

2

Y. Sellami

AU47 - 2 - 2

A classical control scheme A digital control scheme Clock Comm. (UART, I2C, CAN, ARINC, Analog inputs Digital Digital Output (GPIO) Controller Analog output, PWM Power DAC Amplif System to be controlled Anto-aliasing Comm. (UART, I2C, CAN, ARING Amplifier Sensor Pre-filter Digital Inputs Analog inputs Discrete time control system (Digital control)

4

Y. Sellami

AU47 - 2 - 4

- Smart sensor
 - Smart sensor = sensor with built-in signal processing & communication
- Analog inputs
 - Many microcontrollers have ADC built-in peripherals (8-bit to 12 bit)
- Digital inputs
 - Use GPIO ports, synchronous (with clock), or asynchronous (without clock)
- Communication links
 - Asynchronous serial: UART (universal asynchronous receive and transmit)
 - TX, RX, nodes must match baud rate and protocol
 - RS232 on PCs uses UART format but at +/- 12 volts
 - Synchronous serial: SPI (serial peripheral interface)
 - 1 or 2 directional data MOSI, MISO, 1 clock SCLK, 1 chip select CS
 - I2C Inter Integrated Circuit bus
 - 2 wires

Y. Sellami AU47 - 2 - 19

Connecting Smart Sensors to PC/Network

- Smart sensor = sensor with built-in signal processing & communication
- DAQ : Data acquisition cards
 - PC card with analog digital I/O

- Local area networks
 - CAN bus (controller area network): in vehicles
 - ARINC 429 (Aeronautical Radio INC.): two-wire data bus
 - AFDX (Avionics Full DupleX switched Ethernet): on new Airbus aircrafts

Y. Sellami AU47 - 2 - 20

20

Sensor calibration

- Undesired effects
 - Offset : nominal output ≠ nominal physical parameter value
 - Nonlinearity: output is not linear, there are physical parameter changes
 - Cross parameter sensitivity: sensitive to other dependent parameters
- Calibration
 - Adjust output signal to match physical parameters
 - With signal conditioning, digital calibration, ...
 - $T^{\circ} = a + b V + c V^2 ;$

T°, *V*: temperature (input) and sensor voltage *a*, *b*, *c*: calibration coefficients

Y. Sellami AU47 - 2 - 21

Wheatstone Bridge Application 2 $V_G = V_{GO} \sin(\omega t)$ α The current I_{AB} is neglected. - Compute V_{AB} - Compute V_{AB} if $\Delta C \ll C0$ CO+AC VAB α AU47 - 2 - 23 Y. Sellami

Temperature sensor: Thermistor

Thermistor

• A type of sensor whose resistance is dependent on temperature $\Delta R = f(\Delta T)$

- PTC (positive temperature coef): whose resistance vary with temperature
- NTC (negative temperature coef): resistance decreased as the temperature rises

Y. Sellami AU47 - 2 - 30

Position sensor: Potentiometer

Potentiometer position sensor $V_{g} = V_{G} \frac{\lambda}{L}$ $V_{g} = V_{G} \frac{\partial}{\partial L}$

35

Y. Sellami

AU47 - 2 - 35

Position sensor: Incremental encoder Incremental rotary encoder (quadrature encoder, relative rotary encoder) Produces a square wave pulses that, when counted, indicates the angular position and the rotating shaft (direction). Two channels: Two outputs in quadrature (90° of phase) Resolution: determined by the number of transparent/dark segments on the disk A tachometer is a simple encoder with 1 single wave output (one directional application) ccw cw AB 10 10 11 01 00 10 11 01 00 Clockwise rotation AB = 00 10 11 01 00 ... Counter-clockwise AB = 00 01 11 10 00 ... Y. Sellami AU47 - 2 - 40

Arduino code for encoder Method 1: using interrupt 0 (method 2) /* Read a rotary encoder with interrupts pinA to pin 2, pinB to pin 4 uses Arduino pullups on A & B turning on the pullups saves having to hook up resistors to A & B */ // encoder pin A // encoder pin B #define pinA 2 #define pinB 4 volatile unsigned int encoderPos = 0; // position of the encoder pinMode(pinB, INPUT); pinMode(pinA, INPUT); digitalWrite(pinA, HIGH); digitalWrite(pinB, HIGH); // turn on pullup resistors attachInterrupt(0, doEncoder, CHANGE); // encoder pin on interrupt 0 - pin 2 // CHANGE = FALLING + RISING edges // a personal quirk Serial.begin (115200); Serial.println("start"); void loop(){ // do something - the joy of interrupts is that they take care of themselves void doEncoder() { // If pinA and pinB are equal, it is spinning forward. If they're different, it's going backward. if (digitalRead(pinA) == digitalRead(pinB)) { encoderPos++; } else { encoderPos--; } Serial.println (encoderPos, DEC); AU47 - 2 - 42 Y. Sellami 42

