

Classification:

(511) International

Classification:

C09B61/00

6

(542) TITLE:

PROCESS FOR PREPARING FOOD DYE FROM

VEGETABLE RAW MATERIAL

(711) APPLICANT:

Vserossijskij nauchno-issledovateľskij institut

konservnoj i ovoshchesushil'noj

promyshlennosti

(721RU) INVENTOR:

Drozdova V.I.

(721RU) INVENTOR:

Patsjuk L.K.

(721RU) INVENTOR:

Krejndel' L.N.

(721RU) INVENTOR:

Kas'janov G.I.

(721RU) INVENTOR:

Borchenkova L.A.

(721RU) INVENTOR:

Kvasenkov O.I.

(721RU) INVENTOR:

Kitaeva S.A.

(731) Grantee:

Vserossijskij nauchno-issledovateľskij institut

konservnoj i ovoshchesushil'noj

promyshlennosti

Abstract

Патентные докумен**т**ы

ПОИСК

ВЫБОР БД

ИНСТРУКЦИЯ

CTATUCTUKA

ПОДДЕРЖКА ПОЧТА

выход

Реферат Описание Формула

РОССИЙСКИЕ ПАТЕНТЫ НА ИЗОБРЕТЕНИЯ ПОЛНЫЕ ТЕКСТЫ (1996-1997)

RUPAT2 DB

(110) Номер документа:

2057774

(130) Вид документа:

1996.04.10

(140) Дата публикации: (190) Страна публикации:

RU

C1

(210RU) Регистрационный

номер заявки:

93037202/13

(220) Дата подачи заявки:

1993.07.19

(460) Дата публ. формулы:

1996.04.10

(516) Номер редакции МПК: 6

(511) Основной индекс МПК: C09B61/00 (МПК)

HONCK

(542) НАЗВАНИЕ:

СПОСОБ ПОЛУЧЕНИЯ ПИЩЕВОГО

КРАСИТЕЛЯ ИЗ РАСТИТЕЛЬНОГО

СЫРЬЯ

(560) Аналоги изобретения:

Заявка РСТ N 89/06671, кл. С 09В

61/00, 1989.

(711) ИМЯ ЗАЯВИТЕЛЯ:

Всероссийский научно-

исследовательский институт консервной и овощесушильной

промышленности

(721RU) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Дроздова В.И.

(721RU) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Пацюк Л.К.

(721RU) ИМЯ

изобретателя:

Крейндель Л.Н.

(**721RU**) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Касьянов Г.И.

(721RU) ИМЯ

изобретателя:

Борченкова Л.А.

(**721RU**) ИМЯ

изобретателя:

Квасенков О.И.

(**721RU**) ИМЯ

изобретателя:

Китаева С.А.

(731) **MM**Я

Всероссийский научно-

ПАТЕНТООБЛАДАТЕЛЯ:

исследовательский институт консервной и овощесушильной промышленности

Р ферат Описание Формула

Федеральный институт опline промышленной собственности

Патентные документы

ПОИСК
НАИДЕННЫЕ
ДОКУМЕНТЫ
ВЫБОР БД

ИНСТРУКЦИЯ

CTATUCTUKA

ПОДДЕРЖКА

ПОЧТА

выход

Библиография Реферат Формула

Описание

Изобретение относится к технологии получения пищевого красителя из отходов сокового и винного производства.

Известен способ получения пищевого энокрасителя из плодовоягодных выжимок, включающий последовательную или параллельную экстракцию выжимок и листового растительного сырья, отделение экстракта или двух экстрактов с их последующим смешиванием и концентрирование.

Недостатками этого способа являются сложность технологии, связанная с двухступенчатой экстракцией, и низкая эффективность экстракции, связанная со слипанием и комкованием выжимок в процессе обработки и трудностью перемешивания и выгрузки листового растительного сырья из-за налипания на рабочие органы экстрактора.

В предлагаемом способе получения пищевого энокрасителя из плодово-ягодных выжимок, включающем экстракцию выжимок и листового растительного сырья, отделение экстракта и его концентрирование, согласно изобретению, перед экстракцией выжимки и листовое растительное сырье смешивают между собой.

Это позволяет разрушить агломераты выжимок и предотвратить их слипание и комкование в процессе экстракции, что улучшает дренажные свойства и ускоряет их экстракцию, исключить возможность налипания листового растительного сырья на рабочие органы экстрактора, что упрощает технологию его перемешивания и выгрузки, интенсифицируя экстракцию при перемешивании, а также получить купажный краситель за один цикл экстракции.

