Judul	PRAKTEK 14-HISTOGRAM OF GRADIENT (HOG)
	Proses feature descriptor dapat menggunakan beberapa metode salah satunya
	adalah Histogram of Gradient (HOG) yang melakukan proses ekstraksi fitur
Deskripsi	berdasarkan tepi dan arah orientasi.
Estimasi waktu	15 menit
	Minimal 5 image berwarna
	Minimal 5 image pejalan kaki
	Pada percobaan ini kita akan menggunakan library scikit learn yang memiliki
	turunan khusus untuk citra adalah skimage. DI dalam skimage sudah ada
	fungsi untuk proses hog.
	Dalam skimage sudah ada image collection salahsatunya image astronaut,
Prerequisite	sehingga kita akan memanfaatkan data image dari library skimage tersebut.
rerequisite	import matplotlib.pyplot as plt
	from akimaga faatura import hag
	<pre>from skimage.feature import hog from skimage import data, exposure</pre>
Listing Program	<pre>image = data.astronaut()</pre>
	fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),
	<pre>cells_per_block=(1, 1), visualize=True, multichannel=True)</pre>
	<pre>fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)</pre>
	<pre>ax1.axis('off') ax1.imshow(image, cmap=plt.cm.gray) ax1.set_title('Input image')</pre>
	<pre># Rescale histogram for better display hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10))</pre>
	<pre>ax2.axis('off') ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray) ax2.set_title('Histogram of Oriented Gradients') plt.show()</pre>

import cv2
import imutils

hog=cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
img=cv2.imread("pedestrian_2.jpg")

Program HOG mendeteksi pejalan kaki

Result

Judul	PRAKTEK 15-HAAR CASCADE-FACE AND EYE DETECTION
Deskripsi	Pada praktek ini kita akan melakukan proses deteksi wajah dan mata menggunakan library Haar cascade
Estimasi waktu	15 menit
Prerequisite	Minimal 5 image wajah berwarna
Listing Program	<pre>import cv2 face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') image = cv2.imread('Trump.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale(gray, 1.3, 5) if faces is (): print("No faces found") for (x, y, w, h) in faces: cv2.rectangle(image, (x, y), (x + w, y + h), (127, 0, 255), 2) cv2.imshow('Face Detection', image) cv2.waitKey(0) cv2.destroyAllWindows()</pre>

* Face Detection

Judul PRAKTEK 16-HAAR CASCADE-PEDESTRIAN DETECTION Pada praktek ini kita akan melakukan proses deteksi manusia atau pejalan kaki Deskripsi secara real time menggunakan library Haar cascade Estimasi waktu 15 menit **Prerequisite** Video pejalan kaki import cv2 # Create our body classifier body classifier = cv2.CascadeClassifier('haarcascade fullbody.xml') # Initiate video capture for video file cap = cv2.VideoCapture('walking.avi') # Loop once video is successfully loaded while cap.isOpened(): # Read first frame ret, frame = cap.read() frame = cv2.resize(frame, None, fx=0.5, fy=0.5, interpolation=cv2.INTER LINEAR) **Listing Program** gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY) # Pass frame to our body classifier bodies = body classifier.detectMultiScale(gray, 1.2, 3) # Extract bounding boxes for any bodies identified for (x, y, w, h) in bodies: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), (2)cv2.imshow('Pedestrians', frame) if cv2.waitKey(1) == 13: # 13 is the Enter Key break cap.release() cv2.destroyAllWindows()

Pedestrians

Judul PRAKTEK 17-CIRCLE HOUGH TRANSFORM Pada praktek ini kita akan melakukan proses analisi bentuk khusus deteksi Deskripsi objek yang berbentuk lingkaran menggunakan Cicrle Hough Transform Estimasi waktu 15 menit **Prerequisite** 5 Image terutama yang terdapat objek lingkaran import cv2 import numpy as np img = cv2.imread('houghcircles2.jpg',0) img = cv2.medianBlur(img, 5) cimg = cv2.cvtColor(img,cv2.COLOR GRAY2BGR) circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,20, param1=50, param2=50, minRadius=5, maxRadius=0) circles = np.uint16(np.around(circles)) **Listing Program** for i in circles[0,:]: # draw the outer circle cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)# draw the center of the circle cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)cv2.imshow('detected circles',cimg) cv2.waitKey(0) cv2.destroyAllWindows()

