```
In [3]:
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
In [4]: | data=pd.read csv('possum.csv')
In [5]: |data.head()
Out[5]:
                                                         taill footigth earconch
            case site
                     Pop
                          sex
                              age
                                   hdingth skullw totingth
                                                                               eye chest be
         0
                   1
                      Vic
                               8.0
                                      94.1
                                            60.4
                                                    89.0
                                                         36.0
                                                                 74.5
                                                                         54.5
                                                                              15.2
                                                                                    28.0
                                                                                         36
                            m
         1
               2
                                      92.5
                                            57.6
                                                    91.5 36.5
                                                                 72.5
                                                                         51.2 16.0
                                                                                    28.5
                                                                                         3:
                   1
                      Vic
                            f
                               6.0
                                                                         51.9 15.5
         2
                                            60.0
                                                    95.5 39.0
                                                                 75.4
                                                                                    30.0
               3
                   1
                      Vic
                            f
                               6.0
                                      94.0
                                                                                         3₄
         3
                      Vic
                                      93.2
                                            57.1
                                                    92.0 38.0
                                                                 76.1
                                                                         52.2 15.2
                                                                                    28.0
               4
                   1
                            f
                               6.0
                                                                                         34
               5
                   1
                      Vic
                            f
                               2.0
                                      91.5
                                            56.3
                                                    85.5 36.0
                                                                 71.0
                                                                         53.2 15.1
                                                                                    28.5
                                                                                         30
In [6]: data.shape
Out[6]: (104, 14)
In [7]: | data.columns
dtype='object')
In [8]: |data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 104 entries, 0 to 103
         Data columns (total 14 columns):
              Column
                        Non-Null Count Dtype
                                         _ _ _ _ _
                                         int64
          0
              case
                        104 non-null
          1
              site
                        104 non-null
                                         int64
          2
              Pop
                        104 non-null
                                         object
          3
                        104 non-null
                                         object
              sex
          4
                        102 non-null
              age
                                         float64
          5
              hdlngth
                        104 non-null
                                         float64
          6
              skullw
                        104 non-null
                                         float64
          7
              totlngth
                        104 non-null
                                         float64
          8
                        104 non-null
              taill
                                         float64
              footlgth
          9
                        103 non-null
                                         float64
          10
             earconch
                        104 non-null
                                         float64
          11
              eye
                        104 non-null
                                         float64
          12
                        104 non-null
                                         float64
              chest
                        104 non-null
                                         float64
             belly
         dtypes: float64(10), int64(2), object(2)
        memory usage: 11.5+ KB
```

In [9]: data.describe()

\sim			$\Gamma \sim$		
11		т.	ıv		
v	u		-	<i>'</i>	

	case	site	age	hdlngth	skullw	totIngth	taill	fc
count	104.000000	104.000000	102.000000	104.000000	104.000000	104.000000	104.000000	103.0
mean	52.500000	3.625000	3.833333	92.602885	56.883654	87.088462	37.009615	68.4
std	30.166206	2.349086	1.909244	3.573349	3.113426	4.310549	1.959518	4.3
min	1.000000	1.000000	1.000000	82.500000	50.000000	75.000000	32.000000	60.3
25%	26.750000	1.000000	2.250000	90.675000	54.975000	84.000000	35.875000	64.€
50%	52.500000	3.000000	3.000000	92.800000	56.350000	88.000000	37.000000	68.0
75%	78.250000	6.000000	5.000000	94.725000	58.100000	90.000000	38.000000	72.5
max	104.000000	7.000000	9.000000	103.100000	68.600000	96.500000	43.000000	77.9
1								

In [10]: pd.isnull(data).sum()

Out[10]: case

0 site 0 0 Pop 0 sex age 2 hdlngth 0 0 skullw totlngth 0 0 taill footlgth 1 0 earconch 0 eye 0 chest belly dtype: int64

