```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: data=pd.read_csv(r'D:\Data Analytics\LetsUpgrade\Day 19\auto_insurance_payment.csv')

In [3]: data

Out[3]:

	Number of claims	Total Payment
0	108	3925
1	19	462
2	13	157
3	124	4222
4	40	1194
58	9	874
59	31	2098
60	14	955
61	53	2446
62	26	1875

63 rows × 2 columns

In [4]: data.tail()

Out[4]:

	Number of claims	Total Payment
58	9	874
59	31	2098
60	14	955
61	53	2446
62	26	1875

In [5]: data.dtypes

Out[5]: Number of claims int64 Total Payment int64

dtype: object

```
In [6]: data.info()
```

In [7]: data.describe()

Out[7]:

	Number of claims	Total Payment
count	63.000000	63.000000
mean	22.904762	921.873016
std	23.351946	878.266281
min	0.000000	0.000000
25%	7.500000	299.000000
50%	14.000000	596.000000
75%	29.000000	1364.000000
max	124.000000	4222.000000

In [8]: data.hist()

In [9]: data.corr()

Out[9]:

	Number of claims	lotal Payment
Number of claims	1.000000	0.880668
Total Payment	0.880668	1.000000

In [13]: sns.scatterplot(data['Number of claims'],data[' Total Payment'])

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x23ba0e6c0b8>


```
In [14]: sns.pairplot(data)
```

Out[14]: <seaborn.axisgrid.PairGrid at 0x23ba0ecfe48>

In [15]: data.boxplot()

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x23ba0fe53c8>

In [16]: data.head(1)

Out[16]:

	Number of claims	Total Payment
0	108	3925

In [45]: x=data.iloc[:,:1]

```
In [46]: x.head(1)
Out[46]:
             Number of claims
                        108
           0
In [47]: y=data.iloc[:,1:2]
In [48]: y.head(1)
Out[48]:
             Total Payment
                     3925
           0
In [49]: plt.scatter(x,y)
          plt.title('Swedish Automobile Insurance')
         plt.xlabel('No.of claims')
         plt.ylabel('Total Payment')
          plt.show()
                           Swedish Automobile Insurance
             4000
             3000
          Total Payment
             1000
                                             80
                                                   100
                                                         120
                                      60
                                   No.of claims
In [50]: from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
In [51]: data.shape
Out[51]: (63, 2)
In [52]: X_train.shape
Out[52]: (50, 1)
```

```
In [53]: X_test.shape
Out[53]: (13, 1)
In [54]: y_test.shape
Out[54]: (13, 1)
In [55]: y_train.shape
Out[55]: (50, 1)
In [56]: from sklearn.linear_model import LinearRegression
         lin_reg=LinearRegression()
In [57]: #Train the model
         lin_reg.fit(X_train,y_train)
Out[57]: LinearRegression()
In [58]: lin_reg.coef_
Out[58]: array([[32.18742386]])
In [59]: lin_reg.intercept_
Out[59]: array([164.67433032])
In [60]: plt.scatter(X_train,y_train,color='Red')
         plt.plot(X_train,lin_reg.predict(X_train),color='green')
         plt.title('Swedish Automobile Insurance Data (Training Set)')
         plt.xlabel('Number of Claims')
         plt.ylabel('Total Payment')
         plt.show()
```



```
In [61]: #Test the model
         ypred=lin_reg.predict(X_test)
         ypred
Out[61]: array([[1355.60901327],
                 [ 261.23660191],
                 [1001.54735077],
                 [ 583.11084055],
                  [ 357.7988735 ],
                  872.79765532],
                  [ 293.42402578],
                  [ 518.73599282],
                 [1709.67067577],
                 [ 583.11084055],
                 [ 293.42402578],
                 [ 615.29826441],
                 [1452.17128486]])
```

In [62]: X_test

Out[62]:

Number of claims	
43	37
49	3
62	26
51	13
32	6
34	22
29	4
46	11
11	48
2	13
26	4
60	14
4	40

```
In [63]: data.head()
```

Out[63]:

	Number of claims	Total Payment
0	108	3925
1	19	462
2	13	157
3	124	4222
4	40	1194

```
In [64]: plt.scatter(X_test,y_test,color='green')
plt.plot(X_test,lin_reg.predict(X_test),color='blue')
plt.title('Swedish Automobile Insurance Data (Test Set)')
plt.xlabel('Number of claims')
plt.ylabel('Total Payment')
plt.show()
```



```
In [65]: #Estimate the cost
    from sklearn.metrics import mean_squared_error, r2_score
    RMSE=np.sqrt(mean_squared_error(y_test,ypred))
    r_square=r2_score(y_test,ypred)
    print('The R-square value is: ',r_square)
    print('The RMSE value is: ',RMSE)
```

The R-square value is: 0.6488832597282386 The RMSE value is: 458.93148052499384

In [74]: #How to predict for unseen value
unseen_pred=lin_reg.predict(np.array([[3234]]))
print('The unseen for the given x is: ',unseen_pred)

The unseen for the given x is: [[104258.80310468]]

In []: