Recherche opérationnelle

Abdessama Kamouss 129

Recherche Opérationnelle R.O.

Partie 3: Dualité

Pr. Abdessamad Kamouss

Cycle Ingénieur

ENSAM Casablanca

Problème Dual - Vision économique

Recherche opérationnelle

Pr. Abdessamad Kamouss 130

Exemple

Une societé **DIGITALDREAM** fabrique, deux articles P_1 et P_2 qu'elle vend à des grossistes aux prix respectifs de 320 et 550 UM. La fabrication de ces deux produits P_1 et P_2 nécessite l'utilisation de trois machines différentes M_1 , M_2 et M_3 pendant des temps exprimés en heures dans le tableau suivant :

	M_1	M_2	<i>M</i> ₃	Prix
P_1	50	30	20	320
P_2	10	20	15	550
Disponibilités	600	500	300	-

But : Maximiser le profit obtenu par la fabrication et la vente des produits P_1 et P_2 .

Problème Primal

Recherche opérationnelle

Abdessama Kamouss 131 On considère les variables suivantes :

- \blacksquare x_1 la quantité produite de P_1 .
- \blacksquare x_2 la quantité produite de P_2 .

On peut modiliser le problème PRIMAL de la manière suivante :

$$[Max]z = 320x_1 + 550x_2$$

$$sc \begin{cases} 50x_1 + 10x_2 \le 600\\ 30x_1 + 20x_2 \le 500\\ 20x_1 + 15x_2 \le 300 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0.$$

Problème Dual - Vision économique

Recherche opérationnelle

Abdessama Kamouss 132

- Maintenant un autre fabriquant BESTQ souhaite produire les mêmes produits P₁ et P₂ mais ne dispose pas des disponibiltés nécessaires au niveau de ses ateliers.
- Pour cela, il souhaite acheter l'utilisation des disponibilités 600h, 500h et 300h des machines M₁, M₂ et M₃ respectivement pour produire P₁ et P₂.
- Il cherche à determiner le prix unitaire d'achat de chaque heure de ces machines afin de faire une proposition minimale convaicante au fabriquant DIGITALDREAM.

Problème Dual - Vision économique

Recherche opérationnelle

Abdessamad Kamouss 133 Pour cela on considère les variables suivantes :

- y_1 le coût d'achat d'une heure d'utilisation de M_1 .
- y_2 le coût d'achat d'une heure d'utilisation de M_2 .
- y_3 le coût d'achat d'une heure d'utilisation de M_3 .

On peut modéliser donc le problème **DUAL** comme suit :

$$[Min]w = 600y_1 + 500y_2 + 300y_3$$

$$(50y_1 + 30y_2 + 20y_3 > 320)$$

sc
$$\begin{cases} 50y_1 + 30y_2 + 20y_3 \ge 320 \\ 10y_1 + 20y_2 + 15y_3 \ge 550 \\ y_1, y_2, y_3 \ge 0. \end{cases}$$

Problèmes Primal - Dual - Vision économique

Recherche opérationnelle

Pr. Abdessamad Kamouss 134 **Pour le fabriquant DIGITALDREAM :** On cherche à determiner le plan de fabrication permettant de **maximiser** le profit.

Pour le fabriquant BESTQ : On cherche à determiner l'offre d'achat permettant de **minimiser** le coût de sa production.

PRIMAL vs DUAL

$$[Max]z = 320x_1 + 550x_2$$

$$sc \begin{cases} 50x_1 + 10x_2 \le 600 \\ 30x_1 + 20x_2 \le 500 \\ 20x_1 + 15x_2 \le 300 \end{cases}$$

$$x_1 > 0, x_2 > 0.$$

$$[Min]w = 600y_1 + 500y_2 + 300y_3$$

$$sc \begin{cases} 50y_1 + 30y_2 + 20y_3 \ge 320 \\ 10y_1 + 20y_2 + 15y_3 \ge 550 \end{cases}$$

$$y_1, y_2, y_3 \ge 0.$$

Recherche opérationnelle

Abdessamad Kamouss 135

Introduction

- La dualité est un concept important en Recherche Opérationnelle.
- Tout programme linéaire admet un programme dual.
- Le premier est alors appelé **PRIMAL** et le second est son **DUAL**.
- Le **DUAL** et le **PRIMAL** sont, comme on le verra, intimement liés.
- Il est facile de trouver la solution de l'un dès que la solution de l'autre est bien connue.
- La recherche du DUAL peut souvent s'imposer si l'on voit que le PRIMAL parait difficile à résoudre.
- De plus, le DUAL a une interprétation économique à l'optimum.

