Slovenská technická univerzita v Bratislave Fakulta informatiky a informačných technológií

FIIT-5212-72264

Martin Nemček Spracovanie učebných textov

Bakalárska práca

Vedúci práce: Ing. Miroslav Blšták

Máj 2016

Slovenská technická univerzita v Bratislave Fakulta informatiky a informačných technológií

FIIT-5212-72264

Martin Nemček Spracovanie učebných textov

Bakalárska práca

Študijný program: Informatika Študijný odbor: 9.2.1 Informatika

Miesto vypracovania: Ústav informatiky, informačných systémov a softvérového

inžinierstva, FIIT STU, Bratislava Vedúci práce: Ing. Miroslav Blšták

Máj 2016

Anotácia

Slovenská technická univerzita v Bratislave

FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGIÍ

Študijný program: Informatika

Autor: Martin Nemček

Bakalárska práca: Spracovanie učebných textov

Vedúci práce: Ing. Miroslav Blšták

Máj 2016

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum....

Annotation

Slovak University of Technology Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Degree Course: Informatika

Author: Martin Nemček

Bachelor thesis: Spracovanie učebných textov

Supervisor: Ing. Miroslav Blšták

Máj 2016

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum....

ACKNOWLEDGMENTS
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

v

DECLARATIO	N		
Lorem ipsum dolor incididunt ut labore	sit amet, consecte	elit, sed do eius	smod ten
			tin Nemč

Obsah

1	Úvo	d	1
2	Spra	acovanie prirodzeného jazyka	3
	2.1	Spracovanie prirodzeného jazyka	3
	2.2	Úlohy spracovania prirodzeného jazyka	3
		2.2.1 Značkovanie slovných druhov	4
		2.2.2 Rozpoznávanie názvoslovných entít	5
		2.2.3 Identifikácia koreferencií	5
		2.2.4 Identifikácia gramatických závislostí	6
		2.2.5 Extrakcia informácií	7
	2.3	Nástroje na spracovanie prirodzeného jazyka	7
		2.3.1 WordNet	7
		2.3.2 StanfordNLP	9
		2.3.3 CambridgeAPI	10
		2.3.4 Google Ngram	10
		2.3.5 AlchemyAPI	11
	2.4	Zhrnutie	12
3	Ana	lýza nástrojov na správu paralelných textov	13
	3.1	InterText	13
	3.2	NOVA Text Aligner	14
	3.3	LF Aligner	15
	3.4	Google Translate	16
	3.5	Zhrnutie	17
4	Náv	rh	18
	4.1	Uchovávanie textov v databázach	18
			18
			18
	4.2	ž	21
			22
			22

		4.2.3	Kolekcia sentences	23
		4.2.4	Kolekcia structures	24
		4.2.5	Kolekcia rules	25
		4.2.6	Kolekcia and rules	26
		4.2.7	Zhrnutie	27
	4.3	Tvorba	poznámok	27
		4.3.1	Pravidlo na spracovanie	28
		4.3.2	Určenie relevantných informácií	28
	4.4	Použiti	e závislostí pri tvorbe poznámok	29
5	Imp	lementá	acia	30
	5.1	Manaž	ment dát	30
		5.1.1	Vyhľadanie pravidla	30
		5.1.2	Aplikovanie pravidla	35
		5.1.3	Vytvorenie pravidla	37
6	Výsl	edky		39
	6.1	Podčas	ť	39
7	Záve	er		40
Li	teratú	ira		41
A	Zozr	nam vzť	ahov závislostí	42
R	Lege	nda dia	ogramov kolekcií	43

Zoznam obrázkov

1	Strom vzťahov	6
2	Vzťahy vo vete	6
3	Webové rozhranie	8
4	Nadradenost'slov	9
5	StanfordNLP online demo	10
6	Google Ngram Viewer	11
7	AlchemyAPI online demo	12
8	Aplikácia InterText	14
9	Aplikácia NOVA Text Aligner	15
10	Aplikácia LF Aligner	16
11	Google Translate	17
12	Databázový model	22
13	Model kolekcie articles	22
14	Model kolekcie notes	23
15	Model kolekcie sentences	24
16	Model kolekcie structures	25
17	Model kolekcie rules	26
18	Model kolekcie and rules	27
19	Príklad určenia zhody viet	33
20	Zásivlostí jednoduchej vety	37
21	Príklad štruktúry pravidla	37
22	Zoznam závislotí	42
23	Legenda diagramov kolekcií	43

Zoznam tabuliek

1	Prvky poskytované MongoDB	20
2	Porovnanie používaných pojmov [6]	21

Zoznam ukážok

1 Úvod

Internet je v dnešných dňoch zaplnený obrovským množstvom dát a informácií. Mnohé z týchto dát sa na internete vyskytujú mnohonásobne, či už v identickej podobe alebo sú podobné. Avšak, čím ďalej tým viac z týchto informácií vyskytujúcich sa na internete, sú informácie irelevantné.

Stáva sa to až príliš často a každý už zažil situáciu, kedy hľadal informácie na konkrétnu tému a musel sa "prehrabat" kopou nepodstatných dát a informácií, ktoré mu boli ponúkané. Stáva sa to medzi všetkými kategóriami používateľov na internete.

Jednou z majoritných kategórií používateľov, ktorí sa s takouto situáciou stretávajú denne sú študenti. Študenti všetkých škôl, od základných až po univerzity, získavajú informácie na učenie, projekty alebo zadania primárne z internetu alebo učebných textov kníh. Keď musia prechádzať obrovské množstvá dát z rôznych zdrojov, je to náročne, často až frustrujúce a berie im to veľa času.

Učebné texty sú prevažne v neštruktúrovanej forme a v prirodzenom jazyku. Pre stroje je mnohokrát náročné správne interpretovať tieto informácie. Jedným z hlavných dôvodov je, že každý jazyk je odlišný a obsahuje špecifické charakteristiky, ktoré môžu byť napríklad slovosled vety, gramatické kategórie slov, ale aj vetné členy a vzťahy medzi nimi.

Tieto, ale aj mnohé iné charakteristiky jazyka sa dajú využiť pri jeho spracovaní a reprezentáciu do podoby, s ktorou vedia aj stroje jednoducho pracovať. Takýto proces sa nazýva *spracovanie prirodzeného jazyka* (angl. Natural Language Processing - NLP). Spracovanie prirodzeného jazyka má viacero aplikácií, z ktorých sú to napríklad preklad jazyka, vytiahnutie najpodstatnejších entít z textu, prípadne aj štatistika ich výskytu a mnohé ďalšie.

My posunieme spracovanie prirodzeného jazyka ešte o kúsok ďalej a budeme sa zaoberať ako pomôcť študentom so spracovaním veľkého množstva informácií, hlavne z učebných textov. Študentom najviac pomôže, ak dokážu rýchlo z textu vytiahnuť tie najpodstatnejšie, najdôležitejšie informácie a údaje, ktoré sa im ďalej budú omnoho ľahšie spracovávať a učiť. Proces určovania a extrakcie najpodstatnejších informácií z učebného textu môžme nazvať spoznámkovávanie.

Zameriame sa hlavne na využitie vetných členov a vzťahov medzi nimi, na určenie najpodstatnejšej a najrelevantnejšej informácie z vety. Takto extrahované informácie následne ponúkneme používateľovi (študentovi).

2 Spracovanie prirodzeného jazyka

V tejto kapitole priblížime a rozoberieme spracovanie prirodzeného jazyka, jeho využitie v aplikáciach a systémoch a jeho hlavné úlohy. Ďalej analyzujeme nástroje, ktoré sa dajú využiť pri spracovávaní prirodzeného jazyka.

2.1 Spracovanie prirodzeného jazyka

Spracovanie prirodzeného jazyka (angl. Natural Language Processing - NLP) odkazuje na počítačové systémy, ktoré spracovávajú, snažia sa pochopiť alebo generujú jeden alebo viacero ľudských jazykov. Vstupom môže byť text alebo hovorená reč s cieľom prekladu do iného jazyka, pochopenie a reprezentácia obsahu textu, udržanie dialógu s používateľom a iné [1]. Počítače doposiaľ nedokážu plne porozumieť ľudskému jazyku, či už sa jedná o písaný alebo hovorený, a preto hlavným cieľom NLP je vybudovať výpočtové modely prirodzeného jazyka pre jeho analýzu a generovanie [2].

Porozumenie ľudskej reči je mnohokrát náročné aj pre samotných ľudí a nie to ešte pre počítače. Na svete je veľké množstvo jazykov, ktoré sa od seba líšia charakteristikami typickými pre konkrétny jazyk. Navyše, každý človek je odlišný a typický, čo spôsobuje, že výslovnosť rovnakého slova viacerými ľuďmi môže byť odlišná. Ďalej máme slangové slová a slová typické len pre určité územie. Pri spracovávaní prirodzeného jazyka treba vziať do úvahy viaceré aspekty. Dosiahnutie tohto cieľa je preto často veľmi náročné.

V súčastnosti najpoužívanejšie algoritmy na NLP využívajú strojové učenie. Dosiahnutie úplného porozumenia a spracovania ľudského prirodzeného jazyka by znamenalo vyriešiť *AI-complete* problém, čo znamená, že obtiažnosť tohto problému je ekvivalentná s obtiažnosťou problému vytvorenia počítača inteligentného ako človek, takzvané "true AI".

