

POWER MONITORING FOR OFFLINE BLOCKCHAIN VOTING: MQTT-DRIVEN REAL-TIME UPS MONITIORING AND LOCAL BACKUP

SUBMITTED BY:

UGBOR EBUBECHUKWU GABRIEL

211103090

SUBMITTED TO:

DEPARTMENT OF COMPUTER SCIENCE,
FACULTY OF COMPUTING,
NILE UNIVERSITY OF NIGERIA

IN PARTIAL FULFILMENT FOR THE AWARD OF BACHELOR OF COMPUTER SCIENCE (B.Sc.) DEGREE IN COMPUTER SCIENCE IN THE FACULTY OF COMPUTING JANUARY 2025

MRS. AISHA LAWAL

ACKNOWLEDGMENT

I would like to express my deepest gratitude to the following individuals and organizations for their invaluable support and contributions to this project:

- **God**: For supporting me throughout my academic journey and allowing me to complete this work with sincerity and dedication.
- **My Supervisor**: Mrs. Aisha Lawal, for her guidance, expertise, and unwavering support throughout this journey.
- My Teammate: Amarachi Austin-okon, Hauwa Largema and Rahmat Jibril, for their collaboration, hard work and assistance towards the completion of the project.
- My Family and Friends: Nnenna, Kelechi, Amuche, Ginika and Chisom for their endless encouragement, understanding, and patience.
- My Sponsors: I thank my parents for their financial support, which made this project possible.

Their support has been instrumental in every step of this endeavor, and I am profoundly thankful for their presence in my life

DEDICATION

I dedicate this project to my lord and savior Jesus Christ, for guiding me throughout this journey and for letting me live in great health, focus, strength, knowledge, and determination to carry out this work. I also dedicate this work to my highly supportive family and friends, who stayed by me through the complete years of my degree.

ABSTRACT

This study investigates the design and implementation of an application layer for blockchain-based voting systems, specifically tailored to address infrastructural challenges in developing regions. The research identifies critical problems, including unreliable power supplies, limited internet connectivity, and poor user experience. To overcome these, the proposed system incorporates offline voting capabilities, robust synchronization mechanisms, and user-friendly interfaces. Employing a modular design, the application ensures scalability, security, and transparency, with advanced encryption and blockchain integration providing a tamper-proof audit trail. Simulated testing validates the system's resilience under adverse conditions, demonstrating its potential to enhance electoral integrity and foster voter confidence. This work serves as a blueprint for deploying reliable and scalable blockchain-based voting solutions in resource-constrained environments, bridging existing gaps in research and practice.

TABLE OF CONTENTS

ACKNOWLEDGMENT	2
CERTIFICATION	3
DEDICATION	4
ABSTRACT	5
TABLE OF CONTENTS	6
LIST OF FIGURES	8
LIST OF TABLES	0
CHAPTER ONE	10
INTRODUCTION	10
1.1 BACKGROUND OF THE STUDY	10
1.2 MOTIVATION	11
1.3 PROBLEM STATEMENT	11
1.4 AIM AND OBJECTIVES	12
1.5 SCOPE OF THE STUDY	13
1.6 SIGNIFICANCE OF THE STUDY	13
1.7 LIMITATIONS OF THE STUDY	13
1.8 DEFINITION OF TERMS	14
CHAPTER TWO	15
LITERATURE REVIEW	15
2.1 REVIEW ON THE AREA OF PROJECT	15
2.2 REVIEW ON TECHNOLOGIES	17
2.3 EXISTING PROJECTS	20
2.4 Existing Literature	23
2.5 SUMMARY OF RECENT WORKS	24
CHAPTER THREE	42
METHODOLOGY	42
3.1 DESCRIPTION OF THE SYSTEM	42
3.2 SDLC (SOFTWARE DEVELOPMENT LIFE CYCLE)	43
3.2.1 Possible/Candidate Methods	43
3.2.2 Adopted Methodology	44
3 3 REQUIREMENTS ENCINEERING	44

3.3.1 Requirement Gathering	44
3.3.2 Functional and Non-functional Requirements	45
3.3.3 Requirement Elicitation	40
3.4 System Analysis	46
3.4.1 System Architecture	40
3.4.2 Use Case Diagram	50
3.4.3 Data Flow	52
3.5 SYSTEM DESIGN OVERVIEW	54
3.5.1 Activity Diagram	54
3.5.2 Class Diagram	57
EFERENCES	60

LIST OF FIGURES

- Fig 3.1 Deployment Diagram of the Proposed System
- Fig 3.2 Use Case Diagram of the Proposed System
- Fig 3.3 Entity Relationship Diagram of the Proposed System
- Fig 3.4 Activity Diagram of the Proposed System
- Fig 3.5 Class Diagram of the Proposed System

LIST OF TABLES

Table 2.1 – Table Showing Summary of Recent Works

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

The development of blockchain has brought absolutely new prospects to records management improvement concerning its transparency, safety, and credibility in general, including in the sphere of voting. Blockchain-based voting systems ensure record immutability, are fully decentralized, and feature increased security-a perfect solution to problems plaguing conventional voting mechanisms [2]. At the same time, the critical challenges these systems undergo include unsatisfactory infrastructure, particularly unsteady power supplies and poor internet connectivity, especially in developing regions.

In developing regions, such as Nigeria, these infrastructural gaps have always disrupted electoral processes, eroding confidence in the system and disenfranchising voters. The 2023 Nigerian elections were a reminder of these vulnerabilities, with numerous reports of technical failures arising from power outages and connectivity issues. The consequences of such disruptions are deep: delays in vote tallying, heightened risks of electoral fraud, and a general erosion of public confidence in democratic processes [21][25].

This paper aims to address the challenges mentioned above within the application layer of blockchain-based voting systems. Utilizing robust software solutions, the work intends to ensure that it functions continuously even in adverse conditions, while maintaining data integrity and an ideal user experience [9]. Because most application layers face or interact directly with end-users, they include functions such as voter registration, ballot submission, vote encryption, and result verification [18][22].

1.2 Motivation

Elections are the bedrock of democracy, and their integrity must be protected. The reason for this study lies in the imperative to protect democratic processes by overcoming infrastructural and systemic limitations. In the 2023 elections held in Nigeria, technological setbacks, such as unstable power supply and internet connectivity, revealed critical vulnerabilities in existing electronic voting systems [16]. These issues not only halted the voting process but also cast a shadow of doubt on the credibility and justice of the electoral system.

A well-designed application layer can then address these issues, including the support of features for offline voting capability, real-time synchronization with nodes in the blockchain, and simple interfaces for users and administrators alike. This study aims to contribute to the construction of a software solution that integrates all these points to ensure strong and reliable use of blockchain-based voting systems [20].

