Otimização com PuLP

Pesquisa Operacional Rick Eick Vieira Dos Santos

Problema da Compra de Avião da VAB

Entendendo o Problema (1/3)

A Viação Aérea Brasileira está estudando a compra de três tipos de aviões: Boeing 717 para as pontes aéreas de curta distância, Boeing 737-500 para voos domésticos e internacionais de média distância e MD-11 para voos internacionais de longa distância. Em um estudo preliminar, considerou-se que a capacidade máxima dos aviões a serem comprados será sempre preenchida para efeito de planejamento.

Entendendo o Problema (2/3)

TABELA 2.27 DADOS OPERACIONAIS DOS AVIÕES

Tipo do Avião	Custo Milhões US\$	Receita Teórica Milhões US\$	Pilotos Aptos 30 20 10	
BOEING 717	5,1	330		
BOEING 737-500	3,6	300		
MD-11	6,8	420		

Entendendo o Problema (3/3)

A verba disponível para as compras é de 220 milhões de dólares. Os pilotos de MD-11 podem pilotar todos os aviões da empresa, mas os demais pilotos só podem ser escalados às aeronaves a que foram habilitados. Cada aeronave necessita de dois pilotos para operar. As oficinas de manutenção podem suportar até 40 Boeings 717. Um Boeing 737-500 equivale, em esforço de manutenção, a 3/4, e um MD-11 a 5/3, quando referidos ao Boeing 717. Formular o modelo de PL do problema de otimizar as aquisições de aviões.

O Modelo (1/3)

Variáveis de Decisão:

- x_1 : Quantidade de Boeings 717 para comprar.
- x_2 : Quantidade de Boeings 737 500 para comprar.
- $-x_3$: Quantidade de MD-11 para comprar.

Função Objetivo:

$$\max \sum_{i=1}^{3} (R_i - C_i) \cdot x_i$$

onde R_i e C_i se referem, respectivamente, à receita e custo associados à compra do avião x_i .

O Modelo (2/3)

Restrições de Custo:

 $\sum_{i=1}^{3} C_i \cdot x_i \le 220$

Restrições de Manutenção

$$\sum_{i=1}^{3} M_i \cdot x_i \le 40$$

onde C_i e M_i se referem, respectivamente, ao custo e ao esforço de manutenção associados ao avião x_i .

O Modelo (3/3)

Variáveis Extras:

- p_1 : Pilotos de MD-11 alocados para Boeings 717
- p_2 : Pilotos de MD-11 alocados para Boeings 737 500
- p_3 : Pilotos de MD-11 alocados para MD-11

Restrições de Pilotos:

$$\sum_{i=1}^{3} p_i \le 10 \qquad x_1 \le \frac{30 + p_1}{2} \qquad x_2 \le \frac{20 + p_2}{2} \qquad x_3 \le \frac{p_3}{2}$$

Cenários

Cenário 1: Aumentar o número de pilotos

Cenário 2: Redução extrema das receitas

Cenário 3: Aumento da verba disponível

Implementação

Análise de Sensibilidade

Cenário 1: Há uma mudança na distribuição da compra de aviões mesmo mantendo a verba disponível, pois o modelo é sensível ao gerenciamento de pilotos.

Cenário 2: Não houve compra de aviões, o que é esperado, haja vista que a compra de qualquer avião resulta em prejuízo, pois seu valor de custo é maior que sua receita.

Cenário 3: Não há mudança em relação ao cenário original, pois a quantidade de pilotos se mostrou uma restrição mais limitante.

Análise de Limitações

- 1. Preenchimento Máximo das Aeronaves
- 2. Pilotos como Recurso Rígido
- 3. Manutenção Representada por uma Equivalência Simples
- 4. Modelo Estático e Determinístico

Problema da Fábrica de Plástico

Entendendo o Problema (1/3)

Uma empresa fabrica malas, bolsas, pastas e sacolas de plástico. Ela compra sua matéria-prima em rolos com uma certa largura e corta em tiras adequadas a cada tipo de objeto produzido. Sabendo-se que existem três tamanhos para cada item (P, M e G), as possibilidades de cortes foram resumidas na seguinte tabela.

Entendendo o Problema (2/3)

	Quantidade de Itens Dentro de Cada Método de Corte											
		1	2	3	4	5	6	7	8	9		
Malas	Р	2	1		1	_	_	_	-	1		
	M	1	2	1	1		_	-	3	_		
	G	1	-	_	_	_	2	2	8=	_		
Bolsas	P	2	1	-	2	-	_	-	2 -	1		
	M	3	7000	1	4	1	2		3	_		
	G	_	_	1	1	_	2	2	_	_		
Pastas	Р	6	4	2	1	-	_	_	-	1		
	M	1	1	1	1	_	2	_	4	1		
	G		2	1	1	2	2	3	_	1		
Sacolas	Р	-	2	_	1	2	-	_	-	1		
	M	-	_	2	1	2	-	_	2	1		
	G	_	1	1	-	2	_	3	-	1		
Perda		3	5	5	2	4	7	1	3	8		

Entendendo o Problema (3/3)

Em um determinado dia os pedidos para a fabricação são (pequeno, médio, grande):

Malas: 10, 20, 13; Bolsas: 5, 2, 6; Pastas: 4, 3, 12; Sacolas: 5, 5, 3.

Formular o problema de PL para minimizar as perdas de material.

O Modelo (1/2)

Variáveis de Decisão:

- x_j : Quantidade de cortes para o método j.

Função Objetivo:

$$\min \sum_{j=1}^{9} P_j \cdot x_j$$

onde, P_i representa a perda de material associada ao método de corte j.

O Modelo (2/2)

Restrições de Pedido:

$$\forall i \in P, \ \sum_{j=1}^{9} x_j \cdot T_{i,j} \ge P_i$$

onde, P_i é o pedido i associado à demanda e $T_{i,j}$ é a quantidade de itens produzidos para o pedido i usando o método de corte j.

Cenários

Cenário 1: Perda em circunstância homogênea.

Cenário 2: Caso de demanda homogênea.

Cenário 3: Caso de alta demanda.

Implementação

Análise de Sensibilidade

Cenário 1: Nesse caso todos os métodos possuem a mesma perda, essa simplificação do cenário causa a minimização do número de cortes utilizados.

Cenário 2: Há uma mudança na variação da demanda dos pedidos resultando na centralização da decisão dos métodos de corte.

Cenário 3: Apresenta uma certa proporção na quantidade dos cortes utilizados e na perda total, mantendo os mesmos métodos de cortes utilizados.

Análise de Limitações

- 1. Representação da perda simplificada.
- 2. Capacidade de produção ilimitada.
- 3. Demanda considerada estática.
- 4. Não há reutilização de sobras.

Obrigado pela Atenção!