In [11]:	data.	value_	counts()							
Out[11]:		site	Pop		k age	hdlngth	skullw	totlngth	taill	footlgth	earc
	onch	eye	chest	be]	lly						
	1	1	Vic	m	8.0	94.1	60.4	89.0	36.0	74.5	54.5
	15.2	28.0	36.0		1						
	68	5	other	m		94.1	56.0	88.5	38.0	65.9	43.1
	17.4	27.0	30.0		1						
	78	6	other	m		86.5	51.0	81.0	36.5	63.0	44.3
	13.2	23.0	28.0		1						
	77	6	other	m		93.6	56.2	84.0	36.0	62.8	42.9
	16.2	25.0	35.0		1						
	76	6	other	m		92.4	56.8	89.0	41.0	64.5	46.4
	17.8	26.0	33.0		1						
	• •			_							
	32	1	Vic	f		94.3	56.7	94.0	39.0	74.8	52.0
	14.9	28.0	34.0		1		- 4 4	00.0	27.0		
	31	1	Vic	m		92.8	54.1	93.0	37.0	68.0	52.5
	14.5	27.0	31.0	_	1	00.4	E 4 4	04.0	22 5	70.6	F0 0
	30	1	Vic	f	2.0	92.1	54.4	84.0	33.5	70.6	50.8
	14.5	24.5	33.0	<u> </u>	1	02.0	F.C. 0	00 0	25.0	74.0	Г1 О
	29	1	Vic	f	3.0 1	92.8	56.0	88.0	35.0	74.9	51.8
	14.0 104	24.0 7	32.0 other	f		93.6	59.9	89.0	40.0	67.6	46.0
	14.8	/ 28.5	33.5	Т	1	93.0	59.9	09.6	40.0	67.6	40.0
				h• 1		ype: int6	.1				
	ivallie.	Count	Lenge	11.	iei, ut	ype. Inco	'4				
In [12]:	data.	dropna	(inplac	e=Tr	rue)						
In [13]:	pd.is	null(d	ata).su	m()							
Out[13]:	case		0								
	site		0								
	Pop		0								
	sex		0								
	age		0								
	hdlng	th	0								
	skull		0								
	totln	gth	0								
	taill	_	0								
	foot1		а								

0 0 0

0

0

footlgth earconch

eye chest

belly

dtype: int64

In [14]:	data																	
Out[14]:		case	site	Po	p se	ex a	ge l	ndlngth	ı skı	ıllw	toting	th 1	taill	footlgt	h ea	arconch	eye	chest
	0	1	1	Vi	С	m	3.0	94.1	6	60.4	89	.0 3	36.0	74.	5	54.5	15.2	28.0
	1	2	1	Vi	С	f	6.0	92.5	5 5	57.6	91	.5 3	36.5	72.	5	51.2	16.0	28.5
	2	3	1	Vi	С	f	6.0	94.0) 6	0.0	95	.5 3	39.0	75.	4	51.9	15.5	30.0
	3	4	1	Vi	С	f	6.0	93.2	2 5	57.1	92	.0 3	88.0	76.	1	52.2	15.2	28.0
	4	5	1	Vi	С	f	2.0	91.5	5 5	6.3	85	.5 3	36.0	71.	0	53.2	15.1	28.5
									•									
	99	100	7	othe	er	m	1.0	89.5	5 5	6.0	81	.5 3	36.5	66.	0	46.8	14.8	23.0
	100	101	7	othe	er	m	1.0	88.6	6 5	54.7	82	.5 3	39.0	64.	4	48.0	14.0	25.0
	101	102	7	othe	er	f	6.0	92.4	. 5	55.0	89	.0 3	38.0	63.	5	45.4	13.0	25.0
	102	103	7	othe	er	m -	4.0	91.5	5 5	55.2	82	.5 3	36.5	62.	9	45.9	15.4	25.0
	103	104	7				3.0	93.6		59.9	89		0.0	67.		46.0	14.8	28.5
	2010																	
	101 r	ows ×	14 c	colum	ns													
	4																	•
In [65]:	1.	figur heatm	•	_		-		t=Tru	e)									
Out[65]:	<axe< td=""><td>s: ></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></axe<>	s: >																
		case -	1	0.97	0.87	0.26	-0.19	-0.25	-0.21	-0.39	0.32	-0.78	-0.8	-0.11	-0.44	-0.24		1.00
		site - (0.89			3 -0.22						200000000		-	-	0.75
		Pop - 0			1 0.21			1-0.074 8 0.11										
		age -			Marine Department	AND DESCRIPTION			0.43					5 0.22				0.50
	hdli	ngth						1	0.69					0.42				0.25
	sk	cullw	0.21	-0.15 -	0.044	0.057	0.43	0.69	1	0.52	0.23	0.32	0.09	8 0.37		0.43		
	totli	2 5 (200)		20100200				0.57		1	0.43	the other co	1,80 -60	0.19	2000	10000000		0.00
	£							0.39		0.43	1		11000000	-0.001				-0.25
		11 - 1111111						0.39		0.51	-0.19 -0.4	0.78		0.039		1000000		
								0.42				Brandstate		The second		- Annual -		-0.50

