Date: 17.09.2-24 Rcll. No:.....

III SEMESTER-B.Tech.(ECE& EiOT) MID-SEMEST Course Code:ECECC303/EIECC303 Course Title:Prob. T Time: 1:30 Hours

MID-SEMESTER EXAM, SEPT., 2024 Course Title:Prob. Th. and Random Process Max. Marks: 20

Note: -For Re-registration ie ECECCO6/EIECCO6, marks shall be scaled up to 25 marks. Attempt all questions in the given order only. Missing data/information (if any), maybe suitably assumed & mentioned in the answer.

S.	Questions	Marks	CO
No.	Questions		
1.	Let A, B, and C be three events in the sample space S. If it is	2	COI
(a)	given that $AUBUC=S,P[A]=1/2,P[B]=2/3,P[AUB]=5/6$, and		ĺ
	P[Cn(AUB)]=5/12. Find		
	a) P(A∩B).		
i	b) Do A, B, and C form a partition of S?		
	c) Using P(C-(AUB)), find P(C).		-
(b)	If we roll two dice and observe two numbers X and Y. Find	2	COI
(n)	a. P(X=2.Y=6).	"	
. !	b. P(X>3 Y=2).		
	c. If Z=X+Y, find the PMF of Z, Pz(z).		
ı İ	d. Find P(X=4 Z=8).		
2.	The PDF of a continuous r.v., X, is given by	2	COI
(a)	$\begin{cases} x_1 & 0 < x \le 1 \\ 0 & 1 < x \le 2 \end{cases}$		
. !	$f_X(x) = \begin{cases} x, & 0 < x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 0 & otherwise \end{cases}$		
. 1	Find the corresponding CDF and sketch $f_X(x)$ and $F_X(x)$.		
	, , , , , , , , , , , , , , , , , , , ,		
(b)	Let X be a Poisson r.v. with parameter λ. Derive the mean and	2	COI
	variance of this random variable.		
3.	Let $X \sim N(0, \sigma^2)$. Determine E[X X>0] and $Var[X X>0]$?	2	COI
(a)			
(b)	What does Moment Generating Function (MGF) signify? How can	2	CO1
	we obtain moments of a random variable using its MGF?		
4.	Consider the binary communication channel shown below	2	CO2
(a)	$F(Y \times G(X \times G))$		
	211		
	Fire 11x · 0)	'	
	* · · · · · · · · · · · · · · · · · · ·		
.	PASON SIL		
	8====================================		
	P(Y = 1)X = 1		
	Let (X, Y) be a bivariate r.v., where X is the input to the channel and Y is the output of the channel. Let $P(X = 0) = 0.5$,		
.	and Y is the output of the channel. Let $P(X = 0) = 0.5$, $P(Y = 1 X = 0) = 0.1$, and $P(Y = 0 X = 1) = 0.2$.		
	P(Y = 1 X = 0) = 0.1, and $P(X = 0 X = X) = 0.2$.		
	1. Joint PMF of (X, Y).		
	2. Are X and Y independent?		

(b)	Let X and Y be jointly continuous random variables with joint PDF	2	CO2
	$f_{XY}(x,y) = \begin{cases} 6 e^{-(2x+3y)}x, y \ge 0\\ 0 & otherwise \end{cases}$		
	Find		
'	1. E[Y X>2].		
	2. P[X>Y].		
5.(a)	The joint PDF of random variables X and Y is given by	2	CO2
	$f_{XY}(x,y) = \begin{cases} k & 0 < y \le x < 1\\ 0 & otherwise \end{cases}$		
	Determine		
	 the value of k. 		
	2. Are X and Y independent?		
	3. Are X and Y uncorrelated?		
(b)	Suppose the joint PMF of a bivariate r.v. (X, Y) is given by	2	CO2
	$P_{X,Y}(x_i, y_j) = \begin{cases} \frac{1}{3} & (0,1), (1,0), (2,1) \\ 0 & otherwise \end{cases}$		
	0 otherwise		
	1. Compute E[X], E[Y].		
	2. Covariance of X and Y.		ĹÌ