Eléments de réponse supplémentaire sur la question 12

R	CODE_MAT	NOM_MAT	NUM_ETUD	NOM_ETUD	MOYENNE
	<mark>1</mark>	<mark>Math</mark>	100	<u>Dupont</u>	10
	<mark>1</mark>	<mark>Math</mark>	200	Durand	15
	<mark>1</mark>	<mark>Math</mark>	300	<u>Dupont</u>	10
	<mark>2</mark>	<mark>BD</mark>	100	<u>Dupont</u>	10
	<mark>2</mark>	<mark>BD</mark>	200	Durand	10
	<mark>2</mark>	<mark>BD</mark>	300	<u>Dupont</u>	12
	<mark>3</mark>	<mark>Anglais</mark>	100	<u>Dupont</u>	16
	<mark>3</mark>	Anglais	300	Dupont	10

Surligné en JAUNE créera R1, et Italique / GRAS créera R2

R => R1

La projection éliminant les doublons, nous perdons pour R1 l'identification de l'étudiant (NUM_ETUD) à cause des homonymes Dupont.

R1	CODE_MAT	NOM_MAT	NOM_ETUD
	1	Math	Dupont
	1	Math	Durand
	2	BD	Dupont
	2	BD	Durand
	3	Anglais	Dupont

R => R2

La projection éliminant les doublons, nous perdons des notes de certains étudiants (étudiant 100) car la même note est présente dans 2 matières.

R2	NUM_ETUD	NOM_ETUD	MOYENNE
	100	Dupont	10
	200	Durand	15
	300	Dupont	5
	200	Durand	10
	300	Dupont	12
	100	Dupont	16
	300	Dupont	10

En regroupant avec une jointure nos données, on obtient :

R	CODE_MAT	NOM_MAT	NOM_ETUD	NUM_ETUD	NOM_ETUD	MOYENNE
	1	Math	Dupont	100	Dupont	10
	1	Math	Dupont	300	Dupont	5
	1	Math	Dupont	300	Dupont	12
	1	Math	Dupont	100	Dupont	16
	1	Math	Dupont	300	Dupont	10

1	Math	Durand	200	Durand	15
1	Math	Durand	200	Durand	10
2	BD	Dupont	100	Dupont	10
2	BD	Dupont	300	Dupont	5
2	BD	Dupont	300	Dupont	12
2	BD	Dupont	100	Dupont	16
2	BD	Dupont	300	Dupont	10
2	BD	Durand	200	Durand	15
3	Anglais	Dupont	100	Dupont	10
3	Anglais	Dupont	300	Dupont	5
3	Anglais	Dupont	300	Dupont	12
3	Anglais	Dupont	100	Dupont	16
3	Anglais	Dupont	300	Dupont	10
3	Anglais	Durand	200	Durand	15

Exercice n° 5

Question 15:

SOIT : Soient les deux relations R1, R2 suivantes dont les clefs respectives sont soulignées et dont tous les attributs sont atomiques.

$$\begin{array}{ll} R1(\underline{A},\underline{B},C,D,E,F) & \{ \underline{B} \rightarrow \underline{C} \; ; \; D \rightarrow E \; ; D \rightarrow F \} \\ R2(\underline{G},\underline{H},\underline{I},J,K,L,M,N) & \{ \underline{M} \rightarrow N \; ; \; \underline{I},\underline{J} \rightarrow \underline{K} \} \end{array}$$

1NF: R1 et R2 sont en 1NF car tous leurs attributs sont atomiques.

Remarquons que la clef primaire de chacune des relation R1 et R2 est l'unique clef candidate minimale.

2NF:

- R1 n'est pas en 2NF car C est en dépendance partielle avec la clef à cause de : B \rightarrow C.
- R2 est en 2NF car aucune partie de la clef ne détermine un autre attribut.

3NF:

- R1 n'est pas en 3NF car R1 n'est déjà pas en 2NF
- R2 n'est pas en 3NF à cause de la dépendance transitive : M \rightarrow N et aussi I,J \rightarrow K.

Question 16:

Décomposition de R1 et R2 en

R11(
$$\underline{A}, \underline{B}, D, E, F$$
)

R12(\underline{B}, C)

R21($\underline{G}, \underline{H}, J, K, L$)

R22($\underline{I}, J, \underline{M}, N$)

1NF:

- les quatre relations sont en 1NF car tous leurs attributs sont atomiques. (car R1 et R2 était en 1NF déjà)

2NF:

- R11 est en 2NF car ni A ni B ne détermine pas les autres attributs.

$$\circ$$
 $B \to C; D \to E; D \to F$

- R12 est en 2NF car la clef est mono-attribut.
- R21 est en 2NF car ni G ni H ne sont sources de dépendance.

$$\circ \quad M \to N \, ; \, I, J \to K$$

- R22 n'est pas en 2NF car N est déterminé par une partie de la clef : M.

3NF:

- R11 n'est pas en 3NF à cause de la dépendance transitive : D →E, F.
- R12 est en 3NF (R12 n'a que deux attributs dont la clef).
- R21 est en 3NF
- R22 n'est pas en 3NF car il n'est déjà pas en 2NF!

Question 17:

2NF:

- R1 doit être normalisée en 2NF en isolant la dépendance partielle B →C dans une nouvelle relation et en éliminant sa cible.
- R1 est donc décomposée en S1 et S2 :
 - o S1 (A, B, D, E, F)
 - o S2 (<u>B</u>, C)
- RAPPEL question 15 -> R2 est déjà en 2NF

3NF:

- S1 n'est pas en 3NF à cause de la dépendance transitive : D →E, F, qu'il faut isoler dans une nouvelle relation. S1 est donc décomposée en T1 et T2 :
 - o T1 (A, B, D)
 - o T2 (<u>D</u>, E, F)
- S2 est en 3NF (S2 n'a que deux attributs dont la clef primaire).
- R2 doit être normalisée en 3NF en isolant la dépendance transitive M →N dans une nouvelle relation et en éliminant sa cible. (on sort M de la relation) R2 est donc décomposée en U1 et U2 :
 - U1 (G, H, I, J, K, L, M)
 - o U2 (M, N).
- Cependant, U1 n'est pas en 3NF, car il existe une DF dont la source n'est pas clef primaire et déterminant un attribut n'appartenant à la clef primaire (I, J →K). Cette relation doit donc être décomposée en :
 - o V1 (G, H, (I, J), L, M)
 - o V2 (<u>I, J</u>, K).

Réponse à la question :

R1	R2
T1 (A, B, D)	V1 (<u>G, H, (I, J</u>), L, M)
T2 (D, E, F)	V2 (<u>I, J</u> , K)
S2 (B, C)	U2 (<u>M</u> , N)

Exercice n° 6

SOIT:

APPART (NUM, TYPE, ADR, VILLE, SURFACE, LOYER, *CODEPROP*)

PERSONNE (CODE, NOM, PRENOM)

LOCATION (*CODELOC, NUM*)

Question 1

L'attribut CATEGORIE est multivalué (une personne peut appartenir à plusieurs catégories). Deux solutions peuvent donc être envisagées pour normaliser la relation en 1NF :

- **création de plusieurs attributs CATEGORIE1, CATEGORIE2,** ... (On utilise régulièrement ce genre de décomposition)
- création de la relation « toute-clef » suivante :
 - TYPE_PERSONNE (<u>CODE, CATEGORIE</u>)

Relation toute clé est simplement une relation (table) permettant d'associer N personnes a N catégories. On choisira soit l'une soit l'autre des solution en fonction de la manière de traiter nos données.

Question 2:

Pour pouvoir calculer le montant des charges, il faut conserver, pour les différents appartements, le coefficient donné. Nous intégrons donc le nouvel attribut dans APPART, dont le schéma devient :

APPART (NUM, TYPE, ADR, VILLE, SURFACE, LOYER, *CODEPROP*, COEF)

On pourrait s'arrêter ici, MAIS

COEF est défini en fonction uniquement de la ville et de la surface de l'appartement :

- VILLE, SURFACE \rightarrow COEF

On voit bien que nous sommes en 1NF (attributs atomiques), Nous sommes aussi en 2NF (clé composé d'un seul attribut) MAIS PAS en 3NF

 $SI: NUM \rightarrow VILLE$, SURFACE **ET QUE** VILLE, SURFACE $\rightarrow COEF$

ALORS: NUM \rightarrow COEF.

En suivant le principe de normalisation, nous devons expulser la DF (dépendance fonctionnelle) VILLE, SURFACE → COEF dans une nouvelle relation.

On obtient ainsi:

- APPART (<u>NUM</u>, TYPE, ADR, (*VILLE*, *SURFACE*), LOYER, *CODEPROP*)

- BAREME (VILLE, SURFACE, COEF)

Le couple d'attributs VILLE, SURFACE est une clef étrangère dans APPART faisant référence à la clef primaire de BAREME.