Raport

May 27, 2022

1 Przewidywanie zwycięzcy rundy w grze Counter Strike: Global Offensive

1.1 Zmiany 26.05

- dodano rozdział "Optymalizacja hiperparametrów"
- dodano dodatkowe wykresy przedstawiające uzyskane wyniki w zależności od liczby epok

1.2 Dane

Zbiór danych składa się ze snapshotów rund z około 700 meczów z profesjonalnych turniejów rozgrywanych w 2019 i 2020 roku.

Snapshoty - czyli zestawienie pewnych stanów kluczowych elementów rozgrywki - były rejestrowane podczas gry co 20 sekund aż do rozstrzygnięcia danej rundy. Łączna liczba zapisanych snapshotów wynosi 122411. Część tych rekordów będzie traktowana jako zbiór danych uczących, a pozostała część jako część danych testów. Każdy rekord traktowany jest jako pojedynczy, niezależny element do analizy danych.

1.3 Czym jest klasyfikator MLP?

Perceptron wielowarstwowy (MLP) to model sztucznej sieci neuronowej ze sprzężeniem do przodu, który odwzorowuje zestawy danych wejściowych na zestaw odpowiednich danych wyjściowych.

MLP składa się z wielu warstw, a każda warstwa jest w pełni połączona z następną. Węzły warstw to neurony z nieliniowymi funkcjami aktywacji, z wyjątkiem węzłów warstwy wejściowej. Pomiędzy warstwą wejściową a wyjściową może znajdować się jedna lub więcej nieliniowych warstw ukrytych.

1.4 Import bibliotek i danych

```
[1]: import numpy as np
     import pandas as pd
     from sklearn.preprocessing import LabelEncoder
     from sklearn.preprocessing import RobustScaler
     from sklearn.model_selection import train_test_split
     from sklearn.ensemble import RandomForestRegressor
     from sklearn.neural network import MLPClassifier
     from sklearn.linear_model import LogisticRegression
     from matplotlib import pyplot as plt
     import seaborn as sns
[2]: df = pd.read_csv('Data/csgo_round_snapshots.csv')
[3]: pd.set_option('display.max_columns', None)
     pd.set option('display.max rows', None)
[4]: df.head()
[4]:
        time_left
                   ct_score t_score
                                                   bomb_planted
                                                                 \mathtt{ct}\_\mathtt{health}
                                                                             t_health \
                                             map
     0
           175.00
                         0.0
                                   0.0
                                        de_dust2
                                                          False
                                                                      500.0
                                                                                 500.0
           156.03
                         0.0
                                                          False
                                                                      500.0
                                                                                 500.0
     1
                                   0.0
                                        de_dust2
     2
                                                                                 400.0
            96.03
                         0.0
                                   0.0
                                        de_dust2
                                                          False
                                                                      391.0
     3
            76.03
                         0.0
                                   0.0
                                        de_dust2
                                                          False
                                                                      391.0
                                                                                 400.0
           174.97
                         1.0
                                        de_dust2
                                                                      500.0
                                                                                 500.0
                                   0.0
                                                          False
        ct armor
                  t armor
                           ct money
                                       t money
                                                ct helmets
                                                            t helmets \
     0
             0.0
                       0.0
                              4000.0
                                        4000.0
                                                        0.0
     1
           400.0
                     300.0
                               600.0
                                         650.0
                                                        0.0
                                                                    0.0
     2
           294.0
                     200.0
                               750.0
                                         500.0
                                                        0.0
                                                                    0.0
     3
           294.0
                     200.0
                               750.0
                                         500.0
                                                        0.0
                                                                    0.0
     4
           192.0
                       0.0
                             18350.0 10750.0
                                                        0.0
                                                                    0.0
                                                              ct_weapon_ak47
        ct_defuse_kits
                        ct_players_alive t_players_alive
     0
                    0.0
                                       5.0
                                                         5.0
                                                                          0.0
                    1.0
                                       5.0
                                                         5.0
                                                                          0.0
     1
     2
                    1.0
                                       4.0
                                                         4.0
                                                                          0.0
     3
                    1.0
                                       4.0
                                                         4.0
                                                                          0.0
                    1.0
                                       5.0
                                                         5.0
                                                                          0.0
        t_weapon_ak47
                        ct_weapon_aug t_weapon_aug
                                                       ct_weapon_awp
                                                                       t_weapon_awp
     0
                   0.0
                                   0.0
                                                  0.0
                                                                  0.0
                                                                                 0.0
                   0.0
                                   0.0
                                                  0.0
                                                                  0.0
                                                                                 0.0
     1
     2
                   0.0
                                   0.0
                                                  0.0
                                                                  0.0
                                                                                 0.0
     3
                   0.0
                                   0.0
                                                  0.0
                                                                  0.0
                                                                                 0.0
                   0.0
                                                  0.0
                                   0.0
                                                                  0.0
                                                                                 0.0
```

ct_weapon_bizon t_weapon_bizon ct_weapon_cz75auto t_weapon_cz75auto \

```
0.0
0
                0.0
                                  0.0
                                                        0.0
1
                0.0
                                  0.0
                                                        0.0
                                                                             0.0
2
                0.0
                                  0.0
                                                        0.0
                                                                             0.0
3
                0.0
                                  0.0
                                                        0.0
                                                                             0.0
4
                0.0
                                  0.0
                                                        0.0
                                                                             0.0
                     t_weapon_elite
                                      ct_weapon_famas t_weapon_famas
   ct_weapon_elite
0
                0.0
                                  0.0
                                                    0.0
                                                                      0.0
1
                0.0
                                  0.0
                                                    0.0
                                                                      0.0
2
                0.0
                                  0.0
                                                    0.0
                                                                      0.0
3
                0.0
                                  0.0
                                                    0.0
                                                                      0.0
                0.0
                                  0.0
                                                    0.0
                                                                      0.0
4
   ct_weapon_g3sg1
                      t_weapon_g3sg1
                                      ct_weapon_galilar t_weapon_galilar
0
                0.0
                                  0.0
                                                       0.0
                                                                          0.0
                0.0
                                  0.0
                                                       0.0
                                                                          0.0
1
2
                0.0
                                  0.0
                                                       0.0
                                                                          0.0
                                  0.0
3
                0.0
                                                       0.0
                                                                          0.0
4
                0.0
                                  0.0
                                                                          0.0
                                                       0.0
                     t_weapon_glock ct_weapon_m249 t_weapon_m249
   ct_weapon_glock
0
                0.0
                                  5.0
                                                   0.0
                                                                    0.0
1
                0.0
                                  5.0
                                                   0.0
                                                                    0.0
2
                0.0
                                  4.0
                                                   0.0
                                                                    0.0
                                  3.0
                                                                    0.0
3
                0.0
                                                   0.0
4
                0.0
                                  5.0
                                                   0.0
                                                                    0.0
   ct_weapon_m4a1s
                     t_weapon_m4a1s ct_weapon_m4a4 t_weapon_m4a4
0
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
1
2
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
3
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
4
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
   ct_weapon_mac10
                      t_weapon_mac10
                                       ct_weapon_mag7
                                                        t_weapon_mag7
                                                   0.0
0
                0.0
                                  0.0
                                                                    0.0
1
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
                                  0.0
                                                   0.0
2
                0.0
                                                                    0.0
3
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
4
                0.0
                                  0.0
                                                   0.0
                                                                    0.0
   ct_weapon_mp5sd
                     t_weapon_mp5sd
                                      ct_weapon_mp7 t_weapon_mp7 \
0
                0.0
                                  0.0
                                                  0.0
                                                                  0.0
                0.0
                                  0.0
                                                  0.0
                                                                  0.0
1
2
                0.0
                                  0.0
                                                  0.0
                                                                  0.0
3
                0.0
                                  0.0
                                                  0.0
                                                                  0.0
4
                0.0
                                  0.0
                                                  0.0
                                                                  0.0
```

```
ct_weapon_mp9
                  t_weapon_mp9
                                  ct_weapon_negev t_weapon_negev
                                               0.0
0
              0.0
                             0.0
                                                                 0.0
              0.0
                             0.0
                                               0.0
                                                                 0.0
1
              0.0
                             0.0
                                               0.0
                                                                 0.0
2
              0.0
3
                             0.0
                                               0.0
                                                                 0.0
4
              0.0
                             0.0
                                                                 0.0
                                               0.0
                   t_weapon_nova ct_weapon_p90
                                                    t weapon p90
   ct weapon nova
0
               0.0
                               0.0
                                               0.0
                                                              0.0
               0.0
                               0.0
                                               0.0
                                                              0.0
1
2
               0.0
                               0.0
                                               0.0
                                                              0.0
3
               0.0
                               0.0
                                               0.0
                                                              0.0
4
               0.0
                               0.0
                                               0.0
                                                              0.0
   ct_weapon_r8revolver t_weapon_r8revolver ct_weapon_sawedoff
0
                     0.0
                                                                  0.0
                                            0.0
                     0.0
                                            0.0
                                                                  0.0
1
2
                     0.0
                                            0.0
                                                                  0.0
3
                     0.0
                                            0.0
                                                                  0.0
4
                     0.0
                                            0.0
                                                                  0.0
   t_weapon_sawedoff ct_weapon_scar20
                                          t_weapon_scar20
                                                             ct_weapon_sg553
                  0.0
                                     0.0
                                                        0.0
                                                                          0.0
0
1
                  0.0
                                     0.0
                                                        0.0
                                                                          0.0
2
                  0.0
                                     0.0
                                                        0.0
                                                                          0.0
                                                        0.0
                                                                          0.0
3
                  0.0
                                     0.0
                  0.0
4
                                     0.0
                                                        0.0
                                                                          0.0
   t_weapon_sg553 ct_weapon_ssg08 t_weapon_ssg08
                                                       ct_weapon_ump45
               0.0
                                 0.0
                                                                     0.0
0
                                                  0.0
               0.0
                                 0.0
                                                  0.0
                                                                     0.0
1
2
               0.0
                                 0.0
                                                  0.0
                                                                     0.0
3
               0.0
                                 0.0
                                                   0.0
                                                                     0.0
               0.0
4
                                 0.0
                                                   0.0
                                                                     0.0
   t_weapon_ump45
                    ct_weapon_xm1014
                                       t_weapon_xm1014
                                                         ct_weapon_deagle
0
               0.0
                                  0.0
                                                     0.0
                                                                        0.0
               0.0
1
                                  0.0
                                                     0.0
                                                                        0.0
2
               0.0
                                  0.0
                                                     0.0
                                                                        0.0
3
               0.0
                                  0.0
                                                     0.0
                                                                        0.0
4
               0.0
                                  0.0
                                                     0.0
                                                                        0.0
   t_weapon_deagle ct_weapon_fiveseven t_weapon_fiveseven ct_weapon_usps
                0.0
                                       0.0
                                                            0.0
                                                                              4.0
0
                0.0
                                       0.0
                                                            0.0
                                                                              4.0
1
2
                0.0
                                       0.0
                                                            0.0
                                                                              4.0
```

```
3
                0.0
                                      0.0
                                                           0.0
                                                                             4.0
4
                0.0
                                      0.0
                                                            0.0
                                                                             4.0
                  ct_weapon_p250 t_weapon_p250 ct_weapon_p2000 \
   t_weapon_usps
0
              0.0
                               0.0
                                               0.0
              0.0
                               0.0
                                               0.0
                                                                 1.0
1
2
              0.0
                               0.0
                                               0.0
                                                                 0.0
3
              0.0
                               0.0
                                               0.0
                                                                 0.0
4
              0.0
                               0.0
                                               0.0
                                                                 1.0
                   ct_weapon_tec9 t_weapon_tec9
                                                    ct_grenade_hegrenade
   t_weapon_p2000
0
               0.0
                                0.0
                                                0.0
                                                                       0.0
                                                                       0.0
               0.0
                                0.0
                                                0.0
1
2
              0.0
                                0.0
                                                0.0
                                                                       0.0
3
               1.0
                                0.0
                                                0.0
                                                                       0.0
4
               0.0
                                0.0
                                                0.0
                                                                       0.0
   t_grenade_hegrenade
                         ct_grenade_flashbang t_grenade_flashbang
                                                                  0.0
0
                    0.0
                                           0.0
                    0.0
                                           0.0
                                                                  0.0
1
2
                    0.0
                                           0.0
                                                                  0.0
3
                    0.0
                                           0.0
                                                                  0.0
4
                    0.0
                                           0.0
                                                                  0.0
   ct_grenade_smokegrenade t_grenade_smokegrenade
0
                        0.0
                                                  0.0
                        0.0
                                                  2.0
1
2
                        0.0
                                                  2.0
3
                        0.0
                                                  0.0
4
                        0.0
                                                  0.0
   ct_grenade_incendiarygrenade t_grenade_incendiarygrenade
0
                              0.0
                                                             0.0
                              0.0
                                                             0.0
1
2
                             0.0
                                                             0.0
3
                             0.0
                                                             0.0
4
                              0.0
                                                             0.0
   ct_grenade_molotovgrenade t_grenade_molotovgrenade
0
                          0.0
                                                      0.0
                                                      0.0
1
                          0.0
2
                          0.0
                                                      0.0
3
                          0.0
                                                      0.0
4
                          0.0
                                                      0.0
   ct_grenade_decoygrenade t_grenade_decoygrenade round_winner
0
                                                  0.0
                                                                 CT
                        0.0
```

1	0.0	0.0	CT
2	0.0	0.0	CT
3	0.0	0.0	CT
4	0.0	0.0	CT

[5]: df.isnull().sum().sum()

[5]: 0

[6]: df.shape

[6]: (122410, 97)

1.5 Przeprocesowanie danych

W pierwszej koleności sprawdźmy liczność klas.

```
[7]: df['round_winner'].value_counts()
```

[7]: T 62406 CT 60004

Name: round_winner, dtype: int64

```
[8]: sns.set_theme(style="darkgrid") sns.countplot(x='round_winner', data=df)
```

[8]: <AxesSubplot:xlabel='round_winner', ylabel='count'>

Następnie przekonwertujemy wszystkie kolumny na wartości liczbowe.

```
[9]: col = df.drop(df.select_dtypes(np.number), axis = 1).columns
      col
 [9]: Index(['map', 'bomb_planted', 'round_winner'], dtype='object')
[10]: lbl = LabelEncoder()
      for value in col:
          df[value] = lbl.fit_transform(df[value])
[11]: | df['bomb_planted'] = df['bomb_planted'].astype(np.int16)
[12]: cols = [f for f in df.columns if f not in ['round winner']]
     Dodatkowo każda wartość zostanie znormalizowana.
[13]: scaler = RobustScaler()
      for value in cols:
          scaler = RobustScaler()
          df[value] = scaler.fit_transform(df[[value]])
     Na koniec podzielimy dane na wektor danych oraz wektor wyników.
[14]: x = df.drop(['round_winner'], axis = 1)
      y = df['round_winner']
[15]: len(cols)
[15]: 96
     Finalnie każdy rekord zawiera 96 atrybutów, które prezentują się w sposób przedstawiony poniżej.
[16]: x.head()
[16]:
         time_left ct_score
                               t_score
                                                   bomb_planted ct_health t_health
                                              map
                                                                   0.000000 0.000000
          0.715105 -0.857143 -0.857143 -0.666667
                                                             0.0
          0.545726 -0.857143 -0.857143 -0.666667
                                                             0.0
                                                                   0.000000 0.000000
      1
```

0.0

0.0

0.0

t_money ct_helmets t_helmets \

-0.5

-0.5

-0.726667 -0.561798

-0.726667 -0.561798

-0.6

-0.6

0.000000 0.000000

0.010000 -0.857143 -0.857143 -0.666667

0.714837 -0.714286 -0.857143 -0.666667

t_armor ct_money

3 -0.168575 -0.857143 -0.857143 -0.666667

0 -1.291096 -1.136054 -0.112782 -0.191489

1 0.078767 -0.115646 -0.368421 -0.395137

2

ct_armor

```
2 -0.284247 -0.455782 -0.357143 -0.404255
                                                    -0.5
                                                                -0.6
3 -0.284247 -0.455782 -0.357143 -0.404255
                                                    -0.5
                                                                -0.6
4 -0.633562 -1.136054 0.966165 0.218845
                                                    -0.5
                                                                -0.6
   ct_defuse_kits ct_players_alive t_players_alive ct_weapon_ak47
0
        -0.333333
                                  0.0
                                                    0.0
                                                                     0.0
         0.000000
                                  0.0
                                                    0.0
                                                                     0.0
1
2
         0.000000
                                 -1.0
                                                   -1.0
                                                                     0.0
3
                                 -1.0
                                                   -1.0
         0.000000
                                                                     0.0
4
         0.00000
                                  0.0
                                                    0.0
                                                                     0.0
   t_weapon_ak47
                   ct_weapon_aug t_weapon_aug
                                                 ct_weapon_awp
                                                                  t_weapon_awp
                             0.0
                                             0.0
                                                             0.0
0
             -0.5
            -0.5
                              0.0
                                             0.0
                                                             0.0
                                                                           0.0
1
2
            -0.5
                              0.0
                                             0.0
                                                             0.0
                                                                           0.0
3
             -0.5
                                             0.0
                              0.0
                                                             0.0
                                                                           0.0
4
                                             0.0
             -0.5
                              0.0
                                                             0.0
                                                                           0.0
   ct_weapon_bizon t_weapon_bizon ct_weapon_cz75auto t_weapon_cz75auto
0
                0.0
                                 0.0
                                                      0.0
                                                                           0.0
                0.0
                                 0.0
                                                      0.0
                                                                           0.0
1
2
                0.0
                                 0.0
                                                      0.0
                                                                          0.0
3
                0.0
                                 0.0
                                                      0.0
                                                                          0.0
4
                0.0
                                 0.0
                                                      0.0
                                                                           0.0
   ct_weapon_elite
                     t weapon elite
                                      ct weapon famas t weapon famas
                0.0
0
                                                   0.0
1
                0.0
                                 0.0
                                                                    0.0
                0.0
                                 0.0
                                                   0.0
                                                                    0.0
2
3
                0.0
                                 0.0
                                                   0.0
                                                                    0.0
4
                0.0
                                 0.0
                                                   0.0
                                                                    0.0
                                      ct_weapon_galilar
                                                         t_weapon_galilar
   ct_weapon_g3sg1
                     t_weapon_g3sg1
0
                0.0
                                 0.0
                                                     0.0
                                                                        0.0
                0.0
                                                                        0.0
                                 0.0
                                                     0.0
1
2
                0.0
                                 0.0
                                                     0.0
                                                                        0.0
3
                0.0
                                 0.0
                                                     0.0
                                                                        0.0
4
                0.0
                                 0.0
                                                     0.0
                                                                        0.0
   ct_weapon_glock
                     t_weapon_glock
                                      ct_weapon_m249
                                                      t weapon m249
0
                0.0
                           0.333333
                                                  0.0
                                                                  0.0
                0.0
                                                                  0.0
                                                  0.0
1
                           0.333333
2
                0.0
                           0.000000
                                                  0.0
                                                                  0.0
3
                0.0
                          -0.333333
                                                  0.0
                                                                  0.0
4
                0.0
                           0.333333
                                                  0.0
                                                                  0.0
   ct_weapon_m4a1s t_weapon_m4a1s ct_weapon_m4a4 t_weapon_m4a4 \
```

```
0
                0.0
                                 0.0
                                                  -0.5
                                                                   0.0
1
                0.0
                                 0.0
                                                  -0.5
                                                                   0.0
2
                0.0
                                 0.0
                                                  -0.5
                                                                   0.0
3
                0.0
                                 0.0
                                                  -0.5
                                                                   0.0
4
                0.0
                                 0.0
                                                  -0.5
                                                                   0.0
   ct_weapon_mac10
                     t_weapon_mac10
                                      ct_weapon_mag7
                                                       t_weapon_mag7
0
                0.0
                                 0.0
                                                   0.0
                                                                   0.0
1
                0.0
                                 0.0
                                                   0.0
                                                                   0.0
2
                0.0
                                 0.0
                                                   0.0
                                                                   0.0
3
                0.0
                                 0.0
                                                   0.0
                                                                   0.0
4
                0.0
                                 0.0
                                                   0.0
                                                                   0.0
                     t_weapon_mp5sd
                                     ct_weapon_mp7 t_weapon_mp7 \
   ct_weapon_mp5sd
0
                0.0
                                 0.0
                                                  0.0
                                                                 0.0
                0.0
                                 0.0
                                                  0.0
                                                                 0.0
1
2
                0.0
                                 0.0
                                                  0.0
                                                                 0.0
                                 0.0
                                                                 0.0
3
                0.0
                                                  0.0
4
                0.0
                                 0.0
                                                  0.0
                                                                 0.0
   ct_weapon_mp9 t_weapon_mp9
                                 ct_weapon_negev t_weapon_negev
0
              0.0
                                                                 0.0
                             0.0
                                               0.0
1
              0.0
                             0.0
                                               0.0
                                                                 0.0
2
              0.0
                             0.0
                                               0.0
                                                                 0.0
              0.0
                                                                 0.0
3
                             0.0
                                               0.0
4
              0.0
                             0.0
                                               0.0
                                                                 0.0
   ct_weapon_nova t_weapon_nova ct_weapon_p90 t_weapon_p90 \
0
               0.0
                               0.0
                                               0.0
                                                               0.0
               0.0
                               0.0
                                               0.0
                                                               0.0
1
                               0.0
2
               0.0
                                               0.0
                                                               0.0
3
               0.0
                               0.0
                                               0.0
                                                               0.0
4
               0.0
                               0.0
                                               0.0
                                                               0.0
                          t_weapon_r8revolver ct_weapon_sawedoff
   ct_weapon_r8revolver
0
                     0.0
                                            0.0
                                                                  0.0
                     0.0
1
                                            0.0
                                                                  0.0
                     0.0
2
                                            0.0
                                                                  0.0
3
                     0.0
                                            0.0
                                                                  0.0
4
                     0.0
                                            0.0
                                                                  0.0
   t_weapon_sawedoff ct_weapon_scar20
                                          t_weapon_scar20
                                                             ct_weapon_sg553
0
                  0.0
                                      0.0
                                                        0.0
                                                                          0.0
                  0.0
                                      0.0
                                                        0.0
                                                                          0.0
1
2
                  0.0
                                      0.0
                                                        0.0
                                                                          0.0
3
                  0.0
                                      0.0
                                                        0.0
                                                                          0.0
4
                  0.0
                                      0.0
                                                                           0.0
                                                        0.0
```

```
t_weapon_sg553
                   ct_weapon_ssg08
                                     t_weapon_ssg08
                                                       ct_weapon_ump45
                                 0.0
                                                   0.0
                                                                     0.0
0
               0.0
               0.0
                                 0.0
                                                   0.0
                                                                     0.0
1
               0.0
                                 0.0
2
                                                   0.0
                                                                     0.0
3
               0.0
                                 0.0
                                                   0.0
                                                                     0.0
4
               0.0
                                 0.0
                                                   0.0
                                                                     0.0
   t_weapon_ump45
                    ct_weapon_xm1014
                                       t weapon xm1014
                                                          ct weapon deagle
0
               0.0
                                  0.0
                                                     0.0
                                                                         0.0
               0.0
                                  0.0
                                                     0.0
                                                                         0.0
1
               0.0
                                                     0.0
                                                                         0.0
2
                                  0.0
3
               0.0
                                  0.0
                                                     0.0
                                                                         0.0
4
               0.0
                                  0.0
                                                     0.0
                                                                         0.0
   t_weapon_deagle
                     ct_weapon_fiveseven t_weapon_fiveseven ct_weapon_usps
                0.0
0
                                       0.0
                                                             0.0
                                                                         0.333333
                0.0
                                                            0.0
1
                                       0.0
                                                                         0.333333
2
                0.0
                                                             0.0
                                       0.0
                                                                         0.333333
3
                                                                         0.333333
                0.0
                                       0.0
                                                             0.0
4
                0.0
                                       0.0
                                                             0.0
                                                                         0.333333
                   ct_weapon_p250
                                    t_weapon_p250
                                                     ct_weapon_p2000
   t_weapon_usps
              0.0
                               0.0
                                               0.0
0
                                                                  1.0
              0.0
                               0.0
                                               0.0
                                                                  1.0
1
2
              0.0
                               0.0
                                               0.0
                                                                  0.0
3
              0.0
                               0.0
                                               0.0
                                                                  0.0
4
              0.0
                               0.0
                                               0.0
                                                                  1.0
                                     t_weapon_tec9
   t_weapon_p2000
                    ct_weapon_tec9
                                                      ct_grenade_hegrenade
0
               0.0
                                0.0
                                                 0.0
                                                                         0.0
               0.0
                                0.0
                                                 0.0
                                                                         0.0
1
2
               0.0
                                0.0
                                                 0.0
                                                                         0.0
3
               1.0
                                0.0
                                                 0.0
                                                                         0.0
               0.0
                                0.0
                                                 0.0
                                                                         0.0
4
   t_grenade_hegrenade
                         ct_grenade_flashbang t_grenade_flashbang
0
                    0.0
                                      -0.333333
                                                            -0.333333
1
                    0.0
                                      -0.333333
                                                            -0.333333
2
                    0.0
                                      -0.333333
                                                            -0.333333
3
                    0.0
                                      -0.333333
                                                            -0.333333
4
                    0.0
                                      -0.333333
                                                            -0.333333
   ct_grenade_smokegrenade t_grenade_smokegrenade
0
                  -0.333333
                                            -0.333333
                  -0.333333
                                             0.333333
1
2
                  -0.333333
                                             0.333333
```

```
3
                  -0.333333
                                            -0.333333
4
                  -0.333333
                                            -0.333333
   ct_grenade_incendiarygrenade
                                  t_grenade_incendiarygrenade
0
                                                             0.0
                              0.0
                                                             0.0
1
2
                              0.0
                                                             0.0
                                                             0.0
3
                              0.0
4
                              0.0
                                                             0.0
   ct_grenade_molotovgrenade t_grenade_molotovgrenade
0
                          0.0
                                                     -0.5
1
                          0.0
                                                     -0.5
2
                          0.0
3
                                                     -0.5
                          0.0
4
                          0.0
                                                     -0.5
   ct_grenade_decoygrenade t_grenade_decoygrenade
0
                        0.0
                                                  0.0
1
2
                        0.0
                                                  0.0
3
                        0.0
                                                  0.0
4
                        0.0
                                                  0.0
```

1.5.1 Wybór atrybutów

W pierwszej kolejności sprawdzimy, które atrybuty mają największy wpływ na klasy.

W tym celu wykorzystamy model Random Forest Regressor, który dopasowuje szereg klasyfikujących drzew decyzyjnych do różnych podpróbek zbioru danych i wykorzystuje uśrednianie w celu poprawy dokładności predykcyjnej i kontroli nadmiernego dopasowania.

```
[17]: rf = RandomForestRegressor(n_estimators=150, n_jobs=-1)
rf.fit(x, y)
```

```
[17]: RandomForestRegressor(n_estimators=150, n_jobs=-1)
```

Po stworzeniu i wyuczeniu modelu sortujemy tablice zawierającą informacje o tym, jak duży wpływ mają konkretne atrybuty w podejmowaniu decyzji.

```
[18]: indexes = rf.feature_importances_.argsort()
```

Wpływ poszczególnych atrybutów został przedstawiony na poniższym wykresie.

```
[19]: plt.figure(figsize=(6,20))
    plt.barh(x.columns[indexes], rf.feature_importances_[indexes])
    plt.xlabel("Feature Importance")
```

[19]: Text(0.5, 0, 'Feature Importance')

Następnie możemy odrzucić te atrybuty, które mają niski wpływ na podejmowanie decyzji lub nie mają żadnego. W tym celu wybraliśmy te atrybuty, dla których wartość parametru feature_importance jest większa od wartości 0,005.

```
[20]: importances = rf.feature_importances_[indexes]
indexes = indexes[np.argwhere(importances > 0.005)]
indexes = np.concatenate(indexes).ravel().tolist()
columns = x.columns[indexes]
x = x[columns]
```

W tym momencie możemy sprawdzić liczbę atrybutów pozostałych po selekcji.

```
[21]: x.shape
```

[21]: (122410, 38)

3

0.0

Mamy 38 atrybutów, które prezentują się jak w poniższej tabeli.

```
[22]: x.head()
[22]:
         ct_weapon_cz75auto
                               ct_weapon_p250
                                                 ct_weapon_aug
                                                                  ct_weapon_sg553
      0
                          0.0
                                            0.0
                                                            0.0
                                                                               0.0
                          0.0
                                            0.0
                                                            0.0
                                                                               0.0
      1
      2
                          0.0
                                            0.0
                                                            0.0
                                                                               0.0
      3
                          0.0
                                            0.0
                                                            0.0
                                                                               0.0
      4
                          0.0
                                            0.0
                                                            0.0
                                                                               0.0
         ct_weapon_ak47
                           t_weapon_deagle
                                             ct_weapon_awp
      0
                      0.0
                                        0.0
                                                         0.0
      1
                      0.0
                                        0.0
                                                         0.0
      2
                      0.0
                                        0.0
                                                         0.0
      3
                      0.0
                                        0.0
                                                         0.0
      4
                      0.0
                                        0.0
                                                         0.0
         ct_grenade_incendiarygrenade
                                           ct_weapon_deagle
                                                               bomb_planted
                                                         0.0
                                                                        0.0
      0
                                     0.0
                                     0.0
                                                         0.0
                                                                        0.0
      1
      2
                                     0.0
                                                         0.0
                                                                        0.0
      3
                                                                        0.0
                                     0.0
                                                         0.0
      4
                                     0.0
                                                         0.0
                                                                        0.0
         t_{weapon_p250}
                          ct_grenade_smokegrenade
                                                      ct_weapon_p2000
                                          -0.333333
      0
                    0.0
                                                                   1.0
      1
                    0.0
                                          -0.333333
                                                                   1.0
      2
                    0.0
                                          -0.333333
                                                                   0.0
```

0.0

-0.333333

```
0.0
4
                                 -0.333333
                                                        1.0
   t_grenade_hegrenade t_grenade_smokegrenade t_grenade_molotovgrenade
0
                   0.0
                                      -0.333333
                                                                      -0.5
1
                   0.0
                                       0.333333
                                                                      -0.5
                                                                      -0.5
2
                   0.0
                                       0.333333
                   0.0
                                                                      -0.5
3
                                      -0.333333
4
                   0.0
                                      -0.333333
                                                                      -0.5
                                                t_weapon_sg553
   ct_grenade_flashbang ct_grenade_hegrenade
                                                                t_weapon_ak47
0
              -0.333333
                                           0.0
                                                            0.0
                                                                          -0.5
1
              -0.333333
                                           0.0
                                                            0.0
                                                                          -0.5
2
              -0.333333
                                           0.0
                                                            0.0
                                                                          -0.5
3
              -0.333333
                                           0.0
                                                            0.0
                                                                          -0.5
4
              -0.333333
                                           0.0
                                                            0.0
                                                                          -0.5
                        ct_weapon_m4a4
                                        ct_helmets t_players_alive
   t_grenade_flashbang
0
             -0.333333
                                   -0.5
                                               -0.5
                                                                  0.0
                                   -0.5
                                               -0.5
                                                                  0.0
1
             -0.333333
2
             -0.333333
                                   -0.5
                                               -0.5
                                                                 -1.0
3
                                   -0.5
                                               -0.5
             -0.333333
                                                                 -1.0
4
             -0.333333
                                   -0.5
                                               -0.5
                                                                  0.0
   ct_defuse_kits ct_weapon_usps t_weapon_glock ct_health t_helmets
0
        -0.333333
                                          0.333333
                                                     0.00000
                                                                     -0.6
                         0.333333
1
         0.000000
                         0.333333
                                          0.333333
                                                     0.000000
                                                                     -0.6
         0.000000
                         0.333333
                                          0.000000
                                                    -0.726667
                                                                     -0.6
3
         0.000000
                                                    -0.726667
                                                                     -0.6
                         0.333333
                                         -0.333333
4
         0.000000
                         0.333333
                                          0.333333
                                                      0.000000
                                                                     -0.6
   t_health
                  map ct_score
                                   t_score time_left ct_money
                                                                   t_money
0 0.000000 -0.666667 -0.857143 -0.857143
                                             0.715105 -0.112782 -0.191489
1 0.000000 -0.666667 -0.857143 -0.857143
                                             0.545726 -0.368421 -0.395137
2 -0.561798 -0.666667 -0.857143 -0.857143
                                             0.010000 -0.357143 -0.404255
3 -0.561798 -0.666667 -0.857143 -0.857143 -0.168575 -0.357143 -0.404255
4 0.000000 -0.666667 -0.714286 -0.857143
                                             0.714837 0.966165 0.218845
    t_armor ct_armor
0 -1.136054 -1.291096
1 -0.115646 0.078767
2 -0.455782 -0.284247
3 -0.455782 -0.284247
4 -1.136054 -0.633562
```

Majac już przetworzone dane, możemy wydzielić z nich zbiór treningowy oraz testowy.

Jak widać na podstawie powyższych wywołań, mamy 110169 rekordów w zbiorze testowym oraz 12241 w zbiorze treningowym. W tym momencie możemy rozpocząć inicjalizacje modelu.

1.5.2 Model MLP

W celu inicjalizacji modelu zostanie wykorzystany klasyfikator MLP, zaimplementowany w bibliotece scikit-learn jako MLPClassifier.

MLPClassifier określa wielowarstwowy perceptron. W przeciwieństwie do innych algorytmów klasyfikacji, takich jak klasyfikator wektorów wspierających lub naiwny klasyfikator Bayesa, MLP-Classifier przy wykonaniu zadania klasyfikacji opiera się na podstawowej sieci neuronowej.

Istotne cechy wielowarstwowego perceptronu MLP w bibliotece scikit-learn: - w warstwie wyjściowej nie ma funkcji aktywacji, - w przypadku scenariuszy regresji błąd kwadratowy jest funkcją straty, a entropia krzyżowa jest funkcją straty klasyfikacji, - może pracować z regresją pojedynczych, jak i wielu wartości docelowych, - w przeciwieństwie do innych popularnych pakietów, implementacja MLP w scikit nie obsługuje GPU, - nie jest możliwe dostrojenie parametrów, takich jak różne funkcje aktywacji, inicjatory wagi itp. dla każdej warstwy.

```
[26]: nn_clf = MLPClassifier(verbose = True, warm_start=True, max_iter=1)
```

Opcja verbose=True powoduje, że na standardowe wyjście będą drukowane wiadomości o postępach w kolejnych iteracjach.

Ustawienie opcji warm_start na True oraz max_iter na 1 umożliwia zatrzymanie procesu uczenia na jednej epoce, dzięki czemu można będzie zobaczyć jak szybko uczy się model.

Następnie przechodzimy do dopasowania modelu do macierzy danych x_train i wyniku y_train dla dwustu epok, obliczając i zapamiętując wyniki dla zbioru treningowego i testowego.

```
[27]: scores_mlp_train = []
scores_mlp_test = []
for i in range(200):
    nn_clf.fit(x_train, y_train)
    scores_mlp_train.append(nn_clf.score(x_train, y_train))
    scores_mlp_test.append(nn_clf.score(x_test, y_test))
    print(f'Iteration {i + 1}, score = {nn_clf.score(x_test, y_test)}')
```

```
Iteration 1, loss = 0.48304638
Iteration 1, score = 0.7519810473000572
C:\Users\adasi\AppData\Local\pypoetry\Cache\virtualenvs\csgo-round-prediction-
GhoYBn2B-py3.10\lib\site-
packages\sklearn\neural_network\_multilayer_perceptron.py:692:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (1) reached and the
optimization hasn't converged yet.
  warnings.warn(
Iteration 2, loss = 0.45531088
Iteration 2, score = 0.7563924515970918
Iteration 3, loss = 0.44944033
Iteration 3, score = 0.759905236500286
Iteration 4, loss = 0.44529239
Iteration 4, score = 0.7610489339106282
Iteration 5, loss = 0.44248140
Iteration 5, score = 0.762601094681807
Iteration 6, loss = 0.44032367
Iteration 6, score = 0.7641532554529858
Iteration 7, loss = 0.43814777
Iteration 7, score = 0.7642349481251531
Iteration 8, loss = 0.43636235
Iteration 8, score = 0.7678294257005147
Iteration 9, loss = 0.43483083
Iteration 9, score = 0.7683195817335186
```

Iteration 10, loss = 0.43297083

Iteration 10, score = 0.7707703618985376

Iteration 11, loss = 0.43161232

Iteration 11, score = 0.7675843476840127

Iteration 12, loss = 0.43046747

Iteration 12, score = 0.7711788252593742

Iteration 13, loss = 0.42912346

Iteration 13, score = 0.7688097377665224

Iteration 14, loss = 0.42806524

Iteration 14, score = 0.768973123110857

Iteration 15, loss = 0.42679957

Iteration 15, score = 0.7721591373253819

Iteration 16, loss = 0.42575922

Iteration 16, score = 0.7733845274078915

Iteration 17, loss = 0.42454852

Iteration 17, score = 0.7737112980965607

Iteration 18, loss = 0.42377209

Iteration 18, score = 0.7672575769953435

Iteration 19, loss = 0.42276338

Iteration 19, score = 0.7725676006862184

Iteration 20, loss = 0.42196222

Iteration 20, score = 0.7726492933583857

Iteration 21, loss = 0.42093541

```
Iteration 21, score = 0.7702802058655338
```

- Iteration 22, loss = 0.42009746
- Iteration 22, score = 0.7737929907687281
- Iteration 23, loss = 0.41940261
- Iteration 23, score = 0.7726492933583857
- Iteration 24, loss = 0.41875859
- Iteration 24, score = 0.7737929907687281
- Iteration 25, loss = 0.41804825
- Iteration 25, score = 0.7709337472428723
- Iteration 26, loss = 0.41708242
- Iteration 26, score = 0.7726492933583857
- Iteration 27, loss = 0.41643347
- Iteration 27, score = 0.771668981292378
- Iteration 28, loss = 0.41554629
- Iteration 28, score = 0.7706886692263704
- Iteration 29, loss = 0.41510362
- Iteration 29, score = 0.7748549955069031
- Iteration 30, loss = 0.41458452
- Iteration 30, score = 0.7752634588677396
- Iteration 31, loss = 0.41401973
- Iteration 31, score = 0.7745282248182338
- Iteration 32, loss = 0.41291744
- Iteration 32, score = 0.7750183808512376
- Iteration 33, loss = 0.41213917
- Iteration 33, score = 0.7762437709337472
- Iteration 34, loss = 0.41171740
- Iteration 34, score = 0.7731394493913896
- Iteration 35, loss = 0.41118649
- Iteration 35, score = 0.7735479127522261
- Iteration 36, loss = 0.41098518
- Iteration 36, score = 0.7746916101625684
- Iteration 37, loss = 0.41031233
- Iteration 37, score = 0.7744465321460665
- Iteration 38, loss = 0.40946225
- Iteration 38, score = 0.7754268442120742
- Iteration 39, loss = 0.40883469
- Iteration 39, score = 0.7745282248182338
- Iteration 40, loss = 0.40878372
- Iteration 40, score = 0.7754268442120742
- Iteration 41, loss = 0.40746862
- Iteration 41, score = 0.7768973123110857
- Iteration 42, loss = 0.40769313
- Iteration 42, score = 0.776733926966751
- Iteration 43, loss = 0.40744460
- Iteration 43, score = 0.7746099174904011
- Iteration 44, loss = 0.40648721
- Iteration 44, score = 0.7774691610162568
- Iteration 45, loss = 0.40648453

```
Iteration 45, score = 0.7764071562780819
```

- Iteration 46, loss = 0.40593346
- Iteration 46, score = 0.7790213217874357
- Iteration 47, loss = 0.40515185
- Iteration 47, score = 0.7792663998039376
- Iteration 48, loss = 0.40473150
- Iteration 48, score = 0.7749366881790704
- Iteration 49, loss = 0.40467247
- Iteration 49, score = 0.7749366881790704
- Iteration 50, loss = 0.40447075
- Iteration 50, score = 0.7786945510987664
- Iteration 51, loss = 0.40382859
- Iteration 51, score = 0.7776325463605914
- Iteration 52, loss = 0.40312290
- Iteration 52, score = 0.7777959317049261
- Iteration 53, loss = 0.40239195
- Iteration 53, score = 0.7761620782615799
- Iteration 54, loss = 0.40203138
- Iteration 54, score = 0.776733926966751
- Iteration 55, loss = 0.40191788
- Iteration 55, score = 0.7768973123110857
- Iteration 56, loss = 0.40160361
- Iteration 56, score = 0.7817988726411241
- Iteration 57, loss = 0.40117991
- Iteration 57, score = 0.7813087166081203
- Iteration 58, loss = 0.40105949
- Iteration 58, score = 0.7768973123110857
- Iteration 59, loss = 0.40052801
- Iteration 59, score = 0.7778776243770934
- Iteration 60, loss = 0.40006302
- Iteration 60, score = 0.778041009721428
- Iteration 61, loss = 0.40010319
- Iteration 61, score = 0.7804100972142799
- Iteration 62, loss = 0.39934464
- Iteration 62, score = 0.7786945510987664
- Iteration 63, loss = 0.39998656
- Iteration 63, score = 0.7787762437709338
- Iteration 64, loss = 0.39884197
- Iteration 64, score = 0.7788579364431011
- Iteration 65, loss = 0.39863838
- Iteration 65, score = 0.7772240829997549
- Iteration 66, loss = 0.39790748
- Iteration 66, score = 0.7796748631647741
- Iteration 67, loss = 0.39757052
- Iteration 67, score = 0.7796748631647741
- Iteration 68, loss = 0.39748631
- Iteration 68, score = 0.77828608773793
- Iteration 69, loss = 0.39755209

```
Iteration 69, score = 0.7776325463605914
```

- Iteration 70, loss = 0.39679115
- Iteration 70, score = 0.7823707213462953
- Iteration 71, loss = 0.39701380
- Iteration 71, score = 0.7777142390327587
- Iteration 72, loss = 0.39639885
- Iteration 72, score = 0.7786945510987664
- Iteration 73, loss = 0.39643356
- Iteration 73, score = 0.7802467118699453
- Iteration 74, loss = 0.39599294
- Iteration 74, score = 0.7785311657544318
- Iteration 75, loss = 0.39548189
- Iteration 75, score = 0.779103014459603
- Iteration 76, loss = 0.39551674
- Iteration 76, score = 0.7823707213462953
- Iteration 77, loss = 0.39542562
- Iteration 77, score = 0.779919941181276
- Iteration 78, loss = 0.39561553
- Iteration 78, score = 0.7768973123110857
- Iteration 79, loss = 0.39457466
- Iteration 79, score = 0.7814721019524549
- Iteration 80, loss = 0.39433387
- Iteration 80, score = 0.7796748631647741
- Iteration 81, loss = 0.39399993
- Iteration 81, score = 0.7811453312637856
- Iteration 82, loss = 0.39380112
- Iteration 82, score = 0.7811453312637856
- Iteration 83, loss = 0.39374429
- Iteration 83, score = 0.7813904092802876
- Iteration 84, loss = 0.39345340
- Iteration 84, score = 0.7803284045421126
- Iteration 85, loss = 0.39325651
- Iteration 85, score = 0.782043950657626
- Iteration 86, loss = 0.39295653
- Iteration 86, score = 0.7812270239359529
- Iteration 87, loss = 0.39293269
- Iteration 87, score = 0.7801650191977779
- Iteration 88, loss = 0.39270894
- Iteration 88, score = 0.7822073360019606
- Iteration 89, loss = 0.39269217
- Iteration 89, score = 0.7813087166081203
- Iteration 90, loss = 0.39190012
- Iteration 90, score = 0.7788579364431011
- Iteration 91, loss = 0.39163829
- Iteration 91, score = 0.7792663998039376
- Iteration 92, loss = 0.39188425
- Iteration 92, score = 0.7834327260844702
- Iteration 93, loss = 0.39180815

```
Iteration 93, score = 0.7776325463605914
```

- Iteration 94, loss = 0.39145954
- Iteration 94, score = 0.784984886855649
- Iteration 95, loss = 0.39104062
- Iteration 95, score = 0.7788579364431011
- Iteration 96, loss = 0.39142644
- Iteration 96, score = 0.7789396291152684
- Iteration 97, loss = 0.39033943
- Iteration 97, score = 0.7830242627236337
- Iteration 98, loss = 0.39077416
- Iteration 98, score = 0.7794297851482722
- Iteration 99, loss = 0.39023198
- Iteration 99, score = 0.7847398088391472
- Iteration 100, loss = 0.39030439
- Iteration 100, score = 0.7817988726411241
- Iteration 101, loss = 0.38996142
- Iteration 101, score = 0.7819622579854587
- Iteration 102, loss = 0.38971042
- Iteration 102, score = 0.7839228821174741
- Iteration 103, loss = 0.38956299
- Iteration 103, score = 0.7829425700514664
- Iteration 104, loss = 0.38925026
- Iteration 104, score = 0.7824524140184625
- Iteration 105, loss = 0.38932151
- Iteration 105, score = 0.782289028674128
- Iteration 106, loss = 0.38909313
- Iteration 106, score = 0.7859651989216567
- Iteration 107, loss = 0.38894666
- Iteration 107, score = 0.7804917898864472
- Iteration 108, loss = 0.38857273
- Iteration 108, score = 0.7784494730822645
- Iteration 109, loss = 0.38860105
- Iteration 109, score = 0.7830242627236337
- Iteration 110, loss = 0.38830965
- Iteration 110, score = 0.7804100972142799
- Iteration 111, loss = 0.38777930
- Iteration 111, score = 0.7827791847071318
- Iteration 112, loss = 0.38777608
- Iteration 112, score = 0.7830242627236337
- Iteration 113, loss = 0.38740522
- Iteration 113, score = 0.7836778041009721
- Iteration 114, loss = 0.38765931
- Iteration 114, score = 0.7844947308226452
- Iteration 115, loss = 0.38772907
- Iteration 115, score = 0.7817988726411241
- Iteration 116, loss = 0.38720848
- Iteration 116, score = 0.7828608773792991
- Iteration 117, loss = 0.38716167

```
Iteration 117, score = 0.7796748631647741
```

- Iteration 118, loss = 0.38683493
- Iteration 118, score = 0.7812270239359529
- Iteration 119, loss = 0.38733904
- Iteration 119, score = 0.7856384282329875
- Iteration 120, loss = 0.38654546
- Iteration 120, score = 0.7805734825586145
- Iteration 121, loss = 0.38654408
- Iteration 121, score = 0.7794297851482722
- Iteration 122, loss = 0.38647252
- Iteration 122, score = 0.7839228821174741
- Iteration 123, loss = 0.38655580
- Iteration 123, score = 0.7849031941834818
- Iteration 124, loss = 0.38607105
- Iteration 124, score = 0.786291969610326
- Iteration 125, loss = 0.38546065
- Iteration 125, score = 0.7858018135773222
- Iteration 126, loss = 0.38617359
- Iteration 126, score = 0.7810636385916183
- Iteration 127, loss = 0.38562926
- Iteration 127, score = 0.7833510334123029
- Iteration 128, loss = 0.38613696
- Iteration 128, score = 0.7830242627236337
- Iteration 129, loss = 0.38603855
- Iteration 129, score = 0.784984886855649
- Iteration 130, loss = 0.38502028
- Iteration 130, score = 0.7857201209051549
- Iteration 131, loss = 0.38567017
- Iteration 131, score = 0.7807368679029492
- Iteration 132, loss = 0.38498753
- Iteration 132, score = 0.7800833265256106
- Iteration 133, loss = 0.38496486
- Iteration 133, score = 0.7882525937423414
- Iteration 134, loss = 0.38454651
- Iteration 134, score = 0.7843313454783106
- Iteration 135, loss = 0.38478016
- Iteration 135, score = 0.7841679601339759
- Iteration 136, loss = 0.38458143
- Iteration 136, score = 0.7804917898864472
- Iteration 137, loss = 0.38462924
- Iteration 137, score = 0.7857201209051549
- Iteration 138, loss = 0.38450033
- Iteration 138, score = 0.7826974920349644
- Iteration 139, loss = 0.38442705
- Iteration 139, score = 0.7831876480679683
- Iteration 140, loss = 0.38414316
- Iteration 140, score = 0.7844947308226452
- Iteration 141, loss = 0.38414849

```
Iteration 141, score = 0.786046891593824
```

- Iteration 142, loss = 0.38424634
- Iteration 142, score = 0.7853933502164856
- Iteration 143, loss = 0.38329087
- Iteration 143, score = 0.7877624377093375
- Iteration 144, loss = 0.38398212
- Iteration 144, score = 0.7838411894453068
- Iteration 145, loss = 0.38360721
- Iteration 145, score = 0.7805734825586145
- Iteration 146, loss = 0.38353255
- Iteration 146, score = 0.784984886855649
- Iteration 147, loss = 0.38328184
- Iteration 147, score = 0.7857201209051549
- Iteration 148, loss = 0.38324438
- Iteration 148, score = 0.784984886855649
- Iteration 149, loss = 0.38310044
- Iteration 149, score = 0.7848215015113145
- Iteration 150, loss = 0.38333210
- Iteration 150, score = 0.7855567355608202
- Iteration 151, loss = 0.38275769
- Iteration 151, score = 0.7840045747896414
- Iteration 152, loss = 0.38282136
- Iteration 152, score = 0.7841679601339759
- Iteration 153, loss = 0.38285296
- Iteration 153, score = 0.7861285842659913
- Iteration 154, loss = 0.38298842
- Iteration 154, score = 0.7839228821174741
- Iteration 155, loss = 0.38281259
- Iteration 155, score = 0.7843313454783106
- Iteration 156, loss = 0.38242250
- Iteration 156, score = 0.7850665795278163
- Iteration 157, loss = 0.38256364
- Iteration 157, score = 0.7867821256433298
- Iteration 158, loss = 0.38239098
- Iteration 158, score = 0.7848215015113145
- Iteration 159, loss = 0.38208493
- Iteration 159, score = 0.7812270239359529
- Iteration 160, loss = 0.38211172
- Iteration 160, score = 0.7869455109876644
- Iteration 161, loss = 0.38223036
- Iteration 161, score = 0.7858835062494894
- Iteration 162, loss = 0.38239856
- Iteration 162, score = 0.7841679601339759
- Iteration 163, loss = 0.38170069
- Iteration 163, score = 0.7847398088391472
- Iteration 164, loss = 0.38215295
- Iteration 164, score = 0.7857201209051549
- Iteration 165, loss = 0.38127229

```
Iteration 165, score = 0.782043950657626
```

- Iteration 166, loss = 0.38146434
- Iteration 166, score = 0.7871905890041663
- Iteration 167, loss = 0.38154105
- Iteration 167, score = 0.7877624377093375
- Iteration 168, loss = 0.38115270
- Iteration 168, score = 0.7846581161669798
- Iteration 169, loss = 0.38149591
- Iteration 169, score = 0.7866187402989951
- Iteration 170, loss = 0.38119897
- Iteration 170, score = 0.7866187402989951
- Iteration 171, loss = 0.38085779
- Iteration 171, score = 0.7856384282329875
- Iteration 172, loss = 0.38155405
- Iteration 172, score = 0.7804917898864472
- Iteration 173, loss = 0.38099045
- Iteration 173, score = 0.786046891593824
- Iteration 174, loss = 0.38086916
- Iteration 174, score = 0.783105955395801
- Iteration 175, loss = 0.38113833
- Iteration 175, score = 0.7866187402989951
- Iteration 176, loss = 0.38069056
- Iteration 176, score = 0.7865370476268279
- Iteration 177, loss = 0.38031419
- Iteration 177, score = 0.7802467118699453
- Iteration 178, loss = 0.38102921
- Iteration 178, score = 0.7842496528061433
- Iteration 179, loss = 0.38036198
- Iteration 179, score = 0.7850665795278163
- Iteration 180, loss = 0.38009549
- Iteration 180, score = 0.7875173596928355
- Iteration 181, loss = 0.38050444
- Iteration 181, score = 0.7857201209051549
- Iteration 182, loss = 0.37978025
- Iteration 182, score = 0.7835144187566375
- Iteration 183, loss = 0.37999640
- Iteration 183, score = 0.785229964872151
- Iteration 184, loss = 0.38036370
- Iteration 184, score = 0.784984886855649
- Iteration 185, loss = 0.37994467
- Iteration 185, score = 0.7856384282329875
- Iteration 186, loss = 0.37996105
- Iteration 186, score = 0.7844947308226452
- Iteration 187, loss = 0.37969532
- Iteration 187, score = 0.7857201209051549
- Iteration 188, loss = 0.37961244
- Iteration 188, score = 0.7858018135773222
- Iteration 189, loss = 0.37984843

```
Iteration 189, score = 0.7817171799689567
     Iteration 190, loss = 0.37955472
     Iteration 190, score = 0.7856384282329875
     Iteration 191, loss = 0.38023581
     Iteration 191, score = 0.7863736622824933
     Iteration 192, loss = 0.37948620
     Iteration 192, score = 0.7882525937423414
     Iteration 193, loss = 0.37942357
     Training loss did not improve more than tol=0.000100 for 10 consecutive epochs.
     Stopping.
     Iteration 193, score = 0.7844947308226452
     Iteration 194, loss = 0.37933809
     Training loss did not improve more than tol=0.000100 for 10 consecutive epochs.
     Stopping.
     Iteration 194, score = 0.7846581161669798
     Iteration 195, loss = 0.37882986
     Iteration 195, score = 0.7796748631647741
     Iteration 196, loss = 0.37898010
     Iteration 196, score = 0.7842496528061433
     Iteration 197, loss = 0.37889837
     Iteration 197, score = 0.7805734825586145
     Iteration 198, loss = 0.37959929
     Iteration 198, score = 0.7806551752307818
     Iteration 199, loss = 0.37886890
     Iteration 199, score = 0.7840045747896414
     Iteration 200, loss = 0.37919533
     Iteration 200, score = 0.7842496528061433
     Otrzymane wyniki zostały zestawione na wykresie.
[48]: plt.plot(scores mlp train, color='green', alpha=0.8, label='Train')
      plt.plot(scores_mlp_test, color='magenta', alpha=0.8, label='Test')
      plt.title("Accuracy over epochs", fontsize=14)
      plt.xlabel('Epochs')
      plt.legend(loc='lower right')
```

plt.show()

Jak widać, wraz z kolejnymi iteracjami dokładność się zwiększa, jednak dla zbioru testowego rezultaty są gorsze niż dla zbioru treningowego.

Ostatecznie, średnia trafność modelu na rozważanych danych testowych jest następująca:

```
[29]: print(f'Model sieci neuronowej: {nn_clf.score(x_test, y_test)}')
```

Model sieci neuronowej: 0.7842496528061433

1.6 Regresja logistyczna

Regresja logistyczna to algorytm nadzorowanego uczenia maszynowego używany do problemów z klasyfikacją binarną. Najlepszym sposobem myślenia o regresji logistycznej jest to, że jest to regresja liniowa, ale dla problemów z klasyfikacją. Podstawowa różnica między regresją liniową, a regresją logistyczną polega na tym, że zakres regresji logistycznej jest ograniczony od 0 do 1. Ponadto - w przeciwieństwie do regresji liniowej - regresja logistyczna nie wymaga liniowej zależności między zmiennymi wejściowymi i wyjściowymi.

```
[30]: log_model = LogisticRegression(verbose=True, n_jobs=-1, warm_start=True, umax_iter=1)
```

Analogicznie jak poprzednio testujemy model dla 200 iteracji.

```
[31]: scores_log_train = [] scores_log_test = []
```

```
for i in range(200):
    log_model.fit(x_train, y_train)
    scores_log_train.append(log_model.score(x_train, y_train))
    scores_log_test.append(log_model.score(x_test, y_test))
    print(f'Iteration {i + 1}, score = {log model.score(x_test, y_test)}')
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        1.9s finished
Iteration 1, score = 0.7297606404705498
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.6s finished
Iteration 2, score = 0.7373580589821093
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.6s finished
Iteration 3, score = 0.7499387304958746
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.6s finished
Iteration 4, score = 0.7514908912670534
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.6s finished
Iteration 5, score = 0.7520627399722245
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                        1 | elapsed:
                                                        0.7s finished
Iteration 6, score = 0.7549219834980803
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.6s finished
Iteration 7, score = 0.7555755248754187
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.6s finished
Iteration 8, score = 0.7571276856465975
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 9, score = 0.7554938322032514
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                            1 out of
                                       1 | elapsed:
                                                       0.2s finished
Iteration 10, score = 0.7582713830569398
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 11, score = 0.7554938322032514
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 12, score = 0.7576995343517686
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 13, score = 0.755657217547586
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 14, score = 0.7572910709909321
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 15, score = 0.7567192222857609
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.1s finished
Iteration 16, score = 0.7578629196961033
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 17, score = 0.7563924515970918
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 18, score = 0.7548402908259129
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 19, score = 0.7566375296135937
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 20, score = 0.7561473735805898
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 21, score = 0.7560656809084225
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 22, score = 0.7567192222857609
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 23, score = 0.7559839882362552
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 24, score = 0.7565558369414264
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 25, score = 0.755657217547586
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 26, score = 0.7563924515970918
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 27, score = 0.7555755248754187
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 28, score = 0.7569643003022629
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 29, score = 0.755657217547586
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 30, score = 0.7565558369414264
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 31, score = 0.7554938322032514
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 32, score = 0.7569643003022629
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 33, score = 0.7552487541867494
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
```

Iteration 34, score = 0.7570459929744302

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 35, score = 0.7554121395310841
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 36, score = 0.7570459929744302
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 37, score = 0.7548402908259129
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 38, score = 0.7572093783187648
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 39, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.1s finished
Iteration 40, score = 0.7563924515970918
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 41, score = 0.7549219834980803
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 42, score = 0.7557389102197533
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 43, score = 0.7563924515970918
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 44, score = 0.7555755248754187
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 45, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
```

Iteration 46, score = 0.7546769054815783

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 47, score = 0.7550853688424148
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 48, score = 0.7548402908259129
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 49, score = 0.7550853688424148
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 50, score = 0.7550036761702476
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 51, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 52, score = 0.7550036761702476
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 53, score = 0.7550853688424148
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 54, score = 0.7548402908259129
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 55, score = 0.7550853688424148
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 56, score = 0.7546769054815783
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 57, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
```

Iteration 58, score = 0.7548402908259129

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 59, score = 0.7550036761702476
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 60, score = 0.7549219834980803
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 61, score = 0.7550036761702476
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 62, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 63, score = 0.7549219834980803
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 64, score = 0.7549219834980803
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 65, score = 0.7552487541867494
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 66, score = 0.7552487541867494
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 67, score = 0.7551670615145821
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 68, score = 0.7552487541867494
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 69, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
```

Iteration 70, score = 0.7546769054815783

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 71, score = 0.7552487541867494
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 72, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 73, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 74, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 75, score = 0.7550853688424148
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 76, score = 0.7554121395310841
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 77, score = 0.7550853688424148
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.7s finished
Iteration 78, score = 0.7554121395310841
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 79, score = 0.7551670615145821
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 80, score = 0.7553304468589167
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 81, score = 0.7552487541867494
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
```

Iteration 82, score = 0.7553304468589167

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 83, score = 0.7552487541867494
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.5s finished
Iteration 84, score = 0.7553304468589167
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 85, score = 0.7552487541867494
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 86, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 87, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 88, score = 0.7551670615145821
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 89, score = 0.7550036761702476
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 90, score = 0.7549219834980803
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 91, score = 0.7550853688424148
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 92, score = 0.7546769054815783
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 93, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 94, score = 0.7540233641042399
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 95, score = 0.754350134792909
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                        1 | elapsed:
                                                        0.2s finished
Iteration 96, score = 0.7540233641042399
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 97, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 98, score = 0.7541050567764072
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 99, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 100, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 101, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 102, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 103, score = 0.7541867494485744
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 104, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 105, score = 0.7541050567764072
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.3s finished
Iteration 106, score = 0.754350134792909
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 107, score = 0.7540233641042399
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.1s finished
Iteration 108, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 109, score = 0.7540233641042399
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 110, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 111, score = 0.7540233641042399
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 112, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 113, score = 0.7541050567764072
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 114, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 115, score = 0.7541050567764072
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 116, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 117, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 118, score = 0.7544318274650764
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 119, score = 0.754350134792909
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 120, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 121, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 122, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 123, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 124, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 125, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 126, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 127, score = 0.754350134792909
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 128, score = 0.7544318274650764
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 129, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 130, score = 0.7544318274650764
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 131, score = 0.7542684421207417
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 132, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 133, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 134, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 135, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 136, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 137, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 138, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 139, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 140, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 141, score = 0.7541050567764072
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 142, score = 0.7542684421207417
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 143, score = 0.754350134792909
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 144, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 145, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 146, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 147, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 148, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 149, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.8s finished
Iteration 150, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 151, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 152, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 153, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 154, score = 0.7542684421207417
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 155, score = 0.7542684421207417
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 156, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 157, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 158, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 159, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 160, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 161, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 162, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.3s finished
Iteration 163, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.3s finished
Iteration 164, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 165, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 166, score = 0.7542684421207417
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 167, score = 0.7542684421207417
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 168, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 169, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 170, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 171, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 172, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 173, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 174, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                      1 | elapsed:
                                                        0.2s finished
Iteration 175, score = 0.7542684421207417
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.4s finished
Iteration 176, score = 0.754350134792909
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 177, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.5s finished
Iteration 178, score = 0.754350134792909
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 179, score = 0.7541867494485744
[Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of
                                       1 | elapsed:
                                                        0.2s finished
Iteration 180, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 181, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 182, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 183, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 184, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 185, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 186, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 187, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
                                                        0.2s finished
Iteration 188, score = 0.7542684421207417
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                        0.2s finished
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed:
Iteration 189, score = 0.7541867494485744
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done
                             1 out of 1 | elapsed: 0.2s finished
Iteration 190, score = 0.7542684421207417
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done
                                   1 out of
                                            1 | elapsed:
                                                              0.2s finished
     Iteration 191, score = 0.7541050567764072
     [Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done
                                   1 out of
                                            1 | elapsed:
                                                             0.2s finished
     Iteration 192, score = 0.7542684421207417
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done
                                  1 out of 1 | elapsed:
                                                              0.2s finished
     Iteration 193, score = 0.7541867494485744
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done
                                   1 out of 1 | elapsed:
                                                              0.2s finished
     Iteration 194, score = 0.7542684421207417
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done
                                   1 out of 1 | elapsed:
                                                              0.2s finished
     Iteration 195, score = 0.7542684421207417
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed:
                                                              0.2s finished
     Iteration 196, score = 0.7542684421207417
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done
                                   1 out of 1 | elapsed:
                                                              0.3s finished
     Iteration 197, score = 0.7542684421207417
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                             0.2s finished
     Iteration 198, score = 0.7542684421207417
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done
                                   1 out of
                                            1 | elapsed:
                                                             0.2s finished
     Iteration 199, score = 0.7542684421207417
     [Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed:
                                                             0.2s finished
     Iteration 200, score = 0.7542684421207417
     W tym przypadku również stworzymy wykres.
[47]: plt.plot(scores_log_train, color='green', alpha=0.8, label='Train')
      plt.plot(scores log test, color='magenta', alpha=0.8, label='Test')
      plt.title("Accuracy over epochs", fontsize=14)
      plt.xlabel('Epochs')
      plt.legend(loc='lower right')
```

plt.show()

Jak widać po niewielkiej liczbie iteracji znajdowane jest dość dobre rozwiązanie, po czym następuje niewielki spadek jakości rozwiązania, a następnie stopniowo wyrównuje się do wartości nieco gorszych niż na początku.

Ostatecznie, po wytrenowaniu modelu skuteczność na danych testowych jest następująca:

Model regresji logistycznej: 0.7542684421207417

Regresja logistyczna okazała się trochę gorsza od modelu MLP, jednak czas trenowania modelu jest znacząco niższy.

1.7 Optymalizacja hiperparametrów

Powyższe algorytmy MLP i LR posiadają wiele konfigurowalnych hiperparametrów. W przypadku MLP są to m.in. funkcja aktywacji activation, przyrost uczenia learning_rate oraz solver. Dla LR są to m.in. multi_class oraz solver. Oczywiście dokładność modeli zależy od wartości tych hiperparametrów. W celu znalezienia kombinacji dającej najlepszej rezultaty posługujemy się biblioteką optuna. Optymalizatory zasadniczo stale zawężają przestrzeń poszukiwań, wykorzystując zapisy sugerowanych wartości parametrów i ocenianych wartości funkcji celu, co prowadzi do optymalnej przestrzeni poszukiwań, w której uzyskuje się parametry prowadzące do lepszych wartości funkcji celu. Domyślnym optymalizatorem jest Tree-structured Parzen Estimator.

1.7.1 Optymalizacja Multilayer Perceptron

```
[]: import optuna
     import sklearn.datasets
     import sklearn.ensemble
     import sklearn.model_selection
     import sklearn.svm
     def objective(trial):
         activation = trial.suggest_categorical("activation", ["identity", __

o"logistic", "tanh", "relu"])

         solver = trial.suggest_categorical("solver", ["lbfgs", "sgd", "adam"])
         learning_rate_init = trial.suggest_float("lri", 1e-5, 1e-2, log=True)
         learning rate = "constant"
         if solver == "sgd":
             learning_rate = trial.suggest_categorical("learning_rate", ["constant", __
      →"invscaling", "adaptive"])
         nn_clf = MLPClassifier(activation=activation, solver=solver,
      ⇔warm_start=True, max_iter=1,
                                learning_rate=learning_rate,_
      Glearning_rate_init=learning_rate_init)
         for i in range(200):
             nn_clf.fit(x_train, y_train)
         return nn_clf.score(x_test, y_test)
     study = optuna.create_study(direction='maximize')
     study.optimize(objective, n_trials=100)
```

Dla algorytmu MLP najlepsze rezultaty są osiągane dla następujących hiperparametrów: 'activation': 'relu', 'solver': 'adam', 'lri': 0.004620094435728503. Skuteczność klasyfikatora wynosi wtedy 0.795.

Na poniższym wykresie przedstawiono porównanie wcześniejszego modelu wraz z zopymalizowanym modelem.

```
plt.plot(scores_mlp_train, color='green', alpha=0.8, label='Train')
plt.plot(scores_mlp_test, color='magenta', alpha=0.8, label='Test')
plt.plot(scores_mlp_train_opt, color='cyan', alpha=0.8, label='Train opt')
plt.plot(scores_mlp_test_opt, color='red', alpha=0.8, label='Test opt')
plt.title("Accuracy over epochs", fontsize=14)
plt.xlabel('Epochs')
plt.legend(loc='lower right')
plt.show()
```

C:\Users\adasi\AppData\Local\pypoetry\Cache\virtualenvs\csgo-round-prediction-GhoYBn2B-py3.10\lib\site-

packages\sklearn\neural_network_multilayer_perceptron.py:692:

ConvergenceWarning: Stochastic Optimizer: Maximum iterations (1) reached and the optimization hasn't converged yet.

warnings.warn(

1.7.2 Optymalizacja Logistic Regression

```
[]: import optuna
import sklearn.datasets

import sklearn.ensemble
import sklearn.model_selection
```

```
import sklearn.svm
def objective(trial):
    solver = trial.suggest_categorical("solver", ["newton-cg", "lbfgs", |
 →"liblinear", "sag", "saga"])
    if solver == "newton-cg":
        penalty = trial.suggest_categorical("ncg_pen", ["12", "none"])
    elif solver == "lbfgs":
        penalty = trial.suggest_categorical("lbfgs_pen", ["12", "none"])
    elif solver == "liblinear":
        penalty = trial.suggest_categorical("ll_pen", ["l1", "l2"])
    elif solver == "sag":
        penalty = trial.suggest_categorical("sag_pen", ["12", "none"])
    elif solver == "saga":
        penalty = trial.suggest_categorical("saga_pen", ["elasticnet", "l1", __

¬"12", "none"])
    if solver == "liblinear":
        multi_class = trial.suggest_categorical("multiclass1", ["auto", "ovr"])
    else:
        multi_class = trial.suggest_categorical("multiclass2", ["auto", "ovr", "

¬"multinomial"])
    11 ratio = None
    if penalty == "elasticnet":
        l1_ratio = trial.suggest_float("l1r", 0, 1)
    nn clf = LogisticRegression(solver=solver, warm start=True, max iter=1,,,
 →penalty=penalty,
                                multi_class=multi_class, l1_ratio=l1_ratio)
    for i in range(200):
        nn_clf.fit(x_train, y_train)
    return nn_clf.score(x_test, y_test)
study = optuna.create study(direction='maximize')
study.optimize(objective, n_trials=100)
```

Dla algorytmu LR najlepsze rezultaty są osiągane dla następujących hiperparametrów: 'solver': 'lbfgs', 'penalty': 'l2', 'multi_class': 'multinomial'. Skuteczność klasyfikatora wynosi wtedy 0.756.

W przypadku algorytmu MLP następuje wzrost skuteczności klasyfikatora (0.784 -> 0.795). W przypadku LR optymalizacja hiperparametrów następuje nieznaczna poprawa (0.754 -> 0.756). Trenowanie LR trwa zauważalnie krócej - ok. 22 sekundy, a MLP ok. 2,5 minuty.

Na poniższym wykresie przedstawiono porównanie wcześniejszego modelu wraz z zopymalizowanym modelem.

```
[45]: log_model_opt = LogisticRegression(n_jobs=-1, warm_start=True, max_iter=1,_u
       →multi_class='multinomial',
                                         solver='lbfgs', penalty='12')
      scores_log_train_opt = []
      scores_log_test_opt = []
      for i in range(200):
          log_model_opt.fit(x_train, y_train)
          scores log train opt.append(log model opt.score(x train, y train))
          scores_log_test_opt.append(log_model_opt.score(x_test, y_test))
      plt.plot(scores_log_train, color='green', alpha=0.8, label='Train')
      plt.plot(scores_log_test, color='magenta', alpha=0.8, label='Test')
      plt.plot(scores_log_train_opt, color='cyan', alpha=0.8, label='Train opt')
      plt.plot(scores_log_test_opt, color='red', alpha=0.8, label='Test opt')
      plt.title("Accuracy over epochs", fontsize=14)
      plt.xlabel('Epochs')
      plt.legend(loc='lower right')
      plt.show()
```


1.8 Podział prac

1. Wybór niezbędnych bibliotek - Jakub Michalak

- 2. Walidacja i wydzielenie danych treningowych Damian Opoka
- 3. Analiza i przygotowanie danych Damian Opoka
- 4. Definicja modelu Adam Ryl
- 5. Weryfikacja krzyżowa Adam Ryl
- 6. Dostosowanie hiperparametrów Jakub Michalak
- 7. Wygenerowanie wyników Piotr Kryczka
- 8. Analiza wyników Piotr Kryczka