Höhere Mathematik 2

Asha Schwegler

9. Juni 2022

Inhaltsverzeichnis

1	Funktionen mit mehreren Variablen	2
	1.1 Partielle Ableitungen	2
	1.2 Linearisierung von Funktionen	2
	1.3 Das Newton-Verfahren für Systeme	2
2	Ausgleichsrechnung 2.1 Das Gauss Newton-Verfahren	3
3	Numerische Integration	3
4	Einführung in gewöhnliche Differentialgleichungen	3

Funktionen mit mehreren Variablen 1

Partielle Ableitungen

$$m = f'(x_0)$$
 im Punkt $(x_0, f(x_0))$

Tangentengleichung

Beispiel: P(1,3)

$$t_x = \underbrace{f(x_1, x_2)}_{\text{f(1,3)}} + \underbrace{\frac{\delta f}{\delta x_1}(x_1^{(0)}, x_2^{(0)})}_{\text{nach } x_1} * (x_1 - x_1^{(0)}) + \underbrace{\frac{\delta f}{\delta x_2}(x_1^{(0)}, x_2^{(0)})}_{\text{nach } x_2} * (x_2 - x_2^{(0)})$$

1.2 Linearisierung von Funktionen

Jacobi-Matrix Df(x)

Jacobi-Matrix enthält sämtliche partiellen Abl.1.Ord.von f:

Jacobi-Matrix entrial sainting
$$\begin{bmatrix} \frac{\delta f_1}{\delta x_1} & \frac{\delta f_1}{\delta x_2} & \dots & \frac{\delta f_1}{\delta x_n} \\ \frac{\delta f_2}{\delta x_1} & \frac{\delta f_2}{\delta x_2} & \dots & \frac{\delta f_2}{\delta x_n} \\ \frac{\delta f_m}{\delta x_1} & \frac{\delta f_m}{\delta x_2} & \dots & \frac{\delta f_m}{\delta x_n} \end{bmatrix}$$
Beispiel:

$$f(x) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_1) \end{bmatrix} = \begin{bmatrix} x_1^2 + x_2 - 11 \\ x_1 + x_2^2 - 7 \end{bmatrix}$$

$$x^{(0)} = (1,1)^T$$

Partielle Ableitung:

$$Df(x_1, x_2) = \begin{bmatrix} 2x_1 & 1\\ 1 & 2x_2 \end{bmatrix}$$

An der Stelle $x^{(0)}$

$$Df(x_1^{(0)}, x_2^{(0)}) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Linearisierung:

Eine a sier ung.
$$g(x) = f(x^{(0)}) + Df(x^{(0)}) * (x - x^{(0)})$$

$$g(x_1, x_2) = \begin{bmatrix} -9 \\ -5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} * \begin{bmatrix} x_1 - 1 \\ x_2 - 1 \end{bmatrix} = \begin{bmatrix} 2x_1 + x_2 - 12 \\ x_1 + 2x_2 - 8 \end{bmatrix}$$
Clairbung des Tengratials and

Gleichung der Tangentialebene:

Alle angelegten Tangenten an die Bildfläche $y = f(x - 1, x_2)$ im Flächenpunkt $P = f(x_1^{(0)}, x_2^{(0)})$

2

1.3 Das Newton-Verfahren für Systeme

- Konvergiert quadratisch wenn Df(x) regulär, und f 3-mal stetig differenzierbar ist.
- Vereinfachtes Newton Verfahren konvergiert linear.

Mögliche Abbruchkriterien: > 0

- 1. $n \ge n_{max}$ (bestimmte Anzahl Iterationen)
- 2. $||x^{n+1} x^n|| \le ||x^{n+1}|| \le \text{(relativer Fehler)}$

- 3. $||x^{n+1} x^n|| \le (absoluter Fehler)$
- 4. $||f(x^{n+1})|| \le (\max \text{ residual})$
- 2 Ausgleichsrechnung
- 2.1 Das Gauss Newton-Verfahren
- 3 Numerische Integration
- 4 Einführung in gewöhnliche Differentialgleichungen