$$Q = \frac{13}{24} \frac{1}{12} \frac{3}{8} 0 \frac{3}{4}$$

$$\frac{1}{2} 0 \frac{1}{4} \frac{1}{4} \frac{1}{4}$$

$$\frac{3}{4} \frac{1}{12} 0 \frac{1}{4} \frac{1}{4} \frac{1}{4}$$

$$\frac{3}{4} \frac{1}{12} 0 \frac{1}{8} \frac{1}{4} \frac{5}{8}$$

Argument (1): The transition matrix Q is a Stochastic matrix, that is, all entries are non-negative and all sow

Entry q_{24} : argument (1): $X = 1 - \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \Rightarrow q_{24} = \frac{1}{4}$ Entry q_{32} : $T_3q_{32} = T_2q_{23} \Rightarrow \frac{1}{4}$: $q_{32} = \frac{1}{12}$: $q_{32} = \frac{1}{12}$ Entry q_{34} : argument (1): $q_{34} = 1 - \frac{3}{4} - \frac{1}{12} \Rightarrow q_{32} = \frac{1}{6}$ Entry q_{42} : $T_4q_{42} = T_2q_{24} \Rightarrow \frac{1}{6}q_{42} = \frac{1}{12} \Rightarrow \frac{1}{4} \Rightarrow q_{42} = \frac{1}{8}$ Entry q_{43} : $T_4q_{43} = T_3q_{34} \Rightarrow \frac{1}{6}q_{43} = \frac{1}{4} \Rightarrow q_{43} = \frac{1}{4}$ Entry q_{43} : $T_4q_{43} = T_3q_{34} \Rightarrow \frac{1}{2}q_{43} = \frac{1}{4} \Rightarrow q_{43} = \frac{3}{8}$ Entry q_{43} : $T_4q_{43} = T_3q_{34} \Rightarrow \frac{1}{2}q_{43} = \frac{1}{4} \Rightarrow q_{43} = \frac{3}{8}$ Entry q_{43} : $T_4q_{43} = T_3q_{34} \Rightarrow \frac{1}{2}q_{43} = \frac{1}{4} \Rightarrow q_{43} = \frac{3}{8}$ Entry q_{43} : $T_4q_{43} = T_3q_{34} \Rightarrow \frac{1}{2}q_{43} = \frac{1}{4} \Rightarrow q_{43} = \frac{1}{8}$ Entry q_{43} : $T_4q_{43} = T_3q_{24} \Rightarrow \frac{1}{2}q_{42} = \frac{1}{4} \Rightarrow q_{43} = \frac{1}{4}$ Entry q_{43} : $T_4q_{43} = T_3q_{24} \Rightarrow \frac{1}{2}q_{42} = \frac{1}{4} \Rightarrow q_{43} = \frac{1}{4}$ Entry q_{43} : $T_4q_{43} = T_3q_{44} \Rightarrow \frac{1}{2}q_{42} = \frac{1}{4} \Rightarrow q_{43} = \frac{1}{4}$

With Theorem 6.2 we can say that and Lemma 6.4

we can say that this solution is unique