Stat review and Data Formats

CSCI 347

Common Data Formats

> Data can be represented by a *data matrix D*

$$X_{1}$$
 X_{2} X_{3} X_{4}
 x_{1} 0.2 23 A 5.7
 x_{2} 0.4 1 B 5.4
 x_{3} 1.8 0.5 D 5.2
 x_{4} 5.6 50 C 5.1
 x_{5} -0.5 34 V 5.3
 x_{6} 0.4 19 A 5.4
 x_{7} 1.1 11 B 5.5

Common Data Formats

- > Data can be represented by a *data matrix D*
 - Columns represents properties of interest/attributes of data

```
X_1
            \boldsymbol{X_2}
                X_3
                      X_4
            23
x_1
    0.4
\boldsymbol{x_2}
                 B 5.4
     1.8
x_3
            0.5 D 5.2
     5.6
            50 C 5.1
x_5 - 0.5
            34 V 5.3
    0.4
            19 A 5.4
x_6
x_7
    1.1
            11 B 5.5
```

Common Data Formats

- > Data can be represented by a *data matrix D*
 - Columns represents properties/attributes of data

The rows represent entities and their observed values for each attribute

$$D = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 \\ X_1 & 0.2 & 23 & A & 5.7 \\ X_2 & 0.4 & 1 & B & 5.4 \\ X_3 & 1.8 & 0.5 & D & 5.2 \\ X_4 & 5.6 & 50 & C & 5.1 \\ X_5 & -0.5 & 34 & V & 5.3 \\ X_6 & 0.4 & 19 & A & 5.4 \\ X_7 & 1.1 & 11 & B & 5.5 \end{pmatrix}$$

Example

		temperature	type	weight	length
D =	specimen 1	1	\boldsymbol{A}	62.3	21
	specimen 2	23	C	45.9	0.2
	specimen 3	45	B	78.2	5
	specimen 4	15	B	15.3	30
	specimen 5	21	\boldsymbol{A}	18.23	64
	specimen 6	- 2	F	19.54	111
	specimen 7	2.6	\boldsymbol{A}	56.23	23

Real example from UCI Machine learning repository

- > Link: https://archive.ics.uci.edu/datasets
- > https://archive.ics.uci.edu/dataset/502/online+retail+ii
- > Online Retail II data set
 - This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011. The company mainly sells unique all-occasion giftware. Many customers of the company are wholesalers.
 - 1067371 rows (entities), 8 columns (attributes)

InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/108 : 26	2.55	17850	UnitedKingdom
536365	71053	WHITE METAL LANTERN	6	12/1/108 : 26	3.39	17850	UnitedKingdom
536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/108 : 26	2.75	17850	UnitedKingdom
536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/108 : 26	3.39	17850	UnitedKingdom
536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/108 : 26	3.39	17850	UnitedKingdom
536365	22752	SET 7 BABUSHKA NESTING BOXES	2	12/1/108 : 26	7.65	17850	UnitedKingdom
536365	21730	GLASS STAR FROSTED T-LIGHT HOLDER	6	12/1/108 : 26	4.25	17850	UnitedKingdom
536366	22633	HAND WARMER UNION JACK	6	12/1/108 : 28	1.85	17850	UnitedKingdom
:	:	:	:	:	:		

More data types

- > Strings (DNA, proteins)
- > Text
- > Time-series (A time series is a sequence of data points collected, recorded, or observed at successive points in time, often at regular intervals.)
 - Common in finance, economics, weather data
- > Images
- > Videos

These types of data may need special technique for analysis.

Common Data Types

> Data is most often numerical or categorical

	temperature	/type	weight	/length	
specimen 1	1	A	62.3	21	1
specimen 2	23	$\boldsymbol{\mathcal{C}}$	45.9	0.2	
specimen 3	45	B	78.2	5	
specimen 4	15	B	15.3	30	
specimen 5	21	A	18.23	64	
specimen 6	- 2	F	19.54	111	1
specimen 7	2.6	A	56.23	23	
	specimen 2 specimen 3 specimen 4 specimen 5 specimen 6	specimen 1 1 specimen 2 23 specimen 3 45 specimen 4 15 specimen 5 21 specimen 6 -2	specimen 11 A specimen 223 C specimen 345 B specimen 415 B specimen 521 A specimen 6 -2 F	specimen 1 1 A 62.3 specimen 2 23 C 45.9 specimen 3 45 B 78.2 specimen 4 15 B 15.3 specimen 5 21 A 18.23 specimen 6 -2 F 19.54	specimen 1 1 A 62.3 21 specimen 2 23 C 45.9 0.2 specimen 3 45 B 78.2 5 specimen 4 15 B 15.3 30 specimen 5 21 A 18.23 64 specimen 6 -2 F 19.54 111

Numerical attributes

- > Discrete
 - Numeric attribute that can take finite or countably infinite set of values
- > Continuous
 - Numeric attributes that can take any real value

Numerical attributes

- > Interval-scaled
 - Only differences of the attribute make sense.
 - Ex: Temperature
- > Ratio-scaled
 - Can compute both differences as well as ratios between values.
 - Ex: Age
- > Why do we care?
 - Choice of Analytical Methods:
 - You can calculate ratios or percentages with ratio data but not with interval -data.
 - > You can apply logarithmic transformations to ratio data, but it makes less sense for interval data without a true zero.

