# DistilBERT – Paper Presentation

George Tzannetos

### Introduction

Huge progress in NLP → main key is applying general pre-trained language representation model in the downstream tasks



Feature-based → like ELMo, task specific architectures, include pretrained representations as additional features

Fine tuning → GPT, **BERT**, minimal task specific parameters, fine tune all pre-trained parameters on each task

#### **BERT**

BERT (**Bidirectional** Encoder Representations from **Transformer**)  $\rightarrow$  was introduced after ELMo and GPT and outperforms them

- use of *transformer* network and *bidirectionality* 

Transformer based architecture

Global dependencies are drawn via self-attention mechanisms

What is a transformer?

#### Transformer – Self Attention

- Stacked encoder 

  multi-head attention + feed forward
- Stacked decoder → masked multi-head attention + multi-head attention + feed forward
- Residual connections

#### What is self-attention?

<u>Idea</u>: allow the inputs to interact with itself and find who they should pay more attention to

query Q, key K, value V → abstractions introduced to calculate attention



### Self Attention



X → embedding of inputs packed

 $W^Q, W^K, W^V \rightarrow$  Weight matrices that are trained



Shows how much focus we should place on other parts of the sentence as we encode a word at a certain position

## Transformer(2)

Helps determine position of each word, or distance between words in a seq

Positional encoding  $\rightarrow$  vector added in the embedding

Multi-head attention → expands model's ability to focus on different positions

8 attentions heads → procedure similar as explained, different Q,K,V for each head

*Bidirectional* encoder → each word is encoded using previous and next context

#### **Decoder Side**

- Similar components and structure

- Differences

Self-attention allowed to "see" only earlier positions of the output → masked future positions with -inf

Keys and Values from the output of the encoder stack forwarded in the decoder's attention



Output

Probabilities

Softmax

 $BERT(2) \rightarrow$  a Transformer Encoder stack



Problem

Since bidirectional → would be possible for the words to "see itself" in a multilayer context

*Trick* → introduced the **masked language model** 

Pre-Training → 2 novel unsupervised prediction tasks used

2. Next sentence prediction

1. Masked LM prediction

15 % of words are masked

Learns to handle relations between multiple sentences

Fuses left and right context

## BERT(3) – Fine Tuning

Pretrained on these 2 tasks  $\rightarrow$  all parameters are fine-tuned using labeled data for the downstream tasks



Pre-training

- Unified architecture
- Same parameters for initialization
- Only output layer is task specific

Fine-Tuning

## DistilBERT - Paper

Great progress in NLP

BERT

roberta

Bigger Models → billions of parameters

Larger Datasets → GBs of text

Computational and memory requirements

والمناورة والمراورة

Hard to adopt to production + deploy solutions on device

No energy efficient → GPU servers necessary → environmental cost

### Goal

Reduce size of models, with retaining the performance Weight pruning

quantization

**Distillation** 

Knowledge distillation → compression technique, where a small model(student) is trained to reproduce the behavior of a larger(teacher)one, or of an ensemble)

## Knowledge Distillation

Exploit network's "dark knowledge"

We consider the teacher's full **output probability distribution** 

Instead of training over **hard targets**(one hot encoding ground truth)

Train over the **soft targets** 

$$p_i = \frac{\exp(^{Z_i}/_T)}{\sum j \exp(^{Z_i}/_T)}$$
 Temperature-softmax introduced from Hinton  $\rightarrow$  softens probabilities more

Distillation → similar to label smoothing, making model less overconfident

[4] Distilling the Knowledge in a Neural Network, Hinton, Vinyals and Dean

## Training

Loss → distillation loss + supervised training loss

Masked language modelling loss + cosine embedding loss

#### Architecture of student Identical with BERT

# of layers reduced by a factor of 2, token-type embeddings + pooler are removed  $\rightarrow$  parameters are halved

**Initialization** of weights of DistilBERT  $\rightarrow$  from the teacher, taking one layer out of two

Both have common hidden size

Improvements over BERT: Dynamic masking, gradient accumulation, w/o next sentence prediction

## Experiments

General Language Understanding Evaluation

→ contains 9 tasks to eval NLU

Model's performance is compared at the **GLUE** benchmark

| Model            | Score | CoLA | MNLI | MRPC | QNLI | QQP  | RTE  | SST-2 | STS-B | WNLI |
|------------------|-------|------|------|------|------|------|------|-------|-------|------|
| ELMo             | 68.7  | 44.1 | 68.6 | 76.6 | 71.1 | 86.2 | 53.4 | 91.5  | 70.4  | 56.3 |
| <b>BERT-base</b> | 79.5  | 56.3 | 86.7 | 88.6 | 91.8 | 89.6 | 69.3 | 92.7  | 89.0  | 53.5 |
| DistilBERT       | 77.0  | 51.3 | 82.2 | 87.5 | 89.2 | 88.5 | 59.9 | 91.3  | 86.9  | 56.3 |

Compared with ELMO and BERT-base(teacher)  $\rightarrow$  better than ELMO, 97% of BERT performance - 40% fewer parameters

Size of model weights → ~200MB

Speed → 60% faster than BERT

## Experiments(2)

| Model             | IMDb (acc.) | SQuAD<br>(EM/F1) |  |  |
|-------------------|-------------|------------------|--|--|
| BERT-base         | 93.46       | 81.2/88.5        |  |  |
| <b>DistilBERT</b> | 92.82       | 77.7/85.8        |  |  |
| DistilBERT (D)    | -           | 79.1/86.9        |  |  |

Comparable performance on 2 downstream tasks

IMDB sentiment classification, question answering

#### **Ablation Study** → wrt triple loss and weight initialization

| Ablation                                    | Variation on GLUE macro-score |
|---------------------------------------------|-------------------------------|
| $\emptyset$ - $L_{cos}$ - $L_{mlm}$         | -2.96                         |
| $L_{ce}$ - $\emptyset$ - $L_{mlm}$          | -1.46                         |
| $L_{ce}$ - $L_{cos}$ - $\emptyset$          | -0.31                         |
| Triple loss + random weights initialization | -3.69                         |

Masked Language loss has the smaller impact in performance

#### Conclusion

- A general purpose pre-training distillation rather than a task-specific one
- 40% smaller and 60% faster than BERT
- Retains the 97% of BERT's performance on GLUE benchmark
- Outperforms ELMO on GLUE
- Tricks from roBERTa where used
- Comparable performance with BERT on downstream tasks
- Plausible for edge applications