Aula 14-Relações importantes e anuidades fracionadas

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Relação matemática importante

Consideramos um seguro de vida inteiro com tempo discreto (seguro pago no final do ano da morte):

$$A_x = \sum_{t=0}^{\infty} v^{t+1} {}_t p_x q_{x+t}$$

Assim:

$$A_x = \sum_{t=0}^{\infty} v^{t+1} {}_t p_x q_{x+t} = \sum_{t=0}^{\infty} v^{t+1} {}_t p_x (1 - p_{x+t})$$

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} - \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} p_{x+t}$$

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} - \sum_{t=0}^{\infty} v^{t+1} {}_{t+1} p_{x}$$

Relação matemática importante

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} - \sum_{t=0}^{\infty} v^{t+1} {}_{t+1} p_{x} = v \sum_{t=0}^{\infty} v^{t} {}_{t} p_{x} - \sum_{t=1}^{\infty} v^{t} {}_{t} p_{x}$$

Lembrando que:

$$\ddot{a}_{x} = \sum_{t=0}^{\infty} v^{t} {}_{t} p_{x} \qquad a_{x} = \sum_{t=1}^{\infty} v^{t} {}_{t} p_{x}$$

$$A_{x} = v \sum_{t=0}^{\infty} v^{t} {}_{t} p_{x} - \sum_{t=1}^{\infty} v^{t} {}_{t} p_{x}$$

$$A_{x} = v\ddot{a}_{x} - a_{x}$$

Exemplo de Cálculo de seguros

> Exemplo 16:

Seja uma pessoa de 25 anos, mostre que o prêmio puro único pago a um seguro vitalício para essa pessoa, corresponde ao prêmio puro único pago a compra de uma anuidade vitalícia imediata com pagamentos antecipados multiplicado pela função de desconto menos o prêmio puro único de uma anuidade vitalícia imediata com pagamento postecipado para essa mesma pessoa.

$$A_{25} = v\ddot{a}_{25} - a_{25}$$

Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a.

Exemplo de Cálculo de seguros

Exemplo 16:

$$A_{25} = v\ddot{a}_{25} - a_{25}$$

Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a.

$$A_{25} = v\ddot{a}_{25} - a_{25}$$

$$\sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t+1} {}_{t} p_{25} q_{25+t} = \left(\frac{1}{1,05}\right) \sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t} {}_{t} p_{25} - \sum_{t=1}^{\infty} \left(\frac{1}{1,05}\right)^{t} {}_{t} p_{25}$$

$$A_{25} = \sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t+1} {}_{t} p_{25} q_{25+t} = 0,08320205$$

```
prêmio<-function(beneficio,idade,i){
  fator.desconto <- 1/(1+i)
  v <- fator.desconto^(1:((idademaxima - idade)+1))
  pxx <- c(1, cumprod(px[(idade+1):idademaxima]))
  qxx <- c(qx[(idade+1):idademaxima],1)
  Ax <- beneficio*sum(v*pxx*qxx)
  return(Ax)
}</pre>
```

$$\left(\frac{1}{1,05}\right)$$
19,25276 - 18,25276 = 0,08320205

$$\ddot{a}_{25} = \sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t} {}_{t}p_{25} = 19,25276$$

$$a_{25} = \sum_{t=1}^{\infty} \left(\frac{1}{1,05}\right)^t {}_t p_{25} = 18,25276$$

```
AnuiPost<-function(i,idade,b){
f.desconto <- 1/(1+i)
px <- 1-qx
pxx <- cumprod(px[(idade+1):idademaxima])
t <- (1:(length(pxx)))
bx <- b*sum(f.desconto^(t)*pxx)
return(bx)
}
```

Relação matemática importante

A expressão abaixo também é válida

$$A_{x^1:\bar{n}|} = \nu \ddot{a}_{x:\bar{n}|} - a_{x:\bar{n}|}$$

Exemplo 17

Mostre um exemplo que ilustre a relação acima :

×	COV.	D.V.	lx
	qx	px	
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

Anuidades Temporárias Diferidas

> Exemplo 18

Mostre um exemplo que verifica-se a relação:

$$_{m+1|n}\ddot{a}_{x} = _{m|n} a_{x}$$

x	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

Anuidades fracionadas

 \blacktriangleright Muitas anuidades ou rendas, são pagas em frações do ano, isto é, a unidade é dividida em m frações a pagar antecipadamente ou postecipadamente em intervalos de tempos iguais.

- \triangleright Se m=2, tem-se pagamentos semestrais.
- \triangleright Se m=12, tem-se pagamentos mensais.
- > ...

Anuidades vitalícias fracionadas

> VPA de uma anuidades **antecipadas** vitalícia fracionada em m partes, (b=1).

$$\ddot{a}_{x}^{(m)} = \frac{1}{m} \sum_{t=0}^{\infty} v^{\frac{t}{m}} p_{x}$$

> VPA de uma anuidades **postecipadas** vitalícia fracionada em m partes, (b=1).

$$a_{x}^{(m)} = \frac{1}{m} \sum_{t=1}^{\infty} v^{\frac{t}{m}} \frac{t}{m} p_{x}$$

Anuidades vitalícias fracionadas

Relação 1.

$$\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x} - \frac{m-1}{2m}$$

$$\ddot{a}_{x} = \sum_{t=0}^{\infty} t E_{x} = \sum_{t=0}^{\infty} v^{t} _{t} p_{x} = \sum_{t=0}^{\infty} \ddot{a}_{\overline{t+1}|} _{t} p_{x} q_{x+t} = \sum_{t=0}^{\infty} \frac{1-v^{t+1}}{1-v} _{t} p_{x} q_{x+t}$$

Relação 2.

$$a_{\chi}^{(m)} \approx a_{\chi} + \frac{m-1}{2m}$$

$$\ddot{a}_{x}^{(m)} = \frac{1}{m} + a_{x}^{(m)}$$

$$a_{x} = \sum_{t=1}^{\infty} t E_{x} = \sum_{t=1}^{\infty} v^{t} _{t} p_{x} = \sum_{t=1}^{\infty} a_{\overline{t}| t} p_{x} q_{x+t} = \sum_{t=1}^{\infty} v \left(\frac{1-v^{t}}{1-v} \right) _{t} p_{x} q_{x+t}$$

> Exemplo 19

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **Antecipado e postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro fracionado em pagamentos mensais, a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = R$17,67$$

$$\ddot{a}_{40}^{(12)} \approx 17,67 - \frac{12 - 1}{2(12)} = R\$ 17,22$$

Como $\ddot{a}_x = a_x + 1$

$$a_{40} = R$16,67$$

$$a_{40}^{(12)} \approx 16,67 + \frac{12-1}{2(12)} = R$17,13$$

Anuidades temporárias fracionadas

$$\ddot{a}_{x:\bar{n}|}^{(m)} \approx \ddot{a}_{x:\bar{n}|} - (1 -_n p_x v^n) \left(\frac{m-1}{2m}\right)$$

$$a_{x:\bar{n}|}^{(m)} \approx a_{x:\bar{n}|} + (1 -_n p_x v^n) \left(\frac{m-1}{2m}\right)$$

Anuidades temporárias fracionadas

Anuidades vitalícias fracionadas

$$\ddot{a}_{x:\bar{n}|}^{(m)} \cong \ddot{a}_{x:\bar{n}|} - (1 -_n p_x v^n) \left(\frac{m-1}{2m}\right)$$

$$\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x} - \frac{m-1}{2m}$$

$$a_{x:\bar{n}|}^{(m)} \cong a_{x:\bar{n}|} + (1 -_n p_x v^n) \left(\frac{m-1}{2m}\right)$$

$$a_{\chi}^{(m)} \approx a_{\chi} + \frac{m-1}{2m}$$

$$\ddot{a}_{\chi}^{(m)} = \frac{1}{m} + a_{\chi}^{(m)}$$

Anuidades vitalícias diferidas fracionadas

A patir da relação

$$\ddot{a}_{x}^{(m)} = \ddot{a}_{x:\bar{n}|}^{(m)} + {}_{n|}\ddot{a}_{x}^{(m)}$$

$$_{k|}\ddot{a}_{x}^{(m)} \approx _{k}p_{x}v^{k}\left(\ddot{a}_{x+k} - \frac{m-1}{2m}\right)$$

De forma idêntica

$$a_k|a_x^{(m)} \approx {}_k p_x v^k \left(a_{x+k} + \frac{m-1}{2m}\right)$$