Let us look at:

€ S(U+BU, V+ DV, N) + S(U-BU, V-DV, N) < ZS(U,V,N)

Stability of a system requires that (*) holds.

Illustration:

Consider two systems separated by totally restrictive wall, i.e., no talking between the two systems.

System 1 has S(U, V, N). 7 two identical systems Systems S(U, V, N).

System has entropy 25(U,V,N)

Nous imagine are move a ting bit of energy from subsystem 1 to subsystem 2.

EZ-18 What does this mean? If the restrictive wall was removed, energy would flow spontaneously across the wall: one sabsystem would in wease its energy and the other would decrease its onergy. Actually: Even within one subsystem, the system would find it advantageous to transfer energy from region to another, i.e., inhomogeneities would develop (the wall really just helped us to think about this). -> We would have loss of homogeneity. Said differently, the system is unstable. Loss of homogeneity is the hallmark of a phase transition. So bart to Eq. @ from page E2-16: $S(u+\Delta u,V+\Delta v,N) + S(u-\Delta u,V-\Delta v,N) < 2 S(u,v,N)$ for system to be stable

K- - - 1 (2V) iso thermal compressibility

 $Y_s = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_s$ adia batic compressibility

(= () Leat capacity at constant volume

(p = () heat capacity at constant

Reformulate stability criterium in terms of energy instead of entropy.

Stability: Entropy is maximal

Energy is minimal

=> U(S+DS, V+DV, N) + U(S-DS, V-DV, N) > ZU(S, V, N)

Local conditions for stability:

 $\left(\frac{3^2 U}{3s^2}\right)^{VIN} = \left(\frac{3}{3}\right)^{VIN} > 0$

Ling T = (2N) $\left(\frac{\partial^2 U}{\partial V^2}\right)_{S_1N} = \left(\frac{\partial P}{\partial V}\right)_{S_1N} > 0$ using P = (2h)

