Técnicas de contagem

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 06 de abril de 2022

- 1 Técnicas de Contagem
 - Princípio fundamental da contagem
 - Permutações simples
 - Permutações com Repetição
 - Arranjos
 - Combinações

Espaços amostrais finitos

- Lançar um dado 10 vezes. Qual a probabilidade do evento: ocorrer soma das faces ímpar.
- Uma caixa contém 40 parafusos bons e 10 defeituosos. Se selecionarmos uma amostra de 5 parafusos, sem reposição, qual a probabilidade de que nenhum parafuso na amostra seja defeituoso?
- Note que nesses dois exemplos não é tão simples enumerar ou contar o número de elementos de Ω . Nesses casos, métodos de contagem facilitam o cálculo de probabilidades.

- 1 Técnicas de Contagem
 - Princípio fundamental da contagem
 - Permutações simples
 - Permutações com Repetição
 - Arranjos
 - Combinações

- Suponha que tenham entrado em cartaz 3 filmes e 2 peças de teatro e que Carlos tenha dinheiro para assistir a apenas 1 evento.
- Quantos programas diferentes Carlos pode fazer no Sábado?
- Solução: Carlos assiste ao Filme 1 ou Filme 2 ou Filme 3 ou à Peça 1 ou Peça 2. Portanto são 5 programas diferentes.

- Se no exemplo anterior, Carlos tiver dinheiro para assistir a um filme e a uma peça de teatro, quantos são os programas possíveis?
- Vamos enumerar os casos possíveis
 - Filme 1 e Peça 1
 - 2 Filme 1 e Peça 2
 - 3 Filme 2 e Peça 1
 - Filme 2 e Peca 2
 - 6 Filme 3 e Peça 1
 - 6 Filme 3 e Peça 2
- São 6 programas diferentes.

- Exemplo 3: Numa confeitaria há 5 sabores de picolés e 3 sabores de salgados. Suponha que Maria só tenha permissão para tomar um picolé ou comer um salgado. Qual o número de pedidos que Maria pode fazer?
- Exemplo 4: Qual o número de pedidos, se pudesse comer um picolé e um salgado?

- Os Exemplos 1 e 3 obedecem a um mesmo princípio básico chamado princípio aditivo: Se A e B são dois conjuntos disjuntos $(A \cap B = \emptyset)$ com, respectivamente, p e q elementos, então $A \cup B$ possui p + q elementos.
- Os Exemplos 2 e 4 obedecem a um outro princípio básico de contagem denominado princípio multiplicativo. Se um evento A pode ocorrer de m maneiras distintas e, se para cada uma dessas m maneiras, um outro evento B pode ocorrer de n maneiras distintas, então o número de maneiras de ocorrer o evento A seguido do evento B é $m \times n$.

- Princípio aditivo: Se $A_1, A_2, ..., A_n$ são conjuntos, disjuntos 2 a 2, e se A_i possui a_i elementos, então a união $\bigcup_{i=1}^n A_i$ possui $\sum_{i=1}^n a_i$ elementos.
- Princípio multiplicativo: Sejam A_1, A_2, \ldots, A_n eventos cada um com cardinalidade m_i . O número de maneiras em que esses eventos ocorrem sucessivamente, é dado por $m_1 \times m_2 \times \cdots \times m_n$, que corresponde a cardinalidade do conjunto $A_1 \times A_2 \times \cdots \times A_n$.

Exemplo: Quantos números de 4 dígitos podemos formar com os dígitos 1,2,3,4,5,6?

$$6^4 = 1296$$

Qual a probabilidade de se escolher um número dentre os 1296 e este possuir os dois primeiros dígitos iguais entre si, e os dois últimos, diferentes desses primeiros?

- Para o primeiro dígito, temos 6 possibilidades.
- Para o segundo dígito, temos 1 possibilidade, pois ele deve ser igual ao primeiro.
- Para o terceiro dígito, temos 5 possibilidades, pois ele deve ser diferente do primeiro (e do segundo).
- Para o quarto dígito, temos 5 possibilidades, pois ele deve ser diferente do primeiro (e do segundo).

