2020-2021 Eğitim Öğretim Yılı Güz Dönemi MANTIK DEVRELERİ

Ders Öğretim Üyesi: Doç. Dr. Haydar ÖZKAN

Ders Asistanları: Arş. Gör Esma İBİŞ, Arş. Gör Mehmet Cüneyt

ÖZBALCI

Kaynaklar:

Prof. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 2003

Bu bölümde kullanılan kaynaklar:

1. Hüseyin EKİZ, 2003, Mantık Devreleri, Değişim Yayıncılık,

Sayfa: 43-83

2. John BIRD, 2003, Engineering Mathematics, Newnes,

Sayfa: 483-491

Kodlama: İki küme arasında karşılığı kesin olarak belirtilen kurallar bütünüdür.

Kodlama işleminin avantajları:

- 1. Aritmetik işlemlerde kolaylık sağlar.
- 2. Hataların bulunmasını kolaylaştırır.
- 3. Hataların düzeltilmesi işlemini basitleştirir.
- 4. Bellek işlemlerinde verimliliği artırır.
- ゟ. Bilgilerin işlenmesi işleminin insanlarca kolayca anlaşılmasını sağlar.

İki çeşit kodlama yöntemi vardır. Yalnızca sayıların kullanıldığı yönteme sayısal yöntem, alfabetik ve sayısal değerlerin kullanıldığı yönteme de alfasayısal yöntem denir.

3.1. Sayısal Kodlar

Sayısal kodların kullanıldığı çok geniş uygulama alanları olduğundan çok sayıda sayısal kod bulunmaktadır. Bunlardan bazıları:

- 1. BCD Kodu
- 2. Gray kodu
- 3. +3 Kodu
- 4. Aiken kodu
- 5. 5 te 2 kodu
- 6. Bar kodu

3.1.1. BCD (Binary Digit Decimal) Kodu

Onlu sayı sistemindeki bir sayının her bir basamağının 4-bit ikili sayı sistemi ile ifade edilmesinden oluşturulan koddur.

- ÖRNEK: (263)₁₀ sayısını BCD kodu ile ifade ediniz
- **(263)**₁₀
- 0010 0110 0011
- $(263)_{10} = (001001100011)_{BCD}$
- ÖRNEK: (100100110110)_{BCD} kodunun onlu karşılığını yazınız
- . 1001 0011 0110
- 9 3 6
- \cdot (100100110110)BCD = (936)₁₀

Tablo 3.1 Onlu sayılar ve BCD Kodları

- Onlu BCD
- 0 0000
- 1 0001
- 2 0010
- 3 0011
- 4 0100
- 5 0101
- 6 0110
- 7 0111
- 8 1000
- 9 1001

3.1.2. Gray Kodu

Gray kodlama yönteminde değerler katsayıya bağlı değildir. Bu yöntemde ardışıl değerler arasında bitlerden sadece biri değişir.

Table 3.2 4-Bit Gray Code

Decimal	Binary	Gray	Decimal	Binary	Gray
/ 0	000 <mark>0</mark>	0000	8	1000	1100
/ - 1	00 <mark>01</mark>	0001	9	1001	1101
2	0010	0011	1 0	1010	1111
3	0011	0010	1 1	1011	1110
4	0100	0110	1 2	1100	1010
5	01 <mark>01</mark>	0111	1 3	1101	1011
6	01 <mark>10</mark>	0101	1 4	1110	1001
7	0111	0100	1 5	1111	1000

