Télématicienne CFC Télématicien CFC

Connaissances professionnelles écrites

Pos. 2 Bases technologiques

Dossier des expertes et experts

Temps: 45 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche (sans

banque de données), règle, cercle, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiple, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

 Si dans un exercice on demande plusieurs réponses vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 35,0

33,5 -	35,0	Points = Note	6,0
30,0 -	33,0	Points = Note	5,5
26,5 -	29,5	Points = Note	5,0
23,0 -	26,0	Points = Note	4,5
<u> 19,5 - </u>	22,5	Points = Note	4,0
16,0 -	19,0	Points = Note	3,5
12,5 -	15,5	Points = Note	3,0
9,0 -	12,0	Points = Note	2,5
5,5 -	8,5	Points = Note	2,0
2,0 -	5,0	Points = Note	1,5
0,0 -	1,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice

avant le 1er septembre 2013.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Télématicienne CFC / Télématicien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices		Nombre d	le points obtenus
1.	Plan de formation 3.4.8, Bloom 1 Insérez les blocs ci-dessous dans les c	colonnes correspondantes.	3	
	UDP transmission sans acquittement transmission avec acquittement port 69	port 21		
	FTP	TFTP		
	ТСР	UDP		
	Port 21	Port 69	(0.5	
	Transmission avec acquittement	Transmission sans acquittement	(0,5 par rép)	

Exer		Nombre o	de points obtenus
2.	Plan de formation 3.3.3, Bloom 2 Ci-dessous est représenté le schéma partiel d'une alimentation sans coupure (ASC / UPS).	4	
	a) Attribuez les fonctions correspondantes aux blocs dessinés sur le schéma. REDRESSEUR 1 BATTERIE 4 ONDULEUR 5 COMMUTATEUR BYPASS 3 TRANSFORMATEUR DE SEPARATION 2	(0,5 par rép)	
	b) Dessinez correctement les diodes du bloc 1, et donnez le nom technique de ce montage de diodes.		
	- +	(1)	
	Pont de Graetz ou pont de diodes	(0,5)	

ices			maxima	e de poir
Plan de	formation	on 3.3.1, Bloom 2		
Indique	z si les a	ffirmations suivantes sont vraies ou fausses.	2	
	-	1		
Vrai	Faux			
X		Lorsqu'une diode est polarisée en sens inverse avec		
		une tension trop élevée, il y a claquage.		
	X	Une diode polarisée en sens direct peut être		
		comparée à un contact ouvert Une diode Zener polarisée en sens direct présente à		
X		ses bornes une tension de 0,6 V – 0,7 V	(0,5	
		Une DEL (LED) s'allume lorsqu'elle est polarisée en	par	
	X	sens inverse.	rép)	
		SCHO HIVEISC.		

