Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/012205

International filing date: 01 July 2005 (01.07.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-238580

Filing date: 18 August 2004 (18.08.2004)

Date of receipt at the International Bureau: 11 August 2005 (11.08.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application: 2004年 8月18日

出願番号

Application Number: 特願 2 0 0 4 - 2 3 8 5 8 0

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is JP2004-238580

出 願 人

住友電工ハードメタル株式会社

Applicant(s): 住友電気工業株式会社

2005年 7月27日

特許庁長官 Commissioner, Japan Patent Office)· [1]

【書類名】 特許願 【整理番号】 10410289 平成16年 8月18日 【提出日】 【あて先】 特許庁長官殿 【国際特許分類】 B 2 3 B 2 7 / 0 0 B23P 15/28C23C 14/00【発明者】 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電工ハードメタル株式 会社内 福井 治世 【氏名】 【発明者】 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電工ハードメタル株式 会社内 【氏名】 森口 秀樹 【発明者】 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電工ハードメタル株式 会社内 【氏名】 今村 晋也 【発明者】 【住所又は居所】 大阪市此花区島屋一丁目1番3号 住友電気工業株式会社 大阪 製作所内 【氏名】 山口 浩司 【発明者】 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社 伊 丹製作所内 【氏名】 飯原 順次 【特許出願人】 【識別番号】 503212652 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 【氏名又は名称】 住友電工ハードメタル株式会社 【代表者】 鴻野 雄一郎 【特許出願人】 【識別番号】 0 0 0 0 0 0 2 1 3 0 【住所又は居所】 大阪府大阪市中央区北浜四丁目5番33号 【氏名又は名称】 住友電気工業株式会社 【代表者】 松本 正義 【代理人】 【識別番号】 100064746 【弁理士】 【氏名又は名称】 深見 久郎 【選任した代理人】 【識別番号】 100085132 【弁理士】 【氏名又は名称】 森田 俊雄 【選任した代理人】 【識別番号】 100083703 【弁理士】

【氏名又は名称】

仲村 義平

【選任した代理人】 【識別番号】 100096781 【弁理士】 【氏名又は名称】 堀井 豊 【選任した代理人】 【識別番号】 100098316 【弁理士】 【氏名又は名称】 野田 久登 【選任した代理人】 【識別番号】 100109162 【弁理士】 酒井 將行 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 008693 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲] 【物件名】 明細書 1 図面 1 【物件名】 【物件名】 要約書 1 【包括委任状番号】 0310388 【包括委任状番号】 9908053

【書類名】特許請求の範囲

【請求項1】

基材と、該基材上に形成された被膜とを備える表面被覆切削工具であって、

前記被膜は、前記基材上の最外層となるものであり、かつ圧縮応力を有しており、

前記圧縮応力は、前記被膜の厚み方向に強度分布を有するように変化しており、

前記強度分析は、前記被膜の表面の圧縮応力が前記被膜の表面から、前記被膜の表面と 前記被膜の底面との間に位置する第1の中間点まで連続的に減少し、前記第1の中間点に おいて極小点を有するとともに、前記第1の中間点から、前記第1の中間点と前記被膜の 底面との間に位置する第2の中間点まで連続的に増加し、前記第2の中間点において極大 点を有し、さらに前記第2の中間点と前記被膜の底面との間に前記同様の極小点を1以上 有することを特徴とする、表面被覆切削工具。

【請求項2】

前記強度分析は、さらに前記第2の中間点と前記被膜の底面との間に前記同様の極大点を1以上有することを特徴とする、請求項1記載の表面被覆切削工具。

【請求項3】

前記強度分布は、さらに前記第2の中間点と前記被膜の底面との間において前記同様の極小点と極大点とをそれぞれ1以上この順で交互に繰り返して有することを特徴とする、請求項1または2記載の表面被覆切削工具。

【請求項4】

前記圧縮応力は、一15GPa以上0GPa以下の範囲の応力であることを特徴とする、請求項1~3のいずれかに記載の表面被覆切削工具。

【請求項5】

前記第1の中間点は、前記被膜の表面から、前記被膜の厚みの0.1%以上40%以下の距離を有して位置することを特徴とする、請求項1~4のいずれかに記載の表面被覆切削工具。

【請求項6】

前記第2の中間点は、前記被膜の表面から、前記被膜の厚みの0.2%以上80%以下の距離を有して位置することを特徴とする、請求項1~5のいずれかに記載の表面被覆切削工具。

【請求項7】

前記圧縮応力は、前記被膜の表面において最大となることを特徴とする、請求項1~6 のいずれかに記載の表面被覆切削工具。

【請求項8】

前記圧縮応力は、前記第1の中間点において前記被膜の表面の圧縮応力の10~80% の値を有することを特徴とする、請求項1~7のいずれかに記載の表面被覆切削工具。

【請求項9】

前記圧縮応力は、前記第1の中間点において前記被膜の表面の圧縮応力の20~60% の値を有することを特徴とする、請求項8記載の表面被覆切削工具。

【請求項10】

前記圧縮応力は、前記被膜の表面の圧縮応力が前記被膜の表面から前記第1の中間点の 方向に向かって一定の距離の間維持された後、前記第1の中間点まで連続的に減少することを特徴とする、請求項1~9のいずれかに記載の表面被覆切削工具。 【書類名】明細書

【発明の名称】表面被覆切削工具

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、ドリル、エンドミル、ドリル用刃先交換型チップ、エンドミル用刃先交換型チップ、フライス加工用刃先交換型チップ、旋削加工用刃先交換型チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具に関し、特にその表面(最外層)に耐摩耗性等の特性を向上させる被膜を形成した表面被覆切削工具に関する。

【背景技術】

[00002]

従来、切削用の工具としては、超硬合金(WC-Co合金もしくはこれにTi(チタン)やTa(タンタル)、Nb(ニオブ)等の農窒化物を添加した合金)が用いられてきた。しかし、近年の切削の高速化に伴い、超硬合金、サーメット、あるいはアルミナ系や窒化珪素系のセラミックスを基材として、その表面にCVD(Chemical Vapor Deposition)法やPVD(Physical Vapor Deposition)法で元素周期律表のIVa、Va、VIa族金属やAl(アルミニウム)などの農化物、窒化物、農窒化物、ホウ窒化物、酸化物からなる被膜を3~20μmの厚さに被覆した硬質合金工具の使用割合が増大している。

[0003]

特に、PVD法による被覆は、基材強度の劣化を招かずに耐摩耗性を高め得るということから、ドリル、エンドミル、フライスまたは旋削加工用刃先交換型(スローアウェイ)チップなどの強度の要求される切削工具に多用されている。

[0004]

近年、切削加工能率を一層向上させるため、切削速度がより高速になってきており、そのことに伴い工具には一層の耐摩耗性が要求されるようになってきている。しかし、高い耐摩耗性を要求すると靭性が低下するということから、高い耐摩耗性および高い靭性の双方を両立させることが要求されている。

[0005]

この要求に応える試みとして、このような切削工具の基材表面に形成された被膜において、圧縮応力等の内部応力を連続的または段階的に変化させる手法が提案されている(特許文献 1)。このような提案により、耐摩耗性および靭性の両立という要求に対してはある程度の効果を挙げつつある。

[0006]

しかしながら、上記のような提案にかかる切削工具は、その被膜の圧縮応力が被膜表面側から基材表面側にかけて一律に増加乃至減少する態様のものであるため、靭性を顕著に向上させるには圧縮応力を基材表面側から被膜表面側にかけて増加させる必要があり、耐摩耗性を顕著に向上させるには圧縮応力を被膜表面側から基材表面側にかけて増加させる必要があった。

 $[0\ 0\ 0\ 7]$

すなわち、被膜表面において最大の圧縮応力を有する態様においては上記靭性に優れるものの、基材表面側に向けて連続的または段階的に圧縮応力が一律に減少するため耐摩耗性には劣っていた。逆に、基材表面側において最大の圧縮応力を有する態様においては耐摩耗性に優れるものの、被膜表面側に向けて連続的または段階的に圧縮応力が一律に減少するため靭性には劣っていた。

[0008]

特に被膜表面において最大の圧縮応力を有する態様の切削工具は、その大きな圧縮応力故に被膜形成後(コーティング終了後)または衝撃応力が負荷されたときに被膜が自己破壊し、微小な膜剥離(以下、膜チッピングと記す)が生じやすく、切削工具としての外観品質や高精度加工時の切削性能に悪影響を与えていた。

 $[0\ 0\ 0\ 9]$

この種の切削工具において靭性と耐摩耗性の両立は、最も基本的な特性の一つであるた

めこれら両者をさらに高度に両立させた切削工具の提供が望まれていた。

【特許文献1】特開2001-315006号公報

【発明の開示】

【発明が解決しようとする課題】

 $[0\ 0\ 1\ 0\]$

本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、 切削工具の靭性と耐摩耗性とを高度に両立させるとともに膜チッピングを抑制した表面被 覆切削工具を提供することにある。

【課題を解決するための手段】

$[0\ 0\ 1\ 1]$

本発明者は、上記課題を解決するために鋭意研究を重ねたところ、基材上に最外層として形成される被膜の表面部における圧縮応力を高めるとともに、その被膜の内部において圧縮応力の強度分布に極小点および極大点を形成すれば、表面の高度な靭性を維持したままその極小点近傍において耐摩耗性が向上するとともに衝撃等の応力を緩和することができ膜チッピングに対する耐性も同時に向上し、さらに極大点近傍においてより高度な靭性が得られるのではないかという知見を得た。本発明は、これらの知見に基づきさらに研究を重ねることにより完成されたものである。

$[0\ 0\ 1\ 2]$

すなわち、本発明の表面被覆切削工具は、基材と、該基材上に形成された被膜とを備える表面被覆切削工具であって、該被膜は、該基材上の最外層となるものであり、かつ圧縮応力を有しており、該圧縮応力は、上記被膜の厚み方向に強度分布を有するように変化しており、該強度分布は、上記被膜の表面の圧縮応力が上記被膜の表面から、上記被膜の表面と上記被膜の底面との間に位置する第1の中間点まで連続的に減少し、該第1の中間点において極小点を有するとともに、該第1の中間点から、該第1の中間点と上記被膜の底面との間に位置する第2の中間点まで連続的に増加し、該第2の中間点において極大点を有し、さらに該第2の中間点と上記被膜の底面との間に上記同様の極小点を1以上有することを特徴としている。

$[0\ 0\ 1\ 3]$

また、上記強度分布は、さらに上記第2の中間点と上記被膜の底面との間に上記同様の極大点を1以上有するものとすることができる。また、上記強度分布は、さらに上記第2の中間点と上記被膜の底面との間において上記同様の極小点と極大点とをそれぞれ1以上この順で交互に繰り返して有するものとすることができる。

$(0\ 0\ 1\ 4)$

また、上記極小点はすべて、実質的に同一の数値となる圧縮応力を有し、かつ上記極大点はすべて、実質的に同一の数値となる圧縮応力を有していても良く、あるいは上記極小点、極大点がすべて異なる圧縮応力値を有していても良い。

$[0\ 0\ 1\ 5]$

ここで、上記圧縮応力は、-15 GP a以上 0 GP a以下の範囲の応力とすることができる。また上記第1の中間点は、上記被膜の表面から、上記被膜の厚みの 0 . 1 %以上 4 0 %以下の距離を有して位置するものとすることができる。また上記第2の中間点は、上記被膜の表面から、上記被膜の厚みの 0 . 2 %以上 8 0 %以下の距離を有して位置するものとすることができる。

$[0\ 0\ 1\ 6]$

また上記圧縮応力は、上記被膜の表面において最大となることができ、また上記圧縮応力は、上記第1の中間点において上記被膜の表面の圧縮応力の10~80%の値を有するものとすることができる。

$[0\ 0\ 1\ 7]$

また上記圧縮応力は、上記第1の中間点において上記被膜の表面の圧縮応力の20~60%の値を有するものとすることができる。

[0018]

また上記圧縮応力は、上記被膜の表面の圧縮応力が上記被膜の表面から上記第1の中間 点の方向に向かって一定の距離の間維持された後、上記第1の中間点まで連続的に減少す るものとすることができる。

【発明の効果】

[0019]

本発明の表面被覆切削工具は、上記のような構成を有することにより、靭性と耐摩耗性とを高度に両立させるとともに膜チッピングに対する耐性をも向上させた特性を有するものである。

[0020]

特に、上記被膜の表面において被膜内部よりも大きな圧縮応力を有することにより切削初期に生じる工具の欠損等を有効に防止し、切削工具としての靭性が向上するとともに、被膜内部の表面に近い部分に圧縮応力の強度分布の極小点を形成させたことによりその部分が被膜の自己破壊や衝撃等の応力を緩和する作用を奏することによって、膜チッピングに対する耐性が飛躍的に向上しかつ耐摩耗性も同時に向上したものとなる。

[0021]

また、上記極小点とともに極大点を設けたことにより、その極大点近傍においてさらに 高度な靭性を得ることができるようになった。そしてさらに、このような極小点及び極大 点を複数形成することにより、耐摩耗性および靭性がさらに向上するとともに、膜チッピ ングに対する耐性もさらに向上したものとなる。

[0022]

このように本発明は、これらの効果が相乗的に作用することにより靭性と耐摩耗性とを高度に両立させるとともに膜チッピングに対する耐性を向上させることに成功したものである。

【発明を実施するための最良の形態】

[0023]

以下、本発明についてさらに詳細に説明する。なお、以下の実施の形態の説明では、図面を用いて説明しているが、本願の図面において同一の参照符号を付したものは、同一部分または相当部分を示している。

[0024]

<表面被覆切削工具>

図1に示したように、本発明の表面被覆切削工具1は、基材2と、該基材上に形成された被膜3とを備えた構成を有している。なお、図1では、被膜3が基材2表面に直接接するように形成されているが、被膜3が最外層となる限り被膜3と基材2との間には後述するように任意の中間層が形成されていても差し支えない。本願において基材上に形成された被膜という場合は、このように任意の中間層が形成された場合も含むものとする。

[0025]

このような本発明の表面被覆切削工具は、ドリル、エンドミル、ドリル用刃先交換型チップ、エンドミル用刃先交換型チップ、フライス加工用刃先交換型チップ、旋削加工用刃先交換型チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具として好適に用いることができ、とりわけ重切削用または断続切削用の用途に好適であるとともに、フライス加工用の用途に特に適したものとなっており、これらの用途で靭性および耐摩耗性に優れたものとなる。さらに、膜チッピングに対する耐性にも優れることから被削材の仕上げ面粗さが向上し、被削材の仕上げ面光沢にも優れることから粗仕上同時加工が可能である。

[0026]

< 基材 >

本発明の表面被覆切削工具に用いられる基材は、この種の用途の基材として従来公知のものであればいずれのものも使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはさらにTi、Ta、Nb等の炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、

高速度鋼、セラミックス(炭化チタン、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化硼素焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。

[0027]

これらの各種基材の中でも、特にWC基超硬合金、サーメット、立方晶型窒化硼素焼結体を選択することが好ましい。これは、これらの基材が特に高温硬度と強度とのバランスに優れ、上記用途の表面被覆切削工具の基材として優れた特性を有するためである。

[0028]

<被膜>

本発明の被膜は、上記の基材上に形成されるものであって最外層となるものである。このように形成されている限り、必ずしも上記基材を全面に亘って被覆している必要はなく、上記基材の表面に該被膜が形成されていない部分が含まれていても差し支えない。なお、被膜を一旦形成した後に、任意の後加工によりその被膜の表面の一部が除去される場合には、それが除去された後に新たに最表面に露出した層についても本発明の対象の被膜となる。また、後述のように基材と被膜との間に中間層が形成されている場合において、その被膜が任意の後加工により除去されて中間層が最外層として露出する場合には、その露出部分については該中間層が本発明の被膜となる(この場合、該中間層が複数の層で形成されている場合には、その複数の層のうち最外層(最表面となる層)が本発明の被膜となる)。

