

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Моделирование падения капли на поверхность жидкости и генерации волн

Студент: Шавиш Тарек ИУ7и-54Б

Руководитель: Волкова Л. Л.

Цель и задачи

Целью данного курсового проекта является разработка программного обеспечения, позволяющего моделировать генерацию круговых волн на поверхности жидкости.

Чтобы достигнуть поставленной цели, требуется решить следующие задачи:

- произвести анализ существующих алгоритмов компьютерной графики;
- выбрать наиболее подходящие алгоритмы для достижения поставленной цели;
- выбрать средства реализации программного обеспечения;
- разработать программное обеспечение и реализовать выбранные алгоритмы и структуры данных;
- провести замеры временных характеристик разработанного программного обеспечения.

Используемые алгоритмы

- Алгоритм, использующий Z-буфер
- Закраски по методам Гуро и Фонга
- Модели освещения Ламберта и Фонга

Модель поверхности жидкости

Схема алгоритма, использующего Z-буфер

Описание уравнения круговой волны

$$f(x,y,t) = A \left(\frac{\sin S + 1}{2}\right)^k$$

$$S = Dir(x,y) * Pos(x,y)f + t\psi$$

$$f = \frac{2\pi}{\lambda} \qquad \psi = vf = \frac{2v\pi}{\lambda}$$

$$D(x,y) = \left(\frac{(x,y) - C}{|(x,y) - C|}\right)$$

Вычисление нормалей круговой волны

$$N(x, y, z) = NB(x, y, z) \otimes NT(x, y, z)$$

$$NB(x,y,z) = \frac{\partial f(x,y,t)}{\partial x} \qquad NB(x,y,z) = \left(\frac{\partial x}{\partial x}, \frac{\partial y}{\partial x}, \frac{\partial f(x,y,t)}{\partial x}\right) = \left(1,0, \frac{\partial f(x,y,t)}{\partial x}\right),$$

$$NT(x,y,z) = \frac{\partial f(x,y,t)}{\partial y} \qquad NT(x,y,z) = \left(\frac{\partial x}{\partial y}, \frac{\partial y}{\partial y}, \frac{\partial f(x,y,t)}{\partial y}\right) = \left(0,1, \frac{\partial f(x,y,t)}{\partial y}\right).$$

$$\frac{\partial f(x,y,t)}{\partial x} = 0.5Dir_x f A \left(\frac{\sin S + 1}{2}\right)^{k-1} \cos S,$$

$$\frac{\partial f(x,y,t)}{\partial y} = 0.5Dir_y f A \left(\frac{\sin S + 1}{2}\right)^{k-1} \cos S.$$

Методы закраски

Метод Гуро

Метод Фонга

Схема классов программы

Интерфейс программы

Примеры работы программы

Зависимость времени пересчета полигонов поверхности жидкости от количества полигонов

Зависимость времени закраски поверхности жидкости от количества полигонов

Заключение

В рамках курсового проекта было разработано программное обеспечение, позволяющее моделировать генерацию круговых волн на поверхности жидкости.

Были выполнены следующие задачи:

- выбраны наиболее подходящие алгоритмы для достижения поставленной цели;
- выбраны средства реализации программного обеспечения;
- разработано программное обеспечение и реализовать выбранные алгоритмы и структуры данных;
- проведены замеры временных характеристик разработанного программного обеспечения.