Codierung ganzer Zahlen

Informatik

Information und Daten

Information muss immer in geeigneter Weise dargestellt werden, um sie als **Daten** maschinell weiterverarbeiten zu können

Aus Daten gewinnt man erst dann Information, wenn sie gedeutet werden können.

2 / 21

Zur Darstellung von Information nutzt man häufig Systeme, die nur zwei Zustände einnehmen können: an/aus; geladen/ungeladen; Strom fließt/Strom fließt nicht; magnetisiert/unmagnetisiert.

Ein einfacher Speicher, bei dem Information mit Hilfe (un)geladener Kondensatoren dargestellt wird:

Die beiden Zustände eines Zweizustandssystems werden in der Regel mit Hilfe der beiden Ziffern 0 und 1 beschrieben.

Unter einem ${\bf Bit}$ versteht man eine Einheit zur Informationsdarstellung, die nur zwei Werte annehmen kann: 0 und 1.

Unter einem Byte versteht man eine Einheit aus 8 Bits.

1 Byte	8 Bit
1 KiloByte (KB)	1000 Byte
1 Megabyte (MB)	1000 KB
1 Gigabyte (GB)	1000 MB

Unter einem **Bit** versteht man eine Einheit zur Informationsdarstellung, die nur zwei Werte annehmen kann: 0 und 1.

Unter einem Byte versteht man eine Einheit aus 8 Bits.

1 Byte	8 Bit
1 KiloByte (KB)	1000 Byte
1 Megabyte (MB)	1000 KB
1 Gigabyte (GB)	1000 MB

Diese Einheiten bauen auf Zweierpotenzen statt Zehnerpotenzen auf:

1 KibiByte (KiB)	1024 Byte
1 Mebibyte (MiB)	1024 KiB
1 Gibibyte (GiB)	1024 MiB

Ein 16GB USB-Stick im Windows-Explorer:

Ein 16GB USB-Stick im Windows-Explorer:

```
. INTENSO (G:)

1,61 GB frei von 14,9 GB
```

```
# konvertiert gigabyte in gibibyte
def gb2gib(x):
         bytes = 1000 * 1000 * 1000 * x
         return round(bytes / (1024 * 1024 * 1024),2)
>>> gb2gib(16)
14.9
```

Werden die Daten nur mit Bits dargestellt spricht man von einer Binärdarstellung der Daten.

Im folgenden geht es um die Binärdarstellung von ganzen Zahlen.

Dezimalzahlen	10 Ziffern: 0, 1, 2,9	4719
Dualzahlen	2 Ziffern: 0,1	10010
Oktalzahlen	8 Ziffern: 0, 1, 2,7	273
Hexadezimalzahlen	16 Ziffern: 0, 1, 2,9, A, B, C, D, E, F	E52F

Dezimalzahlen	10 Ziffern: 0, 1, 2,9	4719
Dualzahlen	2 Ziffern: 0,1	10010
Oktalzahlen	8 Ziffern: 0, 1, 2,7	273
Hexadezimalzahlen	16 Ziffern: 0, 1, 2,9, A, B, C, D, E, F	<i>E</i> 52 <i>F</i>

$$(4719)_{10} =$$

$$\begin{array}{l} (4719)_{10} = 9 \cdot 10^0 + 1 \cdot 10^1 + 7 \cdot 10^2 + 4 \cdot 10^3 \\ (273)_8 = \end{array}$$

Dezimalzahlen	10 Ziffern: 0, 1, 2,9	4719
Dualzahlen	2 Ziffern: 0,1	10010
Oktalzahlen	8 Ziffern: 0, 1, 2,7	273
Hexadezimalzahlen	16 Ziffern: 0, 1, 2,9, A, B, C, D, E, F	<i>E</i> 52 <i>F</i>

$$\begin{array}{l} (4719)_{10} = 9 \cdot 10^0 + 1 \cdot 10^1 + 7 \cdot 10^2 + 4 \cdot 10^3 \\ (273)_8 = 3 \cdot 8^0 + 7 \cdot 8^1 + 2 \cdot 8^2 = (187)_{10} \\ (10010)_2 = \end{array}$$

Dezimalzahlen	10 Ziffern: 0, 1, 2,9	4719
Dualzahlen	2 Ziffern: 0,1	10010
Oktalzahlen	8 Ziffern: 0, 1, 2,7	273
Hexadezimalzahlen	16 Ziffern: 0, 1, 2,9, A, B, C, D, E, F	<i>E</i> 52 <i>F</i>

$$\begin{array}{l} (4719)_{10} = 9 \cdot 10^{0} + 1 \cdot 10^{1} + 7 \cdot 10^{2} + 4 \cdot 10^{3} \\ (273)_{8} = 3 \cdot 8^{0} + 7 \cdot 8^{1} + 2 \cdot 8^{2} = (187)_{10} \\ (10010)_{2} = 0 \cdot 2^{0} + 1 \cdot 2^{1} + 0 \cdot 2^{2} + 0 \cdot 2^{3} + 1 \cdot 2^{4} = (18)_{10} \\ (E52F)_{16} = \end{array}$$

$$\begin{aligned} &(4719)_{10} = 9 \cdot 10^0 + 1 \cdot 10^1 + 7 \cdot 10^2 + 4 \cdot 10^3 \\ &(273)_8 = 3 \cdot 8^0 + 7 \cdot 8^1 + 2 \cdot 8^2 = (187)_{10} \\ &(10010)_2 = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 0 \cdot 2^3 + 1 \cdot 2^4 = (18)_{10} \\ &(E52F)_{16} = 15 \cdot 16^0 + 2 \cdot 16^1 + 5 \cdot 16^2 + 14 \cdot 16^3 = (58671)_{10} \end{aligned}$$

Umwandlung Dualzahl in Dezimalzahl

Umwandlung Dualzahl in Dezimalzahl

Aufruf:

```
>>> dual_dez('1101')
13
```

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

ganzzahlige Division durch 2:

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

ganzzahlige Division durch 2: die rechte Ziffer verschwindet Multiplikation mit 2:

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

10110 22 1011

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

10110 22 1011 11 101

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

10110	22
1011	11
101	5
10	

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

10110	22
1011	11
101	5
10	2
101100	

$$10110/2 = (1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)/2 = (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = 1011$$

10110	22
1011	11
101	5
10	2
101100	44

Umrechnung von 13 in eine Dualzahl

xxxx 13

Umrechnung von 13 in eine Dualzahl

XXXX	13	1
XXX	6	0
XX	3	1
X	1	1
	0	

Dualzahl ergibt sich von unten nach oben: 1101

Unsere Schreibweise zur Umrechnung:

13 6

3 (

1

0 1

Dezimalzahl 13 ist Dualzahl 1101

41

Unsere Schreibweise zur Umrechnung:

```
13
6
```

3 (

1

0 1

Dezimalzahl 13 ist Dualzahl 1101

41

20 1

10

5 (

2

1

0 :

Dezimalzahl 41 ist Dualzahl 101001

41

41

5 1

0 5

Dezimalzahl 41 ist Oktalzahl 51

41

5

0 5

Dezimalzahl 41 ist Oktalzahl 51

Umrechnung einer Dezimalzahl in eine Hexadezimalzahl

3882

41

5 1

0 5

Dezimalzahl 41 ist Oktalzahl 51

Umrechnung einer Dezimalzahl in eine Hexadezimalzahl

3882

242 A

15 2

0 F

Dezimalzahl 3882 ist Hexadezimalzahl F2A

Umrechnung Dezimalzahl in Dualzahl **def** dez_dual(x):

Umrechnung Dezimalzahl in Dualzahl

```
def dez_dual(x):
    if x == 0: return '0'
    s = ""
    while x != 0:
        s = str(x%2) + s
        x = x // 2
    return s
```

Aufruf:

```
>>> dez_dual(47) '101111'
```

12 / 21

Die Addition von Dualzahlen erfolgt analog zum Dezimalsystem. Die Stellenwerte werden addiert, gegebenenfalls mit Übertrag.

Die Addition von Dualzahlen erfolgt analog zum Dezimalsystem. Die Stellenwerte werden addiert, gegebenenfalls mit Übertrag.

Mit 3 bit können die Zahlen von 0-7 dargestellt werden

T	T	1	1
1	1	0	6
1	0	1	5
1	0	0	4
0	1	1	3 2
0	1	0	2
0	0	1	1
0	0	0	0

Wie kann man negative Zahlen darstellen ?

