

About Us

\$25,000,000 Lending

\$40,000,000 Liquid Governance

Founded late 2020 and launched on Mainnet in April 2022.

We are a team of 20 people primarily based in Milan.

Agenda

- Lending
 - TradFi vs DeFi
 - Pools and Interest Rates
 - Over-collateralized Loans
 - Under-collateralized Loans
- Algorand Governance
- Demo of Folks Finance

Lending

Example - Bank

Customer deposits Fractional reserves

Mortgages Business loans Government bonds Credit cards

Example - Folks Finance

TradFi vs DeFi

Direct

Lending: Pools and Interest Rates

Pools

Utilisation ratio = total borrows / total deposits = 0 / 1,000,000 = 0%

Pools

Utilisation ratio = total borrows / total deposits = 900,000 / 1,000,000 = 90%

Borrows 900,000 ALGO 100,000 ALGO

Utilisation Ratio

Utilisation ratio = total borrows / total deposits = 900,000 / 2,000,000 = 45%

900,000 ALGO

1,100,000 ALGO

Linking Utilisation Ratio to Interest Rates

Utilisation ratio = total borrows / total deposits

1,000,000 ALGO

900,000 ALGO

100,000 ALGO

Interest Rate Model

Interest Rate Model

Low rates -> less deposits and more borrows -> higher utilisation ratio -> higher rates

Interest Rate Model

High rates -> more deposits and less borrows -> lower utilisation ratio -> lower rates

Deposit Rates

The deposit interest rate is determined by:

- The amount borrowed relative to the deposits
- The borrow interest rate
- The percentage of interest retained by the service provider

$$i_{d_t} = U_t \times i_{b_t} \times (1 - RR)$$

If retention rate RR is zero, the borrow interest rate i_{bt} is 10% and the utilisation ratio U_t is 70%, the deposit interest rate i_{dt} will be:

$$i_{d_t} = 0.7 \times 0.1 \times (1 - 0)$$

= 0.07

Lending: Over-collateralized

Loan to Value Ratio

LTV ratio = borrowed value / collateral value

Bad Debt

LTV ratio = borrowed value / collateral value

The maximum percentage value which can be borrowed for a given collateral

Historical BTC Price

The maximum percentage value which can be borrowed for a given collateral

Historical USDC Price

The maximum percentage value which can be borrowed for a given collateral

Collaterals whose prices are historically volatile should have a lower collateral factor e.g BTC.

Collateral whose prices are historically stable should have a higher collateral factor e.g. USDC.

The maximum percentage value which can be borrowed for a given collateral

The weighted average of the collateral factors

The weighted average of the collateral factors

$$Liquidation\ threshold = \frac{\sum\limits_{\substack{k=ASSET\\Collaterals}}^{Collaterals}(b_k \times p_k \times c_k)}{\sum\limits_{\substack{k=ASSET\\k=ASSET}}^{Collaterals}(b_k \times p_k)}$$

Where

 b_{ν} is the given collateral's balance

 $p_{_{\nu}}$ is the given collateral's price

 $c_{,}$ is the given collateral's collateral factor

The weighted average of the collaterals factors

Collateral:

\$100 of USDC at collateral factor of 90% \$100 of BTC at collateral factor of 70%

Collateral value = 100 + 100 = 200

Max borrow = 100 * 0.9 + 100 * 0.7 = 160

Liquidation threshold = 160 / 200 = 80%

LTV ratio = borrowed value / collateral value

Borrow:

\$100 of ALGO

Collateral:

\$100 of USDC at collateral factor of 90% \$100 of BTC at collateral factor of 70%

LTV ratio = 100 / (100 + 100) = 50%

LTV ratio = borrowed value / collateral value

Borrow:

\$100 of ALGO + \$20 ALGO in interest

Collateral:

\$100 of USDC at collateral factor of 90% \$100 of BTC at collateral factor of 70%

LTV ratio = 120 / (100 + 100) = 60%

LTV ratio = borrowed value / collateral value

Price of ALGO increases by 35%.

Borrow:

\$135 of ALGO + \$27 ALGO in interest

Collateral:

\$100 of USDC at collateral factor of 90% \$100 of BTC at collateral factor of 70%

LTV ratio = 162 / (100 + 100) = 81%

Liquidations

After liquidation threshold is met, anyone can purchase collateral at a discount

Repay \$95 of ALGO for \$100 of BTC

Borrow:

\$67 of ALGO

Collateral:

\$100 of USDC at collateral factor of 90%

LTV ratio = 67 / 100 + 100 = 67%

Borrow Factors

Limits the amount which can be borrowed by scaling the borrowed amount.

Efficiency Loans

When assets are price correlated, can offer higher collateral factors and lower borrow factors

Historical BTC and ETH Price

Loans Use Cases

Why would you ever want an over-collateralized loan? You have the funds already so why not use that directly instead of taking a loan?

Some example use cases:

- Liquidity access
- Longs / Shorts
- Yield Farming
- And More...

Use Case 1: Liquidity Access

Use Case 2a: Longs

Borrow \$ using BTC

Buy BTC at \$20,000

Sell BTC at \$25,000

Use \$ to repay loan

Use Case 2b: Shorts

Borrow BTC using \$

Use BTC to repay loan

Sell BTC at \$25,000

Buy BTC at \$20,000

Use Case 3: Yield Farming

Problem: Alice has USDC and wants to earn APR - what is her best option?

Platform A:

- Deposit ALGO at 1% APR
- Borrow ALGO at 2% APR
- Deposit USDC at 1% APR
- Borrow USDC at 2% APR

Platform B:

- Deposit ALGO at 5% APR
- Borrow ALGO at 8% APR
- Deposit USDC at 1% APR
- Borrow USDC at 2% APR

Lending: Under-collateralized

Flash Loans

Flash Loans Use Cases

Why would you ever want a flash loan? You have to repay the loan at the same time you borrowed so what's the point?

Some example use cases:

- Arbitrage Trading
- Collateral Swapping
- Margin Trading
- And More...

Use Case 1: Arbitrage Trading

Borrow ALGO and Deposit

Withdraw BTC

Sell BTC for ALGO and Repay ALGO

Borrow BTC using \$

Sell BTC at \$25,000

Buy BTC at \$20,000

Use BTC to repay loan

Buy BTC at \$20,000

Use BTC to repay loan

Take USDC collateral factor of 90% and \$100 of USDC:

- 1. Deposit \$100 of USDC
- 2. Borrow \$90 of BTC
- 3. Sell \$90 of BTC for \$90 of USDC
- 4. Deposit \$90 of USDC
- 5. Borrow \$81 of BTC
- 6. Sell \$81 of BTC for \$81 of USDC
- 7. Deposit \$81 of USDC
- 8. ..

A1 61	D '' 1 (0)	
No. of loops	Deposited (\$)	Leverage
0	100	1
1	190	1.9
2	271	2.7
3	343.9	3.4
4	409.5	4.1
5	468.6	4.7
Infinite	1000	10

$$D = 100 + 100 \times 0.9 + 100 \times 0.9 \times 0.9 + ...$$

$$= d + d \times c + d \times c \times c + ...$$

$$= d + d \times c + d \times c^{2} + ...$$

$$= d(1 + c + c^{2} + ...)$$

$$= d \sum_{k=0}^{n} c^{k}$$

$$= \frac{d}{1-c}$$
Where

$$D \text{ is the final deposit amount} d \text{ is the initial deposit amount} c \text{ is the collateral factor}$$

$$D = \frac{d}{1-c}$$

Where

D is the final deposit amount d is the initial deposit amount c is the collateral factor

Take USDC collateral factor of 90% and \$100 of USDC:

- 1. Borrow \$1000 of USDC with flash loan
- 2. Borrow \$900 of BTC
- 3. Sell \$900 of BTC for \$900 of USDC
- 4. Repay \$1000 of USDC with the \$900 borrowed and \$100 initial balance

Quiz!

Algorand Governance

Governance

WHO SHOULD DO BLOCKCHAIN GOVERNANCE?

Blockchain Developers

Participants/Nodes/ Users

Token Owners

Blockchain Organizations

Algorand Governance

- Algorand Governance is a decentralized program that allows ALGO holders to vote on the future of the Algorand Blockchain.
- By committing ALGOs to governance for a period of three months, one can vote on measures proposed and earn rewards for doing so.
- Governance works in cycles. Each cycle lasts for three months and includes three phases:
 - Signup
 - Voting
 - Reward

Algorand Governance: Locked Liquidity

Your committed ALGO are effectively locked and unable to be used for other purposes!

Balance: 100 ALGO

Commit: 70 ALGO

Balance: 80 ALGO

Commit: 70 ALGO

Balance: 65 ALGO Commit: 70 ALGO

Eligible

Send 20 ALGO

Eligible

Send 15 ALGO

Not Eligible

Algorand Liquid Governance

Liquid Governance solves problem of locked liquidity by introducing a new token called gALGO

Balance: 100 ALGO

Balance: 0 gALGO

Commit: 0 ALGO

70 ALGO for 70 gALGO

Balance: 30 ALGO

Balance: 70 gALGO

Commit: 0 ALGO

Balance: 70 ALGO

Balance: 0 ALGO

Commit: 0 ALGO

Commit: 70 ALGO

Algorand Liquid Governance Use Cases

We saw how Algorand Liquid Governance solves the issue of locked liquidity. However what can you do with the gALGO you receive?

Some example use cases:

- Lending
- Trading
- GameFi
- And More...

Use Case 1: Lending

Use Case 2: Trading

Use Case 3: GameFi

Demo

Summary

- Lending
 - TradFi vs DeFi
 - Pools and Interest Rates
 - Over-collateralized Loans
 - Under-collateralized Loans
- Algorand Governance
- Demo of Folks Finance

