全国 2017 年 10 月高等教育自学考试

数量方法(二)试题

课程代码:00994

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意	事	项	
1-10	~	~	

1. 答题前,考生务必将自己的考试课程	是名称、姓名、准考证号	用黑色字迹的签	签字笔或钢笔
填写在答题纸规定的位置上。			

- 2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡 皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
- 一、单项选择题: 本大题共 20 小题, 每小题 2 分, 共 40 分。在每小题列出的备选项中
- 只有一项是最符合题目要求的,请将其选出。 1. 一般用来描述和表现各成分占全体的百分比的图形是
 - B. 饼形图 A. 条形图 2. 已知甲组工人的平均工资为 1000 元,标准差为 100 元; 乙组工人的平均工资为 800 元,标准差为96元。则工资水平差异较大的一组是

C. 柱形图 D. 线型图

- C. 两组相等 D. 不能确定 B. 乙组 A. 甲组
- 3. 某种股票的价格周二上涨了10%,周三上涨了4%,两天累计涨幅达
- D. 14.4% B. 5% C. 14% A. 4%
- 4. 设随机变量 X 服从正态分布 N (3, 16),则随机变量 X 的标准差为
- C. 12 B. 9
- 5. 己知 P (A) =0.4, P (B|A) =0.7, 则 P (A-B) =
- C. 0.12 D. 0.56 B. 0.02 A, 0
- 6. 袋中有红、黄、兰球各一个,每一次从袋中任取一球,看过颜色后再放回袋中,共 取球三次, 颜色全相同的概率为

