

## Lines and angles Ex 14.2 Q6

## Answer:

In the given figure,  $I \parallel m$ , n is a transversal line and  $\angle 1 = 75^{\circ}$ .

Thus, we have:

$$\angle 1 + \angle 2 = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow \angle 2 = 180^{\circ} - \angle 1 = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

$$\therefore \angle 1 = \angle 5 = 75^{\circ}$$
 (Corresponding angles)

$$\angle 1 = \angle 3 = 75^{\circ}$$
 (Vertically opposite angles)

$$\angle 5 = \angle 7 = 75^{\circ}$$
 (Vertically opposite angles)

Now,

$$\angle 2 = \angle 6 = 105^{\circ}$$
 (Corresponding angles)

$$\angle 6 = \angle 8 = 105^{\circ}$$
 (Vertically opposite angles)

$$\angle 2 = \angle 4 = 105^{\circ}$$
 (Vertically opposite angles)

Lines and angles Ex 14.2 Q7

## Answer:

In the given figure, AB || CD, PQ is a transversal line and  $\angle$ QMD = 100°. Thus, we have:

$$\therefore \angle QMC = 180^{\circ} - \angle DMQ = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

Thus.

 $\angle$ DMQ =  $\angle$ BLM = 100° (Corresponding angles)  $\angle$ DMQ =  $\angle$ CML = 100° (Vertically opposite angles)

∠BLM = ∠PLA = 100° (Vertically opposite angles)

Also,

 $\angle$ CMQ =  $\angle$ ALM = 80° (Corresponding angles)  $\angle$ CMQ =  $\angle$ DML = 80° (Vertically opposite angles)  $\angle$ ALM =  $\angle$ PLB = 80° (Vertically opposite angles)

Lines and angles Ex 14.2 Q8

## Answer:

In the given figure,  $| \cdot | | m$  and p | | q.

Thus, we have:

$$\angle z = 80^{\circ}$$
 (Vertically opposite angles)

$$\angle z = \angle t = 80^{\circ}$$
 (Corresponding angles)

$$\angle z = \angle y = 80^{\circ}$$
 (Corresponding angles)

$$\angle x = \angle y = 80^{\circ}$$
 (Corresponding angles)

\*\*\*\*\*\*\* END \*\*\*\*\*\*\*\*