

Lecture 5. Convolutional Neural Network

Review

- 1. Limitation of Linear Classifier
 - XOR Gate
- 2. Perceptron
 - Perceptron = Linear Classifier
 - Analogy to Neurons
 - Building Block of the Neural Network

- 3. MLP
 - MLP and the Neural Network
 - The Universal Approximation Theorem
 - Where Backpropagation becomes Important
- 4. Limitations of MLP

Today's Contents

- 1. Back to Image Classification
- 2. Convolutional Neural Network

Back to Image Classification: Pixels

Image = Matrix of Pixels

Back to Image Classification: Pixels

Back to Image Classification: Pixels

Image from https://negliadesign.com/

CIFAR-10

Image from https://www.kaggle.com/

MLP

Must Stretch Out Tensor into Vector

Image from https://towardsdatascience.com

Worked well on MNIST

What about on CIFAR-10?

However, MLPs are not appropriate for Image Classification...

- 1. Too many parameters required
- 2. Spatial structure is lost

We want a model that,

- 1. Uses fewer parameters than MLPs
- 2. Preserves the spatial structure

Recall The Universal Approximation Theorem...

"1개의 Hidden Layer를 가진 MLP로 어떤 함수도 근사할 수 있다."

However,

"A feedforward network with a single layer is sufficient to represent any function, But the layer may be infeasibly large and may fail to learn and generalize correctly." CNN: Idea

We want a model that,

- 1. Uses fewer parameters than MLPs
- 2. Preserves the spatial structure

Convolutional Neural Network to the rescue!!!

CNN: Idea

Image from https://community.arm.com/

What happened?!?!?!

CNN: Idea

What happens during Tensor → Tensor Mapping?

What are Convolution, Pooling, Fully-Connected Layers?

How does this Model extract features from spatial structure?

Does it use less parameters than the MLP?

How do we map Tensor to Tensor, while preserving the spatial structure?

Apply Filter to small regions in the Tensor (Image)

While sliding over the tensor,

calculate the

sum of elementwise multiplication

This is called, **Convolution**

Image from taewan.kim/ppst/cnn

1 Filter = 1 Activation Map

Then, how do filters extract features from the image, while preserving the spatial structure?

For simplicity, assume White = 0, Black = 1, and activation = RELU

This filter focuses on the major diagonal... Other filters will focus on other features!

Filters extract features from the spatial structure of the tensor

They are Parameters!!!

** So, they must be Updated via Backpropagation.

For more detail, read https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

How much does a filter move per slide? Stride

$$O = \frac{I + 2Pa - F}{S} + 1$$

O = output size

N = input size

F = filter size

S = stride

Pa = padding size

CNN: Pooling

We want to reduce the dimension of the feature,

via **Pooling**

CNN: Pooling

Extract the representative value over a region...! No parameter involved!!!

CNN: Pooling

$$O = \frac{I}{Po}$$

O = output size

I = input size

Po = pool size

** Generally, Pool Size = Pooling Stride

CNN: Fully-Connected Layer

Extract features with **CONV Layers**

Then, reduce dimension with **POOL Layers**

Finally, flatten data and make classification via FC(Fully-Connected) Layer

Extract features with **CONV Layers**

Then, reduce dimension with POOL Layers

Finally, flatten data and make classification via FC(Fully-Connected) Layer

Does it use less parameters than the MLP?

Let's follow the CNN Architecture and figure it out!!!

CONV1

Convolution layer 1 32 32 32 32 32 32 32 32 32

POOL1

CONV2

POOL2

CONV3

POOL3

FC

Softmax

Total () Parameters were Used!

However, if we used MLP instead, assuming CONV + POOL as one Hidden Layer,

$$32 * 32 * 3 \rightarrow 16 * 16 * 32 \rightarrow 8 * 8 * 16 \rightarrow 4 * 4 * 32 \rightarrow 10$$

Total () Parameters were Used!

CNN uses much less Parameters than the MLP!!!

CNN: Performance

CIFAR-10

who is the best in CIFAR-10?

CIFAR-10 49 results collected
Units: accuracy %
Classify 32×32 colour images.

Result	Method		Venue	Details
96.53%	Fractional Max-Pooling 占		arXiv 2015	Details
95.59%	Striving for Simplicity: The All Convolutional Net	i.	ICLR 2015	Details
94.16%	All you need is a good init 🖰		ICLR 2016	Details
94%	Lessons learned from manually classifying CIFAR-10		unpublished 2011	Details
93.95%	Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, & and Tree	-	AISTATS 2016	Details
93.72%	Spatially-sparse convolutional neural networks 🛃		arXiv 2014	
93.63%	Scalable Bayesian Optimization Using Deep Neural Networks		ICML 2015	
93.57%	Deep Residual Learning for Image Recognition 🕹	·	arXiv 2015	Details
93.45%	Fast and Accurate Deep Network Learning by Exponential Linear Units		arXiv 2015	Details
93.34%	Universum Prescription: Regularization using Unlabeled Data		arXiv 2015	
93.25%	Batch-normalized Maxout Network in Network 🛃		arXiv 2015	Details
93.13%	Competitive Multi-scale Convolution 🗏		arXiv 2015	
92.91%	Recurrent Convolutional Neural Network for Object Recognition		CVPR 2015	Details
92.49%	Learning Activation Functions to Improve Deep >		ICLR 2015	Details

Classification Rankings:

https://rodrigob.github.io/are we there yet/build/classification_dat asets_results.html

CNN: Performance

Review

We want a model that,

- 1. Uses fewer parameters than MLPs
- 2. Preserves the spatial information

Convolutional Neural Network to the rescue!!!

Preview on Next Lecture(s)

Limitations of MLP

- 1. Needs a lot of Labeled Data
- 2. Vanishing Gradient
- 3. Overfitting
- 4. Gets stuck in the Local Minima / Saddle Point

이재현, 김동주 DiriDiri Lab. Lecture Vision - CS231n 52

Preview on Next Lecture(s)

Image from researchgate.net

Image from medium.com