

دا شیخاه فنی وحرفهای

جعفری تیلهنوئی، مهدی ا؛ میلانی مقدم، حسین ۲

UV-Vis بهره می گیریم.

یافته است (جدول ۱ را ببینید).

Kronig و كد MATLAB استفاده شده است.

ا گروه علوم پایه دانشکده واحد بهشهر، دانشگاه فنی و حرفه ای (TVU)، مازندران، ایران ۲ گروه فیزیک، دانشکده علوم پایه، دانشگاه مازندران، بابلسر

تحقیقات نشان داده که نانوذرات TiO₂/WO₃ به دلیل خاصیت ضد انعکاسی بالا کاربرد فراوانی در

حسگرهای گازی و الکترونیک نوری دارد. همچنین در سالهای اخیر نانوذرات TiO₂/WO₃ در موارد زیادی

مانند نمایش گرها، کاتالیستها و سیستمهای الکتروکرومیکی مورد اهمیت قرار گرفتهاند[۱]. تابع دی الکتریک

مواد عایق به فرکانس میدان الکتریکی اعمال شده بستگی دارد و به عنوان یک کمیت فیزیکی پیچیده توصیف

می شود که قسمت حقیقی آن نشان دهنده ذخیره انرژی و قسمت موهومی نمایانگر اتلاف انرژی در ماده

است[۲]. در این مطالعه، نانوذرات دی اکسید تیتانیوم/تری اکسید تنگستن با استفاده از روش سل-ژل سنتز

شده است .اثر دمای کلسینه و درصد مولی روی قسمتهای حقیقی و موهومی تابع دی الکتریک نانو ذرات در محدوده طول موج ۲۰۰۰–۲۰۰۰ نانومتر مورد تجزیه و تحلیل قرار گرفته است.

محلول TiCL₄ (محصول شرکت Sigma-Aldrich، خلوص ۱۹۹٪) را به آرامی به آب مقطر اضافه می کنیم.

پودر آمونیوم متا تنگستات هیدرات (محصول شرکت Sigma-Aldrich، خلوص ۱۸۰٪) حل شده با آب مقطر

را به محلول قبلی به آرامی اضافه می کنیم. محلول حاصل را به مدت ۷۲ ساعت در دمای اتاق هم زده و به

مدت ۱۸ ساعت در دمای ۸۰۰C خشک می کنیم. ژل خشک شده ی زرد رنگ را به مدت ۱ ساعت در

دماهای ۸۰۰°C و ۹۰۰°C کلسینه می نماییم. سرانجام برای آنالیز و مشخصه یابی نمونهها، از SEM ،XRDو

شکل ۱ که الگوی XRD برای بازهی زاویهای ۲۰-۲۰ درجه میباشد، نشان دهندهی صفحات براگ TiO₂ و

WO₃ میباشد. فرمول شرر اندازه نانوذرات بلوری را برحسب پهنای پیک پراش پرتو ایکس درنصف ارتفاع و

eta در این رابطه D قطر نانوبلورک، K مقدار ثابت تقریبی ۴/۹، λ طول موج پرتو X برابر ۱۵۶/۰ نانومتر، K

پهنای پیک در نصف ارتفاع ماکزیمم و θ نصف زاویه ِی پراش است. همان طور که مشاهده می شود با افزایش

دمای کلسینه، شدت نسبی قلههای اصلی بطور هماهنگ افزایش مییابد و این نشان میدهد که بطور کلی با

افزایش دمای کلسینه، اندازه متوسط نانوذرات افزایش می یابد. همچنین با توجه به دادههای بهدست امده از نرم

رابطههای کرامرز-کرونیگ ما را قادر میسازد قسمت حقیقی و موهومی معادله (۲) را در همه فرکانسها پیدا

ت ضریب بازتاب فرنل در شکل قطبی، heta: زاویه فاز و ضریب بازتابندگی است. همچنین می توان نوشت: au

 $r(\omega) = R^{1/2}(\omega)e^{i\theta(\omega)}$

 $\ln r(\omega) = \ln R^{1/2}(\omega) + i\theta(\omega)$

 $\theta(\omega) = -\frac{\omega}{\pi} P \int_0^{\infty} \frac{\ln R(\omega)}{\dot{\omega}^2 - \omega^2} d\dot{\omega}$

با استفاده از طیف XRD اطلاعات ساختاری نمونه را بدست می آوریم (شکل ۱ را ببینید).

 $k(\omega) = \frac{2\sqrt{R}\sin\theta}{1 + R - 2\sqrt{R}\cos\theta}$

 $n(\omega) = \frac{1-R}{1+R-2\sqrt{R}\cos\theta}$

طبق تعریف، n و k با رابطه زیر به تابع دی الکتریک مرتبط می شوند:

$$\varepsilon(\omega) = (n(\omega) + ik(\omega))^{2} \tag{V}$$

با حل معادله (۷) داریم:

$$\varepsilon(\omega) = (n^2 - k^2) + i2nk \tag{A}$$

$$\varepsilon_1(\omega) = n^2 - k^2 \tag{9}$$

$$\varepsilon_2(\omega) = 2 \, nk \tag{1.}$$

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega) \tag{11}$$

و $arepsilon_2(\omega)$ به ترتیب بخشهای حقیقی و موهومی تابع دی الکتریک را نشان میدهند. همانطور که در شکل ۳ نشان داده شده است، با افزایش دمای کلسینه، قسمت حقیقی تابع دی الکتریک در

شکل ٤ نشان میدهد که بعد از طول موج ٤٢٥ نانومتر، با افزایش دمای کلسینه، قسمت موهومی تابع دی الكتريك در ناحيه مرئى، بهطور متوسط افزايش يافته است.

شکل ٥ نشان میدهد که تا طول موج ٦٥٠ نانومتر، قسمت حقیقی تابع دیالکتریک به ازای افزایش درصد مولی TiO_2 از ۵ درصد به V/0 درصد، کاهش و از V/0 درصد به V/0 درصد، افزایش می یابد. اما بعد از طول موج 70° نانومتر، قسمت حقیقی تابع دیالکتریک به ازای افزایش درصد مولی TiO_2 ، افزایش مییابد. شکل 7 نیز نشان میدهد که بهغیر از طول موجهای کمتر از ۵۵۰ نانومتر که افزایش قسمت موهومی تابع دی-الکتریک به ازای افزایش درصد مولی TiO_2 با آشفتگی و نوسان همراه است، در طول موجهای بالاتر از TiO_2 نانومتر، با افزایش درصد مولی TiO_2 ، قسمت موهومی تابع دیالکتریک افزایش مییابد.

همانطور که در شکل ۷ نشان داده شده است، بآافزایش دمای کلسینه، قسمت موهومی تابع دی الکتریک به طور متوسط افزایش می یابد. به عبارتی دیگر می توان بیان کرد که با افزایش دمای کلسینه، میزان اتلاف انرژی به طور متوسط افزایش می یابد.

شکل ۱: الگوهای XRD برای نانوذرات TiO_2/WO_3 سنتز شده در دماهای کلسینه متفاوت

 $Origin\ 6$ در دمای مختلف کلسینه توسط نرم افزار TiO_2/WO_3 در دمای مختلف کلسینه توسط نرم افزار

sample	calcination temperature (°C)	The size of nanoparticle (nm)
	700	10
TiO_2/WO_3	800	50
	900	100

شکل ۲: تصویرهای SEM از نانوذرات TiO_2/WO_3 سنتز شده در دماهای کلسینه متفاوت

در این مقاله، نانوذرات دی اکسید تیتانیوم/ تری اکسید تنگستن با استفاده از روش سل-ژل سنتز شده است. با تجزیه و تحلیل توسط XRD و SEM مشخص شد که قطر نانوذرات TiO₂/WO₃ با افزایش دمای کلسینه افزایش می یابد. همچنین، نشان داده شده است که با افزایش دمای کلسینه و درصد مولی TiO₂، بخش حقیقی و موهومی تابع دی الکتریک بهطور متوسط افزایش یافته است. در ادامه پژوهش، مشخص شده که با افزایش دمای کلسینه، میزان اتلاف انرژی نیز بهطور متوسط افزایش یافته است.

بنابراین می توان گفت که نانوذرات ${
m TiO}_2/{
m WO}_3$ با ۱۰ مول درصد ${
m TiO}_2$ و ${
m TiO}_2$ دارای بالاترین مقدار بخش حقیقی و موهومی تابع دی الکتریک میباشد.

[1]. E. O. Zayim; "Optical & electrochromic properties of sol-gel made anti-reflective WO_3 -TiO₂ films"; Solar Energy Materials and Solar Cells. **87**. (2005) 695.

[2] B. Tony and B. David; "Electrical Properties of Polymers, Cambridge"; (2005) 58-72.

[3] N. A. Ramos-Delgadoa, L. Hinojosa-Reyesa, I. L. Guzman-Mara, M. A. Gracia-Pinillab and A. Hernandez-Ramíreza; "Synthesis by sol-gel of WO_3/TiO_2 for solar photocatalytic degradation of malathion pesticide"; Catalysis Today,

[4] Ch. Kittel; "Introduction to Solid State Physics". 7th edition, TBS. (2004) 307-328.

[5] V. Lucarini, J. J. Saarinen, K. E. Peipouen and E. M. Vartiainen; "Kramers-kronig Relation in Optical Materials Research"; Springer (2005) 40.

[6] N. S. Sariciftci; "Primary Photoexcitation in conjugated polymers: Molecular Excilon versus Semiconductor Band *Model"*; 1st edition, World Scientific. (1997) 322.

همچنین رابطههای مربوط به تعیین ضریب خاموشی و ضریب شکست عبارتاند از:

شکل انتگرالی رابطهی کرامرز-کرونیگ برای قسمت موهومی به صورت زیر می باشد: