

By: Jacob Rukavina, Wedd Jammal, Kin Cheung Choy, Qi Li, Xuanlin Liu

Phase I SAD Study Design of Inogatran, An Anticoagulant

Preclinical Background

- Anticoagulant designed to prevent MI
- IV formulation
- Thrombin inhibitor
- PK/PD Data
 - $t^{1/2} = 50 \text{ min}$
 - V = 0.3 L/kg
 - CL = 300 mL/min
 - $IC_{50(APTT)} = 1.2 \,\mu\text{M}$ (in vitro)
- PK extrapolated from dog, rat, and monkey
- PD from in vitro

Inogatran

Objectives

- PK information:
 - Concentration-time profile
 - In vivo PK parameters: CL, half-life, C_{max}, T_{max}, AUC, V_d
- PD information:
 - Confirm Concentration-APTT relationship found in vitro.
- Other outcomes:
 - Adverse events
 - Vital signs (blood pressure, ECG, heart rate etc.)

Study Design

- Parallel, randomized, placebo-controlled, double-blind
- **Study population:** healthy male volunteers (18-50 yr)
- **Study arms:** 6 participants per arm
 - Inogatran: 4
 - Placebo: 2
- At least 30 participants (minimum 5 arms) but could increase based on clinical results

Dose Escalation Scheme

- Starting dose = 0.5 mg
- The following doses = 1, 2, 3, 4 mg...
- The dosing stops when APTT has approached 190 s. It is possible to stop the dosing earlier if significant AE emerge.

The sampling process

- Sampling times: 0.5, 1, 2, 5, 15, 30, 60, 90, 110 min
- Conducted calculations:
 - \circ C_f = C_i * e^{-k*t}
 - \circ 0.5 mg / 21 L = 0.0238 mg/L = Ci
 - \circ 0.005 mg/L = 0.0238 mg/L * $e^{-0.014*t}$
 - o t=111.5 min
- Minimum measurable conc. 0.005 mg/l
 - o CI = 300 ml/min
 - \circ V = 0.3 L/kg x 70 kg = 21 L
 - \circ 50 min = $t^{1/2}$
 - \circ K = 0.01386 min⁻¹

Analytical Method

- PK analysis
 - Measure concentration in the blood sample, draw the mean concentration-time curve.
 - Get Cmax, Tmax, AUC from the curve.
 - $V_d = Dose/C_{max}$
 - CL = Dose/AUC
 - $t_{1/2} = In(2) * V/CL$
- PD analysis
 - Explore concentration-APTT relationship, calculate in vivo IC_{50(APTT)}.
- Safety analysis
 - The number of subjects experiencing treatment-emergent adverse events (TEAEs) and number of TEAEs will be summarized by treatment using frequency counts.

