

Attorney Docket: 381NP/50950
PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

1c971 U.S. PRO
10/083487
02/27/02

Applicant: HOUNG JOONG KIM ET AL.

Serial No.: [NEW] Group Art Unit: [To be assigned]

Filed: FEBRUARY 27, 2002 Examiner: [To be assigned]

Title: WASHING MACHINE

CLAIM OF PRIORITY UNDER 35 USC 119

Box PATENT APPLICATION

Commissioner for Patents
Washington, D.C. 20231

Sir:

The benefit of the filing date of prior foreign application No. 2001-053431, filed in Japan on February 28, 2001, is hereby requested and the right of priority under 35 U.S.C. §119 is hereby claimed.

In support of this claim, filed herewith is a certified copy of the original foreign application.

Respectfully submitted,

February 27, 2002

James F. McKeown
Registration No. 25,406

CROWELL & MORING, LLP
P.O. Box 14300
Washington, DC 20044-4300
Telephone No.: (202) 624-2500
Facsimile No.: (202) 628-8844
56207.523

日本国特許庁
JAPAN PATENT OFFICE

Jc971 U.S.P.T.O.
10/083487
02/27/02

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日
Date of Application:

2001年 2月28日

出願番号
Application Number:

特願2001-053431

出願人
Applicant(s):

株式会社日立製作所

2001年 8月24日

特許庁長官
Commissioner,
Japan Patent Office

及川耕造

出証番号 出証特2001-3075338

【書類名】 特許願

【整理番号】 1101002141

【あて先】 特許庁長官 殿

【国際特許分類】 H02K 1/00

【発明の名称】 洗濯機

【請求項の数】 15

【発明者】

【住所又は居所】 茨城県日立市大みか町七丁目1番1号

株式会社 日立製作所 日立研究所内

【氏名】 金 弘中

【発明者】

【住所又は居所】 茨城県日立市大みか町七丁目1番1号

株式会社 日立製作所 日立研究所内

【氏名】 岩路 善尚

【発明者】

【住所又は居所】 茨城県日立市大みか町七丁目1番1号

株式会社 日立製作所 日立研究所内

【氏名】 能登原 保夫

【特許出願人】

【識別番号】 000005108

【氏名又は名称】 株式会社 日立製作所

【代理人】

【識別番号】 100075096

【弁理士】

【氏名又は名称】 作田 康夫

【電話番号】 03-3212-1111

【手数料の表示】

【予納台帳番号】 013088

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 洗濯機

【特許請求の範囲】

【請求項1】

外槽内に回転軸を中心に回転自在に軸支された洗濯脱水槽と、前記洗濯脱水槽の底部に前記回転軸と同心の回転軸を中心に回転自在に軸支された回転体と、該回転体の回転軸に対し前記洗濯脱水槽の回転軸を連結又は離脱する切換機構と、電動機とを有し、前記洗濯槽内を攪拌する回転体を正・反転動作させることにより洗いもしくは濯ぎ行程を行い、最後は脱水行程を行う洗濯機において、

前記電動機は一次巻線を有する固定子と界磁用磁石を有する回転子からなり、前記界磁用磁石は、回転方向に順次異なった極性の磁極が並んでいる第1の界磁用磁石とこの第1の界磁用磁石に対して相対回転が可能で回転方向に順次異なった極性の磁極が並んでいる第2の界磁用磁石からなり、前記の第1と第2の界磁用磁石は前記固定子磁極に対向しているとともに、前記の第1と第2の界磁用磁石の合成した磁極の位相を第1の界磁用磁石の磁極に対して回転子のトルク方向に伴い変化させる機構を有し、このトルク方向に伴い変化させる機構は、回転子に発生するトルク方向と第1と第2の界磁用磁石間の磁気作用力との釣合いにより前記第1と第2の界磁用磁石の同磁極中心が並ばせる手段と、回転子に発生するトルク方向が反対になるに伴い第1と第2の界磁用磁石の磁極中心がずれる手段とを有する電動機を用いる洗濯機。

【請求項2】

請求項1記載の洗濯機において、前記電動機は前記第1と第2の界磁用磁石を初期位置に並ばせる手段と、第1と第2の界磁用磁石の磁極中心がずれる手段とを有し、トルク方向の変化に伴い磁極中心を変化させる機構は、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、シャフトと第2界磁用磁石は磁極1極分の角度内で変位可能にし、前記第1界磁用磁石の磁極中心と第2界磁用磁石の磁極中心がずれるようにした電動機を用いる洗濯機。

【請求項3】

請求項1または請求項2記載の電動機において、トルク方向の変化に伴い磁極中心を変化させる機構は、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、シャフトにはボルトのネジ部と第2界磁用磁石の内側にはナット部になりお互いにネジの機能を持たせて接続し、第2界磁用磁石の側面から離れたところにはストッパーを設け、ストッパーを回転速度に応じてシャフトと平行に可変可能なサーボ機構を持たせた電動機を用いる洗濯機。

【請求項4】

請求項1から請求項3記載の電動機において、前記第1界磁用磁石と第2界磁用磁石の合成磁極位置のずれに応じて前記インバータを制御するコントローラによる電流供給の進角を補正することを特徴とする電動機。

【請求項5】

請求項1から請求項3記載の電動機において、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、シャフトにはボルトのネジ部と第2界磁用磁石の内側にはナット部になりお互いにネジの機能を持たせて接続し、前記第2界磁用磁石の軸方向の変位量を検出し、第1界磁用磁石と第2界磁用磁石の合成磁極位置のずれ角に対応させ前記インバータを制御するコントローラによる電流供給の進角を補正することを特徴とする電動機。

【請求項6】

請求項1から請求項3記載の電動機において、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、前記第2界磁用磁石と前記シャフト間には回転運動と往復運動及び複合運動を案内出来る支持機構を複数個備えたことを特徴とする電動機。

【請求項7】

請求項1から請求項3記載の回転電機において、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、かつ前記第2界磁用磁石の内側とシャフトの間にはスリーブを介して、前記第2界磁用磁石と前記スリーブを固定したことを特徴とする回転電機。

【請求項8】

請求項7のスリーブは、鉄より電気抵抗率が高い非磁性体を用いたことを特徴とする回転電機。

【請求項9】

請求項1から請求項3記載の電動機において、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、前記第2界磁用磁石の前後にはばねを複数個備えて、前記第2界磁用磁石の回転運動と往復運動及び複合運動を案内する特徴とする電動機。

【請求項10】

請求項1から請求項3記載の電動機において、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、前記第1界磁用磁石と前記第2界磁用磁石が接する前記第1界磁用磁石側面に凹部を設け、前記第2界磁用磁石には前記スリーブの機能を兼ねた突起部を設けた構造を特徴とする電動機。

【請求項11】

請求項1から3記載の電動機において、前記第1の界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、第2界磁用磁石の側面から離れたところにはストッパーを設け、前記ストッパーは第2界磁用磁石とシャフトに対して回転運動と往復運動及び複合運動を案内する支持機構を備えたことを特徴とする電動機。

【請求項12】

請求項1から3記載の電動機において、前記第1の界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、第1界磁用磁石を有する回転子と前記固定子間のエアギャップより第2界磁用磁石を有する回転子と前記固定子間のエアギャップの方が大きくしたことを特徴とする電動機。

【請求項13】

請求項1から3記載の電動機において、前記の第1と第2の界磁用磁石は前記固定子磁極に対向しているとともに、前記の第1と第2の界磁用磁石が相対的に軸方向に可動することを特徴とする電動機。

【請求項14】

請求項1から請求項3記載の洗濯機において、前記電動機の低速運転時は前記第1界磁用磁石と第2界磁用磁石の磁極中心位置を一致させ、高速低負荷運転時は前記第1界磁用磁石と第2界磁用磁石の磁極中心位置をずらして運転する電動機を用いることを特徴とする洗濯機。

【請求項15】

請求項1から請求項3記載の洗濯機において、前記洗い若しくは濯ぎ行程では前記電動機の前記第1界磁用磁石と第2界磁用磁石の同磁極中心位置を一致させ、脱水行程では前記第1界磁用磁石と第2界磁用磁石の磁極中心位置をずらして運転する電動機を用いることを特徴とする洗濯機。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は永久磁石を界磁に用いた電動機に係り、特に洗濯機を駆動する電動機およびその制御方法に関し、電動機の回転子が第1界磁用磁石と第2界磁用磁石から構成され、トルク方向に応じて第1界磁用磁石と第2界磁用磁石の磁極中心位置を変化し、かつ回転数に応じて有効磁束量の変化が可能な電動機およびその制御方法に関する。

【0002】

【従来の技術】

従来技術による永久磁石界磁形電動機において、誘導起電力Eは回転子に配置されている永久磁石が発生する一定磁束 Φ と電動機の回転角速度 ω によって決定される。つまり、電動機の回転角速度 ω （回転数）が上昇すると、電動機の誘導起電力は比例して上昇する。

