高等数学 I 练习卷(5)

一、填空题(将答案写在答题纸相应的位置。每小题 3 分,共 15 分.)

- 1. 极限 $\lim_{x \to \infty} (\frac{x-2}{x+2})^x =$ ____.
- 2. 设函数 $y = \ln(1+x^2)$, 则微分 dy =______.
- 3. 若 $\lim_{x\to 0} \frac{f(x_0) f(x_0 + 2x)}{x} = 3$,则 $f'(x_0) =$ _____.
- 4. 设函数 $\varphi(x) = \int_{0}^{x} e^{2t^2} dt$, 则 $\varphi'(1) =$ _____.
- 5. 反常积分 $\int_{0}^{2} \frac{1}{\sqrt{1-x^2}} dx =$ ____.

二、单项选择题(将答案写在答题纸相应的位置。每小题 3 分,共 15 分.)

- 1. 设函数 $f(x) = \frac{e^x e}{r(x-1)}$, 则 x = 1 是 f(x) 的(
 - A. 可去间断点
- B. 跳跃间断点
- C. 无穷间断点 D. 震荡间断点
- 2. 设函数 $f(x) = \sqrt{1+x^2} 1$,则当 $x \to 0$ 时,有(

 - A. f(x) 与 x^2 是等价无穷小 B. f(x) 与 x^2 是同阶但非等价无穷小

 - C. f(x) 是比 x^2 更高价无穷小 D. f(x) 是比 x^2 更低价无穷小

3. 曲线
$$y = \cos x$$
 在点 $(\frac{\pi}{3}, \frac{1}{2})$ 处的切线方程为(

A.
$$y - \frac{1}{2} = \frac{\sqrt{3}}{2}(x - \frac{\pi}{3})$$
 B. $y - \frac{\pi}{3} = \frac{\sqrt{3}}{2}(x - \frac{1}{2})$

B.
$$y - \frac{\pi}{3} = \frac{\sqrt{3}}{2}(x - \frac{1}{2})$$

C.
$$y - \frac{1}{2} = -\frac{\sqrt{3}}{2}(x - \frac{\pi}{3})$$
 D. $y - \frac{\sqrt{3}}{2} = \frac{1}{2}(x - \frac{\pi}{3})$

D.
$$y - \frac{\sqrt{3}}{2} = \frac{1}{2}(x - \frac{\pi}{3})$$

4. 设函数
$$f(x)$$
 在 $x = 1$ 的某邻域内连续,且 $\lim_{x \to 1} \frac{f(x) - f(1)}{(x - 1)^2} = -1$,则 $f(x)$ 在 $x = 1$ 处(

- A. 有极大值
- B. 有极小值 C. 可导, 且 $f'(1) \neq 0$ D. 不可导

5. 函数
$$f(x) = \sec x$$
 的一个原函数是(

- A. $\sec x \cdot \tan x$
- B. $\ln |\sec x \cdot \tan x|$ C. $\ln |\sec x + \tan x|$ D. $\ln |\sec x \tan x|$

- 1. 求函数 $y = \arcsin \sqrt{1-x^2}$ 的导数 y'.
- 2. 已知方程 $y^3 = xe^y + 1$ 确定函数 y = y(x),求 $\frac{d^2y}{dx^2}\big|_{x=0}$ 的值.

3. 求极限
$$\lim_{x\to\infty} \frac{\ln(1+\frac{3}{x})}{\operatorname{arccot} x}$$
.

- 4. 确定 a,b 的值,使函数 $f(x) = \begin{cases} x^2 + bx, & x \le 0 \\ e^x a, & x > 0 \end{cases}$ 在 $(-\infty, +\infty)$ 内可导.
- 5. 求定积分 $\int_{-1}^{6} \frac{x}{\sqrt[3]{x+2}} dx$.
- 6. 求定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x \cos^3 x} dx.$
- 7. 求不定积分 $\int x^2 \sin 2x dx$.

四、作图题(要求写出主要计算步骤及结果。共14分.)

设函数
$$y = \frac{x^2}{x+1}$$
,

- (1) 求函数单调区间与极值;
- (2) 求曲线的凹凸区间与拐点;
- (3) 求曲线的渐近线;
- (4) 画出函数的图形.

五、证明题(要求写出主要证明步骤。共7分.)

设
$$0 < a < 1, c > 0, x > 0$$
, 证明不等式: $(x+c)^a < x^a + c^a$.