# Otimização Linear Lista 2

Lourenço Bogo - 11208005

8 de dezembro de 2020

### 1 Questão 1

Primeiro vamos colocar o problema na forma canônica e adicionar as variáveis artificiais:

$$\max Z = -A_1 - A_2$$

$$-1x_1 + 1x_2 - 1S_1 + 0S_2 + 0S_3 + 1A_1 + 0A_2 = 1$$

$$1x_1 + 1x_2 + 0S_1 - 1S_2 + 0S_3 + 0A_1 + 1A_2 = 3$$

$$2x_1 + 1x_2 + 0S_1 + 0S_2 + 1S_3 + 0A_1 + 0A_2 = 4$$

$$x_1, x_2, S_1, S_2, S_3, A_1, A_2 \ge 0$$

Em forma de tableaux temos:

Podemos perceber que a variável que vai entrar é  $x_2$ . Tirando a razão, vemos que a variável que entra é  $A_1$ , ou seja, podemos excluí-la:

Agora precisamos montar a próxima iteração, como nosso pivô era 1, nossa linha 1 ficará igual e as outras serão subtraídas pelo seu valor, multiplicadas pelo valor da variável que está entrando na sua linha.

A variável que entra agora é  $x_1$  e a que sairá será  $A_2$ :

Conseguimos fazer todos os  $Z_j - C_j$  serem maiores ou iguais à 0, logo a solução ótima foi atingida com  $x_1 = 1, x_2 = 2$ .

Agora vamos para a fase 2, com nossa solução inicial sendo a solução que conseguimos na fase 1. Voltaremos a usar a função objetiva original.

Iteração 1 
$$C_j$$
 3 1 0 0 0 Razão B  $C_b$   $X_b$   $x_1$   $x_2$   $S_1$   $S_2$   $S_3$   $\frac{X_b}{S_2}$   $x_2$  1 2 0 1 -0.5 -0.5 0  $x_1$  3 1 1 0 0.5 -0.5 0  $S_3$  0 0 0 0 -0.5 1.5 1  $\frac{0}{1.5} = 0$   $Z = 5$   $Z_j$  3 1 1 -2 0  $Z_j - C_j$  0 0 1 -2 0

A variável que entra é  $S_2$  e a que sai é  $S_3$ , nos dando:

| Iteração 2 |       | $C_j$       | 3     | 1     | 0              | 0     | 0             |
|------------|-------|-------------|-------|-------|----------------|-------|---------------|
| В          | $C_b$ | $X_b$       | $x_1$ | $x_2$ | $S_1$          | $S_2$ | $S_3$         |
| $x_2$      | 1     | 2           | 0     | 1     | $-\frac{2}{3}$ | 0     | $\frac{1}{3}$ |
| $x_1$      | 3     | 1           | 1     | 0     | $\frac{1}{3}$  | 0     | $\frac{1}{3}$ |
| $S_2$      | 0     | 0           | 0     | 0     | $-\frac{1}{3}$ | 1     | $\frac{2}{3}$ |
| Z=5        |       | $Z_{j}$     | 3     | 1     | $\frac{1}{3}$  | 0     | $\frac{4}{3}$ |
|            |       | $Z_j - C_j$ | 0     | 0     | $\frac{1}{3}$  | 0     | $\frac{4}{3}$ |

Como todas as diferenças são novamente positivas, chegamos no ponto ótimo que é  $x_1 = 1, x_2 = 2,$  com max Z = 5

### 2 Questao 2

Primeiro, colocando o problema na forma canônica e adicionando as variáveis artificiais temos:

$$\max Z = -A_1 - A_2$$

$$-1x_1 + 1x_2 - 1S_1 + 0S_2 + 0S_3 + 1A_1 + 0A_2 = 1$$

$$1x_1 + 1x_2 + 0S_1 - 1S_2 + 0S_3 + 0A_1 + 1A_2 = 3$$

$$2x_1 + 1x_2 + 0S_1 + 0S_2 + 1S_3 + 0A_1 + 0A_2 = 2$$

$$x_1, x_2, S_1, S_2, S_3, A_1, A_2 \ge 0$$

Na forma de tableaux:

A variável que entra é a  $x_2$  e a que sai é a  $A_1$ , nos dando:

Agora, a variável que irá entrar é a  $x_1$  e a que irá sair é a  $S_3$ :

A variável que irá entrar agora é a  $S_1$  e a que irá sair é a  $x_1$ , nos dando:

| Iteração 4 |       | $C_{j}$     | 0     | 0     | 0     | 0     | 0     | -1    |
|------------|-------|-------------|-------|-------|-------|-------|-------|-------|
| В          | $C_b$ | $X_b$       | $x_1$ | $x_2$ | $S_1$ | $S_2$ | $S_3$ | $A_2$ |
| $x_2$      | 0     | 2           | 2     | 1     | 0     | 0     | 1     | 0     |
| $A_2$      | -1    | 1           | -1    | 0     | 0     | -1    | -1    | 1     |
| $x_1$      | 0     | 1           | 3     | 0     | 1     | 0     | 1     | 0     |
| Z = -1     |       | $Z_{j}$     | 1     | 0     | 0     | 1     | 1     | -1    |
|            |       | $Z_j - C_j$ | 1     | 0     | 0     | 1     | 1     | 0     |

Como todas as diferenças estão positivas, a solução ótima é  $x_1 = 0, x_2 = 2$ , porém essa solução não é factível, pois viola a restrição  $x_1 + x_2 \ge 3$  e a variável artificial  $A_2$  está na base. A fase 2, portanto, não é possível de ser feita.

