Introducción al Procesamiento Digital de Imágenes

2do cuatrimestre de 2017

Práctica: DFT con Matlab

- 1. Graficar las bases de la Transformada de Fourier de dimensión 8 en 1-D y de dimensión 8×8 en 2-D.
- 2. Hacer la DFT de una señal 1-D (por ejemplo, $x=[1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0])$, luego antitransformar Fourier teniendo en cuenta cada uno de los siguientes casos:
 - a) suprimiendo las frecuencias altas
 - b) suprimiendo las frecuencias bajas
 - c) suprimiendo las frecuencias intermedias
- 3. Generar 10 imágenes que contengan, cada una:
 - a) un cuadrado central,
 - b) un cuadrado transladado,
 - c) un rectángulo
 - d) dos rectángulos de diferentes tama $\tilde{\mathbf{A}}$ sos
 - e) una línea vertical
 - f) rotación de la línea a 45°
 - g) rotación de la línea a 90°
 - h) varias líneas verticales
 - i) rotación de las líneas a 45°
 - j) rotación de las líneas a 90°

Hacer la DFT y la IDFT de cada una. (Nota: para las rotaciones usar la función imrotate con interpolación bilineal.)

4. Hacer la Transformada de Fourier de dos imágenes dadas $(I_1 e I_2)$, visualizar el módulo y la fase de cada una y luego antitransformar Fourier de las imágenes que resultan de componer: a) el módulo de I_1 con la fase de I_2 , y b) el módulo de I_2 con la fase de la I_1 . Analizar el aporte del módulo y la fase en cada caso.

(Nota: por I_1 e I_2 pueden tomarse lena y ladrillos, ambas en Images_test.zip se encuentran en http://www-2.dc.uba.ar/materias/ipdi/recursos.php)

- 5. Componer una imagen con Lena y líneas horizontales (sumarlas), y remover las líneas usando la transformada de Fourier.
- 6. Mostrar que $\mathcal{F}[f * g] = \mathcal{F}[f] \cdot \mathcal{F}[g]$.