Wykorzystanie sieci neuronowych do wykrywania zmian w obrazach medycznych

(English title)

Tomasz Nanowski

Praca inżynierska

Promotor: dr Jan Chorowski

Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki

12 stycznia 2019

Tomasz Nan	owski
	(adres zameldowania)
	(adres korespondencyjny)
PESEL:	
e-mail:	
Wydział Mat	tematyki i Informatyki
stacjonarne s	studia I stopnia
kierunek:	informatyka
nr albumu:	279076

Oświadczenie o autorskim wykonaniu pracy dyplomowej

Niniejszym oświadczam, że złożoną do oceny pracę zatytułowaną Wykorzystanie sieci neuronowych do wykrywania zmian w obrazach medycznych wykonałem/am samodzielnie pod kierunkiem promotora, dr. Jana Chorowskiego. Oświadczam, że powyższe dane są zgodne ze stanem faktycznym i znane mi są przepisy ustawy z dn. 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (tekst jednolity: Dz. U. z 2006 r. nr 90, poz. 637, z późniejszymi zmianami) oraz że treść pracy dyplomowej przedstawionej do obrony, zawarta na przekazanym nośniku elektronicznym, jest identyczna z jej wersją drukowaną.

Wrocław, 12 stycznia 2019

(czytelny podpis)

Streszczenie Celem projektu jest wykorzystanie modelu VAE do wykrywania zmian patologicznych w obrazach medycznych

. . .

Spis treści

1.	Intr	roduction	7
2.	Art	ificial neural networks	9
	2.1.	Autoencoders	9
	2.2.	VAE	9
	2.3.	Convolution VAE	10
	2.4.	Deep feature consistent variational auto-encoder	10
3.	MN	IST experiments	11
	3.1.	MNIST	11
	3.2.	VAE	11
	3.3.	Deep feature consistent variational auto-encoder	12
4.	Med	dical Dataset	15
	4.1.	Description	15
	4.2.	Preprocessing	15
	4.3.	Patches	15
	4.4.	Normalizations	15
5.	Exp	periments on medical dataset	17
	5.1.	VAE	17
	5.2.	C-VAE	17
6.	Wo	rkflow	19
7.	Sun	nmary	21

Rozdział 1.

Introduction

Rozdział 2.

Artificial neural networks

Sztuczne sieci neuronowe mają obecnie bardzo mocno ugruntowaną pozycję szczególnie w dziedzinie problemów związanych z analizą i przetwarzaniem obrazów. Pomimo, iż nie jest to nowy pomysł, dopiero ostatni wzrost w wydajności komputerów pozwolił na ich praktyczne zastosowanie. Z matematycznego punktu widzenia są to sparametryzowane nieliniowe funkcje o pewnej ustalonej strukturze. Składają się z prostych elementów zwanych neuronami, a one natomiast są pogrupowane w warstwy. Połączenia między warstwami definiują przepływ danych. 'Nauka' sieci neuronowych polega na optymalizacji pewnej funkcji straty, czyli wyznaczeniu takich parametrów, żeby osiągnąć minimalny koszt. Do tego celu często korzysta się z metod opartych na SGD, a przy wybranej strukturze można w efektywny sposób zastosować algorytm propagacji wstecznej. W dalszej części pracy będę używał prostszej nazwy (neural nets). Przykładowa architektura sieci neuronowych jest zaprezentowana na wykresie ????.

2.1. Autoencoders

Jest to jeden z rodzajów sieci neuronowych, służący do znajdowania wydajnej reprezentacji danych, co jest przykładem nauki bez nadzoru. W autoencoder'ach mozna wyróżnić dwie części: encoder i decoder. Zadaniem encodera jest wyprodukowanie reprezentacji, natomiast decoder służy do odtworzenia z niej oryginalnej postaci. Zależy nam na tym, żeby wyjście było w jakimś sensie jak najbardziej podobne do wejścia. W przypadku obrazów jako funkcja straty często stosowane jest MSE. Przykładowy schemat na wykresie 2.1.

2.2. VAE

Variational autoencoders rezszerzają założenia o wprowadzenie modelowania rozkładu prawdopodobieństwa dla reprezentacji ukrytej.

latent vector / variables

Rysunek 2.1: Architecture of autoencoder

2.3. Convolution VAE

Jest to rozszerzenie poprzedniego modelu, w którym dodatkowo stosujemy warstwy splotowe. Szczególnie w przypadku obrazów pozwala to na zwiększenie rozmiaru danych wejściowych przez zmniejszenie ilości parametrów w stosunku do warstw fully-connected oraz wykryciu na wstępie jakiś prostych cech, przez co w reprezentacji mogą znajdowac się bardziej abstrakcyjne rzeczy.

2.4. Deep feature consistent variational auto-encoder

Ta wersja zakłada użycie innej funkcji kosztu. MSE z samej definicji przyczynia się do uśredniania wartości pikseli przez co wyjściowy obraz nie jest wyraźny. W tym przypadku będziemy korzystać z zewnetrznej sieci splotowej wyuczonej do klasyfikacji obrazów. Będziemy teraz myśleć, że dwa obrazy są podobne, jeśli maja podobne wartości aktywacji w tej sieci. Takie podejście powinno nam dać ostrzejsze wyjście.

Rozdział 3.

MNIST experiments

3.1. MNIST

Jest to zbiór pokategoryzowanych odręcznie napisanych cyfr. Wszystkie obrazki są czarno-białe, rozmiaru 28x28 i wycentrowane. Zbiór składa się z 60000 danych treningowych i 10000 testowych. Zbiór ten często wykorzystywany jest w celu ekperymentowania z modelem, jednak jest na tyle mało skomplikowany, że daje jedynie poglądowe informacje. Przykładowe obrazki 3.1.

Rysunek 3.1: Samples from MNIST dataset

3.2. VAE

Wyniki przy użuciu zwykłego VAE

Rysunek 3.2:

3.3. Deep feature consistent variational auto-encoder

Wyniki przy użyciu Deep feature consistent variational auto-encoder.

Rysunek 3.3:

Rozdział 4.

Medical Dataset

Dane pochodzą z Uniwersytetu ... z USA.

4.1. Description

4.2. Preprocessing

Opis preprocessingu

4.3. Patches

Wybór rozmiaru patchy i ekspeymenty z tym związane

4.4. Normalizations

Może LIME?

Rozdział 5.

Experiments on medical dataset

- 5.1. VAE
- 5.2. C-VAE

Rozdział 6.

Workflow

Rozdział 7.

Summary