Algebra Lineare A.A. 2020-2021 Esame 11/1/2021

Soluzione dell'esame

Esercizio 1. Dato il numero complesso $z = \frac{1}{2}(\sqrt{3} + i)$ si dica (giustificando *ogni* risposta) quali delle seguenti affarmazioni sono vere e quali false:

a)
$$\bar{z} = e^{-i\frac{\pi}{6}}$$
.

b)
$$z = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$
.

c)
$$z^2 = \frac{1}{2}(1 - i\sqrt{3}).$$

d) $z^3 = i.$

d)
$$z^3 = i$$
.

Soluzione:

a) V:
$$\bar{z} = \frac{1}{2}(\sqrt{3} - i) = \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right) = e^{-i\frac{\pi}{6}}$$
.
b) F: $z = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} = e^{i\frac{\pi}{6}}$.
c) F: $z^2 = e^{i\frac{\pi}{3}} = \frac{1}{2}(1 + i\sqrt{3})$.

b) F:
$$z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} = e^{i\frac{\pi}{6}}$$

c) F:
$$z^2 = e^{i\frac{\pi}{3}} = \frac{1}{2}(1 + i\sqrt{3})$$
.

d)
$$V: z^3 = e^{i\frac{\pi}{2}} = i$$
.

Esercizio 2. Si considerino in \mathbb{R}^4 il sottospazio V generato dai primi tre vettori della base canonica

e il sottospazio
$$W$$
 dei vettori $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4$ che soddisfano le relazioni $\begin{cases} 2x_1 + x_3 = 0 \\ x_2 + x_4 = 0 \\ 2x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$.

Si dica, giustificando la risposta, se esiste un endomorfismo T di \mathbb{R}^4 tale che ker T=V e Im T=W.

Soluzione: Chiaramente, dim V=3. Inoltre:

$$\begin{cases} 2x_1 + x_3 = 0 \\ x_2 + x_4 = 0 \\ 2x_1 + x_2 + x_3 + x_4 = 0 \end{cases} \Rightarrow \begin{cases} x_3 = -2x_1 \\ x_4 = -x_2 \end{cases}.$$

Ne segue

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ -2x_1 \\ -x_2 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\} = \operatorname{Span} \left(\begin{pmatrix} 1 \\ 0 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \right),$$

e quindi dim W=2. Per il teorema della dimensione, non esiste un endomorfismo $T:\mathbb{R}^4\to\mathbb{R}^4$ tale che ker T = V e Im T = W, infatti dim ker $T + \dim \operatorname{Im} T = 3 + 2 = 5 \neq \dim \mathbb{R}^4 = 4$.

Esercizio 3. Data la matrice

$$A_k = \begin{pmatrix} 1 & 1 & 1 & 0 \\ k & -1 & 0 & k \\ 3 & 1 & 2 & 0 \\ 1 & 1 & k & 1 - k \end{pmatrix}$$

con $k \in \mathbb{R}$, determinare:

i) il rango di A_k al variare di k;

- ii) il nucleo e l'immagine di L_{A_k} al variare di k, indicando per tali sottospazi la dimensione e una base;
- iii) i valori di k per cui l'applicazione lineare L_{A_k} associata ad A_k è iniettiva, suriettiva, bigettiva.
- iv) Posto k=1 sia $E=\ker L_{A_1}$. Si determini una base del complemento ortogonale E^{\perp} di E.

Soluzione:

i)
$$\det A_k = k \det \begin{pmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & k \end{pmatrix} + (1-k) \det \begin{pmatrix} 1 & 1 & 1 \\ k & -1 & 0 \\ 3 & 1 & 2 \end{pmatrix} = k \left(\det \begin{pmatrix} 1 & 2 \\ 1 & k \end{pmatrix} - \det \begin{pmatrix} 3 & 2 \\ 1 & k \end{pmatrix} + \det \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \right) + (1-k) \left(\det \begin{pmatrix} k & -1 \\ 3 & 1 \end{pmatrix} + 2 \det \begin{pmatrix} 1 & 1 \\ k & -1 \end{pmatrix} \right) = k(k - 2 - 3k + 2 + 3 - 1) + (1-k)(k + 3 - 2 - 2k) = k(-2k + 2) + (1-k)^2 = (1-k)(2k + 1 - k) = (1-k)(1+k).$$

Poiché det $A_k = 0 \Leftrightarrow k = \pm 1$, $\operatorname{rg} A_k = 4$ per ogni $k \neq \pm 1$.

