Modular operational semantics for fundamental programming constructs

Peter Mosses

Swansea University, UK

DiverSE Seminar on SLE

28 May 2015 • Rennes, France

Overview

Modular semantics

modularity

- SOS (Structural Operational Semantics)
- MSOS (Modular SOS)
- I-MSOS (Implicitly-MSOS)
- Bisimulation

Component-based semantics

reuse!

- Funcons (fundamental programming constructs)
- Language specifications

Appendix

Conventional SOS

SOS: sequencing

Syntax

$$e :=$$

 $\boldsymbol{\mathcal{V}}$

e;e

Semantics

$$e \rightarrow e'$$

Rules

$$\frac{e_{\scriptscriptstyle 1} \rightarrow e_{\scriptscriptstyle 1}'}{(e_{\scriptscriptstyle 1};e_{\scriptscriptstyle 2}) \rightarrow (e_{\scriptscriptstyle 1}';e_{\scriptscriptstyle 2})}$$

$$(v_1;e_2) \rightarrow e_2$$

Auxiliary

$$v \in Val$$

SOS: binding

Syntax

$$e :=$$

 ν

e;e

X

Semantics

$$\rho \vdash e \rightarrow e'$$

Rules

$$\rho \vdash x \rightarrow v \text{ if } \rho(x) = v$$

Auxiliary

$$v \in Val$$

$$\rho \in Env$$

SOS: binding

Syntax

$$e ::=$$

 ν

e;e

X

let x = e in e

Auxiliary

 $v \in Val$

 $\rho \in Env$

Semantics

$$\rho \vdash e \rightarrow e'$$

$$\frac{\rho \vdash e_1 \rightarrow e_1'}{\rho \vdash (\mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2) \rightarrow (\mathbf{let} \ x = e_1' \ \mathbf{in} \ e_2)}$$

$$\frac{\rho[x \mapsto v_1] \vdash e_2 \to e_2'}{\rho \vdash (\text{let } x = v_1 \text{ in } e_2) \to (\text{let } x = v_1 \text{ in } e_2')}$$

$$\rho \vdash (\mathbf{let} \ x = v_1 \ \mathbf{in} \ v_2) \rightarrow v_2$$

SOS: sequencing + binding

Syntax

$$e :=$$

 ν

e;e

X

let x = e in e

Semantics

$$\rho \vdash e \rightarrow e'$$

Rules

$$\frac{\rho \vdash e_1 \rightarrow e_1'}{\rho \vdash (e_1; e_2) \rightarrow (e_1'; e_2)}$$

$$\rho \vdash (v_1; e_2) \rightarrow e_2$$

Auxiliary

 $v \in Val$

 $\rho \in Env$

SOS: storing

Syntax

 $\boldsymbol{\mathcal{V}}$

e;e

X

let x = e in e

!e

Semantics

$$\rho \vdash (e,\sigma) \rightarrow (e',\sigma')$$

Rules

$$\frac{\rho \vdash (e,\sigma) \rightarrow (e',\sigma')}{\rho \vdash (!e,\sigma) \rightarrow (!e',\sigma')}$$

$$\rho \vdash (!l,\sigma) \rightarrow (v,\sigma)$$
 if $\sigma(l) = v$

Auxiliary

 $v \in Val$

 $\rho \in Env$

 $\sigma \in Store$

 $l \in Loc$

SOS: storing

Syntax

e :=

V

e;e

 \boldsymbol{X}

let x = e in e

!e

e := e

Auxiliary

 $v \in Val$

 $\rho \in Env$

 $\sigma \in Store$

 $l \in Loc$

Semantics

$$\rho \vdash (e,\sigma) \rightarrow (e',\sigma')$$

$$\frac{\rho \vdash (e_1, \sigma) \rightarrow (e'_1, \sigma')}{\rho \vdash (e_1 := e_2, \sigma) \rightarrow (e'_1 := e_2, \sigma')}$$

$$\frac{\rho \vdash (e_2,\sigma) \rightarrow (e_2',\sigma')}{\rho \vdash (e_1 := e_2,\sigma) \rightarrow (e_1 := e_2',\sigma')}$$

$$\rho \vdash (l_1 := v_2, \sigma) \rightarrow (v_2, \sigma[l_1 \mapsto v_2]) \text{ if } l_1 \in \text{dom } \sigma$$

SOS: sequencing + binding + storing

Syntax

```
e::=

v
e;e
x
let x = e in e
!e
e:= e
```

Semantics

$$\rho \vdash (e,\sigma) \rightarrow (e',\sigma')$$

Rules

$$\frac{\rho \vdash (e_1, \sigma) \rightarrow (e_1', \sigma')}{\rho \vdash (e_1; e_2, \sigma) \rightarrow (e_1'; e_2, \sigma')}$$

$$\rho \vdash (v_1; e_2, \sigma) \rightarrow (e_2, \sigma)$$

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
```

SOS: binding + storing

Syntax

e := e

Semantics

$$\rho \vdash (e,\sigma) \rightarrow (e',\sigma')$$

Rules

$$\rho \vdash (x,\sigma) \rightarrow (v,\sigma) \text{ if } \rho(x) = v$$

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
```

SOS: binding + storing

Syntax

e := e

Auxiliary

$$v \in Val$$
 $\rho \in Env$
 $\sigma \in Store$
 $l \in Loc$

Semantics

$$\rho \vdash (e,\sigma) \rightarrow (e',\sigma')$$

$$\frac{\rho \vdash (e_1, \sigma) \rightarrow (e_1', \sigma')}{\rho \vdash (\text{let } x = e_1 \text{ in } e_2, \sigma) \rightarrow (\text{let } x = e_1' \text{ in } e_2, \sigma')}$$

$$\frac{\rho[x \mapsto v_1] \vdash (e_2, \sigma) \to (e'_2, \sigma')}{\rho \vdash (\text{let } x = v_1 \text{ in } e_2, \sigma) \to (\text{let } x = v_1 \text{ in } e'_2, \sigma')}$$

$$\rho \vdash (\text{let } x = v_1 \text{ in } v_2, \sigma) \rightarrow (v_2, \sigma)$$

