THE CAMERON MOTORPUMP AN INGERSOLL-RAND PRODUCT

Ingersoll-Rand

Form 7764

53529

The Motorpump Turbine-Driven Pumps
Cradle-Mounted Pumps
Motorpump Condensate Return Units

Ingersoll-Rand

CAMERON PUMP DIVISION

11 Broadway

New York, N. Y.

Adequate Facilities Assure Superior Quality

Part of the Motorpump assembly line.

Photo-micrograph equipment in I-R metallurgical laboratory.

Manufacturing Plant

The Cameron plant of Ingersoll-Rand is devoted exclusively to the manufacture of pumps. It is thoroughly modern in both buildings and equipment

Motorpumps are manufactured in a separate section of this plant. In this section are many special purpose machine tools designed for a specific operation on Motorpump parts.

The modern equipment and the experienced personnel of this plant make possible the accurate workmanship and dependable service for which Motorpumps are known.

Metallurgical Laboratory

Ingersoll-Rand has an outstanding Metallurgical laboratory. It includes a completely equipped chemical laboratory, physical test laboratory, pilot heat treating plant, and photo-micrograph and magnaflux equipment.

All materials used in Motorpumps are selected and tested in this laboratory. Ingersoll-Rand engineers have had wide experience in selecting materials for pumps in normal service and for pumps handling corrosive or erosive liquids.

Hydraulic Laboratory

The facilities of the Ingersoll-Rand pump testing laboratory are unexcelled by those of any other pump manufacturer.

Equipment is available for producing and accurately measuring from 1/4 to 2700 hp. at speeds from 100 to 6500 rpm.

I-R pump testing laboratory.

Money Saving MOTOR PUMP Characteristics

Compact design

The ½-hp. Motorpump takes up less room than this booklet lying open on your desk. Other sizes are proportionately small. This compactness is possible because the Cameron pump and the General Electric motor are built together as one unit on a single shaft.

Operation in any position

Motorpumps operate equally well in any position. No special foundation is required and the units may be bolted to the floor, wall, tank, column, or ceiling, as is most convenient.

Low cost

The compact unit assembly simplifies the construction, lowers the weight, and reduces the purchase price.

High efficiency

Motorpumps are designed to operate at standard motor speeds. The suction entrance is on the end and water enters directly into the eye of the impeller. This gives minimum obstruction and insures high efficiency.

Rugged construction

The compact design of the Motorpump makes it unusually rigid and strong. This strength assures ability to stand up under severe service.

Prompt shipment

Large factory and branch warehouse stocks insure prompt shipment. Stock shipment can be made of units for all usual conditions.

MOTOFRPUMP

An Ingersoll-Rand Product

Heavy-Duty Type Classes RV and MRV

Six, single-stage Motorpumps at a bulk oil terminal.

Single-stage Units - Class RV

Class RV Heavy-Duty type Motorpumps are single-stage units with built-in electric motor. They are available in 1½, 2, 3, 4 and 5-inch discharge sizes with motors from 1 to 40 hp. They will handle from 10 to 1400 gals. per min. against heads to 240 ft.

Class RV, single-stage, heavy-duty Motorpump.

They are quality pumps in every respect. The shaft is of much larger diameter than is used in a standard motor. This insures a smooth running pump and minimum stuffing box care.

The bearing on the pump end of the unit is of the duplex, angular-contact type. It has several times the radial and thrust capacity of the bearing furnished on a standard motor.

The impeller is balanced both mechanically and hydraulically. A convenient impeller puller makes disassembly easy.

The shaft is fully protected within the pump and through the stuffing box by the impeller and shaft sleeves. The shaft sleeve is packed to prevent leakage underneath the sleeve.

An adjustable needle valve provides proper stuffing box seal and lubrication.

Suction and discharge connections are standard flange type.

Two-Stage Units - Class MRV

Class MRV, two-stage, heavy-duty Motorpump.

Class MRV Motorpumps are two-stage units available in $1\frac{1}{2}$ and 2-inch discharge sizes with motors from 10 to 50 hp. They will handle from 20 to 275 gals. per min. against heads to 500 ft.

They are of the same heavy duty construction and have the same refinements as the single-stage units described above. The two impellers are of the single-suction type mounted back to back.

Suction and discharge connections are of standard flange type.

Features of Heavy-duty Motorpumps

IMPELLER

STUFFING BOX

SHAFT

BEARINGS

MOTOR ROTOR

The impeller is of the latest hydraulic design. Mechanically and hydraulically balanced. An impeller puller makes disassembly easy.

The stuffing box is unusually deep.
An adjustable valve controls sealing water. Split gland is used. Ample space is pro-vided to facilitate re-

packing.

The shaft is oversize. Smooth running shaft packing reduces troubles. The shaft is fully protected against wear and corrosion.

Bearings are oversize to carry combined pump and motor loads. Bearing cartridge excludes dust and moisture.

The rotor is in perfect balance. Rotor laminations on polyphase motors are held in special aluminum alloy castings, eliminating the use of bolts, rivets and welding.

SUCTION NOZZLE

Nozzle leads direct-Flanged openings ly into eye of the impeller thereby renections. suction

losses. Removal of the nozzle gives complete access to the imterior of the casing.

ducing

PUMP CASING

facilitate pipe con-Renewable casing rings assure full capacity, pressure, and efficiency during the life of the pump.

CONNECTING PIECE

Extra heavy, barrel-type construction insures rigidity. Counter-bored joints insure permanent alignment.
Supporting legs carry the weight of the pump. MOTOR END SHIELD

diaphragm completely separates the pump from the motor. A liquid flinger fur-

ther protects bearings and motor windings from contamination.

MOTOR STATOR

All windings are immersed in "Glyp-tol" which is acid, tol" which is acid, moisture and oil resisting and which binds wires into a solid mass.

The stator is standard and any electrical shop can service it.

MOTORPUMP

An Ingersoll-Rand Product

Standard Type Classes RVN and MRVN

Single-stage Class RVN Motorpump which circulates cooling water for a Diesel engine.

Class RVN standard Motorpump with fractional hp. motor.

Class RVN standard Motorpump with integral hp. motor.

Single-Stage Units Class RVN

Class RVN Motorpumps are single-stage units with built-in electric motor. They are available in 1, $1\frac{1}{2}$ and 2-inch discharge sizes with motors from $\frac{1}{4}$ to 5 hp. They will handle from 5 to 250 gals. per min. against heads to 140 ft.

The shaft is larger than that in a standard motor. The pump end bearing is of the deep-groove, angular-contact type and is 2 sizes larger than that in a standard motor.

Suction and discharge connections are threaded to receive standard pipe.

Two-Stage Units Class MRVN

Class MRVN Motorpumps are two-stage units available in 1-inch discharge size with motors from $1\frac{1}{2}$ to 5 hp. They will handle from 20 to 55 gals. per min. against heads to 200 ft.

Impeller

The one-piece impeller is of latest hydraulic design and is mechanically balanced.

Casing

The casing contains the suction and discharge nozzles. Discharge nozzle may be turned to four positions.

Stuffing Box

The stuffing box is extra deep, holding 5 rings of packing and a sealing gland.

Glands

The stuffing box glands are of the split type which are easily removed from the shaft.

Connecting Piece

The connecting piece has counterbored joints which assure a rigid assembly.

Bearings

The bearings are of the angular contact type with ample radial and thrust capacity.

Shaft

The shaft is much heavier than that in a standard motor insuring freedom from vibration.

Rotor

The motor rotor is of standard construction and is perfectly balanced.

Stator

The stator is of standard construction and can be serviced in any electrical shop.

Open Impeller Motorpumps

Open impeller motorpumps may be equipped with the handhole type suction nozzle shown. Without this nozzle they look like the pumps on page 4.

Four-vane open impeller.

For pumping paper stock, lime, sludge, sugar liquor, sewage, etc., which contain a certain amount of foreign material it is often necessary to use an open impeller pump. Motorpumps (also TRV and CRV units described on following pages) are available in many sizes with open impellers.

In external appearance they are exactly the same as the pumps described and illustrated on the preceding page. They may also be equipped with handhole type suction nozzle as illustrated at the left.

Open-impeller Motorpumps have a specially designed casing, impeller, and suction piece. The impellers have exceptionally large eyes, and the entrances have been carefully designed to prevent clogging. All passages are made amply large.

Motorpump Modifications

Brewery fittings including companion flanges, valve and gauge.

Merco-Nordstrum grease seal for pumps handling gasoline and other similar liquids.

Smothering type glands for handling volatile liquids, etc.

Sling yoke mounting for Motorpumps in mine shaft drainage service.

Drip-lip base plate which can be furnished for Motorpumps.

Portable Motorpump for use in breweries, wineries, distilleries, dairies and

other industries where a portable pump is convenient.

Operates In Any Position

The MOTORPUMP operates perfectly in any position. Hundreds of units are operating vertically, at various angles, on the side and upside down.

This performance is made possible by the sturdy ball bearings and the rigid construction of the unit. They need no special foundation and may be bolted to floor, wall or ceiling as is most convenient.

Two Motorpumps slung from chains for emergency pumping service.

Motorpump mounted on its side on an air conditioning unit.

Two Motorpumps mounted vertically on the wall in a refinery.

Poly-phase A. C. motor.

Single-phase A. C. motor.

Explosion-proof motor.

All Types of Motors

Each MOTORPUMP has a General Electric motor built into it as an integral part of the unit. They are available in all types for all usual current conditions, including 50 and 60 cycle, single and poly-phase alternating current and direct current. Open, splashproof, totally enclosed fan cooled, explosion proof and marine type motors are furnished. More than 3000 types and enclosures are available.

The motors are of the ball bearing type and the bearings are of very liberal capacity. They are grease lubricated and the grease needs to be replenished only at long intervals.

Splash-proof motor.

Direct-current motor.

Approximate Dimensions

All dimensions given in inches.

Based on use of open type A. C. motors. Dimensions and shipping weights will vary slightly when other motors are used. Do not use these dimensions for building foundations.

Obtain certificate foundation print.

