Chapter 21 Camera Interface (CIF)

21.1 Overview

The Camera interface, receives the data from Camera or CCIR656 encoder, and transfers the data into system main memory by AXI bus.

The features of camera interface are as follow:

- Support YCbCr422 input
- Support Raw8bit input
- Support CCIR656(PAL/NTSC) input
- Support JPEG input
- Support YCbCr422/420 output
- Support UYVY/VYUY/YUYV/YVYU configurable
- Support up to 8192x8192 resolution source
- Support picture in picture
- Support arbitrary size window crop
- Support error/terminate interrupt and combined interrupt output
- Support clk/vsync/href polarity configurable
- Support one frame stop/ping-pong mode

21.2 Block Diagram

Fig. 21-1CIF block diagram

The CIF comprises with:

- AHB Slave
 - Host configure the registers via the AHB Slave
- AXI Master
 - Transmit the data to chip memory via the AXI Master
- INTERFACE
 - Translate the input video data into the requisite data format
- CROP
 - Bypass or crop the source video data to a smaller size destination
- DMA
 - Control the operation of AXI Master

21.3 Function description

This chapter is used to illustrate the operational behavior of how CIF works. If YUV422 or ccir656 signal is received from external devices, CIF translate it into YUV422/420 data, and separate the data to Y and UV data, then store them to different memory via AXI bus separately. But if raw data is received, there are not any translations happened, the 8 data is considered as 16bit data and write directly to memory.

21.3.1 Support Vsync high active or low active

Vsync Low active as below

Vertical sensor timing (line by line)

Fig. 21-2 Timing diagram for CIF when vsync low active

Vsync High active

Fig. 21-3Timing diagram for CIF when vsync high active

21.3.2 Support href high active or low active

Href high active

Fig. 21-4Timing diagram for CIF when href high active

Href Low active

Fig. 21-5Timing diagram for CIF when href low active

Y first

Fig. 21-6Timing diagram for CIF when Y data first

U first

Fig. 21-7Timing diagram for CIF when U data first

21.3.3 Support CCIR656 (NTSC and PAL)

Fig. 21-8CCIR656 timing

21.3.4 Support Raw data(8-bit) or JPEG

Pixel Data Timing Example

CIF module can work in three modes: one frame stop mode, ping-pong mode.

One frame stop mode

In this mode, configure the parameter WORK MODE to one frame stop mode. After one frame captured, CIF will automatic stop. After capturing, the image Y, UV data will be stored at main memory location defined by CIF FRM0 ADDR Y, FRM0_ADDR_UV separately.

Ping-Pong mode

After one frame(F1) captured, CIF will start to capture the next frame(F2) automatically, and host must assign new address pointer of frame1 and clear the frame1 status, thus CIF will capture the third frame automatically(by new F1 address) without any stop and so on for the following frames. But if host did not update the frame buffer address, the CIF will cover the pre-frame data stored in the memory with the following frame data.

Storage

Difference between the YUV mode and raw mode is that in the YUV mode or ccir656 mode, data will be storage in the Y data buffer and UV data buffer; but in the raw or jpeg mode, RGB data will be storage in the same buffer. In addition, in the yuv mode, the width of Y, U or V data is a byte in memory; in Raw or JPEGE mode, the width is a halfword no matter the data source is 8 bit.

CROP

The parameter START_Y and START_X defines the coordinate of crop start point. And the frame size after cropping is following the value of SET_WIDTH and SET HEIGHT.

21.4 Register description

21.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
CIF_CIF_CTRL	0x0000	W	0x00007000	CIF control
CIF_CIF_INTEN	0x0004	W	0x00000000	CIF interrupt enable
CIF_CIF_INTSTAT	0x0008	W	0x00000000	CIF interrupt status
CIF_CIF_FOR	0x000c	W	0x00000000	CIF format
CIF_CIF_FRM0_ADDR_Y	0x0014	W	0x00000000	CIF frame0 y address
CIF_CIF_FRM0_ADDR_UV	0x0018	W	0x00000000	CIF frame0 uv address
CIF_CIF_FRM1_ADDR_Y	0x001c	W	0x00000000	CIF frame1 y address
CIF_CIF_FRM1_ADDR_UV	0x0020	W	0x00000000	CIF frame1 uv address
CIF_CIF_VIR_LINE_WIDTH	0x0024	W	0x00000000	CIF virtual line width
CIF_CIF_SET_SIZE	0x0028	W	0x01e002d0	CIF frame set size
CIF_CIF_CROP	0x0044	W	0x00000000	CIF crop start point
CIF_CIF_SCL_CTRL	0x0048	W	0x00000000	CIF scale control
CIF_CIF_FIFO_ENTRY	0x0054	W	0x00000000	CIF FIFO entry
CIF_CIF_FRAME_STATUS	0x0060	W	0x00000000	CIF frame status
CIF_CIF_CUR_DST	0x0064	W	0×00000000	CIF current destination address
CIF_CIF_LAST_LINE	0x0068	W	0×00000000	CIF last frame line number
CIF_CIF_LAST_PIX	0x006c		0x00000000	CIF last line pixel number

