EXERCICE 2: (6 Pts)

Donner les automates les plus adéquats engendrant les langages suivants (Ne pas justifier): $L_1 = \{a^i \ b^k \ c^j \ avec \ k = (i+j)/2 \ et \ k \equiv 2 \ [3] \ \} \ \textbf{3pts}$

Réponse

$\# S_0 a \rightarrow a S_1$	$\mathbf{a} \ \mathbf{S}_{P2} \ \mathbf{b} \rightarrow \mathbf{S}_{P0}$	$\mathbf{b}S_{P1} b \rightarrow bbS_{P2}$	$\mathbf{a} \mathbf{S}_{11} \mathbf{b} \rightarrow \mathbf{S}_{12}$	$\mathbf{b}S_{I0} b \rightarrow bbS_{I1}$	$\# S_5 c \rightarrow \# S_6$
$\mathbf{a} \ \mathbf{S}_1 \ \mathbf{a} \rightarrow \mathbf{a} \ \mathbf{S}_0$	$\mathbf{a} \; \mathbf{S}_{P0} \mathbf{b} \to \mathbf{S}_{P1}$	$\mathbf{b}S_{P2} b \rightarrow bbS_{P0}$	$\mathbf{a} \mathbf{S}_{12} \mathbf{b} \rightarrow \mathbf{S}_{10}$	$\mathbf{b}S_{11} \mathbf{b} \rightarrow \mathbf{b}\mathbf{b}S_{12}$	$\# S_6 \rightarrow \#S_f$
$\mathbf{a} \ S_0 \ \mathbf{a} \rightarrow \mathbf{a} \ \mathbf{a} \ S_1$	$\#S_{P0}b \rightarrow \#b S_{P1}$	$\mathbf{b}S_{P2} c \rightarrow \mathbf{b}S_2$	$\mathbf{a} \mathbf{S}_{10} \mathbf{b} \to \mathbf{S}_{11}$	$\mathbf{b}S_{I2}\:b\to bbS_{I0}$	
Empiler un a	Empiler b et	k ≡ [2]			
sur 2	vérifier k≡[2]				
$\mathbf{a} \; \mathbf{S}_0 \; \mathbf{b} \to \mathbf{S}_{\mathrm{P1}}$	$\#S_{P1} b \rightarrow \#bS_{P2}$	$\mathbf{b}S_2 c \to S_3$	$\#S_{I0}b \rightarrow \#b S_{I1}$	$\mathbf{b}S_{12} c \rightarrow \mathbf{b}S_4$	
i pair		Dépiler b à la	Empiler b et	k ≡ [2]	
		lecture de 2 c	vérifier k≡[2]		
$\mathbf{a} \mathbf{S}_1 \mathbf{b} \rightarrow \mathbf{S}_{I1}$	$\#S_{P2} b \rightarrow \#\mathbf{b}S_{P0}$	$\mathbf{b}S_3 c \rightarrow \mathbf{b}S_2$	$\#S_{I1}b \rightarrow \#bS_{I2}$	$\mathbf{b}S_4 c \rightarrow S_5$	
i impair				Dépiler b à la	
_				lecture de 2 c	
$\mathbf{a} \ \mathbf{S}_{P1} \ \mathbf{b} \rightarrow \mathbf{S}_{P2}$	$\mathbf{b}S_{P0} b \rightarrow bbS_{P1}$	$\# S_3 \rightarrow \#S_f$	$\#S_{12} b \rightarrow \#bS_{10}$	$\mathbf{bS}_5 \ \mathbf{c} \to \mathbf{bS}_4$	
		J pair			

EXERCICE 3: (6 pts)

Les propositions suivantes sont-elles valides ? Justifier

1. Si $L_1 \cup L_2$ est régulier et L_1 est régulier alors L_2 est régulier.

Réponse On prend $L_1 = X^*$ et $L_2 = a^n b^n$ on a $L_1 \cup L_2 = X^*$ est régulier et L1 est régulier mais L_2 ne l'est pas.

