

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Pagina 1 din 3

Proba teoretică Barem

Problema 1 – Interferență Young

Problema 1			Barem d	e notare				Parţial	Total
			Proble	ema 1					
									10
a)								1	1
		xpresiilor					2		
și F	$F_2P = [x^2]$	$(2+(y+\frac{d}{2})$	$[2]^{1/2}$, tra	nscriem re	lația F ₂ P	$ - F_1P $:	$=\Delta$,	1	
obţir	nând ime	ediat ecuaț	ia unor hi	perbole de	e forma				
_		_				1.4	4 4 .		
$(\frac{\Delta}{2})$	$\frac{1}{2} - \frac{1}{(\frac{1}{2}\sqrt{\frac{1}{2}})}$	$\frac{x^2}{d^2 - \Delta^2}$	=1, are	caror carac	eteristici si	unt determ	inate de		
difer	ența de c	lrum∆ și o	de distanța	d dintre	fante				
b)								4,5	4,5
În noile	variabile	e (adimens	ionale),	cu explicit	area lui y	' avem d	ependența		
funcțională	$y' = \pm \Delta' \cdot [$	$\frac{1}{4} + \frac{{x'}^2}{1 - {\Delta'}^2}$	$\frac{1}{2}$] ^{1/2}					0,5	
Pent	ru valor	$\dot{y} > 0$ (d	leasupra a	xei Ox),	se obțin v	alorile nur	nerice din		
tabelul 1.									
				ELUL 1	T	T			
	x '	0,00	0,20	0,40	0,60	0,80	1,00	3,6	
$\Delta'=0,1$	у'	0,050	0,054	0,064	0,078	0,095	0,112		
$\Delta' = 0,3$	у'	0,150	0,163	0,196	0,241	0,293	0,348		
$\Delta'=0,5$	y'	0,250	0,275	0,340	0,427	0,525	0,629		
$\Delta' = 0.7$	y'	0,350	0,401	0,526	0,684	0,859	1,041		
$\Delta' = 0.9$	у'	0,450	0,611	0,941	1,318	1,712	2,113		
$\Delta' = 0.98$	у'	0,490	1,100	2,030	2,995	3,970	4,949		
			0,1p x 36	poziții = 3	3,6 p				
Cu a	iutorul v	alorilor nu	merice ob	otinute, pe	hârtia mil	imetrică. s	se trasează		
Cu ajutorul valorilor numerice obținute, pe hârtia milimetrică, se trasează curbele din figura 1. Se remarcă o creștere din ce în ce mai rapidă a valorilor lui				0,4					
y' în funcție de x' , pe măsură ce parametrul Δ' crește.				·,-					

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem

Pagina 2 din 3

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Pagina 3 din 3

Proba teoretică Barem

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Nr. item	Problema a II-a - Ascensorul spațial		Punctaj
a.	Pentru: diagrama forțelor		1,00p
	dr \overrightarrow{F}_{cfi} \overrightarrow{T}_{1} \overrightarrow{T}_{2}	1,00p	
b.	Pentru:		2,00p
	$\vec{T}_1 + \vec{F}_{cfi} + \vec{T}_2 + \vec{F}_{atr} = 0$	0,50p	
	variația forței de tensiune $dT = T_1 - T_2$ din elementul considerat $dT = G \cdot \frac{M \cdot dm}{r^2} - dm \cdot \omega^2 \cdot r$	0,50p	
	$dm = \rho \cdot A \cdot dr$	0,25p	
	$d\sigma(r) = G \cdot \frac{M \cdot \rho}{r^2} \cdot dr - \rho \cdot \omega^2 \cdot r \cdot dr$	0,25p	
	$\omega^2 = \frac{GM}{R_g^3}$	0,25p	
	$\frac{d\sigma(r)}{dr} = G \cdot M \cdot \rho \cdot \left(\frac{1}{r^2} - \frac{r}{R_g^3}\right)$	0,25p	
C.	Pentru:		2,50p
	$\sigma(r) = \mathbf{G} \cdot \mathbf{M} \cdot \rho \cdot \left(-\frac{1}{r} - \frac{r^2}{2 \cdot R_g^3} \right) + \mathbf{C}$	0,50p	
	$\sigma(R) = 0$	0,25p	
	$C = G \cdot M \cdot \rho \cdot \left(\frac{1}{R} + \frac{R^2}{2 \cdot R_g^3}\right)$	0,25p	

