Real Analysis

Carter Aitken

2025-05-05

Abstract

Real Analysis the study of approximation on the reals.

Contents

1	Car	dinality	2
	1.1	Brief Motivation	2
	1.2	Function Theory	2
		Definition: Injection	2
		Definition: Surjection	2
		Definition: Bijective	2
		Definition: Invertable	2
		Definition: Powerset	4
		Axiom: Choice	4
	1.3	Cardinality	5
		Definition: Ordering of Cardinality on Sets	5
		Theorem: Cantor-Schroeder-Berstien (CSB)	5
		Lemma: Phi has a Fixed Point	5
		Definition: Finite, Countably Infinite, Countable	8
		Proposition: Aleph Null is the Smallest Infinity	8

1 Cardinality

1.1 Brief Motivation

We want to build a metric space to measure the distance between objects.

We need

- 1. set X of objects.
- 2. need to measure closeness. func $d: X \times X \to [0, \infty)$ s/t
 - (a) $d(x,y) = 0 \iff x = y$
 - (b) d(x, y) = d(y, x)
 - (c) $d(x,z) \le d(x,y) + d(y,z)$

We call d a metric on X. (X, d) is a **metric space**.

 $(\mathbb{R}, +' \circ^{\circ} (\sqrt{-})-)$ is a metric space. Note the BQN notation.

1.2 Function Theory

Definition 1.1: Injection. Let A, B be non-empty sets. We say $f: A \to B$ is injective **iff** $\forall a, b \in A$ $f(a) = f(b) \implies a = b$

Definition 1.2: Surjection. $f: A \to B$ is a surjection if $\forall b \in B \ \exists a \in A \ s/t \ f(a) = b$.

Definition 1.3: Bijective. $f: A \to B$ is bijective **iff** its injective and surjective.

Definition 1.4: Invertable. $f: A \rightarrow B$ is invertable iff $\exists g: B \rightarrow A \ s/t \ g(f(a)) = a \ and \ f(g(b)) = b \ \forall a \in A, b \in B$.

We write $g = f^{-1}$ and call it "the" inverse.

Proposition 1.1. $f: A \to B$ is invertable **iff** f is bijective.

Proof. (\Longrightarrow) f is invertable. Suppose f(a) = f(b). We'll show a = b.

$$f^{-1}f(a)) = f^{-1}f(b)$$

$$\implies a = b$$

Now we'll show $\forall b \in B \ \exists a \in A \ f(a) = b$.

$$a = f^{-1}(b) \implies$$
 there is way to get from b to a, and it's f^{-1}

(\iff) Assume $f \leftarrow$ (bijective). We'll construct f's inverse. For $b \in B$ let a_b be the unique element of A s/t $f(a_b) = b$. a_b exists b/c of surjectivity of f, and it's unique b/c of injectivity.

$$g := \{g : A \to B, g(b) = a_b\}$$
$$f(g(b)) = f(a_b) = b$$
$$g(f(a_b)) = g(b) = a_b$$
$$\implies g = f^{-1}$$

Proposition 1.2. $\exists (injection) \ f : A \to B \iff \exists (surjection) \ g : B \to A$

Proof. (\Longrightarrow) Suppose $f: A \to B \leftarrow$ (injective). Let $b \in B$.

Case 1: $b \in f(A)$.

Let g(b) be the unique element of A s/t f(g(b)) = b, unique b/c $f \leftarrow$ (injective)

Case 2: $b \notin f(A)$.