【0003】

よって、低速領域で高トルクが得られるが、回転数の可変範囲が狭いために高速領域の運転は困難であった。そこで、弱め界磁制御技術により高速運転領域を広げることが考えられる。

【0004】

また、洗濯機の電動機は広い速度範囲で所定の出力を確保するために、電動機

のトルクはプーリーを介してベルトとギアによりトルクを伝達する。しかし、最近では、電動機のトルクを直接パルセータなどの回転体や脱水槽に伝達するためのダイレクトドライブ方式がある。

【0005】

【発明が解決しようとする課題】

洗濯機の従来技術で、電動機のトルクはプーリーを介してベルトとギアによりトルクを伝達する場合、ベルトとギアの摺動、打撃音等の騒音が大きい問題がある。

【0006】

また、電動機のトルクを直接回転体（例えば、パルセータなど）や脱水槽に伝達するためのダイレクトドライブ方式では、前記弱め界磁制御技術により高速運転領域を広げることは、弱め界磁電流による発熱や効率低下などにより限界がある。前記ダイレクトドライブ方式は減速機構がないために、低速高トルクの洗いや濯ぎ行程と高速大出力の脱水行程の広範囲速度領域を賄う電動機の体格は大型になる。

【0007】

【課題を解決するための手段】

本発明では、外槽内に回転軸を中心に回転自在に軸支された洗濯脱水槽と、前記洗濯脱水槽の底部に前記回転軸と同心の回転軸を中心に回転自在に軸支された回転体（例えば、パルセータ等）と、該回転体の回転軸に対し前記洗濯脱水槽の回転軸を連結又は離脱する切換機構と、電動機とを有し、前記洗濯槽内を攪拌する回転体を正・反転動作させることにより洗いもしくは濯ぎ行程を行い、最後は脱水行程を行う洗濯機において、

前記電動機は一次巻線を有する固定子と界磁用磁石を有する回転子からなり、前記界磁用磁石は、回転方向に順次異なった極性の磁極が並んでいる第1の界磁用磁石とこの第1の界磁用磁石に対して相対回転が可能で回転方向に順次異なった極性の磁極が並んでいる第2の界磁用磁石からなり、前記の第1と第2の界磁用磁石は前記固定子磁極に対向しているとともに、前記の第1と第2の界磁用磁石の合成した磁極の位相を第1の界磁用磁石の磁極に対して回転子のトルク方向

に伴い変化させる機構を有し、このトルク方向に伴い変化させる機構は、回転子に発生するトルク方向と第1と第2の界磁用磁石間の磁気作用力との釣合いにより前記第1と第2の界磁用磁石の同磁極中心が並ばせる手段と、回転子に発生するトルク方向が反対になるに伴い第1と第2の界磁用磁石の磁極中心がずれる手段とを有する電動機を用いる。

【0008】

【発明の実施の形態】

以下に本発明の実施形態について説明する。

【0009】

図1は本実施例の永久磁石形同期電動機を配置した洗濯機の概略を示したものである。

【0010】

2は電動機であり、パルセータ73を直接的に回転駆動(ダイレクトドライブ)する永久磁石界磁同期電動機が用いられている。電動機2は、クラッチを介してパルセータ73と脱水槽72に回転作用を施す。

【0011】

図1に示す洗濯機ケース70の中には外槽71と洗濯脱水槽72がある。外槽71内に回転軸22を中心に回転自在に軸支された洗濯脱水槽72と、前記洗濯脱水槽の底部に前記回転軸と同心の回転軸を中心に回転自在に軸支されたパルセータ73と、前記パルセータの回転軸に対し前記洗濯脱水槽の回転軸を連結又は離脱する切換機構77と、電動機2とを有し、前記洗濯槽内を攪拌するパルセータを正・反転動作させることにより洗いもしくは濯ぎ行程を行い、最後は脱水行程を行う洗濯機である。洗濯機には、洗い濯ぎ時に、水を脱水槽のみに溜めるタイプと脱水槽を含めた水槽71全体に溜めるタイプとがある。本発明は何れのタイプのものにも適用できる。

【0012】

このような構成からなる洗濯機は、インバータ78により駆動されるが、前記インバータはマイコンにより制御されることを前提としており、マイコンの指令を受けて電動機2の回転数を可変する回転制御手段としての電動機制御回路であ

り、インバータにはマイコン制御回路が内蔵されている。インバータ78は、電動機2に流れる電流値を検出するモータ電流検出手段としての機能も持っている。また、洗濯機の基本構成要素として、他には排水弁74、操作盤75、水位センサー76等を備えている。

【0013】

図2は図1の電動機2の回転子同磁極中心がずれた場合の概略を示す。

【0014】

図2において、固定子鉄心10には電機子巻線11がスロット内に巻装されており、内部に冷媒が流れる冷却路12をもったハウジング13に結合されている。

【0015】

永久磁石埋め込み型回転子20はシャフト22に固定した第1回転子20Aとシャフト22と分離した第2回転子20Bからなる。勿論、永久磁石埋め込み型回転子のみならず、表面磁石型回転子でも良い。

【0016】

第1回転子20Aには、永久磁石21Aが回転方向に順次異なった極性の磁極が並んでいる。同じく、第2回転子20Bには、永久磁石21Bが回転方向に順次異なった極性の磁極が並んでいる。第1と第2回転子の2つの回転子を同一軸上に配置した界磁用磁石は固定子磁極に対向している。

【0017】

第2回転子20Bの内径側はナット部23Bとなり、それに当たるシャフトにはボルトのネジ部23Aとなり、お互いにネジの機能を持たせて接続すると、第2回転子20Bはシャフトに対して回転しながら軸方向に可変可能とする。

【0018】

また、第2回転子20Bが固定子の中心から所定の変位以上はみ出さないよう前に前記第2回転子20Bの側面から離れたところにはストッパー24を設ける。さらに、サーボ機構であるストッパー駆動用アクチュエータ25を設けて、前記ストッパー24をシャフトと平行に左右に可変可能にすれば、第1界磁用磁石と第2界磁用磁石の磁極中心のずれる値を変えることが出来る。結果的には、電機

子巻線11がスロット内に巻装されている固定子に対して、第1界磁用磁石と第2界磁用磁石からなる全体の有効磁束量を制御可能である。

【0019】

上記のようにすることで、トルクの方向に応じて永久磁石の有効磁束量を変化することについて述べる。

【0020】

基本的に固定子には電機子巻線と回転子には永久磁石を用いる電動機において、電動機として働く時と、発電機として働く時の回転子の回転方向が同じであれば、電動機として働く時と、発電機として働く時の回転子が受けるトルクの方向は反対になる。

【0021】

また、同じ電動機と働く時、回転子の回転方向が反対になれば、トルク方向も反対になる。同じく、同じ発電機と働く時、回転子の回転方向が反対になれば、トルク方向も反対になる。

【0022】

上記に説明した回転方向とトルク方向による基本理論を本発明の実施形態に係る電動機に適用すると以下の通りである。

【0023】

大きなトルクは必要とされる洗い若しくは濯ぎ行程のように低速回転領域において運転する時は、図3に示すように、強制的に第1回転子20Aと第2回転子20Bの同磁極の中心が揃えるようにして、固定子磁極と対向する永久磁石による有効磁束量を多くして、高トルク特性が得られる。

【0024】

次に、脱水行程のような高速回転領域において運転する時は、図4に示すようにシャフト22に対して第2回転子20Bはボルトのネジ部からナット部が外れるように第1回転子20Aと第2回転子20Bの間の間隔が広がりながら同磁極の中心がずれる方向に回転させれば、固定子磁極と対向する永久磁石による有効磁束量を少なくすることになり、言い換えると弱め界磁効果があり、高回転領域において高出力特性が得られる。

【0025】

第1回転子20Aと第2回転子20Bの間の間隔が広がりながら同磁極の中心がずれて、固定子磁極と対向する永久磁石による有効磁束量が少ない状態の概略を図4に示す。

【0026】

図3と図4にはボルトの頭部61、ボルトのネジ部60とナット部62に対応して書いたのがあるが、ボルトの頭部61は第1回転子20A、ナット部62は第2回転子20Bに相当するものである。ボルトのネジ部60（図2内の23Aに相当する）と同じ方向に回転するとすれば、ナット部62にかかるトルクの方向によって該ナット部62は締まったり外れたりするように、第2回転子20Bも回転子のトルク方向によって同じ働きをする。

【0027】

また、電動機として回転する場合、正回転と逆回転の時はトルクの方向が反対になり正回転の時に図3に示す状態ならば、逆回転の場合は図4の状態になる。

【0028】

勿論、第2回転子20Bの内径側はナット部23Bとなり、それに当たるシャフトにはボルトのネジ部23Aとなり、お互いにネジの機能を持たせて接続するが、ネジの方向を反対にすれば（例えば右ネジから左ネジ）図3と図4の状態が反対になるが、同様に同じ効果が得られる。

