

PEDOMAN PENYELENGGARAAN INVENTARISASI GAS RUMAH KACA NASIONAL BUKU II

VOLUME 2 METODOLOGI PENGHITUNGAN TINGKAT EMISI GAS RUMAH KACA

PROSES INDUSTRI DAN PENGGUNAAN PRODUK

KEMENTERIAN LINGKUNGAN HIDUP 2012

DAFTAR ISI

KATA PENGANTAR	i
SAMBUTAN	iii
DAFTAR ISI	v
DAFTAR TABEL	ix
DAFTAR GAMBAR	xii
DAFTAR LAMPIRAN	xiii
I. PENDAHULUAN	1
1.1 Kategori Sumber dan Jenis Emisi Gas Rumah Kaca	1
1.2 Jenis Emisi Gas Rumah Kaca	5
1.3 Garis besar metodologi	9
1.3.1 Pendekatan Umum Penghitungan Tingkat Emisi GRK	9
1.3.2 Tier (Tingkat Ketelitian)	9
1.3.3 Penghitungan Tingkat Emisi GRK	10
1.4 Kelengkapan Inventarisasi dan Penyusunan Data Time Series Yang Konsis	ten 11
1.4.1 Kelengkapan Inventarisasi	11
1.4.2 Penyusunan Data Time Series Yang Konsisten, Tahun Dasar, dan Base	line11
1.4.3 Tahun Dasar (Base Year) dan <i>Baseline</i>	11
1.4.4 Analisis Ketidakpastian Data Aktivitas dan Faktor Emisi	12
1.5 Penjaminan dan Pengendalian Mutu (QA/QC) dan Pelaporan dan Pengarsi	-
1.5.1 Penjaminan dan Pengendalian Mutu (QA/QC)	
1.5.2 Pelaporan dan Pengarsipan	14
1.5.3 Referensi Sumber Data dan Pengelolaan Data	14
II. EMISI GAS RUMAH KACA INDUSTRI MINERAL	17
2.1 Produksi Semen	17
2.1.1 Deskripsi Kategori	17
2.2 Produksi Kapur	
2.2.1 Deskripsi proses	
2.3 Produksi Kaca/Gelas	
2.3.1 Deskripsi Proses	28
2.3.2 Data yang diperlukan	28

2.4. Proses lain yang menggunakan Karbonat	32
2.4.1 Deskripsi Proses	32
2.4.2 Data yang dibutuhkan	32
III. EMISI GAS RUMAH KACA DARI INDUSTRI KIMIA	35
3.1. Produksi Amonia	35
3.1.1.Deskripsi Kategori	35
3.1.2 Data yang diperlukan	36
3.2. Produksi Asam Nitrat (HNO ₃)	39
3.2.1 Deskripsi Kategori	39
3.2.2 Data yang diperlukan	39
3.3. Produksi Asam Adipat	42
3.3.1 Deskripsi Kategori	42
3.3.2 Data yang diperlukan	42
3.4. Produksi Caprolactam, Asam Glyoxal dan Glyoxylic	44
3.4.1 Deskripsi Kategori	44
3.4.2 Data yang diperlukan	45
3.5. Produksi Karbida	47
3.5.1 Deskripsi Kategori	47
3.5.2 Data yang diperlukan	47
3.6. Produksi Titanium Dioksida	51
3.6.1 Deskripsi Kategori	51
3.6.2 Data yang diperlukan	51
3.7. Produksi Soda Abu	53
3.7.1 Deskripsi Kategori	53
3.7.2 Data yang diperlukan	53
3.8. Produksi Petrokimia dan Black Carbon	55
3.8.1 Deskripsi Kategori	55
3.8.2 Data yang diperlukan	55
3.9. Produksi <i>Fluorochemical</i>	67
3.9.1 Deskripsi Kategori	67
3.9.2 Data yang diperlukan	67
3.10. Emisi dari Produksi Senyawa Terfluorinasi Lain	73

3.10.1 Deskripsi Kategori	73
3.10.2 Data yang diperlukan	73
IV. EMISI GAS RUMAH KACA DARI INDUSTRI LOGAM	75
4.1. Produksi Besi dan Baja	75
4.1.1 Deskripsi Kategori	75
4.1.2 Data yang diperlukan	75
4.2. Produksi Ferroalloys	85
4.2.1 Deskripsi Kategori	85
4.2.2 Data yang diperlukan	85
4.4. Produksi Magnesium	100
4.4.1 Deskripsi Kategori	100
4.4.2 Data yang diperlukan	100
4.5. Produksi Timbal	104
4.5.1 Deskripsi Kategori	104
4.5.2 Data yang diperlukan	104
4.6. Produksi Seng	107
4.6.1 Deskripsi Kategori	107
4.6.2 Data yang diperlukan	107
V. EMISI GAS RUMAH KACA DARI PENGGUNAAN PRODUK NON-ENERGI BENTU BAHAN BAKAR DAN PELARUT	
5.1. Penggunaan Pelumas	111
5.1.1 Deskripsi Kategori	111
5.1.2 Data yang diperlukan	111
5.2. Penggunaan Lilin (Paraffin)	115
5.2.1 Deskripsi Kategori	115
5.2.2 Data yang diperlukan	115
VI. EMISI GAS RUMAH KACA DARI INDUSTRI ELEKTRONIK	119
6.1 Etching dan Pembersihan CVD Semikonduktor, Display Kristal Cair, dan Fotovoltaik	119
6.1.1 Deskripsi Kategori	119
6.1.2 Data yang diperlukan	
6.2. Fluida Pemindah Panas	
6.2.1 Deskripsi Kategori	131

6.2.2 Data yang diperlukan	131
VII. EMISI GAS RUMAH KACA DARI PRODUK YANG DIGUNAKAN	
SEBAGAIPENGGANTI BAGI PENIPISAN OZON	135
7.1 Ozone Depletion Substances (ODS)	135
7.1.1 Deskripsi Kategori	135
7.2. Pelarut (Non-Aerosol)	138
7.2.1 Deskripsi Kategori	138
7.2.2 Data yang diperlukan	138
7.3. Aerosol (Propelan Dan Pelarut)	141
7.3.1 Deskripsi Kategori	141
7.3.2 Data yang diperlukan	141
7.4. Agen Busa Peniup (Foam Blowing Agents)	144
7.4.1 Deskripsi Kategori	144
7.4.2 Data yang diperlukan	144
7.5. Pendinginan dan Penyejuk Udara (<i>Refrigerant</i>)	145
7.5.1 Deskripsi Kategori	145
7.5.2 Data yang diperlukan	146
7.6. Perlindungan Kebakaran	150
7.6.1 Deskripsi Kategori	150
7.7. Aplikasi Lainnya	151
VIII. EMISI GAS RUMAH KACA DARI PRODUKSI DAN PENGGUNAAN PRODUK	
LAINNYA	155
8.1. Peralatan Listrik	155
8.1.1 Deskripsi Kategori	155
8.2. SF ₆ dan PFC dari Penggunaan Produk Lainnya	165
8.2.1 Deskripsi Kategori	165
DAFTAR PUSTAKA	170
LAMPIRAN 1	171
LAMPIRAN 2	183
AMPIRAN 3	197

DAFTAR TABEL

Tabel 2.1	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada produksi Semen
Tabel 2.2	Angka default untuk faktor emisi karbonat dari IPCC Guidelines 2006
Tabel 2.3	Fraksi klinker dan komposisi pembuatnya dari IPCC Guidelines 2006
Tabel 2.4	Contoh perhitungan emisi GRK dari kegiatan IPPU22
Tabel 2.5	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER sektor produksi kapur23
Tabel 2.6	Default faktor emisi, rasio stoikiometri dan kandungan CaO, CaO-MgO26
Tabel 2.7	Contoh perhitungan tingkat emisi GRK dari produksi kapur27
Tabel 2.9	Faktor emisi default dan rasio cullet per jenis kaca30
Tabel 2.10	Contoh perhitungan tingkat emisi GRK dari produksi kapur31
Tabel 2.11	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor produksi yang menggunakan karbonat32
Tabel 3.1	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Amonia36
Tabel 3.2	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Asam Nitrat (HNO ₃)39
Tabel 3.3	Worksheet contoh perhitungan emisi N20 dari produksi asam nitrat41
Tabel 3.4	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Asam Adipat42
Tabel 3.5	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Caprolactam, Asam Glyoxal dan Glyoxylic45
Tabel 3.6	Angka default untuk produksi Glyoxal dan Asam Clyoxylic46
Tabel 3. 7	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Karbida47
Tabel 3.8	Faktor Default untuk Emisi CO ₂ dan CH ₄ dari Produksi Silicon Karbit50
Tabel 3.9	Worksheet cotoh hasil perhitungan sektor produksi karbida50
Tabel 3.10	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Titanium Oksida51
Tabel 3.11	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Soda abu53
Tabel 3.12	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Petrokimia dan Black Carbon55
Tabel 4.1	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Besi dan Baja75

Tabel 4.2	Worksheet contoh perhitungan emisi CO2 dari sektor produksi besi
	dan baja84
Tabel 4.3	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Ferroalloy85
m 1 1 4 4	1
Tabel 4.4	Worksheet contoh perhitungan emisi CO ₂ dari sektor produksi Ferroalloy90
Tabel 4.5	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
Tabel 4.5	
Talaal 4.6	sektor produksi Aluminium
Tabel 4.6	Worksheet contoh perhitungan emisi CO ₂ dari sektor produksi
	aluminium95
Tabel 4.7	Worksheet contoh perhitungan emisi CF4 dari sektor produksi
	aluminium98
Tabel 4.8	Worksheet contoh perhitungan emisi C ₂ F ₆ dari sektor produksi
	aluminium99
Tabel 4.9	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor produksi Magnesium100
Tabel 4.10	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor produksi Timbal104
Tabel 4.11	Worksheet contoh perhitungan emisi CO2 dari sektor produksi Timbal
Tabel 4.12	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor produksi Seng107
Tabel 4.13	Worksheet contoh perhitungan emisi CO2 dari sektor produksi seng
Tabel 5.1	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor produksi Pelumas111
Tabel 5.2	Worksheet contoh perhitungan emisi CO2 dari sektor penggunaan
	pelumas
Tabel 5.3	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor produksi Lilin (Paraffin)115
Tabel 5.4	Worksheet contoh perhitungan emisi CO ₂ dari sektor penggunaan
16.5015.1	Lilin
Tabel 6.1	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
Tabel 0.1	sektor Etching dan Pembersihan CVD Semikonduktor, Display Kristal
	Cair, dan Fotovoltaik119
Tabal (2	
Tabel 6.2	Faktor emisi senyawa fluorinated dari proses silika
Tabel 6.3	Worksheet perhitungan emisi senyawa fluorinated dari IC dan
	semikonduktor
Tabel 6.4	Faktor emisi senyawa fluorinated TFT Flat Panel Display
Tabel 6.5	Worksheet perhitungan emisi senyawa fluorinated dari TFT Flat Panel
	Display129
Tabel 6.6	Faktor emisi senyawa fluorinated untuk Photovoltaics129

Tabel 6.7	Worksheet perhitungan emisi senyawa fluorinated dari Photovoltaics
	130
Tabel 6.8	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor Fluida Pemindah Panas131
Tabel 6.9	Faktor emisi senyawa fluorinated kategori fluida pemindah panas .133
Tabel 6.10	Worksheet perhitungan emisi senyawa fluorinated dari sektor Fluida
	pemindah Panas134
Tabel 7.1	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor senyawa penipis ozon135
Tabel 7.2	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor Pelarut non-aerosol)138
Tabel 7.3	Worksheet perhitungan emisi HFC dari sektor pelarut140
Tabel 7.4	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor Aerosol141
Tabel 7.5	Worksheet perhitungan emisi HFC dari sektor Aerosol142
Tabel 7.6	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor agen busa peniup144
Tabel 7.7	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor penyejuk udara146
Tabel 7.8	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor perlindungan kebakaran150
Tabel 7.9	Worksheet perhitungan emisi HFC dari aplikasi lainnya153
Tabel 8.1	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor Peralatan listrik155
Tabel 8.2	Worksheet perhitungan emisi SF6 dari sektor peralatan elektronik 164
Tabel 8.3	Faktor emisi SF6 dari peralatan elektronik164
Tabel 8.4	Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada
	sektor dari penggunaan produk lainnya165
Tabel 8.5	Worksheet perhitungan emisi SF_6 dan PFCs dari penggunaan produk
	lainnya168

DAFTAR GAMBAR

Gambar 1. 1	Pengelompokan Inventarisasi emisi Gas Rumah Kaca dari
	Kegiatan Industri ·······
Gambar 1. 2	Kategori Sumber emisi sektor IPPU ······
Gambar 1.3	Sub-Kategori Sumber Emisi dari Industri Mineral ······
Gambar 1. 4	Sub-Kategori Sumber Emisi dari Industri Kimia
Gambar 1.5	Sub-Kategori sumber emisi dari produksi petrokimia dan carbon
	black·····
Gambar 1. 6	Sub-Kategori sumber emisi dari Industri Logam ······
Gambar 1. 7	Sub-Kategori Sumber emisi dari Penggunaan Produk Bahan Bakar
	Non-energi dan Pelarut ······
Gambar 1.8	Sub-Kategori sumber emisi dari Industri Elektronika4
Gambar 1. 9	Sub-kategori sumber emisi dari Penggunaan Produk Pengganti
	ODS5
Gambar 1. 10	ub-kategori sumber emisi dari pembuatan produk lainnya dan
	penggunaannya······
Gambar 1. 11	Sub-kategori sumber emisi dari proses industri lain-lain·····

DAFTAR LAMPIRAN

Lampiran 1.1	Deskripsi Kategori Emisi Gas Rumah Kaca Kegiatan Proses
	Industri dan Penggunaan Produk
Lampiran 2.1	Tabel Sektoral Kegiatan Proses Industri dan Penggunaaan Produk184
Lampiran 2.2	Tabel Basis Data Sektor: 2A Industri Mineral (Mineral Industry), 2B(2B1-2B8, 2B10) Industri Kimia (Chemical Industry) - CO2,
	CH4 and N20186
Lampiran 2.3	Tabel Basis Data Sektor: 2B (2B9 - 2B10) Industri Kimia
	(Chemical Industry) HFCs, PFCs, SF6 dan gas halogenasi lainnya 187
Lampiran 2.4	Tabel Basis Data Sektor: 2C Industri Logam (Metal Industry) CO ₂ ,
	CH ₄ and N ₂ O
Lampiran 2.5	Tabel Basis Data Sektor: 2C (2C3, 2C4, 2C7) Industri Logam (Metal
	Industry) HFCs, PFCs, SF6 dan gas halogenasi lainnya
Lampiran 2.6	Tabel Basis Data Sektor: 2D Produk non-energi (Non-Energy
	Products) dari penggunaan bahan bakar dan pelarut, CO ₂ , CH ₄ dan
	N_2O
Lampiran 2.7	Tabel Basis Data Sektor: 22E Industri Elektronik (Electronics
	Industry) HFCs, PFCs, SF ₆ , NF ₃ dan gas halogenasi lainnya191
Lampiran 2.8	Tabel Basis Data Sektor: 2F Penggunaan produk sebagai
	pengganti bahan penipis ozon (Product Uses as Substitutes for
	Ozone Depleting Substances) HFCs, PFCs dan gas halogenasi
	lainnya192
Lampiran 2.9	Basis Data Sektor: 2G (2G1, 2G2, 2G4) Produk manufaktur193
Lampiran 2.10	Basis Data Sektor: 2G (2G3, 2G4) Produk manufaktur lainnya dan
	penggunaannya (Other Product Manufacture $$ and Use) – N_2O ,
	CO ₂ dan CH ₄ 194
Lampiran 2.11	Basis Data Sektor: 2H Lainnya194
Lampiran 2.12	Basis Data Sektor: Gas rumah kaca tanpa faktor konversi CO2
	ekivalen195
Lampiran 3.1	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	mineral, kategori 2A1 - Produksi semen198
Lampiran 3.2	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	mineral, kategori 2A2 - Produksi kapur199
Lampiran 3.3	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	mineral, kategori 2A3 - Produksi kaca199
Lampiran 3.4	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	mineral, kategori 2A4 - proses produksi laimmua yang mengginakan
	karbonat200
Lampiran 3.5	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B1 - Produksi amonia201

Lampiran 3.6	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B2 - Produksi asam nitrat202
Lampiran 3. 7	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B3 - Produksi asam adipat202
Lampiran 3.8	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B4 - Produksi Caprolactam, Glyoxal and Glyoxylic
	Acid203
Lampiran 3.9	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B5 - Produksi Karbida203
Lampiran 3.10	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B6 - Produksi Titanium Dioksida207
Lampiran 3.11	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B6 - Produksi Titanium Dioksida207
Lampiran 3.12	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B8 - Produksi Petrokimia dan Blackcarbon209
Lampiran 3.13	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	kimia, kategori 2B9 - Produksi Fluorochemical216
Lampiran 3.14	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	logam, kategori 2C1 - Produksi Besi dan Baja218
Lampiran 3.15	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	logam, kategori 2C2 - Produksi Ferroalloy219
Lampiran 3.16	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	logam, kategori 2C3 - Produksi Aluminium220
Lampiran 3.17	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	logam, kategori 2C4 - Produksi Magnesium222
Lampiran 3.18	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	logam, kategori 2C5 - Produksi Timbal223
Lampiran 3.19	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	logam, kategori 2C6 - Produksi Seng223
Lampiran 3.20	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor
	Penggunaan produk bahan bakar non-energi dan pelarut, kategori
	2D1 – Penggunaan pelumas224
Lampiran 3.21	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor
	Penggunaan produk bahan bakar non-energi dan pelarut, kategori
	2D1 – Penggunaan Lilin (wax)224
Lampiran 3.22	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	elektronik , kategori 2E1 – Integrated Circuit (IC) atau Semikonduktor
	225
Lampiran 3.23	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	elektronik , kategori 2E2 – TFT Flat Panel Display226
Lampiran 3.24	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri
	elektronik, kategori 2E3 – Photovoltaics227

Lampiran 3.25	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor indust	ri
	elektronik , kategori 2E3 – Fluida Pemindah Panas (Heat Transfer	
	Fluid)2	28
Lampiran 3. 26	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor	
	penggunaan produk pengganti zat-zat yang menipiskan lapisan ozo	n
	(ODS), kategori 2F4 – Aerosol2	29
Lampiran 3. 27	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor	
	penggunaan produk pengganti zat-zat yang menipiskan lapisan ozo	n
	(ODS), kategori 2F5 – Pelarut (solvent)2	30
Lampiran 3. 28	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor	
	penggunaan produk pengganti zat-zat yang menipiskan lapisan ozo	n
	(ODS), kategori 2F6 – Penggunaan lainnya2	31
Lampiran 3. 29	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor	
	Pembuatan produk lain dan penggunaannya , kategori 2G1 –	
	Peralatan Listrik2	32
Lampiran 3.30	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor	
	Pembuatan produk lain dan penggunaannya, kategori 2G2 – SF ₆ da	ın
	PFCs dari penggunaan produk lainnya2	35
Lampiran 3. 31	Lembar kerja (worksheet) perhitungan emisi GRK dari sektor	
	Pembuatan produk lain dan penggunaannya , kategori 2G3 – N_2O	
	dari penggunaan produk2	39

I. PENDAHULUAN

Bagian ini mencakup (i) kategori sumber-sumber utama emisi gas-gas rumah kaca (GRK)dan jenis emisi GRK dari masing-masing kegiatan terkait proses industri dan penggunaan produk (IPPU), (ii) metodologi, (iii) kelengkapan inventarisasi dan penyusunan data *time series* yang konsisten, (iv) analisis ketidakpastian data aktivitas dan faktor emisi, dan (v) penjaminan dan pengendalian mutu (QA/QC), pelaporan, dan pengarsipan, serta (vi) referensi atau sumber-sumber data.

1.1 Kategori Sumber dan Jenis Emisi Gas Rumah Kaca

Pada Sub-bagian ini disampaikan sumber-sumber utama emisi GRK yang tercakup di dalam inventarisasi emisi GRK kegiatan terkait proses industri dan penggunaan produk (*industrial processes and production use*, IPPU). Emisi GRK dari kegiatan IPPU mencakup(i) emisi GRK yang terjadi selama proses/reaksi kimiadi industri, (ii) penggunaan gas-gas kategori GRK di dalam produk, dan (iii) penggunaan karbon bahan bakar fosil untuk kegiatan (non-energi), yaitu bukan untuk penyediaan energi namun untuk kegiatan produksi

Pedoman mengenai penggunaan produk digabung dengan proses industri karena, dalam banyak kasus, data produksi dan export/import dibutuhkan untuk perkiraan emisi pada produk-produk dan juga karena penggunaan produk juga terjadi pada aktivitas industri, selain penggunaan di sektor non-industri (rumah tangga, komersial dan lain-lain). Dengan demikian adanya double counting juga dapat terhindarkan.

Emisi gas rumah kaca dihasilkan dari berbagai aktivitas industri. Sumber-sumber emisi utama adalah dilepaskannya (gas rumah kaca) dari proses-proses industri yang secara kimiawi atau fisik melakukan transformasi suatu bahan/material menjadi bahan lain (misal *blast furnace* di industri besi dan baja, produksi amonia dan produk-produk kimia lainnya dari bahan baku berupa bahan bakar fosil,serta proses produksi semen). Proses-proses tersebut dapat menghasilkan berbagai gas rumah kaca diantaranya karbon dioksida (CO_2), metana (CH_4), nitrous oksida (N_2O), hidrofluorokarbon (HFC) dan perfluorokarbon (PFC).

Selain itu, gas rumah kaca juga digunakan sebagai bahan baku di dalam produk-produk seperti pada refrigerator, busa atau kaleng aerosol. Sebagai contoh, HFC yang digunakan sebagai alternatif bahan pengganti bahan perusak ozon (BPO) dalam berbagai jenis aplikasi produk. Demikian pula, sulfur heksafluorida (SF6) dan N_2O yang digunakan dalam sejumlah produk yang digunakan dalam industry. Misalnya, SF6 digunakan dalam beberapa peralatan listrik dan gardu-gardu induk pembangkitan listrik, N_2O digunakan sebagai propelan aerosol dalam produk terutama di industri makanan. Aplikasi lainnya adalah penggunaan bahan-bahan ini

pada akhir siklus – digunakan oleh konsumen (misalnya, SF_6 digunakan di produk sepatu lari, N_2O digunakan selama anestesi, dan lain-lain.

Hal yang dapat dicatat dari penggunaan produk-produk tersebut adalah bahwa, hampir di semua kasus, waktu yang telah lewat (elapse time) sejak produk dibuat hingga GRK terlepas dari produk tersebut cukup lama yaitu dalam masa beberapa minggu (misalnya pada tabung aerosol) hingga beberapa dekade (misalnya pada busa). Dalam beberapa aplikasi (misal pada refrigerant), sebagian dari GRK yang digunakan dapat diambil kembali di titik akhir umur produk tersebut, untuk recycle atau dihancurkan.

Selain dari IPPU, sektor industri juga menghasilkan emisi GRK dari pembakaran bahan bakar untuk keperluan energi dan dari pengolahan limbah. Dalam inventarisasi GRK, emisi dari pembakaran bahan bakar dilaporkan dalam inventarisasi sektor energi sedangkan emisi dari pengolahan limbah dilaporkan dalam inventarisasi sektor limbah. Gambar 1.1 memperlihatkan pengelompokan inventarisasi emisi GRK dari kegiatan sektor industri dan dari penggunaan produk.

Gambar 1. 1 Pengelompokan Inventarisasi emisi Gas Rumah Kaca dari Kegiatan Industri

Sumber-sumber emisi dari sektor IPPU dikelompokkan dalam delapan kategori utama sebagaimana diperlihatkan pada Gambar 1.2. Pada masing-masing kategori terdapat sub-kategori sumber emisi sebagaimana diperlihatkan pada Gambar 1.3 hingga Gambar 1.11. Penulisan kode pada gambar-gambar tersebut mengikuti penomoran kelompok industri pada 2006 IPCC Guidelines.

Gambar 1. 2 Kategori Sumber emisi sektor IPPU

Gambar 1. 3 Sub-Kategori Sumber Emisi dari Industri Mineral

Gambar 1. 4 Sub-Kategori Sumber Emisi dari Industri Kimia

Gambar 1. 5 Sub-Kategori sumber emisi dari produksi petrokimia dan carbon black

Gambar 1. 6 Sub-Kategori sumber emisi dari Industri Logam

Gambar 1. 7 Sub-Kategori Sumber emisi dari Penggunaan Produk Bahan Bakar Non-energi dan Pelarut

Gambar 1. 8 Sub-Kategori sumber emisi dari Industri Elektronika

Gambar 1. 9 Sub-kategori sumber emisi dari Penggunaan Produk Pengganti ODS

Gambar 1. 10 Sub-kategori sumber emisi dari pembuatan produk lainnya dan penggunaannya

Gambar 1. 11 Sub-kategori sumber emisi dari proses industri lain-lain

1.2 Jenis Emisi Gas Rumah Kaca

Proses-proses yang terjadi di industri sangat beragam dan oleh karena itu jenis emisi GRK dari proses indsutri juga sangat beragam. Tabel 1.1 memperlihatkan jenis GRK yang mungkin diemisikan dari sektor IPPU.

Tabel 1.1 Kategori dan sub-kategori dan Gas Rumah Kaca yang di Emisikan dari sektor Proses Industri dan Penggunaan Produk

Proses Industri dan Penggunaan	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	Gas-gas lain
Produk (IPPU)							terhalogenasi
2A. Industri Mineral							
2A1 Produksi Semen		*					
2A2: Produksi Kapur	X	*					
2A3: Produksi Kaca	X	*					
2A4: Proses lain yang menggunaan							
karbonat							
2A4a: Keramik	X	*					
2A4b: Penggunaan lain Soda Abu	X	*					
2A4c: Produksi Non-Metallurgical Mg	X	*					
2A4d: Lainnya	X	*					
2A5: Lainnya	X	*	*				
		•	•	•	•	•	
2B. Industri Kimia							
2B1: Produksi Ammonia	X	*	*				
2B2: Produksi Asam Nitrat	*	*	X				
2B3: Produksi Asam Adipat			X				
2B4: Produksi Caprolactam, Glyoxal and	*	*	X				
Glyoxylic Acid							
2B5: Produksi Karbida	X	X	*				
2B6: Produksi Titanium Dioksida	X	*	*				
2B7: Produksi Soda Abu	X	*	*				
2B8: Produksi Petrokima/Carbon Black							
2B8a: Methanol	X	X	*				
2B8b: Ethylene	X	X	*				
2B8c: Ethylene Dichloride dan VCM	X	X	*				
2B8d: Ethylene Oxide	X	X	*				
2B8e: Acrylonitrile	X	X	*				
2B8f: Carbon Black	X	X	*				
2B9: Produksi Fluorochemical							
2B9a: Emisi By-product				X	Х	X	X
2B9b: Emisi Fugitive				X	Х	X	X
2B10: Lainnya	*	*	*	*	*	*	*
2C. Industri Logam							
2C1: Produksi Besi dan Baja	X	X	*				
2C2: Produksi Ferroalloys	X	Х	*				
2C3: Produksi Aluminium	X	*			Х		
2C4: Produksi Magnesium	X			X	X	X	X
2C5: Produksi Timbal	X						

Tabel 1.1. Lanjutan

Proses Industri dan Penggunaan	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	Gas-gas lain
Produk (IPPU)							terhalogenasi
2C6: Produksi Seng	X						
2C7: Lainnya	*	*	*	*	*	*	*
-		ı					
2D. Non-Energy Produk dari Bahan Bakar dan Penggunaan Solvent							
2D1: Penggunaan Pelumas	X						
2D2: Penggunaan Lilin Paraffin	X	*	*				
2D3: Penggunaan Pelarut							
2D4: Lainnya	*	*	*				
2E. Industri Electronik							
2E1: Integrated Circuit/Semiconductor	*		*	X	X	X	X
2E2: TFT Flat Panel Display				X	X	X	X
2E3: Fotovoltaik				X	X	X	X
2E4: Heat Transfer Fluid							X
2E5: Lainnya	*	*	*	*	*	*	*
2F. Penggunaan Produk sebagai Bahan	Peluru	ıhan L	apisa	n Ozon			
2F1: Refrigeran dan AC							
2F1a: Refrigeran dan AC Stasioner	*			X	x		*
2F1b: AC Bergerak (Mobile)	*			X			*
2F2: Foam Blowing Agent	*			X	X		*
2F3: Alat Pemadam Kebakaran	*			X	X		*
2F4: Aerosols				X	X		*
2F5: Pelarut				X	X		*
2F6: Aplikasi lainnya	*	*	*	X	X		*
2G. Pembuatan Produk-produk Lainnya	dan P	enggi	ınaan	nya			
2G1: Peralatan Listrik							
2G1a: Pembuatan Peralatan Listrik					X	X	*
2G1b: Penggunaan Peralatan Listrik					X	X	*
2G1c: Pembuangan Peralatan Listrik					X	X	*
2G2: SF6/PFCs Penggunaan Produk Lain							
2G2a: Aplikasi Peralatan Militer					*	X	*
2G2b: Accelerators					*	X	*
2G2c: Lainnya					X	X	*
2G3: N2O dari Penggunaan Produk							
2G3a: Aplikasi Peralatan Medis			X				
2G3b: Propellant untuk Aerosol/			X				
Pendorong							
2G3c: Lainnya			X				

Tabel 1.1. Lanjutan

Proses Industri dan Penggunaan Produk (IPPU)	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	Gas-gas lain terhalogenasi
2G4: Lainnya	*	*		*			*
2H Lainnya							
2H1: Industri Pulp dan Kertas	*	*					
2H2: Industri Makanan dan Minuman	*	*					
2H3: Lainnya	*	*	*				

Catatan:

X = Panduan Metodologinya tersedia dalam IPCC Guideline 2006

^{* =} Kemungkinan emisi dihasilkan, tetapi panduan metodologinya tidak tersedia dalam IPCC Guideline 2006

1.3 Garis besar metodologi

1.3.1 Pendekatan Umum Penghitungan Tingkat Emisi GRK

Penghitungan tingkat emisi GRK untuk kebutuhan inventarisasi emisi GRK pada dasarnya berbasis pada pendekatan umum sebagai persamaan berikut ini

Tingkat Emisi = Data Aktifitas (AD) x Faktor Emisi (EF) 1.1

Data aktivitas (AD) adalah besaran kuantitatifkegiatan manusia (anthropogenic) yang melepaskan emisi GRK. Pada kegiatan IPPU, besaran kuantitatif adalah besaran terkait jumlah bahan yang diproduksi atau yang dikonsumsi (misal penggunaan carbonate). Faktor emisi (EF) adalah faktor yang menunjukkan intensitas emisi per unit aktivitas yang bergantung kepada berbagai parameter terkait proses kimia yang terjadi di masing-masing ndustri. Pedoman pengumpulan data aktivitas dan parameter terkait faktor emisi masing-masing kategori industri dijelaskan pada Bab 2 dan selanjutnya.

1.3.2 Tier (Tingkat Ketelitian)

Berdasarkan IPCC 2006 GL, ketelitian penghitungan tingkat emisi GRK dalam kegiatan inventarisasi dikelompokkan dalam 3 tingkat ketelitian yang dikenal sebagai 'Tier'. Tingkat ketelitian perhitungan ini terkait dengan data dan metoda perhitungan yang digunakan sebagaimana dijelaskan berikut ini.

Tier 1: estimasi berdasarkan data aktifitas dan faktor emisi *default IPCC*. Pada Tier 1, estimasi tingkat emisi GRK menggunakan sebagian besar data aktivitas dan parameter faktor emisi default yang tersedia dalam IPCC 2006 GL.

Tier 2: estimasi berdasarkan data aktifitas yang lebih akurat dan faktor emisi *default* IPCC atau faktor emisi spesifik suatu negara atau suatu pabrik (*country specific/plant specific*). Pada Tier 2, estimasi tingkat emisi GRK menggunakan beberapa parameter default, tetapi membutuhkan data aktifitas dan parameter terkait faktor emisi yang berkualitas.

Tier 3: estimasi berdasarkan metoda spesifik suatu negara dengan data aktifitas yang lebih akurat (pengukuran langsung) dan faktor emisi spesifik suatu negara atau suatu pabrik (*country specific/plant specific*). Pada Tier 3, estimasi tingkat emisi GRK didasarkan pada data aktivitas spesifik suatu negara (lihat Tier 2) dan menggunakan salah satu metoda dengan parameter kunci yang dikembangkan secara nasional atau pengukuran yang diturunkan dari parameter-parameter spesifik-suatu negara.

Penentuan Tier dalam inventarisasi GRK sangat ditentukan oleh ketersediaan data dan tingkat kemajuan suatu negara atau pabrik/industri dalam hal pelaksanaan penelitian untuk menyusun metodologi atau menentukan faktor emisi spesifik yang berlaku bagi negara/pabrik tersebut. Di Indonesia dan negara-negara non-Annex 1 pada umumnya, inventarisasi GRK menggunakan Tier-1berdasarkan data aktifitas dan faktor emisi default IPCC.

1.3.3 Penghitungan Tingkat Emisi GRK

Metoda penghitungan tingkat emisi GRK dari kegiatan IPPU sangat bergantung kepada proses produksi masing-masing industri dan jenis bahan yang digunakan. Pada pedoman ini, metodologi penghitungan emisi GRK kegiatan IPPU dari masing-masing kategori industri disampaikan pada:

- **Bab II Emisi GRK Industri Mineral** yang berisi metodologi penghitungan tingkat emisi GRK dari proses-proses industri mineral.
- **Bab III Emisi GRK Industri Kimia** yang berisi metodologi penghitungan tingkat emisi GRK dari proses-proses industri kimia.
- **Bab IV Emisi GRK Industri Logam** yang berisi metodologi penghitungan tingkat emisi GRK dari proses-proses industri logam.
- Bab V Emisi GRK Dari Penggunaan Bahan Bakar dan Pelarut Sebagai Produk Non-Energi yang berisi metodologi penghitungan tingkat emisi GRK dari Penggunaan Bahan Bakar dan Pelarut (Solven) Sebagai Produk Non-Energi.
- **Bab VI Emisi GRK Industri Elektronika** yang berisi metodologi penghitungan tingkat emisi GRK dari proses-proses industri elektronika.
- Bab VII Emisi GRK dari Penggunaan Produk Pengganti Zat-zat Yang Menipiskan Lapisan Ozon (ODS) yang berisi metodologi penghitungan tingkat emisi GRK dari penggunaan produk pengganti zat-zat yang menipiskan lapisan ozon (ozone depleting substance/ODS)
- Bab VIII Emisi GRK dari Pembuatan dan Penggunaan Produk-produk Lain yang berisi metodologi penghitungan tingkat emisi GRK pembuatan dan penggunaan produk-produk lainnya
- **Bab IX Emisi GRK Kegiatan Lain-lain**yang berisi metodologi penghitungan tingkat emisi GRK dari kegiatan IPPU yang tidak termasuk dalam Bab II sampai dengan Bab VIII.

1.4 Kelengkapan Inventarisasi dan Penyusunan Data Time Series Yang Konsisten

1.4.1 Kelengkapan Inventarisasi

Inventarisasi emisi GRK dari kegiatan IPPU pada panduan ini mencakup (i) emisi GRK yang terjadi selama proses/reaksi kimia di industri, (ii) penggunaan gas-gas kategori GRK di dalam produk, dan (iii) penggunaan karbon bahan bakar fosil untuk kegiatan (non-energi), yaitu bukan untuk penyediaan energi namun untuk kegiatan produksi sebagaimana yang dicantumkan dalam IPCC 2006 Guideline.

1.4.2 Penyusunan Data Time Series Yang Konsisten, Tahun Dasar, dan Baseline

Inventarisasi pada dasarnya disajikan dalam beberapa tahun sebagai data *time series*. Data *time series* yang dibutuhkan dalam menyusun inventarisasi emisi GRK dari kegiatan IPPU sama seperti sumber-sumber emisi lainnya membutuhkan data historis beberapa tahun. Namun, penting untuk menjaga bahwa data-data tersebut tersedia secara konsisten setiap tahun. Apabila, data-data tersebut ada yang tidak tersedia secara konsisten setiap tahunnya sebagai *time series*, maka pendekatan/metoda rata-rata, ekstrapolasi, dan interpolasi dapat diaplikasikan untuk memperkirakan data-data yang tidak lengkap.

Belakangan, tersedia data faktor emisi dan data aktivitas kegiatan IPPU yang terkait proyek CDM yang dapat digunakan sebagai rujukan data spesifik suatu negara (country-specific) meskipun hanya tersedia untuk data-data terbaru dan tidak tersedia untuk data-data historis yang cukup lama. IPCC 2006 Gl menggaris bawahi 'apabila dimungkinkan untuk cenderung menggunakan data spesifik suatu negara (country-specific)'. Jika inventarisasi GRK menggunakan campuran antara angka default IPCC 2006 GL dengan data spesifik suatu negara (country-specific) di dalam suatu time series, maka sangatlah penting untuk memeriksa konsistensi data tersebut.

1.4.3 Tahun Dasar (Base Year) dan Baseline

Inventarisasi disajikan beberapa tahun sebagai *time series*. Mengingat pentingnya *tracking* kecenderungan emisi tahunan dalam rentang waktu tertentu diperlukan data *time series* konsisten. Time series untuk tahun dasar (*base year*) ditetapkan Kementrian Lingkungan Hidup, yaitu setidaknya 5 (lima) tahun.

Baseline adalah proyeksi tingkat emisi GRK tahunan apabila diasumsikan tidak ada perubahan kondisi dan kebijakan yang mempengaruhi kegiatan IPPU. Baseline tingkat emisi GRK tahunan dimanfaatkan untuk penyusunan upaya-upaya mitigasi perubahan iklim. Penjelasan lebih lanjut mengenai penetapan baseline dapat dilihat pada Buku I.

1.4.4 Analisis Ketidakpastian Data Aktivitas dan Faktor Emisi

Ada dua area ketidakpastian dalam memperkirakan emisi GRK, yaitu (i) ketidakpastian karena metoda yang digunakan dan (ii) ketidakpastian karena data (data aktivitas maupun parameter terkait factor emisi). Tingkat ketidakpastian masing-masing sumber emisi GRK sektor IPPU di setiap jenis industri berbeda-beda sehingga pembahasannya pada Bab 2 dan seterusnya.

1.5 Penjaminan dan Pengendalian Mutu (QA/QC) dan Pelaporan dan Pengarsipan

1.5.1 Penjaminan dan Pengendalian Mutu (QA/QC)

Ada baiknya apabila dilakukan dokumentasi dan pengarsipan semua data dan informasi yang digunakan untuk memproduksi inventarisasi emisi GRK nasional, penjaminan dan pengendalian kualitas, serta verifikasi hasil inventarisasi tersebut. Beberapa contoh dokumentasi dan pelaporan yang relevan terhadap sumber dan kategori berikut ini.

Apabila penghitungan emisi CH4 menggunakan model tertentu (misal neraca massa), model harus dilaporkan. Apabila digunakan metoda/model lain, sebaiknya disediakan data yang sama (deskipsi metoda, asumsi utama, dan parameter yang digunakan).

Apabila data spesifik negara digunakan untuk beberapa bagian dari *data time series*, maka data-data tersebut harus didokumentasikan.

Perubahan parameter dari tahun ke tahun harus dijelaskan dengan rinci dan dilengkapi dengan referensi. Sangatlah tidak praktis untuk memasukan semua dokumen ke dalam laporan inventrisasi GRK. Namun, inventarisasi harus mencakup rangkuman metoda yang digunakan dan referensi sumber data sedemikian sehingga pelaporan perkiraan emisi GRK dapat transparant dan tahapan-tahapan di dalam perhitungannya dapat di identiikasi kembali.

Adalah kebiasaan yang baik untuk melakukan pengecekan pengendalian kualitas dan review dari tenaga ahli terhadap perkiraan emisi, penjaminan kualitas (quality assurance), pengendalian kualitas (quality control), dan verifikasi. Pihak yang mengumpulkan data hasil inventarisasi harus melakukan pengecekan silang (crosscheck) angka-angka spesifik negara (country-specific) terhadap angka-angka default IPCC untuk menentukan apakah parameter nasional yang digunakan dapat dipertimbangkan dengan alasan yang kuat relatif terhadap angka-angka default IPCC.

Jika data hasil survey dan sampling digunakan untuk menyusun angka-angka nasional untuk aktivitas data limbah padat, prosedur QC harus mancakup:

- Pelaksanaan review metoda pengupulan data survey, dan pengecekan data untuk memastikan bahwa data-data tersebut dikumpulkan dan diagregasi dengan benar.
 Pengumpul data harus melakukan pengecekan silang data dengan tahun-tahun sebelumnya untuk memastikan bahwa data-data tersebut cukup layak.
- Pelaksanaan evaluasi sumber-sumber data sekunder dan rujukan kegiatan QA/QC bersamaan dengan penyiapan data sekunder.
- Pelaksana pengumpulan hasil inventarisasi harus menyediakan peluang bagi tenaga ahli (*expert*) untuk melakukan review parameter input. Disamping itu, pelaksana pengumpulan hasil inventarisasi harus melakukan pembandingan laju emisi nasional dengan laju emisi dari negara-negara yang sebanding dalam hal parameter-parameter demografi dan ekonomi. Pelaksana pengumpulan hasil inventarisasi harus melakukan kajian perbedaan-perbedaan signifikan untuk menentukan jika hasil inventarisasi menunjukkan kesalahan/perbedaan nyata dalam penghitungan.
- Pada Gambar 1.12 disampaikan skema sederhana siklus pelaksanaan inventarisasi dan kemungkinan implementasi proses QA/QC.

Gambar 1. 12 Skema pelaksanaan inventarisasi dan kemungkinan implementasi QA/QC

1.5.2 Pelaporan dan Pengarsipan

Berdasarkan Peraturan Presiden RI (PerPres) 71/2012 penyelenggraan inventarisasi GRK diwajibkan bagi seluruh pemerintah daerah (baik tingkat provinsi maupun kabupaten/kota). Hasil pelaksanaan inventarisasi GRK di setiap tingkatan pemerintah daerah pada akhirnya diserahkan ke Kementrian Lingkungan Hidup yang mendapatkan mandat untuk menyelenggarakan inventarisasi GRK tingkat nasional dan juga sekaligus menyiapkan pedoman inventarisasi GRK yang dapat digunakan secara nasional. Skema sederhana sistem pelaporan hasil inventarisasi emisi GRK kegiatan IPPU tingkat kabupaten kota sampai dengan tingkat nasional disampaikan pada Gambar 1.13

1.5.3 Referensi Sumber Data dan Pengelolaan Data

Referensi atau Sumber Data Inventory GRK dari Kegiatan IPPU

- Data yang relevan dari Kementerian Perindustrian atau pelaku usaha (industri) dan asosiasi industri
- Data lainnya dari BPS,hasil peneilitian, atau proyek-proyek CDM
- Penyusunan inventory GRK dapat dilakukan dengan bantuan tenaga ahli (perguruan tinggi, lembaga penelitian, konsutan, dan lembaga-lembaga lainnya).

Gambar 1. 13 Sistem pelaporan hasil inventarisasi emisi Gas Rumah Kaca penanganan IPPU

II. EMISI GAS RUMAH KACA INDUSTRI MINERAL

2.1 Produksi Semen

2.1.1 Deskripsi Kategori

Dalam pembuatan semen, CO_2 dihasilkan pada proses produksi klinker. Pada proses ini kalsium karbonat ($CaCO_3$) dipanaskan atau dikalsinasi untuk menghasilkan kapur (CaO) dengan produk samping gas CO_2 . CaO tersebut kemudian bereaksi dengan silika (SiO_2), alumina (Al_2O_3), dan besi oksida (Fe_2O_3) dalam bahan baku untuk menghasilkan mineral klinker. Proporsi karbonat dalam bahan baku selain $CaCO_3$ pada umumnya sangat kecil.

Tabel 2. 1 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada produksi Semen

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Produksi semen per jenis semen (per pabrik)	FE Klinker default IPCC GL 2006	Fraksi klinker dalam semen default Default koreksi CKD (2%)
TIER 2	Produksi klinker per pabrik	FE klinker pabrik FE karbonat	Fraksi klinker dalam semen, Berat CKD, fraksi karbonat awal
TIER 3	Konsumsi karbonat per pabrik	FE karbonat per pabrik FE penggunaan karbon pada bahan bakar fosil untuk aplikasi non energi	Tingkat kalsinasi karbonat dan CKD Berat CKD

Catatan: CKD = cement kiln dust

Metode Tier-1

Pada metode Tier-1 emisi CO2 dihitung berdasarkan besarnya produksi klinker semen yang diperkirakan berdasarkan data produksi semen, impor klinker dan ekspor klinker (Persamaan 2.1).

Persamaan 2.1

Tier 1: Emisi Berdasarkan Data Produksi Semen

Emisi CO2=
$$\sum_{i}$$
 [$(M_{c i} * C_{cl i}) - Im + Ex$]* EF_{clc}

dimana:

 $\begin{array}{ll} Emisi \ CO_2 & : Emisi \ CO_2 \ dari \ produksi \ semen, ton \\ M_{ci} & : Berat \ semen \ jenis \ i \ yang \ diproduksi, ton \\ C_{cli} & : Fraksi \ klinker \ pada \ semen \ jenis \ i, \ fraksi \end{array}$

Im : Impor klinker, ton Ex : Ekspor klinker, ton

EF_{clc} : Faktor emisi, ton CO₂/ton klinker

Faktor emisi default dari produksi klinker adalah 0,51 ton CO₂/ton klinker. Faktor emisi ini perlu dikoreksi dengan adanya CKD (cement kiln dust) yang tidak tercatat dalam data produksi. Pada Tier-1 faktor koreksi CKD adalah 2% sehingga harga faktor emisi klinker pada Persamaan 2.1 menjadi Persamaan 2.2 berikut ini.

Persamaan 2.2

Faktor Emisi Klinker

 $EF_{clc} = 0.51 \cdot 1.02 \text{ (koreksi CKD)} = 0.52 \text{ ton CO}_2/\text{ton klinker}$

Metode Tier-2

Metode Tier-2 dapat diterapkan apabila terdapat data produksi klinker masingmasing pabrik semen dan faktor emisi klinker yang khusus berlaku untuk pabrik semen di Indonesia. Persamaan 2.3 adalah perhitungan emisi CO₂ Metode Tier-2.

Persamaan 2.3

Tier 2: Emisi Berdasarkan Data Produksi Klinker

Emisi $CO_2 = M_{cl} \bullet EF_{cl} \bullet CF_{ckd}$

dimana:

Emisi CO_2 : Emisi CO_2 dari produksi semen, ton M_{ci} : Berat klinker yang diproduksi, ton

 EF_{cl} : Faktor emisi klinker, ton CO_2 /ton klinker CF_{ckd} : Faktor koreksi untuk CKD, dimensionless

Persamaan 2. 4 Faktor Koreksi untuk CKD yang Tidak Recycle ke Kiln

Persamaan 2.4

$$CF_{ckd} = 1 + \frac{M_d}{M_{cl}} \cdot C_d \cdot F_d \cdot \frac{EF_c}{EF_{cl}}$$

Dimana:

CF_{ckd} = koreksi faktor CKD (tak bersatuan)

Md = total produksi CKD yang tidak digunakan kembali (recycle) untuk kiln (ton)

Mcl = total produksi klinker (ton)

Cd = fraksi karbonat di CKD sebelum *calcination*, (fraksi)

Fd = fraksi calcination karbonat, (fraksi)

EFc = faktor emisi untuk karbonat (IPCC guidelines)

EF_{cl} = faktor emisi klinker sebelum dikoreksi dengan faktor koreksi CKD

Metode Tier-3

Pada Metode Tier-3 emisi CO₂ dihitung berdasarkan input data konsumsi karbonat dan faktor emisi dari masing-masing karbonat yang digunakan untuk produksi klinker di masing-masing pabrik semen. Pada metoda ini perkiraan emisi juga memperhitungkan besarnya CKD yang tidak recycle ke kiln, tingkat kalsinasi karbonat dan adanya emisi dari karbon dalam bahan baku yang bukan bahan bakar (carbon di *fly ash, kerogen,* dsb). Persamaan 2.5 untuk estimasi emisi CO2 metoda Tier-3 adalah sebagai berikut ini,

Persamaan 2.5

Tier 3: Emisi Berdasarkan Input Karbonat ke Dalam Kiln

Emisi
$$CO_2 = \sum_i (EF_i \bullet M_i \bullet F_i) - M_d \bullet C_d (1 - Fd) \bullet EF_d + \sum_k (M_k \bullet X_k \bullet EF_k)$$

$$\sum_i \! \left(\mathrm{EF_i} \bullet \mathbf{M_i} \bullet \mathbf{F_i} \right) \! = \mathrm{emisi} \ \mathrm{dari} \ \mathrm{karbonat}$$

$$M_d \bullet C_d \ \left(1 - Fd\right) \bullet EF_d = \text{emisi dari uncalcined CKD yang tidak recycle ke kiln}$$

$$\sum_k \! \left(M_k {}^\bullet \! X_k {}^\bullet \! E F_k \right) \! = \, \text{emisi karbon dari material non-bahan bakar}$$

Dimana:

Emisi CO₂ : emisi CO₂ dari produksi semen, ton

: Faktor emisi untuk karbonat i, ton CO2/ton karbonat EF;

: Berat karbonat i yang dikonsumsi, ton M_i

: Fraksi kalsinasi yang tercapai karbonat i, fraksi F_{i}

: Berat CKD yang tidak recycle ke kiln, ton M_d

: Fraksi berat karbonat awal dalam CKD yang tidak recycle ke kiln, C_{d}

fraksi

: Fraksi kalsinasi yang tercapai untuk CKD yang tidak recycle ke kiln, F_d

 EF_d : Faktor emisi untuk uncalcined karbonat dalam CKD yang tidak

recycle ke kiln, ton CO2/ton karbonat

: Berat organik atau bahan non bahan bakar yang mengandung M_k

karbon jenis k, ton

: Fraksi organik atau karbon dalam bahan non bahan bakar jenis k, X_k

fraksi

:Faktor emisi bahan non-bahan bakar yang mengandung karbon EF_k

jenis k, ton CO2/ton karbonat

Default Faktor Emisi Karbonat (EFc)

Angka default untuk faktor emisi karbonat dari IPCC Guidelines 2006 disampaikan pada Tabel 2.2 berikut ini.

Tabel 2. 2 Angka default untuk faktor emisi karbonat dari IPCC Guidelines 2006

Jenis Karbonat	Nama mineral	BM	Efc(ton CO ₂ /ton
			karbonat)**
CaCO ₃	Calcite, arogonite	100,0886	0,43971
MgCO ₃	Magnesite	84,3139	0,52197
CaMg(CO ₃) ₂	Dolomite	184,4008	0,47732
FeCO ₃	Siderite	115,8539	0,37987
Ca(Fe,Mg,Mn)(CO ₃) ₂	Ankerite	185,0225 -215,6160	0,40822 - 0,47572
MnCO ₃	Rhodochrosite	114,9470	0,38286
Na ₂ CO ₃	Sodium carbonate	106,0685	0,41492
	or Soda ash		

^{**} Asumsi CO₂ yang teremisikan terjadi akibat 100%, contoh: setiap 1 ton calcite mengemisikan 0,43971 ton CO₂

Fraksi klinker

Fraksi klinker dan komposisi pembuatnya dari IPCC Guidelines 2006 ditabulasi pada Tabel 2.3 berikut ini.

