Chapter 2: 概率公理

Latest Update: 2025年1月1日

证明. 由于 Ω 是有限集合,不妨设 $\Omega = \{x_1, x_2, \dots, x_n\}$, 其中 n 是一个正整数. 对于任意的 $A \subset \Omega$, 即 $A \in 2^{\Omega}$, 我们有 $A = \{x_{i_1}, x_{i_2}, \dots, x_{i_k}\}$, 其中 i_1, i_2, \dots, i_k 是 $\{1, 2, \dots, n\}$ 中的不同的整数. 记

$$T: 2^{\Omega} \to \{(\theta_1, \dots, \theta_n) : \theta_i \in \{0, 1\}, i = 1, \dots, n\},$$
$$A \mapsto (I(x_1 \in A), \dots, I(x_n \in A)),$$

其中, $I(\cdot)$ 是示性函数. 显然, T 是良定的, 且 T 构成了一个一一映射. 于是

$$|2^{\Omega}| = |\{(\theta_1, \dots, \theta_n) : \theta_i \in \{0, 1\}, i = 1, \dots, n\}| = 2^n.$$

因此, 由于 2^{Ω} 是有限集合.

要证明 2^{Ω} 是 σ -代数, 我们需要证明以下三点:

- $1. \varnothing \in 2^{\Omega}$. 这是因为 $\varnothing \subset \Omega$, 成立.
- 2. 若 $A \in 2^{\Omega}$, 则 $A^c \in 2^{\Omega}$. 这是因为 $A \subset \Omega$, 于是 $A^c = \Omega \setminus A \subset \Omega$, 成立.
- 3. 若 $A_1,A_2,\ldots\in 2^\Omega,$ 则 $\bigcup_{i=1}^\infty A_i\in 2^\Omega.$ 这是因为 $\forall x\in\bigcup_{i=1}^\infty A_i,$ 存在 j 使得 $x\in A_j\subset\Omega,$ 于是 $x\in\Omega,$ 即 $\bigcup_{i=1}^\infty A_i\subset\Omega,$ 成立.

Exercise #2. 2 (σ -代数的交还是 σ -代数). 令 $\{\mathcal{G}_{\alpha}\}_{\alpha\in A}$ 是定义在抽象空间 Ω 上的任意一族 σ -代数. 证明: $\mathcal{H}=\bigcap_{\alpha\in A}\mathcal{G}_{\alpha}$ 也是一个 σ -代数.

证明. 要证明 $\bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$ 是一个 σ -代数, 我们需要证明以下三点:

1.
$$\varnothing \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$$
.

2. 若
$$A \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$$
, 则 $A^c \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$.

3. 若
$$A_1, A_2, \dots \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$$
, 则 $\bigcup_{i=1}^{\infty} A_i \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$.

我们一一验证上述命题

- 1. 由于 \mathcal{G}_{α} 是一个 σ -代数, 因此 $\emptyset \in \mathcal{G}_{\alpha}$, $\forall \alpha \in A$, 即有 $\emptyset \in \bigcap \mathcal{G}_{\alpha}$.
- 2. 若 $A \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$, 则 $A \in \mathcal{G}_{\alpha}$, $\forall \alpha \in A$. 由于 \mathcal{G}_{α} 是一个 σ -代数, 因此 $A^{c} \in \mathcal{G}_{\alpha}$, $\forall \alpha \in A$, 即有 $A^{c} \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$.
- 3. 若 $A_1, A_2, \dots \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$, 则 $A_i \in \mathcal{G}_{\alpha}$, ∀ $\alpha \in A$. 由于 \mathcal{G}_{α} 是一个 σ -代数, 因此 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{G}_{\alpha}$, ∀ $\alpha \in A$, 从而有 $\bigcup_{i=1}^{\infty} A_i \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$.

