Olimpiada Națională de Matematică

Etapa finală – Timișoara, 30 aprilie 2008

CLASA A VIII-A – SOLUŢII

Subjectul 1. Lungimile muchiilor tetraedrului sunt 1, 2, 3 sau 6. Fie A, B, C, D vârfurile tetraedrului și u măsura unghiului dintre muchia laterală și planul bazei. Dacă una dintre muchii, de exemplu AB, este 1, atunci una dintre fete, de exemplu ABC este triunghi echilateral cu latura 1, altfel s-ar contrazice inegalitatea triunghiului. Celelalte 3 muchii vor avea lungimea 6, Piramida are înălțimea $\frac{\sqrt{321}}{3}$, deci $\sin u = \frac{\sqrt{321}}{18} > \frac{1}{2}$, de unde Dacă niciuna dintre laturi nu este 1, atunci trei dintre muchii sunt egale Cel puțin două dintre muchiile cu un capăt în D sunt egale, de exemplu DA = DC = 3. Atunci BA = BC = 2. Dacă AC = 3, tetraedrul este piramidă regulată cu vârful B. Dacă AC = 2, tetraedrul este piramidă regulată cu vârful D. 1 punct Piramida cu muchiile bazei egale cu 2 şi muchiile laterale egale cu 3 are înălțimea egală cu $\frac{\sqrt{69}}{3}$, deci $\sin u = \frac{\sqrt{69}}{9} > \frac{1}{2}$, de unde $u > 30^{\circ}....1$ punct Piramida cu muchiile bazei egale cu 3 și muchiile laterale egale cu 2 are

Subiectul 2. a) Notăm cu S numărul de succesiuni admisibile. Există 5
cifre pare deci $5^4 = 625$ succesiuni de 4 cifre pare
Există 5 succesiuni cu toate cifrele egale 1 punct
Există $5 \cdot 4^2 = 80$ de succesiuni cu exact 3 cifre egale
Obţinem $S = 625 - 5 - 80 = 540$
b) Există n posibilități de a plasa $succesiunea\ admisibilă\ 2,0,0,8$ ca linie
în tablou. Fiecare din celelalte $n-1$ linii se poate completa în $S-1$ moduri.
Obţinem $d_n = n(S-1)^{n-1} = n \cdot 539^{n-1}$
Subjectul 3. Prin calcule obţinem $2a^2b + 2ab^2 - 3a^2 - 3b^2 - 4ab + 3a + $
$3b \ge 0.$
Din ipoteză avem $(a-1)(b-1) \ge 0$
Inegalitatea se scrie $2a(a-1)(b-1) + 2b(a-1)(b-1) + a(1-a) +$
$b(1-b) \ge 0, \dots 3$ puncte
evident adevărată, ca sumă de numere pozitive
Subiectul 4. Notăm cu a lungimea muchiei cubului. Presupunem că, de exemplu, M_1N_1 nu e paralelă cu M_2N_2 şi P_1N_1 nu e paralelă cu P_2N_2 . Înseamnă că $d_1 = d_2 = a$, contradicție
Dacă $M_1N_1\parallel M_2N_2$ și P_1N_1 nu e paralelă cu P_2N_2 , atunci $M_1P_1\parallel M_2P_2$,
altfel $d_2=d_3=a$
Deci $M_1N_1 \parallel M_2N_2$ şi $P_1N_1 \parallel P_2N_2$ sau $M_1N_1 \parallel M_2N_2$ şi
$M_1P_1 \parallel M_2P_2$
În fiecare caz rezultă că planele $(M_1N_1P_1)$ și $(M_2N_2P_2)$ sunt
paralele
Prin urmare, $M_1N_1 \parallel M_2N_2$, $P_1N_1 \parallel P_2N_2$ şi $M_1P_1 \parallel M_2P_2$ 1 punct
Cum dreptele M_1M_2 , N_1N_2 şi P_1P_2 sunt necoplanare, dar concurente două
câte două, rezultă că toate trei sunt concurente