第6章 图

计算机工程与科学学院 封卫兵

6.2 图的连通性

6.2.1 通路与回路

初级通路(回路)与简单通路(回路)

6.2.2 无向图的连通性与连通度

连通图、连通分支、短程线与距离

点割集、割点、边割集、割边(桥)、点连通度与边连通度

6.2.3 有向图的连通性及其分类

弱连通、单向连通、强连通

短程线与距离、可达性

通路与回路

定义6.13 给定图 $G = \langle V, E \rangle$ (无向或有向), G 中顶点与边的交替序列

 $\Gamma = v_0 e_1 v_1 e_2 \dots e_l v_l$. 若 $\forall i \ (1 \le i \le l), \ e_i = (v_{i-1}, \ v_i)$ (或 $e_i = \langle v_{i-1}, \ v_i \rangle$), 则称

 Γ 为 v_0 到 v_l 的通路, v_0 和 v_l 分别为通路的起点和终点, l 为通路的

长度. 又若 $v_0 = v_I$, 则称 Γ 为回路.

若通路(回路)中所有边各异,则称为简单通路(简单回路),否则称为

复杂通路(复杂回路)

通路与回路(续)

若通路(回路)中所有顶点(对于回路,除 $v_0 = v_l$)各异,则称为初级通路或路径(初级回路或圈).长度为奇数的圈称作奇圈,长度为偶数的圈称作偶圈.

注:

- 1) 回路是通路的特殊情况;
- 2) 在有向图和无向图中, 长度为 1 的圈由环构成;
- 3) 在无向图中, 长度为 2 的圈由两条平行边构成;

注 (续):

- 4) 在无向简单图中, 所有圈的长度≥3;
- 5) 在有向简单图中, 所有圈的长度≥2;
- 6) 表示方法
 - ① 按定义用顶点和边的交替序列, $\Gamma = v_0 e_1 v_1 e_2 \dots e_l v_l$
 - ② 用边序列, $\Gamma = e_1 e_2 ... e_l$,其中 e_i , e_{i+1} 是相邻边,长度为 l
 - ③ 简单图中,用顶点序列, $\Gamma = v_0 v_1 ... v_l$,长度为 l

注 (续):

7) 初级通路(回路)是简单通路(回路), 但反之不真.

非初级的简单通路

初级回路

非初级的简单回路

通路与回路(续)

定理6.3 在 n 阶图中,若从顶点 u 到 v ($u \neq v$)存在通路,则从 u 到 v 存在长度小于等于 n-1 的初级通路.

证明: 若通路中没有相同的顶点(即初级通路),长度必 $\leq n-1$. 若有相同的顶点,删去这两个顶点之间的这一段,仍是 u 到 v 的通路. 重复进行,直到没有相同的顶点为止.

定理6.4 在 n 阶图中,若存在 v 到自身的简单回路,则一定存在 v 到自身长度小于等于 n 的初级回路.

无向图的连通性与连通分支

设无向图 $G = \langle V, E \rangle$, $u, v \in V$

u 与v连通: 若u 与v之间有通路. 规定 u 与自身总是连通的.

连通图: 任意两点都连通的图. 平凡图是连通图.

连通关系 $R = \{ \langle u, v \rangle | u, v \in V \coprod u \subseteq v$ 连通 $\}$. R 是等价关系 (证明?)

连通分支: V关于 R 的等价类的导出子图.

设 $V/R = \{V_1, V_2, ..., V_k\}$, G 的连通分支为 $G[V_1]$, $G[V_2]$, ..., $G[V_{\underline{k}}]$.

连通分支数: 记为 p(G) = k.

注: G 是连通图 $\Leftrightarrow p(G) = 1$; 若 $p(G) \ge 2$, 则 G 一定是非连通图.

短程线与距离

u与v之间的短程线: u与v之间长度最短的通路(设u与v连通);

u 与 v 之间的距离 d(u, v): u 与 v 之间短程线的长度

若 u 与 v 不连通, 规定 $d(u, v) = \infty$.

性质:

- 1) 非负性: $d(u, v) \ge 0$, 且 $d(u, v) = 0 \Leftrightarrow u = v$
- 2) 对称性: d(u, v) = d(v, u)
- 3) 三角不等式: $d(u, v) + d(v, w) \ge d(u, w)$

例:
$$d(a, e) = 2$$
 , $d(a, h) = \infty$,

点割集与边割集

设无向图 $G = \langle V, E \rangle$, $v \in V$, $e \in E$, $V' \subseteq V$, $E' \subseteq E$. 记

G-v: 从 G 中删除 v 及关联的边

G-V': 从 G 中删除 V' 中所有的顶点及关联的边

G-e: 从G中删除e

G-E': 从 G 中删除 E' 中所有边

删除结点后连通分支会增加?不变?减少? 都可能!

删除边后呢? 都可能? 不可能减少

点割集与边割集 (续)

定义6.15 设无向图 $G = \langle V, E \rangle$, $V' \subset V$, 若 p(G - V') > p(G) 且

 $\forall V'' \subset V', p(G - V'') = p(G), 则称 V' 为 G 的点割集.$

若 {v} 为点割集,则称 v 为割点.

