Acta de Constitución del Proyecto

[Implementación de un sistema de monitoreo en un criadero de cuyes con IoT y machine learning]
Fecha: [05/09/2024]

Tabla de contenido

Información del Proyecto	3
Datos	3
Patrocinador / Patrocinadores	3
Propósito y Justificación del Proyecto	3
Descripción del Proyecto y Entregables	3
Requerimientos de alto nivel	4
Requerimientos del producto	4
Requerimientos del proyecto	4
Objetivos	4
Premisas y Restricciones	5
Riesgos iniciales de alto nivel	5
Cronograma de hitos principales	5
Presupuesto estimado	5
Lista de Interesados (stakeholders)	6
Requisitos de aprobación del proyecto	6
Asignación del Gerente de Proyecto y nivel de autoridad	6
Gerente de Proyecto	6
Niveles de autoridad	6
Personal y recursos preasignados	7

Aprobaciones 7

Información del Proyecto

Datos

Empresa / Organización	UNTELS
Proyecto	Implementación de un sistema de monitoreo de
	criadero de cuyes con loT y machine learning
Fecha de preparación	05/09/2024
Cliente	María Justina Melo Evangelista
Patrocinador principal	Wilber Jesús Meléndez Francisco
Gerente de Proyecto	Wilber Jesús Meléndez Francisco

Propósito y Justificación del Proyecto

El objetivo del proyecto es desarrollar una solución tecnológica avanzada para la supervisión y gestión eficiente de las condiciones ambientales en un criadero ubicado en Manchay, Lima. Este proyecto se llevará a cabo desde septiembre hasta diciembre, período durante el cual el clima subtropical árido presenta temperaturas que oscilan entre 16°C y 25°C con alta humedad relativa.

El sistema IoT propuesto permitirá el monitoreo en tiempo real de variables críticas como la temperatura y la humedad. La implementación de esta tecnología optimizará el entorno del criadero, promoviendo la salud y el bienestar de los cuyes. Al ajustar automáticamente los recursos necesarios, el sistema no solo reducirá los costos operativos, sino que también mejorará la productividad del criadero al prevenir problemas de salud.

Además, se incorporará machine learning para detectar inactividad en los cuyes, facilitando una toma de decisiones más informada y precisa. Esta tecnología permitirá una rápida identificación de problemas, asegurando el cumplimiento de normativas y la adopción de las mejores prácticas en la gestión del criadero. Con estas innovaciones, el criadero se posicionará como un líder en innovación y eficiencia dentro del sector.

Descripción del Proyecto

El presente proyecto tiene como objetivo automatizar y optimizar el manejo ambiental de un criadero de cuyes ubicado en Manchay, Lima, mediante la implementación de un sistema inteligente basado en tecnologías de Internet de las Cosas (IoT) y machine learning. El sistema permitirá mejorar las condiciones de crianza a través de un monitoreo continuo y automatizado de variables críticas como la temperatura, humedad y la actividad física de los cuyes.

El sistema utiliza sensores loT conectados a un microcontrolador ESP32 para recolectar datos en tiempo real, que luego son procesados y almacenados en una plataforma central. Además, el sistema cuenta con algoritmos de machine learning que analizan el comportamiento de los cuyes para detectar posibles problemas de salud o condiciones subóptimas en el entorno.

El sistema también incluye **funcionalidades de automatización**, como el control automático de los dispositivos de calefacción y aire acondicionado en función de los parámetros ambientales, lo que garantiza un entorno estable y adecuado para el desarrollo de los animales. **Alertas en tiempo real** serán enviadas al encargado del criadero en caso de que se detecten valores fuera de los rangos aceptables, permitiendo una respuesta rápida a situaciones críticas.

Además, se almacenarán los datos históricos en una base de datos, lo que permitirá realizar un análisis a largo plazo para mejorar la gestión del criadero, reducir costos operativos y optimizar los recursos energéticos.

