TD - Support Vector Machines

Exercise 1 (preliminaries). Set $\mathcal{X} = \mathbb{R}^d$. Define the hyperplane

$$\mathcal{H}_{w,b} = \{ x \in \mathcal{X} : \langle w, x \rangle + b = 0 \}$$

for some fixed $w \in \mathcal{X}$ ($w \neq 0$) and $b \in \mathbb{R}$. For a fixed $z \in \mathcal{X}$, consider the problem

$$\min_{x \in \mathcal{H}_{w,b}} \frac{1}{2} ||x - z||^2.$$

- 1. Write the Lagragian function $L(x; \nu)$ associated with this problem.
- 2. Solve the KKT conditions and characterize the solution.
- 3. Prove that the distance of a point z to \mathcal{H} is equal to

$$d(z, \mathcal{H}_{w,b}) = \frac{|\langle w, z \rangle + b|}{\|w\|}.$$

Exercise 2 (linearly separable case). Consider a training set formed by couples (x_i, y_i) for $i \in \{1, ..., n\}$ where x_i is a feature vector in \mathcal{X} and $y_i \in \{-1, +1\}$ for all i. The hyperplane $\mathcal{H}_{w,b}$ is called *separating* if

$$\forall i, \ y_i(\langle w, x_i \rangle + b) > 0.$$

In the sequel, we assume that a separating hyperplane exists. Among all separating hyperplanes, we seek to find the one which maximizes the minimum distance

$$f(w,b) = \min_{i=1,\dots,n} d(x_i, \mathcal{H}_{w,b}).$$

1. Show that if (w, b) defines a separating hyperplane, then f(w, b) = c(w, b) / ||w|| where $c(w, b) = \min_i y_i (\langle w, x_i \rangle + b)$.

Thus, we are interested in solving the problem

$$\max_{w,b} \frac{c(w,b)}{\|w\|} \text{ such that } \forall i, \ y_i(\langle w, x_i \rangle + b) \ge 0.$$

Let (w^*, b^*) be a solution and define

$$v^* = \frac{w^*}{c(w^*, b^*)}$$
 and $a^* = \frac{b^*}{c(w^*, b^*)}$

2. Justify that (w^*, b^*) and (v^*, a^*) define the same separating hyperplane.

3. Prove that (v^*, a^*) solves the optimization problem

$$\max_{v,a} \frac{1}{\|v\|} \text{ such that } \forall i, \ y_i(\langle v, x_i \rangle + a) \ge 1.$$

4. Deduce that (v^*, a^*) solves the optimization problem

$$\min_{v,a} \frac{\|v\|^2}{2} \text{ such that } \forall i, 1 - y_i(\langle v, x_i \rangle + a) \le 0.$$
 (1)

- 5. Write the Lagrangian $L(v, a; \phi)$.
- 6. Write the KKT conditions.
- 7. Let $(v, a; \phi)$ be a saddle point of the Lagrangian. Show that ϕ_i is non-zero only if $y_i(\langle v, x_i \rangle + a) = 1$.

The training points (x_i, y_i) satisfying the above property are the closest to the hyperplane $\mathcal{H}_{v.a}$. The corresponding x_i 's are often called *support vectors*.

- 8. If one is given a dual solution ϕ^* , how to recover a primal solution (v^*, a^*) from ϕ^* ? Define the $n \times n$ matrices $K = (\langle x_i, x_j \rangle)_{i,j=1...n}$, $D = \text{diag}(y_1 \dots y_n)$ and $\mathbf{1}^T = (1, \dots, 1)$.
 - 9. Prove that the dual problem reduces to

$$\min_{\substack{\phi \geq 0 \\ y^T \phi = 0}} \frac{1}{2} \phi^T D K D \phi - \mathbf{1}^T \phi.$$

- 10. Give one example of an algorithm that can be used to solve the dual problem (provide the main principle, do not write explicitly the algorithm).
- 11. Assume that this algorithm has identified a dual solution ϕ^* . Write explicitly the classifier as a function of ϕ^* .
- 12. What part of the training data do you need in order to implement the above classifier?

Exercise 3 (non separable case). Consider the case when a separable hyperplane might not exist. The constraints $1 - y_i(\langle v, x_i \rangle + a) \leq 0$ in Problem (1) may not be jointly feasible. For a fixed c > 0, we consider the relaxed problem

$$\min_{v,a} \frac{\|v\|^2}{2} + c \sum_{i} \xi_i \text{ such that } \forall i, 1 - y_i(\langle v, x_i \rangle + a) \le \xi_i \text{ and } \xi_i \ge 0.$$
 (2)

- 1. How many constraints has this problem?
- 2. Write the Lagrangian function.
- 3. Show that the dual problem reduces to

$$\min_{\substack{c \geq \phi \geq 0 \\ y^T \phi = 0}} \frac{1}{2} \phi^T D K D \phi - \mathbf{1}^T \phi \,.$$