检测报告

Test Report

报告编号(Report No.):

产	品名称(Product Name	e):	
型	号(Model/Type)	:	V1.0
委	托 方(Client)	: _	西安启工数据科技有限公司

检测报告

样品名称: SMT 生产线数字孪生系

统

版 本号: V1.0

样品来源: 现场测试

样品检测日期: 2021年3月12日

申 请 人: 西安启工数据科技有限 公司

申请人地址:陕西省西安市碑林区南

二环西段 69 号 1506 室

制 造 商: 西安启工数据科技有限

公司

制造商地址:陕西省西安市碑林区南

二环西段 69 号 1506 室

测试单位 中国电子技术标准化研究院赛西实验室 测试地点 陕西省西安市碑林区南二环西段 69 号 1506 室

检测依据标准或技术规范:

T/CPS-Forum 002-2020《工业数字孪生测试要求》

检测方法同标准或技术规范的偏离:

无

检测结论:

依据《工业数字孪生测试要求》,从功能、性能方面对 SMT 生产线数字孪生系统进行验证。共执行用例 61 项,共通过用例 61 项。测试结果数据详见检测报告。

测试人员	日	期	
审核	日	期	
签发	日	期	

中国电子技术标准化研究院赛西实验室

(盖 章)

年 月 日

样品描述

SMT 生产线数字孪生系统是面向 SMT 生产过程监测、诊断和优化的综合性工业数字孪生应用系统,采用数字孪生技术,对 SMT 产线基本要素及其关联关系进行定义描述,对 SMT 产线生产运行进行实时映射,实现SMT 设备动作的驱动、工件位置状态的变化、故障预警、调度优化等功能。

检测环境

仪器编号		硬件环境		软件环境
	型号	配置/性	能参数	7(11-71-56
20203006109	戴尔 R730XD12	CPU: 4*Intel Xeon G 2.3GHz 内存: 128(8*16GB) 存储: 固态硬盘: 1*2TG 72	64 位 CentOS7.4	
20203006110	戴尔 R730XD12	CPU: 4*Intel Xeon G 2.3GHz 内存: 128(8*16GB) 存储: 固态硬盘: 1*2TG 7	64 位 CentOS7.4	
客户端				
仪器编号	型号	配置/性	能参数	软件环境
111-S-103	华为 MateBook X Pro	CPU: Intel(R)Cor 固态硬盘: 500G 内存: 16.00GB 显卡: NVIDIA GeFor	Chrome(版本: 79.0.3945.130)	
测试工具	测试工具			
仪器编号	名称	版本号 生产商		运行方式
111-S-188	工业数字孪生产 品测试工具	V1.0	中国电子技术标 准化研究院	B/S

【注】: 本次测试服务器环境由委托单位提供,客户端、测试工具由赛西实验室提供。

拓扑结构图:

CESI20210312003-111 第 3 页 共 5 页

SMT 生产线数字孪生系统测试结果

1 功能测试结果

测试项	测试子项	测试目标	类型	测试结果
	新增设备接入测试	接入贴片机、印刷机、回流焊、检测机等设备接入成功,且功能正常	黑盒	通过
设备接入	新增数据源接入测试	接入贴片机、印刷机、回流焊、检测机时等设备自有的数据源,且数 据源成功接入	黑盒	通过
	协议支持能力测试	通过设备标称协议连接贴片机、印 刷机、回流焊、检测机等设备,且 设备连接成功	黑盒	通过
	采集生产线设备运行 状态信息测试	采集贴片机、印刷机、回流焊、检测机等设备的设备运行状态信息成功	黑盒	通过
物理实体信息 采集	采集生产线设备加工 参数信息测试	采集贴片机、印刷机、回流焊、检测机等设备的设备加工参数信息成功	黑盒	通过
木朱	采集生产线设备产品 数据测试	采集贴片机、印刷机、回流焊、检 测机等设备的设备产品数据成功	黑盒	通过
	采集生产线设备历史 运维纪录测试	采集贴片机、印刷机、回流焊、检测机等设备的设备历史运维纪录成 功	黑盒	通过
物理实体的执		下发生产指令,贴片机、印刷机等 设备成功响应	黑盒	通过
行系统	进度监控响应测试	实时监控生产线中贴片机、印刷 机、回流焊、检测机的进度成功	黑盒	通过
	边缘端设备接入测试	通过配置边缘端设备信息,成功接 入贴片机实时监控设备	黑盒	通过
计 绝 <i>让管</i>	边缘节点管理测试	启用、停用已接入的设备实时监控 边缘节点,且设备实时监控边缘节 点启停成功	黑盒	通过
边缘计算 	边缘端计算功能测试	通过给边缘端设备接入数据,边缘 端设备成功进行对贴片机的边缘计 算	黑盒	通过
	边缘节点运维测试	编辑已接入的设备实时监控的边缘 节点,且边缘节点编辑成功	黑盒	通过
虚拟实体模型	增加模型测试	在数字孪生产品中新增虚拟贴片机 实体模型成功。	黑盒	通过
管理	删除模型测试	在数字孪生产品中删除虚拟贴片机 实体模型成功。	黑盒	通过

