The homework can be done in groups of 4 students. Please type your solutions (LaTeX and code) on a Jupyter Notebook that you will upload on Moodle. Make sure to write the names of the 4 students of your group in the top of your notebook. It is enough that one students uploads the work of the whole group.

In case you struggle writing Latex on a Jupyter notebook, you can return a (single) pdf file that includes both the executed code and your solutions to the theoretical questions.

Problem 1, 30 points: (On the Flajolet-Martin Algorithm)

The goal of this algorithm is to compute an approximation of the number of distinct elements in a stream. Consider a stream S with N items. Let F be the number of distinct items in S, our goal is to estimate F. In order to do so, we have access to a perfect hash function h such that for all k in S, $h(k) \sim \text{Unif}[0, 2^w - 1]$ where $w = \lfloor \log(N) \rfloor$. In particular for $k_1 \neq k_2$ we have that $h(k_1)$ and $h(k_2)$ are independent.

We follow the following scheme:

- Let z_k be the number of 0 at the tail of the binary representation of h(k).
- $\bullet \ Z = \max_{k \in S} z_k.$
- $\bullet \ \tilde{F} = 2^Z.$

For example, if w = 5 and $h(k) = 4 = (00100)_2$, $z_k = 2$. We want to prove that

$$\forall c \ge 3, \quad \mathbb{P}\left(1/c \le \frac{\tilde{F}}{F} \le c\right) \ge 1 - 3/c.$$

1. Show that for all $r \in [0, w]$, $\mathbb{P}(z_k \ge r) = 2^{-r}$.

For $r \in [0, w]$ and $k \in S$, we define the random variable $X_k(r) = \mathbf{1}(z_k \geq r)$ and $X(r) = \sum_{\text{distinct } k \in S} X_k(r)$.

2. Compute the expectation and variance of $X_k(r)$ and X(r).

Let r_1 be the smallest integer r such that $2^r > cF$ and r_2 the smallest integer such that $2^r \ge F/c$.

- 3. Prove that the scheme is correct if $X(r_1) = 0$ and $X(r_2) \neq 0$.
- 4. Show that $\mathbb{P}(X(r_1) \geq 1) \leq 1/c$.
- 5. Show that $\mathbb{P}(X(r_2) = 0) \leq 2/c$.
- 6. Conclude.

Solution

- 1. Since h(k) is uniformly distributed, the digits of its binary representation are independent Bernoulli variables. $z_k \geq r$ only if the last k digits are 0 or equivalently k independent bernoulli variables are 0. It comes out that for all $r \in [0, w]$, $\mathbb{P}(z_k \geq r) = 2^{-r}$.
- 2. We know that for Bernoulli(p) the expectation is p and variance p(1-p). It comes out that $\mathbf{E}(X_k(r)) = 2^{-r}$ and $Var(X_k(r)) = 2^{-r}(1-2^{-r})$. Similarly we also get that $\mathbf{E}(X(r)) = F2^{-r}$ and $Var(X(r)) = F2^{-r}(1-2^{-r})$.
- 3. Let r_1 be the smallest integer r such that $2^r > cF$ and r_2 the smallest integer such that $2^r \ge F/c$. The scheme is correct if $1/c \le \frac{\tilde{F}}{F} \le c$. On one side, $1/c \le \frac{\tilde{F}}{F}$ is equivalent to $2^Z \ge F/c$ or equivalently $Z \ge r_2$ and hence $X(r_2) \ne 0$. On the other side, $c \ge \frac{\tilde{F}}{F}$ is equivalent to $2^Z \le cF$ or equivalently $Z < r_1$ and hence $X(r_1) = 0$.

It comes out that the scheme is correct if $X(r_1) = 0$ and $X(r_2) \neq 0$.

- 4. $\mathbb{P}(X(r_1) \ge 1) \le \frac{\mathbf{E}(X(r_1))}{1} \le F2^{-r_1} \le \frac{1}{c}$.
- 5. $\mathbb{P}(X(r_2) = 0) = \mathbb{P}(z_k < r_2)^F = (1 2^{-r_2})^F \le \exp(-F2^{-(r_2 1)}/2) \le \exp(-c/2) \le 2/c$.
- 6. The scheme is wrong if $X(r_1) \ge 1$ or $X(r_2) = 0$. This event happens with probability at most 3/c based on the previous questions. Hence the scheme is correct with probability 1 3/c.

Problem 2, 30 points: (Dead ends in PageRank computations)

Let the matrix of the Web M be an n by n matrix, where n is the number of Web pages. The entry m_{ij} in row i and column j is 0, unless there is an arc from node (page) j to node i. In that case, the value of m_{ij} is 1/k, where k is the number of arcs (links) out of node j. Notice that if node j has k > 0 arcs out, then column j has k values of 1/k and the rest 0's. If node j is a dead end (i.e., it has zero arcs out), then column j is all 0's.

Let $r = [r_1, r_2, ..., r_n]^T$ be (an estimate of) the PageRank vector; that is, r_i is the estimate of the PageRank of node i. Define w(r) to be the sum of the components of r; that is $w(r) = \sum_i r_i$.

In one iteration of the PageRank algorithm, we compute the next estimate r' of the PageRank as: r' = Mr. Specifically, for each i we compute $r'_i = \sum_j m_{ij} r_j$.

- 1. Suppose the Web has no dead ends. Prove that w(r') = w(r).
- 2. Suppose there are still no dead ends, but we use a teleportation probability of 1β , where $0 < \beta < 1$. The expression for the next estimate of r_i becomes $r'_i = \beta \sum_j m_{ij} r_j + (1 \beta)/n$. Under what circumstances will w(r') = w(r)? Prove your conclusion.
- 3. Now, let us assume a teleportation probability of 1β in addition to the fact that there are one or more dead ends. Call a node "dead" if it is a dead end and "live" if not. Assume w(r) = 1. At each iteration, each live node j distributes $(1 \beta)r_j/n$ PageRank to each of the other nodes, and each dead node j distributes r_j/n PageRank to each of the other nodes.

Write the equation for r'_i in terms of β, M, r, n and D (where D is the set of dead nodes). Then, prove that w(r') is also 1.

Solution

- 1. We need to show $\sum_{i} \sum_{j} m_{ij} r_{j} = \sum_{i} r_{i}$. Interchange order of summations so we have $\sum_{j} (\sum_{i} m_{ij}) r_{j}$ on the left. Since there are no dead ends, $\sum_{i} m_{ij} = 1$ for each j. Thus the equation holds.
- 2. If and only if w(r) = 1. To see why, sum over I to get $w(r') = \sum_i \beta \sum_j m_{ij} r_j + \sum_i (1 \beta)/n$. The second term on the right sums to 1β , and using the reasoning from part (1), the first term on the right sums to $\beta \sum_j r_j$. That is: $w(r') = \beta w(r) + (1 \beta)$. If w(r) = 1, then the equation tells us w(r') is also 1. Conversely, if w(r') = w(r) = x, then x must satisfy the equation $x = \beta x + 1 \beta$, from which it follows that x = 1.
- 3. The equation is $r'_i = \beta \sum_j m_{ij} r_j + (1-\beta)/n + \beta/n \sum_{\text{dead}_j} r_j$. If we sum over i and use the same trick of moving the summation on i to apply only to m_{ij} , we get $w(r') = \beta \sum_{\text{live}_j} r_j + (1-\beta) + \beta \sum_{\text{dead}_j} r_j$. The first and last terms on the right together give $\beta w(r)$, which is β , since w(r) is assumed to be 1. Thus, the right side reduces to 1, as desired.