[0029]

このような被膜は、工具の耐摩耗性、耐酸化性、靭性、使用済み刃先部の識別のための色付性等の諸特性を向上させる作用を付与するために形成されるものであり、その組成は特に限定されるものではなく従来公知のものを採用することができる。たとえば、元素周期律表の IVa 族元素、Va 族元素、Va 族元素、Va (アルミニウム)、Pa (水ウ素)、Pa (カリコン)および Pa (アルマニウム)からなる群から選ばれる少なくとも Pa 種の元素の炭化物、窒化物、炭窒化物、炭窒化物、炭酸化物、炭窒酸化物またはこれらの固溶体により構成されるものをその組成として例示することができる。

[0030]

特に、Ti、Al、(Ti $_{l-x}Al$ $_x$)、(Al $_{l-x}V$ $_x$)、(Ti $_{l-x}Si$ $_x$)、(Al $_{l-x}Cr$ $_x$ 0、(Ti $_{l-x-y}Al$ $_xSi$ $_y$)または(Al $_{l-x-y}Cr$ $_xV$ $_y$)の窒化物、炭窒化物、 窒酸化物または炭窒酸化物(式中 x 、 y は l 以下の任意の数)等(これらにさらに B 、 Cr 等を含むものも含む)をその好適な組成として例示することができる。

$[0\ 0\ 3\ 1]$

より好ましくは、TiCN、TiN、TiSiN、TiSiCN、TiAIN、TiA 1CrN、TiAISiN、TiAISiCrN、AICrN、AICrCN、AICr VN、TiBN、TiAIBN、TiSiBN、TiBCN、TiAIBCN、TiSi BCN、AIN、AICN、AIVON等を挙げることができる。なお、これ らの組成中、各原子比は上記一般式の例に倣うものとする。

[0032]

また、このような被膜は、単層として形成されるものとする。ここで単層とは、その積層数は1層であっても複数層であってもよいが、各層を構成する構成元素の種類が同一である構造をいうものとする。このため、構成元素の種類が同一のものである限り、原子比の異なるものが複数積層されていてもここでいう単層に含まれるものとする。

[0033]

本発明の被膜としては、特に被膜全体を通して構成元素の種類が同一であり、その原子比も同一のもので構成されていることが好ましい。

[0034]

<被膜の厚み>

本発明の被膜の厚みは、特に限定されるものではないが、 0.1μ m以上 10μ m以下であることが好ましい。その厚みが 0.1μ m未満では、被膜の形成による諸特性の向上

効果が十分に得られなくなることがあり、 10μ mを超えると被膜自体が容易に剥離することがあるからである。

[0035]

<被膜の形成方法>

本発明の被膜の形成方法は、特に限定されるものではないが、物理的蒸着法(PVD法)により形成することが好ましい。このように物理的蒸着法を採用することより、強度分布が形成されるように被膜の圧縮応力を容易に変化させることができるからである。

$[0\ 0\ 3\ 6]$

すなわち、被膜の圧縮応力は、本発明者の研究によると、物理的蒸着法により被膜を形成する時の温度、反応ガス圧、基板バイアス電圧等の影響を受けることが判明しており、その中でも特に被膜を形成する時の基板バイアス電圧の影響が最も大きいことが判明している。

[0037]

これは、たとえば基材に対して大きな基板バイアス電圧をかけると、被膜を構成する元素がイオン状態で基材に対して高エネルギーで供給され、このためこれら両者が衝突するときの衝撃が大きくなり、その結果として形成される被膜の圧縮応力が大きくなるものと考えられる。また、逆に基板バイアス電圧が小さい場合は、そのような基材とイオン状態の元素との衝突による衝撃も小さく、以って圧縮応力も小さくなるものと推測される。

[0038]

したがって、被膜の圧縮応力が、被膜の厚み方向に対して強度分布を有するようにするためには、基材上に被膜を形成する際に、物理的蒸着法を採用し、その基板バイアス電圧を調節することにより、実行することができる。

[0039]

このように本発明の被膜の形成方法としては、物理的蒸着法を採用することが好ましいが、他の形成方法として知られる化学的蒸着法を除外するものではない。

[0040]

このような物理的蒸着法としては、基板バイアス電圧の調節が可能なスパッタリング法、イオンプレーティング法等、従来公知の方法を挙げることができる。特に、それらの各種方法の中でもイオンプレーティング法またはマグネトロンスパッタリング法を採用することが好ましい。

$[0\ 0\ 4\ 1]$

ここで、イオンプレーティング法とは、金属を陰極とし、真空チャンバーを陽極として、金属を蒸発、イオン化させると同時に基材に負の電圧(基板バイアス電圧)をかけることによりイオンを引き出し、基材表面に金属イオンを堆積する方法をいう。なお、この方法において、真空中に窒素を入れ、金属と反応させれば該金属の窒化化合物が形成されることになる。たとえば金属としてチタンを用い、窒素と反応させれば窒化チタン(TiN)が形成される。

[0042]

このようなイオンプレーティング法にも種々のものがあるが、特に、原料元素のイオン 率が高いカソードアークイオンプレーティング法を採用することが特に好ましい。

[0043]

このカソードアークイオンプレーティング法を用いると、被膜を形成する前に基材表面に対して金属のイオンボンバードメント処理が可能となるため、被膜の密着性が飛躍的に向上するという効果を得ることもできる。このため、密着性という意味からもカソードアークイオンプレーティング法は好ましいプロセスである。

$[0\ 0\ 4\ 4\]$

一方、マグネトロンスパッタリング法とは、真空チャンバー内を高真空にした後、Arガスを導入してターゲットに高電圧を印加しグロー放電を生じさせ、このグロー放電によりイオン化したArをターゲットに向けて加速照射させターゲットをスパッタすることにより、飛び出してイオン化されたターゲット原子は、ターゲットー基板間の基板バイアス

電圧によって加速され基材上に堆積されることによって成膜される方法をいう。このようなマグネトロンスパッタリング法には、バランスドマグネトロンスパッタリング法、アンバランスドマグネトロンスパッタリング法等がある。

[0045]

なお、上記では、被膜の圧縮応力の強度分布の形成方法として、物理的蒸着法による基板バイアス電圧を制御する方法を挙げているが、本発明においてはこのような方法のみに限定されるものではない。たとえば、被膜形成後に、ブラスト等機械的衝撃により圧縮応力を加える方法、ヒーター、レーザー等の熱源を用いて圧縮応力を緩和する方法、これらの方法を組み合せる方法等を挙げることができる。

[0046]

<被膜の圧縮応力>

本発明の被膜は、圧縮応力を有している。そして、該圧縮応力は一15GPa以上0GPa以下の範囲の応力であることが好ましい。より好ましくは、その下限を一10GPa、さらに好ましくは一8GPaである。また、その上限は、より好ましくは一0.5GPaであり、さらに好ましくは一1GPaである。

[0047]

被膜の圧縮応力が一15GPa未満となると、切削工具の形状(刃先が極めて小さい鋭角であるものや複雑な形状をしたもの等)により、特に刃先稜線部で被膜が剥離する場合がある。また、被膜の圧縮応力が0GPaを越えると、被膜の応力は引張状態となるので、被膜に亀裂を生じ、これが原因となって工具自体が欠損する場合がある。

[0048]

ここで、本発明でいう圧縮応力とは、被膜に存する内部応力(固有ひずみ)の一種であって、「一」(マイナス)の数値(単位:GPa)で表されるものである。このため、圧縮応力(内部応力)が大きいという表現は、上記数値の絶対値が大きくなることを示し、また、圧縮応力(内部応力)が小さいという表現は、上記数値の絶対値が小さくなることを示す。

[0049]