Exercise #2. 3. 令 $\{A_n\}_{n=1}^{\infty}$ 是一列集合, 证明 De Morgan 公式:

$$a) \left(\bigcup_{n=1}^{\infty} A_n \right)^c = \bigcap_{n=1}^{\infty} A_n^c$$

$$b) \left(\bigcap_{n=1}^{\infty} A_n\right)^c = \bigcup_{n=1}^{\infty} A_n^c$$

证明. 先证 a). 一方面, 对于任意的 $x \in (\bigcup_{n=1}^{\infty} A_n)^c$, 有 $x \notin \bigcup_{n=1}^{\infty} A_n$, 即对于任意的 n, 有 $x \notin A_n$, 即 $x \in A_n^c$, 于是有 $x \in \bigcap_{n=1}^{\infty} A_n^c$. 因此, $(\bigcup_{n=1}^{\infty} A_n)^c \subset \bigcap_{n=1}^{\infty} A_n^c$. 另一方面, 对于任意的 $x \in \bigcap_{n=1}^{\infty} A_n^c$, 有 $x \in A_n^c$, $\forall n$, 即对于任意的 n, 有 $x \notin A_n$, 于是有 $x \notin \bigcup_{n=1}^{\infty} A_n$, 即有 $x \in (\bigcup_{n=1}^{\infty} A_n)^c$. 因此, $(\bigcup_{n=1}^{\infty} A_n)^c = \bigcap_{n=1}^{\infty} A_n^c$.

对于 b), 取 a) 的结果的补集即可. 即令 $B_n = A_n^c$, 带入 a) 中的公式, 并在等式两边同时取补, 即可得到 b) 的结论.

Exercise #2. 4. 令 A 是一个 σ -代数, $\{A_n\}_{n=1}^{\infty}$ 是 A 中的一列事件, 证明:

证明. 根据定义, 我们有

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k, \quad \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

由于 σ -代数关于可列的交并运算封闭, 因此 $\liminf_{n \to \infty} A_n \in \mathcal{A}$ 和 $\limsup_{n \to \infty} A_n \in \mathcal{A}$ 成立.

显然, 记号 $x \in \limsup_{n \to \infty} A_n$ 意味着 x 属于序列 $\{A_n\}$ 中无穷多个集合, 记号 $x \in \liminf_{n \to \infty} \infty$ 意味着除去 $\{A_n\}$ 中有限个元素外, x 属于剩下的所有集合. 因此, $\liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n$.

Exercise #2. 5. 令 $\{A_n\}_{n=1}^{\infty}$ 是一列集合, 证明:

$$\limsup_{n \to \infty} 1_{A_n} - \liminf_{n \to \infty} 1_{A_n} = 1_{\{\limsup_n A_n \setminus \liminf_n A_n\}}$$

其中, $A \setminus B = A \cap B^c$ 当 $B \subset A$.

证明. 断言:

- 1. $I_{\{\lim \inf_{n\to\infty} A_n\}} = \liminf_{n\to\infty} I_{A_n}$.
- 2. $I_{\{\limsup_{n\to\infty} A_n\}} = \limsup_{n\to\infty} I_{A_n}$.
- 3. 若 $A \supset B$, 则 $I_{A \setminus B} = I_A I_B$.

根据上述断言, 以及 $\liminf_{n\to\infty} A_n \subset \limsup_{n\to\infty} A_n$, 原命题得证. 下面一一验证上述断言.

1. 一方面,若 $I_{\{\lim \inf_{n\to\infty}A_n\}}(w)=1$,则 $w\in\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_k$,即存在 $n_0\geq 1$,当 $k\geq n_0$ 时,可知 $\inf_{k\geq n_0}I_{A_k}(w)=1$. 于是 $\liminf_{n\to\infty}I_{A_n}(w)=\lim_{n\to\infty}\inf_{k\geq n}I_{A_k}(w)=1$. 另一方面,若 $I_{\{\lim \inf_{n\to\infty}A_n\}}(w)=0$,则 $w\in\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k^c$,即任取 $n\geq 1$,存在 $k_0\geq n$,使得 $w\in A_{k_0}^c$. 从而 $\inf_{k\geq n}I_{A_k}(w)\equiv 0$,于是 $\liminf_{n\to\infty}I_{A_n}(w)=\lim_{n\to\infty}\inf_{k\geq n}I_{A_k}(w)=0$. 综上,

