

MATH F111 (Mathematics-I)

Lecture 11 (Chapter-11.7) Conics in Polar Coordinate

BITS Pilani
Pilani Campus

Dr Trilok Mathur, Assistant Professor, Department of Mathematics

Polar Equation of Straight

Line

Polar Equation of Straight Line

If the point $P_0(r_0, \theta_0)$ is the foot of perpendicular from the origin on the line L, then an equation for L is:

$$r\cos(\theta - \theta_0) = r_0,$$

where (r, θ) is any point on the line L.

Ex. 11.7/Q.47 Sketch the line and find the Cartesian Equation for:

$$r\cos(\theta + \pi/3) = 2$$

Polar Equation of Straight

Ans:
$$r\cos(\theta + \pi/3) = 2$$

$$\Rightarrow r(\cos\theta\cos\pi/3 - \sin\theta\sin\pi/3) = 2$$

$$\Rightarrow \frac{r\cos\theta - \sqrt{3}r\sin\theta}{2} = 2$$

$$\Rightarrow x - \sqrt{3}y = 4$$

$$P_0(2, -\pi/3)$$

Polar Equation of Straight

Line

Ex.11.7/Q.50. Find the polar equation for

$$\sqrt{3} x - y = 1$$

in the form $r\cos(\theta - \theta_0) = r_0$.

Ans:
$$r\cos(\theta + \pi/6) = 1/2$$
.

Conic Section

Polar Equation of Circle

Polar Equation of Circle

The polar equation of a circle of radius a and centered at (r_0, θ_0) is (using cosines law on ΔOPP_0):

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$r^{2} + r_{0}^{2} - 2rr_{0}\cos(\theta - \theta_{0}) = a^{2}$$

Case I : If the circle passes through the origin, then $r_0 = a$ and the equation simplifies to:

$$r = 2a\cos(\theta - \theta_0)$$

Case II: Equation of a circle centered at (a,0) and radius a. If the center lies on positive x-axis then the equation becomes:

$$r = 2a\cos\theta$$

Case III: Equation of a circle centered at $(a, \pi/2)$ and radius a. If the center lies on positive y-axis then the equation becomes:

$$r = 2a\sin\theta$$

Case IV: Equation of a circle centered at (a, π) and radius a. If the center lies on negative x-axis then the equation becomes:

$$r = -2a\cos\theta$$

Case V: Equation of a circle centered at $(a, 3\pi/2)$ and radius a. If the center lies on negative y-axis then the equation becomes:

$$r = -2a\sin\theta$$

Polar Equation of Circle

Ex.11.7/Q.55 Sketch the circle $r = -2\cos\theta$. Find polar coordinate of the center and identify the radius.

Sol. Compare with $r = -2a\cos\theta$, we get radius a = 1. Therefore the polar coordinate of the center is $(1, \pi)$

Polar Equation of Circle

Ex.11.7/Q.60 Find polar equation for the circle $x^2 + y^2 + y = 0$. Sketch the circle and label it with both its Cartesian and polar equations.

Sol. Compare with $(x - x_0)^2 + (y - y_0)^2 = a^2$. The center is (0,-1/2) and radius is a = 1/2. Therefore the polar coordinate of center is $(1/2, 3\pi/2)$ and polar equation is $r = -\sin\theta$.

 $x^{2} + (y + \frac{1}{2})^{2} = \frac{1}{4}$ $r = -\sin\theta$

15

A measure of the "roundness" of a conic

A circle has an **eccentricity** of **zero**, so the eccentricity shows you how "un-circular" the curve is. Bigger eccentricities are less curved.

The *eccentricity* of ellipse $x^2/a + y^2/b = 1$

is
$$e = c/a = \sqrt{(a^2 - b^2)/a}$$

The *eccentricity* of hyperbola $x^2/a - y^2/b = 1$

is
$$e = c/a = \sqrt{(a^2 + b^2)/a}$$

The *eccentricity* of parabola e=1

Case I: Let a focus of the conic section be at the origin and the corresponding directrix be x = k (k > 0) (vertical, to the right of the origin).

Then
$$r = \frac{ke}{1 + e \cos \theta}$$
.

Then
$$r = \frac{ke}{1 - e \cos \theta}$$
.

Case III: Focus at the origin and directrix is y = k.

Then
$$r = \frac{ke}{1 + e \sin \theta}$$
.

Case IV: Focus at the origin and directrix is

$$y = -k$$
.

Then
$$r = \frac{ke}{1 - e \sin \theta}$$
.

innovate achieve lead

Polar Equation of a Conic

NOTE: For an ellipse with semimajor axis a and eccentricity e (with focus at the origin), we

Hence from Case I.

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}.$$

Directrix

Ex.11.7/Q.31 If e = 5, and y = -6, then find equation of the conic section (Assume one focus at the origin).

Solu.

$$r = \frac{ke}{1 - e\sin\theta} = \frac{30}{1 - 5\sin\theta}$$

Nature of conic?

Ex.11.7/Q.35 If e = 1/5, and y = -10, then find equation of the conic section (Assume one focus at the origin).

Solu.

$$r = \frac{ke}{1 - e\sin\theta} = \frac{10}{5 - \sin\theta}$$

Nature of conic?

We can find
$$a$$
 $a = \frac{ke}{1 - e^2} = \frac{2}{1 - 1/25} = \frac{25}{12}$

Now center is $(ae, \pi/2) = (5/12, \pi/2)$

Ex.11.7/Q.41 Sketch $r = 400/(16 + 8\sin\theta)$. Include the directrix that corresponds to the focus at the origin. Label the vertices with appropriate polar coordinates. Label the center in the case of ellipse.

Solu.
$$r = \frac{25}{1 + (1/2)\sin\theta}$$

So e = 1/2 and $ke = 25 \Rightarrow k = 50$ and so y = 50 is the directrix. Since e < 1 so the curve is an ellipse.

$$a = \frac{ke}{1 - e^2} = \frac{25}{1 - 1/4} = \frac{100}{3}$$

Now center is $(ae, 3\pi/2) = (50/3, 3\pi/2)$

innovate achieve lead

Polar Equation of a Conic

THANK YOU FOR YOUR PATIENCE !!!