Clustering and identification of core implications ICFCA 2021

D. López-Rodríguez¹, P. Cordero¹, M. Enciso², Á. Mora¹

 $^{1}\mathrm{Dep.}$ de Matemática Aplicada $^{2}\mathrm{Dep.}$ de Lenguajes y Ciencias de la Computación

Table of Contents

Introduction

The fcaR library
Formal Contexts
Concept lattices
Implications

Clustering of implications Idea Experimental results

Conclusions and future work

Introduction

Objectives of this work:

- To present briefly the fcaR package and the methods implemented.
- To present the research line on clustering of implications with an application example

The fcaR library

- fcaR is the first R package that implements the core notions and methods of FCA.
- It is designed to work with binary and fuzzy (graded) formal contexts.
- It is publicly available at the CRAN repository¹ and, up to June 2021, it has more than 10K downloads.

¹https://cran.r-project.org/package=fcaR

Formal Contexts

```
fc <- FormalContext$new(planets)
fc$to_latex(caption = "The planets formal context")</pre>
```

	small	medium	large	near	far	moon	no_moon
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			\times		×	×	
Saturn			\times		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Table 1: The planets formal context

fc\$clarify()

	small	medium	large	near	far	moon	no_moon
Pluto	×				×	×	
[Mercury, Venus]	×			\times			×
[Earth, Mars]	×			×		×	
[Jupiter, Saturn]			×		×	×	
[Uranus, Neptune]		×			\times	×	

Table 2: The clarified formal context

```
S <- Set$new(fc$attributes, no_moon = 1)
fc$closure(S)

{small, near, no_moon}

fc$att_concept("far")</pre>
```

({Pluto, [Jupiter, Saturn], [Uranus, Neptune]}, {far, moon})

Concept lattices

```
fc$find_concepts()
fc$concepts$plot()
                                                                        ((Pluto, [Mercury, Venus], [Earth, Mars], [Jupiter, Saturn], [Uranus, Neptune]), ())
                                                 ((Pluto, [Earth, Mars], [Jupiter, Saturn], [Uranus, Neptune]), (moon))
                                                                                                                   ((Pluto, [Mercury, Venus], [Earth, Mars]), (small))
                                   ((Pluto, [Jupiter, Saturn], [Uranus, Neptune]), (far, moon))
                                                                                             ((Pluto, [Earth, Mars]), (small, moon))
                                                                                                                                     (([Mercury, Venus], [Earth, Mars]), (small, near))
  ({[Jupiter, Saturn]), {large, far, moon))
                                          ({[Uranus, Neptune]}, {medium, far, moon})
                                                                                       ((Pluto), (small, far, moon))
                                                                                                                      (([Earth, Mars]), (small, near, moon))
                                                                                                                                                             (([Mercury, Venus]), (small, near, no_moon))
                                                                           (O. (small, medium, large, near, far, moon, no, moon))
```

fc\$concepts\$meet_irreducibles()

```
1:
     ({Pluto, [Earth, Mars], [Jupiter, Saturn], [Uranus, Neptune]},
                                                                       \{moon\})
     ({Pluto, [Jupiter, Saturn], [Uranus, Neptune]},
                                                                       {far, moon})
3:
     ({[Jupiter, Saturn]}.
                                                                       [large, far, moon])
     ({[Uranus, Neptune]},
4:
                                                                        medium, far, moon))
5:
     ({Pluto, [Mercury, Venus], [Earth, Mars]},
                                                                       small)
6:
     ({[Mercury, Venus], [Earth, Mars]},
                                                                       small, near)
     ({[Mercury, Venus]},
7:
                                                                       [small, near, no_moon])
```

• Computation of the (fuzzy) lattice Lattice operations: meet- and join-irreducible elements, infimum and supremum, sublattices, support...

Implications

```
fc$find_implications()
fc$implications
```

```
1:
                            \{no\_moon\}
                                                  {small, near}
2:
                                   \{far\} \Rightarrow
                                                  {moon}
                                  \{\text{near}\} \Rightarrow \{\text{small}\}
3:
4:
                                 \{large\} \Rightarrow \{far, moon\}
5:
                              {medium}
                                                  {far, moon}
          {medium, large, far, moon}
6:
                                            \Rightarrow
                                                  {small, near, no moon}
 7:
      {small, near, moon, no moon}
                                            \Rightarrow
                                                  {medium, large, far}
8:
              {small, near, far, moon}
                                                  {medium, large, no_moon}
                                            \Rightarrow
9:
             {small, large, far, moon}
                                                  {medium, near, no moon}
                                            \Rightarrow
10:
          {small, medium, far, moon}
                                                  {large, near, no_moon}
```

fc\$implications\$apply_rules(c("simplification", "rsimplification")) fc\$implications

```
\{\text{no moon}\} \Rightarrow
 1:
                                                   {near}
                             \{far\} \Rightarrow \{moon\}
 2:
                            \{\text{near}\} \Rightarrow \{\text{small}\}
 3:
                           \{large\} \Rightarrow
 4:
                                                   {far}
 5:
                      \{\text{medium}\} \Rightarrow
                                                   {far}
 6:
            \{\text{medium}, \text{large}\} \Rightarrow \{\text{no}\_\text{moon}\}
 7:
         \{\text{moon, no moon}\} \Rightarrow \{\text{medium, large}\}
 8:
                     \{\text{near, far}\} \Rightarrow \{\text{medium, large}\}
                 \{\text{small, large}\} \Rightarrow \{\text{medium}\}
 9:
            \{\text{small, medium}\} \Rightarrow
                                                   {large}
10:
```

```
S <- Set$new(fc$attributes, large = 1)
fc$implications$closure(S, reduce = TRUE)
$closure
{large, far, moon}
$implications
Implication set with 4 implications.
Rule 1: {no moon} -> {medium, near}
Rule 2: {medium} -> {no moon}
Rule 3: {near} -> {small, medium}
```

Rule 4: {small} -> {medium}

Clustering of implications

- We aim to study the potential use and applications of performing (unsupervised) clustering on the Duquenne-Guigues basis of implications.
- We show this idea using a running example.
- We try to get more insight with a more complex problem, to study the consistency of the clusters.

- Let us consider a formal context $\mathbb{K} = (G, M, I)$ and let Γ be the corresponding Duquenne-Guigues basis of implications.
- Find a partition $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \ldots \cup \Gamma_K$ such that the quantity

$$\phi(\Gamma_1, \dots, \Gamma_K) = \sum_{i=1}^K \delta(\Gamma_i)$$

is minimum, where $\delta(\Gamma_i)$ represents an internal dissimilarity measure in Γ_i .

- Define a distance function between implications $(P \to Q \text{ and } R \to T)$:
 - Appeareance (similarity between P and R, or Q and T)
 - Semantics (similarity between P^+ and R^+)
- Our intuition is that the pseudo-intents and the closed sets play an essential role in the clusters, but we want to explore the possibilities.

Let us suppose $A, B \subset M$. The following measures are based on well-known distances:

- Hamming (or Manhattan) distance: $d_{\mathcal{M}}(A,B) = |A \triangle B|$ (where \triangle denotes the symmetric set difference operator) measures the amount of attributes that are present in only one of A and B.
- Jaccard index: $d_{J}(A, B) = 1 \frac{|A \cap B|}{|A \cup B|}$ measures the proportion of common attributes in A and B.
- Cosine distance: $d_{\cos}(A, B) = 1 \frac{|A \cap B|}{\sqrt{|A| \cdot |B|}}$.

