Math 121: Hodge Theory

Sair Shaikh

June 6, 2025

1 Background and Definitions

Definition 1.1. Let E/\mathbb{C} be an elliptic curve. Then, the elliptic curve E is given by a Weierstrass equation

$$E: y^2 = x^3 + g_1 x + g_2$$

together with a special point $O \in E$ at infinity.

Definition 1.2. Let E/\mathbb{C} be an elliptic curve. E has a abelian group structure with the identity element O.

Definition 1.3. Let E_1/\mathbb{C} and E_2/\mathbb{C} be elliptic curves. An isogeny $\phi: E_1 \to E_2$ is a non-zero morphism of varieties with $\phi(O_1) = O_2$. As the map is not constant, it is surjective. An isogeny from E_1 to itself is called an endomorphism. The set of endomorphisms $\operatorname{End}(E_1)$ is a ring with the addition and multiplication given by the pointwise addition and composition, respectively.

Definition 1.4. An elliptic function (relative to a lattice Λ) is a meromorphic function f(z) on $\mathbb C$ that satisfies:

$$f(z+\omega) = f(z)$$

for all $z \in \mathbb{C}$ and $\omega \in \Lambda$.

Definition 1.5. Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrauss \wp -function relative to Λ is defined by the series:

$$\wp(z;\Lambda) = \frac{1}{z^2} + \sum_{\substack{w \in \Lambda \\ w \neq 0}} \left(\frac{1}{(z-w)^2} - \frac{1}{\omega^2} \right)$$

The Eisenstein series $G_{2k}(\Lambda)$ of weight 2k is the series:

$$G_{2k}(\Lambda) = \sum_{\substack{w \in \Lambda \\ w \neq 0}} w^{-2k}$$

Proposition 1.6. Let $\Lambda \subset \mathbb{C}$ be a lattice. Then,

$$\mathbb{C}(\Lambda) = \mathbb{C}(\wp(z), \wp'(z))$$

i.e. every elliptic function is a rational combination of $\wp(z)$ and $\wp'(z)$.

Proposition 1.7. The Laurent series for $\wp(z)$ around z=0 is given by:

$$\wp(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)G_{2k+2}z^{2k}$$

Proof. For |z| < |w|, we have:

$$\frac{1}{(w-z)^2} - \frac{1}{w^2} = \frac{1}{w^2} \left(\frac{1}{(1-z/w)^2} - 1 \right)$$
$$= \sum_{k=1}^{\infty} (k+1)z^k / w^{2+k}$$

Substituting this gives the desired result.

Theorem 1.8. For all $z \in \mathbb{C} \setminus \Lambda$, we have the relation:

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

Let $g_2 = 60G_4(\Lambda)$ and $g_3 = 140G_6(\Lambda)$. Moreover,

$$f(x) = 4x^3 - g_2x - g_3$$

has distinct roots, so its discriminant:

$$\Delta(\Lambda) = g_2^3 - 27g_3^3$$

is nonzero.

Proof. Write down the Laurent expansions:

$$\wp'(z)^{2} = 4z^{-6} - 24G_{4}z^{-2} - 80G_{6} + \cdots$$

$$\wp(z)^{3} = z^{-6} + 9G_{4}z_{1}^{-1}5G_{6} + \cdots$$

$$\wp(z) = z^{-2} + 3G_{4}z^{2} + \cdots$$

Then, compare:

$$f(z) = wp'(z)^{2} - 4\wp(z)^{3} + 60G_{4}\wp(z) + 140G_{6}$$

Note that this is holomorphic at z=0 and satisfies f(0)=0. Since it is an elliptic function relative to Λ , from [AEC VI.3.1b], it is holomorphic away from Λ . Thus, it is constant, thus 0.

Proposition 1.9. Let E/\mathbb{C} be the Elliptic curve:

$$E: y^2 = 4x^3 - g_2x - g_3$$

Then the map:

$$\phi: \mathbb{C}/\Lambda \to E(\mathbb{C}) \subset \mathbb{P}^2(\mathbb{C}), \qquad z \mapsto [\wp(z), \wp'(z), 1]$$

is a complex analytic isomorphism of complex Lie groups, i.e. it is an isomorphism of Riemann surfaces that is also a group homomorphism.

Theorem 1.10. Let $\phi_{\alpha} : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$ be $\phi_{\alpha}(z) = \alpha z \pmod{\Lambda_2}$. This map is holomorphic. Moreover,

1. The association:

$$\left\{\alpha \in \mathbb{C} : \alpha\Lambda_1 \subset \Lambda_2\right\} \to \left\{\begin{array}{l} \text{holomorphic maps} \\ \phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2 \\ \text{with } \phi(0) = 0 \end{array}\right\}$$

$$\alpha \mapsto \phi_{\alpha}$$

is a bijection.

2. Let E_1 and E_2 be elliptic curves corresponding to lattices Λ_1 and Λ_2 , respectively. Then the natural inclusion:

$$\left\{ \text{ isogenies } \phi: E_1 \to E_2 \right\} \to \left\{ \begin{array}{l} \text{holomorphic maps} \\ \phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2 \\ \text{with } \phi(0) = 0 \end{array} \right\}$$

is a bijection.

Proof.

1. Assume $\phi_{\alpha} = \phi_{\beta}$. Then, $\alpha z \equiv \beta z \pmod{\Lambda_2}$ for all $z \in \mathbb{C}$. Thus, $z \mapsto (\alpha - \beta)z \equiv 0$. As Λ_2 is a discrete group, the map must be constant, hence $\alpha = \beta$. Thus, the map is injective.

Next, let $\phi : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$ be a holomorphic map with $\phi(0) = 0$. Then, as \mathbb{C} is simply connected, we lift to $\phi : \mathbb{C} \to \mathbb{C}$ satisfying:

$$f(z+w) \equiv f(z) \pmod{\Lambda_2}$$

for all $w \in \Lambda_1$. As Λ_2 is discrete, we have f(z+w) - f(z) is constant. Moreover, we have:

$$f'(z+w) = f'(z)$$

so f'(z) is a holomorphic elliptic function. It follows from [AEC VI.2.1] that f'(z) is constant, so $f(z) = \alpha z + \gamma$. But $\gamma = 0$ as f(0) = 0. Then, we note $f(\Lambda_1) \subset \Lambda_2$ implies $\alpha \Lambda_1 \subseteq \Lambda_2$. Hence, $\phi = \phi_{\alpha}$.

2. Note that an isogeneny is given locally by everywhere defined rational functions, thus the map induced between the corresponding complex tori is holomorphic. Thus, the association is well-defined and injective.

To show surjectivity, consider a map ϕ_{α} , where $\alpha \in \mathbb{C}^*$ with $\alpha \Lambda_1 \subseteq \Lambda_2$. The induced map on Weierstrass \wp -functions satisfies:

$$\wp(\alpha(z+w), \Lambda_2) = \wp(\alpha z + \alpha w, \Lambda_2) = \wp(\alpha z, \Lambda_2)$$

and similarly for \wp' . Thus, $\wp(\alpha z, \Lambda_2)$ and $\wp'(\alpha z, \Lambda_2)$ are in $\mathbb{C}(\Lambda_1)$. The result follows from [AEC VI.3.2]. Thus, the maps is surjective.

Theorem 1.11. (Uniformization Theorem) Let $A, B \in \mathbb{C}$ satisfy $4A^3 + 27B^2 \neq 0$. Then, there is a unique lattice $\Lambda \subset \mathbb{C}$ satisfying:

$$g_2(\Lambda) = A$$
 $g_3(\Lambda) = B$

Theorem 1.12. The following categories are equivalent:

- 1. Elliptic curves over \mathbb{C} with isogenies.
- 2. Elliptic curves over \mathbb{C} with complex analytic maps taking O to O.
- 3. Lattices $\Lambda \subset \mathbb{C}$ up to homothety with maps:

$$\operatorname{Hom}(\Lambda_1, \Lambda_2) = \{ \alpha \in \mathbb{C} : \alpha \Lambda_1 \subset \Lambda_2 \}$$

Proof. This is precisely the content of the last few theorems.

Definition 1.13. Let K be number field. An order R of K is a subring of K that is a finitely generated \mathbb{Z} -module and satisfies $R \otimes \mathbb{Q} = K$.

Theorem 1.14. Let E/\mathbb{C} be an elliptic curve with associated lattice $\Lambda = \mathbb{Z} \oplus \tau \mathbb{Z}$. Then, one of the following is true:

- 1. $\operatorname{End}(E) = \mathbb{Z}$.
- 2. The field $\mathbb{Q}(\tau)$ is an imaginary quadratic extension of \mathbb{Q} and $\operatorname{End}(E)$ is isomorphic to an order in $\mathbb{Q}(\tau)$.

Proof. Note that we have:

$$\operatorname{End}(E) \cong R := \{\alpha : \alpha \Lambda \subset \Lambda\}$$

Thus, there are integers a, b, c, d such that:

$$\alpha = a + b\tau$$
 $\alpha \tau = c + d\tau$

Eliminating τ , we get:

$$\alpha^2 - (a+d)\alpha + (ad - bc) = 0$$

Thus, R is an integral extension of \mathbb{Z} .

If $R \neq \mathbb{Z}$, pick $\alpha \in R \setminus \mathbb{Z}$. Then, $b \neq 0$, so eliminating α gives:

$$b\tau^2 - (a-d)\tau - c = 0$$

Thus, $\mathbb{Q}(\tau)$ is an imginary quadratic extension of \mathbb{Q} as $\tau \notin \mathbb{R}$. Then, since R is integral over \mathbb{Z} , R is an order in $\mathbb{Q}(\tau)$.

Definition 1.15. An elliptic curve E/\mathbb{C} is said to have complex multiplication (CM) if $\operatorname{End}(E)$ is an order R of an imaginary quadratic field. (Corollary III 9.4, also VI)

2 CM Elliptic Curvers are defined over $\overline{\mathbb{Q}}$

Proposition 2.1. Two elliptic curves E and E' are isomorphic over $\overline{\mathbb{Q}}$ if and only if j(E) = j(E').

Proof. This is just computation. Refer to [AEC III 1.4]

Definition 2.2. We denote by Ell(R) the set of elliptic curves E with $End(E) \cong R$ up to isomorphism.

Let α is a non-zero fractional ideal of K (\mathbb{Z} module of rank 2 not contained in \mathbb{R}), then α is a lattice in \mathbb{C} . Then, we have:

$$\operatorname{End}(E_{\alpha}) \cong \{ z \in \mathbb{C} : z\alpha \subset \alpha \}$$

$$= \{ z \in K : z\alpha \subset \alpha \}$$

$$= R_{K} \qquad (\alpha \text{ is a fractional ideal})$$

Since we care about lattices up to homothety, we define:

Definition 2.3. Let:

$$CL(R_K) = \frac{\{non\text{-}zero\ fractional\ ideals\ of\ }R_K\}}{\{non\text{-}zero\ principal\ ideals\ of\ }R_K\}}$$

Then, there is a map:

$$CL(R_K) \to Ell(R_K)$$

 $\alpha \mapsto E_{\alpha}$

Moreover, define:

$$\alpha\Lambda = \left\{ \sum_{i=1}^{n} \alpha_i \lambda_i : \alpha_i \in \alpha, \lambda_i \in \Lambda \right\}$$

Proposition 2.4. There is a well-defined simply transitive action $[\alpha] * \Lambda = E_{\alpha^{-1}\Lambda}$ of $CL(R_K)$ on $Ell(R_K)$. In particular,

$$\#CL(R_K) = \#Ell(R_K)$$

Lemma 2.5. Let $E/\mathbb{C} \in \text{Ell}(R_K)$. Then $j(E) \in \overline{\mathbb{Q}}$.

Proof. First, note that if $\phi: E \to E$ is an endomorphism of E, then $\phi^{\sigma}: E^{\sigma} \to E^{\sigma}$ is an endomorphism of E^{σ} . Thus,

$$\operatorname{End}(E^{\sigma}) \cong \operatorname{End}(E)$$

Next, let $\sigma \in \operatorname{Aut}(\mathbb{C})$. Then E^{σ} is obtained by letting σ act on the coefficients of a Weierstrauss equation for E, and j(E) is a rational combination of those coefficients, so it is clear that:

$$j(E^{\sigma}) = j(E)^{\sigma}$$

The previous theorem implies that $\operatorname{End}(E^{\sigma}) \cong R_K$. Then, (1.2b) implies that E^{σ} is in one of finitely many \mathbb{C} -isomorphism classes of elliptic curves. Thus, $j(E^{\sigma})$ can take on finitely many values as σ ranges over $\operatorname{Aut}(\mathbb{C})$. Therefore, $[\mathbb{Q}(j(E)):\mathbb{Q}]$ is finite, and $j(E) \in \overline{\mathbb{Q}}$. (Why?)

Theorem 2.6.

$$\operatorname{Ell}(R_K) \cong \operatorname{Ell}_{\overline{\mathbb{Q}}}(R_K) := \frac{\{E/\overline{\mathbb{Q}} : \operatorname{End}(E) \cong R_K\}}{isomorphism \ over \ \overline{\mathbb{Q}}}$$

Proof. Fixing an embedding $\overline{\mathbb{Q}} \subset \mathbb{C}$, there is a natural map:

$$\epsilon: \mathrm{Ell}_{\mathbb{Q}}(R_K) \to \mathrm{Ell}_{\mathbb{C}}(R_K)$$

We need to show that ϵ is a bijection.

To show surjection, note the following:

- $j(E) \in \overline{\mathbb{Q}}$ from (b).
- There is an elliptic curve $E'/\mathbb{Q}(j(E))$ with j(E')=j(E). [AEC III.1.4c]
- E' is isomorphic to E over \mathbb{C} from [AEC III.1.4b].

Thus, $\epsilon(E') = E$.

Next let $E', E \in \text{Ell}_{\mathbb{Q}}(R_K)$ be such that $\epsilon(E') = \epsilon(E)$. Then, j(E') = j(E). Thus, E_1 and E_2 are isomorphic over $\overline{\mathbb{Q}}$ by [AEC III.1.4b].

3 CM for Abelian Varieties

Definition 3.1. A morphism between abelian varieties $f: A \to B$ is a rational map that respects the group structure. If f is birrational, it is also biregular, hence an isomorphism.

Definition 3.2. For an abelian variety A/k, $\operatorname{End}(A)$ is a free \mathbb{Z} -module of finite rank and every element is defined over a separably algebraic extension of k. Let $\operatorname{End}_{\mathbb{Q}}(A) = \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$. Then, $\operatorname{End}_{\mathbb{Q}}(A)$ is a \mathbb{Q} algebra and $\operatorname{End}(A)$ is an order in $\operatorname{End}_{\mathbb{Q}}(A)$.

Definition 3.3. Let R be an algebra over \mathbb{Q} with an identity element 1. An abelian variety of type R is a pair (A, ι) where ι is an isomorphism of R into $\operatorname{End}_{\mathbb{Q}}(A)$ such that $\iota(1) = 1_A$.

The analytic representation of $\operatorname{End}^0(A)$ is given by:

$$\operatorname{End}^0(A) \cong \{ M \in \mathcal{M}_g(\mathbb{C}) : M \mathbb{Q}\Lambda \subset \mathbb{Q}\Lambda \}$$

as it is a g-dimensional complex representation of $\operatorname{End}^0(A)$. Since $\mathbb{R}\Lambda = \mathbb{C}^n$, any \mathbb{C} -linear endomorphism that is identity on $\mathbb{Q}\Lambda$ is identity on the whole of \mathbb{C}^n . Hence, $\mathbb{Q}\Lambda$ is a faithful $\operatorname{End}^0(A)$ -module. Thus,

$$[End^{0}(A):\mathbb{Q}]_{red} \leq \dim_{\mathbb{Q}} \mathbb{Q}\Lambda = 2\dim A$$

Definition 3.4. An abelian variety A/\mathbb{C} has complex multiplication if:

$$[End^0(A):\mathbb{Q}]_{red}=2\dim A$$

Theorem 3.5. (Shimura, 12, Prop. 26) Let $(F; \{\phi\})$ be a CM-type and (A, ι) ab abelian variety of type $(F; \{\phi\})$. Then, there exists an abelian variety of type $(F; \{\phi_i\})$ isomorphic to (A, ι) , defined over an algebraic number field of finite degree.

Proof. (Sketch)

Lets fill out the proofs in reverse. Writing notes here.

- 1. The isomorphism theorem directly requires [AEC III.1.4bc] and $j(E) \in \overline{\mathbb{Q}}$.
- 2. $j(E) \in \overline{\mathbb{Q}}$ has one ??? and requires [AEC III.1.4b] and (1.2b).
- 3. (1.2b) requires defining class field, understanding fractional/principle ideals, and the action of $CL(R_K)$ on $Ell(R_K)$. This is a somewhat longer proof. Relies on [AEC VI.4.1.1], [AEC VI.5.5].