Fundamental Concepts from Statistics

Marek J. Druzdzel

University of Pittsburgh

School of Information Sciences and Intelligent Systems Program

marek@sis.pitt.edu

http://www.pitt.edu/~druzdzel

Overview

- Fundamentals
 - (Uncertainty, probability, variance, sampling, randomness, elements of data analysis. Describing and displaying data, correlation.)
- Bayes theorem and Bayesian probability theory
- Joint probability distribution
 - (The foundation of any analytic technique. Conditional probability distribution, Bayes theorem, prior and posterior probability distribution. Tools for representing joint probability distributions: probability trees, Bayesian networks, equation-based models)
- Representations of the joint probability distribution

Why statistics ©?

"Our statistician will drop in and explain why you have nothing to worry about."

Why statistics?

"... in this world nothing can be said to be certain, except death and taxes" --- Benjamin Franklin in a letter to his friend M. Le Roy

(*) *The Complete Works of Benjamin Franklin*, John Bigelow (ed.), New York and London: G.P. Putnam's Sons, 1887, Vol. 10, page 170

- In other words, "Uncertainty is prominent around us."
- It is an inherent part of all information and all knowledge.
- We need to deal with uncertainty in empirical work.
- Because this class focuses on analytics, we are going to review some basic tools for looking at data and making inferences from data.

Why statistics ©?

Uncertainty manifested in data

Even though a behavior may be unpredictable in the short run, it may have a regular and predictable pattern in the long run.

Figure 7.2 Percent of heads versus number of tosses in Kerrich's coin-tossing experiment. [David Freedman et al., Statistics Norton, 1978.]

Uncertainty manifested in data

	Age	Sex	Smoking_Status	Lung_Cancer
1	43	Male	Smoker	Yes
2	55	Female	NonSmoker	Yes
3	27	Female	Smoker	No
4	18	Male	NonSmoker	No
5	81	Female	Smoker	No
9873	72	Male	NonSmoker	Yes

Data like the above are not at all atypical.

Some sources of uncertainty:

- Errors in measurement (e.g., cancer misdiagnosed).
- Subjects providing wrong information (e.g., smoking status, age).
- Latent variables that we did not control for (e.g., asbestos exposure).
- Subject selection (possible bias).
- Bad luck.
- •

A Brief Review of Probability Theory and Statistics

Why probability theory and statistics?

"The theory of probabilities is basically only common sense reduced to a calculus."

("... la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul.")

— Pierre-Simon Laplace, "Philosophical Essay on Probabilities" (1814)

Why probability theory and statistics?

- "Statistics is the study of the collection, organization, analysis, and interpretation of data." Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms
- •Statistics is the mathematical discipline for processing and interpreting data, it is closely related probability theory.
- Departure from probability theory leads to provable anomalies (e.g., "Dutch book" argument).
- All (with some exceptions) knowledge is uncertain and, hence, best expressed by means of probabilities and probability distributions.

Some features of statistical analysis

- Questions that we ask (in statistics but also in science in general) concern systems, i.e., parts of the real world that can be reasonably studied in separation.
- We want to make inference from a sample to a population (unless we can make the entire population a sample)!
- Ideal sampling should be random, giving every member of the population an equal chance of being selected
- In that case, we hope (but have a whole statistics for us) that the sample is representative, i.e., has approximately the characteristics of the population.
- If the sample is not random, then unknown/known factors may bias the sample (such as experimenter's biases, political factors, etc.).
- Even in case of random sampling (the ideal) there is no guarantee for a representative sample, but we can get arbitrarily close (in terms of probability) to the population.

Describing and displaying data

Statistics provides tools for describing and displaying data

Example:

- What causes low student retention in U.S. colleges?
- Over 120 variables (only 8 in the picture on the right-hand side) measured across 204 universities (total of over 24,000 numbers).
- Note variables (columns) and data points (rows).

10527 64.25 36 22.309 71.063 30.97 12.8 63900 7904 37.75 26 25.853 60.75 41.985 20.3 57800 6601 57 23 11.296 67.188 40.289 17 51200 7251 62 17 22.635 56.25 46.78 18.1 48000 6967 66.75 40 9.718 65.625 53.103 18 57700 8489 70.333 20 15.444 59.875 50.46 13.5 44000 9554 85.25 79 44.225 74.688 40.137 17.1 70100 15287 65.25 42 26.913 70.75 28.276 14.4 7173 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 6300 18211 91	spend	apret	top10	rejr	tstsc	pacc	strat	salar
7904 37.75 26 25.853 60.75 41.985 20.3 57800 6601 57 23 11.296 67.188 40.289 17 51200 7251 62 17 22.635 56.25 46.78 18.1 48000 6967 66.75 40 9.718 65.625 53.103 18 57700 8489 70.333 20 15.444 59.875 50.46 13.5 44000 9554 85.25 79 44.225 74.688 40.137 17.1 70100 15287 65.25 42 26.913 70.75 28.276 14.4 71736 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 </td <td>9855</td> <td>52.5</td> <td>15</td> <td>29.474</td> <td>65.063</td> <td>36.887</td> <td>12</td> <td>60800</td>	9855	52.5	15	29.474	65.063	36.887	12	60800
6601 57 23 11.296 67.188 40.289 17 51200 7251 62 17 22.635 56.25 46.78 18.1 48000 6967 66.75 40 9.718 65.625 53.103 18 57700 8489 70.333 20 15.444 59.875 50.46 13.5 44000 9554 85.25 79 44.225 74.688 40.137 17.1 70100 15287 65.25 42 26.913 70.75 28.276 14.4 71738 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 21667 65	10527	64.25	36	22.309	71.063	30.97	12.8	63900
7251 62 17 22.635 56.25 46.78 18.1 48000 6967 66.75 40 9.718 65.625 53.103 18 57700 8489 70.333 20 15.444 59.875 50.46 13.5 44000 9554 85.25 79 44.225 74.688 40.137 17.1 70100 15287 65.25 42 26.913 70.75 28.276 14.4 71738 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75	7904	37.75	26	25.853	60.75	41.985	20.3	57800
6967 66.75 40 9.718 65.625 53.103 18 57700 8489 70.333 20 15.444 59.875 50.46 13.5 44000 9554 85.25 79 44.225 74.688 40.137 17.1 70100 15287 65.25 42 26.913 70.75 28.276 14.4 71738 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 </td <td>6601</td> <td>57</td> <td>23</td> <td>11.296</td> <td>67.188</td> <td>40.289</td> <td>17</td> <td>51200</td>	6601	57	23	11.296	67.188	40.289	17	51200
8489 70.333 20 15.444 59.875 50.46 13.5 44000 9554 85.25 79 44.225 74.688 40.137 17.1 70100 15287 65.25 42 26.913 70.75 28.276 14.4 71738 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 7817 65.75<	7251	62	17	22.635	56.25	46.78	18.1	48000
9554 85.25 79 44.225 74.688 40.137 17.1 70100 15287 65.25 42 26.913 70.75 28.276 14.4 71738 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 7817 65.75 36 33.709 64.25 52.548 17.7 54600 9082 83.5 <td>6967</td> <td>66.75</td> <td>40</td> <td>9.718</td> <td>65.625</td> <td>53.103</td> <td>18</td> <td>57700</td>	6967	66.75	40	9.718	65.625	53.103	18	57700
15287 65.25 42 26.913 70.75 28.276 14.4 71736 7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 9082 83.5	8489	70.333	20	15.444	59.875	50.46	13.5	44000
7057 55.25 17 24.379 59.063 44.251 21.2 58200 16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 10738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 <td< td=""><td>9554</td><td>85.25</td><td>79</td><td>44.225</td><td>74.688</td><td>40.137</td><td>17.1</td><td>70100</td></td<>	9554	85.25	79	44.225	74.688	40.137	17.1	70100
16848 77.75 48 26.69 75.938 27.187 9.2 63000 18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 5	15287	65.25	42	26.913	70.75	28.276	14.4	71738
18211 91 87 76.681 80.625 51.164 12.8 74400 21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 2	7057	55.25	17	24.379	59.063	44.251	21.2	58200
