MATHEMATICS University of Gothenburg Examination in commutative algebra MMA 330, 2020-10-26 Telephone: 031-41 46 70

1a) Determine the nilpotents in $\mathbb{Z}_{2020} = \mathbb{Z}/(2020)$.	2p
b) Determine the idempotents in \mathbb{Z}_{2020} . (Hint: One gets less computations in \mathbb{Z}_{2020} by using that $(1-e)^2 = 1-e$ if $e^2 = e$.)	3p
2) Let K be a field and A be a subring such that $x \in A$ or $x^{-1} \in A$ for each $x \in K \setminus \{0\}$. Show that A is a local ring. (Hint: Use a criterion for local rings and that a/b or b/a is in A for $a,b \in A \setminus \{0\}$.)	4p
3) Ler A be a normal integral domain and S be a multiplicative subset of $A\setminus\{0\}$. Prove that $S^{-1}A$ is a normal integral domain. (Hint: Clear denominators in a clever way for integral relations over $S^{-1}A$.)	4p
4) Let $\tilde{\mathbf{Z}}$ be the integral closure of \mathbf{Z} in \mathbf{C} .	
 a) Prove that there are no irreducible elements in Z. b) Prove that Z is not a Noetherian ring. 	
5) Let N_1 and N_2 be submodules of an A -module M . Show that if M/N_1 and M/N_2 are Noetherian A -modules, then so is $M/(N_1 \cap N_2)$.	4p
6) Let S be a multiplicative set in a commutative ring A . Let M be an A -module, N be an $S^{-1}A$ -module and f be an A -linear map from M to N viewed as an A -module. Show that exists a unique $S^{-1}A$ -linear map $g: S^{-1}M \rightarrow N$ with $g(\frac{m}{1}) = f(m)$ for all $m \in M$.	4p

(Do not forget to prove that the map *g* you introduce is well defined!)

You may use all the theorems in Reid's book and the Chinese remainder theorem on \mathbb{Z}_n as formulated in Wikipedia. But all claims must be motivated.