STAT 472 HW 2

Wulf, Han, Chunwei, Sean March 14, 2019 ~ Pie Day

S1

Switcher and Persister Groups (Table S1)

			·		
Switcher Group	Number of Students	Beginning of Term	End of Term; Reflect	End of Term	Follow Up
1	160	Yes			No
2	118	Maybe			No
3	15	NA	Yes		No
4	3	NA	Maybe		No
5	38	Yes	Yes	Maybe	NA
6	123	Yes		No	NA
7	17	Maybe	Yes	Maybe	NA
8	152	Maybe		No	NA
9	34	NA	Yes	Maybe	NA
10	78	NA	Yes	No	NA
11	65	NA	Maybe	No	NA
-					
Persister	Number of	Beginning of	End of Term;	End of	Follow

Persister Group	Number of Students	Beginning of Term	End of Term; Reflect	End of Term	Follow Up
12	586	Yes			Yes
13	63	Maybe			Yes
14	67	NA	Yes		Yes
15	2	NA	Maybe		Yes
16	1543	Yes		Yes	NA
17	35	Yes	Maybe	Maybe	NA
18	5	Yes	No	Maybe	NA
19	1	Yes	NA	Maybe	NA
20	193	Maybe		Yes	NA
21	64	Maybe	Maybe	Maybe	NA
22	22	Maybe	No	Maybe	NA
23	3	Maybe	NA	Maybe	NA
24	1325	NA	Yes	Yes	NA
25	53	NA	Maybe	Yes	NA
26	103	NA	Maybe	Maybe	NA

S5 Table

Percentage of students that switched out of calculus by career choice and gender.

Career Choice	Gender	N	Switcher %
STEM	Male	263	10.6
	Female	223	16.1
Engineering	Male	539	3.5
	Female	249	6.4
Pre-Med	Male	199	21.6
	Female	318	33.3
Non-STEM	Male	136	36.8
	Female	126	38.1
Undecided	Male	99	26.3
	Female	114	28.1

S6 Table

Percentage of students that switched out of calculus by previous calculus experience and gender.

Previous Calculus	Gender	N	Switcher %
High School	Male	740	13
	Female	699	21.7
College	Male	99	17.2
	Female	62	14.5
None	Male	397	13.4
	Female	269	28.6

S7 Table

Percentage of students that switched out of calculus by standardized mathematics test percentile and gender.

Test Percentile	Gender	N	Switcher %	Test Percentile	Gender	N	Switcher %
90 - 100	Male	707	12.4	40 - 49	Male	20	26.7
	Female	523	22.6		Female	30	10
80 - 89	Male	250	14.8	30 - 39	Male	10	33.3
	Female	220	22.3		Female	6	0
70 - 79	Male	165	12.7	20 - 29	Male	3	0
	Female	157	25.5		Female	2	50
60 - 69	Male	50	18.3	10 - 19	Male	2	50
	Female	60	23.1		Female	2	0
50 - 59	Male	26	27.6	0 - 9	Male	3	100
	Female	29	20		Female	1	12.4

S8 Table

Percentage of students that switched out of calculus by aggregate measures of instruction perception and gender.

Instructor Quality Rating	Gender N	Switcher %	Student-Centered Instruction Response	Gender N	Switcher %
[5.5, 6]	Male 165	9.1	[5.5, 6]	Male 17	17.6
[/-]	Female 152	16.4	[/ -]	Female 21	38.1
[4.5, 5.5)	Male 613	12.2	[4.5, 5.5)	Male 155	12.3
, ,	Female 464	20.3		Female 124	25
[3.5, 4.5)	Male 323	13.6	[3.5, 4.5)	Male 363	12.1
,	Female 281	25.3		Female 282	22
[2.5, 3.5)	Male 95	24.2	[2.5, 3.5)	Male 393	16.3
,	Female 89	29.2		Female 296	23.6
[1.5, 2.5)	Male 33	24.2	[1.5, 2.5)	Male 252	11.1
,	Female 37	48.6		Female 257	23
[1, 1.5)	Male 7	14.3	[1, 1.5)	Male 56	14.3
	Female 7	57.1		Female 50	16

