UNS	SW SCHO	OL C	F MA	THEN	MATIC	S AN	d Sta	TISTI	CS					
	TH3411	l In	[FOR]	MAT				ND (Сірні	ERS				
2017	$7~\mathrm{S2}$ ne Allowe	d. 45	min	utos	\mathbf{T}	EST	1					VEI	RSION	[A
Fo ea Fo	or multiple ch multiple or written aple all pa	e choi le cho answ	ce que	estion lestion	n is w s, use	\mathbf{ext}	1 ma ra pa	${f r}{f k}$.	answ	ver;				
1.	There ma					heck	digit	in the	e ISBN	l num	ıber 0	-76-53	5615-4.	
		(a)	2	(b)	5	(c)	7	(d)	X	(e)	Non	e of th	ese	
2.												imum Lel		
	For the Assume t	ľ	ittp Ad	os: d V	//p We	ov H = C1	VC(0 0 1 1 1 1	1 0 0 0		011 000	n dei	•	matrix	
3.	How man	ny coo	dewor	ds are	e there	e in C	C?							
			(a)	2	(b)	3	(c)	4	(d)	5	(e)	8		
4.	The code	word	enco	ding t	the me	essage	e 01 ir	ı code	$\in C$ ha	s wei	ght			
		(a)	1	(b)	2	(c)	3	(d)	4	(e)	None	e of the	ese	
5.	Which of	the	follow	ing is	a gen	erato	or mat	rix G	for th	ne cod	ecc?			
	(a) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{smallmatrix}1&1&0\\0&1&1\end{smallmatrix}$) (b)	$\left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array}\right)$	$\begin{smallmatrix}1&1&0\\0&0&1\end{smallmatrix})$	(c)	$\left(\begin{smallmatrix}0&0&0\\1&1&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)$	(d) (1 1 0 0	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	(e) No	ne of the	ese
6.	A binary errors an strategy	d det	$\operatorname{ect} b$	errors					_	_				
	(a)	(0,	,7)	(b)	(1, 6))	(c)	(2,5)	(d	l) (3	(3,4)	(e)	(4, 3)	

Student ID:

Name:

7. Consider a compression code with codewords $\mathbf{c}_1 = 10$, $\mathbf{c}_2 = 11$, $\mathbf{c}_3 = 100$, $\mathbf{c}_4 = ?$ where \mathbf{c}_4 is to be chosen from the list of four possibilities below. Which choice, if any, of \mathbf{c}_4 makes the resulting code uniquely decodable?

(a) ${\bf c}_4 = 0$ (b) ${\bf c}_4 = 1$ (c) ${\bf c}_4 = 011$ (d) ${\bf c}_4 = 111$ (e) None of these

8. A binary UD-code has codeword lengths (not necessarily in order) 1, 3, 3, 4, ℓ . What is the smallest value of ℓ for which such a code exists?

(a) $\ell = 1$ (b) $\ell = 2$ (c) $\ell = 3$ (d) $\ell = 4$ (e) $\ell = 5$

9. Consider the standard ternary I-code with codeword lengths 1, 3, 3, 3, 3. The codeword \mathbf{c}_5 corresponding to symbol s_5 is given by

(a) 000 (b) 102 (c) 110 (d) 111 (e) None of these

10. A Markov source $S=\{s_1,s_2,s_3\}$ has transition matrix M. The Huffman code for the equilibrium distribution is $\operatorname{Huff}_E=[1,\ 00,\ 01]$. (That is, $\mathbf{c}_1=1,\ \mathbf{c}_2=00$ and $\mathbf{c}_3=01$.)

The Huffman codes for the columns of M are given by Huff $_1 = [00, 1, 01]$ Huff $_2 = [0, 10, 11]$ Huff $_3 = [11, 10, 0]$

The string 001111100 decodes under the Malkey Huffman encoding as

(a) $s_1s_1s_3s_1s_1$ (b) $s_2s_3s_3s_1s_1$ (c) $s_2s_3s_1s_3s_2s_2s_2$ (d) $s_2s_2s_1s_2s_3$ (e) None of these

11. [5 marks] Add WeChat powcoder

- (a) Use the Kraft-MacMillan Theorem to show that there is no uniquely decodable **ternary** code with codeword lengths 1, 1, 2, 2, 2, 3, respectively.
- (b) Symbol s_1 of the source $S = \{s_1, s_2\}$ occurs with probability 4/5 and symbol s_2 occurs with probability 1/5. Find a uniquely decodable binary code of minimal average length for S^2 , assuming that successive symbols occur independently, and state the average length per original source symbol of the code.

ne: Student ID:	
	MEDGIONI D
	VERSION B
or multiple choice questions, circle the correct answer; ach multiple choice question is worth 1 mark. or written answer questions, use extra paper. taple all papers together when finished.	
even parity in rows and columns, similar to the 9-character 8-bit. The message 10101010 10010110 11001101 00111010 11000011 is Assuming at most two errors, which of the following bits could (a) 3rd (b) 5th (c) 21th (d) 25th (e)	check character for it ASCII code. s received. be incorrect? None of these
positive Sri supplement tup of the Codewox also with minimum distance 7 and codeword length 12. The probability that one or more errors are correctly corrected using a minimum distance of $w = 12p(1 - \text{https://powicoden.com/s})$ The probability that one or more errors are correctly corrected distance decoding strategy is	final pinary code ability that one or ecoding strategy is $z = 220p^3(1-p)^9$ d using a minimum
$x_1 + x_2 + x_4 \equiv 0 \pmod{3}$ There are two information bits but you are not told in which Which of the following codewords could possibly encode the me	positions they lie.
Let C be the ternary linear code with generator matrix $G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$ How many codewords are there in C ? (a) 3 (b) 8 (c) 16 (d) 27 (e)	81
	TH3411 INFORMATION CODES AND CIPHERS TEST 1 me Allowed: 45 minutes or multiple choice questions, circle the correct answer; ich multiple choice question is worth 1 mark. or written answer questions, use extra paper. The paper is appeared by the paper of the papers together when finished. A message is sent using a 5-character 8-bit ASCII code which end blocks of four together with a 5th character which is used as a even parity in rows and columns, similar to the 9-character 8-bit Ascuming at most two errors, which of the following bits could (a) 3rd (b) 5th (c) 21th (d) 25th (e) Consider a binary channel with bit-error probability p , where positing a minimum distance q and codeword length 12. The probamore errors are correctly corrected using a minimum distance of q and codeword length 12. The probability that one or more errors are correctly corrected distance decoding strategy is (a) q p q

 $\bf 5.$ For the code C of Question 4, assume that the first four bits are check bits. The codeword that encodes $\mathbf{m}=001$ is then

(a) 0011101 (b) 0012101 (c) 1002001 (d) 1112001

- (e) None of these

6.	A binary linear code C has minimum distance $d=4$ and length $n=7$. The maximal possible number of information bits k for such a code is										
	(a)	1	(b)	2	(c)	3	(d)	4	(e)	5	

7. A uniquely decodable code has codewords $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 10$, $\mathbf{c}_3 = 01$, $\mathbf{c}_4 = ?$. Which of the following codewords could \mathbf{c}_4 be?

(a)
$$\mathbf{c}_4 = 0$$
 (b) $\mathbf{c}_4 = 11$ (c) $\mathbf{c}_4 = 00$ (d) $\mathbf{c}_4 = 010$ (e) None of these

8. The minimum radix that would be needed to create a UD-code for the source

(b) 3 (c) 4

$$S = \{s_1, s_2, \dots, s_7\}$$

(d) 5

(e) 6

with codeword lengths 1, 1, 2, 2, 3, 3, 3, respectively is

10. Let $S = \{s_1, s_2\}$ be a source with probabilities $p_1 = \frac{3}{4}$. The average length per original symbol of a radik 3 Huffman code for the second extension $S^{(2)}$ of this source is

11. [5 marks] A Markov source $S = \{s_1, s_2, s_3\}$ has transition matrix $M = \frac{1}{10} \begin{pmatrix} 7 & 2 & 7 \\ 1 & 5 & 2 \\ 2 & 3 & 1 \end{pmatrix}$.

i) Show that
$$\mathbf{p} = \frac{1}{5} \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
 is an equilibrium vector for M .

- ii) Show that the Huffman code Huff_E for the probability distribution given by \mathbf{p} is $\operatorname{Huff}_E = [0, 10, 11]$ (that is, $\mathbf{c}_1 = 0$, $\mathbf{c}_2 = 10$ and $\mathbf{c}_3 = 11$), and find the average codeword length L_E for Huff_E .
- iii) Assuming that the Huffman codes for the columns of M are given

$$\mathrm{Huff}_1 = [0, 11, 10] \qquad \mathrm{Huff}_2 = [01, 1, 00] \qquad \mathrm{Huff}_3 = [0, 10, 11]$$

use Markov Huffman encoding to encode the string of source symbols $s_1s_2s_1s_3s_1$.