

CS240 Algorithm Design and Analysis

Lecture 5

Dynamic Programming

Quan Li Fall 2025 2025.09.25

Algorithmic Paradigms

- Greed. Build up a solution incrementally, myopically optimizing some local criterion
- Divide-and-conquer. Break up a problem into a few sub-problems, solve each sub-problem independently and recursively, and combine solution to sub-problems to form solution to original problem
- Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems

Divide-and-conquer VS. Dynamic Programming

Divide-and-conquer

Dynamic programming

Weighted Interval Scheduling

- Weighted interval scheduling problem
 - Job j starts at s_j, finishes at f_j, and has weight or value v_j
 - Two jobs **compatible** if they don't overlap
 - Goal: find maximum weight subset of mutually compatible jobs

Unweighted Interval Scheduling Review

- Recall. Greedy algorithm works if all weights are 1
 - Consider jobs in ascending order of finish time
 - Add jobs to subset if it is compatible with previously chosen jobs

• Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed

Weighted Interval Scheduling

- Notation. Label jobs by finishing time: f₁ <= f₂ <= ... <= f_n
- **Def.** p(j) = largest index i < j such that job i is compatible with j
- Ex: p(8) = 5, p(7) = 3, p(2) = 0

Dynamic Programming: Binary Choice

- Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
 - Case 1: OPT selects job j
 - Cannot use incompatible jobs {p(j) + 1, p(j) + 2, ..., j-1}
 - Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
 - Case 2: OPT does not select job j
 - Must include optimal solution to problem consisting to the shift of the shift of

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Case 1

Case 2

Weighted Interval Scheduling: Brute Force

Brute force algorithm

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.
Compute p(1), p(2), ..., p(n)
Compute-Opt(j) {
   if (j = 0)
       return 0
   else
       return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))
```


Weighted Interval Scheduling: Brute Force

• Observation. Recursive algorithm fails spectacularly because of redundant sub-problems — exponential algorithms

• Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in cache; lookup as needed

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = empty \leftarrow global array
M[0] = 0
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
```


Weighted Interval Scheduling: Running Time

- Claim. Memorized version of algorithm takes O(nlogn) time
 - Sort by finish time: O(nlogn)
 - Computing $p(\cdot)$: O(n) after sorting by start time \leftarrow how?
 - M-Compute-Opt(j): O(n)
 - Each entry M[j] is computed only once
 - The computation of M[j] invokes M-Compute-Opt twice
- Remark. O(n) if jobs are pre-sorted by start and finish times

Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

of recursive calls \leq n \rightarrow O(n)

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
   M[0] = 0
   for j = 1 to n
      M[j] = max(v_i + M[p(j)], M[j-1])
```

- Top-down vs. bottom-up
 - Top-down: May skip unnecessary sub-problems
 - Bottom-up: Save the overhead in recursion

Knapsack Problem

Knapsack Problem

Knapsack problem

- Given n objects and a "knapsack"
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$
- Knapsack has capacity of W kilograms
- Goal: fill knapsack so as to maximize total value

200 oz., \$5,000

Knapsack Problem

Knapsack problem

- Given n objects and a "knapsack"
- Item i weighs w_i > 0 kilograms and has value v_i > 0
- Knapsack has capacity of W kilograms
- Goal: fill knapsack so as to maximize total value
- Ex: { 3, 4 } has value 40

W = 11

Greedy:

- Repeatedly add item with maximum value v_i
- Repeatedly add item with maximum weight w_i
- Repeatedly add item with maximum ration v_i/w_i

Greedy not optimal!

Value

6

18

22

28

Item

3

4

5

Weight

5

Dynamic Programming: False Start

- Def. OPT(i) = max profit subset of items 1, ..., i
 - Case 1: OPT does not select item i
 - OPT selects best of { 1, 2, ..., i-1 }
 - Case 2: OPT selects item i
 - How shall we enforce the weight limit?
- Conclusion. Shall specify the remaining weight capacity in OPT

Dynamic Programming: Adding a New Variable

- **Def.** OPT(i, w) = max profit subset of items 1, ..., i with weight limit w
 - Case 1: OPT does not select item i
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
 - Case 2: OPT selects item i
 - New weight limit = w w_i
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

• Knapsack. Fill up an n-by-W array

