Quadratic optimization with quantum computing

Biweekely Presentation IV

Bálint Hantos

Supervisor: Péter Rakyta

Goal: Divide nodes into two groups such that the number of edges between the groups are as large as possible

Goal: Divide nodes into two groups suche that the number of edges between the groups are as large as possible

Goal: Separate the nodes into two sets while the largest amount of edges are cut

Binary variables

$$x_j = 1$$
 if node j is in Set 1 and $x_j = 0$ if in Set 2

Cost function:

$$f(\mathbf{x}) = \sum_{(i,j)\in E} -x_i - x_j + 2x_i x_j$$

x_i	x_{j}	Cost
1	1	0
1	0	+
0	1	+
0	0	0

Quantum annealing simulation

Variational bosonic solver

Mini-batch gradient descent

Progress

