

PRODUCT SPECIFICATION

- Tentative Specification
- Preliminary Specification
- Approval Specification

MODEL NO.: V546H1

SUFFIX: PS1

Customer:

APPROVED BY

SIGNATURE

Name / Title

Note

Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By
Chao-Chun Chung	Ken Wu	YI-CHEN Chiang

CONTENTS

REVISION HISTORY	4
1. GENERAL DESCRIPTION.....	5
1.1 OVERVIEW.....	5
1.2 FEATURES	5
1.3 MECHANICAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS	6
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
2.2 ELECTRICAL ABSOLUTE RATINGS(OPEN CELL).....	7
2.3 ELECTRICAL ABSOLUTE RATINGS	7
2.3.1 TFT LCD Open Cell	7
3. ELECTRICAL CHARACTERISTICS	8
3.1 TFT LCD Module.....	8
4. BLOCK DIAGRAM OF INTERFACE	11
4.1 TFT LCD MODULE	11
5 .INPUT TERMINAL PIN ASSIGNMENT	12
5.1 TFT LCD OPEN CELL	12
5.2 LVDS INTERFACE.....	19
5.3 COLOR DATA INPUT ASSIGNMENT	20
6. INTERFACE TIMING	22
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	22
6.1.1 Timing spec for Frame Rate = 100Hz	22
6.1.2 Timing spec for Frame Rate = 120Hz	23
6.2 POWER ON/OFF SEQUENCE (Ta = 25 ± 2 °C).....	26
6.2.1 POWER ON/OFF SEQUENCE.....	26
6.2.2 2D/3D MODE CHANGE2D to 3D SIGNAL SEQUENCE WITHOUT VCC TURN OFF AND TURN ON	27
7. OPTICAL CHARACTERISTICS	28
7.1 TEST CONDITIONS	28
7.2 OPTICAL SPECIFICATIONS	28

PRODUCT SPECIFICATION

8. PRECAUTIONS	32
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	32
8.2 SAFETY PRECAUTIONS	32
9. DEFINITION OF LABELS	33
9.1 OPEN CELL LABEL.....	33
9.2 CARTON LABEL.....	35
10. Packaging	36
10.1 PACKING SPECIFICATIONS	36
10.2 PACKING METHOD	36
11. MECHANICAL CHARACTERISTIC	39

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page (New)	Section	Description
C1(2.0)	Jan.21,11	all	all	Approval Specification Ver 2.0 was first issued.

1. GENERAL DESCRIPTION**1.1 OVERVIEW**

V546H1-PS1 is a 54.6" TFT Liquid Crystal Display product with driver ICs and 4ch-LVDS interface. This product supports 1920 x 1080 HDTV format and can display true 1.073G colors (8-bit + Hi-FRC /color). The backlight unit is not built in.

1.2 FEATURES

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	54.6
Pixels [lines]	1920 × 1080
Active Area [mm]	1209.6(H) × 680.4(V) (54.6" diagonal)
Sub-Pixel Pitch [mm]	0.21(H) × 0.63(V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	3450
Physical Size [mm]	1251.4(W) × 737(H) × 1.75(D) Typ
Display Mode	Transmissive mode / Normally black
Contrast Ratio	6000:1 Typ. (Typical value measured at CMI's module)
Glass thickness (Array / CF) [mm]	0.7 / 0.7
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ. (Typical value measured at CMI's module)
Color Chromaticity	R=(0.654, 0.325) G=(0.290, 0.598) B=(0.143, 0.0489) W=(0.308, 0.359) * Please refer to "color chromaticity" on 7.2
Cell Transparency [%]	5.3% Typ. (Typical value measured at CMI's module)
Polarizer Surface Treatment	Anti-Glare coating (11% Low Haze) Hardness (3H)

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Typ.	Max.	Unit	Note
Weight	-	3450	-	g	-
I/F connector mounting position	The mounting inclination of the connector makes the screen center within ± 0.5mm as the horizontal.				(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Storage Temperature	TST	-20	+60	°C	(1) With CMI Module
Operating Ambient Temperature	TOP	0	50	°C	(1), (2) With CMI Module

Note (1)Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. ($T_a \leq 40^{\circ}\text{C}$).
- (b) Wet-bulb temperature should be 39°C Max. ($T_a > 40^{\circ}\text{C}$).
- (c) No condensation.

