COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Polygon Partitioning

Paul Rosen Assistant Professor University of South Florida

Some slide from Valentina Korzhova

OBJECTIVES

- TRIANGULATION ALGORITHMS
 - Diagonal-based triangulation algorithm
 - Ear-based triangulation algorithm
- COMPLEXITY OF THE ALGORITHMS
- DEFINITION OF MONOTONE POLYGON
 - Triangulation of a monotone polygon
- PARTITIONING INTO MONOTONE POLYGONS
- TRIANGULATION OF A POLYGON IN N LOG N TIME

TRIANGULATION OF POLYGONS

- DECOMPOSE THE POLYGON INTO SHAPES THAT ARE EASIER TO HANDLE: TRIANGLES
- A TRIANGULATION OF A POLYGON P IS A DECOMPOSITION OF P INTO TRIANGLES WHOSE VERTICES ARE VERTICES OF P. IN OTHER WORDS, A TRIANGULATION IS A MAXIMAL SET OF NON-CROSSING DIAGONALS.

DIAGONAL-BASED TRIANGULATION

- DIAGONAL TEST
- The segment $s=v_iv_i$ is a diagonal of P iff
 - for all edges e of P that are not incident to either v_i and v_j , s and e do not intersect.
 - s is internal to P in the neighborhood of v_i and v_j .
- ALGORITHM: DIAGONAL TRIANGULATION
 REPEAT N-3 TIMES
 FOR EACH CANDIDATE DIAGONAL
 TEST EACH OF NEIGHBORHOODS
 OUTPUT PROPER DIAGONAL

Brute Force Triangulation

- THEOREM: EVERY POLYGON P OF N VERTICES CAN BE PARTITIONED INTO TRIANGLE BY THE ADDITION OF (ZERO OR MORE) DIAGONALS.
- COMPLEXITY OF DIAGONAL-BASED ALGORITHM:
 - $O(n^2)$ # of diagonal candidates
 - O(n) testing each of neighborhoods
 - Repeating this $O(n^3)$ computation for each of the n-3 diagonals yields $O(n^4)$
 - Can be made $O(n^3)$

EAR BASED IDEA....

- LOCATE AN EAR
- OUTPUT DIAGONAL
- CLIP THE EAR
- REPEAT UNTIL A TRIANGLE IS LEFT

EAR BASED IDEA....

• DEFINITION OF EAR: THREE CONSECUTIVE VERTICES, A, B, C FORM AN EAR IF AC IS A DIAGONAL

• MEISTERS' TWO EARS THEOREM: EVERY POLYGON ($N \ge 4$) HAS AT LEAST TWO NON-OVERLAPPING EARS.

EAR BASED IDEA....

- PROOF: CONSIDER A TRIANGULATION OF AN N-POLYGON, WITH n>3. The triangulation consists of n-2 triangles. Since the <u>Polygon has n edges but there are only n-2 triangles, by the Pigeonhole Principle, there are <u>at least two</u> triangles with two <u>Polygon's edges</u>. These are the ears.</u>
- ANOTHER PROOF: IT IS KNOWN THAT A SIMPLE POLYGON CAN ALWAYS BE TRIANGULATED. LEAVES IN THE DUAL-TREE OF THE TRIANGULATED POLYGON CORRESPOND TO EARS AND EVERY TREE OF TWO OR MORE NODES MUST HAVE AT LEAST TWO LEAVES.

TRIANGULATION: IMPLEMENTATION

Algorithm: TRIANGULATION

Initialize the ear tip status of each vertex.

while n > 3 do

Locate an ear tip v_2 .

Output diagonal $v_1 v_3$.

Delete v_2 .

Update the ear tip status of v_1 and v_3 .

