1 Manifolds

1.1 Manifolds on Euclidean Spaces

1.1.1 Taylor's theorem with remainder [Theorem 1.1.1]

A smooth function f on an open ball $U \in \mathcal{O}_n$ can be written as

$$f(x) = f(p) + \sum_{i} (x^{i} - p^{i})g_{i}(x)$$

where $p \in U$ and $g_i \in C^{\infty}(U)$ with $g_i(p) = (\partial f/\partial x^i)(p)$.

Adapting this to g_i repeatedly gives the Taylor's expansion of f.

1.1.2 Tangent vector as an arrow from a point [Definition 1.1.2]

The tangent space $T_p(\mathbb{R}^n)$ at $p \in \mathbb{R}^n$ is the set of arrows from p.

1.1.3 Directional derivative [Definition 1.1.3]

The directional derivative of a smooth function f in the direction $v \in T_p(\mathbb{R}^n)$ at $p \in \mathbb{R}^n$ is

$$D_{v}f = \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t} = \frac{d}{dt}\Big|_{t=0} f(c(t))$$

with $c^i(t) = p^i + tv^i$.

By the chain rule,

$$D_{\nu}f = \sum \frac{dc^{i}}{dt}(0)\frac{\partial f}{\partial x^{i}}(p) = \sum \nu^{i}\frac{\partial f}{\partial x^{i}}(p).$$

1.1.4 Derivation at a point [Definition & Proposition 1.1.4]

A linear map $D: C_p^{\infty} \to \mathbb{R}$ satisfying the Leibniz rule (i.e., D(fg) = (Df)g(p) + f(p)Dg for any $f, g \in C_p^{\infty}$) is called a *derivation at p* or a *point-derivation* of C_p^{∞} .

The set of all derivations at $p \mathcal{D}_p(\mathbb{R}^n)$ is a real vector space, and a map $\phi \colon T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ assigning D_v to each v is a linear map.

1.1.5 Point-derivation of a constant is zero [Lemma 1.1.5]

If D is a point-derivation of C_p^{∞} , then D(c) = 0 for any constant function c.

1.1.6 Tangent space is isomorphic to the set of point-derivations [Theorem 1.1.6]

The linear map $\phi \to \mathcal{T}_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ in 1.1.4 is an isomorphism of vector spaces.

1.1.7 Tangent vector as a derivation [Definition 1.1.7]

By 1.1.6, $v \in T_p(\mathbb{R}^n)$ is identified as

$$v = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_p \in \mathcal{D}_p(\mathbb{R}^n).$$

1.1.8 Vector fields on an open set [Definition 1.1.8]

A vector field on $U \in \mathcal{O}_n$ is a map $X: U \to T_p(\mathbb{R}^n)$. $X = \sum a^i \partial/\partial x^i$ means

$$X(p) = X_p = \sum a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p \quad \text{with } a^i(p) \in \mathbb{R}$$

X is said to be C^{∞} if all a^i s are C^{∞} on U. The set of all smooth vector fields on U is denoted by $\mathfrak{X}(U)$.

1.1.9 Multiplication of a smooth vector field and function [Definition & Proposition ??]

For $X \in \mathfrak{X}(U)$ and $f \in C^{\infty}(U)$, define $fX \in \mathfrak{X}(U)$ and $Xf \in C^{\infty}(U)$ as follows:

$$(fX)_{p} = f(p)X_{p} = \sum (f(p)a^{i}(p)) \left. \frac{\partial}{\partial x^{i}} \right|_{p},$$

$$(Xf)(p) = X_{p}f = \sum a^{i}(p) \frac{\partial f}{\partial x^{i}}(p).$$

1.1.10 Leibniz rule for a vector field [Proposition 1.1.10]

For any $X \in \mathfrak{X}(U)$, $f, g \in C^{\infty}(U)$,

$$X(fg) = (Xf)g + fXg.$$

1.1.11 Derivations one-to-one-correspond to smooth vector fields [Proposition 1.1.11]

 $\varphi \colon \mathfrak{X}(U) \ni X \mapsto (f \mapsto Xf) \in \operatorname{Der}(C^{\infty}(U))$ is an linear isomorphism.

1.1.12 k-tensor on a vector space [Definition 1.1.12]

A k-linear function on a vector space $V : V^k \to \mathbb{R}$ is called a k-tensor on V. The vector space of all k-tensors on V is denoted by $L_k(V)$. k is called the degree of f.

1.1.13 Permutation action on k-tensors [Definition 1.1.13]

For $f \in L_k(V)$ on a vector space V and $\sigma \in \mathfrak{S}_n$, an action of σ on f is defined by

$$(\sigma f)(v_1,\ldots,v_k)=f(v_{\sigma(1)},\ldots,v_{\sigma(k)}).$$

1.1.14 Symmetric and alternating k-tensor [Definition 1.1.14]

A k-tensor $f: V^k \to \mathbb{R}$ is symmetric if

$$\forall \sigma \in \mathfrak{S}_k, \ \sigma f = f,$$

and f is alternating if

$$\forall \sigma \in \mathbf{1}S_k, \ \sigma f = (\operatorname{sgn} \sigma)f.$$

1.1.15 The set of all alternating k-tensors [Definition 1.1.15]

An alternating k-tensor on a vector space V is also called a k-covector or a multicovector of degree k on V. The set of all k-covectors on V is denoted by $A_k(v)$ for k > 0; for k = 0, $A_0(V) = \mathbb{R}$.

1.1.16 Symmetrizing and alternating operators on k-covectors [Definition & Proposition 1.1.16]

For a $f \in A_k(V)$ on a vector space V,

$$Sf = \sum_{\sigma \in \mathfrak{S}_n} \sigma f$$

is symmetric, and

$$Af = \sum_{\sigma \in \mathfrak{S}_n} (\operatorname{sgn} \sigma) \sigma f$$

is alternating.

1.1.17 Tensor product of two multilinear functions [Definition 1.1.17]

For $f \in L_k(V)$, $g \in L_l(V)$ on a vector space V, the tensor product $f \otimes g \in L_{k+l}(V)$ is defined by

$$(f \otimes q)(v_1, \ldots, v_{k+1}) = f(v_1, \ldots, v_k)q(v_{k+1}, \ldots, v_{k+1}).$$

1.1.18 Bilear map as a tensor product [Example 1.1.18]

Let e_1, \ldots, e_n be a basis for a vector space $V, \alpha^1, \ldots, \alpha^n$ the dual basis in V^* , and $\langle , \rangle : V \times V \to \mathbb{R}$ a bilinear map on V. Then,

$$\langle \; , \; \rangle = \sum g_{ij} \alpha^i \otimes \alpha^j,$$

where $g_{ij} = \langle e_i, e_j \rangle$.

1.1.19 Wedge product of two multilinear functions [Definition 1.1.19]

For $f \in A_k(V)$, $g \in A_l(V)$ on a vector space V, their wedge product or exterior product is

$$f \wedge g = \frac{1}{k! \, l!} A(f \otimes g).$$

 $f \wedge g$ is alternating.

Explicitly,

$$(f \wedge g)(v_1, \dots, v_{k+l}) = \frac{1}{k! \ l!} \sum_{\sigma \in \mathfrak{S}_{k+l}} (\operatorname{sgn} \sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

$$= \sum_{(k,l)-\operatorname{shuffle} \ \sigma} (\operatorname{sgn} \sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)}),$$

where a (k, l)-shuffle means $\sigma(1) < \cdots < \sigma(k)$ and $\sigma(k+1) < \cdots < \sigma(k+l)$.

1.1.20 Wedge product is anticommutative [Proposition 1.1.20]

For $f \in A_k(V)$, $g \in A_l(V)$ on a vector space V,

$$f \wedge q = (-1)^{kl} q \wedge f$$
.

If the degree of f is odd, then $f \wedge f = 0$.

1.1.21 Properties of nesting alternating operators [Lemma 1.1.21]

For a k-tensor f and l-tensor g on a vector space V,

- i) $A(A(f) \otimes g) = k! A(f \otimes g)$,
- ii) $A(f \otimes A(q)) = l! A(f \otimes q)$.

1.1.22 Associativity of the wedge product [Proposition 1.1.22]

For $f \in A_k(V)$, $q \in A_l(V)$, $h \in A_m(V)$ on a real vector space V,

$$(f \wedge g) \wedge h = f \wedge (g \wedge h).$$

Similarly, for $f_i \in A_{d_i}(V)$ (i = 1, ..., r),

$$f_1 \wedge \cdots \wedge f_r = \frac{1}{(d_1)! \cdots (d_r)!} A(f_1 \otimes \cdots \otimes f_r).$$

1.1.23 Wedge product of covectors is the determinant [Proposition 1.1.23]

For covectors $\alpha^1, \ldots, \alpha^k$ on a vector space V,

$$(\alpha^1 \wedge \cdots \alpha^k)(v_1, \ldots, v_k) = \det(\alpha^i(v_i))_{ij}.$$

1.1.24 Graded algebra over a field [Definition 1.1.24]

An algebra \mathbb{A} over a field \mathbb{K} is said to be *graded* if $\mathbb{A} = \bigoplus_{k=0}^{\infty} A^k$ is a direct sum of vector spaces over \mathbb{K} such that the multiplication sends $A^k \times A^l$ to A^{k+l} . $A = \bigoplus_{k=0}^{\infty} A^k$ means each nonzero $a \in \mathbb{A}$ is uniquely a finite sum $a = a_{i_1} + \cdots + a_{i_m}$ where nonzero $a_{i_j} \in A^{i_j}$.

A is anticommutative or graded commutative if $\forall a \in A^k$, $b \in A^l$, $ab = (-1)^{kl}ba$.

A homomorphism of graded algebras is an algebra homomorphism that preserves the degree.

1.1.25 Grassmann algebra of multicovectors on a vector space [Definition & Proposition 1.1.25]

For a vector space V of degree $n < \infty$, the exterior algebra or the Grassmann algebra of multicovectors on V is the anticommutative graded algebra

$$A_*(V) = \bigoplus_{k=0}^{\infty} A_k(V) = \bigoplus_{k=0}^{n} A_k(V)$$

with the wedge product of multicovectors as multiplication.

1.1.26 Wedge product of the dual basis applying to a basis [Lemma 1.1.26]

Let e_1, \ldots, e_n be a basis for a vector space V and $\alpha^1, \ldots, \alpha^n$ the dual basis in V^* . For $I = (i_1, \ldots, i_k), J = (j_1, \ldots, j_k)$ with $1 \le i_1 < \cdots < i_k \le n$, $1 \le j_1 < \cdots < j_k \le n$,

$$\alpha'(e_I) = \delta'_I$$
.

1.1.27 Wedge products of the dual basis form a basis for multicovectors [Proposition 1.1.27]

Let V be a vector space and $\alpha^1, \ldots, \alpha^n$ the dual basis in V^* . Then, $\alpha^l, l = (i_1 < \cdots < i_k)$ form a basis for $A_k(V)$.

Therefore,

$$\dim A_k(V) = \binom{n}{k},$$

which implies

if
$$k > \dim V$$
, then $A_k(V) = 0$.

1.1.28 Cotangent space to an Euclidean space at a point [Definition 1.1.28]

The cotangent space to \mathbb{R}^n at p is $T_p^*(\mathbb{R}^n)=(T_p(\mathbb{R}^n))^*.$

1.1.29 Differential 1-form on an open subset of an Euclidean space [Definition 1.1.29]

A covector field or a differential 1-form on $U \in \mathcal{O}_n$ is $\omega \colon U \to \bigcup_{p \in U} T_p^*(\mathbb{R}^n)$ that maps $U \ni p \mapsto \omega_p \in T_p^*(\mathbb{R}^n)$.

1.1.30 Differential of a smooth function [Definition 1.1.30]

For $f \in C^{\infty}(U)$ on $U \in \mathcal{O}_n$, the differential df of f is a differential 1-form defined by

$$(df)_p(X_p) = X_p f.$$

In the expression

$$T_p(\mathbb{R}^n) \times C_p^{\infty}(\mathbb{R}^n) \ni (X_p, f) \mapsto \langle X_p, f \rangle = X_p f \in \mathbb{R},$$

a tangent vector is considered as $\langle X_p,\cdot \rangle$; a differential at p is considered as $df|_p=(df)_p=\langle \cdot,f \rangle$.

2 P-adic Numbers

2.1 Fundations

2.1.1 Absolute value on a field [Definition 2.1.1]

An absolute value on a field \mathbb{K} is a function $|\cdot|: \mathbb{K} \to \mathbb{R}_{\geq 0}$ that satisfies:

- i) |x| = 0 iff x = 0
- ii) $\forall x, y \in \mathbb{K}$, |xy| = |x||y|
- iii) $\forall x, y \in \mathbb{K}, |x + y| \le |x| + |y|.$

An absolute value that satisfies the condition

iv)
$$\forall x, y \in \mathbb{K}, |x + y| \le \max\{|x|, |y|\}$$

is said to be non-archimedean; otherwise, it is said to be archimedean.

2.1.2 Trivial absolute value [Definition 2.1.2]

The trivial absolute value on a field $\mathbb K$ is a absolute value on $\mathbb K$ such that

$$|x| = \begin{cases} 1 & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}.$$

An absolute value on a finite field must be trivial.

2.1.3 Valuation on a field [Definition 2.1.3]

A function $v \colon \mathbb{A}^{\times} \to \mathbb{R}$ with an integral domain \mathbb{A} is called a *valuation* on \mathbb{A} if it satisfies the following conditions:

- i) $\forall x, y \in \mathbb{A}^{\times}$, v(xy) = v(x) + v(y)
- ii) $\forall x, y \in \mathbb{A}^{\times}$, $v(x+y) \ge \min\{v(x), v(y)\}$

2.1.4 Value group of a valuation [Definition & Proposition 2.1.4]

The image of a valuation v on a field is an additive subgroup of \mathbb{R} . im v is called the *value group* of v.

2.1.5 Correspondence between valuations and non-archimedean absolute values [Proposition 2.1.5]

Let \mathbb{A} be an integral domain and $\mathbb{K} = \operatorname{Frac} \mathbb{A}$. Let $v \colon \mathbb{A}^{\times} \to \mathbb{R}$ be a valuation on \mathbb{A} and extend v to \mathbb{K} by setting v(a/b) = v(a) - v(b), then the function $| |_v \colon \mathbb{K} \to \mathbb{R}_{\geq 0}$ defined by

$$|x|_v = \begin{cases} e^{-v(x)} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$

is a non-archimedean absolute value on \mathbb{K} . Conversely, $-\log \mid \mid$ is a valuation on \mathbb{K} for a non-archimedean absolute value $\mid \mid$ on \mathbb{K} .

2.1.6 p-adic valuation [Definition 2.1.6]

The *p-adic valuation* on \mathbb{Q} with a prime p is a valuation $v_p : \mathbb{Q}^\times \to \mathbb{R}$ defined as follows: for each $n \in \mathbb{Z}^\times$, let $v_p(n)$ be the greatest integer such that $p^{v_p(n)} \mid n$, and for each $x = a/b \in \mathbb{Q}^\times$, $v_p(x) = v_p(a) - v_p(b)$. We often set $v_p(0) = \infty$.

2.1.7 p-adic absolute value [Definition 2.1.7]

The *p-adic absolute value* $|\ |_p \colon \mathbb{Q} \to \mathbb{R}_{\geq 0}$ with a prime p is defined as

$$|x|_p = p^{-v_p(x)}, \quad |0| = 0.$$

The usual absolute value is looked as $|\ |=|\ |_{\infty}$.

3 Lie Algebra

3.1 Fundations

3.1.1 Lie algebra [Definition 3.1.1]

A vector space \mathfrak{g} over a field \mathbb{K} with the Lie bracket satisfying the conditions

- i) lie bracket is bilinear
- ii) $\forall x \in \mathfrak{g}, [x, x] = 0$
- iii) $\forall x, y, z \in \mathfrak{g}$, [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

is called a Lie~algebra over $\mathbb{K}.$

3.1.2 General linear Lie algebra [Definition 3.1.2]

 $\mathfrak{gl}_n(\mathbb{R})$ is the Lie algebra $M_n(\mathbb{R})$ with the Lie bracket [x,y]=xy-yx.

3.1.3 Derivation algebra [Definition 3.1.3]

A linear endomorphism D of an algebra $\mathbb A$ over $\mathbb R$ satisfying D(xy) = D(x)y + xD(y) is called a *derivation* of $\mathbb A$. The set of all derivations $\mathsf{Der}\,\mathbb A$ with the addition, scaler multiplication, and lie bracket defined as follows:

- i) (D + D')(x) = D(x) + D'(x)
- ii) $(\alpha D)(x) = \alpha D(x)$
- iii) [D, D'](x) = D(D'(x)) D'(D(x))

is a Lie algebra called the *derivation algebra* of \mathbb{A} .

3.1.4 Lie subalgebra [Definition 3.1.4]

A linear subspace $\mathfrak{h} \subset \mathfrak{g}$ of a Lie algebra \mathfrak{g} is a Lie subalgebra if it satisfies that $\forall x, y \in \mathfrak{h}, [x, y] \in \mathfrak{h}$.

3.1.5 Special linear Lie algebra [Definition & Proposition 3.1.5]

$$\mathfrak{sl}_n(\mathbb{R})=\left\{x\in\mathfrak{gl}_n(\mathbb{R})\mid \mathrm{tr}\, x=0\right\} \text{ is a Lie subalgebra of }\mathfrak{gl}_n(\mathbb{R}).$$

3.1.6 Orthogonal Lie algebra [Definition & Proposition 3.1.6]

$$\mathfrak{o}(n) = \{ x \in \mathfrak{gl}_n(\mathbb{R}) \mid {}^t x = -x \}$$
 is a Lie subalgebra of $\mathfrak{sl}_n(\mathbb{R})$.

4 Categories

4.1.1 Fundations

4.1.2 Category [Definition 4.1.2]

A category consists of the followings:

- *Objects A, B, C,...*
- Arrows f, q, h, \ldots with the objects called the domain dom(f) and the codomain cod(f).
- Composites $g \circ f : A \to C$ for given arrows $f : A \to B$ and $g : B \to C$.
- Identity arrow 1_A of each object A.

satisfying the following laws:

- i) $\forall \text{arrows } f: A \to B, g: B \to C, h: C \to D, h \circ (g \circ f) = (h \circ g) \circ f$
- ii) $\forall \text{arrow } f: A \to B, \ f \circ 1_A = f = 1_B \circ f.$

4.1.3 Functor between categories [Definition 4.1.3]

A functor $F: \mathcal{A} \to \mathcal{B}$ between categories \mathcal{A} and \mathcal{B} is a mapping between objects and between arrows in the following ways:

- i) $F(f: A \rightarrow B) = F(f): F(A) \rightarrow F(B)$,
- ii) $F(1_A) = 1_{F(A)}$,
- iii) $F(q \circ f) = F(q) \circ F(f)$.

4.1.4 Isomorphism between categories [Definition 4.1.4]

In a category ζ , an arrow $f:A\to B$ is called an *isomorphism* if

$$\exists g = f^{-1} \colon B \to A, \ g \circ f = 1_A, \ f \circ g = 1_B.$$

If there is an isomorphism between objects A and B, A is said to be isomorphic to B, written $A \cong B$.

参考文献

- [1] Steve Awodey. Category Theory, Second Edition. Oxford University Press, 2010.
- [2]Fernando Q. Gouvêa. $p\text{-}adic\ Numbers$ An Introduction, Second Edition. Springer, 1997.
- [3] 佐武一郎. リー環の話. 日本評論社, 1987.
- [4] Loring W. Tu. An Introduction to Manifolds, Second Edition. Springer, 2011.