Rectifier Tables: Monophasic Controlled

Diego Trapero

Table of contents

1	Rectifier Tables	2
	1.1 Monophasic Controlled Full Wave Rectifier, R vs RL load	3

1 Rectifier Tables

- 1. Monophasic Uncontrolled Rectifiers with R load
- 2. Monophasic Uncontrolled Full Wave Rectifier loads
- 3. Monophasic Controlled Full Wave Rectifier, R vs RL load
- 4. Triphasic Uncontrolled Rectifiers with R load
- 5. Triphasic Controlled Half Wave Rectifier, R vs RL load
- 6. Triphasic Controlled Full Wave Rectifier, R vs RL load

1.1 Monophasic Controlled Full Wave Rectifier, R vs RL load

What	Controlled FWR R load	Controlled FWR RL load
Circuit Diagram	T1 T2	T_1 T_2 i_4 v_6 T_3 T_4
v_o	$\frac{2\pi}{3\pi}$	
$ar{v_o}(lpha)$	$\bar{v_o} = \frac{V_i}{\pi} (\cos{(\alpha)} + 1)$	$\bar{v_o} = \frac{2V_i}{\pi} \cos\left(\alpha\right)$
v_R	$\frac{2\pi}{2\pi}$	$\frac{1}{2\pi}$ $\frac{3\pi}{4\pi}$
Thyristor table		
$i_o(t)$	2/m 3/m 4/m	3/m 3/m 4/m
$ar{i_o}$	$\bar{i_o} = \frac{\bar{v_o}}{R} = \frac{\frac{V_i}{\pi}(\cos(\alpha) + 1)}{R}$	$\bar{i_o} = \frac{\bar{v_o}}{R} = \frac{\frac{2V_i}{\pi}\cos(\alpha)}{R}$

$i_i(t)$	$\frac{1}{3\pi}$ $\frac{3\pi}{3\pi}$	2\overline{1}{\pi} 3\overline{1}{\pi} 4\overline{1}{\pi}
$v_{T1}(t)$	2π 3π 4π	$\frac{1}{\sqrt{2\pi}}$ $\frac{3\pi}{\sqrt{4\pi}}$
Power		$P = V_{1 \text{ RMS}} I_{1 \text{ RMS}} \cos (\varphi_1)$ $P = V_{ip} I_o \frac{2\sqrt{2}}{\pi} \cos (\alpha)$
Apparent Power		$S = V_{ m RMS} I_{ m RMS}$ $S = rac{V_{ip}}{\sqrt{2}} I_o$
Power factor		$PF = \frac{2\sqrt{2}}{\pi}\cos\left(\alpha\right)$