Solution for Time Series Analysis (Hamilton, 1994)

Lucca Simeoni Pavan *

7 de outubro de 2016

^{*}Doutorando em Desenvolvimento Econômico, PPDGE/UFPR - warrenjax@gmail.com

Capítulo 3

Processos ARMA estacionários

3.1

$$E(Y_t) = 0 :: \mu = 0$$

$$Var(Y_t) = E(Y_t - \mu)^2 = E(Y_t)^2 = Var(\varepsilon_t + 2.4\varepsilon_{t-1} + 0.8\varepsilon_{t-2})$$
$$= (1 + 5.76 + 0.64)\sigma^2 = 7.4$$

Como a média e a variância não dependem do tempo, o processo é estacionário em covariância.

$$Cov(Y_t, Y_{t-1}) = E(Y_t - \mu)(Y_{t-1} - \mu) = E(\varepsilon_t + 2.4\varepsilon_{t-1} + 0.8\varepsilon_{t-2})(\varepsilon_{t-1} + 2.4\varepsilon_{t-2} + 0.8\varepsilon_{t-3})$$
$$= (2.4 + 1.92)\sigma^2 = 4.32$$

$$Cov(Y_t, Y_{t-2}) = E(Y_t - \mu)(Y_{t-2} - \mu) = E(\varepsilon_t + 2.4\varepsilon_{t-1} + 0.8\varepsilon_{t-2})(\varepsilon_{t-2} + 2.4\varepsilon_{t-3} + 0.8\varepsilon_{t-4})$$
$$= 0.8E(\varepsilon_{t-2}^2) = 0.8\sigma^2 = 0.8$$

3.2

$$Y_t = 1.1Y_{t-1} - 0.18Y_{t-2} + \varepsilon_t$$

$$(1 - 1.1L + 0.18L^2)Y_t = \varepsilon_t$$

$$Y_t = (1 - 1.1L + 0.18L^2)^{-1}\varepsilon_t$$

$$E(Y_t) = (1 - 1.1L + 0.18L^2)^{-1}E(\varepsilon_t) = 0 : \mu = 0$$

Encontrando a variância : γ_0

$$Y_t^2 = 1.1Y_tY_{t-1} - 0.18Y_tY_{t-2} + Y_t\varepsilon_t$$

$$E(Y_t^2) = 1.1E(Y_tY_{t-1}) - 0.18E(Y_tY_{t-2}) + E(Y_t\varepsilon_t)$$

$$\gamma_0 = 1.1\gamma_1 - 0.18\gamma_2 + \sigma^2$$

Encontrando a autocovariância γ_i :

$$\begin{split} Y_t Y_{t-j} &= 1.1 Y_{t-1} Y_{t-j} - 0.18 Y_{t-2} Y_{t-j} + Y_{t-j} \varepsilon_t \\ E(Y_t Y_{t-j}) &= 1.1 E(Y_{t-1} Y_{t-j}) - 0.18 E(Y_{t-j} Y_{t-2}) + E(Y_{t-j} \varepsilon_t) \\ \gamma_j &= 1.1 \gamma_{j-1} - 0.18 \gamma_{j-2} \end{split}$$

Dado que $\rho_j = \gamma_j/\gamma_0$ dividindo ambos os lados de γ_j por γ_0 temos:

$$\rho_i = 1.1\rho_{i-1} - 0.18\rho_{i-2}$$

Para j = 1, $\rho_1 = 1.1\rho_0 - 0.18\rho_1$, então:

$$\rho_1 = \frac{1.1}{(1+0.18)} = 0.9322$$

Para j = 2, $\rho_2 = 1.1\rho_1 - 0.18$, então:

$$\rho_2 = 1.1(0.9322) - 0.18$$
$$= 0.8454$$

Como $\gamma_j = \rho_j \gamma_0$, podemos escrever a variância γ_0 como:

$$\gamma_0 = 1.1\rho_1\gamma_0 - 0.18\rho_2\gamma_0 + \sigma^2$$

$$= 1.1(0.9322)\gamma_0 - 0.18(0.8454)\gamma_0 + \sigma^2$$

$$= 1.02542\gamma_0 - 0.152176\gamma_0 + \sigma^2$$

$$(1 - 1.02542 + 0.152176)\gamma_0 = \sigma^2$$

$$\gamma_0 = \frac{\sigma^2}{(1 - 1.02542 + 0.152176)} \approx 7.9\sigma^2$$

Podemos verificar pela fórmula geral:

$$\gamma_0 = \frac{(1 - \phi_2)\sigma^2}{(1 + \phi_2)[(1 - \phi_2^2)^2 - \phi_1^2]}$$

Dado que $\phi_1 = 1.1 \text{ e } \phi_2 = -0.18$

$$\gamma_0 = \frac{(1+0.18)\sigma^2}{(1-0.18)[(1+0.18)^2 - 1.1^2]}$$
$$= \frac{(1.18)\sigma^2}{(0.82)[0.182]} \approx 7.9$$

Como a média e a variância não dependem do tempo, o processo $\{Y_t\}$ é estacionário em covariância.

Para encontra as autocovariâncias usamos $\gamma_j = \rho_j \gamma_0$:

$$\gamma_1 = \rho_1 \gamma_0 = 0.9322 \times 7.9 \sigma^2 \approx 7.364$$

$$\gamma_2 = \rho_2 \gamma_0 = 0.8545 \times 7.9 \sigma^2 \approx 6.75$$

3.3

$$\begin{split} &\psi_0 + \psi_1 L + \psi_2 L^2 + \ldots - \phi_1 \psi_0 L - \phi_1 \psi_1 L^2 - \phi_1 \psi_2 L^3 - \ldots - \phi_2 \psi_0 L^2 - \phi_2 \psi_1 L^3 - \phi_2 \psi_2 L^4 - \ldots \\ &- \phi_p \psi_0 L^p - \phi_p \psi_1 L^{p+1} - \phi_p \psi_2 L^{p+2} - \ldots = 1 \end{split}$$

$$\psi_0 + [\psi_1 - \phi_1 \psi_0] L + [\psi_2 - \phi_1 \psi_1 - \phi_2 \psi_0] L^2 + [\psi_3 - \phi_1 \psi_2 - \phi_2 \psi_1 - \phi_3 \psi_0] L^3$$

$$+ [\psi_4 - \phi_1 \psi_3 - \phi_2 \psi_2 - \phi_3 \psi_1 - \phi_4 \psi_0] L^4 + \dots + [\psi_j - \phi_1 \psi_{j-1} - \phi_2 \psi_{j-2} - \dots - \phi_{p-1} \psi_1 - \phi_p \psi_0] L^p = 1$$

Para j = p, p + 1,

Com isso temos o seguinte sistema de equações:

$$\psi_{0} = 1$$

$$\psi_{1} - \phi_{1}\psi_{0} = 0$$

$$\psi_{2} - \phi_{1}\psi_{1} - \phi_{2}\psi_{0} = 0$$

$$\psi_{3} - \phi_{1}\psi_{2} - \phi_{2}\psi_{1} - \phi_{3}\psi_{0} = 0$$

$$\psi_{4} - \phi_{1}\psi_{3} - \phi_{2}\psi_{2} - \phi_{3}\psi_{1} - \phi_{4}\psi_{0} = 0$$

$$\vdots$$

$$\psi_{j} - \phi_{1}\psi_{j-1} - \phi_{2}\psi_{j-2} - \dots - \phi_{p-1}\psi_{1} - \phi_{p}\psi_{j-p} = 0$$

Resolvendo a partir de ψ_0 :

$$\psi_{1} - \phi_{1}\psi_{0} = 0 \Rightarrow \psi_{1} = \phi_{1}$$

$$\psi_{2} - \phi_{1}\psi_{1} - \phi_{2}\psi_{0} = 0 \Rightarrow \psi_{2} = \phi_{1}^{2} + \phi_{2}$$

$$\psi_{3} - \phi_{1}\psi_{2} - \phi_{2}\psi_{1} - \phi_{3}\psi_{0} = 0 \Rightarrow \psi_{3} = \phi_{1}\psi_{2} + \phi_{2}\psi_{1} + \phi_{3}\psi_{0}$$

$$\vdots$$

$$\psi_{j} - \phi_{1}\psi_{j-1} - \phi_{2}\psi_{j-2} - \dots - \phi_{p-1}\psi_{1} - \phi_{p}\psi_{0} = 0 \Rightarrow \psi_{j} = \phi_{1}\psi_{j-1} + \phi_{2}\psi_{j-2} + \dots + \phi_{p-1}\psi_{1} + \phi_{p}\psi_{j-p}$$

$$\psi_j - \phi_1 \psi_{j-1} - \phi_2 \psi_{j-2} - \dots - \phi_{p-1} \psi_1 - \phi_p \psi_0 = 0 \Rightarrow \psi_j = \phi_1 \psi_{j-1} + \phi_2 \psi_{j-2} + \dots + \phi_{p-1} \psi_1 + \phi_p \psi_1 + \dots + \phi_{p-1} \psi_1$$

Para j = p, p + 1,

Portanto os valores de ψ_i são a solução para a equação de diferenças de $n^{\text{\'esima}}$ ordem com valor inicial $\psi_0 = 1$ e $\psi - 1 = \psi_{-2} = \dots = \psi_{-p+1} = 0$. Então, dos resultados das equações em diferença:

$$\begin{bmatrix} \psi_j \\ \psi_{j-1} \\ \vdots \\ \psi_{-p+1} \end{bmatrix} = \mathbf{F}^j \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Isto é

$$\psi_j = f_{11}^{(j)}$$

3.4

$$\psi(L)c = \psi_0 c + \psi_1 L c + \psi_2 L^2 c + \psi_3 L^3 c + \dots = \frac{c}{1 - \phi_1 L - \phi_2 L^2}$$

$$\text{como } L^j c = c \ \forall \ j$$

$$\psi(L)c \equiv \psi(1)c = \psi_0 c + \psi_1 c + \psi_2 c + \psi_3 c + \dots = \frac{c}{1 - \phi_1 - \phi_2}$$

3.5

$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

Deixe λ_1 e λ_2 satisfazerem $1 - \phi_1 L - \phi_2 L^2 = (1 - \lambda_1 L)(1 - \lambda_2 L)$, note que λ_1 e λ_2 ambos estão dentro do círculo unitário em um processo AR(2) estacionário em covariância.

