Periodic Operators for Algebraic Geometry

Minisymposium on Applications of Algebraic Geometry

11 October 2024

Frank Sottile

I thank my co-authors: Do, Faust, Kuchment, Lopez-García, Regan, Robinson, Shipman, and Telen, as well as colleagues Berkolaiko, Fillman, and Liu.

Supported by NSF grant DMS-2201005

Periodic graph operators to matrices

A \mathbb{Z}^d -periodic graph $\Gamma=(\mathcal{V},\mathcal{E})$ is a discretization of a crystal.

Schrödinger operator (on $\ell_2(\mathcal{V}))$ is

$$H = V + \Delta,$$

where $V\colon \mathcal{V} o \mathbb{R}$ is a potential and

 Δ is a weighted graph Laplacian (V and Δ are both periodic).

As H is self-adjoint, its spectrum $\sigma(H) := \{\lambda \mid H - \lambda \text{ not invertible}\}$ is a subset of \mathbb{R} . It has finitely many intervals, representing electron energy bands.

After Fourier (Floquet) transform, H becomes multiplication by the *Floquet matrix*, $L(z) \in \operatorname{Mat}_{n \times n} \mathbb{R}[z_1^{\pm}, \dots, z_d^{\pm}].$

Here, n is the number of \mathbb{Z}^d -orbits on \mathcal{V} .

As Γ is undirected, $L(Z)^T = L(z^{-1})$.

a \mathbb{Z}^2 -periodic graph

Twisted reality of Bloch varieties

Let $\mathbb{T}:=\{z\in\mathbb{C}^\times\mid \overline{z}=z^{-1}\}$, the unit complex numbers. Then $\mathbb{T}^d=$ unitary characters of \mathbb{Z}^d , and $\sigma(H)=\{\lambda\in\mathbb{R}\mid \exists z\in\mathbb{T}^d \text{ such that } \det(L(z)-\lambda I_n)=0\}.$

The dispersion polynomial is $D(z,\lambda):=\det(L(z)-\lambda I_n)\in\mathbb{R}[z^\pm].$ It defines the (real) Bloch variety $\mathsf{BV}_\mathbb{R}$ in $\mathbb{T}^d\times\mathbb{R}$, and the spectrum $\sigma(H)$ is its image under the coordinate function λ . $\sigma(H)$

 λ

The *Bloch variety* BV $\subset (\mathbb{C}^{\times})^d \times \mathbb{C}$ is the hypersurface defined by dispersion polynomial.

As
$$L(z)^T = L(z^{-1})$$
, $D(z,\lambda) = D(z^{-1},\lambda)$, and $\mathsf{BV}_\mathbb{R}$ is the subset of BV fixed by the *twisted complex conjugation* $(z,\lambda) \longmapsto (\overline{z^{-1}},\overline{\lambda})$ on $(\mathbb{C}^\times)^d \times \mathbb{C}$ and BV .

Everything old is new again

1979: van Moerbeke and Mumford considered \mathbb{Z} -periodic *directed graphs*, showing an equivalence between the operators and curves with certain divisors. (The curves are the Bloch varieties).

1993: Gieseker, Knörrer, Trubowitz (GKT) studied pure the Schrödinger operator on the grid graph \mathbb{Z}^2 where \mathbb{Z}^2 acts via $a\mathbb{Z} \oplus b\mathbb{Z}$, with $\gcd(a,b)=1$. We show this with a=3 and b=2.

They studied/determined:

- Density of states (gave a formula).
- Irreducibility of Bloch and Fermi ($\lambda = \text{const.}$ on BV) varieties.
- Smoothness of Bloch and Fermi varieties.
- Used a toric compactification and the Torelli Theorem.

Presented in a Bourbaki Lecture by Peters in 1992.

Critical Points

Kuchment: Physicists assume that the critical points on $BV_{\mathbb{R}}$ lying over edges of the spectrum are non-degenerate, which implies many important physical properties. This *Spectral Edges Nondegeneracy Conjecture* is largely open.

 \rightsquigarrow First step: study complex critical points of λ on BV.

Faust-S.: Number of critical points is at most the volume of the Newton polytope $\mathcal N$ of $D(z,\lambda)$. It is less than the volume only if $\mathcal N$ has vertical faces, or if the Bloch variety is singular along the boundary divisors.

Used the toric compactification given by $\mathcal{N}.$

10:45 Sunday: Jonah Robinson will explain how to quantify this asymptotic contribution to the number of critical points.

Irreducibility

A *Fermi variety* is a λ -level set of Bloch variety.

(Ir)reducibility has long been studied (GKT). Kuchment-Vainberg: Irreducible Fermi variety implies no embedded eigenvalues, and Liu: Irreducibility implies quantum ergodicity.

Fillman-Liu-Matos: Used "top homogeneous component" of $D(z,\lambda)$ to show irreducibility for operators on certain graphs.

Faust-Lopez: Generalized this to study irreducibility using *facial forms* of $D(z, \lambda)$. These are restrictions of $D(z, \lambda)$ to faces of Newton polytope.

Sheaves and Compactification

 $L(z)\colon \mathbb{C}[z^\pm]^n o \mathbb{C}[z^\pm]^n$ is a map of free modules.

Kravaris: Used a free resolution of L to study density of states.

Better: L(z) is an endomorphism of $(\mathcal{O}_{(\mathbb{C}^{\times})^d})^n$, and the Bloch variety in $(\mathbb{C}^{\times})^d \times \mathbb{C}$ is the support of the kernel sheaf to $L(z) - \lambda I_n$ consisting of solutions to $L\psi = \lambda \psi$.

Faust-Lopez-Shipman-S.: Study toric compactfications of

- $(\mathcal{O}_{(\mathbb{C}^{\times})^d})^n$ (in any toric variety).
- ullet solution sheaf in toric variety of \mathcal{N} .
- ullet the operator H (for certain graphs).

15:55 Saturday: Jordy Lopez-García will sketch this toric compactification.

Bestiary of Bloch varieties