SOS: emitting

Syntax

```
e::=

v
e;e
x
let x = e in e
!e
e:= e
```

print e

Auxiliary

 $v \in Val$ $\rho \in Env$ $\sigma \in Store$ $l \in Loc$ $\alpha \in Val \cup \{\tau\}$

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')$$

$$\frac{\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')}{\rho \vdash (\text{print } e,\sigma) \xrightarrow{\alpha} (\text{print } e',\sigma')}$$

$$\rho \vdash (\mathbf{print} \, v, \sigma) \xrightarrow{v} (v, \sigma)$$

SOS: sequencing + ... + emitting

Syntax

```
e::=

v
e;e
x
let x = e in e
!e
e:= e
print e
```

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
\alpha \in Val \cup \{\tau\}
```

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')$$

$$\frac{\rho \vdash (e_1, \sigma) \xrightarrow{\alpha} (e'_1, \sigma')}{\rho \vdash (e_1; e_2, \sigma) \xrightarrow{\alpha} (e'_1; e_2, \sigma')}$$

$$\rho \vdash (v_1; e_2, \sigma) \xrightarrow{\tau} (e_2, \sigma)$$

SOS: binding + ... + emitting

Syntax

```
e::=

v
e;e
x
let x = e in e
!e
e:= e
print e
```

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')$$

Rules

$$\rho \vdash (x,\sigma) \xrightarrow{\tau} (v,\sigma) \text{ if } \rho(x) = v$$

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
\alpha \in Val \cup \{\tau\}
```

SOS: binding + ... + emitting

Syntax

e::=

v
e;e
x
let x = e in e
!e
e:= e
print e

Auxiliary

 $v \in Val$ $\rho \in Env$ $\sigma \in Store$ $l \in Loc$ $\alpha \in Val \cup \{\tau\}$

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')$$

$$\rho \vdash (e_1, \sigma) \xrightarrow{\alpha} (e_1', \sigma')$$

$$\rho \vdash (\text{let } x = e_1 \text{ in } e_2, \sigma) \xrightarrow{\alpha} (\text{let } x = e_1' \text{ in } e_2, \sigma')$$

$$\frac{\rho[x \mapsto v_1] \vdash (e_2, \sigma) \xrightarrow{\alpha} (e'_2, \sigma')}{\rho \vdash (\text{let } x = v_1 \text{ in } e_2, \sigma) \xrightarrow{\alpha} (\text{let } x = v_1 \text{ in } e'_2, \sigma')}$$

$$\rho \vdash (\mathbf{let} \ x = v_1 \ \mathbf{in} \ v_2, \sigma) \xrightarrow{\tau} (v_2, \sigma)$$

SOS: storing + ... + emitting

Syntax

print e

Auxiliary

 $v \in Val$ $\rho \in Env$ $\sigma \in Store$ $l \in Loc$ $\alpha \in Val \cup \{\tau\}$

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')$$

$$\frac{\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')}{\rho \vdash (!e,\sigma) \xrightarrow{\alpha} (!e',\sigma')}$$

$$\rho \vdash (!l,\sigma) \xrightarrow{\tau} (v,\sigma) \text{ if } \sigma(l) = v$$

SOS: storing + ... + emitting

Syntax

print e

Auxiliary

$$v \in Val$$
 $\rho \in Env$
 $\sigma \in Store$
 $l \in Loc$
 $\alpha \in Val \cup \{\tau\}$

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')$$

$$\frac{\rho \vdash (e_1, \sigma) \xrightarrow{\alpha} (e'_1, \sigma')}{\rho \vdash (e_1 := e_2, \sigma) \xrightarrow{\alpha} (e'_1 := e_2, \sigma')}$$

$$\frac{\rho \vdash (e_2, \sigma) \xrightarrow{\alpha} (e_2', \sigma')}{\rho \vdash (e_1 := e_2, \sigma) \xrightarrow{\alpha} (e_1 := e_2', \sigma')}$$

$$\rho \vdash (l_1 := v_2, \sigma) \xrightarrow{\tau} (v_2, \sigma[l_1 \mapsto v_2]) \text{ if } l_1 \in \text{dom } \sigma$$

SOS: abrupt termination handling?

Syntax

```
e::=

v
e;e
x
let x = e in e
!e
e:= e
print e
```

e otherwise e

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
\alpha \in Val \cup \{\tau\}
```

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{?} (?,\sigma')$$

Rules

$$\rho \vdash (x,\sigma) \xrightarrow{?} (?,\sigma) \text{ if } x \notin \text{dom } \rho$$

$$\rho \vdash (!l,\sigma) \xrightarrow{?} (?,\sigma) \text{ if } l \notin \text{dom } \sigma$$

SOS: summary

Non-modular!

MSOS: Modular SOS

Available online at www.sciencedirect.com

SCIENCE DIRECT®

The Journal of Logic and Algebraic Programming 60–61 (2004) 195–228

THE JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING

www.elsevier.com/locate/jlap

Modular structural operational semantics[☆]

Peter D. Mosses

SOS: sequencing + ...

Syntax

$$e :=$$

 $\boldsymbol{\mathcal{V}}$

e;e

Auxiliary

$$v \in Val$$

Semantics

$$\rho \vdash (e,\sigma) \xrightarrow{\alpha} (e',\sigma')$$

$$\begin{array}{c}
\rho \vdash (e_1, \sigma) \xrightarrow{\alpha} (e_1', \sigma') \\
\hline
\rho \vdash (e_1; e_2, \sigma) \xrightarrow{\alpha} (e_1'; e_2, \sigma')
\end{array}$$

SOS: sequencing + ...

Syntax

$$e :=$$

ν

e;e

Auxiliary

 $v \in Val$

Semantics

$$e \xrightarrow{X} e'$$

$$\frac{e_1 \xrightarrow{X} e_1'}{X} X = \{\rho, \sigma, \sigma', \alpha', \cdots\}$$

$$(e_1; e_2) \xrightarrow{X} (e_1'; e_2)$$

$$(v_1; e_2) \xrightarrow{U} e_2$$

$$(v_1; e_2) \xrightarrow{U} e_2 \qquad U = \{\rho, \sigma, \sigma' = \sigma, \alpha' = \tau, \cdots\}$$

MSOS: label composition

Semantics

$$e \xrightarrow{X} e'$$

Computations

$$e_1 \xrightarrow{X_1} e_2 \xrightarrow{X_2} e_3 \cdots$$

$$X_{1} = \{\rho_{1}, \sigma_{1}, \sigma'_{1}, \alpha'_{1}, \cdots\}$$

$$\rho_{1} = \rho_{2} \qquad \qquad \sigma'_{1} = \sigma_{2}$$

$$X_{2} = \{\rho_{2}, \sigma_{2}, \sigma'_{2}, \alpha'_{2}, \cdots\}$$

labels in MSOS are morphisms of a category

unobservable steps are labelled by identity morphisms

independent label components: indexed product

MSOS: sequencing

Syntax

$$e ::=$$

 ν

e;e

Auxiliary

$$v \in Val$$

Semantics

$$e \xrightarrow{\{\rho,\sigma,\sigma',\alpha',\cdots\}} e'$$

$$\begin{array}{c}
e_{1} & \xrightarrow{\{\rho,\sigma,\sigma',\alpha',\cdots\}} e_{1}' \\
\hline
(e_{1};e_{2}) & \xrightarrow{\{\rho,\sigma,\sigma',\alpha',\cdots\}} (e_{1}';e_{2})
\end{array}$$

$$(v_1; e_2) \xrightarrow{\{\rho, \sigma, \sigma' = \sigma, \alpha' = \tau, --\}} e_2$$

MSOS: sequencing

Syntax

e :=

 $\boldsymbol{\mathcal{V}}$

e;e

Auxiliary

 $v \in Val$

Semantics

$$e \xrightarrow{\{\cdots\}} e'$$

$$\begin{array}{c}
e_{1} \xrightarrow{\{\cdots\}} e'_{1} \\
\hline
(e_{1};e_{2}) \xrightarrow{\{\cdots\}} (e'_{1};e_{2})
\end{array}$$

$$(v_1;e_2) \xrightarrow{\{--\}} e_2$$

MSOS: binding

Syntax

$$e := v$$

e;e

X

Semantics

$$e \xrightarrow{\{\boldsymbol{\rho},\cdots\}} e'$$

Rules

$$x \xrightarrow{\{\rho, -\}} v \text{ if } \rho(x) = v$$

Auxiliary

$$v \in Val$$

$$\rho \in Env$$

MSOS: binding

Syntax

$$e :=$$

 $\boldsymbol{\mathcal{V}}$

e;e

X

let x = e in e

Auxiliary

$$v \in Val$$

$$\rho \in Env$$

Semantics

$$e \xrightarrow{\{\boldsymbol{\rho},\cdots\}} e'$$

$$e_{1} \xrightarrow{\{\cdots\}} e'_{1}$$

$$(\operatorname{let} x = e_{1} \operatorname{in} e_{2}) \xrightarrow{\{\cdots\}} (\operatorname{let} x = e'_{1} \operatorname{in} e_{2})$$

$$\frac{e_2}{e_2} \xrightarrow{\{\rho[x \mapsto v_1], \dots\}} e_2'$$

$$(\text{let } x = v_1 \text{ in } e_2) \xrightarrow{\{\rho, \dots\}} (\text{let } x = v_1 \text{ in } e_2')$$

(let
$$x = v_1$$
 in v_2)—{--} v_2

MSOS: storing

Syntax

Auxiliary

 $v \in Val$ $\rho \in Env$ $\sigma \in Store$ $l \in Loc$

Semantics

$$e \xrightarrow{\{\sigma,\sigma',\cdots\}} e'$$

$$\frac{e^{\underbrace{\{\cdots\}}\}}e'}{[e^{\underbrace{\{\cdots\}}\}}]e'}$$

$$!l \xrightarrow{\{\sigma,\sigma'=\sigma,-\}} v \text{ if } \sigma(l) = v$$

MSOS: storing

Syntax

let
$$x = e$$
 in e

!*e*

$$e := e$$

Auxiliary

$$v \in Val$$

$$\rho \in Env$$

$$\sigma \in Store$$

$$l \in Loc$$

Semantics

$$e \xrightarrow{\{\sigma,\sigma',\cdots\}} e'$$

$$\begin{array}{c}
e_1 & \xrightarrow{\{\cdots\}} e_1' \\
\hline
(e_1 := e_2) & \xrightarrow{\{\cdots\}} (e_1' := e_2)
\end{array}$$

$$\begin{array}{c}
e_{2} \xrightarrow{\{\cdots\}} e_{2}' \\
\hline
(e_{1} := e_{2}) \xrightarrow{\{\cdots\}} (e_{1} := e_{2}')
\end{array}$$

$$(l_1 := v_2) \xrightarrow{\{\sigma, \sigma' = \sigma[l_1 \mapsto v_2], -\}} v_2 \text{ if } l_1 \in \text{dom } \sigma$$

MSOS: emitting

Syntax