Requerimientos de alto nivel

Requerimientos del producto

·	El producto debe proporcionar monitoreo en tiempo real de las variables críticas, como la temperatura
	y la humedad dentro del criadero.

Sistema de sensores IoT	El producto debe incluir sensores de temperatura y humedad (como DHT11 o DHT22), conectados a un microcontrolador ESP32 para la recolección de datos.
Control automático de climatización	El sistema debe poder encender o apagar automáticamente dispositivos de calefacción o aire acondicionado basándose en los valores de temperatura y humedad detectados.
Algoritmos de machine learning	El producto debe incluir un modelo de machine learning que detecte patrones de inactividad en los cuyes, lo que podría indicar problemas de salud o condiciones ambientales inadecuadas.
Alerta automática	El producto debe enviar notificaciones automáticas a los usuarios cuando se detecten irregularidades en los valores de los sensores o inactividad anormal.
Interfaz de usuario	El sistema debe tener una interfaz gráfica que permita a los usuarios monitorear las condiciones del criadero, visualizar alertas y controlar el sistema de climatización de manera remota desde dispositivos móviles o web.
Interoperabilidad con otros sistemas	El producto debe ser compatible con sistemas de gestión del criadero o dispositivos de automatización adicionales que se quieran implementar en el futuro.
Escalabilidad	El producto debe poder ser expandido para integrar más sensores y áreas del criadero sin afectar el rendimiento del

	sistema.
Seguridad del sistema	El producto debe contar con medidas de seguridad que protejan la integridad de los datos, incluidas conexiones seguras (como cifrado de datos) y control de acceso.

Requerimientos del proyecto

Cronograma del proyecto	El proyecto debe completarse en un tiempo determinado
Presupuesto	El proyecto debe ejecutarse dentro de los límites de un presupuesto definido, considerando costos de hardware (sensores, microcontroladores, dispositivos de climatización), desarrollo de software, capacitación y mantenimiento.
Recursos Humanos	El proyecto debe contar con un equipo de desarrollo conformado por expertos en machine learning, y especialistas en IoT.
Gestión de riesgos	El proyecto debe incluir un plan para la identificación, evaluación y mitigación de riesgos, como fallos de hardware, problemas de seguridad, o retrasos en la entrega.
Cumplimiento de estándares	El proyecto debe cumplir con estándares técnicos y normativos relacionados con IoT, machine

	learning, seguridad de datos y automatización agrícola.
Control de calidad	El proyecto debe incluir actividades de pruebas y validación para garantizar que el sistema funcione según las especificaciones, incluyendo pruebas unitarias de los algoritmos de machine learning, y pruebas de integración con los sensores.
Capacitación	El equipo del criadero debe recibir capacitación adecuada para operar y mantener el sistema, incluyendo la interfaz de usuario y la interpretación de alertas.
Documentación	El proyecto debe entregar documentación técnica que describa la arquitectura del sistema, el código fuente, el manual de usuario, y guías de mantenimiento.
Plazos de entrega	El proyecto debe cumplir con las fechas establecidas para la entrega de cada fase, incluyendo el diseño, el desarrollo, las pruebas, y la puesta en producción del sistema.
Mantenimiento y soporte	El proyecto debe incluir un plan de mantenimiento post-implementación, con soporte técnico disponible para resolver problemas o realizar ajustes en el sistema.

Objetivos

Objetivo	Indicador de éxito
Alcance	

Objetivo	Indicador de éxito
Instalar y poner en marcha el sistema de gestión de criadero de cuyes	Sistema operativo y funcional instalado en el criadero de cuyes y en cumplimiento con lo requisitos del proyecto
Cronograma (Tiempo)	
Establecer un cronograma detallado sobre las actividades de visita, instalación y mantenimiento del proyecto.	Todas las actividades se realizaron de manera exitosa y dentro del plazo tiempo estimado
Costo	
Gestionar adecuadamente los recursos financieros del proyecto	El costo real del proyecto no supere el presupuesto asignado previamente.
Calidad	
Realizar una correcta instalación de los sensores para el proyecto y de igual manera garantizar su correcto funcionamiento	Los sensores tienen un correcto funcionamiento, sin presentar algún tipo de falla. Los materiales empleados son de calidad y de larga durabilidad. El personal por parte de la empresa que se encargará del uso del sistema debe estar satisfecho con la operación y funcionalidad.

Premisas y Restricciones

Acceso a infraestructura de red: Se asume que el criadero cuenta con acceso estable a internet y electricidad, ya que el sistema IoT requiere conectividad continua para monitoreo remoto.

Disponibilidad del personal técnico: Se presupone que el equipo técnico estará disponible para la instalación, configuración y pruebas del sistema durante todo el proyecto.

Capacitación exitosa del personal: Se espera que el personal del criadero que utilizará el sistema recibirá capacitación y estará disponible para operarlo adecuadamente.

Riesgos iniciales de alto nivel

Riesgo	Impacto	Descripción
Fallas en la conectividad a Internet	Alto	Los tiempos de entrega de los sensores y equipos podrían ser mayores a lo previsto, afectando el cronograma del proyecto.
Incompatibilidad de equipos y sensores	Alto	Existe el riesgo de que los sensores o componentes adquiridos no sean completamente compatibles con la plataforma IoT o con otros dispositivos en el sistema.
Sobrecostos del proyecto	Alto	El proyecto podría superar el presupuesto asignado debido a costos imprevistos en la adquisición de equipos o mano de obra.
Fallas en el sistema automatizado	Alto	El sistema loT podría fallar debido a problemas técnicos, lo que afectaría el monitoreo y la operación automática del criadero
Falta de capacitación del personal	Alto	Si el personal encargado de operar el sistema no recibe la capacitación adecuada, podrían surgir problemas en la operación diaria o en la respuesta a alertas del sistema.

La Oficina de Proyectos de Informática (http://www.pmoinformatica.com)

Cronograma de hitos principales

Hito	Fecha tope
Documentación inicial	1 semana
	después de la
	aprobación del
	proyecto
Organización del Proyecto	2 semanas
	después de la
	entrega del plan
	del proyecto
Especificaciones de Hardware	3 semanas
	después de
Desarrollo del Software	4 semanas
	después de la
	instalación de la
	infraestructura
Creación de la interfaz móvil	5 semanas
	después de la
	instalación de los
	sensores
Integración y Validación Final	6 semanas
	después de la
	configuración y
	puesta en marcha
Implementación y Lanzamiento	7 semanas
	después de la
	validación del
	sistema
Documentación Completa	8 semanas
	después de la
	validación del
	sistema
Finalización del Proyecto	9 semanas
	después de la
	capacitación del
	equipo de trabajo

www.pmoinformatica.com

Presupuesto estimado

	Costos de actividades del proyecto						
N°	ID	Descripción	Duración (Días)	Comienzo	Fin	Costo	
1		Documentación inicial	12	05/09	17/09	S/.0	
1.1	1	Documentación de requisitos empresariales	5	05/09	10/09	S/.0	
1	1.1.1	Realizar entrevistas con el equipo del criadero	2	05/09	13/09	S/.0	
2	1.1.2	Registrar los requisitos del sistema sensores	3	07/09	10/09	S/.0	
1.2	2	Acta de constitución	7	10/09	17/09	S/.0	
3	1.2.1	Llevar a cabo un análisis exhaustivo de los requisitos.	3	10/09	13/09	S/.0	
4	1.2.2	Definir los objetivos del proyecto.	1	13/09	14/09	S/.0	
5	1.2.3	Redactar un documento que describa las características generales del proyecto.	3	14/09	17/09	S/.0	
2		Organización del Proyecto	15	17/09	2/10	S/.0	
2.	ſ	Plan de gestión del proyecto	15	17/09	2/10	S/.0	
6	2.1.1	Delimitar el alcance del proyecto	4	17/09	21/09	S/.0	
7	2.1.2	Establecer la planificación temporal del proyecto	5	21/09	26/09	S/.0	
8	2.1.3	Distribuir las responsabilidades	1	26/09	27/09	S/.0	

La Oficina de Proyectos de Informática (http://www.pmoinformatica.com)

9	2.1.4	Calcular los costos y el presupuesto	5	27/09	2/10	S/.0
3		Especificaciones de Hardware	15	2/10	17/10	S/.707
3.1	1	Especificación de necesidades de hardware	2	2/10	4/10	S/.0
10	3.1.1	Reconocer los sensores y actuadores requeridos	1	2/10	3/10	S/.0
11	3.1.2	Definir las necesidades eléctricas y de conectividad.	1	3/10	4/10	S/.0
3.2	2	Planificación del hardware	2	4/10	6/10	S/.0
12	3.2.1	Crear el diagrama de conexiones y circuitos	1	4/10	5/10	S/.0
13	3.2.2	Elegir los componentes adecuados	1	5/10	6/10	S/.0
3.3	3	Compra de componentes.	3	6/10	9/10	S/.557.00
14	3.3.1	Adquirir los sensores, placa y camara	2	6/10	8/10	S/.537.00
15	3.3.2	Coordinar la logística de entrega	1	8/10	9/10	S/.20
3.4	4	Montaje de componentes	5	9/10	14/10	S/.0
16	3.4.1	Armar y conectar los sensores, camara y placa	3	9/10	12/10	S/.0
17	3.4.2	Ejecutar las conexiones eléctricas	2	12/10	14/10	S/.0
3.5	5	Verificación del hardware	3	14/10	17/10	S/.150

18	3.5.1	Revisar el correcto funcionamiento de cada componente	1	14/10	15/10	S/.50
19	3.5.2	Resolver inconvenientes de componentes o conexiones	2	15/10	17/10	S/.100
						S/. 707

Duración	42	5/09	17/10
----------	----	------	-------

	Costos y duración de los Sprint					
SPF		ASE / ENTREGABLE / ACTIVIDAD	Duración	Inicio	Fin	
	4	Desarrollo del Software				S/.0
	4.1	Documentar Requisitos				S/.0
	4.1.1	Definir los requisitos				S/.0
	4.2	Desarrollo de software				S/.0
	4.2.1	Programar el software para la adquisición, control y comunicación con la BD				S/.0
	4.3	Pruebas de software				S/.0
	4.3.1	Realizar pruebas unitarias para verificar que funcione correctamente.				S/.0
	4.3.2	Depurar y solucionar errores.				S/.0
SPRINT 1	4.4	Base de datos	21	17/10	7/11	S/.142.00

<u> </u>		I	I	T
4.4.1	Selección de la Base de Datos No Relacional			S/.142.00
4.4.2	Diseño de la Base de Datos No Relacional			S/.0
4.4.3	Implementación de la Base de Datos No Relacional			S/.0
4.4.4	Pruebas y Validación			S/.0
4.4.5	Realizar pruebas de inserción, actualización y consulta de datos.			S/.0
4.4.6	Asegurar la integridad de la base de datos.			S/.0
4.6	Servidor para la web			S/. 3.37
4.6.1	Selección y Adquisición del Servidor			S/. 3.37
4.6.2.	Configuración Inicial del Servidor			S/.0
4.6.3	Configuración del Entorno de Aplicación			S/.0
4.6.4	Pruebas de Funcionalidad			S/.0
4.7	Servidor para modelo de Machine Learning			S/. 261
4.7.1	Selección y Adquisición del Servidor			S/. 261
4.7.2	Configuración Inicial del Servidor			S/.0
4.7.3	Despliegue del Modelo de Machine Learning			S/.0
4.7.4	Pruebas y Validación			S/.0

	4.8	Servidor para Edge Computing				S/.0
	4.8.1	Selección y Adquisición del Servidor Edge				S/.0
	4.8.2	Configuración Inicial del Servidor Edge				S/.0
	4.8.3	Despliegue de Aplicaciones en el Borde				S/.0
	4.8.4	Pruebas y Validación				S/.0
	5	Creación de la interfaz móvil	21	7/11	28/11	S/.0
	5.1	Diseño de la Aplicación Móvil				S/.0
	5.1.1	Diseñar la interfaz de la aplicación móvil				S/.0
	5.1.2	Crear prototipos y diseños de pantalla para móvil				S/.0
	5.2	Desarrollo de la interfaz de usuario móvil				S/.0
SPRINT	5.2.1	Codificar la interfaz de la aplicación móvil				S/.0
2	5.2.2	Implementar la lógica de interacción en la aplicación móvil				S/.0
	5.3	Pruebas de la interfaz de usuario móvil				S/.0
	5.3.1	Realizar pruebas de usabilidad en dispositivos móviles				S/.0
	6	Integración y Validación Final				S/.0

	6.1	Integración de hardware y software				S/.0
	6.1.1	Conectar el sistema de sensores con la aplicación móvil				S/.0
	6.1.2	Garantizar una comunicación eficiente entre hardware y software				S/.0
	6.2	Pruebas finales del sistema				S/.0
	6.2.1	Realizar pruebas completas de extremo a extremo del sistema				S/.0
	6.2.2	Comprobar el adecuado rendimiento de los elementos de forma conjunta				S/.0
	7	Implementación y Lanzamiento	15	28/11	13/12	S/.0
	7.1	Implementación del sistema de monitoreo				S/.0
	7.1.1	Instalación física del sistema de monitoreo				S/.0
	7.1.2	Conectar los cables y verificar la alimentación de energía				S/.0
	7.2	Activación del sistema				S/.0
	7.2.1	Ajustar los parámetros de operación				S/.0
SPRINT 3	7.2.2	Ejecución de pruebas en campo y realizar los ajustes finales				S/.0
	8	Documentación Completa				S/.0

8.1	Documentación técnica
8.1.1	Crear un documento con las especificaciones técnicas
8.2	Guía del usuario
8.2.1	Redactar una guía para el usuario
9	Finalización del Proyecto
9.1	Evaluación y documentación completa proyecto en su totalidad
9.1.1	Revisar el proyecto en su totalidad
9.1.2	Entregar toda la información y materiales correspondientes al proyecto

Planificación de los sprints	57	05/09	13/12
------------------------------	----	-------	-------

Costo total estimado	S/. 1113.7
----------------------	------------

Lista de Interesados (stakeholders)

Nombre	Cargo	Interés
María Justina	Gerente	Principal beneficiario, responsable de la
Melo Evangelista		toma de decisiones sobre la inversión y
		operación del sistema.
Andrés Armando	Cuidador	Operará y mantendrá el sistema en el
Aquino Meló	encargado del	día a día, monitoreando las condiciones
	criadero	de los cuyes.
Adrian Eduardo	Encargado de	El sistema puede mejorar la
Arenas Quispe	ventas	productividad, reducir costos, aumentar
		la calidad del producto, y proporcionar
		ventajas competitivas

Asignación del Gerente de Proyecto y nivel de autoridad

Gerente de Proyecto

Nombre	Cargo
Wilber Jesús Meléndez Francisco	Gerente de Proyecto

Aprobaciones

	Patrocinador	Fecha	Firma
Gerente de		16/09/2024	
empresa	María Justina Melo Evangelista		
		16/09/2024	
Encargado del área	Andrés Armando Aquino Meló		
Encargado del proyecto	Wilber Jesús Meléndez Francisco	16/09/2024	