

Trigger Efficiencies from 2015D

 $\underline{\mathsf{P.\ Dunne}}$ on behalf of the $\mathsf{H}{
ightarrow}\mathsf{invisible}$ analysis group

Introduction

Overview

- ▶ 50ns data control plots and trigger efficiencies shown previously
- First golden JSONs from 2015D 25ns data have come out in the last couple of weeks
- Will show updated trigger efficiencies and control plots

Trigger Efficiencies - first iteration

- Measure efficiency as a function of each variable
- Start by cutting on all other variables at trigger threshold value
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Made using \sim 166.37 pb^{-1} of 50ns data
 - 2% of grid jobs failed

Trigger Efficiencies - first iteration

Same cuts and data as previous page

Tighter MET cut

- ightharpoonup MET efficiency above 90% at \sim 300 GeV
- Change cuts to:
- METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600

Tighter MET cut

- ▶ MET efficiency above 90% at \sim 300 GeV
- Change cuts to:
 - METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600

Tighter jpt cut

- ▶ Jet p_T efficiency above 90% at \sim 80 GeV
- Change cuts to:
- METnoMu> 300 GeV, DiPFJet> 80 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600

Tighter jpt cut

- ightharpoonup MET efficiency above 90% at \sim 300 GeV
- Change cuts to:
 - METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600

Control Plots

- Make control plots with METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600 plus lepton veto
 - Luminosity labels are incorrect

Control Plots

- Make control plots with METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600 plus lepton veto
 - Luminosity labels are incorrect

Control Plots

- ▶ Make control plots with METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600 plus lepton veto
 - Luminosity labels are incorrect

Control Plots-munu control region

- ▶ Make control plots with METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600 plus single tight muon
- ▶ 26 events in region. Enu region has 3 events, mumu region has 2 events
 - Luminosity labels are incorrect

Gamma control region first look

- Cut based photon ID from EGamma POG implemented
- ▶ Make control plots with METnoMu> 300 GeV, DiPFJet> 40 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600 plus single tight photon
- Met obviously needs correcting for photon pt
- Luminosity labels are incorrect

Summary

- ► Trigger efficiencies from 25ns data shown
- MET fully efficient ${\sim}300~\text{GeV}$
- Jet pt fully efficient ${\sim}80~\text{GeV}$
- Control plots don't have much statistics after these cuts
- ► Another 80pb⁻¹ have 99% of jobs finished processing

Backup

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
 - large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- ▶ Many BSM theories predict Higgs boson decays to invisible final states:
 - e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ▶ These final state particles are often dark matter candidates

Monojet+V(had)H-tagged - EXO-12-055, AN-2014/206

Strategy

- ► Select a high energy jet+MET
- Categorise events as boosted or resolved V-tagged or no V-tag
- Use data driven methods to estimate major backgrounds

Signal extraction and results

- Simultaneous fit to MET in signal and control regions
- ▶ 95% CL observed (expected) limit on B(H→inv) 54(62)%

Z(II)H - HIG-13-030, AN-2013/333

Strategy

- Select two electrons or muons compatible with a Z decay + MET
- Categorise by lepton flavour and presence of a jet
- Use data driven methods to estimate remaining backgrounds

Signal extraction and results

- ▶ 2D (1D) fit to m_{\parallel} and m_{T} (m_{T}) in 8 (7) TeV
- 95% CL observed (expected) limit on B(H→inv) 83(86)%

Z(bb)H - HIG-13-030, AN-2013/222

Strategy

- ► Based on H(bb)Z(inv) analysis:
 - Require two jets consistent with $Z \rightarrow bb+MET$
- Categorise according to MET
- Backgrounds from MC normalised in simultaneous fit to signal and control regions

Signal extraction and results

- ► Fit to BDT
- ► 95% CL observed (expected) limit on B(H→inv) 182(199)%

Likelihood scans

- ► Likelihood plotted as a function of B(H→inv):
- for combination (left) and by analysis (right)

Limits - by production mode tag

- VBF tagged is VBF analysis
- ightharpoonup VH-tagged is Z(II)H + Z(bb)H + boosted and resolved from monojet+V(had)H
- ▶ ggH-tagged is monojet from monojet+V(had)H

Reminder of Analysis

Overlaps

Overlaps between VBF, Z(II)H, Z(bb)H

- ► VBF, Z(II)H and Z(bb)H analyses are exclusive by design:
 - VBF requires no leptons and high M_{jj}
 - Z(II)H requires two leptons
 - Z(bb)H requires no leptons and low M_{jj}