Tabel 2. 3 Fraksi klinker dan komposisi pembuatnya dari IPCC Guidelines 2006

Nama semen	Simbol	% komposisi	% klinker
Portland	PC	100% PC	95-97
			90-92
Masonry	MC	2/3 PC	64
Slag-modified portland	I(SM)	Slag<25	>70-93
Portland BF Slag	IS	Slag 25-70	28-70
Portland Pozzolan	IP and P	Pozz 15-40	28-79/81
Pozzolan-modified portland	I(PM)	Pozz<15	28-93/95
Slag cement	S	Slag 70+	<28/29

Contoh perhitungan (lihat Tabel 2.4)

Input data aktivitas pada Tabel 2.4

- Kolom A: Jumlah semen yang diproduksi= 27.800.000 ton,
- Kolom B: Fraksi klinker di semen = 0,907,
- Kolom D: Impor konsumsi klinker = 0 ton,
- Kolom E: Ekspor klinker= 3,552,000 ton,

Massa klinker pada semen yang diproduksi (Kolom C):

 $27.800.000 \text{ ton } \times 0.907 = 25.223.747 \text{ ton.}$

Jumlah klinker yang diproduksi di suatu negara (Kolom F) sebesar:

25.223.747 ton - 0 ton + 3.552.000 ton = 28.775.747 ton.

Faktor emisi klinker untuk jenis ini (Kolom G) :0.525 tonne CO_2 /ton klinker Emisi CO_2 (Kolom H) = 28.775.747 ton x 0.525 ton CO_2 /ton klinker = 15.107.267 ton CO_2 .

Konversi ke gigagrams CO_2 (Kolom I) = 15.107.267 ton $CO_2/1000$ = 15.107 gigagrams CO_2 .

Tabel 2. 4 Contoh perhitungan emisi GRK dari kegiatan IPPU

	Sektor IPPU							
	Kategori	ori Industri Mineral -Produksi Semen						
Kode kategori 2A1								
	Lembar	embar 1 of 2						
		A	В					
Jenis seme		Massa	Fraksi Klinker Massa klinker pad		er pada			
produksi	1)	semen yang	dalam semen semen yang dipr		diproduksi			
		diproduksi						
		(ton)	(fraksi)	(ton)				
				C = A * B				
		27,800,000	0.907		25,223,747			
Total					25,223,747			
1) Tambahka			duksi lebih dari baris yang d	lisediakan.				
	Sektor	IPPU						
	Kategori		eral - Produksi Sem	ien				
Ke	ode kategori	2A1						
	Sheet	2 of 2						
D	E	F	G	Н	I			
Impor	Ekspor	Klinker	Faktor emisi	Emisi	Emisi			
klinker	klinker	yang	untuk klinker	CO_2	CO_2			
		diproduksi	untuk setiap jenis					
		di negara	semen					
(ton)	(ton)	(ton)	(ton CO ₂ /ton clinker)	(ton CO ₂)	(Gg CO ₂)			
		F = C - D + E		H = F * G	$I = H/10^3$			
0	3,552,000	28,775,747	0.525	15,107,267	15,107			

2.2 Produksi Kapur

2.2.1 Deskripsi proses

Kalsiumoksida (CaO ataukapur tohor) dihasilkan dari dekomposisi karbonat yang terdapat pada batu kapur melalui pemanasan. Dekomposisi karbonat tersebut menghasilkan CO₂. Bahan baku yang digunakan dapat berupa batu kapur dengan kandungan calcium tinggi atau batu kapur dengan kandungan magnesium tinggi (dolomite). Reaksi produksi kapur tohor adalah sebagai berikut:

 $CaCO_3$ (batu kapur calcium tinggi) + panas \rightarrow CaO (kapur tohor)+ CO₂

atau

 $CaMg(CO_3)_2$ (dolomit) + panas \rightarrow $CaO \bullet MgO$ (kapur dolomitic) + $2CO_2$

2.2.2 Data yang diperlukan

Tabel 2. 5 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER sektor produksi kapur

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Produksi batu kapur nasional	Default IPCC	Tidak perlu untuk memperhitungkanLKD
TIER 2	Produksi batu kapur per jenis	FE per jenis batu kapur	
TIER 3	Jumlah konsumsi karbonat sesuai jenisnya dan jumlah LKD	Faktor emisi karbonat (lihat penjelasan sektor industri semen diatas) per jenis karbonat	Fraksi kalsinasi untuk karbonat diperoleh dari aktual data namun dapat juga diasumsi sebesar 1 sedangkan fraksi kalsinasi untuk LKD <1 Berat fraksi karbon diperoleh dengan cara yang sama ketika menghitung CF _{ckd}

Catatan: LKD = lime kiln dust

Metode Tier 1

Metode ini berdasarkan pada data produksi kapur. Asumsinya adalah Jenis kapur yang diproduksi dan proporsi produksi kapur yang terhidrasi mengikuti default dari IPCC guidelines. Adapaun data yang dibutuhkan adalah:

 Data jumlah produksi batu kapur dan tidak ada pemilahan data berdasarkan jenis kapur yang diproduksi. Asumsinya adalah 85% kapur yang diproduksi berjenis kapur kalsium tinggi dan 15 % kapur dolomite. • Faktor emisi berasal dari IPCC guidelines 2006 tanpa memperhatikan faktor kalibrasi LKD dan faktor emisi untuk Tier 1 dihitung dengan persamaan

Persamaan 2.6

Tier 1: Faktor Emisi Default Produksi Kapur

$$EF_{clc} = 0.85 \cdot EF_{high\ calcium\ lime} + 0.15 \cdot EF_{dolomitic\ lime}$$

= $0.85 \cdot 0.75 + 0.15 \cdot 0.77 = 0.75$ ton CO2/ton kapur yang diproduksi

Dimana:

EF_{clc} : faktor emisi default untuk produksi kapur
EF_{high calcium lime} : faktor emisi default untuk kapur kalsium tinggi
EF_{dolomite lime} : faktor emisi default untuk kapur dolomite,

dengan 0,85 dan 0,15 adalah asumsi proporsi kedua jenis kapur

Nilai default faktor emisi untuk Tier 1 sebesar 0,75 ton CO2/ ton produksi kapur

Metode Tier 2

Pada metode ini pemilahan data produksi kapur sesuai dengan tiga jenis kapur :

- Kapur berkalsium tinggi (CaO+impurities)
- Kapur dolomite (CaO'MgO+Impurities)
- Kapur hydraulic (CaO+hydraulic kalsium silikat): zat antara kapur dan semen

Data yang dibutuhkan adalah:

- Jumlah produksi kapur sesuai jenisnya.
- Faktor emisi dipengaruhi kandungan CaO/MgO pada setiap jenis kapur yang diproduksi dan rasio stoikiometri CO₂ dan CaO.

Persamaan 2.7

Tier 2: Faktor Emisi Produksi Kapur

$$EF_{lime. a} = SR_{CaO} \bullet CaO$$
 content

$$EF_{lime. c} = SR_{CaO} \bullet CaO$$
 content

dimana:

EF_{lime.a}: Faktor koreksi quicklime (high calcium), ton CO₂/ton kapur

 $EF_{lime,\,b}$: Faktor koreksi dolomitic lime, ton CO_2 /ton kapur $EF_{lime,a}$: Faktor koreksi hydraulic lime, ton CO_2 /ton kapur

 SR_{CaO} : Stoichiometric CO_2 dan CaO, ton CO_2 /ton CaO

 $SR_{CaO.MgO}$: Stoichiometric CO_2 dan CaO.MgO, ton CO_2 /ton CaO.MgO

CaO content : ton CaO/ton kapur

CaO.MgO content : ton CaO.MgO/ ton kapur

Nilai rasio stoikiometri, nilai kandungan default dan rentang kandungan dari kandungan CaO dalam kapur diperoleh dari IPCC guidelines 2006. Nilai koreksi default untuk LKD sebesar 1,02 dan nilai koreksi untuk kapur terhidrasi mengikuti persamaan berikut ini.

Faktor kalibrasi kapur terhidrasi =
$$1 - (x \times y)$$

Dimana:

x = proporsi dari kapur terhidrasi, nilai default =0,1

y = kandungan air dalam kapur, nilai default =0,28

Persamaan 2.8

Tier 2: Emisi Berdasarkan Data Jenis Produksi kapur

Emisi
$$CO_2 = \sum_{i} (EF_{lime,i} \cdot M_{l,i} \cdot CF_{lkd,i} \cdot C_{h,i})$$

Metode Tier 3

Metode ini didasarkan pada data jumlah karbonate dari setiap jenis karbonat yang menghasilkan kapur per pabrik penghasil. Metode ini spesifik pada setiap pabrik. Data yang dibutuhkan adalah:

- Jumlah konsumsi karbonat sesuai jenisnya dan jumlah LKD
- Faktor emisi karbonat (lihat penjelasan industri semen) per jenis karbonat
- Fraksi kalsinasi untuk karbonat diperoleh dari aktual data namun dapat juga diasumsi sebesar 1 sedangkan fraksi kalsinasi untuk LKD <1
- Berat fraksi karbon diperoleh dengan cara yang sama ketika menghitung CF_{ckd}

Persamaan 2.9

Tier 3: Emisi Berdasarkan Data Input Karbonat

$$Emisi~CO2 = \sum_{i} (EF_{i} \times M_{i} \times F_{i}) - M_{d} \times C_{d} \times (1 - F_{d}) \times EF_{d}$$

dimana:

Emisi CO₂ : Emisi CO₂ dari produksi kapur, ton

i : Jenis kapur

 EF_i : Faktor emisi karbonat jenis *i*, ton CO_2 /ton kapur (**persamaan 7**)

M_i : Berat karbonat *i* yang digunakan, ton

Md : Berat LKD, ton

Fd : Faktor kalsinasi untuk LKD, fraksi

Fi : Faktor kalsinasi untuk karbonat, fraksi

Cd : Fraksi berat carbonat di LKD, fraksi

Tabel 2. 6 Default faktor emisi, rasio stoikiometri dan kandungan CaO, CaO-MgO

Jenis kapur	SR (ton CO ₂ /ton	Rentang kandungan	Rentang kandungan	Nilai Default untuk kandungan CaO dan	Faktor emisi default
кариг	CaO atau CaO-	CaO	Mg0	CaO-MgO	(ton CO2/
	MgO)				ton kapur)
	(1)			(2)	(1)x(2)
Kapur					
Kalsium	0,785	93-98	0,3-2,5	0,95	0,75
tinggi					
Kapur	0,913	55-57	38-41	0,85 atau 0,95	0,86 atau
dolomite	0,913	33-37	30-41	0,05 atau 0,95	0,77
Kapur	0,785	65-92	NA	0,75	0,59
hydraulic	0,703	03-92	IVA	0,73	0,39

Contoh perhitungan (Lihat Tabel 2.7)

Input data aktivitas dan parameter emisi pada Tabel 2.7

• Kolom A: Jumlah kapur yang diproduksi = 4,917,529 ton,

• Kolom B: Faktor emisi untuk produksi kapur = 0.75 ton CO₂/ton kapur.

Perhitungan:

Kolom C: Emisi CO₂ = Produksi kapur x faktor emisi produksi Kapur

 $= 4,917,529 ton \times 0.75 ton CO₂/ton kapur$

 $= 3,688,147 \text{ ton } CO_2.$

Kolom D: Konversi ke gigagrams CO_2 = 3,688,147 ton CO_2 / 1000 = 3,688 Gg CO_2 .

Tabel 2. 7 Contoh perhitungan tingkat emisi GRK dari produksi kapur

Sektor	IPPU					
Kategori	Industri Minera	Industri Mineral -Prouduksi Kapur				
Kode kategori	2A2					
Lembar	1 of 1					
	A	В	С	D		
Jenis kapur	Massa kapur	Faktor emisi untuk	Emisi CO ₂	Emisi CO ₂		
yang	yang	setiap jenis kapur				
diproduksi ^{), 2)}	diproduksi					
	(ton)	(ton CO ₂ / tonkapur)	(ton CO ₂)	(Gg CO ₂)		
			C = A * B	$D = C/10^3$		
	4,917,529	0.75	3,688,147	3,688		
Total				3,688		

¹⁾ Tambahkan baris pada table bila terdapat lebih dari satu jenis kapur yang diproduksi

²⁾ Jika informasi FE spesifik negara pada produksi kapur tidak ada, gunakan angka default FE IPCC 2006 GL

2.3 Produksi Kaca/Gelas

2.3.1 Deskripsi Proses

Proses produksi gelas/kaca menghasilkan CO2 dari proses pelelehan bahan baku yang mengandung karbonat yaitu batukapur (CaCO3), dolomitCa,Mg (CO $_3$) $_2$ dan soda abu (Na2CO3). Disamping menggunakan bahan baku tersebut, produksi kaca/gelas pada umumnya menambahkan kaca/gelas daur ulang (cullet) kedalam umpan proses. Proporsi cullet dalam umpan proses produksi umumnya cukup tinggi yaitu hingga sekitar 40%.

2.3.2 Data yang diperlukan

Tabel 2.8 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Data produksi kaca nasional	Default IPCC	Rasio Cullet → Baku (50%)
TIER 2	Data produksi per jenis kaca	EF per jenis proses	Proporsi bahan baku per jenis proses
TIER 3	Data banyaknya karbonat per jenis yang dikonsumsi	EF per jenis karbonat	

Metode Tier 1

Metode ini digunakan apabila data produksi kaca berdasarkan proses dan penggunaan karbonat tidak tersedia/diketahui. Data-data yang digunakan adalah:

- Data total berat kaca yang diproduksi dalam unit ton
- Faktor emisi dari default IPCC guidelines sebesar 0,2 ton CO₂ / berat kaca
- Nilai rasio Cullet dalam unit fraksi sebesar 0,5 untuk angka default IPCC2006 GL atau menggunakan nilai CR spesifik yang berlaku di Indonesia apabila tersedia

Persamaan 2.10	
Tier 1: Emisi Berdasarkan Data Produksi Kaca	
Emisi $CO_2 = M_g \cdot EF \cdot (1 - CR)$	

Dimana:

Emisi CO₂ : Emisi CO₂ dari produksi kaca, ton

EF : Faktor emisi default produksi kaca, ton CO2/ton kaca

 $M_{\rm g}$: Berat kaca yang diproduksi, ton

CR : Cullet ratio, fraksi

Persamaan 2.11

Tier 1: Faktor Emisi Default Produksi Kaca

EF = 0.167 / 0.84 = 0.20 tonnes CO2 / tonne glass

Metode Tier 2

Metode ini berdasarkan data massa produksi setiap jenis kaca, yaitu :

- Jumlah kaca yang diproduksi berdasarkan jenis kaca (*float, fiberglass, container*, dsb.) dalam unit ton,
- FE menggunakan default IPCC 2006 GL,tetapi apabila data spesifik Indonesia tersedia maka sebaiknya menggunakan FE spesifik,
- Nilai cullet rasio dari IPCC 2006 GL, tetapi apabila data spesifik Indonesia tersedia maka sebaiknya menggunakan angka spesifik.

Persamaan 2.12

Tier 2: Emisi Berdasarkan Data Proses Produksi Kaca

Emisi
$$CO_2 = \sum_i M_{g,i} \cdot EF_i \cdot (1 - CR_i)$$

Dimana

Emisi CO₂ : Emisi CO₂ dari produksi kaca, ton

 EF_i : Faktor emisi produksi kaca jenis *i*, ton CO_2 /ton kaca

M_{g,i} : Berat kaca jenis *i* yang diproduksi, ton CR_i : Cullet ratio produksi kaca jenis *i*, fraksi

Metode Tier 3

Metode ini didasarkan pada konsumsi karbonat dalam memproduksi kaca pada prosespelelehan kaca. Adapun data yang dibutuhkan adalah:

- Data konsumsi karbonat dalam unit ton sesuai jenisnya (jenis karbonat dapat dilihat di sektor industri semen)
- \bullet Faktor emisi karbonat sesuai dengan jenisnya diperoleh dari IPCC GL 2006 dan dapat dilihat di sektor indiustri semen (unitnya ton CO_2 /ton karbonat)
- Fraksi kalsinasi karbonat diperoleh dari spesifik data Indonesia namun apabila tidak tersedia maka dapat IPCC Gl 2006 mengasumsikannya bernilai 1

Persamaan 2.13

Tier 3: Emisi Berdasarkan Data Input Karbonat

Emisi
$$CO_2 = \sum_i M_i \bullet EF_i \bullet F_i$$

Dimana

Emisi CO₂ : Emisi CO₂ dari produksi kaca, ton

EF_i : Faktor emisi produksi kaca jenis *i*, ton CO₂/ton karbonat

M_i : Berat karbonat jenis *i* yang dikonsumsi, ton

F_i : Fraksi kalsinasi yang tercapai untuk karbonat jenis *i*, fraksi

Tabel 2. 8 Faktor emisi default dan rasio cullet per jenis kaca

Jenis kaca	Faktor emisi CO ₂	Rasio cullet
	(kg CO2/kg kaca)	(%)
Float	0,21	10-25
Container (Flint)	0,21	30-60
Container (Amber/Green)	0,21	30-80
Fiberglass (E-glass)	0,19	0-15
Fiberglass (Insulation)	0,25	10-50
Specialty (TV-panel)	0,18	20-75
Specialty (TV-funnel)	0,13	20-70
Specialty (Tableware)	0,10	20-60
Specialty (Lab/Pharma)	0,03	30-75
Specialty (Lighting)	0,20	40-70

Contoh Perhitungan(Lihat Tabel 2.10)

Input data aktivitas dan parameter emisi:

Kolom A: Jumlah produksi kaca = 1,700,000 ton.

Kolom B: Faktor emisi untuk produksi kaca = 0.20 ton CO_2 /ton glass

Kolom C: Rata-rata rasio cullet per tahun = 0.50.

Perhitungan:

Kolom D: Emisi CO₂ = produksi kaca x FE produksi kaca x (1 – rasio cullet/tahun)

 $= 1.700.000 \text{ ton x } 0.20 \text{ ton } CO_2/\text{ton kaca x } (1 - 0.50)$

 $= 170.000 \text{ tonCO}_2$

Kolom E: Konversi ke gigagrams $CO_2 = 170.000$ ton $CO_2/1000 = 170$ Gg CO_2 .

Tabel 2. 9 Contoh perhitungan tingkat emisi GRK dari produksi kapur

Sektor	IPPU					
Kategori	Industri Mineral -Pr	Industri Mineral -Produksi Gelas				
Kode	2A3	2.4.2				
kategori	ZAS					
Lembar	1 dari 1					
A	В	A	В	A		
Total	Faktor emisi	Total	Faktor emisi	Total		
produksi kaca	produksi gelas	produksi	produksi gelas	produksi		
		kaca		kaca		
(ton)	(ton CO ₂ / ton gelas)	(ton)	(ton CO ₂ / ton gelas)	(ton)		
			D = A * B * (1 - C)	$E = D/10^3$		
1,700,000.00	0.20	1,700,000.00	0.20	1,700,000.00		

2.4. Proses lain yang menggunakan Karbonat

2.4.1 Deskripsi Proses

2.4.1.1 Keramik

Keramik diproduksi dari tanah liat. Proses produksi keramik melibatkan pemanasan temperatur tinggi. Emisi CO₂ pada produksi keramik terjadi dari proses pemansan karbonat yang terkandung dalam tanah liat.

2.4.1.2 Penggunaan Lain Soda Abu

Soda abu digunakan dalam berbagai aplikasi, termasuk diantaranya produksi kaca, sabun, dan deterjen, gas buang desulfurisasi, bahan kimia, pulp dan kertas serta produk konsumen umum lainnya. Produksi dan konsumsi soda abu (termasuk kalsium karbonat, Na₂CO₃) menghasilkan CO₂. Emisi dari produksi soda abu dilaporkan dalam Industri Kimia.

2.4.1.3 Produksi Magnesia Non Metalurgical

Magnesite (MgCO₃) merupakan salah satu bahan baku utama dalam produksi magnesia dan *fused magnesia*. Magnesiadiproduksi dari kalsinasiMgCO₃dengan pelepasanCO₂. Biasanya,96-98 persen CO₂ yang terkandung dilepaskan dalam proses produksi *calcined* magnesia dan hampir 100 persen CO₂ dilepaskan selama pemanasan lebih lanjut untuk menghasilkan *deadburned* magnesia. Produksi magnesia leburan juga menghasilkan hampir 100 persen pelepasan CO₂.

2.4.2 Data yang dibutuhkan

Tabel 2. 10 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi yang menggunakan karbonat

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Data total konsumsi karbonat	Default	
TIER 2	Data konsumsi batu kapur dan dolomit	FE kalsinasi batu kapur dan EF kalsinasi dolomite	
TIER 3	Data konsumsi karbonat per jenis	FE masing-masing jenis karbonat	Fraksi karbonat yang terkalsinasi

Metode Tier 1

Metode ini mengasumsikan bahwa karbonat yang digunakan industri hanya berasal dari kapur dan dolomit . Karbonat yang dihasilkan pure karbonat bukan batu/karang karbonat dan proporsinya mengikuti default dari IPCC guidelines. Adapaun data yang dibutuhkan adalah:

- Data jumlah penggunaan karbonat dalam unit ton. Asumsikarbonat yang digunakan adalah 85% kapur dan 15 % dolomite sehingga fraksinya adalah 0,85 dan 0,15. Namun apabila ada data penggunaan batu/karang karbonat asumsi kemurniaan yang digunakan adalah 95%
- Faktor emisi karbonat berasal dari IPCC guidelines 2006 sesuai dengan jenis (lihat tabel emision faktor karbonat pada sektor industri semen)

Persamaan 2.14

Tier 1: Emisi Berdasarkan Karbonat Yang Dikonsumsi

Emisi
$$CO_2 = M_c \bullet (0.85EF_{ls} + 0.15EF_d)$$

Dimana

Emisi CO₂ : Emisi CO₂ dari produksi kaca, ton

EF: : Faktor emisi produksi kaca jenis i, ton CO₂/ton karbonat

 $\mathbf{M}_{\mathbf{i}}$: Berat karbonat jenis i yang dikonsumsi, ton

 EF_{ls} : Faktor emisi kalsinasi limestone, ton CO_2 /ton karbonat EF_d : Faktor emisi kalsinasi dolomite, ton CO_2 /ton karbonat

Metode Tier 2

Metode ini sama seperti metode Tier 1, hanya saja nilai fraksi konsumsi kapur dan dolomite harus spesifik sesuai dengan konsumsi di Indonesia sehingga asumsi karbonat yang digunakan pada metode Tier 1 tidak berlaku. Data yang dibutuhkan:

 Data konsumsi kapur dan dolomit dalam unit ton dan faktor emisi yang digunakan sama dengan metode Tier 1

Persamaan 2.15

Tier 2: Proses Lain yang menggunakan karbonat

Emisi
$$CO_2 = (M_{ls} \bullet EF_{ls}) + (M_d \bullet EF_d)$$

Dimana

Emisi CO₂ : Emisi CO₂ dari produksi kaca, ton

 M_{ls} : Berat limestone yang dikonsumsi, ton

M_d : Berat dolomit yang dikonsumsi, ton

EF_{ls}: Faktor emisi kalsinasi limestone, ton CO₂/ton karbonat

 EF_d : Faktor emisi kalsinasi dolomite, ton CO_2 /ton karbonat

Metode Tier 3

Metode Tier 3 menggunakan pendekatan konsumsi karbonat seperti metode Tier 3 pada sektor industri semen hanya saja tidak memperhitungkan emisi dari debu dan input bahan baku lainnya. Data yang dibutuhkan adalah:

- Data konsumsi karbonat spesifik yang berlaku di setiap pabrik dan fraksi kalsinasi karbonatnya. Apabila fraksi kalsinasi tidak diketahui maka diasumsikan sama dengan 1.
- Apabila terdapat penggunaan clay pada industri keramik maka data konsumsi clay perlu diperhitungkan untuk semua produk keramik yang relevan.

Persamaan 2.16

Tier 3: Emisi Berdasarkan Input Karbonat (proses karbonat lainnya)

Emisi
$$CO_2 = \sum_i M_i \cdot EF_i \cdot F_i$$

Dimana

Emisi CO₂ : Emisi CO₂ dari produksi kaca, ton

EF; : Faktor emisi produksi kaca jenis i, ton CO2/ton karbonat

 $\mathbf{M}_{\mathbf{i}}$: Berat karbonat jenis i yang dikonsumsi, ton

F_i: Fraksi kalsinasi yang tercapai untuk karbonat jenis i, fraksi

III. EMISI GAS RUMAH KACA DARI INDUSTRI KIMIA

3.1. Produksi Amonia

3.1.1.Deskripsi Kategori

Amonia (NH₃) merupakan bahan kimia industri utama. Gas ammonia digunakan langsung sebagai pupuk, dalam proses-proses perlakuan panas (heat treating), paper pulping, pembuatan asam nitrat dan senyawa-senyawa nitrat, pembuatan ester dari asam nitrat dan senyawa nitro, berbagai jenis bahan peledak, dan sebagai refrigeran. Amina, amida, dan aneka senyawa organik lainnya, seperti urea, dibuat dari ammonia.

Amonia diproduksi melalui sintesa N₂ (gas nitrogen) dan H₂ (gas hidrogen). N₂ diperoleh dari udara sedangkan H₂ diperoleh dari proses *steam reforming* gas bumi (CH₄). Proses produksi amonia menghasilkan CO₂ sebagai *by-product* melalui reaksireaksi berikut ini.

Steam Reforming Primer

$$CH_4 + H_2O \rightarrow CO + 3 H_2$$

 $CO + H_2O \rightarrow CO_2 + H_2$

Steam Reforming Sekunder

 $CH_4 + Udara \rightarrow CO + 2H_2 + 2N_2$

Reaksi Keseluruhan

 $0.88 \text{ CH}_4 + 1.26 \text{ Udara} + 1.24 \text{ H}_2\text{O} \rightarrow 0.88 \text{ CO} + 3 \text{ H}_2 + \text{N}_2$

Sintesis Ammonia

 $3H_2 + N_2 \rightarrow 2 NH_3$

Proses konversi pergeseran gas pada reformer sekunder

$$CO + H_2O \rightarrow CO_2 + H_2$$
 (Hocking, 1988, EFMA, 200 a: EIPPCB, 2004a)

Proses-proses yang mempengaruhi emisi CO₂ terkait produksi amonia adalah:

- Konversi CO menjadi CO₂;
- Absorbsi CO₂ oleh larutan scrubber kalium karbonat panas, Monoetanolamina (MEA), Sulfinol (alkanol amina dan karbon tetrahydrothiophene) atau yang lain;
- Metanasi sisa CO₂ untuk memurnikan gas sintesis.

Emisi CO₂ terjadi dari proses regenerasi larutan scrubber CO₂ sebagaimana berikut:

Panas $2KHCO_3 \rightarrow K_2CO_3 + H_2O + CO_2$

Panas $(C_2H_5ONH_2)_2 + H_2CO_3 \rightarrow 2C_2H_5ONH_2 + H_2O + CO_2$

Emisi CO₂ juga terjadi dari proses stripping kondensat yang dihasilkan pada pendinginan gas sintesa setelah proses shift conversion temperatur rendah.

3.1.2 Data yang diperlukan

Tabel 3. 1 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Amonia

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Produksi amonia nasional atau kapasitas produksi nasional	Default IPCC	TFR → gunakan yang paling tinggi
TIER 2	Data level pabrik	TFR → EF default CCF & COF → Indonesia	CO ₂ yang didapat → data level pabrik
TIER 3	Data level pabrik	TFR → data level pabrik CCF & COF → produsen atau gunakan data sektor Energi Indonesia	TFR → dikelompokkan berdasarkan jenis bahan bakar

TFR: total fuel requirement (kebutuhan bahan bakar total)

CCF: carbon content of fuel (kandungan karbon di dalam bahan bakar)

COF: carbon oxidation factor(factor oksidasi karbon)

Metode Tier 1

Data untuk metode ini berasal dari statistik nasional dan default dari IPCC GL 2006. Perhitungan metode Tier 1 berdasarkan pada produksi amonia dari nasional statistik dan kebutuhan bahan bakar per unit output. Data aktivitas yang dibutuhkan adalah:

- \bullet Produksi amonia dalam unit ton, kebutuhan bahan bakar untuk per output unit dan jumlah CO_2 yang digunakan untuk penggunaan produksi urea dalam unit kg. Apabila data kebutuhan bahan bakar per unit output tidak tersedia dapat menggunakan nilai default di IPCC GL 2006 (Tabel 3.1 hal 3.15)
- Apabila nilai faktor kandungan karbon dan faktor oksidasi karbon tidak tersedia maka dapat diperoleh dari nilai default IPCC GL 2006 di Tabel 3.1 hal 3.15 mengenai IPPU.
- Total CO2 yang digunakan untuk produksi urea dapat diestimasi dengan mengalikan total produksi urea dengan nilai 44/60. Apabila data tidak tersedia maka asumsi untuk nilai ini adalah nol.

Persamaan 3.1

Tier 1: Emisi CO₂ dari Produksi Amonia

Emisi CO_2 = AP • FR • CCF • COF • 44/12 - R_{CO2}

Dimana:

Emisi CO₂ : emisi CO₂ dari produksi amonia, ton

AP : produksi amonia, ton

FR : kebutuhan bahan bakar (non-energi) per satuan output,

GJ/ton amonia

CCF : Kandungan karbon dalam bahan bakar, kg C/GJ

COF : Faktor oksidasi karbon, fraksi

Metode Tier 2

Metode ini menggunakan data aktivitas per pabrik penghasil dan per proses (level pabrik dan proses). Data yang digunakan berupa:

 Untuk menghitung nilai TFR dibutuhkan data produksi amonia berdasarkan penggunaan jenis bahan bakar dan jenis proses yang terjadi dalam unit ton. Nilai ini diperoleh dari produsen. Selain itu dibutuhkan data jumlah bahan bakar yang digunakan per jenis bahan bakar dan per jenis prosesnya. Apabila tidak terdapat data di produsen maka dapat menggunakan nilai default dari IPCC GL 2006 (Tabel 3.1 hal. 3.15 pada IPCC GL 2006)

Persamaan 3.2

Tier 2: Kebutuhan bahan baku

$$TFR_i = \sum_i AP_{ij} \bullet FR_{ij}$$

dimana:

TFR_i : Total kebutuhan bahan bakar (non energi) jenis *i*, GJ

APij : Produksi amonia dengan bahan bakar jenis *i* proses jenis *j*, ton FRij : Kebutuhan bahan bakar non energi per unit output untuk

bahan bakar jenis *i* proses jenis *j*, GJ

 Apabila nilai faktor kandungan karbon dan faktor oksidasi karbon tidak tersedia maka dapat diperoleh dari nilai default IPCC GL 2006 di Tabel 3.1 hal 3.15 mengenai IPPU atau menggunakan data spesifik yang berlaku di Indonesia dari informasi sektor energi. • Data *recovery* CO₂ diperoleh dari produsen. Yang termasuk dalam data *recovery* CO₂ adalah CO₂ yang digunakan untuk produksi urea dan CCS (CO₂ captured and storage)

Persamaan 3.3

Tier 2 dan 3: Emisi CO2 dari Produksi Amonia

Emisi
$$CO_2 = \sum_{i} (TFR_i \bullet CCF_i \bullet COF_i \bullet 44/12) - R_{CO2}$$

dimana:

Emisi CO_2 : emisi CO_2 dari produksi amonia, ton

TFR_i : Total kebutuhan bahan bakar jenis *i, GJ*

CCF_i : Carbon content factor bahan bakar jenis *i, kg C/GJ* COF_i : Faktor oksidasi karbon bahan bakar jenis *i, fraksi* RCO₂ : CO₂ yang recover di hilir (produksi urea), kg

Metode Tier 3

Metode ini sama seperti metode Tier 2 hanya saja semua data input pada metode ini berasal spesifik yang berlaku pada tingkat pabrik terkait termasuk TFR.

Persamaan 3.4

Tier 3: Kebutuhan Bahan Bakar (non energi)

$$TFR_i = \sum_n TFR_{in}$$

dimana:

TFR_i : Total kebutuhan bahan bakar jenis *i*, GJ

TFR_{in} : Kebutuhan bahan bakar jenis *i* di pabrik *n*, GJ

3.2. Produksi Asam Nitrat (HNO₃)

3.2.1 Deskripsi Kategori

Asam nitrat digunakan sebagai bahan baku terutama dalam pembuatan pupuk berbasis nitrogen. Asam nitrat juga digunakan untuk produksi asam adipat dan bahan peledak (misal dinamit), digunakan untuk metal *etching* (grafir) dan pemrosesan logam besi.

Proses produksi asamnitrat melibatkan oksidasi katalitik amonia pada temperatur tinggi yang menghasilkan produk samping N_2O . Dalam proses oksidasi amonia terdapat tiga kemungkinan reaksi antara yang menghasilkan N_2O :

 $NH_3 + O_2 \rightarrow 0.5N_2O + 1.5H_2O$

 $NH_3 + 4NO \rightarrow 2.5N_2O + 1.5H_2O$

 $NH_3 + NO + 0.75O_2 \rightarrow N_2O + 1.5H_2O$

3.2.2 Data yang diperlukan

Tabel 3.2 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Asam Nitrat (HNO₃)

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Produksi nasional asam nitrat (HNO ₃)	Faktor Emisi Default *Lihat IPCC GL 2006 halaman 3.23	Jika data kegiatan tingkat nasional tidak tersedia, informasi mengenai kapasitas produksi dapat digunakan
TIER 2	Data produksi tingkat pabrik menurut jenis teknologi dan jenis abatement technology	Default IPCC, jika factor tingkat pabrik tidak tersedia	
TIER 3	Data produksi tingkat pabrik menurut jenis teknologi dan jenis abatement technology	faktor emisi tingkat pabrik diperoleh dari pengukuran langsung emisi	

Metode Tier 1

Data Tier-1 berdasarkan pada nasional statistik di Indonesia dan faktor emisi yang digunakan berupa faktoe emisi defaul dari IPCC GL 2006. Data yang digunakan adalah:

- Produksi asam nitrat tingkat nasional dalam unit ton
- Faktor emisi dari IPCC GL 2006 (tabel 3.3 hal. 3.21)

Persamaan 3.5

Tier 1: Emisi N₂O dari Produksi Asam Nitrat

Emisi $N_2O = EF \bullet NAP$

dimana:

Emisi N₂O : emisi N₂O dari produksi asam nitrat, kg

NAP : Produksi asam nitrat, ton

EF : Faktor emisi (default) N₂O, kg N₂O/ ton produksi asam nitrat

Metode Tier 2

Metode ini menggunakan data aktivitas level pabrik bukan dari nasional statistik. Data yang dibutuhkan adalah:

- Data produksi asam nitrat per pabrik per jenis teknologi dalam unit ton
- Faktor emisi spesifik yang berlaku di Indonesia per jenis teknologi yang digunakan, apabila data tidak tersedia maka dapat menggunakan faktor emisi default dari IPCC GL 2006 (tabel 3.3 hal. 3.21)
- Faktor destruksi abatement berdasarkan jenis jenis teknologidanfaktorutilisasi abatement berdasarkan jenis teknologi perlu diverifikasi ke level pabrik

Persamaan 3.6

Tier 2: Emisi N₂O dari Produksi Asam Nitrat

Emisi
$$N_2O = \sum_{i,j} \left[EF_i \bullet NAP_i \left(1 - DF_j \bullet ASUF_j \right) \right]$$

Dimana:

Emisi N₂O : Emisi N₂O dari produksi asam nitrat, kg NAP_i : Produksi asam nitrat jenis teknologi *i*, ton

EFi : FE N₂O per jenis teknologi *i*, kg N₂O/ton produk asam nitrat
 DF_j : Faktor destruksi untuk abatement jenis teknologi *j*, fraksi
 ASUF_i : Faktor utilisasi untuk abatement jenis teknologi *j*, fraksi

Metode Tier 3

Metode ini berdasarkan pada pengukuran langsung menggunakan CEM (continous emission monitoring). Faktor emisi dapat ditentukan dari hasil monitoring CEM sehingga hasil estimasi emisi jadi lebih akurat.

Contoh Perhitungan:

Jumlah produksi asam nitrat sebesar = 23.039,264 ton.

Faktor emisi = $9,2777 \text{ kg N}_2\text{O/ton asam nitrat.}$

N₂O Emisi = Jumlah produksi asam nitrat x Faktor emisi

 $= 23,039.264 \text{ ton } x 9.2777 \text{ kg } N_2O/\text{ton asam nitrat}$

= 213,751 kg.

 N_2O emisi di konversi ke gigagrams = 213,751 kg / 10^6 = 0.21 Gg.

Tabel 3. 3 Worksheet contoh perhitungan emisi N₂O dari produksi asam nitrat

Sektor	IPPU					
Kategori	Industri Kimia – I	Industri Kimia - Produksi asam nitrat				
Kode kategori	2B2	2B2				
Lembar	1 dari 1					
A	В	С	D			
Jumlah produksi asam nitrat	Faktor emisi	Emisi N ₂ O	Emisi N ₂ O			
(tonne)	(kg N ₂ O/tonproduksi asam nitrat)	(kg)	(Gg)			
		C = A * B	$D = C/10^6$			
23039.264	9.2777	213751	0.21			

3.3. Produksi Asam Adipat

3.3.1 Deskripsi Kategori

Asam adipat digunakan dalam pembuatan berbagai produk termasuk serat sintetis, pelapisan, plastik, busa urethane, elastomer dan pelumas sintetis. Asam adipat adalah asam dikarboksilat yang diproduksi dari campuran sikloheksanon/sikloheksanol yang dioksidasi oleh asam nitrat dengan adanya katalis untuk membentuk asam adipat. Proses oksidasi tersebut menghasilkan produk samping N_2O . Reaksi dalam proses produksi asam adipat adalah sebagai berikut:

(CH₂)₅CO (Cyclohexanone) + (CH₂)₅CHOH (Cyclohexanol) + wHNO₃ \rightarrow HOOC(CH₂)₄COOH (Asamadipat) + xN₂O + yH₂O

Tanpa adanya upaya *abatement* terhadap N_2O , proses produksi asam adipat merupakan sumber emisi N_2O yang sangat signifikan. Besarnya emisi N_2O bergantung kepada jumlah yang dihasilkan dalam proses produksi dan banyaknya N_2O yang dihancurkan dalam proses abatement N_2O .

3.3.2 Data yang diperlukan

Tabel 3. 4 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Asam Adipat

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Data produksi asam adipat total	Default (lihat IPCC GL 2006 halaman 3.30)	Boleh menggunakan TIER 2 or 3
TIER 2	Data produksi tiap pabrik menurut jenis teknologi proses dan teknologi abatement N ₂ O	EF Default, jika EF tingkat pabrik tidak tersedia	
TIER 3	Data produksi tiap pabrik	faktor emisi tingkat pabrik yang diperoleh dari pengukuran emisi langsung	Sama dengan TIER 2

Metode Tier 1

Metode Tier 1 menggunakan data statistik nasional dan faktor emisi default dari IPCC GL 2006. Data yang dibutuhkan adalah:

 Data jumlah produksi asam adipat dalam unit ton. Data berupa statistik nasional dan apabila tidak tersedia data statistik nasional maka dapat menggunakan data kapasitas produksi secara nasional yang kemudian dikalikan dengan faktor utilitas sebesar 80%±10% • Faktor emisi default diperoleh dari IPCC GL 2006 tabel 3.4 hal 3.30

Persamaan 3.7

Tier 1: Emisi N₂O dari Produksi Asam Adipat

Emisi $N_2O = EF \bullet AAP$

dimana:

Emisi N₂O : emisi N₂O dari produksi asam adipat, kg

AAP : Produksi asam adipat, ton

EF : Faktor emisi (default) N₂O, kg N₂O/ ton produksi asam adipat

Metode Tier 2

Metode Tier 2 menggunakan data aktivitas per tingkat pabrik yang telah dipilah berdasarkan jenis teknologi abatement. Data yang dikumpulkan adalah data produksi asam adipat per pabrik per jenis teknologi abatement dalam unit ton. Faktor emisi yang digunakan spesifik yang berlaku di pabrik tersebut atau di Indonesia. Namun apabila data tidak tersedia dapat menggunakan default faktor emisi yang disediakan oleh IPCC GL 2006 di Tabel 3.4 hal 3.30.

Faktor destruksi *abatemen* dan faktor utilisasi abatemen dari Tabel 3.4 hal 3.30 IPCC 2006 GL. Namun sebelum menggunakan faktor ini, penginventori harus memverifikasi jenis teknologi abatemen yang digunakan di pabrik dan waktu operasinya sehingga tidak menimbulkan kesalahan dalam hasil kalkulasi emisi.

Persamaan 3.8

Tier 2: Emisi N₂O dari Produksi Asam Adipat

Emisi
$$N_2O = \sum_{i,j} \left[EF_i \bullet AAP_i \left(1 - DF_j \bullet ASUF_j \right) \right]$$

dimana:

Emisi N_2O : emisi N_2O dari produksi asam adipat, kg AAP_i : Produksi asam adipat jenis teknologi i, ton

EF_i : Faktor emisi N₂O jenis teknologi *i*, kg N₂O/ton produksi asam

adipat

DF_j : Faktor destruksi untuk abatement jenis teknologi *j*, fraksi ASUF_j : Faktor utilisasi untuk abatement jenis teknologi *j*, fraksi

Metode Tier 3

Prinsip utama Metode Tier 3 sama dengan Metode Tier 2 yaitu menggunakan data aktivitas per tingkat pabrik yang telah dipilah berdasarkan jenis teknologi abatement. Namun estimasi emisi diperoleh dari hasil pengukuran langsung menggunakan CEM secara periodik maupun tidak sehingga faktor emisi yang diperoleh dari pengukuran langsung di pabrik tersebut.

3.4. Produksi Caprolactam, Asam Glyoxal dan Glyoxylic

3.4.1 Deskripsi Kategori

Hampir semua produk Caprolactam($C_6H_{11}NO$) dikonsumsi sebagaimonomernilonserat 6 dan plastic dan sebagian besar seratyang digunakandalam pembuatankarpet. Semua proses komersial untuk pembuatan caprolactam didasarkan pada toluene atau benzene. Dasar persamaan untuk memproduksi cyclohexanone adalah sebagai berikut ini.

Oksidasi NH₃ menjadi NO/NO₂

 \downarrow

 NH_3 bereaksi dengan CO_2/H_2O menghasilkanamonium karbonat $(NH_4)_2CO_3$

1

(NH₄)₂CO₃ dengan NO/NO₂ (oksidasi NH₃) menghasilkan ammonium nitrit (NH₄NO₂)

1

NH₃ bereaksi dengan SO₂/H₂O untuk menghasilkan ammonium bisulphite (NH₄HSO₃)

 \downarrow

 NH_4NO_2 dan NH_4HSO_3 bereaksi menghasilkan hidroksilamindisulfonate ($NOH(SO_3NH_4)_2$)

1

 $NOH(SO_3NH_4)_2$ dihidrolisa menghasilkan hidroksilaminsulfat ($NH_2OH)_2$. H_2SO_4) dan amonium sulfat ($(NH_4)_2SO_4$)

↓

Reaksi sikloheksanon:

 $C_6H_{10}O + \frac{1}{2}(NH_2OH)_2.H_2SO_4$ (+NH₃ and H₂SO₄) \rightarrow $C_6H_{10}NOH + (NH_4)2SO_4 + H_2O$ penyusunan kembali Beckmann:

 $C_6H_{10}NOH \ (+H_2SO_4 \ dan \ SO_2) \rightarrow C_6H_{11}NO.H_2SO_4 \ (+4NH_3 \ and \ H_2O) \rightarrow C_6H_{11}NO + 2(NH_4)2SO_4$

3.4.2 Data yang diperlukan

Tabel 3.5 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi *Caprolactam, Asam Glyoxal* dan *Glyoxylic*

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	data produksi nasional kaprolaktam	Baku (lihat IPCCGL2006 halaman3,36, dan 3,39 untuk Produksi Asam Glyoxal dan Glyoxylic)	Jika tingkat nasional data kegiatan tidak tersedia, informasi mengenai kapasitas produksidapat digunakan
TIER 2	data produksi tingkat pabrik yang dikelompokan menurut umur pabrik	Faktor baku, jika factor tingkat pabrik tidak tersedia	Mengumpulkan kegiatan (produksi) data pada tingkat detail yang konsisten dengan data pembangkitan dan penghancuran
TIER 3	data produksi tingkat pabrik	faktor emisi tingkat pabrik yang diperoleh dari pengukuran langsung emisi	Kumpulkan kegiatan (produksi) data pada tingkat detail yang konsisten dengan setiap pembangkitan dan data kerusakan

Metode Tier 1

Metode ini menggunakan data produksi nasionalkaprolaktam yang diperoleh dari statistik nasional namun apabila data tidak tersedia dari kegiatan tersebut dapat menggunakan data kapasitas produksi yang kemudian dikalikan dengan faktor utilitas sebesar 80%±20% (rentang 60%-100%). Faktor emisi yang digunakan adalah faktor emisi baku dari IPCC 2006 GL Tabel 3.5 hal. 3.36.

Produksi Glyoxal dan glyoxylic data dapat di estimasi apabila data tidak tersedia secara nasional dengan menggunakan Tabel 3.6 hal 3.39 IPCC 2006 GL. Estimasi emisi kemudian dilakukan seperti mengestimasi kaprolaktam.

dimana:

Emisi N₂O : emisi N₂O dari produksi caprolactam, kg

CP : Produksi caprolactam, ton

EF : Faktor emisi (default) N₂O, kg N₂O/ ton produksi asam

caprolactam

Metode Tier 2

Metode ini memerlukan data aktivitas produksi kaprolaktam tingkat pabrik yang dikelompokkan menurut umur pabrik., jenis teknologi dan teknologi abatemen. Faktor emisi yang digunakan adalah faktor emisi baku dari IPCC GL 2006 tabel 3.5 hal 3.36 apabila data faktor emisi tingkat pabrik tidak tersedia.

Persamaan 3.10

Tier 2: Emisi N₂O dari Produksi Caprolactam

Emisi
$$N_2O = \sum_{i,j} \left[EF_i \bullet CP_i \left(1 - DF_j \bullet ASUF_j \right) \right]$$

dimana:

Emisi N₂O : emisi N₂O dari produksi caprolactam, kg CP_i : Produksi caprolactam jenis teknologi *i*, ton

EF_i : Faktor emisi N₂O jenis teknologi *i*, kg N₂O/ton produksi

caprolactam

DF_j : Faktor destruksi untuk abatement jenis teknologi *j*, fraksi ASUF_j : Faktor utilisasi untuk abatement jenis teknologi *j*, fraksi

Metode Tier 3

Prinsip utama Metode Tier 3 sama dengan Metode Tier 2 yaitu menggunakan data aktivitas per tingkat pabrik yang telah dikelompokkan menurut umur pabrik., jenis teknologi dan teknologi abatemen. Namun faktor emisi diperoleh dari hasil pengukuran langsung menggunakan CEM secara periodik maupun tidak.

Tabel 3. 6 Angka default untuk produksi Glyoxal dan Asam Clyoxylic

	Faktor	Laju destruksi	Faktor emisi N ₂ O	Ketidak
Produk	Timbulan N2O	N ₂ O		pastian
	(ton N ₂ O/ton)	(%)	(ton N ₂ O/ton)	(%)
Glyoxal	0.52	80	0.10	±10
Glyoxylic acid	0.10	80	0.02	±10

Source: Babusiaux (2005)

3.5. Produksi Karbida

3.5.1 Deskripsi Kategori

Produksi karbida dapat mengakibatkan emisi karbon dioksida (CO₂), metana (CH₄), karbon monoksida (CO) dan sulfur dioksida (SO₂). Silikon karbida diproduksi dari pasir silika atau kuarsa dan kokas minyak bumi, yang digunakan sebagai sumber karbon, memiliki persamaan sebagai berikut:

SiO₂+2C
$$\rightarrow$$
Si+2CO
Si+ C \rightarrow SiC
atau SiO₂+3C \rightarrow SiC+2CO(+O₂ \rightarrow 2CO₂)

Kalsiumkarbida (CaC₂) dibuat dengan pemanasan karbonat kalsium (kapur) dan selanjutnya mengurangi CaO dengan karbon misalnya, kokas minyak bumi. Kedua langkah menyebabkan emisi CO₂. Persamaan sebagai berikut:

$$CaCO_3 \rightarrow CaO + CO_2$$

 $CaO + 3C \rightarrow CaC_2 + CO(+\frac{1}{2}O_2 \rightarrow CO_2)$

Untuk menghindari perhitungan ganda, emisi CO_2 dari gas pembakaran CO yang dihasilkan dalam proses produksi CaC_2 harus diperhitungkan di Sektor IPPU, dan tidak boleh dimasukkan dalam Sektor Energi.

Kokas minyak bumi yang digunakan dalam proses produksi harus dikurangi dari sektor energy sebagai penggunaan non-energi kokas minyak bumi. Produksi dan penggunaan asetilena untuk aplikasi pengelasan:

$$CaC_2+2H_2O \rightarrow Ca (OH)_2 + C_2H_2(+2.5O_2 \rightarrow 2CO_2+H_2O)$$

3.5.2 Data yang diperlukan

Tabel 3. 7 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Karbida

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	data pada kokas minyak bumi yang digunakan dalam produksi karbida atau produksi nasional karbida	Baku (lihat IPCC GL 2006 halaman 3.44)	Ketika karbida produksi digunakan sebagai data kegiatan, EF harus emisi ratarata CO ₂ per unit keluaran untuk produksi karbida,CO ₂ /ton produksi karbida. Ketika konsumsi kokas minyak bumi digunakan sebagai data kegiatan, EF

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
			harus CCF (karbon factor konten) dikalikan dengan COF (karbon factor oksidasi) dikalikan dengan44/12dan disesuaikan untuk memperhitungkan C yang terkandung dalam produk, ton bahan CO2/tone digunakan
TIER 2	data tingkat pabrik pada karbida yang dihasilkan dan jumlah CaC ₂ digunakan dalam produksi asetilena untuk aplikasi pengelasan	Baku (lihat IPCC GL 2006 halaman 3.44), kecuali untuk jumlah C terkandung dalam produk tersebut	
TIER 3	data tingkat pabrik pada karbida yang dihasilkan dan jumlah CaC ₂ digunakan dalam produksi asetilena untuk aplikasi pengelasan	tingkat pabrik data untuk semua variable kecuali CCF dan COF dari kokas minyak bumi di mana nilai-nilai Sektor Energi Negara tertentu dapat digunakan	

Metode Tier 1

Metode ini data yang dibutuhkan data kokas minyak bumiyang digunakan dalam produksikarbidaatau produksinasionalkarbida. Faktor emisi yang digunakan berdasarkan pada data aktivitas yang digunakan (Tabel 3.7 dan 3.8 hal.3.44).

ullet Data produksi karbida sebagai data aktivitas maka faktor emisi yang digunakan emisirata-rata CO_2 per unitkeluaran produksi karbida, ton CO_2 /ton produksi karbida.

