Exercices aux représentations du groupe symétrique A faire comme préparation

Exercice 1: Soit \mathfrak{S}_n le groupe des permutations sur n éléments. Lis l'article sur la décomposition des permutations en cycles sur http://fr.wikipedia.org/wiki/Permutation#D.C3.A9composition_en_produit_de_cycles_.C3.A0_supports_disjoints.

- a) Liste les éléments de \mathfrak{S}_3 et \mathfrak{S}_4 en termes de décompositions en cycles.
- b) Soit $\pi \in S_n$. Nous définissons $\chi(\pi)$ comme trace de la matrice de permutation associée à π . Liste $\chi(\pi)$ pour $\pi \in \mathfrak{S}_3$ et $\pi \in \mathfrak{S}_4$. Comment déterminer $\chi(\pi)$, si la décomposition en cycles est connue?
- c) Comment énumérer les classes de conjugaison de \mathfrak{S}_n ?

Exercice 2 : Soit G un groupe et V un espace vectoriel complexe. Une réprésentation de G est un homomorphisme : $G \to \operatorname{Aut}(V)$. Le caractère d'une représentation $\chi_V : G \to \mathbb{C}$ est défini comme trace de la matrice correspondante.

- a) Vérifie que la valeur de $\chi_V(g)$ ne depend que de la classe de conjugaison de g.
- b) Lis http://fr.wikipedia.org/wiki/Signature_d'une_permutation. Verifie que $\operatorname{sgn}: \mathfrak{S}_n \to \mathbb{C}^*$ est une représentation.

Exercice 3 : Foncteurs de Schur. Soit V un espace vectoriel complexe de dimension n. On a une représentation de \mathfrak{S}_2 sur $V \otimes V$ qui échange les deux facteurs.

- a) Considère $V \otimes V$ comme espace des matrices quadratiques. Vérifie que $V \otimes V$ est isomorphe à $\operatorname{Sym}^2 V \oplus \Lambda^2 V$. Ça donne deux sous-représentations de \mathfrak{S}_2 . Peux-tu les décrire?
- b) On a une représentation de \mathfrak{S}_3 sur $V \otimes V \otimes V$ qui échange les deux facteurs. Démontre qu'il existe une décomposition de $V \otimes V \otimes V$ comme $\operatorname{Sym}^3 V \oplus \Lambda^3 V \oplus S$. Quelle est la dimension de S?