

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 3: Retículos

1. Determinar cuáles de los siguientes diagramas de Hasse admiten estructura reticular.

- 2. Dar todos los diagramas posibles para retículos con 1, 2, 3, 4, 5, y 6 elementos respectivamente.
- 3. Mostrar que los siguientes posets son retículos. Determinar las operaciones \vee y \wedge en cada uno.
 - a) $(S(\mathbb{R}^2), \subseteq)$, donde $S(\mathbb{R}^2)$ es el conjunto de subespacios vectoriales de \mathbb{R}^2 .
 - b) (B^A, \leq) , donde: A es un conjunto cualquiera, (B, \leq) es un retículo, $B^A = \{f : A \to B\}$ es el conjunto de funciones de A en B y \leq está dado por

$$f \leq g \Leftrightarrow f(a) \leq g(a), \ \forall \ a \in A$$

- c) Álgebra de Lindenbaum-Tarski.
- **4.** Sean (L_1, \preceq_1) y (L_2, \preceq_2) retículos y consideremos el orden lexicográfico \preceq_{lex} en $L_1 \times L_2$. ¿En qué casos $(L_1 \times L_2, \preceq_{lex})$ es un retículo? En esos casos, ¿cuáles son las operaciones \vee y \wedge ?
- 5. Determinar si en los siguientes diagramas, los puntos negros determinan un subretículo.

6. Sea (X, \preceq) un retículo y $a, b \in X$ con $a \preceq b$. Probar que los siguientes subconjuntos de X son subretículos.

Práctica 3: Retículos Página 1

- **a)** $I_a = \{ x \in X : x \leq a \}$
- **b)** $S_a = \{x \in X : b \leq x\}$
- c) $[a, b] = \{x \in X : a \leq x \leq b\}.$
- 7. Sea una función $f: X \to Y$. Considerar las funciones:

$$F: \mathcal{P}(Y) \to \mathcal{P}(X), \ F(B) = f^{-1}(B)$$
 (imagen inversa)
 $G: \mathcal{P}(X) \to \mathcal{P}(Y), \ G(A) = f(A)$ (imagen directa)

- a) Mostrar que F define un morfismo de retículo.
- b) Mostrar que G define un morfismo de retículo si y solo si f es inyectiva.
- **8.** Sea (L, \preceq) un retículo. Un polinomio p en n-variables es una función $p: L^n \to L$ que pertenece al conjunto inductivo P_L :
 - $i \in \{1, ..., n\}$, $\pi_i \in P_L$, donde $\pi_i(x_1, ..., x_n) = x_i$.
 - Si $f, g \in P_L$ entonces $f \vee g \in P_L$, donde $(f \vee g)(\overline{x}) = f(\overline{x}) \vee g(\overline{x})$.
 - Si $f, g \in P_L$ entonces $f \wedge g \in P_L$, donde $(f \wedge g)(\overline{x}) = f(\overline{x}) \wedge g(\overline{x})$.

Probar que todo $p \in P_L$ es un morfismo de orden entre (L^n, \preceq_{prod}) y (L, \preceq) .

- **9.** Sea $n = p_1 p_2 \cdots p_k \in \mathbb{N}$ tal que p_i es primo para todo $i = 1, \dots, k$ y sea $X = \{p_1, \dots, p_k\}$. Probar que $(D_n, |)$ es un retículo isomorfo a $(\mathcal{P}(X), \subseteq)$.
- 10. Determinar si los retículos del ejercicio 3 son acotados.
- 11. Determinar si cada uno de los siguientes retículos admite estructura de retículo complementado. En caso afirmativo, decidir cuántas funciones complemento distintas se pueden definir.

 2

- 12. Probar que todo retículo finito es acotado. ¿Es cierto el recíproco?
- 13. Sea $(L, \preceq) = (L, \vee, \wedge)$ un retículo. Probar que para cada $x, y, z \in L$,
 - a) $x \vee (y \wedge z) \preceq (x \vee y) \wedge (x \vee z)$.
 - **b)** $x \wedge (y \vee z) \succeq (x \wedge y) \vee (x \wedge z)$.
- 14. Sea (L, \preceq) un retículo. Probar que son equivalentes:
 - a) (L, \preceq) es modular.

Página 2

- **b)** $a \succeq c \Rightarrow a \land (b \lor c) = (a \land b) \lor c$ para todos $a, b, c \in X$.
- c) $a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c)$ para todos $a, b, c \in X$
- **d)** $a \wedge (b \vee (a \wedge c)) = (a \wedge b) \vee (a \wedge c)$ para todos $a, b, c \in X$
- 15. Sean L y S dos retículos y sea $f:S\to L$ un morfismo de retículos. Probar que:
 - a) Si L es distributivo (resp. modular) y L' es un subretículo de L, entonces L' es distributivo (resp. modular).
 - b) Si L es distributivo (resp. modular) entonces f(L) es un subretículo distributivo (resp. modular) de S.
- 16. Justificar si los siguientes retículos son no-modulares, modulares pero no-distributivos, o distributivos.

- 17. Considerar el retículo $(\mathcal{S}(\mathbb{R}^2),\subseteq)$ de subespacios vectoriales de \mathbb{R}^2 .
 - a) ¿Es $(\mathcal{S}(\mathbb{R}^2),\subseteq)$ un subretículo de $(\mathcal{P}(\mathbb{R}^2),\subseteq)$?
 - b) Mostrar que $(\mathcal{S}(\mathbb{R}^2),\subseteq)$ es un retículo modular no distributivo.
- 18. Sean L y L' dos retículos y sea $S = L \times L'$ con el orden producto. Probar que:
 - a) Si L y L' son acotados, S es acotado.
 - **b)** Si L y L' son complementados, S es complementado.
 - c) Si L y L' son distributivos, entonces S es distributivo.
 - d) Si L y L' son modulares, entonces S es modular.
- 19. Determinar si los retículos del ejercicio 1 son no-modulares, modulares pero no-distributivos, o distributivos.
- **20.** Sean L y S dos álgebras de Boole.
 - a) ¿Qué condiciones debe cumplir un subretículo L' de L para que L' sea un álgebra de Boole?
 - b) Probar que $L \times S$ con el orden producto es un álgebra de Boole.

3 Página 3