また、このような本発明の圧縮応力は、 $sin^2\phi$ 法という方法で測定されるものである。 X線を用いた $sin^2\phi$ 法は、多結晶材料の残留応力の測定方法として広く用いられている。この測定方法は、「X線応力測定法」(日本材料学会、1981 年株式会社養賢堂発行)の $54\sim66$ 頁に詳細に説明されているが、本発明ではまず並傾法と側傾法とを組み合せてX線の侵入深さを固定し、測定する応力方向と測定位置に立てた試料表面法線を含む面内で種々の ϕ 方向に対する回折角度 2θ を測定して $2\theta-sin^2\phi$ 線図を作成し、その勾配からその深さ(被膜の表面からの距離)までの平均圧縮応力を求めることができる。そして、同様にして異なる深さまでの平均圧縮応力を順次測定することにより、被膜の厚み方向の圧縮応力の強度分布を求めることができる。

[0050]

より具体的には、X線源からのX線を試料に所定角度で入射させ、試料で回折したX線をX線検出器で検出し、該検出値に基づいて内部応力を測定するX線応力測定方法において、試料の任意箇所の試料表面に対して任意の設定角度でX線源よりX線を入射させ、試料上のX線照射点を通り試料表面で入射X線と直角な ω 軸と、試料台と平行で ω 軸を回転させた時に入射X線と一致するX軸を中心に試料を回転させるときに、試料表面と入射X線とのなす角が一定となるように試料を回転させながら、回折面の法線と試料面の法線とのなす角度 ϕ を変化させて回折線を測定することによって、試料内部の圧縮応力を求めることができる。

$[0\ 0\ 5\ 1]$

なお、このような被膜の厚み方向の強度分布を求めるX線源としては、X線源の質(高輝度、高平行性、波長可変性等)の点で、シンクロトロン放射光(SR)を用いることが好ましい。

[0052]

なおまた、上記のように圧縮応力を $2\theta-s$ in $^2\phi$ 線図から求めるためには、被膜のヤング率とポアソン比が必要となる。しかし、該ヤング率はダイナミック硬度計等を用いて測定することができ、ポアソン比は材料によって大きく変化しないため 0. 2 前後の値を用いればよい。本発明では、特に正確な圧縮応力値が特に重要となるわけではなく、圧縮応力の強度分布が重要である。このため、 $2\theta-s$ in $^2\phi$ 線図から圧縮応力を求めるに際して、ヤング率を用いることなく格子定数および格子面間隔を求めることにより圧縮応力の強度分布の代用とすることもできる。

[0053]

<強度分布>

本発明の被膜の上記圧縮応力は、上記被膜の厚み方向に強度分布を有するように変化している。ここで被膜の厚み方向とは、被膜の表面から被膜の底面(該被膜は基材上の最外層となるためその最外層の最も基材側の面)に向かう方向であって、被膜の表面に対して垂直となる方向である。図1の被膜3の部分の拡大断面図である図2を用いてより具体的に説明すれば、被膜の厚み方向とは、被膜の表面4から被膜の底面6に向かう矢印7で示される方向である。なお、矢印7は、便宜上、被膜の表面4から被膜の底面6に向かう方向で示されているが、被膜の表面に対して垂直となる方向である限りこの上下方向を限定する必要はなく、被膜の底面6から被膜の表面4に向かうものであってもよい。

$[0\ 0\ 5\ 4]$

また、上記強度分布とは、圧縮応力の大きさが上記被膜の厚み方向に向かって分布を形成して変化することを示すものである。したがって、該圧縮応力が被膜の厚み方向に強度分布を有するとは、換言すれば圧縮応力の大きさが被膜の表面と平行の方向ではなく、被膜の表面と垂直の方向に変化することを意味するものである。

[0055]

そして上記強度分布は、上記被膜の表面の圧縮応力が上記被膜の表面から、上記被膜の表面と上記被膜の底面との間に位置する第1の中間点まで連続的に減少し、その第1の中間点において極小点を有するとともに、その第1の中間点から、その第1の中間点と上記被膜の底面との間に位置する第2の中間点まで連続的に増加し、その第2の中間点において極大点を有し、さらにその第2の中間点と上記被膜の底面との間に上記同様の極小点を1以上有することを特徴としている。

[0056]

ここで、同様の極小点とは、上記第1の中間点における極小点と同様の強度分布上の挙動を示す点であり、たとえば上記第2の中間点から上記被膜の底面に向かって圧縮応力が連続的に減少し、この点においてその圧縮応力の減少の度合いが変化することとなるような点を意味している。このように、上記第2の中間点と上記被膜の底面との間に極小点を1以上有することにより、被膜表面で発生した亀裂の被膜内部への進展をより効果的に抑制することができ、膜チッピングに対する耐性がさらに向上するとともにより優れた耐摩耗性が示されることになる。

$[0\ 0\ 5\ 7]$

一方、上記強度分布は、さらに上記第2の中間点と上記被膜の底面との間に上記同様の極大点を1以上有するものとすることができる。

[0058]

ここで、同様の極大点とは、上記第2の中間点における極大点と同様の強度分布上の挙動を示す点であり、たとえば上記第2の中間点と上記被膜の底面との間に位置する極小点からさらに上記被膜の底面に向かって圧縮応力が連続的に増加し、この点においてその圧縮応力の増加の度合いが変化することとなるような点を意味している。このように、上記第2の中間点と上記被膜の底面との間に極大点を1以上有することにより、一層優れた靭性が示されるとともに膜チッピングに対する耐性もさらに向上することになる。

[0059]

そして上記強度分布は、さらに上記第2の中間点と上記被膜の底面との間において上記 同様の極小点と極大点とをそれぞれ1以上この順で交互に繰り返して有するものとするこ とができる。この場合、その繰り返し回数および繰り返し間隔は特に限定されるものではないが、各極小点(第1の中間点における極小点を含む)および各極大点(第2の中間点における極大点を含む)が実質的に等間隔で存在する場合には、上記被膜の厚みとの関係において、各極小点間の距離および各極大点間の距離が上記被膜の厚みの $0.1\%\sim70$ %の範囲、好ましくはその上限が60%、さらに好ましくは50%、その下限が0.15%、さらに好ましくは0.2%の範囲となるように、その繰り返し回数を決定することができる。

[0060]

上記距離が、0.1%未満となる場合には、繰り返し間隔が短くなりすぎ、被膜の応力状態が不安定となって却って膜チッピングを起こしやすくなることがあり、また70%を超えると極小点または極大点を複数個形成した効果が小さくなることがある。

$[0\ 0\ 6\ 1]$

このように極小点と極大点とが複数存在するようにこの順で交互に繰り返して存在することにより、被膜表面で発生した亀裂の亀裂進展エネルギーが吸収される場が増加するため、亀裂の被膜内部への進展をより一層効果的に抑制することができ、膜チッピングに対する耐性がさらに向上するとともにさらに優れた耐摩耗性および靭性が示されることになる。

$[0\ 0\ 6\ 2]$

上記で述べた種々の強度分布の特徴を、図2および本発明の強度分布の一例を示す図3を用いてより詳しく説明する。図3は、被膜の厚み方向として、被膜の表面からの距離を横軸とし、圧縮応力を縦軸として強度分布をグラフ化したものである。

[0063]

まず、図2に示したように、上記の第1の中間点5とは、上記被膜の表面4と上記被膜の底面6との間に位置するものであるが、上記被膜の表面4からの垂直方向の距離で示せば、必ずしも被膜の厚み(被膜の表面4から被膜の底面6までの垂直方向の距離)の1/2になる必要はない。通常、このような第1の中間点5は、被膜の底面6よりは被膜の表面4に近いところに位置するものである。

$[0\ 0\ 6\ 4]$

好ましくはこのような第1の中間点5は、上記被膜の表面4から、上記被膜の厚み(上記被膜の表面4から上記被膜の底面6までの垂直方向の距離)の0.1%以上40%以下の距離を有して位置することが好ましく、より好ましくはその下限を0.3%、さらに好ましくは0.5%、その上限を35%、さらに好ましくは30%とすることが好適である。0.1%未満の場合には、衝撃力の高い断続切削等の過酷な重切削に用いた場合、圧縮応力の付与が不完全となり欠損の抑制効果が見られなくなる場合がある。また、40%を超えると、被膜内部において圧縮応力を低減した効果が低下し、膜チッピングに対する耐性の向上作用が示されなくなる場合がある。

