GENETIC ALGORITHM

By Deepali Kundnani Shruti Railkar

DARWIN'S EVOLUTION THEORY

Survival of the Fittest

Natural selection

Sir Charles Darwin

EVOLUTION AT THE GENE LEVEL

- Chromosomes from two different parents
- Chromatids from each overlap at Chiasma
- Recombinant chromosomes are form
- Further passed on to the progeny

EVOLUTION AT THE MOLECULAR LEVEL

A T T G C T C

ORIGINAL

A T A G C T C

SUBSTITUTION

A T T G A C T C

ADDITION

A T G C T C

DELETION

EVOLUTION DUE TO GENETIC CROSSOVER

Offsprings have combinations of features inherited from each parent

Image adapted from http://www.wpdipart.com

EVOLUTION DUE TO GENETIC MUTATION

Random changes are observed

Image adapted from http://www.wpdipart.com

THE ALGORITHM

Genetic Algorithm is a type of local search that mimics evolution by taking a population of strings which encode possible solutions and combines them based on a fitness function to produce individuals that are more fit.

FOR INSTANCE

1) Encoding the two numbers into binary strings

Parent 1=3.273672 =>11.0100011000001

Parent 2=3.173294 =>11.0010110001011

2) Randomly choose a crossover point; let suppose be it at bit 6, and we split the gene at position six.

Parent 1=>3.273672=>11.010---0011000001

Parent 2=>3.173294=>11.001---0110001011

3) Swapping the two tails ends of binary strings.

Child 1=>11.010---0110001011

Child 2=>11.001---0011000001

4) Recombining the two binary strings to get two new offspring.

Child 1=>11.0100110001011

Child 2=>11.0010011000001

5) Decoding the binary strings back into floating point numbers.

Child 1=3.298218

Child 2=3.148560

WALKING THROUGH GENERATIONS

Zeroth Generation

First Generation

60th Generation

95th Generation

100th Generation

REAL WORLD USES

- Artificial Intelligence
- Automotive Design
- Computer Gaming
- Predicting Protein Structure
- Optimization Problems
- Music
- Business

BIOLOGY AND CHEMISTRY

Helps to determine the accurate torsion angles and predict protein structure

EVELOPING IMAGES

Evolution of Monalisa: Roger Alsig Weblog

CURVE FITTING

Minimizing total error over the set of data points

Source: http://www.geneticprogramming.org

MUSIC

Musical examples of variations output to get perfect music. Fitness function determinant here is human ear

Optimization of an optical surface for a smooth refraction to be focused on a single point

Source: Youtube

Optimization of aerodynamics of a Car for a smooth drive on a crooked path

FEATURES

ADVANTAGES

- No training required
- Efficient even during
 Multi-modal or
 n-dimensional search space
- Can work for non-linear equations too
- Efficient

LIMITATIONS

 Do not work well when the population size is small and the rate of change is too high.

 If the fitness function is chosen poorly or defined vaguely, the Genetic Algorithm may be unable to find a solution to the problem, or may end up solving the wrong problem

GA SOFTWARES

- GAOT- Genetic Algorithm Optimization Toolbox in Matlab
- JGAP is a Genetic Algorithms and Genetic Programming component provided as a Java framework

 Generator is another popular and powerful software running on Microsoft Excel

CONCLUSION

- Genetic Algorithm is related to "solving problems of everyday interest" in many diverse fields.
- However, several improvements can be made in order that Genetic Algorithm could be more generally applicable. Future work will continue through evolution and many more specific tasks

REFERENCES

- Introduction to Genetic Algorithms -Axcelis http://www.axcelis.com:80/articles/itga/application.html
- How Genetic Algorithm works
 http://www.mathworks.in/help/toolbox/gads/f6187.html
- Introduction to Bioinformatics
 By Sundararajan & R. Balaji
- Functioning of a Genetic Algorithm http://www.rennard.org/alife/english/gavintrgb.html#gafunct

THANK YOU!