CS F364 Design & Analysis of Algorithms

RANDOMIZED ALGORITHMS

Game Tree Evaluation

A Deterministic Algorithm

A Randomized Algorithm

Game Trees and Evaluation

- A game tree is a rooted tree in which
 - internal nodes are labeled MIN or MAX at alternate levels and
 - a value a number is associated with each leaf
- Evaluation of a game tree:
 - Each leaf returns its value
 - Each internal node
 - if labeled MAX returns the largest value returned by its children and
 - if labeled MIN returns the smallest value returned by its children
- Game Tree evaluation is useful in AI particularly in game playing programs
 - Examples: Chess, Tic-Tac-Toe

Game Tree Evaluation

- Consider the following special cases:
 - Boolean game trees
 - Values at the leaves are bits i.e. o or 1
 - MIN=AND, MAX=OR
 - ◆ T_{d.k} trees:
 - Every internal node has exactly d children and
 - Every leaf node is at distance exactly 2*k from the root

- An instance of the evaluation problem consists of
 - the tree T_{d,k} for a fixed d and a fixed k, and
 - a Boolean value for each leaf.
- ❖ Number of leaves in T_{d,k} tree =?
- How does evaluation proceed?

Deterministic algorithms:

 Choice of next step i.e. next child to be evaluated is a deterministic function of the evaluations so far

Claim:

- ◆ For any deterministic algorithm, there is an instance of the T_{d,k} tree that forces the algorithm to read all d^{2*k} leaves.
- ❖ In the special case of d=2, the cost of the deterministic algorithm would be 4^k
 - Note that we are counting "the number of leaves read" as the cost as this is the dominant factor in the running time of an algorithm

- A randomized approach:
 - Consider a single AND node with two leaves.
 - If this node were to return 0 at least one child must return 0
 - A deterministic algorithm inspects the leaves in a fixed order
 - i.e. an adversary may hide the 0 at the second leaf leading to a worst case scenario
 - Reading the leaves in a random order foils such an adversary
 - With probability ½ a randomized algorithm would choose the second leaf
 - i.e. expected number of steps = 1/2 * 1 + 1/2* 2
 = 3/2 (instead of 2 for a deterministic algorithm)

- A randomized approach (contd.):
 - A similar approach will work for an OR node that must return 1
 - But what about an AND node returning 1 or an OR node returning 0 ?
 - For such nodes, this approach does not improve the odds if the leaves are children.
 - But consider an internal AND node that must return
 1:
 - Each child is an OR node and must each return 1
 - i.e. a randomized approach will improve the performance in evaluating them

- A randomized algorithm:
 - To evaluate an AND node v
 - Choose one of v's children randomly and evaluate recursively
 - If that child returns
 - 1 : evaluate the other child
 - 0 : return 0 for v
 - To evaluate an OR node v
 - Choose one of v's children randomly and evaluate recursively
 - If that child returns
 - 0 : evaluate the other child
 - ◆ 1 : return 1 for v

- Cost of evaluation
 - Claim: Expected cost of evaluating any instance of T_{2,k} using the randomized algorithm is at most 3^k
 - ◆ Proof: By induction on k
 - Basis: (k=1) Trivial
 - Induction Step:
 - Assume that the expected cost of evaluating any instance of T_{2,k-1} is at most 3^{k-1}
 - Assume that T is rooted at an AND node (the other case is symmetric)
 - In this case T has two children, say T1 and T2 each rooted at an OR node.

- Cost of evaluation (contd.):
 - ◆ Induction Step (contd.): T1 is rooted at an OR node with 2 children each of which is a T_{2,k-1} tree
 - If T1 were to return 1 at least one of its children must return 1
 - With probability ½ this child is chosen first incurring a cost of at most 3^{k-1} (by Hypothesis)
 - With probability at most ½ both sub trees are evaluated incurring a cost of 2 * 3^{k-1} (by Hypothesis)
 - i.e. the expected cost is $\frac{1}{2} * 3^{k-1} + \frac{1}{2} * 2 * 3^{k-1} = \frac{3}{2} * 3^{k-1}$
 - If T1 were to return 0 both children must be evaluated, incurring a cost of at most 2 * 3^{k-1}

- Cost of evaluation (contd.):
 - Induction Step (contd.): T is rooted at an AND node with 2 children - say T1 and T2 – both are rooted at OR node
 - Case 1: <u>If T evaluates to 1</u> then both its sub-trees rooted at OR nodes return 1
 - Using the previous result (for OR-nodes evaluating to 1) and linearity of expectation,
 - the expected cost of evaluating T_{2,k} to 1 is at most 2 * 3/2 * 3^{k-1} = 3^k

- Cost of evaluation (contd.):
 - Induction Step (contd.): T is rooted at an AND node with 2 children - say T1 and T2 – both are rooted at OR node
 - Case 0: <u>If T evaluates to 0</u>, at least one of its sub-trees must return 0
 - With probability at least ½ it is chosen first, in which case the cost is
 - ◆ 2 * 3^{k-1} using the previous result (for OR-nodes evaluating to 0)
 - With probability ½ it is chosen second i.e. two ORnodes are to be evaluated, in which case the cost is
 - ◆ 2 * 2 * 3^{k-1} using the previous result (for OR-nodes evaluating to 0)
 - So the expected cost is at most 1/2 * 2 * 3^{k-1} + 1/2 * 2 * 2 * 3^{k-1} = 3^k

- Cost of evaluation
 - Claim: Expected cost of evaluating any instance of T_{2,k} using the randomized algorithm is at most 3^k
 - for a tree of size n = 4k
 - i.e. expected cost is at most n [^]log₄3 i.e. n^{0.793}