Homework 5

Psych 5068

$Emorie\ Beck$

March 20, 2018

Contents

Packag Data .																																			_
Question	1.																																		2
Question	2																																		4
Question	3																																		5
Part A								 																											5
Part B								 																											6
Part C								 																											. 7
Part D					•			 																											7
Question	4																																		8
Part A								 																											8
Part B								 																											9
Part C																																			
Part D								 																											10
Question	5																																		10
Part A																																			
Part B																																			_
Part C																																			-
Part D																																			
Part E																																			
Part F	• •			•	•		•	 •	•		٠	 •	٠		٠	•		٠	•	•	•		•	•	•	•	•	•		٠	•		•		12
Question	6																																		13
Question	7																																		14
Question	8																																		15
Part A								 																											16
Part B								 																											17
Part C								 																											18
Question	9																																		19
Part A																																			
Part B					-		-		-				-		-						-		-					-		-					
		-	·	-		-		-		•	-	•		,	-		•	·		-		,	·		-		-		-	-		•	-	•	
Question																																			21
Part A																																			
Part B								 																											21

data (popularity.csv) to explore methods for examining the adequacy of hierarchical linear models. Begin with the unconditional model:

Workspace

Packages

```
library(psych)
library(lme4)
library(knitr)
library(qqplotr)
library(influence.ME)
library(HLMdiag)
library(kableExtra)
library(plyr)
library(tidyverse)
```

Data

Question 1.

Test the homogeneity of Level 1 residual variances (σ^2) assumption by comparing a model that estimates a single Level 1 variance (the default, call it Pop_Fit_1) to a model that estimates a separate variance for each classroom (call it Pop_Fit_2).

Reminder: This needs to be done with the nlme package, which allows specifying separate variances for each Level 2 unit.

```
Level 1:
```

$$popular_{ij} = \beta_{0j} + r_{ij}$$

Level 2:

```
\beta_{0i} = \gamma_{00} + u_{0i}
source("https://raw.githubusercontent.com/emoriebeck/homeworks/master/table_fun.R")
library(nlme)
Pop_Fit_1 <- lme(popular ~ 1, random = ~1 | class, data = dat)</pre>
Pop_Fit_2 <- lme(popular ~ 1, random = ~1 | class, data = dat, varIdent(form = ~ 1 | class))
Pop_Fit_1 %>% summary
## Linear mixed-effects model fit by REML
    Data: dat
##
##
         AIC
                   BIC
                           logLik
##
     6336.51 6353.311 -3165.255
##
## Random effects:
```

```
## Formula: ~1 | class
          (Intercept) Residual
## StdDev: 0.8379169 1.105348
##
## Fixed effects: popular ~ 1
                Value Std.Error DF t-value p-value
## (Intercept) 5.07786 0.08739443 1900 58.10279
##
## Standardized Within-Group Residuals:
           Min
                          Q1
                                      Med
                                                    QЗ
## -3.565536840 -0.697542781 0.001956985 0.675810799 3.317504350
## Number of Observations: 2000
## Number of Groups: 100
Pop_Fit_2 %>% summary
## Linear mixed-effects model fit by REML
   Data: dat
          AIC
                   BIC
                          logLik
     6405.673 6976.914 -3100.837
##
## Random effects:
   Formula: ~1 | class
           (Intercept) Residual
## StdDev: 0.8379648 0.9521529
##
## Variance function:
## Structure: Different standard deviations per stratum
   Formula: ~1 | class
   Parameter estimates:
                               3
  1.0000000 1.0499363 1.2207029 0.8541240 0.9973815 1.0157321 1.1445444
                    9
                              10
                                        11
                                                  12
                                                            13
## 1.2170772 1.3346129 0.8740021 0.9586056 1.0060780 0.8900662 1.3095554
         15
                  16
                              17
                                        18
                                                  19
## 1.2881853 1.2804569 1.2384373 1.0313981 1.1937506 1.4532934 0.9313162
                    23
                                                            27
          22
                              24
                                        25
                                                  26
## 0.8019151 1.1213246 1.3330274 1.1738459 1.1501272 1.1511586 0.8015011
         29
                    30
                              31
                                        32
                                                  33
## 0.9217862 1.2674700 1.8038285 1.2396037 1.4369198 1.3081363 0.6554007
          36
                    37
                              38
                                        39
                                                  40
                                                            41
## 1.0910736 1.2617634 1.0847395 0.7528253 1.4065366 0.8272193 1.2179219
          43
                    44
                              45
                                        46
                                                  47
## 0.8003435 1.0748452 1.2180299 1.3702985 0.9218534 1.6334850 0.9792693
                                        53
                                                            55
          50
                    51
                              52
                                                  54
## 0.8405058 1.0975264 1.1401357 0.9160148 1.0518165 1.0291801 1.2322453
         57
                    58
                              59
                                        60
                                                  61
                                                            62
## 1.5467456 1.2170930 1.1781249 1.5876935 1.0859182 1.1135284 1.2075701
          64
                    65
                                        67
                                                  68
                                                            69
                              66
## 1.3015184 1.1231329 1.2757089 0.9583205 0.9910443 1.0042414 1.1896880
                    72
                              73
                                        74
                                                  75
                                                            76
         71
## 1.3150873 1.0775448 1.0769280 1.0474515 0.9294291 0.8908559 1.3637457
                    79
                              80
                                        81
                                                  82
                                                            83
## 1.0494309 1.3123283 1.1232540 1.0290107 1.3425965 0.8867385 1.0345774
```

```
##
          85
                    86
                               87
                                         88
                                                    89
                                                              90
                                                                         91
## 0.9229351 1.2415380 1.5730716 1.2662948 1.3487742 0.9957063 1.1889781
##
          92
                    93
                               94
                                         95
                                                    96
                                                              97
                                                                         98
  0.9918226 1.1231373 1.0658333 1.0113186 1.2665757 1.2133722 0.9214493
##
##
          99
                   100
## 1.2959411 1.8378429
## Fixed effects: popular ~ 1
                  Value Std.Error
                                      DF t-value p-value
   (Intercept) 5.085095 0.08733616 1900 58.2244
##
##
##
  Standardized Within-Group Residuals:
##
            Min
                           Q1
  -4.222647455 -0.817049909 -0.009953112 0.767681205
##
                                                          3.845590285
##
## Number of Observations: 2000
## Number of Groups: 100
anova(Pop_Fit_1,Pop_Fit_2)
                             AIC
                                      BIC
##
             Model
                    df
                                             logLik
                                                       Test L.Ratio p-value
## Pop_Fit_1
                 1
                     3 6336.510 6353.311 -3165.255
## Pop_Fit_2
                 2 102 6405.673 6976.914 -3100.837 1 vs 2 128.8365 0.0236
```

