Synthèse du cours Algèbre linéaire

Nicolas Englebert

Février 2014

Table des matières

1	Structure		3		3.4	Composée de deux AL	11
	1.1	Groupe	3		3.5	Matrices d'AL et change-	
	1.2	Anneau	4			ment de base	11
	1.3	Corps - champ	5		3.6	Espace vectoriel des AL .	12
_	_	*** · • •			3.7	Noyeau d'une AL	12
2	Espaces Vectoriels		6		3.8	Image d'une AL	13
	2.1	Définition	6		3.9	Lien entre noyau et image	
	2.2	Exemples d'EV	6			d'une AL	13
	2.3	Prorpiétés des espaces	C		3.10	Formes linéaires - Espace	
	0.4	vectoriels	6			dual	14
	2.4	Sous-espaces vectoriels	6 7				
	2.5 2.6	Somme de SEV	1	4	Ran	g de matrices - Systèmes	
	2.0	Isomorphisme d'espaces vectoriels	7		d'éq	uations linéaires	16
	2.7	Parties génératrices	7		4.1	Rang d'une matrice	16
	2.8	Combinaisons linéaires de	'				
	2.0	vecteurs	7	5		mes bilinéaires et produits	
	2.9	Parties libres de vecteurs .	7			aires	18
		Bases et dimension	8		5.1	Formes bilinéaires	18
		Base canonique	8		5.2	Espace vectoriel des	
		Écriture matricielle d'une	O			formes bilinéaires	18
	2.12	vecteur dans une base			5.3	Matrice d'une forme bili-	
		donnée	8			néaire dans une base donnée	19
	2.13	Changement de bases et	Ü		5.4	Formes bilinéaires et	
		de composantes	9			changements de bases	19
	2.14	Droites, plans et hyper-			5.5	Produits scalaires	19
		plans vectoriels	9		5.6	Espaces euclidiens centrés	20
		•			5.7	Propriété de formes bili-	
3	Applications linéaires		11			néaires particulières	20
	3.1	Définition	11		5.8	Orthogonalité	20
	3.2	Matrices d'une AL dans					
		les bases données	11	6	Pro	duits hermitiens	22
	3.3	Composante de l'image			6.1	Produits hermitiens ou	
		d'un vecteur par une AL .	11			forme hermitiennes	22

	6.2	Matrice d'un produit her-			7.5 Algorithme d'orthogonali-	
		mitien dans une base donnée	22		sation de Gram - Schmidt 2	26
	6.3	Matrice d'un produit her-			7.6 Norme euclidienne ou her-	
		mitien et changement de			mitienne $\frac{2}{2}$	26
		base	23		7.7 Norme généralisée 2	26
	6.4	Produits hermitiens défi-				
		nis positifs	23	8	Formes quadratiques 2	27
	6.5	Espaces hermitiens centrés	23		8.1 Définition - forme polaire . 2	27
					8.2 Formes quadratiques réelles 2	27
7	Ort	hogonalité et normes	24		8.3 Réduction de Gauss 2	27
	7.1	Espaces euclidiens et her-			8.4 Loi d'inertie - Signature	
		mitiens centrés	24		d'une forme quadratique . 2	27
	7.2	Sous-espace orthogonaux .	24			
	7.3	Projection orthogonale -		9	Valeurs propres et sous-	
		Coefficient de Fourier	25		espaces propre d'un opéra-	
	7.4	Expression d'un produit			teur linéaire 2	28
		scalaire dans une base or-			9.1 Définitions	28
		thonormée	26		9.2 Valeurs propres particulières 2	28

1 Structure

1.0.1 Relation

Etant donné deux ensemble A et B, on appelle *relation* de A vers B tout ensemble de couple dont l'origine appartient à A, et l'extrêmité à B :

$$\forall a, b \in f \subseteq A \times B : b = f(a) = l'image \ de \ A \ par \ f$$

Vocabulaire

Application Relation $A \longrightarrow B$ tel que A a pour image un seul élément de B par cette application

Injection $\forall x, y \in A : [x \neq y \Rightarrow f(x) \neq f(y)]$

Surjection $\forall b \in B, \exists a \in A : b = f(a)$

Bijection $\forall b \in B, \exists a! \in A : b = f(a)$

On appelle relation d'équivalence, toute relation :

Réflexive $\forall a \in E : a \Re a$

Symétrique $\forall a, b \in E, a\Re b = b\Re a$

Transitive $\forall a, b, c \in E, a\Re b \ et \ b\Re c \Rightarrow a\Re c$

On appelle relation d'ordre, toute relation :

Réflexive $\forall a \in E : a \Re a$

antisymétrique $\forall a, b \in E, a\Re b \ et \ b\Re a \Rightarrow a = b$

Transitive $\forall a, b, c \in E, a\Re b \ et \ b\Re c \Rightarrow a\Re c$

On dira qu'une relation d'ordre \wp dans un ensemble E forme un ordre total ssi $\forall a,b \in E, a\wp b \ oub\wp a$

Attention: Il n'y a pas d'ordre total dans \mathbb{C} .

1.1 Groupe

1.1.1 Définition générale

Etant donné un ensemble E, une loi 🕏 sur E est une application :

$$\clubsuit: E \times E \to E: (x,y) \to x \clubsuit y$$

Pour être un groupe, il faut vérifier les 4 propriétés suivantes :

 \clubsuit est interne dans E $\forall x, y \in E : x \clubsuit y \in E$

 \clubsuit est associative dans E $\forall x, y, z \in E : (x \clubsuit y) \clubsuit z = x \clubsuit (y \clubsuit z)$

 \exists un neutre pour \clubsuit dans \to $\exists n \in E \mid \forall x \in E : x \clubsuit n = x = n \clubsuit x$

On dira qu'un ensemble E muni d'une loi ♣ est un groupe commutatif (ou abélien) ssi :

$$E, \clubsuit \ est \ un \ groupe \ et \ [\forall x, y \in E, x \clubsuit \ y = y \clubsuit \ x$$

Un groupe est d'ordre n ssi |E| = #E = n.

Un élément a d'un ensemble E muni d'une loi \clubsuit est un $absorbant pour <math>\clubsuit$ dans E ssi :

$$a \in E \ et \ [\forall x, y \in E : x \clubsuit a = a = a \clubsuit x]$$

Attention : Il y a uniticité du neutre et du symétrique (de chaque élément) pour une loi donnée dans un groupe.

