2013 学年模拟检测题 九年级 数学问卷

本试卷分选择题和非选择题两部分,共三大题 25 小题,共 6 页,满分 150 分,考试时间 120 分钟,可以使用规定型号的计算器。

注意事项:

- 1. 答卷前,考生务必用黑色字迹的钢笔或签字笔填写好自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B铅笔把准考证号对应的号码标号涂黑.
- 2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用 橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.
- 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.
- 4. 考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回. 第一部分 选择题(共 30 分)
- 一、**选择题**(本大题共 10 小题,每小题 3 分,满分 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)
- 1.4的平方根为().

A. 2

B. ± 2

C. 4

D. ± 4

【答案】B

2. 对于样本数据 1, 2, 3, 2, 2, 以下判断: ①平均数为 5; ②中位数为 2; ③众数为 2;④极差为 2. 正确的有 ().

A. 1 个

B. 2个

C. 3个

D. 4 个

【答案】C

3. 如图所示的几何体的主视图是().

A. $x \ge 0$

B. $x \neq 1$

C. x > 0

D. $x \ge 0 \perp x \ne 1$

【答案】D

- 5. 已知一个圆锥的底面半径为 3cm, 母线长为 10cm, 则这个圆锥的侧面积为(
 - A. 30 m cm^2

- B. $50 \, \text{m cm}^2$ C. $60 \, \text{m cm}^2$ D. $3 \, \sqrt{91} \, \text{m cm}^2$

【答案】A

6. 如图,将 \triangle AOB 绕点 0 按逆时针方向旋转 45°后得到 \triangle A′OB′,

若∠AOB=15°,则∠AOB′的度数是(

- A. 25°
- B. 30°
- C. 35°
- D. 40°

【答案】B

7. 一次函数 y = 2x - 3 的大致图像为().

【答案】C

8. 如图,四个边长为1的小正方形拼成一个大正方形,A、B、0是 小正方形顶点, \odot 0 的半径为 1,P 是 \odot 0 上的点,且位于右上方的小 正方形内,则∠APB等于().

- A. 30°
- B. 45° C. 60°
- D. 90°

【答案】B

- 9. 关于x的二次函数 $y = -(x-1)^2 + 2$,下列说法正确的是(
- A. 图象的开口向上

- B. 图象与y轴的交点坐标为(0, 2)
- C. 当x > 1时,y随x的增大而减小 D. 图象的顶点坐标是(-1,2)

【答案】C

10. 如图, 直角三角形纸片 ABC 中, AB=3, AC=4, D 为斜边 BC 中点, 第 1 次将纸片折叠, 使点 A 与点 D 重合, 折痕与 AD 交与点 P₁; 设 P₁D 的中点为 D₁, 第 2 次将纸片折叠, 使点 A 与点 D_1 重合,折痕与 AD 交于点 P_2 ;设 P_2D_1 的中点为 D_2 ,第 3 次将纸片折叠,使点 A 与点 D_2 重合,折痕与 AD 交于点 P_3 ; ···; 如此类推,则 AP_6 的长为().

B.
$$\frac{3^6}{5 \times 2^9}$$

C.
$$\frac{5 \times 3^6}{2^{14}}$$

D.
$$\frac{3^7}{5 \times 2^{11}}$$

第 10 题图

【答案】A

第二部分 非选择题(共120分)

- 二、填空题(本大题共6小题,每小题3分,满分18分)
- 11. 点 A(0,3) 向右平移 2 个单位长度后所得的点 A' 的坐标为____

【答案】(2,3)

12. 已知空气的单位体积质量为 0.00124 克/厘米 3, 将 0.00124 用科学记数法表示为_____.

【答案】1.24×10⁻³

13. 如图, \triangle *ABC* 与 \triangle *DEF* 是位似图形, 相似比为 2 3, 已知 *AB* = 4, 则 *DE* 的长为_____

【答案】6

14. 化简: $\frac{a^2}{a+1} - \frac{1}{a+1} = \underline{\hspace{1cm}}$

【答案】a-1

第13题图

 16. 已知 α , β 是关于x的一元二次方程 $x^2+(2m+3)x+m^2=0$ 的两个不相等的实数根,且

满足
$$\frac{1}{\alpha} + \frac{1}{\beta} = -1$$
,则 m 的值是_____.

【答案】3 (说明:此题写出"3或-1"作为答案,给2分)

- 三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)
- 17. (本小题满分9分)

解方程: $\frac{2}{x-3} = \frac{3}{x}$.

【答案】

解: 方程两边同乘以x(x-3), 得 2x = 3(x-3)

------4 分

解得x=9.

-----8分

检验: 当 x = 9 时, $x(x-3) \neq 0$

所以 x = 9 是原方程的解. …………9 分

18. (本小题满分 9 分)

MINGSHIEDU.COM 伴您成长与您进步

如图,已知 \square ABCD.

- (1) 作图: 延长 BC, 并在 BC 的延长线上截取线段 CE, 使得 CE-BC
- (用尺规作图法,保留作图痕迹,不要求写作法);
- (2) 在 (1) 的条件下, 连结 AE, 交 CD 于点 F,

求证: $\triangle AFD \cong \triangle EFC$.

【答案】

- 解: (1) 如图所示, 线段 CE 为所求;
 - (2) 证明: 在 □ABCD 中, AD// BC, AD=BC.

$$\therefore \angle DAF = \angle CEF$$

$$\therefore$$
 CE=BC, \therefore AD=CE,

$$\mathbb{Z}$$
: $\angle DFA = \angle CFE$,

$$\therefore \triangle AFD \cong \triangle EFC.$$

5 分	
······7 分	
8分	

.....9 分

.....3 分

(说明:第(2)小题的解法较多,只要过程合理,同样给满分)

19. (本小题满分 10 分)

已知 a-b=1 且 ab=2 , 求代数式 $a^3b-2a^2b^2+ab^3$ 的值.

【答案】

解法一: $: a - b = 1 \mid ab = 2$

$$= ab(a-b)^2 \qquad \qquad \cdots \qquad \cdots \qquad 6 \ \%$$

解得
$$\begin{cases} a = 2 \\ b = 1 \end{cases}$$
 $\exists a = -1$
$$b = -2$$

(说明:解法二只算出一种情况共给5分)

20. (本小题满分 10 分)

小强对自己所在班级的 48 名学生平均每周参加课外 活动的时间进行了调查,由调查结果绘制了频数分布直方 图,根据图中信息回答下列问题:

- (1) 求 m 的值;
- (2) 从参加课外活动时间在6~10小时的5名学生中随

明师在线 MINGSHIEDU.COM 伴您成长与您进步

机选取 2 人,请你用列表或画树状图的方法,求其中至少有 1 人课外活动时间在 $8\sim10$ 小时的概率.

【答案】

21. (本小题满分 12 分)

为支持失学儿童,某中学计划用"义捐义卖"活动中筹集的部分资金用于购买 A, B 两种型号的学习用品共 1000 件,已知 A 型学习用品的单价为 20 元,B 型学习用品的单价为 30元.

- (1) 若购买这批学习用品用了 26000 元,则购买 A, B 两种学习用品各多少件?
- (2) 若购买这批学习用品的钱不超过 28000 元,则最多能购买 B 型学习用品多少件?

【答案】

解: (1) 解法一:

设购买 A 型学习用品 x 件,则 B 型学习用品为(1000-x).

解法二:

设购买 A 型学习用品 x 件, B 型学习用品 y 件.

根据题意,得
$$\begin{cases} x + y = 1000 \\ 20x + 30y = 26000 \end{cases}$$
3 分

解方程组,得
$$\begin{cases} x = 400 \\ y = 600 \end{cases}$$
5 分

答:购买A型学习用品400件,购买B型学习用品600件. ……6分

(2) 设最多购买 B 型学习用品 z 件,则购买 A 型学习用品为 (1000-z) 件.

根据题意,得 $20(1000-z)+30z \le 28000$ 9 分

答: 最多购买 B 型学习用品 800 件.12 分

22. (本小题满分 12 分)

如图,在菱形 ABCD中, $AB=2\sqrt{3}$, $\angle BAD=60^{\circ}$,AC交 E与边 AB相切于点 E.

- (1) 求 AC的长;
- (2) 求证: ⊙D与边 BC也相切.

【答案

解: (1) ∵四边形 ABCD 是菱形,∠*BAD*=60º

∴ ∠BA0=30°, ∠A0B=90°, AC=2AO

∴ AC=6. ·······6 分

(说明:第(1)小题的解法较多,只要过程合理、答案正确,同样给满分)

∵四边形 *ABCD* 是菱形, **∴***BD* 平分 ∠*ABC* ········9 分

∵ ⊙ D 与边 AB 相切于点 E, ∴ DE ⊥ AB

∵DF⊥BC

∴ DF=DE11 分

∴ ⊙ *D* 与边 *BC* 也相切.12 分

23. (本小题满分 12 分)

如图,四边形 ABCD 为正方形. 点 A 的坐标为 (0, 2),点 B 的坐标为 (0, -3),反比 例函数 $y = \frac{k}{r}$ $(k \neq 0)$ 的图象经过点 C.

- (1) 求反比例函数的解析式;
- (2) 若点 P是反比例函数图象上的一点, $\triangle PAD$ 的面积恰好等于正方形 ABCD 的面积,求点 P的坐标.

【答案】

- ::四边形 ABCD 为正方形,
- ∴点 C 的坐标为 (5, -3).
- :反比例函数 $y = \frac{k}{r}$ 的图象经过点 C,

∴
$$-3 = \frac{k}{5}$$
, 解得 $k = -15$,

第 23 题图

- ∴反比例函数的解析式为 $y = -\frac{15}{x}$;
- (2) 设点 P 到 AD 的距离为 h.
- $\therefore \triangle PAD$ 的面积恰好等于正方形 ABCD 的面积,

$$\therefore \frac{1}{2} \times 5 \times h = 5^2,$$

②当点
$$P$$
 在第四象限时, $y_P = -(h-2) = -8$

24. (本小题满分 14 分)

如图 1,在半径为 2 的扇形 AOB中, $\angle AOB$ =90°,点 C是 \widehat{AB} 的一个动点(不与点 A、 B重合) $OD \perp BC$, $OE \perp AC$, 垂足分别为点 D、点 E.

- (1) 当 BC=1 时, 求线段 OD 的长;
- (2) 在点 C的运动过程中, $\triangle DOE$ 中是否存在长度保持不变的边或度数保持不变的角? 如 果存在,请指出并求其长度或度数(只求一种即可);如果不存在,请说明理由;
- (3) 作 $DF \perp OE$ 于点 F (如图 2), 当 $DF^2 + EF$ 取得最大值时,求 $\sin \angle BOD$ 的值.

【答案】

解: (1) :点 O 是圆心, $OD \perp BC$,BC=1,

$$\therefore BD = \frac{1}{2}BC = \frac{1}{2} \circ \cdots 1 \text{ }$$

又*∵OB*=2,

∴ OD=
$$\sqrt{OB^2 - BD^2} = \sqrt{2^2 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{15}}{2}$$
3 $\frac{1}{2}$

(2) 解法一:

存在, DE 的长度是不变的。4 5

如图,连结 AB,则 $AB=\sqrt{OB^2+OA^2}=2\sqrt{2}$ 。……5 分

∴ D、点 E 分别是 BC、AC 的中点, ∴ $DE = \frac{1}{2}AB = \sqrt{2}$ 。 ·······7 分

伴您成长。与你讲先

解法二:

如图,连结 OC,可得 $\angle 1=\angle 2$, $\angle 3=\angle 4$, …5 分

- ∴ ∠*AOB*=90⁰
- ∴ ∠2+∠3=45°即∠DOE=45°, ······7 分

(3) 解法一:

如图,设 BD=x,则 OD²=4-x²

由(2)解法二,可知 / DOE=45°,

∴△DOF 是等腰直角三角形,

$$\therefore DF = \frac{OD}{\sqrt{2}} \quad \therefore DF^2 = \frac{OD^2}{2} = 2 - \frac{1}{2}x^2 \cdots 9 \text{ }\%$$

在 $Rt \triangle DFE$ 中,由(2)解法一,可知 $DE=\sqrt{2}$

$$EF = \sqrt{DE^2 - DF^2} = \sqrt{(\sqrt{2})^2 - (2 - \frac{1}{2}x^2)} = \frac{\sqrt{2}}{2}x$$

-----10 分

∴DF²+EF =
$$-\frac{1}{2}x^2 + \frac{\sqrt{2}}{2}x + 2$$
11 分

∴当
$$x = \frac{\sqrt{2}}{2}$$
,即 $BD = \frac{\sqrt{2}}{2}$ 时, $DF^2 + EF$ 取得最大值, ……12分

解法二:

如图,设 EF=x,由(2)解法一,可知 $DE=\sqrt{2}$ 在 Rt∧DFE 中,

:.DF
2
+EF = $-x^{2} + x + 2$ 10 $\%$

∴当
$$x = \frac{1}{2}$$
,即 $EF = \frac{1}{2}$ 时, $DF^2 + EF$ 取得最大值,

此时, $DF = \frac{\sqrt{7}}{2}$ 由(2)解法二,可知 $\angle DOE = 45^\circ$, $\therefore \triangle DOF$ 是等腰直角三角形,

$$\therefore OD = \frac{\sqrt{14}}{2}$$

在
$$Rt\triangle BOD$$
 中, $BD = \sqrt{OB^2 - OD^2} = \sqrt{2^2 - (\frac{\sqrt{14}}{2})^2} = \frac{\sqrt{2}}{2}$ ………13 分

$$\therefore \sin \angle BOD = \frac{BD}{OB} = \frac{\frac{\sqrt{2}}{2}}{2} = \frac{\sqrt{2}}{4} . \qquad \dots 14 \ \text{f}$$

25. (本小题满分14分)

如图,已知直线 I: y = -x + 2 与 y 轴交于点 A,抛物线 $y = (x-1)^2 + k$ 经过点 A,其 顶点为 B, 另一抛物线 $y = (x - h)^2 + 2 - h$ (h>1) 的顶点为 D, 两抛物线相交于点 C,

(1) 求点 B 的坐标, 并判断点 D 是否在直线 1上, 请说明理由;

- (2) 设交点 C 的横坐标为 m.
- ①请探究 m关于 h的函数关系式;
- ②连结 AC、CD, 若 Z ACD=90°, 求 m的值.

【答案】

解: (1) 由题意可知 A (0, 2),又因为抛物线 $y = (x-1)^2 + k$ 经过点 A,

所以有 $2 = (0-1)^2 + k$,解得k = 1,

分

所以抛物线解析式为 $y = (x-1)^2 + 1$,

从而得出点B的坐标为(1,1);

.....2分

因为点 D 是抛物线 $y = (x - h)^2 + 2 - h$ (h > 1) 的顶点,

所以点 D 的坐标为 (h, 2-h),

.....3分

将 (h, 2-h) 代入 y=-x+2中,左右两边相等,所以点 D 在直线 I 上. …4 分

整理得: $h^2 - (1+2m)h + 2m = 0$,

解得, h = 2m 或 h = 1,

∵*h*>1

$$∴ m = \frac{h}{2}.$$
8 $分$

②过点 *C* 作 *CM* 上 y 轴, 垂足为点 *M*, 过点 *D* 作 *DE* 上 y 轴, 垂足为点 *E*, 过点 *C* 作 *CN* 上 *DE*, 垂足为点 *N*,则四边形 *CMEN* 是矩形,9 分

 $\therefore \angle MCN = 90^{\circ}$,

又∵∠ACD=90°

∴ ∠MCA=∠DCN

 $\therefore \triangle ACM \hookrightarrow \triangle DCN$

.....10 分

$$\therefore \frac{CM}{CN} = \frac{AM}{DN}$$

由题意可知 CM=m, $AM=m^2-2m$, $CN=m^2-2m+h$,DN=h-m

由①得h=2m,

∴整理, 得 $m^2 - 2m - 1 = 0$

……12分

解得, $m=1\pm\sqrt{2}$,

又:点c在第一象限内,

 $\therefore m = 1 + \sqrt{2}$.

……14分

(说明:第②小问的解法较多,只要过程合理、答案正确,同样给满分)

明 在线 MINGSHIEDU.COM 伴您成长与您进步