eye -- 0.11 -0.07 0.13 0.2 0.22 0.42 0.37 0.19 -0.00170.039 -0.14 1 0.17 0.26

chest -- 0.44 -0.4 -0.27 -0.14 0.37 0.54 0.5 0.51 0.11 0.47 0.27 0.17

pelly --0.54 -0.51 -0.0000 0.0

1 0.54 0.54 1 - tsap per l

```
In [15]: ax=sns.countplot(data=data, x='sex')
plt.show()
```



```
In [16]: ax=sns.countplot(data=data, x='age', hue='sex')
for bars in ax.containers:
    ax.bar_label(bars)
plt.show()
```


In [17]: for i in data.select_dtypes(['int','float']):
 sns.boxplot(data=data,x=i)
 plt.show()

Outliers_treatment

```
In [18]: def outliers_treatment(col):
           Q1=data[col].quantile(0.25)
           Q3=data[col].quantile(0.75)
           IQR= Q3 - Q1
           UB=Q3+1.5*IQR
           LB=Q1-1.5*IQR
           Upper_Outlier=data[col]>UB
           Lower_Outlier=data[col]<LB</pre>
           data.loc[Upper_Outlier,col]=data[col].median()
           data.loc[Lower_Outlier,col]=data[col].median()
In [19]: | for i in data.select_dtypes(['int','float']):
           outliers treatment(i)
          for i in data.select_dtypes(['int','float']):
In [20]:
           sns.boxplot(data=data,y=i)
           plt.show()
               100
                80
                60
                40
                20
In [21]:
          data.head()
Out[21]:
                         Pop sex
                                       hdlngth skullw totlngth
                                                               taill footlgth earconch
              case site
                                  age
                                                                                       eye chest be
           0
                 1
                                          94.1
                                                  60.4
                                                          89.0
                                                               36.0
                                                                        74.5
                                                                                      15.2
                                                                                             28.0
                                                                                                   36
                      1
                         Vic
                                   8.0
                                                                                 54.5
                                                  57.6
                                                          91.5 36.5
                                                                        72.5
                                                                                                   3:
           1
                 2
                      1
                         Vic
                                f
                                   6.0
                                          92.5
                                                                                 51.2 16.0
                                                                                             28.5
           2
                                          94.0
                                                  60.0
                                                          95.5 39.0
                                                                        75.4
                                                                                 51.9 15.5
                 3
                      1
                         Vic
                                f
                                   6.0
                                                                                             30.0
                                                                                                   3₄
           3
                 4
                      1
                         Vic
                                   6.0
                                          93.2
                                                  57.1
                                                          92.0
                                                               38.0
                                                                        76.1
                                                                                 52.2 15.2
                                                                                             28.0
                                                                                                   3₄
                 5
                      1
                         Vic
                                f
                                   2.0
                                          91.5
                                                  56.3
                                                          85.5 36.0
                                                                        71.0
                                                                                 53.2 15.1
                                                                                             28.5
                                                                                                   3:
```