- Tablo 3.2'de onluk sayı, 4 bit ikili kod ve 4 bit gray kodu verilmiştir. Gray kodlamada basamak ağırlık değerleri olmadığından aritmetik işlemlerde kullanılamaz. Fakat sütun esasına göre çalışan giriş-çıkış birimleri, ADC gibi elemanlarda hatayı azalttığından yaygın olarak kullanılır.
- İkili Sayıların Gray Koda Dönüştürülmesi
- İkili sayı sisteminde sayılar b1, b2, b3,... ile, gray kodlamada ise g1, g2, g3, ... ile ifade edildiğini varsayalım. İkili sayının gray koda dönüştürülmesinde en s<mark>oldaki basamak (MSB) ay</mark>nı kalır, kalan bas<mark>amaklara soldan sağa doğru bi</mark>r sonraki ba<mark>samak ile XOR uy</mark>gulanır.
- b3 b2 b1 b0 ikili sayının gray kodu
 - \blacksquare g3 = b3,
 - \blacksquare g2 = b3 \oplus b2,
 - \blacksquare g1 = b2 \oplus b1,
 - g0 = b1 ⊕ b0

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

- ÖRNEK: (101110101)₂ sayısını gray koda dönüştürünüz
- <u> 101/10101</u>
- 1 1⊕0 0⊕1 1⊕1 1⊕1 1⊕0 0⊕1 1⊕0 0⊕1
- **1** 1 1 0 0 1 1 1 1
- \blacksquare (101110101)₂= (111001111)_{gray}
- Ikili kodu gray koda dönüştürmede belirli bir yöntem geliştirilebilir. İki bit gray kod oluşturulduktan sonra 3 bit gray kod için iki bit kod düz ve ters sırada yazılır ve MSB'e sırasıyla dörder dörder 0 ve 1 eklenir. 4 bit oluşturulurken 3 bit düz ve ters sırada yazılır ve MSB'e sekizer 0 ve 1 eklenir. İşleme bu şekilde devam edilir.

2 Bit	3 Bit	4 Bit
00	\ 0 <mark>00</mark>	0000
01	001	0001
/11) 0 <mark>11</mark>	0011
10	010	0010
	1 <mark>10</mark>	0110
	1 <mark>11</mark>	0111
	1 <mark>01</mark>	0101
	100	0100
		1100
		1101
		1111
		1110
		1010

- Gray Kodlu Sayıyı İkili Sayıya Çevirme
- Gray kodlu sayı ikili sayıya dönüştürülürken MSB aynen yazılır bulunan sonuç ile yandaki bite XOR uygulanır. İşlem LSB'e kadar devam eder.
- ÖRNEK: (1100111)gray kodlu sayıyı ikili sayı<mark>ya çeviriniz</mark>

YOR

- $(1100111)_{gray} = (1000101)_2$
- 3.1.3. +3 Kodu (Excess 3 Code)
- +3 Kodu <mark>onlu sayıların sayısal çözümünde kolaylık sağlayan</mark> bir kodlama yöntemidir. Sayını<mark>n BCD koduna 3 (11) ek</mark>lemek suretiyle bulunur.

- ÖRNEK: (48)₁₀ sayısının +3 kodunu bulunuz.
- (48)₁₀ sayısının BCD kodu : 0100 1000
- \blacksquare 0100 1000 + 0011 0011 = (0111 1011)₊₃
- +3 kodlamanın avantajı +3kodun tersinin onlu sistemdeki karşılığı 9'un tümleyenidir.
- ÖRNEK: (48)₁₀ sayısının 9 tümleyenini bulunuz.
- 48 sayısının +3 kodu 0111 1011
- +3 kodunda bitler ters çevrilirse (1000 0100)₊₃ bulunur.
- $1000\ 0100 0011\ 0011 = (0101\ 0001)_{BCD} = (51)_{10}$
- 3.1.4. 5'te 2 Kodu
- 5'te 2 Kodlama sisteminde her onlu sayı içinde mutlaka iki tane 1 bulunan 5 bitlik ikili sayılarla ifade edilir. Basamak değerleri (7 4 2 1 0) dır. (0)₁₀rakamı 11000 ile ifade edilir.

