

MANUFACTURING TECHNOLOGY PROGRAM FOR HIGH BURNOUT SILICON SCHOTTKY-BARRIER MIXER DIODES FOR NAVY AIR-TO-AIR AVIONICS

NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375

TECHNICAL REPORT

M/A-COM SILICON PRODUCTS, INC.
ONE SOUTH AVENUE-BUILDING 1
BURLINGTON, MASSACHUSETTS 01803 U.S.A.
(617) 272-3000

DISTRIBUTION STATEMENT A

Approved for public release:

Distribution Unlimited

82 06 29 005

ELECTE DASS

Disclaimers

The findings in this report are not to be construed as an Official Department of the Navy position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products of service referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Approved for public release;
Distribution Unlimited

MANUFACTURING TECHNOLOGY PROGRAM FOR HIGH BURNOUT SILICON SCHOTTKY-BARRIER MIXER DIODES FOR NAVY AIR-TO-AIR AVIONICS

FINAL REPORT
CONTRACT NO. N00173-79-C-0107

PREPARED BY:

Y. ANAND

S. ELLIS

SUBMITTED TO:

NAVAL RESEARCH LABORATORY WASHINGTON, DC 20375

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS 01803

TABLE OF CONTENTS

			PAGE #
1.0	INTRO	DDUCTION	1
2.0	PROG	RAM OBJECTIVES & SCOPE	6
	2.1	Purpose and Objective of Program	6
3.0	PROG	RAM SCOPE	7
	3.1	Specific Tasks	7
	3.2	Phase 1 Requirements	7
	3.3	Phase 2 Requirements	8
	3.4	Diode Specification	8
4.0	TECH	NICAL REPORT - PHASE 1	9
	4.1	Wafer Processing	9
	4.2	Silicon Epitaxial Wafer Characterization	9
	4.3	Silicon Wafer Processing and Evaluation	9
	4.4	Characterization of Epitaxial Wafers	15
	4.5	Measures for Reducing Wafer Processing Costs	23
	4.6	High Volume Planar Magnetron Sputtering System	23
	4.7	Plasma Etching of Silox Photo-Resist and Metallization	30
	4.8	Low Cost Dicing of Wafers	30
5.0	AUTO	MATIC WAFER PROBE TESTING	36
6.0	MEAS	URES FOR REDUCING CHIP PACKAGING COSTS	39
	6.1	Low Cost Ceramic Package Assembly	39
	6.2	Low Cost Semi-Automatic Bonding and Capping	39
7.0	COMP	OSITE PLATINUM - NICKEL SCHOTTKY DIODE	49
	7.1	RF Testing of (Pt-Ni) Schottky Barrier Diodes	49
8.0	TECH	NICAL REPORT - PHASE 2 (Manufacturing Phase)	56
	8.1	Introduction	56
	8.2	Production Line	56
	8.3	Environmental/Reliability Testing	56
	8.4	Jan Format Design Reliability Testing	56
	8.5	JEDEC Registration	56
	8.6	Pilot Line Diodes	73
	8.7	Product Data Sheet	73

TABLE OF CONTENTS (CONTINUED)

		PAGE #
9.0	DELIVERABLES	74
10.0	CONCLUSION	87
11.0	FUTURE WORK	88
	APPENDIX A	Al
	APPENDIX B	B1
	APPENDIX C	Cl

Accession For
NTIS (VAL) DTIC TES Uner consc
Jus" - 5
By
Average of the second of the s
A

LIST OF ILLUSTRATIONS

			PAGE (
FIGURE 1	l	SCHOTTKY PACKAGE DIODE AND CHIP	3
FIGURE 2	2	MULTIDOT PACKAGED SCHOTTKY DIODE	4
FIGURE 3	3	LOWER BARRIER PtNi-Ti/W-Au	12
FIGURE 4	4	AMV-1200 VERTICAL EPITAXIAL REACTOR	16
FIGURE 5	5	AUTOMATIC DOPING PROFILE MEASUREMENT SYSTEM	18
FIGURE 6	6	MERCURY PROBE CALCULATIONS	19
FIGURE 7	7	ACTUAL PLOT	20
FIGURE 8	8	PHILTEC BEVEL & STAIN METHOD	24
FIGURE 9	9	PLANAR MAGNETRON CATHODE	26
FIGURE 1	10	MRC MAGNETRON 900 METAL DEPOSITION SYSTEM	27
FIGURE 1	11	INTERNATIONAL PLASMA CORPORATION PLASMA ETCHER FOR NITRIDE AND OXIDE ETCH	31
FIGURE 1	12	DUAL STATION AUTOMATIC TEST SYSTEM FOR PACKAGED SCHOTTKY BARRIER DIODE	37
FIGURE 1	13	COMPUTER CONTROLLED AUTOMATIC SCHOTTKY WAFER PROBER	38
FIGURE 1	14	STANDARD CERAMIC PILL (ODS-119 PACKAGE ASSEMBLY	40
FIGURE 1	15	CERAMIC PILL PACKAGE ASSEMBLY WITH BRAZING ALLOY SEPARATE WASHERS (PRESENT METHOD)	41
FIGURE 1	16	LOW COST CERAMIC PACKAGE ASSEMBLY WITH BRAZING ALLOY DEPOSITED ON CERAMIC	42
FIGURE 1	17	DIODE PACKAGING	43
FIGURE 1	18	SEMI-AUTOMATIC WEST BOND MODEL 7416 THERMOCOMPRESSION WIRE BONDER	47
FIGURE 1	19	CHARACTERISTICS OF STANDARD Pt-Ti-Mo-Au AND (Pt-Ni)-Ti-Mo-Au SCHOTTKY BARRIER DIODES	50
FIGURE 2	20	NOISE FIGURE VERSUS LOCAL OSCILLATOR POWER AT 9.375 GHz	53
FIGURE 2	21	IF IMPEDANCE VERSUS LOCAL OSCILLATOR POWER AT 9.375 GHz	54
FIGURE 2	22	RECTIFIED CURRENT VERSUS LOCAL OSCILLATOR POWER AT 9.375 GHz	55
FIGURE 2	23	MIXER DIODE DICE PREPARATION AREA	62
FIGURE 2	24	MIXER DIODE FABRICATION AND TEST AREA	63
FIGURE 2	25	X-BAND RF PULSE BURNOUT SYSTEM	69

LIST OF TABLES

			PAGE #
TABLE	1	PERFORMANCE OF X-BAND SCHOTTKY DIODES	2
TABLE	II	SCHOTTKY BARRIER DIODE CHIP FABRICATION	10
TABLE	III	COMPARISON OF RESULTS	25
TABLE	IV	COMPARISON OF DIFFERENT METALLIZATIONS	29
TABLE	V	COMPARISON OF METHODS OF RESIST STRIPPING	32
TABLE	VI	COMPARISON OF METHODS OF ETCHING WAFERS	33
TABLE	VII	COMPARISON OF VARIOUS METHODS OF DICING WAFERS	35
TABLE	VIII	DESIGN IMPROVEMENTS - PIECE PART COST REDUCTIONS	44
TABLE	IX	PLATING COST COMPARISONS (100 MICROINCHES)	45
TABLE	X	PRODUCTION ADVANCEMENTS	48
TABLE	XI	RF CHARACTERICS OF X-BAND LOW BARRIER HEIGHT (Pt/Ni-Ti-Mo-Au) SCHOTTKY BARRIER DIODES	51
TABLE	XII	SCHOTTKY Pt-Ni BONDABLE	57
TABLE	XIII	SCHOTTKY-BARRIER DIODE CHIP FABRICATION	64
TABLE	XIV	COST REDUCTION SUMMARY OF HIGH BURNOUT SCHOTTKY-BARRIER DIODE	67
TABLE	xv	HIGH BURNOUT SCHOTTKY LABOR CHART	68
TABLE	IVX	LIFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY	70
TABLE	IIVX	TEST DATA - FIRST ENGINEERING SAMPLES	75
TABLE	IIIVX	SECOND ENGINEERING SAMPLE DATA	76
TABLE	XIX	THIRD ENGINEERING SAMPLES	77
TABLE	xx	ELECTRICAL/MECHANICAL TEST DATA	78-86
TABLE	XXI	COST REDUCTION SUMMARY OF HIGH BURNOUT	89

ABSTRACT

A STATE SAGE STREET, SAME STATE OF STAT

This report describes the establishment of low cost semiconductor processes to manufacture low barrier height high burnout X-band silicon Schottky barrier diodes in production quantities. These devices are thermal compression bonded in a rugged low cost pill (ODS-119) package. They exhibit an overall low noise figure of 7.0 dB (single side band) at 0.5 mW of local oscillator power level and RF burnout of 12 watts (τ = 1 μ sec and 10³ Hz rep. rate). Reliability and ruggedness of the design has been demonstrated by tests taken from MIL.S. 19500F.

I.0 INTRODUCTION

Under U.S Navy Contracts N00173-C-0029 and N00173-78-C-0126, Microwave Associates has developed low barrier height, high burnout X-band silicon Schottky-barrier diode with a 12 watt RF burnout ($\tau = 1\,\mu \rm sec$, $10^3~\rm Hz$ rep. rate) characteristics (see Table I and Figures 1 and 2). These devices are thermal compression bonded in a rugged pill (ODS-119) package and exhibit an overall low noise figure of 7.0 dB (single side band) at a 0.5 mW of local oscillator power level.

The purpose of this manufacturing technology program was to establish production processes and technologies for the manufacture of low barrier height and high burnout Schottky-barrier diodes to be used in advanced radar systems for the U.S. Navy. The objective was to demonstrate pilot production fabrication processes in order to realize lower manufacturing costs through applications of high yield processing techniques.

The program consists of a two-phase effort: (a) establishing low cost semiconductor processing and tooling techniques for the pilot line and (b) manufacturing phase, for a period of twenty-four months.

PHASE I

- Low Cost semiconductor chip processing
- Cost reduction in packaging and diode fabrication
- Cost reduction in DC and RF testing (computercontrolled probe stations)

PHASE II

- Pilot line production
- Quality control testing
- Failure Analysis

Most of the cost in manufacturing a Schottky chip is in processing of the silicon wafer. The processing of a wafer can be in excess of \$1,000, while the silicon wafer with an epitaxial layer costs in the order of

PERFORMANCE OF X-BAND SCHOTTKY DIODES

		RF PERFO	RF PERFORMANCE
DIODE PARAMETERS	BEFORE NAVY CONTRACTS	AFTER N00173-77-/C-0029	AFTER N00173-77-C-0029 N00173-78-C-0126
NOISE FIGURE AT 9.375 GHz	7.0 dB	7.0 dB	7.0 dB
L.O. POWER	0.5 mW	1.0 mW	0.5 mW
RF BURNOUT: $F_0=9.375~\mathrm{GHz}$ $\tau=1~\mu\mathrm{s}$ DU $=0.001$	2 WATTS	10 WATTS	12-15 WATTS
RF BURNOUT: $F_0 = 9.375 \text{ GHz}$ $\tau = 3 \text{ ns}$ Du = 0.001	15 WATTS	80 WATTS	100-150 WATTS

D-21260

TABLE I

(a) SCHOTTKY CHIP

(b) CERAMIC MQM (STYLE 119)

FIGURE 1

FIGURE 2 MULTIDOT PACKAGED SCHOTTKY DIODE

\$15. Therefore, the objective is to (1) reduce processing step costs, (2) increase the number of chips per wafer, (processing cost is independent of wafer size), and (3) improve the yield.

The processing steps include wafer characterization, oxide growth, photoresist masking, etching of Schottky windows in oxide, metallization, testing and scribing.

2.0 PROGRAM OBJECTIVES & SCOPE

2.1 Purpose and Objective of Program

The purpose of this program was to establish Pt/Ni-Ti-Mo-Au metallization process using a high volume magnetron sputtering system and low cost processing techniques for the manufacture of low barrier height, high burnout, X-band Schottky barrier diodes for advanced Navy radar systems.

The objective was to demonstrate pilot production fabrication processes in order to realize lower manufacturing costs (from \$30.00 to \$10.00 per diode in production quantities) through the application of high yield processing techniques such as: 3 inch silicon wafer processing, low cost sawing, semi-automated bonding, and computer controlled diode testing stations.

Both the purpose and objective of this contract have been achieved. We have developed new processes and technologies for the manufacture of silicon low barrier height high burn-out X-band Schottky barrier diodes for advanced Navy radar systems. The diode which is the result of this effort meets all contract specifications. We fully expect to sell production quantities of these diodes at a unit price of \$10.00 each or less.

3.0 PROGRAM SCOPE

The program consisted of a two-phase effort for a period of 24 months.

- 3.1 The specific tasks of this program included:
- 3.1.1 Establish semiconductor processing and tooling techniques for quantity production diodes using the diode designs developed under NRL Contract No. N00173-77-C-0029 and N00173-78-C-0125.
- 3.1.2 Establish tolerance limits such that performance requirments are met at minimum cost.
- 3.1.3 Establish automatic testing procedures and test equipment to provide adequate and sufficient probing of the product at least cost.
- 3.1.4 Fabricate production diodes in sufficient quantities (1000) to determine that process controls can be maintained when adapted to new process production.
- 3.1.5 Describe new electrical parameters in MIL-STD-750 format specifications.
- 3.1.6 Prove out and report data on all fabrication, assembly, processing and measuring steps and procedures to produce the diodes.
- 3.1.7 Document and report piece-part dimensions, materials, reagents of all manufactured and purchased components.
- 3.1.8 Initiate a pilot run of 300 preproduction samples and qualify diodes for system implementation.

3.2 Phase I Requirements

The laying out of all semiconductor chip processing steps, package parts and diode fabrication steps. The simplification of all parts for manufacturing ease, work simplification analysis on both assembly of the device and testing, and the adaptation of all required assembly and test jigs, fixtures and tooling to maximize efficiency and minimize required labor and skill.

3.3 Phase 2 Requirements

All manufacturing drawings and process specifications will be finalized. Required manufacturing flow, inspection procedures, and test methods will he fully documented prior to preproduction start-up.

This step will be the preproduction run to prove out all aspects of the manufacturing technology program including documentation derived in 3.2. Three hundred prototypes will be built during this run. One hundred units will be used for qualification testing.

- 3.3.1 A MIL-STD-19500 format specification shall be prepared based on the electrical, mechanical parameters and performance of threse three hundred diodes.
- 3.2.2 A step-stress testing procedure shall be performed on a reasonable sample of these preproduction diodes in addition to those tests required for system qualification. These step-stress tests will also prove the success of the established manufacturing techniques. The number of candidates and specific type tests called out in MIL-STD-750 shall be determined by mutual agreement.

3.4 Diode Specification

The 300 hundred prototype samples to be built under Phase 2 shall meet the following specifications:

Diode Parameters	Proposed Contract Specifications
NF at 9.375 GHz	7.0 dB (max) SSB
LO Power	0.5 mW
RF Burn Out at	12 W
$F_0 = 9.375 \text{ GHz}$	
$\tau = 1 \mu \text{sec}$	
$D_{u} = 0.001$	

4.0 TECHNICAL REPORT - PHASE I

Phase I of this Program consisted of optimizing the processing and of transferring the process technology to high throughput systems to increase yields and reduce cost. Process specifications were writen and documented. Engineering samples were fabricated, DC and RF tested, and shipped on schedule.

4.1 Wafer Processing

Operating procedures have now been established for all phases of wafer processing. These processes are outlined in Table II. Specifications for these processes have been written and documented. Test lots of wafers have been processed to confirm process repeatability and yield. Process steps are summarized in Figure 3. Specific areas of work are discussed in the following sections.

4.2 Silicon Epitaxial Wafer Characterization

The epitaxial layers to be used must have, (a) a very low crystallographic imperfection density in order to ensure minimization of avalanche noise, (b) excellent surface morphology, and, (c) exactly the correct epitaxial layer doping level, abrupt interface, and thickness to ensure lowest possible device series resistance.

4.3 Silicon Wafer Processing and Evaluation

Epitaxial growth was accomplished by the hydrogen reduction of silicon tetra-chloride as given below:

$$2 H_2 (q) + SiCl_4 (g) 1150$$
°C Si (s) + HCl (g)

Hydrogen is bubbled through silicon tetra-chloride liquid, under controlled saturation conditions, whereby a constant partial pressure of hydrogen is maintained by mass flow controls. A mass flow controlled partial pressure of dopant gas is injected and thoroughly mixed in an inlet chamber prior to entering the epitaxial growth reaction chamber, thereby enabling closely controlled dopant (resistivity) and growth rate control. The substrates are placed on a silicon carbide-coated graphic susceptor, heated

CONTROLS	Micrometer	Actual Slice	Actual Slice	Visual Timed	Visual	Mass Flow Controllers	Measure	Actual Slice	Visual	Alpha Step Surface Profiler & Rudolph	Visual
EQUIPMENT	Semi-Metals Crystal Puller Model 5108	Dual Micromatic Model #1427	Jandell Four Point Probe	Micro Air Hood	Semi-Metals Polisher Model #22	Applied Materials AMV 1200	HP1000 Mercury Probe and Phites Bevel & Stain	Mercury Probe & Phites Bevel & Stain	Micro Air Hood	ASM LTO System	Cobilt CA-800 Photo Aligner
OPERATION	1) Grow Silicon Crystal	2) Slice Crystal	3) Check Resistivity	4) Etch Slices	5) Polish Slices	6) Grow EPI Layer	7) Check EPI Layer Thick- ness	Check EPI Layer Resis-	8) Clean Wafers	 Chemical Vapor Deposit Oxide 	10) Open Window for Schottky & Junction

TABLE II SCHOTTKY BARRIER DIODE CHIP FABRICATION

Victers-Image-Shere microscope

OPERATION	EQUIPMENT	CONTROLS
ll) Etch Windows	Plasma Therm Model PK-12	End Point Detector
12) Strip Resist	IPC Model 2005X Plasma System	End Point Detector
13) Metal (PtNi.)	Materials Research Corp	Alpha-Step
14) Sinter	Lindburg Diffusion Furnace	Timer
15) Metal (T/W-Au)	Materials Research Corp	Alpha-Step
16) Mask Metal for Etch	Cobilt CA-800 Photo Aligner	Visual-Vickers Scope
17) Etch Metal	IPC Model 2005X Plasma System	End Point Detector
18) Strip Resist	IPC Model 2005X Plasma System	End Point Detector
19) Plate Buttons	Power Supply, Au Bath	Unitron Model TM25 Scope
20) Mount & Lap Back	Speed Fram Model 12B Lapper	Micrometer
21) Metalize Back	Ni Bath-Au Bath-Power Supplies	"Tape Test" -Visual
22) Dismount & Clean	Micro Air Hood	Visual
23) Electrical Probe Wafer	M/A Automatic Probe Station	
	with HP-3000 Computer	
24) Dice Wafer	Disco-I	Micro Processor
25) Dice Approval	Nikon IC Imspection	Visual Inspect

-11-

D-21242

Microscope

PROCESS STEPS FOR HIGH BURNOUT, BARRIER SCHOTTKY DIODE

LOWER BARRIER PtNi-Ti/W-Au

FIGURE 3 (a)

D-17114B

SINTER AT 480°C FOR 7 MIN. IN ARGON AND REMOVE EXCESS

D-17115A

FIGURE 3 (b)

FIGURE 3 (c)

to $\sim 1150^{\circ}\text{C}$ (optical pyrometer temperature), where they are etched in-situ by HCl vapor to remove any possible surface mechanical damage. After purging for a given time and stabilizing partial pressures of the reactant gases, these gases are allowed into the epitaxy chamber whereby controlled growth is accomplished.

Epitaxial growth was perfomed in an AMV-1200 vertical react: (See Figure 4).

4.4 Characterization of Epitaxial Wafers

The following techniques are available to characterize and evaluate silicon epitaxial wafers:

- (a) Infrared Spectrometer to evaluate epitaxial thickness^[1].
- (b) Copeland Inversion Profiler [2].
- (c) Spreading Resistance (Four Point Probe) [4].
- (d) Differential Capacitance Profile or Mercury Probe [4].
- (e) Bevel and Stain [5].

The second secon

(f) Digi-tab FTG-12 Thickness Monitor [6].

The Copeland Inversion Profiler^[2], surface spreading resistance probe^[3], and mercury probe^[4], can characterize epitaxial layer concentration (resistivity), and a portion of, if not the entire epitaxial layer/substrate interface. The actual data attainable by each method is a function of layer thickness and carrier concentration.

For measurement and characterization of epitaxial thickness, uniformity across each wafer, and distribution throughout a given run, the available techniques are: infrared spectrometer $^{[1]}$, digi-tab FTG-12 thickness monitor $^{[6]}$, and bevel and stain method $^{[5]}$. Again, the utility of each technique is a function of the layer thickness, substrate type, and optical constants.

FIGURE 4 AMV-1200 VERTICAL EPITAXIAL REACTOR

D 17120

Epitaxial layers of thickness less than $\leq 0.5~\mu\mathrm{m}$ and of low resistivity $\leq 0.5\Omega$ cm are very difficult to measure accurately. Most of the previously mentioned techniques such as, Infrared Spectrometer. (only good for epi thickness $\geq 5~\mu\mathrm{m}$, and Copeland Profiler, (only good for $\geq 2~\mu\mathrm{m}$), are not reliable and do not give reproducible measurements.

A mercury probe with HP1000 computer, (see Figure 5) and bevel and stain methods being evaluated for the measurements of epitaxial thickness and resistivity. The mercury probe set-up consists of an automatic bridge, DC power supply, digital voltmeter, mercury probe, and HP1000 compute The mercury probe's template forms non-destructive 20 mil Schottky junctions on an epitaxial silicon. Computer varies the reverse bias voltage and then plots capacitance versus voltage and doping density versus junction depth using the following equation:

$$N = \frac{C^3}{q \cdot A^2 \frac{dC}{dV}} \quad \text{and } X = -\frac{\epsilon A}{C}$$

A = junction cross sectional area

C = junction capacitance

g = charge of n-electron

e = material dielectric constant

N = material carrier density

X = depth at which N is measured

Various measurement steps are given in Figure 6. This method is fast and non-destructive. It gives an accurate value of doping density (carrier concentration) of the epitaxial layer approximate value of the epitaxial thickness. Typical doping curves and contour maps of 3" wafers are shown in Figure 7. This method is fast and non-destructive.

Unfortunately, in many cases (especially highly doped layers), Schottky diodes formed by a mercury contact breaks down before the epitaxial layer is fully depleted. So another method to measure the epitaxial layer thickness accurately was required.

FIGURE 5 AUTOMATIC DOPING PROFILE MEASUREMENT SYSTEM

- A) FORM Hg SCHOTTKY
- B) MEASURE JUNCTION CAPACITANCE AS A FUNCTION OF VOLTAGE (REVERSE BIAS)
- C) CALCULATE DOPING PROFILE AND DEPTH:

$$N = \frac{C^3}{q \in A^2 \frac{dc}{dV}}$$

$$X = \frac{\epsilon A}{C}$$

A = JUNCTION CROSS-SECTIONAL AREA

C = JUNCTION CAPACITANCE

N = MATERIAL CARRIER DENSITY

q = CHARGE OF ELECTRON

X = POSITION (DEPTH) AT WHICH n IS DETERMINED

 ϵ = MATERIAL DIELECTRIC CONSTANT

FIGURE 6 MERCURY PROBE CALCULATIONS

FIGURE 7 (a) ACTUAL PLOT

FIGURE 7 (b) ACTUAL PLOT

FIGURE 7 (c) MAP OF Hg PROBE MEASUREMENTS ON 3" WAFER

This was achieved by using a Philton Model 2016 D bevel and stain system. The process involves cutting a groove of cylindrical shape into a specimen (epitaxial silicon wafer n/n+), and then staining the groove in a manner which delineates the less negative layers. Then under magnification, two variables are measured which can be substituted into a simple equation to calculate the thickness of epitaxial layers as shown in Figure 8. The experimental measured parameters in Figure 8 are X and Y; and R is the known radius cylinder. The comparison between mercuty probe and Philtec results are given in Table III and show that for a low doped material (wafers A-1722 and A-1743), the results are approximately the same by the two techniques, but differ for moderately doped material (wafer A-1743) due to premature breakdown of mercuty Schottky diodes.

This bevel and stain technique provide the method for the precise measurement of ultra thin epitaxial layers. The mercury probe and Philtec bevel and stain techniques enable us to completely characterize 3 inch epitaxial wafers. The wafers which do not meet the required specifications will be rejected and thus reduce the overall cost of the production diodes. The bevel and stain techniques also provide a method of detecting a layer (unwanted) between a substrate and an epitaxial layer.

4.5 Measures for Reducing Wafer Processing Costs

Efforts were concentrated on transferring the technology process to higher throughput systems, specifically in the areas of: (a) conversion from RF sputtering to automatic magnetron sputtering, (b) conversion from wet (chemical) to dry (plasma) etching and stripping, and (c) dicing of wafers.

4.6 High Volume Planar Magnetron Sputtering System

The planar magnetron sputtering process was invented by John Chapin [11] in 1972. It was further improved to its present stage of very versatile production sputtering system by Materials Research Corporation and Vacuum Industries. It overcomes many of the problems of RF sputtering such as slow rate, poor uniformity, poor power efficiency, and radiation damage.

$$X_j = \sqrt{R^2 - b^2} - \sqrt{R^2 - a^2}$$

WHEN b ≪ R

$$X_j = R \left[1 - \frac{1}{2} \frac{b^2}{R^2} - 1 + \frac{1}{2} \frac{a^2}{R^2} \right]$$

$$X_j = \frac{1}{2} \quad \frac{a^2 - b^2}{R}$$

$$X_j = {1 \over 2} {(a + b) (a - b) \over R}$$

$$X_j = \frac{1}{2} \frac{X_Y}{R}$$

FIGURE 8 PHILTEC BEVEL AND STAIN METHOD

MERCURY PROBE	6.76 0.79	0.50	0.76
PHILTEC	0.80	0.72	0.78
WAFER#	A-1722	A-1742	A-1743

TABLE III COMPARISON OF RESULTS

FIGURE 9 PLANAR MAGNETRON CATHODE

D17119

FIGURE 10 MRC MAGNETRON 900 METAL DEPOSITION SYSTEM

D 16468

The planar magnetron technique is based on a closed magnetic foldoup (see Figure 9) using a planar sputtering target. The concept evolved in partition the Penning's magnetron which was patented in 1933^[12] and work performal by Van Vorous, Mullaly, Karstendick, and others with magnetrically field enchange rectangular box type sputtering sources and quadruple filled sources.

Magnetron sputtering is currently being employed for production retallization of microelectric circuits, microwave power and low noise semi-inductor devices. Typical materials deposited are aluminum, aluminum-silicuitanium-tungston, alloy, platinum, titanium, molybedenum, palladium, gold and others.

Sputtering offers a reliable method of depositing alloys and mixtures with assurance that the film composition will not change from deposition to deposition. The source material will last for a large number of depositions without the need for replenishment.

An added advantage of magnetron sputtering is that the entire deposition process can be automatic such as, evacuation, substrate heating sputter etching, argon backfill and deposition. This means that the quality of the vacuum metallization is no longer dependent upon the skill of the operator. Magnetron sputtering along with micro-processor automation of the equipment assures the same uniformity, run after run, on multi-production shifts day after day.

Advantages of magnetron sputtering to that of RF diode sputtering are:

- (a) Large batch boading can be accomplished in magnetron sputtering (see Figure 10) MRC 903. Presently at Microwave Associates, Inc., we have the capability of metallizing 132 three-inch wafers per one eight hour thift, as compared to only 18 three-inch wafers in the RF diode systems (Model MRC-90).
- (b) Precise deposition control (\pm 200 Å units) can be accomplished in the micro-processor system where the depositing material can be sensed 60 times/minute and adjustments to deposition thicknesses are made each second to insure precise thickness control, run after run. Operator hands on time is reduced to 1/3 that of the operator's time in operation of manual RF diode systems (Model-90).

SYSTEM	3" WAFER/DAY	WAFER/DAY UNIFORMITY	OPERATOR TIME/HANDS ON	TOTAL FACTORED COST/WAFER PT-TI-MO-AU	PT-T1-W-AU
MAGNETRON MRC-903	132	± 200 Å	1/3 LESS	M/\$08	M/\$09
RF MRC-90	18	± 500 Å		%3,00/W	*8 /W

COMPARISON OF DIFFERENT METALLIZATIONS

TABLE IV.

Test lots of waters were run through this system and preiminary specifications established. Results showing cost reductions are immarized in Table IV.

4.7 Plasma Etching of Silox Photo-Resist and Metallization

A plasma etcher (IPC-Model 2005-X) is being used to etch silox, hoto-resist and unwanted titanium and molybedenum metals from silicon afers. This process offers many advantages over wet chemistry techniques such as, (a) higher batch yields, (b) residue-free etching, (c) minimum undercutting, and (d) faster and less expensive than wet chemical etching.

The equipment consists of a quartz chamber inductively coupled to a high frequency oscillator (13.56 MHz) (see Figure 11). The chamber is evacuated to between 0.01 and 0.1 torr and then filled with the stch gas (CF_4 - O_2 for refractory metals and for silicon nitride, anhydrous HF for silox). The RF power is then switched on and reactive gas is excited forming a plasma of atomic flourine, free ions, radicals and electrons. Atomic fluorine is considered to be a major reactant for etching exposed surfaces. Thoto-resist, which etches slower, is used to mask surfaces. The IPC "Dry-Ox" System utilizes a special process to selectively etch oxides without attacking the underlying silicon. An oxygen plasma is used to strip photo-resist from the wafers after they are etched.

The plasma process yields much greater uniformity within a fun and better reproducibility from run-to-run. Once the process is established a engineering personnel, the operator need only load and unload the system. Uniformity of better than ± 5% reproducibility run-to-run has been experienced. In wet chemical etching, wafers are generally etched one at a time and the process is time consuming, unreliable and dependent upon the operator's judgement. Comparison of typical process times for wafer etching and removal of photo-resist are shown in Tables V and VI.

4.8 Low Cost Dicing of Wafers

Once processing is complete, the wafer must be cut into chips. Previously, the wafers were saw cut with the Tempress Saw Model-602, which is a high cost and low yield operation, typically ten three-inch wafers per Tay. Initially, we had hoped to replace this operation with laser scribing in

FIGURE 11 INTERNATIONAL PLASMA CORPORATION PLASMA ETCHER FOR NITRIDE AND OXIDE ETCH

TOTAL COST/WAFER	\$ 0.10	\$ 1,30	\$ 1.25
WEEKLY MATERIALS COST	\	\$ 50	\$ 37
AVG REWORKS	2%	2%	15%
3" WAFERS/CYCLE	20	7	ħ
CYCLE TIME	15 MIN	15 MIN	15 MIN
ТҮРЕ	PLASMA	WET CHEMICAL	J-1000R712D

TABLE V. COMPARISON OF METHODS OF RESIST STRIPPING

TOTAL COST/WAFER	10 - 15¢	\$2.00
/CYCLE UNIFORMITY YIELD WEEKLY MATERIAL COST TOTAL COST/WAFER	\$ 2	\$ 100
YIELD	%06	%08
UNIFORMITY	± 5%	+10%
	50	Н
CYCLE TIME WAFER	3-15 MIN	1-5 MIN
ТҮРЕ	PLASMA	WET CHEMICAL 1-5 MIN

TABLE VI. COMPARISON OF METHODS OF ETCHING WAFERS

A Quantrix Model 603-C, which offers much higher through par (up to 150 mafers per day) and improved yields. However, because of continued maintenance problems, with a down-time of over 60%, it was decided to investigate one of the new high-speed automated saws, in this case the Disco I. After experimentation and optimization of operating parameters, this was the most cost effective method of cutting wafers. Results of this work are summarized in Table VII. We are now using Disco II, a fully automated tersion of the Disco I.

Control of the second s

FACTORED COST/WAFER	0£\$	\$2.i	° 8 \$	4 4, 25
DOWNTIME	20%	209	10%	10%
% YIELD	251	80%	85%	85%
KERT LOSS	2 MILS	0.5 MIL	0.8-2.0 MILS (ADJUSTIBLE)	0,8-2,0 MILS (ADJUSTABLE)
МЕТНОД	SAW	SCRIBE	SAW OR SCRIBE	SAW OR SCRIBE
3" WAFERS/DAY	8	150	24	817
TYPE	TEMPRESS	LASER SCRIBE	(I) 03SIQ	DISCO (II)*

and the second second

TABLE VII. COMPARISON OF VARIOUS METHODS OF DICING WAFERS

AUTOMATIC WAFER PROBE TESTING

Microwave Associates, Inc. designed and built an automatic rest system for wafer probing and testing packaged Schottky barrier in a solution in test a measures junction or total capacitance at various bais voltages, breakdown voltage, leakage current at various bias voltages, and forward voltage drop for various forward currents. The system has been designed specifically for static discharge sensitive Schottky barrier diodes. Techniques for transient suppressure ave been used to avoid damaging the devices being measured. Specific measured and reproducing A Boonton 76A, the highest sensitivity capacitance bridge available today is used for the capacitance measurments. By processing data on forward voltage versus forward current the DC slope resistance of the diodes can be obtained.

The automatic system uses an HP 9825 as the system controller. A dual floppy disc data storage unit is utilized to swap subroutines in and out of the controllers read and write memory quickly. The techniques of swapping subroutines quickly enhances the apparent size of the system's read and write memory capability. Figure 12 shows a block diagram of the system. This system can provide a printed record of all devices tested.

On a second automatic test system for silicon junction devices, a wafer prober has been modified to measure accurate capacitance of microwave diodes. A special probe and shielding arrangement was developed so that the fringing capacitance is invariant to position across the slice with \pm 0.001 pF. This design permits device junction capacitance to be measured to the same accuracy, namely \pm 0.001 pF. The measurement technique has been very successful in providing accurate data for C-V profile analysis and parameter distribution data for the silicon devices.

For this program, the wafer prober has been modified for accurate capacitance measurements and interfaced to the automatic test kit for Schottky barrier diodes (see Figure 13). The resulting automatic test system permits both accurate C-V profile analysis of the Schottky barrier diode slices and complete 100% wafer level DC testing of the diodes. This data is being analyzed for patterns of parameter distribution across each slice for feedback on the success or failure of various processing methods. The test system also allows us to mark and avoid packaging any bad diodes, thereby reducing package and labor overhead cost.

FIGURE 12 DUAL STATION AUTOMATIC TEST SYSTEM FOR PACKAGED SCHOTTKY BARRIER DIODE

FIGURE 13 COMPUTER CONTROLLED AUTOMATIC SCHOTTKY WAFER PROBER

D 17136

6.0 MEASURES FOR REDUCING CHIP PACKAGING COSTS

6.1 Low Cost Ceramic Package Assembly

Efforts were directed at reducing the cost of assembly labor. The standard ceramic, ODS-119 package assembly is shown in Figure 14. In the case of low cost packages, the brazing alloy is directly deposited on both ends of the ceramic cylinders. This process provides a more uniform deposition of the brazing alloy, thus elimination of the brazing washers as shown in Figure 15 and 16.

This low cost package assembly eliminates the two small washers, which previously had to be handled individually by an assembler, and also enables us to mechanize the assembly process. This also improves the quality of the final product with increased production capability and reduces the overall cost of the package assembly as shown in Table VIII.

Copper cap and base are used to further reduce the cost of the package from 0.45¢ to 0.39¢ each. Further cost reduction of the package may be realized by sustituting palladium, nickel or silicon-platinum for gold plating of the package (see Table IX).

6.2 Low Cost Semi-Automatic Bonding and Capping

Chip bonding is performed on a Mech-El hot gas bonder. A gold tin solder preform is picked up by a vaccum tip and placed on the package pedestal. Next, a silicon chip is picked up and placed in the same manner so that it is resting on top of the solder preform. The operator then releases a steam of hot forming gas which melts the solder and attaches the chip to the package pedestal (see Figure 17).

Thermocompression wire bonders are used to wire bond semiconductor chips inside the ceramic package. In the past, Kulicke and Soffa Model 420-D thermocompression wire bonders were used exclusively.

On the Kulicke and Soffa wire bonders, the operator must control two hand operated micro-manipulators and one foot pedal. One micro-manipulator controls the position of the bonding tips, while the other controls the position of the gold wire. The foot pedal operates the wire feed.

FIGURE 14. STANDARD CERAMIC PILL (ODS-119)
PACKAGE ASSEMBLY

FIGURE 15 CERAMIC PILL PACKAGE ASSEMBLY WITH BRAZING ALLOY SEPARATE WASHERS (PRESENT METHOD)

FIGURE 16 LOW COST CERAMIC PACKAGE ASSEMBLY WITH BRAZING ALLOY DEPOSITED ON CERAMIC

FIGURE 17 DIODE PACKAGING

PAST		PRESE	NT
KOVAR CAP	6.3¢	COPPER CAP	1.2¢
KOVAR BASE	6.0¢	COPPER BASE	1.8¢
OTHER PARTS	5.0¢	OTHER PARTS	5.0¢
TOTAL COST	17.3¢	TOTAL COST	8.0¢

REDUCED TOTAL PIECE PART COST 9.3 CENTS BY SWITCHING FROM KOVAR CAP BASE TO COPPER CAP BASE.

TABLE VIII

DESIGN IMPROVEMENTS - PIECE PART COST REDUCTIONS

METAL	PRICE/TROY OZ.	COST/UNIT
GOLD (PRESENT PROCESS)	\$ 600	\$ 0.032
PALLADIUM - 80% NICKEL - 20% (PROPOSED)	\$ 160	\$ 0.0038
SILVER (PROPOSED)	\$ 50	\$ 0.0014

PLATING COST COMPARISONS (100 MICROINCHES)

TABLE IX

The operator positions the wire by using the micro-manipulator and the wire feed pedal. When the wire is in position, the operator moves the bonding tip into position by using the other micro-manipulator and then makes a thermocompression bond. When it is time to break the wire, the operator does so by applying pressure on the wire with the bonding tip.

Since these bonders were slow and inefficient, we have switched to the West Bond Model-7416 wire bonder (see Figure 18). The main feature of the West Bond Model-7416 wire bonder is that the gold wire is fed through the bonding tip. Therefore, the wire and the tip move as one unit, and the wire always remains under the bonding tip, sparing the operator the added burden of controlling the wire replacement with one hand while manipulating the bonding tip with the other.

Another important feature of the West Bond is that the wire feed and the wire cut-off steps are performed automatically. Separate wire feed and wire cut-off steps are not required. Also, the West Bond has only one hand operated micro-manipulator and only one foot operated switch. This system is capable of handling 750 chips per day as compared to 150 chips per day by the present Kulicke and Soffa System Model 420-D.

The final step in the assembly process is capping. A gold tin solder washer is placed on the kovar ring and then a cap is placed on top of the solder washer. The entire assembly is placed in an oven to melt the solder and attach the cap.

In the past, the assembler handled each package, solder washer and cap separately. These three parts were placed in a capping boat which held 100 units. The capping boat was then sent through a furnace to melt the solder. We now use a GTI sealer, Model-700, for capping. The caps are shaker loaded into a 675 position graphite boat. The packages are also placed in a 675 position boat after being wire bonded. The boat the packages are placed in is compatible with the graphite boat. The solder washers are placed on top of the caps and then the packages are transferred into the graphic boat so that they are now resting on top of the cap and solder washer combination. This graphite boat is then placed into the sealer. A current is passed through the graphite which produces the heat to melt the solder.

The overall cost reduction is shown in Table X.

FIGURE 18 SEMI-AUTOMATIC WEST BOND MODEL 7416 THERMOCOMPRESSION WIRE BONDER

		PAST RATE	NEW RATE
1.	ELIMINATE TWO MINIATURE BRAZING WASHERS	1000/HOUR	10,000/HOUR
2.	BOND CHIPS IN 100 POSITION BOAT	100/HOUR	150/HOUR
3.	WEST BOND WIRE BONDERS INSTEAD OF KULICKE AND SOFFA WIRE BONDERS	60/HOUR	120/HOUR
4.	WIRE BOND IN 100 POSITION BOAT	120/HOUR	160/HOUR
5.	USE DAP SEALER FOR CAPPING INSTEAD OF BELT FURNACE	200/HOUR	1000/HOUR
6.	ELIMINATE HANDLING OF SOLDER WASHER	1000/HOUR	1500/HOUR

TABLE X PRODUCTION ADVANCEMENTS

7.0 Composite Platinum - Nickel Schottky Diode

This approach consists of sputtering sequentially 100 Å of platinum and 260 Å of nickel on n-type epitaxial silicon wafers with windows etched in silox. The wafer is then baked at 450°C under hydrogen atmosphere for silicide formation. The nickel migrates through the platinum layer and forms with the epitaxial silicon a nickel silicide below with the platinum silicide. The nickel silicide lowers the barrier height of platinum Schottky diodes without degrading appreciably the RF burnout performance of the device. The current versus voltage characteristics of Pt Schottky and (Pt-Ni) composite Schottky diodes are shown in Figure 19. The ideality factor and barrier height are given below

	Pt-Ti-Mo-Au	(Pt-Ni)-Ti-Mo-Au
Ideality Factor	1.06	1.06
Barrier-Height (φ)	0.80 volts	0.65 volts

This barrier height lowering of (Pt-Ni) composite Schottky diode is sufficient to meet the contractural goal of 7.0 dB noise figure (SSB) at a local oscillator power of 0.5 mW. The RF burnout resistance and performance was measured at local oscillator power of 1.0, 0.75, and 0.50 mW. Results shown in Table XI indicate that at 0.5 mW, the diodes exhibit RF burnout of 15 - 20 watts and noise figure of 6.5 dB. These diodes meet the overall objectives of the present contact.

7.1 RF Testing of (Pt-Ni) Schottky Barrier Diodes

(Pt-Ni-Ti-Mo-Au) and standard Pt-Ti-Mo-Au Schottky diodes were tested for NF, IF impedance and rectified current. The diodes were tuned for low VSWR (less than 1.5) at various power levels at 9.375 GHz in a broadband tunable mount (developed under Contract Number N00173-77-C-0029). Noise figure, IF impedance, and rectified current were measured at different

FIGURE 19 CHARACTERISTICS OF STANDARD Pt-Ti-Mo-Au AND (Pt-Ni)-Ti-Mo-Au SCHOTTKY BARRIER DIODES

D-17371A

(7)
90
9
~
- 27
•

	96	ا ا	BURNOUT	= 1)	1 (Sec.)	POW/ED	ON CHANGE	WATTS)		15.0		125	15.13		15.0		0 77		16.6	6.61		22.0		15.0
						ZIE	(OHWG)	(2)	E 40	240		520		200	250		520		540	1	EAN	3		540
			0.5 mW		-	100	(mA)		05			0.5		05			0.5		0.5		0.5			C:5
						ž	(qB)		6.5		130	0:0		6.5		100	6.0		6.5		6.5		120	
	OF TANAMETERS		0.75 mW		7.5	1	(OHMS)		540		520			520		EEA	335	00,5	220		520		520	
2000	TARA		o		20		(WW)	0	6.0		6.0		000	6.0		1.0		00	7		6.9		6.0	
	-		\downarrow		Z Z	ar.		BE	3		6.5		RE	2		6.25		6.5		139	3		6.5	
					71F	(CHINS)		380		000	300		380			300		380		380			380	
		June C		100	2	(mA)		1.15		12			1.2		1 25	1:63		1.2	_	1.2		100	7	
				NF		(RE)		0.9		0.9		100	0.0		09			2:0		0.9	_	0.9		
			DEVICE	S						2		1	1		4		1			0		7	1	

TABLE XI RF CHARACTERISTICS OF X-BAND LOW BARRIER HEIGHT (Pt/Ni-Ti-Mo-Au) SCHOTTKY BARRIER DIODES

local oscillator power levels. Noise figure of the amplifier was 1.5 dB and a 16 ohm load resistor was used for the measurements. Results are given in Figure 20 to Figure 22. The (Pt-Ni) and standard Pt-Schottky diodes exhibit low noise figure of 6.5 dB (SSB) at +1 dBm power level but (Pt-Ni) Schottkys exhibit lower noise figure at -3 dBm power level. This is due to lowering of the barrier height due to nickel. Similar results were observed in rectified current and IF impedance characteristics.

FIGURE 20 NOISE FIGURE VS LOCAL OSCILLATOR POWER AT 9.375 GHz

FIGURE 21 IF IMPEDANCE VS LOCAL OSCILLATOR POWER AT 9.375 GHz

8.0 TECHNICAL REPORT - PHASE II (Manufacturing Phase)

8.1 Introduction

Final Pilot Line production of diodes for this contract was commenced on June 15, 1981. Process and specifications were documented on the Wang Processor System (see Table XII). Ten (10) three inch silicon wafers were processed following the procedures established earlier in the program.

8.2 Production Line

The production line for manufacturing the required diodes is shown in Figure 23 and 24. The process steps and equipment utilized are outlined in Table XIII. Manufacturing cost of the complete diodes is summarized in Table XIV. Labor time and yields are summarized in Table XV.

8.3 Environmental/Reliability Testing

The extensive RF burnout tests using test set up shown in Figure 25, environmental reliability and step stress tests were conducted on a reasonable sample of the preproduction diodes. These tests showed that the diodes are capable of handling 12 watts peak power ($\tau = 1~\mu$ sec, 1 KHz rep rate) and are rugged enough to stand 200°C temperature for 1000 hours. The failure analysis was also conducted on degraded and RF burnout devices using scanning electron microscope and microspot auger analyzer.

8.4 Jan Format Design Reliability Testing

Two hundred diodes were randomly selected from the pilot line for Jan Format Testing using appropriate tests taken from Tables IB(b) and V in MILS-19500 F. The verification testing schedule is shown in Table XVI. The testing was monitored by a resident DCASR-QAR. The diodes passed all the subgroups and thus demonstrate the reliability and ruggedness of the device design. (For details see Appendix C).

8.5 JEDEC Registration

This diode was assigned identification No. 1N6477 for JEDEC release No. 6983, dated November 10, 1981. For details see Appendix B.

Microwave Associates

Manufacturing Rev. A
Flowsheet Date 10/29/91

Title: Schottky Pt - Ni Bondable

Starting Material	Spec. 7146	Map#_4E390	Runt
No. Slices In	Out	Date Start	
		Date Fin.	
		Job#	

#	Operation	Spec	Process Variables	Dr. Qty. Dr.+c
1	Prod. Control		The second secon	en man de autorité de la company de la compa
2	Slice I.D.	DEQQ01		The state of the s
3_	RCA Cleap	DFQQ16		
4	L.I.O.	DF0095	8000 Angstroms	
5	Pred. Control	· · · · · · · · · · · · · · · · · · ·		The second of th
6	Photo I-Sch.	PR0023	Mask #	
7	Etch Ox. Photo		بـــــــــــــــــــــــــــــــــ	AND THE STREET S
		L.122Wets.(Dot size Comments	The state of the s
9			, a gara liite dite alkanamisti aftallis die maanamen maanam die dit (USEE) die dakadis alkanami aa aa aa aa a	
10	_B		g and great lines approximately and a specific and particles and the specific and the speci	makaya da gariber (************************************
11	<u>C</u>		estanti dia dia dia dia mandriara ny sia arabika dia dia dia dia dia dia dia dia dia dia 	ne en experiment franchista regularismos e lucili e la compa
12	D		a gang garantan sanah dalah sanah sana Sanah sanah sanah dalah sanah sa	and the second section of the second second section se
13_	- W		and the second s	
14	E			
15_			enga, garante majanga antang again sa ang ang ang ang ang ang ang ang ang an	
15_	В			
17	Q.C. Inspection		QAI 3.52.1	representative and primarily desires a service of the service of t
18_	BCA_Clean	DF0016		THE STATE OF THE S
19_	Prod. Control			
50_	20:1 Dir	DEQ104		
≥1	Pt - Ni Dee	MTQQ99		
22	Sinter	_DE0116		9.A.C
23_	Excess Rem.	DEQQ88	ingga tida wang sanggang ang ag pat no autonompanggang at at too termining was	Managagin aggitt of the his of the same and
24	RCA_Clean	DF0016		
25	Prod. Control			no agreement of the transfer of the second s
26	IZW - OU DEP.	MIOOBE	a a a a a a a a a a a a a a a a a a a	anne agregation and a common of the first common and a state of the common agree of the common and a state of the common a
27	Excess Meta Cha.	PR0022	Mask #	nder a seeme propriette a print of the strate of graphs of the seement of the see
28	Q.C. Inspection		QAI 3.52.1	an magas papa period and antiquisment and parameters of the second second and the second seco
29	Excess Met. Etcl	LDEQQ96		
		IBD		
31	Mount Waters	_DEQU14		
32		DEQQ33	4.5 - 5.0 mil tback	
33	Sand blast waf.			
34	Ni strike	MIQO65		
35	Au Plate	MIOOSE	44 to 197 - 1986 198 198 199 1996 199 1996 197 1997 1977 1977 19	The season and the season of t
36	Dismount Wafer			
37_	Solvent Clean			
38	Button Plate	_MIQ078		
39_	Prod. Control	L.J	ஆத் நக்கில் மன்றது. இதன்ற ஒரு காகத்த நடித்தில் சிரி றத்தில் செய்யாகும் இடியருக்கும் ஆண்டிய ஒன்றும் ஒரு நடிய	natural and transference to the state of the
	W. rer Mount	DS0017	The state of the s	te de la constitución de la companione de la companion de la companione de
	Die Cen Diese	DS0016	enia del 1870 (1880) den 1880 (ning isre de diade per sententa den Antonophia (pregnazio) de proprio de 1881 (1881) (1881)	
41	Dig Sep. Dista	DS0006	and the second	
43	Clean Saw Cut Q.C. Insection	**************************************	GC18 3.56	
41 4	_uala_iDSPCETiOD.			

TABLE XII

Electrical Evaluation Sheet

> Rs > Vf1mA > Vb1OuA > Cj >			>	> Rs > Vf1mA > Vb10			uA > Cj >		
			<u>></u>		1_>				2
>	>			.2					_>
2		>	<u>></u>	.2				Σ	
	<u> </u>	>		.≥					
				.≥	>				.>
								<u>></u>	
								<u>></u>	
≥	2	<u>></u>		.≥	≥		<u></u>	······································	.2
			<u>-</u>						
			>						
			<u>></u>						
			<u> </u>					2	
		>	>	2	2		🔊		.2
								n engel Service ages as as	
			<u> </u>					· · · · · · · · · · · · · · · · · · ·	
	2	······ <u>2</u> ······························		2					2

	Rs.Lz.L V£lm o	<u> </u>	<u>u&</u>	Rs Yf	1mA	0u00u0	
E			22	M_22			
			2				≥
			2				
F. 2				N_>>			
2							≥
			<u></u> >>				2
	>						2
>					<u></u>		>
<u>G_</u> ≥_		>		<u>0 > _ > _ </u>		Σ	≥
					<u>></u>		>
			2		<u></u>		>
			22		<u>></u>		≥
							>
H_≥	2			<u>P. ></u>	<u>.</u>		>
				≥			
			2				
				·≥			

Rev. A Silicon Material Microwave Specifications Date 10/29/81 Associates Material Spec # 7146 Epitaxial Thickness .75 microus Measurement Technique IR Hg X Other Epitaxial Resistivity 0.05 ____ohm-cm Measurement Technique Hg_X other___ Percentage Sampling Plan 10__ 50__ 100__ Substrate Resistivity 002 ____ohm-cm Substrate Dopant As_X_ Sb__ B ___ other..... Wafer Size 1 1/2_ 2___ 3_X_ Wafer Thickness 12 mils Orientation 1-1-1 P/Pt or N/Nt_N/Nt_

Special Instructions

Microwave

Special Rev. A

Associates Instruction Sheet Date 10/29/81

M/A P/N<u>4E39Q</u>

FIGURE 23 MIXER DIODE DICE PREPARATION AREA

FIGURE 24 MIXER DIODE FABRICATION AND TEST AREA

	OPERATION	EQUIPMENT	CONTROLS
1) Grow Silicon Crystal	Crystal	Semi-Metals Crystal Puller Model	
2) Slice Crystal		Dual Micromatic Model #1427	Micrometer
3) Check Resistivity	tivity	Jandell Four Point Probe	Actual Slice
4) Etch Slices		Micro Air Hood	Visual Timed
5) Polish Slices	S	Semi-Metals Polisher Model #22	Visual
6) Grow EPI Layer	yer	Applied Materials AMV 1200	Mass Flow Controllers
Check EPI	7) Check EPI Layer Thickness	HP1000	Measure
Check EPI	Check EPI Layer Resistivity	Mercury Probe and Phites Bevel & Stain	Actual Slice
8) Clean Wafers	ırs	Micro Air Hood	Visual
Chemical V	9) Chemical Vapor Deposit	ASM LTO System	Alpha Step
Siliox Glass	S		Surface Profiler
Open Windo	10) Open Window for Schottky	Cobilt CA-800 Photo Aligner	Visual
Junction			Vickers-Image-Shere
			microscope

SCHOTTKY-BARRIER DIODE CHIP FABRICATION

TABLE XIII.

11)	OPERATION Etch Windows	EQUIPMENT IPC Model 2005X Plasma System	CONTROLS End Point Detector
12)	12) Strip Resist	IPC Model 2005X Plasma System	End Point Detector
13)	13) Anneal	Lindburg Diffusion Furnace	Timer
14)	14) Metallize	Materials Research Corp MRC-903-1 Magnatron	Alpha-Step Surface Profiler
15)	Mask Metal for Etch	Cobilt CA-800 Photo Aligner	Visual - Vickers Scope
16)	Etch Metal	IPC Model 2005X Plasma System	End Point Detector
17)	Strip Resist	IPC Model 2005X Plasma System	End Point Detector
18)	Plate Buttons Mount and Lap Back	Electroplate in Au Bath Speed Flam Model 12B Lapper	Unitron Model TM25 Scope Micrometer

SCHOTTKY-BARRIER DIODE CHIP FABEICATION (cont'd) TABLE XIII

CONTROLS	Alpha-Step	Surface Profiler	Visual			Micro processor	Visual Inspect		
EQUIPMENT	Materials Research	Model MRC903-2	Micro Air Hood	M/A Automatic Probe Station	with HP-3000 Computer	Disco-I	Nikon IC Inspection	Microscope	
OPERATION	20) Metallize Back		21) Dismount and Clean	Electrical Probe Wafer		23) Dice Wafer	Dice Approval		
	(02		21)	22)		23)	24)		

SCHOTTKY-BARRIER DIODE CHIP FABRICATION (Cont'd) TABLE XIII

METHOD	PRESENT COST	COST AFTER COMPLETION OF THE CONTRACT
 Processing Silicon Chip 	\$ 2.00	\$ 0.50
 Chip Approval MIL Specs 	\$ 5.00	\$ 1.10
• Diode Mfg. Cost	\$ 8.00	\$ 3.00
• Initial DC & RF Test	\$25.00	\$ 9.00
 Final Screen & MIL Std Testing 	\$30.00	\$10.00
TOTAL	\$30.00	\$10.00

TABLE XIV. COST REDUCTION SUMMARY OF HIGH BURNOUT SCHOTTKY-BARRIER DIODE

OPERATION	LABOR-TIME	LABOR-TYPE	YIELD
Gen. Runsheet- Define Process Limit:	s .5 hr	Eng	100%
Deline Hoceob bimie.		29	1000
Slice ID	10 min - 8 wafer lot	Operator	100%
RCA Clean	l hr.	Operator	100%
L.T.O.	2 hr.	Tech	100%
Photo I	3 hrs.	Operator	95%
Etch Oxide	.5 hr.	Tech	85%
RCA Clean	1 hr.	Operator	100%
Pre-metal Dip	10 min.	Operator	100%
Metal I (Pt-Ni)	1.5 hr.	Tech	100%
Sinter	.5 hr.	Operator	100%
Excess Remove	.5 hr.	Operator	100%
RCA Clean	1 hr.	Operator	100%
Metal II (T/W-Au)	2.5 hrs.	Tech	100%
Photo II	3 hrs.	Operator	95%
Metal Etch	.5 hr.	Tech	90%
Strip Resist	.5 hr.	Operator	98%
Mount Wafers	.5 hr.	Operator	98%
Barrel Etch	1 hr.	Operator	90%
Sandblast	.5 hr.	Operator	95%
Ni Strike	.5 hr.	Operator	100%
Au Plate	l hr.	Operator	100%
Dismount Wafer	.5 hr.	Operator	98%
Clean	.5 hr.	Operator	100%
Plate Button	1 hr.	Operator	100%
Eng. Evaluate	.5 hr.	Eng.	
Wafer Mount	.25 hr.	Operator	98%
Die Separate	.25 hr.	Tech	90%
Tach. Probe	.5 hr.	Tech	75%
Dismount & Clean	.5 hr.	Operator	95%

TOTALS- Op.Time 16.95 hrs
Tech Time 7.75 hrs
Eng Time 1 hr

HIGH BURNOUT-SCHOTTKY LABOR CHART D-21240 TABLE XV

FIGURE 25 X-BAND RF PULSE BURNOUT SYSTEM (7 = 3 nsec)

TABLE XVI LIFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY

19 21.4819 LODE DATE (2) : 100 - 230 class 5/11 201-215 to (1) Samples from GP (BE) Solbe continued. 5: horrik Diffusion No. M/A SO No. REMARKS Start Comp. Job No.... M/A Type (11/13 Actual |C// 0 122/011 LIFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY Comp. Date Date Estimated 162/ 10/10/1 MICROWAVE ASSOCIATES, INC. Start Date 61/01 11,0 Semiconductor Division 7 mmof Hg. 24 His. C (CONTINUED) Test Limits Initiated By: __ 150 5 GROUP ۵ اند 0 15 45 15 1.5 15 1 Ha 50.31.00 Test Conditions lssue #_ 1000 hrs. PROGRAM REQUIREMENTS ML-STD-750 *Method 1026 1041 SUB Steady State 10 GP6 Life (Operatin;) M/M Examination/Test Atmosphere Barometric End Pts Pressure Elact. *Methods Per_ Customer P.O. Salt Other Dwg. _

はら

Test Oper.

CUSTOMER LEGEND

Part No.

545

GP5

-70-

Cr. Jonier

TABLE XVI

FURM 1006G

· ... Test Oper. ---- ·--7 2 or 3 races (E) to (85) PAGE Diffusion No. Job No. REMARKS M/A SO No._ M/A Type Somp. Date 12 1 Actual Start Date 97) 192/01 LIFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY Comp. Date 9 0 ᅙ Date: Estimated 10/21 Start , Date 10/2/2/6 MICROWAVE ASSOCIATES, INC. 0 <u>0</u> <u>0</u> Semiconductor Division Test Limits Initiated By: ۔ ن GROUP C PER MIL-S-19500F 5% <u>-</u>5 ;; č. (C) 7 3 1.2 2 w F $\overline{\mathcal{C}}$ 4 $\overline{\mathbb{O}}$ 0 Ũ 0 0 0 0 0 0 C C ۵ 15 15 3 33 ट्रं त्र 7.7 22 TO Constitution ä Ç7 5.3 10 22 o ⊢ > 10 D880119 1500 C's 0.5ms 2016 4 . 3 plas Test Conditions Torque PROGRAM REOUIREMENTS Cond. 7 Cond. 3 planes ·)(1)2 Method 2016 2066 1056 2036 2006 2056 1071 1111-570-1071 1021 2071 Š Thermal Shock **Glass Strain** Examination/Test Acceleration 71 Gross Leak Resistance Var. Freq. Vibration Strength Fine Leak Dimension Terminal Shock Flect End Moisture Physical External Constant End Pts. Points Visual Flect *Methods Per__ Customer P.O. Other Dwg. Cu domer Part No. SUB GPI SUB GP2 SUB GP3

-71-

CUSTOMER LEGEND

TABLE XVI (Cont'd)

FORM 1006G

(C) D. E 283 0.75 35 # <u>-</u> Test Oper. from (CS) PAGE / 3 PAGE Oty. refers to Rond Pulls. S/1, 34-44 ₹. NF.L- 88. 5/11 216-237 Schottk. **(Y**-) Diffusion No 6184-1 Job No REMARKS +0 R M/A SO No. M/A Type 1661# (b) 16 30 Comp. . - -Date Actual Start Date bz|c∙ 17 0 õ 112/01 LIFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY 63 Comp. Date 10 ्र 0 2 Date: Estimated 11/21 61/ MICROWAVE ASSOCIATES, INC. 61/ Start Date (1) 701 0 0 01 PER ML-S-19500F 0 9 <u>0</u> Semiconductor Division Test Limits Initiated By: 15 23 5 7 82 7 2 2 = z w ;-<u>,</u> 0 0 0 0 0 0 0 O 3 45 22 R 4.5 15 1 0 -> 10 20 1.5 上下で ひ 'n C-1 Test Conditions 25 cycles Test Cond. 340 hours PROGRAM REQUIREMENTS = ပ Cond. Cond. 1.11-570-750 CUSTOMER LEGEND •Method No. 2075 1071 2037 Life (operatink) 1022 1071 Solderability 2026 1051 Steady State Rond Strength Resistance to Examination/Test Int. Visual アンド Fine Leak Gross Leak Elect. End Pts. End Pts. Solvents Thermal Decap Shock Elect "Methods Per_ Customer P.O. Customer Part No. SUB CP 2 C.D. SUB CP 4 GP 1 SUB

-72-

-1

TABLE XVI (Cont'd)

C

į,

少 3.1.2

(E) (S)

<u>0</u>

10/

10/131

10/31

from ((j)

238-25

1111

2

10/3

0

32

340 hours

1032

Life/Storage

ري (ر) اري SUB HI Temp.

15

15

(N/N)

Resistance

Сb

Thermal

SUB

<u>0</u>

7RM 1006G

8.6 Pilot Line Diodes

Three hundred pilot line diodes were shipped to Naval Research Laboratories, after completing the Jan Format Design Reliability Testing.

8.7 Product Data Sheet

This diode is being manufactured in production quantities at Microwave Associates and is now available for sale. A data sheet on these diodes is already published (see Appendix A) and circulated.

9.0 DELIVERABLES

Three engineering samples, each consisting of 25 diodes and pilot run of 300 preproduction samples were fabricated. Test data of these devices are given in Tables XVII to XX. All devices were shipped to the Naval Research Laboratory.

MICROWAVE ASSOCIATES, INC.

					DIODE	TEST	DATA			PAGE	OF	
M.A. PART NO).	LOT NO	o. (s	5.O. NO.			QUANTIT	Υ	SAMPLE	D START		
CUSTOMER			CUSTOMER	PART NO	·	CUSTOME	RORDERNO	OTH	ER DRAWI	15:	T _A =1	25±3°C
ARAMETER	- 1 - 1 - 1 - 1											
EST CONDITIONS	v _B	Rs	СT	NF			v _B	Rs	$c_{\mathbf{T}}$	NF		
.IMITS						 			i	:		
nviranmental	DC &	RF Ch	aracter	istic	s of S	ilico	n Ion I	mplar	t Scho	ttky-ba	rrier	di
	(volts	(Ω)	(pF)	(dB)			(volts	;) (Ω)	(pF)	(dB)		
10 kev												
#1	5.4	23	0.27			#26	11	25	0.18	6.50	·	
#2	5.4	22	0.27			#27	, 8	25	0.18	6.70		
#3	5.6	22	0.27	8.1	 	#28	10.5	25	0.18	6.75		
#4	5.6	22	0.27		 	#29	9.0	24 27	0.19	6.70		
#5	5.7	22	0.27	8.2	 	#30	9.0	21	0.18	6.70		
30 kev				-	-	 						
#6	4.0	16	0.76	>15			+		+	 		
#7	3.9	. 16	0.74	>15								
#8 "	5.0	23	0.43	>15	1				i	·		
#9	4.7	26	0.38	>15								
#10	4.1	26	0.41	>15								
40 kev		 	+		 	-			i			
#11	.50	19	0.42	>15	 	-						
#12	1.90	20	0.37	>15	:	-						
#13	1.20	20	0.37			 	•		•			
#14	1.50	2.	0.40				*******					
#15	1.50	24	0.20	>15					+			
20 1		-	1									
20 kev #16	1.20	19	0.42	>15	 	<u> </u>			†			
#17	1.50		0.48	>15					:	· · · · · · · · · · · · · · · · · · ·	+	
#18	1.80	15	0.56	>15						; 	i	
#19	1.50	21	0.48				+				-	
#20	2.20	20	0.49	>15								
10 kev		 	+		 		 					
#21	2.20	21	0.48	>15	 				· · · · · · · · · · · · · · · · · · ·			
#22	2.60	- 9 -	0.73		 	•						
#23	1.40	12	0.60	>15	 	 	•	· - · · · · ·	!		i	
#24	2.50	9	0.53	>15		i						
#25	2.80	8 -	0.67	>15								
						-+-						
		·	+	THE COM		BLE XV		n ~		· 		
			 	IEST	DATA -		NGINEE: LES (dio			-		
- 4			1			from						

MICROWAVE ASSOCIATES, INC.

						OR DIVISION						
					E TES				PA	-	OF	
M.A. PART NO) .	LOT NO	ο.	S.O. NO.		QUANTI	TY	SAMPLE	171	START COMP.		
CUSTOMER	NRL	- 	CUSTOME	PART NO.		MER ORDER N	o. o	THER DRAW			T _A -	25±3°C
PARAMETER	NF*	Z _{IF}	RF*	V _E	R	s C _T						
CONDITIONS	dB	ohm	Burnout Watts	: (10	μ Α]						, <u>,</u>	
IMITS	7.0		12									
nvironmental Test(s)	SECO	ND EN	GINEER	RING SAMPL	ES ***							
Diode No.												
1	6.90	420	BO/14	14.	. 0 16	0.27			!			
2	6.80	425	BO / 18	14.	. 0 17	0.27						
3	6.8	410		14.	. 0 15	0.26						
4	6.90	410		14.	0 14	0.27			i .			
5	6.8	405	l	14.	. 0 15	0.27						
7	6.9	420		14.	. 5 14	0.25			1			1
8	6.7	400		14.	0 18	0.27			!			1
9	6.75	390		13.	5 15	0.27						l
10	6.8	390		13.	5 15	0.28						
14	6.9	400		14.	0 15	0.27	ļ		-			
16	6.8	405		14.	0 18	0.26				-		
20	6.9	400	1	14.	0 15				1			
21	6.75	430	12	14.	0 15	0.26						
22	6.9	420	12	14.	0 18	0.25		i				
23	6.8	400		14.	0 17	0.26		:		- +		
24	7.0	420	12	14.	0 16		:	<u> </u>	!	·		
25	6.75	400	1	14.	0 15	0.25	 		,			
26	6.8	420	BO/16	14,	0 16		-	<u> </u>				
27	6.75	400		14.	0 17	0.26			•	-		
28	6.8	420	12	14.	0 16	0.24						
29	7.0	430	BO/17	14.	0 17	0.25		1				
30	6.8	410		14.		0.24			+			
31	6.9	425	12	14.		0.26			1			
32	6.9	420	BO/18	14.		0.26						
			+	 				 +	+			

TEST CONDITIONS :

6.75

* f_{LO} = 9.375 GHz; P_{LO} = 0.5 mW; R_{L} = 10 ohms; NF_{IF} = 1.3 - 1.5 dB

0.27

14.0

- ** f = 9.375 GHz; t = 1 μ sec; Rep. Rate = 10^3 Hz
- *** CONTRACT OBJECTIVES: NF = 7.0 dB; RF Burnout = 7.0 dB; P_{LO} = 0.5 mW

TABLE ${\tt NVIII}$ SECOND ENGINEERING SAMPLE DATA

م <u>-</u>			1.5-	NO.	3	OF RECRO	. 41	ANTITY	SAMPLE	; P'START	1	
4. 2481 NO.	·			····			<u> </u>			Elsone		
STOWER NRL 88	-2	i	USTOMER ?	.3T VC.		CUSTOMER	PURCHA	SECROE	a 40 (07	HER DRAWIN	: 4	estæ?s m vens
ronmentad Usa				······································								
TANIETER	ارد المالية الله ال				- 17	i		<u>;</u>		1 1		!
ST NOITICNS:	Plo -	50 mW	B	200								!
	120 -	1	R _L	100 01	10 =	9. 375 GH	<u> </u>			<u> </u>		<u> </u>
4173	NF	715				1		<u> </u>		1 !		-
vice 1	dB	ZIF	l Idc		NF	1 1		1	}	· ·		
1 1	6.90	ohms	mA)		<u>dB</u>	1			1			
,	6.80	560 560	.70		7.00 6.90	1 1		i				i
	6.90	560	70 i		7 00				!	1		1
	6.70	550	. 75		6.80	1		i	1			1
5 1	6.80	565	.80		6 90) ;		!		1		
	6.90	540	.70	1	7.00	1 :						
<u> </u>	6.70	550	.70		6 90	<u> </u>		1	·			
	6.90	565	.70 i		7.00	1		!		!		- :
	6.80	540	.70	<u> </u>	6.90	i :		<u> </u>	· · · · · · · · · · · · · · · · · · ·	·		-
	6.90	550	.75	<u> !</u>	7.00	! !		1	!	· · · · · · · · · · · · · · · · · · ·		'
	6.80	560	.75		6.90	!!!			!			· · · · · · · · · · · · · · · · · · ·
	6.80	560	.80		6.90 6.80			!	<u> </u>			
	6.90	560	.70		6.90	† 			:	•		$\stackrel{\times}{\times}$
	6.80	540	.70		7.00					·		E
1	6.70	550	.70		7.00	1 1		!	:	·		A B
i	6.80	540	.75	İ	6 90			1	i	i ,		· E
	6.90	560	.70	!	7.00	! !		<u> </u>	1	<u> </u>		
		540	.75		6.90	 		1		•		<u> </u>
			.75		6.80	! !		! -	<u> </u>			 -
	6.90	550	.70		7,00	1 1		1	-!	!		.
	6.80 5.80	560	.70		7.00	<u> </u>				 		-
	5.70	560	.70		6 <u>90</u> 6.90	 						
		1550	.75		5.90	T		1	1			-
	5.90	540	. 75		7.00	!!!					···	·········
	.90	540	.75		7.00	İ			· ·			
K	5.80	[550	.75		7.00	,	<u>. </u>	!	1			
l6	. 90	550	.70 '	7	7.00	1		1		<u> </u>		!
		560	70		. 90	<u>i</u>		1	· 			
			.70 '		. 80	<u> </u>			·	•		
	.80	540	.70	6	90							
	. 90	550	.70	 -		· · · · · · · · · · · · · · · · · · ·						
	. 90	540	<u>.70</u>			· · · · · · · · · · · · · · · · · · ·						
	.80 .70	550 530	.75			1 (!	!	1 .		·
v	. , ,	ا بود	• / -			1						<u> </u>

NA PART NO		=		LOT NO.	SALES	ORDER VO	i. jau.	207:79	SAMPLE	STAAT	3 OF	/
U\$70 ME =			CUSTOME	PART NO.	i	CUSTOMER	PU PCHAS	SE C = 2 E	3 NO. 31	THER DRAW	vgs	.:5=;
NRL	88-2	!			1				1		_	144 VOII
tv ronmentali st.s:			-		-							
FETEMARA								: !		1	i	:
TET CNOITIONS:	PLo	50	nW R	= 100	Ω fo	- 9.375	GHz					!
MITS						R	F1					
	NF	ZIF	ldc		NF		Watts	sec				1
evice	dB	ohms	mA		dB						!	;
77	7.00	560	.70		7.00			!	1	1	1	
	6.90	540	.75		6.90			1		!		
	6.80	540	.70	i i	6.80			<u> </u>	1	1	1	1
80	6.70	540	.70	1	6.70	1		i	1	i	!	1
	7.00	550	.75	1	7.00	ii		!	<u> </u>		1	
·	7.00	560	.70	<u> </u>	7.00	i			i		:	
	6.90	550	.70	į	6.90	1		1	<u>:</u>	:		
	6.70	550	.70	i	6.70	1		1	,	1		·
	7.00	550	1.75	<u> </u>	7.00	<u> </u>		<u> </u>	!		;	
	7.00	540	.70	<u> </u>	7.00	1		<u>i</u>	<u> </u>	!	!	:
	6.80	540	.70	1 !	6.80	i		<u> </u>	1		i	
	6.80	550	.70 .	1 1	6.80			<u> </u>	·	,	<u> </u>	
		550	.70	<u> </u>	6.70	;			<u> </u>	!		:
		540	.75	<u>:i</u>	6.80	:			1			
		1540	.75		7.00	1			- 		· 	
		520	~		6.80				<u> </u>		1	
		540	.70	1	7.00	1		!	1			1
		520	.80		6.60				<u>'</u>	<u> </u>	·	<u> </u>
		1540	-	1 1				·				
		560	.70	<u> </u>	·		29		!		·	i
		540	.75	1			31	<u> </u>	<u>. </u>	- 	• • • • • • • • • • • • • • • • • • •	
		1560	.70	!!			32 i					<u> </u>
		540	.75	i 1			28		!	1		
100 k	3.70	560	.70	1 1			30 (<u> </u>		·	ŧ
		 	<u> </u>	1	<u>:</u>		١			-!	·	i
			!	<u> </u>	<u>'</u>	<u> </u>					· ·	
		<u>:</u>	!	<u> </u>			<u> </u>					<u> </u>
<u> </u>				1			<u> </u>			1		
		J								+		t
			·	<u>;</u>								
		 		· ·						·····		·
				·								<u> </u>
						 						
·		·							<u> </u>	, , ,		
				i		<u> </u>			.	1		
	·	!	<u> </u>	<u>: </u>								
				1			:		;	,		

4 8 . 3 ~ .	NO.			MECHANI		ATAC TE		01: A N 7: =	Y SAMPLE		4 OF 9
A. 848T I	۷0. 	= =	i	.5. 10.	32.23	- RECRO	o. 		SAMPLE	G'START E COMP	
atcu±≉ NR	L 88-2	,	OUSTO MER	PART NO.	1	CUSTOME	a 20.40	HASE G F	388 VC 01	THER DRAW	Uniess No
v ranment tis:	3							.5		_	
PAMETE	31				<u> </u>		!	i		1	i .
ST NOITION	s PLo	50 mW	RL	= 100 s	fo	9.375	GHz				!
MITS							Ī				
	NF	ZIF	ldc			Ì	1				
IVICE	‡ dB	ohms	mA				İ	Ì			1
101	6.80	560	70			1		1	!	1	1
102	6.5	560	. 75			1	1				1
103	6.5	530	.75	<u>i </u>		<u> </u>			!		} +
104	6.60	580	.75	i İ		١	ļ	<u> </u>		i	1
105	6.60	580	.70	!		<u> </u>	<u> </u>			1	1
106	6.60	570	.70	<u>. !</u>			<u> </u>				·
107	6.70	560	.70			<u> </u>	1	1	į .	!	· .
108	6.80	570	.75	<u> </u>		<u> </u>	i	<u> </u>			<u>: </u>
109	6.70	570	.70			1	<u>:</u>		<u>i</u>	1	, '
110	6.70	580	.70	ļ		<u> </u>	<u> </u>	j	1	!	11
111	6.70	570	.70				<u> </u>	l	1	1	1
112	!6.70	580	.75	l			1	l	<u>i</u>	!	!
113	6.60	570	.70	.)			<u>:</u>	i			
114	6.70	560	.70	<u> </u>	·	<u> </u>	i	· · · · · · · · · · · · · · · · · · ·	;	:	,
115	16.70	570	.70	1 .		<u> </u>	i	· · ·	·		
116	6.70	1560	.70	į į	·	!	<u> </u>			·	
117	6.70	560	.70		 				<u> </u>	· · · · · · · · · · · · · · · · · · ·	
118	6.70	560	.70		_ 	<u> </u>	<u> </u>		<u> </u>	1	:
119	i6.70		.70			`	<u>i </u>				
120	6.70		.70			<u> </u>	<u>!</u>		<u>i</u>	<u> </u>	· 1
121	6.70	560	.70	!		<u> </u>	<u> </u>		<u> </u>	<u>.</u> !	1
122 .	6.60	560	.70			<u> </u>	<u> </u>		i		· 1
123	6.80	560	. 75	<u> </u>		<u> </u>	<u> </u>			- 	· .
124	6.80		70			<u> </u>	<u>!</u>	!		_!	· · · · · · · · · · · · · · · · · · ·
125	16.80		.70	1		<u>!</u>	<u> </u>				<u>: </u>
126	6.80	·560	.70			<u> </u>	!		1		
127	6.70		.75	<u> </u>		 	!	1			<u>.</u>
128	5.70		.70			!	<u>.</u>		!		
129	5.70		.70				<u> </u>	<u> </u>	<u></u>	1	<u> </u>
130	6.80						:	'			
131	6.60		./0				<u></u>	· · · · · · · · · · · · · · · · · · ·	'		
132	6.70	560	.70			í		 -			
133	6.70	550	.70					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
134	6.70		. 75				· 	<u>:</u>			
135	6.70		.70				1				
136	6.80		.70	<u> </u>		<u> </u>	·	<u> </u>			
137	6.70	570 560	.70	: :l.				<u>:</u>			<u> </u>

A Company

The said in the said in

		ELEC	TRICAL	MECHANI	CAL TE	ATAC TO			PAGE ₅	CF 9
ALPART NO.	•	=	!	.o+ No.	SALES	ORDER VO.	CUANTITY	SAMPLE	START Elegue	///
STOMER NRL	88-2	0	USTOME	PART VC.	:	CUSTOMER PUR	CRD BEARDS	ER NO. 37	PAIWLEC RE-	S T_+25TD ² C Uniess Note
viranmentsii t(s)										
]					1	İ	1	
ST NOITIONS		.50 mW	R,	100 Ω	fo -	9.375 GHz				
MITS			<u> </u>	1 1		1		1		ì
	NF	ZIF	ldc			İ				
evice	dB	ohms	mΑ			1		İ		i
139	6.70	560	.70	 						
140	6.80	560	.70	1					i i	ĺ
141	6.70	560	.75	i					1	,
142	6.70	560	.70	<u>: </u>			i		į.	<u> </u>
143	6.70	560	.70	!		!		_	1	
144	6.80	560	.70	. 1				i	:	
145	6.60	560	.70	1		1	1	1	1	
146	6.60	560	.70	i		j j	:	<u> </u>	i:	i
147	6.70	570	.70					I	1 :	
148	6.60	560	.70			1			1	1
149	6.60	560	.70	1		i	1		1	•
150	6.70	560	.70	!			i	1	1 ,	
151	6.70	560	.70	. 1		1	i	1	: :	:
152	6.80	560	.70	: :		1	(:	:	<u> </u>
153	6.70	560	.70	l !		1		1		
154	6.70	560	.70	i!		1 1	İ	<u> </u>	:	
155	6.80	560	.70				ļ	1	· ·	
156	6.7	560	.70	1:		1	i	İ	<u> </u>	·
157	6.70	560	.70	1		1	1	:	<u>: : : : : : : : : : : : : : : : : : : </u>	
158	6.70	560	.70	!		1 !	<u> </u>	i		i
160	6.60	560	.70	!				1	1	:
161	6.80	560	.70	! !			i	j		
162	6.70	560	.70					1	1	:
163	6.70	560	.70			1	<u> </u>			·
164	6.70	560	.70_			1	!	1	1	!
167	6.80	560	.70	i		! !	1			
168	6.70	560	70	1		1 1	<u> </u>		1	
169	6.80	560	.70			1	<u> </u>	<u> </u>	<u> </u>	<u> </u>
170	6.70	560	.70			1	İ	<u></u>		-
	6.70	560	.70			1	<u> </u>		i e	
		550	.70	!		;		· · · · · · · · · · · · · · · · · · ·		
	r.70	560	. 70				· · · · · · · · · · · · · · · · · · ·			
	6.70	560	.70							
	6.80	560	.70			:			····	
176	6.60	560	. 70			:				
	6.70	560	' .70	:		1	,			
	6.80	560	.70	ı						
179	6.70	560				2-			:	

PAGE 6 ELECTRICAL MECHANICAL TEST DATA CF LOT NO. SALES ORDER NO. CUANTITY SAMPLE LON TRAF LAN 13 START 1 scus CUSTOMER PURCHASE CREER NO. OTHER DRAWINGS TARES CUSTOMER CUSTOMER PART NO. Unless Note: NRL 88-2 Environmentail 447151 í PARAMETERI PLo = .50 mW = 100 Ω CONDITIONS fo = 9.375 CHz LIMITS NF ZIF ldc NF Sevice 1 dB ohms mΑ dB. 180 6.70 560 7Ω 6.80 560 70 6.80 1 . 580 .70 6.70 560 .70 6.70 560 1 .70 6.70 560 .70 6.60 570 1 .70 1 6.70 1 560 .70 ŧ 6.70 560 1.70 6.70 560 .75 190 16.80 560 70 6.50 1 ī 5 560 .70 6.60 1560 . .70 i 16.70 560 . 70 6.70 560 .70 16.70 1560 .70 6.70 i 560 .75 1 6.80 560 1 1 i . 70 6.80 1560 .75 6.60 ī 1560 1.70 1 ; 200 6.70 1560 1 .70 ï 6.80 1560 1.75 Ì 7.00 i 1480 .80 ! į 7.00 -1490 1.80 16.75 490 1 1 1.80 -6.90 570 85 7.00 480 .75 7.00 500 1 80 7.00 500 . 95 ı B.50 520 <u>75</u> 210 7.20 .80 :560 6.85 540 .80 6.90 500 .80 6.80 440 . 85 7.00 540 .80 7.00 560 i.75 7.00 560 7.00 75 .80 217 6.80 570 6.80 --------

-84-

6.50

550"

		ELEC	CTRICALMECHAN						9 CF 9
OF TRAS /	:. 	=	LST NO.			i	JANTITY SAMPLE	ELCOMP	/ /
	88-2	!	OF TRAF REMOTEUS		CUSTOME	a PU ACHA	SECROER NO .	OTHER DEAWN	Chies Yats
ronmenta ts:									
PAMETER	l I	İ			:	į	. !		
T NOITIONS:	PLo =	.50 mW	$R_L = 100$	fo	9.375	GHz			
1175			1						
	NF	ZIF	ldc	NF		<u> </u>	1		
nce .	dB	ohms	mA	dB					
294	6.70	570	.70	6.70	 	 	- 	1 '	1
	7.00	570	.70	7.00		i	1	i	
:	6.40	540	. 80	6.40		i	! ·	1	
	6.90	550	. 70	<u> </u>	İ	i	<u> </u>	İ	`
·	6.70	530	.70	<u> </u>		i	1 1	1	
	6.60	560	.75	!		<u> </u>	·		
+ 300	6.50	560	.75	<u> </u>		!			
·		<u> </u>	<u> </u>	<u> </u>		<u>i</u>	1		
<u></u>	<u> </u>	· · ·		<u> </u>		;	!	1	
·	<u> </u>	†		<u>!</u>	1	<u> </u>	<u> </u>	 	
	<u> </u>	1		!	1	<u> </u>	1	 	
	<u>. </u>	<u>!</u>		1	<u> </u>	· · · · · · · · · · · · · · · · · · ·	i i	<u> </u>	!
				<u> </u>					
	}	1	1	<u>.</u> !	<u>. </u>		1		
	1	•	i	i	1	;	į		
		i	i	i	1	!	1		
1	;	i	1	!	i	!			,
	i		ì				i : :		
		!	I]	!		į (ı
·		1	<u> </u>	į	1				
	1	!	İ	1			i r	:	
			<u> </u>	<u>i</u>	<u> </u>		1	<u> </u>	
	<u>i</u>		<u> </u>	!	<u> </u>	L	i	i 	
	<u> </u>			1	1		! !	<u> </u>	
	· · · · · · · · · · · · · · · · · · ·	<u></u>		<u>i</u>	!		:		
		- :	!	!	1		<u> </u>		
<u> </u>	:			<u> </u>	!				
	<u></u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·					 	 -
			i		,				
	•	<u> </u>					:	 	
······································					 				· · · · · ·
		 -				 			
			·						
	1		1	1	!		<u> </u>	1	
	•		······································					1	,
······································			** · *********************************		36-		:		

10.0 CONCLUSION

High burnout, low barrier height silicon Schottky barrier diodes have been manufactured in production quantities. Low cost production measures, such as 3 inch silicon epitaxial wafers, plasma etching, semi-automatic bonding, low cost pill package, semi-automatic bonding and computerized semi-automatic DC and RF testing were introduced to reduce the cost of the diode.

These devices are thermal compression bonded in a rugged low cost pill (ODS-119) package. They exhibit an overall low noise figure of 7.0 dB (single side band) at 0.5 mW of local oscillator power level and RF burnout of 12 watts ($\tau = 1 \mu \text{sec}$, and $10^3 \text{ Hz rep. rate}$).

Reliability and ruggedness of the diode design has been demonstrated by tests taken from MIL-S-19500 F.

. MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1964 A

11.0 FUTURE WORK

Future generations of Navy missiles such as Phoenix, AMRAAM, CRUISE, HARM and Harpoon will be using Schottky barrier beam lead diodes to satisfy the requirements of microwave integrated circuitry. It is recommended that Navy should initiate the Manufacturing Technology Program to manufacture low barrier height, high burnout Schottky barrier diodes in production quantities. This will reduce the price of previous beam lead diodes of \$30 per diode to \$10 in production quantities.

The resultant diodes from this program will be more rugged, low barrier height and with high burnout resistance to RF pulses and also less susceptible to handling damage (static charge).

COST REDUCTION SUMMARY OF HIGH BURNOUT SCHOTTKY BARRIER DIODE

МЕТНОО	PRESENT COST	COST PER DIODE AFTER COMPLETION OF THE CONTRACT
 PROCESSING SILICON CHIP 	\$ 2.00	\$ 0.50
• CHIP APPROVAL MIL SPECS	\$ 5.00	\$ 1.25
• DIODE MFG. COST	\$ 8.00	\$ 4.00
• INITIAL de & RF TEST	\$30.00	\$10.00

0-21259

APPENDIX A

MA-4E390 Series

rnout, Schottky lixer Diodes

L—Ka-Band Operation

These specially fabricated Schottky Barrier Mixer Diodes offer exceptional resistance to RF burnout while retaining desired operating characteristics. These silicon diodes are of planar epitaxial construction. The fabrication methods include highly accurate thicknesses and material resistivity coupled with tightly controlled photolithography, metallization and passivation techniques. The results are uniform RF and IF impedances provided by the very tight tolerances in junction capacitances. Separate devices are designed for use in L-Band through Ka-Band.

High reliability versions screened to MIL-STD-750 are available. The tables at the rear of this bulletin give the recommended screening and inspection procedures.

The case styles recommended for optimum RF performance along with high reliability capability are of the bonded diode construction with ceramic metallized hermetic seals. These case styles are the 119, 120, and 186. The 119 case style is recommended for waveguide or coaxial broadband applications through Ka-Band. It is also utilized in stripline circuits where the diodes are mounted in a coaxial section at the end of stripline circuit boards.

* Developed under Navelex funding and improved under Navy's manufacturing technology program.

Features

- HIGH BURNOUT LEVEL
- LOWER BARRIER HEIGHT
- **LOW NOISE FIGURE**
- PASSIVATED CHIP CONSTRUCTION
- **BUNIFORM ELECTRICAL CHARACTERISTICS**

HIGH RELIABILITY

The 120 case style lends itself conveniently to stripline applications and can be modified in an alternative configuration with 4 x 20 mil straps connected to anode and cathode for easy mounting.

Applications

The MA-4E390 series of lower barrier silicon Schottky diodes shows optimum noise performance at 0 dBm and is recommended for mixer applications where low L.O. power is available and high resistance to burnout is required.

SEMICONDUCTOR DEVICES

Burlington, Massachusetts 01803 🐞 Telephone (617) 272-3000 🐞 TWX: 710-332-6789 🐞 Telex: 94-9464

Bulletin No. 4225

Specifications $@ TA = 25^{\circ}C$ **ELECTRICAL CHARACTERISTICS**

SCHOTTKY BARRI	er Mixer	DIODES	1,2,5
Madel Number	MA- 4E300	MA- 4E301	MA- 45302
Test Frequency (GHz)	1-8	8-12	12-18
Maximum Noise Figure (dB) ⁴	6.5	7.0	7.5
Maximum VSWR (Ratio)	1.5	1.5	1.5
IF Impedance (Ohms)	300-500	300-500	300-500

Typical Performance For MA-4E390

				RF PA	RAMETERS ¹	, 4			RF
	1 mW			0.75 mW			0.5 mW		BURNOUT (r = 1 /m.)
NF	Ipc	Z _{IF} ⁵	NF	IDC	ZIF ⁵	NF	IDC	ZIF	POWER
(dB)	(mA)	(Ohms)	(dB)	(mA)	(Ohms)	(dB)	(mA)	(Ohms)	(Matte)
6.5	1.2	420	6.6	0.9	450	6.8	0.5	500	12.0

Summary of Model Numbers, Frequency Ranges and **Applicable Case Styles**

Model Number ⁴	Frequency Range (GHz)	Case Styles ⁷
MA-4E390	1-8	119, 120, 186, 54, 3, 135 and 185
MA-4E391	8-12	119, 120, 186, 54, 3, 135 and 185
MA-4E392	12-18	119, 120, 54, 135 and 185
MA-4E393	18-26	119, 120, 135, and 185
MA-4E394	26-40	120, 135 and 185

- All units available as matched pairs by adding the suffix "M", Matching criteria for packaged pairs: ΔNF_O = 0.3 dB, maximum, ΔZ_{IF} = 25 ohms, maximum. Matching criteria for chips: ΔC = 0.5 pF, maximum at V_R = 0; ΔV_F = 10 mV maximum at I_F 1.0 mA.
 R_S is typically 8.0 ohms.
 Junction capacitance at zero volts is typically 0.1 pF.
 Test condition: Noise figure is single sideband measured with 30 MHz IF, NF_{IF} = 1.5 dB maximum and L.O. power = 1.0 mW. Excess gas tube noise at 9.375 GHz is 15.3 ±0.5 dB; 16.0 GHz gas tube noise is 16.0 ±0.5 dB.
- gas tube noise is 16.0 ±0.5 dB.
- 5. Test frequency: 1 kHz6. These diodes are thermo-compression bonded in all case styles except in case styles 3, 54, and 135. The maximum solder temperature for all case styles except 120 is 230°C for 5 seconds. For case style 120, maximum solder temperature is 200°C for 5 seconds
- 7. Case style 135 is a chip.

MAXIMUM RATINGS

Incident RF Peak Pulse

Power (in X-Band) 12 Watts 1 #8

12 Watts 80 Watts 40 mA

3 ns. **DC Forward Current** Temperature Operating Storage

-65°C to + 150°C -65°C to +200°C

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Level
Temperature Storage	1031	-65°C to +150°C
Temperature, Operating	1026	-65°C to + 150°C
Temperature, Cycling	1051	5 cycles, —65°C to + 125°C
Thermal Shock	1056	5 cycles, 0°C to + 180°C
Moisture Resistance	1021	10 days, 90 - 98% RH, -16°C to 66°C
Shock	2016	5 blows, X1, Y1, Y2 at 1500 G
Vibration Fatigue	2046	32 hours each X, Y, Z at 15 Q
Vibration Variable Frequency	2056	Four 4 minute cycles, X, Y, Z 48, 20 G min. Miles
Constant Acceleration	2008	1 minute saus Au

Typical Performance Curves

FIGURE 1. Noise Figure vs. Local Oscillator Power

FIGURE 3. Noise Figure vs. Frequency

900 MA-4E390 SCHOTTKY DIODE 800 STANDARD HIGH BARRIER SCHOTTKY DIODE 700 R_L = 16 Ω 600 500 400 _10 _8 _6 _4 _2 0 +2 +4 +6 +8 +10 LOCAL OSCILLATOR POWER (dBm)

FIGURE 2. IF Impedance vs. Local Oscillator Power

FIGURE 4. VSWR vs. Local Oscillator Power

Case Styles

	0 800	0.840	20.32	21 34
8	0.292	0 296	7.42	7.52
С	0 246	0 250	6.25	6 35
0	0.753	0.783	19 13	19 89
E	0 180	0 190	4.57	4.83
F	0 193	0 199	4 90	5.0*
G	0.047	0.057	1 19	1 44
н	0.222	0.240	5.64	6 10
J	0 195	0.215	495	5 46
К	0.092	0.094	2.34	2 19
L	0.030	0.046	0.76	1.17
_ м	0 020	0.030	0.51	0.76

54

A	0 145	0.165	3.68	4 19
R	0.068	0.075	172	191
C	0.014	0016	0.35	041
D	1 000	1 500	25 40	38 10

119

_	0.078	0.088	1,98	2,16
8	0 190	0 210	4.83	5.33
ċ	0.009	0.015	0.23	0.36
0	0 060	0.064	152	1,63
E	0 070	0 082	178	2.00
F	0.080	0.064	1.52	1.63
G	25	35*	39.	35.
H	0.060	0.084	1,52	1,63

	·	0.00
Cp	0 15 pF	

120

			, le	
A	0.051	0.055	1 30	1 40
В	0.040	0.050	1.02	1,27
c		0 0 1 5		0.38

185

with the	5. Sp. 1	. 🕶		1.77
	1.5		21	
A .		0.015	I I	0.36
В	0 036	0.038	0,91	0,97
	0.007	0 009	0,18	0,23
В	0.003	0 005	0.08	0,13
É	0 0003	0.0005	0.008	0,013
T-	0.004	0.006	0.10	0,15
-	0.016		0,41	
H	0 009		0,23	

186

4	- 094	2.400	: 14	1.0
В	1	: 044	0.79	7.12
7	19	0.021	0.48	0.53
- 73	0.30,4	. 31-5e	C HE	€.0€
	+		130	4 3

Application Notes

1.	Electrical Test			
2.	High Temperature Storage		1031	t = 168 hours, T = 150°C
3.	Thermal Shock (Temperature Cycli	ing) 10 Cycles	1051	-65°C to + 150°C
4.	Fine Leak Test		1071	Condition H
5.	Gross Leak Test		1071	Condition C, Step 1
6.	Constant Acceleration		2006	20,000 g's, Y ₁ only
7.	Radiographic Inspection		2076	
8.	Electrical Test: $V_F @ 10 \text{ mA}$, $C_T @ V = 0V$, $F = 1 \text{ MHz}$			
9.	Burn-In		1038	Condition B, $t = 168$ hours, T = 100°2C, $I_F = 10$ mA
10.	Electrical Test: $V_F @ 10 \text{ mA}$, $C_T @ V = 0V$, $F = 1.0 \text{ MHz}$			Maximum $\Delta V_F = \pm 10\%$ Maximum $\Delta C_T = \pm 10\%$
11.	Calculate Drift, Δ V _F and Δ C _T			
12.	Final Visual		2071	

				1 (4) (4) 1 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
Subgroup 1 Physical Dimensions	2066	Per Case Style in this Bulletin	15	
Subgroup 2 Solderability	2026	Unit Aging	20	
Subgroup 3 Temperature Cycle (10 Cycles) Thermal Shock Hermetic Seal, Fine Leak Hermetic Seal, Gross Leak Moisture Resistance End Points: Noise Figure IF Impedance	1051 1056 1071 1071 1021	-65°C to + 150° C Condition A Condition H Condition C, Step 1 See Electrical Characteristics See Electrical Characteristics	10	NF Z _{IF}
Subgroup 4 Shock—Non-operating Vibration Variable Frequency Constant Acceleration End Points: Same as Subgroup 3	2016 2056 2006	1500 G, t = 0.5 ms, 5 blows, X ₁ , Y ₁ , Y ₂ Non-Operating 20,000 Gs, X ₁ , Y ₁ , Y ₂	10	
Subgroup 5 High Temperature Life End Steps: Per Step 8, Table III Drift Criteria same as Step 11, Table III	1031	T _A = 150°C, t = 1000 hours	λ = 5	
Subgroup 6 Steady State Operating Life End Points: Per Step 8, Table II Drift Criteria same as Step 11, Table III	1026	I _F = 10 mA, T = 25°C, t = 1000 hours	λ = 5	

APPENDIX B

JEDEC

Solid State Products Engineering Council

ANNOUNCEMENT

2001 Eye Street, N.W. Washington, D.C. 20008 (202) 457-4971

of

Electron Device Type Registration

Release No. 6983

November 10, 1981

The Solid State Products Engineering Council announces the registration of the following electron device designation:

1N6477

according to the ratings and characteristics found on the attached data sheets on the application of

Microwave Associates, Inc.

Burlington, MA.

All data submitted for registration, whether designated mandatory or not, become part of the formal registration. Upon publication of the release, commercial data sheets must include all data exactly as registered with all registered data identified by asterisks.

JOINT ELECTRON DEVICE ENGINEERING COUNCIL

REGISTRATION DATA

DIODE, MICROWAVE MIXER

I. General Description

This device is a silicon schottky barrier diode N/N+, high burnout, lower barrier, silicon diode designed primarily for use as a first detector in the frequency range of 1GHz to 18GHz.

II. Mechanical Data

A. Outline

OD-S-119 - Figure 1

B. Polarity

This is a reversible polarity device.

III. Maximum Ratings

A. Temperature

1. Storage temperature range, T_{Stg} -55°C to 150°C

B. Current

1. Average rectified current, Io @ .45V . 1.0mA

C. Voltage

1. Peak inverse voltage at 10µA ≥3.0V

D. Power dissipation, 25°C ambient or case temperature

 $R_L = 25$ ohms

1. Peak power tp = 1 µs, Du = 0.001 12 Watts

2. Single Spike Power

tp = 3nsec; Du = 0.001

max

80 Watts

IV.

		JEDEC T	PE NUMBER
Electi	rical Characteristics, 25°C Ambient Temperature		
	•	Min.	Max.
A. <u>D</u>	mamic - Holder Per Figure 2		
1.	Over-all noise figure, NFO		6.5 dB
	$f_0 = 9.375$ GHz, $F_{IF} = 30$ MHz, $I_0 = 1.0$ mA or $P_{LO} = 1$ mW, $R_L = 25$ ohms		
2	Conversion Loss, L _C		5.5dB
	f_0 = 9.375GHz, F_{IF} = 30MHz, I_0 = 1.0mA or P_{LO} = 1mW, R_L = 25.0kms		
3	. IF impedance, Z _{if}	250	450 ohms
	$f_0 = 9.375$ GHz, $F_{IF} = 30$ MHz, $I_0 = 1.9$ mA or $P_{LO} = 1$ mW, $R_L = 25$ ohms		
4	· 'VSWR		≤1.5
	$f_0 = 9.375$ GHz, $F_{IF} = 30$ MHz, $I_0 = 1.0$ mAor $P_{IO} = 1$ mW, $R_L = 25$ ohms		

	INC	INCHES	MILLIM	MILLIMETERS
DIM.	MIN.	MAX.	MIN.	MAX.
A	0.078	0.086	1,98	2,18
В	0.190	0.210	4,83	£6,33
၁	600.0	0.015	0,23	96'0
Q	090.0	0.064	1,52	1,63
E	0.070	0.082	1,78	2,08
L	090.0	0.064	1,52	1,63
ŋ	25.	35	25.	35.
Ι	090.0	0.064	1,52	1,63

Cp = 0.15 pF Typical Ls = 0.50 nH Typical

OD-S-119 FIGURE 1

APPENDIX C

Evaluation Of .

High Burnout, Lower Barrier
Schottky Mixer Diodes
Contract #N00173-79-0107

The Schottky Barrier Mixer Diodes evaluated here were specially fabricated to offer exceptional resistance to RF burnout while retaining desired operating characteristics. They were developed under Maval Research Contract #N00173-79-C-0107.

THORE E. Boynton quality Engineer April 15, 1982

Paper: No _____

-age <u>1</u>

Administrative Data

I.O Purpose of Test: To evaluate the high burnout X-Band Silicon

Schottky Barrier Mixer diode developed on contract

#N00173-79-C-0107 to the quality conformance

requirements of MIL-S-19500.

2.0 Manufacturer:

Microwave Associates (M/A-COM)

Burlington, MA

3.0 Manufacturer's Type or Model No. NRL-88-2

4.0 Drawing, Specification or Exhibit:

Statement of work from above

contract.

5.0 Quantity of Items Tested: 184

6.0 Security Classification of Items: N_0

Not classified

7.0 Date Test Completed:

November 24, 1981

8.0 Test Conducted By:

Microwave Associates Inc. - Silicon Products

Quality Dept.

90 Disposition of Specimens:

Hold for disposition

10.0 Abstract:

The units were tested in accordance with this quality conformance requirements of MIL-S-19500 for JAN type devices. Groups A,B and C testing was satisfactorily performed by Microwave Associates quality assurance personnel and audited by DCAS quality representative.

These devices met all applicable requirements

Report No.

Page _____2____

HIGH BURNOUT LOWER BARRIER SCHOTTKY DIODE EVALUATION ALLOCATION OF TEST SAMPLES

		SPECIAL RF BURNOUT 10 DEVICES S/N 46-50 96-100	
	-	C3 22 275-296	
		22 22 23–274	
		B6 32 1-32	
GROUP A		B5 N/A	C1 15 238–252
		B4 12 33-44	
		B3 45 51-95	C6 45 51-95
		B2 22 216-237	C4 15 216–230
		GROUP B SUBGROUP 1 15 DEVICES S/N 201-215	GROUP C SUBCROUP 5 %/A

قِ	CUSTOMER LEGEND	R LEGE	QN		MICR	- MO	MICROWAVE ASSOCIATES INC	SINC			Nil	PAGE OF 3 PAGES	u
ž Z	Customer P O		117	LIFE&EI	NVIR	Sem	ENVIRONMENTAL TEST SCHEDULE/SUMMARY Semiconductor Division	DULE/St	JMMARY		# W	12-4819 CODE DATE	
e t	Other Dwg.	70-3	Issue #		CROUP	1	B PER HIL-S-19500F	1	Date:		Class	Class Schoffky	
	PROGR	AM REO	PROGRAM REQUIREMENTS		\vdash	Z		Estimated	ated	Aci	Actual	Diffusion No.	
	Examination/Test	*Method No.	Test Conditions	<u> 6_</u> _0	⊢≻	ш ; _	Test Limits	Start Date	Comp. Date	Start Date	Comp. Date	Job No.	Test Oper.
SUB	Solderability	2026		1.5	1.5	}*-		72/ji	10/23	113,		from (ES) (18	851
	Resistance to Solvents	1022		<u> </u>		1		<i>6</i> 01	- j/11			20,7,24	388
SUB	Thermal Shock	1051	25 cycles Test Cond, C-1	10	22 0	2,5		61/1	12/01	pyle.	129/60 16/30	5/11/6-137	Q ,
	Fine Leak	1011	Cond. II		2 E	12		1/01	22/01	1/2	5/11	·	
	Gross Leak	1011	Cond. C		99 0	W		£2/ 10/	57/01	\mathcal{G}_{i}	4/11		
	Elect. End Pts.				36 0	32		92/01	82/1	h_{h_i}	01/10	The of Contraction	5,6
SUB GP 3	Steady State 1027	19027	ጋፋብ) hours ዛዕር.ሪ	2	45 0	्र इ		2/01	10/11	10/2	10/18	26-12 11/8	\$
	Elect End Pts.				45 2	1, 22		%/01	γ_{j}	b//01	1/2/	(5) of (30)	(A)
SUR CP 4	Decap Int. Visual	2075		ı	1 0			ы/ст	92/01	7	11/12		183
	Bond Strength	2037		20	11 0	[1) jei	101	Park.	116	Qty, refers to Bond Pulls. $5/i$) $34-44$	1851
SUB CP	Thermal Resistance		(N/A)	15	15			72/01	06/01		İ	5/1 238-25 (MS	17/11
SUB GP (Hf Temp. Life/Storage	1032	340 hours		32 0	6		2/1.		4/25	10/3	s/M. 1-32	F
	ш п 1				9 13	<i>()</i>		10/1	5/61	6/01	6/01		D.B

ruge .

•					Test Oper.	9	· .		3		1.1	7_	D,C	-		73	Dr	
OF 3 PAGES		2.2	= .		0	10 (5)			(to		+		(C.S. D	- \			(A)	
MISC PAGE ZO	# 137 : 1131 - LOT DATE	Type 11/2 25	Class M/A SO No. ///	Diffusion No.	Job No 257111 REMARKS	252-38-11/2	nLV-25V 1/15							.//) 275-29(,			(
Ĭ	#	M/A Type	Class M/A	led.	Comp. Date	1/4/1	16/	7/5	1/5	1//2	73)	11/20	11/24	7/11	1/2	11/2	11	
			1	Actual	Start Date	1/4	16/2	<i>h/u</i>	1/5	11/6	11/10	υij	1/35	8/11	3/11	1/15	1//3	
	MMARY		Date:	ıted	Comp. Date	62/01	02/01	23/01	13	197		11/4	11/12	201	101	11/4	11/4	
S, INC.	OULE/SU		٥	Estimated	Start Date	10/1	10/	10/21	10/	6/01	12/01	6/11	c/ _{II}	61/01	92/	11/2	1/5	
MICROWAVE ASSOCIATES, INC.	IFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY	Semiconductor Division	PER MIL-S-19500F		Test Limits			6.	/									-
OWA	NME	Semi	-S-19	2	ш ј-	15		72	3	ς. ₂	3,5	42	22	33	: :		7.7	
AICR	MIN		MIL	-	— >	15 0	22 0	23.0	120	i 0	7,2	3	0 ();	22 0	22 (0.26	29	
2	& EP		PER	-	P D	15]	10.		-2		7		*	10 2	-		<u> </u>	
1	LIFE		CROUP C		Test Conditions	911-210	Cond. A							3 planes 1500 G's O.5ms	7 N 002	20 KG. 3 plas.		
EGEND				PROGRAM REOUIREMENTS	"Method No.	2066	1056	2036	1071	1071	1021	2071		2016 150	9502	2006		
MER L				HAM	Š	50)1	<u></u>	1(2(20	2(2(
Customer 116	Custonny P.O.	No. 1/. A	Other Dwg.	PROG	Examination/Test	Physical Dimension	Glass Strain Thermal Shock	Terminal Strength	Fine Leak	Gross Leak	Moisture Resistance	External Visual	Elect End Points		Vibration Var. Freq.	Constant Acceleration	Elect End Pts.	
Curle	Custo	Part No.	Othe Met			SUE GP1	SUB GP2	-						SUB GF3				

		Ten Oper.	32	4/4	3	B. 83	``	屬				
MISC PAGE 3 OF 3 PAGES # 1981-4819 CODE PAGES MIA Type NRL-88-2 Class SChOTHKY	Diffusion No.		8/10 216-230 from (B)	(B) of 515-105 (1/2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7 (and) (an		
M/A 1	Actual	Comp. Date	=======================================	1	=======================================	mao /		10 / 12 / 10 / 12 / 12 / 12 / 12 / 12 /				
·	Ac	Start Date	11/0		10/	1/16		Mai				
SUMMARY	ated	Comp. Date	11/4	82/01	11/13	8 t/ti						
TES. INC.	Estimated	Start Date	62/.	61/01	10/6	9/1						
MICROWAVE ASSOCIATES. INC. LIFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY Semiconductor Division GROUP C (CONTINUED) Initiated By:		Test Limits	24 Hrs.									
OWAN OWAN Semin C (Z	₩ ⊢	15		45	45		6				
MICROENVIRG		⊢ ≻	15 0	15 —	45-	15 0		10 0	 -	 		
& EN G			15 1	15 1	7 -	7.		<u>×</u>			 -	
	PROGRAM REQUIREMENTS	Test Conditions	,6% 5alt Solution	N/A	1000 hrs.							
NRL NRL //A MIL-STD-750	IAM REO	*Method No.	1041		1026 5)							
P.O	PROGR	Examination/Test	Salt Atmosphere		Steady State 1026 Life (Operating)	Elect. End Pts.		SPECIAL PEST 12.F. BURDOT				
Customer Customer Part No. Other Dw Method			SUB GP4	SUB GP5	SUB GP6			₽				<u> </u>

14 %		ELE	CTRICA	L/MECHAN				,				PAGE		of 7
M.A. PART NO		1981-	4819	LOT NO.	SALE	S ORDER N	10.	QUA	NTITY	SAMF	LE	STAR		21/5
NRL &	8-2	,	CUSTOME	R PART NO.		CUSTOME	A PUR	CHAS	EORDER	NO.	ОТН	ER DRAW	NGS 1	25≂3 Inless No
Environmental (est(s)		11	G) UAL	TYES	>T								
PARAMETER					\									1
TEST CONDITIONS	Pi	0 = .	50 m	-w R	L = 1	per			/s=	7.	3≠.	rg"H	2	
LIMITS	GR	SUP	IA		Post Test									
	NF	FIF	Isc		NF	1	1							
Device No.	dВ	ohms	mA		dB					1			1	
ا الحر	6.90	560	1.75		7.00								1	
i i	6.80	560	.70		6.90									
	6.90	1560	.70		7.00								1	
ì	6.70	061	1.75		6.80								<u> </u>	
5	6.80	1565	180	<u> </u>	690	1	1	-	}				 	
·	6.90	1500	1.70		17.60	+	 			-			1	
	6.70	1250	.70	<u> </u>	690		- ļ						 	
	6.90	1505	170		17,00					+-			 	
	6.80	1540	1,70		690		╬						1	
10	6.90	1550	1 ,7.5		1 7.00								 	
	6.70	1560	135		1 6.90		1 -			- 		<u> </u>	<u>'</u>	
	6.80	1560	1170		680		//		<u></u>	+-				
		1560	1.70	- 	1 6.70	-	V		5	一		<u> </u>		-
15	6.80	1540	1.70	- 	1 7.00		了	1)	5		 	1	!
	6.70	1550	1,70	1	1 7.00	1	1		1	1			1	
•	6.80	1540	175		6.90	1	¢ł						1	Ī
	690	560	1.70		17.00		Ħ						1	i
		1200	1.75		6.90	1							1	<u> </u>
20	6.70	1550	175		1680		1			1			!	
	6.90	550	1,70		17.00							<u> </u>	1	
		1560	1,70		17.00		 			-ļ			!	
	6.80		1.70		1690				ļ				!	
		1500	170	_	16.90		-		 			<u> </u>	 	
25		1550	175		1 6.70				}				1	
		1540	1,75		17.00		-11		<u> </u>	+			+	
	6.80		1,75		17.00		 -			+				
		1350	1.70		7 50					 			1	-
30		1560	1.30		16.10	 	1			1,			Ī	1
	6.70	1570	1,70		16.70	1	1	- A	K . 193	1		<u> </u>	;	- 1
		1540	1.70	1	16.90		ナー	سى- سى	730				1	
	بكبي سينسب الناوي و	1550	1,70	1	ì	1)	1			١		ı	!	i
		1540		1	i					1		!	,	(
33	16.80	1550	1175	1	1	1 1	1 3		4	1		!	i	
		1530		Ī	1	VI			11				1	i_
		1240	1,75	1 1	1 (8)	6)	1		ł	1			1	!

> 1

M 1420

	ſ			2001A1	•			SEA	AICONDUC.	UN UEVISIO.	••
		ELE		MECHAN						PAGE 3	
M.A. PART NO) .	1901-	i	OT NO.	SALE	ORDER	NO. QU	ANTITY	SAMPLE	START	9/21/
CUSTOMER NRL &	58-2			PART NO.		CUSTOME	R PURCHA	SE ORDE	NO. OTH	IER DRAWIN	GS TA-25=3 Unless No
Environmental Test(s)			QUA	L Tr	EST						
PARAMETERI					N						
TEST CONDITIONS	PLO	= .50	mw	2	L= 10	bur		f. =	9.375	GHZ	
LIMITS		ماه	A		POST						
	NF	モル	IDC	<u> </u>	NE		Wats	Trec			
	dB	olms	mA		dB	`					
77	7.00	560	.70	<u> </u>	7.00	1)		<u> </u>		<u> </u>	
i		540	.75	<u> </u>	6.90	11		ļ			
	6.8n		.70	<u> </u>	6.80	11		<u> </u>		<u> </u>	
₹0	6.70		,70	<u> </u>	6.70	11		<u> </u>		1	!
	7.00		1,75	<u> </u>	7.00	11-	<u> </u>	<u> </u>		<u> </u>	!
·	7,00		.70	<u> </u>	7.00	1	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>
·	6.90	550	.70	<u> </u>	6.90	 	152 d		.	<u> </u>	<u>i</u>
	6.40		1.70	<u> </u>	6.70		121			<u> </u>	
7.5	7.00	550	1,75		7.00			T			<u> </u>
	7.00	540	170		7.00	<u> </u>			1		
	6.80		.70	!	6.80	11		<u> </u>	<u> </u>	1 1	
	6.80		170	<u> </u>	6.80	1 1		<u> </u>		1	
	6.70		17-17	<u> </u>	6.70	11		<u> </u>		1	<u> </u>
90 :	6.80		175	<u> </u>	6.80	 		<u> </u>		1 1	
	7,50		175	ļ	19.00	1 !		<u> </u>		1	
		520	.80	<u> </u>	6.80	 	<u> </u>	 		!	
		540	170	<u> </u>	7.00	 	- 			1 1	
	6.60		,80	· ·	6.60	1-1				! !	
95	670	540	1.70	 	6.70	!	1	\	<u> </u>	! !	
		560	.70	<u> </u>	<u> </u>	<u> -</u>	129]		1 1	
	6.70	540	.75	 	<u> </u>	 	31	<u> </u>	+-0	1 1	
	690	560	.70	 	 	 	32,	1-12	4.15	woul	
100	6.60	540	,75		 	 	30	}		<u>'</u>	
	6 40	1 3 6 0	.70	 	 	<u> </u>				1 1	
) i	<u> </u>	<u> </u>	!	1			<u> </u>	1	
		<u> </u>		 	 	 -	1000	+		1	
		<u></u>	<u></u>	'	<u>'</u>	†		+		 	
<u></u> i		<u> </u>		 	 	 		 		!	
				 	!	 		+		Told .	
		1 11	 	 			-}		+	0000	
	<u> </u>			1	<u></u>	[+		- Din	OTOTIVE	
	<u> </u>	 	<u> </u>	 	<u>. </u>	'	1		10 10 10 10 10 10 10 10 10 10 10 10 10 1	brought	 :
		<u> </u>	<u> </u>	:	· i	<u>'</u>		1 24 32	Ne Vi	· · · · · · · · · · · · · · · · · · ·	
	' <u></u> '	<u> </u>	:	;	<u> </u>		·	es constitution	*	<u>, '</u> ! !	<u>-</u> -
		<u></u>	<u> </u>		<u> </u>		- <u>Co</u>	TOTAL	†	<u> </u>	
		<u> </u>	<u></u>	1 1	 	1	3	-	 	 	
	<u>'</u>		<u></u>	1 - 1 -	<u> </u>	1		1		! !	

MICROWAVE ASSOCIATES, INC. idle. SEMICONDUCTOR STRISTOR rage y PAGE 4 OF ELECTRICAL/MECHANICAL TEST DATA QUANTITY TRATE LOT NO. SALES ORDER VO. SAMPLE M.A. PART NO. 9/21/81 NRL-88-2 1151-4819 121/81 CUSTOMER CUSTOMER PART NO. CUSTOMER PURCHASE CROER NO. OTHER DRAWINGS TA-2533 Uniess Noted Environmenta QUAL TEST Test(s) PARAMETER TEST GROUP A CONDITIONS Pa= 9.375 9172 PLO RL \$100 A = 0.5mW LIMITS I_{Dc} ZIE NF Device mĀ 113 ohmo 0.7 560 101 6.5 5601 0.75 102 103 1530 0.75 • 6.6 58010.751 104 5801 n.7 125 7010.7 101 157 6.7 5 6010.7 570 0.75 128 .8 ı 57010.701 į. 1 110 550 0.70 111 6.0 570 0.701 5 801 0.751 112 16.7 113 16.6 5 701 0.70 5-60 0.70 116 570 1 1.70 115 560 10.7 116 560 10.7 117 118 560 10.7 119 560 0.7 1560 0.7 120 560 10.7 121 1560 10.7 1 1 560 10.75 1560 10.70 176 10.7 175 12.8 560 1 126 560 10.74 127 560 Dric destate 1281 570 170 570 10.70 129 130 6.8 560 0.70 a citable tota 1560 10.70 131 4.6 560 10.10 COPY W BUTT 1321 617 133 1417 1500 1017 į į ì -1 1560:0.751 ø : 1816.71 47,010.701 ŀ. 1 17/16.6 1560 127 67 1 5701 0.701 i

11820

		ELE	CTRICAL	MECHAN	ICAL TE	ST DATA				PAGE	S. OF	
M.A. PART NO	o.	1981-	IL.	.07 NO.		S ORDER NO	o. au	ANTITY	AMPLE	STAR E COMP		151
CUSTOMER	88-2	1	CUSTOMER	PART NO.		CUSTOMER	PURCHA	RECROSE	NO. OTH	ER DRAW	INGS TA	
Environmenta: Teat(s))	Qu	AL T	YEST	·			-	*.		
PARAMETER	G	Rour			\						T	
TEST	li .	(to me	7	Ri	1000	-	fo=	9.37.	- 67	43	
LIMITS						\						
	NIF	715	Inc		<u> </u>		1		<u> </u>	-		
Device	113	ohma	mA					1		1		
	6-7	560	10.7				1				T	1
10.0	150	560	10.7							1		T
11.1	14.7	560	10.75	i .			1					
14.2	6.7		10.70					1				
	6.7		0.70				-	1	1	j		
	14.8	1 (60	0.70		1	1	1		i	1 .		1
145	7		10.70				1	i	1	1	1	1
	16.6		10.70				i	ĺ	i	Ī	1	1
	14.7		16.70				1		1]		1
	166	7-7-	10.70	1			1	1	Ī	1		1
	6.6	1560	10.70	<u> </u>	Ì		i	i	1	1	1	1
	4.7	150	10.70		j		1	1	1	!	Ī	T
	12.7				1	 	 	1	 	1	1	i
157			10.70	1	1	1	i	1	1		1	1
	1.7	1560	10.70			<u> </u>	1	1	1		1	1
	6.7	1540	0.70		<u> </u>		1	1		1		1
	6.8	1560	0.70	i			1	T		1	†	
	14.7	1560	10.70			 	1	1	1	i	1	1
	14.7	1560	10.7.	·	i	 	İ	i	 	1		1
1150		540	0.70		i	 		 	 		†	1
	63					1	i	 		 		
141		1540	C-7-			 	i	i	1	i	ī	7
143					1	 	i	1	1	1	1	1
163		1560	1 0.70		i	· ·	1		1	Ī	ī	1
164		15%	10.70	1	1	 	1	1	1	i	T	1
1/7		560	1 0-70	1	<u> </u>	7	ĺ		<u> </u>	1	1	1
145		1560	10.10			1		T			T	1
129		150		1	T		1	1	1	W	Ī	1
17.			10.70	1		T		1	1 .5	Prijor	ı	1
1 171	6.7		10.70			i	1	1	ا بن ا	ev do	1	!
172			1 0.7.			 	i	1	12 54	I	1	i
173			1 0.7			Ī]	1. (6)	l	1	
176						1	!	1 mub	10	1	i	i
175			1 0.7		<u> </u>	1	Ī	1 July	1	!	;	
176			10.7		· · · · · · · · · · · · · · · · · · ·	1	1	1 is	1	:	i	
177			10.7	1 (c >4	}	j	1	F	1	I	ī	T
179			10.77			1	<u> </u>	1 .	1	i	i	i
										!	<u> </u>	

LA PART NO		= =		MECHAN		SORDE		l au	NTITY	(5.	MPLE	PAGE		
I.A. FART NO	•	1981-					· · - ·			٦		E COMP	· 7	21
NRL 88	-2			PART NO.		custo	MER PUR	CHAS	CRC 3	ERN	ю. От	HER DRAW	INGS T	A=25= Inless N
nvironmentai est(s)			Q٧	AC T	rest			يون سياس		*****				
ARAMETER	C	Rou	b A-		POST TG:T	T								Ī
EST ONDITIONS		.50		RL	= 100	92		fo=	9.3	7	5 61	بر ج ا	}	1
IMITS														
j	NF	ZIF	IDC		NF									
evice	ol B	ohmo	mA		48	 							Ť	
180	6.70	560	,70			 				- 			†	
	6.80	560	170			 						1	1	
· ·	6.80	580	.70			1							1	1
i	6.70	560	170			i	T T		<u> </u>			1	1	
	6,70	560	1,70	i		 			<u></u>	Ì		1	1	
	6.70	1560	1.70	}		†	1		Ì	i		1	1	
. ;	6,60	570	.70	1		1			i 	$\overline{}$		1	[1
	6.20	560	,70)		ĺ	1		1			1	1	1
	6.70	560	.70	1			1		i –	1			i	
	6,77	560	.75			1	T T			 i		1	1	
190	6.00	560	,70	<u></u>			i		<u></u>	i				 †
- / / /	6,50	1560	.70	<u> </u>	<u>'</u>	+			j	1		 	i	一
	6.60	550	.70	1		i			<u>'</u> -	- i		i	i	<u> </u>
	6,70	550	. η D	1		1				1			İ	1
:	6.70	1560	.70	1		1	- 		1	<u> </u>		 	Ī	
	6,70	560	1.40		<u>'</u>	1	-			1		1	Ī	
i	6.70	560	7F.			T			Ī	1		1	1	
 :	6.80	600	,70									1	!	
	6.80	1560	1.75			1				1			1	T
	6.60	560	.70			1	i		i				1	1
200	6,70		70			i						 	-i -	
. 1	6.30	560	7-5			1						1	1	1
· ;	7.00	490	180			11				Ī		1	1	1
· ;	7:00	490	.80			TI							i	!
· ;	6.75	1490	.80			11							1	i
	6.90	1570	28,			1	/ _		E,	1			40	1
	7.00	1480	75,			7	75		1			1	de de	<u> </u>
4	7,00	1 Smo	.80									ا من	NA.	
· .	710	1 300	.95									D. 0	¥	• [
	6.50	1520	[,~]				1			1		3.39		
2/0	1.20		- 702								*2°2	Legisland Control of the Control of		1
	6.4.5	1500	1.80								64, 18	W	1	Ţ
	6.90	1500	1 · Kn			11	1				4	1		i
	6.10	Luo	.35	·				7		V		!		
	7.00	1 Suo	00.	1			(c)	7		ì		}	1	1
	17,00	1560	1,45			ス し	Y	·		Ī				1
	3.00		1.75	1	17,50	1	RI 1					1	1	ī

SEMICONDUE, OR DIVIDIOR LAGO L.

I.A. PART NO		=	1-	OT NO.	SALES	ORDER NO	s. Jau	YTITHAL	SAMPLE	TRATE	
USTOMER		11981-	YF19	3087 10	1	CUSTOMER	SUBCHA	SE ORDER	NO OTH	I ELCOMP	11/10/81
NIZL'	88-2		.0310.MER	FART VO.							Uniess No
avironmentali est(s)		C	DUAL	TEST				·			
ARAMETER	6	pe up			Paint						
EST CONDITIONS	ì	1	nw	1 1		1000		£ =	9.375	GHZ	
		<u> </u>				<u> </u>	'	+	 		
IMITS	115.	214	IDC		UF	-	<u> </u>		 		
) Davica	NF			! <u> </u>		!	<u> </u>				<u> </u>
No.	OB	drm	mA		JB -	 _ _ _ 	<u> </u>				
218	7,00	560	1.75		7.00				+	 	
<u> </u>	7.60	540	1.80		7.00	 /	!		+		
220	7,00		1.80		<u> </u>	 	!			!! 	
· · · · · · · · · · · · · · · · · · ·	7,00	570	1.80	' 	7.00	} 	1		}	'	
· · · ·	7,50	1560	1.20	! !		11	1 -	 		 	
· · · · · · · · · · · · · · · · · · ·	6.90		. 20	<u>'</u>	6.90	 \	!		<u> </u>	· · · · · · · · · · · · · · · · · · ·	i
	7,00		80	 	7.00	1	133	1	<u></u>	<u> </u>	
	7.00		. 81	1	7.00	-	122	<u> </u>	4-	,	
			1 . 80	<u> </u>		 	1		- 	\	
<u> </u>	7,00	190	1.87	<u> </u>	7.00	 	<u> </u>		 		
	7,7	1560	रहे ।	<u>'</u>		 -	 		 	1	
230	7,10	1540	1 75	1	7.00	1 1	!			<u> </u>	
י טע ג	7,00	1500	1,70	<u> </u>	7.00	1 1	<u> </u>	 -		<u>'</u>	
	7,00	1530	68.1	<u> </u>	7.00	 	 		 -	<u> </u>	
	3,70	1500	1 , 72	1	7.00	1-1-	<u>'</u>		 	i ——-	
_	6.90	1560	1.75	<u>'</u>	6.70	 	<u>'</u>	-i		i i	
	7,00	1560	.80	1	7,00	 	 		 	<u> </u>	
·	6.75	1340	1.75	 	6.70	 	 	- 	 	<u> </u>	-
	6.43	1570	. 50	1	6.50	 	i -			,	<u> </u>
	6.45	1540				'n	 	- 	 	<u> </u>	
<u> </u>	7.50	1540	1.75	<u> </u>		11	 		 	<u> </u>	
240	6.60		75	1		ļi	i	1	 	1	
	6.80		1.70			!	<u> </u>		 	1 0	
	6.25	1540	1.80	i		11	i			آ سما	1
	6.65	500	.80	i 	·	11	i		 		i
	6.55	1550	1 .70	 		ii 	i	1	1		
 _	6.45		1.40	i i	······································	15/	-7	- 	T	E S	
 _	17.00	1650	1.80	i i		17	1	1	1	0.0	
	6.0		1.40	 		11	1	1	1	0,00	i i
		1550	1.25	<u> </u>		11	Ī	1	1	7~	i
		1520	1.85	1		11	-		1 8		
250	1,00		1.70	1 i			(و جود	1	1		:
		550	150	1 .1				1	.8	7	:
	1 4.20	1 (60	1 -80	1 1		10	<u> </u>	1	.08	! 1	
······································	16,50		1 75	 	7.10	i		1	1	1 1	
	1 6.60		1.75		6.70	!	TU	7	i	i i	1

SEMICONDUCTUR DIVISION

1.1		ELE	CTRICAL/	MECHANI	CAL TES	T DATA					PAGE	४	OF	,
M.A. PART NO	Э.	1981-		OT NO.	SALES	ORDER N	5.	AUA	NTITY	AMPLE	DISTAR TE COM			1/8
CUSTOMER			CUSTOMER	ON TRAS	10	CUSTOMER	่อนล	CHAS	EGROER	NO. 0	NARC REHT			
NRL-	82-	2												Noted
Environments: Fast(s)		a	OAL .	TEST					,					
PARAMETER	Gre	Loup	A-		POST TEST									
TEST CONDITIONS	Pio	= . 50	mw		?L= 1	000	2		£ =	9.3	375 6	#2	i	
LIMITS					١.						1	1		
	NF	121F	Inc		NF						ł			
Device	dB	dima	mA		a 3							1		Ī
956	6.90	580	.75		6.90		7					T		
257	6.50	590	.75		6.70			1				1		
2.58	7,10	180	.70		7.00							1		!
259	6.70	1370	.70		7.00					Ī	1	T		
7-60	6.80	1560	.70	1	7.00					i	1	1		
2.61		1590	170	i	6.70		i	1		Ī		!		
267	6.30	1590	,70		6.80		i	1		Ī	!	7	1	
	6.40	1570	.,75	<u> </u>	7.00			>		i	1	i i	i	·
566	6.10	1590	70		7.00			Ĺ	$-\zeta_{\Sigma}$		 	i	i	
500	6.90	570	.45		6.90					1			i	
7.65	16.80	1500	70		6.80			İ		<u></u>		╁	:	
757	6.50	600	170		6.90					i		i	 i	
	1.6.50		1712		6.60			, ,		<u>; </u>	- 	; -	 ;	
2.65	6.40		.61		6.90		1					i	<u>_</u>	
-1 270	6.00	(P)	.70		690		i	 i				i	!	
2.71	6.60	620	1:70		6.80		i			1		T	1	
2.71	6.50	1570	.70		7,50							i	 i	
-5-70	6.90	150	1=45		6.90		i				1			
276	190	1580	,70		6.90		ナ	i		ğ	1		i	
275	6.90	570	75		6.90		4				?	i -	 i	
276	6.50		.75		6.80	•	1	Ť		- G 3	1		 i	
2,22	6.90	IND	.65		6.90		+	 i		() S	T	1	1	
275	6.70	570	17-0		6.70		+	<u> </u>		B reproduction	1	Ī	1	
279	200	560	70		7.00	1	+	1		9	Ī	i	i	
250	6.60	560	,70		6.G0 1	i	+	i	.:	1,631,646	1	1	i	
7 9,1	6.40	580	.70		6.40		\top			-	!	ī		
2.52	6.50	560	.80		6.50					i i	1	ī		
5 5 3	6.90	560	,701		6.90		1		ابع ہ			Ī	Ī	
2.84	7. No	600	.70 1		7.00		T	1	S. #		1		1	
285	6,60		.70		6.60		_		4		i	1	Ī	
- 24	6.43	5401	,70	1	6.401		7	_ 10			1		i	~
257	6.30	Suol	,75 1		6.30 1		_7		_>		<u> </u>	1		
, 99	6.75	5401			6.75 1		\mathcal{J}				1	!		
2 67	6.70	560	.70 I	·i	6.70 1		T	ببر			:	1	:	
	6.40			1	6.401		\int	(5-3)	(8)		:	i	i	-
291	4.10			I	7.00		\int	(i+			1	1		
75.		ا طرق کا ا		, ,	7,00	İ	I				j	1	i	-
F				1	6 001		ز	1				;		

SEMICONDUCTOR DIFFLICT

•		ELE	CTRICAL	MECHAN	ICAL TE	ST DATA					AGE 9	<i>1</i> 0	F
M.A. PART NO).		-4819	.OT NO.		S ORDER N		ANTITY			START	11/0	14/8
CUSTOMER WELL	88-	2	CUSTOMER	PART NO.		CUSTOMER	PURCHA	SE ORDER	NO.	OTHER	IWARD	NGS T	A=25=3
Savironmentali Test(s)			QUAL	TRES	7								
PARAMETER	G	12000		,	Post Test								
TEST CONDITIONS	Pis	2 - 2	to mi	 	RL	100	er	fo	9.	3	59	42	-
LIMITS					`								
·	NF	215	Ix		NE								
Device No.	1B	ohma	mA		dB								.
294	6-70	1570	1.70		6.70		1)						
· '!	7,50	570	1.70		7,00	 	11-63		 			!	
	6.40	540	180	<u> </u>	6.40	 	1 -3	1	<u> </u>			<u> </u>	
·	6.90	1550	1.70	1	<u> </u>	 	<u>}</u>	!	 			! :	
	6.77	1530	1.70	1			<u> </u>	 				!	
1.300	6.50	1560	175	 	<u> </u>	 	1	 -				1	
4 200	6.50	1 160	1 1 1	1	1	 	<u>!</u>					· !	
: 	<u> </u>	'	(c 3)	(i)	<u> </u>	- 	 	 	-} -			1	
	<u> </u>	<u> </u>	1	/		 	<u> </u>	+	-{			<u>'</u>	 -
	<u> </u>		 			 		i	; 			i	-
		İ		i i					1			(
;		1	: }	1	i			Ī	1	1		1	1
		1	l			I		1]		:	
								1				!	
		1	!	<u> </u>		1		1	<u> </u>			<u> </u>	
i	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>				1	
 :		<u> </u>	<u> </u>			 	 	 	 				<u> </u>
<u>:</u>			<u> </u>	!			 	 	 			<u> </u>	
	}	 	1	<u> </u>		 	 	 	+			<u> </u>	
	<u> </u>	<u> </u>			<u> </u>		 	<u> </u>	- -			<u>:</u>	
	}	-			<u> </u>		 	 	╬ -	- 			
		1	i			 		' 	†			1	
		1	İ	<u> </u>		i	i	1 3	1	- i			1
		1	İ			1	1		\$	1		i	i
		1					1						
		l	1	<u> </u>					1	<u> </u>		<u> </u>	
!		!	<u> </u>	<u> </u>		<u> </u>	1	_ ~		<u> </u>			1
		<u>!</u>		<u> </u>		 	<u> </u>	1	!				
i ^	<u></u>	!	1			<u> </u>	<u> </u>	1 ,	<u> </u>		··············		
<u> </u>		<u> </u>	<u>, </u>			!	!	<u> </u>		:-			
		[!	<u> </u>	<u> </u>	!	!		:				· · ·
	<u></u>	<u> </u>	!	1 .	<u></u>	<u> </u>	5	!	:	:			
<u>. </u>	<u> </u>	1	<u> </u>	!	<u> </u>	1	1		:	 -			
		1	<u>!</u>	1		!	<u>'</u> !	 	1			<u> </u>	- -
	<u>!</u> !		<u> </u>	<u>: </u>			! !		<u> </u>				

1981 - 4819

· ·	GROOF S
REPORT	OF Subaroup. 4
INTERNAL VISUAL DESIGN V	VERIFICATION (DECAP)
M/A. TYPE # NRL- 88-2	
CUSTOMER TYPE #	PURCHASE ORDER # Noo 173-79-C-01-7
REFERENCE SPECIFICATIONS	500
s/n 33	
PROCEDURE:	
DEUD UNIT BY REALO	WING SOLDER AT CAD
	ISTRUCTION FOR CONDITION OF
CHIP, WIRE, THERMOO	OMPRESSION BOND SOLDER
RESULTS:	OMPRESSION BOND, SOLDER
ALL PACTS, BONDS	
AND SOLDER JOINT	
were wormal	
(SEE PHOTO)	
CONCLUSIONS:	
UNIT MERTS THE	
REQUIREMENTS OF	
THE APPLICABLE	
SPECIFICATIONS	
U1. Bognton 11/6/81	
- she in	

d

MICROWAVE ASSOCIATES, INC. SEMICONDUCTOR DIVISION

BURLINGTON, MASS. 01803

1991-4819

BOND PULL TEST RESULTS

USTOMER	N.R.L.	GROUP B Subgroup 4
USTOMER P.O. NO.	N00173-79-C-0107	7 40624805
USTOMER PART NO.		
I/A SALES ORDER NO.		
I/A PART NO.	SPECIAL SCHOTTRY DIODE	
ULL TEST PER	MILISTO . 7 SD METHOD	COND
UMBER OF UNITS IN LOT		
NUMBER OF UNITS SAMPLED		
REQUENCY OF SAMPLING	QUAL TEST	
OND IDENTIFICATION	GOLD WIRE (. 0007 ") THERMING	OMPRESSION BOND

INIMUM PI	ULL STRENG	TH	5 GRAN	1			
NIT NO.	FORCE	UNIT NO.	FORCE	UNIT NO.	FORCE	UNIT NO.	FORCE
1 2 3 4	1.4 2.6 7.5 3.7	1 (2 3 4	1.5	1 2 3 4		1 2 3 4	· · · .

6 7 8	1.4 2.6 7.5 2.5 2.7 2.7 2.8 1.7 81.5	1 l 2 3 4 5 -6 7 8 9	1.5	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	
		`			 	

WIRE BROKE MID SPAN ALL DTHEES

			CTRICAL/							PAGE	OF	·
M.A. PART NO NRL - 8	8-2	CT# 1981-		OT NO.	SALES	ORDER NO	o. I QUA	NTITY	15	START	11/4/	181
CUSTOMER NR		C	USTOMER	PART NO.	ľ	CUSTOMER	PURCHAS	EORDER	NO. OTH	ER DRAWI	NGS TATA	5±3°(• Note
Environmental Test(s)	Gr	OUDC	Su	bar	gue						:	
PARAMETER	A	\mathcal{B}_{A}	Bc	C	Ď	E	F	G		ļ		
TEST CONDITIONS			-							ļ		_
LIMITS MIN			.060		,070		.060	30°				_
	.08(r	.064		,210	.082		.064					<u> </u>
No. 139		.060		.206	.078	.062	.064		<u> </u>		ļ	
139	080	.060		.206	.081	.062	.062		ļ	<u> </u>	<u> </u>	
140		.060			.080	.064			 	 	 	
141	079	.061		.205	.082	.063	.062		-	 	 	\vdash
143	078	.060	.061	1205		.061	.063	<u> </u>		ļ	 	-
143	020	060		.207	.081	.064	.062	<u>/</u>	 -	 	 	\vdash
)44	.078	.061	.061	,207	082		,062	/	 	 	 	
145	.^72	.060		.207	.080	.062	Olo U	/	 	 	 	┼-
144	.079	060	.061	.206	1082	.062	.064-	/	 -		 	┼
147	.07%	.060		305	.081	.062	.064	<u> </u>	 	 	 	+
148	.079	.060		206	.082	.061	.063		 	 	 	 -
149		.060		.205	180.	1061	.062		 	 	 	+
150	.079	060		306	082	.063	1430.		 	 -		┼
151	.080			1206		.063	.063				 	┼
125	.073	.060	.061	1306	.081	064	.062		 -	 	 	
									 	 	 	
						 				 	 	╁
		<u> </u>							 	 		+
										 	ļ	┼
										 	 	╁
									 	 		╁┈
				 i					 	 	 -	+-
									 	 	<u> </u>	\vdash
									 	 		1
									 	 		1
									 	 	<u> </u>	+-
									 	1	 	1-
								 _	 	†		1
									t			1
					·				 	 	· 	T
												
									 -			t-
									 			1
		-										1
		·····							l			\vdash
									· -			1
·						 						1
						LI			1			1

REFERENCES

- Schaumann, P.A., and Misakkas, C., "Thickness of Epitaxial Layers of Silicon on Substrates of the Same Type by Infrared Reflectance", American Society of Testing and Materials, IBM Technical Report, TR - 22537.
- Copeland, J.A., "A Technique for Directly Plotting the Inverse Doping Profile of Semiconductor Wafers", IEEE Transactions on Electron Devices, Vol. ED - 16, No. 5, May 1969, pp. 445-449.
- Manual for Jandel Universal Four Point Probe Resistivity Probe, Jandel Engineering Ltd. 70 Crowshott Ave. Stanmore, Middlesex, England.

THE RESERVE OF THE PROPERTY OF

- 4. Severin, P.J., and Poodt, G.J., "Capacitance Voltage Measurements with a Mercury Silicon Diode, "Journal of Electrochemistry Society Solid State Science and Technology, October 1972.
- 5. McDonald, B., and Goetzberger, A., "Measurement of the Depth of Diffused Layers in Silicon by the Grooving Method", Journal of the Electrochemical Society, Vol. 109, pp. 141-144, 1962.
- 6. The Digi-tab Film and Thickness Gauge Manual, No. M091-0025, Copyright 1970 by Digi-tab, Inc. 237 Putnam Ave. Cambridge, Mass. 02139.
- 7. Andrews, J.M., and Ryder, R.M., U.S. Patent 3964084, 1976.
- 8. Shanon, J.M., Applied Physics Letters, Vol. 25, No. 1, p 75, 1974.
- 9. Shanon, J.M., Applied Physics Letters, Vol. 25, No. 1, p 75, 1974.
- Christou, A., Anand, Y., and Dietrich, H., "Low Barrier Height Ion-Implanted X-Band Silicon Schottky-Barrier Mixer Diodes", IEEE Electron Device Conference, Washington, DC, 1977.
- 11. Chapin, J.F., Research and Development, Vol. 25, p 37,1974.
- 12. Pennington, J., U.S. Patent 2146024, 1939.

DISTRIBUTION LIST

Ē	‡ CY	#	t CY
Mr. J. Meulemans Air Force Materials Laboratory Wright Patterson Air Force Base Dayton, Ohio 45433	1	Chief of Naval Material ATTN: MAT 08E4, Mr. W. Holden Naval Material Command Headquarte Washington, D.C. 20360	l ers
Major J. Erbacher Wright Patterson Force Base Dayton, Ohio 45433	1	Mr. A. Zutkoff Code 5205Z Naval Research Laboratory Washington, D.C. 20375	1
Headquarters Defense Documentation Center for Scientific and Technical Info. Cameron Station Alexandria, Virginia 22314	1	Mr. N. Wilson (AMSEL-KL-TM) U.S. Army Electronics Command Fort Monmouth, NJ 07703	1
Advisory Group on Electron Devices 201 Varick Street New York, New York 10014 ATTN: Mr. H. Summer	1	Commander Naval Electronics Systems Command National Center #1 Washington, D.C. 20360 ATTN: Mr. R. Hill, Code 50451	1
Commanding General Rome Air Development Center Griffis Air Force Base Rome , New York 13440	1	ATTN: Code 30421	
Commanding Officer Naval Weapons Support Center Crane, Indiana 47522	1	Commander Naval Air Systems Command Washington, D.C. 20360 ATTN: NAVAIR Code 360	1
Director of Defense Research and Engineering ATTN: Technical Library Rm. 3E-1039, The Pentagon Washington, DCC. 20301	1	ATTN: NAVAIR Code 533313	
NAVMIRO ATTN: Code 226 (Oscar Wilsker) Building 75-2 Philadelphia Naval Base Philadelphia, PA.	1	Hughes Aircraft Company Electron Dynamics Division 3100 West Lomita Boulevard Torrance, California 90509	1

DISTRIBUTION LIST

	# CY
Alpha Industries Inc.	1
20 Sylvan Road	
Woburn, Massachusetts 01801	
AIL Division, Cutler-Hammer	1
Deer Park, L.I., NY 11729	
Naval Research Laboratory	5
Washington, D.C. 20375	
ATTN. Dr A Christon	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSOR D. AUTO	3. TEARENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED
Manufacturing Technology Program for High	Final Report
Burnout Silicon Schottky-Barrier Mixer Diodes	May 1979 to Nov. 1981
for Navy Air-To-Air Avionics	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(4)
Dr. Yoginder Anand	N00173-79-C-0107
Steven Ellis	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
M/A-COM	
Burlington, MA 01803	
	12
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE February 1982
Naval Research Laboratory	13. NUMBER OF PAGES
Washington, D.C. 20375	88
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS, (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimit	had
public release, distribution diffilling	ieu.
17 DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES	
Schottky Barrier Diodes	
High Burnout Mixer Diodes Mixer Diodes	
Mixer Diodes	:
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
	;
	•
20 ABSTRACT (Continue on reverse side if necessary and identify by block number)	
This report describes the establishment of low cos	st somiconductor processes
to manufacture low barrier height high burnout X	-band silican Schottler
barrier diodes in production quantities. These de	avices are thormal computer
sion-bonded in a rugged low cost pill (ODS-119)	nackage Thou authinia am
overall low noise figure of 7.0 dB (single side bar	od) at 0.5 mW of local control
lator power level and RF burnout of 12 watts (τ	- 1 usec and 103 Harris
rate). Reliability and ruggedness of the design h	nas heen demonstrated by
tests taken from MIL.S. 19500F.	ids been demonstrated by
DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE LING	

