Метод поиска шаблонов проектирования в объектно- ориентированных программах

Студент: Сиромаха Роман Валерьевич

Руководитель: Рудаков Игорь Владимирович

Цель и задачи

Цель работы — разработать метод поиска шаблонов проектирования в объектно-ориентированных программах на основе алгоритма поиска изоморфных подграфов

Задачи

- 1. Выполнить обзор существующих методов
- 2. Разработать модель объектно-ориентированной системы
- 3. Разработать алгоритм поиска шаблонов проектирования на основе алгоритма поиска изоморфных подграфов
- 4. Реализовать программный комплекс на основе разработанного метода
- 5. Провести исследование: выполнить поиск шаблонов проектирования в существующих проектах

Существующие методы поиска шаблонов проектирования

Класс метода	Достоинства	Недостатки
На основе алгоритма поиска изоморфного подграфа с использованием меры схожести вершин	• Полиномиальная сложность	• Неточный результат • Находят отдельные элементы шаблона
На основе алгоритма поиска изоморфного подграфа с вычислением расстояния между графами	 Полиномиальная сложность Находят все элементы шаблона 	• Неточный результат

Метод поиска шаблонов проектирования на основе поиска изоморфных подграфов

Ориентированный граф с множеством типов дуг

$$G = (V, L, E)$$

 $V=\{v\}$ – множество вершин, $L=\{l\}$ – множество меток $E=\{(v_1,v_2,l):v_1,v_2\in V\land l\in L\}$ – множество дуг $(\forall v_1,v_2\in V,l\in L)(|\{(v_1,v_2,l)\}|=1)$

Модель объектно-ориентированной системы

Граф модели объектноориентированной системы

Алгоритм поиска изоморфных подграфов

Условие корректности результата алгоритма поиска изоморфных подграфов

$$G_t = (V_t, L_t, E_t)$$
 — целевой граф $G_p = (V_p, L_p, E_p)$ — граф шаблона $I = \{(t,p) \colon t \in V_t \land p \in V_p\}$ — изоморфизм

$$\forall (t,p) \in I$$

$$\left((\forall (p,p_x,l) \in E_p) (\exists (t,t_y,l) \in E_t : (t_y,p_x) \in I) \right)$$

$$\land$$

$$\left((\forall (p_a,p,l) \in E_p) (\exists (t_b,t,l) \in E_t : (t_b,p_a) \in I) \right)$$

Компоненты и зависимости программного комплекса

Интерфейсы запуска программ

- java_bytecode_model строит модель программы собранной под виртуальную машину Java по .jar и .class файлам
 - java -jar java_bytecode_model.jar <путь к файлу или директории> ... > model.yaml
- java_source_model строит модель программы на языке Java
 - python java_source_model <путь к директории с .java файлами> > model.yaml
- pattern_model строит модель шаблона проектирования по названию
 - python pattern_model <имя шаблона> > pattern.yaml
- match_pattern выполняет поиск шаблона проектирования в модели программы
 - python match_pattern.py model.yaml pattern.yaml

Тестирование программного комплекса

- Модульные тесты (unittest, PyHamcrest)
 - -graph_matcher
 - pattern_matcher
 - java_source_parser
- Функциональные тесты (pytest)
 - java_bytecode_module
 - match_pattern

Пример результата поиска шаблона «Адаптер» в «Apache BCEL»

Результаты поиска шаблонов проектирования

Проект	Airbnb aerosolve	Apache BCEL	Apache Zookeeper	java- design- patterns	Netflix EVCache	scodec
Абстрактная фабрика				+		
Адаптер		+				
Вызов переопределенного метода	+	+	+	+	+	+
Декоратор						
Мост	+	+	+	+	+	
Посетитель				+		
Хранитель						
Цепочка ответственности						

Выводы

- Выполнен обзор существующих методов
- Разработана модель объектно-ориентированной системы на основе UML-диаграммы классов
- Разработан и реализован алгоритм поиска изоморфных подграфов
- Разработана программа для поиска шаблона проектирования в модели объектно-ориентированной программы
- Реализовано построение модели программы на основе байткода для виртуальной машины Java
- Реализовано построение модели программы на основе исходного кода Java
- Проведено исследование: выполнен поиск шаблонов проектирования в ряде существующих программ и библиотек