

Predicting Breast Cancer

using machine learning

Machine Learning??

- Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead.
- Machine Learning can be simply termed to be experiments that a computer does on data sets for further predictions.

Abstract

- In this project, a performance comparison between different machine learning algorithms such as, Support Vector Machine (SVM), Decision Tree, Naive Bayes (NB) and k Nearest Neighbours (k-NN) on the Breast_cancer dataset is conducted.
- O The main objective is to assess the correctness in classifying data with respect to efficiency and effectiveness of each algorithm in terms of accuracy, sensitivity and specificity. Experimental results show that kNN gives the highest accuracy (97.13%) with lowest error rate. All experiments are executed using Jupyter Notebook with Anaconda 3(64-bit) as the Base.

Line Of Action:

- Importing Libraries
- Importing Datasets
- Split dataset into attributes using iloc
- Splitting dataset into <u>train</u> and <u>test</u> dataset
- Training and Prediction
- Evaluating the Algorithm

Importing Libraries and Dataset

```
import os
os.chdir('C:/Users/rajashekarreddy/Desktop/data sets')

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

idata=pd.read_csv("Breast_cancer.csv")
```

data

[3]:											
		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	point
	0	842302	М	17.990	10.38	122.80	1001.0	0.11840	0.27760	0.300100	0
	1	842517	М	20.570	17.77	132.90	1326.0	0.08474	0.07864	0.086900	0
	2	84300903	М	19.690	21.25	130.00	1203.0	0.10960	0.15990	0.197400	0

ERROR 404: NO NULL VALUES FOUND

Correlation

In [12]: data.corr() Out[12]: diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean diagnosis 1.000000 0.730029 0.415185 0.742636 0.708984 0.358560 0.596534 0.696360 radius mean 0.730029 1.000000 0.323782 0.997855 0.987357 0.170581 0.506124 0.676764 0.323782 1.000000 0.329533 0.321086 -0.023389 0.236702 0.302418 texture mean 0.415185 perimeter mean 0.742636 0.997855 0.329533 1.000000 0.986507 0.207278 0.556936 0.716136 0.321086 0.986507 0.177028 0.685983 area mean 0.708984 0.987357 1.000000 0.498502 smoothness_mean -0.023389 0.521984 0.358560 0.170581 0.207278 0.177028 1.000000 0.659123 compactness mean 0.596534 0.506124 0.236702 0.556936 0.498502 0.659123 1.000000 0.883121 0.302418 0.716136 0.685983 0.521984 0.883121 1.000000 concavity_mean 0.696360 0.676764 concave points mean 0.776614 0.822529 0.293464 0.850977 0.823269 0.553695 0.831135 0.921391 0.330499 0.147741 0.071401 0.183027 0.151293 0.557775 0.602641 0.500667 symmetry_mean -0.076437 -0.261477 -0.283110 0.584792 0.565369 0.336783 fractal dimension mean -0.012838 -0.311631 radius se 0.567134 0.679090 0.275869 0.691765 0.732562 0.301467 0.497473 0.631925 texture se -0.008303 -0.097317 0.386358 -0.086761 -0.066280 0.068406 0.046205 0.076218 0.660391 perimeter se 0.556141 0.674172 0.281673 0.693135 0.726628 0.296092 0.548905 0.548236 0.259845 0.744983 0.800086 0.246552 0.455653 0.617427 area_se 0.735864 smoothness se -0.067016 -0 222600 0.006614 -0 202694 -0 166777 0.332375 0 135299 0.098564

DATA VISUALISATION Histograms:-

data.hist('radius_worst',bins=5)

,data.hist('area_mean',bins=5).

data.hist('area_worst',bins=5)

data.hist('perimeter_worst',bins=5)

BoxPlots:-

data.boxplot(column='concave points_worst',by='diagnosis')

data.boxplot(column='concave points_mean',by='diagnosis')

data.boxplot(column='radius_worst',by='diagnosis')

data.boxplot(column='radius_mean',by='diagnosis')

data.boxplot(column='area_worst',by='diagnosis')

data.boxplot(column='perimeter_worst',by='diagnosis')

Pair plots

Heatmap

corr=data.corr()
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns)

Bar graphs

```
dt=data.head(25)
dt.plot.bar(y='concave points_worst',x='diagnosis')
```


dt=data.head(25)
dt.plot.bar(y='compactness_mean',x='diagnosis')


```
dt=data.head(25)
dt.plot.bar(y='radius_worst',x='diagnosis')
```


dt=data.head(25)
dt.plot.bar(y='perimeter_worst',x='diagnosis')

Splitting Attributes

```
In [26]:
          X = data.iloc[:,1:]
In [27]:
          y = data.iloc[:,0]
In [28]:
          y.name
   Out[28]: 'diagnosis'
          X.columns
In [29]:
   Out[29]: Index(['radius mean', 'texture mean', 'perimeter mean', 'area mean',
                    'smoothness mean', 'compactness mean', 'concavity mean',
                    'concave points mean', 'symmetry mean', 'fractal dimension mean',
                    'radius se', 'texture se', 'perimeter se', 'area se', 'smoothness se',
                    'compactness se', 'concavity se', 'concave points se', 'symmetry se',
                    'fractal_dimension_se', 'radius_worst', 'texture_worst',
```

<u>splitting</u><u>Dataset into</u>Training and

image: Imag

[32]:										
		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_n
	478	11.490	14.59	73.99	404.9	0.10460	0.08228	0.053080	0.019690	0.
	303	10.490	18.61	66.86	334.3	0.10680	0.06678	0.022970	0.017800	0.
	155	12.250	17.94	78.27	460.3	0.08654	0.06679	0.038850	0.023310	0.
	186	18.310	18.58	118.60	1041.0	0.08588	0.08468	0.081690	0.058140	0.
	101	6.981	13.43	43.79	143.5	0.11700	0.07568	0.000000	0.000000	0.1

Why did we choose all the Attributes as **Predictors?**

We choose all the attributes as predictors because

All the attributes given are at a good correlation
with diagnosis of breast cancer

These values are from cancer reports

prediction

S. No	Algorithms	Accuracy1
1	Logistic Regression	Train - 94%
		Test – 92%
2	Decision Tree	Train – 100%
		Test – 88%
3	Random Forest	Train – 99%
		Test – 93%
4	Support Vector Classification	Train – 100%
		Test – 58%
5	Naive Bayes	Train – 94%
		Test – 92%
6	K- Nearest Neighbours	Train – 94%
		Test – 93%

Evaluating the

Algorithm

For KNN

Data Splitting	Train(%)	Test(%)	Accuracy(%)
90-10	95	89	89
80-20	94	93	93
70-30	93	94	94
60-40	93	95	95
50-50	94	93	93

Precision and Recall

Precision	Recall
91.6%	93.6%

Results

SmartBridge

Regression	
radius_mean 54	
Prediction 1	
texture_mean 54	
perimeter_mean {"rm":54,"tm":54,"pm":5	4,"am":54,"sm":5,"cm":6,"ccm":56,"cpm":765,"smm":65,"fdm":654,"rs":56567,"ts":656,"ps":6
area_mean {"rm":54,"tm":54,"pm":54,"an	n":54,"sm":5,"cm":6,"ccm":56,"cpm":765,"smm":65,"fdm":654,"rs":56567,"ts":656,"ps":68,"as'
smoothness_mean {"rm":54,"tm":54,"pm'	":54, "am":54, "sm":5, "cm":6, "ccm":56, "cpm":765, "smm":65, "fdm":654, "rs":56567, "ts":656, "ps"
compactness_mean {"rm":54,"tm":54,"pm	n":54,"am":54,"sm":5,"cm":6,"ccm":56,"cpm":765,"smm":65,"fdm":654,"rs":56567,"ts":656,"ps
concavity_mean {"rm":54,"tm":54,"pm":54	4, "am":54, "sm":5, "cm":6, "ccm":56, "cpm":765, "smm":65, "fdm":654, "rs":56567, "ts":656, "ps":68
concave points mean {"rm":54,"tm":54,"pm":54,"a	am":54,"sm":5,"cm":6,"ccm":56,"cpm":765,"smm":65,"fdm":654,"rs":56567,"ts":656,"ps":68,"a

Thank You

Work by Team Cosmos

- Madhuri
- Sahil Shaik
- Vamsi Krishna
- Sai Kiran
- Sarath Reddy

