

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2012/2013 – 3rd Year Examination – Semester 6

IT6404 - Database Systems II Structured Question Paper

3rd August, 2013 (TWO HOURS)

To be completed b	by the candidate
BIT Examination 1	Index No:

Important Instructions:

- The duration of the paper is **2 (two) hours**.
- The medium of instruction and questions is English.
- This paper has 4 questions and 14 pages.
- Answer all questions (25 marks each).
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.

_	41	•	A		
()	uest	ınne	Δne	WAL	മറ
w	uesi	ıvııs	Alla	WCI	Ξu

Indicate by a cross (x), (e.g.) (e.g.) (e.g.) (e.g.) (e.g.) (e.g.)

	Question numbers								
To be completed by the candidate by marking a cross (x).	1	2	3	4					
To be completed by the examiners:									

1) (a) (i) Define Structured, Semi-Structured and Unstructured Data, with examples.

(09 marks)

ANSWER IN THIS BOX

Structured Data

A relation in a relational database contains several records and each record has a format consistent with other records in that relation. Such type of data that is represented in a strict format is called structured data.

(data is organised in semantic entities; similar entities are grouped together; entities in the same group have the same attributes; attributes have the same defined format with a predefined length and are all present in the same order)

E.g. Book will have a particular structure (e.g. table) to record title, authors, publisher, edition, year etc.

Semi-Structured Data

In some applications, data is collected in an ad hoc manner before having information regarding how it will be stored and managed. Although the collected data may have certain structure, but not all the data have an identical structure.

Different entities may have different sets of attributes that means there is no predefined schema. Such type of data is known as semi-structured data.

(organised in semantic entities; similar entities are grouped together; entities in same group may not have same attributes; order of attributes not necessarily important; not all attributes may be required; size of same attributes in a group may differ; type of same attributes in a group may differ)

E.g. Data model for Book representing relationships between book, author, title etc., resulting in a graph structure.

(diagram optional)

title author title

book.

"DBMS" "Dias" "Prog."

Continued.

<u>Unstructure</u>	d Data
The term un	structured refers to the fact that no identifiable structure within this
of data i	s available. Unstructured data cannot be stored in rows and columns
relationa	ll database.
(data can be	of any type; not necessarily following any format or sequence; does
follow a	ny rules; is not predictable; examples include)
An example	for unstructured data is documents/articles/chapters that are archive
a file fol	der. Other examples are videos and images.
	res and formats can be used to record above defined types of Data? (05 r N THIS BOX
ANSWER I	N THIS BOX Relational database tables
ANSWER I Structured -	N THIS BOX Relational database tables
ANSWER I Structured -	N THIS BOX Relational database tables ructures ured - XML/RDF format
Structured - Table struct Semi-Struct	N THIS BOX Relational database tables ructures ured - XML/RDF format

ANSWER IN THIS BOX	(03 marks)
Oata warehouse includes large volumes of historical data fr	om multiple data sources
that can be aggregated and disaggregated to extra know	ledge for decision making
workers such as a CEO, Directors and Managers.	
A data warehouse uses a multidimensional storage model involving describe how they are used.	two types of tables. Name and (06 marks)
ANSWER IN THIS BOX	
Dimension tables and fact tables	
Dimension tables and fact tables A dimension table consists of tuples of attributes of the	dimension.
A dimension table consists of tuples of attributes of the	
A dimension table consists of tuples of attributes of the	each recorded fact.
A dimension table consists of tuples of attributes of the A fact table can be thought of as having tuples, one per	each recorded fact.
A dimension table consists of tuples of attributes of the A fact table can be thought of as having tuples, one per This fact contains some measured or observed variable(s) a	each recorded fact. and identifies it (them) as the data (e.g. Amount
A dimension table consists of tuples of attributes of the A fact table can be thought of as having tuples, one per This fact contains some measured or observed variable(s) a with pointers to dimension tables. The fact table contain	each recorded fact. and identifies it (them) as the data (e.g. Amount e dimensions identify
A dimension table consists of tuples of attributes of the A fact table can be thought of as having tuples, one per This fact contains some measured or observed variable(s) a with pointers to dimension tables. The fact table contain and Quantity Sold for a Product during a period), and the	each recorded fact. and identifies it (them) as the data (e.g. Amount e dimensions identify
A dimension table consists of tuples of attributes of the A fact table can be thought of as having tuples, one per This fact contains some measured or observed variable(s) a with pointers to dimension tables. The fact table contain and Quantity Sold for a Product during a period), and the	each recorded fact. and identifies it (them) as the data (e.g. Amount e dimensions identify

