

6

SEQUENCE LISTING

<110> Castle, Linda A.
 Siehl, Dan
 Giver, Lorraine
 Minshull, Jeremy
 Ivy, Christina
 Chen, Yong Hong
 Duck, Nicholas B.

<120> NOVEL GLYPHOSATE N-ACETYLTRANSFERASE
 (GAT) GENES

<130> 02-107010US

<140> US 10/004,357
<141> 2001-10-29

<150> US 60/244,385
<151> 2000-10-30

<160> 515

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 441
<212> DNA
<213> *Bacillus licheniformis*

<400> 1
atgattgaag tcaaaccataa acgcggaa gatacgtatg agatcaggca ccgcattctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca taaagccgaa 180
cattcagagc ttgaaggcga agaacagtat cagctgagag ggatggcgac gcttgaagga 240
taccgtgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct ttttcggaaa 300
aagggggcag acctttatg gtgcaatgcc aggacatctg tgagcggcta ctataaaaag 360
ctcggcttca gccaacaggc cgaagtctac gacataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 2
<211> 441
<212> DNA
<213> Unknown

<220>
<223> Unidentified microorgansim derived from soil sample

<400> 2
atgattgaag tcaaaccataa acgcggaa gatacgtatg agatcaggca ccgcattctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggcg gatattatcg ggacaggctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct ttttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg tgagcggta ctataaaaaag 360
ctcggcttca gccaacagg cggggctac gatataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacata a 441

<210> 3
<211> 441

<212> DNA
<213> Unknown

<220>
<223> Unidentified microorgansim derived from soil sample

<400> 3
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca taatgccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcccattg ccgaagagct tcttcgaaaa 300
aaaggcgcgg acctttatg gtgcaaacgcc aggatatctg tgagcggcta ctatgaaaag 360
ctcggcttca gccaacaagg cgggatctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattggcata a 441

<210> 4
<211> 441
<212> DNA
<213> Unknown

<220>
<223> Unidentified microorgansim derived from soil sample

<400> 4
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca taatgccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcccattg ccgaagagct tcttcgaaaa 300
aaaggcgcgg acctttatg gtgcaaacgcc aggatatctg tgagcggcta ctatgaaaag 360
ctcggcttca gccaacaagg cgggatctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattggcata a 441

<210> 5
<211> 441
<212> DNA
<213> Unknown

<220>
<223> Unidentified microorgansim derived from soil sample

<400> 5
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttcccttca taaagccgaa 180
cattcagagc ttgagggcga agaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg aagcacgctc atccgcccattg ccgaagagct tcttcggaaaa 300
aagggggcag acctttatg gtgcaatgcc aggacatctg tgagcggcta ctatgaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 6
<211> 146
<212> PRT
<213> Bacillus licheniformis

<400> 6
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu

20	25	30	
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly			
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu			
50	55	60	
Glu Gly Glu Glu Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly			
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu			
85	90	95	
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr			
100	105	110	
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu			
115	120	125	
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys			
130	135	140	
Leu Thr			
145			

<210> 7
<211> 146
<212> PRT
<213> Unknown

<220>
<223> Unidentified microorganism derived from soil sample

```

<400> 7
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
   1          5          10          15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
   20         25          30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Asp
   35         40          45
Arg Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
   50         55          60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
   65         70          75          80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
   85         90          95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
  100        105         110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
  115        120         125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
  130        135         140
Leu Thr
  145

```

<210> 8
<211> 146
<212> PRT
<213> Unknown

<220>
<223> Unidentified microorganism derived from soil sample

<400> 8
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15

His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Asn Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Ile Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 9
<211> 146
<212> PRT
<213> Unknown

<220>
<223> Unidentified microorgansim derived from soil sample

<400> 9
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Asn Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Leu Ser Glu Gln Gly Gly
115 120 125
Ile Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 10
<211> 146
<212> PRT
<213> Unknown

<220>
<223> Unidentified microorgansim derived from soil sample

<400> 10
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg

1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Glu Glu Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 11
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 11
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgcttag gggtaacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagga 240
taccgtgagc aaaaagcgaa aagcacgctc atccgcccattt cccgaagagct tcttcggaaa 300
aaaggcgccgg accctttatg gtgcaacgccc aggacgtctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacacaggc cgaagtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 12
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 12
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgcttag gggtaacgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aagacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcgaa cagtacgctt atccgcccattt cccgaagagct tcttcggaaa 300
aaaggcgccgg accctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacacaggc cgaagtctac gacataccgc cgactgggcc ccataatgg 420
atgtataaga aattgacata a 441

<210> 13
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 13
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg aagcacgcctt atccgcccatttgc cccaaagagct tttcgaaaa 300
aaaggcgcgg accttttatg gtgcaacgcgc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacacaggc cgaagtctac gacacaccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgtat a 441

<210> 14
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 14
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtcgcctt atccgcccatttgc cccaaagagct tttcgaaaa 300
aaaggcgcgg accttttatg gtgcaacgcgc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacacaggc cgaagtctac gacacaccgc cgactggcc ccatatgg 420
atgtataaga aattgacgtat a 441

<210> 15
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 15
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtcgcctt atccgcccatttgc cccaaagagct tttcgaaaa 300
aaaggcgcgg accttttatg gtgcaacgcgc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacacaggc cgaagtctac gacacaccgc cggtcggacc ccatatgg 420
atgtataaga aattgacgtat a 441

<210> 16
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 16
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgttt 120

cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgcgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 17
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<221> misc_feature
<222> 54
<223> n = A,T,C or G

<400> 17
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgnattctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgcctgg gggcacgctt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cgaagtctac gacataaccgc cgaccggacc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 18
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 18
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgcctag gggtacgctt 120
cacctcggtg ggtattaccg gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gacataaccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 19
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 19
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgcctgg gggcacgctt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300

aagggcgcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggttca gccaacaagg cgaagtctac gacacaccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 20
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 20
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaaccg atttgcgtt gggcacgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttccccc 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcggc aaaaagcggg aagcacgctt atccgcattt 300
aagggcgcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggttca gccaacaagg cgaagtctac gacacaccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 21
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 21
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaactg atttgcgtt tggcacgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttccccc 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcggc aaaaagcggg aagcacgctt atccgcattt 300
aaggggcgcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggttca gccaacaagg cggggcttac gacacaccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 22
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 22
atgattgaag tcaaaccaat aaacgcggag gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaaccg atttgcgtt gggcacgtt 120
cacctcggtg gatattatcg gggcaagctg gtcagcatcg cttccccc 180
catccagagc ttgaaggccg aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcggc aaaaagcggg cagtcgtt atccgcattt 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggttca gccaacaagg cgaagtctac gacacaccgc cgaccggacc ccataatttg 420
atgtataaga aattgacata a 441

<210> 23
<211> 441
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 23

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaacccg atttgctcg gggcacgctt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg cagtacgctt atccgcccattg ccgaagagact tttcgaaaa 300
aagggggcag accttttatg gtgcaacgcg aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 24

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 24

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaatc agccgcttga agcatgtatg tatgaaacccg atttgctcg gggcacgctt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
cacccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgcccattg ccgaagagact tttcgaaaa 300
aagggggcag accttttatg gtgcaacgcg aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacacagg cgaagtctac gacacaccgc cggtcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 25

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 25

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaacccg atttgctcg gggtacgctt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg cagtacgctt atccgcccattg ccgaagagact tttcgaaaa 300
aagggggcag accttttatg gtgcaacgcg aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacacagg cgaagtctac gacacaccgc cggtcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 26

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 26

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60

cggccgaatc agccgctgga agcatgcaag tatgaaaccg atttgcttag ggggcgttt 120
cacctcggtg gatattacccg gggcaagctg atcagcatacg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg aagcacgctc atccgcccattg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcgaaacaggg cgaagtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 27
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 27
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttcc 60
cgccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattacccg gggcaagctg gtcagcatacg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg aagtacgctt atccgcccattg ccgaagagct tcttcggaaa 300
aaggggccag acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcgaaacaggg cgaagtctac gacataccgc cgaccggacc ccataatgg 420
atgtataaga aattgacgta a 441

<210> 28
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 28
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttcc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattacccg gggcaagctg gtcagcatacg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtaacgctt atccgcccattg ccgaagagct tcttcggaaa 300
aaggggccag acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcgaaacaggg cgaagtctac gacataccgc cgaccggacc ccataatgg 420
atgtataaga aattgacgta a 441

<210> 29
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 29
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttcc 60
cgccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattacccg gggcaagctg gtcagcatacg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg cagtaacgctt atccgcccattg ccgaagagct tcttcggaaa 300
aaggggccag acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcgaaacaggg cgaagtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 30
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 30
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccc gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagga 240
taccgcgagc aaaaagcggg aagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggtttca gcgacaagg cgggtctac gatataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 31
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 31
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aagggggcag accctttatg gtgcaacgcc aggacatctg tgagcgggta ctataaaaag 360
ctcggtttca gcgacaagg cgggtctac gatataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacata a 441

<210> 32
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 32
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcgtgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aagggggcag accctttatg gtgcaacgcc aggacatctg cgagcggcta ctatgaaaag 360
ctcggtttca gcgacaagg cgggtctac gatataccgc cgatcggacc tcataaaaa 420
atgtataaga aattggcata a 441

<210> 33
<211> 441
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 33

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaatc agccgcttgg a gcatgcaag tatgaaaccg atttgcttag gggtcgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
caccaggagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtcgctt atccgcatg ccgaagcgct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc caactggccc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 34

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 34

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaatc agccgcttgg a gcatgcaag tatgaaaccg atttgcttag gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccaggagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg a a g c a c g c t c a t c g c a g a g g t t c t t c g g a a a 300
a a g g g g c a g a c t t t a t g g t g c a a c g c c a g g a c a t c t g c g a g c g g g t a c t a a a a a g 360
ctcggcttca gcaacaggg cgaagtccac gacataccgc cgaccggacc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 35

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 35

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttgg a gcatgcaag tatgaaaccg atttgcttag gggtacgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccaggagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtcgctt atccgcatg ccgaagaggt tcttcggaaa 300
a a g g g g c a g a c t t t a t g g t g c a a c g c c a g g a c a t c t g c g a g c g g g t a c t a a a a g 360
ctcggcttca gcaacaggg cgaagtctac gacacaccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 36

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 36

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttgg a gcatgcaag tatgaaaccg atttgcttag gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccaggagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240

taccgtgagc aaaaagcggg aagtacgctc atccgccatg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gccaacaagg cgggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 37
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 37
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgctgga agcatgcaag tatgaaacccg atttgcctgg gggcacgttt 120
cacctcggtg gatattatcg gggcaagctg atcagcatcg cttcccccata tcaagccgaa 180
catccagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gccaacaagg cgggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 38
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 38
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgctgga agcatgcaag tatgaaacccg atttgcctgg gggcacgttt 120
cacctcggtg gatattatcg gggcaagctg gtcagcatcg cttcccccata tcaagccgaa 180
catccagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtcgtt atccgcctatg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gccaacaagg cgggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 39
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 39
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgctgga agcatgtatg tatgaaacccg atttgcctgg gggcacgttt 120
cacctcggtg gatattatcg gggcaagctg atcagcatcg cttcccccata tcaagccgaa 180
catccagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gccaacaagg cgggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 40
<211> 441

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 40
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagga 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tttcgaaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cgaccggacc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 41
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 41
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggacacgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttca ccaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtcgcatt atccgcctatg ccgaagcgct tttcgaaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cgaccggacc ccataatttg 420
atgtataaga aattgacata a 441

<210> 42
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 42
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaactg atttgctcg ggacacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg cagtcgcatt atccgcctatg ccgaagagct tttcgaaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gccaacaagg cggggcttac gacataccgc cgaccggacc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 43
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 43

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgcgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacacaccgc cgatcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 44

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 44

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttccttca taaagccgaa 180
cattcagagc ttgagggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaatgcc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cgggatctac gacataaccgc cgatcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 45

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 45

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttccttca taaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagga 240
taccgtgagc aaaaagcggg aagcacactc atccgccatg ccgaagagct tcttcggaaa 300
aaggcgcag acctttatg gtgcaacgcc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacataaccgc cgatcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 46

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 46

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cgggatctac gacataaccgc cgatcggacc tcataat 420

atgtataaga aattgacgta a 441

<210> 47
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 47
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaacccg atttgctcg gggtacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagtacgctt atccgcctg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacacaccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 48
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 48
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaacccg atttgctcg aggacacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg aagcacgctc atccgcctg ccgaagagct tcttcggaaa 300
aaggggcag accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacacaccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 49
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 49
atgatcgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaacccg atttgctcg gagtgcggttt 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg cttcccttca ccaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgaggg ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagtacgctt atccgcctg ccgaagagct tcttcggaaa 300
aaggggcag accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacacaccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 50
<211> 441
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 50

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga a gcatgcaag tatgaaacccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagac ttgaaggcca aaaacagtat cagctgagag ggtatggcgac actcgaagga 240
taccgtggc aaaaagcggg cagtcgcctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttgtg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacacagg cgaagtctac gacataccgc cgactgggccc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 51

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 51

atgattgaag tcaaaccatat aaatgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaatc agccgcttga a gcatgcaag tatgaaacccg atttgctcg gggtcgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagaac ttgaaggcca aaaacagtat cagctgagag ggtatggcgac acttgaagga 240
taccgtggc aaaaagcggg tagtacgcctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttgtg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacacaagg cgaagtctac gacataccgc cgactgggccc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 52

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 52

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga a gcatgcaag tatgaaacccg attcgcctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccctttaa tcaagccgaa 180
catccagac ttgaagggtca aaaacagtat cagctgagag ggtatggcgac acttgaagga 240
taccgtggc aaaaagcggg cagtcgcctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgccc aggacgtctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacacaagg cggggcttac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 53

