Devoir surveillé n°13

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 La variable aléatoire S_n représente la position du pion à l'issue du $n^{\text{ème}}$ déplacement.

Tout d'abord, $p_0 = \mathbb{P}(S_0 = 0) = 1$. Clairement, $X_1(\Omega) = \{-1, 1\}$ donc $p_1 = \mathbb{P}(X_1 = 0) = 0$. Enfin,

$$\{S_2=0\}=\{X_1+X_2=0\}=(\{X_1=1\}\cap\{X_2=-1\})\sqcup(\{X_1=-1\}\cap\{X_2=1\})$$

Par indépendance de X_1 et X_2 ,

$$p_2 = \mathbb{P}(S_2 = 0) = \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = -1) + \mathbb{P}(X_1 = -1)\mathbb{P}(X_2 = 1) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

3 Soit $n \in \mathbb{N}$ impair. Soit $\omega \in \Omega$. Puisque les X_k sont à valeurs dans $\{-1, 1\}$ et que $-1 \equiv 1[2]$,

$$S_n(\omega) = \sum_{k=1}^n X_k(\omega) \equiv n[2]$$

Mais comme n est impair, $S_n(\omega) \equiv 1[2]$. Notamment, l'événement $\{S_n = 0\}$ est impossible. Ainsi $p_n = \mathbb{P}(S_n = 0) = 0$.

4 Comme X_k est à valeurs dans $\{-1, 1\}$, Y_k est à valeurs dans $\{0, 1\}$, de sorte que Y_k suit une loi de Bernoulli. De plus,

$$\mathbb{P}(Y_k = 1) = \mathbb{P}(X_k = 1) = \frac{1}{2}$$

donc Y_k suit une loi de Bernoulli de paramètre $\frac{1}{2}$.

 $\boxed{\mathbf{5}}$ Z_n est la somme de n variables aléatoires mutuellement indépendantes suivant la même loi $\mathcal{B}(1/2)$ donc $Z_n \sim \mathcal{B}(n,1/2)$.

De plus,

$$S_n = \sum_{k=1}^n X_k = \sum_{k=1}^n (2Y_k - 1) = 2S_n - n$$

6 La formule proposée est clairement vraie pour m = 0 puisque $p_0 = 1$. Pour $m \in \mathbb{N}^*$, on peut appliquer la question précédente pour affirmer que

$$p_{2m} = \mathbb{P}(S_{2m} = 0) = \mathbb{P}(Z_{2m} = m) = \binom{2m}{m} \cdot \left(\frac{1}{2}\right)^m \cdot \left(\frac{1}{2}\right)^{2m-m} = \binom{2m}{m} \cdot \frac{1}{4^m}$$

- The La suite (p_n) est à valeurs dans [0,1] (suite de probabilités) donc elle est bornée. Par définition du rayon de convergence, $R_p \ge 1$.
- 8 Soit $m \in \mathbb{N}^*$. Alors

$$\prod_{k=1}^{m} \left(-\frac{1}{2} - k + 1 \right) = \prod_{k=1}^{m} \left(-\frac{2k-1}{2} \right) = \frac{(-1)^m}{2^m} \prod_{k=1}^{m} (2k-1) = \frac{(-1)^m}{2^m} \frac{\prod_{k=1}^{2m} k}{\prod_{k=1}^{m} 2k} = \frac{(-1)^m}{2^m} \frac{(2m)!}{2^m m!} = \frac{(-1)^m (2m)!}{4^m m!}$$

On en déduit que

$$\frac{(-1)^m}{m!} \prod_{k=1}^m \left(-\frac{1}{2} - k + 1 \right) = \frac{1}{4^m} \cdot \frac{(2m)!}{(m!)^2} = \frac{1}{4^m} \binom{2m}{m} = p_{2m}$$

Cette expression est encore valide lorsque m = 0 en convenant qu'un produit indexé sur l'ensemble vide vaut 1.