21561 69.25 58 44.702 76.25 26.689 9.2 75400 20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 7	16848	77.75	48	26.69	75.938	27.187	9.2	63000
20667 65 68 22.995 75.625 28.038 11 66200 10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 29852 94.5 84	18211	91	87	76.681	80.625	51.164	12.8	74400
10684 61.75 26 8.774 66 33.99 9.5 52900 11738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 <td< td=""><td>21561</td><td>69.25</td><td>58</td><td>44.702</td><td>76.25</td><td>26.689</td><td>9.2</td><td>75400</td></td<>	21561	69.25	58	44.702	76.25	26.689	9.2	75400
11738 74.25 32 25.449 66.875 27.701 12 63400 10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 29852 94.5 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5	20667	65	68	22.995	75.625	28.038	11	66200
10107 74 43 11.315 71 29.096 16.2 66200 7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 <td< td=""><td>10684</td><td>61.75</td><td>26</td><td>8.774</td><td>66</td><td>33.99</td><td>9.5</td><td>52900</td></td<>	10684	61.75	26	8.774	66	33.99	9.5	52900
7817 65.75 36 33.709 64.25 52.548 17.7 54600 7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75	11738	74.25	32	25.449	66.875	27.701	12	63400
7050 26 11 0 55.313 55.651 18.8 59500 9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75	10107	74	43	11.315	71	29.096	16.2	66200
9082 83.5 73 64.668 77.375 43.185 13.6 66700 11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48835 7005 46.75 50 36.236 68.188 33.875 22.5 59600	7817	65.75	36	33.709	64.25	52.548	17.7	54600
11706 60 56 16.937 73.75 39.479 12.7 62100 7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54	7050	26	11	0	55.313	55.651	18.8	59500
7643 49.25 23 36.635 62.813 39.302 18.7 57700 25734 90 77 67.758 80.938 44.133 10 80200 20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75	9082	83.5	73	64.668	77.375	43.185	13.6	66700
25734 90 77 67.758 80.938 44.133 10 80200 20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	11706	60	56	16.937	73.75	39.479	12.7	62100
20155 86 84 69.31 79.688 48.766 17.6 74000 29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	7643	49.25	23	36.635	62.813	39.302	18.7	57700
29852 94.5 84 75.009 81.313 51.363 10.6 74100 7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	25734	90	77	67.758	80.938	44.133	10	80200
7980 68.5 34 9.122 63.875 35.294 16.3 53100 8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	20155	86	84	69.31	79.688	48.766	17.6	74000
8446 57 23 29.65 64.625 36.181 14.8 63200 24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	29852	94.5	84	75.009	81.313	51.363	10.6	74100
24636 92.75 88 70.653 81.875 43.464 12.8 80300 7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	7980	68.5	34	9.122	63.875	35.294	16.3	53100
7396 68.75 34 13.469 63.889 39.05 14.8 51900 24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	8446	57	23	29.65	64.625	36.181	14.8	63200
24256 81.25 68 35.556 75 26.736 11.5 68200 7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	24636	92.75	88	70.653	81.875	43.464	12.8	80300
7263 54 28 49.583 68.125 42.149 13.4 48839 7005 46.75 50 36.236 68.188 33.875 22.5 59600	7396	68.75	34	13.469	63.889	39.05	14.8	51900
7005 46.75 50 36.236 68.188 33.875 22.5 59600	24256	81.25	68	35.556	75	26.736	11.5	68200
	7263	54	28	49.583	68.125	42.149	13.4	48839
10454 77.75 34 23.784 67.5 33.333 11.2 70000	7005	46.75	50	36.236	68.188	33.875	22.5	59600
	10454	77.75	34	23.784	67.5	33.333	11.2	70000