Persamaan 3.11

Tier 1: Emisi CO₂ dari Produksi Karbida

Emisi $CO_2 = AD \bullet EF$

dimana:

Emisi CO₂ : emisi CO₂ dari produksi karbida, kg

AD : data aktivitas konsumsi petroleum coke atau produksi karbida,

ton bahan baku atau ton produksi karbida

EF : Faktor emisi CO₂. Terdapat dua opsi berikut:

• Jika produksi karbida digunakan sebagai data aktivitas, EF = rata-rata faktor emisi CO₂ per satuan output karbida, ton

CO₂/ton produksi karbida.

• Jika konsumsi petroleum coke digunakan sebagai data aktivitas, EF= CCF (*carbon content factor*) dikalikan dengan COF (carbon oxidation factor) dikalikan 44/12 dan dikoreksi untuk memperhitungkan C yang dikandung dalam produk, ton

CO2/ton material yang dikonsumsi.

 $SiC=0,35 \rightarrow EF=0,65 \cdot CCF \cdot COF \cdot 44/12$

 $CaC2=0,67 \rightarrow EF=0,33 \cdot CCF \cdot COF \cdot 44/12$

Dimana:

CCF = faktor kandungan karbon

COF = faktor oksidati karbon

0,35 dan 0,65 adalah faktor penyesuaian

Metode Tier 2

Data yang digunakan adalah data aktivitas tingkat pabrik berupa data produksi karbida dan jumlah kandungan C nya. Data penggunaan CaC2 dalam aplikasi welding juga perlu diperhitungkan. Faktor emisi yang digunakan berupa nilai baku dari IPCC Guidelines 2006 Tabel 3.7 dan 3.8 hal. 3.44

Metode Tier 3

Data yang digunakan adalah data aktivitas tingkat pabrik berupa data konsumsi kokas minyak bumi dan nilai CCF dan COF apabila tersedia. Apabila nilai CCF dan COF maka dapat digunakan nilai spesifik yang berlaku di Indonesia dari energi sektor. Penggunaan CaC₂ untuk memproduksi acetylene untuk aplikasi *welding* perlu diperhitungkan.

Tabel 3. 8 Faktor Default untuk Emisi CO2 dan CH4 dari Produksi Silicon Karbit

	Faktor Emisi			
Proses	ton CO2/ton bahan baku	kg CH4/ton bahan baku	ton CO2/ton karbida	kg CH4/ton karbida
Produksi Silicon carbide	2.30	10.2	2.62	11.6

Source: Revised 1996 IPCC National Greenhouse Gas Inventories, Vol.3, p.2.21 (IPCC, 1997)

Contoh perhitungan

Produksi Karbida dari SiC = 27,396.09 ton.

Faktor emisi untuk SiC = 2.62 tonne CO_2 /ton produksi karbit.

= Produksi Karbida dari SiC x Faktor emisi untuk SiC Emisi CO₂

= $27.396,09 \text{ ton } x 2,62 \text{ ton } CO_2/\text{ton produksi karbit}$

 $= 71.778 \text{ ton } CO_2$

Emisi CO_2 konversi ke gigagrams $CO_2 = 71,778 / 1000 = 0,072 Gg <math>CO_2$.

Tabel 3.9 Worksheet cotoh hasil perhitungan sektor produksi karbida

Sektor	IPPU					
Kategori	Industri Kimia - Produksi karbid					
Kode Kategori	2B5					
Lembar	2 dari 6	emisi CO ₂ (Perhitu	ngan berdasar	kan produksi		
Lembai	karbida)					
	A	В	С	D		
Jenis karbida yang	Jumlah	Faktor emisi	Emisi CO ₂	Emisi CO ₂		
diproduksi	karbida yang					
	diproduksi					
	(ton)	(ton CO ₂ /ton produksi karbida)	(ton CO ₂)	(Gg CO ₂)		
			C = A * B	$D = C/10^3$		
Silicon Carbide (SiC)	27396.09	2.62	71778	0.072		
Calcium Carbide	22445	1.09	24465	0.024		
(CaC ₂)	22443	1.09	24403	0.024		
Note: Inventory compile	ers should use ei	Note: Inventory compilers should use either this sheet (2 of 6) or the previous sheet (1 of 6).				

not both.

3.6. Produksi Titanium Dioksida

3.6.1 Deskripsi Kategori

Titanium dioksida (TiO_2) merupakan salah satu dari pigmen putih yang paling umum digunakan. Penggunaan utama adalah dalam pembuatan cat diikuti oleh kertas, plastik karet, keramik, kain, dan lainnya

3.6.2 Data yang diperlukan

Tabel 3. 10 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Titanium Oksida

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Produksi nasional teraktitanium, rutilsintetis dan rutil TiO2	Baku (lihat IPCC GL 2006 halaman 3.49)	
TIER 2	Jumlah penggunaan pereduksi, total konsumsi karbon elektroda, dan jumlah masukan carbothermal	Kandungan C dari input pereduksi dan carbothermal bersama dengan proporsi C yang teroksidasi	
TIER 3	-	-	

Metode Tier 1

Data yang diperlukan untuk Metode tier 1 adalah data produksi titanium tingkat nasional dari statistik Indonesia yaitu data produksi nasional ampas/terak (*slag*) titanium, rutil titanium oksida dan sintetik rutil titanium oksida. Unit data produksi titaniun adalah ton. Apabila informasi secara nasional statistik tidak tersedia maka data mengenai kapasitas produksi nasional dapat digunakan untuk mengestimasi data produksi titanium tersebut. Estimasi dilakukan dengan mengalikan data kapasitas produksi nasional dengan faktor utilitas sebesar 80% (rentang faktor utilitas 70%-90%).

Faktor emisi yang digunakan adalah faktor emisi baku yang disediakan oleh IPCC GL 2006 (Tabel 3.9 hal 3.49) apabila informasi tentang faktor emisi tingkat pabrik tidak tersedia.

Persamaan 3.12

Tier 1: Emisi CO2 dari produksi *TITANIUM SLAG, SYNTHETIC RUTILE AND RUTILE TIO*₂

Emisi
$$CO_2 = \sum_i (AD_i \bullet EF_i)$$

dimana:

Emisi CO_2 : emisi CO_2 , ton

AD : Produksi titanium slag, synthetic rutile atau rutile TiO₂ (produk

jenis *i*), ton

EF : Faktor emisi CO₂ per satuan produksi titanium slag, *synthetic*

rutile atau rutile TiO2 (product jenis i), ton CO2/ton produk

Metode Tier 2

Metode tier 2 menggunakan data konsumsi agen pereduksi untuk karbon elektroda (terak titanium) dan batu bara (rutil sintetis) pada proses Becher dan penggunaan (input) carbonthermal (kokas minyak bumi) rutil TiO₂ pada proses penghilangan (rout) klorida. Data yang digunakan adalah data konsumsi tingkat pabrik. Satuan yang digunakan untuk data aktivitas ini adalah GJ

Faktor emisi yang digunakan adalah faktor emisi baku yang disediakan oleh IPCC GL 2006 (Tabel 3.9 hal 3.49) apabila informasi tentang faktor emisi tingkat pabrik tidak tersedia.

Kandungan karbon dan faktor oksidasi karbon pada agen pereduksi atau kokas minyak bumi pada tingkat pabrik perlu diketahui karena kunci perhitungan dari metode Tier 2 adalah kandungan karbon. Satuan untuk kandungan karbon adalah kg C/GJ dan faktor oksidasi karbon adalah fraksi.

Persamaan 3.13

Tier 2: Emisi CO₂ dari produksi TITANIUM SLAG, SYNTHETIC RUTILE AND RUTILE TIO₂

Emisi
$$CO_2 = \sum_{i} (AD_i \bullet CCF_i \bullet COF_i \bullet 44/12)$$

dimana:

Emisi CO_2 : emisi CO_2 , kg

AD : Produksi titanium slag, synthetic rutile atau rutile TiO2 jenis

produk *i*), ton

CCF_i : Faktor kandungan karbon dari agen pereduksi atau jenis input

carbothermal *i*, kg C/GJ

COF; : Faktor oksidasi karbon untuk agen pereduksi atau jenis input

carbothermal *i*, fraction

3.7. Produksi Soda Abu

3.7.1 Deskripsi Kategori

Soda abu (sodium karbonat, Na_2CO_3) adalah padatan kristal putih yang digunakan sebagai bahan baku dalam sejumlah besar industri termasuk pembuatan kaca, sabun dan deterjen, pulp dan produksikertas sertapengolahan air. Karbon dioksida diemisikan dari penggunaan soda abu dan emisi tersebut dihitung sebagai sebuah sumber dibawah penggunaan energi. CO_2 juga diemisikan selama produksi dengan jumlah emisi tergantung pada proses industri yang digunakan untuk pembuatan soda abu. Emisi CO_2 dapat diperkirakan berdasarkan persamaan reaksi kimia dibawah ini.

 $2Na_2CO_3.NaHCO_3.2H_2O$ (Trona) $\rightarrow 3Na_2CO_3$ (Soda Abu) + $5H_2O + CO_2$

3.7.2 Data yang diperlukan

Tabel 3. 11 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Soda abu

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	data konsumsi Tronanasional atau produksi nasional abu soda alam	Faktor standar emisi yang berasal dari perbandingan stoikiometri soda abu yang diproduksi dengan sodium sesqui carbonate yang dimurnikan dari Trona	
TIER 2	Jumlah Tronauntuk produksi soda abu dan jumlah abu soda alami diproduksi di pabrik masing-masing	tingkat pabrik faktor emisi per unit masukan Tronaatau perunit output abu soda alam	
TIER 3	-	-	

Metode Tier 1

Data Metode Tier 1 berdasarkan pada data aktivitas statistik nasional dan faktor emisi baku IPCC. Data aktivitas yang digunakan adalah penggunaan Trona atau soda abu yang diproduksi dalam unit ton.

Faktor emisi baku dari IPCC GL 2006 menyediakan bahwa faktor emisi trona sebesar 0,097 ton CO_2 /ton trona yang digunakan dan faktor emisi soda abu sebesar 0,138 ton CO_2 /ton soda abu yang dihasilkan.

Persamaan 3.14

Tier 1: Emisi CO₂ dari produksi soda ash alami

Emisi $CO_2 = AD \bullet EF$

dimana:

Emisi CO_2 : emisi CO_2 , ton

AD : Banyaknya Trona yang digunakan atau produksi soda ash, ton

Trona atau ton produksi soda ash

EF : Faktor emis per unit satuan input Trona atau output soda ash,

ton CO2/ton Trona atau ton CO2/ton soda ash

EF Trona = 0.097 ton CO2/ton Trona, EF Soda Ash =0.138 ton CO2/ton soda ash

Metode Tier 2

Prinsip perhitungan emisi metode Tier 2 sama dengan prinsip perhitungan metode Tier 1, hanya saja data yang dibutuhkan untuk metode ini adalah data konsumsi trona atau soda abu yang diproduksi pada data tingkat pabrik.

Faktor emisi yang digunakan sebaiknya faktor emisi spesifik yang berlaku pada pabrik tersebut. Namun apabila tidak tersedia maka dapat menggunakan faktor emisi baku dari IPCC GL 2006.

Metode Tier 3

Metode Tier 3 menggunakan prinsip pengukuran langsung (*direct measurement*) emisi CO₂ pad tingkat pabrik. Total emisi CO₂ adalah jumlah emisi CO₂ dari semua pabrik yang di inventarisasi.

3.8. Produksi Petrokimia dan Black Carbon

3.8.1 Deskripsi Kategori

Industripetrokimiamenggunakanbahan bakar fosil (misalnya, gas alam) atau produk kilang minyak bumi (misalnya: nafta) sebagai bahan baku dan dibahas secara rinci karena volume produksi global dan emisi gas rumah kaca terkait yang relatif besar. Metanol dibuat dengan cara steam *reforming* gas alam. Uap hasil reformasi dan pergeseran reaksi menghasilkan'gas sintesis' yang terdiri dari CO₂, karbon monoksida (CO) dan hydrogen (H₂). Sedangkan etilen dibuat dengan cara *cracking* uap bahan baku petrokimia. Di seluruh dunia hampir semua etilen diklorida (1,2dikloroetana) dibuat dengan cara klorinasi langsung atau *oxychlorinationetilena*, atau dengan kombinasi dari dua proses (disebut sebagai 'proses seimbang').

Etilenoksida (C_2H_4O) yang diproduksi dengan mereaksikan etilen dengan oksigen melalui katalis. Dengan produk CO_2 dari oksidasi langsung dari bahan baku ethylene akan dihilangkan dari proses aliran ventilasi menggunakan larutan karbonat daur ulang dan CO_2 yang didapat dilepaskan ke atmosfer atau disimpan untuk pemanfaatan lebih lanjut (misalnya, produksi makanan).

Lebih dari 90 persen dari akrilonitril (vinilsianida) dibuat dengan cara *ammoxidation* langsung dari propilena dengan ammonia (NH₃) dan oksigen lebih katalis. Akrilonitril juga dapat diproduksi oleh *ammoxidation propane* atau langsung dari reaksi propane dengan hidrogen peroksida. Selain itu, semua *black carbon* yang dihasilkandari bahan baku berbasis minyak bumi atau berbasis batu bara menggunakan proses '*black furnace*'.

3.8.2 Data yang diperlukan

Tabel 3. 12 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Petrokimia dan *Black Carbon*

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1 (CO2)	dapat dihitung dari bahan baku tertentu	Angka default IPCC GL 2006 (halaman 3.73, 3.74, 3.75, 3.77, 3.78, 3.79, 3.80)	Produksi tahunan petrokimia= (konsumsi tahunan k bahan baku dikonsumsi untuk produksi petrokimia) * (produk faktor produksi spesifik utama untuk petrokimiai dan bahan baku k)
TIER 2	dapat dihitung dari bahan baku	-	produksi tahunan produk sekunder dari produksi

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
(CO2)	tertentu		etilen
			produksi tahunan produk sekunder dari produksi akrilonitril
TIER 3 (CO2)	dapat dihitung dari bahan baku tertentu	mungkin berhubungan dengan produksi tahunan untuk estimasi emisi antara pengukuran saat ini yang tidak terus menerus	CO ₂ yang dihasilkan dari bahan bakar atau proses berdasarkan produk yang dibakar CO ₂ yang dipancarkan dari obor
MADD: 4	dapat	Angka default IPCC	
TIER 1	dihitungdari	GL 2006 (halaman	
(CH4)	bahan bakutertentu	3.76, 3.78, 3.79, 3.80)	
TIER 2	-	-	
(CH4)			
TIER 3 (CH4)	dapat dihitung dari bahan baku tertentu	dapat berhubungan dengan produksi tahunan untuk estimasi emisi antara pengukuran saat ini yang tidakt erus menerus	

Emisi CO₂

Metode Tier 1

Metode Tier 1 hanya membutuhkan data aktivitas jumlah produksi produk petrokimia per jenisnya (metanol, etilen, etilen diklorida, etilen oksida dan akrionitril dan *black* karbon) per tahun.Unit data aktivitas produksi berupa unit ton.

Persamaan 3.15
Tier 1: Emisi CO ₂ dari produksi soda <i>ash</i> alami
Emisi $CO2_i = PP_i \bullet EF_i \bullet GAF / 100$

dimana:

Emisi CO_2i : emisi CO_2 dari produksi petrokimia jenis i, ton PPi : Produksi tahunan petrokimia jenis i, tonnes

EF_i : Faktor emisi CO₂ emission untuk petrokimia jenis *i*, ton CO₂/ton

produk

GAF : Geographic Adjustment Factor (untuk Tier 1 faktor emisi CO₂

untuk produksi ethylene, lihat Table 3.15), persen

Apabila data tahunan produksi produk utama tidak tersedia maka dapat diestimasi dari konsumsi bahan baku (*feedstock*) dengan menggunakan rumus:

Persamaan 3.16	
Perhitungan estimasi produksi produk primer	
$PP_{i} = \sum_{k} (FA_{i,k} \bullet SPP_{i,k})$	

dimana:

PP_i : Produksi tahunan petrokimia jenis *i*, ton

Konsumsi tahunan bahan baku k untuk produksi petrokimia

jenis (*i*), ton

Faktor produksi produk primer untuk produksi petrokimia jenis

SPP_{i,k} : *i dan bahan baku k* ,ton produk primer/ton konsumsi bahan

baku

i : Jenis produk petrokimia

k : Jenis bahan baku (*Feedstock*)

Nilai faktor konsumsi bahan baku per produk yang dihasilkan dapat diperoleh di:

Tabel 3. 13 Daftar faktor konsumsi sektor produksi Petrokimia dan Black Carbon

Parameter	Bahan	Tabel/Halaman di	Keterangan
	Baku	IPCC GL 2006	
Metanol	Daftar ada	Tabel 3.13/hal. 3.74	
	di Tabel		
Etilen	Daftar ada	Tabel 3.25/hal. 3.82	
	di Tabel		
Etilen	Etilen	Tabel 3.18/hal. 3.77	
diklorida			
Etilen dioksida	Etilen	Tabel 3.20/hal. 3.78	
Akrilonitril	Propilen		Nilai SPP = 1,09 ton konsumsi
			propilen/ ton produksi akrilonitril

Faktor emisi yang digunakan adalah faktor emisi baku dari IPCC GL 2006 untuk CO₂ dan ditabulasi dalam tabel berikut:

Tabel 3. 14 Faktor emisi default CO2 untuk sektor produksi Petrokimia dan *Black Carbon*

Parameter	Produk	Tabel Faktor	Halaman di IPCC GL
		Emisi	2006
CO_2	Metanol	3.12	3.73
	Etilen	3.14	3.75
	Etilen diklorida	3.17	3.77
	Etilen oksida	3.20	3.78
	Akrilonitril	3.22	3.79
	Black karbon	3.23	3.80

Nilai faktor penyesuaian terhadap geografis dapat dilihat di IPCC guidelines 2006 Tabel 3.15 halaman 3.75

Metode Tier 2

Metode ini menggunakan metode pendekatan kesetimbangan karbon bahan baku spesifik dan proses spesifik yang berlaku pada pabrik tersebut. Metode ini dapat digunakan apabila tersedia data konsumsi bahan baku dan data produk primer, produk sekunder dan disposisi. Data alir karbon (carbon flow) dibutuhkan untuk mengimplementasikan metode ini. Data yang dibutuhkan untuk menggunakan metode Tier 2 adalah sebagai berikut:

- Konsumsi tahunan bahan baku *k* untuk produk petrokimia *i*dalam unit ton. *k* adalah jenis bahan baku dan *i* adalah jenis produk petrokimia yang diproduksi.
- Data tahunan produksi produk primer dari petrokimia*i* dalam unit ton, dimana *i* adalah jenis produk petrokimia

 ECO_2i : Emisi CO_2 dari produksi petrokimia jenis i, tonnes

FA_{i,k} : Konsumsi tahunan bahan baku *k untuk* produksi terokimia jenis

(i), ton

SPP_{i,k} : Faktor produksi produk primer untuk produksi petrokimia jenis

i dan bahan baku k ,ton produk primer/ton konsumsi bahan

baku

FC_k carbon content bahan baku *k*, ton C/ton bahan baku PP_i : Produksi tahunan petrokimia primer jenis *i*, ton

PC_i : carbon content produk petrokimia primer jenis *i*, ton C/ton

produk

dihitung dengan persamaan:

SP_{i,j} : Banyaknya produk sekunder *j* yang dihasilkan dari proses

produksi untuk petrokimia i, ton

[Nilai SP_{i,j} adalah nol untuk proses produksi methanol, ethylene dichloride, ethylene oxide, dan carbon black karena tidak ada produk sekunder dari proses-proses tersebut. Untuk produksi ethylene dan acrylonitrile, lihat produksi produk sekunder Persamaan 3.18 dan 3.19 berikut untuk menentukan harga SPi,j.]

 Data tahunan produksi produk sekunderj yang terproduksi dari proses produksi petrokimia i produk dalam unit ton. Dimana ijenis produk petrokimia dan j adalah jenis produk sekunder. Untuk produksi metanol, etilen diklorida, etilen oksida, dan black karbon nilai produk sekunder nya adalah nol karena selama proses tidak terbentuk produk sekunder, sedangkan untuk produksi etilen dan akrilonitril ada pembentukan produk sekunder yang

Etilen

Persamaan 3.18
$SP_{Ethylene,j} = \sum_{k} \left(FA_{ethylene,k} \bullet SSP_{j,k} \right)$

Dimana;

SP_{etilen,j} = produksi tahunan produk sekunder *j* dari proses produksi etilen, dimana j adalah jenis produk sekunder, ton

 $FA_{etilen,k}$ = konsumsi tahunan bahan baku k yang digunakan dalam memproduksi etilen, ton

SSP_{j,k} = faktor spesifik dari produksi produk sekunder untuk produksekunder j dan bahan baku k dalam unit ton produk sekunder/ton konsumsi bahanbakar.

Akrilonitril

Persamaan 3.19

$$SP_{acrylonitrile, j} = \sum_{k} (FP_{acrylonitrile, k} \bullet SSP_{j,k})$$

Dimana;

SP_{akrilonitril,j} = produksi tahunan produk sekunder *j* dari proses produksi akrilonitril. Dimana j adalah jenis produk sekunder, ton

FP_{akrilonitril,k} = produksi tahunan akrilonitril dari bahan baku k yang digunakan dalam, ton

 $SSP_{j,k}$ = faktor spesifik dari produksi produk sekunder untuk Produksekunder j dan bahan baku k dalam unit ton produk sekunder/ton konsumsi bahan bakar.

Nilai SSP untuk setiap produk sekunder dapat dilihat di IPCC GL 2006 Tabel 3.25 untuk etilen dan Tabel 3.26 untuk akrilonitril di halaman 3.82.

- Nilai karbon kandungan bahan bakudapat diperoleh dari IPCC GL 2009 pada tabel 3.10 hal. 3.69 dengan unit ton C/ton konsumsi bahan baku
- Nilai karbon kandungan produk primer dan produk sekunder petrokimia dapat diperoleh dari IPCC GL 2009 pada tabel 3.10 hal. 3.69 dengan unit ton C/ton produk petrokimia. Beberapa bahan baku yang berupa bahan bakar (mis. Naphta dan natural gas. dsb), nilai kandungan karbon dapat dilihat di tabel 1.3 IPCC GL 2006 sektor energi atau menggunakan kandungan karbon spesifik yang berlaku di Indonesia.

Metode Tier 3

Metode Tier 3 menggunakan spesifik data yang berlaku di pabrik tersebut untuk mengestimasi CO₂ dari proses petrokimia. Dalam mengaplikasikan metode ini dibutuhkan data dan/atau hasil pengukuran langsung emisi CO₂ spesifik yang berlaku di pabrik tersebut.Proses petrokimia yang termasuk dalam metode ini adalah:

- (1) Proses pembakaran bahan bakar atau proses pembakaran *by-product* untuk menyediakan panas atau energi panas untuk proses produksi
- (2) CO₂ emisi dari ventilasi
- (3) CO₂ emisi dari suar bakar (*flare*) gas buang.
- Emisi CO2 dari proses pembakaran dan suar api (*flaring*) gas buang dapat diestimasi dari nilai NCV (*net calorific value*) spesifik yang berlaku di pabril tersebut atau negara Indonesia. Apabila tidak tersedia dapat menggunakan NCV baku di Tabel 1.2 sektor energi IPCC GL 2006

- Faktor emisi yang digunakan untuk mengestimasi CO₂ dari proses diatas diperoleh dari konversi nilai kandungan karbon C ke CO₂ dari faktor kandungan karbon pada bahan bakar, faktor pembakaran oksidasi dan konstanta (44/12). Nilai kandungan karbon dapat diperoleh di tabel 1.3 pada 2006 sektor energi. Apabila nilai faktor emisi spesifik yang berlaku tidak tersedia dapat menggunakan faktor emisi baku di IPCC GL 2006 tabel 1.4 sektor energi.
- Emisi CO₂ dari ventilasi diperoleh melalui pengukuran secara langsung hingga ada persamaan lebih lanjut yang tersedia.

$$\begin{aligned} & \textbf{Persamaan 3.20} \\ & ECO2_i = E_{Combustion,i} + E_{Process\ Vent,i} + EF_{lare,i} \end{aligned}$$

Persamaan estimasi CO₂ dari proses pembakaran

Persamaan 3.21
$$E_{combustion,i} = \sum_{k} (FA_{i,k} \times NCV_k \times EF_k)$$

Dimana;

 $FA_{i,k}$ = jumlah konsumsi bahan bakar k untuk proses produksi bahan petrokimia i dalam unit ton. k adalah jenis bahan bakar dan i adalah jenis produk petrokimia.

NCV_k = net calorific value dari bahan bakar k, TJ/kg

EF = Faktor emisi CO_2 dari bahan bakar k, ton CO_2/T

Persamaan estimasi CO₂ dari proses suar bakar (flare) gas buang

Persamaan 3.22
$$E_{flare,i} = \sum_{k} (FG_{i,k} \times NCV_k \times EF_k)$$

Dimana;

 $FA_{i,k}$ = jumlah gas k yang di *flared* selama proses produksi bahan petrokimia i dalam unit ton. k adalah jenis bahan bakar dan i adalah jenis produk petrokimia.

 $NCV_k = net \ calorific \ value \ dari \ bahan \ bakar \ k, \ TJ/kg$

EF = Faktor emisi CO_2 dari gas yang di *flared* k, ton CO_2/T J

Emisi CH₄

Metode Tier 1

Prinsip penghitungan metode tier 1 emisi CH₄ sama dengan prinsip penghitungan metode tier 1 emisi CO₂. Data yang digunakan adalah jumlah produksi produk petrokimia per tahun apabila data tidak tersedia maka data produksi per tahun dapat diestimasi menggunakan persamaan seperti pada metode tier 1 emisi CO₂.

Total emisi CH₄ adalah penjumlahan dari emisi fugitif CH₄ dengan emisi CH₄ dari proses ventilasi. Emisi fugitif terdiri dari emisi yang diemisikan oleh flensa (*flanges*), katup (*valves*) dan peralatan proses lainnya. Selain dari proses petrokimia itu sendiri emisi CH₄ juga berasal dari proses ventilasi berasal dari pembakaran tidak sempurna dari suar api gas buang.

Data yang dibutuhkan dalam mengestimasi emisi fugitif dan emisi proses ventilasi adalah sebagai berikut:

• Jumlah produksi produk petrokimia i dalam unit ton. apabila data tidak tersedia dapat diestimasi dengan persamaan seperti pada metode tier 1 emisi CO_2 .

Persamaan 3.23	
$ECH4_{fugitive,i} = PP_i \bullet EFf_i$	

Persamaan 3.24
$ECH4_{Process\ vent,i} = PP_i \bullet EFp_i$

Persamaan 3.25	
ECH4 _{Total,i} =ECH4 _{fugitive,i} + ECH4 _{Process vent,i}	

dimana:

ECH₄ Total,i : Total emisi CH₄ dari produksi petrokimia *i*, kg

ECH₄ Fugitive,i : Emisi fugitive CH₄ dari produksi petrokimia jenis *i*, kg ECH₄ Process : Emisi CH₄ vent proses dari produksi petrokimia jenis *i*, kg

Vent,i

PPi : Produksi tahunan petrokimia jenis *i*, ton

EFfi : Faktor emisi CH₄ fugitive untuk petrokimia jenis *i*, kg CH₄/ton

produk

EFpi = : Faktor emisi CH₄ vent proses untuk petrokimia jenis*i*, kg

CH₄/ton produk

 Faktor emisi CH₄ dari fugitif dan proses ventilasi dalam unit kg CH₄/ton produk produksi petrokimia.Nilai baku faktor emisi (FE) fugitif diestimasi dari faktor emisi VOC dan profil jenis/spesies VOC yang diemisikan. Tabulasi faktor emisi adalah sebagai berikut:

Tabel 3. 15 Daftar tabel faktor emisi CH4 sektor produksi Petrokimia dan Black Carbon

Parameter	Produk	Tabel	Halaman	Keterangan
	petrokimia	faktor	di IPCC	
		emisi	GL 2006	
CH ₄	Metanol			Faktor emisi baku dari IPCC GL 2006 sebesar 2,3 kg CH ₄ / ton produksi metanol
	Etilen	3.16	3.76	 Faktor emisi fugitif dengan: Steam cracking dari Naphtha = 3 kg/ton produksi etilen Steam cracking dari Etan = 6 kg/ton produksi etilen
	Etilen diklorida (EDC)	3.19	3.78	 Etilen diklorida tidak menghasilkan emisi CH₄ fugitif Faktor emisi tidak berlaku apabila pabrik hanya memproduksi EDC tetapi produksi EDC/VCM Apabila data konsumsi natural gas tersedia maka faktor emisi sebesar 5 g CH₄/GJ dapat digunakan
	Etilen oksida Akrilonitril	3.21	3.79	Faktor emisi fugitif dilaporkan di IPCC LVOC BAT Faktor emisi sebesar
				0,18 kg CH ₄ / ton produksi akrilonitril
	<i>Black</i> karbon	3.24	3.80	

Metode Tier 2

Metode kesetimbangan massa karbon bahan baku tidak cocok untuk menghitung emisi CH₄.

Metode Tier 3

Metode ini dapat dihitung dengan dua cara, pertama yaitu seperti yang dijelaskan pada metode tier 3 emisi CO₂ hanya saja faktor emisinya berbeda. Faktor emisi dapat berhubungan dengan produksi tahunan untuk estimasi emisi CH₄ antara pengukuran langsung ketika tidakterus menerus.

Kedua dengan pengukuran langsung di udara ambien. Hasil emisi diperoleh dari konsentrasiparameter yang diukur secara langsung dipabrik. Adapun konsentrasi yang dibutuhkan:

- Konsentrasi VOC (senyawa organik volatil) pada pabrik tersebut dengan unit μg/m³.
- Konsentrasi latar (*background concentration*) di lokasi latar (background location) dengan unit µg/m³.
- Fraksi metan (CH₄) dalam total VOC dengan unit fraksi
- Kecepatan angin di pabrik dengan unit m/s
- Luas plume area

Persamaan 3.26

$$ECH4_i = E_{Combustion,i} + E_{Process\ Vent,i} + EF_{lare,i}$$

dimana:

 ECH_{4i} : CH_4 emissions from production of petrochemical i, kg

E_{Combustion,i} : CH₄ yang diemisikan dari bahan bakar atau by-product proses

yang dibakar untuk menyediakan panas atau energi termal

kepada proses produksi petrokimia jenis i, kg

 $E_{Process \, Vent.i}$: CH₄ diemisikan dari vents selama produksi petrokimia jenis i, kg

E_{Flare,i} : CH₄ diemisikan dari flare gas buang (waste gases) selama

produksi petrokimia jenis i, kg

Persamaan 3.27

$$E_{\text{Combustion,i}} = \sum_{k} (FA_{i,k} \bullet NCV_k \bullet EF_k)$$

dimana:

 $FA_{i,k}$: Banyaknya bahan bakar k yang dikonsumsi untuk produksi

petrokimia jenis *i*, ton

NCV_k : Nilai kalor neto bahan bakar k, TJ/ton
 EF_k : Faktor emisi CH₄ bahan bakar k, kg/TJ

Persamaan	3.2	8
-----------	-----	---

$$E_{Flare,i} = \sum_{k} (FG_{i,k} \bullet NCV_k \bullet EF_k)$$

 $FG_{i,k}$: Banyaknya flare gas k yang dibakar selama produksi petrokimia

jenis i, ton

 NCV_k : Nilai kalor neto flare gas k, TJ/tonne EF_k : Faktor emisi CH_4 flared gas k, kg/TJ

Contoh perhitungan:

Diketahui:

Jumlah produksi Metanol di Conventional Steam Reforming, Lurgi Conventional

Process sebesar = 794.469 tonne.

Faktor emisi = 0.385 ton CO_2 /ton metanol.

CO₂Emisi = Jumlah produksi Metanol di *Conventional Steam Reforming, Lurgi Conventional Process* x Faktor emisi

= $794.469 \text{ ton x } 0.385 \text{ ton } CO_2/\text{ton metanol}$

 $= 305.871 \text{ ton } CO_2$

 CO_2 emisi dikonversi ke Gigagrams CO_2 = 305,871 atau sekitar 305.9 Gg CO_2 .

Tabel 3. 16 Worksheet contoh perhitungan emisi CO₂ sektor produksi petrokimia dan Black Carbon

Sektor	IPPU				
Kategori	Industri Kimia - Produksi Petrokimia dan <i>Black Carbon</i>				
Kode Kategori	2B8	2B8			
Lembar	1 dari 12 CO ₂ Er	1 dari 12 CO ₂ Emissions dari Produksi Methanol			
	A	В	С	D	
Jenis proses/Jenis	Jumlah produksi	Faktor emisi	CO ₂ Emisi	CO ₂ Emisi	
bahan baku ^{1), 2)}	metanol				
	(ton)	(tonCO ₂ /tonproduksi methanol)	(ton CO ₂)	(Gg CO ₂)	
			C = A * B	$D = C/10^3$	
Conventional Steam Reforming, Lurgi Conventional Process					
Natural gas	794469	0.385	305871	305.9	
Total				305.871	
1) For details of process types and feedstock types, see Table 3.12 in Chapter 3 of Volume 3. For the					
default					
process type and the default feedstock, see Table 3.11 in Chapter 3 of Volume 3.					
2) Insert additional rows if necessary.					

Diketahui

Total produksi metanol = 794,469 ton. Faktor emisi = $2.3 \text{ kg CH}_4/\text{ton}$.

Emisi CH₄ = Total produksi metanol x Faktor emisi

 $= 794,469 \text{ ton } \times 2.3 \text{ kg CH}_4/\text{ton}$

= 1,827,279 kg.

 CH_4 Emisi dikonversi ke gigagrams = 1,827,279 / 10⁶ = 1.83 Gg.

Tabel 3. 17 Worksheet contoh perhitungan emisi CH₄ sektor produksi petrokimia dan Black Carbon

Sektor	IPPU					
Kategori	Industri Kin	Industri Kimia - Produksi Petrokimia dan <i>Black Carbon</i>				
Kode Kategori	2B8					
Lembar	1 dari 12 E	1 dari 12 Emisi CH4 dari Produksi Methanol				
A	В	С	D			
Jumlah Produksi	Faktor	Emisi CH ₄	Emisi CH ₄			
Metana	emisi					
(ton)	(kg CH ₄ /ton produksi metanol)	(kg)	(Gg)			
		C = A * B	$D = C/10^6$			
794469	2.3	1827279	1.83			

3.9. Produksi Fluorochemical

3.9.1 Deskripsi Kategori

Trifluoromethane (HFC-23 atau CHF₃) dihasilkan sebagai produk selama pembuatan chlorodifluoromethane (HCFC-22 atau CHClF2)₃. Bahan seperti HFC-23 (HFC dan lainnya, PFC dan SF₆) tidak signifikan dikeluarkan oleh berair (asam, netral atau alkali) proses scrubbing dan akan dilepas ke atmosfer.

Diperkirakan bahwa pada tahun 1990 HFC-23 dilepaskan dari HCFC-22 tanamantanaman paling banyak 4 persen dari produksi HCFC-22 (US EPA, 2001), dengan tidak adanya langkah-langkah pengurangan.

3.9.2 Data yang diperlukan

Tabel 3. 18 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi *Fluorochemical*

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	data produksi seharusnya diperoleh langsung dari produsen	Angka default IPCC GL 2006 (halaman 3.99)	
TIER 2	rekaman dari efisiensi proses	EF keseimbangan karbon	
TIER 3	-	-	

Metode Tier 1

Metode ini menggunakan prinsip estimasi emisi potensial dari HFC-23 dari total produksi HCFC-22. Metode ini dapat menggunakan data per tingkat pabrik. Namun apabila tidak ada teknologi abatemen dengan destruksi pada setiap pabrik maka data yang digunakan tingkat nasional. Data yang dibutuhkan adalah data total produksi HFC-22 nasional atau per pabrik dalam unit kilogram (kg) kemudian faktor emisi baku yang disediakan oleh IPCC GL 2006 tabel 3.28 halaman 3.99.

Persamaan 3.30
$E_{HFC-23} = EF_{default} \bullet P_{HCFC-22}$

dimana:

PHCFC-22 = : Produksi total HCFC-22, kg

Metode Tier 2

Metode ini menggunakan faktor emisi yang dihitung berdasarkan rekaman dari efisiensi proses. Efisiensi proses berupa efisiensi karbon (EF_{keseimbangan karbon}) dan efisiensi flor (EF_{keseimbangan flor}). Selain data total produksi HCFC-22 dalam unit kg, data fraksi per tahun aliran yang terbebas ke atmosfer tanpa diolah juga diperlukan.

Nilai koefisien untuk menghitung emisi diperoleh dari:

- Kesetimbangan karbon efisiensi dan flor efisiensi adalah nilai spesifik pabrik dan biasanya terdapat pada operator pabrik yang diperoleh dari rekaman/pencatatan proses dalam unit persen
- Fraksi penetapan kerugian/kehilangan efisiensi adalah nilai spesifik per pabrik yang harus dihitung per unit proses pada pabrik.
- Faktor kandungan karbon dan kandungan florin berturut-turut 0,81 dan 0,52.

Persamaan 3.31	
$E_{HFC-23} = EF_{calculated} \bullet P_{HCFC-2}$	2 • F _{released}

dimana:

EHFC-23 : Emisi by-product HFC-23 dari produksi HCFC-22, kg
EF_{calculated} : Faktor emisi HFC-23 (dihitung), kg HFC-23/kg HCFC-22

PHCFC-22 : Produksi total HCFC-22, kg

 $\mathbf{F}_{\mathrm{released}}$: Fraksi pada suatu tahun dimana stream dilepas ke atmosfer

tanpa pengolahan, fraksi

dimana:

EF_{carbon balance}: Faktor emisi HFC-23 dihitung dari *carbon balance efficiency*, kg

HFC-23/kg HCFC-22

CBE : carbon balance efficiency, persen

 $F_{\text{efficiency loss}} \hspace{1.5cm} : \hspace{0.5cm} \text{Faktor terkait } \textit{efficiency loss} \hspace{0.1cm} \text{ke HFC-23, fraksi} \\$

FCC : factor kandungan karbon dari komponen (= 0.81), kg HFC-23/kg

HCFC-22

EF_{fluorine balance}: Faktor emisi HFC-23 dihitung dari *fluorine balance*, kg HFC-

23/kg HCFC-22

FBE : Fluorine balance efficiency, persen

Fefficiency loss ke HFC-23, fraksi

FCC : Factor kandungan fluorine dari komponen (= 0.54), kg HFC-

23/kg HCFC-22

Metode Tier 3

Metode Tier 3 dapat dihitung dalam 3 tipe perhitungan yaitu:

- (a) Metode langsung berdasarkan pada pengukuran langsung konsentrasi dan laju aliran dari ventilasi/cerobong untuk setiap pabrik yang dilakukan secara terus menerus (continous) atau sering. Metode langsung ini dihitung dengan menggunakan rumus pada tabel diatas dan data yang dibutuhkan adalah:
 - konsentrasi HFC-23 dalam aliran gas benar-benar dibuang dari aliran proses di pabrik dengan unit kg HFC-23/kg gas
 - aliran massa dari aliran gas dari aliran proses di pabrik dengan unit kg gas/jam
 - lamanya waktu dimana parameter diukur dan tetap konstan dengan unit jam

Persamaan 3.34 Tier 3a (DIRECT METHOD)

$$E_{HFC 23} = \sum_{i} \sum_{j} \int C_{ij} \bullet f_{ij}$$

f berarti kuantitas harus dijumlah untuk seluruh selang waktu

dimana:

E_{HFC-23} : Emisi HFC-23 total (jumlah dari pabrik sejumlah *i*)

: Stream di masing-masing pabrik

F : *Mass flow* emisi C : Konsentrasi

- (b) Metode Proxy berdasarkan pada pengukuran tidak kontinyu tetapi diperoleh selama proses survei intensif atau percobaan pabrik, dan hasil uji coba dapat digunakan untuk menyediakan proxy untuk menghitung emisi selama operator tanaman yang normal. Data per pabrik yang dibutuhkan selama pengukuran adalah:
 - Emisi massa standar HFC-23 di setiap lubang aliran di pabrik pada setiap'unit' kuantitas Proxy dalam unit kg/'unit'

- Faktor berdimensi berhubungan tingkat emisi massa diukur standar dengan actual tingkat emisi pada pabrik tingkat operasi
- Operasi tingkat proses saat ini berlaku untuk melepaskan aliran di pabrik setara dalam 'unit / jam
- total durasi sebenarnya dari ventilasi untuk tahun ini, atau periode jika proses ini tidak dioperasikan terus menerus dalam jam)
- Jumlah HFC-23 yang di dapat untuk aliran ventilasi di pabrik untuk digunakan sebagai bahan baku kimia,dan dihancurkan

Emisi standar dapat di hitung menggunakan rumus seperti yang terdapat di tabel diatas bagian metode Tier 3b.

Persamaan 3.35 TIER 3b (PROXY METHOD)

$$E_{HFC 23} = \sum_{i} \sum_{j} \int_{t} E_{ij}$$

berarti kuantitas harus dijumlah untuk seluruh selang waktu

dimana:

EHFC-23 : Emisi HFC-23 total (jumlah dari plant sejumlah i)

: Emisi dari stream masing-masing plant ditentukan dengan proxy $E_{i,j}$

method

(c) Metode pemantau produk reaktor ini memberikan dasar untuk estimasi jumlah HFC-23 dirilis sebagai produk matematis konsentrasi dipantau dan aliran massa HCFC-22 dibuat.

Persamaan 3.36 TIER 3c (MONITORING REACTOR PRODUCT)

$$\mathsf{E}_{\mathsf{HFC}\,23} = \sum_{i} \int_{t} C_{i} \bullet P_{i}$$

 \int_{t}^{t} berarti kuantitas harus dijumlah untuk seluruh selang waktu

dimana:

EHFC-23 : Emisi HFC-23 total

Laju massa produk HCFC-22 dari plant reactor pada plant i, P_i

 C_{i} : konsentrasi HFC-23 relatif terhadap produk HCFC-22 pada plant

i.

Persamaan 3.37

TIER 3a Perhitunganemisi 'INSTANTANEOUS' HFC-23 per proses aliran (DIRECT METHOD)

$$\mathbf{E}_{\mathbf{i}\mathbf{j}} = C_{\mathbf{i}\mathbf{j}} \bullet f_{\mathbf{i}\mathbf{j}} \bullet \mathbf{t}$$

E_{ij} : Emisi HFC-23 'instantaneous' dari stream proses *j* pada

pabrik *i*, kg

C_{ij} : Konsentrasi HFC-23 pada stream gas yang benar-benar

dilepas (vented) dari stream proses j pada pabrik i, kg HFC-

23/kg gas

f_{ij} : Laju massa stream gas dari proses *j pada* plant *i* (biasanya

diukur volumetric dan dikonversikan ke laju massa

menggunakan metoda-metoda baku dari rekayasa proses),

kg gas/jam

t : Lama waktu dimana parameter-parameter diukur dan

berharga tetap konstan, jam

Persamaan 3.38

TIER 3b Perhitunganemisi 'INSTANTANEOUS' HFC-23 per proses aliran (PROXY METHOD)

$$E_{ij} = S_{ij} \bullet F_{ij} \bullet POR_{ij} \bullet t - R_{ij}$$

dimana:

Eij : Emisi HFC-23 'instantaneous' dari stream proses *j* pada

plant i, kg

Sij : Standar *mass* emisi dari HFC-23 di *vent stream j* pada *plant i*

per 'unit' kuantitas proxy, seperti

Laju operasi proses (di jelaskan pada persamaan 3.39,

below), kg/'unit'

 f_{ij} : Faktor dimensionless yang menghubungkan laju massa

emisi standar yang diukur dengan laju emisi pada kondisi operasi aktual. Pada umumnya, fraksi dimensionless tersebut tidak sensitive terhadap laju operasi dan Fi berharga satu (yaitu laju emisi proporsional terhadap laju operasi). Namun dapat juga laju emisi merupakan fungsi yang kompleks dari laju operasi. Pada semua kasus Fi harus diturunkan dari hasil percobaan pengukuran produksi HFC-23 pada beberapa laju operasi. Untuk kasus

dimana fungsi sederhana yang menghubungkan emisi dengan laju operasi tidak dapat diturunkan dari percobaan (test), metoda proxy dianggap tidak tepat dan harus

dilakukan pengukuran yang terus menerus (continuous measurement).

 POR_{ij} Laju operasi proses saat ini (current) yang sesuai untuk

melakukan vent pada stream *j* pada plant *i* dirata-rata sepanjang *t* dalam 'unit/jam'. Unit dari parameter ini harus konsisten antara saat uji coba plant untuk mendapatkan laju

emisi standar dengan dengan emisi saat operasional

(dijelaskan pada Equation 3.39, berikut).

t Durasi total aktual dari *venting* pada suatu tahun, atau suatu

perioda bila proses tidak dilakukan secara kontinyu dalam basis jam. Emisi tahunan dihitung sebagai jumlah dari semua perioda selama satu tahun. Perioda dimana stream dari vent diproses dalam suatu sistem destruksi tidak

masuk dalam perhitungan emisi.

R_{ij} : Banyaknya HFC-23 yang dikumpulkan kembali (*recovered*)

untuk stream vent *j* pada plant *i* untuk digunakan senagai ahan baku kimia, dan oleh karenanya dimusnahkan, kg.

Persamaan 3.39

TIER 3b Perhitungan emisi standar untuk PROXY METHOD

$$S_{T,ij} = S_{T,ij} \cdot f_{T,ij} / POR_{ij}$$

dimana:

S_{ij} : emisi massa standard HFC-23 pada stream vent *j* pada plant

i, kg/'unit' (dalam unit yang compatible dengan faktor-faktor pada pers Equation 3.38, lihat PORT,ij berikut)

CT,ij : rata-rata konsentrasi fraskional HFC-23 pada stream vent *j*

pada plant i pada saat percobaan, kg/kg

 $f_{T,ij}$: laju massa stream vent j pada plant i selama percobaan,

kg/jam

POR_{T,ij} Suatu kuantitas proxy (misalnya laju operasi proses) pada

plant *i* selama pengujian/percoaan, 'unit'/jam. 'Unit' bergantung pada kuantitas proxy yang digunakan pada plant i stream vent j (misalnya kg/jam bahan baku atau m3

per jam bahan baku)

Persamaan 3.40

TIER 3c Perhitunganemisi 'INSTANTANEOUS' HFC-23 per proses aliran IN-PROCESS

MEASUREMENT

$$E_i = C_i \ \bullet \ P_j \ \bullet \ t_F \ - \ Ri$$

dimana:

Ei : Emisi HFC-23 dari masing-masing fasilitas *i*, kg

Ci : Konsentrasi HFC-23 dalam reactor pada fasilitas *i*, kg HFC-

23/kg HCFC-22

Pi : Massa HCFC-22 yang diproduksi pada fasilitas *i*, kg

tF Fraksi durasi dimana HFC-23 secara aktual dilepas (vented)

ke atmosphere, dan bukan dimusnahkan, fraksi

Ri = Kuantitas HFC-23 yang dikumpulkan kembali (recovered)

dari fasilitas I untuk digunakan sebagai bahan baku kimia (dan oleh karenanya HFC-23 tersebut dimusnahkan), kg

3.10. Emisi dari Produksi Senyawa Terfluorinasi Lain

3.10.1 Deskripsi Kategori

Sejumlah besar *fluorine* yang mengandung gas rumah kaca dapat diproduksi sebagai produk sampingan dari pembuatan *fluorochemical* dan dipancarkan ke atmosfer. Pada umumnya, *fluorochemical* mungkin dilepaskan dari proses kimia yang melibatkan berbagai teknologi dan proses, sebagai berikut:

- Proses Telomerization yang digunakan dalam produksi cairan fluorochemicals dan polimer
- fotooksidasi tetrafluoroetilena untsuk membuat cairan fluorochemical
- Fluorinasi langsung yang sering digunakan dalam produksi SF₆
- $-\,$ Proses Pertukaran halogen untuk membuat PFC dengan titik didih yang rendah seperti C_2F_6 dan CF_4 , HFC 134a dan 245fa
- Pembuatan NF₃ dengan florinasi langsung
- Produksi uranium heksafluorida
- Produksi monomer terfluorinasi seperti tetrafluoroetilena dan hexafluoropropylene
- Produksi agrochemcials fluorochemical
- Produksi anestesi fluorochemical

3.10.2 Data yang diperlukan

Tabel 3. 19 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi senyawa terfluoronasi lain

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 1	Kegiatan ini adalah massa tahunan fluorochemical diinginkan yang dihasilkan	Faktor Emisi Baku 0.5 persen dari produksi	
TIER 2	Tidak ada aturan, berdasarkan pengukuran	Pengukuran kuantitas bahan tersendiri yang dilepaskan ke atmosfer	
TIER 3	Tidak ada aturan, berdasarkan pengukuran	Pengukuran kuantitas bahan tersendiri yang dilepaskan ke atmosfer	

Metode Tier 1

Menggunakan nilai faktor emisi baku (IPCC GL 2006) atau faktor emisi spesifik yang berlaku di Indonesia yang dikalikan dengan total produksi gas rumah kaca terfluorinasi. Faktor emisi yang digunakan adalah

- 1. PFCs dan HFCs sebesar 0,5 % dari produksi, tidak diperhitungkan kehilangan pada saat transportasi dan transfer material.
- 2. SF6 sebesar 0,2% dari produksi

Metode Tier 2

Metode ini berdasarkan pada proses efisiensi yang berlaku pada HFC-23 emisi dari pabrik HCFC-22. Metode ini berdasarkan pengukuran sehingga tidak ada rumus matematika yang dijelaskan dlama IPCC GL 2006.

Metode Tier 3

Ada dua metode dalam pengukuran Metode Tier 3 ini yaitu:

- (a) Metode perhitungan langsung yang memperhatikan aliran massa (*mass flow*) yang teremisi per pabrik dan konsentrasi terintegrasi dari waktu ke waktu
- (b) Metode proxy menghitung emisi sama seperti perhitungan di sektor Produksi Fluorochemical metode Tier 3b.

IV. EMISI GAS RUMAH KACA DARI INDUSTRI LOGAM

4.1. Produksi Besi dan Baja

4.1.1 Deskripsi Kategori

Produksi besi dan baja menyebabkan emisi karbon dioksida (CO₂), metana (CH₄), dan nitrous oksida (N₂O). Sebagai contoh, Pembakaran gas tungku ledakan dan oven gas kokas adalah sumber utama emisi CO₂ dan CH₄ dalam produksi kokas. Sebagian besar CO₂ yang dihasilkan oleh industri besi dan baja terkait dengan produksi besi, lebih khusus penggunaan karbon untuk mengubah bijih besi menjadi besi.