1.3 Problem Statement

Elections are the bedrock of democracy, but in developing regions, infrastructural shortcomings and inefficient systems always seem to destroy their integrity. Frequent power outages and low internet connectivity in countries like Nigeria disrupt the processes of elections and cause delays, data loss, and a general loss of public confidence in the outcome of elections [3][5]. Matters are made worse by poorly designed interfaces: under resource-limited conditions, such an interface diminishes both voter accessibility and administrative efficiency [19].

While these blockchains-based voting systems exist that foster security, transparency, and decentralization, they yet require stable infrastructures and have limited offline capabilities, hence not suitable for areas where the supplies of power and the internet are not reliable [8]

[15]. The scalability issues, high computational costs, and non-user-friendly interfaces of such systems prohibit their use in large-scale elections [10][26]. Despite advances in blockchain technology, critical gaps remain in ensuring seamless operation during outages and in integrating offline synchronization mechanisms to maintain data integrity [12][28]. In this respect, there is a great need to develop a blockchain-based voting system that could work in very adverse conditions since no robust, reliable, and accessible voting solution exists for developing regions. This project tries to respond to these challenges by embedding the capacity for offline voting, real-time synchronization, and user-friendly interfaces to advance electoral integrity and foster trust in democratic processes.

1.4 Aim and Objectives

 Aim: To design and implement an application layer for a blockchain-based voting system.

• Objectives:

- Design a secure voter interface for registration, ballot casting, and result viewing.
- 2. Implement real-time communication protocols between the application layer and blockchain nodes to ensure data consistency.
- 3. Implement offline voting capabilities with automated synchronization once connectivity is restored.
- 4. Test the application under simulated adverse conditions to validate its resilience and performance.

1.5 Scope of the Study

The scope of this study is limited to the software aspect of a blockchain-based voting system, specifically focusing on the application layer.

1.6 Significance of the Study

The proposed application layer addresses critical issues in the deployment of blockchain-based voting systems in developing regions. By ensuring system reliability and data integrity, the solution fosters trust in the electoral process and enhances voter confidence [10]. The inclusion of offline capabilities and robust synchronization mechanisms ensures uninterrupted voting operations, even in adverse infrastructural conditions [21].

Moreover, the system's modular design allows for scalability, making it adaptable to varying electoral requirements and infrastructural constraints. Advanced encryption techniques and blockchain integration provide a tamper-proof audit trail, enhancing the credibility and transparency of election outcomes. Lastly, this research serves as a blueprint for other regions facing similar challenges, paving the way for widespread adoption of secure and reliable electronic voting systems [26].

1.7 Limitations of the Study

The study focuses on the application layer of blockchain-based voting systems and does not address hardware or infrastructural upgrades required for successful implementation.

Challenges such as voter accessibility to devices, the cost of deploying blockchain technology, and potential resistance from stakeholders to adopt new systems are outside the direct scope of this research. Additionally, testing under real-world conditions is limited to

simulations, which might not fully capture all environmental variables present in actual elections.

1.8 Definition of Terms

- Blockchain: A decentralized, distributed ledger technology that records transactions securely and immutably. In this project, it ensures transparency and integrity in the voting process.
- 2. **Application Layer:** The user-facing component of a system that facilitates interaction with the underlying blockchain infrastructure for tasks such as voter registration and ballot submission.
- 3. **Offline Voting:** The capability to cast votes without an active internet connection, with data synchronized once connectivity is restored.
- 4. **MQTT** (**Message Queuing Telemetry Transport**): A lightweight messaging protocol designed for real-time data transfer in low-bandwidth environments, used for power monitoring in this system.
- 5. **Synchronization:** The process of aligning offline voting data with the blockchain network to ensure data integrity after connectivity is re-established.

CHAPTER TWO

LITERATURE REVIEW

This chapter reviews existing literature on blockchain-based voting systems, IoT-based power monitoring, and data synchronization methodologies. The goal is to identify gaps in current research and demonstrate how the proposed application layer addresses these challenges. By analyzing related works, this chapter provides a foundation for understanding the significance and innovation of the proposed solution.

2.1 Review on the Area of Project

The research work is built upon blockchain technology in order to increase the reliability and trustworthiness of electronic voting systems, mainly in developing democracies. It discusses the block creation mechanism, various sealing techniques, and the consortium blockchain maintained by election authorities in securing the voting process. SHA-256 for hashing and adaptable blockchain methods for improved scalability and trustworthiness are embedded into the framework. However, the existence of such limitations as result delay and lack of transparency in private blockchains is recognized and a customized "Proof of Completeness" algorithm is proposed to mitigate these shortcomings. [2]

This paper presents research findings on blockchain-based e-voting systems for their potentials to eliminate problems such as fraud, vote tampering, and absence of transparency in traditional voting. In this paper, a secure framework is proposed using smart contracts that automates the processes of voting for security. Usability aspects, however, remain challenging in blockchain systems for non-technical voters. [4]

This paper provides a structured review of some blockchain applications related to e-voting, mainly with respect to scalability and performance. It underlines several of the challenges confronted by blockchain-based voting, such as transaction speed, privacy, and cost, while discussing some already existing cryptographic solutions. The work outlines future lines of research to be pursued, optimization of consensus algorithms, and incorporating directed acyclic graphs, hence making it highly relevant for developing regions with sparse infrastructure. It emphasizes the use of scalable solutions to meet such an environment. [7]

This paper introduces a more advanced blockchain-based framework to augment evoting. The votes are safeguarded through cryptic keys and tamper-proof personal IDs in electronic voting. The voters will be given digital wallets, and every vote would be treated as a transaction, thereby ensuring an indelible audit trail. It would be flexible in that votes could be changed before any deadline. [13]

This paper emphasizes the fact that, through blockchain, electronic voting can be made safe, transparent, and decentralized, keeping the privacy of the voters via cryptographic techniques, including blind signatures and homomorphic encryption. The paper discusses various challenges regarding scalability, protection of voters' privacy, and transaction speed, while again emphasizing the potentials of blockchain for the replacement of centralized systems. However, gaps in frameworks for eligibility verification and real-world scalability remain critical areas for improvement. [15]

This survey assesses the feasibility of integrating blockchain into e-voting, addressing key challenges such as anonymity, secure identity management, and vote verifiability. While blockchain ensures integrity and decentralization, this article points out that it faces challenges like high deployment costs and vulnerability to cyberattacks. Case studies of global implementations, such as Estonia, showcase successes and gaps in current systems.

The study calls for further maturity of blockchain to ensure that e-voting systems are reliable and scalable. [23]

This paper will address the issue of using blockchain for the enhancement of trust and reliability in electronic voting systems, particularly in developing democracies. It describes block creation, sealing techniques, and using consortium blockchain, managed by the election authorities, to secure the voting process. The framework integrates SHA-256 for hashing and adjustable blockchain methods for better scalability and trustworthiness. However, result delays and a lack of transparency in private blockchains are identified issues, which a specifically designed "Proof of Completeness" algorithm is suggested to overcome. [29]

2.2 Review on Technologies

This study develops a blockchain-based solution for file synchronization, thereby strengthening data integrity and operation resilience. Integration of blockchain characteristics, such as immutability, distributed architecture, and user authentication, is incorporated into it for efficient version control and data synchronization even with decentralized networks. This solution does not rely on centralized servers to make it resistant to failures. Proof-of-work mechanisms secure data, making key benefits include more fault tolerance and a lower reliance on external operations. [1]

It designs a blockchain-based framework with face verification and implements smart contracts for secured transparent voting. It improves the trust in the current system by ensuring that the data is tamper-proof and verifiable, reducing the possibility of fraud. Challenges include the high computational requirements of blockchain technology and accessibility for large-scale populations. [5]

This paper proposed a blockchain-based e-voting protocol ensuring transparency and privacy in the voting process. Main features contributed here are a possibility of changing one's vote during the election period, a transparent digital ballot box, and individual verifiability.

Though this represents a practical challenge to implement due to computational limitations in blockchain, the potential for improved voter trust in the process and system reliability are proposed as proof of the protocol. This will directly contribute to the project's objectives of securing and ensuring reliable systems in resource-constrained settings. [8]

This review highlights some gaps in the e-voting systems and assesses blockchain for its potential to fill those gaps. It identifies challenges such as transaction speed, privacy, scalability, and the need for robust consensus models. While blockchain indeed offers immutability, decentralized ledgers, and enhanced data integrity, challenges persist, such as 51% attacks, transaction speed, and privacy concerns. The study therefore calls for the enhancement of frameworks for secure and scalable e-voting. [10]

This research presents the blockchain-based voting system for use on the internet on the Ethereum base with smart contract. It refers to the impermeability of blockchains and therefore the security involved in cryptographic operations. The proposed solution ensures anonymity; however, all voters can only be verified on the basis of biometric credentials.

Scalability and high costs related to transaction validation "gas" charged by Ethereum prevent the system. [12]

It suggests an e-voting system based on Hyperledger Fabric, with efficiency, security, and scalability ensured through permissioned blockchains. The efficiency of such a system is enhanced by elimination of the traditional consensus mechanism, access control, and hence, secure vote management through smart contracts. Despite practicality, the challenges related to voter accessibility and large-scale election scalability are now evident in the study. [16]

The research proposes a decentralized voting platform based on the Ethereum blockchain using MetaMask for voter registration and voting. Voting tokens are given to the registered users, which are utilized in casting votes on the blockchain, ensuring transparency and immutability. The automation of vote tallying makes the election process much easier, avoiding the manual counting of votes. Though the framework is innovative, it still remains theoretical and has not been deployed at large. The challenges include user accessibility and usability by non-technical participants. [19]

It makes emphasis on using private blockchain in electronic voting as secure and dependable. This method integrates cryptographic algorithms and private blockchain to overcome challenges such as tampering with data, double voting, and lack of trust in centralised systems. A system with properties such as privacy for the voter, eligibility checking, and encrypting the transfer of data is put forward. This system utilizes Practical Byzantine Fault Tolerance in order to create a consensus and hinder malicious actions. The study highlights significant improvements in data integrity and scalability compared to traditional methods.

[21]

This research proposes a permissioned blockchain-based e-voting system for resolving challenges inherent in traditional electoral processes that include vote tampering and lack of transparency. It incorporates distributed ledger technology, end-to-end verifiability, and cryptographic techniques such as SHA-256 for data integrity. It tries to outline the potential role of blockchains regarding tamper-proof, transparent elections. Limitations are the high initial setup cost, infrastructure requirements, and unresolved issues on accessibility for rural populations. [25]

This paper focuses on the use of blockchain to address issues of transparency and auditability in voting. Here, the study introduces the ABVS, using intelligent agents that enhance security

and efficiency. Emphasis is on the role played by multi-agent systems in validation of data reliability and process integrity. The proposed model of the ABVS contains super-nodes and trusted nodes, which resonate with the vision of reliability even during outages. [32]

The paper describes how blockchain can overcome some of the security and transparency problems of elections. It proposes a decentralized system whereby voters' identities will remain secret and the voting is cast safely by a smart-card and one-time password mechanism. Providing voter authentication, data confidentiality, and real-time results through the use of the ElGamal cryptosystem for encryption and SHA-256 for hashing, this system does have many merits. The challenges it faces include requirements of accessible technology and public adoption in developing regions. []

2.3 Existing Projects

The current work investigates protocols for achieving full voter privacy without recourse to trusted third parties. It looks into the distributed algorithms ensuring the security of election outcomes while keeping anonymity and avoiding vote manipulation. It takes note of some impossibility results regarding unconditional privacy in specific schemes and proposes ways to achieve strong privacy guarantees under realistic assumptions. These might provide inspiration for mechanisms of offline synchronization for the project, helping to handle concerns about voter security in constrained environments. [9]

The authors propose a blockchain-based score voting system that ensures the privacy of the voters through zero-knowledge proof and encrypted transactions. It tries to mitigate challenges such as score manipulation and data integrity issues by validating the score range beforehand. Performance evaluations show scalability up to 10,000 participants, but computational and communication overheads have been pointed out as limitations. [11]

This paper proposes a decentralized, smart contract-based e-voting system on the Ethereum platform that ensures privacy, integrity, and anonymity for voters. This system makes use of blockchain to develop a transparent ledger in which all votes are recorded, hence ensuring the integrity of the voting process. It uses RSA encryption and Merkle trees for secure data storage. Moreover, voters can verify their votes using transaction IDs. [14]

It introduces an e-voting system based on the sidechain which guarantees privacy, transparency, and verifiability using zero-knowledge proofs and Shamir's Secret Sharing. This system splits the voter registration and vote counting on linked blockchains, thus facilitating secure remote voting and traditional e-voting settings. Though innovative, it has shown some issues regarding scalability and practicability. [17]

This article proposes a blockchain-based system for e-voting on the Ethereum blockchain, through which smart contracts allow for secure and transparent elections by ensuring immutability. Through this system, voters can now vote using both Ethereum wallets or Android devices, and it validates each transaction in the blockchain network. The above approach ensures transparency and integrity because votes are immutable on the blockchain. However, the study has limitations in scalability for large-scale elections and challenges in maintaining voter anonymity. Moreover, voters require Ethereum wallets and small amounts of ether to participate. [18]

A model was designed for this research using the Ethereum blockchain along with the implementation language, Solidity. This model assures data integrity and transparency by securing election results in this blockchain. An interface has also been proposed here through a web-based environment in order to support voter authentication along with their vote submissions independently without depending on a centralized database. This mechanism has

some bottlenecks concerning Internet requirements, Ethereum wallet availability, and ethers required as gas charges in Ethereum-based electronic ballot elections. [20]

This paper proposes an e-voting system empowered by blockchain that enhances the system's transparency, security, and scalability. The system relies on Ethereum-based smart contracts to manage registration, vote casting, counting, and donation processes. Major issues such as vote tampering, fraudulent voter detection, and cyberattacks will be tackled with this system. It offers users user-friendly GUIs and cryptocurrency wallets that increase accessibility and ease-of-use for users. The proposed architecture is highly adaptable and robust in conducting secure online elections. [22]