A probabilidade é $\frac{6 \times 1 \times 5 \times 5}{1296} = \frac{25}{216} \approx 0, 12.$

- 1 Técnicas de Contagem
 - Princípio fundamental da contagem
 - Permutações simples
 - Permutações com Repetição
 - Arranjos
 - Combinações

Permutações simples

• Uma permutação de n objetos distintos é qualquer agrupamento ordenado desses objetos, de modo que, se denominarmos P_n o número das permutações dos n objetos, então

$$P_n = (n)_n = n(n-1)(n-2)\dots 1 = n!$$

- O número n! é chamado o fatorial de n. Por convenção 0! = 1.
- Exemplo: De quantas maneiras 6 pessoas podem se sentar em 6 cadeiras. Resposta: 6! = 720 maneiras.

- 1 Técnicas de Contagem
 - Princípio fundamental da contagem
 - Permutações simples
 - Permutações com Repetição
 - Arranjos
 - Combinações

Permutações com Repetição

• Considere agora n objetos, em que, n_1 são iguais a a_1 , n_2 são iguais a a_2 , ..., n_r iguais a a_r . O número de permutações desses n objetos é dado por

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

Exemplo: Se um time de futebol jogou 13 partidas em um campeonato tendo perdido 5 jogos, empatado 2 e vencido 6 jogos, de quantos modos isto pode ter ocorrido?

$$\frac{13!}{5!2!6!} = 36.036$$

- 1 Técnicas de Contagem
 - Princípio fundamental da contagem
 - Permutações simples
 - Permutações com Repetição
 - Arranjos
 - Combinações

Arranjos Simples

- Um arranjo é uma ordenação de n objetos distintos de ordem p. Ou seja, é o número de maneiras de escolher p objetos de um total de n $(0 \le p \le n)$ objetos distintos.
- \bullet Dessa forma, um arranjo é um caso especial de permutação. Um arranjo de n tomados p a p é dado por:

$$A_n^p = (n)_p = n(n-1)\dots(n-p+1) = \frac{n!}{(n-p)!}.$$

- Exemplo: De quantas maneiras 6 pessoas podem se sentar em 3 cadeiras. Resposta: $A_6^3 = \frac{6!}{3!} = 120$ maneiras.
- Obs: Note que nessas situações a ordem em que os elementos são dispostos é relevante.

- 1 Técnicas de Contagem
 - Princípio fundamental da contagem
 - Permutações simples
 - Permutações com Repetição
 - Arranjos
 - Combinações

Combinações simples

- Combinações simples de n objetos tomados p a p, onde $n \ge 1$ e p é um número natural tal que $p \le n$, são todas as escolhas não ordenadas de p desses n elementos.
- O número de combinações será denotado por C_n^p e é dado pelo coeficiente binomial:

$$C_n^p = \binom{n}{p} = \frac{n!}{p!(n-p)!}.$$

• Exemplo: Quantas comissões de 3 pessoas podemos escolher de um grupo de 6 pessoas. Resposta: $C_6^3 = \frac{6!}{3!3!} = 20$

Exemplo: Uma urna possui 4 bolas brancas, 5 vermelhas e 6 azuis. Três bolas são selecionadas ao acaso da urna. Qual a probabilidade de que todas elas sejam vermelhas?

- Total de bolas: 15.
- Maneiras de sortear 3 bolas dentre 15 bolas: $\binom{15}{3} = \frac{15!}{3!(15-3)!} = 455$.
- A=sortear 3 bolas vermelhas.

$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = 10.$$

$$\mathbb{P}(A) = \frac{10}{455} = \frac{2}{91} \,.$$

Combinações com repetição

 Quando a ordem não importa, mas cada objeto pode ser escolhido mais de uma vez, o número de combinações é

$$CR_n^p = \binom{n+p-1}{p} = \frac{(n+p-1)!}{p!(n-1)!}$$

• Exemplo: De quantos modos é possível comprar 4 sorvetes em uma sorveteria que oferece 7 sabores distintos? Resposta: $CR_7^4 = \binom{10}{4} = 210$.

O prefixo telefônico de uma universidade é 452.

- Quantos números telefônicos de sete dígitos podem ser formados?
- Quantos números telefônicos de sete dígitos diferentes podem ser formados?
- Qual a probabilidade de, obtido um número ao acaso, este apresentar os sete dígitos diferentes?

Fonte: Lista de exercícios selecionados pela Profa. Verônica González-López, com a contribuição do prof. Mario Gneri, Márcio Lanfredi Viola e Diego Bernardini – IMECC Unicamp.

