PSYCH 260-BBH 203 Exam 2

$March\ 15,\ 2016$

	Answer the questions using the Scantron form.	
. .		

1 Main

Please put in their proper order the steps that lead to synaptic communication between neurons. Begin with the presynaptic cell.

1. Step 1

- A. Voltage-gated Ca++ channels open.
- B. Action potential propagates down the axon to the axon terminal.
- C. Ca++ entry initiates exocytosis of neurotransmitter.
- D. Ligand-gated receptors bind neurotransmitter and activate channels in the postsynaptic cell.
- E. Neurotransmitter diffuses across the synaptic cleft.

2. Step 2

- A. Voltage-gated Ca++ channels open.
- B. Action potential propagates down the axon to the axon terminal.
- C. Ca++ initiates exocytosis of neurotransmitter.
- D. Ligand-gated receptors bind neurotransmitter and activate channels in the postsynaptic cell.
- E. Neurotransmitter diffuses across synaptic cleft.

3. Step 3

- A. Voltage-gated Ca++ channels open.
- B. Action potential propagates down the axon to the axon terminal.
- C. Ca++ initiates exocytosis of neurotransmitter.
- D. Ligand-gated receptors bind neurotransmitter and activate channels in the postsynaptic cell.
- E. Neurotransmitter diffuses across synaptic cleft.

4. Step 4

- A. Voltage-gated Ca++ channels open.
- B. Action potential propagates down the axon to the axon terminal.
- C. Ca++ initiates exocytosis of neurotransmitter.
- D. Ligand-gated receptors bind neurotransmitter and activate channels in the postsynaptic cell.
- E. Neurotransmitter diffuses across synaptic cleft.

5. Step 5

- A. Voltage-gated Ca++ channels open.
- B. Action potential propagates down the axon to the axon terminal.
- C. Ca++ initiates exocytosis of neurotransmitter.
- D. Ligand-gated receptors bind neurotransmitter and activate channels in the post-synaptic cell.
- E. Neurotransmitter diffuses across synaptic cleft.

Answer the following questions.

- 6. One theory suggests that the evolution of _____helped drive the emergence of complex animal forms during the Cambrian explosion.
 - A. Visual perception.
 - B. Physiological mechanisms for passive feeding.
 - C. Radially symmetric bodies and nervous systems.
 - D. Plants.
- 7. All of the following "nodes" are part of the Swanson/Cajal Four Systems framework except.
 - A. Sensory
 - B. Motor
 - C. Cognition
 - D. Reproduction
- 8. All of the following are components of the SAM axis, EXCEPT:
 - A. Midbrain.
 - B. Sympathetic nervous system.
 - C. Adrenal medulla.
 - D. Hypothalamus.

Match the hormone to its function.

- 9. Oxytocin
 - A. stress response; increases blood glucose; anti-inflammatory effect.
 - B. uterine contraction; milk release; bonding.
 - C. regulates seasonal changes; sexual maturation.
 - D. blood vessel constriction; antidiuretic hormone.
- 10. Cortisol
 - A. stress response; increases blood glucose; anti-inflammatory effect.
 - B. uterine contraction; milk release; bonding.
 - C. regulates seasonal changes; sexual maturation.
 - D. blood vessel constriction; antidiuretic hormone.
- 11. Melatonin
 - A. stress response; increases blood glucose; anti-inflammatory effect.
 - B. uterine contraction; milk release; bonding.
 - C. regulates seasonal changes, circadian rhythm; sexual maturation.
 - D. blood vessel constriction; antidiuretic hormone.

	Answe	r the following questions.
12.	Botulin	um toxin (botox) blocks the release of acetylcholine from presynaptic terminals. In large quannis can bebecause it
	A	good; speeds the conduction of action potentials.
	В	. bad; blocks communication to muscle fibers.
	C	2. good; accelerates K+ flow.
	Γ	bad; affects the size and number of presynaptic IPSPs.
13.	matter)	is a kind ofbrain imaging method used to study axon fiber (white tracts.
	Á	. Structural MRI; structural.
		3. Positron Emission Tomography (PET); functional.
		. Magnetoencephalography; functional.
	D	diffusion tensor imaging (DTI); structural.
14.	AChE o	ontributes to theof
	A	. Breakdown and inactivation; acetylcholine.
	В	. Breakdown and inactivation; dopamine, norepinephrine, and epinephrine.
	C	2. Postsynaptic reuptake; serotonin.
	Γ	. Increase in monoamine levels; GABA-releasing neurons.
15.	This ne	urotransmitter is released by motor neurons onto skeletal muscle.
	A	GABA
	Е	3. Serotonin
	C	. Acetylcholine
	Γ	o. Glutamate
16.	Selective	e reuptake inhibitors like Prozac act on,the normal process of tion.
	A	synaptic vesicles; slowing.
	Е	s. postsynaptic receptors; accelerating.
	C	. presynaptic transporters; slowing.
	Γ	. Na+/K+ pumps; accelerating.
17.	The	is one of the places in the adult mammalian brain where new neurons are produced.
		. region surrounding the cerebral ventricles.