This paper researches the application of Ethereum-based blockchain technology for e-voting systems on secure, transparent, and decentralized mechanisms. The system uses smart contracts for managing the procedures of voting, maintaining the privacy of the vote, its immutability, and transparency. A prototype web application is provided, implementing the same in real life by enabling voter registration and verification of votes via OTP authentication. Limitations are pointed out regarding scalability to large-scale elections, as well as completely anonymizing voters with blockchain. [24]

The paper suggests an e-voting solution with the integration of Ethereum-based smart contracts for higher security and cost efficiency. This ensures voter privacy and transparency and addresses the issue of integrity within the process of voting. Biometric validation within a decentralized app will ensure that it is pretty robust with unique hash addresses for the voters. However, the study again points out scalability issues and the possible need for further adaptations to be efficient in large-scale elections. [26]

It describes a two-layer, decentralized architecture for voting and identification using blockchain for transparency with the anonymity of voters. This protocol describes steps

involved right from the registration of voters to counting the results by ensuring fault tolerance, scalability, and secure authentication of voters. The identity and voting layer using permissioned blockchains forms a very relevant precedent on the reliability of the project in terms of its offline synchronization mechanisms. [28]

2.4 Existing Literature

This research investigates the integration of IoT devices in offline blockchain scenarios using the IOTA framework. It examines challenges in transaction synchronization and finality in partially synchronous networks. The IOTA-based solution will be used by applying the structure of DAG for offline operations and periodic data merging, which will meet scalability and low-cost transaction needs. Limitations: The system requires very precise time synchronization to avoid the problem of stale data. IoT nodes have limited resources. [3] This survey conducts the evaluation of several blockchain-enabled e-voting systems on the level of scalability, security, and transparency improvements over traditional systems. It pinpoints usability and system adaptability gaps for large-scale elections and stresses blockchain's decentralized and immutable features as novel solutions towards currently created issues. [6]

The paper reviews the evolution of blockchain's application in voting, pointing out its decentralized, transparent, and secure attributes. Challenges such as computational overhead are pointed out, while blockchain maintains voter anonymity and integrity. Such insights guide addressing challenges of offline voting and synchronization issues. [27]

A blockchain-based e-voting system, using private Ethereum networks is proposed in this paper. This work focuses on voter registration, OTP authentication, and blockchain with MongoDB-based secure voting. It ensures eligibility for voters using smart contracts to avoid

multiple votes. It might be efficient for smaller applications, but it lacks efficiency in consumption of resources and scalability in larger applications. [31]

2.5 Summary of Recent Works

Title	Author and Year	Summary	Limitation
Using Blockchain	Khan et al., 2019	Proposes a	Computational
Technology for File		blockchain-based	overhead due to
Synchronization		system for file	proof-of-work and
		synchronization,	potential
		emphasizing	complexity in
		immutability,	deployment.
		distributed	
		architecture, and	
		version control.	
Offline Scaling of	Rawat et al., 2022	Explores IOTA-	Time
IoT Devices in IOTA		based DAG ledger	synchronization
Blockchain		for offline IoT	challenges and risk
		scalability,	of transaction
		ensuring low-cost	staleness in
		transactions and	partially connected
			IoT networks.

		support for partial	
		synchronization.	
Electronic Voting	Milan Ray et al., 2023	Discusses	Complexity of use
System Powered by		blockchain's role in	for non-technical
Blockchain		combating fraud and	voters and security
Technology		ensuring	challenges in certain
		transparency in e-	system designs.
		voting via	
		decentralized	
		systems.	
A Framework to	CH. Sunandini et al.,	Proposes a	High
Make Voting	2020	blockchain-based	computational
System Transparent		voting system with	resource
Using Blockchain		face verification	requirements and
Technology		and immutable	limited testing on
		smart contract	large-scale
		functionalities.	populations.
Survey on Online E-	Sangeeta Alagi et	Reviews	Limited research on
voting System Using	al., 2023	blockchain-based	usability and
Blockchain		voting systems,	implementation
Technology		highlighting	challenges for
		security, scalability,	large-scale voting.

		and transparency	
		benefits.	
A Systematic	Jafar, U., et al.,	This article reviews	Scalability remains
Literature Review	2022	scalable	an unsolved
and Meta-Analysis		blockchain-based	challenge, with
on Scalable		voting systems,	limitations in
Blockchain-Based		addressing issues	transaction speed
Electronic Voting		such as	and consensus
Systems		authentication,	mechanisms
		privacy, integrity,	
		and scalability. It	
		identifies research	
		directions like	
		enhancing	
		consensus	
		algorithms for	
		scalability.	
E-Voting with	Hardwick, F. S., et	Proposes a	Challenges include
Blockchain: An E-	al., 2016	decentralized e-	the need for a
Voting Protocol		voting protocol	centralized
with		using blockchain	authority for voter
Decentralisation		for transparency	eligibility
and Voter Privacy		and privacy. Voters	verification and

	can alter votes during	blockchain
	elections, leveraging	scalability issues.
	smart contracts for	
	ballot storage while	
	ensuring transparency	
	and individual	
	verifiability.	
Brandt, F., and	Explores protocols	Impossibility
Sandholm, T., 2005	for achieving	results show
	unconditional voter	unconditional full
	privacy without	privacy cannot be
	trusted third	achieved for many
	parties. Introduces	voting schemes;
	distributed	relies on specific
	algorithms to	assumptions.
	maintain election	
	outcome privacy	
	while minimizing	
	information	
	leakage.	
		elections, leveraging smart contracts for ballot storage while ensuring transparency and individual verifiability. Brandt, F., and Explores protocols for achieving unconditional voter privacy without trusted third parties. Introduces distributed algorithms to maintain election outcome privacy while minimizing information

A Systematic	Ruhi Taş and Ömer	This systematic	Privacy concerns,
Review of	Özgür Tanrıöver,	review highlights	scalability
Challenges and	2020	blockchain's	limitations, and
Opportunities of		potential in	vulnerabilities like
Blockchain for E-		addressing gaps in	51% attacks remain
Voting		e-voting systems,	unresolved.
		focusing on	
		immutability,	
		decentralized	
		ledgers, and data	
		integrity. It	
		emphasizes issues	
		with privacy,	
		transaction speed,	
		and scalability,	
		advocating for	
		improved consensus	
		mechanisms and	
		frameworks.	
Privacy-Preserving	Ali Alshehri et al., 2023	The paper	Computational and
E-Voting System		introduces a	communication
Supporting Score		blockchain-based	overheads pose

Voting Using		e-voting system	challenges for
Blockchain		supporting score	larger-scale
		voting, ensuring	implementations.
		privacy with zero-	
		knowledge proofs. It	
		validates score	
		ranges to prevent	
		manipulation and	
		scales to 10,000	
		participants,	
		demonstrating its	
		efficiency for mid-	
		sized elections.	
Blockchain-Based	Jinjie Chai, 2020	Proposes a	High costs due to
Voting System with		blockchain-based	Ethereum's gas fees
Ethereum		voting system using	and potential
Blockchain		Ethereum, ensuring	vulnerabilities in
		transparency,	smart contracts.
		anonymity, and	
		verifiability with	
		smart contracts.	
Trustworthy	Elba Rajathi et al.,	Highlights an e-	Scalability
Electronic Voting	2023	voting system using	challenges and

Using Adjusted		an adjusted	vulnerability to
Blockchain		blockchain with	real-time attacks
		secure cryptographic	like DDoS.
		keys, allowing voters	
		to change votes	
		before a deadline.	
Decentralized E-	Prajwal Shiwal et	Discusses a	Computational
Voting System	al., 2023	decentralized e-	overhead limits
Using Blockchain		voting system built	large-scale
		on Ethereum with	adoption.
		transparency, voter	
		privacy, and	
		integrity ensured by	
		smart contracts	
		and cryptographic	
		methods.	
Blockchain for	Uzma Jafar, Mohd	Explores	Limited scalability
Electronic Voting	Juzaiddin Ab Aziz,	blockchain's	and transaction
System—Review	Zarina Shukur,	potential for	speed, and
and Open Research	2021	secure,	incomplete
Challenges		transparent, and	frameworks for
		decentralized	eligibility

	highlighting its	
	mgmighting its	scale
	cryptographic	implementations.
	techniques (e.g.,	
	blind signatures,	
	homomorphic	
	encryption) to	
	ensure voter	
	privacy. Identifies	
	its transformative	
	role but notes gaps	
	in scalability and	
	privacy.	
ilo Denis	Proposes an e-	Scalability
ález, Daniel	voting system using	challenges in
Mena, Alexi	Hyperledger Fabric	handling large-
só Muñoz,	to enhance	scale elections and
r Rojas,	efficiency and	issues related to
ermo Sosa-	security through	voter accessibility,
ez, 2022	permissioned	particularly in
	blockchains.	regions with limited
	Implements access	digital literacy or
	control, smart	resources.
	ález, Daniel Mena, Alexi só Muñoz, r Rojas, ermo Sosa-	blind signatures, homomorphic encryption) to ensure voter privacy. Identifies its transformative role but notes gaps in scalability and privacy. Proposes an e- voting system using Mena, Alexi Hyperledger Fabric só Muñoz, to enhance er Rojas, efficiency and security through permissioned blockchains. Implements access

		contracts and	
		contracts, and	
		modular	
		architectures to	
		balance	
		decentralization and	
		performance,	
		demonstrating	
		practical use in	
		controlled	
		environments.	
Crypto-voting: A	Francesco Fusco,	Describes a two-	Implementation
Blockchain-Based	Maria Ilaria Lunesu,	sidechain e-voting	remains at a
E-Voting System	Filippo Eros Pani,	system combining	prototype stage, with
	Andrea Pinna, 2018	blockchain with	unresolved
		Shamir's Secret	challenges in
		Sharing for enhanced	scalability,
		privacy and	synchronization, and
		transparency.	broader adoption in
		Separates registration	large and diverse
		and vote counting	electoral scenarios.
		processes while	
		enabling secure	

		remote and traditional	
		e-voting	
		setups.	
Towards Secure E-	Ali Kaan Koç, Emre	Proposes an e-	Limited scalability
Voting Using	Yavuz, Umut Can	voting system using	for national-level
Ethereum	Çabuk, Gökhan	Ethereum blockchain	elections and
Blockchain	Dalkılıç, 2018	and smart contracts	challenges in voter
		for secure,	anonymity.
		transparent, and	Requires users to
		immutable elections.	have Ethereum
		Allows voting	wallets and small
		through Ethereum	amounts of ether.
		wallets or Android	
		devices, ensuring	
		vote integrity with	
		blockchain	
		consensus	
		mechanisms.	
Decentralized Voting:	Luke Reddick, 2018	Proposes a	Implementation
Ethereum-		decentralized	remains a
		voting application	theoretical

Based Voting		using Ethereum	framework with no
Platform		blockchain and	full-scale
		MetaMask for	deployment.
		registration and	Challenges include
		voting. The system	limited usability for
		uses tokens to	non-technical
		represent votes,	voters.
		leveraging	
		blockchain	
		immutability and	
		transparency for	
		secure voting and	
		automated vote	
		tallying.	
Electronic Voting	Missa Lamsani,	Develops a	Requires an
Using	Singgih Jatmiko,	decentralized e-	internet
Decentralized	Fajri Fadli, 2020	voting system using	connection,
System Based on		Solidity and	Ethereum wallet
Ethereum		Ethereum	setup, and ether for
Blockchain		blockchain to	gas fees.
		ensure data	Scalability and
		integrity and	accessibility for
		transparency. The	large-scale

		system includes a	elections remain
		web interface for	concerns.
		voter authentication	
		and secure vote	
		storage	
		on the blockchain.	
A Study on	Chang-Hyun Roh C	This article	Limited scalability
Electronic Voting	Im-Yeong Lee, 2020	explores the use of	and challenges in
System Using		private blockchain	extending
Private Blockchain		for secure	processing speed
		electronic voting. It	for large-scale
		incorporates	applications.
		cryptographic	
		algorithms and	
		PBFT consensus to	
		address trust and	
		data tampering.	
		Ensures privacy,	
		fairness, and data	
		integrity with	
		encryption	
		mechanisms.	

BCT-Voting: A	Deepali Raikar C	Proposes a	Dependence on
Blockchain	Avimanyou Vatsa,	blockchain-based	Ethereum
Technology-Based	2021	e-voting system	increases
Voting System		with Ethereum	transaction costs;
		smart contracts. It	the system's
		includes modules	adaptability in low-
		for registration,	connectivity
		vote casting,	regions is not
		counting, and	addressed.
		donation. The	
		system aims to	
		improve	
		transparency,	
		security, and user	
		experience while	
		addressing fraud	
		detection.	
A Survey on	Umut Can Çabuk et	Surveys	Limited practical
Feasibility and	al., 2018	blockchain-based	implementation
Suitability of		e-voting systems,	details and
Blockchain		highlighting their	insufficient focus
Techniques for E-		potential in	on offline or hybrid
Voting Systems		ensuring	

		anonymity,	connectivity
		integrity, and	solutions.
		decentralization. It	
		also discusses	
		challenges like	
		deployment costs,	
		trust, and	
		cyberattacks with	
		case studies from	
		different countries.	
E-Voting Using	Yadav et al., 2020	Proposes	Scalability and
Blockchain		Ethereum-based e-	voter anonymity
Technology		voting with smart	remain challenges.
		contracts for	
		security and	
		transparency.	
		Demonstrates a	
		prototype with OTP	
		verification for	
		voter	
		authentication.	

