Material de Lógica

Grupo de Facebook "Materiales de informática"

En este grupo están todos los teóricos y ejercicios para las 3 clases.

Grupo abierto "Materiales de informática"

RESUMEN

Leves del Álgebra de Proposiciones

1) **IDEMPOTENCIA** pvp≡p p∧p≡p

2) **IDENTIDAD** $pv0 \equiv p \quad p \land 1 \equiv p$ (elemento neutro) $pv1 \equiv 1 \quad p \land 0 \equiv 0$ (elemento absorbente)

3) COMPLEMENTO $pv\neg p\equiv 1$ $p\wedge \neg p\equiv 0$

4) DOBLE NEGACIÓN $\neg \neg p \equiv p$

5) **ASOCIATIVA** $(pvq)v r \equiv pv(qvr)$ $(p \land q) \land r \equiv p \land (q \land r)$

6) CONMUTATIVA $pvq \equiv qvp$ $p \land q \equiv q \land p$

7) **DISTRIBUTIVA** $pv(q \land r) \equiv (pvq) \land (pvr)$ $p \land (qvr) \equiv (p \land q) vp \land r)$

8) DE MORGAN $\neg (pvq) \equiv \neg p \land \neg q$ $\neg (p \land q) \equiv \neg p \lor \neg q$

9) ABSORCIÓN $pv(p \land q) \equiv p$ $p \land (pvq) \equiv p$

Reglas de Inferencia

LEY DE RAZONAMIENTO DIRECTO (MP) $(p \rightarrow q) \land p \Rightarrow q$ *Falacia: afirmación del consecuente $(p \rightarrow q) \land q$ (no se puede decir nada)

LEY DEL RAZONAMIENTO INDIRECTO (MT) $(p \rightarrow q) \land \neg q \Rightarrow \neg p$ *Falacia: negación del antecedente $(p \rightarrow q) \land \neg p$ (no se puede decir nada)

SILOGISMO DISYUNTIVO $(pvq) \land \neg p \Rightarrow q$

A) TRANSITIVIDAD DEL CONDICIONAL $(p \rightarrow q) \land (q \rightarrow r) \Rightarrow p \rightarrow r$

B) CONTRARRECÍPROCA DEL CONDICIONAL $p \rightarrow q \Rightarrow \neg q \rightarrow \neg p$

Negación NOT

Conjunción AND

Disyunción OR

Disyunción Fuerte XOR

NOR

XNOR

p	q 1	p XNOR q
1	0	0
0	1	0
0	0	1

NAND

RESUMEN

	p	¬р	Negación
i	1	0	- Negation
ĺ	0	1	

Tablas de CONJUNCIÓN, DISJUNCIÓN DÉBIL Y DISJUNCIÓN FUERTE

Conjunción	Disjunción débil	Disjunción fuerte	
p q p A q	$p q p \vee q$	p q p v q	
1 1 1	1 1 1	1 1 0	
1 0 0	1 0 1	1 0 1	
0 1 0	0 1 1	0 1 1	
0 0 0	0 0 0	0 0 0	

Tablas de CONDICIONAL-BICONDICIONAL-BINEGACIÓN-

Condicional	Bicondicional	Binegación
$p q p \rightarrow q$	p q p↔q	p q p ↓ q
1 1 1 1 0 0 0 1 1 0 0 1	1 1 1 1 0 0 0 1 0 0 0 1	1 1 0 1 0 0 0 1 0 0 0 1

Prof. Stella de Castellet

Conjunto adecuado de conectivas

Llamamos conjunto adecuado de conectivas a cualquier conjunto de ellas tal que todas las conectivas puedan representarse en función, únicamente, de las del conjunto.

El conjunto de las conectivas más usuales, $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$.

Los conjuntos $\{\neg, \land\}, \{\neg, \lor\} \ y \ \{\neg, \rightarrow\}$

Práctico a realizar en el mes de Septiembre

El hombre inteligente no es el que tiene muchas ideas, sino el que sabe sacar provecho de las que tiene. Anónimo.

- Realice la tabla de verdad de las siguientes expresiones.
 Para cada uno de los casos indique si es: tautología, contradicción o indeterminación (contingencia).
- 1. $p \land q \rightarrow r$
- 2. p ↔¬p
- 3. p Ag Ar
- 4. דר p הדח q
- 5. p ↔qvr
- 6. ¬q ∧ ¬p
- 7. $(p \rightarrow q) \wedge r$
- 8. $\neg(p \rightarrow \neg q) \land (p \land \neg q)$
- 9. (p /q) /(p /q)
- 10. י(p איק) א(p איק)
- 11. ירף אים) א(p אים) און (p אים)
- 12. י(דף איק) א(דף איק) (מר)
- 13. $[(\neg p \land q) w (p \land q)] \rightarrow [(\neg p \land q) v \neg p]$
- 14. $(p \land \neg q) \rightarrow (\neg p \rightarrow \neg q)$
- 15. (p ↔¬q) v (p ∧¬q)
- 16. $(\neg p \land q) \land (\neg p \rightarrow q)$
- 17. $(p \rightarrow q \land r) \leftrightarrow \neg(\neg q \lor r) \lor \neg r$
- 18. $(\neg q \land r) \rightarrow \neg (\neg q \lor r) \lor \neg r$
- 19. $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \land \neg r)$
- 20. $\neg p \leftrightarrow (q \land r) \land \neg (\neg q \lor r)$
- 21. $[(p w \neg q) \rightarrow (p \rightarrow q)] \rightarrow [(\neg p \rightarrow q) v \neg p] v \neg p$
- 22. $[\neg(p \lor q) \lor (p \to q)] \to [(\neg p \leftrightarrow q) \lor \neg p]$
- 23. $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \land r)$
- 24. (p $\land q \rightarrow r$) \rightarrow (p $\lor r$)
- 2) Realice los circuitos electrónicos de las siguientes expresiones sin simplificar:
- 1. [(¬p ∧ q) w (p ∧q)] v[(¬p ∧ q) v ¬p]
- 2. ¬ (p ∧¬q) w ¬ (¬p v ¬q) w r
- 3. ¬ {¬ (p w¬q) v (p ∧ ¬q) v ¬r}
- 4. (¬p ∧q) ∧(¬p w ¬ q) v r v s
- 5. (p v¬ q ∧ r) w ¬(¬q v r) v ¬r
- 6. (¬q ∧ r) w ¬(¬q ∨ r) ∨ ¬r

4) En una estructura JAVA:

a) En una estructura if - else en Java dice:

 $_{10}$ {[(p ^ ~ r) v (r ^ p)] ^ ~ q} v [~ p ^ (~ p v r)]

a = 2; Completar según x, y, z

Х	У	Z	а
5	4	3	
5	3	4	
3	2	2	
3	4	1	
7	2	3	
3	2	7	

b) En una estructura while en Java dice:

c) En una estructura for en Java dice:

```
public class DivisiblesForApp {
    public static void main(String[] args) {
        for (int num=1;num<=100;num++){
            if (num%2==0 || num%3==0){
                System.out.println(num);
            }
        }
    }
}</pre>
```