PRÁCTICA 2. SEÑALES OFDM

Objetivos.

- Demostrar que las muestras de una señal OFDM se pueden generar mediante el uso de la IFFT.
- Analizar las características de una señal OFDM, tanto en el dominio del tiempo como de la frecuencia.

Actividades.

PARTE 1. CARACTERÍSTICAS DE LA SEÑAL OFDM.

- 1- Genere 8 bits aleatorios, $b_k(t)$, y represéntelos con pulsos rectangulares de duración T_u y cuyas magnitudes pueden ser +1 y -1. A cada uno de estos símbolos multiplíquelo por una portadora de la forma $s_k(t) = e^{j \cdot 2\pi \cdot k \cdot \Delta f \cdot t}$, $k \in [0,1,..7]$.
 - a. Grafique la magnitud de las 8 señales moduladas $b_k(t) \cdot s_k(t)$.
 - b. Además, obtenga el espectro (mediante la transformada de Fourier) de cada una de las señales anteriores y grafique la magnitud de dicha transformada. Asegúrese de escalar correctamente el eje horizontal, de modo que sus valores correspondan a frecuencias reales en Hz (esto lo puede verificar, asegurándose que las portadoras están ubicadas en múltiplos enteros de Δf =1,600 Hz).
 - * Diagrama 1. Organice en una tabla de 8 filas y 2 columnas las gráficas obtenidas en los incisos a. y b. de esta actividad. Además, agregue una descripción verbal del significado de estas gráficas.

	DESCRIPCIÓN	SÍMBOLO	VALOR
1	Separación entre sub-portadoras	Δf	1,600 Hz
2	Duración de símbolo OFDM	T_u	1/1,600 s
3	Número de sub-portadoras	N_c	8
4	Resolución sugerida para el vector tiempo t.	Δt	1/16,000 s

- 2- Obtenga la señal multiplexada $s(t) = \sum_{k=0}^{7} b_k(t) \cdot s_k(t)$ y grafique su magnitud. Además, obtenga el espectro de esta señal, al que se le denominará S(f), y grafique la magnitud de éste.
 - * Diagrama 2. Señal multiplexada en los dominios del tiempo y frecuencia. Agregue una descripción verbal del significado de estas gráficas.
- 3- Repita las actividades 1 y 2 para Δf =2,000 y 3,200 Hz.

* Diagrama 3. En una misma gráfica muestre la magnitud de X(f) para $\Delta f = 1,600$, 2000 y 3,200 Hz. Incluya una interpretación des estas gráficas, incluyendo una explicación sobre la tasa de transmisión de todo el sistema que se tiene en cada caso.

PARTE 2. IMPLEMENTACIÓN DIGITAL DE LA SEÑAL OFDM.

- 4- Utilice la IFFT para crear las muestras de s(t) a partir de los bits utilizados en la Actividad 1, es decir, genere la señal s_n . Para esta actividad use inicialmente N=16. Determine la magnitud de s_n .
 - * Diagrama 4. En una sola gráfica muestre las magnitudes de s(t) y de s_n .
- 5- Repita la Actividad 4, mientras varía el módulo de la IFFT para N=6, 8, 16 y 32.
 - * Diagrama 5. Magnitud de s(t) y magnitud de s_n para N=6, 8, 16 y 32 (se sugiero el uso de *subplot* o función similar para distinguir las diferentes versiones de x_n). Agregue una interpretación de estos resultados.
- 6- Realice un reporte que incluya:
 - a. Nombres de los alumnos que realizaron la práctica.
 - b. Diagrama(s) de flujo que ilustre(n) el funcionamiento del programa.
 - c. Diagramas 1-5. En las gráficas se debe identificar con precisión que representan los ejes y las curvas obtenidas.
 - d. Conclusiones generales.