

Update on global alignment of the muon system

Jim Pivarski

Texas A&M University

11 May, 2009

- ► Status: demonstrated high precision with collisions MC and produced CRAFT barrel alignment with $20 < p_T < 100$ GeV tracks (under review)
- Goal: move on to endcap alignment soon, where disk misalignments are known to be large
- ▶ Meanwhile: Jordan and Nhan performed their resolution diagnostics and provided very useful feedback
 - new DT alignment did not improve momentum-matching at all
 - what's the difference between alignment and diagnostics? diagnostics have a higher p_T cut
 - produced a muon alignment with $100 < p_T < 200$ GeV:
 - 1. muon system seen to rotate 0.35 mrad
 - 2. big improvement in diagnostics plots (Jordan's talk)
- ▶ This talk: to determine what this means/find the underlying cause of the improvement

- ▶ February and "new" $20 < p_T < 100$ GeV alignments lead to split track and tracker-muon discrepancy at high energies
- ▶ Nhan tried adding 0.4 mrad rotation which empirically fixed things
- ▶ Re-aligning using only $100 < p_T < 200$ GeV tracks yields a 0.35 mrad rotation and also improves resolution

How did the chambers move?

Jim Pivarski

4/17

- $ightharpoonup \Delta \phi$ rotation around beamline (top row) and $r\phi$ position difference (bottom row) between high- p_T and low- p_T , presented three ways
- ▶ 0.35 mrad rotation, 0.04 mrad/m twist, and 3.2 mm spread

- ▶ Fact: Low- p_T alignment is systematically rotated relative to high-p_T alignment
- Reminder: each chamber is aligned to the tracker independently; chambers are not collectively aligned as a group
 - nothing in the procedure correlates neighboring chambers with each other with higher precision than they are positioned in global coordinates
- Mystery: how could either alignment acquire a systematic offset?
 - Reminder: all charge-antisymmetric effects like $\vec{B}(\vec{x})$ and dE/dx are explicitly cancelled: must be charge-independent
 - ► Hypothesis #1: tracker "curl" weak mode projected onto muon system? (tracker curl has tighter constraints than this)
 - ► Hypothesis #2: related to distribution of cosmic rays and "sawtooth effect" (open possibility, but it's complicated)

Tracker curl hypothesis

Jim Pivarski 6/17

Tracker curl constraints

Black= MP starting object

Blue= misaligned Red= aligned on top of misalignment

Studies performed in CRAFT data

Zijin Guo, Roberto Castello

- ▶ Left: tracker tracks are sensitive to 300 μ rad curl (blue: adding curl worsens χ^2 and red: re-aligning restores it)
- ightharpoonup Right: also restores wafer positions within 150 μ rad except TEC
 - ▶ TEC not used in muon alignment; not relevant here
 - \blacktriangleright restored chamber positions randomly distributed around zero: no systematic trend on the scale of 86 $\mu{\rm rad}$

- ► Tracker curl hypothesis requires a larger systematic trend than dedicated systematics studies allow
- ▶ *Might* account for the spread, but not the systematic rotation

Muon residuals studies: outline

- 1. Reminder: "sawtooth effect" in DTs still unexplained
- 2. We see low- p_T /high- p_T rotation in raw residuals
- 3. Sawtooth effect is related to p_T effect, but not in a simple way

- lacktriangle Global $r\phi$ (Δx) residual vs. ϕ trends, unrelated to rigid-body alignment
 - ϕ is equivalent to local x position and $\frac{dx}{dz}$ entrance angle
 - Δx residuals correlated with $\Delta \frac{dx}{dz}$ angular residuals (understood)

Sawtooth in one chamber

Jim Pivarski

- ▶ These are all of the constraints on a single chamber alignment fit
 - **>** sawtooth seen in correlated x and $\frac{dx}{dz}$, but more strongly in latter
 - yellow boxes: both must be sloped for radial (z) misalignment
 - ▶ blue/grey box: must be $(1 + (\frac{dx}{dz})^2)$ for ϕ_y angle misalignment
 - 6-DOF alignment cannot eliminate sawtooth trend

Sawtooth distribution: low- p_T

Jim Pivarski

11/17

- ▶ Distribution of the effect (from separate linear fits to $\Delta \frac{dx}{dz}$ vs. $\frac{dx}{dz}$)
 - mostly depends on station number (largest in station 1)

Sawtooth distribution: high-p_T Jim Pivarski

- ▶ Same thing with $100 < p_T < 200$ GeV tracks
 - distribution more centered
 - $ightharpoonup 2 + 4 \sin \phi$ curve is vaguely suggested... a clue?

p_{T} effect in raw residuals

- ► Same chamber as page 10 (wheel 0, station 1, sector 10, bottom of barrel)
- $\blacktriangleright \ \mu^+/\mu^-$ splitting at low- p_T can be due to $\vec{B}(\vec{x})$ or dE/dx errors
- ightharpoonup Drifts to lower residual at high- p_T , independent of charge
 - ▶ high- p_T alignment: $100 < p_T < 200$ GeV
 - returns at very high- p_T ??? not seen in all chambers. . .

 $\frac{dx}{dx}$ (sawtooth variable) and p_T

Jim Pivarski 14/17

- Still looking at only one chamber, note that $\frac{dx}{dx}$ and p_T are related
- Expected because low-p_T muons are more vertically collimated by the Earth
- ▶ Unique to cosmic rays: in ϕ -symmetric collisions, p_T and $\frac{dx}{dz}$ will be independent

► Low-p_T band is sloped because of \vec{B}

Is it just integration?

Jim Pivarski 15/17

- ▶ Muons in different q/p_T slices are sensitive to different parts of the sawtooth line
- ▶ But if this were the only effect, $-0.05 < q/p_T < -0.04 \text{ GeV}^{-1}$ and $0.04 < q/p_T < 0.05 \text{ GeV}^{-1}$ would have opposite-signed residuals
- ▶ They don't: we saw that the p_T effect is charge-independent

Dependence on both p_T and $\frac{dx}{dz}$ Jim Pivarski 16/17

- Residuals (greyscale, mm) are a function of both p_T and $\frac{dx}{dz}$
 - sawtooth effect is vertical trend from dark to light
 - ▶ p_T effect is horizontal darkening in center
 - still one chamber only: different for each chamber, due to geometry

Conclusions

Jim Pivarski 17/17

- ▶ Alignment performed with $100 < p_T < 200$ GeV cut clearly improves resolution (see Jordan's talk)
 - for the first time, tracker + muon outperforms tracker alone at high p_T
- ▶ High- p_T alignment results in a systematic 0.35 mrad rotation, consistent with Nhan's empirical study
- ightharpoonup A p_T -dependent rotation could be caused by tracker curl
 - \blacktriangleright we would need 86 $\mu{\rm rad}$ in the tracker to explain 0.35 mrad in the muon system
 - tracker studies rule out systematic trends on this scale
 - might account for the spread
- Sawtooth effect is still unexplained (volunteers appreciated!)
- ightharpoonup Sawtooth and p_T effects intermingle because cosmic ray distribution is a function of both entrance angle and p_T
- ▶ One effect is not derived from the other simply by integration