Rattrapage

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independants. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. Soit $(X_n)_{n\geqslant 1}$ un processus adapté et S,T deux temps d'arrêt (tout par rapport à une seule et même filtration $(\mathcal{F}_n)_{n\geqslant 0}$).

- a) Montrer que $\hat{T} = \inf\{n \ge 1 : X_n \ge 5\}$ est un temps d'arrêt .
- b) Montrer que $T' = T \mathbb{I}_{T \leq S} + S \mathbb{I}_{T \geq S}$ est un temps d'arrêt .
- c) Donner la définition de la tribu \mathcal{F}_T .
- d) Montrer que T et X_T sont \mathcal{F}_T -mesurables.
- e) Donner un exemple pour montrer que en général $S' = \mathbb{I}_{S\geqslant 1}(S-1)$ n'est pas un temps d'arrêt .

Exercice 2. On suppose la situation suivante: dans un jeux à quiz on doit répondre à N questions différentes, une réponse correcte à la question i-éme rapporte un gain $R_i > 0$ fixé a-priori. On se donne aussi un modèle probabiliste de notre capacité à donner les réponses correctes: on suppose que la probabilité de donner la réponse correcte à la i-éme question est $p_i \in]0,1[$ et que les réponses sont toutes indépendantes. Le jeux termine à la première réponse erroné et à ce moment on gagne la somme des gains des réponses correctes déjà données. On a la possibilité de choisir la séquence de questions. Notre but sera de déterminer une séquence optimale de questions pour maximiser notre gain moyen.

On considère donc une chaîne de Markov contrôlée $(X_n)_{n\geqslant 0}$ sur l'espace $M=\mathcal{P}(\llbracket N \rrbracket)$ des parties de l'ensemble $\llbracket N \rrbracket = \{1,...,N\}$ qui représentent les questions qui restent à répondre à un certain instant de temps. Pour formaliser le problème dans le cadre étudié dans le cours on prend comme espace des actions \mathcal{A} l'ensemble $\llbracket N \rrbracket$ des choix possibles des différentes questions (sans considérer si la question a été déjà répondue ou pas) et on considère la fonction de transition homogène $P: \mathcal{A} \times M \to \Pi(M)$ suivante

$$P_{i}(x,y) = \begin{cases} p_{i} & \text{si } x = y \cup \{i\} \\ 1 - p_{i} & \text{si } i \in x \text{ et } y = \emptyset \\ 1 & \text{si } i \notin x \text{ et } y = \emptyset \\ 1 & \text{si } x, y = \emptyset \end{cases} \text{ pour tout } i \in \mathcal{A} \text{ et tout } x, y \in M.$$

On rappelle que $P_i(x, y)$ est la probabilité que, une fois choisie l'action *i*-éme on passe de l'état x à l'état y. Comme d'habitude on dénote aussi

$$V^{u}(x) = \mathbb{E}_{(0,x)}[\sum_{n \geqslant 0} c(X_n, U_n)], \qquad V(x) = \sup_{u \in \mathcal{C}_0} V^{u}(x)$$

la fonction valeur du problème de contrôle. La fonction $c: M \times \mathcal{A} \to \mathbb{R} \cup \{-\infty\}$ est donnée par

$$c(x,i) = \begin{cases} R_i & \text{si } i \in x \\ 0 & \text{si } x = \emptyset \\ -\infty & \text{si } i \notin x \end{cases}$$

Notre but est de donc de calculer $V(\llbracket N \rrbracket)$.

- a) Donner une explication intuitive de la forme des fonctions P, c, V(x) et $V^{u}(x)$ et leur lien avec le problème à résoudre.
- b) Donner la valeur de $V(\emptyset)$, $V(\{i\})$ et $V(\{i,j\})$ pour tout $i,j \in [N]$.
- c) En utilisant l'équation de Bellman montrer que V satisfait l'équation

$$V(x) = \max_{i \in x} \left(p_i R_i + p_i V(x \setminus \{i\}) \right) \tag{1}$$

pour tout x de cardinalité au moins 1. Ici $x \setminus z = \{j \in x : j \notin z\}$.

- d) Expliquer comment à partir de V on peut déterminer une politique markovienne optimale $u: M \to \mathcal{A}$.
- e) En iterant une fois l'équation (1) on obtient que

$$V(x) = \max_{i \in x, j \in x, j \neq i} (p_i R_i + p_j p_i R_j + p_i p_j V(x \setminus \{i, j\}))$$

pour tout x de cardinalité au moins 2. En déduire que une suite optimale i_1^* , ..., i_N^* de questions doit satisfaire l'équation

$$\frac{p_{i_k^{\star}} R_{i_k^{\star}}}{1 - p_{i_k^{\star}}} \geqslant \frac{p_{i_{k+1}^{\star}} R_{i_{k+1}^{\star}}}{1 - p_{i_{k+1}^{\star}}}$$

et donc que les questions doivent être ordonné en suite décroissante par rapport à la valeur de la quantité $p_i R_i/(1-p_i)$. [Sugg: comparer la valeur de la stratégie optimale i_1^{\star} , i_1^{\star} , i_2^{\star} ..., i_N^{\star} avec la stratégie i_2^{\star} , i_1^{\star} , ..., i_N^{\star} où on a inversé les deux premiers questions].