Un corrigé de l'interrogation écrite n° 2 (J-Y D)

Exercice 1.

On note $\mathfrak{M}(2,\mathbb{R})$ le \mathbb{R} -espace vectoriel normé des matrices carrées de taille 2 et à coefficients réels. On pourra utiliser la norme du maximum $\|\cdot\|_{\infty}$ telle que $\|M\|_{\infty} = \max\{|M_{i,j}|\}$ pour toute matrice $M = (M_{i,j})_{1 \le i,j \le i} \in \mathfrak{M}(2,\mathbb{R})$.

On note det l'application déterminant définie sur $\mathfrak{M}(2,\mathbb{R})$ et \mathbf{I}_2 est la matrice identité de taille 2.

On considère les parties de $\mathfrak{M}(2,\mathbb{R})$ suivantes :

$$A = \{M \in \mathfrak{M}(2,\mathbb{R}) \mid \det(M) > 0 \text{ et } | \det M| \le 2\}, \qquad B = O_2(\mathbb{R}) = \{M \in \mathfrak{M}(2,\mathbb{R}) \mid {}^t MM = \mathbf{I}_2\}.$$

1. L'ensemble A est-il ouvert? fermé? borné?

On considère les suites $(U_n)_{n\geq 0}$, $(V_n)_{n\geq 0}$ et $(W_n)_{n\geq 0}$ d'éléments de $\mathfrak{M}(2,\mathbb{R})$ définies par :

$$U_n = \begin{pmatrix} 1 & 0 \\ 0 & 2 + \frac{1}{n+1} \end{pmatrix}, \ V_n = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{n+1} \end{pmatrix} \ \text{et} \ \ W_n = \begin{pmatrix} n+1 & 0 \\ 0 & \frac{1}{n+1} \end{pmatrix} \ \text{pour} \ \ n \geq 0.$$

On a : $U_n \notin A$ pour $n \geq 0$ et $U_n \xrightarrow[n \to +\infty]{} U$ avec $U := \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \in A$.

Donc le complémentaire de A dans $\mathfrak{M}(2,\mathbb{R})$ n'est pas fermé, puis A n'est pas un ouvert de $\mathfrak{M}(2,\mathbb{R})$

On a : $V_n \in A$ pour $n \geq 0$ et $V_n \xrightarrow[n \to +\infty]{} V$ avec $V := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \notin A$.

Donc A n'est pas un fermé de $\mathfrak{M}(2,\mathbb{R})$.

On a : $W_n \in A$ et $\|W_n\|_{\infty} = n+1$ pour $n \ge 0$ avec $n+1 \xrightarrow[n \to +\infty]{} +\infty$.

Donc l'ensemble A n'est pas borné.

2. Mêmes questions pour l'ensemble *B*.

On considère la suite $(U'_n)_{n\geq 0}$ d'éléments de $\mathfrak{M}(2,\mathbb{R})$ définie par :

$$U_n' = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \frac{1}{n+1} \end{pmatrix} \text{ pour } n \ge 0.$$

On a : $U_n' \notin B$ pour $n \ge 0$ et $U_n' \underset{n \to +\infty}{\longrightarrow} \mathbf{I}_2$ avec $\mathbf{I}_2 \in B$.

Donc le complémentaire de B dans $\mathfrak{M}(2,\mathbb{R})$ n'est pas fermé, puis B n'est pas un ouvert de $\mathfrak{M}(2,\mathbb{R})$

L'application $\alpha \colon \mathfrak{M}(2,\mathbb{R}) \to \mathfrak{M}(2,\mathbb{R})$ est continue car les coefficients de tMM sont des applications poly- $M \mapsto {}^tMM$

nomiales des coefficients de M . Or, on a : $B=\alpha^{-1}(\{\mathbf{I}_2\})$ où $\{\mathbf{I}_2\}$ est un fermé de $\mathfrak{M}(2,\mathbb{R})$.

