NVLM: Open Frontier-Class Multimodal LLMs

Wenliang Dai* Nayeon Lee* Boxin Wang* Zhuolin Yang* Zihan Liu Jon Barker Tuomas Rintamaki Mohammad Shoeybi Bryan Catanzaro Wei Ping*,†

NVIDIA

2024.11.29

What NVLM can do

What NVLM can do

기존 MLLM의 3가지 문제점

- MLLM들 간의 정확한 비교가 어렵다
 - 독점 모델(gpt-4o, Claude 3.5 Sonnet)에 대한 정보가 없다
 - 오픈소스 모델들도 서로 다른 backbone LLM, vision encoder, training data 사용
- 고차원 이미지를 사용했을 때 OCR task 성능은 오르지만, reasoning task(MMMU) 성능은 떨어진다
- 오픈소스 MLLM들은 multimodal task에서는 좋은 성능을 보여주지만, text-only 성능은 떨어진다

Contributions

Model Architecture

- 동일한 LLM Backbone, vision encoder, training data를 사용한 모델 3개
- NVLM-D(decoder-only), NVLM-X(X-Attention), NVLM-H

High-resolution

- Dynamic Tiling
- OCR 성능과 multimodal reasoning 성능 둘 다 향상

Training data

• Pretraining dataset, SFT dataset 구축 및 공개

Production—grade multimodality

• Vision-Language task, text-only task 둘 다 사용 가능

Model Architecture

Pre-trained LLM, Vision Encoder

• LLM

- 다양한 vision-language task를 잘 수행하기 위해 instruction-following 잘하는 모델 선택
- Backbone LLM: Qwen2-72B-Instruct
- For ablation study: Nous-Hermes-2-Yi-34B

Vision Encoder

- InternViT-6B-448px-V1-5
 - 성능이 좋아 선택
 - vanilla ViT를 6B으로 scaling up 한 거
 - patch-size: 14
 - 448*448 이미지 처리

High-Resolution Inputs

- OCR task에서 높은 성능을 달성하기 위해 고차원 이미지를 잘 다뤄야 한다
- 기존 Vision Encoder의 문제점
 - 고정된 낮은 해상도(224*224)로 사전 훈련
 - ViT-L/14에 224*224 이미지가 입력되면 (224/14)^2 = 256개의 토큰 생성
 - 높은 해상도(1024*1024)를 다루는 SAM encoder(ViT-L/16)도 존재
 - 하지만 input 이미지가 크든 작든 4,096개의 토큰 생성. High cost
- Dynamic high-resolution mechanism
 - 이미지를 압축하지 않고 여러 개의 tile로 분해
 - 각 타일을 Vision Encoder에 입력 후 토큰 생성
 - 672*448 해상도 이미지는 (672/224) * (448/224) = 6개의 타일로 분해
 - 각 타일은 ViT-L/14를 통해 256개의 토큰으로 변경. 총 256*6 = 1,536개의 토큰 생성

Model Architecture

Shared Vision Pathway

• Input image 타일로 분해

- 각 타일의 크기는 448*448
- 원본 사진을 448*448로 압축하여 Thumbnail로 사용
- 타일의 개수: n, 이때 n <= 7

Image Encoder

- InternViT-6B-448px-V1-5
 - ViT-L/14 기반
 - 각 타일은 (448/14) * (448/14) = 1,024개의 토큰으로 변환
 - 각 토큰의 차원이 d라고 할 때 각 타일은 1024*d. (d=3,200)
 - 따라서 최종 Image output의 크기는 1,024*d*n.

Shared Vision Pathway

Downsampling

- Attention 계산량 : n^2d . 토큰의 개수 n을 줄여야 연산이 빨라짐
- 1024 -> 256 으로 다운샘플링
- 1024*d -> 256 * 4d

MLP

- image token의 차원을 text token의 차원과 같게 만드는 역할
 - 12,800 -> 8,192 or 7,168
- Random Initialized

Shared Vision Pathway

NVLM-D

• LLM에 image와 text 같이 입력

NVLM-X

- LLM에 text만 입력
- Text를 Query, 이미지를 Key와 Value로 X-Attention

NVLM-H

- NVLM-D와 NVLM-X를 Hybrid한 모델
- LLM에 Image thumbnail과 텍스트를 입력
- Text를 Query, 이미지를 Key와 Value로 X-Attention

NVLM-D

- a) No tag: Simple concatenation without tile tag, which is the design of InternVL-1.5 [18].
- b) 1-D flattened tile tag: <tile_1>, <tile_2>, ···, <tile_6>, <tile_global>.
- c) 2-D grid tag: <tile_x0_y0>, <tile_x1_y0>, ..., <tile_xW_yH>, <tile_global>, where the {i:j} of <tile_xi_yj> can be in {1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 2:1, 2:2, 2:3, 3:1, 3:2, 4:1, 5:1, 6:1}.
- d) 2-D bounding-box tag: $\langle box \rangle(x_0, y_0), (x_1, y_1) \langle box \rangle, \cdots, \langle box \rangle(x_W, y_H), (x_{W+1}, y_{H+1}) \langle box \rangle,$ where the $(x_i, y_j), (x_{i+1}, y_{j+1})$ are the (left, top), (right, bottom) coordinates of that particular title within the whole high-resolution image.

Tile tag format	MMMU (val)	MathVista	AI2D (test)	ChartQA	DocVQA	TextVQA	OCRBench
Low-resolution (448 ²)	50.9	46.1	67.0	64.8	52.9	78.2	622
DHR + No tag	50.0	51.7	79.9	76.1	80.2	78.4	728
DHR + 2-D grid tag	51.1	52.8	81.7	81.1	86.7	79.4	787
DHR + 2-D bbox tag	50.3	50.6	81.2	80.8	86.7	79.7	791
DHR + 1-D tag	52.0	53.8	82.1	81.1	87.4	79.9	806

Pre-training

- 목적 : 2-layer MLP 학습
- LLM과 vision encoder frozen

Supervised Fine-tuning

- 목적 :
 - MLP학습
 - vision 정보 습득을 위한 LLM 학습
- Vision encoder frozen

Tile Tag

- LLM은 tile 구조에 대한 지식이 없다
- 따라서 이미지 타일 앞에 tile tag 부착
- 1-D는 2-D 정보를 가지고 있지 않아 일반화가 잘 됐기 때문에 성능이 좋다고 가정

NVLM-X

• Pre-training

- 목적: 1-layer MLP, X-Attention 학습
- LLM과 vision encoder frozen

Supervised Fine-tuning

- Vision encoder frozen
- Tile Tag
 - NVLM-D와 동일한 tile tag 사용

Decoder-only vs X-Attention

Models	Batch size	# of H100 GPUs	Sequence length in LLM decoder	# of Tiles	Elapsed time (ms) per iteration	Throughput samples / sec
NVLM-X 34B	256	128	1,024	6+1	5,063	50.6
NVLM-D 34B	256	128	$1,024 + 256 \times 7 = 2,816$	6+1	8,885	28.8
NVLM-H 34B	256	128	1,024 + 256 = 1,280	6+1	7,071	36.2

Parameter Efficiency

• NVLM-X는 X-Attention 때문에 파라미터가 더 많이 필요함

Training Efficiency

- 처리량
 - NVLM-X: 50.6 samples/sec
 - NVLM-D: 28.8 samples/sec
 - Sequence length가 NVLM-D가 더 커서 처리량이 낮음

Multimodal reasoning

• NVLM-D는 텍스트와 이미지를 같이 LLM에 주기 때문에 multimodal reasoning 성능이 좋지만, text token 대비 image token이 너무 많아지면 reasoning에 어려움을 겪을 수 있다