 - A. 1/9 B. 1/3
- C. 5/9
- D. 8/9

D. 16

7.	随机变量 X 服从正	态分布 N(μ, σ²), 则随	着σ的减小,概率 P(\overline{X} - μ \mid $<\sigma$)将会
	A. 增加	B. 减少	C. 不变	D. 增减不定
8.	设X与Y为随机变	E量, D(X) =3, D(Y	=2, $Cov(X, Y)=0$,	则 D (5X-3Y) =
	A. 8	B. 9	C. 87	D. 93
9.	使用 χ^2 分布进行拟	合优度检验时,要求每	一类的理论频数	
	A. 大于 0	B. 不小于 5	C. 不小于 8	D. 不小于 10
10.	从总体 N(μ,σ²)中	重复抽取容量为 n 的样	本,则样本均值 \overline{X} 的 δ	示准差为
	Α. σ	B. σ ²	C. o/n	D. σ/\sqrt{n}
11.		期望与待估的总体真实		
	A. 均值	B. 方差	C. 标准差	D. 偏差
12.	· ·	5)中的 μ进行检验时,第		
	A. T 统计量	B. Z 统计量	C. F 统计量	D. χ^2 统计量
13.	在大样本情况下,为	对于总体均值的区间估i	计,若样本容量保持不	变,当增大置信水
	平时,置信区间			
	A. 将变宽		B. 将变窄	
	C. 保持不变		D. 宽窄无法确定	
14.	已知变量X与Y负	(相关,则其回归方程可	「能是	
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	D = M - 71 + 20M
		B. Y=4+16X		
15.		B.Y=4+16X 程为 Y=a+bX,若已知 I		
15.	设一元线性回归方		$b=2$, $\overline{X}=20$, $\overline{Y}=15$,	则a等于
	设一元线性回归方 A28	程为 Y=a+bX,若已知 l	b=2, $\overline{X} = 20$, $\overline{Y} = 15$, C. 25	则 a 等于 D. 28
16.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析	程为 Y=a+bX,若已知 I B25 两个变量之间线性关系 B. 定量分析	b=2,	则 a 等于 D. 28 进行 D. 相关分析
16.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析	程为 Y=a+bX,若已知 I B.-25 两个变量之间线性关系	b=2,	则 a 等于 D. 28 进行 D. 相关分析
16.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 己知销售额(Y)对 的实际意义是	程为 Y=a+bX,若已知 I B25 两个变量之间线性关系 B. 定量分析 广告费用 (X) 的回归方	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为 Y =331.8+3.651	则 a 等于 D. 28 进行 D. 相关分析
16.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 已知销售额(Y)对 的实际意义是 A. 广告费用增加一	程为 Y=a+bX,若已知 IB25 两个变量之间线性关系 B. 定量分析 广告费用 (X) 的回归方	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y =331.8+3.651 均增加 3.651 个单位	则 a 等于 D. 28 进行 D. 相关分析
16.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 已知销售额(Y)对 的实际意义是 A. 广告费用增加- B. 广告费用为0日	程为 Y=a+bX, 若已知 B25 两个变量之间线性关系 B. 定量分析 广告费用(X)的回归方 一个单位时,销售额平均	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y =331.8+3.651 均增加 3.651 个单位 3.651 个单位	则 a 等于 D. 28 进行 D. 相关分析
16.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 己知销售额(Y)对 的实际意义是 A. 广告费用增加- B. 广告费用为0甲 C. 广告费用变动-	程为 Y=a+bX,若已知 B25 两个变量之间线性关系的 B. 定量分析	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y =331.8+3.651 匀增加 3.651 个单位 3.651 个单位 和 3.651 个单位	则 a 等于 D. 28 进行 D. 相关分析
16. 17.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 已知销售额(Y)对 的实际意义是 A. 广告费用增加一 B. 广告费用为0甲 C. 广告费用变动一 D. 销售额变动一	程为 Y=a+bX,若已知 B25 两个变量之间线性关系 B. 定量分析 广告费用(X)的回归方一个单位时,销售额平均,销售额的期望值为 3 一个单位时,销售额增加个单位时,销售额增加个单位时,广告费用平均	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y=331.8+3.651 匀增加 3.651 个单位 3.651 个单位 切增加 3.651 个单位	则 a 等于 D. 28 进行 D. 相关分析 X, 回归系数 3.651
16. 17.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 己知销售额(Y)对 的实际意义是 A. 广告费用增加- B. 广告费用为0日 C. 广告费用变动一 D. 销售额变动一 根据各季度商品销	程为 Y=a+bX,若已知 B25 两个变量之间线性关系 B. 定量分析 广告费用 (X) 的回归方一个单位时,销售额平均,销售额的期望值为第一个单位时,销售额增加个单位时,广告费用平均售额数据计算的各季度	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y =331.8+3.651 均增加 3.651 个单位 3.651 个单位 切 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位	则 a 等于 D. 28 进行 D. 相关分析 X, 回归系数 3.651
16. 17.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 已知销售额(Y)对 的实际意义是 A. 广告费用增加- B. 广告费用为0日 C. 广告费用变动一 及. 销售额变商品销 三季度60%,四季	程为 Y=a+bX,若已知 B25 B25 两个变量之间线性关系 B. 定量分析 广告费用 (X) 的回归方一个单位时,销售额平均,销售额的期望值为 10个单位时,广告费用平均 10个单位时,广告费用平均 100%。相对来讲受到 100%。相对来讲受到	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为 Y =331.8+3.651 均增加 3.651 个单位 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位	则 a 等于 D. 28 进行 D. 相关分析 X,回归系数 3.651
16.17.18.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 已知销售额(Y)对 的实际意义是 A. 广告费用增加 B. 广告费用为0甲 C. 广告费用变动一 D. 销售额变商品销 三季度60%,四季 A. 一季度	程为 Y=a+bX,若已知 B25 两个变量之间线性关系 B. 定量分析 广告费用(X)的回归方一个单位时,销售额平均,销售额的期望值为第一个单位时,销售额增加个单位时,销售额数据计算的各季度等 90%。相对来讲受到 B. 二季度	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y=331.8+3.651 匀增加 3.651 个单位 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 大学位 大学位 大学位 大学位 大学位 大学位 大学位 大学位 大学位 大学	则 a 等于 D. 28 进行 D. 相关分析 X,回归系数 3.651
16.17.18.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 己知销售额(Y)对的实际。广告数果的。 方告费用为0时 C. 广告费用变动一 D. 销售额度商品的。 根据各季度60%,四季 A. 一季度 称由两个不同时期	程为 Y=a+bX,若已知 B25 B25 两个变量之间线性关系 B. 定量分析 广告费用 (X) 的回归方一个单位时,销售额平均,销售额的期望值为 10个单位时,广告费用平均 10个单位时,广告费用平均 100%。相对来讲受到 100%。相对来讲受到	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y=331.8+3.651 均增加 3.651 个单位 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 打数为: 一季度 130% 下因素影响最大的是 C. 三季度	则 a 等于 D. 28 进行 D. 相关分析 X,回归系数 3.651
16.17.18.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 已知销售额(Y)对 的实际意义是 A. 广告费用增加 B. 广告费用为0甲 C. 广告费用变动一 D. 销售额变商品销 三季度60%,四季 A. 一季度	程为 Y=a+bX,若已知 B25 两个变量之间线性关系 B. 定量分析 广告费用(X)的回归方一个单位时,销售额平均,销售额的期望值为第一个单位时,销售额增加个单位时,销售额数据计算的各季度等 90%。相对来讲受到 B. 二季度	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为 Y =331.8+3.651 个单位 3.651 个单位 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 指数为: 一季度 130% 节因素影响最大的是 C. 三季度 数为 B. 质量指数	则 a 等于 D. 28 进行 D. 相关分析 X,回归系数 3.651
16.17.18.	设一元线性回归方 A28 用相关系数来研究 A. 定性分析 己知销售额(Y)对的实际。广告数果的。 方告费用为0时 C. 广告费用变动一 D. 销售额度商品的。 根据各季度60%,四季 A. 一季度 称由两个不同时期	程为 Y=a+bX,若已知 B25 两个变量之间线性关系 B. 定量分析 广告费用(X)的回归方一个单位时,销售额平均,销售额的期望值为第一个单位时,销售额增加个单位时,销售额数据计算的各季度等 90%。相对来讲受到 B. 二季度	b=2, \overline{X} =20, \overline{Y} =15, C. 25 的紧密程度时,应当先 C. 回归分析 程为Y=331.8+3.651 均增加 3.651 个单位 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 均增加 3.651 个单位 打数为: 一季度 130% 下因素影响最大的是 C. 三季度	则 a 等于 D. 28 进行 D. 相关分析 X,回归系数 3.651

