UMF-exam

DGAP

May 2019

Внимание! Составители не несут никакой ответственности за написанное! Мы попытаемся все перепроверить, но будьте готовы ко всякому. Лучшим решением будет посомтреть все лекции, разобраться со всем там сказанным, а затем уже пользоваться этим файлом. Все, кто взял себе билет и не успел в дедлайн - пидорасы. Примечание для составителей: используйте окружение \paper{homep билета}{формулировка билета}, чтобы автоматически добавить билет в оглавление, выделить ему новую страницу, оформить все билеты одинаковым шрифтом.

Для теорем используйте overleaf guide

Содержание

1																												 				2
2																												 				7
3																												 				9
4																																12
5																																17
6.																																20
8																																22
10																												 				27
11																																29
12	,																											 				32
13																																36
14																												 				37
15																																40
16																																43
17	•																															46
19																												 				51
21																												 				53
22						•																										55
23												•																 				56
-24																																57

1. Постановка задачи Коши для гиперболического в заданной области линейного дифференциального уравнения второго порядка с двумя независимыми переменными. Полуклассическое решение решение этой задачи в характеристических переменных, его существование и единственность

Классификация Основное уравнение:

$$\left(\widehat{L} + c(x)\right)u(x) = \left(\sum_{i,j=1}^{m} a_{ij}(x)\frac{\partial^2}{\partial x_i \partial x_j} + \sum_{k=1}^{m} b_k(x)\frac{\partial}{\partial x_i} + c(x)\right)u(x) = f(x)$$

 $x \in G; a_{ij}, b_k, c, f \in C(G); u \in C^2(G),$ удовлетворяющая основному уравнению, называется **решением** поставленной задачи. G - некоторая область в \mathbb{R}^m

Рассмотрим матрицу $(A(x))_{ij} = a_{ij}$, в общем случае она не является симметричной, но её всега можно сделать такой, в силу равенства смешанных производных $(\widetilde{A}_{ij} = (A_{ij} + Aji)/2$, уравнение не изменится) далее будем считать её симметричной, тогда:

- \bullet если $\det A = 0$, то уравнение называется **параболическим** в точке
- если $\det A \neq 0$ и A строго знакоопределена (все собственные значения одного знака), то уравнение называется эллиптическим в точке
- если $\det A \neq 0$ и A строго знаконеопределена (существуют собственные значения разных знаков), то уравнение называется **гиперболическим** в точке

Если какое-то из условий выполняется во всех точках области, то говорят, что уравнение имеет такой тип в области.

Преобразования основного уравнения при гладкой замене в области $G \subset \mathbb{R}^m$. Рассматриваем $\xi = \xi(x)$ – взаимооднозначную функцию, $\xi \in C^2(G)$. И $J = \frac{\partial \xi}{\partial x} = \frac{\partial (\xi_1, \dots, \xi_m)}{\partial (x_1, \dots, x_m)}$ не вырождена в G. Обозначим $\xi(G) = D \subset \mathbb{R}^m$. Тогда существует $\xi^{-1} = x : D \to G$. Поймем, как приобразуется основное уравнение:

$$u(x) = u(x(\xi)) = v(\xi)$$

$$\frac{\partial u}{\partial x_i} = \sum_{s=1}^m \frac{\partial v}{\partial \xi_s} \frac{\partial \xi_s}{\partial x_i}$$

$$\frac{\partial^2 u}{\partial x_i \partial x_j} = \sum_{s,l=1}^m \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} + \sum_{s=1}^m \frac{\partial v}{\partial \xi_s} \frac{\partial^2 \xi_s}{\partial x_i \partial x_j}$$

$$\hat{L}u(x) = \sum_{i,j}^m \sum_{s,l=1}^m a_{ij}(x) \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} + \sum_{i,j=1}^m \sum_{s=1}^m a_{ij}(x) \frac{\partial v}{\partial \xi_s} \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m \sum_{s=1}^m b_k(x) \frac{\partial v}{\partial \xi_s} \frac{\partial \xi_s}{\partial x_i} =$$

$$= \sum_{s,l=1}^m \left(\sum_{i,j}^m a_{ij}(x) \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} \right) \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} + \sum_{s=1}^m \left(\sum_{i,j=1}^m a_{ij}(x) \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m b_k(x) \frac{\partial \xi_s}{\partial x_i} \right) \frac{\partial v}{\partial \xi_s}$$

$$(1)$$

Получаем выражения для коэффицентов в новых координатах:

$$\tilde{c}(\xi) = c(x(\xi))$$

$$\tilde{b}_s(\xi) = \sum_{i,j=1}^m a_{ij}(x) \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m b_k(x) \frac{\partial \xi_s}{\partial x_i}$$

$$\tilde{a}_{sl} = \sum_{i,j}^m \frac{\partial \xi_s}{\partial x_i} a_{ij}(x) \frac{\partial \xi_l}{\partial x_j} \Rightarrow \boxed{\tilde{A} = JAJ^T}$$

Для диагональных элементов A: $\tilde{a}_{ss} = (\nabla_x \xi_s)^T A (\nabla_x \xi_s)$

Постановка задачи Коши для гиперболического уравнения (λ_i разных знаков)

$$\left(\sum_{i,j=1}^{2} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{k=1}^{2} b_k(x) \frac{\partial}{\partial x_i} + c(x)\right) u(x) = f(x)$$

Введем обозначения $x_1 = x$, $x_2 = y$. В G рассматриваем задачу Коши с граничными условиями на γ :

$$u|_{\gamma} = u_0 \in C^1$$

$$\frac{\partial u}{\partial n}\Big|_{\gamma} = u_1 \in C$$

$$u \in C^2(G \setminus \gamma) \cap C^1(G)$$

Пусть в точке $(x_0, y_0) \in G$ $a_{11} \neq 0$. В силу непрерывности \exists окретсность $U_0 \subset G$, в которой $a_{11} \neq 0$. Пусть $F \in C^1(U_0)$ и $\nabla F \neq 0$ в U_0 .

Хотим занулить диагональные элементы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$. Для этого сделаем характеристическую замену. Требуем $(\nabla F)^T A(\nabla F) = 0$ – как мы видели, такая замена занулит диагональный элемент.

 $abla F = inom{F_x'}{F_y'}$. Получаем уравнение

$$a_{11}(F_x')^2 + 2a_{12}F_x'F_y' + a_{22}(F_y')^2 = 0$$

Предположим, что $F'_y \neq 0$ в U_0 , если это не так, то переобозначим U_0 . По теореме о неявной функции, уравнение F(x,y) = const задает в $U_1 \subset U_0$ функцию y = y(x). Причем дифференцируя обе части вырожения F(x,y(x)) = const, получаем

$$\frac{dy}{dx} = -\frac{F_x'}{F_y'}$$

Что дает

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}}$$

Причем $a_{12}^2 - a_{11}a_{22} > 0$, так как $\det A < 0$ в силу знаконеопределенности A. Потребуем $A \in C^1(G)$ для однозначной разрешимости задачи Коши. Тогда мы локально решаем каждый из этих диффуров, получаем два семейства интегральных кривых. Тогда пусть $F_+(x,y) = const$ и $F_-(x,y) = const$ интегральные кривые этих решений. Определим характеристическую замену

$$\begin{cases} \xi = F_{+}(x, y) = const = \xi(x, y) \\ \eta = F_{-}(x, y) = const = \eta(x, y) \end{cases}$$

В характеристических переменных в окрестности $V(\xi_0, \eta_0), \, \xi_0 = \xi(x_0, y_0), \, \eta_0 = \eta(x_0, y_0)$ уравнение запишется как

$$2\tilde{a}_{12}v_{\xi\eta}'' + \tilde{b}_1v_{\xi}' + \tilde{b}_2v_{\eta}' + \tilde{c}v = \tilde{f}$$

Разделим на $2\tilde{a}_{12}$ и переобозначим коэффиценты.

$$v_{\xi\eta}'' + d_1 v_{\xi}' + d_2 v_{\eta}' + ev = h$$

Решение называется полуклассическим, если $v \in C^1(V)$ и $\exists v_{\xi\eta} = v_{\eta\xi} \in C(V)$ и удовлетворяет в V уравнению выше. Под действием характеристической замены γ перейдет в $\tilde{\gamma}$.

$$\gamma = \left\{ \begin{pmatrix} x_{\gamma}(t) \\ y_{\gamma}(t) \end{pmatrix} \mid t \in T \right\}$$

Т – числовой интервал. Тогда в характеристических координатах

$$\tilde{\gamma} = \left\{ \begin{pmatrix} \xi_{\gamma}(t) = \xi(x_{\gamma}(t), y_{\gamma}(t)) \\ \eta_{\gamma}(t) = \eta(x_{\gamma}(t), y_{\gamma}(t)) \end{pmatrix} \mid t \in T \right\}$$

 γ не должна касаться характеристик. Условие не касания характеристик записывается как

$$\dot{\xi}_{\gamma} = \xi_x \dot{x}_{\gamma} + \xi_y \dot{y}_{\gamma} = \left(\nabla \xi, \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}\right) \neq 0$$

$$\dot{\eta}_{\gamma} = \eta_x \dot{x}_{\gamma} + \eta_y \dot{y}_{\gamma} = \left(\nabla \eta, \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}\right) \neq 0$$

Значит по теореме об обратной функции $\exists I: \xi_0 \in \operatorname{Int} I$ и $K: \eta_0 \in \operatorname{Int} K$ отрезки, на которых функции обратимы. Введём $\varphi(\xi) = \eta_\gamma(\xi_\gamma^{-1}(\xi))$ и $\psi(\eta) = \xi_\gamma(\eta_\gamma^{-1}(\eta))$ Перепишем граничные условия:

$$v|_{\gamma} = v(\xi, \varphi(\xi)) = v_0(\xi) \in C^1(I)$$

$$u_1 = \left. \frac{\partial u}{\partial n} \right|_{\gamma} = \frac{\partial u}{\partial (x, y)} {\left(-\dot{y}_{\gamma}(t) \atop \dot{x}_{\gamma}(t) \right)} \frac{1}{\sqrt{\dot{x}_{\gamma}^2 + \dot{y}_{\gamma}^2}}$$

$$\frac{\partial u}{\partial(x,y)} = \frac{\partial v}{\partial(\xi,\eta)} J, J = \frac{\partial(\xi,\eta)}{\partial(x,y)}$$

Подставляя эту замену во второе условие и дифференцируя первое, получаем систему:

$$\begin{cases} \frac{\partial v}{\partial(\xi,\eta)} \begin{pmatrix} 1\\ \varphi'(\xi) \end{pmatrix} = v'_0(\xi) \\ \frac{\partial v}{\partial(\xi,\eta)} J \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}_{\gamma}(t)\\ \dot{y}_{\gamma}(t) \end{pmatrix} = w_1(\xi_{\gamma}^{-1}(\xi)) \end{cases}$$

Матрица $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ делает из вектора касательной вектор нормали к $\tilde{\gamma}$ Исследуем линейную зависимость столбцов $\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ и $J \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}$. Если они линейно независимы, то v'_{ξ} и v'_{η} будут найдены как непрерывные функции. $\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ и $\begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}$ это касательные к $\tilde{\gamma}$, запсанные в разных параметризациях, таким образом они параллельны.

$$\begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix} = J^{-1} \begin{pmatrix} \dot{\xi}_{\gamma}(t) \\ \dot{\eta}_{\gamma}(t) \end{pmatrix} \parallel J^{-1} \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$$

Исследуем линейную независимость $\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ и $J\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} J^{-1}\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$ Если вдруг

$$\exists \lambda = \lambda(\xi) : J \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} J^{-1} \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$$

ТО

$$J\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) J^{-1} \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix} = 0$$

Но

$$\begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1 > 0$$

а также J и J^{-1} не вырождены, следовательно произведение дает невырожденную матрицу. А невырожденная матрица на нетривиальном векторе нуля давать не может. Получили противоречие, такого λ не существует. Следовательно, мы можем разрешить систему, поэтому будем считать, что нам известны граничные условия в терминах характеристических переменных

$$\begin{cases} v''_{\xi\eta} + d_1 v'_{\xi} + d_2 v'_{\eta} + ev = h \\ v(\xi, \varphi(\xi)) = v_0(\xi) \in C^1(I) \\ v'(\xi, \varphi(\xi)) = v_1(\xi) \in C(I) \end{cases}$$

Пусть имеется решение. Возьмем любую $(\xi,\eta)\in (I\times K)\backslash\gamma$. И рассмотрим "кривой треугольник" $D(\xi,\eta)$ как на картинке. Тогда мы можем проинтегрировать вторую производную по этому треугольнику.

$$\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = -\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, (d_1 v_{\xi}' + d_2 v_{\eta}' + ev - h)$$

$$\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = \int\limits_{\psi(\eta)}^{\xi} d\widehat{\xi} \int\limits_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = \int\limits_{\psi(\eta)}^{\xi} d\widehat{\xi} \left(v_{\widehat{\xi}}(\widehat{\xi},\varphi(\widehat{\xi})) - v_{\widehat{\xi}}(\widehat{\xi},\eta) \right) = \int\limits_{\psi(\eta)}^{\xi} v_1(\alpha) \, d\alpha - v(\xi,\eta) + v_0(\psi(\eta))$$

Выражаем $v(\xi, \eta)$

$$v(\xi,\eta) = v_0(\psi(\eta)) + \int_{\psi(\eta)}^{\xi} v_1(\alpha) d\alpha + \int_{\psi(\eta)}^{\xi} d\widehat{\xi} \int_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} (d_1 v_{\xi}' + d_2 v_{\eta}' + ev - h)$$

Покажем, что решение существует и единственно Рассмотрим отображение $\Phi:C^1(\Pi)\longrightarrow C^1(\Pi),\ \Pi=I\times K$

$$\Phi(\omega) = v_0(\psi(\eta)) + \int_{\psi(\eta)}^{\xi} v_1(\alpha) d\alpha + \int_{\psi(\eta)}^{\xi} d\widehat{\xi} \int_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} (d_1 \omega_{\xi}' + d_2 \omega_{\eta}' + e\omega - h)$$

Непосредственно дифференцируя, проверяем, что при естественной гладкости параметров для $v = \Phi(\omega) \exists v_{\xi\eta} = v_{\eta\xi}$ и справеливо вложение $v \in C^1(\Pi)$. Тогда если существует w такое, что $w = \Phi(w)$, то w будет полуклассическим решение.

Теорема (Принцип сжимающих отображений Банаха (без доказательства)). (Z, ρ) – полное метрическое пространство. F – сжимающее отображение, т.е. $\exists \ q \in [0,1)$ такое что $\rho(F(z_1), F(z_2)) \leqslant q\rho(z_1, z_2)$. Тогда $\exists ! \ z^* \in Z$, такое что $F(z^*) = z^*$.

Рассмотрим $\Pi_0 = I_0 \times K_0 \in \Pi$, $I_0 = \psi(K_0)$, $K_0 = \varphi(I_0)$. Введем метрику

$$\rho(v, w) = \max_{\Pi_0} |v - w| + \max_{\Pi_0} |v_{\xi} - w_{\xi}| + \max_{\Pi_0} |v_{\eta} - w_{\eta}|$$

 $(C(\Pi_0), \rho)$ является полным. Покажем, что отображение Φ является сжимающим. Для этого проверяем, что справедливы следующие соотношения.

$$M = \max(\max_{\Pi} |d_1|, \max_{\Pi} |d_2|, \max_{\Pi} |e|)$$

$$|\Phi(w) - \Phi(v)|(\xi, \eta) \leqslant |I_0||K_0|M\rho(w, v)$$

$$|\Phi_{\xi}(w) - \Phi_{\xi}(v)|(\xi, \eta) \leqslant |K_0|M\rho(w, v)$$

$$|\Phi_{\eta}(w) - \Phi_{\eta}(v)|(\xi, \eta) \leqslant |I_0|M\rho(w, v)$$

Тогда

$$\rho(\Phi(z_1), \Phi(z_2)) \leq M(|I_0||K_0|+|I_0|+|K_0|)\rho(w, v)$$

Можем подобрать $|I_0|$ и $|K_0|$ так, что отображение будет сжимающим. Тогда решение существует и единственно.

2. Пространства D(G) и D'(G) для открытого множества $G \subseteq \mathbb{R}^m$. Обобщенное дифференцирование в D'(G), теорема о равенстве обобщенных и классических производных порядка не выше N в $D'(G) \cap C^N(G)$.

Определение. Пространство обобщенных функций Лорана-Шварца

$$D(\mathbb{R}^m) = C_{\text{фин.}}(\mathbb{R}^m) \cap C^{\infty}(\mathbb{R}^m) = \{\varphi \in \mathbb{R}^m : \varphi \in C^{\infty}(\mathbb{R}^m), supp(\varphi) - \text{компакт}\}$$

Определение. $D'(\mathbb{R}^m)$ — множество линейных непрерывных функционалов над $D(\mathbb{R}^m)$

Определение. Сходимость в $D(\mathbb{R}^m)$:

$$\varphi_n \stackrel{D(R^m)}{\to} \varphi \Leftrightarrow$$

1. $\exists K \in \mathbb{R}^m$ - компакт: $supp(\varphi_n) \subset K \ \forall n$

2.
$$\forall \alpha \in \mathbb{N}_0^m \ \partial_{\kappa_{JL}}^{\alpha} \varphi_n \xrightarrow{\mathbb{R}^m} \partial_{\kappa_{JL}}^{\alpha} \varphi, n \to \infty$$

Определение. $\alpha = (\alpha_1, \alpha_2, ..., \alpha_M) \in \mathbb{N}_0^m$ - мультииндекс,

$$\partial^{lpha}=(rac{\partial}{\partial x_1})^{lpha_1}...(rac{\partial}{\partial x_M})^{lpha_M},$$
 где $|lpha|=\sum_{k=0}^Mlpha_k$

Определение. Пространство обобщенных функций Лорана-Шварца

$$D(G) = \{ \varphi \in D(\mathbb{R}^m) : supp(\varphi) \subset G \}$$

Определение. Сходимость в D(G):

$$\varphi_n \xrightarrow{D(G)} \varphi \Leftrightarrow$$

- 1. $\exists K \in G$ компакт: $supp(\varphi_n) \subset K \forall n$
- 2. $\forall \alpha \in \mathbb{N}_0^m \ \partial_{\mathbf{KJI}}^\alpha \varphi_n \rightrightarrows^G \partial_{\mathbf{KJI}}^\alpha \varphi, n \to \infty$

Определение. D'(G) - множество линейных непрерывных функционалов над D(G)

Определение. Дифференцирование в D'(G):

$$\forall f \in D'(G), \varphi \in D(G), \alpha \in \mathbb{N}_0^m$$

обобщенная производная определяется как

$$<\partial^{\alpha} f, \varphi> = < f, (-1)^{|\alpha|} \partial^{\alpha} \varphi>$$

Определение. Пусть $G \in (R)^m$ - открытое множество. Определим опрератор

$$L = \sum_{k=1}^{M} a_k(x) \partial_x^{\alpha(k)}$$

$$\alpha(1),\alpha(2),...,\alpha(M)\in\mathbb{N}_0^M,a_k\in C^\infty(G)$$

Определение. Определим действие L в D'(G):

$$\forall f \in D'(G), \varphi \in D(G) < Lf, \varphi > = < f, L'\varphi >$$
 , где $L'\varphi = \sum_{k=0}^M (-1)^{|\alpha(k)|} \partial^{\alpha(k)}(a_k(x)\varphi(x))$

Теорема. О равенстве обобщенных и классических производных порядка не выше N в $D'(G) \cap C^N(G)$: Определим множество локально-интегрируемых функций:

$$Loc_1 = \{ f : \mathbb{R}^m \to \mathbb{C} \mid \int_K |f(x)| dx < +\infty \}$$

Где $K \subset \mathbb{R}^m$ - любой компакт.

1. Пусть $f \in C^N(\mathbb{R}^m) \subset Loc_1(\mathbb{R}^m)$, $\varphi \in C_{\text{фин.}}(\mathbb{R}^m) \cap C^N(\mathbb{R}^m)$. Пусть $supp(\varphi) \in \Pi_r$, где Π_r - прямоугольник.

$$\forall \alpha \in \mathbb{N}_0^m, \ |\alpha| \le N, \ \partial^{\alpha} f \in C(\mathbb{R}^m) \subset Loc_1(\mathbb{R}^m)$$

$$<\partial^{\alpha} f, \varphi> = \int_{\Pi_{r}} (\partial^{\alpha} f) \varphi dx =$$

$$= \int_{-r}^{r} dx_{1} \int_{-r}^{r} dx_{2} ... \int_{-r}^{r} dx_{m} [(\frac{\partial}{\partial x_{1}})^{\alpha_{1}} (\frac{\partial}{\partial x_{2}})^{\alpha_{2}} ... (\frac{\partial}{\partial x_{m}})^{\alpha_{m}} f(x)] \varphi(x)$$

Интегрируем по частям по каждой компоненте, с учетом

$$\partial^{\beta} \varphi(x)|_{x=\pm r} = 0 \forall \beta : |\beta| \le N$$

получим:

$$<\partial^{\alpha}f,\varphi>=(-1)^{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{m}}\int_{-r}^{r}f(\partial^{\alpha}\varphi)dx=< f,(-1)^{|\alpha|}\partial^{\alpha}\varphi(x)>$$

То есть, классическая и обобщенная производная совпадают.

2. Пусть $f \in D'(G) \cap C^N(G)$, $\varphi \in D(G)$. Тогда аналогично предыдущему пункту получим, что классическая и обобщенная производные порядка не выше N равны.

3. Постановка обобщенной задачи Коши в пространстве $D'(\mathbb{R} \times \mathbb{R}^m)$. Теорема о корректности определения обобщенного решения этой задачи: достаточно гладкое обобщенное решение является и классическим решением.

Определение. Постановка обобщенной задачи: пусть $g \in D'(G)$. Тогда функция $u \in D'(G)$ называется обобщенным решением (решением в D'(G)) задачи Lu = g если

$$\forall \varphi \in D(G), < Lu, \varphi > = < u, L'\varphi > = < g, \varphi >$$

Лемма. Лемма о разбиении единицы: Пусть $K \subset \mathbb{R}^m$ - компакт. P - его открытое покрытие. Тогда сушествуют яункции $\psi_1,...,\psi_l \in C^\infty(\mathbb{R}^m)$:

- 1. $0 \le \psi_k(x) \le 1 \ \forall k \in 1, l$
- 2. $\forall k \in 1, l \; \exists V_k \in P : supp(\psi_k) \subset V_k$
- 3. $\sum_{k=1}^{l} \psi_k(x) = 1 \ \forall x \in K$

Заметим, что $K\subset \cup_{k=1}^l V_k$ - конечное подпокрытие.

Теорема. Корректность обобщенного решения: пусть $N = max(|\alpha(k)|), f \in C(G) \subset Loc_1(G) \subset D'(G)$

1. Пусть $u \in C^N(G)$ удовлетворяет классическому уравнению. Тогда u является обобщенным решением (то есть в D'(G)), т.е.

$$\forall \varphi \in D(G) < Lu, \varphi > = < u, L'\varphi > = < f, \varphi >$$

$$\int_{G} u(x)(L'\varphi(x))dx = \int_{G} f(x)\varphi(x)dx$$

Доказательство:

(а) Предположим, что для φ $\exists \Pi$ - открытый прямоуголльный параллелепипед: $supp \varphi \in \Pi \in G$. Тогда

$$< Lu, \varphi> = < u, L'\varphi> = \int_C u(x)L'\varphi(x)dx = \int_{\Pi} u(x)L'\varphi(x)dx = (*)$$

 $u \in C^N(G)$, поэтому можно интегрировать по частям

$$(*) = \int_{\Pi} (Lu(x))\varphi(x)dx = \int_{\Pi} f(x)\varphi(x)dx =$$

$$= \int_{G} f(x)\varphi(x)dx = \langle f, \varphi \rangle$$

(b) Общая ситуация: $\varphi \in D(G)$, обозначим $K = supp(\varphi) \in G$ - компактный носитель φ . Определим

$$\forall x \forall \varepsilon \ \Pi_{\varepsilon}(x) = y \in \mathbb{R}^m : |x_k - y_k| < \varepsilon \ \forall k \in 1, m$$

Так как G - открытое множество, то

$$\forall x \in G \ \exists \varepsilon(x) > 0 : \Pi_{\varepsilon(x)}(x) \subset G$$

Таким образом,

$$\forall x \in K \exists \varepsilon(x) : \Pi_{\varepsilon(x)}(x) \subset G$$

Получим открытое покрытие компакта:

$$P = \{ \Pi_{\varepsilon(x)}(x), x \in K \}$$

По лемме о разбиении единицы

$$\exists \psi_1, ..., \psi_k \in D(\mathbb{R}^m) : supp(\psi_k) \subset \Pi_{\varepsilon(x)k)} = V_k$$

$$< Lu, \varphi > = < u, L'\varphi > = \int_G u(x)(L'\varphi(x))dx = \int_K u(x)(L'\varphi(x))dx =$$

$$= \int_{K} u(x) (L' \sum_{k=1}^{l} \psi_{k}(x) \varphi(x)) dx = \sum_{k=1}^{l} \int_{K} u(x) (L' \psi_{k}(x) \varphi(x)) dx = (**)$$

Так как $supp(\psi_k)=V_k=K\cap \Pi_{\varepsilon(x_k)}(x_k),$ получим:

$$(**) = \sum_{k=1}^{l} \int_{K \cap \Pi_{\varepsilon(x_k)}(x_k)} u(x) (L'\psi_k(x)\varphi(x)) dx = (**)$$

Так как $supp(\varphi) = K$, получим:

$$(**) = \sum_{k=1}^l \int_{\Pi_{\varepsilon(x_k)}} u(x) (L'\psi_k(x)\varphi(x)) dx = (**)$$

Используя первую часть доказательства, получим:

$$(**) = \sum_{k=1}^l \int_{\Pi_{\varepsilon(x_k)}} (Lu(x)) \psi_k(x) \varphi(x) dx = \sum_{k=1}^l \int_K (Lu(x)) \psi_k(x) dx = \sum_{k=1}^l \int_K (Lu(x)) dx = \sum_{k=1}^l \int_K (Lu(x)) \psi_k(x)$$

$$\int_K (Lu(x))\varphi(x)dx = \int_G (Lu(x))\varphi(x)dx = \int_G f(x)\varphi(x)dx = \langle f, \varphi \rangle$$

Таким образом, эта часть теоремы доказана.

