<u>Proof.</u> There exists $L \ge 0$ such that $\|\theta(x) - \theta(y)\| \le L\|x - y\|$ for all $x,y \in G$. Then

$$\begin{split} &\lim_{t \to 0} \ \big\| 1/t \ \left(\Theta(k(a+t)) \ - \ \Theta(k(a)) \right) \ - \ D_{k'(a)} \Theta(k(a)) \, \big\| \ \leq \\ &\lim - \sup_{t \to 0} \ \big\| 1/t \ \left(\Theta(k(a+t)) \ - \ \Theta(k(a)+tk'(a)) \, \big\| \ + \end{split}$$

 $\lim \sup_{t \to 0} \|1/t [\Theta(k(a) + tk'(a)) - \Theta(k(a)) - D_{k'(a)} \Theta(k(a))]\| \le \lim \sup_{t \to 0} \|1/t (k(a+t) - k(a) - tk'(a))\| + 0 = 0.$

For $z \in \mathbb{C}$ we let

<u>Lemma</u> 2.4. The function $\Theta: \mathbb{C} \to \mathbb{C}$ given by $\Theta(z) = |z|$ is right-sided Gateaux differentiable and

(2.6)
$$D_{\mathbf{u}} \Theta(\mathbf{z}) = \begin{cases} \text{Re}[(\text{sign } \overline{\mathbf{z}}) \cdot \mathbf{u}] & \text{if } \mathbf{z} \neq \mathbf{0} \\ |\mathbf{u}| & \text{if } \mathbf{z} = \mathbf{0} \end{cases}$$

<u>Proof.</u> If z=0, relation (2.6) is obvious from the definiton. Let $z=(x_0+iy_0) \neq 0$. We identify $\mathbb C$ and $\mathbb R^2$. Then $\theta(x,y)=(x^2+y^2)^{1/2}$ is differentiable in z and $\theta(z)=(grad \theta(x_0,y_0)|u)=1/|z| ((x_0,y_0)|(u_1,u_2))=1/|z| (x_0u_1+y_0u_2)=1/|z| \operatorname{Re}((x_0-iy_0)\cdot(u_1+iu_2))=\operatorname{Re}[(sign \ \bar{z})\cdot u]$, where $u=u_1+iu_2=(u_1,u_2)\in \mathbb C=\mathbb R^2$ and (v|u) denotes the canonical scalar product of $v,u\in \mathbb R^2$.

Let f, g \in C $_{0}$ (X) . We denote by (sign f)(g) the bounded Borel function given by

(2.7)
$$[(si\hat{g}n f)(g)](x) = \begin{cases} (sign f(x)) \cdot g(x) & \text{if } f(x) \neq 0 \\ |g(x)| & \text{if } f(x) = 0 \end{cases}$$

Similarly, (sign f) (g) is defined by

(2.8)
$$[(sign f)(g)](x) = (sign f(x)) \cdot g(x)$$
.

We identify the dual space of $C_{\mathbb{Q}}(X)$ with M(X) , the space of all bounded regular Borel measures on X . We extend the duality by setting