

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA

SYLLABUS

PROYECTO CURRICULAR: INGENIERÍA ELECTRÓNICA

NOMBRE DEL DOCENTE:								
ESPACIO ACADÉMICO (Asignatura): FÍSICAII II								
ELECTROMAGNETISMO	CÓDIGO: 13							
Obligatorio (X) : Básico (X) Co								
Electivo () : Intrínsecas () Extrí								
NUMERO DE ESTUDIANTES:		GRUPO:						
	NÚMERO DE CREDIT	OS: 3						
TIPO DE CURSO: TEÓRICO PRACTICO TEO-PRAC:								
Alternativas metodológicas:								
Clase magistral, Dinámicas de grup	oo, Lecturas, Practicas de l	Laborator	10.					
HORARIO:								
DIA	HORAS		SALON					
I. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO (¿El Por Qué?)								
La asignatura se encuentra inscrita en el componente de formación de las ciencias básicas definidas para								
las ingenierías, según decreto 792 de 2001. La física del Electromagnetismo provee los fundamentos de								
las aplicaciones tecnológicas de la Ingeniería Electrónica y Eléctrica. Todas las leyes de esta								
fenomenología física gobiernan el comportamiento de los circuitos eléctricos y los respectivos								
componentes de dichos circuitos con base en los cuales se construyen las aplicaciones prácticas de estas								
ingenierías. Igualmente fundamentan aplicaciones para generación y recepción de ondas								
electromagnéticas que dan origen a todos los sistemas modernos de comunicación. En consecuencia, esta								
física es la base sobre la cual se construyen gran parte de las soluciones de ingeniería eléctrica y								
electrónica. Las leyes de Maxwell gobiernan la fenomenología electromagnética clásica es decir aquellos								
fenómenos donde la causalidad se mantiene.								
II. PROGRAMACION DEL CONTENIDO (¿El Qué Enseñar?)								
OBJETIVO GENERAL								

Comprender y utilizar los conceptos fundamentales de los fenómenos electromagnéticos, basados en las

leyes de Maxwell y de sus codescubridores: Coulomb, Gauss, Ampere, Faraday.

OBJETIVOS ESPECÍFICOS

RESULTADOS DEL APRENDIZAJE

Conocer los conceptos de potencial y energía potencial electrostática, la relación entre ambos y su aplicación a problemas básicos.

Calcular el campo electrostático por integración directa y aplicando la ley Gauss.

Calcular el campo magnetostático por integración directa y aplicando la ley de Ampere.

Conocer las propiedades eléctricas y magnéticas de los medios materiales y las magnitudes relacionadas con ellas.

Comprender el significado de las leyes de Maxwell y algunos fenómenos que se derivan de ellas.

Aplicar las leyes de los circuitos eléctricos de corriente continua y alterna a circuitos eléctricos en régimen estacionario.

Comprender el funcionamiento del condensador como dispositivo almacenador de energía eléctrica.

Comprender el proceso de conducción de carga eléctrica y de las leyes que la rigen.

Comprender el origen del campo magnético estático y variable en el tiempo

Comprender la ley de inducción de Faraday.

PROGRAMA SINTÉTICO

Campo eléctrico

Ley de Gauss

Potencial eléctrico

Capacitancia y dieléctricos

Corriente y resistencia eléctricas

Campo magnético

Fuentes de campo magnético

Ley de Faraday

Inductancia

Circuitos de corriente alterna

Ondas electromagnéticas

III. ESTRATEGIAS (¿El Cómo?)

Metodología Pedagógica y Didáctica:

Cada tema expone los fundamentos teóricos estará y suficientes ejemplos de aplicación de manera que aclaren el porqué de los conceptos teóricos explicados. Se buscará una alta participación de los estudiantes a través de talleres individuales y grupales realizados en la clase y fuera de ella, los cuales tendrán relación directa con los temas teóricos tratados en el curso. De igual forma se realizan discusiones grupales en torno a problemas específicos realizando evaluaciones periódicas donde se sustentan grupalmente las soluciones con el fin de llevar el seguimiento constante sobre los progresos y dificultades en el proceso formativo del estudiante. Los estudiantes podrán disponer de espacios para asesoría por parte del profesor en los casos que así lo requieran.

	Horas			Horas	Horas	Total Horas	Créditos	
				profesor/semana	Estudiante/semana	Estudiante/semestre		
Tipo de Curso	TD	TC	TA	(TD + TC)	(TD + TC +TA)	X 16 semanas		
PRACTICO	4	2	3	6	9	144	3	

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado _ cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos o de forma individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo del estudiante sin presencia del docente, que se puede realizar en distintas instancias: en grupos de trabajo o en forma individual, en casa o en biblioteca, laboratorio, etc.)

IV. RECURSOS (¿Con Qué?)

Medios y Ayudas:

El curso requiere de espacio físico (aula de clase); Recurso docente, recursos informáticos (página de referencia del libro, CD de ayuda de este, Recursos bibliográficos (revistas especializadas), retroproyector, videobeam, televisor, computadores (salas).

Laboratorios sobre los diversos temas del curso visualizando y observando la realidad de los fenómenos físicos electromagnéticos. Se llevan a cabo prácticas de laboratorio.

BIBLIOGRAFÍA

TEXTOS GUÍAS

Serway - Jewett, Física para Ciencias e Ingeniería, Vol. II. Editorial Thomson, sexta edición.

Sears-Zemansky, Física Universitaria, Vol. II, Editorial Addison-Wesley, 12a Edición

TEXTOS COMPLEMENTARIOS

Fishbane, Gasiorowicz & Thortnton, Physics for Scientists & Engineers, Second Edition Feynman, R., Lecturas de Física

Sears, F., Física

Halliday, Resnick, Walter, Fundamentos de Física. Volumen 2. Sexta edición. Ed. Cecsa

Douglas C. Giancoli, Physics: Principles with applications. 5th ed.

John D. Cutnell & Kenneth W. Johnson, Physics, 4th ed.

AULA VIRTUAL EN MOODLE:

http://ingenieria.udistrital.edu.co/moodle/course/

V. ORGANIZACIÓN / TIEMPOS (¿De Qué Forma?)

Espacios, Tiempos, Agrupamientos:												
Unidad	Semana											
Campo eléctrico												
Ley de Gauss												
Potencial eléctrico												
Capacitancia y dieléctricos												
Corriente y resistencia eléctricas												
Campo magnético												
Fuentes de campo magnético												
Ley de Faraday												
Inductancia												
Circuitos de corriente alterna												
Ondas electromagnéticas												

VI. EVALUACIÓN (¿Qué, Cuándo, Cómo?)

PRIM	TIPO DE EVALUACIÓN	FECHA	PORCENTAJE
ERA NOT A	Talleres, Trabajos, Quiz, Parcial	Hasta semana 6	25%
SEG UND A NOT A	Talleres, Trabajos, Quiz, Parcial	Hasta semana 13	25%
NOTA FINAL	Examen final y nota de laboratorio	Semana 17 y 18	30% y 20%

ASPECTOS PARA EVALUAR DEL CURSO

- 1. Evaluación del desempeño docente
- **2.** Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita.
- 3. Autoevaluación:
- 4. Coevaluación del curso: de forma oral entre estudiantes y docente.