On The Bifibrations Underlying Optimization and Elimination

Thomas C. Fraser^{1,2} and Tobias Fritz¹

¹Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5 ²Dept. of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

July 23, 2019

1 Examples

A prototypical example wherein an adjoint triple

$$f_!, \exists_f \dashv f^*, f^{-1} \dashv f^!, \forall_f$$

arises is that of functions $f: X \to Y$ between sets X and Y. The inverse image functor $f^*: \mathscr{P}Y \to \mathscr{P}X$ is defined on a subset $T \subseteq Y$

$$f^*(T) = \{ x \in X : f(x) \in T \},\$$

and is functorial in the sense that if $T \subseteq T' \subseteq Y$ then $f^*(T) \subseteq f^*(T') \subseteq f^*(T)$. The adjoint functors $\exists_f, \forall_f : \mathscr{P}X \to \mathscr{P}Y$ are defined on $S \subseteq X$ as

$$\exists_f(S) = \{ y \in Y : \exists x \in f^*(y) : x \in S \}$$

$$\forall_f(S) = \{ y \in Y : \forall x \in f^*(y) : x \in S \}$$

form an adjoint triple in the sense that $\exists_f \dashv f^* \dashv \forall_f$:

$$\exists_f \dashv f^*: \quad \exists_f(S) \subseteq T \iff S \subseteq f^*(T)$$
$$f^* \dashv \forall_f: \quad f^*(T) \subseteq R \iff T \subseteq \forall_f(R)$$

Context	Fibration	Total \mathcal{E}	Base \mathcal{E}	Fibers	Covariant Functor	Contravariant Functor
Subset Projection		'				
Linear Quantifier Elimination						
Non-linear Quantifier Elimination						
Real-valued Optimization						
General Lattice Optimization		'				
Convex Projection						
Convex Optimization						
Resolution						
and more						

1.1 Subset Projection

Consider a pair of sets A and B and a subset $S \subseteq A \times B$ of their cartesian product. The projection morphisms associated with $A \times B$ are $p: A \times B \to A$ and $q: A \times B \to B$. The projection of the subset S onto A is then the subset $X \subseteq A$ defined by:

$$X = \{a \in A \mid \exists s \in S, p(s) = a\}$$

$$S \subseteq p^*(X) \Longleftrightarrow \exists_p(S) \subseteq X \tag{1}$$

2 Categorical Notions

The following unordered list of categorical concepts are anticipated to be utilized:

- adjunctions
- fibered categories
- cleavages
- puesdo functors (and if cleavages are splitting, functors)
- Beck-Chevalley condition
- Frobenius reciprocity (and functors of monoidal categories)

Definition 2.1. Let $P: \mathcal{E} \to \mathcal{B}$ be a functor between categories \mathcal{E} and \mathcal{B} . An arrow $\phi: \alpha \to \beta$ of \mathcal{E} is cartesian with respect to P if for every arrow $\psi: \gamma \to \beta$ sharing a codomain with ϕ , and for every arrow $g: P(\gamma) \to P(\alpha)$ in \mathcal{B} satisfying $g \circ P(\phi) = P(\psi)$, there exists a unique arrow $\theta: \gamma \to \alpha$ in \mathcal{E} satisfying $\phi \circ \theta = \psi$ and $P(\theta) = g$.

Corollary 2.0.1. A cartesian morphism $\phi: \alpha \to \beta$ in \mathcal{E} with respect to a functor $P: \mathcal{E} \to \mathcal{B}$ establishes an isomorphism of categories [Lur09, Section 2.4.1]¹

$$\mathcal{E}/\phi \cong \mathcal{E}/\beta \times_{\mathcal{B}/P(\beta)} \mathcal{B}/P(\phi) \tag{3}$$

where $\mathcal{E}/\beta \times_{\mathcal{B}/P(\beta)} \mathcal{B}/P(\phi)$ is the pullback of functors.

The pullback category $\mathcal{E}/\beta \times_{\mathcal{B}/P(\beta)} \mathcal{B}/P(\phi)$ has morphisms associated with diagrams of \mathcal{B} with the following format:

¹This formulation is also discussed here: https://ncatlab.org/nlab/show/Cartesian+morphism#CartInOrdCatReformulation.

Evidently, if $\phi: \alpha \to \beta$ is cartesian, then there exists unique morphisms $\zeta: \gamma \to \alpha$ and $\eta: \delta \to \alpha$ such that $P(\zeta) = f$ and $P(\eta) = g$ and the following diagram of \mathcal{E} commutes:

Intuitively, if ϕ is cartesian, then in order to determine the category \mathcal{E}/ϕ over ϕ , it is sufficient to specify $\mathcal{E}/\beta \times_{\mathcal{B}/P(\beta)} \mathcal{B}/P(\phi)$.

Definition 2.2. A fibered category over \mathcal{B} is a category \mathcal{E} associated to the domain of a functor, referred to as the fibration, $P: \mathcal{E} \to \mathcal{B}$ with the property that for every morphism $f: a \to b$ of \mathcal{B} and object β such that $P(\beta) = b$, there exists a cartesian arrow $\phi: \alpha \to \beta$ with $P(\phi) = f$.

Lemma 2.1. A fibration $P: \mathcal{E} \to \mathcal{B}$ is a faithful functor if and only if its fibers are thin.

Proof. Recall that if $P: \mathcal{E} \to \mathcal{B}$ is a faithful functor, then by definition every pair of parallel arrows $\phi, \psi: \alpha \to \beta$ in \mathcal{E} satisfies

$$P(\phi) = P(\psi) : P(\alpha) \to P(\beta) \implies \phi = \psi.$$
 (7)

 \implies : Assuming $P: \mathcal{E} \to \mathcal{B}$ is faithful functor, consider an arbitrary pair of parallel arrows $\phi, \psi: \alpha \to \beta$ in an arbitrary fiber \mathcal{E}_x over x; i.e. $P(\phi) = P(\psi) = \mathrm{id}_x$. In such cases, faithfulness of P (Eq. 7) guarantees that $\phi = \psi$ and thus \mathcal{E}_x is a thin category.

 \Leftarrow : If the fiber \mathcal{E}_x for every object x in \mathcal{B} is a thin category, then clearly $P: \mathcal{E} \to \mathcal{B}$ must be faithful when restricted to an individual fiber. The non-trivial case is to consider an arbitrary pair of parallel morphisms $\phi, \psi: \alpha \to \beta$ not belonging to any fibers of \mathcal{E} . Denote $a \coloneqq P(\alpha)$ and $b \coloneqq P(\beta)$ and suppose $f \coloneqq P(\phi) = P(\psi): a \to b$. Then, because \mathcal{E} is a fibered category, there exists a cartesian arrow $\zeta: \gamma \to \beta$, such that $P(\zeta) = f$ (note that $a = P(\alpha) = P(\gamma)$ but γ is not necessarily equal to α). Since ζ is a cartesian arrow, there exists a unique arrows $\mu, \nu: \alpha \to \gamma$ completing the top edges of the following diagram:

However, $P(\nu) = \mathrm{id}_a = P(\mu)$ and therefore μ and ν are parallel arrows in the fiber \mathcal{E}_a and therefore $\mu = \nu$ because \mathcal{E}_a is assumed thin. Therefore, $\psi = \zeta \circ \mu = \zeta \circ \nu = \phi$ and thus P is a faithful functor.

Definition 2.3. A cleavage for a fibration $P: \mathcal{E} \to \mathcal{B}$ is an assignment to each morphism $f: a \to b$ of \mathcal{B} and object β in \mathcal{E}_b (i.e. $P(\beta) = b$), a unique cartesian morphism ϕ such that $P(\phi) = f$.

$$f^*\beta_1 \xrightarrow{\kappa(f;\beta_1)} \beta_1 \xleftarrow{\kappa(g;\beta_1)} g^*\beta_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a \xrightarrow{f} b \xleftarrow{g} c$$

$$\uparrow \qquad \qquad \uparrow \qquad \uparrow$$

$$f^*\beta_2 \xrightarrow{\kappa(f;\beta_2)} \beta_2 \xleftarrow{\kappa(g;\beta_2)} g^*\beta_2$$

$$(9)$$

Categorical Definitions

2.1 Hom-Functors

For a locally small category \mathcal{C} , the hom-functor of \mathcal{C} is a functor $\operatorname{Hom}_{\mathcal{C}}: \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \mathbf{Set}$ constructed in the following manner. Given objects $a, b, c, \ldots \in \mathcal{C}_0$ of \mathcal{C} , the hom-functor $\operatorname{Hom}_{\mathcal{C}}$ maps a pair of objects $(a,b) \in (\mathcal{C}^{\operatorname{op}} \times \mathcal{C})_0 = \mathcal{C}_0 \times \mathcal{C}_0 = \mathcal{C}_0^2$ into the set 2 of morphisms \mathcal{C}_1 of \mathcal{C} with source a and target b. Therefore, $\operatorname{Hom}_{\mathcal{C}}(a,b)$ is the set of morphisms in \mathcal{C} of type $a \to b$. Given morphisms $g^{\operatorname{op}} \in \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(a,c)$ and $h \in \operatorname{Hom}_{\mathcal{C}}(b,d)$, the hom-functor $\operatorname{Hom}_{\mathcal{C}}$ constructs a function

$$\operatorname{Hom}_{\mathcal{C}}(g^{\operatorname{op}},h): \operatorname{Hom}_{\mathcal{C}}(a,b) \to \operatorname{Hom}_{\mathcal{C}}(c,d)$$

which takes a morphism $f: a \to b \in \operatorname{Hom}_{\mathcal{C}}(a, b)$ and produces the morphism $h \circ f \circ g: c \to d \in \operatorname{Hom}_{\mathcal{C}}(c, d)$. Graphically,

$$\operatorname{Hom}_{\mathcal{C}}(g^{\operatorname{op}},h)\left(\begin{array}{c}a \xrightarrow{f} b\end{array}\right) = \ c \xrightarrow{g} a \xrightarrow{f} b \xrightarrow{h} d$$

2.2 Adjoint Functors

Given two categories $\mathscr C$ and $\mathscr D$, a pair of functors $L:\mathscr C\to\mathscr D,R:\mathscr D\to\mathscr C$ are called an *adjoint pair*, denoted $L\dashv R$ or

$$C \xrightarrow{L} \mathcal{D}$$

if there exists a natural isomorphism α between the following pair of hom-functors of type $\mathscr{C}^{op} \times \mathscr{D} \to \mathbf{Set}$:

$$\operatorname{Hom}_{\mathscr{D}}(L^{\operatorname{op}}(-),-) \stackrel{\alpha}{\simeq} \operatorname{Hom}_{\mathscr{C}}(-,R(-))$$

This relationship can be depicted graphically as 2-cell (and its inverse) in Cat,

²The collection of morphisms of type $a \to b$ forms a set because \mathcal{C} is locally small.

Concretely, the naturality of α means that for every morphism $(f^{\text{op}}:b\to a,g:c\to d)\in (\mathcal{C}^{\text{op}}\times\mathcal{D})_1$ the components $\alpha_{(b,c)}$ and $\alpha_{(a,d)}$ of α make the following square commute:

$$\operatorname{Hom}_{\mathcal{D}}(L^{\operatorname{op}}(b),c) \xrightarrow{\operatorname{Hom}_{\mathcal{D}}(L^{\operatorname{op}}(f^{\operatorname{op}}),g)} \operatorname{Hom}_{\mathcal{D}}(L^{\operatorname{op}}(a),d)$$

$$\downarrow \alpha_{(b,c)} \qquad \qquad \downarrow \alpha_{(a,d)}$$

$$\operatorname{Hom}_{\mathcal{C}}(b,R(c)) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(f^{\operatorname{op}},R(g))} \operatorname{Hom}_{\mathcal{C}}(a,R(d))$$

2.3 Beck-Chevalley Conditions

The Beck-Chevalley Conditions are conditions that may or may not be satisfied by a quadruplet of functors F, H, G, K which form a natural isomorphism $\alpha : KF \Rightarrow HG$ square:

To define the *left* Beck-Chevalley condition, one needs functors $F_L: \mathcal{B} \to \mathcal{A}$ and $H_L: \mathcal{D} \to \mathcal{A}$ which are respectively left adjoint functors to F and H,

$$\mathcal{A} \xrightarrow{F_L} \mathcal{B} , \qquad \mathcal{C} \xrightarrow{H_L} \mathcal{D} .$$

Using these left adjoint functors, it becomes possible to construct a natural transformation $\beta: KH_L \Rightarrow GF_L$ from α^3 . Graphically, β can be identified as the outer cell of the following diagram:

Although the natural transformation α is assumed to be a natural isomorphism, the natural transformation β need not be; if β happens to be a natural isomorphism, then we say that the original square satisfies the *left* Beck-Chevalley condition⁴. The *right* Beck-Chevalley condition is defined analogously with functors F_R , H_R which are respectively right adjoints $F \dashv F_R$ and $H \dashv H_R$.

 $^{^3 \}text{The natural transformations } \alpha$ and β are known as mates or conjugates.

