

Project 4: Quantum Error mitigation

Anthony BENOIS

SCIPER 368368 École Polytechnique Fédérale de Lausanne (EPFL)

22/01/2024

Anthony BENOIS Project 4

Introduction

Quantum error mitigation

 NISQ era: necessity to deal with noise (fault-tolerant quantum computing is not ready yet)

Sources of errors:

- decoherence (coupling with environment)
- coherent errors: inaccurate manipulation of qubits
- measurements
- Quantum error mitigation:
 - do not explicitly correct errors
 - reduce the effect of errors
 - \rightarrow one strategy: **the zero-noise extrapolation**¹ **(ZNE)**.

¹Giurgica-Tiron et al., "Digital zero noise extrapolation for quantum error mitigation".

Outlines

- 1 Introduction
 - Quantum error mitigation
 - Zero-noise extrapolation
 - Circuit folding
 - Layer folding
 - Parameter noise scaling
 - Extrapolation
- 2 Results of Giurgica-Tiron et al

- Results
- 3 Application to QFT
 - Principle
 - \blacksquare Algorithm
 - ZNE with QFT
- 4 Discussion
- 5 Bibliography

Zero-noise extrapolation (ZNE): general idea

General idea:

- **Parameterisation of noise** by a scalar λ
- Goal: infer $E^* \equiv E(0)$ from $E_{\text{meas}} = E(\lambda = 1)$
- Solution: Measure $E(\lambda)$ for various $\lambda \ge 1$, and extrapolate the results (= artificially increase the noise)

Methods

- Circuit folding
- Layer folding
- parameter noise scaling: mitigation informed by the physical nature of the gates

Figure 1: Illustration ZNE

Zero-noise extrapolation (ZNE): general idea

General idea:

- **Parameterisation of noise** by a scalar λ
- Goal: infer $E^* \equiv E(0)$ from $E_{\text{meas}} = E(\lambda = 1)$
- **Solution**: Measure $E(\lambda)$ for various $\lambda \geq 1$, and extrapolate the results (= artificially increase the noise)

Methods:

- Circuit folding
- Layer folding
- parameter noise scaling: mitigation informed by the physical nature of the gates

Figure 1: Illustration ZNE

Circuit folding

Original circuit (U is made of d layers): $U = L_1 \dots L_d$

General idea:

- define the **noise scaling**: $\lambda \equiv d'/d$
- circuit folding replacement rule²: $U \to U (U^\dagger U)^n L_d^\dagger L_{d-1}^\dagger \dots L_{d-s-1}^\dagger L_{d-s-1} \dots L_d$

$$\lambda = \frac{d(2n+1) + 2s}{d} = 1 + \frac{2k}{d}$$

Anthony BENOIS Project 4 22/01/2024 4 / 21

²here: right folding

Circuit folding

Original circuit (U is made of d layers): $U = L_1 \dots L_d$

General idea:

- define the **noise scaling**: $\lambda \equiv d'/d$
- circuit folding replacement rule²: $U \to U (U^\dagger U)^n L_d^\dagger L_{d-1}^\dagger \dots L_{d-s-1}^\dagger L_{d-s-1} \dots L_d$

$$\lambda = \frac{d(2n+1) + 2s}{d} = 1 + \frac{2k}{d}$$

Anthony BENOIS Project 4 22/01/2024 4 / 21

²here: **right** folding

Laver folding

Original circuit (U is made of d layers): $U = L_1 \dots L_d$ General idea:

- define the subset S of indices to fold (from right, from left, or at random)
- layer folding replacement rule :

$$\forall j \in \{1, 2, ..., d\}, \quad L_j \to \tilde{L}_j = \begin{cases} L_j \left(L_j^{\dagger} L_j\right)^n & \text{if } j \notin S, \\ L_j \left(L_j^{\dagger} L_j\right)^{n+1} & \text{if } j \in S. \end{cases}$$

