# DATA MINING CUP 2019 — ISU team 2

## **Procedure**



## **Optimal Threshold**

The optimal decision rule for unbalanced loss function will be different from the classic Optimal 0-1 Loss Classifier. Specifically, Let y and  $\hat{y}$  be the truth and prediction in the 2-class classification problem and  $\boldsymbol{x}$  be the vector of features. Denote  $L(y,\hat{y})$  as the loss function in this contest where L(0,1)=25, L(1,0)=5, L(0,0)=0, L(1,1)=-5. we predict  $\hat{y}=1$  when:

$$\mathbb{E}[L(y,1)|\boldsymbol{x}] < \mathbb{E}[L(y,0)|\boldsymbol{x}],$$

Solve the inequality, we have:

$$p(1|\boldsymbol{x}) > \frac{L(0,1) - L(0,0)}{L(1,0) - L(0,0) - L(1,1) + L(0,1)} = \frac{5}{7}$$

Therefore, fraud is detected when  $\hat{p}(1|\boldsymbol{x}) > 5/7$ .

# Feature Engineering

Add important feature:

 $Totall tem = scanned Line I tems Per Second \times total Scan Time In Seconds \ .$ 

Feature Relative Importance Plots from XGBoost:



Add another important feature by further investigation:

- Inter(totalScanTimeInSeconds, valuePerSecond)
- =totalScanTimeInSeconds  $\times$  (1 + valuePerSecond + valuePerSecond<sup> $\eta$ </sup>)

## **Ensemble Logistic Models**

Since the logistic regression is way better than other models, ensemble will be done within the logistic regression model. Let  $f(\mathbf{x}) = p(1|\mathbf{x})$ ,

$$logit(f(\boldsymbol{x}_i)) = \beta_0 + \boldsymbol{x}_i^{\top} \beta, \ i = 1, \dots, n.$$

We select three logistic models that have:

- good k-fold and LOOCV performance;
- robustness in repeated k-fold cross validation.

#### Feature set 1:

 $\label{eq:fraud} fraud \sim trustLevel + TotalItem + lineItemVoids \\ + scansWithoutRegistration + totalScanTimeInSeconds$ 

#### Feature set 2:

fraud  $\sim$  Feature set 1 + totalScanTimeInSeconds  $\times$  valuePerSecond + totalScanTimeInSeconds  $\times$  valuePerSecond<sup>2</sup>

#### Feature set 3:

fraud  $\sim$  Feature set 1 + totalScanTimeInSeconds  $\times$  valuePerSecond + totalScanTimeInSeconds  $\times$  valuePerSecond<sup>3.5</sup>



## **Logistic Ensemble Results**



### Compare Models

| • |            | RF    | SVM    | NN     | XGBoost | Logistic | Logistic ensemble | Oracle |
|---|------------|-------|--------|--------|---------|----------|-------------------|--------|
|   | 5-fold CV  | -27.5 | -203.8 | -171.9 | -272.2  | -304.7   | -359.8            | -520.0 |
|   | 10-fold CV | -40.0 | -175.2 | -172.3 | -296.0  | -306.5   | -376.8            | -520.0 |

Table 1. The mean of 100 repeated CV scores