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65°C . The range of operating temperature may degrade in case of improper thermal management in final product design.

Relative Humidity (%RH)

PRODUCT SPECIFICATION

2.2 ELECTRICAL ABSOLUTE RATINGS(OPEN CELL)

Storage Condition: With shipping package.

Storage temperature range: 25 ± 5 °C

Storage humidity range: $50\pm 10\%$ RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD Open Cell

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Voltage for gate driver	VGH	-0.3	40	V	
Voltage for gate driver	VGL	-20	0.3	V	
Voltage range for gate driver	VGH - VGL	-0.3	43	V	
Voltage for data diver	VAA	12	18	V	
Logic Input Voltage	VIN	-0.3	5	V	

3. ELECTRICAL CHARACTERISTICS**3.1 TFT LCD Module**

(Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Supply Voltage	V _{CC}	10.8	12	13.2	V	(1)
Rush Current	I _{RUSH}	—	—	4.4	A	(2)
Power Consumption	White Pattern	—	—	7.2	8.4	W
	Horizontal Stripe	—	—	16.8	20.4	W
	Black Pattern	—	—	6.96	8.16	W
Power Supply Current	White Pattern	—	—	0.6	0.7	A
	Horizontal Stripe	—	—	1.4	1.7	A
	Black Pattern	—	—	0.58	0.68	A
LVDS interface	Differential Input High Threshold Voltage	V _{LVTH}	+100	—	—	mV
	Differential Input Low Threshold Voltage	V _{LVTL}	—	—	-100	mV
	Common Input Voltage	V _{CM}	1.0	1.2	1.4	V
	Differential input voltage (single-end)	V _{ID}	200	—	600	mV
	Terminating Resistor	R _T	—	100	—	ohm
CMIS interface	Input High Threshold Voltage	V _{IH}	2.7	—	3.3	V
	Input Low Threshold Voltage	V _{IL}	0	—	0.7	V

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Vcc rising time is 470us

Note (3) The specified power consumption and power supply current is under the conditions at $V_{CC} = 12\text{ V}$, $T_a = 25 \pm 2^\circ\text{C}$, $f_v = 120\text{ Hz}$, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area

b. Black Pattern

Active Area

c. Horizontal Pattern

Note (4) The LVDS input characteristics are as follows:

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5 .INPUT TERMINAL PIN ASSIGNMENT**5.1 TFT LCD OPEN CELL**

CNF1 Connector Pin Assignment: (FI-RE51S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	N.C.	No Connection	(1)
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	
5	L/R_O	Output signal for Left Right Glasses control	(9)
6	N.C.	No Connection	(1)
7	SELLVDS	LVDS Data Format Selection	(2)(6)
8	N.C.	No Connection	(1)
9	N.C.	No Connection	
10	N.C.	No Connection	
11	GND	Ground	
12	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	(8)
13	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
14	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	
15	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	
16	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2	
17	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
18	GND	Ground	
19	CH1CLK-	First pixel Negative LVDS differential clock input.	
20	CH1CLK+	First pixel Positive LVDS differential clock input.	(8)
21	GND	Ground	
22	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	(8)
23	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
24	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
25	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
26	2D/3D	Input signal for 2D/3D Mode Selection	(3)(7)
27	L/R	Input signal for Left Right eye frame synchronous	(4)(7)

