Cour		18CYB101J Course Name	BILLI		Cou Cate	ırse gory		В	L T P 3 1 2					C 5									
Co	equisite urses Offerin	Nil g Department Chemistry	/ Codes/Standards		Prog Co Perioo	urse	s ′	Vil															
Course Learning Rationale (CLR): The purpose of learning this course is to:							arnin	ıg					Prog	ram L	earni	ng O	utcor	mes (l	PLO)				
CLR-1		 1	1					4	5	6	7					15							
	Emplo	properties al advancement ales industries ropriate solutions		evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Knowledge		Design & Development	Analysis, Design, Research			Environment & Sustainability	Ü	Individual & Team Work		Project Mgt. & Finance		10	14	10		
	Learnin	g, molecular energy levels		∼ Level of Th	02 Expected P	S Expected A	H Engineering Knowledge	Problem Analysis	H Design & D	· Analysis, D	Modern Tool Usage	Society & Culture	Environmer	· Ethics	Individual 8	Communication	Project Mgt	Life Long Learning	PS0 - 1	- PSO - 2	- PSO - 3		
	: Utiliz	olecules ments		2 2 2	80 75 70	70 60	H - H	- Н	- -	H	- H -	-	-	-	- - -	-	-	-	-	-	<u> </u>		
CLO-4: Utilize the concepts of thermodynamics in understanding thermodynamically driven chemical reactions CLO-5: Perceive the importance of stereochemistry in synthesizing organic molecules applied in pharmaceutical industries CLO-6: Utilize concepts in chemistry for technological advancement based on electronic, atomic and molecular level modifie						2	80 75	70 65	-	H -	H -	-	-	-	-	-	-	-	-	-	-	-	-
Duratio	Duration (hour) 18 18										18	3							1	8			
S-1 -	SLO-1	Schrodinger equation- introduction	Crystal field theory-Explanation	surface characterization : - Introduction		thniques – XPS Hard soft acids and bases			(Optical activity, absolute configurations													
SLO-2		Schrodinger equation-Derivation	Crystal field theory-Explanation	surface characterization : - Explanation	echn	nique	s – X	PS H	Hard soft acids and bases				d	conformational analysis									
	SLO-1	Particle in a box solutions	Energy level diagrams for transition metal ions	Diffraction and scattering of solids Thermodynai				nermodynamic functions: energy con			Isomerism in transitional metal compounds-Introduction												
S-2	SLO-2	Applications for conjugated molecules	Energy level diagrams for transition metal ions	Explanation Entro				Entropy and free energy				Isomerism in transitional metal compounds-Types											
	SLO-1	Forms of the hydrogen atom wave functions	Magnetic properties of transition compounds	lonic, dipolar interactions				Е	Estimation of entropy				I	Introduction to reactions involving substitution									
S-3	SLO-2	plots of these functions to explore their spatial variations	Magnetic properties of transition compounds	Van der Waals interactions				Е	Estimation of free energies.					Addition reaction									
S-4	SLO-1	Tutorial Session	Tutorial Session	Tutorial Session				T	Tutorial Session					Tutorial Session									
3-4	SLO-2	Tutorial Session	Tutorial Session	Tutorial Session				T	Tutorial Session				Tutorial Session										
S 5-6	SLO-1 SLO-2	Lab Introduction	Estimate of amount of chloride content in a water sample.	Determine strength of a mixture of and hydrochloric acid by conduct					Determine adsorption of oxalic/acetic acid from aqueous soln. by activated charcoal			- 1	Experiment - Repeat - 2										
SLO-1		Molecular orbitals of diatomic molecules- Homonuclear	Principles of spectroscopy-Introduction	Equations of state of real gases					Free energy and emf. Cell potentials Elimination reaction			on reaction											
3-1	SLO-2	Heteronuclear diatomic molecules	Principles of spectroscopy-Explanation	critical phenomena				T	The Nernst equation and applications				(Oxidation reaction									
	SLO-1	Equations for atomic orbitals	Selection rules-Introduction	Effective nuclear charge, penetration of orbitals			Α	Acid base, oxidation reduction				1	Reduction reaction										
S-8 SLO-2		Equations for molecular orbitals	selection rules-Explanation	variations of s, p, d and f		tal en	ergie	s of S	Solubility equilibria Examples														

