Indledning

1.1 Indledning

I Danmark er omkring 3.000 mennesker diagnosticeret med en muskelsvindssygdom [1]. Muskelsvind dækker over forskellige neuromuskulære sygdomme, hvilket er sygdomme, der påvirker samspillet mellem nerver og muskler. De fleste af disse sygdomme opstår som følge af gendefekter og andre skyldes autoimmune sygdomme, hvor immunsystemet reagerer på kroppens eget væv [2]. Over 80 % af patienterne med muskelsvind vil under sygdomsforløbet få behov for hjælpemidler og behandling. Disse hjælpemidler og behandlingsformer gør, at flere med muskelsvind kan leve længere, selvom sygdommen ikke kan helbredes [3].

De enkelte muskelsvindssygdomme er forskellige, og der er derfor forskel på udviklingen og konsekvenserne af dem. De fleste muskelsvindssygdomme er ikke livstruende, hvis de rette hjælpemidler benyttes, men en af de mest alvorlige muskelsvindssygdomme, der medfører dødsfald grundet sygdommens komplikationer, er Amyotrofisk Lateral Sklerose (ALS) [4].

ALS er en hurtigt fremskridende neurodegenerativ sygdom, der nedbryder motorneuroner i hjernen, hjernestammen og rygmarven. Det betyder derfor, at nervecellerne degenereres, så der opstår atrofi². I Danmark er incidensen af ALS 1-3 per 100.000, og prævalensen er 3-7 per 100.000 [5]. Den gennemsnitlige levetid for ALS-patienter er tre til fem år efter symptomdebut, hvorefter motoriske neuroner er nedbrudt i en sådan grad, at der ofte opstår fatalt respirationssvigt [6, 7].

Patienterne er udfordrede under progressionen af sygdommen, hvor musklerne degenererer, eftersom sygdommen udvikler sig hurtigt. Af denne grund mister patienterne gradvist kontrol over sine muskler og derved kropsfunktioner. Disse funktioner ønskes opretholdt, hvilket leder frem til følgende initierende problemstilling.

1.1.1 Initierende problemstilling

Hvilken indvirkning har ALS på patienterne, og hvilke muligheder er der for opretholdelse af funktioner, der er tabt grundet mistet muskelkraft?

¹FiXme Note: Der findes omkring 25 forskellige sygdomme.

²FiXme Note: Svind af væv, legeme eller organ

Problemanalyse

2.1 Amyotrofisk lateral sklerose

ALS er en neurodegenerativ sygdom, der påvirker motorneuronerne i hjernen og rygsøjlen i takt med sygdommens fremskriden, hvilket resulterer i muskelsvaghed [4]. En illustration af, hvordan ALS påvirker motorneuroner, ses af figur 2.1. De første symptomer herpå er kramper, svaghed samt stive muskler, hvilket kan opstå som muskelsvaghed i arme eller ben, talebesvær eller svaghed i de muskler, som styrer respirationen. Symptomer, der begynder i arme eller ben kaldes "limb onset ALS", mens talebesvær samt synkebesvær refereres til "bulbar onset ALS" [8]. Symptomerne og følgerne af ALS varierer fra patient til patient, hvorved nogle patienter først oplever muskelsvaghed i deres ben, mens andre oplever muskelsvaghed i deres hænder og arme eller besvær i form af tale- eller synkebesvær [9, 8].

Figur 2.1: Tre stadier for en ALS-patient. Det første stadie illustrerer en normal motorneuron samt en upåvirket muskel. Ved andet stadie ses motorneuronet påvirket af ALS, dog ses musklen endvidere upåvirket. I det tredje stadie ses motorneuronet påvirket samt musklen svundet ind. Svindet skyldes en manglende stimulering af musklen som følge af den påvirkede motorneuron [10].

Muskelsvagheden skyldes abnormiteter i de nedre motorneuroner. De nedre motorneuroner er de nerveceller, der videregiver information fra rygmarven til musklerne. Symptomer på abnormiteter i de nedre motorneuroner ses som muskelsvaghed samt muskelkramper og atrofi. Ligeledes kan de øvre motorneuroner påvirkes. Disse motorneuroner sørger for kommunikationen mellem hjernen og de nedre motorneuroner i rygmarven. Dette medfører, at beskeden fra hjernen har komplikationer med at komme til det givne sted. Dette ses som spasticitet samt overdrevne reflekser [8]. Opdelingen af de nedre samt øvre motorneuroner ses af figur 2.2. Årsagen til, at ALS opstår er oftest ukendt, dog ses en arvelighed i 5-10 % af tilfældene. Herudaf anslås 20 % til at have det muterede Superocide dismutase 1-gen (SOD-1), hvilket resulterer i tab af motorneuroner [9].

Gruppe 375 2. Problemanalyse

Figur 2.2: Illustrerer opdelingen af de nedre samt øvre motorneuroner [9].

På trods af, at ALS opleves individuelt både i forhold til sygdomsprogressionen samt, hvilke komplikationer de oplever, kan sygdommen inddeles i 3 stadier: et tidligt, midter og endeligt stadie. Et flowdiagram af de 3 stadier framgår af figur 2.3.

Figur 2.3: Tre stadier samt de tilhørende symptomer.

I det tidlige stadie kan patienter ignorere symptomerne, da disse fremstår som milde og kun påvirker mindre dele af kroppen. Ved det midterste stadie vil symptomerne begynde at udbrede sig, hvortil nogle muskler paralyseres. Andre muskler vil blive svagere med tiden, hvilket blandt andet kan medføre problemer med synkning og vejrtrækningen. I det endelige stadie vil de fleste voluntære muskler være paralyserede, og det vil derfor forringe deres mulighed for indtage føde eller væske normalt. Herudover vil patienter oftest i dette stadie miste even til selv at trække vejret, og bliver derfor afhængig af ventilationsstøtte [11]. Den mest almindelige dødsårsag er respirationssvigt, hvilket oftest sker inden for 3 år efter diagnosen er stillet. 25 % af patienterne har en overlevelsesrate på 5 år, og kun 10 % lever længere end 10 år efter diagnosen er stillet [6, 9].

2.1.1 Livskvalitet hos ALS-patienter

Livskvaliteten hos patienter med ALS undersøges for at vurdere, hvilken påvirkning sygdommen samt dens progression har på patienten. Der er ingen behandling for at stoppe sygdomsprogressionen, men der eksisterer forskellige palliatative behandlinger [12]. Det er

fordelagtigt at kende patienternes livskvalitet for at vurdere den optimale palliative behandling [13].

Livskvalitet defineres ud fra en persons fysiske sundhed, psykologiske tilstand, grad af selvstændighed, sociale relationer og personlig tro [14].

Der kan fremhæves to forskellige typer af livskvalitetsvurderinger: en overordnet livskvalitet og en sundhedshedsrelateret livskvalitet. Den overordnede livskvalitet relaterer til patienternes samlede livskvalitet, og den sundhedsrelaterede livskvalitet dækker over de fysiologiske og mentale aspekter ved sygdommen [13, 12]. Da ALS påvirker patienters fysiske formåen, ses der et fald i denne type livskvalitet, som sygdommen fremskrider [13]. Dette fremgår ligeledes af tabel 2.1, der viser en forringet livskvalitet hos ALS-patienter når der sammenlignes med resten af befolkningen. Livskvaliteten vurderes ud fra mobilitet, selvpleje, udførelse af normale aktiviteter, oplevelse af smerte eller ubehag samt diagnoser som angst og depression, hvor næsten 3 gange så mange ALS-patienter lever med disse problemer sammenlignet med den resterende befolkning.

	ALS-patienter	Normativ tysk population
Mobilitet	83,7 %	16,6 %
Selvpleje	77,6~%	2,9 %
Normale aktiviteter	85,7~%	10,2 %
Smerte eller ubehag	61,2 %	27,9 %
Angst eller depression	67,4~%	4,4 %

Tabel 2.1: Moderate eller alvorlige problemer målt ud fra europæisk livskvalitetsvurdering. Tabellen sammenligner livskvaliteten for ALS-patienter med livskvaliteten for den tyske population. Det ses heraf at ALS-patienter har en forringet livskvalitet i forhold til den resterende tyske befolkning [13]. (Revideret)

Til trods for, at der sker et fald i den sundhedsrelaterede livskvalitet, er der tidligere vist, at den overordnede livskvalitet forbliver stabil [13, 12]. Dette kan forklares ved et "response shift" eller "frame shift", der er en måde at håndtere sin sygdom, hvor social støtte under sygdomsforløbet vægtes højere end normalt i bestemmelsen af livskvalitet [13]. Af denne grund foreslås det, at faldet i sundhedsrelateret livskvalitet i forhold til mobilitet og selvhjælp afhjælpes ved teknologiske hjælpemidler. På denne måde vil ALS-patienternes sociale interaktioner kunne have fokus på deres sociale netværk, da disse sociale interaktioner er begrænsede på baggrund af ALS [13, 15].

2.2 Hjælpemidler til brug ved ALS

Som tidligere nævnt er ALS en livstruende sygdom, hvor følgerne udvikler sig gradvist. Dette gør, at patienternes funktionelle evner svækkes over sigt, hvorfor der er behov for en række hjælpemidler, som helt eller delvist kan være en hjælp i hverdagen. Nogle af hjælpemidlerne anvendes i starten af sygdommen, således patienterne kan klare sig selvstændigt, hvor der senere er behov for andre hjælpemidler samt helt eller delvist hjælp fra familie eller plejepersonale [16].

Gruppe 375 2. Problemanalyse

2.2.1 Teknologiske hjælpemidler

Nogle af de mest anvendte hjælpemidler for ALS-patienter er kørestole, toiletstole og stokke, [16] samt hjælpemidler til repiration, der bliver nødvendige sent i sygdomsforløbet [17]. Dette kan være en respirator til at lindre og håndtere vejrtrækningsproblemer. Ved brug af respirator, bliver patienter i højere grad afhængige af hjælp, da det kræver plejepersonale at betjene denne [18]. Hjælpemidlerne er alle redskaber, der støtter og aflaster patienterne, så de kan leve bedst muligt. Hjælpemidlerne kan tilpasses individuelt til den enkelte patients behov, for eksempel i form af en tilpasset kørestol [16].

Udfordringer ved brug af hjælpemidler

Som nævnt i afsnit 2.2 mister patienter muskelkraft, som sygdommen udvikler sig, og de bliver derfor mere og mere afhængige af hjælpemidler, da tabet af muskelkraft til sidst medfører, at kørestolsbrug kan blive nødvendigt. På denne måde forsvinder patienternes selvstændighed, da de er afhængige af hjælpemidler samt assistance fra plejepersonale eller familie [16]. Dette fører til nogle begrænsninger for patienten og medvirker til en forringet livskvalitet. En mulig måde at give ALS-patienter nye muligheder, i takt med at muskelkraften bliver mindre, er anvendelse af et body augmentation-system. Et sådant system bidrager som et supplement til tabte kropsfunktioner [19].

2.2.2 Body augmentation som hjælpemiddel

Én form for body augmentation er et exoskelet. Et exoskelet anvender biologiske signaler, og kombinerer disse signaler med kraften fra en maskine. På denne måde er det muligt, at maskinen fungerer som en menneskelig operatør, som kan forbedre menneskets styrke eller genoprette bevægelse [20]. Dette gør, at exoskelettet kan anvendes som et hjælpemiddel til patienter, som lider af handicap eller skader, hvorved exoskelettet gør det muligt at aflaste patienten [21].

Forsøg har påvist, at det er muligt for patienter, som er lammet fra brystet og ned, at gå ved brug af exoskelet for patienter. Exoskelettet kan registrere, når patienten bevæger sig til siden og herved hjælpes benene til at gå, selvom patienten er uden muskelkraft og følesans. Foruden fordele ved at gå, formodes det, at det har en positiv indflydelse på patientens kredsløb, knogler, led og fordøjelse [22].

2.3 Gangfunktion

Efterhånden som ALS-patienter mister muskelkraft, vil bevægeligheden i deres led nedsættes, eftersom de ikke har tilstrækkelig muskelkraft til at udnytte leddenes bevægelighed. Af denne grund opstår der kontrakturer i leddene, og muskelstramninger i de muskler, der er omkringliggende det pågældende led. Ved gang anvendes knæ-, hofte- og ankelleddet, hvilket fremgår af figur 2.4, og hvis disse led ikke akviteres, opstår muskelstramninger i benenes muskler [23]. Knæleddet vælges som udgangspunkt for et muligt body augmentation-system i form af et exoskelet, da knæleddet har et begrænset antal frihedsgrader. Dette gør, at knæleddet og de omkringliggende muskler er simplest at opbygge et system omkring. Hvis der kan laves et exoskelet omkring knæleddet, vil det kunne antages, at det også er muligt ved henholdsvis hofte- og ankelleddet, så gangfunktionen kan opretholdes.

Gruppe 375 2. Problemanalyse

Figur 2.4: Aktivering af hofte, knæet og ankel under gang [25].

2.3.1 Knæets opbygning

Knæleddet er et hængselled, hvilket medvirker til, at knæet kan rotere begrænset, fleksere og ekstensere. Knæet består af tre separate ledforbindelser. To, der er forbundet mellem femur og tibia, samt et mellem patella og femur, hvilket fremgår af figur 2.5. Ud over de tre separate ledforbindelser stabiliseres knæet af syv ledbånd. Ét af de syv ledbånd er patellarsenen, som er ansvarlig under extension af knæet. Derudover er der to ledbånd, som strækker sig mellem femur, tibia og fibia, hvilket er med til at styrke knæleddets overflade posteriort. Inde i ledkapslen befinder det forreste korsbånd (ACL) og det bagerste korsbånd (PCL), som har til opgave at fastgøre indre knoglefremspring af tibia til knoglefremspringet på femur. Korsbåndene har til opgave at begrænse anteriore og posteriore bevægelser af femur og er med til at opretholde retningen af knoglefremspringene. Det tibiale kollaterale ligament forstærker den mediale flade af knæleddet og det fibulære kollaterale ligament forstærker sidefladen. Disse ligamenter anvendes kun ved fuld ekstension [24].

Figur 2.5: Knæets anatomiske opbygning.

2.3.2 Knæets funktion

Ved gang aktiveres quadricepsmusklerne, der sidder anteriort på femur, og hamstringmusklerne, der sidder poseriort på femur, hvilket fremgår af figur 2.5. Quadricepsmusklerne består af rectus femoris, vastus intermedius, vastus medialis og vastus lateralis. Hamstringmusklerne består af biceps femoris, semitendinosus og semimembranosus. Ved bevægelse foretager quadriceps- eller hamstringmusklerne ekstension eller fleksion, hvorved de fungerer som hinandens agonister eller antagonister under bevægelse [24].

Som tidligere nævnt anvendes hofte, knæ og ankler under gang. Udover disse led er også kropsposituren og sving af leddene afgørende for gangfunktionen. Det fremgår af figur 2.4, hvordan de forskellige led udfører fleksion, ekstension og ændres fra ekstension til neutral bevægelse under gang [24].

Knæets funktion under en squat-øvelse

Knæets funktion for bøjningen af benet ses ved udførelse af en squat-øvelse. Under denne øvelse aktiveres quadricepsmusklerne ved 80-90° fleksion og er herefter konsistent. Der ses en større aktivering af vastus intermedius, vastus medialis samt vastus lateris, da disse muskler er én ledmuskel, hvor rectus femoris er en to-ledsmuskel. Hamstringmusklerne aktiveres ved en 45° fleksion [26]. Ved udførelse af en squat-øvelse er det primært lårmusklerne, quadricepsog hamstringsmusklerne, der aktiveres.

2.4 Problemafgrænsning

I dette projekt fokuseres på ALS-patienter samt muligheden for opretholdelse af kropsfunktioner ved benyttelse af exoskelet.

Da ALS-patienter oplever progressivt muskelsvind, har dette indflydelse på deres selvstændighed, da de gradvist mister kontrollen over deres legemsdele. Da der kun eksisterer palliative behandlinger til ALS-patienter, fokuseres der i dette projekt på at afhjælpe deres fysiske mangler ved brug af et exoskelet som aflastning. Ved opretholdes af de fysiske

funktioner vil dette ligeledes have en gavnlig effekt på den sundhedsrelaterede livskvalitet, da det vil kunne resultere i en større selvstændighed.

Idet ALS vil resultere i, at patienten mister evnen til at kunne gå, fokuseres der på at opretholde denne funktion. Til dette fokuseres yderligere på knæet i forhold til gang, hvor musklerne omkringliggende knæet afhjælpes ved anvendelse af et exoskelet.

2.4.1 Problemformulering

Hvordan kan et exoskelet anvendes for at aflaste ALS-patienters lårmuskulatur under en squat-øvelse?

Systemudvikling

3.1 Systembeskrivelse

Der ønskes, som tidligere nævnt, at udvikle et system, der har til formål at aflaste musklerne omkring knæleddet under udførelse af en squat-øvelse ved brug af et exoskelet. Dette gøres for at aflaste patienterne med henblik på at kunne undgå kørestol i tidlige stadier af ALS. Systemet skal kunne opsamle signaler fra lårmusklerne; quadriceps og hamstring. Disse signaler skal behandles og omsættes til aktivitet i en prototype af et exoskelet, som skal udføre en tilsvarende bevægelse, men også have mulighed for forstærkning af signalet, så mindre muskelkraft også vil kunne udløse denne bevægelse.. Af denne grund skal systemet være i stand til at måle muskelaktivitet i quadriceps og hamstring samt den aktuelle vinkel i knæleddet. Derudover skal systemet være brugervenligt ved at være kompakt, mobilt og ikke generende over for brugeren.

3.1.1 Krav til systemet

- Systemet skal registrere muskelaktivitet og ledvinkler
- Systemet skal kunne overføre data trådløst til en computer
- Systemet skal kunne ende ud i en prototype af et exoskelet
- Systemet skal være batteridrevet
- Systemet skal være sikkert og ikke til gene for brugeren
- Systemet skal kunne indikere, hvis der ikke er strøm nok til at virke optimalt

3.1.2 Blokdiagram

Figur 3.1: Systemets opbygning.

I dette projekt er der valgt at udarbejde en prototype, som har til formål at bøje knæleddet, når lårets muskler kontraherer. Opbygningen af systemet fremgår af figur 3.1. Der anvendes to sensorer, EMG og accelerometer, til at opsamle biologiske signaler, For at registrere muskelaktivitet anvendes en EMG-sensor og en EMG-forstærker, der har til formål at forstærke den muskelaktivitet, der opsamles. Accelerometeret anvendes for at give systemet et

input om, knæleddet vinkles under udførslen af en squat-øvelse. Det opsamlede signal sendes herefter videre til den digitale del af systemet, hvilket er bestående af et Bluetooth Low Energy Pioneer kit (CY8CKIT-042-BLE), som opfanger de biologiske signaler og overfører dem trådløst til en CySmartUSB BLE Dongle sat i en computer, som kan kommunikere med prototypen af exoskelettet i LEGO Mindstorms.

3.2 Sensorer

I det tiltænkte system benyttes forskellige sensorer, hvorfra systemet skal agere. Herunder benyttes elektroder til opsamling af EMG-signaler, hvilket yderligere vil passere en EMG-forstærker, Muscle Sensor V3. Herudover vil accelerometeret ADXL335Z benyttes til måling af accerlerationskræfter.

3.2.1 Elektromyografi

Elektromyografi (EMG) er en måling af muskelaktivitet gennem elektriske potentialer. EMG-forstærkeren er designet til at kunne anvendes direkte med en mikrocontroller. Signalets output er herved ikke et råt EMG-signal, men et forstærket, ensrettet samt udglattet signal [27]. Et illustration af de tre sinus signaler ses af figur 3.2.

Figur 3.2: Tre sinus signaler. Henholdsvis et råt sinus signal, ensrettet sinus signal og ensrettet samt udglattet sinus signal [27].

Muskelsensoren V3 har en minimum spændingsforsyning på \pm 3 V samt en maksimal spændingsforsyning på \pm 30 V. Herudover er der mulighed for at justere gain fra 0,002 gange - 20,700 gange [27].

3.2.2 Accelerometer

Et accelerometer er en elektromekanisk enhed, som både kan måle statiske eller dynamiske accerlerationskræfter. De statiske kræfter kan være tyngdekraften, hvortil det er muligt at bestemme orienteringen af accelerometeret i forhold til jorden. De dynamiske kræfter såsom bevægelse, stød og vibrationer, gør det muligt at analysere accelerometeres bevægelse samt hastighed. ADXL335Z er et 3-aksialt accelerometer, som har et arbejdsområde på minimum \pm 3 g. Hertil arbejdes der ved dette accelerometer med analoge output signaler proportionelle med accelerationen [28].

Tilføj noget om sensitivitet og evt. illustration af g-påvirking og udregning af vinkel skal tilføjes hertil.

3.3 Løsningsstrategi

Til dette system benyttes komponenter fra Cypress's CY8CKIT-042-BLE udviklingssæt. Af dette sæt er der udvalgt de nødvendige komponenter for, at der kan fortages analog til digital konvertering af de signaler, der måles via sensorerne i afsnit 3.2. Yderligere skal systemet være i stand til at kommunikere trådløst med andre enheder.

Figur 3.3: CY8CKIT-042 BLE Pioneer baseboard, samt CY8CKIT-142 PSoC 4 BLE modulet [29].

I figur 3.3, ses de valgte komponenter, der består af et CY8CKIT-042 BLE Pioneer baseboard og et CY8CKIT-142 PSoC 4 BLE modul. Baseboardet er platformen, hvorpå de diverse sensorer vil blive tilkoblet, og konvertere de analoge signaler til digitale signaler. Baseboardet har mulighed for tilkobling af en spændingsforsyning, bestående af et 3 V knapcelle batteri, eller via mikro USB tilslutningen [30]. Der er mulighed for udvidelse af baseboardet, ved anvendelse af moduler fra Cypress, samt Arduino shields eller 6-pins Digilent Pmod udvidelseskort [30].

For at opnå trådløs kommunikationsmuligheder benyttes CY8CKIT-142 PSoC 4 BLE, der et Cypress BLE modul. Kommunikationstypen er Bluetooth Low Energy (BLE) også kendt som Bluetooth SMART, der har en operationsfrekvens på 2,4 GHz [30].

Ud over de to mikrocontrollere til det endelige system, benyttes en BLE-dongle, der giver mulighed for at en computer kan kommunikere trådløst med systemet. Dette tillader således trådløs test og debugging af det systemet. BLE-donglen forsynes via USB-porten på den givne computer med 5 V [30].

Til at programmere og debugge mikrokontrollerne, benyttes det tilhørende Cypress software, PSoC Creator 3.3.

Bilag

4.1 Pilotforsøg

I dette projekt udføres et pilotforsøg for identificere støj og andre uønskede signaler ved anvendelse af sensorer. Pilotforsøget danner grundlag for optimering af kravspecifikationerne i de enkelte blokke. Derudover undersøges det, hvor elektroderne skal placeres for at opnå det bedst mulige signal under udførelse af en squat-øvelse.

4.1.1 Formål

Der anvendes en EMG-forstærker og et accelerometer som sensorer. På baggrund af dette opstilles følgende formål for de enkelte sensorer.

EMG/EMG-forstærker

- 1. Opsamling af signal fra rectus femoris og biceps femoris
 - Identificere placeringen af elektroder
 - Sammenligne muskelaktivitet oprejst og i en squat-øvelse
- 2. Identificere støj ved opsamling af signaler

Accelerometer

- 1. Identificere position af knæleddet siddende i en squat-øvelse
- 2. Identificere støj ved opsamling af signaler

4.1.2 Materialer

- EMG-forstærker
- Elektroder
- Desinfektionsservietter
- Skraber
- Tusch
- Accelerometer ADXL335Z
- Tape
- Ledninger
- Computer
- CY8CKIT-042-BLE

Gruppe 375 4. Bilag

4.1.3 Metode

For at identificere den bedste placering af elektroder optages EMG-signaler fra forskellige placeringer på de to muskler. For at simulere den påvirkning som accelerometeret udsættes for og derved identificere det maksimale og minimale outputsignal roteres accelerometeret i en langsom rotation fra 0° til 90° til både højre og venstre. Herudover måles accelerometeret påvirkning i henholdsvis 0 og 1 g-påvirkning for at identificere accelerometeres påvirkning og hvorledes dette stemmer overens med databladet. For at identificere støj fra EMG-forstærkeren optages aktivitet i musklerne i en squat-øvelse.

4.1.4 Forsøgsopstilling

Forsøgsopstilling er for den primære udførelse af forsøget. Nogle af processerne gentages for at kunne sammenligne de forskellige målinger, og derved få et bedre resultat.

${ m EMG/EMG-forstæker}$

Rectus femoris og biceps femoris identificeres, den ønskede placering af elektroderne markeres med tusch. Herefter fjernes eventuelle hår og døde hudceller ved brug af skraber. Huden desinficeres herefter ved brug af desinficeringsservietter og elektroderne påsættes. Den røde ledning påsættes rectus femoris/bicep femoris og den grønne ledning påsættes rectus femoris/bicep femoris. Den sorte ledning påsættes patella og anvendes som referencepunkt.

Accelerometer

Accelerometeret påsættes siden af låret, så accelerometer måles i xyz-plan, hvorved der måles i den vertikale retning. Der sørges for, at accelerometeret befinder sig i 0 g påvirkning ved starten af forsøgets udførelse, hvorved accelerometeret er kaliberet.

Opstilling

- Identificering af musklerne rectus femoris og biceps femoris
- Placeringen af elektroderne markeres
- Huden skrabes og desinficeres
- Elektroderne påsættes
- Ledningerne påsættes elektroderne
 - Den røde/grønne ledning på rectus femoris
 - Den røde/grønne ledning på biceps femoris
 - Den sorte ledning/reference på patella ¹
- Accelerometeret på sættes patella ved en 0 g påvirkning i x,y,z retning

4.1.5 Fremgangsmåde

Fremgangsmåden udføres XX antal gange, hvorved der på baggrund af målingerne foretages en gennemsnitsværdiberegning.

EMG/EMG-forstærker

EMG måling: 10-sekunders målinger trinvist under udførelse af en squat-øvelse.

¹FiXme Note: positiv/negativ/ground

Gruppe 375 4. Bilag

Accelerometer

Påvirkning i 0 og 90 °. Påvirkning af rotation fra 0 til 90 ° til både højre og venstre. Optag 30 sekunder ved 0 og 90 °. Optag rotation: baseline 10 sekunder, rotation 10 sekunder, baseline 10 sekunder

Litteratur

- Københavns Universitet. Ny viden om alvorlig muskelsygdom. Københavns Universitet,
 2015. URL
 http://sund.ku.dk/nyheder/nyheder2013/ny-viden-om-alvorlig-muskelsygdom/.
- [2] K. Arahata. Muscular dystrophy. *Neuropathology*, 2014. doi: 10.1046/j.1440-1789.2000.00321.x.
- [3] Muskelsvindsfonden. Hvad er muskelsvind? Muskelsvindsfonden, 2016. URL http://muskelsvindfonden.dk/om-muskelsvind/hvad-er-muskelsvind/.
- [4] C. Henschke. Provision and financing of assistive technology devices in germany: A bureaucratic odyssey? the case of amyotrophic lateral sclerosis and duchenne muscular dystrophy. Department of Health Care Management, Technische Universität Berlin, Germany, 2012. doi: 10.1016/j.healthpol.2012.01.013.
- [5] M. B. Russell, J. S. Andersen, and et. al. N. Witting. *Amytrofisk lateral sklerose*. Lægehåndbogen.
- [6] T. Grehl, M. Ruppand, and et. al. P. Buddle. Depression and QOL in patients with ALS: How do self-ratings and ratings by relatives differ? Springer Netherlands, 2011. doi: 1573-2649.
- [7] J. Morris. Amyotrophic lateral sclerosis (als) and related motor neuron diseases: An overview. *The Neurodiagnostic Journal*, 2015. doi: 10.1080/21646821.2015.1075181.
- [8] National Institute of Neurological Disorders and Stroke. Amyotrophic lateral sclerosis (ALS) Fact sheet. National Institute of Neurological Disorders and Stroke, 2016. URL nih.gov/disorders/amyotrophiclateralsclerosis/detail_ALS.htm.
- [9] R. G. Miller, D. F. Gelinas, and P. O'Connor. et. al. *American Academy of Neurology: Amyotrophic Lateral Sclerosis*. Demos Medical Publishing, 2005. doi: 9781934559062.
- [10] M. E. Drake. Amytrophic lateral sclerosis neurological disorder. Biotechnologic forums, 2015. URL http://www.biotechnologyforums.com/thread-6946.html.
- [11] The Muscular Dystrophy Association. Amyotrophic lateral sclerosis Stages of ALS. The Muscular Dystrophy Association, 2016. URL https://www.mda.org/disease/amyotrophic-lateral-sclerosis/signs-and-symptoms/stages-of-als.
- [12] C. Neudert, M. Wasner, and G. D. Borasio. Individual quality of life is not correlated with health-related quality of life or physical function in patients with amyotrophic lateral sclerosis. *Journal of palliative medicine*, 7, 2004. doi: 10.1089/1096621041838443.
- [13] B. Ilse, T. Prell, and et. al. M. Walther. Relationships between disease severity, social support and health-related quality of life in patients with amyotrophic lateral sclerosis. *Social Indicators Research*, 2015. doi: 10.1007/s11205-014-0621-y.

Gruppe 375 Litteratur

[14] F. Pagnini. Psychological wellbeing and quality of life inamyotrophic lateral sclerosis: A review. *International Journal of Psychology*, 48, 2013. doi: http://dx.doi.org/10.1080/00207594.2012.691977.

- [15] F. Tramonti., P. Bongioanni., and et. al. C. Fanciullacci. Balancing between autonomy and support: Coping strategies by patients with amyotrophic lateral sclerosis. *Journal of the Neurological Sciences*, 320, 2012. doi: 10.1016/j.jns.2012.07.006.
- [16] Å. Brandt and L. Jensen. Grundbog om hjælpemidler: til personer med funktionsnedsættelse, volume 1. Gyldendal Akademisk, 2010. doi: 9788762808034.
- [17] C. Heffernan, C. Jenkinson, and et. al. T. Holmes. Management of respiration in mnd/als patients: An evidence based review. Amyotrophic Lateral Sclerosis, 7, 2006. doi: 10.1080/14660820510043235.
- [18] et. al. O. Gredal. ALS og vejrtrækning: Hjælpemidler og behandlingsmuligheder. RehabiliteringsCenter for Muskelsvind, 2001. URL http://rcfm.dk/wp-content/uploads/2015/02/ALS-og-respiration.pdf.
- [19] J. A. Erlen. Technology: possibilities and pitfalls. Orthopedic nursing, 2003.
- [20] C. J. Yang, J. F. Zhang, and et. al. Y. Chen. A review of exoskeleton-type systems and their key technologies. *Journal of Mechanical Engineering Science*, 222, 2008. doi: 10.1243/09544062JMES936.
- [21] R. Bogue. Robotic exoskeletons: a review of recent progress. *Emerald Group Publishing Limited*, 42, 2015. doi: http://dx.doi.org/10.1108/IR-08-2014-0379.
- [22] Region Midtjylland. Rygmarvsskadet lammet mand lærer at gå, 2015. URL http://www.rm.dk/om-os/aktuelt/nyheder/nyhedsarkiv-2015/december/rygmarvsskadet-lammet-mand-larer-at-ga1/.
- [23] Institut for Muskelsvind. Muskelsvind, 2008. URL http: //www.aarhus.dk/~/media/Subsites/HandiInfo/Docs/Leksikon/Muskelsvind.pdf.
- [24] F. H. Martini, J. L. Nath, and E. F. Bartholomew. Fundamentals of Anatomi and Physiology. Pearson, 2012. doi: 978-0-321-70933-2.
- [25] TIS Orthopedics II. Typical Foot Function During Walking, 2016. URL http://www.therapyedu.com/ortho2/ortho2-02.htm.
- [26] B. J. Schoenfeld. Squatting kinematics and kinetics and their application to exercise performance. *Journal of Strength and Conditioning Research*, 2010. doi: 10.1519/JSC.0b013e3181bac2d7.
- [27] Advancer Technologies. Three-lead Differential Muscle/Electromyography Sensor for Microcontroller Application, 2013. URL http://cdn.sparkfun.com/datasheets/Sensors/Biometric/Muscle%20Sensor%20v3%20Users%20Manual.pdf.
- [28] Analog Devices. ADXL335, 2010. URL http: //www.analog.com/media/en/technical-documentation/data-sheets/ADXL335.pdf.

Gruppe 375 Litteratur

[29] Cypress Semiconductor Corporation. CY8CKIT-142 PSoC 4 BLE module, 2015. URL http://www.cypress.com/file/140711/download.

[30] Cypress Semiconductor Corporation. CY8CKIT-042-BLE Bluetooth Low Energy (BLE) Pioneer Kit Guide, 2014. URL http://www.cypress.com/file/229211/download.