[0065]

このような強度分布において、上記圧縮応力は上記被膜の表面 4 において最大となる(換言すればその絶対値が最大となる)ものとすることができる。これにより、特に優れた 靭性を得ることができる。

[0066]

なお、上記のような第1の中間点において、上記圧縮応力は上記被膜の表面における圧縮応力の10~80%の値を有していることが好ましい。より好ましくは、その上限が70%、さらに好ましくは60%、その下限が15%、さらに好ましくは20%である。被膜の表面4側から見て2つ目以降の極小点においても、上記範囲の圧縮応力を有することが好ましい。

$[0\ 0\ 6\ 7]$

この値が10%未満となる場合、十分な靭性が得られなくなることがあり、また80%を超えると衝撃吸収(応力の緩和)が不完全となり膜チッピングの抑制効果が見られなくなる場合がある。

[0068]

一方、上記の極小点は、被膜の表面 4 から被膜の底面 6 に向かって複数存在し、位置的には被膜の表面 4 側から見てその一つ目の極小点が上記の第 1 の中間点に現れた後、第 2 の中間点 9 と被膜の底面 6 との間における任意の 1 以上の点(たとえば図 2 における第 3 の中間点 1 0)において観察されるものである。このような極小点は、圧縮応力が被膜の底面 6 に向かって連続的に減少していきこの点においてその減少の度合いが変化するという強度分布上の挙動を示す点である。ここで、減少の度合いが変化するとは、被膜の底面 6 に向かって減少傾向にあった圧縮応力がこの極小点を境として連続的に増加することを示している。

[0069]

なお、図2においては、2つ目以降の極小点が現れる点として第3の中間点10が1点記載されているだけであるが、これは便宜的なものであってこのように1点のみに限られるものではない。

[0070]

また、図3においては、上記の極小点は、被膜の厚み方向に幅を持たない点で存在する態様となっているが、本発明の態様としてはこのような態様のみに限らず、被膜の厚み方向に厚み(幅)をもって存在する場合も含むものとする。ここで、極小点がある厚みをもって存在するとは、極小点の圧縮応力がその厚み(好ましくは被膜の厚みの1/2以下)において、実質的に一定の値を有することをいう。このように、極小点がある厚みをもって存在することにより、耐摩耗性をさらに向上させることができる。

[0071]

したがって、本願でいう極小点とは、数学の関数用語である極小点と同意またはそれより広義の意味を有するものである。

[0072]

一方、図2に示したように、上記の第2の中間点9とは、上記第1の中間点5と上記被膜の底面6との間に位置するものであるが、必ずしも上記第1の中間点5から被膜の底面6までの垂直方向の距離の1/2になる必要はない。

[0073]

好ましくはこのような第2の中間点9は、上記被膜の表面から、上記被膜の厚み(上記被膜の表面4から上記被膜の底面6までの垂直方向の距離)の0.2%以上80%以下の距離を有して位置することが好ましく、より好ましくはその下限を0.5%、さらに好ましくは1%、その上限を75%、さらに好ましくは70%とすることが好適である。0.2%未満の場合には、圧縮応力の低減が不十分となり、膜チッピングに対する耐性と耐摩耗性の向上作用が示されなくなる場合がある。また、80%を超えると、被膜内部において大きな圧縮応力を付与した効果が低下し、靭性の向上作用が示されなくなる場合がある

$[0 \ 0 \ 7 \ 4]$

なお、上記のような第2の中間点において、上記圧縮応力は上記被膜の表面における圧縮応力の $50\sim200$ %の値を有していることが好ましい。より好ましくは、その上限が180%、さらに好ましくは150%、その下限が60%、さらに好ましくは70%である。極大点が20以上ある場合においても、各極大点は上記範囲の圧縮応力を有することが好ましい。

[0075]

この値が50%未満となる場合、圧縮応力の付与が不十分となり、十分な靭性が得られなくなることがあり、また200%を超えると圧縮応力の付与が大きくなり過ぎ、膜チッピングに対する耐性が低下する場合がある。

$[0\ 0\ 7\ 6]$

さらに上記の極大点は、被膜の表面4から被膜の底面6に向かって1以上存在し、位置的には被膜の表面4側から見てその1つ目の極大点が上記の第2の中間点9に現れた後、2つ目以降の極大点がある場合には第2の中間点9と被膜の底面6との間における任意の

1以上の点(たとえば図2における第4の中間点11)において観察されるものである。このような極大点は、圧縮応力が被膜の底面6に向かって連続的に増加していきこの点においてその増加の度合いが変化するという強度分布上の挙動を示す点である。ここで、増加の度合いが変化するとは、被膜の底面6に向かって増加傾向にあった圧縮応力がこの極大点を境として連続的に減少することを示している。

[0077]

なお、図2においては、2つ目以降の極大点が現れる点として第4の中間点11が1点 記載されているだけであるが、これは便宜的なものであってこのように1点のみに限られ るものではない。

[0078]

なお、図3においては、上記の極大点は、被膜の厚み方向に幅を持たない点で存在する態様となっているが、本発明の態様としてはこのような態様のみに限らず、被膜の厚み方向に厚み(幅)をもって存在する場合も含むものとする。ここで、極大点がある厚みをもって存在するとは、極大点の圧縮応力がその厚み(好ましくは被膜の厚みの1/2以下)において、実質的に一定の値を有することをいう。このように、極大点がある厚みをもって存在することにより、靭性をさらに向上させることができる。

[0079]

したがって、本願でいう極大点とは、数学の関数用語である極大点と同意またはそれより広義の意味を有するものである。

[080]

そして、このような極小点と極大点とは、図3に示されているように上記被膜の表面4と上記被膜の底面6との間においてそれぞれ1以上この順で交互に繰り返して存在することが好ましく、また各極小点と極大点とは互いに等間隔または不等間隔で存在し、それぞれの圧縮応力は互いに各極小点間/各極大点間で実質的に同一の数値を有するものとして存在することが好ましい。

[0081]

なお、図3においては、被膜の表面(すなわち被膜の表面からの距離が0μmの地点)から圧縮応力が連続的に減少する態様となっているが、本発明の態様としてはこのような態様のみに限らず、たとえば図4に示したように被膜の表面の圧縮応力が被膜の底面方向に向かって一定の距離(好ましくは0.5μm以下)の範囲内で維持される場合も含むものとする。すなわち、上記圧縮応力は、上記被膜の表面において内部よりも大きな圧縮応力(換言すれば絶対値がその内部の絶対値よりも大きくなる圧縮応力)を有するとともに、その圧縮応力が上記被膜の表面から上記第1の中間点の方向に向かって一定の距離(好ましくは0.5μm以下)の間維持された後、該圧縮応力が上記第1の中間点まで連続的に減少する態様が含まれる。

[0082]

このように被膜表面の圧縮応力が、その被膜の表面から被膜の底面方向に向かって一定の距離の範囲内で維持されると、特に優れた靭性を有することとなるため好ましい。

[0083]

なお、本願において圧縮応力が連続的に減少するとは、図3に示したように下に凸の状態で減少したり上に凸の状態で減少する場合だけではなく、直線的に減少する場合も含まれる。さらに、一部分において増加したり、減少の度合い(傾き)が途中で変化しているような場合あるいは段階的(階段状に減少)となっている場合であっても、全体として減少していれば、本願でいう連続的に減少する場合に含まれるものとする。

[0084]

また、本願において圧縮応力が連続的に増加するとは、図3に示したように下に凸の状態で増加する場合だけではなく、上に凸の状態で増加する場合や直線的に増加する場合も含まれる。さらに、一部分において減少したり、増加の度合い(傾き)が途中で変化しているような場合あるいは段階的(階段状に増加)となっている場合であっても、全体として増加していれば、本願でいう連続的に増加する場合に含まれるものとする。

[0085]

なお、上記の強度分布において、被膜の底面 6 側に最も近接して存在する点は、極小点であっても極大点であっても差し支えない。したがって、被膜の底面 6 における圧縮応力の増加/減少状態は、増加途中の状態であっても、減少途中の状態であっても差し支えなく、また極小点または極大点が位置することになっても差し支えない。

