四、进程

pidof init	查看进程pid	ps aux	查看进程: 所有/使用者相关/后台进 程
top	动态查看进程变化	ps -IA	查看所有系统数据
-d 5	每几秒更新	ps axif	连同部分程序树
-b -n 2 >/tmp/t.txt	以批次方式,执行2次并输出	ps -I	仅查看和自己bash相关的进程
-р	指定pid	Pstree -Aup	查看进程树
?/P/M/N/T/k/r/q	Top中指令	-A -U	ASCII /万国码 来连接
		-p -u	列出pid、列出所属账号名称
kill [] <u>pid</u>		free	观察memory内存
-l -15 -9	列出可用信号/正常终止/强制	-b -m -k -g	b/mb/kb/gb
-2 -1	相当于ctrl+C/守护进程reload	-t	同时显示物理内存与swap
uname	查阅系统核心信息	uptime	时间+开机多久+用户数+1/5/15min平 均负载
-a -s -r	所有/内核名称(默认)/内核版 本	netstat	网络监控
-m -p - <u>j</u>	硬件名称/CPU类型/硬件平台	-atp	所有/tcp包信息/列出进程pid
service iptables stop	防火墙 start/status/restart	-antp	以端口方式显示
chkconfig iptables off/on	永久关闭/开启,服务器重启后 生效	-Intp	列出目前正在listen监听的服务
vmstat 1 4	统计cpu状态 每秒一次共四次	jobs	查看当前工作状态:任务号+pid+状态
Ctrl+z	挪到后台暂停	-l -r -s	同时显示pid/仅列出run的/仅列出stop 的
&	放到后台执行	fg n	将任务号为n的任务拿到前台执 行foreground
nohup [一段命令]	脱机和注销后任务依旧执行	bg n	执行后台任务号为n的任务

• 观察系统所有程序: ps aux (非常常用) [root@tedu ~]# ps aux | head -4 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.1 0.1 19360 1540 ? Ss 05:07 0:01 /sbin/init root 2 0.0 0.0 0 0 ? S 05:07 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? S 05:07 0:00 [migration/0] • 以下为各选项的含义 USER该 process 属于那个使用者 PID 亩 process 的程序标识符。 RCPU该 process 使用掉的 CPU 资源百分比 %AMEM 该 process 係占用的物理內存百分比 VSZ 该 process 使用掉的虚拟内存量 (Kbytes) RSS 该 process 占用的物理的内存量 (Kbytes) Tare 第二节、如何查看进程 ● 各选项的含义 117 3g process 是在那个传递机上面运作。若当修通机无关则显示?,另外, tty1-tty5 是本机上面的登入者程序,若为 pts/0 等等的.则表示为由网络连接进主机的程序。 STAT:該进程目前的状态:状态显示与ps -I 的 S 謝标相同 (R/S/D/T/Z) START:該 process 被触发自动的対応:

进程状态

- Linux进程状态:
- R (TASK_RUNNING), 指正在被CPU运行或者就绪的状态(在run_queue队列里的状
- S(TASK、INTERRUPTIBLE),可中能的機能状态。处于等特状态中的进程,一旦被该进程等待的竞游被释放,那么该进程就会进入运行状态 D(TASK_UNINTERRUPTIBLE),不可中断的機能状态。该状态的进程只能用

> TIME 漢 process 实际使用 CPU 运作的时间。 > COMMAND 该程序的实际命令为何?

- wake_up(過數換應。 T (TASK_STOPPED or TASK_TRACED),並进程改製信号SIGSTOP、SIGTSTP、 SIGTTIN成SIGTTOU时就会进入暂停状态。可向其发送SIGCONT信号让进程转接到 可运行状态。
- Z (TASK_DEAD EXIT_ZOMBIE),懂户进程:当进程已经终止运行,但是父进程还没有询问其状态的情况。不可被kil、即不响应任务信号。 无法用SIGKILL系统

第二节、如何查看进程

Tarer

- 僵尸进程(状态:Z)
- 通常造成殭尸进程的原因是该进程应该已经执行完毕,或者是因故应该要终 止,但该进程的父进程却无法完整的将进程结束掉,而造成进程一直存在内存
- 如果发现在某个进程的CMD后面还接上<defunct>时,就代表该进程是僵尸进程

Top内容含义

```
[root@tedu ~]#top -d 2 #每两秒钟更新一次 top
top - 05:06:55 up 13 min, 1 user, load average: 0.00, 0.06, 0.10
Tasks: 125 total, 1 running, 124 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.2%us, 0.0%sy, 0.0%ni, 99.5%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
Mem: 1012352k total, 299596k used, 712756k free, 19276k buffers
Swap: 2031608k total, 0k used, 2031608k free, 108536k cached

• 第一行显示的信息: 目前的时间,开机到目前为止所经过的时间 up
13min,已经登入系统的用户人数 1 user,系统在 1, 5, 15 分钟的平均工作负载

• 第二行显示的是目前进程的总量与个别进程在什么状态(running, sleeping, stopped, zombie)
```

第二节、如何查看进程

Tarena

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2301 root 20 0 15036 1244 956 R 0.5 0.1 0:00.50 top 1 root 20 0 19356 1540 1228 S 0.0 0.2 0:01.71 init 2 root 20 0 0 0 0 0 S 0.0 0.0 0:00.01 kthreadd 3 root RT 0 0 0 0 S 0.0 0.0 0:00.04 migration/0 4 root 20 0 0 0 0 S 0.0 0.0 0:00.04 migration/0 5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0 6 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0 7 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0 7 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0 7 root RT 0 0 0 0 S 0.0 0.0 0:00.01 migration/1

• 第四行和第五行表示目前的物理内存与虚拟内存使用情况

- 每个 process使用的资源情况: PID:每个process的ID; USER:该 process所属的使用者; PR: Priority 的简写,程序的优先执行顺序,越 小越早被执行;
- · NI:Nice 的简写,与 Priority 有关,也是越小越早被执行;
- · %CPU:CPU 的使用率%MEM:内存的使用率;
- ・・ TIME+:CPU 使用时间的累加; COMMAND 进程名称

资源监控解析: netstat

第四节、系统资源监控

- netstat命令选项显示解析
- > Proto:网络的封包协议,主要分为TCP与UDP封包;
- Recv-Q:接收消息缓存区,远端进程发送而来,尚未被当前进程处理的信息数,单位:字节;
- Send-Q:发送消息堰存区,向远端进程发送,尚未被其接收的消息 数,单位:字节;
- ➤ Local Address :本端网络地址(IP:port);
- Foreign Address:与当前进程进行行通信的远程进程的网络地址(IP:port);
- ➤ State :网络连接状态,主要有建立(ESTABLISED)及监听(LISTEN);
- > PID/Program name:显示此服务的PID号码以及程序的命令名称
- ➤ 目前系统上已在监听的网络链接以及PID [root@localhost ~]# netstat -Intp |head -n 10

系统资源监控ymstat