Homework 4 David Yang

- 1. Suppose V_1 and V_2 are independent $\operatorname{Gamma}(1,\lambda)$ random variables that represent waiting times in a Poisson process with rate λ events per unit time. Let $X=V_1$ be the time of the first event and let $Y=V_1+V_2$ be the time of the second event.
 - a) Find the joint CDF for X and Y: $F_{xy}(x,y) = P(X \le x, Y \le y)$. Hint: Graph the positive quadrant of the plane with axes V_1 and V_2 , and mark the region where $V_1 \le x$ and $V_1 + V_2 \le y$. Integrate the joint pdf for V_1 and V_2 over this region to obtain the function $F_{xy}(x,y)$. Note that if there are restrictions on the arguments x and y that you do not specify, then you have failed to define the function.

Solution. Note that since $X = V_1$ and $Y = V_1 + V_2$, then

$$F_{xy}(x,y) = P(X \le x, Y \le y) = P(V_1 \le x, V_1 + V_2 \le y) = P(V_1 \le x, V_2 \le y - V_1)$$

with the restriction that $x \leq y$.

Graphing the positive quadrant of the plane with axes V_1 and V_2 and integrating the joint pdf for V_1 and V_2 over the region where $V_1 \leq x$ and $V_1 + V_2 \leq y$ for x < y (shaded),

we see that

$$F_{xy}(x,y) = \int_0^x \int_0^{y-V_1} \left(\lambda e^{-\lambda V_1}\right) \left(\lambda e^{-\lambda V_2}\right) dV_2 dV_1$$

$$= \int_0^x \left[-\lambda e^{-\lambda (V_1 + V_2)}\right]_0^{y-V_1} dV_1$$

$$= \int_0^x -\lambda e^{-\lambda y} + \lambda e^{-\lambda V_1} dV_1$$

$$= \left[-V_1 \lambda e^{-\lambda y} - e^{-\lambda V_1}\right]_0^x$$

$$= 1 - e^{-\lambda x} - \lambda x e^{-\lambda y},$$

so the joint CDF for X and Y (with the extra restriction 0 < x < y) is

$$F_{xy}(x,y) = I(0 < x < y) \left(1 - e^{-\lambda x} - \lambda x e^{-\lambda y} \right).$$

b) Show how to get the marginal CDF F_x by taking the upper limit for y, and F_y by taking the upper limit for x. Differentiate each marginal CDF to get the marginal pdfs.

Solution. There are no restrictions on y, so the marginal CDF F_x is simply

$$F_x(x) = \lim_{y \to \infty} I(0 < x < y) \left(1 - e^{-\lambda x} - \lambda x e^{-\lambda y} \right)$$
$$= \boxed{1 - e^{-\lambda x}}.$$

Differentiating, we get the marginal pdf

$$f_x(x) = \lambda e^{-\lambda x}$$

which intuitively is the pdf for a Gamma $(1, \lambda)$ random variable.

On the other hand, the upper limit for x is y, as 0 < x < y. Thus, the marginal CDF F_y is

$$F_y(y) = \lim_{x \to y} I(0 < x < y) \left(1 - e^{-\lambda x} - \lambda x e^{-\lambda y} \right)$$
$$= 1 - e^{-\lambda y} - \lambda y e^{-\lambda y}$$

Differentiating, we can get the marginal pdf

$$f_y(y) = \frac{d}{dy} \left(1 - e^{-\lambda y} - \lambda y e^{-\lambda y} \right)$$
$$= \lambda e^{-\lambda y} - \lambda e^{-\lambda y} + \lambda^2 y e^{-\lambda y}$$
$$= \lambda^2 y e^{-\lambda y}$$

which intuitively is the pdf for a Gamma $(2, \lambda)$ random variable.

c) Show that taking partial derivatives of F_{xy} with respect to x and y yields the joint pdf:

$$\frac{\partial^2}{\partial x \partial y} F_{xy}(x, y) = \lambda^2 e^{-\lambda y} I(0 < x < y).$$

Solution. Finally, we can derive the joint pdf. Note that

$$f_{xy}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{xy}(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} F_{xy}(x,y) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} F_{xy}(x,y) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(I(0 < x < y) \left(1 - e^{-\lambda x} - \lambda x e^{-\lambda y} \right) \right) \right)$$

$$= \frac{\partial}{\partial x} \left(I(0 < x < y) \lambda^2 x e^{-\lambda y} \right)$$

$$= \left[\lambda^2 e^{-\lambda y} I(0 < x < y) \right]$$

as desired.

2. Suppose Z_1 and Z_2 have joint pdf

$$f_{12}(z_1, z_2) = \exp\left[-\log(\pi) - 2(z_1^2 + z_2^2 + \sqrt{3}z_1z_2)\right].$$

a) Identify this as a bivariate Normal density by specifying the means μ_1 and μ_2 , standard deviations σ_1 and σ_2 , and the correlation ρ .

