Cpt S 450 Homework 1

- 1. $\{\langle n \rangle \# \langle p \rangle \# \langle q \rangle : n = p \cdot q$, where p, q are primes $\}$, where $\langle n \rangle$ is the binary representation of number n, and # is the delimiter.
 - $\{\langle n \rangle : n = p \cdot q, \text{ for some } p, q \text{ being primes } \}$
- $\{\langle A \rangle \# w : A \text{ accepts } w\}$, where $\langle A \rangle$ is the string encoding of an NFA A (NFA is a program, and a program is a string, right?)
 - $\{\langle A \rangle : A \text{ accepts } w \text{ for some } w\}$
- 2. (1). Notice that $2n^3 18n \le cn^3$ with c=2 for almost all n. Hence, it is $O(n^3)$. One can also argue that $2n^3 18n \le cn^4$ with c=1 for almost all n and hence, it is also $O(n^4)$. To show that it is not $O(n^2 \log n)$, we argue that one can not find a c>0 such that $2n^3 18n \le cn^2 \log n$ for almost all n. Otherwise, $\frac{2n^3 18n}{n^2 \log n} \le c$ for infinitely many n. this is not possible, since, as $n \to \infty$, the LHS goes to ∞ .
- 2. (2). We need only establish $3n^22^{2n} \leq 2cn$ for some c > 0 and for almost all n. Take c = 3, the result follows since

$$\lim_{n \to \infty} \frac{3n^2 2^{2n}}{2^{3n}} = \lim_{n \to \infty} \frac{3n^2}{2^n} = 0.$$

(The last limit is obtained using l'Hôpital's rule twice)