University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2013/2014

Solutions #6

- 1. (a) Since $f, g : \mathbb{R}^n \to \mathbb{R}^n$ are inverse functions, we have $f \circ g = \text{identity}$ and $g \circ f = \text{identity}$ (identity : $\mathbb{R}^n \to \mathbb{R}^n$ maps each $\boldsymbol{x} \in \mathbb{R}^n$ to itself). Now $D(g \circ f) = D(\text{identity}) = I_n$ (the $n \times n$ identity matrix). Also, by the Chain Rule, we have $D(g \circ f) = (Dg(f))(Df)$. Taking determinants, we have $[\det(Dg)][\det(Df)] = \det(I_n) = 1$. Hence, neither $\det(Dg)$ nor $\det(Df)$ can be zero. We also have $(Df(g))(Dg) = I_n$, so by definition, $Dg = (Df)^{-1}$.
 - (b) We are given that $f, g : \mathbb{R}^3 \to \mathbb{R}^3$ are inverse functions. Therefore, since $D f = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 1 & 3 \end{pmatrix}, D g = (Df)^{-1} = \begin{pmatrix} \frac{1}{\det Df} \end{pmatrix} \begin{pmatrix} \text{cofactor matrix of } D f \end{pmatrix}^T = \frac{1}{6} \begin{pmatrix} 3 & -6 & -1 \\ 6 & -6 & -4 \\ -3 & 6 & 3 \end{pmatrix}^T = \frac{1}{6} \begin{pmatrix} 3 & 6 & -3 \\ -6 & -6 & 6 \\ -1 & -4 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 1 & -\frac{1}{2} \\ -1 & -1 & 1 \\ -\frac{1}{6} & -\frac{2}{3} & \frac{1}{2} \end{pmatrix}.$
- 2. (a) We are given $A = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 2 & 0 \\ -3 & 0 & 9 \end{pmatrix}$. To find the eigenvalues we must solve $0 = \det(A \lambda I) = \det\begin{pmatrix} 1 \lambda & 0 & -3 \\ 0 & 2 \lambda & 0 \\ -3 & 0 & 9 \lambda \end{pmatrix} = (2 \lambda) \det\begin{pmatrix} 1 \lambda & -3 \\ -3 & 9 \lambda \end{pmatrix} = (2 \lambda) \left[9 10\lambda + \lambda^2 9 \right] = (2 \lambda) (\lambda^2 10\lambda) = (2 \lambda) (\lambda 10) (\lambda)$. Hence the eigenvalues are $\lambda = 0$, $\lambda = 2$ and $\lambda = 10$.
 - (b) We now find the associated eigenvectors:

$$\underline{\lambda = 0}. \text{ We solve } \begin{pmatrix} 1 - 0 & 0 & -3 \\ 0 & 2 - 0 & 0 \\ -3 & 0 & 9 - 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 2 & 0 \\ -3 & 0 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ giving } \begin{cases} x & -3z = 0 \\ 2y & = 0 \\ -3x & +9z = 0 \end{cases} \implies y = 0 \text{ and } x = 3z. \text{ Hence an eigenvector is of the form } (3z, 0, z), z \in \mathbb{R} - \{0\}. \text{ An eigenvector of unit length is } \left(\frac{3}{\sqrt{10}}, 0, \frac{1}{\sqrt{10}}\right).$$

MATB41H Solutions # 6 page 2

eigenvector is of the form $(0, y, 0), y \in \mathbb{R} - \{0\}$. An eigenvector of unit length is (0, 1, 0).

(c) The matrix
$$B$$
 is $B = \begin{pmatrix} \frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{10}} & 0 & -\frac{3}{\sqrt{10}} \end{pmatrix}$. To show B is orthogonal it is sufficient to show $BB^T = I_3$. $BB^T = \begin{pmatrix} \frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{10}} & 0 & -\frac{3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{10}} & 0 & -\frac{3}{\sqrt{10}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Hence B is orthogonal.