Considere primeiro o caso em que as duas raízes λ_1 e λ_2 sejam reais e distintas. Dado que $\psi_j = c_1\lambda_1 + c_2\lambda_2$, temos:

$$\sum_{j=0}^{\infty} |\psi_j| = \sum_{j=0}^{\infty} |c_1 \lambda_1^j + c_2 \lambda_2^j|$$

$$< \sum_{j=0}^{\infty} |c_1 \lambda_1^j| + |c_2 \lambda_2^j|$$

$$= \frac{|c_1|}{(1 - |\lambda_1|)} + \frac{|c_2|}{(1 - |\lambda_2|)}$$

$$< \infty$$

Considere o caso em que λ_1 e λ_2 sejam raízes complexas conjugadas distintas. Deixe $R - |\lambda_i|$ representar o modulo de λ_1 ou λ_2 . Então $0 \le R < 1$. Dado que no caso de raízes complexas conjugadas distintas,

$$c_1 \lambda_1^j + c_2 \lambda_2^j = 2\alpha R^j \cos(\theta j) + 2\beta R^j \sin(\theta j).$$

$$\sum_{j=0}^{\infty} |\psi_j| = \sum_{j=0}^{\infty} |c_1 \lambda_1^j + c_2 \lambda_2^j|$$

$$= \sum_{j=0}^{\infty} |2\alpha R^j \cos(\theta j) - 2\beta R^j \sin(\theta j)|$$

$$\leqslant |2\alpha| \sum_{j=0}^{\infty} R^j |\cos(\theta j)| + |2\beta| \sum_{j=0}^{\infty} R^j |\sin(\theta j)|$$

$$\leqslant |2\alpha| \sum_{j=0}^{\infty} |R^j| + |2\beta| \sum_{j=0}^{\infty} |R^j|$$

$$= 2 \frac{(|\alpha| + |\beta|)}{(1 - R)}$$

Por fim, para o caso de raízes reais repetidas $|\lambda| < 1$,

$$\sum_{j=0}^{\infty} |\psi_j| = \sum_{j=0}^{\infty} |k_1 \lambda^j + k_2 j \lambda^{j-1}| \le |k_1| \sum_{j=0}^{\infty} |\lambda^j| + |k_2| \sum_{j=0}^{\infty} |j \lambda^{j-1}|.$$

Mas

$$|k_1|\sum_{j=0}^{\infty}|\lambda|^j=\frac{|k_1|}{(1-|\lambda|)}<\infty$$

e

$$\sum_{j=0}^{\infty} |j\lambda^{j-1}| = 1 + 2|\lambda| + 3|\lambda|^2 + 4\lambda|^3 + \cdots$$

$$= 1 + (|\lambda| + |\lambda|) + (|\lambda|^2 + |\lambda|^2 + |\lambda|^2)$$

$$+ (|\lambda|^3 + |\lambda|^3 + |\lambda|^3 + |\lambda|^3) + \cdots$$

$$= (1 + |\lambda| + |\lambda|^2 + |\lambda|^3 + \cdots) + (|\lambda| + |\lambda|^2 + |\lambda|^3 + \cdots) + (|\lambda|^2 + |\lambda|^3 + \cdots) + \cdots$$

$$= \frac{1}{(1 - |\lambda|)} + \frac{|\lambda|}{(1 - |\lambda|)} + \frac{|\lambda|^2}{(1 - |\lambda|)} + \cdots$$

$$= \frac{1}{(1 - |\lambda|)}$$

$$< \infty$$

$$\boxed{3.6} AR(\infty)$$
:

$$(1 + \eta_1 L + \eta_2 L^2 + \cdots)(Y_t - \mu) = \varepsilon_t$$

MA(q):

$$(Y_t - \mu) = (1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q) \varepsilon_t$$

Dado que as raízes de $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ são todas reais e distintas e estão fora do círculo unitário e o processo MA(q) é invertível, temos:

$$(1 + \eta_1 L + \eta_2 L^2 + \cdots)(1 + \theta_1 L + \theta_2 L^2 + \cdots + \theta_a L^q) = 1$$