Donc B est un fermé de $\mathfrak{M}(2,\mathbb{R})$

L'égalité « ${}^{t}MM = \mathbf{I}_{2}$ » signifie que les vecteurs colonne de M forment une base orthonormée de \mathbb{R}^{2} .

En particulier, lorsque $M \in B$, les coefficients de M sont dans [-1,1], et donc $||M||_{\infty} \le 1$.

Par conséquent l'ensemble B est borné

Exercice 2.

Soit $n \in \mathbb{N}$. On note $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n. Pour tout entier $m \in \mathbb{N}^*$, on note $f_m : E \to \mathbb{R}$ l'application définie par

$$f_m(P) = \sum_{k=1}^m P(k)$$

On fixe $m \in \mathbb{N}^*$.

1. Montrer que l'application f_m est continue.

L'application f_m est linéaire entre deux espaces vectoriels de dimension finie.

L'application
$$f_m$$
 est linéaire entre deux espaces vectoriels de dimension finie.
[En effet : $f_m(\alpha P + \beta Q) = \sum_{k=1}^m (\alpha P(k) + \beta Q(k)) = \alpha \sum_{k=1}^m P(k) + \beta \sum_{k=1}^m Q(k) = \alpha f_m(P) + \beta f_m(Q)$.]
Donc : f_m est continue.

2. Montrer que l'application f_m est différentiable, et déterminer sa différentielle en tout point.

L'application f_m est linéaire entre deux espaces vectoriels de dimension finie.

Donc :
$$f_m$$
 est différentiable $\int Df_m(P) \cdot Q = f_m(Q)$ pour tous $P,Q \in \mathbb{R}_n[X]$. [En effet : $f_m(P+Q) = f_m(P) + f_m(Q) = f_m(P) + f_m(Q) + o(\|Q\|)$ où f_m est linéaire (continue).]

3. Soit N la norme définie sur E par

$$N(P) = \sup_{x \in [1, m]} |P(x)|$$

Déterminer la norme subordonnée de f_m relative à N.

Soit $P \in \mathbb{R}_n[X]$. On a : $f_m(P) = P(1) + \cdots + P(m)$, donc $\left| f_m(P) \right| \leq |P(1)| + \cdots + |P(m)| \leq m \, N(P)$. Cela montre que $||f_m|| \le m$.

D'autre part, on a : $\frac{|f_m(1)|}{N(1)} = \frac{m}{1} = m$, en particulier $||f_m|| \ge m$.

En conclusion : $||f_m|| = m$

Exercice 3.

1. Soit F l'application de \mathbb{R}^2 dans \mathbb{R} telle que F(0,0) = 0 et pour tout $(x,z) \in \mathbb{R}^2 \setminus \{(0,0)\}$,

$$F(x,z) = \frac{x^2z}{x^2 + z^2}.$$

Montrer que F est continue en tout point de \mathbb{R}^2 .

Tout d'abord, $\{(0,0)\}$ est un fermé de \mathbb{R}^2 , donc $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ est un ouvert de \mathbb{R}^2 .

Par ailleurs, la restriction de F à Ω est continue car rationnelle.

Il en résulte que l'application F est continue en tout point $(x,z) \in \mathbb{R}^2 \setminus \{(0,0)\}$.

Soit $(x,z) \in \mathbb{R}^2$. On a : $|F(x,z)| = \frac{x^2}{x^2 + z^2} |z|$ quand $(x,z) \neq (0,0)$ et F(0,0) = 0, donc $0 \leq |F(x,z) - F(0,0)| \leq |z|$. D'où : $F(x,z) \xrightarrow[(x,z) \to (0,0)]{} F(0,0)$ par le théorème des gendarmes, ce qui montre que F est continue en (0,0).

Par conséquent : | l'application F est continue

2. On considère à présent l'application f de \mathbb{R}^2 dans \mathbb{R} telle que f(0,0)=0 et pour tout $(x,y)\in\mathbb{R}^2\setminus\{(0,0)\}$,

$$f(x, y) = \frac{x^2 y^2}{x^2 + y^4}.$$

(a) Étudier la continuité de l'application f.

