```
In [1]: 

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Read file and display it. This is to get an idea of the data I am working with

```
In [4]:  myDataFromFile = pd.read_csv("datasets/007ExerciseFile.csv")
display(myDataFromFile)
```

	Strain	Mutation_rate
0	st_alpha	10.612005
1	st_alpha	12.586371
2	st_alpha	8.997583
3	st_alpha	11.681775
4	st_alpha	14.408237
163	st_delta	2.716249
164	st_delta	2.467378
165	st_delta	2.119801
166	st_delta	1.316537
167	st_delta	2.060472

168 rows × 2 columns

Make an informative histogram of the mutation rates of the 4 strains

In [13]: ▶ sns.displot(myDataFromFile, x="Mutation_rate", hue="Strain", kind="hist", alp

Out[13]: <seaborn.axisgrid.FacetGrid at 0x1dc248ad400>

Make an informative KDE plot

In [23]: ▶ sns.displot(myDataFromFile, x="Mutation_rate", hue="Strain", kind="kde", fill

Out[23]: <seaborn.axisgrid.FacetGrid at 0x1dc249577c0>

Make a violin plot of the data

In [25]: ▶ sns.violinplot(data=myDataFromFile, x="Mutation_rate", y="Strain")

Out[25]: <AxesSubplot:xlabel='Mutation_rate', ylabel='Strain'>

Make a boxplot of the data

In [26]: N sns.boxplot(data=myDataFromFile, x="Mutation_rate", y="Strain")

Out[26]: <AxesSubplot:xlabel='Mutation_rate', ylabel='Strain'>

Make a boxplot with an overlaid strip chart

Out[27]: <AxesSubplot:xlabel='Mutation_rate', ylabel='Strain'>

Selected graph with English labels

The graph demonstrates that each strain is mutating at a different rate with the Alpha strain mutating the fastest and the Gamma strain mutating the slowest.

```
In [ ]: ▶
```