【0029】

例えば、洗いもしくは灌ぎ行程で正・反転動作でも図3に示すように、強制的に第1回転子20Aと第2回転子20Bの同磁極の中心が揃えるようにしたネジの組合せにすれば、固定子磁極と対向する永久磁石による有効磁束量を多くして、高トルク特性が得られる。

【0030】

次に、脱水行程のような高速回転領域において運転する時は、図4に示すようにシャフト22に対して第2回転子20Bはボルトのネジ部からナット部が外れるように第1回転子20Aと第2回転子20Bの間の間隔が広がりながら同磁極の中心がずれる方向に回転させれば、固定子磁極と対向する永久磁石による有効

磁束量を少なくすることになり、言い換えると弱め界磁効果があり、高回転領域において定出力特性が得られる。

【0031】

本発明の電動機による誘導起電力の作用について説明する。

【0032】

図5に永久磁石形同期電動機の回転角速度に対する有効磁束、誘導起電力、端子電圧の特性を示す。

【0033】

永久磁石形同期電動機の誘導起電力Eは回転子に配置されている永久磁石が発生する一定磁束 Φ と電動機の回転角速度 ω によって決定される。つまり図5(a)に示す様に、回転子に配置されている永久磁石が発生する一定磁束 Φ_1 が一定ならば、回転角速度 ω (回転数)が上昇すると、電動機の誘導起電力E1は比例して上昇する。しかし、電源の端子電圧とインバータの容量などからインバータの出力電圧は制限があり、定常運転状態の電動機が発生する誘導起電力も制限がある。その為永久磁石形同期電動機では、ある回転数以上の領域では永久磁石が発生する磁束を減らす為、いわゆる弱め界磁制御を行わなくてはならない。

【0034】

誘導起電力が回転角速度に比例して上昇する為、弱め界磁制御の電流も大きくしなければならない故に、1次導体であるコイルに大電流を流す必要があり、おのずとコイルの発生する熱が増大する。そのため、高回転領域における電動機としての効率の低下、冷却能力を超えた発熱による永久磁石の減磁等が起こりうる可能性がある。

【0035】

例えば、図5(a)に示す様に、回転子に配置されている永久磁石が発生する磁束 Φ_1 がある回転角速度 ω_1 (回転数)のポイントで磁束 Φ_2 に変わると、電動機の誘導起電力E1から誘導起電力E2特性に変化することで誘導起電力の最大値を制限することが可能である。

【0036】

図5(b)は同様に回転角速度 ω (回転数)に応じてより細かく磁束 Φ が変わ

れば、誘導起電力Eも一定に保つことが可能であるとの概略を示す。

【0037】

図5に示した特性を得る手段の実施例の一つとして、前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、シャフトにはボルトのネジ部と第2界磁用磁石の内側にはナット部になりお互いにネジの機能を持たせて接続し、第2界磁用磁石の側面から離れたところにはストッパーを設け、ストッパーを回転速度に応じてシャフトと平行に可変可能なサーボ機構を持たせた電動機を用いることで可能である。

【0038】

図6は図1の電動機2の制御ブロック図を示したものである。

【0039】

まず、操作盤（図1内の75）から設定された情報、水位センサー76からの情報、および永久磁石形同期電動機2の回転数を基に、運転判断部101が永久磁石形同期電動機2の運転動作を判断して電流指令値を出力する。運転判断部101から出力された電流指令値は、現在の永久磁石形同期電動機2の電流値との差分に対して非干渉制御等を行っている電流制御ブロック102に入力する。

【0040】

電流制御ブロック102からの出力は回転座標変換部103で3相の交流に変換され、インバータ104を介して永久磁石形同期電動機2を制御する。また、永久磁石形同期電動機2の各相の電流（少なくとも2相の電流）および回転数を検出し、各相の電流は2軸変換ブロック105で、2軸電流に変換し、電流指令値にフィードバックしている。また、回転数、磁極位置らは検出器106で検出され、磁極位置変換部107と速度変換部108らを通して各制御ブロックにフィードバックされる。

【0041】

尚、図6における実施例では、電動機2の位置・速度センサ、ならびに電動機の電流センサがある場合のものを示したが、これらの一部のセンサを排除し、センサレスにより電動機2を駆動するタイプの制御構成のものでも、同様に実施可能である。

【0042】

また、本発明の永久磁石形同期電動機は、運転状況に応じて第1回転子と第2回転子の同磁極中心が並ばせたり、ずれたりすることになるので、前記第1界磁用磁石と第2界磁用磁石の合成磁極位置のずれに応じて前記インバータを制御するコントローラによる電流供給の進角を補正する機能を持つ。