CESI20210312003-111 第 5 页 共 5 页

测试项	测试子项	测试目标	类型	测试结果
	修改模型测试	在数字孪生产品中修改虚拟贴片 机、回流焊等实体模型成功。	黑盒	通过
	模型查询测试	输入模型名称等查询条件,查询虚 拟贴片机、回流焊等实体模型信息 成功。	黑盒	通过
	模型加载测试	在数字孪生产品中加载虚拟印刷机 实体模型成功。	黑盒	通过
	模型可视化测试	以可视化的方式展示虚拟实体贴片 机、印刷机、检测机模型成功	黑盒	通过
	模型导出测试	在数字孪生产品中导出虚拟贴片 机、印刷机、检测机实体模型成功	黑盒	通过
	虚拟场景视角操作测 试	成功操作 SMT 虚拟生产线场景摄像 头,实现场景浏览	黑盒	通过
	虚拟场景灯光操作测 试	成功设计灯光,使得 SMT 虚拟生产 线场景模型可视化,实现场景浏览	黑盒	通过
虚拟实体模型可视化场景	虚拟场景模型操作测 试	成功将贴片机、印刷机等虚拟实体 模型平移、旋转、缩放,实现可视 化操作	黑盒	通过
	虚拟场景模型属性编 辑测试	编辑贴片机、印刷机等虚拟实体模型名称、层级、隐藏/可视等属性成功	黑盒	通过
	模型运行环境配置测 试	配置 SMT 生产线虚拟实体模型运行 环境成功	黑盒	通过
虚拟实体模型运行	模型运行测试	运行 SMT 生产线虚拟实体模型,获取正确的运行结果	黑盒	通过
Æ1J	模型更新测试	更新 SMT 生产线虚拟实体模型属性成功,包括几何属性、物理属性、行为属性等	黑盒	通过
	算法增加测试	增加支持向量机算法成功	黑盒	通过
	算法删除测试	删除支持向量机算法成功	黑盒	通过
算法库	算法查询测试	根据算法名称和类型查询算法成功	黑盒	通过
	算法编辑测试	编辑支持向量机算法内容成功	黑盒	通过
	算法运行测试	运行支持向量机算法成功	黑盒	通过
	数据清洗功能测试	检测从 SMT 虚拟生产线中获取数据 缺失值情况,且数据清洗后无缺失 值。	黑盒	通过
数据处理与集成	数据降维功能测试	测试数据降维功能,成功降低从 SMT 虚拟生产线中获取的数据的维 度。	黑盒	通过
	数据集成功能测试	将从 SMT 虚拟生产线中多个数据源中的数据进行整合并统一存储。	黑盒	通过

