SOLUTIONS SHEET 4

YANNIS BÄHNI

Exercise 1. To give the proof more structure, it is divided into three steps despite the structure of the exercise itself. I think this is more natural.

Lemma 0.1. $Q \mid_{A_0} = P$.

Proof. Let $A \in \mathcal{A}_0$. Consider the sequence $(B_n)_{n \in \mathbb{N}}$ in \mathcal{A}_0 defined by

$$B_n := \begin{cases} A & n = 1 \\ \varnothing & n > 1 \end{cases}.$$

Clearly $A \subseteq \bigcup_{n \in \mathbb{N}} B_n$ and thus

$$Q(A) \le \sum_{n \in \mathbb{N}} P(B_n) = P(A). \tag{1}$$

Let $(B_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{A}_0 such that $A\subseteq\bigcup_{n\in\mathbb{N}}B_n$. Therefore $A=\bigcup_{n\in\mathbb{N}}(B_n\cap A)$ and thus by subadditivity of P

$$P(A) \le \sum_{n \in \mathbb{N}} P(A_n \cap A) \le \sum_{n \in \mathbb{N}} P(A_n). \tag{2}$$

Thus $P(A) \leq Q(A)$ since the sequences were arbitrary.

Lemma 0.2. $Q: 2^{\Omega} \to [0, \infty]$ is an outer measure.

Proof. Clearly $Q(\varnothing)=0$ by the observation tha $\varnothing\subseteq\bigcup_{n\in\mathbb{N}}B_n$ where $B_n:=\varnothing$ for all $n\in\mathbb{N}$ and that $P(\varnothing)=0$ since P is a probability. Observe that if $(B_n)_{n\in\mathbb{N}}$ is a sequence in \mathcal{A}_0 such that $B\subseteq\bigcup_{n\in\mathbb{N}}B_n$ we also have $A\subseteq\bigcup_{n\in\mathbb{N}}B_n$ since $A\subseteq B$. Hence the infimum in Q(A) is taken on a large set than Q(B), thus $Q(A)\subseteq Q(B)$. Let $(A_n)_{n\in\mathbb{N}}$ be a sequence in 2^Ω . For any $A\in 2^\Omega$ and $\varepsilon>0$ we find by definition of Q(A) a sequence $(B_n)_{n\in\mathbb{N}}$ in \mathcal{A}_0 such that $A\subseteq\bigcup_{n\in\mathbb{N}}B_n$ and

$$Q(A) \le \sum_{n \in \mathbb{N}} P(B_n) < Q(A) + \varepsilon. \tag{3}$$

Thus for any $n \in \mathbb{N}$ we find a sequence $(B_{n,k})_{k \in \mathbb{N}}$ in \mathcal{A}_0 such that

$$\sum_{k \in \mathbb{N}} P(B_{n,k}) \le Q(A_n) + \frac{\varepsilon}{2^n} \qquad n \in \mathbb{N}$$
 (4)

(Yannis Bähni) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH *E-mail address*: yannis.baehni@uzh.ch.

and $A_n \subseteq \bigcup_{k \in \mathbb{N}} B_{n,k}$. Clearly $\bigcup_{n \in \mathbb{N}} A_n \subseteq \bigcup_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} B_{n,k}$ and so

$$Q\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n\in\mathbb{N}}\sum_{k\in\mathbb{N}}P(B_{n,k})\leq \sum_{n\in\mathbb{N}}Q(A_n)+\varepsilon.$$
 (5)

Lemma 0.3. Each $B \in A_0$ is Q-measurable.

Proof. Let $A \subseteq \Omega$. Let $\varepsilon > 0$. In the same manner as in question 2 we find a sequence $(A_n)_{n \in \mathbb{N}}$ in A_0 such that

$$\sum_{n\in\mathbb{N}} P(A_n) - \varepsilon \le Q(A). \tag{6}$$

Furthermore

$$Q(A) \ge \sum_{n \in \mathbb{N}} P(A_n \cap B) + \sum_{n \in \mathbb{N}} P(A_n \cap B^c) - \varepsilon \ge Q(A \cap B) + Q(A \cap B^c) - \varepsilon$$
 (7)

by the additivity of P.

Exercise 2.

Exercise 3.

Lemma 0.4. Let $F: \mathbb{R} \to \mathbb{R}$ be a distribution function. Then

$$P(a,b) = F(b-) - F(a)$$
 and $P[a,b) = F(b-) - F(a-)$. (8)

holds for all $-\infty \le a < b \le \infty$ in the first case and $-\infty < a < b \le \infty$ in the second. Proof. Note that

$$(a,b) = \bigcup_{n \in \mathbb{N}_{>0}} \left(-\infty, b - 1/n \right] \setminus \left(-\infty, a \right]. \tag{9}$$

By (9) and the fact that F induces a probability measure P we have

$$P(a,b) = P\left(\bigcup_{n \in \mathbb{N}_{>0}} \left(-\infty, b - 1/n\right] \setminus (-\infty, a]\right)$$

$$= P\left(\bigcup_{n \in \mathbb{N}_{>0}} \left(-\infty, b - 1/n\right]\right) - P(-\infty, a]$$

$$= \lim_{n \to \infty} P\left(-\infty, b - 1/n\right] - P\left(-\infty, a\right]$$

$$= \lim_{n \to \infty} F(b - 1/n) - F(a)$$

$$= F(b - 1) - F(a).$$

The second statement follows similarly from

$$[a,b) = \bigcup_{n \in \mathbb{N}_{>0}} \left(-\infty, b - 1/n \right] \setminus \bigcup_{n \in \mathbb{N}_{>0}} \left(-\infty, a - 1/n \right]$$
 (10)

Remark 0.1. Note that for any $x \in \mathbb{R}$ the limit F(x-) exists since F is monotone increasing and bounded from above by 1. Indeed, towards a contradiction assume that there exists some $x_0 \in \mathbb{R}$ such that $F(x_0) > 1$. Hence $F(x_0) - 1 > 0$ and so there exists $M \in \mathbb{R}$ such that $F(x) < F(x_0)$ for all x > M. Contradiction.

 $F: \mathbb{R} \to \mathbb{R}$ can be rewritten as

$$F(x) = \frac{1}{4}\chi_{[0,1)}(x) + \frac{3}{4}\chi_{[1,2)}(x) + \chi_{[2,\infty)}(x). \tag{11}$$

Clearly F is monotone increasing, continuous on the right and

$$\lim_{x \to -\infty} F(x) = 0 \quad \text{and} \quad \lim_{x \to \infty} F(x) = 1.$$
 (12)

Thus there exists a unique probability measure P on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$F(a,b] = F(b) - F(a) \tag{13}$$

for all $-\infty \le a < b < \infty$. From lemma 0.4 immediately follows

$$P(A) = 1$$
 $P(B) = 1$ $P(C) = 0$ $P(D) = \frac{3}{4}$ $P(E) = 0$.

Exercise 4.

1. An example would be the function $F: \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) := \sum_{n=1}^{\infty} (1 - 1/n) \chi_{[n-1,n)}(x). \tag{14}$$

F is discontinuous at any $n \in \mathbb{N}_{>0}$.