Основания языков программирования

A. M. Пеленицын ulysses4ever@gmail.com

Факультет математики, механики и компьютерных наук Южный федеральный университет

Семинар «Введение в теоретическую информатику» 27 мая 2011 г.

Языки программирования

- Синтаксис: правила составления программ.
- Системы типов: правила отбрасывания неправильно составленных программ.
- 3 Семантика: способ получения результатов работы программы.

План

- $lue{1}$ Бестиповое λ -исчисление
 - Язык
 - Вычисление
 - ullet Программирование в λ -исчислении
- 2 Типизированное λ -исчисление
- З Семантики языков программирования

- 1 Бестиповое λ -исчисление
 - Язык
 - Вычисление
 - ullet Программирование в λ -исчислении

Функции как формулы

Определение функций из школы

•
$$f(x) = x^2$$
,

$$\bullet \ \mathsf{add}(x,y) = x + y,$$

•
$$I(f) = \int_0^1 f \ dx$$
.

Вычисление — подстановка

•
$$f(5) = 5^2 = 25$$
,

•
$$add(3,2) = 3 + 2 = 5$$
,

•
$$I(x^2) = \int_0^1 x^2 dx = 1/3$$
.

Определение функций как λ -термов

•
$$\lambda x \cdot x^2$$
,

•
$$\lambda x . \lambda y . x + y$$
,

•
$$\lambda f \cdot \int_0^1 f \ dx$$
.

•
$$(\lambda x \cdot x^2) 5 \rightarrow_{\beta} 5^2$$
,

•
$$((\lambda x \cdot \lambda y \cdot x + y)3)2 \rightarrow_{\beta} (\lambda y \cdot 3 + y)2 \rightarrow_{\beta} 3 + 2,$$

•
$$(\lambda f \cdot \int_0^1 f \, dx) x^2 \to_{\beta} \int_0^1 x^2 \, dx$$
.

- 1 Бестиповое λ -исчисление
 - Язык
 - Вычисление
 - ullet Программирование в λ -исчислении

λ -термы

Определение

Грамматика G_{λ} задаётся правилами:

$$\Lambda ::= V \mid (\lambda V . \Lambda) \mid (\Lambda \Lambda),$$

где V обозначает имя переменной $(x,y,z\ldots)$. Язык $L(G_{\lambda})$ называется множеством λ -термов.

- Правило 2 λ -абстракция, правило 3 аппликация.
- Примеры:
 - lacktriangledown $\Delta \to (\lambda x \cdot \underline{\Lambda}) \to (\lambda x \cdot x)$ тождественная функция.
 - ② $\underline{\Lambda} \rightarrow (\lambda x \, . \, \underline{\Lambda}) \rightarrow (\lambda x \, . \, y)$ функция-константа.
 - ③ $\underline{\Lambda} \to (\underline{\Lambda}\Lambda) \to ((\lambda x \cdot \underline{\Lambda})\Lambda) \to ((\lambda x \cdot (\underline{\Lambda}\Lambda))\Lambda) \to ((\lambda x \cdot (x\underline{\Lambda}))\Lambda) \to ((\lambda x \cdot (xx))\underline{\Lambda}) \to ((\lambda x \cdot (xx))(\lambda y \cdot \underline{\Lambda})) \to ((\lambda x \cdot (xx))(\lambda y \cdot (\underline{\Lambda}\Lambda))) \to ((\lambda x \cdot (xx))(\lambda y \cdot (y\underline{\Lambda}))) \to ((\lambda x \cdot (xx))(\lambda y \cdot (y\underline{\Lambda}))) \to ((\lambda x \cdot (xx))(\lambda y \cdot (yy))) Ω$ -терм.

Соглашения о скобках

- Внешние скобки опускаются.
- ② Аппликация ассоциирует влево: $((MN)K)L \sim MNKL$.
- ullet Абстракция жадная вправо: $\lambda x \cdot (MN) \sim \lambda x \cdot MN$.

