Cas Kaggle Mushrooms classification

Albert Roca i Llevadot

Github:

https://github.com/AlbertRoca29/Mushrooms

Un dataset amb variables categoriques

Objectiu:

Classificar els bolets entre verinosos i comestibles

Un dataset amb variables categoriques

Un dataset amb variables categoriques

Variables categoriques

21

Primera classificació

ACCURACY

100%

Amb tots els models escollits

Malgrat l'overfitting, l'accuracy és impecable.

Veig que és una variable molt fàcil de predir amb les dades que tinc

Aleshores, que faig?

Decideixo basar el treball en:

- 1
- Quins atributs van millor i com augmenta l'acuracy amb cada un d'ells

2

Reduir la dimensió amb t-SNE i PCA.

- 3
- Visualitzar els resultat i veure fins a on puc arribar mantenint aquesta alta accuracy.

1

Quins atributs van millor i com augmenta l'acuracy amb cada un d'ells

1

Quins atributs van millor i com augmenta l'acuracy amb cada un d'ells

Millors atributs en solitari

Pel que fa la practica sembla el més interessant

Nom	Accuracy	Falsos Comestibles	Signe de la correlació
odor_n	0.88774	0.00410	1
odor_f	0.78877	0.07041	-1
stalk-surface-above-ring_k	0.78385	0.06663	-1
stalk-surface-below-ring_k	0.76809	0.07139	-1
ring-type_p	0.76711	0.03299	1
gill-size_b	0.75726	0.06910	1
gill-size_n	0.75726	0.06910	-1
bruises_f	0.75283	0.02527	-1
bruises_t	0.75283	0.02527	1
stalk-surface-above-ring_s	0.75234	0.06089	1

Millors atributs en solitari

L'atribut millor i amb menys falsos negatius és aquest:

odor = none

Els bolets que no fan olor, tels pots menjar sense preocupar-te massa

Resultats amb 6 atributs dels 116

ACCURACY

97.5%

Amb gairebé tots els models escollits

Necessito reduir el dataset

PCA per reduir el dataset

Mantenint un 90% de variança

31 atributs

ACCURACY

95% ~ 100%

Alguns models empitjoren lleugerament Però la majoria segueix al 100%

PCA en dimensions 2 i 3

MLPClassifier(solver='lbfgs')

Com ho fa?

t-SNE en dimensions 2 i 3

Alerta!

L'algoritme t-SNE transforma tot l'espai de cerca de manera no lineal i irreversible.

Així que no és d'aprenentatge supervisat. Es pot avaluar l'accuracy però serà molt sensible a noves mostres (s'hauria de repetir l'algoritme cada cop).

I és molt més lent

TSNE(n_components=3, n_iter=425, perplexity = 75)

t-SNE mesurar accuracy

Separo al nou espai en X_train i X_test.

2.2

2.0

2.4

n components

2.6

2.8

ACCURACY 100%

EN ELS 4 MILLORS MODELS

PERO

per els models més senzills o lineals va pitjor

Conclusions

NO hi ha taula de resultats

La gran majoria eren 100%

Treballar amb un objectiu diferent

Visualització de les dades Modificar l'espai de cerca Importancia dels arguments Graficar els models i transfromacions

