$\begin{array}{c} {\rm MATH4460~SPRING~2023} \\ {\rm EXAM~1} \end{array}$

WEDNESDAY, MARCH 1, 2023

This exam is open notes, but calculators are not allowed. There are 50 points total in this exam. If you do not manage to solve a problem, show a strategy you tried and a reflection on why it did not work, for partial credit.
Problem 1.
(a) (3 points) Sketch, in the complex plane, the set of complex numbers z such that $1 < {\rm Arg}(z) < 2$. You may want to recall that $\pi \approx 3.14$.
(b) (3 points) Let $f(z) = \frac{z^5 - 1}{z^2 - 5z + 6}$. List all pairs $(a, \operatorname{ord}_a f)$ for a in $\widetilde{\mathbb{C}}$ (the extended complex plane, aka the Riemann sphere) such that $\operatorname{ord}_a f \neq 0$. What is $\sum_{a \in \widetilde{\mathbb{C}}} \operatorname{ord}_a f$?
(c) (4 points) Let's call a complex number z a fizzbuzz if z is a 15th root of unity which is neither a 3rd root of unity nor a 5th root of unity. List all the fizzbuzzes, in polar form.

Problem 2.

(a) (5 points) Prove that $\overline{z}^2 = \overline{z^2}$ for all $z \in \mathbb{C}$, in any way you like.

(b) (5 points) Prove or disprove that \overline{z}^2 is a holomorphic function on \mathbb{C} .

Problem 3 (10 points). Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Prove that the function $f(z) = z^3$ maps D to D, and that f is a surjection.¹

¹A function f from X to Y is a surjection if for all $y \in Y$, there exists $x \in X$ such that f(x) = y.

Problem 4.

(a) (5 points) Prove that $\cos z \neq 0$ for any $z \in \mathbb{C}$ with $\operatorname{Im} z \neq 0$.

(b) (5 points) What is $\log(\frac{1}{2}\exp(\frac{1}{2}\log(\frac{1}{2}\exp(7+11i))))$?

Problem 5. Let $f(z) = \frac{1}{(z-1)(z-5)^3}$.

(a) (5 points) There is a unique complex number a such that we can write f(z) as

$$f(z) = \frac{a}{z - 1} + g(z)$$

where g(z) is a rational function that does not have a pole at z = 1. What is a?

(b) (5 points) Let γ be the circle $|z-1|=\frac{1}{2}$, traversed counterclockwise. With the help of part (a), find

$$\int_{\gamma} f(z) \, dz.$$

If you could not find the value of a in part (a), express your answer in terms of a.