гап	de formatio	n 2 1	2 2 5	RIOO	m 2												maximal
	essous sont		,			gen	ces	de b	ase	d'un	rac	cord	eme	ent :			4
Evtroi	t des données te	obniau															
Affaib	lissement maxim		165.			à 80											
Kesis	tance de boucle			,	800 (2	max.											
- \	0-11	1			.1	1				- cc - 'I			1 1		.1. 1.	P	
a)	Calculez p ainsi que la														зе іа	ligne	,
	raccordem	ent a													le ta	bleau	I
	ci-dessous	; :															
Ø		f =	40 kH	lz	f =	= 80 k	Hz	f =	160 k	Hz	f =	400 k	Hz	f	= 1 MI	Hz	
		I Zw I	α	1/v	l Zw I	α	1/v	I Zw I	α	1/v	I Zw I	α	1/v	I Zw I	α	1/v	
mm	Loop resistance Ω / km	Ω	dB/km	μs/km	Ω	dB/km		Ω	dB/km	μs/km	Ω	dB/km	µs/km	Ω	dB/km	μs/km	
0,4	280	211	6,4	6,2	176	7,6	5,5	156	9,1	5,1	144	12,4	4,8	139	18.8	4,7	
0,6	124	167	3,5	5,5	151	4,2	5,1	143	5,5	4,9	138	8,9	4,7	136	16,3	4,6	
0,8	70	154	2,4	5,1	145	3,0	4,9	140	4,1	4,7	137	6,5	4,6	136	11,2	4,5	
1	45	148	1,8	4,6	141	2,3	4,4	138	3,1	4,3	136	5,1	4,2	136	8,9	4,2	
	_a 0,5 km _		3,0 k	ĸm			1,0 k	m ı			4,5 km	n	а			_	
NT1	b 0,6 mm		1,0 r				0,8 m				1,0 m			LT	E1	г	
	r la premièr					- 43) 4B	/km	. 0 4	5 km	ı – 2) 1 d	R				
- aff	r la premièr aiblissemer sistance de	nt : o	طi:	star							ı = 2	2,1 d	В				
- aff - rés	aiblissemer sistance de	nt : o bou	· di: cle :	star 124	Ω/k						n = 2	2,1 d	В				
- aff - rés Pou	aiblissemer	nt : o bou	· di: cle :	star 124	Ω/k						า = 2	2,1 d	В				
- aff - rés Pou - 6,9 - 3 d	aiblissemer sistance de r les section dB et 135 Ω IB et 70 Ω	nt : α bou ns s Ω	· di: cle : uiva:	star 124	Ω/k						1 = 2	2,1 d	В				
- aff - rés Pou - 6,9 - 3 d	aiblissemer sistance de r les section dB et 135 û	nt : α bou ns s Ω	· di: cle : uiva:	star 124	Ω/k						n = 2	2,1 d	В				
- aff - rés Pou - 6,9 - 3 d - 10,	aiblissemersistance de r les section dB et 135 Ω IB et 70 Ω 35 dB et 20 iblissement	nt : α boud ns s Ω 2,5 Ω	· di cle : uiva Ω al : 2	star 124 ntes	Ω/k s: B+	6,9	0,5 dB +	km = ⊦ 3 d	= 62 IB +	Ω 10,3	35 d	B = ;	22,3				
- aff - rés Pou - 6,9 - 3 d - 10,	aiblissemer sistance de r les section dB et 135 Ω lB et 70 Ω ,35 dB et 20	nt : α boud ns s Ω 2,5 Ω	· di cle : uiva Ω al : 2	star 124 ntes	Ω/k s: B+	6,9	0,5 dB +	km = ⊦ 3 d	= 62 IB +	Ω 10,3	35 d	B = ;	22,3				
- aff - rés Pou - 6,9 - 3 d - 10,	aiblissemersistance de r les section dB et 135 Ω IB et 70 Ω 35 dB et 20 iblissement	nt : α boud ns s Ω 2,5 Ω	· di cle : uiva Ω al : 2	star 124 ntes	Ω/k s: B+	6,9	0,5 dB +	km = ⊦ 3 d	= 62 IB +	Ω 10,3	35 d	B = ;	22,3				
- aff - rés Pou - 6,9 - 3 d - 10, Affa Rés	aiblissemersistance de r les section dB et 135 Ω IB et 70 Ω 35 dB et 20 iblissement	nt : α bou ns s Ω 2,5 Ω t tota	· di cle : uiva Ω al : 2 cle to	star 124 ntes ,1 d	Ω/k :: B+ ::62	6,9 2 Ω	0,5 dB + + 13	km = ⊦ 3 d 5 Ω	= 62 B + + 70	Ω 10,3) Ω -	35 d + 20	B = : 2,5 Ω	<u>22,3</u> Ω = :	<u>469,</u>			
- aff - rés Pou - 6,9 - 3 d - 10, Affa Rés	aiblissemer sistance de r les section dB et 135 Ω lB et 70 Ω 35 dB et 20 iblissement istance de k	nt : 0 bourns s 2,5 £ t tota bourn	cle: uivai Q al:2 ele to	star 124 ntes ntes	Ω/k 3: B+ 2:62	6,9 · 2 Ω · t rép	0,5 dB + + 13	km = ⊦ 3 d 5 Ω	= 62 B + + 70	Ω 10,3) Ω -	35 d + 20	B = : 2,5 Ω	<u>22,3</u> Ω = :	<u>469,</u>			
- aff - rés Pou - 6,9 - 3 d - 10, Affa Rés	aiblissemer sistance de r les section dB et 135 Ω IB et 70 Ω 35 dB et 20 iblissement istance de la Est-ce que accordemen	nt : o boud ns s 2,5 (t tota boud e ce i	cle: uiva Ω al: 2 cle to	star 124 ntes ,1 d otale mpa	Ω/k B+ e: 62	6,9 Ω t répe.	0,5 dB + + 13	km = 5 Ω	= 62 IB + + 70 ∵ exi(Ω 10,3) Ω -	35 d + 20 ces c	B = 2,5 \$\frac{1}{2}\$	22,3 Ω = j	469. ?	<u>5 Ω</u>		
- aff - rés Pou - 6,9 - 3 d - 10, Affa Rés	aiblissemer sistance de r les section dB et 135 Ω IB et 70 Ω 35 dB et 20 iblissement istance de b	nt : o boud ns s 2,5 (t tota boud e ce i	cle: uiva Ω al: 2 cle to	star 124 ntes ,1 d otale mpa	Ω/k B+ e: 62	6,9 Ω t répe.	0,5 dB + + 13	km = 5 Ω	= 62 IB + + 70 ∵ exi(Ω 10,3) Ω -	35 d + 20 ces c	B = 2,5 \$\frac{1}{2}\$	22,3 Ω = j	469. ?	<u>5 Ω</u>		
- aff - rés Pou - 6,9 - 3 d - 10, Affa Rés	aiblissemer sistance de r les section dB et 135 Ω IB et 70 Ω 35 dB et 20 iblissement istance de la Est-ce que accordement cation pour	nt : o boud ns s 2,5 (t tota boud e ce i	cle: uiva Ω al: 2 cle to	star 124 ntes ,1 d otale mpa	Ω/k B+ e: 62	6,9 Ω t répe.	0,5 dB + + 13	km = 5 Ω	= 62 IB + + 70 ← exi(Ω 10,3) Ω -	35 d + 20 ces c	B = 2,5 \$\frac{1}{2}\$	22,3 Ω = j	469. ?	<u>5 Ω</u>		

