Matemática Discreta

Universidade de Aveiro

Tiago Garcia

Matemática Discreta

Universidade de Aveiro

Tiago Garcia tiago.rgarcia@ua.pt

16 de março de 2023

Consequências Semânticas

Teorema

Uma fórmula Ψ é consequência lógica (ou semântica) das fórmulas $\psi_1, \psi_2, \dots, \psi_n$ se e só se $(\psi_1 \wedge \psi_2 \wedge \dots \wedge \psi_n) \to \Psi$ é uma tautologia (fórmula válida).

Notação

$$\psi_1, \dots, \psi_n \models \Psi$$

 Ψ é consequência lógica (ou semântica) de ψ_1, \dots, ψ_n

 $\psi_1, \ldots, \psi_n \vdash \Psi$ existe uma prova de Ψ a partir de ψ_1, \ldots, ψ_n A prova recorre a regras de dedução designadas por regras de inferência, e a tautologias conhecidas.

Teorema

$$\psi_1,\ldots,\psi_n\models\Psi$$

 $(\Psi \text{ \'e consequncia l\'ogica de } \psi_1, \ldots, \psi_n)$ se e só se o conjunto $\psi_1, \ldots, \psi_n, \neg \Psi$ é inconsistente, isto é, não existe uma interpretação para a qual todas as fórmulas do conjunto tomam valor 1.

Para verificar se este conjunto de fórmulas é inconsistente usamos uma nova regra designada por resolução:

$$\frac{\psi \rightarrow \theta \quad \Psi \lor \psi}{\theta \lor \psi} res$$

Indicam que aplicámos a regra/método da resolução.

Casos particulares

1. Se
$$\theta \equiv \bot$$
 obtemos $\Psi \rightarrow \bot \Psi \lor \psi \over \bot \lor \psi$

simplificando como: $\bot \lor \psi \equiv \psi \quad e \quad \Psi \to \bot \equiv \Psi \lor \bot \equiv \Psi$

Para este caso particular a regra da resolução é:
$$\frac{\neg\Psi\quad\Psi\vee\psi}{\psi}res\quad\rightarrow\neg\Psi,\Psi\text{ são lineares complementares}.$$

2. Se $\theta \equiv \bot - e - \psi \equiv \bot$ (este é um caso particular do caso 1.)

Se
$$\psi \equiv \bot$$
então $\Psi \lor \psi \equiv \Psi \lor \bot \equiv \Psi$

Substituindo no caso particular da regra de resolução obtida em 1.

tem-se

$$\frac{\neg \Psi}{\bot} \Psi res$$

Lógica Proposicional

Definição

Simbolos

```
Variáveis proposicionais: p, q, \Psi, \psi, \dots
Constantes: \bot e \top Conetivos lógicos: \land, \lor, \rightarrow, \leftrightarrow, \neg, \equiv
```

Regras de construção

- 1. Se ψ é uma fórmula proposicional então $\neg\neg\psi$ é uma fórmula proposicional.
- 2. Se ψ e θ são fórmulas proposicionais então $\psi \wedge \theta$ é uma fórmula proposicional.
- 3. Se ψ e θ são fórmulas proposicionais então $\psi \lor \theta$ é uma fórmula proposicional.
- 4. Se ψ e θ são fórmulas proposicionais então $\psi \to \theta$ é uma fórmula proposicional.
- 5. Se ψ e θ são fórmulas proposicionais então $\psi \leftrightarrow \theta$ é uma fórmula proposicional.

Dedução na lógica proposicional

• Verificar se uma fórmula é consequência lógica de um conjunto finito de fórmulas.

$$\psi_1,\ldots,\psi_n\models\Psi$$

• Vimos que a consequência lógica é válida se e só se a implicação $\psi_1 \wedge \psi_2 \wedge \ldots \wedge \psi_n \to \Psi$ é uma tautologia.

Para verificar se uma consequência lógica é válida:

- 1. Verificar se a implicação associada é uma tautologia.
- 2. Verificar se é possível obter (também são usados os termos deduzir, derivar, entre outros) Ψ a partir de ψ_1, \ldots, ψ_n , recorrendo a regras de inferência e tautologias conhecidas (propriedades dos conetivos lógicos).
 - (através de uma sequência de deduções em que aplicamos as regras de inferências e tautologias), diz-se que existe uma prova de Ψ a partir de ψ_1, \ldots, ψ_n e escreve-se $\psi_1, \ldots, \psi_n \vdash \Psi$.
- 3. Aplicar a regra de resolução Método de resolução.

