TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KỸ THUẬT MÁY TÍNH

ĐỀ THI GIỮA HK1 (2022-2023) KIẾN TRÚC MÁY TÍNH

Đề 5 Thời gian: 65 phút (Sinh viên không được sử dụng tài liệu. Làm bài trực tiếp trên đề)

STT	Họ và tên: I	<u>ĐIỂM</u>	<u>CÁN BÔ COI THI</u>
	MSSV:		
	Phòng thi:	<u></u>	
	2 1		

BÁNG TRÁ LỚI TRẮC NGHIỆM

Câu 1	Câu 2	Câu 3	Câu 4	Câu 5	Câu 6	Câu 7	Câu 8	Câu 9	Câu 10
Câu 11	Câu 12	Câu 13	Câu 14	Câu 15	Câu 16	Câu 17	Câu 18		

CÂU HỔI TRẮC NGHIỆM (9 điểm, 0.5 điểm/câu, SV chọn 1 đáp án đúng và điền vào bảng trả lời trắc nghiệm ở trang đầu)

Câu 1 Trong các loại bộ nhớ sau, bộ nhớ nào có tốc độ truy xuất nhanh nhất (G2)

A. RAM	B. SSD	C. Cache	D. Register	

Câu 2 Giả sử kiến trúc tập lệnh của một bộ xử lý P1 có 4 lớp lệnh: A, B, C và D. Tần số xung clock và CPI của mỗi lệnh như bảng bên dưới. Cho một chương trình với 100 lệnh được chia thành các lớp sau: 10% lớp A, 30% lớp B, 40% lớp C và 20% lớp D.

Bộ xử lý	Clock rate	CPI Class A	CPI Class B	CPI Class C	CPI Class D
P1	1.5 Ghz	1	2 .	3	4

Thời gian thực thi chương trình trên P1? (G1)

ï	A 210	B. 405 ns	C. 180 ns	D. 270 ns	
	A. 210 ns	B. 105 No	C. 100 M	D. 270 NO	

Câu 3 Một Terabyte bằng bao nhiều Byte? (G1)

ш		7 (· /	
ı	A. 2^20	B. 2^30	C. 2^40	D. 2^50

Câu 4 Công cụ dùng để dịch từ ngôn ngữ cấp cao thành hợp ngữ gọi là gì? (G2)

Ã.	Compiler	
B.	Assembler	
C.	System Program	
D.	Operating System	

Câu 5 Một máy in màu sử dụng 8 bit để hiển thị một kênh màu trong hệ 4 kênh màu CMYK để in ảnh với độ phân giải 1280×800 pixel. Hãy cho biết độ lớn nhỏ nhất của bộ đệm để có thể chứa một khung ảnh (đơn vị là Bytes) (G1)

A. 3072000	B. 4096000	C. 24576000	D. 32768000	
------------	------------	-------------	-------------	--

Câu 6 Ngôn ngữ dùng để mô tả lệnh nhị phân (mã máy) của máy tính thông qua kí hiệu biểu diễn là: (G2)

A.	Machine language
В.	Assembly language
C.	C language
D.	Natural language

Câu 7 Cho một bộ xử lý với Clock Rate = 3 Ghz và CPI = 4.5. Hỏi tổng số lệnh thực thi trong một giây (instructions per second - IPS) là bao nhiều? (G1)

A. 1.5 x 10^9 B. 0.67 x 10^9 C. 13.5 x 10^9 D. Tất cả đều sai

Câu 8 Cho giá trị ban đầu trong thanh ghi \$s0 là 0x20222023. Hãy cho biết giá trị của thanh ghi \$s1 sau khi chạy hết đoạn lệnh sau? (G1)

addi \$t0, \$0, 0x10010008
sw \$s0, 0(\$t0)
lb \$s1, 0(\$t0)

A. 0x00000023	B. 0x00002023	C. 0x00222023	D. 0x20222023
---------------	---------------	---------------	---------------

Câu 9 Lệnh Assembly MIPS nào dưới đây thuộc định dạng lệnh R-format? (G1)

A. beq B. subu C. lbu D. sw

Câu 10 Cho bộ xử lý với Clock Rate = 3Ghz. Giả sử bộ xử lý này thực thi một chương trình có 30 x 10^9 lệnh (number of instructions) trong thời gian 4 giây (execution time). Tính số lệnh được thực thi trong một chu kỳ (instructions per cycle - IPC)? (G1)

