

Eye Movement Classification with K-Means Clustering

Gentry Atkinson

Introduction:

- Eye tracking depends on rapid and accurate classification of eye movements into fixations and saccades.
- Clustering techniques learn division within data based on some distance measure.
- K-Means is one of the oldest and most well established clustering algorithms.

K-Means:

- First developed in 1967
- Defines k "centroids" in a dataset.
- Iteratively assigns points to a centroid and then adjusts centroids to fit points.
- Running with k=2 is best suited to finding fixations and saccades.
- O(n) amongst friends.
- Provided by Matlab (and many other sources).
- Velocities were converted to absolute values.

K-Means Algorithm:

```
Given set of data points s = \{s_1, ..., s_n\}
Randomly initialize set c = \{c_1,...,c_k\} of k centroids
Initialize a set of results r = \{r_1, ..., r_n\} to zeros
Loop until c does not change:
 for i = 1 to n:
  min cluster = 0
  min distance = MAX FLOAT
  for j = 1 to k:
    calculate distance(s<sub>i</sub>, c<sub>i</sub>)
    if (distance < min distance):
     min cluster = j
     min distance = distance
  r_i = min cluster
 for i = 1 to k:
  calculate the centroid of each cluster i
  set c_i = to centroid i
```

Return sets c and r. R is the cluster for each point in s, and c is the centroid of each cluster.

I-VT vs. K-Means:

<u>I-VT</u>	<u>K-Means</u>	
Depends on predefined threshold.	Learns divisions from data.	
Only considers velocity.	Can scale to arbitrary dimensions.	
ailored to eye movement classification.	Can be applied to any data.	

Results I-VT:

Results K-Means:

Results Scoring:

	Saccade Quantitative	Fixation Quantitative	Fixation Qualitative
I-VT	94.8	66.67	0.31
K-Means	89.77	79.71	0.46

Table 2: Scoring of the two classification algorithms

Results Analysis:

- K-Means found "smoother" fixations.
- I-VT was 5% better on the saccade quantitative score and
 0.15 better on the fixation qualitative score.
- K-Means was 13% better on the fixation qualitative score.
- K-Means found one saccade that I-VT missed entirely.
- K-Means struggled at boundary points.

Conclusions:

- K-Means is viable for eye movement classification with refinements.
- I-VT depends on defined thresholds and so may not function on data collected from pathological subjects.
- K-Means can take arbitrary dimensions of input, so merely looking at velocity is limiting.
- Ground truth comparisons may not be the best metric for judging classification algorithms.

Future Work:

- Hierarchical clustering might allow the detection of more nuanced features.
- Density based clustering is very good at compensating for noise.
- A larger feature space could reasonably improve the performance of any clustering algorithm.
- Measures of cluster validity might provide insight into the fitted-ness of an eye movement classification.

Questions or Comments?

