UGA Real Analysis Qualifying Exam Questions

D. Zack Garza

December 6, 2019

Contents

1	Fall	119	3
	1.1		3
	1.2		3
	1.3		3
	1.4		4
	1.5		4
	1.0		_
2	Spri	2019	4
	2.1		4
	2.2		5
	2.3		5
	2.4		5
	$\frac{2.4}{2.5}$		5
	2.0		9
3	Fall	118	6
•	3.1		6
	3.2		6
	3.3		6
	3.4		6
	$3.4 \\ 3.5$		6
	3.6		7
	5.0		1
4	Spri	2018	7
•	4.1		7
	4.1		7
	4.2		7
	4.4		7
	$\frac{4.4}{4.5}$		8
	4.5		0
5	Fall	117	8
•	5.1		8
	5.1		8
	5.2 5.3		8
	5.3 5.4		9
			_
	5.5		9

	5.6 6	9													
6	Spring 2017	10													
	6.1 1	10													
	6.2 2	10													
	6.3 3														
	6.4 4														
	6.5 5														
	6.6 5														
	0.0 9	11													
7	Fall 2016 (Neil-ish)	11													
	7.1 1	11													
	7.2 2	12													
	7.3 3	12													
	7.4 4	12													
	7.5 5	12													
	7.6 6	12													
_															
8	Spring 2016 (Neil-ish)	13													
	8.1 1														
	8.2 2														
	8.3 3	13													
	8.4 4	13													
	8.5 5	14													
	8.6 6	14													
9	9 Fall 2015														
9		14													
	9.2 2														
	9.3 3														
	9.4 4														
	9.5 5														
	9.6 6	15													
10) Spring 2015	15													
	10.1 1														
	10.2 2														
	10.3 3														
	10.4 4														
	10.5 5														
	10.6 6	16													
11	Fall 2014	17													
	11.1 1	17													
	11.2 2														
	11.3 3														
	11.4 4														
	11.5 5														
	11.8 8	17													

12	Spring	3	20	1	4																						
	12.1 1																										
	$12.2 \ 2$	2																									
	12.3 3	3																									
	$12.4 \ 4$	Į																									
	12.5.5																										

1 Fall 2019

1.1 1.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

a. Prove that if $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} a_1 + \cdots + a_n = 0$.

$$\lim_{n\to\infty}\frac{a_1+\cdots+a_n}{n}=0$$

b. Prove that if $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges, then

$$\lim_{n\to\infty}\frac{a_1+\cdots+a_n}{n}=0$$

1.2 2.

Prove that

$$\left| \frac{d^n}{dx^n} \frac{\sin x}{x} \right| \le \frac{1}{n}$$

for all $x \neq 0$ and positive integers n.

Hint: Consider
$$\int_0^1 \cos(tx) dt$$

1.3 3.

Let (X, \mathcal{B}, μ) be a measure space with $\mu(X) = 1$ and $\{B_n\}_{n=1}^{\infty}$ be a sequence of \mathcal{B} -measurable subsets of X, and

$$B := \{x \in X \ni x \in B_n \text{ for infinitely many } n\}.$$

- a. Argue that B is also a \mathcal{B} -measurable subset of X.
- b. Prove that if $\sum_{n=1}^{\infty} \mu(B_n) < \infty$ then $\mu(B) = 0$.

c. Prove that if $\sum_{n=1}^{\infty} \mu(B_n) = \infty$ and the sequence of set complements $\{B_n^c\}_{n=1}^{\infty}$ satisfies

$$\mu\left(\bigcap_{n=k}^{K} B_{n}^{c}\right) = \prod_{n=k}^{K} \left(1 - \mu\left(B_{n}\right)\right)$$

for all positive integers k and K with k < K, then $\mu(B) = 1$.

Hint: Use the fact that $1 - x \le e^{-x}$ for all x.

1.4 4.

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space \mathcal{H} .

a. Prove that for every $x \in \mathcal{H}$ one has

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2$$

b. Prove that for any sequence $\{a_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N})$ there exists an element $x \in \mathcal{H}$ such that

$$a_n = \langle x, u_n \rangle$$
 for all $n \in \mathbb{N}$

and

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$

1.5 5.

a. Show that if f is continuous with compact support on \mathbb{R} , then

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dx = 0$$

b. Let $f \in L^1(\mathbb{R})$ and for each h > 0 let

$$\mathcal{A}_h f(x) := \frac{1}{2h} \int_{|y| \le h} f(x - y) dy$$

c. Prove that $\|\mathcal{A}_h f\|_1 \leq \|f\|_1$ for all h > 0.

ii. Prove that $\mathcal{A}_h f \to f$ in $L^1(\mathbb{R})$ as $h \to 0^+$.

