Machine Learning 5006.001/2, spring 2016 Session 4: Naive Bayes classifier. Semi-supervised and unsupervised cases through Expectation Maximization algorithm

Instructors: Prof. Stanislav Sobolevsky, Dr. Martin Jankowiak, Dr. Ravi Schroff Teaching Assistants: Lingjing Wang and Yash Chhajed

Classification

Input/Features Discrete labels

$$y_1$$

$$x_2$$

$$y_2$$

$$x_N$$

$$y_N$$

Dependence

$$y = f(x)$$

$$x^* \longrightarrow y^*$$

exemption and are restricted from further use

Spam classification "toy" example

	Cruise	Lottery	Win	spam
0	1	1	1	1
1	1	0	1	1
2	0	1	0	1
3	0	0	1	0
4	1	0	0	0
5	0	1	0	0

	Cruise	Lottery	Win
0	1	1	0
1	0	0	0

Naive Bayes Classifier (discrete case)

$$x = (x^{i}, i = 1, ..., n)$$
 y
$$\{(y_{j}, x_{j}), j = 1..N\} \qquad x_{j} = (x_{j}^{i}, i = 1, ..., n)$$

$$x = x^{*} \qquad P(y = 0 | x = x^{*}) \qquad P(y = 1 | x = x^{*})$$

$$P(y = b | x) = \frac{P(x | y = b)P(y = b)}{P(x)}$$

Naive Bayes Classifier (discrete case)

$$P(y = b|x) = \frac{P(x|y = b)P(y = b)}{P(x)}$$

$$P(y = b)$$

$$P(y = b) = \frac{|\{j : y_j = b\}|}{N}$$

	Cruise	Lottery	Win	spam
0	1	1	1	1
1	1	0	1	1
2	0	1	0	1
3	0	0	1	0
4	1	0	0	0
5	0	1	0	0

$$P(x = x^* | y = b) = \prod_{i=1}^{n} P(x^i = x^* | y = b)$$
 -naive independence assumption

$$P(x^{i} = x^{*i}|y = b) = \frac{|\{j : x_{j}^{i} = x^{*i}, y_{j} = b\}|}{|\{j : y_{j} = b\}|}$$

$$P(y = b|x = x^*) \sim P(y = b) \prod_{i=1}^{n} P(x^i = x^{*i}|y = b)$$

$$y^* = \operatorname{argmax}_b P(y = b) \prod_{i=1}^n P(x^i = x^{*i} | y = b)$$

Spam classification "toy" example

	Cruise	Lottery	Win	spam
0	1	1	1	1
1	1	0	1	1
2	0	1	0	1
3	0	0	1	0
4	1	0	0	0
5	0	1	0	0

$$P(spam) = 1/2$$
 $P(Win|spam) = 2/3$
 $P(ham) = 1/2$ $P(Cruise|ham) = 1/3$
 $P(Cruise|spam) = 2/3$ $P(Lottery|ham) = 1/3$
 $P(Lottery|spam) = 2/3$ $P(Win|ham) = 1/3$

```
P(spam|\{Cruise, Lottery\}) \sim P(Cruise|spam)P(Lottery|spam)P(!Win|spam)P(spam) = \\ = 2/3*2/3*(1-2/3)*1/2=2/27 \\ P(ham|\{Cruise, Lottery\}) \sim P(Cruise|ham)P(Lottery|ham)P(!Win|ham)P(ham) = \\ = 1/3*1/3*(1-1/3)*1/3=1/27 \\ P(spam|\{Cruise, Lottery\}) > P(ham|\{Cruise, Lottery\}) \Rightarrow \{Cruise, Lottery\} \rightarrow spam \\ P(spam|none) \sim P(!Cruise|spam)P(!Lottery|spam)P(!Win|spam)P(spam) = \\ = 1/3*1/3*1/3*1/2=1/54 \\ P(ham|none) \sim P(!Cruise|ham)P(!Lottery|ham)P(!Win|ham)P(ham) = \\ = 2/3*2/3*2/3*1/2=4/27 \\ P(spam|\{Win\}) < P(ham|\{Win\}) \Rightarrow \{Win\} \rightarrow ham
```


Example I

Naive Bayes Classifier (Gaussian continuous case)

$$x = (x^i, i = 1, \dots, n) \qquad \mathcal{Y}$$

$$\{(y_j, x_j), j = 1..N\}$$
 $x_j = (x_j^i, i = 1, ..., n)$

$$x = x^*$$

$$P(y = 0|x = x^*)$$

$$P(y = 0|x = x^*)$$
 $P(y = 1|x = x^*)$

$$P(y = b|x = x^*) \sim p(x = x^*|y = b)P(y = b) = P(y = b) \prod_{i=1}^{n} p(x^i = x^*|y = b)$$

$$P(y=b) = \frac{|\{j: y_j=b\}|}{N}$$

$$\mu_{i,b} = \frac{\sum_{j: x_j^i = x^{*i}, y_j = b} x_j^i}{|\{j: x_j^i = x^{*i}, y_j = b\}|}$$

$$p(x^{i} = x^{*i}|y = b) = \frac{1}{\sqrt{2\pi\sigma_{i,b}}} e^{-\frac{(x^{*i} - \mu_{i,b})^{2}}{2\sigma_{i,b}^{2}}} \qquad \sigma_{i,b} = \sqrt{\frac{\sum\limits_{j: x_{j}^{i} = x^{*i}, y_{j} = b} (x_{j}^{i} - \mu_{i,b})^{2}}{|\{j: x_{i}^{i} = x^{*i}, y_{j} = b\}|}}$$

$$\sigma_{i,b} = \sqrt{\frac{\sum\limits_{j:x_j^i = x^{*i}, y_j = b} (x_j^i - \mu_{i,b})^2}{|\{j: x_j^i = x^{*i}, y_j = b\}|}}$$

