B5A1 Zeigen Sie, dass eine Folge $(X_n)_{n\in\mathbb{N}}$ genau dann gleichgradig integrierbar ist, wenn

$$\lim_{k \to \infty} \limsup_{n \to \infty} E[|X_n| \mathbb{1}_{\{|X_n| > k\}}] = 0.$$
 (1)

Sei zunächst (X_n) gleichgradig integrierbar. Dann gilt nach Definition von gleichgradiger Integrierbarkeit, dass

$$0 = \lim_{k \to \infty} \sup_{n \in \mathbb{N}} E[|X_n| \mathbb{1}_{\{|X_n| > k\}}].$$

Insbesondere heißt dass, dass für ein gegebenes $n \in \mathbb{N}$ gilt, dass

$$0 = \lim_{k \to \infty} \sup_{m \geq n} E[|X_m| \mathbbm{1}_{\{|X_m| > k\}}].$$

Damit gilt auch für das Infimum über diese $n \in \mathbb{N}$, dass

$$0 = \lim_{k \to \infty} \inf_{n \in \mathbb{N}} \sup_{m \geq n} E[|X_m| \mathbbm{1}_{\{|X_m| > k\}}] \,,$$

was nach der Definition des lim sup Gleichung (1) liefert. Hier sollte man sich überlegen, ob man den Limes über k ebenfalls, wie in der Argumentation unten, mittels eines ε umschreiben sollte.

Genüge nun (X_n) Gleichung (1). Wir wollen zeigen, dass (X_n) gleichgradig integrierbar ist. Sei hierfür ein $\varepsilon > 0$ gegeben. Da Gleichung (1) gilt, gibt es ein $k_0 \in \mathbb{N}$, sodass für alle $k > k_0$

$$\limsup_{n\to\infty} E[|X_n|\mathbb{1}_{\{|X_n|>k\}}] < \varepsilon.$$

Damit ist die Teilfolge $\left(\sup_{m\geq n} E[|X_m]\mathbb{1}_{\{|X_m|>k\}}\right)_n$ für alle $n\in\mathbb{N}$ beschränkt. Hier könnte man eventuell noch direkt ein Argument bringen, warum schon Beschränktheit durch ε folgt. Also gibt es auch ein n_0 , sodass für alle $n\geq n_0$ gilt

$$E[|X_n|\mathbb{1}_{\{|X_n|>k\}}]<\varepsilon.$$

Nach Lemma 24 gilt, dass alle X_n integrierbar sind. Also gibt es für alle X_1,\ldots,X_{n_0-1} jeweils Schranken $k_1,\ldots,k_{n_0-1}\in\mathbb{N},$ sodass für die $n=1,\ldots,n_0-1$ gilt

$$E[|X_n|\mathbb{1}_{\{|X_n|>k_n\}}]<\varepsilon.$$

Setze nun $K=k_0\vee\cdots\vee k_{n_0-1}$, dann gilt für alle $k\geq K$ und alle $n\in\mathbb{N},$ dass

$$E[|X_n|\mathbb{1}_{\{|X_n|>k\}}]<\varepsilon\,,$$

also insbesondere, dass

$$\lim_{k\to\infty}\sup_{n\in\mathbb{N}}E[|X_n|\mathbbm{1}_{\{|X_n|>k\}}]<\varepsilon\,.$$

Hier fehlt noch die Folgerung von Korollar 27.

B5A2 Sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum und $(A_n)_{n\geq 1}$ eine Folge in \mathcal{F} . Es sei

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k, \qquad \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Zeigen Sie, dass gilt

$$\liminf_{n \to \infty} A_n \subseteq \limsup_{n \to \infty} A_n$$

$$P\Big(\liminf_{n \to \infty} A_n\Big) \le \liminf_{n \to \infty} P(A_n) \le \limsup_{n \to \infty} P(A_n) \le P\Big(\limsup_{n \to \infty} A_n\Big)$$

 $\mathbbm{1}_{A_n}$ hat $\mathbbm{1}_{\Omega}$ als integrierbare Majorante. Damit gelten die erste und dritte Ungleichung gelten jeweils nach dem Lemma von Fatou, beziehungsweise die dritte nach majorisierter Konvergenz.

B5A3 Sei $\lambda>0$ und für jedes $n\in\mathbb{N}_0$ sei X_n eine Poisson-verteilte Zufallsvariable zum Parameter λ . Zeigen Sie mit Hilfe des Lemmas von Borel–Cantelli, dass

 $P(\{\text{F\"{u}r unendlich viele } n \text{ gilt } X_n > n\}) = 0.$

B5A4 Nennen Sie jeweils ein Beispiel und ein Gegenbeispiel von reellwertigen Zufallsvariablen $(X_n)_{n\in\mathbb{N}}$ und einer Menge $A\in\mathcal{B}(\mathbb{R})$ für die folgenden Identitäten

1.
$$P\left(\left\{\limsup_{n\to\infty} X_n \in A\right\}\right) = P\left(\limsup_{n\to\infty} \left\{X_n \in A\right\}\right)$$

2.
$$P\left(\limsup_{n\to\infty} \{X_n \in A\}\right) = \limsup_{n\to\infty} P(\{X_n \in A\})$$

3.
$$\limsup_{n \to \infty} P(\lbrace X_n \in A \rbrace) = P(\lbrace \limsup_{n \to \infty} X_n \in A \rbrace)$$

B5A5 Sei X_1, X_2, \ldots eine Folge von reellwertigen Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P), \mathcal{F}_n := \sigma(X_n)$ für alle n und $S_n := \sum_{k=1}^n X_k$. Zeigen Sie oder widerlegen Sie durch ein Gegenbeispiel, dass die folgenden Ereignisse terminale Ereignisse sind, also in der terminalen σ -Algebra liegen.

1.
$$\{\omega \in \Omega | X_n(\omega) = 0\}$$
 für ein $n \in \mathbb{N}$,

2.
$$\{\omega \in \Omega | X_n(\omega) = 0 \text{ für ein } n \in \mathbb{N}, \}$$