Que ao multiplicarmos, resulta em:

$$1 = 1 + \eta_1 L + \eta_2 L^2 + \cdots + \theta_1 L + \theta_1 \eta_1 L^2 + \theta_1 \eta_2 L^3 + \cdots + \theta_2 L^2 + \theta_2 \eta_1 L^3 + \theta_2 \eta_2 L^4 + \cdots \vdots + \theta_q L^q + \theta_q \eta_1 L^{q+1} + \theta_q \eta_2 L^{q+1} + \cdots$$

Para $j = q, q + 1, \cdots$ colocando os L^{i} 's em evidência:

$$1 = 1 + (\eta_1 + \theta_1)L + (\eta_2 + \theta_1\eta_1 + \theta_2)L^2 + (\eta_3 + \theta_1\eta_2 + \theta_2\eta_1 + \theta_3)L^3$$

$$\vdots$$

$$+ (\eta_i + \theta_1\eta_{i-1} + \dots + \theta_{a-1}\eta_1 + \theta_a)L^j$$

Para $j=q,q+1,\cdots$. Para a igualdade valer, os coeficientes dos L^{i} 's devem ser zero, então:

$$\eta_{1} + \theta_{1} = 0 \Rightarrow \eta_{1} = -\theta_{1}$$

$$\eta_{2} + \theta_{1}\eta_{1} + \theta_{2} = 0 \Rightarrow \eta_{2} = -\theta_{1}\eta_{1} - \theta_{2} = -\theta_{2} + \theta_{1}^{2}$$

$$\eta_{3} + \theta_{1}\eta_{2} + \theta_{2}\eta_{1} + \theta_{3} = 0 \Rightarrow \eta_{3} = -\theta_{1}\eta_{2} - \theta_{2}\eta_{1} - \theta_{3} = -\theta_{1}^{3} + 2\theta_{1}\theta_{2} - \theta_{3}$$

$$\vdots$$

$$\eta_{j} + \theta_{1}\eta_{j-1} + \dots + \theta_{q-1}\eta_{1} + \theta_{q} = 0 \Rightarrow \eta_{j} = -\theta_{1}\eta_{j-1} - \dots - \theta_{q-1}\eta_{1} - \theta_{q}$$

 $\boxed{3.7} AR(\infty)$:

$$(1 + \eta_1 L + \eta_2 L^2 + \cdots)(Y_t - \mu) = \varepsilon_t$$

MA(q):

$$Y_t - \mu = \left\{ \prod_{j=0}^n (1 - \lambda_j L) \right\} \left\{ \prod_{j=n+1}^q (1 - \lambda_j^{-1} L) \right\} \varepsilon_t$$

Então:

$$(1 + \eta_1 L + \eta_2 L^2 + \cdots) \left\{ \prod_{j=0}^n (1 - \lambda_j L) \right\} \left\{ \prod_{j=n+1}^q (1 - \lambda_j^{-1} L) \right\} = 1$$

Efetuando a multiplicação, temos:

$$1 = \left\{ \prod_{j=0}^{n} (1 - \lambda_{j}L) \right\} \left\{ \prod_{j=n+1}^{q} (1 - \lambda_{j}^{-1}L) \right\}$$

$$+ \eta_{1}L \left\{ \prod_{j=0}^{n} (1 - \lambda_{j}L) \right\} \left\{ \prod_{j=n+1}^{q} (1 - \lambda_{j}^{-1}L) \right\}$$

$$+ \eta_{2}L^{2} \left\{ \prod_{j=0}^{n} (1 - \lambda_{j}L) \right\} \left\{ \prod_{j=n+1}^{q} (1 - \lambda_{j}^{-1}L) \right\}$$

$$\vdots$$

$$1 = \left\{ 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n \right\} \left\{ 1 - \frac{1}{\prod_{j=n+1}^q \lambda_j} \left[\theta_{n+1} L + \theta_{n+2} L^2 + \dots + \theta_q L^q \right] \right\}$$

$$+ \eta_1 L \left\{ 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n \right\} \left\{ 1 - \frac{1}{\prod_{j=n+1}^q \lambda_j} \left[\theta_{n+1} L + \theta_{n+2} L^2 + \dots + \theta_q L^q \right] \right\}$$

$$+ \eta_2 L^2 \left\{ 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n \right\} \left\{ 1 - \frac{1}{\prod_{j=n+1}^q \lambda_j} \left[\theta_{n+1} L + \theta_{n+2} L^2 + \dots + \theta_q L^q \right] \right\}$$

:

$$\begin{split} 1 &= \left\{1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n - \frac{\left[1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n\right]}{\prod\limits_{j=n+1}^q \lambda_j} \left[\theta_{n+1} L + \theta_{n+2} L^2 + \dots + \theta_q L^q\right]\right\} \\ &+ \eta_1 L \left\{1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n - \frac{\left[\eta_1 L 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n\right]}{\prod\limits_{j=n+1}^q \lambda_j} \left[\theta_{n+1} L + \theta_{n+2} L^2 + \dots + \theta_q L^q\right]\right\} \\ &+ \eta_2 L^2 \left\{1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n - \frac{\left[\eta_2 L^2 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^n\right]}{\prod\limits_{j=n+1}^q \lambda_j} \left[\theta_{n+1} L + \theta_{n+2} L^2 + \dots + \theta_q L^q\right]\right\} \\ &\vdots \\ \vdots \end{split}$$

