Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки Кафедра інформатики та програмної

інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних

циклічних алгоритмів»

Варіант 28

(шифр, прізвище, ім'я, по батькові)

ІП-11 Сідак Кирил Ігорович

Виконав студент

Перевірив

Мартинова Оксана Петрівна (прізвище, ім'я, по батькові)

Лабораторна робота№4 Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання:

Варіант 28

Знайти суму цифр заданого натурального числа п.

Постановка задачі

Використовуючи ітераційний цикл для визначення розрядності числа та, знаючи розрядність числа, ітераційний цикл, треба визначити кожну цифру заданого числа та їх суму.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Задане натуральне число	цілий	n	Вхідне дане
Змінна для визначення розрядності заданого числа	цілий	temp_num	Проміжне дане
Розрядність числа	цілий	count	Проміжне дане
Поточна цифра числа	цілий	digit	Проміжне дане
Сума цифр числа	цілий	sum_digits	Результат

Використовуючи ітераційний цикл, на кожній його ітерації будемо ділити число temp_num, яке дорівнює заданому натуральному числу n, націло на 10 й інкрементувати count, поки воно буде не менше 10. Знаючи розрядність числа, в арифметичному циклі будемо ітеруватися від count до 1 включно. На кожній ітерації будемо обчислювати цифру числа n: digit = n div pow(10, i-1), де i — ітератор циклу; знаходити число n без вже обчислених цифр: n = n mod pow(10, (i-1)); та збільшувати sum_digits на digit: sum_digits = sum_digits + digit.

div – цілочисельне ділення,

```
mod - знаходження остачі від ділення, pow() – піднесення до степеня
```

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо визначення розрядності числа п.
- Крок 3. Деталізуємо обчислення суми цифр числа п.

Псевдокод

Крок 1

Початок

Визначення розрядності числа п.

Обчислення суми цифр числа n.

Кінепь

Крок 2

Початок

```
поки temp_num >= 10 повторити

temp_num := temp_num div 10

count := count + 1
```

все повторити

Обчислення суми цифр числа п.

Кінець

Крок 3

Початок

```
поки temp_num >= 10 повторити

temp_num := temp_num div 10

count := count + 1

все повторити
```

повторити

для і від count до 1

digit := n div pow(10, i-1)

sum_digits := sum_digits + digit

n := n mod pow(10, i-1)

все повторити

Кінець

Блок-схема Крок 1

Крок 2

Крок 3

Перевірка

Блок	Дія		
	Початок		
1	Введення п = 628		
2	temp_num = 628		
3	count = 1		
4	Після 1 ітерації: temp_num = 62 count = 2		
5	Після 2 ітерації: temp_num = 6 count = 3		
6	sum_digits = 0		
7	1 ітерація: i = 3; digit = 6; sum_digits = 6; n =28		
8	2 ітерація: i = 2; digit = 2; sum_digits = 8; n = 8		
9	3 ітерація: i = 1; digit = 8; sum_digits = 16; n = 0		
10	Виведення sum_digits = 16		
	Кінець		

Висновок

Отже, я дослідив особливості арифметичного циклу та, використавши його на практиці для обчислення суми цифр заданого натурального числа, отримав коректний результат.