⑩ 日本国特許庁(JP)

10 特許出願公告

⑫特 許 公 報(B2) $\Psi 1 - 51528$

Int. Cl. 4

識別記号

庁内整理番号

❷❸公告 平成1年(1989)11月6日

C 22 C 1/08 B - 7518 - 4K

発明の数 1 (全5頁)

会発明の名称	発泡金属の製造方法
	②特 願 昭60-160804
⑫発 明 者	秋 山 茂 佐賀県鳥栖市宿町字野々下807番地1 工業技術院九州工 業技術試験所内
@発明者	上 野 英 俊 佐賀県鳥栖市宿町字野々下807番地1 工業技術院九州工 業技術試験所内
⑩発 明 者	今 川 耕 治 佐賀県鳥栖市宿町字野々下807番地1 工業技術院九州工 業技術試験所内
@発明者	北 原 晃 佐賀県鳥栖市宿町字野々下807番地1 工業技術院九州工 業技術試験所内
@発 明 者	長 田 純 夫 佐賀県鳥栖市宿町字野々下807番地1 工業技術院九州工 業技術試験所内
@発 明 者	森本 一男 兵庫県尼崎市道意町7丁目2番地 神鋼鋼線工業株式会社 内
⑫発 明 者	西 河 徹 兵庫県尼崎市道意町7丁目2番地 神鋼鋼線工業株式会社 内
@発明者	伊 藤 雅 夫 兵庫県尼崎市道意町7丁目2番地 神鋼鋼線工業株式会社 内
勿出 願 人	工 業 技 術 院 長 東京都千代田区霞が関1丁目3番1号
@復代理人	弁理士 小谷 悦司 外2名
勿出 願 人	神鋼鋼線工業株式会社 兵庫県尼崎市中浜町10番地1
個代 理 人	弁理士 小谷 悦司 外2名
審査官	香 本 薫
参考文献	特開 昭56-141960 (JP, A) 特公 昭52-16841 (JP, B2)

1

切特許請求の範囲

1 溶融金属に発泡材および増粘材を加えて攪拌 することにより多数の独立気泡よりなる発泡金属 を製造する方法において、鋳型全体が発泡金属の 終了して発泡を開始し、気泡が成長する過程で空 気抜き用の放出口を有する状態で鋳型を密閉し、 発泡材が熱により分解して生じる多数の気泡が膨 脹することによつて鋳型内の空気を鋳型の外部に ことにより、溶融充満した発泡金属により上記放

2

出口を閉塞して鋳型を密閉状態とし、密閉された 鋳型内で多数の気泡の内圧の上昇により気泡相互 の圧力の均衡の下に均一なセル構造を形成させ、 ついで鋳型の加熱を停止して発泡金属を冷却、凝 融点以上の温度となるように加熱し、かつ攪拌を 5 固させることを特徴とする発泡金属の製造方法。 2 上記溶融金属としてアルミニウムまたはその - 合金、増粘材としてカルシウム、発泡材として水 素化チタンを用い、上記溶融金属に対して上記増 粘材を0.2~8重量%加えて攪拌し、溶融金属の 放出させ、発泡金属が鋳型内部の全体に充満する 10 粘性を調整した後、水素化チタンの粉末1~3重 量%を加えて攪拌し、発泡させるようにしたこと

3

を特徴とする特許請求の範囲第 1 項記載の発泡金 属の製造方法。

発明の詳細な説明

(産業上の利用分野)

この発明は、発泡金属を構成する多数の独立気 5 泡の大きさが均一でかつ内部に引けを生じない発 泡金属の製造方法に関するものである。

(従来技術)

金属の発泡体を得る手段としては、金属の融点 ガスを溶湯内に溜めて気泡を形成するために溶湯 の粘性を制御する増粘材を必要とし、これらの材 料が手段を選択することによつて種々の発泡体が 得られる。この発泡金属は多数の独立気泡よりな た機能を有する新素材として開発が進められ、溶 融金属の粘性制御法や発泡法等多くの研究がなさ れているが、技術的に種々の制約があつて実用化 に至つていない。その理由は、工業的規模におけ なり、また金属が凝固する際に、内部に引けを生 じるという問題があるからであり、したがつて実 用化にはこれらの問題の解決を必要としていた。

(発明の目的)

めになされたものであり、多数の気泡が均質で、 内部に引けを生じない発泡金属を、工業的に製造 する方法を提供するものである。

(発明の構成)

よび増粘材を加えて攪拌することにより多数の独 立気泡よりなる発泡金属を製造する方法におい て、鋳型全体が発泡金属の融点以上の温度となる ように加熱し、かつ攪拌を終了して発泡を開始 有する状態で鋳型を密閉し、発泡材が熱により分 解して生じる多数の気泡が膨脹することによつて 鋳型内の空気を鋳型の外部に放出させ、発泡金属 が鋳型内部の全体に充満することにより、溶融充 を密閉状態とし、密閉された鋳型内で多数の気泡 の内圧の上昇により気泡相互の圧力の均衡の下に 均一なセル構造を形成させ、ついで鋳型の加熱を 停止して発泡金属を冷却、疑固させるようにした ものである。

またこの発明の第2の要旨は、溶融金属に発泡 材および増粘材を加えて攪拌することにより多数 の独立気泡よりなる発泡金属を製造する方法にお いて、鋳型全体が発泡金属の融点以上の温度となり るように加熱した後、溶融金属としてアルミニウ ムまたはその合金、増粘材としてカルシウム、発 泡材として水素化チダンを用い、上記増粘材を 0.2~8重量%加えて攪拌し、アルミニウムの粘 近傍で熱分解により発生する発泡材と、発生した 10 性を調整した後、水素化チタンの粉末1~3重量 %を加えて攪拌し、発泡させるようにし、気泡が 成長する過程で空気抜き用の放出口を有する状態 で鋳型を密閉し、発泡材が熱により分解して生じ る多数の気泡が膨脹することによって鋳型内の空 り、軽量で、機械的、熱的諸特性等の多くの優れ 15 気を鋳型の外部に放出させ、発泡金属が鋳型内部 の全体に充満することにより、溶融充満した発泡 金属により上記放出口を閉塞して鋳型を密閉状態 とし、密閉された鋳型内で多数の気泡の内圧の上 昇により気泡相互の圧力の均衡の下に均一なセル る大型材料を製作すると気泡の大きさが不揃いと 20 構造を形成させ、ついで鋳型の加熱を停止して発 泡金属を冷却、凝固させるようにしたものであ る。

(実施例)

第1図において鋳型1内には発泡材を加えた溶 この発明は、このような従来の課題の解決のた 25 融アルミニウム 2が装入され、この溶融アルミニ ウム2を攪拌機3で攪拌するようにし、また鋳型 1を加熱するためのヒータ4が鋳型1の周囲に配 置されている。第1図Bに示すように、発泡材が 分解することにより溶融アルミニウム 2 が膨脹し この発明の第1の要旨は、溶融金属に発泡材お 30 て発泡アルミニウム20となり、その内部のガス 圧力 (P₂) が高まり、このためその圧力が大気 圧P。と溶融アルミニウムの粘性抵抗の和P」に打 勝つて多数の気泡が膨脹するが、鋳型1の一面が 大気中に解放されて自由面が形成されているため し、気泡が成長する過程で空気抜き用の放出口を 35 に、各気泡はそれぞれのガス圧によつて任意に膨 脹し、大きさや形状が極めて不揃いの気泡の集合 体となる。

第2図はこのようなガス圧力と発泡アルミニウ ムの体積との関係を線図に表わしたものである。 満した発泡金属により上記放出口を閉塞して鋳型 40 同図において、アルミニウムに発泡材を加えて攪 拌を開始する時点Aのアルミニウムの体積V。は、 発泡材を加えている間、点Aのガス圧力P₄をほ ぼ維持したまま、点Bの体積VIまで膨脹する。 この場合、発泡材の添加時間に差があるために、

6

すでに発生したガス量にも差が生じ、このため各 気泡の体積は不揃いとなる。発泡アルミニウム2 0の体積は、気泡材の添加終了点(点B)に達し た時の体積VIから凝固が完結する点Cまでの間 徐々に上昇し、ガス圧力を高めながらVsまで膨 5 脹する。

ここで従来法にしたがつて第1図Bの状態で発 泡を続けると、形成される発泡アルミニウム20 は外気と接した自由面では凝固が最も早く、これ なクレータ29を生じる。また発泡アルミニウム 20の内部においては、各気泡21の大きさが不 揃いで、最終に凝固する中心部近傍では大きな気 孔22が形成される。発泡アルミニウム20が凝 固し、常温まで冷却すると、各気泡内のガスも冷 15 却する結果、第2図D点に示すように圧力も低下 する。

第3図はアルミニウムの温度Tと経過時間S、 および各段階における操作の関係を線図に表わし ムの融点(M.P.)よりも高い温度Taで、発泡材 の混入、攪拌の開始時点、点a2は攪拌終了時、点 asは鋳型1に対する加熱を停止する時点で、点ar からasまでの間、融点以上の温度Taに保持しな がら発泡させる。点bは発泡アルミニウムが融点 25 にまで達した時点で、点Cで凝固を完了し、常温 (R.T.) に達した点dで鋳型1から取出す。

この発明による方法での基本操作は第3図の点 a₂、すなわち発泡材を加えて攪拌を終了した時点 において鋳型1を閉じることにある。すなわち第 30 5中に充満して放出口10が閉塞された状態を示 1図Cに示すように発泡温度Taに予熱した蓋 9 を鋳型1に取付け、これによつて空気抜き用の放 出口10を形成させた状態で鋳型1を密閉する。 放出口 10 は適宜の位置に複数個形成させてもよ しつつあるアルミニウムの膨帳自由面がアルミニ ウムの融点以下となつて充分な気泡の成長がなさ れないからである。また鋳型1の大きさとその内 部に装入する溶融アルミニウム2の量との関係 る。

