Cauchy Sequences

Definition: Cauchy

Let E be a normed space and (\vec{x}_n) be a sequence in E. To say that (\vec{x}_n) is Cauchy means:

$$\forall \epsilon > 0, \exists N > 0, m, n > N \implies \|\vec{x}_n - \vec{x}_m\| < \epsilon$$

In other words, $\|\vec{x}_n - \vec{x}_m\| \to 0$.

Theorem

Let E be a normed space and let (\vec{x}_n) be a sequence in E. TFAE:

- 1). (\vec{x}_n) is Cauchy sequence.
- 2). For every pair of increasing sequences (p_n) and (q_n) in \mathbb{N} , $\|\vec{x}_{p_n} \vec{x}_{q_n}\| \to 0$.
- 3). For every increasing sequence (p_n) in \mathbb{N} , $\|\vec{x}_{p_{n+1}} \vec{x}_{p_n}\| \to 0$.

Proof

 $1 \implies 2$: Assume (\vec{x}_n) is Cauchy.

Assume
$$\epsilon > 0$$
.

$$\exists N > 0, m, n > N \implies \|\vec{x}_n - \vec{x}_m\| < \epsilon$$

Assume (p_n) and (q_n) are increasing sequences in \mathbb{N} .

Assume $p_n, q_n > N$.

$$\|\vec{x}_{p_n} - \vec{x}_{q_n}\| < \epsilon$$

$$\therefore \|\vec{x}_{p_n} - \vec{x}_{q_n}\| \to 0$$

 $2 \implies 3$: Assume for every pair of increasing sequences (p_n) and (q_n) in \mathbb{N} , $\|\vec{x}_{p_n} - \vec{x}_{q_n}\| \to 0$.

Let
$$p_n = n + 1$$
 and $q_n = n$.

$$\|\vec{x}_{p_n} - \vec{x}_{q_n}\| = \|\vec{x}_{n+1} - \vec{x}_n\| \to 0.$$

 $3 \implies 1$: Assume (\vec{x}_n) is not Cauchy.

$$\exists\, \epsilon>0, \forall\, N>0, \exists\, n,m>N, \|\vec{x}_n-\vec{x}_m\|\geq \epsilon$$

Let ϵ be such an ϵ .

Assume N > 0.

$$\exists \, n > N, \|\vec{x}_{n+1} - \vec{x}_n\| \ge \epsilon$$

WTS:
$$\exists (p_n), \exists \epsilon > 0, \forall N > 0, \exists p_n > N, \|\vec{x}_{p_{n+1}} - \vec{x}_{p_n}\| \ge \epsilon$$

Let
$$p_k = k$$
.

$$\|\vec{x}_{p_{n+1}} - \vec{x}_{p_n}\| = \|\vec{x}_{n+1} - \vec{x}_n\| \ge \epsilon$$

Examples

1). $E = \mathbb{R} \text{ and } ||x|| = |x|$

$$(x_n) = \{3, 3.1, 3.14, 3.141, \ldots\}$$

 (x_n) is a Cauchy sequence in \mathbb{Q} ; however, it converges to $\pi \notin \mathbb{Q}$.

2). $E = \mathcal{P}[0,1]$ and the sup norm.

$$f_n = \sum_{k=1}^n \frac{t^k}{k!}$$

 f_n is a Cauchy sequence in $\mathcal{P}[0,1]$; however, it converges to $e^t \notin \mathcal{P}[0,1]$.

Theorem

Let E be a normed space and let (\vec{x}_n) be a sequence in E:

$$\vec{x}_n \to \vec{x} \in E \implies (\vec{x}_n)$$
 is Cauchy

Proof

Assume $\vec{x}_n \to \vec{x} \in E$.

$$\|\vec{x}_n - \vec{x}_m\| = \|(\vec{x}_n - \vec{x}) + (\vec{x} - \vec{x}_m)\| \le \|\vec{x}_n - \vec{x}\| + \|\vec{x}_m - \vec{x}\| \to 0 + 0 = 0$$

Therefore (\vec{x}_n) is Cauchy.

Note that the converse holds in finite-dimensional spaces, but does not always hold in infinite-dimensional spaces.

Theorem

Let E be a normed space and let (\vec{x}_n) be a sequence in E:

$$(\vec{x}_n)$$
 Cauchy $\implies (\|\vec{x}_n\|)$ converges

Proof

Assume (\vec{x}_n) is Cauchy.

$$|\|\vec{x}_n\| - \|\vec{x}_m\|| \le \|\vec{x}_n - \vec{x}_m\| \to 0$$

 $\therefore (\|\vec{x}_n\|)$ converges.

Corollary

Let E be a normed space and let (\vec{x}_n) be a sequence in E:

$$(\vec{x}_n)$$
 Cauchy $\implies (\vec{x}_n)$ bounded

Proof

Assume (\vec{x}_n) is Cauchy.

Thus $(\|\vec{x}_n\|)$ converges in \mathbb{R} , and therefore is bounded.

Theorem

Let E be a normed space and let (\vec{x}_n) be Cauchy in E:

 (\vec{x}_n) has a convergent subsequence $\implies (\vec{x}_n)$ converges to the same limit.

Proof

Assume (\vec{x}_n) has a convergent subsequence $(\vec{x}_{n_k}) \to \vec{x} \in E$.

$$\|\vec{x}_n - \vec{x}\| = \|(\vec{x}_n - \vec{x}_{n_k}) + (\vec{x}_{n_k} - \vec{x})\| \le \|\vec{x}_n - \vec{x}_{n_k}\| + \|\vec{x}_{n_k} - \vec{x}\|$$

But (\vec{x}_n) is Cauchy and so $\|\vec{x}_n - \vec{x}_{n_k}\| \to 0$.

Furthermore, $\vec{x}_{n_k} \to \vec{x}$ and so $\|\vec{x}_{n_k} - \vec{x}\| \to 0$. And so $\|\vec{x}_n - \vec{x}\| \to 0$.

Therefore (\vec{x}_n) converges to the same limit.