

Lecture slides by Kevin Wayne

LINEAR PROGRAMMING II

- ▶ LP duality
- strong duality theorem
- bonus proof of LP duality
- applications

LINEAR PROGRAMMING II

- ▶ LP duality
- Strong duality theorem
- ▶ Bonus proof of LP duality
- Applications

Primal problem.

(P) max
$$13A + 23B$$

s.t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A + B \ge 0$

Goal. Find a lower bound on optimal value.

Easy. Any feasible solution provides one.

Ex 1.
$$(A, B) = (34, 0) \implies z^* \ge 442$$

Ex 2.
$$(A, B) = (0, 32) \implies z^* \ge 736$$

Ex 3.
$$(A, B) = (7.5, 29.5) \implies z^* \ge 776$$

Ex 4.
$$(A, B) = (12, 28) \Rightarrow z^* \ge 800$$

Primal problem.

(P) max
$$13A + 23B$$

s.t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A + B \ge 0$

Goal. Find an upper bound on optimal value.

Ex 1. Multiply 2^{nd} inequality by 6: $24 A + 24 B \le 960$.

$$\Rightarrow z^* = 13 \underbrace{A + 23 B}_{\text{objective function}} \le 24 \underbrace{A + 24 B}_{\text{objective function}} \le 960.$$

Primal problem.

(P) max
$$13A + 23B$$

s.t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A + B \ge 0$

Goal. Find an upper bound on optimal value.

Ex 2. Add 2 times 1st inequality to 2nd inequality:

$$\Rightarrow$$
 $z^* = 13 A + 23 B \le 14 A + 34 B \le 1120.$

Primal problem.

(P) max
$$13A + 23B$$

s.t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A + B \ge 0$

Goal. Find an upper bound on optimal value.

Ex 2. Add 1 times 1st inequality to 2 times 2nd inequality:

$$\Rightarrow$$
 $z^* = 13 A + 23 B \le 13 A + 23 B \le 800.$

Recall lower bound. $(A, B) = (34, 0) \implies z^* \ge 442$ Combine upper and lower bounds: $z^* = 800$.

Primal problem.

(P) max
$$13A + 23B$$

s.t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A + B \ge 0$

Idea. Add nonnegative combination (C, H, M) of the constraints s.t.

$$13A + 23B \le (5C + 4H + 35M) A + (15C + 4H + 20M) B$$

 $\le 480C + 160H + 1190M$

Dual problem. Find best such upper bound.

(D) min
$$480C + 160H + 1190M$$

s.t. $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 $C + H + M \ge 0$

LP duality: economic interpretation

Brewer: find optimal mix of beer and ale to maximize profits.

(P)
$$\max 13A + 23B$$

s.t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A , B \ge 0$

Entrepreneur: buy individual resources from brewer at min cost.

- C, H, M = unit price for corn, hops, malt.
- Brewer won't agree to sell resources if 5C + 4H + 35M < 13.

(D) min
$$480C + 160H + 1190M$$

s.t. $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 $C + H + M \ge 0$

LP duals

Canonical form.

(P)
$$\max c^T x$$

s.t. $Ax \le b$
 $x \ge 0$

(D)
$$\min y^T b$$

s. t. $A^T y \ge c$
 $y \ge 0$

Double dual

Canonical form.

(P)
$$\max c^T x$$

s. t. $Ax \le b$
 $x \ge 0$

(D)
$$\min y^T b$$

s. t. $A^T y \ge c$
 $y \ge 0$

Property. The dual of the dual is the primal.

Pf. Rewrite (D) as a maximization problem in canonical form; take dual.

(D')
$$\max -y^T b$$

s.t. $-A^T y \le -c$
 $y \ge 0$

(DD) min
$$-c^T z$$

s.t. $-(A^T)^T z \ge -b$
 $z \ge 0$

Taking duals

LP dual recipe.

Primal (P)	maximize
constraints	$a x = b_i$ $a x \le b$ $a x \ge b_i$
variables	$x_j \ge 0$ $x_j \le 0$ unrestricted

minimize	Dual (D)
y_i unrestricted $y_i \ge 0$ $y_i \le 0$	variables
$a^{T}y \ge c_{j}$ $a^{T}y \le c_{j}$ $a^{T}y = c_{j}$	constraints

Pf. Rewrite LP in standard form and take dual.

LINEAR PROGRAMMING II

- ▶ LP duality
- strong duality theorem
- bonus proof of LP duality
- applications

LP strong duality

Theorem. [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947]

For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, if (P) and (D) are nonempty, then max = min.

(P)
$$\max c^T x$$

s.t. $Ax \le b$
 $x \ge 0$

(D)
$$\min y^T b$$

s.t. $A^T y \ge c$
 $y \ge 0$

Generalizes:

- Dilworth's theorem.
- König–Egervary theorem.
- Max-flow min-cut theorem.
- · von Neumann's minimax theorem.
- ...

Pf. [ahead]

LP weak duality

Theorem. For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, if (P) and (D) are nonempty, then max \leq min.

(P)
$$\max c^T x$$

s. t. $Ax \le b$
 $x \ge 0$

(D)
$$\min y^T b$$

s. t. $A^T y \ge c$
 $y \ge 0$

Pf. Suppose $x \in \Re^m$ is feasible for (P) and $y \in \Re^n$ is feasible for (D).

- $y \ge 0$, $Ax \le b$ $\Rightarrow y^T Ax \le y^T b$
- $x \ge 0$, $A^T y \ge c$ \Rightarrow $y^T A x \ge c^T x$
- Combine: $c^Tx \le y^TAx \le y^Tb$.

Projection lemma

Weierstrass' theorem. Let X be a compact set, and let f(x) be a continuous function on X. Then min $\{f(x):x\in X\}$ exists.

Projection lemma. Let $X \subset \Re^m$ be a nonempty closed convex set, and let $y \notin X$. Then there exists $x^* \in X$ with minimum distance from y.

Moreover, for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

obtuse angle

Projection lemma

Weierstrass' theorem. Let X be a compact set, and let f(x) be a continuous function on X. Then min $\{f(x):x\in X\}$ exists.

Projection lemma. Let $X \subset \Re^m$ be a nonempty closed convex set, and let $y \notin X$. Then there exists $x^* \in X$ with minimum distance from y. Moreover, for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

Pf.

- Define f(x) = ||y x||.
- Want to apply Weierstrass, but X not necessarily bounded.
- $X \neq \emptyset \Rightarrow$ there exists $x' \in X$.
- Define $X' = \{ x \in X : ||y x|| \le ||y x'|| \}$ so that X' is closed, bounded, and $\min \{ f(x) : x \in X \} = \min \{ f(x) : x \in X' \}.$
- By Weierstrass, min exists.

 \boldsymbol{X}

Projection lemma

Weierstrass' theorem. Let X be a compact set, and let f(x) be a continuous function on X. Then min $\{f(x):x\in X\}$ exists.

Projection lemma. Let $X \subset \Re^m$ be a nonempty closed convex set, and let $y \notin X$. Then there exists $x^* \in X$ with minimum distance from y. Moreover, for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

Pf.

- x^* min distance $\Rightarrow ||y-x^*||^2 \le ||y-x||^2$ for all $x \in X$.
- By convexity: if $x \in X$, then $x^* + \varepsilon (x x^*) \in X$ for all $0 < \varepsilon < 1$.
- $||y x^*||^2 \le ||y x^* \varepsilon(x x^*)||^2$ = $||y - x^*||^2 + \varepsilon^2 ||(x - x^*)||^2 - 2\varepsilon(y - x^*)^T(x - x^*)$
- Thus, $(y x^*)^T (x x^*) \le \frac{1}{2} \varepsilon ||(x x^*)||^2$.
- Letting $\varepsilon \to 0^+$, we obtain the desired result. \blacksquare

Separating hyperplane theorem

Theorem. Let $X \subset \Re^m$ be a nonempty closed convex set, and let $y \notin X$. Then there exists a hyperplane $H = \{ x \in \Re^m : a^Tx = \alpha \}$ where $a \in \Re^m$, $\alpha \in \Re$ that separates y from X.

Pf.

- Let x^* be closest point in X to y.
- By projection lemma, $(y-x^*)^T(x-x^*) \le 0$ for all $x \in X$
- Choose $a = x^* y \neq 0$ and $\alpha = a^T x^*$.
- If $x \in X$, then $a^{T}(x x^{*}) \ge 0$; thus $\Rightarrow a^{T}x \ge a^{T}x^{*} = \alpha$.
- Also, $a^{T}y = a^{T}(x^{*} a) = \alpha ||a||^{2} < \alpha$

$$H = \{ x \in \Re^m : a^T x = \alpha \}$$

Farkas' lemma

Theorem. For $A \in \Re^{m \times n}$, $b \in \Re^m$ exactly one of the following two systems holds:

(I)
$$\exists x \in \Re^n$$

s.t. $Ax = b$
 $x \ge 0$

(II)
$$\exists y \in \Re^m$$

s.t. $A^T y \ge 0$
 $y^T b < 0$

Pf. [not both] Suppose x satisfies (I) and y satisfies (II). Then $0 > y^Tb = y^TAx \ge 0$, a contradiction.

Pf. [at least one] Suppose (I) infeasible. We will show (II) feasible.

- Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.
- Let $y \in \Re^m$, $\alpha \in \Re$ be a hyperplane that separates b from S: $y^Tb < \alpha$, $y^Ts \ge \alpha$ for all $s \in S$.
- $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^{T}b < 0$
- $y^TAx \ge \alpha$ for all $x \ge 0 \Rightarrow y^TA \ge 0$ since x can be arbitrarily large. •

Another theorem of the alternative

Corollary. For $A \in \Re^{m \times n}$, $b \in \Re^m$ exactly one of the following two systems holds:

(I)
$$\exists x \in \Re^n$$

s.t. $Ax \leq b$
 $x \geq 0$

(II)
$$\exists y \in \Re^m$$

s.t. $A^T y \ge 0$
 $y^T b < 0$
 $y \ge 0$

Pf. Apply Farkas' lemma to:

(I')
$$\exists x \in \Re^n, s \in \Re^m$$

s.t. $Ax + Is = b$
 $x, s \ge 0$

(II')
$$\exists y \in \Re^m$$

s.t. $A^T y \ge 0$
 $I y \ge 0$
 $y^T b < 0$

LP strong duality

Theorem. [strong duality] For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, if (P) and (D) are nonempty then max = min.

(P)
$$\max c^T x$$

s. t. $Ax \le b$
 $x \ge 0$

(D)
$$\min y^T b$$

s.t. $A^T y \ge c$
 $y \ge 0$

- Pf. [max ≤ min] Weak LP duality.
- Pf. [min \leq max] Suppose max $< \alpha$. We show min $< \alpha$.

(I)
$$\exists x \in \Re^n$$

s.t. $Ax \leq b$
 $-c^T x \leq -\alpha$
 $x \geq 0$

(II)
$$\exists y \in \Re^m, z \in \Re$$

s.t. $A^T y - c z \ge 0$
 $y^T b - \alpha z < 0$
 $y, z \ge 0$

• By definition of α , (I) infeasible \Rightarrow (II) feasible by Farkas' corollary.

LP strong duality

(II)
$$\exists y \in \Re^m, z \in \Re$$

s.t. $A^T y - cz \ge 0$
 $y^T b - \alpha z < 0$
 $y,z \ge 0$

Let y, z be a solution to (II).

Case 1. [z = 0]

- Then, $\{y \in \Re^m : A^T y \ge 0, y^T b < 0, y \ge 0\}$ is feasible.
- Farkas Corollary $\Rightarrow \{x \in \Re^n : Ax \le b, x \ge 0\}$ is infeasible.
- Contradiction since by assumption (P) is nonempty.

Case 2. [z > 0]

- Scale y, z so that y satisfies (II) and z = 1.
- Resulting y feasible to (D) and $y^Tb < \alpha$.

LINEAR PROGRAMMING II

- ▶ LP duality
- strong duality theorem
- bonus proof of LP duality
- applications

Strong duality theorem

Theorem. For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, if (P) and (D) are nonempty, then max = min.

(P)
$$\max c^T x$$

s.t. $Ax = b$
 $x \ge 0$

(D)
$$\min y^T b$$

s. t. $A^T y \ge c$

Review: simplex tableaux

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

initial tableaux

Primal solution. $x_B = A_{B^{-1}}b \ge 0$, $x_N = 0$ Optimal basis. $c_N^T - c_B^T A_{B^{-1}} A_N \le 0$

Simplex tableaux: dual solution

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

initial tableaux

subtract
$$c_B^T A_{B^{-1}}$$
 times constraints
$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$I x_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B , x_N \ge 0$$
tableaux corresponding to basis B

tableaux corresponding to basis B

multiply by A_{B}^{-1}

Primal solution. $x_B = A_{B^{-1}}b \ge 0$, $x_N = 0$

Optimal basis. $c_N^T - c_B^T A_{B^{-1}} A_N \le 0$

Dual solution. $y^T = c^T_B A_B^{-1}$

$$y^T = c^T{}_B A_B^{-1}$$

$$y^{T}b = c_{B}^{T} A_{B}^{-1} b$$

$$= c_{B}^{T} x_{B} + c_{B}^{T} x_{B}$$

$$= c^{T} x$$

 $min \leq max$

$$y^{T} A = \begin{bmatrix} y^{T} A_{B} & y^{T} A_{N} \end{bmatrix}$$

$$= \begin{bmatrix} c_{B}^{T} A_{B}^{-1} A_{B} & c_{B}^{T} A_{B}^{-1} A_{N} \end{bmatrix}$$

$$= \begin{bmatrix} c_{B}^{T} & c_{B}^{T} A_{B}^{-1} A_{N} \end{bmatrix}$$

$$\geq \begin{bmatrix} c_{B}^{T} & c_{N}^{T} \end{bmatrix}$$

$$= c^{T} \qquad \text{dual feasible}$$

Simplex algorithm: LP duality

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

initial tableaux

Primal solution.
$$x_B = A_{B^{-1}}b \ge 0, x_N = 0$$

Optimal basis. $c_N^T - c_B^T A_{B^{-1}}A_N \le 0$
Dual solution. $y^T = c^T_B A_{B^{-1}}$

Simplex algorithm yields constructive proof of LP duality.

LINEAR PROGRAMMING II

- ▶ LP duality
- strong duality theorem
- alternate proof of LP duality
- applications

LP duality: economic interpretation

Brewer: find optimal mix of beer and ale to maximize profits.

(P)
$$\max 13A + 23B$$

s.t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A , B \ge 0$

$$A^* = 12$$

 $B^* = 28$
 $OPT = 800$

Entrepreneur: buy individual resources from brewer at min cost.

(D) min
$$480C + 160H + 1190M$$

s.t. $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 $C , H , M \ge 0$

$$C^* = 1$$
 $H^* = 2$
 $M^* = 0$
 $OPT = 800$

LP duality: sensitivity analysis

- Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
- A. corn \$1, hops \$2, malt \$0.

- Q. Suppose a new product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?
- A. At least 2 (\$1) + 5 (\$2) + 24 (\$0) = \$12 / barrel.

LP is in NP \cap co-NP

LP. For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, $\alpha \in \Re$, does there exist $x \in \Re^n$ such that: Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Theorem. LP is in $NP \cap co-NP$. Pf.

- Already showed LP is in NP.
- If LP is infeasible, then apply Farkas' lemma to get certificate of infeasibility:

(II)
$$\exists y \in \mathbb{R}^m, z \in \mathbb{R}$$

s.t. $A^T y \ge 0$
 $y^T b - \alpha z < 0$
 $z \ge 0$ or equivalently,
 $y^T b - \alpha z = -1$