CSE 350 Digital Electronics and Pulse Techniques

NMOS NOT and NOR without load CMOS Logic Circuit Design

Course Instructor: Shomen Kundu (SDU)

Mail: shomen.kundu@bracu.ac.bd

Desk: 4N166

CSE 350

MOS Logic family

Unipolar logic family: current conduction is done by one type of charge carriers.

e.g. electron or hole

CSE 350

Basic Internal Structure

If some MOSFET is fabricated identically then source and body might be shorted.

Circuit Symbol

N-MOS

p-MOS

Basic Operation

If we apply voltage in the gate terminal.

Accumulation: If V_G is less than zero, holes inside p-type semiconductor might accumulate underneath the oxide layer.

Deplation: If $0 < V_G < V_{TN}$, then deplation layer forms beneath the oxide layer.

Inversion: If $V_G > V_{TN}$, then an inversion layer would emerge under the oxide layer.

Basic Operation

Now if we apply $V_{GS} > V_{TN}$, a channel forms.

NMOS for small V_{DS}

NMOS for increased V_{DS}

Basic Operation

Now if we apply $V_{GS} > V_{TN}$, a channel forms.

Edge of Saturation, $V_{DS} = V_{GS} - V_{TN}$

Saturation, $V_{DS} > V_{GS} - V_{TN}$

Operating modes of MOSFET

Operating modes of n-MOSFET,

Cut-off

$$V_{GS} < V_{TN}$$
, $I_D = 0$

> Triode/Linear

$$V_{GS} > V_{TN} \text{ and } V_{DS} < V_{GS} - V_{TN}$$

 $I_D = K_n (2(V_{GS} - V_{TN})V_{DS} - V_{DS}^2)$

Saturation

$$V_{GS} > V_{TN} \text{ and } V_{DS} > V_{GS} - V_{TN}$$

 $I_D = K_n (V_{GS} - V_{TN})^2$

Note:
$$K_n = \frac{1}{2} \mu_n C_{ox} \frac{W}{L}$$

N-MOS Logic

Pull up network: High resistance

Pull down network: n-MOS

Logic design techniques:

- Series n-MOS indicates AND
- Parallel n-MOS indicates OR
- Overall n-MOS logic is inverted

N-MOS Logic

Find the output of the inverter for the input volta 5 V and 1.5 V. Given $V_{TN}=0.5~V, R=20~k,$ $V_{DD}=5V, K_n=\frac{1}{2}\mu_n C_{ox}\frac{W}{L}=0.3~mA/V^2$

When
$$V_I = 5 V$$

 $V_{GS} = 5 V > V_{TN}$,

MOSFET M1 is in Saturation / Triode region.

Assumption: Triode mode

$$I_D = K_n (2(V_{GS} - V_{TN})V_{DS} - V_{DS}^2)$$

$$I_D = 0.3 (2 * (5 - 0.5)V_o - V_o^2)$$

$$= 0.3 (9V_o - V_o^2)$$

$$I_D = \frac{5 - V_o}{20}$$

$$I_D = \frac{0.3 (9V_o - V_o^2)}{5 - V_o}$$
$$I_D = \frac{5 - V_o}{20}$$

So, we can write,

$$0.3 (9V_o - V_o^2) = \frac{5 - V_o}{20}$$

Solving using calculator,

$$V_o = 9.074 \ V \ or \ 0.092 \ V$$

Acceptable value, $V_0 = 0.092 V$

Verification:

$$V_{DS} = 0.092 V \text{ and } V_{GS} - V_{TN} = 4.5 V$$

 $V_{DS} = 0.092 \ V \ and \ V_{GS} - V_{TN} = 4.5 \ V_{SSTY}$ As $V_{DS} < V_{GS} - V_{TN}$, Assumption correct.

When
$$V_I = 1.5 V$$

 $V_{GS} = 1.5 V > V_{TN}$,

MOSFET M1 is in Saturation / Triode region.

Assumption: Saturation mode

$$I_D = K_n (V_{GS} - V_{TN})^2$$

$$I_D = 0.3(1.5 - 0.5)^2$$

So, we can write,

$$0.3 (1.5 - 0.5)^2 = \frac{5 - V_0}{20}$$

Solving using calculator,

$$V_o = -1 V$$

Inspiring Excellence

Verification:

$$V_{DS} = -1V$$
 and $V_{GS} - V_{TN} = 1 V$

As $V_{DS} < V_{GS} - V_{TN}$, Assumption not correct.

We need to assume triode mode as saturation assumption is not correct.

$$I_D = K_n (2(V_{GS} - V_{TN})V_{DS} - V_{DS}^2)$$

$$I_D = 0.3 (2 * (1.5 - 0.5)V_o - V_o^2)$$

$$= 0.3 (2V_o - V_o^2)$$

$$I_D = \frac{5 - V_o}{20}$$

So, we can write,

$$0.3 (2V_o - V_o^2) = \frac{5 - V_o}{20}$$

$$\Rightarrow 12V_0 - 6V_o^2 = 5 - V_0$$

Now Solve and verify

Find the transition voltage(Saturation to triode) of the inverter. Given

$$V_{TN} = 0.5 \ V$$
, $R = 20$, $K_n = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} = 0.3 \ mA/V^2$

CSE 350

For transition,
$$V_{DS} = V_{GS} - V_{TN}$$

 $V_o = V_I - 0.5$

Now,
$$I_D = 0.3 (V_I - 0.5)^2 = \frac{5 - V_O}{20}$$

$$\Rightarrow I_D = 0.3 \ V_o^2 = \frac{5 - V_o}{20}$$

Solving, $V_o = 0.5675 V$

$$V_I = V_o + 0.5 = 1.0675 V$$

Here,
$$V_{TN} = 0.8 \ V \ and \ K_n = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} = 0.1 \ mA/V^2$$

We can study this NOR gate, with four possible cases.

