Chap 3 : Théorie des tests

Organisation du chapitre 3

- Tests statistiques
 - Un exemple d'introduction
 - Tests paramétriques
 - Test d'adéquation
 - Test d'indépendance
 - Test d'ajustement de Kolmogorov

1. Tests statistiques

1.1. Un exemple d'introduction

Exemple d'introduction : les faiseurs de pluie

- Des relevés (sur longue période) : le niveau naturel des pluies dans la Beauce par an (en mm) suit une loi $\mathcal{N}(\mu=600,\sigma=100)$.
- Des entrepreneurs prétendent pouvoir augmenter le niveau moyen de pluie (insémination des nuages-iodure d'argent). Essai entre 1951 et 1959 :

```
Année
      1951 1952 1953 1954
                             1955
                                   1956
                                         1957
                                               1958
                                                    1959
                                  534
       510
             614
                  780
                        512
                              501
                                         603
                                               788
                                                     650
 mm
```

- Deux hypothèses s'affrontent :
 - L'insémination était sans effet
 - Elle augmentait le niveau moyen de pluie de 50 mm.

othèses Si m désigne l'espérance mathématique de X v.a. égale au niveau annuel :

$$\begin{cases} H_0 : m = 600 mm \\ H_1 : m = 650 mm \end{cases}$$

1. Pour les agriculteurs : le coût! Donc les faits observés doivent contredire nettement la validité de H_0 (l'hypothèse nulle).

Exemple d'introduction

veau α Niveau de probabilité ou ils sont prets à accepter H_1 , i.e. le résultat obtenu faisait partie d'une éventualité de 5 sur 100 de se produire.

Ils prennent donc un risque de 5% de se tromper (évènements rares arrivent quand mĺme).

Test Tester la valeur m, on considère \bar{X} (moyenne des observations) qui est donc la variable de décision

Si
$$H_0$$
 est vraie, \bar{X} suit $\mathcal{N}(600, \frac{100}{\sqrt{9}})$

Si \bar{x} est trop grand, i.e. $\bar{x} \geq k$, avec k tel que $P(Y \geq k) = \alpha$ oô $Y \sim \mathcal{N}(600, \frac{100}{\sqrt{9}})$. donc

$$k = 600 + \frac{100}{3} \cdot 1.64 = 655$$

écision Règle de décision :

- Si $ar{X} >$ 655, on rejette H_0 et accepter H_1
- Si $ar{X} <$ 655, on conserve H_0

Exemple d'introduction : les types d'erreur

Supposons que les faiseurs de pluie ont raison, alors $\bar{X} \sim \mathcal{N}(650, \frac{100}{3})$.

On commet une erreur à chaque fois que $\bar{x} <$ 655, donc avec probabilité :

$$\beta := P\left(U < \frac{655 - 650}{100/3}\right) = P(U < 0.15) = 0.56$$

 $\alpha = P[\text{accepter } H_1 \text{ ; alors que } H_0 \text{ vraie}] : \text{erreur de première espèce } !$

 $\beta = P[\text{accepter } H_0 \text{ ; alors que } H_1 \text{ vraie}] : \text{erreur de deuxième espèce } !$

$$\begin{array}{cccc} \text{D\'{e}cision} \backslash \text{V\'{e}rit\'e} & H_0 & H_1 \\ H_0 & 1-\alpha & \beta \\ H_1 & \alpha & 1-\beta \end{array}$$

Remarque. Les deux hypothèses ne jouent pas de rôles symétriques : - k déterminé par H_0 et α - β est déterminé par la considération supplémentaire de H_1 .

1.2. Tests paramétriques

Les Différents Tests paramétriques

Définition 4.1

Soit $X_1,...,X_n$ un échantillon dont la loi est dans le modèle $(\Omega,\mathscr{A},\{P_\theta\}_{\theta\in\Theta})$. On suppose Θ partitionné en Θ_0 et Θ_1 et on associe les hypothèses suivantes :

$$\left\{ \begin{array}{l} H_0:\,\theta\in\Theta_0\\ H_1:\,\theta\in\Theta_1 \end{array} \right.$$

 H_0 s'appelle l'hypothèse nulle et H_1 l'hypothèse alternative.

