Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola:

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

- (a) Siano $h: \mathbb{Q}_{\geq 1} \to \mathbb{R}$, dove $\mathbb{Q}_{\geq 1}$ è l'insieme dei numeri reali maggiori o uguali a 1, e $k: \mathbb{Q} \to \mathbb{Q}_{\geq 1}$ definite da $h(z) = \sqrt{z-1}$ e $k(w) = w^2 + 1$. Stabilire quali delle seguenti affermazioni sono corrette.
 - $\square \ h \circ k(c) = c \text{ per ogni } c \in \mathbb{Q} \text{ con } c \ge 0.$
 - $\square \ h \circ k \colon \mathbb{Q} \to \mathbb{R}.$
 - \square k è una funzione iniettiva.
 - \Box h è una funzione suriettiva.
- (b) Sia C un insieme non vuoto di cardinalità finita e D un insieme di cardinalità 2 punti infinita. Stabilire quali delle seguenti affermazioni sono corrette.
 - \square $C \times D$ ha cardinalità finita.
 - \square $C \triangle D$ ha cardinalità finita.
 - \square $C \setminus D$ ha cardinalità finita.
 - $\square D \setminus C$ ha cardinalità finita.
- (c) Siano C, D, A lettere proposizionali e R una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

2 punti

\mathbf{C}	D	A	R
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{F}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	${f F}$	\mathbf{V}	\mathbf{V}
${f F}$	${f F}$	${f F}$	\mathbf{V}

$$\square R \models C \vee \neg D \vee \neg A$$

	\square R è soddisfacibile.	
	\square R è valido.	
	$\Box \ C \to D \models R$	
(d)	Sia $L = \{T\}$ un linguaggio del prim'ordine con T simbolo di relazione	2 punti
	binario. Quali delle seguenti affermazioni sono formalizzate dalla formula	
	$\exists z \forall w T(z, w)$ relativamente alla struttura $\langle \mathbb{R}, \geq \rangle$?	
	□ "Tutti i numeri reali sono più grandi di qualche altro numero."	
	□ "L'usuale ordine sui numeri reali ha un massimo."	
	□ "C'è un numero reale più grande di tutti."	
	\Box "C'è un numero reale più grande di $w.$ "	
(e)	Sia C un insieme non vuoto e sia $L=\{h\}$ un linguaggio del prim'ordine con h simbolo di funzione unaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle C, h \rangle$, l'affermazione: " h non è una funzione costante"?	2 punti
	$\Box \exists x \exists y \neg (h(x) = h(y))$	
	$\Box \neg \exists c (h(x) = c)$	
	$\Box \forall x \forall y \neg (h(x) = h(y))$	
	$\Box \ \forall x \exists y \neg (h(x) = h(y))$	
(f)	Siano T , Q relazioni binarie su un insieme C . Stabilire quali delle seguenti affermazioni sono corrette.	2 punti
	\square Se T è riflessiva e $T\supseteq Q,$ anche Q è riflessiva.	
	\square Se per ogni $c \in C$ esiste un solo $d \in C$ tale che $T(c, d)$, allora T è una funzione.	
	\square Se T è riflessiva e $T\subseteq Q$, anche Q è riflessiva.	
	\square Se per ogni $c, d \in C$ vale che $T(c, d)$ se e solo se $Q(d, c)$, allora $Q = T^{-1}$.	
(g)	Siano R e S formule proposizionali. Quali delle seguenti affermazioni	2 punti
(0)	sono corrette?	1
	\square Se R è soddisfacibile, allora $\neg R$ non è una tautologia.	
	$\neg (R \land S) \equiv \neg R \lor \neg S$	
	\square Se R è una contraddizione allora \neg R è insoddisfacibile.	
	\square R \equiv S se e solo se $i(R) = i(S)$ per ogni interpretazione i .	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{T, h, e\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario T, un simbolo di funzione binario h e un simbolo di costante e.

Consideriamo la struttura $Q = \langle \mathbb{Q}, <, +, 1 \rangle$. Stabilire se:

- $\mathcal{Q} \models \neg(x=z) \land \neg(x=h(z,e))[z/3,x/3.5]$
- $\mathcal{Q} \models T(x,z) \lor T(h(z,e),x)[z/3,x/3.5]$
- $Q \models (\neg(x=z) \land \neg(x=h(z,e))) \to (T(x,z) \lor T(h(z,e),x))[z/3,x/3.5]$
- $Q \models \forall z \forall x [(\neg(x=z) \land \neg(x=h(z,e))) \rightarrow (T(x,z) \lor T(h(z,e),x))][z/3,x/2.5]$

Consideriamo ora la struttura $\mathcal{N} = \langle \mathbb{N}, <, +, 1 \rangle$.

Verificare se

$$\mathcal{N} \models \forall z \forall x [(\neg(x=z) \land \neg(x=h(z,e))) \rightarrow (T(x,z) \lor T(h(z,e),x))][z/3,x/4]$$

L'enunciato $\forall z \forall x [(\neg(x=z) \land \neg(x=h(z,e))) \rightarrow (T(x,z) \lor T(h(z,e),x))]$ è una tautologia? Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia C un insieme non vuoto e $T\subseteq C\times C$ una relazione binaria. Formalizzare relativamente alla struttura $\langle C,T\rangle$ mediante il linguaggio $L=\{T\}$ con un simbolo di relazione binaria le seguenti affermazioni:

- 1. T è antisimmetrica
- 2. T è una relazione di equivalenza
- 3. T^{-1} è transitiva
- 4. $dom(T) \neq C$.