AMATH 561 Assignment 1

Tyler Chen

Exercise 1.1

Let \mathcal{F} be a σ -algebra of Ω . Suppose $B \in \mathcal{F}$. Show that $\mathcal{G} := \{A \cap B : A \in \mathcal{F}\}$ is a σ -algebra of B.

Solution

Let \mathcal{F} be a σ -algebra of Ω . Suppose $B \in \mathcal{F}$ and define $\mathcal{G} := \{A \cap B : A \in \mathcal{F}\}.$

- (i) Since \mathcal{F} is a σ -algebra, and $B \in \mathcal{F}$ then $B^c \in \mathcal{F}$. Thus, $\emptyset = B^c \cap B \in \mathcal{G}$.
- (ii) Suppose $B_1, B_2, B_3, \ldots \in \mathcal{G}$. Then for each $i, B_i = A_i \cap B$ for some $A_i \in \mathcal{F}$. Since \mathcal{F} is a σ -algebra then $\bigcup_i A_i \in \mathcal{F}$. Thus $\bigcup_i B_i = \bigcup_i (A_i \cap B) = \{x : \forall i, (x \in A_i) \land (x \in B)\} = \{x : (\forall i, x \in A_i) \land (x \in B)\} = (\bigcup_i A_i) \cap B \in \mathcal{G}$.
- (iii) Suppose $B_0 \in \mathcal{G}$. Then $B_0 = A_0 \cap B$ for some $A_0 \in \mathcal{F}$. Consider the compliment of B_0 in B. We have, $B_0^C = (A_0 \cap B)^c = A_0^c \cup B^c = \{x \in B : x \in A_0^c \cup B^c\} = \{x \in B : (x \in A_0^c) \lor (x \in B_0^c)\} = \{x \in B : (x \in A_0^c)\} = \{x \in E : (x \in A_0^c) \land (x \in E)\} = \{x \in E : (x \in A_0^c) \land (x \in E)\} = \{x \in E : (x \in A_0^c) \land (x \in E)\} = \{x \in E : (x \in$

This proves \mathcal{G} is a σ -algebra.

Exercise 1.2

Let \mathcal{F} and \mathcal{G} be σ algebras of Ω .

- (a) Show that $\mathcal{F} \cap \mathcal{G}$ is a σ -algebra of Ω .
- (b) Show that $\mathcal{F} \cup \mathcal{G}$ is not necessarily a σ -algebra of Ω .

Solution

Let \mathcal{F} and \mathcal{G} be σ algebras of Ω .

- (a) Consider $\mathcal{F} \cap \mathcal{G}$.
 - (i) Since each \mathcal{F} and \mathcal{G} are σ -algerbas, $\emptyset \in \mathcal{F}$ and $\emptyset \in \mathcal{G}$. Therefore $\emptyset \in \mathcal{F} \cap \mathcal{G}$
 - (ii) Suppose $A_1, A_2, A_3, ... \in \mathcal{F} \cap \mathcal{G}$. Then $A_1, A_2, A_3, ... \in \mathcal{F}$ and $A_1, A_2, A_3, ... \in \mathcal{G}$. These are each σ -algebras, so $\bigcup_i A_i \in \mathcal{F}$ and $\bigcup_i A_i \in \mathcal{G}$. Therefore $\bigcup_i A_i \in \mathcal{F} \cap \mathcal{G}$.
 - (iii) Suppose $A \in \mathcal{F} \cap \mathcal{G}$. Then $A \in \mathcal{F}$ and $A \in \mathcal{G}$. These are each σ -algebras, so $A^c \in \mathcal{F}$ and $A^c \in \mathcal{G}$. Therefore $A^c \in \mathcal{F} \cap \mathcal{G}$.

This proves $\mathcal{F} \cap \mathcal{G}$ is a σ -algebra.

