

Mosaic

Салма планирует нарисовать глиняную мозаику на стене. Мозаика это таблица $N \times N$, состоящая из N^2 изначально бесцветных квадратных клеток 1×1 . Строки мозаики пронумерованы сверху вниз от 0 до N-1, столбцы пронумерованы слева направо от 0 до N-1. Клетка в строке i и столбце j ($0 \le i < N$, $0 \le j < N$) обозначается как (i,j). Каждая клетка должна быть покрашена либо в белый (обозначим за 0) либо в черный (обозначим за 1) цвет.

Для того чтобы раскрасить мозаику, Салма сначала выбирает два массива X и Y длины N, каждый состоящий из 0 и 1, такие что X[0]=Y[0]. Она красит клетки самой верхней строки (строки 0) в соответствии с массивом X, так что цвет клетки (0,j) это X[j] ($0 \le j < N$). Она также красит клетки самого левого столбца (столбец 0) в соответствии с массивом Y, так что цвет клетки (i,0) это Y[i] ($0 \le i < N$).

Она повторяет следующие шаги, до тех пор пока все клетки не будут покрашены:

- Она находит любую *непокрашенную* клетку (i,j), такую что ее верхний сосед (клетка (i-1,j)) и левый сосед (клетка (i,j-1)) оба *уже покрашены*
- Затем она красит клетку (i,j) в черный, если оба соседа белые; иначе она красит клетку (i,j) в белый.

Можно показать, что итоговая раскраска клеток не зависит от порядка, в котором Салма будет их красить.

Ясмин очень интересуется цветами клеток в мозаике. Он задал Салме Q запросов, пронумерованных от 0 до Q-1. В запросе k ($0 \le k < Q$) Ясмин задает подпрямоугольник мозаики с помощью:

- ullet его самой верхней строки T[k] и его самой нижней строки B[k] ($0 \leq T[k] \leq B[k] < N$),
- ullet его самого левого столбца L[k] и его самого правого столбца R[k] ($0 \leq L[k] \leq R[k] < N$).

Ответом на запрос является количество черных клеток в подпрямоугольнике. Формально Салма должна найти сколько клеток (i,j) существует, таких что $T[k] \leq i \leq B[k]$, $L[k] \leq j \leq R[k]$ и клетка (i,j) раскрашена в черный.

Напишите программу, которая ответит на запросы Ясмина.

Implementation Details

Вы должны реализовать следующую функцию:

```
std::vector<long long> mosaic(
    std::vector<int> X, std::vector<int> Y,
    std::vector<int> T, std::vector<int> B,
    std::vector<int> L, std::vector<int> R)
```

- X,Y: массивы длины N, описывающие цвета клеток в самой верхней строке и в самом левом столбце, соответственно.
- T, B, L, R: массивы длины Q, описывающие запросы, заданные Ясмином.
- ullet Функция должна вернуть массив C длины Q, такой что C[k] равно ответу на запрос k ($0 \le k < Q$).
- Эта функция будет вызвана ровно один раз для каждого теста.

Constraints

- $1 \le N \le 200\,000$
- 1 < Q < 200000
- ullet $X[i] \in \{0,1\}$ и $Y[i] \in \{0,1\}$ для всех i таких что $0 \leq i < N$
- X[0] = Y[0]
- ullet $0 \leq T[k] \leq B[k] < N$ и $0 \leq L[k] \leq R[k] < N$ для всех k таких что $0 \leq k < Q$

Subtasks

Подзадача	Балл	Дополнительные ограничения
1	5	$N \leq 2; Q \leq 10$
2	7	$N \leq 200; Q \leq 200$
3	7	$T[k] = B[k] = 0$ (для всех k таких что $0 \leq k < Q$)
4	10	$N \leq 5000$
5	8	$X[i] = Y[i] = 0$ (для всех i таких что $0 \leq i < N$)
6	22	$T[k] = B[k]$ и $L[k] = R[k]$ (для всех k таких что $0 \leq k < Q$)
7	19	$T[k] = B[k]$ (для всех k таких что $0 \leq k < Q$)
8	22	Нет дополнительных ограничений.

Example

Рассмотрим следующий вызов.

```
mosaic([1, 0, 1, 0], [1, 1, 0, 1], [0, 2], [3, 3], [0, 0], [3, 2])
```

Этот пример нарисован снизу. Слева нарисованы цвета клеток в мозаике. На центральной и правой картинках выделены подпрямоугольники, про которые Ясмин спросил в первом и втором запросах, соответственно.

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

Ответы на запросы (то есть, количества единиц в выделенных подпрямоугольниках) это 7 и 3, соответственно. Таким образом, функция должна вернуть [7,3].

Sample Grader

Input format:

```
N
X[0] X[1] ... X[N-1]
Y[0] Y[1] ... Y[N-1]
Q
T[0] B[0] L[0] R[0]
T[1] B[1] L[1] R[1]
...
T[Q-1] B[Q-1] L[Q-1] R[Q-1]
```

Output format:

```
C[0]
C[1]
...
C[S-1]
```

Здесь S это длина массива C, который вернула функция mosaic.