ROYAUME DU MAROC

Ministère de l'Agriculture, de la Pêche Maritime, du Développement Rural et des Eaux et Forêts

مباراة لتوظيف مهندسي الدولة من الدرجة الأولى

بتاريخ : 04 ماي 2025

الشعبة: هندسة البيانات / هندسة علم البيانات في الفلاحة

المدة: ثلاث (3) ساعات

المعامل: 4

Partie I: Traiter, au choix, l'un des deux sujets suivants (8 pts)

Sujet 1:

Dans le cadre de la Stratégie Génération Green, le Maroc cherche à renforcer la durabilité agricole.

L'ingénierie des données pourrait optimiser l'irrigation et améliorer la gestion des ressources. Dans quelle mesure cette discipline peut-elle transformer l'agriculture et ses pratiques au Maroc ?

Sujet 2:

Les technologies de la data science et de l'intelligence artificielle peuvent-elles transformer durablement l'agriculture face aux défis climatiques, économiques et alimentaires ?

Partie II: Traiter les trois exercices suivants (12 pts)

Exercice 1 – Ingénierie des Données en Agriculture

Contexte:

Vous travaillez pour une entreprise spécialisée dans l'analyse des rendements agricoles. On dispose de deux tables dans une base **PostgreSQL** :

Tables disponibles:

```
1. parcelles
```

```
CREATE TABLE parcelles (
  id_parcelle SERIAL PRIMARY KEY,
  nom_parcelle VARCHAR(50),
  superficie_ha NUMERIC(5,2),
  region VARCHAR(50)
);
```

2. recoltes

```
CREATE TABLE recoltes (
  id_recolte SERIAL PRIMARY KEY,
  id_parcelle INT REFERENCES parcelles(id_parcelle),
  culture VARCHAR(50),
  annee INT,
  rendement_tonnes NUMERIC(6,2)
);
```

Questions:

- 1. Écrire une requête SQL pour afficher le rendement moyen par culture et par région pour l'année 2024.
- 2. Écrire une requête SQL permettant d'identifier les parcelles dont le rendement est inférieur de plus de 20% à la moyenne régionale pour cette culture et cette année.

- 3. Écrire une requête SQL listant les 3 cultures les plus rentables (au total) sur l'ensemble des années, avec leur rendement cumulé.
- 4. Créer une vue nommée vue_rendement_par_parcelle affichant, pour chaque parcelle, la culture dominante (celle avec le meilleur rendement moyen) et sa moyenne.

Exercice 2 - Analyse des Intrants Agricoles

Contexte:

Vous êtes chargé d'optimiser l'utilisation des intrants agricoles (engrais, pesticides) par culture et par parcelle. Votre mission est de produire des indicateurs utiles à l'analyse de la rentabilité et de l'efficacité des pratiques agricoles.

Tables disponibles:

1. intrants_utilises

```
CREATE TABLE intrants_utilises (
   id_utilisation SERIAL PRIMARY KEY,
   id_parcelle INT,
   date_utilisation DATE,
   type_intrant VARCHAR(50), -- 'engrais', 'pesticide', etc.
   quantite_kg NUMERIC(6,2),
   cout_total NUMERIC(10,2)
);
```

2. recoltes

```
CREATE TABLE recoltes (
   id_recolte SERIAL PRIMARY KEY,
   id_parcelle INT,
   culture VARCHAR(50),
   annee INT,
   rendement_tonnes NUMERIC(6,2)
);
```

Questions:

- 1. Calculer le coût moyen des intrants par parcelle et par culture pour l'année 2024.
- 2. Identifier les parcelles où le coût par tonne produite dépasse 500 MAD.
- 3. Déterminer, pour chaque type d'intrant, la quantité totale utilisée par culture en 2024.
- 4. Créer une vue listant, pour chaque parcelle, la rentabilité nette estimée (rendement * 2000 MAD coût total des intrants).

ROYAUME DU MAROC

Ministère de l'Agriculture, de la Pêche Maritime, du Développement Rural et des Eaux et Forêts

Exercice 3: Modélisation statistique

Contexte:

On dispose de données collectées sur plusieurs parcelles agricoles. Chaque observation contient :

- Volume d'eau injecté (litres)
- Température ambiante (°C)
- Type de sol (argileux, sableux, limoneux)
- Humidité avant irrigation (%)
- Humidité après irrigation (%)

L'objectif de cet exercice est de **modéliser** l'augmentation d'humidité (ΔH) pour prévoir les résultats selon les conditions d'irrigation.

Données simulées:

Volume_eau (L)	Température (°C)	Type_sol	Humidité_ava nt (%)	Humidité_ap rès (%)
50	25	Argileux	30	40
60	28	Sableux	25	31

45	27	Limoneux	35	42
70	26	Argileux	28	39
55	29	Sableux	32	36
40	24	Limoneux	38	44

Questions:

- 1. Calculer la moyenne de ΔH par type de sol.
- 2. Proposer une **régression linéaire multiple** pour expliquer l'augmentation d'humidité ΔH en fonction de :
 - a. Volume_eau
 - b. Température
 - c. Type de sol
- 3. Interpréter les coefficients estimés et le modèle obtenu ?