Como no exercício 6, devemos realizar as multiplicações e isolar os L^i 's para derivar o algoritmo dos coeficientes.

$$Y_t = (1 + 2.4L + 0.8L^2)\varepsilon_t$$

$$\Rightarrow (1 - \lambda_1 z)(1 - \lambda_2 z) = 1 + 2.4z + 0.8z^2$$

$$\lambda_1 = -0.4, \ \lambda_2 = -2$$

Então $1+2.4z+0.8z^2=(1+0.4z)(1_2z)$ como uma raiz, λ_2 está está fora do círculo unitário, o termo (1+0.4z)(1+2z) não é invertível. O operador invertível é

$$(1 + 0.4z)(1 + 0.5z) = (1 + 0.9z + 0.2z^2).$$

Função geradora de autocovariância e invertibilidade para um processo MA(2):

$$g_Y(z) = \sigma^2 (1 + \theta_1 z + \theta_2 z^2) (1 + \theta_1 z^{-1} + \theta_2 z^{-2})$$

$$= \sigma^2 (1 + \theta_1 z + \theta_2 z^2 + \theta_1 z^{-1} + \theta_1^2 + \theta_1 \theta_2 z + \theta_1 z^{-2} + \theta_1 \theta_2 z^{-1} + \theta_2^2 z^{-2})$$

$$= \sigma^2 [1 + \theta_2 z^2 + (\theta_1 + \theta_1 \theta_2) z + (1 + \theta_1^2 + \theta_2^2) z^0 + \theta_2 z^{-2} + (\theta_1 + \theta_1 \theta_2) z^{-1}]$$

$$\equiv \sigma^2 [(1 - \lambda_1 z) (1 - \lambda_2 z) (1 - \lambda_1 z^{-1}) (1 - \lambda_2 z^{-1})]$$

Como $\lambda_2=-2$ está fora do círculo unitário, substituímos por seu inverso $\lambda_2^{-1}=-0.5$. Devemos também substituir σ^2 por $\sigma^2\lambda_2^2$.Lembrando que $z^0=1$ para encontrarmos a autocovariância de ordem zero:

$$g_Y = \sigma^2 \lambda_2^2 [(1 - \lambda_1 z)(1 - \lambda_2^{-1} z)(1 - \lambda_1 z^{-1})(1 - \lambda_2^{-1} z^{-1})]$$

$$= (1)4[(1 + 0.4z)(1 + 0.5z)(1 + 0.5z^{-1})(1 + 0.5z^{-1})]$$

$$= 4[(1 + 0.9z + 0.2z^2)(1 + 0.9z^{-1} + 0.2z^{-2})]$$

$$= 4[z^0 + 0.9z + 0.2z^2 + 0.9z^{-1} + 0.18z^0 + 0.18z + 0.2z^{-2} + 0.018z^{-1} + 0.2z^0]$$

As autocovariâncias podem ser encontradas derivando a função geradora de autocovariâncias com respeito a z^j em que j é a ordem de defasagem desejada para a autocovariância.

Lembrando que $z^0=1$ para encontrarmos a autocovariância de ordem zero. Então:

$$\gamma_0 = \frac{\partial g_y}{\partial z^0} = 4[1 + 0.81 + 0.4] = 7.4$$

$$\gamma_1 = \frac{\partial g_y}{\partial z^1} = 4[0.9 + 0.18] = 4.32$$

$$\gamma_2 = \frac{\partial g_y}{\partial z^2} = 4[0.2] = 0.8$$

Que são as mesmas autocovariâncias do processo $Y_t = (1 + 2.4L + 0.8L^2)\varepsilon_t$ do exercício 1. Podemos concluir que o processo gerado pelo operador invertível

$$(1+0.4z)(1+0.5z) = (1+0.9z+0.2z^2),$$

têm a variância $\lambda_2^2=4$ vezes menor que o processo gerado pelo operador não invertível $1+2.4L+0.8L^2$. Para verificação, vamos gerar as autocovariâncias do processo invertível, conforme a fórmula padrão. Como $\theta_1=0.9,\,\theta_2=0.2$ e $\sigma^2=1$, as autocovariâncias são:

$$\bar{\gamma_0} = [1 + \theta_1^2 + \theta_2^2]\sigma^2 = 1 + 0.81 + 0.04 = 1.85$$

$$\bar{\gamma_1} = [\theta_1 + \theta_1\theta_2]\sigma^2 = 0.9 + 0.18 = 1.08$$

$$\bar{\gamma_2} = \theta_2\sigma^2 = 0.2$$

Isto ocorre pois a variância, σ^2 das $\bar{\gamma}_s$'s deveria ter sido substituída por $\sigma^2 \lambda_2^2$. Conclui-se que quando existe uma raiz λ_i fora do círculo unitário, as autocovariâncias do proceso invertível associado devem ser infladas por um fator de

$$\prod_{i=n+1}^{m} \lambda_i^2.$$

em que $\lambda_n, \lambda_{n+1}, \dots, \lambda_m$ são as raízes fora do círculo unitário, $\lambda_1, \lambda_2, \dots, \lambda_n$ são as raízes dentro do círculo unitário e m o número total de raízes.

