Algebra: 1, 4, 5

Analiza Matematyczna: 2, 3, 5

Statystyka: 1

Algorytmy i struktura danych: 1, 2 Programowanie obiektowe: 1, 2, 3, 4

Bazy danych: 2

Systemy operacyjne: 1, 2

Sieci komputerowe: 1, 2, 3

http://www.mat.umk.pl/documents/10180/24128/informatyka++zagadnienia+na+egzamin+in%C5%BCynierski.pdf/32903776-774a-46d6-87b31a43c8fc87ef

Logika i teoria mnogości[0/4]

- 1. Rachunek zdań. Tautologie. Zastosowanie rachunku zdań w rozwiązywaniu zadań.
- 2. Relacje i funkcje definicje, klasyfikacje i przykłady.

Relacją binarną nazywamy zależności pomiędzy wartościami zbioru X i zbioru Y. Relacja może być <u>zwrotna(xRx)</u>, <u>przeciwzwrotna(xR¬x)</u>, <u>przechodnia(xRy n yRz => xRz)</u>, <u>symetryczna (xRy => yRx)</u>, <u>słabo antysymetryczna((xRy n yRx) => x=y)</u>, <u>silnie antysymetryczna (xRy => ¬yRx)</u> oraz <u>spójna (xRy v yRx v x=y)</u>. <u>Relacja równoważna</u>: zwrotna, symetryczna i przechodnia. <u>Relacja częściowego porządku</u>: x < y, x!=y

Iloczyn kartezjański - każdy z każdym. Jeden naj, wiele min/max.

Funkcje: każdemu X przypisujemy dokładnie jeden Y.

<u>Różnowartościowa(injekcja):</u> dla różnych X muszą być różne Y. <u>Na(suriekcja):</u> każdy element ze zbioru Y ma odpowiadający mu X. <u>Bijekcja:</u> różnowartościowa i na.

3. Definiowanie rekurencyjne funkcji i dowody indukcyjne.

Indukcja: sprawdzamy dla punktu początkowego (0). Jeżeli się zgadza to zakładamy poprawność dla n i sprawdzamy dla n+1. Przez sprzeczność zakładamy, że zamiast <= jest > i udowadniamy, że to nieprawda.

4. Algebra zbiorów.

(AnB) = A \vee B

 $A \setminus B = A \cup B$

Matematyka dyskretna[0 / 4]

1. Teoria podzielności liczb całkowitych (NWD, algorytm Euklidesa, liczby pierwsze, kongruencje).

NWD: rozkładamy oba na czynniki pierwsze. To co się powtarza to mnożymy.

Euklides: x mod y = a reszty b. Stąd: y mod b itd. Lub: od większej odejmij mniejszą, aż będą równe. **Kongruencja:** a KON b (mod n) \Leftrightarrow a - b = k*n. Np: 3 KON 24 (mod 7), bo 3-24 = -21. -21 = -3 * 7. W skrócie chodzi o to, że oba dają taką samą resztę z dzielenia przez modulo.

- 2. Podstawowe techniki zliczania obiektów (metoda bijektywna, reguła włączania i wyłączania, rekurencja). **Metoda bijektywna:** n po k = n! / k!(n-k)!.
- 3. Funkcje tworzące i ich zastosowania.

Zastosowanie: rozwiązywanie równań rekurencyjnych, wyliczenie n-tego elementu ciągu Fibonacciego.

4. Kryptografia z kluczem publicznym. - ogarnąc RSA.

Algebra [0/5]

- 1. Liczby zespolone (definicje i własności, interpretacja geometryczna, postać trygonometryczna, pierwiastkowanie).
- a + bi, gdzie a to część rzeczywista, b to część urojona.
- 2. Grupy, pierścienie, ciała definicje i podstawowe przykłady.
- 3. Przestrzenie i przekształcenia liniowe. Baza i wymiar przestrzeni, macierz przekształce-

nia - definicje i przykłady.

