Optymalizacja hiperparametrów w głębokich sieciach neuronowych

Jacek Tyszkiewicz Opiekun: dr hab. inż. Wojciech Chmiel

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Krakow

Plan prezentacji

- 1. Wprowadzenie do problematyki optymalizacji hiperparametrycznej
- 2. Omówienie funkcji kosztu optymalizacji hiperparametrycznej
- 3. Przestrzeń poszukiwań
- 4. Zapoznanie z powszechnie uznanymi algorytmami optymalizacji hiperparametrycznej
- 5. Omówienie autorskiego algorytmu
- 6. Prezentacja wyników
- 7. Podsumowanie

Zrozumienie problematyki tworzenia architektury sieci neuronowej

Funkcja celu optymalizacji hiperparametrycznej

$$\lambda^* pprox rg \min_{\lambda \in \Lambda} \operatorname{mean}_{x \in X^{(\mathrm{valid})}} \mathcal{L}(x; \mathcal{A}_{\lambda}(X^{(\mathrm{train})}))$$
 (1)

$$= \operatorname*{arg\,min}_{\lambda \in \Lambda} \Psi(\lambda) \tag{2}$$

$$pprox rg \min_{\lambda \in \{\lambda^{(1)}, \dots, \lambda^{(S)}\}} \Psi(\lambda) \equiv ar{\lambda}$$
 (3)

Przestrzeń poszukiwań

- Współczynnik uczenia
- Liczba warstw gęstych
- Liczba neuronów w warstwie gęstej
- Liczba warstw konwolucyjnych
- Rozmiar kernelu
- Liczba filtrów
- Funkcja aktywacji

Powszechnie uznane algorytmy optymalizacji hiperparametrycznej

- Algorytmy Bayesowskie: BOGP, SMAC
- Algorytmy z grupy wyczerpujących poszukiwań: wyszukiwanie ręczne, wyszukiwanie siatką, wyszukiwanie losowe
- Algorytmy heurystyczne: Algorytm genetyczny, symulowanego wyżarzania

EA w wersji podstawowej, autorski algorytm optymalizacji hiperparametrycznej

Najważniejsze komponenty EA

- Selekcja turniejowa
- krzyżowanie
- mutacja

BOinEA, czyli EA rozszerzony o procesy Gaussa

Wyniki na zbiorze Fashion-MNIST

Algorytm	Współczynnik	Liczba warstw	Liczba neuronów	Funkcja	Accuracy zbiór	Accuracy zbiór	Czas obliczeń
	uczenia	gestych	w warstwie gestej	aktywacyjna	treningowy [%]	testowy [%]	(sekundy)
BOGP	0.000995	1	297	ReLU	92.37	91.83	7304
SMAC	0.000395	2	418	ReLU	92.17	91.20	6512
EA	0.001852	2	274	ReLU	92.21	91.72	6424
BOinEA	0.002700	1	330	ReLU	92.16	91.57	6099

Table 3: Wyniki optymalizacji hiperparametrycznej

Wyniki na zbiorze NSL-KDD

Algorytm	Współczynnik	Liczba warstw	Liczba neuronów	Funkcja
Algorytm	uczenia	gestych	w warstwie gestej	aktywacyjna
BOGP	0.001521	2	80	ReLU
SMAC	0.003499	2	74	tanh
EA	0.008572	1	491	sigmoid
BOinEA	0.007011	1	361	ReLU

Table 4: Wyniki optymalizacji hiperparametrycznej (cz.1).

Algorytm	Dropout rate	Accuracy zbiór	Accuracy zbiór	Czas obliczeń
Aigorytin	Dropout rate	treningowy [%]	testowy [%]	(sekundy)
BOGP	0	93.00	69.92	8595
SMAC	0	90.05	66.15	8363
EA	0.0584	94.22	70.17	7168.78
BOinEA	0.0557	92.83	69.56	6546

Table 5: Wyniki optymalizacji hiperparametrycznej (cz.2).

Wyniki na zbiorze CIFAR-10

Algorytm	Współczynnik uczenia	Liczba warstw gestych	Liczba neuronów w warstwie gestej	Liczba warstw konwolucyjnych	Rozmiar kernela
BOGP	0.000090	1	500	2	3x3
SMAC	0.000652	5	494	2	3x3
EA	0.001380	1	343	4	3x3
BOinEA	0.001834	3	446	3	3x3

Table 1: Wyniki optymalizacji hiperparametrycznej (cz.1).

Algorytm	Liczba filtrów	Funkcja aktywacyjna	Accuracy zbiór treningowy [%]	Accuracy zbiór testowy [%]	Czas obliczeń (sekundy)
BOGP	128	ReLU	74.36	73.68	8674
SMAC	128	ReLU	76.72	74.97	31208
EA	128	ReLU	78.62	78.22	33041
BOinEA	32	ReLU	77.28	75.00	26262

Table 2: Wyniki optymalizacji hiperparametrycznej (cz.2).

Podsumowanie

Zrealizowane cele:

- zapoznanie z podstawowymi algorytmami optymalizacji hiperparametrycznej,
- nauka tworzenia i doskonalenia architektury sieci neuronowej przy użyciu bibliotek hyperopt, scikit-optimize
- opracowanie autorskiego algorytmu optymalizacji hiperparparametrycznej

Kierunki rozwoju:

rozwój w kierunku automatycznych systemów uczenia maszynowego