

Свойства на полупроводниците

Полупроводникови елементи

Въведение

Полупроводниците (ПП) са група химически елементи със специфични електрически характеристики. Те не са нито проводници, нито изолатори.

Те са в основата на полупроводниковите елементи. Поради предимствата на твърдо тялото и способността им да усилват електрически сигнали, полупроводниковите елементи напълно промениха не само електронната

промишленост, но и начина ни на живот.

Защо ПП са важни?

Въпреки, че обикновено нямаме пряк контакт с тях, е трудно да си представим ежедневието без полупроводници. Те са в самото сърце на съвременните високи технологии. Без използването им няма да има нито модерни домакински уреди, нито качествени индустриални машини.

Полупроводниковите елементи могат да контролират:

- двигателя на автомобил, за да подобрят ефективността му;
- безопасността на жп трафика;
- параметри, свързани с околната среда, с жизнените показатели в болници и много др.

Цели и предпоставки

За да се разберат процесите, протичащи в полупроводниковите елементи са необходими познания за свойствата на полупроводниците и факторите, които обуславят и променят електрическата им проводимост.

Познавате

След изучаване на материала вие би трябвало да:

- Електрофизическите свойства на основните полупроводникови материали – Ge, Si, GaAs
- Атомната структура на тези материали

Разбирате

- Как се създават токоносителите в чисти и примесни полупроводници
- 💖 Кои фактори влияят на концентрацията им
- Как полупроводниците провеждат електрически ток

Анализирате

 Концентрацията на основните и неосновни токоносители в примесни полупроводници.

Предпоставки: електрически заряд, ток, напрежение

Структура на атома

Причина за специфичните свойства на полупроводниците е уникалната структура на атома им. Атомът на всеки материал се състои от ядро и електрони, които обикалят в орбити около него. Ядрото е съставено от положително заредени частици (протони) и неутрални частици (неутрони).

Електроните имат отрицателен заряд. Техният брой е равен на броя на протоните в ядрото, така че атомът като цяло е електронеутрален.

Структура на Si и Ge атом

Електроните от най-външната орбита са относително слабо свързани с атома. Те се наричат валентни електрони и определят електрическите свойства на материалите.

Силицият (Si) и германият (Ge) са широко използвани полупроводникови материала. И двата полупроводника имат по **четири валентни електрона**.

Енергийни нива

В кристала електроните се разполагат в зони с разрешени нива на енергии, които се разделят със забранени зони, където няма електрони.

Последните две разрешени зони се наричат валентната зона и свободна (зона на проводимост).

Тези зони, както и **широчината на забранената зона** между тях ΔW , са определящи за проводимостта на ПП.

Зонни диаграми

Токът през материала директно зависи от броя на свободните токоносители. Свободната и валентната зони при металите се припокриват и в тях винаги има множество свободни електрони и без прилагане на външна енергия.

Полупроводниците имат забранена зона и не провеждат електрически ток без да се приложи достатъчно енергия за преодоляването й.

Видове полупроводници

Съществуват два вида на полупроводници:

Собствени (чисти) – в кристалната решетка не се съдържат примеси Примесни – в кристала са въведени примесни атоми.

Концентрацията на въведените примесни атоми влияе значително върху електрическото поведение на полупроводниците.

Чист силициев кристал

Чист полупроводник без внесени примеси се нарича собствен полупроводник.

Всеки един от четирите валентни електрона на Si атом формира ковалентна връзка с валентен електрон от съседни Si атоми. Така валентният електрон става общ за два съседни атома. Ковалентните връзки задържат атомите заедно в кристала.

Собствен полупроводник

Свободна зона

Валентна зона

При 0 К (абсолютна нула) в собствен полупроводник всички ковалентни връзки са запълнени и няма свободни носители за заряд. Това съответства на напълно запълнена валентна зона и празна свободна зона. При тези условия няма подвижни носители на заряд и полупроводникът е изолатор.

Формиране на токоносители

За да се формират свободни носители на заряд е необходима енергия, която се набавя от околната температура. При достатъчна енергия се разкъсват ковалентни връзки. Електронът се откъсва от атома и става свободен, оставяйки празно място – дупка с еквивалентен положителен заряд.

Процесът е еквивалентен на **междузонни преходи** на валентни електрони. Когато електрон премине от валентната в свободната зона, във валентната зона остава празно място – дупка.

Генерация и рекомбинация

Процесът на формиране на **двойка** свободни носители на заряд – електрон и дупка, под действие на допълнителна енергия, се нарича **генерация**.

$$n_i = p_i$$

Концентрациите на генерираните двойки токоносители са **равни**.

Процесът, при който електрон от свободната зона губи енергия и се връща обратно във валентната зона, се нарича **рекомбинация.** При това "изчезват" свободните носители електрон и дупка и се отделя енергия.

Термодинамично равновесие

При неизменна температура настъпва термодинамично равновесие между процесите на генерация и рекомбинация.

$$n_i \cdot p_i = n_i^2$$

В чистия полупроводник, за съответната температура, се установява постоянна концентрация, наречена собствена концентрация n_i .

Собствената концентрация на токоносителите зависи само от температурата и от широчината на забранената зона.

Влияние на температурата

При 0K (-273 ° C) всички ковалентни връзки са заети, няма свободни носители на заряд и полупроводникът е изолатор.

С повишаване на температурата, броят на разкъсаните ковалентни връзки расте експоненциално, което довежда до рязко нарастване на проводимостта.

Ток в собствен полупроводник

Електроните и дупките са **подвижни частици**. Те могат да се преместват между възлите на кристалната решетка под въздействие на електрическо поле, т.е. да участват в протичането на ток. Затова се наричат **токоносители**.

Движението на токоносителите под действие на полето се нарича **дрейфово**, а средната скорост, с която се преместват – дрейфова скорост V_E . Параметърът μ , свързващ дрейфовата скорост с интензитета на електрическото поле, се нарича **подвижността на токоносителите**.

Електронен и дупчест ток

Насоченото движение на електроните под действие на електрическото поле създава електронната съставка на тока J_n в полупроводника.

Електроните от валентната зона са свързани с ядрото на атома и не могат да се движат свободно в кристала. Обаче, те могат да заемат мястото на съседна дупка, оставяйки дупка там, откъдето са тръгнали. По този начин дупките се придвижват в кристала, създавайки дупчестата компонента на тока J_{ρ} .

Посока на тока

$$J = J_n + J_p$$

Техническата посока на тока е приета да съвпада с посоката на движение на положителните заряди. Посоката на дупчестия ток J_{p} съвпада с движението на положителните токоносители и с приетата техническа посока на тока.

Посоката на електронният ток е противоположна на физическото движение на електроните в кристала.

Недостатъци

В собствен полупроводник при стайна температура има незначителен брой свободни токоносители. Техният брой, и респективно големината на тока, силно зависят от изменение на температурата. Поради тези причини чистите полупроводници не се използват за направа на полупроводникови елементи.

Примесни полупроводници

Полупроводник, електрическите характеристики на който се определят от наличието на примеси, се нарича примесен.

Примеси от **5-та валентност** - арсен (As), фосфор (P), антимон (Sb) се наричат **донори**, защото отдават един от валентните си електрони си към полупроводниковия кристал.

Примеси от **трета валентност** - бор (В), алуминий (АІ), галий (Ga) се наричат **акцептори**, защото приемат един електрон от съседен атом и така оставят дупка (празно място) в полупроводниковия кристал.

Примесен полупроводник – n-mun

Четири от валентните електрони на донорния атом (*P*) образуват ковалентни връзки със съседни силициеви атоми.

Петият електрон остава слабо свързан с ядрото и при незначително количество енергия може лесно се отдели от атома и става свободен електрон.

Електроните са доминиращ тип токоносители и се наричат **основни токоносители**, а полупровоникът – *N* тип полупроводник.

Ковалентна връзка

Донорни атоми – V валентност Неутрален фосфорен атом

Формиране на токоносители

Когато неутрален фосфорен атом отдаде електрон, той става положително зареден йон. Той е свързани в кристалната решетка и не участва при формиране на тока.

Йонизацията на донорите довежда до образуване само на **един тип подвижни** токоносители – **свободни електрони**.

Основни n >> p Несновни носители

Токоносители в п-полупроводник

Основни токоносители се формират при йонизация на примесите. Тяхната концентрация е строго определена, защото количеството на въведените в кристала примеси може точно да се контролира при производството.

Неосновни токоносители се формират при разкъсване на ковалентни връзки.

Концентрация на токоносители

Термодинамично равновесие

Закон за действие на масите

Тип токоносител

проводник

Собствена концентрация

$$n_{no} = N_D$$

$$n_{no} = const(T)$$

Концентрацията на основните токоносители не зависи от температурата в нормалния температурен диапазон на експлоатация на ПП елементи.

$$p_{no} = \frac{n_i^2}{n_{no}}$$

$$p_{no} = f(T)$$

Концентрацията на неосновните токоносители много силно зависи от температурата.

р-тип полупроводник

Ковалентна връзка

Основни токоносители *p* >> *n*

Неосновни токоносители

Акцепторен атом – 3 валентни електрона

Токоносители в р-полупроводник

Основните токоносители се формират при йонизация на акцепторните атоми. При това се създава дупка, без да се образува електрон.

Несновни токоносители се формират при разкъсване на ковалентни връзки.

Токове в примесни полупроводници

В полупроводника има два типа токоносители – електрони и дупки. Затова общият ток в полупроводника има електронна и дупчеста съставки.

В *п*-тип полупроводници, електроните са основни токоносители и електронната съставка на тока значително превишава дупчестата.

В *р*-тип полупроводници, дупките са основни токоносители и дупчестата съставка на тока значително превишава електронната.

Дрейфово движение. Дрейфов ток

Електропроводимостта се обуславя от движението на свободни токоносители под действие на електрическо поле. Плътността на тока J се определя от заряда, пренесен от токоносителите за единица време през единица сечение.

$$J_{nE} = -\operatorname{qn} v_{En} = \operatorname{qn} \mu_n E \qquad \xrightarrow{\mathsf{E}} \qquad \xrightarrow{\mathsf{E}} \qquad \xrightarrow{\mathsf{Vp}} \qquad \xrightarrow{\mathsf{V$$

$$J = (q\mu_n n + q\mu_p p)E = \sigma E = \frac{E}{\rho}$$

$$\sigma = \sigma_n + \sigma_p = q\mu_n n + q\mu_p p$$

Специфична електропроводимост

Дифузно движение. Дифузен ток

Токоносителите се придвижват в кристала под действие на възникнал в обема градиент (dn/dx) на концентрацията. Потокът на токоносителите *F* при дифузионното им движение се определя от броя на токоносителите, които преминават за единица време през единица сечение [cm⁻².s⁻¹].

$$F_n = -D_n \frac{dn}{dx} \qquad J_{nD} = qD_n \frac{dn}{dx}$$

 $D_{\it n}$, $D_{\it p}$ – коефициенти на дифузия

Уравнение на Айнщайн

Връзката между двете основни константи при движение на токоносителите се дава с уравнението на Айнщайн.

$$D = \varphi_T \mu$$

$$D_n = \varphi_{\mathbf{T}} \cdot \mu_{\mathbf{n}}$$

за *п-*полупроводник

$$D_p = \varphi_{\mathrm{T}} \cdot \mu_{\mathrm{p}}$$

за *р-*полупроводник

$$\varphi_T = \frac{kT}{q} \approx \frac{T}{11600}$$

Температурен потенциал

k – константа на Болцман, T – темпетатура (K), q- заряд на електрона

За стайна температура (300 K)
$$\varphi_T = 0.0258 \ \mathrm{V} \approx 25 \ \mathrm{mV}$$

Общ ток в полупроводника

Токоносителите могат да се движат чрез дрейф и дифузия и да формират съответно дрейфова и дифузионни съставки на тока.

$$J_n = J_{nE} + J_{nD} = q\mu_n nE + qD_n \frac{dn}{dx}$$

$$J_{p} = J_{pE} + J_{pD} = q\mu_{p} pE - qD_{p} \frac{dp}{dx}$$

Общият ток е сума от тези съставки

$$J = J_n + J_p = J_{nE} + J_{nD} + J_{pE} + J_{pD}$$
.

Влияние на температурата

Температурата влияе върху концентрациите на токоносителите и върху тяхната подвижност.

T, K

$$T_i = f(?)$$

 T_i — критична температура (температура на собствена проводимост в примесен полупроводник)

 Зависи ли *T_i* от вида на полупроводника? Как? Обяснете.

$$T_{iGe} < T_{iSi} < T_{iGaAs}$$

 Зависи ли *T_i* от концентрацията на примесите? Как? Обяснете.

$$\sigma(T) = ?$$

Главната съставка на проводимостта е свързана с основните токоносители, докато съставката, определена от неосновните е несъществена.

За *п* полупроводник

$$\sigma = \sigma_n = q.\mu_n.n_{no}$$

За р полупроводник

$$\sigma = \sigma_p = q.\mu_p.\rho_{po}$$

Неравновесни концентрации

При локално действие на друг вид енергия – облъчване, рентгенови и гамалъчи, силно електрическо поле и др. поради генерацията на нови **добавъчни** токоносители, се създават **неравновесни концентрации** на електрони n_n и на дупки p_n , които превишават равновесните за дадена температура.

Време на живот

След прекратяване на облъчването се засилва рекомбинацията и добавъчната концентрация намалява. Времето на живот на неосновните токоносители (τ_p за N полупроводник или τ_n – за P полупроводник) характеризира скоростта на намаляване на добавъчните токоносители поради рекомбинацията.

Дифузионната дължина *L* е средното разстояние, на което се преместват токоносителите за времето на живот, дифундирайки под действие на градиента на концентрацията.