解説

問題I

(1) z 軸に垂直な平面内の位置を 2 次元極座標 (r,φ) で表した円柱座標系 (r,φ,z) を用いて考える。 z 軸の正の向きの単位ベクトルを e_z とする。位置 (r,φ,z) において、z 軸に垂直で z 軸 から遠ざかる方向の単位ベクトルを e_r 、z 軸を中心に回転する方向 (右ねじが e_z 方向に進む方向) の単位ベクトルを e_φ とする (図 III-2 参照)。微小円環の $\varphi \sim \varphi + \mathrm{d}\varphi$ の微小部分の電荷 $\mathrm{d}q$ が原点に作る電界 $\mathrm{d}E(r,\varphi,z)$ を考える。この微小部分と原点を結ぶベクトル R は $R = -re_r - ze_z$ と表され、 $R = |R| = (r^2 + z^2)^{\frac{1}{2}}$ となる。これより、

$$\mathrm{d}\boldsymbol{E}(r,\varphi,z) = \frac{\mathrm{d}q}{4\pi\varepsilon_0}\frac{\boldsymbol{R}}{R^3} = \frac{\mathrm{d}q}{4\pi\varepsilon_0}\frac{-r\boldsymbol{e}_r - z\boldsymbol{e}_z}{(r^2 + z^2)^{\frac{3}{2}}}$$

を得る. 上式の内, e_r 成分は, $\varphi+\pi\sim\varphi+\pi+\mathrm{d}\varphi$ の微小部分の電荷が作る電界の e_r 成分と 打ち消し合い $(\because e_r(\varphi+\pi)=-e_r(\varphi))$, 微小円環全体の作る電界には寄与しないので, e_z 成分の寄与のみを考えれば良い. その寄与は

$$d\mathbf{E}'(r,\varphi,z) = -\frac{\mathrm{d}q}{4\pi\varepsilon_0} \frac{z}{(r^2 + z^2)^{\frac{3}{2}}} \mathbf{e}_z$$

で与えられる。ここで、微小部分の体積は、3 辺の長さが dr、 $r d\varphi$ 、dz の直方体の体積として、 $r dr dz d\varphi$ で与えられることより、 $dq = \rho r dr dz d\varphi$ で与えられる。これより、

$$\begin{split} \mathrm{d}\boldsymbol{E}_{\mathrm{O}}(r,z) &= \int \mathrm{d}\boldsymbol{E}(r,\varphi,z) = \int \mathrm{d}\boldsymbol{E}'(r,\varphi,z) = -\int \frac{\mathrm{d}q}{4\pi\varepsilon_0} \frac{z}{(r^2+z^2)^{\frac{3}{2}}} \boldsymbol{e}_z \\ &= -\frac{\rho r \, \mathrm{d}r \, \mathrm{d}z}{4\pi\varepsilon_0} \frac{z}{(r^2+z^2)^{\frac{3}{2}}} \int_0^{2\pi} \mathrm{d}\varphi \, \boldsymbol{e}_z = -\frac{\rho 2\pi r \, \mathrm{d}r \, \mathrm{d}z}{4\pi\varepsilon_0} \frac{z}{(r^2+z^2)^{\frac{3}{2}}} \, \boldsymbol{e}_z \\ &= -\frac{\rho r z \, \mathrm{d}r \, \mathrm{d}z}{2\varepsilon_0 (r^2+z^2)^{\frac{3}{2}}} \, \boldsymbol{e}_z \end{split}$$

・を得る.