Примеры

- $((\lambda x . (xx))(\lambda y . (yy))) \sim (\lambda x . xx)(\lambda y . yy),$
- $(\lambda f.(\lambda x.(f(fx)))) \sim \lambda f.\lambda x.f(fx).$

Переименование связанных переменных

Мотивация:

$$f(x) = x^2 \sim f(y) = y^2.$$

Определение (α -эквивалентность)

Термы M и N называются α -эквивалентными, если они отличаются только именами переменных, связанных λ -абстракцией.

Записывается: $M =_{\alpha} N$.

Примеры

- $(\lambda x \cdot xx)(\lambda y \cdot yy) =_{\alpha} (\lambda x \cdot xx)(\lambda x \cdot xx) =_{\alpha} (\lambda z \cdot zz)(\lambda x \cdot xx);$
- $\delta \lambda x \cdot y \neq_{\alpha} \lambda x \cdot z$.

- 1 Бестиповое λ -исчисление
 - Язык
 - Вычисление
 - ullet Программирование в λ -исчислении

Вычисление: отношение \rightarrow_{β}

Определение

 λ -терм вида $(\lambda x . M)N$ называется редексом.

Определение

 $ightarrow_{eta}$ — это бинарное отношение на множестве λ -термов:

$$(\lambda x . M)N \rightarrow_{\beta} [N/x]M$$
,

где операция [N/x]M означает подстановку терма N в терм M вместо всех свободных вхождений x.

Пример:

$$(\lambda x \cdot y)(\underline{(\lambda z \cdot zz)(\lambda w \cdot w)}) \rightarrow_{\beta} (\lambda x \cdot y)(\underline{(\lambda w \cdot w)(\lambda w \cdot w)})$$
$$\rightarrow_{\beta} \underline{(\lambda x \cdot y)(\lambda w \cdot w)}$$
$$\rightarrow_{\beta} y.$$

Или: $(\lambda x . y)((\lambda z . zz)(\lambda w . w))$ →_{β} y.

Подстановка: проблема

- Функция от двух аргументов, которая применяет первый аргумент ко второму: $\lambda f \cdot \lambda x \cdot fx$.
- **2** Константная функция, возвращающая $x: \lambda y.x.$
- Переменная: z.

Применив константную функцию (2) к переменной (3) ожидаем получить x. Однако:

$$(\lambda f \cdot \lambda x \cdot fx)(\lambda y \cdot x)z \rightarrow_{\beta} (\lambda x \cdot (\lambda y \cdot x)x)z \rightarrow_{\beta} (\lambda y \cdot z)z \rightarrow_{\beta} z.$$

Проблема: произошёл захват свободной переменной x на первом шаге редукции.

Решение: переименовывать связанные переменные.

$$(\lambda f \cdot \lambda x \cdot fx)(\lambda y \cdot x)z =_{\alpha} \underbrace{(\lambda f \cdot \lambda w \cdot fw)(\lambda y \cdot x)z}_{\beta}$$

$$\to_{\beta} \underbrace{(\lambda w \cdot (\lambda y \cdot x)w)z}_{\beta}$$

$$\to_{\beta} \underbrace{(\lambda y \cdot x)z}_{\gamma}$$

$$\to_{\beta} x.$$

12 / 25

Свойства $ightarrow_{eta_{l}}$

Определение

Говорят что терм M находится в нормальной форме, если он не содержит редексов.

Теорема

У каждого терма M нормальная форма единственна, если она существует.

Пример терма без нормальной формы:

$$\underline{(\lambda x . xx)(\lambda x . xx)} \rightarrow_{\beta} \underline{(\lambda x . xx)(\lambda x . xx)} \rightarrow_{\beta} \dots \tag{\Omega}$$

Ура, бесконечный цикл!

Свойства \rightarrow_{β}

Определение

Стратегией редукции называется правило, по которому выбирается очередной редекс в редуцируемом терме.

