

Thermoplastic selection for aluminium replacement in electric and electronic devices made by additive manufacturing.

Joamin Gonzalez-Gutierrez

Luxembourg Institute of Science and Technology

Horizon 2020 European Union funding for Research & Innovation

What we do?

Where are we?

Visit us at: multhem.eu

MULTHEM

Metal replacement

A very common practice for weight reduction

- General trend is using more & more composite materials
 - Example: Airbus planes

Drawback of metal replacement

Composites are thermal insulators

- For electric & electronic devices this is a problem
 - Can cause malfunctions!
- MULTHEM project aims at replacing aluminium by composites in

Electric motor housing

Avionics power electronic housing

https://www.militaryaerospace.com/computers/article/16720110/rugged-intelligent-power-controldevice-for-vetronics-and-avionics-introduced-by-ddc Battery case for e-bike

https://fr.aliexpress.com/store/4989531?spm=a2g0o.detail.1000007.1.e0fe7c1b61Y7Qa

Further lightweighting

Use additive manufacturing

- Complex shapes to enhance heat dissipation
- Use thermoplastic composites with carbon fibres
 - higher conductivity & materials are available

Gyroid structures on the surface https://youtu.be/1G4wyjeMjPk

https://www.jweimolding.com/carbon-fiber-reinforced-thermoplastic-compoundsfor-high-temperature-applications/

Continuous carbon fibre
https://www.compositesworld.com/news/aso-tech-solutions-is-renamed-to-venox-systems

Material selection

Based on thermal & mechanical requirements

· 4 thermoplastics with short carbon fibres were purchased

PEKK-CF E = 9125 MPa HDT = 285 °C ρ = 1.33 g/cm³

PEI-CF E = 4685 MPa HDT = 200 °C ρ = 1.27 g/cm³ PC-CF E = 6390 MPa HDT = 144 °C ρ = 1.26 g/cm³

PA6-CF E = 5500 MPa HDT = 140 °C ρ = 1.21 g/cm³

<u>Fused filament fabrication</u>

3D printed prisms for hot disk thermal conductivity

- Dimensions 20 mm x 20 mm x 6.5 mm
- Direct extrusion printer
- Maximum recommended extrusion temperature for each material
- Extrusion multiplier from 110 % to percentage where pores were visible

Thermal conductivity

Hot disk method

- Polish surface of 3D printed parts for good contact
- Adjusted parameters for each material to minimize warnings

Kapton sensor

Printing results – PEKK - CF

Printing conditions:

Nozzle temp: 390 °C

Bed temp.: 120 °C

Printing results – PEI - CF

Printing conditions:

Nozzle temp: 390 °C

Bed temp.: 120 °C

Printing results – PC - CF

Printing conditions:

Nozzle temp: 290 °C

Bed temp.: 120 °C

Printing results – PA6- CF

Printing conditions:

Nozzle temp: 260 °C

Bed temp.: 90 °C

Thermal conductivity results

Thermal conductivity

- Increases with extrusion multiplier (EM)
- Most likely related to porosity
- Highest PA6-CF → maybe more fibre content
- Lowest PEI-CF → might need higher EM & higher nozzle temperature

Conclusions

For each material tested

- Was printable in the range of recommended conditions
- Visible porosity appears at different extrusion multiplier values
 - PEKK at 75%
 - PEI at 90%
 - PC at 80%
 - PA6 at 85%
 - Most likely related to viscosity of composite
- Thermal conductivity increases with extrusion multiplier
- Higher for PA6-CF
- Lower for PEI-CF

Future work

Quantify porosity & fibre content of specimens

- Micro computed tomography
- Density measurements

Vary other 3D printing parameters

- Layer height
- Nozzle diameter
- Printing orientation & temperature

Develop new materials

- Higher thermal conductivity (>1 W/m*K) & still printable
- Combine with continuous carbon fibres

Acknowledgements

Co-authors

- Harshada Chothe Luxembourg Institute of Science & Technology (LU)
- Gabriel Foyer Thales Research and Technology (FR)
- Tessa ten Cate Brightlands Materials Center (NL)

Funding

• This project has received funding from the European Union's Horizon Europe Research & Innovation programme 2021 -2027 under grant agreement number: 101091495

Thank you for your attention!

Questions?