TRIANGULATION: IMPLEMENTATION

Total: O(n³)

Can be made: O(n²)

MONOTONE PARTITIONING

- A CHAIN IS MONOTONE WITH RESPECT TO A LINE L IF
 EVERY LINE ORTHOGONAL TO L INTERSECTS THE CHAIN IN
 AT MOST I POINT
- POLYGON IS MONOTONE WITH RESPECT TO A LINE L IF
 BOUNDARY OF P CAN BE SPLIT INTO 2 POLYGONAL CHAINS
 A AND B SUCH THAT EACH CHAIN IS MONOTONE WITH
 RESPECT TO L
- MONOTONICITY IMPLIES SORTED ORDER WITH RESPECT TO L
- MONOTONE POLYGON CAN BE (GREEDILY) TRIANGULATED IN O(N) TIME!

POLYGON TRIANGULATION

- ALGORITHM: POLYGON TRIANGULATION: MONOTONE POLYGON WITH RESPECT TO Y-LINE
 - Partition into monotone polygons
 - Triangulate each monotone polygon

 A Y-MONOTONE POLYGON HAS A TOP VERTEX, A BOTTOM VERTEX, AND TWO Y-MONOTONE CHAINS BETWEEN TOP AND BOTTOM AS ITS BOUNDARY

• A POLYGONAL CHAIN C IS STRICTLY MONOTONE W.R.T. L' IF EVERY L ORTHOGONAL TO L' MEETS C IN AT MOST ONE POINT.

 Simply monotone if L∩C has at most one connected line segment.

• A POLYGON P IS SAID TO BE MONOTONE

W.R.T.A LINE L IF ∂P CAN BE SPLIT INTO

TWO MONOTONE CHAINS W.R.T. L

- THE FOLLOWING PROPERTY IS CHARACTERISTIC FOR Y-MONOTONE POLYGONS:
 - If we walk from a topmost to a bottommost vertex along the left (or the right) boundary chain, then we always move downwards or horizontally, never upwards.

TRIANGULATION OF MONOTONE POLYGON

- THE ALGORITHM TO TRIANGULATE A MONOTONE POLYGON DEPENDS ON ITS MONOTONICITY.
- DEVELOPED IN 1978 BY GAREY, JOHNSON, PREPARATA, AND TARJAN
- DESCRIBED IN BOTH
 - Preparata pp. 239-241 (1985)
 - Laszlo pp. 128-135 (1996)
 - The former uses y-monotone polygons, the latter uses x-monotone.

What kind of vertices does a Non-Y-Monotone Polygon have with respect to sweep of y?

Properties of monotone polygon

- IF A POLYGON P HAS NO INTERIOR CUSPS, THEN IT IS MONOTONE
- WHAT TYPES OF VERTICES DOES A SIMPLE POLYGON HAVE?
 - start
 - end
 - split
 - merge
 - regular

REMINDER

Properties of monotone polygon

• REFLEX VERTEX WHOSE ADJACENT VERTICES ARE EITHER BOTH AT OR ABOVE V, OR BOTH AT OR BELOW IT.

Interior cusps

If A POLYGON HAS NO INTERIOR
 CUSPS THEN IT IS MONOTONE WITH
 RESPECT TO THE VERTICAL LINE

Properties of monotone polygon

- LEMMA: A POLYGON IS Y-MONOTONE IF IT HAS NEITHER SPLIT VERTICES NOR MERGE VERTICES
- PROOF: If P is not monotone, there must exist a line L
 INTERSECTING P in more than a single segment.

 LET [P,Q] BE ITS LEFTMOST SUB SEGMENT.
 split vertex
- FOLLOW THE BOUNDARY OF P STARTING AT Q,
 WHERE P IS ON THE LEFT. AT SOME POINT R WE
 MUST CROSS L.
- If R ≠ P THEN THE HIGHEST VERTEX MUST BE A SPLIT ONE.

PROPERTIES OF MONOTONE POLYGON

- If R = P WE FOLLOW THE BOUNDARY FROM Q IN OPPOSITE DIRECTION.
- At some point r' we must cross L. $r' \neq p$ as otherwise it contradicts that P is not monotone.
- THIS IMPLIES THAT THE LOWEST ENCOUNTERED VERTEX MUST BE A MERGE ONE.

