The MOSFET Amplifier (1)

Lecture 7 October 4th, 2018

Jae W. Lee (<u>jaewlee@snu.ac.kr</u>)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Review

Nonlinear circuits

- We can use the node method (or others) with nonlinear equations.
- Incremental analysis "linearizes" the circuit for small signals.

Outline

Textbook: 7.1, 7.2, 7.3, 7.4

- (Review of) Dependent Sources
- Why Amplify?
- Signal Amplification
- Actual MOSFET Characteristics
- MOSFET SCS Model

Independent source

Seen previously

Resistor

$$\begin{array}{ccc}
\bullet & V & - \\
\hline
i & R & \\
\hline
i & R
\end{array}$$

Independent Current source

$$\begin{array}{cccc}
\bullet & v & - \\
\hline
i & I & I
\end{array}$$

2-terminal 1-port devices

Dependent source

e.g., Voltage Ctrl'd Current Source Current at output port is a function of voltage at the input port

Example 1 (independent source): Find V

independent current source

$$V =$$

Example 2 (dependent source): Find V

voltage controlled current source

Example 2 (dependent source): Find V

voltage controlled current source

$$V = IR = \frac{K}{V}R$$
 or $V^2 = KR$ or $V = \sqrt{KR}$ $= \sqrt{10^{-3} \cdot 10^3}$ $= 1 \, Volt$

e.g.
$$K = 10^{-3} Amp \cdot Volt$$

 $R = 1k\Omega$

Example 3

$$i_D = f(v_{IN})$$

(This is MOSFET Switch-Current Source (SCS) model with
$$V_T=1V...$$
)

e.g.
$$i_D = f(v_{IN})$$

$$= \frac{K}{2}(v_{IN} - 1)^2 \quad \text{for} \quad v_{IN} \ge 1$$

$$i_D = 0 \quad \text{otherwise}$$

Find v_O as a function of v_I .

Example 3

$$i_D = f(v_{IN})$$

e.g.
$$i_D = f(v_{IN})$$

$$= \frac{K}{2}(v_{IN} - 1)^2 \quad \text{for} \quad v_{IN} \ge 1$$

$$i_D = 0 \quad \text{otherwise}$$

(This is MOSFET Switch-Current Source (SCS) model with $V_T=1V...$)

Find v_O as a function of v_I .

10

Dependent Sources

Example 3

Find v_O as a function of v_I .

Example 3

 $v_{\mathcal{O}}$ as a function of $v_{\mathcal{I}}$.

KVL

$$-V_S + i_D R_L + v_O = 0$$
$$v_O = V_S - i_D R_L$$

$$v_O = V_S - \frac{K}{2}(v_I - 1)^2 R_L$$
 for $v_I \ge 1$

Hold that thought $v_0 = V_s$

$$v_O = V_S$$

Outline

Textbook: 7.1, 7.2, 7.3, 7.4

- (Review of) Dependent Sources
- Why Amplify?
- Signal Amplification
- Actual MOSFET Characteristics
- MOSFET SCS Model

Signal amplification key to both analog and digital processing.

Besides the obvious advantages of being heard farther away, amplification is key to noise tolerance during communication

Amplification is key to noise tolerance during communcation

No amplification

Amplification is key to noise tolerance during communcation

Digital:

Digital:

Static discipline requires amplification! Minimum amplification (gain) needed:

An amplifier is a 3-ported device, actually

We often don't show the power port.

An amplifier is a 3-ported device, actually

Also, for convenience we commonly observe "the common ground discipline."

In other words, all ports often share a common reference point called "ground."

How do we build one?

Remember this?

Find $v_{\mathcal{O}}$ as a function of $v_{\mathcal{T}}$.

KVL

Claim:

This is an amplifier!

$$-V_S + i_D R_L + v_O = 0$$
$$v_O = V_S - i_D R_L$$

$$v_O = V_S - \frac{K}{2} (v_I - 1)^2 R_L$$
 for $v_I \ge 1$

$$v_O = V_S$$

So, where's the amplification?

Let's look at the v_O versus v_I curve.

e.g.
$$V_S = 10V$$
, $K = 2\frac{mA}{V^2}$, $R_L = 5k\Omega$

$$v_O = V_S - \frac{K}{2}R_L(v_I - 1)^2$$

$$= 10 - \frac{2}{2} \cdot 10^{-3} \cdot 5 \cdot 10^3 (v_I - 1)^2$$

$$v_O = 10 - 5(v_I - 1)^2$$

So, where's the amplification?

Plot v_O versus v_I

$v_O = 10 - 5(v_I - 1)^2$	v_I	v_O	
	0.0	10.00	
	1.0	10.00	
	1.5	8.75	
0.1 change	2.0	5.00	1V change
$in v_I$	2.1	4.00	in v_0
	2.2	2.80	
	2.3	1.50	
	2.4	~ 0.00	Gain!
•			_

One nit ...

50 is mathematically predicted behavior

One nit ...

However, from

$$i_{D} = \frac{K}{2} (v_{I} - 1)^{2} \text{ for } v_{I} \ge 1$$

$$V_{S}$$

$$R_{L}$$

$$v_{O}$$

$$VCCS \longleftrightarrow i_{D}$$

For $v_0>0$, VCCS consumes power: $v_0 i_D$ $v_{o}<0$, VCC5 must supply power!

One nit ...

If VCCS were a device that can source power, then the mathematically predicted behavior could be observed —

i.e.
$$v_O = V_S - \frac{K}{2} R_L (v_I - 1)^2$$

where v_0 goes negative

One nit ...

If VCCS is a passive device,

then it cannot source power, so v_o cannot go negative.

Turns out, our model breaks down.

Commonly
$$i_D = \frac{K}{2} (v_I - 1)^2$$

will no longer be valid when $v_0 \le 0$.

e.g. i_D saturates (stops increasing)

and we observe:

$$i_D = \frac{K}{2} (v_I - 1)^2 \quad \text{for } v_I \ge 1V$$
$$= 0 \quad \text{otherwise}$$

$$v_O = V_S - i_D R_L$$

$$\frac{K}{2} (v_I - 1)^2$$

Outline

Textbook: 7.1, 7.2, 7.3, 7.4

- (Review of) Dependent Sources
- Why Amplify?
- Signal Amplification
- Actual MOSFET Characteristics
- MOSFET SCS Model

Key device Needed:

Let's look at our old friend, the MOSFET ...

Key device Needed:

Our old friend, the MOSFET ...

First, we sort of lied. The on-state behavior of the MOSFET is quite a bit more complex than either the ideal switch (S) or the resistor (SR) model.

Graphically

Graphically

when

$$v_{DS} \ge v_{GS} - V_T$$

Notice that MOSFET behaves like a current source

MOSFET SCS Model

- **SCS Model: Switched Current Source Model**
 - Saturation region of operation: "saturation principle"

When
$$v_{DS} \ge v_{GS} - V_T$$

MOSFET SCS Model

Reconciling the models

