Problem I

Standard Deviation

Time Limit: 5 seconds
Memory Limit: 1 MB

"Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin."

John von Neumann, 1951.

Given a list of n real numbers, (x1, x2, ..., xn), the mean is defined as

The standard deviation is defined as the square root of

Given n and a random number generator seed, compute the standard deviation of the first n numbers returned by the generator.

The generator function is given below. I apologize to all those for whom C is not a native language.

```
unsigned long long seed;
long double gen()
{
    static const long double Z = ( long double )1.0 / (1LL<<32);
    seed >>= 16;
    seed &= ( lULL << 32 ) - 1;
    seed *= seed;
    return seed * Z;
}</pre>
```

Input

The first line of input gives the number of cases, N (at most 40). N test cases follow. Each one is a line containing an integer, n (1 \leq n \leq 10,000,000), and an integer, seed (0 \leq seed \leq 2⁶⁴).

Output

For each test case, output one line containing "Case #x:" followed by the standard deviation of the first n numbers returned by gen() after seed is initialized to the given value. Round the answer to 5 decimal places. Answers with absolute error of at most 10^{-4} will be deemed correct.

Sample Input	Sample Output
5 2 16777216 2 4294967296 10000000 0 2 2147483648 10000 382759482784958	Case #1: 0.00001 Case #2: 0.00000 Case #3: 0.00000 Case #4: 0.09375 Case #5: 1283729051.97967

If you need a hint, read the problem again.

Problemsetter: Igor Naverniouk