NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

```
Import NumPy as np
```

```
import numpy as np
```

In [1]:

Out[3]:

In [6]:

In [10]:

Out[10]:

Out[11]:

In [22]:

Out[22]:

In [13]:

Out[13]:

In [15]:

In [17]:

Out[17]:

In [18]:

Out[18]:

In [19]:

Out[19]:

Out[20]:

In [20]: mat[2:6,1:6]

In [21]: mat[3:4,4:6]

Out[21]: array([[20]])

In [23]: mat[0:3,1:2]

In [24]: mat[4:6,0:6]

Out[23]:

Out[24]:

Out[25]:

In [26]:

Out[26]:

In [27]:

Out[27]:

Out[29]:

Create an array of 10 zeros

c1=np.zeros(10) In [3]:

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

Create an array of 10 ones

z=np.ones(10)In [5]:

array([1., 1., 1., 1., 1., 1., 1., 1., 1.])

Out[5]:

Create an array of 10 fives

c3=np.full(10,5.0)

array([5., 5., 5., 5., 5., 5., 5., 5., 5.]) Out[6]:

Create an array of the integers from 10 to 50

a=np.arange(10,51)In [7]:

44, 46, 48, 50])

array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, Out[7]: 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

arr=np.arange(10,51,2)

array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,

Create a 3x3 matrix with values ranging from 0 to 8

Create an array of all the even integers from 10 to 50

44, 45, 46, 47, 48, 49, 50])

m1=np.array([[0,1,2,],[3,4,5],[6,7,8]]) In [11]:

array([[0, 1, 2],

m3=np.eye(3)

ran_num

[3, 4, 5], [6, 7, 8]])

Create a 3x3 identity matrix

[0., 0., 1.]]) Use NumPy to generate a random number between 0 and 1

0.7777983301335633

a=np.random.randn(25)

array([[1., 0., 0.],

[0., 1., 0.],

ran_num=np.random.rand()

Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

array([2.17386203, 0.57653176, -0.4607796 , -0.45312483, 0.72885871, Out[15]: 0.86279454, -1.31284256, 1.96943485, -1.98389753, 1.08247581, 0.83575977, 0.10724748, 0.47316344, -0.78027078, -2.53566527,

ar=np.arange(0.01, 1.0, 0.01)

Create the following matrix:

0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44,

 $0.45,\ 0.46,\ 0.47,\ 0.48,\ 0.49,\ 0.5\ ,\ 0.51,\ 0.52,\ 0.53,\ 0.54,\ 0.55,$ $0.56,\ 0.57,\ 0.58,\ 0.59,\ 0.6\ ,\ 0.61,\ 0.62,\ 0.63,\ 0.64,\ 0.65,\ 0.66,$ $0.67,\ 0.68,\ 0.69,\ 0.7\ ,\ 0.71,\ 0.72,\ 0.73,\ 0.74,\ 0.75,\ 0.76,\ 0.77,$ $0.78,\ 0.79,\ 0.8\ ,\ 0.81,\ 0.82,\ 0.83,\ 0.84,\ 0.85,\ 0.86,\ 0.87,\ 0.88,$

 $, \ 0.05263158, \ 0.10526316, \ 0.15789474, \ 0.21052632,$

])

array([0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 , 0.11,

-0.20324953, -2.52996629, -0.32981416, 0.30156149, 0.26648898, 1.18480237, -0.89594871, -0.04684343, 0.1028005, 0.46379591])

0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99])

la=np.linspace(0,1,20)

array([[1, 2, 3,

array([0.

 $0.52631579,\ 0.57894737,\ 0.63157895,\ 0.68421053,\ 0.73684211,$ 0.78947368, 0.84210526, 0.89473684, 0.94736842, 1.

 $0.26315789,\ 0.31578947,\ 0.36842105,\ 0.42105263,\ 0.47368421,$

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

Create an array of 20 linearly spaced points between 0 and 1:

BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T # BE ABLE TO SEE THE OUTPUT ANY MORE

4, 5],

In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW

BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW

BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

Numpy Indexing and Selection

mat = np.arange(1, 26).reshape(5, 5)

[6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]])

In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

BE ABLE TO SEE THE OUTPUT ANY MORE

BE ABLE TO SEE THE OUTPUT ANY MORE

BE ABLE TO SEE THE OUTPUT ANY MORE

[21, 22, 23, 24, 25]])

array([[21, 22, 23, 24, 25]])

array([[16, 17, 18, 19, 20],

[17, 18, 19, 20], [22, 23, 24, 25]])

array([[12, 13, 14, 15],

In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T # BE ABLE TO SEE THE OUTPUT ANY MORE

[12]]) In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW

array([[2],

[7],

In [25]: mat[3:6,0:6]

Get the sum of all the values in mat

sum1=np.sum(mat)

sd=np.std(mat)

sum1

325

Now do the following

Get the standard deviation of the values in mat

7.211102550927978

Get the sum of all the columns in mat col_sum=np.sum(mat,axis=0) In [29]:

> col_sum array([55, 60, 65, 70, 75])