设 $E' \subset E$, 若 p(G - E') > p(G) 且 $\forall E'' \subset E'$, p(G - E'') = p(G), 则称 E' 为 G 的边割集. 若 $\{e\}$ 为边割集, 则称 e 为割边或桥 .

- 注: 1) K_n 无点割集,n 阶零图既无点割集,也无边割集;
 - 2) 若 E' 为边割集,则 p(G E') = p(G) + 1;
 - 3) 若 V'为点割集,则 $p(G V') \ge p(G) + 1$.

割点: e, f

点割集: {e},{f},

$$\{b, e\}$$
? $\times \{b, c, d\}$? \times

桥: e₈, e₉

$$\{e_1, e_3, e_6\}$$
?

$$\{e_4, e_6, e_7, e_8\}$$
?

$$\{e_1, e_3, e_6\}$$
? $\{e_4, e_6, e_7, e_8\}$? (e_1, e_3, e_4, e_7) ?

任何一个点所关联的所有边构成边割集吗? 若不包含桥,则是

例: 设 v 为无环无向图 G 中的一条割边的一个端点,

证明: v 为割点当且仅当 v 不是悬挂顶点.

证明: 1) 证如果 v 为割点,则 v 不是悬挂顶点:

反证法: 假设 v 是悬挂顶点,则从 G 中删除 v,只是将 v 及关联割边 e 从 G 中去掉了,因而 p(G-v)=p(G),这与 v 为割点矛盾。

2) 证如果 v 不是悬挂顶点,则 v 为割点:

由于v不是 1 度顶点,所以v除与割边e关联外,还必须与另外一些边关联,假设这些边为 e_1 , ..., e_r , 当从G中删除v时,则e, e_1 , ..., e_r 也全部被删除,由于e是割边,所以p(G-v)>p(G),所以v为割点.

点连通度与边连通度

定义6.16 设无向连通图 $G = \langle V, E \rangle$,

 $\kappa(G) = \min\{|V'| \mid V' \in G \text{ 的点割集或使 } G - V' \text{成为平凡图}\}$

称为 G 的点连通度.

$$\lambda(G) = \min\{|E'| \mid E' \neq G$$
的边割集}

称为 G 的边连通度.

例:
$$\kappa(G) = 3$$
, $\lambda(G) = 3$.

点连通度与边连通度 (续)

- **注:** 1) 若 G 是平凡图,则 $\kappa(G) = 0$, $\lambda(G) = 0$;
 - 2) 若 G 是完全图 K_n , 则 $\kappa(G) = n 1$, $\lambda(G) = n 1$;
 - 3) 若 G 中存在割点,则 $\kappa(G)=1$; 若 G 中存在割边,则 $\lambda(G)=1$;
 - 4) 规定非连通图的点连通度和边连通度均为 0.

圈图
$$C_n$$
 $(n \ge 3)$ 的 $\kappa(G) = \lambda(G) = 2$

轮图
$$W_n$$
 ($n \ge 4$) 的 $\kappa(G) = \lambda(G) = 3$

定理6.5 对任何无向图 G, 有

$$\kappa(G) \le \lambda(G) \le \delta(G)$$
.

定义6.17 设有向图 $D = \langle V, E \rangle$, $u, v \in V$,

u 可达 v: u 到 v 有通路. 规定 u 到自身总是可达的;

u 与 v 相互可达: u 可达 v 且 v 可达 u;

D 弱连通(连通): 略去各边的方向所得无向图为连通图;

D 单向连通: $\forall u, v \in V, u$ 可达 v 或 v 可达 u;

D 强连通: $\forall u, v \in V$, u 与 v 相互可达;

D 是强连通的当且仅当 D 中存在经过所有顶点的回路;

D 是单向连通的当且仅当 D 中存在经过所有顶点的通路.

例:

强连通?

单向连通?

弱连通?

强连通?

单向连通?

弱连通?

强连通?

单向连通?

弱连通?

有向图中的短程线与距离

u 到 v 的短程线: u 到 v 长度最短的通路(设 u 可达 v);

距离 d < u, v >: u 到 v 的短程线的长度;

若 u 不可达 v, 规定 d < u, $v > = \infty$.

性质:

- 1) 非负性: $d < u, v > \ge 0$, 且 $d < u, v > = 0 \Leftrightarrow u = v$;
- 2) 三角不等式: $d < u, v > + d < v, w > \ge d < u, w > .$

注: 没有对称性 $d < u, v > \neq d < v, u >$.

例:设无向图 G 中只有两个奇度顶点 u 和 v,证明: u 与 v 必连通.

证明: 假设 u 与 v 不连通,即它们之间无通路,则 u 与 v 必处于 G 的不同连通分支中.

假设 u 在 G 的连通分支 G_1 中,v 在连通分支 G_2 中,由于 G 中只有两个奇度顶点,于是 G_1 和 G_2 均各有一个奇度顶点,这样 G_1 与 G_2 都与握手定理推论矛盾.

所以奇度顶点 u 与 v 必处于 G 的同一个连通分支中,即它们之间必有通路,也即u与v必连通。