• Dissimilarity $\mathrm{dis}(P\to Q,R\to T)$ between two implications $P\to Q$ and $R\to T$

$$\begin{aligned} \operatorname{dis}_{1}(P \to Q, R \to T) &:= d(P, R) \\ \operatorname{dis}_{2}(P \to Q, R \to T) &:= d(P^{+}, R^{+}) \\ \operatorname{dis}_{3}(P \to Q, R \to T) &:= d(P, R) + d(Q, T) \\ \operatorname{dis}_{4}(P \to Q, R \to T) &:= d(P, R) + d(P^{+}, R^{+}) \\ \operatorname{dis}_{5}(P \to Q, R \to T) &:= d(P, R) + d(Q, T) + d(P^{+}, R^{+}) \end{aligned}$$

• The internal dissimilarity in the cluster:

$$\delta(\Gamma_i) := \frac{1}{|\Gamma_i|} \sum_{R \to T \in \Gamma_i} \operatorname{dis}(P \to Q, R \to T)$$

- We can compute a central implication in each cluster (the one that minimizes its distance to the other implications in the same cluster)
- Clustering algorithm: Partitioning Around Medoids (PAM), gives the central implications with the same cost
- Maybe necessary to remove implications with 0-support (since $P^+ = M$).

An example

Applying this strategy to the planets formal context, with this dissimilarity function:

$$dis(P \to Q, R \to T) := |P \triangle R| + |P^+ \triangle R^+|$$

we obtain the following core implications:

```
Implication set with 2 implications.
Rule 1: {near} -> {small}
Rule 2: {far} -> {moon}
# The cluster 1 is:
Implication set with 2 implications.
Rule 1: {no moon} -> {small, near}
Rule 2: {near} -> {small}
# The cluster 2 is:
Implication set with 3 implications.
Rule 1: {far} -> {moon}
Rule 2: {large} -> {far, moon}
Rule 3: {medium} -> {far. moon}
```

Experimental results

The dataset

- We apply our proposal to the data from the so-called MONK's problems, a set of 3 datasets used in machine learning competitions.
- Each of the 3 datasets consists of 6 categorical attributes, a1 to a6, taking integer values, and a binary class attribute.
- For this work, all categorical variables have been binarized, making an aggregate of 19 binary attributes, including the two class attributes, class
 0 and class = 1.
- For each of these three problems, we have computed the Duquenne-Guigues basis, consisting of 524, 723 and 489 implications, respectively.
- After removing the implications that incorporate all the attributes, as commented before, the final sets of implications consisted of 505, 704 and 471 implications for problems MONKS-1, MONKS-2 and MONKS-3, respectively.

Clustering computation

• Silhouette index has determined that there are two clusters in each of the problems

• In MONKS-1, the core implications found were:

$$\{a5 = 1\} \Rightarrow \{class = 1\}$$

 $\{class = 0, a2 = 1, a5 = 2\} \Rightarrow \{a6 = 2\}$

Clustering consistency

• Closure purity: Let us consider the set of equivalence classes in the Duquenne-Guigues basis Γ , as

$$[P \to Q] = \{R \to T \in \Gamma : P^+ = R^+\}$$

Table 3: Percentage of equivalence classes that belong to only one cluster

Problem	Dissimilarity	Hamming	Jaccard	Cosine
MONKS-1	dis_1	0.953	1.000	0.983
	dis_2	1.000	1.000	1.000
	dis_3	0.962	0.953	0.953
	dis_4	1.000	1.000	0.971
	dis_5	1.000	0.988	0.962
MONKS-2	dis_1	0.928	0.966	0.942
	dis_2	1.000	1.000	1.000
	dis_3	0.986	0.966	0.974
	dis_4	0.994	1.000	0.998
	dis_5	0.996	0.954	0.974
MONKS-3	dis_1	0.923	1.000	0.972
	dis_2	1.000	1.000	1.000
	dis_3	0.935	0.985	0.978
	dis_4	1.000	0.997	0.994
	dis_5	1.000	0.994	0.966

• Common attributes per cluster

Table 4: Attributes that appear more than 80% of the implications in each cluster.

Pr.	Diss.	Ham Cluster 1	ming Cluster 2	Jaccard Cluster 1	Cluster 2	Cosine Cluster 1	Cluster 2
1	dia.	{class = 1}	Ø	$\{class = 1, a5 = 1\}$	Ø	$\{class = 1, a5 = 1\}$	Ø
1	dis ₁ dis ₂	$\{class = 1\}$	$\{class = 0\}$	$\{class = 1, ab = 1\}$ $\{class = 1, ab = 1\}$	ø	$\{class = 1, ab = 1\}$ $\{class = 1, ab = 1\}$	Ø
					ø		Ø
	dis ₃	$\{class = 1\}$	Ø 03	$\{class = 1\}$		$\{class = 1\}$	
	$_{ m dis}_4$	$\{class = 1\}$	$\{class = 0\}$	$\{class = 1, a5 = 1\}$	Ø	$\{class = 1\}$	Ø
	$_{ m dis}_5$	$\{class = 1\}$	$\{class = 0\}$	$\{class = 1\}$	Ø	$\{class = 1\}$	Ø
2	dis ₁	Ø	Ø	$\{a5 = 1\}$	Ø	$\{a4 = 1\}$	Ø
	dis2	$\{class = 0\}$	$\{class = 1\}$	$\{class = 0, a6 = 1\}$	Ø	$\{class = 0, a5 = 1, a6 = 1\}$	} Ø
	dis3	$\{class = 0\}$	ø	$\{class = 0\}$	Ø	$\{class = 0\}$	ø
	dis ₄	$\{class = 0\}$	$\{class = 1\}$	$\{class = 0, a4 = 1, a6 = 1\}$	} Ø	$\{class = 0\}$	Ø
	dis_5	$\{class = 0\}$	Ø	$\{class = 0\}$	Ø	$\{class = 0\}$	Ø
3	dis_1	Ø	$\{class = 1\}$	$\{class = 0, a5 = 4\}$	ø	$\{class = 0, a5 = 4\}$	Ø
	dis2	$\{class = 0\}$	$\{class = 1\}$	$\{class = 0, a5 = 4\}$	Ø	$\{class = 0, a5 = 4\}$	Ø
	dis3	$\{class = 0\}$	Ø	$\{class = 0\}$	Ø	$\{class = 0\}$	ø
	dis_4	$\{class = 0\}$	$\{class = 1\}$	$\{class = 0\}$	Ø	$\{class = 0\}$	ø
	dis5	$\{class = 0\}$	$\{class = 1\}$	$\{class = 0\}$	ø	$\{class = 0\}$	Ø

Conclusions and future work

- We have presented the fcaR package developed in the R language.
 - It provides a tool to the FCA community to test and compare algorithms and ideas.
 - It aims at making FCA works visible to other areas as machine learning, data science, etc., where the use of the R language is widely extended.
 - The code and experiments are in https://github.com/Malaga-FCA-group/FCA-ImplicationClustering
- We propose a method to cluster implications
 - Extracting interesting knowledge about the central implications
 - New interesting research in current areas of interest as Social Network Analysis: the identification of topics could be addressed by our clustering implication method based on logic.

Future research

- Natural clusters (consistent with the data) seem to emerge from the implication clusters, and this could have potential applications:
 - To reduce the concept lattice,
 - To simplify the bases of implications,
 - To research new algorithms to compute approximate closures.
- Study the relationship between the concept lattice obtained directly from a formal context and obtained after clustering objects.
- The study of *closure purity* can reveal interesting properties about closed sets and their features.
- Key attributes arise from the clusters, with potential applications revealing attributes and object clusters and their leaders.

Clustering and identification of core implications ICFCA 2021

D. López-Rodríguez¹, P. Cordero¹, M. Enciso², Á. Mora¹

 $^{1}\mathrm{Dep.}$ de Matemática Aplicada $^{2}\mathrm{Dep.}$ de Lenguajes y Ciencias de la Computación

