Chipimplementation einer zweidimensionalen Fouriertransformation für die Auswertung eines Sensor-Arrays

Bachelorkolloquium

Thomas Lattmann

1. Mai 2018

Inhaltsübersicht

Gliederung:

- Einleitung
- Grundlagen
- Analyse und Entwurf
- Testumgebung und Evaluation
- Zusammenfassung und Ausblick

Einleitung: Details zur Hardware

- 350 μm Prozess, EuroPractice
- Array von Magnetsensoren
- Sensoren, Signalverarbeitung & Ausgabe des digitalen Nutzsignals auf einem ASIC

Quelle: SensorAusgang.pdf, K.-R. Riemschneider + T. Schüthe

Einleitung: Einordung im ISAR-Projekt

 $Quelle: Frequency_filtering_and_stray_field_compensation_using_2D-DFT_algorithm.pdf, \ K.-R. \ Riemschneider + \ T. \ Sch\"{u}the and the compensation of the compens$

Chipimplementation einer 2D-DFT für die Auswertung eines Sensor-Arrays

Grundlagen

Gliederung:

- Interpretation von Dualzahlen
- Komplexe Multiplikation
- Matrixmultiplikation
- DFT und IDFT
- 2D-DFT

Interpretation von Dualzahlen

Mögliche Arten sind:

- positive Ganzahldarstellung (a)
- Darstellung im Einerkomplement (b)
- Darstellung im Zweierkomplement (c)
- vorzeichenbehaftete Festkommazahlen (SQ-Format) mit u. ohne Vorkommaanteil (d)

Beispiel

10010110101002

$$4096 + 512 + 128 + 64 + 16 + 4 = 4820_{10}$$
 (a)

$$-(512 + 128 + 64 + 16 + 4) = -724_{10}$$
 (b)

$$-4096 + 512 + 128 + 64 + 16 + 4 = -3372_{10}$$
 (c)

$$-4 + 0, 5 + 0, 125 + 0, 062 + 0, 015625 + 0, 00390625 = -3, 29296875_{10}$$
 in S2Q10 (d)

Interpretation von Dualzahlen

Mögliche Arten sind:

- positive Ganzahldarstellung (a)
- Darstellung im Einerkomplement (b)
- Darstellung im Zweierkomplement (c)
- vorzeichenbehaftete Festkommazahlen (SQ-Format) mit u. ohne Vorkommaanteil (d)

Beispiel:

10010110101002

$$4096 + 512 + 128 + 64 + 16 + 4 = 4820_{10} \tag{a}$$

$$-(512 + 128 + 64 + 16 + 4) = -724_{10}$$
 (b)

$$-4096 + 512 + 128 + 64 + 16 + 4 = -3372_{10}$$
 (c)

$$-4+0, 5+0, 125+0, 062+0, 015625+0, 00390625=-3, 29296875_{10} \quad \mathrm{in} \ \mathrm{S2Q10} \ (\mathrm{d})$$

Komplexe Multiplikation sind 4 einfache Multiplikationen und 2 Additionen.

$$e + jf = (a + jb) \cdot (c + jd)$$

$$= a \cdot c + j(a \cdot d) + j(b \cdot c) + j^{2}(b \cdot d)$$

$$= a \cdot c - b \cdot d + j(a \cdot d + b \cdot c)$$

Wenn einer der beiden Multiplikanden keinen Imaginärteil haben, reduziert sich das zu

$$e + jf = a \cdot (c + jd)$$

= $a \cdot c + j(a \cdot d)$

Veranschaulichung der Matrixmultiplikation

DFT:

Summenschreibweise

$$X^*[m] = \frac{1}{N} \cdot \sum_{n=0}^{N-1} x[n] \cdot e^{-\frac{j2\pi mn}{N}}$$

Matrixschreibweise

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$
$$X^* = W \cdot x$$

IDFT:

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X^*[m] \cdot e^{+\frac{j2\pi m}{N}}$$

DFT:

Summenschreibweise

$$X^*[m] = \frac{1}{N} \cdot \sum_{n=0}^{N-1} x[n] \cdot e^{-\frac{j2\pi mn}{N}}$$

Matrixschreibweise

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$
$$X^* = W \cdot x$$

IDFT:

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X^*[m] \cdot e^{+\frac{j2\pi mn}{N}}$$

2D-DFT als Matrixmultiplikation

Alternative Schreibweise der 2D-DFT als Matrixmultiplikation

$$X = \left((x \cdot W)^T \cdot W \right)^T$$
$$= \left(X^{*T} \cdot W \right)^T$$

Berechnungsarten der DFT und deren Aufwand

- optimierte Matrixmultiplikation mit reellen Eingangswerten
- optimierte Matrixmultiplikation mit komplexen Eingangswerten
- Fast Fouriertransformation (Butterfly-Algorithmus)
- allgemeine Matrixmultiplikation

2D-DFT mit reellen Eingangswerten zur Ausnutzung von Redundanzen

2D-DFT mit reellen Eingangswerten zur Ausnutzung von Redundanzen

2D-DFT mit komplexen Eingangswerten

Anzahl reeller Multiplikationen für die Berechnung der 8x8-2D-DFT

Methode	Anzahl reeller Multiplikationen
reelle Eingangswerte	64
komplexe Eingangswerte	128
FFT	128
allgemeine Matrixmultiplikation	4096

Analyse und Entwicklung

Gliederung:

- Gegenüberstellung verschiedener Größen von Twiddlefaktormatrizen
- Optimieren der 8x8-DFT
- Konstantenmultiplikation
- Benötigte Takte
- Zustandsfolge
- Entwickeln der 2D-DFT auf Basis der 1D-DFT

Gegenüberstellung verschiedener Größen von DFT-Twiddlefaktormatrizen

8	9	12	15	16
64	81	144	225	256
48	45	128	81	128
16	36	16	144	128
48	21	96	45	128
16	60	48	180	128
96	66	224	126	256
32	96	64	324	256
1	7	1	13	3
3	0,6875	3,5	0,3889	1
	64 48 16 48 16 96 32 1	64 81 48 45 16 36 48 21 16 60 96 66 32 96 1 7	64 81 144 48 45 128 16 36 16 48 21 96 16 60 48 96 66 224 32 96 64 1 7 1	64 81 144 225 48 45 128 81 16 36 16 144 48 21 96 45 16 60 48 180 96 66 224 126 32 96 64 324 1 7 1 13

Optimierung der 8x8-DFT

Legende:

Anzahl benötigter Takte je Element, ungerade Zeilen

1. Spalte:
$$r_0 + r_1 + r_2 + r_3 + r_4 + r_5 + r_6 + r_7$$

Anzahl benötigter Takte je Element, gerade Zeilen

2. Spalte:
$$r_1 - r_3 + i_1 - i_7 + i_3 - r_5 + r_7 - i_5 + r_0 - r_4 + i_2 - i_6$$

Takt					Bit
1	$\underbrace{r_1-r_3}$ $\underbrace{i_1-i_7}$	i_3-r_5	$r_7 - i_5$	$\underbrace{r_0-r_4}$ $\underbrace{i_2-i_6}$	12
	1 1	\downarrow	↓ •	\downarrow \downarrow	13
2	$sum1_1 + sum1_2$	$sum1_3$ +	- sum1_4	$sum1_5 + sum1_6$	12
	\downarrow			#	13
3	$sum2_1$ +	sun	n2_2		12
	*		_	\	13
	sum 3	3_1			13
					13
4	$\frac{\sqrt{2}}{2}$	2			13
	1				26
5	sum4	_1	+	$sum2_3$	12
			$\overrightarrow{\psi}$		13
			$sum5_1$		12

Summe der Takte für die Berechnung der 2D-DFT

Zeile	Additionen pro Element (<i>N</i>)	Takte pro Element $(\log_2(N))$	Takte für Multiplikation	Summe der Takte
1	8	3	0	3
2	12	3,6	1	5
3	8	3	0	3
4	12	3,6	1	5
5	8	3	0	3
6	12	3,6	1	5
7	8	3	0	3
8	12	3,6	1	5

$$\Rightarrow \mathsf{Summe} \; \mathsf{der} \; \mathsf{Takte} \; \mathsf{ist} \quad \underbrace{\frac{3 \cdot 4}{\underset{\mathsf{Zeilen}}{\mathsf{ungerade}}}}_{\substack{\mathsf{Ungerade} \\ \mathsf{Zeilen} \\ \mathsf{aus} \\ \mathsf{W}}} + \underbrace{\frac{5 \cdot 4}{\underset{\mathsf{Spalten}}{\mathsf{Spalten}}}}_{\substack{\mathsf{Spalten} \\ \mathsf{Spalten} \\ \mathsf{aus} \\ \mathsf{Input}}}_{\substack{\mathsf{1D-DFT} \\ \mathsf{und} \\ \mathsf{2D-DFT}}} = 512$$

Konstantenmultiplikation mit $\frac{\sqrt{2}}{2} \simeq 0.70703125 = 0001011010100_2$

Zustandsfolge

Evaluation

Gliederung:

- Testumgebung
- Zeitabschätzung
- Chipimplementation

Testumgebung

- Simulation mit NC Sim und SimVision
 - nützlich für Teilfunktionen
 - ► Betrachtung einzelner Signalverläufe
- Automatisierung durch Shell-Skript
 - Simulation mit NC Sim und TCL-Skript
 - Berechnung mittels Matlab
 - Vergleich

Simulationsprogramm NC Sim

Verifikation der benötigen Takte

Gegeben: Systemtakt: 100 MHz, max. Drehzahl: 8000min $^{-1}$, Auflösung: 1°

$$\frac{8000\,\mathrm{min}^{-1}}{60} = 1333, \bar{3}\,\mathrm{sec}^{-1}$$

$$1^{\circ} \widehat{=} \frac{7, 5 \cdot 10^{-3} \sec}{360} = 20, 83 \cdot 10^{-6} \ \text{sec}$$

 $20,83 \cdot 10^{-6} \text{ sec} \cdot 100 \text{ MHz} = 2083 \text{ Takte}$

Chipimplementation: Stromversorgung

blau: Layer 1, rot: Layer 2, grün: Layer 3

Chipimplementation: Platzierung der Standardzellen

blau: Layer 1, rot: Layer 2, grün: Layer 3

Chipimplementation: Platzierung der Standardzellen

Standardzellen:

 $15\,310$

Fläche:

 $1\,524\,960\mu m^2=1,5mm^2$

Prozess: 350µm²

Zusatzfeature: Implementation der IDFT

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$

$$W^* = \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} e^{+\frac{j2\pi mn}{N}}$$

Zusatzfeature: Implementation der IDFT

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$

$$W^* = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{+\frac{j2\pi mn}{N}}$$

Zusammenfassung

- DFT als 8x8 hat sich als effizient erwiesen
- Optimierung der Multiplikationen mit der Twiddlefaktormatrix
- Kritischer Pfad scheint Konstantenmultiplikation zu sein
- Berechnung der 1D- und 2D-DFT mit selber Einheit
- Benötigte Takte liegen im realistischen Rahmen
- DFT und IDFT benötigen zusammen etwa 50% der verfügbaren Takte
- IDFT kann durch geringe Ergänzungen berechnet werden
- Wertvolle Grundlagen f
 ür die Implementation der 15x15 2D-DFT

Ausblick

- Reduzierung des kritischen Pfades
 - auf zwei Schaltnetze aufteilen
 - ▶ Wallace-Tree verwenden
- 15×15 mit ähnlich vielen Takten