RVN and RVNS Pumps

Fractional hp. Motors

Size	Suct.	A	В	С	D	Е	F	G	Н	ј	K	L,	Shipping Wt.
1RVNS ¹ / ₄ 1RVNS ¹ / ₃ 1RVNS ¹ / ₂ 1RVNS ³ / ₄ 1RVNS1	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	167/8 167/8 167/8 191/8 191/2	77/8	41/8	61/32 61/32 57/8	33/8 33/8 33/8 33/8 33/8 33/8	3½ 3½ 3½ 3¼ 5 5½	77/8 77/8 77/8 77/8 77/8	1^{13}_{16} 1^{13}_{16} 1^{13}_{16}	131/22	3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄	3 3 3 3	100 100 100 100 100 125
1RVN ¹ / ₄ 1RVN ¹ / ₈ 1RVN ¹ / ₂ 1RVN ³ / ₄ 1RVN1	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\begin{array}{c} 16\frac{7}{8} \\ 16\frac{7}{8} \\ 16\frac{7}{8} \\ 17\frac{3}{4} \\ 18\frac{1}{2} \\ 19\frac{1}{2} \end{array}$	8½ 8½ 8½ 8½ 9	41/8 41/8 41/8	61/32 57/8	33/8 33/8 33/8 33/8 33/8	31/4 31/4 31/4 5 51/2	77/8	115/16	2 2 2	4 ³ / ₈ 4 ³ / ₈ 4 ³ / ₈ 4 ³ / ₈ 4 ³ / ₈	3½ 3½ 3½ 3½ 3½ 3½ 3½	100 100 125
1½RVN¼ 1½RVN⅓ 1½RVN½ 1½RVN¾	2 2 2 2 2	17½ 17½ 18¾ 19⅓ 19⅓	91/8 91/8 91/8 95/8	41/8	61/32 61/32 61/32 57/8	33/8 33/8 33/8 33/8	31/4 31/4 31/4 5	77/8	27/8 27/8 27/8 27/8 27/8	2 ³ / ₈ 2 ³ / ₈ 2 ³ / ₈ 2 ³ / ₈	5 5 5 5	3½ 3½ 3½ 3½ 3½ 3½	100 100
1½RVN1 2RVN½ 2RVN¾ 2RVN1	2 3 3 3	$ \begin{array}{c} 20\frac{1}{8} \\ 19\frac{1}{4} \\ 20 \\ 21 \end{array} $	$\begin{array}{r} 95/8 \\ 101/8 \\ 105/8 \\ 105/8 \end{array}$	45/8 41/8 41/8 45/8	61/32	33/8 33/8 33/8 33/8	5½ 3¼ 5 5½	7½ 7½ 7½ 7½ 7½	33/4	$\begin{array}{c} 23/8 \\ 2^{15}/16 \\ 2^{15}/16 \\ 2^{15}/16 \end{array}$	5 6 6 6	3½ 35/8 35/8 35/8	100 125

RVN, RVNL and MRVN Pumps Integral hp. Motors

Size	Suct.	A	В	С	D	E	F	& D	Н	J	K	Shipping Wgt.
1RVN1½ 1RVN2 1RVN3	$\frac{1\frac{1}{2}}{1\frac{1}{2}}$ $\frac{1\frac{1}{2}}{1\frac{1}{2}}$	$21\frac{1}{2}$ $22\frac{3}{8}$ $22\frac{3}{8}$	93/8 97/8 97/8	5 5½ 5½ 5½	7 ⁷ / ₁₆ 7 ³ / ₄ 7 ³ / ₄	4 4½ 4½ 4½	$6\frac{1}{2}$ $6\frac{3}{4}$ $6\frac{3}{4}$	=	$\begin{array}{ c c c c c }\hline 1^{15}/_{16} \\ 1^{15}/_{16} \\ 1^{15}/_{16} \\ \end{array}$	2 2 2 2	3½ 3½ 3½ 3½	175 200 200
1RVNL1½ 1RVNL2 1RVNL3 1RVNL5	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	215/8 223/8 223/8 231/8	$\frac{11\frac{3}{4}}{11\frac{3}{4}}$	5 5½ 5½ 5½ 5½	=	4 4½ 4½ 4½ 4½	$6\frac{1}{2}$ $6\frac{3}{4}$ $6\frac{3}{4}$ $7\frac{1}{2}$	10 ¹¹ / ₁₆ 10 ⁷ / ₈ 10 ⁷ / ₈ 10 ⁷ / ₈		$1\frac{7}{16}$ $1\frac{7}{16}$ $1\frac{7}{16}$ $1\frac{7}{16}$	3½ 3½ 3½ 3½ 3½ 3½	175 200 200 225
1½RVN1½ 1½RVN2 1½RVN3 1½RVN3 1½RVN5	2 2 2 2	22½ 23½ 23½ 23½ 23½	$10\frac{1}{2}$ $10\frac{1}{2}$	5 5½ 5½ 5½ 5½	73/4	4 4½ 4½ 4½ 4½	$6\frac{1}{2}$ $6\frac{3}{4}$ $6\frac{3}{4}$ $7\frac{1}{2}$	1111	27/8 27/8 27/8 27/8 27/8	23/8 23/8 23/8 23/8 23/8	3½ 3½ 3½ 3½ 3½ 3½	175 200 200 225
2RVN1½ 2RVN2 2RVN3 2RVN5	3 3 3	23 24 24 24 24 ³ / ₄	$\begin{array}{c} 11 \\ 11\frac{1}{2} \\ 11\frac{1}{2} \\ 11\frac{1}{2} \\ 11\frac{1}{2} \end{array}$	5 5½ 5½ 5½ 5½	7 ⁷ / ₁₆ 7 ³ / ₄ 7 ³ / ₄ 7 ³ / ₄	4 4½ 4½ 4½ 4½	$6\frac{1}{2}$ $6\frac{3}{4}$ $6\frac{3}{4}$ $7\frac{1}{2}$	1111	33/4 33/4 33/4 33/4	$\begin{array}{c} 2^{15}/_{16} \\ 2^{15}/_{16} \\ 2^{15}/_{16} \\ 2^{15}/_{16} \\ 2^{15}/_{16} \end{array}$	35/8 35/8 35/8 35/8	175 200 225 250
1MRVN1½ 1MRVN2 1MRVN3 1MRVN5	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$23\frac{1}{8}$ $24\frac{1}{8}$ $24\frac{1}{8}$ $24\frac{7}{8}$	12 12	$5\frac{1}{2}$	8 8 ⁵ /16 8 ⁵ /16 8 ⁵ /16	41/4 41/4 41/4 41/4	$6\frac{1}{2}$ $6\frac{3}{4}$ $6\frac{3}{4}$ $7\frac{1}{2}$	1111	$\begin{array}{c} 2^{7} \\ 2^{7} \\ 16 \\ 2^{7} \\ 16 \\ 2^{7} \\ 16 \end{array}$	$\begin{array}{c} 2^{13} & _{16} \\ 2^{13} & _{16} \\ 2^{13} & _{16} \\ 2^{13} & _{16} \end{array}$	*41/8 *41/8 *41/8 *41/8	225

*Discharge is horizontal. Distance is that below centerline.

MRV Pumps

	Size	Suct.	A	В	C	D	E	F	G	Н	J	K	lbs.
	MRV10 MRV15	2½ 2½ 2½	7 8	161/4	373/8 385/8	2½ 3½	4½ 5½	113/8 113/8	9½ 10½	7½ 7½ 7½	67/8 67/8	53/4	525 600
11	MRV20	21/2	8	171/4	405/8	31/8	51/2	115/8	12	71/2	67/8	53/4	675
11	MRV25 MRV30	$\frac{21/2}{21/2}$	9	181/4	431/16	4½ 4½ 4½	61/2	13½ 13½ 8	$11\frac{1}{4}$ $12\frac{1}{4}$	$7\frac{1}{2}$ $7\frac{1}{2}$	67/8 67/8	53/4 53/4	825 875
2 2	MRV10 MRV15	3	8	187/8	413/8	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	41/4 51/4	$\frac{11\frac{3}{8}}{11\frac{3}{8}}$	$\frac{91/2}{101/2}$	8	95/8 95/8	55/8 55/8	500 650
2	MRV20 MRV25	3	8	187/8 197/8	433/8	2½ 3½	51/4	115/8 133/16	12 111/4	8	95/8 95/8	53/8 55/8	700 875
2	MRV30 MRV40	3	9	197/8		3½ 4½	61/4	133/16 137/8	$12\frac{1}{4}$ $12\frac{1}{4}$	8 -	95/8 95/8	55/8 55/8	900 1025
2	MRV50	3	10	207/8	4834	41/2	71/4	137/8	1334	8	95/8	55/8	1125

