Objectifs	Étudier un filtre simple : diagramme de Bode, pulsation de coupure, effet sur un signal créneau			
Thèmes	Filtre passif linéaire, filtrage en fréquence			
Matériel sur les paillasses élèves	GBF Oscilloscope	Résistance R = 1,5 k Ω Condensateur C = 100 nF	Plaquette d'acquisition Latis-Pro	Multimètre
Sécurité & Déchets	Le courant susceptible d'arrêter un cœur humain est environ 30 mA (en alternatif). La résistance entre votre main droite et votre main gauche est de quelques $k\Omega$. À vous d'en déduire un seuil de voltage dangereux.			

TABLE DES MATIERES

I - PARTIE THÉORIQUE	1 -
I.1 - Filtre RC simple	1 -
I.2 - Spectre d'un signal carré	2 -
II - PARTIE EXPÉRIMENATLE	2 -
II.1 - Diagramme de Bode expérimental (à l'oscilloscope)	2 -
II.2 - Filtrage d'un signal carré (à la plaquette d'acquisition)	2 -

I - PARTIE THÉORIQUE

I.1 - Filtre RC simple

Dans ce TP, on étudiera le filtre RC représenté ci-dessous à droite, et on imposera en entrée une tension **e(t)** via un générateur basse fréquence (GBF) représenté à gauche :

On pourra mesurer la tension en sortie/entrée en utilisant un oscilloscope, ou la plaquette d'acquisition et Latis-Pro.

- 1. On se place en régime harmonique décrit par des grandeurs complexes. Établir la fonction de transfert $\underline{H}(\omega)$ du filtre.
- 2. Identifier la pulsation propre ω_0 du filtre, de sorte à mettre la fonction de transfert sous forme $\underline{H}(\omega) = \frac{1}{1+j\omega/\omega_0}$
- 3. Sachant que la pulsation de coupure ω_c vérifie $\left|\underline{H}(\omega_c)\right| = H_{max}/\sqrt{2}$, déterminer la pulsation de coupure de ce filtre.
- 4. Déterminer l'équivalence à basse et haute fréquence de $\underline{H}(\omega)$. Montrer que l'expression des asymptotes de $G_{dB,HF}(\omega)$ et $G_{dB,BF}(\omega)$ est :
 - Basse fréquence : $G_{dB,BF} = 0$
 - Hautes fréquences : $G_{dB,HF} = 20 \log(\omega_0) 20 \log(\omega)$

On trace ci-dessous le diagramme de Bode théorique de ce filtre, pour les valeurs de R et C données plus haut. On complètera les abscisses et les ordonnées.

1.2 - Spectre d'un signal carré

Un signal carré (ou créneau) de pulsation $\omega=2\pi/T$ se décompose en série de Fourier comme :

$$e(t) = \langle e \rangle + \frac{4E_0}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} sin((2k+1) \omega t)$$

- 5. Exprimer l'amplitude de l'harmonique N (on pourra écrire les quelques premiers termes de la série).
- 6. Indiquer sur le graphique ci-contre l'amplitude de l'harmonique 1, 3, 5, 11, et 15.

II - PARTIE EXPÉRIMENATLE

II.1 - Diagramme de Bode expérimental (à l'oscilloscope)

On commence l'étude expérimentale du filtre RC représenté en première partie, avec $R=1.5~k\Omega$ et C=100~nF.

- 1. Réaliser le filtre avec les dipôles fournis.
- 2. Imposer une entrée sinusoïdale de forme $e(t) = E_0 \cos(\omega t)$ avec $E_0 \simeq 5 \text{ V}$ et ω variable. Tracer le diagramme de Bode expérimental en gain de ce filtre. Le comparer ensuite au résultat théorique attendu (pentes asymptotiques, pulsation de coupure, etc.)
- 3. Vérifier rapidement que la phase varie bien de manière cohérente avec le tracé du diagramme de Bode en phase.

II.2 - Filtrage d'un signal carré (à la plaquette d'acquisition)

Régler la sortie du GBF afin qu'elle produise un signal carré de pulsation proche de ω_0 (on pourra l'observer au GBF pour vérifier qu'elle est correctement réglée).

- 4. Acquérir ce signal d'entrée en utilisant la plaquette et Latis-Pro. On prendra gare à régler correctement les paramètres d'acquisition et le déclenchement.
- 5. Calculer et afficher le spectre du signal carré. Le comparer au spectre théorique attendu.

Régler la pulsation du signal carré à environ $\omega = \omega_0/10$. Appliquer ce signal en entrée du filtre, et acquérir le signal de sortie.

- 6. Quel comportement peut-on prévoir concernant les trois premières harmoniques? Et pour les suivantes?
- 7. Acquérir le signal de sortie à l'aide de la plaquette d'acquisition et de Latis-Pro.
- 8. Calculer et afficher le spectre du signal filtré. Le comparer au spectre attendu.