$$I_{\{\liminf_{n\to\infty} A_n\}} = \liminf_{n\to\infty} I_{A_n}.$$

2. 一方面,若 $I_{\{\limsup_{n\to\infty}A_n\}}(w)=1$,则 $w\in\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k$,即对任意的 n,存在 $k_0\geq n$,使得 $w\in A_{k_0}$. 从而 $\sup_{k\geq n}I_{A_k}(w)\equiv 1$,于是 $\limsup_{n\to\infty}I_{A_n}(w)=\lim_{n\to\infty}\sup_{k\geq n}I_{A_k}(w)=1$. 另一方面,若 $I_{\{\limsup_{n\to\infty}A_n\}}(w)=0$,则 $w\in\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_k^c$,即存在 $n_0\geq 1$,当 $k\geq n_0$ 时,有 $w\in A_k^c$. 从而 $\sup_{k\geq n_0}I_{A_k}(w)=0$,于是 $\limsup_{n\to\infty}I_{A_n}(w)=\lim_{n\to\infty}\sup_{k\geq n}I_{A_k}(w)=0$. 综上,

$$I_{\{\limsup_{n\to\infty}A_n\}} = \limsup_{n\to\infty}I_{A_n}.$$

3. 一方面, 当 $w \in A \setminus B$ 时, $I_A(w) = 1$, $I_B(w) = 0$, 满足 $I_{A \setminus B}(w) = I_A(w) - I_B(w) = 1$. 另一方面, 当 $w \notin A \setminus B$ 时, 即 $x \in B \subset A$, $I_A(w) = 1$, $I_B(w) = 1$, 满足 $I_{A \setminus B}(w) = I_A(w) - I_B(w) = 0$.

Exercise #2. 6. 令 A 是 Ω 上的 σ -代数, $B \in A$. 证明 $F = \{A \cap B : A \in A\}$ 也是一个 σ -代数. 试问: 当 $B \subset \Omega$, 但是 $B \notin A$ 时, 上述命题是否正确?

证明. 由于 σ -代数需要指定定义在某个抽象空间 Ω 上. 为证明, 这里接下来证明 \mathcal{F} 是 \mathcal{B} 上的 σ -代数.

先考虑若 $B = \emptyset$, 则 $\mathcal{F} = \emptyset$, (\emptyset, \emptyset) 构成了一个平凡的可测空间. 对于一般的 $B \subset \Omega$, 不失一般性, 可以考虑 $B \notin \mathcal{A}$, 我们需要证明以下三点:

- 1. \emptyset , $B \in \mathcal{F}$. 根据 \mathcal{A} 是一个 σ -代数, \emptyset , $\Omega \in \mathcal{A}$, 从而 \emptyset , $B \in \mathcal{F}$.
- 2. $C \in \mathcal{F} \Rightarrow C^c = B \cap C^c \in \mathcal{F}$. 不妨设 $C = \tilde{A} \cap B$, 于是 $B \cap C^c = B \cap (B^c \cup \tilde{A}^c) = B \cap \tilde{A}^c$, 由于 $\tilde{A} \in \mathcal{A}$ 是 σ -代数, 于是 $\tilde{A}^c \in \mathcal{A}$, 则 $C^c \in \mathcal{F}$.
- 3. $C_i \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} C_i \in \mathcal{F}$. 不妨设 $C_i = A_i \cap B$, 于是 $\bigcup_{i=1}^{\infty} C_i = \bigcup_{i=1}^{\infty} A_i \cap B = (\bigcup_{i=1}^{\infty} A_i) \cap B$, 由于 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$ 是 σ -代数, 于是 $\bigcup_{i=1}^{\infty} C_i \in \mathcal{F}$.

