Area of a Traingle

December 29, 2022

12^{th} Maths - Chapter 10

- 1. Find $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$, if $\overrightarrow{a} = \hat{i} 7\hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 3\hat{i} 2\hat{j} + 2\hat{k}$.
- 2. Find a unit vector perpendicular to each of the vector $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$, where $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} 2\hat{k}$.
- 3. If a unit vector \overrightarrow{d} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the components of \overrightarrow{d} .
- 4. Show that

$$(\overrightarrow{a} - \overrightarrow{b}) \times (\overrightarrow{a} + \overrightarrow{b}) = 2(\overrightarrow{a} \times \overrightarrow{b})$$

- 5. Find λ and μ if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \overrightarrow{0}$.
- 6. Given that $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. What can you conclude about the vectors \overrightarrow{a} and \overrightarrow{b} ?
- 7. Let the vectors be given as \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then show that $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$.
- 8. If either $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$, then $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. Is the converse true? Justify your answer with an example.

- 9. Find the area of the triangle with vertices A(1,1,2), B(2,3,5), and C(1,5,5)
- 10. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\overrightarrow{d} = \hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.
- 11. Let the vectors \overrightarrow{a} and \overrightarrow{b} be such that $|\overrightarrow{a}| = 3$ and $|\overrightarrow{b}| = \frac{\sqrt{2}}{3}$, then $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, if the angle between \overrightarrow{a} and \overrightarrow{b} is
 - (a) $\frac{\pi}{6}$
 - (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$

 - (d) $\frac{\pi}{2}$
- 12. Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is
 - (a) $\frac{1}{2}$
 - (b) 1
 - (c) 2
 - (d) 4