A. 1 B. 1.67 C. 2 D. 2.5

Câu 11 Cho giá trị ban đầu trong thanh ghi \$t0 là 0x20222023. Hãy cho biết giá trị của thanh ghi \$t1 sau khi chạy hết đoạn lệnh sau: (G1)

srl \$t1, \$t0, 3 andi \$t1, \$t1, 0x0FEF

A.	0x00004404
B.	0x04040404
C.	0x00000404
D.	0x04044404

Câu 12 Trong các mã máy biểu diễn dưới dạng thập lục phân bên dưới. Câu lệnh nào dùng để biểu diễn lệnh "srl \$s5, \$t8, 27" (G1)

A. 0x001800C2	B. 0x0018AEC2	C. 0x001565C2	D. 0x001845C2
---------------	---------------	---------------	---------------

Câu 13 Cho đoạn chương trình sau: (G1)

addi \$s0, \$zero, 5 addi \$t1, \$zero, 12 loop: beq \$t1, \$zero, end sll \$s0, \$s0, 1 addi \$t1, \$t1, -4 j loop

end: addi \$s1, \$s0, 5

Sau đoạn chương trình này thực thi xong thì giá trị trong thanh ghi \$s0 là bao nhiều?

A. 40 B. 45 C. 47 D. 35

Câu 14 Giả định rằng i và k tương ứng với thanh ghi \$s0 và \$s1; địa chỉ nền/cơ sở của mảng arr lưu trong \$s2. Tìm đoạn chương trình C/C++ tương ứng với chuỗi lệnh Assembly sau: (G1)

```
function: sll $t1, $s0, 2

add $t1, $t1, $s2

lw $t0, 0($t1)

bne $t0, $s1, exit

addi $s0, $s0, 1

j function

exit:

A. while (arr[i] != k) { i += 1) }

B. while (arr[i] == k) { i += 1) }

C. while (i != k) { arr[i] += 1) }

D. while (i == k) { arr[i] += 1) }
```

Câu 15 Trong các mã máy biểu diễn dưới dạng thập lục phân bên dưới. Câu lệnh nào dùng để biểu diễn lệnh "addi \$\$1, \$\$\$s7, -55\$ (G1)

```
A. 0x22F2FFC8 B. 0x22F1FFC9 C. 0x22F1FFF9 D. 0x22F1FFF8
```

Câu 16 Trong các câu lệnh assembly MIPS bên dưới. Câu lệnh nào dùng để biểu diễn lệnh 0x01F37024 (G1)

```
A. or $t1, $t7, $s5 B. and $t6, $t7, $s3 C. or $t3, $t4, $s3 D.and $t6, $s7, $s5
```

Câu 17 Cho đoạn chương trình Assembly sau:

addi \$t0, \$0, 0x10010004 addi \$t1, \$0, 0x10010008 sw \$t1, 8(\$t0)

Sau khi chạy hết đoạn lệnh trên thì giá trị của thanh ghi \$11 sẽ được lưu tại địa chỉ nào trong vùng nhớ? (G1)

```
A. 0x10010008 | B. 0x10010024 | C. 0x10010012 | D. 0x1001000C
```

Câu 18 Cho đoạn chương trình Assembly sau:

```
slti $t0, $s1, 0x2022

$\rho beq $t0, $zero, ELSE

$srl $t1, $s1, 1

add $s2, $s2, $t1

$j End

$ELSE: andi $s2, $s1, 0x2023

End:
```

Biết thanh ghi \$s1 = 0x2021, thanh ghi \$s2 = 0x1. Cho biết thanh ghi \$s2 bằng bao nhiều sau khi thực hiện đoạn lệnh chương trình trên? (G1)

- The Total Control of the Control o	The second secon	CONTRACTOR REPORTED	TOTAL TOTAL CONT. (1)	$\overline{}$
A. 0x1010	B. 0x2021	C. 0x2022	D. 0x1011	- 1
	27.0112.02.1			

Chuyển đoạn lệnh C dịch trái các phần tử của mảng A gồm 10 phần tử sau sang assembly của MIPS. Biết i là các số nguyên tương ứng với các thanh ghi \$s1. Mảng A là mảng mà các phần tử là số nguyên, mỗi phần tử chiếm 1 từ nhớ (4 bytes) và địa chỉ nền của mảng A lưu trong thanh ghi \$s6

$$for(i = 0; i < 9; i++)$$

 $A[i] = A[i+1];$