4.1.2 Data yang diperlukan

Tabel 4. 1 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Besi dan Baja

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
	Produksi kokas se	ecara metalurgi	
TIER 1 (CO2)	hanya membutuhkan jumlah total kokas	Baku (lihat IPCC GL 2006 halaman 4.25 untuk CO ₂ dan 4.26 untuk CH ₄)	hanya membutuhkan jumlah total kokas
TIER 2 (CO2)	Membutuhkan jumlah total besi dan baja, gas oven kokas, gas tungku ledakan, dan bahan proses seperti kapur yang digunakan untuk produksi besi dan baja,produksi besi langsung berkurang,dan produksi sinter di negera tersebut, selain produksi kokas di lokasi dan dari luar lokasi	Kandungan karbon, lihat IPCC GL 2006 halaman 4.27	
TIER 3	-	-	-
(CO2)			
Produksi Besi da			
TIER 1 (CO2)	hanya membutuhkan jumlah baja diproduksi di dalam negeri berdasarkan jenis proses,jumlah total besi ancuran yang	Baku (lihat IPCC GL 2006 halaman 4.25)	

TIER	Data aktivitas	Faktor emisi	Parameter lainnya
TIER 2 (CO2)	diproduksi tidak diolah menjadi baja, dan jumlah total besi langsung yang dikurangi, pelet, dan sinter yang diproduksi; Membutuhkan jumlah total besi dan baja, gas oven kokas, gas tungku ledakan, dan bahan proses seperti kapur yang digunakan untuk produksi besi dan baja,produksi besi langsung dikurangi,dan produksi sinter di negera tersebut,selain produksi di lokasi dan dari luar lokasi	Kandungan karbon, lihat IPCC GL 2006 halaman 4.27	
TIER 3 (CO2)	kokas Membutuhkan pengumpulan,kompilasi,dan agregasi data spesifik emisi fasilitas diukur atau data bahan/konsumsi massa produksi proses spesifik fasilitas dan data kandungan karbon		
TIER 1 (CH4)	hanya membutuhkan jumlah baja diproduksi di dalam negera berdasarkan jenis proses,jumlah total ancuran besi diproduksi yang tidak diolah menjadi baja, dan jumlah total besi langsung dikurangi, pelet, dansinter yang diproduksi;	Baku (lihat IPCC GL 2006 halaman 4.26 untuk CH4)	
TIER 2 (CH4)	-	-	-
TIER 3 (CH4)	-	-	-

4.1.2.1 Berdasarkan pada Produksi Kokas secara Metalurgi Emisi CO2 dan CH4

Metode Tier 1

Metode ini membutuhkan data jumlah produksi kokas untuk mengestimasi emisi CO_2 . Metode ini mengasumsi bahwa pabrik memproduksi sendiri kokas untuk kemudian digunakan pada produksi besi dan baja (*onsite system*) sehingga pelaporan dimasukkan dalam sektor energi. Faktor emisi yang digunakan dari IPCC GL 2006 Tabel 4.1 halaman 4.25 untuk CO_2 dan Tabel 4.2 halaman 4.26 untuk emisi CH_4 .

Persamaan 4.1

TIER 1 Emisi dari produksi kokas (coke)

 $E_{CO2} = Coke \bullet EF_{CO2} \quad dan \quad E_{CH4} = Coke \bullet EF_{CH4} \quad (akan \ dilaporkan \ pada \ sektor \ energi)$

dimana:

E_{CO2} or E_{CH4} : Emisi CO₂ atau CH₄ dari produksi coke, ton CO₂

atau ton CH₄

Coke : kuantitas kokas (coke) diproduksi secara nasional,

ton

EF : Faktor emisi, ton CO₂/ton produksi *coke* atau ton

CH₄/ton produksi *coke*

Note:

Tier 1 mengasumsikan bahwa semua *by-product* coke-oven dikirim keluar pabrik dan bahwa gas coke-oven dibakar di dalam pabrik untuk energi.

Metode Tier 2

Metode ini menggunakan data statistik nasional mengenaimasukan dan keluaran dari proses produksi kokas baik yang terintegrasi ataupun tidak terintegrasi. Perhitungan emisi dilakukan menggunkaan rumus yang terdapat pada tabel diatas metode Tier 2 baik untuk produksi kokas secara *onsite* dan *offsite*.

Selain data keluar-masuk pada proses produksi kokas, nilai kandungan karbon juga perlu diketahui. Nilai baku kandungan karbon per proses material diperoleh dari IPCC GL 2006 Tabel 4.3 halaman 4.27.

Persamaan 4.2	

TIER 2 Emisi CO2 dari produksi kokas onsite

$$\begin{split} \mathrm{E_{CO2,Energy}} &= \left[\mathrm{CC} \bullet \mathrm{C_{CC}} + \sum_{a} (\mathrm{PM_a} \bullet \mathrm{C_a}) + \mathrm{BG} \bullet \mathrm{C_{BG}} \right. \\ &\left. - \mathrm{CO} \bullet \mathrm{C_{CO}} - \mathrm{COG} \bullet \mathrm{C_{COG}} - \sum_{b} (\mathrm{COB_b} \bullet \mathrm{C_b}) \right] \frac{44}{12} \\ &\left. (\mathrm{dilaporkan\ pada\ energi\ sektor}) \right. \end{split}$$

ECO₂, : Emisi CO₂ dari produksi *coke* (*onsite*) yang akan dilaporkan di

Sektor Energi, ton energy

CC: Kuantitas coking coal yang dikonsumsi untuk produksi coke

dalam pabrik besi dan baja terintegrasi, ton

PMa : Kuantitas material proses lainnya *a* (di luar gas bumi dan BBM),

yang dikonsumsi untuk produksi coke dan sinter dalam pabrik

besi dan baja terintegrasi, ton

: Kuantitas gas blast furnace gas yang dikonsumsi pada coke ovens, BG

m³ (atau unit lain misalnya ton atau GJ). Konversi unit harus

konsisten dengan Panduan Sektor Energi

CO : Kuantitas coke yang diproduksi onsite dalam pabrik besi baja, ton

COG Kuantitas coke oven gas yang dikeluarkan ke luar pabrik, m3

(atau unit lain misalnya ton atau GJ). Konversi unit harus

konsisten dengan Panduan Sektor Energi

Kuantitas by product coke oven b, yang dikirimkan ke luar pabrik, COBb

ton

Kandungan karbon bahan masukan atau keluaran *x*, ton C/(unit Cx

bahan x) [misal ton C/ton]

4.1.2.2 Berdasarkan pada Jumalah Produksi Besi dan Baja Emisi CO₂

Metode Tier 1

Total emisi CO₂ pada bagian ini adalah penjumlahan proses-proses pada pabrik yang berkaitan dengan produksi beji dan baja. Data yang digunakan adalah data yang berasal dari nasional statistik yang dikalikan dengan faktor emisi yang tersedia di IPCC GL 2006 Tabel 4.1 halaman 4.25. Faktor emisi yang tersedia berdasarkan proses-proses dalam memproduksi besi dan baja. Adapun proses-proses yang diperhitungkan adalah:

- (1) Proses produksi besi dan baja
- (2) Proses produksi pig iron (PI)/besi ancuran yang tidak diproses menjadi baja
- (3) Proses produksi besi langsung terkurang(direct reduced iron)
- (4) Proses produksi sinter
- (5) Proses produksi pellet.

Persamaan 4.3

CO₂ EMISSIONS FROM IRON AND STEEL PRODUCTION (TIER 1)

Besi dan Baja:

 $E_{\text{CO2,non-Energy}} = BOF \bullet EF_{BOF} + EAF \bullet EF_{EAF} + OHF \bullet EF_{OHF}$

Persamaan 4.4

CO₂ EMISSIONS FROM PRODUCTION OF PIG IRON NOT PROCESSED INTO STEEL (TIER 1)

Pig-iron: $E_{CO2,non-Energy}$ =IP • EF_{IP}

Persamaan 4.5

CO₂ EMISSIONS FROM PRODUCTION OF DIRECT REDUCED IRON (TIER 1)

Direct Reduced Iron: $E_{CO2,non-Energy} = DRI \bullet EF_{DRI}$

Persamaan 4.6

CO₂ EMISSIONS FROM SINTER PRODUCTION (TIER 1)

Produksi Sinter: $E_{\text{CO2.non-Energy}} = SI \bullet EF_{SI}$

Persamaan 4.7

CO₂ EMISSIONS FROM PELLET PRODUCTION (TIER 1)

Produksi Pellet: $E_{\text{CO2,non-Energy}} = P \bullet EF_P$

Eco2, non-energy : Emisi CO2 dilaporkan dalam sektor IPPU Sector, ton
BOF : Kuantitas BOF crude steel yang diproduksi, ton
EAF : Kuantitas EAF crude steel yang diproduksi, ton
OHF : Kuantitas OHF crude steel yang diproduksi, ton
IP : Kuantitas produk pig iron yang tidak dikonversi

menjadi baja, ton

DRI : Kuantitas Direct Reduced Iron yang diproduksi secara

nasional, ton

SI : Kuantitas sinter yang diproduksi secara nasional, ton P : Kuantitas pellet yang diproduksi secara nasional, ton

EFx : Faktor Emisi, ton $CO_2/ton x$ yang diproduksi

Metode Tier 2

Metode ini selain membutuhan data nasional statistik juga ada beberapa proses lainnya yang harus ditambahkan dalam proses pembentukan baja dan besi dari sektor non-energiselain dari proses yang dijelaskan pada metodr Tier 2 diatas seperti konsumsi kapur padalam produksi besi dan baja, penggunaan elektroda, dsb.Nilai kandungan karbon dapat dilihat di Tabel IPCC GL 2006 Tabel 4.3 halaman 4.27.

$\begin{aligned} & \textbf{Persamaan 4.8} \\ & \textbf{E}_{CO2,non\text{-}Energy} = \begin{bmatrix} \text{PC} \cdot \text{C}_{PC} + \sum_{a} (\text{COB}_{a} \cdot \text{C}_{a}) + \text{CI} \cdot \text{C}_{CI} + \text{L} \cdot \text{C}_{L} + \text{D} \cdot \text{C}_{D} + \text{CE} \cdot \text{C}_{CE} \\ + \sum_{b} (\text{O}_{b} \cdot \text{C}_{b}) + \text{COG} \cdot \text{C}_{COG} - \text{S} \cdot \text{C}_{S} - \text{IP} \cdot \text{C}_{IP} - \text{BG} \cdot \text{C}_{BG} \end{bmatrix} \frac{44}{12} \end{aligned}$

dimana:

ECO₂, non- : Emisi CO₂ dilaporkan dalam sektor IPPU Sektor, ton

energy

PC : kuantitas coke yang dikonsumsi dalam produksi besi baja (tidak

termasuk produksi sinter), ton

COBa : kuantitas by-roduct dari onsite coke oven *a*, yang dikonsumsi

dalam blast furnace, ton

CI : kuantitas batubara yang langsung diinjeksikan ke blast furnace,

ton

L : kuantitas limestone dikonsumsi dalam produksi besi baja, tonD : kuantitas dolomite dikonsumsi dalam produksi besi baja, ton

CE : kuantitas elektroda karbon dikonsumsi di EAFs, ton

Ob	: kuantitas bahan lain mengandung karbon <i>b</i> , yang dikonsumsi dalam produksi besi dan baja, misalnya sinter atau limbah plastik, ton
COG	
COG	: Kuantitas coke oven gas yang dikonsumsi di blast furnace dalam
	produksi besi baja, m3 (atau unit lain misalnya ton atau GJ).
	Konversi unit harus konsisten dengan Panduan Sektor Energi
S	kuantitas baja yang diproduksi, ton
IP	kuantitas produksi besi yang tidak dikonversi menjadi baja, ton
BG	: Kuantitas gas blast furnace gas yang dikonsumsi pada coke ovens,
	m3 (atau unit lain misalnya ton atau GJ). Konversi unit harus
	konsisten dengan Panduan Sektor Energi
Cx	: Kandungan karbon bahan masukan atau keluaran x, ton C/(unit

Persamaan 4.9 CO₂ EMISSIONS FROM DIRECT REDUCED IRON PRODUCTION (TIER 2) $E_{CO2,non\text{-}Energy} = \left(DRI_{NG} \bullet C_{NG} + DRI_{BZ} \bullet C_{BZ} + DRI_{CK} \bullet C_{CK}\right) \frac{44}{12}$

dimana:

ECO₂, non-energy : Emisi CO₂ dilaporkan dalam sektor IPPU, ton

DRING : Kuantitas natural gas yang digunakan dalam produksi *direct*

reduced iron, GI

bahan x) [misal ton C/ton]

DRIBZ : Kuantitas coke breeze yang digunakan dalam produksi

direct reduced iron, GJ

DRICK : Kuantitas *metallurgical coke* yang digunakan dalam

produksi direct reduced iron, GJ

CNG : carbon content dari gas bumi, ton C/GJ
CBZ : carbon content dari coke breeze, ton C/GJ

CCK : carbon content dari metallurgical coke, ton C/GJ

Metode Tier 3

Data emisi pengukuran aktual CO₂/CH₄ yang tersedia dari lokasi dan diluar lokasi pabrik produksi kokas dapat dikumpulkan dan digunakan langsung untuk memperhitungkan emisi nasional dari produksi kokas secara metalurgi menggunakan metode Tier 3. Metode ini membutuhkan pengumpulan,kompilasidan agregasi data spesifik emisi fasilitas diukur atau data bahan/konsumsi massa produksi proses spesifik fasilitas dan data kandungan karbon.

4.1.2.3 Berdasarkan pada Jumalah Produksi Besi dan Baja Emisi CH₄

Metode Tier 1

Metode ini menggunakan data nasional statistik dan proses yang dilibatkan hanya dari produksi Sinter, produksi besi ancuran (blast furnace) dan produksi besi terkurang (reduced iron). Proses perhitungan sama dengan metode Tier 1 emisi CO₂.

Persamaan 4.10

TIER 1 Emisi CH₄ dari produksi Sinter

Produksi Sinter: $E_{CH4,non-Energy} = SI \bullet EF_{SI}$

Persamaan 4.11

TIER 1 Emisi CH₄ dari produksi Pig Irom yang tidak diproses menjadi baja

Produksi Pig-iron: E_{CH4.non-Energy}=PI ● EF_{PI}

Persamaan 4.12

Tier 1 Emisi CH4 dari produksi direct reduced iron

Produksi Direct Reduced Iron : $E_{CO2,non-Energy} = DRI \cdot EF_{DRI}$

dimana:

ECH₄,non- : Emisi CH₄ dilaporkan dalam sektor IPPU Sector, ton

energi

SI : Kuantitas produksi sinter nasional, ton

PI : Kuantitas produksi besi nasional termasuk besi yang

dikonversi menjadi baja dan yang tidak dikonversi menjadi

baja, ton

DRI : Kuantitas produksi nasional *direct reduced iron*, ton

EFx : Faktor Emisi, ton CH₄/ton *x* yang diproduksi

Contoh perhitungan

Diketahui:

Jumlah produksi besi dan baja dari proses *Basic Oxygen Furnace* (BOF) = 231.363,16

ton.

Faktor emisi = $1,46 \text{ ton } CO_2/\text{ton}$

Jumlah produksi Besi ancuran = 286,13 ton

Faktor emisi = $1,35 \text{ ton } CO_2/\text{ton}$

Jumlah produksi sinter= 1.355.685,62 tonFaktor emisi= 0,2 ton CO_2 /ton

Emisi CO_2 dari BOF = Jumlah produksi besi dan baja dari proses *Basic Oxygen Furnace* (BOF) x Faktor emisi

= 241.363,16 x 1,46 = 352.390 ton CO₂.

 CO_2 Emisi dikonversi ke gigagrams CO_2 = 352,390 / 1000

 $= 352.390 \text{ Gg CO}_2.$

Emisi CO₂ dari besi ancuran = Jumlah produksi besi ancuran x Faktor emisi

 $= 286,13 \times 1,35$ = 386 ton CO₂

 CO_2 Emisidikonversi ke gigagrams CO_2 = 386 / 1000

= 0.386Gg CO_2

Emisi CO₂ dari besi ancuran = Jumlah produksi sinter x Faktor emisi

= $1.355.685,62 \times 0,2$ = $271.137 \text{ ton } CO_2$

 CO_2 Emisidikonversi ke gigagrams CO_2 = 271.137 / 1000

 $= 271,137 \text{ Gg CO}_2$

Tabel 4. 2 Worksheet contoh perhitungan emisi CO2 dari sektor produksi besi dan baja

Sektor	IPPU			
Kategori	Industri Logam - Produksi Besi dan Baja			
Kode kategori	2C1	2C1		
Lembar	1 dari 2 CO ₂ Emi	si		
	A	В	С	D
Jenis Metode Steel	Jumlah produksi	Faktor Emission	CO ₂ emisi	CO ₂ emisi
making, etc	besi dan baja			
	(ton crude steel			
	produced, pig	$(ton CO_2/ton)$	(ton CO ₂)	(Gg CO ₂)
	iron, DRI, sinter	produksi)	(1011 002)	(48 332)
	or pellet)			
			C = A * B	$D = C/10^3$
Basic Oxygen	241363.16	1.46	352390	352.390
Furnace	211303.10	1.10	332370	332.370
Electric Arc Furnace				
Open Hearth				
Furnace				
Pig Iron Production				
(not converted into	286.13	1.35	386	0.386
steel)				
Direct Reduced Iron				
(DRI) Production				
Sinter Production	1355685.62	0.2	271137	271.137
Pellet Production				
TOTAL				623.914

4.2. Produksi Ferroalloys

4.2.1 Deskripsi Kategori

Ferroalloy adalah istilah yang digunakan untuk menggambarkan paduan terkonsentrasi dari besi dan satu atau lebih logam seperti silikon, mangan, kromium, molibdenum, vanadium dan tungsten. Sementara CO_2 adalah gas rumah kaca utama dari produksi ferroalloy, penelitian terbaru menunjukkan bahwa CH_4 , dan N_2O diperhitungkan untuk emisi rumah kaca setara hingga 5 persen dari emisi CO_2 dari produksi ferosilikon(FeSi) dan silikon-logam (Si-logam).

4.2.2 Data yang diperlukan

Tabel 4. 3 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Ferroalloy

TIER	Data aktifitas	Faktor Emisi	Parameter lain
TIER 1 CO2	hanya membutuhkan jumlah ferroalloy diproduksi di dalam negeri dengan jenis produk	Baku (lihat IPCC GL 2006 halaman 4.37)	-
TIER 2 CO2	Membutuhkan jumlah total pereduksi dan bahan lain yang digunakan untuk proses produksi ferroalloy di negara tersebut,dan pengetahuan tentang proses yang digunakan	Baku (lihat IPCC GL 2006 halaman 4.38)	-
TIER 3 CO2	Membutuhkan pengumpulan, kompilasi ,dan agregasi data emisi spesifikfasilitas	-	Kandungan karbon dalam agen pereduksi= (fraksi massa C Perbaiki dalam mengurangi agen) + [(fraksi massa mudah menguap dalam agen pereduksi) * (karbon konten dalam mudah menguap)]
TIER 1 CH4	hanya membutuhkan jumlah ferroalloy yang diproduksi di dalam negeri	Baku (lihat IPCC GL 2006 halaman 4.39)	5 173

TIER	Data aktifitas	Faktor Emisi	Parameter lain
	berdasarkan jenis produk		
TIER 2 CH4	Membutuhkan jumlah total pereduksi dan bahan lain yang digunakan untuk proses produksi ferroalloy di negara tersebut,dan pengetahuan tentang proses yang digunakan	Baku (lihat IPCC GL 2006 halaman 4.39)	
TIER 3 CH4	Membutuhkan pengumpulan,kompilasi,da n agregasidata emisi spesifikfasilitas		

Emisi CO₂

Metode Tier 1

Metode ini menggunakan jumlah produksi ferroalloy per jenisnya dari nasional statistik. Faktor emisi yang digunakan yang digunakan diperoleh dari IPCC GL 2006 tabel 4.5 halaman 4.37.

Persamaan 4.13	
CO ₂ emissions for ferroalloy production by the Tier 1 method	
$E_{CO2} = \sum_{i} MP_{i} \bullet EF_{i}$	

dimana:

 ECO_2 : Emisi CO_2 , ton

MPi : produksi per jenis ferralloy *i*, ton

EFi : Faktor emisi default ferroalloy jenis i, ton CO_2 /ton produksi

ferroalloy

Persamaan 4.14
Tier 1 emisi CO2 dari produksi ferroalloy
$E_{CO2} = \sum_{i} MP_{i} \bullet EF_{i}$

 ECO_2 : Emisi CO_2 , ton

MPi : Produksi dari feroalloy jenis *i*, ton

EFi : Faktor emisi *default* ferroalloy jenis *i*, ton CO₂/ton produksi

ferroalloy

Metode Tier 2

Metode ini berdasarkan pada data penggunaan agen pereduksi. Data lebih baik menggunakan data spesifik pada pabrik tersebut. Adapun data yang dibutuhkan adalah:

- Massa dari agen pereduksi i dalam unit ton. Dimana i adalah jenis agen pereduksi yang digunakan
- Massa *ore*/bijih *h* dalam unit ton. dimana h adalah jenis ijih yang digunakan
- Massa slag/terak *j* bahan pembentuk dalam unit ton. dimana j adalah jenis bahan pembentuk
- Massa produk *k* dalam unit ton, dimana k adalah jenis produk yang dihasilkan
- Massa bukan produk yang masuk dalam aliran l dalam unit ton dimana l adalah jenis bukan produk.
- Nilai kandungan karbon berupa nilai spesifik dari pabrik tersebut
- Faktor emisi agen pereduksi dapat dilihat di IPCC GL 2006 tabel 4.3 halaman
 4.38

Persamaan 4.15

Tier 2 Emisi CO₂ untuk produksi Ferroallov

$$\begin{split} E_{CO2} &= \sum_{i} \left(M_{reducing \ agent, \ i} \bullet EF_{reducing \ agent, \ i} \right) + \sum_{h} \left(M_{ore,h} \bullet CContent_{ore, \ h} \right) \frac{44}{12} \\ &+ \sum_{j} \left(M_{slag \ forming \ material, \ j} \bullet CContent_{slag \ forming \ material, \ j} \right) \frac{44}{12} \\ &- \sum_{k} \left(M_{product, \ k} \bullet CContent_{product, \ k} \right) \frac{44}{12} \\ &- \sum_{l} \left(M_{non \ product \ outgoing \ stream, \ l} \bullet CContent_{non \ product \ outgoing \ stream, \ l} \right) \frac{44}{12} \end{split}$$

ECO₂ : Emisi CO₂ dari produksi ferroalloy, ton

 $M_{\text{reducing agent, i}}$: Berat agen pereduksi i, ton

 $EF_{reducing agent, i}$: Faktor emisi agen pereduksi i, ton CO_2 /ton agen

pereduksi

 $M_{\text{ore, h}}$: Berat bijih h, tones

CContent $_{ore, h}$: carbon content dalam bijih h, ton C/ton ore

 $M_{\text{slag forming material}, j}$: Berat slag forming material j, ton

CContent_{slag forming} : Kandungan karbon dalam slag forming material *j*,

material, j ton C/ton material $M_{product, k}$: Berat produk k, ton

CContentproduct, k : Kandungan karbon dalam produk k, ton C/ton

product

 $M_{non-product \, outgoing \, stream, \, l}$: Berat non-produk pada stream yang keluar l, ton $CContent_{non-product}$: carbon content dalam non-produk pada stream

outgoing stream, l yang keluar *l*, ton C/ton

Metode Tier 3

Sama seperti metode Tier 2 hanya saja nilai kandungan karbon dalam agen pereduksi harus dihitung berdasarkan kandungan debu (*ash*), karbon tetap dan volatil. Lebih jauh kandungan karbon di bijih karbonat dan terak bahan pembentuk akan berbedabeda. Nilai kandungan tersebut dapat dihitung menggunakan persamaan pada tabel diatas. Pada persaam tersebut terdapat parameter 'karbon konten dalam mudah menguap'. Nilai ini perlu diperoleh melalui penelitian namun apabila tidak terdapat nilai baku yaitu 0,65 untuk batu bara dan 0,8 untuk terak.

Pe	rsa	m	a	n	4	1	6

Tier 3 Emisi CO2 untuk produksi ferroalloy

$$\begin{split} E_{CO2} &= \sum_{i} \left(M_{reducing \ agent, \ i} \bullet CContent_{reducing \ agent, \ i} \right) \frac{44}{12} \\ &+ \sum_{h} \left(M_{ore,h} \bullet CContent_{ore, \ h} \right) \frac{44}{12} \\ &+ \sum_{j} \left(M_{slag \ forming \ material, \ j} \bullet CContent_{slag \ forming \ material, \ j} \right) \frac{44}{12} \\ &- \sum_{k} \left(M_{product, \ k} \bullet CContent_{product, \ k} \right) \frac{44}{12} \\ &- \sum_{l} \left(M_{non \ product \ outgoing \ stream, \ l} \bullet CContent_{non \ product \ outgoing \ stream, \ l} \right) \frac{44}{12} \end{split}$$

E_{CO2} : Emisi CO₂ dari produksi ferroalloy, ton

 $M_{reducing agent, i}$: Berat agen pereduksi i, ton

CContent_{reducing agent, i} Kandungan karbon dalam agen pereduksi *i*, ton

C/ton agen pereduksi

EF_{reducing agent, i} : Faktor emisi agen pereduksi *i*, ton CO₂/ton agen

pereduksi

 $M_{\text{ore, h}}$: Berat bijih h, tones

CContent $_{ore, h}$: carbon content dalam bijih h, ton C/ton ore

 $M_{\text{slag forming material}, j}$: Berat slag forming material j, ton

CContent_{slag forming} : Kandungan karbon dalam slag forming material *j*,

material, j ton C/ton material $M_{product, k}$: Berat produk k, ton

CContent $_{product, k}$: Kandungan karbon dalam produk k, ton C/ton

product

 $M_{non\text{-product outgoing stream, l}}$: Berat non-produk pada stream yang keluar l, ton $CContent_{non\text{-product}}$: carbon content dalam non-produk pada stream

outgoing stream, l yang keluar *l*, ton C/ton

Contoh Perhitungan

Diketahui

Jumlah produksi Ferrosilicon 45% Si= 957,312 ton.Faktor emisi Ferrosilicon 45% Si= 2,5 ton CO_2/ton .

CO₂ Emissions = Jumlah produksi Ferrosilicon 45% Si x Faktor emisi

 $= 957,312 \text{ ton x } 2.5 \text{ ton } CO_2/\text{ton}$

 $= 2.393 \text{ ton } CO_2$

 CO_2 Emisi dikonversikeGigagrams CO_2 = 2.393 / 1000

= 2,393 atau sekitar 2,4 Gg CO₂

Tabel 4. 4 Worksheet contoh perhitungan emisi CO₂ dari sektor produksi Ferroalloy

Sektor	IPPU			
Kategori	Industri Logam	- Produksi Ferroal	loy	
Kode kategori	2C2			
Lembar	1 dari 2 CO ₂ Em	1 dari 2 CO ₂ Emisi		
	A	В	С	D
Jenis Ferroalloy ^{1), 2)}	Jumlah produksi Ferroalloy	Emisi Faktor	CO ₂ Emisi	CO ₂ Emisi
(please specify)	(ton ferroalloy produksi)	(ton CO ₂ /ton ferroalloy produksi)	(ton CO ₂)	(Gg CO ₂)
			C = A * B	$D = C/10^3$
Ferrosilicon 45% Si	957,312	2,5	2393	2.4
Ferromanganese (7% C)	0	1.3	0	0.0
Silicomanganese	0	1.4	0	0.0
Total				2.4

¹⁾ For details of ferroalloy types, see Table 4.5 in Chapter 4 of Volume 3.

²⁾ Insert additional rows if necessary.

Emisi CH₄

Metode Tier 1

Metode ini memprediksi emisi CH_4 dari jumlah produksi Si-alloy dan FeSi secara nasional. Nilai faktor emisi adalah faktor emisi baku dari IPC GL 2006 (tabel 4.7 halaman 4.39)

Persamaan 4.17

Tier 1 Emisi CH4 untuk produksi Ferroalloy

$$E_{CH4} = \sum_{i} MP_{i} \bullet EF_{i}$$

dimana:

ECH₄ : Emisi CH₄, ton

MPi : Produksi Si-alloy *i*, ton

EFi : Faktor emisi *default* Si-alloy jenis *i*, ton CO2/ton produksi Si-

alloy

Metode Tier 2

Sama seperti metode Tier 1, namun pada metode tier 2 ini faktor emisi yang digunakan berdasar spesifik proses operasi dan data aktivitas yang digunakan sebaiknya spesifik pabrik tersebut. Namun data nasional dapat digunakan apabila penjelasan tentang proses diketahui.

Metode Tier 3

Metode ini membutuhkan pengumpulan, kompilasi dan agregasi data emisi spesifik fasilitas pada pabrik tersebut.

4.3. ProduksiAluminium

4.3.1 Deskripsi Kategori

Emisi dari produksi aluminium dihasilkan dari beberapa proses seperti:

- Karbon dioksida (CO_2) dari konsumsi anoda karbon dalam reaksi untuk mengkonversi oksida aluminium menjadi logam aluminium
- Emisi Perfluorokarbon(PFC) dari CF₄ dan C₂F₆ selama efek anoda.

Selain itu juga diemisikan sejumlah kecil emisi CO, SO2 dan NMVOC. Adapun SF₆ tidak diemisikan selama proses elektrolitik dan jarang digunakan dalam proses pembuatan aluminium. Selama operasi normal, aluminium dihasilkan di katoda dan karbon yang dikonsumsi pada anoda tiap reaksi pengurangan elektrolitik, sebagai berikut:

$$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$$

4.3.2 Data yang diperlukan

Tabel 4. 5 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Aluminium

TIER	Data aktifitas	Faktor emisi
TIER 1 CO2	Statistik produksi	Baku (lihat IPCC GL 2006 halaman 4.47)
TIER 2 dan 3 CO2	Metode tingkat 2menggunakan data industry anoda komposisi rata-rata metode tingkat 3 menggunakan fasilitas khusus komposisi data untuk bahan anoda	dikumpulkan dari fasilitas operasi tersendiri untuk digunakan
TIER 1 PFCs	Statistik produksi	Baku (lihat IPCC GL 2006 halaman 4.54)
TIER 2 & 3 PFCs	Memanfaatkan catatan efek anoda sel per hari atau efek anoda tegangan lebih,dan data produksi aluminium	Baku (lihat IPCCGL2006 halaman4,54) atau berdasarkan kemiringan fasilitas tertentu atau anoda koefisien efek tegangan lebih PFCuntuk Tingkat 3

Emisi CO₂

Metode Tier 1

Metode ini hanya menghitung emisi CO₂ dari karakteritik teknologi *broad cell* (prebake dan Soderberg). Data yang digunakan berasal dari statistik produksi yaitu jumlah metal yang dihasilkan dan faktor emisi yang digunakan dari IPCC GL 2006 tabel 4.10 halaman 4.47 atau spesifik tingkat negara.

Persamaan 4.18

Tier 1 Emisi CO2 dari konsumsi anode atau pasta

$$E_{CO2} = EF_P \bullet MP_P + EF_S \bullet MP_S$$

dimana:

ECO₂ : Emisi CO₂ dari anode dan/atau konsumsi pasta, ton CO₂

EFP MPi : Faktor emisi (Prebake technology) (ton CO₂/ton produksi Al)

MPP : Produksi logam dari proses Prebake, ton Al

EFS Faktor emisi (Søderberg technology) ton CO₂/ton produksi Al

MPS Produksi logam dari proses Søderberg (ton Al)

Metode Tier 2 dan Tier 3

Dihitung dengan menggunakan pendekatan neraca massa yang mengasumsikan bahwa kandungan karbon konsumsi anoda bersih atau konsumsi perekat akhirnya dipancarkan sebagai CO₂.Metode Tier 2menggunakan data industri komposisi ratarata anoda, sedangkan metodeTier 3 menggunakan fasilitaskhusus komposisi data untuk bahan anoda.

Persamaan 4.19

Tier 2 dan 3 CO₂ emisi dari konsumsi prebaked anoda

$$E_{CO2} = NAC \bullet MP \frac{100 - S_a - ASh_a}{100} \frac{44}{12}$$

dimana:

ECO₂ : Emisi CO₂ dari konsumsi *prebaked anode*, ton CO₂

MP : Produksi logam total, ton Al

NAC : Konsumsi neto anode per ton Al, ton C/ ton Al

Sa Kandungan sulfur dalam baked anodes sulphur content in baked

anodes, wt %

Asha Kandungan abu dalam baked anodes, % berat

Persamaan 4.20

Tier 2 dan 3 Emisi dari Pitch Pembakaran Volatile

$$E_{CO2} = (GA - H_w - BA - WT) \frac{44}{12}$$

dimana:

ECO₂ : Emisi CO₂ dari pitch volatiles combustion, ton CO₂

GA : Berat awal *green anodes*, ton

Hw : Kandungan hydrogen dalam green anodes, ton

BA Produksi baked anode, ton

WT Limbah tar yang terkumpul, ton

Persamaan 4.21

Tier 2 dan 3 CO2 Emisi dari Bake Furnace Packing Material

$$E_{CO2} = PCC \bullet BA \frac{100 - S_{pc} - ASh_{pc}}{100} \frac{44}{12}$$

dimana:

ECO₂ : Emisi CO₂ dari *bake furnace packing material*, ton CO₂

PCC : Konsumsi packing coke (kokas), ton/ton BA

BA : Produksi baked anode, ton

Ash_{pc} : Kandungan abu dalam *packing coke*, % berat S_{pc} : Kandungan sulphur dalam *packing coke*, % berat

Persamaan 4.22

Tier 2 dan 3 Emisi CO2 dari konsumsi pasta

$$\begin{split} \mathbf{E}_{\text{CO2}} &= \left(\mathbf{PC} \bullet \mathbf{MP} - \frac{CSM \bullet MP}{1000} - \frac{BC}{100} \bullet PC \bullet MP \frac{S_p + Ash_p + H_p}{100} \right. \\ &- \frac{100 - BC}{100} PC \bullet MP \frac{PC + Ash_c}{100} - MP \bullet CD \right) \frac{44}{12} \end{split}$$

dimana:

ECO₂ : Emisi CO₂ dari konsumsi prebaked anode, ton CO₂

MP : Produksi logam total, ton Al

PC : Konsumsi pasta, ton/ ton Al

CSM : Emisi cyclohexane soluble matter, kg/ton Al
Ash_p : Kandungan binder dalam pasta, % berat
S_p : Kandungan sulphur dalam pitch, % berat
H_p : Kandungan hydrogen dalam pitch, % berat
Sc : Kandungan sulphur dalam calcined coke, % berat

Ash_c : Kandungan abu dalam calcined coke, % berat

CD : Karbon dalam debu yang dikumpulkan dari Søderberg cells,

ton C/ton Al

Contoh perhitungan

Diketahui, jumlah aluminium dari *Prebake* = 240.000 ton.

Faktor emisi *Prebake Technology* = $1,56 \text{ ton } CO_2/\text{ton}$.

CO₂ Emisssionss = Diketahui, jumlah aluminium dari Prebake x Faktor emisi

 $= 240.000 \text{ ton x } 1,56 \text{ ton } CO_2/\text{ton}$

= 374.400 ton.

CO2 Emisi dikonversi ke Gigagrams = 374,400 / 1000

= 374.4 Gg sekitar to 374 Gg.

Tabel 4. 6 Worksheet contoh perhitungan emisi CO2 dari sektor produksi aluminium

Sektor	IPPU			
Kategori	Industri Logam - Produksi Aluminium			
Kode Kategori	2C3			
Lembar	1 dari 3 Emisi CO)2		
Jenis Teknologi	A Jumlah produksi aluminium	B Emission Factor	C CO ₂ Emisi	D CO ₂ Emisi
	(ton aluminium produksi)	(ton CO ₂ /tonproduksi aluminium)	(ton)	(Gg)
			C = A * B	$D = C/10^3$
Prebake	240,000	1.56	374,400	374
Soderberg				
Total				374

Emisi PFCs (CF4 and C2F6)

Metode Tier 1

Menggunakan jumlah produksi aluminium statistik produk dalam unit ton. Emisi faktor yang digunakan dari IPCC GL 2006 (tabel 4.15 halaman 4.54) atau spesifik yang berlaku di Indonesia.

Persamaan 4.23

Tier 1 Emisi PFC

$$E_{CF4} = \sum_{i} \Bigl(EF_{CF4,i} \bullet MP_i\Bigr) \quad dan \qquad E_{C2F6} = \sum_{i} \Bigl(EF_{C2F6,i} \bullet MP_i\Bigr)$$

dimana:

ECF₄ : Emisi CF₄ dari produksi aluminium, kg CF₄ EC₂F₆ : Emisi CF₂F₆ dari produksi aluminium, kg C₂F₆

 $EFCF_{4,i}$: Faktor emisi C_2F_6 default menurut teknologi cell jenis i, kg

C₂F₆/ton Al

 $EFC_2F_{6,i}$: Faktor emisi C_2F_6 default menurut teknologi cell jenis i, kg

 C_2F_6 /ton Al

 MP_i : Produksi logam dari teknologi cell jenis i, ton Al

Metode Tier 2

Menggunakan metode kemiringan (*slope*) dan kelebihan tegangan. Metode kemiringan slope menggunakan data kemiringan koefisien untukCF₄ dan C₂F₆yang diperoleh dari penelitian, catatan efek anodaper sel-hari,produksi logam. Sedangkan untuk metode kelebihan tegangan data yang dibutuhkan adalah koefisien tegangan lebih untukCF₄,efek anodategangan lebih, proses produksi aluminium efisiensi arusdinyatakan dan produksi aluminium.

Persamaan 4.24

Tier 2 dan 3 Emisi PFC dengan metode slope

$$E_{CF4} = S_{CF4} \bullet AEM \bullet MP \quad dan \quad E_{C2F6} = EF_{CF4} \bullet FC2F6 / CF4$$

dimana:

ECF₄ : Emisi CF₄ dari produksi aluminium, kg CF₄ EC₂F₆ : Emisi CF₂F₆ dari produksi aluminium, kg C₂F₆ SCF₄ : Slope koefisien untuk CF₄, (kg CF₄/ton Al)/(AE-Mins/cell-hari)

AEM : Anode effect minutes per cell-day, AE-Mins/cell-day

MP : Produksi logam, ton Al

 $FC_2F_6/CF4$: Fraksi berat C_2F_6/CF_4 , kg C_2F_6/kg CF_4

Persamaan 4.25

Tier 2 dan 3 Emisi PFC dengan Metode Overvoltage

$$E_{CF4} = OVC \bullet \frac{AEO}{CE/100} \bullet MP \quad dan \qquad E_{C2F6} = E_{CF4} \bullet FC2F6 / CF4$$

dimana:

ECF₄ : Emisi CF₄ dari produksi aluminium, kg CF₄ EC₂F₆ : Emisi CF₂F₆ dari produksi aluminium, kg C₂F₆

OVC : Overvoltage coefficient untuk CF₄, (kg CF₄/tonne Al)/mV

AEO : Anode effect overvoltage, mV

CE : Efisiensi arus pada proses produksi Al, persen (misal 95

persen)

MP : Produksi logam, ton Al

 FC_2F_6/CF_4 : Fraksi berat C_2F_6/CF_4 , kg C_2F_6/kg CF_4

Contoh perhitungan:

Diketahui,

Jumlah aluminiumdari proses CWPB = 240.000 ton.

Faktor emisi untuk CWPB = $0.253 \text{ kg CF}_4/\text{ton}$.

CF₄ Emissions = Jumlah aluminiumdari proses CWPB x Faktor emisi untuk CWPB

 $= 240.000 \text{ ton x } 0.253 \text{ kg CF}_4/\text{ton}$

= 60.720 kg.

 CF_4 emisi konversike gigagrams = $60.720 / 10^6$

= 0.06 Gg.

Tabel 4. 7 Worksheet contoh perhitungan emisi CF4 dari sektor produksi aluminium

Sektor	IPPU				
Kategori	Industri Logam - Produksi Aluminum				
Kode kategori	2C3	2C3			
Lembar	2 dari 3 CF	4 Emisi			
	A	В	С	D	
Jenis teknologi	Jumlah	Faktor emisi	CF ₄ Emisi	CF ₄ Emisi	
	produksi				
	aluminium				
	(ton	(kg CF ₄ /ton			
	produksi	produksi	(kg)	(Gg)	
	aluminium)	aluminium)			
			C = A * B	$D = C/10^6$	
CWPB	240.000	0,253	60720		0.06
SWPB					
VSS					
HSS					
Total					0.06

Contoh perhitungan:

Diketahui,

Jumlah aluminium dari CWPB = 240.000 ton.

Emisi faktor CWPB = $0.0310 \text{ kg } C_2F_6/\text{ton}$.

C₂F₆Emisi = Jumlah aluminium dari CWPB x Faktor emisi

= $240.000 \text{ ton x } 0.0310 \text{ kg } C_2F_6/\text{ton}$

= 7.440 kg.

 C_2F_6 Emissions konversi ke Gigagram = 7.440 / 10^6 = 0,0074 Gg

Tabel 4. 8 Worksheet contoh perhitungan emisi C₂F6 dari sektor produksi aluminium

Sektor	IPPU					
Kategori	Industri Logam - Produksi Aluminium					
Kode kategori	2C3	2C3				
Lembar	3 dari 3 E	3 dari 3 Emisi C ₂ F ₆				
	A	В	С	D		
Jenis teknologi	Jumlah	Faktor emisi	C ₂ F ₆ Emisi	C ₂ F ₆ Emisi		
	produksi					
	aluminium					
	(ton	$(kg C_2F_6/ton$				
	produksi	produksi	(kg)	(Gg)		
	aluminium)	aluminium)				
			C = A * B	$D = C/10^6$		
CWPB	240,000	0.0310	7,440	0.0074		
SWPB						
VSS						
HSS						
Total				0.0074		
			GRAND TOTAL PFC	0.0682		
			TOTAL CO2-eq	837.53		

4.4. Produksi Magnesium

4.4.1 Deskripsi Kategori

Dalam industri magnesium ada sejumlah sumber emisi potensial dan gas. Jumlah dan jenis emisi dari industri magnesium akan mencerminkan bahan baku yang digunakan untuk produksi utama logam magnesium dan/atau jenis campuran gas penutup yang digunakan dalam pengecoran dan daur ulang untuk mencegah oksidasi magnesium cair.

Pada pengolahan bahan baku karbonat (magnesit dan dolomit) akan melepas CO₂ selama produksi. CO₂ yang dilepaskan selama kalsinasi karbonat berbasis bijih (dolomit/magnesit)-langkah pra-perlakuan ke proses utama elektrolitik/pengurangan termal (proses ini mirip dengan generasi CO₂ dalam industri mineral). Bijih yang mengandung magnesium yang melepaskan CO₂ selama kalsinasi adalah dolomite (Mg•Ca (CO₃) ₂) dan magnesit (MgCO₃). Untuk setiap kilogram magnesium yang dihasilkan, secara teoritis 3,62kg (dolomit) atau 1,81kg (magnesit) masing-masing CO₂, dipancarkan selama kalsinasi.

4.4.2 Data yang diperlukan

Tabel 4. 9 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Magnesium

	Sektor produksi Magnesiani			
Data yang diperlukan	Data aktifitas	Faktor emisi		
TIER1 (CO2)	data produksi nasional primer dan pengetahuan tentang jenis bahan baku yang digunakan di negara tersebut	Baku (lihat IPCC GL 2006 halaman 4.65)		
TIER 2 (CO2)	perlu mengumpulkan data produksi magnesium primer dan data pada bahan baku dari karbonat setiap perusahaan/ pabrik	faktor emisi negara /perusahaan tertentu		
TIER 3 (CO2)	emisi langsung diukur dan dilaporkan	Jika data emisi CO ₂ diukur sebenarnya yang tersedia dari individu fasilitas magnesium primer,data ini dapat dikumpulkan dan digunakan langsung untuk memperhitungkan emisi nasional		
TIER 1 (SF6)	jika mungkin,data produksi dipisahkan menjadi segmen-segmen menggunakanSF6, (misalnya, produksi	Baku (lihat IPCC GL 2006 halaman 4.66)		

Data yang diperlukan	Data aktifitas	Faktor emisi
	primer, daur ulang, pengecoran billet,pengecoran cetakan, pengecoran gravitasi,dll) dan menerapkan faktor emisi spesifik segmen tersedia yang tersedia	
TIER 2 (SF6)	emisi SF6 yang dilaporkan (dan produk gas sekunder) atau total konsumsi SF ₆ dari setiap pabrik	Konsumsi SF6 spesifik perusahaan
TEIR 3 (SF6)	emisi SF6 yang dilaporkan (dan produk gas sekunder) atau total konsumsi SF ₆ dari setiap pabrik	Jika data pengukuran actual emisi tersedia dari fasilitas pengolahan magnesium tersendiri,data ini dapat dikumpulkan dan digunakan langsung untuk memperhitungkan emisi nasional

Emisi CO₂

Metode Tier 1

Metode ini menggunakan data jumlah produksi magnesium dari dolomit dan magnesit dalam unit ton. Data yang digunakan adalah data statistik nasional. Faktor emisi yang digunakan dari IPCC GL 2006 atau spesifik yang berlaku di Indonesia. IPCC GL 2006 menyediakan nilai baku yang berada pada tabel 4.19 halaman 4.65. Persamaan menghitung emisi CO₂ dapat dilihat pada tabel diatas Tier 1 emisi CO₂.

Persamaan 4.26				
TIER 1 Emisi CO ₂ dari produksi magnesium primer				
$E_{CO2} = \left(P_d \bullet EF_d + P_{mg} \bullet EF_{mg}\right) 10^{-3} dan$	$E_{C2F6} = E_{CF4} \bullet FC2F6 / CF4$			

dimana:

ECO₂ : Emisi CO₂ dari produksi magnesium primer, Gg

 $\begin{array}{lll} P_d & : & Produksi \ nasional \ magnesium \ primer \ dari \ dolomite, ton \\ P_{mg} & : & Produksi \ nasional \ magnesium \ primer \ dari \ magnesite, ton \\ EF_d & : & Faktor \ emisi \ CO_2 \ default \ dari \ produksi \ magnesium \ primer \ dari \end{array}$

dolomite, ton CO₂/ton produksi Mg primer

EF_{mg} : Faktor emisi CO₂ default dari produksi magnesium primer dari

magnesite, ton CO₂/ton produksi Mg primer

Metode Tier 2

Data yang digunakan metode ini adalah spesifikasi sesuai dengan pabrik. Data aktivitas utama adalam data produksi magnesium primer per pabrik dalam unit ton. faktor emisi yang digunakan dalam metode Tier 1 adalah faktor emisi spesifik yang berlaku pada pabrik tersebut.

Persamaan 4.27

TIER 2 Emisi CO2 dari produksi magnesium primer

$$E_{CO2} = \sum_{i} (P_i \bullet EF_i) \bullet 10^{-3}$$

dimana:

ECO₂ : Emisi CO₂ dari produksi magnesium primer, Gg

Pi : Produksi magnesium primer di *plant I*, ton

EFi : Faktor emisi CO₂ pada *plant i*, ton CO₂/ton produksi Mg primer

Metode Tier 3

Jika data emisi CO₂ hasil pengukuran tersedia dari individu fasilitas magnesium primer pada tiap pabrik,maka data ini dapat dikumpulkan dan digunakan langsung untuk memperhitungkan emisi nasional.

Emisi SF₆

Metode Tier 1

Metode ini berdasarkan data jumlah pengecoran magnesium (*magnesium casting*) secara nasional dalam unit ton. faktor emsii yang digunakan adalah faktor emisi baku dari IPCC GL 2006 pada tabel 4.20 halaman 4.66.

Persamaan 4.28

Tier 1 Emisi SF₆ dari Casting Magnesium

$$E_{SF6} = MG_c \bullet EF_{SF6} \bullet 10^{-3}$$

dimana:

ESF₆ : Emisi SF₆ dari magnesium *casting*, ton MG_c : Kuantitas magnesium casting nasional, ton

EF_{SF6} : Faktor emisi SF₆ default dari magnesium *casting*, kg SF₆/ton

Mg casting

Metode Tier 2

Metode ini didasarkan pada penggunaan SF_6 di peleburan dan pengecoran magnesium dalam unit ton. Data yang digunakan dapat berupa data nasional atau sub nasional yang dilaporkan oleh industri atau emisi SF_6 yang dilaporkan (dan produk gas sekunder) atau total konsumsi SF_6 dari setiap pabrik Jumlah penggunaan SF_6 ini sebanding dengan emisi SF_6 .

Persamaan 4.29	
Tier 2 Emisi SF ₆ dari Casting Magnesium	
$E_{SF6} = C_{SF6}$	

dimana:

E_{SF6} : Emisi SF₆ dari magnesium *casting*, ton

C_{SF6} : Konsumsi SF₆ dalam magnesium *smelters* dan *foundries*, ton

Metode Tier 3

Jika data aktual pengukuran emisi tersedia dari fasilitas pengolahan magnesium tersendiri, data ini dapat dikumpulkan dan digunakan langsung untuk memperhitungkan emisi nasional. Emisi SF_6 yang dilaporkan (dan produk gas sekunder) atau total konsumsi SF_6 dari setiap pabrik.

4.5. Produksi Timbal

4.5.1 Deskripsi Kategori

Dalam proses sintering/peleburan, pencampuran sintering timbal terkonsentrasi dengan sinter yang didaur ulang. Batu kapur dan silika, oksigen, serta lumpur kandungan tinggi timbal untuk menghilangkan belerang dan logam mudah menguap melalui pembakaran.

Proses yang menghasilkan sinter panggang yang terdiri dari oksida timbal oksida logam lainnya, menghasilkan emisi sulfur dioksida (SO_2) dan energi karbondioksida (CO_2) gas alam yang digunakan untuk menyalakan oksida timbal. Sinte rpanggang kemudian dimasukkan dalam tanur tiup dengan bijih yang mengandung logam yang lain, udara, peleburan berdasarkan produk.

Proses pengambilan peleburan terjadi pada salah satu tanur tiup tradisional atau tungku peleburan imperial, dan pengurangan dari oksida timbal selama proses yang menghasilkan emisi CO_2 .