【0043】

電流供給の進角を補正する実施例について述べる。

【0044】

前記第1界磁用磁石はシャフトに固定し、前記第2界磁用磁石はシャフトと分離すると共に、シャフトにはボルトのネジ部と第2界磁用磁石の内側にはナット部になりお互いにネジの機能を持たせて接続して運転すると、第2界磁用磁石は回転しながら軸方向に左右に移動する。

【0045】

運転状況に応じて第1回転子と第2回転子の同磁極中心が並ばせたり、ずれたりする場合の回転角と軸方向変位量の関係を図12に示す。

【0046】

図12において、第2回転子の回転角 θ と軸方向変位量 ΔL は比例関係であり、変位測定器64を用いて軸方向変位量 ΔL を測定し、制御回路の位置検出回路（図6内106）にフィードバックされ第1界磁用磁石と第2界磁用磁石の合成磁極位置のずれ角に換算した値として、電流供給の進角を補正する最適制御に用いる。

【0047】

図7は本発明の他の実施形態をなす電動機を示す。

【0048】

前記第1回転子20Aはシャフト22に固定し、前記第2回転子20Bはシャフト22と分離すると共に、シャフトの一部にはボルトのネジ部23Aと第2界磁用磁石の内側にスリープ41を固定し、かつスリープ41の内側にナット部23Bを固定したものを一体化すれば、シャフト22に対して第2回転子20Bはボルトのネジ部からナット部が外れるように第1回転子20Aと第2回転子

20Bの間の間隔が広がりながら回転する。

【0049】

第2界磁用磁石の内側とシャフト22間にわざかな遊びがあるので、回転と共に第2界磁用磁石の内側とシャフト22間に鎖交磁束の変化が生じると、電食等の障害があるが、前記スリーブ11は鉄より電気抵抗率が高い非磁性体を用いることで、第2界磁用磁石の内側とシャフト22に間には磁気的にも、電気的にも絶縁を行う効果がある。

【0050】

前記第2界磁用磁石と前記シャフト間に回転運動と往復運動及び複合運動を案内出来るようにスリーブ41の内側に支持機構40A、40Bを備えた。

【0051】

第2回転子20Bはシャフトの一部にボルトのネジ部23Aとお互いにネジの機能を持たせて接続され、第2界磁用磁石の側面から離れたところには可変可能なストッパー24を設ける。ストッパー24とシャフト間、ストッパーと第2回転子20Bの側面間に回転運動と往復運動及び複合運動を案内出来るように支持機構42、47を設ける。支持機構42はスラスト軸受の機能を持ち、支持機構47はラジアル軸受でありながら回転運動と往復運動及び複合運動を案内する機能を持つ。

【0052】

さらに、ばね48を設けることで、支持機構42はスラスト軸受としてその機能が向上する効果がある。

【0053】

ストッパー24はシャフトと平行に可変可能なサーボ機構の一例として電磁クラッチについて述べる。

【0054】

電磁クラッチの構成は、ヨーク44にコイル46が巻かれて、ストッパー24は可動鉄心の機能を兼用することで良い。ヨーク44とコイル46は電動機のフレーム49、若しくは洗濯機の一部に（図に示せず）固定し、ヨーク44とストッパー24の間にばね45を備えて励磁遮断時の復帰装置の機能を持つ。電動機

のフレーム49とシャフト22の間には軸受50で支える。

【0055】

図7はコイル46に無励磁状態の概略であり、図8はコイル46に励磁状態の概略を示す。

【0056】

コイル46を励磁することでヨーク44は強力な電磁石となり、可動鉄心の機能を兼用するストッパー24を吸引する。

【0057】

コイル46を励磁してストッパー24を吸引する時には、シャフト22に対して第2回転子20Bはボルトのネジ部からナット部が外れるように第1回転子20Aと第2回転子20Bの間の間隔が広がりながら回転するようにトルクを加えれば、コイル46に流す電流の負担が少なくて済む。

【0058】

ここに示した電磁クラッチはストッパー24をシャフトと平行に可変可能なサーボ機構の一例であり、油圧アクチュエータ、回転機とボールねじなどによる直線駆動装置、リニアモータなどを用いることで、より細かなストッパーの位置決めが可能である。

