Trabalho de Conclusão de Curso

Modelagem e Classificação de Distúrbios de Qualidade de Energia em Sistema de Distribuição com Geração Distribuída

Marcelo Estevão da Silva

marcelo.estevao@alu.ufc.br

Curso de Engenharia Elétrica Campus Sobral Universidade Federal do Ceará

13 de julho de 2023

Sumário

- Introdução
 - Motivação e justificativa
 - Objetivos
- 2 Estado da arte
- 3 Modelagem
 - Modelagem do alimentador
 IEEE de 13 Barras
 - Modelagem do sistema de geração fotovoltaico
 - Modelagem dos distúrbios de QEE
- 4 Metodologia
 - Metodologia proposta

- Janelamento
- Conjunto de dados
- Extração de características
- Técnicas de Machine Learning
- 5 Resultados
 - Resultados para simualação dos distúrbios
 - Resultados para Árvore de Decisão
 - Resultados para Light Gradient Boosting
- Comparação de resultados
- 6 Conclusão

Introdução

Introdução

- Os distúrbios de qualidade de energia (QEE) são definidos como os desvios da tensão, corrente ou frequência dos seus respectivos valores nominais [1].
- Comprometem a operação normal das cargas que estão a ele conectados.
- São agravadas pela Geração Distribuída (GD).

Motivação e justificativa

Introdução

- Transição energética das fontes de geração tradicionais para as renováveis.
- Inserção da Geração Distribuída.
- Crescente uso de equipamentos eletrônicos sensíveis aos fenômenos eletromagnéticos.
- Aumento de cargas não lineares.
- Rigidez na regulamentação do setor elétrico.

Objetivos

Introducão

Apresentar uma metodologia baseada na simulação de uma rede de distribuição para aquisição de dados, empregando na classificação dois modelos de Aprendizado de Máquina.

Objetivos específicos

- Modelar um sistema de distribuição com geração fotovoltaica a fim de simular e adquirir sinais de distúrbios de QEE;
- Testar o desempenho da técnica de Análise Multiresolução (AMR) de Wavelet na extração de características;
- Comparar o desempenho dos algoritmos Árvore de Decisão e Light Gradient Boosting na classificação destes distúrbios.

Estado da arte

Os trabalhos de QEE se concentram em duas principais áreas [2]:

- Localização Relativa da Origem do Evento (LROE).
- Classificação Automática da Causa Fundamental de Eventos (CACFE).

A aquisição dos dados ocorre de 3 maneiras Garcia [2]:

- Simulação a partir de um modelo de rede.
- Aquisição de dados a partir da operação de uma rede real.
- Simulação de equações paramétricas.

Estado da arte

- Em Santoso *et al.* [3] aplicou-se a Análise Multiresolução com a *Wavletet*-mãe Daubechies de ordem quatro (db4).
- Em Mishra et al. [4] a Transformada de Stockwell com o classificador PNN (Rede Neural Probabilística) resultou em acurácias maiores que 95%..
- Em Khokhar *et al.* [5] também empregou-se a TW com a AMR, porém com o diferencial de utilizar a Entropia Normalizada de *Wavletet* com o classificador PNN associada com Colônia de Abelhas Artificiais.

Modelagem do Alimentador IEEE de 13 Barras

- Alimentador radial.
- Tamanho reduzido e curto.
- Relativamente carregado.
- Linhas aéreas e subterrâneas.
- Capacitores shunt.
- Transformador.
- Carregamento desbalanceado.
- Operação em 4,16kV.
- Sistema de minigeração na barra 680.
- Simulador MATLAB Simulink [6].

Figura 1: Alimentador IEEE de 13 Barras

Modelagem do sistema de geração fotovoltaico

- Projetado para suprir 8% de suas cargas.
- 201 painéis de alto rendimento de 480 MW_p .
- Potência de 1,06 MW_p .
- Inversor do tipo centralizado, com conversor NPC (do inglês, Neutral-Point Clamped).
- Inversor com controle MPPT do tipo "Perturbe & Observe" [7].
- Considera a irradiação de Sobral $237,5 W/m^2$ [8].

Figura 2: Sistema de geração fotovoltaico

Queda de Tensão

- Modelado por falta de linha trifásica à terra $(3\phi - terra)$.
- 120 simulações realizadas, onde R_{on} é a resistência de falta e R_g é a resistência à terra.
- Duração de 5 ciclos.

Figura 3: Falta de linha

Fonte: Elaborado pelo autor.

- Modelado por cargas não lineares.
- Pontes retificadoras monofásicas em cada fase com capacitores de filtro.
- 216 simulações com variação dos parâmetros R e C_{cap} , que são as resistências e as capacitâncias dos filtros capacitivos por fase.

Figura 4: Carga não linear

Transiente Impulsivo

- Modelado por descarga atmosférica.
- Fonte de tensão controlada em série com um resistor e um indutor para o acoplamento do impulso à rede.
- 320 simulações com a variação dos parâmetros de amplitude e amortecimento do impulso.

Figura 5: Descarga atmosférica

Transiente Oscilatório

- Modelado por energização de banco de capacitores.
- Duração de 3 ciclos.
- 192 simulações com a variação do instante de início do distúrbio e variação das capacitâncias por fase.

Figura 6: Banco de capacitor

o Estado da arte Modelagem **Metodologia** Resultados Conclusão Referências

Metodologia

A decomposição por Análise Multiresolução de *Wavelet* ocorre em 1 nível de aproximação e 3 níveis de detalhe.

Figura 7: Etapas

Fonte: Elaborado pelo autor.

Figura 8: Geração dos distúrbios

Metodologia

A divisão dos dados ocorre de forma aleatória, considerando-se 80% do conjunto de dados para treinamento e validação, e 20% para teste.

Figura 9: Extração de características

Fonte: Elaborado pelo autor.

Universidade Federal do Ceará

Figura 10: Classificação dos distúrbios

Estado da arte Modelagem **Metodologia** Resultados Conclusão Referências

Random Search

Algoritmo iterável que testa uma combinação de hiperparâmetros de forma aleatória a cada iteração, cuja métrica de desempenho adotada é a acurácia de uma Validação Cruzada do tipo *K-fold*.

Figura 11: Random Search

ão Estado da arte Modelagem **Metodologia** Resultados Conclusão Referências

Janelamento

- Janelas com tamanho de 1 ciclo.
- Passo de 1/4 de ciclo.

Figura 12: Janelamento

Janela com Distúrbio (Queda de Tensão) Fonte: Elaborado pelo autor.

Conjunto de dados

Aplica-se balanceamento do tipo *undersamplig* para redução de viés.

Figura 13: Sinais

Designação	Classe do Sinal	Barra 634	Barra 671		
D1	Queda de Tensão	120	120		
D2	Distorção Harmônica	216	216		
D3	Transiente Impulsivo	320	320		
D4	Transite Oscilatório	192	192		

Fonte: Elaborado pelo autor.

Estado da arte Modelagem **Metodologia** Resultados Conclusão Referências

Análise Multiresolução de Wavelet

- Analisa sinais e dados em diferentes escalas de detalhe.
- Ocorre pela convolução do sinal com uma função Wavelet.

Figura 15: Decomposição

Árvore de Decisão

- Problemas de classificação e regressão.
- Capaz de aprender regras de decisão simples inferidas de um banco de dados [9].
- Vantagem de interpretabilidad.

Figura 16: Árvore de Decisão

Light Gradient Boosting

- Técnica baseada em Gradient Boosting que emprega AD como estimadores base.
- Cresce verticalmente, pela folha que tenha a máximo determinação do delta de perda para crescer ("delta loss to grow")
- Vantagem de rapidez no processamento de grandes conjuntos de dados.

Queda de Tensão

- Nota-se mais componentes oscilatórias na barra 634 que na barra 671. devido a:
 - Presença de aterramento no transformador próximo a barra 634.
 - Presença de capacitores próximo a barra 671.

Figura 18: Queda de Tensão (Barra 634)

Fonte: Elaborado pelo autor.

Figura 19: Queda de Tensão (Barra 671) 6000 4000 Amplitude(V) 0000-5000 -4000 -6000

Fonte: Elaborado pelo autor.

Tempo(s)

Queda de Tensão

- Os distúrbios são mais significativos nas fases mais carregadas.
- Desequilíbrios de cargas são inerentes ao sistema.

Figura 20: Queda de Tensão RMS (Barra 634)

Fonte: Elaborado pelo autor.

Figura 21: Queda de Tensão RMS (Barra 671)

Fonte: Elaborado pelo autor.

- Distúrbios afetam as fases de maneira diferente, devido à assimetria do sistema.
- Maior agravamento na barra 671, devido à presença de capacitores e do sistema fotovoltaico.

Figura 22: Distorção Harmônica (Barra 634)

Fonte: Elaborado pelo autor.

671)6000 4000 -2000 -2000 -2000 -4000 -6000

Figura 23: Distorção Harmônica (Barra

Barra 671: Destaque a 3ª e 7ª harmônicas, cada uma com aproximadamente 6% da magnitude da onda na frequência fundamental, e em menor intensidade a 5ª e 11ª harmônicas, com aproximadamente 2,1% e 0,9%.

Figura 24: Distorção Harmônica FFT - Fase C (Barra 634)

Barra 671: Predominância da 3ª (180Hz) e 7ª harmônica (420Hz), que representam aproximadamente 6% e 3,2% da magnitude da onda na frequência fundamental, respectivamente.

Figura 25: Distorção Harmônica FFT - Fase C (Barra 671)

Transiente Impulsivo

- Distúrbio fortemente atenuado na barra mais distante.
- Quanto maior a distância, menor será a intensidade do impulso.

Figura 26: Transiente Impulsivo (Barra 634)

Fonte: Elaborado pelo autor.

Figura 27: Transiente Impulsivo (Barra 671)

Transiente Impulsivo

- Característica do impulso, segundo as normas IEEE 1159-2009
 [10] e IEEE C62.41.2-2002 [11]:
 - Decai em 50% do valor máximo em $50\mu s$ após o início do impulso.

Transiente Oscilatório

- Atenuação do distúrbio na barra mais distante, devida dissipação na rede e maior concentração de cargas.
- Maior agravamento nas fases menos carregadas.

Figura 29: Transiente Oscilatório (Barra 634)

Fonte: Elaborado pelo autor.

Figura 30: Transiente Oscilatório (Barra 671)

Transiente Oscilatório

- Presença de inter-harmônicas, cujo surgimento é característico de cargas não-lineares.
- Predominâncias da inter-harmônica de 100Hz para ambas as barras.

Figura 31: Transiente Oscilatório FFT (Barra 634)

Fonte: Elaborado pelo autor.

(Barra 671)

Figura 32: Transiente Oscilatório FFT

Frequência (Hz)

Fonte: Elaborado pelo autor.

Resultados para Árvore de Decisão (Treinamento)

Hiperparâmetros para a AD, obtidos da iteração com maior desempenho, entre as 10 iterações do algoritmo de otimização *Random Search.*

Figura 33: Hiperparâmetros para AD

Hiperparâmetro	Espaço de Busca	Melhor Hiperparâmetro
max_depth	[Nenhum, 50, 100, 150, 200, 300]	200
criterion	['entropy', 'entropy', 'log_loss']	'entropy'
min_samples_split	[2, 3, 4, 5]	2
min_samples_leaf	[1, 2, 3, 4, 5]	1
max_features	[Nenhum, 'sqrt', 'log2']	Nenhum

Resultados para Árvore de Decisão (Treinamento)

A acurácia para os *folds* da melhor das 10 iterações do algoritmo *Random Search*:

Figura 34: Acurácia por fold da validação cruzada (AD)

Resultados para Árvore de Decisão (Teste)

- Acurácia geral de 98,31% durante o teste.
- Menores métricas para Transiente Oscilatório e a classe Normal.

Figura 35: Desempenho da AD

Classe	Precisão	Sensibilidade	Medida-F
Queda de Tensão (Barra 634)	0,994175	0,993532	0,993853
Queda de Tensão (Barra 671)	0,989973	0,991962	0,990967
Distorção Harmônica (Barra 634)	0,986211	0,984918	0,985564
Distorção Harmônica (Barra 671)	0,978288	0,979503	0,978895
Normal (Barra 634)	0,977079	0,979003	0,978040
Normal (Barra 671)	0,976728	0,966148	0,971409
Transiente Impulsivo (Barra 634)	0,990789	0,988189	0,989488
Transiente Impulsivo (Barra 671)	0,982997	0,989854	0,986414
Transiente Oscilatório (Barra 634)	0,984046	0,986564	0,985304
Transiente Oscilatório (Barra 671)	0,970414	0,970414	0,970414
Valor médio	0,983070	0,983009	0,983035

Resultados para Árvore de Decisão (Teste)

- Acurácia geral de 98,31% durante o teste.
- Menores métricas para Transiente Oscilatório e a classe Normal.
- Janelas de transição entre os estados normal e de distúrbio são mais difíceis de classificar.

Figura 36: Desempenho da AD

Classe	Precisão	Sensibilidade	Medida-F
Queda de Tensão (Barra 634)	0,994175	0,993532	0,993853
Queda de Tensão (Barra 671)	0,989973	0,991962	0,990967
Distorção Harmônica (Barra 634)	0,986211	0,984918	0,985564
Distorção Harmônica (Barra 671)	0,978288	0,979503	0,978895
Normal (Barra 634)	0,977079	0,979003	0,978040
Normal (Barra 671)	0,976728	0,966148	0,971409
Transiente Impulsivo (Barra 634)	0,990789	0,988189	0,989488
Transiente Impulsivo (Barra 671)	0,982997	0,989854	0,986414
Transiente Oscilatório (Barra 634)	0,984046	0,986564	0,985304
Transiente Oscilatório (Barra 671)	0,970414	0,970414	0,970414
Valor médio	0,983070	0,983009	0,983035

Resultados para Árvore de Decisão (Teste)

 Destaque às classificações incorretas entre as classes de Transiente Oscilatório e Distorção Harmônica. E entre as classes Normal e Transiente Impulsivo.

Figura 37: Matriz de confusão para AD

Classes	a	b	c	d	e	f	g	h	i	j
a = Queda de Tensão (634)	1536	0	1	0	7	0	0	0	2	0
b = Queda de Tensão (671)	0	1481	0	2	0	1	0	2	0	7
c = Distorção Harmônica (634)	0	0	1502	0	6	0	0	0	17	0
d = Distorção Harmônica (671)	0	0	0	1577	0	9	0	0	0	24
e = Normal (634)	5	0	7	0	1492	0	14	0	6	0
f = Normal (671)	0	3	0	8	0	1427	0	25	0	14
g = Transiente Impulsivo (634)	1	0	0	0	17	0	1506	0	0	0
h = Transiente Impulsivo (671)	0	2	0	0	0	14	0	1561	0	0
i = Transiente Oscilatório (634)	3	0	13	0	5	0	0	0	1542	0
j = Transiente Oscilatório (671)	0	10	0	25	0	10	0	0	0	1476

Resultados para Light Gradient Boosting (Treinamento)

Hiperparâmetros para a LGBM, obtidos da iteração com maior desempenho, entre as 10 iterações do algoritmo de otimização *Ran*dom Search.

Figura 38: Hiperparâmetros para LGBM

Hiperparâmetro	Espaço de Busca	Melhor Hiperparâmetro		
boosting_type	['gbdt', 'dart', 'goss']	'dart'		
num_leaves	[300, 400, 500]	300		
learning_rate	[0,4,0,5,0,6]	0,4		
n_estimators	[100, 200, 300]	200		
min_child_samples	[20, 30, 50]	30		
reg_al pha	[0, 0, 1, 0, 2]	0,2		
reg_lambda	[0, 0, 2, 0, 3]	0,2		

Resultados para Light Gradient Boosting (Treinamento)

A acurácia para os *folds* da melhor das 10 iterações do algoritmo *Random Search*:

Figura 39: Acurácia por fold da validação cruzada (LGBM)

Resultados para Light Gradient Boosting (Teste)

- Acurácia geral de 98,75% durante o teste.
- Maiores métricas para Queda de Tensão e Distorção Harmônica.

Figura 40: Desempenho do LGBM

Classe	Precisão	Sensibilidade	Medida-F
Queda de Tensão (Barra 634)	0,996745	0,990298	0,993511
Queda de Tensão (Barra 671)	0,993939	0,988614	0,991269
Distorção Harmônica (Barra 634)	0,988251	0,992787	0,990514
Distorção Harmônica (Barra 671)	0,983292	0,986957	0,985121
Normal (Barra 634)	0,986120	0,979003	0,982549
Normal (Barra 671)	0,982204	0,971564	0,976855
Transiente Impulsivo (Barra 634)	0,990202	0,994751	0,992471
Transiente Impulsivo (Barra 671)	0,985535	0,993659	0,989580
Transiente Oscilatório (Barra 634)	0,990446	0,994882	0,992659
Transiente Oscilatório (Barra 671)	0,978375	0,981591	0,979980
Valor médio	0,987511	0,987410	0,987451

Resultados para Light Gradient Boosting (Teste)

 Destaque às classificações incorretas entre as classes de Transiente Oscilatório e Distorção Harmônica. Entre as classes Normal e Transiente Impulsivo. E entre Normal e Transiente Oscilatório.

