### PHY604 Lecture 6

September 19, 2023

# Review: 3 point Gauss-Legendre quadrature

$$\int_{-1}^{1} f(x)dx \simeq \frac{5}{9}f(-\sqrt{3/5}) + \frac{8}{9}f(0) + \frac{5}{9}f(\sqrt{3/5})$$

### Review: Gauss-Legendre quadrature

• From Newman Sec. 5.6:

• From Garcia 10.3:



Figure 5.4: Sample points and weights for Gaussian quadrature. The positions and heights of the bars represent the sample points and their associated weights for Gaussian quadrature with (a) N = 10 and (b) N = 100.

Table 10.7: Grid points and weights for Gauss-Legendre integration.

| $\pm x_i$     | $w_i$        | $\pm x_i$    | $w_i$        |
|---------------|--------------|--------------|--------------|
| N=2           |              | N=8          |              |
| 0.5773502692  | 1.0000000000 | 0.1834346425 | 0.3626837834 |
| N=3           |              | 0.5255324099 | 0.3137066459 |
| 0.00000000000 | 0.888888889  | 0.7966664774 | 0.2223810345 |
| 0.7745966692  | 0.555555556  | 0.9602898565 | 0.1012285363 |
| N=4           |              | N = 12       |              |
| 0.3399810436  | 0.6521451549 | 0.1252334085 | 0.2491470458 |
| 0.8611363116  | 0.3478548451 | 0.3678314990 | 0.2334925365 |
| N=5           |              | 0.5873179543 | 0.2031674267 |
| 0.0000000000  | 0.5688888889 | 0.7699026742 | 0.1600783285 |
| 0.5384693101  | 0.4786286705 | 0.9041172564 | 0.1069393260 |
| 0.9061798459  | 0.2369268850 | 0.9815606342 | 0.0471753364 |

#### Review: Choosing an integration method

(Newman Sec. 5.7)

#### • Trapezoid method:

- Trivial to program
- Equally spaced points, often true of experimental data
- Good choice for poorly behaved data (noisy, singularities)
- Adaptive method gives guaranteed accuracy level
- Not very accurate for given number of points

#### Romberg integration:

- Equally spaced points, often true of experimental data
- Guaranteed accuracy level
- Potentially high accuracy for small number of points
- Will not work well for noisy of pathological data/integrands

#### Gaussian Quadrature

- Potentially high accuracy for small number of points
- Simple to program (weights and roots tabulated)
- Will not work well for noisy of pathological data/integrands
- Need to have data on specific, unequally-spaced grid

#### Review: Lagrange interpolation

 General method for building a single polynomial that goes through all the points (alternate formulations exist)

- Given n points:  $x_0, x_1, \dots, x_{n-1}$ , with associated function values:  $f_0, f_1, \dots, f_{n-1}$ 
  - Construct basis functions:  $l_i(x) = \prod_{j=0, i \neq j}^{n-1} \frac{x-x_j}{x_i-x_j}$
  - Note basis function  $I_i$  is 0 at all  $x_i$  except for  $x_i$  (where it is one)
  - Function value at  $\mathbf{x}$  is:  $f(x) = \sum_{i=0}^{n-1} l_i(x) f_i$

### Review: Quadratic Lagrange polynomial

- Three points:  $(x_0,f_0)$ ,  $(x_1,f_1)$ ,  $(x_2,f_2)$
- Three basis functions:

$$l_0 = \frac{x - x_1}{x_0 - x_1} \frac{x - x_2}{x_0 - x_2} = \frac{(x - x_1)(x - x_2)}{2\Delta x^2}$$

$$l_1 = \frac{x - x_0}{x_1 - x_0} \frac{x - x_2}{x_1 - x_2} = -\frac{(x - x_0)(x - x_2)}{\Delta x^2}$$

$$l_2 = \frac{x - x_0}{x_2 - x_0} \frac{x - x_1}{x_2 - x_1} = \frac{(x - x_0)(x - x_1)}{2\Delta x^2}$$

• Polynomial:

$$f(x) = f_0 \frac{(x - x_1)(x - x_2)}{2\Delta x^2} - f_1 \frac{(x - x_0)(x - x_2)}{\Delta x^2} + f_2 \frac{(x - x_0)(x - x_1)}{2\Delta x^2}$$

### Today's lecture:

- Continue discussing interpolation
  - Lagrange Interpolation
  - Cubic splines
- Begin discussing finding roots of functions
  - Bisection method
  - Newton Raphson method
  - Secant method











- For the hyperbolic tangent case, increasing the number of points beyond a certain limit increases the error
  - Runge phenomena: Oscillations at the edges of the interval
  - Increasing the number of points causes a divergence in the error
- Can do better by varying the spacing of the interpolating points
  - e.g., Chebyshev polynomial roots are concentrated toward the end of the interval
  - Chebyshev polynomial spacing is usually (almost always) convergent with the number of interpolating points

$$x_k = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{2k-1}{2n}\pi\right), \quad k = 1, ..., n$$















### Today's lecture:

- Continue discussing interpolation
  - Lagrange Interpolation
  - Cubic splines
- Begin discussing finding roots of functions
  - Bisection method
  - Newton Raphson method
  - Secant method

#### Splines (Pang Sec. 2.4)

- So far, we've only worried about going through the specified points
- Large number of points → two distinct options:
  - Use a single high-order polynomial that passes through them all
  - Fit a (somewhat) high order polynomial to each interval and match all derivatives at each point—this is a spline
- Splines match the derivatives at end points of intervals
  - Piecewise splines can give a high-degree of accuracy
- Cubic spline is the most popular
  - Matches first and second derivative at each data point
  - Results in a smooth appearance
  - Avoids severe oscillations of higher-order polynomial

### Splines



- We have a set of regular-spaced discrete data:  $f_i = f(x_i)$  at  $x_0, x_1, x_2, ..., x_n$
- m-th order polynomial to approximate f(x) for x in  $[x_i, x_{i+1}]$ :

$$p_i(x) = \sum_{k=0}^{m} c_{ik} x^k$$

• Coefficients chosen so  $p_i(x_i)=f_i$  and from smoothness condition: all derivatives (*I*) match at the endpoints

$$p_i^{(l)}(x_{i+1}) = p_{i+1}^{(l)}(x_{i+1}), \quad l = 0, 1, ..., m-1$$

Except for points on the boundary of the curve

### Splines: Determining the coefficients

• There are *n* intervals; in each interval: *m*+1 coefficients for the polynomial

- Total: (m+1)n coefficients:
  - Smoothness condition on interior points: (m)(n-1) equations
  - Curve passing through interior points: (*n*-1) equations
  - Remaining m+1 equations from imposing conditions on derivatives at end points
    - Natural spline: Setting highest-order derivative to zero at both endpoints

### Most popular: Cubic splines, m = 3

Easy to implement

Produce a curve that appears to be seamless

Avoids distortions near the edges

Only piecewise continuous, third derivatives are discontinuous

### Cubic spline example: 3 intervals

• Order: m=3, intervals: n=3, points: x=0, 1, 2, 3

• Constraints: (m+1)n = 12

• Interior point 1:  $p_0(x_1) = f_1$   $p_1(x_1) = f_1$   $p_0'(x_1) = p_1'(x_1)$   $p_0''(x_1) = p_1''(x_1)$ 

• Interior point 2:  $p_1(x_2) = f_2$   $p_2(x_2) = f_2$   $p_1'(x_2) = p_2'(x_2)$   $p_1''(x_2) = p_2''(x_2)$ 



### Cubic spline example: 3 intervals

• At the boundaries:

$$p_0(x_0) = f_0$$
$$p_2(x_3) = f_3$$

• Natural spline, second derivatives at the boundary set to zero

$$p_0''(x_0) = 0$$
$$p_2''(x_3) = 0$$



#### Now solve for the coefficients:

• Linearly interpolate the second derivative:

$$p_i''(x) = \frac{1}{\Delta x} \left[ (x - x_i) p_{i+1}'' - (x - x_{i+1}) p_i'' \right]$$

• Integrate twice:

$$p_i(x) = \frac{1}{6\Delta x} \left\{ p_{i+1}'' \left[ (x - x_i)^3 + 6A(x - x_i) \right] - p_i'' \left[ (x - x_{i+1})^3 + 6B(x - x_{i+1}) \right] \right\}$$

• Impose constraints:  $p_i(x_i) = f_i$ ,  $p(x_{i+1}) = f_{i+1}$ 

#### Now solve for the coefficients:

$$p_i(x) = \alpha_i(x - x_i)^3 + \beta_i(x - x_{i+1})^3 + \gamma_i(x - x_i) + \eta_i(x - x_{i+1})$$

Results:

$$\alpha_i = \frac{p''_{i+1}}{6\Delta x}, \ \beta_i = -\frac{p''_{i}}{6\Delta x}, \ \gamma_i = \frac{-p''_{i+1}\Delta x^2 + 6f_{i+1}}{6\Delta x}, \ \eta_i = \frac{p''_{i}\Delta x^2 - 6f_{i}}{6\Delta x}$$

For now, in terms of second derivative

To get second derivative, use continuity condition

$$p'_{i-1}(x_i) = p'_i(x_i)$$

#### Now solve for the coefficients:

$$p''_{i-1}\Delta x + 4p''_i\Delta x + p''_{i+1}\Delta x = \frac{6}{\Delta x}(f_{i-1} - 2f_i + f_{i+1})$$

- Applies to all interior points
- Natural boundary conditions:

$$p_0'' = 0, \ p_n'' = 0$$

Results in a system of linear equations

### Results in system of linear equations

Can be written as a tridiagonal matrix:

$$\begin{pmatrix} 4\Delta x & \Delta x & & & & \\ \Delta x & 4\Delta x & \Delta x & & & \\ & \Delta x & 4\Delta x & \Delta x & & \\ & & \ddots & \ddots & \ddots & \\ & & & \Delta x & 4\Delta x & \Delta x \end{pmatrix} = \begin{pmatrix} p_1'' \\ p_2'' \\ p_3'' \\ \vdots \\ p_{n-2}'' \\ p_{n-1}'' \end{pmatrix} \frac{6}{\Delta x} \begin{pmatrix} f_0 - 2f_1 + f_2 \\ f_1 - 2f_2 + f_3 \\ f_2 - 2f_3 + f_4 \\ \vdots \\ f_{n-3} - 2f_{n-2} + f_{n-1} \\ f_{n-2} - 2f_{n-1} + f_n \end{pmatrix}$$

We will discuss linear algebra in a later class

### Example: Cubic spline for random numbers



### Example: Derivatives of cubic splines



### Today's lecture:

- Continue discussing interpolation
  - Lagrange Interpolation
  - Cubic splines
- Begin discussing finding roots of functions
  - Bisection method
  - Newton Raphson method
  - Secant method

#### Purpose: Find the root of a function

- Root of a function f(x) is  $x_r$  such that:  $f(x_r) = 0$
- Why? We can cast more general solutions in the form of finding roots.
  - Example: Suppose I have the following equation for velocity of a free-falling mass m with a coefficient of drag  $c_d$ :

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh\left(\sqrt{\frac{gc_d}{m}}t\right)$$

• I would like to find the mass that would give me a velocity of 36 m/s after 4s of free fall. We can do this by rewriting the equation as:

$$f(m) = \sqrt{\frac{gm}{c_d}} \tanh\left(\sqrt{\frac{gc_d}{m}}t\right) - v(t)$$

• And finding the root of f(m) for t = 4s and v = 36 m/s

### Purpose: Find the root of a function

- For very simple functions, we can find the root analytically
  - For more complicated functions, we must do this numerically
- First rule of root finding: If possible, plot the function to get an idea of where roots are, how many, etc.:



### Bisection method

- 1. Choose two initial guesses for the root, a lower  $(x_i)$  and upper  $(x_u)$ 
  - Chosen such that the function evaluated at  $x_i$  and  $x_{ij}$  have different signs
  - This can be checking by ensuring that:  $f(x_i) f(x_u) < 0$
- 2. An estimate for the root is determined as the midpoint between the guesses  $x_r = \frac{x_l + x_u}{2}$
- 3. Make the following evaluations to determine in which subinterval the root lies, and thus obtain a refined guess:
  - If  $f(x_l) f(x_r) < 0$ , set  $x_u = x_r$ , return to step 2
  - If  $f(x_i) f(x_r) > 0$ , set  $x_i = x_r$ , return to step 2
  - If  $f(x_l) f(x_r) = 0$  to some tolerance,  $x_r$  is the root and the calculation is complete

### Newton-Raphson method

• Let  $x_r$  be a root of f(x). Expand f(x) in a Taylor series about around a different point  $x_0$  that is close to  $x_r$ :

$$f(x) \simeq f(x_0) + f'(x_0)(x - x_0)$$

• Then:

$$f(x_r) = 0 \simeq f(x_0) + f'(x_0)(x_r - x_0)$$

• So:

$$x_r \simeq x_0 - \frac{f(x_0)}{f'(x_0)}$$

• Of course, this is only accurate if  $x_0$  is close to  $x_r$ , but we can use this relation to refine the guess for the root

### Newton-Raphson method procedure

- 1. Make an initial guess for the root:  $x_0$
- 2. Use the Taylor series expansion to find a better estimate of the root:

$$x_1 \simeq x_0 - \frac{f(x_0)}{f'(x_0)}$$

• 3. Use  $x_1$  as an improved estimate at the root and employ the Taylor series expansion again to get a better estimate  $x_2$ 

• Repeat process until the answer is accurate enough at the *n*th estimate:

$$x_n \simeq x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

Geometrical Interpretation of Newton-Raphson Iteration



## Failure of Newton-Raphson

• Example of a simple function that will defeat Newton-Raphson Iteration:



 Each estimate gets further from the true root. Estimates are diverging not converging

- Could stop when we reach some maximum number of iterations
  - Estimate may be no where near the root
  - We can consider this case a failure of the method and warn user about it.



- Could stop when we reach some maximum number of iterations
  - Estimate may be no where near the root
  - We can consider this case a failure of the method and warn user about it.
- Could stop when value of the function evaluated at the nth estimate less than small number :  $|f(x_n)| < \epsilon$

• But this can be deceptive; final estimate may not be near the root, might just be

close to zero



- Could stop when we reach some maximum number of iterations
  - Estimate may be no where near the root
  - We can consider this case a failure of the method and warn user about it.
- Could stop when value of the function evaluated at the nth estimate less than small number :  $|f(x_n)| < \epsilon$ 
  - But this can be deceptive; final estimate may not be near the root, might just be close to zero
- Could stop when change between estimates becomes small relative to the current (nth) estimate:  $|x_{n+1} x_n| < \epsilon |x_n|$ 
  - Better, but still fails when root is located at zero



- Could stop when we reach some maximum number of iterations
  - Estimate may be no where near the root
  - We can consider this case a failure of the method and warn user about it.
- Could stop when value of the function evaluated at the nth estimate less than small number :  $|f(x_n)| < \epsilon$ 
  - But this can be deceptive; final estimate may not be near the root, might just be close to zero
- Could stop when change between estimates becomes small relative to the current (nth) estimate:  $|x_{n+1} x_n| < \epsilon |x_n|$ 
  - Better, but still fails when root is located at zero
- So let's use:  $|x_{n+1}-x_n|<\begin{cases} \epsilon|x_n|, & \text{when } |x_n|\neq 0\\ \epsilon, & \text{when } |x_n|=0 \end{cases}$

## Pseudocode of Newton-Raphson Algorithm

- 1. Choose initial guess at the root  $(x_0)$ , and the convergence tolerance  $(\varepsilon)$ .
- 2. Loop through n up to a maximum number  $N_{\text{max}}$  (exit and tell the user that the root finding has failed if it reaches  $N_{\text{max}}$ )
- 3. Make sure  $f'(x) \neq 0$
- 4. Compute new estimate of root:  $x_n \simeq x_{n-1} \frac{f(x_{n-1})}{f'(x_{n-1})}$
- 5. Check convergence criteria:

$$|x_{n+1} - x_n| < \begin{cases} \epsilon |x_n|, & \text{when } |x_n| \neq 0 \\ \epsilon, & \text{when } |x_n| = 0 \end{cases}$$

## Example: $f(x) = x^{3} + 6$



• See NR\_root.ipynb

### Secant method

- Similar to the Newton-Raphson method, but does not require calculating the derivative of the function
- Start with two initial guesses,  $x_{i-1}$  and  $x_i$
- Use finite difference derivative to get a new guess  $x_{i+1}$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Proceed in the same way as the Newton-Raphson method

## Summary of root-finding methods

#### • Bisection:

- Robust (with appropriate initial guesses)
- Slow, each iteration reduces error by a factor of two
- Need to make sure root is within initial guesses

#### Newton-Raphson:

- Fast: often only takes a few iterations
- Need to know derivative of function, and they must exist
- Can diverge, e.g., in cases with small second derivatives

#### Secant method

- Similar convergence speed as NR method
- Don't need analytical derivatives
- Same divergence properties as NR method
- Numerical derivatives may be noisy

#### After class tasks

- Homework 1 has been posted
  - Let me know if you have HW questions or questions/issues on github classroom
  - Office hours: Mondays, 3:00pm to 4:00pm; Thursdays, 11:05am to 1:00pm
    - Feel free to send me an email, and remember, if you push your changes, I should be able to see them

#### Readings:

- Pang Section 2.1 and 3.3
- Wikipedia article on Chebyshev nodes
- Myths about polynomial interpolation
- Wikipedia page on root finding