Lecture 2

Muna Naik

January 9, 2025

1 Lie subgroups

Proposition 1

Let G be a lie group. Let H be an abstract subgroup of G, such that

- 1. H is a submanifold of G
- 2. H is a topological group.

Then H is a liegroup.

Proof. It suffices to show that the μ map given by $(x, y) \mapsto x \cdot y^{-1}$ is smooth. The fact that H is a topological group implies that this map is continuous. Theorem 9 of the previous lecture implies that the map is smooth.

Definition 2

An abstract subgroup satisfying the proberites of the proposition is called a **Lie subgroup** of *G*.

Proposition 3

If G_1 , G_2 are two lie groups, then the product $G_1 \times G_2$ is a lie group under the product manifold structure.

Proof. exercise. □

We will now show that $O_{n\times n}(\mathbb{R})$ is a lie group. First we will show that it is an embedded manifold in $GL_{n\times n}(\mathbb{R})$. Consider the map $f(A)=AA^T$. Then,

$$f'(A)(H) = AH^T + HA^T$$

Observe that $Im(f') \subseteq S(n)$, the vector space of all symmetric matrices. Conversely, if $M \in S(n)$ we have,

$$f'(A)(\frac{SA}{2}) = A\frac{A^TS}{2} + \frac{SA}{2}A^T = S$$

This tells us that we shouls consider f as a map from $GL_{n\times n}(\mathbb{R})$ to S(n). Then I is a regular value of f, meaning that $f^{-1}(I)$ is an embedded submanifold of $GL_{n\times n}(\mathbb{R})$. It is clearly a topological group, as the μ map is simply obtained by retriction from $GL_{n\times n}(\mathbb{R})$ and thus proposition 1 applies.

2 Lie algebras

Definition 4

Let V be a vector space over a field \mathbb{K} . V is said to be a **lie algebra** if it has a bilinear map satisfying,

1.
$$[X, X] = 0$$

2.
$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

For all $X, Y, Z \in V$.

Remark. If char $\mathbb{K} \neq 2$, then the first condition is equivalent to [X,Y] = -[Y,X].

In this course, \mathbb{K} will always be \mathbb{R} or \mathbb{C} .

Example 5

We give a list of them.

- 1. Any vector space with the bracket [X, Y] = 0 is a lie algebra.
- 2. $(\mathbb{R}^{\mathbb{H}}, \times)$ is a lie algebra.
- 3. $(M_{n\times n}(\mathbb{R}), [A, B] = AB BA)$ is a lie algebra.
- 4. The same can be done for any associative algebra over \mathbb{K} .
- 5. $sl_n(\mathbb{K}) = \{A \in M_{n \times n}(\mathbb{R}) : tr(A) = 0\}$ is a lie sub-algebra.
- 6. $so_n(\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) : A^T = -A\}$ is a lie sub-algebra.
- 7. For any smooth manifold, $\mathcal{D}^1(M)$ is a lie algebra under the bracket [X,Y]=XY-YX.

Definition 6

Let $\phi: M \to N$ be a smooth map between manifolds. Let $X \in \mathcal{D}^1(M)$ and $Y \in \mathcal{D}^1(N)$. We say X, Y are ϕ -related and write $X \sim_{\phi} Y$ or $d\phi(X) = Y$ if for all smooth functions f on N, we have $X(f \circ \phi) = Y(f) \circ \phi$. Or equivalently, at each point $p \in M$, we have $d\phi_p(X_p) = Y_{\phi(p)}$.

Proposition 7

Let $\phi: M \to N$ be a smooth map.

(a) Let X_1, X_2 be two vector fields on M and Y_1, Y_2 be two vector fields on N. If $d\phi(X_1) = Y_1$ and $d\phi(X_2) = Y_2$ then,

2

- (1) $d\phi([X_1, X_2]) = [Y_1, Y_2]$
- (2) $d\phi(X_1 + X_2) = Y_1 + Y_2$
- (b) Let $X \in \mathcal{D}^1(M)$, $Y \in \mathcal{D}^1(N)$ and $d\phi(X) = Y$. Then, $d\phi(aX) = aY$ for all $a \in \mathbb{R}$.

