

Notatki z wykładów Semestr letni 2024/2025

Spis treści

Wykład 1 - Przekaz multimedialny i platformy multimedialne

Data: 3.03.2025

1 Informacje organizacyjne

• Kolokwium zaliczeniowe: 16.06.2025, forma elektroniczna

• Kolokwium poprawkowe: 23-26.06.2025

2 Multimedia cyfrowe - definicja

Multimedia cyfrowe to:

- 1. Element komunikacji
- 2. Łączący minimum dwie formy: tekst, grafika, wideo, audio, animacje
- 3. Posiadający format umożliwiający rozpowszechnianie
- 4. Umożliwiający interakcję na urządzeniu cyfrowym

3 Cechy cyfrowych mediów wg Manovicha

- 1. Reprezentacja binarna i numeryczna dane zapisane cyfrowo
- 2. Strukturalna modułowość każdy obiekt zachowuje indywidualność
- 3. Automatyzacja uproszczenie tworzenia treści (szablony, skrypty)
- 4. **Zmienność** możliwość modyfikacji
- 5. Transkodowanie kulturowe przenoszenie między kontekstami

3.1 Edycja nieniszcząca

Możliwość przywrócenia projektu do dowolnego stanu z historii zmian. Stosowana w formatach dedykowanych (np. .psd, .pptx).

4 Przekaz multimedialny

Schemat komunikacji:

Nadawca \rightarrow Kanał transmisyjny \rightarrow Odbiorca

Kluczowe elementy:

- Źródło informacji
- Nadajnik (dostosowanie sygnału)
- Odbiornik (rekonstrukcja sygnału)
- Interpretator (użytkownik)

5 Rodzaje danych multimedialnych

- 1. Obrazy (pojedyncze, wideo, animacje)
- 2. Dźwięk (mowa, muzyka, odgłosy)
- 3. Grafika komputerowa (rastrowa, wektorowa)
- 4. Teksty
- 5. Dane mieszane i hybrydowe
- 6. Metadane (opisy strumieni)
- 7. Dane pomiarowe
- 8. Instrukcje sterujące
- 9. Warstwa synchronizacji

6 Informacja

Definicja: To wszystko, co przekazane okazuje się użyteczne dla odbiorcy. **Nośniki informacji** - sygnały dopasowane do:

- Charakteru treści
- Właściwości danych
- Natury opisywanego zjawiska

7 Rejestracja danych

Kluczowe aspekty:

- Fizyczne podstawy zjawisk (np. efekt fotoelektryczny)
- Zasady uzyskania sygnałów cyfrowych
- Zapewnienie wysokiej jakości i wierności zapisu

7.1 Cyfrowe rejestratory obrazów

- CCD (Charge-Coupled Device) matryce fotoczułych komórek
- Parametry: czułość widmowa, czułość świetlna, zdolność rozdzielcza

8 Prezentacja multimediów

8.1 Technologie wyświetlania

- 1. Elektroluminescencja monitory CRT
- 2. Wyładowanie jarzeniowe monitory plazmowe
- 3. Efekt ciekłych kryształów LCD
- 4. **OLED** diody organiczne (większa skala barw, wysoki kontrast)

8.2 Formy wizualizacji

- Statyczna (ilustracje, wykresy)
- Dynamiczna (wideo)
- Komputerowa (interaktywna)

9 Ewolucja Internetu

- Web 1.0 statyczne strony, jednostronna komunikacja
- Web 2.0 interaktywność, media społecznościowe
- Web 3.0 semantyczny, sztuczna inteligencja

10 Projektowanie

10.1 Wireframe

Dwuwymiarowa reprezentacja określająca:

- Wykorzystanie przestrzeni
- Funkcjonalności interfejsu
- Hierarchię treści
- Połączenia między widokami

10.2 Projektowanie uniwersalne

7 zasad:

- 1. Równy dostęp
- 2. Elastyczność użytkowania
- 3. Prostota i intuicyjność
- 4. Czytelna informacja
- 5. Tolerancja na błędy
- 6. Minimalizowanie wysiłku fizycznego
- 7. Odpowiednie parametry przestrzeni

11 Dostępność cyfrowa

Niewykluczanie żadnej osoby (w tym z niepełnosprawnościami) z możliwości korzystania z produktu cyfrowego.

12 Standardy kompresji

- H.265 (HEVC) High Efficiency Video Coding
- Wspiera rozdzielczości do 8K (8192×4320)
- 2x lepsza kompresja niż H.264

Wykład 6 - Sygnały, Informacja i Kompresja

Data: 7.04.2025

Wykładowca: dr inż. Jakub Długosz

13 Sygnaly

13.1 Definicja

Sygnał – nośnik informacji odzwierciedlający zmianę stanu obiektu fizycznego lub mierzalnej wielkości fizycznej.

13.2 Szum

Szum – niepożądane składniki sygnałów.

13.2.1 Rodzaje szumów

- Wewnętrzne (procesowe) związane z obserwowanym obiektem
- Zewnętrzne (zakłócenia) niezwiązane z obserwowanym obiektem

13.2.2 Typy szumów

- Szum biały płaskie widmo, równomierna intensywność w całym paśmie, brak pamięci
- Szum kolorowy nierównomierny rozkład widmowy mocy (czerwony/Browna, różowy, niebieski, fioletowy)
- Szum impulsowy krótkotrwałe impulsy o dużej amplitudzie

14 Model Komunikacji Shannona-Weavera (1948)

Model liniowy z jednokierunkowym przepływem informacji:

 $\text{Źr\'od\'eo} \rightarrow \text{Nadajnik} \rightarrow \text{Kana\'e} (+\text{szum}) \rightarrow \text{Odbiornik} \rightarrow \text{Cel}$

15 Przetwarzanie Analogowo-Cyfrowe

15.1 Podstawowe procesy

- 1. **Próbkowanie** modulacja amplitudowa (AM)
- 2. Kwantowanie przyporządkowanie wartościom rzeczywistym wartości dyskretnych
- 3. **Kodowanie** reprezentacja cyfrowa

16 Informacja

Definicja: To wszystko, co przekazane okazuje się użyteczne dla odbiorcy. Służy realizacji celu, zaspokaja potrzeby, buduje wiedzę.

16.1 Cechy przekazu

- Odbiorca weryfikuje użyteczność danych
- Dane mają znaczenie opisane funkcją semantyczną
- Forma przekazu równie ważna jak treść

17 Kompresja Danych

17.1 Definicje

Kompresja – odwracalny lub nieodwracalny proces redukcji długości reprezentacji danych.

17.2 Rodzaje kompresji

1. Bezstratna (odwracalna)

- Rekonstrukcja z dokładnością do pojedynczego bitu
- Zastosowanie: dokumenty tekstowe, dane finansowe, niektóre obrazy medyczne

2. Stratna (nieodwracalna)

- Brak możliwości dokładnej rekonstrukcji
- Pojęcie bezstratności percepcyjnej (wizualnej, słuchowej)
- Zastosowanie: multimedia (obrazy, dźwięk, wideo)

17.3 Miary efektywności

- CR (Compression Ratio) stosunek bitów oryginalnych do skompresowanych (np. 100:1)
- CP (Compression Percentage) $CP = (1 1/CR) \cdot 100\%$
- BR (Bit Rate) średnia liczba bitów na element źródłowy

18 Metody Kodowania

18.1 RLE (Run Length Encoding)

Kodowanie długości sekwencji – seria powtórzeń symboli opisywana para: (długość, symbol).

18.2 Twierdzenie Shannona

Aby zakodować proces o entropii H(S) do postaci binarnej z możliwością dokładnej rekonstrukcji, potrzeba co najmniej H(S) bitów.

