003

004

006

007

800

009

011

012

013

014

015

016

017

018

023

024

025

026

027

029

030

031

036

037

039

040

041

042

FinRGAgents: A Multi-Agent Collaboration Framework For Multi-modal Chinese Financial Research Report Generation

tex

Anonymous ACL submission

text Abstract

This paper introduces the Multi-Modal Chinese Financial Research Report Generation (MM-FinRG) task, which focuses on generating timely, visually enriched multimodal financial reports by synthesizing insights from diverse data sources. Distinct from conventional longform content generation tasks (e.g., summarization, article generation), MM-FinRG prioritizes four critical dimensions: factual accuracy, forward-looking insights, logical consis tency, and visual-textual coherence. To address these challenges, we propose FinRGAgents, a novel multi-agent collaboration framework that streamlines financial report generation through a structured three-stage workflow inspired by professional investment research practices: information summarization, plan generation, and report writing. Furthermore, we contribute the FinRG dataset, the first large-scale multimodal benchmark for Chinese financial reports Moreover, we design four metrics to rigorously assess report quality across the four key dimensions. Experimental results demonstrate that FinRGAgents achieves state-of-the-art performance, significantly outperforming existing methods on all evaluation criteria. The code, dataset, and evaluation toolkit will be publicly released at: https://github.com/xxx.

1 Introduction

Multimodal financial research report generation (MM-FinRG) is a complex task that requires close collaboration among team members, each possessing distinct professional skills (Bennett and Gadlin, 2012). However, these reports are typically produced manually by a few seasoned experts. This process not only consumes significant human resources but also incurs substantial intellectual costs. Such reports aim to provide investors with strategic guidance, risk assessment, and revenue forecasts, all crucial for making informed investment decisions (Baker and Nofsinger, 2010). Given the inherent complexity in the creation of financial research

··· #0 (57··)

Figure 1: Comparison between our MM-FinRG task (left) and the traditional task (right). Our task can process multi-source data and generate multimodal document-level financial research reports.

text

reports, there is a growing interest in automating the process of generating these reports.

044

047

049

052

057

060

061

062

063

064

065

066

067

068

The existing approach regards financial report generation as a simple summarization task, which generates financial abstract from a single data source (e.g., news). For example, Wang et al. (2024) employs a CVAE with knowledge distillation to generate financial summarization from concise news. This methodology overlooks the rich variety of information sources available in financial markets. In the long-form text generation domain, STORM (Shao et al., 2024) constructs longform articles through retrieval-enhanced multiperspective questioning for outline generation, followed by parallel section writing. Simultaneously, LongWriter (Bai et al., 2024) develops a long-form text agent based on GPT-40 to generate the longform dataset, with subsequent fine-tuning small LLMs to enhance coherent long-form text production capabilities, leaving visually enriched report generation unexplored.

However, these methods can not automatically create visually enriched and structurally clear financial research reports by simply applying them to MM-FinRG due to the following challenges (see Figure 1). First (C1), experts always collect and sum-

071

073 074

076

078

079

080

083

085

086

087

088

กดก

092

094 095

096

097

098

100

101

103

104

105

107

109

110

111

112

113

114

115

116

117

118

119

120

marize articles from various data sources to generate high-quality financial research reports. For instance, they will read the stock, news, and financial data and then capture the important information from these articles. Second (C2), the core views and their supporting evidence are important for financial research reports. These views are grounded in logical reasoning assumptions and reinforced by relevant visual charts to enhance the persuasiveness of the viewpoints. Third (C3), the MM-FinRG task generates the reports with multi-modal information text and visual charts while preserving semantic consistency across modalities. Fourth (C4), the MM-FinRG task faces a scarcity of relevant datasets, which hampers progress in this field. Most of the existing datasets focus on long-form text generation or summarization. These challenges highlight the urgent need for advanced methods in automated multimodal financial research report generation.

Motivated by the expert-like potential of autonomous agents, we propose a multi-agent collaborative system for MM-FinRG, named FinRGAgents. Unlike other textual plan-write paradigms (Shao et al., 2024) that generate an intermediate outline first to guide the final output, FinRGAgents can generate authentic and content-rich financial research reports based on real-time information. It operates through three core phases: information summarization (for C1) that reads multiple dataset sources, plan generation (for C2) that summarizes core views and outlines, and report writing (for C3) that generates the multi-modal reports. Additionally, during the plan generation phase, we incorporate the argument-counterargument method to enhance the forward-looking nature of the reports. This approach generates core viewpoints through debate based on external knowledge, which are then used to create the article outline. This ensures the complex reasoning structures and dialectical nature required for financial research reports.

For C4, we built and release a large-scale dataset over 25 domains for MM-FinRG, namely FinRG, to address data scarcity. Moreover, we propose a multidimensional evaluation framework leveraging the LLM-as-a-judge paradigm (Qian et al., 2024; He et al., 2024) to evaluate generated financial research reports. Current metrics such as PPL and ROUGE (Lin, 2004) fail to capture essential aspects of report quality. The framework assesses four dimensions: Factuality, Forward-looking, Logic, and Vision, providing both quantitative scores and qualitative feedback. Human evalua-

text

text

tion validated the framework's reliability. Experiments show our method achieves a **3.44** average score across dimensions, demonstrating robust performance in diverse domains.

121

122

123

124

125

127

129

130

131

132

133

134

135

137

138

139

140

141

143

144

145

146

147

148

140

150

151

152

153

154

155

156

157

159

160

161

162

163

Our contributions are summarized as follows:

We introduce the MM-FinRG task, a novel challenge in the field of finance that addresses multimodal report generation. We propose the FinRGAgents, which is the first capable of generating multi-modal financial research reports that include forward-looking views.

 We collect the high-quality FinRG datasets and design a novel metric framework; it is the first comprehensive evaluation framework that assesses multimodal financial reports.

 Using both automatic and human evaluations, we demonstrate that our framework can generate more visually enriched and viewpoints multi-model financial research reports and outperform several baselines.

2 Related Works

2.1 Report Generation

Extensive research has been conducted on report generation, but the methods vary across different fields. In the medical field (Chen et al., 2021; Wang et al., 2023), multi-modal models are often used to automatically generate a free-text description of a medical image (e.g., a chest X-ray), focusing more on the details within the medical images. In the fashion industry, some works (Ding et al., 2024) utilize GPT4-V to understand the types of clothing and attributes in walkcat images, and perform data analysis to ultimately generate reports for the fashion domain. In the financial sector, previous work (Yan, 2022; Wang et al., 2024) proposes a novel approach using a CVAE with KD to generate financial reports from concise news. While many studies are centered on generating narrative or descriptive texts, our research focuses on producing multimodal financial argumentative text. This approach places a greater emphasis on visually rich content and core viewpoints.

2.2 LLM As a Judge

Using large language models as an automatic evaluation metric is explored in some previous work, such as G-Eval (Liu et al., 2023) and LLM Evaluation (Chiang and Lee, 2023). The recent investiga-

· talwe 40.00) ·

text

169

170

171

172

173

text

178

179

180

181

182

184

186

187

189

190

191

192

193

194 195

196

97

··line #1 Dataset	Task	InputDataType	OuputDataType	Avg.P	Avg.R	Domain
MIMIC-CXR (Johnson et al., 2019)	MedicalRG	Image	Text	_	102	1
News-Reports (Wang et al., 2024)	LTG	Text	Text	30	200	1
ArgEssay (Bao et al., 2022)	AEG	Text	Text	39	342	1
୍ୟା ୍ୟୋ N-Editorial (He et al., 2024)	AEG	Text	Text	171	1063	1
-line #3 FinRG(ours)	MM-FinRG	Multimodal	Multimodal	2054	5723	25

Table 1: Comparison of FinRG with existing report generation datasets. Avg.P/Avg.R indicates the average length of prompts/reports. AEG and LTG denote Argument Essay Generation and Long-form Text Generation, respectively.

table #2 (1.00)	line #āline #6line #7line #8	
··line #9 Industry	-News#1Reports -Stock#12mTimeSpan	٦
··line #fleAnet (互联网)	\$in\$9#4151@2#16-1i800#1202@.041-82024.	01
·· <mark>ˈfr͡anspart</mark> ation (交通运输)	\$i,f198# <mark>2101@7#2 </mark> 1i,492# <mark>22003.042-3</mark> 2024.	04
··line # <mark>ʔ/a</mark> nce (金融)	-4i,n72# <mark>2151,62#26</mark> -1i,462# <mark>22003.042-8</mark> 2024.	04
··lineo#faces (公用事业)	-2i,ne2# <mark>3101@8#3 -1i,ne1#<mark>32023</mark>.043-32024.</mark>	06
··linec#istruction (建筑)	\$i,642# <mark>315</mark> 198#3 <mark>6-1i,297#<mark>32023</mark>-023-82024.</mark>	07
Politicanttl Beverage (食品饮料)	3i,5021 4101.6 5#4 -1i,626 420 23 .014-32024.	07
<mark>clipure#and</mark> Media (文化传媒)	3,415 1,38 1,467 2023.02 - 2024.	08

Table 2: Partial basic information for the FinRG dataset is provided, with full descriptions of 25 domains contained in the Appendix A Table 6.

tion (Zheng et al., 2023) shows that such LLM-asa-Judge methods perform differently on different tasks. Previous works focus on general language generation tasks, and to the best of our knowledge, none of these works targets multimodal financial research report evaluation, which requires specific designs to make the results practically meaningful.