Measures of central tendency and spread

Measures of central tendency:

- mode (value occurring with the greatest frequency)
- median (mid-most score in a series)
- mean (arithmetic average)
- trimmed mean

Measures of spread:

- ranges: crude range (highest, lowest), extended range (or corrected range) adds one unit to the range (to account for a possible error in measurement), trimmed ranges (drop x% of extreme points on both sides)
- variance $\sigma^2 = \Sigma_i (x_i \mu)^2 / n$
- standard deviation $\sigma = \operatorname{sqrt}(\sigma^2)$
- average deviation Σ_i (x_i - μ)/n

Fundamentals
 Bayesian probability theory
 Joint probability distribution
 Representations of j.p.d.

Basic statistics

Excel

GeNIe

Apgra	
Mean	56.72107647
Median	55.7085
Mode	72
Standard Deviation	18.07709676
Variance	326.7814274
Kurtosis	-0.554450128
Skewness	0.089185832
Range	76.5
Minimum	18.75
Maximum	95.25
Sum	9642.583
Count	170

	Mean	Variance	StdDev	Min	Max	Count
spend	10974.5	3.02507e+007	5500.07	4125	35863	170
apret	56.7211	326.781	18.0771	18.75	95.25	170
top 10	38.4588	547.859	23.4064	8	98	170
rejr	30.6542	292.345	17.0981	0	84.067	170
tstsc	66.1642	48.6549	6.97531	48.125	87.5	170
pacc	43.1731	171.746	13.1052	8.964	76.253	170
strat	16.0865	16.0521	4.0065	7.2	29.2	170
salar	61357.6	9.60946e+007	9802.79	38640	87900	170

Probability distribution

Expresses the relative probabilities of different values taken by a random variable

Source: http://en.wikipedia.org/wiki/Probability_distribution

e.g., grade distribution in a university course

Standard deviation

Savage Chickens

by Doug Savage

www.savagechickens.com

Histograms

Decision Systems Laboratory

Values that a variable takes in a data set can be seen very nicely on plots called "histograms"

tstsc

Histograms

Bin size affects the form, good bin size is essentially an art: I'm not aware of any research on automatic selection of bins. I am aware of at least one computer program that does it right (see http://genie.sis.pitt.edu/).

Histograms

The effect of bin size is not that strong in case of some distributions (here: uniform distribution).

Probability distributions

- There is a sizeable set of known/described ways that values of a variable can be distributed.
- Some of these: Normal, Log-Normal, Uniform, Beta, Exponential, Triangular, Bernoulli, Binomial, WeibuLl, etc.
- Some distributions are very common, e.g., Normal (a.k.a. Gaussian) distribution.
- Explained by the Central Limit Theorem (a.k.a. "order out of chaos"):
 - When you sum infinitely many random variables, the sum is going to be distributed normally.
 - You don't really need infinitely many: as few as 12 is enough when components are uniform, typically 30 or so gives beautiful Normals.
- There are tests for goodness of fit of data to distributions.

Scatter plots

Decision Systems Laboratory

Correlation

- We are often looking for the information about tendency to vary together rather than independently.
- Correlation is a measure of the extent to which two random variables X & Y are linearly related (watch out: correlation may not capture nonlinear dependences!).
- Originally introduced by Francis Galton to replace causation. Later, after statisticians had realized that it cannot fully represent causality, they clearly distanced from it ("Correlation does not mean causation.").
- Can make sense (smoking and lung cancer) but can also be very tricky (examples: hospitals and dying, good surgeon and dying, ice cream consumption and drowning).

Correlation

Fundamentals
 Bayesian probability theory
 Joint probability distribution
 Representations of j.p.d.

Correlation matrix

	spend	apret	top10	rejr	tstsc	pacc	strat	salar
spend	1							
apret	0.601231	1						
top10	0.675656	0.642464	1				φ	0 - - - - -
rejr	0.633544	0.514958	0.643163	1		5	1	**************************************
tstsc	0.71491	0.782183	0.798807	0.628601	1		Q	0 · · · · · · · · · · · · · · · · · · ·
pacc	-0.23673	-0.302834	-0.207505	-0.0715207	-0.164223	1	±	**************************************
strat	-0.561755	-0.458311	-0.247857	-0.283617	-0.465226	0.131858	1	0 · · · · · · · · · · · · · · · · · · ·
salar	0.711838	0.635852	0.637648	0.606777	0.715472	-0.37524	-0.347673	1

Correlation does not mean causation

Cliché but certainly true: A single correlation by itself does not tell us much about the causal structure

Fundamentals
 Bayesian probability theory
 Joint probability distribution
 Representations of j.p.d.

Linear regression

- Scatter plots portray the relationship between two quantitative variables. We would like to summarize the relationship more briefly.
- The simplest interesting relationship is linear (straight-line) dependence of a response variable y on an explanatory variable x.
- A straight line that describes the dependence of one variable on another is called a regression line.
- Regression line allows us to predict (approximately) the value of one variable if we know the value of the other variable.

Linear regression

We fit a line to the data, the line equation is y=a+bx

Linear regression: Prediction

Can we predict what an INFSCI 1000 student will estimate for height if she estimated the length to be 200 cm?

Least-squares regression

- How do we actually fit the line to our data points?
- You can visually try to draw a line across the data point until you are satisfied with the fit, but we would like to have a procedure that is somewhat objective and reproducible.
- There are many mathematical ways of fitting a line to a set of data. The oldest and most commonly used is the method of least squares.

Least-squares regression

The idea: minimize the sum of squares of the deviations of the data points from the line in the vertical direction.

Most statistical packages implement least-squares regression.

Asymmetry of regression

Choice of explanatory variable affects the parameters of the regression line

Asymmetry of regression

The two regression lines are going to be different in general

Linear regression: An example

Line fitting (or in general curve fitting to the interactions).

e.g., linear regression results of the influence of tstsc on apret and apgra (175 universities).

```
apret = 13.2 + 1.02 \text{ tstsc}, R-sq(adj) = 50.5% apgra = -78.7 + 2.04 \text{ tstsc}, R-sq(adj) = 62.0%
```

Can be also in multidimensional space.

e.g., linear regression results of the influence of tstsc and top10 on apret and apgra (175 universities).

```
apret = 33.4 + 0.142 \text{ top10} + 0.634 \text{ tstsc}, R-sq(adj) = 52.6\% apgra = -68.4 + 0.0283 \text{ top10} + 1.87 \text{ tstsc}, R-sq(adj) = 62.5\%
```


Time series

- Measurements of variables that vary over time.
- This is often a matter of assumption: regular, static data also vary over time but we assume that they do not.

Outliers

- Values that come about because of errors in measurements, transcription, etc., or because of momentary failure in our assumptions.
- We remove them because they are potentially violating our assumptions.
- How to distinguish them?
 Typically done "manually."
 Visual inspection is usually very helpful.

Bayesian Probability Theory

Bayes theorem

An easy to prove theorem, obtained in the following way:

From

$$P(A|B) P(B) = P(A,B)$$

and

$$P(B|A) P(A) = P(A,B)$$

we have

$$P(A|B) = P(B|A) / P(B) P(A)$$

Posterior (a.k.a. a-posteriori) probability

Prior (a.k.a. a-priori) probability

Bayes theorem gives us a mechanism for changing our opinion in light of new evidence!

Bayes theorem and Bayesian statistics

A versatile and powerful approach that seems to solve a variety of problems, originating from an 18th century English mathematician, Rev. Thomas Bayes (http://en.wikipedia.org/wiki/Thomas_Bayes)

Bayes Theory is so "hot" that a lightly written book "The Theory That Would Not Die," published in 2011, has become a bestseller

Bayesian modeling is reliable and it solves hard problems.

It can use both, data and expert knowledge.

Recommended video:

http://www.youtube.com/watch?v=8oD6eBkjF9o

What is the relation of Bayesian statistics to classical statistics?

Classical statisticians: "We have no clue ⊗. Probability is a limiting frequency. A nuclear war is not a repetitive process."

Bayesians: "0.24 @. Probability is a measure of belief"

What is the relation of Bayesian statistics to classical statistics?

- Classical statisticians accuse Bayesians of "hocus pocus" with the prior distributions ("How do you know them?").
- Bayesian statistics comes with so called "limit theorems," which say that no matter what distribution you choose for your prior, you will eventually converge to the true distribution if you observe enough evidence.
- Of course, there is nothing wrong with starting with "the right distribution" in the beginning (In other words, it would be unwise to ignore available statistics).
- But even if you don't have them, you can still do useful work, even if you have to just guess the priors.

Bayes theorem example

Let the prevalence of syphilis in the population of young people planning to get married in Pennsylvania be 0.001.

Let a (mandatory) test, required for obtaining the marriage license have sensitivity of 0.98 and specificity of 0.95.

What is the probability that your fiancée, who tested positive for syphilis, has syphilis?

$$P(S|+) = P(+|S)/P(+) P(S)$$
 (Bayes theorem)

$$P(+) = P(+|S) P(S) + P(+|\sim S) P(\sim S)$$
 (theorem of total probability)

$$P(+) = 0.98 \ 0.001 + 0.05 \ 0.999 = 0.05093$$

$$P(S|+) = 0.98 \ 0.001 \ / \ 0.05093 \ 0.001$$

Posterior (a.k.a. a-posteriori) probability

Prior (a.k.a. a-priori) probability

0.01924

Joint Probability Distribution

Joint probability distribution

Expresses the probability of events defined over several random variables

Source: http://postrecession.wordpress.com/tag/risk-aversion/

Joint probability distribution

Expresses the probability of events defined over several random variables

e.g., probability distribution over grades and the amount of work in a university course

Joint probability distribution

Joint probability distributions are much more interesting than probability distributions over single variables

Why?