RV Pumps

Size Discharge Symbol hp.	Suct. Size	A	В	c,	D	E	F	G	Н	J	K	Shipping Weight lbs.
1½RV1 1½RV1½ 1½RV2 1½RV2 1½RV3 1½RV5	2 2 2 2 2 2	5 5 ¹ / ₂ 5 ¹ / ₂ 5 ¹ / ₂ 5 ¹ / ₂	4 4½ 4½ 4½ 4½ 4½ 4½	4 4 4 4 4	45/8 45/8 45/8 45/8 45/8	63/8 65/8 65/8 65/8 65/8	6 ¹ / ₂ 6 ³ / ₄ 7 ¹ / ₂ 6 ³ / ₄ 7 ¹ / ₂	2 ³ / ₄ 2 ³ / ₄	6½ 6¼ 6¼ 6¼ 6¼ 6¼ 6¼	95/8 95/8 95/8 95/8 95/8	24 ¹ / ₄ 25 ¹ / ₄ 26 25 ¹ / ₄ 26	175 225 225 225 250
1½RVH1 1½RVH1½ 1½RVH2 1½RVH3 1½RVH5 1½RVH5 1½RVH1½ 1½RVH10 1½RVH15	2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½	5 5½ 5½ 5½ 5½ 6¼ 7 8	4 4½ 4½ 4½ 4½ 5 5 5½ 6¼ 6¼	4 4 4 4 4 4 4 4 4	45/8 45/8 45/8 45/8 5 5 5 47/8	63/8 65/8 65/8 65/8 7 71/2 71/2	6½ 6¾ 7½ 7½ 8¼ 9½ 10½ 10½	4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½	6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½	$\begin{array}{c} 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ 12^{5} \\ \end{array}$	24 ¹ / ₄ 25 ¹ / ₄ 26 26 28 30 31 ³ / ₄ 31 ³ / ₄	225 250 275 275 300 325 400 475
1½RVL1 1½RVL1½ 1½RVL2 1½RVL3 1½RVL5 2RV1 2RV1½ 2RV1½ 2RV2 2RV3 2RV5 2RV7½	2 2 2 2 2 2 3 3 3 3 3 3	5 5½ 5½ 5½ 5½ 6¼ 5 5½ 5½ 5½ 5½ 5½ 5½ 6¼	4 4 ¹ / ₂ 4 ¹ / ₂ 4 ¹ / ₂ 5 4 4 ¹ / ₂ 4 ¹ / ₂ 4 ¹ / ₂ 4 ¹ / ₂ 5 5	43/8 43/8 43/8 43/8 41/8 41/8 41/8 41/8 41/8 41/8	49/16 47/16 49/16	61/4 69/16 6 /16 6	6½ 6¾ 7½ 7½ 8¼ 6½ 6¾ 7½ 6¾ 7½ 8¾ 7½ 8¾	53/8 53/8 53/8 53/8 53/8 53/8 35/8 35/8	$\begin{array}{c} 6^{3}4\\ 6^{3}4\\ 6^{3}4\\ 6^{3}4\\ 6^{3}4\\ 6^{3}4\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ 6^{1}2\\ \end{array}$	$\begin{array}{c} 14\frac{1}{8} \\ 14\frac{1}{8} \\ 14\frac{1}{8} \\ 14\frac{1}{8} \\ 14\frac{1}{8} \\ 14\frac{1}{8} \\ 11\frac{5}{8} \\ \end{array}$	231/8 241/2 263/8 263/8 271-16 243/8 253/8 261/8 253/8 261/8 281/8	250 275 300 300 325 200 250 250 275 325
2RVH1 2RVH1½ 2RVH2 2RVH3 2RVH5 2RVH7½ 2RVH10 2RVH16 2RVH15 2RVH20	3 3 3 3 3 3 3 3 3 3 3	5 5½ 5½ 5½ 5½ 5½ 6¼ 7 8	4 4 ¹ / ₂ 4 ¹ / ₂ 4 ¹ / ₂ 4 ¹ / ₂ 5 5 ¹ / ₂ 6 ¹ / ₄ 6 ¹ / ₄	41/8 41/8 41/8 41/8 41/8 41/8 41/8 41/8	4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½ 8	63/8 65/8 65/8 65/8 65/8 65/8 7 71/2 73/4	6 ¹ / ₂ 6 ³ / ₄ 6 ³ / ₄ 7 ¹ / ₂ 8 ¹ / ₄ 9 ¹ / ₂ 10 ¹ / ₂	43/4 43/4 43/4 43/4 43/4 43/4 43/4 43/4	73/4 73/4 73/4 73/4 73/4 73/4 73/4 73/4	133/8 133/8 133/8 133/8 133/8 147/8 147/8 147/8	261/8 271/8 271/8 271/8 261/8 281/8 301/8 317/8 333/8	225 275 275 275 300 350 400 500
2RVL3 2RVL5 2RVL7½ 2RVL10 3RVS1 3RVS1½ 3RVS2 3RVS2 3RVS5 3RVS5 3RVS5 3RVS1½	3 3 3 3 4 4 4 4 4 4 4 4 4	5½ 6¼ 7 8 5 5½ 5½ 5½ 5½ 7	4½ 5 5½ 6¼ 4 4½ 4½ 4½ 4½ 5 5½	5 5 5 5 4 ¹ / ₄ 4 ¹ / ₄	57/8 57/8 57/8 57/8 55/8 55/8 55/8 55/8	6 ⁹ / ₁₆ 7 ⁵ / ₁₆ 7 ³ / ₈ 7 ⁷ / ₈ 6 ¹ / ₄ 6 ⁵ / ₈ 6 ⁵ / ₈ 6 ⁵ / ₈ 6 ⁵ / ₈ 9 ¹ / ₂	7½ 8¼ 9½ 10½ 6½ 6¾ 7½ 6¾ 7½ 8¼ 9½	6½ 6½ 6½ 6½ 6½ 4¼ 4¼ 4¼ 4¼ 4¼ 4¼ 4¼ 378	8 8 8 6 ¹ / ₂ 6 ¹ / ₂	16½ 16½ 16½ 16½ 16½ 13 13 13 13 13 13	28 ⁵ / ₁₆ 297/ ₈ 323/ ₈ 341/ ₈ 241/ ₂ 251/ ₂ 261/ ₄ 251/ ₂ 261/ ₄ 281/ ₄ 301/ ₄	400 375 475 550 225 275 275 275 350 400
3RVL1½ 3RVL2 3RVL3 3RVL5 3RVL5 3RVL10 3RVL10 3RVL15 3RVL15	4 4 4 4 4 4 4 4	5½ 5½ 5½ 5½ 7 8 8 8	4½ 4½ 4½ 5½ 6¼ 6¼ 6¼ 7	5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½	55/8 55/8 55/8 6 6 6 6 53/8	7 7 7 7 73/8 71/8 71/8 81/8 81/8 85/8	$\begin{array}{c} 6\frac{3}{4} \\ 7\frac{1}{2} \\ 7\frac{1}{2} \\ 7\frac{1}{2} \\ 9\frac{1}{2} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 12 \\ 11\frac{1}{4} \end{array}$	5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½	9½ 9½ 9½ 9½ 9½ 9½ 9½ 9½ 9½	17¼ 17¼ 17¼ 17¼ 17¼ 17¼ 17¼ 17¼	28½ 29 29 33 34¾ 34¾ 36¾ 36¾ 36¾	325 350 425 475 475 550 625 775
3RVH2 3RVH3 3RVH5 3RVH10 3RVH15 3RVH20 3RVH25 3RVH30 3RVH40	4 4 4 4 4 4 4 4 4 4	5½ 5½ 6¼ 7 8 8 9	4½ 4½ 5 5½ 6¼ 6¼ 7 7	5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½	6 6 6 6 6 5 5 3 8 5 1 8	69 16 69 16 65 8 73 8 81 8 81 8 85 8 95 8	7½ 7½ 8¼ 9½ 12 12 11¼ 12¼ 12¼	5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½ 5½	8 8 8 8 8 8 8 8	15 ⁵ / ₈ 15 ⁵ / ₈ 15 ⁵ / ₈ 15 ⁵ / ₈ 16 ³ / ₈ 16 ³ / ₈ 16 ³ / ₈ 18 ³ / ₄	28 ¹⁵ / ₁₆ 28 ¹⁵ / ₁₆ 30 ¹ / ₂ 33 36 ³ / ₄ 36 ³ / ₄ 36 ³ / ₈ 37 ³ / ₈ 38 ⁷ / ₈	325 350 375 450 559 625 775 800 925
4RVL3 4RVL5 4RVL7½ 4RVL10 4RVL15 4RVL20 4RVL25 4RVL30 5RVL40	5 5 5 5 5 5 5 5 6	5½ 7 8 8 8 9 9	4½ 5½ 6¼ 6¼ 6¼ 7 7 8 9	6 6 6 6 6 6 6 6	55/8 6 6 6 6 53/8 51/8 57/16	7 73/8 77/8 81/8 81/8 85/8 85/8 95/8 107/16	$7\frac{1}{2}$ $9\frac{1}{2}$ $10\frac{1}{2}$ 12 12 $11\frac{1}{4}$ $12\frac{1}{4}$ $13\frac{3}{4}$ $14\frac{1}{2}$	63/8 63/8 63/8 63/8 63/8 63/8 63/8 63/8	10 ¹ / ₈ 10 ¹ / ₈ 8 ¹ / ₄	19¼ 19¼ 19¼ 19¼ 19¼ 21⅓ 20 20 23⅓	29½ 33½ 35¼ 37¼ 37¼ 36⅙ 37⅙ 40⅙ 45⅙ 45⅙	450 525 600 650 650 825 850 1050 1250

The discharge on all except the 4 and 5RVL pumps may be turned in the four positions shown. The 4 and 5RVL can not be turned to position "C" and the 5RVL cannot be turned to position "D" with some motors. "A" position shipped unless otherwise specified.

60 Cycle Performance--Closed Impeller

U.S. Gals.						TOTAL	HEAD IN	FEET						U.S. Gals
per Min.	15	20	25	30	40	50	60	70	80	90	100	125	150	per Min
5 10 15	IRVNS¼ IRVNS¼ IRVNS¼	IRVN¼ IRVN¼ IRVN¼	IRVN¼ IRVN¼ IRVN¼	IRVN¼ IRVN¼ IRVN¼	IRVNS ¹ / ₃ IRVNS ¹ / ₂ IRVNS ¹ / ₂	IRVNS½ IRVNS½ IRVNS½	IRVNS¾ IRVNS¾ IRVNS¾	IRVNS¾ IRVNS¾ IRVNS¾	IRVNSI IRVNSI IRVNSI	IRVNI IRVNI IRVNI½	IRVNI½ IRVNI½ IRVNI½	IRVNLI½ IRVNLI½ IRVNL2	IRVNL2 IMRVN2 IMRVN2	5 10 15
20 30 40	IRVNS¼ IRVNS¼ IRVNS⅓	IRVN¼ IRVN⅓ IRVNS½	IRVN¼ IRVNS⅓ IRVNS½	IRVNS½ IRVNS½ IRVNS½	IRVNS½ IRVNS½ IRVNS¾	IRVNS ¹ / ₂ IRVNS ³ / ₄ IRVNS ³ / ₄	1RVNS¾ 1RVNS¾ 1RVNSI	IRVNS¾ IRVNSI IRVNI½	IRVNI IRVNI½ IRVNI½	IRVNI½ IRVNI½ IRVN2	IRVNI½ IRVNI½ IRVN2	IRVNL2 IRVNL2 IRVNL3	1MRVN2 1MRVN3 1MRVN5	20 30 40
50	$IRVN_{2}$	1RVN½ 1½RV1	1RVNS½ 1½RV1	1RVNS34 1½RV1½	1RVNS¾ 1½RV1½	1RVNS1 1½RV1½	1RVN1½ 1½RV1½	1RVN1½ 1½RV1½	<i>1RVN2</i> 1½RV2	1RVN2 1½RV2	<i>1RVN3</i> 1½RV3	1RVNL3 1½RV3	IMRVN5 1½RVH5	50
60	1RVN¾	1RVN¾ 1½RV1	/RVN¾ 1½RV1	1RVN1 1½RV1½	1RVN1 1½RV1½	1RVN1½ 1½RV1½	1RVN1½ 1½RV1½	1RVN2 1½RV2	/RVN2 1½RV2	1RVN3 1½RV3	1RVN3 1½RV3	1½RVH5	1½RVH5	60
75	1½RVN½	1½RVN¾ 1½RV1	1½RVN¾ 1½RV1	1½RVN1 1½RV1½	1½RVN1½ 1½RV1½	1½RVN2 1½RV1½	1½RVN2 1½RV2	1½RVN3 1½RV2	1½RVN3 1½RV3	1½RVN3 1½RV3	1½RVN5 1½RV3	1½RVH5	1½RVH5	75
100	1½RVN¾	1½RVN¾ 2RV1	1½RVN1 2RV1	1½RVN1½ 1½RV1½	1½RVN1½ 1½RV1½	1½RVN2 1½RV2	1½RVN3 1½RV3	1½RVN3 1½RV3	1½RVN3 1½RV3	1½RVN5 1½RV5	1½RVN5 1½RV5	1½RVH5	1½RVH7½	100
125	2RVN3/4	2RVN1 2RV1	2RVN1 1½RV1½	1½RVN1½ 1½RV2	/½RVN2 1½RV2	/½RVN3 1½RV3	/½RVN3 1½RV3	1½RVN5 1½RV5	1½RVN5 1½RV5	1½RVN5 1½RV5	1½RVN5 1½RV5	1½RVH7½	1½RVH7½	125
150	3RVS1	1½RVN1½ 3RVS1½	1½RVN2 2RV2	1½RVN2 2RV2	1½RVN3 2RV2	1½RVN3 2RV3	1½RVN5 2RV3	1½RVN5 2RV5	1½RVN5 2R₹5	1½RVN5 2RV5	2RV7½	1½RVH7½a	1½RVH10a	150
175	3RVS1	1½RVN2 3RVS1½	2RVN2 2RV2	2RVN2 2RV2	2RVN3 2RV3	2RVN5 2RV3	2RVN5 2RV5	2RVN5 2RV5	2RVN5 2RV5	2RVN5 2RV5	2RV7½	2RVH7½	2RVH10	175
200	3RVS1½	3RVS1½	2RV3	2RVN3 2RV3	2RVN3 2RV3	2RVN5 2RV5	2RVN5 2RV5	2RVN5 2RV5	2RV5	2RV7½	2RV7½	2RVH10	2RVH15	200
225	3RVS1½	3RVS1½	3RVS3	2RV3	1½RVN5 2RV5	2RVN5 2RV5	2RVN5 2RV5	2RV5	2RV7½	2R V 7½	2RV7½	2RVH10	2RVH15	225
250	3RVS1½	3RVS2	3RVS3	3RVS5	2RVN5 2RV5	2RVN5 2RV5	2RV7½	2RV7½	2RV7½	2RV7½	2RVH10	2RVH15	2RVH15	250
300 350 400	3RVS2 3RVL2 3RVL3	3RVS3 3RVH3 3RVL3	3RVS3 3RVS5 3RVS5	3RVS5 3RVS5 3RVS5	3RVS5 3RVS5 3RVS7½	3RVS5 3RVS7½ 3RVS7½	3RVS7½ 3RVS7½ 3RVS10	3RVS7½ 3RVS10 3RVS10	3RVS10 3RVS10 3RVS10	3RVS10 3RVS10 3RVL15	3RVL15 3RVL15 3RVL15	2RVH15 3RVHS15 3RVH20	2RVH20 2RVH20a 3RVH20	300 350 400
450 500 550	3RVL3	3RVL5 3RVL5 4RVL5	3RVL5 3RVL5 4RVL5	3RVL5 3RVL7½ 3RVL7½	3RVL7½ 3RVL7½ 3RVL10	3RVS10a 3RVL10 3RVL10	3RVS10 3RVL10 3RVL15	3RVL10 3RVL15 3RVL15	3RVL15 3RVL15 3RVL15	3RVL15 3RVL15 3RVL20	3RVL15 3RVL20 3RVL20	3RVH20 3RVH25 4RVL25	3RVH25 3RVH25 3RVH30a	450 500 550
600 700 800		4RVL5 4RVL7½	4RVL5 4RVL7½ 4RVL7½	4RVL7½ 4RVL7½ 4RVL10	4RVL7½ 4RVL10 4RVL15	4RVL10 4RVL15 4RVL15	4RVL15 4RVL15 4RVL20	4RVL15 4RVL20 4RVL20	4RVL20 4RVL20 4RVL20	4RVL20 4RVL20 4RVL25	4RVL20 4RVL25 4RVL25	4RVL25		600 700 800
900 1000 1100			2	4RVL15	4RVL15 5RVL15	4RVL20 4RVL20	4RVL20 4RVL25 5RVL25	4RVL25 4RVL25 5RVL30	4RVL25 4RVL30 5RVL30	4RVL30 4RVL30 5RVL40	4RVL30 4RVL30 5RVL40			900 1000 1100
1250 1400								5RVL30 5RVL40	5RVL40 5RVL40	5RVL40 5RVL40	5RVL40			1250 1400

