

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14020004902

FCC & IC REPORT

Applicant: Binatone Electronics International Limited

Address of Applicant: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong

Equipment Under Test (EUT)

Product Name: DECT Phone

Model No.: SMART64

FCC ID: VLJ-SMART64

Canada IC: 4522A-SMART64

FCC CFR Title 47 Part 15 Subpart C Section 15.247

Applicable standards: RSS-Gen Issue 3, December 2010

RSS 210 Issue 8, December 2010

Date of sample receipt: 10 Feb., 2014

Date of Test: 12 Feb., 2014 to 20 Feb., 2014

Date of report issued: 21 Feb., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	21 Feb., 2014	Original

Prepared by: Date: 21 Feb., 2014

Report Clerk

Reviewed by: Date: 21 Feb., 2014

Project Engineer

3 Contents

		I	Page
1	С	OVER PAGE	1
2	V	'ERSION	2
3		ONTENTS	
3	_		•
4	TI	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	_
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TI	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	_
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
		.9.2 Radiated Emission Method	
	6.10		
		.10.1 Conducted Emission Method	
		.10.2 Radiated Emission Method	
7	T	EST SETUP PHOTO	
R	F	IIT CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Section in RSS	Result
Antenna Requirement	15.203/15.247 (c)	RSS Gen section 7.1.2	Pass
AC Power Line Conducted Emission	15.207	RSS Gen section 7.1.4	Pass
Conducted Peak Output Power	15.247 (b)(1)	RSS 210 section A8.4	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	RSS 210 section A8.1 (a)	Pass
99% Occupied Bandwidth	N/A	RSS 210 section A8.1 (a)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	RSS 210 section A8.1 (b)	Pass
Hopping Channel Number	15.247 (a)(1)	RSS 210 section A8.1 (d)	Pass
Dwell Time	15.247 (a)(1)	RSS 210 section A8.1 (d)	Pass
Radiated Emission	15.205/15.209	RSS 210 section A8.5	Pass
Band Edge	15.247(d)	RSS 210 section A8.5	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not applicable

5 General Information

5.1 Client Information

Applicant:	Binatone Electronics International Limited		
Address of Applicant:	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong		
Manufacturer:	Shenzhen concox information technology company limited		
Address of Manufacturer:	4/F, Building B, Gaoxinqi Industrial Park, Liuxian 1st Road, No. 67, Bao'an District, Shenzhen, China		
Factory:	Huizhou Goldenchip Electronics Co., Ltd.		
Address of Factory:	No.12 Factory, Songyang Road, Zhongkai Hi-tech Development Zone, Huizhou City, Guangdong Province, China		

5.2 General Description of E.U.T.

Product Name:	DECT Phone					
Model No.:	SMART64					
Operation Frequency:	2402MHz~2480MHz					
Transfer rate:	1/2/3 Mbits/s					
Number of channel:	79					
Modulation type:	GFSK, π/4-DQPSK, 8DPSK					
Modulation technology:	FHSS					
Antenna Type:	Internal Antenna					
Antenna gain:	0.5 dBi					
Power supply:	Rechargeable Li-ion Battery DC3.7V-1500mAh					
AC adapter:	Model:MLF-A00060501000U0021					
	Input:100-240VAC,50/60Hz 0.18A					
	Output:5.0VDC MAX1A					

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.				
Remark	GFSK (1 Mbps) is the worst case mode.				

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014		
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014		
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014		
12	Pre-amplifier (18-26GHz)	Pre-amplifier Robbe & Schwarz		GTS218	Apr. 01 2013	Mar. 31 2014		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer		FSP	CCIS0023	May. 25 2013	May. 24 2014		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014		
19	Universal radio communication tester	Universal radio Rhode & Schwarz		CCIS0069	May. 25 2013	May. 24 2014		
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2013	May. 24 2014		

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May 24 2014					
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2013	Mar. 31 2014					
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c) and RSS Gen section 7.1.2

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0.5 dBi.

