Assignment 1

MA06 Complex Analysis

Deadline 11:59 AM, 20181211

1. Write the following expressions in the form a+ib, where $a,b \in \mathbf{R}$

- (a) (1+2i)+(-3+7i)
- (b) $(3+4i)^2$
- (c) $\frac{2+3i}{3-4i}$
- (d) $\frac{1-i}{1+i} i + 2$
- (e) $\frac{1}{i+1}$

2. Let $z_1 = a_1 + ib_1, z_2 = a_2 + ib_2 \in \mathbb{C}$. Verify that

- (a) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- (b) $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$
- (c) $|\overline{z}| = |z|$

3. Let $z, w \in \mathbf{C}$ and write them in polar form as $z = r(\cos \theta + i \sin \theta)$, $w = s(\cos \phi + i \sin \phi)$, where r, s > 0 and $\theta, \phi \in \mathbf{R}$.

- (a) Compute the product zw.
- (b) Using the trigonometric identities $\cos(\theta + \phi) = \cos\theta\cos\phi \sin\theta\sin\phi$ and $\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$, show that $\arg(zw) = \arg z + \arg w$. (Notice that we here write $\arg z_1 = \arg z_2$ even if the principle argument of z_1 differs of z_2 by $2k\pi$ where k is a integer number.)

Notice: Please write Your Name and Student ID when you submit.