Notes:Size:B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

21.4.2 Detail Register Description

CIF_CIF_CTRL

Address: Operational Base + offset (0x0000)

CIF control

Bit	Attr	Reset Value	Description	
31:16	RO	0x0	reserved	
15:12	RW		AXI_BURST_TYPE axi master burst type 0-15: burst1~16	
11:3	RO	0x0	reserved	

Bit	Attr	Reset Value	Description
2:1	RW	0x0	WORK_MODE Working Mode 00-one frame stop mode 01-ping-pong mode 02-line loop mode
			03-reserved
0	RW	0×0	CAP_EN capture enable 0-disable 1-enable

CIF_CIF_INTEN

Address: Operational Base + offset (0x0004)

CIF interrupt enable

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
			BUS_ERR_EN
			bus error
6	RW	0x0	axi master or ahb slave response error
			0-disable
			1-enable
5:4	RO	0x0	reserved
			PIX_ERR_EN
			pixel err interrupt enable
3	RW	0x0	the pixel number of last line not equal to the
		O/CO	set height
			0-disable
			1-enable
		A 1	LINE_ERR_EN
		40>	line err interrupt enable
2	RW	0x0	the line number of last frame not equal to the
			set height
	A	1	0-disable
		7	1-enable LINE END EN
1	RW	0x0	line end interrupt enable 0-disable
			1-enable
1			FRAME_END_EN
	,		frame end interrupt enable
0	RW	0x0	after dma transfer the frame data
			0-disable
			1-enable
L	<u> </u>	l .	1=

CIF_CIF_INTSTAT

Address: Operational Base + offset (0x0008)

CIF interrupt status

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

0-no interrupt 1-interrupt

CIF_CIF_FOR

W1C

Address: Operational Base + offset (0x000c)

0x0

CIF format

0

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
			UV_STORE_ORDER
19	RW	0×0	UV storage order
19	KVV	UXU	0 - UVUV
			1 - VUVU
			RAW_END
18	RW	0x0	raw data endian
10	IVV	0.00	0 - little end
			1 - big end
			OUT_420_ORDER
			output 420 order
17	RW	0x0	00 - UV in the even line
			01 - UV in the odd line
			Note: The first line is even line(line 0).
			OUTPUT_420
16	RW	0x0	output 420 or 422
10	IV V V	UXU	0 - output is 422
			1 - output is 420
15:13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			RAW_WIDTH
12:11	RW	0x0	raw data width
			must be 2'b00.
			JPEG MODE
1.0	DIM	0 0	JPEG mode
10	RW	0x0	0 - other mode
			1 - mode1
			FIELD_ORDER
	DVV	00	ccir input order
9	RW	0x0	0-odd field first
			1-even field first
			IN_420_ORDER
			420 input order
8	RW	0x0	00 - UV in the even line
			01 - UV in the odd line
			Note: The first line is even line(line 0).
			INPUT_420
7	DW	0.40	input 420 or 422
7	RW	0x0	0 - 422
			1 - 420
			YUV_IN_ORDER
			YUV input order
6:5	RW	0x0	00 - UYVY
0.5	KVV	UXU	01 - YVYU
			10 - VYUY
			11 - YUYV
			INPUT_MODE
			input mode
			000 - YUV
		• ^	010 - PAL
4:2	RW	0x0	011 - NTSC
			100 - RAW
			101 - JPEG
			110 - MIPI
			Other - invalid
		Y	HREF_POL
1	RW	0x0	href input polarity
_			0-high active
			1-low active
			VSYNC_POL
0	RW	0x0	vsync input polarity
		VV OAU	0-;ow active
			1-high active

CIF_CIF_FRMO_ADDR_Y

Address: Operational Base + offset (0x0014)

CIF frame0 y address

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	FRM0_ADDR_Y frame0 y address

CIF_CIF_FRMO_ADDR_UV

Address: Operational Base + offset (0x0018)

CIF frame0 uv address

Bit	Attr	Reset Value	Description
31:0	RW		FRM0_ADDR_UV frame0 uv address

CIF_CIF_FRM1_ADDR_Y

Address: Operational Base + offset (0x001c)

CIF frame1 y address

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	FRM1_ADDR_Y frame1 y address

CIF_CIF_FRM1_ADDR_UV

Address: Operational Base + offset (0x0020)

CIF frame1 uv address

Bit	Attr	Reset Value	Description
31:0	RW		FRM1_ADDR_UV frame1 uv address

CIF_CIF_VIR_LINE_WIDTH

Address: Operational Base + offset (0x0024)