19 Standardy Kompresji

19.1 JPEG

- Konwersja RGB \rightarrow YCrCb
- Wykorzystuje DCT (Discrete Cosine Transform)
- Kompresja stratna dla obrazów

19.2 MPEG

Grupa standardów dla kompresji wideo i audio.

20 Strumieniowanie

Definicja: Przesyłanie danych w formie strumienia z wykorzystaniem kolejno napływających danych bezpośrednio po otrzymaniu.

21 Metadane

- Deskryptor numeryczny sposób opisu atrybutów obiektów multimedialnych
- Indeks zbiór cech/wartości atrybutu wraz z identyfikatorami obiektów

Wykład 7 - Aplikacje multimedialne

14.04.2025 - Notatki na podstawie wykładu dr inż. Jakuba Długosza

22 Myślenie projektowe (Design Thinking)

Design thinking to metodologia rozwiązywania problemów skoncentrowana na użytkowniku.

22.1 Mapa empatii

Przedstawia produkt z perspektywy użytkownika w 4 kategoriach:

- Co użytkownik **myśli** i **czuje**?
- Co słyszy?
- Co widzi?
- Co mówi i robi?

22.2 Tablica Kanban

Kanban (jap. "sygnał wizualny") - metodyka oparta na dwóch zasadach:

- 1. Ograniczenie prac w toku (limity WIP)
- 2. Wizualizacja pracy

5 elementów tablicy Kanban:

- Sygnały wizualne
- Kolumny
- Limity prac w toku (WIP)
- Punkt zobowiązania
- Punkt dostarczenia

23 Użytkownicy aplikacji multimedialnej

Charakterystyka:

- Odbiorca masowy i anonimowy
- Klasyfikacja: kategorie demograficzne i psychograficzne
- Typy użytkowników:
 - Subskrybenci zainteresowani regularnymi informacjami
 - Fani najbardziej oddani produktowi
- Grupa docelowa potencjalni użytkownicy produktu

Użytkownicy vs Publiczność: Użytkownicy podkreślają aktywną rolę, wchodzą w interakcje i kształtują produkt.

24 Model 3-ech P

- 1. Preprodukcja planowanie i przygotowanie
- 2. **Produkcja** realizacja
- 3. Postprodukcja obróbka i finalizacja

25 Komunikacja wizualna

Definicja: Przekazywanie informacji za pomocą symboli i form wizualnych.

Kluczowe aspekty:

- Koncentracja na percepcji przekazu (20% widzenie/słyszenie, 80% procesy kognitywne)
- Zasada Gestalt: "Całość jest większa od sumy wszystkich części"

25.1 Diagram Gutenberga

Opisuje naturalny wzorzec skanowania wzrokiem treści przez użytkownika.

26 Zasady projektowania wizualnego

26.1 Zasada jedności

Elementy muszą stanowić harmonijną całość poprzez:

- Wyrównanie
- Bliskość
- Podobieństwo
- Powtórzenia

26.2 Zasada wyróżnienia

Hierarchia wizualna realizowana przez:

- Skale
- Kontrast
- Głębię
- Proporcje
- Ułożenie elementów
- Wykorzystanie przestrzeni
- Efekty graficzne
- Ikony, piktogramy

26.3 Zasada trójpodziału

Kompozycja fotograficzna oparta na podziale kadru na 9 równych części (3x3).

26.4 Zasada psychologicznego domknięcia

Przykłady:

- Trójkąt Kanizsy
- Sześcian Neckera
- Sześcian Eschera

27 Trójkąt ekspozycji

Określa zależności między:

- Czasem naświetlania (migawka)
- Przysłona
- Czułością ISO

EV (Exposure Value) - jednostka miary ekspozycji:

- 0 EV = poprawna ekspozycja
- Zmiana o 1 EV = 2x więcej/mniej światła

28 Paradygmaty aplikacji mobilnych

28.1 Sytuacyjność komunikacji

- Brak ograniczeń czasowych i miejscowych
- Komunikacja permanentna
- Użytkowanie podyktowane konkretnymi celami
- Charakter utylitarny, wymagający uwagi

28.2 Personalizacja

Typy personalizacji:

- Interfejsu dostosowanie wyglądu
- Funkcjonalności wybór funkcji
- Zawartości:
 - Odbieranej (pobieranej)
 - Tworzonej
- Strategii użytkowania

Może być bezpłatna lub odpłatna.

