العلامة		عادي الأمارية (المصنوع الأمار)		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)		
	0.25	التمرين الأول(04 نقاط): 1.1 تعاريف : النظير: كل نواة تنتمي الى مجموعة من الأنوية لها نفس عدد البروتونات (نفس العدد الشحني) و تختلف في عدد النيكليونات (العدد الكتلي)		
	0.25	برورو المربعة المشعة :نواة غير مستقرة تتفكك تلقائيا لتصدر إشعاعاً وتعطي نواة اكثر استقرارا		
	0.25	النشاط A : هو عدد التفككات في الثانية الواحدة للعينة المشعة .		
	0.25	$A(t) = A_0 e^{-\lambda t}$: قانون التناقص الإشعاعي $A(t) = A_0 e^{-\lambda t}$		
		$-\ln(A) = at - \ln(b)$ العلاقة -3.1		
2.25		$rac{A\left(t ight)}{A_{0}}\!=\!e^{-\lambda t}$ من قانون التناقص الإِشعاعي $A\left(t ight)\!=\!A_{0}e^{-\lambda t}$ نجد		
	0.25	$-\ln(A) = \lambda t - \ln(A_0)$ نجد أن $\ln(\frac{A(t)}{A_0}) = -\lambda . t$ ومنه		
	0.50	المدلول الفيزيائي وقيمة $b \cdot a$: بالمطابقة بين العلاقتين نجد $a = \lambda$ ثابت $a = \lambda$		
	0.25	النشاط الاشعاعي $b=A_0$ النشاط الاشعاعي الابتدائي		
	0.25	$b = A_0 = e^{46.93} = 2,4 imes 10^{20} Bq$ من المنحنى البياني نجد		
	0.25	$a = \lambda = \frac{2y_1}{t_1} = \frac{2 \times 46.93}{2.11 \times 10^4} = 4,45 \times 10^{-3} \text{ s}^{-1}$		
0 =0	0.25	$\lambda = 4.45 \times 10^{-3} \ s^{-1}$ لدينا $X = 4.45 \times 10^{-3} \ s^{-1}$ ومنه		
0.50	0.25	P ومنه X هو الفوسفور $t_{1/2}=rac{\ln 2}{\lambda}=156~s=2,6~min$		
1.25	0.50	Z=15, A=30, A=30, Z=14 : A,Z,A',Z' ايجاد 1.3		
1.25	0.25	$^{27}_{13}Al + ^4_2He \rightarrow ^{30}_{14}Si + ^0_{11}e + ^1_0n$: 1.3		
		3.3- الطاقة المحررة من التفاعل الحاصل:		
	0.50	$E_{lib} = 0.57 Mev$ نجد $E_{lib} = [(m_{Al} + m_{He}) - (m_{Si} + m_e + m_n)] \times 931.5$		
		التمرين الثاني(04 نقاط):		
	0.25	1.1- شرح المصطلحين: - إهليلجي: هو مدار بيضوي متناظر يحتوي أحد محرقيه الكوكب المركزي (الارض)		
	0.25	- به مستوى مستوى مساسر يستوى المستوى خط الاستواء في نفس - جيومستقر: هو خاصية جسم يدور حول الأرض في مستوى خط الاستواء في نفس		
		جهة دورانها و له نفس دور الأرض حول نفسها .		