Blockchain	Lahane et al., 2020	Describes a	High initial costs and
Technology-Based		permissioned	rural accessibility
E-Voting System		blockchain	are concerns.
		framework for	
		tamper-proof	
		elections, using	
		SHA-256 and	
		distributed ledgers	
		for end-to-end	
		verifiability.	
Blockchain-Based	Benny et al., 2020	Implements	Scalability for
E-Voting System		Ethereum-based	nationwide elections
		voting with smart	is limited; further
		contracts,	measures needed for
		providing privacy	high transaction
		and transparency.	throughput.
		Utilizes biometric	
		verification and	
		unique hash	
		addresses for	
		authentication.	
Towards the	Michał Pawlak et	Introduces the	Limited exploration
Intelligent Agents	al., 2018	Auditable	of scalability and

for Blockchain E-		Blockchain Voting	handling
Voting System		System (ABVS)	intermittent
		leveraging	connectivity in
		intelligent agents	developing regions.
		and multi-agent	
		systems for secure	
		and auditable e-	
		voting.	
DemocracyGuard:	Mritunjay S.	Proposes a	Does not address
Blockchain-Based	Peelam et al., 2024	blockchain-based	offline voting
Secure Voting		secure voting	scenarios and real-
Framework		system integrating	time
		Ethereum smart	synchronization
		contracts and	during connectivity
		facial recognition	loss.
		for voter	
		authentication.	
Decentralized	Kateryna Isirova et	Proposes a two-	Relies heavily on
Electronic Voting	al., 2020	level decentralized	pre-established
System Based on		architecture using	internet
Blockchain		blockchain for	connectivity and
		voter identification	does not integrate
		and result counting	

		with a six-step	UPS or power
		secure protocol.	resilience.
Trustworthy	Basit Shahzad C	Proposes an	Limited
Electronic Voting	Jon Crowcroft,	adjustable	transparency in
Using Adjusted	2019	blockchain	private blockchain
Blockchain		framework for e-	and challenges in
Technology		voting, focusing on	ensuring fairness
		block creation,	for all stakeholders.
		sealing, and	
		consortium	
		blockchain to	
		enhance security,	
		scalability, and	
		voter trust.	
Blockchain-Based	Md. Shahriare	Introduces a	Challenges in
Secured E-Voting	Arnob et al, 2020	decentralized	accessibility and
System		blockchain-based	adoption in
		e-voting system	resource-
		using smart cards,	constrained
		OTP, and SHA-256	regions.
		for secure voting	
		and real-time result	
		publishing to	

		enhance	
		transparency in	
		elections.	
Blockchain-Based	Mrunal Pathak et	Describes a private	Primarily suitable
E-Voting Using	al., 2021	Ethereum-based e-	for small-scale
Private Ethereum		voting solution with	elections; less
		features like OTP-	effective for
		based	national elections.
		authentication,	
		smart contracts,	
		and vote validation	
		to address	
		common e-voting	
		issues.	

 $Table\ 2.1-Table\ Showing\ Summary\ of\ Recent\ Works$

CHAPTER THREE

METHODOLOGY

This chapter outlines the system analysis and design methodology for the application layer of the blockchain-based voting system. It includes a detailed description of system requirements, design principles, architectural considerations, feasibility analysis, and implementation strategies. The application layer serves as the critical interface between end-users and the underlying blockchain infrastructure, ensuring seamless operation, data integrity, and security.

3.1 Description of the System

This project proposes the design and implementation of a blockchain-based voting system tailored to the challenges of developing regions. The system integrates offline voting capabilities, real-time power monitoring using MQTT, and a user-friendly interface. It is designed to operate seamlessly under adverse conditions, ensuring secure data synchronization and transparent election processes. Key components include the application layer for voter interaction, a blockchain layer for secure data recording, and a synchronization module for offline functionality.

System Requirements

The system requirements for the proposed application layer are categorized into functional, non-functional, hardware, and software requirements.

Hardware Requirements

- 1. Client Devices: Smartphones, tablets, or computers with internet access.
- 2. **Server Infrastructure:** High-performance servers with redundancy for handling requests and storing data.
- 3. **Backup Systems:** External SSD/HDD storage for local backups during outages.

Software Requirements

- 1. **Programming Languages:** Node.js (backend), React.js (frontend).
- 2. **Frameworks:** Express.js API development.
- 3. **Blockchain Platform:** Ethereum for permissionless blockchain operations.
- 4. **Database Management:** MongoDB for voter and election data storage.
- 5. **Communication Protocols:** MQTT for real-time messaging and synchronization.

3.2 SDLC (Software Development Life Cycle)

3.2.1 Possible/Candidate Methods

Several SDLC methodologies were considered for this project:

- Waterfall Model: A linear, sequential approach suitable for well-defined projects but less adaptable to changes during development.
- 2. **Agile Methodology:** An iterative model emphasizing flexibility, continuous stakeholder involvement, and incremental delivery.

3. **Incremental Model:** A phased approach that delivers functional components in increments, enabling early testing and validation.

3.2.2 Adopted Methodology

The Waterfall methodology was chosen for this project due to its structured and sequential nature. It ensures that each phase—from requirement gathering to system deployment—is completed thoroughly before moving on to the next. This approach provides:

- 1. Clear documentation of requirements and design.
- 2. A well-defined timeline for project milestones.
- 3. Simplified tracking of progress, making it suitable for projects with clearly defined goals and deliverables.

3.3 Requirements Engineering

3.3.1 Requirement Gathering

The following methods were employed to gather system requirements:

- 1. Stakeholder Interviews: Engaged with potential users, including voters and administrators, to identify key functionalities and challenges.
- **2. Surveys:** Conducted surveys to understand user expectations and infrastructural limitations.
- **3. Literature Review:** Analyzed existing studies to identify gaps in current blockchain-based voting systems.

3.3.2 Functional and Non-functional Requirements

Functional Requirements

- **1. User Authentication:** Secure login for voters and administrators using multi-factor authentication.
- 2. Voter Registration: A module for securely capturing and storing voter details.
- **3. Ballot Casting:** A feature for voters to submit their votes through an intuitive interface.
- 4. **Offline Voting:** Support for offline voting with automated data synchronization upon connectivity restoration.
- 5. **Result Verification:** Real-time display of voting results with blockchain verification.
- 6. **Administrative Tools:** Dashboards for managing elections, monitoring voting activities, and resolving disputes.

Non-Functional Requirements

- Scalability: Support for thousands of concurrent users without performance degradation.
- 2. **Usability:** A user-friendly interface designed for diverse literacy levels.
- 3. **Security:** Implementation of end-to-end encryption and blockchain-based data integrity checks.
- 4. **Reliability:** System resilience to power outages and network disruptions.
- 5. **Performance:** Real-time data processing with minimal latency.

3.3.3 Requirement Elicitation

Refinement of requirements was achieved through:

- 1. **Prototyping:** Developed low-fidelity prototypes to gather feedback.
- 2. **Focus Groups:** Organized sessions with stakeholders to validate features and workflows.
- 3. **Scenario Analysis:** Simulated adverse conditions to identify potential gaps and improve system design.

