Référentiel d'observation

Un référentiel définit une référence par rapport à laquelle on détermine la position d'un point dans l'espace

Référentiel du laboratoire

Origine et axes fixes par rapport à la pièce

Référentiel terrestre

Origine au centre de la Terre

les axes pointent vers des points fixes à la surface de la Terre

Référentiel géocentrique

Origine au centre de la Terre les axes pointent vers des étoiles lointaines

Référentiel Héliocentrique

Origine au centre de la Terre les axes pointent vers des étoiles lointaines

$\vec{v} = \frac{\mathrm{d} \, \overrightarrow{OM}}{}$

Vecteur accélération $d^2 \overrightarrow{OM}$

Systèmes de coordonnéees

Coordonnées cartésiennes

$$\overrightarrow{OM} = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$$

vitesse
$$\overrightarrow{v} = \dot{x}\vec{e}_x + \dot{y}\vec{e}_y + \dot{z}\vec{e}_z$$

accélération
$$\overrightarrow{a} = \ddot{x}\vec{e}_x + \ddot{y}\vec{e}_y + \ddot{z}\vec{e}_z$$

Coordonnées polaires

accélération
$$\overrightarrow{d} = (\ddot{r} - r\dot{\theta}^2)\vec{e_r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{e_\theta}$$

Coordonnées cylindriques

$$\overrightarrow{OM} = r\vec{e}_r + h\vec{e}_z$$

accélération
$$\overrightarrow{d} = (\ddot{r} - r\dot{\theta}^2)\vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{e}_{\theta} + \ddot{h}\vec{e}_z$$

Mouvement d'un solide

Un solide est unb ensemble de points matériels. Dans le cas d'un solide indéformable, les distances entre les points sont constantes.

Translation rectiligne

Tous le points du solide ont une trajectoire rectiligne. Ils ont tous la même vitesse.

Translation circulaire

Tous le points du solide ont une trajectoire circulaire de même rayon r. Ils ont tous la même vitesse

$$v=r\dot{\theta}$$

Rotation autour d'un axe fixe

Tous le points du solide ont une trajectoire circulaire centrée sur l'axe Δ. La vitesse d'un point situé à une distance *r* de l'axe est :

$$v = r\dot{\theta}$$

Cinématique

Exemples de mouvements ponctuels

Mouvement circulaire

$$\overrightarrow{a} = -r\dot{\theta}^2 \vec{e}_r + r\ddot{\theta}\vec{e}_\theta$$

Accélération normale, perpendiculaire à la trajectoire, vers l'intérieur du virage.

Accélération tangentielle, due à la variation de la norme du vecteur vitesse.

Mouvement d'accélération constante

Mouvement dans le plan (x,y) d'accélération En coordonnées cartésiennes, on a : $\ddot{x}\vec{e}_x + \ddot{y}\vec{e}_y = a\vec{e}_y$

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = a \end{cases} \begin{cases} \dot{x} = K_1 = v_{0x} \\ \dot{y} = at + K_2 = at + v_{0y} \end{cases}$$

$$\begin{cases} x(t) = v_{0x}t + K_3 = v_{0x}t + x_0 \\ y(t) = \frac{1}{2}at^2 + v_{0y}t + K_4 = \frac{1}{2}at^2 + v_{0y}t + y_0 \end{cases}$$

$$x(t) = v_{0x}t + K_3 = v_{0x}t + x_0$$

$$x(t) = v_{0x}t + K_3 = v_{0x}t + x_0$$

$$y(t) = \frac{1}{2}at^2 + v_{0x}t + K_4 = \frac{1}{2}at^2 + v_{0x}t + y_0$$