Tutorial letter 012/0/2024

Generalized Linear Models STA4813

Year module

Department of Statistics

ASSIGNMENT 02 QUESTIONS

ASSIGNMENT 02 Unique Nr.: 858959

Fixed closing date: 24 May 2024

Instructions

- (1) Use R Markdown to compile your solutions.
- (2) Your solutions must have the full R codes and outputs of all questions.
- (3) Discuss the relevant R outputs that are related to a specific question.

QUESTION 1 [20]

Let X_1, \ldots, X_n denote independent and identically distributed random variables from a Negative Binomial distribution with parameters r and θ . The probability distribution function for each X_i is therefore

$$f(x_i,\theta) = \binom{x_i+r-1}{r-1}\theta^r(1-\theta)_i^x$$
 x_i , if $x_i=0,1,\ldots$ and 0 otherwise.

Suppose that r is known.

- (a) Show that $f(x_i, \theta)$ belongs to the exponential family of probabilty mass functions. (4)
- (b) Using results from Chapter 3 of the prescribed textbook or Additional Resources material of Learning Unit 2 that is available on the module web site, find E(X) and var(X). (4)
- (c) Calculate the score statistics U and verify that E(U) = 0. (2)
- (d) Drive the information $\mathfrak{J} = var(U)$. (2)
- (e) Find the maximum likelihood estimator $\hat{\theta}$ of θ . (3)
- (f) Drive the Wald statistic for making inferences about θ . (3)
- (g) Use the Wald statistic to obtain an expression for an approximate 95% confidence interval for θ . (2)

QUESTION 2 [10]

Let Y_1, \dots, Y_n be a random sample from the geometric distribution which has a probability mass function

$$f(y,p) = p(1-p)^{y-1}, \quad x = 1, 2, \dots$$
 and 0 otherwise

Here p is an unknown parameter.

- (a) Show that this distribution belongs to the exponential family of probability mass functions. (3)
- (b) Drive the information $\mathfrak{J} = var(U)$. (4)
- (c) Find the maximum likelihood estimator \hat{p} of p. (3)

The file <code>gamma_arrivals.txt</code> data in the Additional Resources section of the module web site contains set of gamma-rays data consisting of the times between arrivals (inter-arrival times) of 3935 photons (units are seconds). Assume the following Gamma distribution is a good model for the data:

$$f(x;\alpha,\beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} y^{\alpha-1} e^{-\beta x}, \quad x>0, \quad \text{and} \quad 0 \quad \text{otherwise}$$

where both α and β are unknown.

- (a) Draw a histogram of the inter-arrival times. Does it appear that a gamma distribution would be a plausible model? Explain. (4)
- (b) Estimate the model parameters using the method of maximum likelihood estimation. Write your own R code for MLE, i.e., do not use any R built in package or function except for optimization. (7)
- (c) Plot the two fitted gamma densities on top of the histogram. Do the fits look reasonable? Explain. (4)

Hint: In order to obtain the MLE, you need to maximize the likelihood function or log likelihood function. The R package provides a function nlm(), which can minimize an object function, therefore, you need to define the negative log likelihood function in your R code.

[45]