3. We will first show that, if λ is an eigenvalue of A, then λ^n is an eigenvalue of A^n , for all $n \in \mathbb{Z}^+$. Let \boldsymbol{v} be an eigenvector associated to the eigenvalue λ of A; i.e., $A \boldsymbol{v} = \lambda \boldsymbol{v}$. Now $A^2 \boldsymbol{v} = A(A\boldsymbol{v}) = A(\lambda \boldsymbol{v}) = \lambda A\boldsymbol{v} = \lambda^2 \boldsymbol{v}$. Assume that $A^{k-1}\boldsymbol{v} = \lambda^{k-1}\boldsymbol{v}$, then $A^k\boldsymbol{v} = A(A^{k-1}\boldsymbol{v}) = A(\lambda^{k-1}\boldsymbol{v}) = \lambda^{k-1}A\boldsymbol{v} = \lambda^k\boldsymbol{v}$. By induction, $A^k\boldsymbol{v} = \lambda^k\boldsymbol{v}$, for $k = 1, 2, \cdots$.

Now $(A^3 + 2A^2 - A - 5I)\mathbf{v} = A^3\mathbf{v} + 2A^2, \mathbf{v} - A, \mathbf{v} - 5I, \mathbf{v} = \lambda^3\mathbf{v} + 2\lambda^2\mathbf{v} - \lambda\mathbf{v} - 5\mathbf{v} = (\lambda^3 + 2\lambda^2 - \lambda - 5)\mathbf{v}$. So, if -1, 1 and 2 the eigenvalues of A, $(-1)^3 + 2(-1)^2 - (-1) - 5 = -3$, $1^3 + 2(1)^2 - 1 - 5 = -3$ and $2^3 + 2(2)^2 - 2 - 5 = 9$ are the eigenvalues of $A^3 + 2A^2 - A - 5I$. Since the determinant of a matrix is the product of the eigenvalues, the determinant of $A^3 + 2A^2 - A - 5I$ is (-3)(-3)(9) = 81.

4. Let ℓ , w and h be the length, width and height of the box, let V be the volume and let S be the surface area. We are given $\frac{d\ell}{dt} = 1$, $\frac{dw}{dt} = 0.5$ and $\frac{dh}{dt} = -1$.

- (a) The volume is given by $V = \ell w h$ so, using the product rule, we have $\frac{dV}{dt} = w h \frac{d\ell}{dt} + \ell h \frac{dw}{dt} + \ell w \frac{dh}{dt}$. When $\ell = 5$, w = 4 and h = 3 we have $\frac{av}{dt} = (4)(4)(1) + (5)(4)(0.5) + (5)(4)(-1) = 6 \,\mathrm{m}^3/\mathrm{sec}.$
- (b) The surface area is given by $S = \ell w + 2\ell h + 2wh$ so $\frac{dS}{dt} = (w+2h)\frac{d\ell}{dt}$ $+ (\ell + 2h) \frac{dw}{dt} + 2(\ell + w) \frac{dh}{dt}$. When $\ell = 4$, w = 4 and h = 4 we have $\frac{dS}{dt} = (4+2(4))(1) + (5+2(4))(0.5) + 2(5+4)(-1) = 12 + \frac{13}{2} - 18 = 0.5 \,\mathrm{m}^2/\mathrm{sec}.$
- (a) $f(x,y) = x^3 xy + y^3$. Since f is a polynomial, all critical points will occur when $\nabla f = (3x^2 - y, -x + 3y^2) = (0, 0)$. The first component gives $y = 3x^2$, then the second gives $0 = -x + 3(3x^2)^2 = -x + 27x^4 =$ $x(-1 + 27x^3) \implies x = 0, \ x = \frac{1}{3}$. Hence the critical points are (0,0) and $(\frac{1}{3},\frac{1}{3})$. To classify we compute $H f = \begin{pmatrix} 6x & -1 \\ -1 & 6u \end{pmatrix}$.

Now $H f(0,0) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$. Since $\det H f(0,0) = -1$, this must be a saddle point. (Note that, a 2×2 symmetric matrix can have a negative determinant only if one eigenvalue is positive and one is negative.)

$$H f\left(\frac{1}{3}, \frac{1}{3}\right) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
. Since det $A_1 = 2$ and det $A_2 = \det H f\left(\frac{1}{3}, \frac{1}{3}\right) = 3$, this is a local minimum.

(b) $f(x,y) = x^3y + 12x^2 - 8y$. Since f is a polynomial, all critical points will occur when $\nabla f = (3x^2y + 24x, x^3 - 8) = (0, 0)$. The second component $\implies x = 2$ and the first becomes $0 = 3(2)^2y + 24(2) \implies 12y =$ $-48 \implies y = -4$. There is a single critical point, (2, -4). To classify we compute $H f = \begin{pmatrix} 6xy + 24 & 3x^2 \\ 3x^2 & 0 \end{pmatrix}. \text{ Now } H f(2, -4) = \begin{pmatrix} 24 & 12 \\ 12 & 0 \end{pmatrix} \text{ so } \det H f(2, -4) = -144 < 0.$ Hence this critical point yields a saddle point.

(c) $f(x,y) = 4x - 3x^3 - 2xy^2$. Computing the partials we have $f_x = 4 - 9x^2 - 2y^2 = 0$ and $f_y = -4xy = 0$. The second $\implies x = 0$ or y = 0. If x = 0, the first becomes $4 - 2y^2 = 0$ $\implies y = 4\sqrt{2}$. If y = 0, the first becomes $4 - 9x^2 = 0$.

$$y = \pm \sqrt{2}$$
. If $y = 0$, the first becomes $4 - 9x^2 = 0$ $\implies x = \pm \frac{2}{3}$. There are 4 critical points:

$$(0,\sqrt{2}), (0,-\sqrt{2}), \left(\frac{2}{3},0\right), \left(\frac{-2}{3},0\right).$$
 To

classify we compute
$$H f = \begin{pmatrix} -18x & -4y \\ -4y & -4x \end{pmatrix}$$
.

Now
$$H f(0, \sqrt{2}) = \begin{pmatrix} 0 & -4\sqrt{2} \\ -4\sqrt{2} & 0 \end{pmatrix}$$
. Since

$$\det \begin{pmatrix} 0 & -4\sqrt{2} \\ -4\sqrt{2} & 0 \end{pmatrix} = -32 < 0, \text{ we have a}$$

saddle.

 $H f(0, -\sqrt{2}) = \begin{pmatrix} 0 & 4\sqrt{2} \\ 4\sqrt{2} & 0 \end{pmatrix}$. Since $\det \begin{pmatrix} 0 & 4\sqrt{2} \\ 4\sqrt{2} & 0 \end{pmatrix} = -32 < 0$, we have a saddle.

$$H f\left(\frac{2}{3}, 0\right) = \begin{pmatrix} -12 & 0 \\ 0 & -\frac{8}{3} \end{pmatrix}$$
. Since det $A_1 = -12 < 0$ and det $A_2 = 32 > 0$, this is a local maximum.

$$H\left(\frac{-2}{3},0\right) = \begin{pmatrix} 12 & 0 \\ 0 & \frac{8}{3} \end{pmatrix}$$
. Since det $A_1 = 12 > 0$ and det $A_2 = 32 > 0$, this is a local minimum.

(d) $f(x,y) = e^x - x e^y$. Computing the partials we have $f_x = e^x - e^y = 0$, $f_y = -x e^y = 0$. Since $e^y \neq 0$, the second $\implies x = 0$. The first now becomes $e^0 - e^y = 0 \implies y$

0. The first now becomes $e^{y} - e^{y} = 0 \implies e^{y} = 1 \implies y = 0$. The only critical point is (0,0). To classify the critical point we compute

$$Hf = \begin{pmatrix} e^x & -e^y \\ -e^y & -xe^y \end{pmatrix}. \text{ Now } Hf(0,0) = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} \text{ and } \det \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} = -1 < 0.$$

Hence this is a saddle point.

