Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ) Институт прикладной математики и компьютерных наук

ДОПУСТИТЬ К ЗАЩИТЕ В ГЭК Руководитель ОПОП л-р техн, наук, профессор С.П. Сущенко « 25 г. (11-3 2023 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПАРАЛЛЕЛЬНОГО ОБСЛУЖИВАНИЯ КРАТНЫХ ЗАЯВОК ПУАССОНОВСКОГО ПОТОКА

по направлению подготовки 09.03.03 Прикладная информатика, направленность (профиль) «Прикладная информатика»

Шипунова Виктория Александровна

Руководитель ВКР

канд. физ.-мат. наук

Муру И.А. Туренова « 29 » маге 2023 г.

Автор работы

студент группы № 93/903

#16605- В.А. Шипунова и 49 в мейм 2023 г.

Министерство науки и высшего образования Российской Федерации. НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ) Институт прикладной математики и компьютерных наук

УТВЕРЖДАЮ Руководитель ОПОП д-р техн. наук, профессор

nodruces C.H. Cymenko

" 23" Lever for 20001.
ЗАДАНИЕ
по выполнению выпускной квалификационной работы бакалавра обучающемуся Шипуновой Виктории Александровне
Фамилия Имя Отчество обучающегося по направлению подготовки 09.03.03 Прикладная информатика, направленность (профи «Прикладная информатика»
 Тема выпускной квалификационной работы Исследование математической модели параллельного обслуживания кратных заявок пуассоновского потока.
2 Срок едачи обучающимся выполненной выпускной квалификационной работы: а) в учебный офис / деканат —
3 Исходные данные к работе: Объект исследования — модель системы передачи данных через парадлельные каналы Предмет исследования — вероятностные характеристики числа заявок в блоках Цель исследования — построение и исследование математических моделей
параллельного обслуживания Задачи: построение и анализ математической модели системы передачи данных по трем каналам с разной пропускной способностью в виде $M^{(1)} M_1 \infty$;
построение и внализ математической модели системы передачи данных по п каналам с разной пропускной способностью в виде $M^{(r)} M_{_R} \infty$;
исследование методом производящих функций процессов, характеризующих число занятых приборов каждого блока в марковских системах парашлельного обслуживания;
исследование выходящих потоков для СМО в виде $M^{(3)} M_3 \infty$;
численный расчёт нахождения вероятностных характеристик числа занятых и обслуженных приборов.
Методы исследования: исследование методом производящих функций,
численное исследование
Организация или отрасль, по тематике которой выполняется работа, – Теория массового обслуживания

4 Краткое содержание работы Проводится исследование модели передачи данн для трех и в общем случае множества каналов, п характеристики.	ых риводятся основн	ые вероятностные
Руководитель выпускной квалификационной работы допусной када Тры МС СПТМЕН ТГУ должность, место работы	UTyy	1 U. S. Typenoto.
Задание принял к исполнению ———————————————————————————————————	Belium of normice	1 <u>В.й./Шиприска</u> н.о. Фамклия

АННОТАЦИЯ

Выпускная квалификационная работа состоит из 2 глав, 50 страниц, включает 9 рисунков, 26 источников.

Ключевые слова: производящая функция, системы с неограниченным числом обслуживающих устройств, математическое моделирование, марковские системы, пуассоновский поток.

Объект исследования: модель системы передачи данных через параллельные каналы с неограниченным числом блоков обслуживания и приборов.

Цель работы: построение и исследование математической модели системы передачи данных по трем и п-каналам в виде СМО параллельного обслуживания.

Во введении описана актуальность работы, цели и задачи выпускной квалификационной работы.

В первой главе проведено исследование математической модели параллельного обслуживания строенных заявок пуассоновского потока и практическая значимость модели распределенного обслуживания заявок по различным каналам обработки. Вторая глава содержит и исследование математической модели параллельного обслуживания заявок пуассоновского потока для п-мерного случая. Заключение включает в себя основные выводы по данной работе.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ		
Глава 1 Системы параллельного обслуживания вида $M^3 \mid M_3 \mid \infty$	7	
1.1 Модель распределенного обслуживания заявок по различным обработки		
1.2 Построение математической модели	8	
1.3 Система дифференциальных уравнений Колмогорова	10	
1.4 Производящая функция	11	
1.5 Вероятностные характеристики в стационарном режиме	15	
1.6 Вероятностные характеристики в нестационарном режиме	17	
1.7 Численный анализ для двумерного распределения вероятносте		
1.8 Исследование выходящих потоков в системе параллельного об кратных заявок	•	
1.9 Распределение числа выходящих заявок	29	
Глава 2 Системы параллельного обслуживания вида $M^{n} \mid M_{n} \mid \infty$	32	
2.1 Система дифференциальных уравнений Колмогорова	32	
2.3 Вероятностные характеристики в стационарном режиме	38	
2.4 Вероятностные характеристики в нестационарном режиме	41	
ЗАКЛЮЧЕНИЕ	43	
ЛИТЕРАТУРА	45	

ВВЕДЕНИЕ

Теория массового обслуживания является одним из важных и хорошо разработанных разделов науки с многочисленными применениями в повседневной жизни. Она изучает и анализирует процессы обслуживания различных потребностей, которые возникают в различных сферах деятельности, включая телефонные звонки, покупки, автомобильный ремонт и многое другое [11].

Основой теории систем массового обслуживания является понятие потока требований, которые поступают в систему для выполнения определенных операций или получения услуг. Эти потоки могут представлять собой вызовы абонентов, посетителей магазинов, заявки на выполнение работ и так далее [12].

Моделирование является ключевым инструментом для изучения систем массового обслуживания [13]. Оно позволяет исследовать и анализировать различные аспекты системы, такие как пропускная способность, время ожидания, загруженность и другие показатели производительности. Моделирование помогает улучшить проектирование и оптимизацию систем, а также предсказывать их поведение в различных условиях эксплуатации [14].

Исследования в области ТМО начинались с простых случаев, когда количество обслуживающих каналов было ограничено одним или несколькими. Эти исследования стали основой для более сложных моделей обслуживания массовых потоков, где количество обслуживающих устройств может быть неограниченным [15]. В последние десятилетия наука активно разрабатывает теорию многоканальных систем и сетей, а также систем с повторными вызовами. Это связано с появлением новых практических задач, связанных с проектированием и управлением вычислительными системами и сетями.

В середине XX века теория массового обслуживания (ТМО) достигла значительного прогресса. В этот период проводились активные исследования СМО, где поступающие заявки представляются в виде пуассоновских потоков

[3, 1, 7, 8, 14 и др]. Были разработаны общие методы решения широкого спектра задач и выявлены особенности этой теории. Важно отметить, что ТМО оказала значительное влияние на развитие других областей теории вероятностей, включая теорию случайных процессов.

Системы с неограниченным числом обслуживающих устройств [18] представляют особый класс систем массового обслуживания, где количество доступных устройств для обслуживания заявок практически неограниченно. В отличие от систем с ограниченным числом устройств, где могут возникать очереди и отказы в обслуживании, системы с неограниченным числом устройств позволяют обслуживать каждую поступающую заявку. Исследование таких систем имеет большое значение в практическом применении, поскольку позволяет оптимизировать процессы и повышать эффективность различных систем обслуживания. Современное изложение основных методов прикладного вероятностного анализа многосерверных систем обслуживания представлено, например, в фундаментальных работах С. Асмуссена [21], П. П. Бочарова и др. [22], Х. Арталехо и А. Гомес-Коррала [20], М. Харколь-Балтер [26], П. Брилля[23].

Основная идея систем с неограниченным числом обслуживающих устройств заключается в том, что при поступлении нового запроса он немедленно направляется к свободному устройству для обработки. Таким образом, отсутствует необходимость ожидания свободного устройства или формирования очереди. Это особенно полезно в ситуациях, где требуется мгновенное обслуживание или когда время ожидания является критическим фактором.

Математическое моделирование систем с неограниченным числом обслуживающих устройств часто основывается на теории очередей. В таких моделях запросы поступают с определенной интенсивностью и обслуживаются при наличии свободных устройств. Это позволяет анализировать производительность системы и загрузку устройств [15].

Однако следует отметить, что в реальных системах массового обслуживания часто существуют ограничения на доступность устройств, такие как ограниченные ресурсы или физические ограничения. В таких случаях моделирование системы с неограниченным числом обслуживающих устройств может быть упрощено или аппроксимировано, чтобы учесть эти ограничения и получить более реалистичные результаты.

В целом, теория массового обслуживания является мощным инструментом для изучения и оптимизации различных систем, где требуется обслуживание Она предсказывать потока запросов. позволяет И анализировать производительность системы, а также определять оптимальные стратегии управления и планирования ресурсов. Применение этой теории охватывает областей, **[5**, широкий спектр включая транспортные сети 17], телекоммуникации [16], финансовые институты [13], государственные службы [10] и другие сферы деятельности, где эффективное обслуживание запросов играет важную роль в обеспечении качества услуг и удовлетворении потребностей клиентов.

Целью данной работы является исследование математической модели системы передачи данных по трем и n-каналам в виде СМО параллельного обслуживания.

В соответствии с целью ставятся следующие задачи:

- построение и анализ математической модели системы передачи данных по трем каналам с разной пропускной способностью в виде $M^{(3)} | M_3 | \infty$;
- построение и анализ математической модели системы передачи данных по n каналам с разной пропускной способностью в виде $M^{(n)} | M_n | \infty$;
- исследование методом производящих функций процессов, характеризующих число занятых приборов каждого блока в марковских системах параллельного обслуживания;
 - исследование выходящих потоков для СМО в виде $M^{(3)} | M_3 | \infty$;

• численный расчёт нахождения вероятностных характеристик числа занятых и обслуженных приборов.

Таким образом, решение поставленных задач позволит более полно изучить математическую модель параллельного обслуживания кратных заявок пуассоновского потока и определить ее особенности в различных условиях, что может быть полезно для практического применения этой модели в различных сферах, например, в телекоммуникациях, логистике, медицине и т.д.

Глава 1 Системы параллельного обслуживания вида $\,M^{_3}\,|\,M_{_3}\,|\,\infty\,$

1.1 Модель распределенного обслуживания заявок по различным каналам обработки

Предположим, у нас есть онлайн-платформа для размещения и продажи товаров, и мы решили разделить процесс обработки заказов на п блоков с разными параметрами обслуживания.

Каждый блок отвечает за определенный этап обработки заказа. Например, блок A может быть "Быстрым и ненадежным", блок B - "Медленным и надежным", блок C - "Средней скоростью и надежным", а блок D - "Быстрым и надежным".

Когда поступает заказ, он копируется и направляется в каждый из блоков. Каждый блок обрабатывает свою копию заказа в соответствии с его параметрами обслуживания. Например, блок А быстро проверяет доступность товара, блок В медленно, но надежно осуществляет финансовые операции, блок С выполняет обработку товара и подготовку к доставке, а блок D быстро обрабатывает доставку заказа.

Таким образом, каждый блок выполняет свою функцию, применяя свои параметры обслуживания. После обработки заказов в каждом блоке информация о статусе и результате обработки может быть собрана и объединена, чтобы предоставить общую информацию о заказе клиенту.

Такая система позволяет эффективно распределить процесс обработки заказов, учитывая различные характеристики каждого блока. Она также обеспечивает более гибкую и отказоустойчивую обработку заказов, так как при возникновении проблемы в одном блоке, другие блоки могут продолжать работу и обрабатывать заказы.

1.2 Построение математической модели

Пусть имеется система с тремя блоками обслуживания (рис. 1), каждый из которых содержит неограниченное число приборов. На вход системы поступает простейший поток кратных заявок с параметром λ , затем для обслуживания заявка копируется, и ее копия поступает на каждый блок для дальнейшего обслуживания в течение случайного времени, распределенного по экспоненциальному закону с параметрами μ_1, μ_2, μ_3 . Продолжительность обслуживания заявок в каждом блоке является стохастически независимой и одинаково распределенной, при этом параметры распределения зависят от номера блока.

