Full Name: Sarah Ann Roy Student Number: 0650615

TOTAL POINTS: /15

Trent University MATH 2600 - Discrete Structures - Winter 2020

Test 2

READ ME: Any attempts for cheating on graded work will be dealt with according to the university policies. Show all your work. Explain your solutions when appropriate.

Problem 0) (0 points): Use this space to draw a picture. No restriction on the theme.

I'm not talented enough to draw but enjoy this meme. Stay safe!

Problem 1) (2 points): Let $A = \{w, x\}$ and $B = \{y\}$. Write down all relations from A to B. How many functions are there from A to B?

Problem 1:
A = {w, n}
B = {y}
$A \times B = \left\{ (w,y), (x,y) \right\}$
A relation from A to B is a subset of A×B or the Cartesian product of A and B.
The relations are: 1. Ø, null set is a subset of AxB
2. {(w,y)}
3. { (x,y)}
4. {(w,y), (x,y)}
A relation from A to B can be a function if $\forall a \in A$, $\exists b \in B$ such that (a,b) belongs to the relation and is unique.
Therefore {(w,y),(x,y)} is a function.
Hence, there is one function from A to B.

Problem 2) (2 points): Let $f: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ be a function given as f(x,y) = |x| + 2y (where \mathbb{R}^+ is the set of positive real numbers). Answer the following questions, and explain your answers.

- (a) Is f one-to-one?
- (b) Is f onto?

Problem 2
$f: R \times R^+ \to R$
f(x,y) = x + 2y
(a) To prove that $f(x,y)$ is one-to-one, we must prove that $f(x_1,y_1)=f(x_2,y_2)$ and $(x_1,y_1)=(x_2,y_2)$
Consider $(x_1, y_1) = (1, 3)$ and $(x_2, y_2) = (-1, 3)$
f(1,3) = 1 + 2(3) = 7
f(-1,3) = 1-11 + 2(3) = 7
Here, $(1,3) \neq (-1,3)$
But, $f(1,3) = f(-1,3)$
Therefore, f(x,y) is not one-to-one
(b) $f(x, y) = x + 2y$
n∈R ⇒ x >0 y ∈ R+ ⇒ 2y>0
: 1×1+2y>0 f(x,y)>0 ∀(x,y) ∈ R×R [†]
From this, we can observe that there is no $(x,y) \in R \times R^+$ such that $f(x,y) = -1 \in R$
f(x,y) is not onto

Problem 3) (2 points): Let A and B be any two subsets of a universal set \mathcal{U} . Does $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ always hold? If your answer is "yes", then prove it; otherwise show a counterexample.

	Problem 3
rue de	Prove that P(A) U P(B) = P(AUB)
- P	the and the distribution of a state of the state of the
	Counterexample:
	No Option 11 St.
	Consider A = {4} and B = {8}
	lack for visit and a confirmed (February A.C.) in a finite in the
	P(A) = { Ø, {43} } Ø, null set is a subset of every set
	$P(B) = \{ \emptyset, \{8\} \}$
	P(A) U P(B) = { Ø, {4}, {8}}
	(
	P(AUB) = P({4,83) = {Ø, {43, {83, {4,83}}
)	
	Therefore, $P(A) \cup P(B) \neq P(A \cup B)$
	I A HOUSE SEE A SEE AN INC. AND A LOUP TOOM IN THE SEE AND A SECOND SECO

Problem 4) (3 points): Let A be the set of all functions from \mathbb{Z} to \mathbb{R} . We define a relation \mathcal{R} on A as $\mathcal{R} = \{(f,g) \text{ such that for all } x \in \mathbb{Z}, f(x) - g(x) = c \text{ for some constant } c \in \mathbb{Z}\}$. Show that \mathcal{R} is an equivalence relation on A.

-	Problem 4
	Problem 7
	We know that R can only be an equivalence relation, only if R is reflexive, symmetric and transitive.
	R is reflexive
	I a how he find a suprame .
3 V 3	$R = \{(f,g) \text{ such that } \forall x \in Z, f(x) - g(x) = c \}$
	$\forall x \in Z$, $f(x) - f(x) = 0$ and $0 \in Z$
	R is reflexive
	R is symmetric
. у	PRINCE TO THE WEST OF THE PRINCE THE PRINCE
	Suppose (f,g) E R
	FIRE COLUMN PRO PROCES
	$f(x) - g(x) = c$, $\forall x \in Z$ for some constant $c \in Z$
	$g(x) - f(x) = -c$, $\forall x \in Z$ where $-c \in Z$
	∴ (g,f) ∈ R
	if $(f,g) \in R$ and $(g,f) \in R$
	Therefore, R is symmetric

R is transitive

Suppose (f,g) and $(g,h) \in R$

 $f(x) - g(x) = c_1$, $g(x) - h(x) = c_2$ $\forall x \in \mathbb{Z}$ for some constants $c_1, c_2 \in \mathbb{Z}$

 $f(x)-g(x)+g(x)-h(x)=c_1+c_2 \forall x\in Z \text{ and } c_1+c_2\in Z$

 $f(x) - h(x) = c_1 + c_2 \quad \forall x \in Z \text{ and } c_1 + c_2 \in Z$

(f, h) ∈ R

So if (f,g), $(g,h) \in R$ then $(f,h) \in R$

Therefore, the relation R is transitive

Since R is reflexive, symmetric and transitive,

R is an equivalence relation on A.

