539.12

ОБНАРУЖЕНИЕ О- -ЧАСТИЦЫ

В Брукхэйвенской национальной лаборатории обпаружена Ω^- -частица, предсказанная на основе требований «SU(3)-симметрии», называемой также «восьмеричным путем». Омега-минус-частицы недоставало, чтобы завершить супермультиплет из десяти частиц (см. публикуемую в этом

из десяти частиц (см. публикуемую в этом выпуске УФН статью М. Гелл-Манна и др., стр. 695; место Ω^- в декаплете видно на рис. 14, e этой статьи). Гелл-Манн и Окубо установили, что масса Ω^- должна быть больше Ξ -дублета примерно на 145 M \Re (на эту величину отстоят по массе частицы, входящие в Δ -квартет, Σ -триплет и Ξ -дублет). Тогда ее значения должны лежать в пределах 1676—1680 M \Re .

Поиски Ω — начались летом прошлого года. Группа состояла из 31 экспериментатора. Работы велись на синхротроне (33 $E_{\mathcal{P}^6}$) с использованием 80-дюймовой пузырьковой камеры, наполненной жидким водородом.

Протоны, ускоренные па синхротроне, использовались для получения пучка отрицательных К-мезонов. Тщательно отфильтрованный пучок К-мезонов с перерывом в несколько секунд направлялся в камеру. Результаты взаимодействия этого пучка с протонами (ядрами водорода) непрерывно фотографировались. Было исследовано 100 000 фотографий, две из которых позволяли идентифицировать порождение Ω-частицы.

На схеме (см. рисунок) воспроизведены частицы, участвующие в реакции.

 K^- -частица движется снизу и, взаимодействуя с протоном, порождает частицы Ω^- , K^+ и невидимый на фотографиях (и обозначенный на схеме пунктиром) K° . В течение

^{*)} Следовало бы более детально разобраться в том, как происходит это связывание. С квазиклассической точки зрения это может быть обусловлено трудностью удаления иона из внутренней области вихря на его периферию (с одновременным внесением компенсирующего атома с периферии внутрь вихря) без введения в жидкость дополнительного вихря. Необходимый же для появления дополнительного вихря квант отсутствует.

 $10^{-11}~ce\kappa~\Omega^-$ распадается на Ξ^0 и π^- . В свою очередь Ξ^0 (также не оставляющая следов в камере и отмеченная пунктиром) распадается на Λ^0 и π^0 (эта частица совсем не огмечена на схеме), которые тоже не образуют треков. π^0 почти мгновенно распадается на два у-кванта (ү1 й ү2), каждый из которых порождает электронно-позитронную пару. Электрон (e^-) и позитрон (e^-) появляются в одной и той же точке камеры, по тут же расходятся, образуя треки с кривизной противоположного знака. Что касается частицы Λ^0 , то она распадается на протон p и π^- . Анализ длины и кривизны треков позволяет оцепять импульс всех участвующих

в реакции частиц. В конечном счете подсчитывается и масса О-частицы. Она оказалась равной 1686 ± 12 M_{20} , что вполне сходится с теоретическим предсказанием. Значение J^P для частицы пока не определено. (V. E. Barnes et al., Phys. Rev. Letts. 12, 204 (1964)).

B. A.