Fix any $z \in A$. Let g(b) = z.

$$\implies g(b) = \begin{cases} f^{=}(b) & b \in f(A) \\ z & b \notin f(A) \end{cases}$$

We claim g is a surjection. So we have to show $\forall a \in A, \exists b \in B \text{ s/t } g(b) = a$ Let $a \in A \text{ s/t } f(a) \in B$.

$$g(f(a)) \implies f(g(f(a))) = f(a)$$

(injective) $\implies g(f(a)) = a$
 $\implies g \leftarrow \text{(surjective)}$

 \Leftarrow Suppose $(g: B \to A) \leftarrow$ (surjective). $\forall a \in A \text{ choose } b_a \in B \text{ s/t } g(b_a) = a$. $f := \{f: A \to B \mid f(a) = b_a\}$. Suppose

$$f(x) = f(y)$$

$$\implies b_x = b_y$$

$$\implies g(b_x) = g(b_y)$$

$$\implies x = y$$

$$\implies f \leftarrow \text{(injective)}$$

Definition 1.5: Powerset. Let X be a set. Then $\mathcal{P}(X) := \{A : A \subseteq X\}$, called the "**powerset** of X."

$$X = \{a, b\}$$

$$\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Axiom 1.1: Choice. Given $X \neq \emptyset \exists a \ choice \ func \ f : \mathcal{P}(X) \setminus \{\emptyset\} \rightarrow X \ s/t \ f(A) \in A \ \forall \neq A \subseteq A.$

1.3 Cardinality

$$A = \{a, b\}, B = \{c, d, e, f\}$$
Intuitively $|A| < |B|$

$$f \leftarrow (\text{inj}) : A \rightarrow B, f(a) := c, f(b) := d$$

$$\implies f \leftarrow (\text{inj})(A) \subset B$$

$$\implies |A| \le |B|$$

Definition 1.6: Ordering of Cardinality on Sets. A, B sets.

1.
$$|A| \le |B| \iff \exists f \leftarrow (\text{inj}) : A \to B$$

2.
$$|A| = |B| \iff \exists f \leftarrow (bij) : A \rightarrow B$$

$$\begin{split} |\mathbb{N}| \leq |\mathbb{Z}| & \Longleftarrow f \leftarrow (\text{inj}) : \mathbb{N} \to \mathbb{Z}, \ f(n) := n \\ f \leftarrow (\text{bij}) : \mathbb{N} \to \mathbb{Z} : f(n) := \begin{cases} 2n+2 & : n \geq 0 \\ 2(-n)-1 & : n < 0 \end{cases} \Longrightarrow |\mathbb{N}| = |\mathbb{Z}| \\ h \leftarrow (\text{bij}) : \mathbb{R} \to (0,1) : h(x) := \frac{\arctan(x) + \pi/2}{\pi} \implies |\mathbb{R}| = |(0,1)| \end{split}$$

Theorem 1.1: Cantor-Schroeder-Berstien (CSB). $if |A| \le |B|$ and $|B| \le |A|$ then |A| = |B|.

Lemma 1.1: Phi has a Fixed Point. X set. Suppose $\exists \phi : \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ s/t $\phi(A) \subseteq \phi(B)$ if $A \subseteq B \subseteq X$. Then

$$\exists F \subseteq X \ s/t \ \phi(F) = F$$

Let
$$F = \bigcup_{A \subseteq X: A \subseteq \phi(A)} A$$
.

Note: $\emptyset \subseteq X \& \emptyset \subseteq \phi(\emptyset)$

Claim: $F = \phi(F)$. Take $A \subseteq X$ with $A \subseteq \phi(A)$. Then $A \subseteq F$.

$$\implies \phi(A) \subseteq \phi(F)$$

$$\implies A \subseteq \phi(F)$$

$$\implies \bigcup_{A \subseteq X: A \subseteq \phi(A)} A \subseteq \phi(F) \text{ (by properties of unions)}$$

$$\implies F \subseteq \phi(F)$$

Further,

$$F \subseteq \phi(F) \implies \phi(F) \subseteq \phi(\phi(F))$$
$$\implies \phi(F) \in \{A \subseteq X : A \subseteq \phi(A)\}$$

For this step, let $\phi(F) = B$ and notice that $B \subseteq \phi(B)$. So its in the set above.

$$\implies \phi(F) \subseteq \bigcup_{A \subseteq X: A \subseteq \phi(A)} A = F$$

$$\implies F = \phi(F)$$

To motivate (CSB) theorem 1.1: prove that $|N| = |N \times N|$.

$$f \leftarrow (\text{inj}) : \mathbb{N} \to \mathbb{N} \times \mathbb{N}, \ f(n) := (n, 1)$$

$$g \leftarrow (\text{inj}) : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ g((n, m)) := 2^n 3^m$$

By (CSB) $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.

Proof. of (CSB) theorem 1.1. Let $f, g \leftarrow \text{(inj)} : A : B$. For $X \subseteq Y \subseteq A$

$$f(X) \subseteq f(Y)$$

$$\implies B \backslash f(Y) \subseteq B \backslash f(X)$$

$$\implies g(B \backslash f(Y)) \subseteq g(B \backslash f(X))$$

$$\implies A \backslash g(B \backslash f(X)) \subseteq A \backslash g(B \backslash f(Y))$$

This letting $\phi: \mathcal{P}(A) \to \mathcal{P}(A): \phi(x):=A\backslash g(B\backslash f(x))$ insures it preserves \subseteq . So by the lemma 1.1, $\exists F\subseteq A \text{ s/t } F=\phi(F)=A\backslash g(B\backslash f(F))$. In particular, $A\backslash F=g(B\backslash f(F)) \implies g:B\backslash f(F)\to A\backslash F:\leftarrow \text{(bij)}.$

Note. It's a surjection b/c everyone in $A \setminus F$ gets mapped to b/c it's the image if $g(B \setminus f(F))$.

Moreover, $g^{-1}: A \setminus F \to B \setminus f(F)$ is a bijection, and $f: F \to f(F)$ is a bijection (for the same reason as above; restriction of domain of an injective function is injective, and a function that maps to its image is automatically a surjection). Hence

$$h:A \to B:h(x):= egin{cases} g^{-1}(x) &: x \in A \backslash F \\ f(x) &: x \in F \end{cases}$$

Show $|\mathbb{Q}| = |\mathbb{N}|$.

Proof.

$$f: \mathbb{N} \to \mathbb{Q}: f(x) := x \implies |\mathbb{N}| \le |\mathbb{Q}|$$

 $q \in \mathbb{Q}$ can be written in the form $q = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$.

$$g: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N} : g(q) := (m, n) : q = \frac{m}{n}$$

$$\implies |\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

So by (CSB) theorem 1.1, $|\mathbb{Q}| = |\mathbb{N}|$.

Definition 1.7: Finite, Countably Infinite, Countable.

- 1. a set A is **finite** iff $|A| = |\{1, 2, ..., n\}|$ for some $n \in \mathbb{N}$. In this case, |A| = n.
- 2. $|\emptyset| := 0$
- 3. A is countably infinite iff $|A| = |\mathbb{N}| := \aleph_0$.
- 4. A is countable iff A is finite or ctbly infinite.

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{Q}| = \aleph_0$$

Proposition 1.3: Aleph Null is the Smallest Infinity. If A is infinite, then $|\mathbb{N}| \leq |A|$.

Proof. By (Choice) axiom 1.1, $\exists f : \mathcal{P}(A) \setminus \{\emptyset\} \to A \text{ s/t } f(X) \in X, \ \forall \emptyset \neq X \subseteq A.$

Let
$$a_1 = f(A) \in A$$

$$a_2 = f(A \setminus \{a_1\}) \in A \setminus \{a_1\}$$
:

$$\implies \aleph_0 = |\{a_1, \dots\}| \le |A|.$$

 \mathbb{R} is uncountable. So $\not\exists f \leftarrow (\text{bij}) : \mathbb{N} \rightarrow \mathbb{R}$.

Proof. Since $|\mathbb{R}| = |(0,1)|$, we'll show that (0,1) is uncountable.