U.S. Gals.	-					TOT	TAL HEAD	IN FEET						U.S. Gais
per Min.	175	200	225	250	275	300	325	350	375	400	425	450	500	per Min.
5 10 15	IMRVN2 IMRVN2 IMRVN3	IMRVN2 IMRVN3 IMRVN3	IMRVN3 IMRVN3 IMRVN3	IMRVN3 IMRVN3 IMRVN5							<u>.,</u>			5 10 15
20 30 40	IMRVN3 IMRVN5 IMRVN5	IMRVN3 IMRVN5 IMRVN5	IMRVN5 IMRVN5 1½RVH7½	1½MRV10 1½MRV10 1½MRV10	1½MRV10 1½MRV10 1½MRV10	1½MRV10 1½MRV10 1½MRV10	1½MRV10 1½MRV10 1½MRV10	1½MRV10 1½MRV10 1½MRV10	1½MRV10 1½MRV10 1½MRV15	1½MRV10 1½MRV15 1½MRV15	1½MRV15 1½MRV15 1½MRV15	1½MRV15 1½MRV15 1½MRV15	1½MRV15 1½MRV15 1½MRV20	20 30 40
50	1MRVN5 1½RVH5	1½RVH7½	1½RVH7½	1½RVH10	1½MRV10	1½MRV10	1½MRV10	1½MRV15	1½MRV15	1½MRV15	1½MRV15	1½MRV15	1½MRV20	50
75 100 125	11/2RVH71/2	1½RVH7½ 1½RVH10 1½RVH10	1½RVH10	11/2RVH15	1½MRV10 1½MRV15 1½MRV15a	11/6MRV15	1½MRV15 1½MRV15 1½MRV20a	1½MRV15 1½MRV20 1½MRV20a	1½MRV20	1½MRV15 1½MRV20 1½MRV25a	1½MRV20 1½MRV20 1½MRV25a	1½MRV20 1½MRV25 1½MRV25a	1½MRV20 1½MRV25 1½MRV30a	75 100 125
150 175 200	1½RVH15a 2RVH15 2RVH15	1½RVH15a 2RVH15 2RVH15	1½RVH15a 2RVH15 2RVH20	2RVH20 2RVH20 2RVH20	2MRV20 2RVH20 2MRV25	2MRV20 2MRV25 2MRV25	2MRV20 2MRV25 2MRV25	2MRV25 2MRV25 2MRV30	2MRV25 2MRV30 2MRV30	2MRV25 2MRV30 2MRV40	2MRV30 2MRV30 2MRV40	2MRV30 2MRV40 2MRV40	2MRV40 2MRV40 2MRV40	150 175 200
225 250 300	2RVH15 2RVH15 2RVH20	2RVH20 2RVH20 3RVHS25	2RVH20 2RVH20 3RVHS25	2RVH20 2MRV25	2MRV25 2MRV30	2MRV30 2MRV30	2MRV30 2MRV40	2MRV30 2MRV40	2MRV40 2MRV40	2MRV40 2MRV40	2MRV40 2MRV40	2MRV40		225 256 300
350 400 450	3RVHS20 3RVH25 3RVH25	3RVHS25 3RVH30 3RVH30	3RVHS30 3RVH30 3RVH40									-		350 400 450
500 550	3RVH30 3RVH40a	3RVH40 3RVH40a	3RVH40											500 550

Based on clear, cold water with 15 tt. suction lift except those marked "a" which are based on 10 ft. lift, Selections in italics (such as $IRVN_{\mathcal{A}}$) are standard line Motorpumps. Selections in regular type (such as $1\frac{1}{2}RVI$) are heavy-duty line Motorpumps, Selections with letter "M" in the symbol (such as IMRVN2 and $1\frac{1}{2}MRVI0$) are 2-stage Motorpumps.

50 Cycle Performance--Closed Impeller

U.S. Gals.						TOTAL HEA	AD IN FEE	Т					U. Ga
per Min.	15	20	25	30	40	50	60	70	80	90	100	110	Mi
5 10 15	IRVN¼ IRVN¼ IRVN¼	IRVN¼ IRVNS¼ IRVNS¼	1RVNS¼ IRVNS¼ IRVNS¼	IRVNS¼ IRVNS¼ IRVNS¼	IRVNS1/3 IRVNS1/3 IRVNS1/3	IRVNS½ IRVNS½ IRVNS½	$\frac{IRVN^{1/2}}{IRVN^{1/2}}$ $\frac{IRVN^{1/2}}{IRVN^{3/4}}$	1RVN34 1RVN34 1RVN34	1RVNL1 1RVNL1 IRVNL1	IRVNLI IRVNLI IRVNLI	IRVNL1½ IRVNL1½ IRVNL1½	IMRVNI IMRVNI½ IMRVNI½	
20 30 40	IRVN¼ IRVN¼ IRVNS⅓	IRVNS¼ IRVNS¼ IRVNS⅓	IRVNS1/4 IRVNS1/3 IRVNS1/2	IRVNS½ IRVNS½ IRVNS½	IRVNS½ IRVNS½ IRVNS¾	IRVNS½ IRVNS¾ IRVNI	IRVN34 IRVNI IRVNI½	IRVNI IRVNI IRVNI½	IRVNI½ IRVNLI½ IRVNLI½	IRVNL1½ IRVNL1½ IRVNL2	IRVNL1½ IMRVN2 IMRVN3	IMRVN1½ IMRVN2 IMRVN3	
50	1RVN½	/RVNS½ 1½RVH1	IRVNS½ 1½RVH1	IRVNS¾ 1½RVH1	IRVNS¾ 1½RV1½	<i>IRVN1</i> 1½RV1½	IRVN1½ 1½RV1½	IRVNL½ 1½RV1½	1RVNL2 1½RV2	<i>1MRVN3</i> 1½RVH3	1MRVN3 1½RVH3	1MRVN5 1½RVH3	
60	IRVN¾	/RVN¾ 1½RVH1	IRVN3/4 1½RVH1	IRVNI 1½RVH1	IRVN1½ 1½RV1½	1RVN1½ 1½RV1½	IRVNI½ 1½RV1½	1RVNL2 1½RV2	1½RVN3 1½RVH3	2RVN3 1½RVH3	1½RVH3	1½RVH5	
75	1½RVN½	1½RVN¾ 1½RVH1	1½RVN¾ 1½RVH1	1½RVN1 1½RV1½	1½RVN1½ 1½RV1½	1½RVN1½ 1½RV1½	1½RVN2 1½RV2	2RVN3 1½RV2	1½RVN3 1½RVH3	1½RVH3	1½RVH5	1½RVH5	
100	2RVN½	/½RVN/ 1½RVH1	1½RVN1 1½RVH1	1½RVN1½ 1½RV1½	1½RVN1½ 1½RV1½	1½RVN2 1½RV2	1½RVN3 1½RV3	1½RVN3 1½RV3	2RVN3 2RV3	1½RVH5	1½RVH5	1½RVH5	10
125	I½RVNI	1½RVN1½ 2RV1½	1½RVN1½ 2RV1½	1½RVN1½ 2RV1½	2RVN2 2RV2	2RVN3 2RV2	2RVN3 2RV3	2RVN3 2RV3	2RVN5 1½RVH5	1½RVH5	1½RVH5	1½RVH7½	1:
150	1½RVN1½	1½RVN1½ 2RV1½	1½RVN2 2RV1½	1½RVN2 2RV1½	2RVN2 2RV2	2RVN3 2RV3	2RVN3 2RV3	2RVN5 2RV5	2RVN5 1½RVH5	1½RVH5	1½RVH7½	1½RVH7½	1
175	2RV1½	1½RVN2 2RV1½	2RVN2 2RV2	2RVN2 2RV2	2R V N3 2R V3	2RVN3 2RV3	2RVN5 2RV5	2RVN5 2RV5	2RVH5	2RVH7½	2RVH7½	2RVH7½	. 1
200	3RVH1½	3RVH1½	2RVN2 2RV2	2RVN3 2RV3	2RVN3 2RV3	2RVN5 2RV5	2RVN5 2RV5	2RVN5 2RVH5	2RVH7½	2RVH7½	2RVH7½	2RVH7½	20
225	3RVH1½	3RVH2	3RVS3	2RVN3 2RV3	2R V N 5 3R V S 3	2RVN5 2RV5	2RVN5 2RVH5a	2RVH7½	2RVH7½	2RVH7½	2RVH10	2RVH10	22
250	3RVH1½	3RVH2	3RVS3	2RVN5 3RVS3	2RVN5 3RVS5	2RVN5 3RVS5	2RVN5 3RVS5	3RVL7½	2RVH7½	2RVH10	2RVH10	2RVH10	21
300 350 400	3RVL2 3RVL3 3RVL3	3RVS3 3RVL3 3RVL3	3RVS3 3RVL5 3RVL5	3RVS5 3RVS5 3RVL5	3RVS5 3RVS5 3RVL7½	3RVS5 3RVS7½ 3RVL7½	3RVS7½ 3RVL7½ 3RVL7½	3RVL7½ 3RVI,10 3RVL15	3RVL10 3RVHS10 3RVH15	2RVH10 3RVHS15 3RVH15	2RVH15 3RVHS15 3RVH15	2RVH15 3RVHS15 3RVH15	30 35 40
450 500 550	3RVL3 4RVL3	3RVL5 4RVL5 4RVL5	3RVL5 4RVL5 4RVL5	3RVL5 4RVL5 4RVL7½	3RVL7½ 3RVL7½ 4RVL7½	3RVL7½ 3RVL10 4RVL10	3RVL10 3RVL10 4RVL15	3RVL15 3RVL15 4RVL15	3RVH15 4RVL15 4RVL15	3RVH15 3RVH15	3RVH15 3RVH20	3RVH20 3RVH20	48 50 51
600 700 800		4RVL5	4RVL5 4RVL7½	4RVL7½ 4RVL7½ 4RVL10	4RVL10 4RVL10 4RVL15	4RVL10 4RVL15 4RVL15	4RVL15 4RVL15 4RVL15	4RVL15 4RVL15 4RVL20	4RVL15 5RVL20 5RVL20			- "	61 71 81
900 1000 1100					4RVL15 5RVL15 5RVL15	4R VL15 4R VL20 5R VL20	4RVL20 4RVL20 5RVL20	5RVL20 5RVL25 5RVL25		> -			9 10 11
1250						5RVL20	5RVL20			- x -			12