П

于是 (B,\mathcal{F}) 构成一个可测空间, 无论 B 是否在 A 中.

Exercise #2. 7. 令 f 是从 Ω 打到可测空间 (E,\mathcal{E}) 的映射. 令

$$\mathcal{A} = \{ A \subset \Omega : \exists B \in \mathcal{E} \ \text{is} \ \mathcal{E}A = f^{-1}(B) \}.$$

证明: $A \neq \Omega$ 上的 σ -代数.

证明. 根据题意, A 是可测空间中元素 B 的原像. 这里有必要事先定义原像. 以下关于原像的内容参考了 [**prob**]. 对于任何 $B \subset Y$, 称

$$f^{-1}B \triangleq \{f \in B\} = \{x : f(x) \in B\}$$

为**集合** B **在映射** f **下的原像**. 对于任何 Y 上的集合系 \mathcal{E} , 称

$$f^{-1}\mathcal{E} \triangleq \{f^{-1}B : B \in \mathcal{E}\}$$

为集合系 \mathcal{E} 在映射 f 下的原像.

这里使用集合原像的若干性质:

- (i) 对于集合的原像, 有 $f^{-1}(\varnothing) = \varnothing$. 事实上, 若存在 $w \in f^{-1}(\varnothing) = \{x : f(x) \in \varnothing\}$, 即 $f(w) \in \varnothing$, 而这与空集的定义矛盾, 因此 $f^{-1}(\varnothing) = \varnothing$.
- (ii) $(f^{-1}(B))^c = f^{-1}(B^c), \forall B \in \mathcal{E}.$ 事实上, $(f^{-1}(B))^c = \{x : f(x) \in B\}^c = \{x : f(x) \in B^c\} = f^{-1}(B^c).$
- (iii) 对于任意的指标集 T, 有 $\cup_{t \in T} f^{-1}(B_t) = f^{-1}(\cup_{t \in T} B_t)$. 事实上, $\cup_{t \in T} f^{-1}(B_t) = \cup_{t \in T} \{x : f(x) \in B_t\} = \{x : f(x) \in \cup_{t \in T} B_t\} = f^{-1}(\cup_{t \in T} B_t)$. 于是,
 - 1. $\emptyset \in \mathcal{A}$. 由于 $\emptyset = f^{-1}(\emptyset)$, 且 $\emptyset \in \mathcal{E}$, 因此 $\emptyset \in \mathcal{A}$.
 - 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$. 对于 $A \in \mathcal{A}$, 不妨记 $A = f^{-1}(B)$, 于是有 $A^c = f^{-1}(B^c)$, 而根据 \mathcal{E} 是 σ -代数, 有 $B^c \in \mathcal{E}$, 于是有 $A^c \in \mathcal{A}$.
 - 3. $A_i \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$. 对于 $A_i \in \mathcal{A}$, 不妨记 $A_i = f^{-1}(B_i)$, 于是有 $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} f^{-1}(B_i) = f^{-1}(\bigcup_{i=1}^{\infty} B_i)$, 而根据 \mathcal{E} 是 σ -代数, 有 $\bigcup_{i=1}^{\infty} B_i \in \mathcal{E}$, 于是有 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

因此, $A \in \Omega$ 上的 σ -代数.

Exercise #2. 8. $\Diamond f: \mathbb{R} \to \mathbb{R}$ 是一个连续函数, 考察

$$\mathcal{A} = \{ A \subset \mathbb{R} : \exists B \in \mathcal{B} \ \text{ is } \mathcal{L}A = f^{-1}(B) \},$$

其中 \mathcal{B} 是像空间 \mathbb{R} 上的 Borel σ -代数. 证明: $\mathcal{A} \subset \mathcal{B}$, 这里 \mathcal{B} 是定义域 \mathbb{R} 上的 Borel σ -代数.

证明. 只需证任取 A 中的元素 $A = f^{-1}(B)$ 满足 $f^{-1}(B) \in \mathcal{B}$. 根据连续映射的性质, 开集的原像是开集. 由于像空间中的 \mathcal{B} 是由开集生成的 σ -代数, 因此包含所有的开集, 因此 $f^{-1}(B) \in \mathcal{B}$.

对于习题 2.9 到 2.15, 我们假设一个固定的抽象空间 Ω , σ -代数 \mathcal{A} , 和一个定义在 (Ω, \mathcal{A}) 上的概率测度 P. 我们考虑一列事件 $\{A_n\}_{n=1}^{\infty}$, 以及事件 A, B 总在事件域 \mathcal{A} 中.

Exercise #2. 9. 对于 $A, B \in \mathcal{A}$, 若 $A \cap B = \emptyset$, 证明 $P(A \cup B) = P(A) + P(B)$.

证明. 先证明 $P(\emptyset) = 0$, 由于概率测度的可列可加性,

$$P(\varnothing) = P(\bigcup_{i=1}^{\infty} \varnothing) = \sum_{i=1}^{\infty} P(\varnothing),$$

由于 $P(\emptyset) \in [0,1]$, 这使得 $P(\emptyset) = 0$.

根据概率测度的可列可加性,取

$$A_1 = A, A_2 = B, A_i = \emptyset, i > 3.$$

显然满足 $A_n \cap A_m = \emptyset, n \neq m$, 于是有

$$P(A \cup B) = P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) = P(A) + P(B) + 0 = P(A) + P(B).$$

Exercise #2. 10. 对于 $A, B \in \mathcal{A}$, 证明 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

证明. 对于 $A,B\in\mathcal{A},$ 有 $A\cup B=A+B\cap A^c,$ 其中 + 表示集合的无交并. 于是根据习题 #2.9, #2.12, 有

$$P(A \cup B) = P(A) + P(B \cap A^c) = P(A) + P(B) - P(A \cap B).$$

Exercise #2. 11. 对于 $A \in \mathcal{A}$, 证明: $P(A) = 1 - P(A^c)$.

证明. 根据概率测度的有限可加性, 由于 $A, A^c \in \mathcal{A}, A \cap A^c = \emptyset, A \cup A^c = \Omega$, 因此,

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c),$$

即有 $P(A) = 1 - P(A^c)$.

Exercise #2. 12. 对于 $A, B \in \mathcal{A}$, 证明: $P(A \cap B^c) = P(A) - P(A \cap B)$.

证明. 对于 $A, B \in \mathcal{A}$, 有 $A = A \cap \Omega = A \cap (B \cup B^c) = (A \cap B) + (A \cap B^c)$, 其中 $A \cap B$, $A \cap B^c$ 互不相交. 于是根据概率测度的有限可加性, 有

$$P(A) = P(A \cap B) + P(A \cap B^c),$$

即有

$$P(A \cap B^c) = P(A) - P(A \cap B).$$

Exercise #2. 13. 设 A_1, \dots, A_n 是给定的事件. 证明容斥原理:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} P\left(A_{i}\right) - \sum_{i < j} P\left(A_{i} \cap A_{j}\right)$$
$$+ \sum_{i < j < k} P\left(A_{i} \cap A_{j} \cap A_{k}\right) - \dots + (-1)^{n+1} P\left(A_{1} \cap A_{2} \cap \dots \cap A_{n}\right)$$

证明. 证明用数学归纳法. 当 n=1 时, 等式显然成立, 当 n=2 时, 根据习题 #2.10, 成立. 假设当 n=t 时等式成立, 即

$$P\left(\bigcup_{i=1}^{t} A_i\right) = \sum_{i} P\left(A_i\right) - \sum_{i < j} P\left(A_i \cap A_j\right)$$
$$+ \sum_{i < j < k} P\left(A_i \cap A_j \cap A_k\right) - \dots + (-1)^{t+1} P\left(A_1 \cap A_2 \cap \dots \cap A_t\right)$$

则当 n = t + 1 时,

$$P(\cup_{i=1}^{t+1} A_i) = P(\cup_{i=1}^t A_i) + P(A_{t+1}) - P(\cup_{i=1}^t A_i \cap A_{t+1})$$

$$= \sum_{i=1}^t P(A_i) - \sum_{1 \le i < j \le t} P(A_i \cap A_j) + \dots + (-1)^{t+1} P(A_1 \cap \dots \cap A_t)$$

$$+ P(A_{t+1}) - P(\cup_{i=1}^t A_i \cap A_{t+1})$$

$$= \sum_{i=1}^{t+1} P(A_i) - \sum_{1 \le i < j \le t+1} P(A_i \cap A_j) + \dots + (-1)^{t+2} P(A_1 \cap \dots \cap A_t \cap A_{t+1})$$

成立. 于是由数学归纳法, 原命题得证.

Exercise #2. 14. 假设
$$P(A) = \frac{3}{4}, P(B) = \frac{1}{3}$$
. 证明: $\frac{1}{12} \le P(A \cap B) \le \frac{1}{3}$.

证明. 根据概率测度的单调性, $A \cap B \subset B$, 因此 $P(A \cap B) \leq P(B) = \frac{1}{3}$. 另一方面, 根据习题 #2.10, 有

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) \ge \frac{3}{4} + \frac{1}{3} - 1 = \frac{1}{12}.$$

于是得证.

Exercise #2. 15 (次可加性). $\Diamond A_i \in \mathcal{A}$ 是一列事件. 证明:

$$P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P\left(A_i\right)$$

对于所有的 n, 以及

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P\left(A_i\right)$$

证明. 只需证明

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P\left(A_i\right)$$

因为对于有限 n, 可以通过设定 $A_t = \emptyset, t \ge n+1$ 来得到第一个不等式. 对这一列事件 A_i , 我们采用以下的不交化方法:

$$B_1 \triangleq A_1,$$

$$B_2 \triangleq A_2 \backslash A_1 \subset A_2,$$

$$B_3 \triangleq A_3 \backslash (A_1 \cup A_2) \subset A_3,$$

$$\cdots,$$

$$B_n \triangleq A_n \backslash \left(\bigcup_{i=1}^{n-1} A_i \right) \subset A_n,$$

于是有 $B_i \cap B_j = \emptyset, i \neq j$, 且 $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i$, 于是根据概率测度的有限可加性, 有

$$P(\bigcup_{i=1}^{\infty} A_i) = P\left(\sum_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} P(B_i) \le \sum_{i=1}^{\infty} P(A_i).$$

Exercise #2. 16 (Bonferroni 不等式). 令 $A_i \in A$ 是一列事件. 证明:

a)
$$P(\bigcup_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - \sum_{i < i} P(A_i \cap A_j),$$

b)
$$P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k).$$

证明. 用归纳法完成我们的证明.

a) 当 n=2 时, 根据习题 #2.10, 有 $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$. 假设当 n=t 时不等式成立, 即

$$P\left(\cup_{i=1}^{t} A_{i}\right) \geq \sum_{i=1}^{t} P\left(A_{i}\right) - \sum_{1 \leq i < j \leq t} P\left(A_{i} \cap A_{j}\right),$$

