Multiscale Testing for Equality of Nonparametric Trend Curves

Marina Khismatullina¹ Michael Vogt²
University of Bonn University of Bonn

Proof of Theorem ??. Define $\Delta m_{it} = m_i \left(\frac{t}{T} \right) - m_i \left(\frac{t-1}{T} \right)$. Recall the differencing estimator $\widehat{\beta}_i$:

$$\widehat{\boldsymbol{\beta}}_{i} = \left(\sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top}\right)^{-1} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta Y_{it} =$$

$$= \left(\sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top}\right)^{-1} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \left(\Delta \mathbf{X}_{it}^{\top} \boldsymbol{\beta}_{i} + \Delta \varepsilon_{it} + \Delta m_{it}\right) =$$

$$= \boldsymbol{\beta}_{i} + \left(\sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top}\right)^{-1} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \varepsilon_{it} + \left(\sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top}\right)^{-1} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta m_{it}.$$

This leads to

$$\left| \sqrt{T} (\widehat{\boldsymbol{\beta}}_{i} - \boldsymbol{\beta}_{i}) \right| \leq \left| \left(\frac{1}{T} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top} \right)^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \varepsilon_{it} \right| + \left| \left(\frac{1}{T} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top} \right)^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta m_{it} \right|.$$

$$(0.1)$$

First, we take a closer look at the second summand in (0.1). By the assumption in Theorem ??, $m_i(\cdot)$ is Lipschitz continuous, that is, $|\Delta m_{it}| = |m_i(\frac{t}{T}) - m_i(\frac{t-1}{T})| \le C\frac{1}{T}$ for all $t \in \{1, \ldots, T\}$ and some constant C > 0. Hence,

$$\left| \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta m_{it} \right| = \left| \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \Delta \mathbf{H}_{i}(\mathcal{U}_{it}) \Delta m_{it} \right| \leq$$

$$\leq \frac{1}{\sqrt{T}} \sum_{t=1}^{T} |\Delta \mathbf{H}_{i}(\mathcal{U}_{it})| \cdot |\Delta m_{it}| \leq$$

$$\leq \frac{1}{\sqrt{T}} \sum_{t=1}^{T} |\Delta \mathbf{H}_{i}(\mathcal{U}_{it})| \cdot |\Delta m_{it}| \leq \frac{C}{\sqrt{T}} \cdot \frac{1}{T} \sum_{t=1}^{T} |\Delta \mathbf{H}_{i}(\mathcal{U}_{it})|.$$

$$(0.2)$$

Now, in order to show that the whole vector $\frac{1}{T}\sum_{t=1}^{T}|\Delta\mathbf{H}_{i}(\mathcal{U}_{it})|$ is $O_{P}(1)$, we will do that for every element $\frac{1}{T}\sum_{t=1}^{T}|\Delta H_{ij}(\mathcal{U}_{it})|$ of this vector separately.

¹Address: Bonn Graduate School of Economics, University of Bonn, 53113 Bonn, Germany. Email: marina.k@uni-bonn.de.

²Corresponding author. Address: Department of Economics and Hausdorff Center for Mathematics, University of Bonn, 53113 Bonn, Germany. Email: michael.vogt@uni-bonn.de.

Fix $j \in 1, \ldots, d$. By Chebyshev's inequality we have

$$\mathbb{P}\left(\frac{1}{T}\sum_{t=1}^{T}|\Delta H_{ij}(\mathcal{U}_{it})|>a\right) \leq \frac{\mathbb{E}\left[\left(\frac{1}{T}\sum_{t=1}^{T}|\Delta H_{ij}(\mathcal{U}_{it})|\right)^{2}\right]}{a^{2}}$$
(0.3)

and

$$\mathbb{E}\left[\left(\frac{1}{T}\sum_{t=1}^{T}|\Delta H_{ij}(\mathcal{U}_{it})|\right)^{2}\right] = \frac{1}{T^{2}}\mathbb{E}\left[\left(\sum_{t=1}^{T}|\Delta H_{ij}(\mathcal{U}_{it})|\right)^{2}\right] = \frac{1}{T^{2}}\sum_{t=1}^{T}\mathbb{E}\left[\Delta H_{ij}^{2}(\mathcal{U}_{it})\right] + \frac{1}{T^{2}}\sum_{t=1,s=1,t\neq s}^{T}\mathbb{E}\left[|\Delta H_{ij}(\mathcal{U}_{it})\Delta H_{ij}(\mathcal{U}_{is})|\right].$$
(0.4)

Note that by the Cauchy-Scwarz inequality for all t and s we have

$$0 \leq \mathbb{E}\big[\left|H_{ij}(\mathcal{U}_{it})H_{ij}(\mathcal{U}_{is})\right|\big] \leq \sqrt{\mathbb{E}\big[H_{ij}^2(\mathcal{U}_{it})\big]}\sqrt{\mathbb{E}\big[H_{ij}^2(\mathcal{U}_{is})\big]} = \mathbb{E}\big[H_{ij}^2(\mathcal{U}_{i0})\big]$$

and

$$0 \le \left| \mathbb{E} \left[H_{ij}(\mathcal{U}_{it}) H_{ij}(\mathcal{U}_{is}) \right] \right| \le \mathbb{E} \left[\left| H_{ij}(\mathcal{U}_{it}) H_{ij}(\mathcal{U}_{is}) \right| \right] \le \mathbb{E} \left[H_{ij}^2(\mathcal{U}_{i0}) \right]. \tag{0.5}$$

