Apprentissage statistique

Chapitre 4 : Étude du risque quadratique d'estimateurs

Lucie Le Briquer

29 janvier 2019

Table des matières

1 Définitions et décomposition biais-variance

 $\mathbf{2}$

1 Définitions et décomposition biais-variance

Définition 1

Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ un modèle statistique. $\mathcal{F} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ et T un estimateur de $\theta \mapsto g(\theta) \in \mathbb{R}^q$ tel que $\mathbb{E}_{\theta}[\|T\|^2] < +\infty \ \forall \theta$.

1. On définit le biais de T par $\forall \theta$:

$$biais_{\theta}(T) = \mathbb{E}_{\theta}(Y) - g(\theta)$$

2. On définit le MSE de T par $\forall \theta$:

$$MSE_{\theta}(T) = \mathbb{E}_{\theta}[||T - g(\theta)||^2]$$

Exemple. (X_1, \ldots, X_n) n-échantillon de $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ et $\forall \theta, \mathbb{E}_{\theta}[X_1^2] < +\infty$. Un estimateur de $\mathbb{E}_{\theta}[X_1] = g(\theta)$ est :

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\overline{X}_{n}$$

On peut prendre comme etimateur de la variance $\theta \mapsto \operatorname{Var}_{\theta}(X_1)$:

$$S = \frac{1}{n} \sum_{i=1}^{n} \{X_i - \overline{X}_n\}^2$$

Cet estimateur est biaisé puisque :

$$\mathbb{E}_{\theta}[S] - \operatorname{Var}_{\theta}(X_1) = -\frac{1}{n} \operatorname{Var}_{\theta}(X_1)$$

Remarque. $uv^T = u \otimes v$

- Proposition 1 -

Pour tout $\theta \in \Theta$:

$$\mathbb{E}_{\theta}[(T - q(\theta))^{\otimes 2}] = (\mathbb{E}_{\theta}[T] - q(\theta))^{\otimes 2} + \operatorname{Cov}_{\theta}(T)$$

où
$$Cov_{\theta}(T) = \mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])^{\otimes 2}]$$

Preuve.

$$\mathbb{E}_{\theta}[(T - g(\theta))^{\otimes 2}] = \mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T] + \mathbb{E}_{\theta}[T] - g(\theta))^{\otimes 2}]$$

$$= \mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])^{\otimes 2}] + 2\mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T]) \otimes (\mathbb{E}_{\theta}[T] - g(\theta))]$$

$$+ \mathbb{E}[(g(\theta) - \mathbb{E}_{\theta}[T])^{\otimes 2}]$$

On obtient alors le résultat car $(u,v)\mapsto u\otimes v$ est bilinéaire et donc :

$$\mathbb{E}_{\theta} \big[(T - \mathbb{E}_{\theta}[T]) \otimes (\mathbb{E}[T] - g(\theta)) \big] = \underbrace{ \big\{ \mathbb{E}_{\theta}[T - \mathbb{E}_{\theta}[T]] \big\}}_{=0} \otimes \big\{ \mathbb{E}[T] - g(\theta) \big\} = 0$$

- Corollaire 1

 $\forall \theta \in \Theta,$

$$MSE_{\theta}(T) = ||\mathbb{E}_{\theta}[T] - g(\theta)||^2 + \mathbb{E}[||T - \mathbb{E}_{\theta}[T]||^2]$$

Preuve.

$$\forall u \in \mathbb{R}^q, \quad \text{Tr}(uu^T) = ||u||^2$$

Comme Tr est linéaire on peut la rentrer dans l'espérance. Donc,

$$\operatorname{Tr}\left(\mathbb{E}_{\theta}\left[(T-g(\theta))^{\otimes 2}\right]\right) = \mathbb{E}_{\theta}\left[\operatorname{Tr}\left((T-g(\theta)^{\otimes 2})\right]\right]$$
$$= \mathbb{E}_{\theta}\left[\|T-g(\theta)\|^{2}\right]$$
$$= \operatorname{MSE}_{\theta}(T)$$

Les autres termes se traitent de la même manière.

Exemple. X_1, \ldots, X_n un n-échantillon réel de $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$. \overline{X}_n est un estimateur sans biais de la moyenne. Cependant $\forall (\alpha_i)_{i=1}^n \in \Delta_n$ où :

$$\Delta_n = \left\{ (\alpha_i) : \sum_{i=1}^n \alpha_i = 1, 0 \leqslant \alpha_i \leqslant 1 \right\}$$

 $X_{n,\alpha} = \sum_{i=1}^n \alpha_i X_i$ est un estimateur sans biais.

Regardons le plus performant.

$$MSE_{\theta}(X_{n,\alpha}) = Var_{\theta}(X_{n,\alpha}) \stackrel{=}{\underset{idp}{=}} \sum_{i=1}^{n} \alpha_i^2 Var_{\theta}(X_i) \stackrel{=}{\underset{iid}{=}} Var_{\theta}(X_1) \sum_{i=1}^{n} \alpha_i^2$$

Or,

$$1 = \sum_{i=1}^{n} \alpha_i \leqslant \left(\sum_{i=1}^{n} \alpha_i^2\right)^{1/2} \sqrt{n} \qquad \sum_{i=1}^{n} \alpha_i^2 \geqslant \frac{1}{N}$$

et $\sum_{i=1}^{n} \alpha_i^2 = \frac{1}{n}$ ssi $(\alpha_i) = \lambda(1, \dots, 1)$, on trouve $\alpha = \frac{1}{n}$ puisque $\sum_{i=1}^{n} \alpha_i = 1$.