Correction de l'IE2 de Chimie 2

15/12/2016

Question	Résultat							
Ex. 1	Combustion du propane							
1	Calorimètre de combustion adiabatique							
1.a)	$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$							
	Ratio molaire $C_3H_8 / O_2 = 1/5$							
1.b)	Variation d'enthalpie de combustion dans les conditions standards							
	Loi de Hess: $\Delta_{Comb}\overline{H_{298}^0} = 3\Delta_f\overline{H_{298}^0}(CO_2)g + 4\Delta_f\overline{H_{298}^0}(H_2O)g - \Delta_f\overline{H_{298}^0}(C_3H_8)g$							
	A.N.: $\Delta_{Comb}H_{298}^0 = 3x(-394) + 4(-242) - (-102) \Delta_{Comb}H_{298}^0 = -2048 \text{ kJ.mol}^{-1}$							
1.c)	Calorimètre adiabatique : $Q_{\sigma,ext} = 0$							
	Bilan énergétique : $\Delta_{Comb}\overline{H_{298}^0} + \int_{298}^{Tf} \sum C_{p(P)} dT = 0$							
	A.N.: $-2048.10^{+3} + (3x27 + 4x30)x(T_f-298) = 0$ $T_f = 10487 \text{ K}$							
	Commentaire : peu réaliste. (D'autres conditions opératoires sont nécessaires pour							
	effectuer la mesure du PCI : mix air. Travailler sur 100 x moins de propane)							
1.d)	Conditions opératoires : $P_{air} = 50 \text{ bar}$; $P_{C3H8} = 1 \text{ bar}$.							
	20% d' O_2 et 80% de N_2 , alors $P_{O2} = 10$ bar							
	Ratio molaire C_3H_8 / O_2 (= P_{C3H8} / P_{O2} = 1/10 car gaz parfaits). Excès d' O_2 constaté.							
	<u>Avant réaction</u> : nC ₃ H ₈ = 1 mole, 10 moles de O ₂ et 40 moles d'N ₂ (gaz inerte) <i>ou toutes</i>							
	autres valeurs vérifiant la proportionnalité 1/10/40.							
	Seules 5 moles d'O ₂ vont réagir, il restera donc 5 moles d'O ₂ après réaction							
	Après réaction : 3 moles de CO ₂ , 4 moles de H ₂ O, 5 moles de O ₂ en excès et 40 moles							
	de N ₂ (ou toutes autres valeurs vérifiant la proportionnalité 3/4/5/40)							
	Bilan énergétique : $\Delta_{Comb}\overline{H_{298}^0} + \int_{298}^{Tf} \sum C_{p(P)} dT = 0$ (si valeur prise pour nC ₃ H ₈ = 1							
	mole) avec							
	$\sum C_{p(P)} = C_{P(CO_2)} + C_{P(H_2O)} + C_{P(0_2)} + C_{P(N_2)} = 3\overline{C_{P(CO_2)}} + 4\overline{C_{P(H_2O)}} + 5\overline{C_{P(0_2)}} + 40\overline{C_{P(N_2)}} :$							
	A.N.: $-2048.10^{+3} + (3x27 + 4x30 + 5x27 + 40x30)x(T_f-298) = 0$ $T_f = 1631 \text{ K}$							
	Si autre valeur prise pour nC ₃ H ₈ , l'expression devient							
	$nC_3H_8\Delta_{comb}\overline{H_{298}^0} + \int_{298}^{Tf} \sum nC_3H_8C_{p(P)}dT = 0$							
	A.N.: $-2048.10^{+3} \times nC_3H_8 + (3nC_3H_8 \times 27 + 4 nC_3H_8 \times 30 + 5 nC_3H_8 \times 27 + 40 nC_3H_8$							
	$(x30)x(T_f-298)=0$ $T_f = 1631$ K Ce qui conduit bien sûr au même résultat.							
2)	Bombe de combustion non adiabatique V constant = 250 cm ³							
2.a)	Ratio molaire C_3H_8 / O_2 (= P_{C3H8} / P_{O2}) = 1/25 car gaz parfaits							
	Initialement : les gaz sont considérés comme des g.p. T = 298 K							
	$n_{C3H8} = PV/RT = (1.10^5 \text{ x } 250.10^{-6})/(8,314 \text{ x } 298) \boxed{n_{C3H8} = 0,0101 \text{ mol}}$							
	$n_{O2} = 25 \text{ x } n_{C3H8} = \boxed{n_{O2} = 0,2523 \text{ mol}}$							

	Fin de combustion : T = 298 K								
	$n_{C3H8} = 0 \text{ mol}$								
	Nombre de mole d'H ₂ O produit : $n_{H2O} = 4 \times n_{C3H8} = 0.0404 \text{ mol}$								
	Nombre de mole de CO_2 produit : $n_{CO2} = 3 \times n_{C3H8} = 0.0303 \text{ mol}$								
	Nombre de mole d' O_2 en excès $n_{O2} = 20 \text{ x } n_{C3H8} = \boxed{n_{O2} = 0,2020 \text{ mol}}$								
2.b)	Fin de combustion : T = 298 K								
2.0)	- Pression si 100% $H_2O(g)$: $P_{H2O} = (n_{H2O} g)RT/V$								
	A.N. : $P_{H2O} = (0.0404) \times 8.314 \times 298/250.10^{-6}) = 400375,6 \text{ Pa soit } 3003 \text{ torr}$								
	- Or à $T = 298K : P*_{H2O} = 23,76 \text{ torrs (valeur fournie)}$								
	Par conséquent, équilibre liquide – vapeur pour H_2O : et $P_{H2O} = P_{H2O}^* = 23,76$								
	torrs. On peut calculer la quantité maximale d'eau sous forme de gaz n _{H2O} g :								
	A.N.: $n_{\text{H2O}} g = (P^*_{\text{H2O}})xV/RT = (23.76*101325/760)x250.10^{-6}/(8,314 \times 298)$								
	$n_{H2O} g = 3.2 \cdot 10^{-4} \text{ mol}$								
	Négligeable par rapport à n_{H20} total $(3.2*10^{-4}/0.0404)*100 = 0.79 % de la$								
	quantité d'eau totalement formée. Toute l'eau formée peut donc être considérée								
	comme étant à l'état liquide uniquement.								
2.c)	Expérience réalisée à volume constant : $Q_V = \Delta U$								
	$\Delta U = -22,39 \ kJ \text{ pour } n_{C3H8} = 0,0101 \text{ mol}. \ \overline{\Delta U} = -2216,8 \ kJ. \ mol^{-1}$								
2.d)	Energie interne : $\Delta \overline{H} = \Delta \overline{U} + \Delta (PV) \approx \Delta \overline{U} + R.T.\Delta n_g$								
	$A.N.: \Delta n_g = n_f - n_i = (3+20) - (1+25) = -3 \text{ moles}$								
	$\Delta \overline{H}$ = -2216,8 + (-3). 8,314 . 298 . 10 ⁻³ = -2216,8 - 7,4327 $\Delta \overline{H}$ = - 2224,3 kJ.mol ⁻¹								
	= PCS								

Question	Résultat								
Ex. 2	Synthèse du méthanol								
Partie A	Expérience réalisée à 100°C								
1	$\Delta_{\rm r} H^{\circ} = \Delta_{\rm f} H^{\circ} ({\rm CH_3OH}_{(\rm g)}) - \Delta_{\rm f} H^{\circ} ({\rm CO}_{(\rm g)}) - 2 \Delta_{\rm f} H^{\circ} ({\rm H_2}_{(\rm g)}) = -90.7 \text{ kJ.mol}^{-1}$								
	$\Delta r S^{\circ} = S^{\circ} (CH_3OH_{(g)}) - S^{\circ} (CO_{(g)}) - 2 S^{\circ} (H_{2(g)}) = -220.8 \text{ J.K}^{-1}.\text{mol}^{-1}$								
	$T = 398K$ $\Delta rG^{\circ} = \Delta rH^{\circ} - T \Delta rS^{\circ} = -8342 \text{ J.mol}^{-1}$								
	$K^{\circ} = \exp\left(-\frac{\Delta rG^{\circ}}{R \times T}\right) = 14.7$								
2.a	Tableau d'avancement								
	Rendement en méthanol $\eta = \frac{n \text{ CH3OH (g)}}{n \text{ max CH3OH (g)}} = \frac{x}{n_0}$								
		CO (g)	2 H _{2 (g)}	\longleftrightarrow	CH ₃ OH _(g)	n _T (g)			
	EI	n_0	$2n_0$		-	3 n ₀			
	Eq	n ₀ - x	2n ₀ - 2x		X	$3n_0 - 2x$			
	Eq	$n_0 (1-\eta)$	$2n_0(1-\eta)$		n ₀ η	$n_0 (3 - 2\eta)$			
	Fract.	$\frac{(1-\eta)}{(2-2)}$	$\frac{2 \times (1 - \eta)}{(2 - 2 + \eta)}$		$\frac{\eta}{(3-2\eta)}$				
	morane CII	$(3-2\eta)$	$(3-2\eta)$		(3 – 211)				
	molaire $\overline{(3-2\eta)}$ $\overline{(3-2\eta)}$ $\overline{(3-2\eta)}$ $\overline{(3-2\eta)}$ $K^{\circ} = \frac{p \ CH_3 \text{OH} \times (p^{\circ})^2}{p \ CO \times (p \ H_2)^2}$								
	<i>p</i> co	$(p \Pi_2)^2$							
	$K^{\circ} = \frac{x (3n_0 - 2x)^2}{4 \times (n_0 - x)^3} \times \frac{(p^{\circ})^2}{(P_T)^2}$								
	$K^{\circ} = \frac{\eta (3 - 2\eta)^{2}}{4 \times (1 - \eta)^{3}} \times \frac{(p^{\circ})^{2}}{(P_{rr})^{2}}$								
2.b	Parmi les propositions de l'énoncé, seul $\eta = 0,686$ vérifie l'équation ci-dessus								
	1 armi les propositions de l'enonce, seul 1 – 0,000 verme l'equation el-dessus								
3.a	Tableau d'avancement : Définir le taux d'avancement (ou rendement) par rapport au								
	réactif limitant	,							
	Rendement en	méthanol $\eta = \frac{n}{n m}$	$\frac{\text{CH3OH (g)}}{ax \text{ CH3OH (g)}} = \frac{x}{n_0/2}$	$=\frac{2x}{n}$					
		n ni	ux chison (g) 110/2	n_0					
		CO _(g)	$2\;H_{2\;(g)}$	$\overline{\longleftrightarrow}$	CH ₃ OH (g)	$n_{T}\left(g\right)$			
	EI	n_0	n_0		_	2 n ₀			
	Eq	n ₀ - x	n ₀ - 2x		X	$2n_0 - 2x$			
	Eq	$n_0 (1-\eta/2)$	n ₀ (1-η)		$n_0 \eta/2$	$n_0 (2 - \eta)$			
	Fract. ($\frac{(1-\eta/2)}{(2-\eta)} = 1/2$	$(1-\eta)$		η				
	molaire	$(2-\eta)$	$(2-\eta)$		$2 \times (2 - \eta)$				
	$K^{\circ} = \frac{p C H_3 \text{OH}(p^{\circ})^2}{p CO \times (p H_2)^2} = \frac{\eta \times (2 - \eta)}{(1 - \eta)^2} \times \frac{(p^{\circ})^2}{(P_T)^2} = 14.7$								

3.b	Calcul du Rendement :								
	$\left(K^0 \times \left(\frac{P_T}{P^\circ}\right)^2 + 1\right)\eta^2 - 2\left(K^0 \times \left(\frac{P_T}{P^\circ}\right)^2 + 1\right)\eta + K^0 \times \left(\frac{P_T}{P^\circ}\right)^2 = 0$								
	$K^0 = 14.7 \text{ et } P_T = P^\circ = 1 \text{ bar } \rightarrow 15.7 \eta^2 - 31.4 \eta + 14.7 = 0$								
	2 solutions mathématiques : $\eta = 0.748$ et 1.252								
	Or la seconde solution n'est pas possible car rendement doit être inférieur à 1								
	Unique solution : $\eta = 0.748$								
4.a	$\Delta n = -2$ donc l'augmentation de la pression favorise le sens direct de la réaction :								
4.b	augmente le rendement								
	$\Delta rH < 0$ donc la diminution de la température favorise le sens direct de la réaction :								
	augmente le rendement								
Partie B	Expérience réalisée à 310°C								
1.		CO _(g)	2 H _{2 (g)}	\longleftrightarrow	CH ₃ OH _(g)	Ar (g)	$n_{T}(g)$		
	Eq	13.5	60.9		21.3	4.3	100		
	Pression	21.6	97.4		34.1	6.9			
	part (bar)			ν <i>CH</i> - ΟΗ	(n°) ²				
	A partir des fra	ctions molair	es ° $K^{\circ} = \frac{1}{y}$	$CO \times (y H_2)$	$\frac{1}{(P_T)^2} \times \frac{(P_T)^2}{(P_T)^2} =$	1.66 10 ⁻⁴			
	Ou à partir des pressions partielles $K^{\circ} = \frac{p \text{ CH3OH}}{p \text{ CO} \times (p \text{ H}_2)^2} \times (p^{\circ})^2 = 1.66 10^{-4}$								
2.	$T = 310^{\circ}C = 58$								
	$\Delta_{r}H_{T}^{0} = \Delta_{r}H_{298}^{0} + \int_{298}^{T} \Delta C_{p}dT = \Delta_{r}H_{298}^{0} + \Delta C_{p}(T-298)$								
	$\Delta_{r}S_{T}^{0} = \Delta_{r}S_{298}^{0} + \int_{298}^{T} \frac{\Delta C_{p}}{T} dT = \Delta_{r}S_{298}^{0} + \Delta C_{p} \ln \frac{T}{298}$								
	avec $\Delta C_P = C_{P(CH_3OH_g)} - C_{P(CO_g)} - C_{P(H_{2g})} = \overline{C}_{P(CH_3OH_g)} - \overline{C}_{P(CO_g)} - 2.\overline{C}_{P(H_{2g})} = -38.5 J.K^{-1}.mol^{-1}$								
	Applications nu	ımériques :							
	$\Delta H_{583} = -101.6$	kJ.mol ⁻¹							
	$\Delta S_{583} = -246.6$	J.K ⁻¹ .mol ⁻¹							
	$\Delta G^{0}_{583K} = 4216$	58 I K ⁻¹ mol ⁻¹							
	$K_{583K}^0 = 1.661$								
	- 305K 1100 I	-							
	Si utilisation de	Van't Hoff ((l'influence des	s Cp est né	gligée),				
	$\ln K_2 = \ln K_1 -$			-	-				
	Toutefois, l'énoncé imposait d'utiliser les C_P (écart non négligeable vu la faible valeur de K^0_{583K})								