The Code

```
setwd('C:/Data') # Change these as needed
dataSet <- read.csv('CalcData.csv')</pre>
## Creating the switch or persist column & adding it to the df
switchPersist <- rep(NA,length(dataSet[,1]))</pre>
dataSet <- cbind(dataSet,switchPersist)</pre>
## Based on S1 table, the conditions for groups 1-11
dataSet$switchPersist[dataSet$Q26 == 1 & dataSet$Q3FUS_No == "No"
 & dataSet$Q3FUS_Yes == " "] = 1
dataSet$switchPersist[dataSet$Q26 == 3 & dataSet$Q3FUS No == "No"
 & dataSet$Q3FUS_Yes == " "] = 2
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 1
 & dataSet$Q3FUS_No == "No" & dataSet$Q3FUS_Yes == " "] = 3
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 3
 & dataSet$Q3FUS No == "No" & dataSet$Q3FUS Yes == " "] = 4
dataSet$switchPersist[dataSet$Q26 == 1 & dataSet$Q5Post == 1
 & dataSet$Q3Post == 3 & dataSet$Q3FUS_No == " " & dataSet$Q3FUS_Yes == " "] = 5
dataSet$switchPersist[dataSet$Q26 == 1 & dataSet$Q3Post == 2
 & dataSet$Q3FUS_No == " " & dataSet$Q3FUS_Yes == " "] = 6
dataSet$switchPersist[dataSet$Q26 == 3 & dataSet$Q5Post == 1
 & dataSet$Q3Post == 3 & dataSet$Q3FUS No == " " & dataSet$Q3FUS Yes == " "] = 7
dataSet$switchPersist[dataSet$Q26 == 3 & dataSet$Q3Post == 2
 & dataSet$Q3FUS_No == " " & dataSet$Q3FUS_Yes == " "] = 8
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 1
 & dataSet$Q3Post == 3 & dataSet$Q3FUS_No == " " & dataSet$Q3FUS_Yes == " "] = 9
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 1
 & dataSet$Q3Post == 2 & dataSet$Q3FUS No == " " & dataSet$Q3FUS Yes == " "] = 10
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 3
 & dataSet$Q3Post == 2 & dataSet$Q3FUS_No == " " & dataSet$Q3FUS_Yes == " "] = 11
## Based on S1 table, the conditions for groups 12-21
dataSet$switchPersist[dataSet$Q26 == 1 & dataSet$Q3FUS_Yes == "Yes"
& dataSet$Q3FUS_No == " "] = 12
dataSet$switchPersist[dataSet$Q26 == 3 & dataSet$Q3FUS_Yes == "Yes"
 & dataSet$Q3FUS_No == " "] = 13
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 1
 & dataSet$Q3FUS Yes == "Yes" & dataSet$Q3FUS No == " "] = 14
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 3
 & dataSet$Q3FUS Yes == "Yes" & dataSet$Q3FUS No == " "] = 15
& dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 16
dataSet$switchPersist[dataSet$Q26 == 1 & dataSet$Q5Post == 3
 & dataSet$Q3Post == 3 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 17
dataSet$switchPersist[dataSet$Q26 == 1 & dataSet$Q5Post == 2
 & dataSet$Q3Post == 3 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 18
dataSet$switchPersist[dataSet$Q26 == 1 & is.na(dataSet$Q5Post)
 & dataSet$Q3Post == 3 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 19
dataSet$switchPersist[dataSet$Q26 == 3 & dataSet$Q3Post == 1
 & dataSet$Q3FUS Yes == " " & dataSet$Q3FUS No == " "] = 20
dataSet$switchPersist[dataSet$Q26 == 3 & dataSet$Q5Post == 3
 & dataSet$Q3Post == 3 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 21
```

```
dataSet$switchPersist[dataSet$Q26 == 3 & dataSet$Q5Post == 2
  & dataSet$Q3Post == 3 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 22
## groups 23-26
dataSet$switchPersist[dataSet$Q26 == 3 & is.na(dataSet$Q5Post)
  & dataSet$Q3Post == 3 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 23
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 1
  & dataSet$Q3Post == 1 & dataSet$Q3FUS Yes == " " & dataSet$Q3FUS No == " "] = 24
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 3
  & dataSet$Q3Post == 1 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 25
dataSet$switchPersist[is.na(dataSet$Q26) & dataSet$Q5Post == 3
  & dataSet$Q3Post == 3 & dataSet$Q3FUS_Yes == " " & dataSet$Q3FUS_No == " "] = 26
# subsetting the groups into their own df:
group1 <- subset(dataSet, switchPersist == 1)</pre>
group2 <- subset(dataSet, switchPersist == 2)</pre>
group3 <- subset(dataSet, switchPersist == 3)</pre>
group4 <- subset(dataSet, switchPersist == 4)</pre>
group5 <- subset(dataSet, switchPersist == 5)</pre>
group6 <- subset(dataSet, switchPersist == 6)</pre>
group7 <- subset(dataSet, switchPersist == 7)</pre>
group8 <- subset(dataSet, switchPersist == 8)</pre>
group9 <- subset(dataSet, switchPersist == 9)</pre>
group10 <- subset(dataSet, switchPersist == 10)</pre>
group11 <- subset(dataSet, switchPersist == 11)</pre>
# Subsetting groups again...
group12 <- subset(dataSet, switchPersist == 12)</pre>
group13 <- subset(dataSet, switchPersist == 13)</pre>
group14 <- subset(dataSet, switchPersist == 14)</pre>
group15 <- subset(dataSet, switchPersist == 15)</pre>
group16 <- subset(dataSet, switchPersist == 16)</pre>
group17 <- subset(dataSet, switchPersist == 17)</pre>
group18 <- subset(dataSet, switchPersist == 18)</pre>
group19 <- subset(dataSet, switchPersist == 19)</pre>
group20 <- subset(dataSet, switchPersist == 20)</pre>
group21 <- subset(dataSet, switchPersist == 21)</pre>
group22 <- subset(dataSet, switchPersist == 22)</pre>
group23 <- subset(dataSet, switchPersist == 23)</pre>
group24 <- subset(dataSet, switchPersist == 24)</pre>
group25 <- subset(dataSet, switchPersist == 25)</pre>
group26 <- subset(dataSet, switchPersist == 26)</pre>
## Creating the career choice grouping and adding it to the df
career <- rep(NA,length(dataSet[,1]))</pre>
dataSet <- cbind(dataSet, career)</pre>
# STEM #
dataSet$career[dataSet$Q60 == 3] = 1
dataSet$career[dataSet$Q60 == 4] = 1
dataSet$career[dataSet$Q60 == 5] = 1
dataSet$career[dataSet$Q60 == 7] = 1
dataSet$career[dataSet$Q60 == 8] = 1
dataSet$career[dataSet$Q60 == 9] = 1
```

```
# ENGINEERING #
dataSet$career[dataSet$Q60 == 6] = 2
# PRE MED #
dataSet$career[dataSet$Q60 == 1] = 3
dataSet$career[dataSet$Q60 == 2] = 3
# NON STEM #
dataSet$career[dataSet$Q60 == 10] = 4
dataSet$career[dataSet$Q60 == 11] = 4
dataSet$career[dataSet$Q60 == 12] = 4
dataSet$career[dataSet$Q60 == 13] = 4
dataSet$career[dataSet$Q60 == 14] = 4
dataSet$career[dataSet$Q60 == 15] = 4
# UNDECIDED #
dataSet$career[dataSet$Q60 == 16] = 5
## subset the careers
STEM <- subset(dataSet, career == 1)</pre>
ENGINEERING <- subset(dataSet, career == 2)</pre>
PRE_MED <- subset(dataSet, career == 3)</pre>
NON_STEM <- subset(dataSet, career == 4)</pre>
UNDECIDED <- subset(dataSet, career == 5)</pre>
dfQ18 <- dataSet[,c(22:29)]</pre>
dfQ18Rev <- dfQ18
dfQ18Rev[,8] \leftarrow (7 - dfQ18Rev[,8])
## Only Complete cases
dfQ18Complete <- dfQ18[complete.cases(dfQ18Rev), ]</pre>
## Calculating PCA
PC_Q18 <- prcomp(dfQ18Complete)</pre>
PC1_Q18 <- as.numeric(abs(PC_Q18$rotation[,1]))</pre>
total <- sum(PC1_Q18)</pre>
## Weighted proprtions for each Question
propVec <- PC1_Q18/total</pre>
## Weighted mean
instruct <- apply(dfQ18Rev,1,weighted.mean,w=propVec,na.rm=TRUE)
## attaching these values tyo the df
dataSet <- cbind(dataSet,instruct)</pre>
dataSet$instruct[is.nan(dataSet$instruct)] <- NA</pre>
## SO do we do the reverse coding before or after PCA's ? (Here reverse coding after...)
dfSCP \leftarrow dataSet[,c(30:37)]
dfSCPRev <- dfSCP
dfSCPRev[,6] \leftarrow (7 - dfSCP[,6])
```

```
## Only Complete cases
dfSCPComplete <- dfSCPRev[complete.cases(dfSCPRev), ]</pre>
## Calculating PCA
PC_SCP <- prcomp(dfSCPComplete)</pre>
PC1_SCP <- as.numeric(abs(PC_SCP$rotation[,1]))</pre>
total <- sum(PC1_SCP)</pre>
## Weighted proprtions for each Question
propVecSCP <- PC1_SCP/total</pre>
## Weighted mean
SCP <- apply(dfSCPRev,1,weighted.mean,w=propVecSCP,na.rm=TRUE)
## attaching these values to the df
dataSet <- cbind(dataSet,SCP)</pre>
dataSet$SCP[is.nan(dataSet$SCP)] <- NA</pre>
prevCalc <- rep(NA,length(dataSet[,1])) # none experinece = 0</pre>
dataSet <- cbind(dataSet,prevCalc)</pre>
# hs experince = 1
dataSet$prevCalc[!is.na(dataSet$Q15 CalculusNonAPFinalGrade)
                  |!is.na(dataSet$Q17 CalculusABFinalGrade) |
                    !is.na(dataSet$Q17_CalculusBCFinalGrade)] = 1
# college experience = 2
dataSet$prevCalc[dataSet$Q18 == 1] = 2
dataSet$prevCalc[dataSet$Q18 == 2 & is.na(dataSet$prevCalc)] = 3
# Excludes 'NA's in our switchpersist column
switch <- subset(dataSet, switchPersist != 'NA')</pre>
# Only includes data which was used in the study
# (Q3_SATMath, Q7_ACTMath, Q15_CalculusNonAPFinalGrade, Q17 Questions,
# Q18, Q48, Q60, Q18 Survey questions, Q19 survey questions)
datanew <- switch[complete.cases((switch$Q3_SATMath | switch$Q7_ACTMath)</pre>
 & (switch$Q15_CalculusNonAPFinalGrade | switch$Q17_CalculusABFinalGrade
    | switch$Q17_CalculusBCFinalGrade | switch$Q18)
& switch$Q48 & switch$Q60 & (switch$Q18Post_AskedQs | switch$Q18Post_Listened
| switch$Q18Post_Applications | switch$Q18Post_Appointments)
&(switch$Q19Post_AskQuestions | switch$Q19Post_SpecificProblems |
switch$Q19Post_WorkTogether | switch$Q19Post_Discussion |
switch$Q19Post_Presentations | switch$Q19Post_Individually |
switch$Q19Post_Lecture |
switch$Q19Post_ExplainThinking)),]
# Adjusting SAT and ACT Columns to only have correct values
dtnew <- datanew[which((datanew$Q3 SATMath\\\%10 == 0 &
datanew$Q3_SATMath <= 800 & datanew$Q3_SATMath >= 200 ) |
```

```
dtnew$PSAT[dtnew$Q3_SATMath <= 270] = 1</pre>
dtnew$PSAT[dtnew$Q3 SATMath <= 220] = 0
dtnew$PSAT[dtnew$Q3_SATMath > 800] = NA
dtnew$PSAT[dtnew$Q3_SATMath < 200] = NA
dtnew$PSAT[dtnew$Q3_SATMath %% 10 != 0] = NA
dtnew$PACT[dtnew$Q7 ACTMath == 1] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 2] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 3] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 4] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 5] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 6] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 7] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 8] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 9] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 10] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 11] = 1
dtnew$PACT[dtnew$Q7_ACTMath == 12] = 4
dtnew$PACT[dtnew$Q7_ACTMath == 13] = 7
dtnew$PACT[dtnew$Q7_ACTMath == 14] = 12
dtnew$PACT[dtnew$Q7_ACTMath == 15] = 18
dtnew$PACT[dtnew$Q7_ACTMath == 16] = 24
dtnew$PACT[dtnew$Q7_ACTMath == 17] = 30
dtnew$PACT[dtnew$Q7 ACTMath == 18] = 36
dtnew$PACT[dtnew$Q7_ACTMath == 19] = 43
dtnew$PACT[dtnew$Q7 ACTMath == 20] = 50
dtnew$PACT[dtnew$Q7_ACTMath == 21] = 56
dtnew$PACT[dtnew$Q7_ACTMath == 22] = 62
dtnew$PACT[dtnew$Q7_ACTMath == 23] = 68
dtnew$PACT[dtnew$Q7_ACTMath == 24] = 74
dtnew$PACT[dtnew$Q7_ACTMath == 25] = 79
dtnew$PACT[dtnew$Q7_ACTMath == 26] = 83
dtnew$PACT[dtnew$Q7_ACTMath == 27] = 87
dtnew$PACT[dtnew$Q7_ACTMath == 28] = 90
dtnew$PACT[dtnew$Q7_ACTMath == 29] = 92
dtnew$PACT[dtnew$Q7_ACTMath == 30] = 95
dtnew$PACT[dtnew$Q7 ACTMath == 31] = 96
dtnew$PACT[dtnew$Q7_ACTMath == 32] = 98
dtnew$PACT[dtnew$Q7_ACTMath == 33] = 99
dtnew$PACT[dtnew$Q7_ACTMath == 34] = 99
dtnew$PACT[dtnew$Q7_ACTMath == 35] = 99
dtnew$PACT[dtnew$Q7_ACTMath == 36] = 99
dtnew$PACT[dtnew$Q3 ACTMath > 36] = NA
dtnew$PACT[dtnew$Q3_ACTMath < 1] = NA</pre>
scores<-cbind(dtnew$PSAT,dtnew$PACT)</pre>
dtnew$Percentile=rowMeans (scores, na.rm = T)
```

S1

```
library(knitr)
library(kableExtra)
## Table S1 Persisters
library(plyr)
obs <- count(dataSet$switchPersist)</pre>
v1s <- 1:11
v2s \leftarrow obs[c(1:11), 2]
v3s <- c('Yes', 'Maybe', 'NA', 'NA', 'Yes', 'Yes', 'Maybe', 'Maybe', 'NA', 'NA', 'NA')
v4s <- c(' ', ' ', 'Yes', 'Maybe', 'Yes', ' ', 'Yes', ' ', 'Yes', 'Yes', 'Maybe')
v5s <- c(' ', ' ', ' ', ' 'Maybe', 'No', 'Maybe', 'No', 'Maybe', 'No', 'No')
v6s <- c('No', 'No', 'No', 'Na', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA')
## Table S1 Persisters
v1p < - seq(12, 26, 1)
v2p \leftarrow obs[c(12:26), 2]
v3p <- c('Yes', 'Maybe', 'NA', 'NA', rep('Yes', 4), rep('Maybe', 4), rep('NA', 3))
v4p <- c(' ', ' ', 'Yes', 'Maybe', ' ', 'Maybe', 'No',
         'NA', '', 'Maybe', 'No', 'NA', 'Yes', 'Maybe', 'Maybe')
v5p <- c(rep(' ', 4), 'Yes', 'Maybe', 'Maybe', 'Maybe',
         'Yes', 'Maybe', 'Maybe', 'Yes', 'Yes', 'Maybe')
v6p <- c(rep('Yes', 4), rep('NA', 11))
S1s <- data.frame(cbind(v1s, v2s, v3s, v4s, v5s, v6s))
names(S1s) <- c("Switcher Group", "Number of Students",</pre>
                "Beginning of Term", "End of Term; Reflect", "End of Term", "Follow Up")
S1p <- data.frame(cbind(v1p,v2p,v3p,v4p,v5p,v6p))</pre>
names(S1p) <- c("Persister Group", "Number of Students",</pre>
                "Beginning of Term", "End of Term; Reflect", "End of Term", "Follow Up")
                         Switcher and Porcietor Crowns (Table $1)
kable(S1s, format = 'latex', align=rep('c', 6), booktabs = T,
linesep ="") %>% kable_styling(latex_options = c('striped', 'condensed', 'bordered'),
full_width = F, stripe_color = '#E8E8E8') %>%
column_spec(2:3, width= '20mm', border_left = T) %>%
  column_spec(1, width = '14mm') %>% column_spec(4, width = '24mm', border_left = T)%>%
  column_spec(5:6, width = '12mm',border_left = T)
```

