

Establishing Common Ground for Learning Robots

Preeti Ramaraj and John E. Laird University of Michigan, Ann Arbor

RSS 2018 Workshop on Models and Representations for Human-Robot Communication

Common Ground with Learning Robots

Common Ground with Learning Robots

Establishing Common Ground

Characterize knowledge crucial for task learning

Rosie – Interactive Task Learning Robot

Rosie

- -Learns from natural interactions with humans
- -Knows 50+ games and puzzles, and mobile delivery tasks

Kirk, J., Mininger, A., Laird, J. 2016: Learning task goals interactively with visual demonstrations. Biologically Inspired Cognitive Architectures. New York, New York, 2016.

Mininger, A., & Laird, J. 2016: Interactively Learning Strategies for Handling References to Unseen or Unknown Objects. In Proceedings of the Fourth Annual Conference on Advances in Cognitive Systems.

Characterization of Common Ground

- Perception
- Task knowledge
- Instantiated task components
 - Successes

Characterization of Common Ground

- Perception
- Task knowledge
- Instantiated task components
 - Successes and failures

Perception

- Rosie builds internal model of the environment
- Comprises
 - Objects, features, relations
 - Symbolic and metric information
 - Learned task concepts

Ensures common understanding of environment

Larger-than(Green block, blue block)

Perception

Mentor: What do you see?

Rosie: "A white water, a cupboard, a red soda and an orange juice are in the kitchen location."

Task Knowledge

Rosie learns goals, actions, failure conditions, and concepts
What does Rosie know about the task?

Task Knowledge

Mentor: "What is the action of Tower-of-Hanoi?"

Rosie: "If a clear object is larger than a clear block, then move the clear block onto the clear object"

Instantiated Task Components

Rosie applies task knowledge to its perception

What can Rosie do or detect right now?

Instantiating actions

Mentor: Which actions do you see?

Rosie: I see the following actions: pick-up the blue box,

pick-up the trash and pick-up the red box

Mentor: Pick up the red box.

Rosie picks up red box

Mentor: Which actions do you see?

Rosie: I see the following actions: give the red box and put-

down the red box

Mentor: Can you pick up the blue box?

Rosie: No.

Instantiated Task Components - Failures

Fails to detect specific task components

Why did Rosie fail?

Failed Instantiation: Tower of Hanoi

Mentor: Do you see the goal of Tower-of-Hanoi?

Rosie: No. A small block is not on a medium block.

Demo

Conclusion

- Characterized knowledge important for common ground with ITL robot
- Implemented task-general question answering mechanisms
- Explore multi-modal transparency mechanisms

References

- 1. Chao, C., Cakmak, M., & Thomaz, A. L. (2010, March). Transparent active learning for robots. In Human-Robot Interaction (HRI), 2010 5th ACM/IEEE International Conference on (pp. 317-324). IEEE.
- 2. Rosenthal, S., Veloso, M., & Dey, A. K. (2012). Acquiring Accurate Human Responses to Robots' Questions. International Journal of Social Robotics, 4(2), 117–129.
- 3. Thomaz, A. L., & Breazeal, C. (2008). Teachable robots: Understanding human teaching behavior to build more effective robot learners. Artificial Intelligence, 172(6–7), 716–737.
- 4. Laird, J. E., Gluck, K., Anderson, J., Forbus, K., Jenkins, O., Lebiere, C., Salvucci, D., Scheutz, M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S., Kirk, J. R. (2017). Interactive Task Learning, *IEEE Intelligent Systems*,
- 5. Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. Perspectives on socially shared cognition, 13(1991), 127-149.
- 6. Clark, Herbert H., and Deanna Wilkes-Gibbs. "Referring as a collaborative process." *Cognition* 22.1 (1986): 1-39.
- 7. Chai, J. Y.; Fang, R.; Liu, C.; and She, L. 2016. Collaborative language grounding toward situated human-robot dialogue. *Al Magazine* 37(4).
- 8. Kirk, J. R., and Laird, J. E. 2016. Learning general and efficient representations of novel games through interactive instruction. *Advances in Cognitive Systems* 4.
- 9. Mininger, A., and Laird, J. 2016. Interactively learning strategies for handling references to unseen or unknown objects. *Adv. Cogn. Syst* 5.
- 10. Wu, E.; Gopalan, N.; MacGlashan, J.; Tellex, S.; and Wong, L. L. 2016. Social feedback for robotic collaboration.