

KTY82 series

Silicon temperature sensors Rev. 04 — 14 January 2008

Product data sheet

1. Product profile

1.1 General description

The temperature sensors in the KTY82 series have a positive temperature coefficient of resistance and are suitable for use in measurement and control systems. The sensors are encapsulated in the small plastic Surface Mounted Device (SMD) SOT23 package.

Other special selections are available on request.

1.2 Features

- High accuracy and reliability
- Positive temperature coefficient; fail-safe behavior
- Long-term stability
- Virtually linear characteristics

1.3 Quick reference data

Table 1. Quick reference data

T_{amb} = 25 °C; in liquid; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R ₂₅	sensor resistance	$I_{sen(cont)} = 1 \text{ mA}$				
		KTY82/110	990	-	1010	Ω
		KTY82/120	980	-	1020	Ω
		KTY82/121	980	-	1000	Ω
		KTY82/122	1000	-	1020	Ω
		KTY82/150	950	-	1050	Ω
		KTY82/151	950	-	1000	Ω
		KTY82/210	1980	-	2020	Ω
		KTY82/220	1960	-	2040	Ω
		KTY82/221	1960	-	2000	Ω
		KTY82/222	2000	-	2040	Ω
		KTY82/250	1900	-	2100	Ω
		KTY82/251	1900	-	2000	Ω
		KTY82/252	2000	-	2100	Ω

2. Pinning information

Table 2. Pinning

10010 21	9	
Pin	Description	Simplified outline
1	electrical contact	
2	electrical contact	<u> 3</u>
3	substrate (must remain potential free)	1 2

3. Ordering information

Table 3. Ordering information

Type number	Package	Package									
	Name	Description	Version								
KTY82/110	-	plastic surface-mounted package; 3 leads	SOT23								
KTY82/120											
KTY82/121											
KTY82/122											
KTY82/150											
KTY82/151											
KTY82/210											
KTY82/220											
KTY82/221											
KTY82/222											
KTY82/250											
KTY82/251											
KTY82/252											

4. Marking

Table 4. Marking codes

Type number	Marking code
KTY82/110	110
KTY82/120	120
KTY82/121	121
KTY82/122	122
KTY82/150	150
KTY82/151	151
KTY82/210	210
KTY82/220	220
KTY82/221	221
KTY82/222	222
KTY82/250	250
KTY82/251	251
KTY82/252	252

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
I _{sen(cont)}	continuous sensor current	in free air; $T_{amb} = 25 ^{\circ}C$	-	10	mA
		in free air; T_{amb} = 150 °C	-	2	mA
T_{amb}	ambient temperature		– 55	+150	°C

Characteristics

Table 6. **Characteristics**

T_{amb} = 25 °C; in liquid; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R ₂₅	sensor resistance	$I_{sen(cont)} = 1 \text{ mA}$				
		KTY82/110	990	-	1010	Ω
		KTY82/120	980	-	1020	Ω
		KTY82/121	980	-	1000	Ω
		KTY82/122	1000	-	1020	Ω
		KTY82/150	950	-	1050	Ω
		KTY82/151	950	-	1000	Ω
		KTY82/210	1980	-	2020	Ω
		KTY82/220	1960	-	2040	Ω
		KTY82/221	1960	-	2000	Ω
		KTY82/222	2000	-	2040	Ω
		KTY82/250	1900	-	2100	Ω
		KTY82/251	1900	-	2000	Ω
		KTY82/252	2000	-	2100	Ω
TC	temperature coefficient		-	0.79	-	%/K
R ₁₀₀ /R ₂₅	resistance ratio	T _{amb} = 100 °C and 25 °C	1.676	1.696	1.716	
R ₋₅₅ /R ₂₅	resistance ratio	T_{amb} = -55 °C and 25 °C	0.480	0.490	0.500	
ΔR_{25}	drift of sensor resistance at 25 °C	10000 h continuous operation; T _{amb} = 150 °C				
		KTY82/1 series	-	1.6	-	Ω
		KTY82/2 series	-	3.2	-	Ω
$ au_{th}$	thermal time constant	in still air	<u>[1]</u> _	7	-	S
		in still liquid	<u>[1]</u> _	1	-	S
		in flowing liquid	<u>[1]</u> _	0.5	-	S

^[1] The thermal time constant is the time taken for the sensor to reach 63.2 % of the total temperature difference. For example, if a sensor with a temperature of 25 °C is moved to an environment with an ambient temperature of 100 °C, the time for the sensor to reach a temperature of 72.4 °C is the thermal time constant.

