Welcome to your Linear Algebra 1 exam!

Welcome to your Linear Algebra 1 exam!

Don't forget to motivate your answers.

Welcome to your Linear Algebra 1 exam!

Don't forget to motivate your answers. The use of the (Magma) calculator is allowed.

 $A, B \in \mathsf{Mat}_{n \times n}$ are **conjugate** $(A \sim B)$ if AP = PB for some $P \in \mathsf{GL}_n$. **Question 1**:

 $A, B \in \mathsf{Mat}_{n \times n}$ are **conjugate** $(A \sim B)$ if AP = PB for some $P \in \mathsf{GL}_n$.

Question 1: Are the following two matrices conjugate

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}?$$

 $A, B \in Mat_{n \times n}$ are **conjugate** $(A \sim B)$ if AP = PB for some $P \in GL_n$.

Question 1: Are the following two matrices conjugate

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}?$$

Answer(s):

 $A, B \in Mat_{n \times n}$ are **conjugate** $(A \sim B)$ if AP = PB for some $P \in GL_n$.

Question 1: Are the following two matrices conjugate

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}?$$

Answer(s):

Over \mathbb{Q} : yes! Same minimal and characteristic polynomial $x^2 + 5$.

 $A, B \in Mat_{n \times n}$ are **conjugate** $(A \sim B)$ if AP = PB for some $P \in GL_n$.

Question 1: Are the following two matrices conjugate

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}?$$

Answer(s):

Over \mathbb{Q} : yes! Same minimal and characteristic polynomial $x^2 + 5$.

But...

 $A, B \in Mat_{n \times n}$ are **conjugate** $(A \sim B)$ if AP = PB for some $P \in GL_n$.

Question 1: Are the following two matrices conjugate

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}?$$

Answer(s):

Over \mathbb{Q} : yes! Same minimal and characteristic polynomial $x^2 + 5$.

But...

Over \mathbb{Z} : no! Every such a P must have even determinant.

Question 2.1 Find the representatives of the \mathbb{Z} -conjugacy classes of matrices with min. polynomial m and characteristic polynomial h.

Question 2.1 Find the representatives of the \mathbb{Z} -conjugacy classes of matrices with min. polynomial m and characteristic polynomial h.

Answer:

Theorem ((generalized) Latimer-MacDuffee)

 $\{ \text{matrices with min. poly. m and char. poly. h} \}_{\sim_{\mathbb{Z}}}$

Question 2.1 Find the representatives of the \mathbb{Z} -conjugacy classes of matrices with min. polynomial m and characteristic polynomial h.

Answer:

Theorem ((generalized) Latimer-MacDuffee)

{matrices with min. poly. m and char. poly. h} $_{\sim \mathbb{Z}}$

Question 2.1 Find the representatives of the \mathbb{Z} -conjugacy classes of matrices with min. polynomial m and characteristic polynomial h.

Answer:

Question 2.2 How do you **compute** these $\mathbb{Z}[\pi]$ -modules?

Question 2.1 Find the representatives of the \mathbb{Z} -conjugacy classes of matrices with min. polynomial m and characteristic polynomial h.

Answer:

Question 2.2 How do you compute these $\mathbb{Z}[\pi]$ -modules? Answer:check the arXiv in the next couple of days....

How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Forbenius $h=m_1^{s_1}\cdots m_n^{s_n}$ (up to \mathbb{F}_q -isomorphism)?

How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Forbenius $h=m_1^{s_1}\cdots m_n^{s_n}$ (up to \mathbb{F}_q -isomorphism)? **Answer:** Do the same thing with $\mathbb{Z}[\pi,q/\pi]$ instead of $\mathbb{Z}[\pi]$:

How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Forbenius $h=m_1^{\mathfrak{s}_1}\cdots m_n^{\mathfrak{s}_n}$ (up to \mathbb{F}_q -isomorphism)? **Answer:** Do the same thing with $\mathbb{Z}[\pi,q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Thank you Deligne)

{abelian varieties with char. poly. h} $_{\simeq_{\mathbb{F}_a}}$

How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Forbenius $h=m_1^{\mathfrak{s}_1}\cdots m_n^{\mathfrak{s}_n}$ (up to \mathbb{F}_q -isomorphism)? **Answer:** Do the same thing with $\mathbb{Z}[\pi,q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Thank you Deligne)

Congrats: you passed the exam!