⁴Are the left adjoints F_L , H_L unique? If not, it might be better to say the original square satisfies the left Beck-Chevalley condition with respect to F_L , H_L .

2.4 The Equivalence of Puesdofunctors and Fibrations

Given a functor $P: \mathcal{E} \to \mathcal{B}$ which is also a Grothendieck fibration equipped with a cleavage (i.e. a choice of cartesian morphism $\phi \in \operatorname{Hom}_{\mathcal{E}}(e',e)$ for each $f \in \operatorname{Hom}_{\mathcal{B}}(a,P(e))$ such that $P(\phi)=f$), it is possible to construct a pseudofunctor (read weak 2-functor between weak 2-categories) $\pi: \mathcal{B}^{\operatorname{op}} \to \mathbf{Cat}$. In particular, each object $b \in \mathcal{B}_0$ is mapped to the $\operatorname{sub-category} \pi(b) = \mathcal{E}_b$ of \mathcal{E} whose objects are those which map to b under P and whose morphism are those which map to id_b under P; \mathcal{E}_b is the fibre category over b with respect to P. For each morphism $f \in \operatorname{Hom}_{\mathcal{B}}(a,b)$ in \mathcal{B} , the pseudofunctor π maps $f^{\operatorname{op}}: b \to a$ onto a functor $\pi(f^{\operatorname{op}}) = f^*: \mathcal{E}_b \to \mathcal{E}_a$ which is defined accordingly:

Given an object $e \in (\mathcal{E}_b)_0$, the functor f^* finds the unique cartesian morphism $\phi \in \operatorname{Hom}_{\mathcal{E}}(e',e)$ as specified by the cleavage and assigns $f^*(e) = e'$. Next, given a morphism $\psi \in \operatorname{Hom}_{\mathcal{E}_b}(e,e'')$, the functor f^* first finds the unique cartesian morphisms $\phi \in \operatorname{Hom}_{\mathcal{E}}(e',e)$ and $\phi' \in \operatorname{Hom}_{\mathcal{E}}(e''',e'')$. Then, because $g = \operatorname{id}_a$ completes the following diagram

and because ϕ' is cartesian, there must exist a unique $\psi' \in \operatorname{Hom}_{\mathcal{E}_a}(e', e''')$ such that $\psi \circ \phi = \phi' \circ \psi'$. For each $\psi \in \operatorname{Hom}_{\mathcal{E}_b}(e, e'')$, the functor f^* selects this unique morphism $f^*(\psi) = \psi'$. In summary, the pseudofunctor $\pi : \mathcal{B}^{\mathrm{op}} \to \mathbf{Cat}$ induced by $P : \mathcal{E} \to \mathcal{B}$ is defined on objects $b \in \mathcal{B}_0$ as $\pi(b) = \mathcal{E}_b$ and on morphisms $f \in \mathcal{B}_1$ as $\pi(f) = f^*$ and forms a functor [TODO: figure out the 'pseudo' part of the pseudofunctorality.].

2.5 Slice and Coslice Categories

Given a category \mathcal{C} and an object $c \in \mathcal{C}_0$ of \mathcal{C} , the *slice category* (or *over category*) \mathcal{C}/c is the "stuff in \mathcal{C} that is on top of c". Specifically, the objects of \mathcal{C}/c are all the morphisms $f \in \mathcal{C}_1$ from \mathcal{C} whose codomain is $\operatorname{cod}(f) = c$ (alternatively you could write $(\mathcal{C}/c)_0 = \operatorname{Hom}_{\mathcal{C}}(-,c)$). A morphism of \mathcal{C}/c between objects $f: a \to c, g: b \to c \in (\mathcal{C}/c)_0$ is a commuting triangle completed by a third morphism $h: a \to b \in \mathcal{C}_1$:

Composition of morphisms in C/c is induced by the composition of morphisms in C:

$$\begin{pmatrix}
y & \xrightarrow{n} z \\
f & \swarrow h \\
c
\end{pmatrix} \circ_{\mathcal{C}/c} \begin{pmatrix}
x & \xrightarrow{m} y \\
g & \swarrow f \\
c
\end{pmatrix} = g \downarrow f \\
f & h$$

The assignment of an overcategory \mathcal{C}/c to each object c can be extended to a *slice functor* $\mathcal{C}/(-)$: $\mathcal{C} \to \mathbf{Cat}$ in the following sense. For objects $c \in \mathcal{C}_0$, the slice functor takes c to the slice category \mathcal{C}/c ; for morphisms $f: a \to b \in \mathcal{C}_1$, the slice functor takes f to the functor $\mathcal{C}/f: \mathcal{C}/a \to \mathcal{C}/b$ defined graphically; for every morphism of \mathcal{C}/a (commuting triangle in \mathcal{C} over a), contract the morphism of \mathcal{C}/b (commuting triangle in \mathcal{C} over b) as follows:

where the inner triangle is a morphism of C/a and the outer triangle is a morphism of C/b given by the functor C/f.

Given a category \mathcal{C} and an object $c \in \mathcal{C}_0$ of \mathcal{C} the coslice category (or under category) c/\mathcal{C} is the "stuff in \mathcal{C} that is underneath c". Specifically, the objects of c/\mathcal{C} are all the morphisms $f \in \mathcal{C}_1$ from \mathcal{C} whose domain is dom(f) = c (alternatively you could write $(c/\mathcal{C})_0 = Hom_{\mathcal{C}}(c, -)$). A morphism of c/\mathcal{C} between objects $f: c \to a, g: c \to b \in (c/\mathcal{C})_0$ is a commuting triangle completed by a third morphism $h: a \to b \in \mathcal{C}_1$:

Everything about coslice categories is defined as expected analogously to that of a slice categories. [TODO: determine how the details of the Grothendieck construction transform the slice (pseudo-)functor $\mathcal{C}/(-)$: $\mathcal{C} \to \mathbf{Cat}$ into the codomain fibration.]

2.6 The Pullback and Pushforward Functors

Given a category \mathcal{C} and a morphism $f: a \to b \in \mathcal{C}_1$, the image of f under the slice functor $\mathcal{C}/(-)$ produces a functor $\mathcal{C}/f: \mathcal{C}/a \to \mathcal{C}/b$ between slice categories of \mathcal{C} in the "same direction" as f TODO: confirm that \mathcal{C}/f is the pushforward functor $f_!$ of $f \in \mathcal{C}_1$.

If the given category \mathcal{C} admits pullbacks, in becomes possible to define, for a morphism $f: a \to b$ a pullback functor $f^*: \mathcal{C}/b \to \mathcal{C}/a$. Given a morphism in \mathcal{C}/b (commuting triangle in \mathcal{C} with base at b),

the pullback functor $f^*: \mathcal{C}/b \to \mathcal{C}/a$ associated with f takes the objects $g: c \to b, h: d \to b$ of \mathcal{C}/b (morphisms in \mathcal{C}) completes the pullback squares associated with f

where a subscript notation g_f means "the pullback of g along f". Defining the action of $f^*: \mathcal{C}/b \to \mathcal{C}/a$ on objects to be $f^*g = g_f$ and $f^*h = h_f$, the action on morphisms in \mathcal{C}/b is defined by composing the pullback squares with the commuting triangle morphism:

The commuting triangle in \mathcal{C}/a appearing at the bottom is completed by a unique morphism [TODO: why does this morphism need to be unique and exist?] denoted to be f^*k ($\neq k_f$ obviously). The functoriality of f^* has a simple proof found here https://proofwiki.org/wiki/Pullback_Functor_is_Functor.

2.7 Functors of Monoidal Categories

[TODO]

2.8 Frobenius Reciprocity

[TODO]

Comments on selected references

This section is temporary and reserved for recording comments toward various references.

- Vistoli [Vis04]
- Street [Str74]
- Koudenburg [Kou18]
- Brown and Sivera [BS09]
- Lurie [Lur09]

References

- [BS09] Ronald Brown and Rafael Sivera. "Algebraic colimit calculations in homotopy theory using fibred and cofibred categories". In: *Theory and Applications of Categories* 22.8 (2009), pp. 222–251.
- [Kou18] Seerp Roald Koudenburg. "A categorical approach to the maximum theorem". In: *Journal of Pure and Applied Algebra* 222.8 (2018), pp. 2099–2142.
- [Lur09] Jacob Lurie. Higher Topos Theory (AM-170). Vol. 189. Princeton University Press, 2009.
- [Str74] Ross Street. "Fibrations and Yoneda's lemma in a 2-category". In: Category seminar. Springer. 1974, pp. 104–133.
- [Vis04] Angelo Vistoli. "Notes on Grothendieck topologies, fibered categories and descent theory". In: $arXiv\ preprint\ math/0412512\ (2004)$.