# Requisitos para lámpara de mesa diseñada para el estudio Sección: Sistema de monitorización y actuación

# LMDE-MA v-0.2

#### Norberto Cañas

# 1. Introducción

## 1.1. Propósito

Este documento establece un punto de partida, relativamente preciso, para el desarrollo del primer prototipo de un sistema empotrado (**SE**) para una lámpara de mesa diseñada para el estudio (LMDE). El dispositivo tiene funciones añadidas de monitorización del ambiente cercano, así como funciones de ajuste de la iluminación suministrada y velocidad de giro de un ventilador acoplado a la base del dispositivo.

#### 1.2. Alcance

El prototipo a desarrollar se ha dividido en tres componentes.

Estructura mecánica (EM) Suministra los soportes necesarios para alojar el resto de componentes.

Circuito de acondicionamiento (CA) Realiza actividades de acondicionamiento de señal para sensores y actuadores.

Sistema de monitorización y actuación (SMA) Realiza la monitorización de algunas variables ambientales de interés en actividades de estudio, así como suministra la posibilidad de actuar sobre la velocidad de giro de un ventilador, ajustar el color de la luz emitida por la lámpara y la iluminancia de la misma.

Los componentes  $\mathbf{EM}$  y  $\mathbf{CA}$  ya disponen de un primer prototipo completamente construido. El presente documento describe qué debe hacer el componente  $\mathbf{SMA}$ .

# 2. Descripción general

## 2.1. Visión general del documento

- Se describen a continuación los detalles del sistema que debe construirse.
- Este apartado está estructurado de la siguiente forma:
  - Perspectiva del producto.
  - Interfaces hardware existentes
  - Funciones del sistema.
  - Restricciones.

En el capítulo siguiente (3) se detallan los requisitos específicos.

## 2.2. Perspectiva del producto

El componente **SMA** debe interactuar con el componente **CA**, respetando el interfaz de este último. El componente **SMA** también debe interactuar con un computador personal, en el que realmente se despliega el interfaz que se ofrece al usuario final.

#### 2.3. Interfaces hardware existentes

## 2.3.1. Interfaz del componente CA

El componente CA ofrece un interfaz hardware con un conector de pines (cuadrado de 0.64mm de lado, con separación 2.54 mm entre centros) que permite acceder a las siguientes señales (ordenadas según el número de pin), interpretando el sentido de la información según el punto de vista del componente SMA:

- 1. Nivel de ruido. Señal de entrada analógica que codifica el nivel de ruido en el ambiente circundante.
- 2. SCL. Línea de sincronización para dispositivos conectados a un bus I2C.
- 3. SDA. Línea de datos para dispositivos conectados a un bus I2C (el componente SMA actúa como maestro del bus I2C).
- 4. Humedad relativa. Señal de entrada analógica que codifica la humedad relativa del ambiente circundante.
- 5. Temperatura. Señal de entrada analógica que codifica la temperatura del ambiente circundante.
- 6. PWM ventilador. Señal de salida que comanda, con su ciclo de trabajo, el nivel de alimentación del motor DC de un ventilador.
- 7. SCK (Serial Clock). Línea de reloj de un bus SPI.
- 8. SDO (Serial Data Out). Linea de salida de datos hacia un bus SPI.

El nivel de ruido es una señal analógica cuyos detalles de interpretación se detallan en el apartado de requisitos específicos.

El bus I2C conecta el sensor de luminosidad y el sensor de CO2, y debe funcionar a la velocidad estándard de 100 KHz.

El bus SPI conecta una tira de leds (de adafruit), constituida por leds SK9822.

Los sensores de temperatura y humedad relativa suministran señales analógicas.

Los sensores usilizados (salvo el sensor de nivel de ruido) son los siguientes y deben consultarse sus respectivas hojas técnicas (que acompañan a este documento) para entender como interactuar con ellos.

- Sensor de luminosidad VEML7700
- Sensor de CO2 iAQ-Core
- Sensor de humedad relativa HIH4000
- Sensor de temperatura LM35-LP

#### 2.3.2. Interfaz computador personal

Para ganar en flexibilidad se ha decidido que el interfaz de monitorización y ajuste de la unidad LMDE, que se ofrezca al usuario final, se despliegue en un computador personal ubicado en la misma mesa de estudio que la lámpara.

El SMA deberá ofrecer un interfaz UART para conectarse con el computador personal, el cual ofrecerá un interfaz USB. Para ello se utilizará el conversor TTL-232R-RPi (FTDI).

#### 2.3.3. Interfaz de usuario

El interfaz de usuario debe desarrollarse para una máquina LINUX. A nivel de prototipo existen actualmente los servicios que permiten operar el sistema en linea de comandos (aunque no se respetan todos los requisitos del sistema). Sin embargo, el interfaz definitivo debería ser un interfaz de ventanas.

En cualquier caso, el sistema debe mostrar en pantalla el estado de las variables ambientales (nivel de ruido, nivel de CO2, humedad relativa, temperatura y luminosidad), al tiempo que debe permitir cambiar el color de la luz emitida y el nivel de iluminación, así como la velocidad del ventilador.

Detalles más concretos se indican en el apartado de requisitos específicos.