U. S. Gals.				· ·	Т	OTAL HEA	D IN FEET			₩** E			U. S Gal
per Min.	125	150	175	180	200	220	240	260	280	300	325	350	Min.
5 10 15	IMRVNI½ IMRVNI½ IMRVNI½		IMRVN2 IMRVN2 IMRVN3	IMRVN2 IMRVN2 IMRVN3	1MRVN2 1MRVN3 1MRVN3	IMRVN3				as the			1 1
20	IMRVN2 1½RVH3	1MRVN2 1½RVH5	1MRVN3	IMRVN3 1½MRV10	1MRVN3 1½MRV10	1½MRV10	2						
30	IMRVN3 1½RVH3	IMRVN3 1½RVH5	1MRVN3	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	3
40	/MRVN3 1½RVH5	1MRVN5 1½RVH5	1½MRV10	1½MRV19	1½MRV10	4							
50	IMRVN5 1½RVH5	1MRVN5 1½RVH5	1½RVH7½	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV10	1½MRV15	1½MRV15	5
75 100 125	1½RVH5 1½RVH5 1½RVH7½	1½RVH5 1½RVH7½ 1½RVH7½		1½MRV10 1½MRV10 2MRV10	1½MRV10 1½MRV10 2MRV15	1½MRV10 1½MRV10 2MRV15	1½MRV10 1½MRV15 2MRV15	1½MRV10 1½MRV15 2MRV15	1½MRV10 1½MRV15 2MRV20	1½MRV15 1½MRV15 2MRV20	1½MRV15 1½MRV15 2MRV20	1½MRV15 1½MRV20 2MRV20	10 12
150 175 200	1½RVH7½ 2RVH7½ 2RVH10	1½RVH10 2RVH10 2RVH15	2RVH10 3RVH15 3RVH15	2MRV 15 2MRV 15 2MRV 15	2MRV15 2MRV15 2MRV20	2MRV15 2MRV15 2MRV20	2MRV15 2MRV20 2MRV20	2MRV15 2MRV20 2MRV20	2MRV20 2MRV20 2MRV25	2MRV20 2MRV20 2MRV25	2MRV20 2MRV25 2MRV25	2MRV25	15 17 20
225 250 300	2RVH10 2RVH15 2RVH15	2RVH15 2RVH15 2RVH15	2MRV20 2MRV20	2MRV20 2MRV20	2MRV20 2MRV25	2MRV20 2MRV25	2MRV25 2MRV25	2MRV25 2MRV30	2MRV25 2MRV30	2MRV25			22 28 30
350 400 450 500	3RVHS15 3RVH20 3RVH20 3RVH20	3RVHS20 3RVH20 3RVH25 3RVH25											35 40 45 50

Based on clear cold water with 15 ft. suction lift except those marked "a" which are based on 10 ft. lift. Selections in italics (such as $IRVN_{2}$) are standard line Motorpumps. Selections in regular type (such as $1\frac{1}{2}RVH1$) are heavy-duty line Motorpumps. Selections with letter "M" in the symbol (such as IMRVN2 and $1\frac{1}{2}MRV10$) are 2-stage Motorpumps.

Motorpump Install

Motorpump handling mine water. This unit has a sling yoke mounting so that it may also be used for shaft dewatering.

Motorpump serving humidifying unit for conditioning a proof box in a bakery.

Two Motorpumps handling gasoline at a bulk distributing station.

ations Everywhere

Motorpumps handling cooling water for compressors in a gas distribution station.

Two Motorpumps handling reflux liquid in a refinery.

Four Motorpumps handling gasoline and oil in a bulk distributing station.

Three open impeller motor pumps handling 4% stock in a paper mill.

48840

Close-Coupled Turbine-Driven Pumps

Classes TRV and TMRV

Single-stage, Class TRV, pump.

Single-stage, Class TRV unit installed in a refinery,

These units are complete, self-contained, turbine-driven pumping units having the pump impeller and turbine wheel mounted on a common shaft.

The same pump casings and fittings are used as for the Motorpumps described on the preceding pages. They are available in practically all of the heavy-duty sizes described on page 4.

For single-stage units (Classes TRV and TRVNL) capacities range from 5 to 1400 gals. per min. against heads to 240 ft. For two-stage units (Classes TMRV and TMRVN) capacities range from 20 to 275 gals. per min. against heads to 550 ft.

The steam turbine is of a type particularly suited for pump drive. Separate valves control the steam inlet nozzles, thus allowing exact control of the power output of the turbine. The governor is of the constant speed, centrifugal flyweight type designed for exacting

service and close regulation.

TMRV, pump.

Two-stage, Class

Governor

The governor is of slowspeed flyball type for exacting service. lubricated by sight feed oilers supplemented by an effective splash sys-

Turbine

The turbine is particularly suited for pump service and turbine wheel is of two-row velocity-stage type.

Shaft

The shaft is extra-heavy and is completely covered within the pump by the impeller and shaft sleeve.

Bearings

The bearings deep-groove, oil-lubri-cated type and are mounted in dust-tight housings.

Glands

Stuffing box glands are of the split type, and are easily removed from the shaft.

Stuffing Box The stuffing box is ex-

tra deep and contains 5 or more rings of packing and a sealing gland.

Impeller

The impeller is of the latest hydraulic design and is carefully balanced.

Casing

The casing is vertically split and has short, carefully designed water passages.

Approximate TRV Dimensions

TRVN and TMRVN Units

TMRV Units

Two-stage, class TMRV, unit on boiler feed service.

TRV Units

Discharge nozzle may be turned to positions described at bottom of page 9.

Single-stage, class TRV, unit installed in an ice plant.

Cradle-Mounted Pumping Units

Heavy-Duty Type Classes CRV and CMRV

Single-stage unit handling wash water in a refinery.

Single-stage units--Class CRV

Single-Stage, class CRV, with motor drive.

Class CRV cradle-mounted pumps are single-stage units which may be coupled to any type of driver. They are available in 1½, 2, 3, 4 and 5-inch discharge sizes. They will handle from 10 to 1400 gals. per min. against heads to 240 ft.

They are quality pumps in every respect. The same sturdy, high-efficiency pump casing is used as on the heavy-duty, class RV Motorpump.

The shaft is extra heavy insuring a smooth running pump and minimum stuffing box care.

The bearing on the pump end is of the two-row self aligning type and carries radial loads only. The bearing on the coupling end is extra large. It is of the single-row, deepgroove type and carries both radial and thrust loads. The bearing housing is part of the cradle and is dust and moisture-tight.

The impeller is balanced both mechanically and hydraulically. A convenient impeller puller makes disassembly easy.

The shaft is fully protected within the pump and through the stuffing box by the impeller and shaft sleeve. The shaft sleeve is packed to prevent leakage under the sleeve. An adjustable needle valve provides proper stuffing box seal and lubrication.

The cradle is of heavy construction and rigidly supports the shaft and casing.

The suction is on the end of the pump and the discharge is part of the casing. The discharge is normally furnished vertical but may be turned at a 90° angle from the vertical. Suction and discharge connections are of standard flange construction.

The units are usually mounted on a baseplate with the driver. When standard N.E.M.A. frame motors are used the baseplate will be cast iron. For other drivers it is usually welded steel.

Two-Stage Units -- Class CMRV

Two-stage, Class CMRV, unit with turbine drive.

Class CMRV pumps are two-stage units available in 1½ and 2-inch discharge sizes. They will handle from 20 to 275 gals. per min. against heads to 500 ft.

They have the same quality features as the single-stage units described above. The two impellers are of the single-suction type mounted back to back.

Suction and discharge connections are of standard flange type.

Features of Cradle-Mounted Units

Stuffing Box Wearing Rings Thrust Bearing Stationary, renewable wearing rings seal impeller hubs against The stuffing box is extra deep ac-The thrust bearing is extra large and of the single-row, deep-groove type. It carries both radial and thrust loads. commodating five or more rings of packing and a sealing gland. leakage. Impeller Puller Flexible Coupling Suction Pipe The suction pipe is easily re-A slotted ring bearing on the A flexible coupling of amshaft sleeve provides an easy means of removing the impeller. ple capacity absorbs end play in the driver shaft and moved and gives access to the impeller. compensates for temperature changes. XXXI=0XXXX Cradle Glands Casing The heavy casing contains the The glands are of the split type The cradle is extra heavy and discharge nozzle, which may be and may be easily removed rigidly supports the casing and from the shaft. shaft. turned to four positions. Shaft Inboard Bearing Impeller The inboard bearing is of the The shaft is over-size thus insuring The impeller is of the latest hydraulic double-row self-aligning type. It smooth operation and minimum dedesign. It is mechanically and hydraulically balanced. carries radial loads only. flection. Cross-section of two-stage CMRV. Two-Stage Units Two-stage units are of same general construction as single-stage units above. The two im-

angular contact type. The pump suction is on the right looking toward the pump and the dis-

pellers are placed back to back. The thrust bearing is on the pump end and is of the duplex

charge on the left.

Cradle-Mounted Pumping Units

Standard Type Classes CRVN and CMRVN

Single-stage, class CRVN, unit with motor drive.

Two-stage, class CMRVN, unit with motor drive.

Single-Stage Units--Class CRVN

Class CRVN pumps are single-stage units available in 1, $1\frac{1}{2}$ and 2-inch discharge sizes. They will handle 5 to 250 gals, per min, against heads to 140 ft.

The units use the same high-quality casing and fittings as the standard type Motorpumps described on page 6.