4.5.2 Data yang diperlukan

Tabel 4. 10 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Timbal

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1	hanya membutuhkan jumlah timbal diproduksi di dalam negeri dan jika tersedia, jumlah yang dihasilkan oleh jenis tungku	Baku (lihat IPCC GL 2006 halaman 4.73)	-
TIER 2	hanya membutuhkan jumlah keseluruhan agen pereduksi dan bahan lain yang digunakan untuk proses produksi timbal dalam negeri	Baku (lihat IPCC GL 2006 halaman 4.73) Kandungan karbon baku (lihat IPCC GL 2006 halaman 4.74)	
TIER 3	Membutuhkan pengumpulan, kompilasi,dan agregasi emisi diukur spesifik fasilitas atau data kegiatan	Membutuhkan kandungan karbon dan produksi/konsumsi tingkat massa untuk semua bahan proses dan perpindahan diluar lokasi	

Metode Tier 1

Metode ini hanya membutuhkan jumlah timbal diproduksi di dalam negeri dan jika tersedia, data jumlah yang dihasilkan oleh jenis tungku dan produksi timbal dari materi sekunder. Semua unit data aktivitas dalam ton.

Faktor emisi yang digunakan dari IPCC GL 2006. Untuk data aktivitas yang berupa total produksi timbal tanpa ada keterangan sumber (primer atau sekunder) dan jenis tungku maka nilai faktor emisi sebesar 0,52 ton CO₂/produksi timbal. Sedangkan data aktivitas produksi yang dikelompokkan dalam sumber dan jenis tungku menggunakan faktor emisi IPCC GL 2006 Tabel 4.21 halaman 4.73.

Persamaan 4.30	
Tier 1 Emisi CO2 dari produksi timbal	
$E_{CO2} = DS \bullet EF_{DS} + ISF \bullet EF_{ISF} + S \bullet F$	EF_{S}

dimana:

ECO₂ : Emisi CO₂ dari produksi timbal, ton

DS : Kuantitas timal yang diproduksi dengan *Direct Smelting*, ton EF_{DS} : Faktor emisi untuk *Direct Smelting*, ton CO₂/ton produksi

timbal

ISF : Kuantitas produksi timbal dari *Imperial Smelting Furnace*, ton EF_{ISF} : Faktor emisi untuk *Imperial Smelting Furnace*, ton CO2/ton

produksi timbal

S : Kuantitas timbal yang diproduksi dari bahan sekunder, ton EFs : Faktor emisi bahan sekunder, ton CO₂/ton produksi timbal

Metode Tier 2

Emisi dapat dihitung dengan menggunakan faktor emisi Negara tertentu berdasarkan penggunaan agen pereduksi, jenis tungkudan bahan proses lain yang menarik. Faktor dapat dikembangkan berdasarkan kandungan karbon yang dipakai untuk material tersebut.

Faktor emisi yang digunakan spesifik berlaku dinegara tersebut atau apabila tidak tersedia maka dapat menggunakan faktor emisi baku dari IPCC GL 2006 Tabel 4.21 halaman 4.73 dan untuk nilai kandungan karbon perlu dihitung an apabila tidak tersedia dapat menggunakan faktor emisi baku dari IPCC GL 2006 Tabel 4.22 halaman 4.74.

Metode Tier 3

Jika data aktual pengukuran langsung emisi CO₂ dari fasilitas utama tersedia, data ini dapat dikumpulkan dan digunakan langsung untuk memperhitungkan emisi nasional.

Contoh Perhitungan

Diketahui

Jumlahproduksi timbal = 36.634,56 ton. Faktor emisi = 0,52 ton CO_2 /ton.

CO₂Emisi = Jumlah produksi timbal x Faktor emisi

 $= 36.634 \text{ ton x } 0.52 \text{ ton } CO_2/\text{ton}$

= 19.050ton

 CO_2 emisi konversi ke gigagrams = 19.050 / 1000 = 19,050 gg.

Tabel 4. 11 Worksheet contoh perhitungan emisi CO2 dari sektor produksi Timbal

Sektor	IPPU				
Kategori	Industri Logam - Produksi Timbal				
Kategori kode	2C5	2C5			
Lembar	1 dari1				
	A	В	С	D	
Jenis teknologi	Jumlah	Faktor emisi	CO ₂ Emisi	CO ₂ Emisi	
	produksi				
	timbal				
Tolong	(ton produksi	(kg CO ₂ /ton	(lzg)	(Ca)	
spesifikasikan	timbal)	produksi timbal)	(kg)	(Gg)	
			C = A * B	$D = C/10^3$	
	36634.56	0.52	19050	19.050	
Total				19.050	

¹⁾ For details of source and furnace types, see Table 4.21 in Chapter 4 of Volume 3.

²⁾ Insert additional rows if necessary.

4.6. Produksi Seng

4.6.1 Deskripsi Kategori

Ada tiga jenis produksi seng primer. Metode pertama adalah proses metalurgi yang disebut penyulingan elektro-termal. Proses ini digunakan untuk menggabungkan konsentrat panggang dan produk seng sekunder keumpan sinter yang dibakar untuk menghapus seng, halida, kadmium, dan kotoran lainnya. Seng oksida yang dihasilkan kaya sinter dikombinasikan dengan kokas metalurgi dalam tanur retort listrik yang mengurangi oksida seng dan menghasilkan uap seng yang ditangkap dalam kondensor vakum. Hasil pengurangan pelepasan non-energi karbondioksida (CO₂).

Metode kedua produksi seng adalah proses pyrometalurgi yang melibatkan penggunaan *Smelting Imperial* Tungku, yang memungkinkan untuk pengobatan simultan timbal dan seng konsentratnya. Hasil proses dalam simultan produksi timbal dan seng dan pelepasan emisi non-energi CO₂.

4.6.2 Data yang diperlukan

Tabel 4. 12 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Seng

TIER	Data aktifitas	Faktor emisi	Parameter
TILK	Data aktiitas	raktor emisi	lain
	Jumlah seng diproduksi di dalam	Baku (lihat IPCC GL	
TIER 1	negeri, dan jika tersedia, jenis	2006 halaman 4.80)	
	proses	, and the second	
		Perhitungan factor	
		emisi Negara tertentu	
	Perhitungan factor emisi Negara	berdasarkan jumlah	
	tertentu berdasarkan jumlah	total agen pereduksi	
TIER 2	total agen pereduksi dan karbon	dan karbon lain yang	
TILK 2	lain yang mengandung material	mengandung material	
	proses yang digunakan untuk	proses yang	
	produksi seng di negara tersebut	digunakan untuk	
		produksi seng di	
		negara tersebut	
	pengumpulan, kompilasi, dan		
TIER 3	agregasi fasilitas data spesifik		
IIEK 3	emisi diukur dan dikumpulkan	-	-
	di tingkat pabrik-		

Metode Tier 1

Metode ini menggunakan data total produksi per jenis proses produksi seng. Namuan apabila data tidak tersedia dapat menggunakan data total produksi seng. Apabila data yang digunakan adalah data nasional statistik maka sebaiknya menggunakan faktor emisi baku pada tabel 4.24 halaman 4.80.

Persamaan 4.31

Tier 1 Emisi CO₂ dari produksi seng

 $E_{CO2} = Zn \bullet EF_{default}$

dimana:

ECO₂ : Emisi CO₂ dari produksi seng, ton

Zn : Kuantitas produksi Zn, ton

EFdefault : Faktor emisi, ton CO₂/ton produksi seng

Persamaan 4.32

Tier 1 Emisi CO₂ dari produksi seng

 $E_{CO2} = ET \bullet EF_{ET} + PM \bullet EF_{PM} + WK \bullet EF_{WK}$

dimana:

ECO₂ : Emisi CO₂ dari produksi Zn, ton

ET : Kuantitas Zn yang diproduksi dengan electro-thermic

distillation, ton

EF_{ET} : Faktor emisi untuk electro-thermic distillation, ton CO₂/ton

produksi Zn

PM : Kuantitas Zn yang diproduksi dengan proses pyrometallurgi

(Imperial Smelting Furnace Process), ton

EF_{PM} : Faktor emisi untuk proses pyrometallurgi, ton CO₂/ton

produksi Zn

WK : Kuantitas Zn yang diproduksi dengan proses Waelz Kiln, ton EF_{WK} : Faktor emisi untuk proses Waelz Kiln, ton CO_2 /ton produksi Zn

Metode Tier 2

Emisi dapat dihitung dengan menggunakan faktor emisi Negara tertentu berdasarkan statistic agregat pabrik pada penggunaan agen pereduksi, jenis tungku dan bahan proses lain yang menarik dikembangkan berdasarkan factor emisi baku yang berlaku untuk material tersebut.Perhitungan factor emisi Negara tertentu berdasarkan jumlah total agen pereduksi dan karbon lain yang mengandung material proses yang digunakan untuk produksi seng di negara tersebut.

Contoh Perhitungan

Diketahui:

Jumlah produksi seng = 71.873,444 ton, Faktor emisi = 1,72 ton CO_2 /ton,

CO₂ Emisi = Jumlah produksi seng x Faktor emisi

 $= 711.873,444 \text{ ton x } 1,72 \text{ ton } CO_2/\text{ton}$

= 123.622 ton,

 CO_2 emisi konversi ke gigagrams = 123.622 / 1000 = 123,6 Gg

Tabel 4. 13 Worksheet contoh perhitungan emisi CO2 dari sektor produksi seng

Sektor	Industrial Processes and Product Use				
Kategori	Industri Logam - Produksi Seng				
Kategory Kode	2C6	206			
Lembar	1 dari 1				
	A	В	С	D	
Jenis teknologi	Jumlah	Faktor emisi	CO ₂ Emisi	CO ₂ Emisi	
	produksi				
	seng				
Tolong	(ton	Ora CO Itan			
Tolong	produksi	(kg CO ₂ /ton produksi seng)	(kg)	(Gg)	
spesifikasikan	seng)	produksi sengj			
			C = A * B	$D = C/10^3$	
	71873.444	1.72	123622	123.6	
Total				123.6	

¹⁾ For details of process types, see Table 4.24 in Chapter 4 of Volume 3.

²⁾ Insert additional rows if necessary.

	ъики I	I Volume 2 – Proses Industri dan Penggunaan Produk
40 P. J. P. J.		
40 D D 1	Т	
10 Pedoman Penyelenggaraan Inventarisasi GRK Nasional	110	Pedoman Penyelenggaraan Inventarisasi GRK Nasional

V. EMISI GAS RUMAH KACA DARI PENGGUNAAN PRODUK NON-ENERGI BENTUKAN BAHAN BAKAR DAN PELARUT

5.1. Penggunaan Pelumas

5.1.1 Deskripsi Kategori

Pelumas sebagian besar digunakan dalam aplikasi industry dan transportasi. Pelumas yang diproduksi di kilang-kilang melalui pemisahan dari minyak mentah atau di fasilitas petrokimia. Yang mana dapat dibagi lagi menjadi (a)minyak motor dan minyak industri, dan (b) minyak gemuk, yang berbeda dalam hal karakteristik fisik (misalnya, viskositas), aplikasi komersial, dan keberadaan dalam lingkungan.

5.1.2 Data yang diperlukan

Tabel 5. 1 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Pelumas

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1 dan 2	Penggunaan Data dasar pelumas tentang produk nonenergi yang digunakan di suatu Negara mungkin tersedia dari produksi, impor dan ekspor data dan pada penggunaan energi /non-energi	 Faktor emisi terdiri dari faktor kadar karbon tertentu (ton C /TJ) dikalikan dengan factor ODU. Sebuah perkalian lebih lanjut oleh 44/12 (rasio massa CO₂ /C) menghasilkan faktor emisi(dinyatakan sebagai ton CO₂/TJ). Untuk faktor kandungan karbon baku pelumas adalah 20,0kg C/GJ pada Nilai Pemanasan Bawah 	

Metode Tier 1 dan 2

Metode Tier 1 dan 2 memiliki pendekatan yang sama yaitu penggunaan pelumas dan karbon konten dari pelumas tersebut. Hanya saja Metode Tier 2 menggunakan data jumlah penggunaan pelumas yang spesifik berdasarkan jenisnya (Minyak pelumas baik untuk motor dan industri).

Nilai faktor emisi nya adalah nilai kandungan karbon yang dikalikan dengan nilai ODU. Kandungan karbon bakusebesar 20 kg C/GJ. Nilai ODU untuk jenis pelumas

dapat dilihat di Tabel 5.2 halaman 5.9 sedangkan nilai ODU baku sebesar 0,2. Untuk metode Tier 2 kandungan karbon yang digunakan adalah spesifik yang berlaku di Indonesia.

Persamaan 5.1

Rumus Dasar untuk menghitung emisi CO2 dari Non-Energy Product Uses

$$CO_2Emissions = \sum_{i} (NEU_i \bullet CC_i \bullet ODU_i) \bullet 44/12$$

dimana:

Emisi CO_2 : emisi CO_2 dari penggunaan produk non-energy, ton

NEU_i : Konsumsi non-energy bahan bakar jenis i, TJ

CC_i : Kandungan karbon spesific bahan bakar i, tonne C/TJ

(=kg C/GJ)

ODU_i : Faktor ODU bahan bakar i, fraksi

44/12 Rasio massa CO₂/C

Persamaan 5.2

Tier 1 Emisi CO₂ dari penggunaan pelumas

 $CO_2Emissions = LC \bullet CC_{Lubricant} \bullet ODU_{Lubricant} \bullet 44/12$

dimana:

Emisi CO₂ : emisi CO₂ dari penggunaan pelumas, ton

LC : Konsumsi pelumas, TJ

CC_{Lubricant} : Kandungan karbon dari pelumas (default), ton C/TJ (= kg C/GJ)
ODU_{Lubricant} : Faktor ODU factor (berdasarkan komposisi default minyak dan

pelicin (grease)), fraksi

44/12 Rasio massa CO₂/C

Persamaan 5.3

Tier 2 Emisi CO2 dari penggunaan pelumas

$$CO_2Emissions = \sum_i (LC_i \bullet CC_i \bullet ODU_i) \bullet 44/12$$
 Equation 5.3

dimana:

Emisi CO2 : Emisi CO2 dari penggunaan pelumas, ton

 LC_i : Konsumsi pelumas jenis i, TJ

CC_i : Kandungan karbon dari pelumas jenis _i, ton C/TJ (= kg C/GJ)

ODU_i : Faktor ODU pelumas jenis *i*, fraksi

44/12 Rasio massa CO₂/C

Contoh Perhitungan:

diketahui,

Jumlah konsumsi pelumas = 20.936,7759 TJ. Kandungan karbon pelumas = 20 ton-C/TJ.

ODU Faktor = 0,2

CO₂ Emisi = Konsumsi jumlah pelicin x Kandungan karbon pelumas

x Fraksi ODU x 44/12

 $= 20.936,7759 \text{ TJ } \times 20 \text{ ton-C/TJ } \times 0.2 \times (44/12)$

 $= 307.073 \text{ tonne CO}_2.$

 CO_2 emisi konversi ke gigagrams CO_2 = 307.073 / 1000

= 307,073 sekitar 307.1 Gg CO₂.

Tabel 5. 2 Worksheet contoh perhitungan emisi CO2 dari sektor penggunaan pelumas

Sektor	IPPU	IPPU				
Kategori	Penggunaan pro pelumas	duk bahan baka	r non-energi dan pelarut	- Penggunaan		
Kode kategori	2D1					
Lembar	1 dari 1					
A	В	С	D	Е		
Jumlah konsumsi pelumas	Kandungan karbon pada pelumas	ODU faktor	CO ₂ Emisi	CO ₂ Emisi		
(TJ)	(ton-C/TJ)	(fraksi)	(ton CO ₂)	(Gg CO ₂)		
			D = A * B * C * 44/12	$E = D/10^3$		
20936,7759	20	0,2	307073	307,1		

5.2. Penggunaan Lilin (Paraffin)

5.2.1 Deskripsi Kategori

Kategori, seperti yang didefinisikan di sini, termasuk produk seperti minyak jelly, lilin parafin dan lilinlainnya, termasu kozokerite (campuran dari hidrokarbon jenuh, padat pada suhu kamar).

Emisi dari penggunaan lilin berasal terutama ketika malam atau turunan dari paraffin yang dibakar selama penggunaan (misalnya, lilin), dan ketika lilin dibakar dengan atau tanpa pemulihan panas atau di pengolahan air limbah (untuk surfaktan).

5.2.2 Data yang diperlukan

Tabel 5. 3 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor produksi Lilin (Paraffin)

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1	Penggunaan lilin paraffin	faktor baku ODU	
		Factor ODU negara	
		tertentu untuk lilin	
TIER 2		berdasarkan	
IIEK Z		pengetahuan	
		nasional sutau	
		pembakaran	

Metode Tier 1 dan 2

Metode Tier 1 dan 2 memiliki pendekatan yang sama yaitu penggunaan lilin dan karbon konten dari lilin tersebut. Hanya saja Metode Tier 2 menggunakan data jumlah penggunaan lilin yang spesifik berdasarkan jenisnya.

Nilai faktor emisi nya adalah nilai kandungan karbon yang dikalikan dengan nilai ODU. Kandungan karbon baku sebesar 20 kg C/GJ atau setara dengan 20 ton C/TJ. Nilai ODU baku sebesar 0,2. Untuk metode Tier 2 kandungan karbon yang digunakan adalah spesifik yang berlaku di Indonesia apabila tersedia jika tidak dapat menggunakan nilai baku. Sedangkan untuk nilai ODU digunakan nilai spesifik yang berlaku di Indonesia.

Persamaan 5.4

Tier 1 - Lilin (waxes)

 $CO_2Emissions = PW \bullet CC_{Wax} \bullet ODU_{Wax} \bullet 44/12$

dimana:

Emisi CO₂ Emisi CO₂ dari penggunaan lilin (waxes), ton

PW Total konsumsi lilin, TJ

Kandungan karbon dari lilin, ton C/TJ (= kg C/GJ) CC_{Wax}

Faktor ODU lilin, fraksi ODU_{Wax} 44/12 Rasio massa CO₂/C

Persamaan 5.5

Tier 2 - Lilin (waxes)

 $CO_2Emissions = \sum_i (PW_i \bullet CC_i \bullet ODU_i) \bullet 44/12$

dimana:

Emisi CO₂ Emisi CO₂ dari penggunaan lilin (waxes), ton

PW Total konsumsi lilin jenis i, TJ

 CC_{i} Kandungan karbon dari lilin jenis i, ton C/TJ (= kg C/GJ)

 ODU_i Faktor ODU lilin jenis i, fraksi

44/12 Rasio massa CO₂/C

Contoh perhitungan

Diketahui:

Jumlah konsumsi Paraffin Waxes = 1.334,60784 TJ.

Kandungan karbon Paraffin Waxes = 20 ton-C/TJ.

ODU Faktor = 0.2

CO₂ Emisi = Jumlah konsumsi Paraffin Waxes

x Kandungan karbon Paraffin Waxes x ODU Faktor

 $= 1.334,60784 \text{ TJ} \times 20 \text{ ton-C/TJ} \times 0,2 \times (44/12)$

 $= 19.574 \text{ ton } CO_2$

 CO_2 Emissions converted to gigagrams CO_2 = 19.574 / 1000

= 19,574 sekitar 19.6 Gg CO_2 .

Tabel 5. 4 Worksheet contoh perhitungan emisi CO₂ dari sektor penggunaan Lilin

Sektor	IPPU	IPPU					
Kategori	Penggunaan baha	ın bakar non en	ergi dan pelarut - Pe	nggunaan Lilin			
Kategori	2D2						
Kode							
Lembar	1 dari 1						
A	В	С	D	Е			
Jumlah	Kandungan	ODU faktor	CO ₂ Emisi	CO ₂ Emisi			
konsumsi	karbon pada						
Paraffin Waxes	Paraffin Waxes						
(TJ)	(ton-C/TJ)	(fraksi)	(ton CO ₂)	(Gg CO ₂)			
			D = A * B * C * 44/12	$E = D/10^3$			
1.334,60784	20	0,2	19.574	19,6			

VI. EMISI GAS RUMAH KACA DARI INDUSTRI ELEKTRONIK

6.1 *Etching* dan Pembersihan CVD Semikonduktor, Display Kristal Cair, dan Fotovoltaik

6.1.1 Deskripsi Kategori

Industri elektronik saat ini mengemisikan baik FCs yang berupa gas pada suhu kamar dan FCs yang berupa cairan pada suhu kamar. Gas termasuk CF₄, C₂F₆, C₃F₈, c-C₄F₈, c-C₄F₈O, C₄F₆, C₅F₈, CHF₃, CH₂F₂, trifluoridanitrogen (NF₃), dan sulfurheksafluorida (SF₆). Gas tersebut digunakan dalam dua langkah penting dari manufaktur elektronik: (i) plasmaetsasilikon yang mengandung bahan dan (ii) pembersihan deposisi uap kimia (CVD) alat dinding ruang di mana silikon disimpan.

6.1.2 Data yang diperlukan

Tabel 6. 1 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor Etching dan Pembersihan CVD Semikonduktor, Display Kristal Cair, dan Fotovoltaik

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1	perlu menentukan total luas permukaan substrat elektronik yang diproses untuk tahun tertentu	Baku (lihat IPCC GL 2006 halaman 6.16)	δ= 1 jika Persamaan 6.1diterapkan pada industry PV dannol ketika Persamaan 6.1yang diterapkan baik industry semi konduktoratau TFT-FPD, tanpa dimensi
TIER 2a (Process gas- specific parameters)	data pembelian gas pada perusahaan atau tingkat pabrik	Baku (lihat IPCC GL 2006 halaman 6.20)	-
TIER 2b (Process type- specific parameters)	data pembelian gas pada perusahaan atau tingkat pabrik	Baku (lihat IPCC GL 2006 halaman 6.17, 6.18, 6.19)	

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 3	Data pembelian gas pada tingkat perusahaan atau pabrik	produsen semi konduktor digunakan perusahaan atau nilai-nilai spesifik pabrik	Membutuhkan nilai-nilai perusahaan tertentu atau spesifik pabrik untuk semua parameter yang digunakan dalam persamaan untuk setiap proses tersendiri atau untuk setiap set kecil dari proses

Metode Tier 1

Metode ini digunakan apabila data spesifik perusahaan tidak ada. Metode ini didesain untuk memberikan sebuah estimasi agregasi untuk emisi FC meskipun metodologi ini ada untuk menghitung spesifik gas yang teremisikan. Estimasi agregasi untuk emisi FC dapat dilihat di **Table 6.2** 2006 IPCC GL halaman 6.16 dengan spesifik gas berupa CF₄, C₂F₆,CHF₃, C₃F₈, c-C₄F₈, NF₃, SF₆.

Data yang dibutuhkan berupa kapasitas desain pabrik dalam luas substrat yang diproses. Untuk nilai default kapasitas silikon dan kaca diperoleh dari 2006 IPCC GL di **Table 6.7** halaman 6.22. Nilai default Faktor utilisasi pabrik berkisar 76-91% dengan nilai rata-rata 82%. Untuk produksi semikonduktor nilai default Faktor utilisasi pabrik sebesar 80%. Begitu juga untuk produksi TFT-FPD, nilai faktor utilisasi pabrik diasumsikan 80%. Sedangkan untuk PV manufaktur nilainya sebesar 77-92% dengan nilai rata-rata 86%. Kapasitas produksi default untuk PV diperoleh dari 2006 IPCC GL di **Table 6.8** halaman 6.24. Faktor emisi yang digunakan adalah nilai default dari 2006 IPCC GL di **Table 6.2** halaman 6.16. Nilai C_{PV} diasumsikan sebesar 0,5.

dimana:

 $\{FC_i\}_n$: Emisi gas FC jenis i, massa gas i

> Note: { }n menyatakan himpunan dari masing-masing kelompok produk (semiconductors, TFT-FPD or PV-cells) dan *n* menyatakan jumlah gas-gas yang termasuk dalam masing-masing himpunan (6 untuk semiconductors,

3 untuk TFT-FPD dan 2 untuk PV-cells)

 EF_{i} : Faktor emis FC untuk gas *i* dinyatakan dalam emisi tahunan per meter

persegi luas substrat, (mass of gas i)/m²

 $C_{\rm u}$: Faktor utilisasi kapasitas pabrik, fraksi

: Kapasitas desain pabrik, Gm² luas substrat yang diproses, kecuali untuk $C_{\rm d}$

PV-cell yaitu dalam Mm²

CPV : Fraksi PV manufacture yang menggunakan FCs, fraksi

δ Berharga 1 jika Persamaan 6.1 diterapkan pada industri PV dan berharga

nol jika diterapkan untuk industri semiconductor atau TFT-FPD,

dimensionless

Metode Tier 2a

Metode ini berdasarkan pada data konsumsi gas spesifik perusahaan dan teknologi pengontrol. Total emisi sebandung dengan jumlah penggunaan gas FC pada proses produksi dan emisi by-product CF₄, C₂F₆,CHF₃ dan C₃F₈.

Data yang dibutuhkan adalah konsumsi gas FC per jenisnya. Selain itu dibutuhkan data laju penggunaan gas, fraksi volume gas yang digunakan dan fraksi gas yang tersisa yang diperoleh dari spesifik perusahaan. Faktor emisi diperoleh 2006 IPCC GL Table 6.3, 6.4, 6.5, dan 6,5 halaman 6.17-6.19.

Emisi dari penggunaan gas FC dihitung dengan menggunakan persamaan 6.2 sedangkan untuk emisi by product menggunakan persamaan 6.3 – 6.6 berikut

~				
		Persamaa	an 6.2	
	Tier 2a Me	tode untuk	estimasi em	isi FC
	$E_i = (1 -$	h) \bullet FC_i \bullet $(1-$	$-U_i$) • $(1-a_i •$	d_i)

dimana:

Εi : Emisi gas *i*, kg

FCi : Konsumsi gas i, (e.g., CF₄, C₂F₆, C₃F₈, c-C₄F₈, c-C₄F₈O, C₄F₆, C₅F₈, CHF₃, CH₂F₂,

 NF_3 , SF_6), kg

h : Fraksi gas tersisa dalam wadah pengiriman bahan (*shipping container*)

setelah digunakan, fraksi

: Laju penggunaan gas i (fraksi yang ditransformasi dalam proses), fraksi Ui

Fraksi volum gas i yang digunakan dalam proses yang dilengkapi teknologi ai

kendali emisi, fraksi

Di Fraksi gas *i* yang dimusnahkan oleh alat kendali emisi, fraksi

Persamaan 6.3

Emisi CF₄ By-PRODUCT

$$BPE_{CF4,1} = (1-h) \bullet B_{CF4,1} \bullet FC_i \bullet (1-a_i \bullet d_{CF4})$$

dimana:

BPE_{CF4,i} : Emisi CF₄ dari gas jenis i yang digunakan, kg B_{CF4,i} : Faktor emisi, kg CF₄ /kg gas i yang digunakan

d_{CF4} : Fraksi CF₄ yang dimusnahkan oleh teknologi kendali

emisi, fraksi

Persamaan 6.4

Emisi C₂F₆BY-PRODUCT

$$BPE_{C2F6,1} = (1-h) \bullet B_{C2F6,1} \bullet FC_i \bullet (1-a_i \bullet d_{C2F6})$$

dimana:

BPE_{C2F6,i} : Emisi C_2F_6 dari gas jenis i yang digunakan, kg $B_{C2F6,i}$: Faktor emisi, kg C_2F_6 /kg gas i yang digunakan

d_{C2F6} : Fraksi C₂F₆ yang dimusnahkan oleh teknologi kendali

emisi, fraksi

Persamaan 6.5

Emisi CHF3 BY-PRODUCT

$$BPE_{CHF3,1} = (1-h) \bullet B_{CHF3,1} \bullet FC_i \bullet (1-a_i \bullet d_{CHF3})$$

dimana:

 $BPE_{CHF3,i}$: Emisi CHF_3 dari gas jenis i yang digunakan, kg $B_{CHF3,i}$: Faktor emisi, kg CHF_3 /kg gas i yang digunakan

d_{CHF3} : Fraksi CHF₃ yang dimusnahkan oleh teknologi kendali

emisi, fraksi

Persamaan 6.6

Emisi C₃F8 BY-PRODUCT

$$BPE_{C3F8,1} = (1-h) \bullet B_{C3F8,1} \bullet FC_i \bullet (1-a_i \bullet d_{C3F8})$$

dimana:

BPE_{C3F8,i} : Emisi C₃F₈ dari gas jenis *i* yang digunakan, kg
B_{C3F8,i} : Faktor emisi, kg C₃F₈ /kg gas *i* yang digunakan
d_{C3F8} : Fraksi CH₃F₈ yang dimusnahkan oleh teknologi

kendali emisi, fraksi

Metode Tier 2b

Metode ini membutuhkan data agregrasi kuantitas pada setiap gas yang dijadikan umpan dalam semua proses *etching* (etsa) dan proses pembersihan. Data yang dibutuhkan berupa fraksi gas tertinggal di kontainer setelah penggunaan, fraksi gas yang terdestruksi atau tertransformasi per jenis proses. Nilai default untuk penggunaan teknologi pengontrol emisi ini dapat dilihat di 2006 IPCC GL 2006 Tabel 6.6 halaman 6.20.

Total emisi diperoleh dari emisi total FC dan emisi *by gas product* spesifik. Nilai default faktor emisi *by gas product* diperoleh dari 2006 IPCC GL table 6.3-6.5 halaman 6.17-6.19. Nilai fraksi destruksi dapat dilihat di 2006 IPCC GL 2006 Tabel 6.6 halaman 6.20.

Total emisi Fc dihitung dari persamaan 6.7 sedangkan persamaan 6.8 hingga 6.11 menghitung emisi gas spesifik *by product*.

Persamaan 6.7

Tier 2b Metode untuk mengestimasi emisi FC

$$E_{i} = (1 - h) \bullet \sum_{p} \left[FC_{i,p} \bullet \left(1 - U_{i,p} \right) \bullet 1 - a_{i,p} \bullet d_{i,p} \right]$$

dimana:

 E_i Emisi gas jenis i, kg

P : Jenis proses (etching vs. CVD chamber cleaning) FC_{i,p} : Massa gas *i* diumpankan ke proses jenis *p* (e.g., CF4,

C2F6, C3F8, c-C4F8, c-C4F80, C4F6, C5F8, CHF3,

CH2F2, NF3, SF6), kg

H : Fraksi gas tersisa dalam wadah pengiriman bahan

(shipping container) setelah digunakan, fraksi

 $U_{i,p}$ Fraksi penggunaan masing-masing gas jenis i dan

proses tipe p (fraksi yang dimusnahkan atau

ditransformasi), fraksi

 $a_{i,p}$: Fraksi volum gas jenis *i* yang diumpankan ke proses

jenis p yang dilengkapi dengan teknologi pengendalian

emisi, fraksi

 $d_{i,p}$: Fraksi gas jenis i yang dimusnahkan oleh teknologi

kendali emisi pada proses jenis *p* (jika lebih dari satu teknologi kendali emisi digunakan pada proses jenis *p*, gunakan rata-rata tertimbang dari teknologi-teknologi

tersebut), fraksi

Persamaan 6.8

Emisi CF₄ By-PRODUCT

$$BPE_{CF4,i} = (1-h) \bullet \sum_{p} \left[B_{CF4,i,p} \bullet FC_{i,p} \bullet (1-a_{i,p} \bullet d_{CF4,p}) \right]$$

dimana:

BPE_{CF4,i} : Emisi CF₄ yang dikonversi dari gas jenis *i* yang

digunakan, kg

 $B_{CF4,i,p}$: Faktor emisi CF_4 dari gas jenis i pada proses jenis p, kg

CF₄ /kg gas *i* yang digunakan

d_{CF4,p} : Fraksi CF₄ yang dimusnahkan oleh teknologi kendali

emisi pada proses jenis p, fraksi

H : Fraksi gas tersisa dalam wadah pengiriman bahan

(shipping container) setelah digunakan, fraksi

a_{i,p} : Fraksi volum gas jenis *i* yang diumpankan ke proses

jenis p yang dilengkapi dengan teknologi pengendalian

emisi, fraksi

Persamaan 6.9

Emisi C₂F₆ By-PRODUCT

$$BPE_{C2F6,i} = (1-h) \bullet \sum_{p} [B_{C2F6,i,p} \bullet FC_{i,p} (1-a_{i,p} \bullet d_{C2F6,p})]$$

dimana:

 $BPE_{C2F6,i}$: Emisi C_2F_6 yang dikonversi dari gas jenis *i* yang

digunakan, kg

 $B_{C2F6,i,p}$: Faktor emisi C_2F_6 dari gas jenis i pada proses jenis p,

kg CF₄ /kg gas *i* yang digunakan

 $F_{Ci,p}$: Massa gas *i* diumpankan ke proses jenis *p* (e.g., CF_4 ,

C₂F₆, C₃F₈, c-C₄F₈, c-C₄F₈O, C₄F₆, C₅F₈, CHF₃, CH₂F₂, NF₃,

 SF_6), kg

d_{C2F6,p} : Fraksi C₂F₆ yang dimusnahkan oleh teknologi kendali

emisi pada proses jenis p, fraksi

H : Fraksi gas tersisa dalam wadah pengiriman bahan

(shipping container) setelah digunakan, fraksi

 $a_{i,p}$: Fraksi volum gas jenis i yang diumpankan ke proses

jenis p yang dilengkapi dengan teknologi pengendalian

emisi, fraksi

Persamaan 6.10

Emisi CHF3 BY-PRODUCT

$$BPE_{CHF3,i} = (1-h) \bullet \sum_{p} [B_{CHF3,i,p} \bullet FC_{i,p} (1-a_{i,p} \bullet d_{CHF3,p})]$$

dimana:

 $BPE_{CHF3,i}$: Emisi CHF_3 yang dikonversi dari gas jenis *i* yang

digunakan, kg

 $B_{CHF3,i,p}$: Faktor emisi CHF3 dari gas jenis *i* pada proses jenis *p*, kg

CF₄ /kg gas i yang digunakan

 $F_{Ci,p}$: Massa gas *i* diumpankan ke proses jenis *p* (e.g., CF_4 , C_2F_6 ,

C₃F₈, c-C₄F₈, c-C₄F₈O, C₄F₆, C₅F₈, CHF₃, CH₂F₂, NF₃, SF₆), kg

d_{CHF3,p} : Fraksi CHF₃ yang dimusnahkan oleh teknologi kendali

emisi pada proses jenis p, fraksi

H : Fraksi gas tersisa dalam wadah pengiriman bahan

(shipping container) setelah digunakan, fraksi

 $a_{i,p}$: Fraksi volum gas jenis *i* yang diumpankan ke proses jenis *p*

yang dilengkapi dengan teknologi pengendalian emisi,

fraksi

Persamaan 6.11

BY-PRODUCT EMISSIONS OF C3F8

$$BPE_{C3F8,i} = (1-h) \bullet \sum_{p} [B_{C3F8,i,p} \bullet FC_{i,p} (1-a_{i,p} \bullet d_{C3F8,p})]$$

dimana:

BPEC3F8,i : Emisi C₃F₈ yang dikonversi dari gas jenis *i* yang

digunakan, kg

: Faktor emisi C₃F₈ dari gas jenis *i* pada proses jenis *p*, BC3F8,i,p

kg CF4 /kg gas i yang digunakan

: Massa gas *i* diumpankan ke proses jenis *p* (e.g., CF4, FCi,p

C2F6, C3F8, c-C4F8, c-C4F80, C4F6, C5F8, CHF3,

CH2F2, NF3, SF6), kg

: Fraksi C₃F₈ yang dimusnahkan oleh teknologi kendali dC3F8,p

emisi pada proses jenis p, fraksi

h : Fraksi gas tersisa dalam wadah pengiriman bahan

(shipping container) setelah digunakan, fraksi

: Fraksi volum gas jenis *i* yang diumpankan ke proses ai,p

jenis p yang dilengkapi dengan teknologi pengendalian

emisi, fraksi

Persamaan 6.12

Total emisi FC

 $Total\ FC\ emissions = E_{NF3} + E_{CHF3} + E_{CF3} + BPE_{CF4,NF3}$

Metode Tier 3

Prinsipnya sama dengan metode Tier 2b. Metode ini menggunakan persamaan 6.7 hingga 6.11 hanya saja data aktivitas berupa data sepesifik dari pabrik atau perusahaan atau tidak menggunakan data default.

Contoh Cara Perhitungan

1. Cara Perhitungan Kategori Integrated Circuit Or Semiconductor (2E1)

Ketahui data fraksi tahunan kapasitas produksi pabrik untuk senyawa fluorinated

- b. Ketahui data kapasitas tahunan desain manufaktur per senyawa fluorinated dalam Gm² dari proses silikon
- c. Tentukan faktor emisi, untuk default Tier 1 senyawa fluorinated dari proses silika seperti dibawah ini: (IPCC 2006, 6.16)

Tabel 6. 2 Faktor emisi senyawa fluorinated dari proses silika

Electronic Industry	CF ₄	C_2F_6	CHF ₃	C_3F_8	NF ₃	SF ₆	C ₆ F ₁₄
Sector							
Semiconductors	0.9	1	0.04	0.05	0.04	0.2	N/A

Keterangan: satuan dalam kg FC/m²

- d. Lakukan konversi ekivalen CO₂ ke dalam ton CO₂/ton FC dengan menggunakan faktor konversi
- e. Lakukan perhitungan emisi gas FC dengan cara mengalikan data yang diperoleh dari tahap (a) sampai dengan tahap (d) diatas, selanjutnya dikalikan dengan angka 1000 untuk menghasilkan FC emisidalam gigagrams CO₂ equivalent.
- f. Cantumkan data dan tahapan perhitungan di atas, ke dalam lembar kerja (worksheet) sebagaimana dibawah ini

Tabel 6. 3 Worksheet perhitungan emisi senyawa fluorinated dari IC dan semikonduktor

Sektor	IPPU	IPPU							
Kategori	Industri Elek	tronik - Integrate	ed Circuit (IC) a	tau Semikondu	ktor				
Kode Kategori	2E1	2E1							
Lembar	1 dari 1								
	A	В	С	D	Е				
Senyawa	Fraksi	Kapasitas	<i>Tier 1</i> Faktor	Konversi	FC Emissions				
Fluorinated	Kapasitas	tahunan desain	emisi Default	faktor CO ₂	4)				
(FCs)	produksi	Manufacturing	FC ²⁾	Equivalent 3)					
	pabrik	1)							
	tahunan ¹⁾								
	(fraksi)	(Gm ² silikon di proses)	(kg FC/m ² silikon di proses)	(ton CO ₂ /ton FC)	(Gg CO ₂ equivalent)				
					E = A * B * C * D * 10 ³				
CF ₄			0.9						

Sektor	IPPU	IPPU				
Kategori	Industri Elek	tronik - Integrate	d Circuit (IC) a	tau Semikondul	ktor	
Kode	2E1					
Kategori						
Lembar	1 dari 1					
	A	В	С	D	Е	
C_2F_6			1			
CHF ₃			0.04			
C_3F_8			0.05			
NF ₃			0.04			
SF ₆			0.2			
Total						

2. Cara Perhitungan Kategori TFT Flat Panel Display (2E2)

- a. Ketahui data fraksi tahunan kapasitas produksi pabrik untuk senyawa fluorinated
- b. Ketahui kapasitas tahunan desain manufaktur per senyawa fluorinated di kolom B dalam Gm2 dari proses kaca
- c. Gunakan Tier 1 Default FC Emission Factor dalam satuan g FC/m²sebagaimana pada table berikut (IPCC 2006, 6.16)

Tabel 6. 4 Faktor emisi senyawa fluorinated TFT Flat Panel Display

Electronic Industry Sector	CF ₄	C ₂ F ₆	CHF ₃	C ₃ F ₈	NF ₃	SF ₆	C ₆ F ₁₄
TFT-FPDs	0.5	N/A	N/A	N/A	0.09	4	N/A

- d. Lakukan konversi dengan menggunakan faktor konversi ekivalen CO2 dalam satuan ton CO2/ton FC
- e Lakukan perhitungan untuk menghasilkan FC emisidengan mengalikan setiap data yang diperoleh dari tahapan (a) sampai dengan (d). Hasil perhitungan dikalikan angkan 1000untuk menghasilkan FC emisidalam gigagrams CO_2 equivalent.
- f. Cantumkan data dan tahapan perhitungan di atas, ke dalam lembar kerja (worksheet) sebagaimana dibawah ini.

Tabel 6. 5 Worksheet perhitungan emisi senyawa fluorinated dari *TFT Flat Panel Display*

Sektor	IPPU							
Kategori	Industri Elektronik - TFT Flat Panel Display							
Kode Kategori	2E2							
Lembar	1 dari 1							
Senyawa Fluorinated (FCs)	A Fraksi Kapasitas produksi pabrik tahunan 1) (fraksi)	B Kapasitas tahunan desain Manufacturing (Gm² silikon di proses)	C Tier 1 Faktor emisi Default FC ²⁾ (kg FC/m ² silikon di proses)	D Konversi faktor CO ₂ Equivalent ³⁾ (ton CO ₂ /ton FC)	E FC Emissions 4) (Gg CO ₂ equivalent) E = A * B * C * D			
CF ₄			0.5					
NF ₃			0.9					
SF ₆			4					
Total								

3. Cara Perhitungan Kategori Photovoltaics (2E3)

- a. Ketahui data fraksi tahunan kapasitas produksi pabrik untuk senyawa fluorinated
- b. Ketahui data kapasitas tahunan desain manufaktur per senyawa fluorinated dalam Gm2 dari proses kaca
- c. Gunakan Tier 1 Default FC Emission Factor dalam satuan g FC/m²berikut ini (IPCC 2006, 6.16)

Tabel 6. 6 Faktor emisi senyawa fluorinated untuk Photovoltaics

Electronic Industry	CF ₄	C_2F_6	CHF ₃	C_3F_8	NF_3	SF ₆	C_6F_{14}
Sector							
PV-cells	5	0.2	N/A	N/A	N/A	N/A	N/A

d. Lakukan konversi dengan menggunakan faktor konversi CO2 ekivalen dalam satuan ton CO_2 /ton FC

- e. Lakukan perhitungan untuk menghasilkan FC emisi dengan mengalikan data-data yang diperoleh dari tahap (a) sampai dengan tahap (d). Hasil perhitungan dikalikan angka 1000 untuk menghasilkan FC emisidalam gigagrams CO_2 equivalent.
- f. Cantumkan data dan tahapan perhitungan di atas, ke dalam lembar kerja (worksheet) sebagaimana dibawah ini.

Tabel 6. 7 Worksheet perhitungan emisi senyawa fluorinated dari Photovoltaics

Sektor	IPPU						
Kategori	Industri elektronik - Photovoltaics						
Kode Kategori	2E3						
Lembar	1 dari 2						
Senyawa Fluorinated (FCs)	A Fraksi Kapasitas produksi pabrik tahunan	B Kapasitas tahunan desain Manufacturing ¹⁾	C Fraksi PV yang menggunakan senyawa fluorinated				
	(fraksi)	(Mm² substrat yang diproses)	(fraksi)				
CF ₄							
C ₂ F ₆							
Total							
Lembar	2 dari 2						
Fluorinated Compounds (FCs)	D Tier 1 Faktor Emisi Default FC ¹⁾ (g FC/m ² substrat yang	E Faktor konversi CO ₂ Equivalent ²⁾ (ton CO ₂	F Emisi FC ³⁾				
	diproses)	/ton FC)	(Ekivalen Gg CO ₂)				
			F = A * B * C * D * E / 10 ³				
CF ₄	5						
C ₂ F ₆	0.2						

6.2. Fluida Pemindah Panas

6.2.1 Deskripsi Kategori

FCs dikenal sebagai fluida pemindah panas, FCs ini cair pada suhu kamar dan memiliki tekanan uap yang cukup tinggi. Kerugian penguapan berkontribusi pada total emisi FC. Kerugian penguapan ini terjadi selama pendinginan peralatan proses tertentu, selama pengujian perangkat semikonduktor dikemas dan selama fase uap aliran penyolderan komponen elektronik untuk papan sirkuit. Kerugian penguapan tidak terjadi ketika FCs cair yang digunakan untuk mendingin kankomponen elektronik atau sistem selama operasi.

Pada aplikasi ini, Zat cair yang terkandung dalam sistem tertutup selama umur produk atau sistem. Lebih dari $20FC_S$ cair yang berbeda dipasarkan, sering sebagai campuran senyawa sepenuhnya fluorinated, ke Sektor elektronik karena CO_2 setara setiap cairan berbeda, masing-masing harus dilacak dan dilaporkan secara terpisah.

6.2.2 Data yang diperlukan

Tabel 6. 8 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor Fluida Pemindah Panas

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1	perlu menentukantotal luas permukaansubstratelektronikdiproses untuktahun tertentu	Baku (lihat IPCC GL 2006 halaman 6.16)	-
TIER 2	data pembeliangaspadaperusahaan atautingkat pabrik	-	-

Metode Tier 1

Metode ini dilakukan apabila data spesifik perusahaan mengenai fluida pemindah panas tdak tersedia. Metode ini memberikan sebuah estimasi dari emisi agregat - emisi rata-rata tertimbang di semua FC_S cair yang dinyatakan sebagai massa C₆F₁₄.

Data yang dibutuhkan adalah kapasitas desain dari industri semikonduktor dalam unit Gm. Nilai faktor utilisasi industri semikonduktor dalam unit fraksi sebesar 80%. Faktor emisi yang digunakan adlah nilai faktor emisi default dari 2006 IPCC GL Tabel 6.2 halaman 6.16.

Persamaan 6.13

TIER 1 METHOD FOR ESTIMATION OF TOTAL FC EMISSIONS FROM HEAT TRANSFER FLUIDS

$$FC_{liquid,total} = EF_l \bullet C_u \bullet C_d$$

dimana:

FC_{liquid, total}: Total emisi FC dinyatakan dalam massa C₆F₁₄, Mt C₆F₁₄

EF₁ : Faktor emisi (emisi FC agregat per Gm² silicon yang dikonsumsi selama

perioda perhitungan dinyatakan sebagai massa C₆F₁₄), Mt C₆F₁₄/Gm²

C_u : Faktor utilisasi industri semikonduktor, fraksi
 C_d : Kapasitas desain industri semikonduktor, Gm2

Metode Tier 2

Metode ini menggunakan pendekatan kesetimbangan massa yang dihitung dari penggunaan FC cair selama satu tahun. Metode ini menggunakan data aktivitas spesifik perusahaan. Data yang dibutuhkan berupa:

- 1. Netto pembelian FCi cair selama perioda inventory dalam unit liter
- 2. Kapasitas yang baru dipasang dalam unit liter
- 3. Kapasitas peralatan yang dihentikan operasinya dalam unit liter
- 4. Inventory FCi cair pada akhir perioda pelaporan dalam unit liter
- 5. Banyaknya FCi cair yang dikumpulkan dan dikirim keluar pabrik selama perioda pelaporan dalam unit liter

Persamaan 6.14 digunakan untuk menghitung emisi FC.

Persamaan 6.14

Tier 2 METHOD FOR ESTIMATION OF FC EMISSIONS FROM HEAT TRANSFER FLUIDS

$$FC_{i} = \rho_{i} \bullet \left[I_{i,t-1}(l) + P_{i,t}(l) - N_{i,t}(l) + R_{i,t}(l) - I_{i,t}(l) - D_{i,t}(l) \right]$$

dimana:

FC_i : Emisi FC*i*, kg

 ρ_i : Densitas FC*i* cair, kg/liter

 $I_{i,t-1}(I)$: inventory FC*i* cair pada akhir perioda terdahulu, liter $P_{i,t}(I)$: Netto pembelian FC*i* cair selama perioda inventory, liter

 $N_{i,t}(I)$: Kapasitas yang baru dipasang, liter

 $R_{i,t}(I)$: Kapasitas peralatan yang dihentikan operasinya, liter $I_{i,t}(I)$: Inventory FCi cair pada akhir perioda pelaporan, liter

 $D_{i,t}(I)$: Banyaknya FCi cair yang dikumpulkan dan dikirim keluar pabrik selama

perioda pelaporan, liter

Contoh Cara Perhitungan:

Kategori Heat Transfer Fluid (2E4)

- a. Ketahui data fraksi tahunan kapasitas produksi pabrik per senyawa fluorinated.
- b. Ketahui data kapasitas tahunan desain manufaktur di kolom B di Gm2 dari konsumsi silikon.
- Gunakan faktor emisi default dengan satuan kg/m²konsumsi silikon, sebagaimana pada Tabel dibawah ini.

Tabel 6. 9 Faktor emisi senyawa fluorinated kategori fluida pemindah panas

Electronic Industry	CF ₄	C_2F_6	CHF ₃	C_3F_8	NF ₃	SF ₆	C ₆ F ₁₄
Sector							
Heat Transfer Fluids	N/A	N/A	N/A	N/A	N/A	N/A	0.3

- d. Lakukan konversi dengan mengunakan faktor konversi CO2 ekivalen dalam ton CO2/ton FC
- e. Lakukan perhitungan untuk menghasilkan FC emisi dengan mengalikan data-data yang diperoleh dari tahap (a) sampai dengan tahap (d). Hasil perhitungan dikalikan angka 1000 untuk menghasilkan FC emisidalam gigagrams CO_2 equivalent.
- f. Cantumkan data dan tahapan perhitungan di atas, ke dalam lembar kerja (worksheet) sebagaimana dibawah ini.

Tabel 6. 10 Worksheet perhitungan emisi senyawa fluorinated dari sektor Fluida pemindah Panas

Sektor	IPPU				
Kategori	Industri Elel	ktronik – Fluida p	emindah panas	(Heat Transfer	Fluid)
Kode Kategori	2E4				
Lembar	1 dari 1				
Senyawa Fluorinated (FCs)	A Fraksi Kapasitas produksi pabrik tahunan	B Kapasitas tahunan desain Manufacturing	C Tier 1 Faktor emisi Default FC 1)	D Konversi faktor CO ₂ Equivalent ²⁾	E FC Emissions
	(fraksi)	(Gm² konsumsi silikon)	(kg C ₆ F ₁₄ /m ² konsumsi silikon)	(ton CO ₂ /ton C ₆ F ₁₄)	(Gg CO ₂ equivalent)
					E = A * B * C * D * 10 ³
C ₆ F ₁₄			0.3		

VII. EMISI GAS RUMAH KACA DARI PRODUK YANG DIGUNAKAN SEBAGAIPENGGANTI BAGI PENIPISAN OZON

7.1 Ozone Depletion Substances (ODS)

7.1.1 Deskripsi Kategori

Tabel 7. 1 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor senyawa penipis ozon

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1a	Data penjualan bahan kimia (country-spesific atau globally/regionally spesific)	Faktor Emisi komposit Baku atau faktor emisi spesifik berlaku di negara tersebut	
TIER 1b	 Data penjualan bahan kimia (country-spesific atau globally/regionally spesific) Data penjualan peralatan bersejarah dan saat ini disesuaikan untuk impor / ekspor oleh aplikasi 		
TIER 2a	 data penjualan kimia dan pola penggunaan oleh sub-aplikasi (country-spesific atau globally/regionally spesific) 	Faktor Emisi Baku atau faktor emisi spesifik berlaku di negara tersebut	
TIER 2b	 Data penjualan bahan kimia dari sub-aplikasi (country- spesific atau globally/regionally spesific) Data penjualan peralatan bersejarah dan saat ini disesuaikan untuk impor / ekspor oleh aplikasi 		

Metode Tier 1a

Metode ini menggunakan pendekatan faktor emisi pada tingkat aplikasi. Data yang dibutuhkan adalah data pada tingkat aplikasi yaitu data konsumsi bahan kimia

tahunan. Konsumsi bahan kimia bersih dihitung menggunakan persamaan 7.1 berikut.

