INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM 695 547

Backlog Examination - May 2016

B. Tech - II Semester

MA121 - Vector Calculus and Differential Equations

Date: 06/05/2016 Time: 9.30 am - 12.30 pm Max. Marks: 100

SECTION A (Attempt all 10 questions - 10x5= 50 marks.)

- 1. Find the general solution of $\frac{d^2y}{dx^2} xf(x)\frac{dy}{dx} + f(x)y = 0$.
- 2. Find a particular solution of $y'' + y = \csc x$, by using method of variation of parameters.
- 3. Find the general solution of $(D-2)^3y = e^{2y}\sin y$, where $D \equiv \frac{d}{dx}$.
- 4. Solve the differential equation $(e^y 2xy)\frac{dy}{dx} = y^2$.
- 5. Check whether the sequence $f_n(x) = \frac{n \ln x}{x^n}$, $x \in [1, \infty)$ converges uniformly on the given interval.
- 6. Show that the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ converges uniformly on [0,1].
- 7. Define directional derivative of a function $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ at a point P_0 along a vector \vec{v} . Check whether the directional derivative of $f(x, y, z) = ze^{xy}$ at the point $P_0 = (1, 1, 1)$ along the vector $\vec{v} = (0, 4, 3)$ exists, and if exists find the value of the directional derivative.
- 8. State Green's theorem over simply-connected regions. Let D be an elliptical region on xy-plane given by $D = \left\{ (x,y) \middle| \frac{x^2}{16} + \frac{y^2}{4} \leq 1 \right\}$. With explanation find the area of the region D using Green's theorem . [1+4]
- 9. Define arc length function of a continuously differentiable curve $\gamma:[a,b] \longrightarrow \mathbb{R}^3$. Find arc length function of the curve $C:y=4x^2,\ z=5,\ x\geq 0$ with initial point (0,0,5). [2+3]
- 10. Let \vec{F} be a continuous vector field such that $\vec{F} = \nabla f$ on \mathbb{R}^3 . Let $C = \gamma : [a, b] \longrightarrow \mathbb{R}^3$ be a continuously differentiable curve. Show that $\int_C \vec{F} = f(\gamma(b)) f(\gamma(a))$. [5]

SECTION B (Attempt any 5 questions - 5x10= 50 marks.)

11. Find the general solution of the following equation

$$2x^{2}\frac{d^{2}y}{dx^{2}} + x(2x+1)\frac{dy}{dx} - y = 0$$

- 12. (a) Show that $J_{-m}(x) = (-1)^m J_m(x)$.
 - (b) Show that between any two positive zeros of $J_1(x)$ there is a zero of $J_0(x)$.
- 13. (a) Let $\{f_n(x)\}$ be a sequence of continuous functions defined on a finite interval [a, b]. Suppose that $\{f_n(x)\}$ converges uniformly to f on [a, b]. Then show that

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx.$$

[5]

[5]

State whether the converse of this statement is true or false.

(b) Compute the following with appropriate justification:

$$\lim_{n \to \infty} \int_0^1 \frac{\sin nx}{n + x^2} dx.$$

- 14. (a) Suppose that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly to a function F on an interval I. Let each f_n be continuous on I. Then prove that F is also continuous on I. [3]
 - (b) Consider the function $F(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{1 + x^{2n}}, \quad x \in (0, 2/3)$. Show that F is continuous on the interval (0, 2/3).
- 15. (a) State Stoke's theorem for simply-connected surfaces. Verify Stoke's theorem for $\mathbf{F}=(\mathbf{x},\ \mathbf{y},\ \mathbf{0})$ over the surface $S:\ x^2+y^2+z^2=1,\ z\geq 0$ [5]
 - (b) Let $\mathbf{F} = \left(\frac{-\mathbf{y}}{\mathbf{x}^2 + \mathbf{y}^2}, \frac{\mathbf{x}}{\mathbf{x}^2 + \mathbf{y}^2}\right)$. Find the domain of \mathbf{F} . Calculate $Curl(\mathbf{F})$. Using Green's theorem for multiply connected domains show that for any simple loop C around the point (0,0), we have $\int_C \mathbf{F} = 2\pi$. [1+1+3]
- 16. Define conservative vector field. Let

$$\vec{F}(x, y, z) = (y \exp(x + y) + xy \exp(x + y) + yz, x \exp(x + y) + xy \exp(x + y) + xz, xy)$$

for all $(x,y,z) \in \mathbb{R}^3$. Find the domain of F. Let $C = C_1 * C_2 * C_3$ be a curve where C_1 is the line segment from (-2,-1,5) to (-1,0,5), C_2 is given by $x^2 + y^2 = 1$, z = 5, $y \le 0$ and C_3 is the line segment from (1,0,5) to (2,-1,5). Show that the vector field F is conservative. Find the gradient function of \vec{F} . Find $\int_C \vec{F}$, if exists. Is the integral path independent? Justify your answer. [1+2+2+3+2]

END