$\sigma(H) = 0 0.25p$		
$G \cdot M \cdot \rho \cdot (H - R) \cdot \left(\frac{1}{R \cdot H} - \frac{R + H}{2 \cdot R_g^3}\right) = 0$ 0,75p		
expresia distanței H de la centrul Pământului la vârful turnului $H = \frac{R}{2} \cdot \left[\sqrt{1 + \frac{8R_g^3}{R^3}} - 1 \right]$ 0,50p		
d. Pentru: $H = 1,51 \cdot 10^5 \text{ km}$ 1,00p	1,00p	
	1,50p	
$\frac{d\sigma(r)}{dr} = 0$		
$r = R_g$ 0,25p		
$\sigma_{max} = \sigma(R_g) = G \cdot M \cdot \rho \cdot \left[-\frac{3}{2R_g} + \frac{1}{R} + \frac{R^2}{2R_g^3} \right]$ 0,50p		
σ_{max} 0,50p		
f. Pentru:	1,00p	
valoarea maximă a tensiunii exercitate pe unitatea de arie, pentru un turn din oțel $\sigma_{max}=379GPa$		
Exemplu de răspuns: Pe planeta Pământ nu se poate utiliza oțelul în construcția turnului pentru ascensorul spațial, deoarece $\sigma_{max} > \sigma_{otel,rupere}$		
Oficiu	1,00p	
TOTAL Problema a II-a		

© Barem de evaluare şi de notare propus de:

Dr. Delia DAVIDESCU – Facultatea de Fizică – Universitatea București

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem

Pagina 1 din 3

Problema 3 – Anihilări și generări "particulă - antiparticulă"!