```
Input: n, w_1, ..., w_N, v_1, ..., v_N
for w = 0 to W
   M[0, w] = 0
for i = 1 to n
   for w = 1 to W
      if (w_i > w)
          M[i, w] = M[i-1, w]
      else
          M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
return M[n, W]
```


Knapsack Algorithm

0	1	2	3	4	5	6	7	8	9	10	11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

141 4	
\// + 1	\rightarrow
44 . T	_

		0	1	2	3
	ф	0	0	0	0
	{1}				
n + 1	{ 1, 2 }				
	{ 1, 2, 3 }				
	{ 1, 2, 3, 4 }				
	{ 1, 2, 3, 4, 5 }				

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

W = 11

Knapsack Algorithm

		0	1	2	3	4	5	6	7	8	9	10	11	
	ф	0	0	0	0	0	0	0	0	0	0	0	0	
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1	
n + 1	{ 1, 2 }	0_	1	6 _{Cas}	7 se 2	7	7	7	7	7	7	7	7	
	{ 1, 2, 3 }	0	1	6	7	7	18_	19	24	25 Cas	_e 25	25	25	
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	4 0	co 1
\downarrow	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40	56 I

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i-1, w) & \text{if } w_i > w\\ \max \{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

Knapsack Algorithm: Top-down

W + 1

		0	1	2	3	4	5	6	7	8	9	10	11
	ф		0	0	0	0	0	0		0	0	0	0
	{1}			1	1	1	1	1			1		1
n + 1	{ 1, 2 }	0				7	7	7					7
	{1,2,3}					7	18						25
	{1,2,3,4}					7							40
\downarrow	{1,2,3,4,5}												40

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack Problem: Running Time

- Running time. $\Theta(nW)$
 - Not polynomial in input size!
 - "Pseudo-polynomial."
 - Decision version of Knapsack is NP-complete
- Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.

- RNA. String B = b₁b₂...b_n over alphabet { A, C, G, U }
- Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

- Secondary structure. A set of pairs S = { (b_i, b_i)} that satisfy:
 - [Watson-Crick]. S is matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C
 - [No sharp turns]. The ends of each pair are separated by at least 4 intervening bases. If (b_i, b_j) ∈ S, then i < j − 4
 - [Non-crossing]. If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l

RNA Secondary Structure: Examples

Examples

ok

sharp turn

crossing

• Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy

approximate by number of base pairs

• Goal. Given an RNA molecule $B = b_1b_2...b_n$ find a secondary structure S that maximizes the number of base pairs

RNA Secondary Structure: Subproblems

• First attempt. OPT(j) = maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_j$

- **Difficulty.** Results in two sub-problems
 - Finding secondary structure in: b₁b₂...b_{t-1}
 - Finding secondary structure in: $b_{t+1}b_{t+2}...b_{j-1}$

Need more sub-problems

Dynamic Programming Over Intervals

- Notation. OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} ... b_j$
- If i >= j 4
 - OPT(i, j) = 0 by no-sharp turns condition
- If i < j 4: take max of two cases
 - Case 1. Base b_i is not involved in a pair
 - OPT(i, j − 1)
 - Case 2. Base b_j pairs with b_t for some i <= t < j 4
 <p>Non-crossing constraint decouples resulting sub-problems
 1 + max_t { OPT(i, t-1) + OPT(t+1, j-1)}

take max over t such that i \leq t < j-4 and b_t and b_j are Watson-Crick complements

Bottom Up Dynamic Programming Over Intervals

- Q. What order to solve the sub-problems?
- A. Do shortest intervals first

```
RNA(b<sub>1</sub>,...,b<sub>n</sub>) {
  for k = 5, 6, ..., n-1
    for i = 1, 2, ..., n-k
        j = i + k
        Compute M[i, j]