3.4 System Analysis

3.4.1 System Architecture

The proposed architecture integrates the following components:

- 1. Frontend Layer: Provides an intuitive user interface for voters and administrators.
- 2. **Backend Layer:** Manages application logic, API endpoints, and blockchain communication.
- 3. **Blockchain Layer:** Ensures secure and immutable recording of votes.
- 4. **Synchronization Layer:** Handles data synchronization between offline and online modes.

Deployment Diagram

The deployment diagram (Figure 3.3) represents the physical architecture of the system, showing how hardware and software components are connected in the operational environment. The key components include:

1. Voter Device:

- Devices such as smartphones, tablets, or laptops used by voters to interact with the voting system.
- Runs the frontend application and communicates with the backend server.

2. Administrator Console:

 Devices used by administrators for monitoring, system management, and troubleshooting.

3. Raspberry Pi:

- Acts as the edge device for power monitoring and communication with sensors.
- o Responsible for triggering backups during power disruptions.

4. Sensors (PZEM-004T and ZMPT101B):

o Monitor real-time power conditions and report data to the Raspberry Pi.

5. Server Infrastructure:

- High-performance servers for backend processing, blockchain operations, and database management.
- o Includes redundancy mechanisms to handle system load and ensure reliability.

6. External Backup Storage:

 SSDs or HDDs connected to the Raspberry Pi for storing backups during outages.

7. Blockchain Network:

 Implements secure and immutable storage for voting records and power events.

Communication Flow:

- Voter devices communicate with the backend server via RESTful APIs.
- Raspberry Pi collects power data from sensors and sends updates to the server.
- Backup storage devices interact with the Raspberry Pi for real-time data preservation.
- The blockchain network records votes and power events for auditing and verification.

Figure 3.1 – Deployment Diagram of the Proposed System

The deployment diagram (Figure 3.1) provides an overview of the system's deployment architecture, detailing how hardware components (e.g., Raspberry Pi, UPS) and software modules are interconnected.

3.4.2 Use Case Diagram

The use case diagram visually represents the relationships between actors and the system's core functionalities. It ensures that all user interactions and responsibilities are clearly outlined and mapped to the appropriate system components.

Actors:

1. Voter:

o Interacts with the system to register, log in, and cast votes.

2. Administrator:

o Monitors the system, reviews logs, and ensures operational continuity.

Use Cases:

- **Register as Voter**: The Voter provides personal details to create an account.
- Log in to System: Both Voter and Administrator authenticate themselves.
- Cast a Vote: The Voter selects a candidate and submits the vote.
- Monitor System: The Administrator reviews system performance and logs.
- **Handle Power Events**: The system detects power disruptions and initiates backups, with the Administrator overseeing the process.
- **Verify Votes**: The Administrator reviews voting data for integrity.

Figure 3.2 – Use Case Diagram of the Proposed System

The use case diagram (Figure 3.2) provides an overview of the interactions between actors (Voter and Administrator) and the system. It highlights the primary functionalities and their respective users.

3.4.3 Data Flow

- 1. **User Actions:** Voters register, authenticate, and cast ballots through the frontend.
- 2. **Backend Processing:** The backend validates user actions and interacts with the blockchain for secure data storage.
- 3. **Blockchain Operations:** Votes are recorded immutably, ensuring transparency and integrity.
- 4. **Offline Synchronization:** Data from offline voting is synchronized to the blockchain once connectivity is restored.

Database Design

- Entities and Relationships:
 - o Voter:
 - Attributes: voterID (Primary Key), name, email, password.
 - Relationships: Casts votes (one-to-many relationship with Vote).
 - o Vote:
 - Attributes: voteID (Primary Key), candidateID, voterID (Foreign Key), timestamp.
 - Relationships: Linked to Voter and Candidate.
 - o Candidate:
 - Attributes: candidateID (Primary Key), name, party.
 - Relationships: Receives votes (one-to-many relationship with Vote).
 - o PowerEvent:
 - Attributes: eventID (Primary Key), timestamp, status, description.

 Relationships: Triggers backup actions (one-to-one relationship with Backup).

o Backup:

- Attributes: backupID (Primary Key), filePath, timestamp.
- Relationships: Linked to PowerEvent.

Relationships:

- 1. A **Voter** can cast multiple **Votes**.
- 2. Each **Vote** is associated with one **Candidate**.
- A PowerEvent can trigger a single Backup, ensuring data integrity during disruptions.

Figure 3.3 – Entity Relationship Diagram of the Proposed System

The database design is represented using an Entity Relationship Diagram (ERD) to visualize the relationships between key entities such as voters, votes, and power events (Figure 3.3).

3.5 System Design Overview

The system design encompasses the architecture, data flow, and module interactions to ensure robust performance and reliability.

Design Principles

- 1. **Modularity:** The system is divided into discrete components (e.g., voter module, administrator module) to simplify development and maintenance.
- 2. **Scalability:** The architecture supports growth in user base and data volume without performance degradation.
- 3. **Security:** Data encryption, secure authentication, and blockchain integration ensure the confidentiality and integrity of electoral data.
- 4. **Resilience:** The system is designed to handle power outages and connectivity issues, ensuring uninterrupted operations.

3.5.1 Activity Diagram

The activity diagram visually distinguishes between Voter and Administrator workflows, emphasizing decision points and system interactions. It highlights the seamless integration of user actions, power monitoring, and data preservation processes, ensuring system reliability and security. It highlights decision points such as successful validation of voter details, vote

encryption, and power status checks. It visually maps the flow of actions from start to finish, ensuring clarity in how the system handles critical events like voting and backup processes. Key activities include:

Voter Actions:

1. Voter Registration:

- o Voter provides registration details (name, email, password).
- o System validates and stores voter data in the database.

2. Casting a Vote:

- Voter logs in to the system.
- Voter selects a candidate and submits the vote.
- o System encrypts and stores the vote on the blockchain.

Administrator Actions:

1. Admin Monitoring:

- o Administrator logs in to monitor system activity.
- o Admin reviews power event logs and voting statistics.

2. Power Monitoring and Backup:

- o System detects power status changes using sensors.
- o In the event of a power disruption, the system triggers a backup process.
- Backup data is stored on external storage and synchronized upon power restoration.

Decision Points and Flow:

• Validation of voter registration details.

- Successful login for both Voter and Administrator.
- Power disruption detection leading to backup initiation.
- Synchronization of data after power restoration.

Figure 3.4 – Activity Diagram of the Proposed System

The activity diagram (Figure 3.4) outlines the workflow for key processes such as voting, power monitoring, and data synchronization, highlighting decision points and system interactions.