Рисунок 1 – СМО с параллельным обслуживанием строенных заявок

Вектор $\{i_1(t),i_2(t),i_3(t)\}$ определяет состояние системы, где i_k — число заявок, находящихся на обслуживании в k -ом блоке в момент времени t. Случайный процесс, который описывает изменение состояний системы во времени, является трехмерной эргодической цепью Маркова.

Поставленная задача состоит в исследовании трехмерного процесса $\{i_1(t),i_2(t),i_3(t)\}$, нахождении его производящей функции и основных вероятностных характеристик.

На рис. 2 показано графическое представление множества состояний и переходов. Представляет собой размеченный ориентированный граф, вершины которого — состояния системы, дуги — переходы из одного состояния в другое, а метки дуг — вероятности, с которыми осуществляется переход из одного состояния в другое.

Введем следующее обозначение: $P(i,j,k,t) = P[i_1(t) = i,i_2(t) = j,i_3(t) = k]$ — это вероятностное распределение состояний трехмерной цепи Маркова, которое описывает количество занятых приборов в каждом блоке в заданный момент времени t.

Рисунок 2 — Фрагмент графа переходов и состояний для i, j, k.

1.3 Система дифференциальных уравнений Колмогорова

Определим вероятности:

- $\lambda \Delta t$ вероятность того, что в систему поступит новая пачка заявок, тогда 1- $\lambda \Delta t$ +о(Δt) вероятность того, что в систему не поступит новая пачка заявок;
- $\mu_1 \Delta t$ вероятность того, что одна из заявок обслужилась на первом блоке за время Δt ;
- $\mu_2 \Delta t$ вероятность того, что одна из заявок обслужилась на втором блоке за время Δt ;
- $\mu_3 \Delta t$ вероятность того, что одна из заявок обслужилась на третьем блоке за время Δt ;
- переходы в другие состояний возможны, вероятность перехода в них равна $o(\Delta t)$.

Используя Δt - метод, получим следующую систему дифференциальных уравнений Колмогорова:

$$P(0,0,0,t + \Delta t) = (1 - \lambda \Delta t)P(0,0,0,t) + \mu_1 \Delta t P(1,0,0,t) + \mu_2 \Delta t P(0,1,0,t) + \mu_3 \Delta t P(0,0,1,t) + o(\Delta t)$$

$$\begin{split} P(i,j,k,t+\Delta t) &= (1-\lambda \Delta t)(1-i\mu_1 \Delta t)(1-j\mu_2 \Delta t)(1-k\mu_3 \Delta t)P(i,j,k,t) + \\ &+ \lambda \Delta t P(i-1,j-1,k-1,t) + (i+1)\mu_1 \Delta t P(i+1,j,k,t) + \\ &+ (j+1)\mu_2 \Delta t P(i,j+1,k,t) + (k+1)\mu_3 \Delta t P(i,j,k+1,t) + o(\Delta t) \end{split}$$

Разделим уравнения системы на Δt и устремим Δt к нулю. Получаем систему дифференциальных уравнений Колмогорова для распределения вероятностей состояний:

$$\frac{P(0,0,0,t)}{\partial t} = (-\lambda)P(0,0,0,t) + \mu_1 P(1,0,0,t) + \mu_2 P(0,1,0,t) + \mu_3 P(0,0,1,t)$$

$$\begin{split} \frac{P(i,j,k,t)}{\partial t} &= -(\lambda \Delta t + i\mu_1 + j\mu_2 + k\mu_3)P(i,j,k,t) + \\ &+ \lambda P(i-1,j-1,k-1,t) + (i+1)\mu_1 P(i+1,j,k,t) + (j+1)\mu_2 P(i,j+1,k,t) + \\ &+ (k+1)\mu_3 P(i,j,k+1,t) \end{split}$$

Зададим начальные условия

$$P(i, j, k, 0) = \begin{cases} 1, e c \pi u & i = j = k = 0 \\ 0, e c \pi u & i, j, k > 0 \end{cases},$$

предполагая, что в начальный момент времени система пуста.

1.4 Производящая функция

Производящая функция трехмерного распределения P(i,j,k,t) определяется в виде:

$$F(x_1, x_2, x_3, t) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} x_1^i x_2^j x_3^k P(i, j, k, t)$$

Получаем линейное дифференциальное уравнение в частных производных первого порядка

$$\frac{\partial F(x_1, x_2, x_3, t)}{\partial t} + \mu_1(x_1 - 1) \frac{\partial F(x_1, x_2, x_3, t)}{\partial x_1} + \mu_2(x_2 - 1) \frac{\partial F(x_1, x_2, x_3, t)}{\partial x_2} + \mu_3(x_3 - 1) \frac{\partial F(x_1, x_2, x_3, t)}{\partial x_3} = (1.1)$$

$$= \lambda(x_1 x_2 x_3 - 1) F(x_1, x_2, x_3, t)$$

с начальным условием

$$F(x_1, x_2, x_3, 0) = 1. (1.2)$$

Запишем для дифференциального уравнения (1.1) систему обыкновенных дифференциальных уравнений

$$\frac{dt}{1} = \frac{dx_1}{\mu_1(x_1 - 1)} = \frac{dx_2}{\mu_2(x_2 - 1)} = \frac{dx_3}{\mu_3(x_3 - 1)} = \frac{dF(x_1, x_2, x_3, t)}{\lambda(x_1 x_2 x_3 - 1)F(x_1, x_2, x_3, t)},$$
(1.3)

где

$$(x_1 x_2 x_3 - 1) = (x_1 - 1)(x_2 - 1)(x_3 - 1) + (x_1 - 1)(x_2 - 1) + (x_1 - 1)(x_3 - 1) + (x_2 - 1)(x_3 - 1) + (x_2 - 1)(x_3 - 1) + (x_2 - 1) + (x_3 - 1)$$

$$(1.4)$$

Для этой системы найдем первые интегралы. Рассмотрим первое уравнение:

$$\int dt = \int \frac{dx_1}{\mu_1(x_1 - 1)} \Longrightarrow C_1 = (x_1 - 1)e^{-\mu_1 t}.$$

Аналогично для второго и третьего:

$$\int dt = \int \frac{dx_2}{\mu_2(x_2 - 1)} \Rightarrow C_2 = (x_2 - 1)e^{-\mu_2 t},$$

$$\int dt = \int \frac{dx_2}{\mu_3(x_3 - 1)} \Rightarrow C_3 = (x_3 - 1)e^{-\mu_3 t}.$$
(1.5)

Далее рассмотрим дифференциальное уравнение:

$$\int dt = \int \frac{dF(x_1, x_2, x_3, t)}{\lambda(x_1 x_2 x_3 - 1) F(x_1, x_2, x_3, t)}.$$

Учитывая (1.4), перепишем его в виде:

$$\ln F(x_1, x_2, x_3) = \widetilde{C} + \int_0^t \begin{bmatrix} (x_1 - 1)(x_2 - 1)(x_3 - 1) + (x_1 - 1)(x_2 - 1) + \\ + (x_2 - 1)(x_3 - 1) + (x_1 - 1)(x_3 - 1) + \\ + (x_1 - 1) + (x_2 - 1) + (x_n - 1) \end{bmatrix} ds.$$

Теперь с помощью (1.5) выражаем $(x_1 - 1), (x_2 - 1), (x_3 - 1)$, и получаем:

$$\ln F(x_1, x_2, x_3) = \widetilde{C} + \int_0^t \lambda \begin{bmatrix} C_1 C_2 C_3 e^{\{\mu_1 + \mu_2 + \mu_3\}s} + C_1 C_2 e^{\{\mu_1 + \mu_2\}s} + \\ + C_2 C_3 e^{\{\mu_2 + \mu_3\}s} + C_1 C_3 e^{\{\mu_1 + \mu_3\}s} + \\ + C_1 e^{\mu_1 s} + C_2 e^{\mu_2 s} + C_3 e^{\mu_3 s} \end{bmatrix} ds.$$

Далее C_1, C_2, C_3 снова выражаем из (1.5), только теперь с t , т. к. это константа:

$$\ln F(x_1, x_2, x_3, t) = \widetilde{C} + \int_0^t \lambda \begin{bmatrix} (x_1 - 1)e^{-\mu_1 t} (x_2 - 1)e^{-\mu_2 t} (x_3 - 1)e^{-\mu_3 t} e^{\{\mu_1 + \mu_2 + \mu_3\}s} + \\ + (x_1 - 1)e^{-\mu_1 t} (x_2 - 1)e^{-\mu_2 t} e^{\{\mu_1 + \mu_2\}s} + \\ + (x_2 - 1)e^{-\mu_2 t} (x_3 - 1)e^{-\mu_3 t} e^{\{\mu_2 + \mu_3\}s} + \\ + (x_1 - 1)e^{-\mu_1 t} (x_3 - 1)e^{-\mu_3 t} e^{\{\mu_1 + \mu_3\}s} + \\ + (x_1 - 1)e^{-\mu_1 t} + (x_2 - 1)e^{-\mu_2 t} + (x_3 - 1)e^{-\mu_3 t} \end{bmatrix} ds$$

Общее решение системы (1.3) запишем в следующем виде

$$F(x_{1},x_{2},x_{3},t) = \Phi((x_{1}-1)e^{-\mu_{1}t},(x_{2}-1)e^{-\mu_{2}t},(x_{3}-1)e^{-\mu_{3}t}) \times \exp \left\{ \frac{\lambda(x_{1}-1)(x_{2}-1)(x_{3}-1)}{\mu_{1}+\mu_{2}+\mu_{3}} + \frac{\lambda(x_{1}-1)(x_{2}-1)}{\mu_{1}+\mu_{2}} + \frac{\lambda(x_{1}-1)(x_{3}-1)}{\mu_{1}+\mu_{3}} + \frac{\lambda(x_{2}-1)(x_{3}-1)}{\mu_{2}+\mu_{3}} + \frac{\lambda(x_{1}-1)(x_{2}-1)}{\mu_{2}} + \frac{\lambda(x_{2}-1)(x_{3}-1)}{\mu_{2}} + \frac{\lambda(x_{2}-1)(x_{3}-$$

где $\Phi(x)$ – произвольная дифференцируемая функция.

Учитывая начальные условия (1.2), имеем

$$F(x_{1},x_{2},x_{3},0) = \Phi[(x_{1}-1),(x_{2}-1),(x_{3}-1)] \times$$

$$\times \exp \left\{ \frac{\lambda(x_{1}-1)(x_{2}-1)(x_{3}-1)}{\mu_{1}+\mu_{2}+\mu_{3}} + \frac{\lambda(x_{1}-1)(x_{2}-1)}{\mu_{1}+\mu_{2}} + \frac{\lambda(x_{1}-1)(x_{3}-1)}{\mu_{1}+\mu_{3}} + \frac{\lambda(x_{2}-1)(x_{3}-1)}{\mu_{2}+\mu_{3}} + \frac{\lambda}{\mu_{1}}(x_{1}-1) + \frac{\lambda}{\mu_{2}}(x_{2}-1) + \frac{\lambda}{\mu_{3}}(x_{3}-1) \right\} =$$

$$= \exp \left\{ -\left(\frac{\lambda(x_{1}-1)(x_{2}-1)(x_{3}-1)}{\mu_{1}+\mu_{2}+\mu_{3}} + \frac{\lambda(x_{1}-1)(x_{2}-1)}{\mu_{1}+\mu_{2}} + \frac{\lambda(x_{1}-1)(x_{3}-1)}{\mu_{1}+\mu_{3}} + \frac{\lambda(x_{1}-1)(x_{3}-1)}{\mu_{1}+\mu_{3}} + \frac{\lambda(x_{2}-1)(x_{3}-1)}{\mu_{1}+\mu_{3}} + \frac{\lambda(x_{1}-1)(x_{2}-1)}{\mu_{1}+\mu_{3}} + \frac{\lambda(x_{1}-1)(x_{2}-1)}{\mu_{1}+\mu_{3}}$$

Следовательно,

$$\Phi\left[\left(x_{1}-1\right)e^{-\mu_{1}t},\left(x_{2}-1\right)e^{-\mu_{2}t},\left(x_{3}-1\right)e^{-\mu_{3}t}\right] =$$

$$= \exp \left\{ - \left(\frac{\lambda(x_{1}-1)(x_{2}-1)(x_{3}-1)}{\mu_{1}+\mu_{2}+\mu_{3}}e^{-(\mu_{1}+\mu_{2}+\mu_{3})t} + \frac{\lambda(x_{1}-1)(x_{3}-1)}{\mu_{1}+\mu_{2}}e^{-(\mu_{1}+\mu_{2})t} + \frac{\lambda(x_{1}-1)(x_{3}-1)}{\mu_{1}+\mu_{3}}e^{-(\mu_{1}+\mu_{3})t} + \frac{\lambda(x_{2}-1)(x_{3}-1)}{\mu_{2}+\mu_{3}}e^{-(\mu_{2}+\mu_{3})t} + \frac{\lambda}{\mu_{1}}(x_{1}-1)e^{-\mu_{1}t} + \frac{\lambda}{\mu_{2}}(x_{2}-1)e^{-\mu_{2}t} + \frac{\lambda}{\mu_{3}}(x_{3}-1)e^{-\mu_{3}t} \right) \right\} (1.7)$$

Подставляя полученное выражение в (1.6), имеем выражение для производящей функции $F\left(x_{1},x_{2},x_{3},t\right)$

$$F(x_{1}, x_{2}, x_{3}, t) =$$

$$= \exp \left\{ \frac{\lambda}{\mu_{1} + \mu_{2} + \mu_{3}} (x_{1} - 1)(x_{2} - 1)(x_{3} - 1)(1 - e^{-(\mu_{1} + \mu_{2} + \mu_{3})t}) + \frac{\lambda}{\mu_{1} + \mu_{2}} (x_{1} - 1)(x_{2} - 1)(1 - e^{-(\mu_{1} + \mu_{2})t}) + \frac{\lambda}{\mu_{2} + \mu_{3}} (x_{2} - 1)(x_{3} - 1)(1 - e^{-(\mu_{1} + \mu_{3})t}) + \frac{\lambda}{\mu_{1} + \mu_{3}} (x_{1} - 1)(x_{3} - 1)(1 - e^{-(\mu_{1} + \mu_{3})t}) + \frac{\lambda}{\mu_{1} + \mu_{3}} (x_{1} - 1)(1 - e^{-(\mu_{1} + \mu_{3})t}) + \frac{\lambda}{\mu_{2}} (x_{1} - 1)(1 - e^{-(\mu_{1} + \mu_{3})t}) + \frac{\lambda}{\mu_{2}} (x_{2} - 1)(1 - e^{-(\mu_{1} + \mu_{3})t}) + \frac{\lambda}{\mu_{2}} (x_{3} - 1)(1 - e^{-(\mu_{1} + \mu_{3})t}) \right\}$$

Устремим в (1.8) $t \to \infty$, и получим вид производящей функции стационарного распределения вероятностей

$$F(x_1, x_2, x_3) = \exp\left\{\frac{\lambda}{\mu_1 + \mu_2 + \mu_3}(x_1 - 1)(x_2 - 1)(x_3 - 1) + \frac{\lambda}{\mu_1 + \mu_2}(x_1 - 1)(x_2 - 1) + \frac{\lambda}{\mu_1 + \mu_2}(x_1 - 1)(x_2 - 1)\right\}$$

$$+\frac{\lambda}{\mu_{2}+\mu_{3}}(x_{2}-1)(x_{3}-1)+\frac{\lambda}{\mu_{1}+\mu_{3}}(x_{1}-1)(x_{3}-1)+$$

$$+\frac{\lambda}{\mu_{1}}(x_{1}-1)+\frac{\lambda}{\mu_{2}}(x_{2}-1)+\frac{\lambda}{\mu_{3}}(x_{3}-1)$$

$$(1.9)$$

Из данного равенства можно сделать вывод, что одномерные маргинальные производящие функции числа занятых приборов в каждом блоке обслуживания являются пуассоновскими и имеют вид

$$f(x_1) = \sum_{i_1} x_1^{i_1} P\{i_1(t) = i_1\} = \exp\left\{\frac{\lambda}{\mu_1} (x_1 - 1)\right\},$$

$$f(x_2) = \sum_{i_2} x_2^{i_2} P\{i_2(t) = i_2\} = \exp\left\{\frac{\lambda}{\mu_2} (x_2 - 1)\right\},$$

$$f(x_3) = \sum_{i_3} x_3^{i_3} P\{i_3(t) = i_3\} = \exp\left\{\frac{\lambda}{\mu_3} (x_3 - 1)\right\}.$$
(1.10)

1.5 Вероятностные характеристики в стационарном режиме

Выражение (1.9) позволяет получить основные характеристики трёхмерной цепи Маркова.

• Математическое ожидание числа занятых приборов в первом, втором, третьем блоках системы имеет вид:

$$Mi_1 = \frac{\lambda}{\mu_1}, Mi_2 = \frac{\lambda}{\mu_2}, Mi_3 = \frac{\lambda}{\mu_3}.$$

• Дисперсия числа занятых приборов в первом, втором, третьем блоках системы имеет вид

$$Di_1 = \frac{\lambda}{\mu_1}, Di_2 = \frac{\lambda}{\mu_2}, Di_3 = \frac{\lambda}{\mu_3}.$$

С помощью явного вида производящей функции (1.9) найдем выражение для коэффициента корреляции между компонентами процесса обслуживания требований в рассматриваемой модели. Определим корреляционные моменты.

$$M\left\{i_1i_2\right\} = \frac{\partial^2 F\left(x_1, x_2\right)}{\partial x_1 \partial x_2}\bigg|_{\substack{x_1=1\\x_2=1}} = \frac{\lambda}{\mu_1 + \mu_2} + \frac{\lambda}{\mu_1} \frac{\lambda}{\mu_2},$$

$$M\{i_1i_3\} = \frac{\partial^2 F(x_1, x_3)}{\partial x_1 \partial x_3}\bigg|_{\substack{x_1=1\\x_3=1}} = \frac{\lambda}{\mu_1 + \mu_3} + \frac{\lambda}{\mu_1} \frac{\lambda}{\mu_3},$$

$$M\{i_{2}i_{3}\} = \frac{\partial^{2}F(x_{2},x_{3})}{\partial x_{2}\partial x_{3}}\bigg|_{\substack{x_{2}=1\\x_{3}=1}} = \frac{\lambda}{\mu_{2}+\mu_{3}} + \frac{\lambda}{\mu_{2}}\frac{\lambda}{\mu_{3}}.$$

Тогда

$$r(i_{1},i_{2}) = \frac{\operatorname{cov}(i_{1},i_{2})}{\sqrt{Di_{1}Di_{2}}} = \frac{\frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{2}} + \frac{\lambda}{\mu_{1} + \mu_{2}} - \frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{2}}}{\sqrt{\frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{2}}}} = \frac{\lambda\sqrt{\mu_{1}\mu_{2}}}{\lambda(\mu_{1} + \mu_{2})} = \frac{\sqrt{\mu_{1}\mu_{2}}}{\mu_{1} + \mu_{2}},$$

$$r(i_{1},i_{3}) = \frac{\text{cov}(i_{1},i_{3})}{\sqrt{Di_{1}Di_{3}}} = \frac{\frac{\lambda}{\mu_{1}} \frac{\lambda}{\mu_{3}} + \frac{\lambda}{\mu_{1} + \mu_{3}} - \frac{\lambda}{\mu_{1}} \frac{\lambda}{\mu_{3}}}{\sqrt{\frac{\lambda}{\mu_{1}} \frac{\lambda}{\mu_{3}}}} = \frac{\lambda\sqrt{\mu_{1}\mu_{3}}}{\lambda(\mu_{1} + \mu_{3})} = \frac{\sqrt{\mu_{1}\mu_{3}}}{\mu_{1} + \mu_{3}},$$

$$r(i_{2},i_{3}) = \frac{\operatorname{cov}(i_{2},i_{3})}{\sqrt{Di_{2}Di_{3}}} = \frac{\frac{\lambda}{\mu_{2}} \frac{\lambda}{\mu_{3}} + \frac{\lambda}{\mu_{2} + \mu_{3}} - \frac{\lambda}{\mu_{2}} \frac{\lambda}{\mu_{3}}}{\sqrt{\frac{\lambda}{\mu_{2}} \frac{\lambda}{\mu_{3}}}} = \frac{\lambda \sqrt{\mu_{2}\mu_{3}}}{\lambda (\mu_{2} + \mu_{3})} = \frac{\sqrt{\mu_{2}\mu_{3}}}{\mu_{2} + \mu_{3}}.$$

Рассмотрим изменение значений влияния параметров обслуживания на значение коэффициента корреляции по интенсивности обслуживания μ_1 , μ_2 . Пусть $\mu_2 = \alpha \mu_1$, где α - представляет неотрицательное число, тогда коэффициент корреляции имеет вид

$$r(i_1, i_2) = \frac{\sqrt{\alpha(\mu_1)^2}}{\mu_1(1+\alpha)} = \frac{\sqrt{\alpha}}{(1+\alpha)}.$$

На рис. 3 видно, что наибольшая зависимость изучаемых процессов достигается при одинаковых параметрах времени обслуживания, то есть $\alpha = 1$, коэффициент корреляции между процессами в этом случае имеет значение 0,5.

Рисунок 3 — Коэффициент корреляции процессов $\{i_1, i_2\}$

Для двух других пар блоков обслуживания изменение коэффициента корреляции будет аналогичным.

Следуя проведенному анализу, можно сделать вывод о том, что при увеличении разницы между параметрами обслуживания наблюдается уменьшение зависимости между процессами, характеризующими количество занятых приборов в каждом блоке.

1.6 Вероятностные характеристики в нестационарном режиме

Из производящей функции (1.8) получим основные вероятностные характеристики для числа заявок в каждом блоке в момент времени t.