Método de resolução

A consequência lógica $\psi_1,\ldots,\psi_n\models,\Psi$ é válida se e só se o conjunto de fórmulas $\psi_1,\ldots,\psi_n,\neg\Psi$ é inconsistente, ou seja, este conjunto contém \bot ou é possível deduzir \bot a partir deste conjunto de fórmulas, isto é, existe uma prova de \bot a partir de $\psi_1,\ldots,\psi_n,\neg\Psi$.

Lógica de 1^a ordem

Definição

Exemplo de uma fórmula da lógica proposicional:

```
(p \land q) \to r
```

Para traduzir frases do tipo:

- i) todos os gatos têm garras.
- ii) alguns alunos de MD têm 20.

Passamos da lógica proposicional para a lógica de 1^{a} ordem (esta última engloba a outra).

Linguagem da lógica de $1^{\underline{a}}$ ordem

Alfabeto

- 1. Variáveis: x, y, z, ...;
- 2. Conetivos lógicos da lógica proposicional: $\land, \lor, \rightarrow, \leftrightarrow, \neg, \equiv;$
- 3. Constantes da lógica proposicional: $\pm e \top;$
- 4. Os quantificadores $\forall e \exists$;
- 5. O símbolo de igualdade: =;
- 6. Símbolos de constantes;
- 7. Símbolos de funções com aridade $n \in N$ (isto é, com n argumentos);
- 8. Símbolos de predicados.

Termo

- 1. Cada variável e cada símbolo de constante é um termo;
- 2. Se f é símbolo de função com aridade n e t_1, \ldots, t_n são termos então $f(t_1, \ldots, t_n)$ é um termo.

Exemplo:

- Variáveis: x, y, z;
- Constantes: a = 1, b = Maria, c = Gato tareco;
- Funções: pai(Maria), onde Pai: $P \to P$, onde P é o conjunto das pessoas.
- Predicado: par(x) = "x 'e par", D = Npar(2) = 1, par(3) = 0, etc.

Como é que se constroem as fórmulas da lógica de 1.ª ordem? Definição (recursiva) de fórmula:

- $P(t_1, ..., t_n)$ é uma fórmla, considerando P um simbolo de predicado e $t_1, ..., t_n$ termos.
- Se ψ e Ψ sao fórmulas então: $\psi \wedge \Psi, \psi \vee \Psi, \psi \rightarrow \Psi, \psi \leftrightarrow \Psi, \neg \psi, \bot$ e \top são fórmulas.
- Se ψ é uma fórmula e x é uma variável então $\forall x\psi$ e $\exists x\psi$ também são fórmulas.
- Se t_1 e t_2 são termos então $t_1=t_2$ é uma fórmula.

Átomo

Na lógica proposicional, os átomos são as proposições atómicas (ex: p = "chove", q = "vou à aula de MD")

Os átomos da lógica de 1ª ordem são:

- $1. \perp, \top$
- 2. $t_1 = t_2$, com t_1 e t_2 termos
- 3. $P(t_1, \ldots, t_n)$, onde t_1, \ldots, t_n são termos e P é um simbolo de predicado.

Exemplo

Consideremos os espaços vetoriais estudados na ALGA. O alfabeto inclui:

- O símbolo de constante o que representa o elemento nulo dos espaço vetorial
- Símbolos de funções
 - 1. Para cada $\alpha \in R$, o símbolo de funções $\alpha \cdot _$ que tem aridade 1 correspondente à multiplicação escalar.
 - 2. O símbolo de função + com aridade 2, que corresponde à adição de elementos do espaço vetorial.