Capítulo 4

Previsão

4.1 Fórmula 4.3.6:

$$\alpha^{(m)'} \equiv \begin{bmatrix} \alpha_0^{(m)} & \alpha_1^{(m)} & \alpha_2^{(m)} & \cdots & \alpha_m^{(m)} \end{bmatrix}$$

$$= \begin{bmatrix} \mu & \gamma_1 + \mu^2 & \gamma_2 + \mu^2 & \cdots & \gamma_m + \mu^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \mu & \mu & \cdots & \mu \\ \mu & \gamma_0 + \mu^2 & \gamma_1 + \mu^2 & \cdots & \gamma_{m-1} + \mu^2 \\ \mu & \gamma_1 + \mu^2 & \gamma_0 + \mu^2 & \cdots & \gamma_{m-2} + \mu^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mu & \gamma_{m-1} + \mu^2 & \gamma_{m-2} + \mu^2 & \cdots & \gamma_0 + \mu^2 \end{bmatrix}^{-1}$$

$$\begin{aligned}
&\equiv E[Y_{t+1}\mathbf{X}_t']E[\mathbf{X}_t\mathbf{X}_t']^{-1} \\
&\mathbf{Para} \; \mathbf{X}_t = \begin{bmatrix} 1 & Y_t \end{bmatrix}' \\
&\boldsymbol{\alpha}^{(1)'} = \begin{bmatrix} E[Y_{t+1}] & E[Y_{t+1}Y_t] \end{bmatrix} \times \begin{bmatrix} 1 & E[Y_t] \\ E[Y_t] & E[Y_t^2] \end{bmatrix}^{-1} \\
&= \begin{bmatrix} \mu & \gamma_1 + \mu^2 \end{bmatrix} \times \frac{1}{\gamma_0} \begin{bmatrix} \gamma_0 + \mu^2 & -\mu \\ -\mu & 1 \end{bmatrix} \\
&= \frac{1}{\gamma_0} \begin{bmatrix} \mu \gamma_0 + \mu^3 - \mu \gamma_1 - \mu^3 & -\mu^2 + \gamma_1 + \mu^2 \end{bmatrix} \\
&= \frac{1}{\gamma_0} \begin{bmatrix} \mu \gamma_0 - \mu \gamma_1 & \gamma_1 \end{bmatrix} \\
&= \begin{bmatrix} (1 - \rho_1)\mu & \rho_1 \end{bmatrix}
\end{aligned}$$

$$\hat{E}[Y_{t+1}|Y_t] = \boldsymbol{\alpha}' \mathbf{X}_t$$

$$= \begin{bmatrix} (1 - \rho_1)\mu & \rho_1 \end{bmatrix} \begin{bmatrix} 1 \\ Y_t \end{bmatrix}$$

$$\hat{E}[Y_{t+1}|Y_t] = (1 - \rho_1)\mu + \rho_1 Y_t$$

Portanto a previsão de Y_{t+1} com base em informações somente do período t é uma média ponderada entre o valor esperado de Y_t (μ) e Y_t , em que o fator de ponderação é o coeficiente de autocorrelação de primeira defasagem, ρ_1 .

a) Processo AR(1):

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t$$

Equação 4.2.9:

$$\hat{E}[Y_{t+s}|\varepsilon_t,\varepsilon_{t-1},\cdots] = \mu + \frac{\psi(L)}{L^s}\varepsilon_t$$

Se o processo AR(1) for invertível ele pode ser escrito da forma

$$Y_t = \frac{c}{1 - \phi L} + \frac{\varepsilon_t}{1 - \phi L}$$
$$= \mu + \psi(L)\varepsilon_t, \quad \psi(L) = 1 + \phi L + \phi^2 L^2 + \cdots$$

Para Y_{t+1} o processo se torna:

$$Y_{t+1} = \mu + \varepsilon_{t+1} + \phi \varepsilon_t + \phi^2 \varepsilon_{t-1} + \cdots$$

O preditor linear ótimo tem a forma:

$$\hat{E}[Y_{t+1}|\varepsilon_t,\varepsilon_{t-1},\cdots] = \mu + \phi\varepsilon_t + \phi^2\varepsilon_{t-1} + \cdots$$