[0086]

このように本発明においては、その強度分布が上記被膜の表面の圧縮応力が上記被膜の表面から、上記被膜の表面と上記被膜の底面との間に位置する第1の中間点まで連続的に減少し、その第1の中間点において極小点を有したものとなっている。このように被膜の表面において内部よりも大きな圧縮応力を有することにより、被膜表面で発生するクラックの発生を可能な限り抑制し、かつその極小点近傍において被膜表面部の大きな圧縮応力による被膜の自己破壊を防止し、被膜表面に負荷される衝撃等の応力を緩和することで、靭性と膜チッピングに対する耐性に優れるとともに耐摩耗性にも優れるという卓越した効果が示される。

[0087]

また本発明においては、上記第1の中間点から上記第2の中間点まで圧縮応力が連続的に増加し、その第2の中間点において極大点を有することにより、さらに高度な靭性が提供される。そしてさらに本発明では、上記第2の中間点と上記被膜の底面との間において極小点と極大点とが複数存在するようにこの順で交互に繰り返して存在することにより、被膜表面で発生した亀裂の被膜内部への進展をより一層効果的に抑制することができ、膜チッピングに対する耐性がさらに向上するとともにさらに優れた耐摩耗性および靭性が示されることになる。

[0088]

このようにして、本発明の表面被覆切削工具は、靭性と耐摩耗性および膜チッピングに対する耐性とを両立させることに成功したという極めて優れた効果を示すものである。

[0089]

このような優れた効果は、上記のような極小点および極大点を有さず、被膜の表面から被膜の底面に向かって圧縮応力が連続的または段階的に一律に減少乃至増加することを特徴とする従来の表面被覆切削工具(特許文献 1)においては示すことができない格別の効果である。

[0090]

くその他>

本発明の表面被覆切削工具においては、図5に示すように上記基材2と上記被膜3との間に任意の中間層8を形成することができる。このような中間層8は、通常耐摩耗性を向上させたり、基材と被膜との密着性を向上させたりする特性を有するものであり、1層または複数層として形成することができる。なお、この場合、上記被膜の底面6は、被膜3と中間層8とが接する面となる。

$[0\ 0\ 9\ 1]$

このような中間層は、たとえばTiN、TiCN、TiSiN、TiAIN、AICrN、AIVN、TiAICrN、TiAISiN、TiAISiCrVN等により構成することができる。なお、これらの組成中、各原子比は上記被膜の組成として例示した一般式の例に倣うものとする。

【実施例】

[0092]

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の被膜の化合物組成はXPS(X線光電子分光分析装置)によって確認した。また圧縮応力および厚み(または被膜表面からの距離)は、上述のsi $n^2\phi$ 法により測定した。

[0093]

sin²φ法による測定において、使用したX線のエネルギーは10keVであり、回

折ピークは $Ti_{0.5}A1_{0.5}N$ (実施例 $1\sim6$)および $A1_{0.6}Ti_{0.2}Si_{0.1}Cr_{0.1}N$ (実施例 $7\sim10$)の(200)面とした。そして、測定した回折ピーク位置をガウス関数のフィッティングにより決定し、 $2\theta-sin^2\phi$ 線図の傾きを求め、ヤング率としてはダイナミック硬度計(MTS社製ナノインデンター)を用いて求めた値を採用し、ポアソン比にはTiN(0.19)の値を用いて応力値とした。

[0094]

なお、以下では被膜をカソードアークイオンプレーティング法により形成しているが、例えばバランスドまたはアンバランスドスパッタリング法によっても成膜することは可能である。また、以下では特定の被膜組成のものを形成しているが、これ以外の組成のものでも同様の効果を得ることができる。

[0095]

< 実施例1~6>

<表面被覆切削工具の作製>

まず、表面被覆切削工具の基材として、以下の表1に示す材質と工具形状(後述の各特性の評価方法により異なる)を有する切削用刃先交換型チップを用意し、これをカソードアークイオンプレーティング装置に装着した。

[0096]

【表 1】

	耐摩耗性の評価	Eの評価	勒性
	連続切削試験	断続切削試験	の評価
基材の材質 (JIS)	P20	P20	K20
工具形状	CNMG120408	CNMG120408	SDKN42M
被削材	SCM435	SCM435 (4 溝)	8500 六村
切削速度 (m/min)	350	320	180
送り (mm/rev)	0.3	0.3	Į
切り込み (mm)	2.0	1.5	2.0
切削油剤	使用	使用	不使用

[0097]

続いて、真空ポンプにより該装置のチャンバー内を減圧するとともに、該装置内に設置されたヒーターにより上記基材の温度を450 Cに加熱し、チャンバー内の圧力が1.0 × 10^{-4} P a となるまで真空引きを行なった。

[0098]

次に、アルゴンガスを導入してチャンバー内の圧力を3.0Paに保持し、上記基材の基板バイアス電源の電圧を徐々に上げながらー1500Vとし、基材の表面のクリーニングを15分間行なった。その後、アルゴンガスを排気した。

[0099]

次いで、上記基材上に直接接するように形成される被膜としてT $i_{0.5}$ А $1_{0.5}$ Nが 3_{μ} mの厚みで形成されるように、金属蒸発源である合金製ターゲットをセットするとともに、反応ガスとして窒素ガスを導入させながら、基材(基板)温度450 C、反応ガス圧4.0 Paとし、基板バイアス電圧を以下の表2のように変化させることにより、60 分間カソード電極に100 Aのアーク電流を供給し、アーク式蒸発源から金属イオンを発生させることにより、以下の表3に示す圧縮応力の強度分布を有する実施例 $1\sim6$ の本発明の表面被覆切削工具を作製した。

【0100】 【表2】

	第1サイクル	第2サイクル
O Z	(時間/基板バイアス電圧)	(時間/基板バイアス電圧)
実施例 1	15%	15分
	-150V~-50V	-50V~-150V
実施例2	5分	5%
	-150V~-50V	$-50 \text{V} \sim -150 \text{V}$
実施例3	15	1%
	-150V~-50V	-500~-1500
実施例4	15	2分
	-150V~-50V	$-50 \lor \sim -150 \lor$
実施例5	12分	12分
	-20V~ $-210V$	-210V~-20V
実施例 6	12分	12分
	-75V~-150V	-150V~-75V

[0101]

なお、上記の表における「第1サイクル」および「第2サイクル」は、60分間の間これらの各サイクルに記載されている時間毎にこれらの両サイクルを交互に繰り返すことによって(「第1サイクル」から開始するが、必ずしも「第2サイクル」で終了する必要は

をい)基板バイアス電圧を印加することを示している。すなわち、各サイクルに記載されている時間は、合金製ターゲットにより金属イオンの蒸発をさせる経過時間を示している。また、各記載されている電圧の数値は、上記の経過時間に対応する基板のバイアス電圧を示しており、たとえば「 $-150V\sim-50V$ 」というような範囲をもって記載しているのは、その経過時間において基板バイアス電圧を-150Vから徐々に-50Vまで一定速度で減少させたことを示しており、この場合被膜の圧縮応力は徐々に減少することとなる。-5、「 $-50V\sim-150V$ 」というような範囲をもって記載されている場合は、その経過時間において基板バイアス電圧を-50Vから徐々に-150Vまで一定速度で増加させたことを示しており、この場合被膜の圧縮応力は徐々に増加することとなる。そして、電圧の変化が減少から増加に転じる点(すなわち「第1サイクル」から「第2サイクル」に切り替わる点など)、ならびに電圧の変化が増加から減少に転じる点(すなわち「第2サイクル」から「第1サイクル」に切り替わる点など)において、それぞれ圧縮応力の極小点ならびに極大点が形成されることになる。

[0102]

このように基板バイアス電圧を経過時間との関係で変化させることにより、被膜中の圧縮応力の強度分布において極大点ならびに極小点や、連続的に増加したりあるいは減少したりする状態を形成することができる。

$[0\ 1\ 0\ 3]$

表面の	第1の	学小郵	第2の	極大点	極小点	極大点	底面の
圧縮応力	中間点		中間点		数/距離	数/距離	圧縮応力
 —5 бРа	25 %	-2.0 GPa	% 09	—5 GPa	2/	1/	-5 GPa
	0.75 µт	~-1.6 GPa	1.5 µm		1.5 µm	un -	
 —5 GPа	8.3%	-2.0 GPa	16.7 %	-5.2 GPa	/9	5/	—5 GPa
	0.25 µm	~-1.6 GPa	0.5 µm	~-4.8 GPa	0.5 µm	0.5 µm	
 —5 GPa	1.7 %	-2.0 GPa	3.3 %	-5.4 GPa	30/	29/	-5 GPa
	0.05 µm	~-1.6 GPa	0.1 µm	~-4.5 GPa	0.1 µm	0.1 µm	
 —5 бРа	1.7%	-2.0 GPa	5.0 %	-5.2 GPa	707	19/	—5 GPa
	0.05 µm	~-1.6 GPa	0.15 µm	~-4.5 GPa	0.15 µm	0.15 µm	
 -7 GPa	20 %	-1.1 GPa	40 %	-7.1 GPa	2/	2/	—1 GPa
	0.6 µm	~-0.8 GPa	1.2 µm	~-6.8 GPa	1.2 µm	1.2 µm	
 —5 GPa	20 %	-3.3 GPa	40 %	-5.2 GPa	2/	2/	—3 бРа
	0.6 µm	~-2.9 GPa	1.2 µm	~-4.8 GPa	1.2 µm	1.2 µm	

[0104]

なお、上記表において表面の圧縮応力および底面の圧縮応力の欄に記載されている数値は、それぞれ被膜の表面および被膜の底面において示される圧縮応力を示している。また、第1の中間点および第2の中間点の欄に記載されている数値は、被膜の厚み方向の距離として被膜の表面から、該第1の中間点および該第2の中間点までの距離をそれぞれ示している(「%」表示の数値は被膜の厚みに対するものであり、「 μ m」表示との両者で示している)。また、極小点および極大点の欄に記載されている数値は、各極小点および各極大点における圧縮応力をそれぞれ示している(なお、数値に範囲を伴っているが、この数値範囲内において実質的に同一の数値の圧縮応力を有していることとする)。また、極

小点の数/距離および極大点の数/距離は、それぞれ被膜の表面から被膜の底面までの間に存在する極小点および極大点それぞれの個数と、各極小点間および各極大点間の距離を示している。

[0105]

このようにして、実施例1~6の本発明の表面被覆切削工具は、基材と、該基材上に形成された被膜とを備え、該被膜は、該基材上の最外層となるものであり、かつ圧縮応力を有しており、該圧縮応力は、上記被膜の厚み方向に強度分布を有するように変化しており、該強度分布は、上記被膜の表面の圧縮応力が上記被膜の表面から、上記被膜の表面と上記被膜の底面との間に位置する第1の中間点まで連続的に減少し、該第1の中間点において極小点を有するとともに、該第1の中間点から、該第1の中間点と上記被膜の底面との間に位置する第2の中間点まで連続的に増加し、該第2の中間点において極大点を有し、さらに該第2の中間点と上記被膜の底面との間に上記同様の極小点および極大点をそれぞれ1以上有している。そして、これらの極小点および極大点は、それぞれこの順で交互に繰り返して存在するものとなっており、各実施例における極小点はすべて実質的に同一の数値となる圧縮応力を有し、かつ各実施例における極大点はすべて実質的に同一の数値となる圧縮応力を有し、各極小点と各極大点とは実質的に等間隔で存在している。

[0106]

なお、比較のため、合金製ターゲットにより金属イオンの蒸発を開始してから 60 分間かけて基板バイアス電圧を-20 V \sim -150 V まで一律に上昇させることを除き、上記と同様にして表面被覆切削工具を作製した(比較例 1)。

$[0\ 1\ 0\ 7]$

この比較例1の表面被覆切削工具は、被膜の圧縮応力の強度分布が極小点および極大点を有さず、被膜の底面から被膜の表面にかけて一律に増加するものであった。

[0108]

< 実施例7~10>

<表面被覆切削工具の作製>

まず、表面被覆切削工具の基材としては、実施例 1 ~ 6 において用いたものと同じものを用いた。そして、この基材をカソードアークイオンプレーティング装置に装着した。

[0109]

続いて、真空ポンプにより該装置のチャンバー内を減圧するとともに、該装置内に設置されたヒーターにより上記基材の温度を450 ℃に加熱し、チャンバー内の圧力が1.0 × 10^{-4} Paとなるまで真空引きを行なった。

$[0\ 1\ 1\ 0\]$

次に、アルゴンガスを導入してチャンバー内の圧力を3.0Paに保持し、上記基材の基板バイアス電源の電圧を徐々に上げながら-1500Vとし、基材の表面のクリーニングを15分間行なった。その後、アルゴンガスを排気した。

次いで、上記基材上に直接接するように形成される被膜として $A1_{0.6}$ T $i_{0.2}$ S $i_{0.1}$ C $r_{0.1}$ N が3 μ m の厚みで形成されるように、金属蒸発源である合金製ターゲットをセットするとともに、反応ガスとして窒素を導入させながら、基材(基板)温度 450 $\mathbb C$ 、反応ガス圧 4.0 P a とし、基板バイアス電圧を以下の表 4 のように変化させることにより、60 分間カソード電極に 100 Aのアーク電流を供給し、アーク式蒸発源から金属イオンを発生させることにより、以下の表 5 に示す圧縮応力の強度分布を有する実施例 $7\sim10$ の本発明の表面被覆切削工具を作製した。

[0112]

	第1サイクル	第2サイクル
No.	(時間/基板バイアス電圧)	(時間/基板バイアス電圧)
実施例7	5%	5%
	-210V~-20V	$-20 \vee \sim -210 \vee$
実施例8	5分	5分
	-210V~-60V	$-60V \sim -210V$
実施例9	5分	5分
	-210V~-100V	$-100 \lor \sim -210 \lor$
実施例10	5分	5分
	$-210V \sim -150V$	$-150V$ \sim $-210V$

$[0\ 1\ 1\ 3\]$

なお、上記の表において記載されている「第1 サイクル」および「第2 サイクル」は、表 2 の場合と同様、6 0 分間の間これらの両サイクルに記載されている時間毎にこれらの両サイクルを交互に繰り返すことによって(「第1 サイクル」から開始する)基板バイアス電圧を印加することを示している。また、各欄に記載されている時間および電圧の数値も、表 2 の場合と同様、上記の経過時間に対応する基板のバイアス電圧を示している。

[0114]

No.	多面の	第1の	極小点	第2の	極大点	極小点	極大点	底面の
	圧縮応力	中間点		中間点		数/距離	数/距離	圧縮応力
実施例	-7 GPa	8.3 %	-1.1 GPa	% 2.91	-7.1 GPa	/9	5/	-7 GPa
7		0.25 μm	~-0.8 GPa	0.5 µm	~-6.8 GPa	0.5 µm	0.5 µm	
実施例	-7 GPa	8.3 %	-2.2 GPa	16.7 %	-7.1 GPa	/9	5/	-7 GPa
œ		0.25 μm	~-1.8 GPa	0.5 µm	~-6.8 GPa	0.5 µm	0.5 µm	
実施例	—7 GPa	8.3 %	-4.2 GPa	16.7 %	-7.1 GPa	/9	5/	-7 GPa
6		0.25 µm	~-3.8 GPa	0.5 µm	~-6.8 GPa	0.5 µm	0.5 µm	
実施例	-7 GPa	8. S. &	-5.3 GPa	16.7 %	-7.1 GPa	/9	5/	-7 GPa
10		0.25 µm	~—4.9 GPa 0.5 µm	0.5 µm	~-6.8 GPa	0.5 µm	0.5 µm	

[0115]