28.3 Innowacyjność

Atrybuty innowacji wg Everetta Rogersa:

- Wyzwanie relacyjne
- Kompatybilność
- Obserwowalność
- Złożoność
- ullet Testowalność

Dotyczy: technologii, modelu biznesowego, zawartości, dystrybucji i promocji.

29 Własność intelektualna

Definicja: Wytwory ludzkiego umysłu w materialnej postaci.

Cechy praw własności intelektualnej:

- Prawa wyłączne
- Ograniczone czasowo i terytorialnie
- Charakter materialny
- Zbywalne (z wyjątkiem osobistych praw autorskich)

29.1 Licencje

Przykłady popularnych licencji:

- GNU General Public License (GPL)
- Creative Commons (CC)
- MIT License

30 Podsumowanie

Aplikacje mobilne charakteryzują się trzema kluczowymi cechami: sytuacyjnością, personalizacją i innowacyjnością. Projektowanie wizualne opiera się na zasadach jedności i wyróżnienia, wykorzystując procesy kognitywne użytkownika. Ważne jest uwzględnienie praw własności intelektualnej i odpowiednie licencjonowanie treści.

Wykład 8 - UI/UX i Interfejsy Mobilne

28.04.2025 - Systemy mobilne i multimedia

31 Interfejs użytkownika

Definicja: System wspierający interakcję człowiek-komputer lub człowiek-maszyna, składający się z:

- Oprogramowania (software)
- Sprzętu (hardware)
- Wejść (sterowanie systemem)
- Wyjść (odpowiedź systemu)

Cechy interfejsów multimedialnych:

- Interaktywność komunikacja dwukierunkowa
- Użytkownik może kształtować treści (zakres, ilość, format)
- Może być współtwórcą treści

32 Rodzaje interfejsów użytkownika

- 1. Wiersz polecenia interakcja przez wpisywanie poleceń
- 2. Graficzne (GUI) tekst + ikony + pomoce wizualne
- 3. **Dotykowe** single-touch lub multi-touch
- 4. Głosowe Siri, Asystent Google, Copilot, Alexa
- 5. Wirtualnej rzeczywistości (VR) gogle + kontrolery
- 6. Rozszerzonej rzeczywistości (AR) warstwy informacji na świecie realnym

33 Słowniczek pojęć

- UX User Experience (wrażenia użytkownika)
- **UI** User Interface (interfejs użytkownika)
- **GUI** Graphical User Interface
- **HCI** Human-Computer Interaction
- HCD Human Centered Design
- UCD User Centered Design
- **UDD** User Driven Development

34 Użyteczność wg Jakoba Nielsena

Podstawowa miara jakości interfejsu, składająca się z:

- 1. **Zdolność nauczenia się** jak szybko użytkownik opanuje nowy interfejs
- 2. **Efektywność** szybkość realizacji zadań po nauczeniu
- 3. **Zdolność zapamiętania** łatwość odtworzenia po przerwie
- 4. **Reakcja na błędy** eliminacja, ograniczanie, łatwa naprawa
- 5. Poziom satysfakcji radość z korzystania

35 Personalizacja vs Dostosowywanie

35.1 Personalizacja (personalization)

- System wykrywa potrzeby użytkownika
- Automatyczne dostosowanie
- Uczenie maszynowe
- Potrzeby niesformułowane wprost

35.2 Dostosowywanie (customization)

- Użytkownik sam zmienia opcje
- Motywy, kolory, czcionki
- Podział na kosmetyczne i funkcjonalne
- Świadomy wybór użytkownika

36 I18n vs L10n

- I18n (Internationalization) internacjonalizacja
- L10n (Localization) lokalizacja

Tworzenie oprogramowania dostępnego dla użytkowników z różnych regionów świata.