NVLM-H

• NVLM-D처럼

• LLM에 image와 text를 같이 줘서 multimodal reasoning 성능을 높힘

• NVLM-X처럼

• 입력 토큰 수를 줄여 처리량을 높힘

Tile Tag

• NVLM-D와 동일한 tile tag 사용

Multimodal PreTraining Data

• 목적

- modality alignment module 학습 (MLP, X-Attention)
- Open-source data

• 기존연구

- X-Attention : 풍부하고 다양한 데이터셋
- Decoder-only : 작더라도 좋은 품질의 데이터셋

Finding

• Decoder-only에서도 다양한 데이터가 중요

Pretraining data	MMMU (val)	MathVista	AI2D (test)	ChartQA	DocVQA	TextVQA	OCRBench			
LLaVA-1.5 data [77]	51.8	48.9	80.5	80.3	85.2	78.9	760			
Our pretraining data	52.0	53.8	82.1	81.1	87.4	79.9	806			
Task	Dataset									
Captioning	COCO [72], CC3M [127], SBU [114], LAION-115M (sanitized) [123; 66]									
VQA (natural image)	VQAv2 [38], Visu	VQAv2 [38], Visual Genome [59]								
Chart	DVQA [51]	DVQA [51]								
Document	Docmatix [90]									
OCR /	OCR-VQA [98], COCO-Text [144], TextOCR [132], ReCTs [170], RRC-ArT [22], RRC-LSVT [134]									
Scene-Text	RCTW [128], syn	RCTW [128], synthdog-en [57], pdfa-eng-wds [117]								
Math	CLEVR-Math [73	3]								

Multimodal SFT Data

• 목적

• LLM이 텍스트와 이미지의 관계를 학습할 수 있도록

• 특징

- 많은 OCR, Math 데이터셋
- Text-only 데이터셋
 - LLM text-only 성능 하락 방지
 - 오픈소스 데이터 사용
 - 퀄리티를 높이기 위해 gpt-4o, gpt-4o-mini로 정제

No Augmentation

- Benchmark 성능은 오를 수 있지만
- 일반화 성능에는 영향이 미미하기 때문

Test

- Not evaluated in a zero-shot setting
- 독점 모델들의 벤치마크 결과도 zero-shot이 아니라는 가정
 - training과 test셋에 대한 정확도 차이

Task	Dataset
Captioning	COCO [72], TextCaps [130], ShareGPT-4o [61]
VQA (natural image)	VQAv2 [38], Visual Genome [59], TallyQA [2], Visual7W [177], Vizwiz [39]
General Knowledge	OK-VQA [91], A-OKVQA [125]
Visual Reasoning	GQA [45], Super-CLEVR [69], Raven [168], VSR [74]
Chart & Diagram	DVQA [51], PlotQA [97], MMC-Instruction [76], ChartOA [93], InfographicVQA [96] FigureQA [52], IconQA [84], Chart2Text [103], Diagram Image2Text [53]
Table	WikiTableQuestions [116], RobuT(WTQ, WikiSQL, SQA) [173], HiTab [20]
Document	DocVQA [95], Docmatix [90], DUDE [142], VisualMRC [135], TAT-DQA[175] UReader IE [160], UReader KG [160], UReader QA [160],
OCR / Screen / Scene-Text	OCR-VQA [98], TextVQA [131], ST-VQA [10], ScreenQA [43], SlideQA [136], PDF-VQA [29] VQA-CD [89], VQAonBD [1], POIE [60], SROIE [44], ORAND [28], EST-VQA [148] FUNSD [49], SQuAD(rendering) [121], WordArt [155], IAM [92], IIIT5K [46], HME100K [164] synthdog-en [57], Bentham QA [94], HW-SQuAD [94], WebSight [64], ChromeWriting [152] K12 Printing [65], COCO-Text [144], TextOCR [132], ReCTs [170], pdfa-eng-wds [117]
Math	CLEVR-Math [73], GeoQA+ [13], Geometry3K [83], TabMWP [86], GSM8K(rendering) [25] MetaMathQA(rendering) [162], MAVIS Data Engine [171], MAVIS Manual Collection [171] Geo170K Align [34], Geo170K QA [34], GeoMVerse [54], GEOS [126], UniGeo [14]
Science	AI2D [55], ScienceQA [85], TQA [56], ArXivQA [68], textbook data
Visual Instruction-Tuning	LRV-Instruction [75], LLaVA-158K [79], LLaVAR [172]
Text-only SFT	SlimOrca [70], ShareGPT [138], EvolInstruct [156], GPTeacher [137], AlpacaGPT4 [118], UltraInteract [163], OrcaMathWordProblems [99], MathInstruct [165], MetaMath [162], GlaiveCodeAssistant [37], Magicoder [151], WizardCoder [88].

Vision-Language Benchmark

Tasks	MMMU test / val	MathVista testmini	VQAv2 test-dev	AI2D test / no_mask	TextVQA val	ChartQA test	DocVQA test	Real- WorldQA	OCR- Bench	Text-only Avg. 4
Proprietary										
GPT-4V [107]	56.1 / 56.8	49.9	77.2	78.2	78.0	78.5	88.4	61.4	645	-
GPT-4-Turbo [106]	- /63.1	58.1	-	89.4	-	78.1	87.2	-	678	-
GPT-4o [108]	- / 69.1	63.8	-	94.2	=	85.7	92.8	-	736	-
Claude 3 Sonnet [5]	- / 53.1	47.9	-	88.7	-	81.1	89.5	51.9	646	-
Claude 3 Opus [5]	- / 59.4	50.5	-	88.1	-	80.8	89.3	49.8	694	-
Claude 3.5 Sonnet [6]	- /68.3	67.7	-	94.7	-	90.8	95.2	-	788	-
Gemini Pro 1.0 [35]	- / 47.9	45.2	71.2	73.9	74.6	74.1	88.1	-	659	_
Gemini Ultra 1.0 [35]	- / 59.4	53.0	77.8	79.5	82.3	80.8	90.9	-	-	-
Gemini Pro 1.5 [36]	- / 58.5	52.1	80.2	80.3	73.5	81.3	86.5	67.5	-	-
Gemini Pro 1.5 (Aug 2024)	- /62.2	63.9	80.2	94.4	78.7	87.2	93.1	70.4	754	-
Grok-1.5V [153]	- / 53.6	52.8	-	88.3	78.1	76.1	85.6	68.7	i= 1	-
Grok-2 [154]	- /66.1	69.0	-	-	-	-	93.6	-	-	-
Others										
QWen-VL-MAX	46.8 / 51.4	51.0	78.8	79.3	79.5	79.8	93.1	-	723	-
Adept Fuyu-Heavy [3]	- /48.3	-	77.8	81.2	-	75.4	-	-	,-	-
Open-access										
LLaVA-Next 34B [80]	44.7 / 51.1	46.5	-	-	69.5	-	_	-	574	= _
VILA-1.5 40B [71]	46.9 / 51.9	-	84.3	-	-	-	-	-	-	-6.9
Cambrian-1 34B [139]	- /49.7	53.2	-	79.7	76.7	75.6	75.5	67.8	600	-
LLaVA-OneVision 72B [65]	- / 56.8	67.5	-	85.6	-	83.7	91.3	-	-	-6.3
InternVL-1.2 40B [19]	- /51.6	47.7	_	79.0	72.5	68.0	57.7	67.5	569	-
InternVL-1.5 26B [18]	- /45.2	53.5	-	80.7	80.6	83.8	90.9	66.0	724	-
InternVL-2 40B [111]	- / 53.9	63.7	-	87.1	83.0	86.2	93.9	71.8	837	-
InternVL-2-Llama3-76B	- / 55.2	65.5	-	87.6 / 94.8	84.4	88.4	94.1	72.2	839	-6.7
*InternVL-2-Pro [111]	- / 58.9	66.3	-	87.3 / 96.0	-	87.1	95.1	-	837	-
*Llama 3-V 70B [32]	- /60.6	-	79.1	93.0	83.4	83.2	92.2	-	-	0
*Llama 3-V 405B [32]	- / 64.5	-	80.2	94.1	84.8	85.8	92.6	-	-	0
NVLM-D _{1.0} 72B	54.6 / 59.7	65.2	85.4	85.2 / 94.2	82.1	86.0	92.6	69.7	853	+ 4.3
NVLM-X 1.0 72B	53.6 / 57.4	64.6	85.2	84.2 / 93.6	80.2	82.9	82.9	66.1	828	+ 2.5
NVLM-H _{1.0} 72B	53.0 / 60.2	66.6	85.2	83.8 / 93.3	80.3	83.3	83.1	66.0	831	+ 2.7

MMMU	대학 수준의 추론 문제
Math Vista	수학능력
VAQv2	Image understanding
AI2D	초등학교 과학 문제
TextVQA	이미지에서 글자 읽기(OCR)
ChartQA	Chart understanding
DocVQA	VQA on document images
Real-WorldQA	Physical world perception and understanding
OCR-Bench	 이미지에서 글자 읽기 text 중심 VQA Document 중심 VAQ Information extraction Handwritten mathematical expression recognition

Text-only Benchmark

Tasks	Backbone LLM	MMLU	GSM8K	MATH	HumanEval	Avg. Accuracy	Text-only Avg. 4
Proprietary							
GPT-4o [108]	N/A	88.7	-	76.6	90.2	-	unknown
Gemini Pro 1.5 (Aug 2024) [36]	N/A	85.9	90.8	67.7	84.1	82.1	unknown
Claude 3.5 Sonnet [6]	N/A	88.7	96.4	71.1	92.0	87.0	unknown
Open LLM							
(a) Nous-Hermes-2-Yi-34B [102]	N/A	75.5	78.6	21.8	43.3	54.8	N/A
(b) Qwen2-72B-Instruct [119]	N/A	82.3	91.1	59.7	86.0	79.8	N/A
(c) Llama-3-70B-Instruct [32]	N/A	82.0	93.0	51.0	81.7	76.6	N/A
(d) Llama-3.1-70B-Instruct [32]	N/A	83.6	95.1	68.0	80.5	81.8	N/A
(e) Llama-3.1-405B-Instruct [32]	N/A	87.3	96.8	73.8	89.0	86.7	N/A
Open Multimodal LLM							
VILA-1.5 40B [71]	(a)	73.3	67.5	16.8	34.1	47.9	-6.9
LLaVA-OneVision 72B [80]	<i>(b)</i>	80.6	89.9	49.2	74.4	73.5	-6.3
InternVL-2-Llama3-76B [111]	(c)	78.5	87.1	42.5	71.3	69.9	-6.7
*Llama 3-V 70B [32]	(d)	83.6	95.1	68.0	80.5	81.8	0
*Llama 3-V 405B [32]	(e)	87.3	96.8	73.8	89.0	86.7	0
NVLM-D _{1.0} 72B	(b)	82.0	92.9	73.1	88.4	84.1	+ 4.3
NVLM-X _{1.0} 72B	<i>(b)</i>	81.4	91.8	70.6	85.2	82.3	+ 2.5
NVLM-H _{1.0} 72B	<i>(b)</i>	80.4	91.5	71.4	86.6	82.5	+ 2.7

MMLU	57개의 주제(역사, 법, 컴퓨터공학) 다지선다
GSM8K	초등학생 수학 문제
MATH	다양한 난이도의 수학 문제
HumanEval	코딩

Frozen vs Unfrozen during Multimodal SFT

Freezing

- LLM의 text 성능 하락이 없다
- 멀티모달 성능 하락

Unfreezing

- LLM의 text 성능 하락이 있을 수 있지만 NVLM은 text-only dataset을 사용해 이를 방지했고, 오히려 text 성능이 향상됐다
- 멀티모달 성능 향상

Tasks	MMMU	MathVista	VQAv2	AI2D	TextVQA	ChartQA	DocVQA	RealWorld-	OCR-
	test / val	testmini	test-dev	test	val	test	test	QA	Bench
NVLM-X 34B (frozen)	43.2 / 51.6	51.8	83.8	72.4	72.4	74.4	73.2	63.4	696
NVLM-X 34B	47.2 / 54.0	59.2	84.5	79.6	78.2	79.4	79.2	64.8	802
NVLM-X 72B (frozen)	50.6 / 54.4	60.6	85.3	76.2	76.2	76.2	76.4	65.3	722
NVLM-X _{1.0} 72B	53.6 / 57.4	64.6	85.2	84.2	80.2	82.9	82.9	66.1	828

느낀점

장점

- 1. 기존 MLLM들은 Backbone LLM과 사용된 데이터셋이 다 달라 MLLM들간 정확한 비교가 어려웠지만 NVLM은 같은 LLM과 데이터셋을 사용한 모델 3가지가 있기 때문에 직접적인 비교가 가능하다
- 2. Dynamic tiling을 통해 고해상도 이미지를 처리하여 OCR에서 높은 성능을 보이며, 동시에 Multimodal reasoning에서도 좋은 성능을 보인다
- 3. Text-only 데이터셋을 통해 multimodal 학습으로 인한 LLM의 text 성능 감소를 방지한다
- 4. Open source로 공개

단점

1. Text-only 데이터셋을 통해 LLM의 text 성능이 올랐다고 하는데, 성능 측정에 사용된 벤치마크가 NVLM에 유리한 방향으로 편향되어 있다

Open Question

LLM을 Frozen 시키고, Multimodal data를 더 많이 줘도 괜찮지 않을까?

text 성능은 유지가 되고, Multimodal 성능은 향상되지 않을까?