On remarque que : $f(x,y) = \frac{x^2(y^2)}{x^2 + (y^2)^2} = F(x,y^2)$ pour tout $(x,y) \in \mathbb{R}^2$.

D'après (1) et grâce à la continuité $(x,y) \in \mathbb{R}^2 \mapsto (x,y^2) \in \mathbb{R}^2$: l'application f est continue

(b) Montrer que f admet des dérivées partielles en tout point de \mathbb{R}^2 et les calculer.

La restriction f_{Ω} de f à l'ouvert $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ de \mathbb{R}^2 est différentiable car rationnelle. Il en résulte que pour tout $(x, y) \in \Omega$, l'application f est différentiable en (x, y) et $Df(x, y) = Df_{\Omega}(x, y)$. En particulier les dérivées partielles de f en $(x,y) \in \Omega$ s'obtiennent en calculant celles de f_{Ω} :

$$\frac{\partial f}{\partial x}(x,y) = \frac{2xy^2(x^2+y^4)-2x^3y^2}{(x^2+y^4)^2} \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = \frac{2x^2y(x^2+y^4)-4x^2y^5}{(x^2+y^4)^2}$$
puis
$$\frac{\partial f}{\partial x}(x,y) = \frac{2xy^6}{(x^2+y^4)^2} \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = \frac{2x^4y-2x^2y^5}{(x^2+y^4)^2} \quad \text{quand } (x,y) \neq (0,0)$$

Il reste à étudier ce qui se passe en (0,0)

On a f(x,0) = 0 pour $x \in \mathbb{R}$ (isoler x = 0) donc f a une dérivée partielle suivant x en (0,0) et $\left| \frac{\partial f}{\partial x}(0,0) = 0 \right|$

On a f(0,y)=0 pour $y\in\mathbb{R}$ (isoler y=0) donc f a une dérivée partielle suivant y en (0,0) et $\left[\frac{\partial f}{\partial v}(0,0)=0\right]$

(c) Montrer que l'application f est différentiable en tout point de \mathbb{R}^2 . Est-elle de classe C^1 ?

On a remarqué dans la démonstration du (b) que : |f| est différentiable en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$ Au vu des dérivées partielles de f en (0,0), il reste à prouver que Df(0,0) = 0.

Pour tout $(h, k) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, on a :

tout
$$(h,k) \in \mathbb{R}^2 \setminus \{(0,0)\}$$
, on a: $|f(h,k)| = \frac{h^2 + 0}{h^2 + k^4} |k| |k| \le \sqrt{0 + k^2}^2 |k| \le ||(h,k)||_2 |k|$ donc $0 \le \left| \frac{f((0,0) + (h,k)) - f(0,0) - 0}{||(h,k)||_2} \right| \le |k|$.

Par le théorème des gendarmes, on en déduit que :

$$\frac{f((0,0)+(h,k))-f(0,0)-0}{\|(h,k)\|_2} \xrightarrow[(h,k)\to(0,0)]{} \xrightarrow{\text{et } (h,k)\neq(0,0)} 0.$$

Donc f est différentiable en (0,0) et Df(0,0) = 0

D'après (b), on a : $\frac{\partial f}{\partial x}(x,y) = \frac{2x(y^2)^3}{(x^2+(y^2)^2)^2} \quad \text{quand } (x,y) \neq (0,0) \text{ et } \frac{\partial f}{\partial x}(0,0) = 0.$

On pose : $v_n = (\frac{1}{n+1}, \frac{1}{\sqrt{n+1}})$ pour $n \in \mathbb{N} \setminus \{0\}$. On a : $v_n \underset{n \to +\infty}{\longrightarrow} (0, 0)$ mais $\frac{\partial f}{\partial x}(v_n) = \frac{1}{2} \underset{n \to +\infty}{\longrightarrow} \frac{\partial f}{\partial x}(0, 0)$.

Par conséquent $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0), et a fortiori : l'application f n'est pas de classe C^1

(d) Soit $g: \mathbb{R} \to \mathbb{R}$ donnée par $g(t) = \ln(1 + e^t)$. En utilisant la formule sur la différentielle d'une composée, calculer la différentielle de $g \circ f$ au point (0,0).

