2

3

	WHAT IS CLAIMED IS:			
1	1. A method for fabricating a non-volatile memory device, the			
2	method comprising:			
3	providing a substrate;			
4	forming an oxide layer overlying the substrate;			
5	forming a buffer layer overlying the oxide layer;			
6	forming a ferroelectric material overlying the substrate;			
7	forming a gate layer overlying the ferroelectric material, the gate layer			
8	overlying a channel region; and			
9	forming a first source/drain region adjacent to a first side of the channel			
10	region and a second source/drain region adjacent to a second side of the channel region.			
1	2. The method of claim 1 wherein the channel region is about 1			
2	micron and less.			
1	3. The method of claim 1 wherein the ferroelectric material is a PZT			
2	bearing compound.			
1	4. The method of claim 1 wherein the buffer layer is a magnesium			
2	bearing compound.			
1	5. The method of claim 1 wherein the buffer layer is a magnesium			
2	oxide layer, the magnesium oxide layer being a barrier layer.			
1	6. The method of claim 1 wherein the ferroelectric material has a			
2	thickness of less than about 1,000 Angstroms.			
1	7. The method of claim 1 wherein the buffer layer has a thickness			
2	ranging from about 7 to 100 nanometers.			
1	8. The method of claim 1 wherein the ferroelectric material has a			
2	thickness of about 100 Angstroms and greater.			
1	9. The method of claim 1 wherein the ferroelectric material is PZT.			

ferroelectric material to the substrate.

diffusion layer, the barrier diffusion layer substantially preventing diffusion between the

1		11.	The method of claim 1 wherein the buffer material is sputtered	
2	from a substantially pure magnesium target to form a magnesium oxide layer.			
1		12.	The method of claim 11 wherein the sputtering is maintained at a	
2	temperature g	reater t	han about 400 degrees Celsius or greater than about 500 degrees	
3	Celsius.			
1		13.	The method of claim 1 wherein the buffer layer is thermally	
2	annealed.			
1		14.	The method of claim 1 wherein the ferroelectric material is highly	
2	oriented.			
1		15.	The method of claim 14 wherein the highly oriented material is a	
2	polycrystallin	e film.	,	
1		16.	The method of claim 1 wherein the ferroelectric film is	
2	substantially free from an amorphous structure.			
1		17.	The method of claim 15 wherein the polycrystalline film has a	
2	crystal structure of 100 angstroms and greater.			
1		18.	The method of claim 1 wherein buffer layer is a template to	
2	provide an oriented growth of the ferroelectric film.			
1		19.	The method of claim 1 wherein the oxide is provided by a dry	
2	oxidation process comprising an oxygen bearing compound.			
1		20 .	The method of claim 1 wherein the oxide passivates the surface of	
2	the substrate t	o prote	ect the channel region.	
1		21.	A method for fabricating a non-volatile memory device, the	
2	method comp	rising:		
3		provid	ding a substrate;	
4		formi	ng a first buffer layer overlying the substrate;	
5		formi	ng a second buffer layer overlying the first buffer layer;	
6		formi	ng a ferroelectric material overlying the substrate;	

7	f	orming a gate layer overlying the ferroelectric material, the gate layer			
8	overlying a channel region; and				
9	f	orming first and second doped regions adjacent to first and second ends of			
10	the channel region.				
1	2	2. The method of claim 21, wherein the first buffer layer is a gate			
2	oxide layer, and the second buffer layer is a MgO layer.				
1	2	3. The method of claim 21, wherein the first buffer layer is an			
2	amorphous layer, and the second buffer layer is a highly-oriented layer.				
1	2	4. The method of claim 23, wherein the second buffer layer has a			
2	thickness of no more than 10 nm.				
1	2	5. A memory structure for integrated circuit devices, the structure			
2	comprising:				
3	a	substrate;			
4	an oxide layer overlying the substrate;				
5	a	buffer layer overlying the oxide layer;			
6	a	ferroelectric material overlying the substrate;			
7	a	gate layer overlying the ferroelectric material, the gate layer overlying a			
8	channel region; and				
9	a	first source/drain region adjacent to a first side of the channel region and			
10	a second source/drain region adjacent to a second side of the channel region.				