MATH 531 HOMEWORK 7

BRADEN HOAGLAND

Exercise 7. Consider a compact set $B \subset \mathbb{R}^n$ and let $f: B \to \mathbb{R}^m$ be continuous and one-to-one. Then prove that $f^{-1}: f(B) \to B$ is continuous. Show be example that this may fail if B is connected but not compact.

Let $U \subset B$ be open in B, then we must show that $(f^{-1})^{-1}(U) = f(U)$ is open. Since U is open in B, B - U is closed in B. A closed subset of a compact set is itself compact, so B - U is compact. Now since f is continuous, f(B - U) is also compact and, subsequently, closed. Then its complement f(B) - f(B - U) = f(U) is open. Thus f^{-1} is continuous.

As a counterexample when B is connected but not compact, take $f:[0,2\pi)\to\mathbb{R}$ defined by $f(t)=(\sin x,\cos x)$. This maps the non-open interval $[0,2\pi)$ to the entire unit circle, which is compact since it is closed and bounded in \mathbb{R}^2 ; however, since the unit circle is compact, any continuous map with the unit circle as its domain would have a compact image. Since $[0,2\pi)$ is not closed in \mathbb{R} , it is not compact, so the inverse map of f cannot be continuous.

Exercise 13. Let f be a bounded continuous function $f : \mathbb{R}^n \to \mathbb{R}$. Prove that f(U) is open for all open sets $U \subset \mathbb{R}^n$ if and only if for all nonempty open sets $V \subset \mathbb{R}^n$,

$$\inf_{x \in V} f(x) < f(y) < \sup_{x \in V} f(x)$$

for all $y \in V$.

Forward: Assume that for all open $U \subset \mathbb{R}^n$, the set f(U) is open in \mathbb{R} . Let $V \subset \mathbb{R}^n$ be nonempty and open in V, then by assumption, f(V) is open in \mathbb{R} . Let $y \in V$, then because f(V) is open, there is $\varepsilon > 0$ such that $(f(y) - \varepsilon, f(y) + \varepsilon) \subset f(V)$. Thus there is $y_1 \in V$ such that $f(y_1) \in (f(y) - \varepsilon, f(y))$, so

$$\inf_{x \in V} f(x) \le f(y_1) < f(y).$$

Similarly, there is a point $y_2 \in V$ such that

$$f(y) < f(y_2) \le \sup_{x \in V} f(x).$$

Chaining these inequalities together gives the desired result.

Backward: Let V be an open set in \mathbb{R}^n , then by assumption $\inf_{x \in V} f(x) < f(y) < \sup_{x \in V} f(x)$ for arbitrary $y \in V$. To avoid the case where either the infimum or supremum is unbounded, we can extend our assumption to say that there exist $y_1, y_2 \in V$ such that

$$\inf_{x} f(x) \le f(y_1) < f(y) < f(y_2) \le \sup_{x} f(x).$$

Date: October 14, 2020.

There are two cases we must consider: when V is connected and when V is disconnected.

When V is connected, f(V) is also connected since f is continuous. Then the open ball $D(y, \min\{d(y, y_1), d(y, y_2)\})$ clearly lies in f(V).

When V is disconnected, it must be made up of connected open components. Each of these components falls into the previous category, so f(V) is the union of open sets and is thus itself open.

Exercise 14. (1) Find a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{x\to 0}\lim_{y\to 0}f(x,y)\ \ and\ \ \lim_{y\to 0}\lim_{x\to 0}f(x,y)$$

exist but are not equal.

- (2) Find a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that the two limits in (a) exist and are equal but f is not continuous.
- (3) Find a function $f: \mathbb{R}^2 \to \mathbb{R}$ that is continuous on every line through the origin but is not continuous.

(1) Let $f(x,y) = x^y$, then

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{x \to 0} 1 = 1,$$

but

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{y \to 0} 0 = 0,$$

so we have found a satisfactory function.

(2) Let $f(x,y) = xy/(x^2 + y^2)$, with f(0,0) = 0. The two limits in question are

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{x \to 0} 0 = 0$$

and

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{y \to 0} 0 = 0$$

so the limits exist and are equal. We claim, however, that f is not continuous. Let $z \neq 0$, then f(z,z) = 1/2. Then the limit of f(z,z) as z approaches 0 along the line y = x is 1/2, not 0. Thus f is not continuous.

(3) A line through the origin can be either vertical (the y-axis) or of the form y = mx. In the former case, restrict f to the y-axis gives

$$f(0,y) = \frac{0}{u^2} = 0,$$

which is constant everywhere and, subsequently, continuous. In the latter case, restricting f to a line y=mx gives

$$f(x, mx) = \frac{mx^2}{x^2 + m^2x^2} = \frac{m}{m^2 + 1},$$

which is also constant and, subsequently, continuous. Thus for any line through the origin, f is continuous. We have already shown, though, that f is not continuous.

Exercise 23. Let X be a compact metric space and $f: X \to X$ an isometry; that is, d(f(x), f(y)) = d(x, y) for all $x, y \in X$. Show that f is a bijection.

First we show that f is injective. Let $x, y \in X$ such that $x \neq y$, then d(x, y) > 0. By assumption, d(f(x), f(y)) = d(x, y) > 0, so $f(x) \neq f(y)$.

Now suppose that f is not surjective, i.e. X - f(X) is nonempty. Let $x_0 \in X - f(X)$. Since X is compact, f(X) is closed and X - f(X) is open. Thus there exists $\varepsilon > 0$ such that $D(x_0, \varepsilon) \in X - f(X)$. This implies that any element of f(X) is at least ε away from x_0 .

Now let $x_1 = f(x_0)$, $x_2 = f(x_1)$, and continue inductively to construct a sequence $\{x_n\}_{n=0}^{\infty} \subset X$. For x_k in this sequence and l > 0, the distance between points x_k and x_{k+l} is

$$d(x_k, x_{k+l}) = d(f(x_{k-1}), f(x_{k+l-1}))$$

$$= d(x_{k-1}, x_{k+l-1})$$

$$\vdots$$

$$= d(x_0, x_l).$$

Since $x_l = f(x_{l-1}) \in f(X)$, it is at least ε away from x_0 . Thus $d(x_k, x_{k+l}) \ge \varepsilon$ for any k with l > 0. Since every point in our sequence $\{x_n\}$ is at least ε apart, we cannot find any convergent subsequence. This is a contradiction, as X being compact implies that X is sequentially compact. Thus our original assumption must have been false, so X - f(X) is empty. Equivalently, f(X) is surjective.

Exercise 24. Let $f: A \subset M \to N$.

- (1) Prove that f is uniformly continuous on A if and only if for every pair of sequences x_k, y_k of A such that $d(x_k, y_k) \to 0$, we have $\rho(f(x_k), f(y_k)) \to 0$.
- (2) Let f be uniformly continuous, and let x_k be a Cauchy sequence of A. Show that $f(x_k)$ is a Cauchy sequence.
- (3) Let f be uniformly continuous and N be complete. Show that f has a unique extension to a continuous function on \overline{A} .
- (1) **Forward:** Assume f is uniformly continuous on A. Let $\{x_k\}$, $\{y_k\}$ be sequences such that $d(x_k, y_k) \to 0$. Fix $\varepsilon > 0$, then there is a $\delta > 0$ such that $\rho(f(x_k), f(y_k)) < \varepsilon$ when $d(x_k, y_k) < \delta$. Since $d(x_k, y_k) \to 0$, there exists N such that $d(x_k, y_k) < \delta$ when k > N. Thus for k > N, $\rho(f(x_k), f(y_k)) < \varepsilon$, so $\rho(f(x_k), f(y_k)) \to 0$.

Backward: We will prove this by contrapositive. Assume f is not uniformly continuous, then there exists $\varepsilon > 0$ such that for all $\delta > 0$, there are x_k and y_k such that $d(x_k, y_k) < \delta$ but $\rho(f(x_k), f(y_k)) \ge \varepsilon$. In particular such x_k and y_k exist for $\delta = 1/n$ for all $n \in \mathbb{N}$. We can take these x_k and y_k to form a sequence that, by construction, satisfies $d(x_k, y_k) \to 0$. However, also by construction, $\rho(f(x_k), f(y_k))$ does not converge to 0. This shows the contrapositive, so the original statement must also be true.

(2) Since f is uniformly continuous, for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all x, y satisfying $d(x, y) < \delta$, we have $\rho(f(x), f(y)) < \varepsilon$. Since $\{x_k\}$ is a Cauchy sequence,

there exists N such that $d(x_m, x_n) < \delta$ when m, n > N. Putting these together, when k, l > N, we have $\rho(f(x_n), (x_m)) < \varepsilon$. Thus $\{f(x_k)\}$ is a Cauchy sequence.

(3) Let $a \in \overline{A}$, then $a_n \to a$ for some sequence $\{a_n\} \subset A$. Since this sequence converges, it is Cauchy. Then by part (2), $\{f(x_k)\}$ is also Cauchy. Since N is complete, this implies that $\{f(x_k)\}$ converges to some point which we define to be f(a).

