Cap. 5 – Funções afins

13/05/2022

Produto cartesiano

Dados X e Y, o produto cartesiano $X \times Y$ é formado pelos pares ordenados (x,y), onde $x \in X$ e $y \in Y$. Se n(X) = n e n(Y) = m, então $n(X \times Y) = nm$.

$$X \times Y = \{(x_1, y_1), (x_2, y_1), (x_3, y_1), (x_4, y_1), (x_1, y_2), (x_2, y_2), (x_3, y_2), (x_4, y_2), (x_1, y_3), (x_2, y_3), (x_3, y_3), (x_4, y_3)\}$$

Relações

Uma relação R entre os elementos de X e Y é uma condição (ou conjunto de condições) que permite determinar se $x \in X$ está relacionado com $y \in Y$. Quando a condição é satisfeita, escrevemos xRy.

Exemplos:

- ▶ $xRy \Leftrightarrow y x > 0$ (relação de ordem)
- $ightharpoonup xRy \Leftrightarrow f: X \to Y, y = f(x)$

Relações

O gráfico de uma relação R é o subconjunto de $X \times Y$ formado pelos pares (x,y) tais que xRy: $G(R) = \{(x,y) \mid xRy\}$.

Exemplo: $G(f) = \{(x, y) \mid y = f(x)\}$

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$

O plano π formado pelos eixos OX e OY é seu modelo geométrico. P=(x,y) é um par ordenado (nome aritmético) ou ponto (nome geométrico).

$$d(P,Q)^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$\Rightarrow d(P,Q) = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

Exemplo: Dado r > 0, os pontos P = (x, y) que distam r do ponto O = (0, 0) são pontos que estão numa circunferência de centro em O e raio r.

$$r = d(P, O) = \sqrt{(x - 0)^2 + (y - 0)^2} \Rightarrow x^2 + y^2 = r^2$$

De modo geral, se o centro da circunferência é C = (a, b), temos

$$(x-a)^2 + (y-b)^2 = r^2$$

$$f: \mathbb{R} \to \mathbb{R}$$

$$G(f) = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\} \subset \mathbb{R}^2$$

$$y = f(x)$$

$$(x, f(x))$$

Exemplo: O gráfico de $f:[-1,1] \to \mathbb{R}, f(x) = \sqrt{1-x^2}$ é

$$y = \sqrt{1 - x^2} \Rightarrow y^2 = 1 - x^2 \Leftrightarrow x^2 + y^2 = 1$$

A função afim

Uma função chama-se afim se pode ser escrita como $f : \mathbb{R} \to \mathbb{R}, f(x) = ax + b$.

Observe que:

$$ightharpoonup f(0) = a0 + b = b;$$

$$f(x_1) = ax_1 + b f(x_2) = ax_2 + b$$
 \Rightarrow $f(x_2) - f(x_1) = (ax_2 + b) - (ax_1 + b)$
 $\Rightarrow a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}, \forall x_1 \neq x_2$

A função afim

Exemplo: O preço a pagar por uma corrida de táxi é dado por uma função afim, onde b é o valor da bandeirada, x é a distância percorrida e a é o preço por quilômetro rodado.

Exercício: Mostre que o gráfico de uma função afim é uma reta não vertical.

A função afim

Podemos determinar uma função afim sabendo seu valor em apenas dois pontos distintos:

$$\begin{cases} ax_1 + b = f(x_1) \\ ax_2 + b = f(x_2) \end{cases}$$

$$\Rightarrow a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}, b = \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1}$$

Além disso, toda reta não vertical é gráfico de alguma função afim.

A função linear

A função linear

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto ax$$

é um modelo para proporcionalidade.

Proporcionalidade direta: preço de um produto, 1kg=R\$3,00.

kg	R\$
1	3,00
2	6,00
3	9,00

$$f(x) = 3x$$

Proporcionalidade inversa: tempo de viagem, 100km=1h.

km/h	h
100	1
50	2
25	4

$$f(x) = \frac{100}{x}$$

Uma proporcionalidade é uma função $f: \mathbb{R} \to \mathbb{R}$ tal que $f(cx) = cf(x), \forall c, x \in \mathbb{R}$ (proporcionalidade direta) ou $f(cx) = \frac{f(x)}{c}, \forall x \in \mathbb{R}$ e $c \neq 0$ (proporcionalidade inversa)

Pondo
$$a=f(1)$$
, tem-se: $f(c)=f(c\cdot 1)=cf(1)=ca\Rightarrow f(c)=ac, \forall c\in\mathbb{R}$ ou $f(c)=f(c\cdot 1)=rac{f(1)}{c}=rac{a}{c}\Rightarrow f(c)=rac{a}{c}, \forall c
eq 0$

Teorema Fundamental da Proporcionalidade:

Se $f : \mathbb{R} \to \mathbb{R}$ é (de)crescente, são equivalentes:

- 1. $f(nx) = nf(x), \forall n \in \mathbb{Z} \text{ e } x \in \mathbb{R};$
- 2. Pondo a = f(1), tem-se $f(x) = ax, \forall x \in \mathbb{R}$ (logo $f(cx) = cf(x), \forall c, x \in \mathbb{R}$);
- 3. $f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}$.