We need to find out I_1 , I_2 , I, V_o and power of the NOR rato

0	0	
0	5V	
5V	0	
5V	5V	

Case 01:
$$V_1 = V_2 = 0V$$

 $V_{GS1} = 0 < V_{TN}$,
 $M1 \rightarrow Cut\ off\ Mode$, $I_{D1} = 0\ mA$

$$V_{GS2} = 0 < V_{TN}$$

 $M2 \rightarrow Cut\ off\ Mode, I_{D2} = 0\ mA$
 $I = I_{D1} + I_{D2} = 0\ mA$

$$V_o = 5 V$$

Case 02:
$$V_1 = 0V$$
, $V_2 = 5V$
 $V_{GS1} = 0 < V_{TN}$,
 $M1 \rightarrow Cut \ off \ Mode$, $I_{D1} = 0 \ mA$
 $V_{GS2} = 5 > V_{TN}$
Assume M2 in Triode mode
 $I_{D2} = 0.1 \ (2(5 - 0.8)V_o - V_o^2)$
 $I = I_{D1} + I_{D2}$
 $\frac{5 - V_o}{20} = 0.1 \ (2(5 - 0.8)V_o - V_o^2)$

Solving,

$$V_o = 8.6 \, V \, or \, 0.29 \, V(\, 8.6 \, V \, is \, not \, acceptable)$$

Verification: $V_{DS} = 0.29V$ and $V_{GS} - V_{TN} = 4.2 V$

As, $V_{DS} < V_{GS} - V_{TN}$, M2 is in Triode

Case 03: $V_1 = 5 V$, $V_2 = 0V$ Similar to case 2, $\Rightarrow V_0 = 0.29 V$

Case 04:
$$V_1 = V_2 = 5V$$

 $V_{GS1} = 5 > V_{TN}$,
 $M1 \rightarrow Triode$
 $V_{GS2} = 5 > V_{TN}$
 $M2 \rightarrow Triode$
 $I = I_{D1} + I_{D2}$
 $\Rightarrow \frac{5 - V_o}{20} = 2 * 0.1 (2(5 - 0.8)V_o - V_o^2)$
 $V_o = 0.149 \ V \ or \ 4.17 \ V \ (4.17 \ V \ is \ not \ acceptable)$
 $\Rightarrow V_o = 0.149 \ V$

For the Given NMOS find the power for all possible input cases. Also find it's average power.

Given:
$$K_n = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} = 100 \frac{\mu A}{V^2}$$
, $V_{TN} = 1$ V. Logic High = 5 V and Logic Low = 0V

CMOS

Complementary MOS circuit design

Features,

Inspiring Excellence

- In CMOS circuit there are two network, one is pull up and other is pull down.
- II. At a time either pull-up or pull-down network is on.
- III. Logic is high when pull up is on.
- IV. Logic is Low when pull down is on.
- V. Pull down consist of N-MOS, Pull up consist of P-MOS.

CMOS Pull Down Network Design

 \bullet AND can be implemented by series of two NMOS + → OR can be implemented by Parallel NMOS lower part will be connected with GND Upper part will be connected to the Output

Example: $Y = \overline{AB + C}$

CMOS Pull Up Network Design

→ AND can be implemented by parallel of two PMOS + → OR can be implemented by Parallel NMseries of two NMOS Lower part will be connected to the Output Upper part will be connected with V_{DD}

Example: $Y = \overline{AB + C}$

NOT Gate

$$Y = \bar{A}$$

NAND Gate

 $Y = \overline{AB}$

NOR Gate

 $Y = \overline{A + B}$

(a) Symbol

Α	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

(b) Truth table

Example:

$$Y = \overline{AB + C}$$

		f	\boldsymbol{C}	В	A
		1	0	0	0
C=1	•	0	1	0	0
		1	0	1	0
C=1	-	0	1	1	0
		1	0	0	1
C=1	-	0	1	0	1
$A \cdot B = 1$	•	0	0	1	1
C=1	-	0	1	1	1

(b) Function table

Example:

$$Y = \overline{A(B+C)}$$

Α	В	\boldsymbol{C}	g	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	0	← A·C=1
1	1	0	0	$-A \cdot B = 1$
1	1	1	0	$A \cdot (B+C)=$

Example:

$$Y = \overline{A(B+C) + DE}$$

Design a CMOS logic circuit to implement the given compound gate in Figure below. First derive

the logical expression of output Y and then design the CMOS network.

Design a CMOS circuit that will follow the given truth table.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Design static CMOS circuit for the following expression,

$$Y = AB + C$$

$$Y = (A+B)C$$

$$Y = (A+B)(C+D)$$

$$Y = \overline{AB + CD}$$

$$Y = \overline{AB + C}$$

$$Y = \overline{(A + B)C}$$

$$Y = \overline{(A + B)C}$$

$$Y = \overline{(A + B) + C}$$

$$Y = \overline{(A + B) + C}$$

