Pareto-guided Diffusion Model for Protein Design

Yinghua Yao, CFAR & IHPC, A*STAR, Singapore

Background: Inverse (Generative) Design

Credits to Sanchez-Lengeling, B., & Aspuru-Guzik, A., 2018

- What we want can only be measured on the functional space.
- What we can manipulate is in the chemical space.
- Current main streams are single-objective optimization/generation.

Multi-Objective Generation (MOG) for Protein Design

- Protein data: low-dimensional manifold of high-dimensional space
- Pareto front: trade-off between multiple property objectives

Superiority of MOG over existing Multi-Objective Optimization (MOO)

	objectives	decision/data space	generation quality
MOO	$F(\alpha) = \begin{bmatrix} f(\alpha) & f(\alpha) & f(\alpha) \end{bmatrix}$	$x \in \mathbb{R}^d$	X
MOG	$F(x) = [f_1(x), f_2(x), \dots, f_m(x)]$	$x \in \mathcal{X}, \mathcal{X} \subset \mathbb{R}^d$	

Constrained Optimization for MOG

Let p_0 be the distribution of samples on Pareto front, and $p_{\theta}(x)$ be the target data distribution, our constrained optimization for MOG can be formulated as $\min_{\theta} D\left[q_{\text{data}}(x)||p_{\theta}(x)\right] \quad s.t. \ D\left[p_0(x)||p_{\theta}(x)\right] \leq \varepsilon.$

- Data quality: minimize the KL divergence between the training data distribution q_{data} and the generated data distribution p_{θ} .
- Pareto optimality: p_{θ} constrained to be close to the distribution of Pareto solutions p_0 .

Optimize $D\left[q_{\text{data}}(x)||p_{\theta}(x)\right]$ with diffusion model:

$$x_{t-1} = x_t - \eta_t \epsilon_\theta^* (x_t, t) + \sqrt{2\eta_t} z.$$

Optimize $D[p_0(x)||p_{\theta}(x)]$ with multiple gradient descent:

$$x_{t-1} = x_t - \eta \nabla F(x_t) + \sqrt{2\eta} z,$$

Pareto-guided Diffusion Model

Overall reverse diffusion: $x_{t-1} = x_t - \eta_t g(x_t) + \sqrt{2\eta_t} z$, where $g(x_t) = \arg\min_g \frac{1}{2} ||g - \epsilon_\theta^*(x_t, t)||^2 \quad s.t. \quad \nabla f_i(x)^T g \ge \phi_t, \quad \forall i = 1, 2, \dots, m,$ $\phi_t = \begin{cases} \alpha ||\nabla F(x_t)|| & \text{if } ||\nabla F(x_t)|| > e \\ -\infty & \text{otherwise} \end{cases},$

- ① Constraint violation: optimize $g(x_t)$ to decrease all objectives
- **2** Constraint violation: optimize $g(x_t)$ to keep data quality as much as possible
- **3** Constraint satisfaction: optimize $g(x_t)$ to keep data quality

Effective in Covering the Pareto Front

Experiments on Protein Sequences

Dataset: paired Observed Antibody Space (pOAS) dataset comprised of 90, 990 antibody sequences.

Metrics: Hypervolume (HV) for Pareto front approximation, the log-likelihood assigned by ProtGPT for the quality of generated protein sequences. Multiple desired properties:

- $f_1(x)$: solvent accessible surface area (SASA) of the protein structure
- $f_2(x)$: percentage of beta sheets (%Sheets)

 Method
 HV↑ (Pareto optimality) ProtGPT↑ (data quality)

 PROUD (ours)
 2472.55 ± 60.15 -645.93 ± 0.99

 DM+m-MGD
 2289.61 ± 65.12 -692.80 ± 0.34

 DM+single
 2302.21 ± 58.25 -682.26 ± 0.49

 m+1-MGD
 838.74 ± 14.08 -662.86 ± 0.76

Paper