CESI20210312003-111 第 6 页 共 5 页

测试项	测试子项	测试目标	类型	测试结果
	本地存储功能测试	将 SMT 虚拟生产线中虚拟实体设备 的孪生数据存储在本地成功。	黑盒	通过
数据存储	分布式存储功能测试	以分布式的方式,将 SMT 虚拟生产 线中虚拟实体设备的孪生数据存储 在服务器成功。	黑盒	通过
	数据存取测试	将本地以及分布式存储的 SMT 虚拟 生产线双色杯的孪生数据成功取出	黑盒	通过
粉据签四上木	历史数据查询测试	输入数据类型、时间范围等查询条件,查询贴片机、印刷机的历史数据成功。	黑盒	通过
数据管理与查 询	实时数据展示测试	以可视化的方式展示获取的贴片 机、印刷机的实时数据成功。	黑盒	通过
	数据权限管理测试	设置 SMT 虚拟生产线数据访问权限,且数据权限设置成功。	黑盒	通过
	物理实体连接数据库 测试	将 SMT 生产线上的贴片机、贴片机、回流焊、检测机等设备与数据库之间成功建立连接。	黑盒	通过
连接映射	虚拟实体连接数据库 测试	一 二 二 二 二 二 二 二 二 二		通过
	数字孪生服务连接数 据库测试	SMT 虚拟生产线的数字孪生服务与数据库之间成功建立连接。	黑盒	通过
	物理实体与孪生数据 的交互测试	改变贴片机的运行速度,孪生数据 也发生相应改变。	黑盒	通过
	虚拟实体与孪生数据 的交互测试	孪生数据发生改变,贴片机、印刷 机等虚拟实体也发生相应的改变。	黑盒	通过
	物理实体与虚拟实体 的交互测试	改变贴片机的运行速度,虚拟空间 中贴片机的运行速度也发生相应改 变。	黑盒	通过
交互与集成	物理实体与数字孪生 服务的交互测试	改变贴片机的运行速度,数字孪生 服务也发生相应改变。	黑盒	通过
	虚拟实体与数字孪生服务的交互测试	改变贴片机、印刷机等虚拟实体的 状态,数字孪生服务也发生相应的 状态改变。	黑盒	通过
	孪生数据与数字孪生 服务的交互测试	SMT 虚拟生产线的孪生数据发生改变,数字孪生服务也发生相应的改变。	黑盒	通过
服务部署	服务部署环境配置测 试	配置 SMT 虚拟生产线的数字孪生部 署环境成功。	黑盒	通过
水分 叩伯	服务部署测试	部署 SMT 虚拟生产线的数字孪生服 务成功。	黑盒	通过

测试项	测试子项	测试目标	类型	测试结果
	服务运行测试	运行 SMT 虚拟生产线的数字孪生服务,获取正确的运行结果。	黑盒	通过
服务运行	运行状态监测测试	在数字孪生服务运行的过程中,能够监测到 SMT 生产线中贴片机、印刷机等设备的服务运行状态。	黑盒	通过
	服务搜索测试	输入 SMT 生产线中的服务名称等检索条件,正确返回服务搜索结果。	黑盒	通过
服务管理	服务启动测试	启动 SMT 生产线数字孪生服务成功。	黑盒	通过
	服务停止测试	停止 SMT 生产线数字孪生服务成功。	黑盒	通过

2. 性能测试

2.1 通用性能测试

2.1.1 响应时间测试

分别测试用户登录、贴片机故障数据统计、印刷缺陷率预测模型加载等三组功能,分别记录响应时间,三组功能点的平均响应时间为: 1.0s。

实验组	功能点	响应时间(s)
1	用户登录	0.8
2	贴片机故障数据统计	1.3
3	印刷缺陷率预测模型加载	1.0

2.1.2 负载测试

测试并发 20 用户操作使用系统时系统的负载性能。模拟不同数量的并发用户如 1 用户、5 用户、9 用户、13 用户、17 用户、20 用户,分别进行 AOI 焊接缺陷质量评估、SMT 产线虚拟场景模型交互、印刷机工作参数查询等操作,无失败事务。

事务	用户并发 数量 执 行情况	1	5	9	13	17	20
AOI 焊 接	事务平均 响应时间 (秒)	0. 397	0. 250	0. 264	0. 379	0. 543	0. 566
缺陷质量	事务通过数	1	5	9	13	17	20

评估							
SMT 产 线	事务平均 响应时间 (秒)	0. 571	0. 921	1. 934	2. 567	3. 865	5. 227
虚拟场景模型交互	事务通过数	1	5	9	13	17	20
印刷机	事务平均 响应时间 (秒)	0. 176	0.208	0. 243	0. 456	0. 388	0. 581
工作参数查询	事务通过 数	1	5	9	13	17	20

