1. **Resolution of a vector in two dimensions**: If \vec{A} is a vector making an angle θ with x-axis, then X-component = Acos θ , Y-component = Asin θ .

2. If \hat{i} and \hat{j} are unit vectors along X and Y axes, any vector lying in XOY plane can be represented as $\vec{A} = A_x \hat{i} + A_y \hat{j}$;

3.
$$|\vec{A}| = A = \sqrt{A_x^2 + A_y^2}$$
; $Tan\theta = \frac{A_y}{A_x}$

- 4. The component of a vector can have a magnitude greater than that of the vector itself.
- 5. The rectangular component cannot have magnitude greater than that of the vector itself.
- 6. If a number of vectors $\vec{A}, \vec{B}, \vec{C}, \vec{D},....$ acting at a point are resolved along X-direction as A_x , B_x , C_x , D_x , ... along Y-direction as A_y , B_y , C_y , D_y and if \vec{R} is the resultant of all the vectors, then the components of \vec{R} along X-direction and Y-direction are given by $R_x = A_x + B_x + C_x + D_x + ...$ and $R_y = A_y + B_y + C_y + D_y + ...$ respectively, and $R = \sqrt{R_x^2 + R_y^2}$; $\tan \theta = \frac{R_y}{R_x}$ where θ is the angle made by the resultant with X-direction.

 $\hat{i},\,\hat{j}$ and \hat{k} are unit vectors along X, Y and Z–axes, any vector dimensional space can be expressed as

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
; $|\vec{A}| = A = \sqrt{A_x^2 + A_y^2 + A_z^2}$ Here A_x ,

 A_z are the components of \vec{A} and \vec{B} are scalars. \vec{A} is body diagonal of the cube.

 β and γ are the angles made by \vec{A} with X–axis, Y–axis and axis respectively, then

$$\cos \alpha = \frac{A_x}{A}$$
; $\cos \beta = \frac{A_y}{A}$; $\cos \gamma = \frac{A_z}{A}$ and $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

$$\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 2$$

- 9. If $\cos \alpha = I$, $\cos \beta = m$ and $\cos \gamma = n$, then I, m, n are called direction cosines of the vector. $I^2 + m^2 + n^2 = 1$.
- 10. If vectors $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ are parallel, then $\frac{A_x}{B_x} = \frac{A_y}{B_y} = \frac{A_z}{B_z}$ and $\vec{A} = K\vec{B}$ where K is a scalar.

11. The vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is equally inclined to the coordinate axes at an angle of 54.74°.

12. The position vector of a point P(x,y,z) is given by $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$ and $|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$

13. The vector having initial point $P(x_1, y_1, z_1)$ and final point $Q(x_2, y_2, z_2)$ is given by $\overrightarrow{PQ} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$.