• Математическое ожидание числа заявок:

$$Mi_1 = \frac{\lambda}{\mu_1} \left(1 - e^{-\mu_1 t} \right)$$

$$Mi_2 = \frac{\lambda}{\mu_2} \left(1 - e^{-\mu_2 t} \right),$$

$$Mi_3 = \frac{\lambda}{\mu_3} \left(1 - e^{-\mu_3 t} \right).$$

• Дисперсия числа заявок:

$$Di_{1} = \frac{\lambda}{\mu_{1}} \left(1 - e^{-(\mu_{1})t} \right),$$

$$Di_{2} = \frac{\lambda}{\mu_{2}} \left(1 - e^{-\mu_{2}t} \right),$$

$$Di_{3} = \frac{\lambda}{\mu_{2}} \left(1 - e^{-\mu_{3}t} \right).$$

С помощью (1.8) определим корреляционные моменты для нахождения выражения для коэффициента корреляции между компонентами процесса.

$$M\left\{i_{1}i_{2}\right\} = \frac{\partial^{2}F\left(x_{1}, x_{2}, t\right)}{\partial x_{1}\partial x_{2}}\bigg|_{\substack{x_{1}=1\\x_{2}=1}} = \frac{\lambda}{\mu_{1}}\left(1 - e^{-\mu_{1}t}\right)\frac{\lambda}{\mu_{2}}\left(1 - e^{-\mu_{2}t}\right) + \frac{\lambda}{\mu_{1} + \mu_{2}}\left(1 - e^{-(\mu_{1} + \mu_{2})t}\right),$$

$$M\left\{i_{1}i_{3}\right\} = \frac{\partial^{2}F\left(x_{1}, x_{3}, t\right)}{\partial x_{1}\partial x_{3}}\bigg|_{\substack{x_{1}=1\\x_{3}=1}} = \frac{\lambda}{\mu_{1}}\left(1 - e^{-\mu_{1}t}\right)\frac{\lambda}{\mu_{3}}\left(1 - e^{-\mu_{3}t}\right) + \frac{\lambda}{\mu_{1} + \mu_{3}}\left(1 - e^{-(\mu_{1} + \mu_{3})t}\right),$$

$$M\left\{i_{2}i_{3}\right\} = \frac{\partial^{2}F\left(x_{2}, x_{3}, t\right)}{\partial x_{2}\partial x_{3}}\bigg|_{\substack{x_{2} = 1 \\ x_{3} = 1}} = \frac{\lambda}{\mu_{2}}\left(1 - e^{-\mu_{2}t}\right)\frac{\lambda}{\mu_{3}}\left(1 - e^{-\mu_{3}t}\right) + \frac{\lambda}{\mu_{2} + \mu_{3}}\left(1 - e^{-(\mu_{2} + \mu_{3})t}\right)$$

Тогда

$$r(i_1(t),i_2(t)) = \frac{\frac{\lambda}{\mu_1 + \mu_2} (1 - e^{-(\mu_1 + \mu_2)t})}{\sqrt{\left[\frac{\lambda}{\mu_2} (1 - e^{-\mu_2 t})\right] \left[\frac{\lambda}{\mu_1} (1 - e^{-\mu_1 t})\right]}},$$

$$r(i_1(t),i_3(t)) = \frac{\frac{\lambda}{\mu_1 + \mu_3} (1 - e^{-(\mu_1 + \mu_3)t})}{\sqrt{\left[\frac{\lambda}{\mu_3} (1 - e^{-\mu_3 t})\right] \left[\frac{\lambda}{\mu_1} (1 - e^{-\mu_1 t})\right]}},$$

$$r(i_{2}(t),i_{3}(t)) = \frac{\frac{\lambda}{\mu_{2} + \mu_{3}} \left(1 - e^{-(\mu_{2} + \mu_{3})t}\right)}{\sqrt{\left[\frac{\lambda}{\mu_{3}} \left(1 - e^{-\mu_{3}t}\right)\right] \left[\frac{\lambda}{\mu_{2}} \left(1 - e^{-\mu_{2}t}\right)\right]}}.$$

Далее рассмотрим попарную нормированную корреляционную функцию для блоков обслуживания (рис. 4):

Рисунок 4 — Корреляционная функция процессов $\{i_1(t),i_2(t)\}$

Из графика видно, что с течением времени система стремится к стационарному режиму, это может указывать на ее устойчивость. Устойчивая система способна справиться со внешними возмущениями и возвращаться к состоянию равновесия или стабильному режиму работы.

1.7 Численный анализ для двумерного распределения вероятностей системы

Производящая функция $F(x_1,x_2,t)$ двумерного процесса $\{i_1(t),i_2(t)\}$ - числа приборов, занятых в момент времени t в блоках системы $M^{(2)}|M_2|\infty$ имеет вид[9]:

$$F(x_1, x_2, t) = \exp\left\{\frac{\lambda}{\mu_1 + \mu_2} (x_1 - 1)(x_2 - 1)(1 - e^{-(\mu_1 + \mu_2)t}) + \frac{\lambda}{\mu_1} (x_1 - 1)(1 - e^{-\mu_1 t}) + \frac{\lambda}{\mu_2} (x_2 - 1)(1 - e^{-\mu_2 t})\right\}.$$

Поставим задачу нахождения его явного вида

$$F(x_{1},x_{2}) = \exp\left\{\frac{\lambda}{\mu_{1} + \mu_{2}}(x_{1} - 1)(x_{2} - 1) + \frac{\lambda}{\mu_{1}}(x_{1} - 1) + \frac{\lambda}{\mu_{2}}(x_{2} - 1)\right\} =$$

$$= \exp\left\{\frac{\lambda}{\mu_{1} + \mu_{2}}(x_{1}x_{2} - x_{1} - x_{2} + 1) + \frac{\lambda}{\mu_{1}}(x_{1} - 1) + \frac{\lambda}{\mu_{2}}(x_{2} - 1)\right\} =$$

$$= \exp\left\{\frac{\lambda}{\mu_{1} + \mu_{2}}x_{1}x_{2} + \left(\frac{\lambda}{\mu_{1}} - \frac{\lambda}{\mu_{1} + \mu_{2}}\right)x_{1} + \left(\frac{\lambda}{\mu_{2}} - \frac{\lambda}{\mu_{1} + \mu_{2}}\right)x_{2} - \left(\frac{\lambda}{\mu_{1}} + \frac{\lambda}{\mu_{2}} - \frac{\lambda}{\mu_{1} + \mu_{2}}\right)\right\} =$$

$$= \exp\left\{\frac{\lambda}{\mu_{1} + \mu_{2}}x_{1}x_{2} + \frac{\lambda\mu_{2}}{\mu_{1}(\mu_{1} + \mu_{2})}x_{1} + \frac{\lambda\mu_{1}}{\mu_{2}(\mu_{1} + \mu_{2})}x_{2} - \frac{\lambda\left[(\mu_{1} + \mu_{2})^{2} - \mu_{1}\mu_{2}\right]}{\mu_{1}\mu_{2}(\mu_{1} + \mu_{2})}\right\}.$$

Обозначим

$$a = \frac{\lambda \mu_2}{\mu_1(\mu_1 + \mu_2)}, b = \frac{\lambda \mu_1}{\mu_2(\mu_1 + \mu_2)},$$

$$c = \frac{\lambda}{\mu_1 + \mu_2}, \ d = \frac{\lambda \left[(\mu_1 + \mu_2)^2 - \mu_1 \mu_2 \right]}{\mu_1 \mu_2 (\mu_1 + \mu_2)}. \tag{1.11}$$

Тогда функция $F(x_1,x_2)$ будет иметь вид

$$F(x_1,x_2) = \exp\{cx_1x_2 + ax_1 + bx_2 - d\}.$$

Разложим экспоненту в ряд

$$e^{dx_1x_2}e^{ax_1}e^{bx_2} = \left(\sum_{n=0}^{\infty} \frac{c^n}{n!} (x_1x_2)^n \right) \left(\sum_{k=0}^{\infty} \frac{a^k}{k!} x_1^k \right) \left(\sum_{m=0}^{\infty} \frac{b^m}{m!} x_2^m \right) =$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{c^n}{n!} \frac{a^k}{k!} \frac{b^m}{m!} x_1^{n+k} x_2^{n+m} .$$

Введем обозначение $n+k=i, \;\; n+m=j, \;\; (i\geq n, j\geq n), \;$ тогда

$$e^{dx_1x_2}e^{ax_1}e^{bx_2} = \sum_{i=n}^{\infty} \sum_{j=n}^{\infty} \left(\sum_{n=0}^{\min(i,j)} \frac{c^n}{n!} \frac{a^{i-n}}{(i-n)!} \frac{b^{j-n}}{(j-n)!} \right) x_1^i x_2^j.$$

Учитывая производящую функцию двумерного распределения P(i,j,t) в виде

$$F(x_1,x_2,t) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} x_1^{i} x_2^{j} P(i,j,t),$$

получим вид двумерного пуассоновского распределения для зависимых компонент

$$P(i,j) = \sum_{n=0}^{\min(i,j)} \frac{c^n}{n!} \frac{a^{i-n}}{(i-n)!} \frac{b^{j-n}}{(j-n)!} e^{-d}, \qquad (1.12)$$

где компоненты a, b, c, d определены выше.

Далее, для наглядности, мы можем провести численный анализ системы параллельного обслуживания кратных заявок на базе представленной математической модели реализовано с помощью программного обеспечения Mathead.

Результат работы программы (рис 5) для нахождения распределения вероятностей числа заявок в системе в нестационарном режиме с пределами разброса значений i=0...150, j=0...150, используя коэффициенты из (1.11):

 $\lambda = 1, \mu_1 = 0,04, \mu_2 = 0,01,$

$$\lambda = 1, \mu_1 = 0, 2, \mu_2 = 0, 3$$

$$\lambda = 1, \ \mu_1 = 0.01, \ \mu_2 = 0.02$$

Рисунок 5 – Распределение вероятностей системы.

Запишем основные вероятностные характеристики для системы $M^{(2)} \big| M_2 \big| \infty \, .$

$$M\{i_1\} = D\{i_1\} = \frac{\lambda}{\mu_1} = 100; \ M\{i_2\} = D\{i_2\} = \frac{\lambda}{\mu_2} = 50, \ r(i_1, i_2) = \frac{\sqrt{\mu_1 \mu_2}}{\mu_1 + \mu_2} = 0,471.$$

Одинаковая интенсивность обслуживания показывает наибольшую корреляцию процессов.

1.8 Исследование выходящих потоков в системе параллельного обслуживания кратных заявок

Исследуем трехмерный случайный процесс $\{n_1(t), n_2(t), n_3(t)\}$, представленный на (рис 6), характеризующий число обслуженных приборов каждого блока за время t.

Рисунок 6- СМО параллельного обслуживания строенных заявок

Данный процесс $\{n_1(t), n_2(t), n_3(t)\}$ не является марковским, поэтому следует ввести компоненты числа занятых приборов $i_1(t), i_2(t), i_3(t)$

Рассмотрим шестимерную цепь Маркова

$$\{i_1(t),i_2(t),i_3(t),n_1(t),n_2(t),n_3(t)\}.$$

Определим вероятности:

$$\begin{split} &P\big(i_1,i_2,i_3,n_1,n_2,n_3,t+\Delta t\big) = \lambda \Delta t P(i_1-1,i_2-1,i_3-1,n_1,n_2,n_3,t) + \\ &+ (i_1+1)\mu_1 \Delta t P\big(i_1+1,i_2,i_3,n_1-1,n_2,n_3,t\big) + \\ &+ (i_2+1)\mu_2 \Delta t P\big(i_1,i_2+1,i_3,n_1,n_2-1,n_3,t\big) + \\ &+ (i_3+1)\mu_3 \Delta t P\big(i_1,i_2,i_3+1,n_1,n_2,n_3-1,t\big) + \\ &+ (1-\lambda \Delta t)(1-i_1\mu_1 \Delta t)(1-i_2\mu_2 \Delta t)(1-i_3\mu_3 \Delta t) \times \\ &\times P(i_1,i_2,i_3,n_1,n_2,n_3,t) + o(\Delta t) \end{split}$$

Для распределения вероятностей

$$P(i_1, i_2, i_3, n_1, n_2, n_3, t) = P\{i_1(t), i_2(t), i_3(t), n_1(t), n_2(t), n_3(t)\}$$

составим прямую систему дифференциальных уравнений Колмогорова:

$$\begin{split} \frac{\partial P(i_1,i_2,i_3,n_1,n_2,n_3,t)}{\partial t} &= -\left(\lambda + i_1\mu_1 + i_2\mu_2 + i_3\mu_3\right)P(i_1,i_2,i_3,n_1,n_2,n_3,t) + \\ &+ \left(i_1 + 1\right)\mu_1P(i_1 + 1,i_2,i_3,n_1 - 1,n_2,n_3,t) + \left(i_2 + 1\right)\mu_2P(i_1,i_2 + 1,i_3,n_1,n_2 - 1,n_3,t) + \\ &+ \left(i_3 + 1\right)\mu_3P(i_1,i_2,i_3 + 1,n_1,n_2,n_3 - 1,t) + \lambda P(i_1 - 1,i_2 - 1,i_3 - 1,n_1,n_2,n_3,t). \end{split}$$

Обозначим совместную производящую функцию процесса $\left\{i_1(t),i_2(t),i_3(t),n_1(t),n_2(t),n_3(t)\right\}:$

$$F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t) =$$

$$= \sum_{i_{1}} \sum_{i_{2}} \sum_{i_{3}} \sum_{n_{1}} \sum_{n_{2}} \sum_{n_{3}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} y_{1}^{n_{1}} y_{2}^{n_{2}} y_{3}^{n_{3}} P(i_{1}, i_{2}, i_{3}, n_{1}, n_{2}, n_{3}, t)$$

Тогда получим дифференциальное уравнение вида:

$$\frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial t} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, t)}{\partial x_{1}} (x_{1} - y_{1}) \mu_{1} + \frac{\partial F(x_{1}, x_{2}, x_{3}, y_{$$

$$+\frac{\partial F(x_1, x_2, x_3, y_1, y_2, y_3, t)}{\partial x_2}(x_2 - y_2)\mu_2 + \frac{\partial F(x_1, x_2, x_3, y_1, y_2, y_3, t)}{\partial x_3}(x_3 - y_3)\mu_3 =$$

$$= \lambda (x_1 x_2 x_3 - 1) F(x_1, x_2, x_3, y_1, y_2, y_3, t).$$

В начальные моменты система функционирует в стационарном режиме, то есть

$$F(x_1, x_2, x_3, y_1, y_2, y_3, 0) = f(x_1, x_2, x_3),$$

где функция $f(x_1, x_2, x_3)$ определяется выражением (2.9).