(b) Let $\Omega = (0,3), A = (0,1), B = (2,3)$. Define,

$$\mathcal{F} = \{\emptyset, A, A^c, \Omega\} = \{\emptyset, (0, 1), [1, 3), (0, 3)\}\mathcal{G} = \{\emptyset, B, B^c, \Omega\} = \{\emptyset, (2, 3), (0, 2], (0, 3)\}\mathcal{G}$$

Then,

$$\mathcal{F} \cup \mathcal{G} = \{\emptyset, A, B, A^c, B^c, \Omega\} = \{\emptyset, (0, 1), (2, 3), [1, 3), (0, 2], (0, 3)\}$$

Observe that $A \cup B = (0,1) \cup (2,3) \notin \mathcal{F} \cup \mathcal{G}$.

This proves that for σ -algebras \mathcal{F}, \mathcal{G} of Ω , their union $\mathcal{F} \cup \mathcal{G}$ is not necessarily a σ -algebra of Ω . \square

Exercise 1.3

Describe the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ for the following three experiments:

- (a) a biased coin is tossed three times
- (b) two balls are drawn without replacement from an urn which originally contained two blue and two red balls
- (c) a biased coin is tossed repeatedly until a head turns up

Solution

(a) $\Omega = \{w_1 w_2 w_3 : w_i \in \{H, T\} = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

 \mathcal{F} contains sets which correspond to to questions we could ask about the three coin tosses. For instance, "was the second coin toss a heads?" ({HHH,HHT,THH,THT}), "were there two heads?" ({HHT,HTH,THH}), "were the final two coin tosses tails?" ({HTT,TTT}), etc.

Explicitly, $\mathcal{F} = \mathcal{P}(\Omega)$, the power set of Ω .

Suppose the coin is biased such that the probability of heads is p (and the probability of tails is 1-p).

Define $g(h_1h_2h_3) = p^k(1-p)^{3-k}$, where k is the number of h_1, h_2, h_3 which are heads.

Define
$$\mathbb{P}: \mathcal{F} \to [0,1]$$
 as $\mathbb{P}(A) = \sum_{d \in A} g(d)$.

As a quick test, let $A = \{HHH, HHT\}$, the set asking the question "were the first two coin tosses heads?". We have $\mathbb{P}(A) = g(HHH) + g(HHT) = ppp + pp(1-p) = p^2$ which corresponds to our natural understanding of the answer to this question.

Suppose $A, B \subseteq \Omega$ are disjoint. Then,

$$\mathbb{P}(A \cup B) = \sum_{d \in A \cup B} g(d) = \sum_{d \in A} g(d) + \sum_{d \in B} g(d) = \mathbb{P}(A) + \mathbb{P}(B)$$

Clearly $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = 1$. Therefore \mathbb{P} is a well defined probability measure on (Ω, \mathcal{F}) .

(b) $\Omega = \{b_1b_2 : b_i \in \{R, B\}\} = \{RR, RB, BR, BB\}$

 \mathcal{F} contain sets which correspond to questions we could ask about the color of the two balls. For instance, "was the first ball red?" ({RB,RR}), "was the second ball blue?" ({RB,BB}), "was the first ball red and the second ball blue?" ({RB}), etc.

Explicitly, $\mathcal{F} = \mathcal{P}(\Omega)$, the power set of Ω .

Define
$$g(b_1b_2) = \begin{cases} 1/6 & b_1 = b_2 \\ 1/3 & b_1 \neq b_2 \end{cases}$$

Then define $\mathbb{P}: \mathcal{F} \to [0,1]$ as $\mathbb{P}(A) = \sum_{d \in A} g(d)$.

As a quick test, let $A = \{RB, RR\}$, the set asking the question "was the first ball red?". We have $\mathbb{P}(A) = g(RB) + g(RR) = 1/3 + 1/6 = 1/2$ which corresponds to our natural understanding of the answer to this question.

