Model Selection with Many More Variables than Observations

Victoria Stodden

Stanford University

Microsoft Research Asia May 8, 2008

Classical Linear Regression Problem

- > Given predictors $X_{n\! imes\!p}$ and response $y_{n\! imes\!1}$,
- > Linear model $y = X\beta + \varepsilon$, with $\varepsilon \sim N(0, \sigma^2)$
- > Estimate β with $(X'X)^{-1}X'y$
- > Widely used in a huge amount of empirical statistical research.

Developing Trend

> Classical model requires p < n, but recent developments have pushed people beyond the classical model, to $p \gg n$.

New Data Types

- > MicroArray Data: p is number of genes, n is number of patients
- > **Financial Data**: *p* is number of stocks, prices, etc, *n* is number of time points
- > **Data Mining**: automated data collection can imply large numbers of variables
- > Texture Classification in Images (eg. satellite):

 p is number of pixels, n is number of images

Estimating the model

- > Can we find an estimate for β when $p \gg n$?
- > George Box (1986) Effect-Sparsity: the vast majority of factors have zero effect, only a small fraction actually affect the reponse.
- > $y = X\beta + \varepsilon$ can still be modeled but now β must be *sparse*, containing a few nonzero elements, the remaining elements zero.

Commonly Used Strategies for Sparse Modeling

1. All Subsets Regression

Fit all possible linear models for all levels of sparsity.

2. Forward Stepwise Regression

- Greedy approach that chooses each variable in the model sequentially by significance level.
- 3. LASSO (Tibshirani 1994), LARS (Efron, Hastie, Johnstone, Tibshirani 2002)
 - 'shrinks' some coefficient estimates to zero.

LASSO and LARS: a quick tour

> LASSO solves: $\min_{\beta} ||y - X\beta||_2^2$ s.t. $||\beta||_1 \le t$ for a choice of t.

- > LARS: a stepwise approximation to LASSO
 - Advantage: guaranteed to stop in n steps

A New Perspective

- > Up until now we've described the statistical view of the problem when $p \gg n$.
- > Now we introduce ideas from Signal Processing and a new tool for understanding regression when p > n, in the case of n large.
- Claim: This will allow us to see that, for certain problems, statistical solutions such as LASSO, LARS, are just as good as all subsets regression.

Background from Signal Processing

- > There exists a signal y, and several ortho-bases (eg. sinusoids, wavelets, gabor).
- > Concatenation of several ortho-bases is a *dictionary*.
- > Postulate that the signal is sparsely representable, i.e. made up from few components of the dictionary.
- > Motivation:
 - Image = Texture + Cartoon
 - Signal = Sinusoids + Spikes
 - Signal = CDMA + TDMA + FM + ...

Overcomplete Dictionaries

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Canonical Basis

• *n* orthogonal columns

Standard Fourier Basis

- where $\omega_k = 2\pi k, \ k = 0,...,n/2$
- 0,1 indicates cosine, sine
- *n* orthogonal columns

 $A = [B_C \mid B_F]_{n \times 2n}$ is an overcomplete dictionary

Example: Image = Texture + Cartoon (Elad and Starck 2003)

Original Image

Example: Image = Texture + Cartoon (Elad and Starck 2003)

Cartoon (Curvelets)

Texture (local sinusoids)

Formal Signal Processing Problem Description

Signal decomposition: y = Ax

With a noise term: y = Ax + z, $z \sim N(0, \sigma^2)$

	Regression	Decomposition
Signal	у	у
Matrix	X	A
Coefficients	eta	\mathcal{X}
Noise	arepsilon	z
n	observations	signal length
р	predictors	p/n = #bases

If #bases > 1, \implies p > n.

Signal Processing Solutions

- 1. Matching Pursuit (Mallat, Zhang 1993)
 - Forward Stepwise Regression
- 2. Basis Pursuit (Chen, Donoho 1994)
 - Simple global optimization criteria:

$$(P_1)$$
 $\min_{x} \|x\|_1 \text{ s.t. } y = Ax$

- 3. Maximally Sparse Solution:
 - Intuitively most compelling but not feasible!

$$(P_0) \quad \min_{x} \| x \|_0 \text{ s.t. } y = Ax$$

l_0 Problem Impossible!

> We can't hope to do an all subsets search, but we are lucky!

 (P_1) is a convex problem, and it can sometimes solve (P_0) .

(l_1, l_0) Equivalence

- > Signal processing results show (P_1) solves (P_0) for certain problems.
- > Donoho, Huo (IEEE IT, 2001)
- > Donoho, Elad (PNAS, 2003)
- > Tropp (IEEE IT, 2004)
- > Gribonval (IEEE IT, 2004)
- > Candès, Romberg, Tao (IEEE IT, to appear)

Phase Transition in Random Matrix Model

- $> A_{n \times p}, A_{i,j} \sim N(0,1)$
- > y = Ax, where x has k random nonzeros, positions random.
- > Phase Plane (δ, ρ)
 - $\rho = k/n$: degree of sparsity
 - $\delta = n/p$: degree of underdetermination

Theorem (DLD 2005) There exists a critical $\rho_w(\delta)$ such that, for every $\rho < \rho_w$, for the overwhelming majority of (y,A) pairs, if $\rho < \rho_w$, (P_1) solves (P_0) .