#### 2.4. Funciones del sistema

Las funciones del sistema son fundamentalmente dos:

- Monitorización El sistema debe monitorizar una serie de parámetros ambientales que tienen interés para determinar si el ambiente de estudio es adecuado. Fundamentalmente son: Nivel de ruido ambiente, nivel de CO2, nivel de temperatura, nivel de humedad relativa, nivel de luminosidad.
- Ajuste del comportamiento El sistema debe permitir ajustar el color de la luz emitida de la lámpara, la iluminancia de la luz emitida y la velocidad de rotación de un ventilador sujeto al soporte de la lámpara.

#### 2.5. Restricciones

- 1. Por la configuración seleccionada para el interfaz de usuario, el componente SMA se dividirá en dos subcomponentes.
  - SMA-LAMP Estará constituido por el el hardware y software ubicado en la lámpara destinado a recibir la información de los sensores, tratar dicha información y enviarla al computador de sobremesa. Del mismo modo atenderá los comandos que lleguen desde el computador de sobremesa para actualizar el comportamiento de los leds así como el del ventilador.
  - SMA-COMP Será un componente software desplegado en el computador de sobremesa, que ofrecerá el interfaz de la lámpara con el usurio.
- 2. Por condicionantes externos, el microcontrolador a utilizar en el componente **SMA-LAMP** debe ser el PIC16F886.
- 3. Las dimensiones de la placa del componente SMA no pueden ser superiores a 6 cm x 6 cm.
- 4. Es necesario reservar espacio en la placa para cuatro tornillos de sujeción, de 4mm de diámetro, cerca de las esquinas de la misma. El margen necesario debe ser de 5mm de diámetro para poder alojar la cabeza de los tornillos.

# 3. Requisitos específicos

**Encendido del sistema** Este caso de actividad contempla las acciones que deben realizarse al encender el sistema.

- **ENC-10** Por defecto, se arrancará en primer lugar SMA-LAMP, alimentando la lámpara, para a continuación arrancar SMA-COMP, en el computador de sobremesa.
- **ENC-20** En el momento de arrancar se ofrecerá la información de los sensores disponibles y se indicará el estado de aquellos que requieran un proceso arranque más prolongado.
- ENC-30 La lámpara debe arrancar respetando la última configuración utilizada en lo referente a leds y ventiladores. En el caso de ser la primera vez que se enciende se optará por una opción intermedia de luz blanca y ventilador apagado.
- **Apagado del sistema** Este caso de actividad contempla las acciones que deben realizarse ante los diferentes escenarios de apagado del sistema.
  - AP-10 Si se apaga el sistema SMA-COMP, el sistema SMA-LAMP debe seguir funcionando con normalidad según la última configuracion establecida.

- AP-20 Si se apaga SMA-LAMP, SMA-COMP debe indicar que SMA-LAMP se ha desconectado. En este caso, SMA-COMP no debe volver a operar hasta despues de que la aplicación se haya reinicializado.
- AP-30 SMA-COMP debe ofrecer alguna alternativa para apagar la aplicación.
- Monitorización de variables ambientales Este caso de actividad contempla las acciones que deben realizarse en relación con la monitorización de variables ambientalers.
  - MO-10 El nivel de ruido es una señal en voltaje. Deben considerarse las siguientes categorías para el ruido:
    - Ruido bajo La lectura del convertidor analógico digital está en el intervalo [0,400].
    - Ruido intermedio La lectura del convertidor analógico digital está en el intervalor [401, 900].
    - Ruido alto La lectura del convertidor analógico digital está por encima de 900.
  - MO-20 El nivel de ruido debe monitorizarse cada 10 ms, pero en el interfaz humano solo debe mostrarse la catergoría de ruido más alta alcanzada cada segundo.
  - MO-30 El nivel de CO2, humedad relativa, temperatura y la iluminancia, deben ser muestreados cada 5 segundos y actualizarse en pantalla con el mismo periodo.
  - MO-40 La unidades a utilizar para las magnitudes muestreadas (salvo el ruido, que ya ha sido categorizado) deben ser:
    - PPM (partes por millon) para el nivel de CO2.
    - % (tanto por ciento) para la humedad relativa.
    - <sup>o</sup>C (grados centígrados) para la temperatura.
    - lx (Lux) para la iluminancia.
- Ajuste de actuadores Este caso de actividad contempla las acciones a tomar relacionados con el comportamiento de los LEDs y el ventilador.
  - AC-10 SMA-COMP debe ofrecer al usuario la posibilidad de cambiar el comportamiento de los LEDs. Para ellos debe suministrar la posibilidad de especificar el color con un código RGB, en el que se permita un valor entre 0 y 255 para cada color. Al mismo tiempo debe permitir codificar el nivel de iluminación con un código que pueda tomar valores entre 0 y 31.
  - AC-29 SMA-COMP debe ofrecer al usuario la posibilidad de cambiar la velocidad del ventilador. Dicha velocidad se codifica en tanto por ciento con valores posibles entre 0% y 100%.

### 4. Comentarios finales

Aunque no se esperan cambios de gran envergadura en este documento, su estado debe calificarse como inestable, por existir todavía la posibilidad de sufrir pequeñas modificaciones.