Proof. By Theorem 4.3 the result holds for $q \ge 194$. For q < 194 and $q \equiv 1 \pmod 6$, we first look at q = 7 and q = 13. When q = 7, one has $x^6 = 1$ for all $x \in \mathbb{F}_7^\times$. But $g^2 + g + 1 \ne 0$ for any primitive root g of \mathbb{F}_7 . So it is not solvable in this case. For q = 13, $x^6 = \pm 1$ for all $x \in \mathbb{F}_{13}^\times$. It is easy to check that $g^2 X^6 + g Y^6 + 1 = 0$ is not solvable for all primitive roots g = 2, 6, 7, 11 of \mathbb{F}_{13} . For the rest of cases that 13 < q < 194, the following table gives a solution for some primitive root g:

q	19	25	31	37	43	49	61	67	73	79	97	103
g	2	α	3	2	3	β	2	2	5	3	5	5
X	1	α^3	19	2	1	β^3	24	4	1	6	5	5
Y	2	α	27	1	28	β^3	4	43	59	6	29	32

q	109	121	127	139	151	157	163	169	181	193
g	6	γ	3	2	6	5	2	K	2	5
X	16	γ^7	84	2	1	22	8	1	86	1
Y	26	γ^{A}	3	103	132	82	1	κ^2	148	127

where
$$\alpha = 3 + \sqrt{2}$$
 in $\mathbb{F}_{25} = \mathbb{F}_5(\sqrt{2})$, $\beta = 4 + \sqrt{-1}$ in $\mathbb{F}_{49} = \mathbb{F}_7(\sqrt{-1})$, $\gamma = 2 + \sqrt{2}$ in $\mathbb{F}_{121} = \mathbb{F}_{11}(\sqrt{2})$ and $\kappa = 7 + 2\sqrt{2}$ in $\mathbb{F}_{169} = \mathbb{F}_{13}(\sqrt{2})$.

5. APPLICATION: CONFLICT-AVOIDING CODES OF WEIGHT 3

In this section, we apply our main result to the construction of CAC. We consider the special case where q=p and $\ell=\ell_0$ the index of H in \mathbb{F}_p^{\times} . Let's start with a proof of Corollary \mathbb{B}

Proof. Let p be a prime such that the multiplicative order $o_p(2)$ of 2 is not a multiple of 4. Suppose that p satisfies the condition

$$p \ge (2^{\omega(\ell_0)}(\ell_0 - 3 - \delta) + 2)^2 - 2$$

where $\delta = 1$ if $4 \mid \ell_0$ and $\delta = 0$ otherwise. It follows from Theorem A that there exists a generator g of \mathbb{F}_p^{\times} such that Equation (2) is solvable over \mathbb{F}_p . By Corollary 2.3 for $1 \leq \ell_0 \leq 4$ and Lemma 2.1 for $\ell_0 \geq 5$, we see that there exists a solution $(x,y) \in \mathbb{F}_p^2$ to Equation (2) satisfying $xy \neq 0$. Thus, Conjecture C and hence Conjecture B holds for prime numbers p satisfying the inequality given above. As it is explained in Section 1 Conjecture A is also true for these prime numbers. Combining the algorithm given in FLS14, we conclude that an optimal CAC of length p and weight 3 has the size

$$M(p,\ell_0) = \frac{p-1-2\ell_0}{4} + \left| \frac{\ell_0}{3} \right|$$

as desired.

Our strategy for studying the size of optimal CAC of prime lengths is through investigating Conjecture B (equivalently, Conjecture C). In the paper MZS14 the authors