Test Simple
$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 \end{cases} ; \text{ Test unilateral } \begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta > \theta_0 \end{cases} \text{ ou}$$

$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta < \theta_0 \end{cases} ; \text{ Test composite } \begin{cases} H_0: \theta \in [\theta_0, \theta_1] \\ H_1: \theta \notin [\theta_0, \theta_1] \end{cases} \text{ ou}$$

$$\begin{cases} H_0: \theta \notin [\theta_0, \theta_1] \\ H_1: \theta \in [\theta_0, \theta_1] \end{cases} ; \text{ Test bilateral } \begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta \neq \theta_0 \end{cases}$$

Tests paramétriques

Définition 4.2

- Erreur de première espèce, notée α , est la probabilité de rejeter à tort l'hypothèse nulle, i.e.

$$\alpha = P(\text{choisir } H_1|H_0 \text{ est vraie})$$

- Erreur de deuxième espèce, notée β , est la probabilité de conserver à tort l'hypothèse nulle, i.e.

$$\beta = P(\text{choisir } H_0 | H_1 \text{ est vraie})$$

- La puissance d'un test, notée \mathscr{P} , est la probabilité de rejeter H_0 lorsque H_1 est vraie.

Définition 4.3

La région de Rejet d'un test, \mathcal{W} , est l'ensemble des valeurs de la statistique de test qui conduisent à rejeter H_0 au profit de H_1 .

Construction d'un test paramétrique

On a donc:

$$\alpha = P_{H_0}(\mathcal{W}), 1 - \alpha = P_{H_0}(\mathcal{W}^c), \mathcal{P} = 1 - \beta = P_{H_1}(\mathcal{W}).$$

Résumé:

$$\begin{array}{cccc} \text{D\'{e}cision} \backslash \text{V\'{e}rit\'e} & H_0 & H_1 \\ H_0 & 1-\alpha & \beta \\ H_1 & \alpha & 1-\beta \end{array}$$

Les démarches de la construction d'un test :

- 1- choix de H_0 et H_1
- 2- détermination de la statistique de test
- 3- forme de la région de rejet
- 4- détermination de la loi de la statistique de test sous H_0 et le calcul de la région de rejet en fonction de α
- 5- calcul de la puissance
- 6- calcul de la valeur expérimental de test

Le test simple : Méthode de Neyman-Pearson

Il s'agit de maximiser la puissance $(1-\beta)$ du test pour une valeur donnée de α risque de première espèce.

Cela revient à choisir la région critique optimale, i.e. un domaine de \mathbb{R}^n parmi l'ensemble de toutes les réalisations possibles de l'échantillon $(X_1,...,X_n)$ dont la forme définira ensuite une variable statistique.

Théorème 4.1 (Neyman Pearson)

La région critique optimale W est définie par l'ensemble des points de \mathbb{R}^n tels que :

$$\frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}$$

ou k_{α} est une constante telle que $P_{H_0}(W) = \alpha$. Alors cette région W réalise le maximum de $1 - \beta$.

Test Simple sur un paramètre : moyenne d'une loi normale

connu Echantillonnage gaussien $\mathcal{N}(\mu; \sigma_0^2); \mu \in \mathbb{R}$), variance connue.

Step 1 On choisit les hypothèses

Test simple :
$$\left\{ \begin{array}{l} H_0: \mu = \mu_0 \\ H_1: \mu = \mu_1 \end{array} \right.$$

avec $\mu_1 > \mu_0$.

ep 2-3 Le rapport de vraisemblance est :

$$Z_{n} = \frac{L(X; \mu_{1})}{L(X; \mu_{0})} = \exp\left(-\frac{1}{2\sigma_{0}^{2}} \left[\sum_{i=1}^{n} (X_{i} - \mu_{1})^{2} - \sum_{i=1}^{n} (X_{i} - \mu_{0})^{2} \right] \right)$$

$$= \exp\left(\frac{1}{\sigma_{0}^{2}} (\mu_{1} - \mu_{0}) \sum_{i=1}^{n} X_{i} \right) \exp\left(-\frac{n}{2\sigma_{0}^{2}} (\mu_{1}^{2} - \mu_{0}^{2}) \right).$$

 Z_n est une variable aléatoire continue sous \mathbb{P}_{μ_0} . La région critique optimale au seuil α est

$$W = \left\{ (x_1, ..., x_n); \exp \left(-\frac{1}{2\sigma_0^2} \left[\sum_{i=1}^n (x_i - \mu_1)^2 - \sum_{i=1}^n (x_i - \mu_0)^2 \right] \right) > k \right\}$$

$$W = \left\{ (x_1, ..., x_n); \exp\left(\frac{1}{\sigma_0^2}(\mu_1 - \mu_0) \sum_{i=1}^n x_i\right) \exp\left(-\frac{n}{2\sigma_0^2}(\mu_1^2 - \mu_0^2)\right) > k \right\}$$
$$= \left\{ (x_1, ..., x_n); \frac{1}{n} \sum_{i=1}^n x_i > c \right\}.$$

On a donc : - statistique de test : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ - région critique (de rejet) : $W = \{\bar{X}_n > K_\alpha\}$.

Step 4 Détermination de K_{α} : sous l'hypothèse H_0 , \bar{X}_n suit une loi $\mathcal{N}(\mu_0, \frac{\sigma_0^2}{n})$. Donc :

$$\mathbb{P}_{H_0}(W) = \mathbb{P}_{H_0}(\frac{1}{n}\sum_{i=1}^n X_i > K_{\alpha}) = \mathbb{P}_{H_0}(\frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma_0} > \frac{\sqrt{n}(K_{\alpha} - \mu_0)}{\sigma_0}) \\
= 1 - \phi(\frac{\sqrt{n}(K_{\alpha} - \mu_0)}{\sigma_0}) = \alpha.$$

oô ϕ est la fonction de répartition de la gaussienne centrée et réduite.

d'oô $K_{\alpha}=\mu_0+\frac{\sigma_0}{\sqrt{n}}\phi^{-1}(1-\alpha)$.

On rejette donc l'hypothèse H_0 si :

$$ar{x}_n > \mu_0 + rac{\sigma_0}{\sqrt{n}}\phi^{-1}(1-lpha)$$

Step 5 **Puissance**: sous l'hypothèse H_1 , \bar{X}_n suit une loi $\mathcal{N}(\mu_1, \frac{\sigma_0^2}{n})$, la puissance du test est définie par :

$$\mathscr{P} = \mathbb{P}_{H_1}(W) = \mathbb{P}_{H_1}(\bar{X}_n > K_\alpha) = 1 - \phi \left(\frac{\sqrt{n}(\mu_0 - \mu_1)}{\sigma_0} + \phi^{-1}(1 - \alpha) \right).$$

Test Unilatéral

Step 1 On choisit les hypothèses

Test unilatéral :
$$\left\{ \begin{array}{l} \textit{H}_0: \, \mu = \mu_0 \\ \textit{H}_1: \, \mu > \mu_0 \end{array} \right.$$

tep 2-3 On a toujours - statistique de test : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ - région critique (de rejet) : $W = \{\bar{X}_n > K_\alpha\}$.

Step 4 On rejette donc l'hypothèse H_0 si :

$$ar{x}_n > \mu_0 + rac{\sigma_0}{\sqrt{n}}\phi^{-1}(1-lpha)$$

Step 5 Pour tout $\mu>\mu_0$, la puissance de test est définie donc par :

$$\mathscr{P}(\mu) = \mathbb{P}_{H_1}(W) \quad = \quad \mathbb{P}_{H_1}(ar{X}_n > K_{lpha}) = 1 - \phi\left(rac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} + \phi^{-1}(1 - lpha)
ight).$$