L'application g est dérivable, donc g est différentiable avec $Dg(t) \cdot u = g'(t)u$ pour tous $t, u \in \mathbb{R}$.

Par conséquent : $g \circ f$ est différentiable et $D(g \circ f)(0,0) = Dg(f(0,0)) \circ Df(0,0)$.

Or Df(0,0) = 0 d'après (c). D'où : $D(g \circ f)(0,0) = 0$

Exercice 4.

Soit $n \in \mathbb{N}^*$. Le \mathbb{R} -espace vectoriel $E = \mathfrak{M}(n, \mathbb{R})$ des matrices carrées de taille n et à coefficients réels est muni de la norme du maximum, i.e. $\|M\|_{\infty} = \max\{|M_{i,j}|\}$ pour toute matrice $M = (M_{i,j})_{1 \le i,j \le n}$.

On note $\operatorname{tr}_n: E \to \mathbb{R}$ l'application *trace*. On rappelle que tr_n est \mathbb{R} -linéaire et que $\operatorname{tr}_n(AB) = \operatorname{tr}_n(BA)$ pour tout $(A,B) \in E^2$.

1. On munit E de la norme $\|\cdot\|_{\infty}$ et \mathbb{R} de la norme $x\mapsto |x|$. Calculer la norme subordonnée de l'application tr_n .

Soit
$$M=(M_{i,j})_{1\leq i,j\leq n}\in \mathfrak{M}(n,\mathbb{R}).$$
 On a : $\mathrm{tr}_n(M)=M_{1,1}+M_{2,2}+\cdots+M_{n,n}.$

Donc:
$$|\operatorname{tr}_n(M)| \le |M_{1,1}| + |M_{2,2}| + \dots + |M_{n,n}| \le n \|M\|_{\infty}$$
.

Cela montre que $\|\operatorname{tr}_n\| \leq n$.

D'autre part, on a :
$$\frac{|\operatorname{tr}_n(\mathbf{I}_n)|}{\|\mathbf{I}_n\|_{\infty}} = \frac{n}{1} = n$$
, en particulier $\|\operatorname{tr}_n\| \ge n$.

En conclusion :
$$\|t\mathbf{r}_n\| = n$$

2. Prouver que, pour tout $(A, B) \in E^2$, $||AB||_{\infty} \le n||A||_{\infty}||B||_{\infty}$ et $||\operatorname{tr}_n(AB)| \le n^2 ||A||_{\infty} ||B||_{\infty}$.

Soient
$$A=(A_{i,j})_{1\leq i,j\leq n}\in \mathfrak{M}(n,\mathbb{R})$$
 et $B=(B_{i,j})_{1\leq i,j\leq n}\in \mathfrak{M}(n,\mathbb{R}).$

On introduit
$$C = (C_{i,j})_{1 \le i,j \le n} \in \mathfrak{M}(n,\mathbb{R})$$
 tel que $C = AB$.

Pour tout
$$(i, j) \in \{1, ..., n\}^2$$
, on a :

$$\left| C_{i,j} \right| = \left| A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + \dots + A_{i,n} B_{n,j} \right| \le \left| A_{i,1} \right| \left| B_{1,j} \right| + \left| A_{i,2} \right| \left| B_{2,j} \right| + \dots + \left| A_{i,n} \right| \left| B_{n,j} \right| \le n \|A\|_{\infty} \|B\|_{\infty}.$$

On en déduit que :
$$\|AB\|_{\infty} \le n\|A\|_{\infty}\|B\|_{\infty}$$

D'après (1), on a aussi :
$$|\operatorname{tr}_n(AB)| \le n \|AB\|_{\infty}$$
.

En combinant ces deux inégalités, on obtient ensuite :
$$|tr_n(AB)| \le n^2 ||A||_{\infty} ||B||_{\infty}$$
.