2 Spring 2019

2.1 1

Let C([0,1]) denote the space of all continuous real-valued functions on [0,1].

a. Prove that C([0,1]) is complete under the uniform norm $\|f\|_u := \sup_{x \in [0,1]} |f(x)|$.

b. Prove that C([0,1]) is not complete under the L^1 -norm $||f||_1 = \int_0^1 |f(x)| dx$.

4

2.2 2

Let \mathcal{B} denote the set of all Borel subsets of \mathbb{R} and $\mu: \mathcal{B} \to [0, \infty)$ denote a finite Borel measure on \mathbb{R} .

a. Prove that if $\{F_k\}$ is a sequence of Borel sets for which $F_k \supseteq F_{k+1}$ for all k, then

$$\lim_{k \to \infty} \mu\left(F_k\right) = \mu\left(\bigcap_{k=1}^{\infty} F_k\right)$$

b. Suppose μ has the property that $\mu(E) = 0$ for every $E \in \mathcal{B}$ with Lebesgue measure m(E) = 0. Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ so that if $E \in \mathcal{B}$ with $m(E) < \delta$, then $\mu(E) < \varepsilon$.

2.3 3

Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $\|f_k\|_2 \leq M$ for all $k \in \mathbb{N}$.

Prove that if $f_k \to f$ almost everywhere, then $f \in L^2([0,1])$ with $||f||_2 \leq M$ and

$$\lim_{k \to \infty} \int_0^1 f_k(x) dx = \int_0^1 f(x) dx$$

Hint: Try using Fatou's Lemma to show that $||f||_2 \leq M$ and then try applying Egorov's Theorem.

2.4 4

Let f be a non-negative function on \mathbb{R}^n and $\mathcal{A} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le f(x)\}.$

Prove the validity of the following two statements:

- a. f is a Lebesgue measurable function on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}
- b. If f is a Lebesgue measurable function on \mathbb{R}^n , then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x)dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n : f(x) \ge t\right\}\right)dt$$

2.5 5

- a. Show that $L^2([0,1]) \subseteq L^1([0,1])$ and argue that $L^2([0,1])$ in fact forms a dense subset of $L^1([0,1])$.
- b. Let Λ be a continuous linear functional on $L^1([0,1])$.

Prove the Riesz Representation Theorem for $L^1([0,1])$ by following the steps below:

i. Establish the existence of a function $g \in L^2([0,1])$ which represents Λ in the sense that

$$\Lambda(f) = f(x)g(x)dx$$
 for all $f \in L^2([0,1])$.

Hint: You may use, without proof, the Riesz Representation Theorem for $L^2([0,1])$.

ii. Argue that the g obtained above must in fact belong to $L^{\infty}([0,1])$ and represent Λ in the sense that

$$\Lambda(f) = \int_0^1 f(x)\overline{g(x)}dx \quad \text{ for all } f \in L^1([0,1])$$

with

$$||g||_{L^{\infty}([0,1])} = ||\Lambda||_{L^{1}([0,1])}$$

3 Fall 2018

3.1 1

Let $f(x) = \frac{1}{x}$. Show that f is uniformly continuous on $(1, \infty)$ but not on $(0, \infty)$.

3.2 2

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set. Show that there is a Borel set $B \subset E$ such that $m(E \setminus B) = 0$.

3.3 3

Suppose f(x) and xf(x) are integrable on \mathbb{R} . Define F by

$$F(t) := \int_{-\infty}^{\infty} f(x) \cos(xt) dx$$

Show that

$$F'(t) = -\int_{-\infty}^{\infty} x f(x) \sin(xt) dx.$$

3.4 4

Let $f \in L^1([0,1])$. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin nx| dx = \frac{2}{\pi} \int_0^1 f(x) dx$$

Hint: Begin with the case that f is the characteristic function of an interval.

