UVA CS 6316: Machine Learning

Lecture 5: Non-Linear Regression Models and Model Selection

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Five major sections of this course

- ☐ Regression (supervised)
- ☐ Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

Regression (supervised)

- □ Four ways to train / perform optimization for linear regression models
 □ Normal Equation
 □ Gradient Descent (GD)
 □ Stochastic GD
 □ Newton's method
 □ Newton's method
- ☐Supervised regression models
 - ☐ Linear regression (LR)
 - □LR with non-linear basis functions
 - ☐ Locally weighted LR
 - ☐ LR with Regularizations

Journations of f(x)

Summations of L(9)

Today →

Regression (supervised)

- ☐ Four ways to train / perform optimization for linear regression models
 - **→** Normal Equation
 - ☐ Gradient Descent (GD)
 - **□** Stochastic GD
 - **□** Newton's method
- **□**Supervised regression models
 - ☐ Linear regression (LR)
 - □LR with non-linear basis functions
 - ☐ Locally weighted LR
 - ☐ LR with Regularizations

Today

- ☐ Regression Models Beyond Linear
 - •LR with non-linear basis functions
 - Instance-based Regression: K-Nearest Neighbors (later)
 - Locally weighted linear regression (extra)
 - Regression trees and Multilinear Interpolation (later)

LR with non-linear basis functions

LR does not mean we can only deal with linear relationships

$$\hat{y} = \theta^T \mathbf{x} \qquad \hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(\mathbf{x}) = \theta^T \varphi(\mathbf{x})$$

9/11/19

LR with non-linear basis functions

• We are free to design basis functions (e.g., non-linear features:

Here are fixed basis functions (also define

• E.g.: polynomial regression:

$$\varphi_0(x)=1$$

$$\varphi(x) := \left[1, x, x^2\right]^T$$

9/11/19

e.g. (1) polynomial regression

$$\hat{y} = \theta^{T} \mathbf{x}$$

$$\hat{y} = \theta^{T} \varphi(\mathbf{x})$$

$$\theta^{*} = (X^{T} X)^{-1} X^{T} \hat{y}$$

$$\theta^{*} = (\varphi^{T} \varphi)^{-1} \varphi^{T} \hat{y}$$

$$\rho_{\text{tranjun QI/UVACS}} \varphi(x) := \begin{bmatrix} 1, x, x^{2} \end{bmatrix}^{T}$$
s

e.g. (1) polynomial regression

$$\hat{\mathbf{y}} = \boldsymbol{\theta}^T \mathbf{x} \qquad \qquad \hat{\mathbf{y}} = \boldsymbol{\theta}^T \boldsymbol{\varphi}(\mathbf{x})$$

KEY: if the bases are given, the problem of learning the parameters is still linear.

Many Possible Basis functions

- There are many basis functions, e.g..-
 - Polynomial

$$\varphi_j(x) = x^{j-1}$$

Radial basis functions

$$\phi_j(x) = \exp\left(-\frac{\left(x - \mu_j\right)^2}{2s^2}\right)$$

Sigmoidal

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

- Splines,
- Fourier,
- Wavelets, etc

Many Possible Basis functions Sigmoid 0.75 0.75 0.5 0.5 0.25 0.25 0 0 -0.50.5 -0.50.5

e.g. (2) LR with radial-basis functions

• E.g.: LR with RBF regression:

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

$$\varphi(x) := \left[1, K_{\lambda_1}(x, r_1), K_{\lambda_2}(x, r_2), K_{\lambda_3}(x, r_3), K_{\lambda_4}(x, r_4)\right]^T$$

$$\frac{1}{0} = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4]^T$$

$$\boldsymbol{\theta}^* = (\boldsymbol{\varphi}^T \boldsymbol{\varphi})^{-1} \boldsymbol{\varphi}^T \vec{\boldsymbol{\chi}}_{\text{cs}}$$

RBF = radial-basis function: a function which depends only on the radial distance from a centre point

Gaussian RBF
$$\rightarrow K_{\lambda}(x,r) = \exp\left(-\frac{(x-r)^2}{2\lambda^2}\right)$$

as distance from the center r increases, the output of the RBF decreases

9/11/19

1D case

Dr. Yanjun Qi / UVA CS

$$K_{\lambda}(x,r) = \exp\left(-\frac{(x-r)^2}{2\lambda^2}\right)$$

X =	$K_{\lambda}(x,r)=$
r	1
$r+\lambda$	0.6065307
$r+2\lambda$	0.1353353
$r+3\lambda$	0.0001234098 Dr. Yanjun Qi / UVA CS

e.g. another Linear regression with 1D RBF basis functions (assuming 3 predefined centres and width)

$$\varphi(x) := \left[1, K_{\lambda_1}(x, r_1), K_{\lambda_2}(x, r_2), K_{\lambda_3}(x, r_3) \right]^T$$

$$\theta^* = \left(\varphi^T \varphi \right)^{-1} \varphi^T \vec{y}$$

e.g. a LR with 1D RBFs (3 predefined centres and width)

• 1D RBF

$$y^{est} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_3(x)$$

• After fit:

$$y^{est} = 2\phi_1(x) + 0.05\phi_2(x) + 0.5\phi_3(x)$$

Dr. Yanjun Qi / UVA CS

e.g. Even more possible Basis Func?