2.2 工业数字孪生产品模型计算性能测试

2.2.1 模型打开加载时间测试

启动 SMT 产线数字孪生系统,记录将 SMT 产线数字孪生模型装载到系统中所花费的时间,然后关闭系统,重复三次操作,三组测试平均模型打开加载时间为:5.52s。

实验组	模型打开加载时间(s)
1	5.57
2	5.63
3	5.37

2.2.2 模型交互加载时间

用户登录 SMT 产线数字孪生系统,分别与 SMT 印刷参数推荐模型、锡膏质量回归预测模型、SMT 产线缺陷识别模型等进行交互,记录所花费的时间。三组测试平均模型交互加载时间为: 6.45s。

实验组	模型交互加载时间(s)
SMT 印刷参数推荐模型交互加载	6.17
锡膏质量回归预测模型交互加载	4.91
SMT 产线缺陷识别模型交互加载	8.26

2.2.3 数据打开加载时间测试

数据打开加载时间测试共分为三组进行。

第一组将 SMT 生产线各个环节的数据,包括锡膏印刷参数设置数据、印刷要素数据、SPI 检测数据等,一共 2000 条,首次加载到 SMT 质量特性预测模型中,记录所花费的时间。

第二组将锡膏印刷参数数据、印刷要素数据(锡膏类型、支撑、设备状态等)、SPI 检测数据(体积、面积、高度等),一共 1500 条,首次加载到锡膏印刷质量追溯模型中,记录所花费的时间。

第三组将 SMT 生产线各个环节的数据,包括锡膏印刷参数设置数据、印刷要素数据、SPI 检测数据等,一共 2000 条,首次加载到 SMT 单板直通率预测模型中,记录所花费的时间。

三组测试平均数据打开加载时间为:	2 22-
一组测试干均数据打开加载的间外	2.23S。

实验组	模型	数据量(条)	数据打开加载时间 (s)
1	SMT 质量特性预测模型	2000	2.56
2	锡膏印刷质量追溯模型	1500	1.96
3	SMT 单板直通率预测模型	2000	2.18

2.2.4 数据交互加载时间测试

数据交互加载时间测试共分为三组进行。

第一组将 SMT 生产线各个环节的数据,包括锡膏印刷参数设置数据、印刷要素数据、SPI 检测数据等,一共 2000 条,在系统运行交互时加载到 SMT 质量特性预测模型中,记录所花费的时间。

第二组将锡膏印刷参数数据、印刷要素数据(锡膏类型、支撑、设备状态等)、SPI 检测数据(体积、面积、高度等),一共 1500 条,在系统运行交互时加载到锡膏印刷质量追溯模型中,记录所花费的时间。

第三组将 SMT 生产线各个环节的数据,包括锡膏印刷参数设置数据、印刷要素数据、SPI 检测数据等,一共 2000 条,在系统运行交互时加载到 SMT 单板直通率预测模型中,记录所花费的时间。

三组测试平均数据打开加载时间为: 4.23s。

实验组	模型	数据量(条)	数据交互加载时间 (s)
1	SMT 质量特性预测模型	2000	4.13
2	锡膏印刷质量追溯模型	1500	3.68
3	SMT 单板直通率预测模型	2000	4.88

注意事项 NOTES

1. 本报告未加盖"试验报告专用章"无效;

This test report is invalid without testing stamp.

2. 本报告未经本实验室批准不得部分复印:

The test report shall not be reproduced except in full without the written approval of the Laboratory.

3. 本报告试验结果只对受试样品有效:

The test results presented in this report is only valid to the samples tested.

实验室地址(Address): 北京亦庄经济技术开发区同济南路 8号

No.8 TongJiNanLu, Beijing Economic-Technological Development Area, beijing, China

邮政编码 (Zipcode) : 100176

电 话(Telephone): 010-64102810

传 真(Fax) : 010-64102861

网 址(Website) : WWW.CESI.CN

欢迎关注"中国赛西"微信公众号,在线填写满意度调查问卷。