Switcher Group	Number of Students	Beginning of Term	End of Term; Reflect	End of Term	Follow Up
1	160	Yes			No
2	118	Maybe			No
3	15	NA	Yes		No
4	3	NA	Maybe		No
5	38	Yes	Yes	Maybe	NA
6	123	Yes		No	NA
7	17	Maybe	Yes	Maybe	NA
8	152	Maybe		No	NA
9	34	NA	Yes	Maybe	NA
10	78	NA	Yes	No	NA
11	65	NA	Maybe	No	NA

```
kable(S1p, format = 'latex', align=rep('c', 6), booktabs = T, linesep ="") %>%
   kable_styling(latex_options = c('striped', 'condensed', 'bordered'),
full_width = F, stripe_color = '#E8E8E8') %>%
column_spec(2:3, width= '20mm', border_left = T) %>%
   column_spec(1, width = '14mm') %>% column_spec(4, width = '24mm',border_left = T) %>%
   column_spec(5:6, width = '12mm',border_left = T)
```

Persister Group	Number of Students	Beginning of Term	End of Term; Reflect	End of Term	Follow Up
12	586	Yes			Yes
13	63	Maybe			Yes
14	67	NA	Yes		Yes
15	2	NA	Maybe		Yes
16	1543	Yes		Yes	NA
17	35	Yes	Maybe	Maybe	NA
18	5	Yes	No	Maybe	NA
19	1	Yes	NA	Maybe	NA
20	193	Maybe		Yes	NA
21	64	Maybe	Maybe	Maybe	NA
22	22	Maybe	No	Maybe	NA
23	3	Maybe	NA	Maybe	NA
24	1325	NA	Yes	Yes	NA
25	53	NA	Maybe	Yes	NA
26	103	NA	Maybe	Maybe	NA