Une autre propriété importante est la simplifiabilité (préciser le côté!) :

$$\forall a, b, c \in E : (a \clubsuit c) = (b \clubsuit c) \Leftrightarrow a = b \ (Simplifiabilit\'{e} \ \grave{a} \ droite)$$

$$\forall a, b, c \in E : (c \clubsuit a) = (c \clubsuit b) \Leftrightarrow a = b \ (Simplifiabilit\'{e} \ \grave{a} \ gauche)$$

1.1.2 Isomorphisme de groupe

Deux groupes E, \clubsuit et G, \bigstar sont $isomorphes \Leftrightarrow$ il existe une bijection $\delta: E \to G$ telle que :

$$\forall a, b \in E : \delta(a \clubsuit b) = \delta(a) \bigstar \delta(b)$$

On dira alors que la bijection δ est un isomorphisme entre les groupes E et G. Un isomorphisme de groupe est une bijection conservant la structure du groupe

1.1.3 Sous-groupes d'un groupe

Soit E, \clubsuit un groupe. H, \clubsuit est un sous-groupe de E, \clubsuit ssi :

- 1 H est un sous-ensemble de E
- $2 \ \forall x, y \in H : x \clubsuit y \in H$
- 3 Le neutre de E pour $\clubsuit \in E$
- $4 \ \forall x \in H$: le symétrique de x pour \clubsuit dans E est un élément de H

Un petit théorème en passant : *Théorème de Lagrange* : Si H, ♣ est un sous-groupe **fini** de E, ♣ alors l'ordre de H divise l'ordre de E.

1.2 Anneau

Soit A, un ensemble munis de deux lois \clubsuit et \bigstar .

 A, \clubsuit, \bigstar est un anneau ssi :

- 1 A, \clubsuit est un groupe *commutatif*
- $2 \bigstar$ est interne et associatif dans A
- 3 ★ distribue ♣ dans A

On dira que A, \clubsuit , \bigstar est un anneau *unital* ssi A, \clubsuit , \bigstar est un anneau et s'il existe un *neutre pour* \bigstar différent du neutre pour \clubsuit dans A.

1.3 Corps - champ

Soit K, \clubsuit , \bigstar un corps ssi :

- 1 K, ♣ est interne et associatif dans A
- 2 K_n , bigstar est un groupe commutatif (ou n est neutre pour \clubsuit dans K)
- $3 \bigstar \text{distribue} \clubsuit \text{dans A}$

Soit K, un ensemble muni de deux lois \clubsuit et \bigstar .

- K, \clubsuit, \bigstar un corps commutatif ou *champ* ssi :
 - 1 K, \clubsuit , \bigstar est un corps
 - $2 \bigstar \text{ est } commutative } \text{dans } \mathbf{K}$

2 Espaces Vectoriels

2.1 Définition

A INCLURE.

2.2 Exemples d'EV

Cf. cours

2.3 Prorpiétés des espaces vectoriels

Si K, V, + est un espace vectoriel, alors :

- 1. $\forall x \in V : 0.\vec{x} = \vec{0}$
- 2. $\forall \lambda \in K : \lambda . \vec{0} = \vec{0}$
- 3. $\forall \lambda \in K, \forall \vec{x} \in V : \lambda \vec{0} \Rightarrow \lambda = 0 \text{ ou } \vec{x} = \vec{0}$
- 4. $\forall \lambda \in K, \forall \vec{x} \in V : \lambda(-\vec{x}) = -\lambda \vec{x}$
- 5. $\forall \lambda_i \in K, \forall \vec{x} \in V : (\sum_{1}^{i} \lambda_i) \vec{x} = \sum_{1}^{i} (\lambda_i \vec{x})$
- 6. $\forall \lambda_i \in K, \forall \vec{x} \in V : (\sum_1^i \vec{x_i}) \lambda = \sum_1^i (\lambda \vec{x_i})$

2.4 Sous-espaces vectoriels

Soit W, un sous-ensemble d'un espace vectoriel K, V, + défini sur un corps K K, W, + est un sous-espace vectoriel ssi :

- 1. W est non vide (signifie $\vec{0} \in W$)
- $2. \ \forall \vec{x}, \vec{y} \in W = \vec{x} + \vec{y} \in W$
- 3. $\forall \vec{x} \in W, \forall \lambda \in K : \lambda \vec{x} \in W$

Attention: Les lois et corps doivent être identiques!

NB: Un espace vectoriel est le plus grand sous-vectoriel de lui-même. De même K, $\{\vec{0}\}$, + est le plus petit des EV. Ces deux SV sont dit triviaux.

NB.2 L'intersection de deux sous-espaces vectoriel et un SEV.

2.4.1 Lien avec les équations linéaire homogènes

L'ensemble des solution d'une équation linéaire homogène à n inconnues et à coefficient dans un corps K est un sous-espace vectoriel de $K, K^n, +$.

2.4.2 Lien avec les systèmes d'équations linéaires homogènes

L'ensemble des solution d'un système d'équations linéaires homogènes est un sous-espace vectoriel de K^n défini sur un corps K (commutatif).

2.5 Somme de SEV

Soit K, V, + un espace vectoriel et W_1, W_2 deux SEV de V. On appelle somme de W_1, W_2 l'ensemble défini par :

$$W_1, W_2 = \{\vec{w_1} + \vec{w_2} \mid \vec{w_1} \in W_1, \vec{w_2} \in W_2\}$$

Soit V, + un EV sur un corps K et W_1, W_2 deux SEV de V. On dira que V est la somme directe (notée \bigoplus) de W_1, W_2 ssi

$$[V = W_1 + W_2 \ et \ W_1 \cap W_2 = \{\vec{0}\}]$$

2.6 Isomorphisme d'espaces vectoriels

Soient K, V, + et K, W, + deux EV défini sur le $m\hat{e}me\ corps$. V est isomorphe) W (V \cong W) ssi il existe une bijection $\sigma V \to W$ telle que :

- 1. $\forall \vec{x}, \vec{y} \in V : \sigma(\vec{x} + \vec{y}) = \sigma(\vec{x}) + \sigma(\vec{y})$
- 2. $\forall \vec{x} \in V, \forall \lambda \in K : \sigma(\lambda \vec{x}) = \lambda \sigma(\vec{x})$

Attention : Il s'agit d'une question typique de la partie théorique de l'examen de janvier.

2.7 Parties génératrices

Si K, V, + est un espace vectoriel et si P est un sous-ensemble de V, alors : L(P) est le sous-espace de V, engendré par P.

NB: Toute partie contenant une partie génératrice est une partie génératrice. Une partie génératrice est dite minimale, s'il n'existe pas de sous ensemble inclus dans P qui soit également génératrice.

2.8 Combinaisons linéaires de vecteurs

Si X est une partie d'un espace vectoriel K, V, +, on appelle combinaison linéaire des vecteurs de X ou combili des vecteurs de X tout vecteur V de la forme :

$$\lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \dots + \lambda_n \vec{x_n}$$

où les $\vec{x_i}$ sont les éléments de X en nombre fini et λ_i sont des élément du corps K.