Persamaan 7.1

Perhitungan Konsumsi Neto Bahan Kimia Pada Suatu Aplikasi/Peralatan Net Comsumption = Production + Imports - Exports - Destruction

Emisi dihitung menggunakan persamaan 7.2A berikut.

Persamaan 7.2A

Perhitungan Konsumsi Neto Bahan Kimia Pada Suatu Aplikasi/Peralatan *Annual Emissions = Net Comsumption • Composite EF*

dimana:

Net Neto konsumsi untuk aplikasi/peralatan tertentu

Consumption

Composite EF Faktor emisi komposit dari aplikasi/peralatan

Apabila terdapat bahan kimia simpanan maka digunakan persamaan 7.2B berikut:

Persamaan 7.2B

Perhitungan Konsumsi Neto Bahan Kimia Pada Suatu Aplikasi/Peralatan Dengan Cadangan/Simpanan

Annual Emissions = Net Comsumption \bullet Composite EF_{FY} +

Total Banked Chemical \bullet Composite EF_{R}

dimana:

Net Consumption : Neto konsumsi untuk aplikasi/peralatan tertentu Composite EFFY : Faktor emisi komposit dari aplikasi/peralatan pada

tahun pertama

Total Banked : Simpanan/cadangan bahan kimia untuk

Chemical aplikasi/peralatan

Composite EFB : Faktor emisi komposit dari aplikasi/peralatan yang

disimpan

Faktor emisi berasal dari pengukuran aktual produk atau peralatan pada tingkat nasional selama berbagai tahapan siklus hidup keikutsertaannya.

Metode Tier 1b

Metode ini menghitung emisi dengan pendekatan kesetimbangan massa pada bagian perakitan, operasi dan disposal tetapi tidak bergantung pada faktor emisi.

Persamaan 7.3

Persamaan Umum Neraca Massa Untuk TIER 1b

Emissions = Annual Sales of New Chemical –

(Total Charge of New Equipment –

Original Total Charge of Retiring Equipment)

Metode Tier 2a

Pendekatan metode ini adalah faktor emisi spesifik yang berlaku di negara tersebut pada sub-aplikasi pabrik yaitu perakitan, operasi dan disposal. Data yang dibutuhkan adalah jumlah konsumsi bahan kimia diketiga proses tersebut. Persamaan 7.4 digunakan untuk menghitung.

Persamaan 7.4

Persamaan Emisi Berdasarkan Daur Hidup Bahan

Total Emissions of Each PFC or HFC = Assembly | Manufacturing Emissions +
Operation Emissions + Disposal Emission

Metode Tier 2b

Metode ini sama dengan Metode Tier 1b, hanya saja metode Tier 2b berlaku pada tingkat sub-aplikasi.

7.2. Pelarut (Non-Aerosol)

7.2.1 Deskripsi Kategori

HFC sekarang digunakan dalam aplikasi pelarut dalam tingkat yang jauh lebih rendah dibandingkan CFC-113 digunakan sebelum fase-out, dan PFC masih sangat jarang digunakan. HFC/PFC menggunakan pelarut terjadi di empat bidang utama sebagai berikut:Pembersihan Presisi; Pembersihan Elektronik; PembersihanLogam, aplikasi Deposisi.

HFC biasanya digunakan dalam bentuk campuran azeotropatau lainnya untuk pembersihan pelarut.ParaHFC paling umum digunakan adalah pelarut HFC-43-10mee, dengan beberapa penggunaanHFC-365mfc, HFC-245fa (sebagai aerosol solvent), dan heptafluorocyclopentane(US EPA, 2004b).

Secara umum, perfluorokarbon memiliki sedikit digunakan dalam pembersihan, karena mereka pada dasarnya lembam, memiliki GWPs sangat tinggi dan memiliki daya yang sangat sedikit untuk melarutkan minyak- kecualifluoro-minyak dan fluorogemuk bahkan untukpengendapanmaterial inisebagai pelumasdalam pembuatan disk drive.

7.2.2 Data yang diperlukan

Tabel 7. 2 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor Pelarut non-aerosol)

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1	Jumlahsetiap bahan kimiayang relevandijual sebagaipelarut dalamsuatu tahun tertentu	Faktor Emisi Baku *Lihat IPCC GL 2006 halaman 3.23	

Metode Tier 1

Metode ini menggunakan data jumlah penggunaan pelarut pada tahun inventarisasi dan tahun sebelumnya. Faktor emisi adalah nilai fraksi dari bahan kimia yang diemisikan dari pelarut pada tahun awal (inisial) Faktor emisi yang digunakan adalah faktor emisi standar 50% dari awal penggunaan / tahun untuk aplikasi pelarut.

Persamaan 7.5	
Metoda Estimasi Emisi Dari Penggunaan Pelarut	
$Emissions_{t} = S_{t} \bullet EF + S_{t-1} \bullet (1 - EF) - D_{t-1}$	

dimana:

Emissionst : Emisi dalam tahun t, ton

St : Kuantitas HFC and PFC terkandung dalam produk aerosol yang

dijual di tahun t, ton

 S_{t-1} : Kuantitas HFC and PFC terkandung dalam produk aerosol yang

dijual di tahun *t*–1, ton

EF : Faktor emisi (= fraksi bahan kimia yang diemisikan pada tahun

pertama), fraksi

Contoh Cara Perhitungan:

Cara Perhitungan Kategori Solvents (2F5)

a. Spesifikasikan Data kimia untuk perhitungan kategori ini

b. Ketahui data jumlah pelarut (HFCs/PFCs) yang terjual dalam satu tahun invetori dalam ton

- c. Ketahui data jumlah pelarut (HFCs/PFCs) yang terjual pada tahun sebelumnya dalam ton
- d. Ketahui data faktor emisi.
- e. Cantumkan data-data pada tahap (a) sampai dengan (d) tersebut di atas pada lembar kerja (worksheet) di bawah ini.

Tabel 7. 3 Worksheet perhitungan emisi HFC dari sektor pelarut

	Sektor	IPPU	IPPU			
	Kategori	Penggunaan pro lapisan ozon (O		ngganti bahan yang	penipiskan	
К	Kode Kategori	2F4				
	Lembar	1 dari 1				
A Jumlah pelaru (HFCs/PFCs) y pada tahun in	yang terjual	B Jumlah pelarut (HFCs/PFCs) yang terjual d tahun sebelumnya	C Faktor emisi (Kehilangan pada tahun kini pemakaian)	D Emisi HFCs/PFCs dari pelarut	E Emisi dari HFCs/PFCs dari pelarut	
Bahan Kimia	(ton)	(ton)	(fraksi)	(ton)	(Gg)	
(tolong spesifikasi)				D = A * C + B * (1 - C)	$E = D/10^3$	

- f. Lakukan perhitungan nilai emisi HFCs/PFCs dari pelarut dalam tondengan menggunakan persamaan "=(B11*D11)+C11*(1-D11)" pada kolom D untuk mengetahui nilai emisi HFCs/PFCs dari pelarut dalam ton
- g. Masukkan persamaan "=E11/1000" di kolom E untuk mengkonversi unit gigagrams.

7.3. Aerosol (Propelan Dan Pelarut)

7.3.1 Deskripsi Kategori

Kebanyakan paket aerosol mengandung hidrokarbon (HC) sebagai propelan, tetapi dalam sebagian kecil dari total, HFC dan PFC dapat digunakan sebagai propelan atau pelarut. Emisi dari aerosol biasanya terjadi segera setelah produksi, rata-rata enam bulan setelah penjualan.

HFC yang saat ini digunakan sebagai propelan adalah HFC-134a, HFC-227ea, dan HFC-152a, seperti yang ditunjukkan pada Tabel 7.1. Zat HFC-245fa, HFC-365mfc, HFC-43-10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Dari jumlah tersebut, HFC-43-10mee adalah yang paling banyak digunakan. 11HFC-365mfc juga diharapkan untuk digunakan dalam aerosol dalam waktu dekat (CH₂) 5CO(Sikloheksanon) + (CH2) 5CHOH (sikloheksanol) + wHNO₃ \rightarrow HOOC(CH₂) 4COOH(Asamadipat) + +xN₂OyH₂O

7.3.2 Data yang diperlukan

Tabel 7. 4 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor Aerosol

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1	produksi aerosol Domestik dan produksi aerosol Impor	50 % dari nilai awal kuantitas produk aerosol	

Metode Tier 1

Metode ini menggunakan data HFC dan PFC yang terkandung dalam produk aerosol yang terjual pada tahun tertentu dan tahun sebelumnya. Unit yang digunakan adalah ton. Faktor emisi adalah nilai fraksi dari emisi bahan kimia selama 1 tahun. Nilai default faktor emisi adalah 50% dari nilai awal. Ini dapat diartikan bahwa setengah dari kimia tersebut lepas sendirinya pada tahun pertama dan yang tersisa lepas pada tahun selanjutnya .

Persamaan 7.6
Metoda Estimasi Emisi Dari Penggunaan Aerosol
$Emissions_{t} = S_{t} \bullet EF + S_{t-1} \bullet (1 - EF)$

dimana:

 $Emissions_t$: Emisi dalam tahun t, ton

St : Kuantitas pelarut yang dijual di tahun t, ton S_{t-1} : Kuantitas pelarut yang dijual di tahun t-1, ton

EF : Faktor emisi (= fraksi bahan kimia yang diemisikan

oleh pelarut pada tahun awal penggunaannya), fraksi

 D_{t-1} : Kuantitas pelarut yang dimusnahkan pada tahun t-1,

ton

Contoh Cara Perhitungan Kategori Aerosols (2F4):

a. Spesifikasikan Data kimia untuk kategori ini

- b. Ketahui data jumlah pelarut (HFCs/PFCs) yang terjual dalam satu tahun invetori dalam ton
- c. Ketahui data jumlah pelarut (HFCs/PFCs) yang terjual pada tahun sebelumnya dalam ton
- d. Cantumkan data-data pada tahap (a) sampai dengan (c) tersebut di atas pada lembar kerja (worksheet) di bawah ini

Tabel 7.5 Worksheet perhitungan emisi HFC dari sektor Aerosol

	Sektor IPPU				
	Kategori	Penggunaan produk sebagai pengganti bahan yang penipiskan lapisan ozon (ODS) - Aerosol			
К	Kode Kategori	2F4			
	Lembar	1 dari 1			
A Jumlah pelaru (HFCs/PFCs) pada tahun in	yang terjual	B Jumlah pelarut (HFCs/PFCs) yang terjual d tahun sebelumnya	C Faktor emisi (Kehilangan pada tahun kini pemakaian)	D Emisi HFCs/PFCs dari pelarut	E Emisi dari HFCs/PFCs dari pelarut
Bahan Kimia 1), 2) (tolong spesifikasi)	(ton)	(ton)	(fraksi)	(ton) $D = A * C + B * (1 - C)$	(Gg) $E = D/10^3$

- e. Masukkan faktor emisi di kolom C.
- f. Masukkan persamaan "=(B11*D11)+C11*(1-D11)" pada kolom D untuk mengetahui nilai emisi HFCs/PFCs dari pelarut dalam ton
- g. Masukkan persamaan "=E11/1000" di kolom E untuk mengkonversi unit gigagrams.

7.4. Agen Busa Peniup (Foam Blowing Agents)

7.4.1 Deskripsi Kategori

HFCyang digunakansebagai penggantiCFCdanHCFCdalambusa danterutama dalam aplikasiisolasi.Senyawayang sedangdigunakan termasukHFC-245fa, HFC-365mfc, HFC-227ea, HFC-134a, dan HFC-152a

7.4.2 Data yang diperlukan

Tabel 7. 6 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor agen busa peniup

TIER	Data aktifitas	Faktor emisi	Parameter lain
	jumlah bahan kimia yang	Ditinjau rekan dan data	
	digunakan dalam pembuatan	negara tertentu	
	busa di suatu	terdokumentasi dengan	
TIER 1	negara dan kemudian tidak	baik berdasarkan	
	diekspor, dan jumlah bahan	penelitian lapangan pada	
	kimia yang terkandung dalam	setiap jenis busa(selter	
	busa diimpor ke negara itu.	buka dan sel tertutup)	

Metode Tier 1

Ada 3 hal yang diperhitungkan dalam metode ini yaitu total HFC yang digunakan dalam proses manufaktur, jumlah HFC yang di tiuokan ke closed-cell pada tahun ini dan tahun sebelumnya dan data kerugian dekomisioning serta pencegahan emisi HFC dari rekoveri.

Faktor emisi untuk HFC yang digunakan adalah faktor emisi default yang bisa diperoleh dari 2006 IPCC GL tabel 7.6 dan 7.7 halaman 7.39. Sedangkan faktor emisi untuk HFC yang di tiup ke closed-cell dapat dilihat dari 2006 IPCC GL tabel 7.5 halaman 7.35

Persamaan 7.7
Pendekatan Faktor Emisi Untuk Busa
$Emissions_{t} = M_{t} \bullet EF_{FYL} + Bank_{t} \bullet EF_{AL} + DL_{t} - RD_{t}$

dimana:

Emissionst : Emisi dari closed-cell foam pada tahun *t*, ton

Mt : Kuantitas HFC yang digunakan dalam pembuatan

closed-cell foam baru di tahun *t*, ton

EF_{FYL}: Faktor emisi tahun pertama, fraksi

Bankt : HFC ke dalam pembuatan closed-cell foam antara

tahun t dan tahun t-n, ton

EF_{AL} : Faktor emisi kehilangan tahunan (annual loss), fraksi

Untuk OCF (one component foam) khususnya untuk closed-cell foam maka digunakan persamaan 7.8.

Persamaan 7.8

Metode Generik Perhitungan emisi dari OPEN-CELLED FOAMS

 $Emissions_t = M_t$

dimana:

Emissionst : Emisi dari open-cell foam pada tahun *t*, ton

Mt : Kuantitas HFC yang digunakan dalam pembuatan open-cell foam

baru di tahun t, ton

7.5. Pendinginan dan Penyejuk Udara (Refrigerant)

7.5.1 Deskripsi Kategori

Sistem Refrigerasi dan AC (RAC) dapat diklasifikasikan dalam enam sub-aplikasi domain atau kategori (UNEP-RTOC, 2003) meskipun kurang sub-aplikasi yang biasanya digunakan pada tingkat negara sekalipun. Kategori-kategori sesuai dengan sub-aplikasi yang mungkin berbeda dengan lokasi dan tujuan, dan tercantum di bawah ini:

- Pendinginan domestik (yakni, rumah tangga), Pendingin komersial termasuk berbagai jenis peralatan, dari mesin penjual otomatis untuk sistem pendinginan terpusat di supermarket,
- proses Industri termasuk chiller, penyimpanan dingin, dan pompa panas industri digunakan dalam makanan,

7.5.2 Data yang diperlukan

Tabel 7. 7 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor penyejuk udara

TIER	ER Data aktifitas		Parameter
TIEK	Data aktilitas	emisi	lain
	Penjualan tahunan informasi refrigerant baru	faktor	
TIER 1	menggunakan informasi yang disediakan oleh	emisi	
	produsen kimia	baku	
	menggunakan data spesifik negara, berdasarkan		
TIER 2	informasi yang diberikan oleh produsen		
HEK Z	peralatan, penyedia layanan, perusahaan		
	pembuangan,dan studi mandiri		

Metode Tier 1a dan 1 b

Metode ini menggunakan software dalam menghitung emisi. Data yang dibutuhkan adalah data produksi HFC-143a, data import dan ekspor, nilai-nilai seperti laju pertumbuhan dan sebaginya diperoleh dari asumsi yang terdapat di software tersebut.

Metode Tier 2b

Metode ini berdasarkan pada pendekatan kesetimbangan massa pada pendingin dan refrigeran. Emisi terjadi pada 4 tingkat yaitu pada *charging*, operasi, servis dan akhir pemakaian (*end-of-life*). Faktor emisi dapat dilihat pada 2006 IPCC GL tabel 7.9 halaman 7.52.

Persamaan 7.9 Penentuan Emisi Refrigeran Dengan Neraca Massa Emissions = Annual Sales of New Refrigerant – Total Charge of New Equipment + Original Total Charge of Retiring Equipment – Amount of International Destruction

Metode Tier 2a

Sama seperti metode tier 2b, metode tier 2a menghitung emisi pada 4 tingkat secara terpisah. Total emisi adalah jumlah emisi di 4 tingkat tingkat tersebut. Tabel 7.9 halaman 7.52 di 2006 IPCC GL vol 3 IPPU memberitahukan nilai default faktor emisi dari 4 tingkat tersebut.

Persamaan 7.10

Ringkasan Sumber-Sumber Emisi

$$E_{total,t} = E_{Containers,t} + E_{Charge,t} + E_{lifetime,t} + E_{end-of-life,t}$$

Persamaan 7.11

Sumber Emisi Dari Manajemen Wadah Refrigeran

$$E_{containers,t} = RM_t \bullet \frac{c}{100}$$

dimana:

Econtainers, : Emissions dari seluruh wadah (container) HFC

t dalam tahun *t*, kg

RMt : Pasar HFC untuk peralatan-peralatan baru dan jasa

perawatan refrigerasi pada tahun t, kg

c : Faktor emisi manajemen wadah HFC pada tahun

pelaporan, persen

Persamaan 7.12

Sumber Emisi Saat Mengisi Peralatan Baru

$$E_{charge,t} = M_t \bullet \frac{k}{100}$$

dimana:

Echarge,t : Emisi selama pembuatan/pemasangan pada tahun t, kg

Mt : Kuantitas HFC yang diisikan ke dalam alat baru pada tahun *t*, kg

K Faktor emisi kehilangan HFC saat diisikan ke dalam alat baru, persen

Note:

Emisi terkait proses penyambungan dan pelepasan alat saat proses

penggunaan diperhitungkan pada Persamaan 7.13.

Persamaan 7.13

Sumber Emisi Sepanjang Umur Peralatan

$$E_{lifetime,t} = B_t \bullet \frac{x}{100}$$

dimana:

E_{lifetime,t}: Kuantitas HFC yang diemisikan saat pengoperasian pada tahun *t*, kg
Bt: Kuantitas HFC yang disimpan pada sistem-sistem eksisting pada tahun

t, kg

X Faktor emisi HFC (berdasarkan kebocoran rata-rata tahunan), percent

Persamaan 7.14

Emisi Pada Akhir Umur Alat

$$E_{end-of-life,t} = M_{t-d} \bullet \frac{p}{100} \bullet \left(1 - \frac{\eta_{rec,d}}{100}\right)$$

dimana:

Eend-of- : Kuantitas HFC yang diemisikan pada sistem pembuangan pada

life, t tahun t, kg

Mt-d : Kuantitas HFC yang semula diisikan ke dalam sistem baru pada (t-

d), kg

p : Isi residu HFC dalam peralatan yang dibuang, dinyatakan sebagai

persen dari saat terisi penuh, percent

ηrec,d : Efisiensi pengambilan HFC sisa (recovery)

Dalam menentukan QA dan QC dapat menggunakan persamaan 7.15 dan 7.16 sebagai berikut:

Persamaan 7.15

Verifikasi Kajian Pasokan dan Permintaan

$$RN_{t} = \sum_{j=1}^{6} \left(S_{prod_{t,j}} \bullet m_{i,j} \right) + \sum_{j=1}^{6} \left(M_{t,j} \bullet k_{j} \right) + \sum_{j=1}^{6} \left(B_{i,j} \bullet x_{j} \right) + RM_{t} \bullet c$$

dimana:

RNt HFC refrigerant needs in year *t*, kg

j Counter dari 1 hingga 6 (atau jumlah sub-aplikasi yang dipilih

untuk Tier 2)

Sprod_t,j Produksi nasional peralatan yang menggunakan HFC untuk sub-

application domain *j* padatahun *t*, jumlah alat

mt,j Rata-rata isi awal HFC pada peralatan jenis j, kg

Mt,j Kuantitas HFC diisikan kedalam peralatan jenis j pada saat

pembuatan di tahun t, kg

kj Faktor emisi kehilangan HFC saat diisikan ke paralatan baru jenis j,

fraksi

Bt,j Kuantitas HFC tersimpan dalam sistem peralatan eksisting jenis *j*

pada tahun t, kg

xj : Faktor emisi HFC pada peralatan jenis *j* selama operasi

(memperhitungkan kebocoran saat penggunaan), fraksi

RMt : Pasar HFC untuk peralatan baru dan penggunaan seluruh

refrigerasi pada tahun t, kg

c : Faktor emisi manajemen container HFC pada pasar refrigerant,

fraksi

Persamaan 7.16

Perhitungan Pasar Refrigeran Tahunan

$$RD_{t} = R_{prod_t} - R_{exp_t} + R_{imp_t} + R_{recl_t} - R_{dest_t}$$

dimana:

Rprod_t : Produksi refrigeran HFC, kg

Rexp_t : Produk domestic refrigeran HFC yang diekspor pada tahun t, kg

Rimp_t : Impor refrigeran HFC pada tahun t, kg

Rrecl_t : Refrigeran HFC daur ulang pada tahun t dikurangi refrigeran HFC

daur ulang

yang belum terjual, kg

Rdest_t Refrigeran HFC yang dimusnahkan pada tahun t, kg

7.6. Perlindungan Kebakaran

7.6.1 Deskripsi Kategori

Ada dua jenis umum peralatan perlindungan kebakaran yang menggunakan HFC dan/atau PFC sebagai pengganti parsial untuk Halons. Peralatan dapat dijinjing (streaming), dan peralatan tetap (banjir). HFC, PFC dan baru-baru ini fluoroketone yang terutama digunakan sebagai pengganti Halons, biasanya halon1301, peralatan banjir. PFC memainkan peran awal pada penggantian halon 1301 namun penggunaannya saat ini terbatas pada pengisian sistem yang diinstal sebelumnya. HFC dalam peralatan yang dapat dijinjing, biasanya menggantikan halon1211, yang ada, tetapi penerimaan pasar yang sangat terbatas terutama karena biaya yang tinggi. PFC digunakan dalam alat pemadam dapat dijinjing barusaat ini terbatas pada sebagian kecil (beberapa persen) dalam campuran HCFC.

7.6.2 Data yang diperlukan

Tabel 7. 8 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor perlindungan kebakaran

TIER	Data aktifitas	Faktor emisi	Parameter lain
TIER 1	Data simpanan dari agen pada pelindung kebakaran	Software IPCC	

Metode Tier 1

Metode ini membutuhkan data simpanan agen pada pelindung kebakaran. Data simpanan terdiri dari data produksi, impor dan ekspor, data destruksi dan emisi atau lepasan agen dari peralatan.

Persamaan 7.17 Kebergantungan Terhadap Waktu Dari Emisi Dari Peralatan Pemadam kebakaran $Emissions_t = Bank_t + EF + RRL_t$

$$Bank_{t} = \sum_{i=t_{0}}^{t} \left(Production_{i} + Imports_{i} - Exports_{i} - Destruction_{i} - Emissions_{i}\right) - RRL_{t}$$

dimana:

Emissions $_t$: Emisi bahan kimia alat pemadam kebakaran pada tahun t, ton Bank $_t$: Bahan kimia yang tersimpan dalam alat pemadam kebakaran

pada tahun *t*, ton

EF : Fraksi bahan kimia dalam alat pemadam kebakaran yang

diemisikan per tahun (tidak termasuk emisi dari alat yang tidak

lagi digunakan), dimensionless

RRLt : Emisi bahan kimia saat daur ulang atau pembuangan pada tahun

t, ton

7.7. Aplikasi Lainnya

Metode Tier 1

Metode ini mengggunakan jumlah HFC dan PFC yang terjual pada tahun i dan tahun sebelumnya. Faktor emisiyang digunakan sama seperti pada penggunaan solvent dan aerosol. Untuk solvent, faktor emisi sebesar 0,5.

Persamaan 7.18

Kajian Emisi Dari Aplikasi/Peralatan Lain

 $Emissions_{t} = S_{t} \bullet EF + S_{t-1} \bullet (1 - EF)$

Data aplikasi yang mengeluarkan emisi lebih rendah, jika data tersedia maka dapat mengeluarkan kelompok peralatan dengan emisi rendah dari persamaan diatas menggunakan persamaan 7.19.

dimana:

Emissionst : Emisi pada tahun *t*, tones

St : Kuantitas HFC dan PFC terjual pada tahun *t*, ton St–1 : Kuantitas HFC dan PFC terjual pada tahun *t*–1, ton

EF : Faktor emisi (= fraksi bahan kimia yang diemisikan pada tahun

pertama setelah alat dibuat/diproduksi), fraksi

Persamaan 7.19

Kajian Emisi Dari Bahan Kimia Dalam Wadah Lainnya

Emissions = Products Manufacturing Emissions + Product Life Emissions + Product Disposal Emissions

dimana:

Product Manufacturing : Penjualan per tahun x Faktor Emisi pembuatan alat

Emissions (manufacturing)

Product Life Emissions: Bahan yang tersimpan x Laju kebocoranProduct Disposal: Pembuangan per tahun x Faktor EmisiEmissionsPembuangan (Disposal Emission Factors)

Contoh Cara Perhitungan Kategori Other Application (2F6)

a. Spesifikasikan Data kimia untuk kategori ini

- b. Ketahui data jumlah pelarut (HFCs/PFCs) yang terjual dalam satu tahun invetori dalam ton
- c. Ketahui data jumlah pelarut (HFCs/PFCs) yang terjual pada tahun sebelumnya dalam ton
- d. Cantumkan data-data pada tahap (a) sampai dengan (c) tersebut di atas pada lembar kerja (worksheet) di bawah ini.

Tabel 7.9 Worksheet perhitungan emisi HFC dari aplikasi lainnya

Sektor		IPPU			
Kategori		Penggunaan produk sebagai pengganti bahan yang penipiskan lapisan ozon (ODS) - Aplikasi Lainnya			
Kode kategori		2F6			
	Lembar	1 dari 1			
A		В	С	D	Е
A		В	С	D	Е
Jumlah (HFCs,		Jumlah	Faktor emisi	Emisi	Emisi dari
terjual pada tahun inventori		(HFCs/PFCs) yang terjual d tahun sebelumnya	(Kehilangan pada tahun kini pemakaian)	HFCs/PFCs dari	HFCs/PFCs
Bahan Kimia	(ton)	(ton)	(fraksi)	(ton)	(Gg)
(tolong spesifikasi)				D = A * C + B * (1 - C)	$E = D/10^3$
HFG					
HRF					
HTR					

- e. Masukkan faktor emisi di kolom C.
- f. Masukkan persamaan "=(B11*D11)+C11*(1-D11)" pada kolom D untuk mengetahui nilai emisi HFCs/PFCs dari pelarut dalam ton
- g. Masukkan persamaan "=E11/1000" di kolom E untuk mengkonversi unit gigagrams.

VIII. EMISI GAS RUMAH KACA DARI PRODUKSI DAN PENGGUNAAN PRODUK LAINNYA

8.1. Peralatan Listrik

8.1.1 Deskripsi Kategori

Sulfur heksafluorida(SF₆) digunakan untuk isolasi listrikdan gangguansaat ini dalam peralatan yang digunakan dalam transmisi dan distribusi listrik. Emisi terjadi di setiap tahapan siklus hidup peralatan,termasuk produksi, instalasi, penggunaan, pelayanandan pembuangan. Sebagian besar SF₆ digunakan dalam peralatan listrik digunakan dalam switch gear gas terisolasi dan gardu (SIG) dan pemutus sirkuit gas (GCB), meskipun beberapa SF₆ digunakan dalam jalur gas terisolasi tegangan tinggi (GIL), gas terisolasi luar ruangan instrumen transformator dan peralatan lainnya.

8.1.2 Data yang diperlukan

Tabel 8. 1 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor Peralatan listrik

TIER	Data aktifitas	Faktor emisi	Parameter lain
	Konsumsi SF6 oleh		
	Produsen peralatan:		
	• Informasi dari produsen pada		
	pembelian SF6,		
	• Pengembalian SF6 ke		Kapasitas
	produsen kimia,		papan nama
	• Perubahan dalam persediaan		yang tidak
	SF6 dalam wadah		dipakai lagi =
			{(Kapasitas
	Kapasitas papan nama	Baku (lihat IPCC GL	papan
TIER 1	peralatan baru dan yang tidak	2006 halaman 8.15,	namabaru) /
	dipakai lagi:	8.16)	(1 +g)L}
	1. Informasi dariprodusen		
	peralatan/ importir pada total		L = peralatan
	kapasitas terpasang peralatan		seumur hidup
	yang mereka produksi atau		g = tingkat
	impor dan ekspor,		pertumbuhan
	2. Informasi dari utilitas pada		
	total kapasitas		
	terpasangperalatan yang		

TIER	Data aktifitas	Faktor emisi	Parameter lain
	merekapasang danyang tidak		
	dipakai lagi setiap tahun, atau		
	3. Jika informasidari (1) atau		
	(2) tidak tersedia, informasi		
	dari produsen kimia /importir		
	pada penjualan SF6 merekau		
	ntuk produsen peralatan		
		Umumnya	
		dikembangkan	
		berdasarkan data	
	77 1 1 . 1	yang dikumpulkan	
TIER 2	Kuantitas dapat diperkirakan	dari perwakilan	-
	sebagaimana Tier-1	produsen dan utilitas	
		yang melacak emisi	
		berdasarkan tahap	
		siklus hidup	
	Tingkat fasilitas: aliran gas	Mengidentifikasi	
	harus dilacak dengan benar	potensi titik	
		kebocoran dan	
	tingkat nasional: informasi dari	mekanisme kerugian	
	fasilitas (produsen, pengguna,	dan menetapkan	
	dan pembuang peralatan) harus	probabilitas dan	
	dikumpulkan, diperiksa,	tingkat emisi	
	menyimpulkan, dan jika perlu,		
TIER 3	ekstrapolasi untuk	Daur Ulang:	
TIEKS	memasukkan perkiraan emisi	berdasarkan	_
	dari fasilitas	penilaian profesional	
		Pemusnahan:	
		berdasarkan tingkat	
		efisiensi	
		pemusnahan dari	
		teknologi	
		pemusnahan	

Metode Tier 1

Metode Tier 1 membutuhkan data konsumsi SF_6 dari peralatan manufaktur dan/atau dari *nameplate* SF_6 kapasitas peralatan pada setiap tahap pada manufaktur. Adapun tahap-tahapnya adalah emisi dari manufaktur, emisi pada saat instalasi peralatan, emisi pada saat penggunaan peralatan dan emisi setelah peralatan dibuang. Persamaan 8.1 menjelaskan cara menghitung emisi total dan penjelasan berikut menjelaskan cara menghitung bagian tahapan proses manufaktur.

Persamaan 8.1

Metoda Faktor Emisi Default

Total Emissions = Manufacturing Emissions + Equipment Installation Emissions + Equipment Use Emissions + Equipment Disposal Emissions

dimana:

Manufacturing : (Faktor emisi *Manufacturing*) x (*Konsumsi Total SF*₆)

emissions

Equipment : (Faktor emisi instalasi) x (Kapasitas Pengisian)

installation emissions

Equipment use : (faktor emisi penggunaan) x (Kapasitas Terpasang

emissions Peralatan)

Catatan: faktor emisi penggunaan termasuk emisi karena

kebocoran, saat digunakan, perawatan dan karena

kegagalan

Equipment disposal : (Kapasitas total alat yang tidak lagi digunakan) x (Fraksi

emissions SF₆ yang tertinggal saat tidak lagi digunakan)

Faktor emisi yang digunakan dari 2006 IPCC GL vol.3 IPPU table 8.2; 8.3 dan 8.4 halaman 8.15 dan 8.16.

Metode Tier 2

Prinsip utama dan persamaan yag digunakan pada metode Tier 2 sama dengan metode Tier 1. Hanya saja faktor emisi yang digunakan pada metode Tier 2 adalaha faktor emisi spesifik yang berlaku dinegara tersebut yang merupakan hasil pengembangan dari setiap manufaktur dan utilitas. Selain itu, emisi dari alat yang telah dibuang dihitung menggunakan persamaan 8.2

Persamaan 8.2

EQUIPMENT DISPOSAL EMISSIONS UNDER COUNTRY-SPECIFIC EMISSION FACTOR METHOD

Emissions_d=Ret•Rem•(1-Recov•REF•Rec)

dimana:

*Emissions*_d: Emisi dari pembuangan alat

Ret : Kapasitas alat yang tidak lagi digunakan (retirement)Rem : Fraksi SF6 yang tertinggal dalam alat saat tidak lagi

digunakan

Recov : Fraksi peralatan yang SF6 nya diambil kembali

(recovery) saat alat tidak lagi digunakan

REF : Efisiensi recovery

Rec Fraksi SF6 yang didaur ulang atau dimusnahkan

Metode Tier 3

Metode ini menghitung emisi dengan menjumlahkan emisi dari peralatan di beberapa tahap seperti:

- (1) Peralatan pada saat manufaktur
- (2) Pemasangan peralatan
- (3) Penggunaan peralatan
- (4) Pembuangan dan penggunaan terakhir peralatan
- (5) Emisi dari daur ulang dan destruksi SF₆

Cara menghitung total emisi dari ke 5 tahapan tersebut ditunjukkan pada persamaan 8.3

$\begin{aligned} \textbf{Persamaan 8.3} \\ \textbf{Emisi Total - Tier 3} \\ \textbf{Total Emissions} &= \sum \textit{Equipment Manufacturing Emissions} + \\ &\sum \textit{Equipment Installation Emissions} + \sum \textit{Equipment Use Emissions} + \\ &\sum \textit{Equipment Disposal and Final Use Emissions} + \sum \textit{Emissions} \end{aligned}$

Emisi dari setiap tahapan tersebut pada persamaan 8.3 dapat dihitung menggunakan bebrapa persamaan seperti yang dirangkum dalam tabel berikut:

Tahapan	Persamaan yang digunakan	
		

Equipment Manufacturing Emissions	Di facility level diperkirakan dari Persamaan 8.4A dan 8.4B.
Equipment Installation Emissions	Di facility level diperkirakan dari Persamaan 8.5A dan 8.5B.
Equipment Use Emissions	Di facility level diperkirakan dari Persamaan 8.6A dan 8.6B.
Equipment Disposal and Final Use Emissions	Di facility level diperkirakan dari Persamaan 8.7A dan 8.7B.
Emissions from SF6 Recycling and Destruction	Di facility level diperkirakan dari Persamaan 8.8 dan 8.9.

Berikut adalah persamaan-persamaan tahapan dalam menghitung total emisi. Persamaan 8.4a menghitung emisi di peralatan saat manufaktur menggunakan metode pendekatan kesetimbangan massa murni. Persamaan 8.4a ditunjukkan berikut:

Persamaan 8.4a

Emisi Total – Tier 3

Equipment Manufacturing Emissions = Decrease in SF_6 Inventory + acquisitions of SF_6 – Disbursements of SF_6

dimana:

Decrease in SF₆

Inventory

SF₆ tersimpan dalam wadah di awal tahun - SF₆

tersimpan dalam wadah di akhir tahun

Acquisitions of SF_6 : SF_6 dibeli dari produsen bahan kimia + SF_6

dikembalikan oleh pengguna alat atau distributor + SF₆

dikembalikan setelah daur ulang

Disbursements of SF_6 : SF_6 di dalam peralatan baru yang dikirim ke customer

+ SF₆ dalam wadah yang dikirim ke pengguna alat + SF₆ dikembalikan ke suppliers + SF₆ yang dikirim ke luar

untuk daur ulang + SF₆ yang dimusnahkan

Persamaan 8.4b menggunakan pendekatan hybrid dalam menghitung emisi dari tahap peralatan pada saat manufaktur. Pendekatan hybrid menggunakan faktor emisi spesifik yang berlaku dinegara tersebut.

Persamaan 8.4B

Emisi Saat Pembuatan (Manufacturing) - Hybrid

Equipment Manufacturing Emissions = Equation 8.4A +

Nameplate capacity of equipment undergoing each process*•

Emission factor for that process

Emisi saat pemasangan alat, jumlah gas nya diperoleh dari kesetimbangan massa. Persamaan 8.5A menunjukkan secara matematis emisi pada tahap ini

Persamaan 8.5A

Emisi Saat Pemasangan Alat - Neraca Massa

Equipment Installation Emission = SF_6 used fill equipment – Nameplate capacity of new equipment

Kemudian nilai dari persamaan 8.5A ditambahkan dengan nilai kapasitas peralatan baru dilapangan yang telah dikalikan faktor emisi. Faktor emisi yang digunakan adalah faktor emisi spesifik negara atau spesifik fasilitas. Secara matematis perhitungan tersebut ditunjukkan pada persamaan 8.5B

Persamaan 8.5B

Emisi Saat Pemasangan Alat - Hybrid

Equipment Installation Emissions = Equation $8.5A + \sum_{i} Nameplate \ capacity$ of new equipment filled on site • Installation emission factor

Emisi saat alat digunakan mengestimasi emisi dengan neraca massa seperti pada

persamaan 8.6A

Persamaan 8.6A

Emisi Saat Alat Digunakan- Neraca Masa

Equipment Use Emissions = SF_6 used to recharge closed pressure equipment at servicing – SF_6 recovered from closed pressure equipment at servicing

Emisi pada saat alat digunakan kemudian ditambahkan dengan kapasitas peralatan yang dikalikan dengan faktor emisi spesifik negara atau fasilitas.

Persamaan 8.6B

Emisi Saat Alat Digunakan- Hibrid

Equipment Use Emissions = Equation 8.6A + \sum Nameplate capacity of equipment installed • Use emission factor

Persamaan 8.7A

Emisi Saat Pembuangan dan Penggunaan Akhir Alat – Neraca Massa

Disposal and Final Use Emissions = Emissions from closed-pressure equipment +

Emissions from sealed-pressure equipment(MB)

Untuk Emisi Saat Pembuangan dan Penggunaan Akhir Alat – Neraca Massa (Persamaan 8.7A), nilai emisi dihitung menggunakan rumus yang ditabulasi berikut:

Tahap	Persamaan
Emisi dari peralatan closed-pressure	Kapasitas nameplate dari peralatan
(Emission from closed-pressure	closed-pressure yang sudah tidak
equipment)	digunakan – SF ₆ yang direkoveri dari
	alat tersebut
Emisi dari peralatan sealed-pressure	Kapasitas nameplate dari peralatan
(Emission from sealed-pressure	sealed-pressure yang sudah tidak
equipment	digunakan – SF ₆ yang direkoveri dari
	alat tersebut

Untuk Emisi Saat Pembuangan dan Penggunaan Akhir Alat – Hibdrid, menggunakan faktor emisi. Persamaan 8.7b merupakan persamaan matematisnya.

Persamaan 8.7B

Emisi Saat Pembuangan dan Penggunaan Akhir Alat - Hybrid

Disposal and Final Use Emissions = Emissions from closed pressure equipment +

Emissions from sealed pressure equipment(EF)

Untuk menghitung nilai-nilai emisi pada peralatan *closed-pressure* dan *sealed-pressure* menggunakan rumus yang ditabulasi dalam tabel berikut:

Tahap	Persamaan
Emisi dari peralatan closed-	Kapasitas nameplate dari peralatan closed-
pressure	pressure yang sudah tidak digunakan – SF ₆ yang
(Emission from closed-pressure	direkoveri dari alat tersebut
equipment)	
Emisi dari peralatan sealed-	Kapasitas <i>nameplate</i> dari peralatan <i>closed-</i>
pressure	pressure yang sudah tidak digunakan - (Kapasitas
(Emission from sealed-pressure	nameplate dari peralatan sealed-pressure yang
equipment	sudah tidak digunakan x Faktor emisi waktu
	paruh peralatan) x (1 – fraksi peralatan tidak
	digunakan yang SF ₆ direkover x rekover efisiensi)

Emisi dari daur ulang SF6 dan destruksi masing-masing menggunakan persamaan 8.8 dan 8.9. Nilai faktor emisi yang digunakan adalah spesifik negara atau perusahaan.

Persamaan 8.8 Emisi Dari Daur Ulang SF6 Emissions from Recycling = Recycling emission factor \bullet Quantity SF_6 fed into recycling process

Persamaan 8.9

Emisi Dari Pemusnahan SF6

Emissions from Destruction = Destruction emission factor \bullet Quantity SF_6 fed into destruction process

Untuk kasus khusus, emisi pada saat penggunaan alat dapat dihitung pada level utilitas dengan menggunakan persamaan 8.10.

Persamaan 8.10 Emisi SF₆ Saat Penggunaan Alat – Neraca Massa User emissions = Decrease in SF₆ Inventory + Acquisitions of SF₆ – Dibursements of SF₆ – Net Increase in the Nameplate Capcity of Equipment

Komponen pada persamaan 8.10 dapat dihitung dengan persamaan yang ditabulasi sebagai berikut:

Persamaan
SF ₆ yang disimpan dalam kontainer pada awal
tahun - SF ₆ yang tersimpan di kontainer pad akhir
tahun
SF6 yang dibeli dari produsen bahan kimia atau
distributor + SF ₆ yang dibeli di manufaktur
peralatan atau distributor + SF ₆ yang kembali ke
lapangan setelah didaur ulang
SF ₆ terkandung di peralatan yang dijual ke pihak
lain + SF ₆ yang kembali ke supplier + SF ₆ yang
dikirim ke site untuk didaur ulang + SF ₆ yang
dihancurkan
Kapasitas <i>nameplate</i> dari peralatan baru -
Kapasitas <i>nameplate</i> dari peralatan yang sudah
tidak digunakan (retire)

Kapasitas alat yang tidak digunakan dapat diestimasi dengan menggunakan persamaan $8.11\,.$

Persamaan 8.11

Perkiraan Kapasitas Alat Yang Tidak Lagi Digunakan (Retirement) Retiring Nameplate Capacity = New Nameplate Capacity $/(1+g)^L$

dimana:

L : Umur alat

g : Laju pertumbuhan

Contoh Cara Perhitungan Kategori Electrical Equipment (2G1):

- Ketahui data kapasitas Nameplate dari peralatan yang terinstal per jenis peralatan dalam ton SF₆
- b. Cantumkan datapada tahap (a) tersebut di atas pada lembar kerja (worksheet) di bawah ini.

Tabel 8. 2 Worksheet perhitungan emisi SF6 dari sektor peralatan elektronik

Tabel 6. 2 Worksheet permittingan emisi 51'0 dan sektor peralatan elektromk				
Sektor	IPPU			
Kategori	Pembuatan Produk-produk lain dan penggunaannya – Peralatan			
Rategori	Elektronik			
Kode	2G1			
Kategori	261			
Sheet	1 dari 5 Emisi manuf	aktur dari SF ₆ ¹⁾		
	A	В	С	
Jenis	Total Konsumsi SF ₆	Faktor emiei	Emisi Manufaktur	
Peralatan	oleh Peralatan	manufaktur ²⁾		
	Manufaktur			
	(ton SF ₆)	(fraksi)	(ton SF ₆)	
			C = A * B	
Sealed-				
Pressure				
Closed-				
Pressure				
Gas-				
Insurated				
Transformers				
Total				

Masukkan faktor emisi manufaktur di kolom B.

Tabel 8. 3 Faktor emisi SF6 dari peralatan elektronik

Region/Phase	Fraction for	Fraction for	Fraction for Gas
	Sealed Pressure	Closed Pressure	Insulated
			Transformers
Europe	0.07	0.085	N/A
Japan	0.29	0.29	0.29

d. Masukkan persamaan "=B11*C11" di kolom C untuk menghitung nilai emisi dari manufaktur dalam ton SF $_6$.

8.2. SF₆ dan PFC dari Penggunaan Produk Lainnya

8.2.1 Deskripsi Kategori

SF₆ dan PFC yang digunakan dalam aplikasi militer, khususnya SF6 digunakan dalam sistem radar udara, misalnya, AWACS (Peringatandan SistemKontrol Udara), dan PFC digunakan sebagai cairan perpindahan panas dalam aplikasi berdaya elektronik tinggi. SF6 digunakan dalam peralatan di universitas dan penelitian akselerator partikel. SF₆ digunakan dalam peralatandi akseleratorpartikelindustri dan medis. Penggunaan Adiabatik SF₆ dan beberapa PFC mengeksploitasi permeabilitas rendah gas ini melalui karet. Secara historis, SF₆ telah menjadi gas dominan dalam aplikasi ini, namun, PFC dengan berat molekul yang sama(seperti C₃F₈) baru-baru ini digunakan juga. Aplikasi dengan jangka waktu penundaan 3 tahun termasuk ban mobil atau, sol sepatu olahraga dan bola tenis.

SF₆ digunakan dalam jendela anti suara (double-glazed). Sekitar sepertiga dari jumlah total SF₆ dibeli dilepaskan selama perakitan (yaitu, mengisi dari jendelakacaganda). Untuk stok gas yang tersisa di dalam jendela (kapasitas), tingkat kebocoran tahunan sebesar 1 persen diasumsikan (termasuk kerusakan kaca). Dengan demikian, sekitar 75 persen dari stok awal tetap pada akhir 25 tahun masa pakai. Penerapan SF₆ di jendela dimulai pada 1975, sehingga pembuangan baru mulai terjadi.

PFC digunakan sebagai cairan perpindahan panas dalam aplikasi komersial dan konsumen. PFC digunakan dalam kosmetik dan dalam aplikasi medis. Kegunaan lain misalnya gas-udara perunut dalam penelitian dan detektor kebocoran.

8.2.2 Data yang digunakan

Tabel 8. 4 Data Aktifitas dan Parameter Emisi yang dibutuhkan setiap TIER pada sektor dari penggunaan produk lainnya

TIER	Data aktifitas	Faktor emisi	Parameter lain			
Emisi SF6 dari universitas dan penelitian Akselerator Partikel						
TIER 1	Jumlah akselerator partikel	FaktorEmisiSF6akselera	Faktor Penggunaan SF6			
	universitas dan penelitian	torpartikeluniversitasda	= 0,33 sekitar sepertiga			
	di negara tersebut = Jumlah	n penelitian=0,07, rata-	dari universitas dan			
	akselerator partikel	ratatingkatakseleratorp	penelitian akselerator			
	universitas dan penelitian	artikeltahunan	partikel menggunakan			

TIER	Data aktifitas	Faktor emisi	Parameter lain
	di negara ini. Metode kasar	universitas dan	SF6 sebagai isolator.
	tidak memerlukan negara	penelitianemisi sebagai	Faktor Muatan SF6 =
	untuk menentukan jumlah	sebagian kecil	2400 kg, SF6, muatan
	akselerator yang	darijumlah yang	SF6 rata-rata dalam
	menggunakan SF6.	dibebankan.	sebuah akselerator
			partikel universitas dan
			penelitian.
	Pengguna tersendiri	Faktor Emisi SF ₆	-
	muatan percepatan=SF ₆	universitas dan	
	yang terkandung dalam	penelitian partikel	
	masing-masing universitas	akselerator=0,07,	
	dan penelitian akselerator.	universitas dan	
TIER 2		penelitian partikel	
		akselerator tingkat	
		emisi rata-rata tahunan	
		sebagai sebagian kecil	
		dari jumlah yang	
		dibebankan	

Metode Tier 1

Metode ini menggunakan kuantitas universitas dan penelitian partikel akselerator yang ada di negara tersebut. Persamaan 8.11 merupakan persamaan matematis untuk menghitung emisi dari sub sektor ini.

Persamaan 8.11

 $Emisi = N \times Faktor \ penggunaan \ SF_6 \times Faktor \ charge \ SF_6 \times Faktor \ emisi$

Dimana:

N = jumlah universitas atau penelitian partikel

akselerator

Faktor penggunaan SF6 = 0,33 (nilai default) Faktor charge SF6 = 2400 kg (nilai default) Faktor emisi = 0,07 (nilai default)

Metode Tier 2

Metode ini menggunakan pendekatan per individu universitas atau penelitian partikel akselerasi.

Persamaan 8.12

 $Emisi = faktor\ emisi \times \sum individu\ charge\ akselarator$

Dimana

Faktor emisi default yang digunakan adalahn 0,07

 \sum individu charge akselarator = SF₆ terkandung dalam setiap universitas dan penelitian partikel akselerasi

Contoh Cara Perhitungan:

Kategori SF_6 dan PFCs dari Other Product Uses (2G2) – SF_6 Emissions from Industrial and Medical Particle Accelerators

- a. Ketahui data jumlah partikel akselator yang menggunakan SF6 dari deskripsi proses di negara tersebut.
- b. Cantumkan datapada tahap (a) tersebut di atas pada lembar kerja (worksheet) di bawah ini.

Tabel 8. 5 Worksheet perhitungan emisi SF₆ dan PFCs dari penggunaan produk lainnya

Sektor	IPPU			-	
Kategori	Pembuatan Produk-produk lain dan penggunaannya - SF ₆ dan PFCs dari penggunaan produk lainnya				
Kode Kategori	2G2	2G2			
Sheet	3 dari 7 SF ₆ Emisi	dari partikel aks	selerator industi	ri dan medis	
Deskripsi proses	A Jumlah partikel akselerator yang menggunakan SF ₆ pada Deskripsi Proses di negara	B SF ₆ Faktor Charge	C SF ₆ Faktor Emisi	D SF ₆ Emisi	E SF ₆ Emisi
	(banyak)	(kg SF ₆ /particle accelerator)	(fraksi)	(kg)	(Gg)
				D = A * B * C	$E = D/10^6$
Industrial Accelerator (High Voltage: 0.3-23 MV)					
Industrial Accelerator (Low Voltage: <0.3 MV) Medical					
Total					

c. Masukkan nilai faktor charge SF6 di kolom B kg SF₆/particle accelerator. Apabila tidak terdapat dapat menggunakan dari IPCC : (IPCC 2006, 8.30)

Proses Deskripsi	Faktor <i>Charge</i>
Industrial Particle Accelerators – high voltage (0.3-23	1300
MV)	
Industrial Particle Accelerators – low voltage (<0.3	115
MV)	
Medical (Radiotherapy)	0.5

d. Masukkan faktor emisi di kolom C.

Proses Deskripsi	Faktor emisi
Industrial Particle Accelerators – high voltage (0.3-23	0.07
MV)	
Industrial Particle Accelerators – low voltage (<0.3	0.013
MV)	
Medical (Radiotherapy)	2.0

- e. Masukkan persamaan "=B35*C35*D35" di kolom D untuk menghitung SF $_6$ emisidi kg.
- d. Masukkan persamaan "=E35/10^6" dikolom E untuk mengkonversi units ke gigagrams.

DAFTAR PUSTAKA

- IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 3, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
- IPCC 2008. 2006 IPCC Guidelines for National Greenhouse Gas Inventories A primer, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and Tanabe K.(eds). IGES, Japan.

LAMPIRAN 1.

