

Ar

Amadores

Série Mundo da Matemática

Audiovisual 09

Coordenação Geral

Elizabete dos Santos

Autores

Bárbara Nivalda Palharini Alvim Souza Karina Alessandra Pessôa da Silva Lourdes Maria Werle de Almeida Luciana Gastaldi Sardinha Souza Márcia Cristina de Costa Trindade Cyrino Rodolfo Eduardo Vertuan

Revisão Textual

Elizabeth Sanfelice

Coordenação de Produção

Eziquiel Menta

Projeto Gráfico

Juliana Gomes de Souza Dias

Diagramação e Capa

Aline Sentone Juliana Gomes de Souza Dias

Realização

Multimeios Secretaria de Estado da Educação do Paraná

DISTRIBUIÇÃO GRATUITA IMPRESSO NO BRASIL

AUDIOVISUAL "MUNDO DA MATEMÁTICA"

Episódio 9: AMADORES

1 Introdução

No audiovisual "Amadores", episódio 9 do programa "O Mundo da Matemática", Rafa arma um encontro numa pista de esportes para apresentar Gaia e Julinho, mas não sem interesse. Gaia está tentando aprender lançamento de dardos. Rafael precisa, para um trabalho do colégio, estabelecer relações entre as razões trigonométricas do triângulo retângulo e o trajeto percorrido por um dardo.

1.1 Trigonometria do triângulo retângulo

Os gregos determinaram a medida do raio de terra por um processo muito simples. Seria impossível medir a distância da Terra à Lua, porém com a trigonometria, isso se torna simples. Um engenheiro precisa saber a largura de um rio para construir uma ponte, o trabalho dele é mais fácil quando ele usa os recursos trigonométricos. Um cartógrafo (desenhista de mapas) precisa saber a altura de uma montanha, o comprimento de um rio, etc. Sem a trigonometria ele demoraria anos para desenhar um mapa, com a trigonometria do triângulo retângulo esses cálculos são feitos num prazo muito menor.

1.1.1 Triângulo retângulo

Triângulo retângulo é aquele que possui um ângulo reto, ou seja, de 90°.

O lado oposto ao ângulo reto chama-se hipotenusa, que corresponde ao maior lado do triângulo. Os outros dois lados são chamados catetos.

No triângulo ABC representado acima:

- \overline{BC} é a hipotenusa;
- AB e AC são os catetos.

1.1.2 Trigonometria

Trigonometria é o ramo da geometria que estuda os métodos para calcular a medida dos lados e dos ângulos de um triângulo qualquer. Aplicável em várias áreas como engenharia, astronomia, geografia, música e topografia, a trigonometria é fundamental na prática de profissionais dessas áreas.

As relações trigonométricas no triângulo retângulo são dadas pelas medidas dos lados e dos ângulos internos de um triângulo retângulo.

Considere o triângulo ABC da figura com = 90° (reto), e seus ângulos agudos lpha e eta .

É importante saber que:

- Em relação ao ângulo lpha , temos:
 - c é o cateto oposto;
 - **b** é o cateto adjacente.
- ullet Em relação ao ângulo eta , temos:
 - b é o cateto oposto;
 - c é o cateto adjacente.

Seno, cosseno e tangente de um ângulo agudo

Seja α a medida de um ângulo agudo do triângulo acima, temos:

a) Seno do ângulo α (sen α): é a razão entre a medida do cateto oposto a e a medida da hipotenusa, ou seja:

$$sen\alpha = \frac{c}{a}$$

b) Cosseno do ângulo α (cos α): é a razão entre a medida do cateto adjacente a e a medida da hipotenusa, isto é:

$$\cos \alpha = \frac{b}{a}$$

c) Tangente do ângulo α (tg α): é a razão entre a medida do cateto oposto a e a medida do cateto adjacente a, isto é:

$$tg\alpha = \frac{c}{b}$$

Com relação ao ângulo eta , podemos estabelecer as seguintes razões:

$$sen\beta = \frac{b}{a}\cos\beta = \frac{c}{a}tg\beta = \frac{b}{c}$$

Razões Trigonométricas Especiais

Razão/ângulo	30°	60°	90°
Seno	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
Cosseno	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
Tangente	$\frac{\sqrt{3}}{3}$	1	$\frac{\sqrt{3}}{3}$

1.2 Lançamento de dardo

O lançamento do dardo também chamado lançamento de dardo ou arremesso de dardo, faz parte da modalidade de jogos conhecida como atletismo e é praticado por homens e mulheres.

O atletismo é um conjunto de desportos constituído por três modalidades: corrida, arremesso e lançamentos e saltos. De modo geral, o atletismo é praticado em ambientes fechados, com exceção de algumas corridas de longa distância, praticadas em vias públicas ou no campo (cross country).

Disponível em: <www.arikah.net/enciclopedia-portuguese/Atletismo>. Acesso em: 15/6/2008.

A pista de lançamento de dardo tem 34,9 metros de comprimento e 4 metros de largura. O dardo é um objeto com forma de lança, feito de metal, fibra de vidro ou fibra de carbono. O tamanho e a massa dos dardos variam:

- homem: dardo de 2,7 metros de comprimento e 800 gramas de massa;
- mulher: dardo de 2,3 metros de conprimento e 600 gramas de massa.

O atleta precisa correr para tomar impulso.

No momento de lançar o dardo, o atleta faz um giro rápido com o corpo e o dardo deve ser arremessado com uma angulação entre 30 e 45 graus do solo. Geralmente, o dardo é solto com uma velocidade de 100 km/h.

Após o lançamento, o dardo aterrissa num local que geralmente ocupa a zona central dos estádios de atletismo. A marca obtida pelo atleta é medida pelos oficiais, desde a marca de lançamento até ao primeiro ponto onde o dardo tocou no chão. O atleta é desclassificado se o dardo tocar o solo sem ser pela ponta ou se ele sair de sua posição de lançamento antes de serem realizadas as medidas.

As competições de lançamento de dardo iniciam-se com três rondas de lançamentos para cada atleta. Após esta fase, os oito melhores resultados são apurados e realizam-se mais três lançamentos. O vencedor é aquele que obtiver a maior distância num lançamento legítimo.

2 Objetivos

- Estabelecer a relação entre matemática e esportes.
- Estabelecer relações entre as razões trigonométricas do triângulo retângulo e o trajeto percorrido por um dardo.
- Utilizar as razões trigonométricas especiais.
- Estabelecer relações entre matemática e física.
- Encontrar uma função que descreve um movimento a partir de um conjunto de pontos.

3 Sugestão de atividade

Após assistir ao vídeo o professor pode propor atividades que permitam aos alunos refletir, questionar e aprofundar seus conhecimentos sobre os conteúdos abordados. A seguir apresentamos algumas sugestões.

Atividade 1

Analisar o trajeto percorrido por um dardo, considerando que este é lançado da origem com uma velocidade inicial V_0 , formando um ângulo α com sentido positivo no eixo dos x.

Comentários para o professor:

A imagem abaixo apresenta o trajeto percorrido por um dardo, lançado por um esportista sobre o solo.

Inicialmente considera-se que o lançamento do dardo é feito a partir da origem de um sistema cartesiano ortogonal e a resistência do ar é ignorada.

No instante em que é lançado, o dardo parte da origem com uma velocidade inicial $V_{\rm 0}$, formando um ângulo lpha com sentido positivo no eixo dos x.

Para a análise do lançamento de um dardo é preciso decompor a velocidade inicial $\,V_0\,$ em duas componentes:

- componente da velocidade no eixo $\chi:V_{ox}$;
- componente da velocidade no eixo $\mathcal{Y}:V_{ov}$.

Sabendo que
$$\cos \alpha = \frac{V_{ox}}{V_o}$$
, temos que $V_{ox} = V_o.\cos a$
Do mesmo modo, $sen\alpha = \frac{V_{oy}}{V_o}$ e temos $V_{oy} = V_o.sena$

Nesse caso, estamos considerando apenas a força exercida pela aceleração da gravidade (g) sobre o dardo e desconsiderando os efeitos da resistência do ar e de outros fenômenos.

O movimento oblíquo resulta, então, da composição de dois movimentos: horizontal e vertical.

