1 第1回分の演習問題

(1) 次の分数式を約分せよ.

(a)
$$\frac{x^2 - 3x - 4}{x^2 + 3x + 2}$$
 (b) $\frac{x^2 - 1}{x^3 - 1}$

(2) 次の関数の逆関数を求めよ.

(a)
$$y = -\frac{1}{3}x + 4$$
 (b) $y = 3x - 1$

(3) 次の関数の逆関数を求めよ.

(a)
$$y = x^2$$
 (b) $y = 2^x$ (c) $y = \log_{10} x$

(4) 次の角を、度数は弧度に、弧度は度数に、それぞれ 書き直せ.

(a)
$$15^{\circ}$$
 (b) -60° (c) $\frac{8}{5}\pi$ (d) $-\frac{5}{12}\pi$

(5) f(x) = x + 1, $g(x) = \sqrt{x^2 + 1}$, $h(x) = \log_2(x)$ のとき、次の合成関数をxの式で表せ.

(a)
$$f(g(x))$$
 (b) $g(f(x))$ (c) $h(g(x))$

答. (1) (a)
$$\frac{x-4}{x+2}$$
 (b) $\frac{x+1}{x^2+x+1}$ (2) (a) $y = -3x+12$ (b) $y = \frac{1}{3}(x+1)$

(2) (a)
$$y = -3x + 12$$
 (b) $y = \frac{1}{2}(x+1)$

(3) (a)
$$y = \sqrt{x}^{*1}$$
 (b) $y = \log_2 x$ (c) $y = 10^\circ$

(4) (a)
$$\frac{\pi}{12}$$
 (b) $-\frac{\pi}{2}$ (c) 288° (d) -75

(2) (a)
$$y = -3x + 12$$
 (b) $y = \frac{\pi}{3}(x+1)$
(3) (a) $y = \sqrt{x}^{*1}$ (b) $y = \log_2 x$ (c) $y = 10^x$
(4) (a) $\frac{\pi}{12}$ (b) $-\frac{\pi}{3}$ (c) 288° (d) -75°
(5) (a) $\sqrt{x^2 + 1} + 1$ (b) $\sqrt{x^2 + 2x + 2}$
(c) $\frac{1}{2}\log_2(x^2 + 1)$

$$(c) \frac{1}{2} \log_2(x^2 + 1)$$

2 第2回分の演習問題

(1) すべての n に対して $a_n < b_n$ であるが、 $\lim_{n \to \infty} a_n = 1$ $\lim_{n \to \infty} b_n$ となる数列の組を一例挙げよ.

(2) 一般項が次の式で表される数列の極限を調べよ.

(a)
$$\frac{2n-1}{5n+1}$$
 (b) $\frac{2n^2+n}{n^2-6}$ (c) $\frac{7n-3}{3n^2+4n}$

(3) 一般項が次の式で表される数列の極限を調べよ.

(a)
$$2n^3 - 4n$$
 (b) $\sqrt{n+1} - \sqrt{n-1}$

(4) 次の無限等比数列の極限を調べよ.

(a)
$$3, 9, 27, 81, \dots$$
 (b) $-\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \dots$ (c) $8, -12, 18, -27, \dots$

(5) 一般項が次の式で表される数列の極限を調べよ.

(a)
$$\frac{5^n - 2^n}{3^n}$$
 (b) $\frac{2^{n+1}}{3^n + 2^n}$ (c) $\frac{(-2)^n + 3^n}{3^n - (-2)^n}$

(6) $r \neq -1$ のとき、数列 $\frac{r^n}{1+r^n}$ の極限を調べよ.

答. (1) 例えば
$$a_n = 1 - \frac{1}{n}$$
, $b_n = 1 + \frac{1}{n}$

(2) $ds(a) \stackrel{2}{=} (b) 2 (c)$

(3) $(a) + \infty$ (b) 0

 $(4)(a) + \infty$ (b) 0 (c) 収束しない

(5) $(a) + \infty$ (b) 0 (c) 1

(6) $|r| > 1 \mathcal{O} \angle \mathring{\mathcal{E}} 1, r = 1 \mathcal{O} \angle \mathring{\mathcal{E}} \frac{1}{2},$ -1 < r < 1 のとき 0

3 第3回分の演習問題

(1) 次の極限を求めよ.

(a)
$$\lim_{x \to +\infty} \frac{1}{x+1}$$
 (b) $\lim_{x \to -\infty} (x^3 + 1)$

(2) 次の極限を求めよ.

(a)
$$\lim_{x \to -2} \frac{x+3}{(x-1)(x^2+3)}$$
 (b) $\lim_{x \to 2} \frac{2x^2 - 5x + 2}{x^2 - 4}$

(c)
$$\lim_{x \to 0} \frac{1}{x} \left(1 - \frac{1}{x+1} \right)$$
 (4) $\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x}$

(3) 次の極限を求めよ.

(a)
$$\lim_{x \to +0} \frac{x^2 + x}{|x|}$$
 (b) $\lim_{x \to -0} \frac{x^2 + x}{|x|}$ (c) $\lim_{x \to 1+0} \frac{x}{x-1}$

(4) 次の極限を求めよ.

(a)
$$\lim_{x \to +\infty} (\sqrt{x+1} - \sqrt{x})$$
 (b) $\lim_{x \to 0} x \sin \frac{1}{x}$

(5) 点 x = 0 以外の点で常に f(x) < g(x) であるが, $\lim_{x\to 0} f(x)$, $\lim_{x\to 0} g(x)$ がともに存在して, さらに

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$$

となるような関数の組の一例を挙げよ.

答. (1) (a) 0 (b)
$$-\infty$$
 (2) (a) $-\frac{1}{21}$ (b) $\frac{3}{4}$ (c) 1 (d) $\frac{1}{4}$

(4) (a) 0 (b) 0

(5) 例えば $f(x) = -x^2$, $g(x) = x^2$

4 レポート用の演習問題

(1) 度数法で表された角度 abc° を、弧度法で書き直せ、 ここで、abc は3つの数の積ではなく、3桁の数とみる.

(2) $a_1 = a$, $a_{n+1} = \frac{b}{10}a_n + c$ によって定義される数列 $\{a_n\}$ の極限値は存在するか、存在するならば、その極 限値を求めよ.

(3) 次の極限を求めよ. $\lim_{x\to+\infty} \left(\sqrt{ax^2+bx+c}-\sqrt{ax}\right)$

答. (1) $abc \times \frac{\pi}{180}$ (rad)

(2) 収束し、極限値は $\frac{10c}{10-b}$

(3) 収束し、極限値は $\frac{b}{2\sqrt{2}}$

 $^{^{*1}}$ 問題としては若干不適切で、 $y=x^2\;(x\geqq0)$ の範囲における逆 関数は $y = \sqrt{x}$ で、全体としては逆関数は持たない.