POIS ASSIGNMENT 1

TASK 3

USE THE PRF TO OBTAIN A CPA-SECURE ENCRYPTION SCHEME

THEORY

Chosen Plaintext Attacks: CPA-attacker influences messages that the honest party encrypts.

Advantages of CPA-security: Minimal security notion for a modern cryptosystem. Limitations of CPA-Security:

- Does not model and adversary who attempts to modify messages.
- Can get honest party to (partially) decrypt some messages

Theorem: An encryption scheme $\Pi = (Gen, Enc, Dec)$ that is CPA-Secure for single encryptions is also CPA-secure for multiple encryptions.

Observation: Given a CPA-secure encryption scheme $\Pi = (\text{Gen, Enc, Dec})$ that supports messages of a single bit $(\mathcal{M} = \{0,1\})$ it is easy to build a CPA-secure scheme $\Pi' = (\text{Gen', Enc', Dec'})$ that supports messages $m = m_1, ..., m_n \in \{0,1\}^n$ of length n.

$$\operatorname{Enc}_{k}'(m) = \langle \operatorname{Enc}_{k}(m_{1}), \dots, \operatorname{Enc}_{k}(m_{n}) \rangle$$

Constructing a CPA-secure encryption from any PRF:

Let $F(\cdot, \cdot)$ be a secure pseudorandom function with output length ℓ , then define a private-key encryption scheme for messages of length ell as follows:

- 1. Gen: on input 1^n , choose uniform $k \in \{0, 1\}^n$ and output it
- 2. **Enc:** on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^\ell$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext:

$$c = [r, m \oplus F_k(r)]$$

3. Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext c = [r,y], output the plaintext message

$$m = y \oplus F_k(r)$$

.

COUNTER MODE:

In the randomized counter mode of operation for block ciphers.

We begin by choosing a random IV. Then, we encrypt the message by encrypting each plaintext block i with F(k, IV +i): m[i] F(k, IV +i). Note that randomized counter-mode can be parallelized: each block can be encrypted independent of the previous ones.

• **Input:** m₁,...,m_n

• Output: $c = (ctr, c_1, c_2, ..., c_n)$ where ctr is chosen uniformly at random

ullet Theorem: If E_k is PRF then counter mode is CPA-Secure

• Advantages: Parallelizable encryption/decryption