Transformer architecture + convolutional architecture

by Sriyal Jayasinghe, Maxi Fischer, Sophie Gräfnitz

Attention is all you need

by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones

Modern NMT Architecture

src = Attention is all you need explained

Limitations

- Sequential processing
 - o GPUs work far better for parallel inputs
- Difficulty of learning long-range dependencies

src = Attention is all you need explained

The Proposed Model

- Directly learn the dependencies using the attention mechanism
- Processes all the tokens in parallel and learns to "attend" only the relevant information

Attention Mechanism

- computes the relevance of a set of values(information) based on some keys and queries
- Uses "Scaled Dot-Product Attention"

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-Head Attention

 With a single attention it is difficult to captapplies different linear

Applies different linear transformations

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Convolutional Sequence to Sequence Learning

by Jonas Gehring, Michael Auli, David Grangster, Denis Yarats, Yans D. Dauphin

Introduction

- published 25.07.2017
- fully convolutional model (encoding and decoding)
- new level of performance in several benchmark tests
- several advantages:
 - speed (parallelizable),
 - use of compositional language structure

Convolutional NN vs RNN

- Convolutional:
- context is always represented in fixed size
- convolutions and pooling do not depend on previous computations
- hierarchical representation
- for a word distance of n, kernel size k,
 O(n/k) steps needed

- Recurrent NN
- size of context depends on sentence length
- hidden states build up context consecutively
- chain representation
- O(n)

Convolutional Block Structure

- input is embedded in distributional space and combined with positional embeddings
- each block (= layer) contains 1-D convolution and
- **GLU** (Gated linear outputs):
 - o input $Y = [AB] \in \mathbb{R}^{2d}$, A, B $\in \mathbb{R}^d$
 - o output $v([AB]) = A \times \sigma(B)$
 - \circ with σ the nonlinear gate function
 - × the elementwise multiplication)

Residual connection

- output of a block consists of convolution output and input to convolution (first box: encoder, second box: decoder)
- this "skip connection" influences gradient without need of passing a non-linear gate function
- easier optimization and reduction of training error

Multi-Step Attention vs. Multi-Head Attention

- additive vs. multiplicative addition

VS.

Output Generation

- goal: maintain activation variance throughout whole network
- actions:
 - normalization of input and output of residual connections
 - output is fed back to attention mechanism
- prediction of target words:

$$p(y_{i+1}|y_1,\ldots,y_i,\mathbf{x}) = \operatorname{softmax}(W_o h_i^L + b_o) \in \mathbb{R}^T$$

Benchmark Results

WMT'14 English-German	BLEU	
Wu et al. (2016) GNMT	26.20	
Wu et al. (2016) GNMT + RL	26.30	
ConvS2S	26.43	

WMT'14 English-French	BLEU
Zhou et al. (2016)	40.4
Wu et al. (2016) GNMT	40.35
Wu et al. (2016) GNMT + RL	41.16
ConvS2S	41.44
ConvS2S (10 models)	41.62

Table 2. Accuracy of ensembles with eight models. We show both likelihood and Reinforce (RL) results for GNMT; Zhou et al. (2016) and ConvS2S use simple likelihood training.

Kernel width	Encoder layers		
	5	9	13
3	20.61	21.17	21.63
5	20.80	21.02	21.42
7	20.81	21.30	21.09

Table 7. Encoder with different kernel width in terms of BLEU.

Kernel width	Decoder layers		
	3	5	7
3	21.10	21.71	21.62
5	21.09	21.63	21.24
7	21.40	21.31	21.33

Table 8. Decoder with different kernel width in terms of BLEU.