1	1. An IR lens comprising:
2	a first surface; and
3	a second surface,
4	wherein the IR lens is a moldable IR transmissive material and at least one
5	surface is an optically significant surface.

- 1 2. The IR lens of claim 1, wherein the optically significant surface comprises a surface relief holographic grating.
- 3. The IR lens of claim 2, wherein the optically significant surface is formed directly in a molding operation.
- 4. The IR lens of claim 1, wherein the moldable IR transmissive material is a chalcogenide glass.
- 5. The IR lens of claim 1, wherein the moldable IR transmissive material is an arsenic selenide glass.
- 1 6. The IR lens of claim 1, wherein the lens is manufactured as a unitary structure in a molding operation.

2

is an arsenic selenide glass.

1	7. An IR lens comprising:
2	a first surface; and
3	a second surface,
4	wherein the IR lens is made from a moldable IR transmissive material and
5	wherein at least the second surface is an optically significant surface molded from
6	the moldable IR transmissive material.
1	8. A method of forming an IR lens comprising the steps of:
2	heating a moldable IR transmissive material above the glass transition
3	temperature;
4	molding the moldable IR transmissive material into a shape for an IR
5	lens with at least one surface that is an optically significant surface; and
6	cooling the moldable IR transmissive material to below the glass
7	transition temperature.
1	9. The method of claim 8, further comprising the step of:
2	coating at least a first surface with an optical surface coating.
1	10. The method of claim 8, wherein molding is slump molding, casting, or
2	injection molding.
1	11. The method of claim 8, wherein cooling is ambient cooling or
2	quenching.
1	12. The method of claim 8, wherein the moldable IR transmissive material

1	13. An IR lens comprising:
2	a first spherical surface: and
3	a second nonspherical surface, wherein the second nonspherical surface
4	comprises a surface relief holographic grating,
5	wherein the lens is made from a moldable IR transmissive material.
1	14. The IR lens of claim 13, wherein the moldable IR transmissive material
2	is a chalcogenide glass.
1	15. An infrared imaging optical arrangement comprising:
2	a first lens; and
3	a second lens, wherein at least the first lens is made from a moldable
4	IR transmissive material and wherein at least the first lens has at least one optically
5	significant surface.
1	16. The infrared imaging optical arrangement of claim 15, wherein the
2	optically significant surface comprises a surface relief holographic grating.
1	17. The IR lens of claim 15, wherein the moldable IR transmissive material
2	is a chalcogenide glass.