Suction and discharge connections are threaded to receive standard pipe.

Two-Stage Units--Class CMRVN

Class CMRVN pumps are two-stage units available in 1-inch discharge size. They will handle from 20 to 55 gals. per min. against heads to 200 ft. They have suction and discharge connections threaded to receive standard pipe.

Casing The casing contains suction and discharge nozzles. Discharge nozzle may turned to 4 positions.

Impeller

The one-piece impeller is of latest hydraulic design and is mechanically balanced.

Suction Nozzle

The suction nozzle leads directly into the impeller eye.

Stuffing Box

The stuffing box is extra deep, holding 5 rings of packing and a sealing gland.

Inboard Bearing

The pump end bearing is of single-row, selfaligning type, carrying radial loads only.

The shaft is extra-heavy insuring smooth running and minimum shaft deflection.

Thrust Bearing

The coupling end bearing is of the single-row, deep groove type and carries both thrust and radial loads.

Coupling A coupling of ample size compensates end play in the driver shaft and for temperature changes.

Cradle-Mounted Pump Modifications and Types of Drive

Electric motor drive through increasing gear from 25-cycle

Flat belt drive, less base. This style is widely used for irrigation work and other services where a base is unnecessary. Its flexibility of application and the fact that it can be shipped from stock on a day's notice are greatly increasing its uses.

Water-wheel drive.

Gasoline engine drive through gears.

V-belt drive from motor.

Approximate Dimensions of Cradle-Mounted Units

DO NOT USE THESE DIMENSIONS FOR BUILDING FOUNDATIONS. OBTAIN CERTIFIED FOUNDATION PRINT.

Single-stage units less driver

Size	Suc-	A	С	D	ŕ	G	I	J	K	L	Shaft dia.at Coup- ling	
1CRVN† 1½CRVN† 1½CRV 1½CRVH 1½CRVH	1½ 2 2 2½ 2½ 2	$3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{3}{4}$ $4\frac{1}{2}$ $5\frac{3}{8}$	45/8 45/8 6 6	43/8 5 61/4 61/2 63/4	2 2 ³ / ₈ 4 4 4 ³ / ₈	$13\frac{1}{2}$ $13\frac{1}{2}$ $21\frac{1}{8}$ $21\frac{1}{8}$ $21\frac{1}{8}$	21/8 21/8 51/8 51/8 51/8	81/2	31/4 31/4 5 5 5 5	$\begin{array}{c} 2 \\ 2 \\ 2^{13} \\ 16 \\ 2^{15} \\ 16 \end{array}$	11/4	14 x1/8 x13/8 14 x1/8 x13/8 14 x1/8 x13/8 3/8 x3/6 x21/2 3/8 x3/6 x21/2 3/8 x3/6 x21/2
2CRV 2CRVH 2CRVL	3 3 3	35/8 43/4 61/2	6 6 8	6½ 7¾ 8	4½ 4½ 5	$\begin{array}{c} 21\frac{1}{16} \\ 21\frac{1}{16} \\ 24\frac{5}{16} \end{array}$	51/8	81/2	$\begin{array}{c} 4^{15}/_{16} \\ 4^{15}/_{16} \\ 6^{3}/_{8} \end{array}$	$\begin{array}{c} 2^{13} & 6 \\ 2^{13} & 6 \\ 2^{7} & 8 \end{array}$	1½ 1½ 1¼ 1¼	3/8x3/16x21/2 3/8x3/16x21/2 3/8x3/16x21/2
3CRVS 3CRVL	4	$\frac{4\frac{1}{4}}{5\frac{1}{2}}$	6 8	6½ 9½ 9½	$\frac{4\frac{1}{4}}{5\frac{1}{2}}$	217/8 245/16	5½ 6½ 8	8½ 10¼	5 ³ / ₄ 6 ³ / ₈	2 ¹³ / ₁₆ 2 ⁷ / ₈	1½ 1¼	3/8 x3/16 x21/2 3/8 x3/16 x21/2
3CRVHS 3CRVH 4CRVL 5CRVL	4 4 5 6	5½ 5½ 6¾ 818	8 8 8	8 8 10½ 8¾	5½ 5½ 6 6 ⁷ /6	$\begin{array}{c} 24^{5}/_{16} \\ 24^{5}/_{16} \\ 24^{5}/_{16} \\ 24^{5}/_{8} \end{array}$	61/8	$10\frac{1}{4}$ $10\frac{1}{4}$ $10\frac{1}{4}$ $10\frac{1}{4}$	63/8 63/8 63/8 611/16	$2\frac{7}{8}$ $2\frac{7}{8}$ $2\frac{7}{8}$ $2\frac{7}{8}$ $2\frac{7}{8}$	1½ 1¼ 1¼ 1¼ 1¼	3/8 x3/16 x21/2 3/8 x3/16 x21/2 3/8 x3/16 x21/2 3/8 x3/16 x21/2

All dimensions in inches. †Threaded suction and discharge connections.

Two-stage units

*Will vary with size and type of motor, turbine or engine. All dimensions in inches or feet and inches.

Single-stage units with drivers

*Will vary with size, type and make of motor or turbine. All dimensions in inches or feet and inches. †Threaded suction and discharge connections.

Ne.

Discharge nozzles may be turned to positions described at bottom of page 9.

Two, single-stage, cradle-mounted units handling molasses in a sugar refinery.

3CRVHS 3CRVH 4CRVL 5CRVL

Open-impeller, cradle-mounted umit handling stock in a paper mill

MOTOR PUMP

Condensate Return Units

Single and Two-pump Types

A single-pump condensate unit mounted on a 15 gallon tank. This unit is used in connection with a steam heating system in a hotel.

Motorpump condensate return units consist of one or two standard, class RVN, Motopumps mounted on a tank and controlled by a float switch.

They are ideal for returning condensate to a boilerfeed pump, for feeding the boilers directly on lowpressure steam heating systems, for replacing steam traps or for returning condensate produced in process work.

A few standard sizes are listed below. Large capacity units, larger tanks or special mountings can be supplied to meet unusual conditions.

Direct	Max.		Size	Pump	Pipe	Sizes	One Pum	p Unit	Two Pum	D Unit
radia- tion sq. ft.	disch. press. lbs.	Pumps used	of res- ervoir gals.	ca- pacity gals, per min,	Con- densate Inlet	Pump dis- charge	Floor Space inches	Ship- ping wt. lbs.	Floor Space inches	Ship- ping wt. lbs.
1500 3000 5000 15000 20000 30000	10 10 10 10 10 10	1RVN14 1RVN14 1RVN14 1RVN14 1RVN15 1RVN12	15 15 15 30 60 60	214 41/2 71/2 21 30 45	2 2 2 3 3 3	1 1 1 1 1	24x28 24x28 24x28 26x30 30x40½ 30x40½	265 265 265 660 460 460	30½x33½ 30½x33½ 30½x33½ 30½x33½ 33x36 31x52 31x52	330 330 330 760 580 580
1500 3000 5000 10000 25000 30000	15 15 15 15 15 15	1RVN1/4 1RVN1/4 1RVN1/4 1RVN1/8 1RVN1/2 1RVN3/4	15 15 15 30 60 60	2½ 4½ 7½ 7½ 15 36 45	2 2 2 3 3 3	1 1 1 1 1	24x28 24x28 24x28 26x30 30x40½ 30x40½	285 285 285 660 460 460	30½x33½ 30½x33½ 30½x33½ 30½x33½ 33x36 31x52 31x52	350 350 350 760 580 580
1500 3000 5000 15000 25000 30000	20 20 20 20 20 20 20 20	IRVN 1/3 IRVN 1/3 IRVN 1/3 IRVN 1/2 IRVN 3/4 IRVN 1	15 15 15 30 60 60	2½ 4½ 7½ 21 36 45	2 2 2 3 3 3	1 1 1 1 1	24x28 24x28 24x28 26x30 30x40 ¹ / ₂ 30x40 ¹ / ₂	310 310 310 690 470 470	30½x33½ 30½x33½ 30½x33½ 30½x33½ 33x36 31x52 31x52	390 390 390 785 590 590
1500 3000 5000 10000 20000 25000 30000	25 25 25 25 25 25 25 25 25 25	1RVN½ 1RVN½ 1RVN½ 1RVN¾ 1RVN¾ 1RVN1 1RVN1 1RVN1½	15 15 15 30 60 60 60	21/4 41/2 71/2 15 30 36 45	2 2 2 3 3 3 3	1 1 1 1 1 1	24x28 24x28 24x28 24x28 28x30½ 30x40½ 30x40½ 30x41½	310 310 310 720 470 470 485	30½x33½ 30½x33½ 30½x33½ 30½x33½ 33½x42 31x52 31x52 31x52 31x54½	390 390 390 830 590 590 650
15000 25000 30000	50 50 50	1RVN2 1RVNL2 1RVNL3	30 60 60	21 36 45	3 3 3	1 1 1	28x32 30x41½ 30x41½	770 510 510	33½x44½ 31x54½ 31x54½ 31x54½	980 700 700

Single-pump unit on 15 gal. tank.

Single-pump unit on 30-gal, tank,

Two-pump unit on 60 gal, tank,

A Typical Pump Problem

An industrial plant wishes to install a pump to lift 200 gallons of water per min. at 72°F, from a sump to a tank on the roof. The water is to be delivered into the tank at 10 lbs. pressure. The tank is 58 feet above the pump and the pump is 4 ft. above the water level in the sump. The discharge pipe from the pump to the tank is 400 ft. long and contains 4 standard elbows, 1 check valve, and 1 gate valve. A 2½ inch discharge line is already installed which the manager would like to use if possible. The suction pipe is 4 inches in diameter, 25 ft. long and contains 2 elbows and a foot valve. The pump is to be driven by an electric motor. The current available is 220 volt, 3 phase 60 cycle. A sketch of the layout is shown below.

The friction loss and velocity head can be obtained from the tables on the next page. For comparison

two solutions are given: Solution A using 21/2" discharge pipe and Solution B using 4 inch discharge pipe.

Solution A: shows 278.7' total head. From page 10 of this bulletin it is seen that a 2MRV25 pump would be required to handle 200 gals. per min. against this head.

Solution B: shows 108.6 ft. total head. From page 10 of this bulletin it is seen that a 2RV71/2 pump will be required.

These two problems forcibly point out the savings that a discharge pipe of proper size make possible.

In solution A in which $2\frac{1}{2}$ " discharge pipe was used a 25 hp. pump is required. In solution B in which 4" discharge pipe is used only $7\frac{1}{2}$ hp. is required to do the same job.

