

# 1 Analisi di investimenti

Una banca propone un tasso d'interesse  $i_1 = 3\%$  trimestrale mentre un'altra propone un tasso  $i_2 = 12.5\%$  annuale. Se si ha intenzione di mantenere il capitale investito I per almeno un anno, quale dei due investimenti è più conveniente?

## Soluzione

Per poter analizzare la decisione si deve scrivere il modello relativo all'andamento dell'investimento. In particolare, chiamando con x(k) l'ammontare dell'investimento all'istante k, l'equazione con cui varia è data da:

$$x(k+1) - x(k) = ix(k)$$
  $\Rightarrow$   $x(k+1) = (1+i)x(k)$ 

Analizziamo il caso di tasso di interesse  $i_1 = 3\%$  trimestrale, il tempo k rappresenta il trimestre corrente. L'investimento iniziale è x(0) = I. Essendo l'orizzonte temporale minimo di un anno, si deve analizzare l'evoluzione dell'investimento fino all'istante k = 4. Si ottiene, quindi:

$$x(1) = (1+i_1)x(0) = (1+i_1)I$$

$$x(2) = (1+i_1)x(1) = (1+i_1)^2I$$

$$x(3) = (1+i_1)x(2) = (1+i_1)^3I$$

$$x(4) = (1+i_1)x(3) = (1+i_1)^4I$$

Di conseguenza, dopo un anno, il capitale investito sarà pari a  $(1+i_1)^4I=1.03^4I\simeq 1.1255I$ .

Nel caso di tasso di interesse  $i_2=12.5\%$  annuale, il tempo k rappresenta l'anno corrente. Di conseguenza, in un anno l'investimento diventa:

$$x(1) = (1 + i_2)x(0) = (1 + i_2)I$$
,

ossia, dopo un anno, il capitale investito sarà pari a  $(i + i_2)I = 1.125I$ .

Di conseguenza è più conveniente investire il capitale nella prima banca.

# 2 Prestito

Una banca propone un prestito pari a P, con un tasso d'interesse fisso i da estinguere con una rata annuale fissa R.

- 1. Se si vuole estinguere il prestito in un numero N di anni, quale dovrà essere l'importo della rata R?
- 2. Fissato il valore della rata R, in quanti anni si estinguerà il prestito?

## Soluzione

1. Chiamando con x(k) l'ammontare del debito residuo dopo k anni, il modello che rappresenta il suo andamento è:

$$x(k+1) = (1+i)x(k) - u(k),$$

dove  $u(k) = R, \forall k$ .

Risolvendo l'equazione alle differenze, si ottiene:

$$x(k) = A^k x(0) + \sum_{j=0}^{k-1} A^{k-j-1} Bu(j),$$

in cui

$$A = 1 + i, \quad B = -1.$$

Di conseguenza si ha:

$$x(k) = (1+i)^k x(0) - \sum_{j=0}^{k-1} (1+i)^{k-j-1} u(j)$$
$$= (1+i)^k P - R \frac{(1+i)^k - 1}{i}$$

Utilizzando la formula precedente è possibile calcolare la rata R necessaria a estinguere il prestito P in N anni. Infatti, imponendo che il debito residuo dopo N anni sia pari a zero si ottiene:

$$(1+i)^N P - R \frac{(1+i)^N - 1}{i} = 0 (1)$$

$$R = \frac{i(1+i)^N P}{(1+i)^N - 1}. (2)$$

Per esempio, per estinguere un prestito di P=10000 Euro, a un tasso di interesse del i=5% in N=10 anni, bisogna pagare una rata annuale pari a:

$$R = \frac{0.05 \cdot (1.05)^{10} \cdot 10000}{(1.05)^{10} - 1} \simeq 1295 \text{ Euro.}$$

Si noti che in questo caso la somma complessiva restituita alla banca è 12950 Euro.

Se si vuole estinguere il debito in N=20 anni, invece sarà richiesta una rata annuale pari a:

$$R = \frac{0.05 \cdot (1.05)^{20} \cdot 10000}{(1.05)^{20} - 1} \simeq 802 \text{ Euro.}$$

Si noti che in questo caso la somma complessiva restituita alla banca è maggiore del caso precedente e pari a 16040 Euro.

L'andamento del valore della rata in funzione del numero di anni è mostrato in Figura 2.



Figura 1: Andamento del valore della rata in funzione del numero di anni, per P = 10000 e i = 0.05.

2. Fissando il valore della rata R e volendo trovare il quanti anni si estinguerà il prestito, si può risolvere la relazione (1) per N, ottenendo:

$$(1+i)^{N}P - R\frac{(1+i)^{N} - 1}{i} = 0$$

$$i(1+i)^{N}P - R\left((1+i)^{N} - 1\right) = 0$$

$$i(1+i)^{N}P - R(1+i)^{N} + R = 0$$

$$(1+i)^{N}(iP - R) = -R$$

$$(1+i)^{N} = \frac{R}{R-iP}$$

$$\ln(1+i)^{N} = \ln\left(\frac{R}{R-iP}\right)$$

$$N\ln(1+i) = \ln\left(\frac{R}{R-iP}\right)$$

$$N = \frac{\ln\left(\frac{R}{R-iP}\right)}{\ln(1+i)}$$

Per esempio, per estinguere un prestito di P = 10000 Euro, se si è quindi disposti ad avere una rata R = 1000 Euro, con un tasso di interesse del i = 5%, saranno necessari:

$$N = \frac{\ln\left(\frac{1000}{1000 - 0.05 \cdot 10000}\right)}{\ln(1.05)} \simeq 14.02 \text{ anni.}$$

Se invece si vuole avere una rata più piccola, ad esempio di R=600 Euro, il prestito sarà estinto in:

$$N = \frac{\ln\left(\frac{600}{600 - 0.05 \cdot 10000}\right)}{\ln(1.05)} \simeq 36.72 \text{ anni.}$$

L'andamento del valore del numero di anni necessari per estinguere il prestito in funzione della rata è mostrato in Figura 2. Notare che esiste un asintoto per R=Pi=500 dato che la rata non è sufficiente a compensare l'effetto del tasso di interesse, ossia si stanno pagando solo gli interessi alla banca, ma non si sta ripagando il prestito, per cui per R=500 saranno necessari infiniti anni per poter estinguere il prestito.



Figura 2: Andamento del valore del numero di anni necessari per estinguere il prestito in funzione della rata, per P=10000 e i=0.05.

# 3 Modello degli studenti universitari

Si consideri la dinamica degli studenti in un corso triennale. Siano  $x_1(k)$ ,  $x_2(k)$ ,  $x_3(k)$  il numero di iscritti al 1°, 2°, 3° anno dell'anno accademico k.

- u(k): il numero di studenti che superano l'esame di maturità nell'anno k e si iscrivono nell'anno k+1;
- y(k): il numero di laureati nell'anno k;
- $\alpha_i \in [0,1]$ : tasso degli studenti promossi nell'*i*-esimo anno di corso  $(i \in \{1,2,3\})$ ;
- $\beta_i \in [0,1)$ : tasso degli studenti ripetenti nell'*i*-esimo anno di corso  $(i \in \{1,2,3\})$ ;
- $\forall i \in \{1, 2, 3\}, \ \alpha_i + \beta_i \leq 1$ , ossia  $1 \alpha_i \beta_i$  rappresenta il tasso di abbandono all'anno i.

Si trascurino le iscrizioni di studenti provenienti da altre università.

- 1. Scrivere il modello dinamico del sistema.
- 2. Studiare la stabilità del sistema dinamico.
- 3. Posto:

$$\alpha_1 = 0.5$$
  $\alpha_2 = 0.6$   $\alpha_3 = 0.5$   $\beta_1 = 0.2$   $\beta_2 = 0.2$   $\beta_3 = 0.5$ 

determinare lo stato di equilibrio corrispondente a  $u(k) = \bar{u} = 4000$ .

