Constructive Deep Neural Network for Breast Cancer Diagnosis (2018)

Смирнова Анна, Шагалкина Дарья

Формальная задача

Цель: Recurrence Score - непрерывная величина отражающая насколько высок риск рецидива. Будем предсказывать ее.

Позже мы разделим RS на три категории: низкий, средний и высокий риск

Зачем: предсказать результат через гистологические и иммуногистохимические признаки и на основе этого составлять лечение, вместо теста Oncotype DX

Recurrence Score® (RS) Result

Decision on individual treatment especially around the RS 25 cutoff may consider other clinical factors. Distant Recurrence Risk at 9 Years

With AI or TAM Alone

20%

95% CI (15%, 27%)

NSABP B-14

AI = Aromatase Inhibitor / TAM = Tamoxifen CI = Confidence Intervals Group Average Absolute Chemotherapy (CT) Benefit*

RS 26-100 All Ages

>15%

95% CI (9%, 37%)

NSABP B-20

*For estimated CT benefit for individual RS results, see page 2

Resource: National Cancer Institute, Oncotype DX test

Постановка задачи

Входные данные: экспрессия 21 гена людей с карциномой.

Таргет: уровень риска рецидива.

Х - матрица

$$y = (y_1,, y_2), y_i - класс$$

loss -> min

Метрики: accuracy, precision, recall

Данные

Показатель рецидива рассчитывается на основе набора десяти входных характеристик:

- возраста
- размера опухоли
- ганглиозного статуса
- четырех различных данных о классификации опухоли
- рецептора эстрогена (RE)
- рецептора прогестерона (RP)
- ki67 (таблица 2)

Table 2. Patient and tumor characteristics

Number of patie	ents =92			
Characteristic	n (%)	Characteristic	n (%)	
Age		Nuclei Grade		
<40 years	1 (1.1)	1	1 (1.1)	
40-49 years	5 (5.4)	2	43 (46.7)	
50-59 years	2(2.2)	3	48 (52.2)	
>59 years	84 (91.3)	Mitosies Grade		
Tumor size (cm)		1	21 (22.8)	
<1	13 (14.1)	2	52 (56.5)	
1.1-2.0	40 (43.5)	3	19 (20.7)	
2.1-4.0	36 (39.1)	Estrogen Receptor (RE)		
>4.0	3 (3.2)	<10	0 (0)	
Ganglionic Status		10 - 20	0 (0)	
0	61 (66.3)	>20	92 (100)	
1	31 (33.7)	Progesterone Receptor (PR)		
SBR Grade		<10	11 (12)	
1	9 (9.8)	10 - 20	12 (13)	
2	43 (46.7)	>20	69 (75)	
3	40 (43.5)	Proliferation R	Rate (ki-67)	
Glande Grade		<10	4 (4.3)	
1	1 (1.1)	10 - 20	34 (37)	
2	28 (30.4)	>20	54 (58.7)	
3	63 (68.5)			

Table 2. Patient and tumor characteristics

Архитектура

Задаются пользователем:

Max HL - максимального количества скрытых слоев Max n - максимального количества нейронов в слое θ - подбиралась экспериментально

Алгоритм:

Добавляем нейроны в слой пока не достигнем Max n. Если больше нельзя добавлять нейроны, добавляем слой. Инициализируем добавленные веса.

Обучаем только последний слой. Алгоритм останавливается, когда выполняется условие сходимости.

if $Acc > \theta$ and $PPV > \theta$ and $TPR > \theta$) then ConvCond = Trueelse ConvCond = False,

where θ is a threshold set by the user.

Algorithm 1 Deep Constructive Algorithm

```
Data:
M: size of the training data set
N_{iter}: the number of iterations for the training algorithm
t: training step index. At each stept, (N_{iter} \times M) iterations
of the training algorithm are computed.
l: The index of the current hidden layer (HL)
\mathbf{W}^{l}: Matrix of the connections between the layers l and
l-1
Result:
```

ConvCond: Convergence condition

iterations

Deep Neural Network

```
Initialization:
```

```
t \leftarrow 0
ConvCond = False
initialize the CNN with one HL and one neuron (l=1)
 while ConvCond = False do
   if (n_i^t \leq Max_n \text{ and } ConvCond = False) then
       add a new neuron (n_l^{t+1} = n_l^t + 1) for HL(l),
       initialize randomly all the new weights.
   end
   if n_l^t > Max_n and l \leq Max_{HL} and ConvCond =
    False then
       add a new hidden layer (l = l + 1) with one neuron,
        initialize randomly all the new weights.
   end
   if l > Max_{HL} and ConvCond = False then
       Stop the constructive procedure (failed)
   end
   Update only the weights W^l of the HL(l)
    t \Leftarrow t + 1
end
fine tuned of the last layer W^{l+1} with (N_{iter} \times M)
```

The Deep Neural Network is successfully built

Подборка теты

Метрики качества

Table 1. Summary of the used metrics

Accuracy (Acc)	$\frac{TP+TN}{TP+TN+FP+FN}$
Negative Predictive Value (NPV)	$rac{TN}{FN+TN}$
Positive Predictive Value (PPV)	$rac{TP}{FP+TP}$
True Negative Rate (TNR)	$rac{TN}{FP+TN}$
True Positive Rate (TPR)	$rac{TP}{TP+FN}$

PPV - precision, TPR - recall

Архитектура

В первой архитектуре одна нейронная сеть с одним бинарным нейроном выхода для каждого класса, во втором только одна нейронная сеть с двумя выходными нейронами.

Результаты

Table 3. Summary performance of the Oncotype DX risk prediction obtained by the two classifiers (#1 and #2) for $\theta = 0.9$

•	Low Risk		Inter. Risk		High Risk	
Classifier	#1	#2	#1	#2	#1	#2
Accuracy	0.65	0.63	0.53	0.56	0.87	0.86
NPV	0.66	0.64	0.57	0.59	0.92	0.88
PPV	0.63	0.63	0.41	0.46	0.48	0.33
TNR	0.76	0.80	0.71	0.81	0.93	0.97
TPR	0.50	0.42	0.27	0.22	0.50	0.14
Total	3.20	3.13	2.50	2.63	3.73	3.19
Calssifier #1: Total Risk (Low + Inter. + High)						9.43
Calssifier #2: Total Risk (Low + Inter. + High)						8.96

if $Acc > \theta$ and $PPV > \theta$ and $TPR > \theta$) then ConvCond = True else ConvCond = False,

where θ is a threshold set by the user.

Наши попытки

Мы сделали архитектуру второго типа, которая классифицирует данные на три класса

Мы делаем сто эпох, затем считаем качество и делаем следующий шаг алгоритма

100 эпох оказалось довольно мало

Результаты

- 1. Мы сомневались в результатах и попытались найти мнения других авторов, которые ссылаются на эту статью не нашли ни одного мнения (https://www.sciencedirect.com/science/article/pii/S2405896318333767)
- 2. Из-за закрытости данных невозможно подтвердить результаты исследования, а в самой статье найдены противоречия
- 3. Нейронная сеть не останавливается самостоятельно все параметры остановки мы задаем вручную