```
e::=

v
e;e
x
let x = e in e
!e
e:= e
print e
```

Auxiliary

 $v \in Val$ $\rho \in Env$ $\sigma \in Store$ $l \in Loc$ $\alpha \in Val^*$

Semantics

$$e \xrightarrow{\{\alpha',\cdots\}} e'$$

$$\frac{e^{\underbrace{\{\cdots\}}\}}e'}{\operatorname{print} e^{\underbrace{\{\cdots\}}\}}\operatorname{print} e'}$$

print
$$v \xrightarrow{\{\alpha' = v, -\}} v$$

MSOS: abrupt termination

Syntax

e :=V e;eX let x = e in e!e e := eprint e

Semantics

$$e \xrightarrow{\{\phi',\cdots\}} e'$$

Rules

$$x \xrightarrow{\{\rho, -\}} v$$

if
$$\rho(x) = v$$

$$x \xrightarrow{\{\rho, \phi' = \text{err}, -\}} x \quad \text{if } x \notin \text{dom } \rho$$

Auxiliary

 $v \in Val$ $\rho \in Env$ $\sigma \in Store$ $l \in Loc$ $\alpha \in Val^*$

 $\phi \in \{\text{ok, err}\}$

$$l \xrightarrow{\{\sigma,\sigma'=\sigma,-\}} v$$

if
$$\sigma(l) = v$$

$$l \xrightarrow{\{\sigma, \sigma' = \sigma, \phi' = \text{err}, -\}} l \quad \text{if } l \notin \text{dom } \sigma$$

MSOS: abrupt termination handling!

Syntax

e::=

v
e;e
x
let x = e in e

!*e*

e := e

print *e*

e otherwise e

Auxiliary

 $v \in Val$ $\rho \in Env$ $\sigma \in Store$ $l \in Loc$ $\alpha \in Val^*$ $\phi \in \{ok, err\}$

Semantics

$$e \xrightarrow{\{\phi',\cdots\}} e'$$

$$e_{1} \xrightarrow{\{\phi' = \text{ok}, \cdots\}} e'_{1}$$

$$(e_{1} \text{ otherwise } e_{2}) \xrightarrow{\{\phi' = \text{ok}, \cdots\}} (e'_{1} \text{ otherwise } e_{2})$$

$$\begin{array}{c}
e_1 & \xrightarrow{\{\phi' = \text{err}, \cdots\}} e_1' \\
\hline
(e_1 \text{ otherwise } e_2) & \xrightarrow{\{\phi' = \text{ok}, \cdots\}} e_2
\end{array}$$

$$(v_1 \text{ otherwise } e_2) \xrightarrow{\{--\}} v_1$$

MSOS: summary

Modular

- but labels unattractive

I-MSOS: Implicitly-MSOS

SOS 2008

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 229 (2009) 49-66

www.elsevier.com/locate/entcs

Implicit Propagation in Structural Operational Semantics

Peter D. Mosses¹ Mark J. New²

MODULARITY'14

Reusable Components of Semantic Specifications

Martin Churchill¹, Peter D. Mosses², Neil Sculthorpe², and Paolo Torrini²

Extended version: Trans. AOSD XII, 2015.

- a component-based semantics of CAML LIGHT
- validated (by empirical testing)
- detailed introduction to the approach
- overview of preliminary tool support

I-MSOS: a notation for MSOS

	I-MSOS	MSOS
transitions	$e_1 \rightarrow e_2$	$e_1 - \{\cdots\} \rightarrow e_2$
	$\rho \vdash e_1 \rightarrow e_2$	$e_1 - \{\rho, \cdots\} \rightarrow e_2$
	$(e_1, \sigma) \rightarrow (e_2, \sigma')$	$e_1 - \{\sigma, \sigma', \cdots\} \rightarrow e_2$
	$\rho \vdash (e_1, \sigma) \rightarrow (e_2, \sigma')$	$e_1 - \{\rho, \sigma, \sigma', \cdots\} \rightarrow e_2$
	$e_1 - \alpha \rightarrow e_2$	$e_1 - \{\alpha', \cdots\} \rightarrow e_2$
	$\rho \vdash e_1 - \alpha \rightarrow e_2$	$e_1 - \{\rho, \alpha', \cdots\} \rightarrow e_2$
	$(e_1, \sigma) - \alpha \rightarrow (e_2, \sigma')$	$e_1 - \{\sigma, \sigma', \alpha', \cdots\} \rightarrow e_2$
	$\rho \vdash (e_1, \sigma) \neg \alpha \rightarrow (e_2, \sigma')$	$e_1 - \{\rho, \sigma, \sigma', \alpha', \cdots\} \rightarrow e_2$

I-MSOS: a notation for MSOS

	I-MSOS	MSOS
transitions	$e_1 \rightarrow e_2$	$e_1 - \{\} \rightarrow e_2$
	$\rho \vdash e_1 \rightarrow e_2$	$e_1 - \{\rho, \longrightarrow\} \rightarrow e_2$
	$(e_1, \sigma) \rightarrow (e_2, \sigma')$	$e_1 - \{\sigma, \sigma', \longrightarrow\} \rightarrow e_2$
	$\rho \vdash (e_1, \sigma) \rightarrow (e_2, \sigma')$	$e_1 - \{\rho, \sigma, \sigma', \longrightarrow\} \rightarrow e_2$
	$e_1 - \alpha \rightarrow e_2$	$e_1 - \{\alpha', \longrightarrow\} \rightarrow e_2$
	$\rho \vdash e_1 - \alpha \rightarrow e_2$	$e_1 - \{\rho, \alpha', \longrightarrow\} \rightarrow e_2$
	$(e_1, \sigma) - \alpha \rightarrow (e_2, \sigma')$	$e_1 - \{\sigma, \sigma', \alpha', \longrightarrow\} \rightarrow e_2$
	$\rho \vdash (e_1, \sigma) \neg \alpha \rightarrow (e_2, \sigma')$	$e_1 - \{\rho, \sigma, \sigma', \alpha', \longrightarrow\} \rightarrow e_2$

I-MSOS: sequencing

Syntax

$$e :=$$

 ν

e;e

Auxiliary

 $v \in Val$

Semantics

$$e \rightarrow e'$$

Rules

$$\frac{e_1 \rightarrow e_1'}{(e_1; e_2) \rightarrow (e_1'; e_2)}$$

$$(v_1;e_2) \rightarrow e_2$$

MSOS:

Conditional rules

$$\begin{array}{c}
e_{1} \xrightarrow{\{\cdots\}} e'_{1} \\
\hline
(e_{1};e_{2}) \xrightarrow{\{\cdots\}} (e'_{1};e_{2})
\end{array}$$

Unconditional rules

$$(v_1; e_2) \xrightarrow{\{--\}} e_2$$

I-MSOS: binding

Syntax

$$e ::=$$

 ν

e;e

X

Semantics

$$env(\rho)\vdash e\rightarrow e'$$

Rules

$$\operatorname{env}(\rho) \vdash x \to v \text{ if } \rho(x) = v$$

Auxiliary

$$v \in Val$$

$$\rho \in Env$$

I-MSOS: binding

Syntax

$$e :=$$

 $\boldsymbol{\mathcal{V}}$

e;e

X

let x = e in e

Auxiliary

 $v \in Val$

 $\rho \in Env$

Semantics

$$\operatorname{env}(\rho) \vdash e \rightarrow e'$$

Rules

$$\frac{e_1 \rightarrow e_1'}{(\text{let } x = e_1 \text{ in } e_2) \rightarrow (\text{let } x = e_1' \text{ in } e_2)}$$

$$\frac{\operatorname{env}(\rho[x \mapsto v_1]) \vdash e_2 \to e_2'}{\operatorname{env}(\rho) \vdash (\operatorname{let} x = v_1 \operatorname{in} e_2) \to (\operatorname{let} x = v_1 \operatorname{in} e_2')}$$

(let
$$x = v_1$$
 in v_2) $\rightarrow v_2$

I-MSOS: storing

Syntax