Определение

Стратегия редукции называется нормализующей, если она приводит к нормальной форме любой терм, имеющий нормальную форму.

Теорема

Нормализующие стратегии существуют.

- 1 Бестиповое λ -исчисление
 - Язык
 - Вычисление
 - ullet Программирование в λ -исчислении

Программирование в λ -исчислении

- true $\equiv \lambda x . \lambda y . x$; false $\equiv \lambda x . \lambda y . y$.
- if_then_else $C M N \equiv CMN$.

Пример:

```
if_then_else true \ M\ N\equiv  {\rm true}\ M\ N\equiv (\lambda x\,.\,\lambda y\,.\,x)MN\to_{\beta} (\lambda y\,.\,M)N\to_{\beta} M.
```

Программирование в λ -исчислении

• and $= \lambda x \cdot \lambda y \cdot \text{if_then_else } x y \text{ false}$

```
Пример:
```

```
and true false \equiv  (\lambda x \,.\, \lambda y \,.\, \text{if\_then\_else} \, x \, y \, \text{false} \ ) \text{true false} \ \to_{\beta}^*   \text{if\_then\_else} \, \text{true false} \, \text{false} \, \equiv   \text{true false false} \, \equiv (\lambda x \,.\, \lambda y \,.\, x) \text{false false} \ \to_{\beta}^*   \text{false} \ .
```

- or =?
- not =?

C войства o_eta

Теорема

 λ -исчисление с отношением \to_{β} является полным по Тьюрингу вычислительным формализмом.

λ -исчисление vs языки программирования

Питер Ландин

- "Correspondence between ALGOL 60 and Church's Lambda-notation" // Com. ACM, 1965;
- "The next 700 programming languages" // Com. ACM, 1966;

"A possible first step in the research program is 1700 doctoral theses called "A Correspondence between x and Church's λ -notation."

- $oldsymbol{1}$ Бестиповое λ -исчисление
 - Язык
 - Вычисление
 - ullet Программирование в λ -исчислении

Введение типов: мотивация

Предположим, в λ -исчисление некоторым способом введены целые числа. Как понимать терм:

$$if_{then_else}(42)(1)(2)$$
?

Худшая ситуация:

if_then_else (
$$\langle$$
описание длинного и сложного вычисления \rangle) (1) (2)?

Можно добавить к языку λ -исчисления типы — это поможет, не выполняя вычислений, исключать некоторые «неправильные» термы.

Язык типизированного λ -исчисления

Определение

Грамматика для типов задаётся следующими правилами:

$$T ::= B \mid T \rightarrow T$$

где B обозначает «базовый тип» из некоторого фиксированного набора.

Пример: (Nat o Bool) o Nat o Bool (считая Nat и Bool базовыми типами).

Определение

Грамматика для термов задаётся следующими правилами:

$$\Lambda ::= V \mid \lambda V \colon T . \Lambda \mid \Lambda \Lambda.$$

Правила типизации

Обозначения

- M: T «терм М имеет тип Т»;
- $x_1: T_1, \ldots, x_n: T_n \vdash M: T$ при условии, что x_i , свободные переменные в M, имеют типы T_i соответственно, терм M имеет тип T утверждение о типизации (type judgement).

Правила

$$\frac{\Gamma, x \colon A \vdash x \colon A}{\Gamma, x \colon A \vdash x \colon A}$$

$$APP \frac{\Gamma \vdash M \colon A \to B \qquad \Gamma \vdash N \colon A}{\Gamma \vdash MN \colon B}$$

$$\frac{\Gamma, x \colon A \vdash M \colon B}{\Gamma \vdash \lambda x \colon A \colon M \colon A \to B}$$

- $oldsymbol{1}$ Бестиповое λ -исчисление
 - Язык
 - Вычисление
 - ullet Программирование в λ -исчислении

- операционная,
- денотационная,
- аксиоматическая.