Exer	cices		Nombre o	le points obtenus
_	Plan	de formation 3.4.7, Bloom 2		obtonido
5.			2	
		Hz		
		<u> </u>		
		-		
		s		
	a)	Marquez les deux axes avec les grandeurs physiques manquantes.	(1)	
		(Symboles utilisés dans les formules)		
		Axe des ordonnées : f (Hz), axe des abcisses : t (s)		
		AND GOO OLGOINICOS . I (112), and GOO aboleses . I (3)		
	L)		(1)	
	b)	Que représente ce diagramme ? (Cocher la bonne réponse)		
		un multiplexage temporel		
		☑ un multiplexage fréquentiel☐ un multiplexage spatial		
		une modulation MIC (PCM)		
	1		_1	<u> </u>

Exer	cices	Nombre d	e points obtenus
	Plan de formation 3.2.4, Bloom 3		
6.	Calculez le courant I qui traverse le circuit ci-dessous.	2	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Branche du haut : tension Zener : 5 V		
	$U_{R1} = 12 V - 5 V = 7 V$		
	$I_{R1} = \frac{U_1}{R_1} = \frac{7 \text{ V}}{470 \Omega} = 0.015 \text{ A}$		
	Branche du bas : la diode bloque le courant		
	$I_{R2} = I_{R3} = \frac{U}{R_{2+3}} = \frac{12 \text{ V}}{220 \Omega + 220 \Omega} = 0.027 \text{ A}$		
	$I = I_{R1} + I_{R2} = 0.015 A + 0.027 A = 0.042 A$		

Exer	cices		Nombre d	le points obtenus
		de formation 3.4.9, Bloom 1 et 2		
7.	Soit	le clavier d'une station téléphonique :	3	
		$ \begin{array}{c cccc} 1 & & & & & & & & & & & & \\ \hline 4 & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & \\ \hline 7 & & & & & & & & & \\ \hline 8 & & & & & & & & \\ \hline 9 & & & & & & & & \\ \hline 4 & & & & & & & \\ \hline 7 & & & & & & & \\ \hline 8 & & & & & & & \\ \hline 9 & & & & & & & \\ \hline 4 & & & & & & \\ \hline 9 & & & & & & \\ \hline 9 & & & & & & \\ \hline 1209 & 1336 & 1477 Hz $		
	a)	Donnez l'abréviation le définissant, et expliquez chacune des lettres.		
		DTMF, Dual-Tone Multi-Frequency MFV, Mehrfrequenz-Verfahren	(1)	
	b)	Décrivez le signal résultant de la pression sur une touche ?	(1)	
		Un mélange de 2 fréquences.		
	c)	Citez 2 avantages par rapport au disque à impulsion ?		
		Vitesse de composition plus rapide Etablissement de communication plus rapide	(1)	

Exe	rcices	Nombre d	e points obtenus
8.	Plan de formation 3.4.6, Bloom 2 Quelle est la durée de transmission d'une trame Ethernet de longueur totale 64	2	
0.	octets si celle-ci est transmise à une vitesse de 10Mbps en half-duplex ?		
	Durée de transmission : $\frac{64 \text{ B} \cdot 8 \frac{\text{b}}{\text{B}}}{10 \cdot 10^6 \frac{\text{b}}{\text{s}}} = 512 \text{ b} \cdot 10^{-7} \frac{\text{s}}{\text{b}} = 0,0000512 \text{ s} = \underbrace{51,2 \mu \text{s}}_{==================================$		
	10·10° — s		

Exercice	s	Nombre o	le points obtenus
9. En :	n de formation 3.4.2, Bloom 2 se basant sur le signal ci-dessous, complétez les points a) et b) et rèpondez questions c) et d).	4	
11 110 100 000 001 010	t t		
a)	Les différents échantillons du signal.	(1)	
b)	1 100 110 101 101 111 100 011 010 100	(1)	
c)	Enoncez le théorème de Shannon concernant l'échantillonnage ? Le théorème de Shannon précise que la fréquence d'échantillonnage doit être au minimum le double de la plus grande fréquence du signal	(1)	
d)	utile. Combien y aurait-il de domaines de quantification possibles avec un code binaire à 8 bits ?		
	256	(1)	

Exer	cices	Nombre o	de points obtenus
10.	Plan de formation 3.4.8, Bloom 3 Soit le réseau informatique suivant :	3	
	10.10.10.0/16 192.168.10.0/24 PC202 1 R1 SW1 PC104 PC104 PC104 PC104 PC104 PC104 PC104 PC104 PC105 SW1 ACCESS Adsl ATM ATM SW1 PC107 PC108 PC108 PC109 PC		
	 a) Quel est le composant qui aura vraisemblablement la fonction client PPPoE ? Le composant DSL, qui sera aussi le routeur d'accès coté client 	(1)	
	 Entre les composants SW2 et DSL router sera installé un pare-feu (firewall), qui aura également une fonction de routeur. Quelles seront les modifications à apporter dans les actifs réseaux, pour que tous les PC puissent accéder à Internet ? 		
	Le routeur DSL devient un bridge / il faut configurer le firewall / router en client PPPoE Indication pour l'expert : le routeur DSL peut (mais ne doit pas	(2)	
	obligatoirement) devenir un bridge. Si ce n'est pas le cas, la route statique doit être installée.		
	Plusieurs solutions possibles !		