DECT ANT

BT WIFI AN

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207 and RSS Gen section 7.1.4					
Test Method:	ANSI C63.4:2003					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swee	ep time=auto				
Limit:	Frequency range (MHz)	Limit (d	lBuV)			
	Frequency range (MH2)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
To do a do	* Decreases with the logarithm of the frequency.					
Test setup:	LISN LISN					
	AUX Equipment E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0 8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Bluetooth (Continuous transmittin	ng) mode				
Test results:	Pass					

Measurement Data

Line:

: CCIS Conducted test Site : FCC CLASS-B QP LISN LINE : 049RF Site Condition

Job. no EUT : DECT phone
Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Joe

	DIE THOOL.	300						
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	
	MHz	dBu∜	₫B	₫B	dBu₹	dBu₹	₫B	
1	0.158	28.42	0.27	0.00	28.69	65.56	-36.87	Peak
2	0.170	28.11	0.27	0.00	28.38	64.94	-36.56	Peak
3	0.194	26.19	0.28	0.00	26.47	63.84	-37.37	Peak
4	0.373	20.81	0.28	0.00	21.09	58.43	-37.34	Peak
5	0.759	22.70	0.23	0.00	22.93	56.00	-33.07	Peak
6	1.111	22.62	0.25	0.00	22.87	56, 00	-33.13	Peak

Neutral:

Site

: CCIS Conducted test Site : FCC CLASS-B QP LISN NEUTRAL Condition

: 049RF Job. no EUT : DECT phone Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Joe

St	Engineer:	Read	LISN	Cable		Limit	Over	
	Freq		Factor		Level		Limit	
	MHz	dBu∀	₫B	₫B	dBu∀	dBu₹	₫B	
1	0.158	35.12	0.25	0.00	35.37	65.56	-30.19	Peak
1 2 3	0.178	31.99	0.25	0.00	32.24	64.59	-32.35	Peak
3	0.198	30.42	0.25	0.00	30.67	63.71	-33.04	Peak
4	0.222	27.50	0.25	0.00	27.75	62.74	-34.99	Peak
4 5	0.238	26.80	0.25	0.00	27.05	62.17	-35.12	Peak
6	0.277	25.35	0.26	0.00	25.61	60.90	-35.29	Peak

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3) and RSS 210 section A8.4		
Test Method:	ANSI C63.4:2003 and DA00-705 / RSS Gen section 4.8		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

	GFSK mode				
Test channel	Peak Output Power (dBm) Limit (dBm)		Result		
Lowest	0.76	21.00	Pass		
Middle	0.86	21.00	Pass		
Highest	0.27	21.00	Pass		
	π/4-DQPSK r	node			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.12	21.00	Pass		
Middle	0.25	21.00	Pass		
Highest	-0.21	21.00	Pass		
	8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.16	21.00	Pass		
Middle	0.31	21.00	Pass		
Highest	Highest -0.09 21.00 Pass				

Test plot as follows:

Modulation mode: GFSK

Date: 13.FEB.2014 10:43:45

Lowest channel

Date: 13.FEB.2014 10:44:18

Middle channel

Date: 13.FEB.2014 10:44:42

Highest channel

Modulation mode: π/4-DQPSK

Date: 13.FEB.2014 11:09:56

Lowest channel

Date: 13.FEB.2014 11:10:16

Middle channel

Date: 13.FEB.2014 11:10:44

Highest channel

Date: 13.FEB.2014 11:22:59

Lowest channel

Date: 13.FEB.2014 11:23:19

Middle channel

Date: 13.FEB.2014 11:23:51

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) and RSS 210 section A8.1 (a)		
Test Method:	ANSI C63.4:2003 and DA00-705 / RSS Gen section 4.6		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

Took ahaanal	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	828	1120	1164
Middle	828	1116	1164
Highest	824	1116	1168

Test channel	99% Occupy Bandwidth (kHz)		
	GFSK	π/4-DQPSK	8DPSK
Lowest	840	1060	1104
Middle	836 1064 1104		1104
Highest	840	1060	1104

Test plot as follows:

Modulation mode: 20dB Occupy Bandwidth

GFSK

Date: 13.FEB.2014 10:47:27

Lowest channel

Date: 13.FEB.2014 10:46:21

Middle channel

Date: 13.FEB.2014 10:45:41

Highest channel

Modulation mode: 20dB Occupy Bandwidth

π/4-DQPSK

Date: 13.FEB.2014 11:09:33

Lowest channel

Date: 13.FEB.2014 11:08:34

Middle channel

Date: 13.FEB.2014 11:07:06

Highest channel

Modulation mode: 20dB Occupy Bandwidth

8DPSK

Date: 13.FEB.2014 11:26:10

Lowest channel

Date: 13.FEB.2014 11:25:24

Middle channel

Date: 13.FEB.2014 11:24:33

Highest channel

Modulation mode: 99% Occupy Bandwidth

GFSK

Date: 13.FEB.2014 17:07:30

Lowest channel

Date: 13.FEB.2014 17:08:19

Middle channel

Date: 13.FEB.2014 17:09:00

Highest channel

Modulation mode: 99% Occupy Bandwidth

π/4-DQPSK

Date: 13.FEB.2014 17:12:39

Lowest channel

Date: 13.FEB.2014 17:10:12

Middle channel

Date: 13.FEB.2014 17:09:45

Highest channel

Modulation mode: 99% Occupy Bandwidth

8DPSK

Date: 13.FEB.2014 17:13:33

Lowest channel

Date: 13.FEB.2014 17:14:31

Middle channel

Date: 13.FEB.2014 17:15:00

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) and RSS 210 section A8.1 (b)		
Test Method:	ANSI C63.4:2003 and DA00-705 / RSS 210 section A8.1 (b)		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data

	GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1004	552.00	Pass		
Middle	1004	552.00	Pass		
Highest	1004	552.00	Pass		
	π/4-DQPSK mod	e			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1000	746.67	Pass		
Middle	1004	746.67	Pass		
Highest	1008	746.67	Pass		
	8DPSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1008	778.67	Pass		
Middle	1000	778.67	Pass		
Highest	Highest 1004		Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	828	552.00
π/4-DQPSK	1120	746.67
8DPSK	1168	778.67

Test plot as follows:

Date: 13.FEB.2014 10:56:11

Lowest channel

Date: 13.FEB.2014 10:57:11

Middle channel

Date: 13.FEB.2014 10:58:26

Highest channel

Modulation mode: π/4-DQPSK

Date: 13.FEB.2014 11:19:54

Lowest channel

Date: 3.MAR.2014 09:58:22

Middle channel

Date: 13.FEB.2014 11:21:38

Highest channel

Date: 13.FEB.2014 11:27:09

Lowest channel

Date: 13.FEB.2014 11:28:10

Middle channel

Date: 13.FEB.2014 11:29:03

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) and RSS 210 section A8.1 (d)		
Test Method:	ANSI C63.4:2003 and DA00-705 / RSS 210 section A8.1 (d)		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Date: 13.FEB.2014 10:55:07

π/4-DQPSK

Date: 13.FEB.2014 11:18:44

8DPSK

Date: 13.FEB.2014 11:37:11

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) and RSS 210 section A8.1 (d)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705 / RSS 210 section A8.1 (d)		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12992		
GFSK	DH3	0.26976	0.4	Pass
	DH5	0.32171		
	2-DH1	0.12864		
π /4-DQPSK	2-DH3	0.26880	0.4	Pass
	2-DH5	0.31232		
8DPSK	3-DH1	0.12800		
	3-DH3	0.28032	0.4	Pass
	3-DH5	0.31232		

For GFSK, π/4-DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.406*(1600/(2*79))*31.6=129.92ms DH3 time slot=1.686*(1600/(4*79))*31.6=269.76ms DH5 time slot=3.016(1600/(6*79))*31.6=321.71ms

