Prática 3: Pêndulo Simples

1 Objetivos

• Verificar experimentalmente as leis do pêndulo e determinar a aceleração da gravidade local.

2 Material

• Massas aferidas;

• Fios;

• Coluna graduada.

Cronômetro;

• Transferidor;

3 Fundamentos

O pêndulo simples é o sistema constituído por uma massa puntiforme, presa à extremidade de uma fio extensível e de massa desprezível, capaz de se mover, sem atrito, num plano vertical, em torno de um eixo situado em sua outra extremidade. Pela própria definição, vemos que o pêndulo simples é uma concepção ideal. O que montaremos é aproximadamente um pêndulo simples.

Figura 1: Pêndulo simples

Quando afastada da posição de equilíbrio e solto, o pêndulo oscila sob a ação da gravidade. O movimento é oscilatório e periódico. Numa posição qualquer, afastada de um ângulo θ da posição de equilíbrio, as forças aplicadas à massa são: mg (peso) e T (tração no fio). Decompondo o peso conforme indica a Figura 1, obtemos as componentes $mg\cos\theta$ e $mg\sin\theta$. A resultante da tração e $mg\cos\theta$ produz a aceleração centrípeta. A outra componente, $mg\sin\theta$, é a força restauradora que age sobre m. Ela não é proporcional à alongação θ e sim a sin θ ,

$$F = -mg\sin\theta \tag{1}$$

Para que o movimento seja harmônico simples é necessário que a força restauradora seja proporcional ao deslocamento e dirigida no sentido oposto.

Podemos substituir $\sin\theta$ por θ , caso θ seja pequeno. Esta aproximação é válida para $\theta<\frac{\pi}{12}rad$ $(\theta<15^{o})$

Na Figura 1 podemos ver que: $\overline{AB} = \theta L$, ou $\theta = \frac{\overline{AB}}{L}$, logo,

$$F = -mg(\frac{\overline{AB}}{L}) \tag{2}$$

Assim, no caso de pequenas oscilações, a força restauradora é proporcional e de sentido oposto à elongação medida sobre o arco considerado retilíneo. Note que esta é, exatamente, a característica do movimento harmônico simples.

Como *m*, *g* e *L* são constantes, podemos expressá-las por

$$k = \frac{mg}{L} \tag{3}$$

Temos então:

$$F = -kx \tag{4}$$

Sabemos que o período *T*, de um movimento harmônico simples é dado por:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{5}$$

Substituindo o valor de k, Equação 3, na equação 5, temos:

$$T = 2\pi \sqrt{\frac{L}{g}} \tag{6}$$

que é a equação do período do pêndulo simples, para pequenas amplitudes. Vemos daí que o período de um pêndulo simples depende apenas do comprimento do pêndulo e do valor da aceleração da gravidade.

3.1 Determinação Experimental da Aceleração da Gravidade (g)

Elevando ao quadrado a Equação 6, vem:

$$T^2 = 4\pi^2 \frac{L}{g} \tag{7}$$

Depois de medir o comprimento L e o período T do pêndulo, podemos facilmente calcular o valor da acelaração da gravidade g. Basta isolar g na 6.

$$g = 4\pi^2 \frac{L}{T^2} \tag{8}$$

4 Procedimento Experimental

- 1. Anote as massas dos corpos m_1 e m_2 .
- 2. Ajuste o comprimento do pêndulo de modo que tenha 20*cm* de extensão do ponto de suspensão até o centro de massa do corpo.
- 3. Desloque o corpo da posição de equilíbrio (deslocamento angular igual a 15º) e determine o tempo necessário para o pêndulo executa dez oscilações completas. Para minimizar os erros, é recomendável que o operador do cronômetro seja o mesmo que larga o pêndulo para oscilar.

Obs.: O tempo de reação humano é de alguns décimos de segundo; Embora o cronômetro registre até centésimos de segundo, só faz sentido você anotar o tempo obtido manualmente até os décimos de segundo.

Repita o experimento três vezes e determine o período médio em segundos. Use somente a massa m_1 como indicado na Tabela 1 na página 3.

L(cm)	$\theta(graus)$	m(g)	10T(s)			T(s)	$T(s^2)$
$L_1 = 20$	$\theta_1 = 15$	$m_1 =$	$10T_1 =$	$10T_1 =$	$10T_1 =$	$T_1 =$	$T_1^2 =$
$L_2 = 40$	$\theta_1 = 15$	$m_1 =$	$10T_2 =$	$10T_2 =$	$10T_2 =$	$T_2 =$	$T_2^2 =$
$L_3 = 60$	$\theta_1 = 15$	$m_1 =$	$10T_3 =$	$10T_3 =$	$10T_3 =$	$T_3 =$	$T_3^2 =$
$L_4 = 80$	$\theta_1 = 15$	$m_1 =$	$10T_4 =$	$10T_4 =$	$10T_4 =$	$T_4 =$	$T_4^2 =$
$L_5 = 100$	$\theta_1 = 15$	$m_1 =$	$10T_5 =$	$10T_5 =$	$10T_5 =$	$T_5 =$	$T_5^2 =$
$L_6 = 120$	$\theta_1 = 15$	$m_1 =$	$10T_6 =$	$10T_6 =$	$10T_6 =$	$T_6 =$	$T_6^2 =$
$L_7 = 140$	$\theta_1 = 15$	$m_1 =$	$10T_7 =$	$10T_7 =$	$10T_7 =$	$T_7 =$	$T_7^2 =$

Tabela 1: Resultados experimentais para o pêndulo simples.

L(cm)	$\theta(graus)$	m(g)	10 <i>T</i> (<i>s</i>)			T(s)	$T(s^2)$
$L_7 = 140$	$\theta_1 = 15$	$m_1 =$	$10T_7 =$	$10T_7 =$	$10T_7 =$	$T_7 =$	$T_7^2 =$
$L_8 = 140$	$\theta_2 = 10$	$m_1 =$	$10T_8 =$	$10T_8 =$	$10T_8 =$	$T_8 =$	$T_8^2 =$
$L_9 = 140$	$\theta_1 = 15$	$m_2 =$	$10T_9 =$	$10T_9 =$	$10T_9 =$	T ₉ =	$T_9^2 =$
$L_10 = 140$	$\theta_2 = 10$	$m_2 =$	$10T_{10} =$	$10T_{10} =$	$10T_{10} =$	$T_{10} =$	$T_{10}^2 =$

Tabela 2: Resultados experimentais para o pêndulo simples.

- 4. Repita a experiência para os comprimentos 40cm, 60cm, 80cm, 100cm, 120cm e 140cm e complete a Tabela 1.
- 5. Mantenha o comprimento de 140*cm* e estude a influência da massa e da amplitude sobre o período. Proceda como indicado na Tabela 2.

5 Questionário

- 1. Dos resultados experimentais é possível concluir-se que os períodos independem das massas? Justifique.
- 2. Dos resultados experimentais o que se pode concluir sobre os períodos quando a amplitude passa de 10° para 15° ? Justifique.
- 3. Determine o valor de *g* a partir da Equação 8.
- 4. Qual o peso de um objeto de massa 9,00kg no local onde foi realizada a experiência?
- 5. Compare o valor médio de T obtido experimentalmente para L=140cm com o seu valor calculado pela Equação 5 (use $g=9,81m/s^2$). Comente.
- 6. Discuta as transformações de energia que ocorrem durante o período do pêndulo.
- 7. Chama-se *pêndulo que bate o segundo* aquele que passa por sua posição de equilíbrio, uma vez em cada segundo. Qual o período deste pêndulo?