3.5.2 Class Diagram

Classes:

- Voter:
 - o Attributes: voterID, name, email, password.
 - o **Methods**: register(), login(), castVote().
- Administrator:
 - o Attributes: adminID, name, email, password.
 - o **Methods**: manageElections(), verifyVotes(), generateReports().
- Vote:
 - o Attributes: voteID, voterID, candidateID, timestamp.
 - Methods: recordVote(), encryptVote().
- PowerEvent:
 - o **Attributes**: eventID, timestamp, status, description.
 - o **Methods**: logEvent(), notifyAdministrator().
- BackupManager:
 - o **Attributes**: backupID, filePath, timestamp.
 - o **Methods**: createBackup(), restoreBackup(), syncData().

Relationships:

- Voter to Vote: A one-to-many relationship where a voter can cast multiple votes during different elections.
- 2. **Administrator to Vote**: A one-to-many relationship where an administrator manages and verifies multiple votes.

- 3. **Vote to Blockchain**: Association where votes are securely recorded and verified on the blockchain.
- 4. **PowerEvent to BackupManager**: A dependency relationship where power events trigger backup actions.
- Administrator to PowerEvent: Administrators are notified of power events for auditing and resolution

Figure 3.5 – Class Diagram of the Proposed System

The class diagram (Figure 3.5) illustrates the system's key classes, including their attributes and relationships. Key classes include Voter, Election, Vote, PowerEvent, and BackupManager.

REFERENCES

- [1] MD. I. Khan et al., "Using Blockchain Technology for File Synchronization," *IOP Conf. Ser.*: Mater. Sci. Eng., vol. 561, 2019.
- [2] D. Kumar, D. V. Chandini, and D. Reddy, "Secure Electronic Voting System Using Blockchain Technology," *Int. J. Smart Home*, vol. 14, no. 2, pp. 31-38, 2020.
- [3] A. Rawat, V. Daza, and M. Signorini, "Offline Scaling of IoT Devices in IOTA Blockchain," *Sensors*, vol. 22, no. 1411, 2022.
- [4] M. Ray et al., "Electronic Voting System Powered by Blockchain Technology: A Study," SSRN, 2023.
- [5] CH. Sunandini et al., "A Framework to Make Voting System Transparent Using Blockchain Technology," 2020.
- [6] S. Alagi et al., "Survey on Online E-voting System Using Blockchain Technology," IJARIIE, vol. 9, 2023.
- [7] U. Jafar, M. J. Ab Aziz, Z. Shukur, and H. A. Hussain, "A Systematic Literature Review and Meta-Analysis on Scalable Blockchain-Based Electronic Voting Systems," *Sensors*, vol. 22, no. 7585, Oct. 2022. DOI: 10.3390/s22197585.
- [8] F. S. Hardwick, A. Gioulis, R. N. Akram, and K. Markantonakis, "E-Voting with Blockchain: An E-Voting Protocol with Decentralisation and Voter Privacy," *Royal Holloway, Univ. of London*, 2016.
- [9] F. Brandt and T. Sandholm, "Decentralized Voting with Unconditional Privacy," *AAMAS'05*, July 2005. DOI: 10.1145/1082473.1082524.

- [10] R. Taş and Ö. Ö. Tanrıöver, "A Systematic Review of Challenges and Opportunities of Blockchain for E-Voting," *Symmetry*, vol. 12, no. 8, p. 1328, Aug. 2020
- [11] A. Alshehri et al., "Privacy-Preserving E-Voting System Supporting Score Voting Using Blockchain," *Applied Sciences*, vol. 13, no. 2, p. 1096, Jan. 2023.
- [12] J. Chai, "Blockchain-Based Voting System with Ethereum Blockchain," *Thesis*, The Ohio State University, 2020
- [13] E. Rajathi et al., "Trustworthy Electronic Voting Using Adjusted Blockchain," *IJATEM*, 2023
- [14] P. Shiwal et al., "Decentralized E-Voting System Using Blockchain," *IJNRD*, vol. 8, no. 5, 2023
- [15] Jafar, U., Aziz, M. J. A., & Shukur, Z. "Blockchain for Electronic Voting System—Review and Open Research Challenges," *Sensors*, vol. 21, no. 5874, 2021. DOI: 10.3390/s21175874.
- [16] Denis González, C., Frias Mena, D., Massó Muñoz, A., Rojas, O., & Sosa-Gómez, G. "Electronic Voting System Using an Enterprise Blockchain," *Applied Sciences*, vol. 12, no. 531, 2022. DOI: 10.3390/app12020531.
- [17] Fusco, F., Lunesu, M. I., Pani, F. E., & Pinna, A. "Crypto-voting: A Blockchain-Based E-Voting System," in *Proc. 10th Int'l Conf. Knowledge Management & Information Sharing* (*KMIS*), 2018, pp. 223–227. DOI: 10.5220/0006962102230227.
- [18] A. K. Koç, E. Yavuz, U. C. Çabuk, and G. Dalkılıç, "Towards Secure E-Voting Using Ethereum Blockchain," IEEE, 2018. DOI: 10.1109/ISDFS.2018.8355340.
- [19] L. Reddick, "Decentralized Voting: Ethereum-Based Voting Platform," 2018.

- [20] M. Lamsani, S. Jatmiko, and F. Fadli, "Electronic Voting Using Decentralized System Based on Ethereum Blockchain," *Jurnal Ilmiah Komputasi*, vol. 19, 2020. DOI: 10.32409/jikstik.19.1.152.
- [21] C.-H. Roh and I.-Y. Lee, "A Study on Electronic Voting System Using Private Blockchain," *J. Inf. Process Syst.*, 2020.
- [22] D. Raikar and A. Vatsa, "BCT-Voting: A Blockchain Technology Based Voting System," Conf. Paper, 2021
- [23] U. C. Çabuk, E. Adıgüzel, and E. Karaarslan, "A Survey on Feasibility and Suitability of Blockchain Techniques for E-Voting Systems," *IJARCCE*, 2018.
- [24] A. Yadav et al., "E-Voting Using Blockchain Technology," IJERT, 2020
- [25] A. Lahane et al., "Blockchain Technology-Based E-Voting System," ITM Conf., 2020.
- [26] A. Benny et al., "Blockchain-Based E-Voting System," SSRN, 2020.
- [27] Peelam, M.S., Kumar, G., et al. "DemocracyGuard: Blockchain-Based Secure Voting Framework," *Expert Systems*, 2024.
- [28] Isirova, K., Kiian, A., et al. "Decentralized Electronic Voting System Based on Blockchain Technology," *CMIS Proceedings*, 2020.
- [29] B. Shahzad and J. Crowcroft, "Trustworthy Electronic Voting Using Adjusted Blockchain Technology," *IEEE Access*, vol. 7, 2019.
- [30] Md. S. Arnob et al., "Blockchain-Based Secured E-Voting System," *International Research Journal of Engineering and Technology*, vol. 7, no. 1, 2020.
- [31] M. Pathak et al., "Blockchain-Based E-Voting System," *International Journal of Scientific Research in Science and Technology*, vol. 8, no. 3, 2021.