

STUDENT OBJECTIVES

- Upon completion of this video, you should be able to:
 - Identify the symbols for FULL, LEFT and RIGHT outer joins.
 - Write a relational algebra expression that uses OUTER JOINS given two tables based on a given query.
 - Given 2 tables and an OUTER JOIN relational algebra expression, show the new table that would be returned once the expression is performed.
 - Given an OUTER JOIN relational algebra expression and two tables, explain in simple English what query is answered by the expression.

FULL OUTER JOIN

• A full outer join is similar to a join except that it includes all the rows from both tables even if they don't have a matching value in the column that you are joining. If there is no match, put nulls in the columns from the other table.

Table1 Table2 (out 1 Final Table Tab

12 Red Can Table2
24 Red USA 33
45 Blue Mex 33

	В	F	G
	Yellow	Cat	22
0	uter e	eti j	0 1 11)
	Green	Dog	44
	Red	Dog	24
	Orange	Bird	33

					Oran	ge Bird
A	Table1.B	С	D	Table2.B	F	G
12	Red	Can	24	Red	Dog	24
24	Red	USA	33	Red	Cat	33
24	Red	USA	33	Orange	Bird	33
45	Blue	Mex	33	Red	Cat	33
45	Blue	Mex	33	Orange	Bird	33
Null	Null	Null	Null	Yellow	Cat	22
Null	Null	Null	Null	Green	Dog	44

ANSWER FOR Table 1 D=G Table 2

C\$3319

FULL OUTER JOIN

• A full outer join is similar to a join except that it includes all the rows from both tables even if they don't have a matching value in the column that you are joining. If there is no match, put nulls in the columns from the other table.

Table1 Table2 (out

ANSWER FOR Table 1 Table 2

ANSWER FOR Table 1 D=G Table 2

	Table 1						
		atura	<mark> cjoin</mark>	D			
	12	Red	Can T	able2			
=	24	Red	USA	33			
	45	Blue	Mex	33			

Α	В	С	D	F	G
12	Red	Can	24	Cat	33
12	Red	Can	24	Dog	24
24	Red	USA	33	Cat	33
24	Red	USA	33	Dog	24
45	Blue	Mex	33	Null	Null
Null	Yellow	Null	Null	Cat	22
Null	Green	Null	Null	Dog	44
Null	Orange	Null	Null	Bird	33

В	F	G
Yellow	Cat	22
uter e	eti j	ogn)
Green	Dog	44
Red	Dog	24
Orange	Bird	33

- Full Outer Join: R S: a join in which tuples from R that do not have matching (equal) values in the common columns of S still appear and tuples in S that do not have matching values in the common columns of R still appear in the resulting relation (padding the fields with nulls)
- Left Outer Join: R S: a join in which tuples from R that do not have matching values in the common columns of S still appear in the resulting relation
- **Right Outer Join:** R S: tuples in S that do not have matching values in the common columns of R still appear in the resulting relation.

Example: Outer Join

QUESTION: What will the following expression result in?

Table1 Table2

Α -	В •	C →	D →	E 🔻
	b5			e3
a1	b1	c1	d2	e1
a2	b1	c2	d2	e1
a3	b1	c1	d2	e1
a1	b4	c1	d2	
a5	b4	c2	d2	
a1	b2	c2	d2	e2

Example: Left Outer Join

Example: Right Outer Join

CS319

Table1 Table2

Might use an outer join for example in a situation like: Find the name of all employees and list the department name if they also manage a department.

QUESTION: Write the relational algebra for the above situation:

TEMP \leftarrow Department \searrow \searrow $_{ManagerEmpID=EmpID}$ Employee ANSWER \leftarrow π $_{FirstName,LastName,DeptName}$ (TEMP)

