Centro de Enseñanza Técnica Industrial Inteligencia Artificial

6°E1 Victor Abel Moreno Magaña 21110345

¿Qué es el algoritmo de Dijkstra?

El algoritmo de Dijkstra es un algoritmo utilizado en teoría de grafos y en ciencias de la computación para encontrar el camino más corto entre un nodo de inicio (o fuente) y todos los demás nodos en un grafo ponderado con pesos no negativos. Fue desarrollado por el científico de la computación holandés Edsger W. Dijkstra en 1956.

¿Para qué sirve el algoritmo de Dijkstra?

El algoritmo de Dijkstra se utiliza en una amplia gama de aplicaciones, que incluyen:

- Redes de transporte y logística: El algoritmo de Dijkstra se utiliza para calcular las rutas más cortas en redes de carreteras, ferrocarriles o vuelos. Las empresas de transporte y logística pueden utilizarlo para optimizar rutas de entrega o planificar itinerarios eficientes.
- Redes de comunicación: En el diseño y gestión de redes de comunicación, como Internet o redes telefónicas, el algoritmo de Dijkstra puede ayudar a encontrar las rutas más eficientes para transmitir datos o comunicaciones.
- **Sistemas de navegación**: Las aplicaciones de navegación, como los sistemas GPS, utilizan el algoritmo de Dijkstra para calcular las rutas más cortas y rápidas entre ubicaciones.
- **Diseño de circuitos integrados**: En la electrónica digital, el algoritmo de Dijkstra se utiliza en el diseño de circuitos integrados para optimizar las conexiones entre componentes en un chip, minimizando las distancias y retrasos.
- **Optimización en operaciones**: En la gestión de operaciones y la planificación de proyectos, el algoritmo de Dijkstra puede ser utilizado para encontrar la secuencia más corta de tareas o actividades.
- Redes sociales y análisis de grafos: En el análisis de redes sociales y otros tipos de análisis de grafos, el algoritmo de Dijkstra puede ser utilizado para encontrar la distancia o influencia entre nodos en una red.
- **Problemas de enrutamiento en general**: Cualquier problema que implique encontrar el camino más corto o la distancia mínima en un grafo ponderado con pesos no negativos puede beneficiarse del uso del algoritmo de Dijkstra.

¿Cómo se implementa el algoritmo de Dijkstra en el mundo?

El algoritmo de Dijkstra se implementa en una amplia gama de productos y servicios, que incluyen:

- **Sistemas de Navegación GPS**: Las aplicaciones de navegación, como Google Maps, Waze y sistemas GPS de automóviles, implementan el algoritmo de Dijkstra para encontrar rutas óptimas entre ubicaciones. Los conductores utilizan estas aplicaciones para recibir indicaciones precisas y rutas más cortas.
- Redes de Transporte Público: Las redes de transporte público, como sistemas de metro, autobuses y trenes, utilizan el algoritmo de Dijkstra para calcular las rutas más eficientes para los pasajeros, minimizando el tiempo de viaje y las transferencias.
- Ruteo en Redes de Computadoras: En el ámbito de las redes informáticas, los routers y switches pueden utilizar versiones adaptadas del algoritmo de Dijkstra, como el algoritmo OSPF (Open Shortest Path First), para determinar las rutas más cortas para el flujo de datos a través de una red.
- **Diseño de Circuitos Electrónicos**: En la industria de la electrónica, se puede utilizar el algoritmo de Dijkstra en el diseño de circuitos integrados para optimizar las conexiones entre componentes y minimizar las distancias entre ellos.
- Planificación de Rutas en Entornos Logísticos: Empresas de logística y transporte utilizan el algoritmo de Dijkstra para planificar rutas de entrega eficientes, lo que puede reducir costos y tiempos de entrega.
- **Optimización de Operaciones**: En operaciones y gestión de proyectos, el algoritmo de Dijkstra se utiliza para planificar tareas y actividades de manera eficiente, minimizando costos y tiempos de ejecución.
- Redes Sociales y Análisis de Datos: En el análisis de redes sociales y en el procesamiento de grandes conjuntos de datos, el algoritmo de Dijkstra se utiliza para calcular la distancia o la influencia entre nodos en una red.

¿Cómo implementaría el algoritmo de Dijkstra en mi vida?

Podría implementar el algoritmo para encontrar la ruta de camiones más eficiente de un lugar a otro y cuánto costaría.

¿Cómo implementaría el algoritmo de Dijkstra en mi trabajo o en mi trabajo de ensueño?

Podría implementar el algoritmo para encontrar el mejor camino para la entrega de baquetas

En mi trabajo de ensueño, podría utilizar el algoritmo de Dijkstra para ayudar a las personas a encontrar el camino más corto para acceder a servicios esenciales, como atención médica o educación.

Código

```
⊟def dijkstra(graph, start):
     distances = {node: float('inf') for node in graph}
     distances[start] = 0
     previous_nodes = {}
priority_queue = [(0, start)]
         current_distance, current_node = heapq.heappop(priority_queue)
         if current_distance > distances[current_node]:
         for neighbor, weight in graph[current_node].items():
             distance = current_distance + weight
              if distance < distances[neighbor]:</pre>
                 distances[neighbor] = distance
                  previous_nodes[neighbor] = current_node
heapq.heappush(priority_queue, (distance, neighbor))
     return distances, previous_nodes
def shortest_path(graph, start, end):
     distances, previous_nodes = dijkstra(graph, start)
     path = []
     while end:
        path.insert(0, end)
         end = previous_nodes.get(end)
     return path
```

```
graph = {
    'A': {'B': 1, 'C': 4},
    'B': {'A': 1, 'C': 2, 'D': 5},
    'C': {'A': 4, 'B': 2, 'D': 1},
    'D': {'B': 5, 'C': 1}
}

start_node = 'A'
end_node = 'D'
distances, previous_nodes = dijkstra(graph, start_node)

current_node = end_node

while current_node:
    print(f'Nodo actual: {current_node}, Distancia desde {start_node}: {distances[current_node]}')
    current_node = previous_nodes.get(current_node)

print(f'Camino mas corto desde {start_node} a {end_node}: {shortest_path(graph, start_node, end_node)}')
```

```
Nodo actual: D, Distancia desde A: 4

Nodo actual: C, Distancia desde A: 3

Nodo actual: B, Distancia desde A: 1

Nodo actual: A, Distancia desde A: 0

Camino mas corto desde A a D: ['A', 'B', 'C', 'D']

Press any key to continue . . . _
```

https://github.com/VictorM8464/-6-E1 21110345 PR3.git?authuser=1

Bibliografía

Navone, E. C. (2023). Algoritmo de la ruta más corta de Dijkstra - Introducción gráfica y detallada. freeCodeCamp.org.

https://www.freecodecamp.org/espanol/news/algoritmo- IA Zapopan, Jal. México domingo, 22 de octubre de 2023 3

de-la-ruta-mas-corta-de-dijkstra-introducciongrafica/#:~:text=El%20algoritmo %20de%20Dijkstra%20encuentra,los%20dem%C3%A

1s%20nodos%20del%20grafo