Page 4 of 10

B. thalamus.C. cerebellum.

D. ventral spinal cord.

18.	The meso-limbo-cortical projection from thein the midbrain releases the neurotransmitter It is part of the brain's 'reward' circuit.
	A. ventral tegmental area; dopamine.
	B. raphe nucleus; NE.
	C. superior colliculus; glutamate.
	D. thalamus; GABA.
	The 10th cranial (Xth) or vagus nerve connects to thebranch of the autonomic nervous system. Its neurons tend to slow heart rate when stimulated.
	A. sympathetic.
	B. enteric.
	C. parasympathetic.
	D. somatic.
20.	This glial cell type contributes to the 'pruning' of dendritic spines from unused synapses in the CNS.
	A. Pyramidal cells.
	B. microglia.
	C. Schwann cells.
	D. Stellate cells.
21.	receptors contain their own ion channel;do not.
	A. ionotropic; metabotropic.
	B. metabotropic; ionotropic.
	C. GABA; glutamate.
	D. Dopamine; serotonin.
22.	is the primary excitatory neurotransmitter in the CNS;is the primary neurotransmitter of CNS output.
	A. GABA; glutamate.
	B. glutamate; GABA.
	C. glutamate; acetylcholine.
	D. Acetylcholine; glutamate.
23.	Hormonal actionthan neuronal action.
	A. is faster-acting.
	B. is more specific in its effects.
	C. is slower-acting.
	D. involves greater voluntary control.
24.	Opening a channel permeable to Na+ in a neuron at its resting potential would have a/aneffect
	A. excitatory.
	B. inhibitory.
	C. modulatory.

Match the endocrine structure with the function.

25. Hypothalamus

- A. Circadian (day/night) rhythms.
- B. Responds to adrenocoricotropic hormone (ACTH) by releasing cortisol.
- C. Releases NE and epinephrine.
- D. Controls hormone secretions into and by pituitary.

26. Pineal gland

- A. Circadian (day/night) rhythms.
- B. Responds to adrenocoricotropic hormone (ACTH) by releasing cortisol.
- C. Releases NE and epinephrine.
- D. Controls hormone secretions into and by pituitary.

27. Adrenal cortex

- A. Circadian (day/night) rhythms.
- B. Responds to adrenocoricotropic hormone (ACTH) by releasing cortisol.
- C. Releases NE and epinephrine.
- D. Controls hormone secretions into and by pituitary.

Match the Roman numeral in the figure below, to the processes and structures in the hormonal action cycle the figure depicts.

- 28. I
- A. Posterior pituitary.
- B. Nerve impulses to hypothalamus.
- C. Release of oxytocin.
- D. Hypothalamus.
- 29. II
- A. Posterior pituitary.
- B. Nerve impulses to hypothalamus.
- C. Release of oxytocin.
- D. Hypothalamus.
- 30. III
- A. Posterior pituitary.
- B. Nerve impulses to hypothalamus.
- C. Release of oxytocin.
- D. Hypothalamus.
- 31. IV
- A. Posterior pituitary.
- B. Nerve impulses to hypothalamus.
- C. Release of oxytocin.
- D. Hypothalamus.

32.	Dopamine antagonists alleviate some of schizophrenia's positive symptoms – 'additions' to behavior. Thisthehypothesis of schizophrenia which posits that excessive dopamine			
	causes psychotic symptoms.			
	A. Supports; dopamine.			
	B. Supports; amino acid.			
	C. Undermines; dopamine.			
	D. Undermines; monoamine.			
33.	Which neurotransmitter/hormone is involved in sexual arousal, childbirth, and social bonding?			
	A. Serotonin.			
	B. Oxytocin.			
	C. Epinephrine.			
	D. Vasopressin.			
	Which of these is NOT one of features of the human brain that contributes to our greater processing capacity?			
	A. Dense interconnections.			
	B. High levels of myelination.			
	C. Larger mass but fewer folds.			
	D. Large cerebral cortex.			
35.	Synaptogenesis; myelination			
	A. Continues long after birth; also continues long after birth.			
	B. Continues long after birth; stops before birth.			
	C. Ends before birth; continues long after birth.			
	D. Ends before birth; also ends before birth.			
36.	Across the animal kingdom, bigger animals generally havebrains. A. bigger.			
	B. smaller.			
	C. smoother, less wrinkled.			
	D. radially symmetric.			
37	The humanis/are disproportionately large in comparison to other primates.			
31.	A. cerebellum.			
	B. spinal cord.			
	C. cerebral ventricles.			
	D. cerebral cortex.			
38.	Histamine is one of thegroup of neurotransmitters. It is released by the			
	A			
	A. monoamine; hippocampus.			
	B. amino acid; midbrain.			
	C. monoamine; hypothalamus.			
	D. peptide; amygdala.			

39. Gap junctions support ______between cells.

A. direct electrical coupling

B. chemical communication

C. slow communication

D. hormonal signaling

40. The release of glutamate onto an AMPA receptor on a neuron's dendrite produces an _____

A. inhibitory postsynaptic potential (IPSP)

B. electrochemical postsynaptic potential (EPSP)

C. excitatory postsynaptic potential (EPSP)

D. inwardly-driven postsynaptic potential (IPSP)

Turn to the next page to complete the bonus questions.

2 Bonus

41. The 'birth' of the nervous system occurs at about 18 days post-fertilization when	begins.
A. neurulation.	
B. synaptogenesis.	
C. myelination.	
D. neuronal migration.	
E. cortical folding.	
42. During human brain development, the process of apoptosis describes:	
A. Expansive myelination in the CNS.	
B. Movement of newly development cells to their proper locations.	
C. Stem cells become specified types of cells.	
D. Pruning of neurons via cell death.	
43. The longitudinal fissure divides the	
A. left hemisphere from the right.	
B. temporal lobe from the frontal and parietal lobes.	
C. frontal lobe from the parietal lobes.	
D. corpus callosum from the anterior commissure.	
44. Spina bifida results from	
A. malformation of the brain.	
B. failure to myelinate peripheral neurons.	
C. failure of caudal neural tube closure.	
D. slow rates of neurogenesis.	