(1) Use the probability integral transformation method to simulate from the distribution

$$f(x) = \begin{cases} \frac{2}{a^2} x, & \text{if } 0 \le x \le a \\ 0, & \text{otherwise} \end{cases}$$
 (1)

where a > 0. Set a value for a, simulate various sample sizes, and compare results to the true distribution.

Solution:

1. Find the CDF $F_X(x)$

Let *X* be a random variable with the given PDF:

$$f(x) = \begin{cases} \frac{2}{a^2} x, & 0 \le x \le a, \\ 0, & \text{otherwise.} \end{cases}$$

To apply the probability integral transform (PIT), we first compute the cumulative distribution function (CDF). For $0 \le x \le a$:

$$F_X(x) = \int_0^x \frac{2}{a^2} t \, dt = \left. \frac{t^2}{a^2} \right|_{t=0}^{t=x} = \frac{x^2}{a^2}.$$

Hence,

$$F_X(x) = \begin{cases} 0, & x < 0, \\ \frac{x^2}{a^2}, & 0 \le x \le a, \\ 1, & x \ge a. \end{cases}$$

2. Invert the CDF

On the interval $0 \le x \le a$, we set

$$U = F_X(X) = \frac{X^2}{a^2}.$$

Solving for *X* in terms of *U* gives

$$X = F_X^{-1}(U) = a\sqrt{U}$$
 for $U \in [0,1]$.

3. Simulate Random Samples

To generate *n* samples from this distribution via the probability integral transform:

- 1. Generate n i.i.d. uniform random variables $\{U_1, U_2, \dots, U_n\} \sim \text{Uniform}(0, 1)$.
- 2. For each U_i , set

$$X_i = a \sqrt{U_i}$$
.

3. The collection $\{X_i\}_{i=1}^n$ are then samples from the desired distribution.

4. Discussion of Results

In short, as *n* increases, the empirical distribution converges to the true PDF—a direct illustration of the Law of Large Numbers (and related results). The large-*n* histogram's slope and overall shape match the linear theoretical PDF quite well, confirming that the probability integral transform method is accurately simulating from the intended distribution.

Figure 1: Comparison of empirical histograms (blue bars) vs. the true PDF (orange line).

(2) Generate samples from the distribution

$$f(x) = \frac{2}{3}e^{-2x} + 2e^{-3x} \tag{2}$$

using the finite mixture approach.

Solution:

1. Show that f(x) is a Finite Mixture

Consider two exponential PDFs:

Exp(2):
$$g_1(x) = 2e^{-2x}$$
, $x \ge 0$,

Exp(3):
$$g_2(x) = 3e^{-3x}$$
, $x \ge 0$.

We want to see if

$$f(x) = \frac{2}{3}e^{-2x} + 2e^{-3x}$$

can be expressed as

$$p \cdot g_1(x) + (1-p) \cdot g_2(x)$$

for some $p \in (0,1)$. Matching coefficients:

$$p \cdot 2 = \frac{2}{3} \implies p = \frac{1}{3},$$

$$(1-p) \cdot 3 = 2 \implies 1-p = \frac{2}{3}.$$

Hence

$$f(x) = \underbrace{\frac{1}{3}}_{p} (2e^{-2x}) + \underbrace{\frac{2}{3}}_{1-p} (3e^{-3x}).$$

This establishes that

$$f(x) = \frac{1}{3} \operatorname{Exp}(2) + \frac{2}{3} \operatorname{Exp}(3).$$

Thus, f(x) is a two-component finite mixture of exponentials.

2. Mixture Sampling Procedure

To generate a sample X from f(x):

1. Generate a uniform random variable $V \sim \text{Uniform}(0,1)$.

2. If $V \leq \frac{1}{3}$, then set *X* to be a draw from Exp(2), i.e.

$$X = -\frac{1}{2} \ln(U_1), \quad U_1 \sim \text{Uniform}(0,1).$$

3. Otherwise (if $V > \frac{1}{3}$), set X to be a draw from Exp(3), i.e.

$$X = -\frac{1}{3} \ln(U_2), \quad U_2 \sim \text{Uniform}(0,1).$$

Repeat these steps n times to obtain n i.i.d. samples $\{X_1, X_2, \dots, X_n\}$ from f(x).

3. Discussion

Figure 2: Comparison of empirical histograms (blue bars) vs. the true PDF (red line).

In summary, as the sample size increases from n = 100 to n = 10,000, the empirical distributions become smoother and align more closely with the theoretical PDF. This illustrates the Law of Large Numbers in action: with larger n, the histogram provides a better approximation of the true underlying distribution.

(3) Draw 500 observations from Beta(3, 3) using the accept-reject algorithm. Compute the mean and variance of the sample and compare them to the true values.

Solution:

1. Beta(3,3) Distribution

A Beta(α , β) random variable on [0, 1] has PDF

$$f(x) = \frac{x^{\alpha-1} (1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad 0 \le x \le 1,$$

where $B(\alpha, \beta)$ is the Beta function. For $\alpha = 3$, $\beta = 3$, we get

$$f(x) = \frac{x^2 (1-x)^2}{B(3,3)}, \quad 0 \le x \le 1.$$

Recall that

$$B(3,3) = \frac{\Gamma(3)\Gamma(3)}{\Gamma(6)} = \frac{2!\,2!}{5!} = \frac{4}{120} = \frac{1}{30}.$$

Thus,

$$f(x) = 30 x^2 (1-x)^2, \quad 0 \le x \le 1.$$

2. Accept-Reject Algorithm

- (a) Choose a proposal distribution g(x). A common choice for Beta distributions on [0,1] is g(x) = 1 for $0 \le x \le 1$, i.e. a Uniform(0,1) proposal.
- **(b)** Find M such that $f(x) \le M g(x)$ for all x. Since g(x) = 1, we need $M \ge \max_{0 \le x \le 1} f(x)$. For $f(x) = 30 x^2 (1 x)^2$, the maximum occurs at $x = \frac{1}{2}$. Then

$$f(\frac{1}{2}) = 30(\frac{1}{2})^2(\frac{1}{2})^2 = 30\frac{1}{4}\frac{1}{4} = 30\frac{1}{16} = 1.875.$$

Hence M = 1.875 is sufficient (or a slightly larger value may be used).

- **(c) Sampling steps.** Repeat until we have 500 accepted samples:
 - 1. Generate $Y \sim \text{Uniform}(0, 1)$.
 - 2. Generate $U \sim \text{Uniform}(0,1)$.
 - 3. Compute $\frac{f(Y)}{Mg(Y)} = \frac{30Y^2(1-Y)^2}{1.875}$.

4. If $U \leq \frac{f(Y)}{Mg(Y)}$, **accept** Y; otherwise **reject** Y and go back to step 1.

All accepted *Y* values constitute a sample from Beta(3,3).

3. Theoretical Mean and Variance

For Beta(α , β):

$$\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}, \quad \text{Var}(X) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}.$$

Hence, for Beta(3,3):

$$\mathbb{E}[X] = \frac{3}{3+3} = 0.5$$
, $Var(X) = \frac{3 \times 3}{6^2 \times 7} = \frac{9}{252} = \frac{1}{28} \approx 0.035714$.

4. Comparing Empirical Results to the True Values

After accepting 500 samples $\{X_1, X_2, \dots, X_{500}\}$:

• Sample Mean:

$$\overline{X} = \frac{1}{500} \sum_{i=1}^{500} X_i.$$

Compare \overline{X} to the true mean 0.5.

• Sample Variance:

$$s^{2} = \frac{1}{499} \sum_{i=1}^{500} (X_{i} - \overline{X})^{2}.$$

Compare s^2 to the true variance $1/28 \approx 0.0357$.

With a sample size of 500, you should see that \overline{X} is reasonably close to 0.5, and s^2 is near 0.0357, though some fluctuation is expected due to random variation.

5. Conclusion

The sample mean (approximately 0.49995) is extremely close to the theoretical mean of 0.5.Likewise, the sample variance (≈ 0.03628) is near the theoretical value of $1/28 \approx 0.03571$. Although there is a slight deviation, it lies within the range expected from random fluctuation with a finite sample size. Overall, these results confirm that the accept–reject algorithm is accurately simulating observations from the Beta(3,3) distribution.