Import Libraries

In []:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
from scipy import stats
import os,sys
from scipy.stats import norm, skew
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
import warnings
warnings.filterwarnings('ignore')
```

Import data

```
In [ ]:
```

```
df_train=pd.read_csv('Train.csv')
df_test=pd.read_csv('Test.csv')
```

Data Understanding

In []:

```
df_train.head()
```

Out[3]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identif
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT0
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT0
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT0
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT0
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT0
4							>

```
In [ ]:
```

```
df_train.dtypes
```

Out[4]:

Item_Identifier object Item_Weight float64 Item_Fat_Content object Item_Visibility float64 object Item_Type Item_MRP float64 Outlet_Identifier object Outlet_Establishment_Year int64 Outlet_Size object Outlet_Location_Type object Outlet_Type object Item_Outlet_Sales float64 dtype: object

In []:

```
df_train.shape
```

Out[5]:

(8523, 12)

In []:

```
df_train.isna().any()
```

Out[6]:

Item_Identifier	False
Item_Weight	True
<pre>Item_Fat_Content</pre>	False
<pre>Item_Visibility</pre>	False
<pre>Item_Type</pre>	False
Item_MRP	False
Outlet_Identifier	False
Outlet_Establishment_Year	False
Outlet_Size	True
Outlet_Location_Type	False
Outlet_Type	False
<pre>Item_Outlet_Sales</pre>	False
dtype: bool	

Data Visualization

```
In [ ]:
```

```
plt.figure(figsize=(10,8))
sns.heatmap(df_train.isna(),cmap='gnuplot')
plt.show()
```


yellow mark show null values

1. Item Weight

```
df_train['Item_Weight'].describe()
```

Out[8]:

count 7060.000000 12.857645 mean 4.643456 std 4.555000 min 25% 8.773750 50% 12.600000 75% 16.850000 21.350000 max

Name: Item_Weight, dtype: float64

In []:

```
plt.figure(figsize=(10,8))
sns.distplot(df_train['Item_Weight'].dropna(),color='green')
plt.title('Weight distribution of the items \n Median weight: {0:.2f}'.format(df_train['Ite
plt.axvline(df_train['Item_Weight'].dropna().median(),color='red',label='Median weight')
plt.legend()
plt.show()
```

Weight distribution of the items Median weight: 12.60


```
fig1=plt.figure(figsize=(10,8))
ax1=fig1.add_subplot(121)
sns.boxplot(df_train['Item_Weight'],ax=ax1,orient='v',color='indianred')
ax1.set_title('Boxplot of weights',size=15)

ax2=fig1.add_subplot(122)
sns.violinplot(df_train['Item_Weight'],ax=ax2,orient='v',color='green')
ax2.set_title('Violinplot of weights',size=15)
plt.show()
```


Violinplot of weights

As we can see from the above violin and distplot, the curve platueus over a large range of weights. Hence, it is simply not possible for us to assume a weight for the null values. We shall leave them as it is or drop them if it is later deemed to not be too important in our analysis.

2. Item Fat Content

```
In [ ]:

df_train['Item_Fat_Content'].unique()

Out[11]:

array(['Low Fat', 'Regular', 'low fat', 'LF', 'reg'], dtype=object)

In [ ]:

df_train['Item_Fat_Content']=df_train['Item_Fat_Content'].replace('low fat', 'Low Fat')
df_train['Item_Fat_Content']=df_train['Item_Fat_Content'].replace('LF', 'Low Fat')
df_train['Item_Fat_Content']=df_train['Item_Fat_Content'].replace('reg', 'Regular')
df_train['Item_Fat_Content'].unique()

Out[12]:
array(['Low Fat', 'Regular'], dtype=object)
```

```
In [ ]:
```

3. Item Visibility

```
df_train['Item_Visibility'].describe()
```

Out[14]:

```
count
         8523.000000
            0.066132
mean
            0.051598
std
            0.000000
min
25%
            0.026989
50%
            0.053931
            0.094585
75%
            0.328391
max
Name: Item_Visibility, dtype: float64
```

In []:

```
plt.figure(figsize=(10,8))
sns.distplot(df_train['Item_Visibility'])
plt.title('Item visibility distribution \n Median:{0:.2f}'.format(df_train['Item_Visibility
plt.axvline(df_train['Item_Visibility'].median(),color='black',label='Median')
plt.legend()
plt.show()
```

Item visibility distribution Median:0.05

we can see that it is right skew curve. Hence, a median would give us better indication than a mean value.