Deskripsi Kategori Emisi Gas Rumah Kaca Kegiatan Proses Industri dan Penggunaan Produk

Lampiran 1. 1 Deskripsi Kategori Emisi Gas Rumah Kaca Kegiatan Proses Industri dan Penggunaan Produk

Kode	Kategori	Deskripsi Kategori
(1)	(2)	(3)
2	PROSES INDUSTRI DAN	PENGGUNAAN PRODUK (INDUSTRIAL PROCESSES
	AND PRODUCT USE)	
2 A	Industri Mineral	
	(Mineral Industry)	
2 A 1	Produksi semen	Proses terkait emisi dari produksi bermacam-
	(Cement Production)	macam tipe semen (ISIC: D2694).
2 A 2	Produksi kapur (<i>Lime</i>	Proses terkait emisi dari produksi bermacam-
	Production)	macam tipe kapur (ISIC: D2694).
2 A 3	Produksi kaca (<i>Glass</i>	Proses terkait emisi dari produksi bermacam-
	Production)	macam tipe kaca (ISIC: D2610).
2 A 4	Proses produksi industri	Termasuk <i>limestone</i> (batu kapur), dolomite dan
	lainnya yang	karbonat lain. Contoh industri keramik. Emisi
	menggunakan karbonat	berasal dari penggunaan <i>limestone</i> (batu kapur),
	(Other Process Uses of	dolomite dan karbonat lain harus disertakan
	Carbonates)	dalam kategori sumber industri yang mengemisi.
		Untuk itu, contoh dimana karbonat digunakan
		sebagai flux atau produksi besi dan baja, emisi
		harus dilaporkan dibawah kategori 2C1 "besi dan
2.4.4	V 1.66	baja produksi" bukan dibawah sub kategori disini
2 A 4 a	Keramik (Ceramics)	Emisi terkait proses produksi bata dan atap ubin,
		vitrified clay pipes, refractory products, expanded
		clay products, wall and floor tiles, table and
		ornamental ware (household ceramics), sanitary ware, technical ceramics, dan inorganic bonded
		abrasives (ISIC: D2691, D2692 and D2693).
2 A 4 b	Penggunaan lain dari	Harus termasuk emisi dari penggunaan soda abu
ZATU	soda ash (Other Uses of	(ash) yang tidak disertakan pada kategori lain.
	Soda Ash)	Contoh soda abu(<i>ash</i>) yang digunakan untuk
	Jour Histi	untuk kaca harus dilaporkan pada 2A3
2 A 4 c	Produksi Non	Sumber kategori ini harus menyertakan emisi dari
21110	Metallurgical Magnesia	produksi magnesia yang tidak termasuk dalam
	(Non Metallurgical	kategori manapun. Contohnya produksi magnesia
	Magnesia Production)	yang digunakan untuk produk utama dan produk
		sekunder produksi magnesium, emisinya harus
		dilaporkan dalam sumber kategori tekait dalam
		produksi logam.
L	I	L

2 A 4 d	Lainnya (Other)	Emisi terkait proses dibawah kategori ini harus termasuk penggunaan bermacam-macam karbonat seperti penggunaan <i>limestone</i> (batu kapur), dolomite dan karbonat lain, kecuali untuk penggunaan yang telah masuk dalam kategori-kategori di atas dan penggunaan untuk fluxes atau agen terak pada industri metal dan kmia, atau pengapuran lahan pertanian dan wetland di AFOLU (ISIC D269).
2 A 5	Lainnya (<i>Other</i>)	
2 B	Industri Kimia (Chemical Industry)	
2 B 1	Produksi amonia (Ammonia Production)	Amonia adalah industri kimia utama dan memproduksi material paling penting. Gas ammonia digunakan untuk pemupukan secara langsung, untuk proses pemanasan, paper pulping, pabrik asam nitrat dan ester asam nitrat dan nitro compound manufacture, peledakan dan sebagai refrigerant. Amines, amides dan berbagai jenis campuran organic yang menggunakan amonia seperti urea.
		Gas rumah kaca yang dihasilkan dalam proses produksi ammonia adalah CO ₂ . CO ₂ yang digunakan dalam produksi UREA, downstream process, harus di subtracted dari pembangkitan CO ₂ dan perhitungan untuk sektor AFOLU
2 B 2	Produksi asam nitrat (Nitric Acid Production)	Asam nitrat digunakan terutama sebagai bahan mentah pembuatan pupuk berbasis nitrogen. Asam nitrat juga digunakan dalam memproduksi adipic acid dan untuk bahan peledak. Untuk peregangan logam dan proses ferrous logam. Gas rumah kaca utama yang dihasilkan adalah NO.
2 B 3	Produksi Asam Adipic (Adipic Acid Production)	Adipic acid digunakan dalam jumlah besar di dalam pembutanan serat sintetis, coatings, plastik, busa urethane, elastomers and pelumas sintetis. Produksi Nylon 6.6 dihitung untuk penggunaan asam acidipic dalam jumlah besar. Gas rumah kaca yang diemisi dalam proses ini adalah NO.
2 B 4	Produksi asam Caprolactam, Glyoxal and Glyoxylic (Caprolactam, Glyoxal and Glyoxylic Acid Production)	Sebagian besar produksi tahunan caprolactam (NH(CH2)5CO) digunakan untuk monomer pada serat nylon-6 dan plastik dengan proporsi substansial dari penggunaan serat di pabrik karpet. Semua proses komersil untuk pabrik caprolactam berasal dari toluene atau benzene.

2 B 5	Produksi Carbide (Carbide Production)	Produksi karbida dapat menghasilkan emisi CO ₂ , CH ₄ CO dan SO ₂ . Silikon karbida adalah abrasif buatan yang signifikan. Hal ini dihasilkan dari pasir silika atau kuarsa dan kokas minyak bumi. Kalsium karbida digunakan dalam produksi asetilena, dalam pembuatan sianamida (penggunaan dalam jumlah kecil), dan sebagai reduktan dalam tungku busur listrik baja yang terbuat dari kalsium karbonat (kapur) dan karbon yang mengandung reduktor (kokas minyak bumi).
2 B 6	Produksi Titanium Dioksida (<i>Titanium</i> Dioxide Production)	Penggunaan utama adalah dalam pembuatan cat antara lain kertas, plastik, karet, keramik, kain, meliputi lantai, tinta cetak, dan lain-lain. Proses produksi utama adalah rute klorida, sehingga menghasilkan emisi CO ₂ secara signifikan. Kategori ini juga mencakup produksi rutil sintetik menggunakan proses Bekher, dan titanium produksi terak, yang keduanya adalah pengurangan proses menggunakan bahan bakar fosil dan mengakibatkan emisi CO ₂ . Rutil sintetis merupakan masukan utama untuk produksi TiO ₂ menggunakan rute klorida.
2 B 7	Produksi Soda Ash (Soda Ash Production)	Soda abu (natrium karbonat, Na ₂ CO ₃) adalah padatan kristal putih yang digunakan sebagai bahan baku dalam jumlah besar industri termasuk pembuatan kaca, sabun dan deterjen, produksi pulp and paper dan pengolahan air. Emisi CO ₂ dari produksi soda abu bervariasi tergantung pada proses manufaktur. Empat proses yang berbeda dapat digunakan untuk memproduksi soda abu. Tiga dari proses ini, monohidrat, natrium sesquicarbonate (Trona) dan karbonasi langsung, disebut sebagai proses alamiah. Yang keempat, proses Solvay, diklasifikasikan sebagai proses sintetis.
2 B 8	Produksi Petrokimia dan Carbon Black (Petrochemical and Carbon Black Production)	
2 B 8 a	Methanol	Produksi metanol meliputi produksi metanol dari bahan baku bahan bakar fosil [gas alam, minyak bumi, batubara] dengan menggunakan steam reforming atau proses oksidasi parsial. Produksi metanol dari bahan baku biogenik (misalnya, dengan fermentasi) tidak termasuk dalam

		kategori sumber ini.
2 B 8 b	Ethylene	Produksi etilena meliputi produksi etilen dari bahan baku bahan bakar fosil yang berasal di pabrik petrokimia dengan proses uap retak. Produksi etilen dari situasi proses dalam batasbatas dari kilang minyak bumi tidak termasuk dalam kategori ini sumber. Gas rumah kaca yang dihasilkan dari produksi etilena adalah karbon dioksida dan metana
2 B 8 c	Ethylene Dichloride and Vinyl Chloride Monomer	Etilen diklorida dan vinil klorida monomer produksi meliputi produksi etilena diklorida oleh oksidasi langsung atau oxychloination etilena, dan produksi monomer vinil klorida dari etilena diklorida. Gas rumah kaca yang dihasilkan dari produksi produksi etilena diklorida dan vinil klorida monomer produksi adalah karbon dioksida dan metana.
2 B 8 d	Ethylene Oxide	Etilen oksida produksi meliputi produksi etilen oksida dengan reaksi etilen dan oksigen oleh oksidasi katalitik. Gas rumah kaca yang dihasilkan dari produksi etilen oksida adalah karbon dioksida dan metana.
2 B 8 e	Acrylonitrile	Produksi akrilonitril meliputi produksi akrilonitril dari ammoxidation propilena, dan produksi terkait asetonitril dan hidrogen sianida dari proses ammoxidation. Gas rumah kaca yang dihasilkan dari produksi akrilonitril adalah karbon dioksida dan metana.
2 B 8 f	Carbon Black	Produksi karbon hitam antara lain produksi karbon hitam dari bahan baku bahan bakar fosil yang diturunkan (minyak bumi atau <i>coal-derived</i> bahan baku karbon hitam, gas alam, asetilena). Produksi karbon hitam dari bahan baku biogenik tidak termasuk dalam kategori ini sumber.
2 B 9	Produksi Fluorochemical (Fluorochemical Production)	
2 B 9 a	By-product Emissions	Produksi fluorochemical meliputi range lengkap fluorochemicals, yang produk utamanya adalah gas-gas rumah kaca. Emisi mencakup HFC, PFC, SF6 dan semua lainnya halogenasi gas dengan potensi pemanasan global yang tercantum dalam laporan IPCC penilaian. Yang paling signifikan oleh-produk emisi adalah bahwa HFC-23 dari pembuatan HCFC-22 dan ini dijelaskan secara terpisah.

2 B 9 b	Emisi Fugitive (Fugitive Emissions)	Produksi fluorochemical dalam konteks ini adalah terbatas pada HFC, PFC, SF6 dan lainnya halogenasi gas dengan potensi pemanasan global yang tercantum dalam laporan IPCC.
2 B 10	Lainnya (<i>Other</i>)	Misalnya, gas dengan potensi pemanasan global yang tercantum dalam laporan penilaian IPCC yang tidak termasuk dalam setiap kategori di atas bisa dilaporkan di sini, jika gas tersebut diperkirakan.
2 C	Industri Logam (Metal Industry)	
2 C 1	Produksi besi dan baja (Iron and Steel Production)	Karbon dioksida adalah emisi gas rumah kaca utama yang dihasilkan dari produksi besi dan baja. Sumber-sumber emisi karbon dioksida termasuk yang berasal dari carbon-containing reducing agen (agen pereduksi yang mengandung karbon) seperti kokas dan batubara bubuk, dan, dari mineral seperti batu gamping dan dolomit ditambahkan.
2 C 2	Produksi Ferroalloys (Ferroalloys Production)	Ferroalloys produksi meliputi pengurangan emisi dari produksi primer metalurgi dari ferroalloys paling umum, yaitu ferro-silikon, silikon logam, ferro-mangan, mangan silikon, dan ferro-kromium, tidak termasuk yang berkaitan dengan emisi penggunaan bahan bakar. Dari paduan produksi ini, karbon dioksida (CO2), nitrous oxide (N2O), dan metana (CH4) yang berasal dari bijihdan bahan baku reduktan, dihasilkan.
2 C 3	Produksi Alumunium (Aluminium Production)	Produksi Aluminium meliputi produksi primer dari aluminium, kecuali emisi terkait dengan penggunaan bahan bakar. Emisi karbon dioksida hasil dari reaksi reduksi electroche mical alumina dengan anoda berbasis karbon. Tetrafluoromethane (CF4) dan hexafluoroethane (C2F6) juga diproduksi sering. Tidak ada gas rumah kaca yang dihasilkan dalam daur ulang dari aluminium selain dari bahan bakar menggunakan untuk hasil peleburan logam. Sulfur heksafluorida (SF6) emisi tidak berhubungan dengan produksi aluminium primer, namun casting (pengecoran) beberapa paduan mengandung magnesium tinggi tidak menghasilkan emisi SF6 dan emisi ini dicatat dalam Bagian 2C4, Produksi Magnesium.
2 C 4	Produksi Magnesium (Magnesium Production)	Produksi magnesium mencakup emisi GRK terkait baik produksi primer magnesium maupun perlindungan oksidasi logam magnesium selama

2 C 5	Produksi Lead (Lead Production)	pengolahan (daur ulang dan <i>casting</i>), tidak termasuk yang berkaitan dengan emisi penggunaan bahan bakar. Dalam produksi utama magnesium, karbon dioksida (CO ₂) yang dipancarkan selama kalsinasi bahan dolomit dan magnesit mentah. Produksi primer magnesium karbonat dari non-bahan baku tidak memancarkan karbon dioksida. Dalam pengolahan magnesium cair, tutup gas yang mengandung karbon dioksida (CO ₂), sulfur heksafluorida (SF6), yang hydrofluorocarbon HFC 134a atau keton fluorinated FK 5-1-12 (C3F7C (O) C2F5) dapat digunakan. Dekomposisi termal parsial dan / atau reaksi antara senyawa dan magnesium cair menghasilkan senyawa sekunder seperti perfluorokarbon (PFC), yang dipancarkan di samping untuk menutupi konstituen yang tidak bereaksi gas. Produksi timah meliputi produksi dengan proses sintering / peleburan serta peleburan langsung. Hasil emisi karbon dioksida sebagai produk dari penggunaan berbagai berbasis karbon
		mengurangi agen di kedua proses produksi.
2 C 6	Produksi Seng (Zinc Production)	Produksi seng mencakup emisi dari kedua produksi primer dari bijih seng serta pemulihan seng dari logam bekas, tidak termasuk emisi yang terkait dengan penggunaan bahan bakar. Setelah kalsinasi, logam seng diproduksi melalui salah satu dari tiga metode; destilasi 1-elektro-termis, 2-pyrometallurgical peleburan atau 3-elektrolisis. Jika metode 1 atau 2 digunakan, karbon dioksida (CO ₂) adalah dipancarkan. Metode 3 tidak mengakibatkan emisi karbon dioksida. Pemulihan dari skrap logam seng sering menggunakan metode yang sama seperti produksi primer akan mengemisikan CO ₂ .
2 C 7	Lainnya (Other)	
2 D	Produk-produk Non Energi dan Penggunaan Solvent/ Pelarut (Non- Energy Products from Fuels and Solvent Use)	Penggunaan produk minyak dan batubara yang berasal dari minyak terutama ditujukan untuk tujuan selain pembakaran.
2 D 1	Penggunaan pelumas (Lubricant Use)	Minyak pelumas, heat transfer oils, cutting oils and <i>greases</i> (lemak)
2 D 2	Penggunaan lilin Paraffin (Paraffin Wax Use)	Minyak yang berasal dari lilin seperti petroleum jelly, lilin parafin dan lilin lainnya.

2.5.2	D D 1	NAME OF THE PARTY
2 D 3	Penggunaan Pelarut (Solvent Use)	NMVOC emisi dari penggunaan pelarut misalnya dalam aplikasi cat, pembersih degreasing dan kering harus terkandung di sini. Emisi dari penggunaan HFC dan PFC sebagai pelarut harus dilaporkan di bawah 2F5.
2 D 4	Lainnya (<i>Other</i>)	Misalnya, CH4, emisi CO dan NMVOC dari produksi aspal dan digunakan, serta emisi NMVOC dari penggunaan produk kimia lain selain pelarut harus terkandung di sini, jika relevan.
2 E	Industri Elektronik (Electronics Industry)	
2 E 1	Sirkuit atau Semi Konduktor Terpadu (Integrated Circuit or Semiconductor)	Emisi CF4, C2F6, C3F8, c-C4F8, C4F6, C4F80, C5F8, CHF3, CH2F2, NF3 dan SF6 dari penggunaan gas-gas dalam manufaktur Integrated Circuit (IC), yang tergantung pada produk (misalnya, memori atau perangkat logika) dan produsen peralatan.
2 E 2	Panel Display TFT Flat (TFT Flat Panel Display)	Penggunaan dan emisi didominasi CF4, CHF3, NF3 dan SF6 selama fabrikasi film tipis transistor (TFTs) pada substrat kaca untuk pembuatan display panel datar. Selain gas ini, C2F6, C3F8 dan c-C4F8 juga dapat digunakan dan dihasilkan selama pembuatan of thin and smart displays.
2 E 3	Photovoltaics	Photovoltaic cell manufacture may use and emit CF4 and C2F6 among others.
2 E 4	Perpindahan Panas Fluida (Heat Transfer Fluid)	Perpindahan panas cairan, yang meliputi beberapa senyawa karbon sepenuhnya terfluorinasi (baik dalam bentuk murni atau dalam campuran) dengan enam atau lebih atom karbon, digunakan dan dipancarkan selama IC, pengujian manufaktur dan perakitan. Mereka digunakan dalam pendingin, penguji suhu shock dan uap solder pada fase reflow
2 E 5	Lainnya (Other)	
2 F	Penggunaan produk yang mengandung senyawa pengganti bahan perusak ozon (Product Uses as Substitutes for Ozone Depleting Substances)	
2 F 1	Refigerasi dan Pendingin Udara (<i>Refrigeration and</i> <i>Air Conditioning</i>)	Kategori ini dimanfaatkan teknologi yang berbeda seperti penukar panas, perangkat ekspansi, pipings dan kompresor. Aplikasi Utama adalah pendingin domestik, refrigerasi komersial, proses industri, pendinginan transportasi, penyejuk udara stasioner, sistem airconditioning mobile.

	1	77 . 1
		Untuk semua aplikasi ini, berbagai HFC selektif menggantikan CFC dan HCFC. Sebagai contoh, di negara maju, HFC-134a telah menggantikan CFC-12 dalam pendingin domestik dan sistem mobile air conditioning, dan campuran dari HFC seperti R-407C (HFC-32/HFC-125/HFC-134a) dan R-410A (HFC-32/HFC-125) mengganti HCFC-22 terutama di AC stasioner. Lainnya, zat non HFC digunakan untuk menggantikan CFC dan HCFC seperti iso-butana dalam pendingin domestik atau amonia dalam pendingin industri. HFC-152a juga sedang dipertimbangkan untuk mobile air conditioning di beberapa daerah.
2 F 1 a	Refiregerasi dan Pendingin Udara (AC) Tidak Bergerak (Refrigeration and Stationary Air Conditioning)	Aplikasi utama adalah refrigerasi domestik, refrigerasi komersial, proses industri, penyejuk udara stasioner.
2 F 1 b	Pendingin Udara (AC) Bergerak (<i>Mobile Air</i> Conditioning)	Aplikasi utama adalah transport refrigeran, sistem penyejuk udara bergerak
2 F 2	Bahan Blowing Busa (Foam Blowing Agents)	HFC digunakan sebagai pengganti CFC dan HCFC dalam busa, khususnya di closed-cell insulation applications. Senyawa yang sedang digunakan termasuk HFC-245fa, HFC-365mfc, HFC-227ea, HFC-134a, dan HFC-152a. Proses dan aplikasi berbagai HFC yang digunakan antara lain insulation boards and panels, pipe sections, sprayed systems and onecomponent gap filling foams. Untuk open-cell foams, seperti integral skin products for automotive steering wheels and facias, emisi HFC digunakan sebagai blowing agen yang mungkin terjadi selama proses manufaktur. Dalam closedcell foam, emisi tidak hanya terjadi selama tahap manufaktur, tetapi biasanya meluas ke fase in-use dan sering sebagian besar emisi terjadi pada fase <i>end of-life</i> (<i>de-commissioning losses</i>). Dengan demikian, emisi dapat terjadi selama periode hingga 50 tahun atau bahkan lebih lama.
2 F 3	Alat Pemadam Kebakaran (Fire Protection)	Ada dua jenis umum peralatan perlindungan api (pemadam kebakaran) yang menggunakan bahan gas rumah kaca sebagai pengganti Halons: peralatan portable (streaming) dan tetap (flooding). Depleting non-ozon, industri gas HFC, PFC dan fluoroketone yang terutama digunakan

		dipancarkan. Lima sumber utama adalah inhaler dosis terukur (MDI), produk perawatan pribadi
		dosis terukur (MDI), produk perawatan pribadi
		(misalnya perawatan rambut, deodoran, krim cukur), produk rumah tangga (misalnya udara-
		penyegar, oven dan kain pembersih), produk industri (misalnya semprotan pembersih khusus
		seperti yang untuk operasi kontak listrik, pelumas,
		pipa-freezer) dan produk umum lainnya (string
		konyol misalnya, inflators ban, claxons), meskipun di beberapa daerah penggunaan produk umum
		seperti dibatasi. HFC yang saat ini digunakan
		sebagai propelan adalah HFC 134a, HFC 227ea,
ı		dan HFC 152a. Substansi HFC 43 10mee dan PFC,
		dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut
		dan HFC 152a. Substansi HFC 43 10mee dan PFC,
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak digunakan. Area utama penggunaan adalah presisi
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak digunakan. Area utama penggunaan adalah presisi pembersih, membersihkan elektronik, pembersih
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak digunakan. Area utama penggunaan adalah presisi
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak digunakan. Area utama penggunaan adalah presisi pembersih, membersihkan elektronik, pembersih logam dan aplikasi deposisi. Emisi dari aerosol
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak digunakan. Area utama penggunaan adalah presisi pembersih, membersihkan elektronik, pembersih logam dan aplikasi deposisi. Emisi dari aerosol yang mengandung pelarut harus dilaporkan
2 F 5	Pelarut (Solvent)	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak digunakan. Area utama penggunaan adalah presisi pembersih, membersihkan elektronik, pembersih logam dan aplikasi deposisi. Emisi dari aerosol yang mengandung pelarut harus dilaporkan dibawah kategori 2f4 "Aerosol" daripada dalam
2 F 5 2 F 6	Pelarut (Solvent) Aplikasi Lainnya (Other	dan HFC 152a. Substansi HFC 43 10mee dan PFC, perfluorohexane, digunakan sebagai pelarut dalam produk aerosol industri. Pelarut: digunakan sebagai pengganti untuk bahan perusak (terutama CFC-113). Jenis HFC yang digunakan adalah HFC-365mfc dan HFC-43-10mee. Penggunaan pengganti terfluorinasi jauh lebih luas dari bahan perusak ozon mereka mengganti. <i>Re-capture</i> dan <i>re-use</i> lebih banyak digunakan. Area utama penggunaan adalah presisi pembersih, membersihkan elektronik, pembersih logam dan aplikasi deposisi. Emisi dari aerosol yang mengandung pelarut harus dilaporkan

	Applications)	banyak digunakan dalam berbagai aplikasi <i>niche</i> yang tidak tercakup dalam sub-kategori sumber. Ini termasuk pengujian elektronik, perpindahan panas, cairan dielektrik dan aplikasi medis. Sifat HFC dan PFC sama-sama menarik dalam beberapa sektor dan mereka telah diadopsi sebagai pengganti. Ada juga beberapa kegunaan sejarah PFC, serta penggunaan muncul dari HFC, dalam aplikasi ini. Aplikasi ini memiliki tarif kebocoran mulai dari 100% pada tahun memancarkan aplikasi menjadi sekitar 1% per tahun.
2 G	Produk Manufacture lain dan Penggunaannya (Other Product Manufacture and Use)	
2 G 1	Peralatan listrik (Electrical Equipment)	Peralatan listrik yang digunakan dalam transmisi dan distribusi tenaga listrik di atas 1 kV. SF ₆ digunakan dalam switch gear gas insulated (GIS), gas sirkuit pemutus (GCB), gas terisolasi transformer (GIT), gas terisolasi baris (GIL), transformator instrumen luar gas terisolasi, <i>reclosers</i> , <i>switch</i> , unit cincin utama dan peralatan lainnya.
2 G 1 a	Peralatan listrik pabrik (Manufacture of Electrical Equipment)	Peralatan listrik pabrik
2 G 1 b	Penggunaan peralatan listrik (<i>Use of Electrical Equipment</i>)	Penggunaan peralatan listrik
2 G 1 c	Pembuangan peralatan listrik (<i>Disposal of Electrical Equipment</i>)	Pembuangan peralatan listrik
2 G 2	SF6 dan PFCs dari penggunaan produk lain (SF6 and PFCs from Other Product Uses)	SF6 dan PFCs dari penggunaan produk lain
2 G 2 a	Aplikasi Peralatan Militer (<i>Military</i> <i>Applications</i>)	Aplikasi militer termasuk AWACS, pesawat pengintai militer jenis E-3A Boeing. Dalam AWACS (dan pesawat pengintai mungkin lainnya), SF6 digunakan sebagai gas isolasi dalam sistem radar.
2 G 2 b	Akselerator (Accelerators)	Akselerator partikel digunakan untuk tujuan penelitian (di universitas dan lembaga penelitian), untuk aplikasi industri (di silang polimer untuk isolasi kabel dan untuk bagian karet dan selang), dan medis (radioterapi) aplikasi.
2 G 2 c	Lainnya (Other)	Sumber ini termasuk menggunakan adiabatik,

		kaca kedap suara, PFC digunakan sebagai cairan perpindahan panas dalam aplikasi konsumen dan komersial, PFC yang digunakan dalam aplikasi kosmetik dan medis, dan PFC dan SF6 digunakan
2 G 3	Penggunaan Produk yang mengandung N20 (N20 from Product Uses)	sebagai pelacak. Penggunaan Produk yang mengandung N ₂ O
2 G 3 a	Aplikasi peralatan medis (Medical Applications)	Sumber ini mencakup emisi penguapan nitrogen oksida (N ₂ O) yang dihasilkan dari aplikasi medis (anestesi digunakan, penggunaan analgesik dan menggunakan hewan). N ₂ O digunakan selama anestesi untuk dua alasan: a) sebagai anestesi dan analgesik dan sebagai b) gas pembawa untuk anestesi yang mudah menguap seperti hidrokarbon terfluorinasi isoflurane, sevofluran dan desflurane.
2 G 3 b	Propelant dalam produk-produk aerosol (Propellant for Pressure and Aerosol Products)	Sumber ini mencakup emisi menguapkan nitrogen oksida (N ₂ O) yang dihasilkan dari penggunaan bahan pembakar dalam produk aerosol terutama di industri makanan. Penggunaan khusus biasanya untuk membuat krim kocok, dimana cartridge diisi dengan N ₂ O digunakan untuk meledakkan krim ke busa.
2 G 3 c	Lainnya (Other)	
2 G 4	Lainnya (Other)	
2 H	Lainnya (Other)	
2 H 1	Industri Pulp dan Kertas (Pulp and Paper Industry)	
2 H 2	Industri Makanan dan Minuman (Food and Beverages Industry)	
2 H 3	Lainnya (Other)	

LAMPIRAN 2.

Tabel Pelaporan (*Common Reporting Format*)
Hasil Perhitungan Emisi Gas Rumah Kaca
Proses Industri dan Penggunaan Produk

Lampiran 2. 1 Tabel Sektoral Kegiatan Proses Industri dan Penggunaaan Produk

	Produk								_				
Catego	у	CO ₂	CH₄	N ₂ O	HFCs			conversion factors (1)	Other halogenated gases without CO ₂ equivalent conversion factors (2)	NOx	со	NMVOCs	SO ₂
			(Gg)		C	O ₂ equ	ivaler	ts (Gg)		((ig)		_
2 INDU	STRIAL PROCESSES AND PRODUCT USE												
2A	Mineral Industry												
2A1	Cement Production												
2A2	Lime Production												П
2A3	Glass Production												П
	Other Process Uses of Carbonates												Н
	Ceramics												Н
	Other Uses of Soda Ash												Н
	Non Metallurgical Magnesia Production	\vdash											Н
	Other (please specify) (3)	\vdash											\vdash
	Other (please specify) (3)	\vdash	\vdash										$\vdash\vdash$
2B	Chemical Industry												Н
		_		\vdash									$\vdash\vdash$
	Ammonia Production	_	_										$\vdash\vdash$
	Nitric Acid Production												Н
	Adipic Acid Production												Н
2B4	Caprolactam, Glyoxal and Glyoxylic Acid Production												
ODE	Carbide Production												Н
													\vdash
	Titanium Dioxide Production	_											Ш
	Soda Ash Production												Ш
	Petrochemical and Carbon Black Production												
	Methanol												
	Ethylene												Ш
2B8c	Ethylene Dichloride and Vinyl Chloride												
	Monomer												Ш
	Ethylene Oxide												Ш
	Acrylonitrile												Ш
	Carbon Black												
	Fluorochemical Production												Ш
2B9a	By-product Emissions (4)												
2B9b	Fugitive Emissions (4)												Ш
2B10	Other (please specify) (3)												
2C	Metal Industry												
2C1	Iron and Steel Production												
2C2	Ferroalloys Production												
2C3	Aluminium Production												
2C4	Magnesium Production (5)												
	Lead Production												П
2C6	Zinc Production												
	Other (please specify) (3)												Н
2D	Non-Energy Products from Fuels and												Н
	Solvent Use ⁽⁶⁾												
2D1													
	Paraffin Wax Use	Г											М
	Solvent Use ^(/)												Н
	Other (please specify) (3), (8)												Н
2E	Electronics Industry												\vdash
2E1	Integrated Circuit or Semiconductor (9)												\vdash
	TFT Flat Panel Display (9)												\vdash
252	Photovoltaics ⁽⁹⁾												$\vdash\vdash$
2E3												_	\vdash
	Other (please specify) (3)												$\vdash\vdash$
		\vdash		\vdash							_		Н
2F	Product Uses as Substitutes for Ozone Depleting Substances												
2F1		\vdash											$\vdash\vdash$
													$\vdash\vdash$
ZFId	Refrigeration and Stationary Air Conditioning								I				ш

Lampiran 2.1 (Lanjutan) Tabel Sektoral Kegiatan Proses Industri dan Penggunaan Produk

Category	CO ₂	CH₄	N ₂ O	HFCs	PFCs	SF ₆	Other halogenated gases with CO ₂ equivalent conversion factors (f)	Other halogenated gases without CO ₂ equivalent conversion factors (2)	NOx	со	NMVOCs	SO ₂
		(Gg)		C	O ₂ equ	ivaler	nts (Gg)		(0	Gg)		
2F1b Mobile Air Conditioning												
2F2 Foam Blowing Agents												
2F3 Fire Protection												
2F4 Aerosols												
2F5 Solvents												
2F6 Other Applications (3)												
2G Other Product Manufacture and Use												
2G1 Electrical Equipment												
2G1a Manufacture of Electrical Equipment												
2G1b Use of Electrical Equipment												
2G1c Disposal of Electrical Equipment												
2G2 SF ₆ and PFCs from Other Product Uses												
2G2a Military Applications												
2G2b Accelerators												
2G2c Other (please specify) ⁽³⁾												
2G3 N₂O from Product Uses												
2G3a Medical Applications												
2G3b Propellant for Pressure and Aerosol												
Products									_			\vdash
2G3c Other (please specify) ⁽³⁾									_			$\vdash\vdash$
2G4 Other (please specify) ⁽³⁾	+	_							_			\vdash
2H Other	+	-							_			$\vdash\vdash$
2H1 Pulp and Paper Industry	+	-							_			$\vdash\vdash$
2H2 Food and Beverages Industry	+	-							<u> </u>			Щ
2H3 Other (please specify) (3)												Ш

Lampiran 2. 2 Tabel Basis Data Sektor: 2A Industri Mineral (Mineral Industry), 2B (2B1-2B8, 2B10) Industri Kimia (Chemical Industry) - CO2, CH4 and N2O

	- Industry		-			-					
		Activ	vity dat	ta			E	mission	ıs		
Catego	ries		n/Consum uantity	ption	c	O ₂ (Gg)		CH ₄	(Gg)	N ₂ O	(Gg)
		Description (1)	Quantity	Unit ⁽²⁾	Emissions (3)	Information Item Captured and Stored (4)	(memo) Other Reduction	Emissions	Information Item Reduction	Emissions (3)	Information Item Reduction
2A Min	eral Industry										
2A1	Cement production										
2A2	Lime production										
2A3	Glass Production										
2A4	Other Process Uses of Carbonates ⁽⁷⁾										
2A4a	Ceramics										
2A4b	Other Uses of Soda Ash										
2A4c	Non Metallurgical Magnesia Production										
2A4d	Other										
2A5	Other (please specify) (8)										
2B Che	mical Industry										
2B1	Ammonia Production										
2B2	Nitric Acid Production										
2B3	Adipic Acid Production										
2B4	Caprolactam, Glyoxal and Glyoxylic Acid Production										
2B5	Carbide Production										
2B6	Titanium Dioxide Production										
2B7	Soda Ash Production										
2B8	Petrochemical and Carbon Black Production										
2B8a	Methanol										
2B8b	Ethylene										
2B8c	Ethylene Dichloride and Vinyl Chloride Monomer										
2B8d	Ethylene Oxide										
2B8e	Acrylonitrile										
2B8f	Carbon Black										
2B10	Other (please specify) (8)										

Lampiran 2. 3 Tabel Basis Data Sektor: 2B (2B9 - 2B10) Industri Kimia (*Chemical Industry*) HFCs, PFCs, SF6 dan gas halogenasi lainnya

				-		-		-								-			_														
Categor	ries	HFC-23	HFC-32	HFC-41	HFC-125	HFC-134	HFC-134a	HFC-143	HFC-143a	HFC-152	HFC-152a	HFC-161	HFC-227ea	HFC-236cb	HFC-236ea	HFC-236fa	HFC-245ca	HFC-245fa	HFC-365mfc	HFC-43-10mee	Other HFCs (2) (please specify)	Total HFCs	CF₄	C ₂ F ₆	C ₃ F ₈	C4F10	c-C₄F ₈	C ₅ F ₁₂	C ₆ F₁₄	Other PFCs (2) (please specify)	Total PFCs	SF ₆	Other halogenated gases ⁽²⁾ (please specify)
	uivalent conversion factors(1)																																
Source	of the factor:																																
									En	niss	ions	in c	rigi	nal r	nass	uni	t (tor	nne)															
2B9	Fluorochemical Production																																
2B9a	By-product Emissions (3)																																
	(information) Reduced amount (4)																																
2B9b	Fugitive Emissions (3)																																
	(information) Reduced amount (4)																																
2B10	Other (please specify) (5)																																
									Em	issio	ons	in C	O₂ e	quiv	alen	t uni	t (Gg	j-CO	2)														
2B9	Fluorochemical Production																																
2B9a	By-product Emissions																																
2B9b	Fugitive Emissions																																
2B10	Other (please specify) (5)																																

Lampiran 2. 4 Tabel Basis Data Sektor: 2C Industri Logam (Metal Industry) CO2, CH4 and N2O

	Act	ivity Data					Emissions			
	Production/Co	nsumption	quantity		CO₂(Gg)		CH₄	(Gg)	N ₂ O	(Gg)
Categories	Description (1)	Quantity	Unit ⁽²⁾	Emissions (3)	(information) Captured and Stored ⁽⁴⁾	(information) Other Reduction ⁽⁵⁾	Emissions (3)	(information) Reduction ⁽⁶⁾	Emissions (3)	(information) Reduction ⁽⁶⁾
2C Metal Industry										
2C1 Iron and Steel Production										
2C2 Ferroalloys Production										
2C3 Aluminium Production										
2C4 Magnesium Production										
2C5 Lead Production										
2C6 Zinc Production										
2C7 Other (please specify) (7)										

Lampiran 2. 5 Tabel Basis Data Sektor: 2C (2C3, 2C4, 2C7) Industri Logam (*Metal Industry*) HFCs, PFCs, SF6 dan gas halogenasi lainnya

	,												
HFC-134a	Other HFCs (2) (please specify)	Total HFCs	CF₄	C ₂ F ₆	C 3F8	C4F10	c-C₄F ₈	C ₅ F ₁₂	C ₆ F₁₄	Other PFCs (2) (please specify)	Total PFCs	SF ₆	Other halogenated gases (2) (please specify)
	HFC-134a	HFC-134a Cther HFCs (2) (please specify)	HFC-134a Other HFCs (2) (please specify) Total HFCs	HFC-134a Other HFCs (2) (please specify) Total HFCs	HFC-134a Other HFCs (2) (please specify) Total HFCs CF4	HFC-134a Other HFCs (2) (please specify) Total HFCs CF4 C2F6	HFC-134a Other HFCs (2) (please specify) Total HFCs CF ₄ C ₂ F ₆ C ₄ F ₁₀	HFC-134a HFC-134a Other HFCs (2) (please specify) Total HFCs CF4 C2F6 C3F8 C-4F10	HFC-134a Other HFCs (2) (please specify) Total HFCs C ₂ F ₆ C ₄ F ₁₀ C ₄ F ₁₀ C ₄ F ₁₀ C ₅ F ₁₂	HFC-134a HFC-134a Other HFCs (2) (please specify) Total HFCs CF4 C2F6 C3F8 C-C4F8 C6F12	HFC-134a (Please specify) (Please specify) (Please specify) (Please specify) (Please specify) (Please specify)	HFC-134a Other HFCs (2) (please specify) Total HFCs C ₂ F ₆ C ₄ F ₁₀ C ₅ F ₁₂ C ₅ F ₁₄ Other PFCs (2) (please specify) Total PFCs Total PFCs Total PFCs	HFC-134a (please specify) (please specify)

Lampiran 2. 6 Tabel Basis Data Sektor: 2D Produk non-energi (*Non-Energy Products*) dari penggunaan bahan bakar dan pelarut, CO₂, CH₄ dan N₂O

	Activity Da	ta			Emissions	
Categories	Production/Consumpt	tion quantity	У	CO ₂	CH ₄	N₂O
	Description	Quantity	Unit	(Gg)	(Gg)	(Gg)
2D Non-Energy Products from Fuels and Solvent Use						
2D1 Lubricant Use	Lubricant consumption		tonne			
2D2 Paraffin Wax Use	Wax consumption		tonne			
2D3 Solvent Use						
2D4 Other						
Product (please specify)						
Product (please specify)						
Product (please specify) (1)						

⁽¹⁾ Tambahkan baris pada worksheet apabila diperlukan

Lampiran 2. 7 Tabel Basis Data Sektor: 22E Industri Elektronik (*Electronics Industry*) HFCs, PFCs, SF₆, NF₃ dan gas halogenasi lainnya

			_				_			_				_	
Categories	CO ₂ ⁽²⁾	N ₂ O (2)	HFC-23	HFC-32	Other HFCs (3) (please specify)	Total HFCs	CF₄	C₂F ₆	C 3Fs	c-C₄F ₈	Other PFCs (3) (please specify)	Total PFCs	SF ₆	NF ₃	Other halogenated gases (3) (please specify)
CO ₂ equivalent conversion factors (1)															
[Source of the factor:]															
Emission	ıs in	origi	nal ı	mas	s unit	(ton	ne)								
2E Electronics Industry															
2E1 Integrated Circuit or Semiconductor															
2E2 TFT Flat Panel Display															
2E3 Photovoltaics															
2E4 Heat Transfer Fluid															
2E5 Other (please specify) (4)															
Emissions	in C	O2 e	quiv	alen	t unit	(Gg	CO2)							
2E Electronics Industry															
2E1 Integrated Circuit or Semiconductor															
2E2 TFT Flat Panel Display															
2E3 Photovoltaics															
2E4 Heat Transfer Fluid															
2E5 Other (please specify) (3)															

Lampiran 2. 8 Tabel Basis Data Sektor: 2F Penggunaan produk sebagai pengganti bahan penipis ozon (*Product Uses as Substitutes for Ozone Depleting Substances*) HFCs, PFCs dan gas halogenasi lainnya

Categories CO ₂ equivalent conversion factors ⁽¹⁾	CO ₂ (2)	HFC-23	HFC-32	HFC-125	HFC-134a	HFC-143a	HFC-152a	HFC-227ea	HFC-236fa	HFC-245fa	HFC-365mfc	HFC-43-10mee	Other HFCs (3) (please specify)	Total HFCs	CF4	C ₂ F ₆	C 3F8	C4F10	Other PFCs (3) (please specify)	Total PFCs	Other halogenated gases (3) (please specify)
[Source of the factor:																					
				E	mis	sion	s in	orig	inal	mas	s un	it (t	onne)								
2F Product Uses as Substitutes for Ozone Depleting Substances																					
2F1 Refrigeration and Air Conditioning																					
2F1a Refrigeration and Stationary Air Conditioning 2F1b Mobile Air																					
Conditioning 2F2 Foam Blowing	-																				
Agents																					
2F3 Fire Protection																					
2F4 Aerosols																					
2F5 Solvents																					
2F6 Other Applications ⁽⁴⁾																					
				En	iissi	ons	in C	O ₂ e	quiv	alen	t un	it (G	g-CO ₂)							
2F Product Uses as Substitutes for Ozone Depleting Substances																					
2F1 Refrigeration and Air Conditioning																					
2F1a Refrigeration and Stationary Air Conditioning																					
2F1b Mobile Air Conditioning																					
2F2 Foam Blowing Agents																					
2F3 Fire Protection																					
2F4 Aerosol																					
2F5 Solvents																					
2F6 Other Applications ⁽⁴⁾																					

Lampiran 2. 9 Basis Data Sektor: 2G (2G1, 2G2, 2G4) Produk manufaktur lainnya dan penggunaannya (*Other Product Manufacture and Use*) – PFCs, SF6 dan gas halogenasi lainnya

Catego		CF₄	C ₂ F ₆	C 3Fs	C4F10	c-C₄F ₈	C ₅ F ₁₂	C ₆ F ₁₄	Other PFCs (2) (please specify)	Total PFCs	SF ₆	Other halogenated gases (2) (please specify)
CO ₂ eq	uivalent conversion factors ⁽¹⁾ e of the factor:											
Localor	Emissions in or	igina	l ma	ss un	it (to	nne)						
2G Oth	er Product Manufacture and Use											
2G1	Electrical Equipment											
2G1a	Manufacture of Electrical Equipment (3)											
	(information) Reduced amount (4)											
2G1b	Use of Electrical Equipment (3)											
	(information) Reduced amount (4)											
	2G1c. Disposal of Electrical Equipment (3)											
	(information) Reduced amount (4)											
2G2	SF ₆ and PFCs from Other Product Uses											
	Military Applications (3)											
	(information) Reduced amount (4)											
2G2b	Accelerators (3)											
	University and Research Particle Accelerators (3)											
	(information) Reduced amount (4)											
	Industrial and Medical Particle Accelerators (3)											
	(information) Reduced amount (4)											
2G2c	Other (please specify) (3), (5)											
	(information) Reduced amount (4), (5)											
2G4	Other (please specify) (3), (5), (6)											
	(information) Reduced amount (4), (5), (6)											
	Emissions in CO	equ	ivale	nt un	it (G	g-CO	2)					
2G Oth	er Product Manufacture and Use											
2G1	Electrical Equipment											
2G1a	Manufacture of Electrical Equipment											
2G1b	Use of Electrical Equipment											
2G1c	Disposal of Electrical Equipment											
2G2	SF ₆ and PFCs from Other Product Uses											
2G2a	Military Applications (AWACS)											
2G2b	Accelerators											
	University and Research Particle Accelerators											
	Industrial and Medical Particle Accelerators											
	Other (please specify) (5)											
	Other (please specify) (5), (6)											

Lampiran 2. 10 Basis Data Sektor: 2G (2G3, 2G4) Produk manufaktur lainnya dan penggunaannya (*Other Product Manufacture and Use*) – N₂O, CO₂ dan CH₄

	Activity Data			Emissions					
Categories	I	Activity Data		N₂O (Gg)		CO₂(Gg)		CH₄(Gg)	
	Description	Quantity	Unit	Emissions (1)	(information) Reduction ⁽²⁾	Emissions (1)	(information) Reduction ⁽²⁾	Emissions (1)	(information) Reduction ⁽²⁾
2G3 N₂O from Product Uses									
2G3a Medical Applications	N ₂ O supplied		tonne						
2G3b Propellant for Pressure and Aerosol Products	N ₂ O supplied		tonne						
2G3c Other (please specify) (3)	N ₂ O supplied		tonne						
2G4 Other (please specify) (3)									

Lampiran 2. 11 Basis Data Sektor: 2H Lainnya

Ŭ	Activity Data Quantity Unit		Emissions						
Categories			CO ₂ (Gg)		CH ₄ (Gg)		N₂O (Gg)		
Categorios			Emissions (1)	(information) Reduction ⁽²⁾	Emissions (1)	(information) Reduction ⁽²⁾	Emissions (1)	(information) Reduction ⁽²⁾	
2H Other									
2H1 Pulp and Paper Industry									
2H2 Food and Beverages Industry									
2H3 Other (please specify) (3)									

						-
Categor	ies	(please specify) ⁽¹⁾				
	Emissions in original mass unit (t	tonne)	-	-		
	Total					
2B Cher	nical Industry					
2B9	Fluorochemical Production					
2B9a	By-product Emissions					
2B9b	Fugitive Emissions					
2B10	Other (please specify) (2)					
2C Meta	l Industry					
2C4	Magnesium Production					
2C7	Other (please specify) (2)					
2E Elect	ronics Industry					
2E1	Integrated Circuit or Semiconductor					
2E2	TFT Flat Panel Display					
2E3	Photovoltaics					
2E4	Heat Transfer Fluid					
2E5	Other (please specify) (2)					
	uct Uses as Substitutes for Ozone Depleting Substances					
2F1	Refrigeration and Air Conditioning					
2F1a	Refrigeration and Stationary Air Conditioning					
2F1b	Mobile Air Conditioning					
2F2	Foam Blowing Agents					
2F3	Fire Protection					
2F4	Aerosols					
2F5	Solvents					
2F6	Other Applications (please specify) (2)					
20.00	De-de-de-le-					
	er Product Uses					
2G1	Electrical Equipment					
2G1a	Manufacture of Electrical Equipment					
2G1b	Use of Electrical Equipment					
2G1c	Disposal of Electrical Equipment					
2G2	SF ₆ and PFCs from Other Product Uses					
2G2a	Military Applications (AWACS)					
2G2b	Accelerators Other (please specify) ⁽²⁾					
2G2c 2G4	Other (please specify) ⁽²⁾ Other (please specify) ⁽²⁾					
204	Other (blease specify)					

LAMPIRAN 3.

Lembar Kerja (Worksheet) Penghitungan Emisi GRK Proses Industri dan Penggunaan Produk

Lampiran 3.1 Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri mineral, kategori 2A1 - Produksi semen

Sector	Industrial Proces	Industrial Processes and Product Use						
Category	Mineral Industry	Mineral Industry - Cement Production						
Category Code	2A1							
Sheet	1 of 2							
	A	В	С					
Individual Type of	Mass of Individual	Clinker Fraction in	Mass of Clinker in the Individual					
Cement Produced	Type of Cement	Cement	Type of Cement Produced					
1)	Produced							
	(tonne)	(fraction)	(tonne)					
			C = A * B					
Total								
1) Insert additional	rows if more than two	types of cement are	produced.					

	Sector	Industrial Processes and Product Use				
	Category	Mineral Industry - Cement Production				
	Category Code	2A1				
	Sheet	2 of 2				
D	Е	F	G	Н	I	
Imports for	Exports of	Mass of	Emission	CO_2	CO_2	
Consumption	Clinker	Clinker	Factor for the	Emissions	Emissions	
of Clinker		Produced	Clinker in the			
		in the	Particular			
		Country	Cement			
(tonno)	(tonne)	(tonne)	(tonne CO ₂ /	(tonne CO ₂)	(Gg CO ₂)	
(tonne)	(tollie)	(tollile)	tonne clinker)	(tollile CO ₂)	(Gg CO ₂)	
		F = C - D + E		H = F * G	I = H/10 ³	
0	3,407,239	34,183,840	0.869	29,705,757	29,706	

Lampiran 3. 2 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri mineral, kategori 2A2 - Produksi kapur

Sector	Industria	Industrial Processes and Product Use						
Category	Mineral I	Mineral Industry - Lime Production						
Category Code	2A2	2A2						
Sheet	1 of 1							
	A	В	С	D				
Type of Lime	Mass of	Emission Factor	CO_2	CO ₂ Emissions				
Produced ^{1), 2)}	Lime	for Lime	Emissions					
	Produced	Production						
	(tonne)	(tonne CO ₂ / tonne lime)	(tonne CO ₂)	(Gg CO ₂)				
			C = A * B	$D = C/10^3$				
Total								

¹⁾ Insert additional rows if more than two types of cement are produced.

Lampiran 3. 3 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri mineral, kategori 2A3 - Produksi kaca

Sector	Sector Industrial Processes and Product Use						
Category	Mineral Inc	dustry – Glass P	roduction				
Category Code	2A3						
Sheet	1 of 1						
A	В	С	D	Е			
Total Glass	Emission	Average	CO ₂ Emissions	CO ₂ Emissions			
Production	Factor for	Annual Cullet					
	Glass	Ratio					
	Production						
(tonne)	(tonne CO ₂ /	(fraction)	(tonne CO ₂)	(Gg CO ₂)			
(tollile)	tonne glass)	(If action)	(toffile CO2)	(ug co2)			
			D = A * B * (1 - C)	$E = D/10^3$			

²⁾ When country-specific information on lime production by type is not available, apply the default emission factor to national level lime production data. (See Equation 2.8 in Chapter 2 of this volume.)

