學號:B06902028 系級: 資工二 姓名:林柏劭

請實做以下兩種不同 feature 的模型,回答第 (1)~(3) 題:

- 1. 抽全部 9 小時內的污染源 feature 當作一次項(加 bias)
- 2. 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
 - c. 第 1-3 題請都以題目給訂的兩種 model 來回答
 - d. 同學可以先把 model 訓練好, kaggle 死線之後便可以無限上傳。
 - e. 根據助教時間的公式表示,(1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

	public score	private score
All features	5.63779	7.21541
Only pm2.5	5.90263	7.22356

觀察上面的資料,抽全部污染源 features 的結果會比只抽 pm2.5 的結果要來的好。可推論出第十小時 pm2.5 值除了會受前 9 小時 pm2.5 的影響外,其他污染源(可能不是全部),但最後全部來看會對其造成影響。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

	public score	private score
All features + 9hr	5.63779	7.21541
Only pm2.5 + 9hr	5.90263	7.22356
All features + 5hr	5.98265	7.16690
Only pm2.5 + 5hr	6.22732	7.22552

觀察上面的資料,兩種 model 在抽前 9 小時的結果皆比抽前 5 小時的結果要來的好。可推論出在某一時刻的 pm2.5 值受到越多歷史資料的影響越大。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖 從下圖可發現,不同的 λ 對於 training 的 RMSE 在不同的 iteration 時幾乎一樣。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處 忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^TX)yX^T$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-1}yX^{T}$

答案:(c) (X^TX)⁻¹X^Ty