WORKSHOP

Spatiotemporal analysis of ecological time series

https://github.com/James-Thorson

When: Feb. 12-14, 2020 in Traynor Room at AFSC, Seattle

Instructor: James Thorson (HEPR), Cole Monnahan (REFM-SSMA), Cecilia O'Leary (RACE-GAP)

Attendance

- Maximum in-person attendance: 30 participants
- Off-site attendance: unlimited (but instructors will provide no support except streaming access)
- Sign-up: Sign-up for 2020-02 training in Seattle
- Principle for selecting attendees: 2-3 people per program (for AFSC/NWFSC programs) or institution (for academic and/or other science centers/agencies)
- Final selection will be made by Dec. 13, 2019

Remote access:

Join Hangouts Meet

meet.google.com/tpr-hczg-qwz

Join by phone

+1 226-213-8281 PIN: 872 489 231 9362#

Class materials: See google drive: 2020-02 -- VAST training in Seattle

Installation instructions (to be completed ahead of time):

1. Install R and TMB, and check that its working:

https://github.com/nwfsc-assess/geostatistical_delta-GLMM/wiki/Steps-to-install-TMB

- If necessary, install compiler/command line developer tools (Windows/macOS):
 - o https://github.com/kaskr/adcomp/wiki/Download
- 2. Install R package FishStatsUtils: `devtools::install github("james-thorson/FishStatsUtils")
 - macOS: Ensure that gfortran version is installed (8.2 also works for macOS >10.14)
 - https://github.com/fxcoudert/gfortran-for-macOS/releases
- **3.** Install R package VAST: `devtools::install_github("james-thorson/VAST")
- **4.** Confirm that VAST is working by following the script here:

https://github.com/James-Thorson-NOAA/VAST/wiki/Simple-example

Learning goals:

- Day 1: Provide background for VAST, and show how to use User Manual, reference documentation, and simple examples
- Day 2: Demonstrate how to incorporate covariates, change the extrapolation-area, and explore standard outputs

• Day 3: Demonstrate multivariate models, e.g., for use in expanding age-composition data, generating ecosystem indices, expanding stomach contents, and analysing life-history

Day #1 - Vector autoregressive spatio-temporal (VAST) models for stock, habitat, and climate assessments

Time	Topic	Materials	Readings
9-9:30 (JIM)	Overview of VAST • Types of assessment • Case study examples	Thorson 2019 Fish Res VAST decision tree.pptx	(Thorson 2019a)
9:30-10 (JIM)	Examples of current uses • Combine northern and eastern Bering Sea • Spatially varying coefficients	 Thorson [Not published] Combine EBS and NBS data for pollock 2018 SAFE.pptx Thorson 2019 Limnology and Oceanography spatially-varying coefficient models.pptx 	(Thorson 2019b)
10-11 (JIM)	User resources for VAST • User manual • Reference docs • Simple examples	VAST website and wiki https://github.com/James-Thorso n-NOAA/VAST/#user-resource s-for-learning-about-vast VAST_inputs & outputs reference docs	
11-11:30	Break		
11:30-12:30 (JIM)	Code tutorial for VAST, and interpretation of standard outputs	Simple examples on wiki: www.github.com/James-Thors on-NOAA/VAST/wiki	
12:30-1:30	Lunch		
1:30-2:00 (JIM)	Bootstrap simulator	Bootstrap example on wiki: https://github.com/James-Thorso n-NOAA/VAST/wiki/Simulatori	

2:00-3:00 (JIM)	Discussion of previous simulation testing		(Brodie et al. In press; Grüss et al. 2019; Johnson et al. 2019)
3:00-3:30	Break		
3:30-5:00	Work in teams on topics identified during class (instructors will circulate)		

Day #2 — Covariates, extrapolation-area, and standard outputs

Time	Topic	Materials	Readings
9-10 (COLE)	Density and catchability covariates	[Cole will provide materials]	
10-11 (JIM)	Formula interface and tutorial	https://github.com/James-Thors on-NOAA/VAST/wiki/Specifying -covariates	
11-11:30	Break		
11:30-12:30 (CECILIA)	Defining new extrapolation areas	[Cecilia will provide materials]	
12:30-1:30	Lunch		
1:30-2:30 (JIM)	Discussion of common outputs		
2:30-3:00 (COLE AND DAVE)	Acoustic data application and considerations		
3:00-3:30	Break		
3:30-5:00	Work in teams		

