Estimator-based Performance Enhancement for Feedback-based Optimization

Niloufar Yousefi and John W. Simpson-Porco

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto

Background

Offline Optimization

- Model-based
- Requires an estimate or measurement of the Disturbance

Feedback-based Optimization (Online Optimization)

- Operates autonomously without external set points
- More robust against uncertainties and model mismatches [Hauswirth '24]

Problem Formulation

Plant Model

- Considering the LTI system where w is a constant disturbance with unknown initial condition
- Considering A is Hurwitz the steady-state input-to-output map for fixed u and w is:
- Where $\Pi_{\mu} := -CA^{-1}B$ and $\Pi_{\psi} := -CA^{-1}E$.

Optimization Problem

- Want to drive the output and control input of (1) to the solution of the optimization problem:
- The optimization can be written:
- Solve optimization using:

$\dot{x} = Ax + Bu + Ew$	
$\dot{w}=0$	(1)
y = Cx	

$$ar{y} = \Pi_u ar{u} + \Pi_w w$$

minimize
$$f(ar{u}) + g(ar{y})$$
 subject to $ar{y} = \Pi_u ar{u} + \Pi_w w$

$$\min_{\bar{u}} f(\bar{u}) + g(\Pi_u \bar{u} + \Pi_w w)$$

$$au \dot{u} = -\nabla f(u) - \Pi_{u}^{\mathsf{T}} \nabla g(\Pi_{u} u + \Pi_{w} w)$$

Closed-loop System

• Replace \bar{y} with the *measured* output value of y

$$\tau \dot{u} = -\nabla f(u) - \Pi_u^{\mathsf{T}} \nabla g(y) \tag{3}$$

Closed-loop is stable for sufficiently large au [Menta '18]

Motivation and Proposed Design

Motivation

- The **ideal** implementation assumes access to the **steady-state output** \bar{y}
- But \bar{y} is **not directly measurable** and we only measure the y(t)

Goal

- Using further **model information** to produce an *estimate* \hat{y} , which can be fed into the controller
- The estimator-enhanced feedback-based optimization (EE-FBO) design, replacing (3)

Stability and Convergence Rate

New closed-loop system possesses a unique globally exponentially stable equilibrium point with a corresponding output

No limitations are required on the tuning parameter τ

The convergence rate is limited by the convergence rate of the open-loop plant

Proof Idea: The closed-loop system will have form of a cascade

- ullet Select $oldsymbol{\mathsf{L}}$ such that $\mathcal{A} = oldsymbol{\mathsf{A}}_{\mathsf{aug}} + oldsymbol{\mathsf{LC}}_{\mathsf{aug}}$ is Hurwitz
- Define error variables $\tilde{x} \coloneqq x \hat{x}$, $\tilde{w} \coloneqq w \hat{w}$, $\tilde{y} \coloneqq y \hat{y}$, and consider $\tilde{\zeta} = \begin{bmatrix} \tilde{x} & \tilde{w} \end{bmatrix}^{\mathsf{T}}$ $\dot{\tilde{\zeta}} = \mathcal{A}\tilde{\zeta}, \qquad \tilde{y} = \mathbf{C}_{\mathsf{aug}}\tilde{\zeta} \qquad \dot{\tilde{y}} = \Pi_{\mathsf{u}} u + \Pi_{\mathsf{w}}(w \tilde{w})$

$$\tau \dot{u} = -\nabla f(u) - \Pi_u^{\mathsf{T}} \nabla g(\tilde{y} + \hat{\bar{y}}) = -\nabla f(u) - \Pi_u^{\mathsf{T}} \nabla g(\Pi_u u + \Pi_w w + \underbrace{C\tilde{x} - \Pi_w \tilde{w}}_{:=\tilde{v}}) := F(u, \tilde{v})$$

Simulation Results

Stability and convergence rate of EE-FBO compared to FBO

ullet FBO becomes unstable by decreasing au while EE-FBO remains stable

Conclusion

Summary

- The stability of the closed-loop system (1) and (3) depends on τ^* , which can be very large, leading to poor performance
- By incorporating model information and designing an estimator, the closed-loop remains stable without limitations on τ .

Future Work

- Extend the results to the nonlinear plant [Hauswirth '21]
- Explore alternative estimator designs that reduce reliance on model information in the design process

References

[Hauswirth '24] Hauswirth, A., He, Z., Bolognani, S., Hug, G., Dorfler, F. (2024). Optimization algorithms as robust feedback controllers. Annual Reviews in Control, 57:100941. DOI: 10.1016/j.arcontrol.2024.100941.

[Menta '18] Hauswirth, B., Bolognani, S., Hug, A., Dorfler, F., Menta, A. (2018). Stability of Dynamic Feedback Optimization with Applications to Power Systems. Fifty-sixth Annual Allerton Conference on Communication, Control, and Computing, held at Allerton House, Monticello, Illinois, October 2-5, 2018. ISBN: 9781538665961.

[Hauswirth '21] Hauswirth, B., Bolognani, S., Hug, A., Dorfler, F. (2021). Timescale Separation in Autonomous Optimization. IEEE Transactions on Automatic Control, 66(2):611-624. DOI: 10.1109/TAC.2020.2989274.