2.3 Multi-agent Collaborate

The strong role-playing abilities of LLMs are largely attributed to foundational advances in the technology, as noted in the references (Zhou et al., 2023; Yu et al., 2024). (Hu et al., 2024) can generate multi roles based on topics, integrating various perspectives to produce argumentative text. ChatDev (Qian et al., 2024) proposes a multi-agent framework that introduces the chat chain method to divide each development phase into smaller subtasks, enhancing the robustness of software development. (Ni and Buehler, 2024) constructs a larger group of agents with an enhanced division of labor among planning, formulating, coding, executing, and critiquing the process and results, addressing elasticity problems in operations. Moreover, (Li et al., 2023b; Tsao, 2023) employ a multi-agent system to improve trading performance, while (Xing, 2024; Wan et al., 2024) gain valuable insights from its application to financial sentiment analysis and textual information processing. Motivated by recent advances in automated decision-making with language agent based societies, this paper introtext

duces FinRGAgents, a novel LLM-based multiagent collaborative framework for end-to-end multimodal financial research reports generation.

3 FinRG Dataset 201

203

204

205

207

208

209

21

213

214

215

216

21

219

22

222

224

22!

226

227

229

230

231

232

233

3.1 Dataset Processing
Our dataset is sourced fro

Our dataset is sourced from Eastmoney ¹, a platform where all financial disclosures are publicly accessible and compliant with open-data regulations. This online community, founded by a professional financial firm, is designed to help investors and investment institutions quickly understand the market trends and business conditions of listed companies. There are 25 industries and 5,128 listed companies in the A-share market; however, not every company possesses extensive financial data. Therefore, we selected the top 60 companies by market capitalization in each industry for analysis and performed several preprocessing steps, including:

text

- News Data Collection: Collect news data related to the company from the EastMoney information page ² for the past month, including news titles and main content. Implement preprocessing steps to filter out articles containing fewer than 20 Chinese characters and subsequently perform deduplication based on textual similarity.
- Stock Data Retrieval: Retrieve detailed stock data for companies based on their names and stock codes, including opening price, highest price, lowest price, closing price, and trading volume, to analyze stock price fluctuations over the past months.
- Annual Report Processing: Obtain the latest annual report PDF document. To facilitate understanding by large models, use the Doc2x ³ parsing tool to convert the annual report into an md document, preserving table structures and organizing the content by sections.

¹https://www.eastmoney.com/

²https://so.eastmoney.com/news/s?keyword ³https://doc2x.noedgeai.com/ **...₩**₩¢₦₹9**₺**0.\

text

235 236

237

text

240

241

242

243

244

245

246

247

249

253

254

255

261

264

269

270

271

272

Figure 2: Overview of our framework. Upon receiving a company name, these agents conduct multi-source data organization, then form core insights through deliberative processes and develop a detailed outline plan. Following his outline, they execute a series of subtasks to produce a multimodal financial research report.

 Financial Metrics Calculation: Calculate key financial metrics such as the price-to-earnings ratio and price-to-book ratio, using financial formulas to reflect the company's development indicators.

3.2 Data Statistics

The data presented in Table 2 from the Fin2RG dataset illustrates the diversity and volume of multimodal resources across various industries. The Internet and Finance sectors show particularly high activity with substantial news articles and stock data, reflecting the dynamic nature of these industries. Conversely, the Utilities and Construction sectors demonstrate lower figures in financial reports, suggesting less fluctuation and a more stable operational context. Utilizing this data, the model generates multimodal documents, which impose greater demands on the model's capabilities.

3.3 Dataset Comparison

As shown in Table 1, our Fin2RG dataset substantially differs from existing benchmarks in three critical dimensions. First, while prior datasets (e.g., MIMIC-CXR) focus on unimodal inputs (images or text), Fin2RG introduces multimodal financial data integration, requiring joint analysis of news, stock, and financial metrics for report generation. Second, our dataset features significantly richer contextual interactions, with average prompt/report lengths (2,054/5,723 tokens) exceeding existing benchmarks by a factor of 5 to 54, better reflecting real-world financial analysis complexity. Third, FinRG covers 25 financial domains (vs. single-domain baselines), enabling cross-domain reasoning about market risks, and operational performance. This multimodal, long-context, and multi-domain design addresses critical gaps in current report generation research, particularly for financial decision-making scenarios requiring evidence fusion from heterogeneous data sources.

ext

FinRGAgents

We introduce FinRGAgents (Figure 2), a collaborative multi-agent framework based on AutoGen (Wu et al., 2023) for generating multi-model financial research reports. Inspired by real-world organizational structures, FinRGAgents integrates multiple "report agents" with distinct societal roles (e.g., chief analysts, senior analysts, and research analysts) that collaborate during three core phases of report generation—information summarization, plan generation, and report writing. Each agent having a specific name, role, objective, constraints, along with predefined context, skills, and tools tailored to its functions. Further details can be found in the appendix B.

27

27

27

28

283

284

288

289

290

29

292

293

294

295

296

298

300

301

302

303

304

305

306

307

308

text

4.1 Problem Formulation

We propose MM-FinRG (Multi-Modal Chinese Financial Research Report Generation), a novel task that requires synthesizing heterogeneous financial data into coherent analytical reports. Formally, given a company profile $\mathcal{I} = \{c, n, s, a, f\}$, where c: company name, n: Market news (latest 30-day articles), s: stock indicators (latest 120-trading-day time series data), a: annual report (PDF document with structured tables and unstructured text), f: financial metrics (12-month structured data: P/E ratio, etc.) The system generate a multimodal report $\mathcal R$ containing: narrative analysis interpreting market dynamics, visualizations, investment recommendations with risk assessments.

ext

4.2 Stage 1: Information Summarization

Based on the type of data source, different agents handle the processing: Stock Analyst Agent utilize technical indicators such as Moving Averages (MA) and MACD to analyze short-term price patterns and forecast near-term market movements.

News Analyst Agent summarize and analyze news

text

text

data, identifying emerging economic conditions or corporate developments that could trigger abrupt market shifts. Business Analyst Agent analyzes annual reports to summarize business highlights, revenue performance, cash flow status, and risk assessments. FinData Analyst Agent provides foundational insights through financial statement analysis, assessing operational metrics and intrinsic value to determine long-term investment viability.

$$I\bar{nfo} = \langle M, F, B, I \rangle = \begin{cases} M = \mathcal{A}_s(s) \\ F = \mathcal{A}_n(n) \\ B = \mathcal{A}_b(a) \\ I = \mathcal{A}_f(f) \end{cases}$$
 (1)

where A_s denotes the Stock Analyst Agent (similarly for others), and Info represents the integrated multimodal market information.

Analyst Manager Agent cross-references heterogeneous information streams to mitigate intersource conflicts and contradictions. The information Info is then passed to the second stage for plan generation.

$$Info = \mathcal{A}_s(\bar{Info}) \tag{2}$$

4.3 Stage 2: Plan Generation

Based on the information from the first phase, Chief Analyst Agents, comprising agents who adopt both pro and con perspectives, engage in multi-round, multi-angle debates to develop the central thesis and sub-arguments for the research report, as detailed in Section 4.5. Subsequently, Senior Analyst Agent generates research report outlines based on the central thesis and sub-arguments, using structured language output to ensure the robustness of the outline. The outline includes second-level headings, third-level headings, and necessary visual schemas. The final report is then drafted in the third stage based on the outline.

$$\bar{V}^m = \mathcal{A}_c(Info), \ O = \mathcal{A}_{se}(\bar{V}^m)$$
 (3)

where \bar{V}^m denotes the core view and $O = \{o_1, o_2, ..., o_n\}$ represents the report outline, with n indicating the total number of sections.

4.4 Stage 3: Multi-modal Report Writing

Inspired by the concept of residuals, the Research Analyst Agent retrieves knowledge from the first-phase dataset using predefined outlines. Leveraging Retrieval Augmented Generation (RAG) technology, it generates structured content to

text

prevent information loss during transfer. The Quality Inspector Agent then conducts compliance checks and quality assessments, ensuring adherence to privacy standards and sensitivity guidelines. If requirements are unmet, the Research Analyst Agent must revise the content.

text $ilde{r_i} = \mathcal{A}_r(o_i, Info)_{\circlearrowleft}, \ r_i = \mathcal{A}_q(ilde{r})$ (4)

tex

where \tilde{r}_i denotes the *i*-th unreviewed report content and r_i represents the corresponding reviewed version after quality control processing.

To maintain visual-textual consistency, the agent automatically identifies sections requiring graphical representation and constructs corresponding visual schemas. visual schemas define equation 5:

Schema $\triangleq \begin{cases} \mathbf{x}_\mathtt{axis} \in \mathbb{R}^n & \text{s.t. } x_1 \leq \dots \leq x_n \\ \mathbf{y}_\mathtt{axis} \in \mathbb{R}^n \end{cases}$ (5)

 $ext{text}$ chart_type $\in \{ ext{line, pie, bar}\}$ where \mathbb{R}^n denotes the real numbers, y_axis repre-

sents the measured quantitative values.

The agent subsequently invokes integrated plot

The agent subsequently invokes integrated plotting tools through Python code execution to generate precise visualizations.

 $C_i = A_r(Tool, \mathsf{Schema}_i)$ (6) 373

text

where C_i represents the *i*-th visual charts. All outputs are formatted in Markdown syntax to ensure cross-platform compatibility and facilitate flexible document format conversions.

text

 $\mathcal{R} = \text{Markdown}(r_1, \mathcal{C}_1, ..., r_i, ..., r_n, \mathcal{C}_n)$ (7) 37

4.5 Core View Generation

Stakeholder theory in business (Freeman, 2010; Rohman, 1965) posits that where diverse stakeholders prioritize varying facets of a company, individuals with distinct perspectives may focus on different aspects when researching the same topic and uncover multifaceted information. Therefore, by emulating stakeholder theory, we utilize diverse viewpoints to distill core perspectives and determine research objectives from multiple angles.

We have developed several chief analyst agents, each offering unique perspectives by Freeman's theory (Freeman, 2011). These roles are defined as the thesis proponent agent, the counterargument proponent agent, and the rejoinder proponent agent. Initially, the thesis proponent will formulate a principal view, followed by several sup-

text

text

text

text

$$\mathcal{A}_{tp}: \{P, Info\} \longmapsto v^m, : \{P, Info, v^m\} \longmapsto (v_1, v_2, \dots, v_n)$$
 (8)

where P and Info represent the writing prompt and information summarization knowledge, respectively; The symbol \longmapsto indicates the action of prompting the Agent with a specific prompt to generate desired responses, while v^m and v_n denote the draft of the major view and n supporting views.

Counterargument Subsequently, the counterargument proponent agent generates an overriding rebuttal to challenge v_n . Then, conditioned on the rebuttal, agents are required to optimize v_n :

$$\mathcal{A}_{cp} : \{v_i\} \longmapsto r_i,
: \{v_i, r_i\} \longmapsto \bar{v}_i$$
(9)

where r_i is the generated overriding rebuttal and \bar{v}_i is the refined view. The overriding rebuttal here functions as feedback, countering the input view and pointing out its inherent weaknesses.

Rejoinder In financial reporting, a refined view addresses this weakness, yet gaps remain, potentially involving the questioning of the validity of the view assumption. In addressing such issues, the Rejoinder Proponent Agent first generates an undercutting rebuttal to optimize \bar{v}_n :

$$\mathcal{A}_{rp}: \{\bar{v}_i\} \longmapsto r_i^u, : \{\bar{v}_i, r_i^u\} \longmapsto \tilde{v}_i$$
 (10)

where r_i^u and \tilde{v}_i denote undercutting rebuttal and refine views respectively.

Major View Since each supporting views is revised, the draft major view should also be modified accordingly. Thus, we implement a bottom-to-top update of the major view with refined views \tilde{v}_i .

$$\mathcal{A}_{tp}: \{\tilde{v}_1, \tilde{v}_1, \dots, \tilde{v}_n\} \longmapsto \bar{V}^m$$
 (11)

5 Experiments

5.1 Baselines

We evaluate MM-FinRG in a zero-shot setting, where FinRGAgents generate a multi-model Chinese financial research report based multimodal market information, without any prior demonstrations. Our method is assessed using the FinRG dataset, which comprises research reports for 1,500 companies. Evaluations are conducted both automatically and through human assessment.

text

To verify the effectiveness of our framework, we compare it with the following zero-shot baselines that adopt different generation strategies by prompting LLMs and Multi-Agent Systems: (1) E2E LLM: An end-to-end generation that directly produces the target financial report. (2) CoT LLM: Chain-of-Thought generation (Wei et al., 2022) that initially generates a brief plan as an intermediate guideline and subsequently produces a financial report in the same response. (3) Dual-Agent System: This system involves two agents; one is responsible for generating an outline, while the other produces the financial report. (4) FinRobot (Yang et al., 2024): an open-source multi-agent platform for financial applications, with this paper focusing solely on its capability to generate financial research reports. All models mentioned above are based on GPT-40, with the temperature set to 0.50. text

5.2 Evaluation Metrics

Automatic Evaluation We adopt the following automatic metrics to evaluate the performance on the FinRG Datasets: (1) BLEU (B-n): We use n = 2 to evaluate n-gram overlap between generated texts and human-written text. (2) Perplexity (PPL): Smaller perplexity scores generally indicate better fluency. We do not count the probability values at the positions where the sentence or discourse token is the golden truth. (3) Distinct-4 (D-4) (Li et al., 2015): We adopt distinct-4, the ratio of distinct 4-grams to all the generated 4-grams, to measure the generation diversity.

LLM Evaluation Evaluating multimodal financial reports remains challenging, particularly in holistic assessment. Given the scarcity of benchmark resources, traditional text generation metrics (Sellam et al., 2020) are insufficient for comprehensive multimodal financial report evaluation. As an initial strategy, we apply four fundamental and objective dimensions that reflect different aspects of financial report quality to evaluate the agentgenerated reports. We then integrate these dimensions to facilitate a more holistic evaluation. The detailed scoring criteria provided in Appendix E.

ext

- Factuality measures the accuracy and reliability of information presented in a text. Factuality scores range from 1.00 to 5.00 and assess how well factual statements are supported by evidence and credible sources.
- Forward-looking evaluates the depth and quality of predictive analysis in a report, quantified by

::Q#10e(12:0#0

image:5, text:4, original_line:11] Method Paradiagm		Automatic Evaluation		LLM Evaluation				Т		
17204100	T uruorugini	BLUE-2	PPL	Distinct-4	Factuality	Forward-looking	Logical	Vision	Avg	3
E2E	Ċ	0.234	340.42	0.784	2.94	3.04	3.20	_	3.00	6
СоТ	Ċ	0.235	318.87	0.827	<u>3.13</u>	2.96	3.35	_	3.13	5
Dual-Agent	ĊĊ	0.312	283.23	0.842	3.14	3.02	3.41	_	3.19	9
FinRobot	٠	0.341	<u>273.12</u>	0.861	2.71	2.63	2.89	2.79	2.75	5
FinRGAgents	ففف	0.352	216.46	0.872	2.88	3.60	3.65	3.62	3,44	4
				Ablation						
w/o Information		0.285	296.21	0.734	2.43	3.55	3.46	3.45	3.22	2
w/o Core View		0.278	305.47	0.741	2.64	3.46	3.38	3.52	3.25	5
w/o Visual Schema		0.282	294.24	0.715	2.52	3.32	3.46	3.26	3.14	4

Fable **3n@oct**all performance of the LLM-powage of the financial report generation methods, encompassing both single-agent (), dual-agent () and multi-agent () paradigms. The top scores are in bold, with the second highest underlined. Avg is the average score of Factuality, Forword-looking, Logical and Vision.

Figure 3: Evaluation results for FinRGAgents across 7 domains are presented using four dimensions: Factuality, Forward-looking, Logical and Vision. Details on the performance of the 25 domains are available in Appendix D Figure 7.

a score range from 1.00 to 5.00. A higher score indicates greater reliability and actionability of future projections.

- Logical evaluates the coherence and organization of a report's arguments and conclusions, quantified on a scale of 1.00 to 5.00. A higher score reflects a more structured, reasoned, and persuasive analysis, with robust support for conclusions and a clear data-to-insights progression.
- Vision evaluates the alignment between the text and the chart presentation in a report, quantified on a scale from 1.00 to 5.00. A higher score indicates a better connection and consistency between the charts and the text.

Human Evaluation For a more comprehensive analysis, we conduct a human evaluation. We hire three well-educated financal master students to score the output quality following the three aspects in the automatic evaluation.

5.3 Main Results

text

We present the evaluation results of the FinRG dataset in Table 3. Our findings are as follows:

text

FinRGAgents excel in both automated and LLM-based evaluations. First, it significant improvement over E2E, CoT, and Dual-Agent frameworks demonstrates that complex tasks require multi-step solutions rather than single-step approaches. By decomposing intricate problems into manageable subtasks, the system enhances task completion effectiveness by 9.82% compared to baseline models. Compared to FinRobot, FinRGAgents elevate the LLM evaluation score by 23.4% (from 2.75 to 3.38). This progress is largely attributed to the agents employing an argument-counterargument method, which continuously refines the core view through debate, rather than merely responding based on predefined instructions.

51!

Our further analysis reveals that although FinRGAgents perform exceptionally in terms of forward-looking and logical aspects, they are slightly inferior to Dual-Agent on the factuality metric. This phenomenon may stem from the unique collaborative challenges of the multi-agent paradigm: First, the extended information transmission chain can lead to knowledge decay, where critical details may be lost through multiple processing stages by roles such as News Analyst Agent and Financial Data Analyst Agent. Second, the division of expertise can reduce the accuracy of factual

tale Meson (#1000) .

text

Con€lation	Factuality	Foward-looking	Logical	Vision	A	νg
Pearson	0.64 0.68	0.73 0.84	0.91 0.89	0.74 0.79	0.	75 80
exi	0.00	0.01	0.07	0.17	٥.	Ë

Table 5: The correlation scores between LLM ratings and human ratings under different dimensions.

alignment due to perspective differences, such as potential implicit biases between macroeconomic analysts and industry researchers in data interpretation standards. Furthermore, error propagation in sequential workflows where preprocessing inaccuracies compound downstream. Moreover, the detailed performance of FinRGAgents across 25 domains, as illustrated in Figure 3, underscores the robustness of our approach.

5.4 Human Agreement Evaluation

Recent research highlights findings regarding the evaluation capabilities of large language models (LLMs) for complex tasks. (Tahmid Rahman Laskar et al., 2024) report that LLMs may not effectively gauge complex tasks, prompting investigation into user preferences in practical scenarios. Building on the experimental setup described by (Li et al., 2023a), we assess agentgenerated solutions through paired comparisons both human participants and GPT-4 model. The results, in Table 4, reveal that FinRGAgents notably outperforms other baseline models in terms of average win rates across evaluations by both GPT-4 and humans. Furthermore, Table 5 illustrates a promising correlation in ratings between humans and LLMs, with an average Pearson correlation of 0.75 and Spearman correlation of 0.80. This human-LLM correlation not only surpasses other evaluation methods (Zheng et al., 2025) but also suggests that the metrics we developed closely align with human preferences. This reinforces their efficacy and relevance in practical applications.

