Classifieur Bayésien Naïf

Théorie

Le classificateur **Bayésien Naïf** repose sur le **théorème de Bayes** et l'hypothèse d'indépendance conditionnelle entre les variables explicatives. Il est particulièrement efficace pour les problèmes de classification textuelle et fonctionne bien même avec peu de données d'entraînement.

Hyperparamètre utilisé

Nous allons optimiser:

• var_smoothing : Ce paramètre permet d'ajouter un lissage aux variances estimées pour éviter les divisions par zéro. Il est sélectionné en fonction de la précision sur l'ensemble de validation.

Métriques d'évaluation

Nous afficherons:

- Matrice de confusion : montrant les erreurs de classification sur l'échantillon de test.
- Taux de bien classés sur l'échantillon de validation avec le meilleur hyperparamètre.
- Taux de bien classés sur l'échantillon de test avec ce même hyperparamètre.
- Taux de bien classés par classe sur l'échantillon de test pour observer la précision sur chaque classe.

Recherche du meilleur var_smoothing et évaluation

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix, accuracy_score
import warnings
   Suppression des avertissements inutiles
warnings.filterwarnings("ignore", category=UserWarning)
   Chargement des ensembles de données
train_data = pd.read_csv('covertype_train.csv')
val_data = pd.read_csv('covertype_val.csv')
test_data = pd.read_csv('covertype_test.csv')
# Préparation des données
X_train, y_train = train_data.drop('Cover_Type', axis=1),

    train_data['Cover_Type']

X_val, y_val = val_data.drop('Cover_Type', axis=1), val_data['Cover_Type']
X_test, y_test = test_data.drop('Cover_Type', axis=1),

    test_data['Cover_Type']

# Recherche du meilleur hyperparamètre var_smoothing
var_smoothing_values = np.logspace(-9, 0, 10)
val_accuracies = []
for smoothing in var_smoothing_values:
    gnb = GaussianNB(var_smoothing=smoothing)
    gnb.fit(X train, y train)
    acc = accuracy_score(y_val, gnb.predict(X_val))
    val_accuracies.append((smoothing, acc))
# Sélection du meilleur hyperparamètre
best_smoothing, best_val_acc = max(val_accuracies, key=lambda x: x[1])
# Affichage du graphique
plt.figure(figsize=(8, 6))
plt.plot(var_smoothing_values, [acc for smoothing, acc in val_accuracies],

¬ marker='o', linestyle='dashed', label="Validation")

plt.xscale('log')
```

```
plt.xlabel("Valeur de var_smoothing")
plt.ylabel("Précision sur validation")
plt.title("Optimisation du paramètre var_smoothing pour GaussianNB")
plt.legend()
plt.show()
   Modèle final avec le meilleur hyperparamètre
final_model = GaussianNB(var_smoothing=best_smoothing)
final_model.fit(X_train, y_train)
y_test_pred = final_model.predict(X_test)
# Matrice de confusion
conf_matrix = confusion_matrix(y_test, y_test_pred)
# Calcul des taux de bien classés par classe
class_accuracies = conf_matrix.diagonal() / conf_matrix.sum(axis=1)
overall_test_accuracy = accuracy_score(y_test, y_test_pred)
# Affichage des résultats
print(f"\n Meilleur var smoothing sur l'échantillon de validation :

    {best_smoothing:.1e}")

print(f"Taux de bien classés sur l'échantillon de validation avec cet
→ hyperparamètre : {best_val_acc:.2%}")
print("\n Matrice de confusion sur l'échantillon de test, avec le meilleur
→ hyperparamètre :")
print(conf_matrix)
print("\n Taux de bien classés par classe sur l'échantillon de test, avec le
⇔ meilleur hyperparamètre :")
for i, acc in enumerate(class_accuracies, start=1):
    print(f"Classe {i} : {acc:.2%}")
print(f"\n Taux de bien classés sur l'échantillon de test avec le meilleur
→ hyperparamètre : {overall_test_accuracy:.2%}")
```

Optimisation du paramètre var_smoothing pour GaussianNB

Meilleur var_smoothing sur l'échantillon de validation : 1.0e-07 Taux de bien classés sur l'échantillon de validation avec cet hyperparamètre : 61.23%

Matrice de confusion sur l'échantillon de test, avec le meilleur hyperparamètre :

[[1300		475	12	0	57	9	266]
[615	1732	101	1	222	89	73]
[0	72	939	151	72	196	0]
[0	0	33	66	0	11	0]
[2	179	4	0	176	19	0]
[0	66	271	34	12	311	0]
[162	2	3	0	3	0	651]]

Taux de bien classés par classe sur l'échantillon de test, avec le meilleur hyperparamètre Classe 1 : 61.35%

Classe 2 : 61.14%

Classe 3 : 65.66% Classe 4 : 60.00% Classe 5 : 46.32% Classe 6 : 44.81% Classe 7 : 79.29%

Taux de bien classés sur l'échantillon de test avec le meilleur hyperparamètre : 61.70%