Thus, we do not meet the homogeneity of variance assumption. The model that estimates separate variances is slightly better than one that does not.

Question 2

Add the Level 1 residuals (and fitted values) from Pop_Fit_1 to the popularity data file (name them L1_residuals and L1_fitted, respectively) and produce a boxplot figure showing the residual distributions by classroom (class).

```
dat <- broom::augment(Pop_Fit_1) %>% tbl_df %>%
  mutate(class = as.character(class)) %>%
  full_join(
   ranef(Pop_Fit_1) %>% data.frame %>% setNames("L2_residuals") %>%
      mutate(class = rownames(.)) %>% tbl_df
  ) %>% rename(L1_residuals = .resid)
orders <- dat %>%
  group_by(class) %>%
  summarize(median = median(L1_residuals, na.rm = T)) %>%
  arrange (median)
dat %>%
  mutate(class = factor(class, levels = orders$class)) %>%
  ggplot(aes(x = class, y = L1_residuals, fill = class)) +
  geom_boxplot(size = .15) +
  geom_label(data = dat, aes(y = L2_residuals, label = class), size = 1.5) +
  theme_classic() +
  theme(legend.position = "none")
```


Question 3

Examine the Level 1 residuals:

Part A

Construct a Q-Q plot of the Level 1 residuals.

Part B

Construct a histogram of the Level 1 residuals with a normal distribution overlay.

Part C

Are the Level 1 residuals normally distributed? Yes, the level 1 residuals are normally distributed.

Part D

Construct a scatterplot of the Level 1 residuals against the Level 1 fitted values. Comment on the assumption of homoscedasticity and what that means for this unconditional model.

```
dat %>%
  ggplot(aes(x = .fitted, y = L1_residuals)) +
  geom_point() +
  geom_smooth(method = "lm", se = F) +
  theme_classic()
```


The plot of Level 1 residuals v. Level 1 fitted values suggests that we meet the assumption of homoscedasticity. There is a very weak positive relationship, but not strong enough to worry.

Question 4

Now determine if Level 1 predictors should be added to the model.

