CMPE 260 Laboratory Exercise 4 Execute Stage

Andrei Tumbar

Performed: March 16th Submitted: March 30th

Lab Section: 1 Instructor: Moskal TA: Jacob Meyerson Dennis Lam

Lecture Section: 1 Professor: Cliver

By submitting this report, you attest that you neither have given nor have received any assistance (including writing, collecting data, plotting figures, tables or graphs, or using previous student reports as a reference), and you further acknowledge that giving or receiving such assistance will result in a failing grade for this course.

Abstract

In this laboratory exercise, execute stage and the full ALU were implemented. The ALU was missing two vital operations: MUL and ADD. A ripple carry adder as well as an unsigned integer multiplier were implemented to complete these tasks. The execute stage was modeled to perform ALU functionality given inputs from the decode stage. This exercise was successful as it properly implemented the ALU subsystems as well as the execute stage and tested their functionality using test benches.

Design Methodology

ALU Block diagram

The ALU in this exercise is an extension of the ALU implemented in the first exercise. Here, the ADD, SUB, and MUL operations are implemented. A 4-select mux will choose between the 9 different operations made available by the ALU.

The ADD and SUB were implemented with the same hardware. SUB simply passed a subtraction operation to the ripple-carry adder implementation. The ripple-carry adder is a series of full adders where the carry-out from the previous full adder will feed into the carry-in of the next full adder. When subtraction was performed, a 1 was passed to the first full adder and all of the bits of the second operand were flipped to get the two's complement form of the number.

To implement the MUL operation, partial products placed into a table of bits. Each row would shift over product by one bit. Using this table, a product was calculated by summing up all of the rows using the ripple carry adder construct. Once added, the output would be the product. Inputs into the MUL circuit were half the size in bits that their output so that the output could not overflow.

A diagram was created to illustrate the functionality of the full ALU.

Figure 1: Layout of the N-bit ALU with nine operations

Figure 1 shows the functionality of the nine operation ALU. Notice that there is no explicit SUB component. The SUB operation is handled by the ADD operation by also passing a one bit op-code to the adder circuit. When the op-code is 1, the operation being performed will be subtraction and vis-versa. Using this functionality the ALU operand 0101 will output the result from the subtraction operation while 0100 will output the addition operation's result. This is done to eliminate any redundant hardware that would be produced from creating two separate adders.

Execute Stage

The purpose of the execute stage is to consume inputs from the decode stage and perform ALU functionality. Many signals from the decode stage are unused and are simply output unchanged. These signals are known as "passthroughs". The execute stage will feed inputs into the ALU and output the ALU result. It will also select between the destination registers RtDest and RdDest given a control signal RegDst.

A block diagram was created to illustrate the functionality of the execute stage.

Figure 2: Block diagram of the Execute Stage

Figure 2 shows the general functionality of the execute state. Most of the heavy lifting in this stage is handled by the ALU. This diagram will simply select between two different ALU inputs as well between two different destination registers to write to. The bottom four signals are simply passthrough signals.

Results & Analysis

ALU

To test the ALU and the Execute Stage, a testbench for each one was written. The same input combination was passed to the ALU for each operation. A separate ALU was instantiated in the test bench to test all of the operations in parallel. Expected outputs of the ALU were defined for each operation and asserted against to verify their outputs. A table of the inputs and expected outputs is shown.

Table 1: Expected outputs of integer operations

A	В	ADD	SUB	MUL
OxA	0x2	0xC	0x8	0x14
OxABCDEF	0x4	0xABCDEF16	0xABCDEF0E	0x0003BC48
OxABCDEF	8x0	OxABCDEF1A	OxABCDEFOA	0x00077890
OxAB	0x7	0xB2	0xA4	Ox4AD

Table 2: Expected outputs of logical operations

A	В	OR	AND	XOR
OxA	0x2	OxA	0x2	8x0
OxABCDEF	0x4	0xABCDEF16	0x0	0xABCDEF16
OxABCDEF	0x8	OxABCDEF1A	0x0	OxABCDEF1A
OxAB	0x7	OxAF	0x3	OxAC

Table 3: Expected outputs of shift operations

A	В	SLL	SRA	SRL
OxA	0x2	0x28	0x28 0x2 0:	
OxABCDEF	0x4	0xBCDEF120	0xFABCDEF1	0x0ABCDEF1
OxABCDEF	8x0	0xCDEF1200	OxFFABCDEF	0x00ABCDEF
OxAB	0x7	0x5580	0x1	0x1

The ALU test cases are shown in Tables 1, 2, and 3. All expected outputs are checked for each ALU operations and testcases and will trip an assertion failure in the testbench if they are to fail. A waveform was generated using this input data.

