Convergence of Random Variables

Types of Convergence

■ Convergence in Probability

 $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ as $n \to \infty$ if for every $\varepsilon > 0$, we have:

$$P(|X_n-X|>arepsilon|) o 0 ext{ as } n o \infty$$

Suppose $X_n \sim \operatorname{Ber}(1/2).$ We will check if $X_n \stackrel{\mathbb{P}}{\longrightarrow} \operatorname{Ber}(1/2).$

For $\varepsilon \in (0,1)$, the event $\{|X_n-X|>\varepsilon\}$ is equivalent to $\{|X_n-X|=1\}$. This occurs with probability 1/2, which does not go to 0, so this does not converge in probability!

■ Convergence in Distribution

 $X_n \leadsto X$ as $n \to \infty$ if:

$$P(X_n \leq x) \to P(X \leq x) \text{ as } n \to \infty$$

for all x at which the cdf for X is continuous

For the above example, we do have $X_n \leadsto \mathrm{Ber}(1/2)$

Intuition:

- Converge in probability: focus on as n increases, probability that X_n deviates significantly from X is low
- Converge in distribution: focus on as n increases, the distributions are the same

Relationship Between Convergence

If $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ then $X_n \rightsquigarrow X$

📜 Convergence to a Constant

If $X_n \leadsto c$ for some deterministic constant c, then $X_n \stackrel{\mathbb{P}}{\longrightarrow} c$

Convergence in Probability of Sums and Products

If $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ and $Y_n \stackrel{\mathbb{P}}{\longrightarrow} Y$ then:

$$X_n + Y_n \stackrel{\mathbb{P}}{\longrightarrow} X + Y$$
 $X_n Y_n \stackrel{\mathbb{P}}{\longrightarrow} XY$

" Slutsky's Theorem

If $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$ for a deterministic constant c then:

$$X_n + Y_n \leadsto X + c$$

 $X_n Y_n \leadsto Xc$

For general Y_n , this does not hold. In fact, consider the example where $X_n \sim \mathcal{N}(0,1)$ and $Y_n = -X_n$

- Because normal variables are symmetric, $Y_n \sim \mathcal{N}(0,1)$
- $X_n + Y_n = 0$
- But we could choose Y=X as our limits (instead of \$Y = -X\$)
- ullet Then X_n+Y_n does not converge to 2X

Intuition:

- ullet From just the descriptions of X_n and Y_n individually, we can describe the distribution of the limits individually
- But we don't have information about their correlation
- We need this information to determine the distribution of sum of limits

Properties

" Continuous Mapping Theorem

If $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ then for continuous functions g, we have:

$$g(X_n) \stackrel{\mathbb{P}}{\longrightarrow} g(X)$$

Similar statement can be made for convergence in distribution.

' Delta Method

Let Y_n be a sequence of random variables such that:

$$rac{Y_n - \mu}{\sigma/\sqrt{n}} \leadsto Y \sim \mathcal{N}(0,1)$$

Then, for any differentiable g such that $g'(\mu) \neq 0$, we have:

$$rac{g(Y_n)-g(\mu)}{\sigma/\sqrt{n}} \leadsto \mathcal{N}(0,g'(\mu)^2)$$

This is typically applied to Y_n being a sample average of n samples.

Proof Sketch:

• First order Taylor expand g around μ :

$$\circ \ \ g(Y_n) - g(\mu) = g'(\mu)(Y_n - \mu)$$

• Divide both sides by σ/\sqrt{n} and note the RHS converges to $g'(\mu)\mathcal{N}(0,1)$, which is equivalent to $\mathcal{N}(0,g'(\mu)^2)$

Intuition:

• If we have some estimator Y_n for μ such that Y_n is normally distributed, then we can say that $g(Y_n)$ is also normally distributed with a specific variance

Slutsky's Theorem Example

When we only know the sample std dev and not the actual std dev and want to make a statistical test with CLT, we may be tempted to just replace the population std dev with the sample one

I.e. we have $rac{\overline{X_n}-\mu}{\sigma/\sqrt{n}}pprox \mathcal{N}(0,1)$ but we don't know σ .

We do know $\hat{\sigma}$, and the LLN tells us $\sigma/\hat{\sigma} \stackrel{\mathbb{P}}{\longrightarrow} 1$ since the sample variance is unbiased estimator.

Then Slutsky's Theorem tells us that multiplying this with the above gives us:

$$\overline{rac{X_n}{\hat{\sigma}/\sqrt{n}}}pprox \mathcal{N}(0,1)$$