LF03 - 29.11.23

3.4.3 Netzwerkmedien unterscheiden und spezifizieren

Netzwerkmedien							
leitungsgebunden					nicht leitungsgebunden		
Elektrische Signale (Kupferleitung)		Optische Signale (Lichtwellenleiter)			Funkübertragung		Optische Übertragung
Twisted- Pair- Leitung	Koaxial- Leitung	Multi- mode- Faser	Single- mode- Faser		WLAN/ Wi-Fi	Richtfunk	Laserlink

Kupferleitungen

- heutzutage typischerweise Twisted Pair
- jede Ader in Plastik isoliert
- standardmäßig 4 Adernpaare

Amerikanisches Drahtmaß	Aderndurchmesser in mm
AWG 22	0,644
AWG 23	0,572
AWG 24	0,511

- Abschirmung von einfach (keine Abschirmung) bis aufwändig (jeweils alle Adernpaare einzeln und Verbund)
- Verdrillen verhindert innenseitige magnetische Störstrahlung, hebt außenseitige Störstrahlung gegenseitig auf

Lichtwellenleiter (LWL)

- meist Glasfaser
- für kurze Entfernung auch Kunststofffaser
- Totalreflexion: längs in Faserkern eingespeister Lichtstrahl wird an Grenzschicht zum Mantel reflektiert

Multimode-Kabel; Faserkern 50,0 bzw. 62,5 μm

Singlemode-Kabel; Faserkern 9,0 µm

- Multimode: großer Kerndurchmesser, verschiedene Lichtwinkel möglich, führt zu Laufzeitproblemen, begrenzt Länge der Faserstrecke (modale Bandbreite), Klassen OM1 bis OM5
- Singlemode: kleiner Kerndurchmesser, gerader Lichtstrahl, keine Laufzeitprobleme, Länge nur durch Dämpfung begrenzt, Klassen OS1 und OS2

Funk, WLAN/Wi-Fi

- basiert auf elektromagnetischer Strahlung unterschiedlicher Frequenzbereiche
- "ad hoc"-Netz, spontane, gleichberechtigte Verbindung
- Infrastrucute-Netz, zentraler Access Point, in der Regel mit Anmeldung

Norm-Bezeichn.	Neue Bezeichn.	Bemerkungen
802.11		5-GHz-Band, bis 11 Mbit/s
802.11a		5-GHz-Band, bis 54 Mbit/s
802.11b		2,4-GHz-Band, bis 11 Mbit/s
802.11g		2,4-GHz-Band, bis 54 Mbit/s
802.11h		5-GHz-Band, bis 54 Mbit/s, Erweiterung des Standards für Europa mit erhöhter Sendeleist
802.11n	Wi-Fi 4	2,4-GHz- und 5 GHz-Band, bis 150 Mbit/s (Sta
802.11ac	Wi-Fi 5	2,4-GHz- und 5 GHz-Band, bis 867 Mbit/s, the bis 6936 Mbit/s
802.11ad	Wi-Fi 6	60-GHz-Band, "Gigabit-WLAN, bis 6930 Mbit/s

(Bildquellen: IT-Berufe Grundstufe Lernfelder 1-5, 1. Auflage, von J. Gratzke, B. Hauser, I. Patett und Dr. K. Ringhand, westermann Verlag, S.314ff)