\$1.8 Indroto linear transformations Systems of ~ Ax=B linear egns ax = 5 ax = 5 ax = 5 ax = 5f(x) = ax g: R-> R $f^{-1}(b) = Solution Set to ax=b$ G-1(b) A mxn matrix 子(又) = A又 f(v) ERM. f: R" -> Rm transformation, map, function

$$T_{A}(\vec{y}) = A\vec{y} = image s \vec{v}$$

$$T_{A}([x]) = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$T_{A}([x]) = \begin{bmatrix} 2x + 3y \\ x + 4y \end{bmatrix}$$

$$f: R \rightarrow R \quad f(x) = x^{2}$$

$$range(f) = \{a \in R: a \ge 0\}$$

$$T_{A}(\vec{x}) = A\vec{x} \quad is called$$

$$a \quad matrix \quad transformation.$$

Properties:
$$T_{A}(\vec{v}+\vec{w}) = A(\vec{v}+\vec{w})$$

$$= A\vec{v} + A\vec{w}$$

$$= T_{A}(\vec{v}) + T_{A}(\vec{w})$$

$$T_{A}(c\vec{v}) = A(c\vec{v})$$

$$= c(A\vec{v})$$

Eg: Madrix transformations are linear transformations.

Eg:
$$f(x) = [ax]$$
 $f = T[a]$

Non-eg: $g([x]) = [ax+b] + [ay+b]$
 $= [a(x+y) + 2b]$
 $A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \end{bmatrix}$

Is $\begin{bmatrix} -1 \end{bmatrix} \in range (TA)$? No

A =
$$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 At = $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, At = $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$

A = $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ In response to questions...

A $\begin{bmatrix} x \\ y \end{bmatrix}$ = $\begin{bmatrix} x \\ 0 \end{bmatrix}$

range (T_A) = $Col(A)$ = x -axis

$$\begin{bmatrix} R^2 = codomain(T_A) \end{bmatrix}$$