2.2 Úlohy spracovania prirodzeného jazyka

Spracovanie prirodzeného jazyka má niekoľko hlavných úloh. Podrobnejšie si opíšeme tie, ktoré sú relevantné vzhľadom na implementáciu spracovania učebných

textov. Úlohy spracovania prirodzeného textu: [5]

- Značkovanie slovných druhov (angl. Part-of-speech tagging) 2.2.1
- Rozdelenie vety na menšie časti (angl. Chunking)
- Rozpoznávanie názvoslovných entít (angl. Named Entity Recognition) 2.2.2
- Označovanie sémantického postavenie (angl. Semantic Role Labeling)
- Rozpoznanie koreferencií (angl. Coreference resolution) 2.2.3
- Morfologické segmentovanie (angl. Morphological Segmentation)
- Generovanie prirodzeného jazyka (angl. Natural Language Generation)
- Optické rozoznávanie textu (angl. Optical Character Recognition)
- Rozloženie vzťahov (angl. Dependency parsing) 2.2.4
- a ďalšie.

Hlavné úlohy spracovania prirodzeného jazyka sú implementované a využívané vo viacerých smeroch. Z hľadiska spracovania učebných textov je pre nás najdôležitejšie využitie z pohľadu *extrakcie informácií*, ktoré je podrobnejšie popísané v sekcii 2.2.5 Extrakcia informácií. Ďalšie využitia spracovania prirodzeného jazyka sú napríklad [9]:

- Strojový preklad (angl. Machine Translation),
- Rozpoznávanie reči (angl. Speech Recognition),
- Sumarizáciu textu (angl. Text Summarization),
- Dialógové systémy (angl. Dialogue Systems),
- Vyhľadávanie informácií (angl. Information Retrieval).

2.2.1 Značkovanie slovných druhov

Hlavnou úlohou značkovania slovných druhou (angl. Part-of-speech tagging) je každému slovu vo vete priradiť unikátnu značku odrážajúcu jeho syntaktickú úlohu vo vete [5]. Sú to, napríklad v slovenskom jazyku podmet, prísudok, príslovkové určenie alebo v anglickom jazyku noun, adverb, verb, atď. Okrem toho to môže byť tiež označenie určujúce množné číslo, napríklad singulár alebo plurál.

Problémom pri značkovaní slovných druhov je mnohoznačnosť. Mnohoznačnosť je vlastnosť slova spôsobujúca, že slovo môže mať viacero významov a môže

byť viacerými slovnými druhmi. V slovenskom jazyku napríklad slovo *kry* môže predstavovať sloveso s významom rozkazu *prikry!*, ale taktiež môže predstavovať podstatné meno s významom *kríky*. V anglickom jazyku to je napríklad slovo *book*, ktoré môže predstavovať podstatné meno (angl. noun) *kniha* alebo sloveso (angl. verb) vo význame *rezervovať*.

2.2.2 Rozpoznávanie názvoslovných entít

Rozpoznávanie názvoslovných entít (angl. Named Entity Recognition) označuje mená a názvy (entity), ktoré sa vyskytujú v texte. Tie následne rozdeľuje do kategórií, ako sú napríklad *osoby*, *organizácie* alebo *lokácie* [5].

Ťažkosti pri rozpoznávaní názvoslovných entít spôsobuje kapitalizácia slov, takzvané písanie entít s veľkým začiatočným písmenom. V anglickom jazyku je to jednoduché, keďže v angličtine sa entity píšu s veľkým začiatočným písmenom.

Príklad je *Slovak University of Technology*. Avšak v iných jazykoch to neplatí a entity sa nemusia písať s veľkým začiatočným písmenom.

2.2.3 Identifikácia koreferencií

Nájdenie, identifikácia a rozpoznanie koreferencií v texte je úlohou rozpoznávania koreferencií (angl. Coreference resolution). V texte sa často používajú zámena (angl. pronouns) *to*, *tí*, *on*, anglicky *it*, *those*, *he* alebo menné frázy (angl. noun phrase). Tieto zámena a menné frázy sa odkazujú na iné podstatné mená alebo mená a názvy. Je úlohou rozpoznávania koreferencií identifikovať referenciu na podstatné meno alebo meno, alebo názov, väčšinou entity z reálneho sveta, na ktoré sa odkazujú. Táto úloha spracovania prirodzeného jazyka sa využíva v aplikáciách NLP ako sú extrakcia informácií (viď. 2.2.5 Extrakcia informácií) a odpovedanie na otázky [3].

Príklad: **Martin Nemček** napísal túto bakalársku prácu. **On** študuje na FIIT STU BA.

Tu je vidno, že zámeno *on* sa odkazuje na meno *Martin Nemček*.

2.2.4 Identifikácia gramatických závislostí

Rozloženie na vzťahy nám poskytuje jednoduchý opis gramatických vzťahov slov vo vete. Aplikovaním rozloženia vzťahov na vetu *Bell, based in Los Angeles, makes and distributes electronic, computer and building products.* vznikne strom vzťahov (angl. dependency tree) (viď. obrázok 1 Strom vzťahov) [4].

Obr. 1: Strom vzťahov

V tomto orientovanom stromovom grafe jednotlivé slová vety predstavujú vrcholy, pričom prechody medzi vrcholmi, hrany, reprezentujú vzťahy medzi nimi.

Ďalšia reprezentácia závislostí zapisuje vzťahy priamo do vety. Na obrázku 2 Vzťahy vo vete vidíme, že medzi slovami *She* a *looks* je vzťah **nsubj** - nominal subject, medzi *looks* a *beautiful* je vzťah **acomp** - adjectival complement, a v neposlednom rade medzi slovami *very* a *beautiful* je vzťah **advmod** - adverb modifier [4].

Obr. 2: Vzťahy vo vete

Celá závislosť sa skladá primárne z nadradeného tokenu, podradeného tokenu a vzťahu medzi nimi. Na obrázku 2 Vzťahy vo vete vidno, okrem iných aj závislosť, ktorej nadradený token je slovo *looks*, podradený token je slovo *She* a vzťah je *nsubj*.

2.2.5 Extrakcia informácií

Systémy a aplikácie zamerané na extrakciu informácií vyhľadávajú a extrahujú informácie z textov, článkov a dokumentov, pričom reagujú na používateľove informačné potreby. Výstup z takýchto systémov a aplikácií nepozostáva iba zo zoznamu kľúčových slov, ktoré by sa dali pokladať za extrahované informácie, ale naopak sú v tvare preddefinovaných šablón [9].

Extrakcia informácií využíva niekoľko z hlavných úloh spracovania prirodzeného jazyka. Sú to *značkovanie slovných druhov*, *rozpoznávanie názvoslovných entít*, a ďalšie [9]. Tieto a aj ostatné úlohy spracovania prirodzeného jazyka sú podrobnejšie opísané v sekcii 2.2 Úlohy spracovania prirodzeného jazyka.

Výber informácií a extrakcia informácií spolu úzko súvisia, ale sú to dve rozdielne využitia NLP. Prvé spomínané využitie slúži na vyhľadávanie relevantných zdrojov informácií v databázach textov, článkov a dokumentov podľa používateľových potrieb. Na vyhľadaných zdrojoch následne prebehne extrakcia informácií.

2.3 Nástroje na spracovanie prirodzeného jazyka

V súčasnosti je vyvinutých alebo sú vo vývoji viaceré nástroje, ktoré sa dajú použiť pri spracovávaní prirodzeného jazyka. Vývoj takýchto nástrojov je podporovaný na známych univerzitách ako sú napríklad Princeton, Stanford alebo Camridge, ale samozrejme svoje slovo tu má aj Google. Pozrieme sa bližšie na niektoré z týchto nástrojov, čo ponúkajú a ako sa dajú využiť.

2.3.1 WordNet

WordNet¹ je databáza anglických slov vyvíjaná na Princetonskej univerzite. Databáza obsahuje podstatné mena, prídavné mená, slovesá a príslovky, ktoré sú

¹www.wordnet.princeton.edu

zatriedené do synonymických sád, synsetov.

Slová do synetov sú zaraďované podľa významu. To znamená, že slová auto a automobil, ktoré sú pre svoj význam zameniteľné vo vete, sa zaraďujú do rovnakého synsetu. WordNet v súčasnosti (r. 2015) obsahuje 117 000 synsetov. Každý z týchto sysnsetov taktiež obsahuje krátku ukážku použitia slova.

Vo WordNet sa nachádzajú aj vzťahy medzi slovami v zmysle nadradenosti. Tým sa myslí, že *stolička* je nábytok a nábytok je fyzická vec a takto to pokračuje až po najvyššie slovo, od ktorého "dedia" všetky - entita (viď. obrázok 4 Nadradenosť slov. Okrem vzťahu nadradenosti WordNet obsahuje aj vzťah zloženia. Stolička sa skladá z operadla a nôh. Toto zloženie je typické len pre konkrétne slovo a neprenáša sa hore stromom nadradenosti, lebo pre stoličku je typické, že sa skladá z operadla a nôh, ale to už nie je typické pre nábytok. Prídavné mená obsahujú aj vzťah antonymity, takže slovo *suchý* bude prepojené so slovom *mokrý* ako so svojím antonymom.

Tento nástroj je dostupný vo webovej verzií (viď. obrázok 3 Webové rozhranie), ale ponúka aj stiahnutie jeho databázových súborov, ktoré sa po splnení licenčných požiadaviek dajú využívať v projektoch.

Obr. 3: Webové rozhranie (Wordnet)

Noun • S_ (n) chair (a seat for one person, with a support for the back) "he put his coat over the back of the chair and sat down" • direct hyponym | full hyponym • part meronym • direct hyponym | inherited hypernym | sister term • S_ (n) seat (furniture that is designed for sitting on) "there were not enough seats for all the guests" • S_ (n) limiture, piece of furniture, article of furniture (furnishings that make a room or other area ready for occupancy) "they had too much furniture for the small apartment", "there was only one piece of furniture in the room" • S_ (n) furnishing ((usually plural) the instrumentalities (furniture and appliances and other movable accessories including curtains and rugs) that make a home (or other area) livable) • S_ (n) instrumentality, instrumentation (an artifact (or system of artifacts) that is instrumental in accomplishing some end) • S_ (n) artifact, artefact (a man-made object taken as a whole) • S_ (n) whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?", "the team is a unit" • S_ (n) biject, physical object (a tangible and visible entity; an entity that can cast a shadow) "it was full of rackets, balls and other objects" • S_ (n) physical entity (an entity that has physical existence) • S_ (n) entity (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

Obr. 4: Nadradenost'slov (Wordnet)

2.3.2 StanfordNLP

Nástroj StanfordNLP² je vyvíjaný na Stanfordskej univerzite. Skladá sa z niekoľkých softvérov, ktoré sa zameriavajú na úlohy spracovania prirodzeného jazyka popísané v sekcií 2.1 Spracovanie prirodzeného jazyka. Sú to softvéry *Stanford Parser*, *Stanford POS Tagger*, *Stanford EnglishTokenizer*, *Stanford Relation Extractor* a mnoho ďalších. *Stanford CoreNLP* zahŕňa viacero z týchto softvérov, a práve tento nástroj budeme používať pri spracovaní učebných textov.

Nástroje StanfordNLP sú implementované v Jave, ale sú dostupné aj v iných programovacích jazykoch ako C#, PHP alebo Python.

Dostupné je aj online webové demo. Na obrázku 5 StanfordNLP online demo vidíme výstupy z nástrojov ponúkaných balíkom StanfordNLP pre jednoduchý vstupný text skladajúci sa z jednej vety "Martin Nemček is a student at Slovak University of Technology in Bratislava.".

²www.nlp.stanford.edu

Obr. 5: StanfordNLP online demo

2.3.3 CambridgeAPI

Cambridge API³ je nástroj vytvorený na Cambridge univerzite. Umožňuje prístup k viacerým rôznym slovníkom. Momentálne tento nástroj ponúka prístup k pätnástim prekladovým slovníkom, ako napríklad anglicko-čínsky, anglicko-ruský, anglicko-arabský, anglicko-japonský a ďalšie. Všetky prekladové slovníky majú primárny jazyk angličtinu. Slovenčinu v súčastnosti nepodporuje.

Spomínaný nástroj funguje na princípe dopytovania pomocou HTTP protokolu. Na obdržanie korektnej odpovede je potrebné mať osobný API kľúč. Ten sa dá získať kontaktovaním správcov CambridgeAPI.

2.3.4 Google Ngram

Google Ngram⁴ je postavený na ďalšom softvéry tohto giganta, Google Books. V knihách, napísaných od roku 1500 až do súčastnosti, vyhľadáva výskyty n-gramov. Podporuje len niektoré jazyky, ako angličtina, francúzština, ruština, čínština. Na vyhľadávanie v knihách využíva optické rozoznávanie textu, pričom dokáže spracovať aj regulárne výrazy, avšak tie môžu byť použité iba ako náhrada celého

³www.dictionary-api.cambridge.org

⁴www.books.google.com/ngrams

slova, ale nie uprostred slova. Slovné spojenie "* Einstein" spracuje, pričom "Albert Einste*n" nie.

N-gram je podľa oxfordského slovníka definovaný ako postupnosť *n* za sebou idúcich slov alebo znakov. *Martin* je n-gram veľkosti jedna, 1-gram alebo unigram. *Martin Nemček* je n-gram veľkosti dva, 2-gram alebo bigram a tak ďalej, pričom *n* môže byť ľubovoľné kladné, celé číslo.

Google Ngram Viewer poskytuje vizualizáciu vyhľadaných dát. Je dostupný vo webovom rozhraní. Na obrázku 6 Google Ngram Viewer vidno vizualizáciu výskytu mien *Albert Einstein,Sherlock Holmes,Frankenstein* v knihách od roku 1800 do roku 2000.

Obr. 6: Google Ngram Viewer

Tento nástroj okrem iného ponúka aj surové (angl. raw) dáta na stiahnutie.

2.3.5 AlchemyAPI

AlchemiAPI⁵ je súbor dvanástich nástrojov, z ktorých sú niektoré zamerané na úlohy spracovania prirodzeného jazyka popísané v sekcií 2.1 Spracovanie prirodzeného jazyka, ako napríklad extrakcia entít, extrakcia kľúčových slov, extrakcia vzťahov, ale aj iné zaujímave funkcie, napríklad extrakcia autora z textu.

⁵www.alchemyapi.com

Na používanie tohto nástroja je potrebné sa zaregistrovať pre obdržanie API kľúču. S týmto kľúčom je tisíc dopytov denne zdarma. Dostupnosť v programovacích jazykoch je široká. Ponúka knižnicu v deviatich najpoužívanejších programovacích jazykoch.

Pre AlchemyAPI je dostupné aj online webové demo, viď obrázok 7 AlchemyAPI online demo, kde je vidno širokú ponuku, obsiahnutú v tomto nástroji.

Obr. 7: AlchemyAPI online demo

Dáta sú vo formáte JSON a okrem spracovania prirodzeného jazyka AlchemyAPI ponúka aj nástroje na extrahovanie obsahu z obrázku alebo rozpoznávanie tvárí na obrázkoch.

2.4 Zhrnutie

Dummy text..

3 Analýza nástrojov na správu paralelných textov

Dostupnosť aplikácií na spracovanie prirodzeného jazyka je veľká a široká. Najväčší podiel tvoria aplikácie zamerané na preklad. My sa zameriame na aplikácie, ktoré umožňujú editovať paralelný text.

Nástroje na správu paralelných textov uľahčujú spracovanie viacerých druhov a verzií textu. Na jednej strane majú zdrojový text alebo súbor a na druhej strane výsledný text alebo súbor. Hlavný dôraz sa kladie práve na transformáciu zo zdrojového textu na cieľový. Transformácia môže mať viacero podôb, ako preklad, zarovnanie alebo zjednodušenie textu, a mnoho ďalších. Texty sú zväčša rozdelené podľa viet, pre zjednodušenie transformácie, pričom vety na jednej úrovni zvyčajne spolu súvisia podľa určitej vlastnosti.

V následujúcich častiach si predstavíme niektorých predstaviteľov tohto druhu nástrojov.

3.1 InterText

InterText⁶ je editor paralelne zarovnaných textov, využívaný na správu viacerých paralelne zarovnaných verzií textu rôznych jazykov na úrovni viet. Táto aplikácia je dostupná vo verzií pre desktop, ale aj pre server.

Podporuje viacero formátovaní textu, či už čistý (angl. plain) text alebo XML a taktiž zobrazuje aj HTML značky. Riadky obsahujú vety oddelené znakom konca riadku a sú očíslované. Umožňuje funkcie ako presúvanie riadkov textu alebo zoskupenie viacerých do jedného, krok vpred a vzad. V spracovávanom texte sa dá vyhľadávať a je možné tento text aj upraviť podľa vlastných potrieb.

InterText nezohľadňuje používateľove úpravy textu počas používania a pri následnom spracovávaní textu sa tak neprispôsobí používateľovi. Okrem toho zjednodušovanie textu v tomto nástroji by bolo pomerne náročné.

Na obrázku 8 Aplikácia InterText je zobrazená aplikácia InterText s testovacím vstupom, na ktorom je vidno väčšinu už spomenutej funkcionality, ako presúvanie a zoskupovanie riadkov, číslovanie, atď.

⁶http://wanthalf.saga.cz/intertext

Obr. 8: Aplikácia InterText

3.2 NOVA Text Aligner

NOVA Text Aligner⁷ je aplikácia na zarovnávanie textu, pričom nevyužíva algoritmy na zarovnávanie textu, ale používateľ si musí sám určiť zarovnanie.

Ako vidno na obrázku 9 Aplikácia NOVA Text Aligner hlavná editovacia časť aplikácie je rozdelené do dvoch častí. Umožňuje do ľavej aj pravej časti načítať rôzny text, v ktorom sa dá veľmi jednoducho vyhľadávať, k čomu napomáha zvýraznenie vyhľadaných slov. Načítaný text je možné premiestňovať a zoskupovať, či už podľa riadkov alebo aj v celých blokoch a nechýba možnosť editovať text. Je možné si túto aplikáciu prispôsobiť. Ponúka možnosti ako zmena typu písma a pod. Finálny spracovaný text sa dá exportovať do viacerých formátov, z ktorých populárne sú formáty elektronických knižiek EPUB a MOBI.

Aplikácia je zameraná hlavne na usporadúvanie textu, nezaznamenáva si používateľove zmeny textu a neprispôsobuje sa podľa toho pri ďalšom použití a funguje iba lokálne. NOVA Text Aligner je dostupná iba v skúšobnej verzií, pre dlhodobé používanie si treba zakúpiť licenciu.

⁷http://www.supernova-soft.com/wpsite/products/text-aligner/

Obr. 9: Aplikácia NOVA Text Aligner⁸

3.3 LF Aligner

Aplikácia LF Aligner⁹ je zameraná na spracovanie textu rôznych jazykov. Ponúka možnosť použiť až 99 jazykov, čo ale znamená 99 vstupných súborov, každý so zvoleným jazykom. Dokáže spracovať rôzne typy vstupných súborov od čistého textu, PDF súborov, cez URL stránok s textom až po správy Európskeho parlamentu, ktoré automaticky stiahne. Výstup môže byť taktiež viacerých druhov, napríklad cez grafické rozhranie LF Aligner alebo vygenerovanie XLS súboru. Na obrázku 10 Aplikácia LF Aligner vidno grafické rozhranie tejto aplikácie, ktoré ponúka mnohé vymoženosti. Samozrejmosťou je možnosť premiestňovať a zoskupovať riadky, doplnenie ďalšieho súboru na spracovávanie, uloženie zmien súboru prepísaním jeho dát a mnohé ďalšie.

⁸http://parallel-text-aligner.en.softonic.com/

⁹www.sourceforge.net/projects/aligner

Obr. 10: Aplikácia LF Aligner

3.4 Google Translate

Za najznámejšieho zástupcu webových nástrojov na spracovanie paralelných textov sa dá pokladať nástroj Google Translate¹⁰. Využíva sa na preklad slov, viet, ale dokáže spracovať aj celé texty. Momentálne podporuje preklad z a do 91 jazykov. Dokáže rozpoznať a preložiť hovorenú reč aj písaný text. Pri preklade jednotlivých slov zobrazuje viacero možných prekladov do druhého jazyka, pričom pri preklade z anglického jazyka ponúka aj ukážky viet, v ktorých sa prekladané slovo môže použiť. Správnu výslovnosť preloženého aj prekladaného slova alebo textu, si používateľ môže vypočuť na krátkej zvukovej ukážke.

Na obrázku 11 Google Translate je zobrazený preklad anglického textu do slovenského. Vidno, že preklad do minoritných jazykov ešte nie je dokonalý.

⁹http://parallel-text-aligner.en.softonic.com/

¹⁰translate.google.com

Obr. 11: Google Translate

Analyzované nástroje nespĺňajú všetky požiadavky na systém schopný spoznámkovať učebný text v takom rozsahu, ktorý by umožňoval používateľovi prispôsobiť si spracovaný text. Systém musí umožňovať editáciu jednotlivých viet výstupného textu podľa vôle používateľa. Tieto úpravy musí zohľadniť pri následnej aplikácií transformácií vstupného textu. Dáta ohľadne spoznámkovávania textu musia byť uložené na externom úložisku, ako napríklad v databáze.

3.5 Zhrnutie

Analyzovali sme aplikácie, ktoré umožňujú spravovať a editovať paralelný text. Za ich pomoci dokážeme zo vstupného textu získať výstupný text. Napríklad pri preklade máme vstupný text množinu viet v anglickom jazyku, ktorú chceme preložiť do slovenského jazyka a výstupný text je preloženú množinu viet. Pri zjednodušovaní textu je na vstupe taktiež množina viet a na výstupe je každá veta zo vstupnej množiny zjednodušená podľa istých pravidiel. Výstupný text vzniká určitou transformáciou vstupného textu, aplikovaním transformácie na každú vetu zdrojového textu.

4 Návrh

4.1 Uchovávanie textov v databázach

Text je špecifický údajový model s variabilnou štruktúrou, ktorý potrebujeme efektívne ukladať v databáze. Musíme použiť vhodnú databázu, ktorá je prispôsobená na ukladanie textov. Databáza musí obsahovať vlastnosti, ktoré umožňujú jednoduché narábanie s dátami s variabilnou štruktúrou a nemajú veľkú spotrebu pamäti. Taktiež je potrebná podpora bezproblémového ukladanie, získavania, vyhľadávania a spracovania textov na úrovni databázy. Pri výbere vhodnej databázy sme prešli viacero alternatív.

4.1.1 Relačné databázy

Relačné databázy pracujú spoľahlivo pri obmedzenom množstve dát [6]. Pri potrebe aplikácie s obrovským množstvom dát sa rozšíriteľnosť (angl. scalability) a schéma stávajú problémom [8]. Tento typ databáz ukladá dáta v tabuľkách zložených z riadov a stĺpcov. Výhodou relačných databáz je možnosť jednoduchého vytvorenia prispôsobeného pohľadu na dáta [7]. Z pohľadu ukladania textu, a celkovo dát s variabilnou štruktúrou, je nevýhoda relačných databáz v ťažko prispôsobiteľnej štruktúre.

4.1.2 Textové databázy

Textové databázy ukladajú dáta vo forme dokumentov, vďaka čomu ponúkajú vysoký výkon, horizontálnu rozšíriteľnosť a podporu pre ukladanie dát s variabilnou štruktúrou [8]. Uložené dokumenty môžu nadobúdať rôzne formáty, ako napríklad JSON, BSON, XML a BLOB, ktoré poskytujú veľkú flexibilnosť pre dáta. Každý záznam v takejto databáze preto môže mať inú štruktúru, napríklad počet alebo typ polí, čo šetrí úložným priestorom, keďže neobsahuje nepotrebné prázdne polia [8]. Dokumenty uľahčujú zmenu štruktúry záznamov jednoduchým pridaním, odstránením alebo zmenou typu poľa. Vďaka svojej štruktúre sú dokumenty ľahko namapovateľné na objekty z objektovo-orientovaných programovacích jazykov a odstraňujú tým potrebu pre použitie objektovo-relačnej mapovacej vrstvy. Dátovy

typ dokument v textových databázach vyhovuje požiadavkám na databázu pre náš systém. Dokáže jednoducho narábať s dátami s variabilnou štruktúrou, bez nároku na prebytočnú pamäť a s dobrou rozšíriteľnosťou.

MongoDB

Pre databázovú vrstvu nášho systému sme si vybrali popredného predstaviteľa textových databáz MongoDB¹¹.Je to dokumentová nerelačná databáza vytvorená v C++ spustená v roku 2009 [8]. Ukladá dáta v dokumentoch vo formáte BSON (Binary JSON), ktorých štruktúra sa môže meniť. Využíva dynamickú štruktúru schém, preto dokáže vytvárať záznamy bez preddefinovanej štruktúry dát, lebo štruktúra sa vytvára za behu, pričom môže byť veľmi jednoducho pozmenená pridaním, odstránením alebo zmenou typu polia dokumentu určujúceho štruktúru. Umožňuje jednoduché ukladanie dát s hierarchickými vzťahmi alebo komplexnejších štruktúr, ako sú napríklad polia, listy alebo vnorené polia. Spomenuté vlastnosti dokumentu databázy MongoDB sú najvhodnejšou voľbou pre prácu s variabilnými dátami nášho systému.

Vlastnosti ako chybová tolerancia, perzistencia a konzistencia dát sú súčasťou MongoDB. Oproti klasickým dokumentovým databázam ponúka aj vymoženosti, ako agregácia, ad hoc dopyty, indexovanie, a pod. Taktiež má svoj vlastný plnohodnotný dopytovací jazyk *mongo query language* [8].

Prvky poskytované databázou MongoDB sú prvky zahrnuté v relačných databázach rozšírené o ďalšiu funkcionalitu. Porovnanie poskytovaných prvkov je v tabuľke 1 Prvky poskytované MongoDB.

¹¹www.mongodb.org

Tabuľka 1: Prvky poskytované MongoDB

	MySQL	MongoDB
Bohatý dátový model	Nie	Áno
Dynamická štruktúra	Nie	Áno
Dátové typy	Áno	Áno
Lokálnosť dát	Nie	Áno
Aktualizovanie polí	Áno	Áno
Ľahké pre programátorov	Nie	Áno
Komplexné transakcie	Áno	Nie
Audit	Áno	Áno
Auto-sharding	Nie	Áno

Bohatý dátový model (angl. Rich Data Model) znamená, že dátový model poskytuje veľa funkcionality. Princípom dynamickej štruktúry (angl. Dynamic Structure) je jednoduchá zmena štruktúru, pričom nemusí byť vôbec zadefinovaná a každý záznam môže mať odlišnú štruktúru. Lokálnosť dát (angl. Data Locality) znamená uchovávanie súvisiacich dát pokope. Aktualizovanie polí umožňuje vykonávať nad poliami operácie, ako sú inkrementácia podľa špecifikovaného množstva, vynásobenie hodnotou, premenovanie, aktualizácia iba ak je hodnota väčšia alebo menšia ako špecifická hodnota a ďalšie. Audit (angl. Auditing) je funkcionalita, ktorá umožňuje administrátorom a používateľom sledovať aktivity systému. Auto-sharding pri náraste dát, aby sa zabránilo poklesu priepustnosti operácií čítania a zapisovania, ukladá dáta automaticky na viacero strojov.

MongoDB má vlastnú konvenciu názvov svojich častí. Tie sa v niektorých prípadoch líšia s názvami relačných databáz. Rozdiely sú zobrazene v tabuľke 2 Porovnanie používaných pojmov [6]. Za zástupcu relačných databáz bola vybraná MySQL databáza.

