Analysis of Alzheimer's Disease Detection using Supervised ML Algorithms

Group Members:

- MD. Tanvir Zahid 22366028
- SK. Mamunur Rashid 22366050
- MD. Asaduzzaman Sarker Anik 23166031

Student Tutor

MEHNAZ ARA FAZAL

Research Assistant

SANIA AZHMEE BHUIYAN

Introduction

AD is a severe disorder which affects gradually in the brain and cannot be undone. This is a deadly disease which affects our memory and social interaction ability which means it affects the cognitive function of our brain. World Health Organization reported that there about around 55 million patients who are diagnosed with AD [1]. Our goal is to minimize its effects at an early stage of the disease.

Literature Review

- → Shankle et al.[1]
- → Alvarez et al.[5]
- → Escudero et al.[4]
- → Hyunseokc[2]
- → Al-Shoukry et al.[3]
- → Eke et al.[6]

Dataset

- Dataset is taken from the famous Open Access Series of Imaging Studies (OASIS) website.
- Two dataset files contains some pre-determining factors such as MMSE, eTIV, ASF etc.
- We omit some unwanted features from our dataset such as OASIS_ID, MRI_ID etc.

FEATURE DESCRIPTION OF THE DATASET

Feature Name	Feature Description	
Gender	Gender of the individual	
Age	Age of the individual	
Educ	Years of education	
SES	Socioeconomic status	
MMSE	Mini-Mental State Examination (MMSE) score	
CDR	Clinical Dementia Rating (CDR)	
eTIV	Estimated total intracranial volume	
nWVB	normalized whole-brain volume	
ASF	Atlas Scaling Factor	

Fig. 1. Group Distribution in the data set

Fig. 2. Genderwise Group Distribution in the dataset

Fig. 3. Correlation heatmap

Proposed Methodology

- → Data Collection
- → Data Preprocessing
- → Feature Extraction
- → Data Normalization
- Splitting
- Model Training

Model Training

- Logistic Regression
- → XGBoost
- → Random Forest
- → KNN
- Gradient Boosting
- → Voting Classifier(Hard)

→ SVM

→ Voting Classifier(Soft)

AdaBoost

→ Gaussian NB

Result Analysis

- Random Forest has the highest results
- Bagging methods performed better than boosting algorithms
- Linear Classifiers performed less in this comparison
- Used LIME to find out why RF performed well.

Model	Recall (ND)	Recall (D)	Accuracy
Random Forest	100%	100%	100%
Logistic Regression	98%	90%	93%
KNN	96%	93%	90%
Gaussian NB	90%	93%	96%
SVM	100%	89%	91%
XGBoost	100%	96%	96%
AdaBoost	97%	99%	90%
Gradient Boosting	99%	95%	91%
Voting Classifier(Hard)	89%	99%	94%
Voting Classifier(Soft)	94%	92%	93%

Fig. 5. A Patient Correctly Classified as Nondemented

Fig. 6. A Patient Correctly Classified as Nondemented

Challenges

- → Nature of Data
- → Model Interpretability
- → Model Explainability
- → Model Integration
- **→** Ethical Considerations

Conclusion

ML algorithms are capable of analyzing large datasets to identify patterns and associations that can be used to predict AD risk and progression. However, the development and implementation of ML-based AD detection tools face several challenges and these challenges should be properly addressed

References

- Shankle, W. R., Mani, S., Pazzani, M. J., Smyth, P.(1997). Dementia Screening with Machine Learning Methods. In Springer eBooks (pp. 149–165). https://doi.org/10.1007/978-1-4615-6059-39.
- Hyunseokc. (2018). DETECTING EARLY ALZHEIMER'S. Kaggle. https://www.kaggle.com/code/hyunseokc/detecting-earlylzheimer-s.
- Al-Shoukry, Suhad, Taha H. Rassem, and Nasrin M. Makbol. "Alzheimer's diseases detection by using deep learning algorithms: a mini-review." IEEE Access 8 (2020): 77131-77141.
- 4. Escudero, J., Ifeachor, E., Zajicek, J. P., Green, C., Shearer, J., & Pearson, S. (2012). Machine learning-based method for personalized and cost-effective detection of Alzheimer's disease. IEEE transactions on biomedical engineering, 60(1), 164-168.
- Álvarez, I., Go írriz, J. M., Ram írez, J., Salas-Gonzalez, D., Lopez, M. A., Segovia, F., Puntonet, C. G., Prieto, B. (2009). Alzheimer's Diagnosis Using Eigenbrains and Support Vector Machines. In Springer eBooks (pp. 973–980). https://doi.org/10.1007/978-3-642-02478-8122.
- Eke, Chima S., et al. "Early Detection of Alzheimer's Disease with Blood Plasma Proteins Using Support Vector Machines." IEEE journal of biomedical and health informatics 25.1 (2020): 218-226