STAT 345/445 Lecture 8

Expected values and moment generating functions – Sections 2.2 and 2.3

- Expected values
- 2 Moments
 - Mean and Variance
- Moment generating functions
 - Other descriptors of distributions

Expected values

Definition

Let $X \sim f(x)$. The **expected value** of g(X) is defined as

If X is continuous

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) dx$$

If X is discrete

$$E(g(X)) = \sum_{x} g(x) f(x)$$

if the integral/sum exists i.e. if $\int_{-\infty}^{\infty} |g(x)| f(x) dx < \infty$

Lecture 8

In particular the mean of X is
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx \qquad \text{if cont.}$$
or $E(X) = \underset{x}{\text{2}} x f(x)$
or $E(X) = \underset{x}{\text{2}} x f(x)$

Examples - Find the expected values

• Exponential distribution $X \sim \text{Expo}(\beta)$ with $\beta > 0$ and pdf

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

• Gamma distribution Gamma(α, β) with $\alpha > 0, \beta > 0$ and pdf

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{(\alpha-1)} e^{-x/\beta} &, x \ge 0 \\ 0 &, x < 0 \end{cases}$$

white book...

Some useful facts

- Gamma function $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$
- - $\Gamma(0.5) = \sqrt{\pi}$
- If n is an integer: $\Gamma(n) = (n-1)!$ $\Gamma(\alpha) = (\alpha-1)\Gamma(\alpha-1)$ $\Gamma(3) = 2!$ $\Gamma(3) = 2!$ T(1) = 0! =1
- $\Gamma(23) = 22 \Gamma(22)$ • Integration by parts $\int uv' = uv - \int u'v$
- $e^{\lambda} = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$ Taylor sories for e^{λ}

Examples - Find the expected values

• Poisson distribution Poisson(λ) with $\lambda > 0$ and pmf

$$f(x) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{x!} &, x = 0, 1, 2, \dots \\ 0 &, \text{ otherwise} \end{cases}$$

سالمناح المامادا

• Cauchy distribution with pdf

$$f(x) = \frac{1}{\pi(1+x^2)} , x \in \mathbb{R}$$

$$\stackrel{\sim}{\triangleright} \underbrace{e^{-\frac{\lambda}{\lambda}}}_{x!}^{x} = e^{-\frac{\lambda}{\lambda}} \underbrace{e^{\frac{\lambda}{\lambda}}}_{x!}^{x} = e^{-\frac{\lambda}{\lambda}} e^{\frac{\lambda}{\lambda}} = \int_{-\infty}^{\infty} e^{-\frac{\lambda}{\lambda}} e^{-\frac{\lambda}{\lambda}} e^{-\frac{\lambda}{\lambda}} e^{-\frac{\lambda}{\lambda}} e^{-\frac{\lambda}{\lambda}} = \int_{-\infty}^{\infty} e^{-\frac{\lambda}{\lambda}} e^{-\frac{\lambda}{\lambda}}$$

A note on methods

We can approach E(g(X)) in two ways:

1. Using the pdf of X:

$$E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

2. Using the pdf of Y = g(X):

$$E(g(X)) = E(Y) = \int_{-\infty}^{\infty} y f_Y(y) dy$$

Properties of expectation

Theorem

Let X be a random variable and let a, b, c be constants, and suppose that $E(g_1(X))$ and $E(g_2(X))$ exist.

(a)
$$E(ag_1(X) + bg_2(X) + c) = aE(g_1(X)) + bE(g_2(X)) + c$$

- (b) If $g_1(x) \ge 0$ for all x then $E(g_1(X)) \ge 0$
- (c) If $g_1(x) \ge g_2(x)$ for all x then $E(g_1(X)) \ge E(g_2(X))$
- (d) If $a \le g(x) \le b$ for all x then $a \le E(g(x)) \le b$

Partial proof

The properties on the previous slide are all simple consequences of the definition of E(g(X)).

examples on whiteboard

Moments - Section 2.3

Definition

Let *n* be a positive integer and *X* be a random variable.

• The *n*th moment of *X* is

$$\mu'_n = E(X^n)$$

• The *n*th central moment of X is

$$\mu_n = E((X - \mu)^n)$$

where $\mu = E(X)$

9/25

"Cmool: Central moments of our lives" OSU statistics grad students newspaper

STAT 345/445 Theoretical Statistics I Lecture 8

Variance

Definition: Mean

The **mean** or **expected value** of a r.v. X is the 1st moment:

$$\mu_1' = \mathrm{E}(X) \equiv \mu$$

Definition: Variance and Standard Deviation

The variance of a r.v. X is the 2nd central moment

$$\operatorname{Var}(X) = E\left((X - \mu)^2\right) \equiv \sigma^2$$

The standard deviation of X is defined as $\sigma = \sqrt{\operatorname{Var}(X)}$

STAT 345/445 Theoretical Statistics I Lecture 8

Properties of Variance

Theorem

Let X be a r.v. with finite variance and let a and b be constants. Then

$$Var(aX + b) = a^2 Var(X)$$

poor ... whitehoud

Variance

Theorem

Let X be a r.v. with finite variance. Then

$$\operatorname{Var}(X) = \operatorname{E}(X^2) - (\operatorname{E}(X))^2$$

7005... whitehoud

Examples

Find the variance for the Exponential, Gamma, and Poisson distributions.

On the whiteboard

Moment generating functions

- A very useful theoretical tool
 - to characterize a distribution
 - for limits
 - to prove (a version of) the Central Limit Theorem!

Definition

Let $X \sim F(x)$. The moment generating function (mgf) of X is defined as

$$M_X(t) = E\left(e^{tX}\right)$$

if the expectation exists for *t* in a neighborhood of 0.

