COURS #10 et 11

PRISE EN COMPTE DU RISQUE DANS L'ÉVALUATION DES PROJETS

Chapitres 13,17 et 18 Él

ANALYSE DU RISQUE

BUT:

Fournir de meilleurs renseignements au décideur, celui-ci devant évaluer la possibilité qu'un projet soit moins rentable que prévu et décider s'il est prêt à assumer ce risque.

DISTINCTION ENTRE RISQUE ET INCERTITUDE

RISQUE

Tous les évènements susceptibles d'affecter un projet sont connus et qu'on peut leur associer des probabilités.

INCERTITUDE

On ne peut quantifier la probabilité qu'un évènement survienne par manque d'information.

TYPES DE RISQUES

- Stratégique : ex. concurrent arrivant sur le marché
- Conformité (réglementation): ex. introduction d'une nouvelle loi en matière de santé et de sécurité
- Financiers: ex. défaut de paiement des clients, augmentation des frais d'intérêts relatifs à un prêt commercial, insuffisance de fonds
- Opérationnels: ex. panne, vol d'un équipement clé
- Technologique : ex. désuétude obsolesence
- Ressources humaines : ex. expertise, disponibilité
- Matières premières : ex. délais, pénurie, qualité

MÉTHODES

EXAMEN --> SEUIL RENTABILITÉ ÉCONOMIQUE

- 1. Seuil de rentabilité (point mort) économique
- 2. Analyse de sensibilité
- 3. Scénarios
- 4. Modèles probabilistes EXAMENS!!! Le + probable de l'avoir
- 5. Valeur Actuelle Nette d'Abandon (VANA)
- 6. Arbres de décision
- 7. TRAM ajusté au risque
- 8. Simulation de Monte Carlo

Pas à l'exam

9. Autres méthodes

1- Seuil de rentabilité économique (exemple)

- Débours de l'investissement: 125 000\$
- Quantités vendues: 2 000 par année @ 50\$/unité
- Coûts de production unitaires variables: 15\$/unité
- Coûts fixes additionnels autres que l'amortissement: 10 000\$/an
- Durée du projet: n= 5 ans
- DPA= 30% dégressif à taux constant
- Hypothèse de non fermeture de catégorie
- Taux d'imposition T= 40%
- Valeur de revente après 5 ans: 32% du coût initial
- TRAM: 15% après impôt

Déterminez le volume (Q) pour lequel la VAN sera nulle (seuil de rentabilité). On suppose que la VAN est surtout sensible à la variation du volume.

6

SEUIL DE RENTABILITÉ ÉCONOMIQUE

Seuil de rentabilité économique après impôt - cas de non fermeture

```
VAN(15%) = 0
                                                                                                           40%
                                                                                                    T=
      -125 000$
                                                                                                           30%
                                    3.35216
                                                                                                 DPA=
     + ((50$-15$) Q -10 000$) (P/A; 15%;5) (1-40%)
                                                                                               TRAM=
                                                                                                           15%
                                       0.93478
                                                                                                              5
                           0.26667
                                                                                                    n=
       + 125 000$ *
3
                         <u>40% * 30%</u> <u>1+ 15%/2)</u>
                          15% + 30%
                                      1 + 15%
                           0.26667
                                       0.49718
                                      (1+15%)<sup>-5</sup>
     - 125 000$ * 32% * <u>40% * 30%</u>
4
                          15% + 30%
     + 125 000$ * 32% * (1+15%)<sup>-5</sup>
                                                   = 0
                           0.26667
                                       0.93478
                                                                                0.26667
                                                                                            0.49718
                                                                                                                 3.35216
                     1 - <u>40% * 30%</u> <u>1+ 15%/2)</u> 1- 125 000$ * 32% * 1 - <u>40% * 30%</u> (P/F;15%;5) + 10 000$ (P/A; 15%;5) (1-40%)
 Q=
```

35\$ (P/A;15%;5)(1-40%)

3.35216

2- ANALYSE DE SENSIBILITÉ

PERMET DE:

- Connaître les conséquences des changements dans les valeurs prévues et utilisées dans la VAN, TRI, CAE, DR etc.
- Dégager les points forts et les points faibles du projet analysé.

