AMENDMENTS TO THE CLAIMS:

Please change the heading at page 40, line 1, from "Patent claims" to --WHAT IS CLAIMED IS:--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-12 (canceled)

-- Claim 13 (new): An N-substituted pyrazolylcarboxanilide of formula (I)

$$H_3C$$
 F
 H_3C
 R^3
 CH_3
 CH_3
 H_3C
 CH_3

in which

 R^4

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, either

(a) R³ represents hydrogen, and

represents C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents halo-(C_1 - C_3 -alkyl)-carbonyl- C_1 - C_3 -alkyl or halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C_3 - C_8 -cycloalkyl)carbonyl; represents (C_3 - C_8 -halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -C(=O)C(=O)R5, -CONR6R7, or - CH_2NR 8R9,

or

- R^3 (b) represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl, and R^4 represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms: represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents $(C_1-C_6-haloalkyl)$ carbonyl, $(C_1-C_6-haloalkoxy)$ carbonyl, $(halo-C_1-C_4-haloalkyl)$ alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹, and
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R⁶ and R⁷, independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰,
- R⁸ and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹ together

with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and

R¹⁰ represents hydrogen or C₁-C₆-alkyl.

Claim 14 (new): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which

- R¹ represents methyl, trifluoromethyl, or difluoromethyl,
- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl, either
- (a) R³ represents hydrogen, and
 - R⁴ represents C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)-carbonyl-C₁-C₃-alkyl, or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₃-C₆-cycloalkyl)carbonyl; represents (C₃-C₆-halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,

or

(b) R³ represents fluorine, chlorine, bromine, iodine, C₁-C₀-alkyl, or C₁-C₀-haloalkyl having 1 to 13 fluorine, chlorine, and/or bromine atoms, and represents C₁-C₀-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₀-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₀-halocycloalkyl

having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; or represents halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; represents (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)carbonyl, (C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, or (C_3 - C_6 -cycloalkyl)carbonyl; represents (C_1 - C_4 -haloalkyl)carbonyl, (C_1 - C_4 -haloalkoxy)carbonyl, (halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, or (C_3 - C_6 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R5, -C0NR6R7, or -CH $_2$ NR8R9, and

- R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R^6 and R^7 , independently of one another, each represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_6\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkoxy-}\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-cycloalkyl}$; represent $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-haloalkyl}$, halo- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkoxy-}\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, where the heterocycle optionally contain 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR^{10} ,
- R^8 and R^9 , independently of one another, represent hydrogen, C_1 - C_6 -alkyl, or C_3 - C_6 -cycloalkyl; represent C_1 - C_4 -haloalkyl or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^8 and R^9 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2

CS8775

further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and

R¹⁰ represents hydrogen or C₁-C₄-alkyl.

Claim 15 (new): An N-substituted pyrazolylcarboxanilide of formula (Ib)

$$H_3C$$
 F
 H_3C
 H_3

in which

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₃-C₈-cycloalkyl)carbonyl; represents (C₃-C₈-halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

R⁶ and R⁷, independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having

5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and

R⁸ and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰.

Claim 16 (new): An N-substituted pyrazolylcarboxanilide of formula (Ic)

in which

R^{3B} represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl,

R^{4B} represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-

CS8775 - 8 -

haloalkyl)carbonyl, $(C_1-C_6$ -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or $(C_3$ - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents - $C(=O)C(=O)R^5$, - $CONR^6R^7$, or - $CH_2NR^8R^9$.

- R¹ represents methyl, trifluoromethyl, or difluoromethyl,
- R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R^6 and R^7 , independently of one another, each represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_8\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkoxy-}\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_8\text{-cycloalkyl}$; represent $\mathsf{C}_1\text{-}\mathsf{C}_8\text{-haloalkyl}$, halo- $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkoxy-}\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_8\text{-halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{10} , and
- R⁸ and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰.

Claim 17 (new): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which R⁴ represents formyl.

CS8775

Claim 18 (new): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which R^4 represents $-C(=O)C(=O)R^5$ and R^5 is as defined in Claim 13.

Claim 19 (new): A process for preparing compounds of formula (I) according to Claim 13 comprising

(a) reacting a carboxylic acid derivative of formula (II)

$$\begin{array}{cccc}
R^{1} & & & \\
N & & & \\
I & & & \\
CH_{3} & & & \\
\end{array}$$
(II)

in which

R¹ is as defined for formula (I) of Claim 13, and

X¹ represents halogen or hydroxyl,

with an aniline derivative of formula (III)

$$H_3C$$
 H_3C
 CH_3
(III)

in which R², R³, and R⁴ are as defined formula (I) of Claim 13, optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binder, and optionally in the presence of a diluent,

or

(b) hydrogenating a pyrazolylcarboxanilide of formula (IV)

$$H_3C$$
 F
 H_3C
 H_3C
 R^3
 CH_3

in which R^1 , R^2 , R^3 , and R^4 are as defined formula (I) of Claim 13, optionally in the presence of a diluent and optionally in the presence of a catalyst,

or

(c) reacting a pyrazolylcarboxanilide of formula (la)

$$H_3C$$
 F
 H_3C
 R^3
 CH_3
 CH_3

in which R^1 , R^2 , and R^3 are as defined formula (I) of Claim 13, with a halide of formula (V)

$$R^4-X^2$$
 (V)

in which

R⁴ is as defined formula (I) of Claim 13, and

X² represents chlorine, bromine, or iodine

in the presence of a base and in the presence of a diluent.

Claim 20 (new): A composition for controlling unwanted microorganisms comprising one or more N-substituted pyrazolylcarboxanilides of formula (I) according to Claim 13 and one or more extenders and/or surfactants.

Claim 21 (new): A method of controlling unwanted microorganisms comprising applying an effective amount of an N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 to the microorganisms and/or their habitat.

Claim 22 (new): A process for preparing compositions for controlling unwanted microorganisms comprising mixing one or more N-substituted pyrazolylcarbox-anilides of formula (I) according to Claim 13 with one or more extenders and/or surfactants.

Claim 23 (new): An aniline derivative of formula (III)

$$R^{2}$$
 $H_{3}C$
 R^{3}
 $H_{3}C$
 CH_{3}
(III)

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, and either

- (a) R³ represents hydrogen, and
 - R⁴ represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)-carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₃-C₈-cycloalkyl)carbonyl; represents (C₃-C₈-halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,

or

(b) R³ represents halogen, C₁-Cଃ-alkyl, or C₁-Cଃ-haloalkyl, and

R⁴ represents C₁-Cଃ-alkyl, C₁-Cଃ-alkylsulphinyl, C₁-Cଃ-alkylsulphonyl,

C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-Cଃ-cycloalkyl; represents C₁-Cଃ-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-Cଃ-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)-carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms;

CS8775

represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-

alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_3 - C_8 -cycloalkyl)carbonyl; represents (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_3 - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents - $C(=0)C(=0)R^5$, - $CONR^6R^7$, or - $CH_2NR^8R^9$.

Claim 24 (new): A pyrazolylcarboxanilide of formula (IV)

$$H_3C$$
 F
 H_3C
 H_3C
 R^3
 CH_3

in which

 R^4

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, and either

(a) R³ represents hydrogen, and

represents C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents halo-(C_1 - C_3 -alkyl)-carbonyl- C_1 - C_3 -alkyl or halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C_3 - C_8 -cycloalkyl)carbonyl; represents (C_3 - C_8 -halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or - CH_2NR ⁸R⁹,

or

(b) R³ represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl, and
R⁴ represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl,
C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halo-

CS8775

alkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C_1 - C_8 -alkyl)carbonyl, (C_1 - C_8 -alkoxy)carbonyl, (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_3 - C_8 -cycloalkyl)carbonyl, represents (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_3 - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O) R^5 , -CON R^6 R^7 , or -CH₂N R^8 R^9 . --