(別解)

微小円環のある位置 (x,y,z) にある電荷が原点 O に作る電界の z 軸に垂直な成分は, z 軸に関して反対の位置 (-x,-y,z) にある同じ電荷が原点 O に作る電界と打ち消し合う。従って d E_O は z 成分のみが残る。微小円環のある位置の微小電荷 $\mathrm{d}q$ が原点に作る電界の z 成分は

$$-\frac{z\mathrm{d}q}{4\pi\varepsilon_0(r^2+z^2)^{3/2}}$$

で与えられる。 微小円環部分の体積は、半径 r の円周の長さ $2\pi r$ に幅 $\mathrm{d}r$ をかけた底面積をもち、高さが $\mathrm{d}z$ の柱体の体積として $2\pi r\,\mathrm{d}r\,\mathrm{d}z$ で与えられる。 従って、 微小円環部分の持つ電荷は

$$2\pi\rho r\,\mathrm{d}r\,\mathrm{d}z$$

となる. 上記の dq をこの電荷に置き換えて

$$\mathrm{d} \boldsymbol{E}_{\mathrm{O}}(r,z) = -\frac{\rho r z \, \mathrm{d} r \, \mathrm{d} z}{2\varepsilon_{\mathrm{O}}(r^2 + z^2)^{\frac{3}{2}}} \, \boldsymbol{e}_z$$

を得る.

104

(2) (1) の結果より、半球内で座標 z が $z\sim z+\mathrm{d}z$ の範囲にある微小円板部分にある電荷が原点に作る電界を $\mathrm{d} E(z)$ とすると

$$\begin{split} \mathrm{d} \boldsymbol{E}(z) &= \int \, \mathrm{d} \boldsymbol{E}_{\mathrm{O}}(r,z) = -\frac{\rho z \, \mathrm{d} z}{2\varepsilon_{0}} \int_{0}^{\sqrt{a^{2}-z^{2}}} \frac{r}{(r^{2}+z^{2})^{\frac{3}{2}}} \, \mathrm{d} r \, \boldsymbol{e}_{z} \\ &= -\frac{\rho z \, \mathrm{d} z}{2\varepsilon_{0}} \frac{1}{2} \int_{0}^{a^{2}-z^{2}} \frac{1}{(u+z^{2})^{\frac{3}{2}}} \, \mathrm{d} u \, \boldsymbol{e}_{z} = -\frac{\rho z \, \mathrm{d} z}{2\varepsilon_{0}} \frac{1}{2} (-2) \, \frac{1}{(u+z^{2})^{\frac{1}{2}}} \bigg|_{0}^{a^{2}-z^{2}} \, \boldsymbol{e}_{z} \\ &= -\frac{\rho z \, \mathrm{d} z}{2\varepsilon_{0}} \left\{ \frac{1}{(z^{2})^{\frac{1}{2}}} - \frac{1}{(a^{2})^{\frac{1}{2}}} \right\} \boldsymbol{e}_{z} = -\frac{\rho z \, \mathrm{d} z}{2\varepsilon_{0}} \left(\frac{1}{z} - \frac{1}{a} \right) \boldsymbol{e}_{z} = -\frac{\rho}{2\varepsilon_{0}} \left(1 - \frac{z}{a} \right) \, \mathrm{d} z \, \boldsymbol{e}_{z} \end{split}$$

を得る. ここで, $u=r^2$, $\mathrm{d} u=2r\,\mathrm{d} r,\,z>0,\,a>0$ を用いた. この結果より,

$$E_{O} = \int dE(z) = -\int_{0}^{a} \frac{\rho}{2\varepsilon_{0}} \left(1 - \frac{z}{a}\right) dz \, e_{z} = -\frac{\rho}{2\varepsilon_{0}} \left(z - \frac{z^{2}}{2a}\right)\Big|_{0}^{a} e_{z} = -\frac{\rho}{2\varepsilon_{0}} \left(\frac{a}{2}\right) e_{z}$$
$$= -\frac{\rho a}{4\varepsilon_{0}} e_{z}$$

を得る.

(3) z<0 の空間が導体で満たされているので、鏡像法で考える、鏡像電荷は原点 O(0,0,0) を中心とする半径 a の球の z<0 の部分 (半球内) に一定の電荷密度 $-\rho$ で電荷を分布させたものになる。この鏡像電荷が原点 O(0,0,0) につくる電界は (2) で求めた E_O を xy 平面で反転させ (z 成分の符号を変え), ρ を $-\rho$ にすることで得られる。その結果は E_O に等しい。従って、z<0 の空間が導体で満たされたとき、原点 O(0,0,0) における電界は $2E_O=-\frac{\rho a}{2\varepsilon_0}e_z$ となる。原点 O 付近で、上面と底面が xy 面に平行で、高さが d の xy 面を含む筒状閉曲面 S を考える。上面 S_1 は z>0 の領域にあり、下面 S_2 が z<0 の領域にある。側面を S_3 とする。上面,下面の面積を S_3 とする。 S_3 は上面上の電界が一定と考えられるくらい小さいものとする。この閉曲面にガウスの法則を適用する。この閉曲面内の電荷は $\omega S'$ であるから、 $\int \int_S E_n \, \mathrm{d}S = \frac{\omega S'}{\varepsilon_0}$. S_1

上で $E_n=2\mathbf{E}_{\mathrm{O}}\cdot\mathbf{n}=2\mathbf{E}_{\mathrm{O}}\cdot\mathbf{e}_z=-\frac{\rho a}{2\varepsilon_0},$ S_2 上は導体内にあるため電界は $\mathbf{0}$ となり $E_n=0,$ S_3 上での E_n の面積積分が $d\to 0$ で 0 になることを使うと、この左辺は

$$\iint_{S} E_n \, \mathrm{d}S = \iint_{S_1} E_n \, \mathrm{d}S + \iint_{S_2} E_n \, \mathrm{d}S + \iint_{S_3} E_n \, \mathrm{d}S = \iint_{S_1} \left(-\frac{\rho a}{2\varepsilon_0} \right) \, \mathrm{d}S = -\frac{\rho a}{2\varepsilon_0} S'.$$
 右辺と比較して $\omega = -\frac{\rho a}{2}$ を得る.

問題II

(1) $E(r) = E(r)\frac{r}{r}$ と書ける. ここで,

$$E(r) = \begin{cases} E_0 \left(\frac{r}{a}\right)^4 & \cdots & r \le a \\ E_0 \left(\frac{a}{r}\right)^2 & \cdots & a < r \end{cases}$$

である。位置 r から $\frac{r}{r}$ 方向の直線に沿って無限遠迄線積分を行なう。電界の接線方向成分 $E_{\rm t}(r)$ は $E_{\rm t}(r)=E(r)\cdot \frac{r}{r}=E(r)\frac{r\cdot r}{r^2}=E(r)$ で与えられる。a< r の場合,

$$\phi(\mathbf{r}) = \int_{r}^{\infty} E(r') \, \mathrm{d}r' = \int_{r}^{\infty} E_0 \frac{a^2}{r'^2} \, \mathrm{d}r' = -E_0 \frac{a^2}{r'} \bigg|_{r}^{\infty} = E_0 \frac{a^2}{r} = E_0 a \left(\frac{r}{a}\right)^{-1}.$$

r < a の場合、

$$\phi(\mathbf{r}) = \int_{r}^{\infty} E(r') \, dr' = \int_{r}^{a} E(r') \, dr' + \int_{a}^{\infty} E(r') \, dr' = \int_{r}^{a} E(r') \, dr' + \phi(\mathbf{r})|_{r=a}$$

$$= \int_{r}^{a} \frac{E_{0}r'^{4}}{a^{4}} \, dr' + E_{0}a = \frac{E_{0}r'^{5}}{5a^{4}} \bigg|_{r}^{a} + E_{0}a = \frac{E_{0}a}{5} - \frac{E_{0}r^{5}}{5a^{4}} + E_{0}a = \frac{E_{0}a}{5} \left\{ 6 - \left(\frac{r}{a}\right)^{5} \right\}.$$

(2) $r \neq 0$ とする. E(r) は E(r) = f(r)r の形をしている. ここで,

$$f(r) = \frac{E(r)}{r} = \begin{cases} E_0 \frac{r^3}{a^4} & \cdots & r \le a \\ E_0 \frac{a^2}{r^3} & \cdots & a < r \end{cases}$$

である.

