The following code sample illustrates various ways of accessing global variables via the runtime API:

```
__constant__ float constData[256];
float data[256];
cudaMemcpyToSymbol(constData, data, sizeof(data));
cudaMemcpyFromSymbol(data, constData, sizeof(data));

__device__ float devData;
float value = 3.14f;
cudaMemcpyToSymbol(devData, &value, sizeof(float));

__device__ float* devPointer;
float* ptr;
cudaMalloc(&ptr, 256 * sizeof(float));
cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));
```

cudaGetSymbolAddress() is used to retrieve the address pointing to the memory
allocated for a variable declared in global memory space. The size of the allocated
memory is obtained through cudaGetSymbolSize().

3.2.3. Shared Memory

As detailed in Variable Memory Space Specifiers shared memory is allocated using the **__shared__** memory space specifier.

Shared memory is expected to be much faster than global memory as mentioned in Thread Hierarchy and detailed in Shared Memory. Any opportunity to replace global memory accesses by shared memory accesses should therefore be exploited as illustrated by the following matrix multiplication example.

The following code sample is a straightforward implementation of matrix multiplication that does not take advantage of shared memory. Each thread reads one row of *A* and one

column of *B* and computes the corresponding element of *C* as illustrated in Figure 9. *A* is therefore read *B.width* times from global memory and *B* is read *A.height* times.

```
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
   int width;
   int height;
   float* elements;
} Matrix;
// Thread block size
#define BLOCK SIZE 16
// Forward declaration of the matrix multiplication kernel
global void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
    // Load A and B to device memory
   Matrix d A;
   d_A.width = A.width; d_A.height = A.height;
    s\bar{i}ze t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d A.elements, size);
    cudaMemcpy(d A.elements, A.elements, size,
              cudaMemcpyHostToDevice);
   Matrix d B;
   d B.width = B.width; d B.height = B.height;
    size = B.width * B.height * sizeof(float);
   cudaMalloc(&d_B.elements, size);
   cudaMemcpy(d B.elements, B.elements, size,
               cudaMemcpyHostToDevice);
    // Allocate C in device memory
   Matrix d C;
   d C.width = C.width; d_C.height = C.height;
    s\overline{i}ze = C.width * C.height * sizeof(float);
   cudaMalloc(&d_C.elements, size);
    // Invoke kernel
   dim3 dimBlock(BLOCK SIZE, BLOCK SIZE);
   dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
   MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);
    // Read C from device memory
   cudaMemcpy(C.elements, Cd.elements, size,
               cudaMemcpyDeviceToHost);
   // Free device memory
   cudaFree(d A.elements);
   cudaFree(d B.elements);
   cudaFree(d C.elements);
// Matrix multiplication kernel called by MatMul()
 _global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
    // Each thread computes one element of C
    // by accumulating results into Cvalue
    float Cvalue = 0;
   int row = blockIdx.y * blockDim.y + threadIdx.y;
   int col = blockIdx.x * blockDim.x + threadIdx.x;
    for (int e = 0; e < A.width; ++e)</pre>
        Cvalue += A.elements[row * A.width + e]
                * B.elements[e * B.width + col];
   C.elements[row * C.width + col] = Cvalue;
```


Figure 9 Matrix Multiplication without Shared Memory

The following code sample is an implementation of matrix multiplication that does take advantage of shared memory. In this implementation, each thread block is responsible for computing one square sub-matrix C_{sub} of C and each thread within the block is responsible for computing one element of C_{sub} . As illustrated in Figure 10, C_{sub} is equal to the product of two rectangular matrices: the sub-matrix of A of dimension (A.width, $block_size$) that has the same row indices as C_{sub} , and the sub-matrix of B of dimension ($block_size$, A.width) that has the same column indices as C_{sub} . In order to fit into the device's resources, these two rectangular matrices are divided into as many square matrices of dimension $block_size$ as necessary and C_{sub} is computed as the sum of the products of these square matrices. Each of these products is performed by first loading the two corresponding square matrices from global memory to shared memory with one thread loading one element of each matrix, and then by having each thread compute one element of the product. Each thread accumulates the result of each of these products into a register and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory and save a lot of global memory bandwidth since *A* is only read (*B.width | block_size*) times from global memory and *B* is read (*A.height | block_size*) times.

The *Matrix* type from the previous code sample is augmented with a *stride* field, so that sub-matrices can be efficiently represented with the same type. __device__ functions are used to get and set elements and build any sub-matrix from a matrix.

```
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
   int width;
   int height;
   int stride;
   float* elements;
} Matrix;
// Get a matrix element
 device float GetElement (const Matrix A, int row, int col)
   return A.elements[row * A.stride + col];
// Set a matrix element
device void SetElement (Matrix A, int row, int col,
                           float value)
   A.elements[row * A.stride + col] = value;
// Get the BLOCK SIZExBLOCK SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
  device Matrix GetSubMatrix (Matrix A, int row, int col)
   Matrix Asub;
   Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.strīde;
   Asub.elements = &A.elements[A.stride * BLOCK SIZE * row
                                   + BLOCK SIZE * col];
   return Asub;
// Thread block size
#define BLOCK SIZE 16
// Forward declaration of the matrix multiplication kernel
global void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
    // Load A and B to device memory
   Matrix d A;
   d A.width = d A.stride = A.width; d A.height = A.height;
    size t size = A.width * A.height * sizeof(float);
   cudaMalloc(&d A.elements, size);
   cudaMemcpy(d A.elements, A.elements, size,
              cudaMemcpyHostToDevice);
   Matrix d B;
   d B.width = d B.stride = B.width; d B.height = B.height;
   s\bar{i}ze = B.widt\bar{h} * B.height * sizeof(float);
```

```
cudaMalloc(&d B.elements, size);
   cudaMemcpy(d B.elements, B.elements, size,
   cudaMemcpyHostToDevice);
    // Allocate C in device memory
   Matrix d C;
   d C.width = d C.stride = C.width; d C.height = C.height;
   sīze = C.width * C.height * sizeof(float);
   cudaMalloc(&d C.elements, size);
    // Invoke kernel
   dim3 dimBlock(BLOCK SIZE, BLOCK SIZE);
   dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
   MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
   // Read C from device memory
   cudaMemcpy(C.elements, d C.elements, size,
               cudaMemcpyDeviceToHost);
   // Free device memory
   cudaFree(d A.elements);
   cudaFree(d_B.elements);
cudaFree(d_C.elements);
// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel (Matrix A, Matrix B, Matrix C)
    // Block row and column
   int blockRow = blockIdx.y;
   int blockCol = blockIdx.x;
    // Each thread block computes one sub-matrix Csub of C
   Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
    // Each thread computes one element of Csub
    // by accumulating results into Cvalue
   float Cvalue = 0;
   // Thread row and column within Csub
   int row = threadIdx.y;
   int col = threadIdx.x;
    // Loop over all the sub-matrices of A and B that are
   // required to compute Csub
   // Multiply each pair of sub-matrices together
    // and accumulate the results
    for (int m = 0; m < (A.width / BLOCK SIZE); ++m) {</pre>
        // Get sub-matrix Asub of A
       Matrix Asub = GetSubMatrix(A, blockRow, m);
        // Get sub-matrix Bsub of B
       Matrix Bsub = GetSubMatrix(B, m, blockCol);
       // Shared memory used to store Asub and Bsub respectively
       __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
        shared float Bs[BLOCK SIZE][BLOCK SIZE];
       // Load Asub and Bsub from device memory to shared memory
       // Each thread loads one element of each sub-matrix
       As[row][col] = GetElement(Asub, row, col);
       Bs[row][col] = GetElement(Bsub, row, col);
        // Synchronize to make sure the sub-matrices are loaded
       // before starting the computation
        __syncthreads();
```


Figure 10 Matrix Multiplication with Shared Memory

3.2.4. Page-Locked Host Memory

The runtime provides functions to allow the use of *page-locked* (also known as *pinned*) host memory (as opposed to regular pageable host memory allocated by malloc()):

cudaHostAlloc() and cudaFreeHost() allocate and free page-locked host memory;