28	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	(8)
29	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	(8)
30	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
31	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	
32	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	
33	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
34	GND	Ground	
35	CH2CLK-	Second pixel Negative LVDS differential clock input.	
36	CH2CLK+	Second pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	(8)
39	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	
40	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	
41	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
42	LD_EN	Input signal for Local Dimming Enable	(5)(7)
43	N.C.	No Connection	(1)
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

PRODUCT SPECIFICATION

CNF2 Connector Pin Assignment (FI-RE41S-HF (JAE) or equivalent)

Pin	Name	Description	Note
1	N.C.	No Connection	(1)
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	
5	N.C.	No Connection	
6	N.C.	No Connection	
7	N.C.	No Connection	
8	N.C.	No Connection	
9	GND	Ground	
10	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	(8)
11	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
12	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	
13	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	
14	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
15	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH3CLK-	Third pixel Negative LVDS differential clock input.	
18	CH3CLK+	Third pixel Positive LVDS differential clock input.	(8)
19	GND	Ground	
20	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
21	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	
22	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	
23	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
24	GND	Ground	
25	GND	Ground	
26	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	(8)
27	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
28	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	

29	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
30	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	
31	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	(8)
32	GND	Ground	
33	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	
34	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	(8)
35	GND	Ground	
36	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
37	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	
38	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	
39	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
40	GND	Ground	
41	GND	Ground	

CN6 Connector Pin Assignment (LM123S-010-H-TF1-3 (UNE) or equivalent)

1	N.C.	No Connection	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	GND	Ground	
5	N.C.	No Connection	(1)
6	L/R_O	Output signal for Left Right Glasses control	(9)
7	N.C.	No Connection	
8	N.C.	No Connection	
9	N.C.	No Connection	
10	N.C.	No Connection	

Note (1) Reserved for internal use. Please leave it open.

Note (2) LVDS format selection.

L= Connect to GND, H=Connect to +3.3V or open

SELLVDS	Note
L	JEIDA Format
H or Open	VESA Format

Note (3) 2D/3D mode selection.

L= Connect to GND or Open, H=Connect to +3.3V

2D/3D	Note
L or Open	2D Mode
H	3D Mode

Note (4) Input signal for Left Right eye frame synchronous

$V_{IL}=0\sim0.8$ V, $V_{IH}=2.0\sim3.3$ V

L/R	Note
L	Right synchronous signal
H	Left synchronous signal

Note (5) Local dimming enable selection.

L= Connect to GND or Open, H=Connect to +3.3V

LD_EN	Note
L or Open	Local Dimming Disable
H	Local Dimming Enable

Note (6) SELLVDS signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. ($R1 < 1K$ Ohm)

System side

System side

$R1 < 1K$

LCM side

Note (7) 2D/3D, L/R and LD_EN signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. ($R1 < 1K\text{ Ohm}$)

System side: $R1 < 1K$

Note (8) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

Note (9) The definition of L/R_O signal as follows

L= 0V , H= +3.3V

L/R_O	Note
L	Right glass turn on
H	Left glass turn on

AR0~AR9: First pixel R data
AG0~AG9: First pixel G data
AB0~AB9: First pixel B data
BR0~BR9: Second pixel R data
BG0~BG9: Second pixel G data
BB0~BB9: Second pixel B data
DE: Data enable signal
DCLK: Data clock signal

The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data
CG0~CG9: Third pixel G data
CB0~CB9: Third pixel B data
DR0~DR9: Fourth pixel R data
DG0~DG9: Fourth pixel G data
DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

5.2 LVDS INTERFACE

JEIDA Format : SELLVDS = L

VESA Format : SELLVDS = H or Open

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB)

AG0~AG9: First Pixel G Data (9; MSB, 0; LSB)

AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal

DCLK : Data clock signal

RSV: Reserved

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

Color		Data Signal																													
		Red								Green								Blue													
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray Scale Of Red	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (2)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			
	Red (1021)	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1022)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray Scale Of Green	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			
	Green (1021)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	
	Green (1022)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
	Green (1023)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Gray Scale Of Blue	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			
	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

