New York City Taxi Fare Prediction

Data Science Capstone Project
Mehrnaz Mireslami

Overview

- Problem Statement
- Description of the Dataset
- Data Wrangling
- Driving New Features
- EDA and Storytelling
- Statistical Inference
- Machine Learning

Problem Statement

Goal:

Develop a Machine Learning based model to predict the fare amount for a taxi ride in New York City.

- Enhance customers' satisfaction, since it is given as upfront data to the customers.
- Provide better results for taxi cabs and ridesharing companies such as Uber, Lyft, etc.

Description of the Dataset

Data Source: Kaggle competition

Features:

- pickup_datetime
- pickup_longitude
- pickup_latitude
- dropoff_longitude
- dropoff_latitude
- passenger_count

Target:

fare_amount

Data Wrangling

- Data was almost clean.
- Remove NaN values.
- Remove features' outliers.
- Extract new features.

Fare Amount

Based on the distribution of fare_amount, entries greater than \$200 should be considered as outlier and dropped from the dataset.

Passenger Count

Maximum number of passengers is 208 that is not realistic for the number of seats on a taxi cab.

The outlier for number of passengers should be removed, so the number of passenger for each ride should be between 1 and 6.

Latitude and Longitude Features

Pickup and dropoff coordinates should be in the latitude and longitude range for NYC.

Deriving New Features

Distance Between Pickup and Dropoff Locations

Haversine formula is employed to calculate the distance between pickup and drop-off locations.

Time and Date Features

The key attribute is leveraged to extract new features:

- Year
- Month
- o Day
- Hour
- Day of the Week

EDA and Data Storytelling

Visualizing data to find the correlation among features.

Inferential statistics

Pickup and drop-off visualization

As shown in these plots, the concentration of coordinates are related to Manhattan neighborhoods Manhattan neighborhoods.

Fare_amount visualization

There is a positive correlation between distance and fare_amount per passenger, when distance < 70.

fare_amount changes over the years

This scatter plot represents that the fare_amount in the Manhattan area is lower than the other regions.

Statistical Inference

Hypothesis Testing 1

Null Hypothesis: the mean of fare_amount for weekdays and weekends are the same.

P_value is zero

the null hypothesis should be rejected .

Hypothesis Testing 2

Null Hypothesis: the mean of fare_amount of Manhattan area is the same as other regions of NYC.

The mean of fare_amount of Manhattan is significantly different from the other NYC regions.

Machine Learning

Regression

Output variable is numerical (continuous)

Classification

Output variable is categorical (discrete)

ML Regression Models Used

- Linear Regression
- Random Forest Regression
- Decision Tree Regression
- Gradient Boosting Regressor
- Linear Support Vector Regression

Evaluation: R-squared

• The larger R-squared means the regression model fits the observations better.

Both Random Forest and Gradient Boosting obtain high values.

Evaluation: MSE

• Mean square error (MSE): is the average of the square of the errors.

The larger the number the larger the error.

Both Random Forest and Gradient Boosting have lower MSE compared to other models.

Evaluation: RMSE

 Root Mean Square Error (RMSE) is a method of measuring the difference between values predicted by a model and their actual values.

Both Random Forest and Gradient Boosting obtain low values.

Evaluation: Correlation Coefficient

• Correlation Coefficient returns a value between -1 (full negative correlation) and 1 (full positive correlation).

Both Random Forest and Gradient Boosting indicate a notable correlation between target value and predicted values.

The chosen Regression Model

Random Forest outperforms all other models.

Classification Model

Naive Bayes Classifier: New York city taxi fare prediction is a regression problem. The continuous target is changed to labeled target by considering 3 different fare_amount categories.

Since most of the training dataset are in the cheap category, the prediction accuracy of this category is higher.

Conclusion

- For app-based hiring vehicles companies accurate prediction of taxi fare is important.
- To find the most appropriate prediction model, many factors are considered as problem features such as pickup or dropoff locations.
- Various regression and classification models are used to find the best prediction model.
- The results show that Random Forest outperforms all other models and obtains an accurate prediction model.