Per k = 1, rg $A_1 = 3$ in quanto det $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} = -1 \neq 0$, dove $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$ è una sottomatrice di ordine 3 di A_1 .

Per
$$k=-1$$
, rg $A_{-1}=3$ in quanto $\det\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & -1 \\ 1 & 2 & 0 \end{pmatrix}=1\neq 0$, dove $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & -1 \\ 1 & 2 & 0 \end{pmatrix}$ è una sottomatrice di ordine 3 di A_{-1} .

ii) Sfrutto il punto i). Per $k \neq \pm 1$ ker $L_{A_k} = \{\mathbf{0}\}$ e dim $\mathrm{Im} L_{A_k} = \mathrm{rg} A_k = 4$. Ne segue che $\mathrm{Im} L_{A_k} = \mathbb{R}^4$ e una sua base è, ad esempio, la base canonica di \mathbb{R}^4 .

Per k = 1, $rgA_1 = 3$ implica per il teorema della dimensione che dim $\ker L_{A_1} = 1$. Per trovarne una base calcoliamo:

$$A_{1}\mathbf{x} = \mathbf{0} \to \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 3 & 1 & 2 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \to \begin{cases} x_{1} + x_{2} + x_{3} = 0 \\ x_{1} - x_{2} + x_{4} = 0 \\ 3x_{1} + x_{2} + 2x_{3} = 0 \end{cases} \to \begin{cases} x_{2} = x_{1} \\ x_{4} = 0 \\ x_{3} = -2x_{1} \end{cases}.$$

Pertanto $\mathcal{B}_{\ker L_{A_1}} = \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \end{pmatrix} \right\}$. Una base di $\operatorname{Im} L_{A_1}$ è invece costituita da tre qualsiasi colonne

linearmente idipendenti di
$$A_1$$
, ed esempio $\mathcal{B}_{\text{Im}L_{A_1}} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\}.$

Per k=-1, $\operatorname{rg} A_{-1}=3$ implica per il teorema della dimensione che dim $\ker L_{A_{-1}}=1$. Per trovarne una base calcoliamo:

$$A_{-1}\mathbf{x} = \mathbf{0} \to \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & -1 & 0 & -1 \\ 3 & 1 & 2 & 0 \\ 1 & 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \to \begin{cases} x_1 + x_2 + x_3 = 0 \\ -x_1 - x_2 - x_4 = 0 \\ 3x_1 + x_2 + 2x_3 = 0 \\ x_1 + x_2 - x_3 + 2x_4 = 0 \end{cases} \to \begin{cases} x_2 = x_1 \\ x_4 = -2x_1 \\ x_3 = -2x_1 \end{cases}.$$

Pertanto
$$\mathcal{B}_{\ker L_{A_{-1}}} = \left\{ \begin{pmatrix} 1\\1\\-2\\-2 \end{pmatrix} \right\}$$
. Una base di $\operatorname{Im} L_{A_{-1}}$ è invece costituita da tre qualsiasi colonne

linearmente idipendenti di
$$A_{-1}$$
, ed esempio $\mathcal{B}_{\operatorname{Im}L_{A_{-1}}} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 0 \\ 2 \end{pmatrix} \right\}.$

- iii) Per i punti i) e ii), L_{A_k} è iniettiva e suriettiva (quindi bigettiva) per $k \neq \pm 1$, non è né iniettiva né suriettiva quando $k = \pm 1$.
- iv) Utilizzando il punto ii), posto $E = \ker L_{A_1}$ e ricordando che $E^{\perp} = \left\{ \mathbf{x} \in \mathbb{R}^4 : \mathbf{x} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \end{pmatrix} = 0 \right\}$, si

ha

$$E^{\perp} = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 : x_1 + x_2 - 2x_4 = 0 \right\} = \left\{ \begin{pmatrix} -x_2 + 2x_4 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \right\}.$$

Pertanto una base di
$$E^\perp$$
 è $\mathcal{B}_{E^\perp} = \left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\0\\1 \end{pmatrix} \right\}.$

Esercizio 4. Si dia la definizione di matrice associata a un'applicazione lineare $T: V \to W$ rispetto alle basi $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ di V e $\mathcal{C} = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ di W.

