Studium wykonalności i aktualny stan prac

Tomasz Kasprzyk, Daniel Ogiela, Jakub Stępak

Akademia Górniczo-Hutnicza Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Informatyki

9 maja 2016

Plan prezentacji

- Studium wykonalności
 - Wymagania wobec produktu końcowego
 - Strategia testowania
 - Aspekt technologiczny
 - Plan
- Aktualny stan prac
 - Zrealizowane zadania
 - Zadania do zrealizowania na najbliższe tygodnie

Zadania produktu końcowego

- Poprawne obliczanie wyników wyborów w zadanym systemie wyborczym
- Obliczanie wyników wyborów w możliwie najkrótszym czasie
- Przystępna dla użytkownika prezentacja wyników wyborów

Sposób działania produktu końcowego

- Aplikacja internetowa umożliwiająca zdefiniowanie wyborów
- Zdefiniowanie wyborów ma polegać na określeniu kandydatów, preferencji głosujących i rozmiaru zwycięskiego komitetu
- Użytkownik posiada różne sposoby zdefiniowania wyborów:
 - Wczytanie pliku w odpowiednim formacie (.soc)
 - @ Generacja z rozkładu normalnego
 - Graficzna generacja preferencji wyborców
- System oblicza wyniki wyborów dla określonych przez użytkownika wartości parametru p

Rodzaje pisanych testów

- Testy jednostkowe do sprawdzenia poprawności działania kolejnych komponentów projektu
- Testy regresywne do sprawdzenia poprawności działania wcześniej dodanych elementów systemu po dodaniu nowych elementów
- Testy porównawcze do sprawdzenia skuteczności obliczania wyników wyborów

Ocena poprawności działania produktu

- Testy porównawcze głównego algorytmu obliczającego wyniki wyborów z algorytmami innego typu
- Dla mniejszego rozmiaru danych wejściowych porównanie działania z algorytmem typu brute-force
- Dla większego rozmiaru danych wejściowych porównanie działania z innym algorytmem heurystycznym np. algorytmem zachłannym

Wykorzystane technologie

- Python 2.7
- Django 1.9
- Bootstrap
- JavaScipt (jQuery i Chart.js)
- Platforma Heroku do wdrożenia systemu
- Ciągła integracja: Travis + Coveralls

Wybór technologii

- Doświadczenie części zespołu w pracy z wybraną technologią
- Przekonanie o możliwości zrealizowania projektu w wybranej technologii
- Zaoszczędzenie czasu na poznawanie nowych technologii
- Wydajność

Szansa na powodzenie i przewidzenie trudności

- Przekonanie o możliwości zrealizowania harmonogramu prac określonego w wizji i wykonania produktu na czas
- Główne problemy przewidywane przy projektowaniu i implementacji głównego algorytmu obliczającego wyniki wyborów – algorytmu genetycznego
- Zwiększone nakłady pracy całego zespołu w przypadku napotkania trudności i skupienie całego wysiłku na tym zadaniu

Co już jest

- Implementacja algorytmu brute-force
- Generacja wyborów z rozkładu normalnego
- Wczytywanie wyborów z pliku wraz z ich walidacją
- Webowy interface
- Tworzenie wykresów 2D
- Konfiguracja wdrożenia systemu na Heroku

Gdzie zobaczyć nasz produkt

Adres repozytorium:

```
https:
```

//github.com/jakubste/election-computing-system

Działająca aplikacja:

https://election-computing-system.herokuapp.com

Hello world!

Zalogowany jako admin.

Name	Candidates	Voters	Results	Actions
sobotnie wybory	15	25	2	â
mniejsze	10	30	3	â
nie za duże election	25	100	2	
SOC	5	4	0	â

Co do zrobienia

- Algorytm zachłanny do obliczania wyników wyborów
- Algorytm genetyczny do obliczania wyników wyborów
- Polepszenie interfejsu i UX

Dziękujemy za uwagę