Formal languages, formal grammars, and regular expressions

LING 570 Fei Xia

Unit #1

Formal grammar, language and regular expression

Finite-state automaton (FSA)

Finite-state transducer (FST)

Morphological analysis using FST

Regular expression

- Two concepts:
 - Regular expression in formal language theory
 - Regular expression (or pattern) in pattern matching/programming languages:
 - Ex: /^\d+(\.\d+)\1/
- Both concepts describe a set of strings.
- The two concepts are closely related, but the latter is often more <u>expressive</u> than the former.

Outline

- Formal languages
 - Regular languages
 - Context-free languages
 - ...
- Regular expression in formal language theory
- Formal grammars
 - Regular grammars
 - Context-free grammars
- "Regular expression" in pattern matching

Formal languages

Definition of <u>formal</u> language

- An <u>alphabet</u> is a finite set of symbols:
 - Ex: Σ = {a, b, c}
- A <u>string</u> is a <u>finite</u> sequence of symbols from a particular alphabet juxtaposed:
 - Ex: the string "baccab"
 - Ex: empty string ϵ
- A <u>formal language</u> is a set of strings defined over some alphabet.
 - Ex1: {aa, bb, cc, aaaa, abba, acca, baab, bbbb,}
 - $Ex2: {a^n b^n | n > 0}$
 - Ex3: the *empty set* ϕ

Definition of regular languages

- The class of <u>regular languages</u> over an alphabet Σ is formally defined as:
 - The empty set, ϕ , is a regular language
 - \forall a ∈ $\Sigma \cup \{\epsilon\}$, {a} is a regular language.
 - If L1 and L2 are regular languages, then so are:
 - (a) $L_1 \bullet L_2 = \{x \ y \mid x \in L_1; y \in L_2\}$ (concatenation)
 - (b) $L_1 \cup L_2$ (union or disjunction)
 - (c) $L_1^* = \{x_1 \ x_2 \ ... x_n \ | \ x_i \in L_1 \ , \ n \in N \}$ (Kleene closure)
 - There are no other regular languages.

Kleene star

Another way to define L*:

- $L^1 = L$
- Ln = Ln-1 L
- $L^* = \{ \epsilon \} \bigcup L^1 \bigcup L^2 \bigcup ...$

Examples:

- L = {a, bc}
- L² = {aa, abc, bca, bcbc}
- L* = $\{\epsilon, a, bc, aa, abc, bca, bcbc, aaa,\}$

Properties

- Regular languages are closed under
 - Concatenation
 - Union
 - Kleene closure
- Regular languages are also closed under:
 - Intersection: $L_1 \cap L_2$
 - − Difference: L₁ − L₂
 - Complementation: Σ^* L₁
 - Reversal

Are the following languages regular?

- {a, aa, aaa,}
- Any finite set of strings
- $\{xy \mid x \in \Sigma^*, \text{ and } y \text{ is the reverse of } x\}$
- $\{xx \mid x \in \Sigma^*\}$
- $\{a^n b^n | n \in N\}$
- $\{a^n b^n c^n | n \in N\}$
- → To prove a language is not regular or context-free, use pumping lemma.

Regular expression

Definition of Regular Expression (as in formal language theory)

- The set of regular expressions is defined as follows:
 - (1) Every symbol of Σ is a regular expression
 - (2) ϵ is a regular expression
 - (3) If $\mathbf{r_1}$ and $\mathbf{r_2}$ are regular expressions, so are $(\mathbf{r_1})$, $\mathbf{r_1} \mathbf{r_2}$, $\mathbf{r_1} \mathbf{r_2}$, $\mathbf{r_1}^*$
 - (4) Nothing else is a regular expression.

Examples

• Let r1=a, r2=b

 ab matches the RegEx r1 r2, and (r1 | r2)*, but not (r1 | r2).

Examples

- ab*c
- a (0|1|2|..|9)* b
- (CV | CCV)⁺ C?C?: C is a consonant, V is a vowel

Other operations that we can use:

- $a^+ = a a^*$
- a? = $(a | \epsilon)$

Relation between regular language and Regex

- They are equivalent:
 - With every regular expression we can associate a regular language.
 - Conversely, every regular language can be obtained from a regular expression.
- Examples:
 - Regular expression = ab*c
 - Regular language = {ac, abc, abbc,}.
 = {ab*c}

Formal grammars

Definition of formal grammar

A formal grammar is a concise description of a formal language. It is a (N, Σ , P, S) tuple:

- A finite set N of nonterminal symbols
- A finite set Σ of terminal symbols that is disjoint from N
- A finite set P of production rules, each of the form:
 (Σ ∪ N)* N (Σ ∪ N)* → (Σ ∪ N)*
- A distinguished symbol S ∈ N that is the start symbol

Chomsky hierarchy

The left-hand side of a rule must contain at least one non-terminal.

$$\alpha$$
, β , $\gamma \in (N \cup \Sigma)^*$, A,B $\in N$, a $\in \Sigma$

- Type 0: unrestricted grammar: no other constraints.
- Type 1: Context-sensitive grammar: The rules must be of the form: α A $\beta \rightarrow \alpha \gamma \beta$
- Type 2: Context-free grammar (CFGs): The rules must be of the form: $A \rightarrow \alpha$
- Type 3: Regular grammar: The rules are of the forms: right regular grammar: $A \rightarrow a$, $A \rightarrow aB$, or $A \rightarrow \epsilon$ left regular grammar: $A \rightarrow a$, $A \rightarrow Ba$, or $A \rightarrow \epsilon$

Are there other kinds of grammars?

