High-fidelity Spacecraft Dynamics in Cislunar Space

Purnanand Elango

February 4, 2023

Equations of motion in the Mean Equator Mean Equinox (MEME) J2000 inertial frame with the origin at the instantaneous center of the Moon.

$$\dot{r}_{sc} = v_{sc}$$

$$\dot{v}_{sc} = -GM_{\rm M} \frac{r_{sc}}{\|r_{sc}\|_{2}^{3}} + GM_{\rm E} \left(\frac{r_{\rm E} - r_{sc}}{\|r_{\rm E} - r_{sc}\|_{2}^{3}} - \frac{r_{\rm E}}{\|r_{\rm E}\|_{2}^{3}} \right) + GM_{\rm S} \left(\frac{r_{\rm S} - r_{sc}}{\|r_{\rm S} - r_{sc}\|_{2}^{3}} - \frac{r_{\rm S}}{\|r_{\rm S}\|_{2}^{3}} \right)$$

$$- \frac{k_{sc}A_{sc}S_{0}r_{0}^{2}}{M_{sc}C} \left(\frac{r_{\rm S} - r_{sc}}{\|r_{\rm S} - r_{sc}\|_{2}^{3}} \right)$$

$$+ \frac{3}{2}GM_{\rm M}M_{\rm J2}R_{\rm M}^{2} \frac{r_{sc}}{\|r_{sc}\|_{2}^{5}} \left(3\sin^{2}\left(\arccos\left(\frac{r_{\rm E}^{\top}\bar{r}_{sc}}{\|r_{\rm E}\|_{2}\|\bar{r}_{sc}\|_{2}} \right) + \theta_{\rm eq} \right) - 1 \right),$$
(1b)

where

$$\bar{r}_{\rm sc} = r_{\rm sc} - \frac{r_{\rm sc}^{\top} \bar{v}_{\rm E}}{\|\bar{v}_{\rm E}\|_2^2} \bar{v}_{\rm E},$$
 (2)

$$\bar{v}_{\rm E} = -r_{\rm E} \times (r_{\rm E} \times v_{\rm E}) = -r_{\rm E}^{\top} (v_{\rm E} \times r_{\rm E}). \tag{3}$$

Note that $r_{\rm E}$, $\bar{v}_{\rm E}$ and $r_{\rm E} \times v_{\rm E}$ form a right-handed set of orthogonal vectors. The projection of spacecraft position vector onto the plane formed by $r_{\rm E}$ and $r_{\rm E} \times v_{\rm E}$ is denoted by $\bar{r}_{\rm sc}$. The angle between $\bar{r}_{\rm sc}$ and $r_{\rm E}$, denoted by $\lambda_{\rm sc}$, quantifies the Moon latitude closest to the spacecraft.

The cannonball model of solar radiation pressure assumed here represents the spacecraft as a sphere. As a result, the cross-sectional area $A_{\rm sc}$ experiencing solar radiation is independent of spacecraft orientation.

$r_{\rm sc}$	Position of spacecraft with respect to Moon
$v_{ m sc}$	Velocity of spacecraft with respect to Moon
$r_{ m E}$	Position of Earth with respect to Moon
$v_{ m E}$	Velocity of Earth with respect to Moon
$r_{ m S}$	Position of Sun with respect to Moon
$k_{ m sc}$	Reflectivity of spacecraft body
r_0	1 AU
$A_{ m sc}$	Cross-sectional area of spacecraft
S_0	Solar flux at distance r_0 from Sun
С	Speed of light in vacuum
G	Universal gravitational constant
$M_{ m sc}$	Mass of spacecraft
$M_{\scriptscriptstyle m E}$	Mass of Earth
$M_{ m M}$	Mass of Moon
$M_{ m S}$	Mass of Sun
$M_{\rm J2}$	J2 zonal harmonic coefficient for Moon, 2.024×10^{-4}
$R_{ m M}$	Radius of Moon, 1737.1 km
$\theta_{ m eq}$	Equitorial inclination of Moon, 6.68°