## Криптография

Лекция 1. Симметричные шифры.

Дмитрий Яхонтов

"Кочерга", 2018

## Симметричное шифрование (оно же шифрование с закрытым ключом)



Для шифрования и дешифровки служит один и тот же ключ. Ключ необходимо передать по защищённому каналу. Обе стороны должны сохранять ключ в секрете.

### Поточные шифры



Биты открытого текста преобразуются в биты шифротекста путём наложения псевдослучайной последовательности (гаммы).

Гамма генерируется на основе ключа.

Шифрующий и дешифрующий генераторы должны работать синхронно.

### Асинхронный поточный шифр

(он же самосинхронизирующийся)



Внутреннее состояние генератора гаммы — функция от предыдущих n бит шифротекста.

Дешифрующий генератор синхронизируется с шифрующим автоматически после приёма n бит.

## Влияние ошибок при передаче

| 1 fur much porovers | синхронный шифр                    | асинхронный шифр |  |  |  |
|---------------------|------------------------------------|------------------|--|--|--|
| 1 бит шифротекста   | после дешифровки будут ошибочными: |                  |  |  |  |
| изменён             | 1 бит                              | <i>n</i> бит     |  |  |  |
|                     |                                    |                  |  |  |  |
| потерян             | весь дальнейший поток              | <i>п</i> бит     |  |  |  |
|                     |                                    |                  |  |  |  |

#### Генераторы гаммы

Регистр сдвига с линейной обратной связью (Linear Feedback Shift Register, LFSR)

Регистр длины N генерирует последовательность с периодом 2<sup>№</sup>-1.

Начальное заполнение регистра определяется ключом шифрования.



## Пример: генератор гаммы шифра A5/1 (GSM)



Три сдвиговых регистра с длинами 19, 22 и 23.

Каждый регистр (биты 8, 10 и 10) управляет тактированием двух остальных регистров

Выход генератора — исключающее ИЛИ от выходов трех регистров

### Криптоанализ поточных шифров

• Полный перебор (Bruteforce)
Перебор всех возможных ключей.
Противодействие: увеличение длины ключа.

#### • Статистическая атака

Поиск статистических особенностей гаммы, которые позволят предсказать значение следующего бита по нескольким предыдущим. Противодействие: использование шумоподобных генераторов гаммы.

#### • Корреляционная атака

Поиск корреляции (частичного соответствия) между внутренним состоянием генератора гаммы и его выходом. Восстановив начальное внутреннее состояние генератора, получаем ключ.

Противодействие: использование нелинейной функции на выходе генератора гаммы.

### Блочные шифры



Операции шифрования и дешифровки выполняются над блоками фиксированного размера.

Большинство блочных шифров являются итеративными: процедура шифрования состоит из нескольких раундов.

### Лавинный эффект



Text = "AAAAAAAAAAAAAAA"
0a72b5569fc8abaa014eae3ddbccbd94

Text = "AAAAAAAAAAAAQAAA" b0338cd68e5c428d296fd3d3e7786fa2

Key = "CCCCCCCCCCCCCC"
0a72b5569fc8abaa014eae3ddbccbd94

Key = "CCCGCCCCCCCCC"
1481d79fcc645f5c427a82e6021796c1

Изменение одного бита входного блока ведёт к изменению в среднем половины бит выходного блока.

#### SP-сеть

0

0

7

0

0



таблица замены

(substitution)



(permutation)



#### Сеть Фейстеля



R  $K_3$  $K_2$  $K_1$ 

Варианты функции F:

- S-блок
- Р-блок
- Циклический сдвиг
- Сложение по модулю п
- Умножение по модулю п
- Комбинация всего вышеперечисленного

Дешифровка

|  | название<br>шифра               | год  | тип<br>шифра | число<br>раундов | размер блока     | размер ключа     |
|--|---------------------------------|------|--------------|------------------|------------------|------------------|
|  | DES                             | 1977 | Фейст.       | 16               | 64               | 56               |
|  | Triple DES                      | 1978 | Фейст.       | 48               | 64               | 168              |
|  | Магма<br>(ГОСТ 28147-89)        | 1989 | Фейст.       | 16 / 32          | 64               | 256              |
|  | Blowfish                        | 1993 | Фейст.       | 16               | 64               | 32-448           |
|  | AES (Rijndael)                  | 1998 | SP           | 10-14            | 128              | 128 / 192 / 256  |
|  | Serpent                         | 1998 | SP           | 32               | 128              | 128 / 192 / 256  |
|  | Twofish                         | 1998 | Фейст.       | 16               | 128              | 128 / 192 / 256  |
|  | Threefish                       | 2008 | SP           | 72 / 80          | 256 / 512 / 1024 | 256 / 512 / 1024 |
|  | Кузнечик<br>(ГОСТ Р 34.12-2015) | 2015 | SP           | 10               | 128              | 256              |

HOODSHIMA

#### Режим простой замены

(ECB — Electronic Code Book)



Все блоки шифруются независимо. Одинаковые блоки открытого текста дают одинаковые блоки шифротекста.