- ÖRNEK: (6)₁₀sayısının 5'te 2 kodunu bulunuz.
- 5 bit sayıda basamak değerleri 74210 olduğundan 6 sayısı 01100 ile ifade edilir.
- ÖRNEK: $(01010\ 10100)_{2/5}$ sayısının onlu karşılığını bulunuz.
- Sayı 5 bit olarak ayrılarak her bölüm kendi basamak değerinden hesaplanır.
- $(01010\ 10100)_{2/5} = (59)_{10}$

Desimal	5'te 2 Kodlu Sayı		
Sayı	7 4 2 1 0		
0	11000		
1	00011		
2	0 0 1 0 1		
3	0 0 1 1 0		
4	0 1 0 0 1		
5	01010		
6	0 1 1 0 0		
7	10001		
8	10010		
9	10100		

Tablo 3.2. Onlu sayıların 5'te 2 kodundaki karşılıkları.

3.1.5. Eşitlik (Parity) Kodu

- Sayısal sistemlerde hataların belirlenmesinde kullanılan en yaygın yöntem eşitlik biti kodlamasıdır. Bu yöntemde BCD kodlu sayının sağına yada soluna bir eşitlik biti eklenir. Eşitlik biti kodlama veride 0 veya 1 lerin tek mi yoksa çift mi olduğunu belirtir. İki çeşit eşitlik biti yöntemi vardır: Çift eşitlik (even parity), tek eşitlik (odd parity)
- Çift eşitlik bitinde kodlanan sayıda 1'lerin çift olması gerekmektedir. Eğer kodlanan sayıda 1 ler tek ise eşitlik biti 1 seçilir, eğer çift ise eşitlik biti 0 seçilir.

 ORNEK: (1000011)₂ ve (1000001)₂ sayılarına çift eşitlik bitine göre eşitlik biti
- ekleyiniz.
- 1000011 sayısında ki 1'lerin sayısı tektir bu yüzden eşitlik biti 1 olmalıdır. 11000011
- 1000001 sayısında 1'ler çifttir bu yüzden eşitlik biti 0 olmalıdır.
- 01000001
- Tek eşitlik yöntemi de aynı mantıkla gerçekleştirilir. Fakat bu yöntemde 1'ler tek olacak şekilde eşitlik biti seçilir.

3.1.6. Aiken Kodu

Aiken kodu 4 basamaklı olup basamak değerleri 2421 şeklinde ifade edilmektedir. Onlu sistemde 5'e kadar olan sayılar sağdaki bitler ile 5'ten sonraki rakamlar ise soldaki bitler ile ifade edilmektedir.

Onlu Sayı	Aiken Kodu
	(2421)
0	0000
1	0001
2	0010
3	0011
4	0100
5	1011
6	1100
7	1101
8	1110
9	1111

- 3.1.7. Bar Kod
- Bar kodlama sisteminde karakterler farklı kalınlıkta boşluk ve çubuklarla ifade edilmektedir. Farklı bar kodları kullanılmaktadır. Ülkemizde genellikle 13 basamaklı barkod sistemi kullanılmaktadır. Bu sistemde 3 basamak ülke kodunu, 4-6 basamak firma kodu ve 3-5 basamak ürün kodu olarak kullanılır. Bütün bar kodlarında başla/bitir kodları bulunmaktadır. Barkodlar barkod okuyucular tarafından sayısal bilgiye dönüştürülmektedir.
- 3.2. Alfa Sayısal Kodlar
- Alfa sayısal kodlar rakamların yanında a-z'ye büyük ve küçük harfleri ve +, /, *, #, % gibi karakterlerinde kullanıldığı kodlama sistemidir. Yaygın olarak kullanılan iki çeşit alfa sayısal kodlama vardır. ASCII (American Standard Code for Information Interchange)ve EBCDIC(Extended BCD Interchange Code)

■ ASCII Kodu: ASCII Kodu rakam ve harflerin yanında boşluk, enter gibi işlemleri ifade etmek için 7 bit koddan oluşur. Bazı karakterlerin kontrolü için 8 bit olarak ta kullanılabilir.