Part A

Correlate the Level 1 residuals with extraversion. Is there evidence that this predictor should be included?

```
r <- dat %>% select(extrav, sex12, .fitted, L1_residuals) %>% cor
r[upper.tri(r, diag = T)] <- NA
r <- r %>% data.frame() %>% mutate(v1 = rownames(.)) %>% select(v1, everything())
options(knitr.kable.NA = '')
r %>%
   kable(., "latex", digits = 2, booktabs = T,
        col.names = c("", "extrav", "sex", "fitted", "L1 resid"))
```

	extrav	sex	fitted	L1 resid
extrav				
sex12	0.09			
.fitted	-0.01	0.26		
$L1_residuals$	0.41	0.54	0.06	

Extraversion is moderately correlated with the level 1 residuals (r = 0.41), suggesting that it should be included in the model.

Part B

Create a scatterplot showing the relationship between the Level 1 residuals and extraversion. Does there appear to be any need to model nonlinearity?

```
dat %>%
   ggplot(aes(x = extrav, y = L1_residuals)) +
   geom_point() +
   geom_smooth() +
   theme_classic()
```


No, there is possibly a very small, non-linear effect, but the degree of nonlinearity is very small.

Part C

Correlate the Level 1 residuals with student sex. Is there evidence that this predictor should be included? Sex is moderately to strongly correlated with the level 1 residuals (r = 0.54), suggesting that it should be

included in the model.

Part D

Should both predictors be included in the model? That is, do they appear to be unique predictors?

Extraversion and sex are nearly uncorrelated (r = 0.09), suggesting that they do appear to be unique predictors.

Question 5

Examine the Level 2 residuals:

Part A

Create a classroom level data frame (call it Class_Data) that contains the Level 2 residuals (only intercept residuals are available so far; name it R_Intercept) and the grand-mean centered classroom means for extraversion (name it Mean E GMC).

```
Class_Data <- dat %>%
  mutate(E_gmc = as.numeric(scale(extrav, scale = F, center = T))) %>%
  group_by(class) %>%
  summarise(Mean_E_GMC = mean(E_gmc, na.rm = T)) %>%
  full_join(unique(dat %>% select(class, L2_residuals)))
```

Part B

Construct a Q-Q plot of the Level 2 residuals

Part C

Construct a histogram of the Level 2 residuals with a normal distribution overlay.

Part D

Are the Level 2 residuals normally distributed? The Level 2 residuals do appear to be relatively normally distributed. Although there are some deviations from normality, there doesn't appears to be a clear skew in the residuals.

Part E

Correlate the Level 2 residuals with classroom mean extraversion. Is there evidence that this predictor should be included in the Level 2 model?

```
r2 <- Class_Data %>% summarize(r = cor(Mean_E_GMC, L2_residuals))
```

Classroom mean extraversion is almost entirely uncorrelated (r = -0.02) with the Level 2 residuals.

Part F

Create a scatterplot showing the relationship between the Level 2 residuals and classroom mean extraversion. Does there appear to be any need to model nonlinearity at Level 2?

```
Class_Data %>%
  ggplot(aes(y = L2_residuals, x = Mean_E_GMC)) +
  geom_point() +
  geom_smooth() +
  theme_classic()
```


The relationship between classroom mean extraversion and the Level 2 residuals does appear to be slightly nonlinear.

Question 6

6. Fit a new model based on what you have discovered so far:

To fit this model, you will need to create a new variable, Mean_E_GMC_SQ, that is the square of Mean_E_GMC. Merge both variables into the original data frame, and fit the new model (call it Pop_Fit_3). Use the lme4 package so that you don't encounter convergence problems. Is there any evidence of curvilinearity at Level 2?

group_rows("Fixed", 13,14)

		Fit 3
Term	b	CI
Fixed		
Intercept	1.88	[1.59, 2.26]
extrav	0.46	[0.41, 0.49]
Mean E GMC	-2.07	[-2.74, -1.20]
Mean E GMC SQ	0.28	[-0.08, 0.68]
sexFemale	1.26	[1.15, 1.32]
extrav:Mean E GMC	0.21	[0.10, 0.29]
extrav:Mean E GMC SQ	-0.03	[-0.09, 0.00]
Mean E GMC:sexFemale	0.11	[-0.06, 0.21]
Mean E GMC SQ:sexFemale	-0.01	[-0.06, 0.13]
Random		
au00	1.58	[0.98, 1.77]
au 11	0.02	[0.01, 0.03]
au 22	0.00	[0.00, 0.03]
R^2m	0.43	-
R^2c	0.70	