Figura 41: Matriz de confusão para LGBM

Classes	a	b	С	d	e	f	g	h	i	j
a = Queda de Tensão (634)	1531	0	1	0	11	0	0	0	3	0
b = Queda de Tensão (671)	0	1476	0	3	0	9	0	2	0	3
c = Distorção Harmônica (634)	0	0	1514	0	1	0	0	0	10	0
d = Distorção Harmônica (671)	0	0	0	1589	0	3	0	0	0	18
e = Normal (634)	5	0	10	0	1492	0	15	0	2	0
f = Normal(671)	0	3	0	6	0	1435	0	21	0	12
g = Transiente Impulsivo (634)	0	0	0	0	8	0	1516	0	0	0
h = Transiente Impulsivo (671)	0	1	0	0	0	9	0	1567	0	0
i = Transiente Oscilatório (634)	0	0	7	0	1	0	0	0	1555	0
j = Transiente Oscilatório (671)	0	5	0	18	0	5	0	0	0	1493

Comparação de resultados

- Para o método proposto, considera-se o classificador LGBM com os sinais medidos na barra 634.
- O método proposto possui vantagem, por conter sinais mais realistas do que as metodologias baseadas em equações paramétricas dos métodos comparados.

Figura 42: Comparação de resultados

Distúrbio	Mishra et al. (2008)	Khokhar et al. (2015)	Proposto
Queda de Tensão 98%		92%	99,96%
Distorção Harmônica	95%	95%	99,27%
Transiente Impulsivo	86%	86%	99,47%
Transiente Oscilatório	86%	86%	99,48%
Classificador	PNN	PNN	LGBM
Extração de características	Transf. de Stockwell	Transf. de Wavelet	Transf. de Wavelet
Taxa de amostragem	3,2kHz	10kHz	10kHz

Estado da arte Modelagem Metodología Resultados Conclusão Referências

Conclusão

- Os objetivos definidos foram alcançados, com sendo os sinais coletados coerentes com a literatura, mais realistas do que os obtidos pela abordagem tradicional baseada em equações paramétricas.
- O algoritmo de LGBM obteve resultados superiores ao algoritmo de AD, com acurácia geral de 98,75%.
- Como trabalhos futuros, espera-se ampliar a rede com outras fontes de GD, como a eólica, e adicionar mais distúrbios, considerando classes simples e combinadas.

Estado da arte Modelagem Metodología Resultados Conclusão Referências

Referências I

- [1] Mahaveer Meena et al. "Detection and Classification of Complex Power Quality Disturbances Using Stockwell Transform and Rule Based Decision Tree". Em: (2018), pp. 220–226.
- [2] Valdomiro Vega Garcia. "Caracterização de Eventos Transitórios da Qualidade da Energia Elétrica utilizando Sistemas Inteligentes e Processamento de Sinais. 2013. 172 f". Doutorado em Engenharia Elétrica. São Paulo: Escola Politécnica, Departamento de Engenharia de Energia e Automação, Universidade de São Paulo, 2013.
- [3] S. Santoso et al. "Power quality assessment via wavelet transform analysis". Em: IEEE Transactions on Power Delivery 11.2 (1996), pp. 24–930.
- [4] S. Mishra, C. N. Bhende e B. K. Panigrahi. "Detection and Classification of Power Quality Disturbances Using S-transform and Probabilistic Neural Network". Em: IEEE Transactions on

Referências II

- [5] Suhail Khokhar et al. "New Optimal Feature Selection Algorithm for Classification of Power Quality Disturbances Using Discrete Wavelet Transform and Probabilistic Neural Network". Em: Measurement 95 (2017), pp. 246–259.
- [6] MATLAB. version 9.12.0.2039608 (R2022a). Natick, Massachusetts: The MathWorks Inc., 2022.
- [7] Miguel Vivert et al. "Perturbe and Observe MPPT algorithm with integral actions". Em: IEEE 5th Colombian Conference on Automatic Control (CCAC). 2021, pp. 19–22.
- [8] NSRDB. National Solar Radiation Database. Renewable Energy Laboratory, 2023. URL: https://nsrdb.nrel.gov/ data-sets/international-data.
- [9] Leo Breiman et al. Classification and Regression Trees.
 Belmont: Taylor Francis, 1984.

Estado da arte Modelagem Metodologia Resultados Conclusão Referências

Referências III

- [10] IEEE Std 1159-2019. Recommended Practice for Monitoring Electric Power Quality. IEEE STANDARDS ASSOCIA-TION. New York, 2019.
- [11] IEEE Std C62.41.2-2002. Recommended Practice on Characterization of Surges in Low-Voltage (1000V and Less) AC Power Circuits. IEEE STANDARDS ASSOCIATION. New York, 2002.

Obrigado pela atenção!

Contato:

marcelo.estevao@alu.ufc.br

