XV OLIMPIADA ESPAÑOLA DE FÍSICA.

FASE LOCAL DE LA COMUNIDAD DE MADRID. 21 de Febrero de 2004. (De 10 a.m a 12:30 a.m)

del 0,	5%. ¿Cuál	e el error relativa ha de ser el m el error relativo	ayor error rel	ativo con qu	e se deb	e medir	la long	itud del
	a) 0	b) 0,5%	c) 1,0%	d) 1,5%				
varios		cance horizont tos, obteniéndo metros:		•				
X(m)		1,38 1,48	1,57 1,5	51 1,49	1,53	1,56	1,40	1,43
El e	rror relativo	en el cálculo d	e X será:					
	a) 0,7%	b) 1,0	% c) 1,	4% d)	3%			
al ve	r en el horiz que debe re	de un automóv onte el intermit ducir su veloci resado en segur	tente de unas dad hasta 40	obras. Estima	a que está	á a una (distancia	de 400
	a) 15	b) 18	c) 21	d)	24			
	or de la ace	realiza un mov leración centríp	peta en t= 5,0	s (en m/s^2) e	•	una ec	uación s	$=0,2t^2.$
	a) 0,5	b) 1,0	c) 1,5	d) 2,0				
	ación del cu	po de 2,0 kg ad nerpo es 2,5 m/s	s ² , la fuerza p	erpendicular	_	_		
	a) 2,0	b) 2,5	c)3,5	d) 4,0				

del sı	ubmarino es i	igual que la atn	nosférica. (Dat	os: d _{agua}	$= 1025 \text{ kg m}^{-3}$; $g = 9.8 \text{ m s}^{-2}$)
	a) 200900	b) 100	0450 c) 502	225	d) 25113	
tabló	n de madera	• •	lad es d=750	kg/m^3	y dimensiones	mergido en agua un , en cm, 50x40x10,
г	n) 5	b) 49	c) 147	d) 196		
por u módu	ına trayectori	ia paralela al e ento angular c	je X, la recta	y=3 (m)), con una vel	orme en el plano XY locidad v=10 m/s. El unto de coordenadas
г	a) 1/3	b) 1	c) 3	d) 30		
golpe	eada por la ra	queta. ¿En qué	tanto por cien	to varía	su energía ciné	espués de haber sido ética? d) Queda igual.
atrav		ed de 10 cm de	-		- •	10 g para que pueda no de la resistencia a
г	a) $0.1^{3/2}$	b) 1,0°	3/2	c) $10^{3/2}$	2	d) 100 ^{3/2}

6.- Una persona de 70 kg de masa y cuyos brazos extendidos están a 1,5 m de altura sobre el suelo de un ascensor deja caer un objeto desde su mano. Si la persona se encuentra sobre una balanza y ésta marca 84 kg, el objeto tardará en tocar el suelo del ascensor un

7.- Un submarino está a 20 m de profundidad. Calcular la fuerza que debe ejercerse para abrir una escotilla de dimensiones 0,5 m x 0,5 m; se considera que la presión en el interior

d) 0,50

c) 0,55

tiempo (en s) igual a: (tomar g= 10 m s⁻²)

b) 0,61

a) 1,22

H/2, e	entonces su	velocidad tendr	á un valor:	
a)	1,225v	b) 1,50v	c) 1,73v	d) 2 v
sobre de 10	el mismo se 0 ms ⁻¹ . La	e dispara horiz bala queda inc	ontalmente una	endido de una cuerda de longitud 100 cm y a bala de plomo de 20 g con una velocidad bloque y se eleva cierta altura h sobre la metros es:
a)	5,0	b) 2,0	c) 0,5	d) 0,2
de ra	dio r= 0,007		<u> </u>	de Júpiter describe una trayectoria circular 7,16 días. ¿Cuántas veces es mayor la masa
a)	527	b) 1053	c) 1512	d) 2100
			de 1 km. La a s (R _{Tierra} = 6400	ltura (en km) a la que hay que subir 10 kg) km):
a)	2000	b)2889	c)2909	d) 3140
horiz	ontal, con u	in período de (elle ideal que está oscilando en el plano nplitud de 15 cm. El trabajo (en J) que ha o de:
a)	0,78	b) 0,39	c)0,17	d) 0,14
en me	etros. ¿Cuár		•	0,10 sen (pt/3 - 0,2x), donde y se expresa en alcanzar un punto que está a 25,5 m del
a)	1,0	b) 4,9	c) 5,1	d) 10,5
10,0	cm formand	lo 45° con la no	ormal; el mater	a placa de caras plano-paralelas de anchura ial de la placa tiene un índice de refracción ue experimenta el rayo emergente es de:
a)	8,0	b) 5,3	c) 3,3	d)1,1

12.- Un cuerpo comienza a caer desde el reposo por la acción de la gravedad. Cuando está a una altura H sobre el suelo se verifica que su energía cinética es igual que la potencial, y la velocidad del cuerpo es v. El cuerpo sigue bajando y llega a una altura sobre el suelo igual a

a) 5°	b)10°	c)15°	d) 20°	
	magen tiene u		spejo esférico, sobre su diámetro y a 1: ral de -2. Si se colocase a 5 cm de su vé	
a) -1,5	b) +2,5	c)	+1,5 d) +2	
		-	y un objeto que se sitúa a 15 centímo ene se caracteriza por ser:	etros
a) Virtual	y mayor b)	Virtual y meno	or c) Real y menor d) Real y ma	yor
_	Q están separa	ndas una distan	segmento se encuentran en equilibrio. cia 10 m. La tercera carga tiene un valo +0,34Q d) +0,66Q	
		0,5 . 2	+0,34Q	
en A y llega a punto C con pes:	un punto B cootencial 452 V	e A es 791 V; on una velocid / llegaría a B c	una partícula cargada negativamente s ad v. Si se soltase la misma partícula d con una velocidad 2v. El potencial de E	esde
en A y llega a punto C con pes:	un punto B cootencial 452 V	e A es 791 V; on una velocid	una partícula cargada negativamente s ad v. Si se soltase la misma partícula d con una velocidad 2v. El potencial de E	esde
en A y llega a punto C con pes: a) 1130 24 Un cond cuando se le resistencia su	b) 904 uctor metálico sumerge en a abe hasta 47,	e A es 791 V; on una velocid / llegaría a B c c)763 de composicio gua a 20 °C,	una partícula cargada negativamente sad v. Si se soltase la misma partícula de con una velocidad 2v. El potencial de Ed d) 621 on desconocida tiene una resistencia de y cuando es sumergido en agua hirvida resistencia del conductor es 42,	esde (en 35,0 endo
en A y llega a punto C con pes: a) 1130 24 Un cond cuando se le resistencia su	b) 904 uctor metálico sumerge en a abe hasta 47,0 en °C, del agua	e A es 791 V; on una velocid / llegaría a B c c)763 de composicio gua a 20 °C,	una partícula cargada negativamente sad v. Si se soltase la misma partícula de con una velocidad 2v. El potencial de Ed d) 621 on desconocida tiene una resistencia de y cuando es sumergido en agua hirvir la resistencia del conductor es 42, mergido será:	esde (en 35,0 endo
en A y llega a punto C con pes: a) 1130 24 Un cond cuando se le resistencia su temperatura, e a) 24,3 25 La corridespreciable y	b) 904 uctor metálico sumerge en a abe hasta 47,0 en °C, del agua b) 46,6 ente que circu una resistencia	e A es 791 V; on una velocid / llegaría a B c c)763 de composicio gua a 20 °C, ; 6 Ω. Cuando en que está su c) 67,6 ala por un circ a es 15,0 A; si	una partícula cargada negativamente sad v. Si se soltase la misma partícula de con una velocidad 2v. El potencial de Ed d) 621 on desconocida tiene una resistencia de y cuando es sumergido en agua hirvir la resistencia del conductor es 42, mergido será:	esde (en 35,0 endo 5 Ω