Functional Dependencies

- Need a special type of constraint to help us with normalization
- $\supset X \rightarrow Y$ is an assertion about a relation R that whenever two tuples of R agree on all the attributes in set X, they must also agree on all attributes in set Y.
- \square E.g., suppose $X = \{AB\}, Y = \{C\}$

Α	В	С
x 1	y 1	c2
x 1	y1	c2
x2	у2	c 3
x 2	у2	c 3

Splitting Right Sides of FDs

- \square $X \rightarrow A_1 A_2 ... A_n$ holds for R exactly when each of $X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n$ hold for R.
- \square Example: $A \rightarrow BC$ is equivalent to $A \rightarrow B$ and $A \rightarrow C$.
- \square Combining: if $A \rightarrow F$ and $A \rightarrow G$, then $A \rightarrow FG$
- There is no splitting rule for the left side
 - \blacksquare ABC \rightarrow DEF is NOT the same as AB \rightarrow DEF and C \rightarrow DEF!
- We'll generally express FDs with singleton right sides.

Trivial FDs

- Not all functional dependencies are useful
 - $-A \rightarrow A$ always holds
 - ABC → A also always holds (right side is subset of left side)
- FD with an attribute on both sides
 - ABC → AD becomes ABC → D
 - Or, in singleton form, delete trivial FDs
 ABC → A and ABC → D becomes just ABC → D

FDs are a generalization of keys

- \square Functional dependency: $X \rightarrow Y$
- A superkey must include all the attributes of the relation on the RHS.
- An FD can involve just a subset of them
 - Example:

Houses (street, city, value, owner, tax)

- street,city → value, owner, tax (both FD and key)
- city, value \rightarrow tax (FD only)

Identifying functional dependencies

- FDs are domain knowledge
 - Intrinsic features of the data you're dealing with
 - Something you know (or assume) about the data
- Database engine cannot identify FDs for you
 - Designer must specify them as part of schema
 - DBMS can only enforce FDs when told to
- DBMS cannot "optimize" FDs either
 - It has only a finite sample of the data
 - An FD constrains the entire domain

Armstrong's Axioms

X, Y, Z are sets of attributes

- 1. **Reflexivity:** If $Y \subseteq X$, then $X \to Y$
- 2. Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- 4. Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- 5. **Decomposition:** If $X \to YZ$, then $X \to Y$ and $X \to Z$

Inferring FDs

Given a set of FDs, we can often infer further FDs.

This will come in handy when we apply FDs to the problem of database design.

Dependency Inference

Suppose we are given FDs

$$X_1 \to A_1, \\ X_2 \to A_2, \\ \dots, \\ X_n \to A_n.$$

- \square Does the FD $Y \rightarrow B$ also hold in any relation that satisfies the given FDs?
- □ Example: If $A \rightarrow B$ and $B \rightarrow C$ hold, surely $A \rightarrow C$ holds, even if we don't say so.

```
A \rightarrow C is entailed (implied) by \{A \rightarrow B, B \rightarrow C\}
```

Transitive Property

The transitive property holds for FDs

- Consider the FDs: $A \rightarrow B$ and $B \rightarrow C$; then $A \rightarrow C$ holds
- Consider the FDs: $AD \rightarrow B$ and $B \rightarrow CD$; then $AD \rightarrow CD$ holds or just $AD \rightarrow C$ (because of trivial FDs)

Method 1: Prove it from first principles

 \square To test if $Y \rightarrow B$, start by assuming two tuples agree on all attributes of Y.

```
t1: aaaaa bb...b
t2: aaaaa ??...?
```

Example

ClientID	Income	OtherProd	Rate	Country	City	State
225	High	Α	2.1%	USA	San Francisco	MD
420	High	Α	2.1%	USA	San Francisco	CA
333	High	В	3.0%	USA	San Francisco	CA
576	High	В	3.0%	USA	San Francisco	CA
128	Low	С	4.5%	UK	Reading	Berkshire
193	Low	С	4.5%	UK	London	London
550	Low	В	3.5%	UK	London	London

F1: [Income, OtherProd] \rightarrow [Rate] F2: [Country, City] \rightarrow [State]

How to prove it in the general case?

Closure Test for FDs

- Given attribute set Y and FD set F
 - Denote Y_F⁺ or Y⁺ the closure of Y relative to F
 Y_F⁺ = set of all FDs given or implied by Y
- Computing the closure of Y
 - Start: $Y_F^+ = Y_F = F$
 - While there exists an f ∈ F' s.t. LHS(f) $\subseteq Y_F^+$:

$$Y_F^+ = Y_F^+ U RHS(f)$$

 $F' = F' - f$

- At end: $Y \rightarrow B$ for all $B \in Y_F^+$

Computing the closure Y^+ of a set of attributes Y Given FDs F:

Example: Closure Test

- Consider R(a,b,c,d,e,f)
 with FDs ab → c, ac → d, c → e, ade → f
- Find Y⁺ if Y = ab or find {a,b}⁺

 $\{a,b\}^+=\{a,b,c,d,e,f\}$ or $ab \rightarrow cdef$

ab is a candidate key!

Your Turn: Closure Test

F :
$AB \rightarrow C$
$A \rightarrow D$
$D \rightarrow E$
$AC \rightarrow B$

X	X_F^+
A	{A, D, E}
AB	{A, B, C, D, E}
AC	{A, C, B, D, E}
В	{B}
D	{D, E}

```
Is AB \rightarrow E entailed by F? Yes

Is D \rightarrow C entailed by F? No
```

Result: X_F^+ allows us to determine all FDs of the form $X \rightarrow Y$ entailed by F