Breast Cancer Prediction using Machine Learning

EFFORTS BY:

ARYAMAN AGARWAL

APURV SHRIKANT TODKAR

VAASU GUPTA

KESAV REDDY

SIDDHARTH SHAILENDRA

- 16BCB0025

- 16BCB0048

- 16BCB0062

- 16BCB0100

- 16BCB0129

Introduction

- Machine learning is branch of Data Science which fuses an expansive arrangement of statistical strategies.
- These methods empower data scientists to make a model which can learn from past information and recognize patterns from huge, complex and noisy datasets
- Researchers use machine learning for disease expectation and visualization.
- Machine learning permits inferences or choices that generally can't be made utilizing regular measurable approaches.
- With vigorously validated machine learning model, odds of right analysis improve.
- ▶ It specially helps in interpretation of results for marginal cases.

Breast Cancer: A brief introduction

- ▶ The most common cancer in women around the world.
- ► The standard reason for death from cancer among women around the world.
- Early discovery is the best method to diminish deaths related to breast cancer.
- Early analysis requires an exact and dependable system to recognize between benign breast tumors from malignant ones
- Breast Cancer Types three types of breast tumors:
 - Benign breast tumors
 - ▶ In-situ cancers
 - Invasive cancers
- most of breast tumors detected by mammography are benign.

Breast Cancer: A brief introduction (continued)

- ▶ They are non-cancerous growths and can't spread outside of the breast to different organs.
- At times, it is hard to recognize certain benign masses from malignant lesions with mammography.
- If the malignant cells have not gone through the basal membrane but is completely contained in the lobule or the ducts, the cancer is called in-situ or noninvasive.
- If the cancer has gotten through the basal membrane and spread into the encompassing tissue, it is called invasive.
- ▶ This analysis assists in differentiating between benign and malignant tumors.

Data Source

- https://archive.ics.uci.edu/ml/d atasets/Breast+Cancer+Wiscons in+(Diagnostic)
- The data used is from University of Wisconsin.
- This breast cancer databases was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.

Breast Cancer Wisconsin (Diagnostic) Data Set

Download Data Folder Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	32	Date Donated	1995-11-01
Associated Tasks:	Classification	Missing Values?	No.	Number of Web Hits:	378305

Source:

Creators:

 Dr. William H. Wolberg, General Surgery Dept. University of Wisconsin, Clinical Sciences Center Madison, WI 53792

Literature Review

- O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear programming", SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18.
- William H. Wolberg and O.L. Mangasarian: "Multisurface method of pattern separation for medical diagnosis applied to breast cytology", Proceedings of the National Academy of Sciences, U.S.A., Volume 87, December 1990, pp 9193-9196.
- O. L. Mangasarian, R. Setiono, and W.H. Wolberg: "Pattern recognition via linear programming: Theory and application to medical diagnosis", in: "Large-scale numerical optimization", Thomas F. Coleman and Yuying Li, editors, SIAM Publications, Philadelphia 1990, pp 22-30.
- K. P. Bennett & O. L. Mangasarian: "Robust linear programming discrimination of two linearly inseparable sets", Optimization Methods and Software 1, 1992, 23-34 (Gordon & Breach Science Publishers).

Flow of data

Initial distribution of Data before split

- ➤ Number of Benign: 357
- ➤ Number of Malignant: 212

A boxplot of all the features

- > Here the Blue colour denotes Malignant.
- Orange colour denotes Benign

Swarm plot of the data

- ➤ It is useful for getting a categorical scatterplot with non-overlapping points.
- This gives a better representation of the distribution of values.

Method

Input Files

- wdbc.data
- breast-cancerwisconsin.data

Data Preparation

- ✓ Address missing data
- ✓ Training Testing –
 Validation data

Classifier Params.

- √ min_samples_leaf
- √ n_estimators
- √ min_samples_split
- √ max_features

Outputs

- Trained Classifier
- Predictions

Results

- > Data is divided into training and test set.
- > Test data has a total of 171 records.
- > Accuracy score is: 0.9532163742690059
- > Confusion matrix is as follows:

Conclusion

- > We were successfully able to train a model on Wisconsin dataset for breast cancer.
- > We used logistic regression in our model.
- > We used K-fold cross validation.
- > Random forest classifier was also used.
- > Decision Tree classifier was also used.
- ➤ Using all of the above tools we built a pipeline which helped us in achieving a high accuracy level of roughly 95%.
- For future work we could extend the classification using more concurrent features thus achieving even greater accuracy in our predictions.

Thank You