D'après un développement en série entière usuel

$$\forall t \in]-1,1[,\ (1+t)^{-1/2} = \sum_{m=0}^{+\infty} \frac{1}{m!} \left[\prod_{k=0}^{m-1} (-1/2 - k) \right] t^m = \sum_{m=0}^{+\infty} \frac{1}{m!} \left[\prod_{k=1}^{m} (-1/2 - k + 1) \right] t^m$$

donc

$$\forall x \in]-1, 1[, (1-x^2)^{-1/2} = \sum_{m=0}^{+\infty} \frac{1}{m!} \left[\prod_{k=1}^{m} (-1/2 - k + 1) \right] (-x^2)^m$$

$$= \sum_{m=0}^{+\infty} \frac{(-1)^m}{m!} \left[\prod_{k=1}^{m} (-1/2 - k + 1) \right] x^{2m}$$

$$= \sum_{m=0}^{+\infty} p_{2m} x^{2m}$$

$$= \sum_{m=0}^{+\infty} p_m x^m \quad \text{car } p_{2m+1} = 0 \text{ pour tout } m \in \mathbb{N}$$

$$= f(x)$$

10 • Pour tout $n \in \mathbb{N}^*$, $\{T = n\} \subset \{S_n = 0\}$, donc $\mathbb{P}(T = n) \leq \mathbb{P}(S_n = 0)$.

Or, pour tout n impair, $\mathbb{P}(S_n = 0) = 0$, donc, pour tout n impair, $q_n = \mathbb{P}(T = n) = 0$. En particulier, pour n = 1, $q_1 = 0$. • $S_1 = 0$ est impossible, donc, par définition de T, on a $T \ge 2$ et $T = 2 \Leftrightarrow S_2 = 0$, donc $q_2 = \mathbb{P}(T = 2) = \mathbb{P}(S_2 = 0) = 0$ $p_2 = \frac{1}{2}$.

| 11 | • Pour tout $x \in [-1, 1]$,

$$|g_n(x)| = |q_n x^n| = \mathbb{P}(T = n)|x|^n \le \mathbb{P}(T = n)$$

donc $\|g_n\|_{\infty}^{[-1,1]} \le \mathbb{P}(T=n)$. Or $\sum_{n\geq 0} \mathbb{P}(T=n)$ converge (et vaut $1-\mathbb{P}(T=+\infty)$ car $T(\Omega)=\mathbb{N}\cup\{+\infty\}$), donc, par comparaison, $\sum_{n\geq 0} \|g_n\|_{\infty}^{[-1,1]}$ converge, donc la série de fonctions $\sum_{n\geq 0} g_n$ converge normalement sur [-1,1].

• Comme $\sum_{n>0} g_n$ converge normalement sur [-1,1], $\sum_{n>0} g_n$ converge simplement sur [-1,1], donc, en particulier, pour x = 1, $\sum g_n(1)$ converge, ce qui assure que

$$R_q = \sup\{\rho > 0 : \sum_{n \ge 0} q_n \rho^n \text{ converge}\} \ge 1$$

12 | f et g sont deux fonctions développables en série entière au moins sur] -1,1[, donc, par produit de Cauchy, fg est développable en série entière au moins sur]-1,1[et, pour tout $x \in]-1,1[$,

$$f(x)g(x) = \left(\sum_{n=0}^{+\infty} p_n x^n\right) \left(\sum_{n=0}^{+\infty} q_n x^n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} p_k q_{n-k}\right) x^n$$

$$= \left(\sum_{k=0}^{0} p_k q_{n-k}\right) x^0 + \sum_{n=1}^{+\infty} \left(\sum_{k=0}^{n} p_k q_{n-k}\right) x^n$$

$$= p_0 q_0 + \sum_{n=1}^{+\infty} p_n x^n \quad \text{(d'après la relation admise pour tout } n \in \mathbb{N}^*\text{)}$$

