

PRÁCTICA LÓGICA 2

1ºCIBERSEGURIDAD

LUIS ORTIZ FERNÁNDEZ ADRIÁN ANTÓN PEREZ ÁLVARO GOMEZ FUEYO

INDICE:

EJERCICIO 1 - (2)

EJERCICIO 2 –(3)

EJERCICIO 3-(4)

EJERCICIO 4-(5,6)

EJERCICIO 5-(7)

1. Formalizar en lenguaje primer orden

EJERCICIO 1:

 Angustias, Bartolomé y Ceferino son todos ingenieros del software o todos ingenieros de la ciberseguridad.

$$(S(a) \land S(b) \land S(c)) \lor (C(a) \land C(b) \land C(c))$$

2. Los ingenieros del software son conocidos de Angustias que es ingenieria de la ciberseguridad

$$\forall x(S(x) \rightarrow F(x, a) \land C(a))$$

3. Algunos ingenieros del software son conocidos de Angustias que es ingeniera de la ciberseguridad.

$$\exists x \big(S(x) \to F(x, a) \land C(a) \big)$$

5. Todos los conocidos de Bartolomé son conocidos de Angustias, pero si son conocidos de Ceferino y no son ingenieros de la ciberseguridad, entonces no son conocidos de Angustias.

$$\forall x (F(x,b) \land F(x,a)), \forall x (F(x,c) \land \neg C(x) \rightarrow \neg F(x,a))$$

2. Deducción Natural

EJERCICIO 2:

 $\{\forall x (Q(x) \rightarrow \neg R(x)), \forall x (P(x) \rightarrow Q(x) \lor S(x)), \exists x (P(x) \land R(x))\} \vDash \exists x (P(x) \land S(x)):$

 $1.\forall x(Q(x) \rightarrow \neg R(x))$ premisa

2. $\forall x (P(x) \rightarrow Q(x) \lor S(x))$ premisa

3. $\exists x (P(x) \land R(x))$ premisa

 $4. \left(Q(x) \to \neg R(x) \right) \qquad E \forall (1)$

5. $(P(x) \rightarrow Q(x) \lor S(x))$ $E \forall (2)$

6. $P(a *) \wedge R(a *)$ $E \exists (3)$

7. P(a *) $E \wedge (6)$

9. $\neg Q(x)$ MT (8,4)

10. $Q(x) \vee S(x)$ $E \to (7,5)$

11. S(x) Corte (9,10)

12. $P(a*) \wedge S(x)$ $I \wedge (11,7)$

13. $\exists x (P(x) \land S(x))$ *I* \exists

3. Simplificación de Fórmulas

EJERCICIO 3:

1.

$$\neg(\exists x P(x) \to \forall x P(x))$$

$$\neg(\exists x P(x) \to \forall y P(y))$$

$$\neg(\forall x \forall y (P(x) \to P(y)))$$

$$(\exists x \exists y (\neg P(x) \lor P(y))$$

$$\neg P(a) \lor P(b)$$

3.
$$\neg (\forall x \exists y F(a,x,y) \rightarrow \exists x (\neg \forall y G(y,b) \rightarrow H(x)))$$

$$\neg (\forall x \exists y F(a,x,y) \rightarrow \exists u (\neg \forall w G(w,b) \rightarrow H(u)))$$

$$\neg (\forall x \exists y F(a,x,y) \rightarrow \exists u (\exists w \neg G(w,b) \rightarrow H(u)))$$

$$\neg (\forall x \exists y F(a,x,y) \rightarrow \exists u \forall w (\neg G(w,b) \rightarrow H(u)))$$

$$\neg \exists x \forall y \exists u \forall w (F(a,x,y) \rightarrow (\neg G(w,b) \rightarrow H(u)))$$

$$\forall x \exists y \forall u \exists w (\neg F(a,x,y) \lor (G(w,b) \lor H(u)))$$

$$\forall x \forall u (\neg F(a,x,f(x)) \lor (G(f(x,u),b) \lor H(u)))$$

4. Unificación

EJERCICIO 4:

1.
$$A = R(f(x),f(x) y B = R(y,f(y))$$

α	Αα	Βα	(t_a,t_b)
χ	R(f(x),f(x)	R(y,f(y))	(y,f(x))
${y/f(x)}$	R(f(x),f(x)	R(f(x),f(y))	(f(y),f(x))
$\{y/f(x),f(y)/f(x)\}$	R(f(x),f(x)	R(f(x),f(x))	ÉXITO

A y B son unificables, su umg es $\{y/f(x),f(y)/f(x)\}$

2.
$$C = T(u,f(x),x) y D=T(g(z),z,a)$$

α	Са	Dα	(t_c,t_d)
χ	T(u,f(x),x)	T(g(z),z,a)	(u/g(z))
$\{u/g(z)\}$	T(g(z),f(x),x)	T(g(z),z,a)	(x/a)
$\{u/g(z),x/a\}$	T(g(z),f(x),a)	T(g(z),z,a)	(z/f(x))
$ \{ u/g(z), x/a, z/f(x) \} $	T(g(z),f(x),a)	T(g(z),f(x),a)	ÉXITO

C y D son unificables, su umg es $\{ u/g(z),x/a,z/f(x) \}$

3.
$$E=R(a, x) y R(b, y)$$

No son unificables al ser a y b dos constantes

4. G=P(f(y,a), y, f(x,g(b))) y H=P(x,g(b), f(z, y))

α	Gα	Ηα	(t_g,t_h)
χ	P(f(y,a), y, f(x,g(b)))	P(x,g(b), f(z, y))	(x,f(y,a))
$\{ x/f(y,a) \}$	P(f(y,a), y, f(f(y,a),g(b)))	P(f(y,a),g(b), f(z, y))	(y,g(b))
	P(f(g(b),a),g(b), f(f(g(b),a),g(b)))	P(f(g(b),a),g(b), f(z, g(b)))	(z,f(g(b),a))
$ \begin{cases} x/f(y,a), y/g(b), \\ z,f(g(b)/a) \end{cases} $	P(f(g(b),a), g(b), f(f(g(b),a),g(b)))	P(f(g(b),a),g(b), f(f(g(b),a),g(b)))	ÉXITO

G y H son unificables, su umg es $\{x/f(y,a),y/g(b),z,f(g(b)/a)\}$

5. Método de Resolución de Robinson

EJERCICIO 5:

7