Test Unilatéral

Step 1 On choisit les hypothèses

Test unilatéral :
$$\left\{ \begin{array}{l} \textit{H}_0: \mu = \mu_0 \\ \textit{H}_1: \mu < \mu_0 \end{array} \right.$$

sep 2-3 On a - statistique de test : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ - région critique (de rejet) :

$$W = \{\bar{X}_n < K_\alpha\}.$$

Step 4 Détermination de K_lpha : sous l'hypothèse H_0 , $ar{X}_n$ suit une loi $\mathscr{N}(\mu_0, rac{\sigma_0^2}{n})$. Il vient donc:

$$\begin{split} \mathbb{P}_{H_0}(W) &= \mathbb{P}_{H_0}(\bar{X}_n > K_\alpha) = \mathbb{P}_{H_0}(\frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma_0} < \frac{\sqrt{n}(K_\alpha - \mu_0)}{\sigma_0}) \\ &= \phi(\frac{\sqrt{n}(K_\alpha - \mu_0)}{\sigma_0}) = \alpha. \end{split}$$

d'oô $K_{\alpha}=\mu_{0}+\frac{\sigma_{0}}{2}\phi^{-1}(\alpha)$. Chap 3 : Théorie des tests

Step 5 **Puissance**: sous l'hypothèse H_1 , Pour tout $\mu < \mu_0$, \bar{X}_n suit une loi $\mathcal{N}(\mu, \frac{\sigma_0^2}{2})$, la puissance du test est définie par :

$$\mathscr{P}(\mu) = \mathbb{P}_{H_1}(W) = \mathbb{P}_{H_1}(ar{X}_n < \mathcal{K}_{lpha}) = 1 - \phi\left(rac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} + \phi^{-1}(lpha)
ight).$$

Test Bilatéral

Step 1 On choisit les hypothèses

Test bilatéral :
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

sep 2-3 On a - statistique de test : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ - région critique (de rejet) : $W = \{|\bar{X}_n - \mu_0| > K_\alpha\}.$

Step 4 Détermination de K_lpha : sous l'hypothèse H_0 , $ar{X}_n$ suit une loi $\mathscr{N}(\mu_0, rac{\sigma_0^2}{n})$.

$$\begin{split} \mathbb{P}_{H_0}(W) &= \mathbb{P}_{H_0}(|\bar{X}_n - \mu_0| > K_\alpha) = 1 - \mathbb{P}_{H_0}(\frac{\sqrt{n}K_\alpha}{\sigma_0} \leq \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma_0} \leq \frac{\sqrt{n}K_\alpha}{\sigma_0} \\ &= 2(1 - \phi(\frac{\sqrt{n}K_\alpha}{\sigma_0}) = \alpha. \end{split}$$

d'ou
$$K_{lpha}=rac{\sigma_0}{\sqrt{n}}\phi^{-1}(1-rac{lpha}{2}).$$

On rejette donc l'hypothèse H_0 si :

$$|\bar{x}_n - \mu_0| > \frac{\sigma_0}{\sqrt{n}} \phi^{-1} (1 - \frac{\alpha}{2})$$

Step 5 **Puissance**: sous l'hypothèse H_1 , Pour tout $\mu \neq \mu_0$, \bar{X}_n suit une loi $\mathcal{N}(\mu, \frac{\sigma_0^2}{n})$, la puissance du test est définie par :

$$\mathscr{P}(\mu) = 1 - \phi \left(\frac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} + \phi^{-1}(1 - \frac{\alpha}{2}) \right) + \phi \left(\frac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} - \phi^{-1}(1 - \frac{\alpha}{2}) \right)$$

nconnu On considère un modèle d'échantillonnage gaussien $\mathscr{PN}(\mu; \sigma^2); \mu \in \mathbb{R}$) à variance inconnue. On rappelle que S_n^2 est un estimateur sans biais de σ^2 .

Step 1 On choisit les hypothèses

Test simple :
$$\left\{ \begin{array}{l} H_0: \mu = \mu_0 \\ H_1: \mu = \mu_1 \end{array} \right.$$

avec $\mu_1 > \mu_0$.