Prova:

2.⇒3.

$$f(x+y) = a(x+y) = ax + ay = f(x) + f(y), \forall x, y \in \mathbb{R}$$

 $3. \Rightarrow 1.$

$$f(nx) = f(\underbrace{x + x + \dots + x}_{n}) = \underbrace{f(x) + f(x) + \dots + f(x)}_{n}$$
$$= nf(x), \forall n \in \mathbb{Z}, x \in \mathbb{R}$$

 $1.\Rightarrow 2.$ Provemos 1. para $r \in \mathbb{Q}$: $r = \frac{m}{r} \Leftrightarrow m = nr$ nf(rx) = f(nrx) = f(mx) = mf(x) $\Rightarrow f(rx) = \frac{m}{r}f(x) = rf(x), \forall r \in \mathbb{Q}$ Como $f(0) = f(0 \cdot 0) = 0 \cdot f(0) = 0$, pondo f(1) = a, temos $0 < 1 \Rightarrow f(0) \stackrel{>}{<} f(1) \Rightarrow 0 \stackrel{>}{<} a$. Logo. $f(r) = f(r \cdot 1) = rf(1) = ar, \forall r \in \mathbb{Q}$

Mostremos agora para $x \in \mathbb{R}$. Suponha que exista x irracional tal que $f(x) \neq ax$, logo f(x) < ax ou f(x) > ax. Se f(x) < ax, temos $\frac{f(x)}{a} < x$. Se f(x) < ax ou f(x) > ax.

$$\frac{f(x)}{a} < r < x \overset{(a>0)}{\Rightarrow} f(x) < ar < ax \Rightarrow f(x) < f(r) < ax$$

Mostremos agora para $x \in \mathbb{R}$. Suponha que exista x irracional tal que $f(x) \neq ax$, logo f(x) < ax ou f(x) > ax. Se f(x) < ax, temos $\frac{f(x)}{a} < x$. Se f(x) < ax ou f(x) > ax ou f(x) > ax.

$$\frac{f(x)}{a} < r < x \stackrel{(a>0)}{\Rightarrow} f(x) < ar < ax \Rightarrow f(x) < f(r) < ax$$

Absurdo, pois f é crescente.

O caso f(x) > ax é análogo.

Mostremos agora para $x \in \mathbb{R}$. Suponha que exista x irracional tal que $f(x) \neq ax$, logo f(x) < ax ou f(x) > ax. Se f(x) < ax, temos $\frac{f(x)}{a} < x$. Se f(x) < ax ou f(x) > ax.

$$\frac{f(x)}{a} < r < x \mathop{\Rightarrow}\limits_{(a < 0)}^{(a > 0)} f(x) < ar < ax \Rightarrow f(x) < f(r) < ax$$

Absurdo, pois f é crescente. O caso f(x) > ax é análogo.

Pelo Teorema, para garantir que f é linear, basta verificar que f é crescente (ou decrescente) e que $f(nx) = xf(x), \forall \in \mathbb{Z}, x \in \mathbb{R}$.

Exemplo: Se x é a distância percorrida e f(x) é o consumo de um carro ao percorrer a dsitância x, temos que f é crescente, pois quanto mais se anda, maior o consumo.

Além disso, f(nx) = xf(x), pois um carro percorrendo a distância nx consume o mesmo que esse mesmo carro percorrendo n vezes a distância x.

Como, na demonstração, a monotonicidade de f foi usada apenas para mostrar que $1.\Rightarrow 2$., poderíamos substituir a hipótese "f (de)crescente" no Teorema por "f contínua". De fato, todo número real x é limite de uma sequência de

De fato, todo número real x é limite de uma sequência de racionais, logo

$$f(x) = f\left(\lim_{n \to \infty} r_n\right) \stackrel{f \in C^0}{=} \lim_{n \to \infty} f(r_n) \stackrel{\text{vale 2.}}{=} \lim_{n \to \infty} ar_n = a \lim_{n \to \infty} r_n = ax$$

f é afim se, e somente se, f é (de)crescente e se $f(x+h)-f(x)=\varphi(h)$ depender só de h.

Prova:

Suponha f crescente (o caso decrescente é análogo), logo φ é crescente e

$$\varphi(h+k) = f(x+h+k) - f(x)$$

$$= \underbrace{f(x+h+k) - f(x+h)}_{\varphi(k)} + \underbrace{f(x+h) - f(x)}_{\varphi(h)}$$

$$= \varphi(h) + \varphi(k)$$

Pelo TFP, pondo $a = \varphi(1)$, $\varphi(h) = ah$, $\forall h \in \mathbb{R}$.

Assim,

$$f(x+h) - f(x) = ah \Rightarrow f(0+h) - f(0) = ah$$
$$\Rightarrow f(h) = ah - \underbrace{f(0)}_{b} = ah + b, \forall h \in \mathbb{R}$$

Reciprocamente, se f(x) = ax + b, então

$$f(x + h) - f(x) = a(x + h) + b - ax - b = ah$$

depende apenas de h.

Exemplo:

- número do sapato × tamanho do pé em cm
- ▶ temperatura em Celsius × temperatura em Fahrenheit
- distância percorrida × valor da corrida do táxi

Exemplo: $f : \mathbb{R} \to \mathbb{R}, f(x_n) = y_n$, onde (x_n) e (y_n) são PAs: $x_{n+1} = x_n + r$, $y_{n+1} = y_n + s$

$$f(x_n + r) - f(x_n) = f(x_{n+1}) - f(x_n) = y_{n+1} - y_n$$

= $y_n + s - y_n = s = ar = \varphi(r)$

∴ f é afim.

$$\tan \theta = \frac{s}{r}$$
$$\Rightarrow s = \tan \theta \cdot r$$
$$\Rightarrow s = ar$$

Reciprocamente, se $f: \mathbb{R} \to \mathbb{R}$ é afim e (x_n) é uma PA, então $y_n = f(x_n)$ é uma PA.

$$y_{n+1} - y_n = f(x_{n+1}) - f(x_n)$$

$$= ax_{n+1} + b - ax_n - b$$

$$= a(x_n + r) - ax_n$$

$$= ar$$