Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 5

Abgabe auf Moodle bis zum 11. Dezember

Die obere Halbebene ist $\mathbb{H}=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$. Darauf operiert die Modulgruppe $\Gamma=\mathrm{SL}(2,\mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Der abgeschlossene Fundamentalbereich ist $\overline{\mathcal{F}} = \{ \tau \in \mathbb{H} \mid |\tau| \geq 1 , |\text{Re}(\tau)| \leq \frac{1}{2} \}$. Die besten vier Aufgaben werden gewertet.

19. Aufgabe: (2+4=6 Punkte) Sei $f \in [\Gamma, k]$ eine holomorphe elliptische Modulform vom Gewicht k. Wir nehmen an, dass f keine Nullstelle hat in $S^1 \cap \overline{\mathcal{F}}$ außer eventuell in $\rho = \exp(\pi i/3)$ und $\rho^2 = \rho - 1$. Sei $\epsilon > 0$ klein genug, sodass f auf der Kreisscheibe $D_{0,\epsilon}(\rho)$ um ρ keine Nullstelle hat. Wir definieren eine nicht-geschlossene Kurve γ wie folgt:

Sei $B=\rho^2+i\epsilon\in\mathbb{H}$ und $B'=B+1=\rho+i\epsilon\in\mathbb{H}$. Sei $C\in\mathbb{H}$ der eindeutige Punkt mit |C|=1 und $|C-\rho^2|=\epsilon$ auf dem Rand des Fundamentalbereichs und sei $C'=-\overline{C'}$. Sei γ ein stückweise glatter Weg von B nach B' wie folgt: Zunächst von B im Uhrzeigersinn entlang des Kreisbogens um ρ^2 vom Radius ϵ nach C, dann von C im Uhrzeigersinn entlang des Einheitskreises nach C' und dann von C' im Uhrzeigersinn entlang des Kreisbogen um ρ vom Radius ϵ nach B'. [Vergleiche Abbildung 1, wobei wir D=D'=i setzen.] Zeigen Sie:

- (a) Das Integral $I_{\epsilon} = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) dz}{f(z)}$ ist unabhängig von ϵ für hinreichend kleine ϵ .
- (b) Das Integral ist gleich $I_{\epsilon} = \frac{k}{12} \frac{1}{3} \operatorname{ord}_{\rho}(f)$.

Hinweis zu (b): Finden Sie eine Matrix $M \in \Gamma$ mit $M \langle \rho^2 \rangle = \rho^2$ und $M \langle C \rangle = C' - 1$. Zerlegen Sie das Pol- und Nullstellenzählende Integral um ρ^2 in drei Teile entlang C, C' - 1 und $M^2 \langle C \rangle$. Betrachten Sie $\epsilon \to 0$ für das Integral von C nach C'.

- **20. Aufgabe:** (4 Punkte) Seien $f \in [\Gamma, k_1]$ und $g \in [\Gamma, k_2]$ Modulformen vom Gewicht k_1 bzw. k_2 . Zeigen Sie: h = f'g fg' ist eine Modulform vom Gewicht $k_1 + k_2 + 2$.
- **21. Aufgabe:** (4 Punkte) Für natürliche Zahlen $k \in \mathbb{N}_0$ seien $F_k : \mathbb{H} \to \mathbb{C} \cup \{\infty\}$ meromorphe Funktionen mit $F_k(M\langle \tau \rangle) = (c\tau + d)^k F_k(\tau)$ für alle $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$. Zeigen Sie für $N \in \mathbb{N}_0$ die Aussage:

Wenn
$$\sum_{k=0}^{N} F_k \equiv 0$$
 dann $F_k \equiv 0$ für alle $0 \le k \le N$.

Hinweis: Betrachten Sie $M = \begin{pmatrix} 0 & -1 \\ 1 & n \end{pmatrix}$ für $n \in \mathbb{Z}$.

Abbildung 1: Entnommen aus Busam und Freitag: Funktionentheorie, Springer (1993).

22. Aufgabe: (1+3=4 Punkte) Sei $P \in \mathbb{C}[X,Y]$ ein Polynom in zwei Variablen sodass gilt $P(G_4,G_6)\equiv 0$ für die Eisensteinreihen $G_k:\mathbb{H}\to\mathbb{C}$. Wir bezeichnen die Koeffizienten von P mit $c_{a,b}$, also $P(X,Y)=\sum_{a,b\in\mathbb{N}_0}c_{a,b}X^aY^b$. Zeigen Sie:

- (a) $\sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b \equiv 0$ für alle ganzen k. Hinweis: Aufgabe 21.
- (b) Folgern Sie $c_{a,b} = 0$ für alle a, b indem Sie die bekannten Nullstellen von G_4 und G_6 ausnutzen. Hinweis: Aufgabe 12.
- 23. Aufgabe: (2+1+1=4 Punkte) Seien a und b ganze Zahlen. Zeigen Sie:
 - (a) Es gibt eine ganze Zahl $g \in \mathbb{Z}$ mit $a\mathbb{Z} + b\mathbb{Z} = g\mathbb{Z}$ und diese ist eindeutig bis auf das Vorzeichen.

Wir schreiben dann ggT(a,b) := g für positives g. Entsprechend definieren wir für ganzzahlige a, b, c den größten gemeinsamen Teiler ggT(a,b,c) als die positive ganze Zahl g mit $a\mathbb{Z} + b\mathbb{Z} + c\mathbb{Z} = g\mathbb{Z}$. Zeigen Sie:

- (b) ggT(a, b, c) = ggT(ggT(a, b), c),
- (c) Für gegebene ganze Zahlen a, b gibt es genau dann ganze c, d mit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$ wenn ggT(a, b) = 1.

Hinweis zu (a): Euklidischer Algorithmus.