Naive Bayes Classifier (continuous case)

$$P(y = b|x = x^*) \sim p(x = x^*|y = b)P(y = b) = P(y = b) \prod_{i=1}^{n} p(x^i = x^{*i}|y = b)$$
$$\sim P(y = b)e^{-\sum_{i=1}^{n} \frac{(x^{*i} - \mu_{i,b})^2}{2\sigma_{i,b}^2}}$$

$$y^* = \operatorname{argmax}_b \left[ln(P(y = b)) - \sum_{i=1}^n \frac{(x^{*i} - \mu_{i,b})^2}{2\sigma_{i,b}^2} \right]$$

Example 2,3

Bayesian classifier with missing labels: Semi-supervised case

$$x=(x^i,i=1,\ldots,n) \qquad \mathcal{Y}$$

$$\{(y_j,x_j),j=1..N\} \qquad x_j=(x_j^i,i=1,\ldots,n)$$
 some of the y_i are not known
$$y_j=nan$$

Step 1. Based on the labeled subset of the training data (i.e. having $y_j \neq nan$) estimate sample conditional probabilities $\theta_{b,i,a}^0 = P(x^i = a|y = b)$ as well as sample prior probabilities $\theta_b^0 = p(y = b)$ for each of the possible values b of y and a of x^i . Set t = 0.

Step 2. Given the current estimate $\theta = \theta^t$ for $P(x^i|y=b)$ and P(y=b) define the unobserved labels y_j as the discrete random variables \hat{y}_j with the probability distribution:

labels
$$y_j$$
 as the discrete random variables \hat{y}_j with the probability distribution:
$$P(\hat{y}_j = b | x_j, \theta^t) = \frac{P(y = b) \prod_{i=1}^n P(x_j^i | y = b)}{\sum_{c} P(y = c) \prod_{i=1}^n P(x_j^i | y = c)} = \frac{\theta_b^t \prod_{i=1}^n \theta_{b,i,x_j^i}^t}{\sum_{c} \theta_c^t \prod_{i=1}^n \theta_{c,i,x_j^i}^t}.$$

$$P(\hat{y}_j = b | x_j, \theta^t) = \begin{cases} 1, b = y_j & \sum_{c} P(y = c) \prod_{i=1}^n P(x_j^i | y = c) \\ 0, b \neq y_j & i=1 \end{cases}$$

Bayesian classifier with missing labels: Semi-supervised case

Step 3. Re-estimate the parameters $\theta = \theta^{t+1}$ (maximizing the likelihood of the actual observations, see below) for the distributions of $P(x^i|y=b)$ as well as P(y=b) given the label probabilistic estimates with respect to the probabilities $P(\hat{y}_i = b|x_i, \theta^t)$ defined in step 2.

Step 4. If θ does not change much, i.e. if the termination condition

$$||\theta^{t+1} - \theta^t||_2 = \sum_b (\theta_b^{t+1} - \theta_b^t)^2 + \sum_{k,i,a} (\theta_{k,i,a}^{t+1} - \theta_{k,i,a}^t)^2 < \varepsilon$$

holds - stop with a final estimate $\theta = \theta^{t+1}$, otherwise set t := t+1 and repeat from step 2.

$$\theta_b^{t+1} = P(y=b) = \frac{\sum\limits_{j} P(\hat{y}_j = b|x^j, \theta^t)}{|\{j\}|}$$

$$\theta_{b,i,a}^{t+1} = P(x_i = a|y = b) = \frac{\sum\limits_{j,x_i^j = a} P(\hat{y}_j = b|x^j,\theta^t)}{\sum\limits_j P(\hat{y}_j = b|x^j,\theta^t)}$$

Bayesian classifier with missing labels: Semi-supervised case

$$\theta^0 \to \theta^1 \to \theta^2 \to \dots \to \theta^*$$

log-likelihood

$$L(\theta) = \sum_{j} log \left(\sum_{b} P(y = b) \prod_{i} P(x_i = x_i^j | y = b) \right) = \sum_{j} log \left(\sum_{b} \theta_b \prod_{i} \theta_{b,i,x_j^i} \right)$$

$$y^* = \operatorname{argmax}_b P(y = b) \prod_{i=1}^n P(x^i = x^{*i} | y = b) = \operatorname{argmax}_b \theta_b \prod_{i=1}^n \theta_{b,i,x^{i^*}}$$

Example 4

Bayesian unsupervised clustering

$$x = (x^i, i = 1, \dots, n) \qquad \qquad \mathcal{Y}$$

$$\{(y_j, x_j), j = 1..N\}$$
 $x_j = (x_j^i, i = 1, ..., n)$

So what if none of the labels y_j are observed? $y_j = nan$

$$\theta^0 \qquad \qquad \sum_k \theta_k^0 = 1 \qquad \qquad \sum_a \theta_{k,i,a}^0 = 1$$

$$\theta^0 \to \theta^1 \to \theta^2 \to \dots \to \theta^*$$

$$y^* = \operatorname{argmax}_b P(y = b) \prod_{i=1}^n P(x^i = x^{*i} | y = b) = \operatorname{argmax}_b \theta_b \prod_{i=1}^n \theta_{b,i,x^{i^*}}$$

Example 5