	0.25	2.1- المرجع المناسب لدراسة حركة القمر: المرجع الجيومركزي		
		3.1- الرسم التخطيطي للمسار		
		الأرض بنقطة الحضيض لقطة الحضيض		
	0.25			
	0.25	r $\overline{F_{T/S}}$		
	0.25	القمر الإصطناعي V 2		

العلامة		(takt carinatt) i dayt walio							
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)							
		v_s عبارة السرعة المدارية v_s :							
	0.25	- بتطبيق القانون الثاني لنيوتن: $\vec{F} = m\vec{a}$ على القمر الإصطناعي نجد							
	0.25	$F_{T/S} = m_{S}.a_{N}$ بالإسقاط على المحور الناظمي نجد $\overline{F_{T/S}} = m.\vec{a}$							
	0.25	$v_S = \sqrt{\frac{G.M_T}{r}}$ بالتعویض نجد $F_{T/S} = G \frac{m_S.M_T}{r^2}$, $a_N = \frac{v_S^2}{r}$							
		- حساب قيمة السرعة المدارية:							
		وضع الحضيض ($r = h_2 + R$): نجد							
2.75	0.25	$v_{2(S)} = \sqrt{\frac{G.M_T}{h_2 + R}} = \sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.6 \times 10^6}} = 7767 \ m/s$							
		$_{-}$ موضع الأوج $(r = h_1 + R)$: نجد							
	0.25	$v_{1(S)} = \sqrt{\frac{G.M_T}{h_1 + R}} = \sqrt{\frac{6,67 \times 10^{-11} \times 5,97 \times 10^{24}}{48,39 \times 10^6}} = 2869 \ m/s$							
	0.25	1.2- شكل المدار: دائري مركزه منطبق على مركز الارض							
	0.25	$T_s = 24h$ - قيمة دوره الأصطناعي جيو مستقر فإن دوره الأصطناعي - قيمة دوره $T_s = 24h$							
	0.25	$\frac{T^2}{r^3} = \frac{4\pi^2}{G.M_T}$ عن سطح الارض: باستعمال قانون كبلر الثالث -2.2							
	0.25	$r = \sqrt[3]{rac{T^2.G.M_T}{4\pi^2}} = 42,24 imes 10^6 \ m$ نجد							
	0.25	$h = r - R_T = 42,24 \times 10^6 - 6,4 \times 10^6 = 35,84 \times 10^6 \text{m} \Box 36 \times 10^3 \text{km}$							
	0.25	$E \longrightarrow R$ التمرين الثالث $R \longrightarrow R$ التمرين الثالث $R \longrightarrow R$ المتزاز:							
	0.25	رسم الدارة و كيفية توصيل راسم الاهتزاز: R \longrightarrow 2.1 وضع البادلة الذي يحقق عملية الشحن \bigcirc							
		هو الوضع 2 1.2- المجالات الزمنية لأوضاع البادلة:							
		$C = 100 \mu F \qquad k \qquad 1$							
	0.25 0.25	المجال الزمني (ms) وضع البادلة على المجال الزمني (ms)							
	0.25	m							
		$ \begin{array}{c cccc} & & 2 & [50, 300] \\ \hline L, r & & & & & & & & & & & & & & & & & & $							
1.25		3 [300, 550]							
	0.25	2.2- المقادير الموضحة على البيان وقيمها:							
	0.25 0.25	$a = 90 \ ms$ لحظة شحن المكثفة % 63 من شحنتها الاعظمية حيث: $a = 250 \ ms$ لحظة شحن المكثفة % 99 من شحنتها الاعظمية ، حيث $b = 250 \ ms$							

العلامة		(t \$11 a · t · t)\
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
0.50	0.25	$c=E=2.25\times 4=9~V$ التوتر الكهربائي الاعظمي بين طرفي المكثفة حيث $u_{c}(t)=0$: $u_{c}(t)=0$: معادلة التفاضلية المعبرة عن $u_{c}(t)=0$: $u_{c}(t)=0$
	0.25	$u_C + u_R = E$ بتطبیق قانون جمع التوترات: $u_C + u_R = E$ بتطبیق قانون جمع التوترات: $u_C + R \cdot \frac{dq}{dt} = E$ ومنه $u_C + R \cdot i = E$ نجد $u_C + R \cdot i = E$
	0.50	dt R.C R.C dt $ au=40ms$ عن علاقة ثابت الزمن $ au=R.C$ حيث \mathbf{R} : من علاقة ثابت الزمن
	0.25	$R = \frac{\tau}{C} = \frac{40 \times 10^{-3}}{100 \times 10^{-6}} = 400 \ \Omega$ نجد
		1.3- الظاهرة التي يبرزها البيان في المجال الزمني [300 ms, 550 ms]:
3.00	0.25 0.25	اهتزازات كهربائية حرة متخامدة
3.00	0.25	$T_0 = 50~ms$: من المنحنى البيانى -2.3 من المنحنى البيانى $T_0 = 2\pi\sqrt{L.C}$ العبارة الصحيحة للدور $T_0 = 2\pi\sqrt{L.C}$ العبارة الصحيحة للدور
		1/0
	0.50	$ig[T_0ig] = ig[Lig]^{1/2}ig[Cig]^{1/2} = rac{ig[Uig]^{1/2}ig[Tig]^{1/2}}{ig[Iig]^{1/2}} imes rac{ig[Iig]^{1/2}ig[Tig]^{1/2}}{ig[Uig]^{1/2}} = ig[Tig]$
	0.25	$T_0 = 2\pi.\sqrt{L.C}$ استنتاج ذاتية الوشيعة L الدينا : L
	0.50	$L = \frac{T_0^2}{4\pi^2 \cdot C} = \frac{(0.05)^2}{4\pi^2 \times 100 \times 10^{-6}} = 0.63 H$ ومنه
		4- رسم مقطع من المنحنى ضمن المجال الزمني [300 ms, 550 ms] من اجل
2.00	0.50	$igwedge_{UC}(V)$ وشیعة صرفة
2.00		t(s)
	0.70	التمرين التجريبي (06 نقاط)
0.50	0.50	1- الوظائف التي يحتويها المركب: وظيفة حمضية كربوكسيلية ، وظيفة استرية $\frac{1}{n}$
	0.50	$\sigma = \sum_{i=1}^{i=n} \lambda_i . [X_i]$ الدينا النوعية: لدينا النوعية: الدينا النوعية
0.50	0.50	$\sigma = \lambda_{H_3O^+}. \left[H_3O^+\right] + \lambda_{C_9H_7O_4}^ \left[C_9H_7O_4^{-}\right]$ ومنه
		pH المناسب: حساب التركيز المولى لشوارد الهيدرونيوم واستنتاج pH المناسب: $\sigma = \lambda_{H_3O^+} \cdot \left[H_3O^+ \right] + \lambda_{C_9H_7O_4^-} \cdot \left[C_9H_7O_4^- \right]$ من العلاقة السابقة

امة	العلا				
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
	0.25	حيث $\left[H_3O^+\right] = \left[C_9H_7O_4^{-}\right]$ ومنه			
1.75	0.50	$ \left[H_3 O^+ \right] = \frac{\sigma}{\lambda_{H_3 O^+} + \lambda_{C_9 H_7 O_4^-}} = \frac{109 \times 10^{-3}}{(35 + 3, 6)10^{-3}} $			
	0.50	$= 2.82 \text{ mol/m}^3 = 2.82 \times 10^{-3} \text{ mol/L}$			
	0.25	$pH = -\log[H_3O^+] = 2,55$ ومنه			
		1.3- الرسم التخطيطي لعملية المعايرة:			
		1- سحاحة مدرجة 2- حامل السحاحة			
	0.75	2- عامل الشعاعة - 2- بيشر به الحمض 3- بيشر به الحمض			
		pH -4			
		5- محرك المخلاط المغناطيسي			
