

BL616 射频性能测试 使用手册

Version: 1.2

Copyright @ 2023

www.bouffalolab.com

目录

1	版本	记录					•														3
2	概述																				4
3	下载	开发烧录工	具包																		5
4	烧录	/下载测试固	団件 .																		6
	4.1	下载测试员	5件 .																		6
	4.2	运行测试员	5件 .																		9
5	频偏	补偿设置 .																			11
6	WiFi	射频性能测	测试 .																		13
	6.1	发射 WiFi	数据包																		13
	6.2	接收 WiFi	数据包																		18
	6.3	发射 WiFi	单载波																		19
7	BLE	射频性能测	讨试 .																		21
	7.1	发射 BLE	数据包																		21
	7.2	接收 BLE	数据包																		23
	7.3	发射 BLE	单载波																		24
8	BT 身	寸频性能测i	式																		26
	8.1	BT 发送设	置																		26
	8.2	BT 接收设	置																		28
9	802.	15.4 射频性	比能测试	٠ ,																	30
	9.1	进入 802.	15.4 测	试																	30
	9.2	退出 802.	15.4 测	试																	31
	9.3	802.15.4	发送测记	式 .																	31
	0.4	202 15 A ±	李小小洞口	4																	33

1

版本记录

表 1.1: 修改记录

版本	更新内容
V1.0	initial version
V1.1	add BT rf test operations and update some pictures based on 1.8.0.602
V1.2	add 802.15.4 rf test operations and update some pictures

概述

本文档用于指导终端用户使用射频性能测试工具 (RF MFG) 完成对 BL616 芯片及模组的射频性能评估测试。射频性能测试之前需要对 BL616 下载 MFG 测试固件,以便于接收射频性能测试工具下发的串口指令。射频性能测试工具 (RF MFG) 集成于 BLDevCube 工具中。射频性能测试工具 (RF MFG) 界面如下图所示。

图 2.1: RF MFG 界面图

对已经下载了 MFG 固件的 BL616 芯片,使用射频性能测试工具 (RF MFG) 可以控制 BL616 芯片实现的以下功能:

- 发射/接收 WiFi/BLE 数据包
- 发射 WiFi/BLE 单载波
- 射频频偏校准

下载开发烧录工具包

BLDevCube 工具包解压后的目录文件如下图所示。

图 3.1: 开发烧录工具包目录文件

烧录/下载测试固件

4.1 下载测试固件

本文档以 BL616/8-DVK 开发板为例演示固件下载过程,指导终端用户下载 MFG 测试固件。BL616/8-DVK 开发板如下图所示。

图 4.1: BL616/8-DVK 开发板

开发板具有两组 USB Type-C 接口,其中一组接口 (USB) 用于 USB 设备,另外一组接口 (UART Download & CK-Link) 连接一颗 BL702 USB 转串口芯片,用于 PC 端与 BL616 模组进行串口通信。接口 (UART Download & CK-Link) 连接

到 PC 端时, PC 端的设备管理器中会出现一个串口设备。BL616/8-DVK 开发板上的 BL702 USB 转串口芯片与待测模组串口的连接关系是:

- TXD: 与 BL616 模组的 RXD(GPIO22) 相连
- RXD: 与 BL616 模组的 TXD(GPIO21) 相连

PC 端成功识别串口设备后,双击 BLDevCube.exe 文件,在 Chip 中选择 BL616/618,进入 IOT 固件下载界面。

图 4.2: 固件下载界面 1

在上图界面的右侧通信接口设置中:

- · Interface: 选择烧录的通信接口,这里选择 uart 进行烧录
- Port/SN: 当选择 UART 进行烧录时,选择 PC 端识别到的待测模组 COM 口号,可以点击 Refresh 按钮进行 COM 号的刷新
- Uart Rate: 当使用 UART 作为烧录接口时,设置 UART 接口的波特率,可以填写 2M 即 2000000
- JLink Rate: 当选择 JLink 接口烧录时, 设置 JLink 接口的通信速率

其它选项项使用默认配置即可。

在上图界面烧录文件配置中,先选择:

• partition table:选择烧录工具目录下,对应芯片型号 partition 目录下的分区表,本例中使用 chips/bl616/partition/partition_-cfg_2M.toml

BL616 射频性能测试使用手册 7/ 33 @2023 Bouffalo Lab

工具会根据用户选择的 partition table 文件自动识别并显示相关分区, 如下图所示。

图 4.3: 固件下载界面 2

在上图界面烧录文件配置中,分别选择:

- dts: 选择烧录工具目录下,对应芯片型号 device_tree 目录下的设备树文件, 本例中使用 chips/bl616/device_tree/bl_-factory_params_loTKitA_auto.dts
- boot2: 选择烧录工具目录下,对应芯片型号 builtin_imgs 目录下的 Boot2,本例中使用 bl616/builtin_imgs/boot2_isp_bl616_v6.5.0/boot2_isp_release.bin
- mfg: 选择烧录工具目录下,对应芯片型号 builtin_imgs 目录下的 mfg,本例中使用 bl616/builtin_imgs/bl616_mfg_-v2.06/gu/bl618_mfg_gu_c5ed197d3_autoboot.bin

完成上述界面配置后,将待测模组进入到 UART 启动模式 (UART 烧录),方法如下: - 先按下开发板上的 BOOT_SEL 按键,再按下 CHIP_EN 按键 - 然后松开 CHIP_EN 按键, 最后松开 BOOT_SEL 按键

完成将待测模组切换到 UART 启动模式操作后,点击界面中的 Create&Download 按钮,开始 MFG 测试固件的烧录。烧录成功的 log 如下图所示。

图 4.4: 固件烧录成功界面

4.2 运行测试固件

测试固件烧录完成后,在 BLDevCube 工具中,通过选择 MFG 标签进入到 RF MFG 测试界面。选择对应的 COM 号,点击 Open 按钮,打开对应串口,直接按下开发板上 CHIP_EN 键,此时 BL616 芯片就可以正常运行 MFG 测试固件,在 RF MFG 界面的 LOG 窗口位置可以看到固件程序成功运行的 log,如下图所示。

BL616 射频性能测试使用手册 9/ 33 @2023 Bouffalo Lab

图 4.5: MFG 测试固件成功运行

注解: RF MFG 界面与 MFG 测试固件通过串口通信,使用的波特率是 2000000,数据位为 8 位,没有奇偶校验。

频偏补偿设置

晶体为整个芯片 soc 系统提供精准的时钟源,时钟源的精准程度对射频收发机有着至关重要的作用,其中一项射频指标是载波频偏。IEEE802.11 协议中针对载波频偏范围具有严格的规范要求 (±20ppm 以内),如果频偏过大,会直接造成 WiFi 系统在实际使用过程中丢包率增加,降低数据吞吐率。晶体的负载电容 (CapCode) 可以微调晶体自身的振荡频率,通过调节晶体的负载电容 (CapCode),可以优化载波频偏该项射频指标。BL616 芯片内部自带晶振负载电容阵列,终端用户可根据晶振原厂提供的手册,手动调节不同晶振负载电容值以达到补偿载波频偏的目的。

表 5.1: BL616 对应的电容补偿值

XTAL Loading Capacity (pF)	Capacity Code							
12	32~36							
15	38~43							

设置方法如下:

- 1. 取消勾选 Auto, 在 Cap Code 中填写负载电容需要补偿的值,每一个值代表实际电容大小为 0.4pF。
- 2. 点击 Misc Set 按键更新补偿值到 BL616 芯片内部。

图 5.1: 频偏补偿设定

注解:实际 PCB 走线也存在一定的寄生电容,所以最佳频偏补偿值以实际测试结果为准。

WiFi 射频性能测试

6.1 发射 WiFi 数据包

6.1.1 信道 Channel 及功率 Power 设置

通过 Channel 和 Power 下拉选项框,可以设置 WiFi 数据包的发射信道和发射功率。Channel 选择范围为 1-14, Power 选择范围为-15dBm ~ 23dBm。如果待测的模组已经经过产测校准,则可以将 Power Offset 选择为 Enable,capcode 选择为 Auto,然后先点击 Misc Get,再点击 Misc Set,目的是将产测校准数据设置到芯片内部寄存器。

图 6.1: 设置 Channel 和 Power 参数

WiFi 不同模式以及速率使用的调制方式不同,对信号质量 (如: EVM) 也有不同的要求。为了满足 WiFi 标准要求,建

议不同速率下的发射功率不要超过最大发射功率限制,不同速率的最大发射功率如下表所示。

表 6.1: 最大发射功率表

Mode	Rate	Maximum Power(dBm)					
	ER-MCS2	17					
	ER-MCS1	17					
	ER-MCS0	17					
	DCM-MCS4	18					
	DCM-MCS3	18					
	DCM-MCS1	18					
	DCM-MCS0	18					
	MCS9	14					
11ax	MCS8	15					
	MCS7	15					
	MCS6	15					
	MCS5	16					
	MCS4	18					
	MCS3	18					
	MCS2	18					
	MCS1	18					
	MCS0	18					
	MCS7	17					
	MCS6	18					
11n	MCS5	18					
	MCS4	18					
1111	MCS3	18					
	MCS2	18					
	MCS1	18					
	MCS0	18					
	54Mbps	18					
	48Mbps	19					
	36Mbps	20					
11g	24Mbps	20					
''9	18Mbps	20					
	12Mbps	20					
	9Mbps	20					
	6Mbps	20					
	11Mbps	20					
11b	5.5Mbps	20					
	2Mbps	20					