0	1	1	1	7
0	1	1	0	7 6 5 4 3 2 1 0
0	1	0	1	5
0	1	0	0	4
0	0	1	1	3
0	0	1	0	2
0	0	0	1	1
0	0	0	0	0
1	1	1	1	-7 -6 -5 -4 -3 -2 -1
1	1	1	0	-6
1	1	0	1	-2
1	1	0	0	_4
1	0	1	1	-3
1	0		0	-2
1	0	1 0	1	-1
_				
1	0	0	0	-(

SO NICHT

0	1	1	1	7
0	1	1	0	7 6 5 4 3 2 1 0
0 0 0 0 0	1	0	1	5
0	1	0	0	4
0	0	1	1	3
0	0	1	0	2
0	0	0	1	1
0	0	0	0	0
1	1	1	1	-1
1	1	1	0	-2
	1	0	1	-3
1 1	1	0	1 0	-4
1	0	1	1	-5
1	0	1	0	-6
1	0	0	1	-7
1	0	0	0	-1 -2 -3 -4 -5 -6 -7

Die 4-bit Zweierkomplement Darstellung von $-8 = -2^3$ bis $7 = 2^3 - 1$.

イロト (倒) イミト イミト ヨーのくべ

Informatik Codierung ganzer Zahlen 16 / 21

Wertebereiche:

	Dualzahl	Zweierkomplement
4-Bit		
8-Bit		

Einige Binärdarstellungen im Zweierkomplement:

	4-Bit	8-Bit
größte Zahl		
kleinste Zahl		
1		
-1		

Wertebereiche:

	Dualzahl	Zweierkomplement
4-Bit	0 15	-8 +7
8-Bit	0 255	-128 +127

Einige Binärdarstellungen im Zweierkomplement:

	4-Bit	8-Bit
größte Zahl	0111	0111 1111
kleinste Zahl	1000	1000 0000
1	0001	0000 0001
-1	1111	1111 1111

Codierung von -x:

codiere x

negiere bitweise
addiere 1

```
Codierung von -x:

codiere x

negiere bitweise
addiere 1
```

Codierung von -5 (4 bit)

```
Codierung von -x:
```

codiere x negiere bitweise addiere 1

Codierung von -5 (4 bit)

5 0101 bitweise Negation 1010 addiere 1 0001 -5 1011

```
Codierung von -x:
```

codiere x negiere bitweise addiere 1

Codierung von -5 (4 bit)

Codierung von -100 (8 bit)

```
5 0101
bitweise Negation 1010
addiere 1 0001
-5 1011
```

Codierung von -x:

codiere x negiere bitweise addiere 1

F (4 1 ...)

Codierung von -5 (4 bit)		Codierung von -100 (8 bit)		
5	0101	100	01100100	
bitweise Negation	1010	bitweise Negation	10011011	
addiere 1	0001	addiere 1	0000001	
-5	1011	-100	10011100	

Wenn die Verknüpfung die zulässigen Wertebereiche verlässt, entstehen falsche Ergebnisse.

In der Programmiersprache Java werden ganze Zahlen vom Typ int intern im 32-bit Zweierkomplement gespeichert.

Was macht dieses Programm?

```
int k = 1;
while (k > 0)
    k = k+1;
System.out.println(k);
```

In der Programmiersprache Java werden ganze Zahlen vom Typ int intern im 32-bit Zweierkomplement gespeichert.

Was macht dieses Programm?

```
int k = 1;
while (k > 0)
    k = k+1;
System.out.println(k);
```

-2147483648

In der Programmiersprache Java werden ganze Zahlen vom Typ int intern im 32-bit Zweierkomplement gespeichert.

Was macht dieses Programm?

```
int k = 1;
while (k > 0)
    k = k+1;
System.out.println(k);
```

-2147483648

$$-2147483648 = -2^{31}$$

Darstellung des Zweierkomplements im Zahlenkreis:

Darstellung des Zweierkomplements im Zahlenkreis:


```
>>> bin(16-5)
'0b1011'
>>> bin(256-100)
'0b10011100'
>>>
```