Problem 5) (1 point): You have a set of building-blocks which contains blocks of heights 1, 3 and 4 centimeters. (Other dimensions irrelevant.) You are constructing towers by piling blocks directly on top of one another. (A tower of height 7 cm could be obtained using seven blocks of height 1; one block of height 3 and one block of height 4; 2 blocks of height 3 and one block of height 1; etc.)

Let b_n be the number of ways to construct a tower of height n cm using blocks from the set. Assume that there is an unlimited supply of blocks of each size. Find a recurrence relation for b_n . (You are not required to solve the recurrence relation.)

	Dustrians 5
	Problem 5
	Let bn be the no: of ways to construct a tower of height
Alban S	was the same of the contract o
	The last block on the tower can be either 1cm, 3cm or
	4 cm
1	
	The tower height under the first black is n-1, n-3, n-4
	respectively.
	bn = bn-1 + bn-3 + bn-4
	on a mag
	n=1 b, = b,-, = b0 = 1 way from {1}
	$n=2$ $b_2 = b_{2-1} = b_1 = 1 \text{ may from } \{1,1\}$
	an income of a party money to the first of the contract of
	$n=3$ $b_3=b_{3-1}+b_{3-3}=b_2+b_6=1+1$
	1 3 = 2 ways from {1,1,1} and {3}
	N = 4
	$n = 4$ $b_4 = b_{4-1} + b_{4-3} + b_{4-4} = b_3 + b_1 + b_6 = 2+1+$ $= 4 \text{ ways from } \{1,1,1,1\}, \{1,3\}$
	[3] [3] [3] [3] [3] [4]
	n=5
	$\begin{vmatrix} 1 & & & & & & & & & &$
	1 4 3 = 6 ways
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{1}{1}$

n=6 b6= b6-1 + b6-3 + b6-4 = 65 + b3 + b2 = 6+2+1 = 9 ways from {1,1,1,1,1} (3x {4,1,1}) {3,3} (4x {1,1,1,3}) n=7 b7 = b74 + b7-3 + b7-4 = b6 + b4 + b3 = 9+4+2 :. by = 15 ways from {1,1,1,1,1,1,1} (2x {3,4}) (3x {1,3,3}) (5x {1,1,1,1,3}) (4x {4,1,1,1})

= 15+6+4

Therefore, the rec rrence relation for by is

bn = bn-1 + bn-3 + bn-4

Problem 6) (2 points): Use mathematical induction to show that for all integers $n \ge 1$, $4^{n+1} + 5^{2n-1}$ is divisible by 21.

