APROVECHAMIENTO DE ENERGÍAS LIMPIAS

PROYECTO AEROGENERADOR SAVONIOUS

Politecnico

Grancolombiano

Estudiantes:

Abdenago Alvarino

Carolina Novoa

Carol Pulido

PROPÓSITOS CO NSTRUCCIÓN TURBINA SAVONOIUS

Contribuir a un futuro sostenible

Reducir la dependencia de las fuentes de energía tradicionales

No genera contaminación al ambiente

Disminuyen costos con respecto al servicio de electricidad convencional

MATERIALES

DATOS IMPORTANTES DISEÑO Y CONSTRUCCIÓN TURBINA

Mediciones estructurales del rotor

Fuente: Elaboración propia

DATOS IMPORTANTES DISEÑO Y CONSTRUCCIÓN TURBINA

Medidas meteorológicas del Laboratorio del Física - Campus Principal del Politécnico Grancolombiano.

Medidas meteorológicas	Medida
Altura sobre el nivel del mar	2749 m.s.n.m.
Temperatura promedio del Laboratorio de física	≈25.2°C
Velocidad del soplador de hojas	≈19,7222 <i>m/s</i>

Fuentes: IDEAM, elaboración propia

FÓRMULAS

$$P = \frac{1}{2}\rho\pi r^2 v^3$$

Donde:

v : Velocidad del viento (m/s) p : densidad del aire (Kg/m^3)

r : área barrida por las aspas

(m²)

$$\rho = 1,225 \left(\frac{288}{T + 273} \right) e^{-\left(\frac{h}{8435} \right)} \quad \left[\frac{kg}{m^3} \right]$$

Donde:

T: temperatura °C

h: altitud (m)

Fuente: Serway, R. A. (2018). Física para ciencias e ingeniería. Cengage Learning Editores.

CÁLCULOS

Densidad del aire en Bogotá

$$\rho_{Aire} = 1,225 \left(\frac{288}{25,2+273} \right) e^{-\left(\frac{2749}{8435} \right)} = 0,8540 \frac{kg}{m^3}$$

Potencia

$$P = \frac{1}{2} \cdot 0.8540 \frac{kg}{m^3} \cdot \pi \cdot (0.1 \text{ m})^2 \cdot \left(19.7222 \frac{\text{m}}{\text{s}}\right)^3 = 102.9067 \frac{kg \cdot m^2}{s^3} = 102.9067 \frac{J}{s}$$
$$= 102.9067 W$$

Fuente: Elaboración propia

RESULTADOS

POTENCIA ESPERADA TURBINA SAVONIOUS

P = 102.9067 W

Fuente: Elaboración propia

