

Conception détaillée

Moment Based Rendering

Baptiste Delos, Mehdi Djemai, Alban Odot, Pierre Mézières et Jean-Baptiste Sarazin

Encadrant : Mathias Paulin

Master 2 - Informatique Graphique et Analyse d'Images

Sommaire

- 1. Mise en contexte
- 2. Vue d'ensemble
- 3. Détails des modules et tests unitaires
- 4. Révision du planning et des risques

Mise en contexte

Moment Based Rendering

Exploitation des moments calculés sur des paramètres d'intérêt : **profondeur** (a) et **indice d'absorption** (b)

(a) Moment Shadow Mapping [PK15]

(b) Moment-Based Order Independent Transparency [MKKP18]

Figure 1: Exemples de scénarii d'ombrage (a) et de transparence (b) basés sur les moments

Objectifs

Ombrage

- · Méthode de référence : Percentage Closer Filtering [RSC87]
- · Variance Shadow Mapping [DL06]
- · Moment Shadow Mapping [PK15]

Transparence

- · Méthode de référence : Depth Peeling [NVI01]
- Weighted Blended Order Independent Transparency [MB13]
- · Moment-Based Order Independent Transparency [MKKP18]
- \rightarrow Implantation et comparaison de ces méthodes

Vue d'ensemble

Communication entre les modules

Figure 2: Diagramme d'activité du projet

unitaires

Détails des modules et tests

Améliorations du moteur

Indispensable pour le plugin:

- · Hiérarchie de renderers
- · Hiérarchie des frame buffer
- · Gestion séparé des objets opaques et transparents

Simplification des tests:

- · Gestion avancée de la caméra
- · Amélioration du système de fichier *.rogue

Implantation du plugin

Figure 3: Organisation du plugin

Module de transparence

Figure 4: Organisation du module de transparence

Mise en place des tests

Problème

- Le coeur du code du projet correspond aux *shaders*.
- Test unitaire sur des shaders complexe à mettre en place.

 \longrightarrow Mise en place de scènes très simples pour tester les shaders.

Module de transparence - Tests unitaires

Figure 5: Exemples de scènes de test pour la transparence.

Module d'ombrage - Structure

Figure 6: Organisation du module d'ombre

Module d'ombrage - Tests unitaires

Figure 7: Exemples de scènes de test pour l'ombrage.

Module de comparaison

Figure 8: Organisation du module de comparaison

Module de comparaison - Tests unitaires

N	Principe du test	Note	
1	Deux images identiques.	EQM = 0 et une image noire.	
2	Une image blanche et une	EQM = 255 ² , la différence	
	image noire	donnera la 1ère image en	
		sortie.	
3	Deux images de petite taille	Vérifier que les résultats cal-	
	(4x4), couleur prédéfinie au	culés à la main sont les	
	moment du test.	mêmes.	

Prototypage

Figure 9: Prototype de transparence

Figure 10: Prototype d'ombre

Révision du planning et des

risques

Planning prévisionnel

Figure 11: Planning prévisionnel évalué sur les itérations 4 et 5

Planning prévisionnel

Figure 12: Planning prévisionnel évalué sur les itérations 6 et 7

Gestion des risques

Risques révisés

Risque		Probabilité d'apparition	Impact
Mauvaise conception initiale		10%	Fort
Incompréhension	de	5%	Moyen
l'implantation d'une plusieurs méthode(s)	ou		
Dépassement des délais		60%	Fort

Gestion des risques

Risques nouvellement identifiés

Risque	Probabilité d'apparition	Impact
Nouvelle amélioration du	35%	Fort
moteur émergente		
Temps accordé à la réalisa-	30%	Moyen-Fort
tion d'une tâche excessif		

References

- [DL06] William Donnelly and Andrew Lauritzen. Variance shadow maps. 2006.
- [MB13] Morgan McGuire and Louis Bavoil. Weighted blended order-independent transparency. 2013.
- [MKKP18] Cedrick Münstermann, Stefan Krumpen, Reinhard Klein, and Christoph Peters. Moment-based order-independent transparency. 2018.
 - [NVI01] Cass Everitt NVIDIA. Interactive order-independent transparency. 2001.
 - [PK15] Christoph Peters and Reinhard Klein. Moment shadow mapping. 2015.
 - [RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows with depth maps. 1987.

