МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №4 по курсу «Программирование графических процессоров»

Работа с матрицам. Метод Гаусса.

Выполнил: М.А.Трофимов

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы. Использование объединения запросов к глобальной памяти.

Реализация метода Гаусса с выбором главного элемента по столбцу. Ознакомление с библиотекой алгоритмов для параллельных расчетов Thrust. **Вариант 3:** Решение квадратной СЛАУ.

Программное и аппаратное обеспечение

Характеристики GPU "NVIDIA GeForce GTX 950"

CUDA Driver Version / Runtime Version 11.4 / 11.4

CUDA Capability Major/Minor version number: 5.2

Total amount of global memory: 1997 MBytes (2094137344 bytes)

(006) Multiprocessors, (128) CUDA Cores/MP: 768 CUDA Cores GPU Max Clock rate: 1278 MHz (1.28 GHz)

Memory Clock rate: 3305 Mhz

Memory Bus Width: 128-bit

L2 Cache Size: 1048576 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),

3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total shared memory per multiprocessor: 98304 bytes Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Характеристики CPU Intel i5-4460

of Cores 4

of Threads 4

Processor Base Frequency 3.20 GHz

Max Turbo Frequency 3.40 GHz

Cache 6 MB Intel® Smart Cache

Bus Speed 5 GT/s

Intel® Turbo Boost Technology 2.0 Frequency 3.40 GHz

TDP 84 W

Характеристики RAM

Total 15 Gi

Swap 2 Gi

Операционная система: Ubuntu 20.04 LTE

IDE Sublime Text 3

Compiler nvcc for cuda 11.4

Метод решения

Классический метод Гаусса с выбором ведущего элемента. Основное отличие в реализации лишь в том, что мы не пытаемся "занулить" элементы под ведущим элементом, т.к. никак их не используем после.

Описание программы

Всё писалось одним файлом main.cu, в котором функция main, read_slau - функция для считывания из входного потока данных СЛАУ, kernel_gauss_step - совершение i-го шага метода гаусса, kernel_swap - функция обмен двух строк местами и структура comparator с перегруженным оператором () для сравнения двух элементов, при использовании Thrust.

Результаты

Конфигурация	Тест СЛАУ	Тест СЛАУ	Тест СЛАУ	Тест СЛАУ
	10x10	100x100	500x500	1000x1000
Ha CPU	15 mcs	2.12 ms	225.79 ms	1851.13 ms
1,1 1,32	98.56 +	19.83 + 0.21	1875.90 +	13705.1 +
	13.92 mcs	ms	3.10 ms	11.81 ms
1,1 32, 32	39.26 + 13.7	2.26 + 0.16	191.44 +	1222.73 +
	mcs	ms	1.47 ms	4.67 ms
1,32 32,32	74.18 + 22.4	1.31 + 0.22	43.83 + 1.56	246.19 + 4.59
	mcs	ms	ms	ms
32,32 1,32	63.91 +	1.17 + 0.34	40.33 + 1.72	221.86 + 2.88
	33.79 mcs	ms	ms	ms
32,32 32,32	1490.4 +	17.12 + 3.87	128.04 +	403.49 +
	387.38 mcs	ms	19.27 ms	32.22 ms
64,32 32,32	2.967.1 +	33.26 + 7.64	192.15 +	525.09 +
	763.78 mcs	ms	34.723 ms	62.33 ms

Выводы

Как видно, параллелизация решения весьма сильно улучшает время работы до 9 раз, что достаточно неплохо, но большое число блоков и тредов не всегда нужно. Как видно, минимальное время достигается на конфигурации (32, 32), (1, 32), и на

больших конфигурациях и/или малых данных работает только хуже. Скорее всего, это из-за того, что достаточно мало работы приходится на каждый тред, поэтому прирост эффективности не происходит, а наоборот, падает.