

Projeto: Chatbot Gamificado sobre Pontos Históricos do Recife

Foco: Justificar escolhas de modelos, métodos e arquitetura

1) Por que treinar uma CNN do zero (ImprovedCNN) em vez de Transfer Learning?

- **Contexto do domínio**: As classes são locais históricos específicos do Recife (estilo visual, textura e composição próprios). Modelos pré-treinados (ImageNet) aprendem objetos genéricos (gatos, carros, etc.). Treinar do zero favorece features mais ajustadas ao domínio.
- **Simplicidade e controle**: Arquitetura enxuta, transparente e fácil de depurar. Útil para projeto educacional e para explicar cada estágio (Conv → Pool → Dense).
- **Dataset pequeno mas estável**: Embora o Transfer Learning fosse benéfico com poucos dados, a CNN simples alcançou boa performance (96%). O ganho adicional do TL não justificaria a complexidade neste estágio.
- **Custo computacional**: Arquitetura leve, treina rápido (~3 min), viável em máquinas comuns.

Conclusão: A CNN customizada equilibra aprendizagem específica do domínio, rapidez e clareza pedagógica.

2) Por que TF-IDF + Similaridade do Cosseno para o Modo Descrição?

 Linguagem em português: Solução robusta e leve para PT-BR sem depender de modelos grandes.

- **Transparência**: Fácil explicar ao usuário o que influencia o score (palavras-chave e termos relevantes).
- **Eficiência**: Baixo custo computacional; responde em tempo real.
- **Controle de critérios**: Combinação 60% similaridade semântica + 40% keywords conecta fluência textual com precisão factual.

Conclusão: TF-IDF + Cosseno fornece avaliação rápida, explicável e adequada ao contexto educacional.

3) Por que a métrica de similaridade visual baseada em "mesma classe + confiança"?

- **Objetivo do produto**: Não buscamos "similaridade estética" arbitrária, e sim se a foto é do mesmo local histórico.
- **Robustez prática**: Comparar classes previstas (e suas confianças) é estável com datasets pequenos, evitando ruído de métricas puramente pixel/feature space.
- **Sinal pedagógico**: A mensagem ao usuário fica clara ("mesmo local vs. diferente"), alinhando expectativa e pontuação.

Conclusão: A decisão centrada em classe+confiança alinha métrica técnica ao objetivo do jogo e ao tamanho do dataset.

4) Por que um sistema unificado de XP (sem moedas)?

- **Redução de complexidade cognitiva**: Um único indicador de progresso evita confusão e melhora UX.
- **Traço educacional**: O foco vira aprendizado e consistência, não economia de itens.

•	**Coerência**: Todas as ações (foto, descrição) convergem em XP e nível, simplificando feedback e metas.
Cor	nclusão: XP único torna a gamificação mais clara, motivadora e fácil de manter.
5)	Por que a fórmula de nível `level = int((XP/100) ** 0.5) + 1`?
•	**Progressão suavemente desacelerada**: Cresce rápido no início (engajamento) e estabiliza depois (retenção), sem exigir curvas complexas.
•	**Previsível e simples**: Fácil de explicar e de ajustar (constantes e expoente).
Cor	nclusão: Fórmula simples, estável e com curva de dificuldade intuitiva.
6)	Por que a arquitetura web com Flask + Templates estáticos?
•	**Rapidez de prototipação**: Flask é minimalista e perfeito para POCs e demos educacionais.
•	**Integração direta com PyTorch**: Chamadas síncronas simples, sem overhead de serviços separados.
•	**Baixa barreira de entrada**: HTML/CSS/JS vanilla facilitam manutenção e contribuições iniciais.
Cor	nclusão: Stack leve, coerente com os objetivos de ensino e prototipação.

7) Por que o pipeline de NLP simples (regex, stopwords, lemmatization)?

- **Resiliência em PT-BR**: Pipeline robusto sem dependência de modelos pesados.
- **Explicabilidade**: Fácil mostrar como o texto é limpo e analisado.
- **Custo/benefício**: Entrega valor rápido com custo mínimo de infraestrutura.

Conclusão: O pipeline cobre bem a necessidade de avaliar descrições curtas e objetivas.

8) Alternativas consideradas e por que não agora

- **Transfer Learning (ResNet/EfficientNet)**: Melhor base com poucos dados, porém aumenta dependência e complexidade; pode ser um próximo passo quando ampliarmos o dataset.
- **Embeddings semânticos (SBERT) para descrição**: Melhor semântica, mas custo maior (modelo pesado) e explicabilidade menor para usuários iniciantes.
- **Métricas visuais sofisticadas (LPIPS/CLIP-Similarity)**: Úteis para estética/conteúdo amplo; nosso objetivo é "mesmo local histórico", a abordagem por classe atende direto.
- **Stack SPA (React/Vue)**: Melhora UX sofisticada, porém aumenta complexidade do projeto sem necessidade imediata.

9) Critérios de qualidade que guiaram as escolhas

- Clareza e explicabilidade para o usuário final
- Baixa latência e baixo custo computacional
- Aderência ao objetivo pedagógico
- Simplicidade de manutenção e evolução
- Escalonamento gradual (rota para upgrades futuros)

10) Próximos passos recomendados

- Adotar Transfer Learning quando o dataset crescer
- Incluir embeddings semânticos leves para PT-BR (e.g., sentence-transformers-mini)
- Ampliar dataset com variação de ângulo/iluminação
- Criar testes automatizados de regressão de métricas

Em suma, as escolhas privilegiam simplicidade, explicabilidade e aderência ao objetivo educacional, garantindo um produto funcional, leve e com caminho claro para evoluções técnicas futuras.