表 6.1: 最大发射功率表 (continued)

Mode	Rate	Maximum Power(dBm)
	1Mbps	20

注解: 最大功率与模组的设计质量相关,上表最大功率仅供参考。

6.1.2 模式及速率设置

发射 11b 数据包

11b 数据包可以选择速率: 1Mbps,2Mbps,5.5Mbps,11Mbps,前导默认使用 Long preamble。设置完毕后,点击 802.11b Start 按钮开始发射 11b 数据包。如果想要停止发射,点击 802.11b Stop 按钮即可。

图 6.2: 11b 数据包速率设置

注解: 11b 数据包仅支持 20M 带宽, BCC 编码方式。

发射 11g 数据包

11g 数据包可以选择速率: 6Mbps, 9Mbps, 12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps, 设置完毕后, 点击 802.11g Start 按钮开始 11g 发射数据包。如果想要停止发射,点击 802.11g Stop 按钮即可。

图 6.3: 11g 数据包速率设置

注解: 11g 数据包仅支持 20M 带宽, BCC 编码方式。

发射 11n 数据包

11n 数据包可以选择速率选项为 MCS0-MCS7, 带宽可以选择 20MHz 或者 40MHz, 编码方式可以选择 BCC 或 LDPC, 11n 发送的数据包采用的均是 Long GI, HT-MF 格式。

注解: 目前 HT_GF 模式不支持。

设置完毕后,就可以点击 802.11n Start 按钮开始发射 11n 数据包。如果想要停止发射,点击 802.11n Stop 按钮即可。

图 6.5: 11n 数据包速率设置

发射 11ax 数据包

11ax 数据包可以选择速率选项为 MCS0-MCS9,DCM-MCS0,DCM-MCS1,DCM-MCS3,DCM-MCS4, ER-MCS0~ER-MCS2。

图 6.6: 11ax 数据包速率设置

带宽可选择 20MHz 或 40MHz, Coding Type 选项为 BCC 和 LDPC, HE-LTF/GI 选项为 2x HELTF+0.8us, 2x HELTF+1.6us, 4x HELTF+3.2us。

图 6.7: 11ax Coding Type 和 HE-LTF/GI 设置

设置完毕后,就可以点击 802.11ax Start 按钮开始发射 11ax 数据包。如果想要停止发射,点击 802.11ax Stop 按钮即可。

注解: WiFi 11ax 数据包当选择带宽为 40MHz 时,则编码方式只能是 LDPC。

6.2 接收 WiFi 数据包

WiFi 接收数据包设置较为简单,点击 RX Start 按钮后即可进入 WiFi 数据包接收模式,点击 RX Frm Cnt 按钮可以显示当前为止接收到的数据包个数以及数据包的 RSSI 平均值,如下图所示。

图 6.8: 接收 WiFi 数据包

注解: 在开始测试接收性能之前,需要先手动停止发射性能测试。

6.3 发射 WiFi 单载波

发送 WiFi 的单载波时, 需要先设定发射信道(Channel)和功率(Power), 再将测试模式(Mode)选择到连续波 Test(CW)模式, 停止发射 WiFi 单载波时, 将测试模式 (Mode)选择为 Normal 即可, 如下图所示。

图 6.9: 发射 WiFi 单载波

图 6.10: 停止发射 WiFi 单载波

BLE 射频性能测试

在进行 BLE 发射与接收性能测试 (发射 BLE 单载波测试除外)之前,需要在 Devcube 工具中 MFG 界面的 Basic Options 里打开选择相应串口号, Mode 选择为 Normal(正常发包模式), Power Offset 选择 Enable, TxDuty 选择 50%, capcode 勾选 Auto。选择完上述设置后,先点击 Open Uart,打开相应的串口,然后点击 Misc Ge,获得芯片内部存储的校准数据,最后点击 Misc Set,将芯片内部获得的校准数据设置到芯片内部相应寄存器。

注解:如果该芯片未做产测校准,需要在 Capcode 选项中,取消勾选 Auto,然后在该输入框中输入用户指定的 capcod 值,该值会影响载波频偏指标(Carrier Frequency Offset)。

