Extremal results for sparse pseudorandom graphs

Yufei Zhao

Massachusetts Institute of Technology

Joint work with David Conlon and Jacob Fox

Extending classical results to sparse settings. For example:

Extending classical results to sparse settings. For example:

Szemerédi's Theorem

Every subset of the integers with positive density contains arbitrarily long arithmetic progressions

Extending classical results to sparse settings. For example:

Szemerédi's Theorem

Every subset of the integers with positive density contains arbitrarily long arithmetic progressions

Green-Tao Theorem

The primes contain arbitrarily long arithmetic progressions

Extending classical results to sparse settings. For example:

Szemerédi's Theorem

Every subset of the integers with positive density contains arbitrarily long arithmetic progressions

Green-Tao Theorem

The primes contain arbitrarily long arithmetic progressions

- The primes have zero density, but there is a pseudorandom set of "almost primes" in which the primes form a subset with positive relative density.
- Transference principle: dense \rightarrow sparse.

Sparse setting

Dense setting

Host graph: K_n

G: arbitrary dense graph

Sparse setting

Dense setting

Host graph: K_n

G: arbitrary dense graph

Sparse setting

Host graph: pseudorandom graph

with $\Omega(n^{2-c})$ edges

Sparse setting

Dense setting

Host graph: K_n

G: arbitrary dense graph

Sparse setting

Host graph: pseudorandom graph

with $\Omega(n^{2-c})$ edges

G: relatively dense subgraph

Szemerédi's Regularity Lemma

Szemerédi's Regularity Lemma

Roughly speaking, every large graph can be partitioned into a bounded number of roughly equally-sized parts so that the graph is random-like between most pairs of parts.

Szemerédi's Regularity Lemma

Szemerédi's Regularity Lemma

Roughly speaking, every large graph can be partitioned into a bounded number of roughly equally-sized parts so that the graph is random-like between most pairs of parts.

Regularity Method

- Apply Szemerédi's Regularity Lemma.
- 2 Apply a counting lemma for embedding small graphs.

Edge density:
$$d_G(U, V) = \frac{e_G(U, V)}{|U||V|}$$
.

Edge density: $d_G(U, V) = \frac{e_G(U, V)}{|U||V|}$.

Definition (ϵ -regular)

Bipartite graph $(X,Y)_G$ is ϵ -regular if for all $A\subset X$, $B\subset Y$, with $|A|\geq \epsilon\,|X|$ and $|B|\geq \epsilon\,|Y|$, we have

$$|d_G(A,B)-d_G(X,Y)|<\epsilon$$
.

Edge density: $d_G(U, V) = \frac{e_G(U, V)}{|U||V|}$.

Definition (ϵ -regular)

Bipartite graph $(X, Y)_G$ is ϵ -regular if for all $A \subset X$, $B \subset Y$, with $|A| \ge \epsilon |X|$ and $|B| \ge \epsilon |Y|$, we have

$$|d_G(A, B) - d_G(X, Y)| < \epsilon$$
.

Edge density:
$$d_G(U, V) = \frac{e_G(U, V)}{|U||V|}$$
.

Definition (ϵ -regular)

Bipartite graph $(X,Y)_G$ is ϵ -regular if for all $A\subset X$, $B\subset Y$, with $|A|\geq \epsilon\,|X|$ and $|B|\geq \epsilon\,|Y|$, we have

$$|d_G(A,B)-d_G(X,Y)|<\epsilon$$
.

Definition (ϵ -regular partition)

A partition of vertices into nearly-equal parts where all but ϵ -fraction of the pairs of parts induce ϵ -regular bipartite graphs.

Regularity method

Regularity method

- Apply Szemerédi's Regularity Lemma.
- ② Apply a counting lemma for embedding small graphs.

Regularity method

Regularity method

- Apply Szemerédi's Regularity Lemma.
- ② Apply a counting lemma for embedding small graphs.

Szemerédi's Regularity Lemma

For every ϵ , there is some M so that every graph has an ϵ -regular partition into $\leq M$ parts.

Regularity method

Regularity method

- Apply Szemerédi's Regularity Lemma.
- 2 Apply a counting lemma for embedding small graphs.

Szemerédi's Regularity Lemma

For every ϵ , there is some M so that every graph has an ϵ -regular partition into $\leq M$ parts.

Triangle counting lemma

If G is a tripartite graph that is ϵ -regular between each pair of parts, then the number of triangles in G is $\approx d_G(X,Y)d_G(Y,Z)d_G(X,Z)|X||Y||Z|.$

Sparse regularity

- Original regularity method applies only for dense graphs.
- In the 90's, Kohayakawa and Rödl independently developed a regularity lemma for sparse graphs.

Sparse regularity

- Original regularity method applies only for dense graphs.
- In the 90's, Kohayakawa and Rödl independently developed a regularity lemma for sparse graphs.

Open problem

A counting lemma for sparse regular graphs.

Sparse regularity

- Original regularity method applies only for dense graphs.
- In the 90's, Kohayakawa and Rödl independently developed a regularity lemma for sparse graphs.

Open problem

A counting lemma for sparse regular graphs.

 Previous work: counting triangles [Kohayakawa, Rödl, Schacht & Skokan '10]

Main result

Sparse Counting Lemma [Conlon-Fox-Z.]

For any graph H, there is a counting lemma for embedding H into a regular partition in a sparse pseudorandom graph.

Main result

Sparse Counting Lemma [Conlon-Fox-Z.]

For any graph H, there is a counting lemma for embedding H into a regular partition in a sparse pseudorandom graph.

Applications

Sparse extensions of:

- Turán, Erdős-Stone-Simonovits
- Ramsey
- Graph removal lemma

. . .

Pseudorandom graphs

Definition

We say that a graph Γ is (p, β) -jumbled if for all vertex subsets X and Y of Γ , we have

$$|e(X, Y) - p|X||Y|| \le \beta \sqrt{|X||Y|}.$$

Pseudorandom graphs

Definition

We say that a graph Γ is (p, β) -jumbled if for all vertex subsets X and Y of Γ , we have

$$|e(X, Y) - p|X||Y|| \le \beta \sqrt{|X||Y|}.$$

Examples

- Random graph G(n, p) is (p, β) -jumbled with $\beta = O(\sqrt{np})$ w.h.p.
- (n, d, λ) -graph is $(\frac{d}{n}, \lambda)$ -jumbled by expander mixing lemma.

Turán's Theorem

Any K_r -free graph on n vertices has at most $(1 - \frac{1}{r-1})\frac{n^2}{2}$ edges.

Turán's Theorem

Any K_r -free graph on n vertices has at most $(1-\frac{1}{r-1})\frac{n^2}{2}$ edges.

Erdős-Stone-Simonovits Theorem

For any fixed H, any H-free graph on n vertices has at most

$$\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}$$

edges, where $\chi(H)$ is the chromatic number of H.

Turán's Theorem

Any K_r -free graph on n vertices has at most $(1-\frac{1}{r-1})\frac{n^2}{2}$ edges.

Erdős-Stone-Simonovits Theorem

For any fixed H, any H-free subgraph of K_n has at most

$$\left(1-\frac{1}{\chi(H)-1}+o(1)\right)e(K_n)$$

edges, where $\chi(H)$ is the chromatic number of H.

Turán's Theorem

Any K_r -free graph on n vertices has at most $(1-\frac{1}{r-1})\frac{n^2}{2}$ edges.

Erdős-Stone-Simonovits Theorem

For any fixed H, any H-free subgraph of K_n has at most

$$\left(1-\frac{1}{\chi(H)-1}+o(1)\right)e(K_n)$$

edges, where $\chi(H)$ is the chromatic number of H.

Sparse extension: replace K_n by a jumbled graph Γ .

Sparse extensions of Erdős-Stone-Simonovits

Previous work:

- $H = K_t$ [Sudakov, Szabó & Vu '05] [Chung '05]
- H triangle-free [Kohayakawa, Rödl, Schacht, Sissokho, Skokan '07]

Sparse extensions of Erdős-Stone-Simonovits

Previous work:

- $H = K_t$ [Sudakov, Szabó & Vu '05] [Chung '05]
- H triangle-free [Kohayakawa, Rödl, Schacht, Sissokho, Skokan '07]

Sparse Erdős-Stone-Simonovits [Conlon-Fox-Z.]

For every graph H and every $\epsilon>0$, there exists c>0 such that if $\beta\leq cp^{d(H)+\frac{5}{2}}n$ then any (p,β) -jumbled graph Γ on n vertices has the property that any H-free subgraph of Γ has at most

$$\left(1-\frac{1}{\chi(H)-1}+\epsilon\right)e(\Gamma).$$

edges.

d(H) is the degeneracy of H

Sparse extensions of Erdős-Stone-Simonovits

Previous work:

- $H = K_t$ [Sudakov, Szabó & Vu '05] [Chung '05]
- H triangle-free [Kohayakawa, Rödl, Schacht, Sissokho, Skokan '07]

Sparse Erdős-Stone-Simonovits [Conlon–Fox–Z.]

For every graph H and every $\epsilon>0$, there exists c>0 such that if $\beta\leq cp^{d(H)+\frac{5}{2}}n$ then any (p,β) -jumbled graph Γ on n vertices has the property that any H-free subgraph of Γ has at most

$$\left(1-\frac{1}{\chi(H)-1}+\epsilon\right)e(\Gamma).$$

edges.

d(H) is the degeneracy of H

The difficulty with pseudorandom graphs

- Alon (1994) constructed a triangle-free (n, d, λ) -graph with $\lambda \le c\sqrt{d}$ and $d \ge n^{2/3}$.
- I.e., there exists a (p, cp^2n) -jumbled graph Γ containing no triangles.

The difficulty with pseudorandom graphs

- Alon (1994) constructed a triangle-free (n, d, λ) -graph with $\lambda \le c\sqrt{d}$ and $d \ge n^{2/3}$.
- I.e., there exists a (p, cp^2n) -jumbled graph Γ containing no triangles.
- ullet \to No counting lemma for Γ
- \rightarrow Extensions of applications *false* for Γ

Ramsey-type results

Ramsey's Theorem

For any graph H and positive integer r, if n is sufficiently large, then any r-coloring of the edges of K_n contains a monochromatic copy of H.

Ramsey-type results

Ramsey's Theorem

For any graph H and positive integer r, if n is sufficiently large, then any r-coloring of the edges of K_n contains a monochromatic copy of H.

Sparse Ramsey [Conlon-Fox-Z.]

For every graph H and every positive integer $r \geq 2$, there exists c > 0 such that if $\beta \leq cp^{d(H)+\frac{5}{2}}n$ then any (p,β) -jumbled graph Γ on n vertices has the property that any r-coloring of the edges of Γ contains a monochromatic copy of H.

Ramsey-type results

Ramsey's Theorem

For any graph H and positive integer r, if n is sufficiently large, then any r-coloring of the edges of K_n contains a monochromatic copy of H.

Sparse Ramsey [Conlon-Fox-Z.]

For every graph H and every positive integer $r \geq 2$, there exists c > 0 such that if $\beta \leq cp^{d(H)+\frac{5}{2}}n$ then any (p,β) -jumbled graph Γ on n vertices has the property that any r-coloring of the edges of Γ contains a monochromatic copy of H.

Triangle Removal Lemma [Ruzsa & Szemerédi '78]

Every graph on n vertices with at most $o(n^3)$ triangles can be made triangle-free by deleting at most $o(n^2)$ edges.

Triangle Removal Lemma [Ruzsa & Szemerédi '78]

Every graph on n vertices with at most $o(n^3)$ triangles can be made triangle-free by deleting at most $o(n^2)$ edges.

