Intelligence Fault Analysis System 需求

稿

1.摘要

因應智慧製造的概念,提出了智能 FA 的需求,希望接此提升新產品導入時對於 失效分析的效益與速度。(失效分析以下簡稱 FA)

以往在 FA 時,工程師收到每件失敗的項目,都必須要重新看 log 檔案協助做分析,來判定 FA 的結果,經驗無法完整傳承紀錄給其他的工程師,因此有了智能 FA 的想法,利用深度學習的模型,來學習每次的 FA 成果,下次再遇到同樣的 Fault,模型便會判斷出是否為類似的錯誤,進而協助工程師更快的完成失效分析。

2.定義

本需求的核心功能在於檢測機台的 log 判斷,對於通過或者失敗的 log 檔案做訓練更新模型。

一開始模型是零基礎,所有的 log 皆須有機器或者工程師上標籤,標註為成功或者失敗,模型記住後,下次再有類似或同樣 log 產生時,便可以預測出結果給 FA工程施作參考。

3.流程

主要的精隨在於 feedback 概念,該觀念已經行之有年,透過更新的標籤與訓練主動更新模型,讓判斷的經驗能一直累積下去。 系統概念流程圖如下:

4.開發事項

1. 選定開發模型

2. 選定開發工具

暫定為先統一用 python 或 C++撰寫模型與核心街口 其他資料的輸出輸入還是以 web 為主 目前其他系統主要是以 java 作為開發語言,再行評估

5.開發平台需求

礙於跨語言的銜接問題,最完整的方式如下:

前端: web 開發:功能流程顯示, log 檔案維護

後端: web 開發,資料的存儲等等的流程

模型核心: 以 python or c++ 為主

上述為完整系統的開發需求

另外因應時程關係可以先將所有功能以 python 做一版實現 後續測試成功後,再將功能分拆重新因應系統銜接,讓該系統 能上線在 Web 系統的框架內

6.開發順序

- 1.核心模型功能 模型輸入,訓練,輸出,預測,更新輸出結果。
- 2. web 前端 log 等維護 ui 開發
- 3. web 後端 log 檔案等資料維護開發