175

$$\begin{aligned} \operatorname{div} \boldsymbol{E}(\boldsymbol{r}) &= \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \nabla \cdot \{f(r)\boldsymbol{r}\} = \nabla f(r) \cdot \boldsymbol{r} + f(r)\nabla \cdot \boldsymbol{r} \\ &= \frac{\operatorname{d} f(r)}{\operatorname{d} r}(\nabla r) \cdot \boldsymbol{r} + 3f(r) = \frac{\operatorname{d} f(r)}{\operatorname{d} r} \frac{\boldsymbol{r}}{r} \cdot \boldsymbol{r} + 3f(r) = r \frac{\operatorname{d} f(r)}{\operatorname{d} r} + 3f(r) \end{aligned}$$

が成立する. これより、

$$\rho(\mathbf{r}) = \varepsilon_0 \operatorname{div} \mathbf{E}(\mathbf{r})$$

$$= \begin{cases}
\varepsilon_0 \left[r \frac{\mathrm{d}}{\mathrm{d}r} \left(E_0 \frac{r^3}{a^4} \right) + 3 \left(E_0 \frac{r^3}{a^4} \right) \right] = \varepsilon_0 \left[3E_0 \frac{r^3}{a^4} + 3E_0 \frac{r^3}{a^4} \right] = 6 \frac{\varepsilon_0 E_0}{a} \left(\frac{r}{a} \right)^3 \\
\cdots \quad 0 < r \le a;
\end{cases}$$

$$= \begin{cases}
\varepsilon_0 \left[r \frac{\mathrm{d}}{\mathrm{d}r} \left(E_0 \frac{a^2}{r^3} \right) + 3 \left(E_0 \frac{a^2}{r^3} \right) \right] = \varepsilon_0 \left[-3E_0 \frac{a^2}{r^3} + 3E_0 \frac{a^2}{r^3} \right] = 0 \\
\cdots \quad a < r
\end{cases}$$

を得る. r=0 での電荷密度 $\rho(r)|_{r=0}$ は、半径 r の球面 S に対して積分形のガウスの法則を適用し、球内の電荷を求め、球の体積で割り、 $r\to0$ として求める. これにより、

$$\rho(r)|_{r=0} = \lim_{r \to 0} \frac{\varepsilon_0 \iint_S E_n dS}{\frac{4\pi r^3}{3}} = \lim_{r \to 0} \frac{\varepsilon_0 4\pi r^2 E(r)}{\frac{4\pi r^3}{3}} = \lim_{r \to 0} \frac{3\varepsilon_0 E(r)}{r} = \lim_{r \to 0} 3\varepsilon_0 E_0 \frac{r^3}{a^4} = 0$$

を得る. 即ち, $r \neq 0$ で求めた $\rho(r)$ の式は r = 0 を含めても成立する.

(3) 原点からの距離が $r \sim r + \mathrm{d}r$ の微小部分を考えると、単位体積あたり静電エネルギー $u_E(r)$ は $u_E(r) = \frac{1}{2} \varepsilon_0 E(r)^2$ 、体積は $4\pi r^2 \, \mathrm{d}r$ なので、

$$\begin{split} U_E &= \int_0^\infty u_E(r) 4\pi r^2 \, \mathrm{d}r = \int_0^\infty \frac{1}{2} \varepsilon_0 E(r)^2 4\pi r^2 \, \mathrm{d}r \\ &= \int_0^a \frac{1}{2} \varepsilon_0 E(r)^2 4\pi r^2 \, \mathrm{d}r + \int_a^\infty \frac{1}{2} \varepsilon_0 E(r)^2 4\pi r^2 \, \mathrm{d}r \\ &= \int_0^a \frac{1}{2} \varepsilon_0 \left\{ E_0 \left(\frac{r}{a} \right)^4 \right\}^2 4\pi r^2 \, \mathrm{d}r + \int_a^\infty \frac{1}{2} \varepsilon_0 \left\{ E_0 \left(\frac{a}{r} \right)^2 \right\}^2 4\pi r^2 \, \mathrm{d}r \\ &= 2\pi \varepsilon_0 E_0^2 a^2 \int_0^a \left(\frac{r}{a} \right)^{10} \, \mathrm{d}r + 2\pi \varepsilon_0 E_0^2 a^2 \int_a^\infty \left(\frac{r}{a} \right)^{-2} \, \mathrm{d}r \\ &= 2\pi \varepsilon_0 E_0^2 a^3 \int_0^1 \left(\frac{r}{a} \right)^{10} \, \mathrm{d} \left(\frac{r}{a} \right) + 2\pi \varepsilon_0 E_0^2 a^3 \int_1^\infty \left(\frac{r}{a} \right)^{-2} \, \mathrm{d} \left(\frac{r}{a} \right) \\ &= 2\pi \varepsilon_0 E_0^2 a^3 \left(\frac{1}{11} + 1 \right) = \frac{24\pi}{11} \varepsilon_0 E_0^2 a^3 \end{split}$$

(別解)

電荷密度 $\rho(r)$, 電位 $\phi(r)$ は原点からの距離 r のみの関数で、それをそれぞれ $\rho(r)=\tilde{\rho}(r)$, $\phi(r)=\tilde{\phi}(r)$, と書く、原点からの距離が $r\sim r+dr$ の微小部分を考えると、この微小部分の電荷は $\tilde{\rho}(r)4\pi r^2dr$, 電位は $\tilde{\phi}(r)$ となる、これより、

$$\begin{split} U_E &= \int_0^\infty \frac{1}{2} \tilde{\phi}(r) \tilde{\rho}(r) 4\pi r^2 \, \mathrm{d}r = \int_0^a \frac{1}{2} \tilde{\phi}(r) \tilde{\rho}(r) 4\pi r^2 \, \mathrm{d}r + \int_a^\infty \frac{1}{2} \tilde{\phi}(r) \tilde{\rho}(r) 4\pi r^2 \, \mathrm{d}r \\ &= \int_0^a \frac{1}{2} \frac{E_0 a}{5} \left\{ 6 - \left(\frac{r}{a} \right)^5 \right\} 6 \frac{\varepsilon_0 E_0}{a} \left(\frac{r}{a} \right)^3 4\pi r^2 \, \mathrm{d}r + \int_a^\infty \frac{1}{2} E_0 a \left(\frac{r}{a} \right)^{-1} \cdot 0 \cdot 4\pi r^2 \, \mathrm{d}r \\ &= \int_0^a \frac{12\pi}{5} \varepsilon_0 E_0^2 a^2 \left\{ 6 - \left(\frac{r}{a} \right)^5 \right\} \left(\frac{r}{a} \right)^5 \, \mathrm{d}r = \frac{12\pi}{5} \varepsilon_0 E_0^2 a^3 \int_0^1 \left\{ 6 \left(\frac{r}{a} \right)^5 - \left(\frac{r}{a} \right)^{10} \right\} \, \mathrm{d} \left(\frac{r}{a} \right) \\ &= \frac{12\pi}{5} \varepsilon_0 E_0^2 a^3 \left(1 - \frac{1}{11} \right) = \frac{12\pi}{5} \varepsilon_0 E_0^2 a^3 \frac{10}{11} = \frac{24\pi}{11} \varepsilon_0 E_0^2 a^3 \end{split}$$

を得る.

問題 III

(1) 電気伝導率 $\sigma(r,\varphi,z)$ は z 軸からの距離 r のみの関数で、それを $\sigma(r,\varphi,z)=\tilde{\sigma}(r)$ と書く、a < r < b とする.対称性より, $i(r,\varphi,z)=i(r)e_r$ となる.z 軸を中心軸として電極と高さをそろえた半径 r,高さ h の円柱を閉曲面 S として定常電流に関する電荷保存の式の積分形を用いる.円柱の上面 S_1 からは導線で電流 I が流れ込んでいる.円柱の下面 S_2 からは電流の出入りは無い.円柱の側面 S_3 上では法線ベクトルが $n=e_r$ なので $i_n=i\cdot n=i(r)$ となる.以上より,

$$\iint_{S} i_{n} dS = \iint_{S_{1}} i_{n} dS + \iint_{S_{2}} i_{n} dS + \iint_{S_{3}} i_{n} dS$$

$$= (-I) + 0 + \iint_{S_{3}} i(r) dS = -I + i(r) \iint_{S_{3}} dS = -I + 2\pi r h i(r) = 0$$