Di	Distribution of data and programs across the sites of a comp	Index No:uter network is carried out during the design
	f a distributed database system. What is a typical reasonable our answer.	e unit of distribution for such design? Justify
- Г	ANSWER IN THIS BOX	(02 marks)
	AROUER IN THIS BOX	
	A fragment of a relation is a reasonable unit of d	istribution unlike the whole relation.
	Most application views are usually subsets of re	lations (fragments) than the whole
	relation.	
(i)	What are the advantages of fragmentation?	(03 marks)
	ANSWER IN THIS BOX	
	improve reliability, performance, balance storage	e capacity and costs,
	communication costs, security	
	Locality of accesses of applications is defined or	n subsets of relations.
	Execute concurrent transactions by accessing	g different portions of a relation.
	Parallel execution of a single query (intra-que	ery concurrency).
	Reduce the volume of remote data accesses.	
((ii) What is the qualitative and quantitative information that	_
	ANSWER IN THIS BOX	(02 marks)
	Quantitative information: frequency of queries, s	ite, where query is run, selectivity of
	the queries, etc.	
	Qualitative information: types of access of data,	read/write, etc.

(c) Consider the following project relations. Project (ProjNo, pName, Budget, Location)

Following rules applies to the above relation.

- Project budget is to be hidden from most employees and hence should be separated from other attributes.
- Projects with a budget less than Rs. 200,000 should be separated from the rest as higher management approval is required for those costing Rs. 200,000 or above.
- Project monitoring process for those located outside Colombo is different to those in Colombo and hence managed separately.
- (i) If a distributed database is to be designed, based on the above rules, give a set of predicates to partition the Project relation. Identify the resultant relations and the type of fragmentation applied.

ANSWER IN THIS BOX) marks)
Project is vertically fragmented as Proj1 and Proj2 to separate Budget from res	t.
Proj1 = Π _{ProjNo,Budget} (Project)	
Proj2 = Π _{ProjNo,pName,Location} (Project) [3]	
Proj1 is fragmented horizontally as LowBudProj and HighBudProj to separate l	ow
cost projects (< 200000) from the rest. Resultant relations are mixed fragme	nted.
LowBudProj = σBudget<200000 (Proj1)	
HighBudProj = σBudget≥200000 (Proj1) [3]	
Proj2 is further fragmented horizontally as ColProj and OtherProj to separate	
Colombo projects from the rest. Resultant relations are mixed fragmented.	
ColProj = σLocation="Colombo" (Proj2)	
OtherProj = σLocation<>"Colombo" (Proj2) [3]	
LowBudProj(<u>ProjNo,</u> Budget)	
HighBudProj(<u>ProjNo,</u> Budget)	
Cont	inued

	Index No:
ColProj(<u>ProjNo</u> , pName, Location)	
OtherProj(<u>ProjNo</u> , pName, Location) [1]	

(ii) Explain the correctness rules of fragmentation. Apply them to c(i) above.

(08)	marks)
ANSWER IN THIS BOX	
Completeness - Decomposition of relation R into fragments R_1, R_2, \ldots, R_n is	
complete iff each data item in R can also be found in some R _i .	
Reconstruction - If relation R is decomposed into fragments R_1,R_2,\ldots,R_n , then	
using union or join relational operators appropriately, R should be reconstru	ıcted
from its fragments.	
Disjointness - If relation R is decomposed into fragments R_1,R_2,\ldots,R_n and dat	a
item d_i appears in fragment R_j , then d_i should not appear in any other fragme	ent R _k ,
k ≠ j (exception: primary key attribute for vertical fragmentation)	
LowBudProj U HighBudProj → Proj1	
ColProj U OtherProj → Proj2	
Proj1 ⋈ Proj2 → Project	