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 53

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga a gcatgcaag tatgaaacccg atctgcgtgg gggcacgttt 120
caccttaggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180

catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagtacgctt atccgcccattt ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 54
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 54
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cggccgaatc agccgctaga agcatgcaag tatgaaaccg atttgcttag gggtgcgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcattcg cttcccttca tcaagctgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagtacgctc atccgcccattt ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 55
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 55
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttgg aagcatgcaag tatgaaaccg atttgcttag gggtgcgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcattcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgcctc atccgcccattt ccgaagagct tcttcggaaa 300
aagggcgcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 56
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 56
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cggccgaatc agccgcttgg aagcatgcaag tatgaaaccg atttgcttag gggtgcgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcattcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgtgagc aaaaagcggg cagtcgcattt atccgcccattt ccgaagagct tcttcggaaa 300
aagggcgcgg acctttgtg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataattttg 420
atgtataaga aattgacata a 441

<210> 57

<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 57
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgtt 120
cacctcggcg gatattaccg gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg cagtcgcattt atccgcctg ccgaagcgct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcg aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacacaccgc cgaccggacc ccatattttg 420
atgtataaga aattgacgta a 441

<210> 58
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 58
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtaag tatgaaaccg atttgctcg gggcacgtt 120
cacctcggcg gatattaccg gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagctgg cagtcgcattt atccgcctg ccgaagcgct tcttcggaaa 300
aagggcgcgg acctttgtg gtgcaacgcg aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gggacaagg cgggtctac gacataccgc ctgtcggacc tcatattttg 420
atgtataaga aattgacgta a 441

<210> 59
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 59
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgtt 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg cagtcgcattt atccgcctg ccgaagagct tcttcggaaa 300
aagggcgcgg acctttgtg gtgcaacgcg aggacgtctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgactgggcc ccatattttg 420
atgtataaga aattgacgta a 441

<210> 60
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 60
atgattgaag tcaaaccaat aaatgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcctttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagga 240
taccgtgagc aaaaagcggg cagtagctt atccgcatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacgtctg cgagcgggta ctataaaaag 360
ctcggttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 61
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 61
atgattgaag tcaaaccaat aaatgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg cagtagctt atccgcatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacaagg cgggtctac gacataccgc cgactggcc ccatatgg 420
atgtataaga aattgacgta a 441

<210> 62
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 62
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
aggccgaatc agccgttga agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttccttca tcaggccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg aagcacgctt atccgcatg ccgaagcgct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacaagg cgggtctac gacataccgc cggccggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 63
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 63
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaaccg atttgctcg gagcacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg aagcacgctc atccgcatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacgtctg cgagcggcta ctataaaaag 360

ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 64
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 64
atgattgaag tcaaaccat aaacgcggaa gatacgatg agatcaggca ccgcatttc 60
cgccgcgaaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacggtt 120
cacctcggtg gatattaccg gggcaagcta gtcagcatcg ctccctttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggtt cagtcgctt atccgcattt ccgaagagct tcttcggaaa 300
aaaggcgccgg accctttgtt gtgcaacgc 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 65
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 65
atgattgaag tcaaaccat aaacgcggaa gatacgatg agatcaggca ccgcatttc 60
cgccgcgaaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacggtt 120
cacctcggtg gatattaccg gggcaagctt atcagcatcg ctccctttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggtt cagtcgctt atccgcattt ccgaagagct tcttcggaaa 300
aaaggcgccgg acccttttatg gtgcaacgc 360
ctcggcttca gcbaacaagg cggggcttac gacatgccgc cggtcggacc tcataatgg 420
atgtataaga agttgacgta a 441

<210> 66
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 66
atgattgaag tcaaaccat aaacgcggaa gatacgatg agatcaggca ccgcatttc 60
cgaccgcgaaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg aggacacggtt 120
cacctcggtg gatattaccg gggcaagctt atcagcatcg ctccctttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggtt cagtcgctt atccgcattt ccgaagacgct tcttcggaaa 300
aaggggcgac acccttttatg gtgcaacgc 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 67
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 67
atgattgaag tcaaaccaat aaacgcggag gatacgtatg agatcaggca ccgcatttc 60
cgcccgaaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cctccttca tcaagccgaa 180
catccagagc ttgaaggcct aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg aagtacgctc atccgcatg ccgaagagct tcttcggaaa 300
aaggggccag acctcttatg gtgcaacgcc aggacgtctg cgagcgggta ctataaaaag 360
ctcggtttca gcbaacaggg cgaagtctac gacacaccgc cgaccggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 68
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 68
atgattgaag tcaaaccaat aaacgcggag gatacgtatg agatcaggca ccgcatttc 60
cgcccgaaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cctccttca tcaagccgaa 180
catccagagc ttgaaggcct aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg aagtacgctc atccgcatg ccgaagagct tcttcggaaa 300
aaggggccag acctcttatg gtgcaacgcc aggacgtctg cgagcgggta ctataaaaag 360
ctcggtttca gcbaacaggg cgaagtctac gacacaccgc cgaccggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 69
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 69
atgattgaag tcaaaccaat aaacgcggag gatacgtatg agatcaggca ccgcatttc 60
cgcccgaaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagttg gtcagcatcg cctccttca tcaagccaaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg tagtacgctt atccgcatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacgtctg cgagcgggta ctataaaaag 360
ctcggtttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 70
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 70
atgattgaag tcaaaccaat aaacgcagaa gatacgtatg agatcaggca ccgcatttc 60
cgcccgaaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120

cacctcggtg gatattaccc gggcaagctg atcagcatcg cttcccttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagttgagag ggatggcgac acttgaagag 240
taccgtgagc aaaaagcggg aagtacgctt atccgcctatg ccgaagcgct tcttcggaaa 300
aaggggggcag acctcttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 71
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 71
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattaccc gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttgtt gtgcaacgcc aggacatctg cgagcgggta ctataaaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 72
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 72
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattaccc gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgtgagc aaaaagcggg cagtcgctt atccgcctatg ctgaagcgct tcttcggaaa 300
aaaggcgcgg accttttgtt gtgcaacgcc aggacatctg caagcgggta ctataaaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cgactgggcc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 73
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 73
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtgcgttt 120
cacctcggtg gatattaccc gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg aagtacgctc atccgcctatg ccgaagagct tcttcggaaa 300
aaggggggcag acctcttatg gtgcaacgcc aggacaactg cgagcgggta ctataaaaaag 360
ctcggcttca gcbaacaggg tgaagtctt gacacaccgc cgaccggacc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 74
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 74
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
caccttaggtg gatattaccg gggcaagctg gtcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgcccatttccgaa 300
aagggggcag accttttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cggtcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 75
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 75
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttggaa agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
caccttgggtg gatattaccg gggcaagctg gtcagcatcg cctccctttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagga 240
taccgtgagc aaaaagcggg cagtaacgctt atccgcccatttccgaa 300
aagggggcag accttttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgaccggacc ccataat 420
atgtataaga aattgacgta a 441

<210> 76
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 76
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgcgaatc agccgcttggaa agcatgcaag tatgaaaccg atttgctcg gggtgcgtt 120
caccttgggtg gatattaccg gggcaagctg atcagcatcg cctcccttca tcaagccgaa 180
cacccttgggtg gatattaccg gggcaagctg atcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtaacgctt atccgcccatttccgaa 300
aaggggcggg accttttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc caactgggcc ccataat 420
atgtataaga aattgacgta a 441

<210> 77
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 77
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacggtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagcgct tcttcggaaa 300
aaggggcag acctttagt gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgaccggacc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 78
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 78
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgtatg tatgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aagggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacacaccgc cggtcggacc tcataatttg 420
atgtataaga agttgacgta a 441

<210> 79
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 79
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacggtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat caactgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aagggcgcgg acctttatg gtgcaacgcc aggacgtctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg caaagtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 80
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 80
atgattgaag tcaaaccaat aaacgcggag gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacggtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300

aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggttca gccaacaggg cgaagtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacata a 441

<210> 81
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 81
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgcgtt ggggcgtt 120
caccttggcgatattaccggggcaagctgatcagcatgtttcccttca tcaagccgaa 180
catccagagcttgaaggccaaaacagtatcagctgagggatggcgacttgaaggg 240
taccgtgagcaaaaagcgggcagcacgctt atccgccttgcgaagagcttccggaaa 300
aaaggcgcggacctttatgtgtcaacgcaggacatctgcgagcggta ctataaaaag 360
ctcggttca gccaacaggg cgaagtctac gacataccgc cggtcggacc tcataatttg 420
atgtataacgaaattgacgtta 441

<210> 82
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 82
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgcgtt gggtacgtt 120
caccttggcgatattaccggggcaagctgtcagcatgcctcccttca tcaagccgaa 180
catccagagcttgaaggccaaaacagtatcagctgagggatggcgacttgaaggg 240
taccgtgagcaaaaagcgggcagcacgctt atccgccttgcgaagagcttccggaaa 300
aaaggcgcggacctttatgtgtcaacgcaggacatctgcgagcggta ctataaaaag 360
ctcggttca gccaacaggg cgaagtctac gacataccgc cggtcggacc tcataatttg 420
atgtataacgaaattgacgtta 441

<210> 83
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 83
atgattgaag tcaaaccat aaacgcggaa gatacgtata agatcaggca ccgcataactc 60
cgccgaatc agccgcttga agcatgtatgtatgaaaccg atttgcgtt gggcacgtt 120
caccttggcgatattaccggggcaagctgtcagcatgcctcccttca tcaagccgaa 180
catccagagcttgaaggccaaaacagtatcagctgagggatggcgacttgaaggg 240
taccgtgagcaaaaagcgggcagcacgctt atccgccttgcgaagagcttccggaaag 300
aaaggcgcggacctttatgtgtcaacgcaggacatctgcgagcggta ctataaaaag 360
ctcggttca gccaacaggg cgaagtctac gacataccgc cgaccggacc ccataatttg 420
atgtataacgaaattgacgtta 441

<210> 84
<211> 441
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 84

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgcatac agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgcg aggacatctg cgagcgggtta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgactgggcc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 85

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 85

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgcatac agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cacccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgc tc atccgcctatg ccgaagagct tcttcggaaa 300
aaggggcag accttttatg gtgcaacgcg aggacatctg cgagcgggtta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgaccggacc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 86

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 86

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgcatac agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtgcgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgc tc atccgcctatg ccgaagagct tcttcggaaa 300
aaggggcag accttttatg gtgcaacgcg aggacatctg cgagcgggtta ctataaaaag 360
ctcggcttca gcbaacaggg caaagtctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga agttgacgta a 441

<210> 87

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 87

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60

cggccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcgcg gatattacccg gggcaagctg atcagcattcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaagag 240
taccgcgagc aaaaagcggg cagtcgctt atccgcccattg ccgaagagct tcttcggaga 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc ctgtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 88
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 88
atgatcgaa tcaaaccat aaacgcggaa gatacgatg agatcaggca ccgcatttctc 60
cggccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg ggtactacccg gggcaagctg atcagcattcg cttcccttca taaagccgaa 180
cattcagagc ttgagggcga agaacatgtat cagctgagag ggatggcgac gcttgaagga 240
taccgtgagc aaaaagcggg cagtcgctt atccgctatg ccgaagagct tcttcgaaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 89
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 89
atgatttgcggaa tcaaaccat aaacgcggaa gatacgatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgctt 120
cacctcggtg gatattacca gggcaagctg atcagcattcg cttcccttca taaagccgaa 180
cattcaggccg ttgagggcga agaacatgtat cagctgagag ggatggcgac gctcgaaggg 240
taccgcgagc aaaaagcggg cagtcgctt atccgcccattg ccgaagagct tcttcgaaaa 300
aaaggcgcgg acctttatg gtgcaatgcc aggacatctg tgagcggcta ctatgaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 90
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 90
atgatttgcggaa tcaaaccat aaacgcggaa gatacgatg agatcaggca ccgcatttctc 60
cggccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcgcg gatattacca gggcaagctg atcagcattcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctc atccgcccattg ccgaagagct tcttcggaaaa 300
aaggggcag acctttatg gtgcaatgcc aggacatctg tgagcgggta ctatgaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 91
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 91
atgattgaag tcaaaccatat aacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaaatc agccgctgga agcatgtatg tatgaaaaccg atttgctcg gggtgcgttt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcatcg ccgaagagct tcttcgaaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg tgagcggta ctatgaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 92
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 92
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaaatc agccgctgga agcatgcaag tatgaaaaccg atttgctcg ggacgttt 120
cacctcggtg gatattacccg gggcaagctg atcagcatcg cttcccttca taaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcaac gcttgaaggg 240
taccgtgagc aaaaagcggg aagtacgctt atccgcatcg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcggcta ctatgaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattggcata a 441

<210> 93
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 93
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaaatc agccgctgga agcatgcaag tatgaaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattacccg gggcaagctg atctgcacatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcatcg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaatgcc aggacatctg tgagaggcta ctatgaaaag 360
ctcggcttca gcaacaagg cgggtctac gatataccgc cgatcggacc tcataattttg 420
atgtataaga aattggcgtta a 441

<210> 94
<211> 441
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 94

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ctgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttccttca taaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctc atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaatgcc aggacatctg tgagcggcta ctataaaaag 360
ctcggcttca gcbaacagg cgaaatctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 95

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 95

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttccttca taatgccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300
aaggggtag acctttatg gtgcaacgccc aggacatctg tgagcggcta ctataaaaag 360
ctcggcttca gcbaacaagg cgggatctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattggcata a 441

<210> 96

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 96

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg, gatattaccc gggcaagctg atcagcatcg cttccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcag acctttatg gtgcaacgccc aggacatctg tgagcggcta ctatgaaaag 360
ctcggcttca gcbaacagg cgaaatctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 97

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 97

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240

taccgtgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgca agccgttatg gtgcaacgcc aggacatctg tgagcggta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgatcggacc tcataaaaaag 420
atgtataaga aattgacgta a 441

<210> 98
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 98
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgttga ggcgttatg tatgaaaccg atttgcgtt gggcacgttt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttcccttca taaagccgaa 180
cattcagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgcctatg ccgaagagct tctccgaaaa 300
aaaggcgccg acctttatg gtgcaatgcc aggacatctg cgagcggcta ctatgaaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccac cgatcggacc tcataaaaaag 420
atgtataaga aattggcata a 441

<210> 99
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 99
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgttga agcatgcaag tatgaaaccg atttgcgtt gggcacgttt 120
cacctcggtg gatattatcg ggacaggctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgccg acctttatg gtgcaacgcc aggacatctg tgagcggta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgatcggacc tcataaaaaag 420
atgtataaga aactgacgta a 441

<210> 100
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 100
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgttga agcatgtatg tatgaaaccg atttgcgtt gggcacgttt 120
cacctcggtg gatattaccc gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagttt cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgccg acctttatg gtgcaacgcc aggatctg tgagcggcta ctataaaaag 360
ctcggcttca gcaacaagg cgggtctac gacataccgc cgatcggacc tcataaaaaag 420
atgtataaga aattggcata a 441

<210> 101
<211> 441

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 101
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga ggcatgcaag tatgaaaccg atttgctcg ggacacgttt 120
catctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca taatgccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagga 240
taccgcgagc aaaaagcggg cagtaacgtt atccgcctg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaatgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacacagg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattggcata a 441

<210> 102
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 102
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgtatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattatcg ggacaggctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg cagtaacgtt atccgcctg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacacagg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 103
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 103
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattacca gggcaagctg atcagcaccg cttcccttca tcaagccgga 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc gaaaagcggg aagtacgctc atccgcctg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgc aggatatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaagg cgggtctac gatataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 104
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 104

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tttgaaaccg atttgctcg gggtgcgtt 120
cacctcggtg gatattacca gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg cagtcgctt atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcag acctttatg gtgcaacgcc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 105
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 105
atgattgaag tcagaccaat aaacgcggaa gatacgtatg agatcaggca ccgtatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattaccc gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtcgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcgcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagcctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 106
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 106
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccc gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg cagtcgctt atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gacataccgc cgatcggacc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 107
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 107
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattaccc gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcgcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420

atgtataaga aattgacgta a

441

<210> 108

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 108

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgtattctc 60
cgccgcgaatc agccgcttga agcatgtatg tacgaaaccg atttgctcgg ggggcgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctcccttca tccagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tttcgaaaa 300
aaaggcgcgg accctttatg gtgcaacgcc aggatatctg cgagcgggta ctatgaaaag 360
ctcggcttca gcaaacaggg cgaagtctac gacataccgc cgatcggacc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 109

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 109

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tttcgaaaa 300
aaaggcgcgg accctttatg gtgcaacgcc aggacatctg cgagcggcta ctatgaaaag 360
ctcggcttca gcaaacaggg cgaagtctac gacataccgc cgatcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 110

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 110

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgtattctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg aagtacgctt atccgccatg ccgaagagct tttcgaaaa 300
aaggggcag accctttatg gtgcaacgcc aggatatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 111

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 111

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggacacgttt 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg ctccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtggc aaaaagcggg cagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcg aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 112

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 112

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgtattctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggacacgttt 120
cacctcggcg gatattatca ggacaggctg atcagcatcg ctccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcg aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 113

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 113

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggtacgttt 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg ctccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcg aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacaggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 114

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 114

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggacacgttt 120
cacctcggcg gatattatcg gggcaagctg atcagcatcg ctccttca tcaagccgaa 180

cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagag 240
taccgcgagc aaaaagcggg cagtacgctt atccgcccattt ccgaagagct tcttcggaaa 300
aaaggcgcag accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 115
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 115
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttcc 60
cggccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg ggacacgttt 120
cacctcgggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg cagtacgctt atccgcccattt ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttgtg gtgcaacgcc aggacatctg cgagcgggta ctataaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 116
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 116
ttacgtcaat ttcttataaca tcaaaatatg aggtccgate ggccgttatgt cgttagacttc 60
gccctgttcg ctgaagccga gcttttata gtacccgctc gcagatgtcc tggcgttgca 120
ccataaaaagg tccgcgcctt tttccgaaag aagctcttcg gcatggcgaa tgagcgtgt 180
tccccgtttt tgctcgggtt acccttcaag cgtccatc cctctcagct gatactgttt 240
ttggccttca agctctgaat gttcggcttg atgaaaggag gcgatgctga tcagcttgcc 300
ccggtaatataa ccaccggaggta gaaacgtgcc cccgagcaaa tcagtttcat acttgcattgc 360
ttccagcggc tgattcggcc ggagaatgcg gtgcctgatc tcatacgtat cttccgcgtt 420
tattggttt gttcaatca t 441

<210> 117
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 117
atgattgaag tcaaaccataa aaacgcggaa gatacgtatg agatcaggca ccgcatttcc 60
cggccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacgttt 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagg 240
taccgcgagc aaaaagcggg cagtacgctt atccgcccattt ccgaagagct tcttcggaaa 300
aaggggccag accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggcttac gatataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 118

<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 118
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgag 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagag 240
taccgcgagc aaaaagcggg cagtcgctt atccgcctg ccgaagagct tcttcggaaa 300
aaggggcag accttttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataatttg 420
atgtataaga aattgacata a 441

<210> 119
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 119
atgattgaag tcaatccaaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtct 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg cttcccttca taatgccgaa 180
cattcagagc ttgatggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctg ccgaagagct tcttcggaaa 300
aagggcgcag accttttatg gtgcaacgcc aggacatctg tgagcggcta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataattcg 420
atgtataaga aattgacgta a 441

<210> 120
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 120
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg gggcacgttt 120
cacctcggcg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctg ccgaagagct tcttcggaaa 300
aaggggcag accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gatataccgc cgatcggacc tcataatttg 420
atgtataaga aattggcata a 441

<210> 121
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 121
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaaccg atttgctcg 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccccc 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc taaaagcggg aagtacgctt atccgc 300
aaaggcgcgg acctttatg gtgcaacgccc 360
ctcggttca gcaacaggc cgaagtctac gacataccgc cgatcggacc tcataaaaaag 420
atgtataaga aattgacgta a 441

<210> 122
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 122
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaaccg atttgctcg 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccccc 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgc 300
aaaggcgcgg acctttatg gtgcaacgccc 360
ctcggttca gcaacaagg cgggtctac gatataccgc cgatcggacc tcataaaaaag 420
atgtataaga aattgacgta a 441

<210> 123
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 123
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaaccg atttgctcg 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccccc 180
catccagagc ttgaaggcca aaaacagtac cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgc 300
aaggggcag acctttatg gtgcaacgccc 360
ctcggttca gcaacaagg cgggtctac ggcataccgc cgatcggacc tcataaaaaag 420
atgtataaga aattgacata a 441

<210> 124
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 124
atgattgaag ccaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaactg atttgctcg 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccccc 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagcacgctc atccgc 300
aaaggcgcgg acctttatg gtgcaacgccc 360

ctcggcttca gctaaccaggcgaa gatacgtatg agatcaggca ccgcatttc 420
atgtataaga aattgacgta a 441

<210> 125
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 125
atgattgaag tcaaaccatatc aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcg 60
cacctcggtg 120
gatattaccg gggcaagctg atcagcatcg cttccccc 180
tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac 240
taccgcgagc 240
aaaaagcggg tagtacgctt atccgc 300
ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgccc 360
aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gctaaccatgg cgaagtctac 420
gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 126
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 126
atgattgaag tcaaaccatatc aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgcatg tatgaaaccg atttgctcg 60
cacctcggtg 120
gatattaccg gggcaagctg atcagcatcg cttccccc 180
tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac 240
taccgcgagc 240
aaaaagcggg cagtacgctt atccgc 300
ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgccc 360
aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gctaaccaggcgaa gatacgtatg cgaagtctac 420
gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 127
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 127
atgattgaag tcaaaccatatc aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg 60
cacctcggtg 120
gatattaccg gggcaagctg atcagcatcg cttccccc 180
tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac 240
taccgtgagc 240
aaaaagcggg cagtacgctt atccgc 300
ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgccc 360
aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gctaaccaggcgaa gatacgtatg cgaagtctac 420
gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattaacata a 441

<210> 128
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 128
atgattgagg taaaaccgat taacgcagag gagacctatg aactaaggca taggataactc 60
agaccacacc agccgataga ggttttatg tatgaaaccg atttacttcg tggcggttt 120
cacttaggcg gctttacag gggcaagctg atttccatag cttcattcca ccaggccgag 180
catccagaac tccaggggca gaaaacaatac caactccgag gtatggctac cttggaaggt 240
tatcgtgacc agaaaagcggg atcgagccta attaaacacg ctgaacagat cttcggaaag 300
cggggggcgg acatgctatg gtgcaatgcg cggacatccg ccgctggcta ctacaaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgccgc cagtaggacc tcacatcgta 420
atgtataaac gcctcacata a 441

<210> 129
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 129
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg aggcaagctg atcagcatcg cttccattcca tcaagccgaa 180
cattcagagc ttgaaggcca taaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgcctc atccgcctatg ccgaagagct tttcggaaa 300
aagggggcag acctttatg gtgcaacgcg aggacatctg cgagcggctt ctataaaaaag 360
ctcggcttca gcgacaagg cggggcttac gacataccgc cggtcggacc tcatattttg 420
atgtataaga aattgacgta a 441

<210> 130
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 130
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg aggcaagctg atcagcatcg cttccattcca tcaagccgaa 180
cattcagagc ttgaaggcca aaaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagcacgcctc atccgcctatg ccgaagagct tttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcg aggacatctg cgagcgggtt ctataaaaaag 360
ctcggcttca gcgacaagg cgaagtctac gacataccgc cggtcggacc tcatattttg 420
atgtataaga aattgacgta a 441

<210> 131
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 131
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120

cacctcggtg gatattaccg gggcaagctg atcagcatcg ctccttca ccaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg aagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggcttca gcbaacaagg cgggtctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 132
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 132
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgcctgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccattca tcaagccgta 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcbaacaagg cgggtctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 133
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 133
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgcaag tatgaagccg atttgcctgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccattca tcaagccgag 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
aaccgtgagc aaaaagcggg cagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacgtaccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 134
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 134
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgcagg tatgaaaccg atttgcctgg gggcacgttt 120
cacctcggtg gatattatcg gggcaagctg atcagcatcg cttccattca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aagggggcag acctttatg gtgcaacgcc aggatatctg cgagcggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtttac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 135
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 135
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggcm ccgcatttc 60
cgcccaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagcacgctc atccgcatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 136
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 136
atgattgaag ccaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgcccaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgcatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaggc cgaagtctac gacataccgc cgaccggacc ccataatgg 420
atgtataaga aattgacgta a 441

<210> 137
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 137
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgcccaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtgcgttt 120
cacctcggtg gatattatcg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgcatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcaacaggc cgaagtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 138
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 138

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacgaaa 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgcccattg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacacggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 139

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 139

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggtacgaaa 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgcccattg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacacggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataagg aattgacgta a 441

<210> 140

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 140

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgaaa 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagatc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg aagcacgctc atccgcccattg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacacggg cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataagg aattgacgta a 441

<210> 141

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 141

atgattgaag tcaaaccaat aaacgcgggg gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggcacgaaa 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagatc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgcccattg ccgaagagct tctacggaaa 300

aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcggta ctataaaaag 360
ctcggttca gcgaacaagg cgggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 142
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 142
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgtgga agcatgcaag tatgaaaccg atttgcgtt gggcacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctccattca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg aagtacgctt atccgcatttccgaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggttca gcgaacaggg cgaagtctac gacataccgc cgatcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 143
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 143
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcgtt 60
cgccgaatc agccgtgga agcatgtatg tatgaaaccg atttgcgtt gggtgcgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctccattca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgcatttccgaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggttca gcgaacaggg cgaagtctac gacgtaccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 144
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 144
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc gggcgttga agcatgtatg tatgaaaccg atttgcgtt gggcacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctccattca tcaagccgaa 180
catccagggc ttgaaggcaa aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgtgagc aaaaagcggg aagcacgctt atccgcatttccgaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacttccg cgagcggcta ctataaaaag 360
ctcggttca gcgaacaagg aggggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 145
<211> 441
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 145

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgtatttc 60
cgccgcatac agccgcttga agcatgtatg tatgaaaccc atttgctcgaa gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgag 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgcccattt ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaggc cgaagtctac gacataccgc cggtcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 146

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 146

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcatac agccgcttga agcatgtatg tatgaaaccc atttgctcgaa gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgatgag 240
taccgtgagc aaaaagcggg cagtacgctt atccgcccattt ccgaagagct tcttcggaaa 300
aaaggcgcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaggc cgaagtctac gacataccgc cgatcggacc ccataat 420
atgtataaga aattgacgta a 441

<210> 147

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 147

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcatac agccgcttga agcatgtatg tatgaaactg atttgctcgaa gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgag 180
caaccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgcccattt ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcaacaggc cggggctac gacataccgc cggtcggacc tcataat 420
atgtataaga aattgacgta a 441

<210> 148

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 148

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60

cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggacacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagga 240
taccgcgagc aaaaagcggg aagtacgctt atccgccatg cagaagagat tcttcggaaa 300
aaaggcgcgg acctttagt gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 149
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 149
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcgttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggacacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgcgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagat tcttcggaaa 300
aaaggcgcgg acctttagt gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 150
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 150
atgattgaaa tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggtacgttt 120
cacctcggtg gatattaccg aggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac tcttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagat tcttcggaaa 300
aaaggggcag acctttagt gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 151
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 151
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg ggacacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagat tcttcggaaa 300
aaaggcgcgg acctttagt gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 152
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 152
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tcttcggaaa 300
aaggggcagc accttttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacata a 441

<210> 153
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 153
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaaaactg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagga 240
taccgtgagc aaaaagcggg aagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aagggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcggcta ctataaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgtat a 441

<210> 154
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 154
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcgtactc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcggcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aaggggcagc accttttatg gtgcaacgcc aggacatctg cgagcggcta ctatgaaaag 360
ctcggcttca gcccacaggg cgaagtctac gacataccgc cgatcggacc tcataattttg 420
atgtataaga aattgacata a 441

<210> 155
<211> 441
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 155

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccccc tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg cagtcgctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 156