37 Material Design (Android)

37.1 Kluczowe elementy

- Jednostki: dp (density-independent pixels), sp (scale-independent pixels)
- Zasady dostępności:
 - Doceniaj jednostki (honor individuals)
 - Ucz się na wstępie (learn before, not after)
 - Wymagania jako punkt wyjścia

37.2 Komponenty UI

- Działania (Actions)
- Komunikacja (Communication)
- Ograniczające (Containment)
- Nawigacja (Navigation)
- Wybór (Selection)
- Pola tekstowe (Text inputs)

37.3 Ważne aspekty

- Gesty standardowe wzorce interakcji
- Zmiana stanu warstwy stanów (state layers)
- Kolor i kontrast dostępność cyfrowa

38 Apple Human Interface Guidelines (iOS)

38.1 Najlepsze praktyki dla gestów

- Zapewnij wiele sposobów interakcji
- Zachowaj spójność z innymi aplikacjami
- Definiuj własne gesty tylko gdy konieczne
- Reaguj responsywnie
- Oferuj skróty gestowe jako uzupełnienie

38.2 Tryb pełnoekranowy

- Wspieraj gdy ma to sens
- Zachowaj dostęp do kluczowych funkcji
- Pozwól użytkownikowi wybrać moment wyjścia
- Umożliw dostęp do Docka

39 Definicja użyteczności wg ISO 9241

 $U\dot{z}yteczność = efektywność + wydajność + satysfakcja$

- Efektywność: dokładność i pełność osiągania celów
- Wydajność: zasoby zużyte względem dokładności
- Satysfakcja: komfort i akceptowalność systemu

40 Historia UX – kluczowe momenty

- XIX w. Frederick Taylor, tayloryzm
- Lata 40. XX w. System Produkcyjny Toyoty
- 1955 Henry Dreyfuss "Designing for People"
- Lata 70. Xerox PARC: GUI, mysz, format bitmap
- Lata 90. Donald Norman formuluje termin "user experience"

41 Wybrane zasady projektowe Dona Normana

- 1. Projektuj dla prostoty uwzględnij złożoność, ale produkt powinien być zrozumiały
- 2. Projektuj dla prawdziwych ludzi nie dla ideałów
- 3. Nie bądź logiczny zwykli ludzie nie myślą abstrakcyjnie jak matematycy
- 4. Błędy to cenne doświadczenia uczenie się na błędach
- 5. Więcej się uczymy z błędów niż sukcesów konstruktywna krytyka poprawia projekty

42 Przedmiot Normana

Obiekt, którego sposób użycia jest odwrotny niż oczekiwany na podstawie wyglądu (np. drzwi Normana). Korzystanie przeczy intuicji użytkownika.

Wykład 9 - Animacje 2D

5.05.2025 - Dr inż. Jakub Długosz

43 Definicja animacji

Animacja – technika filmowa polegająca na tworzeniu efektu ożywienia martwych kształtów przez dokonywanie serii pojedynczych zdjęć rysunków, wycinanek, kukiełek lub sylwetek i wyświetlaniu ich w sposób ciągły.

Kluczowa zasada Material Design: Ruch tworzy znaczenie – animacje są nieodzownym elementem komunikacji z użytkownikiem, tworzą iluzję obcowania z fizycznymi obiektami.

44 12 zasad klasycznych animacji (Johnston i Thomas, 1981)

Animatorzy Disney sformułowali fundamentalne zasady tworzenia animacji w książce *The Illusion of Life: Disney Animation*. Zasady te są nadal aktualne w projektowaniu interfejsów.

45 Wytyczne projektowania animacji

45.1 Apple Human Interface Guidelines - Motion

Najważniejsze zasady:

- 1. Używaj subtelnego ruchu do komunikacji
- 2. Dodawaj animacje celowo, wspierając doświadczenie bez przytłaczania
- 3. Uczyń animacje opcjonalnymi
- 4. Dąż do realizmu i wiarygodności
- 5. Preferuj krótkie, precyzyjne animacje
- 6. Unikaj animacji w często występujących interakcjach
- 7. Używaj animowanych symboli tam, gdzie ma to sens

Dostępność:

- Pozwól użytkownikom kontrolować efekty ruchu
- Zachowaj ostrożność przy elementach migających lub poruszających się

45.2 Material Design - Motion

Material Design definiuje precyzyjne wytyczne dla animacji, włączając:

- Transition patterns wzorce przejść między stanami
- Easing functions funkcje kontroli przebiegu animacji
- Duration tokens tokeny czasowe dla różnych typów animacji

46 Funkcje kontroli przebiegu animacji

46.1 Krzywe Béziera

Funkcje easing oparte są na krzywych Béziera, które definiują przebieg animacji w czasie. Podstawowe typy:

• linear – stała prędkość

- ease-in powolny start, szybkie zakończenie
- ease-out szybki start, powolne zakończenie
- ease-in-out powolny start i koniec

47 Implementacja animacji

47.1 CSS

```
/* Przykład animacji CSS */
@keyframes slide {
    from { transform: translateX(0); }
    to { transform: translateX(100px); }
}
.element {
    animation: slide 0.3s ease-out;
}
```

47.2 Android

Podstawowe transformacje:

- <scale> przeskalowanie
- <rotate> obrót
- <alpha> przezroczystość
- <translate> przesunięcie

Jetpack Compose oferuje nowoczesne API do animacji z deklaratywnym podejściem.

48 Specjalne efekty animacji

48.1 Efekt Kena Burnsa

Technika animacji polegająca na powolnym przybliżaniu lub oddalaniu oraz panoramowaniu statycznego obrazu, często używana w prezentacjach fotografii.

48.2 Efekt paralaksy

Technika, w której elementy tła przesuwają się wolniej niż elementy pierwszoplanowe, tworząc iluzję głębi.

49 Najlepsze praktyki

- 1. Celowość każda animacja powinna mieć jasny cel komunikacyjny
- 2. Wydajność animacje nie powinny wpływać negatywnie na responsywność
- 3. **Dostepność** możliwość wyłaczenia animacji dla użytkowników wrażliwych na ruch
- 4. **Spójność** zachowanie jednolitego stylu animacji w całej aplikacji
- 5. Mikroanimacje małe, subtelne animacje poprawiające UX

50 Narzędzia

- Figma prototypowanie z animacjami przejść

- Core Animation (iOS) framework Apple dla animacji

Wykład 10 - Testowanie aplikacji mobilnych

12.05.2025 - Dr inż. Jakub Długosz

51 Środowiska programistyczne

Podział środowisk

- Deweloperskie przeznaczone do bieżącej pracy nad rozwojem oprogramowania
- Produkcyjne dedykowane końcowemu użytkownikowi
- Testowe środowiska pośrednie umożliwiające wykonywanie testów

52 Klasyfikacja testów oprogramowania

52.1 Podstawowe rodzaje testów

1. Testy jednostkowe

- Testują jednostkę kodu (klasę, obiekt, funkcję) w izolacji
- Zależności symulowane przez mocki lub stuby
- Cel: znalezienie błędów w implementacji danego komponentu

2. Testy integracyjne

- Testują współpracę między komponentami
- Zakres: od kilku klas do różnych systemów (baza danych, serwery)
- Cel: wykrycie błędów podczas interakcji między systemami

3. Testy systemowe

- Przeprowadzane po integracji elementów systemu
- Obejmują testy end-to-end (E2E) z perspektywy użytkownika
- Podstawa: wymagania, przypadki użycia, specyfikacja

