Assignment 3

1. Download And unzip dataset

```
run this to download the dataset directly to the kernal
!gdown 1xkynpL15pt6KT3YSlDimu4A5iRU9qYck
    Downloading...
    From: https://drive.google.com/uc?id=1xkynpL15pt6KT3YSlDimu4A5iRU9qYck
    To: /content/Flowers-Dataset.zip
    100% 236M/236M [00:00<00:00, 286MB/s]
# Unzip
!unzip '/content/Flowers-Dataset.zip'
    inflating: flowers/daisy/13826249325 f61cb15f86 n.jpg
    inflating: flowers/daisy/13901930939 a7733c03f0 n.jpg
    inflating: flowers/daisy/1392131677 116ec04751.jpg
                                                             inflating:
    flowers/daisy/1392946544_115acbb2d9.jpg
                                                  inflating:
    flowers/daisy/13953307149 f8de6a768c m.jpg
                                                     inflating:
    flowers/daisy/1396526833 fb867165be n.jpg
                                                   inflating:
    flowers/daisy/13977181862 f8237b6b52.jpg
                                                   inflating:
    flowers/daisy/14021430525 e06baf93a9.jpg
                                                   inflating:
    flowers/daisy/14073784469 ffb12f3387 n.jpg
                                                     inflating:
    flowers/daisy/14087947408 9779257411_n.jpg
                                                     inflating:
    flowers/daisy/14088053307 1a13a0bf91 n.jpg
                                                     inflating:
    flowers/daisy/14114116486 0bb6649bc1 m.jpg
                                                     inflating:
    flowers/daisy/14147016029 8d3cf2414e.jpg
                                                  inflating:
    flowers/daisy/14163875973 467224aaf5 m.jpg
                                                     inflating:
    flowers/daisy/14167534527 781ceb1b7a n.jpg
                                                     inflating:
    flowers/daisy/14167543177 cd36b54ac6 n.jpg
                                                     inflating:
    flowers/daisy/14219214466 3ca6104eae m.jpg
                                                     inflating:
    flowers/daisy/14221836990 90374e6b34.jpg
                                                   inflating:
    flowers/daisy/14221848160_7f0a37c395.jpg
                                                   inflating:
    flowers/daisy/14245834619 153624f836.jpg
                                                   inflating:
    flowers/daisy/14264136211 9531fbc144.jpg
                                                   inflating:
    flowers/daisy/14272874304_47c0a46f5a.jpg
                                                   inflating:
    flowers/daisy/14307766919 fac3c37a6b m.jpg
                                                     inflating:
    flowers/daisy/14330343061_99478302d4_m.jpg
                                                     inflating:
    flowers/daisy/14332947164 9b13513c71 m.jpg
                                                     inflating:
    flowers/daisy/14333681205 a07c9f1752 m.jpg
                                                     inflating:
    flowers/daisy/14350958832 29bdd3a254.jpg
                                                   inflating:
    flowers/daisy/14354051035_1037b30421_n.jpg
                                                     inflating:
    flowers/daisy/14372713423 61e2daae88.jpg
                                                   inflating:
    flowers/daisy/14399435971 ea5868c792.jpg
                                                   inflating:
    flowers/daisy/14402451388 56545a374a n.jpg
                                                     inflating:
    flowers/daisy/144076848 57e1d662e3 m.jpg
                                                   inflating:
    flowers/daisy/144099102 bf63a41e4f n.jpg
                                                   inflating:
    flowers/daisy/1441939151 b271408c8d n.jpg
                                                   inflating:
    flowers/daisy/14421389519 d5fd353eb4.jpg
```

o e s/da sy/

3895 9 d5 d353eb jpg

```
inflating: flowers/daisy/144603918 b9de002f60 m.jpg
inflating: flowers/daisy/14471433500 cdaa22e3ea m.jpg
inflating: flowers/daisy/14485782498 fb342ec301.jpg
inflating: flowers/daisy/14507818175 05219b051c m.jpg
inflating: flowers/daisy/14523675369 97c31d0b5b.jpg
inflating: flowers/daisy/14551098743 2842e7a004 n.jpg
inflating: flowers/daisy/14554906452 35f066ffe9 n.jpg
inflating: flowers/daisy/14564545365 1fld267bfl n.jpg
inflating: flowers/daisy/14569895116 32f0dcb0f9.jpg
inflating: flowers/daisy/14591326135 930703dbed m.jpg
inflating: flowers/daisy/14600779226_7bbc288d40_m.jpg
inflating: flowers/daisy/14613443462 d4ed356201.jpg
inflating: flowers/daisy/14621687774 ec52811acd n.jpg
inflating: flowers/daisy/14674743211 f68b13f6d9.jpg
inflating: flowers/daisy/14698531521 0c2f0c6539.jpg
inflating: flowers/daisy/147068564 32bb4350cc.jpg
                                                      inflating:
flowers/daisy/14707111433 cce08ee007.jpg
                                             inflating:
flowers/daisy/14716799982 ed6d626a66.jpg
                                            inflating:
flowers/daisy/14816364517 2423021484 m.jpg
                                               inflating:
flowers/daisy/14866200659_6462c723cb_m.jpg
                                               inflating:
flowers/daisy/14907815010 bff495449f.jpg
                                            inflating:
flowers/daisy/14921511479 7b0a647795.jpg
                                             inflating:
flowers/daisy/15029936576 8d6f96c72c n.jpg
```

▼ Importing Necessary Libs

from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Convolution2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.preprocessing import image import numpy as np import matplotlib.pyplot as plt

2. Data Augmnetaion

Found 3019 images belonging to 5 classes. Found 1298 images belonging to 5 classes.

