Name: Solutions

Homework Week # 7

Energy & Power Due Thurs 10/10/19

Reading

C&J Physics: Tues – Ch. 7: 1-3 Thurs – Ch. 7: 3-5

OS Coll Phys: Tues - Ch. 8: 1-4 Thurs - Ch. 8: 4-7

Problems

Problem 1. 6.6

Problem 2. 6.9

Problem 3. 6.14

Problem 4. 6.18

Problem 5. 6.31

Problem 6. 6.38

Problem 7. 6.43

Problem 8. 6.48

Problem 9. 6.62

Problem 10. 6.75

Prob. 1 1/3 6.6 2/14 M = 10.0 by pushed S = 22.0 M = 10.0 by pushed S = 22.0 $M = 29^\circ$ from + x. M = 10.0 M = 10.0

· PEo = PEf no change no height,

· KEO = KEg @ const. speed -

Who from Ford of Fle of Whe =0

(ree for analysis)

$$W_{ne} = W_{fp} + W_{fk} = 0$$

$$W_{fo} = -W_{fk}$$

$$F_{p} = \frac{-(48.0 \text{ N})(-1)}{0.875}$$

$$f_{k} = 48.0 \text{ N}$$
 $O_{2} = 180^{\circ}$
 $O_{1} = 29.0^{\circ}$

(3)
$$W_{f_h} = -1056 \text{ J}$$
(c)
$$W_{f_p} = +1056 \text{ J}$$

(d)
$$W_{F_g} = F_g s \cos 90^\circ = \boxed{\bigcirc J}$$

Prob. 2 6.9 $\vec{S} = S2m$ North, \vec{F}_i const. and directed O_i West of North. What is this angle O_i if we know work is equivalent to applying equal fine \vec{F}_2 straight north for $S_2 = 47m$.

$$\frac{1}{\sqrt{5}}$$

$$\frac{1$$

$$W_{1} = W_{2}$$

$$\int_{1}^{1} S_{1} \cos \theta_{1} = \int_{2}^{2} S_{2} \cos \theta_{2}$$

$$\cos \theta_{1} = \frac{S_{2}}{S_{1}} = \frac{47m}{52m}$$

$$\theta_{1} = \cos^{-1}(\frac{47}{S_{2}})$$

$$\theta_{1} = 25.3^{\circ}$$

$$P_{00}$$
, 3 6.14

 $M = 0.045 \text{ kg}$; \vec{F} s.t. + hat

 $|\vec{F}| = 6800 \text{ N}$, $\Theta = 0^{\circ}$ for $|\vec{S}| = 0.010 \text{ m}$

Find V_{f} when $V_{\text{o}} = 0$

$$V_{net} = A KE$$

$$V_{net} = F_{S} c_{N} O = \frac{1}{2} m \left(V_{f}^{2} - V_{0}^{2} \right)$$

$$\frac{1}{2} m V_{f}^{2} = F_{S} c_{N} O$$

$$V_{f}^{2} = \frac{2 F_{S}}{m}$$

$$V_{f} = \sqrt{\frac{2 F_{S}}{m}}$$

$$V_{f} = \sqrt{\frac{2 F_{S}}{m}}$$

Gravity produces a conservative force orbith means

me can simplify

to Eo=Es.

We need to

remember that

W = DKE.

KE. + PE. = KET+PEG

PEO-PEI = KEI - KE.

WG = DKE =-DPEG

(a)
$$V_0 = V_a$$
, $V_f = V_p$
 $W_a = \frac{1}{2} m \left(V_f^2 - V_o \right)^2$

[Wa = 2.4 x10"]]

Wb = -2.4x10"]

$$P_{rob}$$
, 5 6.31

 $M = 0.60 \, \text{hg}$, $V_0 = V_F = 0$, $y_0 = +6.1 \, \text{m}$
 $y_f = 1.5 \, \text{m}$

(a)
$$W = mgh = (0.60 \, \text{kg})(10.0 \, \text{mg}) (6.1 - 1.5) \, \text{m}$$

$$W_g = 27.6 \, \text{T}$$

(b)
$$PE_0 = 36.6J$$
 (c) $PE_f = 9.0J$
(d) $\Delta PE = -27.6J = -W_g$

KEO+PEO+We=KE+PEs

Wne =0, PE=0, KEf=0

PEr = KEo mgh = \frac{1}{2}mvo²

 $h = \frac{V_0^2}{2g}$

 $h = \frac{(5.4\%)^2}{2(10.0\%2)}$

at don't fuget to sque Vol

(h = 1.46m)

Prob. 7-1/2. 43

For $V_0 = 5.43$, $y_0 = 0$, find max height of projectile. List height Above ramp. $O = 48^\circ$, $y_1 = 0.40$ m

Note: y2-y1=H { V2 = 0 b/c V2 = 0 }

From $E_0 = E_1 \rightarrow \frac{1}{2}mv_0^2 = mgy_1 + \frac{1}{2}mv_1^2$

$$V_1^2 = V_0^2 - 2gy_1 = 21.16 \frac{m^2}{s^2}$$

V, = 4.63 7 Vo

$$y_2-y_1=H$$
 so let's un $g(y_2-y_1)$

$$g(y_2-y_1) = \frac{1}{2}(V_1^2-V_2^2)$$

$$H = \frac{1}{2g} \left(V_i^2 - V_{ix}^2 \right)$$

$$H = \frac{\left(V_1 \sin Q\right)^2}{2g} = \frac{V_1^2 \sin^2 Q}{2g}$$

Prob. 8 1/2 6.48

Two cases of No=7.00%, O=50.

Find total hersht for both.

Isnne Whe

(a)
$$V_0$$
 V_0 V_0

(b)

**Same problems*

Skyte boorder

problem!

$$E_0 = E_1$$
 $\rightarrow V_1^2 = V_0^2 - 2gH_1 = 24.0\frac{m}{52}$
 $V_1 = 4.90\frac{m}{5}$

$$V_2 = V_{1X} = V_1 \cos \theta$$

$$E_{1} = E_{2} \longrightarrow \frac{1}{2}V_{1}^{2} + gy_{1} = \frac{1}{2}V_{2}^{2} + gy_{2}$$

$$g(y_{2} - y_{1}) = \frac{1}{2}(V_{1}^{2} - V_{2}^{2})$$

$$g(y_{2} - y_{1}) = \frac{1}{2}(V_{1}^{2} - V_{2}^{2})$$

$$H_2 = \frac{1}{2g} (V_1^2 - V_{1x}^2)$$

$$H_2 = \frac{\left(V_1 \sin \theta\right)^2}{2g}$$

$$H_2 = 0.70 \text{ m} \rightarrow H_1 + H_2 = 1.95 \text{ m}$$

Prob. 9 6.62 13/14 F = 22N completely aligned with tuning path $S = 2\pi r$, r = 0.28m. If t = 1.3, for each revolution, calc. average power

Pare = SE = Work

St = St

 $P_{ave} = \frac{(22N)(2\pi)(0.28m)}{(1.3s)}$

Pare = 38.704 J

Pare = 29.8 W

10.0
$$\sqrt{100}$$
 $\sqrt{100}$ $\sqrt{100$