Arduino code for encoder Method 2 : using Encoder Library

Encoder myEnc(pinA, pinB);

See PJRC website: http://www.pjrc.com/teensy/td libs Encoder.html

```
// Create an Encoder object, using 2 pins.
// You may create mulitiple Encoder objects, where each uses its own 2 pins.
// The first pin should be capable of interrupts.
// If both pins have interrupt capability, both will be used for best performance.
// Encoder will also work in low performance polling mode if neither pin has interrupts.

position = myEnc.read();// Returns the accumulated position. This number can be positive or negative.
myEnc.write(newPosition); // Set the accumulated position to a new number (if necessary).

Y. Setlami

AU47-2-43
```


_

Hydraulic system

Principle

Tank
Pump
Spool
Valve
Pull
Hydraulic Cylinder and Piston

Y. Sellami

AU47 - 2 - 58

Electrical Drive

Principle $\vec{I} = \frac{2\pi}{\mu} \vec{r} \wedge \vec{B}$ $\vec{F} = \vec{I} . || \wedge \vec{B}$

61

Y. Sellami

AU47 - 2 - 61

Includes one or more permanent magnets (no commutator needed)

Stator

- Powered by an external power supply. A motor controller converts DC to AC.
- Sensing rotor position are needed (Hall effect sensors) to control the timing to optimize torque, regulate speed, brake, ...

Advantages

Long life, little or no maintenance, high efficiency

Disadvantages

Higher cost, more complicated speed controller

=> Referred as Synchronous Motors

Y. Sellami

AU47 - 2 - 66

- Rotor
 - Wound or squirrel-cage rotor (no commutator needed, no permanent magnet)
- Stator
 - Powered by an external AC power supply.
- Principle
 - Rotor electric current needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding.
- Advantages
 - Long life, little or no maintenance, cheaper
- Overcome
 - There is a <u>slip</u> between mechanical speed and electrical speed
 - The mechanical speed is slightly slower:

$$\omega_m = (1 - s) \frac{\omega_e}{p}$$

Y. Sellami AU47 - 2 - 74

74

Power Supply - PWM Voltage Control for AC drives Pulse Width Modulation (PWM) for AC voltages: Similarly controlled using bi-directional pulses to have a sinusoidal waves. By varying the pulse width, the amplitude of the sine wave can be changed. Two levels: 0, Vcc Three levels: -Vcc, 0, Vcc Y. Sellami AU47 - 2 - 77 77

L293NE or 5N754410 **Power Supply - PWM** PWM for controlling a DC motor speed H-Bridge Motor V+ IRF3708 **Commutation states** Switch B D Motor moves right (Sens positif) Motor moves left (Sens opposé) Motor 0 Motor free runs (Mouvement libre) 0 0 0 Motor brakes (Frein) **1** 0 0 Motor brakes (Frein) IRF3<u>70</u>8 IRF3708 0 Shoot-through (Court-circuit) Shoot-through (Court-circuit) 0 Switch C 0 Shoot-through (Court-circuit)

79

Y. Sellami

AU47 - 2 - 79

Modeling actuators / sensors

Example of a DC motor

• With a simple gain

$$\omega = K u$$

u in volts and ω in rpm. DC motor is supposed to act faster than the plant

With a second order model (classical linear model)

$$\begin{cases} L\frac{di}{dt} = u - Ri - K\omega \\ J\frac{d\omega}{dt} = Ki - \tau_L - b\omega \end{cases}$$

With a first order model (by neglecting inductance)

$$J\frac{d\omega}{dt} = -\frac{K^2}{R}\omega - \tau_L - b\omega + \frac{K}{R}u$$

With a complex model

Y. Sellami

AU47 - 2 - 83

83

Modeling actuators / sensors

Example of a DC motor:

• With a simple gain (simplified model) $\omega = K u$

With a second order model (classical linear model)

$$\begin{cases} L\frac{di}{dt} = u - Ri - K\omega \\ J\frac{d\omega}{dt} = Ki - \tau_L - b\omega \end{cases}$$

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K}{(Js+b)(Ls+R) + K^2}$$

With a first order model (by neglecting inductance)

84

Y. Sellami

