

SCHOOL OF ADVANCED SCIENCES DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY, VELLORE WINTER 2024-2025

PMDS605L - DATA STRUCTURES AND ALGORITHMS

Tutorial- 1 (To access the students' understanding on asymptotic bounds)

Following table might help you to understand the asymptotic notations:

Definition	$\boxed{?} c > 0$	$\boxed{?} n_0 \geq 1$	$f(n)$? $c \cdot g(n)$
O()	3	3	≤
0()	∀′	3	<
$\Omega()$	3	3	≥
$\omega()$	∀	3	>

$$f = O(g) \text{ and } f = \Omega(g) \Leftrightarrow f = \Theta(g)$$

$$f = O(g) \Leftrightarrow g = \Omega(f)$$

$$f = o(g) \Leftrightarrow g = \omega(f)$$

$$f = o(g) \Rightarrow f = O(g)$$

$$f = \omega(g) \Rightarrow f = \Omega(g)$$

$$f \sim g \Rightarrow f = \Theta(g)$$

The definitions of the various asymptotic notations are closely related to the definition of a limit. As a result, $\lim_{n\to\infty} f(n)/g(n)$ reveals a lot about the asymptotic relationship between f and g, provided the limit exists. The table below translates facts about the limit of f/g into facts about the asymptotic relationship between f and g.

$$\lim_{n \to \infty} f(n)/g(n) \neq 0, \infty \quad \Rightarrow \quad f = \Theta(g)$$

$$\lim_{n \to \infty} f(n)/g(n) \neq \infty \quad \Rightarrow \quad f = O(g)$$

$$\lim_{n \to \infty} f(n)/g(n) \neq 0 \quad \Rightarrow \quad f = O(g)$$

$$\lim_{n \to \infty} f(n)/g(n) = 0 \quad \Rightarrow \quad f = o(g)$$

$$\lim_{n \to \infty} f(n)/g(n) = \infty \quad \Rightarrow \quad f = o(g)$$

Therefore, skill with limits can be helpful in working out asymptotic relationships. In particular, recall L'Hospital's Rule:

If
$$\lim_{n\to\infty} f(n) = \infty$$
 and $\lim_{n\to\infty} g(n) = \infty$, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$.

1. Prove the following:

(i)
$$3n + 2 \in O(n)$$

(ii)
$$3n + 3 \in O(n)$$

(iii)
$$100n + 6 \in O(n)$$

(iv)
$$10n^2 + 4n + 2 \in O(n^2)$$

(v)
$$100n^2 + 100n - 6 \in O(n^2)$$

(vi)
$$6 \cdot 2^n + n^2 \in O(2^n)$$

- 3. Show that $n^3 \neq O(n^2)$.
- 4. Prove that $4n^2 + 7n + 12 \in O(n^2)$.
- 5. Prove that $\log n + \log(\log n) = O(\log n)$.
- \checkmark 6. Prove that $3n^2 + 7n 5 = \Theta(n^2)$.
- \mathcal{I} . Prove that $2^{n+1} \in O(2^n)$.
- \sim 8. Verify whether 2^{2n} ∈ $O(2^n)$.
 - 9. Let f(n) = 7n + 8 and g(n) = n. Is $f(n) \in o(g(n))$?
- 10. Let f(n) = 7n + 8 and g(n) = n. Is $f(n) \in O(g(n))$?
- 11. Prove that $n^2 = O(2^n)$.
- 12. Prove that $n^3 + 2n^2 + 3 = O(n^3)$.
- 13. Consider $f(n) = n + \log n$ and $g(n) = \sqrt{n}$. Is f(n) = O(g(n)) or g(n) = O(f(n)) or both?
- 14. If $f(n) = n + \log n + \sqrt{n}$, find a simple function g such that $f(n) = \Theta(g(n))$.
- 15. Is $7n + 8 \in o(n^2)$?
- 16. Express $\frac{n^3}{1000} 100n^2 100n + 3$ in terms of Θ notation.

Asymptotic notation consists of six funny symbols used to describe the relative growth rates of functions. These six symbols are defined in the table below.

 $f = \Theta(g)$ f grows at the same rate as g There exists an n_0 and constants $c_1, c_2 > 0$ such that for all $n > n_0, c_1g(n) \le |f(n)| \le c_2g(n)$.

f = O(g) f grows no faster than g There exists an n_0 and a constant c > 0 such that for all $n > n_0$, $|f(n)| \le cg(n)$.

 $f = \Omega(g)$ f grows at least as fast as g There exists an n_0 and a constant c > 0 such that for all $n > n_0$, $cg(n) \le |f(n)|$.

f = o(g) f grows slower than g For all c > 0, there exists an n_0 such that for all $n > n_0$, $|f(n)| \le cg(n)$.

 $f = \omega(g)$ f grows faster than g For all c > 0, there exists an n_0 such that for all $n > n_0$, $cg(n) \le |f(n)|$.

 $f \sim g$ f/g approaches 1 $\lim_{n \to \infty} f(n)/g(n) = 1$