VAN KAMPEN'S THEOREM

X = AUB A,B open, path connected.

AnB path connected.

Xo & ANB basepoint for X, A, B, AnB.

The induced $\pi_i(A) \to \pi_i(X) \otimes \pi_i(B) \to \pi_i(X)$ extend to $\underline{\Phi} : \pi_i(A) * \pi_i(B) \to \pi_i(X)$

Denote ix: A-X, is: B-X.

Let $N = normal subgroup of TL_1(A) * TL_1(B)$ generated by the $i_A(\omega) i_B(\omega)^{-1}$ for $\omega \in \underline{A} TL_1(A \cap B)$.

Theorem: ① I is surjective.

② Ker I = N.

Examples. $O T_1(S^1 \vee S^1) \cong F_2$ induction $\longrightarrow T_1(\bigvee S^1) \cong F_n$ $\Longrightarrow T_1(IR^2 - n \text{ pts}) \cong T_1(IR^3 - \text{unlink}) \cong F_n$. $T_1(graph) \cong F_n$.

2) Th (Sn) = 1 n72.

3 II. $(S^3 - (p,q)$ -torus knot) $\cong \langle x,y \mid x^p = y^q \rangle$ gluing two solid tori along an annulus.

VAN KAMPEN VIA PRESENTATIONS.

$$G_{1} \stackrel{\sim}{=} \langle S_{1} | R_{1} \rangle$$

$$G_{2} \stackrel{\sim}{=} \langle S_{2} | R_{2} \rangle$$

$$\Rightarrow G_{1} * G_{2} \stackrel{\sim}{=} \langle S_{1} \cup S_{2} | R_{1} \cup R_{2} \rangle$$

What is a presentation for T(A) * T(B) / N?

First, a given
$$f \in TL(A \cap B)$$
 gives two elements of $TL(A) * TL(B)$:

 $TL(A) * TL(B)$
 $TL(A) * TL(B)$

Call them $f_A & f_B$.

Choose a generating set S for TI (AnB).

Choose presentations:

$$T_1(A) \cong \langle S_1 | R_1 \rangle$$

 $T_1(B) \cong \langle S_2 | R_2 \rangle$

so each Si contains each JA or JB for JES.

Then:

$$\pi_1(A) * \pi_1(B) / N \cong \langle S_1 \cup S_2 \mid R_1 \cup R_2 \cup R \rangle$$

where R is the set of relations
$$f_A = f_B$$
 for $f \in S$.

Proof ① Let $f: I \rightarrow X$ loop at X_0 .

Choose $0 = S_0 < S_1 < \cdots < S_m = 1$ S.t. $f[S_i, S_{i+1}]$ is a path in either A or B_i call it f_i .

Vi, choose path g_i in A_0B from X_0 to $f(S_i)$ The loop $(f_i, g_i)(g_1f_2g_2)\cdots(g_{m-1}f_m)$ is homotopic to f_i , and is a composition of loops, E each in A or B. $\Rightarrow f_i \in I_m \Phi$.

② A factorization of $f \in \pi_i(X)$ is an element of $\overline{\Phi}^{-i}(f)$:

 $f_1 \cdots f_m$ $f_i \in T_i(A)$ or $T_i(B)$ We showed in $\mathbb O$ that each f has a factorization.

Two factorizations are equivalent modulo N

iff they differ by a Sequence of moves:

(i) Combine [fi][fi+1] → [fifi+1]

if fi, fi+1 lie both in TL(A) or in TL(B).

(ii) Regard [fi]∈ TL(A) as [fi]∈ TL(B)

if fi∈ TL(A∩B).

Let $f_i \cdots f_k$, $f_i' \cdots f_i'$ factorizations of f.

To show they are related by (i) & (ii).

Choose a homotopy IxI -> X from one to the other.

Cut IXI into small rectangles, each mapping to A or B, and so induced partitions of top 8 bottom edges are finer than those coming from the factorizations.

Push across one square at a time. Show the new factorization differs from old by (i) & (ii). E.g. two bottom-right squares.

Then rewrite & as & od (move (i)).

rewrite & as Bi & Ti(B) (move (ii)).

Homotope fz Bi & Ti(B) across square. etc.

ATTACHING DISKS

X path connected, based at Xo. Attach 2-cell D^2 via $C_P: S^1 \to X$. $X \to Y$.

Choose path of from Xo to Q(S1).
The loop of Q(S1) of is nullhomotopic in Y.
Let N= normal subgroup of TI, (X) generated by this loop. Note: N independent of J.

Prop. The inclusion $X \rightarrow Y$ induces a surjection $T_{4}(X, x_{6}) \rightarrow T_{5}(Y, x_{6})$ with Kernel N.

Proof: Choose $y \in \operatorname{int}(D^2)$ Apply Van Kampen to Y - Y, Y - X. Note: Y - y = X Y - X = * $(Y - Y) \cap (Y - X) = \operatorname{int}(D^2) - Y = S^1$.

Applications. ① Mg = orientable surface of genus g. $TL_1(Mg) \cong \langle a_1, b_1, ..., a_g, b_g | [a_1, b_1] -.. [a_g, b_g] = 1 \rangle$ $\implies Mg \not= Mh \quad g \not= h \quad as$ $TL_1(Mg)^{ab} \triangleq \mathbb{Z}^{2g}$.

② For any group G, there is a 2-dim cell complex X_G with $T_1(X_G) \cong G$.

To do this, choose a presentation $G = \langle g_{\varkappa} | r_{\beta} \rangle$ $X_G = \bigvee_{\varkappa} S^1$ with 2-cells attached along r_{β} .