

KY-012 Active Piezo-Buzzer module

KY-012 Active Piezo-Buzzer module

Contents	
1 Pictures	1
2 Technical data / Short description	1
3 Pinout	2
4 Code example Arduino	2
5 Code example Raspberry Pi	

Pictures

Export: 16.06.2017

Technical data / Short description

This Buzzer creates a sound with a frequency of 2,5kHz.

The active Buzzer-module doesn't need a square wave, unlike the passiv module (KY-006), to create a sound. If it gets a minimum Voltage of 3.3V at its signal pin, the buzzer will create the square wave by itself.

Pinout

Code example Arduino

In this example, you will see how the buzzer will be ON for 4 seconds and then will be OFF for 2 seconds.

```
int Buzzer = 13;

void setup ()
{
   pinMode (Buzzer, OUTPUT); // Output pin initialization for the buzzer
}

void loop () //Main program loop
{
   digitalWrite (Buzzer, HIGH); // Buzzer will be on
   delay (4000); // Waitmode for 4 seconds
   digitalWrite (Buzzer, LOW); // Buzzer will be off
   delay (2000); // Waitmode for another 2 seconds in which the buzzer will be off
}
```

Connections Arduino:

```
Sensor Signal = [Pin 13]
Sensor [N.C] =
Sensor GND = [Pin GND]
```

Example program download:

KY-006-RPI_PWM

Export: 16.06.2017

Code example Raspberry Pi

In this example, you will see how, with a defined output pin, the buzzer will be ON for 4 seconds and then will be OFF for 2 seconds.

KY-012 Active Piezo-Buzzer module

```
import RPi.GPIO as GPIO
import time
GPI0.setmode(GPI0.BCM)
# Output pin declaration for the Buzzer.
Buzzer_PIN = 24
GPIO.setup(Buzzer PIN, GPIO.OUT, initial= GPIO.LOW)
print ("Buzzer-test [press ctrl+c to end the test]")
# Main program loop
try:
         while True:
             print("Buzzer will be on for 4 seconds")
             GPIO.output(Buzzer_PIN,GPIO.HIGH) #Buzzer will be switched on time.sleep(4) #Waitmode for 4 seconds print("Buzzer wil be off for 4 seconds")
             GPIO.output(Buzzer_PIN,GPIO.LOW) #Buzzer will be switched off
             time.sleep(2) #WaiTmode for another 2 seconds in which the buzzer will be off
# Scavenging work after the end of the program
except KeyboardInterrupt:
         GPIO.cleanup()
```

Connections Raspberry Pi:

Sensor Signal = GPIO24 [Pin 18] Sensor [+V] = 3.3V [Pin 1] Sensor GND = GND [Pin 6]

Example program download

KY-012 Buzzer RPi

Export: 16.06.2017

To start, enter the command:

sudo python KY-012_Buzzer_RPi.py