Lampiran 3. 4 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri mineral, kategori 2A4 - proses produksi laimmua yang mengginakan karbonat

yang menggmakan karbunat								
Sector	Industrial Processes and Product Use							
Category	Mineral Industry -	Mineral Industry - Other Process Uses of Carbonates						
Category Code	2A4							
Sheet	1 of 1							
l	A	В	С	D				
Type of Use	Mass of Carbonate	Emission Factor for	CO ₂	CO ₂				
	Consumed	Carbonate	Emissions	Emissions				
		Consumption 3), 4)						
	(tonne)	(tonne CO ₂ / tonne carbonate)	(tonne CO ₂)	(Gg CO ₂)				
			C = A * B	$D = C/10^3$				
Ceramics								
Other Uses of								
Soda Ash								
Non								
Metallurgical								
Magnesia								
Production								
Other 2)								

Lampiran 3. 5 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B1 - Produksi amonia

Sector	Sector Industrial Processes and Product Use						
Category	Chemical Industry - Ammonia Production						
Category Code	2B1						
Sheet	1 of 2						
A	В	С	D	Е			
Amount of Ammonia	Fuel	Carbon	Carbon	CO ₂ Generated			
Produced	Requirement	Content	Oxidation				
	for Ammonia	of Fuel	Factor of				
	Production		Fuel				
	(GJ/tonne						
(tonne)	ammonia	(kg C/GJ)	(fraction)	(kg CO ₂)			
	produced)						
				E = (A * B * C * D) * 44/12			

Sector	Industrial Processes ar	nd Product Use	
Category	Chemical Industry - An	nmonia Productior	1
Category Code	2B1		
Sheet	2 of 2		
F	G	Н	I
Amount of Urea Produced	CO ₂ Recovered for Urea Production	CO ₂ Emissions	CO ₂ Emissions
(kg)	$(kg CO_2)$	$(kg CO_2)$	(Gg CO ₂)
	G = F * 44/12	H = E - G	$I = H/10^6$

 $^{^{}st}$ Jumlah urea sudah terhitung pada jumlah ammonia yang dihasilkan sudah termasuk penggunaan ammonia bagi produksi urea

Lampiran 3. 6 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B2 - Produksi asam nitrat

Sector	Industrial Processe	Industrial Processes and Product Use				
Category	Chemical Industry	· Nitric Acid Production	n			
Category Code	2B2					
Sheet	1 of 1					
A	В	С	D			
Amount of Nitric	Emission Factor	N ₂ O Emissions	N ₂ O Emissions			
Acid Production						
(tonne)	(kg N ₂ O/tonne nitric acid produced)	(kg)	(Gg)			
	$C = A * B$ $D = C/10^6$					

Lampiran 3. 7 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B3 - Produksi asam adipat

Sector	Industrial Processes and Product Use		
Category	Chemical Industry - Adipic Acid Production		
Category Code	2B3		
Sheet	1 of 1		
A	В	С	D
Amount of Adipic Acid Production	Emission Factor	N ₂ O Emissions	N ₂ O Emissions
(tonne)	(kg N ₂ O/tonne adipic acid produced)	(kg)	(Gg)
		C = A * B	$D = C/10^6$

Belum ada plant Adipic Acid di Indonesia

Lampiran 3. 8 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B4 - Produksi Caprolactam, Glyoxal and Glyoxylic Acid

Sector	Industrial Processes and Product Use				
Category	Chemical Industry - Ca	aprolactam, Glyoxal	and Glyoxylic Aci	d Production	
Category Code	2B4				
Sheet	1 of 1				
Chemical	A Amount of Chemical Production	B Emission Factor	C N ₂ O Emissions	D N ₂ O Emissions	
	(tonne)	(kg N ₂ O/tonne chemical produced)	(kg)	(Gg)	
			C = A * B	$D = C/10^6$	
Caprolactam					
Glyoxal					
Glyoxylic Acid				_	
Total					

Lampiran 3. 9 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B5 - Produksi Karbida

Sector	Industrial Pro	Industrial Processes and Product Use			
Category	Chemical Indu	ıstry - Carbide Pro	oduction		
Category Code	2B5				
Sheet	1 of 6 CO ₂ Em	issions (calculatio	on based on raw	material used)	
	A	В	С	D	
Type of Carbide	Raw Material	Emission Factor	CO ₂ Emissions	CO ₂ Emissions	
Produced	(Petroleum	1)			
	Coke)				
	Consumption				
		(tonne			
	(tonne)	CO ₂ /tonne raw	(tonne CO ₂)	(Gg CO ₂)	
		material used)			
			C = A * B	$D = C/10^3$	
Silicon Carbide (SiC)					
Calcium Carbide (CaC ₂)					

¹⁾ The emission factor needs to be adjusted to account for the carbon contained in the product. See Section 3.6.2.1 of Volume 3.

Note: Inventory compilers should use either this sheet (1 of 6) or the next sheet (2 of 6), not both.

Sektor	Proses Industri dan Penggunaan Produk					
Kategori	Industri l	Industri Kimia - Produksi Carbide				
Kode Kategori	2B5					
Lembar	2 dari 6 I	Emisi CO ₂ (dihitu	ıng berdasar	kan produksi Carbide)		
	A	В	С	D		
Type of Carbide	Carbide	Emission	CO_2	CO ₂ Emissions		
Produced	Produced	Factor	Emissions			
		(tonne				
	(tonno)	CO ₂ /tonne	(tonne	(Ca CO)		
	(tonne)	carbide	CO ₂)	(Gg CO ₂)		
		produced)				
			C = A * B	$D = C/10^3$		
Silicon Carbide (SiC)						
Calcium Carbide						
(CaC ₂)						
Note: Inventory compilers sh	ould use either t	his sheet (2 of 6) or t	he previous shee	t (1 of 6), not both.		

Sektor	Proses Industri dan Penggunaan Produk				
Kategori	Industri Kimia - Produksi (Carbide			
Kode Kategori	2B5				
Lembar	3 dari 6 Emisi CO2 dari pen	ggunaan CaC ₂ pada produl	ksi		
Lembai	Acetylene				
A	В	С	D		
Calcium Carbide Used	Emission Factor	CO ₂ Emissions	CO_2		
in Acetylene			Emission		
Production	s				
(tonne)					
	$C = A * B$ $D = C/10^3$				
			_		

Sector	Industrial Processes and Product Use				
Category	Chemical Industry	- Carbide Production			
Category Code	2B5				
Sheet	4 of 6 CO ₂ Emissio	ns (Total)			
A	В	С	D		
CO ₂ Emissions from	CO ₂ Emissions	CO ₂ Emissions from	Total CO ₂		
Silicon Carbide (SiC)	from Calcium	Use of CaC ₂ in	Emissions		
Production	Carbide (CaC ₂)	Acetylene Production			
	Production				
$(Gg CO_2)$	$(Gg CO_2)$	$(Gg CO_2)$	$(Gg CO_2)$		
From D in Sheet 1 of 6	From D in Sheet 1				
or D in Sheet 2 of 6	of 6 or D in Sheet	From D in Sheet 3 of 6	D = A + B + C		
of D III Sheet 2 of 6	2 of 6				

Sector	Industrial I	Industrial Processes and Product Use				
Category	Chemical In	ndustry - Carbide Production				
Category Code	2B5					
Sheet		5 of 6 CH ₄ Emissions from Silicon Carbide (SiC) Production (calculation based on raw material used)				
A	В	С	D			
Raw Material	Emission	CH ₄ Emissions	CH ₄ Emissions			
(Petroleum Coke)	Factor					
Consumption						
	(kg					
(,)	CH ₄ /tonne		(0.)			
(tonne)	raw	(kg)	(Gg)			
		material				
	used)					
	$C = A * B$ $D = C/10^{6}$					
Note: Inventory compilers should use either this sheet (5 of 6) or the next sheet (6 of 6), not both.						

Sector	Industrial I	Industrial Processes and Product Use				
Category	Chemical In	ndustry - Carbide Production	on			
Category Code	2B5					
Sheet		6 of 6 CH ₄ Emissions from Silicon Carbide (SiC) Production (calculation based on carbide produced)				
A	В	С	D			
Carbide	Emission	CH ₄ Emissions	CH ₄ Emissions			
Produced	Factor					
(tonne)	(kg CH ₄ /tonne carbide produced) (kg) (Gg)					
		C = A * B	$D = C/10^6$			
ote: Inventory compi	lers should use eit	ther this sheet (6 of 6) or the previous	sheet (5 of 6), not both.			

Lampiran 3. 10 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B6 - Produksi Titanium Dioksida

Sector	Industrial Processes and Product Use			
Category	Chemical Industry	y - Titanium Diox	ide Productio	n
Category Code	2B6			
Sheet	1 of 1			
	A	В	С	D
Type of	Amount of	Emission	CO_2	CO_2
production	Production	Factor	Emissions	Emissions
		(tonne		
	(tonne)	CO ₂ /tonne	(tonne CO ₂)	$(Gg CO_2)$
		produced)		
			C = A * B	$D = C/10^3$
Titanium Slag				
Synthetic Rutile				
Rutile TiO ₂				
Total				

Lampiran 3. 11 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B6 - Produksi Titanium Dioksida

Sector	Industrial Processes and Product Use				
Category	Chemical Industry - S	oda Ash Production			
Category Code	2B7				
Sheet	1 of 2 Natural Soda A	sh (calculation base	d on trona used)		
A	В	С	D		
Amount of Trona Utilised	Emission Factor	CO ₂ Emissions	CO ₂ Emissions		
(tonne)	$ \begin{array}{c c} \text{(tonne } CO_2/\text{tonne} \\ \text{trona utilised)} \end{array} $				
		C = A * B	$D = C/10^3$		
Note: Inventory compilers	should use either this sheet (1 of	(2 of 2) or the next sheet (2 of 2)	, not both.		

Sector	Industrial Processes and Product Use					
Category	Chemical Industry - S	oda Ash Production				
Category Code	2B7					
Sheet	2 of 2 Natural Soda A	sh (calculation base	d on production)			
A	В	С	D			
Amount of Natural	Emission Factor	CO ₂ Emissions	CO ₂ Emissions			
Soda Ash						
Produced						
	(tonne CO ₂ /tonne					
(tonne)	natural soda ash	(tonne CO_2)	$(Gg CO_2)$			
	produced)					
	$C = A * B$ $D = C/10^3$					
Note: Inventory compilers	Note: Inventory compilers should use either this sheet (2 of 2) or the previous sheet (1 of 2), not both.					

Lampiran 3. 12 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri kimia, kategori 2B8 - Produksi Petrokimia dan *Blackcarbon*

Sector	Industrial Processes and Product Use				
Category	Chemical Industr	y - Petrochemical	and Carbon Black	Production	
Category Code	2B8				
Sheet	1 of 12 CO ₂ Emiss	sions from Metha	nol Production		
Type of Process/Type of Feedstock 1), 2)	A Amount of Methanol Produced	B Emission Factor	${\sf C}$ ${\sf CO}_2$ Emissions	D CO ₂ Emissions	
	(tonne)	(tonne CO ₂ /tonne methanol produced)	(tonne CO ₂)	(Gg CO ₂)	
			C = A * B	$D = C/10^3$	
Type of Process = [] (please sp	ecify)		
Feedstock = [] (please specify)					
Type of Process = [] (please sp	ecify)		
Feedstock = [] (please specify)					
Total					
1) For details of process types and feedstock types, see Table 3.12 in Chapter 3 of Volume 3. For the default process type and the default feedstock, see Table 3.11 in Chapter 3 of Volume 3. 2) Insert additional rows if necessary.					

Industrial Processes and Product Use			
Chemical In	dustry - Petrochemical and Car	bon Black Production	
2B8			
2 of 12 CH ₄	Emissions from Methanol Prod	uction	
В	С	D	
Emission	CH ₄ Emissions	CH ₄ Emissions	
Factor			
a			
, ,			
•	(kg)	(Gg)	
,,	C = A * B	D = C/10 ⁶	
-			
	Chemical In 2B8 2 of 12 CH4 B Emission	Chemical Industry - Petrochemical and Care 2B8 2 of 12 CH ₄ Emissions from Methanol Prod B C Emission Factor (kg CH ₄ /tonne methanol produced) (kg)	

Sector	Industrial Processes and Product Use						
Category	Chemical In	Chemical Industry - Petrochemical and Carbon Black Production					
Category Code	2B8						
Sheet	3 of 12 CO ₂	Emissions fron	n Ethylene Prod	uction			
Type of Feedstock ^{1), 2)} (please specify)	A Amount of Ethylene Produced	B Emission Factor (tonne CO ₂ /tonne	C Geographic Adjustment Factor ³⁾	D CO ₂ Emissions	E CO ₂ Emissions		
	(tonne)	ethylene produced)	(%)	(tonne CO ₂)	(Gg CO ₂)		
		$D = A * B * C/100$ $E = D/10^3$					
Total							

¹⁾ For details of feedstock types, see Table 3.14 in Chapter 3 of Volume 3. For the default feedstock, see Table 3.11 in Chapter 3 of Volume 3.

Sector	Industrial Pro	Industrial Processes and Product Use			
Category	Chemical Indu	Chemical Industry - Petrochemical and Carbon Black Production			
Category Code	2B8				
Sheet	4 of 12 CH ₄ Em	nissions from Ethy	lene Production		
	A	В	С	D	
Type of Feedstock	Amount of	Emission	CH ₄ Emissions	CH ₄ Emissions	
^{1), 2)} (please	Ethylene	Factor			
specify)	Produced	a av t			
	(1)	(kg CH ₄ /tonne	<i>a</i> >	(C.)	
	(tonne)	ethylene produced)	(kg)	(Gg)	
			C = A * B	$D = C/10^6$	
Total					

¹⁾ For details of feedstock types, see Table 3.14 in Chapter 3 of Volume 3. For the default feedstock, see Table 3.11 in Chapter 3 of Volume 3.

²⁾ Insert additional rows if necessary.

³⁾ For geographic adjustment factors, see Table 3.15 in Volume 3.

²⁾ Insert additional rows if necessary.

Sector	Industrial Proces	Industrial Processes and Product Use			
Category	Chemical Industry - Petrochemical and Carbon Black Production				
Category Code	2B8				
Sheet	5 of 12 CO ₂ Emissions from Ethylene Dichloride/Vinyl Chloride Monomer Production				
	A	В	С	D	
Type of Process 1), 2) (please specify)	Amount of Ethylene Dichloride (EDC) or Vinyl Chloride Monomer (VCM) Produced ³⁾	Emission Factor	CO ₂ Emissions	CO ₂ Emissions	
	(tonne EDC produced) or (tonne VCM produced)	(tonne CO ₂ /tonne EDC produced) or (tonne CO ₂ /tonne VCM produced)	(tonne CO ₂)	(Gg CO ₂)	
	$C = A * B$ $D = C/10^3$				
Total					

For details of process types, see Table 3.17 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.
 Insert additional rows if necessary.
 Inventory compilers should use either EDC production or VCM production (not both) as activity data.

Sector	Industrial Processes and Product Use					
Category	Chemical Industr	y - Petrochemica	and Carbon Black	Production		
Category Code	2B8					
Sheet		6 of 12 CH ₄ Emissions from Ethylene Dichloride/Vinyl Chloride Monomer Production				
Type of Process 1), 2) (please specify)	A Amount of Ethylene Dichloride (EDC) or Vinyl Chloride Monomer (VCM) Produced 3)	B Emission Factor	C CH4 Emissions	D CH ₄ Emissions		
	(tonne EDC produced) or (tonne VCM produced)	(kg CH ₄ /tonne EDC produced) or (kg CH ₄ /tonne VCM produced)	(kg)	(Gg)		
			C = A * B	$D = C/10^6$		
Total						

¹⁾ For details of process types, see Tables 3.11 and 3.19 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.

²⁾ Insert additional rows if necessary.3) Inventory compilers should use either EDC production or VCM production (not both) as activity data.

Sector	Industrial Prod	Industrial Processes and Product Use			
Category	Chemical Indus	Chemical Industry - Petrochemical and Carbon Black Production			
Category Code	2B8				
Sheet	7 of 12 CO ₂ Em	issions from Ethy	lene Oxide Produc	tion	
	A	В	С	D	
Type of Process 1), 2) (please specify)	Amount of Ethylene Oxide Produced	Emission Factor	CO ₂ Emissions	CO ₂ Emissions	
	(tonne ethylene oxide produced)	(tonne CO ₂ /tonne ethylene oxide produced)	(tonne CO ₂)	(Gg CO ₂)	
			C = A * B	$D = C/10^3$	
Total					

¹⁾ For details of process types, see Table 3.20 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.

Lamphan 3.12 Lanjutan					
Sector	Industrial Prod	Industrial Processes and Product Use			
Category	Chemical Indu	stry - Petrochemi	cal and Carbon Blac	ck Production	
Category Code	2B8				
Sheet	8 of 12 CH ₄ Em	nissions from Ethy	lene Oxide Produc	tion	
	A	В	С	D	
Type of Process 1), 2) (please specify)	Amount of Ethylene Oxide Produced	Emission Factor	CH ₄ Emissions	CH ₄ Emissions	
	(tonne ethylene oxide produced)	(kg CH ₄ /tonne ethylene oxide produced)	(kg)	(Gg)	
			C = A * B	$D = C/10^6$	
		_			
Total					

¹⁾ For details of process types, see Table 3.21 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.

²⁾ Insert additional rows if necessary.

²⁾ Insert additional rows if necessary.

Sector	Industrial Prod	Industrial Processes and Product Use			
Category	Chemical Indu	Chemical Industry - Petrochemical and Carbon Black Production			
Category Code	2B8				
Sheet	9 of 12 CO ₂ Em	nissions from Acry	lonitrile Productio	n	
	A	В	С	D	
Type of Process 1), 2) (please specify)	Amount of Acrylonitrile Produced	Emission Factor	CO ₂ Emissions	CO ₂ Emissions	
	(tonne acrylonitrile produced)	(tonne CO ₂ /tonne acrylonitrile produced)	(tonne CO ₂)	(Gg CO ₂)	
			C = A * B	$D = C/10^3$	
tt			_		
tt					
Total					

¹⁾ For details of process types, see Table 3.22 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.

Lamphan 5.12 Lanjutan					
Sector	Industrial Pro	Industrial Processes and Product Use			
Category	Chemical Independent of the Production	ustry - Petroche	mical and Carbon	Black	
Category Code	2B8				
Sheet	10 of 12 CH ₄	Emissions from	Acrylonitrile Prod	duction	
	Α	В	С	D	
Type of Process 1), 2) (please specify)	Amount of Acrylonitrile Produced	Emission Factor	CH ₄ Emissions	CH ₄ Emissions	
	(tonne acrylonitrile produced)	(kg CH₄/tonne acrylonitrile produced)	(kg)	(Gg)	
	$C = A * B$ $D = C/10^6$				
Total					

¹⁾ For details of process types, see Table 3.22 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.

²⁾ Insert additional rows if necessary.

²⁾ Insert additional rows if necessary.

Sector	Industrial Proc	Industrial Processes and Product Use			
Category	Chemical Indus	stry - Petrochemi	cal and Carbon Blac	k Production	
Category Code	2B8				
Sheet	11 of 12 CO ₂ E ₁	missions from Ca	rbon Black Product	ion	
	A	В	С	D	
Type of Process 1), 2) (please specify)	Amount of Carbon Black Produced	Emission Factor	CO ₂ Emissions	CO ₂ Emissions	
	(tonne carbon black produced)	(tonne CO ₂ /tonne carbon black produced)	(tonne CO ₂)	(Gg CO ₂)	
	$C = A * B$ $D = C/10^3$				
Total					

¹⁾ For details of process types, see Table 3.23 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.

Sector	Industrial Processes and Product Use			
Category	Chemical Indus	stry - Petrochemi	cal and Carbon Blac	k Production
Category Code	2B8			
Sheet	12 of 12 CH ₄ E	missions from Ca	rbon Black Product	ion
	A	В	С	D
Type of Process 1), 2)	Amount of	Emission	CH ₄ Emissions	CH ₄ Emissions
(please specify)	Carbon Black Produced	Factor		
	(tonne carbon black produced)	(kg CH ₄ /tonne carbon black produced)	(kg)	(Gg)
			C = A * B	$D = C/10^6$
_				
Total				

¹⁾ For details of process types, see Table 3.24 in Chapter 3 of Volume 3. For the default process type, see Table 3.11 in Chapter 3 of Volume 3.

²⁾ Insert additional rows if necessary.

²⁾ Insert additional rows if necessary.

Lampiran 3. 13 Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri kimia, kategori 2B9 - Produksi Fluorochemical

Sector	Industrial Proces	Industrial Processes and Product Use			
Category	Chemical Industr	y - Fluorochemical Production			
Category Code	2B9				
Sheet	1 of 3 HFC-23 Em	nissions from HCFC-22 Producti	on		
A Amount of HCFC-22 Produced	B Emission Factor	C HFC-23 Emissions	D HFC-23 Emissions		
(kg)	(kg HFC-23/ kg HCFC-22 produced)	(kg)	(Gg)		
		C = A * B	$D = C/10^6$		

Sector	Industrial Proc	Industrial Processes and Product Use			
Category	Chemical Indus	Chemical Industry - Fluorochemical Production			
Category Code	2B9				
Sheet	2 of 3 By-prod	uct Emissions from Produ	iction of Other	Fluorinated Compounds	
Fluorinated	A Amount of	B Byproduct Emission	C Emissions	D Emissions	
Compound Emitted as By- product and Principal Fluorinated Compound Produced (Please specify such as "xxx from yyy	Principal Fluorinated Compound Produced	Factor ²⁾			
production") 1)	(kg)	(kg by-product gas emitted/kg F- compound produced)	(kg)	(Gg)	
			C = A * B	$D = C/10^6$	

Insert additional rows if necessary.
 For sources that are not key categories, fugitive and by-product emissions are considered the same and those emissions are calculated using the next sheet (3 of 3).

Sector	Industrial Processes and Product Use				
Category	Chemical In	Chemical Industry - Fluorochemical Production			
Category Code	2B9				
Sheet	3 of 3 Fugiti Compounds	ive Emissions from Prod	luction of Oth	er Fluorinated	
	A	В	С	D	
Fluorinated	Amount of	Fugitive Emission	Emissions	Emissions	
Compound	Fluorinated	Factor 2)			
Produced	Compound				
(Please	Produced				
specify) 1)					
	(1.)	(kg fugitive gas	(1)	(0.)	
	(kg)	emitted/kg F-	(kg)	(Gg)	
		compound produced)			
			C = A * B	$D = C/10^6$	

¹⁾ Insert additional rows if necessary.

²⁾ For sources that are not key categories, fugitive and by-product emissions are considered the same. For Tier 1, in the absence of abatement measures, a default emission factor of 0.5 percent of production, not counting losses in transport and transfer of materials, is suggested for HFCs and PFCs.

Lampiran 3. 14 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri logam, kategori 2C1 - Produksi Besi dan Baja

Sector	Industrial Processes and Product Use			
Category	Metal Industry - Iron and Steel Production			
Category Code	2C1			
Sheet	1 of 2 CO ₂ Emis	ssions		
Type of Steelmaking Method, etc	A Amount of Steel or Iron Production	B Emission Factor	C CO ₂ Emissions	D CO ₂ Emissions
	(tonne crude steel produced, pig iron, DRI, sinter or pellet)	(tonne CO ₂ /tonne production)	(tonne CO ₂)	(Gg CO ₂)
			C = A * B	$D = C/10^3$
Basic Oxygen Furnace				
Electric Arc Furnace				
Open Hearth Furnace				
Pig Iron Production (not converted into steel)				
Direct Reduced Iron (DRI) Production				
Sinter Production				
Pellet Production				
TOTAL				

<u> </u>	Lamphan 5.14 Lanjutan				
Sector	Industrial Processes and Product Use				
Category	Metal Industry	- Iron and Steel Pro	oduction		
Category Code	2C1				
Sheet	2 of 2 CH ₄ Emis	ssions			
	A	В	С	D	
Type of Production	Amount of Production	Emission Factor	CH ₄ Emissions	CH ₄ Emissions	
	(tonne sinter, DRI or pig iron)	(kg CH ₄ /tonne production)	(kg)	(Gg)	
			C = A * B	$D = C/10^6$	
Sinter Production					
Direct Reduced Iron (DRI) Production					
Pig Iron Production					
TOTAL					

Lampiran 3. 15 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri logam, kategori 2C2 - Produksi *Ferroalloy*

Sector	Industrial Processes and Product Use			
Category	Metal Industry	- Ferroalloys Produ	ıction	
Category Code	2C2			
Sheet	1 of 2 CO ₂ Emis	sions		
	A	В	С	D
Type of Ferroalloy ^{1), 2)}	Amount of Ferroalloy Production	Emission Factor	CO ₂ Emissions	CO ₂ Emissions
(please specify)	(tonne ferroalloy produced)	(tonne CO ₂ /tonne ferroalloy produced)	(tonne CO ₂)	(Gg CO ₂)
			C = A * B	$D = C/10^3$
		_		_
Total				

- 1) For details of ferroalloy types, see Table 4.5 in Chapter 4 of Volume 3.
- 2) Insert additional rows if necessary.

Sector	Industrial Processes and Product Use				
Category		- Ferroalloys Produ			
Category Code	2C2	·			
Sheet	2 of 2 CH ₄ Emis	sions			
Type of Ferroalloy 1), 2)	A Amount of Ferroalloy Production (tonne ferroalloy	B Emission Factor (kg CH ₄ /tonne	C CH ₄ Emissions	D CH ₄ Emissions	
(please specify)	produced)	ferroalloy produced)	(kg)	(Gg)	
			C = A * B	$D = C/10^6$	
Total					

- 1) For details of ferroalloy types, see Table 4.7 in Chapter 4 of Volume 3.
- 2) Insert additional rows if necessary.

Lampiran 3. 16 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri logam, kategori 2C3 - Produksi Aluminium

Sector	Industrial Proc	Industrial Processes and Product Use		
Category	Metal Industry	- Aluminium Produ	ction	
Category Code	2C3	2C3		
Sheet	1 of 3 CO ₂ Emis	ssions		
Type of Technology	A Amount of Aluminium Production (tonne aluminium produced)	$$\rm B$$ Emission Factor (tonne ${\rm CO_2/tonne}$ aluminium produced)	C CO ₂ Emissions (tonne)	D CO ₂ Emissions (Gg)
			C = A * B	$D = C/10^3$
Prebake				
Soderberg				
Total				

Sector	Industrial Processes and Product Use			
Category	Metal Industry	- Aluminium Produ	iction	
Category Code	2C3	2C3		
Sheet	2 of 3 CF ₄ Emis	sions		
	A	В	С	D
Type of	Amount of	Emission Factor	CF ₄ Emissions	CF ₄ Emissions
Technology	Aluminium			
	Production			
	(tonne	(kg CF ₄ /tonne	(1)	(C~)
	aluminium produced)	aluminium produced)	(kg)	(Gg)
	pocument	produces	C = A * B	$D = C/10^6$
CWPB				
SWPB				
VSS				
HSS				
Total				

zampiran orzo zanjawan					
Sector	Industrial Proc	Industrial Processes and Product Use			
Category	Metal Industry	- Aluminium Produ	ıction		
Category Code	2C3				
Sheet	3 of 3 C ₂ F ₆ Emi	ssions			
	A	В	С	D	
Type of Technology	Amount of Aluminium Production	Emission Factor	C ₂ F ₆ Emissions	C ₂ F ₆ Emissions	
	(tonne aluminium produced)	(kg C ₂ F ₆ /tonne aluminium produced)	(kg)	(Gg)	
			C = A * B	$D = C/10^6$	
CWPB					
SWPB					
VSS					
HSS					
Total					

Lampiran 3. 17 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri logam, kategori 2C4 - Produksi Magnesium

Sector	Industrial Proces	Industrial Processes and Product Use			
Category	Metal Industry - N	/lagnesium Product	ion		
Category Code	2C4				
Sheet	1 of 2 CO ₂ Emission	ons from Primary P	roduction		
Raw Material Source	A Amount of Primary Magnesium Production (tonne primary magnesium produced)	B Emission Factor (tonne CO ₂ /tonne primary magnesium produced)	${\sf C}$ ${\sf CO}_2$ Emissions (tonne)	D CO ₂ Emissions (Gg)	
			C = A * B	$D = C/10^3$	
Dolomite					
Magnesite					
Total					

Sector	Industrial Processes and Product Use				
Category		ustry - Magnesium Production			
Category Code	2C4	, ,			
Sheet	2 of 2 SF ₆	2 of 2 SF ₆ Emissions from Magnesium Casting Processes			
A Amount of Magnesium Casting	B Emission Factor	${\sf C}$ SF $_6$ Emissions	$\begin{array}{c} \textbf{D}\\ \textbf{SF}_6 \ \textbf{Emissions} \end{array}$		
(tonne magnesium casting)	(kg SF ₆ /tonne magnesium casting)	(kg)	(Gg)		
		C = A * B	$D = C/10^6$		
	_				

Note: As regards HFC 134-a, FK 5-1-12 and their decomposition products (e.g., PFCs), no Tier 1 method is provided because the industrial experience in using these compounds (HFC 134-a and FK 5-1-12) for magnesium protection purposes is yet very limited. However, if the greenhouse gas emission from the use of magnesium cover gases is a national key category, it is good practice, for inventory preparation purposes, to collect direct measurements of these greenhouse gas emissions.

Lampiran 3. 18 Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri logam, kategori 2C5 - Produksi Timbal

Sector	Industrial Processes and Product Use				
Category	Metal Industry	Metal Industry - Lead Production			
Category Code	2C5				
Sheet	1 of 1				
Source and Furnace Type ^{1), 2)}	A Amount of Lead Production	B Emission Factor	C CO ₂ Emissions	D CO ₂ Emissions	
(please specify)	(tonne lead produced)	(tonne CO ₂ /tonne lead produced)	(tonne)	(Gg)	
			C = A * B	$D = C/10^3$	
Total					
1) For details of source a	nd furnace types, see Table	e 4.21 in Chapter 4 of Volur	ne 3.		

Lampiran 3. 19 Lembar kerja (worksheet) perhitungan emisi GRK dari sektor industri logam, kategori 2C6 - Produksi Seng

industriai Proc	Industrial Processes and Product Use			
Metal Industry	Metal Industry - Zinc Production			
2C6				
1 of 1				
A	В	С	D	
Amount of Zinc Production	Emission Factor	CO ₂ Emissions	CO ₂ Emissions	
(tonne zinc produced)	(tonne CO ₂ /tonne zinc produced)	(tonne)	(Gg)	
		C = A * B	$D = C/10^3$	
	Metal Industry 2C6 1 of 1 A Amount of Zinc Production (tonne zinc	Metal Industry - Zinc Production 2C6 1 of 1 A B Amount of Zinc Production (tonne zinc produced) (tonne cO2/tonne zinc	Metal Industry - Zinc Production 2C6 1 of 1 A B C Amount of Zinc Production (tonne zinc produced) (tonne CO ₂ /tonne zinc produced) (tonne) (tonne)	

²⁾ Insert additional rows if necessary.

²⁾ Insert additional rows if necessary.

Lampiran 3. 20 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor Penggunaan produk bahan bakar non-energi dan pelarut , kategori 2D1 – Penggunaan pelumas

Sector	Industrial Prod	cesses and Prod	luct Use	
Category	Non-Energy Pr	oducts from Fu	els and Solvent Use - L	ubricant Use
Category Code	2D1			
Sheet	1 of 1			
A	В	С	D	Е
Amount of Lubricant	Lubricant	Fraction	CO ₂ Emissions	CO ₂ Emissions
Consumed	Carbon Content	Oxidized		
		During Use (ODU factor)		
(TJ)	(tonne-C/TJ)	(fraction)	(tonne CO ₂)	(Gg CO ₂)
(1))	(tollile-c/1))	(If action)		
			D = A * B * C * 44/12	$E = D/10^3$

Lampiran 3. 21 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor Penggunaan produk bahan bakar non-energi dan pelarut, kategori 2D1 – Penggunaan Lilin (*wax*)

Sector	Industrial Process	Industrial Processes and Product Use			
Category	Non-Energy Produ	ucts from Fuels a	and Solvent Use - Para	ffin Wax Use	
Category Code	2D2				
Sheet	1 of 1				
A	В	С	D	Е	
Amount of	Paraffin Waxes	Fraction	CO ₂ Emissions	CO ₂ Emissions	
Paraffin Waxes	Carbon Content	Oxidized			
Consumed		During Use (ODU factor)			
(TJ)	(tonne-C/TJ)	(fraction)	(tonne CO ₂)	(Gg CO ₂)	
(1))	(tofffic c/ 1))	(Haction)	-7	, , ,	
			D = A * B * C * 44/12	$E = D/10^3$	

Lampiran 3. 22 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri elektronik , kategori 2E1 – *Integrated Circuit* (IC) atau Semikonduktor

Sector	Industrial Processes and Product Use					
Category	Electronics l	Electronics Industry - Integrated Circuit or Semiconductor				
Category Code	2E1					
Sheet	1 of 1					
Fluorinated Compounds (FCs)	A Fraction of Annual Plant Production Capacity Utilization 1)	B Annual Manufacturing Design Capacity 1)	C Tier 1 Default FC Emission Factor ²⁾	D CO ₂ Equivalent Conversion Factor 3)	E FC Emissions 4)	
	(fraction)	(Gm ² of silicon processed)	(kg FC/m² of silicon processed)	(tonne CO ₂ /tonne FC)	(Gg CO ₂ equivalent)	
					E = A * B * C * D * 10 ³	
CF ₄			0,9			
C ₂ F ₆			1			
CHF ₃			0,04			
C ₃ F ₈			0,05			
NF ₃			0,04			
SF ₆			0,2			
Total						

¹⁾ The same value should be entered in each row.

²⁾ In using Tier 1, inventory compilers should not modify, in any way, the set of the FCs assumed here. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Neither may inventory compilers change the values of any factors in this column.

³⁾ Typically, global warming potential (100 year time horizon) identified in the IPCC Assessment Report can be used. These factors should be the same as those used for other sectors/categories to ensure that they are all internally consistent in the inventory.

⁴⁾ The Tier 1 method, unlike the Tier 3 or 2 methods, is designed to give an aggregated estimate of FC emissions although its methodology appears to produce gas-specific emissions.

Lampiran 3. 23 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri elektronik , kategori 2E2 – *TFT Flat Panel Display*

Sector	Industrial Processes and Product Use				
Category	Electronics l	Industry - TFT Fla	at Panel Displa	ıy	
Category Code	2E2				
Sheet	1 of 1				
Fluorinated Compounds (FCs)	A Fraction of Annual Plant Production Capacity Utilization 1) (fraction)	B Annual Manufacturing Design Capacity 1) (Gm² of glass processed)	C Tier 1 Default FC Emission Factor ²⁾ (g FC/m ² of glass processed)	D CO ₂ Equivalent Conversion Factor ³⁾ (tonne CO ₂ /tonne FC)	E FC Emissions 4) (Gg CO_2 equivalent) E = A * B * C * D
CF ₄			0,5		
NF ₃			0,9		
SF ₆			4		
Total					

¹⁾ The same value should be entered in each row.

²⁾ In using Tier 1, inventory compilers should not modify, in any way, the set of the FCs assumed here. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Neither may inventory compilers change the values of any factors in this column.

³⁾ Typically, global warming potential (100 year time horizon) identified in the IPCC Assessment Report can be used. These factors should be the same as those used for other sectors/categories to ensure that they are all internally consistent in the inventory.

⁴⁾ The Tier 1 method, unlike the Tier 3 or 2 methods, is designed to give an aggregated estimate of FC emissions although its methodology appears to produce gas-specific emissions.

Lampiran 3. 24 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri elektronik , kategori 2E3 – Photovoltaics

Sector	Industrial Processes and Product Use					
Category	Electronics Industry -	Electronics Industry - Photovoltaics				
Category Code	2E3					
Sheet	1 of 2					
Fluorinated Compounds (FCs)	A Fraction of Annual Plant Production Capacity Utilization 1) (fraction)	B Annual Manufacturing Design Capacity ¹⁾ (Mm ² of substrate processed)	C Fraction of PV manufacture that uses fluorinated compounds (fraction)			
CF ₄						
C ₂ F ₆						
Total						
1) The same value sho	1) The same value should be entered in each row.					

Lumphum 5.2 i Lumputum						
Sector	Industrial Processes and Product Use					
Category	Electronics Industry -	Photovoltaics				
Category Code	2E3	2E3				
Sheet	2 of 2					
	D	Е	F			
Fluorinated	Tier 1 Default FC	CO ₂ Equivalent	FC Emissions 3)			
Compounds (FCs)	Emission Factor 1)	Conversion Factor ²⁾				
	(g FC/m ² of substrate	(tonne CO ₂	(Gg CO ₂ equivalent)			
	processed)	/tonne FC)	-			
			$F = A * B * C * D * E / 10^3$			
CF ₄	5					
C ₂ F ₆	0,2					
Total						

¹⁾ In using Tier 1, inventory compilers should not modify, in any way, the set of the FCs assumed here. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Neither may inventory compilers change the values of any factors in this column.

²⁾ Typically, global warming potential (100 year time horizon) identified in the IPCC Assessment Report can be used. These factors should be the same as those used for other sectors/categories to ensure that they are all internally consistent in the inventory.

³⁾ The Tier 1 method, unlike the Tier 3 or 2 methods, is designed to give an aggregated estimate of FC emissions although its methodology appears to produce gas-specific emissions.

Lampiran 3. 25 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor industri elektronik , kategori 2E3 – Fluida Pemindah Panas (*Heat Transfer Fluid*)

Sector	Industrial Processes and Product Use					
Category	Electronics	Industry - Heat T	ransfer Fluid			
Category Code	2E4	2E4				
Sheet	1 of 1					
	A	В	С	D	Е	
Fluorinated	Fraction of	Annual	Tier 1	CO_2	FC Emissions	
Compounds	Annual Plant	Manufacturing	Default FC	Equivalent	3)	
(FCs)	Production	Design	Emission	Conversion		
	Capacity	Capacity	Factor 1)	Factor 2)		
	Utilization					
			(kg			
	(fraction)	(Gm ² of silicon	C_6F_{14}/m^2 of	(tonne CO ₂	(Gg CO ₂	
	(, , , , ,	consumed)	silicon consumed)	/tonne C ₆ F ₁₄)	equivalent)	
					E = A * B * C *	
					D * 10 ³	
C ₆ F ₁₄			0,3			

¹⁾ Tier 1 default emission factor assumes heat transfer fluids have the same GWP and C_6F_{14} represents a suitable proxy. Inventory compilers should not change this value in using Tier 1 method.

²⁾ Typically, global warming potential (100 year time horizon) identified in the IPCC Assessment Report can be used. These factors should be the same as those used for other sectors/categories to ensure that they are all internally consistent in the inventory.

³⁾ The Tier 1 method, unlike the Tier 3 or 2 methods, is designed to give an aggregated estimate of FC emissions although its methodology appears to produce gas-specific emissions.

Lampiran 3. 26 Lembar kerja (worksheet) perhitungan emisi GRK dari sektor penggunaan produk pengganti zat-zat yang menipiskan lapisan ozon (ODS), kategori 2F4 - Aerosol

	Sector	Industrial Proc	esses and Produ	ıct Use		
	Category	Product Uses as Substitutes for Ozone Depleting Substances - Aerosols				
Ca	ategory Code	2F4				
	Sheet	1 of 1				
Quantity of Contained Products Solo	A HFCs/PFCs in Aerosol d in Inventory ear	B Quantity of HFCs/PFCs Contained in Aerosol Products Sold in Prior Year	C Emission Factor (Loss of Current Year's Use)	D Emissions of HFCs/PFCs from Aerosol Products	E Emissions of HFCs/PFCs from Aerosol Products	
Chemical 1),	(tonne)	(tonne)	(fraction)	(tonne)	(Gg)	
(please specify)				D = A * C + B * (1 - C)	$E = D/10^3$	

¹⁾ For chemicals that are used for this application, see Table 7.1 in Chapter 7 of Volume 3. 2) Insert additional rows if necessary.

Lembar kerja (worksheet) perhitungan emisi GRK dari Lampiran 3. 27 sektor penggunaan produk pengganti zat-zat yang menipiskan lapisan ozon (ODS), kategori 2F5 - Pelarut (solvent)

	Sector	Industrial Proc	Industrial Processes and Product Use			
	Category	Product Uses as Substitutes for Ozone Depleting Substances - Solvents				
Ca	ategory Code	2F5				
	Sheet	1 of 1				
	of Solvents Cs) Sold in	B Quantity of Solvents (HFCs/PFCs) Sold in Prior Year	C Emission Factor (Loss of Current Year's Use)	D Emissions of HFCs/PFCs from Solvents	E Emissions of HFCs/PFCs from Solvents	
Chemical 1),	(tonne)	(tonne)	(fraction)	(tonne)	(Gg)	
(please specify)				D = A * C + B * $(1 - C)$	$E = D/10^3$	

¹⁾ For chemicals that are used for this application, see Table 7.1 in Chapter 7 of Volume 3. 2) Insert additional rows if necessary.

Lampiran 3. 28 Lembar kerja (worksheet) perhitungan emisi GRK dari sektor penggunaan produk pengganti zat-zat yang menipiskan lapisan ozon (ODS), kategori 2F6 - Penggunaan lainnya

	esses and Produ	ict 03e		
Product Uses as Substitutes for Ozone Depleting Substances - Other Applications				
2F6				
1 of 1				
B Quantity of HFCs/PFCs Sold in Prior Year	C Emission Factor (Loss of Current Year's Use)	D Emissions of HFCs/PFCs from Other Applications	E Emissions of HFCs/PFCs from Other Applications	
(tonne)	(fraction)	(tonne)	(Gg)	
		D = A * C + B * (1 - C)	$E = D/10^3$	
	Other Applicati 2F6 1 of 1 B Quantity of HFCs/PFCs Sold in Prior Year	Other Applications 2F6 1 of 1 B C Quantity of Emission HFCs/PFCs Sold in Prior Year Year Year's Use)	Other Applications 2F6 1 of 1 B C D Quantity of Emission Emissions of HFCs/PFCs Factor (Loss Sold in Prior Year Year's Use) (tonne) (fraction) (tonne) D = A * C + B *	

¹⁾ For chemicals that are used for this application, see Table 7.1 in Chapter 7 of Volume 3. 2) Insert additional rows if necessary.

Lampiran 3. 29 Lembar kerja (worksheet) perhitungan emisi GRK dari sektor Pembuatan produk lain dan penggunaannya, kategori 2G1 -Peralatan Listrik

Sector	Industrial Processes and Product Use					
Category	Other Product Manufa	Other Product Manufacture and Use - Electrical Equipment				
Category Code	2G1					
Sheet	1 of 5 Manufacturing	Emissions of SF ₆ 1)				
Type of Equipment	A Total SF ₆ Consumption by Equipment Manufacturers (tonne SF ₆)	B Manufacturing Emission Factor 2) (fraction)	C Manufacturing Emissions (tonne SF ₆) $C = A * B$			
Sealed-Pressure						
Closed-Pressure						
Gas-Insurated Transformers						
Total						

Sector	Industrial Processes a	Industrial Processes and Product Use				
Category	Other Product Manufa	Other Product Manufacture and Use - Electrical Equipment				
Category Code	2G1					
Sheet	2 of 5 Equipment Insta	allation Emissions of SF ₆	1)			
	D	Е	F			
Type of	Total Nameplate	Installation Emission	Equipment			
Equipment	Capacity of New	Factor ²⁾	Installation Emissions			
	Equipment Filled on Site					
	(not at the factory)					
	(tonne SF ₆)	(fraction)	(tonne SF ₆)			
			F = D * E			
Sealed-Pressure						
Closed-Pressure						
Gas-Insurated						
Transformers						
Total						

¹⁾ Emissions of PFCs can be estimated by the same calculation procedure.

¹⁾ Emissions of PFCs can be estimated by the same calculation procedure.
2) Default emission factors depend on region for which emissions are being estimated. See Tables 8.2 through 8.4 in Chapter 8 of this volume.

²⁾ Default emission factors depend on region for which emissions are being estimated. See Tables 8.2 through 8.4 in Chapter 8 of this volume.

Sector	Industrial Processes and Product Use					
Category	Other Product Manufa	Other Product Manufacture and Use - Electrical Equipment				
Category Code	2G1					
Sheet	3 of 5 Equipment Use	Emissions of SF ₆ ¹⁾				
Type of Equipment	G Total Nameplate Capacity of Installed Equipment (tonne SF ₆)	H Use Emission Factor ^{2), 3)} (fraction)	I Equipment Use Emissions (tonne SF ₆) $I = G * H$			
Sealed-Pressure			<u> </u>			
Closed-Pressure						
Gas-Insurated Transformers						
Total						

- 1) Emissions of PFCs can be estimated by the same calculation procedure.
- 2) Default emission factors depend on region for which emissions are being estimated. See Tables 8.2 through 8.4 in Chapter 8 of this volume.
- 3) The 'use emission factor' includes emissions due to leakage, servicing, maintenance, and equipment failures.

F	24p. 4 5.2 / 24)444				
Sector	Industrial Processes a	Industrial Processes and Product Use			
Category	Other Product Manufa	cture and Use - Electrica	l Equipment		
Category Code	2G1				
Sheet	4 of 5 Equipment Disp	oosal Emissions of SF ₆ ¹⁾			
Type of Equipment	J Total Nameplate Capacity of Retiring Equipment (tonne SF ₆)	K Fraction of SF ₆ Remaining at Retirement ²⁾ (fraction)	L Equipment Disposal Emissions (tonne SF ₆) L = J * K		
Sealed-Pressure					
Closed-Pressure					
Gas-Insurated Transformers					
Total					

¹⁾ Emissions of PFCs can be estimated by the same calculation procedure.

²⁾ Default emission factors depend on region for which emissions are being estimated. See Tables 8.2 through 8.4 in Chapter 8 of this volume.

Sector	Industrial Processes and Product	Industrial Processes and Product Use		
Category	Other Product Manufacture and Use - Electrical Equipment			
Category Code	2G1			
Sheet	5 of 5 Total Emissions of SF ₆ ¹⁾			
Type of Equipment	M Total Emissions	N Total Emissions		
	(tonne SF ₆)	$(Gg SF_6)$		
	M = C + F + I + L	$N = M/10^3$		
Sealed-Pressure				
Closed-Pressure				
Gas-Insurated Transformers				
Total				
1) Emissions of PFCs can be estimated by the same calculation procedure.				

Lampiran 3. 30 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor Pembuatan produk lain dan penggunaannya , kategori 2G2 – SF₆ dan PFCs dari penggunaan produk lainnya

Sector	Industrial Processes and Product Use			
Category	Other Product Manufacture and Use - SF ₆ and PFCs from Other Product Uses			
Category Code	2G2			
Sheet	1 of 7 SF ₆ Emissions from Military Applications (AWACS)			
A	В	С	D	
National	Emission Factor SF ₆ SF ₆			
AWACS Fleet	Emission Emission			
		S	S	
(number of AWACS)	(kg SF ₆ /plane) (kg) (Gg)			
		C = A * B	$D = C/10^6$	

Sector	Industrial Processes and Product Use				
Category	Other Product Ma Uses	anufacture and	Use - SF ₆ and F	PFCs from Othe	r Product
Category Code	2G2				
Sheet	2 of 7 SF ₆ Emission	ons from Unive	ersity and Rese	arch Particle A	ccelerators
A	В	С	D	Е	F
Number of	SF ₆ Use Factor	SF ₆ Charge	SF ₆ Emission	SF_6	SF_6
University and		Factor	Factor	Emissions	Emissions
Research					
Particle					
Accelerators in					
the Country		Ora			
(number)	(fraction)	(kg SF ₆ /particle	(fraction)	(kg)	(Gg)
(number)	(Haction)	accelerator)	(Haction)	(Kg)	(ug)
				E = A * B * C * D	$F = E/10^6$

Sector	Industrial Processes and Product Use				
Category	Other Product Manufacture and Use - SF ₆ and PFCs from Other Product Uses				
Category Code	2G2				
Sheet	3 of 7 SF ₆ Emission	ons from Indus	trial and Medic	al Particle Acc	elerators
Process Description	A Number of Particle Accelerators that use SF ₆ by Process Description in the Country	B SF ₆ Charge Factor	C SF ₆ Emission Factor	D SF ₆ Emissions	E SF ₆ Emissions
	(number)	(kg SF ₆ /particle accelerator)	(fraction)	(kg)	(Gg)
				D = A * B * C	$E = D/10^6$
Industrial Accelerator (High Voltage: 0.3-23 MV)		_			_
Industrial Accelerator (Low Voltage: <0.3 MV)					
Medical					
Total					

Sector	Industrial Processes and Product Use			
Category	Other Product Manufacture and Use - SF ₆ and PFCs frouses	m Other Pro	oduct	
Category Code	2G2			
Sheet	4 of 7 SF ₆ Emissions ¹⁾ from Adiabatic Uses			
	A	В	С	
Type of	Sales into application in year t-3	SF ₆	SF ₆	
Applications		Emission	Emission	
2), 3)		s in year	s in year	
Colones		t	t	
(please specify)	(tonne)	(tonne)	(Gg)	
		B = A	$C = B/10^3$	
Total			-	

- 1) Emissions of PFCs can be estimated by the same calculation procedure.
- 2) For example, car tires, sport shoe soles and tennis balls.3) Insert additional rows, if necessary.

Sector	Industrial Proces	Industrial Processes and Product Use				
Category	Other Product Ma Uses	Other Product Manufacture and Use - SF ₆ and PFCs from Other Product Uses				
Category Code	2G2					
Sheet	5 of 7 SF ₆ Emission	ons from Soun	d-Proof Glazing			
A	В	С	D	Е	F	
SF ₆ Purchased to Fill Windows Assembled in Inventory Year	Assembly Emission Factor	Assembly Emissions	Capacity of Existing Windows in Inventory Year	Leakage Emission Factor	Leakage Emissions	
(tonne SF ₆)	(fraction)	(tonne SF ₆)	(tonne SF ₆)	(fraction)	(tonne SF ₆)	
		C = A * B			F = D * E	

Sector	Industrial Processes a	Industrial Processes and Product Use				
Category	Other Product Manufa Uses	acture and Use	- SF ₆ and PFCs from	Other Product		
Category Code	2G2					
Sheet	6 of 7 SF ₆ Emissions f	rom Sound-Pro	oof Glazing			
G	Н	I	J	K		
Amount Left in Windows at End of Lifetime (Disposed of in Inventory Year)	Recovery Factor ¹⁾	Disposal Emissions	Total Emissions	Total Emissions		
(tonne SF ₆)	(fraction)	(tonne SF ₆)	(tonne SF ₆)	(Gg SF ₆)		
		I = G * (1 - H)	J = C + F + I	$K = J/10^3$		
1) Recovery fac	tor is assumed to be zero	unless country	-specific information	is available.		

Sector	Industrial Processes and Product Use			
Category	Other Product Manufa Uses	cture and Us	e - SF ₆ and PFCs fron	other Product
Category Code	2G2			
Sheet	7 of 7 Emissions of SF	and PFCs fr	om Other Prompt Em	nissive Applications
	A	В	С	D
Type of Applications 1),	Sales into application in year t	Sales into applicatio n in year t-1	Emissions in year t	Emissions in year t
(please specify)	(tonne)	(tonne)	(tonne)	(Gg)
			C = 0.5 * (A + B)	$D = C/10^3$
Total				

¹⁾ For example, tracers and use in production of optical cables.

²⁾ Insert additional rows, if necessary.

Lampiran 3. 31 Lembar kerja (*worksheet*) perhitungan emisi GRK dari sektor Pembuatan produk lain dan penggunaannya , kategori 2G3 – N_2O dari penggunaan produk

20 mm - p - 188 m - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
Sector	Industrial Processes and Product Use				
Category	Other Product Manufacture and Use - N ₂ O from Product Uses				
Category Code	2G3				
Sheet	1 of 2				
Type of Applications	A Quantity of N ₂ O Supplied in this Application Type in Year t (tonne)	B Quantity of N ₂ O Supplied in this Application Type in Year t-1 (tonne)	C Emission Factor (fraction)		
Medical Applications					
Propellant in Aerosol Products					
Other (please specify) 1)					
Total					
1) Insert additional rows, if nece	essary.				

Sector	Industrial Processes and Product Use			
Category	Other Product Manufacture and Use - N_2O from Product Uses			
Category Code	2G3			
Sheet	2 of 2			
	D	E		
Type of Applications	N ₂ O Emissions	N ₂ O Emissions		
	(tonne)	(Gg)		
	D = (0.5 * A + 0.5 * B) * C	$E = D/10^3$		
Medical Applications				
Propellant in Aerosol Products				
Other (please specify) 1)				
Total				
1) Insert additional rows, if necessary.				