

Algorithm to obtain the eigen phase of a given unitary

$$U|\phi_j\rangle = e^{i\phi_j}|\phi_j\rangle$$

ullet When Applied to a given eigen state $|\phi_j
angle$

For Hamiltonians

$$e^{iHt}|\phi_j\rangle = e^{iE_jt}|\phi_j\rangle$$

• When Applied to a given eigen state $|\phi_j
angle$

Transition matrix elements

$$\langle \phi_j | e^{-i\boldsymbol{H}t} | \phi_j \rangle = e^{-i\boldsymbol{E_j}t} \langle \phi_j | \phi_j \rangle$$

• When Applied to a given eigen state $|\phi_j
angle$

Transition matrix elements

$$|\psi\rangle = \sum_{j} c_{j} |\phi_{i}\rangle$$

$$\langle \psi | e^{-i\boldsymbol{H}t} | \psi \rangle = \sum_{j} |c_{j}|^{2} e^{-i\boldsymbol{E}_{j}t} \langle \phi_{j} | \phi_{j} \rangle$$

ullet When Applied to a linear combination eigen states $|\psi
angle$

QCELS

Transition matrix elements

$$L(r,\theta) = \frac{1}{N} \sum_{n=0}^{N-1} |\mathbf{Z}_n - \mathbf{r}e^{-i\theta n\tau}|^2$$

$$Z_n = \langle \psi | e^{-iHn\tau} | \psi \rangle$$

For n time slices au find heta in: $re^{-i heta n au}$

QCELS

Transition matrix elements can be measured with the Hadamard test

Figure 1. Quantum circuit used for collecting the input data. H is the Hadamard gate, $t_n = n\tau$. Choosing W = I or $W = S^{\dagger}$ (S is the phase gate) allows us to estimate the real or the imaginary part of $\langle \psi | \exp(-it_n H) | \psi \rangle$.

DERIVATIVES

$$L(r,\theta) = \frac{1}{N} \sum_{n=0}^{N-1} |\mathbf{Z}_n - \mathbf{r}e^{-i\theta n\tau}|^2$$

• For a fixed value of θ the minimisation of L wrt to r GIVES:

$$r(\theta) = \frac{1}{N} \sum_{n=0}^{N-1} e^{i\theta n\tau} Z_n,$$

Sub back in:

$$\min_{r \in \mathbb{C}} L(r, \theta) = \frac{1}{N} \sum_{n=0}^{N-1} |Z_n|^2 - \frac{1}{N} \left| \sum_{n=0}^{N-1} Z_n e^{i\theta n\tau} \right|^2$$

DERIVATIVES

$$\min L(\theta) = \frac{1}{N} \sum_{n=0}^{N-1} |Z_n|^2 - \frac{1}{N^2} \left| \sum_{n=0}^{N-1} Z_n e^{i\theta n\tau} \right|^2$$

Minimization of L equivalent to maximizing

$$f(\theta) = \Big| \sum_{n=0}^{N-1} Z_n e^{i\theta n\tau} \Big|^2$$

Larger n

COMPLEXITY ARGUMENTS

- The algorithm satisfies the Heinsberg scaling limit $O(\varepsilon^{-1})$
- Only single ancilla phase estimation method to do so
- When the overlap with the exact GS is > 0.71 repeat until success can be used
- When the overlap with the exact GS is < 0.71 Filtering and signal processing methods can be used (Kentaro, Sam)
- Everything formally proved in the paper arXiv:2211.11973

QUANTINUUM