Nombre del alumno:

3° de Secundaria Unidad 2 2022-2023

Practica la Unidad 2

_____ Fecha: _____

Aprendizajes:		Pun	tuac	ión:								
Deduce información acerd	S Pregunta 1 2 3 4 5											
experimentales sobre prop	Puntos	10	10	10	10	10	10					
Representa y diferencia química, elementos y com	${ m Obtenidos}$											
, ,	Pregunta	7	8	9	10		Total					
	dedades físicas de los materiales con base en os sobre la estructura de átomos, moléculas o											
iones, y sus interacciones	${ m Obtenidos}$											
Ejercicio 1				_	(de 10) pur	ntos				
Relaciona cada elemento co	on las características que le corresponden.											
A Elemento metaloide del grupo III, subgrupo A de la tabla periódica.												
b Oro	B Elemento metálico con Z = 31. C Elemento metaloide, ubicado en el tercer período de la tabla periódica.											
C Helio	D Elemento conocido como gas noble y s	e encuentra	en e	l ner	ríodo	1 de	e la 1	abla				
d Boro	periódica.			r por	1040	1 (1)	, 100	casta				
e Radón	E Elemento con 22 protones y 22 electrone	es.										
fYodo	F Elemento de la familia de los Halógenos	con 74 neut	rones	š.								
9Bismuto	© Elemento de la familia de metales alcali	no-terreos co	n 13	8 neu	ıtron	es.						
h Radio	igoplus Elemento no metálico con Z = 83.											
i Galio	(I) Gas inerte (gas noble) que se encuentra	en el período	o 6 d	e la t	abla	peri	ódica					
j Silicio	① Metal brillante utilizado en joyería.											

Ejercicio 2 de 10 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

(A) Ión de Aluminio (Al³⁺)

(B) Ión de Nitrógeno (N³⁻)

C Ión de Flúor (F⁻)

(D) Litio (Li)

(E) Ión de Potasio (K⁺)

F Ión de Berilio (Be⁻)

 \bigcirc Ión de Azúfre (S²⁺)

(H) Ión de Cloro (Cl⁻)

① Ión de Hierro (Fe³⁺)

J Fósforo (P)

- 13 protones y 8 electrones de valencia.
- b _____ 17 protones y 8 electrones de valencia.
- c _____ 9 protones y 8 electrones de valencia.
- d _____ 4 protones y 3 electrones de valencia.
- e _____ 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- 9 _____ 26 protones y 2 electrones de valencia.
- h ______ 7 protones y 8 electrones de valencia.
- i _____ 3 protones y 1 electrón de valencia.
- j _____ 19 protones y 8 electrones de valencia.

Ejercicio 3 ____ de 10 puntos

Relaciona cada concepto con su definición.

- A Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- (D) Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

- O ____ Diagrama de esferas.
- **b** ____ Fórmula estructural.
- c ____ Fórmula condensada.
- d ____ Diagrama de esferas y barras.

Ejercicio 4 de 10 puntos

Ejercicio 5 de 10 puntos

Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (n) y electrones (-).

Especie	Símbolo	\oplus	1	Θ
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

Ejercicio 6 ____ de 10 puntos

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

				ı													
Elemento	Grupo	Subgrupo	Período	Tipo													
Oro								_	_	_			_	_			Ц
Potasio					\perp	_	+	+	+	₩				_			Ш
rotasio					\perp		_	\perp	_	╙					Ш	Щ	Ш
Paladio					Ш		_	\perp	\perp	╙	Ш				Ш	Ш	Ш
Yodo																	
1000												 			 	 	
Samario																	

Ejercicio 7	de 10 puntos
Señala en cada uno de los enunciados si la sentencia es fa	lsa o verdadera.
□ Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.□ Verdadero □ Falso	f La masa de un neutrón es similar a la del protón. □ Verdadero □ Falso
 b Los electrones de valencia se encuentran siempre en el último nivel de energía. □ Verdadero □ Falso 	9 El número de masa representa la suma de protones y neutrones.□ Verdadero □ Falso
 C La fórmula H₂O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno. □ Verdadero □ Falso 	 h El número total de electrones en un átomo lo determina el grupo al que pertenece. □ Verdadero □ Falso
d Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.	i En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso
 El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. □ Verdadero □ Falso 	j En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica que hay 4 átomos de carbono. □ Verdadero □ Falso
Ejercicio 8	de 10 puntos
Contesta a las siguientes preguntas, argumentando amplia	
	oximadamente 10,000 veces mayor que su núcleo. Si un e su núcleo midiera 2 mm (lo que mide un grano de sal),

Ejercicio 9 de 10 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- ¿Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - (A) El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - E Ninguna de las anteriores
- **b** ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a derecha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - (B) El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - (D) Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 10 ____ de 10 puntos

Completa la siguiente tabla:

Sustancia	a) Tipo de sustancia	b) Fórmula condensada
H H-C-H H-C-H	molecular	CH₄
Cu²+Cu²+ Cu²+Cu²+ Cu²+Cu²+		
Cl· Cl· Mg²+ Mg²- Cl· Cl·		
O ²⁻ Ca ²⁺ O ²⁻ Ca ²⁺		
Ag*_Ag*_ Ag*_Ag*_Ag*		
H - C - OH H - OH H - C - OH H -		

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{10}{N}\overset{20.180}{e}$	$\overset{18}{A}\overset{39.948}{r}$	$\frac{36}{K}_{r}^{83.8}$ Kriptón	$\sum_{\text{Xenón}}^{54 131.29}$	$\mathop{Radon}\limits^{86}$	$0_{\rm ganesón}^{118}$	$\overset{71}{\mathbf{L}}$	$\frac{103}{L} \frac{262}{L}$ Lawrencio	
	17 VIIA	9 18.998 Fluor	$ \bigcap_{\text{Cloro}}^{17-35.453} $	$\Pr_{\text{Bromo}}^{35-79.904}$	53 126.9 T Yodo	$\mathop{\mathrm{At}}_{\mathop{Astato}}^{210}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	16 32.065 S	${\overset{34}{\mathrm{S}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	\prod_{Tulio}^{69}	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{d}}$	
	15 VA	7 14.007 Nitrógeno	$\displaystyle \sum_{\text{Fósforo}}^{15 30.974}$	${\overset{33}{\mathrm{AS}}}_{74.922}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\underset{Bismuto}{208.98}}$	$\sum_{\text{Moscovio}}^{115} C$	$\frac{68}{\text{Erbio}}$	Fermio 257	
	14 IVA	6 12.011 Carbono	$\overset{14}{\text{Silicio}}$	$\overset{32}{\text{CG}}$	$\mathop{Sn}\limits_{\text{Estaño}}^{118.71}$	$\overset{82}{P}\overset{207.2}{b}$	114 289 Flerovio	$\overset{67}{H}\overset{164.93}{0}$	99 252 Einsteinio	
	13 IIIA	5 Boro	$\bigwedge_{\text{Aluminio}}^{13 26.982}$	$\overset{31}{\mathbf{Galio}}$	$\prod_{\text{Indo}}^{49 114.82}$	81 204.38	$\overset{\text{113}}{N}\overset{284}{\text{Nihonio}}$	$\bigcup_{\text{Disprosio}}^{66}$	$\bigcup_{\text{Californio}}^{28}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{\mathrm{n}}$	$\overset{48}{C}\overset{112.41}{d}$	$\overset{80}{H}\overset{200.59}{S}$	$\frac{112}{C}$ 285	\prod_{Terbio}^{65}	$\overset{97}{BK}_{\text{Berkelio}}$	
			11 IB	$\overset{29}{\overset{63.546}{C}}$	${^{47}}_{^{107.87}}$	$\overset{79}{\mathrm{Au}}^{196.97}_{\mathrm{Oro}}$	${\overset{111}{R}}^{280}$	64 157.25 Gadolinio	$\overset{96}{Cm}_{\text{Curio}}$	
			10 VIIIB	$\overset{28}{\text{Niquel}}$	$\overset{46}{P}\overset{106.42}{d}$	$\Pr^{78 \ 195.08}_{\textbf{P}\textbf{t}}$	$\overset{110}{\text{DS}}\overset{281}{\text{S}}$	$\frac{63}{Europio}$	${\stackrel{95}{Am}}^{243}$	
			9 VIIIB	$\overset{27}{\text{CO}}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\overline{\Gamma}$ 192.22 $\overline{\Gamma}$ Iridio		$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}^{244}$	
		10	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\Pr^{44 \ 101.07}$ Ruthenio	$\overset{76}{\text{Osmio}}$	$\overset{\text{108}}{\text{Hassio}}^{\text{277}}$	$\underset{\text{Prometio}}{\overset{61}{\text{Pto}}}$	93 237 Neptunio	
	gía:	Naturale Intéticos	7 VIIB	$\overset{25}{M}\overset{54.938}{\text{Manganeso}}$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}_{\text{Renio}}^{75~186.21}$	$\underset{\text{Bohrio}}{\overset{107}{\text{Bohrio}}}$	$\overset{60}{N}\overset{144.24}{\text{d}}$	\bigcup_{Uranio}^{92}	
	Simbolog	Negro: Naturales Gris: Sintéticos	6 VIB	$\overset{24}{\overset{51.996}{\mathbf{\Gamma}}}$ Cromo	$\stackrel{42}{\text{NMolybdeno}} \stackrel{95.94}{\text{Molybdeno}}$	\overline{W}	106 266 SSS Seaborgio	$\Pr_{\mathbf{r}}^{\mathbf{59-140.91}}$	$\overset{91}{Pa}^{231.04}$	
	Sim	$\sum_{\text{S'imbolo}}^{\mathbf{Z}} A_r$	5 VB	$\sum_{\text{Vanadio}}^{23} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{\text{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105} \bigcup_{\text{Dubnio}}^{262}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	$\prod_{\text{Titanio}}^{22}$	$\sum_{ ext{Circonio}}^{40}$	$\overset{72}{\text{Hafnio}}^{178.49}$	$\underset{\text{Rutherfordio}}{\text{Rutherfordio}}$	$\sum_{ ext{Lantánido}}^{ ext{57}}$	$\overset{89}{ ext{AC}}^{227}$	
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39 88.906}$	57-71 *	. 89-103 .** ** 	s -terreos		nidos
	2 IIA	$\mathop{Berilio}_{\text{Berilio}}^{4}$	$\overline{\mathrm{Mg}}^{22.305}_{\mathrm{Magnesio}}$	$\overset{20}{\overset{40.078}{\mathbf{a}}}$	$\overset{38}{\mathrm{Sr}}$ 87.62 Stroncio	$\overset{56}{\mathrm{Bario}}_{\mathrm{ario}}$	\mathop{Radio}^{88}	Metales Alcalinos Metales Alcalino-terreos Metal	le	Gases Nobles Lantánidos/Actínidos
1 IA	$\coprod_{\text{Hidrógeno}}^{1}$	$\sum_{\text{Litio}}^{3} \mathbf{Litio}$	$\overset{11}{\overset{22.990}{\overset{22.990}{{{{}{}{}{}{$	$\overset{ extbf{19}}{ extbf{R}}\overset{ ext{39.098}}{ extbf{P}}$	$\mathop{Rbidio}\limits^{37-85.468}$	$\sum_{Cesio}^{55} \mathbf{S}$	$\overset{87}{Francio}$	Metales Metales Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	П	7	е	4	വ	9				