- sep 2-3 On a statistique de test : $\Lambda_n = \frac{\sqrt{n}(\bar{X}_n \mu_0)}{S_n}$ région critique (de rejet) : $W = \{\Lambda_n > K_\alpha\}$.
- Step 4 Détermination de K_{α} : sous l'hypothèse H_0 , Λ_n suit une loi T_{n-1} (loi de student à n-1 degrés de liberté). Il vient donc :

$$\mathbb{P}_{H_0}(W) = \mathbb{P}_{H_0}(\Lambda_n > K_\alpha) = 1 - F_{T_{n-1}}(K_\alpha) = \alpha.$$

oô $F_{T_{n-1}}$ désigne la fonction de répartition de T_{n-1} .

on a donc $K_{\alpha} = F_{T_{n-1}}^{-1}(1-\alpha)$. On rejette donc l'hypothèse H_0 si :

$$\bar{x}_n > \mu_0 + \frac{s_n}{\sqrt{n}} F_{T_{n-1}}^{-1} (1 - \alpha)$$

Step 5 **Puissance** : sous l'hypothèse H_1 , Λ_n suit une loi T_{n-1} , la puissance du test est définie par :

$$\mathscr{P} = \mathbb{P}_{H_1}(W) = \mathbb{P}_{H_1}(\Lambda_n > K_{\alpha}) = 1 - F_{T_{n-1}}\left(\frac{\sqrt{n}(\mu_0 - \mu)}{s_n} + F_{T_{n-1}}^{-1}(1 - \mu)\right)$$

Pour les autres tests : test unilatéral et test bilatéral, la méthode reste la mĺme.

Tests simple sur un paramètre : variance d'une loi normale

connu Soit $X_1,...,X_n$ un échantillon de loi $\mathcal{N}(\mu,\sigma^2)$ avec μ connu.

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 est un estimateur sans biais de σ^2 .

Step 1 On choisit les hypothèses

Test simple :
$$\left\{ \begin{array}{l} H_0 : \sigma = \sigma_0 \\ H_1 : \sigma = \sigma_1 \end{array} \right.$$

avec $\sigma_1 > \sigma_0$.

- ep 2-3 On a statistique de test : $\Lambda_n=\sum\limits_{i=1}^n(X_i-\mu)^2$ région critique (de rejet) : $W=\{\Lambda_n>K_{\alpha}\}$.
- Step 4 Détermination de K_lpha : sous l'hypothèse H_0 , $rac{\Lambda_n}{\sigma_0^2}$ suit une loi χ_n^2 :

$$\mathbb{P}_{H_0}(W) = \mathbb{P}_{H_0}(\Lambda_n > K_\alpha) = \mathbb{P}_{H_0}(\frac{\Lambda_n}{\sigma_0^2} > \frac{K_\alpha}{\sigma_0^2}) = 1 - F_{\chi_n^2}(\frac{K_\alpha}{\sigma_0^2}) = \alpha.$$

oô $F_{\chi_n^2}$ désigne la fonction de répartition de la loi χ_n^2 , on a donc $K_{\alpha} = \sigma_0^2 F_{\gamma_2}^{-1} (1 - \alpha)$. On rejette donc l'hypothèse H_0 si :

$$\sum_{i=1}^{n} (x_i - \mu)^2 > \sigma_0^2 F_{\chi_n^2}^{-1} (1 - \alpha)$$

Step 5 **Puissance** : sous l'hypothèse H_1 , $\frac{\Lambda_n}{\sigma_1^2}$ suit une loi χ_n^2 , la puissance du test est définie par :

$$\mathscr{P} = \mathbb{P}_{H_1}(W) = \mathbb{P}_{H_1}(\Lambda_n > K_{\alpha}) = \mathbb{P}_{H_1}(\frac{\Lambda_n}{\sigma_1^2} > \frac{K_{\alpha}}{\sigma_1^2}) = 1 - F_{\chi_n^2}\left(\frac{\sigma_0^2}{\sigma_1^2}F_{\chi_n^2}^{-1}\right)$$

MÍme méthode pour les autres tests.

connu On utilise la statistique de test
$$\Lambda_n = \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

1.3. Test d'adéquation

Test d'adéquation : test de χ^2

- On considère un échantillon $X_1,...,X_n$ et P_{θ} une loi donnée oô le paramètre $\theta \in \Theta \subset \mathbb{R}^d$.
- L'objectif du test d'adéquation (ou test du χ^2) est répondre à la question : les observations suivent-elles bien la loi P_{θ} ?
- Le problème de test à étudier est le suivant :

$$\begin{cases} H_0: X_1,...,X_n \text{ suivent la loi } P_{\theta} \\ H_1: X_1,...,X_n \text{ ne suivent pas la loi } P_{\theta} \end{cases}$$

Test d'adéquation : test de χ^2 - construction du test

On répartit les n observations de la v.a. X en k classes : $[e_{i-1},e_i]_{1\leq i\leq k}$ d'effectifs aléatoires N_i . On calcule :

$$p_{i} = P_{H_{0}}(X \in [e_{i-1}, e_{i}])$$

$$D_{n} = \sum_{i=1}^{k} \frac{(N_{i} - np_{i})^{2}}{np_{i}} = n \sum_{i=1}^{k} \frac{(\hat{p}_{i} - p_{i})^{2}}{p_{i}}$$

narque - np_i représente l'effectif théorique - \hat{p}_i représente la probabilité estimée : $\hat{p}_i = \frac{N_i}{n}$. - D représente une distance entre la loi théorique P_{θ} et la loi observée. - On aurait également pu définir D_n par

$$D_n = n \sum_{i=1}^k \frac{(\hat{p}_i - p_i)^2}{\hat{p}_i}$$

Dans le cas oô le paramètre θ est connu, on a le résultat suivant

orème Si $n \to \infty$, alors D_n est asymptotiquement distribué comme une variable de χ^2_{k-1} et ceci quelle que soit la loi de X.

Test d'adéquation : test de χ^2 - construction du test

narque On assimile $D_n \sim \chi_{k-1}^2$ si $np_i > 5$ pour toute classe. Dans le cas contraire, on procède à des regroupements. D'oô le test χ^2 .

n rejet. On rejettera H_0 si la valeur d_n constaté

$$\sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i} = n \sum_{i=1}^k \frac{(\hat{p}_i - p_i)^2}{p_i} \text{ est trop grand, c-à-d si}$$

$$d_n > F_{\chi_{k-1}^2}^{-1} (1 - \alpha)$$

Dans le cas ou le paramètre θ n'est pas connu, on a le résultat suivant :

orème Si $n \to \infty$, alors D_n est asymptotiquement distribué comme une variable de χ^2_{k-s-1} et ceci quelle que soit la loi de X, oô s désigne le nombre de paramètres estimés.

narque Dans le calcul des p_i , on utilise les valeurs estimés des paramètres $\hat{ heta}$.

Test d'adéquation : test de χ^2 - Exemple

remple Le tableau suivant présente les résultats de 500 mesures de l'erreur de pointage en dérive lors du tir à partir d'un avion sur une cible terrestre.

mesures (en radian)	effectifs
[-4, -3[6
[-3, -2[25
[-2, -1[72
$[-1, 0 \ [$	133
[0,1[120
[1,2[88
[2,3[46
[3,4[10

Testons l'adéquation des observations à une loi normale $\mathcal{N}(\mu, \sigma^2)$ avec un risque $\alpha=0.05$.

Test d'adéquation : test de χ^2 - Exemple

- Pour i=1,...,8 notons c_i le centre de la i-ème classe. Les estimateurs de μ et de σ^2 sont donnés par :

$$\hat{\mu} = \frac{1}{500} \sum_{i=1}^{8} n_i c_i = 0.168; \ \hat{\sigma}^2 = \frac{1}{500} \sum_{i=1}^{8} n_i (c_i - \hat{\mu})^2 = 2.098$$

- Sous H_0 , on a

$$p_i = \phi(\frac{e_i - \hat{\mu}}{\hat{\sigma}}) - \phi(\frac{e_{i-1} - \hat{\mu}}{\hat{\sigma}})$$

oô ϕ désigne la fonction de répartition de $\mathcal{N}(0,1)$.

- On rejette donc l'hypothèse H_0 si $D > F_{\chi_{8-2-1}^{-1}}^{-1}(1-0.05) = F_{\chi_{5}^{-1}}^{-1}(0.95) = 11.07.$
- D'après calcul, on trouve D = 3.524. Donc, on accepte l'hypothèse H_0 .