Exemple: analyse de sensibilité après impôts (NF)

Année	0	1	2	3	4	5
CALCUL DES FLU	X DES FLUX N	ONÉTAIRES	APRÈS IMP	ÔTS		_
Produits des vente	es	100 000 \$	100 000 \$	100 000 \$	100 000 \$	100 000 \$
(50\$*2000 u)	_					
Montants Déductib	oles					
Coût variable total (15\$*2000 u)		30 000	30 000	30 000	30 000	30 000
Coût fixe total		10 000	10 000	10 000	10 000	10 000
DPA	30%	18 750	31 875	22 313	15 619	10 933
Bénéfice imposab	le	41 250 \$	28 125 \$	37 688 \$	44 381 \$	49 067 \$
Impôt	40%	16 500	11 250	15 075	17 753	19 627
Bénéfice net (fisca	<u> </u>	24 750 \$	16 875 \$	22 613 \$	26 629 \$	29 440 \$
DPA		18 750 \$	31 875 \$	22 313 \$	15 619 \$	10 933 \$
Investissement	-125 000 \$		320/0	*125 0005		
Récupération			32 70	125 0000		 40 000 \$
Effet fiscal de		Non ferm	eture de l	a catégori	e	
la disposition		TTOTT TOTT		a oategori		-3 864 \$
FM net	-125 000 \$	43 500 \$	48 750 \$	44 925 \$	42 248 \$	76 509 \$
k= 15.00%	1.00000	0.86957	0.75614	0.65752	0.57175	0.49718
FMN actualisés	(125 000) \$	37 826 \$	36 862 \$	29 539 \$	24 155 \$	38 039 \$
VAN(15%)=	41 421 \$		TRI =	27.3%		

Analyse de sensibilité pour 5 variables: NF

PVu	50 \$	n=	5 ans
Quantités vendues (Q)	2 000	T=	40%
CVu	15 \$	DPA=	30%
CF	10 000 \$	TRAM=	15% Valeur de référence
R	40 000 \$		
P_0	125 000 \$		

VAN(15%)

ECART	-20%	-15%	-10%	-5%	0%	5%	10%	15%	20%
PVu	1 195	11 251	21 308	31 364	41 421	51 477	61 534	71 590	81 647
	-97.11%	-72.84 %	-48.56 %	-24.28%	0.00%	24.28%	48.56%	72.84%	97.11%
Q	13 263	⁷ 20 302	'27 342	'34 381	41 421	⁷ 48 460	⁷ 55 500	'62 539	'69 579
	-67.98%	-50.99%	-33.99%	-17.00%	0.00%	17.00%	33.99%	50.99%	67.98%
CVu	53 489	⁷ 50 472	'47 455	'44 438	41 421	7 38 404	'35 387	'32 370	⁷ 29 353
	29.13%	21.85%	14.57%	7.28%	0.00%	-7.28%	-14.57%	-21.85 %	-29.13%
CF	45 443	44 438	43 432	'42 427	41 421	40 415	39 410	38 404	37 398
	9.94%	7.46%	4.97%	2.43%	0.00%	-2.48%	-4.97%	-7.46%	-9.94%
R	38 504	39 233	39 962	'40 692	41 421	42 150	42 879	43 608	44 338
	-7.04%	-5.28 %	-3.52%	-1.76 %	0.00%	1.76%	3.52%	5.28%	7.04%

- .VAN très sensible aux variations de la Quantités et PVu
- . VAN modérément sensible aux changements du CVu
- . VAN relativement insensible aux changements des CF et R

3- L'ANALYSE DES SCÉNARIOS

- On reconnait que les variables utilisées dans l'évaluation peuvent prendre différentes valeurs par rapport à celles estimées
- On se pose des questions du type: «Qu'adviendrait-il si ...?»
- Les scénarios les plus communément utilisés sont: le meilleur (scénario optimiste), le plus probable et le pire scénario (scénario pessimiste)

SCÉNARIOS: exemple

		or oxompto					
P_0	125 000 \$						
PVu	50 \$		n=	5 ans			
Quantités vendues	2 000 unités		T=	40%			
CVu	15 \$		DPA=	30%			
CF	10 000 \$		TRAM=	15%			
R	40 000 \$						
	Scénario	Scénario le	Scénario				
Variation= +/- 20%	pessimiste	plus probable	optimiste				
P_0	150 000	125 000	100 000				
PVu	40	50	60				
Quantités	1 600	2 000	2 400				
CVu	18	15	12	/aleurs de			
CF	12 000	10 000	8 000				
R	32 000	40 000	48 000	référence			
VAN(15%)							
Non Fermeture	-54 280	41 421	158 039				
Fermeture	-54 372	40 460	156 210				

SCÉNARIOS: exemple (suite)

P_0	125 000 \$		
PVu	50 \$	n=	5 ans
Quantités vendues	2 000 unités	T=	40%
CVu	15 \$	DPA=	30 %
CF	10 000 \$	TRAM=	15%
R	40 000 \$		

Probabilité	10%	60%	30%
	Scénario	Scénario Scénario le	
Variation= +/- 20%	pessimiste	plus probable	optimiste
P_0	150 000	125 000	100 000
PVu	40	50	60
Quantités	1 600	2 000	2 400
CVu	18	15	12
CF	12 000	10 000	8 000
R	32 000	40 000	48 000

Valeurs de référence

VAN(15%)

Non Fermeture	-54 280	41 421	158 039
E(VAN(15%)) VAN	Moyenne 66 836 \$		
Fermeture	-54 372	40 460	156 210
$\Gamma/\backslash/\Lambda$ NI/1 Γ 0/\\	CF 702 ¢		

E(VAN(15%)) **65 702** \$

4- ANALYSE DE PROBABILITÉS

 On suppose que l'analyste peut fixer certaines valeurs possibles de la variable la plus significative de la rentabilité d'un projet.

Exemple: Chiffre d'affaires.

On peut se limiter au scénario: pessimiste,

le plus probable et optimiste.

Il s'agit ensuite de déterminer les probabilités que chacun de ces trois scénarios se réalise.

Le risque d'un tel projet peut être évalué à partir du calcul de l'espérance mathématique, de l'écart type et du coefficient de variation.

ANALYSE DE PROBABILITÉS

Le risque d'un projet peut être évalué à partir du calcul de:

- **♦ L'ESPÉRANCE MATHÉMATIQUE**
- **♦ L'ÉCART TYPE**
- **◆ COEFFICIENT DE VARIATION.**

NOTATION

- E = Espérance mathématique de la variable considérée;
- X = Valeur prise par la variable;
- P(X) = Probabilité attribuée à la valeur X de la variable;
- N = Nombres de valeurs ou de scénarios envisagés.

ESPÉRANCE MATHÉMATIQUE

Discrète

$$E = \sum_{i=1}^{N} X_i P(X_i)$$

ÉCART-TYPE, σ

$$\sigma = \sqrt{\sum_{i=1}^{N} (X_i - E)^2 P(X_i)}$$

Donne la dispersion de la variable la plus importante dans la rentabilité d'un projet.

Mesure du risque

COEFFICIENT DE VARIATION

$$V = \frac{\sigma}{E}$$

- Plus V est élevé, plus le risque du projet est élevé.
- Le coefficient de variation permet de comparer les risques liés aux différents projets.

EXEMPLE TRAM= 10%

Données économiques de 3 projets A, B et C.

	Projet	Α	Projet	: B	Projet	t C
Débours d'inv. Durée (ans) V.R. (\$) valeurs de revente	990 000 5 300 000		900 000 5 150 000		600 000 5 300 000	
Recettes annuelles nettes (montant et probabilité)	300 000 315 000 325 000 350 000 375 000	0.2 0.3 0.2 0.1 0.2	275 000 300 000 325 000	0.3 0.4 0.3	190 000 200 000 210 000 250 000 275 000 290 000	0.1 0.2 0.3 0.2 0.1 0.1

$$E_A = (300k \times 0, 2) + (315k \times 0, 3) + (325k \times 0, 2) + (350k \times 0, 1) + (375k \times 0, 2)$$

$$= 329500 \$ \text{ Flux monétaire net}$$

$$\sigma_A = \sqrt{\frac{(300k - 329, 5k)^2 \times 0, 2 + (315k - 329, 5k)^2 \times 0, 3 + (325k - 329, 5k)^2 \times 0, 2 + (350k - 329, 5k)^2 \times 0, 1}{(375k - 329, 5k)^2 \times 0, 2}}$$

= 26 405 \$

RECETTES ANNUELLES NETTES ESPÉRÉES

```
E(projet A) = (300\ 000x0.2) + (315\ 000x0.3) +
                  (325\ 000x0.2) + (350\ 000x0.1) +
                  (375000 \times 0.2)
              = 329 500 $
E(projet B) = (275\ 000\ x\ 0.3) + (300\ 000\ x\ 0.4) +
                  (325\ 000\ x\ 0.3)
              = 300 000 $
E(projet C) = (190\ 000\ x\ 0.1) + (200\ 000\ x\ 0.2) +
                  (210\ 000\ x\ 0.3) + (250\ 000\ x\ 0.2) +
                  (275\ 000\ \times\ 0.1) + (290\ 000\ \times\ 0.1)
              = 228 500 $
```

ÉCART-TYPE DES PROJETS

```
\sigma (projet A) = [(300 000 - 329 500)<sup>2</sup> (0.2)
                 + (315\ 000\ -\ 329\ 500)^2 (0.3)
                 +(325\ 000\ -\ 329\ 500)^2\ (0.2)
                 +(350\ 000\ -\ 329\ 500)^2\ (0.1)
                 +(375\ 000\ -\ 329\ 500)^2\ (0.2)]^{1/2} = 26\ 400\ 
\sigma (projet B) = [(275 000 - 300 000)<sup>2</sup> (0.3)
                 + (300\ 000\ -\ 300\ 000)^2 (0.4)
                 + (325\ 000\ -\ 300\ 000)^2\ (0.3)\ 1^{1/2} = 19\ 364\ $
\sigma (projet C) = [(190 000 - 228 500)<sup>2</sup> (0.1)
                 + (200\ 000\ -\ 228\ 500)^2 (0.2)
                 + (210\ 000\ -\ 228\ 500)^2(0.3)
                 +(250\ 000\ -228\ 500)^2(0.2)
                 +(275\ 000\ -\ 228\ 500)^2(0.1)
                 + (290\ 000\ -\ 228\ 500)^2\ (0.1)]^{1/2} = 33170$
```

COEFFICIENT DE VARIATION

```
V (projet A) = \sigma (projet A) / E (projet A)
             = 26 400 / 329 500
                80.0
V (projet B) = \sigma (projet B) / E (projet B)
             = 19 364 / 300 000
                0.06
V (projet C) = \sigma (projet C) / E (projet C)
             = 33 170 / 228 500
                0.15
```

CALCUL DE LA VAN

Recettes actualisées

	(P/A,10%,5)	Projet A	Projet B	Projet C
329 500 \$	3.7908	1 249 064 \$		
300 000 \$	3.7908		1 137 236 \$	
228 500 \$	3.7908			866 195 \$
Valeur de récu	pération			
300 000 \$	0.6209	186 276 \$		
150 000 \$	0.6209		93 138 \$	
300 000 \$	0.6209			186 276 \$
Total		1 435 341 \$	1 230 374 \$	1 052 471 \$
<u>Moins</u>				
Débours d'inve	st	990 000 \$	900 000 \$	600 000 \$
VAN (10%)		445 341 \$	330 374 \$	452 471 \$
IR		1.45	1.37	1.75

CRITÈRE DE CHOIX

Critères de choix pour un décideur rationnel :

- ♦ À rendement égal, opter pour le projet le moins risqué.
- → À risque égal, opter pour le projet dont le rendement est plus élevé.

	<u>V</u>	Indice de rentabilité		
Projet A	80.0	1.45		
Projet B	0.06	1.37		
Projet C	0.15	1.75		

5- VALEUR ACTUELLE NETTE D'ABANDON, VANA

<u>UTILITÉ</u>

Sert à évaluer le risque associé à la poursuite d'un projet sur un certain nombre d'années.

Pour chacune des années de la durée de vie du projet, il faut obtenir 2 types de données:

- recettes annuelles nettes;
- valeurs résiduelles des investissements.

VALEUR ACTUELLE NETTE D'ABANDON, VANA

PROCÉDURE:

Calculer la VAN du projet pour une année additionnelle, pendant chacune des années de la durée de vie du projet.

- ◆ Si la VAN additionnelle > 0, alors la valeur de la compagnie augmente si on prolonge le projet pendant un an de plus.
- ◆ Si la VAN additionnelle < 0 la valeur de la compagnie diminue si on prolonge le projet pendant un an de plus.

VANA peut donc servir à déterminer la durée de vie économique d'un projet.

27

EXEMPLE 12.4 ANALYSE DU RISQUE D'UN PROJET PAR LA VANA

Données:

<u>R</u>	<u>Année</u>	Recettes nettes
(\$)		(\$)
70 000	1	3 0000
55 000	2	50 000
40 000	3	50 000
30 000	4	30 000
10 000	5	10 000
0	6	5 000

Investissement: 100 000 \$

DPA= 20%; T = 50%; TRAM = 10%; n = 6 ans.

5.1. RECETTES NETTES ACTUALISÉES (EXPLOITATION):

An-	Recettes	Recettes nettes	P/F,10%,n	R. nettes	
née	Nettes	après imp. (Ti=50%)		act. A.imp	
	(\$)	(\$)		(\$)	Cumul
1	30 000	15 000	0.9091	13 636	13 636
2	50 000	25 000	0.8264	20 661	34 298
3	50 000	25 000	0.7513	18 783	53 080
4	30 000	15 000	0.6830	10 245	63 326
5	10 000	5 000	0.6209	3 105	66 430
6	5 000	2 500	0.5645	1 411	67 841

Investissement net d'impot = $-100\ 000$ (investissement) + $100\ 000\ ^*$ [(50% * 20%) / (10% + 20%)] * [(1 + 10%/2) / 1+ 10%)] = $100\ 000\ -31818$

Valeur nette d'impot =

Année 1: - 100 000 + 31818 + 70 000 - 70 000 * [(50%*20%) / (10%+20%)] * (P/F; 10%;1) OU

^{- 100 000 + 31818 + 70 000 * [1 - (50%*20%) / (10%+20%)] * (}P/F; 10%;1) 0.666

5.2. ÉCONOMIES DUES À LA DPA:

VAÉI = 100 000 x
$$0.5 \times 0.2$$
 x $1 + 0.1/2$ = 31 818 \$ 0.1 + 0.2 1+0.1 0.33333 0.95455

5.3. Valeur actuelle de la valeur résiduelle après impôt:

Année 1:	70 000x(1- <u>0.5x0.2</u>)x(P/F;10%,1)=	42 424	\$
	0.1+0.2		
Année 1:	$70\ 000\ x\ (1-0.334)\ x\ 0.9091 =$	42 424	\$
Année 2:	55 000 x 0.666 x 0.8264=	30 303	\$
Année 3:	40 000 x 0.666 x 0.7513=	20 035	\$
Année 4:	30 000 x 0.666 x 0.6830=	13 660	\$
Année 5:	10 000 x 0.666 x 0.6209=	4 139	\$
Année 6	0		

5.4. VANA pour chaque année:

VAN ADDITIONNELLE POUR CHAQUE ANNÉE

		VANA	<u>VAN</u>
			<u>additionnelle</u>
Année 1:	-100 000 \$ +31 818 \$ + 42 424 \$ +13 636 \$ =	(12 121) \$	(12 121) \$
Année 2:	-100 000 \$ +31 818 \$ + 30 303 \$ +34 298 \$ =	(3 581) \$	8 540 \$
Année 3:	-100 000 \$ +31 818 \$ +20 035 \$ +53 080 \$ =	4 934 \$	8 515 \$
Année 4:	-100 000 \$ +31 818 \$ +13 660 \$ +63 326 \$ =	8 804 \$	3 870 \$
Année 5:	-100 000 \$ +31 818 \$ + 4 139 \$ +66 430 \$ =	2 388 \$	(6 416) \$
Année 6:	-100 000 \$ +31 818 \$ +67 841 \$ =	(340) \$	(2 728) \$
			TRI< 10 %
	durée	e de vie	
	éco. 4	4 ans	32

6- ARBRE DE DÉCISION

- Outil d'analyse conduisant à la sélection des actions à adopter.
- Constitué de nœuds connectés entre eux par des branches.
- Exprime graphiquement la séquence des décisions à prendre et les divers événements qui peuvent se produire.

PROCÉDURE:

- Définir les événements possibles Ei
- Déterminer les actions qui peuvent être entreprises
- Déterminer la valeur de chaque action combinée avec E_i
- Associér à chaque événement E_i une probabilité
- Trouver la valeur espérée de chaque solution
- Choisir la meilleure solution

ARBRE DE DÉCISION (suite)

CONVENTIONS

- Un carré = Nœud de décision (D)
- Ronds = nœuds d'évènements (E) (incertitude)
- Une branche = une action
- Scénario = branche suivant un rond (avec probabilité)
- Résultat (valeur monétaire espérée ex. VAN) = conséquence monétaire

La résolution se fera en utilisant la valeur monétaire espérée comme valeur pour chaque nœud.

La structure de l'arbre décisionnel

a) Noeud de décisions

D Solutions

b) Noeud de probabilités

0.5 0.2 Probabilités

Résultats

c) Structure de l'arbre

Exemple

Le service de recherche d'une entreprise a mis au point un nouveau produit dans son laboratoire. Des études effectuées par le service de production ont révélé que l'entreprise devrait engager des coûts additionnels pour développer ce nouveau produit avant de s'engager dans sa production en série. Ces coûts de développement ont une probabilité de 30% de s'élever à 200 000\$ et une probabilité de 70% de s'élever à 350 000\$. Le service de mise en marché estime que le cycle de vie de ce produit sera de 10 ans. Il estime également que les recettes annuelles nettes de ce projet ont une probabilité de 30% de s'élever à 50 000\$, une probabilité de 50% de s'élever à 60 000 \$ et une probabilité de 20% de s'élever à 75 000\$.

Il n'y aura aucune valeur résiduelle de l'investissement effectué dans ce projet. Le taux d'impôt est de 40% et les coûts de développement du nouveau produit sont considérés comme des dépenses d'exploitation aux fins de l'impôt. Le taux *TRAM* de l'entreprise est de 10% après impôt.

TRAVAIL À FAIRE:

- 1. Tracez l'arbre de décision du projet;
- 2. Établissez la valeur *VAN* de chacun des événements possibles du projet;
- 3. Calculez la valeur *VAN* espérée du projet, c'est-à-dire l'espérance mathématique de la valeur *VAN*;
- 4. Établissez finalement si le projet devrait être réalisé.

Arbre de décision (exemple)

- Coût de la recherche (déductible pour des fins fiscales):
 - 200 000 \$, probabilité de 30 %
 - 350 000 \$, probabilité de 70 %
- Cycle de vie: 10 ans
- Recettes annuelles nettes:
 - 50 000 \$, probabilité de 30 %
 - 60 000 \$, probabilité de 50 %
 - 75 000 \$, probabilité de 20 %
- Valeur résiduelle: nulle
- $T_1 = 40 \%$, TRAM = 10 % après impôt

TRAVAIL À FAIRE:

- 1. Tracez l'arbre de décision du projet;
- 2. Établissez la valeur *VAN* de chacun des événements possibles du projet;
- 3. Calculez la valeur VAN espérée du projet E(VAN);
- 4. Établissez finalement si le projet devrait être réalisé.

Arbre de décision

Arbre de décision

	Rec.	/D/A 400/ 40\			Prob	Prob	Prob.	VAN
	an.	(P/A,10%,10)			des	des	Con-	espér
Rec	nettes	=6.1446	T_I	TRAM	rec	coûts	jointes	ée
annuel	ap	10	40%	10%				
les	impôt							
nettes	(40%)	(VAR) _{ap}	(VAD) _{ap}	VAN			p	
(\$)	(\$)	(\$)	(\$)	(\$)			Prob. conjointes	
50 000	30 000	184 337	120 000	64 337	30%	30%	and the second s	5 790
60 000	36 000	221 204	120 000	101 204	50%	30%	0.15	15 181
75 000	45 000	276 506	120 000	156 506	20%	30%	0.06	9 390
50 000	30 000	184 337	210 000	(25 663)	30%	70%	0.21	-5 389
60 000	36 000	221 204	210 000	11 204	50%	70%	0.35	3 922
75 000	45 000	276 506	210 000	66 506	20%	70%	0.14	9 311
						V/	4 <i>N</i> =	38 204

<u>Décision</u>: VAN >0; réaliser le projet

7- TRAM ajusté au risque dépendamment de la conjoncture économique

- Sans risque (< 10 %)
- Risque faible (10-12 %):
 - Projets de maintien de la position de l'entreprise (remplacement d'équipement, entretien des immeubles)
- Risque moyen (15-18 %):
 - Projets de réduction des coûts (améliorations de la productivité, achat de nouvelles machines plus efficaces)
- Risque élevé (20-25 %):
 - Projets d'expansion d'affaire (augmentation de la production, ajouts de nouveaux produits ou services)
 - Incertitude quant à la demande
- Capital de risque (> 30 %)

8- MÉTHODE DE MONTE-CARLO

- Méthode développée dans les années 40
- Méthode plus puissante que l'arbre de décision
- Capable de produire des résultats très précis si les hypothèses sont respectées et si le nombre de simulations est suffisamment grand (>100)

MÉTHODE DE MONTE-CARLO (suite)

Permet de modéliser directement les différentes sources d'incertitude d'un projet. Elle comprend 5 étapes:

Étape 1: Modèle analytique

construire un modèle liant les différentes variables du projet (**exemple l'équation de la VAN**). Classer les variables en 2 groupes: variables dont les valeurs sont connues et les variables aléatoires (VA).

Étape 2: Distribution de probabilités

Spécifier une distribution de probabilités pour chaque variable aléatoire (VA) c'est-à-dire soumise à l'incertitude. Choisir la précision désirée sur cette distribution de probabilité (le pas de distribution de probabilité).

Étape 3: Échantillonnage aléatoire

Effectuer un échantillonnage aléatoire pour chaque variable aléatoire utilisée.

- a) Pour chaque VA, dresser un tableau similaire au tableau #1 montrant les résultats possibles, leurs probabilités d'occurrence et les différents intervalles de classes.
- b) Pour chaque VA, générer un nombre aléatoire Z (voir tableau #2). Repérer l'intervalle auquel correspond **Z** puis inscrire le résultat approprié.
- c) Inscrire dans le modèle analytique de l'étape 1 les valeurs des VA pour calculer le résultat (ex VAN)

Étape 4: Répéter l'échantillonnage

Répéter la procédure d'échantillonnage plusieurs fois (>100)

Étape 5: Résumé

Calculer les flux monétaires annuels puis actualiser. Préparer la présentation graphique (histogramme) des résultats de la simulation. Résumé des résultats statistiques.

MÉTHODE DE MONTE-CARLO (suite)

Tableau #1: Échantillonnage aléatoire - pour étape 3 (a)

	Résultat	Probabilité	Nombre aléatoire (Z)
i	$oldsymbol{\mathcal{X}}_{\mathrm{i}}$	$p(X_i)$	Intervalle d'affectation
1	\mathcal{X}_{1}	$p(X_1)$	$0 \le Z \langle p(x_1)$
2	$\mathcal{X}^{}_2$	$p(X_2)$	$p(x_1) \le Z\langle p(x_1) + p(x_2)$
	• •	: :	•
m-1	x_{m-1}	$p(X_{m-1})$	$p(x_1) + + p(x_{m-2}) \le Z\langle p(x_1) + + p(x_{m-1})$
m	x_m	$p(X_m)$	$p\left(x_{1}\right)+\ldots+p\left(x_{m-1}\right)\leq Z\left\langle 1\right\rangle$

MÉTHODE DE MONTE-CARLO (suite)

Tableau #2: étape 3 (b) à appliquer à toutes les variables aléatoires

Nombre aléatoire	Valeur de \mathcal{X}	Étape 3 (c) Résultat (calcul de la VAN)
Générer Z	affecter une valeur à X (un des X_i) en utilisant le tableau #1 étape 3 (a)	Calculer le résultat en appliquant le modèle analytique à l'étape 1

Pharma-Excel, un laboratoire pharmaceutique, évalue un projet de recherche et développement concernant l'amélioration de pilules de vitamine. Étant la première recherche dans le domaine pour Pharma, les dirigeants n'ont aucune idée précise sur les flux monétaires du projet. L'étude de faisabilité préliminaire a permis d'obtenir les valeurs suivantes (supposez qu'elles sont indépendantes):

	1 1 1	1	117
	ลท	leau	# 4
1	ao	LOUG	IIJ

Investissement initial	Probabilité	FMN annuels	Probabilité
1 000 000 \$	0.20	100 000 \$	0.125
1 250 000 \$	0.20	350 000 \$	0.125
1 500 000 \$	0.20	600 000 \$	0.125
1 750 000 \$	0.20	850 000 \$	0.125
2 000 000 \$	0.20	1 100 000 \$	0.125
		1 350 000 \$	0.125
		1 600 000 \$	0.125
		1 850 000 \$	0.125

TRAM=15%, durée n = 10. Ignorez l'impôt.

Appliquez la méthode de Monte-Carlo pour simuler la VAN du projet.

Tableau #3: Fonction de répartition

VAN (15%)=- P_0 +FMN annuels x (P/A,15%,10)

Investissement initial (P ₀)	Probabilité	Intervalle d'affectation
1 000 000 \$	0.20	$0 \le Z \langle 0.2$
1 250 000 \$	0.20	$0.2 \leq Z \langle 0.4 \rangle$
1 500 000 \$	0.20	$0.4 \leq Z \langle 0.6 \rangle$
1 750 000 \$	0.20	$0.6 \le Z \langle 0.8$
2 000 000 \$	0.20	$0.8 \leq Z\langle 1$
FMN annuels	Probabilité	Intervalle d'affectation
100 000 \$	0.125	$0 \le Z \langle 0.125$
350 000 \$	0.125	$0.125 \leq Z\langle 0.25\rangle$
600 000 \$	0.125	$0.25 \le Z\langle 0.375$
850 000 \$	0.125	$0.375 \leq \hat{Z} \langle 0.5 \rangle$
1 100 000 \$	0.125	$0.5 \le Z \langle 0.625 \rangle$
1 350 000 \$	0.125	$0.625 \le Z(0.75)$
1 600 000 \$	0.125	$0.75 \le Z(0.875)$
1 850 000 \$	0.125	$0.875 \leq Z\langle 1$

Tableau #4

$$n=$$
 10 ans
 $TRAM=$ 15%
 $(P/A;15\%;10)=$ 5.0188 $VAN (15\%)=-I_0+Flux nets annuels x (P/A,15\%,10)$

Résultats partiels de la simulation de Monte Carlo

No de	Nombre		Nombre		
l'échan-	aléatoire	Investis-sement	aléatoire	FMN annuels	VAN (15%)
tillon	(Z1)		$\langle (Z2) \rangle$		
1	0.03553	1 000 000 \$	0.20817	350 000 \$	756 569 \$
2	0.12765	1 000 000 \$	0.22462	350 000 \$	756 569 \$
3	0.61923	1 750 000 \$	0.94017	1 850 000 \$	7 534 722 \$
4	0.23604	1 250 000 \$	0.64408	1 350 000 \$	5 525 338 \$
5	0.01487	1 000 000 \$	0.57811	1 100 000 \$	4 520 645 \$
6	0.42522	1 500 000 \$	0.84927	1 600 000 \$	6 530 030 \$
:		i i		i ·	<u> </u>
•	•	•	•	•	•
200 essais		VANmin		VANmax	VANmoy
P(VAN>0) à 80%		-1 498 123 \$		8 284 722 \$	3 078 423 \$

Projet acceptable

Distribution des fréquences

TRAVAIL À FAIRE

Chapitre 17 Él
Problèmes # 17.4, 17.6, 17.8, 17.18,
(17.23 changer le signe de valeur la
plus probable à +50 000), 17.24, 17.27,
17.30 et 17.35