}h\right)$$
$$\mathcal{F}_{\text{Rician}}(\theta_r; \sigma, L_a)$$
$$= \left(\sum_{i \in \Psi} \sum_{j \in \Psi} 2^{-2c} \frac{8(K+1)\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8(K+1)\sigma^2 \sin^2 \theta_r} \right.$$
$$\cdot \exp\left(\frac{8K(K+1)\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8(K+1)\sigma^2 \sin^2 \theta_r} - K\right) \right)^{L_a}$$

Analysis of Error Probabilities under finite code length conditions

Fading channels

Rayleigh fading

$$g_1(h) = \frac{2h}{\Omega} \exp\left(\frac{-h^2}{\Omega}\right)$$

Nakagami-m fading
$$g_2(h) = \frac{2m^m}{\Gamma(m)\Omega^m} h^{2m-1} \mathrm{exp}\left(\frac{-mh^2}{\Omega}\right)$$

Verifying the correctness of the results in another way

Rayleigh rating
$$g_1\left(h\right) = \frac{2h}{\Omega} \exp\left(\frac{-h^2}{\Omega}\right)$$
 Rician fading
$$g_3(h) = \frac{2(K+1)h}{\Omega \exp\left(K + \frac{(K+1)h^2}{\Omega}\right)} I_0\left(2\sqrt{\frac{K(K+1)}{\Omega}h}\right)$$

Upper bounds

$$\mathcal{F}_{\text{Rayleigh}}(\theta_r; \sigma, L_a) = \left(\sum_{i \in \Psi} \sum_{j \in \Psi} 2^{-2c} \frac{8\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8\sigma^2 \sin^2 \theta_r}\right)^{L_a} = \left(\sum_{i \in \Psi} \sum_{j \in \Psi} 2^{-2c} \left(\frac{8m\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8m\sigma^2 \sin^2 \theta_r}\right)^{m}\right)^{L_a}$$

$$m=1$$

$$\mathcal{F}_{\text{Nakagami}}(\theta_r; \sigma, L_a)$$

$$= \left(\sum_{i \in \Psi} \sum_{j \in \Psi} 2^{-2c} \left(\frac{8m\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8m\sigma^2 \sin^2 \theta_r} \right)^m \right)^{L_a}$$

$$K = 0$$

$$\mathcal{F}_{\text{Rician}}(\theta_r; \sigma, L_a)$$

$$= \left(\sum_{i \in \Psi} \sum_{j \in \Psi} 2^{-2c} \frac{8(K+1)\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8(K+1)\sigma^2 \sin^2 \theta_r} \cdot \exp\left(\frac{8K(K+1)\sigma^2 \sin^2 \theta_r}{\Omega(i-j)^2 + 8(K+1)\sigma^2 \sin^2 \theta_r} - K\right)\right)^{L_a}$$

Simulation Result

New Analysis

- ✓ Sequentially encoding under a tree structure for Spinal codes
- ✓ ML decoding rules and other decoding process
- ✓ Introducing **Rotation Matrix** to simplify the derivation
- ✓ Considering three typical fading channels: Rayleigh, Rician, Nakagami (CSI)

> Conclusion

All approximations are close to simulated values.

- 1. The derived upper bounds is right.
- 2. Better estimation of the upper bound.

Achieving uniform tight approximations over a wide range of SNR

Thank you! Q&A

