Lecture 27: Physicsinformed deep neural networks

Professor Ilias Bilionis

The Metropolis algorithm

$$p(x) = \frac{\pi(x)}{2}$$

$$proposal destributor$$

$$p(x') \times q(x') \times q(x')$$

$$(\pi(x')) = \frac{\pi(x)}{2}$$

- Initialize: Xo
- For $n=1,2,\ldots$
 - **Generate** candidate sample:
 - $\alpha(x', x_{n-1}) = Max \left\{ \frac{\pi(x')}{\pi(x_n)}, 1 \right\}$ • Calculate the acceptance ratio:
 - Accept/Reject:

 - Renerate $u \sim U([0,1])$ $u \leq a$, $n_{em} = \frac{accept}{accept} : \times n^{4} \times n^{2}$ $u \geq a$, then reject : $\times n^{4} \times n^{-1}$

What are the restrictions on the Metropolis proposal?

$$q(x' | x_{n-1}) = q(x_{n-1} | x')$$

The random walk proposal

$$q(x'|x_{n-1}) = N(x'|x_{n-1}, E)$$

turable

parameter

Why does the Metropolis algorithm work?

- Intuitively: It constructs a series of samples that eventually come from the desired probability density.
- Math reason: It constructs a stationary, reversible, aperiodic, Harris recurrent Markov chain that leaves the desired probability density invariant.
- Metropolis is an example of a Markov Chain Monte Carlo (MCMC) algorithm.