 $Th\'{e}or\`{e}me$: Pour toute partie non vide X d'un espace vectoriel K, V, + le sous-espace L(X) engendr\'{e} par X est l'ensemble des combili des vecteurs de X.

2.9 Parties libres de vecteurs

Voir horrible définition dans le cours (**Attention**: AVC possible). Notons tout de même que si X est un sous-ensemble d'un EV K, V, + contenant $\vec{0}$ alors X **n'est pas** une partie libre de V.

NB: Si X est une partie libre d'un EV, alors tout sous-ensemble de X est une partie

libre de V (L'ensemble vide également)

Théorème: Soit X, une partie libre d'un EV K, V, +.

X est une PL ssi:

$$\forall \vec{x_i} \in X, \forall \lambda_i \in K$$

$$\left[\sum_{i=1}^{n} \lambda_{i} \vec{x_{i}} = \vec{0} \Rightarrow \lambda_{1}, \lambda_{2}, ... \lambda_{n} = 0\right]$$

Deux vecteurs sont LI s'ils forment une PL de V.

2.10 Bases et dimension

Une partie sera une base \Leftrightarrow celle-ci est à la fois libre et génératrice. On dira qu'une base est une partie libre minimale et une partie génératrice maximale.

Théorème: Si K, V, + est un espace vectoriel, si L est une PL de V et si G est une PG de V contenant L, alors il existe une base B de V telle que $L \subseteq B \subseteq G$. Ce théorème permet d'étendre une partie libre pour former une base.

Notons également :

- Tout EV possède une base.
- S'il existe une base finie de n élément, toute base comporte n élément.
- Les bases d'un même EV ont le même cardinal.
- Toute PL a au plus n éléments.
- Toute PG a au max n éléments.

Si la dimension d'un EV est finie et vaut n, alors :

- Toute partie libre de n éléments est une base de cet EV.
- Toute partie génératrice de n éléments est une base de cet EV.

$$NB : dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

Si B est une base d'un espace vectoriel, alors tout vecteur de V s'exprime d'une et une seule manière comme combili d'un nombre fini des vecteurs de B.

2.11 Base canonique

Liste de bases à connaître par coeur! Cf. cours

2.12 Écriture matricielle d'une vecteur dans une base donnée

 $\forall x \in V : \exists 1! (\lambda_1, \lambda_2, ..., \lambda_n) \in K^n \mid \vec{x} = \sum_{i=1}^n \lambda_i \vec{x_i}$, les vecteurs $\vec{e_i}$ étant vecteurs de B.

Convention de notation:

$$\vec{x} = \sum_{i=1}^{n} \lambda_i \vec{e_i} = \lambda_1 \vec{e_1}, \lambda_2 \vec{e_2}, ..., \lambda_n \vec{e_n} = (\vec{e_1} \ \vec{e_2} \quad \vec{e_n}) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_2 \end{pmatrix}$$

On nommera $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_2 \end{pmatrix}$ matrice des composantes de \vec{x} dans la base B. Notation : $X_B.$

Attention: Ne pas convondre un vecteur et sa matrice de composantes.

2.13 Changement de bases et de composantes

(On suppose K, V, + est un EV de dimension finie sur un corps K commutatif)

2.13.1 Matrice de changement de base de e vers ϵ

Cette section (et les deux suivantes) étant principalement pratique, je ne me contenterai ici que de reprendre les notations (cf. TP5/6:)) P_e^a se lit:

- Matrice de changement de base de e vers a (On "monte" dans les **B**ase comme **B**uzz l'éclair).
- Matrice de changement de composante de a vers e (On "descend", on Creuse les Composantes).

2.13.2 Détermination de la patrice P_{ϵ}^{e}

$$P_{\epsilon}^e = (P_e^{\epsilon})^{-1}$$

2.13.3 Détermination de X_{ϵ} des vecteurs de \vec{x} dans la base ϵ à partir de la matrice X_e des composantes de \vec{x} dans la base e

$$X_{\epsilon} = P_{\epsilon}^{e} X_{e}$$

où P_{ϵ}^{e} est la matrice de changement de base de ϵ vers e.

2.14 Droites, plans et hyperplans vectoriels

2.14.1 Droite vectorielle

Si K, V, + est un espace vectoriel de dimension au moins 1, alors on appelle une droite (vectorielle) de V tout SEV de V de dimension 1.

2.14.2 Plan vectoriel

Si K, V, + est un espace vectoriel de dimension au moins 2, alors on appelle une plan (vectoriel) de V tout SEV de V de dimension 2.

2.14.3 Hyperplan vectoriel

Soit K, V, + un espace vectoriel. Un sous-espace vectoriel est un hyperplan (vectoriel) de V \Leftrightarrow H est un sous-espace vectoriel propre et maximal de V.

Maximal : $\Leftrightarrow \nexists$ de SEV S de V tel que $H \subset S \subset V$

Propre : $H \neq V$

La fin du chapitre est à lire à titre informatif.

3 Applications linéaires

3.1 Définition

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un même corps K, on appelle application linéaire de V dans W tout application $\sigma: V \to W$ telle que :

$$\forall \vec{x}, \vec{y} \in V : \sigma(\vec{x} + \vec{y}) = \sigma(\vec{x}) + \sigma(\vec{y})$$

$$\forall \lambda \in K, \forall \vec{x} \in V : \sigma(\lambda \vec{x}) = \lambda \sigma(\vec{x})$$

Cas particuliers importants:

- 1. Si σ est une application linéaires de V dans W, avec V=W, alors σ es appelé opérateur linéaire ou endomorphisme de V.
- 2. Si σ est une application de V dans W, avec W=K, alors σ est une forme linéaire ou covecteur définie sur V.
- 3. Si σ est une bijection linéaire de V dans W, alors σ est un *isomorphisme* de V sur W.
- 4. Si σ est un opérateur linéaire de V et une bijection, alors σ est un automorphisme de V.

3.2 Matrices d'une AL dans les bases données

Encore une fois, c'est principalement pratique (cf TP6). Néanmoins : A_{ϵ}^{e} , matrice de α dans les bases e et ϵ , est une matrice de p ligne(cardinal de la base ϵ et de n colonnes (cardinal de la base e).

Attention : Les matrices de rotations sont à étudier par coeur! Ne pas oublier de donner les bases, sinon cela n'a pas de sens!

3.3 Composante de l'image d'un vecteur par une AL

Même remarque qu'au point précédent, partie essentiellement pratique.

3.4 Composée de deux AL

Si K, V, +, K, W, + et K, S, + sont trois espaces vectoriels définis sur un même corps K et si $\alpha: V \to W$ et $\beta: W \to S$ sont deux applications linéaires, alors $\beta \circ \alpha$ est une application linéaire.

3.5 Matrices d'AL et changement de base

Partie pratique. (Cf. TP6)

3.6 Espace vectoriel des AL

3.6.1 Théorème 1

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un coprs K commutatif et si L(V, W) est l'ensemble de toutes les applications linéaire $V \to W$, alors K, L(V, W), + est un espace vectoriel sur K.

Attention : Regarder attentivement la définition de l'addition vectorielle et de la multiplication par un scalaire.

3.6.2 Théorème 4

Si K, V, + est un espace vectoriel de dimension *finie* n, défini sur un corps K *commutatif*, et si K, W, + est un espace vectoriel de dimension *finie* p défini sur le même corps K, alors :

$$K, L(V, W), + \cong K, K^{p \times n}, +$$

Corolaire

$$dim(L(V, W)) = pn$$

3.7 Noyeau d'une AL

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K commutatif, et si $\alpha: V \to W$ est une application linéaire, alors le **noyau de** α , noté $\ker \alpha$, est l'ensemble :

$$ker \ \alpha = \{ \vec{x} \in V \mid \alpha(\vec{x}) = \vec{0} \ (de \ W) \}$$

3.7.1 Théorème 1

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K commutatif et si $\alpha V \to W$ est une application linéaire, alors le vecteur nul de V appartient toujours au noyau de α .

3.7.2 Théorème 2

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K commutatif, et si $\alpha: V \to W$ est une AL, alors :

$$\alpha \ est \ injective \ \Leftrightarrow ker \ \alpha = \{\vec{0}\}$$

3.7.3 Théorème 3

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\alpha: V \to W$ est une AL, alors K, $ker \alpha$, + est un sous-espace vectoriel de K, V, +

3.7.4 Autre définition

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\alpha: V \to W$ est une AL, alors on appelle *nullité de* α la dimension de ker α .

3.8 Image d'une AL

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K commutatif, et si $\alpha: V \to W$ est une AL, alors on appelle image de α , noté $Im \alpha$ l'ensemble :

$$Im \ \alpha = \{ \vec{y} \in W \mid \exists \vec{x} \in V \ avec \ \alpha(\vec{x}) = \vec{y} \}$$

3.8.1 Théorème 4

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\alpha: V \to W$ est une AL alors :

$$\alpha \ est \ surjective \Leftrightarrow Im \ \alpha = W$$

Corolaire:

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\alpha: V \to W$ est une AL alors α est bijective \Leftrightarrow

$$ker \ \alpha = \{\vec{0}\} \ et \ Im \ \alpha = W$$

3.8.2 Théorème 5

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, alors l'image d'un sous-espace vectoriel S de V par une $\mathrm{AL}\alpha:V\to W$ est un sous-espace vectoriel de W.

Corolaire:

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\alpha: V \to W$ est une AL, alors K, Im α , + est un SEV de K, W, +.

3.8.3 Autre définition

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\alpha: V \to W$ est une AL, alors on appelle $rang\ de\ \alpha$, la dimension de Im α .

3.8.4 Théorème 6 (Très important)

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\alpha: V \to W$ est une AL, et si K, V, + est de dimension *finie* n alors :

L'image d'une base par α est une partie génératrice de Im α .

3.9 Lien entre noyau et image d'une AL

3.9.1 Théorème 7 (Fondamental)

Si K, V, + et K, W, + sont deux espaces vectoriels définis sur un corps K, et si $\sigma: V \to W$ est une AL, et si V est de dimension *finie* n, alors :

$$\dim(\ker \sigma) + \dim(\operatorname{Im} \sigma) = \dim V$$

3.10 Formes linéaires - Espace dual

3.10.1 Définitions et propriétés

Si K, V, + est un espace vectoriel défini sur un corps K commutatif, alors l'ensemble des formes linéaires de V dans K est appelé l'*espace dual* de V et est noté V^* .

Autrement dit : $V^* = L(V, K)$.

3.10.2 Exemples de formes linéaires

Cf. cours

3.10.3 Forme linéaire et noyau

Théorème 1

Si K, V, + est un espace vectoriel défini sur un corps K commutatif et si $f: V \to K$ est une forme linéaire sur V, alors :

Soit
$$ker(f)$$
 est un hyperplan de V, soit $ker(f) = V$

Défintion 3:

Si K, V, + est un espace vectoriel défini sur un corps K commutatif. Une forme linéaire $f:V\to K$ est non dégénérée \Leftrightarrow

$$ker(f)$$
 est un hyperplan de V

La forme linéaire sera donc dégénérée $\Leftrightarrow ker(f) = V$.

3.10.4 Interprétation géométrique des forme linéaires

Ne fait pas partie de l'examen.

3.10.5 Expression d'une forme linéaire par rapport à une base de V

Si K, V, + est un espace vectoriel de dimension finie défini sur un corps K commutatif, alors toute forme linéaire $f: V \to L$ est univoquement déterminée par les valeurs qu'elle prend sur les éléments d'une base de V.

3.10.6 Base de $K, V^*, +$ en dimension finie

Si K, V, + est un espace vectoriel de dimension finie n défini sur un corps K commutatif, et muni d'une base $e = (\vec{e_1}, \vec{e_2}, ..., \vec{e_n})$ alors les n applications :

$$e_i^*: V \to K: \vec{x} = \sum_{j=1}^n x_j \vec{e_j} \to x_i = i^{\text{ème}} \text{ composante de } \vec{x} \text{ dans la base } e$$

forment une base de $K, V^*, +$, appelée base duale de la base e qui sera notée $e^* = (\vec{e_1^*}, \vec{e_2^*}, ..., \vec{e_n^*})$

Propriété 1 (essentielle)

Si K, V, + est un espace vectoriel de dimension finie n défini sur un corps K commutatif, et muni d'une base $e = (\vec{e_1}, \vec{e_2}, ..., \vec{e_n})$ et si $e^* = (\vec{e_1}, \vec{e_2}, ..., \vec{e_n})$, alors :

$$\forall i, j = 1, ..., n = e_i^*(\vec{e_j}) = \delta_{ij}$$

(où δ_{ij} est le symbole de Kronecker)

3.10.7 Composante d'une forme linéaire dans une base de $K, V^*, +$

Partie essentiellement pratique (cf. TP).

4 Rang de matrices - Systèmes d'équations linéaires

4.1 Rang d'une matrice

Cette partie est fort recopiage mais il n'y a pas vraiment le choix.

