

# Semantic Image Segmentation via Deep Parsing Network

Ziwei Liu<sup>†</sup>, Xiaoxiao Li<sup>†</sup>, Ping Luo, Chen Change Loy, Xiaoou Tang Department of Information Engineering, The Chinese University of Hong Kong {lz013,lx015,pluo,ccloy,xtang}@ie.cuhk.edu.hk



# 1. Introduction

#### Task & General Approaches:









MRF/CRF

#### **Motivation:**

Combine ConvNets and MRF into a unified framework:

- ✓ End-to-end Training
- ✓ Rich Pairwise Relationship

## **Existing Works:**

|                      | Learned Features | Joint Training | # iterations |
|----------------------|------------------|----------------|--------------|
| DenseCRF [NIPS 2011] | X                | -              | 10           |
| FCN [CVPR 2015]      | $\checkmark$     | -              | -            |
| DeepLab [ICLR 2015]  | <b>✓</b>         | X              | 10           |
| CRFasRNN [ICCV 2015] | $\checkmark$     | $\checkmark$   | 10           |
| DPN                  | <b>√</b>         | <b>✓</b>       | 1            |
|                      |                  |                |              |

#### Our Idea:

High-order MRF as One-pass CNN:

$$E(\mathbf{y}) = \sum_{\forall \mathbf{i} \in \mathcal{V}} \Phi(\mathbf{y_i^u}) + \sum_{\forall \mathbf{i}, \mathbf{j} \in \mathcal{E}} \Psi(\mathbf{y_i^u}, \mathbf{y_j^v})$$
Multiple Convolutional
Layers as Unary Term
$$Layers \text{ as Pairwise Terms}$$

# 2. Approach

**Unary Term** 

$$\mathbf{\Phi}(\mathbf{y_i^u}) = -\ln p_i^u$$

 $(p_i^u)$  indicates the probability of the presence of label u at pixel i)

**Pairwise Term** 

$$\Psi(\mathbf{y_i^u, y_j^v}) = \sum_{k=1}^K \lambda_k \mu_k(i, u, j, v) \sum_{\forall z \in \mathcal{N}_j} d(j, z) p_z^v$$

Mean Field Solver

$$q_i^u \propto exp \left\{ - \underbrace{ \Phi_i^u - \sum_{k=1}^K \lambda_k \sum_{\forall v \in L, \forall j \in \mathcal{N}_i} \mu_k(i, u, j, v)}_{\mathbf{Mixture of Label Contexts}} \underbrace{ \sum_{\forall z \in \mathcal{N}_j} \mathrm{d}\left(j, z\right) q_z^v q_j^v \right\}$$

(each  $q_i^u$  is initialized by the corresponding  $p_i^u$ )

# 3. Network Architecture

|               | 1      | 2   | 3      | 4   | 5      | 6   | 7      | 8      | 9    | 10   | 11   | 12    | 13   | 14   | 15   |
|---------------|--------|-----|--------|-----|--------|-----|--------|--------|------|------|------|-------|------|------|------|
| layer         | 2×conv | max | 2×conv | max | 3×conv | max | 3×conv | 3×conv | conv | conv | conv | Iconv | conv | bmin | sum  |
| filter–stride | 3-1    | 2-2 | 3-1    | 2-2 | 3-1    | 2-2 | 3-1    | 5-1    | 25-1 | 1-1  | 1-1  | 50-1  | 9-1  | 1-1  | 1-1  |
| #channel      | 64     | 64  | 128    | 128 | 256    | 256 | 512    | 512    | 4096 | 4096 | 21   | 21    | 105  | 21   | 21   |
| activation    | relu   | idn | relu   | idn | relu   | idn | relu   | relu   | relu | relu | sigm | lin   | lin  | idn  | soft |
| size          | 512    | 256 | 256    | 128 | 128    | 64  | 64     | 64     | 64   | 64   | 512  | 512   | 512  | 512  | 512  |

Deep Parsing Network (DPN): 512×512×3 input image; 512×512×21 output label maps



• Project Page: <a href="http://personal.ie.cuhk.edu.hk/~lz013/projects/DPN.html">http://personal.ie.cuhk.edu.hk/~lz013/projects/DPN.html</a>

## 4. Effectiveness of DPN



 $\sum d(j,z) p_z^v$ 

 $\mu_k(i,u,j,v)$ 

(i, u)

|(z,v)|



when 'motor bike' is presented, 'person' is more likely to present than 'bike'.

**Spatial-Label Space** 







bottle : bottle

train: bkg

person: mbike chair: person

Pairwise Terms Comparisons • **End-to-end Learning** 





### 5. Overall Performance

#### horse mbike person plant sheep sofa train FCN 62.2 55.1 76.2 67.2 73.9 DeepLab† RNN† BoxSup† 75.2 65 DPN 66.4 **77.5** DPN+

Per-class results on VOC12 test. The approaches pre-trained on COCO are marked with †.

# 6.1 Per-stage Visualization



Ground Truth

**Unary Term** 







6.2 Visual Quality Comparisons

(b) (d) Visual quality comparison of different semantic image segmentation methods: (a) input image (b) ground truth (c) FCN (d) DeepLab and (e) DPN

# 7. Conclusion

**DPN** employs one-pass CNN to model high-order MRF

High performance by approximating one iteration of MF

**DPN** incorporates various types of pairwise terms

Rich contextual information

**DPN** contains only conventional operations of CNN

Easier to be parallelized and speeded up in GPU