

Prof. Jaques Antunes

Analista e Desenvolvedor de Sistemas - Centro Universitário Ritter dos Reis Mestrando em Engenharia da Computação - Universidade Federal do Rio Grande

- Coordenador Pedagógico Codifica Edu
- Líder Técnico de Desenvolvimento de Software Trindtech
- Desenvolvedor de Software Web e Mobile

jaquesantunes@codificaedu.com.br www.linkedin.com/in/jaques-antunes/

Somos especialistas em educação, tecnologia, inovação e pensamento computacional.

Equipe multidisciplinar com especialistas em pedagogia, programação, biologia sustentável, engenharia de software, jogos, design, entre outras áreas. Criatividade e atualização constante.

Ser um parceiro das instituições no ensino de educação tecnológica, preparando as pessoas para as oportunidades e desafios de um mundo cada vez mais digital.

Documento de Orientação Geral

Do ENIAC à IA: um olhar retrospectivo sobre a história dos computadores

"O progresso tecnológico é como uma escalada íngreme: enquanto olhamos para trás, percebemos quão longe chegamos, mas quando olhamos para cima, percebemos quão longe ainda podemos ir." - IA Generativa de Texto

O que é um computador?

ÁBACO CHINÊS: da Pré-história até os dias atuais

- Estima-se que seu desenvolvimento tenha ocorrido entre 3.000 e 2.000 A.C.
- Praticamente todas as civilizações produziram uma espécie de Ábaco
- Bastante útil para SOMA e SUBTRAÇÃO, que eram os cálculos mais frequentes na época, mas capaz de realizar as quatro operações fundamentais

Máquina de Pascal: 1642

- Construída pelo filósofo e matemático francês Blaise Pascal
- Baseada em engrenagens e acionado por manivelas
- Capaz de realizar cálculos de soma e subtração com até 8 dígitos
- Não obteve sucesso comercial

Máquina Diferencial: 1820

- Projetada por Charles Babbage
- Primeiro computador mecânico programável
- Projeto teve um alto investimento do governo até ser cancelado após 19 anos pela implementação insatisfatória

Máquina Analítica: 1833

- Projetada por Charles Babbage
- Capaz de fazer contas simultaneamente com diversos parâmetros
- Capaz de armazenar 1000 números de até 40 dígitos
- Fazia as 4 operações fundamentais, comparações, raíz quadrada e era possível impor condições e repetições
- Outro grande projeto que não logrou êxito, pois não encontrou financiamento

O Domínio da eletricidade

 Dispositivos como o Relé, que através de um eletro-imã são capazes de agir como um interruptor em circuitos elétricos, permitiram o surgimento de diversas ferramentas elétricas e eletromecânicas

Lógica Booleana

- George Boole, baseado nos projetos de Babbage, em 1854, desenvolveu a álgebra booleana. Este paradigma matemático, deu ênfase a notação binária ao invés da tradicional decimal, entretanto esse conceito foi por muito tempo esquecido.
- Na lógica de Boole existem apenas três operadores: E, OU e Não, onde as três são as únicas operações necessárias para efetuar comparações ou as 4 operações fundamentais.

Z2 - 1939

- Inventado pelo alemão Konrad Zuse
- Um computador eletromecânico com 600 relés e que funcionava com a lógica binária
- Com mais de 300 quilogramas e consumindo + de 1000 watts era capaz de fazer uma soma por segundo

Z3 - 1941

- Considerado um marco da geração zero
- Um computador eletromecânico com 2000 relés, pesando 1 tonelada, consumindo
 + de 4000 watts e era capaz de fazer também apenas 1 soma por segundo
- Seu diferencial estava em que era o primeiro computador digital totalmente programável

WWII - Bomba - 1940

- Inventada por Alan Turing com o objetivo de decifrar as mensagens enviadas através de telégrafos e criptografadas pelo enigma
- Capaz de testar uma quantidade enorme de combinações
- Bem-sucedida e em 1941 uma grande parte das mensagens havia sido descriptografada

WWII - Colossus - 1943

- Nasce de um projeto britânico sob a liderança de Alan Turing
- Com o objetivo de decifrar as mensagens da alta cúpula alemã durante a segunda guerra mundial
- Construído através da válvula termiônica, utilizada nos rádios e que permitiam um controle mais fino da passagem de corrente elétrica.

WWII - Colossus Mark 2

- A segunda versão do Colossus foi construída por Tommy Flowers e era 5x mais rápida e ficou pronta para ser utilizada já no dia desembarque em Normandia, sendo considerado essencial para o fim do conflito. Tendo as seguintes características:
 - Possuía 2.400 válvulas
 - Pesava 5 toneladas
 - Com 7 quilômetros de fiação elétrica
 - Sua entrada de dados era uma fita de papel perfurado

ENIAC

- Primeiro computador de uso geral
- Construído com o intuito de realizar cálculos de artilharia
- Programado por seis mulheres
- Foi considerado uma falha, pois ficou pronto após a segunda guerra mundial
- Acionamento: motor equivalente a dois potentes motores de carros de quatro cilindros, enquanto um enorme ventilador refrigerava o calor produzido pelas válvulas.
- Consumo: 150 kW ao produzir o calor equivalente a 50 aquecedores domésticos.
- Arquitetura do ENIAC: composta de 20 registradores (cada um capaz de armazenar um número decimal de 10 dígitos)
- Programação: através de fios e pinos (como painel telefônico, usando 6.000 chaves).
- Executava 5000 adições/subtrações ou 300
- multiplicações por segundo.
- Para programar demorava 1 ou 2 dias
- Grande limitação: capacidade de armazenamento

ENIAC

John Von Neumann

- Consultor do Projeto ENIAC
- Criou o conceito de "programa armazenado".
- Criou o conceito de operações com número binário.
- Desenvolveu a lógica dos circuitos.
- Denominação atual da máquina proposta Máquina de Von Neumann

Arquitetura de John Von Neumann

E/S: controla a entrada de dados provenientes do mundo exterior, assim como sua saída **Barramentos:** vias que permitem a comunicação de dados entre os componentes internos **Unidade de Controle:** responsável pela coordenação das operações

Unidade Lógica Aritmética: responsável por executar operações lógicas e matemáticas

Acumulador: pequeno registrador

Memória: responsável por armazenar tanto dados, quanto instruções

Transistor

- Inventado por três colaboradores da Bell Labs (Graham Bell Inventor do telefone) em 1947
- Tendo função semelhante aos relés e válvulas, porém, sendo muito menor e mais resistente

TRADIC - 1954

- Primeiro computador transistorizado.
- Também produzido na Bell Labs
- Intuito conceitual
- Capaz de fazer um milhão de operações lógicas por segundo
- Cabia dentro de um armário

Circuitos Integrados

- Conhecidos como Chips ou Micro-Chips
- Composto por capa de proteção, cristal de silício e terminais de contato
- Extremamente pequeno e poderoso
- Permitiu a miniaturização dos computadores

Como funcionam as memórias do computador?

Memória RAM

- Random Access Memory (Memória de Acesso Aleatório)
- Uma memória de curta duração e volátil, onde a partir do momento em que é desenergizada, os dados desaparecem.
- Memória de trabalho do computador

HD/SSD

 Memórias persistente ou secundárias, capazes de armazenar os dados por um longo período

Cache e Registradores

 São memórias mais rápida que as convencionais, entretanto, sua capacidade de armazenamento é baixíssima. Elas se encontram dentro do processador para acesso rápido

Como o computador representa as informações do mundo real?

1001123

 $100 \times 1 + 10 \times 2 + 1 \times 3$

4 2 1 **0 0 0**

Bit mais significativo

/codifica

Bit menos significativo

Tabela de Unidades

Bytes	В	8 Bits	
Kilobyte	КВ	1024 B	2 ¹⁰ = 1.024
Megabyte	MB	1024 KB	2 ²⁰ = 1.048.176
Gigabyte	GB	1024 MB	2 ³⁰ = 1.073.741.824
Terabyte	ТВ	1024 GB	2 ⁴⁰ = .099.511.627.776

Como o computador representa as letras e símbolos?

0	NUL	16	DLE	32	SP	48	0	64	@	80	Р	96 `	112 p
1	SOH	17	DC1	33	!	49	1	65	Α	81	Q	97 a	113 q
2	STX	18	DC2	34	"	50	2	66	В	82	R	98 b	114 r
3	ETX	19	DC3	35	#	51	3	67	С	83	S	99 c	115 s
4	<u>EOT</u>	20	DC4	36	\$	52	4	68	D	84	Т	100 d	116 t
5	ENQ	21	NAK	37	%	53	5	69	Е	85	U	101 e	117 u
6	<u>ACK</u>	22	SYN	38	æ	54	6	70	F	86	٧	102 f	118 v
7	BEL	23	<u>ETB</u>	39	•	55	7	71	G	87	W	103 g	119 w
8	BS	24	CAN	40	(56	8	72	Н	88	X	104 h	120 x
9	<u>HT</u>	25	EM	41)	57	9	73	1	89	Υ	105 i	121 y
10	<u>LF</u>	26	<u>SUB</u>	42	*	58	:	74	J	90	Z	106 j	122 z
11	VT	27	ESC	43	+	59	;	75	K	91	[107 k	123 {
12	FF	28	FS	44	,	60	<	76	L	92	١	108 l	124
13	CR	29	GS	45	-	61	=	77	M	93]	109 m	125 }
14	<u>so</u>	30	RS	46		62	>	78	N	94	^	110 n	126 ~
15	SI	31	US	47	1	63	?	79	0	95		111 o	127 <u>DEL</u>

Unicode

Como o computador representa as cores?

RGB

72 73 33

/codifica