Lecture 5

Polynomial multiplication

Recap 1

We have two polynomials. We want to **multiply** them.

1.
$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1}$$

2.
$$q(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_{n-1} x^{n-1}$$

Coefficient representation:

$$(p_0, p_1, p_2, ..., p_{n-1})$$
 Multiply in $O(n^2)$ time.

Value representation:

$$(p(\alpha_1), p(\alpha_2), ..., p(\alpha_m)) \longrightarrow Multiply in $O(n)$ time.
 $(m \ge n)$$$

Main question:

Can we use **value** rep multiplication to speed up **coefficient** rep multiplication?

Recap 2: Roots of Unity

 n^{th} roots of unity (1)

- = {solutions to $x^n = 1$ }
- = *n* equally spaced points on unit circle

Example:

8th roots of unity = $\sqrt[8]{1}$

$$= \left\{ \pm 1, \pm i, \pm \left(\frac{1+i}{\sqrt{2}} \right), \pm \left(\frac{1-i}{\sqrt{2}} \right) \right\}$$

8th roots of unity

Generator fact: For all $0 \le i \le m-1$, $\omega_i = \omega_1^i$. In addition, $\omega_1^0 = 1 = \omega_0 = \omega_1^m$.

Magical Fact: Squares of n^{th} roots = $(n/2)^{th}$ roots (So squaring **halves** the number of roots)

Recap 3: algorithm outline

Recall: $p \cdot q$ is degree-(2n-2), so need $m \ge 2n-1$

Let m be first power of 2 such that $m \ge 2n - 1$

Will evaluate p and q on m^{th} roots of unity $\{\omega_0, \omega_1, \dots, \omega_{m-1}\}$

in time $O(m \log(m)) = O(n \log(n))$.

This is the **Fast Fourier transform**.

Outline

- 1. Complex numbers
- 2. Polynomial multiplication I: fast evaluation
- 3. Polynomial multiplication II: fast interpolation
- 4. The matrix viewpoint
- 5. Applications

Fast Fourier Transform

Input: 1. m, a power of two

2.
$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{m-1} x^{m-1}$$

Output: $p(\boldsymbol{\omega_0}), p(\boldsymbol{\omega_1}), ..., p(\boldsymbol{\omega_{m-1}})$

where $\omega_0, \omega_1, ..., \omega_{m-1}$ are m^{th} roots of unity

Divide and conquer alg:

Runtime:
$$T(m) \le 2 \cdot T(m/2) + O(m)$$

$$\Rightarrow T(m) = O(m \log(m))$$

Divide and Conquer

Let's write out p(x). And split it into two parts.

$$p_0 + p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4 + p_5 x^5 + p_6 x^6 + p_7 x^7 + \cdots$$

Even part:
$$p_0 + p_2 x^2 + p_4 x^4 + p_6 x^6 + \dots + p_{m-2} x^{m-2}$$

 $= p_0 + p_2 (x^2) + p_4 (x^2)^2 + p_6 (x^2)^3 + \dots$
 $= \mathbf{Even}(x^2),$
where $\mathbf{Even}(z) = p_0 + p_2 z + p_4 z^2 + p_6 z^3 + \dots$

Odd part:
$$p_1x + p_3x^3 + p_5x^5 + p_7x^7 + \dots + p_{m-1}x^{m-1}$$

= $x \cdot (p_1 + p_3x^2 + p_5x^4 + p_7x^6 + \dots)$
= $x \cdot \text{Odd}(x^2)$,
where $\text{Odd}(z) = p_1 + p_3z + p_5z^2 + p_7z^3 + \dots$

$$p(x) = \mathbf{Even}(x^2) + x \cdot \mathbf{Odd}(x^2)$$

$$\deg(\mathbf{Even}) = (m-2)/2 = (m/2 - 1). \text{ Same for deg}(\mathbf{Odd}).$$

Divide and Conquer

Fact: Let p(x) have degree (m-1). Then $p(x) = \text{Even}(x^2) + x \cdot \text{Odd}(x^2)$, where deg(Even) = deg(Odd) = (m/2 - 1). **Goal:** Compute $p(\omega_0), p(\omega_1), ..., p(\omega_{m-1})$ (m^{th} roots of unity) $p(\boldsymbol{\omega_i}) = \text{Even}(\boldsymbol{\omega_i^2}) + \boldsymbol{\omega_i} \cdot \text{Odd}(\boldsymbol{\omega_i^2}), \longleftarrow \boldsymbol{O(1)} \text{ more work!}$ $(m/2)^{th}$ roots of unity (Magical Fact!)

To compute $p(\omega_i)$'s:

1. Inductively evaluate **Even** and **Odd** at

$$\alpha_0, \alpha_1, \dots, \alpha_{m/2-1}$$
 $((m/2)^{th} \text{ roots of unity})$

2. Do O(m) more work. $T(m) \le 2 \cdot T(m/2) + O(m)$

Example

Let's evaluate
$$p(x) = 1 + 3x - 4x^2 + 7x^3$$

on the 4th roots of unity = $\sqrt[4]{1} = \{+1, -1, +i, -i\}$

Even
$$(z) = 1 - 4z$$
, **Odd** $(z) = 3 + 7z$

Check: $p(x) = \text{Even}(x^2) + x \cdot \text{Odd}(x^2)$

$$p(+1) = \mathbf{Even}(1) + \mathbf{Odd}(1)$$

$$p(-1) = \mathbf{Even}(1) - \mathbf{Odd}(1)$$

$$p(+i) = \mathbf{Even}(-1) + i \cdot \mathbf{Odd}(-1)$$

$$p(-i) = \mathbf{Even}(-1) - i \cdot \mathbf{Odd}(-1)$$
Repeated work!

Reduces to evaluating **Even** and **Odd** on

$$\{+1, -1\} = \sqrt{1} =$$
the 2nd roots of unity

Outline

1. Complex numbers

2. Polynomial multiplication I: fast evaluation

3. Polynomial multiplication II: fast interpolation

4. The matrix viewpoint

5. Applications

Fast interpolation

3-minute break

and close the doors

Fast polynomial multiplication algorithm

Recall: $p \cdot q$ is degree-(2n-2), so need $m \geq 2n-1$ **Inverse FFT:** Given $r(\omega_0), r(\omega_1), ..., r(\omega_{m-1})$, returns $r(x) = r_0 + r_1 x + r_2 x^2 + \cdots + r_{m-1} x^{m-1}$ in time $O(m \log(m))$.

Inverse FFT

Input:
$$p(\boldsymbol{\omega_0}), p(\boldsymbol{\omega_1}), ..., p(\boldsymbol{\omega_{m-1}})$$

Output:
$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{m-1} x^{m-1}$$

FT formula:

$$p(\boldsymbol{\omega}_{\ell}) = \sum_{j=0}^{m-1} p_j \cdot (\boldsymbol{\omega}_{\ell})^j$$

\therefore Can compute $p_0, p_1, ..., p_{m-1}$ by evaluating q at

$$\omega_0, \omega_1, \dots, \omega_{m-1}$$

Just an FFT! Time $O(n \log n)$.

Inverse FT formula:

$$p_{\ell} = \frac{1}{m} \cdot \sum_{j=0}^{m-1} p(\omega_j) \cdot (\boldsymbol{\omega_{m-\ell}})^j$$

$$= \frac{1}{m} \cdot q(\boldsymbol{\omega_{m-\ell}}),$$

$$q(x) = p(\omega_0) + p(\omega_1)x + \dots + p(\omega_{m-1})x^{m-1}$$

Inverse FFT

Input: $p(\boldsymbol{\omega_0}), p(\boldsymbol{\omega_1}), ..., p(\boldsymbol{\omega_{m-1}})$

Output: $p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{m-1} x^{m-1}$

FT formula:

$$p(\boldsymbol{\omega}_{\ell}) = \sum_{j=0}^{m-1} p_j \cdot (\boldsymbol{\omega}_{\ell})^j$$

Inverse FT formula:

$$p_{\ell} = \frac{1}{m} \cdot \sum_{j=0}^{m-1} p(\omega_j) \cdot (\boldsymbol{\omega_{m-\ell}})^j$$

Proof of Inverse FT formula:

- 1. Plug **FT formula** into (*)
- 2. Use **Generator fact** on all $\boldsymbol{\omega}_{\ell}$'s $\omega_{i} = \omega_{1}^{i}$, etc.
- 3. Use this formula:

$$\sum_{k=0}^{m-1} \omega_j^k = \begin{cases} m & \text{if } j = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Fast polynomial multiplication algorithm

Finishes the proof of polynomial multiplication in $O(n \log(n))$ time!

Outline

1. Complex numbers

2. Polynomial multiplication I: fast evaluation

3. Polynomial multiplication II: fast interpolation

4. The matrix viewpoint

5. Applications

The matrix viewpoint

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{m-1} x^{m-1}$$

$$\begin{bmatrix} p(\omega_{0}) \\ p(\omega_{1}) \\ p(\omega_{2}) \\ \dots \\ p(\omega_{m-1}) \end{bmatrix} = \begin{bmatrix} p_{0} + p_{1}\omega_{0} + p_{2}\omega_{0}^{2} + \dots + p_{m-1}\omega_{0}^{m-1} \\ p_{0} + p_{1}\omega_{1} + p_{2}\omega_{1}^{2} + \dots + p_{m-1}\omega_{1}^{m-1} \\ p_{0} + p_{1}\omega_{2} + p_{2}\omega_{2}^{2} + \dots + p_{m-1}\omega_{2}^{m-1} \\ \dots & \dots & \dots \\ p_{0} + p_{1}\omega_{m-1} + p_{2}\omega_{m-1}^{2} + \dots + p_{m-1}\omega_{m-1}^{m-1} \end{bmatrix} \quad v$$