Index	No:										 	

(a) Consider the schedules given in S1 and S2 below. Please note that r_i and w_i denote respectively the read and write operations of transaction \mathbb{T}_i . a, b, c are data items.

$$S1 = r_1(a), r_2(c), r_1(c), r_3(a), r_3(b), w_1(a), w_3(b), r_2(b), w_2(c), w_2(b)$$

 $S2 = r_1(a), r_2(c), r_3(a), r_1(c), r_2(b), r_3(b), w_1(a), w_2(c), w_3(b), w_2(b)$

Produce the precedence graphs and determine whether the given schedules S1 and S2 are serializable. If so give the corresponding serial schedule.

(06 marks)

(b) Explain what is meant by a recoverable schedule and why recoverability of schedules is desirable.

(04 marks)

ANSWER IN THIS BOX	
A recoverable schedule is one where, for each pair of transaction	ons Ti and Tj such that
Tj reads data items previously written by Ti, the commit oper	ration of Ti appears
before the commit operation of Tj.	
	Continued

	Index No:
Recoverable schedules are desirable becau	se failure of a transaction might bring the
system into an irreversibly inconsistent	state.

(c) Consider the following schedule.

```
r_3(c), w_3(c), r_1(a), r_2(b), w_2(b), w_1(a), r_1(b), w_3(a), c1, c2, c3;
```

State whether the given schedule is recoverable or not. If the schedule is not recoverable propose the necessary modifications to make it recoverable.

(04 marks)

·	(0)
ANSWER IN THIS BOX	
The given schedule is not recoverable, since T1 reads a value of b updated b	y T2,
and yet, T1 commits before T2.	
r3(c), w3(c), r1(a), r2(b), w2(b),w1(a),r1(b),w3(a), <u>C2, C1,</u> C3;	

(d) Consider the following two schedules.

```
S1 = r_1(a), r_2(b), w_2(b), r_1(b);

S2 = w_1(a), w_2(a), w_3(a), w_1(b), w_2(b);
```

Based on the two schedules S1 and S2 given below justify giving reasons which schedule is allowed by locks and not by timestamps and which schedule is allowed by timestamps and not by locks. Please note that r_{i} and w_{i} denote the read write operations for data items a and b of transaction T_{i} .

(06 marks)

ANSWI	WER IN THIS BOX	
S1 is a	allowed by locks and not by timestamps since <i>rea</i>	d X is allowed only if
<i>t</i> ≥	≥ w-max(X). Since t1-read(B) < w-max(B), this cond	lition is violated and as such
the t	e timestamp protocol cannot be adopted.	
		Continued

T., J.,	NT									
Index	INO:	 								

However, it	is possible to acquire locks based on 2PL protocol (as T1 may wait in its
growing	phase till T2 releases locks on B).
S2 is allowe	ed by timestamps and not by locks since it is not possible to acquire locks
based or	n 2PL protocol. Hence S2 is a serializable schedule which is illegal under
the 2PL 1	protocol.

(e) Consider the following part of a log file.

```
Start(T1)
Write(T1, x, old, new)
Commit(T1)
checkpoint
Start(T4)
Write(T4, y, old, new)
Write(T4, z, old, new)
Commit(T4)
Start(T2)
Write(T2, y, old, new)
Start(T3)
Write(T3, z, old, new)
s y s t e m c r a s h
```

Explain giving reasons, which transactions could be recovered and which transactions cannot be recovered from the above log file based on Deferred Update mechanism.

(05 marks)

	JS IIIai KS)
ANSWER IN THIS BOX	
Since T1 and T4 are committed, their changes were written to disk.	
However, T2 and T3 did not commit, hence their changes were not written to di	ek
In the recovery process, the transactions that did not commit would be ignored	i.

