The Grothendieck Construction and Relative Nerve

Liang Ze Wong (w. Jonathan Beardsley)

arXiv:1808.08020

Western University 14 Jan 2019

Outline

- The Grothendieck construction
- ullet ∞ -categorical versions:
 - Unstraightening
 - The Relative Nerve
 - The **sSet**-enriched version
- Application: the Operadic Nerve of a monoidal category

Outline

- The Grothendieck construction
- ullet ∞ -categorical versions:
 - Unstraightening
 - The Relative Nerve
 - The **sSet**-enriched version
- Application: the Operadic Nerve of a monoidal category

Let G be a group, and N another group with a G-action

$$\varphi \colon \mathsf{G} \to \mathsf{Aut}(\mathsf{N}).$$

Let G be a group, and N another group with a G-action

$$\varphi \colon \mathsf{G} \to \mathsf{Aut}(\mathsf{N}).$$

Can form $N \rtimes_{\varphi} G$

Let G be a group, and N another group with a G-action

$$\varphi \colon G \to \operatorname{Aut}(N)$$
.

Can form $N \rtimes_{\varphi} G =$ the set $N \times G$ with multiplication

$$(n,g)\cdot(m,f)=(n\varphi_g(m),gf).$$

Let G be a group, and N another group with a G-action

$$\varphi \colon G \to \operatorname{Aut}(N)$$
.

Can form $N \rtimes_{\varphi} G = \text{the set } N \times G \text{ with multiplication}$

$$(n,g)\cdot(m,f)=(n\varphi_g(m),gf).$$

Also have a group homomorphism $N \rtimes_{\varphi} G \to G$.

Let G be a group, and N another group with a G-action

$$\varphi \colon G \to \mathbf{Aut}(N).$$

Can form $N \rtimes_{\varphi} G = \text{the set } N \times G \text{ with multiplication}$

$$(n,g)\cdot(m,f)=(n\varphi_g(m),gf).$$

Also have a group homomorphism $N \rtimes_{\varphi} G \to G$.

In fact, G and N don't have to be groups!

Let G be a group, and N another group with a G-action

$$\varphi \colon G \to \operatorname{Aut}(N)$$
.

Can form $N \rtimes_{\varphi} G =$ the set $N \times G$ with multiplication

$$(n,g)\cdot(m,f)=(n\,\varphi_g(m),gf).$$

Also have a group homomorphism $N \rtimes_{\varphi} G \to G$.

In fact, G and N don't have to be groups! They can be monoids, categories, and even ∞ -categories.

Let C be a category. Given a functor $\varphi \colon C \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_c \xrightarrow{\varphi_g} N_d\right)$

Let C be a category. Given a functor $\varphi \colon C \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_c \xrightarrow{\varphi_g} N_d\right)$

Let C be a category. Given a functor $\varphi \colon C \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_c \xrightarrow{\varphi_g} N_d\right)$

we can define a new category $N_{\bullet} \rtimes_{\varphi} C$:

• objects are (x, c) where $x \in N_c$

Let C be a category. Given a functor $\varphi \colon C \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_c \xrightarrow{\varphi_g} N_d\right)$

- objects are (x, c) where $x \in N_c$
- arrows are $(\varphi_g(x) \xrightarrow{n} y, c \xrightarrow{g} d)$

Let C be a category. Given a functor $\varphi \colon C \to \mathbf{Cat}$

$$c\mapsto N_c\in \mathbf{Cat}$$
 $\left(c\stackrel{g}{\to}d\right)\mapsto \left(N_c\stackrel{\varphi_g}{\longrightarrow}N_d\right)$

- objects are (x, c) where $x \in N_c$
- arrows are $(\varphi_g(x) \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n\,\varphi_g(m),gf).$$

Let C be a category. Given a functor $\varphi \colon C \to \mathbf{Cat}$

$$c\mapsto N_c\in \mathbf{Cat}$$
 $\left(c\stackrel{g}{\to}d\right)\mapsto \left(N_c\stackrel{\varphi_g}{\longrightarrow}N_d\right)$

- objects are (x, c) where $x \in N_c$
- arrows are $(\varphi_g(x) \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n\,\varphi_g(m),gf).$$

Let C be a category. Given a functor $\varphi \colon C \to \mathbf{Cat}$

$$c\mapsto N_c\in \mathbf{Cat}$$
 $\left(c\xrightarrow{g} d\right)\mapsto \left(N_c\xrightarrow{\varphi_g} N_d\right)$

we can define a new category $N_{\bullet} \rtimes_{\varphi} C$:

- objects are (x, c) where $x \in N_c$
- arrows are $(\varphi_g(x) \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n\,\varphi_g(m),gf).$$

 $N_{\bullet} \rtimes_{\varphi} C$ is often denoted $\int \varphi$, and there is a functor $p : \int \varphi \to C$.