则当 n = t + 1 时,

$$P\left(\cup_{i=1}^{t+1} A_{i}\right) = P\left(\cup_{i=1}^{t} A_{i}\right) + P(A_{t+1}) - P\left(\cup_{i=1}^{t} A_{i} \cap A_{t+1}\right)$$

$$\geq \sum_{i=1}^{t+1} P(A_{i}) - \sum_{1 \leq i < j \leq t} P(A_{i} \cap A_{j}) - P\left(\cup_{i=1}^{t} A_{i} \cap A_{t+1}\right)$$

$$\geq \sum_{i=1}^{t+1} P(A_{i}) - \sum_{1 \leq i < j \leq t+1} P(A_{i} \cap A_{j}). \quad (根据次可加性)$$

b) 当 n=2 时,根据习题 #2.10,有 $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$. 当 n=3 时,根据习题 #2.13(容斥原理),有 $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$. 假设当 $n \leq t$ 时不等式成立,即

$$P\left(\bigcup_{i=1}^{t} A_{i}\right) \leq \sum_{i=1}^{t} P\left(A_{i}\right) - \sum_{1 \leq i < j \leq t} P\left(A_{i} \cap A_{j}\right) + \sum_{1 \leq i < j \leq k \leq t} P\left(A_{i} \cap A_{j} \cap A_{k}\right),$$

则当 n = t + 1 时, 需要用到 a) 的不等式,

$$\begin{split} P\left(\cup_{i=1}^{t+1}A_{i}\right) &= P\left(\cup_{i=1}^{t-1}A_{i}\right) + P(A_{t}) + P(A_{t+1}) - P\left(\cup_{i=1}^{t-1}A_{i} \cap A_{t}\right) - P\left(\cup_{i=1}^{t-1}A_{i} \cap A_{t+1}\right) - P(A_{t} \cap A_{t+1}) \\ &+ P\left(\left\{\cup_{i=1}^{t-1}A_{i}\right\} \cap A_{t} \cap A_{t+1}\right) \\ &\leq \sum_{i=1}^{t-1} P\left(A_{i}\right) - \sum_{1 \leq i < j \leq t-1} P\left(A_{i} \cap A_{j}\right) + \sum_{1 \leq i < j < k \leq t-1} P\left(A_{i} \cap A_{j} \cap A_{k}\right) + P(A_{t}) + P(A_{t+1}) \\ &- P\left(\cup_{i=1}^{t-1}A_{i} \cap A_{t}\right) - P\left(\cup_{i=1}^{t-1}A_{i} \cap A_{t+1}\right) - P(A_{t} \cap A_{t+1}) + P\left(\left\{\cup_{i=1}^{t-1}A_{i}\right\} \cap A_{t} \cap A_{t+1}\right) \\ &\leq \sum_{i=1}^{t+1} P\left(A_{i}\right) - \sum_{1 \leq i < j \leq t-1} P\left(A_{i} \cap A_{j}\right) + \sum_{1 \leq i < j < k \leq t-1} P\left(A_{i} \cap A_{j} \cap A_{k}\right) + \sum_{i=1}^{t-1} P(A_{i} \cap A_{t} \cap A_{t+1}) \\ &- \sum_{i=1}^{t-1} P(A_{i} \cap A_{t+1}) - \sum_{1 \leq i < j \leq t-1} P(A_{i} \cap A_{j} \cap A_{t+1}) \\ &- P\left(A_{t} \cap A_{t+1}\right) - \sum_{1 \leq i < j \leq t-1} P\left(A_{i} \cap A_{j} \cap A_{t+1}\right) \\ &\leq \sum_{i=1}^{t+1} P\left(A_{i}\right) - \sum_{1 \leq i \leq j \leq t+1} P\left(A_{i} \cap A_{j}\right) + \sum_{1 \leq i \leq t \leq t+1} P\left(A_{i} \cap A_{j} \cap A_{k}\right) \\ &\leq \sum_{i=1}^{t+1} P\left(A_{i}\right) - \sum_{1 \leq i \leq j \leq t+1} P\left(A_{i} \cap A_{j}\right) + \sum_{1 \leq i \leq t \leq t+1} P\left(A_{i} \cap A_{j} \cap A_{k}\right) \end{split}$$

Exercise #2. 17. 假设 Ω 是无穷集合 (无论是否可数), 令 A 是由要么有有限元素, 要么有有限元素的补集的集合构成的集族. 证明 A 是代数, 但不是 σ -代数.