AŚCII Kod Tablosu

Karakter	7-Bit ASCII	Sekizli	Onaltılı	Karakter	7-Bit ASCII	Sekizli	Onaltılı
A	100 0001	101	41	Y	101 1001	131	59
В	100 0010	102	42	Z	101 1010	132	5A
C	100 0011	103	43	0	011 0000	060	30
D	100 0100	104	44	1	011 0001	061	31
E	100 0101	105	45	2	011 0010	062	32
$\overline{\mathbf{F}}$	100 0110	106	46	3	011 0011	063	33
G	100 0111	107	47				
Н	100 1000	110	48	4	011 0100	064	34
I	100 1001	111	49	5	011 0101	065	35
J	100 1010	112	4A	6	011 0110	066	36
K	100 1011	113	4B	7	011 0111	067	37
L	100 1100	114	4C	8	011 1000	070	38
				9	011 1001	071	39
M	100 1101	115	4D	boşluk	010 0000	040	20
N	100 1110	116	4E	0 0 3 2 1 1 2	010 1110	056	2E
O	100 1111	117	4F	(010 1000	050	28
P	101 0000	120	50	+	010 1011	053	2B
Q	101 0001	121	51	\$	010 0100	044	24
R	101 0010	122	52	*	010 1010	052	2A
S	101 0011	123	53				
T	101 0100	124	54)	010 1001	051	29
Ū	101 0101	125	55	-	010 1101	055	2D
V	101 0110	126	56	/	010 1111	057	2F
W	101 0111	127	57	,	010 1100	054	2C
X	101 1000	130	58	=	011 1101	075	3D
	101 1000	150	50	RETURN	000 1101	015	0D
				LINEFEED	000 1010	012	0A

- Mantık devrelerinin çalışmasını matematiksel olarak ifade etmek için Boolean Kuralları kullanılmaktadır.
- Boolean Değişkeni: İki adet boolean değişkeni vardır. 0-1, D- Y, H-L, ON-OFF boolean değişkenleri olarak kullanılmaktadır. Derste 0-1 kullanılacaktır.
- Boolean İşlemleri: Boolean değişkenlerinin dönüşümünde kullanılan işlemlerdir. Bu işlemler VE, VEYA, DEĞİL işlemleridir.
- VEYA İşlemi
- VEYA İşlemi matematikteki toplama işlemine karşılık gelmektedir. Elektrik devresi olarak birbirine paralel bağlı anahtarlar ile gösterilebilir. Şekil 4.1'de VEYA işleminin elektrik devresi ve doğruluk tablosu verilmiştir.

1 Input (swite		3 Output (lamp)
Α	В	Z = A + B
0	0	0
0	1	1
1	0	1
1	1	1

b) Truth table for or - function

Şekil 4.1. VEYA işlemi Elektrik Devresi eşdeğeri ve doğruluk tablosu

- VE İşlemi
- Elektrik devresinde seri bağlı anahtarlar ile gösterilir ve matematikte çarpma işlemine karşılık gelir. Şekil 4.2'de elektrik devresi ve doğruluk tablosu verilmiştir.

a) Switching circuit for and - function

Input (swit	Output (lamp)	
A	8	Z=A.B
0	0	0
0	1	0
1	0	0
1	1	1

b) Switching circuit for and - function

Şekil 4.2. VE işlemi Elektrik Devresi eşdeğeri ve doğruluk tablosu

- DEĞİL İşlemi
- A değişkeninin DEĞİL'i A' veya Ā ile gösterilir ve A'nın tersine eşittir.

A	A'
0	1
1	0

Yukarıda iki değişkenli Boolean İşlemleri verilmiştir. Değişken sayısı arttığında da işlemler benzer olarak yapılmaktadır. Şekil 4.3'de 3 değişkenli Boolean işlemleri verilmiştir.

a) Switching circuit for or - function

b) Switching circuit for and - function

Şekil 4.3. 3 değişkenli VE/VEYA işlemleri

- İstenilen bir çıkış elde etmek için seri ve paralel devre kombinasyonlarını kullanmak gerekebilir. Şekil 4.4'de verilen devre buna örnek olarak gösterilebilir.
- ÖRNEK: Şekildeki devrenin boolean ifadesini çıkarınız ve doğruluk tablosunu yazınız.

1 A	2 B	3 A.B	4 A.B	5 Z=AB + Ā.Ā
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

(a) Truth table for $Z = A.B + \overline{A}.\overline{B}$

(b) Switching circuit for $Z = A.B + \overline{A.B}$

Şekil 4.4. Karışık devre işlemleri

■ Örnek: $Z = A \cdot \bar{C} + \bar{A} \cdot B + \bar{A} \cdot B \cdot \bar{C}$ boolean ifadesinin elektrik devresi eşdeğerini ve doğruluk tablosunu elde ediniz.

1	2	3	4	5	6	7	8	9
A	В	С	\overline{C}	$A \cdot \overline{C}$	Ā	$\overline{A} \cdot B$	$\overline{A} \cdot B \cdot \overline{C}$	$Z = A \cdot \overline{C} + \overline{A} \cdot B + \overline{A} \cdot B \cdot \overline{C}$
0	0	0	1	0	1	0	0	0
0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	1	1
0	1	1	0	0	1	1	0	1
1	0	0	1	1	0	0	0	1
1	0	1	0	0	0	0	0	0
1	1	0	1	1	0	0	0	1
1	1	1	0	0	0	0	0	0

ÖRNEK: Verilen doğruluk tablosunu sağlayacak boolean ifadesini bulunuz ve eşdeğer devresini çiziniz.

	A	В	С	Z
1	0 0 0 0	0	0	1
2	0	0	1	0
3	0	1	0	1
4	0	1	0	1
2 3 4 5 6 7 8	1	0	0	0
6	1	0 0 1	1	1
7	1	1	0	0
8	1	1	1	0

	A	В	С	Z
1 2	0	0	0	1 0
3	0 0 0	1	0	1
2 3 4 5 6 7	1	0	0	0
8	1	1	0 1	0

$$Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C$$

Boolean Kuralları

Ref.	Name	Rule or law
1 2	Değişim Kuralı s	$A + B = B + A$ $A \cdot B = B \cdot A$
3 4	Birleşme Kuralı	$(A+B)+C=A+(B+C)$ $(A\cdot B)\cdot C=A\cdot (B\cdot C)$
5 6	l Dağılım Kuralı	$A \cdot (B + C) = A \cdot B + A \cdot C$ $A + (B \cdot C)$
7 8 9	Toplama Kuralı	$= (A + B) \cdot (A + C)$ $A + 0 = A$ $A + 1 = 1$ $A + A = A$
10 11 12 13 14	p Çarpma Kuralı	$A + A = 1$ $A \cdot 0 = 0$ $A \cdot 1 = A$ $A \cdot A = A$ $A \cdot \overline{A} = 0$
15 16 17	A Yutma Kuralı	$A + A \cdot B = A$ $A \cdot (A + B) = A$ $A + \overline{A} \cdot B = A + B$

■ ÖRNÉK: $\bar{P} \cdot \bar{Q} + \bar{P} \cdot Q + P \cdot \bar{Q}$ ifadesini sadeleştiriniz. Yukarda verilen tablo ve referans özellikler kullanılarak

Kurallar tablosundan

Reference

$$\bar{P} \cdot \bar{Q} + \bar{P} \cdot Q + P \cdot \bar{Q}$$

$$= \bar{P} \cdot (\bar{Q} + Q) + P \cdot \bar{Q}$$

$$= \bar{P} \cdot 1 + P \cdot \bar{Q}$$

$$= \bar{P} + P \cdot \bar{Q}$$

- ÖRNEK: $A \cdot \bar{C} + \bar{A} \cdot (B + C) + A \cdot B \cdot (C + \bar{B})$ ifadesini sadeleştiriniz.
- Kurallar tablosundan

Reference

$$A. \bar{C} + \bar{A} \cdot (B + C) + A \cdot B \cdot (C + \bar{B})$$

= $A \cdot \bar{C} + \bar{A} \cdot B + \bar{A} \cdot C + A \cdot B \cdot C + A \cdot B \cdot \bar{B}$ 5

