## Machine Learning

MY TRACKER







## МНК и ММП





| X | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---|---|---|----|----|----|----|----|----|----|
| Y | 4 | 8 | 15 | 20 | 23 | 24 | 25 | 27 | 30 |



| X | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---|---|---|----|----|----|----|----|----|----|
| Υ | 4 | 8 | 15 | 20 | 23 | 24 | 25 | 27 | 30 |





| X | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---|---|---|----|----|----|----|----|----|----|
| Y | 4 | 8 | 11 | 20 | 23 | 21 | 25 | 27 | 30 |





| X | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---|---|---|----|----|----|----|----|----|----|
| Y | 4 | 8 | 11 | 20 | 23 | 21 | 25 | 27 | 30 |





**Определение.** Пусть f(x) - аппроксимирующая функция для набора точек  $(x_i;y_i)$ . Тогда ошибками будет называть  $e_i=y_i-f(x_i)$ .

**Задача.** Давайте оценивать аппроксимирующие функции с помощью ошибок.

Проблема. Как именно с помощью ошибок можно оценивать?

Ошибки - это набор точек, нужно придумать функцию, которая будет зависеть от ошибок и с помощью нее оценивать аппроксимирующие функции.



**Определение.** Пусть f(x) - аппроксимирующая функция для набора точек  $(x_i;y_i)$ . Тогда ошибками будет называть  $e_i=y_i-f(x_i)$ .

**Задача.** Давайте оценивать аппроксимирующие функции с помощью ошибок.

Проблема. Как именно с помощью ошибок можно оценивать?

#### Варианты:

- ullet Простая сумма:  $e(x)=e_1+\ldots+e_n$
- ullet Сумма модулей:  $e(x) = |e_1| + \ldots + |e_n|$
- ullet Сумма квадратов:  $e(x) = e_1^2 + \ldots + e_n^2$
- ullet Сумма больших степеней:  $e(x) = e_1^{10} + \ldots + e_n^{10}$



**Определение.** Пусть f(x) - аппроксимирующая функция для набора точек  $(x_i;y_i)$ . Тогда ошибками будет называть  $e_i=y_i-f(x_i)$ .

**Задача.** Давайте оценивать аппроксимирующие функции с помощью ошибок.

Проблема. Как именно с помощью ошибок можно оценивать?

#### Варианты:

- ullet Простая сумма:  $e(x)=e_1+\ldots+e_n$  Слагаемые могут сократиться между собой
- ullet Сумма модулей:  $e(x) = |e_1| + \ldots + |e_n|$
- ullet Сумма квадратов:  $e(x)=e_1^2+\ldots+e_n^2$
- Сумма больших степеней:  $e(x)=e_1^{10}+\ldots+e_n^{10}$  Сложно вычислять и слишком сильно "наказываем" за большие ошибки



**Определение.** Пусть f(x) - аппроксимирующая функция для набора точек  $(x_i;y_i)$ . Тогда ошибками будет называть  $e_i=y_i-f(x_i)$ .

**Задача.** Давайте оценивать аппроксимирующие функции с помощью ошибок.

Проблема. Как именно с помощью ошибок можно оценивать?

#### Варианты:

- ullet Простая сумма:  $e(x)=e_1+\ldots+e_n$  Слагаемые могут сократиться между собой
- ullet Сумма модулей:  $e(x) = |e_1| + \ldots + |e_n|$  Лучше подходит при нестандартном распределении ошибок
- ullet Сумма квадратов:  $e(x) = e_1^2 + \ldots + e_n^2$  Лучше подходит при нормальном и равномерном распределении ошибок
- Сумма больших степеней:  $e(x) = e_1^{10} + \ldots + e_n^{10}$  Сложно вычислять и слишком сильно "наказываем" за большие ошибки



**Определение.** Пусть f(x) - аппроксимирующая функция для набора точек  $(x_i;y_i)$ . Тогда ошибками будет называть  $e_i=y_i-f(x_i)$ .

**Задача.** Давайте оценивать аппроксимирующие функции с помощью ошибок.

Проблема. Как именно с помощью ошибок можно оценивать?

#### Варианты:

- ullet Простая сумма:  $e(x)=e_1+\ldots+e_n$  Слагаемые могут сократиться между собой
- ullet Сумма модулей:  $e(x) = |e_1| + \ldots + |e_n|$  Лучше подходит при нестандартном распределении ошибок
- ullet Сумма квадратов:  $e(x) = e_1^2 + \ldots + e_n^2$  Лучше подходит при нормальном и равномерном распределении ошибок
- Сумма больших степеней:  $e(x) = e_1^{10} + \ldots + e_n^{10}$  Сложно вычислять и слишком сильно "наказываем" за большие ошибки

В прикладных задачах чаще встречается нормальное распределение



**Определение.** Пусть задана такая зависимость:  $y_t = f(x_t, b) + \varepsilon_t$ , где  $\varepsilon_t$  - случайная ошибка модели и b - набор неизвестных параметров. Надо восстановить изначальную зависимость y от x. Для этого подберем параметры b наилучшим образом.