CIF virtual line width

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
14:0	RW	0x0000	VIR_LINE_WIDTH virtual line width

CIF CIF SET SIZE

Address: Operational Base + offset (0x0028)

CIF frame set size

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28:16	RW	0x01e0	SET_HEIGHT set height
15:13	RO	0x0	reserved
12:0	RW	0x02d0	SET_WIDTH set width

CIF_CIF_CROP

Address: Operational Base + offset (0x0044)

CIF crop start point

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28:16	RW	0x0000	START_Y start y point
15:13	RO	0x0	reserved
12:0	RW	0x0000	START_X start x point

CIF_CIF_SCL_CTRL

Address: Operational Base + offset (0x0048)

CIF scale control

Bit	Attr	Reset Value	Description	
31:6	RO	0x0	reserved	
		0x0	RAW_16B_BP	
5	RW		raw 16 bit bypass	
3	KVV		0-no bypass	
			1-bypass	
	RW	0x0	YUV_16B_BP	
4			YUV 16 bit bypass	
4			0-no bypass	
			1-bypass	
3:0	RO	0x0	reserved	

CIF_CIF_FIFO_ENTRY

Address: Operational Base + offset (0x0054)

CIF FIFO entry

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
			UV_FIFO_ENTRY
14:8	RW _	0x00	valid UV double word in FIFO
			write 0 clear
7	RO	0x0	reserved
()			Y_FIFO_ENTRY
6:0	RO	0x00	valid Y double word in FIFO
			write 0 clear

CIF_CIF_FRAME_STATUS

Address: Operational Base + offset (0x0060)

CIF frame status

Bit	Attr	Reset Value	set Value Description		
			FRAME_NUM		
31:16	RO	0x0000	complete frame number		
			write 0 to clear		
15:2	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			F1_STS
			frame 0 status
1	RO	0x0	0- frame 1 not ready
			1- frame 1 ready
			write 0 clear
			F0_STS
			frame 0 status
0	RO	0×0	0- frame 0 not ready
			1- frame 0 ready
			write 0 clear

CIF_CIF_CUR_DST

Address: Operational Base + offset (0x0064)

CIF current destination address

Bit	Attr	Reset Value	Description	
31:0	RO	0×00000000	CUR_DST current destination address maybe not the current, because the clock synchronization.	

CIF_CIF_LAST_LINE

Address: Operational Base + offset (0x0068)

CIF last frame line number

Bit	Attr	Reset Value	Description	
31:14	RO	0x0	reserved	
13:0	RO	0x0000	LAST_LINE_NUM line number of last frame	

CIF_CIF_LAST_PIX

Address: Operational Base + offset (0x006c)

CIF last line pixel number

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
14:0	RO		LAST_PIX_NUM pixel number of last line

21.5 Interface description

Module Pin	Direction	Pad Name	IOMUX Setting
cif_clkout	0	TS0clk_CIFclkout	GRF_CIFD_IOMUX1[6]==1'b0
cif_clkin	I	TS0valid_CIFclkin	GRF_CIFD_IOMUX1[4]==1'b0
cif_href	I	TS0err_CIFhref	GRF_CIFD_IOMUX1[2]==1'b0
cif_vsync	I	TS0sync_CIFvsync	GRF_CIFD_IOMUX1[0]==1'b0
cif_data0	I	TS0d0_CIFd0	GRF_CIFD_IOMUX[0]==1'b0
cif_data1	I	TS0d1_CIFd1	GRF_CIFD_IOMUX[2]==1'b0

cif_data2	I	TS0d2_CIFd2	GRF_CIFD_IOMUX[4]==1'b0
cif_data3	I	TS0d3_CIFd3	GRF_CIFD_IOMUX[6]==1'b0
cif_data4	I	TS0d4_CIFd4	GRF_CIFD_IOMUX[8]==1'b0
cif_data5	I	TS0d5_CIFd5	GRF_CIFD_IOMUX[10]==1'b0
cif_data6	I	TS0d6_CIFd6	GRF_CIFD_IOMUX[12]==1'b0
cif_data7	I	TS0d7_CIFd7	GRF_CIFD_IOMUX[14]==1'b0

21.6 Application Notes

The biggest configuration requirement of all operations is the CAP_EN bit must be set after all the mode selection is ready. The configuration order of the input/output data format, YUV order, the address, frame size/width, AXI burst length and other options do not need to care.

There are many debug registers to make it easy to read the internal operation information of CIF. The valid pixel number of scale result in FIFO can be known by read CIF_CIF_SCL_VALID_NUM. The line number of last frame and the pixel number of last line can be also known by read the CIF_CIF_LAST_LINE and CIF_CIF_LAST_PIX.