

50% duty cycle

20% duty cycle

Rochel Clinge-Andrew Kirk

Parameter	Value	units	conditions w/ power off
10KL Rossier	9.82KL	ohm5	disconnected fra
Supply Voltage	3.2 V	V0145	powered
Input Voltage	Ov	Volts	powered, not proved
	- 15°	2	A Property of the second
rosister current (10 km)	Oma	nA.	I= Ve. / 21
Input Voltage	3.3v	V	parened, presided
Besister Corrent	D.32mA Calculated: O	.33.A	powered, preshed
		3/2	

	LED measurements					
Row	Parameter hospitale of	- Value	units	Conditions		
	220 A resister	217,2	1	power off &		
2	+50 youer supply	5.06V	Vo1+5			
3)	TM4K123 0-4,4,	3.53v	vo 1+5	WHL PEO=0		
-5	7-106 only 1/K	5.07	v 61+>	PE=O		
5)	hed at	3.67	vo 1+5	PE=0		
ò	Lod voltage	1.5V V	Vo 1+5	V2 V2 -		
7.)	LEDCurrent	Calculated: 6.8m A Measured 6.75mA	mA mp	(V+5-Va+)/219		
8)	TM4C/23 OUT	0,13	1/13	PEO=1		
9)	7406 an+ VE	2.03v	V	PEO-1		
10)	LED at	0.13/	V F	PEC=1		
11)	LED Voltage	1.94	V Va	4 -VK-		
(2)	LED current	22.4mA 22.2	MA (V+s	T-Vat)/R19		
				The second second		

ASSEMBLY: :************* main.s ********** ; Program written by: Rachel Clinger, Andrew Kirk ; Date Created: 2/4/2017 ; Last Modified: 1/15/2018 ; Brief description of the program ; The LED toggles at 8 Hz and a varying duty-cycle ; Hardware connections (External: One button and one LED) ; PE1 is Button input (1 means pressed, 0 means not pressed) ; PEO is LED output (1 activates external LED on protoboard) ; PF4 is builtin button SW1 on Launchpad (Internal) Negative Logic (0 means pressed, 1 means not pressed) ; Overall functionality of this system is to operate like this ; 1) Make PEO an output and make PE1 and PF4 inputs. ; 2) The system starts with the the LED toggling at 8Hz, which is 8 times per second with a duty-cycle of 20%. Therefore, the LED is ON for (0.2*1/8)th of a second and OFF for (0.8*1/8)th of a second. ; 3) When the button on (PE1) is pressed-and-released increase the duty cycle by 20% (modulo 100%). Therefore for each press-and-release the duty cycle changes from 20% to 40% to 60% to 80% to 100%(ON) to 0%(Off) to 20% to 40% so on ; 4) Implement a "breathing LED" when SW1 (PF4) on the Launchpad is pressed: a) Be creative and play around with what "breathing" means. An example of "breathing" is most computers power LED in sleep mode (e.g., https://www.youtube.com/watch?v=ZT6siXyIjvQ). b) When (PF4) is released while in breathing mode, resume blinking at 8Hz. The duty cycle can either match the most recent dutycycle or reset to 20%.

```
TIP: debugging the breathing LED algorithm and feel on the simulator is impossible.
; PortE device registers
GPIO_PORTE_DATA_R EQU 0x400243FC
GPIO_PORTE_DIR_R EQU 0x40024400
GPIO_PORTE_AFSEL_R EQU 0x40024420
GPIO_PORTE_DEN_R EQU 0x4002451C
; PortF device registers
GPIO_PORTF_DATA_R EQU 0x400253FC
GPIO_PORTF_DIR_R EQU 0x40025400
GPIO_PORTF_AFSEL_R EQU 0x40025420
GPIO_PORTF_PUR_R EQU 0x40025510
GPIO_PORTF_DEN_R EQU 0x4002551C
GPIO_PORTF_LOCK_R EQU 0x40025520
GPIO_PORTF_CR_R EQU 0x40025524
SYSCTL_RCGCGPIO_R EQU 0x400FE608
  IMPORT TExaS_Init
  THUMB
  AREA DATA, ALIGN=2
;global variables go here
  AREA |.text|, CODE, READONLY, ALIGN=2
  THUMB
  EXPORT Start
Start
; TExaS_Init sets bus clock at 80 MHz
  BL TExaS_Init; voltmeter, scope on PD3
```

```
; Initialization goes here
```

```
LDR R1, =SYSCTL_RCGCGPIO_R ;activate clock for Port F and E
 LDR R0, [R1]
 ORR RO, RO, #0x30 ; set bit 5 and 4 to turn on clock
 STR R0, [R1]
 NOP
      NOP
      NOP
 NOP
                  ; allow time for clock to finish
 LDR R1, =GPIO_PORTE_DIR_R ; set direction register
 MOV R0,#0x01
                   ; PE1 is input, PE0 is output
 STR R0, [R1]
 LDR R1, =GPIO_PORTE_DEN_R ; enable Port E digital port
 MOV RO, #0xFF ; 1 means enable digital I/O
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_LOCK_R ; unlock the lock register
 LDR RO, =0x4C4F434B ; unlock GPIO Port F Commit Register
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_CR_R ; enable commit for Port F
 MOV RO, #0xFF
                ; 1 means allow access
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_DIR_R ; set direction register
 MOV R0,#0x00
                       ; PF4 input
 STR R0, [R1]
 LDR R1, =GPIO_PORTF_PUR_R ; pull-up resistors for PF4,PF0
 MOV R0, #0x10 ; enable weak pull-up PF4
```

```
STR R0, [R1]
  LDR R1, =GPIO_PORTF_DEN_R ; enable Port F digital port
  MOV RO, #0xFF
                    ; 1 means enable digital I/O
  STR R0, [R1]
       AND R5, R5, #0
       AND R6, R6, #0
       LDR R6, =500000
       AND R7, R7, #0
       LDR R7, =2500001
  CPSIE I ; TExaS voltmeter, scope runs on interrupts
loop
               LDR R1, =GPIO_PORTF_DATA_R; check if breathing switch is pressed
               LDR R0, [R1]
               ANDS R3, R0, #0x10
               BEQ breathing
               LDR R1, =GPIO_PORTE_DATA_R; check if regular switch is pressed
               LDR R0, [R1]
               ANDS R3, R0, #2
               BNE conston
               ADDS R5, R5, #0
                                                     ; if its the first run, start with everything off
               BEQ constoff
               SUBS R9, R5, #6
                                             ; if it has gotten to 100% on, reset to 0%
               BEQ setR5
               B continue
                                                     ; continue to duty cycle code
```

