

Figura 1.1.22 La recta l, dada en forma param étrica por $\mathbf{l}(t) = \mathbf{a} + t(\mathbf{b} - \mathbf{a}) = (1 - t)\mathbf{a} + t\mathbf{b}$, pasa por los extremos de \mathbf{a} y \mathbf{b} .

por dicho punto en la dirección de \mathbf{v} . Por ejemplo, el extremo de $\mathbf{a} + \mathbf{v}$ está en la recta $\mathbf{l}(t) = \mathbf{a} + t\mathbf{v}$ y, por tanto, $\mathbf{l}_1(t) = (\mathbf{a} + \mathbf{v}) + t\mathbf{v}$ representa la misma recta. Es posible obtener otras ecuaciones observando que si $\alpha \neq 0$, el vector $\alpha \mathbf{v}$ tiene el mismo sentido (o el opuesto) que \mathbf{v} . Así, $\mathbf{l}_2(t) = \mathbf{a} + t\alpha \mathbf{v}$ es otra ecuación de la recta $\mathbf{l}(t) = \mathbf{a} + t\mathbf{v}$.

Por ejemplo, $\mathbf{l}(t) = (1,0,0) + (t,t,0)$ y $\mathbf{l}_1(s) = (0,-1,0) + (s,s,0)$ representan la misma recta ya que ambas tienen la misma dirección $\mathbf{i} + \mathbf{j}$ y pasan por el punto (1,0,0); l pasa por el punto (1,0,0) en t=0 y \mathbf{l}_1 pasa por el punto (1,0,0) en s=1.

Por tanto, la ecuación de una recta no está determinada de manera única. A pesar de ello, se suele utilizar el término "la ecuación de una recta". Teniendo esto en cuenta, vamos a deducir *la ecuación de una recta que pasa por los extremos de dos vectores dados*, \mathbf{a} \mathbf{y} \mathbf{b} . Dado que el vector $\mathbf{b} - \mathbf{a}$ es paralelo al segmento dirigido de \mathbf{a} hacia \mathbf{b} , calculamos la ecuación paramétrica de la recta que pasa por \mathbf{a} en el sentido de $\mathbf{b} - \mathbf{a}$ (Figura 1.1.22). Luego,

$$\mathbf{l}(t) = \mathbf{a} + t(\mathbf{b} - \mathbf{a});$$
 es decir, $\mathbf{l}(t) = (1 - t)\mathbf{a} + t\mathbf{b}.$

A medida que t aumenta de 0 a 1, $t(\mathbf{b} - \mathbf{a})$ comienza siendo el vector cero y su longitud va aumentando (manteniendo la dirección de $\mathbf{b} - \mathbf{a}$) hasta que en t = 1 es el vector $\mathbf{b} - \mathbf{a}$. Por tanto, para $\mathbf{l}(t) = \mathbf{a} + t(\mathbf{b} - \mathbf{a})$, según t crece de 0 a 1, el vector $\mathbf{l}(t)$ se mueve desde la punta de \mathbf{a} hasta la punta de \mathbf{b} a lo largo del segmento dirigido que va de \mathbf{a} hacia \mathbf{b} .

Si P = (x_1, y_1, z_1) es la punta del vector **a** y Q = (x_2, y_2, z_2) es la punta de **b**, entonces $\mathbf{v} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$, y por tanto las ecuaciones de la recta son

$$x = x_1 + (x_2 - x_1)t,$$

$$y = y_1 + (y_2 - y_1)t,$$

$$z = z_1 + (z_2 - z_1)t.$$

Eliminando t, podemos escribir estas ecuaciones como sigue

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}.$$