Problèmes Primal - Dual : Définition

Recherche opérationnelle

Abdessamad Kamouss 136

Programme dual d'un PL sous forme standard

Un programme linéaire est caractérisé par le tableau simplexe suivant :

$$\begin{bmatrix} A & b \\ c & \end{bmatrix}$$

Par définition, le problème dual est obtenu en transposant ce tableau :

$$\begin{bmatrix} A^T & c^T \\ b^T & \end{bmatrix}$$

Problèmes Primal - Dual : Définition

Recherche opérationnelle

Abdessam Kamouss 137

Soit $v \in \mathbb{R}^n$ le vecteur colonne des variables du problème dual ou $u \in \mathbb{R}^n$ le vecteur ligne des variables du problème dual. Sachant que $u = v^T$, on a le **modèle suivant :**

$$(P): \left\{ \begin{array}{l} [Min]z = cx \\ sc \ Ax \ge b \\ x \ge 0 \end{array} \right. \iff (D): \left\{ \begin{array}{l} [Max]w = b^T v \\ sc \ uA \le c \\ u \le 0 \end{array} \right.$$

$$\iff (D): \left\{ \begin{array}{l} [Max]w = ub \\ sc \ A^T v \le c^T \\ v < 0 \end{array} \right.$$

Recherche opérationnelle

Abdessama Kamouss 138

Règles de passage :

Min	Max			
Primal	Dual			
Dual	Primal			
Variable ≥ 0	Contrainte \leq			
Variable ≤ 0	Contrainte \geq			
$Variable \leq 0$	Contrainte =			
Contrainte \leq	Variable ≤ 0			
Contrainte =	$Variable \lessgtr 0$			
Contrainte \geq	Variable ≥ 0			

Recherche opérationnelle

Abdessamad Kamouss 139

Exemple

Donner le proramme dual du programme primal suivant :

$$(P): \left\{ \begin{array}{l} [Max]z = 4x_1 + 5x_2 + 2x_3 \\ sc \begin{cases} 2x_1 + 4x_2 = 3 \\ x_1 + x_3 \ge 2 \\ 3x_1 + x_2 + x_3 \le 10 \\ x_2 + x_3 \le 1 \\ x_1 \ge 0, x_2 \le 0, x_3 \ge 0 \end{array} \right.$$

Recherche opérationnelle

Abdessama Kamouss 140

Théorèmes de la dualité

- Le dual du dual est le primal.
- 2 Si (P) et (D) ont des solutions, alors chacun d'entre eux a une solution optimale et $z^* = Min \ cx = w^* = Max \ ub$ Réciproquement, si x est admissible pour (P) et y est admissible pour (D) et que cx = ub, alors x est optimale pour (P) et u est optimale pour (D).

Recherche opérationnelle

Abdessamad Kamouss 141

Exercice (Exercice d'application)

Un pays désire accroître son potentiel d'armement; il veut acquérir au moins 100 000 fusils, 200 000 grenades défensives et offensives, une centaine de chars, 400 mitrailleuses lourdes et autant de bazookas. Il s'adresse pour ce faire à des marchands d'armes qui récupèrent les matériels utilisés ou non sur tous les champs de bataille. Ces marchands proposent trois types de lots :

	Lot 1	Lot 2	Lot 3	
Fusils	500	300	800	
Grenades	1000	2000	1500	
Chars	10	20	15	
Mitrailleuses	100	80	150	
Bazookas	80	120	200	
Coûts des lots	10 MF	12 MF	15 MF	

Recherche opérationnelle

Abdessamad Kamouss 142

Exercice (suite)

Le pays en question va donc essayer de minimiser le coût de l'armement supplémentaire qu'il va acheter.

- Ecrire le programme sous forme d'un programme linéaire.
- Ecrire le programme dual correspondant.
- 3 Quelle est l'interprétation économique du dual?
- 4 Déterminer le coût minimal de l'armement supplémentaire de ce pays.

1. Le programme linéaire s'écrit :

$$(PL): \left\{ \begin{array}{l} [Min]z = 10x_1 + 12x_2 + 15x_3 \\ 500x_1 + 300x_2 + 800x_3 \geq 100000 \\ 1000x_1 + 2000x_2 + 1500x_3 \geq 200000 \\ 10x_1 + 20x_2 + 15x_3 \geq 100 \\ 100x_1 + 80x_2 + 150x_3 \geq 400 \\ 80x_1 + 120x_2 + 200x_3 \geq 400 \\ x_1 \geq 0, x_2 \geq 0, x_3 \geq 0, \end{array} \right.$$

avec x_1, x_2, x_3 représentent, respectivement, le nombre de lots de type 1,2,3 qu'il faut acheter.

Il exprime le point de vue de l'acheteur qui tente de minimiser le coût de son armement.

2. Le programme dual s'écrit :

$$\begin{cases} [Max]v = 100000y_1 + 200000y_2 + 100y_3 + 400y_4 + 400y_5 \\ sc \begin{cases} 500y_1 + 1000y_2 + 10y_3 + 100y_4 + 80y_5 \le 10 \\ 300y_1 + 20000y_2 + 20y_3 + 80y_4 + 120y_5 \le 12 \\ 800y_1 + 1500y_2 + 15y_3 + 150y_4 + 200y_5 \le 15 \end{cases} \\ y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0, y_5 \ge 0, \end{cases}$$

avec y_1 , y_2 , y_3 , y_4 et y_5 les prix de vente d'un fusil, d'une grenade, d'un char, d'une mitrailleuse et d'un bazooka respectivement.

Recherche opérationnelle

Abdessamad Kamouss 145

3. Le programme dual peut être interprété comme suit :

Un fabricant d'armements qui produit ces différents types d'armes à la demande veut s'emparer du marché.

Un lot de type 1 coûtera : $500y_1 + 1000y_2 + 10y_3 + 100y_4 + 80y_5 = \gamma_1$. Un lot de type 2 coûtera : $300y_1 + 2000y_2 + 20y_3 + 80y_4 + 120y_5 = \gamma_2$. Un lot de type 3 coûtera : $800y_1 + 1500y_2 + 15y_3 + 150y_4 + 200y_5 = \gamma_3$. Le marché coûtera globalement :

$$100000y_1 + 200000y_2 + 100y_3 + 400y_4 + 400y_5$$
.

Pour remporter le marché, le fabricant d'armements doit calculer ses prix de vente unitaires de façon à concurrencer le marchand d'armes (c'est-à-dire $\gamma_1 \leq 10, \gamma_2 \leq 12, \gamma_3 \leq 15$) tout en faisant un bénifice maximal.

Recherche opérationnelle

Abdessama Kamouss

4. Résolution du programme (PL*) par la méthode des simplexes :

	y_1	<i>y</i> ₂	У3	У4	У5	e_1	e_2	e_3	b
e_1	500	1000	10	100	80	1	0	0	10
e_2	300	2000	20	80	120	0	1	0	12
e_3	800	1500	15	150	200	0	0	1	15
ν	100000	200000	100	400	400	0	0	0	0
e_1	350	0	0	60	20	1	-0.5	0	4
У2	0.15	1	0.01	0.04	0.06	0	0.0005	0	0.006
e_3	575	0	0	90	110	0	-0.75	1	6
ν	70000	0	-1900	-7600	-11600	0	-100	0	-1200
e_1	0	0	0	5.21739	-46.956521	1	-0.043478	-0.60869	0.34782
У2	0	1	0.01	0.01652	0.031304	0	0.00069	-0.000260	0.004
<i>y</i> ₁	1	0	0	0.15652	0.191304	0	-0.00130	0.00173	0.010434
ν	0	0	-1900	-18556.521	-24991.304	0	-8.69565	-121.73913	-1930.43

Recherche opérationnelle

Pr. Abdessamad Kamouss 147

Lecture du résultat :

Le bénifice maximal est $v_{max} = 1930.434$. Il est atteint pour

$$y_1 = 0.010434, y_2 = 0.004, y_3 = 0, y_4 = 0, y_5 = 0.$$

Donc le coût minimal d'armement est $z_{min} = 1930.434$. Il est atteint pour

$$x_1 = 0, x_2 = 8.69565, x_3 = 121.73913.$$

Ceci par transpositition et en appliquant la transformation :

$$y_i \mapsto e'_i \text{ et } e_i \mapsto x_i$$

où e'_i sont les variables artificielles du (PL).

Exercice

Soit le programme liniéaire :

$$(PL): \left\{ \begin{array}{l} [Min]z = 2x_1 + x_2 + 35x_3 \\ sc \; \left\{ \begin{array}{l} 4x_1 - 2x_2 - 6x_3 \ge 1 \\ -3x_1 + x_2 + 14x_3 \ge 2 \end{array} \right. \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{array} \right.$$

- 1 Donner le programme dual (PL*) de (PL).
- 2 Résoudre (PL*) à l'aide de la méthode des tableaux des simplexes.
- 3 En déduire la solution optimale de (PL).