20. 某企业今年与去年相比,产量增长了15%,单位产品成本增长了10%,则总生产费用增长

A. 4.5%

B. 15%

C. 26.5%

D. 36.5%

非选择题部分

注意事项:

用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

- 二、填空题: 本大题共5空, 每空2分, 共10分。
- 21. 如果两变量无线性相关关系,则其回归方程的回归系数为____。
- 22. 在保持样本容量和抽样方式不变的情况下,若要提高置信度则置信区间
- 23. 对样本数据进行加工并用来判断是否接受原假设的统计量称为 。
- 24. 变量之间的关系可分为两种类型,即函数关系和____。
- 25. 在趋势分析中, 对于趋势线的选择, 若数据的二次差大体相同, 可配合______
- 三、计算题: 本大题共6小题,每小题5分,共30分。
- 26. 一场篮球比赛中,双方 20 名球员得分情况的分组数据如题 26 表所示。试计算平均数和方差。

分组界限	频率
[1,5]	7
[6,10]	7
[11,15]	4
[16,20]	2

题 26 表

- 27. 某厂生产一批螺丝钉,甲、乙、丙三台机床生产的螺丝钉分别占总量的 30%, 20%, 50%。这三台机床的废品率分别为 3%, 5%, 2%。求从这批螺丝钉中抽取一只为废品的概率。
- 28. 3 名射手射击同一目标,各射手的命中率均为 0.7,求在一次同时射击中
 - (1)目标被击中的概率;
 - (2)目标被击中的期望数。
- 29. 某市场调查机构对某品牌家电进行市场调查,一共随机调查了 1000 名顾客,其中有 700 人表示喜欢该品牌家电。试以 95%的可靠性估计喜欢该品牌家电的顾客比例 P 的置信区间。($Z_{0.05}$ =1.645, $Z_{0.025}$ =1.96)

30. 某地 2010-2014 年某产品产量如题 30 表所示:

年份	产量 (千件)
2010	20
2011	22
2012	24
2013	27
2014	30

题 30 表

试应用最小二乘法配合趋势直线,并预测 2016 年产量。

31. 已知两种商品的销售资料如题 31 表所示:

→ □ 0.16 × 0.		销售额(万元)		销售量个体指数%
商品名称	単位	基期	报告期	销售里个个指数%
甲	件	500	800	120
	双	450	420	90

题 31 表

计算: (1) 计算销售额总指数;

(2) 以基期销售额为权数计算销售量指数。

- 四、应用题:本大题共2小题,每小题10分,共20分。
- 32. 对某城市禁止在公共场所吸烟的调查中,接受调查的 400 名男性中有 200 人赞同禁止在公共场所吸烟,接受调查的 400 名女性中有 240 人赞同禁止在公共场所吸烟。
 - (1) 求男性、女性赞同禁止在公共场所吸烟的比例。(4分)
 - (2) 关于禁止在公共场所吸烟,女性赞同的比例是否显著高于男性(可靠性取 95%)? 给出相应假设检验的原假设和备择假设(6分)($Z_{0.05}$ =1.645, $Z_{0.025}$ =1.96)
- 33. 检查 5 位同学《数量方法》课的学习时间与学习成绩间的关系,得到如题 33 表所示的数据:

学习时间(小时)	学习成绩(分)
4	40
6	60
7	50
10	70
13	90

题 33 表

要求:

- (1) 计算学习时间与学习成绩之间的简单相关系数;(3分)
- (2) 确定学习成绩依赖学习时间的直线回归方程;(5分)
- (3) 计算回归方程的估计标准误差。(2分)