```
sns.set()
fig3=plt.figure(figsize=(10,5))
ax1=fig3.add_subplot(121)
sns.boxplot(df_train['Item_Visibility'],orient='v',ax=ax1,color='green')
ax2=fig3.add_subplot(122)
stats.probplot(df_train['Item_Visibility'],plot=ax2)
plt.show()
```


As we can see, values above 0.2 visibility are outliers. Presence of outliers don't bode well with machine learning algos. Hence, we need to remove the outliers and try to form a normal distribution.

The probplot also seems to suggest that the values are deviating from the normal values after 0.2

In []:

```
df_train[df_train['Item_Visibility']>0.2].shape[0]
```

Out[17]:

134

```
df_train=df_train[df_train['Item_Visibility']<0.2]
stats.probplot(df_train['Item_Visibility'],plot=plt)
plt.show()</pre>
```


Now, we see that the values above 0 are following a normal distribution to some extent.

```
plt.figure(figsize=(10,8))
sns.distplot(df_train['Item_Visibility'],fit=norm,color='red')
plt.title('Distribution deviation from normal distribution',size=25)
plt.ylabel('Frequency',size=15)
plt.xlabel('Item visbility',size=15)
mu=df_train['Item_Visibility'].mean()
sigma=df_train['Item_Visibility'].std()
plt.legend(['Normal dist. ($\mu=$ {0:.2f} and $\sigma=$ {1:.2f} )'.format(mu, sigma)])
plt.show()
```

Distribution deviation from normal distribution

This is as close to a normal distribution I could get for our model

4. Item Type

5. Item Type

In []:

```
plt.figure(figsize=(15,10))
sns.distplot(df_train['Item_MRP'],color='orange')
plt.title('Item MRP distribution \n Median:{0:.2f} Rs'.format(df_train['Item_MRP'].median()
plt.axvline(df_train['Item_MRP'].median(),color='black',label='Median')
plt.legend()
plt.show()
```


As we can see, we don't have any clear distribution of the prices here. The distribution is multi modal in nature with mulitple peaks.

The graph basically:

we have fair number of products whose prices range from 25-75 Rs. we have fair number of products in the 80-120 Rs range. Infact, it is the highest, the products increase again from 150-200 Rs range. There are fair number of products from 220-240 Rs range aswell.

In []:

```
labels=df_train['Item_Type'].unique()
fig6=plt.figure(figsize=(10,10))
ax1=fig6.add_subplot(211)
sns.boxplot(x='Item_Type',y='Item_MRP',data=df_train,ax=ax1)
ax1.set_xticklabels(labels, rotation=75,size=9)
ax2=fig6.add_subplot(212)
sns.boxplot(x='Item_Fat_Content',y='Item_MRP',data=df_train,ax=ax2)
fig6.tight_layout(pad=3)
plt.show()
```


From the above plot, we see which item types have high MRPs. Dairy product and Starchy foods have a higher median price than the rest.

Both low and regular food have almost identical median price.

6. Outlet Identifier

In []:

```
df_outlets=df_train.groupby('Outlet_Identifier')['Count'].sum().reset_index().sort_values(b
```

```
sns.catplot('Outlet_Identifier','Count',data=df_outlets,aspect=2,height=8,kind='bar',palett
plt.xticks(size=15)
plt.ylabel('Number of items sold',size=15)
plt.xlabel('Outlet number',size=20)
plt.title('Outlet performance',size=25)
plt.yticks(np.arange(0,1100,100))
plt.show()
```



```
plt.figure(figsize=(10,8))
sns.boxplot('Outlet_Establishment_Year','Item_MRP',data=df_train)
plt.show()
```



```
plt.figure(figsize=(10,8))
sns.boxplot('Outlet_Establishment_Year','Item_Outlet_Sales',data=df_train)
plt.title('Outlet sales',size=25)
plt.show()
```


7. Outlet size

In []:

```
df_train['Outlet_Size'].isna().value_counts()
```

Out[27]:

False 6041 True 2348

Name: Outlet_Size, dtype: int64

```
df_size=df_train.groupby('Outlet_Size')['Count'].sum().reset_index()
fig7=px.pie(df_size,values='Count',names='Outlet_Size',hole=0.4)
fig7.update_layout(title='Store sizes',title_x=0.5,annotations=[dict(text='Fat',font_size=1
fig7.update_traces(textfont_size=15,textinfo='percent+label')
fig7.show()
```

In []:

```
df_size_sales=df_train.groupby('Outlet_Size')[['Item_MRP','Item_Outlet_Sales']].mean().rese
df_size_sales
```

Out[29]:

	Outlet_Size	Item_MRP	Item_Outlet_Sales
0	High	141.425982	2298.995256
1	Medium	140.590514	2681.603542
2	Small	141.756737	1960.412740

```
fig8=plt.figure(figsize=(15,10))
ax1=fig8.add_subplot(121)
sns.barplot('Outlet_Size','Item_MRP',data=df_size_sales,ax=ax1)

ax2=fig8.add_subplot(122)
sns.barplot('Outlet_Size','Item_Outlet_Sales',data=df_size_sales,ax=ax2,palette='rocket')

ax1.set_title('Average price of items sold',size=20)
ax2.set_title('Average sales of store',size=20)
plt.show()
```


The average price of items sold in each outlet store size is nearly the same which is Rs 140. However, The medium stores seem to sell better followed by high sized and then small sized stores.

8. Outlet and Outlet location

df_train.head()

Out[31]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identif
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT0
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT0
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT0
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT0
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT0
4							•

```
fig9=px.sunburst(df_train,path=['Outlet_Type','Outlet_Location_Type'],color_continuous_scal
fig9.update_layout(title='Store type with location type',title_x=0.5)
fig9.show()
```

As we can see, majoirty of the stores are of type 1 supermarket distributed over various location tiers.

Supermarket type 2 and 3 are confined to only tier 3 locations. Very small section of the stores are actually grocery stores.

Let us check how do these stores sell based on location tier using a boxplot.

```
plt.figure(figsize=(10,8))
sns.boxplot(y='Item_Outlet_Sales',hue='Outlet_Type',x='Outlet_Location_Type',data=df_train,
plt.show()
```


As we can see, tier 3 locations seem to be selling better than both tier 2 and tier 1. It is also to be noted that tier 3 has more number of stores in it. Hence, the sales are better too.

Correlation heatmap

```
df_train.drop('Count',axis=1,inplace=True)
```

```
corrs=df_train.dropna().corr()
plt.figure(figsize=(10,8))
sns.heatmap(corrs,annot=True,fmt='.2%')
plt.show()
```


From the above, we can see that correlation of Item_Weight is extremely low. Hence, we can simply drop this column and get done with the issues of null values. We shall similarly remove the order_size as there is no way to deal with the null values here aswell. We would also get rid of the item_identifier and outlet_indetifier since it is of no consequence to us.

In []:

```
unn_cols=['Item_Weight','Outlet_Size','Item_Identifier','Outlet_Identifier']
for cols in unn_cols:
    df_train.drop(cols,axis=1,inplace=True)
```

Data Wrangling

```
In [ ]:
df_train['Item_Fat_Content'].replace('Low Fat',1,inplace=True)
df_train['Item_Fat_Content'].replace('Regular',0,inplace=True)
In [ ]:
df_dummies_type=pd.get_dummies(df_train['Item_Type'])
In [ ]:
df train=df train.merge(df dummies type,on=df train.index)
In [ ]:
df_train.drop('key_0',axis=1,inplace=True)
df_train.drop('Item_Type',axis=1,inplace=True)
In [ ]:
df_train['Outlet_Location_Type'].replace('Tier 1',1,inplace=True)
df_train['Outlet_Location_Type'].replace('Tier 2',2,inplace=True)
df_train['Outlet_Location_Type'].replace('Tier 3',3,inplace=True)
In [ ]:
df dummies outlet=pd.get dummies(df train['Outlet Type'])
df_train=df_train.merge(df_dummies_outlet,on=df_train.index)
```

Item Outlet Sales

```
targets=df_train['Item_Outlet_Sales']
df_train.drop('Item_Outlet_Sales',axis=1,inplace=True)
df_train.head()
```

Out[43]:

	key_0	Item_Fat_Content	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Outlet_Location_Typ
0	0	1	0.016047	249.8092	1999	
1	1	0	0.019278	48.2692	2009	;
2	2	1	0.016760	141.6180	1999	
3	3	0	0.000000	182.0950	1998	;
4	4	1	0.000000	53.8614	1987	;

5 rows × 27 columns

→