Solution. Note that

$$f_{12}(z_1, z_2) = \exp\left[-\log(\pi) - 2(z_1^2 + z_2^2 + \sqrt{3}z_1z_2)\right]$$
$$= \frac{1}{\pi} \exp\left[-2(z_1^2 + z_2^2 + \sqrt{3}z_1z_2)\right].$$

Rewriting this expression, we have that

$$f_{12}(z_1, z_2) = \frac{1}{\pi} \exp\left[-2(z_1^2 + z_2^2 + \sqrt{3}z_1 z_2)\right]$$
$$= \frac{1}{2\pi \left(\frac{1}{2}\right)} \exp\left[-\frac{1}{2\left(\frac{1}{4}\right)} \left(z_1^2 + z_2^2 - 2\left(-\frac{\sqrt{3}}{2}\right)z_1 z_2\right)\right].$$

We recognize this as a bivariate Normal density, with

$$\mu_1 = \mu_2 = 0, \sigma_1 = \sigma_2 = 1, \text{ and } \rho = -\frac{\sqrt{3}}{2}$$

b) Any joint pdf may be expressed as a marginal pdf multiplied by a conditional pdf. Show that $f_{12}(z_1,z_2)$ may be written as the product of a standard Normal density for Z_1 and a Normal density for $Z_2 \mid z_1$ that depends on z_1 . Give the conditional mean and variance for $Z_2 \mid z_1$ and show that they agree with the formulas $\mathbb{E}[Z_2 \mid z_1] = \beta_0 + \beta_1 z_1$ with $\beta_1 = \rho \frac{\sigma_2}{\sigma_1}$, $\beta_0 = \mu_2 - \beta_1 \mu_1$, and $\operatorname{Var}[Z_2 \mid z_1] = (1 - \rho^2)\sigma_2^2$.

Solution. Let $Z_1 \sim N(0,1)$. We know that $f_{Z_1}(z_1) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z_1^2}{2}\right]$.

$$f_{12}(z_1, z_2) = \frac{1}{\pi} \exp\left[-2(z_1^2 + z_2^2 + \sqrt{3}z_1 z_2)\right]$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z_1^2}{2}\right] \frac{\sqrt{2}}{\sqrt{\pi}} \exp\left[-\left(\frac{3}{2}z_1^2 + 2z_2^2 + 2\sqrt{3}z_1 z_2\right)\right]$$

Recognizing the first term as $f_{Z_1}(z_1)$, the pdf for Z_1 , we have that

$$f_{12}(z_1, z_2) = f_{Z_1}(z_1) \frac{\sqrt{2}}{\sqrt{\pi}} \exp\left[-\left(\frac{3}{2}z_1^2 + 2z_2^2 + 2\sqrt{3}z_1z_2\right)\right].$$

Rearranging the second term and simplifying, we get that

$$f_{12}(z_1, z_2) = f_{Z_1}(z_1) \frac{\sqrt{2}}{\sqrt{\pi}} \exp\left[-\left(\frac{3}{2}z_1^2 + 2z_2^2 + 2\sqrt{3}z_1z_2\right)\right]$$

$$= f_{Z_1}(z_1) \frac{\sqrt{2}}{\pi} \exp\left[-2\left(z_2^2 + \sqrt{3}z_1z_2 + \frac{3}{4}z_1^2\right)\right]$$

$$= f_{Z_1}(z_1) \frac{1}{\sqrt{2\pi \cdot \frac{1}{4}}} \exp\left[-\frac{\left(z_2 + \frac{\sqrt{3}}{2}z_1\right)^2}{2\left(\frac{1}{4}\right)}\right].$$

We recognize the second term now as the pdf for $Z_2 \mid z_1 \sim N\left(-\frac{\sqrt{3}}{2}z_1, \frac{1}{4}\right)$, so we conclude

$$f_{12}(z_1, z_2) = f_{Z_1}(z_1) f_{Z_2|z_1}(z_2 \mid z_1).$$

Note that $\mathbb{E}[Z_2 \mid z_1] = -\frac{\sqrt{3}}{2}z_1$, and

$$\beta_0 + \beta_1 z_1 = \left(\mu_2 - \left(\rho \frac{\sigma_2}{\sigma_1}\right) \mu_1\right) + \rho \frac{\sigma_2}{\sigma_1} z_1$$
$$= (0 - 0) - \frac{\sqrt{3}}{2} z_1$$
$$= -\frac{\sqrt{3}}{2} z_1.$$

Similarly, $\operatorname{Var}\left[Z_2 \mid z_1\right] = \frac{1}{4}$ and

$$(1 - \rho^2) \sigma_2^2 = \left(1 - \left(-\frac{\sqrt{3}}{2}\right)^2\right) 1^2$$
$$= \frac{1}{4},$$

matching the results from the given formulas.

c) You can also show conditional results using representation. For $Z_o \sim N(0,1)$ independent of Z_2 , define $Z_1 = \rho Z_2 + \sqrt{1-\rho^2} Z_o$ to have correlation ρ with Z_2 . Show that conditioning on $Z_2 = z_2$ and treating this as constant in the representation of Z_1 results in a conditional distribution $Z_1 \mid z_2$ that mirrors that of $Z_2 \mid z_1$ from part (b).