**Определение.** Пусть задана такая зависимость:  $y_t = f(x_t, b) + \varepsilon_t$ , где  $\varepsilon_t$  - случайная ошибка модели и b - набор неизвестных параметров. Надо восстановить изначальную зависимость y от x. Для этого подберем параметры b наилучшим образом.

**Определение.** Введем функцию "ошибки", с помощью которой будем оценивать параметры b

$$RSS(b) = e^T e = \sum_{t=1}^n e_t^2 = \sum_{t=1}^n (y_t - f(x_t, b))^2$$



**Определение.** Пусть задана такая зависимость:  $y_t = f(x_t, b) + \varepsilon_t$ , где  $\varepsilon_t$  - случайная ошибка модели и b - набор неизвестных параметров. Надо восстановить изначальную зависимость y от x. Для этого подберем параметры b наилучшим образом.

**Определение.** Введем функцию "ошибки", с помощью которой будем оценивать параметры b

$$RSS(b) = e^T e = \sum_{t=1}^n e_t^2 = \sum_{t=1}^n (y_t - f(x_t, b))^2$$

**Задача.** Найти 
$$\ \hat{b}_{OLS} = rg \min_{b} RSS(b)$$



Определение. Пусть задана такая зависимость:  $y_t = f(x_t, b) + \varepsilon_t$ , где  $\varepsilon_t$  - случайная ошибка модели и b - набор неизвестных параметров. Надо восстановить изначальную зависимость y от x. Для этого подберем параметры b наилучшим образом.

**Определение.** Введем функцию "ошибки", с помощью которой будем оценивать параметры b

$$RSS(b) = e^T e = \sum_{t=1}^n e_t^2 = \sum_{t=1}^n (y_t - f(x_t, b))^2$$

**Задача.** Найти  $\ \hat{b}_{OLS} = rg \min_{b} RSS(b)$ 

**Решение.** Задачу можно решить с помощью методов оптимизации, а можно попытаться решить аналитически. Большинство задач можно решить аналитически, так что будем разбирать этот метод:

$$\sum_{t=1}^n (y_t - f(x_t,b)) rac{\partial f(x_t,b)}{\partial b} = 0.$$



Определение. Пусть задана линейная зависимость

$$y_t = \sum_{j=1}^k b_j x_{tj} + arepsilon = x_t^T b + arepsilon_{t < ->} \;\; y = Xb + arepsilon_{t}.$$

Функциональное представление

Матричное представление

$$egin{aligned} y_1 &= b_1 x_{11} + b_2 x_{12} \ y_2 &= b_1 x_{21} + b_2 x_{22} \end{aligned}$$

| Target     | Feature 2 | Feature 1 |  |
|------------|-----------|-----------|--|
| $y_1$      | $x_{12}$  | $x_{11}$  |  |
| <b>y</b> 2 | $x_{22}$  | $x_{21}$  |  |



Определение. Пусть задана линейная зависимость

$$y_t = \sum_{j=1}^k b_j x_{tj} + arepsilon = x_t^T b + arepsilon_{t < ->} \;\; y = Xb + arepsilon_{t}.$$

Функциональное представление

Матричное представление

Определение. Функция ошибки в матричном представлении имеет вид

$$RSS = e^T e = (y - Xb)^T (y - Xb)$$



$$RSS = (Xb-y)^T(Xb-y) = (b^TX^T-y^T)(Xb-y)$$
  $RSS = b^TX^TXb - b^TX^Ty - y^TXb + y^Ty$ 



$$RSS = (Xb-y)^T(Xb-y) = (b^TX^T-y^T)(Xb-y)$$
  $RSS = b^TX^TXb - b^TX^Ty - y^TXb + y^Ty$ 

| Слагаемое                                         | Формула производной                                                                                                       | Слагаемое                            | Формула производной                                      |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|--|
| $\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$ | $\frac{d\mathbf{x}^{\top}\mathbf{A}\mathbf{x}}{d\mathbf{x}} = \mathbf{x}^{\top}(\mathbf{A} + \mathbf{A}^{\top})$          | $\mathbf{y}^T \mathbf{X} \mathbf{w}$ | $rac{d\mathbf{A}\mathbf{x}}{d\mathbf{x}} = \mathbf{A}$  |  |
| $\mathbf{w}^T \mathbf{X}^T \mathbf{y}$            | $\frac{d\mathbf{a}^{\top}\mathbf{x}}{d\mathbf{x}} = \frac{d\mathbf{x}^{\top}\mathbf{a}}{d\mathbf{x}} = \mathbf{a}^{\top}$ | $\mathbf{y}^T\mathbf{y}$             | $\frac{da}{d\mathbf{x}} = 0^{\top}  \text{(row matrix)}$ |  |

