Coordination in the El Farol Bar problem The Role of Social Preferences and Social Networks

Shu-Heng Chen and Umberto Gostoli

Abstract

- Self Coordination Mechanism
- Efficiency (optimal use of public facility) and distribution of the public resources among all agents
- Self-coordinated solutions to optimally use public resources ("good society") requires social networks and social preferences
- Hope that resources can be utilized without too much idle capacity left, but don't want them to be overused (congestion)

El Farol Concepts

- Two kinds of learning mechanisms
- Best responsive learning: Keep track of numerous beliefs and models. Fluctuation around the threshold (switch between idle and congestion), difficult to reach steady state
- Reinforcement learning: Stimulus-response learning. System asymptotically converges to perfect coordination (complete segregation - Inequity issue)
- Social networks: Assumptions on which interactions are based, structure of agents' interactions. Use of local information instead of global information
- Social preferences: Fair share, minimum attendance frequency (threshold) - Average of their neighbors' attendance frequencies
- ▶ Not every agent is needed to be inequity-averse (20 % 25 %)

Original problem

In the original El Farol Bar problem (Arthur, 1994), N people decide independently, without collusion or prior communication, whether to go to a bar. Going is enjoyable only if the bar is not crowded, otherwise the agents would prefer to stay home. The bar is crowded if more than B people show up, whereas it is not crowded, and thus enjoyable, if attendees are B or fewer. If we denote the agent's decision "to go" by "1" and "not to go" by "0", and the actual number of attendees by n ($n \le N$), then the agent's payoff function has the general form (1).

$$U(x,n) = \begin{cases} u_1, & \text{if } x = 0 \text{ and } n > B, \\ u_2, & \text{if } x = 0 \text{ and } n \le B, \\ u_3, & \text{if } x = 1 \text{ and } n > B, \\ u_4, & \text{if } x = 1 \text{ and } n \le B. \end{cases}$$
(1)

Best responsive learning

The payoffs have either the order $u_4 = u_1 > u_2 = u_3$ or the order $u_4 > u_1 = u_1 > u_2 = u_3$ $u_2 > u_3$. Reinforcement learning

Historical Results

The learning process will asymptotically lead to a state of perfect coordination with complete segregation, where a fraction $\frac{B}{N}$ of the population will always go and the fraction $1-\frac{B}{N}$ will always stay at home

Proposed Model

- Locally-based cellular automata
- ► Learning through imitation from neighbours
- $N = 100, \frac{B}{N} = 0.6$
- Network typologies: Circular network (ring) and Von Neumann network (grid, torus)

N4	N3	Agent	N1	N2

Proposed Model

-				
l	Rule N1 N2	N3	N4	D
	1 0 0	0	0	0
Γ	2 0 0	0	1	0
Γ	3 0 0	1	0	1
Γ	4 0 0	1	1	0
	5 0 1	0	0	0
	6 0 1	0	1	0
Γ	7 0 1	1	0	1
Γ	8 0 1	1	1	1

Rule N1 N2 N3 N4 D 9 1 0 0 0 1 10 1 0 0 1 0 11 1 0 1 0 1 12 1 0 1 1 0 13 1 1 0 0 1 14 1 1 0 1 1 15 1 1 1 0 1 16 1 1 1 1 0						
10 1 0 0 1 0 11 1 0 1 0 1 12 1 0 1 1 0 13 1 1 0 0 1 14 1 1 0 1 1 15 1 1 1 0 1	D	N4	N3	N2	N1	Rule
11 1 0 1 0 1 12 1 0 1 1 0 13 1 1 0 0 1 14 1 1 0 1 1 15 1 1 1 0 1	1	0	0	0	1	9
12 1 0 1 1 0 13 1 1 0 0 1 14 1 1 0 1 1 15 1 1 1 0 1	0	1	0	0	1	10
13 1 1 0 0 1 14 1 1 0 1 1 15 1 1 1 0 1	1	0	1	0	1	11
14 1 1 0 1 1 15 1 1 1 0 1	0	1	1	0	1	12
15 1 1 1 0 1	1	0	0	1	1	13
	1	1	0	1	1	14
16 1 1 1 1 0	1	0	1	1	1	15
	0	1	1	1	1	16

- ► 1 strategy = 16 rules
- $ightharpoonup d_i(t) := Action taken by agent i at period t (1 or 0)$
- $ightharpoonup s_i(t) := ext{Outcome of agent } i$'s decision at time t (1 or 0)
- ▶ Memory: Vectors **d** and **s** of length m = 10

$$ightharpoonup a_i = rac{1}{m} \sum_{j=t}^{t+1-m} d_i(j) := ext{Agent } i ext{'s attendance frequency over}$$

most recent *m* periods

•
$$f_i = \frac{1}{m} \sum_{j=t}^{t+1-m} s_i(j) := \text{Agent } i$$
's decision accuracy rate

Proposed Model

- $ightharpoonup r_i := Duration of agent i's current strategy$

Learning (i imitates j) conditions:

- $f_i < 1$ or $a_i < \alpha_i$
- $ightharpoonup r_i \geq m_i$
- $ightharpoonup f_j > f_i$
- ightharpoonup $a_i \geq \alpha_i$
- $ightharpoonup r_i \geq m_i$
- $ightharpoonup z_j \neq z_i$ (Avoid strategy repetition)
- Agents may randomly mutate if first two conditions are met (probability p << 1)

Stop learning conditions: $f_i = 1$ and $a_i \ge \alpha_i$

Results

- Always reaches equilibrium
- ► Usual (segregated) equilibrium: 0.6(B) always go, 0.4(1-B) never goes
- ► Fair equilibrium: Everyone goes with a 0.6(B) frequency (Notation: Ξ_G)
- In Von Neumann network: $P(\Xi_G) = 18 \%$. In Circular network: $P(\Xi_G) = 2 \%$
- Increasing α increases probability of getting Ξ_G

Results