2. Пусть $G \subset \mathbb{R}^m$ - открытое множество, $u \in C^N(G)$, $f \in C(G)$. Пусть u - обобщенное решение уравнения Lu = f (решение в D'(G)), то есть

$$\forall \varphi \in D(G) < Lu, \varphi > = < u, L'\varphi > = < f, \varphi >$$

Тогда u - классическое решение уравнения в G, то есть

$$\forall x \in G \ Lu(x) = f(x)$$

Доказательство: из первой части теоремы известно, что

$$< Lu, \varphi > = \int_{C} u(x)(L\varphi(x))dx = \int_{C} (Lu(x)), \varphi(x)dx$$

Из условия теоремы следует, что

$$\int_G u(x)(L\varphi(x))dx = \int_G (Lu(x)), \varphi(x)dx = \int_G f(x)\varphi(x)dx$$

Введем обозначение $\omega(x) = (Lu(x)) - f(x) \ \forall x \in G, \ \omega \in C(G)$

$$\int_{G} \omega(x)\varphi(x)dx = 0 \ \forall \varphi \in D(G)$$

Очевидно, что $\omega(x) = 0 \ \forall x \in G$, что означает

$$(Lu(x)) = f(x) \ \forall x \in G$$

то есть, и является классическим решением, ч.т.д.

Определение. Пусть $f \in D'(\mathbb{R}^m), G \in \mathbb{R}^m$ - открытое множество. Будем говорить, что $f|_G = 0$, если $\forall \varphi \in D(G) < f, \varphi >= 0$

Определение. Носитель обобщенной функции:

$$supp(f) = \mathbb{R}^m \cap G, \ G : \ G \subset \mathbb{R}^m, \ G$$
 – открытое, $f|_G = 0$

Определение. Прямое произведение обобщенных функций: $\forall g \in D(\mathbb{R}^m), \ \forall \varphi \in D(\mathbb{R} \times \mathbb{R}^m)$

$$< g(x)\delta(x), \varphi(t,x) > = < g(x), \varphi(0,x) >$$

$$(\frac{\partial}{\partial t})_{\text{of.}}(g(x)\delta(t)) = g(x)\delta^{(k)}(t)$$

Определение. Постановка обобщенной задачи Коши: пусть $f \in D'(\mathbb{R} \times \mathbb{R}^m) : supp(f) \subset t \leq 0, x \in \mathbb{R}^m$). Пусть $u_0,...,u_{l-1} \in D'(\mathbb{R}^m)$. Пусть $P = a_0 z^l + a_1 z^{l-1} + ... + a_{l-1} z + a_l$ - комплексный многочлен. Найти

$$u(t,x) \in D'(\mathbb{R} \times \mathbb{R}^m) : supp(u) \subset \{t \le 0, x \in \mathbb{R}^m\}$$

удовлетворяющую уравнению

$$(P(\frac{\partial}{\partial t}) - L_x)u(t,x) = f(t,x) + \sum_{j=1}^{l} u_{j-1}(x) \sum_{k=j}^{l} a_{l-k} \delta^{(k-j)}(t)$$

Теорема. Пусть $u_0, ..., u_l \in C(\mathbb{R}^m)$, $f \in c(t \leq 0, x \in \mathbb{R}^m)$. Если u - решение соответсвующей классической задачи, то, продолжая u = 0, f = 0 при t < 0, получим, что $u \in D'(\mathbb{R} \times \mathbb{R}^m)$ и является обобщенным решением соотвествующей обобщенной задачи Коши.

Доказательство: следует из потановки обобщенной задачи.

Теорема. Пусть $u_0, ..., u_l \in C(\mathbb{R}^m), f \in c(t \leq 0, x \in \mathbb{R}^m), f(x) = 0 \ \forall t \leq 0, x \in \mathbb{R}^m$. Пусть

$$u \in C_{t,x}^{l,N}(t > 0, x \in \mathbb{R}^m) \cap C_{t,x}^{l,0}(t \le 0, x \in \mathbb{R}^m), \ u(t,x) = 0 \ \forall t < 0, x \in \mathbb{R}^m$$

является решением обобщенной задачи Коши. Тогда u является классическим решением соответсвующие классической задачи Коши.

Доказательство: так как $u_{j-1}(x)\delta^{(k-j)}(x)=0$ при $t>0, x\in\mathbb{R}^m\ \forall j\in 1, l\ \forall k\in j, l$, то

$$\langle u_{j-1}(x)\delta^{(k-j)}(x), \varphi \rangle = 0$$

Следовательно,

$$\forall \varphi \in D(t > 0, x \in \mathbb{R}^m) < (P(\frac{\partial}{\partial t}) - L_x)_{\text{o6.}} u, \varphi > = < f, \varphi >$$

$$(P(\frac{\partial}{\partial t}) - L_x)_{\text{o6.}} u = f \text{ B } D'(t > 0, x \in \mathbb{R}^m)$$

При этом u и f - достаточно гладкие функции. Отсюда, по теореме о корректности обобщенного решения, получим, что уравнение выполняется как классическое.

Осталось разобраться с граничными условиями. Рассмотрим $\forall \varphi \in D(\mathbb{R} \times \mathbb{R}^m)$. По условию теоремы

$$<(P(\frac{\partial}{\partial t})-L_x)_{\text{o6.}}u,\varphi>=< f,\varphi> + \sum_{j=1}^{l}\sum_{k=j}^{l}a_{l-k}\int_{\mathbb{R}^m}dxu_{j-1}(x)\varphi_t^{(k-j)}(0,x)(-1)^{k-j}$$

По определению

$$<(P(\frac{\partial}{\partial t})-L_x)_{\text{o6.}}u,\varphi>=< u,P(-\frac{\partial}{\partial t})\varphi-L_x'\varphi>= \\ =<(P(\frac{\partial}{\partial t})-L_x)_{\text{к.п.}}u,\varphi>+\sum_{j=1}^l\sum_{k=j}^la_{l-k}\int_{\mathbb{R}^m}dxu^{(j-1)}(x)\varphi_t^{(k-j)}(0,x)(-1)^{k-j}$$

Сокращая все, что не нужно, получим

$$\sum_{j=1}^{l} \sum_{k=j}^{l} a_{l-k} \int_{\mathbb{R}^m} dx (u^{(j-1)}(x) - u_{j-1}(x)) \varphi_t^{(k-j)}(0, x) (-1)^{k-j} = 0$$

Подбирая разные φ , получим, что $u^{(j-1)}(x) = u_{j-1}(x)$. Получим, что u является классическим решением соответствующей классической задачи Коши.

4. Нефинитность классического преобразования Фурье нетривиальной функции из $\mathcal{D}(\mathbb{R})$. Простр Π . Шварца $\mathcal{S}(\mathbb{R}^m)$ и плотность $\mathcal{D}(\mathbb{R}^m)$ в нем. Классическое преобразование Фурье как линейное непрерывное преобразование пространства $\mathcal{S}(\mathbb{R}^m)$ и теорема обращения.

4.0. Вспомогательные теоремы

В этом билете мы будем много пользоваться всякой констовской херней.

Теорема. 0.1 - Теорема Лебега об ограниченной сходимости (без док-ва)

- 1) Имеем последовательность $f_n: \mathbb{R}^m \to \mathbb{C}$, которая почти всюду сходится: $f_n \to f$ в \mathbb{R}^n 2) $\exists h \in L_1(\mathbb{R}^m): |f_n| \leq h$ почти всюду в $x \in \mathbb{R}^m \forall n$.

Тогда
$$f_n$$
 и $f\in L_1(\mathbb{R}^m)$, а также $\int\limits_{\mathbb{R}^m} f_n \longrightarrow \int\limits_{\mathbb{R}^m} f$ при $n\to\infty$

Теорема. 0.2 - Теорема Фубини (без док-ва)

Имеем $f: \mathbb{R}^m \times \mathbb{R}^l \to \mathbb{C}$ - измерима по Лебегу; Притом такая, что $\int dx \int dy |f(x,y)| < +\infty$. Тогда $f \in L_1(\mathbb{R}^m \times \mathbb{R}^l)$ и $\int_{\mathbb{D}^m \times \mathbb{D}^l} f(x,y) dx dy = \int_{\mathbb{D}^m} dx \int_{\mathbb{T}^n} dy f(x,y) = \int_{\mathbb{T}^n}^{\mathbb{R}^n} dy \int_{\mathbb{T}^n}^{\mathbb{R}^n} dx f(x,y)$

Лемма. 0.1 - Свойство интеграла Лебега о его интегрируемости в среднем (без док-ва)

 $f \in L_1(\mathbb{R}^m \times \mathbb{R}^l) \Rightarrow \int_{\mathbb{R}^m} |f(x+z) - f(x)| dx \longrightarrow 0$ при $z \to 0$ в \mathbb{R}^m .

Теорема. 0.3 - Теорема Римана об осцилляции

$$f \in L_1(\mathbb{R}^m) \Rightarrow \int_{\mathbb{R}^m} e^{i(x,y)} f(x) dx \longrightarrow 0$$
 при $|y| \to \infty$.

Док-во: пользуемся **Л0.1**. Рассмотрим $\int e^{i(x,y)} f(x) dx$ с $x = z + \frac{\pi y}{|y|^2}$.

Получим $\int\limits_{\mathbb{R}^m} e^{i(z,y)}e^{i\pi}f(z+\frac{\pi y}{|y|^2})dz=-\int\limits_{-\infty}^{\mathbb{R}^m} e^{i(x,y)}f(x+\frac{\pi y}{|y|^2})dx$. Последний интеграл получается просто переобозна-

чением индекса с
$$z$$
 на x .

Значит, мы получили $|2\int e^{i(x,y)}f(x)dx| = |\int e^{i(x,y)}(f(x)-f(x+\frac{\pi y}{|y|^2}))dx| \leq \int_{\mathbb{R}^m} (f(x)-f(x+\frac{\pi y}{|y|^2})dx$.

По **Л0.1** получаем справа 0 при $|y| \to \infty$ \spadesuit .

4.1. Из лекции 10 - нефинитность Фурье и пространство Шварца.

Рассмотрим классическое Фурье для $f \in L_1(\mathbb{R}^m)$.

$$F[f](y) = \int_{\mathbb{R}^m} e^{i(x,y)} f(x) dx, y \in \mathbb{R}^m$$
. Заметим, что подинтегральная функция $\in L_1(\mathbb{R}^m) \forall y \in \mathbb{R}^m$.

Лемма. 1.1 - Непрерывность

Преобразование непрерывно: если $y \to y_0$ в \mathbb{R}^m , то $F[f](y) \to F[f](y_0)$.

Док-во: $|e^{i(x,y)}f(x)| \le f(x) \equiv h(x)$ из **T0.1** (Т Лебега). Пользуемся ей:

$$\lim_{y \to y_0} F[f](y) = \int e^{i(x,y_0)} f(x) dx = F[f](y_0) \ \spadesuit.$$

Мы можем рассмотреть Фурье как функционал, которая будет действовать на пробные функции.

 $F[f](y) \subset Loc_1(\mathbb{R}^m) \subset \mathcal{D}'(\mathbb{R}^m)$

$$< F[f], \varphi> = \int\limits_{\mathbb{R}^m} dy F[f](y) \varphi(y) = \int\limits_{\mathbb{R}^m} dy \int\limits_{\mathbb{R}^m} dx e^{i(x,y)} f(x) \varphi(y)$$

$$\int\limits_{\mathbb{R}^m} dy \int\limits_{\mathbb{R}^m} dx |e^{i(x,y)} f(x) \varphi(y)| = \int\limits_{\mathbb{R}^m} dy |\varphi(y)| \int\limits_{\mathbb{R}^m} dx |f(x)| < +\infty.$$
 Пользуемся Т Фубини (**T0.2**):
$$\int\limits_{\mathbb{R}^m} dx f(x) \int\limits_{\mathbb{R}^m} dy e^{i(x,y)} \varphi(y) = \int\limits_{\mathbb{R}^m} dx f(x) F[\varphi](x) = < f, F[\varphi] >$$

$$\int_{\mathbb{R}} dx f(x) \int_{\mathbb{R}^m} dy e^{i(x,y)} \varphi(y) = \int_{\mathbb{R}^m} dx f(x) F[\varphi](x) = \langle f, F[\varphi] \rangle$$

 \mathbb{R}^m \mathbb{R}^m \mathbb{R}^m Обратим внимание, что Т Фубини прекрасно применяется, потому что $f(x)\in L_1(\mathbb{R}^m)$, а $F[arphi](x)\in BC(\mathbb{R}^m)$ пространство непрерывных ограниченных функций. Значит, подинтегральная функция тоже $\in L_1(\mathbb{R}^m)$.

Рассмотрим некую φ из $\mathcal{D}(\mathbb{R}^m)$. Пусть $supp(\varphi)\subset B_R(0)$ - шар радиуса R с центром в нуле. Тогда $F[\varphi](x)=$ $dy(iy)e^{i(x,y)}\varphi(y)$, и поскольку $\varphi(y)\in C^\infty(\mathbb{R}^m)$, то по теореме о дифф. по параметру $F[\varphi]\in C^\infty(\mathbb{R}^m)\Rightarrow$

$$\partial_x^{\alpha}(F[\varphi](x)) = \int_{B_R(0)} dy (iy)^{\alpha} e^{i(x,y)} \varphi(y) = F[(iy)^{\alpha} \varphi(y)](x).$$

Финитность такого преобразования Фурье благополучно теряется; об этом следующая теорема.

Теорема. 1.1 - Нефинитность Фурье

 $\forall \varphi \in \mathcal{D}(\mathbb{R}^m) : F[\varphi] \in \mathcal{D}(\mathbb{R}^m) \hookrightarrow \varphi \equiv 0.$

док-во (в 1D): $F[\varphi] \in \mathcal{D}(\mathbb{R}^m) \Rightarrow \exists R > 0 : F[\varphi](y) = 0 \ \forall |y| \geq R$; аналогично $\varphi(x) = 0 \ \forall |x| \geq r$

$$\int dx e^{i(x,y)} \varphi(x) = \int_{x}^{r} dx e^{i(x,y)} \varphi(x) = \int_{x}^{r} dx \sum_{k=0}^{\infty} \frac{(iy)^{k}}{k!} x^{k} \varphi(x)$$

 $\int dx e^{i(x,y)} \varphi(x) = \int_{-r}^{r} dx e^{i(x,y)} \varphi(x) = \int_{-r}^{r} dx \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} x^k \varphi(x)$ $|\frac{(iy)^k}{k!} x^k \varphi(x)| \leq \frac{|y|^k r^k}{k!} \max_{[-r;r]} |\varphi(x)| \text{ - т. е. получились члены равномерно сходящегося ряда (по Т Вейерштрасса). Зна$ можно переставить интеграл и ряд по Т об интегрировании равномерно сходящихся рядов.

$$\sum_{k=0}^{\infty} \frac{(iy)^k}{k!} \int\limits_{-r}^r x^k \varphi(x) dx = 0 \ \forall |y| \geq R.$$
 Тогда по T о единственности степ. ряда
$$\int\limits_{-r}^r x^k \varphi(x) dx = 0 \ (*)$$

Разложим в Фурье по основной триг. системе на [-r;r]. Её можно записать как $\{e^{\frac{i\pi sx}{r}};x\in[-r;r];s\in\mathbb{Z}\}$.

$$\varphi(x)=\sum_{m=-\infty}^{+\infty}\varphi_me^{\frac{i\pi mx}{r}}\;\forall x\in[-r;r]$$
 - равн. сх. триг. ряд Фурье на отрезке.

$$\varphi_m = \frac{\int\limits_{-r}^{r} e^{-\frac{i\pi mx}{r}}}{2r} = \frac{1}{2r} \int\limits_{-r}^{r} dx \sum_{k=0}^{+\infty} (\frac{-i\pi m}{r})^k \frac{x^k \varphi(x)}{k!}.$$
 Всё это дело сходится равномерно по признаку Вейерштрасса, а

значит, по Т об интегрировании равномерно сходящихся рядов ряд и интеграл можно переставить.

$$\varphi_m = \sum_{k=0}^{+\infty} (\frac{-i\pi m}{r})^k \int\limits_{-r}^r x^k \varphi(x) dx = 0 \ (*) \ \forall m \in (Z) \ \text{Значит, если все коеф.} \ \varphi_m = 0, \ \text{то} \ \varphi \equiv 0. \ \spadesuit$$

Как дышать? Надо вводить другое пространство, из которого мы не будем вылетать после Фурье. Это есть не что иное, как пространство Шварца.

Определение. 1 Пространство $\mathcal{S}(\mathbb{R}^m)$ Шварца пробных функций задается как $\mathcal{S}(\mathbb{R}^m) = \{ \varphi \in C^\infty(\mathbb{R}^m) | \forall \alpha, \beta \in \mathbb{N}_0^m \}$ $x^{\beta}\partial_x^{\alpha}\varphi(x)\longrightarrow 0\;\forall |x|\rightarrow\infty\}.$ Здесь $\alpha,\,\beta$ - мультииндексы.

Определение. 2 A еще можно задать пространство так: $\mathcal{S}(\mathbb{R}^m) = \{ \varphi \in C^\infty(\mathbb{R}^m) | \forall \alpha \in \mathbb{N}_0^m \ \forall p \in \mathbb{R} \ |x|^p \partial_x^\alpha \varphi(x) \longrightarrow 0 \}$ $\forall |x| \to \infty$ }.

Лемма. 1.2 - Эквивалентность определений

$$|x|^p \le m^{\frac{p}{2}} \max_{k=1..m} |x_k^p| \le m^{\frac{p}{2}} \sum_{k=1}^m |x_k|^p$$

$$|x|^p |\partial_x^\alpha \varphi| \le m^{\frac{p}{2}} \sum_{k=1}^m |x_k|^p |\partial_x^\alpha \varphi(x)| \longrightarrow 0 \ \forall |x| \to \infty \}. \ \spadesuit$$

$$\forall \alpha, \beta \in \mathbb{N}_0^m$$
:

$$2 \to 1: \\ \forall \alpha, \beta \in \mathbb{N}_0^m: \\ |x^{\beta} \partial_x^{\alpha} \varphi| = |x_1|^{\beta_1} .. |x_m|^{\beta_m} |\partial_x^{\alpha} \varphi| \le |x|^{|\beta|} \partial_x^{\alpha} \varphi \longrightarrow 0 \ \forall |x| \to \infty \}.$$

Теорема. 1.2 - Инвариантность относительно Фурье

 $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow F[\varphi] \in \mathcal{S}(\mathbb{R}^m)$

Док-во:

$$F[\varphi] = \int_{\mathbb{D}^m} e^{i(x,y)} \varphi(x) dx.$$

 $\partial_y^\alpha e^{i(x,y)} \varphi(x) = |(ix)^\alpha \varphi(x) e^{i(x,y)}| \le |x|^\alpha |\varphi(x)|$ Так как $\varphi \in (S)$, то $(1+|x|^{2m})|x|^\alpha |\varphi(x)| \to 0$ и принадлежит $C(\mathbb{R}^m)$. Отсюда по Т Вейерштрасса имеем ограничен-HOCTE $|x|^{\alpha} |\varphi(x)| \leq \frac{M}{1+|x|^{2m}}$.

Тогда по признаку Вейерштрасса в силу абс. интегрируемости $\int_{-\infty}^{\infty} \frac{dx}{1+|x|^{2m}}$ мы получим равномерную по y сходи-

мость интеграла $\int dy \partial_y^{\alpha} e^{i(x,y)} \varphi(x) dx$. Значит, можно дифференциировать по параметру.

Теперь разберёмся со степенью: $y^{\beta}F[(ix)^{\alpha}\varphi(x)](y)$; обозначим $\psi(x)=(ix)^{\alpha}\varphi(x)$

Проинтегрировав по частям $|\beta|$ раз, получим $F[\partial_x^\beta \psi](y) = (-iy)^\beta F[\psi](y)$. А значит, $y^\beta F[\psi](y) = i^\beta F[\partial_x^\beta \psi]$.

В итоге по Т Римана об осцилляции (**T0.3**) $i^{\beta}F[\partial_{x}^{\beta}\psi] \longrightarrow 0$ при $|y| \to \infty$ \spadesuit

Определение. 3 $\varphi_n \longrightarrow \varphi$ при $n \to \infty$ в $\mathcal{S}(\mathbb{R}^m)$, если $\forall \alpha, \beta \in \mathbb{N}_0^m \ x^\beta \partial_x^\alpha \varphi_n(x) \longrightarrow x^\beta \partial_x^\alpha \varphi(x)$ при $n \to \infty$. Две стрелки обозначают равномерную сходимость.

Лемма. 1.3 - Плотность $\mathcal S$ в $\mathcal D$

 $\varphi_n \longrightarrow \varphi$ при $n \to \infty$ в $\mathcal{S}(\mathbb{R}^m)$, если $\varphi_n \longrightarrow \varphi$ при $n \to \infty$ в $\mathcal{D}(\mathbb{R}^m)$

Док-во:

$$\sup_{\mathbb{R}^m} [|x|^p |\partial_x^\alpha (\varphi_n - \varphi)|] \le R^p \max_{B_R(0)} |\partial_x^\alpha (\varphi_n - \varphi)| \ \spadesuit$$

Отсюда тут же следует, что \mathcal{S}' - это подмножество функционалов \mathcal{D}' , которые работают на суженном пространстве, ведь из сходимости в \mathcal{D} следует сходимость в \mathcal{S} .

4.2. Из лекции 11 - Классическое преобразование Фурье как линейное непрерывное преобразование пространства + Т обращения

Очевидно, что классическое преобразование Фурье линейно. Покажем его непрерывность.

Лемма. 2.1 - Непрерывность

Если $\varphi_n \to \varphi$ в $\mathcal{S}(\mathbb{R}^m)$, то $\forall \alpha, \beta \in \mathbb{N}_0^m y^\beta \partial^\alpha F[\varphi_n - \varphi](y) \longrightarrow 0$ по $y \in \mathbb{R}^m$.

Проделаем те же вычисления, что и в **Т4.1.2**:

$$y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y) = y^{\beta} F[x^{\alpha} (\varphi_n - \varphi)(x)](y)$$

$$F[\partial^{\beta}\psi](y) = -(iy)^{\beta}F[\psi]$$

Соберём эти два соотношения в одно: $y^{\beta}\partial^{\alpha}F[\varphi_{n}-\varphi](y)=-(i)^{(\beta+\alpha)}F[\partial^{\beta}(x^{\alpha}(\varphi_{n}-\varphi)(x))](y)$ По определению сходимости в \mathcal{S} $|x|^{p}\partial^{\beta}(x^{\alpha}(\varphi_{n}-\varphi))\longrightarrow 0$ в \mathbb{R}^{m} при $n\to\infty$; тогда выбирая p=0,2m, получим: $(1+|x|^{2m})\partial^{\beta}(x^{\alpha}(\varphi_n-\varphi)) \leq \varepsilon \ \forall n \geq N(\varepsilon) \ \forall x \in \mathbb{R}^m.$

Окончательно $|y^{\beta}\partial^{\alpha}F[\varphi_{n}-\varphi](y)| \leq \int\limits_{\mathbb{R}^{m}}|y^{\beta}\partial^{\alpha}(\varphi_{n}-\varphi)(x)|dx \leq \int\limits_{\mathbb{R}^{m}}\frac{\varepsilon}{1+|x|^{2m}}dx \longrightarrow 0$ при $\varepsilon \to 0$. То есть, наш интеграл

равномерно сходится к нулю и тогда $F[\varphi_n] - F[\varphi]$ в $\mathcal{S}(\mathbb{R}^m)$.

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow \int_{\mathbb{R}^m} F[\varphi](y) dy = (2\pi)^m \varphi(0)$$

$$\forall \varphi, \psi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow \int \varphi(y) F[\psi](y) dy = \int F[\varphi](x) \psi(x) dx$$
 по Т Фубини (**T0.2**), т.к. $\varphi, \psi \in \mathcal{S}(\mathbb{R}^m); F[\varphi], F[\psi] \in L_1$
Введём специальную функцию $\psi_{\varepsilon} \stackrel{def}{=} e^{-\varepsilon |x|^2} \in \mathcal{S}(\mathbb{R}^m) \ \forall \varepsilon > 0$. Фурье от этой функции считается тупо в лоб с

выделением полного квадрата показателя ехр.

$$F[\psi_{\varepsilon}](y) = \int\limits_{\mathbb{R}^m} dx e^{i(xy)} e^{-\varepsilon|x|^2} = \frac{1}{\sqrt{\varepsilon}^m} \int\limits_{\mathbb{R}^m} dz e^{-|z - \frac{iy}{2\sqrt{\varepsilon}}|^2} e^{-\frac{|y|^2}{4\varepsilon}} = \frac{1}{\sqrt{\varepsilon}^m} e^{-\frac{|\pi|^2}{4\varepsilon}} \prod_{k=1}^m \int\limits_{\mathbb{R}} dt e^{-(t - \frac{iy_k}{2\sqrt{\varepsilon}})^2} = (\sqrt{\frac{\pi}{\varepsilon}})^m e^{-\frac{|\pi|^2}{4\varepsilon}}$$

Предпоследний переход - это теорема Фубини (Т0.2), сводящая кратный интеграл к повторному.

