TRIANGLES

$1 ext{ } 9^{th} ext{ Maths}$ - Chapter 7

This is Problem 7 from Exercise-7.1

AB is a line segment and P is its mid-point.D and E are points on the same side of AB such that \angle BAD = \angle ABE and \angle EPA = \angle DPB.Show that

- (i) \triangle DAP \cong \triangle EBP
- (ii) AD = BE

2 construction

Figure 1

The input parameters for this construction are

Symbol	Value	Description
r	4	AP = PB
b	5.43	EP = DP
θ	60°	$\angle DPB$
θ_1	120°	$\angle EPB$

Table 2

$$\mathbf{A} = \begin{pmatrix} -4\\0 \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 4\\0 \end{pmatrix}$$

$$\mathbf{D} = 5.43 \begin{pmatrix} \cos 60^{\circ}\\ \sin 60^{\circ} \end{pmatrix}$$

$$\mathbf{E} = 5.43 \begin{pmatrix} \cos 120^{\circ}\\ \sin 120^{\circ} \end{pmatrix}$$

Solution: Given

$$AP = BP \tag{1}$$

$$\angle BAD = \angle ABE$$
 (2)

To Prove: $\triangle DAP \cong \triangle EPB$ to prove $\angle DPA = \angle EPB$

Let
$$\theta 2 = \angle DPA$$
 (3)

$$\mathbf{m1} = \mathbf{P} - \mathbf{D} = \begin{pmatrix} -2.7 \\ -4.7 \end{pmatrix} \tag{4}$$

$$\mathbf{m2} = \mathbf{P} - \mathbf{A} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \tag{5}$$

$$\theta 2 = \cos^{-1} \frac{\mathbf{m} \mathbf{1}^{\mathsf{T}} \mathbf{m} \mathbf{2}}{\|\mathbf{m} \mathbf{1}\| \|\mathbf{m} \mathbf{2}\|} \tag{6}$$

$$\implies \theta 2 = \cos^{-1} \frac{(-2.7 - 4.7) \binom{4}{0}}{(5.42)(4)} = 120^{\circ} \tag{7}$$

$$\theta 3 = \angle EPB \tag{8}$$

$$\mathbf{n1} = \mathbf{P} - \mathbf{E} = \begin{pmatrix} 2.7 \\ -4.7 \end{pmatrix} \tag{9}$$

$$\mathbf{n2} = \mathbf{P} - \mathbf{B} = \begin{pmatrix} -4\\0 \end{pmatrix} \tag{10}$$

$$\theta 3 = \cos^{-1} \frac{\mathbf{n} \mathbf{1}^{\top} \mathbf{n} \mathbf{2}}{\|\mathbf{n} \mathbf{1}\| \|\mathbf{n} \mathbf{2}\|} \tag{11}$$

$$\implies \theta 3 = \cos^{-1} \frac{\left(2.7 - 4.7\right) \binom{-4}{0}}{(5.42)(4)} = 120^{\circ} \tag{12}$$

from (7) and (12)

$$\angle DPA = \angle EPB \tag{13}$$

from (1), (2) and (13)

$$\triangle DAP \cong \triangle EBP \tag{14}$$

from (14)

AD=BE