

#### Laboratório de Eletrônica Básica I

Práticas de simulação com QUCS

Laboratório 5 - CIRCUITOS DE POLARIZAÇÃO

Pedro Henrique Fabriz Ulhoa Tiago Ventura Silva Martins



#### **Resultados do Experimento**

- 3.1) Circuito sem realimentação negativa
- **3.1.1)** Para a primeira parte do experimento, um circuito foi montado como mostra a Figura 3.1.



Figura 3.1 - Circuito sem realimentação negativa

**3.1.3** Medindo o ponto quiescente (Q) e Vbeq com a utilização de multímetros e amperímetros, os valores na Tabela 3.1 foram obtidos.

| lbq.l    | lcq.l  | Vce.V | Vbe.V |
|----------|--------|-------|-------|
| 6.26e-05 | 0.0191 | 5.69  | 0.727 |

Tabela 3.1 - Corrente do coletor e da base, tensão coletor-emissor e tensão base-emissor em uma tabela.



**3.1.4** Variando a temperatura do transistor entre 20 °C e 270 °C em intervalos de 10 °C, temos o circuito ilustrado na Figura 3.2, junto com o recurso Parâmetro de varredura e a simulação cc.



Figura 3.2 - Circuito sem realimentação negativa com parâmetro de temperatura variando.

Os valores obtidos na simulação estão ilustrados na Tabela 3.2

| T   | Vce.V | 130 | 5.55 | 750700000 | 3.08 |
|-----|-------|-----|------|-----------|------|
| 20  | 5.7   | 140 | 5.53 | 260       | 2.44 |
| 30  | 5.69  | 150 | 5.51 | 270       | 1.87 |
| 40  | 5.68  | 160 | 5.49 | 0         |      |
| 50  | 5.66  | 170 | 5.45 |           |      |
| 60  | 5.65  | 180 | 5.4  |           |      |
| 70  | 5.64  | 190 | 5.32 |           |      |
| 80  | 5.62  | 200 | 5.19 |           |      |
| 90  | 5.61  | 210 | 4.99 |           |      |
| 100 | 5.6   | 220 | 4.68 |           |      |
| 110 | 5.58  | 230 | 4.25 |           |      |
| 120 | 5.57  | 240 | 3.7  |           |      |

Tabela 3.2 - Valores de Vce em relação a mudança de temperatura.



**3.1.5** Substituindo o resistor de 180 K $\Omega$  por 6,8 K $\Omega$ , obteve-se o circuito ilustrado na Figura 3.3.



Figura 3.3 - Circuito sem realimentação negativa com valor de resistência alterado para 6.8kOhm.

**3.1.7** Medindo o ponto quiescente (Q) do circuito da Figura 3.3, os valores obtidos foram registrados na Tabela 3.3:

| number | lbq.l   | lcq.l  | Vce.V  | Vbe.V |
|--------|---------|--------|--------|-------|
| 1      | 0.00165 | 0.0362 | 0.0606 | 0.778 |

Tabela 3.3 - Corrente do coletor e da base, tensão coletor-emissor e tensão base-emissor em uma tabela.



#### 3.2) Circuito de Polarização com Realimentação Negativa pelo Resistor de Emissor

**3.2.1** O Circuito de Polarização com Realimentação Negativa pelo Resistor de Emissor foi desenhado no simulador da seguinte forma:



Figura 3.4 - Circuito com realimentação negativa

3.2.3 Medindo o ponto quiescente (Q), o resultado obtido foi ilustrado na Tabela 3.3:

| number | lbq.l    | Icq.I  | Vce.V | Vbe.V |
|--------|----------|--------|-------|-------|
| 1      | 3.36e-05 | 0.0106 | 5.97  | 0.705 |

Tabela 3.4 - Corrente do coletor e da base, tensão coletor-emissor e tensão base-emissor em uma tabela.

**3.2.4** Variando a temperatura do transistor entre 20  $^{\circ}$ C e 270  $^{\circ}$ C em intervalos de 10  $^{\circ}$ C, temos o circuito representado na Figura 3.5.





Figura 3.5 - Circuito com realimentação negativa com parâmetro de temperatura variando.

Os resultados foram registrado na Tabela 3.5.

| Temp | Vce1.V | 140      | 4.98    |
|------|--------|----------|---------|
| 20   | 6.03   | 150      | 4.89    |
| 30   | 5.94   | 160      | 4.8     |
| 40   | 5.86   | 170      | 4.71    |
| 50   | 5.77   | 180      | 4.62    |
| 60   | 5.69   | 190      | 4.52    |
| 70   | 5.6    | 200      | 4.43    |
| 80   | 5.51   | 210      | 4.32    |
| 90   | 5.42   | 220      | 4.21    |
| 100  | 5.33   | 230      | 4.09    |
| 110  | 5.25   | 240      | 3.95    |
| 120  | 5.16   | 250      | 3.78    |
| 130  | 5.07   | 260      | 3.57    |
| .50  |        | 270      | 3.32    |
|      |        | SHARROW. | C120 R0 |

Tabela 3.5 - Valores de Vce em relação a mudança de temperatura.



**3.2.5** Comparando as curvas de Vce versus Temp dos itens 3.1.4 e 3.2.4 em um mesmo gráfico, onde a curva laranja é o resultado da 3.2.4 e a azul o da 3.1.4, temos o resultado na Figura 3.6:



Figura 3.6 - Gráfico Vce versus Temperatura

**3.2.6** Com base nas análises da simulação e dos resultados obtidos, o circuito de polarização com realimentação negativa pelo resistor de emissor demonstrou ser mais estável em relação ao aumento de temperatura.