

Reproducción de la masa invariante de los Mesones D⁺, D⁰ y D*⁺

Santiago Galvis - Felipe Castello - Juan Esteban Ospina

Detector

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Measurement of prompt open-charm production cross sections in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$

The CMS Collaboration*

Canales de decaimiento

Nombre de la partícula	Símbolo de la partícula	Símbolo de la antipartícula	Quarks que contiene	Masa en reposo(MeV/c²)	IG	JPC	S	C	B'	Tiempo de vida medio (s)	Desintegraciones frecuentes (>5% de desintegracones)
Mesón D	D ⁺	D-	cd	1869.62 ± 0.20	1/2	0-	0	+1	0	$(1.040 \pm 0.007) \times 10^{-12}$	
Mesón D extraño	D+s	D-s	cs	1968.47 ± 0.33	0	0-	+1	+1	0	(5.00±0.07)×10 ⁻¹³	
Mesón D	D ⁰	□0	cū	1864.84 ± 0.17	1/2	0-	0	+1	0	4.101 ± 0.015 × 10 ⁻¹³	
Mesón D	D*+ (2010)	D*-(2010)	cd	2010.27.62 ± 0.17	1/2	1-	0	+1	0	6.9 ± 1.9 × 10 ⁻²¹	$D^{0} + \pi^{+}$ $D^{+} + \pi^{0}$
Mesón D	D*0 (2007)	D*0(2007)	cū	2006.97 ± 0.19	1/2	1-	0	+1	0	>3.1 × 10 ⁻²²	$D^{0} + \pi^{0}$ $D^{0} + \gamma$

• pp
$$\to D^{*+}X \to D^0\pi_s^+X \to K^-\pi^+\pi_s^+X$$
,

• pp
$$\rightarrow$$
 D⁰ $X \rightarrow$ K⁻ π ⁺ X ,

• pp
$$\rightarrow$$
 D⁺ $X \rightarrow$ K⁻ π ⁺ π ⁺ X ,

$$\Delta M = m(\mathrm{K}\pi\pi_\mathrm{S}^+) - m(\mathrm{K}\pi)$$

Repositorio:

github.com/JEOspina25/Proyecto_BigData

Original

Reconstruida


```
// Declare variables x, mean, sigma, c
RooRealVar x("x", "x", 0.14, 0.16);
RooRealVar mean("mean", "mean of gaussian", 0.1455, 0.14, 0.16);
RooRealVar sigma("sigma", "width of gaussian", 0.0012, 0, 0.2);
RooGaussian gauss("gauss", "gaussian PDF", x, mean, sigma);
RooRealVar c("c", "c", 0, -1, 1);
RooPolynomial bkg1("bkg1", "Background", x, RooArgSet(c), 2);
//Pesos de Background y señal
RooRealVar Ns("Ns", "Ns", 0.,500);
RooRealVar Nb("Nb", "Nb", 0.,500);
//Modelo para la masa
RooAddPdf MassModel("MassModel", "MassModel", RooArgList(gauss, bkg1), RooArgList(Ns, Nb));
```



```
// Generate a dataset of events in x from MassModel
RooDataSet *data = MassModel.generate(x, datos);

// Fit pdf to data
RooFitResult* fitres = MassModel.fitTo(*data,Extended(),Minos(kFALSE),Save(kTRUE), NumCPU(4));
RooPlot *xframe2 = x.frame();
```

```
//Pull
RooPlot* Mframe = x.frame(0.14,0.16,((0.16-0.14)/0.0008)+1);
data->plotOn(Mframe,DataError(RooAbsData::SumW2),MarkerSize(1.0),XErrorSize(0));
MassModel.plotOn(Mframe,DrawOption("F"),FillColor(0),LineWidth(2),Name("fittotal"));
RooHist* hpullm2 = Mframe->pullHist();
```


Pull al modelo de masa

Pull ΔM

Montecarlo

```
for(Int t n=0;n<ntotal;n++)
// cout<<"entro"<<endl;
mean.setVal(0.145);
mean.setError(0.000055);
width.setVal(0.0012);
c.setVal(0.0001);
Ns.setVal(1500);
Ns.setError(0.995);
Nb.setVal(500);
mui = 0.145;
nsi = 500;
//Generar montecarlo
RooDataSet *dataToy = MassModel.generate(RooArgSet(M), Extended(kTRUE));
//Fit a estos datos
RooFitResult* fitres = MassModel.fitTo(*dataToy,Extended(),Minos(kFALSE),Save(kTRUE), NumCPU(6));
```


Montecarlo

Reconstruida


```
// Variables a usar
RooRealVar M("M", "Mass (K#pi#pi) (GeV)", Mmin, Mmax);
// -Parámetros Señal-
RooRealVar mean("mean", " Mass mean", 1.875, 1.7, 1.9, "GeV");
// Gausiana 1
RooRealVar width("width", " Mass width", 0.010, 0.001, 0.012, "GeV"); // Sigmal
RooGaussian Sig("Sig", " Signal PDF", M, mean, width);
// Gausiana 2
RooRealVar width2("width2"," Mass width2 ",0.015,0.001,0.05,"GeV"); // Sigma2
RooGaussian Sig2("Sig2", " Signal PDF B", M, mean, width2);
// -Parámetros Background-
RooRealVar c0("c0", "c0", 0.0, 10000.0);
RooRealVar c1("c1", "c1", 0.0, 1.0);
RooPolynomial Bkg("Bkg", "Exp. Background", M, RooArgList(c0, c1), 3);
// Cantidad de datos por cada componente
RooRealVar Ns("Ns", "Ns", 0.,500);
RooRealVar Nb("Nb", "Nb", 1500., 20000);
RooRealVar fs("fs", "fs", 10, 0., 1.);
// Suma de las dos gausianas
RooAddPdf Sumgaus("sumgau", "sumgau", RooArgList(Sig, Sig2), RooArgList(fs));
// Modelo de masa (2 Gausianas + Exponencial)
RooAddPdf MassModel("MassModel", "MassModel", RooArgList(Sumgaus, Bkg), RooArgList(Ns, Nb));
```



```
// Generación
RooDataSet* Data_M = MassModel.generate(M,datos);
// ---- Fitting ----
RooFitResult* ResultFit = MassModel.fitTo(*Data_M,Extended(),Minos(kFALSE),Save(kTRUE));
```

```
// Creando frame
RooPlot* Mframe = M.frame(infM,supM,nbin);
// Se dibujan los datos y el ajuste
Data_M->plotOn(Mframe,DataError(RooAbsData::SumW2),MarkerSize(1.0),XErrorSize(0));
MassModel.plotOn(Mframe,DrawOption("F"),FillColor(0),LineWidth(2),Name("fittotal"));
// Histograma Pull
RooHist* hpullm2 = Mframe->pullHist();
```

Pull al modelo de masa

Pull Kππ M

Implementación en una Clase de Root

