Λύσεις

Θέμα Α

- 1. [Μονάδες 10] Απόδειξη από βιβλίο.
- 2. [Μονάδες 3/10] Ορισμός βιβλίου.
- 3. [Μονάδες 10] Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό ή Λάθος
 - α) Σ Κάθε οριζόντια ευθεία τέμενει τη γραφική παράσταση μιας 1-1 συνάρτησης το πολύ σε ένα σημείο.
 - β) Λ Αν οι συναρτήσεις f, g είναι συνεχείς στο σημείο x_0 , τότε και η σύνθεσή τους $g \circ f$ είναι συνεχής στο ίδιο σημείο.
 - γ) Σ Το σύνολο τιμών ενός κλειστού διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης είναι πάντοτε κλειστό διάστημα.
 - δ) $\Sigma \lim_{x\to 0^+} \ln x = -\infty$
 - ε) Λ Αν υπάρχει το $\lim_{x\to x_0} (f(x)+g(x))$, τότε υποχρεωτικά υπάρχουν και τα όρια $\lim_{x\to x_0} f(x)+\lim_{x\to x_0} g(x)$.

Θέμα Β

1. [Μονάδες 11] Θα δείξουμε ότι $\frac{4x}{x^2+4} \le f(2)$.

$$4x \le x^2 + 4 \iff x^2 - 4x + 4 \ge 0 \iff (x - 2)^2 \ge 0$$

2. [Μονάδες 11] Από τα δεδομένα έχουμε $\lim_{y \to -infty} f(y) = 4$ και θέτοντας

$$h(x) = \frac{xf(x)}{3x-1} \iff f(x) = h(x)(3-\frac{1}{x}) \Rightarrow \lim_{x \to \infty} f(x) = 6$$

Το σύνολο τιμών είναι το

$$\left[f(2), \lim_{x \to -\infty} f(x)\right) \cup \left[f(2), \lim_{x \to \infty} f(x)\right) = [1, 4) \cup [1, 6)$$

- 3. [Μονάδες 11] Από το σύνολο τιμών για $1 < a \le 4$ έχουμε δύο ρίζες, για 4 < a < 6 έχουμε μία ρίζα όπως και για a = 1 και παντού αλλού καμία.
- 4. **[Μονάδες 11]** Εφόσον $f(x) \ge 1$ και $g(x) \le 1$ όπως και f(2) = g(2) = 1 τότε το x = 2 είναι μοναδική λύση

Θέμα Γ

Έστω η συνάρτηση $f:(-1,+\infty) \to \mathbb{R}$ με $f((-1,+\infty)) = \mathbb{R}$, η οποία είναι 1-1 και τέτοια ώστε

$$f(x) \le x$$
 για κάθε $x > -1$

και

$$f^{-1}(x) \le e^x - 1$$
 για κάθε $x \in \mathbb{R}$.

- 1. [Μονάδες 8] Η αντίστροφη μίας συνάρτησης είναι συμμετρική ως προς την y=x και αφού $f(x) \le x$ θα ισχύει $f^{-1}(x) \ge x$.
- 2. [Μονάδες 8] Αφού $f^{-1}(x) \leq e^x 1$ για κάθε $x \in \mathbb{R}$ για x = f(y), y > -1 θα ισχύει

$$y \le e^{(f(y))} - 1 \iff \ln(y+1) \le f(x)$$

- 3. [Μονάδες 9] Από την προηούμενη σχέση με όρια $\lim_{x\to 0}\ln(x+1)\leq \lim_{x\to 0}f(x)\leq \lim_{x\to 0}x$. Αφού $0\leq f^{-1}(x)\leq e^x-1$ και πάλι με κριτήριο παρεμβολής.
- 4. [Μονάδες 9] Έστω $h(x)=(x-1)f^{-1}(x)+(2-x)f(x)-x^2+2x-2$. Η h συνεχής με $h(1)=f(1)-1\leq 0$, και $h(2)=f^{-1}(2)-2\geq 0$. Έτσι αν h(1)h(2)=0 τότε $x_0=1$ ή $x_0=2$, διαφορετικά Bolzano.

Θέμα Δ

Έστω δύο συναρτήσεις $f,g:\mathbb{R}\to\mathbb{R}$ τέτοιες ώστε

$$g(x) = f(f(x)) + e^x$$
 για κάθε $x \in \mathbb{R}$.

Αν η συνάρτηση f είναι γνησίως αύξουσα και για κάθε $x_0\in\mathbb{R}$ υπάρχει το $\lim_{x\to x_0}f(x)$ και είναι πραγματικός αριθμός, να αποδείξετε ότι:

- 1. [Μονάδες 8] Κατασκευή ή λόγια.
- 2. [Μονάδες 8] Για $x < x_0$ έχουμε $f(x) < f(x_0)$ και άρα με όρια $\lim_{x \to x_0^-} f(x) \le f(x_0)$. Όμοια από δεξιά. Άρα $\lim_{x \to x_0} f(x) = f(x_0)$
- 3. [Μονάδες 9]
 - α) Η f διατηρεί πρόσημο και αφού f(0)=1 θα είναι πάντα θετική. Συνεπώς $g(x)>e^x\geq 1$ για κάθε x>0. Για x<0 έχουμε g(x)< g(0)=f(f(0))+1. Αλλά $f(0)=1\Rightarrow f(f(0))>f(1)>f(0)=1$ άρα και πάλι g(x)>1.

$$h(x) = x^3 g(2x^4) + x^4 g(x^2) + x^2 f(x^2 - 1) - 1$$

Η h είναι συνεχής με h(1)=g(2)+g(1)+f(0)-1>2g(1)-1>0 και h(-1)=-g(2)+g(1)+f(0)-1. Αλλά $g(2)< g(1)\iff -g(2)+g(1)<0$... Bolzano