Последний в общем-то ясен, но для любителей попетушиться я принес вам покушать говнеца:

Рассмотрим
$$\Phi(\xi) = \int e^{-(t-\xi)^2}; \ |\frac{d}{d\xi}e^{-(t-\xi)^2}| = |2(\xi-t)||e^{-(t-\xi)^2}| \le 2(r+|t|)e^{-t^2+2|t|r+r^2} \in L_1(\mathbb{R})$$
 При $|\xi| \le r$ сходится равномерно $\Rightarrow \exists \Phi'(\xi) = \int_{\mathbb{R}} \frac{d}{d\xi}e^{-(t-\xi)^2}dt \ \forall |\xi| \le r.$

Значит, функция хорошая и по теореме единственности из ТФКП $\Phi(\xi) = \Phi(\xi_{Re}) = \sqrt(\pi)$

Таким образом, мы осилили Фурье и теперь можем пописать Фубини: $\int \varphi(y) F[\psi_{\varepsilon}](y) dy = \int F[\varphi](x) \psi_{\varepsilon}(x) dx$

Подставим нашу функцию: $\int \varphi(y) (\sqrt{\frac{\pi}{\varepsilon}})^m e^{-\frac{|\pi|^2}{4\varepsilon}} dy = \int F[\varphi](x) e^{-\varepsilon |x|^2} dx.$ Правая часть интегрируется, потому что

 $F[\varphi] \in \mathcal{S}(\mathbb{R}^m) \subset L_1(\mathbb{R}^m).$ $|F[\varphi](x)e^{-\varepsilon|x|^2}|dx \leq |F[\varphi](x)| \in L_1.$

Тогда по Т Лебега об огр. сходимости (**T0.1**) получим $\int F[\varphi](x)e^{-\varepsilon|x|^2}dx \longrightarrow \int F[\varphi](x)dx$ при $\varepsilon \to 0$.

Тем временем в левой части после замены переменной в интеграле получим $(\sqrt{\frac{\pi}{\varepsilon}})^m (2\sqrt{\varepsilon})^m \int \varphi(2\sqrt{\varepsilon}z) e^{-|z|^2} dz$

Подинтегральная функция оценивается: $|\varphi(2\sqrt{\varepsilon}z)e^{-|z|^2}| \leq (\sup_{z \in \mathbb{Z}} |\varphi|)e^{-|z|^2} \in L_1(\mathbb{R}^m) \forall z \in \mathbb{R}^m$

Тогда по Т Лебега об огр. сходимости получим $(2\sqrt{\pi})^m \varphi(0) (\int dt e^{-t^2})^m$

Теорема. 2.2 - Т обращения: как мы привыкли ее видеть

 $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow F[F[\varphi(x)](y)](z) = (2\pi)^m \varphi(-z)$

$$F[F[\varphi(x)](y)](z) = \int_{\mathbb{R}^m} dy e^{i(y,z)} \int_{\mathbb{R}^m} dx e^{i(x,y)} \varphi(x) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx e^{i(y,x+z)} \varphi(x) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx e^{i(y,\xi)} \varphi(\xi-z) = \int_{\mathbb{R}^m} dy F[\varphi(\xi-z)](y) = (2\pi)^m \varphi(-z) \text{ no } \mathbf{T2.1} \ \spadesuit$$

Дальше немножечко напряжем мозг и высрем вот это.

Определение. 4
$$F^{-1}[\varphi(x)](y) \stackrel{def}{=} \frac{1}{(2\pi)^m} F[\varphi(x)](-y) = \frac{1}{(2\pi)^m} F[\varphi(-x)](y)$$

дд wp спасибо всем кто прочитал эту хуйню

5. Пространство обобщенных функций $\mathcal{S}'(\mathbb{R}^m)$. Обобщеннюе преобразование в $\mathcal{S}'(\mathbb{R}^m)$ по всем или по части переменных, и его свойства, связанные с операцией обобщенного дифференцирования.

Определение. Пространство обобщенных функций Шварца $\mathcal{S}'(\mathbb{R}^m)$ – множество линейных непрерывных функционалов над $\mathcal{S}(\mathbb{R}^m)$. Линейность и непрерывность в $\mathcal{S}'(\mathbb{R}^m)$ определяется так же, как и в $\mathcal{D}'(\mathbb{R}^m)$.

Определение. $\forall \alpha \in \mathbb{N}_0^m$ обобщенной производной функционала $f \in \mathcal{S}'(\mathbb{R}^m)$ называется

$$\langle \partial^{\alpha} f, \varphi \rangle \stackrel{def}{=} (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (2)

Определение. Пусть $\forall f \in \mathcal{S}'(\mathbb{R}^m) \ \forall g \in C^{\infty}(\mathbb{R}^m) : \ \forall \alpha \in \mathbb{N}_0^m \hookrightarrow \partial^{\alpha} g$ имеет медленный рост. Тогда определено произведение функции g на обобщенную функцию f по следующему правилу:

$$\langle gf, \varphi \rangle \stackrel{def}{=} \langle f, g\varphi \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (3)

Определение. Пусть $f \in \mathcal{S}'(\mathbb{R}^m)$, $A \in \mathbb{R}^{m \times m}$, $b \in \mathbb{R}^m$. Тогда определена замена переменных z = Ax + b в обобщенной функции:

$$\langle f(Ax+b), \varphi \rangle \stackrel{def}{=} \left\langle f(z), \frac{\varphi\left(A^{-1}(z-b)\right)}{|\det A|} \right\rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (4)

Определение. Пусть $f \in \mathcal{S}'(\mathbb{R}^m)$. Тогда можно определить обобщенное преобразование Фурье по следующему правилу:

$$\langle F[f], \varphi \rangle \stackrel{def}{=} \langle f, F[\varphi] \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (5)

Замечание. Для корректности данных выше определений необходимо доказывать линейность и непрерывность соответствующих функционалов. Линейность очевидна во всех случаях, а доказательство непрерывности приведем только для Фурье – в остальных определениях это либо очевидно, либо делается аналогично.

Доказательство. Пусть задана последовательность пробных функций $\varphi_n \to \varphi \in \mathcal{S}(\mathbb{R}^m)$. Тогда $\forall \alpha, \beta \in \mathbb{N}_0^m$ рассмотрим следующую функцию:

$$g(y) = y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y) = y^{\beta} F[(ix)^{\alpha} (\varphi_n - \varphi)](y) = i^{\alpha + \beta} F[\partial^{\beta} (\varphi_n - \varphi)](y)$$
(6)

По определению сходимости в $\mathcal{S}(\mathbb{R}^m)$:

$$\forall p \in \mathbb{N}_0 \hookrightarrow |x|^p \partial^\beta (x^\alpha (\varphi_n - \varphi)) \rightrightarrows 0 \ (n \to \infty)$$

Тогда:

$$\exists \varepsilon : \forall n \geqslant N(\varepsilon) \ \forall x \in \mathbb{R}^m \hookrightarrow (1+|x|^{2m}) \partial^{\beta} (x^{\alpha}(\varphi_n - \varphi)) \leqslant \varepsilon$$
 (7)

Из (6) и (7) получаем:

$$|g(y)| = |y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y)| \leqslant \int_{\mathbb{R}^m} |\partial^{\beta} (x^{\alpha} (\varphi_n - \varphi))| dx \leqslant \int_{\mathbb{R}^m} \frac{\varepsilon}{1 + |x|^{2m}} dx = \varepsilon \frac{\pi S_m}{2m}$$
 (8)

Таким образом $g(y) \rightrightarrows 0 \ (n \to \infty)$, а значит $F[\varphi_n] \to F[\varphi]$ в $\mathcal{S}(\mathbb{R}^m)$.

Определение (Обратное преобразование). Пользуясь теоремой об обращении можно определить обратное преобразование Фурье в $\mathcal{S}'(\mathbb{R}^m)$:

$$F^{-1}[f](x) \stackrel{def}{=} \frac{1}{(2\pi)^m} F[f](-x) \in \mathcal{S}'(\mathbb{R}^m)$$
(9)

Таким образом, мы получили, что обобщенное преобразование Фурье является изоморфизмом над $\mathcal{S}'(\mathbb{R}^m)$, т.е., зная Фурьевый образ, можно найти саму функцию, и наоборот.

С помощью преобразования Фурье можно определить замену переменных в обобщенной функции для случая неквадратной матрицы перехода.

Определение (Замена переменных в обобщенной функции). Пусть $f \in \mathcal{S}'(\mathbb{R}^l), \ A \in \mathbb{R}^{l \times m} : \operatorname{rg} A = l, \ b \in \mathbb{R}^l$. Тогда:

$$\langle f(Ax+b), \varphi(x) \rangle \stackrel{def}{=} \left\langle F^{-1}[f](y), e^{i(b,y)} F[\varphi](A^T y) \right\rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (10)

Докажем корректность такого определения.

Доказательство. Из определения обратного преобразования следует:

$$\forall f \in \mathcal{S}'(\mathbb{R}^l) \ \exists h(y) = F^{-1}[f] \in \mathcal{S}'(\mathbb{R}^l) : f(z) = F[h](z)$$

Тогда:

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^l) \left\langle f(z), \varphi(z) \right\rangle = \left\langle F[h(y)](z), \varphi(z) \right\rangle = \left\langle h(y), F[\varphi(z)](y) \right\rangle = \left\langle h(y), \int\limits_{\mathbb{R}^l} dz \, \varphi(z) e^{i(z,y)} \right\rangle$$

Рассмотрим теперь $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \ \forall y \in \mathbb{R}^l$ функцию:

$$\psi(y) = \int\limits_{\mathbb{R}^m} dx \, \varphi(x) e^{i(Ax+b,y)} = e^{i(b,y)} \int\limits_{\mathbb{R}^m} dx \, \varphi(x) e^{i(x,A^Ty)} = e^{i(b,y)} F[\varphi](A^Ty)$$

Выясним, для каких A выполнено вложение

$$\xi(y) = F[\varphi](A^T y) \in \mathcal{S}(\mathbb{R}^l)$$

Так как $F[\varphi] \in \mathcal{S}(\mathbb{R}^m)$, то $|z|^p |\partial_z^\beta F[\varphi](z) \to 0 \ (|z| \to \infty)$. Заметим теперь, что:

$$\partial^{\alpha} \xi(y) \in \operatorname{span} \{ \partial_{z}^{\beta} F[\varphi](z) \mid |\beta| \leqslant |\alpha| \} \Big|_{z=A^{T} y}$$

Соответственно $\xi(y) \in \mathcal{S}(\mathbb{R}^l)$ для таких матриц A, что $|A^Ty| \to \infty$ ($|y| \to \infty$). Рассмотрим выражение $|A^Ty|^2 = y^T(AA^T)y$. Матрица AA^T является симметрической матрицей размера $l \times l$, которая задает квадратичную форму. Для того, чтобы $y^T(AA^T)y \to \infty$ ($|y| \to \infty$), необходимо, чтобы все ее собственные числа были строго больше нуля, то есть матрица была бы невырожденной. Это возможно тогда и только тогда, когда rg A = l (ker $A^T = 0$). Непрерывность заданного функционала доказывается аналогично через представление

Рассмотрим теперь преобразование Фурье по части переменных.

Определение (Преобразование Фурье по части переменных). Рассмотрим $f(x,z) \in \mathcal{S}'(\mathbb{R}^l), \ x \in \mathbb{R}^m, \ z \in \mathbb{R}^l.$ Тогда:

$$\langle F_x[f(x,z)](y,z), \varphi(y,z) \rangle \stackrel{def}{=} \langle f(x,z), F_y[\varphi(y,z)](x,z) \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^l)$$
 (11)

Докажем корректность этого определения.

Доказательство. Для начала нужно показать, что $\psi(y,z) = F_x[\varphi(x,z)](y,z) \in \mathcal{S}(\mathbb{R}^l)$. Это означает, что:

$$\forall \alpha, \mu \in \mathbb{N}_0^m, \ \beta, \nu \in \mathbb{N}_0^l \hookrightarrow y^\mu z^\nu \partial_y^\alpha \partial_z^\beta \psi(y,z) \to 0 \ (|y| + |z| \to \infty)$$

По теореме о дифференцировании несобственного интеграла:

$$\xi(y,z) = y^{\mu} z^{\nu} \partial_{y}^{\alpha} \partial_{z}^{\beta} \psi(y,z) = y^{\mu} z^{\nu} \int_{\mathbb{R}^{m}} dx (ix)^{\alpha} e^{i(x,y)} \partial_{z}^{\beta} \varphi(x,z)$$
(12)

Далее проинтегрируем по частям выражение (12) и, обозначив $\Phi(x,z) = \partial_x^{\mu} \left((ix)^{\alpha} \partial_z^{\beta} \varphi(x,z) \right) \in \mathcal{S}(\mathbb{R}^l)$, получим:

$$\xi(y,z) = i^{\mu}z^{\nu} \int_{\mathbb{R}^m} dx \, e^{i(x,y)} \partial_x^{\mu} \left((ix)^{\alpha} \partial_z^{\beta} \varphi(x,z) \right) = i^{\mu}z^{\nu} F_x \left[\Phi(x,z) \right] (y)$$

Чтобы сделать оценку, воспользуемся тем фактом, что $\Delta_x \Phi(x,z) \in \mathcal{S}(\mathbb{R}^l)$, а также:

$$F_x[\Delta_x \Phi(x,z)](y) = \sum_{k=1}^m F_x \left[\frac{\partial^2}{\partial x_k^2} \Phi(x,z) \right](y) = -|y|^2 F_x[\Phi(x,z)](y) \in \mathcal{S}(\mathbb{R}^l)$$

Тогда получаем:

$$\xi(y,z) = -\frac{i^{\mu}z^{\nu}}{1 + |y|^2} F_x \left[\Delta_x \Phi(x,z) - \Phi(x,z) \right] (y)$$
(13)

В силу того, что $\Delta_x \Phi(x,z) - \Phi(x,z) \in \mathcal{S}(\mathbb{R}^l)$:

$$|\Delta_x \Phi(x,z) - \Phi(x,z)| \le \frac{C}{(1+|x|^{2m})(1+|z|^{2\nu+1})}$$

Тогда, подставляя это в (13), получаем такую оценку:

$$|\xi(y,z)| \leqslant \frac{C|z|^{|\nu|}}{(1+|z|^{2\nu+1})(1+|y|^2)} \int_{\mathbb{R}^m} \frac{dx}{1+|x|^{2m}} \to 0 \ (|y|+|z|\to\infty)$$
 (14)

Значит $\psi(y,z) = F_x[\varphi(x,z)](y,z) \in \mathcal{S}(\mathbb{R}^l)$. Линейность искомого функционала очевидна. Рассмотрим теперь непрерывность. Нужно доказать, что

$$\forall \alpha, \mu \in \mathbb{N}_0^m, \ \beta, \nu \in \mathbb{N}_0^l \hookrightarrow y^{\mu} z^{\nu} \partial_y^{\alpha} \partial_z^{\beta} F_x[(\varphi_n - \varphi)(x, z)](y, z) \Longrightarrow 0 \ (n \to \infty)$$
 (15)

Аналогично первой части доказательства, получаем:

$$y^{\mu}z^{\nu}\partial_{y}^{\alpha}\partial_{z}^{\beta}F_{x}[(\varphi_{n}-\varphi)(x,z)](y,z) = i^{\mu}z^{\nu}\int_{\mathbb{R}^{m}}dx\,e^{i(x,y)}\partial_{x}^{\mu}\left((ix)^{\alpha}\partial_{z}^{\beta}(\varphi_{n}-\varphi)(x,z)\right)$$

$$\tag{16}$$

Функция $\Phi_n(x,z) = \partial_x^\mu \Big((ix)^\alpha \partial_z^\beta (\varphi_n - \varphi)(x,z) \Big) \in \mathcal{S}(\mathbb{R}^l)$. Значит ее можно равномерно ограничить:

$$|\Phi_n(x,z)| \leqslant \frac{\varepsilon}{(1+|x|^{2m})(1+|z|^{|\nu|})} \tag{17}$$

Тогда получаем, подставляя это в (16), получаем равномерную оценку:

$$|y^{\mu}z^{\nu}\partial_{y}^{\alpha}\partial_{z}^{\beta}F_{x}[(\varphi_{n}-\varphi)(x,z)](y,z)| \leqslant \varepsilon \frac{C|z|^{|\nu|}}{1+|z|^{|\nu|}} \int_{\mathbb{D}_{m}} \frac{dx}{1+|x|^{2m}}$$

$$\tag{18}$$

При $\varepsilon \to 0$ эта штука равномерно стремится к нулю, что и доказывает непрерывность.

Наблюдение Пусть $f \in \mathcal{S}'(\mathbb{R}^l)$. Тогда, как следует из теоремы Фубини:

$$F[f(x,z)](a,b) = F_z[F_x[f(x,z)]](a,b) = F_x[F_z[f(x,z)]](a,b)$$
(19)

Рассмотрим важное свойство преобразования Фурье.

Теорема (О Фурье-образе производной обобщенной функции). Пусть $f(x,z) \in \mathcal{S}(\mathbb{R}^l)$. Тогда:

$$F_x[\partial_x^{\alpha}\partial_z^{\beta}f(x,z)](y) = (-iy)^{\alpha}\partial_z^{\beta}F_x[f(x,z)](y)$$

Доказательство. Пусть $\varphi(y,z) \in \mathcal{S}(\mathbb{R}^l)$. Тогда:

$$\left\langle F_x[\partial_x^{\alpha}\partial_z^{\beta}f(x,z)](y),\varphi(y,z)\right\rangle = \left\langle f(x,z),(-1)^{|\beta|}\partial_z^{\beta}(-1)^{|\alpha|}\partial_x^{\alpha}F_y[\varphi(y,z)](x)\right\rangle =
= \left\langle f(x,z),(-1)^{|\alpha|+|\beta|}F_y[(iy)^{\alpha}\partial_z^{\beta}\varphi(y,z)](x)\right\rangle = \left\langle F_x[f(x,z)](y),(-iy)^{\alpha}(-1)^{|\beta|}\partial_z^{\beta}\varphi(y,z)](x)\right\rangle =
= \left\langle \partial_z^{\beta}F_x[f(x,z)](y),(-iy)^{\alpha}\varphi(y,z)](x)\right\rangle = \left\langle (-iy)^{\alpha}\partial_z^{\beta}F_x[f(x,z)](y),\varphi(y,z)](x)\right\rangle \tag{20}$$

6..

Свёртка обобщённых функций в пространстве $S'(R^m)$. Лемма о дифференцировании действия обобщённой функции на гладко зависящую от параметра основную функцию. Дифференцирование свёртки обобщённых функций

Пусть для $f \in S'(\mathbb{R}^m)$ и $g \in S'(\mathbb{R}^m)$ \exists такое $h \in S'(\mathbb{R}^m)$, что для \forall срезки $\eta(x)$ и для $\forall \varphi \in S(\mathbb{R}^m)$

$$\exists \lim_{x \to +\infty} (f(x), \eta(x)_R(g(y), \varphi(x+y))) = (h(x), \varphi(x))$$

Тогда h(x) будем называть сверткой f(x), g(x) и обозначать h(x) = f(x) * g(x)

Дифференцирование свёртки обобщённых функций

Пусть для $f \in S'(\mathbb{R}^m)$ и $g \in S'(\mathbb{R}^m)$ $\exists \ f * g \in S'(\mathbb{R}^m)$ тогда $\forall \alpha \in N_0^m \exists f * (D^\alpha g) \ , \ (D^\alpha f) * g$ и справедливы равенства:

$$D^{\alpha}(f * g) = f * (D^{\alpha}g) = (D^{\alpha}f) * g$$

Доказательство.

$$\begin{split} &((\eta(\frac{x}{r})f(x))*(D^{\alpha}g(x)),\varphi(x)) = (f(x),\eta(\frac{x}{r})((D^{\alpha}g(x)),\varphi(x+y))) \\ &= (f(x),\eta(\frac{x}{r})(g(x),(-1)^{\alpha}D^{\alpha}\varphi(x+y))) = ((\eta(\frac{x}{r})f(x)*g(x),(-1)^{\alpha}D^{\alpha}\varphi(x))) \end{split}$$

Так как по условию $\exists f * g$ то

$$\exists \lim_{x \to +\infty} ((\eta(\frac{x}{r})f(x) * g(x), (-1)^{\alpha}D^{\alpha}\varphi(x)) = ((f*g)(x), (-1)^{\alpha}D^{\alpha}\varphi(x)) = (D^{\alpha}(f*g)(x), \varphi(x))$$

Следовательно

$$\exists \lim_{x \to +\infty} ((\eta(\frac{x}{r})f(x) * g(x), (-1)^{\alpha}D^{\alpha}\varphi(x)) = (D^{\alpha}(f * g)(x), \varphi(x))$$

Мы доказали, что существует свертка

$$f * (D^{\alpha}g) = D^{\alpha}(f * g)$$

Докажем теперь, что \exists свертка $(D^{\alpha}f)*g$

$$((\eta(\frac{x}{r})D^{\alpha}f(x))*g(x),\varphi(x)) = (D^{\alpha}f(x),\eta(\frac{x}{r})(g(y),\varphi(x+y))) = (f(x),(-1)^{\alpha}D^{\alpha}(\eta(\frac{x}{r})(g(y),\varphi(x+y))))$$

По формуле Лейбница дифференцирования произведения функций

$$D^{\alpha}(\eta(\frac{x}{r})(g(y),\varphi(x+y))) = \eta(\frac{x}{r})D^{\alpha}(g(y),\varphi(x+y)) + \psi_r(x)$$

Где $\psi_r(x)$ является конечной линейной комбинацией функций

$$D^{\beta}\eta(\frac{x}{r})D^{\gamma}(g(y),\varphi(x+y)) = D^{\beta}\eta(\frac{x}{r})(g(y),D^{\gamma}\varphi(x+y))$$

Для всевозможных $\beta \in N^m$ и $\gamma \in N^m$ вида $\beta + \gamma = \alpha$

Покажем, что

$$\lim_{x \to +\infty} (f(x), \psi_r(x)) = 0$$

Для этого достаточно доказать, что для $\forall \beta \in N^m$ и $\gamma \in N^m$ вида $\beta + \gamma = \alpha$ выполнено

$$\lim_{x \to +\infty} (f(x), D^{\beta} \eta(\frac{x}{r})(g(y), D^{\beta} \varphi(x+y))) = 0$$

Зафиксируем β и γ и рассмотрим функцию

$$\varsigma(z) = D^{\beta}\eta(z)$$

Тогда

$$D^{\beta}\eta(\frac{x}{r}) = \frac{1}{r^{\beta}}\varsigma(\frac{x}{r})$$

Нам требуется показать, что

$$\lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r}))(g(y)D^{\gamma}\varphi(x+y)) = 0$$

Заметим, что $\varsigma(z)=0$ при $|z|\le 1$ Отсюда следует,
что $\eta 1(z)=\eta(z)+\varsigma(z)$ является 1-срезкой Поэтому, так как
 $\exists\ f*g$

$$((f * g)(x), D^{\gamma}\varphi(x)) = \lim_{x \to +\infty} (f(x), \eta 1(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y)))$$

$$\begin{split} &= \lim_{x \to +\infty} (f(x), \eta(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y))) + \lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y))) \\ &= ((f*g)(x), D^{\gamma}\varphi(x)) + \lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y))) \end{split}$$

Отсюда получаем, что

$$\lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r})(g(y), D^{\gamma}\varphi(x+y))) = 0$$

Значит

$$\lim_{x \to +\infty} (f(x), \varsigma(\frac{x}{r})(g(y)D^{\gamma}\varphi(x+y)) = 0$$

$$\lim_{x \to +\infty} (f(x), \psi_r(x)) = 0$$

Наконец

$$((\eta(\frac{x}{r})D^{\alpha}f(x))*g(x),\varphi(x)) = (f(x),(-1)^{\alpha}(\eta(\frac{x}{r})(g(y),(-1)^{\alpha}D^{\alpha}\varphi(x+y)))) = (D^{\alpha}(f(x)*g(x)),\varphi(x))$$

Мы получили, что

$$(D^{\alpha}f) * g = D^{\alpha}(f * g)$$

ч.т.д

8. Функция Грина линейного дифференциального оператора в $\mathcal{S}'(\mathbb{R}^m)$. Достаточное условие существования единственной функции Грина. Функция Грина оператора $\Delta - k^2$ в $\mathcal{S}'(\mathbb{R}^m)$ для фиксированного k > 0, и ее предел при $k \to +0$.

Определение. Пусть $L: \mathcal{S}'(\mathbb{R}^m) \longrightarrow \mathcal{S}'(\mathbb{R}^m); \ L = \sum_{k=1}^N a_k \partial_x^{\alpha(k)}; \ \alpha(k) \in \mathbb{N}_0^m, \ a_k \in \mathbb{C} \ \forall k = \overline{1,N}$ - линейный дифференциальный оператор в $\mathcal{S}'(\mathbb{R}^m)$. Тогда функция $\mathcal{E}(x) \in \mathcal{S}'(\mathbb{R}^m)$ называется функцией Грина оператора L, если в $\mathcal{S}'(\mathbb{R}^m)$ выполняется:

$$L\mathcal{E}(x) = \delta(x) \tag{21}$$

Взяв Фурье от левой и правой частей, имеем в $\mathcal{S}'(\mathbb{R}^m)$:

$$F[L\mathcal{E}(x)](y) = \left(\sum_{k=1}^{N} a_k (-iy)^{\alpha(k)}\right) F[\mathcal{E}](y) = 1$$
(22)

Обозначим многочлен $\left(\sum_{k=1}^N a_k (-iy)^{lpha(k)}
ight)$ за $P_L(y)$:

$$P_L(y) = \left(\sum_{k=1}^N a_k (-iy)^{\alpha(k)}\right),\tag{23}$$

и будем говорить, что многочлен $P_L(y)$ отделен от нуля, если $\exists C>0: |P_L(y)| \geq C>0 \ \forall y \in \mathbb{R}^m$. Если $P_L(y)$

отделен от нуля, то, очевидно,

$$\frac{1}{P_L(y)} \in C^{\infty}(\mathbb{R}^m)$$

$$\left| \partial_y^{\beta} \frac{1}{P_L(y)} \right| = \frac{|Q(y)|}{|P_L(y)|^{|\beta|+1}} \le \frac{1}{C^{|\beta|+1}} |Q(y)|,$$

где $|Q_L(y)|$ - некоторый многочлен. Таким образом, $\frac{1}{P_L(y)}$ - бесконечно гладкая функция на \mathbb{R}^m , а все ее производные

 функции медленного роста. Отсюда следует достаточное условие существования единственной функции Грина.

