NOMBRES COMPLEXES

ARGUMENT, RACINES $n^{\mathrm{i\`eme}}$ ET TRIGONOMÉTRIE

1 Argument et trigonométrie

1.1 Ecriture trigonométrique

Tout nombre complexe z=x+iy **non nul** peut s'écrire de manière unique sous la forme trigonométrique

$$z = r \left(\cos \left(\theta\right) + i \sin \left(\theta\right)\right)$$

avec r un réel strictement positif et θ un réel défini à 2π près. De plus on a :

$$r = |z| = \sqrt{x^2 + y^2}, \ \cos \theta = \frac{x}{\sqrt{x^2 + y^2}}, \ \sin \theta = \frac{y}{\sqrt{x^2 + y^2}}.$$

Le réel θ est appelé argument du nombre complexe z et noté arg(z).

1.2 Propriétés

Soient z, z_1 et z_2 trois nombres complexes non nuls, alors :

- 1. $arg(\bar{z}) = -arg(z) [2\pi]$.
- 2. $arg(-z) = arg(z) + \pi [2\pi]$.
- 3. $arg(z_1z_2) = arg(z_1) + arg(z_2) [2\pi]$.
- 4. $arg\left(\frac{1}{z}\right) = -arg(z) [2\pi]$.
- 5. $arg\left(\frac{z_1}{z_2}\right) = arg(z_1) arg(z_2) [2\pi].$
- 6. $arg(z^n) = n \ arg(z) \ [2\pi], n \in \mathbb{Z}$.

2 Exponentielle complexe

Pour tout réel θ , on pose

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

2.1 Définition

On appelle exponentielle complexe d'un nombre complexe z=x+iy avec x et y réels, le nombre complexe $e^z=e^xe^{iy}$.

NOMBRES COMPLEXES

ARGUMENT, RACINES $n^{\mathrm{i\`eme}}$ ET TRIGONOMÉTRIE

2.2 Propriétés

Soient z, z_1 et z_2 des nombres complexes et n un entier relatif, alors :

- 1. $e^z \neq 0$.
- 2. $e^{-z} = \frac{1}{e^z}$.
- 3. $\overline{e^z} = e^{\overline{z}}$.
- 4. $e^{z_1+z_2}=e^{z_1}e^{z_2}$.
- 5. $e^{z_1-z_2}=\frac{e^{z_1}}{e^{z_2}}$.
- 6. $(e^z)^n = e^{nz}$.

3 Formule d'Euler et de Moivre

3.1 Définition

Par analogie avec l'exponentielle réelle, on note désormais

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
, pour $\theta \in \mathbb{R}$.

3.2 Propriétés

Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{Z}$, alors

- 1. $\cos{(\theta)}=\frac{e^{i\theta}+e^{-i\theta}}{2} \cot{(\theta)}=\frac{e^{i\theta}-e^{-i\theta}}{2i}$ (formules d'Euler).
- 2. $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$ (formule de Moivre).

4 Racines n-ièmes d'un nombre complexe

4.1 Propriétés

1. L'équation $z^n=1$ avec $z\in\mathbb{C}$ et $n\in\mathbb{N}$ admet n solutions appelées racines n-ièmes de l'unité et s'exprimant sous la forme

$$z_k = e^{i\frac{2k\pi}{n}},$$

pour $k=0,\ 1,\ ...,\ n-1$. L'ensemble des racines $n^{\mathrm{i}\mathrm{èmes}}$ de 1 est noté \mathbb{U}_n .

2. Soit $a\in\mathbb{C}$ donné. L'équation $z^n=a$ avec $z\in\mathbb{C}$ et $n\in\mathbb{N}$ admet n solutions appelées racines $n^{\mathrm{l\`{e}mes}}$ de a et s'exprimant sous la forme

$$z_k = r^{\frac{1}{n}} e^{i\frac{\theta + 2k\pi}{n}},$$

pour k = 0, 1, ..., n - 1, r = |a| et $\theta = arg(a)$.