Solution. For $Z_o \sim N(0,1)$ independent of Z_2 , define $Z_1 = \rho Z_2 + \sqrt{1-\rho^2} Z_o$ as stated. Note that $\sqrt{1-\rho^2} Z_o \sim N(0,1-\rho^2)$. Conditioning on $Z_2 \mid z_2$, we find that

$$Z_1 \mid z_2 \sim N(\rho Z_2, 1 - \rho^2)$$

For $\rho = -\frac{\sqrt{3}}{2}$ (giving $1 - \rho^2 = \frac{1}{4}$), we have

$$Z_1 \mid z_2 \sim N\left(-\frac{\sqrt{3}}{2}z_2, \frac{1}{4}\right)$$

which matches the distribution of $Z_2 \mid z_1$ in part (b).

- 3. Suppose X and Y have joint pdf $f_{xy}(x,y) = I(0 < x < 1, -x < y < x)$.
 - a) Explain how you can tell, without finding the marginal densities, that the conditional densities are Uniform. Write out the conditional densities $f_{x|y}(x \mid y)$ and $f_{y|x}(y \mid x)$.

Solution. The conditional densities are uniform as they are proportional to the joint density, which can be thought of as Uniform (as it is an indicator variable).

Since by construction, |y| < x and x < 1 it follows that the conditional density is

$$f_{x|y}(x \mid y) = \frac{1}{1 - |y|} I(|y| < x < 1).$$

Similarly, we must have that -x < y < x, so

$$f_{x|y}(y \mid x) = \frac{1}{2x}I(-x < y < x).$$

b) Explain how you can tell, without finding the marginal densities, that X and Y are not independent. Find the marginal pdf's $f_x(x)$ and $f_y(y)$ and verify that $f_{xy}(x,y) \neq f_x(x)f_y(y)$.

Solution. Note that very clearly, $f_{x|y}(x,y)$ are not equal for different values of y, so X and Y cannot be independent. We can verify this with the marginal pdfs:

$$f_x(x) = \frac{f_{xy}(x,y)}{f_{y|x}(y \mid x)} = \frac{I(0 < x < 1, -x < y, x)}{\frac{1}{2x}I(-x < y < x)} = 2xI(0 < x < 1).$$

Similarly,

$$f_x(y) = \frac{f_{xy}(x,y)}{f_{x|y}(x \mid y)} = \frac{I(0 < x < 1, -x < y, x)}{\frac{1}{1 - |y|}I(|y| < x < 1)} = (1 - |y|)I(-1 < y < 1).$$

We check that

$$f_X(x)f_Y(y) = 2x(1 - |y|)I(0 < x < 1)I(-1 < y < 1)$$

$$\neq I(0 < x < 1, -x < y, x) = f_{XY}(x, y)$$

confirming that X and Y are not independent.

c) Show that X and Y are uncorrelated.

Solution. Note that

$$\mathbb{E}[XY] = \int_0^1 \int_{-x}^x xy I(0 < x < 1, -x < y < x) \, dy \, dx = 0$$

by symmetry. Similarly,

$$\mathbb{E}[X] = \int_0^1 x(2x) \, dx = 1$$

and

$$\mathbb{E}[Y] = \int_{-1}^{1} y(1 - |y|) \, dy = 0$$

by symmetry. Thus, we have that

$$\mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right] = 0$$

so X and Y are uncorrelated, as desired.

4. a) Suppose X_1 and X_2 are Bernoulli random variables with expectations p_1 and p_2 . Show that X_1 and X_2 are independent if and only if they are uncorrelated. This shows the Bernoulli distribution is special like the multivariate Normal distribution in that uncorrelated implies independence.