## Режим счетчика (CTR — Counter)



Значение счетчика должно быть уникальным для каждого блока.

## Режим сцепления блоков шифротекста (CBC — Cipher Block Chaining)



Вектор инициализации не обязан быть секретным, но должен быть уникальным для каждого сообщения.

## Режим обратной связи по шифротексту (CFB — Cipher Feedback )



Вектор инициализации не обязан быть секретным, но должен быть уникальным для каждого сообщения.

# Режим обратной связи по выходу (OFB — Output Feedback)



Вектор инициализации не обязан быть секретным, но должен быть уникальным для каждого сообщения.

## Сравнение режимов шифрования

| Режим                             | Параллельное<br>шифрование | Параллельная<br>дешифровка | При ошибке в 1 бите неверно дешифруется |
|-----------------------------------|----------------------------|----------------------------|-----------------------------------------|
| ECB<br>прямая замена              | да                         | да                         | 1 блок                                  |
| CTR<br>счётчик                    | да                         | да                         | 1 бит                                   |
| СВС<br>сцепление<br>блоков        | нет                        | да                         | 2 блока                                 |
| CFB обратная связь по шифротексту | нет                        | да                         | 2 блока                                 |
| OFB обратная связь по выходу      | нет                        | нет                        | 1 бит                                   |

### Криптоанализ блочных шифров

• Полный перебор (Bruteforce)
Работает с любыми шифрами. Только очень медленно.

Противодействие: увеличение длины ключа.

- Линейный криптоанализ
  - 1. Поиск соотношений между битами открытого текста, шифротекста и ключа, которые верны с вероятностью больше  $\frac{1}{2}$ . ( $P_{i1} \oplus P_{i2} \oplus ... \oplus P_{ia}$ )  $\oplus$  ( $C_{i1} \oplus C_{i2} \oplus ... \oplus C_{ib}$ ) =  $K_{k1} \oplus K_{k2} \oplus ... \oplus K_{kc}$
  - 2. Использование этих соотношений вместе с известными парами "открытый текст шифротекст" для получения битов ключа.

Противодействие: хороший лавинный эффект: каждый входной бит влияет на любой выходной с вероятностью  $\frac{1}{2}$ .

#### • Дифференциальный криптоанализ

Метод рассматривает разность между двумя подобранными открытыми текстами на различных раундах шифрования.

- 1. Наложение раундового ключа линейно. Нелинейные элементы (S- и P-блоки) известны, для них можно составить таблицы соответствия "разность на входе разность на выходе".
- 2. Подбирая пары открытых текстов, можно добиться нужной разности на входе последнего раунда, и определить раундовый ключ.
- 3. После нахождения ключа последнего раунда те же действия производятся для предпоследнего раунда и т.д. Последовательно находим все раундовые ключи.

#### Метод бумеранга

Модификация дифференциального криптоанализа, в которой используются не пары, а четвёрки открытых текстов.

Противодействие: увеличение числа раундов.

#### • Метод встречи посередине

Если раундовые ключи независимы, можно разделить последовательность шифрования на части и вскрывать каждую часть по отдельности.

Пусть блочный шифр состоит из k раундов и использует ключ длины n.

- 1. Разобьём шифр на две половины по k/2 раундов. Каждая из них использует раундовые ключи суммарной длиной n/2.
- 2. Для первой половины зашифруем открытый текст для всех вариантов её полуключа. Результаты запишем в таблицу.
- 3. Для второй половины проведём расшифровку соответствующего шифротекста для всех вариантов её полуключа. Результаты запишем в другую таблицу.
- 4. Находим между таблицами совпадение выхода первой половины и входа второй. Получаем соответствующую пару полуключей.

Вместо полного перебора со сложностью  $2^n$  перебор двух половин ключа со сложностью  $2^{(n/2+1)}$  и использование памяти объемом  $2^{(n/2+1)}$ 

Противодействие: не допускать линейно-независимых раундовых ключей.

#### Задачи

1. Имеется шифратор, который выполняет блочное шифрование в одном из режимов: ECB, CBC, CFB или OFB. Ключ неизвестен. Можно подавать на вход шифратора произвольные открытые тексты и получать соответствующие шифротексты.

Требуется определить режим шифрования. Какое минимальное число текстов для этого необходимо?

2. Потоковый шифратор использует ключ K1 длины n. Для усиления системы последовательно с ним включили второй шифратор с ключом K2 (тоже длины n). Таким образом, полный ключ теперь имеет вид K1K2 и длину 2n.

Действительно ли произошло ожидаемое увеличение стойкости? Предложите схему атаки на такую систему.

#### Ссылки

- Обратная связь:
  - android.ruberoid@gmail.com
  - lesswrongru.slack.com @android\_ruberoid
- Анонсы:
  - facebook.com/kocherga.club
  - w vk.com/kocherga\_club
  - w vk.com/kocherga\_prog
- Материалы лекций:
  - github.com/notOcelot/Kocherga\_crypto
- Видео:
  - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

