CS244 Theory of Computation Homework 2 Solution

Let TM be deterministic Turing machine if not otherwise specified with non-deterministic.

Problem 1

Say that a non-terminal A in CFG G is **usable** if it appears in some derivation of some string $w \in L(G)$. Given a CFG G and a non-terminal A, consider the problem of testing whether A is usable. Formulate this problem as a language and show that it is decidable.

Solution

The problem can be formulated as

 $U = \{ \langle G, A \rangle \mid A \text{ is a usable non-terminal in CFG } G \}$

Proof. Let $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$. To be usable, A has to be

- a) reachable from S, and
- b) able to derive a string of terminals.

We can construct a TM M deciding U:

M on $\langle G, A \rangle$:

- 1. Construct a CFG $G_1 = (\mathcal{N}_1, \Sigma_1, \mathcal{P}_1, S)$ which is the same as G except that A is considered as a terminal, i.e., $\mathcal{N}_1 = \mathcal{N} \{A\}$, $\Sigma_1 = \Sigma \cup \{A\}$, and all rules with A on the left hand side are removed in \mathcal{P}_1 .
- 2. Construct a CFG G_2 with $L(G_2) = L(G_1) \cap \Sigma_1^* A \Sigma_1^*$ using the procedure for showing the closure of CFLs under intersection with regular languages.
- 3. Run the E_{CFG} decider on $\langle G_2 \rangle$. Reject if $\langle G_2 \rangle$ is accepted.
- 4. Construct CFG G_3 which is the same as G except that A is the start symbol, i.e., $G_3 = (\mathcal{N}, \Sigma, \mathcal{P}, A)$.
- 5. Run the E_{CFG} decider on $\langle G_3 \rangle$. Reject if $\langle G_3 \rangle$ is accepted. Accept otherwise.

Thus U is decidable.

Problem 2

A queue automaton is like a push-down automaton except that the stack is replaced by a queue. A queue is a tape allowing symbols to be written only on the left-hand end and read only at the right-hand end. Each write operation (we'll call it a push) adds a symbol to the left-hand end of the queue and each read operation (we'll call it a pull) reads and removes a symbol at the right-hand end. As with a PDA, the input is placed on a separate read-only input tape, and the head on the input tape can move only from left to right. The input tape contains a cell with a blank symbol following the input, so that the end of the input can be detected. A queue automaton accepts its input by entering a special accept state at any time. Show that a language can be recognized by a deterministic queue automaton iff the language is Turing-recognizable.

Solution

- (\rightarrow) Any deterministic queue automaton Q can be simulated by a two-tape TM M. The first tape of M holds the input, and the second tape simulates the queue.
 - 1. To simulate reading Q's next input symbol, M reads the symbol under the first head and moves it to the right.
 - 2. To simulate a push of a, M writes a on the leftmost blank square of the second tape.
 - 3. To simulate a pull, M reads the leftmost symbol on the second tape and shifts that tape one symbol leftward.
 - 4. If Q enters the accept state, M accepts.

Thus if a language can be recognized by a deterministic queue automaton, it is Turing-recognizable.

- (\leftarrow) Any single-tape, deterministic TM M can be simulated by a queue automaton Q. Automaton Q simulates M by maintaining a copy of M's tape in the queue, and record M's current state in its control. Q also holds each tape symbol for one step in the control before push.
 - 1. Q starts by reading the symbols from the input tape and pushing them into the queue, until the first blank symbol is encountered.
 - 2. For each symbol c of M's tape alphabet, the queue alphabet of Q has two symbols, c and \dot{c} . We use \dot{c} to denote c with M's head over it. In addition, the queue alphabet has an end-of-tape marker symbol \$.
 - 3. Q can effectively scan the tape from right to left by pulling symbols from the queue and pushing them back onto the queue, until the \$ is seen.
 - 4. When the dotted symbol is encountered, Q can determine M's next move. Instead of pushing the old symbol back onto the queue, push the new symbol given by the transition function.
 - 5. If M's tape head moves rightward, the dot in the queue should move leftward. So pull another symbol from the queue, and push the dotted version of it onto the queue.
 - 6. If M's tape head moves leftward, the dot should move rightward (in a cyclic manner). Retrieve from the control the symbol that should be pushed in the last step, push the dotted version of it, and then proceed with the current symbol.