There is evidence of nonlinearity at Level 2, $b_{Mean_E_GMC_SQ} = 0.28~95\%$ CI [-0.08, 0.68]

Question 7

Fit a model that eliminates the squared terms in Level 2 (call it Pop_Fit_4) and compare it to the full model. Are you justified in eliminating the squared terms?

```
Pop_Fit_4 <- lmer(popular ~ extrav*Mean_E_GMC + sex*Mean_E_GMC + (extrav + sex | class), data = dat)
tab_Fit_4 <- table_fun(Pop_Fit_4)

tab_Fit_4 %>%
   mutate(term = str_replace_all(term, "_", " ")) %>%
   select(-type) %>%
   kable(., "latex", escape = F, booktabs = T,
        col.names = c("Term", c("b", "CI"))) %>%
   add_header_above(c(" " = 1, "Fit 4" = 2)) %>%
   group_rows("Fixed", 1,6) %>%
   group_rows("Random", 7,9) %>%
   group_rows("Fixed", 10,11)
```

		Fit 4
Term	b	CI
Fixed		
Intercept	2.01	[1.75, 2.21]
extrav	0.45	[0.42, 0.50]
Mean E GMC	-1.69	[-1.94, -1.52]
sexFemale	1.25	[1.21, 1.36]
extrav:Mean E GMC	0.17	[0.15, 0.20]
Mean E GMC:sexFemale	0.10	[-0.06, 0.18]
Random		
au00	1.59	[0.89, 2.11]
au 11	0.02	[0.01, 0.03]
au 22	0.00	[0.00, 0.04]
R^2m	0.41	
R^2c	0.69	

```
anova(Pop_Fit_4, Pop_Fit_3)
```

Data: dat Models: Pop_Fit_4: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav + Pop_Fit_4: sex | class) Pop_Fit_3: popular ~ extrav * Mean_E_GMC + extrav * Mean_E_GMC_SQ + sex * Pop_Fit_3: Mean_E_GMC + sex * Mean_E_GMC_SQ + (extrav + sex | class) Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) Pop_Fit_4 13 4837.8 4910.6 -2405.9 4811.8 Pop_Fit_3 16 4841.2 4930.8 -2404.6 4809.2 2.6108 3 0.4556

Debatably, the model that includes the squared term does not fit better than the one that doesn't. I would drop it.

Question 8

Using the simpler Pop_Fit_4 model, determine if either or both of the slope variances at Level 2 can be set to 0.

```
Pop_Fit_4a <- lmer(popular ~ extrav*Mean_E_GMC + sex*Mean_E_GMC + (extrav | class), data = dat)
Pop_Fit_4b <- lmer(popular ~ extrav*Mean_E_GMC + sex*Mean_E_GMC + (sex | class), data = dat)
Pop_Fit_4c <- lmer(popular ~ extrav*Mean_E_GMC + sex*Mean_E_GMC + (1 | class), data = dat)
f4a.tab <- table_fun(Pop_Fit_4a)
f4b.tab <- table_fun(Pop_Fit_4b)
f4c.tab <- table_fun(Pop_Fit_4c)</pre>
f4a.tab %>% mutate(model = "Fit 4a") %>%
  full join(f4b.tab %>% mutate(model = "Fit 4b")) %>%
  full_join(f4c.tab %>% mutate(model = "Fit 4c")) %>%
  mutate(term = str_replace_all(term, "_", " ")) %>%
  gather(key = est, value = value, b, CI) %>%
  unite(tmp, model, est, sep = ".") %>%
  mutate(type = factor(type, levels = c("Fixed Parts", "Random Parts", "Model Terms"))) %>%
  spread(key = tmp, value = value) %>%
  select(-type) %>%
  kable(., "latex", escape = F, booktabs = T,
        col.names = c("Term", rep(c("b", "CI"), times = 3))) %>%
  add_header_above(c(" " = 1, "extrav RE" = 2, "sex RE" = 2, "No RE Slopes" = 2)) %>%
  group_rows("Fixed", 1,6) %>%
```

```
group_rows("Random", 7,8) %>%
group_rows("Fixed", 9,10)
```