Index	No:											

4) (a) Consider the following relational schema where Id is the primary key in Student.

```
Student(Id, Name, Stream)
Enroll(StudId, Course)
```

Consider the query

Suggest the indexes that can be added to this database in order to improve the performance of this query. Indicate whether these indices should be clustered or not. Explain your reasoning briefly.

(05 marks)

ANSWER IN THIS BOX	
Clustered hash index on Cour	se in Enroll can improve the performance, since it will
facilitate the first selection (i.e	e. course='CS305').
A clustered index on Stream i	n Student might also help, since it can facilitate the
second selection (i.e. strea	am='Networking').
Note that since Id is a primary	key in Student, it might have an
unclustered (rather than cl	lustered) index, because numeric single-attribute keys
often have unclustered has	sh indices.
We could do away with the clu	ustered index on Stream, since we could also do the
	which exists because Id is the primary key.

(b) The table Employee(<u>Id</u>, Name, DeptId, Salary) has Id as its primary key and consider the following SQL statement issued on the Employee relation.

```
SELECT E.Name
FROM Employee E
WHERE E.Salary > 100000 AND E.DeptName = 'accounting';
```

What index would you choose to enhance the performance of the SQL statement given above considering each of the following scenarios separately?

- (i) The number of employees in accounting is smaller than the number earning over Rs.100000.
- (ii) The number of employees in accounting is much larger than the number earning over Rs. 100000.

(08 marks)

Index	No.										

ANSWER IN THIS	S BOX
An index on either	Salary or DeptName is needed depending on which is more
selective.	
If the number of em	nployees in accounting is smaller than the number earning over
Rs.100,000 then	a hash or B+ tree index on DeptName would be appropriate.
Performance can b	e further improved by making the index clustered, so that all
employees in th	ne same department are in the same hash bucket or are
consecutive if a	B+ structure is used.
In that case, the inc	dex on Id must by unclustered, but that should not imply a
performance pe	enalty since queries involving ld will generally not involve a range
search and hen	ce will return a single row.
If accounting is a la	arge department, then a B+ tree index on Salary would be
appropriate since a	range search is needed.
The same consider	ations with respect to clustering apply.

(c) Consider the following relations that represent part of a company database:

Employee(EmpId, Ename, Designation, Salary)
Works On(EmpId, ProjId, Hours)

The Employee relation keeps information on employees and the Works_On relation has information on who is working on which project. Key of each relation is underlined. An employee may work for many projects and vice versa. However, there are Employees who may not work for any of the projects. There may be about 200 employees per project and only 10% of them are working more than 20 hours for a project. There are about 3,000 employees working for the company and 50% of them are earning more that Rs. 40,000.

Index	No:			 							

Consider the following query:

SELECT E.Ename, E,Designation FROM Employee E, Works On W

WHERE E.Empid=W.Empid AND W.ProjId = '007'

AND W.Hours > 20 AND E.Salary > 40000;

Assume that the following statistics and indices are available. Works On: 10,000 records on 50 projects, 25 records/page

Clustered static hash index on ProjId

3,000 with 10 tuples/page **Employee:**

Unclustered hash index on EmpId

Draw the query tree corresponding to the best query plan of the above query.

(06 marks)

(ii) Estimate the cost of the best query plan using the I/O cost. Note that the estimated cost to retrieve an unclustered page is about (1.2) I/O on average for hash based indexes.

(06 marks)

A	NSWER IN THIS BOX	
Tr	he select Projld='007' from works_on would produce 200 tuples (i.e. 8 pages) and	
	hence costs 8 I/O due to clustered hash index.	
	Continue	ed

Index	No:											
HUCA	INO.		 									

Selection of Hours > 20 is applied on the fly and that will reduce the number of tuples to
20 (i.e. 200 * 10%) which is 1 page.
The cost of finding matching Employee tuple is (1.2) I/O based on hash indexing.
As there are 20 such tuples the cost for retrieving the corresponding Employee tuples
is 20 * (1.2) I/O => 24 I/O.
Selection of Salary > Rs. 40000 is also applied on the fly
he selection on salary and the projection on Ename and designation are then applied
on the fly at no additional cost.
lence the total cost => 8 I/O + 24 I/O => 32 I/O.