Day #3 –VAST and multivariate modelling options, e.g., for use in expanding age-composition data, generating ecosystem indices, expanding stomach contents, and analysing life-history

Time	Topic	Materials	Readings
9-10 (CECILIA)	Expanding age-composition data	Thorson and Haltuch 2018 CJFAS Spatio-temporal expansion of composition data.pptx https://github.com/James-Thors	(Thorson and Haltuch 2018)
		on-NOAA/VAST/wiki/Expand-ag e-and-length-composition	
10-11 (JIM)	Joint dynamic species distribution models	Thorson Ianelli Larsen Ries Scheuerell Szuwalsky Zipkin 2016 GEB SDFA in Bering Sea.pptx	(Thorson <i>et al.</i> 2016; Ovaskainen <i>et al.</i> 2017)
		https://github.com/James-Thors on-NOAA/VAST/wiki/Ordination	
11-11:30	Break		
11:30-12:30 (JIM)	Empirical orthogonal functions	Empirical Orthogonal functions: Thorson Ciannelli Litzow [In preparation] Pacific biological oscillation.pptx	In review
12:30-1:30	Lunch		
1:30-2:00 (JIM)	MICE in space	Thorson Adams Holsman 2019 Fish and Fisheries MICE in space.pptx https://github.com/James-Thorson-NOAA/VAST/wiki/MICE-in-s	(Thorson <i>et al.</i> In press)
		pace	
2:00-2:30 (ARNAUD)	Stomach content data		

2:30-3:00 (ARNAUD)	Relative condition factor	
3:00-3:30	Break	
3:30-5:00	Work in teams on topics identified during class (instructors will circulate)	

Works cited

- Brodie, S., Thorson, J.T., Carroll, G., et al. (In press) Trade-offs in covariate selection for species distribution models: a methodological comparison. *Ecography*. doi:10.1111/ecog.04707.
- Grüss, A., Walter, J.F., Babcock, E.A., Forrestal, F.C., Thorson, J.T., Lauretta, M.V. and Schirripa, M.J. (2019) Evaluation of the impacts of different treatments of spatio-temporal variation in catch-per-unit-effort standardization models. *Fisheries Research* **213**, 75–93. doi:10.1016/j.fishres.2019.01.008.
- Johnson, K.F., Thorson, J.T. and Punt, A.E. (2019) Investigating the value of including depth during spatiotemporal index standardization. *Fisheries Research* **216**, 126–137. doi:10.1016/j.fishres.2019.04.004.
- Ovaskainen, O., Tikhonov, G., Norberg, A., et al. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. *Ecology Letters* **20**, 561–576. doi:10.1111/ele.12757.
- Thorson, J.T. (2019a) Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. *Fisheries Research* **210**, 143–161. doi:10.1016/j.fishres.2018.10.013.
- Thorson, J.T. (2019b) Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool extent in the eastern Bering Sea. *Limnology and Oceanography* **64**, 2632–2645. doi:10.1002/lno.11238.
- Thorson, J.T., Adams, G. and Holsman, K. (In press) Spatio-temporal models of intermediate complexity for ecosystem assessments: A new tool for spatial fisheries management. *Fish and Fisheries*. doi:10.1111/faf.12398.
- Thorson, J.T. and Haltuch, M.A. (2018) Spatiotemporal analysis of compositional data: increased precision and improved workflow using model-based inputs to stock assessment. *Canadian Journal of Fisheries and Aquatic Sciences*, 1–14. doi:10.1139/cjfas-2018-0015.
- Thorson, J.T., Ianelli, J.N., Larsen, E.A., Ries, L., Scheuerell, M.D., Szuwalski, C. and Zipkin, E.F. (2016) Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. *Global Ecology and Biogeography* **25**, 1144–1158. doi:10.1111/geb.12464.