### Soluzione

1. Il modello dinamico è:

$$\begin{cases} x_1(k+1) = \beta_1 x_1(k) + u(k) \\ x_2(k+1) = \alpha_1 x_1(k) + \beta_2 x_2(k) \\ x_3(k+1) = \alpha_2 x_2(k) + \beta_3 x_3(k) \\ y(k) = \alpha_3 x_3(k) \end{cases}$$

Le cui matrici sono:

$$A = \begin{bmatrix} \beta_1 & 0 & 0 \\ \alpha_1 & \beta_2 & 0 \\ 0 & \alpha_2 & \beta_3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & \alpha_3 \end{bmatrix}, \quad D = 0.$$

- 2. Poiché la matrice A è triangolare, gli autovalori sono gli elementi sulla diagonale:  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ . Poiché si tratta di valori reali compresi tra 0 e 1, il sistema è asintoticamente stabile.
- 3. Imponiamo l'equilibrio con i valori numerici dati dei parametri

$$\begin{cases} \bar{x}_1 = \beta_1 \bar{x}_1 + \bar{u} \\ \bar{x}_2 = \alpha_1 \bar{x}_1 + \beta_2 \bar{x}_2 \\ \bar{x}_3 = \alpha_2 \bar{x}_2 + \beta_3 \bar{x}_3 \\ \bar{y} = \alpha_3 \bar{x}_3 \end{cases} \Rightarrow \begin{cases} \bar{x}_1 = 0.2 \bar{x}_1 + 4000 \\ \bar{x}_2 = 0.5 \bar{x}_1 + 0.2 \bar{x}_2 \\ \bar{x}_3 = 0.6 \bar{x}_2 + 0.5 \bar{x}_3 \\ \bar{y} = 0.5 \bar{x}_3 \end{cases} \Rightarrow \begin{cases} \bar{x}_1 = \frac{4000}{0.8} = 5000 \\ \bar{x}_2 = \frac{2500}{0.8} = 3125 \\ \bar{x}_3 = \frac{1875}{0.5} = 3750 \\ \bar{y} = 1875 \end{cases}$$

# 4 Sistema non lineare

Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti equazioni:

$$\begin{cases} x_1(t+1) &= 0.5x_1(t) + (x_2(t) - 2)(u(t) - 1) \\ x_2(t+1) &= 0.5x_2(t) + u(t) \\ y(t) &= x_1(t) \end{cases}$$

- A. scrivere le equazioni del sistema linearizzato attorno ad un generico punto di equilibrio  $(\bar{x}_1, \bar{x}_2, \bar{u})$ .
- B. si calcolino le condizioni di equilibrio corrispondenti all'ingresso  $u(t) = \bar{u} = 1$ .
- C. si determini il sistema linearizzato intorno alle condizioni di equilibrio trovate al punto precedente.
- D. determinare le proprietà di stabilità dei movimenti di equilibrio trovati.
- E. si calcoli il movimento dello stato del sistema con condizione iniziale  $(x_1(0), x_2(0)) = (0, 0)$  e ingresso pari a  $u(t) = \bar{u} = 1$ .

### Soluzione

A. Si definiscano le variabili  $\delta x_1 = x_1 - \bar{x}_1$ ,  $\delta x_2 = x_2 - \bar{x}_2$ ,  $\delta u = u - \bar{u}$  e  $\delta y = y - \bar{y}$ . Il sistema linearizzato è il seguente:

$$\begin{bmatrix} \delta x_1(t+1) \\ \delta x_2(t+1) \end{bmatrix} = A(\bar{x}_1, \bar{x}_2, \bar{u}) \begin{bmatrix} \delta x_1(t) \\ \delta x_2(t) \end{bmatrix} + B(\bar{x}_1, \bar{x}_2, \bar{u}) \delta u(t)$$

$$\delta y(t) = C(\bar{x}_1, \bar{x}_2, \bar{u}) \begin{bmatrix} \delta x_1(t) \\ \delta x_2(t) \end{bmatrix} + D(\bar{x}_1, \bar{x}_2, \bar{u}) \delta u(t)$$

where

$$A(\bar{x}_1, \bar{x}_2, \bar{u}) = \begin{bmatrix} 0.5 & \bar{u} - 1 \\ 0 & 0.5 \end{bmatrix}, B(\bar{x}_1, \bar{x}_2, \bar{u}) = \begin{bmatrix} \bar{x}_2 - 2 \\ 1 \end{bmatrix}, C(\bar{x}_1, \bar{x}_2, \bar{u}) = \begin{bmatrix} 1 & 0 \end{bmatrix}, D(\bar{x}_1, \bar{x}_2, \bar{u}) = 0$$

