面向深度学习的 小学信息科技课程教学策略研究

谭秀霞 江苏省苏州市吴中区香溪路实验小学

摘要: 本文通过对比分析深度学习与浅层学习的差异揭示深度学习的特征, 针对现阶段小学信息科技课的现状, 依 据信息科技新课程标准,研究小学信息科技课的教学策略,促进学生深度学习的发生。

关键词: 深度学习, 小学信息科技课, 信息科技新课标, 教学策略

中图分类号: G434 文献标识码: A 论文编号: 1674-2117 (2023) 07-0032-03

《义务教育信息科技课程标 准(2022年版)》指出"在在线社会, 除了强调人文素养、尊重科学素养 外,更应强调信息素养的提升。信 息科技课程一定要坚持自己的科学 性,要坚持素质教育,符合自己的学 科逻辑,并把学科逻辑落实到学生 的认知水平上"。这意味着信息科 技课程的教学重点不应该仅仅是 知识技能的掌握,更重要的是知识 的内化理解。因此,教学中教师应引 导学生开展深度学习,强调学生对 知识的批判理解、迁移运用和问题 解决。下面,笔者以促进小学信息 科技课深度学习为目标,探讨适用 于小学信息科技课的教学策略。

深度学习

深度学习与浅层学习二者在 理论基础、学习目标、学习形态、学 习动机、投入程度等方面均存在显 著差异。[1][2]与浅层学习为了通过考

试而进行背诵记忆等机械学习不 同,深层学习要求学习者不仅能够 积极主动地学习知识,还要学会将 知识迁移运用到实际生活中。[3]深度 学习具有批判理解、信息整合、知 识建构、迁移应用、问题解决和终 身学习六大特征,要求学生能够将 所学知识应用到新的情境中,解决 新问题,而新问题可能是良构问题 也可能是劣构问题。[4]

● 深度学习视角下的教学问 题分析

1.学习目标断档化

在小学信息科技课中, 教师注 重知识的传授,以讲授各类操作知 识作为教学目标,难以引起学生对 课堂内容的兴趣,进而导致课堂上 与教师的互动和情感交流少,缺乏 正确学习目标,学生没有动力对所 学内容进行深入思考与理解,阻碍 了自身批判性思维能力的发展。

2.学习内容表面化

在小学信息科技课中,绝大多 数教师仅向学生传授书本上的表面 知识,学生并未了解其价值,得不到 情感上的升华。另外,配套教材在 更新速度上存在问题,书中的很多 内容都没有得到及时更新,而多数 教师也没有结合时下热点问题开展 教学,致使教学内容相对狭窄。

3.学习方式单一化

对于很多小学生来讲,信息科 技课或许是整个小学课程中比较 "轻松"的课程。教师从头讲到尾, 学生被动地接受新知,盲目地跟着 教师的节奏学习,没有独立的时间 和空间去深入思考。此外,这种单 一的学习方式严重地压制了整个 课堂的气氛,常出现大部分学生上 课时玩电脑的情况。

4.学习评价片面化

小学信息科技课程的评价手

段一般是期末考试,这种方式难以 检测学生的能力与观念,不利于教 师对学生学情的分析和促进深度 学习。

● 促进深度学习的教学策略

为了更好地在信息科技课程 中实现深度学习,笔者认为教师可 以尝试应用以下四点教学策略。

1.优化讲授模式, 为深度学习 提供兴趣动力

首先,要使学生更好地投入 到有意义的学习中,就必须利用情 境之锚固定学生的注意力和兴趣, 促使其高效投入学习。[5]小学信息 科技学科的学习情境的创设要注 重解决真实问题,使学生建立起知 识与技能之间的关系。图形化编程 设计不像其他编程需要记忆枯燥 繁冗的命令,而是通过简单拖拽积 木区的积木就可迅速搭建程序脚 本。这种图形化编程的过程就是激 发学生思维,促进学生知识理解, 进而实现深度学习的一个有效途 径。例如,在学生第一次使用图形化 编程软件时,为了让学生更直观地 认识该软件并了解其基本功能,教 师可以设计《小猫酷跑》的程序。 在上课之初,让学生利用键盘上的 "上、下、左、右"方向键来控制小猫 的移动,观察舞台上小猫的运动轨 迹。运动效果直观展现,学生很容 易就体验到了成功的快乐,好的开 始是成功的一半,学生们在学习编 程时有了认同感和求知欲。