Tabuľka 2: Porovnanie používaných pojmov [6]

MySQL	MongoDB
Databáza	Databáza
Tabuľka	Kolekcia
Index	Index
Riadok	BSON dokument
Stĺpec	BSON pole (angl. field)
Spojenie	Vnorené dokumenty a prepojenie
Primárny kľúč	Primárny kľúč
Zoskupenie	Agregácia

4.2 Návrh uchovávania textov v databázach

Na uchovávanie dát sme zvolili dokumentovú databázu MongoDB. Ukladané dáta sa dajú rozdeliť do niekoľkých samostatných kolekcií. Sú to:

- rules,
- sentences,
- notes
- structures,
- articles,
- and rules.

Prepojenia medzi jednotlivými kolekciami sú zobrazené na obrázku 12 Databázový model. Nasledujúcich časti opisujú stručne každú kolekciu. Všetky kolekcie obsahujú okrem polí špecifických pre danú kolekciu, aj polia časových značiek označujúcich vytvorenie a aktualizáciu záznamu.

Obr. 12: Databázový model

4.2.1 Kolekcia articles

V kolekcií articles sa ukladajú spracovávané texty.

Kolekcia obsahuje textové pole *text* na uloženie textu v pôvodnom tvare. Model kolekcie *articles* je zobrazený na obrázku 13 Model kolekcie articles.

Pole	Тур
_id	ObjectId
text	String
created_at	DateTime
updated_at	DateTime

Obr. 13: Model kolekcie articles

4.2.2 Kolekcia notes

Kolekcia notes uchováva vytvorené poznámky z viet.

Obsahuje textové pole *text* s hodnotou poznámky a dve referencujúce polia. Jedno sa odkazuje do kolekcie *rules* na pravidlo, ktoré bolo použité na vytvorenie poznámky. Druhé referencuje použité and-pravidlo v kolekcií *and_rules*. Toto pole môže byť prázdne, ak sa and-pravidlo pri vytváraní poznámky nepoužilo. Na obrázku 14 Model kolekcie notes je vyobrazený model kolekcie *notes*.

Pole	Тур
_id	ObjectId
text	String
rule_ref_id	ObjectId
and_rule_ref_id	ObjectId
created_at	DateTime
updated_at	DateTime

Obr. 14: Model kolekcie notes

4.2.3 Kolekcia sentences

V následujúcej kolekcií *sentences* sa ukladajú spracované vety aj s informáciami o článku, pravidlách a poznámke.

Kolekcia sa skladá z textového polia *text* uchovávajúce hodnotu vety a piatich referencujúcich polí *article_ref_id*, *structure_ref_id*, *rule_id*, *rule_ref_id*, *and_rule_ref_id* a *note_id*. *Article_ref_id* odkazuje na článok z kolekcie *articles*, ktorého súčasťou je daná veta. Pole *structure_ref_id* odkazuje do kolekcie *structures*, ktoré reprezentuje štruktúru vety. Nasledujúce polia *rule_ref_id* a *and_rule_ref_id* odkazujú na použité pravidlo a and-pravidlo pri spracovávaní vety, v tomto poradí. Pole *note_ref_id* odkazuje na poznámku z kolekcie *notes*, ktorá bola vytvorená z vety.

Model tejto kolekcie je načrtnutý na obrázku 15 Model kolekcie sentences.

Pole	Тур
_id	ObjectId
text	String
article_ref_id	ObjectId
structure_ref_id	ObjectId
rule_ref_id	ObjectId
and_rule_ref_id	ObjectId
note_ref_id	ObjectId
created_at	DateTime
updated_at	DateTime

Obr. 15: Model kolekcie sentences

4.2.4 Kolekcia structures

V kolekcií *structures* sú uložené štruktúry viet a pravidiel. Štruktúra je zložená hlavne zo závislostí, tokenov, názvoslovných značiek, indexov a iné.

Kolekcia sa skladá z jedného pola *structure_data*. Toto pole je zoznam dokumentov, obsahujúcich vyššie spomenuté údaje. Dokument v tomto zozname obsahuje textové pole *relation_name* s názvom vzťahu závislosti a zoznam dokumentov závislostí *dependencies* s týmto názvom vzťahu. Dokument v zozname *dependencies* sa skladá z polí *governor* a *dependent* typu dokument, celočíselného pola *position* uchovávajúceho pozíciu závislosti vo vete alebo poznámke, *comparison_type*, ktoré je celočíselnou reprezentáciou typu porovnania a poľa *to-ken_type*, ktoré je taktiež celočíselnou reprezentáciou typu tokenu. Dokumenty polí *governor* a *depdendent* obsahujú údaje o prislúchajúcich tokenoch závislosti. V textovom poli *POS* sa ukladá značka slovného druhu, pole *index* uchováva index tokenu vo vete, *ner* je textové pole reprezentujúce názvoslovnú entitu tokenu a v poli *lemma* je textová reprezentácia lemy tokenu.

Celý model kolekcie je zobrazený na obrázku 16 Model kolekcie structures.

Pole	Тур				
_id	ObjectId				
structure_data	Array of Documents				
	Pole	Тур			
	relation_name	String			
	dependencies Array of Docum			nents	
		Pole	Тур		
		governor	Documen	nt	
			Pole	Тур	
			POS	String	
			index	Integer	
			ner	String	
			lemma	String	
		dependent	Documen	nt	
			Pole	Тур	
			POS	String	
			index	Integer	
			ner	String	
			lemma	String	
		position	Integer		
		comparison	Integer		
		_type			
		token_type	Integer		
created_at	DateTime				
updated_at	DateTime				

Obr. 16: Model kolekcie structures

4.2.5 Kolekcia rules

Rules je kolekcia, do ktorej sa ukladajú pravidla na vytvorenie poznámok z viet. Vďaka databázovému modelu na obrázku 12 Databázový model a prepojeniam medzi kolekciami je táto kolekcia minimalistická.

Skladá sa z dvoch polí. Pole *sentence_terminators* je zoznam čísel, ktoré reprezentujú konce viet v poznámke. Referencujúce pole *structure_ref_id* odkazuje do kolekcie *structures* na štruktúru, ktorou sa má prípadná veta spracovať. Model kolekcie *rules* je vyjadrený obrázkom 17 Model kolekcie rules.

Pole *sentence_terminators* zväčša obsahuje jeden záznam. Napríklad pri vete "*The president of the Slovak Republic is andrej Kiska*." a poznámke z tejto vety v

tvare "*President is Kiska*." bude obsahovať jeden záznam: 3. Číslo 3 preto, lebo koniec vety, v tomto prípade bodka, sa nachádza na tretej pozícií spomedzi tokenov vo vete. Číslovanie pozícií začína m nula. V prípade ak veta je súvetie, zložené z viacerých jednoduchých viet, môže pole *sentence_terminators* obsahovať viacero záznamov, ak napríklad chceme z každej jednoduchej vety súvetia získať zjednodušenú vetu a vytvoriť tak zloženú poznámku, skladajúcu sa zo zjednodušených viet.

Pole	Тур
_id	ObjectId
sentence_terminators	Array of Integers
structure_ref_id	ObjectId
created_at	DateTime
updated_at	DateTime

Obr. 17: Model kolekcie rules

4.2.6 Kolekcia and rules

Posledná kolekcia uchováva pravidlá pre spracovanie vety a vytvorenie viacnásobnej poznámky z vety. Táto kolekcia je veľmi podobná kolekcií *rules* a obsahuje rovnaké polia doplnené o ďalšie špecifické pole.

Špecifické pole, o ktoré je kolekcia rozšírená oproti kolekcií *rules* je celočíselné pole *set_position*. Toto pole uchováva pozíciu množiny v viacnásobnej poznámke. Model kolekcie je vyobrazený na obrázku 18 Model kolekcie and rules.

Pole	Тур
_id	ObjectId
sentence_terminators	Array of Integers
set_position	Integer
structure_ref_id	ObjectId
created_at	DateTime
updated_at	DateTime

Obr. 18: Model kolekcie and rules

4.2.7 Zhrnutie

Pri návrhu databázového modelu a kolekcií sme vychádzali z princípu jednoduchých kolekcií so zoskupením súvisiacich dát a oddelenia ich od zvyšku. Vďaka využívaniu viacerých, medzi sebou prepojených, kolekcií sme zabezpečili neduplikovanie dát, jednoduché vyhľadanie napríklad viet ku článku a iné. Okrem toho nám tento model umožňuje ďalšiu funkcionalitu, ako napríklad aplikovanie jedného pravidla na viacero viet so zhodnou štruktúrou. Oddelenie dát do samostatných štruktúr nám uľahčuje aj prípadne neskoršie rozšírenie databázového modelu alebo zmenu konkrétnych štruktúr. Taktiež uľahčuje prípadné klastrovanie databázy, ak by bolo nutné, keďže každá kolekcia by mohla byť na samostatnom serveri.

4.3 Tvorba poznámok

Pri spracovávaní viet potrebujeme extrahovať dôležité a konkrétne informácie, v našom prípade slová, a z extrahovaných informácií vytvoriť poznámku. Poznámka bude zložená výhradne zo slov obsiahnutých vo vete, z ktorej bola vytvorená. Tým zabezpečíme, že poznámka nebude obsahovať irelevantné informácie z hľadiska vety.

Spracovávané vety sa môžu opakovať, a preto je dôležité, aby sa rovnaké a podobné vety spracovali vždy rovnakým spôsobom. Pre tento účel je vhodné si definovať pravidlo (viď. 4.3.1 Pravidlo na spracovanie), ktoré bude určovať, ako

sa má daná veta spracovať. Aplikovaním pravidla na vetu vytvoríme poznámku. Používateľ musí mať možnosť interaktívne upraviť poznámku, a tým pádom aj pravidlo, ktoré bolo použité na vytvorenie danej poznámku, v takom rozsahu, aby sa vytvorená poznámka zmenila podľa vykonaných zmien. Zmeny v pravidle sa musia prejaviť aj pri nasledujúcom aplikovaní pravidla na rovnakú alebo podobnú vetu. Používateľovi to poskytne kontrolou nad spôsobom, akým sa vytvárajú poznámky a bude si ich vedieť personalizovať.

4.3.1 Pravidlo na spracovanie

Pravidlo na spracovanie určuje, ktorá slová sú relevantné a majú byť použité v poznámke. V časti 4.3.2 Určenie relevantných informácií je podrobnejšie opísaný proces určenia relevantných informácií, slov. Okrem určenia relevantnosti slov pravidlo taktiež určuje, na ktorej pozícií sa má konkrétne slovo vo výslednej poznámke nachádzať. Výsledná poznámka sa nemusí skladať iba z jednej vety. Môže pozostávať z ľubovolného počtu viet. Počet viet, z ktorých bude poznámka pozostávať a miesta, na ktorých má byť pôvodná poznámka rozdelená na vety určuje pravidlo.

Skladá sa primárne zo závislostí slov, ktoré sa majú nachádzať v poznámke. Pomocou závislosti vieme jednoznačne identifikovať a extrahovať konkrétne slovo z vety a pridať ho do poznámky. Okrem závislostí obsahuje aj informácie o pozícií závislostí alebo type tokenu, ktorého slovo sa ma následne pridať do poznámky a informácie o tokenoch závislostí. Pre nadradený aj podradený token pravidlo obsahuje dáta o slove korešpondujúcom s daným tokenom. Sú to značka slovného druhu, index slova vo vete, názvoslovná entita a lema tvar.

Pravidlo je aplikovateľné nie len na totožné vety, ale na vety s rovnakou štruktúrou a je nezávislé od obsahovej časti vety.

4.3.2 Určenie relevantných informácií

Určenie relevantnosti informácií hlavne pri učebných textoch a poznámkach je subjektívna vec. Informáciu, ktorú niekto považuje za relevantnú môže byť pre iného irelevantná. Relevantnosť informácií preto určuje používateľ pomocou vytvárania nových a úpravy existujúcich pravidiel cez spracovávanie článkov a viet

a úprave vytvorených poznámok. Tým si používateľ prispôsobuje tvorbu poznámok, aby zodpovedala jeho predstave relevantnosti a celkovo tvorbe poznámok. Na tento účel mu systém ponúka interaktívne a intuitívne rozhranie.

4.4 Použitie závislostí pri tvorbe poznámok

Závislosti majú viacero využití pri tvorbe poznámok. Hlavné z nich sú:

- jednoznačná identifikácia informácie,
- pravidlo závisle iba od štruktúry,
- menší počet potrebných pravidiel.

Závislosť nám zoskupuje informácie o jej tokenoch a vzťahu medzi nimi. Na základe nich vieme, bez potreby iných vstupov, jednoznačne identifikovať konkrétnu informáciu vo vete alebo poznámke.

Pravidlo, ktoré je tvorené prevažne zo závislostí, nie je viazané na konkrétnu vetu, pri spracovávaní ktorej vzniklo. Viaže sa na štruktúru vety. Táto vlastnosť nám umožňuje použiť jedno a to isté pravidlo na spracovanie viacerých viet.

Keby sme vytvárali pravidla iba na základe, napríklad značiek názvoslovných druhov a ukladali by sme si v akom poradí boli značky v pôvodnej veta a v akom poradí v poznámke, potrebovali by sme pre každú obmenu vety nové pravidlo. Keďže je jedno naviazané na štruktúru vety, vieme jedným pravidlom spracovať viacero obmien jednej vety, za podmienky, že sa obmenou nezmenila štruktúra. Aplikovateľnosťou pravidla na viacero viet sa nám redukuje počet všetkých možných potrebných pravidiel.

5 Implementácia

dummy text..

5.1 Manažment dát

Pre vytvorenie poznámky z vety potrebujeme hlavne vetu a pravidlo, ktoré sa na vetu aplikuje. Aby sa vytvorila zodpovedajúca poznámka z vety, je nutné použiť vhodné pravidlo. Ak spracovávame doposiaľ nespracovanú vetu, je potrebné nájsť vhodné pravidlo na základe podobnosti spracovávanej vety so spracovanými vetami. Pri extrakcií informácií z vety dané pravidlom, s cieľom vytvorenia poznámky sa musia vybrať správne informácie. Extrakcia musí fungovať pri udržaní dostatočnej všeobecnosti, aby sa dané pravidlo dalo aplikovať na viacero viet s rovnakou štruktúrou, ale odlišným obsahom.

5.1.1 Vyhľadanie pravidla

Pri spracovávaní vety, pred vytvorením poznámky, aplikovateľné pravidlo musí byť vyhľadané v databáze. Vyhľadá sa v databáze veta, ktorej štruktúra korešponduje so štruktúrou spracovávanej vety. Štruktúry oboch alebo viacerých viet musia obsahovať rovnakú množinu závislostí. To znamená rovnaký počet záznamov a záznamy s rovnakými názvami vzťahov závislostí v *zozname dát štruktúry*.

Podobná alebo zhodná veta je vyhľadaná, ak hlavná podmienka je splnená. Avšak, splnenie tejto podmienky nezaručí vyhľadanie len jednej, najpodobnejšej vety, ale môže vyhľadať viacero viet. V takom prípade sa vypočíta zhoda viet. Po určení zhody sa extrahuje pravidlo vety, s ktorou má spracovávaná veta najväčšiu zhodu.

Výpočet zhody viet

Zhoda viet pozostáva z troch častí:

- štrukturálna zhoda,
- obsahová zhoda,
- hodnotová zhoda.

Štrukturálna zhoda odzrkadľuje percentuálnu zhody dvoch štruktúr. Pri tejto zhode zisťujeme, či štruktúry obsahujú závislosti s nadradenými značkami slovných druhov a ich konkrétny počet. Štrukturálna zhoda znamená, že vety "The president of the Slovak Republic is Andrej Kiska." a "Andrej Kiska is the president of the Slovak Republic.", ale aj "Miloš Zeman is the president of the Czech Republic." majú rovnakú štruktúru, bez ohľadu na hodnoty a pozície slov vo vete, pokiaľ obsahujú také iste závislosti s rovnakými nadradenými značkami slovných druhov. Definícia nadradenej značky slovného druhu je v časti Nadradená značka slovného druhu na strane 35. Určenie štrukturálnej zhody pozostáva z niekoľkých krokov. Najskôr sa separátne počíta zhoda nadradených značiek slovných druhov nadradeného a podradeného tokenu. Týmito krokmi sa určí, či veta obsahuje ľubovolnú závislosť s rovnakou nadradenou značkou slovného druhu na ľubovolnom tokene. V nasledujúcom kroku sa určí úplná zhoda závislosti s nadradenými značkami slovných druhov, to znamená zistenie, či veta obsahuje ľubovoľnú závislosť s konkrétnymi značkami slovných druhov na nadradenom a zároveň podradenom tokene. V poslednom kroku sa zisťuje zhoda počtu závislostí s rovnakými nadradenými značkami slovných druhov u nadradeného a podradeného tokenu.

Obsahová zhoda zodpovedá percentuálnej zhode obsahu dvoch viet. Kontrolujú sa indexy slov, konkrétne značky slovných druhov a názvoslovné entity. Pri obsahovej zhode majú vety "*The president of the Slovak Republic is Andrej Kiska*." a "*The president of the Czech Republic is Miloš Zeman*." obsahovú zhodu, bez ohľadu na konkrétne slova na pozíciach vo vete, ak obsahujú rovnaké značky slovných druhov a reprezentujú ich zhodné názvoslovné entity. Výpočet obsahovej zhody sa skladá z viacerých krokov. Začína sa výpočtom zhôd značiek slovných druhov podradeného a nadradeného tokenu. Zhody indexov nadradeného a podradeného tokenu su taktiež vypočítané separátne. Tak isto sa vypočítajú zhody aj názvoslovných entít. Tieto prvé kroky určia, či veta obsahuje ľubovolnú závislosť s rovnakou značkou slovného druho alebo indexom a ľubovoľnú závislosť s rovnakou názvoslovnou entitou. V nasledujúcom kroku je určená polovičná zhoda závislostí. Polovičná zhoda závislosti je zhoda značky slovného druhu a indexu nadradeného alebo podradeného tokenu. Polovičná zhoda sa vypočíta rovnako aj pre názvoslovné entity. Nakoniec, v poslednom kroku, počítame počet úplne

zhodných závislostí. Úplná zhoda závislosti je zhoda značky slovného druhu a indexu nadradeného, a zároveň podradeného tokenu. Tak isto sa vypočíta úplná zhoda závislostí aj pre názvoslovné entity.

Posledná časť zhody, hodnotová zhoda, reprezentuje úplnú zhodu dvoch viet. Veta má hodnotovú zhodu len s totožnou vetou.