5.5 Ablation Study

To better understand the impact of each component in our proposed method, we conducted ablation studies using three different configurations. Specifically, we evaluated the method by: (1) providing raw information to the Chief Analyst $(w/o\ Information)$, (2) conting the argument-counterargument method $(w/o\ Core\ View)$, and (3) removing the visual structure $(w/o\ Visual\ Schema)$. Table 3 shows their average performance on the FinRG dataset. Removing Information reduces performance, confirming the importance of summarization. Omitting

Figure 4: Distribution of RST tree depth of generation financial reports.

text

Core View decreases Forward-looking and Logical scores, indicating the argument-counterargument method improves report quality. Removing Visual Schema lowers the visual quality score from 3.628 to 3.26, suggesting pre-generated visual structures enhance text-chart alignment.

text

5.6 Analysis on Report Structure

The structure of discourse provides insights into the advanced organization of texts, making the depth of Rhetorical Structure Theory (RST) trees a critical indicator of text quality. Therefore, we parse financial reports into RST trees and analyze the depth distribution of these trees to assess quality, as shown in Figure 4. FinRGAgents typically generate financial reports with deeper structural layers. Moreover, it exhibits a broader depth distribution, covering a wider range than methods like E2E, CoT, and FinRobot. This suggests that our approach effectively contributes to the creation of more diversified and complex structures.

text

Conclusion

We have introduced FinRGAgents, an innovative multi-agent collaboration framework for multi-modal financial reports that utilizes multiple LLM-powered agents to integrate fragmented phases. It features an argument-counterargument mechanism to refine the core view. Our experiments across data from 25 domains have demonstrated the superiority of our method. Moreover, our proposed evaluation framework and Fin2RG dataset ensure the assessability of financial reports. This research provides a new paradigm for generating financial reports under unsupervised conditions and offers fresh insights for future work in this field.

618 619

621

624 625

626

627 628

629

630

633

634

Limitations

While our approach demonstrates its capability to produce high-quality financial reports, it still faces inherent challenges that affect its general applicability. For example, achieving SOTA performance on our dataset is impressive but not absolute, which may limit its broader application. Additionally, the data sources are not fully comprehensive—for instance, ECC audio and company announcements are not fully included—which could result in suboptimal report generation outcomes. Furthermore, although FinRGAgents shows significant improvements in chart generation compared to previous methods, it still lacks the ability to fully leverage visual information to enhance chart consistency. This is often reflected in issues such as incorrect elements in charts or errors in axis unit labeling. Addressing these limitations will require future enhancements, including better integration of visual information into the generation process.

text

636 637

638

639

640

641

642

645

646

647 648

649

text 651

text 653

654

655

656

657

658

659 660

661

text

662 663

664

665

666

References

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. 2024. Longwriter: Unleashing 10,000+ word generation from long context llms. at Xiv. 2408.07055.

H Kent Baker and John R Nofsinger. 2010. Behavioral filmate: investors, corporations, and markets, volume 6. John Wiley & Sons.

Jianzhu Bao, Yasheng Wang, Yitong Li, Fei Mi, and Ruifeng Xu. 2022. AEG: Argumentative essay generation via a dual-decoder model with content planning. In Proceedings of the 2022 Conference of Empirical Methods in Natural Language Processing, pages 5134–5148, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

L Michelle Bennett and Howard Gadlin. 2012. Collaboration and team science: from theory to practice.

Zhihong Chen, Yaling Shen, Yan Song, and Xiang Wan. 2021. Cross-modal memory networks for radiology report generation. In Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics and the 11th International Triffe Conference on Natural Language Processing (Volume 1. Long Papers), pages 5904–5914, Online. Association for Computational Linguistics.

Cheng-Han Chiang and Hung-yi Lee. 2023. Can large language models be an alternative to human evaluations? In Proceedings of the orst Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15607–15631,

text	
Toronto, Canada. Association for Computational Lin-	667
guistics.	668
Yujuan Ding, Yunshan Ma, Wenqi Fan, Yige Yao, Tat-	669
Seng Chua, and Qing Li. 2024. Fashionregen: Llm-	670
empowered fashion report generation. Companion	671
Proceedings of the ACM on web Conference 2024. 228 text	672
James B Freeman. 2011. Argument Structure::	673
Representation and Theory, volume 18. Springer	674
Science & Business Media.	675
R Edward Freeman. 2010. Stakeholder theory 30 The 1441	676
state of the art. Cambridge University Press.	677
text	
Yuhang He, Jianzhu Bao, Yang Sun, Bin Liang, Min	678
Yang, Bing Qin, and Ruifeng Xu. 2024. Decomposing argumentative essay generation via dialecti-	679 680
cal planning of complex reasoning. In Findings of the total complex reasoning of the total co	681
the Association for computational Linguistics ACL 1662	682
2024, pages 12305–12322, Bangkok, Thailand and	683
virtual meeting. Association for Computational Lin-	684
guistics.	685
Zhe Hu, Hou Pong Chan, Jing Li, and Yu Yin.	686
2024. Unlocking varied perspectives: A persona-	687
based multi-agent framework with debate-driven text	688
planning for argument generation. al Xi * 为它所能。 al Xi *: 2406.19643.	689
text	690
Alistair EW Johnson, Tom J Pollard, Nathaniel R Green-	691
baum, Matthew P Lungren, Chih-ying Deng, Yifan	692
Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz,	693
and Steven Horng. 2019. Mimic-cxr-jpg, a large publicly available database of labeled chest radiographs.	694 695
al XI # Preprint al XIV:1901.07042.	696
text	
Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii	697
Khizbullin, and Bernard Ghanem. 2023a. Camel: Communicative agents for mind exploration of	698 699
large language model society. Advances in Neural 67	700
Information Processing Systems, 36:51991–52008.	701
atext	
Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2015. A diversity-promoting objec-	702 703
tive function for neural conversation models. alixivital	704
preprint drxiv.13 10.03055.	705
text	
Yang Li, Yangyang Yu, Haohang Li, Z. Chen, and Khal-	706
doun Khashanah. 2023b. Tradinggpt: Multi-agent system with layered memory and distinct characters	707 708
for enhanced financial trading performance.	709
text	
Chin-Yew Lin. 2004. ROUGE: A package for automatic	710
evaluation of summaries. In Text Statistian evaluation Branches Cue, pages 74–81, Barcelona, Spain. Asso-	711 712
ciation for Computational Linguistics.	712
text	
Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,	714
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:	715
NLG evaluation using gpt-4 with better human alignment. In Proceedings of the 2023 Conference of the 12023	716 717
Emphical Methods in Natural Language Processing,	718
pages 2511–2522, Singapore. Association for Com-	719
nutational Linguistics	720

putational Linguistics.

