Aufgabe 1

Es sei der nichtdeterministische endliche Automat $A = (\{1, 2, 3, 4, 5\}, \{a, b\}, \delta, \{4, 5\}, 1)$ gegeben, wobei δ durch folgenden Zeichnung beschrieben ist.

Konstruieren Sie nachvollziehbar einen deterministischen endlichen Automaten A' , der das Komplement von L(A) akzeptiert!

Zuerst mit Hilfe der Potenzmengenkonstruktion einen deterministischen endlichen Automaten erstellen und dann die Zustände mit den Endzuständen tauschen.

Name	Zustandsmenge	Eingabe a	Eingabe b
$\overline{Z_0}$	$Z_0\{1\}$	$Z_1\{1,2\}$	$Z_{2}{3}$
Z_1	Z_1 {1,2}	$Z_1\{1,2\}$	$Z_3{3,4}$
Z_2	Z_{2} {3}	$Z_4\{\}$	$Z_{5}\{2,5\}$
Z_3	$Z_3{3,4}$	$Z_{2}{3}$	$Z_{5}\{2,5\}$
Z_4	Z_4 {}	$Z_4\{\}$	$Z_4\{\}$
Z_5	$Z_5{2,5}$	$Z_{6}{4}$	$Z_3{3,4}$
Z_6	$Z_{6}{4}$	Z_{2} {3}	$Z_{7}{5}$
Z_7	$Z_{7}{5}$	$Z_6\{4\}$	Z_{2} {3}