POLYGON TRIANGULATION

- ALGORITHM: POLYGON
 TRIANGULATION: MONOTONE
 PARTITION
 - Partition into monotone polygons
 - Triangulate each monotone polygon

GETTING RID OF SPLIT AND MERGE VERTICES

- SORT P'S VERTICES FROM TOP TO BOTTOM
 - takes $O(n \log n)$ time.
- SCAN FROM TOP TO BOTTOM TO ENCOUNTER VERTICES.
- DIAGONALS ARE INTRODUCED AT SPLIT AND MERGE VERTICES.

TRAPEZOIDALIZATION

- "DRAW" HORIZONTAL LINE THROUGH EACH VERTEX
 - Consider only the connected segment inside the polygon containing the vertex
 - Two supporting vertices top and bottom
- IF AN "INTERIOR" SUPPORTING VERTEX IS AN INTERIOR CUSP, BREAK IT
 - Connect downward for a upward cusp
 - Connect upward for an downward cusp
 - These connections partitions the polygon into monotone parts.

SWEEP IDEA

FIND DIAGONALS FROM EACH
 MERGE VERTEX DOWN, AND FROM
 EACH SPLIT VERTEX UP

 A SIMPLE POLYGON WITH NO SPLIT OR MERGE VERTICES CAN HAVE AT MOST ONE START AND ONE END VERTEX, SO IT IS Y-MONOTONE

SWEEP IDEA

• FOR VERTEX OF INTEREST v, FIND THE CLOSEST VERTEX (IN THE Y DIRECTION) THAT IS BETWEEN THE EDGES TO THE LEFT AND RIGHT OF v

diagonal will be added when the sweep line reaches v_m

FORMING TRAPEZOIDS

- MAINTAIN A LIST OF SIDES
 INTERSECTED BY THE SWEEPING
 LINE, SORTED BY THE X-COORD
 OF INTERSECTION
- AT EACH EVENT, UPDATE THE LIST
 - Can be done in O(log N) if the list is maintained as a balanced binary tree
- OVERALL: $O(N \log N)$

LINE SWEEP EXAMPLE

POLYGON TRIANGULATION

- ALGORITHM: POLYGON
 TRIANGULATION: MONOTONE
 PARTITION
 - Partition into monotone polygons
 - Triangulate each monotone polygon

TRIANGULATION OF MONOTONE POLYGON

- SORT VERTICES BY Y-COORDINATE BY A MERGE OF THE TWO CHAINS.
- LET $u_1, u_2, ..., u_N$ BE THE SORTED SEQUENCE OF VERTICES, SO $y(u_1) > y(u_2) > \cdots > y(u_N)$.
- THE ALGORITHM PREFORMS OPERATIONS ON A REFLEX CHAIN, WHICH IS STORED AS A STACK
- INITIALIZATION
 - Reflex chain pushes two top vertices
 - Let v be the third highest vertex

DESCRIPTION OF THE PROCESSING TRIANGULATION

- THE ALGORITHM PROCESSES ONE VERTEX AT A TIME IN ORDER OF DECREASING Y COORDINATE, CREATING DIAGONALS OF POLYGON P
 - At each step process I of 3 cases
- EACH DIAGONAL BOUNDS A TRIANGLE, AND LEAVES A POLYGON WITH ONE LESS SIDE STILL TO BE TRIANGULATED

- WHILE V != LOWEST VERTEX DO:
 - Case I: v is on chain opposite reflex chain
 - Case 2: v is adjacent to bottom of reflex chain and v+ is strictly convex
 - Case 3: v is adjacent to bottom of reflex chain and v+ is reflex or flat

- CASE I:V IS ON CHAIN
 OPPOSITE REFLEX CHAIN
 - Draw diagonal from v to second vertex from top of chain
 - Remove top of chain
 - If chain has one element then add v, advance v

- CASE 2:V IS ADJACENT TO
 BOTTOM OF REFLEX CHAIN
 AND V+ IS STRICTLY CONVEX
 - Draw diagonal from v to second vertex from bottom of chain
 - Remove bottom of chain
 - Add v to chain, advance v