Лемма (Достаточное условие существования единственной функции Грина). Пусть $P_L(y)$ отделен от нуля в \mathbb{R}^m . Тогда уравнение $L\mathcal{E}(x) = \delta(x)$ имеет единственное решение в $\mathcal{S}'(\mathbb{R}^m)$, причем

$$\mathcal{E}(x) = F^{-1} \left[\frac{1}{P_L(y)} \right] (x). \tag{24}$$

Доказательство. Ну действительно, поскольку $P_L(y)$ отделен от нуля в \mathbb{R}^m , то как было показано выше, $\frac{1}{P_L(y)}$ бесконечно гладкая в \mathbb{R}^m , и все ее производные - функции медленного роста, а значит определено умножение на $\frac{1}{P_L(y)}$ в пространстве $\mathcal{S}'(\mathbb{R}^m)$. Отсюда:

$$P_L(y)F\left[\mathcal{E}\right](y) = 1 \iff F\left[\mathcal{E}\right](y) = \frac{1}{P_L(y)} \iff \mathcal{E}(x) = F^{-1}\left[\frac{1}{P_L(y)}\right](x).$$

Более того, если $P_L(y)$ отделим на \mathbb{R}^m , то $\forall f \in \mathcal{S}'(\mathbb{R}^m)$ уравнение Lu(x) = f(x); $u \in \mathcal{S}'(\mathbb{R}^m)$ имеет единственное решение:

$$u(x) = F^{-1} \left[\frac{1}{P_L(y)} F[f](y) \right] (x)$$
 (25)

Функция Грина оператора $\triangle - k^2$ в $\mathcal{S}'(\mathbb{R}^m)$

Рассмотрим линейный дифференциальный оператор $\triangle_x - k^2 = L : \mathcal{S}'(\mathbb{R}^3) \longrightarrow \mathcal{S}'(\mathbb{R}^3), \ x \in \mathbb{R}^3, \ k > 0$ - фиксированное число. Решаем уравнение $L\mathcal{E}(x) = \delta(x)$ в $\mathcal{S}'(\mathbb{R}^m)$. Находим $P_L(y) = -|y|^2 - k^2 \le k^2 < 0 \ \forall y \in \mathbb{R}^3$, т.е. многочлен

отделен от нуля. А значит, из достаточного условия существования единственной функции Грина, единственное решение в $\mathcal{S}'(\mathbb{R}^m)$ имеет вид:

$$\mathcal{E}(x) = F^{-1} \left[-\frac{1}{|y|^2 + k^2} \right](x). \tag{26}$$

Посчитаем эту функцию. Для этого $\forall \varphi \in \mathcal{S}(\mathbb{R}^3)$ запишем:

$$\langle \mathcal{E}(x), \varphi(x) \rangle = \left\langle F\left[\mathcal{E}\right](y), F^{-1}\left[\varphi\right](y) \right\rangle = -\left\langle \frac{1}{|y|^2 + k^2}, \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x) \right\rangle =$$

$$= -\frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} dy \frac{1}{|y|^2 + k^2} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x)$$

$$\underbrace{-\frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} dy \frac{1}{|y|^2 + k^2} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x)}_{\in \mathcal{E}_1(\mathbb{R}^3)}$$

К сожалению, нам не удастся в лоб переставить интегралы по Фубини, поскольку в \mathbb{R}^3 функция $\frac{e^{i(x,y)}\varphi(x)}{|y|^2+k^2}$ не является абсолютно сходящейся по y - у y слишком маленькая степень. С другой стороны, $\int\limits_{\mathbb{R}^3} dx e^{-i(x,y)}\varphi(x) \in$

 $\mathcal{S}(\mathbb{R}^3)$, поскольку фурье от пробной функции - пробная функция. При этом, $\frac{1}{|y|^2+k^2}$ ограничена. Произведение ограниченной функции на пробную, естественно, даст функцию абсолютно сходящуюся по y. Поэтому можно воспользоваться свойством непрерывности интеграла Лебега по убыванию множеств (см. Карасевские лекции теорема 5.63), что мы и сделаем:

$$= -\frac{1}{(2\pi)^3} \lim_{R \to +\infty} \int_{|y| \le R} dy \frac{1}{|y|^2 + k^2} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x) =$$

Теперь опять посмотрим на функцию $\frac{e^{i(x,y)}\varphi(x)}{|y|^2+k^2}$. Покажем, что она $\in L_1(x\in\mathbb{R}^3,|y|\leq R)$. Ну действительно, учитывая, что $\frac{1}{|y|^2+k^2}\leq \frac{1}{k^2}\ \forall y\in\mathbb{R}^3$,

$$\int\limits_{|y|\leq R}dy\int\limits_{\mathbb{R}^3}dx\frac{|\varphi(x)|}{|y|^2+k^2}=\int\limits_{|y|\leq R}\frac{dy}{|y|^2+k^2}\int\limits_{\mathbb{R}^3}dx|\varphi(x)|\leq \frac{4\pi}{3}\frac{R^3}{k^2}\int\limits_{\mathbb{R}^3}dx|\varphi(x)|\leq +\infty$$

Отлично, тогда мы можем радостно переставить интегралы по Фубини:

$$= -\frac{1}{(2\pi)^3} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \varphi(x) \int_{|y| \le R} \frac{e^{-i(x,y)}}{|y|^2 + k^2} dy = \underbrace{\sum_{\forall x \ne 0}}_{\forall x \ne 0}$$

Для x=0 интеграл по y сходиться не будет при $R\to +\infty$, как уже обсуждалось выше, поэтому эту точку мы просто выкидываем, потому что для интеграла Лебега множества меры нуль роли не играют. Проинтегрируем интеграл по y в сферических координатах, где сонаправим ось z с направлением вектора x. Тогда имеем $(x,y)=|x|\cdot r\cdot\cos\alpha$, где $\alpha\in[0;\pi]$ - полярный угол, а $r=|y|\in[0;R]$.

$$=-\frac{1}{(2\pi)^3}\lim_{R\to+\infty}\int\limits_{\mathbb{R}^3}dx\varphi(x)\int\limits_0^R\frac{r^2dr}{r^2+k^2}2\pi\underbrace{\int\limits_0^\pi d\alpha\sin\alpha\ e^{-i|x|r\cos\alpha}}_{\tau=\cos\alpha}=$$

Считаем промежуточный интеграл по τ :

$$\int_{-1}^{1} d\tau \ e^{-i|x|r\tau} = \frac{-2i\sin(|x|r)}{-i|x|r} = \frac{2\sin(|x|r)}{|x|r}$$

Подставляя, замечаем, что функция по r - четная, а значит интеграл можно переписать для удобства:

$$= -\frac{2}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \underbrace{\int_{0}^{R} \frac{r \sin(|x|r) dr}{r^2 + k^2}}_{=\frac{1}{2} \int_{-R}^{R} \frac{r \sin(|x|r) dr}{r^2 + k^2}}_{=\frac{1}{2} \int_{-R}^{R} \frac{r \sin(|x|r) dr}{r^2 + k^2}} = = -\frac{1}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \int_{-R}^{R} \frac{r e^{i|x|r} dr}{r^2 + k^2}$$

Рассмотрим комплексный интеграл $\int\limits_{\gamma_R} \frac{ze^{i|x|z}dz}{z^2+k^2}$ по контору γ_R , изображенному на схеме. У подыинтегральной

функции есть полюс первого порядка в точке ik. Соответственно, интеграл даст не нуль при $\forall R>k$. Согласно теореме Коши, получаем:

$$\int_{\gamma_B} \frac{ze^{i|x|z}dz}{z^2 + k^2} = 2\pi i \text{ res } \frac{ze^{i|x|z}dz}{z^2 + k^2} = 2\pi i \frac{e^{i|x|ik}}{2} = \pi i e^{-|x|k}$$

Отсюда получаем,

$$\int_{-R}^{R} \frac{re^{i|x|r}dr}{r^2 + k^2} = \pi i e^{-|x|k} - \int_{C_R} \frac{ze^{i|x|z}dz}{z^2 + k^2},$$

$$\xrightarrow{\to \pi i e^{-|x|k}, R \to +\infty}$$

где последний интеграл стремится к нулю при $R \to +\infty$ по лемме Жордана. Нам необходимо обосновать занесение предела под знак интеграла в выражении

$$-\frac{1}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \int_{-R}^R \frac{re^{i|x|r} dr}{r^2 + k^2}$$

Для этого проверим условия теоремы Лебега об ограниченной сходимости. Нам нужно предъявить абсолютно интегрируемую функцию, которая мажорирует нашу подыинтегральную функцию для любого R. Покажем, что подойдет функция $h(x) = \frac{|\varphi(x)|}{|x|} \cdot M$, где M - некоторая константа, которую предстоит выяснить. Оценим φ как

 $|arphi(x)| \leq rac{C}{1+|x|^4}, \ C>0, \ \forall x\in\mathbb{R}^3,$ поскольку $arphi\in\mathcal{S}(\mathbb{R}^3).$ Тогда

$$\int\limits_{\mathbb{R}^3} \frac{|\varphi(x)|}{|x|} dx \leq 4\pi \int\limits_0^{+\infty} \frac{r^2 C dr}{r(1+r^4)} = 2\pi C \int\limits_0^{+\infty} \frac{dr^2}{r(1+(r^2)^2)} = \pi^2 C < +\infty$$

Отсюда $\frac{|\varphi(x)|}{|x|} \in L_1(\mathbb{R}^3)$, а значит и h(x) тоже. Докажем теперь, что

$$\exists R_0 > k \ \exists M > 0 : \forall x \neq 0 \ \forall R \geq R_0 \Rightarrow \left| \int_{-R}^{R} \frac{re^{i|x|r}dr}{r^2 + k^2} \right| \leq M$$

Имеем следующую оценку:

$$\left| \int_{-R}^{R} \frac{re^{i|x|r}dr}{r^2 + k^2} \right| \leq \underbrace{\left| \pi i e^{-|x|k} \right|}_{=\pi e^{-|x|k} \leq \pi} + \left| \int_{C_R} \frac{ze^{i|x|z}dz}{z^2 + k^2} \right|$$

Показатель экспоненты всегда меньше нуля, поэтому оценили сверзу π , для интеграла по полуокружности оценим следующим образом:

$$\left| \int\limits_{C_R} \frac{z e^{i|x|z} dz}{z^2 + k^2} \right| \le \int\limits_{C_R} \frac{|z| \left| e^{i|x|z} \right| |dz|}{|z^2 + k^2|} \le \int\limits_{C_R} \frac{R}{R^2 - k^2} |dz| = \frac{\pi R^2}{R^2 - k^2} \le 2 * \pi$$

Где мы использовали $|z|=R, |z^2+k^2| \geq |z|^2-k^2=R^2-k^2, |e^{i|x|z}|=e^{-|x|\text{Im}z}<1, \text{ Im}z\geq 0 \ \forall z\in C_R, \ x\neq 0.$ В последнем переходе мы потребовали $R^2\geq k^2.$

Таким образом, мы нашли $R_0 = \sqrt{2}k$ и $M = 3\pi$ и теперь можем воспользоваться теоремой Лебега об ограниченной сходимости.

$$-\frac{1}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \int_{-R}^R \frac{re^{i|x|r} dr}{r^2 + k^2} = -\frac{1}{(2\pi)^2} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \pi i e^{-|x|k} =$$

$$= \int_{\mathbb{R}^3} dx \underbrace{\left(-\frac{e^{-|x|k}}{4\pi|x|}\right)}_{\in L_1(\mathbb{R}^3)} \varphi(x) = \left\langle -\frac{e^{-|x|k}}{4\pi|x|}, \varphi(x) \right\rangle$$

Отсюда получаем искомую функцию Грина:

$$\mathcal{E}(x) = -\frac{e^{-|x|k}}{4\pi|x|} \tag{27}$$

Предел $k \to +0$

Зададимся вопросом существования предела $\lim_{k\to+0}\mathcal{E}_k$ в $\mathcal{S}'(\mathbb{R}^3)$, где $\mathcal{E}_k(x)=-\frac{e^{-|x|k}}{4\pi|x|}$ - функция Грина с параметром

Для этого $\forall \varphi \in \mathcal{S}(\mathbb{R}^3)$ запишем действие:

$$\lim_{k \to +0} \left\langle \mathcal{E}_k(x), \varphi(x) \right\rangle = -\frac{1}{4\pi} \lim_{k \to +0} \int\limits_{\mathbb{D}^3} dx \frac{\varphi(x)}{|x|} e^{-|x|k} = \int\limits_{\mathbb{D}^3} dx \frac{\varphi(x)}{|x|} = \left\langle -\frac{1}{4\pi|x|}, \varphi(x) \right\rangle$$

Легко видеть, что $\forall k>0, \ \forall x\neq 0 \left|\frac{\varphi(x)}{|x|}e^{-|x|k}\right| \leq \left|\frac{\varphi(x)}{|x|}\right| \in L_1(\mathbb{R}^3)$, как обсуждалось ранее в этом билете. Поэтому мы смогли воспользоваться теоремой Лебега об ограниченной сходимости и занесли предел под знак интеграла. Таким

образом, мы построили функционал, который очевидно является линейным. Осталось доказать его непрерывность по $\mathcal{S}(\mathbb{R}^3)$. Для этого проверим следующее:

$$\varphi_n \xrightarrow{S(R^3)} \varphi \Longrightarrow \langle \mathcal{E}_0, \varphi_n \rangle \xrightarrow{C} \langle \mathcal{E}_0, \varphi \rangle$$

Поскольку $\varphi \in \mathcal{S}(\mathbb{R}^3)$, то имеем следующую оценку:

$$\forall \ \varepsilon > 0 \ \exists \ N(\varepsilon) \ \forall \ n \ge N(\varepsilon) \Rightarrow |\varphi_n(x) - \varphi(x)| \le \frac{\varepsilon}{1 + |x^4|} \ \forall x \in \mathbb{R}^3$$

Но тогда

$$|\langle \mathcal{E}_{\prime}, \varphi_{n} - \varphi \rangle| \leq \frac{\varepsilon}{4\pi} \int_{\mathbb{R}^{3}} \frac{dx}{|x|(1+|x|^{4})} = \frac{\varepsilon}{4\pi} 4\pi \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\varepsilon\pi}{4} \longrightarrow 0$$

Так, мы показали, что в $\mathcal{S}'(\mathbb{R}^3)$ существует предел

$$\lim_{k \to +0} \mathcal{E}_k = \mathcal{E}_0 = -\frac{1}{4\pi|x|}$$

Осталось продемонстрировать, что он является также функцией Грина оператора Лапласа, т.е. $\triangle_x \mathcal{E}_0(x) = \delta(x)$. Для этого $\forall \varphi \in \mathcal{S}(\mathbb{R}^3)$ запишем:

$$\langle \triangle \mathcal{E}_{0}, \varphi \rangle = \langle \mathcal{E}_{0}, \triangle \varphi \rangle = \lim_{k \to +0} \langle \mathcal{E}_{k}, \triangle \varphi \rangle = \lim_{k \to +0} \left(\langle \mathcal{E}_{k}, (\triangle - k^{2}) \varphi \rangle + k^{2} \langle \mathcal{E}_{k}, \varphi \rangle \right) =$$

$$= \lim_{k \to +0} \left(\langle \delta, \varphi \rangle + k^{2} \langle \mathcal{E}_{k}, \varphi \rangle \right) = \langle \delta, \varphi \rangle$$

Таким образом, мы показали, что функция Грина уравнения Лапласа действительно может быть получена как предельный переход функции Грина уравнения $(\triangle_x - k^2) \mathcal{E}_k(x) = \delta(x)$ в $\mathcal{S}'(\mathbb{R}^3)$

10. Функция Грина оператора Лапласа в $S'(\mathbb{R}^3)$ и вычисление в $S'(\mathbb{R}^3)$ обобщённого решения уравнения Пуассона с абсолютно интегрируемым на \mathbb{R}^3 источником, формула Пуассона

Будем работать с уравнением Пуассона:

$$\Delta U(x) = f(x)$$

где
$$f(x) \in \mathbb{L}_1(\mathbb{R}^3)$$
, т.е. $\int_{\mathbb{R}^3} |f(x)| dx$, $\forall \varphi \in S(\mathbb{R}^3)$ и $\langle f, g \rangle = \int_{\mathbb{R}^3} f(x) \varphi(x) dx$

Функция Грина опекратора Лапласа:

$$E(x) = -\frac{1}{4\pi|x|}, \ x \in \mathbb{R}^3$$

T.e. $\Delta E = \delta(x)$ в $S'(\mathbb{R}^3)$

Для нахождения решения уравнения требуется доказать существование и найти свёртку:

$$f(x) * E(X)$$
 в $S'(\mathbb{R}^3)$

По определению:

$$\forall \varphi \in S'(\mathbb{R}^3) \; \forall \; 1$$
-срезки $\eta_1\left(\frac{x}{R}\right) \in D(\mathbb{R}^3) \mapsto$

$$\lim_{R \to \infty} \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \left\langle E(y), \varphi(x+y) \right\rangle \right\rangle = \lim_{R \to \infty} \int_{\mathbb{R}^3} dx f(x) \eta_1\left(\frac{x}{R}\right) \int_{\mathbb{R}^3} \frac{dy}{-4\pi} \frac{\varphi(x+y)}{|y|} \stackrel{\text{e}}{=}$$

Требуется доказать, что $\exists C_{\varphi}>0: \left|\int\limits_{\mathbb{R}^3} \frac{\varphi(x+y)}{|y|}\right| \leq C_{\varphi}, \ \forall x \in \mathbb{R}^3 \backslash \{0\}$ Тогда

$$\left| f(x)\eta_1\left(\frac{x}{R}\right) \int_{\mathbb{R}^3} \frac{dy}{-4\pi} \frac{\varphi(x+y)}{|y|} \right| \le \frac{MC_{\varphi}}{4\pi} |f(x)| \in \mathbb{L}_1(\mathbb{R}^3)$$

Т.е. выполнены условия теоремы Лебега об ограниченной сходимости Докажем существование C_{φ}

$$\left|\int_{\mathbb{R}^3} \frac{\varphi(x+y)}{|y|}\right| \leq \int_{\mathbb{R}^3} \frac{|\varphi(x+y)|}{|y|} = /y = z - x / = \int_{\mathbb{R}^3} \frac{\varphi(z)}{|z-x|} \curlyeqprec \left(\varphi \in S(\mathbb{R}^3) \Rightarrow \exists M_\varphi > 0: \ |\varphi(x)| \leq \frac{M_\varphi}{1+|z|^4}\right)$$

$$\curlyeqprec \int_{\mathbb{R}^3} \frac{M_\varphi}{(1+|z|^4)|z-x|} = /\text{в сфер. коорд.: } |z| = r, \alpha - \text{угол между 0x и 0z/=}$$

$$= 2\pi M_\varphi \int_0^+ \frac{r^2 dr}{1+r^4} \int_0^\pi \frac{\sin(\alpha) d\alpha}{\sqrt{r^2+|x|^2-2r|x|\cos\alpha}} = /\cos\alpha = \xi / =$$

$$= 2\pi M_\varphi \int_0^+ \frac{r^2 dr}{1+r^4} \int_0^\pi \frac{d\xi}{\sqrt{r^2+|x|^2-2r|x|\xi}} = (\text{по Th Ньютона-Лейбница}) =$$

$$= 2\pi M_\varphi \int_0^+ \frac{r^2 dr}{1+r^4} \cdot \frac{r+|x|-|r-|x||}{r|x|} = \frac{2\pi M_\varphi}{|x|} \left(\int_0^{|x|} \frac{r}{1+r^4} \cdot 2r dr + \int_{|x|}^{+\infty} \frac{r}{1+r^4} \cdot 2|x| dr\right) \leq$$

$$= (r \leq |x| \text{ в 1-ом инт-ле, по 1-ому r}) \leq |x| \arctan |x|^2 + |x| \left(\frac{\pi}{2} - \arctan |x|^2\right) = \pi^2 M_\varphi = C_\varphi$$

Итак мы доказали существование C_{φ} . Теперь можно занести предел под интеграл и 1-срезка уходит:

 $\stackrel{\circ}{=} -\frac{1}{4\pi} \int_{\mathbb{R}^3} dx \int_{\mathbb{R}^3} dz \frac{f(x)\varphi(z)}{|z-x|} \stackrel{\circ}{=}$

Т.к.

$$\frac{|f(x)\varphi(z)|}{|z-x|} \le \frac{M_{\varphi}|f(x)}{(1+|z|^4)|z-x|} \in \mathbb{L}_1(x \in \mathbb{R}^3, \ z \in \mathbb{R}^3)$$

То по Th Фубини

$$\stackrel{\circ}{=} -\frac{1}{4\pi} \int\limits_{\mathbb{R}^3} dz \int\limits_{\mathbb{R}^3} dx \frac{f(x)\varphi(z)}{|z-x|} = \int\limits_{\mathbb{R}^3} dz \varphi(z) \int\limits_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|} = (\text{абс. сх. по } z \in \mathbb{R}^3 \text{ по Th Фубини}) =$$

$$= \left\langle -\int\limits_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|}, \varphi(z) \right\rangle$$

Итак предел существует и не зависит от срезки.

Линейность следует из линейности интеграла по функции.

Осталось показать непрерывность:

$$S(\mathbb{R}^3) \ni \varphi \mapsto \int_{\mathbb{R}^3} dz \varphi(z) \int_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|} = \int_{\mathbb{R}^3 \times \mathbb{R}^3} dx dz \frac{f(x)\varphi(z)}{(-4\pi)|z-x|} \in \mathbb{C}$$

Требуется доказать, что последний интегралл непрерывно зависит от φ

Пусть $\varphi_n \to \varphi$ в $S(\mathbb{R}^3)$

Тогда по определению:

$$(1+|z|^4)|\varphi_n(z)-\varphi(z)| \Rightarrow 0, (z \in \mathbb{R}^3, n \to \infty)$$

$$\forall \varepsilon > 0 \exists N(\varepsilon) : \forall n \ge N(\varepsilon) \forall z \in \mathbb{R}^3 \mapsto |\varphi_n - \varphi(z)| \le \frac{\varepsilon}{1 + |z|^4}$$

Тогда

$$\left| \left\langle -\int_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|}, (\varphi_n - \varphi)(z) \right\rangle \right| \leq \int_{\mathbb{R}^3 \times \mathbb{R}^3} dx dz \frac{|f(x)||(\varphi_n - \varphi)(z)|}{(4\pi)|z-x|} =$$

$$= \frac{1}{4\pi} \int_{\mathbb{R}^3} dx |f(x) \int_{\mathbb{R}^3} \frac{|(\varphi_n - \varphi)(z)|}{|z-x|}$$

$$\leq /x \neq 0/\leq \pi^2 \varepsilon ||f||_{\mathbb{L}_1(\mathbb{R}^3)|} \cdot \frac{1}{4\pi}$$

Следовательно непрерывность по φ есть. Итак, решение уравнения:

$$U = f(x) * E(X) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} dx \frac{f(x)}{|z - x|}$$

11. Вторая гладкость на открытом множестве $G \in \mathbb{R}^3$ обобщённого решения уравнения Пуассона в $S'(\mathbb{R}^3)$ с абсолютно интегрируемым на \mathbb{R}^3 и непрерывно-дифференцируемым на G источником

Теорема. Пусть $G \in \mathbb{R}^3$ открытое множество, $f \in \mathbb{L}_1(\mathbb{R}^3) \cap C^1(G)$.