Решаем дифференциальное уравнение вида

$$\frac{dt}{1} = \frac{dx_1}{\mu_1(x_1 - y_1)} = \frac{dx_2}{\mu_2(x_2 - y_2)} = \frac{dx_3}{\mu_3(x_3 - y_3)} = \frac{dF(x_1, x_2, x_3, y_1, y_2, y_3, t)}{\lambda(x_1 x_2 x_3 - 1)F(x_1, x_2, x_3, y_1, y_2, y_3, t)}$$

Найдем три первых интеграла из уравнений:

$$dt = \frac{dx_1}{\mu_1 (x_1 - y_1)},$$

$$dt = \frac{dx_2}{\mu_2 (x_2 - y_2)},$$

$$dt = \frac{dx_3}{\mu_2 (x_2 - y_2)},$$

и получаем, что

$$x_1 = y_1 + C_1 e^{\mu_1 t}, C_1 = (x_1 - y_1) e^{-\mu_1 t},$$

$$x_2 = y_2 + C_2 e^{\mu_2 t}, C_2 = (x_2 - y_2) e^{-\mu_2 t},$$

$$x_3 = y_3 + C_3 e^{\mu_3 t}, C_3 = (x_3 - y_3) e^{-\mu_3 t}.$$

Последний интеграл получим из уравнения

$$dt = \frac{dF(x_1, x_2, x_3, y_1, y_2, y_3, t)}{\lambda(x_1x_2x_3 - 1)F(x_1, x_2, x_3, y_1, y_2, y_3, t)},$$

откуда получим

$$\ln F = \Phi(C_1C_2C_3) \exp\{\lambda(y_1y_2y_3 - 1)t + \frac{\lambda y_1y_3C_2}{\mu_2}e^{\mu_2t} + \frac{\lambda y_2y_3C_1}{\mu_1}e^{\mu_1t} + \frac{\lambda y_1y_2C_3}{\mu_3}e^{\mu_3t} + \frac{\lambda y_2C_1C_3}{\mu_1 + \mu_3}e^{(\mu_1 + \mu_3)t} + \frac{\lambda y_3C_1C_2}{\mu_1 + \mu_2}e^{(\mu_1 + \mu_2)t} + \frac{\lambda C_1C_2C_3}{\mu_1 + \mu_2 + \mu_3}e^{(\mu_1 + \mu_2 + \mu_3)t}\} = \\ = \Phi((x_1 - y_1)e^{-\mu_1t}, (x_2 - y_2)e^{-\mu_2t}, (x_3 - y_3)e^{-\mu_3t}) \times \\ \times \exp\{\lambda(y_1y_2y_3 - 1)t + \frac{\lambda y_1y_3(x_2 - y_2)}{\mu_2} + \frac{\lambda y_2y_3(x_1 - y_1)}{\mu_3} + \frac{\lambda y_1y_2(x_3 - y_3)}{\mu_3} + \frac{\lambda y_1(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_3} + \frac{\lambda y_1(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_3} + \frac{\lambda y_3(x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_3} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_3} + \frac{\lambda y_3(x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_1 + \mu_2} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x_3 - y_3)}{\mu_2 + \mu_3} + \frac{\lambda (x_1 - y_1)(x_2 - y_2)(x$$

где $\Phi(C_1, C_2, C_3)$ — произвольная функция, определяемая из начальных условий.

$$\Phi((x_{1}-y_{1}),(x_{2}-y_{2}),(x_{3}-y_{3})) = \begin{cases}
-\left(\lambda(y_{1}y_{2}y_{3}-1)t + \frac{\lambda y_{1}y_{3}(x_{2}-y_{2})}{\mu_{2}} + \frac{\lambda y_{2}y_{3}(x_{1}-y_{1})}{\mu_{1}} + \frac{\lambda y_{1}y_{2}(x_{3}-y_{3})}{\mu_{3}} + \frac{\lambda y_{1}(x_{2}-y_{2})(x_{3}-y_{3})}{\mu_{2}+\mu_{3}} + \frac{\lambda y_{2}(x_{1}-y_{1})(x_{3}-y_{3})}{\mu_{1}+\mu_{3}} + \frac{\lambda y_{3}(x_{1}-y_{1})(x_{2}-y_{2})}{\mu_{1}+\mu_{2}} + \frac{\lambda (x_{1}-y_{1})(x_{2}-y_{2})(x_{3}-y_{3})}{\mu_{1}+\mu_{2}+\mu_{3}} + \frac{\lambda (x_{1}-y_{1})(x_{2}-y_{2})(x_{3}-y_{3})}{\mu_{1}+\mu_{2}+\mu_{3}+\mu_{3}+\mu_{3}+\mu_{3}+\mu_{3}+\mu_{3}+\mu_{3}+\mu_{3}+\mu_{3}+\mu_$$

Тогда выражение для $F(x_1, x_2, x_3, y_1, y_2, y_3, t)$ имеет вид

$$F(x_{1},x_{2},x_{3},y_{1},y_{2},y_{3},t) =$$

$$\begin{cases}
\frac{\lambda(x_{1}-y_{1})(x_{2}-y_{2})(x_{3}-y_{3})}{\mu_{1}+\mu_{2}+\mu_{3}}(1-e^{-(\mu_{1}+\mu_{2}+\mu_{3})t}) + \\
+\lambda(y_{1}y_{2}y_{3}-1)t + \frac{\lambda y_{1}y_{3}(x_{2}-y_{2})}{\mu_{2}}(1-e^{-\mu_{2}t}) + \\
+\frac{\lambda y_{2}y_{3}(x_{1}-y_{1})}{\mu_{1}}(1-e^{-\mu_{1}t}) + \frac{\lambda y_{1}y_{2}(x_{3}-y_{3})}{\mu_{3}}(1-e^{-\mu_{3}t}) + \\
+\frac{\lambda y_{1}(x_{2}-y_{2})(x_{3}-y_{3})}{\mu_{2}+\mu_{3}}(1-e^{-(\mu_{2}+\mu_{3})t}) + \\
+\frac{\lambda y_{2}(x_{1}-y_{1})(x_{3}-y_{3})}{\mu_{1}+\mu_{3}}(1-e^{-(\mu_{1}+\mu_{3})t}) + \\
+\frac{\lambda y_{3}(x_{1}-y_{1})(x_{2}-y_{2})}{\mu_{1}+\mu_{2}}(1-e^{-(\mu_{1}+\mu_{2})t})
\end{cases}$$

Полагая $x_1 = x_2 = x_3 = 1$ получаем выражение для маргинальной производящей функции трехмерного выходящего потока

$$F(1,1,1,y_{1},y_{2},y_{3},t) = F(y_{1},y_{2},y_{3},t) =$$

$$\begin{cases} \frac{\lambda(1-y_{1})(1-y_{2})(1-y_{3})}{\mu_{1}+\mu_{2}+\mu_{3}} \left(1-e^{-(\mu_{1}+\mu_{2}+\mu_{3})t}\right) + \\ +\lambda(y_{1}y_{2}y_{3}-1)t + \frac{\lambda y_{1}y_{3}(1-y_{2})}{\mu_{2}} \left(1-e^{-\mu_{2}t}\right) + \\ +\frac{\lambda y_{2}y_{3}(1-y_{1})}{\mu_{1}} \left(1-e^{-\mu_{1}t}\right) + \frac{\lambda y_{1}y_{2}(1-y_{3})}{\mu_{3}} \left(1-e^{-\mu_{3}t}\right) + \\ +\frac{\lambda y_{1}(1-y_{2})(1-y_{3})}{\mu_{2}+\mu_{3}} \left(1-e^{-(\mu_{1}+\mu_{3})t}\right) + \\ +\frac{\lambda y_{2}(1-y_{1})(1-y_{3})}{\mu_{1}+\mu_{3}} \left(1-e^{-(\mu_{1}+\mu_{3})t}\right) + \\ +\frac{\lambda y_{3}(1-y_{1})(1-y_{2})}{\mu_{1}+\mu_{2}} \left(1-e^{-(\mu_{1}+\mu_{2})t}\right) \end{cases}.$$

Следовательно одномерные производящие функции распределения вероятностей числа выходящих заявок являются пуассоновскими и имеют вид

$$f(y_{1}(t)) = \exp\left\{\lambda(y_{1}-1)t + \frac{\lambda(1-y_{1})}{\mu_{1}}(1-e^{-\mu_{1}t})\right\} =$$

$$= \exp\left\{\lambda(y_{1}-1)\left(\frac{e^{-\mu_{1}t} + t\mu_{1} - 1}{\mu_{1}}\right)\right\}$$

$$f(y_{2}(t)) = \exp\left\{\lambda(y_{2}-1)t + \frac{\lambda(1-y_{2})}{\mu_{2}}(1-e^{-\mu_{2}t})\right\} =$$

$$= \exp\left\{\lambda(y_{2}-1)\left(\frac{e^{-\mu_{2}t} + t\mu_{2} - 1}{\mu_{2}}\right)\right\}$$

$$f(y_{3}(t)) = \exp\left\{\lambda(y_{3}-1)t + \frac{\lambda(1-y_{3})}{\mu_{3}}(1-e^{-\mu_{3}t})\right\} =$$

$$= \exp\left\{\lambda(y_{3}-1)\left(\frac{e^{-\mu_{3}t} + t\mu_{3} - 1}{\mu_{3}}\right)\right\}$$

$$\vdots$$

Из (1.13) следует, что:

• математическое ожидание числа обслуженных заявок в блоках системы имеет вид:

$$M\left\{n_{k}\left(t\right)\right\} = \left\{\lambda\left(y_{k}-1\right)\left[t-\frac{1-e^{-\mu_{k}t}}{\mu_{k}}\right]\right\}, \left(k=1,2,3\right).$$

• дисперсия числа обслуженных заявок в блоках системы имеет вид:

$$D\{n_k(t)\} = \left\{\lambda(y_k - 1)\left[t - \frac{1 - e^{-\mu_k t}}{\mu_k}\right]\right\}, (k = 1, 2, 3).$$

Следовательно, выходящие потоки являются пуассоновскими нестационарными.

1.9 Распределение числа выходящих заявок

Для одномерных производящих функций (1.14) построим распределение числа выходящих заявок.

С помощью программного обеспечения Mathcad выполним численный анализ системы. Заменим переменную y на e^{iu} , где $i=\sqrt{-1}$ тогда производящая функция станет характеристической.