3.5 5

Let $f \geq 0$ be a measurable function on \mathbb{R} . Show that

$$\int_{\mathbb{R}} f = \int_0^\infty m(\{x: f(x) > t\}) dt$$

3.6 6

Compute the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_1^n \frac{dx}{\left(1 + \frac{x}{n}\right)^n \sqrt[n]{x}}$$

4 Spring 2018

4.1 1

Define

$$E := \left\{ x \in \mathbb{R} : \left| x - \frac{p}{q} \right| < q^{-3} \text{ for infinitely many } p, q \in \mathbb{N} \right\}.$$

Prove that m(E) = 0.

4.2 2

Let

$$f_n(x) := \frac{x}{1 + x^n}, \quad x \ge 0.$$

- a. Show that this sequence converges pointwise and find its limit. Is the convergence uniform on $[0,\infty)$?
- b. Compute

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx$$

4.3 3

Let f be a non-negative measurable function on [0, 1].

Show that

$$\lim_{p \to \infty} \left(\int_{[0,1]} f(x)^p dx \right)^{\frac{1}{p}} = ||f||_{\infty}.$$

4.4 4

Let $f \in L^2([0,1])$ and suppose

$$\int_{[0,1]} f(x)x^n dx = 0 \text{ for all integers } n \ge 0.$$

Show that f = 0 almost everywhere.

4.5 5

Suppose that

- $f_n, f \in L^1$, $f_n \to f$ almost everywhere, and $\int |f_n| \to \int |f|$.

Show that $\int f_n \to \int f$

5 Fall 2017

5.1 1

Let

$$f(x) = s \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Describe the intervals on which f does and does not converge uniformly.

5.2 2

Let $f(x) = x^2$ and $E \subset [0, \infty) := \mathbb{R}^+$.

1. Show that

$$m^*(E) = 0 \iff m^*(f(E)) = 0.$$

2. Deduce that the map

$$\phi: \mathcal{L}(\mathbb{R}^+) \to \mathcal{L}(\mathbb{R}^+)$$
$$E \mapsto f(E)$$

is a bijection from the class of Lebesgue measurable sets of $[0, \infty)$ to itself.

5.3 3

Let

$$S = \operatorname{span}_{\mathbb{C}} \left\{ \chi_{(a,b)} \ni a, b \in \mathbb{R} \right\},$$

the complex linear span of characteristic functions of intervals of the form (a, b).

Show that for every $f \in L^1(\mathbb{R})$, there exists a sequence of functions $\{f_n\} \subset S$ such that

$$\lim_{n \to \infty} ||f_n - f||_1 = 0$$

5.4 4

Let

$$f_n(x) = nx(1-x)^n, \quad n \in \mathbb{N}.$$

1. Show that $f_n \to 0$ pointwise but not uniformly on [0,1].

Hint: Consider the maximum of f_n .

2.

$$\lim_{n\to\infty} \int_0^1 n(1-x)^n \sin x dx = 0$$

5.5 5

Let ϕ be a compactly supported smooth function that vanishes outside of an interval [-N,N] such that $\int_{\mathbb{R}} \phi(x) dx = 1$.

For $f \in L^1(\mathbb{R})$, define

$$K_j(x) := j\phi(jx), \qquad f * K_j(x) := \int_{\mathbb{R}} f(x-y)K_j(y) \ dy$$

and prove the following:

1. Each $f * K_j$ is smooth and compactly supported.

2.

$$\lim_{j \to \infty} \|f * K_j - f\|_1 = 0$$

Hint:

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dy = 0$$

5.6 6

Let X be a complete metric space and define a norm

$$||f|| := \max\{|f(x)| : x \in X\}.$$

Show that $(C^0(\mathbb{R}), \|\cdot\|)$ (the space of continuous functions $f: X \to \mathbb{R}$) is complete.

6 Spring 2017

6.1 1

Let K be the set of numbers in [0,1] whose decimal expansions do not use the digit 4.

We use the convention that when a decimal number ends with 4 but all other digits are different from 4, we replace the digit 4 with $399\cdots$. For example, $0.8754 = 0.8753999\cdots$.

Show that K is a compact, nowhere dense set without isolated points, and find the Lebesgue measure m(K).

6.2 2

a. Let μ be a measure on a measurable space (X, \mathcal{M}) and f a positive measurable function. Define a measure λ by

$$\lambda(E) := \int_{E} f \ d\mu, \quad E \in \mathcal{M}$$

Show that for g any positive measurable function,

$$\int_X g \ d\lambda = \int_X fg \ d\mu$$

b. Let $E \subset \mathbb{R}$ be a measurable set such that

$$\int_E x^2 \ dm = 0.$$

Show that m(E) = 0.

