Self-supervised Learning for Video Correspondence Flow

British Machine Vision Conference (BMVC), 2019

Zihang Lai, Weidi Xie

University of Oxford, Oxford, United Kingdom

Presented by: Ricardo B. Sousa (<u>up201503004</u>)

FEUP, PDEEC, Computer Vision, 2020/2021

OUTLINE

- Introduction
 - Context
 - Motivation
 - Goals
- Method
 - Full vs Restricted Attention
 - Long-term Correspondence Flow
- Experiments and Analysis
 - DAVIS-2017
 - JHMDB
- Conclusions
- Open Questions

Introduction: Context

- Correspondence matching: discerning which parts of images correspondent between each other
 - Depth estimation
 - Optical flow
 - Segmentation and tracking
 - 3D reconstruction

INTRODUCTION: MOTIVATION

- Supervised learning for correspondence matching can be prohibitively expensive
- Self-supervised learning does not require labelled data
- Videos have an almost infinite supply (e.g., YouTube)
- Spatio-temporal coherence is inherent to videos

INTRODUCTION: GOALS

- Train a CNN-based model on videos assuming the spatio-temporal coherence
- Channel-wise (RGB) dropout and colour jittering added intentionally on input frames
- Benchmark the model on video segmentation and keypoint tracking

METHOD

- Train an embedding network w/ self-supervised learning for pixelwise correspondence matching
 - Exploit spatial-temporal coherence in videos

Requirements for training:

- Ground-truth annotation for the first frame
- Model should be trained on full-colour and high-resolution (the model resizes all frames to 256 x 256 x 3)
 over long video sequences

METHOD

• Overview:

METHOD

- Given a collection of frames $\{I_1, I_2, ..., I_N\}$ from a video: $f_i = \Phi(g(I_i); \theta)$
 - Ф: ResNet-18
 - $g(\cdot)$: information bottleneck

Information bottleneck:

- Randomly zero out 0, 1, or 2 channels in each input frame
- Randomly perturb the brightness, contrast and saturation of an image by up to 10%
- 2 benefits:
 - Input jitterings and stochastic dropout prevents the model from co-adaptation of low-level colours
 - Data augmentation

METHOD: FULL VS RESTRICTED ATTENTION

Full attention

- All pairs of pixels in target and reference frames are correlated
- Memory and computational consumption grow O(n²) with the spatial footprint of the feature maps
 - dimension { Feature maps } = H x W → 4D tensor of dimension of H x W x H x W

Restricted attention:

- Pixels in the reference frame are searched for locally in a square patch of size
 (2M+1) x (2M+1)
- Maximum disparity of M defines the size of the square
 - dimension { Feature maps } = H x W → 4D tensor of dimension of H x W x (2M+1) x (2M+1)

METHOD: FULL VS RESTRICTED ATTENTION

Full attention

- All pairs of pixels in target and reference frames are correlated
- Memory and computational consumption grow quadratically with the spatial footprint of the feature maps
 - dimension { Feature maps } = H x W → 4D tensor of dimension of H x W x H x W

Restricted attention:

- Pixels in the reference frame are searched for locally in a square patch of size
 (2M+1) x (2M+1)
- Maximum disparity of M defines the size of the square
 - dimension { Feature maps } = H x W → 4D tensor of dimension of H x W x (2M+1) x (2M+1)

METHOD: LONG-TERM CORRESPONDENCE FLOW

- IF 2 frames are sampled closely in time, THEN objects remain unchanged
- IF frames are sampled with a large temporal stride, THEN the assumption of using reconstruction as supervision may fail

METHOD: LONG-TERM CORRESPONDENCE FLOW

- IF 2 frames are sampled closely in time, THEN objects remain unchanged
- IF frames are sampled with a large temporal stride, THEN the assumption of using reconstruction as supervision may fail

Scheduled sampling:

- Initial probability of using ground-truth frames = 0.9
- Uniformly annealed to 0.6

METHOD: LONG-TERM CORRESPONDENCE FLOW

- IF 2 frames are sampled closely in time, THEN objects remain unchanged
- IF frames are sampled with a large temporal stride, THEN the assumption of using reconstruction as supervision may fail
- Scheduled sampling
- Cycle Consistency:
 - Tracking is performed forward and backward in time
 - Inconsistency between start and end points are the loss function

EXPERIMENTS AND ANALYSIS

Training details:

- Only used video sequences from Kinetics dataset not finetuned for any target task
- Frame rate of 6fps and resize all frames to 256 x 256 x 3
- ResNet-18

Evaluation metrics:

