Introduction to PostGIS

Relational databases & GIS

Andreas Scharmüller

AG Landscape Ecology

2021-11-13 (updated: 2021-11-15)

What is PostGIS?

- It's FOSS!
- Spatial extension for the relational database PostgreSQL
- Compliant with the Open Geospatial Consortium (OGC) standards https://www.ogc.org
- Simple Feature Access https://en.wikipedia.org/wiki/Simple_Features

```
ST_Area()ST_Length()ST_Intersection()ST_Intersects()
```


What is PostGIS?

- Spatial extension for the relational database PostgreSQL
 - Geospatial Data Type
 - Point
 - Line
 - Polygon
 - Geometry Collection
 - Raster
 - (Spatial) Indices

Why not use a Shapefile?

ArcGIS (proprietary)

PostGIS

- Geo-Information
 - One table
 - One Column

Why not use a Shapefile?

- Easy data storage (comapared on standard GIS software)
- Standard simple feature formatting allows spatial data to be accessed by other software
- Automation of processes
- Handling of large data-sets

PostGIS

- Geo-Information
 - One table
 - One Column

Geo Libraries

• GDAL - Geo Data Abstraction Library

• GEOS - Geometry Engine, Open Source

• PROJ - Coordinate transformation software library

PostGIS functions

R {sf} equivalents

Palar River

Palar River

```
SELECT *
FROM palar
LIMIT 3
```

Palar River

length	pente	strahler	fid	geom
3053.50	20.366169	1	1194653	LINESTRING (4550796 2582247
986.99	5.996377	2	1194668	LINESTRING (4553302 2582898
476.30	11.744198	2	1194670	LINESTRING (4552910 2583143

Union

```
SELECT ST_Union(geom) AS geom
FROM palar
```

```
palar |>
  st_union()
```


Length

```
SELECT ST_Length(ST_Union(geom)) geom
FROM palar

palar |>
   st_union() |>
   st_length()

## 23289.93 [m]
```

Buffer - 100m

```
SELECT ST_Buffer(ST_Union(geom), 100) AS geom_buf
FROM palar

palar |>
   st_union() |>
   st_buffer(100)
```

Area

```
SELECT ST_Area(ST_Buffer(ST_Union(geom), 100)) AS area
FROM palar

palar |>
    st_union() |>
    st_buffer(100) |>
    st_area()

## 4615553 [m^2]
```

Convex Hull

```
SELECT ST_ConvexHull(geom) AS geom
FROM palar

palar |>
   st_union() |>
   st_convex_hull()
```

Projections

```
SELECT ST_SRID(geom)
FROM palar
LIMIT 1

st_crs(palar) # 3035
```

Transform

```
CREATE TABLE palar2 AS
   SELECT fid, ST_Transform(geom, 4326) geom -- EPSG for WGS84
   FROM palar
```

https://epsg.io/4326

Intersection

• Aim: Intersect 500m River Buffer with CORINE - LULC data

Intersection

```
SELECT
  cor.code_18, cor.label,
  ST_Intersection(ST_Buffer(riv.geom, 500), cor.geom) geom
FROM
  palar riv,
  corine cor
WHERE ST_DWithin(riv.geom, cor.geom, 500)
```

```
palar_buf = palar |>
    st_union() |>
    st_buffer(500)
corine |>
    st_intersection(palar_buf)

st_intersection(corine, st_buffer(st_union(palar), 500))
```

Intersection

Aggregate

```
WITH tmp AS (
    SELECT
        cor.code_18, cor.label,
        ST_Intersection(ST_Buffer(riv.geom, 500), cor.geom) geom
    FROM
        palar riv,
        corine cor
    WHERE ST_DWithin(riv.geom, cor.geom, 500)
)
SELECT
    label, SUM(ST_Area(geom)) AS area
FROM tmp
GROUP BY label
```

```
palar_lulc = palar_int |>
  mutate(area = st_area(palar_int)) |>
  group_by(label) |>
  summarise(area = sum(area))
```

Aggregate

label	area
Agricultural areas	230742.2 [m^2]
Artificial surfaces	283242.3 [m^2]
Forest and semi natural areas	19373840.1 [m^2]

Idexing

Index

- Extremely important for performance!
- Different Indices for different data types
 - PRIMARY KEY
 - BTREE
 - **GIST** Geographic Data

http://postgis.net/workshops/postgis-intro/indexing.html

Index

```
CREATE INDEX corine_label_btree_idx ON corine USING BTREE (label);
CREATE INDEX palar_geom_gist_idx ON palar USING GIST (geom);
```

Resources

• R sf cheatsheet

https://raw.githubusercontent.com/rstudio/cheatsheets/main/sf.pdf

Gentle Introduction to PostGIS

https://medium.com/innovation-and-technology/part-1-postgis-at-the-city-of-boston-9476293d71c2

https://medium.com/@paylakatel/part-2-postgis-at-the-city-of-boston-711cf30cf1f3

https://medium.com/@paylakatel/part-3-postgis-at-the-city-of-boston-98b83b0d1503

Slides

- OLAT
- https://andschar.github.io/teaching/PostGIS-intro.html

Made with

- https://github.com/rstudio/rmarkdown
- https://github.com/yihui/knitr
- https://github.com/yihui/xaringan

Introduction to Git & GitHub

Thank you for your attention!

Material: https://andschar.github.io/teaching

Andreas Scharmüller

Quantitative Landscape Ecology iES Landau, Institute for Environmental Sciences University of Koblenz-Landau University of Strasbourg

@andscharandschar@protonmail.com