Given the value of some of the variables in the join probability distribution, we can estimate the probability distributions over the remaining variables.

e.g., we can predict the grade distribution in a university course given the amount of work that students put into the course

Joint probability distributions

Marginal probability distribution

Defined as the probability distribution over a single variable (when there are more variables ©).

Can be derived from a joint probability distribution.

Source: http://www.nature.com/nature/journal/v458/n7242/fig_tab/nature08017_F1.html

Conditional probability distribution

Once we know the value of one of the variables, we can make a statement about the probability distribution over the other

variable

It is going to be different for different values of the first variable

Venn diagrams

Source: http://en.wikipedia.org/wiki/Conditional_probability

Representations of j.p.d.

Conditional probability

Definition: P(A|B) = P(A,B) / P(B)

$$P(A|B_1) = ?$$

 $P(A|B_2) = ?$
 $P(A|B_3) = ?$

Independence

Mathematical definition: $A \perp B \Leftrightarrow P(A,B) = P(A) P(B)$

 $A \perp B_1$? $A \perp B_2$? $A \perp B_3$?

Representations of j.p.d.

Independence: Common sense

The following is straightforward to derive from the definition of independence (assuming P(B) > 0):

$$A \perp B \Leftrightarrow P(A|B) = P(A)$$

 $A \perp B_1$? $A \perp B_3$? $A \perp B_2$?

Representations of the Joint Probability Distribution

Probabilistic knowledge representations

- A probabilistic (Bayesian) model encodes the joint probability distribution over its variables.
- Knowledge of the joint probability distribution is sufficient to derive any marginal and conditional probability over the model's variables.

Probability trees

The simplest and quite natural graphical representation of a joint probability distribution over discrete variables

P(disease present
$$\land$$
 test positive) = P(D \cap +) = 0.00098
P(disease present \land test negative) = P(D \cap +) = 0.00002
P(disease absent \land test positive) = P(\sim D \cap +) = 0.04995
P(disease absent \land test negative) = P(\sim D \cap +) = 0.94905

Computation in probability trees

We can calculate any marginal or conditional probability distribution from the joint probability distribution encoded in the tree.

Computation in probability trees

We can calculate any marginal or conditional probability distribution from the joint probability distribution encoded in the tree.

What is the probability of the disease present given a positive test result? Observation of a positive test result makes some of the branches of the tree impossible. What we need to do is just renormalize the remaining, possible (i.e., those that are compatible with the evidence) branches!

 $P(D|+) = 0.00098/(0.00098+0.04995) \approx 0.01924$

What is wrong with probability trees?

Trees grow exponentially with the number of variables

For n binary variables, we will have 2^n branches. When n=10, the total number of branches is 1,024 When n=11, it is 2,048

. . .

When n=20, it is 1,048,576 (which is a lot ⊕)

Great idea (only 30-40 years old)

Use independences among variables in the joint probability distribution to reduce the number of parameters in its representation!

Due to seminal work on probabilistic independence by A. Philip Dawid and Judea Pearl

All brilliant ideas are obvious (once we have them ③)

the civilizations in the Americas had it?

Decision Systems Laboratory

Is the concept of a

wheel obvious?

Fundamental Concepts from Statistics

Factorability of the joint probability distribution

Every joint probability distribution can be factorized, i.e., rewritten as a product of prior and conditional probability distributions of each of the model's variables

$$f(X_1, X_2, ..., X_n) = f(X_1 | X_2, X_3, ..., X_n) f(X_2 | X_3, ..., X_n) ...$$
$$f(X_{n-2} | X_{n-1}, X_n) f(X_{n-1} | X_n) f(X_n)$$

```
e.g., four variables (a, b, c, d), we have:

P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(C|D) P(D)

P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(D|C) P(C)

...

P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C)
```

There are n! different directed graphs corresponding to various ways of factorizing a joint probability distribution over n variables.

For n=4, we have 4!=24 different factorizations.