No movimento horizontal temos:

$$S = S_O + V t \Rightarrow x = 0 + (V_O \cdot \cos \alpha) t \Rightarrow x = V_{OX} t$$

No movimento vertical temos que considerar a aceleração da gravidade (-g):

$$V = V_O + at \Rightarrow V_Y = (V_O.sen\alpha) + (-g)t \Rightarrow V_Y = (V_O.sen\alpha) - gt$$

Considerando a equação do movimento uniformemente variado:

$$S = S_o + V_o t + \frac{at^2}{2}$$

temos

$$y = y_o + V_{or}t - \frac{gt^2}{2} \Rightarrow y = 0 + V_{or}t - \frac{gt^2}{2} \Rightarrow y = V_{or}t - \frac{1}{2}.gt^2$$

A curva descrita pelo dardo é dada pelo gráfico formado pelos pontos de coordenadas (x,y), dependentes de t, em que t é o tempo correspondente em cada instante.

Assim, se considerarmos o tempo inicial t=0, temos os pontos (0,0), ou seja, $x = V_{ox}.0 \Rightarrow x = 0$ e $y = V_{oy}.0 - \frac{1}{2}.g.0^2 \Rightarrow y = 0$.

Atividade 2

Determinar uma expressão matemática que descreva o trajeto percorrido por um dardo arremessado com uma angulação de 30 graus do solo e velocidade de 100 km/h

Comentários para o professor:

Considerando que $V_{ox} = V_o \cdot \cos a$ e que $V_{oy} = V_o \cdot sena$, podemos calcular a velocidade inicial com a qual o dardo é lançado a partir de $\alpha = 30^{\circ}$. Assim,

• t=0

$$\begin{split} V_{OX} = V_O.\cos\alpha &\Rightarrow V_{OX} = 100.\cos30 \Rightarrow V_{OX} = 100.\frac{1}{2} \Rightarrow V_{OX} = 50 km/h \Rightarrow V_{OX} = 13,9 m/s \\ V_{OY} = V_O.sen\alpha &\Rightarrow V_{OY} = 100.sen30 \Rightarrow V_{OY} = 100.\frac{\sqrt{3}}{2} \Rightarrow V_{OY} = 50.\sqrt{3} \Rightarrow V_{OY} \cong 86,6 km/h \\ &\Rightarrow V_{OY} = 24 m/s \end{split}$$

Sendo $V_{ox} = 13.9 m/s$ e $V_{oy} = 24 m/s$, é possível determinar os pares ordenados que representam a localização do dardo em cada instante de tempo. Para isso, calcula-se:

• Para t=1s

$$x = V_{OX} t \Rightarrow x = 13,9.1 \Rightarrow x = 13,9$$

$$y = V_{OY}t - \frac{1}{2}.gt^2 \Rightarrow y = 24.1 - \frac{1}{2}.10.1^2 \Rightarrow y = 24 - 5 \Rightarrow y = 19$$

• Para t=2s

$$x = V_{OX} t \Rightarrow x = 13,9.2 \Rightarrow x = 27,8$$

 $y = V_{OY} t - \frac{1}{2} \cdot g t^2 \Rightarrow y = 24.2 - \frac{1}{2} \cdot 10.2^2 \Rightarrow y = 48 - 20 \Rightarrow y = 28$

• Para t=3s

$$x = V_{OX} t \Rightarrow x = 13,9.3 \Rightarrow x = 41,7$$

$$y = V_{OY} t - \frac{1}{2} \cdot g t^2 \Rightarrow y = 24.3 - \frac{1}{2} \cdot 10.3^2 \Rightarrow y = 72 - 45 \Rightarrow y = 27$$

• Para t=4s

$$x = V_{OX} t \Rightarrow x = 13,9.4 \Rightarrow x = 55,6$$

•
$$V = V_{or} t - \frac{1}{5} \cdot g t^2 \Rightarrow y = 24.4 - \frac{1}{2} \cdot 10.4^2 \Rightarrow y = 96 - 80 \Rightarrow y = 16$$

$$x = V_{OX} t \Rightarrow x = 13,9.5 \Rightarrow x = 69,5$$

 $y = V_{OY} t - \frac{1}{2} \cdot g t^2 \Rightarrow y = 24.5 - \frac{1}{2} \cdot 10.5^2 \Rightarrow y = 120 - 125 \Rightarrow y = -5$

Apresentando os pares ordenados em forma de tabela:

Tempo (em segundos)	Ponto em que se encon- tra o dardo no eixo-x	Ponto em que se encon- tra o dardo no eixo-y
1	13,9	19
2	27,8	28
3	41,7	27
4	55,6	16
5	69,5	-5

A partir dos valores obtidos, o professor pode fazer algumas análises com os alunos:

- velocidade horizontal sempre aumenta e a vertical aumenta e depois diminui. Isso significa o dardo sobe até o máximo e depois volta, aponta para o chão.
- o valor negativo obtido para t=5s mostra que o dardo atingiu o solo. Com os dados apresentados pode-se construir um gráfico.

Cuja função

$$f(x) = -0.026x^2 + 1.72x + 0.14$$

é:

Atividade 3

Determinar uma expressão matemática que descreve o trajeto percorrido por um dardo arremessado com uma angulação de 45 graus do solo e com uma velocidade de 100 km/h.

Comentários para o professor:

Considerando que $V_{ox} = V_o.\cos a$ e que $V_{oy} = V_o.sena$, podemos calcular a velocidade inicial com a qual o dardo é lançado a partir de $\alpha = 45^{\circ}$. Assim,

• t=0

$$\begin{split} V_{OX} &= V_O.\cos\alpha \Rightarrow V_{OX} = 100.\cos45 \Rightarrow V_{OX} = 100.\frac{\sqrt{2}}{2} \Rightarrow V_{OX} \cong 70,7 \\ km/h \Rightarrow V_{OX} = 19,6 \\ m/s \end{split}$$

$$V_{OY} &= V_O.\sin\alpha \Rightarrow V_{OY} = 100.sen45 \Rightarrow V_{OY} = 100.\frac{\sqrt{2}}{2} \Rightarrow V_{OY} \cong 70,7 \\ km/h \Rightarrow V_{OY} = 19,6 \\ m/s \end{split}$$

Sendo $V_{OX} = 19.6m/s$ e $V_{OY} = 19.6m/s$, é possível determinar os pares ordenados que representam a localização do dardo em cada instante de tempo. Para isso, calcula-se:

$$x = V_{OX} t \Rightarrow x = 19,6.1 \Rightarrow x = 19,6$$

$$y = V_{OY}t - \frac{1}{2}.gt^2 \Rightarrow y = 19.6.1 - \frac{1}{2}.10.1^2 \Rightarrow y = 19.6 - 5 \Rightarrow y = 14.6$$

• Para t=2s

$$x = V_{OX} t \Rightarrow x = 19,6.2 \Rightarrow x = 39,2$$

$$y = V_{OY} \cdot t - \frac{1}{2} \cdot g \cdot t^2 \Rightarrow y = 19,6.2 - \frac{1}{2} \cdot 10.2^2 \Rightarrow y = 39,2 - 20 \Rightarrow y = 19,2$$

Para t=3s

$$x = V_{OX} t \Rightarrow x = 19,6.3 \Rightarrow x = 58,8$$

$$y = V_{OY}t - \frac{1}{2}.gt^2 \Rightarrow y = 19.6.3 - \frac{1}{2}.10.3^2 \Rightarrow y = 58.8 - 45 \Rightarrow y = 13.8$$

• Para t=4s

$$x = V_{OX} t \Rightarrow x = 19,6.4 \Rightarrow x = 78,4$$

$$y = V_{OY} t - \frac{1}{2} \cdot g t^2 \Rightarrow y = 19,6.4 - \frac{1}{2} \cdot 10.4^2 \Rightarrow y = 78,4 - 80 \Rightarrow y = -1,6$$

Apresentando os pares ordenados em forma de tabela:

Tempo (em segundos)	Velocidade horizontal (V_{ox} em m/s)	Velocidade vertical (V_{oy} em m/s)
0	19,6	19,6
1	19,6	14,6
2	39,2	13,8
4	78,4	-1,6

A partir dos valores obtidos, o professor pode fazer algumas análises com os alunos:

- velocidade horizontal sempre aumenta e a vertical aumenta e depois diminui. Isso significa o dardo sobe até o máximo e depois volta, aponta para o chão.
- o valor negativo obtido para t=4s mostra que o dardo atingiu o solo.
 Com os dados apresentados pode-se construir um gráfico.

Cuja função é:

$$f(x) = -0.013x^2 + x$$

4 Avaliação

A avaliação pode ser realizada durante todo o desenvolvimento das atividades, por meio de questionamentos. O professor pode aproveitar as respostas dos alunos para fazer as intervenções que julgar necessárias.

Condigital

Ministério da Ciência e Tecnologia Ministério da Educação

Realização:

