

Índice

- Approximate Voronoi Diagram
- 2. Distance-Based Indexing Methods
- 3. M-Tree

ϵ -nearest neighbor $(\epsilon$ -NN)

Candidato a vecino más cercano

Vecino más cercano real:

El punto p es ϵ -NN de q si: $d(q, o') \le (1 + \epsilon) \cdot d(q, o)$

Revisar los hijos de todos los nodos internos

Revisar los hijos de todos los nodos internos

Revisar los hijos de todos los nodos internos

Verificar si son WSP

 ${a,b,c},{g,h,i,j}$

Revisar los hijos de todos los nodos internos

$${a,b,c},{g,h,i,j}$$

 ${d,e,f},{g,h,i,j}$

Revisar los hijos de todos los nodos internos

Revisar los hijos de todos los nodos internos

$${a,b,c}, {g,h,i,j}$$

 ${d,e,f}, {g,h,i,j}$
 ${a,b,c}, {d,e,f}$
 ${a,b}, {c}$

Revisar los hijos de todos los nodos internos

Revisar los hijos de todos los nodos internos

Revisar los hijos de todos los nodos internos

Verificar si son WSP

Continúe...

AVD

(Approximate Voronoi Diagram)

Tamaño de las cajas: $(1 + \epsilon)$, $(1 + \epsilon)^2$, $(1 + \epsilon)^3$, ...

 p_1

Generalized hyperplane partition

Lema 1

Sean los objetos p, q, o

$$|d(q,p)-d(p,o)| \leq d(q,o) \leq d(q,p)+d(p,o)$$
 Cota inferior Cota superior

Lema 2

Sean los objetos o y p tal que $r_{lo} \le d(o, p) \le r_{hi}$

La distancia de *o* hacia algún otro objeto *q* está limitado por:

$$\max\{d(q, p) - r_{\text{hi}}, r_{\text{lo}} - d(q, p), 0\} \le d(q, o) \le d(q, p) + r_{\text{hi}}$$

Lema 3

Sean los objetos o, p y q, donde $d(o, p) \in [r_{lo}, r_{hi}] y d(q, p) \in [s_{lo}, s_{hi}]$

La distancia de *q* hacia *o* está limitado por:

$$\max\{s_{lo} - r_{hi}, r_{lo} - s_{hi}, 0\} \le d(q, o) \le r_{hi} + s_{hi}$$

Lema 4

Sean o un objeto más cercano a p_1 que a p_2 o equidistante de ambos (i.e., $d(p_1, o) \le d(p_2, o)$). Dados $d(q, p_1)$ y $d(q, p_2)$, podemos establecer un límite inferior para d(q, o):

$$\max\left\{\frac{d(q,p_1)-d(q,p_2)}{2},0\right\} \leq d(q,o)$$

Límite inferior de d(q,o) ilustrado en un espacio euclidiano bidimensional cuando q está en la línea entre p_1 y p_2 , más cerca de p_2 , mientras que o está más cerca de p_1 .

El límite inferior disminuye cuando q se desplaza fuera de la línea (por ejemplo, a q').

Nodo:

[p,r,d(p,p'),T]

• p : Pivote (centro de la hiper-esfera)

• γ : Radio

• $d(p,p^\prime)$: Distancia del pivote al pivote del padre

• *T* : Lista de nodos hijos

Objetivo:

- Minimizar volumen
- Minimizar overlap

Inserción

Insertar un nuevo objeto O_n :

- Desciende recursivamente por el árbol para localizar la hoja más adecuada para \mathcal{O}_n
- En cada paso, acceda al subárbol con pivote p para el cual:
 - No se necesita ampliar el radio r_c , es decir, $d(O_n, p) \le r_c$ En caso de empate, elegir el que tenga el p más cercano a O_n
 - Minimizar la ampliación de r_c
- Al llegar al nodo hoja *N* entonces
 - Si N no está lleno: guardar \mathcal{O}_n en N
 - Si no: $split(N, O_n)$.

Split

- Sea S el conjunto que contiene todas las entradas de N y \mathcal{O}_n
- Seleccionar los pivotes p_1 y p_2 de S
- Particionar S en S_1 y S_2 según p_1 y p_2
- Almacenar S_1 en N y S_2 en un nuevo nodo asignado N'
 - Si *N* es raíz:
 - Asignar una nueva raíz y almacenar allí las entradas de p_1 , p_2
 - Si no: (deja que N_p y p_p sean el nodo y pivote padre de N)
 - Sustituir la entrada p_p por p_1
 - Si N_p está lleno, entonces **split** (N_p, p_2)
 - Sino, almacenar p_2 en el nodo N_p

Pivot selection policies

Aleatorio Completamente aleatorio

Mínima suma de radios $min(r_1 + r_2)$

Muestreo 10% aleatorio

$$\min(r_1 + r_2)$$

Split policies

Unbalanced Hiperplano generalizado

Balanced Radios de cobertura más grandes

Range Query

Nodo interno

Se omite el nodo si

$$|d(q,p') - D| - r > \epsilon$$

$$d(p,p')$$

Lema 1, 3

Sino, se omite el nodo si

$$d(q,p) - r > \epsilon$$

Lema 2

Nodo hoja

Se omite el objeto si

$$|d(q, p') - D| - r \le \epsilon$$

Omni-family

Omni-foci base: $\mathcal{F} = \{f_1, f_2, ..., f_h\}$

Omni-coordinate: (d_1, d_2, d_3, d_4)

Región: $r_1 < x < r_2 \\ r_3 < y < r_4$

Región: $r_1 < x < r_2 \\ r_3 < y < r_4$

Región:
$$r_1 < x < r_2 \\ r_3 < y < r_4$$

Región:
$$r_1 < ||x - f_1|| < r_2$$

 $r_3 < ||x - f_2|| < r_4$

¿Como elegimos los foci?

Hull of Foci (HF)

- Un punto cualquiera: p_0
- Buscar el punto más lejano a p_0 : f_1
- Buscar el punto más lejano a f_1 : f_2
- Los siguientes foci se obtienen con:

$$\min_{s_i} \sum_{k} |d(f_1, f_2) - d(f_k, s_i)|$$
edge

Omni-family

Range query

Omni-Sequential

$$f_1 \to [d(q, f_1) - r, d(q, f_1) + r]$$

 $f_2 \to [d(q, f_2) - r, d(q, f_2) + r]$

Omni-Sequential

OmniB-Forest

OmniR-Tree

OmniR-Tree