6.3 3

Let

$$f_n(x) = ae^{-nax} - be^{-nbx}$$
 where $0 < a < b$.

Show that

a.
$$\sum_{n=1}^{\infty} |f_n| \text{ is not in } L^1([0,\infty),m)$$

Hint: $f_n(x)$ has a root x_n .

b.

$$\sum_{n=1}^{\infty} f_n \text{ is in } L^1([0,\infty),m) \quad \text{ and } \quad \int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) \ dm = \ln \frac{b}{a}$$

6.4 4

Let f(x,y) on $[-1,1]^2$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Determine if f is integrable.

6.5 5

Let $f, g \in L^2(\mathbb{R})$. Prove that the formula

$$h(x) := \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

defines a uniformly continuous function h on \mathbb{R} .

6.6 5

Show that the space $C^1([a,b])$ is a Banach space when equipped with the norm

$$||f|| := \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |f'(x)|.$$

7 Fall 2016 (Neil-ish)

7.1 1

Define

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Show that f converges to a differentiable function on $(1, \infty)$ and that

$$f'(x) = \sum_{n=1}^{\infty} \left(\frac{1}{n^x}\right)'.$$

Hint:

$$\left(\frac{1}{n^x}\right)' = -\frac{1}{n^x} \ln n$$

7.2 2

Let $f,g:[a,b]\to\mathbb{R}$ be measurable with

$$\int_a^b f(x) \ dx = \int_a^b g(x) \ dx.$$

Show that either

- 1. f(x) = g(x) almost everywhere, or
- 2. There exists a measurable set $E \subset [a, b]$ such that

$$\int_E f(x) \ dx > \int_E g(x) \ dx$$

7.3 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\lim_{x \to 0} \int_{\mathbb{R}} |f(y - x) - f(y)| dy = 0$$

7.4 4

Let (X, \mathcal{M}, μ) be a measure space and suppose $\{E_n\} \subset \mathcal{M}$ satisfies

$$\lim_{n\to\infty}\mu\left(X\backslash E_n\right)=0.$$

Define

$$G := \{x \in X \ni x \in E_n \text{ for only finitely many } n\}.$$

Show that $G \in \mathcal{M}$ and $\mu(G) = 0$.

7.5 5

Let $\phi \in L^{\infty}(\mathbb{R})$. Show that the following limit exists and satisfies the equality

$$\lim_{n \to \infty} \left(\int_{\mathbb{R}} \frac{|\phi(x)|^n}{1 + x^2} dx \right)^{\frac{1}{n}} = \|\phi\|_{\infty}.$$

7.6 6

Let $f, g \in L^2(\mathbb{R})$. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x)g(x+n)dx = 0$$

8 Spring 2016 (Neil-ish)

8.1 1

For $n \in \mathbb{N}$, define

$$e_n = \left(1 + \frac{1}{n}\right)^n$$
 and $E_n = \left(1 + \frac{1}{n}\right)^{n+1}$

Show that $e_n < E_n$, and prove Bernoulli's inequality:

$$(1+x)^n \ge 1 + nx$$
 for $-1 < x < \infty$ and $n \in \mathbb{N}$

Use this to show the following:

- 1. The sequence e_n is increasing.
- 2. The sequence E_n is decreasing.
- 3. $2 < e_n < E_n < 4$.
- 4. $\lim_{n \to \infty} e_n = \lim_{n \to \infty} E_n.$

8.2 2

Let $0 < \lambda < 1$ and construct a Cantor set C_{λ} by successively removing middle intervals of length λ .

Prove that $m(C_{\lambda}) = 0$.

8.3 3

Let f be Lebesgue measurable on $\mathbb R$ and $E \subset \mathbb R$ be measurable such that

$$0 < A = \int_{E} f(x)dx < \infty.$$

Show that for every 0 < t < 1, there exists a measurable set $E_t \subset E$ such that

$$\int_{E_{t}} f(x)dx = tA.$$

8.4 4

Let $E \subset \mathbb{R}$ be measurable with $m(E) < \infty$. Define

$$f(x) = m(E \cap (E + x)).$$

Show that

- 1. $f \in L^1(\mathbb{R})$.
- 2. f is uniformly continuous.
- $3. \lim_{|x| \to \infty} f(x) = 0$

