

02450: Introduction to Machine Learning and Data Mining

Nearest Neighbor, Bayes and Naive Bayes

DTU Compute

Department of Applied Mathematics and Computer Science

Reading Material

Reading material:

C10, C11

Feedback Groups of the day:

- Mariana Mesquita da Cunha, Daniel Molina
- Anders Holmgaard Opstrup, Huayu Zheng, Gu Jinshan
- Anders Verner Nielsen, Simon Nexø Jensen, Casper Thorø Vium Pedersen
- Zivile Vajegaite, Quoc Tien AU, Federico Romano
- Sai Tejaa Chintaluri, Guillem Anton Aguilà Calbet
- Pau Oliver, Laurens Devos, Yevgen Zainchkovskyy
- Morten Telling, Tobias Lindstrøm, Marcus 2 DTU Compute Pagh

Tue Herlau, Mikkel N. Schmidt and Morten Mørup

Introduction to Machine Learning and Data Mining

Course notes fall 2016, version 1

August 29, 2016

Technical University of Denmark

02450: Introduction to Machine Learning and Data Mining

Lecture Schedule

Introduction

30 August: C1

Data: Feature extraction, and visualization

2 Data and feature extraction

Measures of similarity and summary statistics

13 September: C4

Data Visualization and probability 20 September: C5, C6

Supervised learning: Classification and regression

6 Decision trees and linear regression 27 September: C7, C8 (Project 1 due before 13:00)

6 Overfitting and performance evaluation

Nearest Neighbor, Bayes and Naive Bayes

11 October: C10, C11

8 Artificial Neural Networks and Bias/Variance 25 October: C12, C13

AUC and ensemble methods

1 November: C14, C15

Unsupervised learning: Clustering and density estimation

K-means and hierarchical clustering 8 November: C16 (Project 2 due before 13:00)

Mixture models and association mining

Density estimation and anomaly detection

22 November: C19

Recap

Recap and discussion of the exam 29 November: C1-C19 (Project 3 due before 13:00)

Data modeling framework

After today you should be able to:

Explain how K-Nearest Neighbors can be used to classify data Account for the assumptions made in Naïve Bayes Apply Bayes theorem to obtain the class posterior likelihood Understand how to interpret Bayesian Belief Networks.

Classify gender based on height and weight

	Height	Weight	Gender
	183	90	Male
2	180	75	Male
	170	85	Male
4	185	83	Male
	159	59	Female
6	167	75	Female
7	165	68	Female
8	175		Female
9	171	82	?

• 1 nearest neighbor

• 1 nearest neighbor

• 2 nearest neighbors

• 3 nearest neighbors

- Choose
 - The number of neighbors, *k*
 - A distance measure
- 1. Compute distance to all other data objects
- 2. Find the *k* nearest data objects
- 3. Classify according to majority of neighbors

Nearest neighbor decision surface

	-		
	Height	Weight	Gender
	Tall	Heavy	Male
2	Tall	Heavy	Male
	Short	Heavy	Male
	Tall	Heavy	Male
5	Short	Light	Female
	Short	Heavy	Female
	Short	Light	Female
	Tall	Light	Female
9	Short	Heavy	4

- What is the probability that ? is male $p(\mathrm{Gender} = \mathrm{Male}|\mathrm{Height} = \mathrm{Short}, \mathrm{Weight} = \mathrm{Heavy})$
- · Shorthand notation:

$$p(G = m|H = s, W = h) = p(m|s, h)$$

• Bayes rule

$$p(m|s,h) = \frac{p(s,h|m)p(m)}{\sum_{G \in \{m,f\}} p(s,h|G)p(G)} = \frac{\frac{1}{4} \cdot \frac{4}{8}}{\frac{1}{4} \cdot \frac{4}{8} + \frac{1}{4} \cdot \frac{4}{8}} = \frac{1}{2}$$

- Contingency table
 - All combinations of attribute values
 - Huge table

	Height	Weight	Gender
	Tall	Heavy	Male
2	Tall	Heavy	Male
	Short	Heavy	Male
4	Tall	Heavy	Male
	Short	Light	Female
6	Short	Heavy	Female
7	Short	Light	Female
8	Tall	Light	Female

	Gender	Height	Weight	Fraction
	Male	Short	Light	0/4
			Heavy	1/4
		Tall	Light	0/4
•			Heavy	3/4
	Female	Short	Light	2/4
			Heavy	1/4
		Tall	Light	0/4
			Heavy	1/4

- Naïve Bayes assumption
 - Conditional probabilities of attributes are independent

$$p(\text{Height}, \text{Weight}|\text{Gender}) = p(\text{Height}|\text{Gender}) \times p(\text{Weight}|\text{Gender})$$

· Naïve Bayes classifier

$$p(m|s,h) = \frac{p(s|m)p(h|m)p(m)}{\sum_{G \in \{m,f\}} p(s|G)p(h|G)p(G)} = \frac{\frac{1}{4} \cdot \frac{4}{4} \cdot \frac{4}{8}}{\frac{1}{4} \cdot \frac{4}{4} \cdot \frac{4}{8} + \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{4}{8}} = \frac{2}{5}$$

Naı̈ve Bayes assumption $p(\text{Height}, \text{Weight}|\text{Gender}) = p(\text{Height}|\text{Gender}) \times p(\text{Weight}|\text{Gender})$

Group exercise

- Naïve Bayes contingency table
 - Only counts for each attribute
 - Small table

Height Weight Gender 1 Tall Heavy Male 2 Tall Heavy Male 3 Short Heavy Male 4 Tall Heavy Male 5 Short Light Female 6 Short Heavy Female 7 Short Light Female 8 Tall Light Female				
2 Tall Heavy Male 3 Short Heavy Male 4 Tall Heavy Male 5 Short Light Female 6 Short Heavy Female 7 Short Light Female		Height	Weight	Gender
3 Short Heavy Male 4 Tall Heavy Male 5 Short Light Female 6 Short Heavy Female 7 Short Light Female	1	Tall	Heavy	Male
4 Tall Heavy Male 5 Short Light Female 6 Short Heavy Female 7 Short Light Female	2	Tall	Heavy	Male
5 Short Light Female 6 Short Heavy Female 7 Short Light Female	3	Short	Heavy	Male
6 Short Heavy Female 7 Short Light Female	4	Tall	Heavy	Male
7 Short Light Female	5	Short	Light	
, energ Eight Feinale	6	Short	Heavy	
8 Tall Light Female	7	Short	Light	
	8	Tall	Light	Female

Condor	Attributo	Exaction
Gender	Attribute	Fraction
	Height=Short	
	Weight=Light	0/4
Female	Height=Short	3/4
	Weight=Light	

Group exercise

- Classify (compute the posterior probability of G=m) for the four ? using
 - $\text{ Bayes classifier } \qquad p(m|s,h) = \frac{p(s,h|m)p(m)}{\sum p(s,h|G)p(G)} = \frac{\frac{1}{4} \cdot \frac{4}{8}}{\frac{1}{4} \cdot \frac{4}{8} + \frac{1}{4} \cdot \frac{4}{8}} = \frac{1}{2}$
 - $\text{ Na\"{i}ve Bayes classifier} \quad p(m|s,h) = \frac{p(s|m)p(h|m)p(m)}{\sum p(s|G)p(h|G)p(G)} = \frac{\frac{1}{4} \cdot \frac{4}{4} \cdot \frac{4}{8}}{\frac{1}{4} \cdot \frac{4}{4} \cdot \frac{4}{8} + \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{8}{8}} = \frac{2}{5}$

1	8 7 4	4 8		
	Male	Height =	Short	
				2/4
	Male	Short	Light	
				3/4
			Light	2/4
			Heavy	1/4
			Light	0/4
			Ligit	0/4

Robust estimation

Probability of y given x for discrete variables

M-estimate

$$p(y|x) = \frac{n_c + m_c}{n+m}$$
 Pseudo observations of objects having value y and x Equivalent pseudo-sample size of objects having value x

- If no objects take value x the probability will be $\dfrac{m_c}{m}$
- Corresponds to putting m extra objects into the data set

- Handling continuous attributes
 - Two way split (x<a)
 - · Converts into binary attribute (We have used this in the previous example)
 - Discretize into a number of bins
 - Converts into discrete ordinal attribute
 - Probability density estimation
 - Assume attribute follows a Normal distribution
 - Use data to compute parameters (mean and variance)

Short Tall

Short Medium Tall

Baysian Belief Networks (BBN)

 Independence assumption may not hold for some attributes (use BBN)

Naïve Bayes

$$p(\mathbf{x}|y) = p(x_1|y)p(x_2|y)p(x_3|y)p(x_4|y)$$

$$p(x_1|y) p(x_2|y) p(x_3|y) p(x_4|y)$$

When x_1 and x_2 are not independent given y $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x}_1 \cdot \mathbf{x}_1 \cdot \mathbf{y}) p(\mathbf{x}_1 \cdot \mathbf{y}) p(\mathbf{x}_1 \cdot \mathbf{y})$

$$\begin{array}{ll} p(\mathbf{x}|y) & = p(x_{_{1}},x_{_{2}}|y)p(x_{_{3}}|y)p(x_{_{4}}|y) \\ & = p(x_{_{1}}|x_{_{2}},y)p(x_{_{2}}|y)p(x_{_{3}}|y)p(x_{_{4}}|y) \end{array}$$

Remember basic rules of probability

- Sum rule

$$p(x) = \sum_{y} p(x, y)$$

- Product rule

$$p(x,y) = p(x|y)p(y)$$

- Bayes' rule $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$

Apple taken from: https://upload-wikimedia.org/wikipedia/commons/3/32/Dark_apple.png
Orange (clementine) taken from: https://commons.wikimedia.org/wiki/File:Clementine_orange.jpg

Exampel taken from:

Information Theory, Inference, and Learning Algorithms, by David J. C. MacKay (chapter 21) http://www.inference.phy.cam.ac.uk/itprnn/book.pdf, originally proposed by Judea Pearl 1988.

莒

"Fred lives in Los Angeles and commutes 60 miles to work. Whilst at work, he receives a phone-call from his neighbour saving that Freds burglar alarm is ringing. What is the probability that there was a burglar in his house today? While driving home to investigate. Fred hears on the radio that there was a small earthquake that day near his home. Oh, he says, feeling relieved, it was probably the earthquake that set of the alarm. What is the probability that there was a burglar in his house?"

e: A small earthquake took place today near Fred's house. r: The radio report of the earthquake is heard by Fred.

27 DTU Compute, Technical University of Denmark

$$\begin{split} p(a=1) &= \sum_{b \in \{0,1\}} \sum_{c \in \{0,1\}} \sum_{e \in \{0,1\}} \sum_{r \in \{0,1\}} p(a=1,b,c,e,r) \\ p(a=1) &= \sum_{b \in \{0,1\}} \sum_{c \in \{0,1\}} \sum_{e \in \{0,1\}} p(b) p(e) p(a=1|b,e) p(c|a=1) p(r|e) \\ &= \sum_{b \in \{0,1\}} \sum_{e \in \{0,1\}} \left[p(b) p(e) p(a=1|b,e) \left(\sum_{c \in \{0,1\}} p(c|a=1) \sum_{r \in \{0,1\}} p(r|e) \right) \right] \\ &= \sum_{b \in \{0,1\}} \sum_{e \in \{0,1\}} p(b) p(e) p(a=1|b,e) \end{split}$$

What is
$$p(a=1)$$
?
What is $p(b=0|a=1,a=1)$?
What is $p(b=0|e=1,a=1)$?

Hints:

Sum rule:
$$p(x) = \sum p(x, y)$$

Product rule:
$$p(x,y) = p(x|y)p(y)$$

Bayes' rule:
$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Bayesian classification by the multivariate normal distribution

Continuous density estimation

$$P(\boldsymbol{x}|y=c) = \frac{1}{(2\pi)^{M/2} det(\boldsymbol{\Sigma}_c)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_c)^{\top} \boldsymbol{\Sigma}_c(\boldsymbol{x} - \boldsymbol{\mu}_c)\right)$$

- Fit a Normal distribution to each class
 - Compute class mean and covariance
- Classify using Bayes rule as before

$$P(y = c|\mathbf{x}) = \frac{P(\mathbf{x}|y = c)P(y = c)}{\sum_{c'} P(\mathbf{x}|y = c')P(y = c')}$$

Group exercise

 What does the Naive Bayes assumption of independence of the attributes correspond to in terms of the parameters of the multivariate normal distribution?

Midterm practice test

The midterm practice test is used solely for you to test your knowledge and for me to see how well you have understood the covered material so far.

The test **does not** count towards your grade for this course.