Plan de formation 3.4.1, Bloom 1 Complétez le tableau suivant Type d'interface e Interface R (a/b) (racc. BA) (racc. BA) (racc. BA) PA) Support de transmission Tension réseau 24 V – 48 V DC 97 V (91 V - 99 V) (34 V – 42 V) Structure des canaux Codage 2B+D 2B+D 30B+D Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 144 kbps 1920 kbps Indication pour l'expert : 0,5 point par réponse juste	Type d'interface Interface R (a/b) Interface U (racc. BA) Interface S/T (racc. BA) PA) Support de transmission 2 fils de cuivre torsadé 2 fils cuivre torsadé 4 Fils cuivre torsadé 2 Paire de cuivre blindées Tension réseau 24 V - 48 V DC 97 V (91 V - 99 V) (34 V - 42 V) Structure des canaux 2B+D 2B+D 30B+D Codage 2B1Q AMI inversé HDB3 Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 144 kbps 1920 kbps						Nombre d maximal	obten
Support de transmission 2 fils de cuivre 2 fils cuivre torsadé Tension réseau 24 V - 48 V DC Structure des canaux Codage Débit Brut 56 kbps 160 kbps 144 kbps 14 Fils cuivre torsadé 4 Fils cuivre torsadé 24 V - 48 V DC 97 V (34 V - 42 V) 28+D 30B+D 30B+D AMI inversé HDB3 144 kbps 192 kbps 1920 kbps	Support de transmission 2 fils de cuivre torsadé 2 fils cuivre torsadé Tension réseau 24 V – 48 V DC Structure des canaux Codage Débit Brut 56 kbps 160 kbps 144 kbps 14 Fils cuivre torsadé 2 Paire de cuivre blindées 4 Fils cuivre torsadé 2 Paire de cuivre blindées 2 Paire de cuivre blindées 4 Fils cuivre torsadé 2 Paire de cuivre blindées 4 O V (34 V – 42 V) 5 Torsadé de cuivre torsadé 2 B+D 3 OB+D 4 Fils cuivre torsadé 2 B+D 3 OB+D 4 Fils cuivre torsadé 4 O V (34 V – 42 V) 5 Torsadé 5 Torsadé 6 Torsadé 6 Torsadé 7 Torsadé 8 Torsadé 9 Torsadé 9 Torsadé 9 Torsadé 1	Plan de formation Complétez le tal	on 3.4.1, Bloom ′ oleau suivant	1			4	
transmission torsadé torsadé cuivre blindées Tension réseau 24 V – 48 V DC 97 V (91 V - 99 V) (34 V – 42 V) Structure des canaux Codage 2B+D 2B+D 30B+D Codage 2B1Q AMI inversé HDB3 Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 1920 kbps 1920 kbps	transmission torsadé torsadé cuivre blindées Tension réseau 24 V – 48 V DC 97 V (91 V - 99 V) (34 V – 42 V) Structure des canaux Codage 2B+D 2B+D 30B+D Codage 2B1Q AMI inversé HDB3 Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 1920 kbps 1920 kbps	Type d'interface	Interface R (a/b)					
Tension réseau 24 V – 48 V DC 97 V (91 V - 99 V) 40 V (34 V – 42 V) Structure des canaux 2B+D 2B+D 30B+D Codage 2B1Q AMI inversé HDB3 Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 144 kbps 1920 kbps	Tension réseau 24 V – 48 V DC 97 V (91 V - 99 V) 40 V (34 V – 42 V) Structure des canaux 2B+D 2B+D 30B+D Codage 2B1Q AMI inversé HDB3 Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 144 kbps 1920 kbps		2 fils de cuivre			cuivre		
Codage 2B1Q AMI inversé HDB3 Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 1920 kbps	Codage 2B1Q AMI inversé HDB3 Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 1920 kbps	Tension réseau	24 V – 48 V DC	97 V (91 V - 99 V)		Silideos		
Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 1920 kbps	Débit Brut 56 kbps 160 kbps 192 kbps 2048 kbps Débit net 144 kbps 1920 kbps			2B+D	2B+D	30B+D		
Débit net 144 kbps 1920 kbps	Débit net 144 kbps 1920 kbps	Codage		2B1Q	AMI inversé	HDB3		
			56 kbps	160 kbps	192 kbps	2048 kbps		
Indication pour l'expert : 0,5 point par réponse juste	Indication pour l'expert : 0,5 point par réponse juste	Débit net		144 kbps	144 kbps	1920 kbps		

Exer	Exercices			le points obtenus
12.	Plan de formation a) Complétez le	3.3.3, Bloom 1 e schéma ADSL2+ avec les notions manquantes.	maximal 2	
	A ♣			
	1	POTS / ISDN	(0,5	
	2	Flux montant	par rép)	
	3	Flux descendant		
	b) Quelle est la environ 2 M	plus grande fréquence transmise dans le schéma ADSL2+ ? Hz	(0,5)	
		Totale	35	