breathing

;breathing code

LDR R1, =GPIO_PORTE_DATA_R

LDR R0, [R1]

LDR R10, =2500 ; time is small so the blinking is faster than the eye can

see

LDR R11, =250000

MOV R4, #0 ; counter

breathestart ;increasing breathe

LDR R1, =GPIO_PORTE_DATA_R

LDR R0, [R1]

SUBS R3, R4, #100 ;if it is on 100%, go to decrease

BEQ bdecrease

ANDS R3, R0, #1 ; if LED is currently off, go to second wait

BEQ wait2B

MUL R2, R10, R4

breathloop SUBS R2,R2,#0x01 ;smaller to larger wait time

BNE breathloop

EOR RO, RO, #0x01

STR R0, [R1]

B contB

wait2B ADD R2, R11, #0 ;2500000 into R2 FOR BREATHING ONLY

MUL R8, R10, R4 ;multiply by counter

SUB R2, R2, R8 ;subract by counter - larger to smaller wait time

waitloop2B SUBS R2,R2,#0x01 ;FOR BREATHING ONLY

BNE waitloop2B

EOR RO, RO, #0x01

STR R0, [R1]

contB ADD R4, R4, #1

;check if PF4 is released to go back to main function

LDR R1, =GPIO_PORTF_DATA_R

LDR R0, [R1]

ANDS R3, R0, #0x10

BNE loop

B breathestart

bdecrease

breathestartD ;decreasing breathe

LDR R1, =GPIO_PORTE_DATA_R ;same as breathing increase, but instead decrement counter and go from larger to smaller wait vs smaller to larger wait

LDR R0, [R1]

ADDS R3, R4, #0

BEQ breathestart

ANDS R3, R0, #1

BEQ wait2BD

MUL R2, R10, R4

breathloopD SUBS R2,R2,#0x01

;same as breathlooop for increase

BNE breathloopD

EOR RO, RO, #0x01

STR R0, [R1]

B contBD

wait2BD ADD R2, R11, #0

;2500000 into R2 FOR BREATHING ONLY

MUL R8, R10, R4

;multiply by counter

SUB R2, R2, R8

;subract by counter

ADD R2, R2, #1

;since it is 1, when R2 approaches R8, we must

add 1 so that R2 does not become negative

waitloop2BD

SUBS R2,R2,#0x01

;FOR BREATHING ONLY

BNE waitloop2BD

EOR RO, RO, #0x01

STR R0, [R1]

contBD SUB R4, R4, #1

;decrement, and continue

LDR R1, =GPIO_PORTF_DATA_R

LDR R0, [R1]

ANDS R3, R0, #0x10

;check if the switch is released

BNE loop

B breathestartD

setR5 SUB R5, R5, #6

B continue

constonLDR R1, =GPIO_PORTE_DATA_R

stays constanly on when pressed and held;

LDR R0, [R1]

ORR RO, RO, #1

STR R0, [R1]

ANDS R3, R0, #2

;checks if button is released

BEQ incr

B conston

constoff

LDR R1, =GPIO_PORTE_DATA_R

LDR R0, [R1] ;keeps the led cnstantly off - initially and after it has been on 100% of the time BIC RO, RO, #1 STR RO, [R1] ANDS R3, R0, #2 ;tests if button has been pressed, if so, go to conston BNE conston LDR R1, =GPIO_PORTF_DATA_R LDR R0, [R1] ;check if PF4 is pressed, if so, go to ANDS R3, R0, #0x10 breating **BEQ** breathing B constoff ADD R5, R5, #1 incr ;increment counter B continue continue LDR R1, =GPIO_PORTE_DATA_R LDR R0, [R1] ANDS R3, R0, #1 ;if LED is currently off, go to second wait time BEQ wait2 MUL R2, R6, R5 ; since R5 is 20% of the 0.125 seconds, it controls the duty cycle waitloop SUBS R2,R2,#0x01 ;how long on BNE waitloop

EOR RO, RO, #0x01

STR R0, [R1]

B loop

wait2 ADD R2, R7, #0 ;2500000 into R2

MUL R8, R6, R5 ;multiply by counter

SUB R2, R2, R8 ;subract by counter

waitloop2 SUBS R2,R2,#0x01 ;how long off

BNE waitloop2

EOR RO, RO, #0x01

STR RO, [R1]

B loop

ALIGN ; make sure the end of this section is aligned

END ; end of file