STAT 345/445 Theoretical Statistics I Lecture 8

Moment generating functions

Theorem

If a r.v. X has mgf $M_X(t)$ then

$$E(X^n) = \frac{d^n}{dt^n} M_X(t) \Big|_{t=0}$$

"Generates" moments

Find the mgf for the Gamma and Poisson distributions and use it to generate the first two moments.

Mgfs uniquely define a distribution

• Mgfs (not moments) uniquely characterize a distribution

Theorem

Let $F_X(x)$ and $F_Y(y)$ be cdfs for whom all moments exists.

(a) If X and Y have bounded support, then

$$F_X(u) = F_Y(u) \forall u$$
 iff $E(X^k) = E(Y^k) \forall k = 0, 1, 2, ...$

- (b) If mgfs exist and $M_X(t) = M_Y(t)$ for all t in a neighborhood of 0, then $F_X(u) = F_Y(u)$ for all u
 - Remember: If $F_X(u) = F_Y(u) \forall u$ then $X \stackrel{D}{=} Y$

More on the Theorem

- Note: Moments $E(X^k)$ can exist even when the mgf does not
- Part b): If both $M_X(t)$ and $M_Y(t)$ exist

$$M_X(t) = M_Y(t) \Leftrightarrow X \stackrel{D}{=} Y$$

 So, just like the cdf and the pdf, the moment generating function (if it exists) uniquely determines the distribution of X

More on the Theorem

- Generally the moments themselves $E(X^k)$ do not uniquely determine a distribution
 - Can have X and Y with same moments for all k but different distribution (and different mgfs)
 - See example 2.3.10 in the textbook
- Part a): If X and Y have bounded support we have

All moments equal
$$\Leftrightarrow$$
 $X \stackrel{D}{=} Y$

 So in that special case, the infinite sequence of moments does uniquely determine the distribution

Convergence of mgfs

Convergence of mgfs implies convergence of cdf's

Theorem

Let $X_1, X_2, X_3, ...$ be a sequence of random variables with mgfs $M_{X_i}(t)$, i = 1, 2, 3, ... and suppose that

$$\lim_{t \to \infty} M_{X_i}(t) = M_X(t) \quad \forall t \text{ in a neighborhood of } 0$$

and that $M_X(t)$ is an mgf. Then there exists a unique cdf F_X whose moments are determined by $M_X(t)$ and

$$\lim_{i \to \infty} F_{X_i}(x) = F_X(x)$$
 in listribution

19/25

for all x where $F_X(x)$ is continuous. $\chi \xrightarrow{\mathcal{L}} \chi$

Poisson approximation to a Binomial

• Let $X_1, X_2, X_3, ...$ be a sequence of random variables where

$$X_n \sim \operatorname{Binomial}\left(n, \frac{\lambda}{n}\right) \qquad n \in \mathbb{N}, \lambda > 0$$

- As $n \to \infty$ the distribution of X_n approaches the Poisson distribution.
 - So for large n we can approximate the Binomial (n, p) distribution with a Poisson (np) distribution
- · proof ... on the whiteboard

Some useful facts

Binomial Theorem:

$$(x+y)^n = \sum_{i=1}^n \binom{n}{i} x^i y^{n-i}$$

for all $x, y \in \mathbb{R}$, $n \in \mathbb{N}$

- Useful to find the mgf for Binomial distribution see also textbook example 2.3.9
- A useful limit. If $\lim_{n\to\infty} a_n = a$ then

$$\lim_{n\to\infty} \left(1 + \frac{a_n}{n}\right)^n = e^a$$

More on mgfs

Theorem

Let X be a random variable, a, b constants and Y = aX + b. Then

$$M_{Y}(t) = e^{bt} M_{X}(at)$$

Proof:
$$M_{Y}(t) = E(e^{tY}) = E(e^{t(aX+b)})$$

$$= E(e^{taX}e^{tb}) = e^{tb}E(e^{taX})$$

$$= e^{tb}M_{X}(ta)$$

Other special moments

- Mean: First moment, $\mu = E(X)$
- Take a look at exercizes 17-19 and 26-29 in Ch. 2
- Variance: Second central moment, $\mu_2 = E((X \mu)^2) = \sigma^2$
- Skewness:

where
$$\mu_3 = \frac{\mu_3}{(\mu_2)^{3/2}} = \frac{\mu_3}{\sigma^3}$$
 where $\mu_3 = E\left((X - \mu)^3\right)$

- Measures lack of symmetry
- A pdf f(x) is symmetric about a if

$$f(a-\epsilon)=f(a+\epsilon) \quad \forall \epsilon>0$$

- f symmetric $\Leftrightarrow \alpha_3 = 0$
- f left skewed $\Leftrightarrow \alpha_3 < 0$
- f right skewed $\Leftrightarrow \alpha_3 > 0$

More special moments and the mode

• Kurtosis:

$$\alpha_4 = \frac{\mu_4}{\mu_2^2} = \frac{\mu_4}{\sigma^4} \qquad \text{women } T$$

- Measures "flatness" versus "peakedness" of f(x)
- Mode of a distribution is a value a such that $f(a) \ge f(x)$ for all x

Quantiles of a distribution

 If X is a r.v. and 0 p</sub> is called the pth quantile of X if

$$F(u_p) \ge p$$
 and $1 - F(u_p) \ge 1 - p$

If X is discrete we can define

$$u_p = \min\{x: F(x) = p\}$$

- Special cases:
 - 1st quartile $Q_1 = u_{0.25}$
 - Median $Q_2 = m = u_{0.50}$
 - 3rdt quartile $Q_3 = u_{0.75}$