Hint:

$$\chi_{E\cap(E+x)}(y) = \chi_E(y)\chi_E(y-x)$$

8.5 5

Let (X, \mathcal{M}, μ) be a measure space. For $f \in L^1(\mu)$ and $\lambda > 0$, define

$$\phi(\lambda) = \mu(\{x \in X | f(x) > \lambda\})$$
 and $\psi(\lambda) = \mu(\{x \in X | f(x) < -\lambda\})$

Show that ϕ, ψ are Borel measurable and

$$\int_{X} |f| \ d\mu = \int_{0}^{\infty} [\phi(\lambda) + \psi(\lambda)] \ d\lambda$$

8.6 6

Without using the Riesz Representation Theorem, compute

$$\sup \left\{ \left| \int_0^1 f(x)e^x dx \right| \ \ni f \in L^2([0,1], m), \ \|f\|_2 \le 1 \right\}$$

9 Fall 2015

9.1 1

Define

$$f(x) = c_0 + c_1 x^1 + c_2 x^2 + \ldots + c_n x^n$$
 with n even and $c_n > 0$.

Show that there is a number x_m such that $f(x_m) \leq f(x)$ for all $x \in \mathbb{R}$.

9.2 2

Let $f: \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable.

- 1. Show that there is a sequence of simple functions $s_n(x)$ such that $s_n(x) \to f(x)$ for all $x \in \mathbb{R}$.
- 2. Show that there is a Borel measurable function g such that g = f almost everywhere.

9.3 3

Compute the following limit:

$$\lim_{n \to \infty} \int_1^n \frac{ne^{-x}}{1 + nx^2} \sin\left(\frac{x}{n}\right) dx$$

9.4 4

Let $f:[1,\infty)\to\mathbb{R}$ such that f(1)=1 and

$$f'(x) = \frac{1}{x^2 + f(x)^2}$$

Show that the following limit exists and satisfies the equality

$$\lim_{x \to \infty} f(x) \le 1 + \frac{\pi}{4}$$

9.5 5

Let $f, g \in L^1(\mathbb{R})$ be Borel measurable.

- 1. Show that
- \bullet The function

$$F(x,y) := f(x-y)g(y)$$

is Borel measurable on \mathbb{R}^2 , and

• For almost every $y \in \mathbb{R}$,

$$F_y(x) \coloneqq f(x-y)g(y)$$

is integrable with respect to y.

2. Show that $f * g \in L^1(\mathbb{R})$ and

$$||f * g||_1 \le ||f||_1 ||g||_1$$

9.6 6

Let $f:[0,1]\to\mathbb{R}$ be continuous. Show that

$$\sup \left\{ \|fg\|_1 \ni g \in L^1[0,1], \ \|g\|_1 \le 1 \right\} = \|f\|_{\infty}$$

10 Spring 2015

10.1 1

Let (X, d) and (Y, ρ) be metric spaces, $f: X \to Y$, and $x_0 \in X$.

Prove that the following statements are equivalent:

- 1. For every $\varepsilon > 0$ $\exists \delta > 0$ such that $\rho(f(x), f(x_0)) < \varepsilon$ whenever $d(x, x_0) < \delta$.
- 2. The sequence $\{f(x_n)\}_{n=1}^{\infty} \to f(x_0)$ for every sequence $\{x_n\} \to x_0$ in X.

10.2 2

Let $f: \mathbb{R} \to \mathbb{C}$ be continuous with period 1. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_{0}^{1} f(t)dt \quad \forall \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Hint: show this first for the functions $f(t) = e^{2\pi ikt}$ for $k \in \mathbb{Z}$.

10.3 3

Let μ be a finite Borel measure on \mathbb{R} and $E \subset \mathbb{R}$ Borel. Prove that the following statements are equivalent:

1. $\forall \varepsilon > 0$ there exists G open and F closed such that

$$F \subseteq E \subseteq G$$
 and $\mu(G \setminus F) < \varepsilon$.

2. There exists a $V \in G_{\delta}$ and $H \in F_{\sigma}$ such that

$$H \subseteq E \subseteq V$$
 and $\mu(V \setminus H) = 0$

10.4 4

Define

$$f(x,y) := \begin{cases} \frac{x^{1/3}}{(1+xy)^{3/2}} & \text{if } 0 \le x \le y\\ 0 & \text{otherwise} \end{cases}$$

Carefully show that $f \in L^1(\mathbb{R}^2)$.

10.5 5

Let \mathcal{H} be a Hilbert space.