Тогда функция $U(x)=-rac{1}{4\pi}\int\limits_{\mathbb{R}^3}dxrac{f(x)}{|z-x|}\in C^2(G)$

Доказательство.

$$\forall x_0 \in G \ \exists r_0 > 0: \ B_{2r_0}(x_0) \in G, \ B_{2r_0}(x_0) = x \in \mathbb{R}^3: |x - x_0| \le 2r_0$$
$$So \forall x \in B_{r_0}(x_0) \Rightarrow B_{r_0}(x_0) \subset B_{2r_0}(x_0) \subset G$$

Обозначим

$$M_{0} = \max_{z \in B_{2r_{0}}(x_{0})} |f(z)| < +\infty$$

$$M_{1} = \max_{z \in B_{2r_{0}}(x_{0})} |\nabla f(z)| < +\infty$$

$$h(t) = f(x + t(y - x))$$

$$h(t) = |h(t) - h(0)| < |(\nabla f(x + \xi(y - x)), y - x)| < M_{1}|y - x|$$

 $\forall y, x \in B_{2r_0}(x_0) \exists \xi \in (0,1) :\Rightarrow |f(y) - f(x)| = |h(1) - h(0)| \le |(\nabla f(x + \xi(y - x)), y - x)| \le M_1 |y - x|$

Шаг 1: Анализируем первую гладкость

$$\forall z \neq x$$
 рассмотрим $\nabla_x \left(-\frac{f(x)}{4\pi |x-z|} = \frac{f(z)(x-z)}{4\pi |x-z|^3} = \leftrightarrows \right) g(x,z)$

Требуется доказать, что

$$\forall x \in B_{r_0}(x_0) \mapsto \int\limits_{|z-x_0| \ge 2r_0} dz y(x,z)$$
 сх. р-но. по $x \in B_{r_0}(x_0)$ и $\int\limits_{|z-x_0| \le \varepsilon} dz g(x,z) \rightrightarrows 0, (\varepsilon \to +0)$

Докажем первое утверждение

$$\begin{split} |z-x_0| &\geq 2r_0, x \in B_{r_0}(x_0) \\ \Rightarrow |x-z| &\geq |z-x_0| - |x-x_0| \geq r_0 \\ \Rightarrow |g(x,z)| &= \frac{|f(z)|}{4\pi |x-z|^2} \rightrightarrows 0, \ x \in B_{r_0}(x_0) \ (\text{по признаку Вейерштрасса}) \end{split}$$

Докажем второе утверждение

$$|z-x| \leq \varepsilon \leq r_0, \ |x-x_0| \leq r_0$$

$$\int_{|z-x| \leq \varepsilon} dz \frac{M_0}{4\pi |z-x|^2} = /\text{сферические координаты}/= M_0 \int\limits_0^\varepsilon \frac{r^2 dr}{r^2} = M_0 \varepsilon$$

$$\Rightarrow \int\limits_{|z-x| \leq \varepsilon} dz |g(x,z)| \Rightarrow 0 (\varepsilon \to 0), \ x \in B_{2r_0}(x_0)$$

Итак

$$U\in C^1(B_{r_0}(x_0))$$
 и $\nabla_x U(x)=\int\limits_{\mathbb{R}^3}dz,\; \forall x\in B_{r_0}(x_0)$

Шаг 2: Анализ второй гладкости

$$\forall x \in B_{r_0}(x_0) \text{ рассмотрим } \nabla_x U(x) = \int\limits_{B_{2r_0}(x_0)} dz g(x,z) + \int\limits_{|z-x_0|>2r_0} dz g(x,z) =$$

$$= \int\limits_{B_{2r_0}(x_0)} dz \frac{(f(z)-f(x))(x-z)}{4\pi(x-z)^3} + f(x) \int\limits_{B_{2r_0}(x_0)} dz \frac{(x-z)}{4\pi|x-z|^3} + \int\limits_{|z-x_0|>2r_0} dz g(x,z)$$

Исследуем каждое из трёх слогаемых

a)
$$\int_{|z-x_0|>2r_0} dz g(x,z)$$

Рассмотрим $\forall k = 1, 2, 3, |z - x_0| \ge 2r_0, x \in B_{r_0}(x_0)$

$$\frac{\partial}{\partial x_k}g(x,z) = \psi_k(x,z) = \frac{f(z)e_k}{4\pi|x-z|^3} - \frac{3f(x)(x-z)(x_k-z_k)}{4\pi|x-z|^5}$$
 т.к. $|x-z| \ge |x_0-z|_{|x} - x_0| \ge 2r_0 - r_0 = r_0$
$$\left|\frac{\partial}{\partial x_k}g(x,z)\right| \le \frac{|f(x)|}{4\pi r_0^3} + \frac{3|f(x)|}{4\pi r_0^3} = \frac{|f(x)|}{\pi r_0^3} \in \mathbb{L}_1(\mathbb{R}^3), \ (x \in B_{r_0}(x_0), |z-x_0| \ge 2r_0)$$

$$\Rightarrow \int_{|z-x_0| > 2r_0} \psi_k(x,z)dz \ \text{ сх. р-но. по } x \in B_{r_0}(x_0) \text{ по пр. Вейерштрасса}$$

6)
$$f(x) \int_{B_{2r_0}(x_0)} dz \frac{(x-z)}{4\pi |x-z|^3}$$

Рассмотрим $\forall x \in B_{r_0}(x_0)$

$$\int_{B_{2r_0}(x_0)} dz \frac{(x-z)}{|x-z|^3} = \lim_{\varepsilon \to 0} \int_{B_{2r_0}(x_0) \backslash B_{\varepsilon}(x)} dz \frac{(x-z)}{|x-z|^3} = \left(x \neq z, \frac{x-z}{|x-z|^3} = \nabla_z \frac{1}{|x-z|}\right) =$$

$$= \lim_{\varepsilon \to 0} \int_{B_{2r_0}(x_0) \backslash B_{\varepsilon}(x)} dz \left(\nabla_z \frac{1}{|x-z|}\right) \stackrel{\circ}{=}$$

Теорема. Гаусса-Остроградского (без док.)

Пусть $\Omega \in \mathbb{R}^3$ ограниченая область с кусочно гладкой границей.

Пусть $\Phi \in \mathbb{C}^1(\widehat{\Omega})$.

Тогда $\int\limits_{\Omega} \nabla \Phi dz = \int\limits_{\partial \Omega} \Phi_{n_z} dS_z$, где n_z – поле еденичных внешних нормалей к границе $\partial \Omega$ по отношению к Ω .

Рассмотрим
$$\int\limits_{\Omega} \frac{\partial \Phi}{\partial z_k} dz = \left(div F_k = \frac{\partial \Phi}{\partial z_k} \right) = \int\limits_{\Omega} div F_k dz = (\Gamma.O.) = \int\limits_{\partial \Omega} (F_k, n_z) dS_z = \int\limits_{\partial \Omega} \Phi(n_z)_k dS_z$$
 Суммируюя по k=1,2,3

$$\int\limits_{\Omega} \nabla \Phi dz = \int\limits_{\partial \Omega} \Phi_{n_z} dS_z$$

$$\stackrel{\circ}{=} \lim_{\varepsilon \to 0} \int\limits_{B_{2r_0}(x_0) \backslash B_{\varepsilon}(x)} \frac{n_z}{|x-z|} dS_z = \lim_{\varepsilon \to 0} \int\limits_{|z-x|=\varepsilon} \frac{(x-z)}{\varepsilon \cdot \varepsilon} dS_z + \int\limits_{|z-x_0|=2r_0} \frac{(z-x_0)}{2r_0|x-z|} dS_z$$

Предел первого интеграла равен нулю
$$\left|\int\limits_{|z-x|=\varepsilon}\frac{(x-z)}{\varepsilon^2}dS_z\right|\leq 4\pi\varepsilon\to 0$$

Таким образом получаем по теореме о дифференцированиисобственного интеграла по параметру (с учётом $|x-z| \ge r_0 > 0$) функцию из $C^{\infty}(x \in B_{r_0}(x_0))$

Тогда с учётом $f(x) \in C^1(x \in B_{r_0}(x_0))$:

$$f(x) \int_{B_{2r_0}(x_0)} dz \frac{(x-z)}{4\pi |x-z|^3} = f(x) \int_{|z-x_0|=2r_0} \frac{(z-x_0)}{2r_0|x-z|} dS_z \in C^1(x \in B_{r_0}(x_0))$$

$$\text{B)} \int_{B_{2r_0}(x_0)} dz \frac{(f(z)-f(x))(x-z)}{4\pi (x-z)^3}$$

Рассмотрим $\forall z \neq x, z \in B_{r_0}(x_0), x \in B_{r_0}(x_0)$

$$\frac{\partial}{\partial x_k} \left(\frac{(f(z) - f(x))(x - z)}{|x - z|^3} \right) = h_k(x, z) =$$

$$= -\frac{f'_{x_k}(x)(x - z)}{|x - z|^3} + \frac{(f(z) - f(x))e_k}{|x - z|^3} - \frac{(f(z) - f(x))(x - z)(x_k - z_k)}{|x - z|^5}$$

где e_k – k-ый базисный вектор

Требуется доказать, что

$$\int_{|z-x| \le \varepsilon} h_k(x,z) dz \Rightarrow 0, \ (0 < \varepsilon \le r)$$

Оценим интеграл:

$$\int_{|z-x| \le \varepsilon} |h_k(x,z)| dz \le (|f(z) - f(x)| \le M_1 |z - x|) \le \int_{|z-x| \le \varepsilon} dz \left(\frac{M_1}{|z - x|^2} + \frac{M_1}{|z - x|^2} + \frac{3M_1}{|z - x|^2} \right) =$$

$$= (|z - x| = r \le \varepsilon) = 5M_1 \cdot 4\pi \int_{0}^{\varepsilon} \frac{r^2 dr}{r^2} = 20M_1 \pi \varepsilon, \ (\forall x \in B_{r_0}(x_0))$$

Таким образом получили по $x \in B_{r_0}(x_0)$ равномерную оценку.

Итак вторая гладкость доказана:

$$U \in C^2(B_{2r_0}(x_0)), \ \forall x \in B_{r_0}(x_0), \ (B_{2r_0}(x_0) \subset G)$$

Замечание 1: Из доказательства теоремы следют соотношения:

$$\nabla_x = \int_{\mathbb{R}^3} \frac{f(z)(x-z)}{4\pi|x-z|^3} dz$$

$$\frac{\partial}{\partial x_k} \nabla_x = \int_{B_{2r_0}(x_0)} h_k(x,z) dz + \frac{\partial}{\partial x_k} \left(f(x) \int_{|z-x_0|=2r_0} \frac{(z-x_0)}{8\pi r_0|x-z|} dS_z \right) + \int_{|z-x_0| \le 2r_0} \psi(x,z) dz$$

$$\forall x_0 \in G, \ B_{2r_0}(x_0) \subset G$$

Замечание 2: По теореме о корректности обобщённого решения по отношению к классическому

$$\forall x \in G \; \exists \Delta_{\text{к.п.}} U(x) = f(x), \; \text{где} \; U(x) = -\int\limits_{\mathbb{D}^3} \frac{f(z)}{4\pi |x-z|} dz, \; f \in \mathbb{L}_1(\mathbb{R}^3) \cap C^1(G)$$

12. Вычисление методом регуляризации функции Грина оператора Даламбера в пространсте $S^{'}(\mathbb{R} \times \mathbb{R}^{3})$ и обобщенное решение волнового уравнения с источником медленного роста, запаздывающий потенциал.

Оператор Даламбера

$$L = \left(\frac{\partial}{\partial t}\right)^2 - a^2 \Delta_x$$

где

$$x \in \mathbb{R}^3$$

$$t \in \mathbb{R}$$

Мы хотим найти функцию Грина $\mathcal{E}(t,x) \in S'(\mathbb{R} \times \mathbb{R}^3)$ такую что

$$L\mathcal{E}(t,x) = \delta(t,x)$$

$$\operatorname{supp} \mathcal{E} \subset \left\{ t \geqslant 0, x \in \mathbb{R}^3 \right\}$$

Будем решать равносильное уравнение. Применим преобразование Фурье

$$F\left[L\mathcal{E}(t,x)\right](\tau,y) = 1$$

$$\left((-i\tau)^2 - a^2 \sum_{k=1}^3 (-iy_k)^2 \right) F\left[\mathcal{E}(t,x)\right] (\tau,y) = 1$$
$$(-\tau^2 + a^2 |y|^2) F\left[\mathcal{E}(t,x)\right] (\tau,y) = 1$$

Рассмотрим многочлен

$$P_L(\tau, y) = a^2 |y|^2 - \tau^2$$

где

$$y \in \mathbb{R}^3$$

$$\tau \in \mathbb{R}$$

Заметим, что он не отделен от нуля, поэтому придется вводить регуляризацию. Рассмотрим другой многочлен

$$P_{\varepsilon}(\tau, y) = a^2 |y|^2 - (\tau + i\varepsilon)^2$$

и будем решать вспомогательную задачу в $S'(\mathbb{R} \times \mathbb{R}^3)$

$$P_{\varepsilon}(\tau, y)v_{\varepsilon}(\tau, y) = 1$$

$$|P_{\varepsilon}(\tau, y)| = |a|y| - \tau - i\varepsilon ||a|y| - \tau + i\varepsilon| \geqslant \varepsilon^2$$

Этот многочлен уже отделим от нуля поэтому существует и единственно решение уравнеиня в обобщенных функциях

$$v_{\varepsilon}(\tau, y) = \frac{1}{P_{\varepsilon}(\tau, y)}$$

Если бы существовал предел

$$\lim_{\varepsilon \to +0} F^{-1} \left[v_{\varepsilon}(\tau, y) \right] (t, x) = g(t, x)$$

то предельная функция решала бы наше уравнение, покажем это

$$\langle P_L F[g], \varphi \rangle = \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_L \varphi \rangle$$

это можно сделать поскольку спаривание непрерывно. Добавим и вычтем

$$\lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_{L} \varphi \rangle = \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_{\varepsilon} \varphi \rangle + \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, (P_{L} - P_{\varepsilon}) \varphi \rangle =$$

$$= \langle 1, \varphi \rangle + \lim_{\varepsilon \to +0} (2\tau i \varepsilon - \varepsilon^{2}) \langle v_{\varepsilon}, \varphi \rangle$$

Поскольку

$$\lim_{\varepsilon \to +0} v_{\varepsilon} = F[g]$$

второй член стремится к нулю. Тем самым мы показали, что предельная функция будет искомым решением. Давайте найдем этот предел. Для любой пробной функции

$$\lim_{\varepsilon \to +0} < F^{-1} \left[\frac{1}{P_\varepsilon(\tau,y)} \right](t,x), \varphi(t,x) > = \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} d\tau \frac{1}{a^2 |y|^2 - |\tau + i\varepsilon|^2} \frac{1}{(2\pi)^4} \int\limits_{\mathbb{R}^4} dt dx \ \varphi(t,x) e^{-it\tau - i(x,y)} e^{-it$$

Заметим, что подынтегральная функция абсолютно интегрируема при любом фиксированном $y \neq 0$ (точка ноль не считается, это множество меры нуль, я в домике), т.е

$$\frac{1}{a^2|y|^2 - |\tau + i\varepsilon|^2} \varphi(t, x) e^{-it\tau - i(x, y)} \in \mathbb{L}_1 \left[\tau \in \mathbb{R}, \ t \in \mathbb{R}, \ x \in \mathbb{R}^3 \right]$$

Поэтому воспользуемся чудесной теоремой Фубини и переставим интералы по $d\tau$ и dtdx

$$\lim_{\varepsilon \to +0} \int\limits_{\mathbb{D}^3} dy \int\limits_{\mathbb{D}^4} dt dx \ \frac{\varphi(t,x)}{(2\pi)^4} \ e^{-i(x,y)} \int\limits_{\mathbb{R}} d\tau \frac{e^{-it\tau}}{a^2|y|^2 - |\tau + i\varepsilon|^2}$$

Интеграл по $d\tau$ вычислим методами ТФКП, два полюса хуе мое, вычеты, так паддажи ебана. Оба полюса находятся в нажней части комплексной плоскости. При t<0 контур нужно замыкать сверху, при t>0 - снизу (лемма Жордана). Поэтому при t<0 полюсы не попадают внутрь контура - интеграл обнуляется. Итого получаем

$$\int\limits_{\mathbb{D}} d\tau \frac{e^{-it\tau}}{a^2|y|^2 - |\tau + i\varepsilon|^2} = -2\pi i\theta(t) \left(\frac{e^{-it(a|y| - i\varepsilon)}}{-2a|y|} + \frac{e^{-it(-a|y| - i\varepsilon)}}{2a|y|} \right) = 2\pi\theta(t) e^{-t\varepsilon} \frac{\sin at|y|}{a|y|}$$

Подставим обратно и перепишем часть функции как Фурье по части переменных.

$$\begin{split} &\lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}^4} dt dx \ \frac{\varphi(t,x)}{(2\pi)^3} \ e^{-i(x,y)} \ \theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|} = \\ &= \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|} \ F_x^{-1}[\varphi(t,x)](y) \end{split}$$

Фурье по части переменных от пробной функции является пробной функцией. Также заметим, что

$$\theta(t) e^{-t\varepsilon} \frac{\sin at|y|}{a|y|} \leqslant t$$
$$t F_x^{-1}[\varphi(t,x)](y) \in \mathbb{L}_1(\mathbb{R}^4)$$

Проверив, что подынтегральная функция мажорируется абсолютно интегрируемой, можем воспользоваться теоремой Лебега об огр. сходимости и внести предел под интеграл

$$\int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \lim_{\varepsilon \to +0} e^{-t\varepsilon} \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}^3} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}^3} dt \ \theta(t) \frac{\sin at|y|}{a|y|} F_x^{-1}[\varphi(t,x)](y) = \int\limits_{\mathbb{R}^3} dt \ \theta(t)$$

Сейчас воспользуемся леммой, которую докажем позже

$$F[\delta_R(x)](y) = \frac{4\pi R \sin R|y|}{|y|}$$

Тогда получим

$$F_y^{-1} \left[\theta(t) \frac{\sin at|y|}{a|y|} \right] (x) = \theta(t) \frac{\delta_{at}(x)}{4\pi a^2 t}$$

Подставим в свертку

$$<\theta(t)\frac{\delta_{at}(x)}{4\pi a^2 t}, \varphi> = \int_0^{+\infty} dt \int_{|x|=at} dS_x \frac{\varphi(t,x)}{4\pi a^2 t} = /at = r/= \int_0^{+\infty} dr \int_{|x|=r} dS_x \frac{\varphi\left(\frac{|x|}{a},x\right)}{4\pi a^2 |x|} =$$

$$= \int_{\mathbb{R}^3} \frac{\varphi\left(\frac{|x|}{a},x\right)}{4\pi a^2 |x|} = \int_{\mathbb{R}^4} dt dx \ \varphi(t,x) \frac{\delta\left(t - \frac{|x|}{a}\right)}{4\pi |x| a^2} = < \frac{\delta\left(t - \frac{|x|}{a}\right)}{4\pi |x| a^2}, \varphi(t,x) >$$

Итого получаем ответ в пространстве обобщенных функций (by bashka)

$$\mathcal{E}(t,x) = \frac{\delta\left(t - \frac{|x|}{a}\right)}{4\pi|x|a^2}$$

Докажем теперь лемму про Фурье образ дельта функции на сфере. Будем двигаться от ответа, так можно потому что Фурье преобразование взаимооднозначно. Пишем для любой пробной

$$< F\left[\frac{\sin|x|k}{|x|}\right], \varphi > = <\frac{\sin|x|k}{|x|}, F[\varphi] > = \int_{\mathbb{R}^3} dx \, \frac{\sin|x|k}{|x|} \int_{\mathbb{R}^3} dy \, e^{i(x,y)} \varphi(y) =$$

$$= \lim_{R \to \infty} \int_{|x| \leqslant R} dx \, \frac{\sin|x|k}{|x|} \int_{\mathbb{R}^3} dy \, e^{i(x,y)} \varphi(y)$$

Подынтегральная функция

$$\frac{\sin|x|k}{|x|} e^{i(x,y)} \varphi(y) \in \mathbb{L}_1 \left[y \in \mathbb{R}^3, |x| \leqslant R \right]$$

Поэтому используем чудесную теорему Фубини и меняем местами интегралы

$$\lim_{R \to \infty} \int_{\mathbb{R}^3} dy \int_{|x| \leqslant R} dx \frac{\sin|x|k}{|x|} e^{i(x,y)} \varphi(y)$$

Как обычно переходим к сферическим координатам в интеграли по шару и интегрируем. Получаем (используя формулы для косинуса суммы и разности)

$$\lim_{R \to \infty} \int\limits_{\mathbb{R}^3} dy \ \varphi(y) \frac{2\pi}{|y|} \int\limits_0^R dr \ 2\sin(|x|k)\sin(|y|r) = 2\pi \lim\limits_{R \to \infty} \int\limits_{\mathbb{R}^3} dy \ \frac{\varphi(y)}{|y|} \left(\frac{\sin R(k-|y|)}{|x-y|} - \frac{\sin R(k+|y|)}{|x-y|} \right)$$

Рассмотрим второе слагаемое, у которого подынтегральная функция абс. интегр

$$\lim_{R \to \infty} \int_{\mathbb{R}^3} dy \ \frac{\varphi(y)}{|y|} \frac{\sin R(k+|y|)}{k+|y|}$$

Введем обозначение

$$f(\rho) = \rho \int_{|y|=1} \varphi(\rho y) dS_y \in \mathbb{L}_1[0,\infty] \cap C^{\infty}[0,\infty]$$

Тогда

$$\lim_{R \to \infty} \int_{0}^{\infty} d\rho \ f(\rho) \frac{\sin R(k+\rho)}{k+\rho} = \int_{k}^{\infty} dt f(t-k) \frac{\sin tR}{t}$$

Подынтрегральная функция мажорируется абс. интегриремой f, поэтому по теореме Римана об осциляции этот интеграл стремится к нулю.

Рассмотрим теперь первое слагаемое

$$\int\limits_{\mathbb{D}^3} dy \ \frac{\varphi(y)}{|y|} \frac{\sin R(|y|-k)}{|y|-k}$$

Проводя те же рассуждения, что и с первым слагаемым

$$\int_{0}^{\infty} d\rho f(\rho) \frac{\sin R(\rho - k)}{\rho - k} = \int_{-k}^{\infty} dt f(t + k) \frac{\sin Rt}{t} = \int_{-k}^{k} dt f(t + k) \frac{\sin Rt}{t} + \int_{k}^{\infty} dt f(t + k) \frac{\sin Rt}{t}$$

Второй интеграл обнуляется в пределе по теорема Римана, как и в прошлый раз (подынтегральная функция мажорируется абс. интегриремой бла бла бла бла). Рассмотрим первый интеграл, добавим и вычтем f(k)

$$\int_{-k}^{k} dt f(t+k) \frac{\sin Rt}{t} = \int_{-k}^{k} dt (f(t+k) - f(k)) \frac{\sin Rt}{t} + \int_{-k}^{k} dt f(k) \frac{\sin Rt}{t}$$

Здесь в первом интеграле

$$\left| \frac{f(t+k) - f(k)}{t} \right| \leqslant \max_{[-k,k]} f^{'}$$

Поскольку производная тоже абс. интегр на [-k,k], то по теореме Римана этот интеграл тоже обнуляется в пределе $R \to \infty$. Что остается это

$$\int_{-k}^{k} dt f(k) \frac{\sin Rt}{t} = f(k) \int_{-kR}^{kR} dz \frac{\sin z}{z} \to \pi f(k) = \frac{\pi}{k} \int_{|x|=k} \varphi(x) dS_x$$

Отсюда получаем

$$F[\delta_k(y)](x) = \frac{4\pi k \sin k|x|}{|x|}$$

13. 1) Формула Кирхгоффа решения обобщённой задачи Коши для однородного волнового уравнения в $S'(\mathbb{R}^4)$ при начальных условиях медленного роста. 2) Достаточные условия, при которых обобщёное решение становится классическим.

Формулировка: 1)

$$u(t,x) = \frac{\partial}{\partial t} \left(\frac{\theta(t)}{4\pi a^2 t} \int_{|z-x|=at} u_0(z) dS_z \right) + \frac{\theta(t)}{4\pi a^2 t} \int_{|z-x|=at} u_1(z) dS_z$$

Для любых абсолютно интегрируемых функций медленного роста $u_0(x)$ и $u_1(x)$ (Интегрирование по поверхности).

2) $u_0(x)\in C^3(\mathbb{R}^3)$ и $u_1(x)\in C^2(\mathbb{R}^3)$

Идея доказательства:

- 1) из 2 более простых задач с одним однородным условием.
- 2) из непрерывности интеграла

Доказательство:

Я не вижу смысла его тут приводить, потому что оно есть в лекциях Константинова на страницах 339-352. А любые сокращения могут привести к потере смысла.

Указатель хода решения:

- 1) действие на функцию Грина 339-340
- 2) анализ правой части действия
(принадлежность к $S(\mathbb{R}^4)$) 341-342
- 3) доказательство того, что интеграл по поверхности можно вынести из действия(с введением и доказательством леммы) 343-346
- 4) действие на производную функциии Грина 347
- 5) решение 1 задачи с однородным вторым условием 348
- 6) решение 2 задачи с однородным первым условием 349-351
- 7) вид при выполнении условия для классичности 352

14. Сопряжённый оператор линейного оператора в гильбертовом пространстве. Область определения сопряжённого оператора. Теорема Фредгольма о связи множества значений линейного оператора и ядра его сопряжённого. Теорема о связи графиков линейного оператора и его сопряжённого.

Предварительно разберём две теоремы, которые будут использоваться в дальнейшем. На экзамене первую из них доказывать точно не будет необходимости, вторую с какой-то вероятностью в этом вопросе смогут спросить, для введения основных определений по билету пользуемся следствием из второй теоремы. Так что эти теоремы упоминаем, формулируем, пользуемся ими, а доказываем только если очень попросят.

