Revision

- * Introduction
- * Bistable Elements
- * Latches & Flip-Flops
- * Analysis Procedure
- * Design Procedure

Chapter 7 – "Digital Design: Principles and Practices" book

Leaning Objectives for the Session

By the end of the session all students will be able to:

- 1)recognise the different types of latches and flip-flops, introduced in this module.
- 2)explain the differences and similarities between these different latches and flip-flops.
- 3) analyse different types of latch and flip-flop to understand how a change on the input will affect the outputs.

• SR latch – Simplest type.

Latches and Flip-Flops

SR latch – Simplest type.

Inputs		Out	tputs
s	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

Illegal (invalid)
operation when both
inputs are *True*.

 SR latch with control line – Same as SR but AND gate connected to each input. The same control signal is applied one input of each AND gate. Other input is S or R, respectively.

 SR latch with control line – Same as SR but AND gate connected to each input. The same control signal is applied one input of each AND gate. Other input is S or R, respectively.

	Ir	ηpι	ıts	Out	puts	
	S	R	С	Q	QN	Same as
	0	0	1	last Q	last QN	RS latch
ı	0	1	1	0	1	
ı	1	0	1	1	0	
ı	1	1	1	0	0	
	Х	Х	0	last Q	last QN	

• D(-type) latch – Same as SR but has only 1 input D (equivalent to S). $R = D' \equiv S'$. Solves problem of S = R = 1 being presented to latch which caused it to give an illegal output, namely: Q = Q' = 0

• D(-type) latch – Same as SR but has only 1 input D (equivalent to S). $R = D' \equiv S'$. Solves problem of S = R = 1 being presented to latch which caused it to give an illegal output, namely: Q = Q' = 0

Inp	uts	Ou	tputs	_ reset state
С	D	Q	QN	
1	0	0	1	
1	1	1	0 <	
0	Х	last Q	last QN	
				set state

Same as

RS latch

RS latch

RS latch with control

D latch

 The circuit symbol of a latch is a rectangular box with 2 outputs, Q and Q' and 1 or more inputs.

Difference between Latch and Flip-Flop

- Difference between latch and flip-flop Latch has no clock input so its operation is not synchronized with the clock. Flip-flop has a clock input so its operation is synchronized with the clock
- Only flip-flop is suitable for use in a synchronous sequential circuit

Image below shows a typical clock signal

frequency =
$$1/t_{per}$$

 In the circuit symbol for a flip-flop we use a triangle and the letters CLK to denote that the flip-flop is triggered on a clock edge.

 An edge triggered flip-flop will ignore the inputs while the clock pulse is at a constant level. It will only set the outputs on clock pulse transitions.

There are 2 edges associated with the clock.

 Could trigger flip-flop from either the rising or falling edge of the clock.

There are 2 edges associated with the clock.

 Could trigger flip-flop from either the rising or falling edge of the clock.

 The SR flip-flop – Same as SR latch with control line but the control line attached to a clock signal.

The D flip-flop – Same as D latch but includes a clock input

 A JK flip-flop – Same as SR flip-flip but additional AND gates are added before the S and R inputs. One inputs to AND gate on S is connected to Q'. One inputs to AND gate on R is connected to Q

A JK flip-flop – Normally edge triggered.

Flip-flop stores last state

A JK flip-flop – Normally edge triggered.

 Notice that, unlike for the RS flop-flop, there is no illegal state. Due to the feedback from output to input S and R are always different

- Master Slave The name for a way of ganging together flip-flop.
 Output of Master flip-flop is connected to input of Slave flip-flop.
 Clock input to Slave is inverted with respect to that of Master.
- Figure below shows Master Slave connection of D flip-flops

Figure below shows Master Slave connection of JK flip-flops

Figure below shows Master Slave connection of JK flip-flops

Figure below shows an SR latch. Assume that we find it in this initial condition

OR gate	Inp	out	Output
Truth table →	Α	В	F
	0	0	0
	0	1	1
	1	0	1
	1	1	1
		'	

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

 Figure below shows an SR latch. Assume that we now raise S high (i.e. S = 1)

OR gate	Inp	out	Output
Truth table →	Α	В	F
	0	0	0
	0	1	1
	1	0	1
	1	1	1
			•

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

 Figure below shows an SR latch. Assume that we now raise S high (i.e. S = 1)

ruiii id	able 7		Α	В	F
			0	0	0
			0	1	1
			1	0	1
			1	1	1
S	R		Q		QN
0	0	la	st (Q	last QN
0	1		0		1
1	0		1		0
1	1		0		0
			<u> </u>	_ 4 -	. 1-

Output

OR gate

Truth table ->

 Figure below shows an SR latch. Assume that we now raise S high (i.e. S = 1)

•	ratii te	abic y	А	В	-
			0	0	0
			0	1	1
			1	0	1
			1	1	1
	s	R	Q		QN
	0	0	last	Q I	ast QN
	0	1	0		1
	1	0	1		0
	1	1	0		0
					_

Output

OR gate

Truth table →

 Figure below shows an SR latch. Now assume that we set S low (i.e. S = 0) and set R high (i.e. R = 1) in that order.

OR gate	Input		Output
Truth table →	Α	В	F
	0	0	0
	0	1	1
	1	0	1
	1	1	1

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

 Figure below shows an SR latch. Now assume that we set S low (i.e. S = 0) and set R high (i.e. R = 1) in that order.

OR gate	Inp	out	Output
Truth table →	Α	В	F
	0	0	0
	0	1	1
	1	0	1
	1	1	1

S	R	Q	QN	
0	0	last Q	last QN	
0	1	0	1	
1	0	1	0	
1	1	0	0	

 Figure below shows an SR latch. Now assume that we set S low (i.e. S = 0) and set R high (i.e. R = 1) in that order.

OR gate	Inp	out	Output	
Truth table →	Α	В	F	
	0	0	0	
	0	1	1	
	1	0	1	
	1	1	1	

S	R	Q	QN	
0	0	last Q	last QN	
0	1	0	1	
1	0	1	0	
1	1	0	0	

 Figure below shows an SR latch. Now assume that we set S low (i.e. S = 0) and set R high (i.e. R = 1) in that order.

OR gate			lı	nput	Output	
Truth table →			Α	В	F	
			0	0	0	
		0	1	1		
		1	0	1		
		1	1	1		
					-	
	S	R	Q)	QN	
	0	0	last	Q last Ql		
	0	1	0		1	
	1	0	1		0	
	1	1	0		0	
	RS latch					

Figure below shows an SR latch. Now assume that we set S low (i.e. S = 0) and set R high (i.e. R = 1) in that order. t_{delay}

0.1.0			pac	1 ~~	Jourpar		
Truth table →			Α	В		F	
			0	0		0	
		0	1		1		
			1	0		1	
			1	1		1	
					•		
	S	R	C)	Q	QN	
	0	0	last	Q	last	QN	
	0	1	0)	1		

Input

| Output

0

0

OR gate

0

Leaning Objectives for the Session

So hopefully you are now able to:

- 1)recognise the different types of latches and flip-flops, introduced in this module.
- 2)explain the differences and similarities between these different latches and flip-flops.
- 3) analyse different types of latch and flip-flop to understand how a change on the input will affect the outputs.