3. Build Model

Adding layers

```
# Build a CNN block
```

```
model = Sequential() # Initializing sequential model
model.add(Convolution2D(32,(3,3),activation='relu',input_shape=(64,64,3))) # convol
model.add(MaxPooling2D(pool_size=(2, 2))) # Max pooling layer model.add(Flatten())
# Flatten layer model.add(Dense(300,activation='relu')) # Hidden layer 1
model.add(Dense(150,activation='relu')) # Hidden layer 2
model.add(Dense(5,activation='softmax')) # Output layer
```

Compiling Model

```
# Compiling the model
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'
```

Fit Model

▼ # Train model

```
model.fit(xtrain,
  steps per epoch=len(xtrain),
  epochs=50,
  validation data=xtest,
  validation steps=len(xtest))
 Epoch 1/50
 Epoch 3/50
 Epoch 4/50
 Epoch 5/50
 Epoch 6/50
 31/31 [============= ] - 12s 389ms/step - loss: 1.0135 - accu
 Epoch 7/50
 Epoch 8/50
 Epoch 9/50
 Epoch 10/50
 31/31 [============= ] - 13s 432ms/step - loss: 0.8382 - accu
 Epoch 12/50
 Epoch 13/50
 Epoch 14/50
 31/31 [============== ] - 12s 392ms/step - loss: 0.7396 - accu
 Epoch 15/50
 Epoch 16/50
 Epoch 17/50
 Epoch 18/50
 Epoch 19/50
 Epoch 20/50
 Epoch 21/50
 Epoch 23/50
 Epoch 24/50
```

4. Save Model

model.save('Flowers.h5')

5. Testing The Model

```
def predict_flower(img_path):
    img = image.load_img(img_path,target_size=(64,64)) # Reading image
    x = image.img_to_array(img) # Converting image into array
    x = np.expand_dims(x,axis=0) # expanding Dimensions
    pred = np.argmax(model.predict(x)) # Predicting the higher probablity index
    op = ['Daisy','Dandelion','Rose','SunFlower','Tulip'] # Creating list
    print(op[pred]) # List indexing with output
    plt.imshow(img) # Printing the image
```

With Test Data Images

```
# Testing 1
# Daisy flower Image

predict_flower('/content/Dataset/val/daisy/1150395827_6f94a5c6e4_n.jpg') # Predicti
Daisy
```


predict_flower(
 '/content/Dataset/val/dandelion/1128626197_3f52424215_n.jpg')

- # Testing 3
- # Dandelion flower Image

predict_flower('/content/Dataset/val/dandelion/14199664556_188b37e51e.jpg')

Testing 4 # Rose flower Image
predict_flower('/content/Dataset/val/rose/12202373204_34fb07205b.jpg')
Rose

predict_flower('/content/Dataset/val/rose/15820572326_be2ea4a55c_n.jpg')

Testing 6 # Sunflower Image
predict_flower('/content/Dataset/val/sunflower/1596293240_2d5b53495a_m.jpg')

Testing 7 # Sunflower Image

predict_flower('/content/Dataset/val/sunflower/210076535_80951bc5d5.jpg')

SunFlower

Testing 8 # Tulip Flower Image
predict_flower('/content/Dataset/val/tulip/13530690445_9f1f5cf43a_n.jpg')

Testing 9 # Tulip Flower Image
predict_flower('/content/Dataset/val/tulip/16680927427_07ca6e4552_n.jpg')
Tulip

predict_flower(
 '/content/Dataset/val/daisy/34542837641_10492bf600_n.jpg')

With Google Images

```
# Run To download test images
!gdown 1Q-QTRIfXjV0BbLcIvopbiYfbAD3hJfmw

    Downloading...
    From: https://drive.google.com/uc?id=1Q-QTRIfXjV0BbLcIvopbiYfbAD3hJfmw
    To: /content/IBM Flower_Test dataset.zip 100%
    1.01M/1.01M [00:00<00:00, 163MB/s]

# unzip
!unzip '/content/IBM Flower_Test dataset.zip'
    Archive: /content/IBM Flower_Test dataset.zip
    replace IBM Flower_Test dataset/tulip_2.jpg? [y]es, [n]o, [A]ll, [N]one, [r]e

# Test 1
# Dandelion Flower predict_flower('/content/IBM Flower_Test
dataset/Dandelion.jpeg') Tulip</pre>
```


Test 2 # Dandelion Flower predict_flower('/content/IBM
Flower_Test dataset/Dandelion_2.jpeg')

Test 3 # Rose Flower predict_flower('/content/IBM
Flower Test dataset/Rose.jpeg')

Test 4 # Rose Flower predict_flower('/content/IBM

Flower_Test dataset/Rose_2.jpeg')

Rose

Test 5 # Daisy Flower predict_flower('/content/IBM Flower_Test
dataset/daisy-flower-1532449822.jpg') Daisy

Test 6 # Daisy Flower predict_flower('/content/IBM Flower_Test dataset/photo-1606041008023-472dfb5e530f.j Rose

Test 8 # Sun Flower predict_flower('/content/IBM Flower_Test
dataset/sunflower_2.jpeg')

Test 9 # Tulip Flower predict_flower('/content/IBM
Flower Test dataset/tulip.webp') Tulip

Test 10 # Tulip Flower predict_flower('/content/IBM
Flower_Test dataset/tulip_2.jpg')

Colab paid products - Cancel contracts here