```
e::=

v
e;e

x
let x = e in e
!e
```

Semantics

$$(e, store(\sigma)) \rightarrow (e', store(\sigma'))$$

Rules

$$\frac{e \rightarrow e'}{!e \rightarrow !e'}$$

 $(!l, store(\sigma)) \rightarrow (v, store(\sigma)) \text{ if } \sigma(l) = v$

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
```

I-MSOS: storing

Syntax

let
$$x = e$$
 in e

!e

$$e := e$$

Auxiliary

$$v \in Val$$

$$\rho \in Env$$

$$\sigma \in Store$$

$$l \in Loc$$

Semantics

$$(e, store(\sigma)) \rightarrow (e', store(\sigma'))$$

Rules

$$\frac{e_1 \rightarrow e_1'}{(e_1 := e_2) \rightarrow (e_1' := e_2)}$$

$$\frac{e_2 \rightarrow e_2'}{(e_1 := e_2) \rightarrow (e_1 := e_2')}$$

$$(l_1 := v_2, \text{store}(\sigma)) \rightarrow (v_2, \text{store}(\sigma[l_1 \mapsto v_2]))$$

if $l_1 \in \text{dom}\sigma$

I-MSOS: emitting

Syntax

```
e::=

v
e;e
x
let x = e in e
!e
e:= e
print e
```

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
\alpha \in Val \cup \{\tau\}
```

Semantics

$$e \xrightarrow{\text{output}(\alpha)} e'$$

Rules

$$e \longrightarrow e'$$

 $\mathbf{print}\,e{\longrightarrow}\mathbf{print}\,e'$

$$\mathbf{print} \ v \xrightarrow{\mathbf{output}(v)} v$$

I-MSOS: abrupt termination

Syntax

e :=

V

e;e

X

let x = e in e

!e

e := e

print e

Semantics

$$\operatorname{env}(\rho) \vdash (e,\operatorname{store}(\sigma)) \xrightarrow{\operatorname{abrupt}(\phi)} (e',\operatorname{store}(\sigma'))$$

Rules

$$\operatorname{env}(\rho) \vdash x \longrightarrow v$$

if
$$\rho(x) = v$$

$$\operatorname{env}(\rho) \vdash x \xrightarrow{\operatorname{abrupt}(\operatorname{err})} x \quad \text{if } x \notin \operatorname{dom} \rho$$

Auxiliary

$$v \in Val$$

 $\rho \in Env$

 $\sigma \in Store$

 $l \in Loc$

 $\alpha \in Val^*$

 $\phi \in \{\text{ok, err}\}$

$$(l, store(\sigma)) \longrightarrow (v, store(\sigma))$$
 if $\sigma(l) = v$

$$(l, store(\sigma)) \xrightarrow{abrupt(err)} (l, store(\sigma))$$
if $l \notin dom \sigma$

I-MSOS: abrupt termination handling!

Syntax

```
e::=
v
e;e
x
```

let x = e in e

!e

e := e

print e

e otherwise e

Auxiliary

