Fall 2015

Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has four (4) pages, including this one.
- Show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given at the right of each problem number.
- No books, or notes may be used on this test.
- Calculators are allowed (and encouraged) provided they do not have a Computer Algebra System (CAS).

Page	Max	Points
2	30	
3	35	
4	35	
Total	100	

Problem 1 (30 pts). Evaluate the integrals below

(a)
$$\int_0^{\pi} \cos \theta \sin \theta \, d\theta$$

(b)
$$\int_0^\infty \frac{\sin(\frac{\pi}{2}e^{-x})}{e^x} dx$$

(c)
$$\int_0^{\pi^2/4} \frac{\cos\sqrt{t}}{\sqrt{t}} dt$$

Problem 2 (10 pts). Compute the area of the region bounded by the graphs of $y = \cos x$ and $y = \sin x$ between x = 0 and $x = 2\pi$.

Problem 3 (20 pts). Find the area of the region bounded by the graphs of $y = \frac{1}{x}$, $y = \frac{1}{x^2}$ and x = 2.

MATH 142 Second Midterm. Fall 2015 Page 4/4

Problem 4. We want to compute the volume of the solid obtained by rotating the region bounded by the curve $y = \sqrt{x}$ between x = 1 and x = 9 about the x-axis. Express this volume as an integral, by using either a washers or a shell method.

Problem 5 (20 pts). We want to compute the volume of the solid obtained by rotating the curve $x = 4y^2 - y^3$ about the y-axis. Express this volume as an integral, by using either a washers or a

Hint: You need to find first the interval of integration, by computing where the given curve intersects the y-axis.

shell method.