4.1.1 Rang d'un système de vecteurs et rang d'une matrice

Définition 1:

Le rang d'un système de vecteurs d'un espace vectoriel K, V, + est la dimension du sous-espace vectoriel de V, engendré par cet ensemble de vecteurs.

Définition 2:

Si A est une matrice d'ordre $p \times n$ à coefficients dans un corps K commutatif, alors le $rang\ de\ A$ est le nombre maximale de "colonnes de A linéairement indépendantes", c'est-à-dire de manière plus précise que le $rang\ de\ A$ est le rang du système de vecteurs-colonnes déterminé par les n colonnes de A.

NB: Plus simplement (et moins mathématiquement du coup ;D), on peut considérer le le rang de A est le nombre de colonnes linéairement indépendantes.

4.1.2 Détermination du rang d'une matrice A d'ordre (p,n)

C'est long et peu utile ici, regardez les slides ou elle donne un bon gros exemple bien détaillé!

4.1.3 Propriété des rangs de matrices

 $Si~A~est~une~matrice~d'ordre~p\times n$ à coefficients dans un corps K commutatif, alors :

$$rang(A) \le n$$

Si A est une matrice d'ordre $p \times n$ à coefficients dans un corps K commutatif, alors :

$$rang(A) = rang(^tA)$$

Corollaire 1:

i A est une matrice d'ordre $p \times n$ à coefficients dans un corps K commutatif, alors :

$$rang(A) \leq minp, n$$

C'est 'logique' dans le sens ou une matrice de trois colonnes ne peut avoir quatre (et plus) vecteurs LI.

Corrolaire 2:

Le rang d'une matrice A) coefficients dans un corps K commutatif peut se calculer aussi bien à partir d'un système de vecteurs-ligne associé à cette matrice qu'à partir du système de vecteurs-colonne associé.

Théorème:

Si A est une matrice d'ordre $p \times n$ à coefficients dans un corps K commutatif, alors :

$$rang(A) = dim(Im\alpha)$$

ou $\alpha: V \to W$ est une application linéaire, K, V, + est une EV de dimension n et de base e, K, W, + est une EV de dimension p et de base ϵ et la matrice α dans les bases e et ϵ est la matrice donnée A.

Lien avec les déterminants : Si A est une matrice d'ordre $p \times n$ à coefficients dans un corps K commutatif. Considérons l'ensemble $\{A_i \mid i=1,...,min\{p,n\}\}$ de toutes les sous-matrices carrées extraites de A. On peut alors démontrer que :

$$rang(A) = max \{ ordre A_i \mid det(A_i) \neq 0; i = 1, ..., min\{p, n\} \}$$

En français abusif, on peut dire que : 'le rang de A est l'ordre du plus gros déterminant non nul que l'on peut extraire de la matrice A'.

NB: C'est généralement une mauvaise idée de faire ça, il faut plus l'utiliser quand on est presque à la fin si ça peut faire gagner du temps.

5 Formes bilinéaires et produits scalaires

5.1 Formes bilinéaires

5.1.1 Définitions

Si V, + est un espace vectoriel réel de dimension finie, sur un corps K commutatif, on appelle **forme bilinéaire sur V** toute application

$$f: V \times V \to K: (\vec{x}, \vec{y}) \to f(\vec{x}, \vec{y})$$

tel qu'elle est linéaire à gauche et à droite

On dira qu'une forme bilinéaire $f: V \times V \to K$ est **symétrique** $\Leftrightarrow \forall \vec{x}, \vec{y} \in V: f(\vec{x}, \vec{y}) = f(\vec{y}, \vec{x}).$

5.1.2 Exemples de formes bilinéaires

Produit scalaire usuel

Soit $V = \mathbb{R}^n$, on appelle produit scalaire usuel l'application :

$$<,>: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} = (\vec{x}, \vec{y}) \to <\vec{x}, \vec{y}> = \sum_{i=1}^n x_i y_i$$

avec $\vec{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ et $\vec{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$.

Attention: il ne nécessite aucune base, les vecteurs sont des n-uples réels.

<u>Théorème</u> : Le produit salaire usuel est une forme bilinéaire **symétrique** sur le corps des réels.

5.2 Espace vectoriel des formes bilinéaires

Soit Bil(V) l'ensemble des formes bilinéaires sur un espace vectoriel K,V,+. Par conséquent : $f \in Bil(V)$ signifie que $f : V \times V \to K : (\vec{x}, \vec{y}) \to f(\vec{x}, \vec{y})$ Si on munit Bil(V) d'une addition vectorielle et d'une multiplication par un scalaire (def p. 161) alors K, Bil(V), + est un espace vectoriel.

Théorème

Si V, + est un espace vectoriel de dimension finie n sur un corps K commutatif et si $e = (\vec{e_1}, ..., \vec{e_n})$ est une base de V, alors les n^2 formes bilinéaires

$$g_{ij}: V \times V \to K: (\vec{x}, \vec{y}) \to g_{ij}(\vec{x}, \vec{y}) = e_i^*(\vec{x})e_j^*(\vec{y}) \ (\forall i, j: 1, 2, ...n)$$

forment une base de K, $\mathcal{B}il(V)$, +.

Corolaire

Soient V, + est un espace vectoriel de dimension finie n sur un corps K commutatif

muni d'une base $e=(\vec{e_1},...,\vec{e_n})$ et $f:V\times V\to K:(\vec{x},\vec{y})\to f(\vec{x},\vec{y})$ une forme bilinéaire définie sur V, alors

$$f = \sum_{i=1}^{n} \sum_{j=1}^{n} f(\vec{e_i}\vec{e_j})g_{ij}$$

et les composantes de f dans la base $(j_{ij}|i, j = 1, 2, ...n)$ de Bil(V) sont les images par f des couples de vecteurs de la base e.(Bon exemple page 165).