Každý krok, pri výpočte všetkých časti zhody, má priradené ohodnotenie. Ak je podmienka v kroku vyhodnotená ako správna, ohodnotenie kroku je pripočítané do finálnej hodnoty. Finálna zhoda je percentuálne ohodnotenie zhody. Ohodnotenie krokov odzrkadľuje dôležitosť daného kroku vo výpočte presnej zhody, pričom závisí od počtu závislostí a krokov, tak že finálna zhoda nemôže presiahnuť hodnotu 100%. Pseudokód 1 Výpočet zhody viet zobrazuje algoritmus výpočtu zhody, konkrétny príklad je zobrazený na obrázku 19 Príklad určenia zhody viet

Algoritmus 1 Výpočet zhody viet

1: procedure VYPOCETZHODYVIET(spracovávanáVeta, zavislostiPorovnávanejVety)
2: vypočítaj ohodnotenia krokov
3: for all závislosti porovnávanej vety do
4: for all závislosti spracovávanej vety do
5: for all porovnania do
6: if aplikujPorovnanie(spracovávanáVeta, porovnanie, závislosż) then
7: do zhody na type porovnania pripočítaj ohodnotenie kroku
return zhoda

Obr. 19: Príklad určenia zhody viet

Predpokladajme situáciu z obrázka 19 Príklad určenia zhody viet. V databáze máme uloženú spracovanú vetu *a* aj s pravidlom pre túto vetu. Spracovávame vetu *b*. Na časti *a1* obrázka 19 Príklad určenia zhody viet sú znázornené závislostí a na časti *a2* názvoslovné entity vety *a*. Na časti *b1* sú znázornené závislostí a na časti *b2* názvoslovné entity vety *b*. V tejto situácií potrebujeme vypočítať zhodu medzi vetami *a* a *b*.

Pri štrukturálnej časti zhody sa prechádza cez všetky závislosti vety *a*. Prvá závislosť je závislosť so vzťahom *DET* a nadradeným tokenom s nadradenou značkou slovného druhu *NN* a podradeným tokenom s nadradenou značkou slovného druhu *DT*. V prom kroku sa pozrie, či veta *b* obsahuje ľubovoľnú závislosť s podradeným tokenom s nadradenou značkou slovného druhu *DT*. V ďalšom kroku, sa zistí, či veta *b* obsahuje ľubovoľnú závislosť s nadradeným tokenom s nadradenou značkou sloveného druhu *NN*. Môže to byť aj iná závislosť, ako tá z prvého kroku. Pokračuje sa zistením úplnej zhody závislosti. Určí sa , či veta **b** obsahuje ľubovoľnú závislosť s podradeným tokenom s nadradenou značkou slovného druhu práve *DT* a zároveň s nadradeným tokenom s nadradenou značkou slovného druhu *NN*. Takto sa iteruje cez všetky závislosti vety *a*. Na záver sa určí zhoda počtu závislostí

s rovnakou štruktúrou. Napríklad veta *a* obsahuje práve dve závislosti, ktoré majú na podradenom tokene nadradenú značku slového druhu *DT* a na nadradenom tokene nadradenú značku slovného druhu *NN*. Zistí sa, či aj veta *b* obsahuje práve dve takéto závislosti.

Prvá závislosť vo vete b je so vzťahom det, nadradeným tokenom so značkou slovného druhu NN a indexom 1 a podradeným tokenom so značkou slovného druhu DT a indexom 0. Token slova Slovak má názvoslovnú entity typu LOCA-TION - lokácia. Ak slovo nemá vyobrazený typ názvoslovnej entity, znamená to, že má názvoslovnú entity typu OTHER - ostatné. V prvok kroku pri určovaní obsahovej časti zhody zisťujeme, či veta b obsahuje závislosť so vzťahom det a tokenmi so značkou slovného druhu NN alebo DT a indexmi rovnými 0 alebo 1. Toto je separátny výpočet značiek slovných druhov a indexov. V tomto isto kroku sa tiež pozrie, či veta b obsahuje ľubovoľnú závislosť s podradeným tokenon s názvoslovnou entitou typu ostatné (názvoslovná entita tokenu THE vo vete a) a ľubovoľnú závislosť s nadradeným tokenom s názvoslovnou entitou typu ostatné (názvoslovná entita tokenu *president* vo vete a). V nasledujúcom kroku zisťujeme, či veta b obsahuje závislosť so vzťahom det a nadradeným alebo podradeným tokenom so značkou slovného druhu NN a indexom 1 alebo značkou slovného druhu DT a indexom 0. Toto je polovičná zhoda. V poslednom kroku hľadáme vo vete b závislosť so vzťahom det a nadradeným tokenom práve so značkou slovného druhu NN a indexom 1 a zároveň podradeným tokenom práve so značkou slovného druhu DT a indexom 0. Zároveň v tomto kroku sa zisťuje, či veta b obsahuje závislosť s podradeným tokenom s názvoslovnou entitou typu ostatné a zároveň s nadradeným tokenom s názvoslovnou entitou typy *ostatné*. Iterácia pokračuje s nasledujúcou závislosťou, pokým sa nevyhodnotia všetky.

Pri určení hodnotovej časti zhody sa porovnajú texty "The president of the Slovak Republic is Andrej Kiska." a "The president of the Czech Republic is Miloš Zeman." a určí sa, či su zhodné.

Aplikovaním určenia zhody viet medzi vetami a a b zistíme, že veta b má štrukturálnu časť zhody s vetou a 100%. Tak isto má obsahovú časť zhody rovnú

100%. Hodnotová časť zhody je 0%.

Nadradená značka slovného druhu

Pod nadradenou značkou slovného druhu sa chápe značka slovného druhu zoskupujúca množinu značiek slovných druhov, do ktorej značka slovného druhu patrí.

Napríklad značka slovného druhu VBD (Verb, past tense - sloveso v minulom čase) patrí medzi skupinu značiek slovných druhov slovies {*VB*, *VBD*, *VBG*, *VBN*, *VBP*, *VBZ*}. Z toho vyplýva, že nadradená značka slovného druhu *VBD* je VB (Verb - sloveso).

5.1.2 Aplikovanie pravidla

Procesom vyhľadania pravidla (viď. 5.1.1 Vyhľadanie pravidla) sme získali pravidlo na spracovanie vety. Aplikáciou pravidla na vetu vytvoríme poznámku.

Proces aplikovania pravidla na vetu s cieľom vytvorenia poznámky má viacero krokov. Pre všetky závislosti zo *zoznamu dát štruktúry* pravidla, príslušná závislosť je vyhľadaná v spracovávanej vete. Pri vyhľadávaní príslušnej závislosti sa závislosti neporovnávajú, okrem iného, na základe značiek slovných druhov svojich tokenov, ale podľa nadradených značiek slovných druhov (viď. Nadradená značka slovného druhu na strane 35) svojich tokenov. Tento spôsob vyhľadávania nám umožňuje [BLA BLA, blizie opisane v BLA BLA]. Avšak, môže to spôsobiť vyhľadanie viac ako jednej príslušnej závislosti. Preto musí byť vypočítaná zhoda závislostí (viď. Výpočet zhody závislostí na strane 37). Po vypočítaní zhody závislostí a získanie závislosti s najväčšou zhodou, slovo korešpondujúce s tokenom, ktorý sa ma z danej závislosti vybrať, sa pridá do poznámky na pozíciu pozície závislosti. Po spracovaní všetkých závislostí, posledné minoritné úpravy sú vykonané nad poznámkou, ako rozdelenie na viacero viet, ak tak určovalo pravidlo, kapitalizácia prvých písmen viet poznámky a iné. Pseudokód aplikovania pravidla na vetu s cieľom vytvoriť poznámku je zobrazený na algoritme 2.

Pre vetu "*The president of the Slovak republic is Andrej Kiska*." nám nástroj Stanford CoreNLP poskytne závislostí vyobrazené na obrázku 20 Zásivlostí jednoduchej vety. Ak na túto vetu aplikujeme pravidlo so štruktúrou v tvare zobrazenej

Algoritmus 2 Aplikovanie pravidla

```
1: procedure APPLYRULE(sentence, rule)
2:
      note \leftarrow \text{new Note}
3:
      for all ruleDependencies do
          dependency \leftarrow findDependency(sentence, ruleDependency)
4:
          if isFound(dependency) then
5:
              add(note, getDependent(dependency))
6:
              if isNominalSubject(relation(dependency)) then
7:
                 add(note, getGovernor(dependency))
8:
      splitToSentences(note, sentencesEnds(rule))
9:
       return note
```

na obrázku 21 Príklad štruktúry pravidla, výsledná poznámka bude "*President is Kiska*.".

Aplikovanie pravidla prebieha nasledovným spôsobom. Prechádzajú sa všetky závislosti v štruktúre pravidla. Prvá závislosť v štruktúre pravidla je závislosť so vzťahom *nsubj* na pozícií jedna a podradeným korešpondujúcim tokenom. Má podradený token so značkou slovného druhu *NN*, typom názvoslovnej entity *OTHER - ostatné*, lemou *President* a indexom dva. Nadradený token má značku slovného druhu *NNP*, názvoslovnú entitu *PERSON - osoba*, lemu *Kiska* a index deväť. Takáto závislosť sa vyhľadá v štruktúre vety medzi závislosťami na obrázku 20 Zásivlostí jednoduchej vety. Ak pre danú závislosť vyhovuje viacero závislostí, pomocou výpočtu zhody závislostí vyberieme tú s najväčšou zhodou. V tomto prípade vidíme, že vyhovujúca závislosť je len jedna a to prvá závislosť *nsubj* medzi slovom na druhej pozícií *president* a posledným slovom, na deviatej pozícií *Kiska*. Z tejto závislosti sa zoberie podradený token, keďže tak určuje pravidlo v stĺpci *typ tokenu*. Slovo *president* sa pridá do poznámky na pozíciu jedna. Rovnakým spôsobom sa prechádzajú a spracujú všetky závislosti v štruktúre pravidla a podľa nich sa extrahuje slovo z vety a pridá do poznámky.

