Opto Semiconductors

OSRAM

Hybride Impuls-Laserdiode mit integrierter Treiberstufe 14 W Spitzenleistung Hybrid Pulsed Laser Diode with Integrated Driver Stage 14 W Peak Power

Lead (Pb) Free Product - RoHS Compliant

SPL LL85

Besondere Merkmale

- Kleines kostengünstiges Plastik-Gehäuse
- Integriert sind ein FET und Kondensatoren zur Impulsansteuerung
- InAlGaAs/GaAs kompressiv verspannte Quantenfilmstruktur
- Hochleistungslaser mit "Large-Optical-Cavity" (LOC) Struktur
- Laserapertur 200 μm x 2 μm
- Schneller Betrieb (< 30 ns Impulsbreite)
- Niedrige Versorgungsspannung (< 9 V)

Anwendungen

- Entfernungsmessung
- Sicherheit, Überwachung
- Beleuchtung, Zündung
- Test- und Messsysteme

Sicherheitshinweise

Je nach Betriebsart emittieren diese Bauteile hochkonzentrierte, nicht sichtbare Infrarot-Strahlung, die gefährlich für das menschliche Auge sein kann. Produkte, die diese Bauteile enthalten, müssen gemäß den Sicherheitsrichtlinien der IEC-Norm 60825-1 behandelt werden.

Features

- Low cost, small size plastic package
- Integrated FET and capacitors for pulse control
- Strained InAlGaAs/GaAs QW-structures
- High power large-optical-cavity laser structure
- Laser aperture 200 μm x 2 μm
- High-speed operation (< 30 ns pulse width)
- Low supply voltage (< 9 V)

Applications

- Range finding
- Security, surveillance
- Illumination, ignition
- · Testing and measurement

Safety advices

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 "Safety of laser products".

Typ	Opt. Spitzenausgangsleistung Opt. Peak Power	Wellenlänge	Bestellnummer
Type		Wavelength	Ordering Code
SPL LL85	14 W	850 nm	Q62702P3558

2006-04-12

Grenzwerte (kurzzeitiger Betrieb) ($T_{\rm A}$ = 25 °C) Maximum Ratings (short time operation)

Parameter Parameter	Symbol Symbol	Werte Values		Einheit Unit	
		min.	max.		
Spitzenausgangsleistung Peak output power	P_{opt}	_	18	W	
Ladespannung ($V_{\rm G}$ = 15 V) Charge voltage ($V_{\rm G}$ = 15 V)	V_{C}		9	V	
Gate-Spannung Gate voltage	V_{G}	- 20	+ 20	V	
Tastverhältnis Duty cycle	d.c.	-	0.1	%	
Betriebstemperatur Operating temperature	T_{op}	- 40	+ 85	°C	
Lagertemperatur Storage temperature	$T_{ m stg}$	- 40	+ 100	°C	
Löttemperatur ($t_{max} = 10 \text{ s}$) Soldering temperature ($t_{max} = 10 \text{ s}$)	T_{s}	_	+ 260	°C	

Optische Kennwerte ($T_{\rm A}$ = 25 °C) Optical Characteristics

Parameter Parameter	Symbol Symbol	Werte Values			Einheit Unit
		min.	typ.	max.	
Zentrale Emissionswellenlänge ¹⁾ Emission wavelength ¹⁾	λ	840	850	860	nm
Spektralbreite (Halbwertsbreite) ¹⁾ Spectral width (FWHM) ¹⁾	Δλ	-	4	9	nm
Spitzenausgangsleistung ¹⁾ Peak output power ¹⁾	P_{opt}	12	14	18	W
Ladespannung an der Laserschwelle Charge Voltage at laser threshold	$U_{C,th}$	1.2	1.5	2.0	V
Pulsbreite (Halbwertsbreite) ^{1), 2)} Pulse width (FWHM) ^{1), 2)}	t_{p}	25	28	31	ns
Anstiegs- und Abfallzeit (10% 90%) ^{1), 2)} Rise and fall time (10% 90%) ^{1), 2)}	$t_{r}, \ t_{f}$	7.0 26	9.5 29	12.0 32	ns ns
Austrittsöffnung Aperture size	$w \times h$	_	200 × 2	_	μ m ²
Strahldivergenz (Halbwertsbreite) parallel zum pn-Übergang ¹⁾ Beam divergence (FWHM) parallel to pn junction ¹⁾	$\theta_{ }$	12	15	18	Grad deg.
Strahldivergenz (Halbwertsbreite) senkrecht zum pn-Übergang ¹⁾ Beam divergence (FWHM) perpendicular to pn-junction ¹⁾	θ_{\perp}	27	30	33	Grad deg.
Temperaturkoeffizient der Wellenlänge Temperature coefficient of wavelength	$\partial \lambda$ / ∂T	-	0.25	0.32	nm/K
Thermischer Widerstand Thermal resistance	R_{th}	-	200	_	K/W
Einschaltpunkt der Gate-Spannung Switch on gate voltage	$V_{G \; on}$	-	4.5	-	V

Werte beziehen sich auf folgende Standardbetriebsbedingung: >40ns Trigger-Pulsbreite, 1kHz Pulswiederholrate, 6.7V Ladespannung, 15V Gate-Spannung und 25°C Umgebungstemperatur. Der Laser wird angesteuert mit dem MOSFET-Treiber Elantec EL7104C.

2006-04-12

Values refer to the following standard operating conditions: >40ns trigger pulse width, 1kHz pulse repetition rate, 6.7V charge voltage, 15V gate voltage and 25 °C ambient temperature. The laser is driven by the MOSFET driver Elantec EL7104C.

Die Schaltgeschwindigkeit ist abhängig von Strom und Geschwindigkeit, mit der die Gate-Kapazität (typ. 300pF) des internen Transistors geladen wird. Kürzere Pulsbreiten, Anstiegs- und Abfallzeiten erhält man bei Trigger-Pulsbreiten <40ns. Dies bewirkt jedoch auch eine reduzierte optische Spitzenleistung (siehe Diagramme auf Seite 5).

Switching speed at gate depends on current and speed, charging the gate capacitance (typ. 300pF) of the internal transistor. Reduced pulse widths, rise and fall times occur at trigger pulse widths <40ns. This also reduces the optical peak power (see diagrams on page 5).

Optical output power $P_{\rm opt}$ vs charge voltage $V_{\rm c}$ ($t_{\rm p}$ = 30 ns, PRF = 1 kHz, V_G = 15 V)

Far-field distribution parallel to junction I_{rel} vs. angle θ_{\parallel}

Optical spectrum, relative intensity $I_{\rm rel}$ vs. wavelength λ ($P_{\rm opt}$ = 14 W, $t_{\rm p}$ = 30 ns)

Far-field distribution perpendicular to junction $\emph{I}_{\rm rel}$ vs. angle θ_{\perp}

Optical pulse form for variing trigger pulse widths (MOSFET driver Elantec EL7104C)

Optical peak power, fall and rise time vs. pulse width (MOSFET driver Elantec EL7104C)

Optical pulse width vs. trigger pulse width (MOSFET driver Elantec EL7104C)

Optical peak power vs. optical pulse energy (MOSFET driver Elantec EL7104C)

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Published by OSRAM Opto Semiconductors GmbH

© All Rights Reserved.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS.

¹ A critical component is a component usedin a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.