Problema 3 10 a) 1,50 1,50 1,50 Utilizand relația relativistă dintre masă și energie, precum și expresia impulsului relativist pentru un punct material în mișcare cu viteza v, obținem: 0,25 $E^2 = p^2c^2 + m_0^2c^4$, 0,25 reprezentând relația relativistă dintre energia și impulsul unui punct material. Dacă \vec{p}_1 și respectiv \vec{p}_2 sunt impulsurile celor doi fotoni rezultați, iar E_1 și respectiv E_2 sunt energiile celor doi fotoni rezultați, atunci, în acord cu legile de conservare ale impulsului și energiei, rezultă: $ \vec{p} = \vec{p}_1 + \vec{p}_2; \\ E + m_0c^2 = E_1 + E_2, \\ E + m_0c^2 = E_1 + E_2, \\ E + m_0c^2 = E_1 + E_2, \\ E + m_0c^2 - \cos\theta_1 \sqrt{E_c(E_c + 2m_0c^2)}. \\ E_2 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_1 \sqrt{E_c(E_c + 2m_0c^2)}}. \\ E_2 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_2 \sqrt{E_c(E_c + 2m_0c^2)}}. \\ E_3 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_2 \sqrt{E_c(E_c + 2m_0c^2)}}. \\ E_{min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}. \\ E_{min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}. \\ E_{min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}. \\ E_{min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}. \\ Di) 2,50 2,50 1) În interiorul mezonului \pi^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 0,50 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 cons$	Barem de notare	Parţial	Punctaj
Utilizând relația relativistă dintre masă și energie, precum și expresia impulsului relativist pentru un punct material în mișcare cu viteza v, obținem: $E^2 = p^2c^2 + m_0^2c^4, \qquad 0,25$ reprezentând relația relativistă dintre energia și impulsul unui punct material. Dacă \vec{p}_1 și respectiv \vec{p}_2 sunt impulsurile celor doi fotoni rezultați, iar E_1 și respectiv E_2 sunt energiile celor doi fotoni rezultați, atunci, în acord cu legile de conservare ale impulsului și energiei, rezultă: $\vec{p} = \vec{p}_1 + \vec{p}_2; \\ E + m_0c^2 = E_1 + E_2, \\ \text{unde } \vec{p} \text{ și } E \text{ sunt impulsul și respectiv energia totală ale pozitronului, înainte de întâlnirea electronului; E_1 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_1\sqrt{E_c(E_c + 2m_0c^2)}}. E_2 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c(E_c + 2m_0c^2)}}. Este evident că energiile celor doi fotoni, E_1 și respectiv E_2, au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: E_{\text{max}} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}; E_{\text{max}} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}. 0,25 E_{\text{max}} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}. 2,50 2,50 1) În interiorul mezonului \pi^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \vec{v}, valorile E_{\text{max}} și E_{\text{min}} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$	Problema 3		10
expresia impulsului relativist pentru un punet material în mișcare cu viteza v, obținem: $E^2 = p^2c^2 + m_0^2c^4, \qquad 0,25$ reprezentând relația relativistă dintre energia și impulsul unui punet material.		1,50	1,50
v, obţinem: $E^2 = p^2c^2 + m_0^2c^4,$ reprezentând relația relativistă dintre energia și impulsul unui punct material. Dacă \vec{p}_1 și respectiv \vec{p}_2 sunt impulsurile celor doi fotoni rezultați, iar E_1 și respectiv E_2 sunt energiile celor doi fotoni rezultați, atunci, în acord cu legile de conservare ale impulsului și energici, rezultă: $\vec{p} = \vec{p}_1 + \vec{p}_2;$ $E + m_0c^2 = E_1 + E_2,$ unde \vec{p} și E sunt impulsul și respectiv energia totală ale pozitronului, înainte de întâlnirea electronului; $E_1 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_1\sqrt{E_c(E_c + 2m_0c^2)}}.$ $E_2 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c(E_c + 2m_0c^2)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}};$ $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 0,25 $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 0,25 $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 2,50 2,50 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiie și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare	, , , , , , , , , , , , , , , , , , , ,		
$E^2 = p^2c^2 + m_0^2c^4,$ reprezentând relația relativistă dintre energia și impulsul unui punct material. Dacă \bar{p}_1 și respectiv \bar{p}_2 sunt impulsurile celor doi fotoni rezultați, iar E_1 și respectiv E_2 sunt energiile celor doi fotoni rezultați, atunci, în acord cu legile de conservare ale impulsului și energici, rezultă: $\bar{p} = \bar{p}_1 + \bar{p}_2;$ $E + m_0c^2 = E_1 + E_2,$ unde \bar{p} și E sunt impulsul și respectiv energia totală ale pozitronului, înainte de întâlnirea electronului; $E_1 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_1\sqrt{E_c(E_c + 2m_0c^2)}}.$ $E_2 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c(E_c + 2m_0c^2)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situcază între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 + \sqrt{E_c(E_c + 2m_0c^2)}};$ $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 0,25 $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 0,25 $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 2,50 2,50 $E_{\min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 2,50 2,50 $E_{\min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 2,50 2,50 2,50 $E_{\min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 2,250 2,50 2,50 2,50 2,50 2,50 2,50 2,5	,		
reprezentând relația relativistă dintre energia și impulsul unui punct material. Dacă \vec{p}_1 și respectiv \vec{p}_2 sunt impulsurile celor doi fotoni rezultați, iar E_1 și respectiv E_2 sunt energiile celor doi fotoni rezultați, atunci, în acord cu legile de conservare ale impulsului și energiei, rezultă: $\vec{p} = \vec{p}_1 + \vec{p}_2;$ $E + m_0 c^2 = E_1 + E_2,$ unde \vec{p} și E sunt impulsul și respectiv energia totală ale pozitronului, înainte de întâlnirea electronului; $E_1 = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \cos\theta_1 \sqrt{E_c (E_c + 2m_0 c^2)}}.$ $E_2 = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \cos\theta_2 \sqrt{E_c (E_c + 2m_0 c^2)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}};$ $E_{\max} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,25 $E_{\max} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,25 $E_{\max} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,25 $E_{\max} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,25 $E_{\max} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,25 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,25 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,25 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,50 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,50 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,50 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,50 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,50 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + 2m_0 c^2 - \sqrt{E_c (E_c + 2m_0 c^2)}}.$ 0,50 $E_{\min} = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{E_c + $		0.25	
material. Dacă \vec{p}_1 și respectiv \vec{p}_2 sunt impulsurile celor doi fotoni rezultați, iar E_1 și respectiv E_2 sunt energiile celor doi fotoni rezultați, atunci, în acord cu legile de conservare ale impulsului și energiei, rezultă: $ \vec{p} = \vec{p}_1 + \vec{p}_2; \\ E + m_0c^2 = E_1 + E_2, \\ \text{unde } \vec{p} \text{și } E \text{sunt impulsul și respectiv energia totală ale pozitronului,} \\ \hat{n}_{\text{aininte}} \text{de întâlnirea electronului;} \\ E_1 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_1\sqrt{E_c(E_c + 2m_0c^2)}}. \\ E_2 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c(E_c + 2m_0c^2)}}. \\ \text{Este evident că energiile celor doi fotoni, } E_1 \text{și respectiv } E_2, \text{au} \\ \text{valori care se situează între valorile minimă și maximă, ale căror expresii sunt:} \\ E_{\text{min}} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 + \sqrt{E_c(E_c + 2m_0c^2)}}; \\ E_{\text{max}} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}. \\ \\ \text{b)} \\ 1) \hat{\text{ln interiorul mezonului } \pi^0 \text{se formează perechea virtuală}} \\ \text{proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni.} \\ 2) \text{Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 \text{considerat în zbor cu viteza } \vec{v}, \\ \text{valorile } E_{\text{max}} \text{si } E_{\text{min}} \text{ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare} \\ \\ \text{2,00} \\$	$E^2 = p^2 c^2 + m_0^2 c^4,$	0,25	
iar E_1 şi respectiv E_2 sunt energiile celor doi fotoni rezultaţi, atunci, în acord cu legile de conservare ale impulsului şi energiei, rezultă: $ \vec{p} = \vec{p}_1 + \vec{p}_2; \\ E + m_0c^2 = E_1 + E_2, \\ \text{unde } \vec{p} \text{ și } E \text{ sunt impulsul și respectiv energia totală ale pozitronului,} \\ \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n}$	- ,		
acord cu legile de conservare ale impulsului și energiei, rezultă: $ \bar{p} = \bar{p}_1 + \bar{p}_2; \\ E + m_0 c^2 = E_1 + E_2, \\ \text{unde } \bar{p} \text{ și } E \text{ sunt impulsul și respectiv energia totală ale pozitronului,} \\ \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n}$	Dacă \vec{p}_1 și respectiv \vec{p}_2 sunt impulsurile celor doi fotoni rezultați,		
acord cu legile de conservare ale impulsului și energiei, rezultă: $ \bar{p} = \bar{p}_1 + \bar{p}_2; \\ E + m_0 c^2 = E_1 + E_2, \\ \text{unde } \bar{p} \text{ și } E \text{ sunt impulsul și respectiv energia totală ale pozitronului,} \\ \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n} \hat{n}$	iar E_1 și respectiv E_2 sunt energiile celor doi fotoni rezultați, atunci, în		