Теорема. (Рисса об ортогональном разложении, без доказательства) Пусть $L \subseteq \mathcal{H}$ - замкнутое подпространство. Тогда $L \oplus L^{\perp} = \mathcal{H}$

Теорема. (Рисса, Фреше) $\ \forall$ лин. и непр. $\varphi:\mathcal{H}\to\mathbb{C}$ $\ \exists !\ h_{\varphi}\in\mathcal{H}: \forall f\in\mathcal{H}\ \varphi(f)=(f,h_{\varphi})$ и верно $\ \forall$ лин. и непр. $\varphi,\psi:\mathcal{H}\to\mathbb{C}$ $\ h_{\varphi+\psi}=h_{\varphi}+h_{\psi}$ и $\ \forall \alpha\in\mathbb{C}$ $\ h_{\alpha\varphi}=\overline{\alpha}h_{\varphi}.$

Доказательство. Рассматриваем $L = \ker \varphi = \{ f \in \mathcal{H} | \varphi(f) = 0 \}$. L - подпространство в \mathcal{H} . Так как φ непр. $\Rightarrow L = \ker \varphi$ замкнуто в \mathcal{H} (возьмём точку прикосновения множества L и подберем последовательность Гейне из ядра, сходящуюся к ней. Все значения образов будут нули, значит, и предел будет нулевой, то есть точка прикосновения принадлежит $\ker \varphi$). Таким образом выполняются условия теоремы Рисса об ортогональном разложении и можно записать $\ker \varphi \oplus (\ker \varphi)^{\perp} = \mathcal{H}$. Далее есть две возможности:

- 1. $\ker \varphi = \mathcal{H} \Rightarrow \forall f \in \mathcal{H}$ возьмем $h_{\varphi} = 0$.
- 2. $\ker \varphi \neq \mathcal{H} \Rightarrow \exists g \in (\ker \varphi)^{\perp} \setminus \{0\}$. Тогда $\forall f \in \mathcal{H}$ имеем $f = \underbrace{\frac{\varphi(f)}{\varphi(g)}g}_{\in (\ker \varphi)^{\perp}} + \underbrace{(f \frac{\varphi(f)}{\varphi(g)}g)}_{\in \ker \varphi}$. Отсюда $(f,g) = \frac{\varphi(f)}{\varphi(g)}(g,g) \Rightarrow$

 $\varphi(f)=(f,\frac{\overline{\varphi(g)}g}{||g||^2})$. Итак, по полученному нами $g\in(\ker\varphi)^\perp$ удалось построить требуемый в условии теоремы $h_{\varphi}=\frac{\overline{\varphi(g)}}{||g||^2}g\in\mathcal{H}.$

Осталось доказать единственность найденного вектора. Пускай мы нашли второй вектор $\widetilde{h_{\varphi}} \in \mathcal{H}$: $\forall f \in \mathcal{H}$ $\varphi(f) = (f, h_{\varphi}) = (f, h_{\varphi}) \Rightarrow \forall f \in \mathcal{H}$ $(f, h_{\varphi} - h_{\varphi}) = 0$. В качестве f возьмем $f = h_{\varphi} - h_{\varphi}$. Тогда получаем $||h_{\varphi} - h_{\varphi}||^2 = 0 \Rightarrow h_{\varphi} = h_{\varphi}$, то есть единственность доказана. Теперь получим формулы для $h_{\varphi+\psi}$ и $h_{\alpha\varphi}$. $\forall f \in \mathcal{H}$ $(\varphi + \psi)(f) = (f, h_{\varphi+\psi}) = \varphi(f) + \psi(f) = (f, h_{\varphi} + h_{\psi})$, отсюда по свойству единственности и получаем $h_{\varphi+\psi} = h_{\varphi} + h_{\psi}$. Наконец $(\alpha\varphi)(f) = (f, h_{\alpha\varphi}) = \alpha\varphi(f) = \alpha(f, h_{\varphi}) = (f, \overline{\alpha}h_{\varphi}) \Rightarrow h_{\alpha\varphi} = \overline{\alpha}h_{\varphi}$

Следствие: Пусть $L\subset \mathcal{H}$ - подпространство. Тогда \forall лин. и непр. $\varphi:L\to\mathbb{C}$ $\exists ! \ h_{\varphi}\in\overline{L}: \ \forall f\in L \ \varphi(f)=(f,h_{\varphi})$ и верно \forall лин. и непр. $\varphi,\psi:L\to\mathbb{C}$ $h_{\varphi+\psi}=h_{\varphi}+h_{\psi}$ и $\forall \alpha\in\mathbb{C}$ $h_{\alpha\varphi}=\overline{\alpha}h_{\varphi}$

Доказательство. \forall лин. и непр. $\varphi:L\to\mathbb{C}$ \exists ! лин. и непр. $\psi:\overline{L}\to\mathbb{C}$. Это утверждение вряд ли придется доказывать на экзамене. Покуда у меня первый в списке из билетов про операторы, приведу упорядоченно леммы, которые вводил Константинов с самого начала и доведу их до доказательства нашего утверждения.

Лемма. $\varphi: L \to \mathbb{C}$ - линейный функционал. Тогда φ непрерывен на $L \Leftrightarrow \exists C_{\varphi} > 0: |\varphi(f)| \leqslant C_{\varphi} ||f|| \; \forall f \in L$. То есть непрерывность линейного функционала в нашем случае равносильна его липшицевости.

Доказательство. Справа налево утверждение очевидно, ведь из липшицевости непрерывность гарантирована. $|\varphi(f)-\varphi(g)|=|\varphi(f-g)|\leqslant C_{\varphi}||f-g||\leqslant \varepsilon$, если $||f-g||\leqslant \frac{\varepsilon}{C_{\varphi}+1}$, получили даже больше чем непрерывность - равномерную непрерывность. Теперь доказываем слева направо. φ непр. в нуле $\Rightarrow \exists \ \delta > 0 \ \forall f \in L : ||f|| \leqslant \delta \Rightarrow |\varphi(f)| \leqslant 1. \Rightarrow \forall g \in L \setminus \{0\}$ рассмотрим $f=\delta \frac{g}{||g||} \Rightarrow ||f|| \leqslant \delta$, $f \in L$. Тогда $|\varphi(\delta \frac{g}{||g||})| \leqslant 1 \Rightarrow |\varphi(g)| \leqslant \frac{||g||}{\delta}$, то есть для ненулевых g липшицевость обнаружена. Если $g=0 \Rightarrow \varphi(0)=0 \leqslant \frac{||0||}{\delta_{\varphi}}$. Получили искомую липшицевость.

Лемма. Пусть $L \subset \mathcal{H}$ - подпространство, $\varphi : L \to \mathbb{C}$ - линейный и непрерывный функционал. Тогда $\exists ! \, \psi : \overline{L} \to \mathbb{C}$: ψ линеен и непрерывен и $\psi|_L = \varphi$. (процедуру построения ψ называем продолжением функционала на замыкание по непрерывности).

 $\overline{\mathcal{L}}$ оказательство. $\forall f \in \overline{L} \quad \exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} f$. Дальше смотрим на $\varphi(f_n)$. Расмотрим $|\varphi(f_n) - \varphi(f_m)| = |\varphi(f_n - f_m)| \le C_{\varphi}||f_n - f_m||$. Норма разности $||f_n - f_m||$ стремится к нулю при устремлении индексов к ∞ , тогда последовательность $\varphi(f_n)$ фундаментальная в \mathbb{C} числовая последовательность. Следовательно, по критерию Коши для последовательностей в \mathbb{C} $\exists \lim_{n \to \infty} \varphi(f_n) = \psi(g)$. Формально ψ зависит не только от g, но и от выбора последовательностей f_n , но в действительности от выбора последовательности $f_n \stackrel{n \to \infty}{\longrightarrow} g \in \overline{L}$ не зависит, сразу это докажем. Пусть $h_n \in L \to g$, $f_n \in L \to g \in \overline{L}$, $\Rightarrow |\varphi(h_n) - \varphi(f_n)| = |\varphi(h_n - f_n)| \leqslant C_{\varphi}||h_n - f_n|| \to 0$. Тогда $\lim_{n \to \infty} \varphi(h_n) = \lim_{n \to \infty} \varphi(f_n) = \psi(g) \in \mathbb{C}$. ψ продолжение φ по непрерывности с L на \overline{L} . Получим, что $\psi_L = \varphi$. $\forall g \in L \Rightarrow f_n = g \ \forall n$. $\lim_{n \to \infty} \varphi(f_n) = \psi(g) = \varphi(g)$. Осталось доказать, что ψ будет непрерывен и линеен на \overline{L} . Возьмем $\forall f, g \in \overline{L}$, $\forall \alpha, \beta \in \mathbb{C}$ $\exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} f$, $\exists g_n \in L : g_n \stackrel{\|\cdot\|}{\to} g \Rightarrow \alpha f_n + \beta g_n \stackrel{\|\cdot\|}{\to} \alpha f + \beta g$. $\psi(\alpha f + \beta g) = \lim_{n \to \infty} \varphi(\alpha f_n + \beta g_n) = \lim_{n \to \infty} \alpha \varphi(f_n) + \beta \varphi(g_n) = \alpha \psi(f) + \beta \psi(g)$, так получили, что ψ линеен на замыкании \overline{L} . Чтобы доказать его непрерывность, отыщем для него константу Липшица. Так как φ линеен и непрерывен на L, то $\exists C_{\varphi} > 0 : |\varphi(f)| \leqslant C_{\varphi}||f|| \quad \forall f \in L$. Эта же C_{φ} годится как константа Липшида для ψ : $\forall g \in \overline{L}$ $\exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} g \Rightarrow |\psi(g)| = \lim_{n \to \infty} |\varphi(f_n)|$, а $|\varphi(f_n)| \leqslant C_{\varphi}||f_n|| \to C_{\varphi}||g||$. $||f_n|| - ||g|| \leqslant ||f_n - g|| \to 0$. Тогда $\psi(g) \leqslant C_{\varphi}||g||$. Следовательно $\psi: \overline{L} \to \mathbb{C}$ линеен и непрерывен.

Ну теперь-то мы стопудов не стесняемся сказать на экзамене, что \forall лин. и непр. $\varphi:L\to\mathbb{C}$ $\exists !$ $h_{\varphi}\in\overline{L}: \forall f\in L$ $\varphi(f)=(f,h_{\varphi})$ и верно \forall лин. и непр. $\varphi,\psi:L\to\mathbb{C}$ $h_{\varphi+\psi}=h_{\varphi}+h_{\psi}$ и $\forall \alpha\in\mathbb{C}$ $h_{\alpha\varphi}=\overline{\alpha}h_{\varphi}$. Теперь посмотрим на \overline{L} . Это - замкнутое подпространство в \mathcal{H} . Само \mathcal{H} полно, тогда \overline{L} полно как замкнутое в полном. Так что \overline{L} - тоже гильбертово. Тогда мы для этого \overline{L} и для линейного непрерывного функционала ψ запишем утверждение теоремы Рисса-Фреше: $\exists !$ $h_{\psi}\in\overline{L}: \quad \psi(f)=(f,h_{\psi}) \quad \forall \psi\in\overline{L}$. Вспомним, что $\psi|_{L}=\varphi$, тогда на элементах $\forall f\in L$ эта формула будет выглядеть так $\varphi(f)=(f,h_{\psi})$. Вот этот единственный $h_{\psi}\in\overline{L}$ и есть то, что мы искали как h_{φ} при формулировке задачи. Свойства h_{ψ} при суммировании функционалов и умножении на комплексные числа доказываются как и раньше для всего \mathcal{H} .

Пусть $A: D(A) \to \mathcal{H}$ - линейный оператор. Желаем определить A^* таким образом, чтобы было верно $(Af,g) = (f,A^*g) \ \forall f \in D(A) \ \forall g \in D(A^*)$. Для этого определим сначала, что такое $D(A^*)$.

Определение. $\mathrm{D}(A^*) = \{g \in \mathcal{H} \, | \, \forall f \in \mathrm{D}(A) \to (Af,g) \in \mathbb{C} \} \iff \exists C_g > 0: \, \forall f \in \mathrm{D}(A) \ |(Af,g)| \leqslant C_g ||f|| \}$

То есть мы желаем, чтобы действие $f \to (Af,g)$ было непрерывным. Определенное таким образом $D(A^*)$ - линейное подпространство в \mathcal{H} , т.к. $0 \in D(A^*)$ с $C_0 = 1$ и $\forall g,h \in D(A^*),\ \alpha,\beta \in \mathbb{C}|(Af,g)| \leqslant |\alpha|(Af,g) + |\beta|(Af,h) \leqslant (|\alpha|C_g + |\beta|C_h)||f||$, то есть нашлась константа Липшица $C_{\alpha g+\beta h} = (|\alpha|C_g + |\beta|C_h)$, значит, $\alpha g + \beta h \in D(A^*)$. Теперь нам понадобится следствие из теоремы Рисса-Фреше. Мы имеем линейный и непрерывный функционал $f \to (Af,g)$ на $D(A^*)$. Значит, $\exists ! \ h_g \in \overline{D(A)}: \ \forall f \in D(A) \ (Af,g) = (f,h_g)$. Тем самым мы подготовили почву для определения.

Определение. Сопряженным оператором A^* называется $A^*: D(A^*) \to \overline{D(A)} \subseteq \mathcal{H}$ такой что $\forall g \in D(A^*)$ $A^*g = h_g$. При этом по определению $\forall f \in D(A), \ \forall g \in D(A^*)(Af,g) = (f,A^*g)$

Теорема. (Фредгольма) Пусть $A: D(A) \to \mathcal{H}$ линейный оператор. Тогда $\ker A^* = (\Im A)^{\perp}$.

Доказательство. $\forall g \in \ker A^* \Leftrightarrow \begin{cases} g \in \mathrm{D}(A^*), \\ A^*g = 0 \end{cases}$. Из записанных условий следует $\forall f \in \mathrm{D}(A) \quad (Af,g) = (f,A^*g) = (f,0) = 0$. Поставим теперь задачу наоборот - пусть есть условие $\forall f \in \mathrm{D}(A) \quad (Af,g) = 0$, можно ли выяснить, что $g \in \mathrm{D}(A^*)$? Оказывается, можно, покажем это: пусть имеем $g \in \mathcal{H}$ такой, что $\forall f \in \mathrm{D}(A) \quad (Af,g) = 0$. Тогда строим функционал $\forall f \in \mathrm{D}(A) \quad f \to (Af,g) = 0$. Этот функционал получился непрерывен на $\mathrm{D}(A)$, так как липшицев с $C_g = 1$. Значит, к этому линейному и непрерывному функционалу мы можем предъявить

сопряженный
$$A^*$$
, причем $g \in \mathrm{D}(A^*)$. Сведем результаты: $\forall f \in \mathrm{D}(A) \begin{cases} g \in \mathcal{H}, \\ (Af,g) = 0, \\ \forall f \in \mathrm{D}(A) \end{cases} \Rightarrow \begin{cases} g \in \mathrm{D}(A^*), \\ (Af,g) = (f,A^*g) = 0 \end{cases}$

Последнее равенство (красное) выполняется $\forall f \in \mathrm{D}(A)$, значит, $A^*g = 0$, то есть $g \in \ker A^*$. Но исходили мы из того, что $\forall f \in \mathrm{D}(A)$ (Af, g) = 0, а это можно записать как $g \in (\Im A)^{\perp}$ ($\Im A = \{Af, f \in \mathrm{D}(A)\}$). Так мы и выяснили, что $\ker A^* = (\Im A)^{\perp}$.

Теорема. (о связи графиков линейного оператора и его сопряженного) Пусть $A: D(A) \to \mathcal{H}$ линейный оператор. Тогда $\operatorname{Gr} A^* = (V\operatorname{Gr})^{\perp} \cap (\mathcal{H} \times \overline{D(A)}).$

Доказательство. Будем последовательно определять понятия, которые нам потребуются.

Определение.
$$A: \mathrm{D}(A) \to \mathcal{H}$$
 оператор, тогда $\mathrm{Gr} A = \{ \begin{pmatrix} f \\ Af \end{pmatrix} \in \mathcal{H} \times \mathcal{H}: \ f \in \mathrm{D}(A) \}$

Пространство $\mathcal{H} \times \mathcal{H}$ - это пространство столбцов из элементов \mathcal{H} по 2 элемента. На этом пространстве вводится скалярное произведение по формуле: $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix} \end{pmatrix}_{\mathcal{H} \times \mathcal{H}} = (\varphi, f)_{\mathcal{H}} + (\psi, g)_{\mathcal{H}}$. Квадрат нормы элемента $\mathcal{H} \times \mathcal{H}$ тогда оказывается суммой квадратов норм элементов из столбцов. $\mathcal{H} \times \mathcal{H}$ с такой эвклидовой нормой полно. $\mathrm{Gr} A \subset \mathcal{H} \times \mathcal{H}$, причем $\mathrm{Gr} A$ - подпространство.

Будем теперь рассматривать график сопряжённого оператора.

$$\begin{pmatrix} g \\ h \end{pmatrix} \in \operatorname{Gr} A^* \Leftrightarrow \frac{g \in \operatorname{D}(A^*)}{\operatorname{D}(A)}$$
 вспоминаем теорему Рисса-Фреше, куда погружен $h_{\varphi} \Leftrightarrow g \in \operatorname{D}(A^*), \quad h \in \overline{\operatorname{D}(A)} \Leftrightarrow f \in \operatorname{D}(A)$ Чтобы продолжить цепочку эквивалентных утверждений, заметим, что из $\forall f \in \operatorname{D}(A) \quad (Af,g) = (f,h)$ и $h \in \overline{\operatorname{D}(A)}$ автоматически следует $g \in \operatorname{D}(A^*)$ по определению. Действительно, ведь $(Af,g) = (f,h)$ линейно и непрерывно (в правой части нет A и g). (follow the red bracket)

$$\Leftrightarrow h \in \overline{\mathrm{D}(A)} \\ \forall f \in \mathrm{D}(A) \ (Af,g) = (f,h) \\ \Leftrightarrow \begin{cases} \forall f \in \mathrm{D}(A) \ (-Af,g) + (f,h) = 0 \\ h \in \overline{\mathrm{D}(A)} \end{cases} \\ \Leftrightarrow \begin{cases} \forall f \in \mathrm{D}(A) \ \left(\begin{pmatrix} -Af \\ f \end{pmatrix}, \begin{pmatrix} g \\ h \end{pmatrix}\right)_{\mathcal{H} \times \mathcal{H}} \\ \Leftrightarrow \end{cases}$$

Теперь определим оператор $V: \mathcal{H} \times \mathcal{H} \to \mathcal{H} \times \mathcal{H}$, который переставляет элементы в столбцах местами и к элементу, который появился в 1 позиции, приписывает минус. $\binom{f}{Af} \stackrel{V}{\to} \binom{-Af}{f}$. С помощью этого оператора, как видно, очень удобно выразить сомножитель в полученном нами скалярном произведении через график оператора A.

$$\Leftrightarrow \begin{cases} \forall f \in \mathrm{D}(A) & \left(\mathrm{V} \begin{pmatrix} f \\ Af \end{pmatrix}, \begin{pmatrix} g \\ h \end{pmatrix}\right)_{\mathcal{H} \times \mathcal{H}} = 0 \\ h \in \overline{\mathrm{D}(A)} & \Leftrightarrow \begin{pmatrix} g \\ h \end{pmatrix} \in (\mathrm{VGr}A)^{\perp} \cap (\mathcal{H} \times \overline{\mathrm{D}(A)}). \end{cases} \Box$$

Замечание: Введенный в доказательстве оператор V обладает свойствами:

- Линеен на $\mathcal{H} \times \mathcal{H}$
- $V^2 = -I$, $V^{-1} = -V$ (левый и правый обратные)
- Изометричен $\left| \left| V \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right| \right|_{\mathcal{H} \times \mathcal{H}} = \left| \left| \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right| \right|_{\mathcal{H} \times \mathcal{H}}$ (изометрический изоморфизм)

15. Критерий замыкаемости плотно определённого линейного оператора в гильбертовом пространстве. Пример незамыкаемого плотно определённого оператора. Замыкаемость оператора Лапласа $\Delta: C^2(\overline{G}) \to \mathbb{L}_2(G)$ для ограниченной области $G \subset \mathbb{R}_m$ с кусочно—гладкой границей.

Определение. $A: D(A) \to \mathcal{H}$ линейный оператор. Будем называть его плотно определенным, если $\overline{D(A)} = \mathcal{H}$.

Определение. $A: D(A) \to \mathcal{H}$ линейный оператор. A называем замкнутым, если GrA замкнут в $\mathcal{H} \times \mathcal{H}$.

Определение. $A: \mathrm{D}(A) \to \mathcal{H}$ линейный оператор. Пусть множество $\overline{\mathrm{Gr}A} = \mathrm{Gr}T$ для некоторого линейного оператора $T: \mathrm{D}(T) \to \mathcal{H}$. Тогда говорят, что $T = \overline{A}$ - замыкание A.

Теорема. (Критерий замыкаемости) $A: D(A) \to \mathcal{H}$ линейный оператор, плотно определён. Тогда $\overline{\mathrm{Gr}A}$ является графиком линейного оператора $\overline{A}: D(\overline{A}) \to \mathcal{H} \iff \overline{D(A^*)} = \mathcal{H}$, т.е A^* плотно определён.

Доказательство. 1. Докажем сначала справа налево. Запишем для плотно определенных операторов A, A^* теорему о связи графиков: $\operatorname{Gr} A^* = (\operatorname{VGr} A)^{\perp} \cap (\mathcal{H} \times \overline{\operatorname{D}(A)})$; $\operatorname{Gr} A^{**} = (\operatorname{VGr} A^*)^{\perp} \cap (\mathcal{H} \times \overline{\operatorname{D}(A^*)})$. В силу того, что операторы плотно определены, эти равенства переходят в $\operatorname{Gr} A^* = (\operatorname{VGr} A)^{\perp}$; $\operatorname{Gr} A^{**} = (\operatorname{VGr} A^*)^{\perp}$. Хотелось бы подставить первое полученное выражение во второе, но чтобы произвести дальнейшие сокращения, необходимо доказать лемму о вынесении V из под знака ортогонального дополнения:

Лемма. $L \subset \mathcal{H} \times \mathcal{H}$ - подпространство. Тогда $(VL)^{\perp} = V(L)^{\perp}$

Доказательство.
$$\forall \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in (VL)^{\perp} \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} \in L \quad (\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} -g \\ g \end{pmatrix}) = 0 \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} \in L \quad (-\varphi,g) + (\psi,f) = 0 \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} \in V \quad (-\psi,f) + (\varphi,g) = 0 \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} (V \begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix}) = 0 \Leftrightarrow V \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in L^{\perp} \Leftrightarrow \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in V^{-1}L^{\perp} = -VL^{\perp}$$
. Подпространство и VL^{\perp} , значит, тоже подпространство. Значит, знак минус перед ним не играет никакой роли $-VL^{\perp} = VL^{\perp}$. Тогда получаем $\begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in VL^{\perp}$.

Теперь подставляем: $GrA^{**} = (V(VGrA)^{\perp})^{\perp} = (V^2(GrA)^{\perp})^{\perp} = (-(GrA)^{\perp})^{\perp}$. Снова имеем знак минус перед подпространством и снова его игнорируем. $GrA^{**} = ((GrA)^{\perp})^{\perp}$. Докажем еще одну лемму.

Лемма. $L \subset \mathcal{H}$ - подпространство. Тогда $L^{\perp \perp} = \overline{L}$

 ${\cal A}$ оказательство. $L\subset L^{\perp\perp}$ (элементы $L^{\perp\perp}$ - это ортогональные ортогональным к элементам L. Ясно, что элементы L ортогональны ортогональным к себе). Так как $L^{\perp\perp}$ замкнуто, $\overline{L}\subset L^{\perp\perp}$. \overline{L} гильбертово как замкнутое в гильбертовом. Тогда для него справедлива теорема Рисса: $\overline{L}\oplus N=L^{\perp\perp}$, $N\perp \overline{L}$. $N=(\overline{L})^{\perp}\cap L^{\perp\perp}$. Если мы докажем, что $N=\varnothing$, то лемма будет доказана. Докажем лемму:

Лемма. $L^{\perp} = \overline{L}^{\perp}$

Доказательство. $\overline{L}^{\perp} \subset L^{\perp}$, т.к если элемент ортонален замыканию множества, то и самому множеству ортогонален. Докажем $L^{\perp} \subset \overline{L}^{\perp}$. Пусть $g \in L^{\perp} \Leftrightarrow \forall f \in L \ (f,g) = 0$. По оределению замыкания оператора $\forall f \in L, \ \forall h \in \overline{L} \ \exists f_n \in L: \ f_n \to h. \ (f_n,g) \to (h,g)$. Слева стоит последовательность из одних нулей, значит и стремится она к нулю, то есть $h \perp g$ и $g \in \overline{L}^{\perp}$.

Пользуемся доказанной леммой, получаем $N = (\overline{L})^{\perp} \cap L^{\perp \perp} = (L)^{\perp} \cap L^{\perp \perp} = \varnothing$ (только нулевой элемент ортогонален сам себе).

Теперь получаем $GrA^{**} = ((GrA)^{\perp})^{\perp} = \overline{GrA}$. Видим, что замыкание графика \overline{GrA} является графиком линейного оператора A^{**} , значит по определению замыкание у A есть и равно оно A^{**} .

2. Теперь доказываем слева направо. Нам требуется увидеть равенство $\overline{\mathrm{D}(A^*)} = \mathcal{H}$. Берем $\forall h \in (\mathrm{D}(A^*))^{\perp}$ и составляем конструкцию $\binom{h}{0} \in (\mathrm{Gr}A^*)^{\perp}$. Вложение здесь соблюдается, потому что $\forall g \in \mathrm{D}(A^*) \quad \binom{h}{0}, \binom{g}{A^*g} = \binom{h}{0} + \binom{h}{0}, \binom{g}{A^*g} = 0$. Но по теореме о связи графиков для плотно определённого $A = (\mathrm{Gr}A^*)^{\perp} = (\mathrm{VGr}A)^{\perp \perp} \stackrel{\mathrm{Лемма}}{=} \frac{(h,g)+(0,A^*g)}{\mathrm{VGr}A}$. Тут нам снова нужна лемма, на этот раз для того, чтобы вынести V из-под замыкания.