Proof.

$$\begin{aligned} [X_1, X_2](f \circ \phi) &= X_1(X_2(f \circ \phi)) - X_2(X_1(f \circ \phi)) \\ &= X_1(Y_2(f) \circ \phi) - X_2(Y_1(f) \circ \phi) \\ &= Y_1(Y_2(f)) \circ \phi - Y_2(Y_1(f)) \circ \phi \\ &= [Y_1, Y_2](f) \circ \phi \end{aligned}$$

As desired. The others follow from linearity of derivatives.

Definition 8

Let G be a lie group. We say that $X \in \mathcal{D}^1(G)$ is left invariant if for all $g \in G$, we have $dl_g(X) = X$. Similarly, it is right invariant if $dr_g(X) = X$.

Exercise. Let G be \mathbb{R}^n . Let $X \in \mathcal{D}^1(G)$. Let $\{u_1, ..., u_n\}$ be co-ordinate functions. Let $X(p) = \sum_{i=1}^n a_i(p) \frac{\partial}{\partial u_i}$. Show that X is left invariant if and only if a_i are constants.

Remark. In the abelian case, left and right invariant vector fields are the same, and we shall simply call them invariant vector fields.

We will use the notation $\mathcal{D}^1_L(G)$, $\mathcal{D}^1_R(G)$ for the set of left and right invariant vector fields respectively.

Proposition 9

Let G be a lie group. Then, $\mathcal{D}_{l}^{1}(G)$ and $\mathcal{D}_{R}^{1}(G)$ are lie sub-algebras of $\mathcal{D}^{1}(G)$.

Proof. The last proposition makes this trivial. Suppose $X, Y \in \mathcal{D}^1_L(G)$. Then,

$$dl_g(X+Y) = dl_g(X) + dl_g(Y) = X+Y$$

 $dl_g(aX) = adl_g(X) = aX$
 $dl_g([X,Y]) = [dl_g(X), dl_g(Y)] = [X,Y]$

Same proof for the right invariant case.

Observe that if $X \in \mathcal{D}^1_L(G)$, then $X(a) = (dl_a)_e(X(e))$ And thus X is completely determined by the value at identity. This leads us to th following map, $\theta_L : \mathcal{D}^1_L(G) \to T_eG$ given by $X \mapsto X(e)$ It is easy to see that this map is linear and injective. And we prove the following natural claim.

Claim. θ_L is onto.

Proof. Let $v \in T_eG$. Define $(X^v)_g = (dI_g)_e(v)$. We need to check it is smooth. It is equivalent to showing, for any smooth f, $a \mapsto (X^v)_a(f)$ is smooth. This follows from the observation that, if v corresponds to differentiation along the smooth curve $\gamma(t)$, then $(X^v)_a(f) = [(dI_a)_e(v)](f) = v(f \circ I_a) = \frac{d}{dt}|_{t=0} f(a\gamma(t))$. Consider the maps,

$$G \times (-\epsilon, \epsilon) \to G \times G \to G \to \mathbb{R}$$

$$(a, \epsilon) \mapsto (a, \gamma(t)) \mapsto a \cdot \gamma(t) \mapsto f(a \cdot \gamma(t))$$

The smoothness of the composite map is evident. Now consider a product co-ordinate neighbourhood of (a,0) in $G \times (-\epsilon,\epsilon)$. As the map is smooth, its derivative with respect to t is also smooth. In particular, smooth in a. Now we check that it is left invariant.

$$(dI_a)_q(X^v)_q = (dI_a)_q \circ (dI_q)_e(v) = (dI_a \circ dI_q)_e(v) = (dI_{aq})(v) = (X^v)_{aq}$$

as desired.

Since we have shown that θ_L is an isomorphism, and that $\mathcal{D}_L^1(G)$ is a lie algebra, we have a natural lie algebra structure on \mathcal{T}_eG .

Definition 10

Given a lie group G, we define the **lie algebra of** G is $T_e(G)$ with the lie algebra structure derived above.

Exercise 11. Show that the lie algebra of $GL_{n\times n}(\mathbb{R})$ is isomporphic to $M_{n\times n}(\mathbb{R})$.