

Improving the Effectiveness of Program Managers

Systems and Software Technology Conference Salt Lake City, Utah May 3, 2006

Outline

- Background
- Best Practices
- DOD Practices
- Recommendations
- DOD Response

Environment

- Planned investments in DOD weapons systems
 - ★ \$700 billion in 2001
 - ★ \$1.4 trillion in 2006
- Cost of development exceeding estimates by 30-40%
- Fewer quantities purchased than anticipated
- Longer development schedules needed

Background Our Best Practices Work

Leading companies we've visited	Companies' best practices
Motorola	Disciplined software and management processes
Caterpillar	Prototype testing to improve reliability
■ Toyota	 Program management practices to encourage collaboration
■ FedEx	 Requirements that specify reliability and total ownership costs
■ NCR Teradata	 Collection of metrics data to improve software reliability
Boeing	Technology readiness levels and design maturity
Hughes Space and Communications	Statistical control over production processes

Best Practices' Knowledge Points

Knowledge is gained at key development points during product development			
Knowledge point 1	 Match is made between customer's wants and resources (i.e. technology, design, time, and funding) Critical technologies should have reached Technology Readiness Level 7 or higher 		
Knowledge point 2	 Product's design demonstrates ability to meet performance requirements * High percent of design drawings released to manufacturing 		
Knowledge point 3	 Product can be manufactured within cost, schedule, and quality targets and is reliable * High percent of production processes under statistical process controls and achieving Cpk of 1.33 		

Our Recent Report

Best Practices: Better
Support of Weapon System
Program Managers Needed
to Improve Outcomes
(GAO-06-110) and
Survey of Weapon System
Program Managers (GAO-06-112SP)

- * How do leading companies support their program managers, and hold them accountable for program outcomes?
- What can DOD do to better position its program managers for successful outcomes?

Our Report's Methodology

- Case studies of leading companies
 - Motorola, Siemens Medical Group, Toyota Avalon, Wells Fargo, and Moulson-Coors Inc.
- Literature reviews
- Focus groups
 - ⋆ 5 locations, 28 program managers
- Survey
 - ⋆ Category 1 and 2 program managers
- Interviews

Success Factors for Program Managers

- Critical support and accountability factors
- Investment strategy
- Business case
- Knowledge-based product development
- Accountability/rewards
- Other success factors

U.S. GAO

Critical Support and Accountability Factors

Gap between resources and requirements is closed Knowledge-based process is followed; information on cost, schedule, design, and production maturity is demanded throughout

Investment Strategy

- Consistent with company strategic vision
 - ⋆ Corporate leadership accountable
- Forecast market needs
 - Economic trends, market position, technologies
- Long-term and short-term planning
 - Project selection and prioritization make trade-offs that fit within corporate goals

Business Case

- Match resources and requirements using systems engineering
 - * evolutionary product development
 - * achievable requirements
 - short cycle times
 - estimate time, money, technologies, people
 - program manager assigned for development duration
- Goal—close gap between customer wants and available resources *before* committing to development

Knowledge-Based Product Development

- Gated process that builds knowledge over time
 - ⋆ Program manager accountable for execution
 - Frequent reviews, decision point meetings with program manager and senior level managers
 - Management decisions based on data submitted by program manager
 - metrics, such as earned value, percentage of design drawings completed, process controls under statistical control, tests completed
 - Development progress assessed against goals
 - Program managers encouraged to share bad news

Accountability/Rewards

Sustained leadership

- empower—ensure program managers have authority to make decisions based on quantifiable data
- unwavering commitment to trusted program managers
- ⋆ encourage collaboration and communication

Program manager

- ⋆ develop product knowledge
- ⋆ meet cost, schedule, performance goals
- ⋆ communicate problems and risk
- ⋆ implement risk mitigation strategies
- Tenure
- Rewards

Other Success Factors

- Disciplined, standard processes
- Lessons learned
 - * identify what worked well and what didn't
- Training/mentoring
- Teamwork

DOD Practices

- DOD program manager environment
- DOD layers of oversight
- Investment strategy
- Business case
- Knowledge-based product development
- Accountability/rewards
- Incentives
- Formal vs. informal authority
- Obstacles
- Authority