4. Testy akceptacyjne

- Wykonywane przez klienta lub użytkowników końcowych
- Cel: upewnienie się, że aplikacja spełnia oczekiwania klienta

52.2 Testy specjalistyczne

- Testy wydajnościowe sprawdzają wydajność systemu (Apache Bench, JMeter)
- Testy bezpieczeństwa analiza pod kątem bezpieczeństwa (Pentesty, OpenVAS)
- Testy smoke podstawowe testy głównych funkcji systemu
- Testy eksploracyjne swobodne testowanie bez ścisłego scenariusza

53 Modele organizacji testów

Piramida testów \rightarrow Model Kryształ \rightarrow Model Trofeum

- Różne podejścia do proporcji rodzajów testów
- Piramida: dużo testów jednostkowych, mało E2E
- Trofeum: więcej testów integracyjnych

54 Testowanie manualne vs automatyczne

Testowanie manualne	Testowanie automatyczne
- Wykonywane osobiście przez testera	- Wykonywane przez maszynę
- Kosztowne czasowo	- Szybkie wykonanie
- Podatne na błędy ludzkie	- Powtarzalne i niezawodne
- Elastyczne	- Wymaga napisania skryptów

55 Specyficzne aspekty testowania aplikacji mobilnych

- 1. Przenoszenie preferencji systemowych (np. wyciszenie dźwięków)
- 2. **Reakcja na przerwania** (połączenia telefoniczne)
- 3. Zarządzanie baterią (zachowanie przy niskim stanie baterii)
- 4. Uprawnienia aplikacji (reakcja na wyłączenie przywilejów)
- 5. **Responsywność** (różne urządzenia, rozdzielczości, orientacje ekranu)
- 6. Połączenie internetowe (brak/zmiana typu połączenia)

56 Narzędzia i platformy testowania

56.1 Farmy urządzeń w chmurze

- AWS Device Farm
- Firebase Test Lab (10 testów/dzień na wirtualnych, 5 na fizycznych plan darmowy)
- BrowserStack
- Azure DevOps Pipelines
- LambdaTest

56.2 Automatyzacja testów

Appium – popularne narzędzie do automatyzacji testów aplikacji mobilnych

- Wspiera Android i iOS
- Pozwala pisać testy w różnych językach programowania
- Dokumentacja: https://appium.io/docs/en/latest/

57 ISTQB CT-MAT

Certyfikacja dla testerów aplikacji mobilnych obejmująca:

- Specyfikę testowania mobilnego
- Internacjonalizację (i18n) i lokalizację (l10n)
- Testowanie na różnych platformach i urządzeniach

Wykład 12 - Grafika 3D - Blender część 1

26.05.2025 - Notatki z wykładu SMiM

58 Historia Blendera

- 2002 firma NaN miała problemy finansowe
- Ton Roosendaal powołał Blender Foundation
- Zebrano 100 000 EUR z dobrowolnych wpłat
- Blender stał się open source (GNU GPL)
- Konkurencja: Maya, 3ds Max (oprogramowanie komercyjne)

59 Podstawowe elementy sceny

- 1. Kamera określa perspektywę renderowania
- 2. Światło źródło oświetlenia sceny
- 3. Obiekt domyślnie sześcian/kostka

60 Nawigacja w przestrzeni 3D

ullet Orbitowanie: ŚKM + przesuwanie

• Zoom: rolka myszy, Ctrl +, Ctrl -

ullet Panoramowanie: Shift + ŠKM + przesuwanie

61 Najważniejsze skróty klawiszowe

Skrót	Funkcja
Tab	Przełączanie tryb obiekt ↔ tryb edycji
Ctrl Tab	Wybór trybu siatki (wierzchołki/krawędzie/ściany)
G	Przesuwanie (Grab)
R	Obracanie (Rotate)
S	Skalowanie (Scale)
G G	Edge slide (przesuwanie wzdłuż krawędzi)
Z	Przełączanie widoku (szkielet/solidny)
Shift S	Menu ustawiania kursora
F12	Renderowanie obrazu
Ctrl F12	Renderowanie animacji
I	Utworzenie klatki kluczowej (animacja)

62 Tryby pracy

- 1. Tryb obiektu operacje na całych obiektach
- 2. Tryb edycji modyfikacja geometrii (wierzchołki, krawędzie, ściany)

63 Operacje modelowania

- Loop Cut dodawanie przekrojów poprzecznych
- Subdivide zagęszczanie siatki
- Extrude wyciąganie geometrii
- Push/Pull deformacja struktury siatki

64 Materiały i powierzchnie

- Domyślny materiał: Principled BSDF
- BSDF = Bidirectional Scattering Distribution Function
- Materiał określa wygląd powierzchni o stałej strukturze
- Tekstura określa wygląd powierzchni niejednorodnej (wzory, zagłębienia)

65 Światło - podstawowe właściwości

- 1. Emisja współczynnik emisji światła
- 2. Odbicie współczynnik odbicia
- 3. Pochłanianie współczynnik absorpcji

66 Renderowanie

- Renderowanie tworzenie obrazów z perspektywy kamery
- Uwzględnia: oświetlenie sceny, właściwości fizyczne powierzchni
- Dostępne silniki: Cycles, Eevee, Workbench
- Ustawienia w panelu właściwości (Shift F7)

67 Panele właściwości

Dostęp przez Shift F1 do Shift F12:

- Render wybór silnika renderowania
- Output ustawienia wyjścia renderowania
- World właściwości środowiska/świata
- Material edycja materiałów
- Texture zarządzanie teksturami

68 Podstawy animacji

- I wstawienie klatki kluczowej
- Klatki kluczowe zapisują stan właściwości obiektów
- Blender interpoluje wartości między klatkami

Wykład 13 - Blender - Animacje i Efekty

Data: 2 czerwca 2025

69 Animacje w Blenderze

Tworzenie klatek kluczowych:

- i utworzenie klatki kluczowej z właściwościami zaznaczonych obiektów
- Klatki kluczowe przechowują stan obiektów (pozycja, rotacja, skala, właściwości materiałów)
- Blender automatycznie interpoluje wartości między klatkami kluczowymi

70 Efekty specjalne - Dym i Ogień

70.1 Konfiguracja podstawowa

- 1. Dodanie obiektu emitującego (np. UV Sphere)
- 2. Dodanie domeny (Cube otaczający emiter)
- 3. Przypisanie fizyki:
 - Emiter: Fizyka → Ciecz → Flow
 - Domena: Fizyka → Ciecz → Domain

70.2 Ustawienia domeny dymu

Kluczowe parametry:

- Adaptive Domain automatyczne dostosowanie rozmiaru domeny
- Resolution Divisions zwiększenie do 256 dla lepszej jakości
- ullet Gas o Dissolve rozpuszczanie dymu w czasie

71 Edytor węzłów dla materiałów

71.1 Aktywacja

Aby korzystać z edytora węzłów (Shift + F3):

• We właściwościach powierzchni materiału zaznaczyć "Używaj węzłów"

71.2 Węzły dla efektów objętościowych

Podstawowa konfiguracja dla dymu:

- 1. Attribute (density) \rightarrow ColorRamp \rightarrow Principled Volume
- 2. Połączenie z Volume Output
- 3. Możliwość dodania emisji dla efektu ognia

72 Praktyczne wskazówki

- Renderowanie animacji: Ctrl + F12 (lub Ctrl + Fn + F12)
- Symulacje wymagają cache przed renderowaniem należy przeliczyć fizykę
- Wyższa rozdzielczość = lepsza jakość, ale dłuższy czas obliczeń
- Adaptive Domain znacząco optymalizuje wydajność

73 Zastosowania

- Efekty specjalne w grach mobilnych
- Wizualizacje 3D w aplikacjach AR
- Renderowanie sekwencji dla cutscen
- Tworzenie assetów dla silników gier