L6: Building Direct Link Networks IV

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgements

- □ Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Direct Link Networks

- □ Types of Networks
 - Point-to-point
 - Multiple access

- Encoding
 - Encoding bits onto transmission medium
- **□** Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- Reliable delivery
 - Making links appear reliable despite errors
- **■** Media access control
 - Mediating access to shared link

Outlines

- Media Access Control
- □ Contention Resolution Approaches
 - Performance analysis
- **□** Ethernet

Multiple Access Network

- ☐ More than two nodes share a single physical link
 - Bus (Ethernet/802.3)
 - Ring (Token-ring/802.5)
 - Wireless (Wireless LAN/802.11)

Multiple Access Networks

- □ Characteristics
 - A transmitter can be heard by multiple receivers
 - A receiver can hear multiple transmitters
- □ Problems
 - How to identify nodes?
 - □ Cannot identify node by stating "the sender" and "the receiver"
 - Addressing
 - How to mediate nodes' access to the link?
 - Interference and collision of transmission
 - Media access control

Media Access Control

- How to allocate a multi-access channel among multiple competing users
 - Rules that each node must follow to communicate and avoid interference and collision

Media Access Control Approaches

- □ Can be classified into two categories
 - Static
 - □ Channel's capacity is divided into fixed portions
 - Each node is allocated a portion for all time
 - Better suited when traffic is predictable
 - Examples: TDMA, FDMA, and CDMA

Dynamic

- Allocate channel capacity based on the traffic generated by the users
- Try to obtain better channel utilization and delay when traffic is unpredictable
- Examples: ALOHA, Slotted ALOHA, and MACA

Dynamic Channel Allocation

- □ Perfectly scheduled approaches
- □ Contention resolution approaches
- Approaches that combined both scheduling and contention resolution

Perfectly Scheduled Approaches

- A schedule is dynamically formed based on which users have data to send
- Users transmit contention free according to the schedule
- □ Schedule can be formed by polling, reservation, etc.

Contention Resolution Approaches

□ Contention

- A node transmits a packet when it has data to send
- A collision occurs if multiple nodes transmit at the same time
- Packets/Frames must be retransmitted based on some rule

□ Examples

- Pure ALOHA, Slotted ALOHA
- MACA, MACAW
- CSMA, CSMA/CD and CSMA/CA
- D-MAC

Performance Metrics

- □ Latency (delay)
 - In particular, when traffic load is low
- □ Throughput (channel efficiency)
 - In particular, when traffic load is high
- □ Jitter

Performance Analysis

- □ Multiple-access model
- □ Pure ALOHA
- □ Slotted ALOHA
- □ CSMA

Performance Analysis

- □ References and Further Readings
 - Kleinrock, L.; Tobagi, F.A, "Packet Switching in Radio Channels: Part I--Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics," Communications, IEEE Transactions on , vol.23, no.12, pp.1400,1416, Dec 1975. doi: 10.1109/TCOM.1975.1092768.
 - Abramson, Norman, "Development of the ALOHANET," Information Theory, IEEE Transactions on , vol.31, no.2, pp.119,123, Mar 1985. doi: 10.1109/TIT.1985.1057021.

Multiple-Access Model

- □ User Model
 - N users (nodes, or stations).
 - At each station, frames to be transmitted randomly arrive
 - The arrivals are independent of each other
- □ Channel model
 - All communications of the N users rely on one single shared channel
- □ Transmission model
 - Frames are garbled and cannot be received, whenever the frames overlap in time (called a *collision*)
 - Only errors allowed are introduced by collisions. If no collisions, a frame is successfully received
- □ Feedback model
 - All stations are able to detect if a frame is collided with another or successfully sent after a complete frame is sent

Approaches in Feedback Model

- □ Listen while transmitting
 - Typically, collisions can be detected in a delay of ~RTT
 - **Ethernet** (link length, 4 segments, 2500 meter): 51.2 μs
 - Satellite: it may take as much as 270 ms delay
- □ If not possible, acknowledgements are used
 - Not until recently is it considered possible to listen while transmitting on wireless networks
 - Dinesh Bharadia, Emily McMilin, and Sachin Katti. 2013. Full duplex radios. In *Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM* (SIGCOMM '13). ACM, New York, NY, USA, 375-386. DOI=10.1145/2486001.2486033.

http://doi.acm.org/10.1145/2486001.2486033

Pure ALOHA

□ Initially developed by Norman Abramson, University of Hawaii in 1970's

□ Served as a basis for many contention resolution

protocols

Pure ALOHA: Protocol

- □ Transmit message: A node transmits whenever it has data to send
- Detect collision: The sender wait to see if a collision occurred after the complete frame is sent
 - Note: a collision may occur if multiple nodes transmit at the same time
- Random backoff: If collision occurs, all the stations involved in collision wait a random amount of time, then try again
- Questions
 - Is it a good protocol? (how much can the throughput be?)
 - How would we choose the random amount of waiting time?

Pure ALOHA: Protocol

Pure ALOHA: Throughput Analysis

□ Frames are transmitted and retransmitted at completely arbitrary times

Pure ALOHA: Throughput Analysis

- □ Assume
 - Infinite number of nodes
 - Fixed length frames. Denote length as T
 - Overall arrival of frames is a Poisson process with rate λ frames/second
- □ Then, denote S as the number of frames arriving in T seconds
 - $S = \lambda T$
- In case of a collision, retransmission happens
 - New transmission and retransmission combined (all transmissions) is a Poisson process
 - Let the rate be G attempts per T seconds
- Note that
 - $S \leq G$
 - Equality only if there are no collisions.
- Assume the system is in a stable state and denote the probability of a successful transmission by P_0

$$S = GP_0$$

Vulnerable Period/Contention Window

□ A frame is successfully transmitted, if there are no frames transmitted in the contention window of 2T

9/2/2015

22

Frames Generated in Vulnerable Period

- □ Vulnerable Period: 2T seconds
- □ The rate of all transmissions in 2T seconds: 2G
- ☐ The probability that k frames are generated during 2T seconds is given by a Poisson distribution

$$\Pr[k] = \frac{(2G)^k e^{-2G}}{k!}$$

□ The probability of no other frames being initiated (new transmission and retransmission) during the entire vulnerable period is

$$S = GP_0 = G\frac{(2G)^0 e^{-2G}}{0!} = Ge^{-2G}$$

Throughput of Pure ALOHA

□ Let us graph it

$$S = Ge^{-2G}$$

9/2/2015 24

Throughput of Pure ALOHA

□ What is the implication?

9/2/2015 25

Maximum Throughput of Pure ALOHA

9/2/2015 CSCI 445 - Fall 2015 26

Maximum Throughput of Pure **ALOHA**

 \Box The derivative is 0

$$S = Ge^{-2G}$$

$$\frac{dS}{dG} = \frac{dGe^{-2G}}{dG}$$
$$= e^{-2G} - 2Ge^{-2G}$$

$$\frac{dS}{dG} = e^{-2G} - 2Ge^{-2G} = 0$$

$$G^* = \frac{1}{2}$$

$$S = G^* e^{-2G^*}$$
$$= \frac{1}{2} e^{-2\frac{1}{2}} \approx 0.1839$$

Pure ALOHA: Remark

- □ Considered a simplified analysis of a pure Aloha
 - Found that the maximum throughput is limited to be at most 1/(2e).
 - Not taken into account
 - How the offered load changes with time
 - How the retransmission time may be adjusted.
- □ Channel utilization of a <u>busy</u> Pure ALOHA system is 18%
- □ What improvement can we make?

Pure ALOHA: Remark

- What improvement can we make?
 - Collision causes retransmission and reduces throughput
 - Can we reduce chance of collisions?
 - Collisions happen within the <u>Vulnerable</u> <u>Period/Contention Window</u>.
 - □ Can we shorten the <u>Vulnerable</u> <u>Period/Contention Window?</u>
 - □ Slotted ALOHA

Slotted ALOHA

- □ Improvement to Pure ALOHA
 - Divided time into discrete intervals
 - Each interval corresponds to a frame
 - Require stations agree on slot boundaries

Slotted ALOHA: Protocol

Slotted ALOHA: Throughput Analysis

□ Time is slotted

Vulnerable Period/Contention Window

□ A frame is successfully transmitted, if there are no frames transmitted in the contention window of T

9/2/2015 CSCI 445 – Fall 2015 33

Frames Generated in Vulnerable Period

- □ Vulnerable Period: T seconds
- □ The rate of all transmissions in T seconds: G
- ☐ The probability that k frames are generated during T seconds is given by a Poisson distribution

$$\Pr[k] = \frac{G^k e^{-G}}{k!}$$

The probability of no other frames being initiated (new transmission and retransmission) during the entire vulnerable period is

$$S = GP_0 = G\frac{G^0 e^{-G}}{0!} = Ge^{-G}$$

Throughput of Slotted ALOHA

$$S = Ge^{-G}$$

9/2/2015 CSCI 445 - Fall 2015 35

Exercise L6-1

- Derive the maximum throughput of the Slotted ALOHA protocol
- How much is the maximum throughput?
- □ Note

$$S = Ge^{-G}$$

Implications of Performance Analysis (1)

□ In original ALOHA system, packets are of fixed size of 34 ms. Assume each active user sending a message packet at an average rate of once every 60 seconds. Estimate maximum number of users does the system can concurrently support?

□ Answer:

- Maximum throughput = maximum channel utilization = 1/(2e) → channel can only be 1/(2e) full.
- packet rate: $\lambda = 1/60$
- Packet length: $\tau = 34$ ms
- Maximum # of concurrent users: k_{max}
- $k_{max} \lambda \tau = 1/(2e)$
- $k = 1/(2e\lambda\tau) \approx 1/(2\times2.7183\times1/60\times0.034) \approx 324$

Application of Performance Analysis (2)

□ In an ALOHA system, packets are 816 bits and link bandwidth is 24 kbps. Assume each active user sending a message packet at an average rate of once every 60 seconds. Estimate maximum number of users does the system can concurrently support?

■ Answer:

- Maximum throughput = maximum channel utilization = 1/(2e) → channel can only be 1/(2e) full.
- packet rate: $\lambda = 1/60$
- Packet length: $\tau = 816/24 \text{ kbps} = 816/24000 = 0.034 \text{ sec} = 34 \text{ ms}$
- Maximum # of concurrent users: k_{max}
- $k_{max} \lambda \tau = 1/(2e)$
- $k = 1/(2e\lambda\tau) \approx 1/(2\times2.7183\times1/60\times0.034) \approx 324$

Making Further Improvements?

□ Maximum throughputs are small

Making Further Improvements?

Making Further Improvements?

■ ALOHA transmits even if another node is transmitting → collision

9/2/2015 CSCI 445 – Fall 2015 41

Carrier Sense

□ Listen first, transmit when the channel is idle → reduce chance of collision

Carrier Sense (without Collision Detection)

- □ Non-persistent CSMA
 - Transmit after a random amount of waiting time regardless if channel is idle (from carrier sense)
 - Large delay when channel is idle
- □ 1-persistent CSMA
 - Transmit as soon as the channel becomes idle
 - Collision happens when two or more nodes all want to transmit
- □ p-persistent CSMA
 - If idle, transmit the frame with a probability p

1-persistent CSMA

9/2/2015 CSCI 445 - Fall 2015 44

Non-persistent CSMA

9/2/2015

p-persistent CSMA

Comparison of Throughput

- □ Pure ALOHA
- □ Slotted ALOHA
- □ Nonpersistent CSMA
- □ 1-persistent CSMA
 - Unslotted
 - Slotted
- □ p-persistent CSMA
 - skipped

$$S = Ge^{-2G}$$

$$S = Ge^{-G}$$

$$S = \frac{Ge^{-aG}}{G(1+2a) + e^{-aG}}$$

$$S = \frac{G\left[1 + G + aG\left(1 + G + aG/2\right)\right]e^{-G(1+2a)}}{G(1+2a) - \left(1 - e^{-aG}\right) + \left(1 + aG\right)e^{-G(1+a)}}$$

$$S = \frac{Ge^{-G(1+a)}\left[1 + a - e^{-aG}\right]}{(1+a)\left(1 - e^{-aG}\right) + ae^{-G(1+a)}}$$

Comparison of Throughput

Fig. 9. Throughput for the various access modes (a = 0.01).

Carrier Sense

- □ Listen first, transmit when the channel is idle → reduce chance of collision
- □ Can collisions be **completely** mitigated?

Carrier Sense

- □ Listen first, transmit when the channel is idle → reduce chance of collision
- □ Can collisions be **completely** mitigated?
- ■Q: Under what condition can Carrier Sense be more beneficial to throughput?

Carrier Sense and Collision

- Even with CSMA there can still be collisions.
- What do Pure ALOHA and Slotted ALOHA do?

Collision Detection

- ☐ If nodes can detect collisions, abort transmissions!
 - Requires a minimum frame size ("acquiring the medium")
 - Continues to transmit a jamming signal (called runt) until other nodes detects it
 - Requires a full duplex channel

Complete the Picture

□ Carrier Sense Multiple Access and Collision Detection

9/2/2015

CSCI 445 - Fall 2015

CSMA/CD

□ 1-Persistent CSMA and CD

9/2/2015 CSCI 445 - Fall 2015 57

Ethernet

- Multiple Access Networks
- □ Carrier Sense Multiple Access and Collision Detection (CSMA/CD) with Exponential Backoff
 - Inspired by the ALOHA network at the University of Hawaii
 - Developed by Robert Metcalfe and Bob Boggs at Xerox PARC

Ethernet: Carrier Sensing

- □ If line is idle
 - Send immediately
 - Upper bound message size = 1500 bytes
- □ If line is busy
 - Wait until idle and transmit immediately
 - 1-persistent (a special case of p-persistent)

Collision Detection on Ethernet

- No centralized control, distributed algorithm
- Two nodes may transmit almost at the same time → collision
- Worst case scenario
 - (a) A sends a frame at time t
 - (b) A's frame arrives at B at t + d
 - (c) B begins transmitting at time t + d and collides with A's frame. Upon detecting the collision, B sends a <u>runt</u> (32-bit frame) to A
 - (d) B's runt frame arrive at A at t +2d
 - Why does B need to send a runt to A?
 - How long does it take for A to detect the collision?

Collision Detection on Ethernet

- Want the nodes that collide to know that a collision happened
 - Time during which a node (the transmitting node) may hear of a collision is 1 × RTT
 - Recall: under what condition can a network be benefited most from "carrier sense"?
 - Impose a minimum frame size that lasts for $1 \times RTT$
 - So the node can not finish transmitting before a collision takes place → carrier sense benefits the network the most
 - □ Consider an Ethernet: minimum frame is 64 bytes, longest link 2500 meters (4 repeaters, 500 meter segment), 10-Mbps bandwidth
 - $1 \times RTT = 51.2 \mu s$ and $1 \times RTT \times Bandwidth = 512 bits = 64 bytes$

Ethernet: Collision Detection with Binary Exponential Backoff

- □ If collision
 - Jam for 32 bits (by sending a runt), and stop transmitting frame
 - Minimum frame is 64 bytes (14 bytes header + 46 bytes of data + 4 bytes CRC) for 10 Mbps Ethernet
 - Exponential backoff
 - \square 1st time: 0 or 51.2 µs
 - Randomly select one of these two: imagine throwing an evenly made coin, if it lands tail, choose 0; otherwise, 51.2 μs
 - \Box 2nd time: 0, 51.2, or 51.2 x 2 µs
 - Randomly select one of these two: imagine throwing a 3-sided die whose three faces are labeled as 0, 1, and 2. If it lands on side 0, choose 0; on side 1, 51.2 μs; on side 2, 51.2 x 2 μs
 - \Box 3rd time: 0, 51.2, 51.2 x 2, or 51.2 x 3 µs
 - Similar process with 4-sided die
 - n-th time: k x 51.2 μs, randomly select k from 0..2ⁿ-1
 - Similar as before, you die (very strange die) has 2ⁿ sides labeled from 0 to 2ⁿ-1
 - □ Give up after 16 times

Ethernet: CSMA/CD with Exponential Backoff

□ 1-Persistent CSMA and CD

IEEE Standard Association

□ http://standards.ieee.org

Ethernet (IEEE 802.3) (1)

■ History

U. of Hawaii (Aloha, early 1970's) → Xerox PARC (mid 1970's) → Xerox PARC, DEC, and Intel (1978) → IEEE 802.3

□ CSMA/CD

- Carrier Sense (CS)
- Multiple Access (MA)
- Collision Detection (CD)

Ethernet (IEEE 802.3) (2)

Ethernet (IEEE 802.3) (3)

Ethernet: Frame Format

- Bit-oriented framing
 - Preamble (64 bits):101010... for signal synchronization
 - Destination address (48 bits)
 - Source address (48 bits)
 - Type/length (16 bits)
 - Body (46 1500 bytes)
 - CRC (32 bits)

Ethernet Address

- □ Unique in the world
- □ Assigned to adaptors
- **□** 48-bit
 - 0000 1000 0000 0000 0010 1011 1110 0100 1011 0001 0000 0010
 - 08:00:2b:e4:b1:02 (human-friendly form)

24-bit Organization Unique Identifier (OUI)

Checkout: http://standards.ieee.org/regauth/oui/oui.txt

Experiment (1): Windows

- □ On MS Windows (various version of NT systems, including 2000, XP, Vista etc)
 - Start Windows Command Prompt
 - □ Click "Start Button", then click "run", enter "cmd", hit "OK"
 - In the Windows Command Prompt
 - Enter a command "ipconfig /all"
 - Look for "Physical Address"

```
C:\WINDOWS\system32\cmd.exe
       Connection-specific DNS Suffix
       : Microsoft Loopback Adapter
                                         : 02-00-4C-4F-4F-50
       Physical Address. . . . . . . . . .
       Dhcp Enabled. . . . . . . . . . . .
       Autoconfiguration Enabled . . . .
       Autoconfiguration IP Address. . .
                                         : 169.254.25.129
       Subnet Mask
                                           255.255.0.0
       Default Gateway
Ethernet adapter Local Area Connection:
       Connection-specific DNS Suffix
       Description . . . . . . . . . . . Broadcom NetXtreme 57xx Gigabit Cont
roller
                                         : 00-13-72-8F-BA-11
       Physical Address. . . . . .
                                         : No
       Dhcp Enabled. . . . . . . . . .
                                         : 192.168.1.52
       Subnet Mask . . . . . . . .
       Default Gateway . . . . . . . . .
       DNS Servers
                                           128.143.2.7
```

Look the vendor prefix code 00-13-72 from IEEE website at http://standards.ieee.org/regauth/oui/oui.txt

Experiment (2): Unix/Linux

- □ Similar query can be done on Unix/Linux systems
- □ Log onto a Linux/Unix box, and issue command
 - ifconfig
 - ip (on latest versions of Linux)

Look the vendor prefix code 00-23-AE from IEEE website at http://standards.ieee.org/regauth/oui/oui.txt

```
hchen@ubuntu: ~
hchen@ubuntu:~$ ip addr
1: lo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
      valid lft forever preferred lft forever
   inet6 ::1/128 scope host
      valid lft forever preferred lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP gr
oup default glen 1000
   link/ether 00:0c:29:89:7a:4d brd ff:ff:ff:ff:ff:ff
    inet 192.168.101.127/24 brd 192.168.101.255 scope global eth0
      valid lft forever preferred lft forever
   inet6 fe80::20c:29ff:fe89:7a4d/64 scope link
      valid lft forever preferred lft forever
3: lxcbr0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc noqueue state UNKNOW
 group default
   link/ether_d6:1f:0d:4c:d5:5e brd ff:ff:ff:ff:ff:ff
   inet 10.0.3.1/24 brd 10.0.3.255 scope global 1xcbr0
      valid lft forever preferred lft forever
    inet6 fe80::d41f:dff:fe4c:d55e/64 scope link
      valid lft forever preferred lft forever
hchen@ubuntu:~$
```

Look the vendor prefix code 00-23-AE from IEEE website at http://standards.ieee.org/regauth/oui/oui.txt

Exercise L6-2

- □ Q1: How many Ethernet adapters (NICs) does the Windows computer on your desk have? What are their Ethernet addresses (i.e., physical addresses as reported by Windows)?
- □ Q2: Who is the vendors of the adapters you listed? Use the following to look up the vendors
 - http://standards.ieee.org/regauth/oui/oui.txt

Ethernet: Unicast/Broadcast/Multicast

- Unicast address: address of an adaptor
 - If dest_addr == my_addr, deliver the frame to the host
- Broadcast address: ff:ff:ff:ff:ff
 - If dest_addr == 0xff ff ff ff ff ff, deliver the frame to the host
- Multicast address (group address): the low-order bit of the high-order byte as 1 (Ethernet transmits bytes from low-order bit to high-order bit)
 - If (dest_addr & 0x01 00 00 00 00 00) && (it has been instructed to listen to that address), deliver the frame to the host
 - Complex and requires group management

Promiscuous Mode

□ All frames will be delivered to the host

Ethernet: Experience

- Work best under lightly loaded conditions
 - Utilization $> 30\% \rightarrow$ too much collisions
- □ Great success
 - In practice, observations
 - □ fewer than 200 hosts
 - Far shorter than 2,500 m (RTT \sim 5 µs)
 - Host implements end-to-end flow control (such as TCP/IP), hosts do not pumping frames to NIC when busy
 - Extended LANs using Ethernet switches (2 nodes on an Ethernet) → future discussions
 - Easy to administer and maintain
 - □ no routing
 - □ no configuration
 - Simple: hardware such as adaptors are cheap

Contention Free Approaches

- □ Token-based approaches
 - Token ring (IEEE 802.5)
 - Token bus (IEEE 802.4)

Rings (802.5, FDDI, RPR)

□ Token rings

- Token: a special bit string
- Nodes are organized as a ring
- Nodes receive and forward token if no frame to send
- Node grabs the token, send the frame, then puts the token back to the ring

Media Access Control in Wireless Networks

- □ Wireless PAN (Example: 802.15)
- □ Wireless LAN (Example: 802.11)
- □ Wireless MAN (Example: WiMax/802.16)
- Wireless WAN (Personal Communications System, a.k.a., cell phone networks, such as GSM, CDMA)

Summary

- Media access control
- **■** Ethernet
- □ Ring
- □ Wireless networks
 - CSCI 647: Wireless Networks and Mobile Computing

Direct Link Networks: Summary

- **□** Encoding
 - Encoding bits onto transmission medium
- **□** Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link
- Q: how many hosts an Ethernet can have? What is the approximate perimeter of an Ethernet? What if we want to have a network that covers entire campus, a city, a nation, a continent, a planet, or the galaxy? → network of networks: Switched Networks