Параметры потока			
λ := 1	интенсивностьвходного потока;		
μ ₁ := 0.4	интенсивностьобслуживания;		
t := 10	времяобслуживания		
$F(y) := e^{\left[\lambda \cdot (y-1)\left(t - \frac{1-e^{-\mu_1 t}}{\mu_1}\right)\right]}$	– характеристическая функция для числа выходящего потока из 1 блока;		
Нахождение распределения числа заявок в системе			
$p1i := \begin{cases} \text{for } k \in 0n \\ pi_{k,0} \leftarrow \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} e^{-i \cdot u \cdot k} \cdot H(u) du \end{cases}$	– обратное преобразование Фурье;		

Ниже (рис. 7) представлены графики распределения числа выходящих заявок:

$$\lambda = 1, \mu_1 = 0.4, t = 10$$

Рисунок 7 – Распределение числа выходящих заявок

С ростом времени будет накапливаться больше заявок выходящего потока.

По мере продолжения работы блока и стабилизации процесса обслуживания, количество заявок, находящихся в блоке, будет достигать определенного уровня и стабилизироваться. Это может быть связано с тем, что блок способен обработать определенное количество заявок в единицу времени, и поступление новых заявок компенсируется выходом уже обработанных.

Полученный вид распределения может быть использован для практического результата.

Глава 2 Системы параллельного обслуживания вида $M^{\,n}\mid M_{_{n}}\mid \infty$

2.1 Система дифференциальных уравнений Колмогорова

Состояние системы определим вектором $\{i_1(t)...i_n(t)\}$, где i_n — число заявок, находящихся на обслуживании в n -ом блоке в момент времени t .

Ставится задача исследования n-мерного процесса $\{i_1(t)...i_n(t)\}$, а именно нахождения производящей функции и основных вероятностных характеристик.

Случайный процесс $\{i_1(t), i_2(t) \cdots i_n(t)\}$ изменения во времени состояний системы является n-мерной цепью Маркова.

Составим прямую систему дифференциальных уравнений Колмогорова. По формуле полной вероятности запишем равенства:

$$P(i_{1},i_{2},...i_{n},t+\Delta t) = (1-\lambda\Delta t)(1-i_{1}\mu_{1}\Delta t)(1-j\mu_{2}\Delta t)\times...\times \times (1-i_{n}\mu_{n}\Delta t)P(i_{1},i_{2},...i_{n},t) + \lambda\Delta tP(i_{1}-1,i_{2}-1,...,i_{n}-1,t) + (i_{1}+1)\mu_{1}\Delta tP(i_{1}+1,i_{2},...i_{n},t) + (i_{2}+1)\mu_{2}\Delta tP(i_{1},i_{2}+1,...i_{n},t) + ...+ + (i_{n}+1)\mu_{n}\Delta tP(i_{1},i_{2},...i_{n}+1,t) + o(\Delta t)$$

$$(2.1)$$

Откуда получаем систему дифференциальных уравнений

$$\frac{\partial P(i_1, i_2, \dots i_n, t)}{\partial t} = -(\lambda + i_1 \mu_1 + i_2 \mu_2 + \dots + i_n \mu_n) P(i_1, i_2, \dots i_n, t) + \\
+ \lambda P(i_1 - 1, i_2 - 1, \dots, i_n - 1, t) + \\
+ (i_1 + 1) \mu_1 P(i_1 + 1, i_2, \dots i_n, t) + (i_2 + 1) \mu_2 P(i_1, i_2 + 1, \dots i_n, t) + \dots + \\
+ (i_n + 1) \mu_n P(i_1, i_2, \dots i_n + 1, t)$$
(2.2)

с начальными условиями

$$P(i_1,i_2,...i_n,t) = \begin{pmatrix} 1, ecnu & i_1 = i_2 = ... = i_n = 0 \\ 0, ecnu & i_1,i_2,...i_n > 0 \end{pmatrix},$$

то есть в предположении, что в начальный момент времени система была пуста.

2.2 Производящая функция

Определим производящую функцию п-мерного распределения $P(i_1,i_2,...i_n,t)$ в виде

$$F(x_1, x_2, \dots, x_n, t) = \sum_{i_1=0}^{\infty} \sum_{i_2=0}^{\infty} \dots \sum_{i_n=0}^{\infty} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} P(i_1, i_2, \dots, i_n, t),$$

Она удовлетворяет линейному дифференциальному уравнению в частных производных первого порядка

$$\frac{\partial F\left(x_{1}, x_{2}, \dots, x_{n}, t\right)}{\partial t} + \mu_{1}\left(x_{1} - 1\right) \frac{\partial F\left(x_{1}, x_{2}, \dots, x_{n}, t\right)}{\partial x_{1}} + \mu_{2}\left(x_{2} - 1\right) \frac{\partial F\left(x_{1}, x_{2}, \dots, x_{n}, t\right)}{\partial x_{2}} + \dots + \mu_{n}\left(x_{n} - 1\right) \frac{\partial F\left(x_{1}, x_{2}, \dots, x_{n}, t\right)}{\partial x_{n}} =$$

$$= \lambda\left(x_{1}x_{2} \dots x_{n} - 1\right) F\left(x_{1}, x_{2}, \dots, x_{n}, t\right), \tag{2.3}$$

с начальными условиями

$$F(x_1, x_2, ..., x_n, 0) = 1.$$
 (2.4)

Запишем для дифференциального уравнения (2.3) соответствующую систему обыкновенных дифференциальных уравнений

$$\frac{dt}{1} = \frac{dx_1}{\mu_1(x_1 - 1)} = \frac{dx_2}{\mu_2(x_2 - 1)} = \dots = \frac{dx_n}{\mu_n(x_n - 1)} = \frac{dF}{\lambda(x_1 x_2 \dots x_n - 1)F}$$

Систему обыкновенных дифференциальных уравнений перепишем в следующем виде:

$$\frac{dt}{1} = \frac{dx_1}{\mu_1(x_1 - 1)} = \frac{dx_2}{\mu_2(x_2 - 1)} = \dots = \frac{dx_n}{\mu_n(x_n - 1)} = \frac{dF(x_1, x_2, \dots, x_n)}{\lambda(x_1 x_2 \dots x_n - 1)F(x_1, x_2, \dots, x_n)}$$

где

$$(x_1x_2\ldots x_n-1)=$$

$$= (x_{1} - 1)(x_{2} - 1) \cdot ... \cdot (x_{n} - 1) + + (x_{2} - 1) \cdot ... \cdot (x_{n} - 1) + ... + + (x_{1} - 1)(x_{2} - 1) + ... + (x_{n-1} - 1)(x_{n} - 1) + + (x_{1} - 1) + ... + (x_{n} - 1)$$
(2.5)

Для данной системы найдем первые интегралы.

$$\int dt = \int \frac{dx_1}{\mu_1(x_1 - 1)} \Longrightarrow C_1 = (x_1 - 1)e^{-\mu_1 t},$$

. . .

$$\int dt = \int \frac{dx_n}{\mu_n(x_n - 1)} \Longrightarrow C_n = (x_n - 1)e^{-\mu_n t}. \tag{2.6}$$

Далее рассмотрим дифференциальное уравнение:

$$\int dt = \int \frac{dF(x_1, x_2, ..., x_n, t)}{\lambda(x_1 x_2, ..., x_n - 1) F(x_1, x_2, ..., x_n, t)}.$$

Учитывая (2.5), перепишем его в виде:

$$\ln F(x_1, x_2, \dots, x_n) = \widetilde{C} + \int_0^t \begin{bmatrix} (x_1 - 1)(x_2 - 1) \cdot \dots \cdot (x_n - 1) + (x_2 - 1) \cdot \dots \cdot (x_n - 1) + \\ + \dots + (x_1 - 1)(x_2 - 1) + \dots + (x_{n-1} - 1)(x_n - 1) + \\ + (x_1 - 1) + \dots + (x_n - 1) \end{bmatrix} ds$$

Теперь с помощью (2.6) выражаем $(x_1 - 1), ..., (x_n - 1)$, и получаем:

$$\ln F(x_1, x_2, ..., x_n) = \widetilde{C} + \int_0^t \lambda \begin{bmatrix} C_1 C_2 \cdot ... \cdot C_n e^{\{\mu_1 + \mu_2 + ... + \mu_n\}s} + C_2 \cdot ... \times \\ \times C_n e^{\{\mu_2 + ... + \mu_n\}s} + \\ + ... + C_1 C_2 e^{\{\mu_1 + \mu_2\}s} + ... + C_{n-1} C_n e^{\{\mu_{n-1} + \mu_n\}} + \\ + C_1 e^{\mu_1 s} + ... + C_n e^{\mu_n s} \end{bmatrix} ds.$$

Далее $C_1C_2\dots C_n$ снова выражаем из (2.6), только теперь с t , т. к. это константа:

$$\ln F(x_1, x_2, \dots, x_n) = \widetilde{C} + \int_0^t \lambda \begin{bmatrix} (x_1 - 1)e^{-\mu_1 t}(x_2 - 1)e^{-\mu_2 t} \cdot \dots \cdot (x_n - 1)e^{-\mu_n t}e^{\{\mu_1 + \dots + \mu_n\}s} + \\ (x_2 - 1)e^{-\mu_2 t} \cdot \dots \cdot (x_n - 1)e^{-\mu_n t}e^{\{\mu_2 + \dots + \mu_n\}s} + \dots + \\ + (x_1 - 1)e^{-\mu_1 t}(x_2 - 1)e^{-\mu_2 t}e^{\{\mu_1 + \mu_2\}s} + \dots + \\ + (x_{n-1} - 1)e^{-\mu_{n-1} t}(x_n - 1)e^{-\mu_n t}e^{\{\mu_{n-1} + \mu_n\}s} + \\ + (x_1 - 1)e^{-\mu_1 t}e^{\mu_1 s} + \dots + (x_n - 1)e^{-\mu_n t}e^{\mu_n s} \end{bmatrix} ds$$

Общее решение имеет вид:

$$F(x_{1},x_{2},...,x_{n},t) = \Phi((x_{1}-1)e^{-\mu_{1}t},...,(x_{n}-1)e^{-\mu_{n}t}) \times \left\{ \frac{\lambda(x_{1}-1)\cdot...\cdot(x_{n}-1)}{\mu_{1}+...+\mu_{n}} + \frac{\lambda(x_{2}-1)\cdot...\cdot(x_{n}-1)}{\mu_{2}+...+\mu_{n}} + ... + \frac{\lambda(x_{1}-1)(x_{n}-1)}{\mu_{1}+\mu_{n}} + \frac{\lambda(x_{1}-1)}{\mu_{1}} + ... + \frac{\lambda(x_{n}-1)}{\mu_{n}} \right\}.$$

где $\Phi(x)$ – произвольная дифференцируемая функция.