	e	xtrav RE		sex RE	No	RE Slopes
Term	b	CI	b	CI	b	CI
Fixed						
extrav	0.45	[0.40, 0.46]	0.45	[0.42, 0.47]	0.45	[0.43, 0.48]
extrav:Mean E GMC	0.17	[0.15, 0.22]	0.17	[0.14, 0.19]	0.17	[0.10, 0.19]
Intercept	2.01	[1.92, 2.34]	2.02	[1.90, 2.16]	2.02	[1.85, 2.26]
Mean E GMC	-1.70	[-2.34, -1.47]	-1.71	[-1.87, -1.43]	-1.72	[-1.84, -1.17]
Mean E GMC:sexFemale	0.11	[-0.07, 0.22]	0.09	[0.01, 0.15]	0.09	[-0.04, 0.18]
sexFemale	1.25	[1.20, 1.33]	1.25	[1.19, 1.29]	1.25	[1.20, 1.28]
Random						
au00	1.60	[1.16, 2.21]	0.49	[0.34, 0.58]	0.46	[0.36, 0.56]
au 11	0.02	[0.02, 0.03]	0.00	[0.00, 0.06]		
R^2c	0.69		0.68		0.68	
R^2m	0.41		0.41		0.41	

```
anova(Pop_Fit_4, Pop_Fit_4a, Pop_Fit_4b, Pop_Fit_4c)
```

```
## Data: dat
## Models:
## Pop_Fit_4c: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (1 | class)
## Pop_Fit_4a: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav |
                  class)
## Pop_Fit_4a:
## Pop_Fit_4b: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (sex | class)
## Pop_Fit_4: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav +
                 sex | class)
## Pop_Fit_4:
##
             Df
                   AIC
                          BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## Pop_Fit_4c 8 4865.8 4910.6 -2424.9 4849.8
## Pop_Fit_4a 10 4833.0 4889.0 -2406.5 4813.0 36.802
                                                          2 1.020e-08 ***
## Pop Fit 4b 10 4869.1 4925.1 -2424.6 4849.1 0.000
                                                          0
## Pop_Fit_4 13 4837.8 4910.6 -2405.9 4811.8 37.315
                                                          3 3.947e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Part A

Eliminate the random effect for extrav (call this model Pop_Fit_5). Is this model indistinguishable from Pop_Fit_4?

		Fit 5
Term	b	CI
Fixed		
Intercept	2.02	[1.81, 2.18]
extrav	0.45	[0.43, 0.48]
Mean E GMC	-1.71	[-1.89, -1.20]
sexFemale	1.25	[1.21, 1.26]
extrav:Mean E GMC	0.17	[0.12, 0.19]
Mean E GMC:sexFemale	0.09	[-0.07, 0.17]
Random		
au00	0.49	[0.36, 0.65]
au 11	0.00	[0.00, 0.02]
R^2m	0.41	-
R^2c	0.68	

```
anova(Pop_Fit_4, Pop_Fit_5)
```

```
## Data: dat
## Models:
## Pop_Fit_5: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (sex | class)
## Pop_Fit_4: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav +
## Pop Fit 4:
                 sex | class)
            Df
                  AIC
                         BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## Pop_Fit_5 10 4869.1 4925.1 -2424.6
                                       4849.1
## Pop_Fit_4 13 4837.8 4910.6 -2405.9
                                       4811.8 37.315
                                                         3 3.947e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

This model is distinguishable from the model from question 4 – eliminating the extraversion random slope improves model fit.

Part B

Eliminate the random effect for sex (call this model Pop_Fit_6). Is this model indistinguishable from Pop_Fit_4?

	Fit 6	
Term	b	CI
Fixed		
Intercept	2.01	[1.93, 2.20]
extrav	0.45	[0.43, 0.47]
Mean E GMC	-1.70	[-2.61, -1.25]
sexFemale	1.25	[1.21, 1.29]
extrav:Mean E GMC	0.17	[0.14, 0.28]
Mean E GMC:sexFemale	0.11	[-0.02, 0.22]
Random		
au00	1.60	[1.22, 1.83]
au 11	0.02	[0.01, 0.03]
R^2m	0.41	-
R^2c	0.69	

```
anova(Pop_Fit_4, Pop_Fit_6)
```

```
## Data: dat
## Models:
## Pop_Fit_6: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav |
## Pop_Fit_6:
                  class)
## Pop_Fit_4: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav +
## Pop_Fit_4:
                  sex | class)
                          BIC logLik deviance Chisq Chi Df Pr(>Chisq)
##
                   AIC
## Pop_Fit_6 10 4833.0 4889.0 -2406.5
                                        4813.0
## Pop_Fit_4 13 4837.8 4910.6 -2405.9
                                        4811.8 1.247
                                                           3
                                                                 0.7418
```

Yes, the model that does not include the random slope for sex is indistinguishable from one that does.

Part C

Finally, eliminate them both (call this Pop_Fit_7) and compare it to Pop_Fit_4. Which simpler model is justified?

	Fit 7	
Term	b	CI
Fixed		
Intercept	2.02	[1.81, 2.13]
extrav	0.45	[0.43, 0.47]
Mean E GMC	-1.72	[-1.83, -1.23]
sexFemale	1.25	[1.21, 1.30]
extrav:Mean E GMC	0.17	[0.09, 0.19]
Mean E GMC:sexFemale	0.09	[-0.02, 0.26]
Random		
au00	0.46	[0.34, 0.57]
R^2m	0.41	•
R^2c	0.68	

```
anova(Pop_Fit_4, Pop_Fit_5, Pop_Fit_6, Pop_Fit_7)
```

```
## Data: dat
## Models:
## Pop_Fit_7: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (1 | class)
## Pop_Fit_5: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (sex | class)
## Pop_Fit_6: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav |
## Pop Fit 6:
                 class)
## Pop_Fit_4: popular ~ extrav * Mean_E_GMC + sex * Mean_E_GMC + (extrav +
## Pop_Fit_4:
                 sex | class)
                                                Chisq Chi Df Pr(>Chisq)
##
            Df
                   AIC
                         BIC logLik deviance
## Pop_Fit_7 8 4865.8 4910.6 -2424.9
                                       4849.8
## Pop_Fit_5 10 4869.1 4925.1 -2424.6
                                       4849.1 0.7339
                                                           2
                                                                 0.6928
## Pop_Fit_6 10 4833.0 4889.0 -2406.5
                                       4813.0 36.0681
                                                                 <2e-16 ***
## Pop_Fit_4 13 4837.8 4910.6 -2405.9
                                                                 0.7418
                                       4811.8 1.2470
                                                           3
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Question 9

Pop_Fit_6 is the best model.

Use the simplest model justified from the previous question.

Part A

Retest the Level 1 homogeneity assumption. Is there any improvement compared to what was found for Question 1?

```
## Model df AIC BIC logLik Test L.Ratio p-value ## Pop_Fit_6.lme 1 10 4859.194 4915.173 -2419.597 ## Pop_Fit_6.a 2 109 4939.475 5549.646 -2360.737 1 vs 2 117.719 0.0966
```

In this case, we meet the homogeneity of variance assumption. The model that fits unique variances is not better than one that does not.

Part B

Check the multivariate normality assumption for the residuals at Level 2 using Mahalanobis distance. Are the residuals multivariate normal?

```
L2_residuals <- ranef(Pop_Fit_6)[[1]]
MD.v <- mahalanobis(L2_residuals, colMeans(L2_residuals), cov(L2_residuals))

MD.df <- MD.v %>% data.frame %>% setNames("MD") %>% mutate(class = names(MD.v))

MD.df %>%

ggplot(aes(sample = MD)) +

stat_qq_band(distribution = "chisq", dparams = list(df = 4)) +

stat_qq_line(distribution = "chisq", dparams = list(df = 4)) +

stat_qq_point(distribution = "chisq", dparams = list(df = 4)) +

theme_classic()
```


The residuals do appear to be multivariate normal.

Question 10

Use Cook's distance to examine how influential the classrooms are in the model fit for Question 9.

Part A

How many classrooms stand out as distinctly more influential than the others? 3 classrooms: 33, 87, and 90.

Part B

If those classrooms are excluded from the analysis and the model is refit, do any conclusions change?

```
Pop_Fit_6.cd <- update(Pop_Fit_6, data = dat %>% filter(!(class %in% c(87, 33, 90))))
table_fun(Pop_Fit_6.cd) %>%
```

	Fit 7 Outliers Removed	
Term	b	CI
Fixed		
Intercept	1.91	[1.72, 2.05]
extrav	0.46	[0.43, 0.51]
Mean E GMC	-2.16	[-2.67, -1.31]
sexFemale	1.26	[1.22, 1.32]
extrav:Mean E GMC	0.21	[0.13, 0.27]
Mean E GMC:sexFemale	0.15	[0.04, 0.32]
Random		
au 00	1.54	[1.02, 2.03]
Fixed		
au 11	0.02	[0.01, 0.04]
R^2m	0.43	•
R^2c	0.69	

The interaction between Level 1 and Level 2 extraversion is now significant, suggesting that in those classes with higher mean extraversion, higher extraversion is even more predictive of popularity than in less extraverted classrooms.