TESTES DE CAIXA PRETA

Paulyne Jucá (paulyne@ufc.br)

DEFINIÇÃO

- Um estratégia de teste que não leva em consideração o funcionamento interno do componente ou sistema
 - Mesmo que tenha acesso ao código, este não é usado
- o Também chamada de:
 - Teste funcional
 - Teste de caixa fechada
 - Teste Opaco

Estratégia mais usada por testadores

OBJETIVO

- Verificar se o software desenvolvido atende aos requisitos especificados
 - Entradas válidas são aceitas e geram as saídas esperadas e entradas inválidas geram as mensagens de erro esperadas
 - Encontrar inclusive coisas que não foram implementadas
- Verificar se o software desenvolvido atende às expectativas do usuário
- Exemplos e erros encontrados:
 - Funções incorretas ou não implementadas
 - Erros na interface
 - Erro nas estrutura de dados
 - Erro no acesso à base de dados
 - Falhas de comportamento ou desempenho
 - Falhas na iniciação ou término da execução
- Geralmente fazem parte da fase de teste, mas podem ser usados em todas as fases

VANTAGENS

- Teste são feitos do ponto de vista do usuário e irão ajudar a identificar diferenças entre implementação e especificações
- Não necessita de conhecimento da linguagem de programação usada
 - Será?
- Pode ser feito por equipe independente
 - Desenvolvedores tem pena de quebrar seus códigos
- Os casos de teste podem ser planejados assim que as especificações são feitas

DESVANTAGENS

- Alguns caminhos de execução podem não ser testados
- Requisitos não claros ou mal escritos afetam a qualidade dos casos de teste
 - Como saber o que/como testar, se o requisito n\u00e3o est\u00e1 claro?
- A escolha dos dados de entrada dos casos de teste influencia a qualidade do teste. Bons dados de entrada dependem da experiência do testador.
 - Valores randômicos ou valores planejados?
 - o Resposta: combinação de ambos

Caixa Preta [7]

- Os passos básicos para se aplicar um critério de teste caixa preta são os seguintes:
 - A especificação de requisitos é analisada.
 - Entradas válidas são escolhidas (com base na especificação) para determinar se o produto em teste se comporta corretamente. Entradas inválidas também são escolhidas para verificar se são detectadas e manipuladas adequadamente.
 - As saídas esperadas para as entradas escolhidas são determinadas.
 - Os casos de testes são construídos.
 - O conjunto de teste é executado.
 - As saídas obtidas são comparadas com as saídas esperadas.
 - Um relatório é gerado para avaliar o resultado dos testes.

COMO ESCOLHER OS VALORES DE ENTRADA PARA OS TESTES?

COMO ESCOLHER OS VALORES DE ENTRADA PARA OS TESTES?

Teste exaustivo (que testa todas as entradas possíveis) pode ser impossível de fazer. Qual a opção?

ESCOLHA ALEATÓRIA DE VALORES

• Funcionalidade a ser testada: "O programa deve receber uma sequencia de caracteres e quebrar em linhas de até 60 caracteres"

• Qual o primeiro teste que faríamos?

ESCOLHA ALEATÓRIA DE VALORES

- 1° teste: dslkngiurewht
- o 2° teste: dsjntriuwtoirmgvgjbryg32tr5iu45nyhby
- 3° teste: fjewbt ewtbwt wetbwtv
- Risco? Polarizar os testes com sequencias com menos de 60 caracteres
- O que deixamos de fora? (casos especiais fortemente baseados na experiência)
 - Testamos sequencias com mais de 60 caracteres (com e sem espaço)? Como o programa respondeu nos dois casos?
 - Testamos uma sequencia de mais de 60 espaços?
 - Testamos sequencias de caracteres especiais?
 - Testamos strings nulas?
 - Testamos maiúsculas e minúsculas? Números? Acentos? Pontuações?
 - Testamos só com "enter"? Tab + "enter"?
 - Testamos apenas sequencias que começam com letra?

ESCOLHA ALEATÓRIA DE VALORES

- Vantagem
 - Simples
 - Liberdade
- Desvantagem
 - Pode nunca encontrar erros
- Significa que é ruim?
 - Não!!! Especialmente quando o testador identifica "casos especiais" na descrição da funcionalidade
 - Ex: "The quick brown fox jumps over the lazy dog"
 - Podemos criar geradores de entradas aleatórias para ajudar no teste. ©

DÁ PARA CONFIAR SÓ EM TESTES RANDÔMICOS?

Mas o que mais podemos fazer?

ABORDAGENS PARA ESCOLHA DE VALORES

• Abordagens:

- Particionamento de Equivalências
- Análise de Valor Limite
- Combinação de Pares
- Baseado em Catálogos
- Teste Funcional Sistemático
- Error-Guessing

ABORDAGENS PARA ESCOLHA DE VALORES

- Selecionando a abordagem:
 - Natureza e forma da especificação:
 - Ex: "para compras acima de R\$ 100, o parcelamento pode ser em até 3x" sugere uma abordagem de particionamento de categorias
 - Experiência dos projetistas de testes e da organização:
 - Escolher técnicas que dominem melhor quando mais de uma for aplicável
 - Ferramentas:
 - o Algumas técnicas exigem ferramentas específicas que podem custar caro ou não estar disponíveis

ABORDAGENS PARA ESCOLHA DE VALORES

- Selecionando a abordagem:
 - Restrições de orçamento e qualidade:
 - Ex: se precisamos de testes rápidos e automatizados e não temos requisitos de confiabilidade altos podemos usar geração randômica
 - o Custos de treinamento de equipe influenciam a decisão
 - o Tamanhos da suíte de teste influencia a decisão
 - Custos do código de suporte
 - Automatizar os casos de teste custam \$, mas valem se forem usados muitas vezes
 - Se os casos de teste forem executados manualmente, talvez seja melhor optar por uma suíte de teste menor
- Ideal: encontrar o balanceamento correto para uso de cada abordagem para satisfazer a necessidade de teste dentro do custo, tempo e qualidade desejadas.

• Sistema de recursos humanos – empregar pessoas com base na idade (Copeland, 2004).

Idade	Emprego	
0 - 16	Não empregar	
16 - 18	Pode ser empregado tempo parcial	
18 - 55	Pode ser empregado tempo integral	
55 - 99	Não empregar	

- Como deveriam ser derivados casos de teste para o exemplo acima?
 - Testar todos os valores de 0 a 99?

- Encontrar classes (intervalos) de valores que tem comportamento equivalente
- Encontrar intervalos onde todos os valores representem a mesma possibilidade (bastando testar um deles)
 - Se funciona para um, funciona da mesma maneira para os outros
- Esses intervalos são chamados de classes de equivalência
 - Se um caso de teste de uma classe de equivalência revela um erro, qualquer caso de teste da mesma classe também revelaria e vice-versa
- Essa abordagem assume que é possível identificar esses intervalos na especificação do sistema

• Sistema de recursos humanos – empregar pessoas com base na idade (Copeland, 2004).

Idade	Emprego	
0 – 16 (<= 15)	Não empregar	
16 – 18 (<=17)	Pode ser empregado tempo parcial	
18 – 55 (<=54)	Pode ser empregado tempo integral	
55 - 99	Não empregar	

- Para o caso acima foram identificadas 4 classes de equivalência
 - 4 casos de teste em vez dos 100 do teste exaustivo
 - + os testes de casos inválidos (negativos, por exemplo)

- Diferentes tipos de dados exigem diferentes classes de equivalência
 - Intervalos contínuos

- Intervalos discretos
 - Ex: números inteiros
 - Válida: 2
 - o Inválidas -1 e 8

(extraído de Copeland (2004))

o Em geral são definidas 2 classes não válidas e 1 válida

- o Diferentes tipos de dados exigem diferentes classes de equivalência (continuação)
 - Intervalos de valores de múltipla escolha

(extraído de Copeland (2004))

- Válido: pode se escolher um ou mais valores dentro das possibilidades de valor válido
- Inválido: pode se escolher um ou mais valores dentro das possibilidades de valor inválido
- Pode ser difícil criar um caso de teste para cada classe válida.

- o Diferentes tipos de dados exigem diferentes classes de equivalência (continuação)
 - Intervalos de valores de múltipla escolha
 - Pode ser difícil criar um caso de teste para cada classe válida.
 - o Criar o menor número de casos de teste que cubra todas as classes válidas
 - o Criar um caso de teste para cada classe inválida

Renda	# Moradores	Aplicante	Tipo	Resultado
\$5.000	2	Pessoas	Condomínio	Válido
\$100	1	Pessoas	Uma família	Inválido
\$90.000	1	Pessoas	Uma família	Inválido
\$1.342	0	Pessoas	Condomínio	Inválido
\$1.342	6	Pessoas	Condomínio	Inválido
\$1.342	1	Corporação	Sobrado	Inválido
\$1.342	1	Pessoas	Duplex	Inválido

- "O programa deve determinar se um identificador é válido ou não. Um identificador válido deve começar com uma letra e conter apenas letras ou dígitos. Além disso, deve ter no mínimo um caractere e no máximo seis caracteres de comprimento"
 - Ex válidos: a, a123, abcd2
 - Ex inválidos: 1abc, cont*1, abcdefg
 - Quais as classes de equivalência?

o Classes de Equivalências

Condições de Entrada	Classes Válidas	Classes	Inválidas
Tamanho t do identificador	$1 \le t \le 6$	t < 1	t > 6
	(1)	(2)	(3)
Primeiro caractere c é uma letra	Sim	N	lão
	(4)	(5)
Só contém caracteres válidos	Sim	N	lão
	(6)	(7)

Exemplo de Conjunto de Teste:

 $T_0 = \{(a1, Valid), ("", Invalid), (A1b2C3d, Invalid), (2B3, Invalid), (Z#12, Invalid)\}$

- "O programa solicita ao usuário um inteiro positivo entre 1 e 20 e então pede uma cadeia de caracteres com o tamanho do inteiro fornecido anteriormente. Após isso, o programa solicita um caractere e retorna a posição da primeira ocorrência do caractere na cadeira ou um mensagem indicando que o caractere não está presente na cadeia."
 - Quais as classes de equivalência válida e inválidas?
 - Dê exemplos de casos de teste para esse programa.

o Classes de equivalência

Variável de entrada	Classe de equivalência válida	Classe de equivalência inválida
Tamanho da cadeia (T)	1 <= T <= 20	T < 1 e T > 20
Caractere procurado (C)	Pertence	Não pertence

o Casos de Teste

Valores de Entrada		ntrada	Saída esperada
Tamanho	Cadeia	Caractere	
34			Entre com um inteiro entre 1 e 20
0			Entre com um inteiro entre 1 e 20
3	abc	c	Posição 3
3	def	k	Não pertence

VALOR LIMITE [8]

- o Toma como base as classes de equivalência
- Premissa: Condições limite das classes de equivalência tem mais chance de dar erro
 - Testar limite -1
 - Testar limite
 - Testar limite +1
- Ex1: para uma variável que aceita valores entre -1.0 e +1.0 os casos de teste teriam como entrada os valores 1.001; -1.0; 0.999; + 0.999; + 1.0 e + 1.001
- o Também pode ser aplicada em valores de saída

VALOR LIMITE [8]

• Para o exemplo anterior....

Idade	Emprego
0 – 16 (<= 15)	Não empregar
16 – 18 (<=17)	Pode ser empregado tempo parcial
18 – 55 (<=54)	Pode ser empregado tempo integral
55 - 99	Não empregar

o Os casos de teste incluiriam as entradas -1, 0, 1, 14, 15, 16, 17, 18, 19, 53, 54, 55, 56, 98, 99, 100.

VALOR LIMITE

o Classes de equivalência do exemplo anterior

Variável de entrada	Classe de equivalência válida	Classe de equivalência inválida
Tamanho da cadeia (T)	1 <= T <= 20	T < 1 e T > 20
Caractere procurado (C)	Pertence	Não pertence

VALOR LIMITE

o Casos de Teste no Valor Limite

Valores de Entrada		ada	Saída esperada
Tamanho	Cadeia	Caractere	
21			Entre com um inteiro entre 1 e 20
0			Entre com um inteiro entre 1 e 20
1	a	a	Posição 1
1	a	X	Não pertence
20	abcjtahenso qujkmkeux	c	Posição 3
20	abcjtahenso qujkmkeux	u	Posição 13
19	abcjtahenso qujkmkeu	${f z}$	Não pertence

REFERÊNCIAS

- o Os livros de referência da disciplina +
- 1. http://www.testinggeek.com/blackbox-testing
- 2. <u>http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf</u>
- 3. <u>http://www.buzzle.com/editorials/4-10-2005-68349.asp</u>
- 4. <u>http://www.codeproject.com/Articles/37078/Black-box-Testing-Techniques</u>
- 5. <u>http://softwaretestingfundamentals.com/black-box-testing/</u>
- 6. http://www.softwaretestinghelp.com/black-box-testing/
- 7. http://www.inf.ufg.br/~auri/curso/arquivos/funcional-01.pdf
- 8. <u>http://www.inf.ufg.br/~auri/curso/arquivos/funcional</u> 02.pdf