Gradient Estimation with Stochastic Softmax Tricks

Problem statement

- 1) В некоторых ситуациях выходы модели(например, автокодировщика) удобнее или нужно хранить в виде ohe-векторов, т.е. выход представлен в виде вектора (0,0,...., 1, 0, 0), например argmin по выходу из слоя в виде ohe, где 1 на месте аргумента, чье значение минимально
- 2) возникает проблема обучения модели(градиенты всегда будут нулевые)

Возможное решение проблемы

- 1) Представим что мы генерируем выход ohe векторов как распределение, которое было до применения ohe, например это мог быть слой активаций, целевая функция матожидание исходной целевой функции по распределению ohe.
- 2) теперь нужно уметь считать матожидание, что затруднительно

Given a probability mass function $p_{\theta}: \mathcal{X} \to (0, 1]$ that is differentiable in $\theta \in \mathbb{R}^m$, a loss function $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$, and $X \sim p_{\theta}$, our ultimate goal is gradient-based optimization of $\mathbb{E}[\mathcal{L}(X)]$. Thus, we are concerned in this paper with the problem of estimating the derivatives of the expected loss,

$$\frac{d}{d\theta} \mathbb{E}[\mathcal{L}(X)] = \frac{d}{d\theta} \left(\sum_{x \in \mathcal{X}} \mathcal{L}(x) p_{\theta}(x) \right). \tag{1}$$

Gumbel max and softmax tricks

Пусть наш выход из модели (из сети) есть некое дискретное конечное множество, которое мы представили в виде ohe или матриц, если это более сложные объекты:

k-hot vector

Permutation matrix

Spanning tree adj. matrix Arborescence adj. matrix

Gumbel max and softmax tricks

Gumbel max trick:

The GMT is the following identity: for $X \sim p_{\theta}$ and $G_i + \theta_i \sim \text{Gumbel}(\theta_i)$ indep.,

$$X \stackrel{d}{=} \arg\max_{x \in \mathcal{X}} (G + \theta)^T x.$$

Ideally, one would have a reparameterization estimator, $\mathbb{E}[d\mathcal{L}(X)/d\theta] = d\mathbb{E}[\mathcal{L}(X)]/d\theta$

Gumbel softmax trick:

softmax_t $(u)_i = \exp(u_i/t)/\sum_{j=1}^n \exp(u_j/t)$ for $u \in \mathbb{R}^n, t > 0$, to continuously approximate X,

$$X_t = \operatorname{softmax}_t(G + \theta). \tag{3}$$

Gumbel softmax trick

Stochastic argmax and softmax trick

Stochastic argmax trick

Definition 1. Given a non-empty, convex independent, finite set $\mathcal{X} \subseteq \mathbb{R}^n$ and a random utility U whose distribution is parameterized by $\theta \in \mathbb{R}^m$, a stochastic argmax trick for X is the linear program,

$$X = \arg\max_{x \in \mathcal{X}} U^T x. \tag{4}$$

Stochastic softmax trick

Given an SMT, an SST incorporates a strongly convex regularizer to the linear objective, and expands the state space to the convex hull of the embeddings $\mathcal{X} = \{x_1, \dots, x_m\} \subseteq \mathbb{R}^n$,

$$P := \operatorname{conv}(\mathcal{X}) := \left\{ \sum_{i=1}^{m} \lambda_i x_i \,\middle|\, \lambda_i \ge 0, \, \sum_{i=1}^{m} \lambda_i = 1 \right\}. \tag{5}$$

Expanding the state space to a convex polytope makes it path-connected, and the strongly convex regularizer ensures that the solutions are continuous over the polytope.

Definition 2. Given a stochastic argmax trick (X, U) where $P := \operatorname{conv}(X)$ and a proper, closed, strongly convex function $f : \mathbb{R}^n \to \{\mathbb{R}, \infty\}$ whose domain contains the relative interior of P, a stochastic softmax trick for X at temperature t > 0 is the convex program,

$$X_t = \arg\max_{x \in P} U^T x - t f(x) \tag{6}$$

Main trick with mean function

С помощью трюка мы можем оценить мат ожидание без трудоемких вычислений

Proposition 1. If X in Def. [1] is a.s. unique, then for X_t in Def. [2], $\lim_{t\to 0^+} X_t = X$ a.s. If additionally $\mathcal{L}: P \to \mathbb{R}$ is bounded and continuous, then $\lim_{t\to 0^+} \mathbb{E}[\mathcal{L}(X_t)] = \mathbb{E}[\mathcal{L}(X)]$.

It is common to consider temperature parameters that interpolate between marginal inference and a deterministic, most probable state. While superficially similar, our relaxation framework is different; as $t \to 0^+$, an SST approaches a sample from the SMT model as opposed to a deterministic state.

 X_t also admits a reparameterization trick. The SST reparameterization gradient estimator given by,

$$\frac{d\mathcal{L}(X_t)}{d\theta} = \frac{\partial \mathcal{L}(X_t)}{\partial X_t} \frac{\partial X_t}{\partial U} \frac{dU}{d\theta}.$$
 (7)

If \mathcal{L} is differentiable on P, then this is an unbiased estimator of the gradient $d\mathbb{E}[\mathcal{L}(X_t)]/d\theta$, because X_t is continuous and a.e. differentiable:

Пример с spanning tree

Вопросы:

- 1) проблема оценки градиента (слайд 2)
- 2) выписать формулы GMT GST (слайд 5)
- 3) выписать формулы SMT SST (слайд 7)