SEMINAR 10

- 1) Let V, V' be K-vector spaces, $f: V \to V'$ a linear map, $A \leq_K V$ and $A' \leq_K V'$. Show that:
 - a) $f(A) = \{ f(a) \in V' \mid a \in A \} \le_K V';$
 - b) $f^{-1}(A') = \{x \in V \mid f(x) \in A'\} \le_K V.$
- 2) In the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}} = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$ we consider

$$\mathbb{R}_o^{\mathbb{R}} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is odd} \}, \ \mathbb{R}_e^{\mathbb{R}} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is even} \}.$$

Show that $\mathbb{R}_{o}^{\mathbb{R}}$ si $\mathbb{R}_{e}^{\mathbb{R}}$ are subspaces of $\mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}} = \mathbb{R}_{o}^{\mathbb{R}} \oplus \mathbb{R}_{e}^{\mathbb{R}}$.

- 3) Let us consider:
- a) $f_1: \mathbb{R}^2 \to \mathbb{R}^2$, $f_1(x,y) = (-x,y)$ (the symmetry with respect to Oy);
- b) $f_2: \mathbb{R}^2 \to \mathbb{R}^2, f_2(x,y) = (x,-y)$ (the symmetry with respect to Ox);
- c) $f_3: \mathbb{R}^2 \to \mathbb{R}^2, f_3(x,y) = (x\cos\varphi y\sin\varphi, x\sin\varphi + y\cos\varphi), \varphi \in \mathbb{R}$, (the plane rotation of angle φ);
- d) $f_4: \mathbb{R}^2 \to \mathbb{R}^3, f_4(x,y) = (x+y, 2x-y, 3x+2y).$

Show that f_1 , f_2 , f_3 , f_4 are \mathbb{R} -linear maps. Are they isomorphisms? Are they automorphisms?

4) Can you find an \mathbb{R} -linear map $f: \mathbb{R}^3 \to \mathbb{R}^2$ such that

$$f(1,0,3) = (1,1)$$
 şi $f(-2,0,-6) = (2,1)$?