1 Technical Details

In this appendix we provide some further details to our arguments.

1.1 Integrating over the Quadrants of a Normal Distribution

In order to derive the formula, we first have to prove an auxiliary lemma:

Lemma 1.1. Let X and Y have a bivariate normal distribution where X and Y are standard normal variables, $X, Y \sim \mathcal{N}(0, 1)$, with correlation ρ . The variable $Z = \frac{Y - \rho X}{\sqrt{1 - \rho^2}}$ is a standard normal variable, and X and Z are independent.

Proof. First, we show that Z is a standard normal variable. Since Z is a linear combination of the jointly normal variables X and Y, Z is also a normal variable. We compute its mean and variance.

The mean of Z is:

$$E[Z] = E\left[\frac{Y - \rho X}{\sqrt{1 - \rho^2}}\right] = \frac{E[Y] - \rho E[X]}{\sqrt{1 - \rho^2}} = \frac{0 - \rho \cdot 0}{\sqrt{1 - \rho^2}} = 0$$
.

The variance of Z is:

$$Var(Z) = Var\left(\frac{Y - \rho X}{\sqrt{1 - \rho^2}}\right) = \frac{1}{1 - \rho^2} Var(Y - \rho X)$$
$$= \frac{1}{1 - \rho^2} \left(Var(Y) + \rho^2 Var(X) - 2\rho Cov(X, Y)\right)$$

Since X and Y are standard normal variables, Var(X) = 1, Var(Y) = 1, and their covariance Cov(X, Y) is equal to their correlation ρ . Hence:

$$Var(Z) = \frac{1}{1 - \rho^2} (1 + \rho^2(1) - 2\rho(\rho)) = \frac{1 - \rho^2}{1 - \rho^2} = 1 \quad .$$

Thus, Z is a standard normal variable, $Z \sim \mathcal{N}(0, 1)$.

To show that X and Z are independent, we compute their covariance. Since

they are jointly normal, zero covariance implies independence.

$$\begin{aligned} \operatorname{Cov}(X,Z) &= \operatorname{Cov}\left(X,\frac{Y-\rho X}{\sqrt{1-\rho^2}}\right) = \frac{1}{\sqrt{1-\rho^2}}\operatorname{Cov}(X,Y-\rho X) \\ &= \frac{1}{\sqrt{1-\rho^2}}\left(\operatorname{Cov}(X,Y) - \rho \operatorname{Cov}(X,X)\right) \\ &= \frac{1}{\sqrt{1-\rho^2}}\left(\rho - \rho \operatorname{Var}(X)\right) = \frac{1}{\sqrt{1-\rho^2}}(\rho - \rho \cdot 1) = 0 \quad . \end{aligned}$$

Since Cov(X, Z) = 0 and they are jointly normal, X and Z are independent. \square

Now we can prove our proposition of interest:

Proposition 1.1. For bivariate standard normal variables X and Y with correlation ρ ,

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi}\arcsin(\rho)$$
.

Proof. Define the random variable Z like in the previous lemma. Then, the event $\{X>0,Y>0\}$ is the same as the event $\{X>0,Z>\frac{-\rho}{\sqrt{1-\rho^2}}X\}$, where X and Z are independent standard normal variables as shown above. Writing $a:=\frac{-\rho}{\sqrt{1-\rho^2}}$ for brevity, the desired probability is expressible as a double integral involving the joint density of (X,Z):

$$\begin{split} P(X>0,Y>0) &= P(X>0,Z>aX) \\ &= \int_{x=0}^{\infty} \int_{z=ax}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \, dz \, dx \quad . \end{split}$$

Switching to polar coordinates $(x = r \cos \theta, z = r \sin \theta)$, the integral becomes:

$$\int_{\theta=\arctan(a)}^{\pi/2} \int_{r=0}^{\infty} \frac{1}{2\pi} e^{-r^2/2} r \, dr \, d\theta = \int_{\theta=\arctan(a)}^{\pi/2} \frac{1}{2\pi} \left[-e^{-r^2/2} \right]_0^{\infty} \, d\theta \quad .$$

