Introduction to Infectious Disease Modeling

on the population and within-host levels

Andreas Handel

University of Georgia

2019-07-10

Good Morning!

- The slides have changed (a lot) from the ones in your book. You can download all the latest ones from here: http://handelgroup.uga.edu/talk/2019hangzhou/
- For the afternoon session, please install R, Rstudio (optional) and the DSAIDE package.
- Make sure you have version 0.8.2 of DSAIDE.
- See here for some more install instructions: https://ahgroup.github.io/DSAIDE/

How do we do science?

dilbert.com

How do we get data?

xkcd.com

Experimental studies

- The approach used in almost all bench/lab sciences.
- Clinical trials in Public Health and Medicine.
- because we have most control. Potentially most powerful
- Not always possible.

xkcd.com

5/18

Observational studies

- Widely used in Public Health and other areas (e.g. Sociology, Geology).
- Not as powerful as experimental studies.

(c) Jim Borgman

Often the only option.

Simulation/modeling studies

- Computer models can represent a real system.
- Simlulated data is not as good as real data.

xkcd.com

Often the only option.

Modeling definition

The term modeling usually means (in science) the description and analysis of a system using mathematical or computational models.

This one

Not this

Many different types of modeling approaches exist. Simulation models are one type (with many subtypes).

Simulation models

- We will focus on a specific class of mathematical/computational models, namely mechanistic simulation models.
- Those models are also called dynamical systems models or process models or ODE models or mathematical models or models or ...
- The hallmark of such models is that they explicitly (generally in a simplified manner) model processes occuring in a system.

Simulation modeling uses

- Weather forecasting.
- Simulations of a power plant or other man-made system.
- Predicting the economy.
- Infectious disease transmission.
- Immune response modeling.

www.gocomics.com/nonsequitur

A real-world example

Targeted antiviral prophylaxis against an influenza pandemic (Germann et al 2006 PNAS).

Within-host and between-host modeling

Within-host/individual level	Between-host/population level
Spread inside a host (virology, microbiology, immunology)	Spread on the population level (ecology, epidemiology)
Populations of pathogens & immune response components	Populations of hosts (humans, animals)
Acute/Persistent (e.g. Flu/TB)	Epidemic/Endemic (e.g. Flu/TB)
Usually (but not always) explicit modeling of pathogen	Often, but not always, no explicit modeling of pathogen

The same types of simulation models are often used on both scales.

Introduction to Infectious Disease Modeling

Population level modeling history

- smallpox and of the advantages of inoculation to prevent it" (see Bernoulli 1766 - Bernoulli "An attempt at a new analysis of the mortality caused by & Blower 2004 Rev Med Vir)
- 1911 Ross "The Prevention of Malaria"
- 1920s Lotka & Volterra "Predator-Prey Models"
- 1926/27 McKendrick & Kermack "Epidemic/outbreak models"
- 1970s/80s Anderson & May
- Lot's of activity since then
- See also Bacaër 2011 "A Short History of Mathematical Population Dynamics"

Within-host modeling history

- The field of within-host modeling is somewhat recent, with early attempts in the 70s and 80s and a strong increase since then.
- HIV garnered a lot of attention starting in the late 80s, some influential work happened in the early 90s.
- Overall, within-host models are still less advanced compared to betweenhost modeling, but it's rapidly growing.

iterature - general modeling

- Britton (2003) "Essential mathematical biology" Springer: Relatively easy, not too math heavy.
- Allman and Rhodes (2004) "Mathematical Models in Biology: An Introduction" Cambridge U Press: Integrates MATLAB into the text/exercises.
- University Press: Nice integration of mathematical analysis and computer Ellner and Guckenheimer (2006) "Dynamic Models in Biology" Princeton modeling, topics very broad.
- background/primers on math topics, explanations on how to model, not Otto and Day (2007) "A Biologist's Guide to Mathematical Modeling in Ecology and Evolution" Princeton University Press: Some good much infectious disease specific material.
- Epstein "Why Model?"
- May "Uses and Abuses of Mathematics in Biology" (2004) Science

iterature - population level modeling books

- Vynnycky and White (2010) "An Introduction to Infectious Disease Modelling": The most introductory level book.
- Keeling and Rohani (2008) "Modeling Infectious Diseases": Introductory but at a higher level.
- Bjornstadt (2018) "Epidemics Models and Data using R": Shows how to do it in R. Some topics are basic, others fairly advanced and theoretical
- Anderson and May (1992) "Infectious Diseases of Humans Dynamics and Control": The "classic". Lots of material, but the math can be somewhat challenging.
- Daley and Gani (2001) "Epidemic modeling: an introduction": Thorough mathematical treatment, not too intuitive/easy.
- Infectious Diseases: Model Building, Analysis and Interpretation": Diekmann & Heesterbeek (2000) "Mathematical Epidemiology of Relatively advanced math level.
- Dynamical Systems Approach to Infectious Disease Epidemiology draft of a book I wrote (uses models, but doesn't really teach modeling): https://ahgroup.github.io/DSAIDEbook/

Introduction to Infectious Disease Modeling

Literature - population level modeling Dapers

- Ness et al. "Causal System Modeling in Chronic Disease Epidemiology: A Proposal" (2007) Ann Epidemiol
- Sterman "Learning from Evidence in a Complex World" (2006) PHM
- Kajita et al. (2007) Nature Reviews Microbiology
- Grassly & Fraser (2008) Nature Reviews Microbiology
- Brauer (2009) BMC Public Health
- Wendelboe et al. (2010) Am J Med Sci
- Louz et al. (2010) Critical Reviews in Microbiology
- Garnett et al. (2011) Lancet

iterature - within-host modeling

- Nowak and May (2001). "Virus Dynamics: Mathematical Principles of Immunology and Virology." Oxford University Press.
- Wodarz (2007). "Killer Cell Dynamics Mathematical and Computational Approaches to Immunology." New York: Springer.
- Esteban A. Hernandez-Vargas (2019). "Modeling and Control of Infectious Diseases in the Host", Academic Press.
- Perelson (2002). "Modelling Viral and Immune System Dynamics." Nature Reviews Immunology.
- Antia et al (2005). "The role of models in understanding CD8+ T-cell memory." Nature Reviews Immunology.