Integrali

Definizione: area del grafico sottesa ad una funzione

• $\Delta x = \frac{b-a}{n}$ dove (a, b) è l'intervallo di cui si vuole calcolare l'area

•
$$A = \lim_{n \to +\infty} \sum_{i=0}^{n} f(x_i) \Delta x = \int_{a}^{b} f(x) dx$$

Calcolo

• Sia F(x) tale che F(x) = f(x), allora vale sempre $\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b}$

Integrali indefiniti

• $\int f(x)dx = F(x) + c$ dove c è una costante

Proprietà

$$\bullet \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\bullet \int_{a}^{a} f(x) dx = 0$$

•
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

$$\bullet \int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

•
$$\int_{a}^{b} d \cdot f(x) dx = d \cdot \int_{a}^{b} f(x) dx$$

Sostituzione

•
$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + c = F(g(x)) + c$$

dove $u = g(x)$ e $du = g'(x)dx$

•
$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du = F(g(b)) - F(g(a)) \text{ dove}$$

$$u = g(x) \text{ e } du = g'(x)dx$$

Integrazione per parti

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$