2. Si L_1 et L_2 sont réguliers alors $L = \{w \mid w \in L_1 \text{ et } w^r \in L_2\}$ est régulier

Réponse

L est régulier. (Proposition sur la fermeture des langages réguliers) L= $L_1 \cap L_2^R$

3. Si L est régulier h(L) est régulier.

Réponse

Si L est régulier $h^*(L)$ est régulier Cela revient à démonter que L(h(E)) = h(L(E))

Démonstration par récurrence :

cas trivial: si E égale \mathcal{E} ou \emptyset , alors $h(\mathcal{E}) = \mathcal{E}$ et $L(h(\mathcal{E})) = L(\mathcal{E}) = h(L(\mathcal{E}))$. si E est élément de l'alphabet donc $L(\mathcal{E}) = \{a\}$ et $L(h(\mathcal{E})) = L(h(a)) = \{h(a)\} = h(L(\mathcal{E}))$ supposons que $L(h(\mathcal{E})) = h(L(\mathcal{E}))$ pour tout \mathcal{E} d'ordre n.

Démontrons pour E d'ordre supérieure à n. c'est à dire que $E=F \cup G$, E=F.G et $E=F^*$

Case 1:
$$E = F \cup G$$

$$\begin{split} h(E) &= h(F \cup G) = h(F) \cup h(G) \text{ et on a } L(E) = L(F) \cup L(G) \\ L(h(E)) &= L(h(F \cup G)) = L(h(F) \cup h(G)) = L(h(F)) \cup L(h(G)) = h(L(F)) \cup h(L(G)) = h(L(F)) \\ \cup L(G)) &= h(L(F \cup G)) = h(L(E)). \end{split}$$

de même pour E = F.G et E = F*

donc la récurrence est vérifié et L(h(E)) = h(L(E))

4. Si L est régulier h*(L) est régulier

Réponse

soit L={ab}, h(a)=aa et h(b)=b $\rightarrow h^*(L)$ ={ $a^nb^n \ n \ge 0$ }. Bien que L soit régulier, $h^*(L)$ ne l'est pas.

5. $L = \{a^{n!}, n \ge 0\}$ est régulier.

Réponse

Lemme de l'étoile : Soit L un langage régulier . Il existe un entier p tel que tout mot w de L de longueur $|w| \ge p$ possède une factorisation w=xyz telle que :

 $\bullet 0 < |y| \le p$ et

• $xy^nz \in L$ pour tout entier ≥ 0 .

Donc il suffit de trouver un $w \in L$ tel que \forall x,y,z avec w=xyz, $w'=xy^nz \notin L$

prenons w=a^{p!} tel que p>1

$$w'=xy^nz=a^{p!-k+n*k}$$
 avec $n\ge k>0$

$$n=2: w'=a^{p!-k+2*k}=a^{p!+k}$$

comme k>0 donc $w'>a^{p!}$. Il suffit de démonter que $w'< a^{p+1!}$

Pour cela on a besoin de démonter que x!+x< x!*x, x>1

démontrons par récurrence que x!+x < x!*x pour tout x>1

cas trivial |x|=2

2!+2<2!*2 est vérifie

done pour tout $|x| \le n \rightarrow x! + x < x! * x$

démontrons pour |x'|=n+1

on a x'=x+1 donc (x+1)!+x+1=(x+1)*x!+x+1=x*x!+x!+x+1

en utilisant l'hypothèse on

$$x*x!+x!+x+1 < x*x! + x*x! + 1 = 2*x*x! + 1 < (x+1)!(x+1)$$

il nous reste a démonté que 2*x*x! + 1 < (x+1)!(x+1)

on a
$$(x+1)!(x+1)=(x*(x+1)!+(x+1)!)$$

$$=(x+1)(x*x!+x!)$$

$$= x^2 *_X ! +_X *_X ! +_X *_X ! +_X !$$

$$=x^2*x!+2x!*x+x!=2*x!*x+1+(x^2*x!+x!-1)$$

donc 2*x*x! + 1 < (x+1)!(x+1) est vérifie puisque $(x^2*x!+x!-1) > 0$ pour x>1

 $pour \; |x| = n+1 \quad on \; x! + x < x! * x \; \; donc \; on \; peut \; conclure \; que \; pour \; tout \; x > 1 \quad x! + x < x! * x$

$$w'\!\!=\!\!a^{p!+k}\!\!\leq \,a^{p!+p}\!< a^{p!*p}\!< \,a^{p!*p+1}\!=\!\!a^{p+1!}\,Donc\;on\;\;a^{p!}\!\!<\!\!w'\!\!<\!\!a^{p+1!}\;Donc\;w'\;\notin\;L$$

donc L n'est pas régulier.