

Pattern Spoting and deep learning object detection

Khellouf Leila

Encadrants: Laurent HEUTTE

Stéphane Nicolas

L'objectif:

- D'étudier les modèles à l'état de l'art en détection d'objets, en segmentation sémantique, et en segmentation d'instances, dans les images de scènes naturelles
- Appliquer ou bien adapter ces méthodes à la détection d'objets graphiques (ornementations, lettrines, bandeaux,...) dans les images de documents anciens (manuscrits médiévaux).

Détection d'objet:

- On désigne par détection d'objet (ou classification d'objet) une méthode permettant de détecter la présence d'une instance (reconnaissance d'objet) ou d'une classe d'objets dans une image numérique

class and location

l'état de l'art en détection d'objets:

One stage approach:

- Extraire les features avec la génération de region proposales
- Effectuer une classification et régression
- > CNN, fast RCNN,

Two stage approach:

- Comme entrée: image en entier
- Effectuer une classification et régression
- > YOLO, RetinaNet, RetinaDet,

Mask RCNN

- Backbone Model: On peut utiliser l'architecture ResNet 50 pour
 L'éxtraction des features a partir de image
- Ces feature maps sont ensuite transmises au RPN qui retourne des boites englobantes condidates.
- ➤ Les regions obtenues du RPN pourraient être de différentes formes,
 On applique RoIAlign pour convertir tous les régions à la même forme
- ➤ Fully connect network: prédire l'etiquette de la classe et les boîtes englobantes .

Mask RCNN on DocExplore:

On a appliqué le Mask RCNN sur DocExplore et on a obtenu les résulats suivants:

Les différentes classes de DocExplore

- 1500 images annotées
- 1447 requêtes possibles, le nombre d'occurences dans chaque object graphique varie de 2 à plus de 100.
- les requêtes sont petites et leurs zones peuvent être aussi basses que 220 (20* 11) pixels .
- 35 classes

Losange

Marqueur

Croix

Grand A

Fine Tuning:

Le Fine tuning est un processus qui permet de prendre un modèle de réseau qui a déjà été formé pour une tâche donnée et de lui effectuer une deuxième tâche similaire.

Toute la complexité de création de CNN peut être évitée en adaptant des réseaux pré-entrainés

Fine tuning sur DocExplore:

L'éxperience présentées dans l'article à été réalisées en partant du classique maskrcnn-resnet50-fpn entrainé sur la dataset MS COCO . Ensuite ré-entraîné plus finement (Fine Tuning) le modèle pour traiter notre problème de classification des classes « marqueur » et « losange » avec le nombre d'image =161

Résultat sur Test Dataset

Question

