Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion & Induction, Logic, Invariants
- Probability & Combinatronics
 - Basic Counting, Binomial Coeff, Advanced Counting,
 Probability, Random Variables

THE DICE GAME

• Dice Game

Playing the Game

Dice Game

Consider the following situation

- You are in a bad neighborhood
- There is a shady person on the corner of the street who offers bypassers to play a game with him

*shady – doubtful, suspicious, questionable character

Rules of the Game

- There are several dices with various numbers on their sides
- You and the shady person pick one dice each
- Both of you throw your dices
- Whoever has the larger number wins
- The winner gets man won from the loser

- To give you an advantage, the shady person lets you pick your dice first
- So you can pick the one you find the best
- And he will have to pick from the remaining options
 - So why not, to win all the shady person's money?
- What is the catch?

- There are no catches external to our model
 - in the end, this is a math course
 - Dices are fair: each outcome has probability exactly 1/6
 - No one will hit you on the head during the game
 - No one will pick your pocket
- Disclaimer: beware, all of these are not guaranteed to you in real life games with scammers!
- In our problem the shady person is not cheating
 - the game will be played exactly as described

- The game seems favorable to us in take to
 - Yet, the shady person is eager to play

- The game seems favorable to us
 - Yet, the shady person is eager to play

- So, what's wrong with this situation?
 - It turns out that there is <u>purely</u> a mathematical answer to this puzzle

• Dice Game

Playing the Game

- We observe closer & see shady person has just 3 dices
- And here they are:

- Dice 1 has numbers: 1, 1, 6, 6, 8, 8
 - Dice 2 has numbers: 2, 2, 4, 4, 9, 9
 - Dice 3 has numbers: 3, 3, 5, 5, 7, 7
- Which dice should we pick?

• We feel we are educated enough

• We feel we are educated enough

- We should compare dices and compute the probabilities
- Let's start with Dice 1 and Dice 2

Dice 1 vs Dice 2

Dice 1 vs Dice 2

1 2	12	14	1 4	19	1 9
12	1 2	1 4	1 4	1 9	1 9
62	62	64	64	69	6 9
62	62	64	64	6 9	6 9
82	82	84	84	89	8 9
82	82	84	84	89	<mark>8</mark> 9

- Dice 1 wins in 16 outcomes
- Dice 2 wins in 20 outcomes

Dice 1 vs Dice 2

1 2	1 2	1 4	1 4	1 9	1 9
12	1 2	1 4	1 4	1 9	1 9
62	62	64	64	6 9	69
62	62	64	64	69	69
82	82	84	84	8 9	89
82	82	84	84	89	89

- Dice 1 wins in 16 outcomes $\frac{16}{30}$
- Dice 2 wins in 20 outcomes $\frac{20}{36}$
- Dice 2 wins with probability of:

$$\left(\frac{16}{36} \to \frac{4}{9}\right) < \left(\frac{20}{36} \to \frac{5}{9} > \frac{1}{2}\right)$$

Playing the Game

- Dice 2 is better than Dice 1
- Now let's compare Dice 2 with Dice 3

Dice 2 vs Dice 3

```
23 23 25 25 27 27

23 23 25 25 27 27 20

43 43 45 45 47 47

43 43 45 45 47 47

93 93 95 95 97 97

93 93 95 95 97 97
```

Dice 2 vs Dice 3

23	23	25	25	27	27
23	23	25	25	27	27
43	43	45	45	47	47
43	43	45	45	47	47
93	93	95	95	97	97
93	93	95	95	97	97

- Dice 3 wins in 20 outcomes

Dice 2 vs Dice 3

23	23	25	25	27	27
23	23	25	25	27	27
43	43	45	45	47	47
43	43	45	45	47	47
93	93	95	95	97	97
93	93	95	95	97	97

- Dice 2 wins in 16 outcomes $\frac{16}{36}$
- Dice 3 wins in 20 outcomes $\frac{20}{36}$
- Dice 3 wins with probability of:

$$\left(\frac{16}{36} \to \frac{4}{9}\right) < \left(\frac{20}{36} \to \frac{5}{9} > \frac{1}{2}\right)$$

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Clearly, Dice 3 is better than Dice 1, hence we are done!

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Clearly, Dice 3 is better than Dice 1, hence we are done!

Or.... Are we? Let's check!

Dice 3 vs Dice 1

```
38
         36
              36
         36
              36
                  38
                       38
                          20
51
     51 56
                       58
<u>5</u>1
     51
         56
                       58
<u>71</u> 71 76 76
                       78
   71 76 76
71
                       78
                  78
```

Dice 3 vs Dice 1

31	31	36	36	38	38
31	31	36	36	38	38
51	51	56	56	58	58
51	51	56	56	58	58
71	71	76	76	78	7 8
71	71	76	76	78	78

- Dice 3 wins in 16 outcomes
- Dice 1 wins in 20 outcomes

Dice 3 vs Dice 1

31	31	36	36	38	38
31	31	3 6	36	38	38
51	51	5 6	56	58	58
51	51	5 6	56	58	58
71	71	76	76	78	78
71	71	76	76	78	78

- Dice 3 wins in 16 outcomes $\frac{16}{36}$
- Dice 1 wins in 20 outcomes $\frac{20}{36}$
- **Dice 1** wins with probability of:

$$\left(\frac{16}{36} \rightarrow \frac{4}{9}\right) < \left(\frac{20}{36} \rightarrow \frac{5}{9} > \frac{1}{2}\right)$$

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2....
- But Clearly, Diee 1 is better than Dice 3!
- Now this is interesting.... How is this even possible?!

Numbers vs Random Variables

- We are used to comparing numbers
- And we are used that certain properties hold
- One of them: if a > b and b > c, then a > c
- This is called transitivity
- This translates to real life experience:

 faster, higher, stronger

Numbers vs Random Variables

- But random variables are not numbers!
- It is way harder to compare them
- If we find some way of comparison, still usual properties are not guaranteed!
- For instance: no transitivity in our game!

Kluni 18 17.6, 6>C, C>G

Randon, 18 18 16>C, C>G

Vans

Who Wins the Game?

- But what does this mean to the game?
- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Dice 1 is better than Dice 3

Who Wins the Game?

- But what does this mean to the game?
- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Dice 1 is better than Dice 3

- Is actually having an advantage because of that!

Who Wins the Game?

Remember:

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Dice 1 is better than Dice 3

So, how does the shady person play the game to win?

Who Wins the Game?

Remember:

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Dice 1 is better than Dice 3

So, how does the shady person play the game to win?

- If we pick Dice 1, the shady person picks Dice 2
- If we pick Dice 2, the shady person picks Dice 3
- If we pick Dice 3, the shady person picks Dice 1
- Smart!

Main Lessons

- Probability is tricky!
- We should be very careful when applying <u>usual</u> intuition to probability
- In the end, we should just avoid scam games ©....

Thank you.