2-DH1 time slot=0.402*(1600/ (2*79))*31.6=128.64ms

2-DH3 time slot=1.680*(1600/ (4*79))*31.6=268.80ms

2-DH5 time slot=2.928(1600/ (6*79))*31.6=312.32ms

3-DH1 time slot=0.400*(1600/ (2*79))*31.6=128.00ms

3-DH3 time slot=1.752*(1600/ (4*79))*31.6=280.32ms

3-DH5 time slot=2.928(1600/ (6*79))*31.6=312.32ms

Test plot as follows:

Date: 13.FEB.2014 11:54:09

Date: 13.FEB.2014 11:55:14

Date: 13.FEB.2014 11:56:03

DH5

Date: 13.FEB.2014 11:56:34

2-DH1

Date: 13.FEB.2014 11:57:12

2-DH3

Date: 13.FEB.2014 11:57:51

2-DH5

Date: 13.FEB.2014 11:58:41

3-DH1

Date: 13.FEB.2014 11:59:18

Date: 13.FEB.2014 11:59:56

3-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement and RSS 210 section A8.1:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) and RSS 210 section A8.5
Test Method:	ANSI C63.4:2003 and DA00-705 / RSS Gen section 4.9
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205 and RSS 210 section A8.5 & RSS Gen section 7.2.2							
Test Method:	ANSI C63.4: 2003	3 / RSS Gen sec	tion 4.9					
Test Frequency Range:	2.3GHz to 2.5GH	Z						
Test site:	Measurement Dis	stance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 10112	Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ncy	Limit (dBuV		Remark			
	Above 1	GHz	54.0		Average Value			
Test setup:			74.0	0	Peak Value			
	EUT Turn Table	→ 3m ← → → → → → → → → → → → → → → → → → →		Antenna Horn Ant Spectrum Analyzer Amplii	enna			
Test Procedure:	at a 3 meter carposition of the 2. The EUT was was mounted and an element of the polarizations of the antenna was turned from the element of the emission specified, then be reported. Comparized to the polarizations of the emission of the element	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified 						
Test Instruments:	Refer to section 5							
Test mode:	Non-hopping mode							
Test results:	Passed							

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 049RF Condition

Job No. : 049RF
EUT : DECT phone
Test mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Joe
Remark : L CH
ReadAntenna Cable

Freq		Antenna Factor						Remark
MHz	dBu∀	dB/m	₫B	d₿	dBuV/m	dBuV/m	₫B	
2390.000 2390.000								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. : 049RF EUT : DECT phone
Test mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Joe

Remark : L CH

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 24.56 27.58 14.32 27.58 0.00 57.81 74.00 -16.19 Peak 0.00 47.57 54.00 -6.43 Average 2390.000

5.67

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 049RF Condition

Job No. HUT : DECT phone
Test mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.50

: Temp: 25.5°C Huni: 55%

Test Engineer: Joe Remark : H CH

ReadAntenna Cable Preamp Over Limit Line Limit Remark Freq Level Factor Loss Factor Level MHz dB/m dB dB dBuV/m dBuV/m dB 0.00 62.97 74.00 -11.03 Peak 0.00 50.47 54.00 -3.53 Average 2483.500 29.75 27.52 5.70 2483.500 17.25 27.52 5.70

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. : 049RF EUT : DECT phone Test mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Joe : H CH Remark

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 0.00 62.04 74.00 -11.96 Peak 0.00 51.84 54.00 -2.16 Average 2483.500 28.82 27.52 2483.500 18.62 27.52 5.70 5.70

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) and RSS 210 section A8.5				
Test Method:	ANSI C63.4:2003 and DA00-705 / RSS 210 section A8.5				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Non-hopping mode				
Test results:	Pass				