证明.记

$$A = \{A \subset \Omega : A \text{ 是有限集}, \, \text{或}A^c \text{ 是有限集}\}.$$

要证明 A 是一个代数, 只需证空集, 余集, 有限并运算封闭.

- 1. 空集没有元素, 因此在 A 中.
- 2. 若 $E \in \mathcal{A}$, 则 E 是有限集, 或者 E^c 是有限集. 于是 E^c 是有限集, 或者 $(E^c)^c = E$ 是有限集. 因此, \mathcal{A} 对于取余运算封闭.
- 3. 若 $\{E_i\}_{i=1}^n \subset A$, 定义 $E = \bigcup_{i=1}^n E_i$. 若每一个 E_i 都是有限集合, 那么 E 也是有限集合. 若存在某个 E_j 是无限集合, 它的余集 E_j^c 是有限集合, 那么 $(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c \subset E_j^c$ 是有限集合. 因此, A 对于有限并运算封闭.

下面说明 A 不是 σ -代数.

问题出在"若 E_i 是有限集合,那么 $\bigcup_{i=1}^{\infty} E_i$ 是有限集合"这一点.事实上,对于无穷集合 Ω ,无限并运算可能是无限集合.例如,取 $\Omega=\mathbb{N}$,对于 $E_i=\{i\}$,则 $\bigcup_{i=1}^{\infty} E_i=\mathbb{N}$ 是无限集合.因此,A 不是 σ -代数.

命题 (等价性)。以下两种集合极限的定义是等价的:

1. 若 $\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$,我们认为 $\{A_n\}$ 的极限存在,并把

$$\lim_{n \to \infty} A_n \triangleq \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$$

称为它的极限.

2. 若存在集合 A 使得,

$$\lim_{n \to \infty} I_{A_n}(w) = I_A(w), \forall w \in \Omega,$$

则称 A_n 收敛到 A.

证明. $1 \Rightarrow 2$. 定义集合 $A \triangleq \lim_{n \to \infty} A_n$. 往证 $\lim_{n \to \infty} I_{A_n}(w) = I_A(w)$ 逐点收敛. 当 $w \in A = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ 时,存在 n_0 使得对于任意的 $k \geq n_0$,有 $w \in A_k$, $I_{A_k}(w) = 1$,于是有 $\lim_{k \to \infty} I_{A_k}(w) = 1$,业 $ext{w} \in A$. 当 $ext{w} \in A^c = \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k\right)^c = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c$ 时,存在 n_0' 使得对于任意的 $k \geq n_0'$,有 $w \in A_k^c$, $I_{A_k}(w) = 0$,于是有 $\lim_{k \to \infty} I_{A_k}(w) = 0$, $w \in A^c$.于是

$$\lim_{n \to \infty} I_{A_n}(w) = I_A(w), \forall w \in \Omega.$$

 $2 \Rightarrow 1$. 由于示性函数是二值函数, 因此若存在集合 A 使得,

$$\lim_{n \to \infty} I_{A_n}(w) = I_A(w), \forall w \in \Omega,$$

则有对 $w \in A$, 存在 n_0 使得对于任意的 $n \geq n_0$, 有 $I_{A_n}(w) = 1$, 即 $w \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$, 即 $w \in \lim_{n \to \infty} \inf A_n$, $A \subset \liminf_{n \to \infty} A_n$. 同理, 对 $w \in A^c$, 存在 n'_0 使得对于任意的 $n \geq n'_0$, 有 $I_{A_n}(w) = 0$, 即

$$w \in \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k\right)^c, \ \mathbb{P} \ w \in \left(\limsup_{n \to \infty} A_n\right)^c, A^c \subset \left(\limsup_{n \to \infty} A_n\right)^c. \ \mathcal{F}$$
是有
$$A \subset \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n \subset A.$$

从而有

$$A = \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n.$$