(e) $f(x,y) = x \ln(x+y)$. Computing the partials we have $f_x = \ln(x+y) + \frac{x}{x+y} = 0$, $f_y = \frac{x}{x+y} = 0$. The second equation gives x = 0 so the first becomes

MATB41HSolutions # 6page 5

> $\ln y = 0 \implies y = 1$. Thus (0,1) is a critical point. Because f_x and f_y are defined through out the domain, it is the only critical point. To classify we compute Hf =

$$\begin{pmatrix} \frac{x+2y}{(x+y)^2} & \frac{y}{(x+y)^2} \\ \frac{y}{(x+y)^2} & -\frac{x}{(x+y)^2} \end{pmatrix}. \text{ Now } Hf(0,1) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}. \text{ Since } \det\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} = -1, (0,1) \text{ is a saddle point.}$$

(f)
$$f(x,y) = \int_x^y (e^{t^2} - e^t) dt$$
. Using FTC, we have
$$\begin{cases} \frac{\partial f}{\partial x} = e^x - e^{x^2} = 0\\ \frac{\partial f}{\partial y} = e^{y^2} - e^y = 0 \end{cases}$$
,

$$\begin{cases} \frac{\partial f}{\partial x} = e^x - e^{x^2} = 0\\ \frac{\partial f}{\partial y} = e^{y^2} - e^y = 0 \end{cases}$$

which we rewrite as $\begin{cases} e^x \left(1 - e^{x^2 - x}\right) &= 0 \\ e^y \left(e^{y^2 - y} - 1\right) &= 0 \end{cases}$ Hence, $\nabla f = \mathbf{0}$ if $\begin{cases} x^2 - x &= 0 \\ y^2 - y &= 0 \end{cases} \implies x = 0$ or 1 and y = 0 or 1. Hence there are four critical points: (0,0), (0,1), (1,0) and After computing second partials we have $H f = \begin{pmatrix} e^x - 2xe^{x^2} & 0\\ 0 & 2ye^{y^2} - e^y \end{pmatrix}$. Now $H f(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \implies \text{saddle},$

 $H f(0,1) = \begin{pmatrix} 1 & 0 \\ 0 & e \end{pmatrix} \implies \text{local minimum}, H f(1,0) = \begin{pmatrix} -e & 0 \\ 0 & -1 \end{pmatrix} \implies$ maximum, and $H f(1,1) = \begin{pmatrix} -e & 0 \\ 0 & e \end{pmatrix} \implies \text{saddle.}$

(g) $f(x,y,z) = x^3 + xz^2 - 3x^2 + y^2 + 2z^2$. We first compute the partials: $\frac{\partial f}{\partial x} = 3x^2 + z^2 - 6x$, $\frac{\partial f}{\partial y} = 2y$ and $\frac{\partial f}{\partial z} = 2xz + 4z = 2z(x+2)$, so $\nabla f = \mathbf{0}$ if $\begin{cases} 3x^2 + z^2 - 6x = 0 \\ 2y = 0 \end{cases}$. From second we have y = 0 and from the third we 2xz + 4z = 0have either z=0 or x=-2. If z=0 the first becomes $0=3x^2-6x=3x(x-2)$ so we have x=0 or x=2. If x=-2 then $z^2=-24$ so we have no real solutions. Therefore the critical points are (0,0,0) and (2,0,0). The Hessian matrix is $Hf = \begin{pmatrix} 6x - 6 & 0 & 2z \\ 0 & 2 & 0 \\ 2z & 0 & 2z + 4 \end{pmatrix}$. $Hf(0,0,0) = \begin{pmatrix} -6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ so we have the

sequence -++ giving a saddle point. $H f(2,0,0) = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix}$ so we have the sequence +++ giving a local minimum.