Лемма. $L \subset \mathcal{H} \times \mathcal{H}$ - подпространство. Тогда $\overline{\mathrm{V}L} = \mathrm{V}\overline{L}$

Доказательство.
$$\forall \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in \overline{\mathrm{V}L} \Leftrightarrow \exists \begin{pmatrix} f_n \\ g_n \end{pmatrix} \colon \quad \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \lim_{n \to \infty} \mathrm{V} \begin{pmatrix} f_n \\ g_n \end{pmatrix} = \lim_{n \to \infty} \begin{pmatrix} -g_n \\ f_n \end{pmatrix}$$
 Получилось $\begin{cases} g_n \to -\varphi \\ f_n \to \psi \end{cases}$ в \mathcal{H} при $n \to \infty \Leftrightarrow \overline{L}$ содержит $\begin{pmatrix} \psi \\ -\varphi \end{pmatrix} = \mathrm{V} \begin{pmatrix} -\varphi \\ -\psi \end{pmatrix} \Leftrightarrow$. Тогда $\begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \mathrm{V}^2 \begin{pmatrix} -\varphi \\ -\psi \end{pmatrix} \in \mathrm{V}\overline{L}$

Тогда $\overline{\mathrm{VGr}A}=\mathrm{V}\overline{L}$. Таким образом $(\mathrm{Gr}A^*)^\perp=\mathrm{V}\overline{\mathrm{Gr}A}$. Тогда $\begin{pmatrix} h\\0 \end{pmatrix}\in\mathrm{VGr}\overline{A}$. Тогда $\begin{pmatrix} 0\\h \end{pmatrix}\in\mathrm{Gr}\overline{A}\Rightarrow h=\overline{A}0=0,$ так как \overline{A} - линейный оператор. Значит, $(\mathrm{D}(A^*))^\perp=\varnothing$ и доказано, что A^* плотно определён. Ну и покуда он плотно определен, то из рассуждений пункта 1 $\overline{A}=A^{**}$.

Пример. (незамыкаемого плотно определённого оператора) Рассмотрим гильбертово пространство \mathcal{H} , в нём ортонормированный базис $\{e_n\}_{n=1}^{\infty}. ||f||^2 = \sum_{n=1}^{\infty} |f_n|^2 < +\infty$. Рассмотрим еще плотное подпространство в \mathcal{H} $L = \{f \in \mathcal{H} | \sum_{n=1}^{\infty} |f_n| < +\infty \}$ (плотное, потому что содержит в себе все e_n). Тогда $\overline{L} = \mathcal{H}$, но $L \neq \mathcal{H}$ (есть, например, $\sum_{n=1}^{\infty} \frac{e_n}{n}$, суммируемый с квадратом, но абсолютно расходящийся ряд). Далее рассмотрим оператор $A: L \to \mathcal{H}$, D(A) = L с таким действием $(Af) = (\sum_{n=1}^{\infty} f_n) \cdot e_1$. $\Im A = Lin \ e_1$ (линейная оболочка первого базисного вектора). Найдём $A^*: D(A^*) \to \mathcal{H} = \overline{L} = \overline{D(A)}$. Пусть $g \in D(A)$. $|(Af,g)| = |\sum_{n=1}^{\infty} f_n| \cdot |(e_1,g)| \leqslant C_g ||f||$. Если мы находим константу C_g , то это эквивалентно утверждению, что отображение $f \to \sum_{n=1}^{\infty} f_n$ линейно и непрерывно на L. Рассмотрим два случая:

- 1. $(e_1,g)=0 \Rightarrow C_g=1$ подойдёт, но о непрерывности исследуемого отображения ничего не говорит.
- 2. $(e_1,g) \neq 0 \Rightarrow \forall f \in L \mid \sum_{n=1}^{\infty} f_n \mid \leqslant \frac{C_g}{\mid (e_1,g) \mid} \mid \mid f \mid \mid$ оценка, гарантирующая непрерывность.

Но это отображение всегда разрывно, потому второй случай никогда не будет реализовываться. Докажем это, предъявив последовательность, члены которой стремятся по норме в L к нулю, но при этом модуль суммы которой

к нулю стремиться не будет. Пусть
$$f_n(N) = \begin{cases} 0, & n < N, \ n > 2N \\ \frac{1}{n}, & n \in \overline{N, 2N} \end{cases}$$
 . $||f(N)|| = \sqrt{\sum_{N=1}^{2N} \frac{1}{n^2}} \to 0, \quad N \to \infty$ (остаток

сходящегося ряда). Но оценим модуль суммы $\forall N \in \mathbb{N}$ $|\sum_{n=1}^{\infty} f_n(N)| = \sum_{N=1}^{\infty} \frac{1}{n} \geqslant \frac{1}{2}$. Так что исследуемый оператор точно разрывен. А значит $(e_1,g) \neq 0$ невозможно, то есть $(e_1,g) = 0$. Так как g - это произвольный вектор из области определения сопряжённого оператора, $\mathrm{D}(A^*) = (Line_1)^{\perp}$. Тогда $\forall f \in L, \forall g \in \mathrm{D}(A^*)$ (Af,g) = 0. Действие $f \to (Af,g)$ для f,g из их областей определения становится тривиальным - обнулением, при этом оно линейно и непрерывно и применима Теорема Рисса-Фреше и можно записать $\exists ! h_g \in \mathcal{H} = \overline{L}: (Af,g) = (f,h_g) = 0$. $h_g = 0$ нам подходит, а других быть не может в силу единственности. Тогда $h_g = 0$. Тем самым мы описали и область определения сопряженного оператора и его действие: $h_g = 0$. $h_g = 0$. Тем самым мы описали и область определения сопряжение теоремы Фредгольма: $h_g = 0$. $h_g = 0$. $h_g = 0$. Тем самым мы описали и область определения сопряжение теоремы Фредгольма: $h_g = 0$. $h_g = 0$. Тем самым мы описали и область определения сопряжение теоремы Фредгольма: $h_g = 0$. $h_g = 0$. Тем самым мы описали и область определения сопряжение теоремы $h_g = 0$. Увидим на этом примере утверждение теоремы Фредгольма: $h_g = 0$. $h_g = 0$. $h_g = 0$. $h_g = 0$. Тем самым мы описали и область определения сопряжения оператора и его действие: $h_g = 0$. $h_g = 0$. $h_g = 0$. $h_g = 0$. Тем самым мы описали и область определения оператора и его действие: $h_g = 0$. $h_g =$

то второй, равный действию оператора на первый, тоже ноль). Соберем такую конструкцию $f(N) = \sum_{n=m_N}^{m_{N+1}} \frac{e_n}{n}$.

Существует такая возрастающая последовательность m_N , что $\forall N$ $1\leqslant \sum_{n=m_N}^{m_{N+1}}\frac{1}{n}\leqslant 1+\frac{1}{m_{N+1}}$. Элементы такой последовательности стремятся к нулю по норме при $N\to\infty$ (аналогично было выше для $m_N=N$ и $m_{N+1}=2N$). А действие оператора A на этот элемент L даёт $Af(N)=(\sum_{n=m_N}^{m_{N+1}}\frac{1}{n})e_1$ $e_1^{\mathcal{H}}$ (смотрим выше, так и определяли m_N , чтобы этот ряд суммировался в единицу). Мы переходили к пределу по Гейне-последовательности, значит, получили точку замыкания графика, причем её вид $\begin{pmatrix} 0\\e_1 \end{pmatrix}$ - та самая недопустимая ситуация, в которой замыкание графика не может быть графиком линейного оператора и оператор A не имеет замыкания на A. Это можно увидеть и по критерию: область определения сопряженного оператора (все векторы, ортогональные линейной оболочке базисного e_1) не полна в \mathcal{H} .

16. Неравенство Фридрихса для функции $f \in C^1(\bar{G})$ и выпуклой ограниченной области $G \subset \mathbb{R}^m$ с кусочно–гладкой границей. Задача Дирихле в круге $K \subset \mathbb{R}^2$ для замыкания оператора Лапласа $\Delta: C^2(\bar{K}) \longrightarrow \mathbb{L}_2(K)$, существование и единственность ее решения.

В билете используются равенство Парсеваля и теорема Бетто-Леви добавлю их формулировки сюда попозже

Неравенство Фридрихса $G \subset \mathbb{R}^m$ – ограниченное, выпуклое множество с кусочно-гладкой границей ∂G . Пусть $f \in C^1(\bar{G})$ и $f|_{\partial G} = 0$. Тогда

$$\int_C |f|^2 \leqslant (\operatorname{diam} G)^2 \int_C |\nabla f|^2$$

Или в терминах $(L)_2$ -нормы

$$||f||_{\mathbb{L}_2(G)} \leq (\operatorname{diam} G)||\nabla f||_{\mathbb{L}_2(G)}$$

Докажем для $m \geqslant 2$, в случае m=1 доказательство тривиально. Рассмотрим $x \in G$. I_1 — проекция G ось x_1 , а G_0 на оставшееся подпространство \mathbb{R}^{m-1} . При заданых $(x_2 \dots x_m)^T \in G_0$ в силу выпуклости G $x_1 \in [a(x_2,\dots,x_m),b(x_2,\dots,x_m)] \subset I$, как изображено.

По Ньютону-Лейбницу и из-за того, что f на границе ноль

$$f(x) = f(x) - f(a(x_2, \dots, x_m)) = \int_{a(x_2, \dots, x_m)}^{x_1} \frac{\partial f}{\partial t}(t, x_2, \dots, x_m) dt$$

$$|f(x)| \leqslant \int_{a(x_2,\dots,x_m)}^{x_1} \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right| dt \leqslant \int_{a(x_2,\dots,x_m)}^{b(x_2,\dots,x_m)} \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right| dt \leqslant \sqrt{b-a} \sqrt{\int_a^b \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right|^2} dt$$

Здесь третье неравенство это Коши-Буняковскй. В силу того, что $|\frac{\partial f}{\partial x_1}| \leqslant |\nabla f|$, а $b(x_2,\ldots,x_m) - a(x_2,\ldots,x_m) \leqslant |I_1|$

$$|f(x)|^2 \le |I_1| \int_{a(x_2,\dots,x_m)}^{b(x_2,\dots,x_m)} |\nabla f(t,x_2,\dots,x_m)|^2 dt$$

Интегрируем по области G

$$\int_{G} |f(x)|^{2} dx \leq |I_{1}| \int_{G} \int_{a(x_{2},\dots,x_{m})}^{b(x_{2},\dots,x_{m})} |\nabla f(t,x_{2},\dots,x_{m})|^{2} dt dx \leq |I_{1}| \int_{G} dx_{1} \int_{G_{0}} dx_{2} \dots dx_{m} \int_{a(x_{2},\dots,x_{m})}^{b(x_{2},\dots,x_{m})} |\nabla f(t,x_{2},\dots,x_{m})|^{2} dt$$

Проинтегрировав по x_1 и оценивая $|I_1| \leqslant DiamG$ получаем

$$\int_{G} |f(x)|^{2} dx \le (\operatorname{diam} G)^{2} \int_{G} |\nabla f(x)|^{2} dx$$

Задача Дирихле для замыкания оператора Лапласа в круге

$$\begin{cases} \bar{\Delta}u = 0, u \in D(\bar{\Delta}) \\ u|_{\partial K_R} = v \in \mathbb{L}_2(K_R) \end{cases}$$

Это означет, что $\exists \ u(N) \in D(\Delta) : \begin{cases} u(N) \xrightarrow{\mathbb{L}_2(K_R)} u \\ \Delta u(N) \xrightarrow{\mathbb{L}_2(K_R)} 0 \end{cases}$

при $N \to \infty$ и $||u(r, \bullet) - v(\bullet)||_{\mathbb{L}_2(K_R)} \to 0$ при $r \to R$. Рассмотрим следующие суммы

$$u(N) = \sum_{n=-N}^{N} u_n(r)e^{in\varphi}$$

$$v(N) = \sum_{n=-N}^{N} v_n e^{in\varphi}$$

Тогда u(N) сойдется к решению, если

$$\begin{cases} \Delta u(N) \xrightarrow{N \to \infty} 0 \\ u(N)|_{\partial K_R} = v(N) \end{cases}$$

Покажем, что эти условия выполняются при $u_n=v_n\left(\frac{r}{R}\right)^{|n|}$. Действительно $\forall n\in\mathbb{N}$ справедливо

$$\Delta(v_n \left(\frac{r}{R}\right)^{|n|} e^{in\varphi}) = 0$$

Теперь докажем сходимость к и. Для начала покажем, что

$$u = \sum_{n \in \mathbb{N}} v_n \left(\frac{r}{R}\right)^{|n|} e^{in\varphi} \in \mathbb{L}_2(K_R)$$

В силу равенства Парсеваля и теоремы Бетто-Леви

$$\int\limits_{K_R} |u^2| = \int\limits_0^R dr \, r \int\limits_0^{2\pi} |u(r,\varphi)|^2 \, d\varphi = \int\limits_0^R dr \, r \sum_{n \in \mathbb{N}} |u_n|^2 2\pi = 2\pi \sum_{n \in \mathbb{N}} |v_n|^2 \int\limits_0^R r \left(\frac{r}{R}\right)^{2|n|} \, dr \leqslant \frac{R^2}{2} ||v||_{\mathbb{L}_2(K_R)} < +\infty$$

$$||u - u(N)||_{\mathbb{L}_2(K_R)} = \sum_{n > N} |v_n|^2 \int_0^R r\left(\frac{r}{R}\right)^{|n|} dr \to 0$$

В силу сходимости $\sum_{n\in\mathbb{N}} |v_n|^2$. Таким образом видим, что предъявленное u является решением.

Единственность этого решения Пусть решения два – u и w. Тогда по определению \exists такие сходящиеся к ним последовательности $u(N) \in C^2(\bar{K}_R)$ и $w(N) \in C^2(\bar{K}_R)$, что

$$\begin{cases} \Delta u(N) \xrightarrow{N \to \infty} 0 \\ u(N)|_{\partial K_R} = v(N) \end{cases}$$

$$\begin{cases} \Delta w(N) \xrightarrow{N \to \infty} 0 \\ w(N)|_{\partial K_R} = v(N) \end{cases}$$

Рассмотрим их разность q(N) = u(N) - w(N)

$$\begin{cases} q(N) \xrightarrow{\mathbb{L}_2(K_R)} u - w \\ \Delta q(N) \xrightarrow{\mathbb{L}_2(K_R)} 0 \\ q(N)|_{\partial K_R} = 0 \end{cases}$$

Воспользуемся формулой Грина

$$\int\limits_{K_R} \Delta(q(N)) q(\bar{N}) = \int\limits_{\partial K_R} \frac{\partial q(N)}{\partial n} q(\bar{N}) - \int\limits_{K_R} |\nabla q(N)|^2 = - \int\limits_{K_R} |\nabla q(N)|^2$$

По этому и еще из-за неравенства Коши-Буняковского

$$||\nabla(q(N))||_{\mathbb{L}_{2}(K_{R})} = \int\limits_{K_{R}} |\nabla q(N)|^{2} \leqslant \int\limits_{K_{R}} |\Delta(q(N))||q(\bar{N})| \leqslant ||\Delta(q(N))||_{\mathbb{L}_{2}(K_{R})} ||q(\bar{N})||_{\mathbb{L}_{2}(K_{R})} \xrightarrow{N \to \infty} 0$$

Тогда по неравенству Фридрихса

$$||q(N)||_{\mathbb{L}_2(K_R)} \leqslant 2R||\nabla(q(N))||_{\mathbb{L}_2(K_R)} \xrightarrow{N \to \infty} 0$$

Таким образом $0 \leftarrow q(N) \rightarrow u - w,$ а значит u = w

17. Собственные числа и собственные функции оператора Лапласа—Бельтрами на сфере $S\subset \mathbb{R}^3,$ сферические функции. Ортогональный базис в пространстве $\mathbb{L}_2\left(S\right)$ из сферических функций.

Сферические координаты в \mathbb{R}^3

Сферические координаты определяются как

$$\begin{cases} x = r\cos\varphi\sin\theta; \\ y = r\sin\varphi\sin\theta; \\ z = r\cos\theta, \end{cases}$$
 где
$$\begin{cases} r \in [0, +\infty); \\ \varphi \in [0, 2\pi); \\ \theta \in [0, \pi). \end{cases}$$

Далее S — единичная сфера в \mathbb{R}^3 , определяемая как

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \right\}.$$

Работаем с комплекснозначными функциями $f(\varphi, \theta)$ в гильбертовом пространстве $\mathbb{L}_2(S)$ со скалярными произведением

$$(f,g) = \int_{S} f(\varphi,\theta) \, \overline{g(\varphi,\theta)} \, dS = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta \, d\theta \, (\varphi,\theta) \, \overline{g(\varphi,\theta)}, \quad f,g \in \mathbb{L}_{2}(S).$$

Таким образом, будем говорить, что функция $f: S \to \mathbb{C}$ лежит в $\mathbb{L}_2(S)$, если ее норма

$$||f||_{\mathbb{L}_2(S)} = \sqrt{(f,f)} < +\infty.$$

Оператор Лапласа в сферических координатах

Оператор Лапласа определим как сумму его радиальной и угловой части:

$$\Delta = \Delta_r + \frac{1}{r^2} \Delta_{\varphi,\theta}, \quad \Delta_r = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}, \quad \Delta_{\varphi,\theta} = \frac{\partial^2}{\partial \theta^2} + \operatorname{ctg} \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}.$$

Определение 17.1: Угловая часть оператора Лапласа $\Delta_{\varphi,\theta}:C_2(S)\to \mathbb{L}_2(S)$ называется *оператором Лапласа-Бельтрами*.

Утверждение 17.1: Оператор $\Delta_{\varphi,\theta}:C_2(S)\to\mathbb{L}_2(S)$ является симметричным оператором, то есть справедливо равенство

$$(\Delta_{\varphi,\theta}f,g) = (f,\Delta_{\varphi,\theta}g), \quad \forall f,g \in C_2(S).$$

ightharpoonup Рассмотрим для $f,g\in C_2(S)$ скалярное произведение

$$(\Delta_{\varphi,\theta}f,g) = \int_{S} (\Delta_{\varphi,\theta}f) \,\overline{g} \,dS = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{\pi-\varepsilon} d\theta \sin\theta \int_{0}^{2\pi} d\varphi \,(\Delta_{\varphi,\theta}f) \,\overline{g} = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{\pi-\varepsilon} d\theta \int_{0}^{2\pi} d\varphi \,\left(\left(\sin\theta f_{\theta}'\right)_{\theta}' \,\overline{g} + \frac{f_{\varphi\varphi}''\overline{g}}{\sin\theta}\right).$$

Второе слагаемое интегрируем по частям по φ два раза:

$$\int_{0}^{2\pi} d\varphi \, f_{\varphi\varphi}^{"}\overline{g} = \left(f_{\varphi}^{'}\overline{g} - f\overline{g}_{\varphi}^{'}\right)\Big|_{\varphi=0}^{\varphi=2\pi} + \int_{0}^{2\pi} d\varphi \, f\overline{g}_{\varphi\varphi}^{"}.$$

Первое слагаемое равно нулю, так как функции f и g дважды непрерывно дифференцируемы. Следовательно, периодичны вместе со своими первыми производными. Меняем местами интегралы, используя теорему Фубини и выполняем интегрирование по частям по θ для первого слагаемого:

$$\begin{split} &(\Delta_{\varphi,\theta}f,g) = \lim_{\varepsilon \to +0} \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} d\varphi \left(\left(\sin\theta f_{\theta}' \right)_{\theta}' \overline{g} + f \overline{g}_{\varphi\varphi}'' \right) = \\ &= \lim_{\varepsilon \to +0} \left[\int\limits_{0}^{2\pi} d\varphi \left(\sin\theta f_{\theta}' \overline{g} \right|_{\theta=\varepsilon}^{\theta=\pi-\varepsilon} - \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta f_{\theta}' \sin\theta \overline{g}_{\theta}' \right) + \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} d\varphi \frac{f \overline{g}_{\varphi\varphi}''}{\sin\theta} \right] = \\ &= \lim_{\varepsilon \to +0} \left[\int\limits_{0}^{2\pi} d\varphi \left(\left(\sin\theta f_{\theta}' \overline{g} - \sin\theta f \overline{g}_{\theta}' \right) \right|_{\theta=\varepsilon}^{\theta=\pi-\varepsilon} + \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta f \left(\overline{\sin\theta g_{\theta}'} \right)_{\theta}' \right) + \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} \frac{f \overline{g}_{\varphi\varphi}''}{\sin\theta} \right] = \\ &= \lim_{\varepsilon \to +0} \left\{ \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} d\varphi \left[\overline{f \left(\sin\theta g_{\theta}' \right)_{\theta}'} + \frac{f \overline{g}_{\varphi\varphi}''}{\sin\theta} \right] + \int\limits_{0}^{2\pi} d\varphi \left(f_{\theta}' \overline{g} - f \overline{g}_{\theta}' \right) \sin\theta \right|_{\varepsilon}^{\pi-\varepsilon} \right\}. \end{split}$$

Первое слагаемое в фигурных скобках дает $(f, \Delta_{\varphi,\theta}g)$. Во втором слагаемом функция $(f'_{\theta}\overline{g} - f\overline{g}'_{\theta})$ непрерывна, а $\sin\theta \xrightarrow{\theta \to \varepsilon, \pi - \varepsilon} 0$. Следовательно, по теореме о непрерывной зависимости интеграла от параметра, можем внести предел внутрь и получить, что второе слагаемое равно нулю.

Утверждение 17.2: Оператор $\Delta_{\varphi,\theta}$ является отрицательно полуопределенным оператором.

 \blacktriangleright Рассматривая такое же скалярное произведение, в котором f=g, и интегрируя по частям каждое слагаемое только один раз, находим:

$$(\Delta_{\varphi,\theta}f,f) = \lim_{\varepsilon \to +0} \left\{ \int_{0}^{2\pi} d\varphi \left[\left(\sin \theta f_{\theta}' \right) \overline{f} \Big|_{\theta=\varepsilon}^{\theta=\pi-\varepsilon} - \int_{\varepsilon}^{\pi-\varepsilon} d\theta \sin \theta \left| f_{\theta}' \right|^{2} \right] + \int_{\varepsilon}^{\pi-\varepsilon} d\theta \left[\frac{f_{\varphi}' \overline{f}}{\sin \theta} \Big|_{\varphi=0}^{\varphi=2\pi} - \int_{0}^{2\pi} d\varphi \frac{\left| f_{\varphi}' \right|^{2}}{\sin \theta} \right] \right\} = -\lim_{\varepsilon \to +0} \int_{\varepsilon}^{\pi-\varepsilon} d\theta \int_{0}^{2\pi} d\varphi \left[\sin \theta \left| f_{\theta}' \right|^{2} + \frac{\left| f_{\varphi}' \right|^{2}}{\sin \theta} \right] \le 0.$$

Причем равенство нулю достигается только на постоянных функциях. \square

Следствие: Любое собственное значение оператора Лапласа–Бельтрами является вещественным неположительным числом. Ядром оператора $\Delta_{\varphi,\theta}$ является подпространство, состоящее из всех функций-констант. Собственные функции оператора $\Delta_{\varphi,\theta}$, отвечающие различным собственным значениям, ортогональны в пространстве $\mathbb{L}_2(S)$.

Собственные функции оператора Лапласа-Бельтрами

Определение 17.2: Собственные функции оператора $\Delta_{\varphi,\theta}$ называются сферическими функциями. Так как $\mathbb{L}_2(S)$ представима в виде

$$\mathbb{L}_2(S) = \mathbb{L}_{2,\sin\theta}[0,\pi] \otimes \mathbb{L}_2[0,2\pi],$$

и мы знаем что в $\mathbb{L}_2[0,2\pi]$ есть базис $\left\{e^{in\varphi}\right\}_{n\in\mathbb{Z}}$, будем искать собственные функции в виде $v(\theta)e^{in\varphi}=u(\varphi,\theta)$, где $0\neq v(\theta)\in C^2[0,2\pi]$. Запишем уравнение на собственные значения:

$$\Delta_{\varphi,\theta}\left(\exp\left(in\varphi\right)v(\theta)\right) = \left(\frac{d^2v(\theta)}{d\theta^2} + \operatorname{ctg}\theta\frac{dv(\theta)}{d\theta} - \frac{k^2v(\theta)}{\sin^2\theta}\right)\exp\left(in\varphi\right) = \lambda\exp\left(in\varphi\right)v(\theta);$$
$$v''(\theta) + \operatorname{ctg}\theta v'(\theta) - \frac{n^2}{\sin^2\theta}v(\theta) = \lambda v(\theta), \quad 0 < \theta < \pi, \quad v(\theta) = v_n(\theta), \quad n \in \mathbb{Z}.$$

Наша цель — разыскать $\forall n \in \mathbb{Z}$ ортогональный базис $\{v_{m,n}(\theta)\}_{m \in \mathbb{N}}$, удовлетворяющий уравнению на собственные значения. Таким образом, для каждого из базисных векторов $v_n(\theta)$ у нас будет ортогональный базис. По теореме о базисе в тензорном произведении двух гильбертовых пространств, ортогональным базисом в $\mathbb{L}_2(S)$ будет тензорное произведение ортогональных базисов.