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 156

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattaccg gggcaagcta atcagcatcg cttccccc tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagtacgctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtccac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 157

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 157

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattaccg gggcaagcta atcagcatcg cttccccc tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagag 240
taccgtgagc aaaaagcggg cagtcgctt atccgcctatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggcttac gacataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 158

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 158

atgattgaag tcaaaccaat aaacgcggaa gatgcgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgcaag tatgaaactg atttgctcg gggcacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccccc tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240

taccgcgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttgtg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 159
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 159
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgcttag ggggcgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggccag accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 160
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 160
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgcttgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg aagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aagggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 161
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 161
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgcttgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg aagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aagggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcbaacaagg cggggctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 162
<211> 441

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 162
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg gtctgcatecg cttcccttca taaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgatgga 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tcttcgaaaa 300
aaaggcgcgg accttttatg gtgcaatgcc aggacatctg tgagcggcta ctatgaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gatataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 163
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 163
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgag 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg cagtcgcctt atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggcttac gatataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 164
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 164
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaactg atttgctcgg gggcacgttt 120
catctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagcacgctc atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggcttac gatataccgc cgatcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 165
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 165

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 166

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 166

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg aagtacgctc atccgccatg ccgaagagct tcttcggaaa 300
aagggcgcgg acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 167

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 167

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagtggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300
aagggcgcgg acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataatgg 420
atgtataaga aattgacgta a 441

<210> 168

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 168

atgattgaag tcaaaccaat aaacgcggaa gatacgtatg aaatcaggca ccgcattctc 60
cgccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg aagtacgctc atccgccatg ccgaagagct tctacggaaa 300
aagggcgcgg acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggttca gcaacaagg cgggtctac gacataccgc cggtcggacc tcataatgg 420

atgtataaga aattgacgta a 441

<210> 169
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 169
atgattgaag tcaaaccaat aaacgcggag gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg ggggcgttt 120
caccttggtg gatattaccg gggcaagctg gtcagcateg cctcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgcccattg ccgaagagct tcttcggaaa 300
aagggggcag acctcttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cgactgggcc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 170
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 170
atgattgaag tcaaaccaat aaacgcggag gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg ggggcgttt 120
caccttggtg gatattaccg gggcaagctg gtcagcateg cctcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcgagc aaaaagcggg aagcacgctc atccgcccattg ccgaagagct tcttcggaaa 300
aagggggcag acctcttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cgactgggcc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 171
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 171
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgaatc agccgctgga cgcacatgcaag tatgaaaccg atttgctcg gggcacgttt 120
caccttggtg gatattaccg gggcaagctg atcagcateg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg cagtcgtttt atccgcccattg ccgaagagct tcttcggaaa 300
aagggggcag acctcttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gccaacaggg cgaagtctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 172
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 172
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgaaatc agccgcttga agcatgtatg tatgaaacccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg gtcagcatcg cttcccttca tcaagctgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtcgctt atccgcctatg ccgaagcgct tcttcggaaag 300
aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcgcttca gcaacaggg cgaagtctac gacacaccgc cggtcggacc ccataattttg 420
atgtataaga aattgacgta a 441

<210> 173
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 173
atgattgaag tcaagccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaaatc agccgcttga agcatgtatg tatgaaacccg atatgctcag gggtcgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccacgagc aaaaagcggg aagcacgcctc atccgcctatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcgcttca gcaacaggg cgaagtctac aacacaccgc cggttggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 174
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 174
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgaaatc agccgcttga agcatgtatg tatgaaacccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgttaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtcgactt atccgcctatg ccgaagagct tcttcggaaa 300
aaggggcag accttttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcgcttca gcaacaggg cgaagtctac gacataccgc cggtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 175
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 175
atgattgaag taaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcgttctc 60
cgccgaaatc agccgcttga agcatgtatg tatgaaacccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcgagctg gtcagcatcg cttcccttca tcaagccgaa 180

catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcgg acctttgtg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 176

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 176

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cggccgaatc agccgctgga agcatgtatg tatgaaaactg atttgctcgg gggcacgctt 120
cacctcggcg gatattaccg gggcaagctg atcagcateg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actcgaaggg 240
taccgcgagc aaaaagcggg cagtacgcta atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcgatcaggc cgaagtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 177

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 177

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agataaggca ccgcattctc 60
cggccgaatc agccgctgga agcatgcaag tatgaaaaccg atttgctcgg gggcacgctt 120
cacctcggcg gatattaccg gggcaagctg gtcagcatcg cctcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cgaagtctac gacttaccgc cgaccggacc ccataatttg 420
atgtataaga aattgacgta a 441

<210> 178

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 178

atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcattctc 60
cggccgaatc agccgctgga agcatgcaag tatgaaaaccg atttgctcgg gggcacgctt 120
cacctcggcg gatattaccg gggcaagctg gtcagcattg cttcccttca tcaagccgaa 180
catccagagc ttgagggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgggc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaatgcc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggtctac gacataccgc cggtcggacc tcataatttg 420
atgtataaga aattgacgta a 441

<210> 179

<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 179
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
aggccgaatc agccgctaga agcatgcaag tatgaaaaccg atttgcgtcg 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagga 240
taccgtgagc aaaaagcggg cagtacgctt atccgccc 300
aaaggcgcgg acctttgtg gtgcaacgccc aggacgtctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgaccggacc ccataaaaa 420
atgtataaga aattgacgta a 441

<210> 180
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 180
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgatc agccgctgga agcatgcaag tatgaaaactg atttgcgtgg 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgccc 300
aaggcgcgg accttatatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacata a 441

<210> 181
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 181
atgattgaag tcaaaccaat aaatgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgcgatc agccgcttga agcatgtatg tatgaaaaccg atttgcgtcg 120
caccttaggtg gatattaccg gggcaagctg atcagcatcg cttccctttaa tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgccc 300
aaggggcag acctttatg gtgcaacgccc aggacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cggtcggacc tcataaaaa 420
atgtataaga aattgacata a 441

<210> 182
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 182
atgattgaag tcaaaccaat aaccgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaacccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac actagaaggg 240
taccgcggc aaaaagcggg cagtaacgctc atccgcattg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaacgccc agaacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacataccgc cgaccggacc ccatattttg 420
atgtataaga aattgacgta a 441

<210> 183
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 183
atgattgaag tcaaaccaat aaacgcggaa gatgcgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaacccg atttgctcg gggcacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cctccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaagag 240
taccgcggc aaaaagcggg aagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aaggggcgg acctttatg gtgcaacgccc agaacatctg cgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggc cgaagtctac gacataccgc ctgtcggacc tcataattttg 420
atgtataaga aattgacgta a 441

<210> 184
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 184
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaacccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagctg atctgcattg cctccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcggc aaaaagcggg aagtacgctt atccgcattg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaatgcc agaacatctg tgagaggcta ctatgaaaag 360
ctcggcttca gcbaacaagg cggggctac gatataccgc cgatcggacc tcataattttg 420
atgtataaga aattggcgta a 441

<210> 185
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 185
atgattgaag tcaaaccaat aaacgcggaa gatacgtatg agatcaggca ccgcatttc 60
cgccgaatc agccgttga agcatgcaag tatgaaacccg atttgctcg gggtacgtt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttccttca taaagccgaa 180
cattcagagc ttgagggcgta agaacatgt cagctgagag ggatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg aagcacgctc atccgcattg ccgaagagct tcttcggaaa 300
aaggggcag acctttatg gtgcaatgcc agaacatctg tgagcgggta ctataaaaag 360

ctcggcttca gccaacaggcg aactaaggca taaaatactc 420
atgtataaga aattgacgta a 441

<210> 186
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 186
atgatagaag taaaaccgt taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tcgaaggcca gaaacagtac cagctccgag gtatggctac cttggaaagg 240
tatcgtgatc agaaaagcggg atcgactcta attaaacacg ctgaagaaat tcttcgttaag 300
agggggcgg acatgctttg gtgcaatgcg cggacaaccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 187
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 187
atgatagagg taaaaccgt taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tcgaaggcca gaaacagtac cagctccgag gtatggctac cttggaaagg 240
tatcgtgatc agaaaagcggg atcgactcta attaaacacg ctgaacaact tcttcgttaag 300
agggggcgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgcccgc cagtaggacc tcacatcctg 420
atgtataaaa agatcaca 438

<210> 188
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 188
atgctagagg taaaaccgt taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tcgaaggcca gaaacagtac cagctccgag gtatggctac cttggaaagg 240
tatcgtgatc agaaaagcggg atcgagtcta attaaacacg ctgaacaact tcttcgttaag 300
agggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca 438

<210> 189
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 189
atgcttagagg taaaactgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgttata agcgtgtatg tatgaaaccc atttacttcg tggtgcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggcccag 180
cactcagacc tcgaaggcca gaaacagtac cagctccgag gtatggctac ctttggaaagg 240
ttcgtgtatc agaaaaggccc atcgagtcta attaaacacg ctgaagaaat tcttcgttaag 300
aggggggcga acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgcgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca 438

<210> 190
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 190
atgatagagg taaaacctgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgtataga agcgtgtatg tatgaaaccc atttacttcg tggtgcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggcccag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac ctttggaaagg 240
tatcgtgtatc agaaaaggccc atcgagtcta attagacacg ctgaacaaaat tcttcgttaag 300
aggggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgcgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcaca 438

<210> 191
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 191
atgatagagg taaaacctgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgttata agcgtgtatg tatgaaaccc atttacttcg tggtgcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggcccag 180
cactcaggcc tccaaggcca gaaacagtac cagctccgag gtatggctac ctttggaaagg 240
tatcgtgtatc agaaaaggccc atcgagtata attaaacacg ctgaagaaat tcttcgttaag 300
aagggggcgg acttgctttg gtgcaatgcg cggacgtccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gacacgcgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca 438

<210> 192
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 192
atgatagagg taaaacctgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgtataga agcgtgtatg tatgaaaccc atttacttcg tggtgcattt 120

cacttaggcg gctttacag gggcaaactg attccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcagg 240
tatcgtgagc agaaaagcggg atcgactcta attagacacg ctgaacaact tttcgtaag 300
agggggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaagg 360
ttaggcttca gcgagcaggg agaggtat tt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca 438

<210> 193
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 193
atgcttagagg tgaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg attccatag cttcattcca ccaggccgag 180
cactcagaaac tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcagg 240
tatcgtgagc agaaaagcggg atcgactcta attaaacacg ctgaagaaat tttcgtaag 300
agggggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaagg 360
ttaggcttca gcgagcaggg agagatattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca a 441

<210> 194
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 194
atgatagaag tgaaaccgat taacgcagag gagacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg attccatag cttcattcca ccaggccgag 180
cactcagaaac tcgaaggcca gaaacagtac cagctccgag gtatggctac ctttgcagg 240
tatcgtgatc agaaaagcggg atcgactcta attagacacg ctgaacaact tttcgtaag 300
aagggggcga atatgctttg gtgcaatgcg cggacaaccg cctcaggcta ctacaaaagg 360
ttaggcttca gcgagcaggg agagatattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca 438

<210> 195
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 195
atgcttagagg tgaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaagcg atttacttcg tgggcactt 120
cacttaggcg gctttacag gggcaaactg attccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcagg 240
tttcgtgatc agaaaagcggg atcgactcta attagacacg ctgaacaaat tttcgtaag 300
agggggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaagg 360
ttaggcttca gcgagcaggg aaaggtat tt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca 438

<210> 196
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 196
atgcttagagg taaaaccgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccg atttacttcg tggtgcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggcccag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcgtt 240
tatcgatc agaaaagcggg atcgagtcta attagacacg ctgaacaaat tcttcgttaag 300
agggggcgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcaca 438

<210> 197
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 197
atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccccgaaatc agccgcttgg a gcatgcaag tatgaaaccg atttgcgtt gggcacgcgtt 120
cacctcggtg gatattaccg gggcaagctg gtcagcattcg cttccatttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggtatggcgac gcttgaaggg 240
taccgtgagc aaaaagcggg cagtacgtt atccgcatttgc ccgaagagct tcttcggaaa 300
aaggggcgg acctttatg gtgcaacgcg aggacatctg cgagcgggta ctataaaaaag 360
ctcggttca gcgAACAGGG CGAAGTCTAC GACATACCGC CGGTGGGACC TCAATTTCG 420
atgtataaga aattgacgta a 441

<210> 198
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 198
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgtatg agcgttatg tatgaaagcg atttacttcg tggtgcattt 120
cacttaggcg gcttattacag gggcaactg atttccatag cttcattcca ccaggcccag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcgtt 240
tttcgtgagc agaaaagcggg atcgactcta attagacacg ctgaacaaat tcttcgttaag 300
agggggcgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgcgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcaca 438

<210> 199
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 199
atgatagagg taaaaccgt taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tcgaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgactcta attagacacg ctgaagaaat tcttcgttaag 300
aagggggcga acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gatacgcgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcaca 438

<210> 200
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<221> misc_feature
<222> 134, 313
<223> n = A,T,C or G

