Finite Automaton: Formal Definition

A finite automaton (FA) is defined as the 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$
, where

- *Q* is a finite set of states;
- $q_0 \in Q$ is the start state;
- $F \subseteq Q$ is the set of accepting states;
- Σ is the input alphabet; and
- δ is the *transition function* describing the behavior of the FA.

Finite Automaton: Formal Definition

• A finite automaton (FA) is defined as the 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$
, where

- *Q* is a finite set of states;
- $q_0 \in Q$ is the start state;
- $F \subseteq Q$ is the set of accepting states;
- Σ is the input alphabet; and
- δ is the *transition function* describing the behavior of the FA.
 - A FA with $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$ is called a nondeterministic finite automaton with ϵ -moves (ϵ -NFA).
 - A FA with $\delta: Q \times \Sigma \to 2^Q$ is called a nondeterministic finite automaton (NFA).
 - A FA with $\delta: Q \times \Sigma \to Q$ is called a deterministic finite automaton (DFA).

The Finite Automaton Viewed As A Graph

- Given the FA $M=(Q,\Sigma,\delta,q_0,F)$, define the labeled directed graph $G(M)=\big(V(M),E(M)\big)$, where
 - V(M) = Q; and
 - For each transition $\delta(p,\sigma)=q$, E(M) contains the directed edge (p,q) with label σ .

FA Recognize Regular Languages

- The language recognized by $M = (Q, \Sigma, \delta, q_0, F)$ (denoted L(M)) is the set of input strings $s \in \Sigma^*$ for which M, starting from q_0 and scanning the symbols of s in sequence order, transitions to some state $q' \in F$.
 - Such a sequence of state transitions (irrespective of whether the state reach is an accepting state) is called a computation.

FA Recognize Regular Languages

- The language recognized by $M = (Q, \Sigma, \delta, q_0, F)$ (denoted L(M)) is the set of input strings $s \in \Sigma^*$ for which M, starting from q_0 and scanning the symbols of s in sequence order, transitions to some state $q' \in F$.
 - Such a sequence of state transitions (irrespective of whether the state reach is an accepting state) is called a computation.
- In the graph view, a computation of M on input string s corresponds to a directed path $q_0 \rightsquigarrow \cdots \rightsquigarrow q'$ in G(M) such that the concatenation of the edge labels along the path is equal to s.
 - $s \in L(M) \equiv q' \in F$.

FA Recognize Regular Languages

- The language recognized by $M = (Q, \Sigma, \delta, q_0, F)$ (denoted L(M)) is the set of input strings $s \in \Sigma^*$ for which M, starting from q_0 and scanning the symbols of s in sequence order, transitions to some state $q' \in F$.
 - Such a sequence of state transitions (irrespective of whether the state reach is an accepting state) is called a computation.
- In the graph view, a computation of M on input string s corresponds to a directed path $q_0 \rightsquigarrow \cdots \rightsquigarrow q'$ in G(M) such that the concatenation of the edge labels along the path is equal to s.
 - $s \in L(M) \equiv q' \in F$.
- Theorem: Every regular language can be recognized by a finite automaton, and the language recognized by every finite automaton is regular.

Examples of Finite Automata

(a|b)*abb