Encoding

```
In [26]: from sklearn.preprocessing import LabelEncoder
In [27]:
         LE=LabelEncoder()
In [28]: LE
Out[28]: LabelEncoder()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with
          nbviewer.org.
In [29]: def HCD(col):
           data[col]=LE.fit_transform(data[col])
In [30]: for i in data.select_dtypes(include=['object']):
           HCD(i)
          data.head()
In [31]:
Out[31]:
                                       hdingth skullw totingth
                                                               taill footlgth earconch
              case
                    site
                         Pop sex
                                  age
                                                                                       eye chest be
           0
                                                  60.4
                                                               36.0
                                                                                 54.5 15.2
                 1
                      1
                           0
                                1
                                   8.0
                                          94.1
                                                          89.0
                                                                        74.5
                                                                                             28.0
                                                                                                   36
           1
                 2
                      1
                           0
                                0
                                   6.0
                                          92.5
                                                  57.6
                                                          91.5 36.5
                                                                        72.5
                                                                                 51.2 16.0
                                                                                             28.5
                                                                                                   30
           2
                                                          95.5 39.0
                                                                                 51.9 15.5
                 3
                      1
                           0
                                0
                                   6.0
                                          94.0
                                                  60.0
                                                                        75.4
                                                                                             30.0
                                                                                                   3₄
                 4
                      1
                           0
                                0
                                   6.0
                                          93.2
                                                  57.1
                                                          92.0 38.0
                                                                        76.1
                                                                                 52.2 15.2
                                                                                             28.0
                                                                                                   3₄
                 5
                      1
                           0
                                0
                                   2.0
                                          91.5
                                                  56.3
                                                          85.5 36.0
                                                                        71.0
                                                                                 53.2 15.1
                                                                                             28.5
                                                                                                   3
```

In [32]: data.describe()

Ou:	tl	32	
	- 1		-

	case	site	Рор	sex	age	hdlngth	skullw	tc
count	101.000000	101.000000	101.000000	101.000000	101.000000	101.000000	101.000000	101.0
mean	52.762376	3.673267	0.574257	0.584158	3.821782	92.637624	56.450495	87.3
std	30.573894	2.366892	0.496921	0.495325	1.915182	3.049126	2.094737	4.0
min	1.000000	1.000000	0.000000	0.000000	1.000000	84.700000	51.000000	77.0
25%	26.000000	1.000000	0.000000	0.000000	2.000000	91.000000	55.200000	84.5
50%	54.000000	4.000000	1.000000	1.000000	3.000000	92.900000	56.400000	88.0
75%	79.000000	6.000000	1.000000	1.000000	5.000000	94.500000	57.700000	90.0
max	104.000000	7.000000	1.000000	1.000000	9.000000	99.900000	61.500000	96.5
4								

In [66]: X=data.drop('taill',axis=1)

In [67]: X

Out[67]:

	case	site	Рор	sex	age	hdIngth	skullw	totIngth	footlgth	earconch	eye	chest	belly
0	1	1	0	1	8.0	94.1	60.4	89.0	74.5	54.5	15.2	28.0	36.0
1	2	1	0	0	6.0	92.5	57.6	91.5	72.5	51.2	16.0	28.5	33.0
2	3	1	0	0	6.0	94.0	60.0	95.5	75.4	51.9	15.5	30.0	34.0
3	4	1	0	0	6.0	93.2	57.1	92.0	76.1	52.2	15.2	28.0	34.0
4	5	1	0	0	2.0	91.5	56.3	85.5	71.0	53.2	15.1	28.5	33.0
99	100	7	1	1	1.0	89.5	56.0	81.5	66.0	46.8	14.8	23.0	27.0
100	101	7	1	1	1.0	88.6	54.7	82.5	64.4	48.0	14.0	25.0	33.0
101	102	7	1	0	6.0	92.4	55.0	89.0	63.5	45.4	13.0	25.0	30.0
102	103	7	1	1	4.0	91.5	55.2	82.5	62.9	45.9	15.4	25.0	29.0
103	104	7	1	0	3.0	93.6	59.9	89.0	67.6	46.0	14.8	28.5	33.5

101 rows × 13 columns

```
In [68]: data
Out[68]:
                                             hdlngth skullw totlngth taill footlgth earconch eye chest
                            Pop
                  case
                       site
                                  sex age
               0
                     1
                                     1
                                        8.0
                                                94.1
                                                        60.4
                                                                  89.0
                                                                       36.0
                                                                                 74.5
                                                                                           54.5
                                                                                                 15.2
                                                                                                        28.0
               1
                     2
                          1
                                0
                                     0
                                        6.0
                                                92.5
                                                        57.6
                                                                 91.5 36.5
                                                                                 72.5
                                                                                           51.2 16.0
                                                                                                        28.5
               2
                                                                                                        30.0
                     3
                          1
                                0
                                     0
                                        6.0
                                                94.0
                                                        60.0
                                                                 95.5 39.0
                                                                                75.4
                                                                                           51.9
                                                                                                15.5
               3
                     4
                          1
                                0
                                     0
                                        6.0
                                                93.2
                                                        57.1
                                                                 92.0 38.0
                                                                                 76.1
                                                                                           52.2
                                                                                                15.2
                                                                                                        28.0
                     5
                          1
                                0
                                        2.0
                                                91.5
                                                                                 71.0
                                                                                           53.2
                                                                                                15.1
                                                                                                        28.5
                                     0
                                                        56.3
                                                                 85.5 36.0
                                         ...
                                                  ...
                                                                                  ...
                                                                                             ...
                                                                                                         ...
             99
                   100
                          7
                                1
                                     1
                                        1.0
                                                89.5
                                                        56.0
                                                                 81.5 36.5
                                                                                 66.0
                                                                                           46.8 14.8
                                                                                                        23.0
                          7
                                                                                                        25.0
            100
                   101
                                        1.0
                                                88.6
                                                        54.7
                                                                 82.5 39.0
                                                                                 64.4
                                                                                           48.0 14.0
            101
                   102
                          7
                                1
                                     0
                                        6.0
                                                92.4
                                                        55.0
                                                                 89.0 38.0
                                                                                 63.5
                                                                                           45.4
                                                                                                13.0
                                                                                                        25.0
            102
                   103
                          7
                                1
                                        4.0
                                                91.5
                                                        55.2
                                                                 82.5 36.5
                                                                                 62.9
                                                                                           45.9 15.4
                                                                                                        25.0
                                     1
            103
                   104
                          7
                                1
                                     0
                                        3.0
                                                93.6
                                                        59.9
                                                                 89.0 40.0
                                                                                 67.6
                                                                                           46.0 14.8
                                                                                                        28.5
           101 rows × 14 columns
In [69]: |y=data.taill
In [70]: y
Out[70]: 0
                    36.0
           1
                    36.5
           2
                    39.0
           3
                    38.0
           4
                    36.0
           99
                    36.5
           100
                    39.0
           101
                    38.0
                    36.5
           102
           103
                    40.0
           Name: taill, Length: 101, dtype: float64
           Train_Test_Split
```

```
In [71]: from sklearn.model_selection import train_test_split
In [87]: x_train,x_test,y_train,y_test=train_test_split(X,y,train_size=0.70,random_state)
```

```
In [88]: y
Out[88]: 0
                 36.0
          1
                 36.5
          2
                 39.0
          3
                 38.0
          4
                 36.0
          99
                 36.5
          100
                 39.0
          101
                 38.0
                 36.5
          102
          103
                 40.0
          Name: taill, Length: 101, dtype: float64
```

LinearRegression

```
In [89]: | from sklearn.linear_model import LinearRegression,Lasso,Ridge
In [90]: LR=LinearRegression()
In [91]: LR
Out[91]: LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with
```

nbviewer.org.

```
In [92]: LR.fit(x_train,y_train)
```

Out[92]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [93]: LR pred=LR.predict(x test)
In [94]: LR_pred[:5]
Out[94]: array([36.35840531, 37.08933477, 36.8646217 , 35.67548074, 37.5810423 ])
```

```
In [95]: y_test[:5]
Out[95]: 83
                36.0
          78
                36.5
                36.5
          66
          15
                34.5
          38
                34.0
          Name: taill, dtype: float64
In [96]: LR.score(x_train,y_train)
Out[96]: 0.5679271411932616
In [97]: LR.score(x_test,y_test)
Out[97]: 0.4678861278447136
In [98]: from sklearn.metrics import r2_score
In [99]: r2_score(y_test,LR_pred)
Out[99]: 0.4678861278447136
In [100]: r2=r2_score(y_test,LR_pred)
In [101]: r2
Out[101]: 0.4678861278447136
```

Lasso Regression

```
In [102]: LA=Lasso(alpha=5)
In [103]: LA
Out[103]: Lasso(alpha=5)
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [104]: LA.fit(x_train,y_train)
Out[104]: Lasso(alpha=5)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with
          nbviewer.org.
In [105]: LA pred=L1.predict(x test)
In [106]: LA pred
Out[106]: array([37.37598045, 37.32729988, 37.21046651, 36.7139247 , 36.93785532,
                  36.67498024, 36.96706366, 37.03521646, 36.94759143, 37.2007304,
                  37.41492491, 36.60682744, 37.05468869, 36.83075807, 37.33703599,
                  36.73339693, 37.44413325, 36.88917475, 36.65550801, 37.50254993,
                  37.29809154, 37.23967485, 37.57070273, 37.25914708, 36.82102195,
                  37.2688832 , 37.35650822, 36.58735522, 37.34677211, 37.38571656,
                  36.76260527])
In [107]: LA.score(x_train,y_train)
Out[107]: 0.06819570129753028
In [108]: LA.score(x_test,y_test)
Out[108]: 0.10425380864549905
In [109]: LA.coef
Out[109]: array([ 0.00973611,
                                0.
                                              0.
                                                          -0.
                   0.
                                0.
                                              0.
                                                          -0.
                                                                      , -0.
                   0.
                                0.
                                             0.
                                                        1)
In [110]: LA.intercept
Out[110]: 36.558146873188235
In [111]: | from sklearn.metrics import r2_score
In [113]: r2=r2_score(y_test,LA_pred)
In [114]: r2
Out[114]: 0.10425380864549905
```

```
In [115]: | adjusted_r2=1-((1-r2)*(len(data)-1)/(len(data)-80-1))
In [116]: |adjusted_r2
Out[116]: -3.4787309567725044
          Ridge Regression
In [117]: | 12=Ridge(alpha=10)
In [118]: | 12.fit(x_train,y_train)
Out[118]: Ridge(alpha=10)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with
          nbviewer.org.
In [119]: | 12_pred=12.predict(x_test)
In [120]: 12 pred
Out[120]: array([36.45173509, 37.14100834, 36.88677323, 35.7488068 , 37.63107464,
                  37.1051278 , 34.59908081, 36.31900786, 35.91031699, 37.81842762,
                  38.78427032, 35.45968928, 36.62334348, 35.58918232, 37.49867681,
                  36.05067364, 37.36507418, 35.70360251, 36.85545216, 37.58608006,
                  38.16312899, 38.22688742, 38.82933325, 36.89231847, 35.82086369,
                  35.53736045, 37.72580104, 38.37435421, 37.8102911, 39.9997276,
                  38.36433345])
In [121]: | 12.score(x_train,y_train)
Out[121]: 0.5603370276443359
In [122]: | 12.score(x_test,y_test)
Out[122]: 0.472383070733693
In [123]: 12.coef_
Out[123]: array([ 0.01477082, -0.00624274, 0.11440015, -0.21342006, 0.01732292,
                  -0.17692705, 0.06651803, 0.29915226, -0.02115113, -0.11115813,
                  -0.08231434, 0.03916063, 0.00233735])
In [125]: | 12.intercept
Out[125]: 29.688851934399292
```

In []:		