Phase Transition: (l_1, l_0) equivalence

Paradigm for study

- > *P* is a property of an algorithm,
- > (y, X) is a random ensemble,
- > Find the Phase Transitions for property *P*.

Approach pioneered by Donoho, Drori, and Tsaig:

- 1. Generate $y = X\beta$, where β sparse.
- 2. Run full solution path to find solution $\hat{\beta}$,

3. Property
$$P: \frac{\|\hat{\beta} - \beta\|_2}{\|\beta\|_2} \le \varepsilon$$

This implies a statistics question!

- > Could this paradigm be used for linear regression with noisy data?
- > For example, when are LASSO, LARS, Forward Stepwise just as good as all subsets regression?
- > Reformulate problems with Noise:

$$(P_{0}, \lambda) \qquad \min_{\beta} \| y - X\beta \|_{2}^{2} + \lambda \| \beta \|_{0}$$

$$(P_{1}, \lambda) \qquad \min_{\beta} \| y - X\beta \|_{2}^{2} + \lambda \| \beta \|_{1}$$

Experiment Setup

- > $X_{n \times p}$, with random entries generated from N(0,1), and normalized columns.
- > β is a p-vector with the first k entries drawn from U(0,100) remaining entries 0.
- $> \mathcal{E} \sim N(0,16) n$ -vector.
- > Create $y = X\beta + \varepsilon$
- > We find the solution $\hat{\beta}$ using an algorithm (LASSO, LARS, Forward Stepwise) with y and X as inputs.

Questions

- > Will there be any phase transition?
- > Can we learn something about the properties of these algorithms from the Phase Diagram?

LASSO, LARS Phase Transitions for Noisy Model

LASSO, $z \sim N(0,16)$

LARS, $z \sim N(0,16)$

Aside: Stepwise Thresholding

- > Stepwise Algorithm typical implementation:
 - Add the variable with the highest t-statistic to the model, if that t-statistic is greater than $\sqrt{2\log(p)}$, (Bonferroni).
- > Stepwise Algorithm: False Discovery Rate (FDR) Threshold:
 - Add the variable with the highest t-statistic to the model, if that t-statistic's p-value is less than the FDR statistic.
 - $FDR_{stat} \equiv \frac{q * k}{p}$, where q is $E_{\frac{\{\text{\#falseDiscoveries}\}}{\{\text{\#totalDiscoveries}\}}}$ (the FDR)

parameter), k is the number of variables in the current model, and p is the potential number of variables.

Stepwise Phase Transitions for Noisy Model

Stepwise $\sqrt{2\log(p)}$, z~N(0,16)

Stepwise FDR, z~N(0,16)

Phase Transition Surprises

- > Surprise: LASSO finds underlying model, for $\rho < \rho_{LASSO}$
- > Hoped for: LARS finds underlying model, for $\rho < \rho_{LARS}$.
- > **Surprise**: Stepwise only successful for $\rho \ll c \ll \rho_{LASSO}$.

Error Analysis

> With increased noise levels, at what sparsity levels does these algorithms continue to recover the correct underlying model, if at all?

> We fix $\delta = .5$ and examine a "slice" of the phase transition diagram.

Lasso Normalized L₂ Error

LARS Normalized L₂ Error

Forward Stepwise Normalized L₂ Error

FDR Stepwise Normalized L₂ Error

Experiences with Noisy Case

- > Phase Diagrams revealing, stimulating.
- > Stepwise Regression falls apart at a critical sparsity level (why?)
- > LARS in same cases works very well!
- > Suggests other interesting properties to study.
- > Other algorithms: Forward Stagewise, Backward Elimination, Stochastic Search Variable Selection, ...

Introducing SparseLab!

http://sparselab.stanford.edu

- > Matlab toolbox that makes software solutions for sparse systems available.
- Growing research on sparsity, variable selection issues – could advance the research community if they have standard tools.
- > SparseLab is a system to do this.

SparseLab in Depth

- > Reproducible Research: SparseLab makes available the code to reproduce figures in published papers.
- > Some papers currently included:
 - "Model Selection When the Number of Variables Exceeds the Number of Observations" (Donoho, Stodden 2006)
 - "Extensions of Compressed Sensing" (Tsaig, Donoho 2005)
 - "Neighborliness of Randomly-Projected Simplices in High Dimensions" (Donoho, Tanner 2005)
 - "High-Dimensional Centrally-Symmetric Polytopes With Neighborliness Proportional to Dimension" (Donoho 2005)
- > All open source!

Acknowledgments

David Donoho
Iddo Drori
Joshua Sweetkind-Singer
Yaakov Tsaig

