

概述

用于 RS-485/RS-422 通信的 YD3082EESA 是一款半双工通信的高速收发器,其包含一路驱动器和一路接收器。具有±15kV 人体模式 ESD 保护以及失效保护电路,当接收器输入开路或短路时,确保接收器输出逻辑高电平。如果挂接在终端匹配总线上的所有发送器都禁用(高阻),接收器将输出逻辑高电平。YD3082EESA 具有低摆率驱动器,能够减小 EMI 和由于不恰当的终端匹配电缆所引起的反射,并实现高达 1Mbps 的无差错数据传输。此外,YD3082EESA 其接收器具有 1/8 单位负载输入阻抗,总线上可以挂接多达 256 个收发器。

特性

- 提供低电流关断模式
- 提供工业标准的 8 引脚 SOP 封装
- 总线上允许挂接多达256个收发器
- 真正的失效保护接收器兼容于EIA/TIA-485
- 强大的摆率控制功能有助于实现无差错数据传输
- 为 RS-485/RS-422 A/B 引脚提供增强型 ESD 保护

A/B 引脚提供增强型 ESD 保护

HBM 人体模式: ±15kV IEC 61000-4-2:

接触放电 ±12kV 空气放电 ±15kV

引脚逻辑图及描述

图1: YD3082EESA引脚图

图2: YD3082EESA逻辑图

应用

- 工业控制
- 电表、水表、燃气表
- 对EMI灵敏的收发器应用

- 安防系统
- 照明系统
- 仪器仪表

定购信息

型号	传输方式	I/O 极性	温度范围	封装	最小包装
YD3082EESA	半双工	有极性	-40℃~+85℃	SOP8	2500pcs
-					

引脚描述

引脚		
YD3082EESA	名称	功 能
半双工		
1	RO	接收器输出。当 RE 为低电平时,若 A-B≥-50mV,,RO 输出为高电平;若 A-B≦-200mV, RO 输出为低电平
2	\overline{RE}	接收器输出使能。 \overline{RE} 接低电平时 RO 输出有效;当 \overline{RE} 接高电平时 RO 为高阻态; \overline{RE} 接高电平且 DE 接低电平时,器件进入低功耗关断模式
3	DE	驱动器输出使能。DE 接高电平时驱动器输出有效,DE 为低电平时输出为高阻态; \overline{RE} 接高电平且 DE 接低电平时,器件进入低功耗关断模式
4	DI	驱动器输入。DE 为高电平时,DI 上的低电平强制同相输出为低电平,反相输出为高电平。同样,DI 上的高电平将强制同相输出为高电平,反相输出为低
5	GND	接地
6	А	接收器同相输入和驱动器同相输出
7	В	接收器反相输入和驱动器反相输出
8	V _{CC}	正相供应端:3.0≦V _{CC} ≦5.5V

绝对最大额定值

参 数	符号	大 小	单 位
供应电压	V _{CC}	+7	V
控制输入电压	/RE, DE	-0.3 到 V _{CC} +0.3	V
驱动器输入电压	DI	-0.3 到 V _{CC} +0.3	V
驱动器输出电压	A, B	±13	V
接收器输入电压	A, B	±13	V
接收器输出电压	RO	-0.3∼V _{CC} +0.3	V
连续功耗	SOP8	471	mW
工作温度范围		- 40∼ + 85	°C
储存温度		-65∼+150	°C
焊接温度		300	°C

直流电气特性

(如无另外说明, V_{CC}=+5V±5%,TA=TMIN~TMAX, 典型值在 V_{CC}=+5V, TA=25℃)(注释 1)

参 数	符号	测试条件	:	最小	典型	最大	单位
驱动器							
供应电压	VCC			3.0		5.5	V
差分驱动器输出(无负载)	V_{OD1}	图 4		1.5		5	V
差分驱动器输出	\/	图4,R=50Ω(RS-422)		2.0		5	V
左刀 犯夠預制山	V_{OD2}	图4,R=27Ω(RS-485)		1.5		5	V
差分输出电压的幅度变化(注2)	ΔV_{OD}	图 4,R=50Ω 或 R=270	Ω			0.2	V
驱动器共模输出电压	Voc	图 4,R=50Ω 或 R=27Ω	Ω	1		3	V
共模电压的幅度变化(注释 2)	ΔV_{OC}	图 4,R=50Ω 或 R=270	Ω			0.2	V
输入高电压	V_{IH1}	DE,DI,/RE		2.0			V
输入低电压	V_{IL1}	DE,DI,/RE				8.0	V
DI 输入迟滞	V _{HYS}		1		100		mV
 输入电流(A,B)半双工	I _{IN4}	DE=GND	V _{IN} =12V			125	μA
THIS COURT OF THE PARTY	11114	V _{CC} =GND 或 5.25V	V _{IN} =-7V	-75			μ, τ
		71/01 01		-250			
驱动器短路输出电流	I_{OSD}	01/21 /401/				250	mA
		NAL AL		±25			
接收器		T		T			1
接收器差分阈值电压	V_{TH}	7\/<\/ <40\/		-200	-110	-50	mV
接收器输入时滞	ΔVτΗ				30		mV
接收器输出高压	Vон	I _O =-4mA,V _{ID} =-50mV		V _{CC} -1.5			V
接收器输出低压	V_{OL}	I _O =4mA,V _{ID} =-200mV				0.4	V
接收器端三态输出电流	I _{OZR}	0.41/21/22.41/				±1	μA
接收器输入阻抗	R_{IN}	71/21/ <121/		96			ΚΩ
接收器输出短路电流	I _{OSR}	01/4/		±7		±95	mA
供电电流							
静态工作电流	Icc	无负载, /RE=DI=V _{CC} , DE=V _{CC}			140	600	μΑ
H1 10 T 1 L C 10 II	100	无负载, /RE=DI=GND, DE=GND			110	600	μΑ
关断模式电流	I _{SHDN}	DE=GND,/RE=V _{CC} ,DI=V _{CC} orGND			0.1	100	μΑ
ESD 静电保护				1			T
		HBM 人体模式			±15		kV
 静电保护(A/B 引脚)		MM 机器模式			±800		V
111 C 11/1 (接触放电 IEC 61000-4-2		±12			kV
		空气放电 IEC 61000-4-	2	±15		kV	
 静电保护(其它引脚)		HBM 人体模式			±6		kV
133 - CI DEA - 757 CI ALMAN		MM 机器模式		±400			V

注释 1: 进入器件的所有电流是正的,从器件输出的所有电流是负的;所有的电压,如果无例外说明都是对地的。

注释 2: 当 DI 输入改变状态时, $\triangle V_{OD}$ 和 $\triangle V_{OC}$ 分别为 V_{OD} 和 V_{OC} 变化。

注释 3: 最大电流用于仅在馈回电流限制前的峰值电流,最小电流用于电流限制期间。

转换特性——YD3082EESA

(如无另外说明,V_{CC}=+5V±5%,TA=TMIN~TMAX,典型值在 V_{CC}=+5V,TA=25℃)

参 数	符号	条 件	最小	典型	最大	单位
15 計 鬼 於) 本此公山	T _{DPLH}	图 6 和 8,R _{DIFF} =54Ω	250	720	900	
驱动器输入到输出	T _{DPHL}	C _{L1} =C _{L2} =100pF	250	720	900	ns
驱动器输出 t DPLH – t DPHL	T _{DHKEW}	图 6 和 8,R _{DIFF} =54Ω C _{L1} =C _{L2} =100pF		-3	±100	ns
驱动器上升或下降时间	t DR, t DF	图 6 和 8,R _{DIFF} =54Ω C _{L1} =C _{L2} =100pF	200	530	750	ns
最大数据速率	F MAX				1000	kbps
驱动器使能到输出高	T _{DZH}	图 7 和 9,C _L =100pF S2 关 闭			2500	ns
驱动器使能到输出低	T _{DZL}	图 7 和 9,C _L =100pF S1 关 闭			2500	ns
从低到驱动器无效时间	T _{DLZ}	图 7 和 9,C _L =15pF S1 关闭			100	ns
从高到驱动器无效时间	T _{DHZ}	图 7 和 9, C _L =15pF S2 关闭			100	ns
	_	图 10 和 12, V _{ID} ≥ 2.0V				
接收器输入到输出	T _{RPLH} T _{RPHL}	VID≦15ns 的上升和下降时		127	200	ns
		图 10 和 12, V _{ID} ≥ 2.0V				
差分接收器 t DPLH - t DPHL	T _{RSKD}	VID≦15ns 的上升和下降时		3	±30	ns
接收器使能到输出低	T _{RZL}	图 5 和 11,C _L =100pF S1 关 闭		20	50	ns
接收器使能到输出高	T _{RZH}	图 5 和 11,C _L =100pF S2 关 闭		20	50	ns
接收器从低到无效时间	T _{RLZ}	图 5 和 11,C _L =100pF S1 关 闭		20	50	ns
接收器从高到无效时间	T _{RHZ}	图 5 和 11, C _L =100pF S2 关 闭		20	50	ns
待机时间	T _{SHDN}		50	200	600	ns
从待机到输出高的驱动器使能	T _{DZH(SHDN)}	图 7 和 9,C _L =15pF S2 关闭			4500	ns
从待机到输出低的驱动器使能	T _{DZL(SHDN)}	图 7 和 9, C _L =15pF S1 关闭			4500	ns
从待机到输出高的接收器使能	T RZH(SHDN)	图 5 和 11,C _L =100pF S2 关 闭			3500	ns
从待机到输出低的接收器使能	T _{RZL(SHDN)}	图 5 和 11,C _L =100pF S1 关 闭			3500	ns

典型工作特性

功能表

Υ	D3	n	82	F	F۶	ζΔ

传输					
	输入			出	
/RE	DE	DI	В	Α	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	Х	High-Z	High-Z	
1	0	Х	Shute	down	

YD3082EESA

接收					
输	入	输出			
/RE	DE	A-B	RO		
0	X	≥-0.05V	1		
0	Х	≤-0.2V	0		
0	Х	Open/shorted	1		
1	1	X	High-Z		
1	0	X	Shutdown		

图 3: YD3082EESA 典型半双工应用电路

1. 详述

用于 RS-485/RS-422 通信的 YD3082EESA 高速收发器包含一个驱动器和接收器. 具有失效保护电路, 当接收器输入开路或短路时, 确保接收器输出逻辑高电平。如果挂接在终端匹配总线上的所有发送器都禁用(高阻),接收器将输出逻辑高电平。YD3082EESA 具有低摆率驱动器,能够减小 EMI 和由于不恰当的电缆端接所引起的反射,实现高达 1Mbps 的无差错数据传输。YD3082EESA 是半双工收发器。

2. 接收器输入滤波

当工作在500Kbps模式下的YD3082EESA,其接收器除了具有输入滞后外,还包括输入滤波功能。此滤波功能提高了上升和下降缓慢的差分信号的噪声抑制能力。滤波器使接收器传输延时增加25%。

3. 失效保护

接收器输入短路或开路时,或挂接在终端匹配传输线上的所有驱动器均处于禁用状态时,

YD3082EESA可确保接收器输出逻辑高电平。这是通过将接收器输入门限分别设置为-50mV和-200mV实现的。若差分接收器输入电压(A-B) 大于或等于-50mV, RO为逻辑高电平; 若电压(A-B) 小于或等于-200mV, RO为逻辑低电平。

当挂接在终端匹配总线上的所有发送器都禁用时,接收器差分输入电压将通过终端电阻拉至0V。依据 接收器门限,可实现具有50mV最小噪声容限的逻辑高电平。与以往的失效保护器件不同,-50mV至-200mV 门限电压符合±200mV的EIA/TIA-485标准。

总线上挂接 256 个收发器

标准RS-485 接收器的输入阻抗为12kΩ (1个单位负载),标准驱动器可最多驱动32个单位负载。 YD3082EESA收发器的接收器具有1/8单位负载输入阻抗(96kΩ),允许最多256个收发器并行挂接在同一通 信总线上。这些器件可任意组合,或者与其它RS-485收发器进行组合,只要总负载不超过32个单位负载, 都可以挂接在同一总线上。

降低 EMI 和反射

YD3082EESA 的低摆率驱动器可以减小 EMI,并降低由不恰当的终端匹配电缆引起的反射,图 13 显 示了高频谐波元件在幅度上要低于一般情况,驱动器上升沿的时间与终端的长度有关,下面的方程式表示 其关系: Length=tRISE/(10×1.5ns/ft),tRISE 是驱动器上升沿的时间。

图 4: 驱动器 DC 测试负载

图 5: 接收器使能/无效定时测试负载

图 6: 驱动器定时测试负载

图 7: 驱动器使能/无效定时测试负载

图 8: 驱动器传播延时

图 9: 驱动器使能和无效时间

图 10: 接收器传播延时

图 11:接收器使能和无效时间

图 12: 接收器传播延时测试电路

图 13: 传输 20kHz 信号时 YD3082EESA 驱动器输出 波形和 FFT 图

图 14:在 50kHz 时驱动 4000 英尺的电缆 YD3082EESA 系统差分电压线性转发器

典型应用

YD3082EESA收发器设计用于多点总线传输线上的双向数据通信。图15显示了典型的网络应用电路。这些器件也能用作电缆长于4000英尺的线性转发器,如图14。为减小反射,应当在传输线两端以其特性阻抗进行终端匹配,主干线以外的分支连线长度应尽可能短。

图15: 典型半双工RS-485网络

产品信息

1. 内部结构与材料

图16: 典型IC内部结构图

Item	Materials
Die	Silicon
Molding	Silica Fused
Lead frame	Cu-Alloy
Wire	Au or Cu
Die attach	Ag paste
Plating	Sn
	Die Molding Lead frame Wire Die attach

2. 储存条件

工作温度范围: -40°C~+85°C 储存温度范围: -65°C~+150°C

推荐储存条件如下:

——温度: +5℃~+30℃ ——湿度: 40%~70%RH

3. 焊接温度

3.1 推荐回流焊接温度

3.2 DIP8 产品适合波峰焊,焊接温度为 235 °C ~ 260 °C。

4. 封装信息

8引脚塑料, SOIC8, 封装代码: SOP8

注: 所有尺度都以毫米为单位。