Neural Network and Deep Learning

Md Shad Akhtar
Research Scholar
IIT Patna

Neural Network

- Mimics the functionality of a brain.
- A neural network is a graph with neurons (nodes, units etc.) connected by links.

Neural Network: Neuron

Neural Network: Perceptron

- Network with only single layer.
- No hidden layers

Single Layer Perceptron

Neural Network: Perceptron

Neural Network: Perceptron

Neural Network: Multi Layer Perceptron (MLP) or Feed-Forward Network (FNN)

- Network with n+1 layers
- One output and n hidden layers.

Gradient decent algorithm

- 1. Initialize network with random weights
- 2. For all training cases (called examples):
 - a. Present training inputs to network and calculate output
 - b. For <u>all layers</u> (starting with output layer, back to input layer):
 - i. Compare network output with correct output (error function)
 - ii. Adapt weights in current layer

Deep Learning

What is Deep Learning?

 A family of methods that uses deep architectures to learn high-level feature representations

Example 1

Layer 1

very high level representation:

slightly higher level representation

raw input vector representation:

Example 2

Why are Deep Architectures hard to train?

Vanishing/Exploding gradient problem in Back

Propagation

$$\bullet \ \frac{\partial Loss}{\partial w_{ij}} = \frac{\partial Loss}{\partial in_j} \frac{\partial in_j}{\partial w_{ij}} = \delta_j x_i$$

•
$$\delta_j = \left[\sum_{j+1} \delta_{j+1} w_{j(j+1)}\right] \sigma'(in_j)$$

• δ_j may vanish after repeated multiplication

Layer-wise Pre-training

 First, train one layer at a time, optimizing data-likelihood objective P(x)

Layer-wise Pre-training

 Then, train second layer next, optimizing data-likelihood objective P(h)

Layer-wise Pre-training

 Finally, fine-tune labelled objective P(y|x) by Backpropagation

Deep Belief Nets

- Uses Restricted Boltzmann Machines (RBMs)
- Hinton et al. (2006), A fast learning algorithm for deep belief nets.

Restricted Boltzmann Machine (RBM)

RBM is a simple energy-based model:

$$p(x, h) = \frac{1}{Z_{\theta}} \exp(-E_{\theta}(x, h))$$

where

$$E_{\theta}(x,h) = -x^{T}Wh - b^{T}x - d^{T}h$$
$$Z_{\theta} = \sum_{(x,h)} \exp(-E_{\theta}(x,h))$$

Example:

- Let weights $(h_1; x_1)$, $(h_1; x_3)$ be positive, others be zero, b = d = 0.
- Calculate *p(x,h)* ?
- Ans: p(x1 = 1; x2 = 0; x3 = 1; h1 = 1; h2 = 0; h3 = 0)

Restricted Boltzmann Machine (RBM)

- P(x, h) = P(h|x) P(x)
- P(h|x): easy to compute
- P(x): hard if datasets are larg

Contrastive Divergence:

- ① Let $x^{(m)}$ be training point, $W = [w_{ij}]$ be current model weights
- ② Sample $\hat{h}_j \in \{0, 1\}$ from $p(h_j | x = x^{(m)}) = \sigma(\sum_i w_{ij} x_i^{(m)} + d_j) \ \forall j$.
- **3** Sample $\tilde{x}_i \in \{0,1\}$ from $p(x_i|h=\hat{h}) = \sigma(\sum_i w_{ij}\hat{h}_j + b_i) \ \forall i$.
- **3** Sample $\tilde{h}_j \in \{0,1\}$ from $p(h_j|x=\tilde{x}) = \sigma(\sum_i w_{ij}\tilde{x}_i + d_j) \ \forall j$.

Deep Belief Nets (DBN) = Stacked RBM

Auto-Encoders: Simpler alternative to RBMs

Deep Learning - Architecture

- Recurrent Neural Network (RNN)
- Convolution Neural Network (CNN)

Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN)

 Enable networks to do temporal processing and learn sequences

$$egin{array}{lcl} oldsymbol{a}_t &=& oldsymbol{b} + oldsymbol{W} oldsymbol{s}_{t-1} + oldsymbol{U} oldsymbol{x}_t \ oldsymbol{s}_t &=& anh(oldsymbol{a}_t) \ oldsymbol{o}_t &=& oldsymbol{c} + oldsymbol{V} oldsymbol{s}_t \ oldsymbol{p}_t &=& ext{softmax}(oldsymbol{o}_t) \end{array}$$

Vocabulary: [h,e,l,o]

Training of RNN: BPTT

$$\hat{y}_t$$
: Predicted

 y_t : Actual

$$\frac{\partial E}{\partial W} = \sum_{t} \frac{\partial E_{t}}{\partial W}$$

$$\frac{\partial E_3}{\partial V} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial V}$$

$$= \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial z_3} \frac{\partial z_3}{\partial V}$$

$$= (\hat{y}_3 - y_3) \otimes s_3$$

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W}$$

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$

Training of RNN: BPTT

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W}$$

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$

One to many:

Sequence output (e.g. image captioning takes an image and outputs a sentence of words)

Many to one:

Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment)

Many to many:

Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French)

Many to many:

Synced sequence input and output (e.g. Language modelling where we wish to predict next words.

RNN Extensions

- Bidirectional RNN
- Deep (Bidirectional) RNNs

RNN (Cont..)

"the clouds are in the sky"

RNN (Cont..)

"India is my home country. I can speak fluent Hindi."

It is very hard for RNN to learn "Long Term Dependency".

Capable of learning long-term dependencies.

 LSTM remove or add information to the cell state, carefully regulated by structures called gates.

Cell state: Conveyer belt of the cell

- Gates
 - Forget Gate
 - Input Gate
 - Output Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Gates
 - Forget Gate
 - Input Gate
 - Output Gate

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Gates
 - Forget Gate
 - Input Gate
 - Output Gate

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Gates
 - Forget Gate
 - Input Gate
 - Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM- Variants

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

- A special kind of multi-layer neural networks.
- Implicitly extract relevant features.
- Fully-connected network architecture does not take into account the spatial structure.
- In contrast, CNN tries to take advantage of the spatial structure.

- Convolutional layer
- 2. Pooling layer
- 3. Fully connected layer

1. Convolutional layer

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Convolution Filter

1. Convolutional layer

1,	1,0	1,	0	0
0,0	1,	1 _{×0}	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

			_	_	_
-	m	1	31	• 1	
		10	71	-	
			. ,	_	-

4		- 21 24 - 50 34	
		50 St	
5 × 5	0		

Convolved Feature

1	0	1
0	1	0
1	0	1

1. Convolutional layer

- Local receptive field
- Shared weights

1,	1,0	1,1	0	0
0,0	1,1	1,0	1	0
0,1	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4		
2/		10 00 00 00 00 00 00 00 00 00 00 00 00 0
	0.01	6 8

Image

Convolved Feature

1	0	1
0	1	0
1	0	1

2. Pooling layer

3. Fully connected layer

Putting it all together

Input matrix

3 convolution filter

Pooling

Flatten

Fully-connected layers

Example 1: CNN for Image

Example 2: CNN for Text

