

National University of Computer & Emerging Sciences, Karachi SPRING - 2020 CS - Department

Final Examination

		12:00 noon	
Course Code: MT-104	Course Name:	Linear Algebra	
Instructor Name: Mr. Muhammad Amjad			
Student Roll No:		Section No:	
Instructions:			
	oletely before answe	ering it. There are 11 quest	tions (short & long) and 3
page.In case of any ambiguity, y	ou may make assun	nption. But your assumption	should not contradict any
statement in the question		aa caayanaa aiyan in tha ay	action names
All the answers must be soDo not write anything on	_	ne sequence given in the qu turn the question paper.	estion paper.
	-	opied from other candidate	e is found strict action will
be taken. Do use your ow	n stuff.		
Time: 180 minutes		ı	Max Marks: 70 points
Q1. Determine whether the se	t of all pairs of rea	I number (x, y) with the a	onerations
$x + y = xy, & kx = x^k$	t or an pairs or rea		sperations.
If it is not a vector space , the space \mathbf{x}	hen list all the axio	ms that fail to hold.	[05]
ii it is not a vector space y th	Terringe air erre azire	ms that fall to hora.	[65]
Q2. Are the vectors $v_1 = (1,0,$	$(1,2)$, $v_2 = (0,1,1,$	2) , and $v_3 = (1,1,1,3)$ i	in $ extbf{\emph{R}}^{^4}$ linearly
dependent or linearly inde			
there is no need to apply	long method).		[03]
00 0 1 1 1 1 1 1		C 11	[0.4]
Q3 . Complete the following statements/ theorem as follows. (i) A nonempty set $S = \{v_1, v_2, \dots, v_r\}$ in a vector space V is linearly			[04]
(1) A nonempty set $S =$	$\mathcal{V}_1, \mathcal{V}_2 \cdots \mathcal{V}_r$	in a vector space v is iin	learly
(ii) if k is a positive integrated (iii) if k is a positive integrated (iiii) if k is a positive integrated (iiii) if k is a positive integrated (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ger, λ is an eigen	value of matrix A and 2	<i>X</i> is a
(iii) If W is a finite -dimensional content of W is a finite -dimensional content of W	nsional inner prod	duct space, then ,	
(iv) If <i>S</i> is an orthogonal	basis for an n - di	mensional inner produc	tspaceV , and if
		v_2, \dots, v_n then:	

Q4.(a) Find a basis for the row space of A consisting entirely row vectors from A. [05]

$$A = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{pmatrix}$$

(a) Find Rank and Nullity of A defined in part (a). [02]

(b) Also, show /verify the theorem: rank A + nullity A = n.

[01]

Q5. Let
$$S = \{ V_1, V_2, V_3, V_4 \}$$
 [05]

$$V_1 = (1, -2, 0, 3, -4), V_2 = (3, 2, 8, 1, 4), V_3 = (2, 3, 7, 2, 3), & V_4 = (-1, 2, 0, 4, -3)$$

and let V be the subspace of \mathbb{R}^5 given by $V = \operatorname{Span} S$. Find the basis for V.

Q6. For the following matrix

$$A = \begin{pmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{pmatrix}$$

- (a) Find Eigen values [03]
- (b) Find Eigen vectors [04]
- (c) Find Algebraic and Geometric multiplicity of each Eigen value [02]
- (d) Inspect if A is Diagonalizable by AM and GM and why? [01]
- (e) Do the same for A⁵? [02]
- Q7. For the following Matrix B, Eigenvalues and Eigen basis are given, (i)Find the Diagonal matrix D which is the result of Diagonalization (show all the working) [05]

$$B = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

For
$$\lambda_1=2$$
, $v_1=(1,0,0)$; $\lambda_2=3$, $v_2=(-2,0,1)$ and $v_3=(0,1,0)$.
 (ii) Also, find \textbf{A}^{15} ?

- **Q8.** Find the Standard matrix for the orthogonal projection of \mathbb{R}^2 onto the stated line, and then use that matrix to find the orthogonal projection of (3,4) onto the line makes an angle of $\frac{\pi}{3}$ (= 60°) along positive x axis.
- **Q9.** For the following matrix [10]

$$A = \begin{bmatrix} -3 & 1 & 2 \\ 1 & -3 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$

- (i) Find a matrix P that orthogonally diagonalizes the matrix A.
- (ii) Find the spectral decomposition of the matrix

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

{HINT: Take $u_{\rm 1}, u_{\rm 2}, u_{\rm 3}$ as column vectors of matrix A }