More Propositional Logic Algebra: Expressive Completeness and Completeness of Equivalences

Equivalences Involving Conditionals

Some Important Equivalences Involving Conditionals

- Implication:
 - $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
 - $\neg (P \rightarrow Q) \Leftrightarrow P \land \neg Q$
- Contraposition (or Transposition):
 - $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
- Exportation:
 - $P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \land Q) \rightarrow R$
- Equivalence:
 - $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$
 - $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$

Some More Equivalences

• Distribution:

- $-P \rightarrow (Q \land R) \Leftrightarrow (P \rightarrow Q) \land (P \rightarrow R)$
- $P \rightarrow (Q \lor R) \Leftrightarrow (P \rightarrow Q) \lor (P \rightarrow R)$
- $(P \lor Q) \rightarrow R \Leftrightarrow (P \rightarrow R) \land (Q \rightarrow R)$
- (P ∧ Q) \rightarrow R \Leftrightarrow (P \rightarrow R) \vee (Q \rightarrow R) (this last one is a good example of the paradox of material implication!)

• Conditional Reduction:

- $(P \rightarrow Q) \land P \Leftrightarrow P \land Q$
- $(P \rightarrow Q) \land \neg Q \Leftrightarrow \neg P \land \neg Q$

Also:

$$\begin{array}{c} P \rightarrow P \Leftrightarrow \top \\ P \rightarrow \neg P \Leftrightarrow \neg P \end{array}$$

$$P \rightarrow | \Leftrightarrow \neg P$$

$$P \rightarrow T \Leftrightarrow T$$

$$\top \to P \Leftrightarrow P$$

$$\perp \rightarrow P \Leftrightarrow \top$$

Normal Forms

Negation Normal Form

- Literals: Atomic Sentences or negations thereof.
- Negation Normal Form: An expression built up with $' \land '$, $' \lor '$, and literals.
- Using repeated DeMorgan and Double Negation, we can transform any truth-functional expression built up with '∧', '∨', and '¬' into an expression that is in Negation Normal Form.
- Example:

$$\neg((A \lor B) \land \neg C) \Leftrightarrow (DeMorgan)$$

 $\neg(A \lor B) \lor \neg \neg C \Leftrightarrow (Double Neg, DeM)$
 $(\neg A \land \neg B) \lor C$

Disjunctive Normal Form

- Disjunctive Normal Form: A generalized disjunction of generalized conjunctions of literals.
- Using repeated distribution of ∧ over ∨, any statement in Negation Normal Form can be written in Disjunctive Normal Form.
- Example:

```
(A \lor B) \land (C \lor D) \Leftrightarrow (Distribution)

[(A \lor B) \land C] \lor [(A \lor B) \land D] \Leftrightarrow (Distribution (2x))

(A \land C) \lor (B \land C) \lor (A \land D) \lor (B \land D)
```

Conjunctive Normal Form

- Conjunctive Normal Form: A generalized conjunction of generalized disjunctions of literals.
- Using repeated distribution of ∨ over ∧, any statement in Negation Normal Form can be written in Conjunctive Normal Form.
- Example:

```
(A \land B) \lor (C \land D) \Leftrightarrow (Distribution)

[(A \land B) \lor C] \land [(A \land B) \lor D] \Leftrightarrow (Distribution (2x))

(A \lor C) \land (B \lor C) \land (A \lor D) \land (B \lor D)
```

Special Cases

- Any literal (such as A or ¬B) is in NNF, DNF (it is a disjunction whose only disjunct is a conjunction whose only conjunct is that literal), and CNF
- A conjunction of literals (e.g. ¬A ∧ ¬B ∧ C) is in NNF, DNF (a disjunction whose only disjunct is that conjunction), and CNF
- Likewise, a disjunction of literals is in NNF, DNF, and CNF
- In particular, T and ⊥ are in NNF, DNF, and CNF as well.

Expressive Completeness

Truth-Functional Connectives

- So far, we have seen one *unary* truth-functional connective (' \neg '), and four *binary* truth-functional connectives (' \wedge ', ' \vee ', ' \rightarrow ', ' \leftrightarrow ').
- However, there are many more truth-functional connectives possible:
 - First of all, a connective can take any number of arguments: 3 (ternary), 4, 5, etc.
 - Second, there are unary and binary connectives other than the ones listed above.