If a language is Turing-recognizable, it can be recognized by a single-tape, deterministic TM. Thus it can also be recognized by a deterministic queue automaton.

Problem 3

Show that a language is decidable iff some enumerator enumerates the language in the string order. (*String order* is the standard length-increasing, lexicographic order. See page 14 of the textbook.)

Solution

- (\rightarrow) If A is decidable, then there is a TM R deciding A. We can construct the enumerator E:
 - 1. Go through each possible w in the string order and run R on w.
 - 2. If R accepts w, print w.

E enumerates the language in the string order.

- (\leftarrow) If enumerator E enumerates A in string order, we break the problem into two cases.
 - (a) If A is infinite, we can construct a TM deciding A:

M on w:

- 1. Run E to enumerate all strings in string order until the output appears after w in string order.
- 2. If w has appeared in the enumeration, accept. Otherwise, reject.
- (b) If A is finite, the enumerator E may loop without producing any additional output, so the above M is not a decider. However, all finite languages are decidable.

Problem 4

Let C be a language. Prove that C is Turing-recognizable iff a decidable language D exists such that $C = \{x \mid \exists y \in \{0,1\}^* \ (\langle x,y \rangle \in D)\}$. (Hint: You must prove both directions of the "iff". The (\leftarrow) direction is easier. For the (\rightarrow) direction, think of y as providing additional information that allows you to confirm when $x \in C$, but without the possibility of looping.)

Solution

(\leftarrow) Assume that a decidable language D exists such that $C = \{x \mid \exists y \in \{0,1\}^* \ (\langle x,y \rangle \in D)\}$. Then there is a TM M deciding D. We can construct a TM N recognizing C:

N on x:

- 1. Go through each possible $y \in \{0,1\}^*$ in string order $(\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...)$ and run M on $\langle x, y \rangle$.
- 2. If M accepts, accept.

Thus C is Turing-recognizable.

 (\rightarrow) Assume that C is Turing-recognizable. Then there is a TM M recognizing C. Let $D = \{\langle x, y \rangle \mid M \text{ accepts } x \text{ within } y \text{ steps } (y \text{ as a binary number})\}$. We can construct a TM N deciding D:

N on $\langle x, y \rangle$:

- 1. Run M on x for y steps.
- 2. If M accepts x, accept. Otherwise, reject.

Thus D is decidable.

 $x \in C \Rightarrow M$ accepts x within some number of steps $\Rightarrow \langle x, y \rangle \in D$ for any sufficiently long y

 $x \notin C \Rightarrow \langle x, y \rangle \notin D$ for any y

Thus $C = \{x \mid \exists y \in \{0,1\}^* \ (\langle x,y \rangle \in D)\}.$

Problem 5

Consider the problem of determining whether a single-tape Turing machine ever writes a blank symbol over a nonblank symbol during the course of its computation on any input string. Formulate this problem as a language and show that it is undecidable.

Solution

The problem can be formulated as $E = \{\langle M \rangle \mid M \text{ is a single-tape TM and there exists a string } w \text{ such that } M \text{ ever writes a blank symbol over a nonblank symbol during computation on } w\}.$

Proof. Assume for contradiction that E is decidable, then there is a TM R deciding E. We can construct a TM S deciding A_{TM} :

S on $\langle M, w \rangle$:

1. Construct the following TM $T_{M,w}$:

 $T_{M,w}$ on x:

- 1. Run M on w. Use a new symbol \bot' instead of blank when writing, and treat it like a blank when reading it.
- 2. If M accepts, write a true blank symbol $_{\neg}$ over a nonblank symbol."
- 2. Run R on $\langle T_{M,w} \rangle$.
- 3. If R accepts, M accepts w, therefore accept. Otherwise, reject."

However, we know that A_{TM} is undecidable. Thus E is undecidable.

Alternatively, we can construct a TM S deciding E_{TM} :

S on $\langle M \rangle$:

1. Construct the following TM T_M :

 T_M on x:

- 1. Run M on x. Use a new symbol \bot' instead of blank when writing, and treat it like a blank when reading it.
- 2. If M accepts, write a true blank symbol _ over a nonblank symbol."
- 2. Run R on $\langle T_M \rangle$.
- 3. If R accepts, L(M) is not empty, therefore reject. Otherwise, accept."

Problem 6

Let A be a language.

- (a) Show that A is Turing-recognizable iff $A \leq_{\mathrm{m}} A_{\mathsf{TM}}$.
- (b) Show that A is decidable iff $A \leq_{\mathrm{m}} 0^*1^*$.

Solution

- (a) Proof. (\leftarrow) A_{TM} is Turing-recognizable. Thus if $A \leq_{\mathsf{m}} A_{\mathsf{TM}}$ then A is Turing-recognizable.
 - (\rightarrow) If A is Turing-recognizable, then there is a TM M recognizing it. We can reduce A to A_{TM} with the function computed by the following TM F:

F on input w:

Output $\langle M, w \rangle$.

 $w \in A \iff M \text{ accepts } w \iff \langle M, w \rangle \in A_{\mathsf{TM}}.$ Thus $A \leq_{\mathsf{m}} A_{\mathsf{TM}}.$

- (b) Proof. (\leftarrow) 0^*1^* is a regular language, thus is decidable. If $A \leq_m 0^*1^*$ then A is decidable.
 - (\rightarrow) If A is decidable, then there is a TM M deciding it. We can reduce A to 0^*1^* with the function f computed by the following TM F:

F on input w:

- 1. Run M on w to test if $w \in A$.
- 2. If $w \in A$ then output 01. If $w \notin A$ then output 10.

 $w \in A \iff f(w) \in 0^*1^*$. Thus $A \leq_{\mathrm{m}} 0^*1^*$.

Problem 7

- (a) Let $J = \{w \mid \text{ either } w = \mathbf{0}x \text{ for some } x \in A_{\mathsf{TM}}, \text{ or } w = \mathbf{1}y \text{ for some } y \in \overline{A_{\mathsf{TM}}}\}$. Use mapping reductions to show that neither J nor \overline{J} is Turing-recognizable.
- (b) Let $FINITE_{\mathsf{TM}} = \{ \langle T \rangle \mid T \text{ is a TM and } L(T) \text{ is a finite language} \}$. Show that $A_{\mathsf{TM}} \leq_{\mathsf{m}} \overline{FINITE_{\mathsf{TM}}}$ to prove that $FINITE_{\mathsf{TM}}$ is not T-recognizable.
- (c) (harder) Show that $A_{\mathsf{TM}} \leq_m FINITE_{\mathsf{TM}}$ to prove that $\overline{FINITE_{\mathsf{TM}}}$ is not T-recognizable.

Solution

(a) Proof. We can reduce $\overline{A_{\mathsf{TM}}}$ to J with the function computed by the following TM F:

F on input y:

Output 1y.

 $y \in \overline{A_{\mathsf{TM}}} \iff 1y \in J$. Thus $\overline{A_{\mathsf{TM}}} \leq_{\mathrm{m}} J$.

We can reduce A_{TM} to J with the function computed by the following $\mathsf{TM}\ F$:

F on input x:

Output 0x.

 $x \in A_{\mathsf{TM}} \iff 0 x \in J$. Thus $A_{\mathsf{TM}} \leq_{\mathsf{m}} J$, $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} \overline{J}$.

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable, thus neither J nor \overline{J} is Turing-recognizable.

(b) Proof. We can reduce A_{TM} to $\overline{FINITE_{\mathsf{TM}}}$ with the function computed by the following $\mathsf{TM}\ F$:

F on input $\langle M, w \rangle$:

1. Construct the following TM T:

T on x:

Simulate M on w.

2. Output $\langle T \rangle$.

 $\langle M, w \rangle \in A_{\mathsf{TM}} \Rightarrow M$ accepts $w \Rightarrow T$ accepts all $x \Rightarrow L(T) = \Sigma^*$, which is infinite.

 $\langle M, w \rangle \notin A_{\mathsf{TM}} \Rightarrow M$ does not accept $w \Rightarrow T$ does not accept any $x \Rightarrow L(T) = \emptyset$, which is finite.

Thus $\langle M, w \rangle \in A_{\mathsf{TM}} \iff \langle T \rangle \in \overline{\mathit{FINITE}}_{\mathsf{TM}}, \ A_{\mathsf{TM}} \leq_{\mathsf{m}} \overline{\mathit{FINITE}}_{\mathsf{TM}} \ \text{and equivalently } \overline{A}_{\mathsf{TM}} \leq_{\mathsf{m}} \overline{\mathit{FINITE}}_{\mathsf{TM}}.$ A is not T-recognizable, thus $\overline{\mathit{FINITE}}_{\mathsf{TM}}$ is not T-recognizable.

(c) Proof. We can reduce A_{TM} to $FINITE_{\mathsf{TM}}$ with the function computed by the following TM F:

F on input $\langle M, w \rangle$:

1. Construct the following TM T:

T on x:

- 1. Simulate M on w for |x| steps.
- 2. If M accepts w, reject. Otherwise, accept.
- 2. Output $\langle T \rangle$.

Let k be the number of steps that M on w runs until it halts, $\langle M, w \rangle \in A_{\mathsf{TM}} \Rightarrow M$ accepts w in k steps $\Rightarrow T$ accepts exactly those x with $|x| < k \Rightarrow L(T)$ is finite.

 $\langle M, w \rangle \notin A_{\mathsf{TM}} \Rightarrow M$ does not accept $w \Rightarrow T$ accepts all $x \Rightarrow L(T) = \Sigma^*$, which is infinite.

Thus $\langle M, w \rangle \in A_{\mathsf{TM}} \iff \langle T \rangle \in \mathit{FINITE}_{\mathsf{TM}}, \ A_{\mathsf{TM}} \leq_{\mathsf{m}} \mathit{FINITE}_{\mathsf{TM}} \ \text{and equivalently } \overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} \overline{\mathit{FINITE}}_{\mathsf{TM}}.$ is not T-recognizable, thus $\overline{\mathit{FINITE}}_{\mathsf{TM}}$ is not T-recognizable.

Problem 8

Define a *two headed finite automaton* (2HFA) to be a deterministic finite automaton that has two readonly heads that each can move independently *from left to right* on the input tape. The transition function δ of a 2HFA has the form: $\delta: Q \times \Sigma \times \Sigma \to Q \times \{S,R\} \times \{S,R\}$. Thus, at each step, the 2HFA can read the symbols under each of its two heads and move each head independently either right (an R move) or let it stay in place (an S move). We also assume that a 2HFA accepts its input by entering one of its designated accept states, regardless of its head positions. Furthermore, a 2HFA can detect when either of its heads are at the right end of the input tape. For example, a 2HFA can recognize the language $\{a^nb^nc^n \mid n \geq 1\}$ as follows:

- 1. Head 1 skips across any a's.
- 2. Head 1 reads b's while Head 2 reads a's.
- 3. Head 1 reads c's while Head 2 reads b's.
- 4. Reject if in Stages 2 or 3, Head 1 doesn't finish exactly when Head 2 finishes, or if symbols are ever encountered out of the order: a's, b's then c's. Otherwise, accept.

Let $E_{2HFA} = \{\langle B \rangle \mid B \text{ is a 2HFA which recognizes the empty language} \}$. Sketch a proof that E_{2HFA} is not decidable. (Give enough detail to show how your proof depends on the 2HFA model.)

Solution

Assume for contradiction that E_{2HFA} is not decidable, then there is a TM R deciding E_{2HFA} . We can construct a TM S deciding A_{TM} :

S on $\langle M, w \rangle$:

1. Construct a 2HFA $B_{M,w}$ to test whether its input is an accepting computation history for M on w:

 $B_{M,w}$ on x:

- 1. Head 1 reads input up to first #. Reject if it is not the starting configuration for M on
- 2. Repeat till Head 1 reaches the right end of the tape:
- 3. Head 1 and Head 2 each read input until they reach #s. Reject if the configuration that Head 2 just read doesn't legally yield the configuration that Head 1 just read.
- 4. Reject if the last configuration that Head 1 read did not contain q_{accept} .
- 5. Accept.
- 2. Run R on $\langle B_{M,w} \rangle$. If R accepts, $B_{M,w}$ recognizes the empty language, which means there is no accepting computation history for M on w, M rejects w, thus reject. Otherwise, accept.

However, we know that A_{TM} is undecidable. Thus E_{2HFA} is undecidable.