Online Tools and Sources of Information
<i>D2L:</i>
Pre-Lecture Notes
Lecture Notes
HW Assignments Posted
HW Submitted
Syllabus
Links to Piazza and Office Hours Schedule
Any other documnet shared during the semester

Piazza:	
Discussion Board	
7	
Zoom: Some Office Hours	

Roles and Responsibilities
Instructor fectures and officiens
TAS
Course Producers HW, proj, Exams, discussion
CS Dept Advisors any see. issues
DEN Support any tech Support Qs

<u>Textbe</u>	ook)
Algoria	thm Design by John Kleinberg and Eva Tardos
Supple	emental Textbook
Introd	uction to Algorithms, 3rd Edition., by Cormen et al.

Your Responsib	oilities
Attend Lectures ar	nd Discussion Sessions
Complete the read	ing assignments from textbook
Complete and sub	mit HW assignments
Do as many other	practice problems as possible
Complete and sub	mit assigned project
Exams	

Your Grade	
Exam 1	28%
Exam 2	28%
<i>Exam 3</i>	28%
HW assignments	10%
Project	6%

Grading Scale	
90 - 100 A	60 - 64.99 C+
86 - 89.99 A-	55 - 59.99 C
80 - 85.99 B +	50 - 54.99 C-
70 - 79.99 B	45 - 49.99 D
65 - 69.99 B -	Below 45 F
65 - 69.99 B-	Below 45 F

Adjustments to the Grading Scale
Scale will be adjusted if the overall class average falls below 75
At least the top 20% of the class will receive an A
At least the next 10% of the class will receive an A-

	Prerequisites
	Discrete Math (Mathematical Induction)
3	Sorting Methods
	Basic Data Structures:
	Arrays, Linked Lists, Stack, Queue
	Graphs Basics:
	Tree, Path, Cycle, Directed/Undirected, DAG, Adjacency List/
	Graphs Search Algorithms:
\prec	BFS, DFS
-	

High level Syllabus
- Coday
- Introduction
_ Reviews of some preriegs +
Reviews of some prings + asymptotic notation
- Major algorithmie techniques
- Greedy
. Divide & Conquer
Devide & Conquer Dynamic Programming
- Network Flow
- Computational Complexity Theory

- / Yejwik Flow
- Computational Complexity Theory - Approximations Algorithms - Linear Programming
- Approximations regoritimes
_ Linear Trogrammuno

Corrections
1- An algorithm is a set of instructions in machine language.
in machine language.
Kharazmi ~ 780-840
Algorithm
2Algorithmic science advanced on Wall Street
2Algorithmic science advanced on Wall Street
2Algorithmic science advanced on Wall Street 3 Invite 6 million algorithms for a listen
2-Algorithmic science advanced on Wall Street 3 Invite 6 million algorithms for a listen

When studying a problem we go	
through the letter in stone	
When studying a problem, we go through the following steps:	
a	_
1- Come up with a concer problem state	Man
1-Come up with a concise problem state.	e any
	_
2-Present a solution	
- D - 1	
3- Prove Correctness	_
4 Parlame Complete and it	
4-Perform Complexity analysis	_
	-
	-
	_
	_
	_
	_
	_

Stable Matching Example
Problem: We are interested in matching on men with 1 women so that U
I men with I women so that U
they could stay happily married ever after.
ever after.

Step 1: Come up with a concise problem statement.
We have a set of 1 men, M= {m, m,}
We have a set of 1 women, W= [w, wn]

Def. A perfect matching 5' is a

matching with the property that each
member of M and each member of
W appear in exactly one pair
in 5' M W

property that each
member of M and each member of
N appear in exactly one pair
in 5' M W

Add notion of preferences
Each man me M ranks all women
Each man me M ranks all women m prefers w to w' if m ranks whigher than w.
o Ordered ranking of m is his preference list
$\mathcal{T}_{m_i} = \left(\omega_i, \omega_{i_2}, \ldots, \omega_{i_n} \right)$
1
Same for women, i.e. each
Same for women, i.e. each woman weW ranks all men
Same for women, i.e. each woman weW ranks all men
Same for women, i.e. each woman weW ranks all men
Same for women, i.e. each woman weW ranks all men
Same for women, i.e. each woman weW ranks all men

Def. Matching S is stable if

1. It is perfect

2. There are no instabilities

WRT S

Step 1: Input: Preference lists for a
Set of n men & n women.

Output: Set of n marriages

w/ no instabilities

Step 2: Gale-Shapley Alg.

Step 3) Proof of Correctness 1) From the woman's perspective, she starts single, and once she gets engaged and prentally gots into (2) From the man's perspective, he starts Single, gets engaged, and can rejected repeated by only to settle for a lower ranking woman. Als terminates in at most (4) So! will be a perfect

Q: Did m propose to w'at some point in the executions?
Of no, then we must be higher than w' on his list -> contradiction!
If yes, he must have been rejected in favor of m" and due to (1) either m" = m' or m' is better Then m" Scontradiction!