KONKURS MATEMATYCZNY

dla uczniów szkół podstawowych w roku szkolnym 2013/214

III stopień zawodów (wojewódzki)

1 lutego 2014 r.

Propozycja punktowania rozwiązań zadań

Uwaga:

Za każde poprawne rozwiązanie, inne niż przewidziane w propozycji punktowania rozwiązań zadań przyznajemy maksymalną liczbę punktów.

Klucz punktowania zadań zamkniętych

Nr zadania	1	2	3	4	5	6	7	8
odpowiedź	D	A	C	В	В	D	D	A

Zadanie 9. (4 pkt)

Oblicz sumę wszystkich liczb czterocyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3 i 4 (cyfry nie mogą się powtarzać).

I sposób rozwiazania

Zauważamy, że wszystkich liczb czterocyfrowych, których cyfry wybrane są ze zbioru {1,2,3,4} i w których cyfry się nie powtarzają jest 24.

Pierwszą cyfrę możemy wybrać na 4 sposoby spośród cyfr 1, 2, 3 i 4, drugą na 3 sposoby (cyfry nie mogą się powtarzać), trzecią na 2 sposoby.

Wypisujemy wszystkie liczby spełniające warunki zadania i dodajemy je, np.

<i>J</i> 1	3	J J 1	J (3 33 7 1
1234		2134	3124	4123
1243		2143	3142	4132
1324		2314	3214	4213
1342		2341	3241	4231
1423		2413	3412	4312
1432		<u>2431</u>	<u>3421</u>	<u>4321</u>
7998		13776	19554	25332

Suma wszystkich liczb jest równa: 7998 + 13776 + 19554 + 25332 = 66660.

II sposób rozwiązania

Zauważamy, że wszystkich liczb czterocyfrowych, których cyfry wybrane są ze zbioru {1,2,3,4} i w których cyfry się nie powtarzają jest 24.

Pierwszą cyfrę możemy wybrać na 4 sposoby spośród cyfr 1, 2, 3 i 4 drugą na 3 sposoby (cyfry nie mogą się powtarzać), trzecią na 2 sposoby.

Każda z cyfr 1, 2, 3, 4 jako cyfra jedności występuje w sześciu liczbach czterocyfrowych.

Dodając cyfry jedności tych liczb otrzymujemy 6 * (1+2+3+4)=60.

Tyle samo wynoszą sumy wszystkich cyfr dziesiątek, setek i tysięcy tych czterocyfrowych liczb.

Wnioskujemy zatem, że suma liczb czterocyfrowych jest równa: $60+60\cdot10+60\cdot100+60\cdot1000=66660$

Odpowiedź:

Suma wszystkich liczb czterocyfrowych spełniających warunki zadania jest równa 66660.

Sposób oceniania rozwiązania

- **1pkt** za zapisanie, że istnieją 24 liczby czterocyfrowe zapisane wyłącznie za pomocą cyfr 1, 2, 3 i 4 (przy czym cyfry nie powtarzają się).
- 1pkt za wypisanie wszystkich liczb czterocyfrowych, które można zapisać wyłącznie za pomocą cyfr 1, 2, 3 i 4 (przy czym cyfry nie powtarzają się). albo

zapisanie sum "tysięcy", "setek", "dziesiątek", "jedności".

1pkt – wypisanie liczb spełniających warunki zadania z pominięciem co najwyżej trzech liczb i obliczenie ich sumy

albo

zapisanie sumy "tysięcy" lub "setek" lub "dziesiątek" lub "jedności" z jednym błędem rachunkowym i obliczenie ich sumy.

1pkt – za obliczenie sumy liczb czterocyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3 i 4 (przy czym cyfry nie mogą sie powtarzać): 66660.

Uwaga

Jeżeli uczeń wypisze liczby spełniające warunki zadania z pominięciem co najwyżej trzech liczb i nie obliczy ich sumy albo zapisze sumy "tysięcy" lub "setek" lub "dziesiątek" lub "jedności" z jednym błędem rachunkowym i nie obliczy ich sumy, to za takie rozwiązanie przyznajemy **2 pkt.**

Zadanie 10. (4 pkt)

W pewnym prostopadłościanie iloczyn pól trzech ścian o wspólnym wierzchołku jest równy 576. Oblicz objętość tego prostopadłościanu.

Przykładowe rozwiązanie

Wprowadzamy oznaczenia:

- a, b, c długości krawędzi prostopadłościanu,
- P_1 , P_2 , P_3 pola powierzchni ścian o wspólnym wierzchołku.

Z warunków zadania wiemy, że $P_1 \cdot P_2 \cdot P_3 = 576$.

Zapisujemy pola poszczególnych ścian prostopadłościanu w zależności od długości krawędzi: $P_1 = ab$, $P_2 = bc$, $P_3 = ac$.

Zapisujemy iloczyn $P_1 \cdot P_2 \cdot P_3$ w zależności od długości krawędzi prostopadłościanu: $P_1 \cdot P_2 \cdot P_3 = ab \cdot bc \cdot ac = 576$

Zależność $ab \cdot bc \cdot ac = 576$ zapisujemy w postaci: $(abc)^2 = 576$ i wyznaczamy iloczyn abc: abc = 24.

Iloczyn abc jest równy objętości prostopadłościanu o krawędziach a, b, c zatem V = abc = 24.

Odp.: Objętość tego prostopadłościanu jest równa 24.

Sposób oceniania rozwiązania

1pkt – za zapisanie pola poszczególnych ścian prostopadłościanu w zależności od długości krawędzi: $P_1 = ab$, $P_2 = bc$, $P_3 = ac$.

1pkt – za zapisanie zależności $P_1 \cdot P_2 \cdot P_3 = 576$ w postaci: $ab \cdot bc \cdot ac = 576$.

1pkt – za zapisanie iloczynu pól powierzchni ścian w postaci $(abc)^2 = 576$.

1pkt – za wyznaczenie wartości iloczynu abc: abc = 24 i zapisanie, że objętość prostopadłościanu V = abc = 24.

Uwaga

Jeśli uczeń zakończy rozwiązanie zapisem abc = 24, to takie rozwiązanie oceniamy jak rozwiązanie pełne i przyznajemy **4 pkt.**

Zadanie 11. (*4 pkt*)

Dany jest trójkąt prostokątny ABC, w którym przyprostokątna BC ma długość a, natomiast długość przyprostokątnej AC jest równa b. Na przeciwprostokątnej na zewnątrz trójkąta zbudowano kwadrat o boku AB (zobacz rysunek). Punkt O jest punktem przecięcia przekątnych kwadratu. Oblicz miarę kąta OCB i zapisz wszystkie obliczenia.

Rozwiązanie

Rysujemy półproste CB i CA. Następnie kreślimy proste prostopadłe do tych półprostych LM i KC i przechodzące przez wierzchołki kwadratu A i D. Następnie rysujemy prostą prostopadłą do prostej CK i przechodzącą przez wierzchołek kwadratu E. W ten sposób zbudowaliśmy kwadrat CKLM o boku długości a+b.

Wprowadzamy oznaczenie: $\Box CAB = \alpha$, stąd i z własności miar kątów w trójkącie prostokątnym otrzymujemy $\Box CBA = 90^{\circ} - \alpha$.

Z własności miar kątów przyległych wnioskujemy, że $|\Box DBM| = \alpha$, a $|\Box BDM| = 90^{\circ} - \alpha$.

Odcinki *AB* i *BD* są równe, ponieważ są bokami kwadratu *ABDE*, stąd trójkąt *BDM* jest przystający do trójkąta *ABC*.

Podobnie pokazujemy, że trójkąt *DEL* i trójkąt *AKE* są przystające do trójkąta *ABC*.

Punkt *O* jest punktem przecięcia przekątnych kwadratu *ABDE* i jednocześnie punktem przecięcia przekątnych kwadratu *CKLM*.

Zatem miara kata *OCB* jest równa 45⁰.

Sposób oceniania rozwiązania

- **1 pkt** za pokazanie metody rozwiązania, np. zbudowanie czworokąta *CKLM*.
- **1 pkt** za wykazanie, że czworokąt *CKLM* jest kwadratem, np. uzasadnienie przystawania odpowiednich trójkątów.
- **1 pkt** za zapisanie, że punkt *O* jest punktem przecięcia się przekątnych kwadratu *CKLM* lub
 - za zapisanie, że odcinek OC zawiera się w przekątnej CL kwadratu CKLM.
- 1 pkt za zapisanie wraz z uzasadnieniem, że miara kata OCB jest równa 45°.

Uwaga:

Jeśli uczeń zbuduje czworokąt *CKLM* i poda odpowiedź bez uzasadnienia, że *CKLM* jest kwadratem, to za takie rozwiązanie przyznajemy **1 pkt** .

Wyciąg z Regulamin Konkursów Przedmiotowych dla uczniów szkół podstawowych i gimnazjów województwa mazowieckiego w roku szkolnym 2013/2014

§ 11

(...)

3.Uczestnicy etapu wojewódzkiego mogą uzyskać tytuł laureata lub finalisty. Laureatami zostają uczestnicy etapu wojewódzkiego, którzy uzyskali co najmniej 80 % punktów możliwych do zdobycia. Finalistami zostają uczestnicy etapu wojewódzkiego, którzy uzyskali co najmniej 60% punktów możliwych do zdobycia.

Maksymalna liczba punktów	20 pkt
Tytuł laureata	16 - 20 pkt
Tytuł finalisty	12 - 15 pkt