Поиск собственных функций: Сузим область поиска на бесконечно дифференцируемые функции $v_n \in C^{\infty}(0,\pi)$ и $\forall n \in \mathbb{Z}$ рассмотрим оператор

$$\Delta_n = \frac{d^2}{d\theta^2} + \operatorname{ctg} \theta \frac{d}{d\theta} - \frac{n^2}{\sin^2 \theta} I, \quad \Delta_n : C^{\infty}(0, \pi) \to C^{\infty}(0, \pi).$$

Здесь $I: C^{\infty}(0,\pi) \to C^{\infty}(0,\pi)$ — единичный оператор. В этих терминах задача формулируется как

$$\Delta_{-n} = \Delta_n v = \lambda v, \quad v \in C^{\infty}(0, \pi), \quad \theta \in (0, \pi), \quad v \neq 0, \quad \lambda \in \mathbb{R}.$$

Рассмотрим оператор

$$A_n = \frac{1}{\sin^n \theta} \frac{d}{d\theta} \sin^n \theta = \frac{d}{d\theta} + n \operatorname{ctg} \theta I, \quad n \in \mathbb{Z}, \quad A_n : C^{\infty}(0, \pi) \to C^{\infty}(0, \pi).$$

Утверждение 17.3: Выполнено следующее соотношение:

$$A_{n+1}A_{-n} = \Delta_n + n(n+1)I : C^{\infty}(0,\pi) \to C^{\infty}(0,\pi)$$

▶ Подействуем оператором, стоящим в левой части, на функцию $v \in C^{\infty}(0,\pi)$:

$$A_{n+1}A_{-n}v = A_{n+1}(v' - n\operatorname{ctg}\theta) = v'' + \frac{n}{\sin^2\theta}v - n\operatorname{ctg}\theta\left(v' - n\operatorname{ctg}\theta v\right) =$$

$$= v'' + \operatorname{ctg}\theta v' + v\left(\frac{n}{\sin^2\theta} - n(n+1)\operatorname{ctg}^2\theta\right) = v'' + \operatorname{ctg}\theta v + v\left(\frac{n - (n+1)n}{\sin^2\theta} + n(n+1)\right) =$$

$$= \Delta_n v + n(n+1)v \quad \forall v \in C^{\infty}(0,\pi). \quad \Box$$

Утверждение 17.4: Выполнено следующее соотношение:

$$\Delta_{n-1}A_n = A_n\Delta_n, \quad n \in \mathbb{Z}$$

▶ Выполняя замену $n+1 \to -n, \ n \in \mathbb{Z}$ в утверждении 17.3, находим:

$$A_{-n}A_{n+1} = \Delta_{n+1} + n(n+1)I \Longrightarrow A_{n+1}A_{-n}A_{n+1} = A_{n+1}\Delta_{n+1} + n(n+1)A_{n+1}.$$
 (*)

С другой стороны, сразу пользуясь результатом утверждения 17.4 и умножая справа на A_{n+1} получаем:

$$A_{n+1}A_{-n}A_{n+1} = \Delta_n A_{n+1} + n(n+1)A_{n+1}.$$
 (**)

Используя равенство левых частей в (*) и (**), находим:

$$\Delta_n A_{n+1} = A_{n+1} \Delta_{n+1} \Longrightarrow \Delta_{n-1} A_n = A_n \Delta_n \text{ Ha } C^{\infty}(0,\pi), \quad n \in \mathbb{Z}.$$

Фиксируем $n \in \mathbb{Z}$. Тогда

$$A_{-n} = \sin^n \theta \frac{d}{d\theta} \sin^{-n} \theta.$$

Очевидно, что функция $v_n(\theta) = \sin^n(\theta)$ лежит в $C^{\infty}(0,\pi)$, а также лежит в ядре оператора A_{-n} :

$$v_n(\theta) = \sin^n(\theta) \in C^{\infty}(0, \pi), \quad A_{-n}v_n = 0.$$

Следовательно, из утверждения 17.3 следует, что

$$A_{n+1}A_{-n}v_n = 0 = \Delta_n v_n + n(n+1)v_n \Longrightarrow \Delta_n v_n = -n(n+1)v_n.$$

Одна собственная функция найдена. Далее, пользуясь утверждением 17.4, получаем:

$$\Delta_{n-1}A_nv_n = A_n\Delta_nv_n = -n(n+1)A_nv_n \Longrightarrow v_{n-1} = A_nv_n, \quad \Delta_{n-1}v_{n-1} = -n(n+1)v_{n-1}.$$

Нашли еще одну собственную функцию v_{n-1} . Сделаем еще одну итерацию процесса:

$$\Delta_{n-2}A_{n-1} = A_{n-1}\Delta_{n-1} \Longrightarrow \Delta_{n-2}A_{n-1}v_{n-1} = -n(n+1)A_{n-1}v_{n-1} \Longrightarrow v_{n-2} = A_{n-1}v_{n-1}.$$

Если для $k \in \mathbb{N}_0$ имеем $v_{n-k} \in C^{\infty}(0,\pi)$, то

$$\Delta_{n-k}v_{n-k} = -n(n+1)v_{n-k} \Longrightarrow \Delta_{n-k-1}A_{n-k}v_{n-k} = A_{n-k}\Delta_{n-k}v_{n-k} = -n(n+1)v_{n-k};$$

$$\Delta_{n-k-1}v_{n-k-1} = -n(n+1)v_{n-k-1}.$$

Утверждение 17.5: Для собственной функции $v_{n-k}(\theta)$ справедлива явная формула:

$$v_{n-k}(\theta) = \frac{1}{\sin^{n-k}\theta} \left(\frac{d}{\sin\theta d\theta}\right)^k \sin^{2n}\theta, \quad k \in \mathbb{N}_0.$$

▶ Доказательство проведем по индукции. Мы знаем, что $v_n(\theta) = \sin^n \theta$ и знаем, что $v_{n-1} = A_n v_n$. Тогда

$$v_{n-1} = A_n v_n = \frac{1}{\sin^n \theta} \frac{d}{d\theta} \sin^2 \theta v_n(\theta) = \frac{1}{\sin^{n-1} \theta} \left(\frac{d}{\sin \theta d\theta} \right)^1 \sin^{2n} \theta.$$

База индукции (для k=0) очевидна: для $v_n(\theta)$ имеем:

$$v_n(\theta) = \frac{1}{\sin^n \theta} \left(\frac{d}{\sin \theta d\theta} \right)^0 \sin^{2n} \theta = \sin^n \theta.$$

Построим общую формулу. Предположим, что

$$v_{n-k}(\theta) = \frac{1}{\sin^{n-k}\theta} \left(\frac{d}{\sin\theta d\theta}\right)^k \sin^{2n}\theta, \quad k \in \mathbb{N}_0,$$

тогда

$$v_{n-k-1} = A_{n-k}v_{n-k} = \frac{1}{\sin^{n-k}\theta} \frac{d}{d\theta} \sin^{n-k}\theta \frac{1}{\sin^{n-k}\theta} \left(\frac{d}{\sin\theta d\theta}\right)^k \sin^{2n}\theta = \frac{1}{\sin^{n-k-1}\theta} \left(\frac{d}{\sin\theta d\theta}\right)^{k+1} \sin^{2n}\theta. \quad \Box$$

Выполняя замену $k - n \to m, \ m \in \{-n, ..., n\}$, получим:

$$v_{-m}(\theta) = \sin^m \theta \left(\frac{d}{\sin \theta d\theta}\right)^{n+m} \sin^{2n} \theta, \quad \Delta_m v_{-m}(\theta) = -n(n+1)v_{-m}(\theta).$$

Так как мы искали функции из $C^{\infty}(0,\pi)$, из этого набора необходимо выбрать функции v_{-m} , соответствующие целым неотрицательным m.

Выражение через полиномы Лежандра: Введем замену $\tau = \cos \theta \in [-1, 1]$. Тогда

$$-\frac{d}{\sin\theta d\theta} = \frac{d}{d\tau}, \quad \sin^2\theta = 1 - \tau^2.$$

Для собственных функций $v_{-m}(\theta)$ получаем выражение:

$$v_{-m}(\theta) = (-1)^{m+k} (1-\tau^2)^{m/2} \left(\frac{d}{d\tau}\right)^m \left(\frac{d}{d\tau}\right)^n (1-\tau^2)^n.$$

Определение 17.3:

• Для $n \in \mathbb{N}_0$ полиномом Лежандра степени n называется многочлен

$$P_n(\tau) = \left(\frac{d}{d\tau}\right)^n (1 - \tau^2)^n, \quad \tau \in [-1, 1], \quad n \in \mathbb{N}_0.$$

• Для $k \in \mathbb{N}_0$ присоединенным полиномом Лежандра называется многочлен

$$P_{n,m}(\tau) = (1 - \tau^2)^{m/2} \left(\frac{d}{d\tau}\right)^m \left(\frac{d}{d\tau}\right)^n (1 - \tau^2)^n, \quad \tau \in [-1, 1], \quad n, m \in \mathbb{N}_0.$$

Таким образом, для собственных функций $v_{-m}(\theta)$ имеем (постоянный множитель можно опустить):

$$v_{-m}(\cos\theta) = P_{n,m}(\cos\theta).$$

Окончательно, получаем выражение для сферических функций $Y_{n,m}(\varphi,\theta)$:

$$Y_{n,m}(\varphi,\theta) = P_{n,|m|}(\cos\theta)e^{im\varphi}, \quad \theta \in [0,\pi], \quad \varphi \in [0,2\pi], \quad n \in \mathbb{N}_0, \quad m \in \{-n,\dots,n\}.$$

Для них выполнено

$$Y_{n,m}(\varphi,\theta) \in C^2(S), \quad \Delta_{\varphi,\theta} = -n(n+1)Y_{n,m}(\varphi,\theta) \Longrightarrow \lambda_n = -n(n+1).$$

Полнота системы сферических функций

19. Самосопряжённый линейный оператор в гильбертовом пространстве, его плотная определённость, замкнутость и симметричность. Пример несамосопряженногозамкнутого плотно определенного симметричного оператора. Вещественность спектра самосопряженного оператора.

Сопряженный оператор

Определение. $A: D(A) \to \mathcal{H}$ - кинейный непрерывный функционал, тогда A - самосопряженный(эрмитов) если $GrA = GrA^*$, то есть $D(A) = D(A^*)$ и $A^*g = Ag \forall g \in D(a) = d(A^*)$.

Определение. $A: D(A) \to \mathcal{H}$ замкнут, если его график замкнут.

Лемма. Если A -самосопряженный оператор (ССО) то GrA замкнут.

Доказательство. Очевидно из определения. (см. билет про симметричный опертатор, в нем доказано что график сопряженного оператора заммкнут, а значит замкнут и график A из определения самосопряженного оператора) □

Определение. A - симметричный оператор, если $A: D(A) \to \mathcal{H}$ $(Af,g) = (f,Ag) \ \forall f,g \in D(A)$

Определение. Оператор A - плотно определенный, если $\overline{\mathrm{D}(A)}=\mathcal{H}$

Лемма. Если A -самосопряженный тогда $\overline{\mathrm{D}(A)}=\mathcal{H}$

Доказательство. Идея: $L \subset \mathcal{H}$ - подпространство. Если $\overline{L} = \mathcal{H}$, то $(\overline{L})^{\perp} = \{0\} = (L)^{\perp}$ (Равенство $(\overline{L})^{\perp} = (L)^{(\perp)}$) из теоремы Фредгольма) Теперь берем $p \in (D(A))^{\perp} \Leftrightarrow \forall h \in \overline{D(A)} \Rightarrow (h,p) = 0$ Возьмем $\forall \in D(A) = D(A^*)$ рассмотрим $Af = A^*f \in D(A)$. Тогда h = Af $(Af,p) = 0 \to p \in D(A^*) = D(A)$ тк A - ССОб то есть $p \in D(A) \cap (D(A))^{\perp} = \{0\}$ $p = 0 \to (D(A))^{\perp} = \{0\}$

Таким образом мы показали плотную определенность, замкнутость и симметричность самосопряженного оператора.

Вещественность спектра

(Источник: Константинов, функциональный анализ)

Далее в этом параграфе рассматриваем самосопряжённый оператор A.

Утверждение 5.9.1. Справедливы следующие свойства:

- 1) $(A(x), x) \in \mathbb{R}$ для любого $x \in \mathcal{H}$;
- 2) точечный спектр оператора A вещественен, т. е. $\sigma_p(A) \subset \mathbb{R}$;
- для любых двух различных собственных чисел оператора А любые соответствующие им собственные векторы ортогональны;
 - 4) $||A^n|| = ||A||^n$ для любого $n \in \mathbb{N}$, r(A) = ||A||.

Доказательство. Свойство 1 следует из равенств

$$(A(x), x) = (x, A(x)) = \overline{(A(x), x)},$$

т. е. мнимая часть ${\rm Im}(A(x),x)=0$. Рассмотрим произвольное собственное число $\lambda\in\sigma_p(A)$ оператора A. Пусть $x\in{\rm Ker}\,A_\lambda$ — собственный вектор A, соответствующий λ . Тогда получаем равенства $(A(x),x)=(\lambda x,x)=\lambda\|x\|^2$. Следовательно, в силу свойства 1 получаем $\lambda=\frac{(A(x),x)}{\|x\|^2}\in\mathbb{R}$. Таким образом, $\sigma_p(A)\subset\mathbb{R}$, т. е. свойство 2 доказано. Рассмотрим теперь два различных собственных числа

 $\lambda_1 \neq \lambda_2$ оператора A. Пусть $x_1 \in \operatorname{Ker} A_{\lambda_1}$ и $x_2 \in \operatorname{Ker} A_{\lambda_2}$ — соответствующие им собственные векторы. Тогда получаем

$$\lambda_1(x_1, x_2) = (A(x_1), x_2) = (x_1, A(x_2)) = \lambda_2(x_1, x_2).$$

Следовательно, $(\lambda_1 - \lambda_2)(x_1, x_2) = 0$. Так как $\lambda_1 - \lambda_2 \neq 0$, то получаем $(x_1, x_2) = 0$, т. е. свойство 3 доказано. Далее, по определению операторной нормы очевидно неравенство $||A^n|| \leq ||A||^n$ для любого $n \in \mathbb{N}$. Предположим, рассуждая по индукции, что для некоторого $m \in \mathbb{N}$ и для всех $k \in \overline{1, m}$ справедливо равенство $||A^k|| = ||A||^k$ (для m = 1 это верно). Тогда для любого $x \in \mathcal{H}$ вида ||x|| = 1 получаем

$$\begin{split} \|A^m(x)\|^2 &= \Big(A^m(x), A^m(x)\Big) = \Big(A^{m+1}(x), A^{m-1}(x)\Big) \leq \\ &\leq \|A^{m+1}(x)\| \, \|A^{m-1}(x)\| \leq \|A^{m+1}\| \, \|A^{m-1}\| = \|A^{m+1}\| \, \|A\|^{m-1}. \end{split}$$

Следовательно, справедливо соотношение

$$\|A\|^{2m} = \|A^m\|^2 = \sup_{\|x\|=1} \|A^m(x)\|^2 \le \|A^{m+1}\| \, \|A\|^{m-1}.$$

Отсюда получаем $\|A\|^{m+1} \leq \|A^{m+1}\|$, т. е. справедливо равенство $\|A\|^{m+1} = \|A^{m+1}\|$, что и требовалось. Наконец, спектральный радиус $r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|} = \|A\|$, т. е. свойство 4 доказано.

21. Начально-краевая задача для однородного уравнения Шрёдингера с самосопряжённым линейным оператором в гильбертовом пространстве. Метод Фурье решения этой задачи и критерий её разрешимости. Оператор эволюции.

Общий вид постановки начально-краевой задачи:

Пусть P(z) - полином степени N (с комплексными коэффициентами), $u(t) \in \mathcal{H}$, A - симметричный оператор над \mathcal{H} , а \bar{A} - его замыкание.

Начально краевая задача:
$$\stackrel{def}{=} \begin{cases} P\left(\frac{d}{dt}\right)u(t) = \bar{A}u(t), & t > 0, \quad u(t) \in D(\bar{A}) \\ u(+0) = v_0(t) \in \mathcal{H} \\ u'(+0) = v_1(t) \in \mathcal{H} \\ \dots \\ u^{(N-1)}(+0) = v_{N-1} \in \mathcal{H} \end{cases}$$
 (28)

Примечание: задача в том смысле «краевая», что область определения оператора содержит краевые условия, а функции рассматриваются из $D(\bar{A})$; начальные условия здесь - все остальные уравнения системы.

Важно: производная и предел понимаются в смысле нормы гильбертова пространства:

Говорят, что $\exists u'(t) \in \mathcal{H}, t > 0$: Если существует предел:

$$\exists \lim_{\Delta t \to 0} \frac{\|u(t + \Delta t) - u(t)\|}{\Delta t} \stackrel{def}{=} u'(t), \quad t > 0$$
 (29)

В силу этого определения получаются важные свойства производной и её коэффициентов Фурье. Выберем ортогональный базис собственных векторов ССО \bar{A} в \mathcal{H} и разложим u(t) по нему:

$$u(t) = \sum_{n=0}^{\infty} e_n u_n(t)$$

Пусть теперь $\exists u'(t) = \sum_{n=0}^{\infty} e_n u'_n(t)$. Тогда по определению коэффициентов Фурье и производной получим:

$$(u_n(t))' = \frac{u_n(t + \Delta t) - u_n(t)}{\Delta t} = \frac{(\frac{u(t + \Delta t) - u(t)}{\Delta t}, e_n)}{(e_n, e_n)} \to \frac{(u', e_n)}{(e_n, e_n)} = u'_n(t), \quad t \to 0$$

Здесь мы воспользовались непрерывностью скалярного произведения по каждому из сомножителей. Т.е. производная коэфициента Фурье - коэфициент производной. Производные высших порядков определяются аналогично.

Замечание: из существования производной следует, что компоненты вектора производной равны продифференцированным компонентам вектора, обратное неверно, и в задачах нужно доказывать, что «кандидат» на решение действительно удовлетворяет определению (29)

Методом Фурье называется разложение вектора u(t) на копоненты по базису собственных векторов оператора \bar{A} , благодаря этому задача сводится к задаче Коши.

А, благодаря этому задача сводител к задаче голи. Теперь покажем это. Пусть $u(t) \in D(\bar{A})$ Равенство Парсеваля $\sum_{n=0}^{\infty} |\lambda_n|^2 |u_n|^2 \|e_n\|^2 < \infty$ решение поставленной задачи.

Тогда, т.к. все производные у u(t) имеются, то нетрудно увидеть (в силу вышеуказанного свойства производной), что:

$$P\left(\frac{d}{dt}\right)u(t) = \sum_{n=0}^{\infty} P\left(\frac{d}{dt}\right)u_n(t)e_n$$

В то же время воспользуемся тем, что мы разложили векторы по собственным векторам симетричного самосопряженного оператора \bar{A}

$$\bar{A}u(t) = \sum_{n=0}^{\infty} \lambda_n u_n e_n$$

Приравнивания оба выражения в силу уравнения (28):

$$P\left(\frac{d}{dt}\right)u_n(t) = \lambda_n u_n e_n, \quad t > 0$$

Т.е. мы получили задачу Коши из теории обыкновенных диф. уравнений. Покажем, что остальные уравнения системы (28) являются начальными условиями для этого счетного набора задач Коши:

$$u^{(k)}(+0) = v_k \stackrel{def:}{\Leftrightarrow} \lim_{t \to +0} ||u^{(k)}(t) - v_k|| \to 0$$

Выражение выше можно ослабить, но получить более удобный результат:

$$||u^{(k)}(t) - v_k|| > |u_n^{(k)}(t) - (v_k)_n|||e_n|| > 0$$

По теореме о двух милиционерах получаем,

$$u_n^{(k)}(0) = (v_k)_n$$

Замечание: после решения всех задач Коши, необходимо проверить выполнение всех предположений, которые были сделаны для поиска решения: $u(t) \in D(\bar{A}), \forall k \in \{1,..N\} \hookrightarrow \exists u^{(k)}(t)$. Если эти условия выполнены, получим единственность решения, согласно единственности и существованию решения задачи Коши.

Уравнение Шредингера

$$\begin{cases} i\frac{d}{dt}u(t) = \bar{A}u(t), t > 0\\ u(+0) = v_0 \end{cases}$$

Воспользуемся методом Фурье и доказанными ранее свойствами:

$$\begin{cases} i(u_n(t))' = \lambda_n u_n, t > 0 \\ u(+0) = v_0 \end{cases} \rightarrow u_n(t) = e^{-i\lambda_n t} (v_0)_n \stackrel{def}{=} (e^{-it\bar{A}} v_0)_n$$

$$D(e^{-it\bar{A}}) = \mathcal{H}, \quad ||u(t)|| = ||e^{-it\bar{A}}v_0|| = ||v_0||$$

Этот оператор называется оператором эволюции. Последнее равенство очевидно из равенства Парсеваля. Это в свою очередь обозначает, что

$$u(t) \in D(\bar{A}) \Leftrightarrow v_0 \in D(\bar{A}) \stackrel{def}{\Leftrightarrow} \sum_n^{\infty} |(v_0)_n|^2 |\lambda_n|^2 ||e_n||^2 < +\infty$$

Это **Критерий разрешимости уравнения Шредингера**. Не для каждой начально-краевой он такой. Например, может быть критерий вида

$$\sum_{n=0}^{\infty} |(v_0)_n|^2 |\lambda_n| ||e_n||^2 < +\infty$$

Замечание: примеры решения других начально-краевых задач есть по ссылке: тык1, тык2

22. Собственные числа и собственные функции оператора Лапласа в круговом секторе при однородном граничном условии. Функции Бесселя. Свойство ортогональности и свойства нулей функций Бесселя.

Короче, это первые три пункта методички Конста по Бесселям. Но, с другой стороны, это 12 страниц. Проще почитать/распечатать тут

23. Ортогональный базис в пространстве $\mathbb{L}_2(G)$ из собственных функций оператора Лапласа в круговом секторе $G \in \mathbb{R}^2$ при однородном граничном условии.

Подготовка к билету: 318 - 332 страницы учебника Владимирова

24. Компактные самосопряженные операторы в гильбертовом пространстве. Теорема Гильберта Шмидта. Резольвента компактного самосопряженного оператора.

Определение 1. Открытым шаром с центром в точке x_0 в линейном нормированном пространстве X называется множество $O_R(x_0) = \{x \in X : ||x - x_0|| < R\}$. Замкнутым шаром $(B_R(x_0))$, соответственно, когда выполняется нестрогое неравенство.

Определение 2. Множество S в линейном нормированном пространстве X называется <u>ограниченным</u>, если $\exists C > 0 : \forall x \in S \hookrightarrow ||x|| \leqslant C$. Иными словами, множество лежит в некотором замкнутом шаре радиуса C.

Определение 3. Множество S в линейном нормированном пространстве X называется вполне ограниченным, если $\forall \varepsilon > 0 \ \exists \{x_i\}_{i=1}^{N(\varepsilon)} \subset S : S \subset \bigcup_{i=1}^N B_\varepsilon(x_i)$. Конечный набор x_i для каждого ε называют конечной эпсилон-сетью **Определение 4.** Пусть X,Y - банаховы пространства (то есть полные линейные нормированные пространства). Линейный оператор $A: X \to Y$ называется компактным, если для любого ограниченного множества $S \subset X$ его образ A(S) является вполне ограниченным в Y.

Рассмотрим несколько утверждений про компактные операторы. Пространство линейных непрерывных операторов из X в Y будем обозначать $\mathcal{L}(X,Y)$, а из X в X - $\mathcal{L}(X)$. Так как сумма вполне ограниченных множеств и умножение вполне ограниченного множества на скаляр тоже являются вполне ограниченными, то конечная линейная комбинация компактных операторов также является компактным оператором. Таким образом, множество компактных операторов из X в Y образуют подпространство, которое обозначим $\mathcal{K}(X,Y)$, из X в X, соответственно, $\mathcal{K}(X)$.

Утверждение 1. Если линейный непрерывный оператор $A \in \mathcal{L}(X,Y)$ имеет конечномерный образ, то он компактный.

Доказательство: По определению ограниченного оператора, образ любого ограниченного множества S является ограниченным. Кроме того, $A(S) \subset ImA$, где ImA - конечномерное подпространство по условию. В конечномерном случае ограниченность совпадает со вполне ограниченностью, а, значит, A(S) - вполне ограниченное множество, то есть A - компактный. \blacksquare

Утверждение 2. Пусть последовательность операторов $\{A_m\}_{m=1}^{\infty} \subset \mathcal{K}(X,Y)$ является сходящейся к оператору A по операторной норме, т. е. $||A-A_m|| \to 0$. Тогда A является компактным оператором, т. е. $A \in \mathcal{K}(X,Y)$. Иными словами, подпространство компактных операторов замкнуто.

Доказательство: По определению сходимости:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall m \geqslant N \hookrightarrow ||A_m - A|| < \varepsilon$$

Так как мы работаем в линейном нормированном пространстве, то достаточно рассмотреть единичный шар. Тогда для любого $x \in B_1(0)$ получаем: $||A_m(x) - A(x)|| \le ||A_m - A|| < \varepsilon$. Зафиксируем произвольное $m \ge N$. Оператор A_m компактный, а значит $A_m(B_1(0))$ вполне ограничено, следовательно, существует конечный набор $x_1, ..., x_M$, такой что $\{A_m(x_i)\}_{i=1}^M$ является конечной эпсилон-сетью множества $A_m(B_1(0))$, т. е.

$$\forall x \in B_1(0) \exists k \in \overline{1, M} : ||A_m(x) - A_m(x_k)|| < \varepsilon$$

Из этого получаем следующие неравенства:

$$||A(x) - A(x_k)|| \le ||A(x) - A_m(x)|| + ||A_m(x) - A_m(x_k)|| + ||A_m(x_k) - A(x_k)|| \le 3\varepsilon$$

Таким образом, мы показали что существует конечная 3-эпсилон сеть для образа оператора $A.\blacksquare$

Пример компактного оператора. Пусть функция $K:[0,1]\times[0,1]\to\mathbb{C}$ такая, что $K\in\mathbb{L}_2([0,1]\times[0,1])$. Тогда интегральный оператор $A:\mathbb{L}_2[0,1]\to\mathbb{L}_2[0,1]$ вида

$$(Ax)(t) = \int_0^1 K(t,\tau)x(\tau)d\tau$$

является компактным. Сначала покажем его ограниченность, воспользовавшись неравенством Коши-Буняковского:

$$||Ax||_2 = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} \leqslant \sqrt{\int_0^1 dt \left(\int_0^1 |K(t,\tau)|^2 d\tau \right) \left(\int_0^1 |x(\tau)|^2 d\tau \right)} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 K(t,\tau) x(\tau) d\tau} = \sqrt{\int_0^1 K(t,\tau) x(\tau) d\tau}$$

$$= \sqrt{\int_0^1 \int_0^1 dt d\tau |K(t,\tau)|^2} \sqrt{\int_0^1 d\tau |x(\tau)|^2} = ||K||_2 ||x||_2$$

Таким образом, получаем ограниченность оператора: $||A|| \le ||K||_2 < +\infty$. Теперь покажем вполне ограниченность образа по определению.

Введем понятие спектра оператора

Гильбертово пространство является полным по определению. Рассмотрим компактные самосопряженные операторы в гильбертовом пространстве