1.5. Test d'indépendance

Test d'indépendance

- Soit (X, Y) un couple de v.a à valeurs dans $\{1, ..., r\} \times \{l, ..., s\}$. Soit $((X_i; Y_i); 1 \le i \le n)$ un n-échantillon de (X, Y).
- On note $p_{ij} = P_{H_0}(X_1 = i, Y_1 = j)$, et les marginales

$$p_{i.} = \sum_{j=1}^{s} p_{ij}, \ p_{.j} = \sum_{i=1}^{r} p_{ij}$$

- On souhaite vérifier si les variables X et Y sont indépendantes.
- On étudie le test suivant

$$\begin{cases}
H_0: p_{ij} = p_{i.}p_{.j} \\
H_1: p_{ij} \neq p_{i.}p_{.j}
\end{cases}$$

- On note les occurrences

$$N_{ij} = \sum_{k=1}^{n} \mathbf{1}_{X_k=i, Y_k=j}; \ N_{i.} = \sum_{k=1}^{n} \mathbf{1}_{X_k=i}, \ N_{.j} = \sum_{k=1}^{n} \mathbf{1}_{Y_k=j}$$

Test d'indépendance : construction du test

- La statistique du test est :

$$D_n = \sum_{i=1}^r \sum_{j=1}^s D_{ij} = \sum_{i=1}^r \sum_{j=1}^s \frac{(N_{ij} - n\hat{\rho}_{i.}\hat{\rho}_{.j})^2}{n\hat{\rho}_{i.}\hat{\rho}_{.j}} = \sum_{i=1}^r \sum_{j=1}^s \frac{(N_{ij} - \frac{N_{i.}N_{.j}}{n})^2}{\frac{N_{i.}N_{.j}}{n}}$$

- D représente la distance entre le tableau observé et le tableau théorique. Sous H_0 , D_n suit une loi de $\chi^2_{(s-1)(r-1)}$
- Pour $\alpha \in [01]$ donné, on rejette donc l'hypothèse H_0 si

$$D > F_{X_{(r-1)(s-1)}^2}^{-1}(1-\alpha)$$

1.6. d'ajustement de Kolmogorov

Test de Kolmogorov

- Test non-paramétrique d'adjustement à une distribution entièrement spécifiiée de fonction de répartition F(x).
- Soit X₁,..., X_n un échantillon de loi inconnue P de fonction de répartition F supposée continue. L'objectif du test de Kolmogorov est l'ajustement de la loi inconnue P à une loi connue P₀ de fonction de répartition continue F₀.
- Le problème de test à étudier est le suivant :

$$\begin{cases} H_0: & F = F_0 \ (F_0 \text{ connue}) \\ H_1: & F \neq F_0 \end{cases}$$

- On introduit d'abord F_n la fonction de répartition empirique associée à l'échantillon $X_1, ..., X_n$.

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{]-\infty,x[}(X_i)$$

Test de Kolmogorov : construction du test

- F_n est un estimateur sans biais de F, en effet :

$$E[F_n(x)] = \frac{1}{n} \sum_{i=1}^n E[\mathbf{1}_{]-\infty,x[}(X_i)] = P(X_1 < x) = F(x)$$

- D'après le Théorème Glivenko-Cantelli (admis)

$$\sup_{y\in\mathbb{R}}|F_n(y)-F(y)|\to 0, \text{ p.s. quand } n\to\infty.$$

- En particulier, si l'on suppose de plus que F est continue, alors

$$\sqrt{n}\sup_{y\in\mathbb{R}}|F_n(y)-F(y)|\to W$$
 en loi, quand $n\to\infty$.

- W est indépendante de F et admet comme fonction de répartition :

$$K(y) := \sum_{i=-\infty}^{+\infty} (-1)^k \exp(-2k^2y^2)$$

Test de Kolmogorov : construction du test

- La statistique du test est :

$$D_n = \sqrt{n} \sup |F_n(x) - F_0(x)|$$

- Sous H_0 , (d'après les résultats de Glivenko - Kolmogorov en théorie de l'échantillonnage) D_n est asymptotiquement distribué comme suit :

$$P(D_n < y) \to K(y) = \sum_{i=-\infty}^{+\infty} (-1)^k \exp(-2k^2y^2)$$

- La fonction K a été tabulée et fournit donc la région de rejet :

$$D_n > K^{-1}(1-\alpha)$$