Online learning in repeated matrix games

Yoav Freund

February 24, 2006

Outline

Repeated Matrix Games

The basic algorithm

The basic analysis

Proof of minmax theorem

Zero sum games in matrix form

- Game between two players.
- Defined by n × m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- ▶ Row player gains $M(i,j) \in [0,1]$
- ▶ Column player looses M(i,j)
- Game repeated many times.

Pure vs. mixed strategies

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.
- Row player chooses dist. over rows P
- Column player chooses dist. over columns Q
- ► Row player gains M(P, Q).
- ► Column player looses M(P, Q).

Mixed strategies in matrix notation

$$(A \times B)_{12} = \sum_{1}^{4} a_{1r}b_{r2} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42}$$

 \mathbf{Q} is a column vector. \mathbf{P}^T is a row vector.

$$\mathbf{M}(\mathbf{P}, \mathbf{Q}) = \mathbf{P}^T \mathbf{M} \mathbf{Q} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{P}(i) \mathbf{M}(i, j) \mathbf{Q}(j)$$

The basic algorithm

Choose an initial distribution P₁

$$\mathbf{P}_{t+1}(i) = \mathbf{P}_t(i) \frac{e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}}{Z_t}$$

- Where $Z_t = \sum_{i=1}^n \mathbf{P}_t(i)e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}$
- $\eta > 0$ is the learning rate.

Main Theorem

- For any game matrix M.
- ▶ Any sequence of mixed strat. Q₁,..., Q_T
- The sequence P₁,..., P_T produced by basic alg using η > 0 satisfies

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \min_{\mathbf{P}} \left[\eta \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + \text{RE}\left(\mathbf{P} \parallel \mathbf{P}_{1}\right)\right]$$

Corollary

- ▶ Setting $\eta = \ln\left(1 + \sqrt{\frac{2 \ln n}{T}}\right)$
- ▶ the average per-trial loss is

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_t) + \Delta_{T,n}$$

Where

$$\Delta_{T,n} = \sqrt{\frac{2 \ln n}{T}} + \frac{\ln n}{T} = O\left(\sqrt{\frac{\ln n}{T}}\right).$$

Main Lemma

On any iteration t

For any mixed strategy P

$$\mathrm{RE}\left(\tilde{\boldsymbol{\mathsf{P}}} \ \| \ \boldsymbol{\mathsf{P}}_{t+1}\right) - \mathrm{RE}\left(\tilde{\boldsymbol{\mathsf{P}}} \ \| \ \boldsymbol{\mathsf{P}}_{t}\right) \leq \eta \boldsymbol{\mathsf{M}}(\tilde{\boldsymbol{\mathsf{P}}}, \boldsymbol{\mathsf{Q}}_{t}) - (1 - e^{-\eta}) \boldsymbol{\mathsf{M}}(\boldsymbol{\mathsf{P}}_{t}, \boldsymbol{\mathsf{Q}}_{t})$$

Visual intuition

$$\operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - \operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right) \leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) - (1 - e^{-\eta})\mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$$

Proof of Lemma (1)

$$RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right)$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t+1}(i)} - \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t}(i)}$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\mathbf{P}_{t}(i)}{\mathbf{P}_{t+1}(i)}$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{Z_{t}}{e^{\eta \mathbf{M}(i, \mathbf{Q}_{t})}}$$

Proof of Lemma (2)

$$= \eta \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \mathbf{M}(i, \mathbf{Q}_{t}) + \ln Z_{t}$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left[\sum_{i=1}^{n} \mathbf{P}_{t}(i) \left(1 - (1 - e^{-\eta}) \mathbf{M}(i, \mathbf{Q}_{t}) \right) \right]$$

$$= \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left(1 - (1 - e^{-\eta}) \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \right)$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + (1 - e^{-\eta}) \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$$

The minmax Theorem

John von Neumann, 1928.

$$\min_{\textbf{P}} \max_{\textbf{Q}} \textbf{M}(\textbf{P},\textbf{Q}) \leq \max_{\textbf{Q}} \min_{\textbf{P}} \textbf{M}(\textbf{P},\textbf{Q})$$

In words: for mixed strategies, choosing second gives no advantage.

Proving minmax Theorem using online learning (1)

Row player chooses \mathbf{P}_t using learning alg. Column player chooses \mathbf{Q}_t after row player so that $\mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q})$ Let $\overline{\mathbf{P}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_t$ and $\overline{\mathbf{Q}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{Q}_t$

$$\begin{split} \min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} & \leq \max_{\mathbf{Q}} \overline{\mathbf{P}}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ & = \max_{\mathbf{Q}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \quad \text{by definition of } \overline{\mathbf{P}} \\ & \leq \frac{1}{T} \sum_{t=1}^{T} \max_{\mathbf{Q}} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \end{split}$$

Proving minmax Theorem using online learning (2)

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{T} \mathbf{M} \mathbf{Q}_{t}$$
 by definition of \mathbf{Q}_{t}

$$\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{T} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T,n}$$
 by the Corollary
$$= \min_{\mathbf{P}} \mathbf{P}^{T} \mathbf{M} \overline{\mathbf{Q}} + \Delta_{T,n}$$
 by definition of $\overline{\mathbf{Q}}$

$$\leq \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{P}^{T} \mathbf{M} \mathbf{Q} + \Delta_{T,n}.$$

but $\Delta_{T,n}$ can be set arbitrarily small.

Minmax is weaker than diminishing regret

- ► The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.
- If all sides use learning, then game will converge to minmax equilibrium.
- If opponent is not optimally adversarial (limited by knowledge, computationa power...) then learning gives better performance than min-max.
- Is it realistic to assume that markets are at equilibrium?
- If game is not zero sum (allows incentives to collaborate) and all players use learning then game converges to correlated equilibrium.