- CASE 3:V IS ADJACENT TO
 BOTTOM OF REFLEX CHAIN
 AND V+ IS REFLEX OR FLAT
 - Add v to bottom of reflex chain, advance v

 u_1

Case 1: v is on chain opposite reflex chain

Draw diagonal from v to second vertex from top of chain

 u_8

- Remove top of chain
- If chain has one element then add v, advance v

Case 2: v is adjacent to bottom of reflex chain

AND v+ is strictly convex

- Draw diagonal from v to second vertex from bottom of chain
- Remove bottom of chain
- Add v to chain, advance v

Case 3: v is adjacent to bottom of reflex chain AND v+ is reflex or flat

Add v to bottom of reflex chain, advance v

Case 3

 u_1

Case 1: v is on chain opposite reflex chain

Draw diagonal from v to second vertex from top of chain

 u_8

- Remove top of chain
- If chain has one element then add v, advance v

Case 2: v is adjacent to bottom of reflex chain

AND v+ is strictly convex

- Draw diagonal from v to second vertex from bottom of chain
- Remove bottom of chain
- Add v to chain, advance v

Case 3: v is adjacent to bottom of reflex chain AND v+ is reflex or flat

Add v to bottom of reflex chain, advance v

ANALYSIS OF TRIANGULATING A MONOTONE POLYGON

- THE INITIAL SORT (MERGE) REQUIRES O(N) TIME.
- TRIANGULATION VISITS EACH OF THE N VERTICES AND PLACES ON THE STACK EXACTLY ONCE, EXCEPT WHEN THE WHILE FAILS IN CASE (II).
 - This happens at most once per vertex, so that time can be charged to the current vertex.
- \Rightarrow The algorithm requires O(N) time to triangulate a monotone polygon, where N is the number of vertices of the polygon.

PUTTING IT ALL TOGETHER

- Analysis of Triangulation of Simple Polygon
 - Sort vertices by y coordinates: O(N log N)
 - Perform plane sweep to construct trapezoids: O(N log N)
 - Partition into monotone polygons: O(N)
 - Triangulate each monotone polygon: O(N)
- OVERALL: O(N LOG N)
 - N is the number of vertices of the polygon

<u>Summary</u>

- Triangulation by Ear Removal improves the Diagonal-Based triangulation from $O(n^4)$ to $O(n^2)$
- Partition a simple polygon into monotone parts and triangulation of monotone polygons requires $O(n \log n)$ time complexity

DESCRIPTION OF THE PROCESSING TRIANGULATION OF Y-MONOTONE POLYGONS

- THE ALGORITHM PROCESSES ONE VERTEX AT A TIME IN ORDER OF DECREASING Y COORDINATE, CREATING DIAGONALS OF POLYGON P.
 - The sweep line moves from top to down and stops at each vertex of polygon P

EACH DIAGONAL BOUNDS A TRIANGLE, AND LEAVES A
 POLYGON WITH ONE LESS SIDE STILL TO BE TRIANGULATED

Description of the processing triangulation of ymonotone polygons

- Sort the vertices top-to-down by a merge of the two chains
- Initialize a stack. Push the first two vertices in the stack
- Take the next vertex u, and triangulate as much as possible, top-down, while popping the stack
- Push u onto the stack

TOWARDS LINEAR-TIME TRIANGULATION

Year	Complexity	Authors
1911	$O(n^2)$	Lennes
1978	O(n log n)	Garey et al.
1983	O(n log r), r reflex	Hertel & Melhorn
1984	O(n log s), s sinuosity	Chazelle & Incerpi
1986	O(n log log n)	Tarjan & Van Wyk
1988	$O(n + nt_0)$, t_0 int. triangles	Toussaint
1989	O(n log* n), randomized	Clarkson, Tarjan & Van Wyk
1990	O(n log* n) bounded integer coordinates	Kirkpatrick, Klawe, Tarjan
1990	O(n)	Chazelle
1991	O(n log*n), randomized	Seidel

LINEAR-TIME TRIANGULATION

- CHAZELLE'S ALGORITHM (HIGH-LEVEL SKETCH)
 - Computes visibility map
 - Algorithm is like MergeSort (divide-and-conquer)
 - Partition polygon of n vertices into n/2 vertex chains
 - Merge visibility maps of subchains to get one for chain
 - Improve this by dividing process into 2 phases:
 - I. Coarse approximations of visibility maps for linear-time merge
 - 2. Refine coarse map into detailed map in linear time

- POLYGON PARTITIONING IS AN IMPORTANT PREPROCESSING STEP FOR MANY GEOMETRIC ALGORITHMS
- PARTITIONING A POLYGON MEANS COMPLETELY DIVIDING THE INTERIOR INTO NONOVERLAPPING PIECES.
- COVERING A POLYGON MEANS THAT OUR DECOMPOSITION IS PERMITTED TO CONTAIN MUTUALLY OVERLAPPING PIECES.
- AN ISSUE ASSOCIATED WITH POLYGON DECOMPOSITION IS WHETHER WE ARE ALLOWED TO ADD <u>STEINER VERTICES</u> (EITHER BY SPLITTING EDGES OR ADDING INTERIOR POINTS) OR WHETHER WE ARE RESTRICTED TO ADDING CHORDS BETWEEN TWO EXISTING VERTICES.

- COMPETING GOALS:
 - minimize number of convex pieces
 - minimize partitioning time
- ADD (STEINER) POINTS OR JUST USE DIAGONALS AND NOT ADD POINTS?

FIGURE 2.10 r + 1 convex pieces: r = 4; 5 pieces.

Adding segments with Steiner points. *r* = number of reflex vertices

Adding only diagonals.

• THEOREM (CHAZELLE): LET F BE THE FEWEST NUMBER OF CONVEX PIECES INTO WHICH A POLYGON MAY BE PARTITIONED. FOR A POLYGON OF R REFLEX VERTICES:

Lower bound:

Must eliminate all reflex vertices. Single segment resolves at most 2 reflex angles.

<u>Upper bound</u>:

Bisect each reflex angle.

- HERTEL-MEHLHORN'S ALGORITHM (1983):
 - Start with any triangulation.
 - Iteratively remove nonessential diagonals
 - Essential diagonal d are those that creates non-convex piece
 - Can be done in O(n) time with the use of appropriate data structures
 - The only issue is how far from the optimum might it be

ALGORITHMS FOR OPTIMAL CONVEX PARTITIONING OF A POLYGON

- OPTIMAL CONVEX PARTITION USING DIAGONALS
 - Greene (1983): O(n⁴) time with dynamic programming
 Keil (1985): O(n³ log n) time with dynamic programming
- OPTIMAL CONVEX PARTITION USING ARBITRARY SEGMENTS
 - Chazelle (1980) : $O(n^3)$ time
- APPROXIMATE CONVEX PARTITION REMOVING **INESSENTIAL DIAGONALS**
 - Hertel/ Mehlhorn: O(n) time after triangulation
- APPROXIMATE CONVEX PARTITION USING **SWEEP-LINE**
 - Greene (1983): $O(n \lg n)$, starts with y-monotone partition

FIGURE 2.13 An optimal convex partition. Segment s does not touch ∂P .

CONVEX POLYGON PARTITIONING

- Y-MONOTONE PARTITION:
 - de Berg et al.: $O(n \lg n)$ time (see earlier slides)
- OPTIMAL CONVEX PARTITION USING DIAGONALS
 - Greene (1983): $O(n^4)$ time with dynamic programming
- APPROXIMATE CONVEX PARTITION REMOVING INESSENTIAL DIAGONALS
 - Hertel/ Melhorn: O(n) time after triangulation
- APPROXIMATE CONVEX PARTITION USING SWEEP-LINE
 - Greene (1983): $O(n \lg n)$, starts with y-monotone partition