solve mechanics problems, generate new data, and integrate knowledge. Extreme Mechanics Perens. 67:102131. Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yiffan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, et al. 2024. Chadery Communicative agents for software development. In Proceedings of me ward Montal Meeting, in was association for computational Linguistics. Visiting 1: 17 mg Fajeris; pages 15174–15186. D Gordon Rohman, 1965. Pre-writing: The stage of discovery in the writing process. Coffice Composition of Commitmentation, 16(2):106–112. Thibuall Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the Self Manufal Meeting of the Sel	text		text	
Large language model multi-agent collaborations can solve mechanics problems, generate new data, and integrate knowledge. Exterior Necessaries of 1921-11. 67-1021-31. 67-10	721	Bo Ni and Markus J Buehler. 2024. Mechagents:	Ziao Wang, Yunpeng Ren, Xiaofeng Zhang, and Yiyuan	776
solve mechanics problems, generate new data, and integrate knowledge. Extreme Merchanics Percentificates Perce	722			
integrate Knowledge. Extrême Nectionics Letters, 257-267-102131. Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weige Chen, Yusheng Su, Xin Cong, et al. 2024. Chadeve Communicative agents for software development. In Proceedings of one of and Yushing Meeting of united and the Proceedings of one of the Proceedings of t	723			
Sample Schwarmans Sample	724	integrate knowledge. Extreme Meetlanics Letters,		
Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, et al. 2024. Chatelov, Communicative agents for software development. In Proceedings of the World Weil of the Cheng of the Ch	725	67:102131.		780
fan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yankaheng Su, Xin Cong, et al. 2024. Chandrev Communicative agents for software development. In Proceedings of the Card Mandal Veening, United States of the Card Mandal Veening Communicative agents for software development. In Proceedings of the Card Mandal Veening Communicative Association for Compilational Engangeries (Communicative Association for Compilational Engangeries). Association for Compilational Engangeries (Communication). In Proceedings of the Card Mandal Veening Communication. 16(2):106–112. Thibault Sclamn Dipanian Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation in Proceedings of the Card Mandal Engangeries of	text			704
Yusheng Su, Xin Cong, et al. 2024. Chardew: Communicative agents for software development. In Proceedings of the control of th	726			
soning in large language models. Advances in weura and the completational Engagestics (volume). The Proceedings of the Completational Engagestics (volume). The Conference of the Food Engagestics (volume). The Conference of t	•			
Two-sedings for the Park Manual Parkedig by the Park Association for Compelational Linguistics (Volume 12 Conference on the Association for Compelational Linguistics (Volume 12 Conference on Confere				
Association for compelational Engaistics (Volume 12-12-12-13). DG Grodon Rohman. 1965. Pre-writing: The stage of discovery in the writing process. Collect Composition & Commitmeation. 16(2):106–112. Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the William Meeting of the Association for Computational Linguistics. John Marchand Marchand Marchand Meeting of the Association for Computational Linguistics. Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xi, Omar Khattab, and Monica Lam. 2024. Assisting in writing Willspedia-like articles from scratch with large language models. In Proceedings of the Association for Computational Linguistics. More association for Computational Lingui	•			
17.1 Di Gordon Rohman, 1963. Pre-writing: The stage of discovery in the writing process. Cellege composition of Communication, 16(2):106–112. May 17.2 Thibault Scllam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the "Markand Weeting of the "Association for compitational Linguistics." Thibault Scllam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the "Markand Weeting" of "the "Association for compitational Linguistics." Tank Xing. 2024. Designing heterogeneous Ilm agents for financial sentiment analysis. ArXiv 97.0 pages 7881–7892. Online. Association for Computational Linguistics. Tank Xing. 2024. Designing heterogeneous Ilm agents for financial sentiment analysis. ArXiv 97.0 pages 781–7892. Online. Association for Computational Linguistics. Trank Xing. 2024. Designing heterogeneous Ilm agents for financial sentiment analysis. ArXiv 97.0 pages 781–7892. Online. Association for Computational Linguistics. Trank Xing. 2024. Designing heterogeneous Ilm agents for financial sentiment analysis. ArXiv 97.0 pages 781–7892. Online. Association for Computation in Proceedings of the "Arxiv 2500 RISE" on "Arx	•			
D Gordon Rohman, 1965. Pre-writing: The stage of discovery in the writing process. Concess composition of Communication, 16(2):106–112. Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the Association for Computational Linguistics. Processing of the Association for Computational Linguistics. Tijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu. Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the Association for Computational Linguistics. Morar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the Association for Computational Inequisities. Morar Association for computational Impediates. Hermitian Languistics. Morar Managan Morar Managan Androman Association for Computational Linguistics. Morar Managan Morar Managan Androman Association for Computational Inequisities. Morar Managan Laskar, Sawsan Alqahtani, M Saffill Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Ma Rizwan Parver, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv Eprilis pages arXiv-2407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 Merinanda Association of work of the Computational Intelligence (EXCI), pages 365–370. Morar Managan Managan Managan Angran Angran Managan Mana			Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,	786
D'Gordon Rohman, 1965. Pre-writing: The stage of discovery in the writing process. College Composition of Comparison of College Co		1. Long 1 apers), pages 13174–13160.	Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,	787
covery in the writing process. College Composition To Communication, 16(2):106–112. Thibaulf Sellam, Dipanjan Das, and Ankur Parikh, 2020 BLEURT: Learning robust metrics for text generation. In Proceedings of the Assistation for Computational Linguistics. Description of Market and Monica Lam. 2024. Assisting writing Wikipedia-like articles from scrutch with large language models. In Proceedings of the Assistation for Computational Linguistics. Wijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu. Omar Khattab, and Monica Lam. 2024. Assisting writing Wikipedia-like articles from scrutch with large language models. In Proceedings of the Assistation for Computational Linguistics. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Language Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Visao Janguage Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Visao Janguage Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Visao Janguage Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Visao Janguage Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24, Abu Dhabi, Visao Janguage Technologies Voitine 18-12. Market Processing (Prikal II), pages 18–24. Market Processing (Prikal II), pages 18–24. Market Processing (Prikal		D. Gordon Dohmon 1065. Pro writing: The store of die		
Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 BLEURT: Learning robust metrics for text generals. Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 BLEURT: Learning robust metrics for text generals. Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 BLEURT: Learning robust metrics for text generals. Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 BLEURT: Learning robust metrics for text generals. Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 BLEURT: Learning robust metrics for text generals. Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 BLEURT: Learning robust metrics for text generals. Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 BLEURT: Learning robust metrics. Thibauti Sellam, Dipanjan Das, and Ankur Parikh. 2020 Th	•			
Thibaulf Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the "Association for Compitational Englishes, pages 7881–7892, Online. Association for Computational Linguistics. Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu. Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the "Association for Computational Linguistics." Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu. Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the "Association for Computational Engagestics: Human Language Ecologies (volime 12 rough Engages). The Conference of the Nordi American Chapter of the Association for Computational Linguistics. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saful Bari, Mizanur Rahman, Mohammad Abdullah. Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models. Challenges, limitations, and recommendations. airXiv eprints. pages arXiv-2407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 "Hiernätkönd Conference on Computational Intelligence (SSCI): pages 365–370. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 "Hiernätkönd Conference on Computational Intelligence (SSCI): pages 365–370. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 "Hiernätkönd" Conference on Computational Intelligence (SSCI): pages 365–370. Matin Shan Haidar				
Thibault Sellam, Dipanjan Das, and Ankur Parikh, 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the Souri Annual Meeting of the Association for Computational Linguistics. Processing Jane 1982. Online. Association for Computational Linguistics. May Tabao, Yucheng Jiang, Theodore Kanell, Peter Xu. Omar Khattah, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the Sourier Science of the North American Chapter of the Association for Computational Linguistics. Conference of the North American Chapter of the Language Technologies (volume 1: Done) Processing (FirshIP). pages 18-24, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics. Md Tabmid Rabman Laskar, Sawsan Alqabtani, M Saful Bari, Mizanur Rabman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models. Challenges, limitations, and recommendations. arXiv elprims pages arXiv-2407. Mag. Chen, Jordam W Suchow, Kong Liu, 603. Wen. Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 "finerina fond "fire fire for the politic fire for the politic for		& Communication, 10(2).100–112.		791
BLEURT: Learning robust metrics for text generation. In Proceedings or time Association for Computational Linguistics, pages 7881–7892, Online. Association for Computational Linguistics. 24 Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu, Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of time Victorial Technology and Manural Linguistics. 25 Conference of the World American Chapter of the Linguistics. Hundrid Linguistics. 26 Conference of the World American Chapter of the Linguistics. Hundrid Linguistics. 27 Conference of the World American Chapter of the Linguistics. Hundrid Linguistics. 28 Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saltul Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models. Challenges, limitations, and recommendations. arXiv Eprints pages arXiv-2407. 28 Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 Hinchindonal Conference on Conferen		Thibault Sallam Dinanian Das and Ankur Parikh 2020		700
tion. In Proceedings of the Sost Annual Needing of the Association for Computa- tional Linguistics. Association for Computa- tional Linguistics. Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu, Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the 2024 Conference of the World Smercan Chapter of the Association for Computational Linguistics. Yang Department of Proceedings of Computational Linguistics. Yang Department of Computational Linguistics. Yang Department of Computational Linguistics. Yang Department of Proceedings of Computational Linguistics. Yang Department of Compu				
of the Association for Computational Emginics, pages 7881–7892, Online. Association for Computational Linguistics. Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu, Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the 2023 Theodore of Conference of the Association for Computational Linguistics. Pages 7978. Mexico City, Mexico. Association for Computational Linguistics. Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language models and the Computational Linguistics. Human Language models are the Computational Linguistics. Human Language Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Human Language Technologies (volume 1: 1.00) Tapers of Computational Linguistics. Human Language Human	•			
pages 7881–7892, Online. Association for Computational Linguistics. Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu, Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the 2025 Processing (Franklis) pages 18–24. Abu Dhabi, 787–745 Conference of the Association for Computational Linguistics. Human Language Technology tooling 1 Processing of the 2025 pages 6252–6278, Mexico City, Mexico. Association for Computational Linguistics. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Mattin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv e-prints pages arXiv-2407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 International Computational Intelligence (ESCI): Pages 365–370. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance The application of multi-agent framework. AlXiv: 2025. Pinegrained medical vision-language representation learning for radiology report generation. In Proceedings of the Association for Computational Intelligence (ESCI): Pages 365–370. Sixium Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings with arge and recommendations and processing pages of the Association for Computational Individual Processing Pages of the Association for Computational Individual Processing Pages of the Association for Computational Processing Pag	•			704
tional Linguistics. Stylia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu. Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the Justin Wikipedia-like articles from scratch with large language models. In Proceedings of the Justin Vicessing (Frankle). pages 182–94. Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Emigristics: Human Languiage Technologies (Volume 19 June 1974). Human Languiage Technologies (Volume 19 June 1974). Pages 262–2678. Mexico City, Mexico. Association for Computational Linguistics. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Med Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv Eprint. pages arXiv-2407. Moth Tahmid Rahman Laskar Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Med Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv Eprint. pages arXiv-2407. Moth Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Med Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv Eprint. pages arXiv-2407. Moth Tahmid Tahu, Mexico. Association for Computational linguistics. Moth Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mizanur Ra	•		Sixing Yan. 2022. Disentangled variational topic	795
742 Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu 743 Omar Khattah, and Monica Lam. 2024. Assisting 744 in writing Wikipedia-like articles from scratch with 745 large language models. In Proceedings of the 2023 746 Conference of the Vantif American Chapter of the 2023 747 Association for Computational Linguistics. Planial 748 Language Technologies (Voitime 1- Dong Tapers) 749 pages 6252-6278, Mexico City, Mexico. Association 750 for Computational Linguistics. 751 Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah 752 ful Bari, Mizanur Rahman, Mohammad Abdullah 753 Mahan, Haidar Khan, Israid Rahman, Hahan Athan, Association 754 evaluating large language models: Challenges, limitations, and recommendations. arXiv preprint arXiv:2407.14767. 16xt 16xt 17x5 Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 filterialitonal Conference on Computational Section of underlying asset reviews in structured finance. The application of multi-agent framework. ArXiv abs:2405.04294. 17x6 Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2022 Conference on Proceedings of the 2023 Conference on Computational Section Proceedings of the 2023 Conference on Computational Section Section Proceedings of the 2023 Conference on Computational Section	741		inference for topic-accurate financial report gen-	796
Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the 2024. Assisting in writing with policy of the North American Chapter for the 1974. Assistation for Computational Engastics: Henry Papers (252–6278, Mexico City, Mexico. Association for Computational Linguistics. Mat Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. airXiv prints. Pages arXiv-2407. Mext Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023-intensinal Confederational Intelligence (CSCI): pages 365–370. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. ArXiv abs/2405.04294. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. ArXiv abs/2405.04294. Ext. Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Controvice on Tamphidal Methods in vaculating Language tree decided vision-language representation learning for radiology report generation. In Proceedings of the 2023 Controvice on Tamphidal Methods in vaculating Language processents and the decided vision-language representation learning for radiology report generation. In Proceedings of the 2023 Controvice of Tamphidal Methods in vaculating Language processing. Acceptance of the Controvice of Tamphidal Methods in vaculating Language processing.	text			797
Omar Khattab, and Monica Lam. 2024. Assisting in writing Wikipedia-like articles from scratch with large language models. In Proceedings of the 2024 Conference or the North American Chapter of the Association for Computational Linguistics. Conference or the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics. Hongyang Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang, Likun Lin, Junlin Wang, Tianyu Zhou, Mac Guan, Runja Bang, et al. 2024. Finrobot: An open-source at agent platform for financial applications using large language models. arXiv preprint arXiv:2405.1470. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv prints arXiv:2407.1407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 informational conference on Computational Intelligence (CSCI): pages 365–370. Kiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured financial conference on Computational Intelligence (CSCI): pages 365–370. Kiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured financial multi-agent generation. In Proceedings of the 2023. Fine-grained medical vision-language representations learning for radiology report generation. In Proceedings of the 2023. Conference on Tahphiral Methods in wasterial Language processing, pages	742	Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu,		