Exemplos

Converta as seguintes afirmações para linguagem simbólica da lógica de 1^a ordem:

1. Todos os gatos têm garras.

```
\forall x \ [g(x) \to t(x)]
Universo: U = \text{conjunto dos animais}.
```

2. Alguns alunos de MD têm 20.

```
\exists x \ (MD(x) \land V(x))

MD(x) = "x \text{ \'e aluno de MD"}

V(x) = "x \text{ tem } 20" \text{Universo: } U = \text{alunos da UA em } 22/23
```

Folha 1

Exercício 2.

c)

Todos os insetos são mais leves do que algum mamífero. \forall \exists Predicados:

```
I(x) = "x é um inseto" L(y,z) = "y é mais leve do que z" M(w) = "w é um mamífero"
```

$$\forall x (I(x) \rightarrow \exists y (M(y) \land L(x,y)))$$

Obs: Alcance de cada quantificador:

- \bullet Ocorrência de x ligada: I(x)
- Al
cance de $\forall x \colon (I(x) \to \exists y \, (M(y) \land L(x,y))$
- $\bullet\,$ Ocorrências de y ligadas: M(y) e L(x,y)

Fórmula fechada

Definição

Fórmula que não tem variáveis com occorrências livres.

Exemplo

```
\forall x \; \exists y \; (P(x) \to R(x,y)) é uma fórmula fechada. 
 \exists y \; ((\forall x \; P(x)) \; \land \; R(x,y)), esta fórmula não é uma fórmula fechada.
```

Negação de fórmula com quantificadores

- 1. $\neg(\forall x \ \psi) \equiv \exists x \ \neg \psi$.
- $2. \neg (\exists x \ \psi) \equiv \forall x \ \neg \psi.$

 ψ - parte da fórmula que está sob o quantificador.

Introdução das fórmulas da lógica de $1^{\underline{a}}$ ordem

Definição

- Estrututa;
- \bullet Valoração, V: $var \rightarrow D$, onde D é o conjunto das variáveis.

O conceito de valoração pode ser entendido por forma a podermos considerar a valoração de um termo.

V(a) = a, se a é uma constante $V(f(t_1, \ldots, t_n)) = f^M(V(t_1), \ldots, V(t_n))$.

Obs: Frequentemente denotamos o símbolo de função f e a função correspondente na estrutura f^M , pela mesma letra.

Exemplo dos slides

$$V(M(A,x)) = M^M(V(A),V(x)) = M(A^M,2) = M(1,2) = |1-2| = |-1| = 1, \qquad V(A) = A$$
 porque A é uma constante.

Interpretação de fórmulas

Exemplo de interpretação de fórmulas (ver slides)

i)

Mostre que R(x, A) não é válida na interpretação (M, V)

Note-se que $\neg(M,V) \models R(x,A)$ se e só se $(M,V) \models \neg R(x,A)$ ($\neg R(x,A)$ é válida na interpretação (M,V))

$$\begin{array}{l} V(\neg R(x,A)) \equiv \neg R(V(x),V(A)) \equiv \neg R(2,A^M) \equiv \neg R(2,1) \\ \equiv \neg (2<1) \equiv \neg \bot \equiv \top \end{array}$$

Logo, $\neg R(x,A)$ é valida na interpretação (M,V), isto é, $(M,V) \models \neg R(x,A)$ Isto é equivalente a afirmar que R(x,A) não é válida nesta interpretação.

Forma normal de Skolem

Definição

Uma fórmula ϕ é dita em forma normal de Skolem se ϕ é uma fórmula na forma normal conjuntiva e não contém nenhum quantificador universal.

Exemplo

1) $\forall x \ P(x, f(x)) \land \neg R(x), \text{ onde } f \text{ \'e uma função e } R \text{ e } P \text{ são predicados}.$

2) $\forall x \ \forall y \ (P(x, f(x)) \land (\neg R(x) \ \lor \ P(x, y)))$

Ideia

- 1. Convertemos Fnuma fórmula Gque está na FNC prenex. Note-se que $F\equiv G$
- 2. A partir de G obtemos uma fórmula H que está na forma normal de Skolem.

Para tal:

• Se no início da fórmula temos um quantificador do tipo $\exists x$, substituimos todas as ocorrências de x por um símbolo a que represente uma constante e eliminamos o quantificador $\equiv x$.

• Se na fórmula existe um quantificador existencial ∃x_k com os quantificadores universais ∀x₁ ∀x₂ ... ∀x_{k-1}, à sua esquerda, substituimos todas as ocorrências de x_k por um símbolo de função que ainda não esteja na fórmula, por exemplo f, que tem nos seus argumentos as variáveis x₁, x₂,...,x_{k-1}, isto é, x_k é substituido por f(x₁,...,x_{k-1}). Atenção: A fórmula H que obtemos na forma normal de Skolen pode não ser (logicamente) equivalente à fórmula G escrita na FNC prenex ou à fórmula F original.