Task 1 Linear Regression(House pricing DataSet)

import pandas as pd
data=pd.read_csv('<u>/content/drive/MyDrive/ml</u> docs /kc_house_data_NaN.csv')
data.head()

_ _ *	Unname	ed: 0	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	•••	grade	sqft_abov
	0	0	7129300520	20141013T000000	221900.0	3.0	1.00	1180	5650	1.0	0		7	118
	1	1	6414100192	20141209T000000	538000.0	3.0	2.25	2570	7242	2.0	0		7	217
	2	2	5631500400	20150225T000000	180000.0	2.0	1.00	770	10000	1.0	0		6	77
	3	3	2487200875	20141209T000000	604000.0	4.0	3.00	1960	5000	1.0	0		7	105
	4	4	1954400510	20150218T000000	510000.0	3.0	2.00	1680	8080	1.0	0		8	168
	5 rows × 22	2 colu	umns											

(sampleNum,featureNum)=data.shape

print('Number of samples',sampleNum)
print('Number of features',featureNum-1)

Number of samples 21613 Number of features 21

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 22 columns):

υаτа	columns (total	22 columns):					
#	Column	Non-Null Count	Dtype				
0	Unnamed: 0	21613 non-null	int64				
1	id	21613 non-null	int64				
2	date	21613 non-null	object				
3	price	21613 non-null	float64				
4	bedrooms	21600 non-null	float64				
5	bathrooms	21603 non-null	float64				
6	sqft_living	21613 non-null	int64				
7	sqft_lot	21613 non-null	int64				
8	floors	21613 non-null	float64				
9	waterfront	21613 non-null	int64				
10	view	21613 non-null	int64				
11	condition	21613 non-null	int64				
12	grade	21613 non-null	int64				
13	sqft_above	21613 non-null	int64				
14	sqft_basement	21613 non-null	int64				
15	yr_built	21613 non-null	int64				
16	yr_renovated	21613 non-null	int64				
17	zipcode	21613 non-null	int64				
18	lat	21613 non-null	float64				
19	long	21613 non-null	float64				
20	sqft_living15	21613 non-null	int64				
21	sqft_lot15	21613 non-null	int64				
	, , , -	int64(15), object(1)					
memory usage: 3.6+ MB							

import missingno as msno
%matplotlib inline
msno.matrix(data)


```
data.isnull().sum()
→ Unnamed: 0
                        0
     id
                        0
     date
                        0
     price
                        0
                       13
     bedrooms
     bathrooms
                       10
     sqft_living
                        0
     \mathsf{sqft}\_\mathsf{lot}
                        0
     floors
                        0
     waterfront
                        0
     view
                        0
     {\tt condition}
                        0
     grade
                        0
     sqft_above
                        0
     {\sf sqft\_basement}
                        0
     yr_built
                        0
     yr_renovated zipcode
                        0
                        0
     lat
                        0
     long
                        0
     sqft_living15
                        0
     sqft_lot15
                        0
     dtype: int64
mode = dataset['bedrooms'].mode()
data['bedrooms'].fillna(mode[0], inplace =True)
mode1 = dataset['bathrooms'].mode()
data['bathrooms'].fillna(mode1[0], inplace =True)
data.isnull().sum()
→ Unnamed: 0
                       0
     id
                       0
     date
                       0
     price
                       0
     bedrooms
     bathrooms
                       0
     sqft_living
     sqft_lot
```

```
floors
            waterfront
                                                    0
            view
                                                    0
            condition
            grade
            sqft_above
                                                    0
             sqft_basement
                                                    0
            yr_built
                                                    0
            yr_renovated
                                                    0
            zipcode
                                                    0
            lat
                                                    0
            long
             sqft_living15
                                                    0
             sqft_lot15
            dtype: int64
import numpy as np
xdata=np.array(xdata).reshape((-1,1))
xdata.shape
print(xdata)
 → [[1955]
               [1951]
               [1933]
               [2009]
               [2004]
              [2008]]
ydata
                                  221900.0
  →
          0
                                  538000.0
                                  180000.0
                                  604000.0
                                  510000.0
                                  360000.0
             21608
             21609
                                  400000.0
                                  402101.0
            21610
                                  400000.0
             21611
                                  325000.0
             21612
             Name: price, Length: 21613, dtype: float64
from sklearn.model_selection import train_test_split
\verb|xtrain|, \verb|xtest|, \verb|ytrain|, \verb|ytest| = \verb|train|, \verb|test|, \verb|split|| | (\verb|xdata|, \verb|ydata|, test|, \verb|split|, \verb|split|, test|, \verb|split|, \verb|xtest|, \verb|ytrain|, \verb|xtest|, \verb|ytrain|, \verb|xtest|, \verb|split|, test|, \verb|split|, test|, \verb|split|, test|, tes
print("size of training samples",xtrain.shape)
print("size of test samples",xtest.shape)
print("size of training labels",ytrain.shape)
print("size of test labels",ytest.shape)
 ⇒ size of training samples (17290, 1)
             size of test samples (4323, 1)
             size of training labels (17290,)
             size of test labels (4323,)
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from numpy.ma.core import nonzero
linear=LinearRegression()
linear.fit(xtrain,ytrain)
print("intercept is",linear.intercept_,"coef is",linear.coef_)
 → intercept is -808214.8941724668 coef is [682.979958]
ypred=linear.predict(xtest)
print("predicted value",ypred)
 predicted value [557745.0218229 548183.30241093 561159.92161289 ... 546134.36253694
              542036.48278895 546817.342494941
rsquare=linear.score(xtest,ytest)
print("r square value", rsquare)
 r square value 0.001334799698434308
```

from sklearn.metrics import mean_squared_error
mse=mean_squared_error(ytest,ypred)
rmse=mean_squared_error(ytest,ypred,squared=False)
print("mse=",mse)
print("rmse",rmse)
print("r_Squared=",rsquare)

mse= 172370583344.17865 rmse 415175.36456800834 r_Squared= 0.001334799698434308