Retail Giant Sales Forecast Case Study

By- Zishan Ahmed

Problem Statement

Onlilne supergiant store, 'Global Mart' has worldwide operations - taking orders and delivering across the globe. Its major product categories are Consumer, Corporate and Home Office. As a Sales Manager, we are expected to forecast the sales of products for the next 6 months - this will help managing inventory and business processes accordingly - for the combination of Market and Segment which is profitable with least variation in Profits.

Objective

- Find the most profitable and consistent market segment for the company.
- Forecast the sales and demand for the next 6 months.

ANALYSIS

- The data seems to be well spread with 3 Segments and 7 Markets.
- Segment 'Consumer' and Market 'APAC' seem to be the leading categories.

Market Segment

We observe that there are a total of 21 Market-Segments with all the combinations of Market and Segment. The highest number of transactions are from APAC-Consumer, followed by LATAM-Consumer, US-Consumer and EU-Consumer. Canada seems to be have least number of transactions across Segments.

Comparison using CoV

We compare the variance between the segments using the coefficient of variation which will normalize the standard deviation with the mean and give a comparative figure on the basis of which we can identify the most profitable market segment

	Market_segment	Mean	Std	CoV
0	Consumer - APAC	4400.89	2300.46	0.522726
7	Corporate - APAC	2574.92	1364.84	0.530051
4	Consumer - EU	3699.98	2202.28	0.595214
5	Consumer - LATAM	2295.56	1569.63	0.683768
11	Corporate - EU	2216.30	1600.34	0.722077
12	Corporate - LATAM	1122.63	990.36	0.882178
18	Home Office - EU	1224.46	1148.63	0.938071
14	Home Office - APAC	1511.09	1523.51	1.008219
6	Consumer - US	2686.74	2715.03	1.010529
13	Corporate - US	1754.20	1880.20	1.071828
20	Home Office - US	1132.07	1272.48	1.124029
19	Home Office - LATAM	818.40	957.28	1.169697
2	Consumer - Canada	225.99	282.56	1.250321
1	Consumer - Africa	957.71	1254.93	1.310344
9	Corporate - Canada	90.98	162.49	1.785997
8	Corporate - Africa	412.62	780.57	1.891741
15	Home Office - Africa	377.22	759.32	2.012937
16	Home Office - Canada	118.00	279.63	2.369746
3	Consumer - EMEA	423.96	1124.55	2.652491
10	Corporate - EMEA	182.64	1160.70	6.355125
17	Home Office - EMEA	84.23	651.28	7.732162

Market Selection

Considering we are focussing on only one Market-Segment which is profitable with least variation in Profits, we chose **APAC-Consumer**. The reason we prefer lowest CoV is because we want to estimate sales for the most consistently profitable Market-Segment, so that our sales forecasts are reliable.

```
Lowest_CoV_value =min(CoV_data["CoV"])
Lowest_CoV_value
```

0.5227260849509985

Lowest Cov value is of Consumer - APAC

```
highest_CoV_value =max(CoV_data["CoV"])
highest_CoV_value
```

7.732161937551941

highest CoV values is of Home Office -EMEA

Decomposition

- •Number of data points is more than 10, hence we will utilize Exponential Smoothing or ARIMA and we should NOT utilize Simple Moving Average or Naive Methods.
- •We observe that there is an upward trend in the dataset
- •We also observe that there is Seasonality (at 12 months) in the dataset.
- •Exponential Smoothing: We should use Simple Exponential Smoothing, Holt's Exponential Smoothing, Holt Winter's Smoothing techniques among others.
- •We shoule also look at **ARIMA**: There is an Upward Trend in the dataset, we can use ARIMA techniques. As we can observe there is seasonality as well, we can use SARIMA. However, we don't have any information on Exogenous variables, hence we would NOT use ARIMAX or SARIMAX.

Additive Method

Exponential Smoothing

	Method	RMSE	MAPE	
0	Simple exponential smoothing forecast	14764.68	15.83	
0	Holt's exponential smoothing method	18976.37	34.57	
0	Halt Winters' additive method	9304.48	7.76	
0	Halt Winters' multiplicative method	10021.79	10.30	

Overall, among the 4 Smoothing techniques, Holt Winter's Additive Method has the least MAPE and hence, the best Smoothing technique for the given Time-Series data.

ARIMA

0	Autoregressive (AR) method	10985.28	13.56
0	Moving Average (MA) method	23360.02	33.93
0	Autoregressive moving average (ARMA) method	22654.32	32.40
0	Autoregressive integrated moving average (ARIM	22654.32	32.40
0	Seasonal autoregressive integrated moving aver	9612.36	12.86

Method

Overall, among the 5
ARIMA techniques,
SARIMA Forecasting has
the least MAPE and
hence, the best
Forecasting technique for
the give Time-Series data

Conclusion

Overall, the best forecasting methods for the given case study are as below (based on their MAPE values):-

- For Smoothing method, the best option is Holt Winter's Additive Method
- For Auto-Regressive methods, the best option is SARIMA

rank unu,