В предпочтительном варианте выжимки и листовое растительное сырье смешивают в соотношении по массе от 3:7 до 7:3, что исключает вероятность образования агломератов однородного сырья с проявлением недостатков наиболее близкого аналога.

В другом предпочтительном варианте листовое сырье перед смешиванием обрабатывают потоком двуокиси углерода в сверхкритическом состоянии, что позволяет удалить с листового сырья поверхностный гидрофобный кутикулярный слой и облегчить диффузию в него экстрагентов, содержащих воду.

Предпочтительным вариантом предусмотрено осуществление процесса экстракции смеси при соотношении твердой и жидкой фаз

от 5:1 до 1:3.

Меньший гидромодуль не позволяет равномерно обработать смесь по объему, что резко снижает выход красящих веществ, а больший гидромодуль приводит только к снижению концентрации красящих веществ в экстракте без увеличения глубины их извлечения.

Предпочтительным вариантом предусмотрено использование в качестве экстрагента воды или водного раствора, поскольку красящие вещества красного пигментного комплекса растительного сырья обладают максимальной растворимостью именно в этой группе растворителей.

В этом случае целесообразно осуществлять экстракцию в поле механических ультразвуковых колебаний, поскольку они интенсифицируют процесс экстракции и увеличивают выход красящих веществ при сниженном гидромодуле.

Последним предпочтительным вариантом предусмотрено проведение экстракции при 0-60°C.

Варьирование температуры в этом интервале позволяет задавать соотношение в экстракте веществ пигментного комплекса с ароматическими, биологически активными и питательными веществами в зависимости от состава исходной смеси и целевого назначения получаемого красителя.

Способ реализуется следующим образом.

Плодово-ягодные выжимки, полученные как отходы сокового или винного производства, смешивают с листовым растительным сырьем, желательно обработанным потоком двуокиси углерода в сверхкритическом состоянии для снятия поверхностного гидрофобного кутикулярного слоя, желательно в соотношении от 3:7 до 7:3, и экстрагируют, желательно при гидромодуле от 5:1 до 1:3, желательно с использованием в качестве экстрагента воды или водного раствора, возможно в поле механических ультразвуковых колебаний, желательно при температуре в интервале 0-60°C. Смесь двух видов сырья обладает хорошими дренажными свойствами за счет исключения возможности слипания и комкования выжимок при наличии в них включений листового растительного сырья и легко перемешивается и выгружается после обработки за счет исключения вероятности налипания листового сырья на рабочие органы экстрактора при попадании частиц выжимок между поверхностями листового сырья и рабочих органов экстрактора, исключающих плотное прилегание поверхностей и их слипание. Такая консистенция смеси облегчает проникновение экстрагента в массу сырья, развивает поверхность контакта фаз, ускоряет ее обновление и процесс экстракции.

Предварительное удаление кутикулярного слоя с листового растительного сырья позволяет ускорить процесс диффузии экстрагента в листовое растительное сырье и ускоряет процесс

экстракции.

Выбранное соотношение выжимок и листового растительного сырья из указанного выше интервала обеспечивает наилучшую консистенцию смеси, исключающую образование однородных зон сырья.

Вода или водные растворы в качестве экстрагента обладают наибольшим сродством к красящим веществам антоцианового комплекса энокрасителя плодово-ягодных выжимок, позволяющим осуществить их наиболее глубокое извлечение. При этом ультразвуковая обработка смеси приводит к вскрытию клеток растительного сырья, обеспечивающему облегчение диффузии в них экстрагента, а также увеличивает растворимость антоцианов, что увеличивает их концентрацию в экстракте и снижает энергозатраты на последующее концентрирование.

Варьирование температуры в интервале от 0-60°С позволяет регулировать выход ароматических, биологически активных и питательных веществ. В частности при использовании получаемого красителя для подкрашивания напитков с пониженной питательной ценностью рекомендуется выбирать температуру экстракции ближе к нижнему пределу, что снижает выход углеводов, но позволяет наиболее полно извлечь ароматические вещества. Средний интервал температуры экстракции оптимален при производстве красителя для лечебно-профилактических продуктов, поскольку обеспечивает максимальный выход биологически активных веществ, в частности аскорбиновой кислоты, в неизменном виде. Интервал температур, близкий к верхнему предельному значению, обеспечивает максимальный выход углеводов, что необходимо для производства красителя для кондитерских изделий и продуктов повышенной питательной ценности.