- 4. Układy równań liniowych. Twierdzenie Kroneckera-Capellego. Metody rozwiązywania układów równań liniowych.
- 5. Iloczyn skalarny i iloczyn wektorowy. Zastosowania do geometrii w R2 i R3 (równania prostych i płaszczyzn, odległość punktu od prostej i płaszczyzny, objętość bryły).

Analiza matematyczna [0 / 5]

- 1. Pojęcie granicy ciągu (liczbowego, funkcji, szeregu liczbowego lub funkcyjnego). Podstawowe twierdzenia dotyczące granic ciągów.
- 2. Ciągłość funkcji. Podstawowe własności funkcji ciągłych.
- 3. Pochodna funkcji jednej zmiennej. Interpretacja geometryczna i mechaniczna pochodnej. Zastosowanie rachunku różniczkowego do badania przebiegu zmienności funkcji jednej zmiennej (przedziały monotoniczności, ekstrema lokalne, punkty przegięcia).
- 4. Wzór Taylora dla funkcji jednej zmiennej. Zastosowania do obliczania przybliżeń funkcji.

Rozwijanie funkcji w szeregi potęgowe.

Całka Riemanna (definicja, podstawowe własności, zastosowania).
[OGARNĄĆ]

Statystyczna analiza danych [0 / 4]

1. Rozkłady cech i zmiennych losowych. Rozkład częstości zmiennej, dystrybuanta empiryczna, histogram. Rozkład zmiennej, dystrybuanta, gęstość rozkładu. Rozkład normalny.

Typy zmiennych: nominalny(płeć, wyznanie), porządkowy(grupa wiekowa, stopień zaufania do X), ilościowy (waga, wzrost, wiek). **Dystrybuanta empiryczna:** częstość występowania, na przedziale 0-1. **Histogram**: słupki obok siebie. Luka = podejrzenie błędu.

2. Miary tendencji centralnej i rozproszenia (średnia, moda, mediana, rozstęp, wariancja).

Moda: najczęściej występujące. Mediana: środek. Rozstęp: max-min.

Wariancja: poszczególne - średnia / ilość. **Odchylenie standardowe:** sqrt z Wariancji.

Wartość oczekiwana: na przykładzie kostki. Średnio ½ szansy jest na wszystko. Liczymy więc: 1 * ½ + 2 * ½ + ... + 6 * ½ . **Wariancja zmiennej losowej:** EX^2 - (EX)^2. EX = SUM(prawd * wartość).

- 3. Estymacja punktowa wartości oczekiwanej i wariancji. Przedziały ufności dla wartości oczekiwanej. **Estymacja punktowa:** wynosi mniej więcej. Można wziąć np dla średniej. Liczymy: SUM / ilość. Ogólnie to dla podanych wartości pól kwadratów, trzeba estymować średnią długość boku. **Przedziały ufności:** gdy wyjdzie np 10, a mamy ufność 95%, to nie podajemy wyniku 10, a [0.95, 10.52].
- 4. Pojęcie testu statystycznego (hipoteza zerowa i hipoteza alternatywna, obszar krytyczny, błędy pierwszego i drugiego rodzaju, statystyka testowa). Przykłady testów. [OGARNĄĆ]

Teoria Języków Formalnych[0 / 4]

1. Języki regularne. Automaty skończone (deterministyczne i niedeterministyczne) i wyrażenia regularne oraz ich zastosowania.

Deterministyczny: jedna liczba do 1 stanu. **Zupełny:** każda liczba idzie gdzieś (może być smietnik). **Def:** w e {a, b, c}, L = (a u b)* u c+

2. Języki bezkontekstowe. Gramatyki bezkontekstowe i automaty ze stosem.

Def: G = (E, V, S, P). **E:** alfabet, **V:** zmienne, **S:** symbol początkowy, **P:** reguła przejścia

- 3. Hierarchia Chomsky'ego gramatyk.
- 5 punktów. Symbol startowy, E-przejścia, produkcje jednostkowe, symbole terminalne, redukcja długich wyrazów.
- 4. Metody analizy składniowej. Leksery i parsery.[OGARNĄĆ DAFUQ]

Teoria Obliczalności [0/4]

1. Pojęcie obliczalności. Teza Churcha. Funkcje częściowo rekurencyjne. Pojęcie obliczalności: *Mając dany język formalny i ciąg znaków, określ czy ten ciąg należy do języka*. Teza Churcha: *Każdy problem, który może być intuicyjnie uznany za obliczalny, jest rozwiązywalny przez maszynę Turinga*.

