Dr. A. Kaltenbach SoSe 2024

Aufgabe 1 (Instationärer Satz von Browder-Minty)

Sei (V, H, i) ein Gelfand-Dreier, wobei V separabel und reflexiv ist, $p \in (1, \infty)$ und $I := (0, T), 0 < T < \infty$.

Sei weiter $A(t): V \to V^*, t \in I$, eine Familie von monotonen Operatoren, die den Voraussetzungen des instationären Satzes von Browder-Minty (cf. Theorem 6.17) genügt.

Zeigen Sie, dass falls $\lambda = 0$, der Operator

$$\left(\frac{\mathrm{d}_e}{\mathrm{d}t} + \mathcal{A}, (i_c \cdot)(0)\right)^\top : W_e^{1,p,p'}(I; V, V^*) \to L^{p'}(I; V^*) \times H,$$

eine Bijektion mit demi-stetiger Inversen.

Aufgabe 2 (Eine lästige, aber nützliche Folge)

Sei $I = (0, 2\pi)$ und die Folge $(f_n)_{n \in \mathbb{N}} \subseteq C^{\infty}(\overline{I})$, für alle $n \in \mathbb{N}$ definiert durch

$$f_n(t) := \sin(nt)$$
 für alle $t \in \overline{I}$.

Zeigen Sie, dass die folgenden Aussagen gelten:

- (i) $f_n \rightharpoonup 0$ in $L^q(I)$ $(n \rightarrow \infty)$ für alle $q \in [1, \infty)$;
- (ii) $\lim_{n\to\infty} \|f_n\|_{L^2(I)}^2 = \pi$.

Aufgabe 3

Sei X eine Banach-Raum, $p \in (1, \infty)$, $I \subseteq \mathbb{R}$ ein Intervall, $x \in X$ und $(f_n)_{n \in \mathbb{N}} \subseteq L^p(I)$ eine Folge, sodass

$$f_n \rightharpoonup f$$
 in $L^p(I)$ $(n \to \infty)$.

Zeigen Sie, dass für die Folge $(u_n)_{n\in\mathbb{N}}\subseteq L^p(I;X)$, für alle $n\in\mathbb{N}$ definiert durch

$$u_n(t) := x f_n(t)$$
 in X für f.a. $t \in I$,

gilt, dass

$$u_n \rightharpoonup u \quad L^p(I;X) \quad (n \to \infty).$$

Aufgabe 4 (Kanzellierungseigenschaft des konvektiven Terms)

Sei $\Omega \subseteq \mathbb{R}^d$, $d \ge 2$, ein beschränktes Gebiet und $p \in \left[\frac{3d+2}{d+2}, \infty\right)$.

Zeigen Sie, dass der stationäre konvektive Term $C \colon W^{1,p}_{0,\sigma}(\Omega) \to (W^{1,p}_{0,\sigma}(\Omega))^*$, für alle $\mathbf{v}, \mathbf{w} \in W^{1,p}_{0,\sigma}(\Omega)$ definiert durch

$$\langle C\mathbf{v}, \mathbf{w} \rangle_{W_{0,\sigma}^{1,p}(\Omega)} \coloneqq -\int_{\Omega} \mathbf{v} \otimes \mathbf{v} : \nabla \mathbf{w} \, \mathrm{d}x,$$

die Kanzellierungseigenschaft hat, d.h. für alle $\mathbf{v} \in W^{1,p}_{0,\sigma}(\Omega)$ gilt, dass

$$\langle C\mathbf{v}, \mathbf{v} \rangle_{W_{0,\sigma}^{1,p}(\Omega)} = 0.$$