Soluzione:

La matrice A associata a un'applicazione lineare $T: V \to W$ rispetto alle basi $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ di V e $\mathcal{C} = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ di W è la matrice $m \times n$ che ha come colonne le componenti dei vettori $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ rispetto ai vettori della base \mathcal{C} di W. Se

$$T(\mathbf{v}_1) = a_{11}\mathbf{w}_1 + a_{21}\mathbf{w}_2 + \dots + a_{m1}\mathbf{w}_m;$$

. . .

$$T(\mathbf{v}_n) = a_{1n}\mathbf{w}_1 + a_{2n}\mathbf{w}_2 + \dots + a_{mn}\mathbf{w}_m,$$

allora

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Esercizio 5. Sia

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

- a) Calcolare gli autovalori di A.
- b) Mostrare che A è diagonalizzabile e trovare una matrice diagonale D e una matrice invertibile B tali che $B^{-1}AB = D$ (non è necessario verificare quest'ultima uguaglianza).

Soluzione:

a)
$$p_A(\lambda) = \det(\lambda I - A) = \det\begin{pmatrix} \lambda - 1 & 0 & 0 \\ -1 & \lambda - 1 & -1 \\ -1 & -1 & \lambda + 1 \end{pmatrix} = (\lambda - 1)((\lambda - 1)(\lambda + 1) - 1) = (\lambda - 1)(\lambda^2 - 2) = 0 \Leftrightarrow \lambda = 0, \pm \sqrt{2}.$$

$$\operatorname{Spec} A = \{0, -\sqrt{2}, \sqrt{2}\}.$$

b) La matrice 3×3 A ha 3 autovalori distinti, quindi è diagonalizzabile. Troviamo gli autospazi relativi a ciascun autovalore.

Per trovare V_1 risolviamo il sistema omogeneo $(I - A)\mathbf{x} = \mathbf{0}$:

$$\begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \to \begin{cases} -x_1 - x_3 = 0 \\ -x_1 - x_2 + 2x_3 = 0 \end{cases} \to \begin{cases} x_3 = -x_1 \\ x_2 = -3x_1 \end{cases}.$$

Ne segue che $V_1 = \text{Span}\left(\begin{pmatrix} 1\\ -3\\ -1 \end{pmatrix}\right)$.

Per trovare $V_{-\sqrt{2}}$ risolviamo il sistema omogeneo $(-\sqrt{2}I-A)\mathbf{x}=\mathbf{0}$:

$$\begin{pmatrix} -\sqrt{2} - 1 & 0 & 0 \\ -1 & -\sqrt{2} - 1 & -1 \\ -1 & -1 & -\sqrt{2} + 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} (-\sqrt{2} - 1)x_1 = 0 \\ -x_1 + (-\sqrt{2} - 1)x_2 - x_3 = 0 \\ -x_1 - x_2 + (-\sqrt{2} + 1)x_3 = 0 \end{cases} \rightarrow \begin{cases} x_1 = 0 \\ x_2 = (-\sqrt{2} + 1)x_3 \end{cases}.$$

Ne segue che $V_{-\sqrt{2}} = \operatorname{Span}\left(\begin{pmatrix} 0\\ 1-\sqrt{2}\\ 1 \end{pmatrix}\right).$

Per trovare $V_{\sqrt{2}}$ risolviamo il sistema omogeneo $(\sqrt{2}I-A)\mathbf{x}=\mathbf{0}$:

$$\begin{pmatrix} \sqrt{2} - 1 & 0 & 0 \\ -1 & \sqrt{2} - 1 & -1 \\ -1 & -1 & \sqrt{2} + 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} (\sqrt{2} - 1)x_1 = 0 \\ -x_1 + (\sqrt{2} - 1)x_2 - x_3 = 0 \\ -x_1 - x_2 + (\sqrt{2} + 1)x_3 = 0 \end{cases} \rightarrow \begin{cases} x_1 = 0 \\ x_2 = (\sqrt{2} + 1)x_3 \end{cases}.$$

Ne segue che $V_{\sqrt{2}} = \operatorname{Span}\left(\begin{pmatrix} 0\\ 1+\sqrt{2}\\ 1 \end{pmatrix}\right).$

Posto

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 - \sqrt{2} & 1 + \sqrt{2} \\ -1 & 1 & 1 \end{pmatrix},$$

si ha $D = B^{-1}AB$.