- 2. Rekursja a minimalizacja (pętle iteracyjne 'for' oraz repetycyjne 'while')
- 3. Czasowa i pamięciowa asymptotyczna złożoność obliczeniowa, złożoność problemu a złożoność algorytmu.
- 4. Problemy trudne i zupełne, przykłady problemów o różnej złożoności. Problem Czy P=NP?

Algorytmy i struktury danych [0/4]

1. Poprawność i złożoność algorytmu.

Poprawność: daje wynik jaki zakładaliśmy.

2. Algorytmy sortowania.

Bąbelkowy, przez wstawianie, przez wymianę, szybkie, stogowe, zliczanie, scalanie,

3. Podstawowe algorytmy sekwencyjne: grafowe, geometryczne, tekstowe. Algorytmy grafowe: DFS, BFS i zastosowania, znajdowanie najkrótszych ścieżek - algorytm Dijkstry, Bellmana-Forda, Floyda

Algorytmy tekstowe: algorytm Rabina-Karpa, algorytm Boyera-Moore'a, kodowanie Huffmana

Algorytmy geometryczne na płaszczyźnie : znajdowanie otoczki wypukłej, przecinanie odcinków w zbiorze odcinków

4. Struktury danych i ich wpływ na złożoność algorytmów.

Programowanie obiektowe[0/4]

- 1. Pojęcia klasy i obiektu. Przykład klasy i kilku obiektów tej klasy.
- 2. Dziedziczenie. Przykład hierarchii klas.
- 3. Metody wirtualne. Przykład ilustrujący ich użyteczność.
- 4. Konstruktory i destruktory. Rodzaje konstruktorów w C++.

Bazy danych [0/4]

1. Podstawowe własności baz danych.

Tworzenie struktur, edycja, zapisywanie, aktualizacja ich. Zapisywanie danych. Zapytania i wybory okreslonych danych. Raporty i administrowanie.

- 2. Relacyjne bazy danych (model danych, klucze, postaci normalne, SQL). Postaci normalne: **1.** Opisuje jeden obiekt, wartości są elementarne. Nie zawiera kolekcji. ATOMOWOŚĆ DANYCH. **2.** Każda tabela powinna przechowywać dane dotyczące tylko konkretnej klasy obiektów. W tabeli Klienci nie powinno być ich zamówień **3.** Każdy niekluczowy element ma zależeć od klucza głównego, a nie innego elementu.
- 3. Bezpieczeństwo danych.

Kontrola dostępu (każdy tylko do potrzebnej mu bazy), szyfrowanie haseł, uprawnienia (np. Tylko select), backup na serwerze zewnętrznym, replikacja bazy danych - replika bazy danych (maste i slave). W momencie awarii mastera, slave przejmuje odpowiedzialność dopóki master się nie naprawi. Tokeny uwierzytelniające podczas przesyłania zapytań REST.

4. Rozproszone bazy danych. Logicznie jedna całość, fizycznie rozbite na kilka serwerów.

Systemy operacyjne, architektura komputerów [0/4]

1. Struktura komputera: procesor, we/wy, magistrala, pamięć. Działanie komputera.

http://www-

users.mat.umk.pl/~much/ZSI_mgr/Minimum_Programowe/OS_DariuszStompor.pdf

- 2. Funkcje systemowe, rodzaje, przykłady funkcji systemowych w różnych systemach operacyjnych.
- 3. Rodzaje planistów i decyzje o przydziale procesora. Algorytmy przydziału procesora.

FCFS: pierwszy zgłoszony, pierwszy obsłużony. Kolejka FIFO. **SJF:** najpierw najkrótsze zadanie.

Planowanie wywłaszczeniowe: jest możliwość odebrania zasobu.

4. Pamięć wirtualna i algorytmy zastępowania stron.

Sieci komputerowe i programowanie sieciowe [0/7]

1. Warstwy protokołu modelu OSI.

<u>aplikacji</u> - klient-serwer, specyfiikacja interfejsu. To co użytkownik widzi.a <u>prezentacji</u> - tłumaczenie danych na reprezentacyjny. Kodowanie i konwersja danych oraz szyfrowanie. JPG, GIF.

sesji - synchronizacja, zatrzymywanie i wznawianie połączeń.

<u>transportowa</u> - segmentacja danych i przygotowuje w strumień. Przesył danych, TCP i UDP.

sieciowa - topologia sieci. Trasowanie, routery, IPv4, IPv6.

łącza danych - nadzoruje jakość przekazywanych informacji. Ramka danych składa się z ID odbiorcy i nadawcy.

<u>fizyczna</u> - wysyłanie sygnałów, elektryczne, radiowe. napięcie elektryczne. zamiana danych na strumienie binarne.

2. Protokoły komunikacyjne i ich implementacje.

Przesyłanie danych pomiędzy urządzeniami. Sposób: handshake, przekaz danych, sprawdzenie poprawności.

DNS - 53. FTP - 21. HTTP - 80. HTTPS - 443. SSH - 22.

- 3. Komunikacja między procesami na różnych maszynach (gniazda).
- 4. Zasady organizacji transmisji danych różnego typu przez sieć.
- 5. Kierowanie ruchem w sieci lokalnej, routowanie statyczne i dynamiczne.
- 6. Protokoły sieciowe związane z zarządzaniem urządzeniami sieciowymi.
- 7. Zasady budowy i wykorzystania zapór ogniowych w różnych warstwach modelu OSI.

Filtrujące: analiza i filtrowanie pakietów.

NAT: zmiana adresu przy wysłaniu pakietu na zewnątrz w celu uniemożliwienia zewnętrznego monitorowania.

Proxy: wykonywanie połączenia z serwerem w imieniu użytkownika.

Wstęp do sieci neuronowych[0/2]

- 1. Modele perceptronu i skierowane sieci neuronowe budowa, dynamika, zastosowanie.
- 2. Uczenie nienadzorowane w sieciach neuronowych konstrukcja, dynamika, algorytmy uczenia, zastosowania (sieci Kohonena, k-średnich, PCA).

Podstawy elektroniki i miernictwa[0/2]

- 1. Wzmacniacze pomiarowe oraz inne ukady kondycjonujące;
- 2. Zasada działania przetworników analogowo-cyfrowych i cyfrowoanalogowych.
- 3. Przyczyny powstawania szumów i zakóceń w torach pomiarowych;
- 4. Konstrukcja i charakterystyka czujników temperatury, wilgotności, ciśnienia.

Techniki cyfrowe [0 / 7]

- 1. Stany logiczne, kody liczbowe, algebra Boole'a.
- 2. Funktory logiczne (NOT, OR, AND, NAND, XOR, XNOR).
- 3. Synteza układów kombinacyjnych.
- 4. Przerzutniki cyfrowe.
- 5. Hazard w układach cyfrowych.
- 6. Synteza liczników cyfrowych i dzielników częstotliwości.
- 7. Układy pamięci cyfrowych.

Podstawy fizyki [0/4]

- 1. Oscylator harmoniczny nietłumiony.
- 2. Polaryzacja światła, metody polaryzowania i analizy polaryzacji.
- 3. Dynamika Newtona. Przestrzeń i czas w mechanice Newtona. Zasady dynamiki, układy inercjalne i nieinercjalne.
- 4. Stany i poziomy energetyczne w nieskończenie głębokiej studni potencjału.