SBML Model Report

Model name: "Mayya2005_STATmodule"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri¹ at September 26th 2007 at 2:22 a.m. and last time modified at May 27th 2014 at 10:17 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	0	species	9
events	0	constraints	0
reactions	7	function definitions	0
global parameters	0	unit definitions	9
rules	1	initial assignments	0

Model Notes

The model reproduces Fig 2B of the paper. Model successfully reproduced using MathSBML.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it,

¹California Institute of Technology, hdharuri@cds.caltech.edu

commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of eleven unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition μmol

2.2 Unit volume

Definition 1

2.3 Unit area

Definition μm^2

2.4 Unit molecules

Definition item

2.5 Unit um2

Definition μm^2

2.6 Unit s_1

Definition s^{-1}

2.7 Unit uM_1_s_1

Definition $\mu mol^{-1} \cdot l \cdot s^{-1}$

2.8 Unit uM_um_s_1

Definition $\mu mol \cdot l^{-1} \cdot \mu m^{-2} \cdot s^{-1}$

2.9 Unit uM

Definition $\mu mol \cdot l^{-1}$

2.10 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.11 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

					_		
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
nuc	nuc		3	1		Ø	
sol	sol		3	14.625			
nm	nm		2	1	μm^2		

3.1 Compartment nuc

This is a three dimensional compartment with a constant size of one litre.

Name nuc

3.2 Compartment sol

This is a three dimensional compartment with a constant size of 14.625 litre.

Name sol

3.3 Compartment nm

This is a two dimensional compartment with a constant size of one μm^2 .

Name nm

4 Species

This model contains nine species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
stat_sol	stat_sol	sol	$\mu mol \cdot l^{-1}$		
Pstat_sol	Pstat_sol	sol	$\mu mol \cdot l^{-1}$	\Box	\Box
${\tt statKinase_sol}$	statKinase_sol	sol	$\mu mol \cdot l^{-1}$	\Box	
PstatDimer_sol	PstatDimer_sol	sol	$\mu mol \cdot l^{-1}$	\Box	
PstatDimer_nuc	PstatDimer_nuc	nuc	$\mu mol \cdot l^{-1}$	\Box	
stat_nuc	stat_nuc	nuc	$\mu mol \cdot l^{-1}$	\Box	
Pstat_nuc	Pstat_nuc	nuc	$\mu mol \cdot l^{-1}$	\Box	
statPhosphatase-	statPhosphatase_nuc	nuc	$\mu mol \cdot l^{-1}$	\Box	
_nuc					
${\sf species_test}$	species_test	sol	$\mu mol \cdot l^{-1}$		\Box

5 Rule

This is an overview of one rule.

5.1 Rule statKinase_sol

Rule $\mathtt{statKinase_sol}$ is an assignment rule for species $\mathtt{statKinase_sol}$:

$$\begin{split} & statKinase_sol \\ & = \begin{cases} 0.01 \cdot sin\left(0.001571 \cdot (-500 + t)\right) & \text{if } (t > 500) \land (t < 2502.54614894971) \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

6 Reactions

This model contains seven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	1 PstatDimerisationPstatDimerisation		2 Pstat_sol ⇒ PstatDimer_sol	
2	statDephosphory	lastintinephosphorylation	Pstat_nuc statPhosphatase_nuc stat_nuc	
3	statPhosphoryla	tistatPhosphorylation	stat_sol statKinase_sol Pstat_sol + species_test	
4	PstatDimerisati	on Rsta tDimerisationNuc	2 Pstat_nuc ⇒ PstatDimer_nuc	
5	PstatDimer	PstatDimer_ import	PstatDimer_sol ← PstatDimer_nuc	
_	$_\mathtt{import}$			
6	$\mathtt{stat_export}$	stat_export	stat_sol ← stat_nuc	
7	stat_import	stat_import	stat_sol ← stat_nuc	

6.1 Reaction PstatDimerisation

This is a reversible reaction of one reactant forming one product.

