台北市立松山高中 110 學年度第二學期 第一次期中考 高二數 A 試題卷

- 一、單選題:(每題4分,占8分)
- 1. 若四面體 S-ABC 的底面 ABC 為正三角形,已知三個側面 ΔSAB 、 ΔSBC 、 ΔSAC 與底面 ABC 所形成的二面角分別為 30° 、 45° 、 60° ,且頂點 S 在底面的投影點 O 在 ΔABC 內部,如圖所示。 試求 O 到 ΔABC 的三邊 \overline{AB} 、 \overline{BC} 、 \overline{AC} 距離的比為
 - $(1)1:\sqrt{2}:\sqrt{3}$ $(2)1:\sqrt{3}:3$ (3)1:2:3 $(4)3:\sqrt{3}:1$ $(5)\sqrt{3}:\sqrt{2}:1$

- 2. $f(x) = \begin{vmatrix} x-1 & -2 & -3 \\ -1 & x-2 & -3 \\ -1 & -2 & x-3 \end{vmatrix}$, 下列選項何者錯誤?
 - (1) f(x) 為三次多項式
 - (2) f(x) 除以 x-1 的餘式為 -5
 - (3) f(x) 可被 x^2 整除
 - (4) f(6) = 0
 - (5) f(0) = 6

二、多重選擇題:

(每題8分,占64分;錯一個選項得5分,錯兩個選項得2分,錯三個選項以上或未作答得零分)

1. 設 A(0,1,0) , B(2,-1,1) 是空間中一正立方體的兩個頂點 ,

如圖所示,G點的坐標可能為

 $(1) (-2,0,2) \quad (2) (-1,-4,1) \quad (3) (-1,2,1) \quad (4) (4,0,-1) \quad (5) (5,2,1)$

- 2. 設 \overline{a} 、 \overline{b} 、 \overline{c} 是空間中三個不共平面的非零向量,已知 \overline{a} · $\left(\overline{b}$ × \overline{c})=10,下列敘述何者正確?
 - (1)由 $\frac{1}{a}$ 、 $\frac{1}{b}$ 、 $\frac{1}{c}$ 所決定的平行六面體體積為 10
 - (2) $|\overrightarrow{b} \times \overrightarrow{c}| = |\overrightarrow{b}| |\overrightarrow{c}| \sin \theta$, 其中 θ 為 \overrightarrow{b} 與 \overrightarrow{c} 的夾角

$$(3)\left(\overrightarrow{a} + \overrightarrow{c}\right) \cdot \left(\overrightarrow{c} \times \overrightarrow{b}\right) = 10$$

$$(4) \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c} \right) = -\overrightarrow{b} \cdot \left(\overrightarrow{a} \times \overrightarrow{c} \right)$$

$$(5)$$
若 $|\overrightarrow{a}| = 2$,則 $|\overrightarrow{b} \times \overrightarrow{c}|$ 的最大值為 5

- 3. 設空間坐標的原點為 O , P 點坐標為(1,3,5) , 已知 Q 點在 yz 平面上移動,試問當 $\angle POQ$ 最小時, Q 點的坐標可能為
 - (1)(0,-3,-5)
- (2)(0,3,0)
- (3)(0,3,5)
- (4)(0,6,8)
- (5)(0,6,10)
- 4. 在空間中給定向量 $\frac{1}{u} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$, 下列選項何者正確?
 - (1)可找到向量 $\overrightarrow{v} = (t,t,t)$, $t \neq 0$,使得 $\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{v}|$
 - (2)可找到向量 \overrightarrow{v} 使得 $\overrightarrow{u} \times \overrightarrow{v} = (1,-1,1)$
 - (3)若向量 \overrightarrow{v} 滿足 $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ 且 $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0}$,則 $\overrightarrow{v} = \overrightarrow{0}$

(4) 若非零向量
$$\overrightarrow{v}$$
 滿足 $|\overrightarrow{u} \cdot \overrightarrow{v}| = |\overrightarrow{v}|$,則 $|\overrightarrow{u} \times \overrightarrow{v}| = |\overrightarrow{v}|$

(5)若非零向量
$$\overrightarrow{v}$$
 滿足 $|\overrightarrow{u} \times \overrightarrow{v}| = |\overrightarrow{v}|$,則 $|\overrightarrow{u} \cdot \overrightarrow{v}| = 0$

- 5. 設 A(1,0,0), B(4,-4,0), C(-6,1,2), 下列敘述何者正確?
 - (1) \overrightarrow{AB} 與 \overrightarrow{AC} 的夾角為銳角
 - (2) AC 在 AB 上的正射影為(3,-4,0)
 - (3)點 C 在直線 AB 上的投影點坐標為 (-2,4,0)
 - (4)點 C 到直線 AB 的距離為 $\sqrt{29}$
 - (5)若 O 為原點,則三向量 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 所決定的平行六面體體積為 $\begin{vmatrix} 1 & 4 & -6 \\ 0 & -4 & 1 \\ 0 & 0 & 2 \end{vmatrix}$

6. 設空間中三向量 $\vec{a} = (0,5,-1)$, $\vec{b} = (3,-1,0)$, $\vec{c} = (6,-2,3)$, 下列敘述何者正確?

$$(1) \overrightarrow{b} \times \overrightarrow{c} = \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix}, \begin{vmatrix} 0 & 3 \\ 3 & 6 \end{vmatrix}, \begin{vmatrix} 3 & -1 \\ 6 & -2 \end{pmatrix} \end{pmatrix}$$

(2)由 \overline{b} 與 \overline{c} 所決定的平行四邊形面積為 $3\sqrt{10}$

$$(3) \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c} \right) = \begin{vmatrix} 0 & 5 & -1 \\ 3 & -1 & 0 \\ 6 & -2 & 3 \end{vmatrix}$$

(4)由 $\frac{1}{a}$ 、 $\frac{1}{b}$ 、 $\frac{1}{c}$ 所決定的平行六面體體積為 45

$$(5)$$
 \overrightarrow{a} 在 $\overrightarrow{b} \times \overrightarrow{c}$ 上的正射影長為 $\frac{3\sqrt{10}}{2}$

- 7. 關於空間的概念,下列敘述何者正確?
 - (1)存在不共平面的四點
 - (2)若 P 點在 xy 平面上的投影點為 Q ,則 P 點在 x 軸上的投影點就是 Q 點在 x 軸上的投影點
 - (3)設 $\overline{AB} \perp \overline{BC}$ 於B,且 $\overline{BC} \perp \overline{CD}$ 於C,則 $\overline{AC} \perp \overline{CD}$ 於C
 - (4)設直線L交平面E於A,若在E上過A有一直線L'與L垂直,則L垂直於平面E
 - (5)設兩個半平面 E_1 、 E_2 交於直線L,若L垂直於平面E於P點,又E與這兩個半平面 E_1 、 E_2 分別交於射線PQ與PR,則 $\angle QPR$ 的大小就是這兩個半平面 E_1 、 E_2 所形成兩面角的大小
- 8. 設 $\overrightarrow{a}=(a_1,a_2,a_3)$, $\overrightarrow{b}=(b_1,b_2,b_3)$, $\overrightarrow{c}=(c_1,c_2,c_3)$,若定義:

$$\overrightarrow{a}$$
、 \overrightarrow{b} 與 \overrightarrow{c} 所形成的有向體積為依序將 \overrightarrow{a} 、 \overrightarrow{b} 與 \overrightarrow{c} 從第一列寫入行列式,即 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \Delta$,

也就是說,
$$\overrightarrow{b}$$
、 \overrightarrow{a} 與 \overrightarrow{c} 所形成的有向體積為 $\begin{vmatrix} b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -\Delta$ 。

在此定義下,下列敘述何者正確?

- (1) b 、 c 與 a 所形成的<u>有向體積</u>為 $-\Delta$
- $(2)2\overline{a}$ 、 $3\overline{b}$ 與 $-\overline{c}$ 所形成的有向體積為 -6Δ

- $(3)2\overline{a}+2\overline{b}+3\overline{c}$ 、 $\overline{a}+\overline{b}$ 與 \overline{c} 所形成的<u>有</u>向體積為 Δ
- $(4)3\overline{a}-2\overline{b}+\overline{c}$ 、 $6\overline{b}-4\overline{c}$ 與 \overline{c} 所形成的有向體積為 0
- (5) \overrightarrow{a} $-\overrightarrow{b}$ 、 \overrightarrow{b} $-\overrightarrow{c}$ 、 \overrightarrow{c} $-\overrightarrow{a}$ 所形成的<u>有向體積</u>為 0

三、填充題:(每格6分,占12分)

1. 下圖為一正立方體表面的展開圖, $A \cdot C \cdot D$ 是原正立方體的頂點,B 是原正立方體一邊的中點,

設原正立方體中,兩向量 \overrightarrow{AB} 與 \overrightarrow{CD} 的夾角為 θ ,

試求 $\cos\theta$ =____。

2. 平行六面體 ABCD-EFGH, 如圖所示。設 P 點在線段 \overline{BG} 上使得

$$\overline{BP}$$
: \overline{PG} = 2:1 , 若 \overrightarrow{AP} = $\alpha \overrightarrow{AC}$ + $\beta \overrightarrow{AF}$ + $\gamma \overrightarrow{AH}$, 求序組

$$(\alpha, \beta, \gamma) = \underline{\hspace{1cm}} \circ$$

四、混合題:(占16分,單選題直接寫答案;非選擇題請由左而右橫式書寫,作答時必須寫出 計算過程或理由,否則將酌予扣分。)

將一條橡皮筋綁在正立方體的各邊中點上,橡皮筋可以形成正六邊 形 ABCDEF , 如圖所示 , 設 A(0,0,0) , B(2,0,0) , C(3,1,z) , z>0 , 試回答下列問題:

- 1. 將正立方體的各邊分別延長為直線,其中與直線 FE 歪斜的有幾條? (單選題,4分)
 - (1) 6

- (2) 7 (3) 8 (4) 9
- (5) 10
- 2. 求向量 \overline{CE} 。(非選擇題,6分)
- 3. 設正六邊形 ABCDEF 與三角形 GDE 所形成的兩面角為 θ , 求 $\cos\theta$ 。(非選擇題, 6分)

台北市立松山高中 110 學年度第二學期 第一次期中考 高二數 A 答案卷

一、單選題:(每題4分,占8分)

2.

1.

二、多重選擇題:

班級:_____ 座號:____ 姓名:____

(1	 す	分,占 64 分,錯~	一個選	頃付 J 分 ,	錯兩個	进垻付	4分,錯二	- 個選項以上5	以不作合付令分)
	1.		2.			3.		4.	
	5.		6.			7.		8.	
_ =	、填充	題:(每格6分,	占 12 分	`)				·	
	1.					2.			
四四	、混合	題:(占16分,單	選題直	接寫答案	;非選擇	睪題請占	由左而右横立	式書寫,作答	時必須寫出
	計算	過程或理由,否則	將酌子	·扣分。)					
	1.		(單選)	題,4分)					
	2.(非主	選擇題,6分)			3.(非過	選擇題	,6分)	C	A F

台北市立松山高中 110 學年度第二學期 第一次期中考 高二數 A 答案卷

班級:_____ 座號:____ 姓名:____

一、單選題:(每題4分,占8分)

1. 4	2.	5
------	----	---

二、多重選擇題:

(每題8分,占64分;錯一個選項得5分,錯兩個選項得2分,錯三個選項以上或未作答得零分)

1.	25	2.	124	3.	35	4.	345
5.	345	6.	12345	7.	125	8.	25

三、填充題:(每格6分,占12分)

1.	$-\frac{\sqrt{10}}{10}$	2.	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{6})$
----	-------------------------	----	---

四、混合題:(占16分,單選題直接寫答案;非選擇題請由左而右橫式書寫,作答時必須寫出 計算過程或理由,否則將酌予扣分。)

(單選題,4分) 1. 3

2.(非選擇題,6分)

 $C(3,1,\sqrt{2})(2 \%)$

 $E(0,2,2\sqrt{2})(2 \%)$

 $\overrightarrow{CE} = (-3,1,\sqrt{2})(2 \%)$

3.(非選擇題,6分)

(1)

 $\Rightarrow \overline{BI} = \overline{IA} = \overline{DH} = \overline{HE} = \sqrt{2}$ $\Rightarrow \overline{IQ} = \overline{PH} = 1$

(2分)

$$(2)\overline{GP} = \overline{GH} - \overline{PH} = 4 - 1 = 3 \quad (2 \ \%)$$

$$(3) \times \overline{QP} = 2\sqrt{3}$$

得
$$\cos \angle QPG = \frac{(2\sqrt{3})^2 + 3^2 - 3^2}{2 \cdot 2\sqrt{3} \cdot 3} = \frac{\sqrt{3}}{3}$$
 (2 分)