- (h) $f(x,y,z) = x^2y + y^2z + z^2 2x$. We first compute the partials: $\frac{\partial f}{\partial x} = 2xy 2$, $\frac{\partial f}{\partial y} = x^2 + 2yz$ and $\frac{\partial f}{\partial z} = y^2 + 2z$, so $\nabla f = \mathbf{0}$ if $\begin{cases} 2xy 2 &= 0 \\ x^2 + 2yz &= 0 \end{cases}$. The third $y^2 + 2z &= 0 \end{cases}$ equation gives $z = -\frac{y^2}{2}$ so the second $\implies y^3 = x^2$ so the first $\implies y = 1$ $\implies z = -\frac{1}{2}$. Since xy = 1 we have x = 1. The only critical point is $\left(1, 1, -\frac{1}{2}\right)$. The Hessian matrix is $Hf = \begin{pmatrix} 2y & 2x & 0 \\ 2x & 2z & 2y \\ 0 & 2y & 2 \end{pmatrix}$ and $Hf(1, 1, -\frac{1}{2}) = \begin{pmatrix} 2 & 2 & 0 \\ 2 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}$. Evaluating the chain of determinants we have $\det A_1 = 2 > 0$, det $A_2 = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} = -6 < 0$ and $\det A_3 = \det \begin{pmatrix} 2 & 2 & 0 \\ 2 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix} = -20 < 0$. Since we have the pattern + -, this is a saddle point.
- 6. (a) $f(x,y) = (x-1)^2 (y-1)^2$. Since f is a polynomial, all critical points will occur where $\nabla f = (2(x-1)(y-1)^2, 2(x-1)^2(y-1)) = (0,0)$. This occurs if x=1 or y=1; that is, every point along the line x=1 or the line y=1 is a critical point. Now $Hf = \begin{pmatrix} 2(y-1)^2 & 4(x-1)(y-1) \\ 4(x-1)(y-1) & 2(x-1)^2 \end{pmatrix}$ so $\det Hf(1,y) = \det \begin{pmatrix} 2(y-1)^2 & 0 \\ 0 & 0 \end{pmatrix} = 0$ and $\det Hf(x,1) = \det \begin{pmatrix} 0 & 0 \\ 0 & 2(x-1)^2 \end{pmatrix} = 0$

 $0 \implies \text{the test fails.}$

Since f(x, y) = 0 for every point along the line x = 1 or the line y = 1 and $f(x, y) = (x - 1)^2(y - 1)^2 > 0$ for all other points, each critical point yields a local (and global) minimum.

(b) $f(x,y,z) = (x-1)^2 (y-1)^2 (z-1)^2$. Since f is a polynomial, all critical points will occur where $\nabla f = (2(x-1)(y-1)^2(z-1)^2, 2(x-1)^2(y-1)(z-1)^2, 2(x-1)^2(y-1)^2(z-1) = (0,0,0)$. This occurs if x=1 or y=1 or z=1; that is, every point on the plane z=1 or on the plane z=1 is a critical point. Now

MATB41H Solutions # 6 page 7

$$H f = \begin{pmatrix} 2(y-1)^2(z-1)^2 & 4(x-1)(y-1)(z-1)^2 & 4(x-1)(y-1)^2(z-1) \\ 4(x-1)(y-1)(z-1)^2 & 2(x-1)^2(z-1)^2 & 4(x-1)^2(y-1)(z-1) \\ 4(x-1)(y-1)^2(z-1) & 4(x-1)^2(y-1)(z-1) & 2(x-1)^2(y-1)^2 \end{pmatrix}$$
so $\det H f(1,y,z) = \det \begin{pmatrix} (y-1)^2(z-1)^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0, \det H f(x,1,y) = \det \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2(x-1)^2(z-1)^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 \text{ and } \det H f(x,y,1) = \det \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 \text{ and } \det H f(x,y,1) = \det \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 \implies \text{ the test fails.}$
Since $f(x,y,y) = 0$ for every point on the plane $x = 1$ on the plane $y =$

Since f(x, y, z) = 0 for every point on the plane x = 1, on the plane y = 1 or on the plane z = 1 and $f(x, y, z) = (x - 1)^2 (y - 1)^2 (z - 1)^2 > 0$ for all other points, each critical point yields a local (and global) minimum.