Overlaps between monojet+V(had) and other analyses

- Z(bb)H and resolved category of monojet+V(had) have potential overlap
- Not expected to impact result
- Completely removing resolved category has no effect on expected limit
- ► VBF and monojet+V(had)-tagged analyses do have overlap:
- Veto events from monojet+V(had) analysis with 1st (2nd) jet with $p_T > 50$ (45) GeV, $M_{ii} > 1200$ GeV, $\eta_{i1} \cdot \eta_{i2} < 0$ and $\Delta \eta_{ii} > 3.6$
- Veto is solely for clean statistical combination not for further separation of production modes

Effect of VBF veto

Events rejected by VBF veto

Sample	Monojet	Boosted	Resolved
VBF	13.2%	11.0%	0.0%
ggH	1.52%	0.0%	0.0%
Data	0.4%	0.2%	0.5%
Expected signal composition	70% ggH, 20% VBF, 6% WH, 3% ZH	47% WH, 25% ggH, 23% ZH, 5% VBF	39% ggH, 32% WH, 18% ZH, 11% VBF

- Explicitly checked overlap after veto in signal and dimuon control regions
- ▶ 3 out of 89,304 events found to overlap
- All in monojet category at low MET
- All have a 2nd jet rejected by PU ID thought to be from small input differences
- ► Full monojet+V(had) analysis is rerun after veto:
 - All results shown are after veto

Correlated Nuisances

Nuisance	Analyses which it affects
Jet energy scale	VBF, $Z(\ell\ell)H(inv)$
PDF uncertainties	VBF, $Z(b\bar{b})$, $Z(\ell\ell)H(inv)$, monojet $+V(had)$
QCD scale	VBF, $Z(b\bar{b})$, $Z(\ell\ell)H(inv)$, monojet+ $V(had)$
Luminosity	VBF, $Z(b\bar{b})H(inv)$, $Z(\ell\ell)H(inv)$, monojet+ $V(had)$
Jet energy resolution	VBF, $Z(\ell\ell)H(inv)$
Unclustered energy scale	VBF, $Z(b\bar{b})H(inv)$, $Z(\ell\ell)H(inv)$
Muon identification efficiency	VBF, $Z(\ell\ell)H(inv)$, monojet+ $V(had)$
Electron identification efficiency	VBF, $Z(\ell\ell)H(inv)$
Diboson cross-section	VBF, monojet+V(had)

- ▶ JES/R in Z(bb)H is not correlated with others because it comes from jet energy regression method also used in $H \rightarrow b\bar{b}$ analysis
- ► Monojet+V(had) MET uncertiainties are not correlated with others
- Monojet+V(had) uses uncorrected pfmet with recoil corrections
- Other analyses use type 1 corrected pfmet

JES/R Correlation - check jet p_T

JES/R Correlation - check jet η

JES/R Correlation

- ► Significantly different jet kinematics seen in VBF and monojet+V(had)H
- ▶ Jets used in Z(II)H analysis are low p_T additional jets
- These are similar to additional jets used for $min\Delta\phi(j,MET)$ in VBF
- Different from high p_T jets in monojet+V(had)H analysis
- We therefore do not correlate JES/R between monojet+V(had)H and these analyses
- We tried a number of scenarios for the correlation model and found that they all gave no change to the expected limit:
- VBF+Z(II)H correlated, all correlated, none correlated
- Expected limit was 30% for all scenarios

Channel	Observed (expected) upper	
Chainlei	limits on $\frac{\sigma}{\sigma_{SM}} \cdot B(H \rightarrow inv)$ (%)	
VBF	57 (40)	
Monojet + V(had)H	54 (62)	
Z(II)H	83 (86)	
Z(bb)H	182 (199)	
Combined	<mark>36</mark> (30)	

Pulls

- ▶ Usual full table of pulls and post-fit nuisances in AN/2014-206
- Generally distributed around their pre-fit values
- Apologies for \times axis below

VBF Objects

PFMET

- Ignore muons
- ► Type0+1 corrections
- Smeared PFMET for MC

AK5 PFJets

- ► L1FastJet+L2+L3(+L2L3Residual) JEC
- "Loose" PF Jet ID
- Cleaned with veto leptons
- ► "Loose" PU jet ID
- ► Smeared jet collection for MC (JER is smeared to match data)

Veto leptons

- loose+PFiso muons $p_T > 10$ GeV, $|\eta| < 2.1$
- veto+PFiso electrons $p_T > 10$ GeV, $|\eta| < 2.4$

Tight leptons

As veto leptons but "tight" ID and $p_T > 20 \text{ GeV}$

Hadronic taus

- $ightharpoonup p_T > 20 \text{ GeV}, \ |\eta| < 2.3, d_Z < 0.2 \text{ cm}$
- ► Tight ID, discriminant "byTightCombinedIsolationDelta-BetaCorr3Hits"
- ► Efficiency ~0.55, fake rate 0.02(barrel),0.03(endcap)