Anthony BENOIS 5 / 21 22/01/2024

Layer folding

Original circuit (U is made of d layers): $U = L_1 ... L_d$ General idea:

- define the subset S of indices to fold (from right, from left, or at random)
- layer folding replacement rule :

$$orall j \in \{1,2,...,d\}, \quad L_j o ilde{L}_j = egin{cases} L_j \, (L_j^\dagger L_j)^n & \text{if } j
otin S, \ L_j \, (L_j^\dagger L_j)^{n+1} & \text{if } j
otin S. \end{cases}$$
 $\lambda \equiv rac{d'}{d} = rac{d(2n+1)+2s}{d} = 1 + rac{2k}{d}$

Anthony BENOIS Project 4 22/01/2024 5 / 21

Parameter noise scaling

A quantum gate is parameterised by *I* classical control parameters $\theta = (\theta_1, \theta_1, ..., \theta_I)$:

$$G(\theta) = \exp\left(-i\sum_{j=1}^{l} \theta_j H_j\right)$$

Suppose that the parameters are subjected to some uncontrolled classical noise³(= stochastic calibration error):

$$\theta_j' = \theta_j + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \sigma_j^2), \quad (\sigma_j^2 \text{ known})$$

Parameter noise scaling \rightarrow arbitrarily add classical noise $\delta_j \sim \mathcal{N}(0, (\lambda - 1)\sigma_j^2)$, so that:

$$\theta_j' = \theta_j + \sqrt{\lambda}\varepsilon_j$$

Anthony BENOIS Project 4 22/01/2024 6 / 21

³ Caussian assumption

Parameter noise scaling

A quantum gate is parameterised by *I* classical control parameters $\theta = (\theta_1, \theta_1, ..., \theta_I)$:

$$G(\theta) = \exp\left(-i\sum_{j=1}^{l} \theta_j H_j\right)$$

Suppose that the parameters are subjected to some uncontrolled classical noise³(= stochastic calibration error):

$$heta_j' = heta_j + arepsilon_j, ~~ arepsilon_j \sim \mathcal{N}(0, \sigma_j^2), ~~ (\sigma_j^2 ext{ known})$$

Parameter noise scaling \rightarrow arbitrarily add classical noise $\delta_j \sim \mathcal{N}(0, (\lambda - 1)\sigma_j^2)$, so that:

$$\theta_i' = \theta_i + \sqrt{\lambda}\varepsilon_i$$

Anthony BENOIS Project 4 22/01/2024 6 / 21

³Gaussian assumption

ZNE = running the same quantum circuit at various levels of noise + extrapolation of the measurements

- The noise can only be **increased** ($\lambda \geq 1$)
- Expected to work because an underlying law governing expectation values as a function of noise is assumed

Case of depolarizing noise

$$\rho_j \xrightarrow{\mathsf{noisy}\ L_j} \rho_{j+1} \xrightarrow{\mathsf{noisy}\ L_{j+1}} \rho_{j+2} \quad \Longleftrightarrow \quad \rho_j \xrightarrow{\mathsf{noisy}\ L_j L_{j+1}} \rho_{j+2}$$

$$\rho \xrightarrow{\text{noisy circuit} + \text{folding}} p^{\lambda} U \rho U^{\dagger} + (1 - p^{\lambda}) \mathbb{I}/D \implies E(\lambda) = a + bp^{\lambda}$$

Anthony BENOIS Project 4 22/01/2024 7 / 21

- ZNE = running the same quantum circuit at various levels of noise + extrapolation of the measurements
- The noise can only be **increased** ($\lambda \geq 1$)
- Expected to work because an underlying law governing expectation values as a function of noise is assumed