S5 Table

```
# creating an indicator variable for switch persist where 1 == switc, 0 == persist
SWP <- rep(NA, nrow(dtnew))
dtnew <- cbind(dtnew,SWP)</pre>
for(i in seq(1,11,1)){
dtnew$SWP[dtnew$switchPersist == i] = 1
}
for(i in seq(12,26,1)){
dtnew$SWP[dtnew$switchPersist == i] = 0
}
# Subsetting by career choices
STEM <- subset(dtnew, career == 1)</pre>
ENGINEERING <- subset(dtnew, career == 2)</pre>
PRE MED <- subset(dtnew, career == 3)</pre>
NON_STEM <- subset(dtnew, career == 4)</pre>
UNDECIDED <- subset(dtnew, career == 5)</pre>
p1 <- count(STEM$Q48 == 1 & STEM$SWP == 1)[2,2]/count(STEM$Q48 == 1)[2,2]
p2 <- count(STEM$Q48 == 2 & STEM$SWP == 1)[2,2]/count(STEM$Q48 == 2)[2,2]
p3 <- count(ENGINEERING$Q48 == 1 & ENGINEERING$SWP == 1)[2,2]/count(ENGINEERING$Q48 == 1)[2,2]
p4 <- count(ENGINEERING$Q48 == 2 & ENGINEERING$SWP == 1)[2,2]/count(ENGINEERING$Q48 == 2)[2,2]
```

```
p5 <- count(PRE_MED$Q48 == 1 & PRE_MED$SWP == 1)[2,2]/count(PRE_MED$Q48 == 1)[2,2]
p6 <- count(PRE_MED$Q48 == 2 & PRE_MED$SWP == 1)[2,2]/count(PRE_MED$Q48 == 2)[2,2]
p7 <- count(NON_STEM$Q48 == 1 & NON_STEM$SWP == 1)[2,2]/count(NON_STEM$Q48 == 1)[2,2]
p8 <- count(NON_STEM$Q48 == 2 & NON_STEM$SWP == 1)[2,2]/count(NON_STEM$Q48 == 2)[2,2]
p9 <- count(UNDECIDED$Q48 == 1 & UNDECIDED$SWP == 1)[2,2]/count(UNDECIDED$Q48 == 1)[2,2]
p10 <- count(UNDECIDED$Q48 == 2 & UNDECIDED$SWP == 1)[2,2]/count(UNDECIDED$Q48 == 2)[2,2]
# Creating columns
S5col1 <- c("STEM", " " , "Engineering" , " " , "Pre-Med" ,
                                " " , "Non-STEM" , " " , "Undecided" , " ")
S5col2 <- c("Male" , "Female" , "Male" , "Female" , "Male" ,
                                "Female" , "Male" , "Female" , "Male" , "Female")
S5col3 \leftarrow c(count(STEM$Q48 ==2)[1,2],count(STEM$Q48 ==2)[2,2],
count(ENGINEERING$Q48 ==2)[1,2],count(ENGINEERING$Q48 ==2)[2,2], count(PRE_MED$Q48 ==2)[1,2],count(PRE_MED$Q48 ==2
count(NON_STEM$Q48 ==2)[2,2] , count(UNDECIDED$Q48 ==2)[1,2],count(UNDECIDED$Q48 ==2)[2,2])
S5col4 \leftarrow round(c(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10),digits = 3)*100
S5 <- data.frame(cbind(S5col1,S5col2,S5col3,S5col4)) # add first row names
```

S6 Table

```
S6col2 <- c("Male", "Female", "Male", "Female", "Male", "Female")
 S6col1 <- c("High School" , " " , "College" , " " , "None" , " ")
 S6col3 \leftarrow c(count(dtnew$Q48 == 1 \& dtnew$prevCalc == 1)[2,2],
                                                                                                   count(dtnew$Q48 == 2 & dtnew$prevCalc == 1)[2,2] ,
                                                                                                    count(dtnew$Q48 == 1 & dtnew$prevCalc == 2)[2,2] ,
                                                                                                    count(dtnew$Q48 == 2 & dtnew$prevCalc == 2)[2,2] ,
                                                                                                    count(dtnew$Q48 == 1 & dtnew$prevCalc == 3)[2,2] ,
                                                                                                    count(dtnew$Q48 == 2 & dtnew$prevCalc == 3)[2,2])
 p1_6 \leftarrow count(dtnew\$Q48 == 1 \& dtnew\$prevCalc == 1 \& dtnew\$SWP == 1)[2,2] / count(dtnew\$Q48 == 1 \& dtnew\$Q48 == 1 & dtnew§Q48 == 1 & dtnew§Q4
 p2_6 \leftarrow count(dtnew\$Q48 == 2 \& dtnew\$prevCalc == 1 \& dtnew\$SWP == 1)[2,2] / count(dtnew\$Q48 == 2 \& dtnew\$prevCalc == 1 & dtnew\$SWP == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew\$prevCalc == 1 & dtnew\$SWP == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew$prevCalc == 1 & dtnew$SWP == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew$prevCalc == 1 & dtnew$SWP == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew$prevCalc == 1 & dtnew$prevCalc == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew$prevCalc == 1)[2,2] / count(dtnew$prevCalc == 1)
 p3_6 \leftarrow count(dtnew\$Q48 == 1 \& dtnew\$prevCalc == 2 \& dtnew\$SWP == 1)[2,2] / count(dtnew\$Q48 == 1 \& dtnew\$Q48 == 1 & dtnew & dtne
 p4_6 \leftarrow count(dtnew\$Q48 == 2 \& dtnew\$prevCalc == 2 \& dtnew\$SWP == 1)[2,2] / count(dtnew\$Q48 == 2 \& dtnew\$prevCalc == 2 & dtnew\$Q48 == 2 & dtnew§Q48 == 2 & dtn
 p5_6 <- count(dtnew$Q48 == 1 & dtnew$prevCalc == 3 & dtnew$SWP == 1)[2,2] / count(dtnew$Q48 == 1 & dtnew
p6_6 \leftarrow count(dtnew\$Q48 == 2 \& dtnew\$prevCalc == 3 \& dtnew\$SWP == 1)[2,2] / count(dtnew\$Q48 == 2 \& dtnew\$prevCalc == 3 & dtnew\$SWP == 1)[2,2] / count(dtnew\$Q48 == 2 & dtnew\$prevCalc == 3 & dtnew\$SWP == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew$prevCalc == 3 & dtnew$SWP == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew$prevCalc == 3 & dtnew$SWP == 1)[2,2] / count(dtnew$Q48 == 2 & dtnew$prevCalc == 3 & dt
 S6col4 \leftarrow round(100*c(p1_6,p2_6,p3_6,p4_6,p5_6,p6_6), digits = 1)
 S6 <- data.frame(cbind(S6col1,S6col2,S6col3,S6col4))
 names(S5) <- c('Career Choice', 'Gender', 'N', 'Switcher %')</pre>
 kable(S5, format = 'latex', booktabs = T, linesep = c('','\\addlinespace'),
                                               align = c('c', 'l','c','c')) %>% kable_styling(latex_options = 'striped',
 stripe_color = '#E8E8E8') %>% column_spec(2:4, border_left = T) %>%
               row_spec(0, bold = T) %>% column_spec(1, bold = T)
```

