Reconocimiento de patrones

Clase 4: Propiedades geométricas

Mini quizz
$$d(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^{n-1} \sum_{j=1}^n w_{ij} x_i x_j + \sum_{i=1}^n w_{ii} x_i^2$$

- Si n = 3, ¿Cuál es el tamaño de N?
- En general, ¿cuál es el tamaño de N dado $n \in \mathbb{N}$?

Notas

• $\frac{(n+1)(n+2)}{2}$ es el número de términos necesarios para representar una función de decisión cuadrática general

Notas

• $\frac{(n+1)(n+2)}{2}$ es el número de términos necesarios para representar una función de decisión cuadrática general

•
$$M(n,m) = {n+m \choose m} = \frac{(n+m)!}{n!m!}$$
 para el caso de orden m

Funciones de decisión polinomiales

- $f_i(x) = x_{i1}^{e_1} x_{i1}^{e_2} \dots x_{im}^{e_n}$
- Donde $1 \le i_1, \dots, i_m \le n$, e_i , $1 \le i \le m$ es 0 o 1 y $i_1 \le i_2 \le \dots i_m$.
- Teorema: Sea $d^m(x)$ la función de decisión polinomial general de orden m. Entonces

$$d^{m}(x) = \sum_{i_{1}=1}^{n} \sum_{i_{2}=i_{1}}^{n} \dots \sum_{m=i_{m-1}}^{n} w_{i_{1}i_{2}\dots i_{m}} x_{i_{1}} x_{i_{2}} \dots x_{i_{m}} + d^{m-1}(x)$$

• Donde $d^0(x) = w_{n+1}$

Funciones de decisión polinomiales

- $f_i(x) = x_{i1}^{e_1} x_{i1}^{e_2} \dots x_{im}^{e_n}$
- Donde $1 \le i_1, \dots, i_m \le n$, e_i , $1 \le i \le m$ es 0 o 1 y $i_1 \le i_2 \le \dots i_m$.
- Teorema: Sea $d^m(x)$ la función de decisión polinomial general de orden m. Entonces

$$d^{m}(x) = \sum_{i_{1}=1}^{n} \sum_{i_{2}=i_{1}}^{n} \dots \sum_{m=i_{m-1}}^{n} w_{i_{1}i_{2}\dots i_{m}} x_{i_{1}} x_{i_{2}} \dots x_{i_{m}} + d^{m-1}(x)$$

- Donde $d^0(x) = w_{n+1}$
- ¿Siempre es necesario aplicar todos los términos?

Algunas preguntas finales...

• ¿Qué es una función de decisión lineal?

Algunas preguntas finales...

• ¿Cuándo puede decirse que los patrones son geométricamente separables?

Tarea 1

- (25 puntos) Dos funciones de decisión lineales para C_1 y C_2 son $d_1(x) = 2 x_1$ y $d_1^*(x) = 3 x_1$, ¿cuál es mejor y por qué?
- (25 puntos) Sean $x, y \in C_1$ y sea $z = \frac{x+y}{2}$ pertenecen a C_2 . ¿Son C_1 y C_2 linealmente separables?
- (25 puntos) Presente la función de decisión general para un polinomio de 4to orden para un espacio 2D
- (20 puntos) Calcule M(n, m) para $1 \le n, m \le 5$
- (5 puntos) Demostrar la fórmula de M(n, m)

Para el día de hoy...

• Propiedades geométricas

Discusión geométrica

Las funciones de decisión lineal juegan un rol significativo en reconocimiento de patrones

Es esencial observar la interpretación geométrica de sus propiedades

Hiperplanos

- Sea \mathbb{R}^n el espacio original de patrones y consideremos un problema multiclase.
- Una función de decisión lineal está determinada por

$$d(x) = w_1 x_1 + \dots + w_n x_n + w_{n+1} = 0$$

- Que define una frontera de decisión lineal
- $d(x) = w_0^T x + w_{n+1} = 0$
- Es la versión vectorial donde $x = (x_1, ..., x_n)^T$ y $w_0 = (w_1, ..., w_n)^T$

Propiedades básicas

- Consideremos el hiperplano H. Sea n el vector normal unitario en algún punto P de H, apuntando a su lado positivo
- Sean y = OP y sea x = OQ puntos arbitrarios en el hiperplano. Entonces, la ecuación del hiperplano puede ser reescrita como

$$n^T Q P = n^T (x - y) = 0$$

• O como

$$n^T x = -n^T y$$

Un poco de manipulación

- Podemos comparar ambas ecuaciones
 - Normalizamos la ecuación previa por $||w_0|| = (w_1^2 + \dots + w_n^2)^{\frac{1}{2}}$
 - Para obtener $\frac{w_0^T x}{||w_0||} = -\frac{w_{n+1}}{||w_0||}$
 - Dado que las ecuaciones representan el mismo hiperplano y dado que n y $\frac{w_0}{||w_0||}$ son vectores unitarios, entonces $n=\frac{w_0}{||w_0||}$ o $n=-\frac{w_0}{||w_0||}$
 - n fue elegido en el lado positivo del hiperplano por lo que
 - $w_0^T(y+n) + w_{n+1} > 0$
 - Y dado que $w^Ty + w_0 = 0$ obtenemos $w^Tn > 0$ por lo que $n = \frac{w_0}{||w_0||}$
 - Y por consecuencia

$$n^T y = -\frac{w_{n+1}}{\left| |w_0| \right|}$$

Un poco de manipulación II

• La cantidad $|n^Ty|$ mide la distancia normal D_0 entre el origen y el hiperplano H

$$D_0 = \frac{|w_{n+1}|}{||w_0||}$$

 La distancia entre un punto arbitrario R, asociado al vector z del hiperplano es

$$D_z = |n^T(y - z)| = |n^T(z - y)|$$

• Y a partir de las ecuaciones anteriores

$$D_z = \left| \frac{w_0^T}{||w_0||} (z - y) \right| = \left| \frac{(w_0^T z + w_{n+1})}{||w_0||} \right|$$

• El caso particular donde $w_{n+1}=0$ el hiperplano pasa por el origen dado que $D_0=0$

Ejercicios

- 1. Considere la frontera $3x_1 + 4x_2 5 = 0$ en \mathbb{R}^2 . Calcular
 - ||w||
 - n
 - La distancia al patrón ubicado en $(1,2)^T$ a la frontera de decisión
- 2. Consideremos un sistema de clasificación de dos clases utilizando como frontera de decisión el siguiente plano

$$2x_1 - x_2 + 2x_3 - 7 = 0$$

Si queremos excluir aquellos patrones que están a menos de 0.01, ¿Qué deberíamos hacer con el patrón (0.51, 0, 3)?