Practica 5: Practica de comunicación serial

Unidad II: Interfaces de comunicación Tema 2.1 Sistemas Embebidos II 18MPEDS0729 Ago-Dic 2025

Centro de Enseñanza Tecnica Industrial Plantel Colomos Tgo. en Desarrollo de Software

Academia: Sistemas Digitales

Profesor: Antonio Lozano Gonzáles

EMMANUEL BUENROSTRO 22300891 7F1 EMILIANO ARZATE 22300929 7F1

19 de Octubre de 2025

§1 Objetivo

Enviar y recibir información serial utilizando solo dos cables o alambres, para reducir peso y costo en las instalaciones.

§2 Desarrollo de la Práctica

§2.1 Condiciones de la Práctica

Utilizando su arduino, deberán establecer comunicación serial con otro equipo. Dicha comunicación serial sera Ful Duplex. es decir, transmitirá y recibirá información al mismo tiempo. Lo que se deberá enviar y recibir serán caracteres y números, todos los caracteres de nuestro idioma español, ya sea en mayúsculas o minúsculas, también los números del 0 al 9. Para enviar dicha información se utilizara el teclado hexadecimal y una pantalla LCD, en los dos equipos arduino. Recuerde que los dos equipos trasmitirán y recibirán la información.

§2.2 Algoritmo o Diagrama de Flujo

- 1. Inicializaciones: configurar LCD, keypad y la cadena global s.
- 2. setup(): iniciar Serial, Serial3 y el LCD.
- 3. loop(): obtener número con readnumber() y enviarlo por Serial y Serial3.
- 4. readnumber(): en bucle leer teclas y Serial3; acumular dígitos en un entero; terminar al presionar ".
- 5. leerSerial(): si hay datos en Serial3 concatenarlos a s y llamar a imprimir().
- 6. imprimir(): limpiar LCD y mostrar s.

§2.3 Código C

```
#include <LiquidCrystal.h>
   #include <Keypad.h>
3
4
   const int LCD_RS = 22;
5
   const int LCD_E = 23;
7
   const int LCD_D4 = 25;
   const int LCD_D5 = 24;
   const int LCD_D6 = 26;
   const int LCD_D7 = 27;
   LiquidCrystal lcd(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7);
11
12
13
   const byte ROWS = 4;
14
   const byte COLS = 4;
15
  char keys[ROWS][COLS] = {
16
17
    {'1','2','3','/'},
     {'4','5','6','-'},
18
     {'7', '8', '9', '+'},
19
     {'C','O','=','*'}
20
```

— 19 de Octubre de 2025

```
22 byte rowPins[ROWS] = {31, 33, 35, 37};
23 byte colPins[COLS] = {30, 32, 34, 36};
24 Keypad teclado = Keypad(makeKeymap(keys), rowPins, colPins,ROWS,COLS);
25 String s="";
26 int readnumber(){
    delay(500);
27
     int x = 0;
28
29
30
    while(true){
31
      leerSerial();
32
       char key = teclado.getKey();
33
       if(key){
34
        if(isdigit(key)){
35
          x = x * 10 + (key - '0');
36
        } else if (key == '*' ){
37
          break;
38
        }
39
       }
40
41
42
    return x;
43
44
45
46
47
   void imprimir(){
48
    lcd.clear();
49
    lcd.print(s);
50
51
   }
52
53
   void leerSerial(){
54
    if(Serial3.available()>0){
55
       char c=Serial3.read();
56
       s+=c;
57
       imprimir();
58
59
     }
60 }
61
62
63 void setup() {
    Serial.begin(9600);
64
     Serial3.begin(9600);
65
     lcd.begin(16, 2);
66
      lcd.print("hola");
67
   }
68
69
70
71
  void loop() {
72
    char c=readnumber();
73
    Serial.println(c);
74
     Serial3.print(c);
75
76
77
78 }
```

§3 Observaciones y Conclusiones

- Usamos distintos seriales, ya que el Serial1 es el que esta usando la computadora, para conectar los arduinos usamos el Serial3.
- Ahora tuvimos que hacer un teclado que lea por ASCII mas que solo lo del teclado.

§4 Imagen