Dividindo $\psi(L)$ por L^s com s=1

$$\frac{\psi(L)}{L} = L^{-1} + \phi + \phi^2 L + \cdots$$

e tratando os L com expoente negativo como zero para derivar o operador de aniquilação, o preditor ótimo para um período à frente pode ser escrito em notação de operador de defasagem:

$$\hat{E}[Y_{t+1}|\varepsilon_t,\varepsilon_{t-1},\cdots] = \mu + \left[\frac{\psi(L)}{L}\right]_+ \varepsilon_t$$

Que é idêntico à equação 4.2.9 com s = 1.

b) Processo MA(1):

$$Y_n = \mu + \varepsilon_n + \theta \varepsilon_{n-1}$$

Equação 4.5.20:

$$\hat{E}(Y_n|Y_{n-1},Y_{n-2},\cdots,Y_1) = \mu + \frac{\theta[1+\theta^2+\theta^4+\cdots+\theta^{2(n-2)}]}{[1+\theta^2+\theta^4+\cdots+\theta^{2(n-1)}]} \Big[Y_{n-1} - \hat{E}(Y_{n-1}|Y_{n-2},Y_{n-3},\cdots,Y_1) \Big]$$

O processo MA(1) pode ser escrito como:

$$Y_n - \mu = \varepsilon_n + \theta \varepsilon_{n-1}$$

As autocovariâncias são:

$$\gamma_0 = E[(Y_n - \mu)^2] = E(\varepsilon_n + \theta \varepsilon_{n-1})(\varepsilon_n + \theta \varepsilon_{n-1}) = E(\varepsilon_n^2 + 2\theta \varepsilon_n \varepsilon_{n-1} + \theta^2 \varepsilon_{n-1}^2) = \sigma^2 [1 + \theta^2]$$

$$\gamma_1 = E[(Y_n - \mu)(Y_{n-1}\mu)] = E[(\varepsilon_n + \theta \varepsilon_{n-1})(\varepsilon_{n-1} + \theta \varepsilon_{n-2})]$$

$$= E(\varepsilon_n \varepsilon_{n-1} + \theta \varepsilon_n \varepsilon_{n-2} + \theta \varepsilon_{n-1}^2 + \theta^2 \varepsilon_{n-1} \varepsilon_{n-2}) = \sigma^2 \theta$$

$$\gamma_i = 0 \quad j = 2, 3, \cdots$$

Temos que para n=2

$$\hat{E}(Y_2|Y_1) = \mu + \text{Cov}(Y_2, Y_1)\text{Var}(Y_2^2)^{-1}(Y_1 - \hat{E}(Y_1))$$
$$= \mu + \frac{\theta}{1 + \theta^2}(Y_1 - \hat{E}(Y_1))$$

Que é idêntico à equação 4.5.20 com n=2.

c) Dado que

$$\hat{E}[Y_{t+1}|Y_t] = (1 - \rho_1)\mu + \rho_1 Y_t$$

Podemos rearranjar a expressão e obter

$$\hat{E}[Y_{t+1}|Y_t] = \mu + \rho_1(Y_t - \mu)$$

Como o coeficiente de correlação de primeira defasagem de um processo AR(2) é

$$\rho_1 = \frac{\phi_1}{1 - \phi_2}$$

O preditor se torna

$$\hat{E}[Y_{t+1}|Y_t] = \mu + \frac{\phi_1}{1 - \phi_2}(Y_t - \mu)$$

O resíduo desta predição é

$$\begin{split} \bar{Y}_{t+1|t} &= Y_{t+1} - \left[\mu + \frac{\phi_1}{1 - \phi_2} (Y_t - \mu)\right] \\ &= \mu + \phi_1 Y_t + \phi_2 Y_{t-1} + \varepsilon_{t+1} - \mu - \frac{\phi_1}{1 - \phi_2} (Y_t - \mu) \\ &= \frac{\phi_1}{1 - \phi_2} \mu - \left(\frac{\phi_1 \phi_2}{1 - \phi_2}\right) Y_t + \phi_2 Y_{t-1} + \varepsilon_{t+1} \end{split}$$

Verificando correlação entre resíduo e valores defasados:

$$E(\bar{Y}_{t+1|t}Y_t) = E\left\{ \left[\frac{\phi_1}{1 - \phi_2} \mu - \left(\frac{\phi_1 \phi_2}{1 - \phi_2} \right) Y_t + \phi_2 Y_{t-1} + \varepsilon_{t+1} \right] \left[\mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t \right] \right\}$$

$$\neq 0$$

Então, $\hat{Y}_{t+1|t}$ e Y_t são correlacionados.

$$E(\bar{Y}_{t+1|t}Y_{-1}) = E\left\{ \left[\frac{\phi_1}{1 - \phi_2} \mu - \left(\frac{\phi_1 \phi_2}{1 - \phi_2} \right) Y_t + \phi_2 Y_{t-1} + \varepsilon_{t+1} \right] \left[\mu + \phi_1 Y_{t-2} + \phi_2 Y_{t-3} + \varepsilon_{t-1} \right] \right\} \neq 0$$

Então, $\hat{Y}_{t+1|t}$ e Y_{t-1} também são correlacionados.