Name	Value	6.680 ns 50.600 ns	100.000 ns 150.000 ns	200.000 ns 250.000 ns	300,000 ns 350,000 ns
> W A[31:0]	000000ab	0000000a	abo	def12	000000ab
> W B[31:0]	00000007	00000002	00000004	00000008	00000007
> W OR_Y[31:0]	000000af	0000000a	abcdef18	abcdef1a	000000af
> W AND_Y[31:0]	00000003	0000002	000	00000	00000003
> W XOR_Y[31:0]	000000ac	00000008	abcdef16	abcdefia	999999ac
> W SLL_Y[31:0]	00005580	00000028	bcdef120	cdef1200	00005580
> W SRL_Y[31:0]	00000001	00000002	0abcdef1	GOAbcdef	00000001
> W SRA_Y[31:0]	00000001	00000002	fabcdef1	ffabcdef	00000001
> W ADD_Y[31:0]	000000b2	000000C	abcdef16	abcdefia	000000b2
> W SUB_Y[31:0]	000000a4	00000008	abcdefee	abcdefea	000000a4
> W MUL_Y[31:0]	000004ad	00000014	0003bc48	00077890	909094ad

Figure 3: Full ALU behavioural waveform

Figure 3 shows the same 4 input cases for the each operations and the expected outputs in the tables above. The ALU is correctly implemented as there are no discrepencies between the expected outputs and the real outputs. When a working behavioural waveform was generated, a post implementation waveform was also generated to show the ALU implementation with timing taken into account.

Figure 4: Full ALU post-implementation timing waveform

Figure 4 shows the timing and delays of each operation given four sets of inputs. It is important to note here that the multiplication circuit has a significant delay because the circuit is made up of a chain of ripple-carry adders which in turn are a chain of full adders. This complexity will cause a large delay in calculating multiplication outputs.

Execute Stage

To test the execute stage, one simply needs to test a small subset of the operations of the ALU as well as the execute stage's select signals. A table is shown to illustrate the nature of the execute stage's test bench.

Table 4: Inputs and expected outputs of Execute Stage

RegSrcA	RegSrcB	SignImm	ALUSrc	ALUOp	ALUResult
0x0	0x3	-	0	ADD	0x3
0x2	-	Oxffffffff	1	ADD	0x1
0xFF	-	0x8	1	SLL	0xFF00
OxABCD	0xFFFF	-	0	MUL	0xabcc5433

Table 4 shows the inputs and expected output of the execute stage. All of the passthrough

output signals shown in Figure 2 are automatically tested by passing an alternating signals to the inputs and verifying the outputs are the same. Notice how SignImm and RegSrcB are marked with – or dont-care when the ALUSrc is not selecting them as an input to the ALU. This test only runs a subset of the valid ALU operations because its purpose is to test only the Execute stage. Waveforms were generated for the testcases outlines in Table 4.

Figure 5: Full Execute Stage behavioural waveform

A post-implementation timing simulation was also run for the execute stage to show the delays associated with this component.

Figure 6: Full Execute Stage post-implementation timing waveform

The delays shown in Figure 6 are slightly longer than the ones shown in Figure 5 because there is extra logic to select between the ALU inputs. Because of this long delay seen in the execute stage, the clock period may not be shorter than about 30ns and the execute stage should be placed in its own clock cycle in the pipeline. This is because any shorter clock period will result in passing an unstable value through the pipeline for MUL operations.

Conclusion

This laboratory exercise the complete ALU along with the MIPS execute stage were implemented. To finish the ALU from exercise 1, a ripple carry adder and an unsigned integer multipler circuit were written. The execute stage provided some logic to select inputs into the ALU as well as passthrough signals given from the decode stage. This exercise was successful as it properly implementation the ALU and Execute stage with a proper corpus of tests written for each component.

Demo results

Part1

Name	Value	0.000 ns 50.000 ns	100,000 ns 150,000 ns	200.000 ns 250.000 ns	300.000 ns 350.000 ns
> W A[31:0]	000000ab	0000000a	abc	def12	999999ab
> W B[31:0]	00000007	00000002	00000004	00000008	0000007
> W OR_Y[31:0]	000000af	0000000a	abcdef16	abcdef1a	000000af
> W AND_Y[31:0]	00000003	00000002	000	00000	00000003
> W XOR_Y[31:0]	000000ac	00000008	abcdef16	abcdefia	00000ac
> W SLL_Y[31:0]	00005580	00000028	bcdef120	cdef1200	00005580
> W SRL_Y[31:0]	00000001	00000002	0abcdef1	00abcdef	00000001
> W SRA_Y[31:0]	00000001	00000002	fabcdef1	ffabcdef	0000001
> W ADD_Y[31:0]	000000b2	00000000	abcdef16	abcdefia	000000b2
> W SUB_Y[31:0]	000000a4	00000008	abcdef0e	abcdef@a	00000084

Figure 7: Behavioural simulation of ALU (without MUL)

Figure 8: Post-synthesis timing simulation of ALU

Figure 9: Post-implementation timing simulation of ALU

Figure 10: Utilization report on Baysis 3 board

Part2

Figure 11: Bitstream successfully generated for 4-bit ALU

											500.000 ns
Name	Value	0.000 ns	50.000 ns	100.000 ns	150.000 ns	200.000 ns	250.000 ns	300.000 ns	350.000 ns	400.000 ns	450.000 ns
> W a[15:0]	abcd		96	10 0040			abcd				
> W b[15:0]	m	- 00	0002		99	004		ef12		rrrr	
> W p[31:0]	abcc5433	0000	10020	0000	0040	0000	30100	8076	776a	abc	5433
> 💖 test_vector_array[0:4]	(0010,0002,0000002			(0010,0002,0000	0020),(0010,0004,00	000040),(0040,0004	4,00000100),(abcd,e	f12,a070776a),(abcd	,ffff,abcc5433)		

Figure 12: Behavioral simulation of multiply

Figure 13: Post-synthesis timing simulation of multiply

Figure 14: Post-implementation timing simulation of multiply

Figure 15: Full ALU behavioral simulation

Figure 16: Post-synthesis timing simulation of full ALU

Figure 17: Post-implementation timing simulation of full ALU

Name	Value	10.000 ns	50.000 ns	(100.000 ns	158.800 ns	200.000 ns	250.000 ns	300.000 ns	(350.000 ns	1400.000 ns	450.000 ns	
		0.000 115	50.000 115	100.000 115	150.000 115	200.000 113	200.000 113	300.000 113	350.000 113	400.000 113	450.000 115	
√ ALUSrc	0											
RegDst Re	1											
> W ALUControl[3:0]	6			·	4			X	Ċ	X .	9	
> W RtDest[4:0]	00						00					
> W RdDest[4:0]	01			1	1		01		1			
> W RegSrcA[31:0]	0000abcd	000	00000	*	000	00002		000	DOOFF	0000	abcd	
> W RegSrcB[31:0]	0000fff		0000003						1	00001111		
> W SignImm[31:0]	8000000			fff	rrrr			*	000	00000008		
> W ALUResult[31:0]	abcc5433	000	00003	*	00000001			000	offee	abcc	5433	
> W WriteReg[4:0]	01		99	X	1			01				
> WriteData[31:0]	0000ffff			1	000	9003			1	0000ffff		
RegWrite RegWrite	0											
MemToReg	0											
¼ MemWrite	0											
¼ RegWriteOut	0											
MemToRegOut MemTo	0											
MemWriteOut MemWr	0											

Figure 18: Complete Execute Stage behavioral simulation

Figure 19: Complete Execute Stage post-implementation timing simulation