なお、上記表において表面の圧縮応力および底面の圧縮応力の欄に記載されている数値は、表3の場合と同様にそれぞれ被膜の表面および被膜の底面において示される圧縮応力を示している。また、第1の中間点および第2の中間点の欄に記載されている数値も、表3の場合と同様に被膜の厚み方向の距離として被膜の表面から各中間点までの距離をそれぞれ示している(「%」表示の数値は被膜の厚みに対するものであり、「 μ m」表示との両者で示している)。極小点および極大点の欄に記載されている数値も、表3の場合と同様、その点における圧縮応力をそれぞれ示している(なお、数値に範囲を伴っているが、この数値範囲内において実質的に同一の数値の圧縮応力を有していることとする)。また

、極小点の数/距離および極大点の数/距離は、表3の場合と同様、それぞれ被膜の表面から被膜の底面までの間に存在する極小点および極大点それぞれの個数と、各極小点間および各極大点間の距離を示している。

$[0\ 1\ 1\ 6\]$

このようにして、実施例 7~10の本発明の表面被覆切削工具は、基材と、該基材上に形成された被膜とを備え、該被膜は、該基材上の最外層となるものであり、かつ圧縮応力を有しており、該圧縮応力は、上記被膜の厚み方向に強度分布を有するように変化しており、該強度分布は、上記被膜の表面の圧縮応力が上記被膜の表面から、上記被膜の表面と上記被膜の底面との間に位置する第1の中間点まで連続的に減少し、該第1の中間点において極小点を有するとともに、該第1の中間点から、該第1の中間点において極大点を有し、さらに該第2の中間点まで連続的に増加し、該第2の中間点において極大点を有し、さらに該第2の中間点と上記被膜の底面との間に上記同様の極小点および極大点をそれぞれこの順で交互に繰り返して存在するものとなっており、各実施例における極小点はすべて実質的に同一の数値となる圧縮応力を有し、かつ各実施例における極大点はすべて実質的に同一の数値となる圧縮応力を有し、各極小点と各極大点とは実質的に等間隔で存在している。

$[0\ 1\ 1\ 7\]$

なお、比較のため、合金製ターゲットにより金属イオンの蒸発を開始してから60分間 基板バイアス電圧を-75 Vで維持したことを除き、上記と同様にして表面被覆切削工具を作製した(比較例2)。

[0118]

この比較例2の表面被覆切削工具は、被膜の圧縮応力の強度分布がなく、被膜の底面から被膜の表面にかけてその圧縮応力が一定であった。

$[0\ 1\ 1\ 9\]$

<表面被覆切削工具の耐摩耗性の評価>

上記で作製した実施例1~10および比較例1~2の表面被覆切削工具のそれぞれについて、上記の表1に示す条件による湿式(水溶性エマルジョン)の連続切削試験および断続切削試験を行なった。そして、刀先の逃げ面摩耗幅が0.2mmを超える時間を切削時間として測定した。

[0120]

表面被覆切削工具の耐摩耗性の評価結果として上記で測定した切削時間を下記表6および表7に示す。切削時間が長いもの程耐摩耗性が優れていることを示している。また、連続切削試験においては、被削材の仕上げ面の光沢の有無についても観察し、その観察結果を同じく表6および表7に示す。この場合、「光沢あり」とは被削材の仕上げ面が光沢を有することを示し、「白濁」とは被削材の仕上げ面が光沢を有さず白濁したことを示す。

[0121]

表 6 および表 7 から明らかなように、連続切削試験においても断続切削試験においても実施例 $1 \sim 1$ 0 の本発明に係る表面被覆切削工具は、比較例 $1 \sim 2$ の表面被覆切削工具に比し、さらに耐摩耗性が向上するとともに仕上げ面に光沢を得ることができることから膜チッピングに対する耐性にも優れ、かつ表面被覆切削工具の寿命がさらに向上していることを確認した。

[0122]

<表面被覆切削工具の靭性の評価>

上記で作製した実施例 1~10 および比較例 1~2の表面被覆切削工具のそれぞれについて、以下に示す条件で靭性の評価試験を行なった。

[0123]

すなわち、切削条件は、上記の表 1 に示したようにS 5 0 C の素材に 5 0 の貫通穴を設けたブロック(長さ 3 0 0 mm×幅 1 5 0 mm)を被削材として用い、切削速度 1 8 0 m/m i n、切り込み 2 . 0 mm、切削長 3 0 0 mm毎に送り量を 0 . 1 0 mm/刃から 0 . 0 5 mm/刃ずつ上げる条件で、乾式フライス切削を行なった。

[0124]

表面被覆切削工具の靭性の評価結果として上記で測定した最大送りを下記表 6 および表 7 に示す。最大送り量が大きくなる程靭性が優れていることを示している。

[0125]

表 6 および表 7 から明らかなように、実施例 $1 \sim 1$ 0 の本発明に係る表面被覆切削工具は、比較例 $1 \sim 2$ の表面被覆切削工具に比し、さらに靭性が向上していることを確認した

[0126]

【表 6】

	耐摩耗性の評価	評価	勒性
o	連続切削試験	斯統切削試験	の評価
実施例1	51分(光沢あり)	39 分	0.7mm/刃
実施例2	57分(光沢あり)	49 分	0.75mm/刃
実施例3	65分(光沢あり)	56 分	0.8mm/刃
実施例4	63分(光沢あり)	59 分	0.8mm/刃
実施例5	53分(光沢あり)	43 分	0.8mm/刃
実施例6	47 分(光沢あり)	47 分	0.8mm/刃
比較例1	3分(白濁)	10秒	0.1mm/刃

[0127]

	耐摩耗性の評価	評価	勒性
No.	連続切削試験	断続切削試験	の評価
実施例7	79分(光沢あり)	47分	0.65mm/刃
実施例8	74分(光沢あり)	63分	0.8mm/刃
実施例9	65分(光沢あり)	67 %	0.85mm/刃
実施例10	62 分(光沢あり)	59 分	0.75mm/羽
比較例2	8分(白濁)	12秒	0.1mm/刃

[0128]

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

【図面の簡単な説明】

[0129]

- 【図1】本発明の表面被覆切削工具の概略断面図である。
- 【図2】本発明の表面被覆切削工具の被膜の部分を拡大した概略断面図である。
- 【図3】被膜の圧縮応力の強度分布の一態様を示すグラフである。
- 【図4】被膜表面の圧縮応力が一定の距離維持される場合の、被膜の圧縮応力の強度 分布の一態様を示すグラフである。
- 【図5】中間層を形成した本発明の表面被覆切削工具の概略断面図である。

【符号の説明】

[0130]

1 表面被覆切削工具、2 基材、3 被膜、4 被膜の表面、5 第1の中間点、6 被膜の底面、7 矢印、8 中間層、9 第2の中間点、10 第3の中間点、11 第4の中間点。

0.5

1.0

被膜の表面からの距離[µm]

0

【書類名】要約書

【要約】

【課題】 本発明の目的は、切削工具の靭性と耐摩耗性とを高度に両立させるとともに膜チッピングを抑制した表面被覆切削工具を提供することにある。

【解決手段】 本発明の表面被覆切削工具は、基材と、該基材上に形成された被膜とを備え、該被膜は、該基材上の最外層となり、かつ圧縮応力を有しており、該圧縮応力は、上記被膜の厚み方向に強度分布を有するように変化しており、該強度分布は、上記被膜の表面の圧縮応力が上記被膜の表面から、上記被膜の表面と上記被膜の底面との間に位置する第1の中間点まで連続的に減少し、該第1の中間点において極小点を有するとともに、該第1の中間点から、該第1の中間点と上記被膜の底面との間に位置する第2の中間点まで連続的に増加し、該第2の中間点において極大点を有し、さらに該第2の中間点と上記被膜の底面との間に上記同様の極小点を1以上有する。

【選択図】 図1

出願人履歷

5 0 3 2 1 2 6 5 2 20030611 新規登録

兵庫県伊丹市昆陽北一丁目1番1号 住友電工ハードメタル株式会社 000002130 19900829 新規登録

大阪府大阪市中央区北浜四丁目5番33号 住友電気工業株式会社