

Ключник

Генератор истинно случайных паролей (ГИСП) на основе физической энтропии.

Тип проекта:

исследовательский/инженерный

Трек:

Цифровая Схемотехника

Нехлебов Артём Владимирович

- Беларусь
- Project manager, конструктор

Ильченко Кирилл Александрович

- Беларусь
- Hardware engineer, Схемотехник

Диа Даниэль Мустафа

- Ливан
- UI/UX Разработчик, Разработчик ПО

Команда проекта

Детцель Артём Андреевич

- Венгрия
- Технолог, Тестировщик

Янковец Александр Сергеевич

- Беларусь
- Разработчик ПО, Схемотехник

Бодров Лев Андреевич

- Франция
- Разработчик ПО,
 Сетевой инженер

Цель

К концу проекта создать полностью функциональный прототип портативного ГИСП, способного генерировать 128-битный ключ за 5 секунд, шифровать его с помощью AES и безопасно передавать по TCP на десктопное приложение.

Задачи

- 1. Анализ уязвимостей генераторов псевдослучайных паролей и принципов работы ГИСП.
- 2. Создание схемы электрической-принципиальной и изготовление печатной платы.
- 3. Сборка и отладка физического устройства.
- 4. Написание ПО и создание десктопного приложения.

Проблема и актуальность

70,63%

серверов используют повторяющиеся либо ненадежные пароли

Проблема: Программные генераторы паролей предсказуемы

Актуальность: потребность в источниках истинной случайности становится критически важной для защиты данных

3 Безопасность зависит от случайных чисел, но текущие программные методы уязвимы. Мы предлагаем решение этой проблемы.

Number of live hosts	Our TLS Scan		Our SSH Scans	
	12,828,613	(100.00%)	10,216,363	(100.00%)
using repeated keys	7,770,232	(60.50%)	6,642,222	(65.00%)
using vulnerable repeated keys	714,243	(5.57%)	981,166	(9.60%)
using default certificates or default keys	670,391	(5.23%)		
using low-entropy repeated keys	43,852	(0.34%)		
using RSA keys we could factor	64,081	(0.50%)	2,459	(0.03%)
using DSA keys we could compromise			105,728	(1.03%)
using Debian weak keys	4,147	(0.03%)	53,141	(0.52%)
using 512-bit RSA keys	123,038	(0.96%)	8,459	(0.08%)
identified as a vulnerable device model	985,031	(7.68%)	1,070,522	(10.48%)
model using low-entropy repeated keys	314,640	(2.45%)		

Ключник

Мы создали аппаратное устройство, которое генерирует истинно случайные числа, улавливая хаотическую энергию физического движения. Эти данные шифруются и отправляются на ПК для создания непредсказуемых паролей

Технологии и оборудование

ESP32 NODE MCU (микроконтроллер)

- Программное обеспечение (ПО):
 - Встроенное ПО: C/C++, фреймворк Arduino, библиотеки I2Cdev, AESLib.
 - **Десктоп:** Rust, tokio для асинхронной работы с сетью, aes для криптографии.
- Протокол: ТСР/ІР для передачи данных.

MPU-6050 (акселерометр

OLED-дисплей SSD1306

8-битный счётчик 74HC590

логический вентиль 74HC08

Продукт / Решение

Основные результаты

HS154L03W2C01

Основные результаты

2. Разработана печатная плата

3. Смонтировали на нее все компоненты

Основные результаты

4. Сделали Rust-приложение

Перспективы развития

ОТ. Создание компактной версии устройства.

О2 Добавление других источников энтропии.

ОЗ Мы планируем развивать проект, создавая клиенты для Linux и macOS

Спасибо за внимание!

