Arduino_Fast_LSM6DS3

Jakub Kolton

INSTRUKCJA OBSŁUGI BIBLIOTEKI

Niniejsza instrukcja opisuje wykorzystanie biblioteki w środowisku Arduino IDE 2.0 (Beta 5) uruchamianym w systemie operacyjnym Windows 10.

1. Folder z biblioteką (wypakować archiwum) należy w lokalizacji:

C:\Users\<nazwa użytkownika>\Documents\Arduino\libraries

Nazwa	Data modyfikacji	Тур	Rozmiar
14dZWd	Data modymacji	1)P	Nozimai
Adafruit_Unified_Sensor	30.09.2020 11:24	Folder plików	
adafruit_Adafruit_BMP280_Library-dd4b6	30.09.2020 11:20	Folder plików	
Arduino_Fast_LSM6DS3-Release-v6.0	25.05.2021 17:53	Folder plików	
arduino-DHT-master	08.09.2020 17:42	Folder plików	
Biblioteka	16.05.2021 20:00	Folder plików	
DFRobot_SHT20-master	30.09.2020 11:48	Folder plików	
NewLiquidCrystal_lib	08.09.2020 18:03	Folder plików	
readme	17.07.2020 16:36	Dokument tekstowy	1 KB

Od teraz pliki biblioteki będą widoczne w środowisku Arduino IDE 2.0.

2. Aby wykorzystać zawartość biblioteki w projekcie, należy załączyć plik nagłówkowy:

#include "Fast_LSM6DS3.h"

Po jego załączeniu dostępna jest cała funkcjonalność biblioteki.

3. Biblioteka przeznaczona jest dla Arduino Nano 33 IoT. Przed kompilacją i wgraniem programu należy wybrać tą płytkę z listy dostępnych płytek (jeśli jest niedostępna, należy pobrać rozszerzenie *Arduino SAMD Boards*) oraz wybrać port COM, którym jest dołączona do komputera:

4. Po napisaniu programu należy go skompilować lub skompilować i wgrać do podłączonego Arduino Nano 33 IoT z użyciem przycisków:

5. Biblioteka napisana jest obiektowo. Oferuje szereg stałych, pól i metod ułatwiających pracę z czujnikiem LSM6DS3. Część z nich jest prywatna, aby biblioteka stanowiła niezawodny interfejs między czujnikiem a mikrokontrolerem. Z punktu widzenia programisty interfejsem takim jest obiekt klasy *LSM6DS3*, który należy powołać z użyciem konstruktora. Na obiekcie tym wywoływane są wszystkie metody.

6. Zawartość biblioteki:

- Stałe predefiniujące adres I2C czujnika oraz adresy jego rejestrów (linie 15-141 pliku .h).
- Stałe predefiniujące poszczególne fragmenty wpisywane do rejestrów kontrolnych, odpowiadające za m.in. częstotliwość pomiarów, ich zakres, konfigurację filtru antyaliasingowego itp. (linie 144-185 pliku .h).
- Konstruktor i destruktor obiektu klasy *LSM6DS3*.
- Metody klasy *LSM6DS3*. Większość metod posiada dwie wersje: standardową (pozwalającą na samodzielną konfigurację czujnika i zebranie pomiarów) oraz szybką (konfigurującą czujnik w sposób domyślny, i pozwalającą zebrać pomiary w takich warunkach). Użycie funkcji szybkiego odczytu pomiarów nie jest zalecane w przypadku samodzielnej konfiguracji zakresu pomiarowego. Funkcje standardowe każdorazowo odczytują z rejestru zakres pomiarowy.

7. Opis metod:

Metody odczytu:

Metody te odczytują do parametru/ów jeden z pomiarów. Wyjątkiem jest pierwsza z metod, która zwraca zawartość rejestru.

Metody odczytu:

Metoda	Zastosowanie	
int readRegister (uint8_t addr)	Zwraca wartość zapisaną w rejestrze	
int readAcceleration (float &x, float &y, float &z)	Odczytuje do parametrów pomiar z	
	akcelerometru (dla dowolnej jego konfiguracji)	
	w jednostkach g	
int readAccelerationFast (float &x, float &y,	Szybko odczytuje do parametrów pomiar z	
float &z)	akcelerometru (dla domyślnej jego konfiguracji)	
	w jednostkach g	
int readAngular(float &x, float &y, float &z)	Odczytuje do parametrów pomiar z żyroskopu	
	(dla dowolnej jego konfiguracji) w jednostkach	
	⁰ /sek	
int readAngularFast(float &x, float &y, float &z)	Szybko odczytuje do parametrów pomiar z	
	żyroskopu (dla domyślnej jego konfiguracji) w	
	jednostkach ⁰ /sek	
<pre>int readTemperature(float &x)</pre>	Odczytuje do parametru pomiar z termometru w	
	jednostkach °C	

Metody zapisu:

Metody te wpisują do rejestrów pewne wartości – dla metod ustawiających parametry czujnika (metody rodzin *set..., begin...*) przygotowane są predefiniowane stałe ułatwiające korzystanie z nich. Wyjątkiem jest pierwsza z metod, która pozwala wpisywać wartości do dowolnych rejestrów, które nie są na liście rejestrów zabronionych (*Reserved*).

Metoda	Zastosowanie	
int writeRegister (uint8_t addr, uint8_t value)	Wpisuje podaną wartość do podanego rejestru (o	
	ile wolno do niego wpisywać)	
int setFreq_XL(uint8_t value)	Ustawia ODR (częstotliwość wysyłania	
	pomiarów) akcelerometru	
int setScale_XL(uint8_t value)	Ustawia FS (zakres pomiarowy) akcelerometru	
<pre>int setBandwith_XL(uint8_t value)</pre>	Ustawia BW (pasmo filtru anty-aliasingowego)	
	akcelerometru	
int setFreq_G(uint8_t value)	Ustawia ODR (częstotliwość wysyłania	
	pomiarów) żyroskopu	
int setScale_G(uint8_t value)	Ustawia FS (zakres pomiarowy) żyroskopu	
int beginFast()	Szybko inicjuje czujnik z jego domyślnymi	
	ustawieniami.	
int begin(uint8_t ODR_XL, uint8_t FS_XL,	Inicjuje czujnik z ustawieniami podanymi jako	
uint8_t BW_XL, uint8_t ODR_G, uint8_t FS_G)	parametry.	
void end()	Wyłącza czujnik.	

8. Prócz plików źródłowego i nagłówkowego, w katalogu *Examples* przygotowane są przykładowe projekty w formacie .*ino* korzystające z biblioteki:

Arduino_Fast_LSM6DS3-Release-v6.0 > Examples					
Nazwa	Data modyfikacji	Тур	Rozmiar		
ExampleAccelerationCustom	13.06.2021 18:51	Folder plików			
Example Acceleration Fast	13.06.2021 18:51	Folder plików			
Example Everything Custom	13.06.2021 18:51	Folder plików			
ExampleGyroscopeCustom	13.06.2021 18:51	Folder plików			
Example Gyroscope Fast	13.06.2021 18:51	Folder plików			
ExampleTemperature	13.06.2021 18:51	Folder plików			

Można wykorzystać je do lepszego zrozumienia struktury i działania biblioteki, szybkiego uruchomienia pomiarów lub sprawdzenia polecanego sposobu użycia poszczególnych funkcjonalności.