This equals:

$$\int_{\theta=\arctan(a)}^{\pi/2} \frac{1}{2\pi} d\theta = \frac{1}{2\pi} \left(\frac{\pi}{2} - \arctan(a) \right) = \frac{1}{4} - \frac{1}{2\pi} \arctan\left(\frac{-\rho}{\sqrt{1-\rho^2}} \right)$$

Using the fact that the arctan function is odd, i.e. $\arctan(-u) = -\arctan(u)$, we get:

$$\frac{1}{4} + \frac{1}{2\pi} \arctan\left(\frac{\rho}{\sqrt{1-\rho^2}}\right)$$
.

To finish, we use the identity $\arcsin(\rho) = \arctan\left(\frac{\rho}{\sqrt{1-\rho^2}}\right)$. To see this, let $\phi = \arcsin(\rho)$ for $\phi \in [-\pi/2, \pi/2]$. Then $\sin(\phi) = \rho$ and $\cos(\phi) = \sqrt{1-\rho^2}$. Thus, $\tan(\phi) = \frac{\sin(\phi)}{\cos(\phi)} = \frac{\rho}{\sqrt{1-\rho^2}}$, which implies $\phi = \arctan\left(\frac{\rho}{\sqrt{1-\rho^2}}\right)$. Substituting this into our expression gives the final result:

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi}\arcsin(\rho)$$
.

1.2 Prerequisites for Theorem ??

Lemma 1.2. Let

$$M\coloneqqegin{bmatrix}A&B\0&C\end{bmatrix}$$

be a matrix consisting of submatrices $A \in \mathbb{R}^{k \times k}$, $B \in \mathbb{R}^{k \times \ell}$, and $C \in \mathbb{R}^{\ell \times \ell}$. Let A be an irreducible aperiodic Markov transition matrix, and let $C^n \xrightarrow{n \to \infty} 0$ with exponential decay. Then, M^n decays exponentially in n towards a matrix M'.

Proof. The proof proceeds in three steps. First, we establish a closed-form expression for M^n . Second, we determine the limit matrix M'. Third, we prove that the convergence to this limit is exponential.

1. The Form of M^n Since M is a block upper triangular matrix, its powers take a specific form. By induction, we can show that:

$$m{M}^n = egin{bmatrix} m{A}^n & m{X}_n \ m{0} & m{C}^n \end{bmatrix} \quad ext{where} \quad m{X}_n = \sum_{j=0}^{n-1} m{A}^{n-1-j} m{B} m{C}^j \quad .$$

- **2.** The Limit Matrix M' We analyze the limit of each block of M^n as $n \to \infty$.
 - Block A^n : Since A is an irreducible aperiodic Markov transition matrix, the Perron-Frobenius theorem for stochastic matrices guarantees that A^n converges to a rank-one matrix $A' = \pi \mathbf{1}^T$, where π is the unique stationary distribution. The convergence is exponential, so there exist constants $K_A > 0$ and $0 \le \lambda < 1$ such that $||A^n A'|| \le K_A \lambda^n$.

- Block C^n : By hypothesis, $C^n \to 0$ with exponential decay. This is equivalent to its spectral radius being less than one, $\rho(C) < 1$. Thus, there exist constants $K_C > 0$ and $0 \le \gamma < 1$ such that $\|C^n\| \le K_C \gamma^n$.
- Block X_n : Let $E_k = A^k A'$. We have $||E_k|| \le K_A \lambda^k$. We can rewrite X_n as:

$$m{X}_n = \sum_{j=0}^{n-1} (m{A}' + m{E}_{n-1-j}) m{B} m{C}^j = m{A}' m{B} \left(\sum_{j=0}^{n-1} m{C}^j
ight) + \sum_{j=0}^{n-1} m{E}_{n-1-j} m{B} m{C}^j$$

As $n \to \infty$, the first term converges to $A'B(I-C)^{-1}$, since the series $\sum_{j=0}^{\infty} C^j$ converges to $(I-C)^{-1}$. The second term converges to 0 because its norm is bounded by a vanishing convolution sum. Thus, the limit of X_n is $X' = A'B(I-C)^{-1}$.

Combining these limits, the limit matrix is $M' = \begin{bmatrix} A' & X' \\ 0 & 0 \end{bmatrix}$.

3. Exponential Rate of Convergence We analyze the norm of the difference matrix $M^n - M'$:

$$oldsymbol{M}^n-oldsymbol{M}'=egin{bmatrix} oldsymbol{A}^n-oldsymbol{A}' & oldsymbol{X}_n-oldsymbol{X}' \ oldsymbol{0} & oldsymbol{C}^n \end{bmatrix}$$
 .

The blocks $\|A^n - A'\|$ and $\|C^n\|$ decay exponentially by definition. We examine the convergence of the off-diagonal block:

$$oldsymbol{X}_n - oldsymbol{X}' = -oldsymbol{A}'oldsymbol{B}\left(\sum_{j=n}^{\infty}oldsymbol{C}^j
ight) + \sum_{j=0}^{n-1}oldsymbol{E}_{n-1-j}oldsymbol{B}oldsymbol{C}^j$$

The norm of each part is bounded by an exponentially decaying function:

- $\left\|-A'B\left(\sum_{j=n}^{\infty}C^{j}\right)\right\| \leq \|A'\|\|B\|\sum_{j=n}^{\infty}\|C^{j}\| \leq \|A'\|\|B\|K_{C}\frac{\gamma^{n}}{1-\gamma}$. This decays with rate γ .
- $\left\|\sum_{j=0}^{n-1} \mathbf{E}_{n-1-j} \mathbf{B} \mathbf{C}^{j}\right\| \leq \sum_{j=0}^{n-1} K_{A} \lambda^{n-1-j} \|\mathbf{B}\| K_{C} \gamma^{j} = K_{A} \|\mathbf{B}\| K_{C} \sum_{j=0}^{n-1} \lambda^{n-1-j} \gamma^{j}$. This convolution sum is bounded by $K'n\mu^{n}$ where $\mu = \max(\lambda, \gamma)$, which decays exponentially.

Since $||X_n - X'||$ is bounded by a sum of exponentially decaying terms, it also decays exponentially. As all blocks of $M^n - M'$ converge to zero exponentially, the norm $||M^n - M'||$ does as well. This completes the proof.

1.2.1 Convergence of Mutual Information

Theorem 1.1 (Element-Wise Exponential Convergence Implies Exponential Convergence). Let $f: \mathcal{D} \to \mathbb{R}^m$ be a function defined on a convex domain $\mathcal{D} \subseteq \mathbb{R}^n$ that is a Cartesian product of real intervals, i.e., $\mathcal{D} = \mathcal{D}_1 \times \mathcal{D}_2 \times \cdots \times \mathcal{D}_n$ where each $\mathcal{D}_i \subseteq \mathbb{R}$ is an interval. Let $\{x_k\}_{k=1}^{\infty} \subset \mathcal{D}$ be a sequence converging exponentially fast to $\mathbf{x}_0 \in \mathcal{D}$.

Let \mathbf{e}_j denote the j-th standard basis vector in \mathbb{R}^n . Suppose that for each input coordinate $j \in \{1, 2, ..., n\}$ there exist functions $K_j(C', \rho)$, $C_j(C', \rho)$, $P_j(C', \rho)$ s.t. for every sequence $\{\mathbf{u}_k\}_{k=1}^{\infty} \subset \mathcal{D}$ converging to \mathbf{u}_0 where the difference $\mathbf{u}_{\ell} - \mathbf{u}_{\ell'}$ is parallel to \mathbf{e}_j (i.e., they only differ in the j-th coordinate) that satisfies $|\mathbf{u}_0 - \mathbf{u}_k| \leq C' \rho^k$ for all k and some $\rho \in [0, 1)$, C' > 0, we have for all $k \geq K_j(C', \rho)$:

$$||f(\mathbf{u}_0) - f(\mathbf{u}_k)|| \le C_j(C', \rho)\rho^k k^{P_j(C', \rho)}$$
.