The Grothendieck construction extends to a functor:

$$\int \colon \mathbf{Cat}^{\mathcal{C}} \longrightarrow \mathbf{Cat}_{/\mathcal{C}}$$

The Grothendieck construction extends to a functor:

$$\int \colon \mathbf{Cat}^{\mathcal{C}} \longrightarrow \mathbf{Cat}_{/\mathcal{C}}$$

A cocartesian fibration is a functor $p: E \to C$ in the image of \int .

The Grothendieck construction extends to a functor:

$$\int \colon \mathbf{Cat}^{C} \longrightarrow \mathbf{Cat}_{/C}$$

A cocartesian fibration is a functor $p: E \to C$ in the image of \int .

Theorem (Grothendieck, 1959)

The Grothendieck construction is an equivalence:

$$\int \colon \mathbf{Cat}^C \xrightarrow{\cong} \mathbf{coCart}_{/C}$$

The Grothendieck construction extends to a functor:

$$\int \colon \mathbf{Cat}^{C} \longrightarrow \mathbf{Cat}_{/C}$$

A cocartesian fibration is a functor $p: E \to C$ in the image of \int .

Theorem (Grothendieck, 1959)

The Grothendieck construction is an equivalence:

$$\int : \mathbf{Cat}^C \xrightarrow{\cong} \mathbf{coCart}_{/C}$$

i.e. Fibrations are functors over ${\it C}$ whose fibres vary functorially.

Going back to the construction: given $\varphi \colon C \to \mathbf{Cat}$

$$c\mapsto N_c\in \mathbf{Cat}$$
 $\left(c\stackrel{g}{\Rightarrow}d\right)\mapsto \left(N_c\stackrel{\varphi_g}{\Rightarrow}N_d\right),$

 $\int \varphi$ has objects $(x \in N_c, c)$ and arrows $(\varphi_g(x) \xrightarrow{n} y, c \xrightarrow{g} d)$.

Going back to the construction: given $\varphi \colon C \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $(c \xrightarrow{g} d) \mapsto (N_c \xrightarrow{\varphi_g} N_d),$

 $\int \varphi$ has objects $(x \in N_c, c)$ and arrows $(\varphi_g(x) \xrightarrow{n} y, c \xrightarrow{g} d)$.

$$Ob\left(\int\varphi\right) = \coprod_{c\in C} Ob(N_c)$$
$$\int\varphi((x,c),(y,d)) = \coprod_{c\stackrel{g}{\longleftrightarrow}d} N_d(\varphi_g(x),y)$$

Going back to the construction: given $\varphi \colon C \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_c \xrightarrow{\varphi_g} N_d\right),$

 $\int \varphi$ has objects $(x \in N_c, c)$ and arrows $(\varphi_g(x) \xrightarrow{n} y, c \xrightarrow{g} d)$.

$$Ob\left(\int\varphi\right) = \coprod_{c\in C} Ob(N_c)$$
$$\int\varphi((x,c),(y,d)) = \coprod_{c\stackrel{g}{\longrightarrow}d} N_d(\varphi_g(x),y)$$

This form generalizes easily to enriched categories, where $N_d(\varphi_g x, y)$ lives in a monoidal category \mathcal{V} other than **Set**.

Theorem (Beardsley-W., 2018)

Let $(\mathcal{V}, \otimes, \mathbf{1})$ be a monoidal category where:

- **1** is terminal
- $oldsymbol{2}$ $\mathcal V$ has pullbacks and coproducts
- **1** Pullbacks, $-\otimes -$ and $\mathcal{V}(\mathbf{1}, -)$ preserve coproducts

Theorem (Beardsley-W., 2018)

Let $(\mathcal{V}, \otimes, \mathbf{1})$ be a monoidal category where:

- 1 is terminal
- $m{\textit{2}} \;\; \mathcal{V} \;$ has pullbacks and coproducts
- **3** Pullbacks, $-\otimes -$ and $\mathcal{V}(\mathbf{1}, -)$ preserve coproducts

Then the enriched Grothendieck construction is an equivalence:

$$\int_{\mathcal{V}} : \mathcal{V}\text{-Cat}^{\mathcal{C}} \xrightarrow{\cong} \text{coCart}_{/\mathcal{C}_{\mathcal{V}}}$$

Theorem (Beardsley-W., 2018)

Let $(\mathcal{V}, \otimes, \mathbf{1})$ be a monoidal category where:

- 1 is terminal
- $m{arrho}$ $m{\mathcal{V}}$ has pullbacks and coproducts
- **3** Pullbacks, $-\otimes -$ and $\mathcal{V}(\mathbf{1}, -)$ preserve coproducts

Then the enriched Grothendieck construction is an equivalence:

$$\int_{\mathcal{V}} : \mathcal{V}\text{-Cat}^{\mathcal{C}} \xrightarrow{\cong} \mathbf{coCart}_{/\mathcal{C}_{\mathcal{V}}}$$

Examples: \mathbf{Set} , \mathbf{Set} , \mathbf{Cat} and any locally cartesian closed category with disjoint coproducts and connected $\mathbf{1}$.

Theorem (Beardsley-W., 2018)

Let $(\mathcal{V}, \otimes, \mathbf{1})$ be a monoidal category where:

- 1 is terminal
- $m{\textit{2}} \;\; \mathcal{V} \;$ has pullbacks and coproducts
- **3** Pullbacks, $-\otimes -$ and $\mathcal{V}(\mathbf{1},-)$ preserve coproducts

Then the enriched Grothendieck construction is an equivalence:

$$\int_{\mathcal{V}} : \mathcal{V}\text{-}\mathsf{Cat}^{\mathcal{C}} \xrightarrow{\cong} \mathsf{coCart}_{/\mathcal{C}_{\mathcal{V}}}$$

Examples: **Set**, **sSet**, **Cat** and any locally cartesian closed category with disjoint coproducts and connected **1**.

Non-examples: $Vect_k$, Ch_k

- The Grothendieck construction
- \bullet ∞ -categorical versions:
 - Unstraightening
 - The Relative Nerve
 - The sSet-enriched version
- Application: the Operadic Nerve of a monoidal category

 ∞ -version: Unstraightening

Theorem (Lurie, 2009)

For $S \in \mathbf{sSet}$, there is an equivalence of ∞ -categories:

$$\int_{\infty} : \mathsf{Cat}_{\infty}^{S} \xrightarrow{\simeq} \mathsf{coCart}_{/S}$$

∞-version: Unstraightening

Theorem (Lurie, 2009)

For $S \in \mathbf{sSet}$, there is an equivalence of ∞ -categories:

$$\int_{\infty} : \mathbf{Cat}_{\infty}^{S} \xrightarrow{\simeq} \mathbf{coCart}_{/S}$$

 \bullet \int_{∞} is the nerve of the *marked unstraightening* functor Un_+

∞-version: Unstraightening

Theorem (Lurie, 2009)

For $S \in \mathbf{sSet}$, there is an equivalence of ∞ -categories:

$$\int_{\infty} : \mathbf{Cat}_{\infty}^{S} \xrightarrow{\simeq} \mathbf{coCart}_{/S}$$

- \int_{∞} is the nerve of the *marked unstraightening* functor Un_{+}
- \bullet Un $_+$ itself is not given explicitly, but as the adjoint to the marked straightening functor ${\rm St}_+$

∞-version: Unstraightening

Theorem (Lurie, 2009)

For $S \in \mathbf{sSet}$, there is an equivalence of ∞ -categories:

$$\int_{\infty} : \mathbf{Cat}_{\infty}^{S} \xrightarrow{\simeq} \mathbf{coCart}_{/S}$$

- ullet \int_{∞} is the nerve of the *marked unstraightening* functor Un_+
- Un₊ itself is not given explicitly, but as the adjoint to the marked straightening functor St₊
- But if $C \in \mathbf{Cat}$ and $f: C \to \mathbf{sSet}$ where each f(c) is a quasicategory, we have an explicit for for $\int_{\infty} N(f)$.

∞-version: Relative Nerve

Definition (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory.

∞-version: Relative Nerve

Definition (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory. The **nerve of** C **relative to** f is $N_f(C) \in \mathbf{sSet}$ whose n-simplices consist of:

∞-version: Relative Nerve

Definition (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory. The **nerve of** C **relative to** f is $N_f(C) \in \mathbf{sSet}$ whose n-simplices consist of:

• a functor $[n] \xrightarrow{c} C$, $(i \rightarrow j) \mapsto (c_i \xrightarrow{c_{ij}} c_j)$

Definition (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory. The **nerve of** C **relative to** f is $N_f(C) \in \mathbf{sSet}$ whose n-simplices consist of:

- a functor $[n] \xrightarrow{c} C$, $(i \to j) \mapsto (c_i \xrightarrow{c_{ij}} c_i)$
- for all $J \subseteq [n]$, $j = \max J$, a map of simplicial sets

$$s^J \colon \Delta^J o f(c_j)$$

Definition (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory. The **nerve of** C **relative to** f is $N_f(C) \in \mathbf{sSet}$ whose n-simplices consist of:

- a functor $[n] \xrightarrow{c} C$, $(i \rightarrow j) \mapsto (c_i \xrightarrow{c_{ij}} c_j)$
- for all $J \subseteq [n]$, $j = \max J$, a map of simplicial sets

$$s^J \colon \Delta^J \to f(c_j)$$

• such that for all $I \subseteq J \subseteq [n]$ with max. elts. $i \le j$,

$$\Delta^{I} \stackrel{s^{I}}{\longrightarrow} f(c_{i})$$

$$\downarrow \qquad \qquad \downarrow^{f(c_{ij})}$$

$$\Delta^{J} \stackrel{s^{J}}{\longrightarrow} f(c_{j})$$

Stricter ∞-versions

Theorem (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory, so that N(f) is a map $N(C) \to \mathbf{Cat}_{\infty}$.

Stricter ∞-versions

Theorem (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory, so that N(f) is a map $N(C) \to \mathbf{Cat}_{\infty}$. Then

$$\int_{\infty} \mathsf{N}(f) \simeq \mathsf{N}_f(C)$$

Stricter ∞-versions

Theorem (Lurie, 2009)

Let $f: C \to \mathbf{sSet}$ be a functor where each f(c) is a quasicategory, so that N(f) is a map $N(C) \to \mathbf{Cat}_{\infty}$. Then

$$\int_{\infty} \mathsf{N}(f) \simeq \mathsf{N}_f(C)$$

We can strictify even further:

Theorem (Beardsley-W., 2018)

Let $F: C \to \mathbf{sCat}$ be a functor where each F(c) is locally Kan, and

$$f: C \xrightarrow{F} \mathbf{sCat} \xrightarrow{\mathsf{N}} \mathbf{sSet}.$$

Then

$$N_f(C) \simeq N\left(\int_{s\mathsf{Set}} F\right).$$

- The Grothendieck construction
- \bullet ∞ -categorical versions:
 - Unstraightening
 - The Relative Nerve
 - The **sSet**-enriched version
- Application: the Operadic Nerve of a monoidal category

Definition (Lurie, 2007)

A **monoidal** ∞ -category is a cocart. fibration $M \to N(\Delta^{op})$ s.t.

$$M_{[n]}\simeq (M_{[1]})^n.$$

Definition (Lurie, 2007)

A **monoidal** ∞ -category is a cocart. fibration $M \to N(\Delta^{op})$ s.t.

$$M_{[n]}\simeq (M_{[1]})^n$$
.

Proposition (Lurie, 2007)

Let C be a simplicial monoidal category. There is a simplicial category C^{\otimes} along with a functor $C^{\otimes} \to \Delta^{op}$ such that

$$\mathsf{N}(\mathit{C}^{\otimes}) o \mathsf{N}(\Delta^{\mathit{op}})$$

is a monoidal ∞ -category.

Definition (Lurie, 2007)

A **monoidal** ∞ -category is a cocart. fibration $M \to N(\Delta^{op})$ s.t.

$$M_{[n]}\simeq (M_{[1]})^n$$
.

