kandi työotsikkko

Topias Karjalainen

10. maaliskuuta 2020

Sisältö

1	Johdanto	2
2	Yleisiä tuloksia	3
	2.1 Perusmääritelmiä	3
	2.2 Markovin ketjut	3
3	Metropolis-Hastings algoritmi	4

Luku 1 Johdanto

Luku 2

Yleisiä tuloksia

2.1 Perusmääritelmiä

Määritellään ensiksi todennäköisyys.

Määritelmä 2.1. σ -algebra. Olkoot Ω mielivaltainen epätyhjä joukko. Sigma-algebra perusjoukolla Ω on sen osajoukkojen joukkoperhe \mathcal{F} , joka toteuttaa ehdot:

- 1. $\emptyset \in \mathcal{F}$
- 2. jos $A \in \mathcal{F}$, niin $A^c \in \mathcal{F}$
- 3. jos $A_1, A_2, A_3... \in \mathcal{F}$,, niin $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Määritelmä 2.2. Kuvaus \mathbf{P} liittää kuhunkin tapahtumaan A todennäköisyyden, joka on luku suljetulla välillä [0,1] ja sille pätee:

- 1. $P(\Omega) = 1$
- 2. Jos Aon tapahtuma, niin sen komplementtitapahtuman A^c todennäköisyys on $\mathbf{P}(A^c)=1-\mathbf{P}(A)$
- 3. Jos A_1, A_2, A_3 ... ovat erillisiä, niin

$$\mathbf{P}(\bigcup_{n=1}^{\infty} A_n) = \sum$$

2.2 Markovin ketjut

Luku 3 Metropolis–Hastings algoritmi

Kirjallisuutta