1.1

Def: A **metric** is a function $d: X^2 \to \mathbb{R}$ such that: 1. $d(x,y) \ge 0$, and d(x,y) = 0 if and only if x = y (Positive Definiteness) 2. d(x,y) = d(y,x) (Symmetry) 3. $d(x,z) \le d(x,y) + d(y,z)$ (Triangle Inequality)

Def: A **metric space** is a set X with a metric d on it, denoted (X, d).

1.3

Def: Let (X, d) be metric space. An **open ball** of radius r centered at x is $b_r(x) = \{y \in X | d(y, x) < r\}$. (Note the strict inequality)

Let $S \subseteq X$. An element $x_0 \in S$ is an **interior point** of S if there exists r > 0 such that $b_r(x_0) \subseteq S$.

Let S^o denote the set of all interior points of S. Then S is **open** if $S = S^o$. (Note that it is sufficient to show $S \subseteq S^o$).

A set $R \in X$ is **closed** if R^c (the complement) is open.