Андрей Чумаков

Работа 1.2.1: Определение скорости полета пули при помощи баллистического маятника

Цель работы: определить скорость полета пули, применяя законы созранения и используя баллистические маятники.

В работе используются: духовое ружье на штативе, осветитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их взвенивания, а также баллистические маятники.

1 Методология проведения эксперемента

1.1 Метод баллистического маятника, совершающего поступательное движение

рис. 1, схема установки

рис. 2, поведение баллистического маятника при попадании в него пули.

В этой части используется установка, изображенная на рис. 1. Если масса маятника равна M, то скорость системы маятник-пуля сразу после попадания маятника равна

$$v_0 = \frac{m}{M+m}v. (1)$$

У маятника угловая скорость $\omega = \sqrt{g/L}$. Если у него амплитуда A = x1 - x2, то верно, что

$$A\omega = v_0. (2)$$

Из этого скорость выражается, как

$$v = \sqrt{\frac{g}{L}} \frac{M+m}{m} A. \tag{3}$$

1.2 Метод крутильного баллистического маятника

В этом методе используется установка, изображенная на рис. 3.

рис. 3, крутильный баллистический маятник.

Сразу после попадания пули в мишень, система пуля-мишень будет двигаться с угловой скоростью Ω такой, что

$$mvr = I\Omega, (4)$$

где I – момент инерции систему пуля-мишень.

Если k – модуль кручения проволоки, то из закона сохранения энергии следует, что

$$k\frac{\varphi^2}{2} = I\frac{\Omega^2}{2},\tag{5}$$

где φ — амплитуда колебаний маятника после выстрела. Из уравнений (4) и (5) можно найти скорость v по амплитуде φ .

$$v = \varphi \frac{\sqrt{kI}}{mr}. (6)$$

$$\varphi_s = \frac{x_3 + x_4}{2d}.\tag{7}$$

Если система колебается с периодом T_1 , с грузиками и с периодом T_2 без дополнительных грузиков, то верно, что:

$$T_1 = 2\pi \sqrt{\frac{I}{k}} \tag{8}$$

$$T_2 = 2\pi \sqrt{\frac{I - 2MR^2}{k}}\tag{9}$$

Тогда мы можем найти \sqrt{kI} и соотвественно найти итоговую скорость:

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} \tag{10}$$

2 Результаты и обработка

2.1 Метод баллистического маятника, совершающего поступательное движение

Полученные данные по результатам экспериментов: $\Delta m = 0.005 \text{ g}, \ \Delta x 1/x 2 = 0.25 \text{ mm}$

N	1	2	3	4	5
m, g	0.509	0.511	0.505	0.507	0.511
x1, mm	-2.25	-2.5	-3.0	-3.25	-4.0
x2, mm	10.0	9.75	10.0	9.5	9.0
A, mm	12.25	12.25	13.00	12.75	13

$$L = (220 \pm 1)$$
 cm, $M = (2925 \pm 5)$ g.

Соответствующие скорости:

N	1	2	3	4	5
$v, \mathrm{m/s}$	149	148	159	155	157

Усредняя данные, получаем < v > = 153 m/s. $\delta_{\text{случ}} = 4.5 \text{ m/s}$

Посчитаем относительную систематическую погрешность нашего результата:

	L	m	M	A
ε	0.004	0.01	0.0017	0.04

$$\varepsilon_{\text{chct}} = \sqrt{(0.5\varepsilon_L)^2 + \varepsilon_m^2 + \varepsilon_M^2 + \varepsilon_A^2}$$

 $\varepsilon_{\mathrm{сист}} = 0.04; \, \delta_{\mathrm{сист}} = 6 \, \, \mathrm{m/s}$

$$\delta_{
m полн} = \sqrt{\delta_{
m cuct}^2 + \delta_{
m cnyq}^2} = 7 {
m m/s}$$

Итого $v = 153 \pm 7 \text{m/s}$

2.2 Метод крутильного баллистического маятника

Найдем \sqrt{kI} :

$$R = 33.6 \pm 0.1 \text{cm}, r = 22.1 \pm 0.1 \text{cm}, d = 115.7 \pm 0.1 \text{cm}, T_1 = 5.2 \pm 0.1 \text{s}, T_2 = 6.9 \pm 0.1 \text{s}, M = 727 \pm 0.5 \text{g}$$

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} = 0.346$$

Запишем полученные эксперементальные данные:

N	1	2	3	4	5
<i>m</i> , g	0.506	0.511	0.500	0.508	0.509
x3, cm	3.8	3.9	3.9	3.7	3.8
x4, cm	3.9	4.0	3.9	3.8	3.9

Рис. 1:
$$\Delta_m = 0.005g$$
; $\Delta_{x3/x4} = 0.1cm$

Подставив все данные в формулу (6) найдем значение скорости пули

N	1	2	3	4	5
$v, \mathrm{m/s}$	103	105	106	100	102

Усредняя данные, получаем < v>=103 m/s. $\delta_{\rm случ}=2$ m/s Посчитаем относительную систематическую погрешность нашего результата:

φ		\sqrt{kI} m		r	
ε	0.013	0.017	0.01	0.005	

$$\varepsilon_{\text{chct}} = \sqrt{\varepsilon_{\varphi}^2 + \varepsilon_{\sqrt{kI}}^2 + \varepsilon_m^2 + \varepsilon_r^2} = 0.024$$

 $\delta_{\text{сист}} = 2.5 \text{ m/s}$

$$\delta_{
m полн} = \sqrt{\delta_{
m cuct}^2 + \delta_{
m cnyq}^2} = 3 {
m m/s}$$

Итого $v = 103 \pm 3 \text{m/s}$

3 Вывод

Я получил значение скорости пули двумя методами — методом баллистического маятника и методом крутильного маятника. В первом случае получился результат $v=153\pm7 \mathrm{m/s}$, а во втором $v=103\pm3 \mathrm{m/s}$. Оба значения являются физичными скоростями пуль, согласно техническим документациям пневматического оружия, но отличаются почти в полтора раза, что не объясняется погрешностями, которые в 5 раз меньше, чем наблюдаемая разница. Самое очевидное и как по мне исчерпывающее объяснения данного феномена в том, что просто модели оружия, скорости пуль которых мы считали, отличаются, соотвественно и скорости пуль тоже