Unary Connectives

- What other unary connectives are there besides '_'?
- Thinking about this in terms of truth tables, we see that there are 4 different unary connectives:

Р	*P	Р	*P	Р	*P	Р	*P
Т	Т	Т	Т	Т	F	Т	F
F	Т	F	F	F	Т	F	F

Binary Connectives

• The truth table below shows that there are $2^4 = 16$ binary connectives:

Р	Q	P*Q
Т	Т	T/F
Т	F	T/F
F	Т	T/F
F	F	T/F

```
In general:

n sentences \Rightarrow

2^{n} \text{ truth value combinations}
(i.e. 2^{n} rows in truth table) \Rightarrow
2^{2^{n}} \text{ different n-ary connectives!}
```

Expressing other connectives using 'and', 'or', and 'not'

- We saw that we can express the exclusive disjunction using 'and', 'or', and 'not'.
- Q: Can we express all other connectives as well?
- A: Yes! We can generalize from this example:

Р	Q	P*Q		
T	Т	F	Step 1:	Step 2:
	F	Т	$\Rightarrow P \land \neg Q$	\Rightarrow (P \land \neg Q) \lor (\neg P \land Q)
F	Т	Т	$\Rightarrow \neg P \land Q$	\rightarrow (170 lq) \vee (1170q)
F	F	F		

Truth-Functional Expressive Completeness

- Any expression using any truth-functional operators can be rewritten as a Boolean expression, i.e. an expression that only uses ∧'s, ∨'s, and ¬'s.
- Since I can express *any* truth function using ' \land ', ' \lor ', and ' \neg ', we say that the set of operators { \neg , \land , \lor } is (truth-functionally) *expressively complete*.

$\{\neg, \land\}$ and $\{\neg, \lor\}$ are Expressively Complete

Using DeMorgan Laws and Double Negation:

$$- P \wedge Q \Leftrightarrow \neg(\neg P \vee \neg Q)$$

$$- P \lor Q \Leftrightarrow \neg(\neg P \land \neg Q)$$

 Hence, by the principle of substitution of logical equivalents, since {¬, ∧, ∨} is expressively complete, the sets {¬, ∧} and {¬, ∨} are expressively complete as well!

The NAND

- Let us define the binary truth-functional connective 'NAND' according to the truth-table below.
- Obviously, P NAND Q ⇔ ¬(P ∧ Q) (hence the name!)

Р	Q	P NAND Q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

Expressive Completeness of the NAND

- The NAND is very interesting, because the {NAND} is expressively complete!
- Proof: We already know that we can express every truth-functional connective using only ∨ and ¬.
 Furthermore:
 - $P NAND P \Leftrightarrow \neg(P \land P) \Leftrightarrow \neg P$
 - (P NAND P) NAND (Q NAND Q) \Leftrightarrow ¬((P NAND P) \wedge (Q NAND Q)) \Leftrightarrow ¬(¬P \wedge ¬Q) \Leftrightarrow P \vee Q

The NOR

- Let us define the binary truth-functional connective 'NOR' according to the truth-table below.
- Obviously, P NOR Q ⇔ ¬(P ∨ Q) (hence the name!)

Р	Q	P NOR Q
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

Expressive Completeness of the NOR

- Like the NAND, the NOR can express any truthfunctional connective, i.e. {NOR} is expressively complete as well!
- Proof: We already know that we can express every truth-functional connective using only ∧ and ¬.
 Furthermore:
 - $P NOR P \Leftrightarrow \neg(P \lor P) \Leftrightarrow \neg P$
 - (P NOR P) NOR (Q NOR Q) \Leftrightarrow ¬((P NOR P) \vee (Q NOR Q)) \Leftrightarrow ¬(¬P \vee ¬Q) \Leftrightarrow P \wedge Q

Completeness of Equivalence Rules

Completeness of Equivalence Rules

- If we regard some set S of equivalence principles as formal, syntactical, rewriting principles, then we can define:
 - $-\phi \leftrightarrow_S \psi$ iff through the successive use of equivalence principles, ϕ can be rewritten into ψ
- S is a *complete* set of equivalence rules iff:
 - For any φ and ψ : if $\varphi \Leftrightarrow \psi$ then $\varphi \leftrightarrow_S \psi$

How to Prove Completeness?

- I claim that the following set BS of equivalence rules is complete (restricting ourselves to statements involving Boolean operators only):
 - Commutation
 - Association
 - Double Negation
 - DeMorgan
 - Distribution
 - Idempotence
 - Adjacency
 - Identity
 - Inverse
 - Complement
 - Annihilation
- How do I prove this?

Proof Using Normal Forms

- Let's say that the canonical form of a statement ϕ is the statement CF(ϕ) that is the statement you get from using the 'truth-table' trick to get a statement's equivalent expression:
 - Reference columns followed pre-set ordering of atomic statements
 - Reference columns are filled out using pre-set alternation scheme
 - Conjuncts are conjuncted following same alphabetical order
 - Disjuncts are disjuncted from top row to bottom
- Theorem: For any φ : $\varphi \leftrightarrow_{BS} CF(\varphi)$
 - And hence, for any φ and ψ : if $\varphi \Leftrightarrow \psi$ then $\varphi \leftrightarrow_{BS} CF(\varphi) = (!)$ $CF(\psi) \leftrightarrow_{BS} \psi$