$$rac{dRSS}{db} = b^T(X^TX + X^TX) - (X^Ty)^T - y^TX + 0$$



$$RSS = (Xb-y)^T(Xb-y) = (b^TX^T-y^T)(Xb-y)$$
  $RSS = b^TX^TXb - b^TX^Ty - y^TXb + y^Ty$ 

| Слагаемое                                         | Формула производной                                                                                                       | Слагаемое                            | Формула производной                                      |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|
| $\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$ | $\frac{d\mathbf{x}^{\top}\mathbf{A}\mathbf{x}}{d\mathbf{x}} = \mathbf{x}^{\top}(\mathbf{A} + \mathbf{A}^{\top})$          | $\mathbf{y}^T \mathbf{X} \mathbf{w}$ | $\frac{d\mathbf{A}\mathbf{x}}{d\mathbf{x}} = \mathbf{A}$ |
| $\mathbf{w}^T \mathbf{X}^T \mathbf{y}$            | $\frac{d\mathbf{a}^{\top}\mathbf{x}}{d\mathbf{x}} = \frac{d\mathbf{x}^{\top}\mathbf{a}}{d\mathbf{x}} = \mathbf{a}^{\top}$ | $\mathbf{y}^T\mathbf{y}$             | $\frac{da}{d\mathbf{x}} = 0^{\top}  \text{(row matrix)}$ |

$$egin{aligned} rac{dRSS}{db} &= b^T (X^T X + X^T X) - (X^T y)^T - y^T X + 0 \ rac{dRSS}{db} &= 2 b^T X^T X - 2 y^T X = 0 \ 2 b^T X^T X - 2 y^T X = 0 & b = (X^T X)^{-1} X^T y \end{aligned}$$



Определение. Пусть задана линейная зависимость

$$y_t = \sum_{j=1}^k b_j x_{tj} + arepsilon = x_t^T b + arepsilon_{t < ->} \ \ y = Xb + arepsilon_{t}$$

Функциональное представление

Матричное представление

Определение. Функция ошибки в матричном представлении имеет вид

$$RSS = e^T e = (y - Xb)^T (y - Xb)$$

Если продифференцировать по вектору параметров b и приравняем производную к нулю, получаем

$$(X^TX)b = X^Ty$$

Подробнее про матричные производные: <a href="https://vk.cc/c3RNbp">https://vk.cc/c3RNbp</a>



Будем пытаться оценивать неизвестные параметры с помощью математической статистики, но в общем задача остается такой же.



## Будем пытаться оценивать неизвестные параметры с помощью математической статистики, но в общем задача остается такой же.

**Задача.** Вы зашли в метро на незнакомой станции метро. И неожиданно для вас на этой станции метро сейчас мало людей и вы комфортно садитесь в вагон.

#### Гипотезы

- **Гипотеза 1.** Каждый день в это время на этой станции метро мало людей.
- **Гипотеза 2**. Раз в неделю есть день, когда на этой станции метро мало людей и вы попали именно в этот день.
- **Гипотеза 3**. Раз в месяц есть день, когда на этой станции метро мало людей и вы попали именно в этот день.
- **Гипотеза 4**. Раз в год есть день, когда на этой станции метро мало людей и вы попали именно в этот день.

### Какую гипотезу выбрали бы вы?



Будем пытаться оценивать неизвестные параметры с помощью математической статистики, но в общем задача остается такой же.

**Задача.** Вы зашли в метро на незнакомой станции метро. И неожиданно для вас на этой станции метро сейчас мало людей и вы комфортно садитесь в вагон.

#### Гипотезы

- **Гипотеза 1.** Каждый день в это время на этой станции метро мало людей.
- **Гипотеза 2**. Раз в неделю есть день, когда на этой станции метро мало людей и вы попали именно в этот день.
- **Гипотеза 3**. Раз в месяц есть день, когда на этой станции метро мало людей и вы попали именно в этот день.
- **Гипотеза 4**. Раз в год есть день, когда на этой станции метро мало людей и вы попали именно в этот день.

Метод максимального правдоподобия выберет гипотезу с максимальной вероятностью, а значит гипотезу 1.



**Определение.** Пусть есть выборка  $X_1,\dots,X_n$  из распределения  $P_{ heta}$ , где  $heta\in\Theta$  - неизвестные параметры.



**Определение.** Пусть есть выборка  $X_1,\dots,X_n$  из распределения  $P_{ heta}$ , где  $heta\in\Theta$  - неизвестные параметры.

**Определение.** Назовем  $L(\mathbf{x}\mid\theta)$ :  $\Theta o\mathbb{R}$  функцией правдоподобия, где  $\mathbf{x}\in\mathbb{R}^n$ 

 $L = \prod p(x_i| heta)$  в случае дискретного распределения

 $L = \prod f(x_i| heta)$  в случае непрерывного распределения



**Определение.** Пусть есть выборка  $X_1,\dots,X_n$  из распределения  $P_{ heta}$ , где  $heta\in\Theta$  - неизвестные параметры.

**Определение.** Назовем  $L(\mathbf{x}\mid\theta)$ :  $\Theta o\mathbb{R}$  функцией правдоподобия, где  $\mathbf{x}\in\mathbb{R}^n$ 

 $L = \prod p(x_i| heta)$  в случае дискретного распределения

 $L = \prod f(x_i| heta)$  в случае непрерывного распределения

#### Будем искать точечную оценку для параметров

Определение. Точечную оценку  $\hat{ heta}_{ ext{M}\Pi}=\hat{ heta}_{ ext{M}\Pi}(X_1,\dots,X_n)=rgmax_{ heta\in\Theta}L(X_1,\dots,X_n\mid heta)$ 

будем называть оценкой максимального правдоподобия параметра  $\, heta.\,$ 

То есть оценка ММП - это такая точечная оценка, при которой функция правдоподобия достигает своего максимума при заданных параметрах.

#### Свойства ММП



# Метод максимального правдоподобия обладает несколькими очень полезными свойствами, которые выделяют его на фоне остальных

- ullet Оценки ММП состоятельны, то есть  $\hat{ heta}_{ML} o heta$  при  $\, n o \infty \,$
- Оценки ММП асимптотически несмещенные, то есть  $M(\hat{ heta}_{ML}) o heta$  при  $n o \infty$
- Оценки ММП асимптотически эффективны, то есть дисперсия  $D(\hat{ heta}_{ML})$  будет наименьшей среди асимптотически несмещенных оценок
- ullet Оценки ММП асимптотически нормальны, то есть  $\hat{ heta}_{ML}\sim N( heta,I^{-1})$  при  $n o\infty$  , где I информация Фишера, I=-ln(L''( heta))
- МНК является частным случаем ММП, если мы считаем что ошибка распределена по правилу:  $\epsilon \sim \mathcal{N}(0, \sigma^2)$

### Проблема оптимальной остановки



Метод максимального правдоподобия иногда могут давать некорректные результаты. Все зависит от дизайна эксперимента.

**Пример.** Предположим я сказал, что бросил монету 12 раз и получил 3 решки. Из этого вы сможете сделать некоторые выводы о вероятности выпадения решки у этой монеты. А теперь предположим, что я бросал монету пока решка не выпала 3 раза и бросал также 12 раз. Сделаете ли вы теперь другие выводы?

В обоих случаях функция правдоподобия будет одинакова и равна

$$p^3 (1-p)^9$$



$$F = (w - 5)^4$$



Градиентный спуск описывается простой формулой:

$$w_{n+1} = w_n - \gamma_n 
abla F(w_n)$$

Пусть 
$$\gamma_n=0.01$$



$$F = (w - 5)^4$$



Градиентный спуск описывается простой формулой:

$$w_{n+1} = w_n - \gamma_n 
abla F(w_n)$$

Пусть 
$$\gamma_n=0.01$$

$$abla F(w) = rac{dF}{dw} = 4(w-5)^3$$



$$F = (w-5)^4$$



Градиентный спуск описывается простой формулой:

$$w_{n+1} = w_n - \gamma_n 
abla F(w_n)$$

Пусть 
$$\gamma_n=0.01$$

$$abla F(w) = rac{dF}{dw} = 4(w-5)^3$$

$$abla F(w_0) = 4(w_0-5)^3 = -32$$



$$F = (w-5)^4$$





Градиентный спуск описывается простой формулой:

$$w_{n+1} = w_n - \gamma_n 
abla F(w_n)$$

Пусть 
$$\gamma_n=0.01$$

$$abla F(w) = rac{dF}{dw} = 4(w-5)^3$$

$$abla F(w_0) = 4(w_0 - 5)^3 = -32$$

$$w_1 = w_0 - \gamma_1 
abla F(w_0) = 3.32$$