MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (T01, T02 etc) Tutorial Instructor Name:	Your Name: KEY Your Student Number: V00 00001 Today's Date: Sept 16.
Question Number Attempted (01 02 et	

1. Average speech:
$$\frac{X(2) - X(0)}{2 - 0} = \frac{4 - 0}{2} = 2$$

. Units are m/sec.

- 2. 8 metres. (47, 44). from graph.
- 3. We could only estimate from graph. Exact cale:

Steed = 1 1 = 1 - 2 | = 2 metres/sec.

Accepted: V(3) = X(3) = 4 - 2 t | t=3 = -2 Speed = | V| = |-2| = 2, m/sec.

Note: From the graph, t= 2 is one time. From the calc, t=2 is the only time.

	MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (A01, A02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc)
	Since I'm 24 x = T/2
	and him sin(= sin(= 1,
	then /im' x2 sm(=) = /im' x2 /im' sm'(
2)	Since limit is x->0 we cannot do the Same as in 1).
	Note -1 = cos(=) = 1 and so
	for x < 0, -x < x (os(\$) \(\frac{1}{2} \) \(\text{X} \)
	liming x cos(f) = 0 by the sandwich the

Limits are equal, so limix cos(t) =0

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (A01, A02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc.)	Your Name: Your Student Number: V00 Today's Date:
Tart was the 1 SIN(Tra) = I let SIN	(+)(Ts) = cos(T/2)=0
2. As line I sin h I - Isin a	Margarian Charges
What was a sundant of the sundant of	
Both one-sided li are different. There	nits exist, but they have there is no tangent

	1
MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (A01, A02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, 6)	Your Name: GEORGE LEE Your Student Number: V00 Today's Date: Q2, etc) Q4
1. For 5 to be continuous	at O, we check:
× 5(0) = 0	• •
* Then need lin 5(x) = 0:	Sufficient to check both the signed
limits agree and are O:	
lin 560 = lin (x2+x) = C	
lín 3(x) = lín mx = M.O = x>0+	1
2. lin 5(h)-5(0)- lin mh-0 =	lin M = M , whereas
$\lim_{h \to 0^{+}} \frac{5(h) - 5(0)}{h} = \lim_{h \to 0^{+}} \frac{mh - 0}{h} = \lim_{h \to 0^{-}} \frac{h^{2} + h - 0}{h}$ $\lim_{h \to 0^{-}} \frac{5(h) - 5(0)}{h} = \lim_{h \to 0^{-}} \frac{h^{2} + h - 0}{h}$	=lín (h+1) = 1 .
3: lim 5(h) -5(0) = 5(0) ela	ists fand only if the segred limits
from (2.) agree, ie: lin 5(h	$\frac{1}{h} - \frac{5(0)}{h} = \lim_{h \to 0^{-}} \frac{5(h) - \frac{5(0)}{h}}{h}$

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (A01, A02 etc) Tutorial Instructor Name: Question Number Attempted (Q1,	•
(1) The functions sin(x) and at 0 if	id cos(x) are continuous
$\lim_{x \to 0} Sin(x) = 1$ and $\lim_{x \to 0} (\delta S(x) = 1)$	SM(0) (05(0).
. 10 52 0	m(x) cos(h) + cos(*) sm(h)
= Sin(x)	lom (05(h) + (85(x) lom Sm(h) h=0
$b_{3}^{(1)} = S_{W}(x) \cdot 1$	+ (os(x).0
= SIN(x). (3) lim sin(x) = sin(e),	Coldinal States .
× PC	as lim SM(&-c)+c)
= lim Sin(x-c) (65 (•
= 51N(0) (05(c) + (05	(0) \$ 5 m(c)

= 'SM(c).