Maillage - Présentation individuelle

Sorbonne Université - UFR de Mathématiques

Vincent Fu

19 Mai 2020

- Éléments essentiels
 - Maillage
 - Algorithme simple

- 2 Amélioration
 - Configurations
 - Algorithme amélioré

Maillage

Maillage

Discrétisation spatiale d'un milieu continu.

→ Méthode des éléments finis

But du projet

Travail sur nuage de points.

→ Triangulation de Delaunay

Triangulation de Delaunay

Tout cercle circonscrit d'un triangle ne contient aucun points.

Maillage

Figure – Maillage conforme d'un disque

Figure – Triangulation de Delaunay

Algorithme simple

Algorithme naïf

Entrées : les points du nuage

- Construire les triangles issus de toutes les combinaisons possibles de 3 points.
- 2. Supprimer les triangles qui ne vérifient pas le critère de Delaunay.

Sortie : la triangulation de Delaunay

Algorithme simple

Figure - Nuage de 10 points

Figure – Étape avant filtrage

Figure – Résultat (après filtrage)

Algorithme simple

Validité de l'algorithme

Pour tout nuage de points non régulier, il existe une unique triangulation de Delaunay.

Problème

Algorithme non efficace en complexité : $O(n^4)$

- Éléments essentiels
 - Maillage
 - Algorithme simple

- 2 Amélioration
 - Configurations
 - Algorithme amélioré

Configurations

Figure – Un point dans un triangle

Figure – Un point dans un cercle circonscrit hors du triangle

Figure – Un point assez éloigné du maillage courant

Configurations

Figure – Configuration 1 et 2

ightarrow Élimination de triangles non conforme du config. 1

Configurations

Figure - 2x configuration 2

 \rightarrow Élimination de triangles non conforme

Algorithme amélioré

Algorithme amélioré

Entrées : les points du nuage

- Construire un triangle aléatoire. (Ses sommets sont alors considérés fermés.)
- ② Construire l'enveloppe convexe de la triangulation courante.
- 3 Choisir un point ouvert, le mettre à l'état fermé et trouver les configurations dont il est issu.
- Construire les triangles selon les configurations issus.
- Oétuire les triangles juste construits non conformes.
- Répéter tous les étapes à partir du 2. jusqu'à que les points soient tous fermés.

Sortie : la triangulation de Delaunay

Algorithme amélioré

Algorithme amélioré

Figure - Complexité

Figure – Ex. de maillage de 100 p.