TH o nepoznatoj aritmetickoj TH o razlici aritmetickih sredina TH o nepoznatoj proporciji osnovnog sredini osnovnog skupa: dvaju nezavishin osnovnih skupova: skupa: $H_0: ...\bar{x} = \bar{x}_0$ $H_0: ...\bar{x}_1 = \bar{x}_2$ $H_0: ...P = P_0$ $H_1:...\bar{x}\neq \bar{x}_0$ $H_1:...\bar{x}_1\neq \bar{x}_2$ $H_1: ...P \neq P_0$ Interval prihvacanja H₀: Interval prihvacanja H₀: Interval prihvacanja H₀: $10 \pm z \cdot Se(\overline{x}_1 - \overline{x}_2)$ $10 \pm z \cdot Se(\overline{x}_1 - \overline{x}_2)$ $\bar{x}_0 \pm z \cdot Se(\bar{x})$ $P_0 \pm z \cdot Se(P)$ $t^* = z^* = \frac{\hat{x} - \hat{x}_0}{S_2(\bar{x})}$ $Se(P) = \sqrt{\frac{P_0 Q_0}{P_0 Q_0}}, n > 30$ $df = v = n_1 + n_2 - 2$ test: $-t_{\underline{\alpha}} < t^* < t_{\underline{\alpha}} => H_0$ $Se(P) = \sqrt{\frac{P_0 Q_0}{1}}, n < 30$ $Se(\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{s_1^2}{3} + \frac{s_2^2}{3}}$ $Se(\bar{x}) = \frac{\hat{\alpha}}{\sqrt{n}}, n > 30$ $\hat{p} = \frac{m}{n}, z^* = \frac{|\hat{p} - p_0|}{Se(n)}$ $n < 30 \Longrightarrow s^2 = \sigma^2 \frac{n}{n-1}$ $\alpha < 0.05 \Rightarrow H_1$ $\alpha > 0.05 => H_0$ $Se(\bar{x}_1 - \bar{x}_2) = \sqrt{(\frac{n_1\hat{\sigma}_1^2 + n_2\hat{\sigma}_2^2}{n_1 + n_2^2}) \cdot (\frac{n_1 + n_2}{n_1 + n_2})}$ Jednosmjerni test: $DG = \overline{x}_0 - z \cdot Se(\overline{x})$ uzorak mal za $n_1+n_2 \le 32$ Za zavisne uzorke: $H_0: ...\bar{x} \geq \bar{x}_0$ $Se = \sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n} - 2r_{1,2}Se(\bar{x}_1)Se(\bar{x}_2)}$ $H_1:...\bar{x}<\bar{x}_0$ TH o razlici proporcija dvaju χ^{*2} test: nezavisnih osnovnih skupova: Testiranje da distribucija ima određeni oblik: $H_0:...P_1 = P_2$ Poisson: $H_0: ...X -> P(\mu)$ $H_1: ...X -/> P(\mu)$ $P(X = x) = \frac{\mu^x}{x!} e^{-\mu}$ $\chi^{*2} = \sum_{i=1}^k \frac{(f_i - f_{ti})^2}{f_{ti}}$ $H_1:...P_1 \neq P_2$ Interval prihvacanja H₀: $0 \pm z \cdot Se(P_1 - P_2)$ $\mu = \hat{x}$ $f_{ii} = (\sum f_i) \cdot P(x_i)$ df = v = k - 2 $df = \nu = n_1 + n_2 - 2$ Binomna: $Se(P_1 - P_2) = \sqrt{\hat{p} \cdot \hat{q} \cdot (\frac{1}{n_1} + \frac{1}{n_2})} \left| \begin{array}{c} H_0 : ...X - > B(n; p) \\ H_1 : ...X - > B(n; p) \end{array} \right|$ $P(X = x) = \binom{n}{x} p^{x} q^{n-x} \qquad f_{ii} = (\sum f_{i}) \cdot P(x_{i})$ $H_1: ...X - / > B(n; p)$ $\widehat{\overline{P}} = \frac{m_1 + m_2}{n_1 + n_2}$ $\chi^{*2} = \sum_{i=1}^{k} \frac{(f_i - f_{ii})^2}{f}$ df = v = k - 2 $\mu = n \cdot p$ $p = \frac{\bar{x}}{m}$ $z^* = \frac{\hat{p}_1 - \hat{p}_2}{Se(p_1 - p_2)}$ $H_0: \dots P_1 = P_2 = \dots = P$ $H_1: \dots \exists P_i \neq P$ $\widehat{\overline{P}} = \frac{\sum m_i}{\sum n_i}$ $e_i = n_i \cdot \widehat{\overline{P}}$ v = k-1TH da je koef. linearne korelacije jednak nuli $\chi^{*2} = \sum_{i=0}^{k} \frac{(m_i - e_i)^2}{e_i}$ $H_0 : ... r = 0$ $t^* = \frac{\widehat{r}}{Se(r)}$ TH o nezavisnosti obiljezja elemenata osnovnog skupa $H_1: ...r \neq 0$ $H_0: ...P_{ij} = P_{i^*} \cdot P_{*j}, \forall i \forall j$ $\chi^{*2} = \sum_{i} \sum_{j} \frac{(m_{ij} - e_{ij})^2}{e_{ij}} \qquad df = (r-1)(c-1)$ Interval prihvacanja: $0 \pm z \cdot Se(r)$ $e_{ij} = \frac{m_{i^*} \cdot m_{*j}}{n}$ $\chi^{*2} > \chi^2 => H_1$ $\chi^{*2} < \chi^2 => H_0$ $Se(r) = \sqrt{\frac{1}{r_0 - 1}}$ za veliki $Se(r) = \sqrt{\frac{1-\hat{r}^2}{r}}$ za mali Pearsonov koef. Kontingence: $C = \sqrt{\frac{\chi^2}{\chi^2 + \kappa}}$ v = n - 2

Analiza varijance s jednim	Analiza varijance sa dva promjenjiva	Koeficijent korelacije
promjenjivim faktorom	faktora	ranga
$H_0 : \sigma_A^2 = 0$	$H_0 : \sigma_A^2 = 0$ $H_0 : \sigma_B^2 = 0$	Spermanov koef. korelacije
$H_1:\sigma_A^2 \neq 0$	$H_1:\sigma_A^2 \neq 0$ $H_1:\sigma_B^2 \neq 0$	ranga:
$\bar{X}_{**} = \frac{n_1 \bar{x}_{*j1} + n_2 \bar{x}_{*j2} + \dots}{n_1 + n_2 + \dots}$	Ukupno: $\sum \sum (X_{ij} - \overline{X}_{**})^2 \nu = n-1$	$6\sum_{i=1}^{n}d_{i}^{2}$
	Izmedu redaka:	$r_s = 1 - \frac{i-1}{n^3 - n}$
Ukupno: $\sum_{i} \sum_{j} (X_{ij} - \bar{X}_{**})^2 \nu = n-1$	$\sum n_i (\overline{X}_{i^*} - \overline{X}_{**})^2 \nu = c - 1$	n-broj parova vrijednosti X i Y
Unutar uzoraka:	Izmedu stupaca:	A POLITICAL POLITICAL PROPERTY.
$\sum_{i} \sum_{j} (X_{ij} - \overline{X}_{*j})^2 \qquad v = n - k$	$\sum n_j (\overline{X}_{*j} - \overline{X}_{**})^2 \qquad \nu = k - 1$	$d_i^2 = (r_{xi} - r_{yi})^2, df = n - 2$
Izmedu uzoraka:	Ostatak:	10 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1
$\sum_{j} n_{j} (\bar{X}_{*j} - \bar{X}_{**})^{2} \cdot v = k - 1$	$\sum_{i} \sum_{j} (X_{ij} - \overline{X}_{*j} - \overline{X}_{i*} + -\overline{X}_{**})^{2}$	
$F^* = \frac{izmedu/(k-1)}{unutar/(n-k)} \qquad F^{\alpha}_{k-1,n-k}$	v = n - k - c + 1	15 × 170 0 × 180
unutar/(n-k)	$F_{A}^{*} = \frac{izmedu_redaka/(c-1)}{ostatak/(n-k-c+1)}$	
		1 (4.197
	$F_{B}^{*} = \frac{izmedu_stupaca/(k-1)}{ostatak/(n-k-c+1)}$	gr en gar
	osiaiak $/(n-k-c+1)$	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -