Advanced Methods of Data Analysis: Normalizing Flows

Leonhard Moske (Dated: July 14, 2022)

In this paper, the expressiveness of fully connected neural networks is used in a class of transformation known as normalizing flows in order to construct density estimator. Further these estimators are utilized to classify stars.

DKL

wie

clas-

citations

explizit

I. INTRODUCTION

Normalizing flows is a powerfull method that utilizes the transformation of random variables for either density estimation or for generativ sampling.

To get a density estimation of data x' with some features we would vary θ until q(x) is close to the target distribution of the data, then we could compute $r(f^{-1}(x'|\theta))$ which is the estimate for the probability of the data.

II. THEORY

Normalizing flows

sifier To estimate the density distribution we make us bzw. the formula of transformations of random variables. was Let z be a random variable distributed as r(z) th für random variable $x = f(z|\theta)$, where f is a invertible auswer differentiable function with parameters θ , is distributed tunas q(x) with:

$$q(x) = r(z) \left| \frac{\mathrm{d}z}{-} \right| = r(z) \left| \det J_f(z) \right|^{-1}$$

III. METHODS

NORMALIZING FLOW CATEGORIES

RESULTS

SUMMARY

VII. CONCLUSION

 $q(x) = r(z) \left| \frac{\mathrm{d}z}{\mathrm{d}x} \right| = r(z) \left| \det J_f(z) \right|^{-1}$

classifier

gen

traini

erkläi

versch NF <mark>erklär</mark>en

erklären classifier by density estimation

want

clas-

sify

and

den-

sity

esti-

ma-

tion

Datase

to