het kleinste tegenvoorbeeld

veronderstel dat $S \subseteq N^*$, S is een verzameling waarvan we willen bewijzen dat $S=N^*$. Dan kunnen we uit het ongerijmde tewerk gaan; als $S \ne N$ dan bestaat er wegens het axioma van de goede ordening een kleinste element in $N \setminus S$. Als we uit dit kleinste tegenvoorbeeld een contradictie krijgen bewijzen we dat $S \ne N$ niet mogelijk is en dat $S \ne N$ dus bewezen is.

het inductieprincipe

Veronderstel dat S een deelverzameling is van N* waarvoor

- a) $1 \in S$
- b) voor elke $k \in \mathbb{N}$ geldt: $k \in S$ impliceert dat $k+1 \in S$. dan is $S = \mathbb{N}$

Als we gebruik maken van het principe van het kleinste tegenvoorbeeld en veronderstellen dat $S \neq N$ en m het kleinste tegenvoorbeeld: $m \in N \setminus S$.

We nemen m het kleinste positieve getal niet in S:

m > 1 want $1 \in S \mid m >= 2$ $m - 1 \in S \rightarrow m \in S \rightarrow contradictie$ dus $S = N^*$