Linear System Theory Hints for Problem Set 4

The following results would be useful.

Fact 1: Consider the system $\dot{x}(t) = f(x(t))$, where $f: \mathbb{R}^n \to \mathbb{R}^n$ is globally Lipschitz. For any differentiable function $V: \mathbb{R}^n \to \mathbb{R}$, by using the chain rule, we get that $\frac{dV(x(t))}{dt} = \dot{x}(t)^{\top} \frac{\partial V(x(t))}{\partial x} = f(x(t))^{\top} \frac{\partial V(x(t))}{\partial x}$.

Fact 2: For any symmetric square matrix $A \in \mathbb{R}^{n \times n}$, it holds that $\lambda_{\min}(A) \|x\|_2^2 \le x^{\top} Ax \le \lambda_{\max}(A) \|x\|_2^2$, where $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ denote the minimum and maximum eigenvalues of A, respectively. Try to prove this claim on your own. To this end, remember that a square matrix A is symmetric and positive semidefinite (resp. positive definite) if and only if all its eigenvalues are nonnegative (resp. strictly positive).

Fact 3: A symmetric positive definite $n \times n$ matrix $P = P^{\top} > 0$ defines an inner product in \mathbb{R}^n by $\langle x, y \rangle_P := x^{\top} P y$, for all $x, y \in \mathbb{R}^n$. Try to prove this claim on your own¹, by verifying the conditions in Definition 7.1. Therefore, the map $\|\cdot\|_P : \mathbb{R}^n \to \mathbb{R}_+$ defined by $\|x\|_P = \sqrt{x^{\top} P x}$ is a norm in \mathbb{R}^n by Theorem 7.1. In particular, since \mathbb{R}^n is finite-dimensional, for any $P = P^{\top} > 0$ and $Q = Q^{\top} > 0$, the norms $\|\cdot\|_P$, $\|\cdot\|_Q$ and $\|\cdot\|_2$ are equivalent. Thus for example, there exist positive constants $m_1 = m_1 + m_2 = m_2 + m_3 = m_3 + m_3 = m_3 = m_3 + m_3 = m$

Exercise 1 (Lyapunov stability and salmon extinction)

- (1) Use Fact 3 and Gronwalll's Lemma. For the second part, use Fact 1 for $V(x) = x^{T}Px$ and f(x) = Ax.
- (2) Use $V(x) = x^{\top} Px$ and f(x) = Ax.

Exercise 2 (LTV stability)

- (1) Solve analytically the ODE and show that even if $Re(\lambda) < 0$ the system is unstable.
- (2) Consider $V(x) = x^{T}x$. Then, use Fact 1, Fact 2 and Gronwall's Lemma.

Exercise 3 (Inner product spaces)

(1) For a fixed $f \in \mathcal{H}$, consider $g = \sum_{i=1}^{n} \langle v_i, f \rangle v_i$. Argue that this is an element in \mathcal{H} . Then show that $\langle g, g - f \rangle = 0$. Finally, use the Pythagoras Theorem 7.2 twice.

¹We consider the vector field to be \mathbb{R} . That is, condition 4 in Definition 7.1 is $\langle x, y \rangle = \langle y, x \rangle$. Moreover $\langle ax, y \rangle = a \langle x, y \rangle$, for all $a \in \mathbb{R}$

²You can explicitly determine the constants in the corresponding inequalities, by using the fact that for any positive definite matrix N, there exist $c, \rho > 0$, such that cI - N and $N - \rho I$ are positive definite.

(2) First show that if $\mathcal{B} = \{b_1, \dots, b_n\}$ is an orthonormal basis for \mathcal{H} , then every $f \in \mathcal{H}$ is written as $f = \sum_{i=1}^{n} \langle b_i, f \rangle b_i$.