Hence,

$$0 \leq \mathbb{E}\left[\Delta H_{ij}^{2}(\mathcal{U}_{it})\right] = \mathbb{E}\left[\left(H_{ij}(\mathcal{U}_{it}) - H_{ij}(\mathcal{U}_{it-1})\right)^{2}\right] =$$

$$= \mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{it})\right] - 2\mathbb{E}\left[H_{ij}(\mathcal{U}_{it})H_{ij}(\mathcal{U}_{it-1})\right] + \mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{it-1})\right] \leq$$

$$\leq \mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right] + 2\mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right] + \mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right] =$$

$$= 4\mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right]$$

and the first summand in (0.4) can be bounded by $\frac{4}{T}\mathbb{E}\left[H_{ij}^2(\mathcal{U}_{i0})\right]$. Now to the second summand in (0.4):

$$0 \leq \mathbb{E}\left[\left|\Delta H_{ij}(\mathcal{U}_{it})\Delta H_{ij}(\mathcal{U}_{is})\right|\right] = \mathbb{E}\left[\left|\left(H_{ij}(\mathcal{U}_{it}) - H_{ij}(\mathcal{U}_{it-1})\right)\left(H_{ij}(\mathcal{U}_{is}) - H_{ij}(\mathcal{U}_{is-1})\right)\right|\right] \leq$$

$$\leq \mathbb{E}\left[\left|H_{ij}(\mathcal{U}_{it})H_{ij}(\mathcal{U}_{is})\right|\right] + \mathbb{E}\left[\left|H_{ij}(\mathcal{U}_{it-1})H_{ij}(\mathcal{U}_{is})\right|\right] +$$

$$+ \mathbb{E}\left[\left|H_{ij}(\mathcal{U}_{it})H_{ij}(\mathcal{U}_{is-1})\right|\right] + \mathbb{E}\left[\left|H_{ij}(\mathcal{U}_{it-1})H_{ij}(\mathcal{U}_{is-1})\right|\right] \leq$$

$$\leq 4\mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right],$$

where in the last inequality we used (0.5). This means that the second summand in (0.4) can be bounded by $\frac{4T(T-1)}{T^2}\mathbb{E}\left[H_{ij}^2(\mathcal{U}_{i0})\right] = \frac{4(T-1)}{T}\mathbb{E}\left[H_{ij}^2(\mathcal{U}_{i0})\right]$. Plugging these bounds in (0.4), we get

$$\mathbb{E}\left[\left(\frac{1}{T}\sum_{t=1}^{T}|\Delta H_{ij}(\mathcal{U}_{it})|\right)^{2}\right] \leq \frac{4}{T}\mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right] + \frac{4(T-1)}{T}\mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right] = 4\mathbb{E}\left[H_{ij}^{2}(\mathcal{U}_{i0})\right],$$

which together with (0.3) leads to $\frac{1}{T}\sum_{t=1}^{T} |\Delta H_{ij}(\mathcal{U}_{it})| = O_P(1)$. Since it holds for each $j \in \{1, \ldots, d\}$, we can establish that

$$\frac{1}{T} \sum_{t=1}^{T} \left| \Delta \mathbf{H}_i(\mathcal{U}_{it}) \right| = \frac{1}{T} \sum_{t=1}^{T} \left| \Delta \mathbf{X}_{it} \right| = O_P(1). \tag{0.6}$$

Similarly, by Proposition ?? and Chebyshev's inequality, we have that for each $j, k \in \{1, \ldots, d\}$

$$\left| \frac{1}{T} \sum_{t=1}^{T} \Delta H_{ij}(\mathcal{U}_{it}) \Delta H_{ik}(\mathcal{U}_{it}) \right| = O_P(1),$$

which leads to

$$\left| \frac{1}{T} \sum_{t=1}^{T} \Delta \mathbf{H}_{i}(\mathcal{U}_{it}) \Delta \mathbf{H}_{i}(\mathcal{U}_{it})^{\top} \right| = \left| \frac{1}{T} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top} \right| = O_{P}(1),$$

where |A| with A being a matrix is any matrix norm.

By Assumption ??, we know that $\mathbb{E}[\Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top}] = \mathbb{E}[\Delta \mathbf{X}_{i0} \Delta \mathbf{X}_{i0}^{\top}]$ is invertible, thus,

$$\left| \left(\frac{1}{T} \sum_{t=1}^{T} \Delta \mathbf{X}_{it} \Delta \mathbf{X}_{it}^{\top} \right)^{-1} \right| = O_P(1). \tag{0.7}$$

Plugging (0.6) into (0.2) and combining it with (0.7), we get that the second summand in (0.1) is $O_P(1/\sqrt{T})$.

Furthermore, we can apply the Proposition ?? together with (0.7) to get that the first summand in (??) is $O_P(1)$. And the statement of the theorem follows.