Assignment: 4 Master's Thoman

Calculate time complisity for following recurere relation:

Case 2 $|ag_{a} > k|$ $|ag_{b} = k|$ $|ag_$

B1. $T(h) = 2T(\frac{D}{2}) + h$ compair above with $T(h) = aT(\frac{D}{b}) + f(h)$ a = 2, b = 2, k = 1, p = 0Evaluate lag_ba, put values of 9/b. $\Rightarrow lag_{2}^{2} = 1$

Compair lagge with $K. \Rightarrow lag_b a = K$ case 2 will apply. Check the value of p for case 2. p is 0 which low greater than (-1) for p > (-1),

Time Complexity = $\Theta(nK lag_p P^{+1}n)$

$$= \theta(n' \log^{0+1} n)$$

$$= \theta(n \log n) \qquad \underline{ANS}.$$

O2. $2T(\frac{h}{2}) + n\log n = T(n)$ Compair above equation with $T(n) = qT(\frac{h}{2}) + f(\frac{h}{2})$ $\Rightarrow q = 2$, b = 2, k = 1, p = 1evaluati value of $\log_b a \Rightarrow \log_2 2 = 1$ compair $\log_b a$ with value of $k \Rightarrow \log_b a = k$ was 2 applied.

Compair $\log_b a$ with value of $k \Rightarrow \log_b a = k$ was 2 applied.

The complemity $= \Theta(n^k \log^{p+1} n)$ Time complemity $= \Theta(n^k \log^{p+1} n) \Rightarrow \Theta(n \log^2 n)$ Ans. $= \Theta(n^k \log^{p+1} n) \Rightarrow \Theta(n \log^2 n)$ Ans.

83. $T(N) = 2T(D) + n^{2}$ compair above equation with $T(N) = aT(D) + n^{2} \log^{2} n$ $\Rightarrow a = 2, b = 2, k = 2, p = 0$ evaluate value of $\log_{b} a \Rightarrow \log_{2} a = 1$ compair lags a sith value of $k \Rightarrow \log_{b} a < k$ case 3 applied compair lags a sith value of $k \Rightarrow \log_{b} a < k$ tech value of $p \Rightarrow p = 0 \Rightarrow p \Rightarrow p \Rightarrow p \Rightarrow 0$ $\Rightarrow Time \ \text{complexity} = \Theta(n \times \log n)$ $= \Theta(n^{2} \log^{2} n)$ $= \Theta(n^{2})$

 $T(n) = 8T(\frac{n}{2}) + n^2$ compairs above equation with $T(n) = aT(\frac{n}{b}) + n^k \log^2 n$ $\Rightarrow a = 8, b = 2, k = 2, p = 0$ $\Rightarrow a = 8, b = 2, k = 2, p = 0$ evaluate value of $\log_b a \Rightarrow \log_2 8 \Rightarrow 3$ which > k case! evaluate value of $\log_b a \Rightarrow \log_2 8 \Rightarrow 3$ which > k applied (priority given to $\log_b a$) Time Complexity $= \theta(n^2)$ $= \theta(n^3)$