<400> 200
atgatagagg taaaaccgt taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgttaga agtgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctnttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attaaacacg ctgaacaaat tcttcgttaag 300
agggggcgg acntgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgcgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 201
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 201
atgatagagg taaaaccgt taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agtgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgactcta attagacacg ctgaacaaat tcttcgttaag 300
agggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gatacgcgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 202
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 202
atgcttagagg taaaaccgt taacgcagag gatacctatg aactaaggca tagaataactc 60

agaccaaacc agccgataga agcgtgtatg tttgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attagacacg ctgaagaaat tcttcgttaag 300
agggggccgg acatgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 203
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 203
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agtgtgtatg tatgaaaccc atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
ttcgtgagc agaaaagcggg atcgagtcta attagacacg ctgaacaaaat tcttcgttaag 300
agggggccgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 204
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 204
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgtgtatg tttgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctattacag gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
taccgcgatc agaaaagcggg atcgagtcta attagacacg ctgaacaaaat tcttcgttaag 300
agggggccgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 205
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 205
atgcttaggg taaaaccgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgttaga agtgtgtatg tatgaaaccc atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tcttcgttaag 300
agggggccgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 206
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 206
atgatagaag taaaaccgat taacgcagag gatacctatg aactgaggca taaaatactc 60
agaccaaacc agccgataga agtgttatg tatgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaaactg atttccatag cgtcattcca ccaggccgag 180
caccaggacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attaaacacg ctgaacaaat tcttcgttaag 300
agggggccgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgcgc cagtagggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 207
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 207
atgctagagg taaaaccgat taacgcagag gatacctatg aactgaggca tagaatactc 60
agaccaaacc agccgataga agcgttatg tttgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac caactccgag gtatggctac cttggaaggt 240
tttcgtgagc agaaaagcggg atcgactcta attagacacg ctgaagaaat tcttcgttaag 300
agggggccgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaagg 360
ttaggcttca gcgagcaggg agagatattt gacacgcgc cagtagggcc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 208
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 208
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgttatg tttgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaaactg atttccatag cgtcattcca ccaggccgag 180
cactcggAAC tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attagacacg ctgaacaaat tcttcgttaag 300
agggggccgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gatacgcgc cagtagggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 209
<211> 441
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 209

atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccc atttacttcg tggtgcattt 120
cacttggcg gctttacgg gggcaaactg atttccatag cgtcattcca ccaggccgag 180
caccaggacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attagacacg ctgaacaact tcttcgtaag 300
agggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattc gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 210

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 210

atgatagaag taaaaccgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgttaga agcgttatg tatgaaagcg atttacttcg tggtgcactt 120
cacttaggcg gctttacag gggcaaactg atttccatag cgtcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tcttcgtaag 300
agggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gacacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 211

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 211

atgcttaggg taaaaccgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgttaga agcgttatg tttgaaagcg atttacttcg tggtgcattt 120
cacttaggcg gctttacgg gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgactcta attagacacg ctgaagaaat tcttcgtaag 300
agggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 212

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 212

atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccc atttacttcg tggtgcattt 120
cacttaggcg gctttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240

tatcgtgagc agaaagcggg atcgagtcta attaaacacg ctgaacaaat tcttcgtaag 300
agggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 213
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 213
atgcttagagg taaaaccat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agtgttatg tatgaaaccc atttacttcg tggcattt 120
cacttaggcg gctttacgg gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaagg 240
tatcgtgatc agaaagcggg atcgagtcta attaaacacg ctgaagaaat tcttcgtaag 300
agggggcgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgcccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 214
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 214
atgatagaag taaaacctat taacgcagag gagacttacg aacttcgaca caagatcctg 60
cgccctaattt agccgataga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catggggcg ggttctatcg tggccaaattt atctcgattt cgagtttcca caaagctgaa 180
cactcagaac tgcaggcga aaagcagtat caattacgag ggatggcgcac cctcgaagga 240
ttccgtgagc agaaggctgg ctcttcgctt attaggcacg ccggaggagat actacggaaat 300
aaaggccag atctgctttg gtgtaatgca cgcacgacag cctccggta ctataaaagg 360
cttggttta gtgagcacgg cgaaggttt gaaacccccgc cgggttgggcc gcacattctt 420
atgtacaaaaa gaatcact 438

<210> 215
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 215
atgatagaag taaaacctat taacgcagag gataacttacg aacttcgaca caggatcctg 60
cgccctaattt agccgtttaga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catggggcg ggttctatcg tggccaaattt atctcgattt cgagtttcca ccaagctgaa 180
cactcagaac tggaggcga aaagcagtat caattacgag ggatggcgcac cctcgaagga 240
ttccgtgagc agaaggctgg ctcttcgctt attaggcacg ccggaggagat actacggaaa 300
agggggcag atctgctttg gtgtaatgca cgcacgacag cccgggtta ctataaaaagg 360
cttggttta gtgagcacgg cgaaggttt gacacccccgc cgggttgggcc gcacattctt 420
atgtacaaaaa gaatcact 438

<210> 216
<211> 438

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 216
atgatagaag taaaacccat taacgcagag gatacttacg aaattcgaca caggatcctg 60
cgccctaatac agccgttaga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catggggcg ggttctatcg tggcaaaatttgcg atctcgatttgcg 180
caattacgag cgatggcgac cctcgaagga 240
taccgtgatc agaaggctgg ctctcgctt attaggcacttgcg 300
agaggggcag atctgctttgcg 360
cttggttta gtgagcaggg cgaagtttc gacacccccgcg 420
atgtacaaaaa aactcact 438

<210> 217
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 217
atgatagaag taaaacccat taacgcagag gatacttacg aacttgcaca caggatcctg 60
cgccctaatac agccgttaga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catggggcg ggttctatcg tggcaaaatttgcg atctcgatttgcg 180
caattacgag cgatggcgac cctcgaagga 240
taccgtgatc agaaggctgg ctctacgttgcg attaaggcacttgcg 300
aaaggggcag atctgctttgcg 360
cttggttta gtgagcaggg cgaattttc gacacccccgcg 420
atgtacaaaaa gactcact 438

<210> 218
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 218
atgatagaag taaaacccat taacgcagag gagacttacg aacttgcaca caagatcctg 60
cgccctaatac agccgttaga ggcatgcattg tatgaaacccg atctgctgcg gggctcggttc 120
catggggcg ggttctatcg tggcaaaatttgcg atctcgatttgcg 180
caattacgag cgatggcgac cctcgaagga 240
ttccgtgatc agaaggctgg ctctcgctt attaaggcacttgcg 300
agaggggcag atctgctttgcg 360
cttggttta gtgagcaggg cgaattttc gaaacccccgcg 420
atgtacaaaaa gactcact 438

<210> 219
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 219

atgctagaag taaaacccat taacgcagag gagacttacg aacttcgaca caagatcctg 60
cgccctaatac agccgataga ggcatgcatg tatgaaaccg atctgctgcg gggctcggtc 120
catttggcg ggttctatcg tggcaattt atctcgattt cgagtttcca ccaagctgaa 180
cactcagacc tgcaaggcgca aaagcagtat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctctacgctt attaaggcact cccgaggagct actacggaaa 300
aaagggcgag atatgctttt gtgcaatgca cgcacgacag ccgcgggtta ctataaaaagg 360
cttgggttta gtgagcaggg cgaagtttc gacaccccgcc cggttggccc gcacatttt 420
atgtacaaaaaa aaatcact 438

<210> 220
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 220
atgatagaag taaaacccat taacgcagag gatacttacg aacttcgaca caagatcctg 60
cgccctaatac agccgttaga ggcatgcatg tatgaaaccg atctgctgcg gagcgcattc 120
catttggcg ggttctatcg tggcaattt atctcgattt cgagtttcca caaagctgaa 180
cactcagaac tgcaaggcgca aaagcagtat caattacgag ggatggcgac cctcgaagga 240
taccgtgatc agaaggctgg ctcttcgctt attaggcact cccgaggagat actacggaaa 300
agagggcgag atatgctttt gtgcaatgca cgcacgtcag ccgcgggtta ctataaaaagg 360
cttgggttta gtgagcaggg cgaagtttc gacaccccgcc cggttggccc gcacatttt 420
atgtacaaaaaa gaatcactta a 441

<210> 221
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 221
atgatagaag taaaacccat taacgcagag gatacttacg aacttcgaca caggatcctg 60
cgccctaatac agccgataga ggcatgcatg tatgaaaccg atctgctgcg gggctcggtc 120
catttggcg ggttctatcg tggcaattt atctcgattt cgagtttcca ccaagctgaa 180
cactcagacc tgcaaggcgca aaagcagtat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctcttcgctt attaaggcact cccgagcagct actacggaaa 300
aaagggcgag atatgctttt gtgtaatgca cgcacgtcag ccgcgggtta ctataaaaagg 360
cttgggttta gtgagcacgg cgaattttc gaaaccccgcc cggttggccc gcacatttt 420
atgtacaaaaaa gaatcact 438

<210> 222
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 222
atgctagaag taaaacccat taacgcagag gatacttacg aacttcgaca caggatcctg 60
cgccctaatac agccgttaga ggcatgcatg tatgaaaccg atctgctgcg gggctcggtc 120
catttggcg ggttctatcg tggcaattt atctcgattt cgagtttcca ccaagctgaa 180
cattcagaac tggaaaggcgca aaagcagtat caattacgag ggatggcgac ttcgaagga 240
taccgtgatc agaaggctgg ctcttcgctt attaggcact cccgaggagat actacggaaa 300
agagggcgag atatgctttt gtgcaatgca cgcacgacag ccgcgggtta ctataaaaagg 360
cttgggttta gtgagcaggg cgaattttac gacaccccgcc cggttggccc gcacatttt 420

atgtacaaaa aactcact

438

<210> 223

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 223

atgatagaag taaaacccat taacgcagag gagacttacg aacttcgaca caagatcctg 60
cgccctaattc agccgttaga ggcatgcatt tatgaaaccg atctgctgcg gggcgcggttc 120
catggggcg ggttctatcg tggcaaattt atctcgattt cgagtttcca ccaagctgac 180
cactcagaac tgcaaggggca aaaggcgttat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctctacgctt attaggcactt ccgagcagat actacggaaa 300
agaggggcag atactactttt gtgcaatgca cgcacgttag cggccgggtta ctataaaaag 360
cttgggtttta gtgagcacgg cgaaattttc gaaaccccgcc cggttgggccc gcacattttt 420
atgtacaaaa gactcactta a 441

<210> 224

<211> 438

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 224

atgatagaag taaaacccat taacgcagag gatacttacg aacttcgaca caggatcctg 60
cgccctaattc agccgttaga ggcatgcatt tatgaaagcg atctgctgcg gggcgcggttc 120
catggggcg ggttctatcg tggcaaattt atctcgattt cgagtttcca ccaagctgaa 180
cactcagacc tgcaaggggca aaaggcgttat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctcttcgctt attaggcactt ccgaggagat actacggaaa 300
aaaggggcag atatgctttt gtgcaatgca cgcacgacag cggccgggtta ctataaaagg 360
cttgggtttta gtgagcacggg cgaaattttc gacaccccgcc cggttgggccc gcacattttt 420
atgtacaaaa gaatcact 438

<210> 225

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 225

atgatagagg taaaaccggat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc accgttaga agtgtgtatg tatgaaaccg atttacttcg tggtgcattt 120
cacttaggcg gcttttacag gggcaaactg atttccatag cttcatttcca ccaggccgag 180
cactcagacc tccaaaggcca gaaacagtac cagctccgag gtatggctac ttggaaaggt 240
tatcgtgagc agaaaaggccc atcgagtctt attaaacacg ctgaacaaat tcttcgttaag 300
agggggccgg acttgctttt gtgcaatgca cggacatccg cctcaggctt ctacaaaaag 360
ttaggcttca gcgagcacggg agaggtattt gatacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 226

<211> 438

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 226

atgatagaag taaaacccat taacgcagag gagacttacg aacttcgaca caggatcctg 60
cgccctaatac agccgataga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catttggcg ggttctatcg tggccaaatttgcg atctcgatttgcg ccaagctgaa 180
cactcagaac tgcaagggca aaagcagtat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctctacgctt attaaggcacttgcg cccgaggagat actacggaaa 300
aaaggggcag atatgctttg gtgcaatgca cgcacgtcag cccgcccgtta ctataaaagg 360
cttgggttttgcg atatgctttg gtgcaatgca cgcacgtcag cccgcccgtta ctataaaagg 420
atgtacaaaaa gaatcact 438

<210> 227

<211> 438

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 227

atgatagaag taaaacccat taacgcagag gataacttacg aacttcgaca caggatcctg 60
cgccctaatac agccgataga ggcatgcattg tatgaaacccg atctgctgcg gggcgcggttc 120
catttggcg ggtactatcg tggccaaatttgcg atctcgatttgcg caaagctgaa 180
cactcagaac tgcaagggca aaagcagtat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctctacgctt attaaggcacttgcg cccgaggagat actacggaaa 300
aaaggggcag atatgctttg gtgcaatgca cgcacgtcag cccgcccgtta ctataaaagg 360
cttgggttttgcg atatgctttg gtgcaatgca cgcacgtcag cccgcccgtta ctataaaagg 420
atgtacaaaaa aactcact 438

<210> 228

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 228

atgatagaag taaaacccat taacgcagag gataacttacg aacttcgaca caagatcctg 60
cgccctaatac agccgataga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catttggcg ggttctatcg tggccaaatttgcg atctcgatttgcg caaagctgaa 180
cactcagacc tggaagggca aaaccagtat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctctacgctt attaggcacttgcg cccgaggagat actacggaaa 300
agaggggcag atatgctttg gtgcaatgca cgcacgtcag cccgcccgtta ctataaaagg 360
cttgggttttgcg atatgctttg gtgcaatgca cgcacgtcag cccgcccgtta ctataaaagg 420
atgtacaaaaa gactcactta a 441

<210> 229

<211> 438

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 229

atgctagaag taaaacccat taacgcagag gataacttacg aacttcgaca caggatcctg 60
cgccctaatac agccgataga ggcatgcattg tatgaaacccg atctgctgcg gggctcggttc 120
catttggcg ggttctatcg tggccaaatttgcg atctcgatttgcg caaagctgaa 180

cactcagacc tgaaaggca aaaggcgtat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctctacgctt attaggcacg ccgagcagat actacggaaa 300
agaggggcag atatgcctg gtgcaatgca cgcacgtcag ccgcccgtta ctataaaagg 360
cttggttta gtgagcaggg cgaagtttc gaaaccccgc cggttggcc gcacatttt 420
atgtacaaaaa gactcact 438

<210> 230
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 230
atgatagaag tgaaacctat taacgcagag gatacttacg aacttcgaca caggatcctg 60
cgccctaatac agccgttaga ggcatgcattg tatgaaaccg atctgctgcg gggctcggttc 120
catggggcg ggttctatcg tggcaaatttgcg atctcgatttgcg ccaagctgaa 180
cactcagacc tgcaaggca aaaggcgtat caattacgag ggatggcgac cctcgaagga 240
taccgtgagc agaaggctgg ctctacgctt attaggcacg ccgagcagct actacggaaa 300
agaggggcag atatgccttgcg atatgccttgcg ccgcccgtta ctataaaagg 360
cttggttta gtgagcacgg cgaagtttc gacaccccgccggttggcc gcacatttt 420
atgtacaaaaa gactcact 438

<210> 231
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 231
atgctagaag tgaaacctat taacgcagag gagacttacg aacttcgaca caagatcctg 60
cgccctaatac agccgttaga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catggggcg ggtactatcg tggccaaatttgcg atctcgatttgcg ccaagctgaa 180
cactcagaac tgcaaggca aaaggcgtat caattacgag ggatggcgac cctcgaagga 240
ttccgtgagc agaaggctgg ctctacgctt attaaggcacg ccgagcagat actacggaaa 300
agaggggcag atatgccttgcg atatgccttgcg ccgcccgtta ctataaaagg 360
cttggttta gtgagcacgg cgaatatttc gacaccccgccggttggcc gcacatttt 420
atgtacaaaaa aactcactta a 441

<210> 232
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 232
atgatagaag tgaaacctat taacgcagag gagacttacg aacttcgaca caggatcctg 60
cgccctaatac agccgttaga ggcatgcattg tatgaaagcg atctgctgcg gggctcggttc 120
catggggcg ggttctatcg tggccaaatttgcg atctcgatttgcg ccaagctgaa 180
cactcagacc tagaaggca aaaggcgtat caattacgag ggatggcgac cctcgaagga 240
taccgtgatc agaaggctgg ctctacgctt attaaggcacg ccgaggagct actacggaaa 300
agaggggcag atatgccttgcg atatgccttgcg ccgcccgtta ctataaaagg 360
cttggttta gtgagcacgg cgaatatttc gaaaccccgccggttggcc gcacatttt 420
atgtacaaaaa aaatcact 438

<210> 233

<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 233
atgatagaag tgaaaacctat taacgcagag gatacttacg aacttcgaca caagatcctg 60
cgccctaatac agccgataga ggcatgcatt tatgaaagcg atctgctgcg gggctcggtc 120
catttggcg ggttctatcg tggccaattt atctcgattt cgagtttcca ccaagctgaa 180
cactcagacc tggaaaggcga aaaggcagtat caattacgag ggatggcgac cctcgaagga 240
taccgtgatc agaaggctgg ctttcgctt attaagcacg ccgaggagat actacggaaa 300
agaggggcag atctgctttg gtgcaatgca cgcacgtcag ccgcccgtta ctataaaaagg 360
cttggttta gtgagcaggg cgaaatttc gacacccccgc cggttgggcc gcacatttt 420
atgtataaaaa aaatcact 438

<210> 234
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 234
atgcttagagg tgaaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttagtacag gggcaaactg atttccatag cttcatttcca ccaggccgag 180
cactcagaac tccaaaggcca gaaacagtac cagctccgag gtatggctac ctttggaaagg 240
tatcgtgagc agaaaaggcgg atcgagtctt tttaaacacg ctgaagaaaat tttcgtaag 300
agggggggcgg acttgctttg gtgtaatgca cggacatccg cctcaggctt ctacaaaaagg 360
ttaggcttca gcgagcaggg agagatattt gaaacgcccgc cagtaggacc tcacatcctg 420
atgtataaaaa ggatcacata a 441

<210> 235
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 235
atgcttagagg tgaaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgataga agcgtgtatg tatgaaagcg atttacttcg tgggcattt 120
cacttaggcg gcttttagtacag gggcaaactg atttccatag cttcatttcca ccaggccgag 180
cactcagaac tccaaaggcca gaaacagtac cagctccgag gtatggctac ctttggaaagg 240
tatcgtgagc agaaaaggcgg atcgagtctt tttaaacacg ctgaagaaaat tttcgtaag 300
agggggggcgg acttgctttg gtgtaatgca cggacatccg cctcaggctt ctacaaaaagg 360
ttaggcttca gcgagcaggg agagatattt gaaacgcccgc cagtaggacc tcacatcctg 420
atgtataaaaa ggctcacata a 441

<210> 236
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 236
atgcttagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgttata agcgtgtatg tatgaaagcg atttacttcg tggtgcattt 120
cacttaggcg gctattacgg gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcgttaag 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tttcgtaag 300
agggggccgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 237
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 237
atgatagaag taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgtataga agcgtgtatg tatgaaagcg atttacttcg tggtgcattt 120
cacttaggcg gctattacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcgttaag 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tttcgtaag 300
agggggccgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 238
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 238
atgcttagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgtataga agcgtgtatg tatgaaagcg atttacttcg tggtgcattt 120
cacttaggcg gctattacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cacccagaac tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcgttaag 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tttcgtaag 300
agggggccgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 239
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 239
atgcttagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgtataga agcgtgtatg tatgaaagcg atttacttcg tggtgcattt 120
cacttaggcg gctattacgg gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac ctttgcgttaag 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tttcgtaag 300
agggggccgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360

ttaggcttca gcgagcaggg agagatattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 240
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 240
atgcttagagg taaaaccat taacgcagag gatacctatg aactaaggca tagaataactc 60
agacccaaacc agccgataga agtgttatg tatgaaagcg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tcttcgttaag 300
agggggcgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 241
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 241
atgatagaag taaaacctat taacgcagag gatacctatg aactaaggca tagaataactc 60
agacccaaacc agccgataga agtgttatg tatgaaacccg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attagacacg ctgaacaaaat tcttcgttaag 300
agggggcgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 242
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 242
atgatagaag taaaacctat taacgcagag gatacctatg aactaaggca tagaataactc 60
agacccaaacc agccgtttaga agtgttatg tatgaaacccg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attagacacg ctgaacaaaat tcttcgttaag 300
agggggcgg acatgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 243
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<221> misc_feature
<222> 9, 76, 98
<223> n = A,T,C or G

<400> 243
atgcttagang taaaaccgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgntaga agtgttatg tatgaaancg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcggtatc agaaaagcggg atcgagtcta attaaacacg ctgaacaaat tcttcgtgag 300
agggggcgg acatgcttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gacacgcccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 244
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 244
atgcttagaag taaaaccstat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgataga agtgttatg tatgaaacccg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcggtatc agaaaagcggg atcgagtcta attagacacg ctgaacaaat tcttcgttaag 300
agggggcgg acatgcttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gaaacgcccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 245
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 245
atgcttagagg taaaaccgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgttaga agtgttatg tatgaaacccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaactg atttccatag cgtcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcggtatc agaaaagcggg atcgagtcta attagacacg ctgaacaaat tcttcgttaag 300
agggggcgg acatgcttg gtgcaatgcg cggacatccg cctcaggcta ctacagaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgcccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 246
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 246
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attagacacg ctgaacaaat tttcgtaag 300
agggggccgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg ggaggtattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 247
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 247
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attagacacg ctgaacaaat tttcgtaag 300
agggggccgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 248
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 248
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attagacacg ctgaacaaat tttcgtaag 300
agggggccgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 249
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 249
atgcttagagg taaaaccgat taacgcagag gatacctatg aactaaggca taaaatactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcggacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgagtcta attagacacg ctgaagaaat tttcgtaag 300

aggggggcgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gacacgcccgc cagtaggacc tcacatcctg 420
atgtataaaa agatcacata a 441

<210> 250
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 250
atgctagaag taaaaccgat taacgcagag gatacctatg aactaaggca taaaataactc 60
agaccaaacc agccgttaga agtgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacgg gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgatc agaaaagcggg atcgactcta attaaacacg ctgaacaaat tttcgtaag 300
agggggcgg acatgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gaaacgcccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 251
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 251
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagaataactc 60
agaccaaacc agccgttaga agtgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tttcgtaag 300
agggggcgg acttgctttg gtgtaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agagatattt gatacggccgc cagtaggacc tcacatcctg 420
atgtataaaa ggatcacata a 441

<210> 252
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 252
atgatagagg taaaaccgat taacgcagag gatacctatg aactaaggca tagagtactc 60
agaccaaacc agccgttaga agtgtgtatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctattacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcggg atcgagtcta attaaacacg ctgaagaaat tttcgtaag 300
agggggcgg acttgctttg gtgcaatgcg cggacatccg cctcaggcta ctacaaaaag 360
ttaggcttca gcgagcaggg agaggtattt gagacggccgc cagtaggacc tcacatcctg 420
atgtataaaa ggctcacgt a 441

<210> 253
<211> 441
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 253

atgcttagagg taaaaccgat taacgcagag gataacttacg aactaaggca taaaatactc 60
agaccaaacc agccgataga agtgttatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctattacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcg 300
agggggcg 360
ttaggcttca gcgagcaggg agagatattt gatacgcgc ctaggacc tcacatcctg 420
atgtataaaa ggatcacgta a 441

<210> 254

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 254

atgcttagagg taaaaccgat taacgcagag gataacctatg aactaaggca tagaatactc 60
agaccaaacc agccgataga agtgttatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctttacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagaac tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcg 300
agggggcg 360
ttaggcttca gcgagcaggg agagatattt gaaacgcgc ctaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 255

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 255

atgcttagagg taaaaccgat taacgcagag gataacctatg aactaaggca taaaatactc 60
agaccaaacc agccgttaga agtgttatg tatgaaaccg atttacttcg tgggcattt 120
cacttaggcg gctattacag gggcaaactg atttccatag cttcattcca ccaggccgag 180
cactcagacc tccaaggcca gaaacagtac cagctccgag gtatggctac cttggaaggt 240
tatcgtgagc agaaaagcg 300
agggggcg 360
ttaggcttca gcgagcaggg agaggtattt gatacgcgc ctaggacc tcacatcctg 420
atgtataaaa ggctcacata a 441

<210> 256

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 256

atgattgaag tcaaaccatat aaacgcggaa gatacgttatg agatcaggca ccgcattctc 60

cggccgaatc agccgctgga agcatgcaag tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattacg gggcaagctg atcagcatcg cttcccttca taatgccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaagga 240
taccgtgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcgg accttttatg gtgcaacgccc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 257

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 257

atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattacg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtcggc aaaaagcggg cagtagctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggccag accttttatg gtgcaatgcc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataaaaa 420
atgtattaga aattgacata a 441

<210> 258

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 258

atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggtacgtt 120
cacctcggtg gatattacg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtcggc aaaaagcggg tagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggccag accttttatg gtgcaacgccc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctcgc gatataccgc cgatcggacc tcataaaaa 420
atgtataaga aattggcata a 441

<210> 259

<211> 441

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 259

atgattgaag tcaaaccat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cggccgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcg gggcacgtt 120
cacctcggtg gatattacg gggcaagctg atcagcatcg cttcccttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtcggc aaaaagcggg cagtagctt atccgccatg ccgaagagct tcttcggaaa 300
aaggggccag accttttatg gtgcaacgccc aggacatctg tgagcggcta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacata a 441

<210> 260
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 260
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgcttga agcatgcaag tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcctttca taatgccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac gcttgaaggg 240
taccgcgagc aaaaagcggg aagcacgctc atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcag accttttatg gtgcaacgccc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaggg cgaagtctac gacataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 261
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 261
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcataactc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcctttca tcaagccgaa 180
catccagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgcgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aaaggcgcag accttttatg gtgcaacgccc aggacatctg tgagcggcta ctatgaaaag 360
ctcggcttca gcbaacaggg cgaagtctgc gacataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacata a 441

<210> 262
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA Sequence

<400> 262
atgattgaag tcaaaccatat aaacgcggaa gatacgtatg agatcaggca ccgcatttctc 60
cgccgcgaatc agccgcttga agcatgtatg tatgaaaccg atttgctcgg gggcacgttt 120
cacctcggtg gatattaccg gggcaagctg atcagcatcg cttcctttca tcaagccgaa 180
cattcagagc ttgaaggcca aaaacagtat cagctgagag ggatggcgac acttgaaggg 240
taccgtgagc aaaaagcggg cagtacgctt atccgccatg ccgaagagct tcttcggaaa 300
aagggggcag accttttatg gtgcaacgccc aggacatctg tgagcgggta ctataaaaag 360
ctcggcttca gcbaacaagg cggggctac gatataccgc cgatcggacc tcataaaaa 420
atgtataaga aattgacgta a 441

<210> 263
<211> 146
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 263

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 264

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 264

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Arg Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 265

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 265

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Ser Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 266

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 266

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 267

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 267

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Ala Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 268

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 268

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 269

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 269

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 270

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 270

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 271

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 271

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1				5					10					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Lys	Tyr	Glu
				20					25				30		
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
				35					40			45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Pro	Glu	Leu
				50					55		60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
				65				70		75			80		
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
				85					90			95			
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
				100				105				110			
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
				115				120			125				
Val	Tyr	Asp	Thr	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
				130				135			140				
Leu	Thr														
	145														

<210> 272

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 272

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1				5					10				15		
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Lys	Tyr	Glu
				20					25			30			
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
				35					40		45				
Lys	Leu	Val	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
				50					55		60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Glu
				65				70		75			80		
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
				85					90			95			
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
				100				105			110				
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
				115				120			125				
Val	Tyr	Asp	Ile	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
				130				135			140				
Leu	Thr														
	145														

<210> 273

<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 273

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 274
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 274

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Arg Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 275
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 275
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 276
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 276
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 277
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

```

<400> 277
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
   1           5           10          15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
   20          25          30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
   35          40          45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
   50          55          60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
   65          70          75          80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
   85          90          95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
   100         105         110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
   115         120         125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
   130         135         140
Leu Thr
   145

```

<210> 278
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

```

<400> 278
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
   1           5           10          15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
   20          25          30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
   35          40          45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
   50          55          60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
   65          70          75          80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
   85          90          95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
  100         105         110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
  115         120         125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
  130         135         140
Leu Thr
  145

```

<210> 279
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 279

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 280
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 280

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr

<210> 281
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 281
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 282
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 282
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140

Leu Thr
145

<210> 283
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 283
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 284
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 284
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys

	130	135	140
Leu	Ala		
	145		

<210> 285
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 285

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1				5					10				15		
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
				20				25				30			
Thr	Asp	Leu	Leu	Gly	Gly	Ala	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Gln	Gly
				35			40			45					
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Lys	Ala	Glu	His	Ser	Glu	Leu
				50			55			60					
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
				65			70		75			80			
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
				85			90			95					
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
				100			105				110				
Ser	Val	Arg	Gly	Tyr	Tyr	Glu	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
				115			120			125					
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
				130			135			140					
Leu	Thr														
	145														

<210> 286
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 286

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1					5				10				15		
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Lys	Tyr	Glu
					20			25				30			
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
				35			40			45					
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Pro	Glu	Leu
				50			55			60					
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
				65			70		75			80			
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
				85			90			95					
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
				100			105				110				
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
				115			120			125					

Val His Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 287
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 287
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 288
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 288
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu

115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 289
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 289
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ala Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 290
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 290
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110

Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 291
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 291
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 292
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 292
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr

100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 293
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 293
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 294
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 294
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95

Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 295
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 295
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 296
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 296
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu

	85		90		95										
Leu	Leu	Arg	Lys	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
			100			105						110			
Ser	Val	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
			115			120						125			
Ile	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
			130			135						140			
Leu	Thr														
	145														

<210> 297

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 297

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1			5						10					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Lys	Tyr	Glu
								20		25			30		
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Gln	Gly
						35		40			45				
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Lys	Ala	Glu	His	Ser	Glu	Leu
						50		55			60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
					65		70		75			80			
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
						85		90			95				
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
						100		105			110				
Ser	Val	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
						115		120			125				
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
						130		135			140				
Leu	Thr														
	145														

<210> 298

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 298

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1			5			10			15					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
						20		25			30				
Thr	Asp	Leu	Leu	Gly	Gly	Ala	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
						35		40			45				
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
						50		55			60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
					65		70		75			80			

Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 299
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 299
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met His Lys Lys
130 135 140
Leu Thr
145

<210> 300
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 300
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Ser Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly

65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
 85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
 115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
 130 135 140
Leu Thr
145

<210> 301
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 301
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
 1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
 20 25 30
Thr Asp Leu Leu Arg Ser Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
 35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
 50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
 65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
 85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
 115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
 130 135 140
Leu Thr
145

<210> 302
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 302
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
 1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
 20 25 30
Thr Asp Leu Leu Gly Ser Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
 35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
 50 55 60

Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 303

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 303

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Arg Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 304

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 304

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Ser Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu

50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 305
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 305
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 306
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 306
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45

Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 307
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 307
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 308
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 308
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly

35	40	45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu		
50	55	60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly		
65	70	75
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu		80
85	90	95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr		
100	105	110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu		
115	120	125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys		
130	135	140
Leu Thr		
145		

<210> 309

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 309

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg		
1	5	10
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu		15
20	25	30
Thr Asp Leu Leu Gly Ser Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly		
35	40	45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu		
50	55	60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu		
65	70	75
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala		80
85	90	95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr		
100	105	110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu		
115	120	125
Val Tyr Asp Thr Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys		
130	135	140
Leu Thr		
145		

<210> 310

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 310

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg		
1	5	10
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu		15
20	25	30

Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Arg Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 311
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 311
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 312
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 312
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu

	20	25	30												
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
			35		40							45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	Asn	Gln	Ala	Glu	His	Pro	Glu	Leu
			50		55						60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
			65		70				75			80			
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
			85		90							95			
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
														100	
														105	
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
														115	
														120	
Val	Tyr	Asp	Ile	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
														130	
														135	
Leu	Thr													140	
															145

<210> 313

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 313

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
						1	5		10				15		
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Lys	Tyr	Glu
									20	25			30		
Thr	Asp	Leu	Leu	Arg	Gly	Ala	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
								35	40			45			
Lys	Leu	Val	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Pro	Glu	Leu
									50	55		60			
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
								65	70		75		80		
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
								85	90			95			
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
									100	105		110			
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
								115	120			125			
Val	Tyr	Asp	Ile	Pro	Pro	Thr	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
								130		135			140		
Leu	Thr														145

<210> 314

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 314

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
						1	5		10			15			

His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ala Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 315
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 315
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Ser Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 316
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 316
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg

1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Val Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 317

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 317

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Met Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 318

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 318

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 319

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 319

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Leu Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 320

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 320
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Ala Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 321
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 321
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Lys His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 322
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 322
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 323
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 323
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 324
<211> 146
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 324
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 325

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 325
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Thr Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 326

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 326

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 327

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 327

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 328

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 328

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 329

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 329

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 330

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 330

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 331

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 331

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Lys
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 332

<211> 146

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 332
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 333
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 333
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Val Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Ala Gly Pro His Ile Leu Met Tyr Thr Lys
130 135 140
Leu Thr
145

<210> 334

<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 334
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 335
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 335
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Lys Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 336
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 336
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 337
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 337
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 338
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 338
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Lys
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 339
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 339
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 340
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 340
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Glu Glu Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg Tyr Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 341
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 341
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Gly Leu
50 55 60
Glu Gly Glu Glu Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr

<210> 342
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 342
Met Ile Asp Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 343
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 343
Met Ile Glu Val Lys Pro Ile Ser Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140

Leu Thr
145

<210> 344
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 344
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 345
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 345
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Cys Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Arg Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys

130
Leu Ala
145

135

140

<210> 346
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 346
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Cys Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 347
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 347
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Asn Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Val Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125

Ile Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 348
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 348
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 349
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 349
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu

115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 350
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 350
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 351
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 351
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Asp
35 40 45
Arg Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110

Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 352
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 352
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 353
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 353
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Asn Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr

	100	105	110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu			
115	120	125	
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys			
130	135	140	
Leu Ala			
145			

<210> 354
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 354
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Asp
35 40 45
Arg Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 355
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 355
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Thr Ala Ser Phe His Gln Ala Gly His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Arg Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95

Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 356
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 356
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Phe Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 357
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 357
Met Ile Glu Val Arg Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu

	85		90		95										
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
			100				105					110			
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
			115				120					125			
Ala	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
			130				135					140			
Leu	Thr														
	145														

<210> 358

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 358

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1					5				10					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
					20				25				30		
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
					35			40				45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
					50			55			60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
					65			70			75		80		
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
					85			90			95				
Leu	Leu	Arg	Lys	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
					100			105				110			
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
					115			120				125			
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
					130			135				140			
Leu	Thr														
	145														

<210> 359

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 359

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1					5				10					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
					20				25			30			
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
					35			40			45				
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
					50			55			60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
					65			70			75		80		

Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 360
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 360
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Pro Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 361
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 361
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly

65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
 85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Lys Gln Gly Glu
 115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
 130 135 140
Leu Thr
145

<210> 362
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 362
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 363
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 363
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60

Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Gly Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 364

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 364

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Asp
35 40 45
Arg Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg Tyr Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 365

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 365

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu

50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 366
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 366
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 367
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 367
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45

Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 368

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 368

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro Tyr Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 369

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 369

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly

35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 370
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 370
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 371
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 371
Met Ile Glu Val Asn Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30

Thr Asp Leu Leu Gly Gly Thr Ser His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Asn Ala Glu His Ser Glu Leu
50 55 60
Asp Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Ser Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 372
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 372
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 373
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 373
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu

	20	25	30												
Thr	Asp	Leu	Leu	Gly	Gly	Ala	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
			35		40							45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ser	Glu	His	Pro	Glu	Leu
			50		55						60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
			65		70				75				80		
Tyr	Arg	Glu	Leu	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
													85		95
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Ile	
													100		110
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
													115		125
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
												130		140	
Leu	Thr														
		145													

<210> 374

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 374

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
						5			10				15		
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
									20		25		30		
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
									35		40		45		
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
									50		55		60		
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Glu
									65		70		75		80
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
									85		90		95		
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Ile	
									100		105		110		
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
									115		120		125		
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
									130		135		140		
Leu	Thr														
		145													

<210> 375

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 375

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
						1			5				10		15

His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Gly Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 376
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 376
Met Ile Glu Ala Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 377
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 377
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg

1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 378

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 378

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 379

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 379

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 380

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 380

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Gln Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Val His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 381

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 381
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly His Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 382
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 382
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 383
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 383
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 384
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 384
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Val His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 385
<211> 146
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 385
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Ala Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Asn Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Val Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 386

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 386
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Arg Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 387

<211> 146

<212> PRT

<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<221> unsure
<222> 17
<223> Xaa = His or Pro

<400> 387

```

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
   1          5           10          15
Xaa Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
   20         25           30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
   35         40           45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
   50         55           60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
   65         70           75           80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
   85         .            90           95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
  100        105          110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
  115        120          125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
  130        135          140
Leu Thr
  145

```

<210> 388

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 388

```

Met Ile Glu Ala Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
   1          5          10          15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
   20         25          30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
   35         40          45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
   50         55          60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
   65         70          75          80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
   85         90          95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
  100        105         110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
  115        120         125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
  130        135         140
Leu Thr
  145

```

<210> 389
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 389

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145.

<210> 390
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 390

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 391
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 391
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg Gln Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Glu
130 135 140
Leu Thr
145

<210> 392
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 392
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 393
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 393

Met Ile Glu Val Lys Pro Ile Asn Ala Gly Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 394
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 394

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr

<210> 395
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 395
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Val Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Val Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 396
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 396
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Arg Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Gly Leu
50 55 60
Glu Gly Lys Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140

Leu Thr
145

<210> 397
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 397
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Glu Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 398
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 398
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Asp Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys

130
Leu Thr
145

135

140

<210> 399
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 399

```

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
   1          5           10          15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Gly
   20         25           30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
   35         40           45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu Gln Pro Glu Leu
   50         55           60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
   65         70           75           80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
   85         90           95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
  100        105          110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
  115        120          125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
  130        135          140
Leu Thr
  145

```

<210> 400
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 400

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1				5					10					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
				20					25					30	
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
						35			40					45	
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
						50			55					60	
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
					65		70			75					80
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
							85			90					95
Ile	Leu	Arg	Lys	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
							100			105					110
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
								115		120					125

Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 401
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 401
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Val Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Pro Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 402
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 402
Met Ile Glu Ile Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu

115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 403
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 403
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 404
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 404
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110

Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 405
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 405
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 406
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 406
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Val Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Gly Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr

	100	105	110												
Ser	Ala	Ser	Gly	Tyr	Tyr	Glu	Lys	Leu	Gly	Phe	Ser	Gly	Gln	Gly	Glu
	115		120			125									
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
	130		135								140				
Leu	Thr														
	145														

<210> 407
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 407
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 408
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 408
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95

Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val His Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 409
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 409
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Ile
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 410
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 410
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Ala Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu

	85		90		95										
Leu	Leu	Arg	Lys	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
			100			105						110			
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
			115			120						125			
Val	Tyr	Asp	Ile	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
			130			135						140			
Leu	Thr														
	145														

<210> 411
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 411
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 412
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 412
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80

Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 413
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 413
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 414
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 414
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Cys Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Asp Gly

65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
 85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
 115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
 130 135 140
Leu Thr
145

<210> 415
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 415
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 416
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 416
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60

Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 417
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 417
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 418
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 418
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu

50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 419
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 419
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Val Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 420
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 420
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45

Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 421
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 421
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 422
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 422
Met Ile Glu Ala Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly

35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Thr Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 423

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 423

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Asp Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 424

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 424

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30

Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 425

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 425

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Met Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr His Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asn Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 426

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 426

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu

	20	25	30												
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
		35			40							45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Pro	Glu	Leu
		50			55						60				
Val	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
		65			70				75				80		
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
														95	
					85				90						
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
													100		
									105				110		
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
													115		
									120				125		
Val	Tyr	Asp	Ile	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
												130			
Leu	Thr										135			140	
		145													

<210> 427

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 427

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
						1	5		10				15		
His	Arg	Val	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
									20	25			30		
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
									35	40			45		
Glu	Leu	Val	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Pro	Glu	Leu
									50	55			60		
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
									65	70			75		80
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
									85	90			95		
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
									100	105			110		
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Gly
									115	120			125		
Val	Tyr	Asp	Ile	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
									130				135		
Leu	Thr														
		145													

<210> 428

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 428

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
						1	5		10			15			

His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Asp Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 429
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 429
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Leu Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 430
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 430
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg

1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Val Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Gly Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 431

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 431

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Ala
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 432

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 432

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Ile Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 433

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 433

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe Asn Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 434

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 434
Met Ile Glu Val Lys Pro Ile Thr Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Thr Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 435
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 435
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Ala Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Ser Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Glu
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 436
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 436

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg			
1	5	10	15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu			
20	25	30	
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Gln Gly			
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His Asn Ala Glu His Ser Glu Leu			
50	55	60	
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly			
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu			
85	90	95	
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr			
100	105	110	
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu			
115	120	125	
Val Tyr Asp Ile Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys			
130	135	140	
Leu Ala			
145			

<210> 437
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 437

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg			
1	5	10	15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu			
20	25	30	
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly			
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu			
50	55	60	
Glu Gly Glu Glu Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly			
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu			
85	90	95	
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr			
100	105	110	
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu			
115	120	125	
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys			
130	135	140	
Leu Thr			
145			

<210> 438
<211> 146
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 438

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Thr Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 439

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 439

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Gln
85 90 95
Leu Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Ile Thr
145

<210> 440

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 440

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Gln
85 90 95
Leu Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 441

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 441

Met Leu Glu Val Lys Leu Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asn Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 442

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 442

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 443

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 443

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Gly Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Ile Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 444

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 444

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Gln
85 90 95
Leu Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 445

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 445

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 446

<211> 146

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 446
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Leu Leu Arg Lys Gly Ala Asn Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Thr Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 447
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 447
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Leu His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Lys
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 448

<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 448

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 449
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 449

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 450
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 450
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 451
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 451
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Lys Gly Ala Asn Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 452
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<221> unsure
<222> 45
<223> Xaa = Phe, Ser, Tyr, or Cys

<221> unsure
<222> 105
<223> Xaa = Leu, Met, or Val

```

<400> 452
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
      1           5           10          15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
      20          25          30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Xaa Tyr Arg Gly
      35          40          45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
      50          55          60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
      65          70          75          80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Gln
      85          90          95
Ile Leu Arg Lys Arg Gly Ala Asp Xaa Leu Trp Cys Asn Ala Arg Thr
      100         105         110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
      115         120         125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
      130         135         140
Leu Thr
      145