Factorability of the joint probability distribution

- Any factorization can be simplified if we consider independencies among variables.
- Those factorizations that become the simplest are better than others in terms of efficiency of representation.

```
e.g., suppose we know that B\perp D|C, D\perp A|C, and A\perp C

We can simplify

P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C)

into

P(A,B,C,D)=P(B|A,C) P(D|C) P(A) P(C)
```

Bayesian networks

- This underlies the very idea of Bayesian networks.
- We draw a directed graph with arc from the conditioning variables to the variables in the factorization.

Bayesian networks

A Bayesian network [Pearl 1988] is an acyclic directed graph consisting of:

- The qualitative part, encoding a domain's variables (nodes) and the probabilistic (usually causal) influences among them (arcs).
- The quantitative part, encoding the joint probability distribution over these variables.

Bayesian networks: Numerical parameters

•	a1_below_20	0.0416
	a2_20_29	0.2012
	a3_29_45	0.3079
	a4_45_60	0.2989
	a5_60_up	0.1504

Prior probability distribution tables for nodes without predecessors (Age)

Conditional probability distributions tables for nodes with predecessors (HPV, Pap test, Cervix)

	Age	a1_below_20	a2_20_29	a3_29_45	a4_45_60	a5_60_up
	NA	0.8652	0.8387	0.7904	0.8055	0.8851
	Negative	0.069	0.0901	0.1782	0.1765	0.1012
•	Positive	0.0613	0.0667	0.0282	0.0142	0.0082
	Qns	0.0045	0.0045	0.0032	0.0038	0.0055

Reasoning in Bayesian networks

The most important type of reasoning in Bayesian networks is updating the probability of a hypothesis (e.g., a diagnosis) given new evidence (e.g., medical findings, test results).

Example:

What is the probability of invasive cervical cancer in a (female) patient with high grade dysplasia with a history of HPV infection?

P(CxCa | HPV=positive, HSIL=yes)

Probability trees and Bayesian networks

probability tree

Bayesian network

The two representations are equivalent But, when there are independences in the domain, Bayesian networks are much, much more efficient!

Decision Systems Laboratory

Independences: Markov condition

- Allows to read back dependences and independences from the graph.
- Informally speaking, it is an assumption that ties directed probabilistic graphs with probability, specifying how a directed graphs represents independence.
- A node is independent of its non-descendants given its predecessors.

Markov condition: Example

P(H,G,W,R,B,S,F)=P(H|G,F) P(G|R,B,S) P(W|S) P(R) P(B) P(S) P(F)

This graph implies the following (conditional) independences:

R \perp B, R \perp S, B \perp S, R \perp F, B \perp F, S \perp F R \perp W, B \perp W, W \perp F, G \perp F R \perp H|G, B \perp H|G, S \perp H|G, W \perp H|G W \perp *|S R \perp W|G,S, B \perp W|G,S

Equation-based systems and graphical models

classsize = (nstud * cload) / (nfac * tload)

facsal = (oinc + tuition * nstud) / (nfac * (1 + overh))

stratio = nstud / nfac

Equations for exogenous variables

cload = 15

tload = 6

nstud = 22102

nfac = 3006

oinc = 30000000

tuition = 12000

overh = 0.48

Together they determine the structure of the model

Equation-based systems: Reversibility of causal ordering

```
classsize = (nstud * cload) / (nfac * tload)
facsal = (oinc + tuition * nstud) / (nfac * (1 + overh))
stratio = nstud / nfac
cload = 15
tload = 6
nstud = 22102
                     stratio = 10
```

Setting *stratio* to be exogenous at the expense of *nfac*

oinc = 30000000

tuition = 12000

overh = 0.48

The new model structure

Explication of the asymmetries due to Herb Simon (early 1950s)

Advantages of directed graphs

- May be built to reflect the causal structure of a model (helps with obtaining <u>insight</u> into the problem)
- Can accommodate representation of uncertainty
- Can be reconfigured as needed
- Have sound theoretical foundations: We are dealing here with probability theory and decision theory
- We can talk (almost) the same language with statisticians, philosophers, and scientists

Family of directed graphs (a bigger picture)

(a.k.a. "influence nets," "causal diagrams," etc.)

Both, systems of equations and joint probability distributions can be pictured by acyclic directed graphs.