(2) Multivariate Linear Regression with basis Expansion

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

9/11/19 Dr. Yanjun Qi / UVA CS

Two main issues:

- To Learn the parameter
 - Almost the same as LR, just → X to

 $\boldsymbol{\beta}^*$

- Linear combination of basis functions (that can be non-linear)
- How to choose the model order,
 - E.g. what polynomial degree for polynomial regression
 - E.g., where to put the centers for the RBF kernels? How wide?

e.g. 2D Good and Bad RBF Basis

9/11/19

Blue dots denote coordinates of • A good 2D RBF input vectors Center Sphere of Two bad 2D RBFs significant X_2 influence of center X_1

Yanjun Qi / UVA CS

Issue: Overfitting and Underfitting

Linear Regression

Quadratic Regression

Join-the-dots

Also known as piecewise linear nonparametric regression if that makes you feel better

Why not choose the method with the best fit to the data?

Why not choose the method with the best fit to the data?

"How well are you going to predict future data drawn from the same distribution?"

What do we really want?

Why not choose the method with the best fit to the data?

"How well are you going to predict future data drawn from the same distribution?"

Issue: Overfitting and underfitting

Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

K-fold Cross Validation / Train-Test /

- 1. Randomly choose some percentage like 30% of the labeled data to be in a test set
- 2. The remainder is a training set

- 1. Randomly choose some percentage like 30% of the labeled data to be in a test set
- 2. The remainder is a training set3. Perform your regression on the training set

(Linear regression example)

(Linear regression example)
Mean Squared Error = 2.4

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

Evaluation:

e.g. train / test split as follows

$$\mathbf{X}_{train} = \begin{bmatrix} -- & \mathbf{x}_1^T & -- \\ -- & \mathbf{x}_2^T & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n^T & -- \end{bmatrix} \qquad \vec{y}_{train} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\mathbf{X}_{test} = \begin{bmatrix} -- & \mathbf{X}_{n+1}^{T} & -- \\ -- & \mathbf{X}_{n+2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{X}_{n+m}^{T} & -- \end{bmatrix} \quad \vec{y}_{test} = \begin{bmatrix} y_{n+1} \\ y_{n+2} \\ \vdots \\ y_{n+m} \end{bmatrix}$$

9/11/19

32

Testing MSE Error to report:

$$J_{test} = \frac{1}{m} \sum_{i=n+1}^{n+m} (\mathbf{x}_{i}^{T} \boldsymbol{\theta}^{*} - y_{i})^{2} = \frac{1}{m} \sum_{i=n+1}^{n+m} \varepsilon_{i}^{2}$$

In Homework, when we ask for plots of training error, we ask for the MSE per-sample train errors; Because it is comparable to test MSE error.

Train MSE Error to observe:

$$J_{train-MSE} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \boldsymbol{\theta}^{*} - y_{i})^{2}$$

In many situations, visualizing Train-MSE can be helpful to understand the behavior of your method, e.g., the influence of the hyper parameter you chose.....

In Homework, when we ask for plots of training error, we ask for the MSE per-sample train errors; Because it is comparable to test MSE error.

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

(Quadratic regression example) Mean Squared Error = 0.9

(Join the dots example)
Mean Squared Error = 2.2

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

The test set method

Good news:

- Very very simple
- Can then simply choose the method with the best

test-set score

Bad news:

•What's the downside?

The test set method

Good news:

- Very very simple
- Can then simply choose the method with the best test-set score

Bad news:

- Wastes data: we get an estimate of the best method to apply to 30% less data
- •If we don't have much data, our test-set might just be lucky or unlucky

We say the "test-set estimator of performance has high variance"

Regression: Complexity versus Goodness of Fit

What ultimately matters: GENERALIZATION

9/11/19

For k=1 to n

1. Let (x_k, y_k) be the k^{th} record

For k=1 to n

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset

For k=1 to n

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints

For k=1 to n

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

When you've done all points, report the mean error.

LOOCV for Quadratic Regression

LOOCV for Join The Dots

Which kind of Cross Validation?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data

..can we get the best of both worlds?

e.g. By k=10 fold Cross Validation

- Divide data into 10 equal pieces
- 9 pieces as training set, the rest 1 as test set
- Collect the scores from the diagonal
- We normally use the mean of the scores

Randomly break the dataset into k k-fold Cross Validation partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

Randomly break the dataset into k k-fold Cross Validation partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the purple partition: Train on all the points not in the purple partition. Find the test-set sum of errors on the purple points.

Linear Regression MSE_{3FOLD}=2.05

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the purple partition: Train on all the points not in the purple partition. Find the test-set sum of errors on the purple points.

Then report the mean error

Quadratic Regression MSE_{3FOLD}=1.11

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the purple partition: Train on all the points not in the purple partition.

Find the test-set sum of errors on the purple points.

Then report the mean error

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

Which kind of Cross Validation?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave-	Expensive.	Doesn't waste data
one-out	Has some weird behavior	
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.
3-fold	Wastier than 10-fold. Expensivier than test set	better than test-set
n-fold	Identical to Leave-one-out	

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

i	f_i	TRAINERR	k-FOLD-CV-ERR	Choice
1	f_1			
2	f_2			
3	f_3			?
4	f_4			
5	f ₅			
6	<i>f</i> ₆	_		

k-fold	$\mathbf{Leave}\text{-}p\text{-}\mathbf{out}$	
- Training on $k-1$ folds and	- Training on $n-p$ observations and	
assessment on the remaining one	assessment on the p remaining ones	
- Generally $k = 5$ or 10	- Case $p = 1$ is called leave-one-out	

The most commonly used method is called k-fold cross-validation and splits the training data into k folds to validate the model on one fold while training the model on the k-1 other folds, all of this k times. The error is then averaged over the k folds and is named cross-validation error.

Fold	Dataset	Validation error	Cross-validation error
1		ϵ_1	
2		ϵ_2	$\epsilon_1 + \ldots + \epsilon_k$
÷	: :	÷ :	k
k		ϵ_k	
	Train Validation		

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ Prof. Nando de Freitas's tutorial slide
- ☐ Prof. Andrew Moore's slides @ CMU