【0059】

図9は第2回転子20Bの内側に固定されるスリーブ41の一例を示す。

【0060】

それらの固定方法の一つとして、第2回転子20Bとスリーブ41からなる2つの部品の接する面のお互いに凸凹を設けて固定した。また、シャフト22に固定した第1回転子20Aとシャフト22と分離した第2回転子20Bの内側違いの概略を示す。

【0061】

図10は本発明の他の実施例を示す。

【0062】

前記第1界磁用磁石と前記第2界磁用磁石が接する前記第1界磁用磁石側面に凹部53を設け、前記第2界磁用磁石には前記スリーブの機能を兼ねた突起部

54を設けた構造である。突起部54はスリーブ41と一体ものでも良いし、第2回転子20Bと一体ものでも良い。よって、スリーブ41の十分なスペースが確保出来、ばね48、支持機構40A、40B、ナット部23Bらを有効に配置することで、第2回転子20Bの軸長積厚が薄い電動機に有効な手法の一つである。

【0063】

図11は本発明の他の実施例を示す。

【0064】

図11に示す基本構成要素は図7と同じであるが、電磁クラッチに相当する一部を変更した一例である。図11はコイル46が励磁状態であり、励磁遮断時はばね45によりヨーク44とストッパー24は切り離れる。また、第2回転子20Bにトルクが加わるボルトのネジ部23Aとナット部23Bの相互作用によるネジの機能により推力が得られる特性を持つ。よって、ネジとトルクの相互関係でストッパー24を押し出す推力が加われば、コイル46の励磁を遮断するとストッパー24はヨーク44と切り離れる。ヨーク44はアーム52を介してフレーム49、若しくは主軸の一部に（図に示せず）固定される。

【0065】

図11に示す電磁クラッチは、図7、図8の説明と同じくストッパー24をシャフトと平行に可変可能なサーボ機構の一例であり、油圧アクチュエータ、回転機とボールネジなどによる直線駆動装置、リニアモータなどを用いることで、より細かなストッパー24の位置決めが可能である。

【0066】

図13は本発明の他の実施例を示す。

【0067】

本発明の電動機の特徴として、第1回転子20Aはシャフト22に対してしつかり固定されているのに対して、第2回転子20Bはシャフト22に対して自由度を持つことになる。従って、第2回転子20Bとシャフト22間にはわずかな機械的な寸法の遊びがあり、大きなトルクや遠心力などが加わると偏心することもあり得る。よって、第1界磁用磁石を有する第1回転子20Aと前記固定子間

のエアギャップGap1より第2界磁用磁石を有する第2回転子20Bと前記固定子間のエアギャップGap2の方が大きくしたことで、偏心による第2回転子20Bと前記固定子との機械的な接続を省く効果がある。

【0068】

ストッパー24と第2回転子20Bの間、第1回転子20Aとに第2回転子20Bの間には、ばね48、ばね51を複数個設けることで、第2回転子20Bの急激な変動を押さえたり、トルク方向による動きを補助する効果がある。

【0069】

勿論、各図に示した各々の構成要素は様々な方法で組合わせることが可能であり、用途に合わせて加えたり、取り外すことは言うまでもない。

【0070】

図14は本発明の他の実施形態をなす回転電機を示す。

【0071】

前記図2に示した第2回転子のネジ部23をなくし、回転角θ分可変できる機構を設けたことを特徴とする永久磁石形同期回転電機である。

【0072】

前記図2に示した第2回転子のネジ部分の代わりに、シャフト22に歯車のように凹凸を設けて、第2回転子20Bの内径側にはシャフトが挿入できるよう凹凸を設ける。ただし、シャフト22を第2回転子20Bの内径側に挿入したときには、かみ合う歯の幅より溝の幅を大きくして所定の回転角θ分可変できるようにする。さらに、かみ合う歯と溝の間にはスプリング26とダンパー27を設けることで、急な衝突を和らげる効果がある。同様にアクチュエータを設けて、大きなトルクは必要とされる洗い若しくは濯ぎ行程のように低速回転領域において運転する時は、図3に示すように、強制的に第1回転子20Aと第2回転子20Bの同磁極の中心が揃えるようにして、固定子磁極と対向する永久磁石による有効磁束量を多くして、高トルク特性が得られる。

【0073】

次に、脱水行程のような高速回転領域において運転する時は、図4に示すようにシャフト22に対して第2回転子20Bは同磁極の中心がずれて、固定子磁極

と対向する永久磁石による有効磁束量を少なくすることになり、言い換えると弱め界磁効果があり、高回転領域において高出力特性が得られる。

【0074】

以上の本発明の説明では、4極機を対象に述べたが、6極機、8極機、数十極機以上に適用出来る事は言うまでもない。一例として、図15には本発明を8極機に適用した場合の永久磁石形同期電動機の回転子概略図を示す。また、回転子においては埋め込み磁石形でも、表面磁石形でも適用出来る事は言うまでもない。

