Connector for IEEE802.3bj MDI and Future Multi-hundred Gb/s System

Takeshi Nishimura (Nish): Yamaichi Electronics

Rev. B (Corrected page 9)

May 2012 IEEE 802.3 Interim in Minneapolis

Proposal Background

- QSFP28 has been adapted as a baseline proposal for a type of MDI for 100GBASE-CR4
- CFP-MSA is in process to finalize CFP2 CFP4 specification for 4x28G application
- Mechanical features and SI performance of CFP4 fit to MDI
- CFP2 and CFP4 are considered as a candidate of future generation of multi hundred Gb/s system
- CFP4 should be recognized as a MDI option on 802.3bj

Comparison between others

Category	CFP	CFP2	CFP4	QSFP28
Host rates max.	11.2G	28G	28G	28G
Total # of pins	148	104	56	38
TX + RX (Diff. Pairs)	10+10, 11+11, 12+12	4+4, 8+8, 10+10	4+4	4+4
REFCLK (Diff. Pairs)	1	1	1	0
Monitor Clocks (Diff. Pairs	3) 2	2	1	0
Ports in 364mm faceplate	4	8	16	<u> 18</u>
module width (mm)	82 (76 main top)	41.5	21.7	18.3
module length (mm)	145	106	88	74
module main body height	(mm) 13.6	12.4	9.5	<u>8.5</u>
			1	1

• CFP4 has plug connector on its mating interface which provides mating accuracy and helps to achieve high speed performance

- Surface mount receptacle connector
- Connector cover work for EMI noise shielding, and protects receptacle connector from mechanical stress

 11.30 ± 0.10

• 16 CFP4 fits in 365mm faceplate

CFP4 Pin Assignment Advantage

- QSFP28: High speed signals are located on both top and bottom row (2 top + 2 bottom)
- CFP4: All 4 high speed signals are located on top row of the connector
 - Possible simple board layout to achieve best channel performance

	_	5 1 1 1 1 1 1 1 5 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
		Тор			Bottom		
	56	GND		1	3.3V_GND		
1	- 55 · 、	TX3n		2	3.3V_GND		
1	54	TX3p		3	3.3V		
٠,	53	GND		4	3.3V		
1	- 5 2- 、	TX2n		5	3.3V		
N.	51 🏃	TX2p		6	3.3V		
	~~50	GND		7	3.3V_GND		
1	49	TX1n		8	3.3V_GND		
X.	48 ,	TX1p		9	VND_IO_A		
	-47	GND		10	VND_IO_B		
1	7-46	TX0n		11	TX_DIS		
T.	45	TX0p		12	RX_LOS		
,	`- -4 4´	GND		13	GLB_ALRMn		
	43	(REFCLKn)		14	MOD_LOPWR		
	42	(REFCLKp)		15	MOD_ABS		
	41	GND		16	MOD_RSTn		
	40 ·	RX3n		17	MDC		
	39	RX3p		18	MDIO		
	~ - 38	GND		19	PRTADR0		
,	37	RX2n		20	PRTADR1		
1	36	RX2p		21	PRTADR2		
•	~ -35 ´	GND		22	VND_IO_C		
,	34	RX1n		23	VND_IO_D		
N.	33	RX1p		24	VND_IO_E		
	-32	GND		25	GND		
1	31 、	RX0n		26	(MCLKn)		
K	30	RX0p		27	(MCLKp)		
•	~ - 29 ´	GND	`	28	GND		

QSFP28 SI Performance

(Actual measurement data at Yamaichi eQSFP+)

Top side adjacent differential signals

CFP2 CFP4 SI Performance

(Simulation data at latest Yamaichi design)

(dB)

Adjacent differential signals on both top and bottom side

Insertion Loss

CFP2 / CFP4 Channel SI Performance Simulation Up To 50GHz

CFP2 CFP4 CONNECTOR

·2 adjacent high speed on top side

HOST BOARD

- ·Board material = N4000-13si(ε =3.2,tan δ =0.007)
- ·Trace length = 4" and 7"
- ·Trace geometry = Stripline
- ·Trace width = 5 mils
- •Differential trace spacing = 6 mils
- ·2 signal layers
- ·Layer connection = layer 2 (near top)
- ·Counterbored (18mil stub)
- ·2 via (connector side and Device side)

PLUG BOARD

- ·Board material = N4000-13si(ε =3.2,tan δ =0.007)
- ·Trace length = 1.25"
- ·Trace geometry = microstrip
- ·Trace width = 7 mils
- ·Differential trace spacing = 5 mils
- ·No via required on module PCB

CFP2 CFP4 Channel SI Performance Simulation Result

4inch Host, Driven from Host Side
7inch Host, Driven from Host Side
4inch Host, Driven from Module Side

7inch Host, Driven from Module Side

Summary

• IEEE 802.3bj should adopt both QSFP28 and CFP4 as baseline proposal for MDI