$$= \begin{bmatrix} 1 & \omega_{0} & \omega_{0}^{2} & \dots & \omega_{0}^{m-1} \\ 1 & \omega_{1} & \omega_{1}^{2} & \dots & \omega_{1}^{m-1} \\ 1 & \omega_{2} & \omega_{2}^{2} & \dots & \omega_{2}^{m-1} \\ \dots & \dots & \dots & \dots \\ 1 & \omega_{m-1} & \omega_{m-1}^{2} & \dots & \omega_{m-1}^{m-1} \end{bmatrix} \quad \begin{bmatrix} p_{0} \\ p_{1} \\ p_{2} \\ \dots \\ p_{m-1} \end{bmatrix}$$

$$M \qquad [p]$$

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{m-1} x^{m-1}$$

$$\begin{bmatrix} p(\omega_0) \\ p(\omega_1) \\ p(\omega_2) \\ \dots \\ p(\omega_{m-1}) \end{bmatrix} = \begin{bmatrix} 1 & \omega_0 & \omega_0^2 & \dots & \omega_0^{m-1} \\ 1 & \omega_1 & \omega_1^2 & \dots & \omega_1^{m-1} \\ 1 & \omega_2 & \omega_2^2 & \dots & \omega_2^{m-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \omega_{m-1} & \omega_{m-1}^2 & \dots & \omega_{m-1}^{m-1} \end{bmatrix} \cdot \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ \dots \\ p_{m-1} \end{bmatrix}$$

Naively, the matrix-vector multiplication $M \cdot [p]$ takes $O(m^2)$ time

But FFT solves this problem in $O(m \log(m))$ time!

Note: it solves this ***without ever writing down M***

(In fact, we didn't even know it was matrix-vector multiplication when we designed FFT!)

Fourier transform:

$$\begin{bmatrix} p(\omega_0) \\ p(\omega_1) \\ p(\omega_2) \\ \dots \\ p(\omega_{m-1}) \end{bmatrix} = \begin{bmatrix} 1 & \omega_0 & \omega_0^2 & \dots & \omega_0^{m-1} \\ 1 & \omega_1 & \omega_1^2 & \dots & \omega_1^{m-1} \\ 1 & \omega_2 & \omega_2^2 & \dots & \omega_2^{m-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \omega_{m-1} & \omega_{m-1}^2 & \dots & \omega_{m-1}^{m-1} \end{bmatrix} \cdot \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ \dots \\ p_{m-1} \end{bmatrix}$$

Inverse Fourier transform:

$$\mathbf{M}^{-1} \cdot \begin{bmatrix} p(\omega_0) \\ p(\omega_1) \\ p(\omega_2) \\ \dots \\ p(\omega_{m-1}) \end{bmatrix} = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ \dots \\ p_{m-1} \end{bmatrix}$$

Formulas:

$$M_{ij} = \omega_i^j = (\omega_1^i)^j = \omega_1^{i \cdot j}$$

$$(M^{-1})_{ij} = \frac{1}{n} \cdot \omega_{m-i}^j$$
(from the Inverse FT form

(from the **Inverse FT formula**)

Outline

1. Complex numbers

2. Polynomial multiplication I: fast evaluation

3. Polynomial multiplication II: fast interpolation

4. The matrix viewpoint

5. Applications

Applications of polynomial multiplication and the FFT

Let's look at polynomial multiplication again...

Given: 1.
$$p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$$

2.
$$q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3$$

Consider
$$(p_0 + p_1x + p_2x^2 + p_3x^3) \cdot (q_0 + q_1x + q_2x^2 + q_3x^3)$$
.

Q: What does the x^2 term look like?

$$p_0 q_2 x^2 + p_1 q_1 x^2 + p_2 q_0 x^2$$

Q: What does the x^3 term look like?

$$p_0 q_3 x^3 + p_1 q_2 x^3 + p_2 q_1 x^3 + p_3 q_0 x^3$$

General rule: coefficient on x^i in $p(x) \cdot q(x)$ is

$$p_0q_i + p_1q_{i-1} + \dots + p_{i-1}q_1 + p_iq_0$$

General rule: coefficient on x^i in $p(x) \cdot q(x)$ is

$$p_0q_i + p_1q_{i-1} + \dots + p_{i-1}q_1 + p_iq_0$$

Consider two arrays:

- 1. $[p_0 \quad p_1 \quad p_2 \quad p_3]$
- 2. $[q_3 \quad q_2 \quad q_1 \quad p_0]$

Stack them on top of each other.