После завершения экстракции экстракт и шрот растительного сырья раздельно выводят из экстрактора, после чего экстракт концентрируют одним из известных способов с получением целевого продукта.

Пример 1. Отходы бродильного производства в виде выжимок винограда темных сортов смешивают с лепестками шток-розы розовой в соотношении 3:7 и экстрагируют в противотоке 40%-ным водно-спиртовым раствором в поле механических колебаний с частотой 22,4 кГц при гидромодуле 5:1 при 0°С. Полученный экстракт отделяют и концентрируют обратным осмосом. Полученный краситель обладает смешанным ароматом шток-розы и винограда и используется в производстве низкокалорийного безалкогольного напитка, благодаря низкому содержанию в нем углеводов. Выход красящих веществ 99,2% удельное время экстракции на 1 кг красителя снижено по сравнению с наиболее близким аналогом на 78% Пр имер 2. Выжимки рябины черноплодной, полученные как отход сокового производства, смешивают с листьями черной смородины, предварительно обработанные потоком двуокиси углерода при 50°С и давлении 15 МПа в течение 2 мин для снятия

кутикулярного слоя, в соотношении 7:3 и экстрагируют водой при 35°C и гидромодуле 1:1 в противотоке с наложением на поток экстрагента механических ультразвуковых колебаний с частотой 150 кГц. Полученный экстракт отделяют от выжимок и концентрируют в роторном испарителе. Краситель обладает ароматом смородины и имеет высокое содержание витаминов С, F, PP при среднем содержании углеводов и используется для подкрашивания мороженого. Выход красящих веществ 98,7% Время экстракции снижено на 75% Пример 3. Выжимки чернослива, полученные после отделения сока, смешивают с листьями березы белой, предварительно обработанными потоком двуокиси углерода при 73°C и давлении 12.6 МПа для снятия кутикулярного слоя в течение 2 мин, в соотношении 1:1 и экстрагируют 1%-ным водным раствором ацетона при гидромодуле 1: 3 и температуре 60°C в противотоке. Полученный экстракт отделяют от шрота и концентрируют на вакуумвыпарной установке. Полученный краситель с высоким содержанием углеводов и средним содержанием витаминов С и F используют для подкрашивания карамельной массы. Выход красящих веществ 92,1% время экстракции снижено на 48% Пример 4. Выжимки вишни войлочной, полученные как отход сокового производства, смешивают с листьями вишни войлочной и экстрагируют -бутанолом при 35°C и гидромодуле 1:1 в противотоке при соотношении выжимок и листьев 2: 1. Экстракт отделяют от шрота и от экстрагента упариванием. Полученный краситель используют для подкрашивания ликера и обогащения его биологически активными веществами и углеводами. Выход красящих веществ 95,6% время экстракции снижено на 51,8% Предлагаемый способ позволяет упростить технологию получения красителя и повысить эффективность экстракции за счет создания консистенции сырья, облегчающей диффузию экстрагента, перемешивание и выгрузку отработанного сырья из экстрактора.

Библиография Реферат Формула

Патентные документы

ПОИСК НАИДЕННЫЕ ДОКУМЕНТЫ

выбор бд

ИНСТРУКЦИЯ

CTATICTIKA

ПОДДЕРЖКА

ПОЧТА

выход

Библиография Реферат Описание

Формула

1. СПОСОБ ПОЛУЧЕНИЯ ПИЩЕВОГО КРАСИТЕЛЯ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ с проведением процессов экстракции выжимок и листового растительного сырья, отделения экстракта и его концентрирования, отличающийся тем, что перед экстракцией выжимки и листовое растительное сырье смешивают между собой для разрушения алгомератов и улучшения дренажных свойств, причем экстракции подвергают полученную смесь.

- 2. Способ по п.1, отличающийся тем, что выжимки и листовое растительное сырье смешивают в соотношении по массе от 3 7 до 7 3.
- 3. Способ по пп. 1 и 2, отличающийся тем, что листовое растительное сырье перед смешиванием обрабатывают потоком двуокиси углерода в сверхкритическом состоянии.
- 4. Способ по пп. 1 3, отличающийся тем, что экстракцию смеси осуществляют при соотношении твердой и жидкой фаз от 5 1 до 1 3.
- 5. Способ по пп. 1 4, отличающийся тем, что экстракцию осуществляют в поле механических ультразвуковых колебаний с использованием экстрагента, содержащего воду.
- 6. Способ по пп. 1 5, отличающийся тем, что экстракцию проводят при температуре 0 60°C.

Библиография Реферат Описание