- Video segmentation:
 - *J*: intersection over union
 - \mathcal{F} : contour accuracy
- Keypoint tracking:
 - $PCK_{instance}$: IF normalized Euclidean distance error < α , THEN keypoint is considered correct
 - PCK_{max} : IF keypoint located within $\alpha \cdot \max(w, h)$ pixels of the ground-truth, THEN keypoint is accepted

EXPERIMENTS AND ANALYSIS: DAVIS-2017

EXPERIMENTS AND ANALYSIS: DAVIS-2017

Method	Supervised	Dataset	$\mathcal{J}\&\mathcal{F}(Mean)$	$\mathcal{J}(Mean)$	$\mathcal{J}(\text{Recall})$	$\mathcal{F}(Mean)$	$\mathcal{F}(\text{Recall})$
Identity	X	-	22.9	22.1	15.9	23.6	11.7
Optical Flow (FlowNet2) [15]	×	-	26.0	26.7	-	25.2	-
SIFT Flow [28]	×	-	34.0	33.0	-	35.0	-
Transitive Inv. [42]	×	-	29.4	32.0	-	26.8	-
DeepCluster [50]	×	YFCC100M	35.4	37.5	-	33.2	-
Video Colorization [40]	×	Kinetics	34.0	34.6	34.1	32.7	26.8
CycleTime (ResNet-50) [43]	×	VLOG	40.7	41.9	40.9	39.4	33.6
Ours (Full Model ResNet-18) X	Kinetics [23]	49.5	47.7	53.2	51.3	56.5
Ours (Full Model ResNet-18) X	OxUvA [39]	50.3	48.4	53.2	52.2	56.0
ImageNet (ResNet-50) [13]	✓	ImageNet	49.7	50.3	-	49.0	-
SiamMask [41]	/	YouTube-VOS	53.1	51.1	60.5	55.0	64.3
OSVOS[6]	✓	DAVIS	60.3	56.6	63.8	63.9	73.8

EXPERIMENTS AND ANALYSIS: JHMDB

Method	Supervised	Dataset	PCK _{instance}		PCF	ζ_{max}
			@.1	@.2	@.1	@.2
SIFT Flow[28]	Х	-	49.0	68.6	-	-
Video Colorization [40]	X	Kinetics	45.2	69.6	-	-
CycleTime (ResNet-50) [43]	X	VLOG	57.7	78.5	-	-
Ours (Full Model ResNet-18)	×	Kinetics	58.5	78.8	71.9	88.3
ImageNet (ResNet-50) [13]	✓	ImageNet	58.4	78.4	-	-
Fully Supervised [38]	✓	JHMDB	-	-	68.7	81.6

Conclusions

- Potential of self-supervised learning
- State-of-the-art performance on both video segmentation and keypoint tracking
- Key improvements in terms of reducing the drift over time

OPEN QUESTIONS

- Why ResNet-18?
- Could the consideration of middle losses led to improvements?
- What about the drift over time from other methods in the literature (only 1 was used for comparison)?

Self-supervised Learning for Video Correspondence Flow

British Machine Vision Conference (BMVC), 2019

Zihang Lai, Weidi Xie

University of Oxford, Oxford, United Kingdom

Presented by: Ricardo B. Sousa (<u>up201503004</u>)

FEUP, PDEEC, Computer Vision, 2020/2021

EXPERIMENTS AND ANALYSIS: DAVIS-2017

EXPERIMENTS AND ANALYSIS: DAVIS-2017

EXPERIMENTS AND ANALYSIS: DAVIS-2017 + YOUTUBE

EXPERIMENTS AND ANALYSIS

Method	Dataset	Dog	Dog-j	Drift-c	Drift-s	Camel	Mbike	Paragliding	Goat
Self-supervised (\mathcal{J})	Kinetics	58.0	18.6	3.9	27.1	59.4	44.8	32.4	71.1
Self-supervised (\mathcal{J})	Additional	76.1	21.7	27.8	37.7	70.0	57.4	42.8	73.7
Supervised (\mathcal{J}) [51]	COCO+DAVIS	87.7	38.8	4.9	66.4	88.4	72.5	38.0	80.4
Self-supervised (\mathcal{F})	Kinetics	49.1	34.3	6.3	26.9	54.2	56.6	41.2	58.8
Self-supervised (\mathcal{F})	Additional	71.8	35.2	35.3	34.0	63.9	65.8	52.0	64.0
Supervised (\mathcal{F}) [51]	COCO+DAVIS	84.6	45.2	8.4	57.7	92.2	76.7	58.1	74.7