Name PstatDimerisation

Reaction equation

$$2 Pstat_sol \rightleftharpoons PstatDimer_sol$$
 (2)

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
Pstat_sol	Pstat_sol	_

Product

Table 6: Properties of each product.

Id	Name	SBO
PstatDimer_sol	PstatDimer_sol	-

Kinetic Law

Derived unit $10^{-6} \text{ mol} \cdot \text{s}^{-1}$

$$v_1 = \big(Kf_PstatDimerisation \cdot [Pstat_sol]^2 + ((Kr_PstatDimerisation \cdot [PstatDimer_sol])) \big) \cdot vol \, (sol) \\ (3)$$

Table 7: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kf-			0.60	$\mu \text{mol}^{-1} \cdot l \cdot s^{-1}$	\overline{Z}
_PstatD: Kr-	imerisation		0.03	s^{-1}	Ø
	imerisation		0.03	3	W

6.2 Reaction statDephosphorylation

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name statDephosphorylation

Reaction equation

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Pstat_nuc	Pstat_nuc	

Modifier

Table 9: Properties of each modifier.

Id	Name	SBO
statPhosphatase_nuc	statPhosphatase_nuc	

Product

Table 10: Properties of each product.

		1
Id	Name	SBO
stat_nuc	stat_nuc	

Kinetic Law

$$v_2 = \text{Kcat_dephos} \cdot [\text{statPhosphatase_nuc}] \cdot [\text{Pstat_nuc}] \cdot \frac{1}{\text{Km_dephos} + [\text{Pstat_nuc}]} \cdot \text{vol} (\text{nuc}) \quad (5)$$

Table 11: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kcat_dephos			1.0	s^{-1}	
${\tt Km_dephos}$			2.0	μ mol·l ⁻¹	

6.3 Reaction statPhosphorylation

This is a reversible reaction of one reactant forming two products influenced by one modifier.

Name statPhosphorylation

Reaction equation

$$stat_sol \xrightarrow{statKinase_sol} Pstat_sol + species_test$$
 (6)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
stat_sol	stat_sol	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
statKinase_sol	statKinase_sol	

Products

Table 14: Properties of each product.

Id	Name	SBO
Pstat_sol	Pstat_sol	
$species_test$	species_test	

Kinetic Law

$$v_3 = \text{Kcat_phos} \cdot [\text{statKinase_sol}] \cdot [\text{stat_sol}] \cdot \frac{1}{\text{Km_phos} + [\text{stat_sol}]} \cdot \text{vol}(\text{sol})$$
 (7)

Table 15: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kcat_phos			1.0	s^{-1}	
${\tt Km_phos}$			4.0	μ mol·l ⁻¹	\square

6.4 Reaction PstatDimerisationNuc

This is a reversible reaction of one reactant forming one product.

Name PstatDimerisationNuc

Reaction equation

$$2 Pstat_nuc \rightleftharpoons PstatDimer_nuc$$
 (8)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
Pstat_nuc	Pstat_nuc	

Product

Table 17: Properties of each product.

Id	Name	SBO
PstatDimer_nuc	PstatDimer_nuc	

Kinetic Law

Derived unit $10^{-6} \text{ mol} \cdot \text{s}^{-1}$

$$\begin{array}{l} \nu_4 = \left(Kf_PstatDimerisation \cdot [Pstat_nuc]^2 + \left((Kr_PstatDimerisation \cdot [PstatDimer_nuc]) \right) \right) \\ \quad \cdot vol (nuc) \end{array}$$

Table 18: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kf-			0.60	$\mu \text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$	
_PstatDir Kr-	nerisation		0.03	s^{-1}	<u>~</u>
_PstatDir	merisation				

6.5 Reaction PstatDimer_import

This is a reversible reaction of one reactant forming one product.

Name PstatDimer_import

Reaction equation

$$PstatDimer_sol \Longrightarrow PstatDimer_nuc$$
 (10)

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
PstatDimer_sol	PstatDimer_sol	

Product

Table 20: Properties of each product.

Id	Name	SBO
PstatDimer_nuc	PstatDimer_nuc	

Kinetic Law

$$v_5 = PstatDimer_impMax \cdot [PstatDimer_sol] \cdot \frac{1}{Kpsd_imp + [PstatDimer_sol]} \cdot area(nm) \quad (11)$$

Table 21: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
PstatDimer-			0.045	$\mu \text{mol} \cdot l^{-1} \cdot \mu \text{m}^{-2} \cdot$	
$_\mathtt{impMax}$				s^{-1}	
${\tt Kpsd_imp}$			0.300	$\mu mol \cdot l^{-1}$	

6.6 Reaction stat_export

This is a reversible reaction of one reactant forming one product.

Name stat_export

Reaction equation

$$stat_sol \Longrightarrow stat_nuc$$
 (12)

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
stat_sol	stat_sol	

Product

Table 23: Properties of each product.

Id	Name	SBO
stat_nuc	stat_nuc	

Kinetic Law

$$v_6 = vol(nuc) \cdot stat_expMax \cdot [stat_nuc] \cdot \frac{1}{Ks_exp + [stat_nuc]} \cdot area(nm)$$
 (13)

Table 24: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
stat_expMax			-0.06	$\begin{array}{c} \mu mol \cdot l^{-1} \cdot \mu m^{-2} \cdot \\ s^{-1} \end{array}$	Ø
Ks_exp			0.60	$\mu mol \cdot l^{-1}$	

6.7 Reaction stat_import

This is a reversible reaction of one reactant forming one product.

Name stat_import

Reaction equation

$$stat_sol \Longrightarrow stat_nuc$$
 (14)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
stat_sol	stat_sol	

Product

Table 26: Properties of each product.

Id	Name	SBO
stat_nuc	stat_nuc	

Kinetic Law

$$v_7 = \text{vol} (\text{nuc}) \cdot \text{stat_impMax} \cdot [\text{stat_sol}] \cdot \frac{1}{\text{Ks_imp} + [\text{stat_sol}]} \cdot \text{area} (\text{nm})$$
 (15)

Table 27: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
stat_impMax			0.003		
${\tt Ks_imp}$			3.000	$\mu mol \cdot l^{-1}$	\mathbf{Z}

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species stat_sol

Name stat sol

Initial concentration $1 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in statPhosphorylation, statexport, stat_import).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{stat_sol} = -v_3 - v_6 - v_7 \tag{16}$$

7.2 Species Pstat_sol

Name Pstat_sol

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in PstatDimerisation and as a product in statPhosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pstat_sol} = v_3 - 2v_1 \tag{17}$$

7.3 Species statKinase_sol

Name statKinase_sol

Involved in rule statKinase_sol

This species takes part in one reaction (as a modifier in statPhosphorylation). Not this but one rule determines the species' quantity because this species is on the boundary of the reaction system.

7.4 Species PstatDimer_sol

Name PstatDimer_sol

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in PstatDimer_import and as a product in PstatDimerisation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PstatDimer_sol} = v_1 - v_5 \tag{18}$$

7.5 Species PstatDimer_nuc

Name PstatDimer_nuc

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a product in PstatDimerisationNuc, PstatDimer__import).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PstatDimer_nuc} = v_4 + v_5 \tag{19}$$

7.6 Species stat_nuc

Name stat_nuc

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a product in statDephosphorylation, stat_export, stat_import).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{stat_nuc} = v_2 + v_6 + v_7 \tag{20}$$

7.7 Species Pstat_nuc

Name Pstat_nuc

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in statDephosphorylation, PstatDimerisationNuc).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pstat_nuc} = -v_2 - 2v_4 \tag{21}$$

7.8 Species statPhosphatase_nuc

Name statPhosphatase_nuc

Initial concentration $0.05 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in statDephosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{statPhosphatase_nuc} = 0 \tag{22}$$

7.9 Species species_test

Name species_test

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in statPhosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species_test} = v_3 \tag{23}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany