Numele si prenumele:

Grupa:

Varianta 2.

Partea I. Încercuiți răspunsurile corecte la întrebările de mai jos.

- 1. Se consideră \mathbb{R}^3 cu structura canonică de \mathbb{R} -spațiu vectorial. Care dintre următoarele submulțimi sunt subspații vectoriale
- a) $\{(x,y,z)|x+y=1\}$. b) $\{(x,2x,0)|x\in\mathbb{R}\}$. c) $\{(x,y,z)|2x-3y=0\}$ d) $\{(x,y,0)|2x-3y<0\}$. (10 puncte).
- 2. Fie K un corp, V, W două K-spații vectoriale, $f: V \to W$ o aplicație liniară. Dacă $dim_K(V) = 3$, $dim_K(W) = 3$ și $dim_K(Im(f)) = 2$ atunci:
- a) $dim_K(Ker(f)) = 1$. b) $dim_K(Ker(f)) = 0$. c) f este injectivă.d) f este surjectivă. (10 puncte).
- 3. Fie K un corp, V un K-spațiu vectorial de dimensiune 4 și $U, W \subset V$ subspații vectoriale a. î. $dim_K(U) = 2$, $dim_K(W) = 2$, $dim_K(U+W) = 4$. Atunci
- a) $dim_K(U\cap W)=1$. b) $dim_K(U\cap W)=0$. c) suma U+W este directă. d) $U\subset W$. (10 puncte).
 - **4.** Determinați $(\alpha, \beta) \in \mathbb{R}^2$ astfel încât $A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \alpha & \beta \end{pmatrix}$ să reprezinte o rotație a planului euclidian.
- a) $(\alpha, \beta) = (\frac{\sqrt{3}}{2}, \frac{1}{2})$ b) $(\alpha, \beta) = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$ c) $(\alpha, \beta) = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$ d) nu există (α, β) a.î. A este rotație. (10 puncte) 5. Dacă punctele A(1, 2, 0), B = (1, 2, 2), C = (2, 4, t) din spațiul afin \mathbb{R}^3 sunt coliniare, atunci:
- a) t = 3; b) t = 2; c) $t \in \mathbb{R}$; d) $t \in \emptyset$. (10 puncte)
 - **6.** Dacă vectorii u = (1, 2, 0), v = (-1, -2, t) sunt perpendiculari, atunci:
- a) t = 5; b) t = 0; c) $t \in \mathbb{R}$; d) nu există $t \in \mathbb{R}$ a.î. $u \perp v$. (10 puncte)

Partea II. Pe foile de rezolvare treceți soluțiile complete.

1. Determinați o formă canonică pentru forma pătratică (definită peste corpul R)

$$x^2 + 4xy + 2y^2 + 2z^2 + 4yz.$$

(15 puncte).

2. Fie $f: \mathbb{R}^3 \to \mathbb{R}^3$ f(X) = AX unde

$$A = \begin{pmatrix} -2 & -3 & -3 \\ -2 & 3 & -3 \\ -3 & 1 & -3 \end{pmatrix}$$

- a). Arătați că f este \mathbb{R} -liniară. (10 puncte).
- b) Determinați Ker(f) și Im(f) (ecuații, baze, dimensiuni).(20 puncte).
- c). Determinați valorile proprii și decideți dacă f este diagonalizabilă. (15 puncte).
 - 3. În spațiul vectorial euclidian $(\mathbb{R}^3, <, >_{can})$ considerăm vectorii u = (1, -2, 2), v = (0, 3, -4).
- a) Să se determine ||u||, ||v|| și măsura unghiului $\widehat{u,v}$. (10 puncte)
- b) Să se determine un vector w a.î. $w \perp u, w \perp v$. (10 puncte)
- c) pentru w obținut la punctul b) să se ortonormalizeze sistemul (u, v, w) utilizând algoritmul Gramm-Schmidt. (10 puncte)
 - 4. În \mathbb{R}^3 înzestrat cu structura afină canonică se consideră punctele
 - A = (1, 2, 1), B = (0, 1, 3), C = (-1, 5, 0).
- a) Determinați ecuațiile dreptelor AB și AC. (10 puncte).
- b) Decideți dacă A,B,C sunt necoliniare și în caz afirmativ aflați ecuația planului (ABC). (10 puncte) c) Determinați $\alpha \in \mathbb{R}$ a.î planul (ABC) conține dreapta $d: \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-1}{\alpha}$. (10 puncte)