GFSK

Date: 13.FEB.2014 11:02:32

30MHz~25GHz

Date: 13.FEB.2014 11:04:26

30MHz~25GHz

Highest channel

30MHz~25GHz

$\pi/4$ -DQPSK

Date: 13.FEB.2014 11:04:44

30MHz~25GHz

Middle channel

Date: 13.FEB.2014 11:05:08

30MHz~25GHz

Date: 13.FEB.2014 11:06:26

30MHz~25GHz

8DPSK

Date: 13.FEB.2014 11:39:48

%

30MHz~25GHz

Middle channel

Date: 13.FEB.2014 11:40:52

30MHz~25GHz

Highest channel

Date: 13.FEB.2014 11:42:27

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M	1		1.000.010				
Test Requirement:	FCC Part15 C Se			ection A8.5			
Test Method:	ANSI C63.4: 2003	3 / RSS Gen s	ection 4.9				
Test Frequency Range:	9 kHz to 25 GHz						
Test site:	Measurement Dis	stance: 3m		Ī			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	+	300kHz	Quasi-peak Value		
	Above 1GHz Peak Peak		1MHz 1MHz	3MHz	Peak Value		
		10Hz	Average Value				
Limit:	Freque		'm @3m)	Remark			
	30MHz-8		40.0)	Quasi-peak Value		
	88MHz-21	16MHz	43.5	5	Quasi-peak Value		
	216MHz-9	60MHz	46.0)	Quasi-peak Value		
	960MHz-	1GHz	54.0)	Quasi-peak Value		
	Above 1	GHz	54.0		Average Value		
	7.5070	01.12	74.0)	Peak Value		
	Turn Table Ground Plane Above 1GHz	3m		Antenra Sear Anter RF Test Receiver Antenna Tower Horn Antenna Spectrum Analyzer Amplifier			

Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 049RF Condition

Job No. EUT : DECT phone Test mode : BT mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Joe

Remark

Freq							Over Limit	
MHz	dBu∀	dB/m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
30.000	50.42	12.33	0.72	26.27	37.20	40.00	-2.80	QP
39.437	43.26	13.44	1.21	27.21	30.70	40.00	-9.30	QP
95.093	40.30	12.84	2.01	30.08	25.07	43.50	-18.43	QP
122.834	43.20	10.00	2.20	29.65	25.75	43.50	-17.75	QP
147.921	42.75	8.24	2.50	29.26	24.23	43.50	-19.27	QP
360.448	34.30	14.43	3.10	29.73	22.10	46.00	-23.90	QP
	MHz 30,000 39,437 95,093 122,834 147,921	MHz dBuV 30.000 50.42 39.437 43.26 95.093 40.30 122.834 43.20 147.921 42.75	MHz dBuV dB/m 30.000 50.42 12.33 39.437 43.26 13.44 95.093 40.30 12.84 122.834 43.20 10.00 147.921 42.75 8.24	MHz dBuV dB/m dB 30.000 50.42 12.33 0.72 39.437 43.26 13.44 1.21 95.093 40.30 12.84 2.01 122.834 43.20 10.00 2.20 147.921 42.75 8.24 2.50	MHz dBuV dB/m dB dB 30.000 50.42 12.33 0.72 26.27 39.437 43.26 13.44 1.21 27.21 95.093 40.30 12.84 2.01 30.08 122.834 43.20 10.00 2.20 29.65 147.921 42.75 8.24 2.50 29.26	MHz dBuV dB/m dB dB dB dBuV/m 30.000 50.42 12.33 0.72 26.27 37.20 39.437 43.26 13.44 1.21 27.21 30.70 95.093 40.30 12.84 2.01 30.08 25.07 122.834 43.20 10.00 2.20 29.65 25.75 147.921 42.75 8.24 2.50 29.26 24.23	MHz dBuV dB/m dB dB dBuV/m dBuV/m 30.000 50.42 12.33 0.72 26.27 37.20 40.00 39.437 43.26 13.44 1.21 27.21 30.70 40.00 95.093 40.30 12.84 2.01 30.08 25.07 43.50 122.834 43.20 10.00 2.20 29.65 25.75 43.50 147.921 42.75 8.24 2.50 29.26 24.23 43.50	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB 30.000 50.42 12.33 0.72 26.27 37.20 40.00 -2.80 39.437 43.26 13.44 1.21 27.21 30.70 40.00 -9.30 95.093 40.30 12.84 2.01 30.08 25.07 43.50 -18.43 122.834 43.20 10.00 2.20 29.65 25.75 43.50 -17.75 147.921 42.75 8.24 2.50 29.26 24.23 43.50 -19.27

