

本节主题:

数组的基本概念与存储结构

本章内容

- □ 数组的基本概念与存储结构
- □ 特殊矩阵的压缩存储
- □ 稀疏矩阵的三元组表示
- □ 稀疏矩阵的十字链表表示
- □广义表
- □ 广义表的存储结构及基本运算的实现

不同语境中的数组

- □ 数据结构视角下的数组
 - 应数组A是n(n>1)个相同类型数据元素a₁、a₂、...、an构成的有限序列
 - 数组的逻辑表示: A=(a₁, a₂, ..., aₙ)
 - 应 其中, a; (1≤i≤n)表示数组A的第i个元素
- □ C/C++ 语言中的数组

#define N 100

int a[N]

维数不同的数组

一维数组,由多个数据元素构成

二维数组:每个数据元素都是相同 类型的一维数组的一维数组。 □ 多维数组都可以看作一个线性表,线性 表中的每个数据元素也是一个线性表。

- □ d(d≥3)维数组,看作一个由d-1维数组作为数据元素的线性表;
- 数组是一种较复杂的线性表结构,由简单的数据结构即线性表辗转 合成而得。

数组的基本运算

- □ Value(A, index₁, index₂, ..., index_d)——返回各下标指定的A中的对应元素的值
 - △ A是已存在的 d 维数组, index1, index2, ..., indexd是指定的d个下标值, 且这些下标均未越界。
 - ─ 例:对二维数组: Value(A, i, j)
- □ Assign(A,e,index₁,index₂,...,index₀)——将e赋值给由各下标指定的A中元素
 - △ A是已存在的d维数组,e为元素变量,index1,index2,...,indexd 是指定的d个下标值,且这些下标均未越界。
 - ─ 例:对二维数组:Assign(A, e, i, j)
- □ ADisp(A,b₁,b₂,...,b_d):輸出d维数组A的所有元素值

数组的存储结构

- □ 要求
 - □ 数组的所有元素存储在一块地址连续的内存单元中。
- 🗀 实现
 - □ 几乎所有的计算机语言都支持数组类型
- □ 数组数据类型的性质(以C/C++语言为例)
 - (1)数组中的数据元素数目固定,一旦定义,其数据元素数目不再有增减变化。
 - (2)数组中的数据元素具有相同的数据类型。
 - (3)数组中的每个数据元素都和一组唯一的下标值对应。

0x12FF00	a[0]		
0x12FF04	a[1]		
0x12FF08	a[2]		
0x12FF0C	a[3]		
0x12FF24	a[9]		

a|9|

一维数组的存储地址

- □ 条件
 - □ 一维数组
 - □ a₁ 的存储地址: LOC(a₁)
 - 应 每个数据元素占用的存储单元数: k
- □ 任一数据元素a_i的存储地址LOC(a_i)为
 LOC(a_i)=LOC(a₁)+(i-1)*k (0≤i≤n)
- □ 特点
 - □ 一维数组中任一数据元素的存储地址可直接计算得到,即一维数组中任一数据元素可直接存取
 - 应 一维数组是一种随机存储结构。

$loc(a_1)$

a1 a2 a3	•••	ai	•••	an

loc(a:)

怎么看?

- □顺序存储结构用数组实现
 - ——从占用存储空间角度
- □ 数组是随机存储结构
 - ——从存取数据角度

二维数组的表示和存储

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & a_{ij} & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- □ 以行序为主序的存储方式:即先存储第1行,然后紧接着存储第2行,最后存储第m行
 - □ 行序为主序的线性排列次序:a₁₁,a₁₂,...,a_{1n},a₂₁,a₂₂,...,a_{2n},...,a_{m1},a_{m2},...,a_{mn}
 - □ 任一数据元素a_{ij}的存储地址:LOC(a_{ij})=LOC(a₁₁)+[(i-1)*n+(j-1)]*k
- □ 以列序为主序的存储方式:即先存储第1列,然后紧接着存储第2列,最后存储第m列
 - □ 列序为主序的线性排列次序:a₁₁,a₂₁,...,a_{m1},a₁₂,a₂₂,...,a_{m2},...,a_{1n},a_{2n},...,a_{mn}
 - □ 任─数据元素a_{ij}的存储地址:LOC(a_{ij})=LOC(a₁₁)+[(j-1)*m+(i-1)]*k

对数组A[C₁...d₁, C₂...d₂]

□ 特点

行下标:c₁至d₁

□ 列下标: c₂至d₂

□ 数据元素a_{ii}的存储地址

$$c_1=0$$
, $d_1=4$, $c_2=0$, $d_2=3$, LOC($a_{c1}a_{c2}$)=2000, k=4, i=3, j=2

