TOPOLOGÍA. Examen del Tema 1

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2008/09 Profesor: Rafael López Camino

Nombre:

- 1. Sea X=[-1,1] y se define $\beta=\{\{x\};x\neq 0\}\cup\{(-1,1)\}$. Probad que β es base de una topología en X. Hallad el interior y adherencia del conjunto A=[0,1].
- 2. Se considera $\mathbb R$ con la topología usual τ . Probad $\tau_{|\mathbb Z}$ es la topología discreta en $\mathbb Z$. Si $A=\{\frac{1}{n};n\in\mathbb N\}\cup\{0\},$ probad $\tau_{|A}$ no es la topología discreta en A.
- 3. Sea X un conjunto y $A, B \subset X$ dos subconjuntos no triviales. Se define $\tau = \{\emptyset, X, A, B\}$. ¿Qué propiedades deben satisfacer A y B para que τ sea una topología en X? Sea $p \in X$. Hallad el interior, adherencia, frontera y exterior de $C = \{p\}$.

TOPOLOGÍA. Examen del Tema 1

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2008/09

Profesor: Rafael López Camino

Nombre:

1. Sea X = [-1, 1] y se define $\beta = \{\{x\}; x \neq 0\} \cup \{(-1, 1)\}$. Probad que β es base de una topología en X. Hallad el interior y adherencia del conjunto A = [0, 1].

Solución: Es evidente que la unión de todos los elementos de β es [-1,1]. Incluso menos, pues $[-1,1]=\{-1\}\cup\{1\}\cup(-1,1)$. Por otro lado, si $B_1,B_2\in\beta$ con $B_1\cap B_2\neq\emptyset$, es porque uno es $B_1=\{x\},\ x\neq 0$ y el otro es $B_2=(-1,1)$. Ya que $B_1\cap B_2\neq\emptyset$, entonces $B_1\cap B_2=B_1$, luego la segunda propiedad de bases es evidente.

Para calcular el interior de A estudiamos el mayor abierto dentro de A. Es evidente que $\bigcup_{x \in (0,1]} \{x\} = (0,1]$ es un abierto incluido en A. Veamos que $0 \notin int(A)$. En tal caso, existiría $B \in \beta$ tal que $0 \in B \subset A$. Como $0 \in B$, entonces B = (-1,1) pero $(-1,1) \not\subset [0,1]$. Esto quiere decir que 0 no es interior. Como consecuencia int(A) = (0,1].

Por otro lado, $[-1,1] - A = [-1,0) = \bigcup_{x \in [-1,0)} \{x\}$, entonces [-1,1] - A es abierto, es decir, A es cerrado. Por tanto $\overline{A} = A$.

2. Se considera \mathbb{R} con la topología usual τ . Probad $\tau_{|\mathbb{Z}}$ es la topología discreta en \mathbb{Z} . Si $A = \{\frac{1}{n}; n \in \mathbb{N}\} \cup \{0\}$, probad $\tau_{|A}$ no es la topología discreta en A.

Solución: Una base de entornos para cada $x \in \mathbb{R}$ en \mathbb{R} es $\beta_x = \{(x-r,x+r); 0 < r < 1\}$. Por tanto, una base de entornos de $n \in \mathbb{Z}$ es

$$\beta_n^{\mathbb{Z}} = \{ (n-r, n+r) \cap \mathbb{Z}; 0 < r < 1 \} = \{ \{n\} \}.$$

Se sabe entonces que la topología es la discreta.

En el conjunto A, un base de entornos de 0 es

$$\beta_0^A = \{ (-r, r) \cap A; r > 0 \}.$$

Si la topología fuera la discreta, el conjunto $\{0\}$ sería abierto en A, y por tanto, 0 sería interior en $\{0\}$. En tal caso, existiría r > 0 tal que

$$(-r,r) \cap A \subset \{0\}.$$

Pero el conjunto de la izquiera tiene más de un punto, puesto que $\left\{\frac{1}{n}\right\} \to 0$.

3. Sea X un conjunto y $A, B \subset X$ dos subconjuntos no triviales. Se define $\tau = \{\emptyset, X, A, B\}$. ¿Qué propiedades deben satisfacer A y B para que τ sea una topología en X? Sea $p \in X$. Hallad el interior, adherencia, frontera y exterior de $C = \{p\}$.

Solución: Se tiene que $A \cup B \in \tau$ y que $A \cap B \in \tau$, es decir,

$$A \cup B \in \{\emptyset, X, A, B\}, \quad A \cap B \in \{\emptyset, X, A, B\}.$$

Las posibilidades son entonces:

- (a) $A \cup B = X$ y $A \cap B = \emptyset$, es decir, A y B son complementarios uno del otro.
- (b) $A \cup B = A$, es decir, $B \subset A$, entonces $A \cap B = B \in \tau$.
- (c) $A \cup B = B$, es decir, $A \subset B$, entonces $A \cap B = A \in \tau$.

Para hallar el interior y la adherencia de C usamos las caracterizaciones que nos dicen que el interior es el mayor conjunto abierto en C y la adherencia es el menor cerrado que contiene a C. Para cada una de las anteriores topologías, tenemos

- (a) En este caso, $\mathcal{F} = \tau$. Supongamos que $p \in A$. Entonces $int(C) = \emptyset$ si $\{p\} \neq A$ o $int(C) = \{p\}$ si $A = \{p\}$. En cualquiera de los dos casos, $\overline{C} = A$. Si $p \in B$, el razonamiento es análogo, cambiando A por B.
- (b) Supongamos que $B \subset A$.
 - i. Si $p \in B$, entonces $int(C) = \emptyset$ si $\{p\} \neq B$ o $int(C) = \{p\}$ si $B = \{p\}$. En cualquier caso, $ext(C) = \emptyset$.
 - ii. Si $p \in A B$, entonces $int(C) = \emptyset$ y ext(C) = B.
 - iii. Si $p \in X A$, entonces $int(C) = \emptyset$ y ext(C) = A.
- (c) Este caso es análogo al anterior, cambiando A por B.