Graph Removal Lemma

For every fixed graph H and every $\epsilon > 0$, there exists $\delta > 0$ such that if G contains at most $\delta n^{\nu(H)}$ copies of H then G may be made H-free by removing at most ϵn^2 edges.

Sparse Graph Removal Lemma [Conlon-Fox-Z.]

For every graph H and every $\epsilon>0$, there exist $\delta>0$ and c>0 such that if $\beta\leq cp^{d(H)+\frac{5}{2}}$ then any (p,β) -jumbled graph Γ on n vertices has the following property: Any subgraph of Γ containing at most $\delta p^{\mathrm{e}(H)} n^{\nu(H)}$ copies of H may be made H-free by removing at most ϵpn^2 edges.

Sparse Graph Removal Lemma [Conlon-Fox-Z.]

For every graph H and every $\epsilon>0$, there exist $\delta>0$ and c>0 such that if $\beta\leq cp^{d(H)+\frac{5}{2}}$ then any (p,β) -jumbled graph Γ on n vertices has the following property: Any subgraph of Γ containing at most $\delta p^{e(H)} n^{v(H)}$ copies of H may be made H-free by removing at most ϵpn^2 edges.

Regularity lemma for sparse graphs

Definition: (ϵ) -regular

Let G be a graph and X and Y vertex subsets. The induced bipartite graph between X and Y is said to be (ϵ) -regular if

$$|d(U, V) - d(X, Y)| \le \epsilon p$$

for all $U \subset X$ and $V \subset Y$ with $|U| \ge \epsilon |X|$ and $|V| \ge \epsilon |Y|$, where p is the density of G.

Regularity lemma for sparse graphs

Definition: (ϵ) -regular

Let G be a graph and X and Y vertex subsets. The induced bipartite graph between X and Y is said to be (ϵ) -regular if

$$|d(U, V) - d(X, Y)| \le \epsilon p$$

for all $U \subset X$ and $V \subset Y$ with $|U| \ge \epsilon |X|$ and $|V| \ge \epsilon |Y|$, where p is the density of G.

Regularity lemma in sparse graphs (Scott)

For every $\epsilon > 0$ there exists M so that every graph has an (ϵ) -regular partition into at most M parts.

Triangle counting lemma

Setup

- Γ tripartite jumbled graph on vertex sets X, Y, Z.
- G subgraph of Γ , (ϵ) -regular between parts.

Triangle counting lemma

Setup

- Γ tripartite jumbled graph on vertex sets X, Y, Z.
- G subgraph of Γ , (ϵ) -regular between parts.

Triangle Counting Lemma

The number of triangles in G is

$$\approx d_G(X,Y)d_G(Y,Z)d_G(X,Z)|X||Y||Z|.$$

____ Embed in G Embed in Γ

Applications

Sparse extensions of

- Turán, Erdős-Stone-Simonovits
- Ramsey
- Removal lemma, for graphs & groups
- Equivalence of quasirandomness notions
- Induced subgraph counting, induced graph removal lemma
- Improved bounds on induced Ramsey numbers
- Algorithms on regularity
- Multiplicity results, Goodman's Theorem

Applications

Sparse extensions of

- Turán, Erdős-Stone-Simonovits
- Ramsey
- Removal lemma, for graphs & groups
- Equivalence of quasirandomness notions
- Induced subgraph counting, induced graph removal lemma
- Improved bounds on induced Ramsey numbers
- Algorithms on regularity
- Multiplicity results, Goodman's Theorem
- And more to be discovered . . .

Applications

Sparse extensions of

- Turán, Erdős-Stone-Simonovits
- Ramsey
- Removal lemma, for graphs & groups
- Equivalence of quasirandomness notions
- Induced subgraph counting, induced graph removal lemma
- Improved bounds on induced Ramsey numbers
- Algorithms on regularity
- Multiplicity results, Goodman's Theorem
- And more to be discovered . . .

THANK YOU!