【0075】

図16にダイレクトドライブ方式とギア併用方式洗濯機の概略を示す。

【0076】

図16において、洗濯機の他の構成要素は共通であるが、ギアの有無の違いである。図16(a)はダイレクトドライブ方式であり、図16(b)はギア併用方式を示す。図16(b)において、前記パルセータ(図1の内73)の回転軸に対し前記洗濯脱水槽の回転軸を連結又は離脱する切換機構(図1の内77)と電動機2の間にギア79を介した概略であり、ギアは切換機構77の中に組み込まれて構成されても良い。勿論、本発明の電動機は上記の両方式とも適用可能であることは言うまでもない。

【0077】

【発明の効果】

本発明の永久磁石形同期電動機は第1界磁用磁石と第2界磁用磁石に分割した回転子を同一軸上に配置したトルクの方向により第1と第2の界磁用磁石の磁極中心を変化させるとする構成により、固定子磁極と対向する永久磁石による有効磁束量を可変出来るという効果がある。

【0078】

特に、洗濯機電動機の脱水行程の弱め界磁が簡単に出来、広範囲可变速運転には大きな効果がある。

【図面の簡単な説明】

【図1】

本実施例の永久磁石形同期電動機を配置した洗濯機の概略を示す。

【図2】

図1の電動機の回転子同磁極中心がずれた場合概略を示す（その1）。

【図3】

図1の電動機の回転子同磁極中心が揃った場合概略を示す。

【図4】

図1の電動機の回転子同磁極中心がずれた場合概略を示す（その2）。

【図5】

図1の電動機の回転角速度に対する諸特性を示す。

【図6】

図1の電動機の制御ブロック図を示す。

【図7】

本発明の他の実施形態をなす電動機を示す（アクチュエータOFF状態）。

【図8】

本発明の他の実施形態をなす電動機を示す（アクチュエータON状態）。

【図9】

本発明の他の実施形態をなす電動機の回転子の内側を示す。

【図10】

本発明の他の実施形態をなす電動機の回転子の内側を示す。

【図11】

本発明の他の実施形態をなす電動機を示す（アクチュエータON状態）。

【図12】

本発明の他の実施形態をなす電動機の軸方向変位測定の概略図を示す。

【図13】

本発明の他の実施形態をなす電動機の回転子概略図を示す（Gapの差を付ける）。

【図14】

本発明の他の実施形態をなす電動機を示す。

【図15】

本発明の他の実施形態をなす電動機の回転子概略図を示す（8極機に適用した場合）。

【図16】

本発明の他の実施形態をなす電動機の配置の概略図を示す。

【符号の説明】

2…電動機、10…固定子鉄心、11…電機子巻線、12…冷却路、13…ハウジング、20…回転子、20A…第1回転子、20B…第2回転子、21…永久磁石、21A…第1回転子永久磁石、21B…第2回転子永久磁石、22…シャフト、23…ネジ、24…ストッパー、25…ストッパー駆動用アクチュエータ、26…スプリング、27…ダンパー、101…運転判断部、102…電流制御、103…回転座標変換部、104…インバータ、105…2軸変換部。

【書類名】 図面

【図1】

図 1

【図2】

図 2

【図3】

図 3

【図4】

図 4

【図5】

図 5

【図6】

図 6

【図7】

図 7

【図8】

図 8

【図9】

図 9

【図10】

図 10

【図11】

図 11

【図12】

図 12

【図13】

図 13

【図14】

図 14

【図15】

図 15

表面磁石型

埋め込み磁石型

【図16】

図 16

(a)

(b)

【書類名】 要約書

【要約】

【課題】

永久磁石の磁束の弱め界磁を可能とする。

【解決手段】

永久磁石回転電機の回転子を分割し相対運動可能とする。

【選択図】 図1

認定・付加情報

特許出願の番号	特願2001-053431
受付番号	50100279443
書類名	特許願
担当官	第三担当上席 0092
作成日	平成13年 3月 1日

<認定情報・付加情報>

【提出日】 平成13年 2月28日

次頁無

出願人履歴情報

識別番号 [000005108]

1. 変更年月日 1990年 8月31日
[変更理由] 新規登録
住 所 東京都千代田区神田駿河台4丁目6番地
氏 名 株式会社日立製作所