```

<210> 453
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

```

<400> 453
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
   1           5           10          15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
   20          25          30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
   35          40          45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
   50          55          60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
   65          70          75          80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Gln
   85          90          95

```

Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 454
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 454
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Phe Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 455
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 455
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln

	85	90	95												
Ile	Leu	Arg	Lys	Arg	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
			100					105						110	
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
			115					120					125		
Ile	Phe	Asp	Thr	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Arg
	130					135						140			
Leu	Thr														
145															

<210> 456
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 456

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Leu	Arg
1				5				10					15		
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Ile	Glu	Ala	Cys	Met	Phe	Glu
					20			25					30		
Ser	Asp	Leu	Leu	Arg	Gly	Ala	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
					35			40				45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Asp	Leu
					50			55			60				
Gln	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
					65			70			75		80		
Tyr	Arg	Asp	Gln	Lys	Ala	Gly	Ser	Ser	Leu	Ile	Arg	His	Ala	Glu	Gln
					85			90			95				
Ile	Leu	Arg	Lys	Arg	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
					100			105				110			
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
					115			120				125			
Ile	Phe	Asp	Thr	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Arg
	130					135						140			
Leu	Thr														
145															

<210> 457
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 457

Met	Leu	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Leu	Arg
1				5				10					15		
His	Lys	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Val	Cys	Met	Tyr	Glu
					20			25				30			
Thr	Asp	Leu	Leu	Arg	Gly	Ala	Phe	His	Leu	Gly	Gly	Phe	Tyr	Arg	Gly
					35			40			45				
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
					50			55			60				
Gln	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
					65			70			75		80		

Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 458
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 458
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 459
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 459
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Phe Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly

65 70 75 80
Phe Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
 85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu
 115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
 130 135 140
Leu Thr
145

<210> 460
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 460
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Phe Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 461
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 461
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Asp Leu
50 55 60

Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Leu Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 462
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 462
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Leu His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 463
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 463
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Phe Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu

50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 464
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 464
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 465
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 465
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45

Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 466
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 466
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Gln Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Asn Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Thr Ala Ser Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 467
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 467
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly

35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Thr Ala Ala Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 468

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 468

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Thr Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 469

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 469

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30

Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu Gln Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 470

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 470

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 471

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 471

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu

	20	25	30
Thr Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly			
35	40	45	
Gln Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu			
50	55	60	
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly			
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Glu			
85	90	95	
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr			
100	105	110	
Thr Ala Ala Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu			
115	120	125	
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys			
130	135	140	
Ile Thr			
145			

<210> 472

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 472

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg			
1	5	10	15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu			
20	25	30	
Ser Asp Leu Leu Arg Ser Ala Phe His Leu Gly Gly Phe Tyr Arg Gly			
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu			
50	55	60	
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly			
65	70	75	80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu			
85	90	95	
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr			
100	105	110	
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu			
115	120	125	
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg			
130	135	140	
Ile Thr			
145			

<210> 473

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 473

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg			
1	5	10	15

His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Gln
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 474

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 474

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Thr Ala Ala Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Tyr Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 475

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 475

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg

1	5	10	15
His Lys Ile Leu Arg Pro Asn Gln Pro	Leu Glu Ala Cys Met Tyr Glu		
20	25	30	
Thr Asp Leu Leu Arg Gly Ala Phe His	Leu Gly Gly Phe Tyr Arg Gly		
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His	Gln Ala Asp His Ser Glu Leu		
50	55	60	
Gln Gly Gln Lys Gln Tyr Gln Leu Arg	Gly Met Ala Thr Leu Glu Gly		
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr	Leu Ile Arg His Ala Glu Gln		
85	90	95	
Ile Leu Arg Lys Arg Gly Ala Asp	Leu Leu Trp Cys Asn Ala Arg Thr		
100	105	110	
Ser Ala Ala Gly Tyr Tyr Lys Lys	Leu Gly Phe Ser Glu His Gly Glu		
115	120	125	
Ile Phe Glu Thr Pro Pro Val	Gly Pro His Ile Leu Met Tyr Lys Arg		
130	135	140	
Leu Thr			
145			

<210> 476

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 476

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg			
1	5	10	15
His Arg Ile Leu Arg Pro Asn Gln Pro	Ile Glu Ala Cys Met Tyr Glu		
20	25	30	
Ser Asp Leu Leu Arg Gly Ala Phe His	Leu Gly Gly Phe Tyr Arg Gly		
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His	Gln Ala Glu His Ser Asp Leu		
50	55	60	
Gln Gly Gln Lys Gln Tyr Gln Leu Arg	Gly Met Ala Thr Leu Glu Gly		
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser	Leu Ile Arg His Ala Glu Glu		
85	90	95	
Ile Leu Arg Lys Lys Gly Ala Asp	Met Leu Trp Cys Asn Ala Arg Thr		
100	105	110	
Thr Ala Ala Gly Tyr Tyr Lys Arg	Leu Gly Phe Ser Glu Gln Gly Glu		
115	120	125	
Val Phe Asp Thr Pro Pro Val	Gly Pro His Ile Leu Met Tyr Lys Arg		
130	135	140	
Ile Thr			
145			

<210> 477

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 477

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Gln Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Gln Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Ala Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 478

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 478

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg
1 5 10 15
Gln Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Gln Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 479

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 479
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Gln Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Gln
85 90 95
Leu Leu Arg Glu Lys Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 480
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 480
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Asn Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 481
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 481
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Gln Leu Ile Ser Ile Ala Ser Phe His Lys Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 482
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 482
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Gln
85 90 95
Leu Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 483
<211> 146
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 483

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Gln Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Phe Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 484

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 484

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Glu Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu His Gly Glu
115 120 125
Ile Tyr Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Ile Thr
145

<210> 485

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 485

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ser Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Gln Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ala Gly Tyr Tyr Lys Arg Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Ile Thr
145

<210> 486

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 486

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Val Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 487

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 487

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 488

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 488

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 489

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 489

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Leu	Arg
1				5					10					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Ile	Glu	Ala	Cys	Met	Tyr	Glu
				20				25					30		
Ser	Asp	Leu	Leu	Arg	Gly	Ala	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
				35			40			45					
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
				50			55			60					
Gln	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
				65			70		75			80			
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Ser	Leu	Ile	Lys	His	Ala	Glu	Glu
				85			90			95					
Ile	Leu	Arg	Lys	Arg	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
				100			105					110			
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
				115			120				125				
Ile	Phe	Glu	Thr	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Arg
				130			135			140					
Ile	Thr														
	145														

<210> 490

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 490

Met	Leu	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Leu	Arg
1				5					10					15	
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Ile	Glu	Ala	Cys	Met	Tyr	Glu
				20				25					30		
Ser	Asp	Leu	Leu	Arg	Gly	Ala	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
				35			40		45						
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Pro	Glu	Leu
				50			55		60						
Gln	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
				65			70		75			80			
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Ser	Leu	Ile	Lys	His	Ala	Glu	Glu
				85			90			95					
Ile	Leu	Arg	Lys	Arg	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr
				100			105				110				
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
				115			120			125					
Val	Phe	Glu	Thr	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Arg
				130			135			140					
Ile	Thr														
	145														

<210> 491

<211> 146

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 491
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 492
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 492
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 493

<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 493

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 494
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 494

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 495
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<221> unsure
<222> 3
<223> Xaa = Asp or Glu

<221> unsure
<222> 26
<223> Xaa = Leu, Ile, or Val

<221> unsure
<222> 33
<223> Xaa = Ile, Thr, Asn, or Ser

<400> 495

Met	Leu	Xaa	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Leu	Arg
1				5				10					15		
His	Lys	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Xaa	Glu	Val	Cys	Met	Tyr	Glu
				20				25				30			
Xaa	Asp	Leu	Leu	Arg	Gly	Ala	Phe	His	Leu	Gly	Gly	Phe	Tyr	Arg	Gly
				35			40			45					
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Asp	Leu
				50		55			60						
Gln	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
				65		70		75		80					
Tyr	Arg	Asp	Gln	Lys	Ala	Gly	Ser	Ser	Leu	Ile	Lys	His	Ala	Glu	Gln
				85		90			95						
Ile	Leu	Arg	Glu	Arg	Gly	Ala	Asp	Met	Leu	Trp	Cys	Asn	Ala	Arg	Thr
				100		105			110						
Ser	Ala	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
				115		120		125							
Val	Phe	Asp	Thr	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Arg
				130		135			140						
Leu	Thr														
	145														

<210> 496
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 496

Met	Leu	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Leu	Arg
1				5				10				15			
His	Lys	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Ile	Glu	Val	Cys	Met	Tyr	Glu
				20				25			30				
Thr	Asp	Leu	Leu	Arg	Gly	Ala	Phe	His	Leu	Gly	Gly	Phe	Tyr	Gly	Gly
				35		40			45						
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Asp	Leu
				50		55			60						
Gln	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly

65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
 85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
 100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
 115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
 130 135 140
Leu Thr
145

<210> 497
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 497
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Arg Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 498
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 498
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60

Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 499
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 499
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 500
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 500
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu

50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 501
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 501
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Ile Thr
145

<210> 502
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 502
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
35 40 45

Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Asp Gln Lys Ala Gly Ser Thr Leu Ile Lys His Ala Glu Gln
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 503
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 503
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 504
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 504
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Val Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly

35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 505
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 505
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 506
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 506
Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Val Cys Met Tyr Glu
20 25 30

Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 507

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 507

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Lys Ile Leu Arg Pro Asn Gln Pro Leu Glu Val Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Asp Leu
50 55 60
Gln Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Arg His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Leu Thr
145

<210> 508

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 508

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Lys Tyr Glu

	20	25	30												
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
			35		40							45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Asn	Ala	Glu	His	Ser	Glu	Leu
			50		55						60				
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
			65		70				75			80			
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
			85				90					95			
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
								100	105			110			
Ser	Val	Ser	Gly	Tyr	Tyr	Lys	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
								115	120			125			
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Lys
								130	135			140			
Leu	Thr														
	145														

<210> 509

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 509

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1				5				10				15			
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Leu	Glu	Ala	Cys	Met	Tyr	Glu
								20	25			30			
Thr	Asp	Leu	Leu	Gly	Gly	Thr	Phe	His	Leu	Gly	Gly	Tyr	Tyr	Arg	Gly
								35	40			45			
Lys	Leu	Ile	Ser	Ile	Ala	Ser	Phe	His	Gln	Ala	Glu	His	Ser	Glu	Leu
								50	55			60			
Glu	Gly	Gln	Lys	Gln	Tyr	Gln	Leu	Arg	Gly	Met	Ala	Thr	Leu	Glu	Gly
								65	70			75		80	
Tyr	Arg	Glu	Gln	Lys	Ala	Gly	Ser	Thr	Leu	Ile	Arg	His	Ala	Glu	Glu
								85	90			95			
Leu	Leu	Arg	Lys	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr	
								100	105			110			
Phe	Val	Ser	Gly	Tyr	Tyr	Glu	Lys	Leu	Gly	Phe	Ser	Glu	Gln	Gly	Glu
								115	120			125			
Val	Tyr	Asp	Ile	Pro	Pro	Ile	Gly	Pro	Tyr	Ile	Leu	Met	Tyr	Glu	Lys
								130	135			140			
Leu	Thr														
	145														

<210> 510

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 510

Met	Ile	Glu	Val	Lys	Pro	Ile	Asn	Ala	Glu	Asp	Thr	Tyr	Glu	Ile	Arg
1				5				10				15			

His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Cys Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Ala
145

<210> 511
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 511
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Pro Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Glu Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 512
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Protein Sequence

<400> 512
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg

1	5	10	15
His Arg Ile Leu Arg Pro Asn Gln Pro	Leu Glu Ala Cys Lys Tyr Glu		
20	25	30	
Thr Asp Leu Leu Gly Gly Thr Phe His	Leu Gly Gly Tyr Tyr Arg Gly		
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His	Asn Ala Glu His Ser Glu Leu		
50	55	60	
Glu Gly Gln Lys Gln Tyr Gln Leu Arg	Gly Met Ala Thr Leu Glu Gly		
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr	Leu Ile Arg His Ala Glu Glu		
85	90	95	
Leu Leu Arg Lys Lys Gly Ala Asp	Leu Leu Trp Cys Asn Ala Arg Thr		
100	105	110	
Ser Val Ser Gly Tyr Tyr Lys Lys	Leu Gly Phe Ser Glu Gln Gly Glu		
115	120	125	
Val Tyr Asp Ile Pro Pro Ile Gly Pro	His Ile Leu Met Tyr Lys Lys		
130	135	140	
Leu Thr			
145			

<210> 513

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 513

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg			
1	5	10	15
His Arg Ile Leu Arg Pro Asn Gln Pro	Leu Glu Ala Cys Met Tyr Glu		
20	25	30	
Thr Asp Leu Leu Gly Gly Thr Phe His	Leu Gly Gly Tyr Tyr Arg Gly		
35	40	45	
Lys Leu Ile Ser Ile Ala Ser Phe His	Gln Ala Glu His Pro Glu Leu		
50	55	60	
Glu Gly Gln Lys Gln Tyr Gln Leu Arg	Gly Met Ala Thr Leu Glu Gly		
65	70	75	80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr	Leu Ile Arg His Ala Glu Glu		
85	90	95	
Leu Leu Arg Lys Lys Gly Ala Asp	Leu Leu Trp Cys Asn Ala Arg Thr		
100	105	110	
Ser Val Ser Gly Tyr Tyr Glu Lys	Leu Gly Phe Ser Glu Gln Gly Glu		
115	120	125	
Val Cys Asp Ile Pro Pro Ile Gly Pro	His Ile Leu Met Tyr Lys Lys		
130	135	140	
Leu Thr			
145			

<210> 514

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Protein Sequence

<400> 514

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Leu Glu Ala Cys Met Tyr Glu
20 25 30
Thr Asp Leu Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Glu Gly Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
85 90 95
Leu Leu Arg Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Val Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Gly
115 120 125
Val Tyr Asp Ile Pro Pro Ile Gly Pro His Ile Leu Met Tyr Lys Lys
130 135 140
Leu Thr
145

<210> 515

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA Sequence

<400> 515

aactgaagga ggaatctc