ЗАДАНИЕ на лабораторную работу №3

Тема: Программно- алгоритмическая реализация моделей на основе ОДУ второго порядка с краевыми условиями II и III рода.

Цель работы. Получение навыков разработки алгоритмов решения краевой задачи при реализации моделей, построенных на ОДУ второго порядка.

Исходные данные.

1. Задана математическая модель.

Квазилинейное уравнение для функции T(x)

$$\frac{d}{dx}\left(\lambda(T)\frac{dT}{dx}\right) - 4 \cdot k(T) \cdot n_p^2 \cdot \sigma \cdot (T^4 - T_0^4) = 0 \tag{1}$$

Краевые условия

$$\begin{cases} x = 0, -\lambda(T(0)) \frac{dT}{dx} = F_0, \\ x = l, -\lambda(T(l)) \frac{dT}{dx} = \alpha(T(l) - T_0) \end{cases}$$

2. Функции $\lambda(T)$, k(T) заданы таблицей

T,K	λ , BT/(cm K)	T,K	k, см ⁻¹
300	1.36 10 ⁻²	293	2.0 10 ⁻²
500	1.63 10 ⁻²	1278	5.0 10 ⁻²
800	1.81 10 ⁻²	1528	7.8 10 ⁻²
1100	1.98 10 ⁻²	1677	1.0 10 ⁻¹
2000	$2.50 \ 10^{-2}$	2000	1.3 10 ⁻¹
2400	2.74 10 ⁻²	2400	2.0 10 ⁻¹

3. Разностная схема с разностным краевым условием при x=0. Получена в Лекции №7, и может быть использована в данной работе. Самостоятельно надо получить интегро -интерполяционным методом разностный аналог краевого условия при x=l, точно так же, как это было сделано применительно к краевому условию при x=0 в указанной

лекции. Для этого надо проинтегрировать на отрезке $[x_{N-1/2}, x_N]$ записанное выше уравне-

ние (1) и учесть, что поток
$$F_N = \alpha_N (y_N - T_0)$$
, а $F_{N-1/2} = \chi_{N-1/2} \frac{y_{N-1} - y_N}{h}$.

4. Значения параметров для отладки (все размерности согласованы)

 $n_{p} = 1.4$ — коэффициент преломления,

l = 0.2 см - толщина слоя,

 $T_0 = 300 \text{K} - \text{температура окружающей среды,}$

 σ =5.668 10^{-12} Bт/(см 2 K 4)- постоянная Стефана- Больцмана,

 $F_{_0}$ =100 Bт/см 2 - поток тепла,

 $\alpha = 0.05 \; \mathrm{Bt/(cm^2 \, K)} - коэффициент теплоотдачи.$

5. Выход из итераций организовать по температуре и по балансу энергии, т.е.

$$\max \left| rac{y_n^s - y_n^{s-1}}{y_n^s} \right| \le \mathcal{E}_1$$
, для всех $n = 0,1,...N$.

И

$$\max \left| \frac{f_1^s - f_2^s}{f_1^s} \right| \le \varepsilon_2,$$

где

$$f_1 = F_0 - \alpha (T(l) - T_0)$$
 и $f_2 = 4n_p^2 \sigma \int_0^l k(T(x))(T^4(x) - T_0^4) dx$.

Физическое содержание задачи (для понимания получаемых результатов при отладке программы).

Сформулированная математическая модель описывает температурное поле T(x) в плоском слое с внутренними стоками тепловой энергии. Можно представить, что это стенка из полупрозрачного материала, например, кварца или сапфира, нагружаемая тепловым потоком на одной из поверхностей (у нас - слева). Другая поверхность (справа) охлаждается потоком воздуха, температура которого равна T_0 . Например, данной схеме удовлетворяет цилиндрическая оболочка, ограничивающая разряд в газе, т.к. при больших диаметрах цилиндра стенку можно считать плоской. При высоких температурах раскаленный слой начинает объемно излучать, что описывает второе слагаемое в (1) (закон Кирхгофа). Зависимость от температуры излучательной способности материала очень резкая. При низких температурах стенка излучает очень слабо, второе слагаемое в уравнении

(1) практически отсутствует. Функции $\lambda(T), k(T)$ являются, соответственно, коэффициентами теплопроводности и оптического поглощения материала стенки.

Результаты работы.

- 1. Представить разностный аналог краевого условия при x = l и его краткий вывод интегро -интерполяционным методом.
- 2. График зависимости температуры T(x) от координаты x при заданных выше параметрах.

Выяснить, как сильно зависят результаты расчета T(x) и необходимое для этого количество итераций от начального распределения температуры и шага сетки.

3. График зависимости T(x) при $F_0 = -10 \text{ BT/cm}^2$.

Cnpaвка. При отрицательном тепловом потоке слева идет съем тепла, поэтому производная $T^{'}(x)$ должна быть положительной.

4. График зависимости T(x) при увеличенных значениях α (например, в 3 раза). Сравнить с п.2.

C при увеличении теплосъема и неизменном потоке F_0 уровень температур T(x) должен снижаться, а градиент увеличиваться.

5. График зависимости T(x) при $F_0 = 0$.

Cправка. В данных условиях тепловое нагружение отсутствует, причин для нагрева нет, температура стержня должна быть равна температуре окружающей среды T_0 (разумеется с некоторой погрешностью, определяемой приближенным характером вычислений).

. 6. Для указанного в задании исходного набора параметров привести данные по балансу энергии, т.е. значения величин

$$f_1 = F_0 - \alpha(T(l) - T_0)$$
 и $f_2 = 4n_p^2 \sigma \int_0^l k(T(x))(T^4(x) - T_0^4) dx$.

Каковы использованные в работе значения точности выхода из итераций \mathcal{E}_1 (по температуре) и \mathcal{E}_2 (по балансу энергии)?

Вопросы при защите лабораторной работы.

Ответы на вопросы дать письменно в Отчете о лабораторной работе.

- 1. Какие способы тестирования программы можно предложить?
- 2. Получите простейший разностный аналог нелинейного краевого условия при x = l

$$x = l$$
, $-k(l)\frac{dT}{dx} = \alpha_N (T(l) - T_0) + \varphi(T)$,

где $\varphi(T)$ - заданная функция.

Производную аппроксимируйте односторонней разностью.

- 3. Опишите алгоритм применения метода прогонки, если при x = 0 краевое условие квазилинейное (как в настоящей работе), а при x = l, как в п.2.
- 4. Опишите алгоритм определения **единственного** значения сеточной функции y_p в **одной** заданной точке p. Использовать встречную прогонку, т.е. комбинацию правой и левой прогонок (лекция №8). Оба краевых условия линейные.

Методика оценки работы.

Модуль 2, срок - 12-я неделя.

- 1. Задание полностью выполнено 6 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на все вопросы 10 баллов (максимум).
- 3. В дополнение к п.1 даны удовлетворительные ответы на отдельные вопросы от 7 до 9 баллов.