large language models. In Proceedings of the 2024 Conferênce of the North American Chapter of the Association for Compitational Engagestics: Hamping the Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics. May pages 6252–6278, Mexico City, Mexico. Association for Computational Linguistics. Mat Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv Prints pages arXiv-2407. Men Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 international Conference on Computational Intelligence (CSCI): pages 365–370. Kiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. AfXiv 368 abs/2405.04294. Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference on Engineering Conference on En	743			
Conference of the North American Chapter of the Association for Computational Linguistics: Homan Language Technologies: Votime 1st Tong Papers	744	in writing Wikipedia-like articles from scratch with		
Association for Computational Enganstics: Homan Language Mechinologies (Volime 1- Tong Papers) pages 6252-6278, Mexico City, Mexico. Association for Computational Linguistics. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv eprints pages arXiv-2407. text Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 fine-finational fineligence (USCI): pages 365-370. Mitangeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance. The application of multi-agent framework. ArXiv abs/2405.04294. Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2025 conference on the conference of the papers of the 2025 conference of the papers o	745		78 putational Linguistics.	801
Association of Computational Engineers. Name of Papers 19 pages 6252–6278, Mexico City, Mexico Association for Computational Linguistics. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. airXiv prints pages arXiv preprint arXiv 2407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 fine first computational intelligence (CSCI): pages 365–370. Iext Xiaol Zhang, Likun Lin, Junlin Wang, Tianyu Zhou, Mao Guan, Runjia Zhang, et al. 2024. Finrobot: An open-source ai agent platform for financial applications using large language models. arXiv preprint arXiv:2405.1476. Wen-Kwang Tsao. 2023. Milti-agent reasoning with large language models for effective corporate planning. 2023 fine first with large language models for effective corporate planning. 2023 fine first with large language models for effective corporate planning. 2023 fine first with large language models for effective corporate planning. 2023 fine first with large language models for effective corporate planning. 2023 fine first with large language models for effective corporate planning. 2023 fine first with large language models for effective corporate planning. 2023 fine first with large language models for effective corporate planning. 2023 first with large language models for effective corporate planning. 2023 first with large language models for effective corporate planning. 2023 first with large language models for effective corporate planning. 2023 first with large language models for effective corporate planning. 2023 first with large language models for effective corporate planning. 2023 first with large language models for effective corporate planning. 2023 first with large language first with large language first with large	746		Hongyang Vang Royu Zhang Neng Wang Cheng Guo	802
Larguage Technologies (Volume 1: Long Fapers) pages 6252-6278, Mexico City, Mexico. Association for Computational Linguistics. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv eprints pages arXiv-2407. text Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 fine-fiational Conference of or definibilational "Science and accuracy of underlying asset reviews in structured finance The application of multi-agent framework. ArXiv abs/2405.04294. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance The application of multi-agent framework. ArXiv abs/2405.04294. Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings britate 2125 conference on the conference of the processing pages The proceedings to that the conference of the processing pages The proceedings to that the conference of the processing pages The proceedings to that the conference of the processing pages The processing pages of 222-6. The Chiang Pages arxiv proprint arxiv 2407.06567. The proceedings to the conference of the processing pages arxiv proprint arxiv 2407.06567. The proceedings to the conference of the processing pages arxiv proprint arxiv 2407.06567. The proceedings to the conference of the processing pages arxiv proprint arxiv 2407.06567. The proceeding the processing pages arxiv proprint arxiv 2407.06567. The proceeding the processing pages arxiv proprint arxiv 2407.06567. The proceeding the processing pages arxiv proprint arxiv 2407.06567. The proceeding the processing pages arxiv proprint arxiv 2407.06567. The	747			
pages 22-27-8, Mexico City, Mexico Association for Computational Linguistics. Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv prints pages arXiv-2407. text Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 "International Conference of undertompatational litelligence (CSCI)" pages 365-370. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. ArXiv 2405.04294. Text Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 222 Conference of the processing, pages of the 222 Conference of the processing of the 222 Conference of the processing of the 222 Conference of the processing of the 222 Conference of the processing, pages of the 222 Conference of the processing of the 222 Conference of the 22				
text Tot Computational Enguistics. Societies So	•			
Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv primis pages arXiv-2407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 fine mational litelligence (USCI) pages 365–370. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance. The application of multi-agent framework. ArXiv. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the Conference on the Conference of the application of multi-agent framework. ArXiv. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the Conference on the conference of the primitive sentiation learning for radiology report generation. In Proceedings of the Conference on the conference of the primitive sentiation learning for radiology report generation. In Proceedings of the Conference on the conference of the primitive sentiation learning for radiology report generation. In Proceedings of the Conference of the primitive sentiation learning for radiology report generation. In Proceedings of the Conference of the primitive sentiation learning for radiology report generation. In Proceedings of the Conference of the Conference of the primitive sentiation learning for radiology report generation. In Proceedings of the Conference of the Conference of the primitive sentiation learning for radiology report generation. In Proceedings of the Conference of the primitive sentiation senting sentiation sentiation sentiation sentiation sentiation sentiat		for Computational Linguistics.		
ful Bari, Mizanur Rahman, Mohammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al 2024. A systematic survey and critical review on evaluating large language models: Challenges, limi- tations, and recommendations. arxiv prints pages arXiv-2407. text Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corpo- rate planning. 2023 fine-firational conference on computational conference on comp		Md Taharid Daharan Lashan Carran Alashtani M.C.	a <mark>r%i∜:24</mark> 05.14767.	807
Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on revaluating large language models: Challenges, limitations, and recommendations. arXiv prints, pages arXiv-2407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 frictinational Conference or at planning. 2023 frictinational Conference or at planning. 2023 frictinational Conference or at planning asset reviews in structured finance: The application of multi-agent framework. ArXiv abs/2405.04294. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. ArXiv abs/2405.04294. Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings or prints 2023 Source for our Impirical Metitods in Wandraf Language Processing, pages	•			
Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al. 2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv prints pages arXiv-2407. text Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 fine mational conference on	•			
2024. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv large pages arXiv—2407. 1 wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 fine finational literations in the lightness of underlying asset reviews in structured finance: The application of multi-agent framework. ArXiv abs/2405.04294. 1 Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the August Processing, pages with conceptual verbal reinforcement for enhanced financial decision making. arXiv preprint arXiv-2407.06567. 1 synthesized Ilm multi-agent system with conceptual verbal reinforcement for enhanced financial decision making. arXiv preprint arXiv-2407.06567. 1 dext 2 Sun. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 fine finational look for effective corporate planning. 2023 fine finational look fine with large language repressions. ArXiv-2407.06567. 2 Sun. 2025. Pptagent: Generation separations beyond text-to-slides. arXiv preprint arXiv-2501.03936. 3 Intelligence (CSCI), pages 365–370. 3 Intelligence (CSCI), pages				
evaluating large language models: Challenges, limitations, and recommendations. arXiv prints pages arXiv-2407. Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 International Conference on Computational Science and Computational Intelligence (CSCI), pages 365-370. Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance; The application of multi-agent framework. ArXiv abs/2405.04294. Ext Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 222 Conference on Empirical Methods in Natural Language Processing, pages				
tations, and recommendations. alixive prints, pages arXiv-2407. text Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 international conference on computational literagence (CSCI), pages 365-370. Text Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. Afriva abs/2405.04294. Ext Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages making. alixiv preprint arxiv:2407.06567. ##Aio Zheng, Xinyan Guan, Hao Kong, Jia Zheng, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun. 2025. Pptagent: Generating and evaluating presentations beyond text-to-slides. arXiv preprint arxiv:2501.03936. Ext Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Judging Ilm-as-a-judge with mt-bench and chatbot arena. Alexances in record information Processing Systems, 36:46595-46623. Ext Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. Webarena: A realistic web environment for building autonomous agents. alixiv preprint arxiv:2307.13854.	•			
text Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 International Conference on Computational Intelligence (USCI), pages 365–370. text Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. ATXIV 2088 abs/2405.04294. Total Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages				
Wen-Kwang Tsao. 2023. Multi-agent reasoning with large language models for effective corporate planning. 2023 International Conference of Computational Intelligence (USCI); pages 365–370. Kiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. ATXIV. 2083. abs/2405.04294. Text Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of thic 2023 Conference on Empirical Methods in Wantal Language Processing, pages	758		text	013
with large language models for effective corporate planning. 2023 International Conference on Computational Intelligence (CSCI), pages 365–370. text Kiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. AfXiv 268 abs/2405.04294. Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representations learning for radiology report generation. In Proceedings of the 2023 Conference of Empirical Methods in Natural Language Processing, pages	text		Hao Zheng, Xinyan Guan, Hao Kong, Jia Zheng,	814
rate planning. 2023 international Conference on Computational Intelligence (CSCI), pages 365–370. text 764 Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. Arxivable abs/2405.04294. 769 Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings: United 2023 Conference on Empirical Methods in Natural Language Processing, pages	759		Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and	
rotational Intelligence (USCI), pages 365–370. text The Application of multi-agent framework. Arxiviable 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of interlanguage representation learning for radiology report generation. In Proceedings of interlanguage representations in Natural Language representations and the state of the proceedings of the Pages 2023. The pages of the pages 2023. The proceedings of the 2023 conference of Emphilical Methods in Natural Language representations and pages are processing, pages are compared to the page 2023. The pages 2023 conference of Emphilical Methods in Natural Language representations and pages 2023. The pages 2023 conference of Emphilical Methods in Natural Language representations are allowed as a real stick web environment for building autonomous agents. arXiv:2501.03936. 818 arXiv:2501.03936. 818 Exx. Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Judging Ilm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623. 824 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. Webarena: A realistic web environment for building autonomous agents. arXiv:preprint arXiv:2307.13854.	760	with large language models for effective corpo-		
text Thitelligence (CSCI), pages 365–370. text The Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. Aixiv abs/2405.04294. Text The Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference on Emphrical Methods in Natural Language Processing, pages Text Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Budging Ilm-as-a-judge with mt-bench and chatbot arena. Aivaires in Neural Information Processing Systems, 36:46595–46623. Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. Webarena: A realistic web environment for building autonomous agents. arXiv preprint arXiv:2307.13854.	761	U U III AND AND A C		
Tianging Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. Africal abs/2405.04294. The Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings: Or the 2023 Conference on Emphrical Methods in Natural Language Processing, pages Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Judging Ilm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623. Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. Webarena: A realistic web environment for building autonomous agents. al Xiv preprint arxiv 2307.13854.	•		a#Xi√:2501.03936.	818
Xiangpeng Wan, Haicheng Deng, Kai Zou, and Shiqi Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. AirXiv 268 abs/2405.04294. text Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference of Empirical Methods in Natural Language Processing, pages Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 2023. Bluang, Zhanghao Wu, Yonghao Zhuang, Zhua		Intelligence (USCI), pages 365–370.	Lianmin Zheng Wei-Lin Chiang Ving Shang Siyuan	210
Xu. 2024. Enhancing the efficiency and accuracy of underlying asset reviews in structured finance: The application of multi-agent framework. Arxiv; abs/2405.04294. The application of multi-agent fr		W W		
of underlying asset reviews in structured finance: The application of multi-agent framework. AfXiv, 24 abs/2405.04294. Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference of Empirical Methods in Natural Language Processing, pages Judging Ilm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing Siystems, 36:46595–46623. Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. Webarena: A realistic web environment for building autonomous agents. a Xiv preprint arxiv:2307.13854.	•			
The application of multi-agent framework. AfXiv abs/2405.04294. The application of multi-agent framework. AfXiv abs/2405.04294. The application of multi-agent framework. AfXiv abs/2405.04294. The application of multi-agent framework. AfXiv as a series and abs/2405.04294. The application of multi-agent framework. AfXiv as a series as a series and abs/2405.04294. The application of multi-agent framework. AfXiv as a series as a seri	•			
abs/2405.04294. text 769 Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference of Emphrical Methods in Natural Language Processing, pages 824 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. Webarena: A realistic web environment for building autonomous agents. arXiv preprint arXiv:2307.13854.	•	or underlying asset reviews in structured finance: The application of multi-agent framework. Alies #10	Jino #206 Librari 1490 150 150 150 150 150 150 150 150 150 15	
text 769 Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 770 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference of Emphrical Methods in Natural Language Processing, pages			System 5, 36:46595–46623.	
Siyuan Wang, Bo Peng, Yichao Liu, and Qi Peng. 2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference of Empirical Methods in Natural Language Processing, pages Shuyan Zhou, Frank F Xu, Hao Zhu, Xunut Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. Webarena: A realistic web environment for building autonomous agents. a Xi v preprint at Xi v 2307.13854.		ausi 2705.072/7.		
2023. Fine-grained medical vision-language representation learning for radiology report generation. In Proceedings of the 2023 Conference of Empirical Methods in Natural Language Processing, pages Nethods in Natural Language Processing, pages		Siyuan Wang, Bo Peng Yichao Liu, and Oi Peng		
sentation learning for radiology report generation. In Proceedings of the 2023 Conference of Empirical tonomous agents. a Nethods in Natural Language Processing, pages				
Proceedings: of the 2023 conference of Empirical tonomous agents. a Xiv preprint arXiv:2307.13854. 829	•			
773 Methods in Natural Language Processing, pages				
			conomous agents, arxiv preprint arxiv.2507.15054.	029
	774			

tational Linguistics.

Habe 9. text 18.0 riginal line	:68 <mark>line #3-line #4line #5</mark> -	line #6		··line #8·line #9 ·	·line #1 0 ine #11	
Industry	News# Reports4 Stock#	Bin ∂im 6Span	Industry	News# Reports9 .	.Stock#20in&ime Spa	h
Internet(互联网)	Br767# <mark>23</mark> r162#24 Br890#	3023 926 2024.01	TE(交运设备)	-4 ₁ 06% 28 ₁ 763 29	.11:725 0# \$01023 # 3 1 202	4.01
Transportation(交通运输)	-Bi708# 33 irle2#34 -Bi402#\$	3023.936 2024.04	LLPS(生活及专业服务)	Br982# <mark>88</mark> in@5#39	. 116744401023:94 1 202	4.05
IT(信息技术)	-4883# <mark>43irle5#44 1ir784#4</mark>	3023-046 2024.01	Utilities(公用事业)	Rrl e 2# 48 irle0#49	. แปอ #\$0 1023#\$1 202	4.06
AFAHF(农林牧渔)	-Bride 8# 531 rl 62 # 54 - Bride 2# \$4	3023.046 2024.06	FE(化石能源)	-452458in83#59	. ዜ_ሾቭ ን# <mark>ቁ</mark> መ የዶን <mark>ብሬ</mark> ተ 202	4.03
PB(医药生物)	-4n3e 2# 63in1e4#64 -11n3e4# 6	3023.026 2024.03	CR(商贸零售)	Ri683# <mark>68irle2#</mark> 69	.1₁₇63#†0 1023#11 202	4.01
NDE(国防与装备)	.Ba525# vainle0#74 linle3# t	3023.016 2024.01	BC(基础化工)	ਜੈ <i>ਜ</i> ੈ8²# *8 iræ¹ # 79	. ₁₇₈2#\$@ 23 <mark>#3</mark> 1 202	4.03
HA(家电)	Ar326# <mark>83in94</mark> #84 Ii986#\$	3023.036 2024.03	BM(建材)	-4 n26 2# st inle2#89	. ₁462#\$0 023#921 202	4.02
Construction(建筑)	Br642# 93in 23#94 Br297# \$	3023,926 2024.07	RE(房地产)	-Br263# 98 irle3#99	. 11182#101023#202 02	4.02
CM(文化传媒)	-Br465# 00863#10 4Br467#1	3923.9202 024.08	Non-fM(有色金属)	-Br292# 08 98#10	111243# <mark> 120</mark> 23#11202	4.01
ME(机械设备)	-An983# -11862#11 4An94#	1923#12 024.02	Electronic(电子设备)	-4 <i>n</i> 2 <i>3</i> # -1i8 e ¹ 911	11196# <mark> 20</mark> 23#22102	4.02
Electrical(电气设备)	-Br264# 120863#12 4 Infe4#	20 23 .03 2 .2 024.03	TA(纺织服装)	-4245# 286 2#12	1117244 30 23#53202	4.06
LIM(轻工制造)	-Br123# 13087#13 411972-#1;	392 3 ,9332 024.04	Fiance(金融)	-#rl@2# 138 65#13	11 1462# 4023#14 202	4.04
FR(食品饮料)	3,591 1,15 1,326	2023 01 - 2024 07		 		

Table 6: Comprehensive overview of the full basic information for 25 domains in the FinRG dataset.

Name: Stock Analyst Agent

Prompt: Retrieve and collect historical stock price data for a specific company, employing technical indicators including Moving Averages (MA) and Moving Average Convergence Divergence (MACD) to forecast future price trends.

get_stock_data(company_name, time_range,save_path)
Stock_indicators(stock_price)

Name: News Analyst Agent

Prompt: Systematic analysis and interpretation of news materials to deliver comprehensive informational insights incorporating content summarization for individual news items and quantitative extraction of impact factors.

get_company_news(company_name, time_range,save_path) get_news_factor(news)

Name: Business Analyst Agent

Prompt: Systematic analysis and interpretation of news materials to deliver comprehensive informational insights, incorporating content summarization for individual news items and quantitative extraction of impact factor

Tool:

analyze_business_highlights(co mpany_name,save_path) get risk assessment(company na me, save path) Analyze_cash_flow(company_name, Save_path)

Name: FinData Analyst Agent

Prompt: Evaluate the company's operational efficiency and financial stability by utilizing various financial ratios such as current ratio, leverage ratio, profitability ratio, and return ratio.

get_pe_eps_performance(company_name) get share performance(company name)

Name: Chief Analyst Agent

Prompt: From different perspectives, using the concept of argumentation, generate central and sub-arguments for the research report based on the available information.

Tool:

get_major_view(stock, info) get_branchviewdraft(core_view) viewrebuttal(support_view,rebu

Name: Analyst Manager Agent

Prompt: Consolidate the company's stock price, news, business conditions, and financial indicators for crossverification to prevent conflicts and ensure consistency.

info_summary(stock, news, business, findata)

Name: Quality Inspector Agent

Prompt: Review the report in terms of content quality, data compliance, privacy protection, and information sensitivity.

Review_report(report)

Name: Senior Analyst Agent

Prompt: Generate a research report outline using the central and sub-arguments, following the JSON format, which should include second-level and third-level headings.

Tool:

get_outline(company_name, core_view, sub_view,save_path)

Name: Research Analyst Agent

Prompt: Conduct multi-perspective retrieval of the first-stage knowledge based on chapter titles, and use RAG to generate chapter content. If graphical representation is required, call drawing tools to generate charts. Save the final report in Markdown format.

Tool:

ReportWriting(company_name,info, outline) plot_charts(chart_type,x_axis,y _axis,save_path)

Figure 5: Detailed description of each agent in FinRGAgtns

text

Dataset Description

The basic information of the FinRG dataset is shown in Table 6.

831

830

В **Agent Role Specifications**

The description of the agent in FinRGAgtns is depicted in the figures 5.

833

832

... #0 (1492..)

Figure 7: Evaluation results of 25 domains on the Fin2RG datasets.

C In-depth Analysis

C.1 Case Study

text

834

836 837

839

840

841

text

844

In Figure 6, we present the results of financial report outlines generated by FinRGAgents and baselines for Eastwealth Company. The outline on the far right represents the real report outline. We observe that the outlines generated by E2E, CoT, and FinRobot are relatively templated and fail to reflect content specific to Eastwealth. In contrast, the outline generated by FinRGAgents is more aligned with the real report outline. It first organizes a large volume of data through data analysts, after which the chief analyst extracts the central view from the processed data. This specialized division of labor enables the creation of more realistic and actionable financial report content.

D Fine-Grained Evaluation Results

E Prompts for LLM Evaluation

The prompts used in LLM Evaluation are depicted in Figures 8, 9, 10, and 11.

--rectangle #0

[1.00,1.49]-The text contains a significant amount of unverified information or major errors, with unclear or highly unreliable sources. Most factual statements lack evidence. It includes notably misleading content or false information, making it highly inaccurate.

[1.50,2.49]-The text has notable factual inaccuracies, with vague or unreliable sources. Some statements may be partially accurate, but the content often exhibits bias or significant gaps in background information, limiting its reliability.

[2.50,3.49]-The text demonstrates basic factual accuracy with some important inaccuracies or omissions. Some sources are reliable, while others are secondary or questionable. Overall, it provides reasonable coverage of major facts but lacks precision in details.

[3.50-4.49]-Most information in the text is factually accurate and supported by reliable sources. While a few details might lack verification or thoroughness, the content is consistent with known data and provides a solid background, enhancing its credibility.

[4.50-5.00]-All factual statements in the text have been rigorously verified and exhibit high accuracy. Data and information sources are clear and authoritative, fully supporting the content. The text provides a detailed and precise presentation of facts, making it fully trustworthy.

Output Format:

Factuality Score: [Insert Score Here] (Range: 1.00 to 5.00, rounded to two decimal places)

Justification: [Provide a brief explanation for the score based on the content's accuracy, source reliability, and evidence to support the statements. Highlight any significant issues that were noted which affected the score.]

text

Figure 8: Ilustration of the prompt used to evaluate factuality in Fin2RGEval.

∵լ≘ળાવા #5

[1.00,1.49]-The report offers minimal or no forward-looking analysis. Predictions are speculative and lack credibility, with little to no consideration of macroeconomic, industry, or company-specific factors. Future projections are not actionable or reliable

[1.50,2.49]-The report includes forward-looking analysis but is underdeveloped and lacks robustness. Predictions rely on limited data and weak or oversimplified assumptions. There is insufficient attention to macroeconomic trends, industry shifts, or strategic initiatives, and risk factors are minimally addressed.

[2.50,3.49]-The report provides a basic level of forward-looking analysis, considering some relevant macroeconomic and industry trends. Predictions may include key financial metrics and strategic factors but lack depth. Scenario and sensitivity analyses are minimal, and risk factors are identified but not thoroughly examined.

[3.50,4.49]-The forward-looking analysis is detailed and based on reasonable assumptions with sound data. It considers significant macroeconomic and industry trends, company strategies, and includes detailed financial forecasts. Risks are recognized and analyzed, with scenario analysis enhancing reliability and usability.

[4.50,5.00]-The report provides comprehensive and insightful forward-looking analysis, supported by thorough research and robust assumptions. It integrates extensive macroeconomic, industry, and company-specific factors, delivering in-depth financial forecasts and strategic insights. Risks are systematically addressed with advanced scenario and sensitivity analyses, resulting in highly reliable and actionable future projections.

Output Format:

Forward-looking Score: [Insert Score Here] (Range: 1.00 to 5.00, rounded to two decimal places)

Justification: [Provide a brief explanation for the score based on the level of detail, robustness, and credibility of future predictions, incorporating macroeconomic, industry, and company-specific factors. Point out any significant weaknesses or strengths.]

text

Figure 9: Ilustration of the prompt used to evaluate forward-looking in Fin2RGEval.

·<mark>- լբգլեւ</mark>րցիթլ#10

[1.00,1.49]-The report lacks a coherent structure, with arguments that are disorganized or unclear. Logical fallacies are prevalent, and many conclusions are unsupported. Connections between data and conclusions are either weak or entirely absent, resulting in a fragmented and hard-to-follow analysis.

[1.50,2.49]-The report shows a basic attempt at organization but is still poorly structured. Arguments are weak, and some conclusions rely on inadequate evidence or overly simplistic assumptions. Logical connections are present but tenuous, and the analysis lacks depth and thorough reasoning.

[2.50,3.49]-The report demonstrates a generally clear structure with a reasonable flow of arguments. Most conclusions are supported by data, but the reasoning could lack depth or miss certain complexities. While logical connections exist, they are not consistently strong, and some sections might benefit from more clarity or rigor.

[3.50,4.49]-The report is well-organized with clear and well-founded arguments. Logical progression from data to conclusions is evident, with assumptions and reasoning clearly explained. Most conclusions are well-supported by evidence, though minor areas may require more depth or detail.

[4.50,5.00]-The report exhibits exceptional logical coherence and a compelling narrative. Arguments are sophisticated, well-structured, and deeply reasoned. Conclusions are robustly supported by comprehensive data and demonstrate a nuanced understanding of complex interrelationships. The analysis is both insightful and highly persuasive.

Output Format:

Logical Score: [Insert Score Here] (Range: 1.00 to 5.00, rounded to two decimal places)

Justification: [Provide a rationale for the score selected, detailing how the report's arguments and structure align with logical printplics. Mention any significant logical fallacies or strengths in reasoning.]

text

Figure 10: Ilustration of the prompt used to evaluate logical in Fin2RGEval.

·line #12

line #7

··rephangle #0

·line #2

[1.00, 1.49] - The text content and the chart presentation are significantly inconsistent. There is no clear connection between the charts and the data points or conclusions discussed, or the information in the charts directly contradicts the text description.

[1.50,2.49]-There is some connection between the text content and the charts, but it is weak. Some of the data in the charts do not fully align with the text description, or the explanations are insufficient, showing considerable discrepancies. [2.50,3.49]-The text content and the charts are generally consistent. Most data and conclusions are supported by the charts, but the chart details may not fully showcase the complexity or depth discussed in the text.

[3.50,4.49]-The text content and the charts corresponding or needing clearer presentation

section, with only minor details not fully corresponding or needing clearer presentation.

[4.50,5.00]-The text content and the chart presentation are perfectly consistent. Charts precisely and thoroughly reflect all the key points and complex data relationships described in the text, enhancing the persuasiveness of the report.

Output Format:

Consistency Score: [Insert Score Here] (Range: 1.00 to 5.00, rounded to two decimal places)

Justification: [Provide a rationale for the score selected, detailing how the text content aligns with the chart presentation.

text

Figure 11: Ilustration of the prompt used to evaluate vision in Fin2RGEval.