We claim that this extension is continuous. Let $a \in \overline{A}$. If $a \in A$, then we know by assumption that f is continuous already, so consider the case when $a \notin A$. In this case, we have by definition $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(a)$, so f is continuous on \overline{A} .

We now show that this extension of f is unique. Let $\{a_n\}$ and $\{b_n\}$ both converge to $a \in \overline{A}$. Then it is clear that $d(a_n, b_n) \to 0$. By part (1), this implies $\rho(f(a_n), f(b_n)) \to 0$ as well, so $\{f(a_n)\}$ and $\{f(b_n)\}$ both converge to the same element of \overline{A} , namely f(a). This shows that f(a) is independent of the convergent sequence chosen, so our extension of f is unique.

Exercise 25. Let $f:(0,1) \to \mathbb{R}$ be differentiable and let f'(x) be bounded. Show that $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 1^-} f(x)$ exist. Do this both directly and by applying exercise 24c. Give a counterexample if f'(x) is not bounded.

Direct proof: We start by showing the existence of $\lim_{x\to 0^+} f(x)$. Since f' is bounded, $|f'(x)| \leq M$ for all $x \in (0,1)$. Let $x \in (0,1/n)$, then by the mean value theorem, for some $c \in (x,1/n)$ we have

$$|f(x) - f(1/n)| = |f'(c)(x - 1/n)|$$

 $\leq M|x - 1/n|$
 $< M/n.$

Since $1/m \in (0, 1/n)$ when m > n, we apply this inequality to show

$$|f(1/m) - f(1/n)| < M/n.$$

For any $\varepsilon > 0$, when $m > n > M/\varepsilon$, we have $|f(1/m) - f(1/n)| < \varepsilon$. Thus $\{f(1/n)\}_{n=1}^{\infty}$ is a Cauchy sequence. Since $\mathbb R$ is complete, any Cauchy sequence converges, so $f(1/n) \to L$ for some $L \in \mathbb R$ as $n \to \infty$. Since 1/n converges to 0 from the right as $n \to \infty$, this is equivalent to saying that $f(x) \to L$ as $x \to 0^+$. Thus $\lim_{x \to 0^+} f(x)$ exists.

Using a similar argument and the sequence 1 - (1/n) instead of 1/n, we can show that $\lim_{x\to 1^-} f(x)$ exists.

Using (24c): Since f is differentiable on (0,1) and f' is bounded, say $|f'| \leq M$, by the Mean Value Theorem we have $|f(y) - f(x)| \leq M|y - x|$ for all $x, y \in (0,1)$. Fix $\varepsilon > 0$, then set $\delta = \varepsilon/M$. If $|x - y| < \delta$, then $|f(y) - f(x)| \leq M|y - x| < \varepsilon$. Since δ was independent of x and y, this shows that f is uniformly continuous on (0,1).

Since f is uniformly continuous and \mathbb{R} is complete, we can apply (24c) to show that f has a unique continuous extension to $\overline{(a,b)} = [a,b]$. Since a function that is continuous on a set is continuous at each of the points in that set, we know that $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 1^-} f(x)$ exist.

Counterexample: Now we show a counterexample when f' is not bounded. Let $f:(0,1) \to \mathbb{R}$ be defined by f(x) = 1/x, which has unbounded derivative $f'(x) = -1/x^2$. Assume $\lim_{x\to 0^+} f(x) = L$, then for any sequence $\{x_n\}$ satisfying $x_n \to 0$ and $x_n \neq 0$, the sequence $\{f(x_n)\} = \{1/x_n\}$ converges to L. If we let $x_n = 1/n$, then we have $f(x_n) = n$, so

the sequence $\{f(x_n)\}$ is unbounded and thus cannot converge. Then by contradiction, no such L exists.

Exercise 26. Let $f:(a,b] \to \mathbb{R}$ be continuous such that f'(x) exists on (a,b) and the limit $\lim_{x\to a^+} f'(x)$ exists. Prove that f is uniformly continuous.

Since $\lim_{x\to a^+} f'(x) = L$ for some L, we have that for $\varepsilon = 1$, there exists some $\delta > 0$ such that $|f'(x) - L| < \varepsilon$ when $x \in (a, \delta)$. This allows us to bound f' over this interval:

$$|f'(x)| - |L| \le |f'(x) - L| < 1$$

so

$$|f'(x)| < |L| + 1$$

when $x \in (a, \delta)$. Then since f' exists at δ , we can bound f' over the interval $(a, \delta]$ by

$$|f'(x)| < \mathcal{L} \doteq \max\{|L| + 1, |f'(\delta)\}.$$

Then by the mean value theorem, for all $x, y \in (a, \delta]$, we have

$$|f(y) - f(x)| \le \mathcal{L}|y - x|.$$

Fix $\varepsilon' > 0$, then set $\delta' = \varepsilon'/\mathcal{L}$. Then for $|x - y| < \delta'$, we have $|f(y) - f(x)| \le \mathcal{L}|y - x| < \varepsilon'$. Thus f is uniformly continuous on $(a, \delta]$.