Proposition (Lurie, 2007)

Let C be a simplicial monoidal category. There is a simplicial category C^\otimes along with a functor $C^\otimes \to \Delta^{op}$ such that

$$\mathsf{N}(\mathit{C}^{\otimes}) o \mathsf{N}(\Delta^{\mathit{op}})$$

is a monoidal ∞ -category. The **operadic nerve of** C is $N(C^{\otimes})$.

Definition (Lurie, 2007)

A **monoidal** ∞ -category is a cocart. fibration $M \to N(\Delta^{op})$ s.t.

$$M_{[n]}\simeq (M_{[1]})^n.$$

Proposition (Lurie, 2007)

Let C be a simplicial monoidal category. There is a simplicial category C^\otimes along with a functor $C^\otimes \to \Delta^{op}$ such that

$$\mathsf{N}(\mathit{C}^{\otimes}) o \mathsf{N}(\Delta^{\mathit{op}})$$

is a monoidal ∞ -category. The **operadic nerve of** C is $N(C^{\otimes})$.

$$N(C^{\otimes})_{[1]} \simeq N(C)$$

Proposition (Beardsley-W., 2018)

Let C be a strict simplicial monoidal category. Then there is a functor $C^{\bullet} : \Delta^{op} \to \mathbf{sCat}$ sending [n] to C^n , such that

$$\int_{\mathsf{sSet}} C^{\bullet} = C^{\otimes}.$$

Proposition (Beardsley-W., 2018)

Let C be a strict simplicial monoidal category. Then there is a functor $C^{\bullet} : \Delta^{op} \to \mathbf{sCat}$ sending [n] to C^n , such that

$$\int_{\mathsf{sSet}} C^{\bullet} = C^{\otimes}.$$

Corollary

Let f denote the composite $\Delta^{op} \xrightarrow{C^{\bullet}} \mathbf{sCat} \xrightarrow{\mathbb{N}} \mathbf{sSet}$. Then

$$\mathsf{N}(C^{\otimes}) \simeq \mathsf{N}\left(\int_{\mathsf{sSet}} C^{ullet}\right) \simeq \mathsf{N}_f(\Delta^{op}) \simeq \int_{\infty} \mathsf{N}(f)$$

Proposition (Beardsley-W., 2018)

Let C be a strict simplicial monoidal category. Then there is a functor $C^{\bullet}: \Delta^{op} \to \mathbf{sCat}$ sending [n] to C^n , such that

$$\int_{\mathsf{sSet}} C^{\bullet} = C^{\otimes}.$$

Corollary

Let f denote the composite $\Delta^{op} \xrightarrow{C^{\bullet}} \mathbf{sCat} \xrightarrow{N} \mathbf{sSet}$. Then

$$\mathsf{N}(\mathit{C}^{\otimes}) \ \simeq \ \mathsf{N}\left(\int_{\mathsf{sSet}} \mathit{C}^{ullet}\right) \ \simeq \ \mathsf{N}_f(\Delta^{op}) \ \simeq \ \int_{\infty} \mathsf{N}(f)$$

The result also holds for \mathcal{O} -monoidal categories: Replace $\mathcal{A}ssoc$ with a **Set**-operad \mathcal{O} and Δ^{op} with the category of operators of \mathcal{O} .

Why do we care?

Why do we care?

Theorem (Beardsley-W. 2018)

Let C be a strict simplicial monoidal category. Then

$$N((C^{op})^{\otimes})$$
 and $N(C^{\otimes})_{op}$

are equivalent as monoidal ∞ -categories.

Why do we care?

Theorem (Beardsley-W. 2018)

Let C be a strict simplicial monoidal category. Then

$$N((C^{op})^{\otimes})$$
 and $N(C^{\otimes})_{op}$

are equivalent as monoidal ∞ -categories.

i.e. The operadic nerve commutes with opposites.

Why do we care?

Theorem (Beardsley-W. 2018)

Let C be a strict simplicial monoidal category. Then

$$N((C^{op})^{\otimes})$$
 and $N(C^{\otimes})_{op}$

are equivalent as monoidal ∞ -categories.

i.e. The operadic nerve commutes with opposites.

This gives a better handle on *coalgebras* in $N(C^{\otimes})$.

Thank you!

Questions/comments?