- B. Le equazioni del sistema all'equilibrio si ottengono ponendo  $x_1(t+1)=x_1(t)=\bar{x}_1, x_2(t+1)=x_2(t)=\bar{x}_2$  e u(t)=1. L'unica condizione di equilibrio e'  $(\bar{x}_1,\bar{x}_2,\bar{u})=(0,2,1)$ .
- C. Il sistema linearizzato intorno alla condizione di equilibrio trovata al punto precedente presenta le seguenti matrici di sistema:

$$A(\bar{x}_1, \bar{x}_2, \bar{u}) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}, B(\bar{x}_1, \bar{x}_2, \bar{u}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C(\bar{x}_1, \bar{x}_2, \bar{u}) = \begin{bmatrix} 1 & 0 \end{bmatrix}, D(\bar{x}_1, \bar{x}_2, \bar{u}) = 0$$

- D. La matrice di sistema A è diagonale. I suoi autovalori sono entrambi pari a 0.5, il cui modulo e' strettamente minore di 1. L'equilibrio trovato risulta pertanto un movimento asintoticamente stabile.
  - E. Ponendo  $u(t) = \bar{u} = 1$  le equazioni del sistema risultano lineari e disaccoppiate tra loro:

$$\begin{cases} x_1(t+1) &= 0.5x_1(t) \\ x_2(t+1) &= 0.5x_2(t) + 1 \\ y(t) &= x_1(t) \end{cases}$$

Pertanto la soluzione del sistema si ottiene calcolando separatamente i movimenti dei due stati:

$$\begin{array}{rcl} x_1(t) & = & 0 \\ x_2(t) & = & 2(1 - 0.5^t) \end{array}$$

# 5 Competizione aziendale

Un'azienda A si divide una determinata clientela con altre aziende con cui è in competizione. All'istante temporale 0 l'azienda A detiene il 30% della clintela. Per incrementare la propria quota di mercato (pacchetto clienti) decide di puntare su una campagna pubblicitaria che promette i seguenti risultati:

- l'azienda A conquisterà, ogni mese, un ventesimo dei clienti non suoi;
- l'azienda A perderà, ogni mese, un ventesimo dei propri clienti.

Assumendo che il numero di clienti complessivi rimanga invariato:

- A. costruire un modello in spazio di stato a tempo discreto in grado di descrivere l'evoluzione del pacchetto clienti dell'azienda A;
- B. studiare le proprietà di stabilità del sistema definito al punto a.
- C. studiare l'evoluzione del pacchetto clienti della azienda A nel tempo, e la soluzione in condizioni stazionarie;
- D. considerando il modello ottenuto al punto a. indipendentemente dal contesto applicativo, esistono delle condizioni iniziali non nulle per lo stato tali per cui  $x(t) \to 0$  per  $t \to +\infty$  (x(t) denota lo stato del sistema)?

Inoltre, esistono delle condizioni iniziali non nulle per lo stato tali per cui x(t) = x(0) per ogni t?

## Soluzione

A. Il modello ottenuto ha come stato

$$x(t) = \begin{bmatrix} x_A(t) \\ x_C(t) \end{bmatrix}$$

dove  $x_A(t)$  è il pacchetto clienti detenuto dall'azienda A, mentre  $x_C(t)$  è il pacchetto clienti detenuto dalle aziende in competizione con A. Si ha dunque che le condizioni iniziali del sistema sono  $x_A(0) = 30$ , mentre  $x_C(0) = 70$ . Il modello dinamico risultante è:

$$x(t+1) = \begin{bmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{bmatrix} x(t)$$

che è autonomo, dato che non prevede variabili di ingresso.

B. La matrice di transizione A è:

$$A = \begin{bmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{bmatrix}$$

Il polinomio caratteristico risulta  $p_A(\lambda) = \lambda^2 - 1.9\lambda + 0.9 = (\lambda - 0.9)(\lambda - 1)$ . Perciò gli autovalori risultano  $\lambda_1 = 1$  è  $\lambda_2 = 0.9$ . Il sistema è perciò semplicemente stabile.

C. Gli autovettori del sistema sono

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Le condizioni iniziali del sistema sono

$$x(0) = \begin{bmatrix} 30\\70 \end{bmatrix}$$

Si noti che il vettore x(0) può essere scritto come una combinazione lineare di  $v_1$  e  $v_2$ , cioè  $x(0) = 50v_1 - 20v_2$ . Per la linearità del sistema

$$x(t) = A^{t}x(0) = 50A^{t}v_{1} - 20A^{t}v_{2} = 50\lambda_{1}^{t}v_{1} - 20\lambda_{2}^{t}v_{2}$$

Cioè

$$x(t) = \begin{bmatrix} 50 - 20(0.9)^t \\ 50 + 20(0.9)^t \end{bmatrix}$$

Si ottiene quindi che  $x_A(t) = 50 - 20(0.9)^t \to 50\%$ .

Una soluzione alternativa consiste nel considerare  $x_A(t) = Cx(t)$ , dove  $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ . Come noto, il movimento libero della variabile  $x_A(t)$  è combinazione lineare dei modi del sistema, cioè  $\lambda_1^t = 1$  e  $\lambda_2^t = (0.9)^t$ . Cioè, si può scrivere

$$x_A(t) = \gamma_1 + \gamma_2(0.9)^t$$

Si ottiene che

$$x_A(0) = \gamma_1 + \gamma_2 = Cx(0) = 30$$
  
 $x_A(1) = \gamma_1 + \gamma_2(0.9) = CAx(0) = \begin{bmatrix} 0.95 & 0.05 \end{bmatrix} x(0) = 32$ 

Si ottiene che  $\gamma_1 = 50$  e  $\gamma_2 = -20$ , e dunque

$$x_A(t) = 50 - 20(0.9)^t \to 50\%$$

D. Le condizioni iniziali non nulle per lo stato tali per cui  $x(t) \to 0$  per  $t \to +\infty$  sono date dall'espressione  $x(0) = \gamma v_2$ , dove  $\gamma \in \mathbb{R}$ . Infatti, essendo  $v_2$  l'autovettore relativo all'autovalore  $\lambda_2 = 0.9$ ,  $x(t) = (0.9)^t x(0) \to 0$ .

Inoltre, le condizioni iniziali non nulle per lo stato tali per cui x(t) = x(0) per ogni t sono date dall'espressione  $x(0) = \gamma v_1$ , dove  $\gamma \in \mathbb{R}$ . Infatti, essendo  $v_1$  l'autovettore relativo all'autovalore  $\lambda_1 = 1$ ,  $x(t) = (1)^t x(0) = x(0)$ .

# Soluzione alternativa

A. Dato che nel testo viene specificato che il numero totale di clienti è costante è possibile rappresentare il sistema attraverso un modello del primo ordine, dove cioè  $x_C(t) = 100 - x_A(t)$ , ottenendo quindi il seguente modello dinamico

$$x_A(t+1) = 0.95x_A(t) + 0.05x_C(t) = 0.95x_A(t) + 0.05(100 - x_A(t)) = 0.9x_A(t) + 5$$

B. Il modello scalare ha la forma x(t+1) = ax(t) + bu(t), dove a = 0.9, b = 1, e presenta un ingresso costante u(t) = 5. L'autovalore è a = 0.9, e il modello risulta asintoticamente stabile.

C. La soluzione esplicita del sistema è data da  $x(t) = a^t x(0) + \sum_{k=1}^t a^{t-k} u(k-1)$ , e quindi

$$x_A(t) = (0.9)^t(30) + 5\sum_{k=0}^{t-1} (0.9)^k = 30(0.9)^t + 5\frac{1 - (0.9)^t}{1 - 0.9} = 30(0.9)^t - 50(0.9)^t + 50 = 50 - 20(0.9)^t \rightarrow 50\%$$

D. Considerando questo modello, non esiste alcuna condizione iniziale tale per cui  $x_A(t) \to 0$ , mentre se  $x_A(0) = 50$ , allora  $x_A(t) = 50$  per ogni t > 0. Infatti  $\bar{x}_A = 50$  è la soluzione d'equilibrio del sistema.