Then, there exist constants C > 0 and $\sigma \in [0,1)$ such that for all sufficiently large k:

$$||f(\boldsymbol{x}_0) - f(\boldsymbol{x}_k)|| \le C\sigma^k \quad .$$

Proof. Let the sequence $\{x_k\}_{k=1}^{\infty} \subset \mathcal{D}$ converge exponentially to $x_0 \in \mathcal{D}$. By definition, there exist constants $C_x > 0$ and $\rho \in [0, 1)$ such that for all k,

$$\|\boldsymbol{x}_k - \boldsymbol{x}_0\| \le C_x \rho^k$$
.

Let $\boldsymbol{x}_k = (x_{k,1}, \dots, x_{k,n})^T$ and $\boldsymbol{x}_0 = (x_{0,1}, \dots, x_{0,n})^T$. An immediate consequence is that each coordinate also converges exponentially, i.e., for each $j \in \{1, \dots, n\}$:

$$|x_{k,i} - x_{0,i}| < ||x_k - x_0||_{\infty} < ||x_k - x_0|| < C_x \rho^k$$
,

where we use the equivalence of norms in \mathbb{R}^n .

To bound $||f(\mathbf{x}_0) - f(\mathbf{x}_k)||$, we define a sequence of n+1 intermediate points that form a path from \mathbf{x}_k to \mathbf{x}_0 by changing one coordinate at a time. For each k, let:

$$egin{aligned} m{z}_{k,0} &:= m{x}_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}) \\ m{z}_{k,1} &:= (x_{0,1}, x_{k,2}, \dots, x_{k,n}) \\ &\vdots \\ m{z}_{k,j} &:= (x_{0,1}, \dots, x_{0,j}, x_{k,j+1}, \dots, x_{k,n}) \\ &\vdots \\ m{z}_{k,n} &:= (x_{0,1}, \dots, x_{0,n}) = m{x}_0 \end{aligned}$$

Since \mathcal{D} is a cartesian product intervals and both \boldsymbol{x}_k and \boldsymbol{x}_0 are in \mathcal{D} , all intermediate points $\boldsymbol{z}_{k,j}$ are also contained in \mathcal{D} . We can express the total difference $f(\boldsymbol{x}_0) - f(\boldsymbol{x}_k)$ as a telescoping sum:

$$f(x_0) - f(x_k) = f(z_{k,n}) - f(z_{k,0}) = \sum_{j=1}^n \left(f(z_{k,j}) - f(z_{k,j-1}) \right)$$
.

By the triangle inequality, we have:

$$\|f(m{x}_0) - f(m{x}_k)\| \leq \sum_{j=1}^n \|f(m{z}_{k,j}) - f(m{z}_{k,j-1})\|$$
 .

Now, we analyze each term $||f(z_{k,j}) - f(z_{k,j-1})||$ for a fixed $j \in \{1, ..., n\}$. The points $z_{k,j}$ and $z_{k,j-1}$ differ only in their j-th coordinate.

Let us define a sequence $\{u_m\}_{m=1}^{\infty}$ and a limit point u_0 that fit the condition in the theorem's hypothesis. For the given j and k, let

$$\mathbf{u}_m := (x_{0,1}, \dots, x_{0,j-1}, x_{m,j}, x_{k,j+1}, \dots, x_{k,n})$$

$$\mathbf{u}_0 := (x_{0,1}, \dots, x_{0,j-1}, x_{0,j}, x_{k,j+1}, \dots, x_{k,n})$$

Note that $u_0 = z_{k,j}$ and by setting m = k, we get $u_k = z_{k,j-1}$. The sequence $\{u_m\}$ lies on a line parallel to the j-th coordinate axis. As $m \to \infty$, $u_m \to u_0$ because $x_{m,j} \to x_{0,j}$. The convergence is exponential:

$$\|\boldsymbol{u}_m - \boldsymbol{u}_0\| = |x_{m,j} - x_{0,j}| \le C_x \rho^m$$

The hypothesis states that for any such sequence, there exist constants $K_j(C_x, \rho)$, $C_j(C_x, \rho)$, $P_j(C_x, \rho)$ which are independent of the specific line, such that for all $k \geq K_j(C_x, \rho)$ we have $||f(\mathbf{u}_0) - f(\mathbf{u}_m)|| \leq C_j(C_x, \rho)\rho^m m^{P_j(C_x, \rho)}$. Applying this for m = k:

$$||f(\boldsymbol{z}_{k,j}) - f(\boldsymbol{z}_{k,j-1})|| = ||f(\boldsymbol{u}_0) - f(\boldsymbol{u}_k)|| \le C_j(C_x, \rho)\rho^k k^{P_j(C_x, \rho)}$$

This inequality holds for each $j=1,\ldots,n$. Substituting these bounds back into the sum:

$$||f(\boldsymbol{x}_0) - f(\boldsymbol{x}_k)|| \le \sum_{j=1}^n C_j(C_x, \rho) \rho^k k^{P_j(C_x, \rho)}$$

Let $K \coloneqq \max_{j \in \{1,\dots,n\}} \{K_j(C_x,\rho)\}, C \coloneqq \sum_{j=1}^n C_j(C_x,\rho)$ and $P \coloneqq \max_{j \in \{1,\dots,n\}} \{P_j(C_x,\rho)\}$. Hence, for all $k \ge K$:

$$\|f(\boldsymbol{x}_0) - f(\boldsymbol{x}_k)\| \le \sum_{j=1}^n C_j(C_x, \rho) \rho^k k^P = \left(\sum_{j=1}^n C_j(C_x, \rho)\right) \rho^k k^P = C \rho^k k^P$$

This shows that $\{f(\boldsymbol{x}_k)\}$ converges exponentially to $f(\boldsymbol{x}_0)$ with a rate of σ s.t. $\rho < \sigma < 1$ (like $\sigma \coloneqq \sqrt{\rho}$). This completes the proof.

Lemma 1.3. Let the function $f:[0,\infty)\to\mathbb{R}$ be defined as $f(x)=x\log x$ for $x\in(0,1)$, and f(x)=0 everywhere else. If a sequence $\{x_k\}_{k=1}^\infty\subset[0,1]$ converging to a limit $x_\infty\in[0,1]$ satisfies $|x_k-x_\infty|\le C\rho^k$ for some $C\in\mathbb{R}_{>0},\ \rho\in[0,1)$, then the sequence $\{f(x_k)\}$ converges to $f(x_\infty)$ with $|f(x_k)-f(x_\infty)|\le C\rho^k$ $|\log C+k\log \rho|$ for $k\ge\log_\rho\left(\frac{e^{-1}}{C}\right)=:K$.

Proof. We consider two cases for the limit x_{∞} :

Case 1: $x_{\infty} = 0$

In this case, $|x_k - 0| = x_k \le C\rho^k$. We want to bound the difference $|f(x_k) - f(0)| = |f(x_k)|$. Note that |f(x)| is monotonically increasing on $[0, e^{-1}]$. For $k \ge K$ we have $x_k \le C\rho^k \le e^{-1}$. Thus, for all $k \ge K$:

$$|f(x_k)| \le |f(C\rho^k)| = |C\rho^k \log(C\rho^k)| = C\rho^k |\log C + k \log \rho|$$
.

Case 2: $x_{\infty} > 0$

Similarly, for $k \ge K$ we have $|x_k - x_\infty| \le C\rho^k \le e^{-1}$. Based on the function graph, it follows that for $k \ge K$ we have:

$$|f(x_k) - f(x_\infty)| \le |f(C\rho^k) - f(0)| = |f(C\rho^k)| = C\rho^k |\log C + k\log \rho|$$

