Solución del ejercicio dos de la práctica calificada N°2 de física I por

Oromion Aznarán

6 de octubre de 2016

2) Una superficie puede representarse mediante un vector de módulo igual a su área y dirección perpendicular a la superficie. Usando este concepto muestre que el movimiento con aceleración constante \vec{a} y velocidad inicial $\vec{v_o}$, no colineales, se da en el plano que contiene a \vec{a} y $\vec{v_o}$ Solución:

Por hipótesis: $\vec{v_0} \perp \vec{N}$ y $\vec{a} \perp \vec{N}$. Por demostrar: $\langle \vec{r} - \vec{r_0}, \vec{N} \rangle = 0$ Pero $\vec{r} - \vec{r_0} = \int v dt y$

 $\int \vec{v} dt = \int (\vec{v} + \vec{a}t) dt$ y $\int (\vec{v} + \vec{a}t) dt = (\vec{v_o}t + \frac{\vec{a}t^2}{2})$

Reemplazando en el producto interno se obtiene lo siguiente:

Teemplazando en el producto interno se obtiene lo siguiente $\langle (\vec{v_o}t + \frac{\vec{a}t^2}{2}), \vec{N} \rangle = t \langle \vec{v_o}, \vec{N} \rangle + \frac{t^2}{2} \langle \vec{a}, \vec{N} \rangle$ Pero, por hipótesis: $\vec{v_o} \perp \vec{N}$ y $\vec{a} \perp \vec{N} \Rightarrow \langle \vec{v_o}, \vec{N} \rangle = 0$ y $\langle \vec{a}, \vec{N} \rangle = 0$ Luego $t \langle \vec{v_o}, \vec{N} \rangle = 0$ y $\frac{t^2}{2} \langle \vec{a}, \vec{N} \rangle = 0$

Por lo tanto: $\langle \vec{r} - \vec{r_0}, \vec{N} \rangle = 0 + 0 = 0$, se concluye que el movimiento se da en el

plano que determinan $\vec{v_0}$ y \vec{a} . \square

Hecho en LATEX.

Figura 1: Vectores velocidad y aceleración ortogonales al vector N