DOD Program Manager Environment

Policy encourages gaps between resources and requirements to be closed, but programs often move forward with unstable requirements and technology

Knowledge-based process is encouraged but not followed; DOD lacks management controls to enforce process; program managers incentivized to suppress bad news

Program manager does not stay through execution

Oversight Layers

Includes Secretary; Deputy Under Secretary; Under Secretary for Acquisition Technology & Logistics; Comptroller; Assistant Secretary for command, Control Communication and Intelligence; Director, Operational Test & Evaluation; Assistant Secretary (Intelligence Oversight; Inspector General; Joint Chiefs of Staff Includes Defense Contract Audits Agency, Defense Contract Audit Agency, Defense Finance and Accounting Service, Defense Information Systems Agency, Defense Intelligence Agency

Best practices

Includes CEO, COO, CFO, Chief Engineer, and sometimes project office

Investment Strategy

- Overarching investment strategy with senior leader commitment is missing
 - ⋆ long-term vision, but no defined strategy
 - ⋆ leadership—many layers
 - short- and long-term investment prioritization is lacking and trade-offs among programs are not made
- DOD starts more programs than it can afford
 - ⋆ programs compete for funding

Business Case

DOD policies	DOD practices	
Match requirements to resources	Requirements are rarely stable or matched to resources	
Divide development into evolutionary blocks	Revolutionary development is the norm	
Use mature technologies	■ Technologies are not mature	
■ Provide full funding	 Unwavering leadership and funding commitment not provided 	

Knowledge-Based Product Development

Policy

 encourages quantifiable data at milestone decision points

Practice

- * data either ignored or not collected
 - percent of design drawings completed less used
 - percent of production processes under statistical controls not required

Knowledge-Based Product Development (cont'd)

Low levels of knowledge predict increases in cost:

Program	Percent increase in R&D	Percent of critical technologies mature
ATIRCMS	5.6	50% (3 of 6)
C-5 RERP	2.1	100% (11 of 11)
DD(X) Destroyer	417.3	25% (3 of 12)
Future Combat System	50.8	32% (17 of 52)
Joint Strike Fighter	30.1	25% (2 of 8)

Knowledge-Based Product Development (cont'd)

Knowledge-based development processes used to a great extent:

Processes	Program managers	Program executive officers
Technology readiness levels	32%	23%
Design drawings complete	32%	11%
Statistical control of production processes	26%	14%

Accountability/Rewards

Policy

- Program managers accountable for cost, schedule and performance
- ⋆ Rewards—intrinsic

Practice—Accountability difficult to enforce

- ★ Program managers lack authority over requirements and key resources, such as funding and personnel.
- ⋆ Program managers have limited tenure
- ★ Practice lies more in maintaining priority of program than in managing for outcomes

Program managers: "We can't be held accountable for what we don't control"

Incentives

Formal vs. Informal Authority

Task	% formal authority	% informal influence
Requirements	10	82
Changes to requirements	13	85
Technology development	42	45
Approved program baseline	72	22
Testing requirements	48	49
Request for proposal	85	11
Contractor selection	48	33

Obstacles to Successful Program Management

Additional Authority Wanted

Conclusions • DOD needs

- * a better foundation for program managers and more steadfast support for them once it commits to programs
- * a long-term investment strategy that can mitigate risks by separating long-term wants from needs
- * a business case for new projects that assures they fit into overall priorities and have adequate resources in terms of time, money and technology

If DOD implements these things it will have gone a long way to removing incentives for negative behaviors that have plagued many DOD projects.

Recommendations

- Develop a long-term and shortterm investment strategy
- Senior leaders commit to a business case for each major weapon development by Milestone B
- Develop and implement a process to instill and sustain accountability for successful program outcomes

DOD Reponse

- Defense Acquisition Performance Assessment
 - ⋆ December 2005—correct government induced instability
- Quadrennial Defense Review
 - ★ February 2006—reform business processes

Whether these efforts will result in improved outcomes depends on implementation and discipline.

A&D