Consequences of Weyl's law in low-dimensional Euclidean Random Assignment Problems

I SIFS Conference, Parma, IT, 23-25/06/2021

Matteo D'Achille

In collaboration with

Dario Benedetto (Rome La Sapienza), Emanuele Caglioti (Rome La Sapienza), Sergio Caracciolo (Milan University, INFN), Gabriele Sicuro (London King's College) and Andrea Sportiello (CNRS, Univ. Paris 13)

Refs: Journal of Statistical Physics 183, 34 (2021) (arXiv:2008.01462 [math-ph]) "Statistical Properties of the Euclidean Random Assignment Problem", PhD Thesis of Université Paris-Saclay, 2020. [tel-03098672]

The Euclidean Random Assignment Problem (ERAP)

Let $\mathscr{B}=(B_1,\ldots,B_n)$ be blue and let $\mathscr{R}=(R_1,\ldots,R_n)$ be red points : n-samples of i.i.d. r.v. of pdf $\rho:\Omega\to\mathbb{R}$ ("disorder"), (Ω,\mathscr{D}) is a metric space (mostly an **Euclidean** space with **Euclidean** distance \mathscr{D}). For $p\in\mathbb{R}$ and a permutation π , consider the *Hamiltonian*

$$\mathscr{H}(\pi) = \sum_{i=1}^{n} \mathscr{D}^{p}(\mathbf{B}_{i}, \mathbf{R}_{\pi(i)})$$

and the r.v. (ground state energy)

$$\mathscr{H}_{\mathrm{opt},(n,d)}^{(p)} = \min_{\pi \in \mathscr{S}_n} \mathscr{H}(\pi) \quad (\pi_{\mathrm{opt}} = \operatorname*{arg\,min}_{\pi \in \mathscr{S}_n} \mathscr{H}(\pi)).$$

 $\underline{\mathsf{Problem}} \colon \mathsf{understand} \mathsf{ the rate of } E_{p,d}(n) \coloneqq \mathbb{E}[\mathscr{H}^{(p)}_{\mathsf{opt},(n,d)}] \mathsf{ as } n \to \infty.$

Three reasons for being interested in ERAPs

- Spin Glasses ERAP is a toy model of spin-glass in finite dimension (<u>frustration</u> is due to trian. inequality) which is numerically simple (in comparison to e.g. Edwards–Anderson spin glass) (Mézard–Parisi 1988)
- Optimal Transport ERAP is a Monge-Kantorovitch problem associated to empirical measures $\rho_{\mathscr{B}}$, $\rho_{\mathscr{R}}$:

$$\mathscr{H}_{\mathrm{opt}} = nW_p^p(\rho_{\mathscr{B}}, \rho_{\mathscr{R}})$$

where W_p is the p-Wasserstein distance (Villani 2009, Brezis 2018)

• Computational Complexity Theory - ERAP is a small (but crucial) modification of random TSP, but finding π_{opt} is easy (the assignment problem is P-complete).

ERAP: the phase diagram

We wish to study

$$E_{p,d}(n) := \mathbb{E}[\mathscr{H}_{\mathrm{opt},(n,d)}^{(p)}] \stackrel{?}{=} K_{p,d} n^{\gamma_{p,d}} (\ln n)^{\gamma'_{p,d}} (1 + o(1))$$

as $n \to \infty$, depending on (p,d) and the choice of disorder.

Phase diagram: $(\gamma_{p,d}, \gamma'_{p,d})$ are expected to be "universal", i.e. largely independent on the microscopic details (which may affect the constant $K_{p,d}$).

Remark: non-uniform disorder is more subtle!

Example: standard Gaussian disorder at (p,d) = (2,1)

$$E_{2,1}(n) \sim 2 \ln \ln n$$
 (i.e. $\gamma_{2,1} = \gamma'_{2,1} = 0$).

(Caracciolo-**D'A**-Sicuro 2019, Bobkov-Ledoux 2019 + Berthet-Fort 2020)

See also Benedetto-Caglioti 2020 for non-uniform case at d=2.

ERAP at d=2: an old problem

$$(\gamma_{p,d},\gamma_{p,d}')=(\gamma_{\mathrm{LB}},\frac{p}{2})$$
 if $p\geq 1$ (Ajtai–Komlós–Tusnády 1984)

Optimal assignment typically with a $O(\ln n)$ -nearest-neighbor.

The Caracciolo-Lucibello-Parisi-Sicuro approach

A (classical) field theory for general d and $p \ge 1$ (PRE 2014).

At p=2, for a d-dimensional manifold Ω , the Lagrangian is

$$\mathcal{L}[\overrightarrow{\mu}, \phi] := \int_{\Omega} \frac{1}{2} \overrightarrow{\mu}^2(x) v_{\mathscr{B}}(\mathrm{d}x) + \int_{\Omega} \left[\phi(x + \overrightarrow{\mu}(x)) v_{\mathscr{B}}(x) - \phi(x) v_{\mathscr{B}}(\mathrm{d}x) \right]$$

 $v_{\mathscr{B}(\mathscr{R})}$ is the "charge" density of blues (reds) and ϕ is a Lagrange multiplier

The Caracciolo-Lucibello-Parisi-Sicuro approach

If $|\overrightarrow{\mu}|$ is "small" when $n \to \infty$, one can use Taylor expansion in the "small parameter" $\mathcal{E} = |\nabla \cdot \overrightarrow{\mu}(x)|$. The linearized Lagrangian is

$$\mathcal{L}_{\mathrm{lin}}[\overrightarrow{\mu},\phi] := \int_{\Omega} \left[\frac{1}{2} \overrightarrow{\mu}^2(x) + \overrightarrow{\mu}(x) \cdot \nabla \phi(x) \right] \mathrm{d}x + \int_{\Omega} \delta v(x) \phi(x) \, \mathrm{d}x.$$

The Euler-Lagrange eqs. at leading order in ε give Poisson eq. for ϕ with source $\delta v \coloneqq v_\mathscr{B} - v_\mathscr{R}$

$$\Delta_{\Omega}\phi(x)=\delta v(x), \qquad -\Delta_{\Omega}= {\sf Laplace\text{-Beltrami op. on }} \Omega$$

to be solved with Neumann bc on Ω (if $\partial\Omega\neq\varnothing$). Then $\overrightarrow{\mu}=-\nabla\phi$ and $E_{\Omega}=\int_{\Omega}|\overrightarrow{\mu}|^2$. Following Caracciolo–Lucibello–Parisi–Sicuro 2014, the energy writes

$$E_{\Omega}(n) = -2\operatorname{Tr}\Delta_{\Omega}^{-1}$$

which is **bad defined** !! \implies Regularizations

The regularized spectral expansion and Weyl's law

A way of rewriting Caracciolo–Lucibello–Parisi–Sicuro's regularization is

$$E_{\Omega}(n) = -2\operatorname{Tr}\Delta_{\Omega}^{-1} \simeq 2\sum_{\lambda \in \Lambda(\Omega)} \frac{F\left(\frac{\lambda}{n^{2/d}(\log n)^b}\right)}{\lambda}$$

for an unknown cutoff function F independent on Ω (but possibly dependent on the local randomness of the ERAP), satisfying only F(0)=1 and $\lim_{z\to\infty}F(z)=0$.

The regularized spectral expansion and Weyl's law

Weyl's law (Ivrii 1980, Neumann b.c. case)

Let Ω be a d-dimensional manifold and $\Lambda(\Omega)$ be the spectrum of $-\Delta_{\Omega}$ with Neumann b.c. if $\partial\Omega\neq\varnothing$ without $\lambda=0$. Let $\mathscr{N}_{\Omega}(\lambda)$ be the eigenvalue counting function. Then

$$\mathscr{N}_{\Omega}(\lambda) = rac{\omega_d}{2\pi^d} |\Omega| \lambda^{rac{d}{2}} + rac{\omega_{d-1}}{4(2\pi)^{d-1}} |\partial \Omega| \lambda^{rac{d-1}{2}} + o(\lambda^{rac{d-1}{2}})$$

- $\omega_d = \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)} = \text{volume of standard } d\text{-ball};$
- $|\Omega| d$ -dimensional volume of Ω ;
- $|\partial \Omega|$ surface area of the boundary of Ω .

Example: asymptotic energy differences at d=2

The precise form of F is inessential as, for two manifolds Ω, Ω' ,

$$\begin{split} &\lim_{n\to\infty} \left(E_{\Omega}(n) - E_{\Omega'}(n) \right) = 2 \lim_{n\to\infty} \left(\sum_{\lambda \in \Lambda(\Omega)} \frac{F\left(\frac{\lambda}{n}\right)}{\lambda} - \sum_{\lambda \in \Lambda(\Omega')} \frac{F\left(\frac{\lambda}{n}\right)}{\lambda} \right) \\ &= 2 \lim_{n\to\infty} \int_{0^+}^{\infty} F\left(\frac{\lambda}{n}\right) \frac{\mathrm{d} \left(\mathcal{N}_{\Omega}(\lambda) - \mathcal{N}_{\Omega'}(\lambda)\right)}{\lambda} \\ &= 2 \lim_{n\to\infty} \int_{0^+}^{\infty} \mathrm{d} \lambda \left(\frac{F\left(\frac{\lambda}{n}\right)}{\lambda^2} - \frac{F'\left(\frac{\lambda}{n}\right)}{n\lambda} \right) \left(\mathcal{N}_{\Omega}(\lambda) - \mathcal{N}_{\Omega'}(\lambda)\right) \\ &= 2 \int_{0^+}^{\infty} \frac{\mathrm{d} \left(\mathcal{N}_{\Omega}(\lambda) - \mathcal{N}_{\Omega'}(\lambda)\right)}{\lambda} \end{split}$$

as $(\mathcal{N}_{\Omega}(\lambda) - \mathcal{N}_{\Omega'}(\lambda)) = O(\sqrt{\lambda \ln \lambda})$ at d = 2 (and near the origin the integral is regularized by the spectral gap).

Explicit evaluation of energy differences

Benedetto-Caglioti-Caracciolo-D'A-Sicuro-Sportiello, JStatPhys 2021

Main result: even if the field theory is ill-posed, we can give a precise experimental (and predictive!) meaning to energy differences $E_{\Omega}(n)-E_{\Omega'}(n)$ through **regularization**. We did it in two ways :

- R_{Ω} or "**Robin mass**": integrals of the diagonal of Green's function for Poisson eq.;
- K_{Ω} or "Kronecker mass": expand spectral function $Z_{\Omega}(s)$ associated to $-\Delta_{\Omega}$ around the simple pole s=1.

Remark 1: Robin and Kronecker masses satisfy (Morpurgo 2002)

$$\forall \Omega$$
, $R_{\Omega} - K_{\Omega} = \frac{\ln 2}{2\pi} - \frac{\gamma_E}{2\pi} = 0.0184511...$

Remark 2: other regularizations are possible.

Example: square \mathbb{R} , 2-torus \mathbb{T} , Boy surface \mathbb{B}

Obtained from rectangle of aspect ratio ρ by appropriately gluing sides

Energy shift w.r.t. manifold at aspect ratio $\rho = 1$:

$$\Delta E_{\Omega}(\rho) = 2(R_{\Omega}(\rho) - R_{\Omega'}(1)) = 2(K_{\Omega}(\rho) - K_{\Omega'}(1))$$

$$K_{\mathbb{R}}(\rho) = \frac{\gamma_{\mathbb{E}}}{2\pi} - \frac{\ln(4\pi^2\rho|\eta(i\rho)|^4)}{4\pi} + \frac{1}{2\pi^2} \left(\rho + \frac{1}{\rho}\right)\zeta(2)$$

$$K_{\mathbb{T}}(i\rho) = \frac{\gamma_{\mathbb{E}} - \ln(4\pi\sqrt{\rho})}{2\pi} - \frac{1}{\pi}\ln|\eta(i\rho)|$$

$$K_{\mathbb{B}}(
ho) = rac{\gamma_{\mathbb{E}}}{2\pi} - rac{\ln(4\pi^2
ho)}{4\pi} - rac{\ln\eta(i
ho)}{\pi} - rac{1}{4\pi^2}\left(
ho + rac{1}{
ho}
ight)\zeta(2)$$

(See JStatPhys 2021 for more manifolds)

Coefficient of sub-leading $\log n$ correction at (p,d)=(2,3)

An analogous argument based on Weyl's law shows, for (p,d)=(2,3) that

$$E_{\Omega}(n) = Kn^{\frac{1}{3}} + A_{\Omega}\log n + o(\log n),$$

for a universal (=independent on Ω) constant, and the **area** term

$$A_{\Omega} = \frac{|\partial \Omega|}{12\pi},$$

depending only on the surface area of the boundary of Ω (paper in preparation).

Thank you for your attention!