

Exercise 10.2

Q.1 Prove that any two medians of an equilateral triangle are equal in measure.

Given

In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$ and M is midpoint of \overline{BC}

To prove

 $\overline{AM}\,$ bisects $\angle A$ and $\,\overline{AM}\,$ is perpendicular to $\,\overline{BC}\,$

D	
Proot	

Statements	Reasons
In $\triangle ABM \leftrightarrow \triangle ACM$	
$\overline{AB} \cong \overline{AC}$	Given
$\overline{\mathrm{BM}}\cong\overline{\mathrm{CM}}$	Given M is midpoint of BC
$\overline{AM}\cong\overline{AM}$	Common
$\therefore \Delta ABM \cong \Delta ACM$	$S.S.S \cong S.S.S$
So ∠BAM ≅ ∠CAM	Corresponding angles of congruents triangle
$m\angle AMB + m\angle AMC = 180^{\circ}$	
∴ m∠AMB = m∠AMC	
i.e \overline{AM} is perpendicular to \overline{BC}	

Q.2 Prove that a point which is equidistant from the end points of a line segment, is on the right bisector of line segment

Given

 \overline{AB} is line segment. The point C is such that $\overline{CA} \cong \overline{CB}$

To prove

Point C lies on the right bisector of \overline{AB}

Construction

- (i) Take P as midpoint of \overline{AB} i.e. $\overline{AP} \cong \overline{BP}$
- (ii) Joint point C to A, P, B

11001.	
Statements	Reasons
Ιη ΔΑΒC	
$\overline{CA} \cong \overline{CB}$	Given
$\angle A \cong \angle B$	Corresponding angles of congruent triangles
$\Delta CBP \leftrightarrow \Delta CAP$	
$\overline{CB} \cong \overline{CA}$	
$\Delta CAP \cong \Delta CBP$	$S.A.S \cong S.A.S$
∴ ∠1 ≅ ∠2	
$m \angle 1 + m \angle 2 = 180^{\circ}$	Adjacent angles on one side of a line
Thus m $\angle 1 = m\angle 2 = 90$	
Hence \overline{CP} is right bisector of \overline{AB} and point C lies	
on $\overline{\text{CB}}$	

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 1 OF 3]

Theorem 10.1.3

In a correspondence of two triangles if three sides of one triangle are congruent to the corresponding three sides of the other. Then the two triangles are congruent $(S.S.S \cong S.S.S)$

Given:

In $\triangle ABC \leftrightarrow \triangle DEF$

$$\overline{AB} \cong \overline{DE}, \overline{BC} \cong \overline{EF} \text{ and } \overline{CA} \cong \overline{FD}$$

To prove

 $\triangle ABC \cong \triangle DEF$

Construction

Suppose that in ΔDEF the side \overline{EF} is not smaller than any of the remaining two sides. On \overline{EF} construct a ΔMEF in which, $\angle FEM \cong \angle B$ and $\overline{ME} \cong \overline{AB}$. Join D and M. as shown in the above figures we label some of the angles as 1, 2, 3, and 4

Proof:

Proof:	
Statements	Reasons
In $\triangle ABC \leftrightarrow \triangle MEF$	
BC ≅EF	Given
∠B ≅ ∠FEM	Construction
$\overline{AB} \cong \overline{ME}$	Construction
$\therefore \Delta ABC \cong \Delta MEF$	S.A.S Postulate
and $\overline{CA} \cong \overline{FM}$ (i)	(Corresponding sides of congruent triangles)
also $\overline{CA} \cong \overline{FD}$ (ii)	Given
$\therefore \overline{FM} \cong \overline{FD}$	{ From (i) and (ii) }
In ΔFDM	
∠2 ≅ ∠4(iii)	$\overline{\mathrm{FM}} \cong \overline{\mathrm{FD}}$ (proved)
Similarly $\angle 1 \cong \angle 3$ (iv)	
$\therefore m \angle 2 + m \angle 1 = m \angle 4 + m \angle 3$	{ from (iii) and iv }
\therefore m \angle EDF = m \angle EMF	
Now in $\triangle DEF \leftrightarrow \triangle MEF$	
$\overline{FD} \cong \overline{FM}$	Proved
and m∠EDF ≅ ∠EMF	Proved
$\overline{\mathrm{DE}} \cong \overline{\mathrm{ME}}$	Each one $\cong \overline{AB}$
$\therefore \Delta DEF \cong \Delta MEF$	S.A.S postulates
also $\triangle ABC \cong \triangle MEF$	Proved
Hence $\triangle ABC \cong \triangle DEF$	Each $\Delta \cong \Delta MEF$ (proved)

Example 1

If two isosceles triangles are formed on the same side of their common base, the line through their vertices would be the right bisector of their common base.

Given

 \triangle ABC and \triangle DBC formed on the same side of \overline{BA} such that

$$\overline{BA} \cong \overline{AC}, \overline{DB} \cong \overline{DC}, \overline{AD} \text{ meets } \overline{BC} \text{ at } E.$$

To prove

 $\overline{BE} \cong \overline{CE}.\overline{AE} \perp \overline{BC}$

Proof

Statements	Daggang
Statements	Reasons
In $\triangle ADB \leftrightarrow \triangle ADC$	
$\overline{AB} \cong \overline{AC}$	Given
$\overline{DB} \cong \overline{DC}$	Given
$\overline{AD} \cong \overline{AD}$	Common
$\therefore \triangle ADB \cong \triangle ADC$	S.S.S≅ S.S.S
∴ ∠1 ≅ ∠2	Corresponding angles of $\cong \Delta s$
In $\triangle ABE \leftrightarrow \triangle ACE$	
$\overline{AB} \cong \overline{AC}$	Given
∠1 ≅ ∠2	Proved
$\Delta ABE \cong \Delta ACE$	S.A.S postulate
$\overline{AE} \cong \overline{AE}$	Common
$\therefore \overline{\mathrm{BE}} \cong \overline{\mathrm{CE}}$	Corresponding sides of $\cong \Delta s$
∠3 ≅ ∠4	Corresponding angles of $\cong \Delta s$
$m \angle 3 + m \angle 4 = 180^{\circ}$	Supplementary angles postulate
$m \angle 3 = m \angle 4 = 90^{\circ}$	From I and II
Hence $\overline{AE} \perp \overline{BC}$	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 3 OF 3]