Are Length for parametric (fl.4); g(fl)
(f(h), 9(h))
approximate length = $\frac{2}{5}\sqrt{(f(t_i)-f(t_{i-1}))^2}+(g(t_i)-g(t_{i+1}))^2}$
By the Mean Value Theorem f(t;)-f(t;-1) = f'(t;) ti-tiy
i approximate length = E(f'(t, x)2+g'(t, x)) At
$= \lim_{n \to \infty} 1$ $= \int_{a}^{b} (f'(t)^{2} + g'(t)^{2}) dt$
dostant dost
(dx) 2 + (dy) 2 = (A(A)2 + g(A)2) df
(ds) = (dx) + (dy) a arc length = Sads

are length of a cycloid. $x = r \cdot lo - s \cdot no$) $y = r \cdot (l - coso)$ ds = r - cosor $dy = s \cdot nor$ (dy) + (do) = (r(1-coso)) + rds, n 20 $= r^{2} + -2 r \cos \theta + r \cos^{2} \theta + r^{2} \sin^{2} \theta$ $= 2 r^{2} (1 - \cos \theta)$ $= 2 r^{2} (2 \sin (\theta/2))$ $= (2 r \sin (\theta/2))^{2}$ So (Qrsin(0)) 2) 12 = 50 2 r sin(0/2) 10 $= -2r\cos(0/2)(2)|_0$ = -2r(-1-1)(2) = 8r

Surface Area
$X=f(t)$ $a \leq t \leq b$ Y=g(t)
Surface Airea = Sa 271 x ds
= Sa 2ng(t) (f'(t)2fg(t)2) Vd.
BX γ=rcos 0 -π20 ≤ 0 ≤ π/2 X= r sinθ
Jos roso Jos -rsino
$SA = 2\pi \int_{\pi/2}^{\pi/2} r \omega s \theta \left(\left(-r s n o \right)^2 + \left(r \cos o \right)^2 \right) d\theta$ $= 2\pi \int_{\pi/2}^{\pi/2} r \cos \theta \left(r^2 s n^2 \theta + r^2 \cos^2 \theta \right)^{1/2} d\theta$ $= 2\pi \int_{\pi/2}^{\pi/2} r \cos \theta \left(r^2 \right)^2 d\theta$ $= 2\pi r^2 \int_{\pi/2}^{\pi/2} (\cos \theta d \theta) = 2\pi r^2 \sin \theta d\theta$ $= 2\pi r^2 \int_{\pi/2}^{\pi/2} (\cos \theta d \theta) = 2\pi r^2 \sin \theta d\theta$
or 2000 2 000 000 000 000 000 000 000 000

And the second s