Case of depolarizing noise:

$$\rho_j \xrightarrow{\text{noisy } L_j} \rho_{j+1} \xrightarrow{\text{noisy } L_{j+1}} \rho_{j+2} \quad \Longleftrightarrow \quad \rho_j \xrightarrow{\text{noisy } L_j L_{j+1}} \rho_{j+2}$$

$$ho \xrightarrow{ ext{noisy circuit} + ext{folding}} p^{\lambda} U \rho U^{\dagger} + (1 - p^{\lambda}) \mathbb{I}/D \implies E(\lambda) = a + bp^{\lambda}$$

Anthony BENOIS 7 / 21 22/01/2024

Extrapolation

Polynomial extrapolation:

- Linear regression
- Quadratic regression
- Richardson interpolation

Poly-exponential extrapolation:

- Poly-exponential regression
- Exponential regression:

$$E_{exp}(\lambda) = a \pm e^{z_0 + z_1 \lambda}$$

Adaptive exponential regression (cf. appendix)

Anthony BENOIS Project 4 22/01/2024 8 / 21

ZNE with randomized circuits

Figure 2: Comparison of extrapolation methods (50 two-qubit randomized circuits). The true zero-noise value is 1.

Figure 3: Comparison of two qubit randomized circuits with and without error-mitigation. The decay goes from 97.9% (U) to 99% (M).

Error distributions

Figure 4: Comparison of improvements from ZNE (using quadratic extrapolation with folding from left) and 250 6-qubits random circuits.

Figure 5: Errors without mitigation, with parameter noise mitigation, and with unitary folding mitigation (50 random six-qubit).

Application to other Algorithms

Figure 6: Percent closer to optimal on random MAXCUT executions. Algorithm: QAOA (2 executions), circuit-folding.

Scaling	Extrapolation	Error % (dep.)	Error % (amp. damp.)
none	unmitigated	29.9 ± 5.1	16.7 ± 4.0
circuit	linear $(d=1)$	14.6 ± 4.6	5.40 ± 2.3
circuit	quadratic $(d=2)$	6.35 ± 3.6	3.53 ± 3.4
circuit	Richardson $(d=3)$	17.6 ± 11	17.9 ± 16
circuit	exponential $(a = 0.25)$	2.73 ± 1.9	2.06 ± 1.6
circuit	adapt. exp. $(a = 0.25)$	$\boldsymbol{1.27 \pm 1.1}$	2.69 ± 2.8
at random	linear $(d=1)$	15.6 ± 5.3	5.20 ± 2.4
at random	quadratic $(d=2)$	5.54 ± 4.4	8.00 ± 8.1
at random	Richardson $(d=3)$	30.0 ± 24	24.0 ± 18
at random	exponential $(a = 0.25)$	2.84 ± 1.8	0.95 ± 1.0
at random	adapt. exp. $(a = 0.25)$	1.77 ± 1.4	2.18 ± 1.2
from left	linear $(d=1)$	14.4 ± 4.5	5.16 ± 2.3
from left	quadratic $(d=2)$	6.73 ± 3.7	3.88 ± 3.7
from left	Richardson $(d=3)$	18.4 ± 12	16.1 ± 13
from left	exponential $(a = 0.25)$	3.17 ± 2.1	2.19 ± 2.0
from left	adapt. exp. $(a = 0.25)$	1.43 ± 1.1	3.08 ± 3.6

Figure 7: Absolute errors for various mitigation techniques. Mean depth: 27.

Quantum Fourier Transform

Classical Fourier transform:

$$\begin{aligned} \mathbf{FT} \colon \mathbb{C}^N &\longrightarrow \mathbb{C}^N \\ (x_0, x_1, ..., x_{N-1}) &\longmapsto (y_0, y_1, ..., y_{N-1}) \\ \text{where} \quad \forall k, \quad y_k &= \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_n \, \omega_N^{-nk} \\ \text{and} \quad \omega_N &= \mathrm{e}^{\frac{2\pi i}{N}} \end{aligned}$$

QFT: maps the probability amplitudes according to the above formulas. That is:

$$|x\rangle = \sum_{i=0}^{N-1} x_i |i\rangle \xrightarrow{\mathbf{QFT}} \sum_{k=0}^{N-1} y_k |k\rangle$$

Anthony BENOIS Project 4 22/01/2024 12 / 21

QFT Algorithm

- x₁...x_n is the bit-wise expression of x
- H is the Hadamard gate and the R_k's are phase gates:

$$R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{i2\pi/2^k} \end{pmatrix}$$

Anthony BENOIS Project 4 22/01/2024 13 / 21

Figure 8: Simplification of the QFT algorithm in the 3-qubit case

Figure 9: Circuit folding for $\lambda = 2$ (n = 0, k = 7, s = 3, d = 7) in the 3-qubit case

Figure 10: Exponential ZNE: probability of the $|000\rangle$ outcome as a function of the **noise** scaling

Figure 11: Quadratic ZNE: probability of the $|110\rangle$ outcome as a function of the **noise** scaling

Figure 12: **ZNE** for various extrapolation methods. **Layer** folding, 50 replications

Figure 13: **ZNE** for various extrapolation methods. **Circuit** folding, 50 replications

Figure 14: KDE plot of the absolute value of the **error** for various extrapolation methods. **Layer** folding, 50 replications

Figure 15: KDE plot of the absolute value of the **error** for various extrapolation methods. **Circuit** folding, 50 replications

Figure 16: Probability distribution of all binary outputs. Averaged over 50 replications, using circuit folding and quadratic extrapolation.

Figure 17: Frequency as a function of the decrease in the absolute error for all binary outputs. 50 replications, circuit folding, quadratic extrapolation. 36% of the values are below 1.

Discussion

This method presents several advantages:

- it is **digital**: agnostic of the hardware!
- underlying noise model does not need to be exactly known
- error mitigation techniques give practical benefits: improvement of the results by several factors have been shown
- it applies to variational circuits as well

But it also has limitations:

- measurement and state preparation errors are not addressed (not a function of the depth of the circuit)
- may fail to address systematic or coherent errors (folding undoes these errors).
- folding does not exploit any specific structure of noise

Thank you for your attention

References

Giurgica-Tiron, Tudor et al. "Digital zero noise extrapolation for quantum error mitigation". In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE. 2020, pp. 306–316.

Zhou, Leo et al. "Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices". In: *Physical Review X* 10.2 (2020), p. 021067.

Anthony BENOIS Project 4 22/01/2024 21 / 21

Adaptative ZNE

Goal: pick the next noise scaling factor λ and the associated number of shots N_{λ} such that the MSE of the estimator is minimal.

→ Method in contrast to **non-adaptive methods**. where the noise scaling factors are set beforehand.

Example: exponential ZNE $(E_{exp}(\lambda) = a + be^{-c\lambda})$ and a is known)

While $N_{used} < N_{max}$:

- 1 compute $\lambda_{next} = \lambda_1 + \alpha/c$ and N_{next}
- measure expectation values
- fit data to extract c'

Figure 18: Comparison of adaptive and non-adaptive exponential zero noise extrapolation, given a fixed budget of samples

Suppose to have a graph G = (V, E).

Goal: color the vertices of this graph using two colors in such a way that the maximum possible number of edges has its two vertices of different colors.

(= maximise the interactions between two groups)

Figure 19: Example of bi-colored graph: solution provided by QAOA

QAOA - Quantum Approximation Optimization Algorithm

Goal: Find a binary string which maximizes a classical objective function

$$\mathbf{C} \colon \{\pm 1\}^{N} \longrightarrow \mathbb{R}$$
$$z \longmapsto C(z)$$

Method: Map each binary variable z_i to a quantum spin σ_i^z , and define the Hamiltonians:

$$H_C = C(\sigma^z) = C(\sigma_1^z, ..., \sigma_N^z)$$
 $H_B = \sum_{i=1}^{N} \sigma_i^x$

Figure 20: Schematic of a p-level Quantum Approximation Optimization Algorithm^a

^aZhou et al., "Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices".