Geometria Superiore (I modulo) — GE7 Esame di fine semestre, Giovedì 22 Dicembre 2000 Polinomi Simmetrici e caratteri di S_n

- 1. Si scriva una base per lo spazio vettoriale dei polinomi simmetrici omogenei di grado 7 in 3 variabili x_1, x_2, x_3 . Sia $F(x_1, x_2, x_3)$ il polinomio della base trovata che ha come uno dei suoi monomi $x_1x_2^2x_3^4$. Si esprima $F(x_1, x_2, x_3)$ come polinomio nelle funzioni simmetriche elementari.
- 2. Si dimostri la seguente identità:

$$\sum \left(\frac{\prod_{i < j} (l_i - l_j)}{l_1! l_2! \cdots l_n!}\right)^2 = \frac{1}{n!}$$

dove la somma è estesa a tutte le n-uple di interi

$$2n > l_1 \ge l_2 \ge \cdots l_n > 0$$

tali che $\sum_{i=1}^{n} l_i = \frac{n^2 + n}{2}$.

- 3. Si determini la dimensione del carattere di S_{16} associato alla partizione $\underline{\lambda} = (5, 4, 3, 3, 1)$. Quale è il sottogruppo di Young associato a $\underline{\lambda}$? Si dica quale è il massimo ordine di un elemento in tale sottogruppo.
- 4. Sia $n \in \mathbb{N}$ e consideriamo la partizione $\underline{\lambda} = (n-2,2)$. Dimostrare che

$$\chi_{\underline{\lambda}}(C_{\mu}) = \frac{1}{2}(i_1 - 1)(i_2 - 1) + i_2 - 1$$

dove C_{μ} è una classe di coniugazione di permutazioni di S_n e se $\sigma \in C_{\mu}$, i_1 e i_2 sono rispettivamente il numero di 1-cicli e di 2-cicli nella decomposizione in cicli di σ .

Regole. Ogni esercizio vale 7.5 punti. Tempo concesso 120 minuti. È vietato consultare libri e appunti. È vietato comunicare con altri studenti. Ogni esercizio deve essere svolto su una e una sola facciata di un foglio.