HumanActivityRecognition _ Case Study 11

This project is to build a model that predicts the human activities such as Walking, Walking_Upstairs, Walking_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(_tAcc-XYZ_) from accelerometer and '3-axial angular velocity' (_tGyro-XYZ_) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X , Y, and Z directions.

Feature names

- 1. These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.

In our dataset, each datapoint represents a window with different readings

- The acceleration signal was saperated into Body and Gravity acceleration signals(tBodyAcc-XYZ and tGravityAcc-XYZ) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk signals* (*tBodyAccJerk-XYZ* and *tBodyGyroJerk-XYZ*).
- 5. The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This magnitudes are represented as features with names like $tBodyAccMag_$, $_tGravityAccMag_$, $_tBodyAccJerkMag_$, $_tBodyGyroMag$ and tBodyGyroJerkMag.
- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with *prefix 'f'* just like original signals with *prefix 't'*. These signals are labeled as *fBodyAcc-XYZ*, *fBodyGyroMag* etc.,.
- 7. These are the signals that we got so far.
 - tBodyAcc-XYZ
 - tGravityAcc-XYZ
 - tBodyAccJerk-XYZ
 - tBodyGyro-XYZ
 - tBodyGyroJerk-XYZ
 - tBodyAccMag
 - tGravityAccMag

- tBodyAccJerkMag
- tBodyGyroMag
- tBodyGyroJerkMag
- · fBodyAcc-XYZ
- fBodyAccJerk-XYZ
- fBodyGyro-XYZ
- fBodyAccMag
- fBodyAccJerkMag
- fBodyGyroMag
- fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
 - mean(): Mean value
 - std(): Standard deviation
 - mad(): Median absolute deviation
 - max(): Largest value in array
 - min(): Smallest value in array
 - sma(): Signal magnitude area
 - energy(): Energy measure. Sum of the squares divided by the number of values.
 - iqr(): Interquartile range
 - entropy(): Signal entropy
 - arCoeff(): Autorregresion coefficients with Burg order equal to 4
 - correlation(): correlation coefficient between two signals
 - maxinds(): index of the frequency component with largest magnitude
 - meanFreq(): Weighted average of the frequency components to obtain a mean frequency
 - skewness(): skewness of the frequency domain signal
 - kurtosis(): kurtosis of the frequency domain signal
 - bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
 - angle(): Angle between to vectors.
- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable' `
 - gravityMean
 - tBodyAccMean
 - tBodyAccJerkMean
 - tBodyGyroMean
 - tBodyGyroJerkMean

Y_Labels(Encoded)

- In the dataset, Y labels are represented as numbers from 1 to 6 as their identifiers.
 - WALKING as 1
 - WALKING UPSTAIRS as 2
 - WALKING DOWNSTAIRS as 3
 - SITTING as 4
 - STANDING as 5
 - LAYING as 6

Train and test data were saperated

The readings from 70% of the volunteers were taken as trianing data and remaining 30% subjects
recordings were taken for test data

Data

- All the data is present in 'UCI HAR dataset/' folder in present working directory.
 - Feature names are present in 'UCI HAR dataset/features.txt'
 - Train Data
 - 'UCI HAR dataset/train/X train.txt'
 - 'UCI HAR dataset/train/subject train.txt'
 - 'UCI HAR dataset/train/y train.txt'
 - Test Data
 - 'UCI HAR dataset/test/X test.txt'
 - 'UCI HAR dataset/test/subject test.txt'
 - 'UCI HAR dataset/test/y test.txt'

Data Size:

27 MB

Quick overview of the dataset:

- Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.
 - 1. Walking
 - 2. WalkingUpstairs
 - 3. WalkingDownstairs
 - 4. Standing
 - 5. Sitting
 - 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y
 and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- · Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engerybands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- Each datapoint corresponds one of the 6 Activities.

Problem Statement

· Given a new datapoint we have to predict the Activity

In [1]:

```
import numpy as np
import pandas as pd

# get the features from the file features.txt
features = list()
with open('UCI_HAR_Dataset/features.txt') as f:
    features = [line.split()[1] for line in f.readlines()]
print('No of Features: {}'.format(len(features)))
```

No of Features: 561

Obtain the train data

In [2]:

D:\installed\Anaconda3\lib\site-packages\pandas\io\parsers.py:678: UserWarni
ng: Duplicate names specified. This will raise an error in the future.
 return _read(filepath_or_buffer, kwds)

Out[2]:

	tBodyAcc- mean()-X	•	•	•	•	tBodyAcc- std()-Z	tBodyAcc- mad()-X	tBodyA mad
6015	0.2797	-0.004397	-0.10952	0.359081	0.119909	-0.177541	0.337963	0.066

1 rows × 564 columns

```
In [3]:
train.shape
Out[3]:
```

Obtain the test data

```
In [4]:
```

(7352, 564)

D:\installed\Anaconda3\lib\site-packages\pandas\io\parsers.py:678: UserWarni ng: Duplicate names specified. This will raise an error in the future. return _read(filepath_or_buffer, kwds)

Out[4]:

	tBodyAcc- mean()-X	•	tBodyAcc- mean()-Z	•	tBodyAcc- std()-Y	tBodyAcc- std()-Z	tBodyAcc- mad()-X	tBodyA mad
2261	0.279196	-0.018261	-0.103376	-0.996955	-0.982959	-0.988239	-0.9972	-0.982

1 rows × 564 columns

```
←
```

In [5]:

```
test.shape
```

Out[5]:

(2947, 564)

Data Cleaning

1. Check for Duplicates

In [6]:

```
print('No of duplicates in train: {}'.format(sum(train.duplicated())))
print('No of duplicates in test : {}'.format(sum(test.duplicated())))
```

No of duplicates in train: 0 No of duplicates in test : 0

2. Checking for NaN/null values

In [7]:

```
print('We have {} NaN/Null values in train'.format(train.isnull().values.sum()))
print('We have {} NaN/Null values in test'.format(test.isnull().values.sum()))
```

We have 0 NaN/Null values in train We have 0 NaN/Null values in test

3. Check for data imbalance

In [8]:

```
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('whitegrid')
plt.rcParams['font.family'] = 'Dejavu Sans'
```

In [9]:

```
plt.figure(figsize=(16,8))
plt.title('Data provided by each user', fontsize=20)
sns.countplot(x='subject',hue='ActivityName', data = train)
plt.show()
```


We have got almost same number of reading from all the subjects

In [10]:

```
plt.title('No of Datapoints per Activity', fontsize=15)
sns.countplot(train.ActivityName)
plt.xticks(rotation=90)
plt.show()
```


Observation

Our data is well balanced (almost)

4. Changing feature names

In [11]:

```
columns = train.columns

# Removing '()' from column names
columns = columns.str.replace('[()]','')
columns = columns.str.replace('[-]', '')
columns = columns.str.replace('[,]','')

train.columns = columns
test.columns

test.columns
```

Out[11]:

5. Save this dataframe in a csv files

```
In [13]:
```

```
train.to_csv('UCI_HAR_Dataset/csv_files/train.csv', index=False)
test.to_csv('UCI_HAR_Dataset/csv_files/test.csv', index=False)
```

Exploratory Data Analysis

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

1. Featuring Engineering from Domain Knowledge

- Static and Dynamic Activities
 - In static activities (sit, stand, lie down) motion information will not be very useful.
 - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

2. Stationary and Moving activities are completely different

In [14]:

In [15]:

```
# for plotting purposes taking datapoints of each activity to a different dataframe
df1 = train[train['Activity']==1]
df2 = train[train['Activity']==2]
df3 = train[train['Activity']==3]
df4 = train[train['Activity']==4]
df5 = train[train['Activity']==5]
df6 = train[train['Activity']==6]
plt.figure(figsize=(14,7))
plt.subplot(2,2,1)
plt.title('Stationary Activities(Zoomed in)')
sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
plt.axis([-1.01, -0.5, 0, 35])
plt.legend(loc='center')
plt.subplot(2,2,2)
plt.title('Moving Activities')
sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking')
sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking Up')
sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walking down')
plt.legend(loc='center right')
plt.tight_layout()
plt.show()
```


3. Magnitude of an acceleration can saperate it well

In [16]:

```
plt.figure(figsize=(7,7))
sns.boxplot(x='ActivityName', y='tBodyAccMagmean',data=train, showfliers=False, saturation=
plt.ylabel('Acceleration Magnitude mean')
plt.axhline(y=-0.7, xmin=0.1, xmax=0.9,dashes=(5,5), c='g')
plt.axhline(y=-0.05, xmin=0.4, dashes=(5,5), c='m')
plt.xticks(rotation=90)
plt.show()
```


- If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying.
- If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs.
- If tAccMean > 0.0 then the Activity is WalkingDownstairs.
- · We can classify 75% the Acitivity labels with some errors.

4. Position of GravityAccelerationComponants also matters

In [17]:

```
sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train)
plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3))
plt.title('Angle between X-axis and Gravity_mean', fontsize=15)
plt.xticks(rotation = 40)
plt.show()
```


Observations :

- If angleX,gravityMean > 0 then Activity is Laying.
- We can classify all datapoints belonging to Laying activity with just a single if else statement.

In [18]:

```
sns.boxplot(x='ActivityName', y='angleYgravityMean', data = train, showfliers=False)
plt.title('Angle between Y-axis and Gravity_mean', fontsize=15)
plt.xticks(rotation = 40)
plt.axhline(y=-0.22, xmin=0.1, xmax=0.8, dashes=(5,3), c='m')
plt.show()
```


Apply t-sne on the data

In [46]:

```
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import seaborn as sns
```

In [47]:

```
# performs t-sne with different perplexity values and their repective plots..
def perform_tsne(X_data, y_data, perplexities, n_iter=1000, img_name_prefix='t-sne'):
   for index,perplexity in enumerate(perplexities):
        # perform t-sne
        print('\nperforming tsne with perplexity {} and with {} iterations at max'.format(p
        X_reduced = TSNE(verbose=2, perplexity=perplexity).fit_transform(X_data)
        print('Done..')
        # prepare the data for seaborn
        print('Creating plot for this t-sne visualization..')
        df = pd.DataFrame({'x':X_reduced[:,0], 'y':X_reduced[:,1], 'label':y_data})
        # draw the plot in appropriate place in the grid
        sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,\
                   palette="Set1", markers=['^','v','s','o', '1','2'])
        plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_iter))
        img_name = img_name_prefix + '_perp_{}_iter_{}.png'.format(perplexity, n_iter)
        print('saving this plot as image in present working directory...')
        plt.savefig(img_name)
        plt.show()
        print('Done')
```

In [48]:

```
X_pre_tsne = train.drop(['subject', 'Activity','ActivityName'], axis=1)
y_pre_tsne = train['ActivityName']
perform_tsne(X_data = X_pre_tsne,y_data=y_pre_tsne, perplexities =[2,5,10,20,50])
```

```
performing tsne with perplexity 2 and with 1000 iterations at max
[t-SNE] Computing 7 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.426s...
[t-SNE] Computed neighbors for 7352 samples in 72.001s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.635855
[t-SNE] Computed conditional probabilities in 0.071s
[t-SNE] Iteration 50: error = 124.8017578, gradient norm = 0.0253939 (50 ite
rations in 16.625s)
[t-SNE] Iteration 100: error = 107.2019501, gradient norm = 0.0284782 (50 it
erations in 9.735s)
[t-SNE] Iteration 150: error = 100.9872894, gradient norm = 0.0185151 (50 it
erations in 5.346s)
[t-SNE] Iteration 200: error = 97.6054382, gradient norm = 0.0142084 (50 ite
rations in 7.013s)
[t-SNE] Iteration 250: error = 95.3084183, gradient norm = 0.0132592 (50 ite
rations in 5.703s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 95.30841
[t-SNE] Iteration 300: error = 4.1209540, gradient norm = 0.0015668 (50 iter
ations in 7.156s)
[t-SNE] Iteration 350: error = 3.2113254, gradient norm = 0.0009953 (50 iter
ations in 8.022s)
[t-SNE] Iteration 400: error = 2.7819963, gradient norm = 0.0007203 (50 iter
ations in 9.419s)
[t-SNE] Iteration 450: error = 2.5178111, gradient norm = 0.0005655 (50 iter
ations in 9.370s)
[t-SNE] Iteration 500: error = 2.3341548, gradient norm = 0.0004804 (50 iter
ations in 7.681s)
[t-SNE] Iteration 550: error = 2.1961622, gradient norm = 0.0004183 (50 iter
ations in 7.097s)
[t-SNE] Iteration 600: error = 2.0867445, gradient norm = 0.0003664 (50 iter
ations in 9.274s)
[t-SNE] Iteration 650: error = 1.9967778, gradient norm = 0.0003279 (50 iter
ations in 7.697s)
[t-SNE] Iteration 700: error = 1.9210005, gradient norm = 0.0002984 (50 iter
ations in 8.174s)
[t-SNE] Iteration 750: error = 1.8558111, gradient norm = 0.0002776 (50 iter
ations in 9.747s)
[t-SNE] Iteration 800: error = 1.7989457, gradient norm = 0.0002569 (50 iter
ations in 8.687s)
[t-SNE] Iteration 850: error = 1.7490212, gradient norm = 0.0002394 (50 iter
ations in 8.407s)
[t-SNE] Iteration 900: error = 1.7043383, gradient norm = 0.0002224 (50 iter
ations in 8.351s)
[t-SNE] Iteration 950: error = 1.6641431, gradient norm = 0.0002098 (50 iter
ations in 7.841s)
```

```
[t-SNE] Iteration 1000: error = 1.6279151, gradient norm = 0.0001989 (50 iterations in 5.623s)
```

[t-SNE] Error after 1000 iterations: 1.627915

Done..

Creating plot for this t-sne visualization..

saving this plot as image in present working directory...


```
Done
performing tsne with perplexity 5 and with 1000 iterations at max
[t-SNE] Computing 16 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.263s...
[t-SNE] Computed neighbors for 7352 samples in 48.983s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.961265
[t-SNE] Computed conditional probabilities in 0.122s
[t-SNE] Iteration 50: error = 114.1862640, gradient norm = 0.0184120 (50 i
terations in 55.655s)
[t-SNE] Iteration 100: error = 97.6535568, gradient norm = 0.0174309 (50 i
terations in 12.580s)
[t-SNE] Iteration 150: error = 93.1900101, gradient norm = 0.0101048 (50 i
terations in 9.180s)
[t-SNE] Iteration 200: error = 91.2315445, gradient norm = 0.0074560 (50 i
terations in 10.340s)
[t-SNE] Iteration 250: error = 90.0714417, gradient norm = 0.0057667 (50 i
```

```
terations in 9.458s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 90.071
442
[t-SNE] Iteration 300: error = 3.5796804, gradient norm = 0.0014691 (50 it
erations in 8.718s)
[t-SNE] Iteration 350: error = 2.8173938, gradient norm = 0.0007508 (50 it
erations in 10.180s)
[t-SNE] Iteration 400: error = 2.4344938, gradient norm = 0.0005251 (50 it
erations in 10.506s)
[t-SNE] Iteration 450: error = 2.2156141, gradient norm = 0.0004069 (50 it
erations in 10.072s)
[t-SNE] Iteration 500: error = 2.0703306, gradient norm = 0.0003340 (50 it
erations in 10.511s)
[t-SNE] Iteration 550: error = 1.9646366, gradient norm = 0.0002816 (50 it
erations in 9.792s)
[t-SNE] Iteration 600: error = 1.8835558, gradient norm = 0.0002471 (50 it
erations in 9.098s)
[t-SNE] Iteration 650: error = 1.8184001, gradient norm = 0.0002184 (50 it
erations in 8.656s)
[t-SNE] Iteration 700: error = 1.7647167, gradient norm = 0.0001961 (50 it
erations in 9.063s)
[t-SNE] Iteration 750: error = 1.7193680, gradient norm = 0.0001796 (50 it
erations in 9.754s)
[t-SNE] Iteration 800: error = 1.6803776, gradient norm = 0.0001655 (50 it
erations in 9.540s)
[t-SNE] Iteration 850: error = 1.6465144, gradient norm = 0.0001538 (50 it
erations in 9.953s)
[t-SNE] Iteration 900: error = 1.6166563, gradient norm = 0.0001421 (50 it
erations in 10.270s)
[t-SNE] Iteration 950: error = 1.5901035, gradient norm = 0.0001335 (50 it
erations in 6.609s)
[t-SNE] Iteration 1000: error = 1.5664237, gradient norm = 0.0001257 (50 i
terations in 8.553s)
[t-SNE] Error after 1000 iterations: 1.566424
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```


Done

```
performing tsne with perplexity 10 and with 1000 iterations at max
[t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.410s...
[t-SNE] Computed neighbors for 7352 samples in 64.801s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.214s
[t-SNE] Iteration 50: error = 106.0169220, gradient norm = 0.0194293 (50 ite
rations in 24.550s)
[t-SNE] Iteration 100: error = 90.3036194, gradient norm = 0.0097653 (50 ite
rations in 11.936s)
[t-SNE] Iteration 150: error = 87.3132935, gradient norm = 0.0053059 (50 ite
rations in 11.246s)
[t-SNE] Iteration 200: error = 86.1169128, gradient norm = 0.0035844 (50 ite
rations in 11.864s)
[t-SNE] Iteration 250: error = 85.4133606, gradient norm = 0.0029100 (50 ite
rations in 11.944s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.41336
1
[t-SNE] Iteration 300: error = 3.1394315, gradient norm = 0.0013976 (50 iter
ations in 11.742s)
[t-SNE] Iteration 350: error = 2.4929206, gradient norm = 0.0006466 (50 iter
ations in 11.627s)
[t-SNE] Iteration 400: error = 2.1733041, gradient norm = 0.0004230 (50 iter
ations in 11.846s)
[t-SNE] Iteration 450: error = 1.9884514, gradient norm = 0.0003124 (50 iter
ations in 11.405s)
[t-SNE] Iteration 500: error = 1.8702440, gradient norm = 0.0002514 (50 iter
ations in 11.320s)
[t-SNE] Iteration 550: error = 1.7870129, gradient norm = 0.0002107 (50 iter
ations in 12.009s)
[t-SNE] Iteration 600: error = 1.7246909, gradient norm = 0.0001824 (50 iter
ations in 10.632s)
[t-SNE] Iteration 650: error = 1.6758548, gradient norm = 0.0001590 (50 iter
ations in 11.270s)
[t-SNE] Iteration 700: error = 1.6361949, gradient norm = 0.0001451 (50 iter
ations in 12.072s)
[t-SNE] Iteration 750: error = 1.6034756, gradient norm = 0.0001305 (50 iter
ations in 11.607s)
[t-SNE] Iteration 800: error = 1.5761518, gradient norm = 0.0001188 (50 iter
ations in 9.409s)
[t-SNE] Iteration 850: error = 1.5527289, gradient norm = 0.0001113 (50 iter
ations in 8.309s)
[t-SNE] Iteration 900: error = 1.5328671, gradient norm = 0.0001021 (50 iter
ations in 9.433s)
[t-SNE] Iteration 950: error = 1.5152045, gradient norm = 0.0000974 (50 iter
ations in 11.488s)
[t-SNE] Iteration 1000: error = 1.4999681, gradient norm = 0.0000933 (50 ite
```

```
rations in 10.593s)
```

[t-SNE] Error after 1000 iterations: 1.499968

Done.

Creating plot for this t-sne visualization..

saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 20 and with 1000 iterations at max
[t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.425s...
[t-SNE] Computed neighbors for 7352 samples in 61.792s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
[t-SNE] Computed conditional probabilities in 0.355s
[t-SNE] Iteration 50: error = 97.5202179, gradient norm = 0.0223863 (50 iter
ations in 21.168s)
[t-SNE] Iteration 100: error = 83.9500732, gradient norm = 0.0059110 (50 ite
rations in 17.306s)
[t-SNE] Iteration 150: error = 81.8804779, gradient norm = 0.0035797 (50 ite
rations in 14.258s)
[t-SNE] Iteration 200: error = 81.1615143, gradient norm = 0.0022536 (50 ite
rations in 14.130s)
[t-SNE] Iteration 250: error = 80.7704086, gradient norm = 0.0018108 (50 ite
rations in 15.340s)
```

```
[t-SNE] KL divergence after 250 iterations with early exaggeration: 80.77040
[t-SNE] Iteration 300: error = 2.6957574, gradient norm = 0.0012993 (50 iter
ations in 13.605s)
[t-SNE] Iteration 350: error = 2.1637220, gradient norm = 0.0005765 (50 iter
ations in 13.248s)
[t-SNE] Iteration 400: error = 1.9143614, gradient norm = 0.0003474 (50 iter
ations in 14.774s)
[t-SNE] Iteration 450: error = 1.7684202, gradient norm = 0.0002458 (50 iter
ations in 15.502s)
[t-SNE] Iteration 500: error = 1.6744757, gradient norm = 0.0001923 (50 iter
ations in 14.808s)
[t-SNE] Iteration 550: error = 1.6101606, gradient norm = 0.0001575 (50 iter
ations in 14.043s)
[t-SNE] Iteration 600: error = 1.5641028, gradient norm = 0.0001344 (50 iter
ations in 15.769s)
[t-SNE] Iteration 650: error = 1.5291905, gradient norm = 0.0001182 (50 iter
ations in 15.834s)
[t-SNE] Iteration 700: error = 1.5024391, gradient norm = 0.0001055 (50 iter
ations in 15.398s)
[t-SNE] Iteration 750: error = 1.4809053, gradient norm = 0.0000965 (50 iter
ations in 14.594s)
[t-SNE] Iteration 800: error = 1.4631859, gradient norm = 0.0000884 (50 iter
ations in 15.025s)
[t-SNE] Iteration 850: error = 1.4486470, gradient norm = 0.0000832 (50 iter
ations in 14.060s)
[t-SNE] Iteration 900: error = 1.4367288, gradient norm = 0.0000804 (50 iter
ations in 12.389s)
[t-SNE] Iteration 950: error = 1.4270191, gradient norm = 0.0000761 (50 iter
ations in 10.392s)
[t-SNE] Iteration 1000: error = 1.4189968, gradient norm = 0.0000787 (50 ite
rations in 12.355s)
[t-SNE] Error after 1000 iterations: 1.418997
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```


Done

```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.376s...
[t-SNE] Computed neighbors for 7352 samples in 73.164s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 0.844s
[t-SNE] Iteration 50: error = 86.1525574, gradient norm = 0.0242986 (50 it
erations in 36.249s)
[t-SNE] Iteration 100: error = 75.9874649, gradient norm = 0.0061005 (50 i
terations in 30.453s)
[t-SNE] Iteration 150: error = 74.7072296, gradient norm = 0.0024708 (50 i
terations in 28.461s)
[t-SNE] Iteration 200: error = 74.2736282, gradient norm = 0.0018644 (50 i
terations in 27.735s)
[t-SNE] Iteration 250: error = 74.0722427, gradient norm = 0.0014078 (50 i
terations in 26.835s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.072
243
[t-SNE] Iteration 300: error = 2.1539080, gradient norm = 0.0011796 (50 it
erations in 25.445s)
[t-SNE] Iteration 350: error = 1.7567128, gradient norm = 0.0004845 (50 it
erations in 21.282s)
[t-SNE] Iteration 400: error = 1.5888531, gradient norm = 0.0002798 (50 it
erations in 21.015s)
[t-SNE] Iteration 450: error = 1.4956820, gradient norm = 0.0001894 (50 it
erations in 23.332s)
[t-SNE] Iteration 500: error = 1.4359720, gradient norm = 0.0001420 (50 it
erations in 23.083s)
[t-SNE] Iteration 550: error = 1.3947564, gradient norm = 0.0001117 (50 it
erations in 19.626s)
[t-SNE] Iteration 600: error = 1.3653858, gradient norm = 0.0000949 (50 it
erations in 22.752s)
[t-SNE] Iteration 650: error = 1.3441534, gradient norm = 0.0000814 (50 it
erations in 23.972s)
[t-SNE] Iteration 700: error = 1.3284039, gradient norm = 0.0000742 (50 it
erations in 20.636s)
[t-SNE] Iteration 750: error = 1.3171139, gradient norm = 0.0000700 (50 it
erations in 20.407s)
[t-SNE] Iteration 800: error = 1.3085558, gradient norm = 0.0000657 (50 it
erations in 24.951s)
[t-SNE] Iteration 850: error = 1.3017821, gradient norm = 0.0000603 (50 it
erations in 24.719s)
[t-SNE] Iteration 900: error = 1.2962619, gradient norm = 0.0000586 (50 it
erations in 24.500s)
[t-SNE] Iteration 950: error = 1.2914882, gradient norm = 0.0000573 (50 it
erations in 24.132s)
[t-SNE] Iteration 1000: error = 1.2874244, gradient norm = 0.0000546 (50 i
```

```
terations in 22.840s)
[t-SNE] Error after 1000 iterations: 1.287424

Done..

Creating plot for this t-sne visualization..

Saving this plot as image in present working directory
```


Done

------Machine Learning Models-----

In [1]:

```
import numpy as np
import pandas as pd
```

Obtain the train and test data

In [2]:

```
train = pd.read_csv('UCI_HAR_dataset/csv_files/train.csv')
test = pd.read_csv('UCI_HAR_dataset/csv_files/test.csv')
print(train.shape, test.shape)
```

(7352, 564) (2947, 564)

```
In [3]:
```

```
train.head(3)
```

Out[3]:

	tBodyAccmeanX	tBodyAccmeanY	tBodyAccmeanZ	tBodyAccstdX	tBodyAccstdY	tBodyAccs
0	0.288585	-0.020294	-0.132905	-0.995279	-0.983111	-0.913
1	0.278419	-0.016411	-0.123520	-0.998245	-0.975300	-0.960
2	0.279653	-0.019467	-0.113462	-0.995380	-0.967187	-0.978

3 rows × 564 columns

```
→
```

In [4]:

```
# get X_train and y_train from csv files
X_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_train = train.ActivityName
```

In [5]:

```
# get X_test and y_test from test csv file
X_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_test = test.ActivityName
```

In [6]:

```
print('X_train and y_train : ({},{})'.format(X_train.shape, y_train.shape))
print('X_test and y_test : ({},{})'.format(X_test.shape, y_test.shape))
```

```
X_train and y_train : ((7352, 561),(7352,))
X_test and y_test : ((2947, 561),(2947,))
```

Let's model with our data

Labels that are useful in plotting confusion matrix

```
In [2]:
```

```
labels=['LAYING', 'SITTING','STANDING','WALKING','WALKING_DOWNSTAIRS','WALKING_UPSTAIRS']
```

Function to plot the confusion matrix

In [3]:

```
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
plt.rcParams["font.family"] = 'DejaVu Sans'
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
   if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
   plt.imshow(cm, interpolation='nearest', cmap=cmap)
   plt.title(title)
   plt.colorbar()
   tick_marks = np.arange(len(classes))
   plt.xticks(tick_marks, classes, rotation=90)
   plt.yticks(tick_marks, classes)
   fmt = '.2f' if normalize else 'd'
   thresh = cm.max() / 2.
   for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
   plt.tight_layout()
   plt.ylabel('True label')
   plt.xlabel('Predicted label')
```

Generic function to run any model specified

In [4]:

```
from datetime import datetime
def perform_model(model, X_train, y_train, X_test, y_test, class_labels, cm_normalize=True,
                print_cm=True, cm_cmap=plt.cm.Greens):
   # to store results at various phases
   results = dict()
   # time at which model starts training
   train start time = datetime.now()
   print('training the model..')
   model.fit(X_train, y_train)
   print('Done \n \n')
   train_end_time = datetime.now()
   results['training_time'] = train_end_time - train_start_time
   print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time']))
   # predict test data
   print('Predicting test data')
   test_start_time = datetime.now()
   y_pred = model.predict(X_test)
   test_end_time = datetime.now()
   print('Done \n \n')
   results['testing_time'] = test_end_time - test_start_time
   print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing_time']))
   results['predicted'] = y_pred
   # calculate overall accuracty of the model
   accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
   # store accuracy in results
   results['accuracy'] = accuracy
   print('----')
   print('| Accuracy |')
   print('----')
   print('\n {}\n\n'.format(accuracy))
   # confusion matrix
   cm = metrics.confusion matrix(y test, y pred)
   results['confusion_matrix'] = cm
   if print cm:
       print('----')
       print('| Confusion Matrix |')
       print('----')
       print('\n {}'.format(cm))
   # plot confusin matrix
   plt.figure(figsize=(8,8))
   plt.grid(b=False)
   plot confusion matrix(cm, classes=class labels, normalize=True, title='Normalized confu
   plt.show()
   # get classification report
   print('-----')
   print('| Classifiction Report |')
   print('----')
   classification_report = metrics.classification_report(y_test, y_pred)
```

```
# store report in results
results['classification_report'] = classification_report
print(classification_report)

# add the trained model to the results
results['model'] = model

return results
```

Method to print the gridsearch Attributes

```
In [5]:
```

```
def print_grid_search_attributes(model):
   # Estimator that gave highest score among all the estimators formed in GridSearch
   print('----')
   print('| Best Estimator |')
   print('----')
   print('\n\t{}\n'.format(model.best_estimator_))
   # parameters that gave best results while performing grid search
   print('----')
   print('| Best parameters |')
   print('----')
   print('\tParameters of best estimator : \n\n\t{}\n'.format(model.best_params_))
   # number of cross validation splits
   print('----')
   print('| No of CrossValidation sets |')
   print('----')
   print('\n\tTotal numbre of cross validation sets: {}\n'.format(model.n_splits_))
   # Average cross validated score of the best estimator, from the Grid Search
   print('----')
   print('| Best Score |')
   print('----')
   print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.format(model.b
```

1. Logistic Regression with Grid Search

```
In [5]:
```

```
from sklearn import linear_model
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
```

In [8]:

```
# start Grid search
parameters = {'C':[0.01, 0.1, 1, 10, 20, 30], 'penalty':['12','11']}
log_reg = linear_model.LogisticRegression()
log_reg_grid = GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_jobs=-1)
log_reg_grid_results = perform_model(log_reg_grid, X_train, y_train, X_test, y_test, class)
```

Out[8]:

"# start Grid search\nparameters = {'C':[0.01, 0.1, 1, 10, 20, 30], 'penalt
y':['l2','l1']}\nlog_reg = linear_model.LogisticRegression()\nlog_reg_grid =
GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_jobs=-1)\nlo
g_reg_grid_results = perform_model(log_reg_grid, X_train, y_train, X_test,
y_test, class_labels=labels)\n"

In [13]:

```
plt.figure(figsize=(8,8))
plt.grid(b=False)
plot_confusion_matrix(log_reg_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm
plt.show()
```



```
In [14]:
# observe the attributes of the model
```

```
print_grid_search_attributes(log_reg_grid_results['model'])
    Best Estimator
       LogisticRegression(C=30, class_weight=None, dual=False, fit_intercep
t=True,
         intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
        penalty='12', random_state=None, solver='liblinear', tol=0.0001,
        verbose=0, warm_start=False)
   Best parameters
       Parameters of best estimator :
       {'C': 30, 'penalty': '12'}
_____
   No of CrossValidation sets
       Total numbre of cross validation sets: 3
-----
      Best Score
       Average Cross Validate scores of best estimator :
```

2. Linear SVC with GridSearch

0.9461371055495104

In [15]:

from sklearn.svm import LinearSVC

```
In [16]:
```

```
parameters = {'C':[0.125, 0.5, 1, 2, 8, 16]}
lr_svc = LinearSVC(tol=0.00005)
lr_svc_grid = GridSearchCV(lr_svc, param_grid=parameters, n_jobs=-1, verbose=1)
lr_svc_grid_results = perform_model(lr_svc_grid, X_train, y_train, X_test, y_test, class_la
training the model..
Fitting 3 folds for each of 6 candidates, totalling 18 fits
[Parallel(n_jobs=-1)]: Done 18 out of 18 | elapsed: 24.9s finished
Done
training_time(HH:MM:SS.ms) - 0:00:32.951942
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.012182
    Accuracy
   0.9660671869697998
| Confusion Matrix |
-----
 [[537
                       01
      0
            0 0
                  0
   2 426 58
              0
                      5]
                  0
   0 14 518 0
                  0
                      0]
      0 0 495 0
      0 0 2 413
                      5]
   0
      0 0 12
                 1 458]]
```


| Classifiction Report |

| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.87	0.92	491
STANDING	0.90	0.97	0.94	532
WALKING	0.97	1.00	0.99	496
WALKING_DOWNSTAIRS	1.00	0.98	0.99	420
WALKING_UPSTAIRS	0.98	0.97	0.97	471
avg / total	0.97	0.97	0.97	2947

```
In [17]:
print_grid_search_attributes(lr_svc_grid_results['model'])

Best Estimator

LinearSVC(C=8, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='12', random_state=None, tol=5e-05, verbose=0)

Best parameters

Parameters of best estimator:
{'C': 8}

No of CrossValidation sets |

Total numbre of cross validation sets: 3
```

3. Kernel SVM with GridSearch

0.9465451577801959

Average Cross Validate scores of best estimator :

In [18]:

```
from sklearn.svm import SVC
parameters = {'C':[2,8,16],\
            'gamma': [ 0.0078125, 0.125, 2]}
rbf_svm = SVC(kernel='rbf')
rbf_svm_grid = GridSearchCV(rbf_svm,param_grid=parameters, n_jobs=-1)
rbf_svm_grid_results = perform_model(rbf_svm_grid, X_train, y_train, X_test, y_test, class_
training the model..
Done
training_time(HH:MM:SS.ms) - 0:05:46.182889
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:05.221285
------
    Accuracy
-----
   0.9626739056667798
| Confusion Matrix |
------
[[537 0 0 0
                 0
                     0]
   0 441 48
              0 0
                     2]
      12 520 0
   0
                 0
                     0]
                2
0
      0
         0 489
                     5]
      0 0 4 397 19]
0
          0 17
                 1 453]]
```


| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING STANDING	0.97 0.92	0.90 0.98	0.93 0.95	491 532
WALKING WALKING_DOWNSTAIRS	0.96 0.99	0.99 0.95	0.97 0.97	496 420
WALKING_UPSTAIRS	0.95	0.96	0.95	471
avg / total	0.96	0.96	0.96	2947

```
In [19]:
print_grid_search_attributes(rbf_svm_grid_results['model'])
   Best Estimator |
      SVC(C=16, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma=0.0078125, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)
-----
 Best parameters
      Parameters of best estimator :
      {'C': 16, 'gamma': 0.0078125}
_____
 No of CrossValidation sets
      Total numbre of cross validation sets: 3
_____
Best Score |
      Average Cross Validate scores of best estimator :
```

4. Decision Trees with GridSearchCV

0.9440968443960827

In [20]:

0 0 73 29 369]]

```
from sklearn.tree import DecisionTreeClassifier
parameters = {'max_depth':np.arange(3,10,2)}
dt = DecisionTreeClassifier()
dt_grid = GridSearchCV(dt,param_grid=parameters, n_jobs=-1)
dt_grid_results = perform_model(dt_grid, X_train, y_train, X_test, y_test, class_labels=lab
print_grid_search_attributes(dt_grid_results['model'])
training the model..
Done
training_time(HH:MM:SS.ms) - 0:00:19.476858
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.012858
-----
    Accuracy
-----
   0.8642687478791992
| Confusion Matrix |
------
 [[537 0 0 0 0
                      0]
   0 386 105 0 0
                     0]
      93 439 0
                0
                     0]
         0 472 16
 0
      0
                     8]
      0 0 15 344 61]
 [
   0
```


Classifiction Rep	ort				
	precision	recall	f1-score	support	
LAYING	1.00	1.00	1.00	537	
SITTING	0.81	0.79	0.80	491	
STANDING	0.81	0.83	0.82	532	
WALKING	0.84	0.95	0.89	496	
WALKING_DOWNSTAIRS	0.88	0.82	0.85	420	
WALKING_UPSTAIRS	0.84	0.78	0.81	471	
avg / total	0.86	0.86	0.86	2947	
Best Estimat	or				
pth=7,	·	_		criterion='gi	ini', max_de
min_imp min_sam	ples_leaf=1,	se=0.0, m min_samp	in_impurity les_split=	y_split=None,	
е,		_	-		

```
splitter='best')

| Best parameters |
| Parameters of best estimator:
| {'max_depth': 7}
| No of CrossValidation sets |
| Total numbre of cross validation sets: 3
| Best Score |
| Average Cross Validate scores of best estimator:
| 0.8369151251360174
```

5. Random Forest Classifier with GridSearch

In [21]:

0 0 34

6 431]]

```
from sklearn.ensemble import RandomForestClassifier
params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}
rfc = RandomForestClassifier()
rfc_grid = GridSearchCV(rfc, param_grid=params, n_jobs=-1)
rfc_grid_results = perform_model(rfc_grid, X_train, y_train, X_test, y_test, class_labels=1
print_grid_search_attributes(rfc_grid_results['model'])
training the model..
Done
training_time(HH:MM:SS.ms) - 0:06:22.775270
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.025937
------
    Accuracy
-----
   0.9131319986426875
| Confusion Matrix |
------
[[537 0 0 0
                      0]
   0 427 64
              0
                  0
                     0]
      52 480 0
                0
                     0]
         0 484 10
0
                     2]
     0 0 38 332 50]
   0
```


| Classifiction Report |

1	 ۵.	 	 	•••	 Ρ,	٠.	_	1	

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING STANDING	0.89 0.88	0.87 0.90	0.88 0.89	491 532
WALKING	0.87	0.98	0.92	496
WALKING_DOWNSTAIRS	0.95	0.79	0.86	420
WALKING_UPSTAIRS	0.89	0.92	0.90	471
avg / total	0.92	0.91	0.91	2947

```
Best Estimator
```

RandomForestClassifier(bootstrap=True, class_weight=None, criterion
='gini',

max_depth=7, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=70, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

```
Best parameters |
```

Parameters of best estimator :

{'max_depth': 7, 'n_estimators': 70}

```
No of CrossValidation sets
```

Total numbre of cross validation sets: 3

```
| Best Score |
```

Average Cross Validate scores of best estimator :

0.9141730141458106

6. Gradient Boosted Decision Trees With GridSearch

In [22]:

0

1

0 31

6 433]]

```
from sklearn.ensemble import GradientBoostingClassifier
param_grid = {'max_depth': np.arange(5,8,1), \
            'n estimators':np.arange(130,170,10)}
gbdt = GradientBoostingClassifier()
gbdt_grid = GridSearchCV(gbdt, param_grid=param_grid, n_jobs=-1)
gbdt_grid_results = perform_model(gbdt_grid, X_train, y_train, X_test, y_test, class_labels
print_grid_search_attributes(gbdt_grid_results['model'])
training the model..
Done
training_time(HH:MM:SS.ms) - 0:28:03.653432
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.058843
------
      Accuracy
_____
   0.9222938581608415
-----
| Confusion Matrix |
 [[537
        0
            0
                0
                  0
                       0]
   0 396 93
               0
                  0
                      2]
      37 495
 0
                      01
           0 483
                  7
   0
       0
                      6]
 0
           0 10 374
 [
                     361
```


| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.91	0.81	0.86	491
STANDING	0.84	0.93	0.88	532
WALKING	0.92	0.97	0.95	496
WALKING_DOWNSTAIRS	0.97	0.89	0.93	420
WALKING_UPSTAIRS	0.91	0.92	0.91	471
avg / total	0.92	0.92	0.92	2947

Best Estimator |

GradientBoostingClassifier(criterion='friedman_mse', init=None,
 learning_rate=0.1, loss='deviance', max_depth=5,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, n_estimators=140,
 presort='auto', random_state=None, subsample=1.0, verbose=0,
 warm_start=False)

Best parameters

Parameters of best estimator :

{'max_depth': 5, 'n_estimators': 140}

```
No of CrossValidation sets |

Total numbre of cross validation sets: 3

Best Score |

Average Cross Validate scores of best estimator:

0.904379760609358
```

7. Comparing all models

In [23]:

```
print('\n
                         Accuracy Error')
                         ----')
print('
print('Logistic Regression : {:.04}% {:.04}%'.format(log_reg_grid_results['accuracy']
                                             100-(log_reg_grid_results['accuracy'] * 1
print('Linear SVC
                  : {:.04}% {:.04}% '.format(lr svc grid results['accuracy']
                                                  100-(lr_svc_grid_results['accuracy'
print('rbf SVM classifier : {:.04}% '.format(rbf_svm_grid_results['accuracy']
                                                    100-(rbf_svm_grid_results['accura
print('DecisionTree : {:.04}% '.format(dt_grid_results['accuracy'] * 10
                                                  100-(dt_grid_results['accuracy'] *
                                     {:.04}% '.format(rfc_grid_results['accuracy'] * 1
print('Random Forest : {:.04}%
                                                     100-(rfc_grid_results['accuracy'
                                 {:.04}% '.format(rfc_grid_results['accuracy'] * 1
print('GradientBoosting DT : {:.04}%
                                                  100-(rfc_grid_results['accuracy'] *
```

	Accuracy	Error
Logistic Regression	: 96.27%	3.733%
Linear SVC	: 96.61%	3.393%
rbf SVM classifier	: 96.27%	3.733%
DecisionTree	: 86.43%	13.57%
Random Forest	: 91.31%	8.687%
GradientBoosting DT	: 91.31%	8.687%

We can choose Logistic regression or Linear SVC or rbf SVM.

Conclusion:

In the real world, domain-knowledge, EDA and feature-engineering matter most.

-----LSTM Models-----

Importing Libraries

In [30]:

```
import pandas as pd
import numpy as np

# Importing Libraries
from keras.models import Sequential
from keras.layers import CuDNNLSTM, LSTM
from keras.layers.core import Dense, Dropout
from keras.layers import BatchNormalization
from keras.initializers import he_normal
from keras.regularizers import 12
from keras.layers import Activation,Conv1D,MaxPool1D, Dense, Dropout, Flatten
from keras.layers import MaxPooling1D
```

In [7]:

```
# Activities are the class labels
# It is a 6 class classification
ACTIVITIES = {
    0: 'WALKING',
    1: 'WALKING_UPSTAIRS',
    2: 'WALKING_DOWNSTAIRS',
    3: 'SITTING',
    4: 'STANDING',
    5: 'LAYING',
}

# Utility function to print the confusion matrix
def confusion_matrix(Y_true, Y_pred):
    Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_true, axis=1)])
    Y_pred = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_pred, axis=1)])
    return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
```

Data

```
In [8]:
```

```
# Data directory
DATADIR = 'UCI_HAR_Dataset'
```

In [9]:

```
# Raw data signals
# Signals are from Accelerometer and Gyroscope
# The signals are in x,y,z directions
# Sensor signals are filtered to have only body acceleration
# excluding the acceleration due to gravity
# Triaxial acceleration from the accelerometer is total acceleration
SIGNALS = [
    "body_acc_x",
    "body_acc_y",
    "body_acc_z"
    "body_gyro_x'
    "body_gyro_y",
    "body_gyro_z",
    "total_acc_x",
    "total_acc_y",
    "total_acc_z"
]
```

In [10]:

```
# Utility function to read the data from csv file
def _read_csv(filename):
    return pd.read_csv(filename, delim_whitespace=True, header=None)

# Utility function to load the load
def load_signals(subset):
    signals_data = []

for signal in SIGNALS:
    filename = f'UCI_HAR_Dataset/{subset}/Inertial Signals/{signal}_{subset}.txt'
    signals_data.append(
        _read_csv(filename).as_matrix()
    )

# Transpose is used to change the dimensionality of the output,
    # aggregating the signals by combination of sample/timestep.
    # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
    return np.transpose(signals_data, (1, 2, 0))
```

In [11]:

```
def load_y(subset):
    """
    The objective that we are trying to predict is a integer, from 1 to 6,
    that represents a human activity. We return a binary representation of
    every sample objective as a 6 bits vector using One Hot Encoding
    (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
    """
    filename = f'UCI_HAR_Dataset/{subset}/y_{subset}.txt'
    y = _read_csv(filename)[0]
    return pd.get_dummies(y).as_matrix()
```

```
In [12]:
```

```
def load_data():
    """
    Obtain the dataset from multiple files.
    Returns: X_train, X_test, y_train, y_test
    """
    X_train, X_test = load_signals('train'), load_signals('test')
    y_train, y_test = load_y('train'), load_y('test')
    return X_train, X_test, y_train, y_test
```

In [13]:

```
# Importing tensorflow
np.random.seed(42)
import tensorflow as tf
tf.set_random_seed(42)
```

In [14]:

```
# Configuring a session
session_conf = tf.ConfigProto(
   intra_op_parallelism_threads=1,
   inter_op_parallelism_threads=1
)
```

In [15]:

```
# Import Keras
from keras import backend as K
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
```

In [16]:

```
# Initializing parameters
epochs = 40
batch_size = 64
n_hidden = 32
```

In [17]:

```
# Utility function to count the number of classes
def _count_classes(y):
    return len(set([tuple(category) for category in y]))
```

```
In [18]:
```

```
# Loading the train and test data
X_train, X_test, Y_train, Y_test = load_data()
```

C:\Users\vansh\Anaconda3\envs\env\lib\site-packages\ipykernel_launcher.py:1

2: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.

if sys.path[0] == '':

C:\Users\vansh\Anaconda3\envs\env\lib\site-packages\ipykernel_launcher.py:1

1: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.

This is added back by InteractiveShellApp.init_path()

In [19]:

```
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = _count_classes(Y_train)

print(timesteps)
print(input_dim)
print(len(X_train))
```

128 9

7352

LSTM - Model 1

In [19]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(CuDNNLSTM(n_hidden, input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.5))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

WARNING:tensorflow:From C:\Users\vansh\Anaconda3\envs\env\lib\site-packages \keras\backend\tensorflow_backend.py:517: The name tf.placeholder is depreca ted. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From C:\Users\vansh\Anaconda3\envs\env\lib\site-packages \keras\backend\tensorflow_backend.py:4138: The name tf.random_uniform is dep recated. Please use tf.random.uniform instead.

WARNING:tensorflow:From C:\Users\vansh\Anaconda3\envs\env\lib\site-packages \keras\backend\tensorflow_backend.py:133: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead.

WARNING:tensorflow:From C:\Users\vansh\Anaconda3\envs\env\lib\site-packages \keras\backend\tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a fut ure version.

Instructions for updating:

Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.

Layer (type)	Output Shape	Param #
cu_dnnlstm_1 (CuDNNLSTM)	(None, 32)	5504
dropout_1 (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 6)	198
		========

Total params: 5,702 Trainable params: 5,702 Non-trainable params: 0

In [24]:

In [25]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
7352/7352 [================ ] - 6s 836us/step - loss: 1.3076 -
acc: 0.4456 - val_loss: 1.1467 - val_acc: 0.4561
Epoch 2/30
7352/7352 [============= - - 6s 777us/step - loss: 0.9750 -
acc: 0.5853 - val_loss: 0.8485 - val_acc: 0.6305
7352/7352 [=============== ] - 6s 774us/step - loss: 0.8235 -
acc: 0.6409 - val_loss: 0.7829 - val_acc: 0.6250
Epoch 4/30
7352/7352 [============ - - 6s 776us/step - loss: 0.7422 -
acc: 0.6507 - val_loss: 0.7358 - val_acc: 0.6230
Epoch 5/30
7352/7352 [================ ] - 6s 773us/step - loss: 0.6829 -
acc: 0.6677 - val_loss: 0.7032 - val_acc: 0.6179
Epoch 6/30
7352/7352 [=============== ] - 6s 766us/step - loss: 0.6157 -
acc: 0.6960 - val_loss: 0.7660 - val_acc: 0.6176
7352/7352 [================ ] - 6s 767us/step - loss: 0.5837 -
acc: 0.7485 - val_loss: 0.6581 - val_acc: 0.7404
Epoch 8/30
7352/7352 [=============== ] - 6s 775us/step - loss: 0.7959 -
acc: 0.6888 - val_loss: 0.8181 - val_acc: 0.6675
Epoch 9/30
7352/7352 [================ ] - 6s 782us/step - loss: 0.5217 -
acc: 0.7888 - val_loss: 0.5787 - val_acc: 0.7743
7352/7352 [============= - - 6s 776us/step - loss: 0.4403 -
acc: 0.8324 - val_loss: 0.7186 - val_acc: 0.7418
Epoch 11/30
acc: 0.8704 - val loss: 0.5676 - val acc: 0.8470
Epoch 12/30
7352/7352 [=============== ] - 6s 769us/step - loss: 0.3468 -
acc: 0.8915 - val_loss: 0.5025 - val_acc: 0.8473
acc: 0.9134 - val_loss: 0.4879 - val_acc: 0.8649
Epoch 14/30
7352/7352 [=============== ] - 6s 779us/step - loss: 0.2897 -
acc: 0.9212 - val_loss: 0.4129 - val_acc: 0.8772
Epoch 15/30
acc: 0.9241 - val_loss: 0.3841 - val_acc: 0.8694
Epoch 16/30
7352/7352 [============== ] - 6s 778us/step - loss: 0.2297 -
acc: 0.9302 - val loss: 0.3674 - val acc: 0.8880
Epoch 17/30
acc: 0.9306 - val_loss: 0.3272 - val_acc: 0.8948
```

```
Epoch 18/30
7352/7352 [============= - - 6s 775us/step - loss: 0.1905 -
acc: 0.9354 - val loss: 0.3366 - val acc: 0.8962
Epoch 19/30
7352/7352 [============= - - 6s 771us/step - loss: 0.1944 -
acc: 0.9373 - val_loss: 0.3951 - val_acc: 0.8951
Epoch 20/30
7352/7352 [============= - - 6s 774us/step - loss: 0.2183 -
acc: 0.9304 - val loss: 0.4447 - val acc: 0.8955
Epoch 21/30
7352/7352 [============= - - 6s 782us/step - loss: 0.1769 -
acc: 0.9402 - val_loss: 0.5151 - val_acc: 0.8918
Epoch 22/30
7352/7352 [============= - - 6s 781us/step - loss: 0.1879 -
acc: 0.9368 - val_loss: 1.0266 - val_acc: 0.8280
Epoch 23/30
7352/7352 [============ - - 6s 781us/step - loss: 0.1927 -
acc: 0.9384 - val_loss: 0.5239 - val_acc: 0.8850
Epoch 24/30
7352/7352 [============= - - 6s 783us/step - loss: 0.1823 -
acc: 0.9404 - val_loss: 0.4090 - val_acc: 0.8741
Epoch 25/30
7352/7352 [============ - - 6s 780us/step - loss: 0.1662 -
acc: 0.9431 - val_loss: 0.3298 - val_acc: 0.8992
Epoch 26/30
7352/7352 [============= - - 6s 772us/step - loss: 0.1754 -
acc: 0.9444 - val loss: 0.4458 - val acc: 0.9013
Epoch 27/30
7352/7352 [=============== ] - 6s 772us/step - loss: 0.1767 -
acc: 0.9393 - val_loss: 0.4434 - val_acc: 0.9019
Epoch 28/30
7352/7352 [============= - - 6s 770us/step - loss: 0.1779 -
acc: 0.9408 - val_loss: 0.4173 - val_acc: 0.8982
Epoch 29/30
7352/7352 [=============== ] - 6s 784us/step - loss: 0.2100 -
acc: 0.9353 - val_loss: 0.3508 - val_acc: 0.9009
Epoch 30/30
7352/7352 [============= - - 6s 778us/step - loss: 0.1703 -
acc: 0.9419 - val_loss: 0.3658 - val_acc: 0.9131
```

Out[25]:

<keras.callbacks.History at 0x1a87075fc88>

In [26]:

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
Pred
                     LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS
\
True
LAYING
                        510
                                    0
                                              12
                                                        0
                                                                              0
SITTING
                                  358
                                             130
                                                        2
                                                                              0
                          0
STANDING
                          0
                                   47
                                             484
                                                                              0
                                                        1
WALKING
                          0
                                    0
                                               0
                                                      462
                                                                             10
WALKING_DOWNSTAIRS
                          0
                                    0
                                               0
                                                        1
                                                                            411
WALKING UPSTAIRS
                                    1
                                               0
                                                        2
Pred
                     WALKING_UPSTAIRS
True
LAYING
                                    15
SITTING
                                     1
STANDING
                                     0
                                    24
WALKING
WALKING_DOWNSTAIRS
                                     8
WALKING_UPSTAIRS
                                   466
```

In [27]:

```
score = model.evaluate(X_test, Y_test)
```

2947/2947 [==========] - 1s 172us/step

In [28]:

score

Out[28]:

[0.36586754912683617, 0.9131319986426875]

LSTM Model - 2

In [51]:

Layer (type)	Output Shape	Param #		
conv1d_27 (Conv1D)	(None, 126, 64)	1792		
conv1d_28 (Conv1D)	(None, 124, 128)	24704		
conv1d_29 (Conv1D)	(None, 122, 512)	197120		
cu_dnnlstm_16 (CuDNNLSTM)	(None, 128)	328704		
dropout_8 (Dropout)	(None, 128)	0		
dense_8 (Dense)	(None, 6)	774		

Total params: 553,094 Trainable params: 553,094 Non-trainable params: 0

In [52]:

```
filepath="weights.h5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, m
model.fit(X_train,
         Y_train,
         batch_size=64,
         validation_data=(X_test, Y_test),
         callbacks=[checkpoint],
         epochs=30)
Epoch 00019: val_acc did not improve from 0.92433
Epoch 20/30
7352/7352 [============= ] - 3s 380us/step - loss: 0.1370
- acc: 0.9468 - val_loss: 0.1754 - val_acc: 0.9403
Epoch 00020: val_acc improved from 0.92433 to 0.94028, saving model to wei
ghts.h5
Epoch 21/30
7352/7352 [============== ] - 3s 382us/step - loss: 0.1319
- acc: 0.9455 - val_loss: 0.1979 - val_acc: 0.9352
Epoch 00021: val_acc did not improve from 0.94028
Epoch 22/30
7352/7352 [============== ] - 3s 383us/step - loss: 0.1295
- acc: 0.9478 - val_loss: 0.2280 - val_acc: 0.9121
Epoch 00022: val_acc did not improve from 0.94028
Epoch 23/30
```

Pred

In [53]:

LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS

\						
True						
LAYING	537	0	0	0	0	
SITTING	0	400	82	0	0	
STANDING	0	51	480	1	0	
WALKING	0	0	0	494	1	
WALKING_DOWNSTAIRS	0	0	0	3	403	
WALKING_UPSTAIRS	0	1	0	12	1	
Pred	WALKING_U	PSTAIRS				
True						
LAYING		0				
SITTING		9				
STANDING		0				
WALKING		1				
WALKING_DOWNSTAIRS		14				
WALKING_UPSTAIRS		457				
4						

In [54]:

[0.17540487252892747, 0.9402782490668476]

Done