```
v \in Val
\rho \in Env
\sigma \in Store
l \in Loc
\alpha \in Val^*
\phi \in \{ok, err\}
```

Semantics

$$e \xrightarrow{\text{abrupt}(\phi)} e'$$

Rules

$$e_{1} \xrightarrow{\text{abrupt(ok)}} e'_{1}$$

$$(e_{1} \text{ otherwise } e_{2}) \xrightarrow{\text{abrupt(ok)}} (e'_{1} \text{ otherwise } e_{2})$$

$$e_{1} \xrightarrow{\text{abrupt(err)}} e'_{1}$$

$$(e_{1} \text{ otherwise } e_{2}) \xrightarrow{\text{abrupt(ok)}} e_{2}$$

$$(v_1 \text{ otherwise } e_2) \longrightarrow v_1$$

I-MSOS: summary

Modular
- OK?

Overview

Modular semantics

- SOS (Structural Operational Semantics)
- MSOS (Modular SOS)
- ▶ I-MSOS (Implicitly-MSOS)
- Bisimulation

Bisimulation

Modular proofs

Fossacs'13:

- bisimilarity congruence format
- preservation by disjoint extension

Modular Bisimulation Theory for Computations and Values

Martin Churchill and Peter D. Mosses {m.d.churchill,p.d.mosses}@swansea.ac.uk

Department of Computer Science, Swansea University, Swansea, UK

Abstract. For structural operational semantics (SOS) of process algebras, various notions of bisimulation have been studied, together with rule formats ensuring that bisimilarity is a congruence. For programming languages, however, SOS generally involves auxiliary entities (e.g. stores) and computed values, and the standard bisimulation and rule formats are not directly applicable.

Here, we first introduce a notion of bisimulation based on the distinction between computations and values, with a corresponding liberal congruence format. We then provide metatheory for a modular variant of SOS (MSOS) which provides a systematic treatment of auxiliary entities. This is based on a higher order form of bisimulation, and we formulate an appropriate congruence format. Finally, we show how algebraic laws can be proved sound for bisimulation with reference only to the (M)SOS rules defining the programming constructs involved in them. Such laws remain sound for languages that involve further constructs.

Overview

Modular semantics

- SOS (Structural Operational Semantics)
- MSOS (Modular SOS)
- ▶ I-MSOS (Implicitly-MSOS)
- Bisimulation

Component-based semantics

reuse!

- Funcons (fundamental programming constructs)
- Language specifications

Component-based semantics

Reusable components of language definitions

- language constructs?
- **kernel language** constructs?
- fundamental programming constructs!

Funcons

Reusable components

Fundamental constructs (funcons)

- correspond to *individual* programming constructs
 - each funcon is a separate component
- have (when validated and released)
 - fixed notation
 - fixed behaviour
 - fixed algebraic properties

specified/proved once and for all!

Sorts of funcons

Notation

- commands
 - C:computes ()
- declarations
 - D: computes environments (mapping ids I to values V)
- expressions
 - E : computes values

Generic funcons

- X: could be commands, declarations, expressions

Funcons: binding

- bound-val(I)
 - gives the value bound to I in the current env
- bind-val(I, E)
 - computes an env binding I to the value of E
- scope(D, X)
 - localises the declarations D to the execution of X

I-MSOS: bound-val(/)

Funcon

bound-val(*I*:ids): values

Rule

 $\operatorname{env}(\rho) \vdash \operatorname{bound-val}(I) \rightarrow V \text{ if } \rho(I) = V$

I-MSOS: bind-val(I, E)

Value

bind-val(*I*:ids,*V*:values):envs

Rule

bind-val $(I,V) \rightarrow \{I \mapsto V\}$

implicit:

Funcon

bind-val(I:ids,E: \Rightarrow values):envs

Rules

$$E \rightarrow E'$$

bind-val $(I,E) \rightarrow \text{bind-val}(I,E')$

bind-val $(I,V) \rightarrow \{I \mapsto V\}$

I-MSOS: scope(D, X)

Funcon

 $scope(\rho:envs,X:\Rightarrow T):T$

Rules

$$\frac{\operatorname{env}(\rho_0[\rho_1]) \vdash X \to X'}{\operatorname{env}(\rho_0) \vdash \operatorname{scope}(\rho_1, X) \to \operatorname{scope}(\rho_1, X')}$$

$$scope(\rho_1, V) \rightarrow V$$

implicit:

Funcon $scope(D:\Rightarrow envs, X:\Rightarrow T):T$ Rules $D \rightarrow D'$ $scope(D,X) \rightarrow scope(D',X)$...

Language specification

Language constructs:

```
• e := x \mid \mathbf{let} \ x = e \ \mathbf{in} \ e \mid ...
```

Translation to funcons:

```
eval [e]:expressions
```

```
• eval [x] = bound-val(id [x])
```

...

Overview

Modular semantics

- SOS (Structural Operational Semantics)
- MSOS (Modular SOS)
- ► I-MSOS (Implicitly-MSOS)
- Bisimulation

Component-based semantics

- Funcons (fundamental programming constructs)
- Language specifications

More examples? see Appendix

Preliminary tool support

SPOOFAX/ECLIPSE

- parsing programs (SDF3, disambiguation, AST creation)
- translating ASTs to funcon terms (SDF3, STRATEGO)
- browsing and editing component-based specifications (SDF3, NABL, STRATEGO)

PROLOG

- translating MSOS rules for funcons to PROLOG
 - currently migrating to STRATEGO
- running funcon terms

PLANCOMPS project (2011-2015)

Foundations

- component-based semantics [Swansea]
- GLL parsing, disambiguation [RHUL]

Case studies

CAML LIGHT, C#, JAVA [Swansea]

Tool support

IDE, funcon interpreter/compiler [RHUL, Swansea]

Digital library

interface [City], historic documents [Newcastle]

Conclusion

Reusable components: funcons

to reduce the **initial** effort

High modularity: I-MSOS

to reduce the effort of extension

Tool support: IDE

to reduce the effort of getting it right!

work in progress!

Appendix

Fundamental constructs (funcons)

Funcons normally compute values

values compute themselves

Funcon computations may also:

- terminate abruptly
 - signalling some value as the reason
 - failure is a special case
- never terminate
- have effects

Funcons

Funcons specify **computational behaviour**, including:

- normal termination
- abrupt termination
- non-termination
- effects

sort of funcon	computes	abstractions
expressions	values	functions
declarations	environments	patterns
commands	null	procedures

Values

Universe

- primitive (booleans, numbers, characters, symbols)
- composite (sequences, maps, sets, variants)
- types (names for sets of values)
- abstractions (encapsulating funcons)

New types of values are defined in terms of old ones

Funcon 'aspects'

(Mostly) independent concerns

- control flow
- data flow
- binding
- storing
- interacting

each funcon has a primary 'aspect'

Fundamental construct design

Universe

- computes(T*)
 - expressions = computes(values)
 - declarations = computes(envs)
 - commands = computes()

- ...

Examples of funcons

Control flow

seq, null, enact, if-true-else, while-true, either, else, fail, handle-thrown, throw

Data flow

value operations, give-val, given, abs, apply

Binding

scope, bind-val, bound-val, close, override, unite, accumulate, recursive, match-val, case

Storing

alloc, release, assign, current-val

Control flow

Normal

- \blacktriangleright seq (X_1, \ldots)
 - left to right sequencing
 - concatenates computed values
- null is the empty sequence ()
 - unit for $seq(X_1, X_2)$

Control flow

Conditional

- if-true-else(E, X_1, X_2)
 - E has to be boolean-valued
- while-true(E, C)
 - doesn't handle break or continue

Call

- enact(E)
 - evaluates E to an abstraction value abs(X)
 - executes X

Control flow

Alternatives

- \blacktriangleright either($X_1, ...$)
 - unordered alternatives
- \rightarrow else($X_1, ...$)
 - left to right alternatives
- fail
 - unit for either(X_1, X_2) and else(X_1, X_2)
- when-true(E, X), check-true(E)
 - fail when E false

Data flow

Default: arguments are pre-evaluated (strict)

- ▶ Funcon $F(\underline{:}T_1, ..., \underline{:}T_N):T$
 - $F(E_1, ..., E_N)$ argument computations interleaved
 - F seq $(E_1, ..., E_N)$ argument computations left-to-right

Explicit: arguments not pre-evaluated

- Funcon seq (_: => $T_1, ..., _: => T_N$) : $(T_1, ..., T_N)$
 - like call-by-name parameters in SCALA

Control and data flow

Giving a value

- give-val(E, X)
 - first evaluates E to a value V
 - then executes X, with the funcon **given** referring to V
- given

Discarding a value

- effect(X)
 - executes X, but computes ()

Control and data flow

Abstraction

- **abs**(X)
 - procedural abstraction
 - a value, so context-independent

Application

- ightharpoonup apply(E_1, E_2)
 - evaluates E_1 to an abstraction **abs**(X), and evaluates E_2 to a value V
 - then executes X, with the funcon given referring to V

Control and data flow

Exception handling

- **handle-thrown** (X_1, X_2)
 - try to handle abrupt termination of X_1 by giving the thrown value to the execution of X_2
- throw-val(E)
 - terminates abruptly, throwing the value of E

Continuations

see the paper by Neil Sculthorpe et al. at the ETAPS 2015 Workshop on Continuations

Scopes

- ▶ scope(D, X)
 - localises the bindings computed by D to X
- bind-val(I, E)
 - computes the binding of the id I to the value of E
- bound-val(I)
 - inspects the current binding of the id I

Scopes

- \rightarrow override(D_1, D_2)
- unite (D_1, D_2)
- $accumulate(D_1, D_2)$
- recursive(Iset, D)
 - various ways of composing declarations

Scopes in abstractions

- close(E)
 - evaluates E to an abstraction **abs**(X)
 - returns the closure incorporating the current bindings

Patterns

- simple: abstractions abs(D)
- composite: formed using value constructors
 - structure required to be identical when matching

Pattern matching

- \rightarrow match-val (E_1, E_2)
 - evaluates E_1 to a pattern P and E_2 to a value V
 - matching P to V computes bindings or fails
- ▶ case(E, X)
 - evaluates E to a pattern P, then matches P to a given value
 - the scope of the computed bindings is X
 - equivalent to scope(match(E, given), X)

Storing

Variables

- simple: representing independent storage locations
 - for storing values of a fixed type
 - monolithic update
- composite: formed using value constructors
 - component variables can be independently updated
 - structure required to be identical when updating

Storing

Variable allocation

- ightharpoonup alloc(E_1, E_2)
 - evaluates E_1 to a type T, and E_2 to a value V
 - allocates a simple or composite variable for storing values of type T
 - assigns V to the variable
- release(E)
 - evaluates E to a variable
 - terminates the allocation of the variable

Storing

General assignment

- \rightarrow assign (E_1, E_2)
 - evaluates E_1 to V_1 , and E_2 to V_2
 - when V_1 and V_2 have the same structure, updates the stored values of any simple variables in V_1 by the corresponding component values of V_2
- current-val(E)
 - evaluates E to V
 - gives the value formed by replacing any simple variables in V by their stored values

Language construct:

```
s ::= while(e)s
```

Translation to funcons:

```
exec [ while(e)s] =
    while-true( current-val( eval [ e ] ), exec [ s ] )
```

For languages with break statements:

```
exec [ while(e)s] =
   handle-thrown(
        while-true( current-val( eval [ e ] ), exec [ s ] ),
        case('break', null ) )
```

Language construct:

• e ::= e ? e : e

Translation to funcons:

```
eval [ e<sub>1</sub> ? e<sub>2</sub> : e<sub>3</sub> ] =
if-true-else ( eval [ e<sub>1</sub> ], eval [ e<sub>2</sub> ], eval [ e<sub>3</sub> ] )
```

For languages with non-Boolean tests:

Language construct:

• e ::= if e then e else e

Translation to funcons:

```
eval [ if e<sub>1</sub> then e<sub>2</sub> else e<sub>3</sub> ] =
if-true-else ( eval [ e<sub>1</sub> ], eval [ e<sub>2</sub> ], eval [ e<sub>3</sub> ] )
```

For languages with non-Boolean tests:

```
• eval [ if e<sub>1</sub> then e<sub>2</sub> else e<sub>3</sub> ] =

if-true-else ( not ( equal ( eval [ E<sub>1</sub> ], 0 ) ),

eval [ E<sub>2</sub> ], eval [ E<sub>3</sub> ] )
```

Language construct:

> s ::= **if**(e) s **else** s

Translation to funcons:

```
exec [ if(e<sub>1</sub>) s<sub>2</sub> else s<sub>3</sub> ] =
if-true-else ( eval [ e<sub>1</sub> ], exec [ s<sub>2</sub> ], exec [ s<sub>3</sub> ] )
```

For languages with non-Boolean tests:

```
exec [ if(e<sub>1</sub>) s<sub>2</sub> else s<sub>3</sub> ] =
   if-true-else ( not ( equal ( eval [ e<sub>1</sub> ], 0 ) ),
        exec [ s<sub>2</sub> ], exec [ s<sub>3</sub> ] )
```

Language construct:

Translation to funcons:

```
exec[if(e) s] = exec[if(e) s else { } ]
```

exec [{ }] = null

Language construct:

```
> s ::= { d s }
    | i = e ;
e ::= i
```

Translation to funcons:

```
exec [ { d s } ] = scope ( elab [ d ], exec [ s ] )
```

```
exec [ i = e ; ] =
    assign ( bound-val ( id [ i ] ), eval [ e ] )
```

```
eval [ i ] =
current-val ( bound-val ( id [ i ] ) )
```

High modularity

Component-based semantics

Reusable components of language definitions

fundamental programming constructs

Tool support

Preliminary tool support

SPOOFAX/ECLIPSE

- parsing programs (SDF3, disambiguation, AST creation)
- translating ASTs to funcon terms (SDF3, STRATEGO)
- browsing and editing component-based specifications (SDF3, NABL, STRATEGO)

PROLOG

- translating MSOS rules for funcons to PROLOG
 - currently migrating to STRATEGO
- running funcon terms

Future tool support

ESOP'14:

refocusing small-step (M)SOS rules

Deriving Pretty-Big-Step Semantics from Small-Step Semantics

Casper Bach Poulsen and Peter D. Mosses

Department of Computer Science, Swansea University, Swansea, UK, cscbp@swansea.ac.uk, p.d.mosses@swansea.ac.uk

Abstract. Big-step semantics for languages with abrupt termination and/or divergence suffer from a serious duplication problem, addressed by the novel 'pretty-big-step' style presented by Charguéraud at ESOP'13. Such rules are less concise than corresponding small-step rules, but they have the same advantages as big-step rules for program correctness proofs. Here, we show how to automatically derive pretty-big-step rules directly from small-step rules by 'refocusing'. This gives the best of both worlds: we only need to write the relatively concise small-step specifications, but our reasoning can be big-step as well as small-step. The use of strictness annotations to derive small-step congruence rules gives further conciseness.

Alternative tool support

WRLA'14:

using the K framework and tools

FunKons: Component-Based Semantics in K

Peter D. Mosses and Ferdinand Vesely^(⋈)

Swansea University, Swansea SA2 8PP, UK {p.d.mosses,csfvesely}@swansea.ac.uk

Abstract. Modularity has been recognised as a problematic issue of programming language semantics, and various semantic frameworks have been designed with it in mind. Reusability is another desirable feature which, although not the same as modularity, can be enabled by it. The K Framework, based on Rewriting Logic, has good modularity support, but reuse of specifications is not as well developed.

The PLanCompS project is developing a framework providing an open-ended collection of reusable components for semantic specification. Each component specifies a single fundamental programming construct, or 'funcon'. The semantics of concrete programming language constructs is given by translating them to combinations of funcons. In this paper, we show how this component-based approach can be seamlessly integrated with the K Framework. We give a component-based definition of CinK (a small subset of C++), using K to define its translation to funcons as well as the (dynamic) semantics of the funcons themselves.

Alternative tool support

RTA'15:

using a bigstep variant of I-MSOS

DynSem: A DSL for Dynamic Semantics Specification

Vlad Vergu, Pierre Neron, and Eelco Visser

Delft University of Technology
Delft, The Netherlands
v.a.vergu@tudelft.nl, p.j.m.neron@tudelft.nl, visser@acm.org

— Abstract -

The formal definition the semantics of a programming language and its implementation are typically separately defined, with the risk of divergence such that properties of the formal semantics are not properties of the implementation. In this paper, we present DynSem, a domain-specific language for the specification of the dynamic semantics of programming languages that aims at supporting both formal reasoning and efficient interpretation. DynSem supports the specification of the operational semantics of a language by means of statically typed conditional term reduction rules. DynSem supports concise specification of reduction rules by providing implicit build and match coercions based on reduction arrows and implicit term constructors. DynSem supports modular specification by adopting implicit propagation of semantic components from I-MSOS, which allows omitting propagation of components such as environments and stores from rules that do not affect those. DynSem supports the declaration of native operators for delegation of aspects of the semantics to an external definition or implementation. DynSem supports the definition of auxiliary meta-functions, which can be expressed using regular reduction rules and are subject to semantic component propagation. DynSem specifications are executable through automatic generation of a Java-based AST interpreter.