1. Let $x \in \mathcal{H}$ and $\{u_n\}_{n=1}^N$ be an orthonormal set. Prove that the best approximation to x in \mathcal{H} by an element in $\operatorname{span}_C C\{u_n\}$ is given by

$$\hat{x} := \sum_{n=1}^{N} \langle x, u_n \rangle u_n.$$

2. Conclude that finite dimensional subspaces of \mathcal{H} are always closed.

10.6 6

Let $f \in L^1(\mathbb{R})$ and g be a bounded measurable function on \mathbb{R} .

- 1. Show that the convolution f * g is well-defined, bounded, and uniformly continuous on \mathbb{R} .
- 2. Prove that one further assumes that $g \in C^1(\mathbb{R})$ with bounded derivative, then $f * g \in C^1(\mathbb{R})$

$$\frac{d}{dx}(f*g) = f*\left(\frac{d}{dx}g\right)$$

11 Fall 2014

11.1 1

Let $\{f_n\}$ be a sequence of continuous functions such that $\sum f_n$ converges uniformly.

Prove that $\sum f_n$ is also continuous.

11.2 2

Let I be an index set and $\alpha: I \to (0, \infty)$.

1. Show that

$$\sum_{i \in I} a(i) := \sup_{\substack{J \subset I \\ J \text{ finite}}} \sum_{i \in J} a(i) < \infty \implies I \text{ is countable.}$$

2. Suppose $I=\mathbb{Q}$ and $\sum_{q\in\mathbb{Q}}a(q)<\infty.$ Define

$$f(x) := \sum_{\substack{q \in \mathbb{Q} \\ q \le x}} a(q).$$

Show that f is continuous at $x \iff x \notin \mathbb{Q}$.

11.3 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that} \; m(E) < \delta \implies \int_{E} |f(x)| dx < \varepsilon$$

11.4 4

Let $g \in L^{\infty}([0,1])$ Prove that

 $\int_{[0,1]} f(x)g(x)dx = 0 \quad \text{for all continuous } f:[0,1] \to \mathbb{R} \implies g(x) = 0 \text{ almost everywhere.}$

11.5 5

1. Let $f \in C_c^0(\mathbb{R}^n)$, and show

$$\lim_{t\to 0} \int_{\mathbb{R}^n} |f(x+t) - f(x)| dx = 0.$$

2. Extend the above result to $f \in L^1(\mathbb{R}^n)$ and show that

 $f \in L^1(\mathbb{R}^n), \ g \in L^\infty(\mathbb{R}^n) \implies f * g$ is bounded and uniformly continuous.

11.6 6

Let $1 \leq p, q \leq \infty$ be conjugate exponents, and show that

$$f \in L^p(\mathbb{R}^n) \implies ||f||_p = \sup_{\|g\|_q = 1} \left| \int f(x)g(x)dx \right|$$

12 Spring 2014

12.1 1

- 1. Give an example of a continuous $f \in L^1(\mathbb{R})$ such that $f(x) \not\to 0$ as $|x| \to \infty$.
- 2. Show that if f is uniformly continuous, then

$$\lim |x| \to \infty f(x) = 0.$$

12.2 2

Let $\{a_n\}$ be a sequence of real numbers such that

$$\{b_n\} \in \ell^2(\mathbb{N}) \implies \sum a_n b_n < \infty.$$

Show that $\sum a_n^2 < \infty$.

Note: Assume a_n, b_n are all non-negative.

12.3 3

Let $f: \mathbb{R} \to \mathbb{R}$ and suppose

$$\forall x \in \mathbb{R}, \quad f(x) \ge \limsup_{y \to x} f(y)$$

Prove that f is Borel measurable.

12.4 4

Let (X, \mathcal{M}, μ) be a measure space and suppose f is a measurable function on X. Show that

$$\lim_{n \to \infty} \int_X f^n \ d\mu = \begin{cases} \infty & or \\ \mu(f^{-1}(1)), \end{cases}$$

and characterize the collection of functions of each type.

12.5 5

Let $f,g\in L^1([0,1])$ and for all $x\in [0,1]$ define

$$F(x) := \int_0^x f(y) dy \quad \text{ and } \quad G(x) := \int_0^x g(y) dy.$$

Prove that

$$\int_{0}^{1} F(x)g(x)dx = F(1)G(1) - \int_{0}^{1} f(x)G(x)dx$$