Table 7. Ambient temperature, corresponding resistance, temperature coefficient and maximum expected temperature error for KTY82/110 and KTY82/120

 $I_{sen(cont)} = 1 \text{ mA.}$

Ambie tempe	ent erature	Temperature coefficient	KTY82	/110			KTY82	/120		
(°C)	(°F)	(%/K)	Resista	ance (Ω)		Temperature	Resista	ance (Ω)		Temperature
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)
-55	-67	0.99	475	490	505	±3.02	470	490	510	±4.02
-50	-58	0.98	500	515	530	±2.92	495	515	535	±3.94
-40	-40	0.96	552	567	582	±2.74	547	567	588	±3.78
-30	-22	0.93	609	624	638	±2.55	603	624	645	±3.62
-20	-4	0.91	669	684	698	±2.35	662	684	705	±3.45
-10	14	0.88	733	747	761	±2.14	726	747	769	±3.27
0	32	0.85	802	815	828	±1.91	793	815	836	±3.08
10	50	0.83	874	886	898	±1.67	865	886	907	±2.88
20	68	0.80	950	961	972	±1.41	941	961	982	±2.66
25	77	0.79	990	1000	1010	±1.27	980	1000	1020	±2.54
30	86	0.78	1029	1040	1051	±1.39	1018	1040	1061	±2.68
40	104	0.75	1108	1122	1136	±1.64	1097	1122	1147	±2.97
50	122	0.73	1192	1209	1225	±1.91	1180	1209	1237	±3.28
60	140	0.71	1278	1299	1319	±2.19	1265	1299	1332	±3.61
70	158	0.69	1369	1392	1416	±2.49	1355	1392	1430	±3.94
80	176	0.67	1462	1490	1518	±2.8	1447	1490	1532	±4.3
90	194	0.65	1559	1591	1623	±3.12	1543	1591	1639	±4.66
100	212	0.63	1659	1696	1733	±3.46	1642	1696	1750	±5.05
110	230	0.61	1762	1805	1847	±3.83	1744	1805	1865	±5.48
120	248	0.58	1867	1915	1963	±4.33	1848	1915	1982	±6.07
125	257	0.55	1919	1970	2020	±4.66	1899	1970	2040	±6.47
130	266	0.52	1970	2023	2077	±5.07	1950	2023	2097	±6.98
140	284	0.45	2065	2124	2184	±6.28	2043	2124	2205	±8.51
150	302	0.35	2145	2211	2277	±8.55	2123	2211	2299	±11.43

Table 8. Ambient temperature, corresponding resistance, temperature coefficient and maximum expected temperature error for KTY82/121 and KTY82/122

 $I_{sen(cont)} = 1 \text{ mA}.$

Ambie tempe		Temperature coefficient	KTY82/	121			KTY82/122			
(°C)	(°F)	(%/K)	Resista	nce (Ω)		Temperature	Resista	nce (Ω)		Temperature
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)
-55	-67	0.99	471	485	500	±3.02	480	495	510	±3.02
-50	-58	0.98	495	510	524	±2.92	505	520	535	±2.92
-40	-40	0.96	547	562	576	±2.74	558	573	588	±2.74
-30	-22	0.93	603	617	632	±2.55	615	630	645	±2.55
-20	-4	0.91	662	677	691	±2.35	676	690	705	±2.35
-10	14	0.88	726	740	754	±2.14	741	755	769	±2.14
0	32	0.85	794	807	820	±1.91	810	823	836	±1.91
10	50	0.83	865	877	889	±1.67	883	895	907	±1.67
20	68	0.80	941	951	962	±1.41	960	971	982	±1.41
25	77	0.79	980	990	1000	±1.27	1000	1010	1020	±1.27
30	86	0.78	1018	1029	1041	±1.39	1039	1050	1062	±1.39
40	104	0.75	1097	1111	1125	±1.64	1120	1134	1148	±1.64
50	122	0.73	1180	1196	1213	±1.91	1204	1221	1238	±1.91
60	140	0.71	1266	1286	1305	±2.19	1291	1312	1332	±2.19
70	158	0.69	1355	1378	1402	±2.49	1382	1406	1430	±2.49
80	176	0.67	1447	1475	1502	±2.8	1477	1505	1533	±2.8
90	194	0.65	1543	1575	1607	±3.12	1574	1607	1639	±3.12
100	212	0.63	1642	1679	1716	±3.46	1676	1713	1750	±3.46
110	230	0.61	1745	1786	1828	±3.83	1780	1823	1865	±3.83
120	248	0.58	1849	1896	1943	±4.33	1886	1934	1982	±4.33
125	257	0.55	1900	1950	2000	±4.66	1938	1989	2041	±4.66
130	266	0.52	1950	2003	2056	±5.07	1989	2044	2098	±5.07
140	284	0.45	2044	2103	2162	±6.28	2085	2146	2206	±6.28
150	302	0.35	2124	2189	2254	±8.55	2167	2233	2299	±8.55