Solution. Note that if X_1 and X_2 are independent, then we have that $P(X_1 = 1, X_2 = 1) = P(X_1 = 1)P(X_2 = 1)$. Note that

$$X_1 X_2 = \begin{cases} 1 & \text{if } X_1 = 1 \text{ and } X_2 = 1 \\ 0 & \text{otherwise} \end{cases}$$

so
$$\mathbb{E}[X_1X_2] = P(X_1 = 1, X_2 = 1) = P(X_1 = 1)P(X_2 = 1) = \mathbb{E}[X_1]\mathbb{E}[X_2].$$

Thus,

$$\mathbb{E}\left[X_1X_2\right] = \mathbb{E}\left[X_1\right]\mathbb{E}\left[X_2\right]$$

and so X_1 and X_2 are uncorrelated.

On the other hand, suppose that X_1 and X_2 are independent, so that $\mathbb{E}[X_1X_2] = \mathbb{E}[X_1]\mathbb{E}[X_2] = p_1p_2$.

By the Law of Total Probability, we have that

$$P(X_1 = 1) = P(X_1 = 1 \mid X_2 = 1)P(X_2 = 1) + P(X_1 = 1 \mid X_2 = 0)P(X_2 = 0).$$

Since $P(X_1 = 1) = \mathbb{E}[X_1] = p_1$, $P(X_1 = 1 \mid X_2 = 1)P(X_2 = 1) = \mathbb{E}[X_1X_2] = p_1p_2$, and $P(X_2 = 0) = 1 - \mathbb{E}[X_2] = 1 - p_2$, we must have that

$$P(X_1 = 1 \mid X_2 = 0) = \frac{P(X_1 = 1) - P(X_1 = 1 \mid X_2 = 1)}{P(X_2 = 0)}$$
$$= \frac{p_1 - p_1 p_2}{1 - p_2}$$
$$= p_1.$$

Similarly, by the Law of Total Probability, we have that

$$P(X_2 = 1) = P(X_2 = 1 \mid X_1 = 1)P(X_1 = 1) + P(X_2 = 1 \mid X_1 = 0)P(X_1 = 0)$$

and so

$$P(X_2 = 1 \mid X_1 = 0) = \frac{P(X_2 = 1) - P(X_2 = 1 \mid X_1 = 1)}{P(X_1 = 0)}$$
$$= \frac{p_2 - p_1 p_2}{1 - p_1}$$
$$= p_2.$$

We see that both $P(X_1 = 1) = P(X_1 = 1 \mid X_2 = 1) = P(X_1 = 1 \mid X_2 = 0) = p_1$ and $P(X_2 = 1) = P(X_2 = 1 \mid X_1 = 1) = P(X_2 = 1 \mid X_1 = 0) = p_2$.

Through a similar line of reasoning, we can conclude that $P(X_1 = 0) = P(X_1 = 0 \mid X_2 = 1) = P(X_1 = 0 \mid X_2 = 1) = 1 - p_1$ and $P(X_2 = 0) = P(X_2 = 0 \mid X_1 = 1) = P(X_2 = 0 \mid X_1 = 0) = 1 - p_2$.

Thus, X_1 and X_2 are independent, as desired.

It follows that X_1 and X_2 are independent if and only if they are uncorrelated, as desired.

b) Suppose $Y = X_1 + X_2$ with X_1 and X_2 independent. If you learn that Y and X_1 are Normal variables, prove that X_2 is also a Normal random variable.

Solution. Suppose that $Y \sim N(\mu_Y, \sigma_Y^2)$ and $X_1 \sim N(\mu_1, \sigma_1^2)$. Since $Y = X_1 + X_2$, we know that the MGF of Y and $X_1 + X_2$ are the same, so

$$M_{X_1+X_2}(t) = M_Y(t)$$

meaning that $M_{X_1}(t)M_{X_2}(t)=M_Y(t)$ and

$$M_{X_2}(t) = \frac{M_Y(t)}{M_{X_1}(t)}.$$

Since $Y \sim N(\mu_Y, \sigma_Y^2)$ and $X_1 \sim N(\mu_1, \sigma_1^2)$, we know that

$$M_Y(t) = e^{t\mu_Y + \frac{1}{2}\sigma_Y^2 t^2}$$
 and $M_{X_1}(t) = e^{t\mu_1 + \frac{1}{2}\sigma_1^2 t^2}$.

Thus,

$$M_{X_2}(t) = \frac{M_Y(t)}{M_{X_1}(t)}$$

$$= \frac{e^{t\mu_Y + \frac{1}{2}\sigma_Y^2 t^2}}{e^{t\mu_1 + \frac{1}{2}\sigma_1^2 t^2}}$$

$$= e^{t(\mu_Y - \mu_1) + \frac{1}{2}(\sigma_Y^2 - \sigma_1^2) t^2}$$

which is the MGF of the Normal random variable $N(\mu_Y - \mu_1, \sigma_Y^2 - \sigma_1^2)$.

Thus, if Y and X_1 are Normal variables and $Y = X_1 + X_2$ with X_1 and X_2 independent, it follows that X_2 is also a Normal random variable.