### 3 Questão 3

O problema dual é:

$$\label{eq:max20} \begin{split} \max 20y_1 + 10y_2 - 30y_3 \\ \text{suj.} \ \ 2y_1 + y_2 + 3y_3 &\geq 5 \\ 4y_1 - y_2 - 2y_3 &\leq 6 \\ 7y_1 - y_2 - 3y_3 &= 5y_1 \geq 0, y_2 \leq 0, y_3 \text{ irrestrito} \end{split}$$

## 4 Questão 4

Teorema Fraco da Dualidade: Se x é uma solução factível de um problema primal de maximização e y é uma solução factível do dual, então  $c^t x \leq b^t y$ 

Demonstração:

Por hipótese, temos que  $Ax_0 \le b$  e  $A^ty_0 \ge c$ . Sejam  $u = b - Ax_0$  e  $v = A^ty_0 - c$  as folgas das restrições.

Então:  $u \ge 0, v \ge 0, b = u + Ax_0 e A^t y_0 = v + c.$ 

Temos:

$$b \cdot y_0 = y_0^t b = y_0^t (u + Ax_0) = y_0^t u + y_0^t Ax_0$$
  
=  $y_0 \cdot u + (y_0^t Ax_0)^t = y_0 \cdot u + x_0^t (A^t y_0)$   
=  $y_0 \cdot u + x_0^t (v + c) = y_0 \cdot u + x_0 \cdot v + x_0 \cdot c$ 

Ou seja:

 $b \cdot y_0 = y_0 \cdot u + x_0 \cdot v + x_0 \cdot c$ 

Como  $y_0 \cdot u + x_0 \cdot v$  é posivito, temos que  $c \cdot x_0 \leq b \cdot y_0$ 

Teorema Forte da Dualidade: Se  $x^*$  é uma solução ótima do problema primal

$$\max c^t x$$

$$\sup Ax = b$$

$$x \ge 0$$

então o problema dual

$$\max b^t y$$
  
suj  $A^t x = c$   
 $y$  irrestrito

tem solução ótima  $y^*$  com  $c^t x^* = b^t y^*$ .

### 5 Questão 5

Primeiro vamos adcionar as variáveis de folga, nos dando o seguinte problema:

$$\max z = 3x_1 + 2x_2 + 4x_3$$
$$x_1 + x_2 + 2x_3 + x_4 = 4$$
$$2x_1 + 3x_3 + x_5 = 5$$
$$2x_1 + x_2 + 3x_3 + x_6 = 7$$

Nossa base inicial é  $X_b = (x_4, x_5, x_6) = (4, 5, 7)$ , nossa matriz B é a indentidade e nosso vetor y é (0, 0, 0).

Calculando os valores  $c_j - z_j = c_j - yP_j$ , temos:

$$c_1 - yP_1 = 3 - (0, 0, 0) \cdot P_1 = 3$$
  
 $c_2 - yP_2 = 2 - (0, 0, 0) \cdot P_2 = 2$   
 $c_3 - yP_3 = 4 - (0, 0, 0) \cdot P_3 = 4$ 

Logo, a variável que irá entrar é a variável  $x_3$ .

Agora, vamos descobrir quem sai:

$$\bar{P}_j = B^{-1}Pj = \begin{bmatrix} 2\\3\\3 \end{bmatrix}$$

Fazendo as razões entre os elementos do vetor  $X_b$  e  $P_j$  e pegando o mínimo, temos que o elemento que irá sair é o  $x_5$ .

Agora para a próxima iteração, temos o novo vetor  $X_b = (x_4, x_3, x_6) = (\frac{4}{3}, \frac{5}{3}, 2)$ .

Para calcular y, precisamos da inversa da nova matriz B, logo vamos usar as propriedades de matrizes Eta para conseguir isso:

Vamos falar que nossa nova matriz  $B_1$  é igual à  $B \cdot H_1$  onde  $H_1$  é uma matriz theta cuja coluna não identidade é o vetor  $\bar{P}_i$  da iteração anterior. Com isso, temos:

$$H_1 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$
$$y = C_b B_1^{-1} \to y B_1 = C_b \to y B H_1 = C_b$$

Resolvendo esse sistema, encontramos  $y = (0, \frac{4}{3}, 0)$ .

