Name	Matrikel-Nummer

Montag, den 25.01.2010

Prof. Dr.-Ing. Andreas Meisel

Klausur "Modellierung (MT)"

Hinweise:

- 1.) Tragen Sie auf den Lösungsblättern Ihren Namen und Ihre Matrikelnummer ein.
- 2.) Zusätzliche Lösungsblätter versehen Sie bitte mit Namen und Matrikelnummer.
- 3.) Vermerken Sie auf den Lösungsblättern die Aufgabennummer.
- 4.) Klausurdauer: 120 Minuten
- 5.) Erlaubte Hilfsmittel:
 - Ordner mit Unterlagen (Blätter abgeheftet),
 - Taschenrechner.

Aufgabe	į Punkte	bersicht zur Bewertung der Aufgaben.
7 taigabo	- unito	
01	10	
02	12	
03	15	
04	7	
05	4	
06	8	
07	4	
Punk	rte ≅ 60	

Aufgabe 1: (Euler, Runge-Kutta)

[10 Punkte]

Ein Fadenpendel mit Eisenkugel pendelt über zwei am Boden liegenden Magneten und führt dabei chaotische Pendelbewegungen aus.

Die Bewegung der Eisenkugel wird durch folgende Differentialgleichung beschrieben:

$$\ddot{x} + a\dot{x} + x^3 = b \cdot \cos(t)$$

- a) Zeichnen Sie das Simulink-Schaltbild der Differentialgleichung. Anm.: Funktionen als EM-Funktionsblock
- b) Geben Sie an: die abhängige Variable
 - die unabhängige Variable
 - die Eingangsgröße
- c) Zerlegen Sie Differentialgleichung in zwei Differentialgleichungen 1. Ordnung. Anm.: Indizieren Sie die Integratoren von links nach rechts. Verwenden Sie für die Zwischengrößen die Buchstaben k,l,m,......
- d) Geben Sie die Rekursionsgleichungen des Systems nach Euler an. Die Schrittweite sei h.
- e) Geben Sie die Rekursionsgleichungen des Systems nach Runge-Kutta (2. Ordng.) an. Die Schrittweite sei h.

Aufgabe 2: (Linearisierung, Übertragungsfunktion)

[12 Punkte]

Gegeben ist ein Tank mit:

Tankquerschnitt A=10,

Abflusskoeffizient k=0.01 (bereits normierte Größen)

$$\dot{h} \cdot A = q - q_{ab}(h)$$
$$q_{ab} = k \cdot \sqrt{h}$$

- a) Berechnen Sie die stationäre Füllhöhe h_0 des Tanks bei einem Zufluss $q = q_0 = 0.02$.
- b) Geben Sie die linearisierte Differentialgleichung für diesen Arbeitspunkt an: $\dot{h} = f(q,h)$
- c) Geben Sie die Übertragungsfunktion G(s) des linearisierten Systems an.

$$G_1(s) = \frac{H(s)}{Q(s)}$$

Aufgabe 3: (Physical modelling)

[15 Punkte]

Ein antriebsloser <u>Fahrstuhl</u> (Masse m_F) und ein <u>Gegengewicht</u> (Masse m_G) sind über eine <u>schwere Seiltrommel</u> (Masse m_S , Radius r) miteinander verbunden.

Auf den Fahrstuhl wirkt der Strömungswiderstand F_L :

$$F_L = K \cdot v^2$$

Der Strömungswiderstand des Gegengewichtes kann vernachlässigt werden.

Nehmen Sie an, dass sich der Fahrstuhl gerade abwärts bewegt.

- a) Skizzieren Sie m_F, m_G und m_S mit den angreifenden Kräften.
- b) Leiten Sie die Differentialgleichung der Bewegung her (nachvollziehbar).

Aufgabe 4: (Partikelsysteme)

[7 Punkte]

Gegeben ist das folgende Feder-Masse-System (an der Decke aufgehängt):

Alle Federn haben die Federkonstante k.

Im entspannten Zustand

haben die Federn die Länge: $l_{10},\ l_{20},\ l_{30}$

Die Massen befinden sich

auf den Positionen: \vec{p}_1 , \vec{p}_2

Der Aufhängepunkt hat

die feste Position:

Es wirkt die Gravitation g auf die Massen.

 \vec{p}_0

- a) Skizzieren Sie die auf die Massen wirkenden Kräfte. (Annahme: alle Federn sind momentan gedehnt)
- b) Geben Sie für beide Massen die Bewegungs-Differentialgleichung in vektorieller Form an.

Aufgabe 5: (Übertragungsfunktion)

[4 Punkte]

Gegeben ist ein System mit der folgenden Übertragungsfunktion:

$$G_{S}(s) = \frac{10}{5s^2 + 11s + 2}$$

Welche Zeitkonstanten besitzt das System.

Aufgabe 6: (Stabilität)

[8 Punkte]

Gegeben ist ein System mit der folgenden Übertragungsfunktion:

$$G_S(s) = \frac{1}{(6s+1)(s+1)}$$

Das System soll mit einem PI-Regler geregelt werden: $G_R(s) = K_P \frac{\left(sT_N + 1\right)}{sT_N}$

- a) Angenommen es wird T_N =0.5 gewählt. Wie lautet die Übertragungsfunktion des geregelten Systems?
- b) In welchem Bereich muss K_p liegen, damit das System stabil ist?

Aufgabe 7: (Reglerentwurf)

[4 Punkte]

Für ein autonomes 3-Rad-Fahrzeug soll eine Lenkregelung entworfen werden.

Bei konstanter Geschwindigkeit v wird der Zusammenhang zwischen dem Fahrwinkel ϕ und dem Lenkwinkel γ durch folgende Übertragungsfunktion beschrieben:

$$G_S(s) = \frac{\varphi(s)}{\gamma(s)} = \frac{K}{s(Ts+1)}$$

$$T = 0.5$$

$$K = \frac{v}{L} = 10$$

- a) Welche Entwurfsregel eignet sich zur Reglerdimensionierung?
- b) Wählen Sie einen geeigneten Regler aus.
- c) Dimensionieren Sie den Regler (Ziel: wenig Überschwingen).