Career Choice	Gender	N	Switcher %
\mathbf{STEM}	Male	263	10.6
	Female	223	16.1
Engineering	Male	539	3.5
	Female	249	6.4
Pre-Med	Male	199	21.6
	Female	318	33.3
Non-STEM	Male	136	36.8
	Female	126	38.1
Undecided	Male	99	26.3
	Female	114	28.1

Previous Calculus	Gender	N	Switcher %
High School	Male Female	740 699	$\frac{13}{21.7}$
College	Male Female	99	17.2 14.5
None	Male Female	397	13.4 28.6

S7 Table

```
## Subsetting into the 10 ranges first ##

Per1 <- subset(dtnew, Percentile <= 100 & Percentile >= 90)

Per2 <- subset(dtnew, Percentile < 90 & Percentile >= 80)

Per3 <- subset(dtnew, Percentile < 80 & Percentile >= 70)

Per4 <- subset(dtnew, Percentile < 70 & Percentile >= 60)

Per5 <- subset(dtnew, Percentile < 60 & Percentile >= 50)

Per6 <- subset(dtnew, Percentile < 50 & Percentile >= 40)

Per7 <- subset(dtnew, Percentile < 40 & Percentile >= 30)

Per8 <- subset(dtnew, Percentile < 30 & Percentile >= 20)

Per9 <- subset(dtnew, Percentile < 20 & Percentile >= 10)

Per10 <- subset(dtnew, Percentile < 9)

S7col1 <- c("90 - 100" , " " , "80 - 89" , " ", "70 - 79" , " " , "60 - 69" , " ", "50 - 59" , " "

S7col2 <- c(rep(c("Male", "Female"), 10))
```

```
S7col3 \leftarrow c(count(Per1$Q48 == 1)[2,2], count(Per1$Q48 == 2)[2,2], count(Per2$Q48 == 1)[2,2], count(Pe
p1_7 <- count(Per1$Q48 == 1 & Per1$SWP == 1)[2,2]/count(Per1$Q48 == 1)[2,2]
p2_7 \leftarrow count(Per1\$Q48 == 2 \& Per1\$SWP == 1)[2,2]/count(Per1\$Q48 == 2)[2,2]
p3 7 \leftarrow count(Per2\$Q48 == 1 \& Per2\$SWP == 1)[2,2]/count(Per2\$Q48 == 1)[2,2]
p4_7 \leftarrow count(Per2\$Q48 == 2 \& Per2\$SWP == 1)[2,2]/count(Per2\$Q48 == 2)[2,2]
p5_7 \leftarrow count(Per3\$Q48 == 1 \& Per3\$SWP == 1)[2,2]/count(Per3\$Q48 == 1)[2,2]
p6_7 \leftarrow count(Per3\$Q48 == 2 \& Per3\$SWP == 1)[2,2]/count(Per3\$Q48 == 2)[2,2]
p7_7 \leftarrow count(Per4\$Q48 == 1 \& Per4\$SWP == 1)[2,2]/count(Per4\$Q48 == 1)[2,2]
p8_7 <- count(Per4$Q48 == 2 & Per4$SWP == 1)[2,2]/count(Per4$Q48 == 2)[2,2]
p9_7 <- count(Per5$Q48 == 1 & Per5$SWP == 1)[2,2]/count(Per5$Q48 == 1)[2,2]
p10_7 \leftarrow count(Per5\$Q48 == 2 \& Per5\$SWP == 1)[2,2]/count(Per5\$Q48 == 2)[2,2]
p11_7 \leftarrow count(Per6\$Q48 == 1 \& Per6\$SWP == 1)[2,2]/count(Per6\$Q48 == 1)[2,2]
p12_7 \leftarrow count(Per6\$Q48 == 2 \& Per6\$SWP == 1)[2,2]/count(Per6\$Q48 == 2)[2,2]
p13 7 <- count(Per7$Q48 == 1 & Per7$SWP == 1)[2,2]/count(Per7$Q48 == 1)[2,2]
p14_7 \leftarrow count(Per7\$Q48 == 2 \& Per7\$SWP == 1)[2,2]/count(Per7\$Q48 == 2)[2,2]
p15 7 <- count(Per8$Q48 == 1 & Per8$SWP == 1)[2,2]/count(Per8$Q48 == 1)[2,2]
p16_7 \leftarrow count(Per8\$Q48 == 2 \& Per8\$SWP == 1)[2,2]/count(Per8\$Q48 == 2)[2,2]
p17_7 \leftarrow count(Per9\$Q48 == 1 \& Per9\$SWP == 1)[2,2]/count(Per9\$Q48 == 1)[2,2]
p18_7 \leftarrow count(Per9\$Q48 == 2 \& Per9\$SWP == 1)[2,2]/count(Per9\$Q48 == 2)[2,2]
p19_7 \leftarrow count(Per10\$Q48 == 1 \& Per10\$SWP == 1)[2,2]/count(Per10\$Q48 == 1)[2,2]
p20_7 \leftarrow count(Per10\$Q48 == 2 \& Per10\$SWP == 1)[2,2]/count(Per10\$Q48 == 2)[2,2]
## Making 'NA' observations 0 and combining into column
S7col4 \leftarrow round(100 * c(p1_7,p2_7,p3_7,p4_7,p5_7,p6_7,p8_7,p9_7,p10_7)
                ,p11_7,p12_7,p13_7,p14_7,0,0,p17_7,p18_7,0,p20_7), digits = 1)
S7 <- data.frame(cbind(S7col1,S7col2,S7col3,S7col4))
S7$S7col4[S7$S7col4 == 'NA'] = 0
S7new \leftarrow data.frame(c(S7[1:10,], S7[11:20,]))
names(S7new) <- c('Test Percentile', 'Gender', 'N', 'Switcher %', 'Test Percentile', 'Gender', 'N', 'Swi</pre>
kable(S7new, format = 'latex', booktabs = T, linesep = c('','\\addlinespace'),
            align = c('c', 'l','c','c','c', 'l','c','c')) %>%
   kable_styling(latex_options = 'striped', stripe_color = '#E8E8E8') %>%
    column_spec(2:8, border_left = T) %>% row_spec(0, bold = T) %>%
    column_spec(c(1,5), bold = T) %>% column_spec(4, border_right = T)
```

