动态规划

Jun Wu

wujun@yzu.edu.cn

March 28, 2018

- 1 最长公共子序列
- 2 矩阵连乘
- 3 动态规划方法小结
- 4 最优二叉查找树
- 5 两个小练习

公共子序列

• 给定字符序列 $x[1 \cdots m]$ 和 $y[1 \cdots n]$,若字符序列 $z[1 \cdots k]$ 既是x的子序列也是y的子序列,则称z是x和y的公共子序列。

Problem (最长公共子序列)

实例: 输入字符序列 $x[1\cdots m]$ 和 $y[1\cdots n]$ 。

问题: 寻找公共子序列 $z[1\cdots k]$ 使得k最大。

计算最长公共子序列长度的递归关系

• 定义c[i,j]为 $x[1\cdots i]$ 和 $y[1\cdots j]$ 的最长公共子序列的长度。

$$c[i,j] = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1, & \text{if } i,j > 0 \text{ and } x[i] = y[j] \\ \max\{c[i-1,j],c[i,j-1]\}, & \text{if } i,j > 0 \text{ and } x[i] \neq y[j] \end{cases}$$

递归关系的正确性

Lemma 1

设 $z[1\cdots k]$ 为 $x[1\cdots m]$ 和 $y[1\cdots n]$ 的最长公共子序列。则,

- 若x[m] = y[n],那么x[m] = y[n] = z[k]且 $z[1 \cdots k-1]$ 是 $x[1 \cdots m-1]$ 和 $y[1 \cdots n-1]$ 的最长公共子序列;
- ② 若 $x[m] \neq y[n]$,且 $z[k] \neq x[m]$,则 $z[1 \cdots k]$ 是 $x[1 \cdots m-1]$ 和 $y[1 \cdots n]$ 的最长公共子序列;
- ③ 若 $x[m] \neq y[n]$,且 $z[k] \neq y[n]$,则 $z[1 \cdots k]$ 是 $x[1 \cdots m]$ 和 $y[1 \cdots n-1]$ 的最长公共子序列。
 - 证明思路: (剪切-黏贴法,以(1)为例。)
 - 假设 $z[1\cdots k-1]$ 不是 $x[1\cdots m-1]$ 和 $y[1\cdots n-1]$ 的最长公共子序列。
- 那么,有 $x[1\cdots m-1]$ 和 $y[1\cdots n-1]$ 的最长公共子序列 $z'[1\cdots k'-1]$,k'>k。
- 而 $z' \cdot x[m]$ 是x和y的最长公共子序列,这与z是最长公共子序列矛盾。

递归算法的复杂性

- 递归树深度O(m+n)。
- 但不同子问题的数量O(mn)。

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	A	В	A
0	x_i	0	0	0	0	0	0	0
1	A	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	A	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	C	A	В	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0 ↑	0 ↑	0 ↑	1=	1←	1=
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	A	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	A	В	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0 ↑	0 ↑	0 ↑	1=	1←	1=
2	В	0	1=	1 ←	1 ←	1 ↑	2=	2 ←
3	С	0						
4	В	0						
5	D	0						
6	A	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	A	В	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0 ↑	0 ↑	0 ↑	1=	1←	1=
2	В	0	1=	1 ←	1 ←	1 ↑	2=	2 ←
3	С	0	1 ↑	1 ↑	2=	2 ←	2 ↑	2 ↑
4	В	0	1=	1 ↑	2 ↑	2 ↑	3=	3 ←
5	D	0	1 ↑	2=	2 ↑	2 ↑	3 ↑	3 ↑
6	A	0	1 ↑	2 ↑	2 ↑	3=	3 ↑	4=
7	В	0	1=	2 ↑	2 ↑	3 ↑	4=	4 ↑

LCS-LENGTH(X, Y)

```
1: m \leftarrow length[X]
2: n \leftarrow length[Y]
3: for i \leftarrow 1 to m do
4: c[i,0] \leftarrow 0
5: end for
6: for i \leftarrow 0 to n do
7: c[0,j] \leftarrow 0
8: end for
```

```
9: for i \leftarrow 1 to m do
10:
        for i \leftarrow 1 to n do
11:
           if x_i = y_i then
               c[i,j] \leftarrow c[i-1,j-1] + 1
12:
               b[i, j] \leftarrow " = "
13:
14:
           else
               if c[i-1,j] \geq c[i,j-1]
15:
               then
                  c[i,j] \leftarrow c[i-1,j]
16:
                  b[i,j] \leftarrow "\uparrow"
17:
               else
18:
                  c[i,j] \leftarrow c[i,j-1]
19:
                  b[i, j] \leftarrow " \leftarrow "
20:
21:
               end if
            end if
22:
23:
        end for
24: end for
```