The function f is also uniformly continuous on $[\delta, b]$, since this is a compact interval and f is continuous to begin with. Then since f is uniformly continuous over both segments of (a, b], it is uniformly continuous over the whole interval, which we now prove.

Fix $\varepsilon > 0$, then we can find δ_l such that for $x, y \in (a, \delta]$, $|x-y| < \delta_l$ implies $|f(x) - f(y)| < \varepsilon/2$. Let δ_r be the corresponding value for the interval $[\delta, b]$ instead. Now set $\delta = \min \{\delta_l, \delta_r\}$, and let the pair x, y be in the entire interval (a, b]. If both points are in $(a, \delta]$ or if both are in $[\delta, b]$, then clearly $|f(x) - f(y)| < \varepsilon/2 < \varepsilon$.

If one point is in $(a, \delta]$ and the other is in $[\delta, b]$, then assume without loss of generality that x is in the former and y is in the latter. In this case δ lies between x and y, so $|x - \delta| \le |x - y| < \delta$ and $|y - \delta| \le |y - x| < \delta$. Then we have

$$|f(x) - f(y)| \le |f(x) - f(\delta)| + |f(\delta) - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus f is uniformly continuous over (a, b].

Exercise 29. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy $|f(x) - f(y)| \leq |x - y|^2$. Prove that f is a constant.

We will show that the derivative of this function is 0. Using the given bound and the fact that $x \mapsto |x|$ is a continuous map, we have

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right|$$

$$= \lim_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|}$$

$$\leq \lim_{h \to 0} \frac{|h|^2}{|h|}$$

$$= \lim_{h \to 0} |h|$$

$$= 0.$$

This implies f'(x) = 0, which is only true if f is a constant function.

Exercise 34. Assuming that the temperature on the surface of the earth is a continuous function, prove that on any great circle of the earth there are two antipodal points with the same temperature.

Let C denote any great circle of the earth. If $x \in C$, then denote its antipodal point by x'. Finally denote the temperature of the earth by the continuous function $T: C \to \mathbb{R}$, and define the continuous function f(x) = T(x) - T(x').

Let $x \in C$ be arbitrary, then we have two cases: f(x) = 0 or $f(x) \neq 0$. If the former case holds, the result is trivial, so assume $f(x) \neq 0$. Then we have f(x') = T(x') - T(x) = -f(x), so f(x) and f(x') have opposite signs.

Since C is connected and f is continuous, we then can apply the intermediate value theorem to show that there is some point $z \in C$ such that f(z) = T(z) - T(z') = 0, which proves the result.

Exercise 38. A real-valued function defined on (a,b) is called **convex** when the following inequality holds for x, y in (a,b) and t in [0,1]:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

If f has a continuous second derivative and f'' > 0, show that f is convex.

Let z = tf(x) + (1-t)f(y), and without loss of generality, assume $y \ge x$. Then we wish to show $tf(x) + (1-t)f(y) \ge f(z)$. We will do so by showing that tf(x) + (1-t)f(y) - f(z) is non-negative. We have

$$tf(x) + (1-t)f(y) - f(z) = tf(x) + (1-t)f(y) - tf(z) + (1-t)f(z)$$
$$= t[f(x) - f(z)] + (1-t)[f(y) - f(z)].$$

Let $\alpha \in (x, z)$, $\beta \in (z, y)$, then by the mean value theorem this becomes

$$= t[f'(\alpha)(x-z)] + (1-t)[f'(\beta)(y-z)].$$

Finally, expand z to get

$$= t(1-t)f'(\alpha)(x-y) + t(1-t)f'(\beta)(y-x)$$

= t(1-t)(y-x)[f'(\beta) - f'(\alpha)].

Since $t \in [0,1]$, we know $t(1-t) \ge 0$. By assumption, $y-x \ge 0$ as well. Since f''(x) > 0 for all $x \in (a,b)$, this means f' is always increasing. Then since $\beta > \alpha$, $f'(\beta) - f'(\alpha)$ must also be non-negative. Thus we have

$$tf(x) + (1-t)f(y) - f(z) = t(1-t)(y-x)[f'(\beta) - f'(\alpha)] \ge 0,$$

so

$$tf(x) + (1-t)f(y) \ge f(z),$$

as desired.