其次,在向学生介绍新的软件

工具/软件技能时,首先要讨论它 可以做什么以及如何实现它,而不 是仅仅展示一个固定的技术序列 来实现一个单一的结果。所以,教 师有必要帮助学生将技术所涉及 的动作与其所达到的效果联系起 来,让他们真正理解每一个操作的 意义。例如,在《穿越迷宫》一课中, 教师不要直接告诉学生角色的运 动方式,而是让学生亲自体验游戏, 引导学生逐步分析角色的运动规 律。在学生分析出小猫的运动方式 后,教师可以让学生自己先编写程 序,尝试实现小猫跟随鼠标移动的 效果。学生实践后会发现小猫并未 能成功实现跟随鼠标移动的效果, 这时可以引导学生找出编程中的问 题,如为什么点击开始后小猫直接 移动到了开始位置? 为什么小猫不 能一直跟随鼠标移动呢? 在教学过 程中,教师不要直接告知学生程序 设计原理,更不能直接演示编程过 程,而是要让学生思考逻辑规律, 思考实现方法,这样才有助于学生 理解知识内容,内化知识原理,达 到深度学习的效果。

2.吸纳新兴工具,为深度学习 构建"理解"台阶

深度学习主张新旧知识的整 合,通过构建新旧知识的联系,获 得新知,并将其整合到认知结构中, 引导学生产生深层次理解,实现迁 移的创新运用。[6]教师可以组织一 些开放性学习活动,推动学生的多 元化学习。在信息技术新型工具的 支持下,教师可以采用思维导图、概 念图的模式,让学生理清知识逻辑 关系,构建知识结构网,避免孤立、 片面的浅层学习方式。

例如,在教授《扫地机器人》 一课时,教师将家里的小米扫地机 器人带到教室,放上一些纸屑等垃 圾,现场展示扫地机器人在清扫时 的实际工作状态,进而让大家观察 吸尘器运动轨迹是怎样的、垃圾碰 到吸尘器前后的状态是怎样的,进 而引发学生思考,通过观察和讨论 得出结果。接着,教师引导学生将自 然语言转换为程序设计语言,并画 出程序流程图(如下页图)。

3.营造协作环境,为深度学习 提供"反馈"空间

教师应引导学生实施不同的 协作模式,鼓励学生找机会加强自 己的学习,同时与拥有不同观点、技 能和个性的个人建立支持性关系, 这些伙伴关系可以促进高度参与。 笔者发现,一些学生会在劣构性的 寻求帮助/支持性协作模式中工作 得更好,而一些学生会在通过更有 条理的分配角色的协作模式中工 作得更好。但必须注意的是,教师 需要提醒学生定期更换组内角色, 以免学生重复执行相同的任务。

在教学中,教师可以使用提示 短语,如"你的同桌也是你的好帮手 哦!"或"如果有问题,先向小老师 们寻求帮助哦!",这些提醒是必要 的,它们可以帮助学生看到合作的 机会。同时,教师要鼓励学生分享各

自的计算机学习经验以及协作学习 经验。这些对话可以激发想法或促 进进一步富有成效的对话和创新。 在此之上,教师还可以引导学生进 行角色分工,提示学生"席位"不是 永久性的,他们可以根据活动和协 作偏好移动。同时,可以情境模拟这 些语言和同龄人之间富有成效的互 动(教师提示学生寻求帮助和给予 支持的有效方式)。

4. 拓展学习平台, 为深度学习 创造互动机会

信息科技教学最需要避免的 是"满堂灌"。信息科技学科的特殊 性决定了教师必须给予学生一定 的操作时间,让他们理解并熟悉相 关技术。同时,三、四年级教学内容 的特殊性、信息学科的周课时数, 也决定了学生如果仅仅通过模仿 学习,很难形成长时记忆,即不能 很好地将每周所学知识迁移应用 到下一周。因此,只有学生真正理 解、自主尝试,其形成的理解才更为 深刻。

在教学中,教师要善于拓展展 示平台,借助iPad等,拓展学生的信 息技术应用,大力推动学生的课外 学习互动。总之,深度学习是批判、 主动性的学习,强调理论知识在实 际运用中的有效迁移。

参考文献:

[1]张浩, 吴秀娟. 深度学习的内涵及认知理论基础探析[J]. 中国电化教育, 2012(10):7-11+21.

[2]杜娟, 李兆君, 郭丽文.促进深度学习的信息化教学设计的策略研究[J].电化教育研究, 2013, 34(10).14-20.

[3]Marton B F, Saljd R,ON QUALITATIVE DIFFERENCES IN LEARNING. I-OUTCOME AND PROCESS[J], British Journal of Educational Psychology, 1976, 46.

[4]David H. Jonassen, 钟志贤, 谢榕琴. 基于良构和劣构问题求解的教学设计模式(上)[J]. 电化教育研究, 2003(10).33-39.

[5]段金菊.技术支撑下的团队深度学习设计研究[J].中国远程教育, 2011(01):5.

[6]刘向荣."深度学习"在高中信息技术教学中的运用[J].中小学电教:综合,2017(04):2.@