- 3. On note G l'application de E dans \mathbb{R} telle que $G(M) = \operatorname{tr}_n(M^3)$ pour tout $M \in E$.
 - (a) Montrer que G est de classe C^1 .

L'application $G: M \in \mathfrak{M}(n,\mathbb{R}) \mapsto \operatorname{tr}_n(M^3) \in \mathbb{R}$ est une application polynomiale des coefficients de M.

Par conséquent : l'application
$$G$$
 est de classe \mathbb{C}^1

(b) Montrer que, si $(M, H) \in E^2$, $G(M + H) = G(M) + 3 \operatorname{tr}_n(M^2 H) + 3 \operatorname{tr}_n(M H^2) + \operatorname{tr}_n(H^3)$.

Soient
$$M, H \in \mathfrak{M}(n, \mathbb{R})$$
. On a :

$$\begin{split} G(M+H) &= \operatorname{tr}_n \left((M+H)(M+H)(M+H) \right) = \operatorname{tr}_n \left((M+H)(M^2+MH+HM+H^2) \right) \\ &= \operatorname{tr}_n \left(M^3 + M^2H + MHM + HM^2 + MH^2 + HMH + H^2M + H^3 \right) \\ &= G(M) + \operatorname{tr}_n (M^2H) + \operatorname{tr}_n ((MH)M) + \operatorname{tr}_n (HM^2) + \operatorname{tr}_n (H(MH)) + \operatorname{tr}_n (H^2M) + \operatorname{tr}_n (H^3). \end{split}$$

On sait, d'après un rappel au début de cet exercice, que : $\operatorname{tr}_n(AB) = \operatorname{tr}_n(BA)$ pour tous $A, B \in \mathfrak{M}(n, \mathbb{R})$.

Il en résulte que :
$$G(M+H) = G(M) + 3\operatorname{tr}_n(M^2H) + 3\operatorname{tr}_n(MH^2) + \operatorname{tr}_n(H^3)$$

(c) Calculer la différentielle D_MG de G en tout $M \in E$.

Soient
$$M, H \in \mathfrak{M}(n, \mathbb{R})$$
.

D'après (b), on a :
$$G(M+H) - G(M) - 3\operatorname{tr}_n(M^2H) = 3\operatorname{tr}_n(MH^2) + \operatorname{tr}_n(H^3)$$
.

Compte tenu des questions (1) et (2), on a aussi, en itérant :

$$|\operatorname{tr}_n(A_1...A_k)| \le n \|A_1...A_k\|_{\infty} \le n n^{k-1} \|A_1\|_{\infty} \cdots \|A_k\|_{\infty} \quad \text{quand } k \in \mathbb{N} \text{ et } A_1,...,A_k \in \mathfrak{M}(n,\mathbb{R}).$$

$$\begin{array}{ll} \text{D'où}: & \left|G(M+H)-G(M)-3\operatorname{tr}_n(M^2H)\right| \leq 3n^3\|M\|_{\infty}\|H\|_{\infty}^2 + n^3\|H\|_{\infty}^3 \\ \text{puis} & 0 \leq \frac{\left|G(M+H)-G(M)-3\operatorname{tr}_n(M^2H)\right|}{\|H\|_{\infty}} \leq 3n^3\|M\|_{\infty}\|H\|_{\infty} + n^3\|H\|_{\infty}^2 & \text{lorsque } H \neq 0 \end{array}$$

On fait maintenant varier H et utilise le théorème des gendarmes :

$$\lim_{\begin{subarray}{c} H\to 0\\ H\neq 0\end{subarray}} \frac{G(M+H)-G(M)-L(H)}{\|H\|_{\infty}}=0 \quad \text{ où } L \text{ est l'application linéaire } L \colon \mathfrak{M}(3,\mathbb{R}) \to \mathbb{R} \quad .$$

$$H \mapsto 3\operatorname{tr}_n(M^2H)$$

Finalement :
$$\underbrace{DG(M) \cdot H = 3 \operatorname{tr}_n(M^2 H) \text{ pour tous } M, H \in \mathfrak{M}(n, \mathbb{R})}_{D_M G}.$$