Source:

1) Evaluate the following limit using Squeeze theorem (Think about the range of $\sin(\Box) \Box \cos(\Box)$) to find the enveloping functions

a)
$$\lim_{\theta \to \infty} -\frac{1}{\theta} \le \lim_{\theta \to \infty} \frac{\sin \theta}{\theta} \le \lim_{\theta \to \infty} \frac{1}{\theta}$$

$$0 \le \lim_{\theta \to \infty} \frac{\sin \theta}{\theta} \le 0$$

$$\lim_{\theta \to \infty} \frac{\sin \theta}{\theta} = 0$$
 by the squeeze theorem

b)
$$\lim_{\theta \to \infty} \frac{1 - \cos \theta}{\theta} = \lim_{\theta \to \infty} \frac{1}{\theta} - \lim_{\theta \to \infty} \frac{\cos \theta}{\theta}$$

$$= 0 - \lim_{\theta \to \infty} \frac{\cos \theta}{\theta} = -\lim_{\theta \to \infty} \frac{\cos \theta}{\theta}$$

$$\lim_{\theta \to \infty} -\frac{1}{\theta} \le -\lim_{\theta \to \infty} \frac{\cos \theta}{\theta} \le \lim_{\theta \to \infty} \frac{1}{\theta}$$

$$0 \le -\lim_{\theta \to \infty} \frac{\cos \theta}{\theta} \le 0$$

$$-\lim_{\theta \to \infty} \frac{\cos \theta}{\theta} = 0 \text{ by squeeze theorem}$$

$$\lim_{\theta \to \infty} \frac{\cos \theta}{\theta} = 0$$

There are no functions that can serve as enveloping functions.

 $\lim_{\theta \to \infty} \theta^2 \cos \frac{1}{\theta^2} = \infty$

2) Prove that

c)

$$\lim_{r\to 0} \frac{\sin \theta}{\theta} = 1$$

using steps below and using the sketch of a unit circle where the angle \square is in radians. K is a point on the unit circle.

a)
$$K = (\cos\theta, \sin\theta)$$
 b)

Slope of
$$OK = rac{\sin heta}{\cos heta}$$

c)
$$OL: y - \sin \theta = \frac{\sin \theta}{\cos \theta} (x - \cos \theta)$$

d)
$$A = (1,0)$$

e)
$$L = (1, \frac{\sin \theta}{\cos \theta})$$

f)
$$\triangle OAK = \frac{\sin \theta}{2}$$

g)
$$\square \ \ OAK = \frac{\theta}{2}$$

h)
$$\triangle OAL = \frac{\sin\theta}{2\cos\theta}$$

i)
$$\frac{\sin\theta}{2} \le \frac{\theta}{2} \le \frac{\sin\theta}{2\cos\theta}$$

j)
$$\lim_{\theta \to 0} 1 \le \lim_{\theta \to 0} \frac{\theta}{\sin \theta} \le \lim_{\theta \to 0} \frac{1}{\cos \theta}$$

$$\lim_{\theta \to 0} \frac{1}{1} \le \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \le \lim_{\theta \to 0} \cos \theta$$

$$1 \le \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \le 1$$

 $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ by the squeeze theorem

Dylan · **2020-2021** Page 2