Take the dot product of the overlap.

$$[q_3 \quad q_2 \quad p_1 \quad p_2 \quad p_3] = p_0 \cdot q_1 + p_1 \cdot q_0$$

$$= \text{coefficient on } \boldsymbol{x^1}$$

These "**shifted dot products**" are equal to coefficients of $p(x) \cdot q(x)$

Hence, can compute them in $O(n \log(n))$ time

Application #1: Cross correlation

Input: Two arrays 1.
$$[p_0 \quad p_1 \quad p_2 \quad p_3 \quad ... \quad p_{n-1}]$$

2. $[q_0 \quad q_1 \quad q_2 \quad q_3 \quad ... \quad q_{n-1}]$

Goal: Compute all the shifted dot products

$$[p_0 \quad p_1 \quad p_2 \quad p_3] \\ [q_0 \quad q_1 \quad q_2 \quad q_3]$$

This is called "cross correlation"

Roughly, it measures how well different segments of p and q "overlap" with each other.

Can solve in $O(n \log(n))$ time via polynomial multiplication! (Look out for this in recitations, on hwks, etc.) (Might sometimes involve two vectors of unequal lengths!)

Application #2: Integer Multiplication

Say you want to multiply two n-digit integers...

$$a=a_{n-1}\cdots a_2a_1a_0$$
 (each digit between 0 and 9) $b=b_{n-1}\cdots b_2b_1b_0$

So write down these two polynomials:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

$$O(n \log(n)) \text{ time,}$$
 Note that $A(10) = a$ and $B(10) = b$

Now, compute $A(x) \cdot B(x)$ and plug in x = 10 $A(10) \cdot B(10) = a \cdot b$

Is this an $O(n \log(n))$ time alg for integer multiplication?

Application #2: Integer Multiplication

Remember the modeling assumption we made? That all additions and multiplications are O(1) time? Strictly speaking, it's not 100% true!

Consider the x^{n-1} coefficient in $A(x) \cdot B(x)$:

$$a_0b_{n-1} + a_1b_{n-2} + \dots + a_{n-2}b_1 + a_{n-1}b_0$$

Can be as large as $\Theta(n)$!

Need more than O(1) time to add/multiply this.

To analyze this integer mult alg, need to keep track of this stuff.

A bit tedious!

Result: $O(n \log(n) \log(\log(n)))$ time algorithm.

[Schönhage-Strassen algorithm]

Application #3: Fourier Transform

Inverse FT: Given $p(\omega_0), p(\omega_1), ..., p(\omega_{m-1}),$ compute $p(x) = p_0 + p_1 x + \cdots + p_{m-1} x^{m-1}$

Application #3: Fourier Transform

Given data that looks like this:

decompose it into sin/cosine waves.

- **Applications:** 1. Really, too many to mention!
 - 2. Music software
 - 3. Heart rate monitor
 - 4. Signal processing (e.g. cell phones)
 - 5. The ability to do ~*~ultrafast~*~ FTs is at the heart of many quantum algs

History

1822: Joseph Fourier "discovers" the Fourier transform

1805: Gauss discovers the Fast Fourier Transform

"The method greatly reduces the tediousness of mechanical calculations."

1828+: FFT rediscovered 10+ times

Principal Discoveries of Efficient Methods of Computing the DFT				
Researcher(s)	Date	Sequence Lengths	Number of DFT Values	Application
C. F. Gauss [10]	1805	Any composite integer	All	Interpolation of orbits of celestial bodies
F. Carlini [28]	1828	12	-	Harmonic analysis of barometric pressure
A. Smith [25]	1846	4, 8, 16, 32	5 or 9	Correcting deviations in compasses on ships
J. D. Everett [23]	1860	12	5	Modeling underground temperature deviations
C. Runge [7]	1903	2"k	All	Harmonic analysis of functions
K. Stumpff [16]	1939	2°k, 3°k	All	Harmonic analysis of functions
Danielson and Lanczos [5]	1942	2"	All	X-ray diffraction in crystals
L. H. Thomas [13]	1948	Any integer with relatively prime factors	All	Harmonic analysis of functions
I. J. Good [3]	1958	Any integer with relatively prime factors	All	Harmonic analysis of functions
Cooley and Tukey [1]	1965	Any composite integer	All	Harmonic analysis of functions
S. Winograd [14]	1976	Any integer with relatively prime factors	All	Use of complexity theory for harmonic analysis

Source: "Gauss and the History of the Fast Fourier Transform" by Heideman, Johnson, and Burrus

History

Modern rediscovery in 1965:

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

Original application:

Detecting nuclear-weapons tests from the Soviet Union by analyzing seismographic data.

Outline

1. Complex numbers

2. Polynomial multiplication I: fast evaluation

3. Polynomial multiplication II: fast interpolation

4. The matrix viewpoint

5. Applications