Mîndrilă Claudiu, grupa 301

Tema 5-Coduri

1.

- 2. (a) Fie g polinomul generator. Dacă 1 + X|g atunci fie (c_0, \ldots, c_{n-1}) un cuvând. Avem $X + 1|c_0 + \ldots + c_{n-1}X^{n-1}$, de unde $c_0 + c_1 + \ldots c_{n-1} = 0 \mod 2$. Dar asta este tocmai ponderea cuvântului!. Reciproc, fie cuvântul produs chiar de g. Atunci el are pondere pară, i.e. g(1) = 0 sau X 1|g.
 - (b) Trebuie ca $g|X^7-1$ şi $g|X^5+X^2+X+1$. Fie p ireductibil cu p|g. Avem $X^5+X^2+X+1=(X+1)^2\cdot(X^3+X+1)$ deci $p\in X+1, X^3+X+1$. Avem şi $X^7-1=(X-1)(X^3+X+1)(X^3+X^2+1)$. Prin urmare $g\in\{1,\ X+1, X^3+X+1,\ (X+1)(X^3+X+1)\}$. Dar g trebuie să aiba gradul minim, deci g=X+1.
 - (c) Codul este generat de g unde $g|X^8-1=(X+1)^8$. Dacă $g\neq 1$ atunci (X+1)|g și conform a) avem că orice cuvânt are pondere pară și nu va exista niciunul cu distanță minimală 1. Deci g=1 și atunci $C=\mathbb{F}_2^7$. Deci fix un cod.
- 3. Numărul de coduri ternare, notat N, este numărul de polinoame din $\mathbb{F}_3[X]$ care divid pe X^8-1 . Dar descompunerea în factori primi a lui X^8-1 este

$$X^{8} - 1 = (X + 1)(X - 1)(X^{2} + 1)(X^{2} + X - 1)(X^{2} - X - 1)$$

Deci

$$g = (X+1)^{\alpha} (X-1)^{\beta} (X^2+1)^{\gamma} (X^2+X-1)^{\delta} (X^2-X-1)^{\epsilon}$$

cu $\alpha,\beta,\gamma,\delta,\ \epsilon\in\{0,1\}\,.$ Deci $N=2^5=32.$