発泡アルミニウム 2 0 中の発生ガスの圧力P₂ が、閉塞された鋳型 1 の内部空間 8 の空気圧P₃ より人きくなると、発泡アルミニウム20中の気

泡が膨脹し、これによつて内部空間 8 中の空気は 放出口10から放出される。発泡アルミニウム2 0が膨脹を続け、密閉した鋳型1中に充満する と、第1図Dに示すように放出口10は溶融アル ミニウム20によつて閉塞され、鋳型1内は完全 に密閉される。そして、まだ十分に発泡材中のガ スを放出して大きくなつていない気泡は、圧力 P₂を保ちつつ均衡を保つた形状、大きさの均質 なセル構造を形成する。すなわち鋳型1が密閉さ がガス圧のために破壊されて、第7図に示すよう 10 れていなければ、自由面に近い気泡は膨脹して他 の部分の気泡より大きくなるが、上記のように鋳 型1が密閉されていると、他の気泡の圧力によつ て膨脹が妨げられ、このため気泡の大きさがほぼ 均一になる。

第4図において、点AIで発泡材を混入、攪拌 し、予熱した蓋9を取付け、鋳型1を密閉した時 点A2から気泡の内圧P2が上昇し、発泡アルミニ ウム20が鋳型1内を充満した時点Bでは、体積 VIが一定のまま気泡の内圧がPcまで上昇し、均 たものである。同図において、点a」はアルミニウ 20 一な気泡の集合体となる。この時点(第3図の点 asに相当)で鋳型を炉外に取出し、常温まで冷却 すると、第5図に示すように各気泡23がほぼ同 一寸法の均質な発泡アルミニウム24が得られ

> なお、上記方法に使用される鋳型の形状は種々 の変形が可能であり、例えば第6図A, Bに示す ように球形の鋳型5を用いてもよい。同図におい て、Aは球状鋳型に溶融アルミニウム2が装入さ れている状態、Bは発泡アルミニウム20が鋳型 している。

上記実施例においては、アルミニウムを720℃ に溶融して1.6重量%のカルシウムを加えて攪拌 し、増粘した。アルミニウムの粘度調整は、増粘 い。蓋9を予熱するのは、蓋の温度が低いと発泡 35 材を加えずに空気吹込み法でも可能であるが、こ の方法では発泡材の熱分解ガスを溶湯内に溜めて 独立気泡を保持するのに必要な粘性を与えるのに 極めて長期間の攪拌を要することになる。一方、 増粘材として酸素との親和力の強いアルミニウム は、最終製品が所定の発泡率になるように設定す 40 を加えて攪拌すると極めて短時間に増粘すること が可能となる。この場合、カルシウムの添加量が 0.2重量%以下ならば、攪拌に長時間を要するの で極めて非能率的、不経済である。また8重量% 以下であれば、十分に増粘の目的を達することが

できる。

また粘度調整を終えた溶湯を720℃に保持しつ つ発泡材として水素化チタンの粉末を1.6重量% 加えて攪拌すると、気孔率約90%の均質な発泡体 を得ることができる。この場合、水素化チタンの 5 添加量が1重量%以下であると、気泡の発生が充 分でなく、また3重量%を超えると気泡の発生が 過剰となり、長時間の攪拌を必要とするか、また は膜構造が破壊されたり、均一な膜構造が得がた %が適正である。

(発明の効果)

以上説明したように、この発明は溶融金属とし てアルミニウムまたはその合金、増粘材としてカ ルシウム、発泡材として水素化チタンを用い、上 15 記増粘材を0.2~8重量%加えて攪拌し、アルミ ニウムの粘性を調整した後、水素化チタンの粉末 1~3重量%を加えて攪拌し、発泡させるように したものであり、大きさ、形状の均質な気泡より

なるセル構造を有する発泡体を製造することがで き、工業的な規模での製造も可能なものである。 そしてこの発泡材は軽量で吸音性が高く、高い断 熱効果や機械的特性、機械加工性を有する新素材 として有用である。

図面の簡単な説明

第1図A~Dはこの発明を実施する工程の説明 図、第2図は従来方法の発泡金属の圧力-体積線 図、第3図はこの発明の温度-時間、操作線図、 くなるので、水素化チタンの添加量は1~3重量 10 第4図はこの発明の方法による圧力一体積線図、 第5図はこの発明によって得られた発泡金属の概 念図、第6図A, Bはこの発明の実施に使用する 装置の1例を示す概略説明図、第7図は従来法に よつて得られた発泡金属の概念図である。

> 1……鋳型、2……溶融アルミニウム、3…… 攪拌機、4……ヒータ、9……蓋、10……放出 口、20,24……発泡アルミニウム、23…… 気泡。

第4図

第5図

第6図

(A)

第6図

第7図