Agora, fazendo o mesmo processo que fizemos antes, calculamos todos os  $C_j - z_j$  e descobrimos que quem irá entrar é o elemento  $x_2$ .

Agora, precisamos calcular  $\bar{P}_j$ :

$$\bar{P}_j = B_1^{-1} P_j \to B_1 \bar{P}_j = P_j$$

Resolvendo esse sistema, temos  $\bar{P}_j = (1, 0, 1)$  e isso indica que o elemento que irá sair é o  $x_4$ . Agora, para a próxima iteração, iremos repetir todo o processo:

- Calculamos nosso novo  $X_b$  usando o pivô:  $X_b = (\frac{2}{3}, \frac{5}{3}, \frac{4}{3})$
- Usaremos outra matriz eta para não termos que calcular  $B^{-1}$ :  $B_2 = B_1 \cdot H_2 = B \cdot H_1 \cdot H_2$
- Achamos y resolvendo o sistema  $yB_2 = C_b$ , nos dando y = (2, 0, 0)
- Usamos o y que calculamos para fazer as contas  $C_j z_j$ , e descobrimos que quem irá entrar é o elemento  $x_2$
- Usamos os valores coeficientes de  $x_2$  nas equações para calcular  $\bar{P}_j$ , nos dando  $\bar{P}_j=(1,2,2)$
- Usamos o vetor  $\bar{P}_j$  para descobrir quem irá sair (será o que tiver a menor razão), nesse caso é o elemento  $x_3$

Agora, continuamos para a próxima iteração, onde repetiremos o processo mais uma vez:

- $X_b = (x_2, x_1, x_6) = (\frac{3}{2}, \frac{5}{2}, \frac{1}{2})$
- $B_3 = B_0 \cdot H_1 \cdot H_2 \cdot H_3$
- $y = (2, \frac{1}{2}, 0)$
- Agora, ao calcularmos as diferenças  $C_j z_j$ , todas dão negativas, o que significa que chegamos na solução ótima.

Temos, então, que a solução ótima é  $(x_1, x_2, x_3) = (\frac{5}{2}, \frac{3}{2}, 0)$  com função objetiva no valor de 10.5.

Todas as contas e manipulações algébricas estarão em uma foto que enviarei como anexo, preferi deixar o espaço aqui o mais limpo possível.

### 6 Questão 6

Vamos usar o método simplex para achar a melhor solução para o problema.

Primeior, vamos colocar o problema na forma canônica:

$$\max Z = 7x_1 + 6x_2 + 5x_3 - 2x_4 + 3x_5x_1 + 3x_2 + 5x_3 - 2x_4 + 2x_5 + S_1 = 44x_1 + 2x_2 - 2x_3 + x_4 + x_5 + S_3 = 32x_3 + x_4 + x_5 + x_$$

Em forma de tableaux:

O mínimo negativo é -7, logo a variável que entra é  $x_1$  e a menor razão é a de  $S_4$  logo, ela é a variável que irá sair. O pivô é 3, logo a linha de da variável que sai será dividida por 3, e as outras serão subtraídas do novo valor dessa linha multiplicado pelo valor da variável que está entrando, na respectiva linha.

Iteration 2 
$$C_j$$
 7 6 5 -2 3 0 0 0 0 0  $C_j$  8  $C_b$   $C_b$ 

Agora a variável que entra é a  $x_5$ , e tirando as razões, a que sai é a variável  $S_2$ . Nosso pivô é  $\frac{11}{3}$ 

Agora entra  $x_3$  e sai  $S_3$  com pivô  $\frac{118}{11}$ :

Agora entra  $x_4$  e sai  $S_1$  com pivô  $\frac{1}{2}$ 

Nosso simplex acaba por aqui já que todas as diferenças são positivas. Nossa função objetiva tem valor maior do que a que foi dada no enunciado, logo a solução dada no enunciado não é a ótima.

### 7 Questão 7

Como temos apenas duas variáveis, vamos resolver o problema geometricamente. Primeiro vamos plotar as restrições:



Nossa região factível fica delimitada por 4 pontos:

- O primeiro é definido pelas restrições  $-5x_1 + 2x_2 \le -3$  e  $x_2 \ge 0$ . O ponto é o (0.6,0)
- $\bullet$  O segundo é definido pelas restrições  $9x_1-4x_2\leq 6$  e  $x_2\geq 0.$  O ponto é o  $(\frac{2}{3},0)$
- $\bullet$  O terceiro é definido pelas restrições  $-2x_1+7x_2\leq 6$ e  $9x_1-4x_2\leq 6.$  O ponto é o (1.2,1.2)
- O quarto é definido pelas restrições  $-2x_1+7x_2\leq 6$  e  $-5x_1+2x_2\leq -3$ . O ponto é o  $\left(\frac{165}{155},\frac{36}{31}\right)$

Desses pontos, o que nos da o maior valor da função objetiva é o ponto (0.6,0), ou seja, o valor máximo da função objetiva é -0.6.