根据b[]计算LCS

	j	0	1	2	3	4	5	6
i		y_j	В	D	C	A	В	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0 ↑	0 ↑	0 ↑	1=	1←	1=
2	В	0	1=	1 ←	1 ←	1 ↑	2=	2 ←
3	C	0	1 ↑	1 ↑	2=	2 ←	2 ↑	2 ↑
4	В	0	1=	1 ↑	2 ↑	2 ↑	3=	3 ←
5	D	0	1 ↑	2=	2 ↑	2 ↑	3 ↑	3 ↑
6	A	0	1 ↑	2 ↑	2 ↑	3=	3 ↑	4=
7	В	0	1=	2 ↑	2 ↑	3 ↑	4=	4 ↑

$\mathsf{PRINT} ext{-}\mathsf{LCS}(b,X,i,j)$

```
1: if i = 0 \cup j = 0 then
     RETURN
2:
3: end if
4: if b[i, j] = " = " then
   PRINT-LCS(b, X, i-1, j-1)
    print x[i]
6:
7: else
      if b[i,j] = "\uparrow" then
8:
        PRINT-LCS(b, X, i - 1, j)
    else
10:
        PRINT-LCS(b, X, i, j - 1)
11:
      end if
12:
13: end if
```

复杂度?

- 1 最长公共子序列
- 2 矩阵连乘
- 3 动态规划方法小结
- 4 最优二叉查找树
- 5 两个小练习

问题定义

• 例:

$$A_1 \times A_2 \times A_3$$

- 其中, A_1, A_2, A_3 分别为 $10 \times 100, 100 \times 5, 5 \times 50$ 的矩阵
- 按 $(A_1 \times A_2) \times A_3$ 计算,需要7500次基本乘法运算
- 接 $A_1 \times (A_2 \times A_3)$ 计算,需要75000次乘法运算

Problem (矩阵连乘)

实例: 给定n个矩阵 $\{A_1, A_2, \cdots, A_n\}$,其中 A_i 与i+1是可乘的,i=1,2,...n-1。即输入为n个矩阵的下标 p_0, p_1, \cdots, p_n 。

问题: 寻找计算矩阵乘积的次序,使得依此次序计算矩阵连乘积需要的乘法次数最少。

递归关系

- 假设最后一步乘法的位置在k。
- 那么将有两个子问题 $A_i \times \cdots \times A_k$ 和 $A_{k+1} \times \cdots \times A_j$ 。
- 这样,

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

• 但是,我们并不知道最优顺序的最后一步乘的位置!?

递归算法

• 需要搜索所有可能的k, 从中找到最优的。

$$m[i,j] = \begin{cases} \Theta(1), & i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\}, & i < j \end{cases}$$

- 递归关系的正确性? (剪切-黏贴法)
- 递归算法的复杂性:

$$P(n) = \begin{cases} 1, & n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k), & n > 1 \end{cases}$$

• P(n)称作Catalan数,是 $\Omega(4^n/n^{\frac{3}{2}})$ 。

• 矩阵连乘实例: $A_1 \times A_2 \times \cdots \times A_6$

A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

• 即矩阵的下标数组为:

p_0	p_1	p_2	p_3	p_4	p_5	p_6
30	35	15	5	10	20	25

• 如何设计表格?

p_0	p_1	p_2	p_3	p_4	p_5	p_6
30	35	15	5	10	20	25

	1	2	3	4	5	6
1		15750				
2			2625			
3				750		
4					1000	
5						5000
6						

p_0	p_1	p_2	p_3	p_4	p_5	p_6
30	35	15	5	10	20	25

	1	2	3	4	5	6
1		15750	7875			
2			2625			
3				750		
4					1000	
5						5000
6						

p_0	p_1	p_2	p_3	p_4	p_5	p_6
30	35	15	5	10	20	25

	1	2	3	4	5	6
1		15750	7875			
2			2625	4375		
3				750	2500	
4					1000	3500
5						5000
6						

	p_0	p_1	p_2	p_3	p_4	p_5	p_6
ĺ	30	35	15	5	10	20	25

	1	2	3	4	5	6
1		15750	7875	9375	11875	
2			2625	4375	7125	10500
3				750	2500	5375
4					1000	3500
5						5000
6						

p_0	p_1	p_2	p_3	p_4	p_5	p_6
30	35	15	5	10	20	25

	1	2	3	4	5	6
1		15750	7875	9375	11875	15125
2			2625	4375	7125	10500
3				750	2500	5375
4					1000	3500
5						5000
6						

MATRIX-CHAIN-ORDER(p)

```
n \leftarrow length[p] - 1
    for i \leftarrow 1 to n
3
           do m[i, i] \leftarrow 0
     for l ← 2 to n \triangleright l is the chain length.
5
           do for i \leftarrow 1 to n - l + 1
6
                          do j \leftarrow i + l - 1
                   m[i,j] \leftarrow \infty
8
                   for k \leftarrow i to j - 1
9
                      do q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k p_i
10
                                  if q < m[i, j]
11
                                      then m[i,j] \leftarrow q
12
                                              s[i,j] \leftarrow k
      return m and s
```

通过s找到最优顺序

	1	2	3	4	5	6
1		1	1	3	3	3
2			2	3	3	3
3				3	3	3
4					4	5
5						5
6						

PRINT-OPTIMAL-PARENS(s, i, j)

```
1 if i = j
2 then print "A_i"
3 else print "("
4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])
5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)
6 print ")"
```

- 复杂度分析:
- 计算m的每个表项O(n)
- 共有 $O(n^2)$ 个表项,因此,计算m和s的开销是 $O(n^3)$
- PRINT-OPTIMAL-PARENS的复杂度?

- 1 最长公共子序列
- 2 矩阵连乘
- 3 动态规划方法小结
- 4 最优二叉查找树
- 5 两个小练习

动态规划的基本思路

- 本质上仍然是"大事化小"策略
- 所用的技巧: 保存已求出小问题的解备用
- 什么问题可以采用动态规划求解?

最优子结构性质

大问题的最优解包含了小问题的最优解。

- 最优子结构性质又称做"最优化原理"或"马尔科夫性"
- 如何分析问题是否具备最优子结构性质?
- 通常可以采用"剪切-黏贴"法证明。

备忘录法

动态规划的基本步骤:

- 找出最优解的性质,并刻划其结构特征。
- ② 递归地定义最优值。
- 3 以规划的方式计算出最优值。
- 根据计算最优值时得到的信息,构造最优解。
 - 在计算最优解值时,可以采用自底向上的填表法
 - 也可以采用自顶向下的备忘录法
 - 备忘录法保留了递归结构,算法流程清晰但开销稍大
- 当所有的子问题都需要求解时,自底向上的方法效率较高,否则可以采用备忘录方法

备忘录法示例

```
\mathsf{LOOKUP\text{-}CHAIN}(p,i,j)
```

```
1 if m[i,j] < \infty

2 then return m[i,j]

3 if i = j

4 then m[i,j] \leftarrow 0

5 else for k \leftarrow i to j - 1

6 do q \leftarrow \text{LOOKUP-CHAIN}(p, i, k) + \text{LOOKUP-}(p, k + 1, j) + p_{i-1} p_k p_j)

7 if q < m[i,j]

8 then m[i,j] \leftarrow q

9 return m[i,j]
```

备忘录法示例

$\mathsf{MEMOIZED} ext{-}\mathsf{MATRIX} ext{-}\mathsf{CHAIN}(p)$

```
1 n \leftarrow length[p] - 1

2 for i \leftarrow 1 to n

3 do for j \leftarrow i to n

4 do m[i,j] \leftarrow \infty

5 return LOOKUP-CHAIN(p, 1, n)
```

- 复杂性分析:
- 只要 $m[i,j] < \infty$,lookup chain 将在第二行返回
- 因此总共递归调用的次数 $O(n^2)$
- 算法的复杂度仍然是O(n3)

- 1 最长公共子序列
- 2 矩阵连乘
- 3 动态规划方法小结
- 4 最优二叉查找树
- 5 两个小练习

二叉查找树

- 给定n个键值 $k_1 \le k_2 \le \cdots \le k_n$,以及相应的查找频率
- $p_1, \dots, p_n \not = q_0, \dots, q_n$: $\sum_{i=1}^n p_i + \sum_{j=0}^n q_j = 1$.

对于查找树T,定义平均查找长度:

$$\mathbb{E}[\text{search cost in T}] = \sum_{i=1}^{n} (d_T(k_i) + 1)p_i + \sum_{j=0}^{n} (d_T(d_j) + 1)q_j$$
$$= 1 + \sum_{i=1}^{n} p_i d_T(k_i) + \sum_{j=0}^{n} d_T(d_j)$$

最优二叉查找树

node	depth	probability	contribution
k_1	1	0.15	0.30
k_2	0	0.10	0.10
k_3	2	0.05	0.15
k_4	1	0.10	0.20
k_5	2	0.20	0.60
$d_{\scriptscriptstyle 0}$	2	0.05	0.15
$d_{_1}$	2	0.10	0.30
d_2	3	0.05	0.20
d_3	3	0.05	0.20
d_4	3	0.05	0.20
d_{5}	3	0.10	0.40
Total			2.80

Problem (最优二叉查找树)

实例: n个键值 $k_1 \leq k_2 \leq \cdots \leq k_n$, 以及相应的查找频率 $p_1, \cdots, p_n n_0, \cdots, q_n$ 。

问题: 寻找二叉查找树, 使得平均查找长度最短。

递归关系

$$e[i,j] = \begin{cases} q_i, & \text{if } j = i-1 \\ & \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\}, & \text{if } j \ge i \end{cases}$$

where,

$$w[i,j] = \sum_{l=i}^{j} p_l + \sum_{\ell=i-1}^{j} q_{\ell}$$

- 1 最长公共子序列
- 2 矩阵连乘
- 3 动态规划方法小结
- 4 最优二叉查找树
- 5 两个小练习

流水线调度

练习2

- 设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。
- 有一个数字串: 312, 当N = 3, K = 1时会有以下两种分法:
 - $\mathbf{0} \ \ 3 \times 12 = 36$
 - $21 \times 2 = 62$
- 这时,符合题目要求的结果是: $31 \times 2 = 62$