DISCHARGE HEAD	Solution A 2½" discharge pipe 4" suction pipe	Solution B 4" discharge pipe 4" suction pipe		
Length of discharge pipe 4 ells—equivalent length of pipe. 1 check valve equivalent length of pipe. 1 valve—equivalent length of pipe. Total Length for figuring friction. Friction loss per 100'. Total Discharge Friction Loss	$\begin{array}{cccc} 4x5' & = 20' \\ 1x22 & = 22' \\ 1x1.86 & = 1.9' \\ & & & & & & \\ & & & & & \\ & & & & & $	4x9.22' = 36.9' 1x41 = 41' 1x3.44 = 3.4' 4.4 4.4481.3'		
Static discharge head pump to tanktank pressure	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \frac{1.1331.5}{100} = \cdots 21.2' $ $ \frac{58'}{23.1'} $ $ 102.3' $		
Total Discharge Head	212.4	102-3		
Length of suction pipe 2 ells—equivalent length of pipe Foot valve—equivalent length in feet.	2x9.22 = 18.4'	2x9.22 = 118.4'		
Total Length for figuring friction. Friction loss per 100'. Total Suction Friction Loss.	4.4	4.4 4.4x43.4 = 1.9'		
Velocity head Static suction lift	100	100 F 4: 4'		
Total Suction Lift	6.3'	6-3'		
TOTAL HEAD				
Total discharge head Total suction lift	6.3'	102.3 6.3'		
Total Head	278.7′	108-6′		

Engineering Data

Horsepower variation with specific gravity

To obtain power required for pumping a liquid of specific gravity differing from that of water, multiply power required when pumping water by specific gravity of liquid being pumped.

Effect of viscosity

Viscous liquids tend to increase pump hp., reduce efficiency, head and capacity. Refer to nearest Ingersoll-Rand branch office for pump performance when liquid to be pumped has a viscosity over 60 S.S.U.

Characteristics of liquids

Liquid	Specific gravity at 60°F/ 60°F.	Viscosity S. S. U.
Beer	1.01	32 at 68°F.
Brine—calcium chloride	up to 1.3	32 to 42 at 68°F.
Brine—sodium chloride	up to 1.2	32 to 36 at 60°F.
Fuel Oil— Nos. 1 and 2	.825 to .95	35 to 45 at 100°F.
Gasoline	.721 to .731	30 at 68°F.
Kerosene	. 81	35 at 68°F.
Milk	1.03 to 1.04	32 at 68°F.
Water, fresh	1.0	31.5 at 60°F.
,		Jane de O

Friction Losses through Screw Pipe Fittings in terms of equivalent lengths of standard pipe.

Nominal Pipe Size, Inches	Actual Inside Diameter, Inches	Gate Valve	Long-Sweep Elbow or on Run of Standard Tee	Medium- Sweep El- bow or on Run of Tee Reduced in Size 1/4	Standard Elbow or on Run of Tee Re- duced in Size ½	Angle Valve	Close Return Bend	Tee Through Side Outlet	Globe Valve	Check Valve (Approx.) varies with type & make	
Factor of	Resistance	0.25	0.33	0.42	0.67	0.90	1.00	1.33	2.00		
1/2 3/4 1 11/4 11/2 2 21/2 3 4 5 6	0.662 0.824 1.049 1.388 1.61 2.06 2.46 3.06 4.026 5.047 6.065	0.335 0.475 0.640 0.902 1.09 1.49 1.86 2.46 3.44 4.57 5.72	0. 442 0. 627 0. 844 1. 19 1. 43 1. 96 2. 46 3. 25 4. 53 6. 00 7. 55	0.56 0.79 1.07 1.51 1.83 2.50 3.13 4.11 5.77 7.68 9.61	0.89 1.27 1.72 2.42 2.92 5.00 6.66 9.22 12.20 15.30	1. 20 1. 71 2. 30 3. 24 3. 92 5. 36 6. 72 8. 87 12. 37 16. 47 20. 61	1.34 1.90 2.56 3.61 4.36 5.96 7.47 9.86 13.70 18.30 22.90	1.79 2.52 3.40 4.80 5.79 7.92 9.93 13.11 18.28 24.33 30.45	2.68 3.80 5.12 7.22 8.72 11.92 14.94 19.72 27.50 36.60 45.00	4.0 5.7 7.7 11.0 13.0 18.0 22.0 30.0 41.0 55.0 65.0	

Foot valve loss is zero, provided foot valve has area of 150. . of suction pipe.

Pipe Friction and Velocity Head

Corresponding to "17 year pipe". For new and smooth iron pipe the head loss will be .7 of that shown.

U.S. Gals. Per Min.	Veloc- ity Head	Head Loss in Feet Per 100 Ft.	Per Min.	Veloc- ity Head	Head Loss in Feet Per 100 Ft.	Gals. Per Min.	Veloc- ity Head	in		Veloc- ity Head	in	Per Min.	Veloc- ity Head	in	Per Min.	Veloc- ity Head	Head Loss in Feet Per 100 Ft.	Per	Veloc- ity Head	in	Per Min.	Veloc- ity Head	Head Loss in Feet Per 100 Ft.
	1" Pipe		1½" Pipe			2" Pipe			2½" Pipe			3" Pipe			4" Pipe			5" Pipe			6" Pipe		
3 4 5 6 8	0.02 0.03 0.05 0.08 0.14	1.26 2.14 3.25 4.55 7.8	5 6 7 8	0.01 0.01 0.01 0.02 0.02	-26 -40 -56 -74 -95	6 8 10 12 14	0.01 0.01 0.02 0.02 0.03	-20 -33 -50 -79 -94	8 10 12 14 16	0.00 0.01 0.01 0.01 0.02	.11 .17 .24 .23 .41	10 15 20 25 30	0.00 0.01 0.01 0.02 0.03	.07 .15 .25 .38 .54	20 25 30 35 40	0.00 0.01 0.01 0.01 0.02	.06 .09 .13 .17 .22	30 40 50 60 70	0.00 0.01 0.01 0.02 0.02	-04 -08 -11 -16 -21	40 50 60 70 80	0.00 0.01 0.01 0.01 0.01	-03 -04 -06 -08 -11
10 12 14 16 18	0.22 0.31 0.42 0.50 0.70	11.7 16.4 22.0 28.0 35.0	9 10 12 14 16	0.03 0.04 0.06 0.08 0.10	1.18 1.43 2.01 2.68 3.41	16 18 20 25 30	0.04 0.05 0.06 0.10 0.15	1.26 1.49 1.82 2.73 3.84	18 20 25 30 35	0,02 0.03 0.04 0.06 0.08	.50 .61 .92 1.29 1.72	35 40 50 60 70	$\begin{array}{c} 0.04 \\ 0.05 \\ 0.08 \\ 0.12 \\ 0.16 \end{array}$.71 .91 1.38 1.92 2.57	50 60 70 80 90	0.03 0.04 0.05 0.06 0.08	.34 .47 .63 .81 1.00	80 90 100 120 140	0.03 0.03 0.04 0.06 0.08	-27 -34 -41 -58 -76	90 100 110 125 140	0.02 .02 .02 .03 .04	-14 -17 -21 -26 -32
20 25 30 35 40	0.86 1.39 1.92 2.95 3.42	42.0 64.0 89.0 119.0 152.0	18 20 22 24 26	0.13 0.16 0.19 0.22 0.26	4.24 5.2 6.2 7.3 8.4	35 40 45 50 55	0.20 0.26 0.33 0.40 0.49	5.1 6.6 8.2 9.9 11.8	40 50 60 70 80	0.11 0.17 0.24 0.33 0.43	2.20 3.32 4.65 6.2 7.9	80 90 100 120 140	0.20 0.26 0.32 0.46 0.63	3.28 4.08 4.96 7.0 9.2	100 120 140 160 180	0.10 0.15 0.20 0.26 0.33	1.22 1.71 2.28 2.91 3.61	160 180 200 220 240	0.11 0.13 0.17 0.20 0.24	-98 1-22 1-48 1-77 2-08	160 180 190 200 220	.05 .07 .07 .08	-40 -50 -55 -61 -73
4 5 6 7 8	1½" Pipe 4 0.01 -57 5 0.02 -34 6 0.03 1.20 7 0.03 1.59		28 30 35 40 45	0.30 0.35 0.47 0.62 0.78	9.7 11.0 14.7 18.8 23.2	60 65 70 75 80	0.58 0.68 0.79 0.91 1.04	13.9 16.1 18.4 20.9 23.7	90 100 120 140 160	0.54 0.66 0.95 1.30 1.70	9.8 12.0 16.0 22.3 29.0	160 180 200 220 240	0.82 1.04 1.28 1.55 1.84	11.8 14.8 17.8 21.3 25.1	200 220 240 260 280	0.41 0.49 0.58 0.69 0.79	4.4 5.2 6.2 7.2 8.2	260 280 300 320 350	0.28 0.33 0.37 0.42 0.51	2.41 2.77 3.14 3.54 4.19	240 260 280 300 320	.11 .13 .16 .18	-87 1-00 1-14 1-30 1-47
10 12 14 16	0.05 0.05 0.07 0.10 0.14 0.18	2.03 3.05 4.3 5.7 7.3	50 55 60 65 70	0.96 1.17 1.39 1.62 1.88	28.4 34.0 39.6 45.9 53.0	90 100 110 120 130	1.31 1.62 1.96 2.33 2.73	29.4 35.8 42.9 50.0 58.0	180 200 220 240 260	2.15 2.66 3.22 3.82 4.48	35.7 43.1 52.0 61.0 70.0	260 280 300 320 340	2.16 2.51 2.88 3.28 3.71	29.1 33.4 38.0 42.8 47.9	300 320 340 360 400	0.91 1.04 1.17 1.31 1.62	9.3 10.5 11.7 13.1 16.0	300 450 500 550 600	0.66 0.84 1.04 1.26 1.49	5.4 6.7 8.1 9.6 11.3	350 380 400 450 500	.24 .28 .32 .40 .50	1.70 2.00 2.20 2.74 2.90
20 25 30	0.23 0.28 0.45 0.65	9.1 11.1 16.6 23.0	75 80 85 90 95	2.17 2.46 2.78 3.09 3.47	60.0 68.0 75.0 84.0 93.0	140 150 160 170 180	3.17 3.64 4.14 4.67 5.23	67.0 76.0 86.0 96.0 107.0	280 300 320 340 360	5.20 5.98 6.80 7.68 8.60	81.0 92.0 103.0 116.0 128.0	360 380 400 420 440	4.15 4.62 5.11 5.64 6.20	53.0 59.0 65.0 71.0 77.0	450 500 550 600 650	2.05 2.53 3.06 3.65 4.28	19.8 24.0 28.7 33.7 39.0	650 700 750 800 850	1.75 2.03 2.34 2.66 2.99	13-2 15-1 17-2 19-4 21-7	550 600 700 800 900 1000	.60 .72 .98 1.28 1.62 1.99	3-96 4-65 6-21 7-96 9-92 12-02

Other I-R Products

Aftercoolers, Air and Gas

Air- and Gas-Lift Pumps

Blowers, Air and Gas

Exhausters
Motorblowers
Turbo-Blowers
Turbo-Compressors

Core Drills

Calyx
Coroc
Explorer
Diamond
Manhole
Pavement-Testing
Prospecting
Shaft-Work

Compressors

Air and Gas
Air- and Water-Cooled
Ammonia
Combined Engine-Compressor Units for Steam, Gas and Oil Drive
Direct-Connected Electric and Belted
High- and Low-Pressure
Mine-Car
Motorcompressors
Portable
Service-Station
Single- and Multi-Stage
Vacuum Pumps

Condensers

Counter-Current
Barometric, Disc-Flow
Ejector-Jet Barometric
Surface, Heart-Shape

