Comparing Machine Learning Algorithms Across Data Systems

Grace Davenport, Hayden French, Silas Hayes, Ryan Lipps

Motivation

- As data scientists, we are interested in using big data systems for the implementation of scikit-learn machine learning algorithms
- We are now familiar with several distributed computing frameworks, but have not directly applied them to the data science pipeline
- We are interested in using Spark, Dask, and Ray to implement some popular machine learning algorithms—regression, classification, and clustering—and compare compute times between each system

Data Preprocessing

- Dataset: 20 million flight searches between June, 2022 and August, 2022 and is approximately 2 GBs
- Variables: (1) flight search on a specific date, (2) returning base fare, (3) distance, (4) time traveled, and (5) number of seats remaining
- Prior to uploading our data to our cluster, we normalized each variable via
 z-score scaling and performed a random 80-20 train/test split
- We are more interested in the overall compute times than model performance, but still aim to mirror the traditional machine learning pipeline as closely as possible

Experimental Design

- We implemented each algorithm on Dask, Spark, and Ray hosted on Amazon's EC2 instances
- For all algorithms, we used all quantitative variables as predictors. For KNN and Random Forest, our response variable was the base price of the flight. For K-Means, we performed unsupervised clustering
- We ran each algorithm on differently-sized subsets of our data and recorded the execution time for each

Sklearn + Joblib

Parallelize sklearn with this one neat trick!!

with joblib.parallel_backend('dask'):

```
rf_model = RandomForestRegressor(max_depth=2)
rf_model.fit(X_reg_train_subset, y_reg_train_subset)
y_pred = rf_model.predict(X_reg_test_subset)
metric = mean_squared_error(y_reg_test_subset, y_pred)
```


🎁 dask	Dask	Distributed	Dask ML	Examples	Ecosystem	Community	
Pipelines and Composite Estimators							[]
Generalized Linear Models	To use the Dask backend to Joblib you have to create a Client, and wrap your code with joblib.parallel_backend('dask').						
Naive Bayes							
Parallel Meta-estimators	<pre>from dask.distributed import Client import joblib client = Client(processes=False) # create local cluster # client = Client("scheduler-address:8786") # or connect to remote cluster</pre>						
Incremental Learning							
Clustering							
API Reference		b.parallel_backend('da	ask'):				
INTEGRATION	# Your scikit-learn code						

Overview

Getting Started

Example Gallery

Installation

Use Cases

Ecosystem

Ray Data

Ray Core

Ray Train

Ray Tune ~

Ray Serve Ray RLlib

More Libraries

Distributed Scikit-learn / Joblib

Distributed multiprocessing.Pool

Ray Collective

Quickstart

To get started, first install Ray, then use from ray.util.joblib import register_ray and run register_ray(). This will register Ray as a joblib backend for scikit-learn to use. Then run your original scikit-learn code inside with joblib.parallel_backend('ray') . This will start a local Ray cluster. See the Run on a Cluster section below for instructions to run on a multi-node Ray cluster instead.

```
import numpy as np
from sklearn.datasets import load digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC
digits = load_digits()
param_space = {
    'C': np.logspace(-6, 6, 30),
    'gamma': np.logspace(-8, 8, 30),
    'tol': np.logspace(-4, -1, 30),
    'class weight': [None, 'balanced'],
model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param space, cv=5, n iter=300, verbose=10)
import ioblib
from ray.util.joblib import register ray
register ray()
with joblib.parallel backend('ray'):
   search.fit(digits.data, digits.target)
```


Sklearn + Joblib Actually Parallel?

Navigation

User manual

Why joblib: project goals
Installing joblib
On demand recomputing:

joblib.parallel_backend

class joblib.parallel_backend(backend, n_jobs=-1,
inner_max_num_threads=None, **backend_params)
Change the default backend used by Parallel inside a with block.

Warning:

It is advised to use the **parallel_config** context manager instead, which allows more fine-grained control over the backend configuration.

If backend is a string it must match a previously registered implementation using the register_parallel_backend() function.

You can also use the \underline{Dask} joblib backend to distribute work across machines. This works well with scikit-learn estimators with the $n_{\underline{j}}$ obs parameter, for example:

```
>>> import joblib
>>> from sklearn.model_selection import GridSearchCV
```


Sklearn Results

Dask

Spark

Ray

Modified Experimental Design

- We modified our approach to use Dask and Spark's distributed computing frameworks own machine learning backend instead of sklearn
- We selected algorithms which were supported by **both libraries** and representative of **different machine learning methods** (clustering vs. regression, e.g.)
- Again, we ran each algorithm on differently-sized subsets of the data to compare runtimes
- Ray does not have its own ML implementation for these algorithms though it is still useful for RL and parallelized tuning

Results

	Dask (s)	Spark (s)
Linear Regression	108.04	144.91
Logistic Regression	142.80	279.03
K-Means	326.70	691.83

Discussion

Discussion

Linear Regression

K-Means

Logistic Regression

Table 2: R^2 Values for Regression Equations

Model	Dask R ²	Spark R ²	
Linear Regression	0.996	0.956	
Logistic Regression	0.971	0.987	
K-Means	0.997	0.883	

Future Work

Custom Distribution

Assess these systems using custom sklearn distributing

Vary VM Numbers

Each system different number of VMs

More Precise Metrics

Calculate the mean and standard deviation

Thank you!