How to
Interpret (or not)

a

Machine Learning model

c dhuppenkothen

Daniela Huppenkothen

NYU Center for Cosmology and Particle Physics
NYU Center for Data Science

2 topics

Interpretability

Model Selection

Interpretability

Logistic Regression of RR Lyrae Stars

... now what?

What does interpretability mean to you?

2 main goals: inference versus prediction

2 main goals: inference versus prediction

statistics! machine learning

Inference

"a conclusion reached on the basis of evidence and reasoning"

Inference

"Why do stars have different colours from galaxies?"

Vanderplas et al, 2012

Prediction

"Given my data points X and outcomes y, what outcome will I predict for a new data point x?"

Vanderplas et al, 2012

Z. Lipton: The Mythos of Model Interpretability https://arxiv.org/abs/1606.03490

Scientific goal: uncover causal relationship

ML goal: minimize prediction error

Motives

Trust

Understandability? Of features? Parameters? Models? Algorithms?

Low test error?

Does training data match deployment environment?

Trust

Causality

Transferability

http://emedicine.medscape.com/article/360090-overview

See also: Caruana et al, 2015

Transferability

Informativeness

Informativeness

Properties of an interpretable model

1) Transparency

1) Transparency

Simulatability

= ability to understand model in your head

Example: Decision Trees

Example: Decision Trees

Decomposability

= ability to understand model components

Algorithmic Transparency*

*note: humans have no algorithmic transparency whatsoever!

2) Post-Hoc Interpretability

natural language explanations

visualization

learning by example

Black Box Benchmarking

1) train linear model

2) train blackbox model

compare!

Surrogate Models

1) train blackbox model

2) train interpretable model on predictors

interpret

Ensemble of Models

1) train interpretable linear model

2) train interpretable decision tree

compare

Which is easier to interpret?

or

Answer: it depends!

A linear model with highly engineered features and high-dimensional variables may not be very interpretable

but: linear models have a better track record for modelling the natural world and identifying weaknesses in the training data

Think carefully about your goals, your features, and your feature engineering!

Model Selection

Model Selection

- 1) avoid overfitting (prediction)
- 2) decide between (physical) models (inference)

Possible models?

- 1) algorithms
- 2) algorithm-specific parameters
- 3) regularization parameters
- 4) feature selection

Cross-validation

- 1) hold-out cross-validation
- 2) k-fold cross-validation
- 3) leave-one-out (LOO) cross validation
- 4) random subset cross validation

Nomenclature

training set: a data set to train your algorithm on

validation set: a data set to use for comparing the performance of different models

test set: a data set reserved to compute the error estimate of the final chosen model

Hold-out + k-fold cross-validation

Hold-out + k-fold cross-validation

Leave one out cross validation

special case: k = N

Random subset cross validation

What do you compare during cross validation?

Example: LSST alerts!

10 million alerts per night0.1% interesting

Accuracy Paradox

different metrics are useful for different use cases!

Human:

Human: Computer:

- 1) adjusted Rand index (ARI)
- 2) adjusted mutual information score
- 3) Silhouette coefficient
- 4) Information criteria

Feature Selection

Maybe only a subset of available features is predictive!

Exhaustive search: > 2ⁿ model evaluations

Linear models: L1 regularization

$$L1: \lambda \|\mathbf{w}\|_1 = \lambda \sum_{j=1}^m |w_j|$$

$$SSE = \sum_{i=1}^{n} \left(\text{target}^{(i)} - \text{output}^{(i)} \right)^{2} + L1$$

Forward or backward search: >n² model evaluations

search procedure is called forward search:

- Initialize F = ∅.
- 2. Repeat {
 - (a) For i = 1,...,n if i ∉ F, let F_i = F ∪ {i}, and use some version of cross validation to evaluate features F_i. (I.e., train your learning algorithm using only the features in F_i, and estimate its generalization error.)
 - (b) Set F to be the best feature subset found on step (a).

}

Select and output the best feature subset that was evaluated during the entire search procedure.

Filter feature selection: >n model evaluations

e.g. correlation between features and labels, Kullback-Leibler divergence, ...

The Bayesian Perspective

"I have a generative model and a likelihood"

+ usually easier to interpret and reason about

usually much more computationally expensive

Information Criteria

approximation of Bayesian cross validation

$$P(m|\mathbf{y}) = \frac{P(\mathbf{y}|m)P(m)}{P(\mathbf{y})}$$

Bayesian Information Criterion

- rough approximation of the Bayes factor (for unit uniform prior)
- conservative estimate
- useful as a baseline

approximation of Bayesian CV

Akaike Information Criterion (AIC)*

Deviance Information Criterion (DIC)

Widely Applicable Information Criterion (WAIC)

are all approximation to leave-one-out cross-validation in Bayesian models (Gelman et al, 2013)

Akaike Information Criterion

$$ext{AIC} = 2k - 2\ln(\hat{L})$$

only works for linear models with flat priors or models with a normally distributed posterior

Deviance Information Criterion

$$ext{AIC} = 2k - 2\ln(\hat{L})$$

replace with databased bias correction replace with posterior mean

computed
$$p_{\text{DIC}} = 2 \left(\log p(y|\hat{\theta}_{\text{Bayes}}) - \frac{1}{S} \sum_{s=1}^{S} \log p(y|\theta^s) \right).$$

Resources:

- http://www.stat.columbia.edu/~gelman/research/published/waic_understand3.pdf
- https://github.com/marcotcr/lime
- https://arxiv.org/abs/1606.03490
- https://www.stat.washington.edu/raftery/Research/PDF/ kass1995.pdf
- Gelman et al, Bayesian Data Analysis, 2004
- Bishop, Pattern Recognition + Machine Learning
- http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning %20-%20Springer%20%202006.pdf
- https://www.stat.washington.edu/research/reports/1999/ tr347.pdf