Test Percentile	Gender	N	Switcher %	Test Percentile	Gender	N	Switcher %
90 - 100	Male	707	12.4	40 - 49	Male	20	26.7
	Female	523	22.6		Female	30	10
80 - 89	Male	250	14.8	30 - 39	Male	10	33.3
	Female	220	22.3		Female	6	0
70 - 79	Male	165	12.7	20 - 29	Male	3	0
	Female	157	25.5		Female	2	50
60 - 69	Male	50	18.3	10 - 19	Male	2	50
	Female	60	23.1		Female	2	0
50 - 59	Male	26	27.6	0 - 9	Male	3	100
	Female	29	20		Female	1	12.4

S8 Table

```
In1 <- dtnew[dtnew$instruct >= 5.5,]
In2 <- dtnew[dtnew$instruct >= 4.5 & dtnew$instruct < 5.5 ,]
In3 <- dtnew[dtnew$instruct >= 3.5 & dtnew$instruct < 4.5 ,]</pre>
In4 <- dtnew[dtnew$instruct >= 2.5 & dtnew$instruct < 3.5 ,]</pre>
In5 <- dtnew[dtnew$instruct >= 1.5 & dtnew$instruct < 2.5 ,]</pre>
In6 <- dtnew[dtnew$instruct >= 1 & dtnew$instruct < 1.5 ,]</pre>
SCP1 <- dtnew[dtnew$SCP >= 5.5 & dtnew$SCP < 6,]
SCP2 <- dtnew[dtnew$SCP >= 4.5 & dtnew$SCP < 5.5,]
SCP3 <- dtnew[dtnew$SCP >= 3.5 & dtnew$SCP < 4.5,]
SCP4 <- dtnew[dtnew$SCP >= 2.5 & dtnew$SCP < 3.5,]
SCP5 <- dtnew[dtnew$SCP >= 1.5 & dtnew$SCP < 2.5,]
SCP6 <- dtnew[dtnew$SCP >= 1 & dtnew$SCP < 1.5,]
 \textbf{S8col1} \leftarrow \textbf{c}("[5.5, 6]", "", "[4.5, 5.5)", "", "[3.5, 4.5)", "", "[2.5, 3.5)", "", "[1.5, 2.5)", "", "[1, 1.5)", "" 
 \textbf{S8col1} \leftarrow \textbf{c}("\$[5.5, 6]\$", "", "\$[4.5, 5.5)\$", "", "\$[3.5, 4.5)\$", "", "\$[2.5, 3.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5)\$", "", "\$[1.5, 2.5]\$", "", "\$[1.5, 2.5]\$", "", "\$[1.5, 2.5]\$", "", "\$[1.5, 2.5]\$", "", "\$[1.5, 2.5]\$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", "", "\$[1.5, 2.5]$", 
S8col2 <- rep(c("Male", "Female"),6)
S8col3_INSTRUCT <- c(
     count(In1$Q48 == 1)[2,2],
     count(In1$Q48 == 2)[2,2],
     count(In2$Q48 == 1)[2,2],
     count(In2$Q48 == 2)[2,2],
     count(In3$Q48 == 1)[2,2],
     count(In3$Q48 == 2)[2,2],
     count(In4$Q48 == 1)[2,2],
     count(In4$Q48 == 2)[2,2],
     count(In5$Q48 == 1)[2,2],
     count(In5$Q48 == 2)[2,2],
     count(In6\$Q48 == 1)[2,2],
     count(In6$Q48 == 2)[2,2]
)
S8col3 SCP <- c(
     count(SCP1$Q48 == 1)[2,2],
```

```
count(SCP1$Q48 == 2)[2,2],
  count(SCP2\$Q48 == 1)[2,2],
  count(SCP2\$Q48 == 2)[2,2],
  count(SCP3$Q48 == 1)[2,2],
  count(SCP3$Q48 == 2)[2,2],
  count(SCP4$Q48 == 1)[2,2],
  count(SCP4\$Q48 == 2)[2,2],
  count(SCP5$Q48 == 1)[2,2],
  count(SCP5$Q48 == 2)[2,2],
  count(SCP6\$Q48 == 1)[2,2],
  count(SCP6\$Q48 == 2)[2,2]
)
S8col4_INSTRUCT <- round(c(
  count(In1$Q48 == 1 & In1$SWP == 1)[2,2]/count(In1$Q48 == 1)[2,2],
  count(In1$Q48 == 2 & In1$SWP == 1)[2,2]/count(In1$Q48 == 2)[2,2],
  count(In2\$Q48 == 1 \& In2\$SWP == 1)[2,2]/count(In2\$Q48 == 1)[2,2],
  count(In2$Q48 == 2 & In2$SWP == 1)[2,2]/count(In2$Q48 == 2)[2,2],
  count(In3\$Q48 == 1 \& In3\$SWP == 1)[2,2]/count(In3\$Q48 == 1)[2,2],
  count(In3\$Q48 == 2 \& In3\$SWP == 1)[2,2]/count(In3\$Q48 == 2)[2,2],
  count(In4\$Q48 == 1 \& In4\$SWP == 1)[2,2]/count(In4\$Q48 == 1)[2,2],
  count(In4\$Q48 == 2 \& In4\$SWP == 1)[2,2]/count(In4\$Q48 == 2)[2,2],
  count(In5\$Q48 == 1 \& In5\$SWP == 1)[2,2]/count(In5\$Q48 == 1)[2,2],
  count(In5\$Q48 == 2 \& In5\$SWP == 1)[2,2]/count(In5\$Q48 == 2)[2,2],
  count(In6\$Q48 == 1 \& In6\$SWP == 1)[2,2]/count(In6\$Q48 == 1)[2,2],
  count(In6\$Q48 == 2 \& In6\$SWP == 1)[2,2]/count(In6\$Q48 == 2)[2,2]
)*100, digits = 1)
S8col4 SCP <- round(c(
  count(SCP1\$Q48 == 1 \& SCP1\$SWP == 1)[2,2]/count(SCP1\$Q48 == 1)[2,2],
  count(SCP1$Q48 == 2 & SCP1$SWP == 1)[2,2]/count(SCP1$Q48 == 2)[2,2],
  count(SCP2$Q48 == 1 & SCP2$SWP == 1)[2,2]/count(SCP2$Q48 == 1)[2,2],
  count(SCP2\$Q48 == 2 \& SCP2\$SWP == 1)[2,2]/count(SCP2\$Q48 == 2)[2,2],
  count(SCP3\$Q48 == 1 \& SCP3\$SWP == 1)[2,2]/count(SCP3\$Q48 == 1)[2,2],
  count(SCP3$Q48 == 2 & SCP3$SWP == 1)[2,2]/count(SCP3$Q48 == 2)[2,2],
  count(SCP4$Q48 == 1 & SCP4$SWP == 1)[2,2]/count(SCP4$Q48 == 1)[2,2],
  count(SCP4\$Q48 == 2 \& SCP4\$SWP == 1)[2,2]/count(SCP4\$Q48 == 2)[2,2],
  count(SCP5$Q48 == 1 & SCP5$SWP == 1)[2,2]/count(SCP5$Q48 == 1)[2,2],
  count(SCP5$Q48 == 2 & SCP5$SWP == 1)[2,2]/count(SCP5$Q48 == 2)[2,2],
  count(SCP6\$Q48 == 1 \& SCP6\$SWP == 1)[2,2]/count(SCP6\$Q48 == 1)[2,2],
  count(SCP6$Q48 == 2 & SCP6$SWP == 1)[2,2]/count(SCP6$Q48 == 2)[2,2]
)*100, digits = 1)
S8 INSTUCT <- data.frame(cbind(S8col1,S8col2,S8col3 INSTRUCT,S8col4 INSTRUCT))
S8_SCP <- data.frame(cbind(S8col1,S8col2,S8col3_SCP,S8col4_SCP))
S8 <- data.frame(cbind(S8_INSTUCT,S8_SCP))</pre>
names(S8) <- c("Instructor Quality Rating", 'Gender', 'N', 'Switcher %', "Student-Centered Instruction R
kable(S8, format = 'markdown', booktabs = T, linesep = c('','\\addlinespace')) %>% kable_styling('strip
```

Instructor Quality	Gender N	Switcher %	Student-Centered Instruction Response	Gender N	Switcher %
Rating	Gender IV	/0	Instruction Response	Gender IV	/0
Instructor Quality		Switcher	Student-Centered		Switcher
Rating	Gender N	%	Instruction Response	Gender N	%
[5.5, 6]	Male 165	9.1	[5.5, 6]	Male 17	17.6
	Female 152	16.4		Female 21	38.1
[4.5, 5.5)	Male 613	12.2	[4.5, 5.5)	Male 155	12.3
	Female 464	20.3		Female 124	25
[3.5, 4.5)	Male 323	13.6	[3.5, 4.5)	Male 363	12.1
	Female 281	25.3	-	Female 282	22
[2.5, 3.5)	Male 95	24.2	[2.5, 3.5)	Male 393	16.3
	Female 89	29.2		Female 296	23.6
[1.5, 2.5)	Male 33	24.2	[1.5, 2.5)	Male 252	11.1
. ,	Female 37	48.6		Female 257	23
[1, 1.5)	Male 7	14.3	[1, 1.5)	Male 56	14.3
	Female 7	57.1	• •	Female 50	16

```
\# kable(S8_INSTUCT, format = 'latex', booktabs = T, linesep = c('', '\setminus addlinespace'), escape = F, align \# kable(S8, format = 'latex', booktabs = T, linesep = c('', '\setminus addlinespace'), escape = F, align = c('c', '\setminus addlinespace')
```