Categorical attributes

- A categorical attribute is one that has a set-valued domain composed of a set of symbols.
- > Nominal categorical attribute
 - Categories have no inherent order
 - > Domain(Blood_Type) = {A, B, AB, O}
- > Ordinal categorical attribute
 - Attribute values are ordered.
 - Domain(Pain_Intensity) = {Mild, Moderate, Severe}
- > Why? Choice of statistical methods to use.
 - Mode is always meaningful but does not take the leverage of ordinal data.
 - Median and percentiles require inherent order—good for ordinal data.

> Let's look at some statistical measures (recap)

- > Statistics: *Mean*
- > Estimated mean (sample mean) of attribute \mathbf{j} : $\widehat{\mu}_j = \frac{1}{n} \cdot \sum_{i=1}^n x_{ij}$

```
X_1 X_2 X_3 X_4

x_1 0.2 23 A 5.7

x_2 0.4 1 B 5.4

x_3 1.8 0.5 D 5.2

x_4 5.6 50 C 5.1

x_5 -0.5 34 V 5.3

x_6 0.4 19 A 5.4

x_7 1.1 11 B 5.5
```

- > Statistics: *Mean*
- > Estimated mean (sample mean) of attribute \mathbf{j} : $\widehat{\mu}_j = \frac{1}{n} \cdot \sum_{i=1}^n x_{ij}$

$$X_1$$
 X_2 X_3 X_4
 x_1 0.2 23 A 5.7
 x_2 0.4 1 B 5.4
 x_3 1.8 0.5 D 5.2
 $D = x_4$ 5.6 50 C 5.1
 x_5 -0.5 34 V 5.3
 x_6 0.4 19 A 5.4
 x_7 1.1 11 B 5.5

- Recall that $\hat{\mu}_j = \frac{1}{n} \cdot \sum_{i=1}^n x_{ij}$
- > Therefore, the mean of the attribute 2, $\hat{\mu}_2$ is:

$$\hat{\mu}_2 = \frac{1}{7} \cdot \sum_{i=0}^{7} x_{ij} = x_{12} + x_{22} + x_{32} + x_{42} + x_{52} + x_{62} + x_{72}$$
$$= \frac{1}{7} \cdot (23 + 1 + 0.5 + 50 + 34 + 19 + 11) = 19.78$$

- > Statistics: Variance
- Estimated variance of attribute j: $\hat{\sigma}_j^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_{ij} \hat{\mu}_j)^2$

$$X_1$$
 X_2 X_3 X_4
 x_1 0.2 23 A 5.7
 x_2 0.4 1 B 5.4
 x_3 1.8 0.5 D 5.2
 x_4 5.6 50 C 5.1
 x_5 -0.5 34 V 5.3
 x_6 0.4 19 A 5.4
 x_7 1.1 11 B 5.5

- > Statistics: Variance
- Estimated variance of attribute 2:

$$\hat{\sigma}_2^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_{i2} - \hat{\mu})^2$$

Thus, the estimated variance of X_2 in the following example is:

$$\widehat{\sigma}_2^2 = \frac{1}{6} \cdot ((23 - 19.78)^2 + (1 - 19.78)^2 + (0.5 - 19.78)^2 + (50 - 19.78)^2 + (34 - 19.78) + (19 - 19.78)^2 + (11 - 19.78)^2)$$

$$= 321.3214$$

- > Statistics: *Standard deviation*
- > Estimated standard deviation of attribute \mathbf{j} : $\hat{\boldsymbol{\sigma}}_{j} = \sqrt{\hat{\sigma}_{j}^{2}}$ (square root of the estimated variance)
- \rightarrow The estimated standard deviation of X_2 in the following example is:

$$\hat{\sigma}_2 = \sqrt{\hat{\sigma}_2^2} = \sqrt{321.3214} = 17.925$$

```
X_1 X_2 X_3 X_4

x_1 0.2 23 A 5.7

x_2 0.4 1 B 5.4

x_3 1.8 0.5 D 5.2

D = x_4 5.6 50 C 5.1

x_5 -0.5 34 V 5.3

x_6 0.4 19 A 5.4

x_7 1.1 11 B 5.5
```

- > Statistics: *Multi-dimensional mean*
- > Estimated mean of entire (numerical) data set.

$$\hat{\mu} = \frac{1}{n} \cdot \sum_{i=0}^{n} x_i$$

$$X_1$$
 X_2 X_3 X_4
 x_1 0.2 23 A 5.7
 x_2 0.4 1 B 5.4
 x_3 1.8 0.5 D 5.2
 x_4 5.6 50 C 5.1
 x_5 -0.5 34 V 5.3
 x_6 0.4 19 A 5.4
 x_7 1.1 11 B 5.5

- > Statistics: Multi-dimensional mean
- > Estimated mean of entire (numerical) data set.

$$\hat{\mu} = \frac{1}{n} \cdot \sum_{i=0}^{n} x_i$$

$$\hat{\mu} = \frac{1}{7} ((0.2\ 23\ 5.7) + (0.4\ 1\ 5.4) + (1.8\ 0.5\ 5.2) + (5.6\ 50\ 5.1) + (-0.5\ 34\ 5.3) + (0.4\ 19\ 5.4) + (1.1\ 11\ 5.5))$$

$$= (\mathbf{1.3}\ \mathbf{19.8}\ \mathbf{5.4})$$

- > Statistics: *Covariance*
- > What is the covariance between two attributes in a numerical data set?
- > Ex: Covariance between attribute 1 and 2?

$$\hat{\sigma}_{12} = \frac{1}{n-1} \cdot \sum_{i=0}^{n} (x_{i1} - \hat{\mu}_1) \cdot (x_{i2} - \hat{\mu}_2)$$

- > Statistics: *Covariance*
- > What is the covariance between two attributes in a numerical data set?
- > Ex: Covariance between attribute 1 and 2?

$$\hat{\sigma}_{12} = \frac{1}{n-1} \cdot \sum_{i=0}^{n} (x_{i1} - \hat{\mu}_1) \cdot (x_{i2} - \hat{\mu}_2)$$

		X_1	X_2	X_3
	x_1	0.2	23	5.7
	x_2	0.4	1	5.4
, D -	x_3	1.8	0.5	5.2
$\rightarrow D =$	x_4	5.6	50	5.1
	x_5	-0.5	34	5.3
	x_6	0.4	19	5.4
	x_7	1.1	11	5.5

What are the possible values for the covariance?

- 1. Only positive values
- 2. Between -1 to +1
- 3. Between $-\infty$ to $+\infty$

- > Positive covariance (> 0): Indicates that two variables tend to increase or decrease together.
- > Negative covariance (< 0): Indicates that when one variable increases, the other tends to decrease.
 - For example, outdoor temperature and heating cost often have negative covariance.
- > Zero covariance (= 0): Indicates no linear relationship between the variables

In class activity

- > Statistics: *Covariance*
- > Ex: Covariance between attribute 1 and 2?

$$\hat{\sigma}_{12} = \frac{1}{n-1} \cdot \sum_{i=0}^{n} (x_{i1} - \hat{\mu}_1) \cdot (x_{i2} - \hat{\mu}_2)$$

First find $\hat{\mu}_1$ and $\hat{\mu}_2$: $\hat{\mu}_1 = 1.3, \, \hat{\mu}_2 = 19.78$

 \rightarrow Next, we use $\hat{\mu}_1$ and $\hat{\mu}_2$ to calculate $\hat{\sigma}_{12}$

$$\hat{\sigma}_{12} =$$

$$\frac{1}{6} \cdot \left((0.2 - 1.3) \cdot (23 - 19.8) + (0.4 - 1.3) \cdot (1 - 19.8) + (1.8 - 1.3) \cdot (0.5 - 19.8) + (5.6 - 1.3) \cdot (50 - 19.8) \right) + (-0.5 - 1.3) \cdot (34 - 19.8) + (0.4 - 1.3) \cdot (19 - 19.8) + (1.1 - 1.3) \cdot (11 - 19.8)$$

$$\hat{\sigma}_{12} = 18.4$$

- > Statistics: *Correlation coefficient*
- > The correlation coefficient between attribute j and k is:

$$\hat{\rho}_{xj} = \frac{\hat{\sigma}_{xj}}{\hat{\sigma}_x \cdot \hat{\sigma}_i} = \frac{cov(x, y)}{std(x) \cdot std(y)}$$

- > What is the possible range of values for correlation coefficient?
 - Only positive values
 - Between -1 to +1
 - Between -∞ to +∞

- > What does correlation coefficient of 1 mean?
 - Variables move in the same direction
 - A straight line with positive slope fits all points perfectly.
- > What does correlation coefficient of -1 mean?
 - Variables move in exactly opposite directions
 - A straight line with negative slope fits all points perfectly.
 - > Temperature in Celsius vs. distance from a heat source
- > Zero correlation (0)
 - No linear relationship between variables.
 - Note: Could still have non-linear relationship.

> What is the correlation coefficient between attribute 1 and 2?

$$\lambda_1 \qquad \lambda_2 \qquad \lambda_3 \qquad \qquad \lambda_1 \qquad 0.2 \qquad 23 \qquad 5.7 \qquad \qquad \lambda_2 \qquad 0.4 \qquad 1 \qquad 5.4 \qquad \qquad \lambda_3 \qquad 1.8 \qquad 0.5 \qquad 5.2 \qquad \qquad \hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1 \cdot \hat{\sigma}_2} = \frac{(18.4)}{(4.14) \cdot (17.925)} = 0.247 \qquad \qquad \lambda_5 \qquad -0.5 \qquad 34 \qquad 5.3 \qquad \qquad \lambda_6 \qquad 0.4 \qquad 19 \qquad 5.4 \qquad \qquad \lambda_7 \qquad 1.1 \qquad 11 \qquad 5.5$$

Qustions

- > If $\hat{\rho}_{xy} = 0.7$ which one of the following statement(s) are true?
 - A: An increase in x will cause an increase in y
 - B: An increase in y will cause an increase in x
 - C: x and y move together
 - D: All above
- \rightarrow Is $\hat{\rho}_{xy} = \hat{\rho}_{yx}$?
 - True
 - False

Correlation and Causality

- Correlation DOES NOT imply causality!
- > Check <u>spurious-correlation</u>
- Correlation doesn't have direction, but causality has direction

Covariance matrix

> The covariance matrix Σ stores the covariance between each pair of attributes, as well as the variance for each attribute:

$$D = \begin{array}{cccccc} & X_1 & X_2 & X_3 \\ x_1 & 0.2 & 23 & 5.7 \\ x_2 & 0.4 & 1 & 5.4 \\ x_3 & 1.8 & 0.5 & 5.2 \\ x_4 & 5.6 & 50 & 5.1 \\ x_5 & -0.5 & 34 & 5.3 \\ x_6 & 0.4 & 19 & 5.4 \\ x_7 & 1.1 & 11 & 5.5 \end{array}$$

$$\Sigma = \left(egin{array}{ccc} \widehat{\sigma}_1^2 & \widehat{\sigma}_{12} & \widehat{\sigma}_{13} \\ \widehat{\sigma}_{21} & \widehat{\sigma}_2^2 & \widehat{\sigma}_{23} \\ \widehat{\sigma}_{31} & \widehat{\sigma}_{32} & \widehat{\sigma}_3^2 \end{array}
ight)$$

Covariance matrix

> The covariance matrix Σ stores the covariance between each pair of attributes, as well as the variance for each attribute:

$$D = \begin{array}{cccccc} & X_1 & X_2 & X_3 \\ x_1 & 0.2 & 23 & 5.7 \\ x_2 & 0.4 & 1 & 5.4 \\ x_3 & 1.8 & 0.5 & 5.2 \\ x_4 & 5.6 & 50 & 5.1 \\ x_5 & -0.5 & 34 & 5.3 \\ x_6 & 0.4 & 19 & 5.4 \\ x_7 & 1.1 & 11 & 5.5 \end{array}$$

$$\Sigma = \left(\begin{array}{cccc} 4.1 & 18.4 & -0.26 \\ 18.42 & 321.32 & -1.09 \\ -0.26 & -1.09 & 0.04 \end{array}\right)$$

> Statistics: *Total Variance*

*x*₇ 1.1 11 5.5

> What is the total variance in a numerical data set?.

Total variance

- > Provides insight about overall variability or spread of the dataset.
- > Higher variance mean data points are more spread out.
- Lower variance mean the data points are closer to the mean, indicating less variability (or consistency)

Mean Centering

- > Mean-centering shifts the data matrix mean to 0.
- $> Z_i = x_i \widehat{\mu_i}$
- > For each attribute subtract the mean from the instance value.

Mean Centering

- > Mean-centering shifts the data matrix mean to 0.
- $\rightarrow Z_i = x_i \widehat{\mu_i}$
- > For each attribute subtract the mean from the instance value.

Mean Centering

Why mean centering?

- > Removing bias of the mean
 - Ensures the analysis focuses on the variability and relationship within the data rather than the absolute values of the variable
 - For many statistical techniques magnitude of the data does not matter, but their relative relationships do.
- > Numerical stability
 - By mean centering values of the data typically becomes smaller and balanced, which improves the stability of mathematical operations.
- > Improves visualization of data. (data is centered around the origin)
 - Refer previous figure.
- > Does not change the variance