Homework 1

Computer Vision 2022 Spring

2022.3.8

Photometric Stereo

Normal Estimation

According to the reflection model, we suppose that the unknown normal vector \mathbf{n} and the intensity \mathbf{i} in the \mathbf{m}_{th} image at pixel (x,y) will satisfy the equation.

Kd is the coefficient of material, I is the "unit vector" of light vector

$$i_{x,y}^{(m)}=l_mK_d{\color{red}n}$$

Normal Estimation

Assume we have m images and image width is w and height is h

We can construct an over-determined linear system and slove it to get the normal vector of every pixel

Normal Estimation

Solving this equation through pseudo-inverse (or QR, SVD decomposition)

$$I = LK_d$$
 N $L^TI = L^TLK_d$ N K_d $N = (L^TL)^{-1}L^TI$

The result is KdN but we need "unit normal vector".

Fortunately for n(x,y), Kd(x,y) is a constant so we can directly apply vector normalization on KdN(x,y)

$$N=rac{K_dN}{||K_dN||}$$

Surface Reconstruction 1.

The surface z(x,y) near pixel $(\mathbf{x}^*,\mathbf{y}^*)$ can be approximated by the tangent plane:

$$n_1(x - x^*) + n_2(y - y^*) + n_3(z - z(x^*, y^*)) = 0$$
 (1)

where $(n_1, n_2, n_3)^T$ is the normal vector at (x^*, y^*) .

Surface Reconstruction 1.

The equation 1 can be rewritten as

$$z_{\text{approx}}(x,y) = \left(-\frac{\mathbf{n}_1}{\mathbf{n}_3}\right)x + \left(-\frac{\mathbf{n}_2}{\mathbf{n}_3}\right)y + \text{constant}$$

We can reconstruct the surface $\tilde{z}(x,y)$ as we know the gradient of $z_{\rm approx}$ at each pixel, for example, by

$$\tilde{z}(x,y) = \sum_{i=0}^{x-1} \left. \frac{\partial z_{\text{approx}}}{\partial x} \right|_{(i,0)} + \sum_{j=0}^{y-1} \left. \frac{\partial z_{\text{approx}}}{\partial y} \right|_{(x,j)}$$

Surface Reconstruction 1.

- Other Tips
 - You may need to use some method such like integral from different direction or begining at different initial point and average those result to let surface more smooth

• Sanity Check
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$$

Surface Reconstruction 2.

The Normal n must be orthogonal to the vector v1 & v2

Reference:

https://pages.cs.wisc.edu/~csverma/CS766 09/Stereo/stereo.html

Surface Reconstruction 2.

• We can use this two equations of every pixels to construct a linear system Mz=VM may be a big sparse matrix (Let image size S = image width * image height)

$$egin{split} z_{x+1,y} - z_{x,y} &= -rac{n_x}{n_z} \ z_{x,y+1} - z_{x,y} &= -rac{n_y}{n_z} \end{split}$$

 $M^T M z = M^T V$ $z=(M^TM)^{-1}M^TV$

• We can use pseudo inverse again to slove it
$$M$$
 Z V $M^TMz = M^TV$
$$z = (M^TM)^{-1}M^TV$$

$$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & -1 & 1 & \cdots & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & -1 & \cdots & \cdots & 1 & \cdots \end{bmatrix} \begin{bmatrix} \vdots \\ z_{50,50} \\ z_{51,50} \\ \vdots \\ z_{50,51} \end{bmatrix} = \begin{bmatrix} \vdots \\ \frac{n_x^{50,50}}{n_z^{50,50}} \\ \vdots \\ \vdots \\ \frac{n_y^{50,50}}{n_z^{50,50}} \end{bmatrix}$$

Surface Reconstruction 2.

- Other Tips
 - You may need to eliminate some pixel already known its depth value is 0 to reduce the size & complexity of Mz = V
 - You can create a "mask" to focus on those unknow depth

Install

OpenCV

- Python 3.6
- OpenCV: http://opencv.org
 - pip install opency-python
- open3D: http://www.open3d.org/
 - pip install open3d
- matplotlib: https://matplotlib.org/
 - pip install matplotlib
- You can install other library which you are family with for solving linear equation (But don't use the library directly complete the photometric stereo or you may not get score)

Input & Output

• Input:

- 3 case (bunny, star, venus)
- 6 .bmp image
- LightSource.txt

Output:

.ply file(Polygon File Format)

(named as bunny.ply, star.ply, venus.ply respectively)

- using the open3D to output ply file
 - You can use the function "save_ply()" we provide (this function may set 0 depth vaule to minimum depth value let whole model float on a plane)
 - If you don't like the way to display whole model floating on a base plane, you can change the way to save ply file. The only limitation is that the ply file need to be able to open and show the result by "show ply()" function.

Grading

- 60% Reconstruct surfaces of "bunny" & "star" data (30% / per data) (let surface smooth as posible as you can)
- 30% Report (Simply 1.explain your implementation and 2.what kind of "method" you use to enhance the result and 3.compare the result) (Don't just paste the code with comment)
- 10% reconstruct surfaces of "venus" (bonus) (This case you may need to find some ways to deal with some extrem normal result) (we may treat "venus" more strictly than "bunny" & "star")

Deadline

- Deadline : 2022/03/22 (二) 11:59 pm
- Please zip the all files and name it as {studentID}_HW1.zip : ex 310553013_HW1.zip (wrong file format may get -5% panelty)
 - Zip file format:
 - 1. {studentID} report.pdf
 - 2. bunny.ply, star.ply, venus.ply
 - 3. your code
- Penalty of 10% of the value of the assignment per late week
 - late a week : your_score * 0.9
 - late two week: your_score * 0.8 ...
- E3 forum : https://e3.nycu.edu.tw/mod/dcpcforum/view.php?f=46800