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 049RF Condition

Job No. EUT : DECT phone
Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Joe

Remark

	Freq		Antenna Factor						Remark	
-	MHz	dBu∀	dB/m	₫B	dB	dBu∜/m	dBuV/m	d₿		
1	30.105	35.93	12.33	0.72	26.28	22.70	40.00	-17.30	QP	
2	33. 799	35.94	12.31	0.98	26.67	22.56	40.00	-17.44	QP	
3	46.503	34.26	13.46	1.28	27.95	21.05	40.00	-18.95	QP	
4	118.601	35.61	10.69	2.16	29.73	18.73	43.50	-24.77	QP	
4	172.599	34.89	9.16	2.68	28, 17	18.56	43.50	-24.94	QP	
6	205.675	35.96	10.74	2.86	29.78	19.78	43.50	-23.72	QP	

Above 1GHz:

Test channel: Lowest

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 049RF Condition

Job No. EUT : DECT phone
Test mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Joe
Remark : L CH

emair	B 158		Antenna Factor						Remark
-	MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	4804.000 4804.000 7206.000	46.32	31.53	8.90	40.24		54.00	-7.49	Average
	7206.000								

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 049RF Condition

Job No.

EUT : DECT phone
Test mode : BT TX mode
Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Joe Remark : L CH

	Freq		Antenna Factor						Remark	
-	MHz	dBu∀	dB/m	₫B	d₿	dBuV/m	$\overline{dBuV/m}$	₫B		,
1 2 3 4	4804.000 7206.000	47.25 50.23	36.47	8.90 10.59	40.24 41.24	47.44 56.05	54.00 74.00	-6.56 -17.95	Average	

Test channel: Middle

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 049RF Job No. EUT : DECT phone Test mode : BT TX mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Joe Remark : M CH

3

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor dB dB dBuV/m dBuV/m MHz dBuV dB/m dB 74.00 -16.34 Peak 54.00 -5.27 Average 4882.000 57.25 8.98 40.15 57.66 31.58 31.58 8.98 40.15 48.73 54.00 -5.27 Average 36.49 10.62 41.22 55.70 74.00 -18.30 Peak 36.49 10.62 41.22 45.14 54.00 -8.86 Average 4882.000 48.32 7232.000 49.81 7232.000 39.25

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 049RF Job No. EUT : DECT phone Test mode : BT TX mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Joe Remark : M CH Remark

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor MHz dBuV dB/m ₫₿ dB dBuV/m dBuV/m dB 57. 21 46. 35 49. 21 57.62 46.76 74.00 -16.38 Peak 54.00 -7.24 Average 4882.000 31.58 8.98 40.15 23 8.98 40.15 46.76 54.00 -7.24 Average 10.62 41.22 55.10 74.00 -18.90 Peak 10.62 41.22 44.94 54.00 -9.06 Average 31.58 4882.000 7232.000 36.49 7232.000 39.05 36.49

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 049RF Job No. EUT : DECT phone
Test mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Joe : H CH Remark

	Freq	ReadAntenna Freq Level Factor		ReadAntenna Cable Preamp req Level Factor Loss Factor I				Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>				
1 2 3	4960.000 4960.000	45.25	31.69	9.08		45.99	54.00	-8.01	Average			
3	7440.000 7440.000				41.05 41.05				Peak Average			

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 049RF Condition

Job No. EUT : DECT phone Test mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Joe
Remark : H CH

temar r	1 (5)		Antenna Factor						Remark
-	MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	4960.000	56.38	31.69	9.08	40.03	57.12	74.00	-16.88	Peak
2	4960.000	44.28	31.69	9.08	40.03	45.02	54.00	-8.98	Average
3	7440.000	48.31	36.60	10.80	41.05	54.66	74.00	-19.34	Peak
4	7440,000	38.25	36.60	10.80	41.05	44.60	54.00	-9.40	Average