Topic 4 Erdős-Mordell Inequality

Presented by Zhuoyi He Written by Zhiqin Lu Professor: Zhiqin Lu

Erdős-Mordell Inequality

- Named after Paul Erdős and Louis Mordell
- Erdős (1935) posted the problem of proving the inequality
- A proof was provided two years later by L. J. Mordell and D. F. Barrow (1937)

Paul Erdős

- Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed.
- He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century.
- He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; Time magazine called him "The Oddball's Oddball".
- He devoted his waking hours to mathematics, even into his later years—indeed, his death came only hours after he solved a geometry problem at a conference in Warsaw.

Louis Mordell

He was an American-born British
 mathematician, known for pioneering research
 in number theory. He was born in Philadelphia,
 United States, in a Jewish family of Lithuanian
 (立陶宛) extraction.

Erdős-Mordell Inequality

Theorem 1. (Erdős-Mordell Inequality)

Let P be a point inside triangle $\triangle ABC$. Let PD, PE, PF to be orthogonal to AB, BC, CA respectively. Then

$$PA + PB + PC \ge 2(PD + PE + PF).$$

Methods in Proofs

Law of sines and cosines:

Law of sines
$$\frac{\sin(a)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$$

Law of cosines

$$C^2 = a^2 + b^2 - 2ab \cos(\gamma)$$

Inequality of arithmetic and geometric means(AM–GM inequality):

For any nonnegative real numbers x1,...,xn:

$$A_{n} = \frac{x_{1} + x_{2} + \dots + x_{n}}{n}$$

$$G_{n} = \sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}}$$

$$A_{n} \ge G_{n}$$

The simplest case: For two non-negative numbers a and b,

The arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list.(equal iff every number in the list is the same)

First Proof

In the above right picture, since $\angle CEP = \angle CDP = 90^{\circ}$, we can use the law of

cosines to obtain

$$ED^2 = x^2 + y^2 - 2xy \cos \angle EPD.$$

Since
$$\angle EPD = 180^{\circ} - \angle C = \angle A + \angle B$$
, we have^a

Using the Lagrange method of completing square, we have

$$ED^{2} = x^{2} + y^{2} - 2xy\cos(A + B) = (x\sin B + y\sin A)^{2} + (x\cos B - y\cos B)^{2}.$$

We therefore have

$$ED \ge x \sin B + y \sin A$$
.

First Proof

$$ED \ge x \sin B + y \sin A$$
.

$$c \ge x \frac{\sin B}{\sin C} + y \frac{\sin A}{\sin C}.$$

$$a \ge z \frac{\sin B}{\sin A} + y \frac{\sin C}{\sin A}, \qquad b \ge x \frac{\sin C}{\sin B} + z \frac{\sin A}{\sin B}.$$

Therefore, we have

$$a+b+c \ge x \left(\frac{\sin B}{\sin C} + \frac{\sin C}{\sin B}\right) + y \left(\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A}\right) + z \left(\frac{\sin B}{\sin A} + \frac{\sin A}{\sin B}\right).$$

By the Arithmetic-Geometric Inequality, we have

$$\frac{\sin B}{\sin C} + \frac{\sin C}{\sin B} \ge 2, \quad \frac{\sin A}{\sin C} + \frac{\sin C}{\sin A} \ge 2, \quad \frac{\sin B}{\sin A} + \frac{\sin A}{\sin B} \ge 2.$$

Then we have

$$a+b+c \ge 2(x+y+z).$$

$$\frac{\sin \beta}{\sin c} + \frac{\sin c}{\sin \beta} > \sqrt{\frac{\sin \beta}{\sin c} \cdot \frac{\sin \beta}{\sin \beta}}$$

$$\frac{\sin \beta}{\sin c} + \frac{\sin c}{\sin \beta} > 1$$

$$\frac{\sin \beta}{\sin c} + \frac{\sin c}{\sin \beta} > 2$$

Second proof

Second Proof We shall use area method to prove the inequality.

Assume that PA = a, PB = b, PC = c, PD = x, PE = y, PF = z. Moreover, assume that BC = p, CA = q and AB = r. Then since CP + PF is no less than the height of the triangle over AB, we have

$$r(c+z) \ge qy + px + rz,$$

which is simplified to

$$rc \ge qy + px$$
.

Note that the above inequality is true for any point P in the cone of $\angle ACB$, even when P is outside of the triangle. So if we fix the triangle $\triangle ABC$ and fix the length PC = c, we can allow x, y to vary. Switching x, y, we get

$$rc \ge qx + py$$
,

which is

$$c \ge x \frac{q}{r} + y \frac{p}{r}.$$

Similarly, we have

$$b \ge x \frac{r}{q} + z \frac{p}{q}, \qquad a \ge z \frac{q}{p} + y \frac{q}{p}.$$

Therefore

$$a+b+c \ge x\left(\frac{r}{q}+\frac{q}{r}\right)+y\left(\frac{p}{r}+\frac{r}{p}\right)+z\left(\frac{p}{q}+\frac{q}{p}\right) \ge 2(x+y+z).$$

By the Arithmetic - Geometric Inequality,
$$\frac{\frac{r}{9} + \frac{9}{r}}{2} \ge \sqrt{\frac{r}{9} \times \frac{9}{r}}$$

$$\frac{r}{9} + \frac{9}{r} \ge 2$$

Third Proof

Third Proof Here we provide the most important proof using algebra.

As before, we assume that PA=a, PB=b, PC=c, PD=x, PE=y, PF=z, BC=p, CA=q, and AB=r. Moreover, we assume that $\angle BPC=2\alpha, \angle CPA=2\beta$ and $\angle APB=2\gamma$. We claim that

$$z \le \sqrt{ab}\cos\gamma.$$

To prove this, we use the law of cosines to obtain

$$r^2 = a^2 + b^2 - 2ab\cos 2\gamma = (a - b)^2 + 2ab(1 - \cos 2\gamma) \ge 2ab(1 - \cos 2\gamma) = 4ab\sin^2 \gamma.$$

Thus

$$z = \frac{ab\sin 2\gamma}{r} \le \sqrt{ab}\cos\gamma.$$

Thus the Erdős-Mordell inequality can be strengthened to the following algebraic inequality

$$a + b + c \ge 2\sqrt{ab}\cos\gamma + 2\sqrt{bc}\cos\alpha + 2\sqrt{ca}\cos\beta.$$

Thank you for Watching:)