(Ta = 25 ± 2 °C)

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
LVDS Receiver Clock	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(3)
	Spread spectrum modulation range	F _{clkin_mo} d	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	
LVDS Receiver Data	Setup Time	T _{lvsu}	600	-	-	ps	(5)
	Hold Time	T _{lvhd}	600	-	-	ps	

6.1.1 Timing spec for Frame Rate = 100Hz

Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
Frame rate	2D mode	F _{r5}	94	100	106	Hz	
	3D mode	F _{r5}	100	100	100	Hz	(7)
Vertical Active Display Term	2D Mode	Total	T _v	1090	1350	1395	Th
		Display	T _{vd}	1080	1080	1080	Th
		Blank	T _{vb}	10	270	315	Th
	3D Mdoe	Total	T _v	1350			Th
		Display	T _{vd}	1080			Th
		Blank	T _{vb}	270			Th
Horizontal Active Display Term	2D Mode	Total	Th	520	550	670	T _c
		Display	Thd	480	480	480	T _c
		Blank	Thb	40	70	190	T _c
	3D Mdoe	Total	Th	520	550	670	T _c

		Display	Thd	480	480	480	Tc	—
		Blank	Thb	40	70	190	Tc	—

6.1.2 Timing spec for Frame Rate = 120Hz

Signal	Item		Symbol	Min.	Typ.	Max.	Unit	Note
Frame rate	2D mode		F _{r6}	114	120	126	Hz	
	3D mode		F _{r6}	120	120	120	Hz	(7)
Vertical Active Display Term	2D Mode	Total	Tv	1090	1125	1395	Th	T _v =T _{vd} +T _v b
		Display	T _{vd}	1080	1080	1080	Th	—
		Blank	T _{vb}	10	45	315	Th	—
	3D Mode	Total	Tv	1125			Th	(6), (8)
		Display	T _{vd}	1080			Th	
		Blank	T _{vb}	45			Th	
Horizontal Active Display Term	2D Mode	Total	Th	520	550	670	Tc	T _h =T _{hd} +T _{hb}
		Display	Thd	480	480	480	Tc	—
		Blank	Thb	40	70	190	Tc	—
	3D Mode	Total	Th	520	550	670	Tc	T _h =T _{hd} +T _{hb}
		Display	Thd	480	480	480	Tc	—
		Blank	Thb	40	70	190	Tc	—

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

Note (2) Please make sure the range of pixel clock has follow the below equation:

$$F_{clkin(max)} \geq F_{r6} \times T_v \times Th$$

$$F_{r5} \times T_v \times Th \geq F_{clkin(min)}$$

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. $Trcl = |T_1 - T_1|$

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6) Please fix the Vertical timing (Vertical Total =1350 / Display =1080 / Blank = 270) in 100Hz 3D mode and Vertical timing (Vertical Total =1125 / Display =1080 / Blank = 45) in 120Hz 3D mode

Note (7) In 3D mode, the set up Fr5 and Fr6 in Typ. ± 3 Hz .In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)

Note (8) In 3D mode, the set up T_v and T_{vb} in Typ. ± 30 .In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)

6.2 POWER ON/OFF SEQUENCE ($T_a = 25 \pm 2 ^\circ C$)

6.2.1 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

6.2.2 2D/3D MODE CHANGE2D to 3D SIGNAL SEQUENCE WITHOUT VCC TURN OFF AND TURN ON

Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.

Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If $T_2 < 0$, that maybe cause electrical overstress failure.

Note (4) T4 should be measured after the module has been fully discharged between power off and on period.

Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS**7.1 TEST CONDITIONS**

Item	Symbol	Value	Unit
Ambient Temperature	T _a	25±2	°C
Ambient Humidity	H _a	50±10	%RH
Supply Voltage	V _{cc}	12V	V
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"		
LED Current	I _L	120	mA

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Note
Color Chromaticity	R _{cx}	$\theta_x=0^\circ, \theta_y=0^\circ$ Viewing Angle at Normal Direction Standard light source "C"	-	0.654	-	-	(0)
	R _{cy}			0.325		-	
	G _{cx}			0.290		-	
	G _{cy}			0.598		-	
	B _{cx}			0.143		-	
	B _{cy}			0.089		-	
	W _{cx}			0.308		-	
	W _{cy}			0.359		-	
Center Transmittance	T%	$\theta_x=0^\circ, \theta_y=0^\circ$	-	5.3	-	%	(1),(6)

Contrast Ratio	CR	with CMI module		6000	-	-	(1),(3)
Response Time	Gray to gray	$\theta_x=0^\circ, \theta_y=0^\circ$ with CMI Module	-	6	12	ms	(1),(4)
White Variation	δW	$\theta_x=0^\circ, \theta_y=0^\circ$ with CMI module	-	-	1.3	-	(1),(5)
Viewing Angle	Horizontal	θ_{x+}	CR \geq 20 With CMI module	-	88	-	(1),(2)
		θ_{x-}		-	88	-	
	Vertical	θ_{y+}		-	88	-	
		θ_{y-}		-	88	-	
				-	88	-	

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following:

1. Measure Module's and BLU's spectrum at center point. White and R,G,B are with signal input. BLU (for V546H1-LS1) is supplied by CMI.
2. Calculate cell's spectrum.
3. Calculate cell's chromaticity by using the spectrum of standard light source "C".

Note (1) Light source is the BLU which supplied by CMI and driving voltage are based on suitable gamma voltages.

Note (2) Definition of Viewing Angle (θ_x, θ_y):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

$$\text{Contrast Ratio (CR)} = \frac{\text{Surface Luminance of L255}}{\text{Surface Luminance of L0}}$$

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (5).

Note (4) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023.

Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.

Note (5) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

$$\delta W = \text{Maximum} [L(1), L(2), L(3), L(4), L(5)] / \text{Minimum} [L(1), L(2), L(3), L(4), L(5)]$$

Note (6) Definition of Transmittance (T%) :

Measure the luminance of gray level 255 at center point of LCD module.

$$\text{Transmittance (T\%)} = \frac{\text{Luminance of LCD module}}{\text{Luminance of backligh unit}} \times 100\%$$

8.PRECAUTIONS**8.1 ASSEMBLY AND HANDLING PRECAUTIONS**

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- [6] Do not disassemble the module.
- [7] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [8] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [9] When storing modules as spares for a long time, the following precaution is necessary.
 - [9.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [9.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

9. DEFINITION OF LABELS

9.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMI internal control

Figure.8-1 Serial No. Label on SPWB

Model Name: V546H1-PS1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID: X X X X X X X Y M D L N N N N

Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1, 2012=2...etc.

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product

Figure 9-2 Panel ID Label on Cell

Panel ID Label includes the information as below:

Panel ID: T X X X X X X X X X X X X

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

(a) Model Name: V546H1- PS1

(b) Carton ID: X X X X X X X Y M D X X X X

Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1, 2012=2...etc.

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I ,O, and U.

Revision Code: Cover all the change

(c) Quantities: 8

10. Packaging

10.1 PACKING SPECIFICATIONS

- (1) 6 LCD TV Panels / 1 Box
- (2) Box dimensions : 1454 (L) X 994 (W) X 210 (H)
- (3) Weight : approximately 42Kg (6 panels per box)

10.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

Figure.10-1 packing method

Sea / Land Transportation
 (40ft HQ Container)

Sea / Land Transportation

Air Transportation

Uses A or the B pallet.

Type A

Type B

Figure. 10-2 Packing method

PRODUCT SPECIFICATION

11. MECHANICAL CHARACTERISTIC

Version 2.0
2011

39

Date : 24 Jan

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

