Probabilistic Robotics

Wheeled Locomotion

Locomotion of Wheeled Robots

Locomotion (Oxford Dict.):
Power of motion from place to place

- Differential drive (AmigoBot, Pioneer 2-DX)
- Car drive (Ackerman steering)
- Synchronous drive (B21)
- Mecanum wheels, XR4000

Instantaneous Center of Curvature

 For rolling motion to occur, each wheel has to move along its y-axis

Differential Drive

$$\omega(R + l/2) = v_r$$

$$\omega(R - l/2) = v_l$$

$$R = \frac{l}{2} \frac{(v_l + v_r)}{(v_r - v_l)}$$

$$v_r - v_l$$

Differential Drive: Forward Kinematics

Differential Drive: Forward Kinematics

P(t)

Ackermann Drive

Synchonous Drive

$$x(t) = \int_{0}^{t} v(t') \cos[\theta(t')]dt'$$

$$y(t) = \int_{0}^{t} v(t') \sin[\theta(t')]dt'$$

$$\theta(t) = \int_{0}^{t} \omega(t') dt'$$

Synchro-Drive Robot

XR4000 Drive

$$x(t) = \int_{0}^{t} v(t') \cos[\theta(t')]dt'$$

$$y(t) = \int_{0}^{t} v(t') \sin[\theta(t')]dt'$$

$$\theta(t) = \int_{0}^{t} \omega(t') dt'$$

XR4000

[courtesy by Oliver Brock & Oussama Khatib]

Mecanum Wheels

$$v_{y} = (v_{0} + v_{1} + v_{2} + v_{3})/4$$

$$v_{x} = (v_{0} - v_{1} + v_{2} - v_{3})/4$$

$$v_{\theta} = (v_{0} + v_{1} - v_{2} - v_{3})/4$$

$$v_{error} = (v_{0} - v_{1} - v_{2} + v_{3})/4$$

Example: Priamos (Karlsruhe)

Example

Odometry

Non-Holonomic Constraints

- Non-holonomic constraints limit the possible incremental movements within the configuration space of the robot.
- Robots with differential drive or synchro-drive move on a circular trajectory and cannot move sideways.
- XR-4000 or Mecanum-wheeled robots can move sideways.

Holonomic vs. Non-Holonomic

- Non-holonomic constraints reduce the control space with respect to the current configuration (e.g., moving sideways is impossible).
- Holonomic constraints reduce the configuration space.