Appunti Geometria e algebra lineare

Alexandru Gabriel Bradatan

Data di compilazione: 21 settembre 2019

1 Insiemi

Un insieme è una collezione di oggetti. Tutta la matematica si basa sulla teoria assiomatica degli insiemi. Un insieme A si può indicare per elencazione $(A = \{a_1, \ldots, a_n\})$ o con una condizione $(A = \{x | condizione\})$. La cardinalità di A è il numero di oggetti: |A| = n. La cardinalità dell'insieme vuoto è 0.

Esempi $\mathbb{N} = \{0, 1, 2, \dots\}, \mathbb{Q} = \{q = \frac{m}{n} | m, n \in \mathbb{Z}, n \neq 0\}, \mathbb{R} = \{x \text{ numeri decimali}\}.$

Un insieme particolare è l'insieme con nessun elemento detto vuoto, indicato con \emptyset . Un altro insieme particolare è l'insieme di tutti gli tutto detto insieme universo U.

1.1 Sottoinsiemi

Un insieme può essere sottoinsieme di un altro, ossia contenere una parte degli elementi dell'insieme più grande. Formalizzando si può dire che:

$$A \subset B \implies \forall a \in A, a \in B$$

1.2 Insiemi numerici

Trattati nel dettaglio negli appunti di Analisi 1.

1.3 Operazioni

Le operazioni più usate sono:

Unione $A \cup B = \{x | x \in A \lor x \in B\}$

Interesezione $A \cap B = \{x | x \in A \land x \in B\}$

<u>Differenza</u> $A - B = \{x | x \in A \land x \notin B\}$ Si piò anche trovare indicata con \

Prodotto cartesiano $A \times B = \{(a, b) | a \in A, b \in B\}$ Le coppie (a, b) sono anche dette <u>tuple</u> (m-uple per m elementi)

2 Relazioni

Una relazione è un sottoinsieme del prodotto cartesiano tra due insiemi.

Per indicare che due elementi (a_i, b_j) sono legati da una relazione R usiamo $\underline{a_i} \sim_R b_j$. Per rappresentare le relazioni si possono usare i diagrammi di Venn (le patate) con le frecce che collegano i vari elementi tra di loro.

Esempi di relazione Presi $A = \{a_1, a_2\}, B = \{b_1, b_2\}$, calcoliamo il loro prodotto cartesiano e otterremo 16 possibili sottoinsiemi:

$$R_{0} = \emptyset$$

$$R_{1} = \{(a_{1}, b_{1})\}, \dots, R_{4}$$

$$R_{5} = \{(a_{1}, b_{1}), (a_{1}, b_{2})\}, \dots, R_{1}0$$

$$R_{11} = \{(a_{1}, b_{1}), (a_{1}, b_{2}), (a_{2}, b_{1})\}, \dots, R_{1}4$$

$$R_{15} = A \times B$$

In ogni sottoinsieme sarà contenuta una delle possibili combinazioni di tuple nel prodotto cartesiano.

3 Funzioni

Le funzioni sono speciali relazioni che associano a ogni elemento del primo insieme un elemento del secondo. Prendiamo $R_7 = \{(a_1, b_1), (a_2, b_2)\}$. Questa relazione associa un elemento del primo insieme a un elemento del secondo ed è una funzione $f: A \to B$.

L'insieme A è detto dominio, B il codominio. Se $a \in A$, allora b = f(a) sarà la sua immagine. L'insieme di tutte le immagini è detto insieme immagine e si indica con Im(f). La controimmagine di b è quell'elemento tale che $f^{-1}(b) = \{a \in A \mid f(a) = b\}$ (la funzione inversa in questo caso è solo notazione).

Se $\underline{Im(f)}$ = codominio allora la funzione è suriettiva. Se <u>ad ogni immagine corrisponde una sola controimmagine ($|Im(f^{-1}(b))| = 1$) allora la funzione è iniettiva. Se una funzione è sia iniettiva che suriettiva è biunivoca. Una funzione è invertibile se e solo se è biunivoca.</u>

La funzione $A \times A = \Delta A = Id(A) = \{(a, a) | a \in A\}$ è detta funzione identità o insieme diagonale.

4 Operazioni

Le operazioni sono delle speciali funzioni: dati n+1 insiemi A_1, \ldots, A_{n+1} non vuoti, una operazione n-aria * è una funzione che:

$$A_1 \times \cdots \times A_n \to A_{n+1}$$

 $(a_1, \dots, a_n) \mapsto *(a_1, \dots, a_n)$

Se gli insiemi usati nel prodotto cartesiano sono lo stesso insieme A si dice che l'operazione è interna (esempio: la somma). Se il numero di insiemi è 2 si dice binaria.

Esempi di operazioni:

Somma

Differenza

$$\begin{array}{ccc}
\mathbb{N} \times \mathbb{N} & \to & \mathbb{Z} \\
(n1, n2) & \mapsto & n3 = n1 - n2
\end{array}$$

Le varie operazioni possono essere rappresentate in tabelle che indicano tutti i posibili casi. Ad esempio, esistono $2^4 = 16$ diverse operazioni binarie interne ad $A = \{a_1, a_2\}$.

$$\begin{array}{c|ccccc} * & a_1 & a_2 \\ \hline a_1 & a_1 & a_2 \\ a_2 & a_1 & a_2 \\ \end{array}$$

Tabella 1: Esempio di operazione interna binaria ad A