MAT 1375, Classwork6, Fall2024

ID:_				Name:				
	Let f and g be the indicated opera		s defined b	y the table	below. Co	mplete the	table by pe	erforming
	х	1	2	3	4	5	6	7
	f(x)	4	5	7	0	-2	6	4
	g(x)	6	-8	5	2	9	11	2
	g(x) + 3							
j	f(x) - 2g(x)							
	g(x+3)							
	$(f\circ g)(x)$							
	$(g \circ f)(x)$							
	$(g \circ g)(x)$							
(2. Complete the definition of the one-to-one function (or injective): Given a function $f(x)$. If any two different inputs always have different outputs, then we call this function f a one-to-one function . 3. Horizontal Line test :							
-	A function is one	e-to-one wh	•	orizontal l	ine interse	cts the grap	h of the fu	nction
4.	Complete the definition of the Inverse of a Function:							
	Let f be a function with domain \mathcal{D}_f and the range \mathcal{R}_f , and assume that f is one-to-one. The							
į	inverse of f is the	ne function	f^{-1} , deter	mined by:				
		f(x) = y	means pre	ecisely that	t			

Therefore, we have $D_{f^{-1}} =$ _____, and $R_{f^{-1}} =$ _____.

5. How to check if two given functions are **inverse** with each other:

Let f and g be two functions such that

for every x in the domain of g and for every x in the domain of f.

The function g is the **inverse of the function f** and is denoted by _____.

6. How to find the inverse function for a given **invertible** function f(x):

Step1: _____

Step2: _____

Step3: _____

Step4: _____

7. Given a function $f(x) = x^2 + 1$, $x \ge 0$. a) Find the inverse function of f(x). b) Graph f and f^{-1} in the same coordinate system.