Determining the feasibility of 'BreMiEgg', a bread, milk and egg delivering service in Manhattan

A capstone project by Nilesh Ade

Outline

- Introduction
- Description of data
- Methodology
- Results
- Discussion
- Conclusion

(hypothetical brand)

Introduction

- · Bread, milk and eggs are staple components of American diet
- Sales of USD 24.7, 50.1 and 10.17 billion respectively
- Unfeasible to buy these products every day from grocery stores
- **BreMiEgg** An online service that delivers bread, milk and eggs

• **Problem statement**: Find a suitable location for a warehouse for this service in the neighborhoods of Manhattan

Reference for statistics: https://www.statista.com

Description of data

Methodology

- 1. Normalization of data
- 2. Definition of Business Value:

$$aP - bNb - cNc - dNg$$

- 3. Coefficients determined based on personal judgment
- 4. Clustering by k-means algorithm based on business value and geospatial data
- 5. Visualization of clusters by Folium

	Neighborhood	Population	Latitude	Longitude	Bakery	Convenience Store	Grocery Store
0	Marble Hill	0.353125	40.876551	-73.910660	0.0	0.0	0.0
1	Central Harlem	0.568690	40.815976	-73.943211	0.0	0.0	0.0
2	Hamilton Heights	0.366526	40.823604	-73.949688	0.5	0.0	0.0
3	Manhattanville	0.173367	40.816934	-73.957385	0.0	0.0	0.0
4	Morningside Heights	0.422495	40.808000	-73.963896	0.0	0.0	1.0

Normalized dataframe example

Variables: population (P), number of bakeries (Nb), convenience (Nc) and grocery stores (Ng) in different Manhattan neighborhoods

Results

 Neighborhoods clustered in four groups

Cluster 0: red

Cluster 1: Purple

Cluster 2:Cyan

Cluster 3: Yellow

2. Clusters 0,1,2 and 3 have 11,1,5 and 6 neighborhoods respectively

Discussion

- 1. Described approach is successful
- 2. Cluster 1 is ideal location for warehouse (Upper West Side neighborhood)

Reason:

- a) Itself has high average business value
- b) closer to other clusters with high average business values

Cluster	Color	Average business value	
0	Red	1.03	
1	Purple	2.70	
2	Cyan	0.39	
3	Yellow	1.56	

Discussion

Limitations:

- 1. Few neighborhoods neglected due to lack of population data
- 2. Population data is not recent (from 2010)
- 3. Coefficients in business value function assigned based on personal judgment
- 4. Number of clusters arbitrarily chosen as 4

Conclusion

- Capstone project consisting of Population data collection/wrangling, foursquare API data collection/wrangling, K-means clustering, and folium map visualization is successful in attaining the required goal.
- Can be improved by using recent data and including various other parameters such as commercial rents, utility costs etc.
- Approach can be implemented to address a variety of similar problems such as determining the location for a retail delivery service, location of a supermarket etc.

Bring me my bread, milk and eggs

Note: Refer the report for detailed description at:

https://github.com/nilesh149/Coursera_Capstone/blob/master/Report.ipynb

Thank you