Suppose $A, B \subseteq \Omega$ are disjoint

$$\mathbb{P}(A \cup B) = \sum_{d \in A \cup B} g(d) = \sum_{d \in A} g(d) + \sum_{d \in B} g(d) = \mathbb{P}(A) + \mathbb{P}(B)$$

Clearly $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = g(RR) + g(RB) + g(BR) + g(BB) = 1/6 + 1/3 + 1/3 + 1/6 = 1$. Therefore \mathbb{P} is a well defined probability measure on (Ω, \mathcal{F}) .

(c) $\Omega = \{w_1 w_2 \dots w_{n-1} w_n : w_1, \dots, w_{n-1} = T, w_n = H\}$

Again, \mathcal{F} contains sets which correspond to questions we could ask about the coin tosses. For instance, "was the first toss a tails?" ({TH,TTH,TTTH,...}), "was the last toss a heads?" ({H,TH,TTH,TTTH, ...}= Ω), etc.

Explicitly, $\mathcal{F} = \mathcal{P}(\Omega)$, the power set of Ω .

Suppose the coin is biased such that the probability of heads is (1-q) (and the probability of tails is q).

Define $g(w_1w_1...w_n) = q^{n-1}(1-q)$, where g() = 0.

Define $\mathbb{P}: \mathcal{F} \to [0,1]$ as $\mathbb{P}(A) = \sum_{d \in A} g(d)$.

As a quick test, let $A = \{\text{TTTTH}, \text{TTH}\}$. Then $\mathbb{P}(A) = g(\text{TTTTH}) + g(\text{TTH}) = q^4(1-q) + q^2(1-q)$ as expected.

Suppose $A, B \subseteq \Omega$ are disjoint. Then, since A, B are countable,

$$\mathbb{P}(A \cup B) = \sum_{d \in A \cup B} g(d) = \sum_{d \in A} g(d) + \sum_{d \in B} g(d) = \mathbb{P}(A) + \mathbb{P}(B)$$

By definition $\mathbb{P}(\emptyset) = 0$. Finally $\mathbb{P}(\Omega) = \sum_{n=1}^{\infty} q^{n-1}(1-q)$ which we verify is equal to 1 using Mathematica (Sum[p^(n-1)(1-p), {n,1,Infinity}]//FullSimplify). Therefore \mathbb{P} is a well defined probability measure on (Ω, \mathcal{F}) .

Exercise 1.4

Suppose X is a continuous random variable with distribution F_X . Let g be a strictly increasing continuous function. Define Y = g(X).

- (a) What is F_Y , the distribution of Y?
- (b) What is f_Y , the density of Y?

Solution

Suppose X is a continuous random variable with distribution F_X . Let $g:D\to\mathbb{R}$ be a strictly increasing continuous function.

(a) Since g is strictly increasing and continuous, then it has an inverse g^{-1} on its range R := g(D). Since g is strictly increasing, by the intermediate value theorem, we know R is an interval. Let $a = \inf R$ and $b = \sup R$. Then, for $y \le a$ we have $F_Y(y) = 0$ and for $y \ge b$ we have $F_Y(y) = 1$ For $y \in R$, assuming g^{-1} is differentiable, we have,

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \le g^{-1}(y)) = F_X(g^{-1}(y))$$

Thus,

$$F_Y(y) = \begin{cases} 1 & y \ge b \\ F_X(g^{-1}(y)) & a < y < b \\ 0 & y \le a \end{cases}$$

Since $\{a,b\}$ is a set of measure zero it doesn't really matter how we define F_Y on these points.

(b) Recall $F_Y(y) = \int_{-\infty}^y f_Y(u) du$ for a continuous random variable Y. Thus for a < y < b, observing that $dF_X(y)/dy = f_X(y)$ by the above result, and assuming g^{-1} is differentiable,

$$f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_X(g^{-1}(y)) = f_x(g^{-1}(y))\frac{d}{dy}g^{-1}(y)$$

For y < a and a > b we have $F_Y(y)$ constant so $f_Y(y)$ is zero. Thus,

$$f_Y(y) = \begin{cases} 0 & y > b \\ f_X(g^{-1}(y)) \frac{d}{dx} g^{-1}(y) & a < y < b \\ 0 & y < a \end{cases}$$

Since $\{a,b\}$ is a set of measure zero it doesn't really matter how we define F_Y on these points.

Exercise 1.5

Suppose X is a continuous random variable with distribution F_X . Find F_Y where Y is given by:

- (a) X^2
- (b) $\sqrt{|X|}$
- (c) $\sin(X)$
- (d) $F_X(X)$

Solution

Since X is continuous we can write $F_X(x) = \mathbb{P}(X \leq x) = \int_{-\infty}^x f_X(u) du$ for some density $f_X : \mathbb{R} \to [0, \infty)$.

In general, $\mathbb{P}(a < X < b) = \int_a^b f_X(u) du = F_X(b) - F_X(a)$ by the FTC.

(a) Let $Y = X^2$. We then have,

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X^2 \le y)$$

If $y \leq 0$ then $F_Y(y) = \mathbb{P}(X^2 \leq y \leq 0) = 0$ since $X^2 = 0$ on a set of measure 0). If y > 0 then,

$$F_Y(y) = \mathbb{P}(X^2 \leq y) = \mathbb{P}(|X| \leq \sqrt{y}) = \mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

Finally,

$$F_Y(y) = \begin{cases} 0 & y \le 0 \\ F_X(\sqrt{y}) - F_X(-\sqrt{y}) & y > 0 \end{cases}$$

(b) Let $Y = \sqrt{|X|}$. We then have,

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(\sqrt{|X|} \le y)$$

If $y \le 0$ then $F_Y(y) = \mathbb{P}(\sqrt{|X|} \le y \le 0) = 0$ (since $\sqrt(|X|) = 0$ on a set of measure 0). If y > 0

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(\sqrt{|X|} \le y) = \mathbb{P}(|X| \le y^2) = \mathbb{P}(-y^2 \le X \le y^2) = F_X(y^2) - F_X(-y^2)$$

Finally,

$$F_Y(y) = \begin{cases} 0 & y \le 0 \\ F_X(y^2) - F_X(-y^2) & y > 0 \end{cases}$$

(c) Let $Y = \sin(X)$. We then have,

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(\sin(X) \le y)$$

If $y \leq -1$ then $F_Y(y) = \mathbb{P}(\sin(X) \leq y \leq 0) = 0$ since $\sin(X) = 1$ on a set of measure 0.

(a) intervals for which sin(X) < y

(b) portion of sin(X) which is inverted to get arcsin(X) displayed

Figure 1: Exercise 1.5(c)

Similarly, if $y \ge 1$ then $F_Y(y) = \mathbb{P}(\sin(X) \le 1 \le y) = 1$.

Figure 1a shows the intervals for which $\sin(X) < y$ is grey, for some y drawn in orange. Figure 1b shows which part of sin the inverse is defined on in red. We see that we can find the intervals for which $\sin(X) < y$ by finding the intersection of $\sin(X)$ and y as well as the intersection of $\sin(X)$ and -y and then appropriately shifting these endpoints.

If -1 < y < 1 then, $\sin(X) \le y$ if and only if for some integer k,

$$\arcsin(y) + 2k\pi < X < \pi + \arcsin(-y) + 2k\pi = \pi - \arcsin(y) + 2k\pi$$

Thus, since \mathbb{Z} is countable,

$$F_Y(y) = \mathbb{P}(\arcsin(y) + 2k\pi < X < \pi - \arcsin(y) + 2k\pi, \text{ for any } k \in \mathbb{Z})$$

$$= \mathbb{P}\left(x \in \bigvee_{k \in \mathbb{Z}} (\arcsin(y) + 2k\pi < X < \pi - \arcsin(y) + 2k\pi)\right)$$

$$= \sum_{k \in \mathbb{Z}} \mathbb{P}(\arcsin(y) + 2k\pi < X < \pi - \arcsin(y) + 2k\pi)$$

$$= \sum_{k \in \mathbb{Z}} [F_X(\arcsin(y) + 2k\pi) - F_X(\pi - \arcsin(y) + 2k\pi)]$$