Ambient temperature, corresponding resistance, temperature coefficient and maximum expected Table 9. temperature error for KTY82/150 and KTY82/151

 $I_{\text{sen(cont)}} = 1 \text{ mA}.$

Ambie tempe	ent rature	Temperature coefficient	KTY82	/150			KTY82	/151		
(°C)	(°F)	(%/K)	Resista	ance (Ω)		Temperature	Resista	ance (Ω)		Temperature
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)
-55	-67	0.99	456	490	524	±7.04	456	478	499	±4.52
-50	-58	0.98	479	515	550	±6.99	480	502	524	±4.45
-40	-40	0.96	530	567	605	±6.91	530	553	576	±4.3
-30	-22	0.93	584	624	663	±6.84	584	608	632	±4.16
-20	-4	0.91	642	684	725	±6.77	642	667	691	±4.01
-10	14	0.88	703	747	791	±6.69	704	729	753	±3.84
0	32	0.85	769	815	861	±6.61	770	794	819	±3.67
10	50	0.83	838	886	934	±6.51	839	864	889	±3.48
20	68	0.80	912	961	1010	±6.41	912	937	962	±3.28
25	77	0.79	950	1000	1050	±6.35	950	975	1000	±3.18
30	86	0.78	987	1040	1093	±6.55	988	1014	1040	±3.33
40	104	0.75	1064	1122	1181	±6.97	1064	1094	1124	±3.64
50	122	0.73	1143	1209	1274	±7.4	1144	1178	1212	±3.97
60	140	0.71	1226	1299	1371	±7.85	1227	1266	1305	±4.31
70	158	0.69	1313	1392	1472	±8.31	1314	1357	1401	±4.67
80	176	0.67	1402	1490	1577	±8.79	1404	1453	1501	±5.05
90	194	0.65	1495	1591	1687	±9.29	1497	1551	1606	±5.43
100	212	0.63	1591	1696	1801	±9.81	1593	1654	1714	±5.84
110	230	0.61	1690	1805	1919	±10.4	1692	1759	1827	±6.3
120	248	0.58	1791	1915	2039	±11.28	1792	1867	1942	±6.94
125	257	0.55	1840	1970	2099	±11.91	1842	1920	1999	±7.38
130	266	0.52	1889	2023	2158	±12.72	1891	1973	2055	±7.94
140	284	0.45	1980	2124	2269	±15.21	1982	2071	2161	±9.63
150	302	0.35	2057	2211	2365	±20.09	2059	2156	2252	±12.88

Table 10. Ambient temperature, corresponding resistance, temperature coefficient and maximum expected temperature error for KTY82/210 and KTY82/220

 $I_{sen(cont)} = 1 \text{ mA}.$

Ambie tempe		Temperature coefficient	KTY82/	210			KTY82/220			
(°C)	(°F)	(%/K)	Resista	nce (Ω)		Temperature	Resista	nce (Ω)		Temperature
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)
-55	-67	0.99	951	980	1009	±3.02	941	980	1019	±4.02
-50	-58	0.98	1000	1030	1059	±2.92	990	1030	1070	±3.94
-40	-40	0.96	1105	1135	1165	±2.74	1094	1135	1176	±3.78
-30	-22	0.93	1218	1247	1277	±2.55	1205	1247	1289	±3.62
-20	-4	0.91	1338	1367	1396	±2.35	1325	1367	1410	±3.45
-10	14	0.88	1467	1495	1523	±2.14	1452	1495	1538	±3.27
0	32	0.85	1603	1630	1656	±1.91	1587	1630	1673	±3.08
10	50	0.83	1748	1772	1797	±1.67	1730	1772	1814	±2.88
20	68	0.80	1901	1922	1944	±1.41	1881	1922	1963	±2.66
25	77	0.79	1980	2000	2020	±1.27	1960	2000	2040	±2.54
30	86	0.78	2057	2080	2102	±1.39	2036	2080	2123	±2.68
40	104	0.75	2217	2245	2272	±1.64	2194	2245	2295	±2.97
50	122	0.73	2383	2417	2451	±1.91	2359	2417	2475	±3.28
60	140	0.71	2557	2597	2637	±2.19	2531	2597	2663	±3.61
70	158	0.69	2737	2785	2832	±2.49	2709	2785	2860	±3.94
80	176	0.67	2924	2980	3035	±2.8	2894	2980	3065	±4.3
90	194	0.65	3118	3182	3246	±3.12	3086	3182	3278	±4.66
100	212	0.63	3318	3392	3466	±3.46	3284	3392	3500	±5.05
110	230	0.59	3523	3607	3691	±3.93	3487	3607	3728	±5.61
120	248	0.53	3722	3817	3912	±4.7	3683	3817	3950	±6.59
125	257	0.49	3815	3915	4016	±5.26	3775	3915	4055	±7.31
130	266	0.44	3901	4008	4114	±6	3861	4008	4154	±8.27
140	284	0.33	4049	4166	4283	±8.45	4008	4166	4325	±11.46
150	302	0.20	4153	4280	4407	±14.63	4110	4280	4450	±19.56

