MATE 5201: Tarea 5

Due on 2 de diciembre

 ${\it Prof.\ Alejandro\ Velez}$, C41, 2 de diciembre

Sergio Rodriguez

Problem 1

(8 puntos) – Dado $\{a_n] \in \mathbb{R}$ sucesion con $a_n > 0$ para $n \geq N_0$ (algun $N_0 \in \mathbb{N}$), pruebe que si $\sum a_k$ converge, entonces $\sum_{k=1}^{\infty} \frac{\sqrt{|a_k|}}{k}$ converge.

Prueba:

La desigualdad Cauchy-Schwarz nos dice que $\left|\sum_{k=1}^{n} a_k b_k\right|^2 \leq \sum_{k=1}^{n} \left|a_k\right|^2 \sum_{k=1}^{n} \left|b_k\right|^2$.

Si $S_n:=\sum_{k=1}^n \frac{\sqrt{|a_k|}}{k}$ es la sucesion de sumas parciales de la serie, entonces, aplicando la desigualdad Cauchy-Schwarz tenemos que:

$$|S_n|^2 \le \sum_{k=1}^n |a_k| \sum_{k=1}^n \left| \frac{1}{k^2} \right| \tag{1}$$

Pero el limite del primer factor del lado derecho converge por hipotesis y el limite del segundo factor converge porque es una p-serie con p=2. Entonces, por comparacion directa:

$$\left| \sum_{k=1}^{\infty} \frac{\sqrt{|a_k|}}{k} \right|^2 \quad \text{converge} \tag{2}$$

Y si sacas la raiz tienes nuestra conclusion.

$$\therefore \sum_{k=1}^{\infty} \frac{\sqrt{|a_k|}}{k} \text{ converge.}$$

MEP

Problem 2

 $(8 \ puntos) - Sea \ \{a_n\} \in \mathbb{N} \ successor \ de \ numeros \ naturales \ con \ a_n \leq n-1 \ para \ cada \ n \in \mathbb{N}.$ Demuestre que $\sum_{k=1}^{\infty} \frac{a_k}{k!} \in \mathbb{Q}$ si y solo si existe $N_0 \in \mathbb{N}$ tal que $a_n = n-1$ para todo $n \geq N_0$.

Prueba:

MEP

Problem 3

(16 puntos) – Dado $a \in (0,1]$ y s > 1, definimos la funcion a-zeta de Riemann por:

$$\zeta(s;a) := \sum_{k=0}^{\infty} \frac{1}{(a+k)^s} \tag{3}$$

La funcion zeta de Riemann clasica es cuando a=1, y se denota por $\zeta(s)$.

(a) - (4 puntos) – Pruebe que $\zeta(\cdot;\cdot)$ esta bien definida.

Prueba:

Note que como a es positivo, $\frac{1}{(a+k)^s} \leq \frac{1}{k^s}$, pero $\sum_{k=1}^{\infty} \frac{1}{k^s}$ converge por que es una p-serie con p=s>1. Entonces $\zeta(s;a)$ converge.

Ahora note que dados $s_1>1, s_2>1, a_1, a_2\in(0,1]$,

$$(s_1, a_1) = (s_2, a_2)$$

 $\Rightarrow s_1 = s_2 \land a_1 = a_2$ (4)

Ahora usaremos induccion. Note que $a_1^{-s_1}=a_2^{-s_2}$. Ahora:

$$S_{j}(s_{1}, a_{1}) = S_{j}(s_{2}, a_{2})$$

$$\Rightarrow \sum_{k=0}^{j} (a_{1} + k)^{-s_{1}} = \sum_{k=0}^{j} (a_{2} + k)^{-s_{2}}$$

$$\Rightarrow \sum_{k=0}^{j} (a_{1} + k)^{-s_{1}} + (a_{1} + j + 1)^{-s_{1}} = \sum_{k=0}^{j} (a_{2} + k)^{-s_{2}} + (a_{2} + j + 1)^{-s_{2}}$$

$$\Rightarrow \sum_{k=0}^{j+1} (a_{1} + k)^{-s_{1}} = \sum_{k=0}^{j+1} (a_{2} + k)^{-s_{2}}$$

$$\Rightarrow S_{j+1}(s_{1}, a_{1}) = S_{j+1}(s_{2}, a_{2})$$
(5)

Entonces:

$$S_n(s_1, a_1) = S_n(s_2, a_2)$$

$$\Rightarrow \lim_{n \to \infty} S_n(s_1, a_1) = \lim_{n \to \infty} S_n(s_2, a_2)$$
(6)

 $\div \zeta(s_1;a_1) = \zeta(s_2;a_2)$ y ζ esta bien definida.

MEP

(b) - (6 puntos) – Demuestre que
$$\sum\limits_{j=1}^{m} \zeta \Big(s; rac{j}{m}\Big) = m^s \zeta(s)$$
.

Prueba:

MEP

(c) - (6 puntos) - Pruebe que
$$\sum_{k=1}^{\infty} (-1)^{k-1} k^{-s} = (1-2^{1-s})\zeta(s)$$
.

Prueba:

Sea $A_n := \sum_{k=0}^n (1+k)^{-s}$ la sucesion de sumas parciales de $\zeta(s)$. Ahora considere las ecuaciones:

$$A_n = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots + \frac{1}{n^s} \tag{7}$$

Ahora le restaremos la ecuacion (6) a la ecuacion (5), mantendremos los terminos en posiciones impares de la ecuacion (6) y restaremos en los terminos en posiciones pares, luego quedan algunos terminos. Pero primero, note que $\exists n \in \mathbb{N}$ tal que n=2m o n=2m+1. El signo del ultimo termino del primer parentesis depende de cual de estas es cierta, pero el metodo sigue igual.

$$(1 - 2^{1-s})A_n = \left(1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s}...\right) - 2\left(\frac{1}{(2(m+1))^s} + \frac{1}{(2(m+2))^s} + ... + \frac{1}{(2n)^s}\right)$$

$$= \sum_{k=1}^n (-1)^{k-1} k^{-s} - 2\sum_{k=m+1}^n \frac{1}{(2k)^s}$$

$$= \sum_{k=1}^n (-1)^{k-1} k^{-s} - 2\left(\sum_{k=1}^n \frac{1}{(2k)^s} - \sum_{k=1}^m \frac{1}{(2k)^s}\right)$$
(9)

Ahora, podemos tomar limites de ambos extremos de la ecuacion. (Note que $m\longrightarrow\infty$ cuando $n\longrightarrow\infty$).

$$(1-2^{1-s})\sum_{k=0}^{n} (1+k)^{s} = \sum_{k=1}^{n} (-1)^{k-1}k^{-s} - 2\left(\sum_{k=1}^{n} \frac{1}{(2k)^{s}} - \sum_{k=1}^{m} \frac{1}{(2k)^{s}}\right)$$

$$\Rightarrow (1-2^{1-s})\sum_{k=0}^{\infty} (1+k)^{s} = \sum_{k=1}^{\infty} (-1)^{k-1}k^{-s} - 2\lim_{n\to\infty} \left(\sum_{k=1}^{n} \frac{1}{(2k)^{s}} - \sum_{k=1}^{m} \frac{1}{(2k)^{s}}\right)$$

$$\therefore (1-2^{1-s})\sum_{k=0}^{\infty} (1+k)^{s} = \sum_{k=1}^{\infty} (-1)^{k-1}k^{-s}$$

$$(11)$$

MEP

Problem 4

(8 puntos) - Dadas las sucesiones $\{a_n\}, \{b_n\} \subseteq \mathbb{R}$, si $\sum a_k$ converge $y \{b_n\}$ es sucesion monotonica acotada, demuestre que $\sum a_k b_k$ converge.

Prueba:

Primero demostraremos la formula de sumatorias parciales. Si $\{a_n\}, \{b_n\}$ son sucesiones, y $A_n := \sum_{k=0}^n a_k$ es la sucesion de sumas parciales de a_n , tenemos que:

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p$$
 (12)

Prueba:

$$\begin{split} \sum_{n=p}^{q} a_n b_n &= \sum_{n=p}^{q} (A_n - A_{n-1}) b_n \\ &= \sum_{n=p}^{q} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1} \\ &= \sum_{n=p}^{q-1} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1} + A_q b_q \\ &= \sum_{n=p}^{q-1} A_n b_n - \sum_{n=p}^{q-1} A_n b_{n+1} + A_q b_q - A_{p-1} b_p \\ &= \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b - p \end{split}$$

Ahora demostraremos que $\sum a_k b_k$ converge cuando b_k es no-creciente.

Como $\sum a_k$ converge, A_k es acotada. Entonces sea M>0 tal que $|A_k|< M$. Ademas, al ser monotonica y acotada, b_n converge. Sea $\lim_{n\to\infty}b_n=L$. Entonces $\exists N\in\mathbb{N}$ tal que $n\geq N\Longrightarrow |b_n-L|<\frac{\varepsilon}{2M}-L$.

Entonces tenemos que, para $n > m \ge N$, tenemos que:

$$\left| \sum_{k=m+1}^{n} a_{k} b_{k} \right| = \left| \sum_{k=m+1}^{n-1} A_{k} (b_{k} - b_{k+1}) + A_{n} b_{n} - A_{m} b_{m+1} \right|$$

$$\leq M \left| \sum_{k=m+1}^{n-1} (b_{k} - b_{k+1}) + b_{n} - b_{m+1} \right|$$

$$= M |b_{n} + b_{n+1}| = M |(b_{n} - L) + (b_{n+1} - L) + 2L|$$

$$< M \left| \frac{\varepsilon}{2M} - L + \frac{\varepsilon}{2M} - L + 2L \right| = M \left| \frac{\varepsilon}{M} \right| < \varepsilon$$
(14)

Entonces, por el criterio de Cauchy, $\sum a_k b_k$ converge.

MEP