4.2 Como s = q = 1, temos um processo MA(1):

$$Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$$

E a predição a ser realizada para um período à frente:

$$E[Y_{t+1}|Y_t].$$

Dado que o processo MA(1) possa ser escrito na forma

$$Y_t - \mu = (1 + \theta L)\varepsilon_t$$
.

Sendo a fórmula de predição de Wiener-Kolmogorov para s=1:

$$\hat{Y}_{t+1|t} = \mu + \left[\frac{\psi(L)}{L}\right]_{+}^{\varepsilon_t}$$

Substituindo o processo

na fórmula temos:

$$\hat{Y}_{t+1|t} = \mu + \left[\frac{1+\theta L}{L}\right]_{+} \frac{(Y_t - \mu)}{1+\theta L}$$

Para o processo MA(1):

$$\left[\frac{1+\theta L}{L}\right]_{+} = \theta$$

Então podemos escrever a fórmula de Wiener-Kolmogorov como

$$\hat{Y}_{t+1|t} = \mu + \theta \frac{(Y_t - \mu)}{1 + \theta L}$$

Expandindo a soma infinita representada:

$$\hat{Y}_{t+1|t} = \mu + \theta(Y_t - \mu) - \theta^2(Y_{t-1} - \mu) + \theta^3(Y_{t-2} - \mu) - \dots + (-1)^{m-1}\theta^m(Y_{t-m+1} - \mu)$$

Equivalente à equação 4.3.3.

4.3

$$\Omega = \begin{bmatrix}
1 & -2 & 3 \\
-2 & 6 & -4 \\
3 & -4 & 12
\end{bmatrix}$$

$$\mathbf{E_1} = \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & 0 & 1
\end{bmatrix}$$

$$\mathbf{E_1}\Omega\mathbf{E_1'} = \mathbf{H} = \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & -2 & 3 \\
-2 & 6 & -4 \\
3 & -4 & 12
\end{bmatrix}
\begin{bmatrix}
1 & 2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & -2 & 3 \\
0 & 2 & 2 \\
0 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
1 & 2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 3
\end{bmatrix}$$

$$\mathbf{E}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\mathbf{E}_{2}\mathbf{H}\mathbf{E}_{2}' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} \mathbf{E}_2 \mathbf{E}_1 \mathbf{\Omega} \mathbf{E}_1' \mathbf{E}_2' &= \mathbf{E}_2 \mathbf{E}_1 \mathbf{\Omega} (\mathbf{E}_2 \mathbf{E}_1)' = \mathbf{A}^{-1} \mathbf{\Omega} \mathbf{A}'^{-1} = \mathbf{D} \\ \mathbf{\Omega} &= \mathbf{A} \mathbf{D} \mathbf{A}' \\ \mathbf{A} &= (\mathbf{E}_2 \mathbf{E}_1)^{-1} = \begin{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \end{bmatrix}^{-1} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -5 & -1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix} \\ \mathbf{A} \mathbf{\Omega} \mathbf{A}' &= \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \end{split}$$

 $\boxed{4.4}$ Não pois o coeficiente de Y_2 da projeção linear de Y_4 contra $Y_3,\,Y_2$ e Y_1 é: Dado que

$$Y_4 = \bar{Y}_4 + k_{43}k_{33}^{-1}\bar{Y}_3 + h_{41}h_{22}^{-1}\bar{Y}_2 + \Omega_{41}\Omega_{11}^{-1}\bar{Y}_1,$$

temos ainda que:

$$\begin{split} \bar{Y}_1 &= Y, \\ \bar{Y}_2 &= Y_2 - \Omega_{21} \Omega_{11}^{-1} \bar{Y}_1 \\ \bar{Y}_3 &= Y_3 - \Omega_{31} \Omega_{11}^{-1} Y_1 - h_{32} h_{22}^{-1} (Y_2 - \Omega_{21} \Omega_{11}^{-1} \bar{Y}_1) \end{split}$$

Substituindo em Y_4 nos dá:

$$Y_4 = \bar{Y}_4 + k_{43}k_{33}^{-1}(Y_3 - \Omega_{31}\Omega_{11}^{-1}Y_1 - h_{32}h_{22}^{-1}(Y_2 - \Omega_{21}\Omega_{11}^{-1}Y_1)) + h_{41}h_{22}^{-1}(Y_2 - \Omega_{21}\Omega_{11}^{-1})Y_1 + \Omega_{41}\Omega_{11}^{-1}Y_1$$

Podemos observar que o coeficiente de Y_2 é

$$h_{41}h_{22}^{-1} - k_{43}k_{33}^{-1}h_{32}h_{22}^{-1}$$

Já o elemento (4,2) de ${\bf A}$ é

$$h_{41}h_{22}^{-1}$$

Portanto a resposta é não.

4.5