7.1 发射 BLE 数据包

发射 BLE 数据包时,需要选择将要发送的 BLE 信道(PHY Channel),测试速率(Tx Rate),数据包长度(Tx Data Length),数据包类型(Tx Payload Type),发射功率(Power),然后点击 Tx Start 按钮进入 BLE 数据包发射模式,当 LOG 窗口中出现"le tx test starts successfully" 信息时,表示 BLE 成功进入发射模式,如下图。

图 7.1: 发射 BLE 数据包

停止发射数据包可以点击 Stop 按钮, 当 LOG 中出现"le test stopped" 时,表示停止发射成功,如下图所示。

图 7.2: 停止 BLE 发射数据包

7.2 接收 BLE 数据包

BLE 接收数据包时, 选择需要测试的信道(PHY Channel), 速率(Rx Rate), 然后点击 Rx Start 按钮即可进入 BLE 数据包的接收模式, 当 LOG 中出现"le rx test starts successfully" 信息时, 表示 BLE 成功进入接收模式, 如下图所示。

图 7.3: 接收 BLE 数据包

当 BLE 停止接收时,点击 Stop 按钮,LOG 窗口中会显示接收到的数据包个数,如下图。

图 7.4: 停止 BLE 接收数据包

7.3 发射 BLE 单载波

发射 BLE 单载波时, 需要先将 Basic Options 中的测试模式(Mode)选择到连续波 Test(CW) 模式, 然后设置 BLE 的信道(PHY Channel)和功率(Power), 最后点击 BLE 的 Tx Start 按钮。关闭 BLE 单载波时, 需要点击 BLE 的 Stop 按钮, 如下图。

图 7.5: 发送 BLE 单载波

图 7.6: 关闭 BLE 单载波

8

BT 射频性能测试

在进行 BT 发射与接收性能测试之前,需要在 Devcube 工具中 MFG 界面的 Basic Options 里打开选择相应串口号,Mode 选择为 Normal(正常发包模式),Power Offset 选择 Enable,TxDuty 选择 50%,capcode 勾选 Auto。选择完上述设置后,先点击 Open Uart 打开串口,然后点击 Misc Ge,获得芯片内部存储的校准数据,最后点击 Misc Set,将芯片内部获得的校准数据设置到芯片内部相应寄存器。

注解:如果该芯片未做产测校准,需要在 Capcode 选项中,取消勾选 Auto,然后在该输入框中输入用户指定的 capcod 值,该值会影响载波频偏指标(Carrier Frequency Offset)。

8.1 BT 发送设置

BT 发送时,选择需要的 PHY Channel,Packet Type,Tx Payload Type,Power,点击 Tx Start 进入 BT 的发送模式,当 LOG 中出现"bt tx test starts successfully"时,表示 BT 进入发送模式成功,如下图。

图 8.1: BT 发送数据包

测试可以使用 Stop 按钮停止, 当 LOG 中出现"nb_packet_tx=xxxx"时,表示停止成功,并显示发送的数据包个数,如下图。

图 8.2: BT 停止发送数据包

8.2 BT 接收设置

BT 只能接收 BD ADDR 为 0 的 DH 包。

BT 接收时,选择需要的 PHY Channel,Packet Type,点击 Rx Start 即可进入数据包的接收模式,当 LOG 中出现"bt rx test starts successfully"时,表示 BT 进入接收模式成功,如下图。

图 8.3: BT 接收数据包

测试可以使用 Stop 按钮停止, 当 LOG 中出现 "nb_packet_rx=xxxx"时,表示停止成功,并显示收到的数据包个数,如下图。

图 8.4: BT 停止接收数据包

802.15.4 射频性能测试

9.1 进入 802.15.4 测试

点击 Enter 可以进入 802.15.4 测试。

图 9.1: 进入 802.15.4 测试

9.2 退出 802.15.4 测试

点击 Exit 可以退出 802.15.4 测试。

图 9.2: 退出 802.15.4 测试

9.3 802.15.4 发送测试

进入 802.15.4 测试后,Channel 设置发送信道,Seq Num 设置序列号,Tx Interval 设置发送间隔。 点击 Tx Start 开始测试,点击 Tx Stop 结束测试。测试结束后,会在 LOG 区显示已发送包的数量。

图 9.3: 802.15.4 发送测试

9.4 802.15.4 接收测试

进入 802.15.4 测试后, Channel 设置接收信道, Seq Num 设置序列号。

点击 Rx Start 开始测试,点击 Rx Stop 结束测试。测试结束后,会在 LOG 区显示成功收到的包数,以及平均 RSSI Frequency Offset 和 LQI。

图 9.4: 802.15.4 接收测试