Solução

b) Possibilidades: 0, 1, 3, 6, 7, 8 e 9

- c) 10.000 possibilidades
- A = 840 possibilidades

$$P = \frac{840}{10,000} = 0,084 = 8,4\%$$

Problema dos Aniversários

- \bullet Em um grupo de r pessoas, qual a probabilidade de que pelo menos duas delas façam aniversário no mesmo dia?
 - Considere o ano com 365 dias e, assim, assumimos $r \leq 365$ pois para r > 365 a probabilidade desejada seria 1.
 - O espaço amostral será o conjunto de todas as sequências formadas com as datas dos aniversários (associamos cada data a um dos 365 dias do ano).
 - Pelo princípio fundamental da contagem, o número total de sequências de tamanho r é igual a 365^r .
 - Seja $E = \{ \text{pelo menos duas pessoas aniversariam no mesmo dia} \},$ então $E^c = \{ \text{ninguém faz aniversário no mesmo dia} \}.$

$$\#E^c = 365 \times 364 \times 363 \times \dots \times (365 - r + 1)$$

Dessa forma,

$$\mathbb{P}(E^c) = \frac{(365)_r}{365^r} = 1\left(1 - \frac{1}{365}\right)\left(1 - \frac{2}{365}\right)\cdots\left(1 - \frac{(r-1)}{365}\right).$$

Problema dos Aniversários

Tabela: Probabilidades de aniversários coincidentes de acordo com o tamanho do grupo

r	$\mathbb{P}(E)$
10	0,1169
20	0,4114
30	0,7063
40	0,8912
50	0,9704
60	0,9941

- Qual é a probabilidade de que os aniversários de 12 pessoas sejam em meses diferentes?
- ② E a probabilidade de que os aniversários de 4 pessoas sejam em exatamente dois meses?

Fonte: Lista de exercícios do Professor Élcio Lebensztavn – IMECC Unicamp.

Solução

• Seja A: aniversários de 12 pessoas sejam em meses diferentes. Temos que $\#\Omega=12^{12}$.

O número de maneiras dos aniversários serem em meses diferentes é $P_{12} = 12!$.

Então,

$$\mathbb{P}(A) = \frac{\#A}{\#\Omega} = \frac{12!}{12^{12}} \cong 5,37 \times 10^{-5}$$

② Seja B: aniversários de 4 pessoas sejam em dois meses. Temos que $\#\Omega = 12^4$.

O número de maneiras dos aniversários de 4 pessoas serem em dois meses é $\#B=C_{12}^2\times(2^4-2)$

A subtração do 2 é para excluir o caso em que todas as 4 pessoas fazem aniversário no mês m_1 ou no mês m_2 .

Então,

$$\mathbb{P}(B) = \frac{\#B}{\#\Omega} \cong 0,04456$$

Cinco bolas são selecionadas aleatoriamente, sem reposição, de uma urna que contém 5 bolas vermelhas, 6 bolas brancas e 7 bolas azuis, todas distintas. Determine a probabilidade de que pelo menos uma bola de cada cor seja selecionada.

Fonte: Lista de exercícios do Professor Élcio Lebensztavn – IMECC Unicamp.

Solução

Considere os eventos:

A: Não há bolas azuis entre as bolas selecionadas.

B: Não há bolas brancas entre as bolas selecionadas.

C: Não há bolas vermelhas entre as bolas selecionadas.

Temos:

$$\mathbb{P}(A \cup B \cup C) = \frac{C_{11}^5}{C_{18}^5} + \frac{C_{12}^5}{C_{18}^5} + \frac{C_{13}^5}{C_{18}^5} - \frac{C_5^5}{C_{18}^5} - \frac{C_6^5}{C_{18}^5} - \frac{C_7^5}{C_{18}^5}$$
$$= \frac{2513}{8568} \cong 0,293$$

A probabilidade de que pelo menos uma bola de cada cor seja selecionada é:

$$\mathbb{P}(A^C \cap B^C \cap C^C) = 1 - \mathbb{P}(A \cup B \cup C) = 1 - 0,293 \cong 0,707$$

Problema dos Encontros

 Diversas variações desse problema são encontradas em livros de probabilidade. Há versões que usam chapéus, casais, cartas, etc. O problema básico pode ser formulado como segue:

Suponha que bolas numeradas de 1 a n são colocadas ao acaso em caixas, também numeradas de 1 a n. A bola "encontrou" seu lugar correto se foi colocada na caixa de mesmo número. Obtenha a probabilidade de que nenhuma bola encontre o seu lugar correto.