Adjoining roots

 \mathbb{Q} want to solve X-X+1=0 can altor always "borrow" a sol" from \mathbb{C} . alg. closed.

 $K = \frac{1}{5} \left[\frac{1}{(t^2 + t^4)} \right]$

Elts &K: { a+b++c+2 | a,b,c ∈ F3}

Ex. % a field with 25 elements. $\frac{\text{Ex. b}}{\text{F5}} \left[t \right] / \left(t^2 + 3 \right).$

Finite fields - Basic facts

- A finite field has size pⁿ for p prime
 number & n≥1.
- (2) For every p prime & n=1, there is a finite field of Size p.
- (3) A finite field of size p" is isomorphic to

 He [t]/f(t) where f(t) \in IF [t] is

 iwed. of deg n.
- 4) Any two finite fields of the same size are isomorphic. K = L size p"

n isomorphisms. K=GF(243). K. modulus() Relationships: have no homs between Fields of size p if $P \neq 9$. Fpn -> Fpm F-12 exists iff m & then there are exactly n of them.

Any hom. between fields is inj.