DEL 1 Uten hjelpemidler

Oppgave 1 (2 poeng)

Deriver funksjonene

- a) $f(x) = e^x \cdot \cos x$
- b) $g(x) = 5(1 + \sin x)^3$

Oppgave 2 (4 poeng)

Bestem integralene

- a) $\int \cos x \cdot (1 + \sin x)^3 dx$
- b) $\int_{1}^{e} x \cdot \ln x \, dx$

Oppgave 3 (4 poeng)

Vi har gitt punktene A(1, 1, 1), B(2, 1, 5) og C(3, 7, 3).

- a) Undersøk om $\triangle ABC$ er rettvinklet.
- b) Bestem koordinatene til et punkt D slik at \square ABCD blir et parallellogram.

Oppgave 4 (4 poeng)

Vi har gitt differensiallikningen

y'' - y = 0 der y er en funksjon av x.

- a) Vis at $y = C_1 \cdot e^x + C_2 \cdot e^{-x}$ er løsning av differensiallikningen, når C_1 og C_2 er konstanter.
- b) Bestem C_1 og C_2 når y(0) = 5 og y'(0) = -1

Oppgave 5 (2 poeng)

Vi har gitt den uendelige rekken

$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$$

Forklar at rekken konvergerer, og bestem summen av rekken.

Oppgave 6 (2 poeng)

En periodisk funksjon f er gitt på formen

$$f(x) = a\sin(cx + \varphi) + d$$

Grafen til f går gjennom punktet A(0,5), den har bunnpunkt i B(3,2) og toppunkt i T(5,8). Det er ingen andre ekstremalpunkter i intervallet $\langle 3,5 \rangle$.

Bestem verdier for konstantene a, c, φ og d.

Oppgave 7 (3 poeng)

Vi har gitt funksjonen

$$f(x) = x^2 \cdot e^{-x}$$

- a) Bestem eventuelle topp- og bunnpunkter på grafen til f.
- b) Tegn en skisse av grafen til f.

Oppgave 8 (3 poeng)

Bevis påstanden ved induksjon

$$P(n): 1\cdot 4+2\cdot 5+3\cdot 6+\cdots+n\cdot (n+3) = \frac{n(n+1)(n+5)}{3}$$
, $n \in \mathbb{N}$

DEL 2

Med hjelpemidler

Oppgave 1 (7 poeng)

En funksjon er gitt ved

$$f(x) = 8e^{-x} \cdot \sin 2x$$

a) Tegn grafen til f, og bestem eventuelle null-, topp-, bunn- og vendepunkter når $x \in \langle 0, \pi \rangle$.

I en formelsamling for matematikk finner vi formelen

$$\int e^{ax} \cdot \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$$

- b) Bruk formelen til å bestemme $\int f(x) dx$ Kontroller svaret ved derivasjon.
- c) Bestem det samlede arealet av områdene som er avgrenset av x aksen og grafen til f når $x \in [0, \pi]$.

Oppgave 2 (6 poeng)

Farten v til en sprinter måles i meter per sekund og er en funksjon av tiden t. Tiden t er målt i sekunder etter start. Farten v er en løsning av differensiallikningen

$$v' = 12,0-1,15 \cdot v$$

- a) Løs differensiallikningen og bestem v(t) når du får vite at v(0) = 0
- b) Strekningen s måles i meter og er definert ved

$$s' = v \text{ og } s(0) = 0$$

Bestem en formel for s(t).

c) Hvor lang tid vil sprinteren bruke på 100 m, ifølge modellen ovenfor?

Oppgave 3 (8 poeng)

Gitt vektorene \vec{a} , \vec{b} og \vec{c} . Ingen av vektorene er $\vec{0}$.

- a) Forklar hvordan vektorene ligger i forhold til hverandre
 - 1) når $\vec{a} \cdot \vec{b} = 0$
 - 2) når $\vec{a} \times \vec{b} = \vec{0}$
 - 3) når $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$
- b) Bruk definisjonen av $\vec{a} \cdot \vec{b}$ og $\vec{a} \times \vec{b}$ til å vise

$$(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 \cdot |\vec{b}|^2$$

c) Skisse 1 viser en trekant utspent av vektorene \vec{a} og \vec{b} .

Forklar at arealet F av trekanten er

$$F = \frac{1}{2} \sqrt{|\vec{a}|^2 \cdot |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2}$$

Kommenter hvert av de to tilfellene $\vec{a} \cdot \vec{b} = 0$ og $\vec{a} \times \vec{b} = \vec{0}$.

d) Bruk uttrykket i oppgave c) til å regne ut arealet av \triangle ABC i skisse 2.

Oppgave 4 (4 poeng)

Vi har gitt rekken

$$1+3+5+\cdots+(2n-1)$$

a) Bestem et uttrykk for summen S_n av de n første leddene, og bestem hvor mange ledd vi må ta med for at S_n skal bli 1 600.

En uendelig rekke er gitt ved

$$1 + \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{8^2} + \cdots$$

b) Forklar at dette er en konvergent, geometrisk rekke. Bestem summen av rekken.

Oppgave 5 (4 poeng)

En såkalt ellipse med sentrum i origo O er gitt ved likningen

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

Hvis vi dreier øvre halvdel av ellipsen 360° om x – aksen, får vi et omdreiningslegeme som vi kaller en ellipsoide.

- a) Vis at likningen for ellipsen kan omformes til $y^2 = b^2 \frac{b^2 x^2}{a^2}$
- b) Bruk integrasjon for å vise at formelen for volumet av ellipsoiden er $\frac{4}{3}\pi ab^2$

Oppgave 6 (7 poeng)

Skissen ovenfor viser grafen til funksjonen f gitt ved

$$f(x) = \sqrt{x-2}$$

På skissen er det også tegnet inn tangenten til grafen i punktet P(a, f(a)).

a) Vis at likningen til tangenten er

$$y = \frac{1}{2\sqrt{a-2}} x + \frac{a-4}{2\sqrt{a-2}}$$

Bestem koordinatene til punktene A, B og C på figuren.

b) Vis at arealet av området som er avgrenset av grafen til f og x – aksen fra B til C er

$$\frac{2}{3}(a-2)^{\frac{3}{2}}$$

Bestem også arealet av $\triangle ACP$.

c) Grafen til f deler \triangle ACP i to områder. Vis at arealet til det ene området er dobbelt så stort som arealet til det andre.