		$C_{0}H_{8}O_{4} + OH^{-} = C_{0}H_{7}O_{4}^{-} + H_{2}O$			
	0.70	-1.4 تحدید احداثیی نقطة التکافؤ و طبیعة المزیج عندئذ:			
	0.50	$(V_{BE}=30mL,pH_{E}=7.8)$ باستعمال طريقة المماسات المتوازية نجد			
	0.50	(يقبل مجال pH (يقبل مجال			
1.25		$pH_{\scriptscriptstyle E}$ > طبيعة المزيج عند التكافؤ :المزيج أساسي لان			
	0.25	2.4- استنتاج ثابت الحموضة:			
		$pH=pKa$ من المنحنى البياني و عند نقطة نصف التكافؤ يكون $pKa=3.5$ يكون $V_{BE1/2}=15\ mL$ نجد عند			
		$p_{Kd} = 3.5$ عبد عليه $v_{BE1/2} = 15 mL$ عبد عبد الفعالة (الحمض) واستنتاج كتلته النقية:			
	0.50	$V_{BE} = 30 \ mL$ حيث $C_A V_A = C_B V_{BE}$: عند التكافؤ			
	0.50	$C_a = \frac{C_b.V_{bE}}{V_a} = \frac{0.05 \times 30}{55} = 2.73 \times 10^{-2} \ mol/L$ ومنه			
	0.50	$C_a = \frac{n}{V_a} = \frac{m}{M V_a}$ - كتلة الحمض النقية: لدينا			
2.00		$m = C_a \times M \times V_a = 2,73 \times 10^{-2} \times 180 \times 0,1 = 0,49 \text{ g}$ ومنه			
	0.50	$m = 490mg \square 500mg$ أي			
		4.4- معنى الدلالة $\frac{C500}{100}$ المدونة على العلبة : أن كتلة حمض الاستيل ساليسليك النقي المتواجدة في القرص الواحد تقدر بـ $\frac{1}{100}$.			

مة	العلاد	/ 12th a th 7 1 - 2th	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	
		مرين الأول: (04 نقاط) تت بت	التم
		1 – تمثيل القوى	
0.50	2×0.25	$\left(egin{array}{c} igbeddrell \ \end{array} ight)$ و $t=0:1$ الحالة $t=0$	
		ب- الحالة 2: خلال الحركة	
		P	
		 ◄ المعادلة التفاضلية بتطبيق القانون الثاني لنيوتن قي مرجع سطحي الارضى نعتبره غاليليا 	
	0.25	$\sum \vec{F} = m\vec{a} \implies \vec{P} + \vec{f} + \vec{\pi} = m\vec{a}$	
	0.23	المقاط على محور الحركة : $Oec{z}$ الموجه نحو الأسفل .	بالإ
1.50	0.25	$P - f - \pi = m a \Rightarrow mg - kv - \rho_a Vg = m \frac{dv}{dt}$	
	0.25	$\frac{dv}{dt} + \frac{k}{m} v = g(1 - \frac{\rho_a}{\rho})$	
	0.23	at m	
		$\frac{dv}{dt} + A v = B$	
	2x0.25	$B = g\left(1 - \frac{\rho_a}{\rho_a}\right) \qquad A = \frac{K}{m}$	
		eta المدلول الفيزيائي لـ B :	·Ĺ
	0.25	لما $v=0$ فإن $v=0$ و منه حسب المعادلة التفاضلية فإن $a_0=\left(rac{dv}{dt} ight)=B$ لما رومته حسب المعادلة التفاضلية فإن	ı
		$\langle m \rangle_0$	
	0.25	$v_l = 3m s^{-1}$ أ- السرعة الحدية	- 3
	0.25	$a_0 = \frac{3-0}{1-0} = 3m s^{-2}$ ب- التسارع الابتدائي	
1.50	0.50	$ au = 1s o k = rac{m}{ au} = rac{0.02}{1} = 0.02 kg. s^{-1} : k$ ج- ثابت الزمن $ au$ والثابت	
	0.50	$a=0~m~s^{-2}$ د- شدة قوة دافعة أرخميدس: في النظام الدائم	
	0.50	$P-f-\pi=0 o \pi=P-f o \pi=(0.02 imes 10)-(0.02 imes 3)$: ومنه	
		تقبل طريقة أخرى .	
		4- عند إهمال باقي القوى أمام الثقل:	
		$igwedge v^{(\mathbf{m.s^{-1}})}$. الحركة في هذه الحالة : سقوط حر	-
0.50	2×0.25	- التمثيل البياني الكيفي :	-
0.50	2×0.25		
		t(s)	
		0	

امة	العلا	عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	هاعر ۱م جاب (الموصوع التاني)
		التمرين الثاني: (04 نقاط)
		: تصنّیف التفاعلین -1
	0.25	$^{235}_{92}$ U + $^{1}_{0}$ n $ ightarrow$ $^{131}_{53}$ I + $^{A}_{2}$ Y + $^{3}_{0}$ n (1) $ ightarrow$ تفاعل إنشطار
1.00	0.25	$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{1}_{0}n$ (2) \rightarrow تفاعل إندماج
1.00		تعیّن قیمة کل من A و Z فی التفاعل(1)
		بتطبيق مبدأ انحفاظ العدد الكتلى
	0.25	$235 + 1 = 131 + A + 3 \Rightarrow A = 102$
	0.23	بتطبيق مبدأ انحفاظ العدد الشحني
	0.25	$92 + 0 = 53 + Z + 0 \implies Z = 39$
	0.25	$ m E_{lib} = E_{l(f)} - E_{l(i)}$ لكلّ تفاعل: MeV حساب الطاقة المحررة ب
		• تفاعل انشطار : د-225ء - د-1221ء - د-1231ء
		$E_{lib} = E_{l}({}^{131}_{53}I) + E_{l}({}^{102}_{39}Y) - E_{l}({}^{235}_{92}U)$ $E_{lib} = (8,42 \times 131) + (8,38 \times 102) - (7,59 \times 235)$
0.75	0.25	$E_{\text{lib}} = 174.13 \text{ MeV}$
		• تفاعل اندماج:
		$E_{lib} = E_{l}({}_{2}^{4}He) - (E_{l}({}_{1}^{2}H) + E_{l}({}_{1}^{3}H))$ $E_{lib} = (7,07 \times 4) - (1,07 \times 2) - (2,83 \times 3)$
	0.25	$E_{\text{lib}} = (7,67 \times 2)^{-1} (2,63 \times 3)^{-1}$ $E_{\text{lib}} = 17,65 \text{ MeV}$
		-3 استنتج الطاقة المحررة لكلّ نكليون لهذين التفاعلين .
0.50	0.25	$rac{ ext{E}_{ ext{lib}}}{ ext{A}}(1) = rac{174,13}{236} = 0,74~Mev/nuc$ تفاعل انشطار
0.00	0.25	$rac{ ext{E}_{ ext{lib}}}{ ext{A}}(2) = rac{17,65}{5} = 3,53 Mev/nuc$ تفاعل اندماج
		4- يستحسن استعمال تفاعل اندماج لأن طاقة المحررة لكل نيكليون لتفاعل اندماج أكبر من طاقة المحررة
0.25	0.25	لكل نيكليون لتفاعل انشطار بـ5 مرات تقريبا .
		$\Delta E_1 = E_{\ell}({}_{1}^{2}H) + E_{\ell}({}_{1}^{3}H) = (2,14+8,49) = 10,63 Mev$ -5
	0.25	$\Delta E_2 = E_{\ell} \binom{4}{2} He = 28,28 Mev$
0.75	0.25 0.25	$\Delta E_3 = -E_{\ell ib} = -17,65 Mev$
		1.6- حساب الطاقة الكهربائية التي تنتجها المحطة خلال أسبوع واحد:
	0.25	$E_{elec} = P \times \Delta t \Rightarrow E_{elec} = 900 \times 10^6 \times 7 \times 24 \times 3600$
		$\Rightarrow E_{elec} = 5,44.10^{14}J$
		-2.6 حساب الطاقة النووية المستهلكة في المحطة: F . $5.44.10^{14}$
0.75	0.25	$E_{T_{\text{lib}}} = \frac{E_{elec}}{r} = \frac{5,44.10^{14}}{0.4} \Rightarrow E_{T_{\text{lib}}} = 13,6.10^{14} J$

مة	العلا	/ 91291 _ * 913 T 1 501 1*_
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25	واحد. $E_{T_{\mathrm{lib}}} = \mathrm{N} \times E_{\mathrm{lib}} \Rightarrow \mathrm{N} = \frac{E_{T_{\mathrm{lib}}}}{E_{\mathrm{lib}}} = \frac{13,6.10^{14}}{174,13\times1,6.10^{-13}} \Rightarrow \mathrm{N} = 4,88.10^{25}$ خواة $m = \frac{N}{N_A} * M \Rightarrow m = \frac{4,88.10^{25}}{6,02.10^{23}} * 235 = 1,9.10^4~g$ $\Rightarrow m = 19~kg$
		التمرين الثالث: (06 نقاط)
		نضع البادلة في الوضع (1). $\mathbf{t}=0$ عند اللحظة $\mathbf{t}=0$
		1- التفسير المجهري للظاهرة التي تحدث في المكثفة .
0.50	0.50	عند الوضع (1) تحدث ظاهرة شحن المكثفة حيث تنتقل الإلكترونات من الصفيحة A الى الصفيحة B الى غاية
		$U_c = E$ بلوغ
		q(t) إيجاد المعادلة التفاضلية التي تحققها الشحنة $q(t)$:
0.75	0.75	$u_c + u_R = E \Rightarrow \frac{q}{C} + R. i = E \Rightarrow \frac{q}{C} + R \frac{dq}{dt} = E \Rightarrow \frac{dq(t)}{dt} + \frac{1}{RC}q(t) = \frac{E}{R}$
		i عبارة q بدلالة: i
0.75	0.75	في المعادلة التفاضلية نعوض $\frac{dq}{dt}=i$ فنجد $q=-(RC).i+CE$ و بتطابق العلاقة مع العلاقة المطلوبة
0.75	0.75	dt $b = CE$ ، $a = -(RC)$ نجد
		4معادلة المنحنى :
	0.25	$q = -10^{-3}.i + 40.10^{-6}C$: معادلة البيان
		استتاج:
	0.25	RC $=$ $10^{-3} \Rightarrow C$ $=$ $\frac{10^{-3}}{100}$ $=$ $10^{-5}F$ $=$ $10 \mu F$ $:$ C قيمة سعة المكثفة
1.00	0.25	$CE=40.10^{-6} \Rightarrow E=rac{40.10^{-6}}{10^{-5}}=4V~:~E~$ قيمة القوة المحركة الكهربائية
	0.25	$I_0 = rac{E}{R} = rac{4}{100} = 0,04A : I_0$ قيمة الشدة الاعظمية

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.5	2×0.25	II. 1-نمط الإهتزاز الملاحظ: اهتزاز كهربائي حر غير متخامد. النظام: دوري
		-2 المعادلة التفاضلية التى تحققها شحنة المكثفة:
0.75	0.75	$U_{c} + U_{L} = 0 \Rightarrow \frac{q}{C} + L \frac{di}{dt} = 0 \Rightarrow \frac{1}{C}q(t) + L \frac{dq^{2}(t)}{dt^{2}} \Rightarrow \frac{dq^{2}(t)}{dt^{2}} + \frac{1}{LC}q(t)$ $= 0$
		1.3. ايجاد عبارة الدور
		$q = Q_0 \cos \frac{2\pi}{T} t \Rightarrow \frac{dq}{dt} = -\frac{2\pi}{T} Q_0 \sin \frac{2\pi}{T} \Rightarrow \frac{d^2q}{dt^2} = -\frac{4\pi^2}{T^2} Q_0 \cos \frac{2\pi}{T}$
	0.50	نعوض في المعادلة التفاضلية :
1.00	0.30	$-\frac{4\pi^2}{T^2}Q_0\cos\frac{2\pi}{T} + \frac{1}{LC}Q_0\cos\frac{2\pi}{T} = 0 \Rightarrow (-\frac{4\pi^2}{T^2} + \frac{1}{LC})Q_0\cos\frac{2\pi}{T} = 0$
		$-rac{4\pi^2}{T^2} + rac{1}{LC} = 0 \Rightarrow T = 2\pi\sqrt{LC}$: ومنه
	0.50	$T=2\pi\sqrt{LC}\Rightarrow L=rac{T^2}{4\pi^2C}$.2.3 قيمة ذاتية الوشييعة:
	0.25	$L = \frac{(2.10^{-3})^2}{4\pi^2.10^{-5}} = 0,01H$ و منه $T = 2ms$: قيمة الدور الذاتي $T = 2ms$
0.75		$i = \frac{dq}{dt} = -\frac{2\pi}{T}Q_0\sin\frac{2\pi}{T}$ $\Rightarrow i = -0.04\pi\sin1000\pi t(A)$: المعادلة الزمنية لشدة التيار
		منحنى شدة التيار:
	0.50	$0,02\pi$ $0,05$ $1(ms)$

						قاط)	 ثان <i>ي</i> :(06ن	الجزء ال	
		التمرين التجريبي: (06نقاط)							
				لحادث:	المنمذج للتحول ا	عل الكيميائي	ابة معادلة التفاء	1−1 کت	
	0.25					$S_2O_8^{2-}(aq)$	$+2e^{-}=2Sc$	$O_4^{2-}(aq)$	
0.75	0.25					21	$I_2(aq) = I_2(aq)$	$q)+2e^{-}$	
	0.25		$2I^{-}(aq) + S_2O_8^{2-}(aq) = I_2(aq) + 2SO_4^{2-}(aq)$						
							تقدم التفاعل:	2- ج دول	
		التفاعل	معادلة	$2I^{-}(aq)$	$+S_2O_8^{2-}(aq) =$	$=I_2(aq)+$	$2SO_4^{2-}(aq)$	-	
	0.50	き て	التقدم		ميات المادة	ک	1	-	
		ابتدائية	0	c_1V_1	c_2V_2	0	0	-	
		انتقالية	x(t)	$c_1V_1 - 2x(t)$	$c_2V_2 - x(t)$	x(t)	2x(t)	-	
0.75		نهائية	X_f	$c_1V_1-2X_f$	2 2 J	X_f	$2X_f$]	
						•	ية المادة الابتداه		
	0.25			$n_0(S_2O_8^{2-}) = c_2V$	-	0			
	0.23			کيومت <i>ري</i>	فالمزيج ستوك $rac{n_0}{}$	$\frac{(I_{0})}{2} = \frac{n_{0}(I_{0})}{2}$	$\frac{S_2O_8^2}{1} = 0,$	005 <i>mol</i>	
					، في المعايرة :	بي المستعمل	، التركيب التجرب	1.3– رسد	
	0.50	ت	حامل السحاحة محلول ثيوكبريتات المزيج المزيج						
	0.25			لمدر وس	: توقيف التفاعل ا	الماء النارد	ض من اضافة	2.3 – الغر	
	0.25			ــــروس لأزرق لصمغ النشا					
				•	فاعل المدروس واا				
2.00				·	ىب ستوكيومترية	•	•		
	0.50		$n_0(1)$	$I_2) = \frac{n_E(S_2O_3^{2-})}{2}$			_		
				$n(I_2) = x(t)$	$V_T = V_1$	$+V_2 = 100$	التفاعلي mL)	في المزيج	

		$x(mmol) = \frac{V_E(mL)}{10}$ و منه $x(t) = \frac{c_3 V_E}{2} \times \frac{V_T}{V_C} = \frac{0.02 \times 100}{2 \times 10} \times V_E = 0.1 \times V_E$ و منه $x(t) = \frac{c_3 V_E}{2} \times \frac{V_T}{V_C} = \frac{0.02 \times 100}{2 \times 10} \times V_E = 0.1 \times V_E$								
		- 0								
	0.25	استنتاج زمن نصف التفاعل $t_{1/2}: t_{1/2}: t_{1/2}: t_{1/2}$ و بالاسقاط – (أ –5.3) استنتاج زمن نصف التفاعل ا								
		$t_{1/2} = 7s$ نجد								
	0.25	$v_{I^{-}} = -\frac{dn(I^{-})}{dt} = -\frac{d(c_{1}V_{1} - 2x)}{dt} = 2\frac{dx}{dt}$: I^{-} باتحدید سرعة اختفاء شوارد الیود								
			حيث $\frac{dx}{dt}$ يمثل ميل مماس المنحنى في اللحظة t المعتبرة							
0.25	0.25			ب قيمته:	الإبتدائية و حساد	ل في الحالة	بارة كسر التفاعل	ا I −II−ع		
	0.25				$Qr_i = \frac{[Cu]}{[Cu]}$	$\frac{2+]_i}{+12} = \frac{1}{(2-\epsilon)^2}$	$\frac{1,5}{4\cdot 10^{-2})^2} = 2,5$	15 10 ³		
0.25	0.25			يا في الاتجاه المباشر	19	11 (-,-	,			
0.25	0.25		•.	•	$A = A \cdot $					
				$\bigcirc cu \setminus cu$	11 <i>g</i> \ 11 <i>g</i>	y Ψ •-9•	مِ مسارحي سع إلى التقدم:			
		التفاعل	71.1	C(-) + 2 1 - +(C-2+(> + 2.4 - (,]]		
	0.50		T	$Cu(s) + 2Ag^+($			S)			
		<u>ح ح</u>	التقدم 0	m (Cu)	يات المادة ا	کم 	100	-		
		ابتدائية	Ü	$\frac{m_0(Cu)}{M(Cu)}$	c_2V_2	c_1V_1	$\frac{m}{M(Ag)}$			
		انتقالية	x(t)	$\frac{m_0}{M} - x(t)$	$c_2V_2 - 2x(t)$	$c_1V_1+x(t)$	$\frac{m}{M(Ag)} + 2x(t)$			
1.75		نهائية	X_f	$\frac{m_0}{M} - X_f$	$c_2V_2 - 2X_f$	$c_1V_1 + X_f$	$\frac{m}{M(Ag)} + 2X_f$			
			$X_{\text{max}} = \frac{n}{N}$	$\frac{n_0(Cu)}{M(Cu)} = \frac{3.2}{64} = 5$	$0.10^{-3} mol$:	س <i>Cu</i> محد	بفرض $X_{ m m}$	دساب _{ax}		
	0.25	$X_{_{\mathrm{I}}}$	$_{\text{max}} = \frac{c_2 V_2}{2} =$	$\frac{2,64.10^{-3}}{2} = 1,32$	$2.10^{-3} mol : 2.10^{-3}$	ں Ag مح	بفرض			
	0.50		_	_		$X_{\text{max}} =$	$=1,32.10^{-3}m$	olو منه		
				ينتجها العمود:	ظمية $Q_{ m max}$ التي	الكهرباء الاعد	نتاج قيمة كمية	2.4– است		
	0.50				$Z.X_{\text{max}}.F=2$		_			
		$\Delta t_{\text{max}} = \frac{Q_{\text{max}}}{I} = \frac{254,76}{5.10^{-3}} = 50952s = 14,15 \ h : \Delta t_{\text{max}}$ عساب مدة اشتغال العمود $\Delta t_{\text{max}} = \frac{254,76}{5.10^{-3}} = 50952s = 14,15 \ h : \Delta t_{\text{max}}$								