CONTRASTES EM ESTATÍSTICA

Definição de Contrastes: Considere um experimento tem T tratamentos, com efeitos t_i , i=1, 2, ..., T, respectivamente.

Um contraste para esses tratamentos é definido como sendo qualquer combinação linear de seus efeitos, ou seja:

$$a_1t_1 + a_2t_2 + a_3t_3 + ... \ a_Tt_T = \sum a_it_i$$
,
onde $a_1 + a_2 + a_3 + ... + a_T = \sum a_i = 0$.

Cada contraste tem um grau de liberdade e pode testar:

a) Se há diferença significativa entre dois grupos desses tratamentos: o grupo dos tratamentos com coeficientes positivos com o grupo de tratamentos com coeficientes negativos.

Exemplo: Seja um experimento com 5 tratamentos (Tr.1 a Tr.5, e efeitos t₁ a t₅ respectivamente, tais que Tr.1 e Tr.2 são adubações orgânicas e Tr.3, Tr.4 e Tr.5 adubações químicas.

O contraste: $3t_1 + 3t_2 - 2t_3 - 2t_4 - 2t_5$ é um contraste para tratamentos que testa se, em média, a adubações orgânica (t_1,t_2) diferem da adubação química (t_3,t_4,t_5) .

Nesse caso os coeficientes dos contrastes são estabelecidos pelo pesquisador, dependendo dos objetivos da pesquisa.

b) Se há um efeito polinomial significativo (linear, quadrático, cúbico ...) para os tratamentos ou parte deles.

Exemplo: Seja um experimento com 5 tratamentos (Tr.1 a Tr.5, e efeitos t_1 a t_5 respectivamente.

Existe um efeito linear, ou quadrático, ou cúbico,, que explique o efeito desses tratamentos?

Nesse caso os coeficientes dos contrastes são obtidos em Tabelas ou podem ser gerados por softwares, como mostra-se no final desse texto.

Definição de Contrastes ortogonais:

Sejam c_1 e c_2 dois contrastes:

$$c_1 = a_1t_1 + a_2t_2 + ... + a_Tt_T = \sum a_it_i$$
, com $\sum a_i = 0$ e $c_2 = b_1t_1 + b_2t_2 + ... + b_Tt_T = \sum b_it_i$, com $\sum b_i = 0$.

Os contrastes c_1 e c_2 são ortogonais se:

$$a_1b_1 + a_2b_2 + ... + a_Tb_T = \sum a_ib_i = 0$$

Para dois "contrastes ortogonais", a variação avaliada em um deles independe da variação do outro. Assim sendo, em um experimento com T tratamentos (T-1 graus de liberdade), se esses graus de liberdade forem desdobrados em T-1 contrastes ortogonais, Soma de Quadrados de Tratamentos (SQTr) desse experimento é desdobrada em T-1 partes, cada uma correspondente a um dos contrastes, ou seja:

$$SQTr = SQ_Ct_1 + SQ_Ct_2 + ... + SQ_Ct_{T-1}.$$

Os contrastes ortogonais são estabelecidos pelo pesquisador, dependendo dos objetivos da pesquisa.

Como obter os coeficientes dos contrastes polinomiais:

a) usando Tabelas em livros (níveis equidistantes). Livro Pimentel Gomes.

		(Coefi	icien	tes d	os c	ontra	stes	- Po	linôr	nios	Orto	gona	ais	
Níveis	Co	eficie	ntes	dos	contr	astes									
3	-1	0	1												
,	1	-2	1												
	-3	-1	1	3											
4	1	-1	-1	1											
	-1	3	-3	1											
	-2	-1	0	1	2										
5	2	-1	-2	-1	2										
5	-1	2	0	-2	1										
	1	-4	6	-4	1										

E assim por diante

b)	gerando	os	coeficientes	(níveis	equidistantes	ou	não)	usando	0
sof	tware R.								

$nf <- c(n_1, n_2, n_3)$	# n _i - Niveis do fator, sendo n _i o i-ésimo nível
n=length(nf)-1	
pol <- poly(nf,n)	
coef1 <- pol[,1]	
coef? < nol[2]	

##
coef1; coef2;
c) gerando os coeficientes (níveis equidistantes ou não) usando o software SAS.
PROC IML;
NIVEIS={ $n_1 n_2 n_3$ }; * n_i - Niveis do fator, sendo n_i o i-ésimo nível;
PRINT NIVEIS;
COEF=ORPOL(NIVEIS);
COEF=t(COEF); PRINT COEF;
QUIT;