5.3 Matrice d'une forme bilinéaire dans une base donnée

Pour aller droit au but, en considérant la base canonique $e=(\vec{e_1},\vec{e_2},\vec{e_3})$, la matrice F^e de la forme bilinéaire f dans la base e:

$$\begin{pmatrix}
f(\vec{e_1}, \vec{e_1}) & f(\vec{e_1}, \vec{e_2}) & f(\vec{e_1}, \vec{e_3}) \\
f(\vec{e_2}, \vec{e_1}) & f(\vec{e_2}, \vec{e_2}) & f(\vec{e_2}, \vec{e_3}) \\
f(\vec{e_3}, \vec{e_1}) & f(\vec{e_3}, \vec{e_2}) & f(\vec{e_3}, \vec{e_3})
\end{pmatrix}$$

Connaissant deux vecteurs \vec{x} et \vec{y} , on peut calculer $f(\vec{x}, \vec{y})$ de deux façons différentes : en remplaçant directement dans l'expression ou de façon matricielle : $f(\vec{x}, \vec{y}) = {}^t X_e F^e Y_e$.

$$f(\vec{x}, \vec{y}) = (x_1, x_2, x_3) \begin{pmatrix} f(\vec{e_1}, \vec{e_1}) & f(\vec{e_1}, \vec{e_2}) & f(\vec{e_1}, \vec{e_3}) \\ f(\vec{e_2}, \vec{e_1}) & f(\vec{e_2}, \vec{e_2}) & f(\vec{e_2}, \vec{e_3}) \\ f(\vec{e_3}, \vec{e_1}) & f(\vec{e_3}, \vec{e_2}) & f(\vec{e_3}, \vec{e_3}) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

5.4 Formes bilinéaires et changements de bases

Le lien entre la matrice F^e de f dans la base e et la matrice F^u de f dans la base uu est :

$$F^u = {}^t(P^u_e)F^eP^u_e$$

Définition

Le rang d'une forme bilinéaire $f: V \times V \to K$ est le rang de la matrice de f dans une base quelconque de V.

5.5 Produits scalaires

5.5.1 Définitions

Définition 1

Si V, + est un espace vectoriel **réel** on appelle **produit scalaire sur V** tout forme bilinéaire symétrique sur V. On utilisera pour les produits scalaire la notation qui suit :

$$<,>: V \times V \rightarrow \mathbb{R} = (\vec{x}, \vec{y}) \rightarrow < \vec{x}, \vec{y} >$$

Définition 2

Un produit scalaire <,> défini sur un espace vectoriel $\mathbb{R}, V,+$ est **défini positif** $\Leftrightarrow <,>$ est un produit scalaire tel que :

- 1. $\forall \vec{x} \in V : \langle \vec{x}, \vec{x} \rangle \geq 0 \ (positif)$
- $2. < \vec{x}, \vec{x} > = 0 \Leftrightarrow \vec{x} = \vec{0}$

5.5.2 Exemples de P.Scal (à connaître)

- 1. Le produit scalaire **usuel** (voir plus haut)
- 2. $\langle , \rangle : \mathcal{P}_3 \times \mathcal{P}_3 \to \mathbb{R} : (\vec{p}, \vec{q}) \to \langle \vec{p}, \vec{q} \rangle = \int_0^1 p(t)q(t)dt$
- 3. $<,>: \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times n} \to \mathbb{R}: (A,B) \to < A,B> = tr(A^{-t}B)$

5.6 Espaces euclidiens centrés

Un espace **euclidien centré** est un espace vectoriel **réel** muni d'un produit scalaire **défini positif** noté $\mathbb{R}, V, +, <, >$.

5.7 Propriété de formes bilinéaires particulières

Définition 1 : Une forme bilinéaire $f: V \times V \to K$ est **symétrique** ssi $\forall \vec{x}, \vec{y} \in V = f(\vec{x}, \vec{y}) = f(\vec{y}, \vec{x})$.

Théorème 1: Une forme bilinéaire $f: V \times V \to K$ est symétrique ssi il existe une base e de V dans laquelle la matrice de f est symétrique.

Définition 2: Une forme bilinéaire $f: V \times V \to K$ est **antisymétrique** ssi $\forall \vec{x}, \vec{y} \in V = f(\vec{x}, \vec{y}) = -f(\vec{y}, \vec{x})$.

Définition 3 : Une forme bilinéaire $f: V \times V \to K$ est **alternée** ssi $\forall \vec{x} \in V : f(\vec{x}, \vec{x}) = 0$.

Théorème 2 : Si $2 \neq 0$ dans K, alors tout forme bilinéaire antisymétrique est alternée.

Théorème 3 : Toute forme bilinéaire alternée est antisymétrique.

Définition 1 : Si $2 \neq 0$ dans K, alors toute forme bilinéaire $f: V \times V \to K$ est la somme d'une forme bilinéaire symétrique et d'une forme bilinéaire alternée.

5.8 Orthogonalité

Définition

Soit K, V, + un EV de dimension finie, défini sur un corps K commutatif et $f: V \times V \to K$ une forme bilinéaire sur V. On dira qu'un **vecteur** $\vec{x} \in V$ est **orthogonal** à $\vec{y} \in V$ ($\vec{x} \perp \vec{y}$) \Leftrightarrow

$$f(\vec{x}, \vec{y}) = 0$$

Hélas, \perp n'est pas toujours symétrique : si $f(\vec{x}, \vec{y})0 = 0 \neq f(\vec{y}, \vec{x})$ on risque d'avoir un souci! Sont-ils perpendiculaires ou non? Pour régler le souci, il y a la réflexivité.

Définition

Une forme bilinéaire $f: V \times V \to K$ est **réflexive**

$$\Leftrightarrow \forall \vec{x}, \vec{y} \in V \left[\vec{x} \perp \vec{y} \Rightarrow \vec{y} \perp \vec{x} \right]$$

Ainsi, une forme bilinéaire est réflexive \Leftrightarrow **f est symétrique ou alternée**.

Hélas, il peut exister des vecteurs non nuls de V qui sont orthogonaux à eux mêmes.

Définition

Soit K, V, + un EV de dimension finie, défini sur un corps K commutatif et $f: V \times V \to K$ une forme bilinéaire sur V.

On appelle vecteur isotrope de V, tout vecteur $\vec{x} \in V$ tel que $f(\vec{x}, \vec{y}) = 0$.

Pire, s'il existe au moins un vecteur non nul de V qui est orthogonal à tous les vecteurs de V on dira que f est **dégénérée**. Dans le cas contraire (ou il n'y en a aucun) f est dite **non dégénérée**.

Théorème

En passant le blabla de la base et de l'EV, si F^e est la matrice d'une forme bilinéaire dans la base e alors f est **dégénérée**

$$\Leftrightarrow det(F^e) = 0 \Leftrightarrow rang \ de \ f < n$$

6 Produits hermitiens

6.1 Produits hermitiens ou forme hermitiennes

Si V, + est un espace vectoriel <u>complexe</u> $(K = \mathbb{C})$ de dimension finie, on appelle **produit hermitien** ou **forme hermitienne sur V** tout application $h: V \times V \to \mathbb{C}: (\vec{x}, \vec{y}) \to h(\vec{x}, \vec{y})$ telle que $\forall \vec{x}, \vec{y}, \vec{z} \in V$ et $\forall \lambda \in \mathbb{C}:$

- 1. $h(\vec{x} + \vec{y}, \vec{z}) = h(\vec{x}, \vec{z}) + h(\vec{y}, \vec{z})$
- 2. $h(\lambda \vec{x}, \vec{z}) = \lambda h(\vec{x}, \vec{z})$
- 3. $h(\vec{x}, \vec{z}) = \overline{h(\vec{z}, \vec{x})}$

où $\overline{h(\vec{z},\vec{x})}$ désigne le conjugué de $h(\vec{z},\vec{x})$ dans \mathbb{C} .

La condition 3. implique la **semi-linéarité à droite** de $h: \forall \vec{x}, \vec{y}, \vec{z} \in V \ et \ \forall \lambda \in \mathbb{C}:$

- 1. $h(\vec{x}, \vec{y} + \vec{z}) = h(\vec{x}, \vec{y}) + h(\vec{x}, \vec{z})$
- 2. $h(\vec{x}, \lambda \vec{z}) = \overline{\lambda} h(\vec{x}, \vec{z})$

Cette deuxième implication expliquera la présence du conjugué à droite dans l'écriture matricielle du produit hermitien.

NB: On général, on désigne les produits hermitiens par <,> et non par h.

Définition 2 (A connaître par keur-keur)

Soit $V = \mathbb{C}^n$, on appelle **produit hermitien usuel** l'application :

$$<,>: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}: (\vec{x}, \vec{y}) \to <\vec{x}, \vec{y}> = \sum_{i=1}^n x_i \overline{y_i}$$

où \vec{x} et \vec{y} appartiennent à \mathbb{C} .

6.2 Matrice d'un produit hermitien dans une base donnée

C'est exactement la même chose que pour le produit scalaire si ce n'est qu'on utilise le produit hermitien.

$$G^e = (<\vec{e_i}, \vec{e_j}>)$$

On calcule ainsi le produit hermitien de la façon suivante :

$$\langle \vec{x}, \vec{y} \rangle = ({}^{t}X_{e}) G^{e} (\overline{Y_{e}})$$

Attention: on conjugue les composantes de \vec{y} !

Théorème

On dira qu'une application dans une base e est un produit hermitien sur V ssi H^e est un matrice hermétique $(H = {}^t(\overline{A}))$.

6.3 Matrice d'un produit hermitien et changement de base

Semblable aux produits scalaires, il ne faut juste pas oublier la conjuguée

$$G^u = {}^t(P^u_e)G^e(\overline{P^u_e})$$

6.4 Produits hermitiens définis positifs

Tatatitatata sera défini positif ssi :

- 1. $\forall \vec{x} \in V : \langle \vec{x}, \vec{x} \rangle \in \mathbb{R}$
- $2. \ \forall \vec{x} \in V : \vec{x}, \vec{x} > \ge 0$
- 3. $\forall \vec{x} \in V : \vec{x}, \vec{x} >= 0 \Leftrightarrow \vec{x} = \vec{0}$

Par propriété, le produit hermitien usuel est défini positif.

6.5 Espaces hermitiens centrés

Un espace hermitien centré (ou espace préhilbertien complexe) est un espace vectoriel complexe muni d'un produit hermitien défini positif.

7 Orthogonalité et normes

7.1 Espaces euclidiens et hermitiens centrés

Un espace <u>euclidien centré</u> est un espace vectoriel réel muni d'un produit scalaire défini positif.

Un espace <u>hermitien centré</u> est un espace vectoriel complexe muni d'un produit hermitien défini positif.

7.2 Sous-espace orthogonaux

Définition 1

Si V, <,> est un espace euclidien ou hermitien centré, alors deux vecteur \vec{x} et \vec{y} de V sont **orthogonaux** pour <,> ssi $<\vec{x},\vec{y}>=0$.

Définition 2

Si S est un sous-ensemble non vide d'un espace euclidien ou hermitien centré V, <, >, alors

$$S^{\perp} = \{\vec{y} \in V \mid \langle \vec{x}, \vec{y} \rangle = 0 \ \forall \vec{x} \in S\} = l'orthogonal \ de \ S \ pour \ \langle , \rangle$$

Propriétés

Si S est un sous-espace vectoriel d'un espace euclidien ou hermitien centré V, <, >, alors S^{\perp} est aussi un sous-vectoriel de V, <, >. On appelle alors S^{\perp} le sous-espace orthogonal de S.

Si S est un sous-espace vectoriel d'un espace euclidien ou hermitien centré $\mathbf{V},<,$ >, alors

$$\dim(S)+\dim(S^\perp)=\dim(V)$$

.

Si S est un sous-ensemble non vide d'un espace euclidien ou hermitien centré V, <, > alors $S \cap S^{\perp} = \{\vec{0}\}$ si $\vec{0} \in S$ ou ϕ si $\vec{0} \notin S$.

Si S = V alors $S^{\perp} = \{\vec{0}\}$.; le vecteur nul est le seul vecteur d'un espace euclidien (ou hermitien) centré orthogonal à tous les vecteurs de l'espace.

Si V, <,> est un espace euclidien ou hermitien centré, alors tout sous-ensemble de vecteur **non nuls, orthogonaux deux à deux** forme une partie libre de V.

7.3 Projection orthogonale - Coefficient de Fourier

Si V, <,> est un espace euclidien ou hermitien centré, et si \vec{x} et \vec{y} sont deux vecteurs non nuls de V, le **coefficient de Fourrier de** \vec{x} **par rapport à** \vec{y} vaut :

$$\lambda = \frac{\langle \vec{x}, \vec{y} \rangle}{\langle \vec{y}, \vec{y} \rangle}$$

Si V, \langle , \rangle est un espace euclidien ou hermitien centré, et si \vec{x} et \vec{y} sont deux vecteurs non nuls de V,la projection orthogonale de \vec{x} su \vec{y} est le VECTEUR :

$$\vec{p} = \frac{\langle \vec{x}, \vec{y} \rangle}{\langle \vec{y}, \vec{y} \rangle} \vec{y}$$

7.3.1 Théorème important :

Définition 3

Si V, <, > est un espace euclidien ou hermitien centré, et si W est un sous-espace de dimension k de V, W étant muni d'une base $(\vec{e_1},...,\vec{e_k})$ orthogonale pour \langle,\rangle alors la projection orthogonale d'un vecteur $\vec{x} \in V - W$ sur W est égale au vecteur

$$\vec{p} = \sum_{i=1}^{k} \frac{\langle \vec{x}, \vec{e_i'} \rangle}{\langle \vec{e_i'}, \vec{e_i'} \rangle} \vec{e_i'}$$

Ce vecteur est la somme des projections orthogonales du vecteur \vec{x} sur chacun des vecteurs de la base e'.

De façon plus générale, si $\vec{x} = \sum_{i=1}^n x_i \vec{e_i}$, alors : (où $x_j = \frac{\langle \vec{x}, \vec{e_j} \rangle}{\langle \vec{e_j}, \vec{e_j} \rangle}$) :

$$X_e = \begin{pmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{pmatrix}$$

Voir conclusion page 211.

Définition 5

Soit $\mathbb{R}, V, +, \langle, \rangle$ un espace euclidien ou hermitien centré de dimension finie n. Une base $e = (\vec{e_1}, ... \vec{e_n})$ est orthonormée pour le produit \langle, \rangle

$$\Leftrightarrow \langle \vec{e_i}, \vec{e_j} \rangle = \delta_{ij}$$

7.4 Expression d'un produit scalaire dans une base orthonormée

7.4.1 Théorème (très très important)

Si $K, V, +, \langle, \rangle$ est un espace euclidien ou hermitien centré de dimension finie n, muni d'une base e **orthonormée pour le produit** \langle, \rangle alors

$$\forall \vec{x}, \vec{y} \in V : \langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$

où X_e est la matrice des composantes de \vec{x} dans la base orthonormée e et Y_e est la matrice des composantes de \vec{y} dans la base orthonormée e.

En français : Certains produits scalaires peuvent être assez contraignants à calculer. Mais, si l'on construit une base orthonormée pour ce *moche* produit, en travaillant dans cette nouvelle base le *moche* produit se ramène au produit scalaire ou hermitien usuel à partir des composantes de ces vecteurs dans la base orthonormée trouvée ce qui simplifie les calculs! Houra, me direz-vous.

Application importante: Théorème

$$\forall \vec{x}, \vec{y} \in V : \langle \alpha(\vec{x}), \vec{y} \rangle = \langle \vec{x}, \alpha(\vec{x}) \rangle$$

Si ce théorème est vérifié, on dira que α est **auto-adjoint** (ou hermitien).

7.5 Algorithme d'orthogonalisation de Gram - Schmidt

Partie essentiellement pratique, cf. TP.

7.6 Norme euclidienne ou hermitienne

Si V, \langle, \rangle est un espace euclidien (ou hermitien) centré, on appelle **norme eucli-dienne** (... hermitienne) **associée à** \langle, \rangle toute application :

$$|| \ || : V \to \mathbb{R}^+ : \vec{x} \to ||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$$

7.6.1 Propriété de la norme euclidienne (ou hermitienne)

C'est relativement simple, cf. page 221 - 227.

7.7 Norme généralisée

Si K, V, + est un espace vectoriel réel ou complexe, on appelle **borme de** V toute application $|| \ || : V \to \mathbb{R}^+ : \vec{x} \to ||\vec{x}||$ telle que :

- 1. $\forall \vec{x} \in V : ||\vec{x}|| \ge 0 \text{ et } \left[||\vec{x}|| = 0 \Leftrightarrow \vec{x} = \vec{0}\right]$
- 2. $\forall \vec{x} \in V \text{ et } \forall \lambda \in K : ||\lambda \vec{x}|| = |\lambda| ||\vec{x}||$
- 3. $\forall \vec{x}, \vec{y} \in V : ||\vec{x} + \vec{y}|| < ||\vec{x}|| + ||\vec{y}||$ (inégalité triangulaire)

8 Formes quadratiques

A partir d'ici, cette synthèse comprend seulement ce qui à une application aux TP, cela ne sert à rien de couvrir plus (Cf. la prof). En gros la matière théorique de l'examen de juin porte sur la matière des TP.

8.1 Définition - forme polaire

Si V, + est un espace vectoriel de dimension finie sur un corps K commutatif, tel que $0 \neq 2$, et si $f: V \times V \to K: (\vec{x}, \vec{y}) \to f(\vec{x}, \vec{y})$ est une forme bilinéaire symétrique, alors on appelle forme quadratique sur V associée à f l'application $q: V \to K: \vec{x} \to q(\vec{x}) = f(\vec{x}, \vec{x})$.

Ainsi, toute forme bilinéaire symétrique définit une forme quadratique et réciproquement, la donnée d'une forme quadratique permet de reconstituer univoquement la forme bilinéaire associée.

8.2 Formes quadratiques réelles

Il existe toujours une base u de V telle que $Q^u = F^u$ est une matrice **diagonale**.

8.3 Réduction de Gauss

Voir séance de TP, mais il est très important d'appliquer l'algorithme À LA LETTRE!

Celle-ci permet de trouver une base dans laquelle la forme quadratique est diagonale.

8.4 Loi d'inertie - Signature d'une forme quadratique

Toute représentation en somme de carrés d'une forme quadratique réelle aura

- 1. Un nombre constant P_q de termes à coefficients strictement positifs
- 2. Un nombre constant N_q de termes à coefficients strictement négatif

La signature de la forme quadratique q est le couple (P_q, N_q) .

Le nombre de termes non nuls d'une représentation diagonale d'une forme quadratique réelle q s'appelle le **rang de q**, qui est égal au rang de la matrice de q dans n'importe quelle base de l'espace.

9 Valeurs propres et sous-espaces propre d'un opérateur linéaire

9.1 Définitions

Si V, + est un espace vectoriel sur un corps K commutatif, et si $\alpha: V \to V$ est un opérateur linéaire de V, alors on appelle **vecteur propre de** α tout vecteur \vec{x} de V tel que $\exists \lambda \in K \mid \alpha(\vec{x}) = \lambda \vec{x}$.

Définition 2

Si V, + est un espace vectoriel sur un corps K commutatif, et si $\alpha: V \to V$ est un opérateur linéaire de V, alors un **scalaire** $\lambda \in K$ est une **valeur propre de** α ssi il **existe** un vecteur $\vec{x} \in V$ **non-nul** tel que $\alpha(\vec{x}) = \lambda \vec{x}$.

Définition 3

Le sous espace propre de α associé à la valeur propre λ est l'ensemble de tous les vecteurs propres de α associé à la valeur propre λ

$$W_{\lambda} = \{ \vec{x} \in V \mid \alpha(\vec{x}) = \lambda \vec{x} \}$$

Définition 4

L'ensemble des valeurs propres de α s'appelle le **spectre de l'opérateur** α .

9.2 Valeurs propres particulières

- $\lambda=1$ L'ensemble des valeurs propre de α associée à $\lambda=1$ est l'ensemble des points fixes de α .
- $\lambda = 0$ L'ensemble des valeurs propre de α associée à $\lambda = 0$ est le noyau $ker(\alpha)$ de α .
- $\lambda = 0$ L'application α n'est pas injective (il faut en effet qu'il existe un vecteur non nul, ce qui n'est pas le cas ici)