N	ame:		Yandon	g Zhu				I	D:	.20588	3720	
Se	ecti	on:	1 (8:30a	ım)	2	(11:30am)	3	(1:30pm)				
1.	(a)	fir	st-order	system			(6)					
	(b)	sys	tem dynam	ics fun	ctio	on	(9)					
											/	15
2.	(a)	Solv	e (Euler)				(3)					
	(b)	Modi	fied Eule	r funct	ion		(3)					
	(c)	Solv	re (Modifi	ed Eule	r)		(3)					
	(d)	Nume	rical evi	dence (Eule	er)	(3)					
	(e)	Nume	rical evi	dence (Mod	Euler)	(3)					
											/	15
3.	100	cal t	runcation	error							/	10
4.	sta	abili	ty analys	is							/	10
5.	Pu	rsuit	Problem	code (1	0) 8	tests (1	5)				,	o =
											/2	25
Ψc	otal	: (75)									
			<i>'</i>		_							

CS370

Assignment 2

Yandong Zhu

20588720

1. (a) Let $z_1 = u$, $z_2 = v$, $z_3 = u'$, $z_4 = v'$ Then we have the system

$$\begin{split} z_1'(t) &= z_3(t) \\ z_2'(t) &= z_4(t) \\ z_3'(t) &= sin(t) - c_1(z_3(t) - z_4(t)) - k_1(z_1(t) - z_2(t)) - k_2 z_1(t) \\ z_4'(t) &= c_1(z_3(t) - z_4(t)) - c_2(z_1(t) - z_2(t)) \\ z_1(0) &= 1, z_2(0) = 2, z_3(0) = 0, z_4(0) = 0 \end{split}$$

(b)

$$\begin{array}{lll} & \textbf{function} \ \ Z = \ Dynamic \ (t \ , \ z \ , \ c_{-}1 \ , c_{-}2 \ , k_{-}1 \ , k_{-}2 \,) \\ & Z = \ zeros (4 \ , \ 1) \, ; \\ & Z(1) = z \, (3) \, ; \\ & Z(2) = z \, (4) \, ; \\ & Z(3) = sin \, (t) - c_{-}1 * (z \, (3) - z \, (4)) - k_{-}1 * (z \, (1) - z \, (2)) - k_{-}2 * z \, (2) \\ & Z(4) = c_{-}1 * (z \, (3) - z \, (4)) - c_{-}2 * (z \, (1) - z \, (2)) \, ; \\ & \textbf{end} \end{array}$$

 $2. \quad (a)$

(b)

(c)

(d) 0.8802 0.9509 0.9779 0.9895 0.9949 0.9975 0.9988 0.9994 0.9997 0.9998

Thus $p \approx 1$

(e) $2.5944 \quad 2.2502 \quad 2.1049 \quad 2.0481 \quad 2.0231 \\ 2.0113 \quad 2.0056 \quad 2.0028 \quad 2.0014 \quad 2.0007 \\ \text{Thus } p \approx 2$

3. For the question, we have, $y_{n+1} = y_{n-1} + 2hf(t_n, y_n)$

First we replace the RHS with exact approximate value

$$y_{n+1} = y(t_{n-1}) + 2h \cdot y'(t_n)$$

Then we do the Taylor Expand for $y(t_{n-1})$ at time t_n

$$y(t_{n-1}) = y(t_n) - hy'(t_n) + \frac{h^2}{2}y''(t_n) - \frac{h^3}{6}y'''(t_n) + O(h^4)$$

plug the value back to y_{n+1}

$$y_{n+1} = 2hy'(t_n) + y(t_n) - hy'(t_n) + \frac{h^2}{2}y''(t_n) - \frac{h^3}{6}y'''(t_n) + O(h^4)$$
$$= y(t_n) + hy'(t_n) + \frac{h^2}{2}y''(t_n) - \frac{h^3}{6}y'''(t_n) + O(h^4)$$

While the approximate value we get for $y(t_{n+1})$ is

$$y(t_{n+1}) = y(t_n) + hy'(t_n) + \frac{h^2}{2}y''(t_n) + \frac{h^3}{6}y'''(t_n) + O(h^4)$$

thus the difference is

$$y(t_{n+1}) - y_{n+1} = (\frac{h^3}{6} + \frac{h^3}{6})y'''(t_n) + O(h^4) = \frac{h^3}{3}y'''(t_n) + O(h^4) = O(h^3)$$

plug in the test formula $y'(t) = -\lambda y(t)$ we can get

$$y_{n+1}^* = (1 - \frac{3h}{4}\lambda)y_n$$

$$y_{n+1} = y_n + \frac{h}{3}(-\lambda y_n - 2\lambda y_{n+1}^*)$$
$$= y_n - \frac{h}{3}\lambda y_n - \frac{2h}{3}\lambda (1 - \frac{3h}{4}\lambda)y_n$$
$$= y_n(1 - h\lambda + \frac{(h\lambda)^2}{2})$$

Thus

$$e_{n+1} = e_n \cdot (1 - h\lambda + \frac{(h\lambda)^2}{2})$$

= $e_0 \cdot (1 - h\lambda + \frac{(h\lambda)^2}{2})^{n+1}$

So we want
$$|1 - h\lambda + \frac{(h\lambda)^2}{2}| < 1$$
, when $n \to \infty$, $(1 - h\lambda + \frac{(h\lambda)^2}{2})^{n+1} \to 0$
Thus, $1 - h\lambda + \frac{(h\lambda)^2}{2} > -1$ and $1 - h\lambda + \frac{(h\lambda)^2}{2} < 1$

$$-1 < 1 - h\lambda + \frac{(h\lambda)^2}{2}$$

$$0 < 4 - 2\lambda h + (\lambda h)^2$$

$$0 < 3 + (\lambda h - 1)^2$$

which is always true; next is

$$1 > 1 - h\lambda + \frac{(h\lambda)^2}{2}$$
$$0 > -h\lambda + \frac{(h\lambda)^2}{2}$$
$$h < \frac{2}{\lambda}$$

function T = target(t, P)

So h is conditional stable

5. (a) target.m:

rocket.m:

end

$$\begin{array}{ll} \textbf{function} & [dP,halt\,,direction\,] &= \, \operatorname{rocket}\,(\,t\,,P) \\ \\ \textbf{global} & DMIN \\ & d &= \, \mathbf{sqrt}\,(\,(P(4) - P(1))\,\hat{}\,\,2 + (P(5) - P(2))\,\hat{}\,\,2)\,; \\ \\ & dP \!\!=\!\! d \!\!-\!\! DMIN\,; \end{array}$$

```
\begin{array}{l} \text{halt} \! = \! 1; \\ \text{direction} \! = \! 0; \\ \text{end} \end{array}
```

pursuit.m:

```
figure
global ST SP RT D DMIN
```

```
\begin{array}{lll} y0 & = & \left[0;0;-\mathbf{pi}\,;5\,;5\,;0\right];\\ SP & = & 3;\\ ST & = & 2;\\ D & = & 0.001;\\ RT & = & 0.25;\\ DMIN & = & 0.01;\\ tol & = & 0.000001;\\ t0 & = & 0; & tfinal = & 20; \end{array}
```

$$\label{eq:continuous} \begin{split} & \text{options=odeset('AbsTol',tol,'RelTol',tol,'MaxOrder',5,'Stats','oroptions=odeset(options,'Events',@rocket,'Refine',4);} \end{split}$$

```
[\,t\,\,,y\,] \,\,=\,\, ode15s\,(\,@target\,\,,[\,t0\,\,,\,tfinal\,]\,\,,y0\,,\,options\,)\,;
```

```
plot (y(:,4),y(:,5)); hold on plot (y(:,1),y(:,2));
```


the hitting time is 9.3174s

(b)

tol	Hitting Time	Number of Function Evaluations
10^-3	9.1691	572
10^-4	9.3174	719
10^-5	9.3132	764
10^-6	9.3126	908
10^-7	9.3126	1124
10^-8	9.3126	1550
10^-9	9.3126	2057

As the Error Tolerance decreasing, the number of function evaluations increase and the Hitting Time becomes accurate

(c)

tol	Hitting Time	Number of Function Evaluations
10^-4	9.3109	14215
10^-5	9.3124	24391
10^-6	9.3125	19441
10^-7	9.3126	22459

By using ode 45, the number of function evaluations greater than using ode 15s, So in each step, the hitting time is more accurate than using ode 15s