Учитывая начальные условия (2.4), получаем:

$$F(x_{1},x_{2},...,x_{n},0) = \Phi((x_{1}-1),(x_{2}-1),...,(x_{n}-1)) \times \left\{ \frac{\lambda(x_{1}-1)\cdot...\cdot(x_{n}-1)}{\mu_{1}+...+\mu_{n}} + \frac{\lambda(x_{2}-1)\cdot...\cdot(x_{n}-1)}{\mu_{2}+...+\mu_{n}} + ... + \frac{\lambda(x_{1}-1)(x_{n}-1)}{\mu_{1}+\mu_{n}} + \frac{\lambda(x_{1}-1)}{\mu_{1}} + ... + \frac{\lambda(x_{n}-1)}{\mu_{n}} + ... + \frac{\lambda(x_{n}-1)}{\mu_{n}} \right\} = 1$$

Откуда определим вид функции $\Phi(\cdots)$,

$$\Phi((x_{1}-1),(x_{2}-1),...,(x_{n}-1)) =$$

$$\exp \left\{ -\left[\frac{\lambda(x_{1}-1)\cdot...\cdot(x_{n}-1)}{\mu_{1}+...+\mu_{n}} + \frac{\lambda(x_{2}-1)\cdot...\cdot(x_{n}-1)}{\mu_{2}+...+\mu_{n}} + ... + \frac{\lambda(x_{1}-1)(x_{n}-1)}{\mu_{1}+\mu_{n}} + \frac{\lambda(x_{1}-1)}{\mu_{1}} + ... + \frac{\lambda(x_{n}-1)}{\mu_{n}} + ... + \frac{\lambda(x_{n}-1)}{\mu_{n}} \right] \right\}$$

Следовательно,

$$\Phi((x_{1}-1)e^{-\mu_{1}t},(x_{2}-1)e^{-\mu_{2}t},...,(x_{k}-1)e^{-\mu_{n}t}) = \begin{cases}
-\frac{\lambda}{\mu_{1}+...+\mu_{n}}(x_{1}-1)\cdot...\cdot(x_{n}-1)e^{-(\mu_{1}+...+\mu_{n})t} - \\
-\frac{\lambda}{\mu_{2}+...+\mu_{n}}(x_{2}-1)\cdot...\cdot(x_{n}-1)e^{-(\mu_{2}+...+\mu_{n})t} - ... - \\
-\frac{\lambda}{\mu_{1}+\mu_{n}}(x_{1}-1)(x_{n}-1)e^{-(\mu_{2}+\mu_{n})t} - ... - \\
-\frac{\lambda(x_{1}-1)}{\mu_{1}}e^{-\mu_{1}t} - ... - \frac{\lambda(x_{n}-1)}{\mu_{n}}e^{-\mu_{n}t}
\end{cases}$$

Выражение для производящей функции имеет вид:

$$F(x_{1}, x_{2}, ..., x_{n}, t) =$$

$$\begin{cases}
\frac{\lambda}{\mu_{1} + ... + \mu_{n}} (x_{1} - 1) \cdot ... \cdot (x_{n} - 1) (1 - e^{-(\mu_{1} + ... + \mu_{n})t}) + \\
+ \frac{\lambda}{\mu_{2} + ... + \mu_{n}} (x_{2} - 1) \cdot ... (x_{n} - 1) (1 - e^{-(\mu_{2} + ... + \mu_{n})t}) + ... + \\
+ \frac{\lambda}{\mu_{1} + \mu_{n}} (x_{1} - 1) (x_{n} - 1) (1 - e^{-(\mu_{1} + \mu_{n})t}) + ... + \\
+ \frac{\lambda}{\mu_{1}} (x_{1} - 1) (1 - e^{-\mu_{1}t}) + \frac{\lambda}{\mu_{2}} (x_{2} - 1) (1 - e^{-\mu_{2}t}) + ... + \\
+ \frac{\lambda}{\mu_{n}} (x_{n} - 1) (1 - e^{-\mu_{n}t})
\end{cases}$$
(2.7)

Устремив $t \to \infty$, получим вид производящей функции стационарного распределения вероятностей

$$\begin{cases}
\frac{\lambda}{\mu_{1} + \dots + \mu_{n}} (x_{1} - 1) \cdot \dots \cdot (x_{n} - 1) + \\
+ \frac{\lambda}{\mu_{2} + \dots + \mu_{n}} (x_{2} - 1) \cdot \dots \cdot (x_{n} - 1) + \dots + \\
+ \frac{\lambda}{\mu_{1} + \mu_{n}} (x_{1} - 1) (x_{n} - 1) + \dots + \\
+ \frac{\lambda}{\mu_{1}} (x_{1} - 1) + \frac{\lambda}{\mu_{2}} (x_{2} - 1) + \dots + \\
+ \frac{\lambda}{\mu_{n}} (x_{n} - 1)
\end{cases} (2.8)$$

Одномерные маргинальные производящие функции числа занятых приборов в каждом блоке обслуживания являются пуассоновскими и имеют вид

$$f(x_1) = \sum_{i_1} x_1^{i_1} P\{i_1(t) = i_1\} = \exp\left\{\frac{\lambda}{\mu_1} (x_1 - 1)\right\},$$

$$f(x_2) = \sum_{i_2} x_2^{i_2} P\{i_2(t) = i_2\} = \exp\left\{\frac{\lambda}{\mu_2} (x_2 - 1)\right\},$$

...

$$f(x_n) = \sum_{i_n} x_n^{i_n} P\{i_n(t) = i_n\} = \exp\{\frac{\lambda}{\mu_n}(x_n - 1)\}$$
.

2.3 Вероятностные характеристики в стационарном режиме

Из (2.8) получим основные вероятностные характеристики числа заявок в каждом блоке.

• математическое ожидание числа занятых приборов в каждом из блоков системы имеет вид

$$M\{i_n\}=\frac{\lambda}{\mu_n}.$$

• дисперсия числа занятых приборов в каждом из блоков системы имеет вид

$$D\{i_n\} = \frac{\lambda}{\mu_n}.$$

Используя (2.8), найдем выражение для коэффициента корреляции между компонентами процесса обслуживания требований в рассматриваемой модели. Определим корреляционные моменты.

$$M\left\{i_1i_2\right\} = \frac{\partial^2 F\left(x_1, x_2\right)}{\partial x_1 \partial x_2}\bigg|_{\substack{x_1=1\\x_2=1}} = \frac{\lambda}{\mu_1 + \mu_2} + \frac{\lambda}{\mu_1} \frac{\lambda}{\mu_2},$$

$$M\left\{i_1i_3\right\} = \frac{\partial^2 F\left(x_1, x_3\right)}{\partial x_1 \partial x_3}\bigg|_{\substack{x_1=1\\x_3=1}} = \frac{\lambda}{\mu_1 + \mu_3} + \frac{\lambda}{\mu_1} \frac{\lambda}{\mu_3},$$

. . .

$$M\left\{i_{n-1}i_{n}\right\} = \frac{\partial^{2}F\left(x_{n-1}, x_{n}\right)}{\partial x_{n-1}\partial x_{n}}\bigg|_{\substack{x_{n-1}=1\\x_{n}=1}} = \frac{\lambda}{\mu_{n-1} + \mu_{n}} + \frac{\lambda}{\mu_{n-1}}\frac{\lambda}{\mu_{n}}.$$

Тогда

$$r(i_{1},i_{2}) = \frac{\operatorname{cov}(i_{1},i_{2})}{\sqrt{Di_{1}Di_{2}}} = \frac{\frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{2}} + \frac{\lambda}{\mu_{1} + \mu_{2}} - \frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{2}}}{\sqrt{\frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{2}}}} = \frac{\lambda\sqrt{\mu_{1}\mu_{2}}}{\lambda(\mu_{1} + \mu_{2})} = \frac{\sqrt{\mu_{1}\mu_{2}}}{\mu_{1} + \mu_{2}},$$

$$r(i_{1},i_{3}) = \frac{\text{cov}(i_{1},i_{3})}{\sqrt{Di_{1}Di_{3}}} = \frac{\frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{3}} + \frac{\lambda}{\mu_{1} + \mu_{3}} - \frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{3}}}{\sqrt{\frac{\lambda}{\mu_{1}}\frac{\lambda}{\mu_{3}}}} = \frac{\lambda\sqrt{\mu_{1}\mu_{3}}}{\lambda(\mu_{1} + \mu_{3})} = \frac{\sqrt{\mu_{1}\mu_{3}}}{\mu_{1} + \mu_{3}},$$

. . .

$$r(i_1,i_n) = \frac{\operatorname{cov}(i_1,i_n)}{\sqrt{Di_1Di_n}} = \frac{\frac{\lambda}{\mu_1}\frac{\lambda}{\mu_n} + \frac{\lambda}{\mu_1 + \mu_n} - \frac{\lambda}{\mu_1}\frac{\lambda}{\mu_n}}{\sqrt{\frac{\lambda}{\mu_1}\frac{\lambda}{\mu_n}}} = \frac{\lambda\sqrt{\mu_1\mu_n}}{\lambda(\mu_1 + \mu_n)} = \frac{\sqrt{\mu_1\mu_n}}{\mu_1 + \mu_n}.$$

Определим $\mu_{\scriptscriptstyle n} = \alpha \mu_{\scriptscriptstyle 1}$, где α - произвольное неотрицательное число, тогда коэффициент корреляции имеет вид

$$r(i_1,i_n) = \frac{\sqrt{\alpha(\mu_1)^2}}{\mu_1(1+\alpha)} = \frac{\sqrt{\alpha}}{(1+\alpha)}.$$

Так же как в исследовании для трехмерного случая, из графика (рис. 8) видно, что наибольшая зависимость изучаемых процессов достигается при $\alpha = 1$ То есть при одинаковых параметрах времени обслуживания, коэффициент корреляции равен 0,5.

Рисунок 8 — Изменение коэффициента корреляции процессов $\{i_1, i_n\}$

Такие модели параллельного обслуживания с кратными заявками представляют интерес для исследования и оптимизации процессов обслуживания в различных областях, например, в телекоммуникационных сетях или в производственных системах. Анализ таких систем требует учета

особенностей дисциплины обслуживания, стохастических характеристик и зависимости параметров распределения от номера блока. Это позволяет разрабатывать эффективные стратегии управления ресурсами и повышать производительность систем обслуживания.

2.4 Вероятностные характеристики в нестационарном режиме

Из производящей функции (2.7) получим основные вероятностные характеристики числа заявок в каждом блоке в момент времени t.

1) математическое ожидание числа заявок в каждом из блоков системы:

$$M\{i_n(t)\} = \frac{\lambda}{\mu_n} \left(1 - e^{-\mu_n t}\right),\,$$

2) дисперсия числа заявок в каждом из блоков системы:

$$D\{i_n(t)\} = \frac{\lambda}{\mu_n} \left(1 - e^{-(\mu_n)t}\right).$$

С помощью 2.7 найдем выражение для коэффициента корреляции между компонентами процесса обслуживания требований в рассматриваемой модели. Определим корреляционные моменты

$$\begin{split} M\left\{i_{n-1}i_{n}\right\} &= \frac{\partial^{2}F\left(x_{n-1},x_{n},t\right)}{\partial x_{n-1}\partial x_{n}}\bigg|_{\substack{x_{n-1}=1\\x_{n}=1}} = \\ &= \frac{\lambda}{\mu_{n-1}}\left(1 - e^{-\mu_{n-1}t}\right)\frac{\lambda}{\mu_{n}}\left(1 - e^{-\mu_{n}t}\right) + \frac{\lambda}{\mu_{n-1} + \mu_{n}}\left(1 - e^{-(\mu_{n-1} + \mu_{n})t}\right) \end{split}$$

Тогда

$$r(i_{n-1}(t),i_n(t)) = \frac{\frac{\lambda}{\mu_{n-1} + \mu_n} (1 - e^{-(\mu_{n-1} + \mu_n)t})}{\sqrt{\left[\frac{\lambda}{\mu_{n-1}} (1 - e^{-\mu_{n-1}t})\right] \left[\frac{\lambda}{\mu_n} (1 - e^{-\mu_n t})\right]}}.$$

Рассмотрим попарную нормированную корреляционную функцию для блоков обслуживания (рис 9):

Рисунок 9 — Корреляционная функция процессов $\left\{i_{n-1}(t),i_{n}(t)\right\}$

В этом случае так же с течением времени система стремится к стационарному режиму.

ЗАКЛЮЧЕНИЕ

В ходе данного исследования была разработана математическая модель параллельного обслуживания кратных заявок пуассоновского потока. Были рассмотрены основные теоретические сведения, связанные с системами массового обслуживания, и выделены ключевые особенности построения моделей параллельного обслуживания с неограниченным числом обслуживающих приборов и специальными входящими потоками кратных заявок.

Исследование различных случаев математической модели параллельного обслуживания с неограниченным числом обслуживающих приборов, имеющих неограниченное количество блоков обслуживания, позволило выявить важные зависимости и влияние различных параметров на производительность. Построенная модель дала возможность исследовать состояния системы параллельного обслуживания и определить оптимальные стратегии обслуживания.

В результате исследования были получены следующие основные выводы:

- 1. Математическая модель параллельного обслуживания кратных заявок пуассоновского потока позволяет эффективно описывать и анализировать такие системы обслуживания.
- 2. Результаты исследования позволяют определить оптимальные стратегии обслуживания, например, оптимальное количество обслуживающих приборов или оптимальное распределение ресурсов между блоками обслуживания.
- 3. Полученные результаты могут быть применимы в различных областях, где важно эффективное управление параллельными системами обслуживания.

В заключение исследование математической модели параллельного обслуживания кратных заявок пуассоновского потока представляет собой важный шаг в понимании и оптимизации систем обслуживания. Разработанная

модель и полученные результаты имеют практическую значимость и могут служить основой для разработки более эффективных стратегий управления параллельными системами обслуживания в реальных условиях.

ЛИТЕРАТУРА

- 1. Башарин Г.П., Харкевич А.Д., Шнепс М.А. Массовое обслуживание в телефонии. М.: Наука, 1968. 119 с.
- 2. Бережная Е.В. Бережной В.И. Математические методы моделирования экономических систем М., 2007.- 432 с.
- 3. Бочаров П.П., Громов А.И. О пуассоновской двухфазной системе ограниченной емкости // Методы теории телетрафика в системах распределения информации. М.: Наука, 1975. С. 15-28.
- 4. Бочаров П.П., Печинкин А.В. Теория массового обслуживания. М.: Изд-во РУДН. 1995. 520 с.
- 5. Жихарев, А.Г. Разработка средств и методов имитационного моделирования транспортных потоков города / А.Г. Жихарев, С.И. Маторин, Н.О. Зайцева // Научные ведомости Белгородского государственного университета. Серия История. Политология. Экономика. Информатика. 20i4. № 1 (172). Выпуск 29/1. С. 66-69
- 6. Назаров А.А., Терпугов А.Ф. Теория массового обслуживания: Учебное пособие. – Томск: Изд-во НТЛ. 2004. – 228 с.
- 7. Саати Т.Л. Элементы теории массового обслуживания и ее приложения. 2-е изд. М.: Советское радио, 1971. 519 с.
- 8. Севастьянов Б.А. Эргодическая теорема для марковских процессов и ее приложение к телефонным линиям с отказами // Теория вероятностей и ее прим. 1957. Т.2. Вып.1. С. 106-116.
- 9. Синякова И.А. Математические модели и методы исследования систем параллельного обслуживания сдвоенных заявок случайных потоков [Текст]: дис. ... канд. физ.-мат. наук: 05.13.18: защищена 20.06.2013. Томск, 2013. 145 с.
- 10. Солнышкина И.В. Теория систем массового обслуживания. Учебное пособие. Комскомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ». 2015. 76 с.

- 11. Тубольцева, О.М. Моделирование деловых процессов на основе специализированного УФО-метода / О.М. Тубольцева, С.И. Маторин // Научные ведомости Белгородского государственного университета. Серия История. Политология. Экономика. Информатика. 2014. № 15 (186). Выпуск 31/1. С. 83-89.
- 12. Толстых О.Д. Цепи Маркова. Системы массового обслуживания. // Учебное пособие для студентов транспортных вузов. Иркутск: ИрИИТ, 1999. 204 с.
- 13. Туманбаева К.Х. Моделирование систем телекоммуникаций. Учебное пособие. – Алматы: Изд-во АИЭС. 2007. – 70 с.
- 14. Хинчин А.Я. Математические методы теории массового обслуживания. М.: Изд-во Академии наук СССР. 1955. 120 с.
- 15. Шкленник М.А. Исследование потоков в неоднородной системе массового обслуживания с неограниченным числом обслуживающих устройств и повторными обращениями / М.А. Шкленник, А.Н. Моисеев // Информационные технологии и математическое моделирование (ИТММ-2018): материалы XVII Международной конференции имени А.Ф. Терпугова, 10-15 сентября 2018 г. Томск, 2018. С. 156-162.
- 16. Шульга Ю.Л. Применение объемных стохастических сетей массового обслуживания к моделированию транспортных процессов // АиТ. 1986. № 7. С. 77-85.
- 17. Юдицкий, С.А. Бинарные сетевые дорожные карты процессов управления проектами / С.А. Юдицкий, В.З. Магергут, А.В. Чуев // Приборы и системы. Управление, контроль, диагностика. 2оі3. №4. С. 1-9.
- 18. Юдицкий, С.А. Моделирование виртуальных систем массового обслуживания на индикаторных сетях Петри / С.А. Юдицкий, В.З. Магергут, А.В. Чуев, Л.В. Желтова // Современные системы искусственного интеллекта и их приложения в науке. Всероссийская научная интернетконференция с международным участием: материалы конф. 2013. С.157-162.

- 19. Artalejo J.R. Accessible bibliography on retrial queues, Mathematical and Computer Modelling. 1999. Vol. 30. P. 223-233.
- 20. Artalejo, J.R. Retrial Queueing Systems: A Computational Approach [Текст] / J. R. Artalejo, A. G'omez-Corral. Springer-Verlag Berlin Heidelberg, 2008. URL: https://doi.org/10.1007/978-3-540-78725-9.
- 21. Asmussen, S. Applied probability and queues [Текст] / S. Asmussen. New York: Springer, 2003.
- 22. Bocharov, P.P. Queueing Theory [Текст] /P. P. Bocharov, C. D'Apice, A. V. Pechinkin. DE GRUYTER, 12.2003. (Modern Probability and Statistics). URL: https://www.degruyter.com/document/doi/10.1515/ 9783110936025/html (дата обр. 24.01.2022). 243
- 23. Brill, P.H. Level crossing methods in stochastic models [Текст] / P. H. Brill. New York, NY: Springer Berlin Heidelberg, 2017.
- 24. Ganesh, A. A Model of Job Parallelism for Latency Reduction in Large-Scale Systems [Текст] / A. Ganesh, A. Mukhopadhyay // arXiv e-prints. 2022. Март. arXiv:2203.08614. arXiv: 2203.08614 [math.PR].
- 25. Jackson J.R. Some Problems in Queuing with Dynamic Priorities, Naval Research Logistics Quarterly. 1960. Vol. 7. P. 235-249
- 26. Harchol-Balter, M. Performance modeling and design of computer systems: queueing theory in action [Teket] / M. Harchol-Balter. Cambridge: Cambridge University Press, 2013.

АНТИПЛАГИАТ оснаружения заимстверанией

отчет о проверке на заимствования №1

Автор: Шипунова Вистория Александровна Проверяющий: Моисеева Святлана Владимировна Организация: Томский Государственный Университет

Отчет предоставлен сервисом «Антиплагиат» - <u>http://tsu.antiolagiat.ru</u>

Срединтатом однакомиена 05.06.2023

letyer / U. A. Typenoba

нформация о документе

№ документа: 360 мичало загрузии: 04.06.2023 16:19:06 интельность загрузии: 00:00:13 ез исходного файла: ВКР_Шипунова_ВА (1).pdf

укрва-ме документа: ВКР_Шипунова_ВА (1) эмер техста: 44 кБ

п дохумента: Научно-квалификационна: работа Бумнолов в тексте: 45501

имволов в тексте: 45501 се в тексте: 6282 кло предложений: 330.

ИНФОРМАЦИЯ ОБ ОТЧЕТЕ

Начало проверки: 04.06.2023 16.59:22.
Двительность проверки: 00:00:17
Комментерних не указано
Понск с учетом редасирования: да
Проверенные разделы: основная часть с. 2-4,6-47
Модуль понска: ИПС Адилет, Библику рафия, Сводуная коллекция ЭБС,
Сводуная коллекция РТБ, ецівРАРК 30, СПС ГАРАНТ: аналитика. Диссертация
НББ, Коллекция: НБУ, Перефразирования по ецівПАРК 80,
Перефразирования по Интернету, Перефразирования по Интернету (ЕП),
Перефразирования по коллекция издательства Wiley, Шаблонные фрази,
Модуль помска: Тъм', Кольцо муже

епадиния самоцитирования цитрирования оригинальность 28% ра 1,84% 93.38%

опадления — брагменты проверяемого текта, полностью или частично сходных с найденными истичниками, за исключением фрагментов, которые система отнеска и перованию или сампертирования. Показатель «Совтадони» - это дога фрагментов проверемного текта, отнесенных к совтадения», в общем объеме текта,

Самецитмубевамия — фратменты проверженого текста, совтадающие или почти совтадающие с фратментов текста исто-оника, автором или совтором которого вытестая втор посверженого документа. Показатель «Самоципирования» — яго доко фратментов текста, относенная к совторгорования, в общем объеми текста.

итирования — фризмены провервешого текста, которые не валкоток авторомны, но которые система ститкли к хоррехтно оформленным. К цитированиям относктя также — апоченые фрами, билистрафия; орогиемъм зекста, найденные модилем комста «СПС Гаран» нармативно-правован документация». Показатель «фитирования» — это доля различения провервеших стекста, отностиных и цитированиям, в общем объеме текста.

кстовое пересечение — фрагмент текста проверяемого документа, совтадающий или гочты совтадающий с фрагмантом токста источныка.

тточник — дизумент, правидестированный в системи и содержащийся в черули поиха, по которому проводется проверяй.

Оригинальный текст — фрагменты провержного текста, не обхоруженные эм в одном источные и не описченные ни одним из медулий поиска. Посизатель Вригинальность — эти доля фрагментом провержимого текста, отнесенных к оригинальность текста, в общим объемо захота.

овподенняя, «Ципърования», «Сакоципърования», «Оропонадычесны налекося отдельными полуженами, отобрежанится в процентал и в сумые двог 100%, что солженствуют пользому техсту провежению с догумента.

Стращаем Ваше виниания, что система макадет текстовые свотадения провержилог докривить с промужки рованныхих в система источниками. При этом система является помогательные инструментом, определовые корреспности и оравомерности созгладений или циперований, а также авторства текстовыя фрагментов проверженого мужента остоится в компетенции провержащего.

de .	Доля в тексте	Источник	Актуален на	Модуль поисса Комментарии
(01)	14,9196	Синакова, Ирина Анапольевна диссерпация " кандидита физико-малематических наук : 05.13.18 Томох 2013 тетр Viddix cultru	29 How 2014	Сводная коллекции РГБ
1021	5,52%	44920 http://efambook.com	09 Map 2016	Сводния компекция 36С
lest	5.52%	Материалы первой всеросойской молодежной чаучной есиференции «математическое и программное обеспичение информационном, Ревичноских и жолномических системы порегом заголожения.	21 Ans 2020	Сиодичен коллекция ЭБС
[04]	5,04%	ИССЛЕДОВАНИЕ МОДЕЛИ ПАРАЛЛЕЛЬНОГО СБСЛУЖИ ВАНИЯ КРАТНЫХ ЗАЯВОК В НЕСТАЦИОНАРНОМ РЕЖИМЕ, НЕЦЕЗОВОТОРНЫ	раньше 2011	eUBRARY3U
ioel	4,06%	Монсоева, Светлана Петровно Разреботка методов исследования математическия медолей немодителской систем обслужнования с неограниченным неспом приборов и неграссиченскиям водациями потоками; дистертация докторе физико-математических наук; ст. т. т	12 Okt 2017	Создная коллеоция РГБ
[06]	4,25%	Исследования басконечноличейной СМО с интенсиванство входящего потоко, зависещей от состояния системы поруживания и	31 Дек 2020	eUBRARY, JILU
[07]	3,66%	Задиранови, Любовь Александровна Исследование	27 /Jex 2019	Сводная коллекция РГБ