となり、これより $i(r)=\frac{I}{2\pi rh}$ を得る。 $E(r,\varphi,z)=\frac{1}{\tilde{\sigma}(r)}i(r,\varphi,z)$ より $E(r,\varphi,z)=E(r)e_r$ と書け、

$$E(r) = \frac{1}{\tilde{\sigma}(r)}i(r) = \frac{1}{\sigma_0}\left(\frac{r}{b}\right)^2\frac{I}{2\pi rh} = \frac{Ir}{2\pi\sigma_0hb^2}$$

である.

(2) e_r 方向に沿って、電極 A から B まで線積分する. 電界の接線方向成分は E(r) になる. 従うて、

$$R = \frac{V}{I} = \frac{1}{4\pi\sigma_0 h} \left\{ 1 - \left(\frac{a}{b}\right)^2 \right\}$$

を得る.

(3) $r_1 \leq r \leq r_2$ とする. $r \sim r + \mathrm{d} r$ の範囲の体積は $2\pi r h \mathrm{d} r$,単位体積あたり単位時間あたり ジュール熱 p(r) は $p(r) = i \cdot E = i^2(r)/\tilde{\sigma}(r)$ より,

$$P(r_1, r_2) = \int_{r_1}^{r_2} p(r) 2\pi r h dr = \int_{r_1}^{r_2} \frac{i^2(r)}{\tilde{\sigma}(r)} 2\pi r h dr = \int_{r_1}^{r_2} \frac{1}{\sigma_0} \left(\frac{r}{b}\right)^2 \left(\frac{I}{2\pi r h}\right)^2 2\pi r h dr$$

$$= \int_{r_1}^{r_2} \frac{1}{\sigma_0} \left(\frac{r}{b}\right)^2 \frac{I^2}{2\pi r h} dr = \frac{I^2}{2\pi \sigma_0 h b^2} \int_{r_1}^{r_2} r dr = \frac{I^2}{2\pi \sigma_0 h b^2} \frac{1}{2} \left(r_2^2 - r_1^2\right)$$

$$= \frac{I^2}{4\pi \sigma_0 h} \left\{ \left(\frac{r_2}{b}\right)^2 - \left(\frac{r_1}{b}\right)^2 \right\}$$

を得る. $P(a,b) = IV = I^2R$ となっている.

(別解)

 $r=r_1$ の位置と $r=r_2$ の位置の電位差 $(r=r_2$ の位置を基準とした $r=r_1$ の位置の電位)を $V(r_1,r_2)$ とすると $P(r_1,r_2)=IV(r_1,r_2)$ となる. これより,

$$P(r_1, r_2) = IV(r_1, r_2) = I \int_{r_1}^{r_2} E(r) dr = I \int_{r_1}^{r_2} \frac{Ir}{2\pi\sigma_0 hb^2} dr = \frac{I}{2\pi\sigma_0 hb^2} \left\{ \frac{1}{2} \left(r_2^2 - r_1^2 \right) \right\}$$
$$= \frac{I^2}{4\pi\sigma_0 h} \left\{ \left(\frac{r_2}{b} \right)^3 - \left(\frac{r_1}{b} \right)^2 \right\}$$

を得る.