S-9	SLO-1	Energy level diagrams of diatomic- introduction	sizes		Water chemistry	Cyclization
3-3	SLO-2	Energy level diagrams of diatomic- explanation	Electronic spectroscopy-Explanation	Electronic configurations, atomic and ionic sizes	Water chemistry	Ring opening reactions
S-10	SLO-1	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session
3-10	SLO-2	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session
S 11-12		Determine amount of sodium carbonate, sodium hydroxide in a mixture by titration	Determine strength of an acid using pH meter	Determine ferrous ion using potassium dichromate by potentiometric titration	Determine rate constant of Acid hydrolysis of an ester	Experiment - Repeat - 3
C 42	SLO-1	π-molecular orbitals of butadiene	Rotational spectroscopy of diatomic molecules	ionization energies, electron affinity and electronegativity	Corrosion	Synthesis of a commonly used drug molecule-Introduction
S-13	SLO-2	π-molecular orbitals of benzene	Rotational spectroscopy of diatomic molecules	ionization energies, electron affinity and electronegativity	Corrosion	Synthesis of a commonly used drug molecule-Examples
S-14	SLO-1	Aromaticity-Introduction	Vibrational spectroscopy of diatomic molecules.	Polarizability, oxidation states	Representations of 3 dimensional structures	Synthesis of a commonly used drug molecule-Introduction
3-14	SLO-2	Aromaticity-explanation	Applications of vibrational and rotational spectroscopy of diatomic molecule	Polarizability, oxidation states	structural isomers and stereoisomers	Synthesis of a commonly used drug molecule-Examples
S-15	SLO-1	Crystal field theory-Introduction	Nuclear magnetic resonance - Introduction	Coordination numbers and geometries	Configurations and symmetry and chirality	Question & Answer
3-13	SLO-2	Crystal field theory-Introduction	Nuclear magnetic resonance - Explanation	Coordination numbers and geometries	enantiomers, diastereomers	Question & Answer
S-16	SLO-1	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session
0-10	SLO-2	Tutorial Session Tutorial Session Tutorial Session		Tutorial Session	Tutorial Session	Tutorial Session
S 17-18		Determine hardness (Ca ²⁺) of water using EDTA – complexometry method	Determine strength of an acid by conductometry	Determine molecular weight of a polymer by viscosity average method	Experiment - Repeat - 1	Demonstration Practical Session

Learning
Resources

- 1. B. H. Mahan, R. J. Meyers, University Chemistry, 4th ed., Pearson publishers, 2009.
 2. M. J. Sienko, R. A. Plane, Chemistry: Principles and Applications, 3rd ed., McGraw-Hill publishers, 1980
 3. C. N. Banwell, Fundamentals of Molecular Spectroscopy, 5th ed., McGraw-Hill publishers, 2013
- 4. B. L. Tembe, Kamaluddin, M. S. Krishnan, Engineering Chemistry (NPTEL Web-book) http://nptel.ac.in/downloads/122101001/
- 5. Peter W. Alkins, Julio de Paula, James Keeler, Physical Chemistry, 11th ed., Oxford publishers, 2018 6. K. P. C. Vollhardt, N. E. Schore, Organic Chemistry: Structure and Function 7thed., Freeman, 2014

Learning Assessment													
	Bloom's	Continuous Learning Assessment (50% weightage)									Final Examination (50% weightage)		
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	ł (10%)#	i iliai Examination (50 % weightage)			
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0 %	100	0 %	10	0 %	100	0 %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. Dr. Sudarshan Mahapatra, Encube Ethicals Pvt. Ltd, sudarshan.m@encubeethicals.com	1. Prof. G. Sekar, IIT Madras, gsekar@iitm.ac.in	1. Prof. M. Arthanareeswari, SRMIST								
2. Dr. Shanmukhaprasad Gopi, Dr. Reddy's Laboratories, shanmukhaprasadg@drreddys.com	2. Prof. Vivek Polshettiwar, TIFR Mumbai, vivekpol@tifr.res.in	2. Dr. K. K. R. Datta, SRMIST								