

Juegos serios adaptativos de rehabilitación para personas con discapacidad

Dr. Ing. Martina Eckert

Dpto. de Teoría de Señal y Comunicaciones (TSC)

Tel. +34 91 336 5506

Martina.Eckert@upm.es

Grupo de Aplicaciones MutiMedia y Acústica

CV breve Martina

Codificación de video 1996 Erasmus: PFC en el GTI (SSR)

1997-2001 Beca FPI

2003 **Tesis**

Prof. visitante Carlos III (Criptografía, comercio 2004-2006

electrónico)

Desde 2006 PTUi ETSIST campus sur

2007-2012: 4 proyectos de Innovación docente (premio)

2014-2017: GRyS:

Proyecto europeo SWARMs (2015-2018)

Grupo de trabajo "Realidad Aumentada" (con GDEM)

1 Tesis en codirección sobre detección de fuegos y áreas deforestadas

- **Empiezo línea de interfaces naturales**
 - 8 PFG's + 5 en curso
 - 16 prácticas

Abril 2017: cambio al Gamma

Mi visión

Idea:

 Juegos serios para ejercicio físico mediante captura de movimientos y realidad virtual → exergames

Enfoque actual:

- Mayores con ictus o Parkinson
- Niños con Parálisis Cerebral
- Faltan enfoques para pacientes jóvenes con enfermedades crónicas y raras
- Problema: no hay pautas generalizadas, cada caso es diferente, falta de fuerza muscular

Objetivo global:

- Adaptación a cualquier capacidad y necesidad
- Interacción inteligente para adaptarse a la evolución del jugador y para conseguir máxima motivación
- Reconocer intenciones, emociones, necesidades, entorno...
- Inmersión en el mundo del juego para aumentar la motivación

Proyecto MoKey (Motion Keyboard)

Objetivo: Mejorar el uso de dispositivos electrónicos en la vida diaria y aprovecharlo para realizar ejercicio físico

- Posibilidad para personas que no pueden usar teclado
- Adaptar software del Mercado a exergames

Como: Transformar gestos en pulsaciones de teclado con cámara 3D (Kinect)

- 12 movimientos predefinidos
- 4 movimientos grabables
- Uso en silla de ruedas

Publicaciones:

- M. Eckert, M. Lopez, C. Lázaro, J. Meneses, J. F. Martinez Ortega, "MoKey-A motion based keyboard interpreter", IEEE International Symposium on Consumer Electronics (ISCE), July 2015.
- M. Eckert, M. Lopez, C. Lázaro, J. Meneses, "MoKey: A Versatile Exergame Creator for Everyday Usage", Assistive Technology, bajo revision

MoKey

Probado con:

- Skype
- Powerpoint
- E-book reader
- Minecraft
- Tetris

Proyecto Blexer (Blender Exergames)

Objetivos:

- Middleware para transmitir datos de movimiento de Kinect a un videojuego serio para ejercicio físico creado en Blender
- Crear videojuegos divertidos e envolventes con historia para combinar diversión y ejercicio sin dares cuenta.
- Configuración adaptiva a cualquier paciente:
- Control del personaje del juego mediante movimientos corporales configurables (asignación libre)
- Tareas del juego = ejercicios configurables (velocidad, frecuencia, rango de movimiento...)

Publicaciones

 M. Eckert, I. Gomez-Martinho, J. Meneses, J. F. Martinez Ortega, "A multi functional plug-in for exergames", *IEEE International Symposium on Consumer Electronics* (ISCE), Madrid, 2015

Proyecto Blexer: middleware

Entradas:

- Movimientos capturados con Kinect
- Smartphone: acelerómetro y giroscopio (rotación mano)
- Oculus: giroscopio (rotación cabeza)
- Futuro: otros sensores corporales (p.ej. frecuencia cardiaca)

Blender:

 addon que crea esqueletos para asignar movimientos al personaje

Proyecto Blexer: cuatro mini-juegos de prueba

Objetivos:

- Probar la funcionalidad del sistema de amplificación con diferentes movimientos
- Respuesta del sistema a silla de ruedas
- Ver que movimientos son aptos para personas con debilidad muscular, parálisis cerebral etc.
- Diferencia pantalla vs. Oculus
- Pruebas con 11 voluntarios afectados

Mini juegos:

Remar, volar, matar topos, subir escalera

Publicaciones:

- M. Eckert, I. Gómez-Martinho, J. Meneses y J. F. Martínez, "A modular middleware approach for exergaming", Int. Conf. on Consumer Electronics (ICCE), Berlin, 2016.
- M. Eckert, I. Gomez-Martinho, J. Meneses y J.-F. Martínez, "New ways towards exciting exergame-experiences for people with motor function impairments", Sensors, Feb. 2017.

Blexer minigames

La barca

→ remar

Avion

→ volar

Guacamole

→ pegar

Escalera

→ escalar

Blexer minigames: motion amplification

Si un usuario no es capaz de hacer movimientos amplios, esta function le proporcionará más inmersión en el juego

Movimiento amplificado

Movimiento de usuario

Posición de reposo

Pruebas con 11 voluntarios afectados

Monitor de PC

Oculus VR headset:

(c)

(d)

(b)

Body Group 2016/17

MoKey:

parado

Blexer:

 Integración de los mini-juegos en juego de aventura "Phiby's adventures"

 Plataforma web medica para configuración y monitorización a distancia

Blexer-U

- Transformación del middleware a Kinect v2 (Xbox one)
- Implementación de configuración de esqueletos en Unity 3D

Plan 2017/18

MoKey

- Transformación Kinect v1 → Kinect v2
- Mejora de la configuración de gestos, ampliar posibilidades
- Pruebas con usuarios exhaustivas

FaMoKey

- Interfaz para gestos faciales con Kinect v2 (trabajo empezado en Face Group)
- Mas adelante integrar en uno

Blexer + Blexer-med

Pruebas verano + mejoras + pruebas exhaustivas otoño

Blexer-U

- Integrar Phiby's adventures v2
- Conexión con Blexer-med
- Añadir juegos nuevos (Totoro de SAI)

Visión futura

Face & Body + Intelligence

Crear un middleware modular con inteligencia que entiende y se adapta al usuario.

- Soporte de múltiples sensores (elegible)
- Uso de diferentes SW (mercado o custom)
- Plataforma medica de supervisión

Visión futura

Face & Body + Intelligence

Tareas Middleware:

- 1. Obtener datos del entorno:
 - Sensores
 - Pautas del terapeuta
 - Estado del animo del paciente
 - Hora de juego
 - Historial del jugador
- 2. Tomar decisiones:
 - Adaptar nivel del juego o cambio ejercicio debido a

 - Cansancio del jugador → evitar sobreesfuerzo
 - Nueva pauta del terapeuta → debe aumentar cierto movimiento
- 3. Informar al terapeuta
 - Transmitir resultados
 - Proponer cambios
 - Vigilar calidad de movimientos

Preguntas al OEG:

- De que manera se implementaría este tipo de inteligencia?
- Cual sería el método adecuado para tomar decisiones sobre tantos datos de contexto? Ontologías u otro método?
- Si tuvierais un candidato para hacer el doctorado en el tema, encantada de llevarlo en codirección con vosotros.
- Estoy abierta también a cualquier tipo de colaboración, mis compañeros del grupo trabajan con imágenes médicas y reconocimiento del habla.

¡Muchas gracias!