問題IV

134

(1) 位置 (r, φ, z) における電流密度は $i(r, \varphi, z) = i(r)e_z$ と書ける. ここで,

$$i(r) = \begin{cases} 0 & \cdots & r < a & (真空中) \\ i_0 \left(\frac{r}{a}\right)^4 & \cdots & a \le r \le b & (導体中) \\ 0 & \cdots & b < r & (真空中) \end{cases}$$

である。ある z= 一定 の断面で、 $\varphi\sim\varphi+\mathrm{d}\varphi$ 、 $r\sim r+\mathrm{d}r$ の微小部分を貫く電流 $\mathrm{d}I$ は、電流密度の方向が面に垂直なので、i(r) に微小部分の面積 $r\,\mathrm{d}\varphi\,\mathrm{d}r$ をかけて、 $\mathrm{d}I=i(r)r\,\mathrm{d}\varphi\,\mathrm{d}r$ で与えられる。電流 I(R) はこれを積分して、 $I(R)=\int\mathrm{d}I=\int_0^R\int_0^{2\pi}i(r)r\,\mathrm{d}\varphi\,\mathrm{d}r=2\pi\int_0^Ri(r)r\,\mathrm{d}r$ で与えられる。R< a のとき、 $0\leq r\leq R$ に対し i(r)=0 より I(R)=0 となる。 $a\leq R\leq b$ のとき、

$$\begin{split} I(R) &= 2\pi \int_0^R i(r) r \, \mathrm{d}r = 2\pi \left\{ \int_0^a i(r) r \, \mathrm{d}r + \int_a^R i(r) r \, \mathrm{d}r \right\} = 2\pi \int_a^R i(r) r \, \mathrm{d}r \\ &= 2\pi i_0 \int_a^R \left(\frac{r}{a}\right)^4 r \, \mathrm{d}r = 2\pi i_0 a^2 \int_1^{R/a} \left(\frac{r}{a}\right)^5 \, \mathrm{d}\left(\frac{r}{a}\right) = \frac{\pi i_0 a^2}{3} \left\{ \left(\frac{R}{a}\right)^6 - 1 \right\} \end{split}$$

を得る. b < R のとき, $b < r \le R$ に対し i(r) = 0 より

$$I(R) = I(b) = \frac{\pi i_0 a^2}{3} \left\{ \left(\frac{b}{a}\right)^6 - 1 \right\}$$

を得る. まとめて.

$$I(R) = \begin{cases} 0 & \cdots & R < a, \\ \frac{\pi i_0 a^2}{3} \left\{ \left(\frac{R}{a}\right)^6 - 1 \right\} & \cdots & a \le R \le b, \\ \frac{\pi i_0 a^2}{3} \left\{ \left(\frac{b}{a}\right)^6 - 1 \right\} & \cdots & b < R \end{cases}$$

となる.

- (2) ビオ・サヴァールの法則より、電流と同じ方向には磁場はできない、電流は全て e_z 方向、従って $B(r,\varphi,z)$ に e_z 成分は無い。位置 $P(r,\varphi,z)$ と z 軸を含む面 (S とする) に関して電流分布は対称、導体内のある位置 P' をとおる e_z 方向の無限に長い直線電流が P につくる磁場と、P' と対称の位置 P' をとおる P' に P' をとおる P' に P' をとおる P' に P' に P' をとおる P' に P' に
- (3) (2) より $B(r,\varphi,z)=B(r)e_{\varphi}$ となる. (1) の円周 C の半径を r として, アンペールの法則を適用する.

$$\oint_C B_t \, \mathrm{d}s = \mu_0 I(r)$$

ここで、I(r) は (1) で求めた C を縁とする面を貫く電流で、R を r に変えたものである。アンペールの法則の左辺は $\oint_C B_t \, \mathrm{d}s = B(r) \oint_C \mathrm{d}s = B(r) 2\pi r$ より、(1) の結果を用いて

$$B(r) = \left\{ \begin{array}{lll} 0 & \cdots & r < a, \\ \frac{\mu_0 i_0 a^2}{6r} \left\{ \left(\frac{r}{a}\right)^6 - 1 \right\} & \cdots & a \le r \le b, \\ \frac{\mu_0 i_0 a^2}{6r} \left\{ \left(\frac{b}{a}\right)^6 - 1 \right\} & \cdots & b < r \end{array} \right.$$

を得る.