## CLAIMS:

15

20

25

30

What is claimed is:

1. A method of managing power in a processing system, comprising:

determining an associated local maximum bound of power

consumption for each of a plurality of groups of devices within

said processing system, wherein a sum of said local bounds is

less than a global maximum power consumption bound for said

processing system;

communicating each local maximum bound to an associated one of a plurality of local controllers coupled to said associated group of devices;

second determining power management states for each device within each of said groups of devices within said associated local controller consistent with said associated local maximum bound, whereby said global maximum power consumption bound is met by meeting all of said local bounds; and

setting said power management state of each device from said associated local controller.

- 2. The method of Claim 1, wherein said local controllers are memory controllers, said devices are memory modules, and wherein said setting sets a power management state of each of said memory modules from an associated memory controller.
- 3. The method of Claim 1, further comprising evaluating a usage of each of said devices by said device controller in order to determine whether or not said usage of each device has fallen below a threshold, and wherein said second determining determines said power management settings for each particular device in conformity with said measured usage for each particular device.

- 4. The method of Claim 1, wherein each of said local controllers includes a storage containing an access queue for each of said associated devices, and wherein said second determining determines said power management settings for each particular device in conformity with a number of accesses queued for each particular device.
- 5. The method of Claim 1, wherein said processing system includes multiple processing locales, wherein each of said local controllers is a power management controller for an associated processing locale, whereby said second determining and said setting control the power consumption of each of said multiple processing locales in accordance with meeting said global maximum power consumption bound.
- 6. The method of Claim 1, wherein said setting sets power management states of said processing locales including a shutdown state of said processing locales.
- 7. The method of Claim 1, further comprising:

15

25

third determining an associated local minimum bound of power consumption for each of a plurality of groups of devices within said processing system; and

communicating each local minimum bound to an associated one of a plurality of local controllers coupled to said associated group of devices, and wherein said second determining further determines power management states for each device within each of said groups of devices within said associated local controller consistent with said associated local minimum bound, whereby changes in power consumption of each of said groups is limited to avoid excessive current spikes within a power distribution network of said processing system.

8. A processing system, comprising:

a processor;

5

15

20

25

a memory coupled to said processor for storing program instructions and data values;

multiple device controllers coupled to said processor;
a plurality of groups of controlled devices, each group
coupled to an associated one of said device controllers, wherein
said controlled devices have multiple power management states,
and wherein said device controllers each include a command unit
for sending commands to said associated devices, whereby said
devices are power managed by said associated controller, and
wherein said program instructions include program instructions
for

determining an associated maximum local bound of power consumption for each of a plurality of groups of devices within said processing system, wherein a sum of said maximum local bounds is less than a global maximum power consumption bound for said processing system,

communicating each associated maximum local bound to an associated one of a plurality of local controllers coupled to said associated group of devices, wherein said device controllers include control logic for determining power management states for each device within said associated group of devices consistent with said associated maximum local bound, whereby said global power consumption bound is met by meeting all of said maximum local bounds, and wherein said device controller further comprises a command unit for setting said determined power management state of each associated device.

9. The processing system of Claim 8, wherein said device controllers are memory controllers, said devices are memory modules, and wherein said command unit sets a power management state of each associated memory module.

- 10. The processing system of Claim 8, wherein said device controllers further comprise evaluators for evaluating a usage of each associated device in order to determine whether or not said usage of each device has fallen below a threshold, and wherein said control logic further determines said power management settings for each particular device in conformity with said measured usage for each particular device.
- 11. The processing system of Claim 8, wherein said device
  controllers further include a storage containing an access queue
  for each of said associated devices, and wherein said control
  logic further determines said power management settings for each
  particular device in conformity with a number of accesses queued
  for each particular device.

15

- 12. The processing system of Claim 8, wherein said processing system includes multiple processing locales, wherein each of said device controllers is a power management controller for an associated processing locale, whereby said control logic determines the power consumption of each of said multiple processing locales in accordance with meeting said global maximum power consumption bound.
- 13. The processing system of Claim 12, wherein said control sets
  power management states of said processing locales including a
  shutdown state of said processing locales.

14. The processing system of Claim 8, wherein said control logic comprises a processor for executing local program instructions and memory for storing said local program instructions, and wherein said local program instructions comprise program instructions for determining power management states for each device within said associated group of devices consistent with said associated maximum local bound, whereby said global power consumption bound is met by meeting all of said maximum local bounds.

10

15

20

15. The processing system of Claim 8, wherein said program instructions further comprise program instructions for communicating an associated minimum local bound to an associated one of a plurality of local controllers coupled to said associated group of devices, wherein said control logic further determines said power management states for each device within said associated group of devices consistent with said associated minimum local bound, whereby changes in power consumption of each of said groups is limited to avoid excessive current spikes within a power distribution network of said processing system.

16. A device controller for coupling a group of devices to one or more processors in a processing system, comprising:

a command unit for sending commands to a said one or more devices;

at least one control register for receiving a local maximum power consumption bound; and

5

control logic coupled to said at least one control register and further coupled to an input of said command unit for sending power management commands consistent with maintaining a total power consumption of said group of devices below said local maximum bound, whereby said device controller power manages said group of devices without intervention by said one or more processors.

- 15 17. The device controller of Claim 16, further comprising at least one other control register for receiving a local minimum power bound, wherein said control logic is further coupled to said at least one other control register for sending power management commands consistent with maintaining a total power consumption of said group of devices above said local minimum bound, whereby changes in power consumption of each of said groups is limited to avoid excessive current spikes within a power distribution network of said processing system.
- 18. The device controller of Claim 16, wherein said device controller is a memory controller, said devices are memory modules, and wherein said command unit sets a power management state of each associated memory module.

- 19. The device controller of Claim 16, further comprising evaluators for evaluating a usage of each associated device in order to determine whether or not said usage of each device has fallen below a threshold, and wherein said control logic further determines said power management settings for each particular device in conformity with said measured usage for each particular device.
- 20. The device controller of Claim 19, further comprising a storage containing an access queue for each of said associated devices, and wherein said control logic further determines said power management settings for each particular device in conformity with a number of accesses queued for each particular device.