Ex: CFG vs. Reg Grammar

- Let G1 be a CFG and G2 be a Regular grammar, both with the alphabet {a, b} and the start symbol S.
- Rules for G1: {S → a S b, S→ ε}
- Rules for G2:

$$\{S \rightarrow a S, S \rightarrow b S1, S1 \rightarrow bS1, S1 \rightarrow \epsilon, S \rightarrow \epsilon\}$$

- $L(G1) = \{a^n b^n\}, L(G2) = \{a^* b^*\}$
- L(G1) is a subset of L(G2).

CFG vs. Reg Grammar (cont)

- CFG has less restriction on the FORM of the production rules than regular grammar; that's why type 0 grammar is called "unrestricted".
- Thus, CFG is more "powerful" in expressing the constraints on the strings generated by the grammar than regular grammar:
 - In L(G1), the numbers of a and b are the same.
 - L(G2) does not have that constraint.
- As a result, L(G1) is a subset of L(G2).

Strings generated from a grammar

The rules are:

$$S \rightarrow x | y | z | S + S | S - S | S * S | S/S | (S)$$

- What strings can be generated?
- A grammar is ambiguous if there exists at least one string which has multiple parse trees.

Is this grammar ambiguous?

Languages generated by grammars

• Given a grammar G, L(G) is the set of strings that can be generated from G.

• Ex:
$$G = (N, \Sigma, P, S)$$

 $N = \{S\}, \Sigma = \{a, b, c\}$
 $P = \{S \rightarrow aSb, S \rightarrow c\}$

What is L(G)?

$$L(G) = \{a^n c b^n\}$$

The relation between regular grammars and regular languages

- The regular grammars describe exactly all regular languages.
- All the following are equivalent:
 - Regular language: alphabet, operations
 - Regular expression: alphabet, operations
 - Regular grammar: terminals, non-terminals, production rules
 - Finite state automaton (FSA): alphabet, states, edges

Relation between grammars and languages

Chomsky hierarchy	Grammars	Languages	Minimal automaton
Type-0	Unrestricted	Recursively enumerable	Turing machine
Type-1	Context-sensitive	Context-sensitive	Linear-bounded
Type-2	Context-free	Context-free	Nondeterministic pushdown
Type-3	Regular	Regular	Finite state

Relation between grammars and languages (from wikipedia page)**

Chomsky hierarchy	Grammars	Languages	Minimal automaton
Type-0	Unrestricted	Recursively enumerable	Turing machine
n/a	(no common name)	Recursive	Decider
Type-1	Context-sensitive	Context-sensitive	Linear-bounded
n/a	Indexed	Indexed	Nested stack
n/a	Tree-adjoining	Mildly context- sensitive	Thread
Type-2	Context-free	Context-free	Nondeterministic pushdown
n/a	Deterministic context-free	Deterministic context-free	Deterministic pushdown
Type-3	Regular	Regular	Finite state 25

How about human languages?

- Are they formal languages?
 - What is the alphabet?
 - What is a string?
- What type of formal languages are they?

Ex: crossing dependency in Dutch: N₁ N₂ V₁ V₂

English: John believes Mary bought a car.

Dutch: John Mary believes bought a car.

Outline

- Formal language
 - Regular language
- Regular expression in formal language theory
- Formal grammar
 - Regular grammar
- Patterns in pattern matching → J&M-ed2 2.1

Patterns in Perl or Python

```
[ab]
       alb
       match any character
       the starting position in a string
       the ending position in a string
        defines a marked subexpression
(..)
a*
        match "a" zero or more times
        match "a" one or more time
a+
a?
        match "a" zero or one time
a{n,m} "a" appears n to m times
```

Special symbols in the patterns

```
\s match any whitespace char, [ \t\n\r\f\v] \d match any digit, [0-9] \w match any letter or digit, [a-zA-Z0-9_] \S match any non-whitespace char
```

Examples

Integer: (\+|\-)?\d+

Real number: (\+|\-)?\d+\.\d+

Scientific notation: (\+|\-)? \d+ (\.\d+)?e (\+|\-)?\d+

Integer, real number, or scientific notation: (+|-)? d+ (..d+)? (e (+|-)?d+)?

Numbered groups

$$/^(.*)\1$/ \Leftrightarrow \{xx \mid x \in \Sigma^*\}$$

$$/^{(.+)a(.+)}1^2$$
 \Leftrightarrow {xayxy | x, y $\in \Sigma^*$ }

→ The extra power comes from the ability to refer to "numbered groups".