Theorem 1.2 (Element-Wise Exponential Convergence Property of Mutual Information). Let the function $f:[0,\infty)\to\mathbb{R}$ be defined as $f(x)=x\log x$ for $x\in(0,1)$, and f(x)=0 everywhere else. Define the function $I:[0,1]^{m\times n}\to\mathbb{R}$ for a matrix $\mathbf{M}\in[0,1]^{m\times n}$ as:

$$I(\mathbf{M}) = \sum_{i=1}^{m} \sum_{j=1}^{n} f(M_{ij}) - \sum_{i=1}^{m} f\left(\sum_{j=1}^{n} M_{ij}\right) - \sum_{j=1}^{n} f\left(\sum_{i=1}^{m} M_{ij}\right)$$

This function exhibits element-wise exponential convergence. That is, for any single component (i_0, j_0) , if a sequence of matrices $\{U_k\}_{k=1}^{\infty} \subset [0, 1]^{m \times n}$ converges to a limit U_{∞} , varies only in the (i_0, j_0) -th component and satisfies $||U_k - U_{\infty}|| \leq C\rho^k$ for some C > 0, $\rho \in [0, 1)$ and all k, then the sequence of values $\{I(U_k)\}$ converges to $I(U_{\infty})$ with $|I(U_k) - I(U_{\infty})| \leq C'(C, \rho)\rho^k k^{P(C, \rho)}$ for all $k \geq K(C, \rho)$.

Proof. The function $I(\mathbf{M})$ is a sum of terms involving f applied to the matrix entries and their row and column sums. Let $m_i(\mathbf{M}) = \sum_j M_{ij}$ and $m'_j(\mathbf{M}) = \sum_i M_{ij}$. We have:

$$I(\mathbf{M}) = \sum_{i,j} f(M_{ij}) - \sum_{i} f(m_i(\mathbf{M})) - \sum_{j} f(m'_j(\mathbf{M}))$$

We are given a sequence $\{U_k\}$ that varies only in the (i_0, j_0) -th component, $u_k = U_k(i_0, j_0)$. All other components are constant. The exponential convergence of $\{U_k\}$ means $|u_k - u_\infty| \leq C\rho^k$.

The difference $I(U_k) - I(U_\infty)$ consists only of terms whose arguments change with k. These are:

- 1. The entry term: $f(u_k)$.
- 2. The row-sum term: $f(m_{i_0}(U_k))$, where $m_{i_0}(U_k) = u_k + \text{const.}$
- 3. The column-sum term: $f(m'_{j_0}(U_k))$, where $m'_{j_0}(U_k) = u_k + \text{const.}$

By the triangle inequality, the total error is bounded by the sum of the absolute errors of these three terms:

$$|I(U_k) - I(U_\infty)| \le |f(u_k) - f(u_\infty)| + |f(m_{i_0}(U_k)) - f(m_{i_0}(U_\infty))| + |f(m'_{j_0}(U_k)) - f(m'_{j_0}(U_\infty))|$$

The arguments to the function f in each of these three terms converge exponentially to their limits with rate ρ and constant C, since $|m_{i_0}(U_k) - m_{i_0}(U_\infty)| = |u_k - u_\infty|$ and $|m'_{i_0}(U_k) - m'_{i_0}(U_\infty)| = |u_k - u_\infty|$.

Hence, by lemma 1.3, we have:

$$|I(U_k) - I(U_\infty)| \le 3C\rho^k |\log C + k\log \rho|$$

$$\le 3C\rho^k k (|\log C| + |\log \rho|)$$

$$= C'\rho^k k ,$$

with $C' := 3C(|\log C| + |\log \rho|)$ and for all $k \ge K(C, \rho)$. Note that K, C' and P only depend on C and ρ .

Corollary 1.1. Using theorem 1.1, we see that if a sequence $\{P_k\}$ of joint probability distributions converges exponentially fast, then $\{I(P_k)\}$ converges exponentially fast as well.

Corollary 1.2. A joint probability matrix $P_{X,Y}$ can be calculated from the conditional probability matrix $P_{Y|X}$ and the diagonal matrix P_X with the probabilities for X on its diagonal using $P_{X,Y} = P_{Y|X}P_X$. Hence, if $P_{Y|X}$ converges exponentially fast while P_X stays constant, the mutual information I(X;Y) will converge exponentially fast as well.