Problem 6 We have to prove $4^{n+1} + 5^{2n-1}$ is divisible by $21 \cdot \forall n \geqslant 1$ $P(n) = 4^{n+1} + 5^{2n-1} = 21m (m \in \mathbb{Z})$ Base case: Show that $P(n)$ is true when $n=1$, ie $P(1)$ $LHS: 4^{1+1} + 5^{2-1} = 4^2 + 5^1$ $= 16 + 5$ $= 21$ $= 21 \times 1 (m=1)$ $= RHS$ Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m (m \in \mathbb{Z})$ is true when $P(k+1) = 4^{k+2} + 5^{2k+1} = 21m$
We have to prove $4^{n+1} + 5^{2n-1}$ is divisible by $21 \cdot \forall n \geqslant 1$ $P(n) = 4^{n+1} + 5^{2n-1} = 21m (m \in \mathbb{Z})$ Base case: Show that $P(n)$ is true when $n=1$, ie $P(1)$ $LHS: 4^{1+1} + 5^{2-1} = 4^2 + 5^1$ $= 16 + 5$ $= 21$ $= 21 \times 1 (m=1)$ $= RHS$ Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m (m \in \mathbb{Z})$ is true
$P(n) = 4^{n+1} + 5^{2n-1} = 21m (m \in \mathbb{Z})$ Base case: Show that $P(n)$ is true when $n=1$, ie $P(1)$ $LHS: 4^{1+1} + 5^{2-1} = 4^2 + 5^1$ $= 16 + 5$ $= 21$ $= 21 \times 1 (m=1)$ $= RHS$ Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m (m \in \mathbb{Z})$ is true
Base case: Show that $P(n)$ is true when $n=1$, ie $P(1)$ LHS: $4^{1+1} + 5^{2-1} = 4^2 + 5^1$ $= 16 + 5$ $= 21$ $= 21 \times 1 (m=1)$ $= RHS$ Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m (m \in \mathbb{Z})$ is true
Base case: Show that $P(n)$ is true when $n=1$, ie $P(1)$ LHS: $4^{1+1} + 5^{2-1} = 4^2 + 5^1$ $= 16 + 5$ $= 21$ $= 21 \times 1 (m=1)$ $= RHS$ Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m (m \in \mathbb{Z})$ is true
LHS: $4^{1+1} + 5^{2-1} = 4^2 + 5^1$ $= 16 + 5$ $= 21$ $= 21 \times 1 (m=1)$ $= RHS$ Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k > 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m (m \in \mathbb{Z})$ is true
= $16+5$ = 21 = 21×1 ($m=1$) = RHS Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m$ ($m \in \mathbb{Z}$) is true
= $16+5$ = 21 = 21×1 ($m=1$) = RHS Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m$ ($m \in \mathbb{Z}$) is true
= 21 = 21x1 $(m=1)$ = RHS Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k > 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m (m \in \mathbb{Z})$ is true
= 21×1 ($m=1$) = RHS Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m$ ($m \in \mathbb{Z}$) is true
= RHS Therefore, $P(n)$ is true for $n=1$ Induction Step: Suppose $P(k)$ is true $(k > 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m \ (m \in \mathbb{Z})$ is true
Induction Step: Suppose $P(k)$ is true $(k \gg 1)$, show that $P(k+1)$ follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m \ (m \in \mathbb{Z})$ is true
P(k+1) follows. We suppose that $P(k) = 4^{k+1} + 5^{2k-1} = 21m \ (m \in \mathbb{Z})$ is true
We must prove that P(k+1) = 4k+2 + 52k+1 = 21m
LHS: 4k+2 + 52k+1 = 4k+1+1 + 52k-1+2
$=4^{k+1}\cdot 4'+5^{2k-1}\cdot 5^2$
= 4 ^{k+1} .4' + 5 ^{2k-1} .25
= 4k+1. 41 + (21+4) · 52k-1
$= 4(4^{k+1}) + 21(5^{2k-1}) + 4(5^{2k-1})$
$=4(4^{k+1}+5^{2k-1})+21(5^{2k-1})$
Hilroy

= $4(21m) + 21(5^{2k-1})$ = $21(4m + 5^{2k-1})$ Therefore $4^{k+2} + 5^{2k+1} = 21(4m + 5^{2k-1})$ Since $21(4m + 5^{2k-1})$ is divisible by 21, p(n) is true for P(k+1)By Base Case and Induction Step, we proved that the given proposition is true for all $n \ge 1$. **Problem 7) (1 point)**: Let d_n be the number of derangements of n elements. Express the answer to the following problem in terms of d_n (for the appropriate value of n).

A machine inserts 8 letters into 8 envelopes randomly (one in each). In how many ways can the machine insert the letters into envelopes so that exactly one of the 8 letters go into the correct envelope?

•	
w	Problem 7
	Formula for derangement is
	$dn = n! \sum_{m=0}^{n} \frac{(-1)^m}{m!}$
	$d_g = 8! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \frac{1}{8!} \right)$
	d ₈ = 14833
	Therefore, we can insert the letters into envelopes in 14833 ways.

Problem 8) (2 points): A relation \mathcal{R} on a set A is said to be *cyclic* if the following implication holds:

$$((a,b) \in \mathcal{R}) \land ((b,c) \in \mathcal{R}) \rightarrow (c,a) \in \mathcal{R}.$$

Show that if R is reflexive and cyclic, then it is symmetric and transitive.

	Problem 8	W
	$((a,b) \in R) \land ((b,c) \in R) \rightarrow (c,a) \in R$	
	I: The Relation R is reflexive if (a,a) ER VaED where D is the domain on which R is defined	
	:. R is reflexive	
	II: The Relation R is cyclic only if for a,b,c $\in R$ (a,b) $\in R$ and (b,c) $\in R \Rightarrow$ (c,a) $\in R$	
	:. R is cyclic	
1 224	II: From II, we can replace b with c to get	
1	(a,b) $\in \mathbb{R}$ and (b,b) $\in \mathbb{R} \Rightarrow (b,a) \in \mathbb{R}$	
	Therefore, $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b in D$	
	:. R is symmetric	
	IV: Consider (a,b) ER and (b,c) ER	
	(b,a) ER and (c,b) ER (since R is symmet) (c,b) ER and (b,a) ER	tri
	\Rightarrow (a,c) $\in \mathbb{R}$ (since \mathbb{R} is cyclic)	
	: $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R} \Rightarrow (a,c) \in \mathbb{R}$	
	:. R is transitive	