return M[1, n]
}
```


• Running time. O(n³)

Sequence Alignment

String Similarity

- How similar are two strings?
 - ocurrance
 - occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

- Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
 - Gap penalty δ ; mismatch penalty α_{pq}
 - Cost = sum of gap and mismatch penalties
 - Edit distance = min cost

$$\alpha_{TC}$$
 + α_{GT} + α_{AG} + $2\alpha_{CA}$

$2\delta + \alpha_{CA}$

Applications

- Basis for Unix diff
- Speech recognition
- Computational biology

Sequence Alignment

- Goal. Given two strings $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$ find alignment of minimum cost
- **Def.** An **alignment** M is a set of ordered pairs $x_i y_j$ such that each item occurs in at most one pair and no crossings
 - The pair $x_i y_j$ and $x_{i'} y_{j'}$ cross if i < i', but j > j'
- **Def.** The cost of an alignment

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta}_{\text{gap}}$$

Ex: An alignment of CTACCG vs. TACATG

$$M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6$$

Sequence Alignment: Problem Structure

- **Def.** OPT(i, j) = min cost of aligning strings $x_1x_2...x_i$ and $y_1y_2...y_j$
- Case 1: OPT matches x_i y_i
 - pay mismatch for $x_i y_j$ + min cost of aligning two strings $x_1x_2...x_{i-1}$ and $y_1y_2...y_{j-1}$
- Case 2a: OPT leaves x_i unmatched
 - pay gap for x_i and min cost of aligning $x_1x_2...x_{i-1}$ and $y_1y_2...y_i$
- Case 2b: OPT leaves y_i unmatched
 - pay gap for y_j and min cost of aligning $x_1x_2...x_i$ and $y_1y_2...y_{j-1}$

$$OPT(i, j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT(i-1, j-1) & \text{otherwise} \\ \delta + OPT(i, j-1) & \text{otherwise} \end{cases}$$

$$i\delta & \text{if } j = 0$$

Sequence Alignment: Algorithm


```
Sequence-Alignment(m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for i = 0 to m
       M[0, i] = i\delta
   for j = 0 to n
       M[j, 0] = j\delta
   for i = 1 to m
       for j = 1 to n
          M[i, j] = min(\alpha[x_i, y_i] + M[i-1, j-1],
                            \delta + M[i-1, j]
                            \delta + M[i, j-1]
   return M[m, n]
```

Analysis: Θ(mn) time and space

Sequence Alignment: Example

Sequence Alignment: Example

Sequence Alignment: Algorithm

- Analysis: $\Theta(mn)$ time and space
- English words or sentences:
 - m, n <= 30. ← OK
- Computational biology
 - m = n = 100,000
 - 10 billions ops is OK, but 10GB array is quite large

- Q. Can we avoid using quadratic space?
- Easy. Optimal cost in O(m + n) space and O(mn) time
 - Compute OPT(i, ·) from OPT(i-1, ·)
 - No longer a simple way to recover alignment itself
- Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time
 - Clever combination of divide-and-conquer and dynamic programming

Edit distance graph

- Let f(i, j) be shortest path from (0, 0) to (i, j)
- Observation: f(i, j) = OPT(i, j)

- Edit distance graph
 - Let f(i, j) be shortest path from (0, 0) to (i, j)
 - Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m + n) space

- Edit distance graph
 - Let g(i, j) be shortest path from (i, j) to (m, n)
 - Can compute $g(\cdot, j)$ by reversing the edge orientations and inverting the roles of (0, 0) and (m, n)

y₂ **y**₁ **y**₃ **y**₄ **y**6 x_1 $\alpha_{x_{i+1}y_{j+1}}$ x_2 X_3

• Edit distance graph

- Let g(i, j) be shortest path from (i, j) to (m, n)
- Can compute $g(\cdot, j)$ for any j in O(mn) time and O(m + n) space

j

• Observation 1. The cost of the shortest path that uses (i, j) is f(i, j) + g(i, j)

- Observation 2. Let q be an index that minimized f(q, n/2) + g(q, n/2)
- Then, the shortest path from (0, 0) to (m, n) uses (q, n/2)

- Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP
 - Do alignment at $(x_q, y_{n/2})$
- Conquer: recursively compute optimal alignment in each piece

n / 2 **y**₁ **y**₂ **y**3 **y**₄ **y**5 **y**₆ x_1 x_2 X_3

Sequence Alignment: Running Time Analysis

• Theorem. Let $T(m, n) = \max running time of algorithm on strings of length m and n. <math>T(m, n) = O(mn)$

- Pf. (by induction on n)
 - O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q
 - T(q, n/2) + T(m q, n/2) time for two recursive calls
 - Choose constant c so that:

$$T(m, 2) \leq cm$$

$$T(2, n) \leq cn$$

$$T(m, n) \leq cmn + T(q, n/2) + T(m-q, n/2)$$

- Claim: T(m, n) <= 2cmn
 - Base cases: m = 2 or n = 2
 - Inductive hypothesis: T(m', n') <= 2cm'n' with m'<m and n'<n

$$T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$$

$$\leq 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

= 2cmn

Next Time: Dynamic Programming (Cont.)

