The idea of dynamic programming is to compute all the sub-solutions in order to produce a final solution.

Binomial numbers. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ requires 2k multiplications and 1 division.

To use dynamic programming, we'll use the obvious recursion for binomials:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
$$\binom{n}{0} = \binom{n}{n} = 1$$

Partition numbers. $\mathcal{P}_{n,k}$ represents the number of ways we can partition an n-set into k non-empty subsets.

$$\mathcal{P}_{n,0} = 1$$
 and $\mathcal{P}_{n,n} = 1$. $\mathcal{P}_{n,k} = \mathcal{P}_{\setminus} - \infty, \|-\infty + \mathcal{P}_{n-1,k} \times k$.

Travelling salesman problem (TSP). Given sites $1, \dots, n$ and a function d(i, j) giving the distance between sites i and j.