Table 11. Ambient temperature, corresponding resistance, temperature coefficient and maximum expected temperature error for KTY82/221 and KTY82/222

 $I_{sen(cont)} = 1 \text{ mA}.$

Ambie tempe		Temperature coefficient	KTY82/221					KTY82/222			
(°C)	(°F)	(%/K)	Resista	nce (Ω)		Temperature	Resista	nce (Ω)		Temperature	
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)	
-55	-67	0.99	941	970	999	±3.02	960	990	1020	±3.02	
-50	-58	0.98	990	1019	1049	±2.92	1010	1040	1070	±2.92	
-40	-40	0.96	1094	1123	1153	±2.74	1116	1146	1176	±2.74	
-30	-22	0.93	1205	1235	1264	±2.55	1230	1260	1290	±2.55	
-20	-4	0.91	1325	1354	1382	±2.35	1352	1381	1410	±2.35	
-10	14	0.88	1452	1480	1508	±2.14	1481	1510	1538	±2.14	
0	32	0.85	1587	1613	1640	±1.91	1619	1646	1673	±1.91	
10	50	0.83	1730	1754	1779	±1.67	1765	1790	1815	±1.67	
20	68	0.80	1882	1903	1924	±1.41	1920	1941	1963	±1.41	
25	77	0.79	1960	1980	2000	±1.27	2000	2020	2040	±1.27	
30	86	0.78	2037	2059	2081	±1.39	2078	2100	2123	±1.39	
40	104	0.75	2195	2222	2250	±1.64	2239	2267	2295	±1.64	
50	122	0.73	2360	2393	2426	±1.91	2407	2441	2475	±1.91	
60	140	0.71	2531	2571	2611	±2.19	2582	2623	2664	±2.19	
70	158	0.69	2710	2757	2804	±2.49	2764	2812	2860	±2.49	
80	176	0.67	2895	2950	3005	±2.8	2953	3009	3065	±2.8	
90	194	0.65	3086	3150	3214	±3.12	3149	3214	3279	±3.12	
100	212	0.63	3285	3358	3431	±3.46	3351	3426	3501	±3.46	
110	230	0.59	3488	3571	3655	±3.93	3558	3643	3728	±3.93	
120	248	0.53	3684	3779	3873	±4.7	3759	3855	3951	±4.7	
125	257	0.49	3776	3876	3976	±5.26	3853	3955	4056	±5.26	
130	266	0.44	3862	3967	4073	±6	3940	4048	4155	±6	
140	284	0.33	4009	4125	4241	±8.45	4090	4208	4326	±8.45	
150	302	0.20	4112	4237	4363	±14.63	4195	4323	4451	±14.63	

Table 12. Ambient temperature, corresponding resistance, temperature coefficient and maximum expected temperature error for KTY82/250 and KTY82/251

 $I_{sen(cont)} = 1 mA.$

Ambie tempe		Temperature coefficient	KTY82/	250			KTY82/	251		
(°C)	(°F)	(%/K)	Resista	ance (Ω)		Temperature	Resista	ance (Ω)		Temperature
			Min	Тур	Max	error (K)	Min	Тур	Max	error (K)
-55	-67	0.99	911	980	1049	±7.04	913	956	999	±4.52
-50	-58	0.98	959	1030	1101	±6.99	960	1004	1048	±4.45
-40	-40	0.96	1060	1135	1210	±6.91	1061	1106	1152	±4.3
-30	-22	0.93	1168	1247	1327	±6.84	1169	1216	1263	±4.16
-20	-4	0.91	1283	1367	1451	±6.77	1285	1333	1381	±4.01
-10	14	0.88	1407	1495	1583	±6.69	1408	1457	1507	±3.84
0	32	0.85	1538	1630	1721	±6.61	1539	1589	1639	±3.67
10	50	0.83	1677	1772	1867	±6.51	1678	1728	1778	±3.48
20	68	0.80	1824	1922	2021	±6.41	1825	1874	1923	±3.28
25	77	0.79	1900	2000	2100	±6.35	1900	1950	2000	±3.18
30	86	0.78	1974	2080	2185	±6.55	1975	2028	2080	±3.33
40	104	0.75	2127	2245	2362	±6.97	2129	2189	2248	±3.64
50	122	0.73	2287	2417	2547	±7.4	2289	2357	2425	±3.97
60	140	0.71	2453	2597	2741	±7.85	2455	2532	2609	±4.31
70	158	0.69	2626	2785	2943	±8.31	2628	2715	2802	±4.67
80	176	0.67	2805	2980	3154	±8.79	2807	2905	3003	±5.05
90	194	0.65	2990	3182	3374	±9.29	2993	3102	3212	±5.43
100	212	0.63	3182	3392	3602	±9.81	3185	3307	3429	±5.84
110	230	0.59	3379	3607	3836	±10.65	3382	3517	3652	±6.45
120	248	0.53	3569	3817	4065	±12.25	3573	3721	3870	±7.53
125	257	0.49	3658	3915	4173	±13.45	3662	3817	3973	±8.33
130	266	0.44	3741	4008	4274	±15.06	3745	3907	4070	±9.4
140	284	0.33	3883	4166	4450	±20.49	3887	4062	4237	±12.96
150	302	0.20	3982	4280	4578	±34.35	3987	4173	4359	±22.02

Table 13. Ambient temperature, corresponding resistance, temperature coefficient and maximum expected temperature error for KTY82/252

 $I_{sen(cont)} = 1 mA.$

Ambient temperature Temperature		KTY82/252				
(°C)	(°F)	coefficient (%/K)	Resistance (Ω)			Temperature
			Min	Тур	Max	error (K)
-55	- 67	0.99	959	1005	1050	±4.52
-50	-58	0.98	1009	1055	1102	±4.45
-40	-40	0.96	1115	1163	1211	±4.3
-30	-22	0.93	1229	1278	1328	±4.16
-20	-4	0.91	1351	1401	1452	±4.01
-10	14	0.88	1480	1532	1584	±3.84
0	32	0.85	1618	1670	1723	±3.67
10	50	0.83	1764	1817	1869	±3.48
20	68	0.80	1919	1970	2022	±3.28
25	77	0.79	2000	2050	2100	±3.18
30	86	0.78	2077	2132	2187	±3.33
40	104	0.75	2238	2301	2364	±3.64
50	122	0.73	2406	2478	2549	±3.97
60	140	0.71	2581	2662	2743	±4.31
70	158	0.69	2763	2854	2946	±4.67
80	176	0.67	2951	3054	3157	±5.05
90	194	0.65	3147	3262	3376	±5.43
100	212	0.63	3349	3477	3605	±5.84
110	230	0.59	3556	3697	3839	±6.45
120	248	0.53	3756	3912	4068	±7.53
125	257	0.49	3850	4013	4177	±8.33
130	266	0.44	3937	4108	4278	±9.4
140	284	0.33	4087	4271	4455	±12.96
150	302	0.20	4191	4387	4583	±22.02

7. Package outline

8. Handling information

KTY82 series temperature sensors are sensitive to ElectroStatic Discharge (ESD). ESD can lead to irreversible changes of the characteristic.

9. Soldering

10. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
KTY82_SER_4	20080114	Product data sheet	-	KTY82-2SERIES_3 KTY82-1SERIES_3
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 			
	 Legal texts l 	company name whe	ere appropriate.	
KTY82-2SERIES_3	19980326	Product specification	-	-
KTY82-1SERIES_3	19980326	Product specification	-	-

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

KTY82 series

Silicon temperature sensors

13. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking
5	Limiting values
6	Characteristics 4
7	Package outline
8	Handling information
9	Soldering 14
10	Revision history
11	Legal information
11.1	Data sheet status
11.2	Definitions
11.3	Disclaimers
11.4	Trademarks
12	Contact information 16
13	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