Therefore,

$$F_Y(y) = \begin{cases} 0 & y \le -1 \\ \sum_{k \in \mathbb{Z}} \left[F_X(\arcsin(y) + 2k\pi) - F_X(\pi - \arcsin(y) + 2k\pi) \right] & -1 < x < 1 \\ 1 & y \ge 1 \end{cases}$$

(d) Let $Y = F_X(X)$. We then have,

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(F_X(X) \le y)$$

Recall F_X is a (not necessarily strictly) increasing function from \mathbb{R} to [0,1]. We deal with this in the following way: Define $g: \mathbb{R} \to \mathbb{R}$ by $g(y) = \sup\{a: F_X(a) \leq y\}$. If F_X is strictly increasing then g(y) = y for all y as desired. Now define $\hat{F}_X: \mathbb{R} \to [0,1]$ as $\hat{F}_X(y) = F_X(g(y))$. This function is strictly increasing and injective so therefore invertible. Denote the inverse by F_X^{-1} .

Recall F_X goes from 0 to 1. If y < 0 then $F_Y(y) = \mathbb{P}(F_X(X) \le y < 0) = 0$. If y > 1 then $F_Y(y) = \mathbb{P}(F_X(X) \le 1 < y) = 1$.

For 0 < y < a, we have,

$$F_Y(y) = \mathbb{P}(F_X(X) \le y) = \mathbb{P}(X \le \hat{F}_X^{-1}(y)) = F_X(\hat{F}_X^{-1}(y)) = y$$

Thus,

$$F_Y(y) = \begin{cases} 0 & y < 0 \\ y & 0 < y < 1 \\ 1 & y > 1 \end{cases}$$

Again since the points $\{0,1\}$ is a set of measure zero it doesn't really matter how we define F_Y on these points.

Exercise 1.6

Suppose X is a continuous random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let f be the density of X under \mathbb{P} and assume f > 0. Let g be the density function of a random variable. Define Z := g(X)/f(X).

- (a) Show that $Z \equiv d\tilde{\mathbb{P}}/d\mathbb{P}$ defines a Radon-Nikodym derivative.
- (b) What is the density of X under $\tilde{\mathbb{P}}$?

Solution

Suppose X is a continuous random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let f be the density of X under \mathbb{P} and assume f > 0. Let g be the density function of a random variable. Define Z := g(X)/f(X).

(a) Since g is a density function, $g \ge 0$. Thus, $Z = g(X)/f(X) \ge 0$. Moreover, since g is a density, $\int_{\Omega} g(x)dx = 1$. Thus,

$$\mathbb{E}Z = \int_{\Omega} \frac{g(x)}{f(x)} f(x) dx = \int_{\Omega} g(x) dx = 1$$

Then define $\tilde{\mathbb{P}}(A) = \mathbb{E} Z \mathbb{1}_A$.

Then Z is a Radon-Nikodym derivative of $\tilde{\mathbb{P}}$ with resepct to \mathbb{P} .

(b) We first compute the distribution of X under $\tilde{\mathbb{P}}$ assuming $\Omega = \mathbb{R}$.

$$F_X(y) = \tilde{\mathbb{P}}(X \leq y) = \mathbb{E}Z \mathbb{1}_{\{X \leq y\}} = \int_{\Omega} \frac{g(x)}{f(x)} \mathbb{1}_{\{X \leq y\}} f(x) dx = \int_{-\infty}^{y} g(x) dx$$

Thus,

$$f_X(y) = \frac{d}{dy} \int_{-\infty}^{y} g(x) dx = g(y)$$