

planetmath.org

Math for the people, by the people.

finite field cannot be algebraically closed

 ${\bf Canonical\ name} \quad {\bf FiniteFieldCannotBeAlgebraicallyClosed}$

Date of creation 2013-03-22 16:29:09 Last modified on 2013-03-22 16:29:09 Owner rspuzio (6075)

Last modified by rspuzio (6075)

Numerical id 6

Author rspuzio (6075) Entry type Theorem Classification msc 12F05

Related topic AlgebraicClosureOfAFiniteField

Theorem. A finite field cannot be algebraically closed.

Proof. The proof proceeds by the method of contradiction. Assume that a field F is both finite and algebraically closed. Consider the polynomial $p(x) = x^2 - x$ as a function from F to F. There are two elements which any field (in particular, F) must have — the additive identity 0 and the multiplicative identity 1. The polynomial p maps both of these elements to 0. Since F is finite and the function $p \colon F \to F$ is not one-to-one, the function cannot map onto F either, so there must exist an element a of F such that $x^2 - x \neq a$ for all $x \in F$. In other words, the polynomial $x^2 - x - a$ has no root in F, so F could not be algebraically closed.