Scalable Quantum Chemistry Simulation Using DMET-VQE Framework with CUDAQ

2024 NCHC Open Hackathon

Team 7 NoLab

2024.12.04

Members

張仁瑀 (Ran-Yu Chang) Arete Honors Program NYCU

陳思頤 (Ssu-Yi Chen) Graduate Institute of Electronics Engineering NTU

張沂竣 (Yi-Chun Chang) Arete Honors Program NYCU

徐培哲 (Pei-Che Hsu)
College of Electrical and
Computer Engineering
NYCU

劉珍君 (Zhen-Jun Liu)
Department of Physics
NTNU

鍾宇程 (Yu-Cheng Chung) Department of Physics NTNU

Mentors: Pika Wang, Ikko Hamamura, Tian Zheng

Variational Quantum Eigensolver (VQE)

A powerful approach for simulating molecules and materials in the NISQ era.

Energy Expectation Value

$$E(\theta) = \langle \psi(\theta) | H | \psi(\theta) \rangle$$

Variation Principle

$$E_0 = \text{minimize}E(\theta)$$

Challenge

Real Quantum Computer

Limited by noise, scalability, and measurement overhead.

Simulation Challenges

- As qubit count increases, simulation complexity grows exponentially, making large systems challenging
- Examples:
 - H₂ (4 qubits) Easily simulable.
 - H₁₀ (20 qubits) Challenging for classical simulators.

DMET iteration

Split molecular into different fragment

Use VQE compute the energy of each fragment

Compute total energy

Our Approach

GPU simulation via CUDA-Quantum

- Single-GPU simulation
- Multi-GPU simulation

Density Matrix Embedding Theory (DMET)

Calculate the molecular partially

How Many Times We Speed Up

Profiling (CPU)

Total Time (sec.)		Each Iteration Time (sec.)
H ₂ (4)	2658.8	8.1
H ₂ O (14)	168225.3	841.2
CH ₄ (18)	2037372.6	10186.8
H ₁₀ (20)	3264852.7	16324.2
C ₂ H ₆ (32)	CAN'T RUN	CAN'T RUN

Blue: estimated time

H₂ PROFILING

Quantum Simulation

Others

Profiling (Single-GPU)

	Total Time (sec.)	Each Iteration Time (sec.)	
H ₂ (4)	17.598	0.098	
H ₂ O (14)	497.401	2.487	
CH ₄ (18)	5518.200	27.591	
H ₁₀ (20)	11801.014	59.005	
C ₂ H ₆ (32)	CAN'T RUN	CAN'T RUN	

H₂ PROFILING

- Quantum Simulation
- Hatree Fock
- Build Hamiltonian
- Others

Profiling (Multi-GPU)

	Total Time (sec.)	Each Iteration Time (sec.)	
H ₂ (4)	12.784	0.065	
H ₂ O (14)	335.008	1.675	
CH ₄ (18)	4399.789	21.999	
H ₁₀ (20)	9868.743	49.344	
C ₂ H ₆ (32)	CAN'T RUN	CAN'T RUN	

H₂ PROFILING

Quantum Simulation

Hatree Fock

Build Hamiltonian

Others

Profiling Tables

	CPU (sec.)	Single-GPU (sec.)	Multi-GPU (sec.)	Speed Up
H ₂ (4)	8.165	0.098	0.065	125x
H₂O (14)	841.275	2.487	1.675	502x
CH ₄ (18)	10186.863	27.591	21.999	463x
H ₁₀ (20)	16324.244	59.005	49.344	330x
C₂H ₆ (32)	CAN'T RUN	CAN'T RUN	CAN'T RUN	CAN'T RUN

DMET Profiling (Single-GPU)

	Total Time (sec.)	Each DMET Iteration Time (sec.)	Number of DMET iterations
H ₂ O (14)	12370.513	1767.216	7
CH₄ (18)	11149.755	2229.950	5
H ₁₀ (20)	1047.118	87.260	12
H ₁₂ (24)	1015.835	101.584	10
C₂H ₆ (32)	83968.001	6997.333	12

Time Comparison

Total Time Comparison

	VQE- GPU	DMET	VQE- MGPU	DMET- MGPU
H ₂ (4)	151X	57X	324X	69X
H ₆ (12)	499X	385X	611X	520X
H ₁₀ (20)	277X	3118X	330X	5925X
H ₁₂ (24)	39X	3898X	60X	8282X

The acceleration factor is estimated, the actual speed up will be greater

13

Time Comparison

Energy Convergence Comparison

Power Efficiency

	AMD Dual Rome 7742	3x A100 40GB	Power Savings
Compute Power (W)	189,796	6,500	183,296
Networking Power (W)	8,012	93	7,919
Total Power (W)	197,808	6,593	191,215
Compute Power (W)	189,796	6,500	183,296

256

19632

Trees growing for 10 years

DMET Benifit

- For large molecules, it can accelerate convergence to accurate energy.
- It enables rapid computation for a number of qubits exceeding the GPU limit.
- The computation time is lower, and the convergence effect is better.

Additional Highlights

Packages

Cuda-Quantum

OpenQemist (Our Modified Version)

Qsharp

Qiskit

Contribution to the community

- Bridged the CUDA-Q kernel to the OpenQEMIST package (DMET).
- Rewrote code to make it compatible with modern versions of packages.

Problems encountered

- Lack of rigorous comparison units due to constraints in computational resources, memory, and time.
- 2. Can't split one GPU into MQPU for some molecules. It would raise a memory error.

Contribution

- Enhanced scalability: DMET-VQE surpasses the 32-orbital limit,
 simulating larger systems based on GPU resources.
- CUDAQ-based DMET-VQE: Facilitated systematic molecular comparisons, improving calculation accuracy and flexibility.
- Multi-GPU acceleration: Leveraged MGPU architectures for scalable
 DMET-VQE in high-dimensional systems.
- We shortened a 46-day task to just 17 minutes.

- DMET divides based on orbitals and the number of qubits, rather than by atomic species.
- DMET computations also utilize
 GPU processing.
- Experiment with different partitioning methods.
- Multi Threading to make calculation more efficient

Future Work