$\vec{p} = \vec{p}_1 + \vec{p}_2;$ $E + m_0c^2 = E_1 + E_2,$ unde \vec{p} și E sunt impulsul și respectiv energia totală ale pozitronului, înainte de întâlnirea electronului; $E_1 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_1\sqrt{E_c(E_c + 2m_0c^2)}}.$ $E_2 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c(E_c + 2m_0c^2)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 + \sqrt{E_c(E_c + 2m_0c^2)}};$ $E_{\max} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ $D)$ 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza $\bar{\mathbf{v}}$, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare			
unde \vec{p} și E sunt impulsul și respectiv energia totală ale pozitronului, înainte de întâlnirea electronului; $E_1 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_1 \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ $E_2 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_2 \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 + \sqrt{E_c \left(E_c + 2m_0c^2\right)}};$ $E_{\max} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ 0,25 $E_{\max} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ 2,50 2,50 $1) \hat{n} \text{ in interiorul mezonului } \pi^0 \text{ se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \bar{v}, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$			
unde \vec{p} și E sunt impulsul și respectiv energia totală ale pozitronului, înainte de întâlnirea electronului; $E_1 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_1 \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ $E_2 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_2 \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 + \sqrt{E_c \left(E_c + 2m_0c^2\right)}};$ $E_{\max} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ 0,25 $E_{\max} = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c \left(E_c + 2m_0c^2\right)}}.$ 2,50 2,50 $1) \hat{n} \text{ in interiorul mezonului } \pi^0 \text{ se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \bar{v}, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$	$E + m_0 c^2 = E_1 + E_2$		
înainte de întâlnirea electronului; $E_1 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_1\sqrt{E_c(E_c + 2m_0c^2)}}.$ $E_2 = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c(E_c + 2m_0c^2)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 + \sqrt{E_c(E_c + 2m_0c^2)}};$ $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 0,25 $E_{\max} = \frac{m_0c^2(E_c + 2m_0c^2)}{E_c + 2m_0c^2 - \sqrt{E_c(E_c + 2m_0c^2)}}.$ 2,50 2,50 $1) \hat{l} \hat{l} \hat{l} \hat{l} \hat{l} \hat{l} \hat{l} \hat{l}$	unde \vec{p} și E sunt impulsul și respectiv energia totală ale pozitronului,		
$E_1 = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_1\sqrt{E_c\left(E_c + 2m_0c^2\right)}}.$ $E_2 = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c\left(E_c + 2m_0c^2\right)}}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 + \sqrt{E_c\left(E_c + 2m_0c^2\right)}};$ $E_{\max} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c\left(E_c + 2m_0c^2\right)}}.$ $\frac{\mathbf{b}}{E_c} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c\left(E_c + 2m_0c^2\right)}}.$ $\frac{\mathbf{b}}{E_0} = \frac{2,50}{E_0} = \frac{2,50}{E_0}$ 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza $\bar{\mathbf{v}}$, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare			
$E_2 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c}\left(E_c + 2m_0c^2\right)}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 + \sqrt{E_c}\left(E_c + 2m_0c^2\right)};$ $E_{\max} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c}\left(E_c + 2m_0c^2\right)}.$ 0,25 $E_{\max} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c}\left(E_c + 2m_0c^2\right)}.$ 2,50 2,50 $1) \text{ În interiorul mezonului } \pi^0 \text{ se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni.} 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \vec{v}, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$			
$E_2 = \frac{m_0c^2 \left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \cos\theta_2\sqrt{E_c}\left(E_c + 2m_0c^2\right)}.$ Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 + \sqrt{E_c}\left(E_c + 2m_0c^2\right)};$ $E_{\max} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c}\left(E_c + 2m_0c^2\right)}.$ 0,25 $E_{\max} = \frac{m_0c^2\left(E_c + 2m_0c^2\right)}{E_c + 2m_0c^2 - \sqrt{E_c}\left(E_c + 2m_0c^2\right)}.$ 2,50 2,50 $1) \text{ În interiorul mezonului } \pi^0 \text{ se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni.} 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \vec{v}, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$	$E_1 = \frac{\sqrt{\frac{C}{E} + 2m c^2 - \cos \theta} \left(\frac{E}{E} + \frac{2m c^2}{e^2} \right)}{\sqrt{\frac{E}{E} + 2m c^2}}.$		
Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 + \sqrt{E_c} \left(E_c + 2 m_0 c^2\right)};$ $E_{\max} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 - \sqrt{E_c} \left(E_c + 2 m_0 c^2\right)}.$ $0,25$ $\frac{\mathbf{b}}{E_c} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2}.$ $2,50$ $2,50$ $1) În interiorul mezonului \pi^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) \text{ Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \bar{\mathbf{v}}, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$		1,00	
Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 + \sqrt{E_c} \left(E_c + 2 m_0 c^2\right)};$ $E_{\max} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 - \sqrt{E_c} \left(E_c + 2 m_0 c^2\right)}.$ $0,25$ $\frac{\mathbf{b}}{E_c} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2}.$ $2,50$ $2,50$ $1) În interiorul mezonului \pi^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) \text{ Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \bar{\mathbf{v}}, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$	$E_2 = \frac{m_0 c^2 (E_c + 2m_0 c^2)}{\sqrt{1 + 2m_0 c^2}}$		
valori care se situează între valorile minimă și maximă, ale căror expresii sunt: $E_{\min} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 + \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}};$ $E_{\max} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 - \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}}.$ $0,25$ $\frac{\mathbf{b}}{E_c} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 - \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}}.$ $2,50$ $2,50$ $1) În interiorul mezonului \pi^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) \text{ Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului \pi^0 considerat în zbor cu viteza \bar{\mathbf{v}}, valorile E_{\max} și E_{\min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare$	$E_{c} + 2m_{0}c^{2} - \cos\theta_{2}\sqrt{E_{c}(E_{c} + 2m_{0}c^{2})}$		
sunt: $E_{\min} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 + \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}};$ $E_{\max} = \frac{m_0 c^2 \left(E_c + 2 m_0 c^2\right)}{E_c + 2 m_0 c^2 - \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}}.$ $\frac{\mathbf{b}}{E_c + 2 m_0 c^2 - \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}}.$ $\frac{\mathbf{c}}{E_c + 2 m_0 c^2 - \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}}.$ $\frac{\mathbf{c}}{E_c + 2 m_0 c^2 - \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}}.$ $\frac{\mathbf{c}}{E_c + 2 m_0 c^2 - \sqrt{E_c \left(E_c + 2 m_0 c^2\right)}}.$ $\frac{\mathbf{c}}{E_c + 2 m_0 c^2}.$ $\frac{\mathbf{c}}{E_$	Este evident că energiile celor doi fotoni, E_1 și respectiv E_2 , au		
$E_{\text{max}} = \frac{m_0 c^2 \left(E_{\text{c}} + 2m_0 c^2\right)}{E_{\text{c}} + 2m_0 c^2 - \sqrt{E_{\text{c}} \left(E_{\text{c}} + 2m_0 c^2\right)}}.$ b) 2,50 2,50 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare	,		
$E_{\text{max}} = \frac{m_0 c^2 \left(E_{\text{c}} + 2m_0 c^2\right)}{E_{\text{c}} + 2m_0 c^2 - \sqrt{E_{\text{c}} \left(E_{\text{c}} + 2m_0 c^2\right)}}.$ b) 2,50 2,50 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare	$m_0 c^2 (E_c + 2m_0 c^2)$		
$E_{\text{max}} = \frac{m_0 c^2 \left(E_{\text{c}} + 2m_0 c^2\right)}{E_{\text{c}} + 2m_0 c^2 - \sqrt{E_{\text{c}} \left(E_{\text{c}} + 2m_0 c^2\right)}}.$ b) $2,50$ 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare	• • • • • • • • • • • • • • • • • • • •	0.25	
b) 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare	$m_0 c^2 (E_c + 2m_0 c^2)$,	
b) 1) În interiorul mezonului π^0 se formează perechea virtuală proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare	$E_{\rm max} = \frac{1}{E_{\rm c} + 2m_0c^2 - \sqrt{E_{\rm c}(E_{\rm c} + 2m_0c^2)}}$		
proton-antiproton, din a căror anihilare, cu respectarea legilor de consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare		2,50	2,50
consevare ale energiei și a impulsului, rezultă doi fotoni. 2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare	1) În interiorul mezonului π^0 se formează perechea virtuală		
2) Din totalitatea orientărilor posibile ale zborurilor celor doi fotoni rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare		0,50	
rezultați din dezintegrarea mezonului π^0 considerat în zbor cu viteza \vec{v} , valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare			
valorile E_{max} și E_{min} ale energiilor celor doi fotoni, corespunzând variantei reprezentată în figura alăturată, din care, în acord cu legile de conservare			
reprezentată în figura alăturată, din care, în acord cu legile de conservare		2.00	
		2,00	
	ale energiei și a impulsului, rezultă:		

- **1.** Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem

Pagina 2 din 3

π^0 $\overline{\mathrm{v}}$ f_2 f_1		
p_{\min} p_{\max}		
$\mathrm{v} = c \; rac{E_{\mathrm{max}} - E_{\mathrm{min}}}{E_{\mathrm{max}} + E_{\mathrm{min}}} .$		
$E_{ m max} + E_{ m min}$		
c)	5,00	5,00
1) În raport cu SRL, impulsul total al sistemului foton – electron,		
precum și energia totală a acestui sistem, înaintea interacțiunii, sunt:		
$p_{\rm L} = \frac{hv_{\rm L}}{c} + 0 = \frac{E_1}{c}; E_{\rm L} = E_1 + m_0 c^2.$		
În raport cu SRCM, impulsul total și energia totală ale sistemului		
foton – electron, înaintea interacțiunii, sunt:		
$\vec{p}_{\rm CM} = \vec{p}_{\rm f,CM} + \vec{p}_{\rm e^+,CM} = 0; \ E_{\rm CM}.$		
Rezultă:		
$\left(p^2 - \frac{E^2}{c^2}\right) = \text{constant};$		
	1,00	
$E_{\rm CM}^2 = m_0 c^2 \left(m_0 c^2 + 2E_1 \right).$		
Reacția propusă:		
$\gamma + e^{-} \rightarrow (e^{+} + e^{-}) + e^{-},$		
din care rezultă trei particule, cu mase de repaus identice, m_0 , nu poate		
avea loc, decât dacă:		
$E_{\rm CM} \ge 3m_0c^2;$		
$E_{\rm CM}^2 = m_0 c^2 \left(m_0 c^2 + 2E_1 \right) \ge 9m_0^2 c^4;$		
$E_1 \ge 4m_0c^2$; $E_0 = 4m_0c^2$.		
2) Din conservarea energiei sistemului, în procesul formării perechii electron – pozitron, dintr-un foton, în vid, rezultă:		
$E_{ m initial} = E_{ m final};$		
$p_{\text{foton}} > p_{\text{electron}} + p_{\text{pozitron}}$.		
Din legea conservării impulsului rezultă:		
${ec p}_{ m f} = {ec p}_{ m electron} + {ec p}_{ m pozitron};$		
$p_{\text{foton}} < p_{\text{electron}} + p_{\text{pozitron}}$.	• •	
Consecințele celor două legi de conservare sunt contradictorii. Ca	2,50	
urmare, în condițiile precizate, adică în vid, procesul generării perechii		
electron – pozitron, dintr-un foton, nu este posibil. Procesul se poate		
produce numai în câmpul unui nucleu, de obicei în câmpul unui nucleu greu.		
Procesul generării perechii electron – pozitron dintr-un foton este		
posibil, din punct de vedere energetic, numai dacă energia fotonului este		
suficientă ca să asigure energiile de repaus ale perechii electron - pozitron,		

- **1.** Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Oficiu

Ministerul Educației Naționale Inspectoratul Școlar Județean Satu Mare

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

1,00

Pagina 3 din 3

Proba teoretică Barem

Darein		
adică:		
$E_{\text{foton, minim}} = m_{0e}c^2 + m_{0p}c^2 = 2m_0c^2.$		
3) La trecerea unui foton prin substanță, din interacțiunea acestuia cu câmpul unui nucleu, atunci când energia fotonului depășește o valoare de prag ($E_0 > 2m_{0\rm e}c^2$), se realizează procesul generării unei perechi electron – pozitron, după schema:		
$\gamma ightarrow e^- + e^+,$		
cu respectarea legii conservării energiei:		
$E_0 = 2m_{\rm oe}c^2 + E_{\rm ce} + E_{\rm cpz},$		
unde $E_{\rm ce}$ și $E_{\rm cpz}$ sunt energiile cinetice ale electronului și respectiv pozitronului rezultați din conversia fotonului; $E_0 = m_{\rm oe}c^2 \left(\frac{1}{\sqrt{1 - \frac{{\rm v}_{\rm e}^2}{c^2}}} + \frac{1}{\sqrt{1 - \frac{{\rm v}_{\rm pz}^2}{c^2}}} \right),$		
unde v_e și v_{pz} sunt vitezele electronului și respectiv a pozitronului rezultați. Deși procesul generării perechii electron - pozitron se desfășoară cu implicarea unui nucleu, totuși în legea conservării energiei nu s-a ținut seama de energia preluată de nucleu, deoarece masa nucleului este mult mai mare decât masa electronului, astfel încât viteza de recul a nucleului este foarte mică. Cu toate acestea, în acest proces, impulsul transmis nucleului, \vec{p}_N ,	1,50	
nu mai este neglijabil, astfel încât, după schema reprezentată în figura		
alăturată, din legea conservării impulsului, rezultă:		
$\vec{p}_{ m f} = \vec{p}_{ m e} + \vec{p}_{ m pz} + \vec{p}_{ m N} ,$		
ceea ce dovedește că $v_e \neq v_{pz}$, iar orientările vectorilor \vec{v}_e și \vec{v}_{pz} nu sunt simetrice față de direcția fotonului incident. Prezența a trei impulsuri necunoscute în legea conservării impulsului, face nerezolvabilă problema determinării valorilor vitezelor electronului și a pozitronului rezultați, precum și a unghiurilor lor de emergență.		

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.