R401: Statistical and Mathematical Foundations

Lecture 14: Unconstrained Optimization. Static Optimization with Equality Constraints. Lagrange Multipliers

Andrey Vassilev

2016/2017

General Principles and Caveats for the Optimization Module

- Emphasis on practicality over rigour
- Consequently, algorithmic approach and "recipes" rather than proofs
- Also, existence and relevant properties of various objects are often implicitly assumed
- Pathologies and mathematical peculiarities discussed only in special cases

Lecture Contents

f 1 Warm-up: Basic Unconstrained Optimization in $\Bbb R^1$

3/6

Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1

Fact 1

For a function $f: \mathbb{R} \to \mathbb{R}$ differentiable at a point x, a necessary condition for a local extremum at x is

$$f'(x) = 0.$$

Example 1

If $f(x) = ax^2 + bx + c$, then f'(x) = 2ax + b and the condition f'(x) = 0 yields the familiar $x = -\frac{b}{2a}$ (recall your high-school days). Depending on the sign of a, this is a maximum or a minimum (What is the relationship?).

Example 2

If $f(x) = x^3$, then $f'(x) = 3x^2$ and $f'(x) = 0 \Rightarrow x = 0$.

Does the function attain a maximum or a minimum at x = 0?

2016/2017

Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1

Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1

Example 2 (cont.)

The answer is "neither"! The point x=0 is not a local extremum of $f(x)=x^3$.

This illustrates the pitfalls of using necessary conditions to find extrema – they supply only candidates that need to be checked further.

The above examples generalize in the following manner:

Fact 2

Let a function f be n times differentiable at a point x and

$$f'(x) = f''(x) = \dots = f^{(n-1)}(x) = 0, \qquad f^{(n)} \neq 0.$$

- ① If n is odd, f(x) does not attain an extremum at x.
- ② If n is even and $f^{(n)}(x) > 0$, the point x is a minimum.
- ③ If *n* is even and $f^{(n)}(x) < 0$, the point *x* is a maximum.