Drill Steel and Jackrods

Engines

Stationary Diesel Stationary Gas Marine Diesel

Hoists

Air- and Electric-Driven
Air-Motor (Direct-Lift)
Gasoline- and Oil-Engine
Driven
Scraper
Single-, Double- and
Three-Drum
Slusher
Tugger
Utility

Jackbits

Jackbit Grinders
Jackbits (Detachable Bits)
Jackmills
Jackrods (Drill rods
threaded for Jackbits)
Jackrod Threading Equip't

Paving Breakers

Demolition Tools

Pile Drivers

Pneumatic Tools

Accessories and Hose Backfill Tampers Chippers Calking Hammers Concrete Vibrators Core Breakers Diggers Drills, Multi-Vane and Piston Fender Straightener Grinders, Multi-Vane and Piston Impact Wrenches Riveters and Holders-On Sanders Sand Rammers Saws, Safety First Scaling Hammers Screw Drivers and Nut Setters Stationary Motors Surfacers Wire Brushes Wood Borers Wrenches, Torque and Impact

Pneumatic Sump Pumps

Pumps (Cameron)

Boiler-Feed Brewery Cam-Pump (Rotary) Centrifugal Chemical Circulating Condensate-Return General-Service High-Pressure Hot-Oil Mine Motorpumps Paper-Stock Pipe-Line Reciprocating Refinery Sinker

Receivers, Air and Gas

Refrigerating Units

Ammonia Compressors Steam-Jet Water-Vapor

Rock Drills

Accessories and Hose
Auto-Feed
Drifters
Jackbits
Jackhamers
Mountings
Pickhamers
Power-Feed
Stopehamers
Submarine
Wagon-Mounted

Sharpeners and Furnaces

Tie-Tamper Units

Compressors, Railway
Mounting
Crawl-Air Compressors
Pneumatic Tie Tampers
Rail and Bond Drills
Spike Drivers and Pullers
Spottamper Compressors
Track Wrenches

Vacuum Pumps

Steam-Jet Ejectors Reciprocating Dry

I-R BRANCHES THE WORLD OVER

United States and Territories

ATLANTA, GA.
Twenty-Two Marietta Street Bldg.
BIRMINGHAM, ALA.
1700 Third Ave., South
BOSTON, MASS.
285 Columbus Ave.
BUFFALO, N. Y.
117 W. Chippewa Street
BUTE, MONT.
845 S. Montana St.
CHICAGO, ILL.
400 W. Madison Street
CINCINNATI, OHIO
American Bldg., Walnut at Central Parkway
CLEVELAND, OHIO
Williamson Building
DALLAS, TEXAS
Santa Fe Building
DENVER, COLO.
1637 Blake Street
DETROIT, MICH.
2832 E. Grand Blvd.
DULUTH, MINN.
331 W. Michigan Street
EL PASO, TEXAS
1015 Texas Street
HARTFORD, CONN.
P. O. Box 1117
HONOLULU, HAWAII, T. H.
Honolulu Iron Works
HOUSTON, TEXAS
1305 Capitol Avenue

Canada

Canada
Canadian Ingersoll-Rand Co., Limited
MONTREAL, QUE. (administrative offices)
New Birks Bldg. Phillips Square
MONTREAL, QUE. (Sales Branch)
New Birks Bldg. Phillips Square
SYDNEY, NOVA SCOIIA
P. O. Box 584
SHERBROOKE, QUEBEC
P. O. Box 758
TORONTO, ONTARIO
27 Wellington Street, East
KIRKLAND LAKE, ONTARIO
P. O. Drawer 905
TIMMINS, ONTARIO
Schumacher Road Schumacher Road
WINNIPEG, MANITOBA
175 McDermot Ave, East
NELSON, BRITISH COLUMBIA
- P. O. Box 320
VANCOUVER, BRITISH COLUMBIA
950 Richards Street

Europe

Europe

BELGIUM, BRUSSELS
Compagnie Belge Ingersoll-Rand, 62 Chaussee de Mons

ENGLAND, LONDON, E.C. 4.
Ingersoll-Rand Co., Ltd., 165, Queen Victoria Street.

DENMARK AND ICELAND, COPENHAGEN F.,
Hoff & Co., Mariendalsvej 25

FINLAND, HELSINGFORS
Maskin A/B E. Gronblom

FRANCE, PARIS 8e
Compagnie Ingersoll-Rand—46 Rue de Courcelles

ITALY, MILANO (134)
S. A. La Motomeccanica, Via Oglio No. 18

HOLLAND, DEN HAAG
Technisch Bureau Marynen, Waldorpstraat 52

NORWAY, OSLO
K. Lund & Co., Revierstredet 3

PORTUGAL, LISBOA
Cia Ingersoll-Rand, S. A. Praca Duque da Terceira 24

ROUMANIA, BUCURESTI
Ingersoll-Rand S. A. R., Bucuresti 1, B-dul Domnitei 3, ET. IV

SCOTLAND, GLASGOW
Ingersoll-Rand Co., Ltd., 20, Renfrew Street

SAIN, MADRID
Compañia Ingersoll-Rand, Calle Montalban 5

SWEDEN, STOCKHOLM 3,
Amerikanska Gummi A. B.
SWITZERLAND, ZURCH
Robert AEBI & Cie. A. S., Werdmuhleplatz 2 BELGIUM, BRUSSELS

Asia and The East

CHINA, SHANGHAI

Jardine Engineering Corp., Ltd., 50 Yuen Ming Yuen Road

CHINA, HONGKONG

Jardine Engineering Corp., Ltd., 14 Pedder Street

CHINA, TIENTSIN

Jardine Engineering Corp. Jardine Engineering Corp., Ltd., 14 Pedder Street

(HINA, TIENTSIN)

Jardine Engineering Corp., Ltd., Victoria & Ewo Roads

INDIA, CALCUTTA

Ingersoll-Rand (India) Ltd., 15 Clive Street

INDIA, BOMBAY

Jardine Engineering Corp., Ltd., Victoria & Ewo Roads

INDIA, BOMBAY

Jardine Engineering Corp., Ltd., 15 Clive Street

INDIA, BOMBAY

Jardine Estate

IRAN, TEHERAN

Abolhassan Diba & Bayat, Khiabane Postkhaneh

JAPAN, TOKYO

American Trading Co., of Japan, Ltd., Central P. O., Box No. 384.

JAPAN, KOBE

American Trading Co. of Japan, Ltd., P. O. Box 17

PALESTINE, TEL-AVIV

Engineering Corp. of Palestine, Ltd., Beth Hasochnim, 12-14 Harakevet Street

STRAITS SETTLEMENT, SINGAPORE

The Borneo Co., Ltd., Mercantile Bank Building

FEDERAIED MALAY STAIES, IPOH

The Borneo Co., Ltd., P. O. Box 137

SIAM, BANGKOK

International Engineering Co., Inc., Chartered Bank Lane

Branches and Agents in Territories

KANSAS CITY, MO.
1006 Grand Ave.
1006 Grand Ave.
KNOXVILLE, TENN.
412 W. Jackson Ave.
LOS ANGELES, CALIF.
1460 E. Fourth Street
MANILA, P. I.
Earnshaw Docks & Honolulu Iron Works
NEWARK, N. J.
899 Frelinghuysen Ave.
NEW ORLEANS, LA.
410 Camp Street
NEW ORK, N. Y.
11 Broadway
PHILADELPHIA, PA.
Wilford Bidg., 33rd & Arch Streets
PICHER, OKLA.
226 West A Street
PITTSBURGH, PA.
706 Chamber of Commerce Building
POTISVILLE, PA.
342 S. Center Street
SALT LAKE CITY, UTAH
144 S. W. Temple Street
SAN FRANCISCO, CALIF.
330 Brannan Street
SCRANION, PA. SAN FRANCISCO, CALIF.
350 Brannan Street

SCRANTON, PA.
614 Wyoming Ave.

SEATILE, WASH.
526 First Ave., South

ST. LOUIS, MO.
2327 Locust Blvd.

TULSA, OKLA.
319 East 5th Street
WASHINGTON, D. C.
Heurich Building, 1627 K. Street, N. W.

Australasia
Ingersoll-Rand Australia Proprietary, Ltd.
AUSTRALIA, SOUTH MELBOURNE
Registered Office, 40 Moray Street
NEW SOUTH WALES, SYDNEY
Corner Clarence and Barrack Sts.
WEST AUSTRALIA, KALGOORLIE
P. O. Box 152

Africa

JOHANNESBURG, TRANSVAAL
Ingersoll-Rand Co., South Africa, Ltd., Aegis Building
GOLD COAST, TAKORADI
United Africa Co., Ltd., Box 57
NORTHERN RHODESIA, N'DOLA
P. O. Box 74 P. O. Box 74 SOUTHERN RHODESIA, BULAWAYO P. O. Box 999

EAST AFRICA, KISUMU
(Kenya, Uganda, Tanganyika)—Mitchell Cotts & Co.

EGYPT, ALEXANDRIA
The Tractor & Engineering Co.

EGYPT, CAIRO
The Tractor & Engineering Co.

WEST AFRICA, TAKORADI, GOLD COAST COLONY, NORTHERN
TERRITORIES OF GOLD COAST, BRITISH SPHERE OF TOGOLAND.—United Africa Co.

South America

South America

ARGENTINE, BUENOS AIRES
General Electric, S. A., Calle Tucuman 117

BOLIVIA, ORURO
International Machinery Co., Casilla 254

BRAZIL, RIO DE JANERO
Ingersoil-Rand Co. do Brasil, S. A. Rua Theophilo Ottoni 48

BRAZIL, SAO PAULO
Ingersoil-Rand Co. do Brasil, S. A., Rua Dr. Falcao Filho 56-12°
Andar, (Predio Matarazzo 330)

CHILE, ANIOFAGASTA
International Machinery Co., Calle San Martin 306

CHILE, SANTIAGO
International Machinery Co., Calle Huerfanos 1201

CHILE, VALPARAISO
International Machinery Co., Plaza Sotomayor, 5

CHILE, IQUIQUE
Grace y Cia. Ltd.

COLOMBIA, BARRANQUILLA
International General Electric, S. A., 29 Calle Real

COLOMBIA, BOGOTA
International General Electric, S. A., Apartado 323

COLOMBIA, CALI
International General Electric, S. A., Apartado 11

PERU, LIMA
Ingersoil-Rand Co. of Peru, Edificio Central, Avenida Uruguay, 114

URUGUAY, MONTEVIDEO
General Electric, S. A. - Uruguay 764

VENEZUELA, CARACAS
International General Electric, S. A., Apartado 292

Other Countries

Other Countries

BRITISH WEST INDIES, TRINIDAD
Port of Spain, Neal & Massey Engineering Co. Ltd., 63 Edward Street
CUBA, HAVANA
Ingersoll-Rand de Cuba, S. A., Calle Aguacate No. 158
MEXICO, D. F.
Ingersoll-Rand de Mexico, S. A., Ramon Alcazar, 20
PUERTO RICO, SAN JUAN
Ulpiano Casal, Portilla Building FORM 7764 R 9-9

Branches and Agents in many other cities the World over.

