Secture -	- 5
Q. Evaluate :-	
D-35(+1) Stdt	$\frac{(2)^{3}(\pm^{2}+1)\delta(\pm)d\pm}{\delta(d^{2}+1)\delta(\pm)d\pm}$ = 0
Sola: -3 5 (+11) St dt	Solm: -3 S(£242) S(£) d£
$= t+1 _{t=0}$	= 0
$= t+1 _{t=0}$ $= 1$	
* When your are having unit imp limit must contain zero.	ulse function, the integration
limite must contain zero.	
2	
3 - est u(t)dt	$(4) - 2 \int_{e^{(2-t)}}^{e^{(2-t)}} S(t-1) dt$
= 0 / u(t) has value from 0 to	$2 = e^{2-t} _{t=2}$
	= e°
	=1
Q. Find the following summation	
$\widehat{a}) = \sum_{n=-\infty}^{\infty} e^{3n} \delta(n-3)$	1 , n=3
$\frac{501^{n}!}{6000} = \frac{5(n-3)}{6000} = \frac{5(n-3)}{60000} = \frac{5(n-3)}{60000} = \frac{5(n-3)}{60000} = \frac{5(n-3)}{600000} = \frac{5(n-3)}{6000000} = \frac{5(n-3)}{6000000000000000000000000000000000000$	$n \neq 3$
$\frac{6}{9} = \frac{2^{3\eta} S(\eta - 3)}{\eta = 2} = \frac{1}{16} \frac{2^{3\eta}}{\eta = 3}$	= e/

(14)

	@ == a 2 5 (2)
$= L \cos 3n \ln 2$	$= \sum_{n=1}^{\infty} n^2 = -4$
= cos6,	= 16,
$Q = \sum_{n=-\infty}^{\infty} S(n-\alpha)e^{n^{\alpha}}$	$= \bigcirc \sum_{n=0}^{\infty} S(n+1)4^n$
	$= 0 \qquad \int_{-\infty}^{\infty} S(n+1) = 1 \text{for } n = -1$
$= \int e^{n^2} \Big _{n=2}$ $= e^4$	$\int \int ds (n+2) = 0 \text{for } n \neq 1$
Q. Evaluate :-	
@ -1 (t-1)° 5(t-1) dt	B ≥ S(n)sindn
$= \left\lfloor (t-1)^2 \right\rfloor_{t=1}$	$= \sum_{i=1}^{n} 2n \sum_{i=1}^{n} 2n $
= 04	= 0
(C) = 2 8 (n-3)	@ [E38(t-2)dt
$= Ln^{\alpha} l_{n=2}$	$= \left[\frac{1}{2} \right] = 2$
= 9,	= 23
	= 8,
· ·	
@	
$= 1e^{-4t}1_{t=-3}$	
$=e^{-2\kappa(-3)}$	
= e'/	