Obr. 20: Zásivlostí jednoduchej vety

Konce viet	Závislostí								
3	Vzťah	Pozícia	Porovnanie	Typ tokenu	Tokeny				
	nsubj	1	-	podradený	Тур	POS	NER	Lemma	Index
					nadradený	NNP	PERSON	Kiska	9
					podradený	NN	OTHER	President	2
	nsubj	8	-	nadradený	nadradený	NNP	PERSON	Kiska	9
					podradený	NN	OTHER	President	2
	сор	6	-	podradený	nadradený	NNP	PERSON	Kiska	9
					podradený	VBZ	OTHER	be	7

Obr. 21: Príklad štruktúry pravidla

Výpočet zhody závislostí

Princíp výpočtu zhody závislostí je veľmi podobný s výpočtom zhody viet zo sekcie 5.1.1 Vyhľadanie pravidla. Porovnávajú sa vždy nadradené aj podradené tokeny. Porovnanie má niekoľko krokov. Začína sa s porovnaním značiek slovných druhov. Pokračuje sa názvoslovnou entitou, indexom, lemou a nakoniec sa porovnáva vzdialenosť pozícií tokenov vo vetách. Každý krok je príslušne ohodnotený a ak porovnanie bolo úspešné, ohodnotenie sa pripočíta k finálnej hodnote reprezentujúcej percentuálnej zhody závislostí.

5.1.3 Vytvorenie pravidla

Ak nám proces vyhľadania pravidla nevyhľadal žiadne pravidlo, znamená to, že sme doposiaľ nespracovávali takú istú alebo podobnú vetu. V tomto prípade sú použité statické pravidlá na spracovanie vety. Výstupom bude poznámka.

Zo závislostí pôvodnej vety a informácií o ich tokenoch sa vytvorí záznam o štruktúre pôvodnej vety. Tak isto sa vytvorí aj záznam o štruktúre poznámky. Z poznámky sa vytvorí záznam o novej poznámke a následne sa z nej vytvorí zoznam

koncov viet. Tento zoznam spolu so štruktúrou poznámky vytvorí záznam nového pravidla. Z pôvodnej vety sa vytvorí záznam o vete a prepojí sa so štruktúrou pôvodnej vety, článkom, ktorý obsahoval danú vetu a pravidlo, pravidlom, ktoré bolo vytvorené a použité a s poznámkou, ktorá vznikla z vety. Týmto vznikne nové pravidlo na spracovanie takej istej alebo podobnej vety ako sme práve spracovali.

6 Výsledky

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

6.1 Podčasť

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Typi non habent claritatem insitam; est usus legentis in iis qui facit eorum claritatem. Investigationes demonstraverunt lectores legere me lius quod ii legunt saepius. Claritas est etiam processus dynamicus, qui sequitur mutationem consuetudium lectorum. Mirum est notare quam littera gothica, quam nunc putamus parum claram, anteposuerit litterarum formas humanitatis per seacula quarta decima et quinta decima. Eodem modo typi, qui nunc nobis videntur parum clari, fiant sollemnes in futurum.

7 Záver

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi sit amet arcu. Fusce pharetra dapibus elit. Duis malesuada. Proin at elit vitae quam cursus tristique. Quisque fermentum. Praesent dictum. Nullam vehicula. Nunc pharetra dolor ut velit. Sed pulvinar, est sed congue tempor, nibh arcu cursus enim, quis consequat magna lacus sed pede. In sagittis. Etiam volutpat, velit id tincidunt egestas, augue ligula auctor eros, sit amet viverra sapien tortor at odio. In diam libero, fringilla ut, adipiscing condimentum, ultricies at, dui. Phasellus vitae risus.

Pellentesque vulputate ante ut diam. Sed adipiscing malesuada odio. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nam a leo. Praesent velit. Aenean vehicula accumsan quam. Nulla dolor lorem, imperdiet a, ullamcorper hendrerit, ultrices at, urna. Integer placerat ligula id purus. Sed id nisl. Pellentesque tincidunt neque in lacus. In non quam et felis suscipit viverra.

Literatúra

- [1] James F. Allen. Natural language processing. In *Encyclopedia of Computer Science*, pages 1218–1222. John Wiley and Sons Ltd., Chichester, UK, 2003.
- [2] Akshar Bharati and Vineet Chaitanya. *Natural language processing: A Paninian perspective*. Prentice Hall of India, New Delhi, 2004.
- [3] Volha Bryl, Claudio Giuliano, Luciano Serafini, and Katerina Tymoshenko. Supporting natural language processing with background knowledge: Coreference resolution case. In 9th International Semantic Web Conference (ISWC2010), November 2010.
- [4] Marie catherine De Marneffe and Christopher D. Manning. Stanford typed dependencies manual, 2008.
- [5] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch. *Journal of Machine Learning Research*, 12:2493–2537, 2011.
- [6] C. Gyorodi, R. Gyorodi, G. Pecherle, and A. Olah. A comparative study: Mongodb vs. mysql. In *Engineering of Modern Electric Systems (EMES)*, 2015 13th International Conference on, pages 1–6, June 2015.
- [7] David Maier. *The Theory of Relational Databases*. Computer Science Press, 1983.
- [8] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Article: Type of nosql databases and its comparison with relational databases. *International Journal of Applied Information Systems*, 5(4):16–19, March 2013. Published by Foundation of Computer Science, New York, USA.
- [9] Preeti and BrahmaleenKaurSidhu. Natural language processing. Int.J.Computer Technology & Applications, 2013.

A Zoznam vzťahov závislostí

V nasledujúcej tabuľke sú zobrazené skratky vzťahov závislostí slov vo vete ako sa používajú v programe s celým názvom, vysvetlením, príkladom vety a použitím vzhľadom na príkladovú vetu.

Skratka	Názov	Vysvetlenie	Príklad	Použitie
nsubj	Nominal subject	Menná fráza, ktorá je syntaktickým subjektom klauzuly.	Clinton defeated Dole.	nsubj(Clinton, defeated)
nsubjpass	Nominal subject passive	Menná fráza v pasívnom tvare, ktorá je syntaktickým subjektom klauzuly.	Dole was defeated by Clinton.	nsubjpass(Dole, defeated)
dobj	Direct object	Sloveso v mennej fráze označujúce entitu, nad ktorou sa koná akcia.	She gave me a raise.	dobj(gave, raise)
nummod	Numeric modifier	Číselný modifikátor podstatného mena.	Sam spent forty dollars.	nummod(forty, dollars)
nmod	Nominal modifier	Podstatné meno alebo menná fráza služiaca ako doplnok.	The Chair's office.	nmod(Chair, office)
amod	Adjectival modifier	Prídavné meno ako modifikátor podstatného mena.	Sam eats red meat.	amod(red, meat)
neg	Negation modifier	Negácia.	Bill is not a scientist	neg(not, scientist)
compound	Compound	Zloženie slov, ktoré spolu majú význam.	I have four thousand sheep.	compound(four, thousand)
aux	Auxiliary	Vedľajšie sloveso klauzuly.	Regan has died.	aux(has, died)
сор	Copula	Vzťah medzi sponovým slovesom (to be) a jeho doplnkom.	Bill is honest.	cop(is, honest)
conj	Conjuct	Spojenie rovnocenných slov.	Bill is big and honest.	conj(big, honest)
СС	Coordinating conjuction	Vzťah medzi spojkou a slovom, patricim k nej.	Bill is big and honest.	cc(big, and)
dep	Unspecified dependency	Nešpecifikovaná závislost.		
root	Root	Koreň vety. V skutočnosti veta žiadne také slovo neobsahuje.	{ROOT} I love French fries.	root(ROOT, love)

Obr. 22: Zoznam závislostí

B Legenda diagramov kolekcií

V priloženej tabuľke je legenda pre diagramy zobrazujúce štruktúru dát ukladaných v kolekciách v databáze.

Pole	Popis
_id	Generovaná identifikačná hodnota záznamu.
text	Spracovaný text alebo článok.
texts	Odkazy do kolekcie texts.
originalSentence	Znenie pôvodnej vety pred spracovaním.
note	Znenie novej vety po spracovaní. Zjednodušená veta – poznámka.
sentences	Odkazy do kolekcie sentences.
sentenceEnds	Pozície koncov viet v spracovávanej vete alebo súvetí.
originalDependencies	Štruktúra závislosti pôvodnej vety.
noteDependencies	Štruktúra závislosti zjednodušenej vety – poznámky.
dependencyName	Názov závislosti.
dependencies	Zoznam závislosti.
governor	Nadradený token.
dependent	Podradený token.
position	Pozícia závislosti v zozname všetkých závislosti vety.
POS	Značka slovného druhu
index	Index slova vety prislúchajuceho tokenu.

Obr. 23: Legenda diagramov kolekcií