$$= 0 + \sum_{n=1}^{+\infty} p_n x^n$$

$$= -1 + p_0 x^0 + \sum_{n=1}^{+\infty} p_n x^n$$

$$= -1 + \sum_{n=0}^{+\infty} p_n x^n = -1 + f(x).$$

• Comme, pour tout $x \in]-1,1[$, $f(x)=(1-x^2)^{-1/2}$ (d'après la question 9), la relation obtenue à la question

$$\forall x \in]-1,1[, (1-x^2)^{-1/2}g(x) = (1-x^2)^{-1/2}-1$$

donc, en multipliant de part et d'autre par $\sqrt{1-x^2}=(1-x^2)^{1/2}$, on a bien, pour tout $x\in]-1,1[$,

$$g(x) = 1 - \sqrt{1 - x^2}$$

• Pour tout $x \in]-1,1[,$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \prod_{k=1}^{n} (\alpha - k + 1) x^{n}$$

donc, pour $\alpha = 1/2$, on a, pour tout $x \in]-1,1[$, comme $(-x^2) \in]-1,1[$,

$$\sqrt{1-x^2} = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \prod_{k=1}^{n} \left(\frac{1}{2} - k + 1\right) (-x^2)^n = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n!} \prod_{k=1}^{n} \left(\frac{1}{2} - k + 1\right) x^{2n}$$

donc

$$g(x) = 1 - \sqrt{1 - x^2} = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n!} \prod_{k=1}^{n} \left(\frac{1}{2} - k + 1\right) x^{2n}$$

où le rayon de convergence de cette série entière vaut

14 Pour tout $x \in]-1,1[$, $g(x)=\sum_{n=0}^{+\infty}q_nx^n=\sum_{n=1}^{+\infty}\frac{(-1)^{n+1}}{n!}\prod_{k=1}^n\left(\frac{1}{2}-k+1\right)x^{2n}$, donc, par unicité du développement en série entière sur]-1,1[, on a :

$$q_0 = 0, \quad \left(\forall n \in \mathbb{N}^*, q_{2n} = \frac{(-1)^{n+1}}{n!} \prod_{k=1}^n \left(\frac{1}{2} - k + 1 \right) \right) \quad \text{et} \quad (\forall n \in \mathbb{N}, q_{2n+1} = 0)$$

15 \cdot Comme $T(\Omega) = \mathbb{N} \cup \{+\infty\}$, on a

$$\mathbb{P}(T = +\infty) = 1 - \sum_{n=0}^{+\infty} \mathbb{P}(T = n) = 1 - \sum_{n=0}^{+\infty} q_n = 1 - \sum_{n=0}^{+\infty} q_n 1^n = 1 - g(1)$$

• Or, comme pour tout $n \in \mathbb{N}$, g_n est continue sur [-1,1] et $\sum_{n>0} g_n$ converge normalement, donc uniformément, sur [-1,1]

(d'après la questin 11), la fonction $g = \sum_{n=0}^{+\infty} g_n$ est continue sur [-1, 1].

En particulier, elle est continue en 1, donc

$$g(1) = \lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} 1 - \sqrt{1 - x^{2}}$$
 (d'après l'expression trouvée en 13)
= 1 - 0 = 1.

• On a donc $\mathbb{P}(T = +\infty) = 1 - g(1) = 0$, donc l'événement $T = +\infty$ est quasi impossible, donc on est quasi certain que le pion reviendra à l'origine à un instant donné.

 $|\mathbf{16}|$ Pour me raccrocher au programme, je vais alors considérer que $\mathrm{T}(\Omega)=\mathbb{N}$.

$$g: x \mapsto \sum_{n=0}^{+\infty} q_n x^n = \sum_{n=0}^{+\infty} x^n \mathbb{P}(T=n)$$
 est la série génératrice de T

 $g: x \mapsto \sum_{n=0}^{+\infty} q_n x^n = \sum_{n=0}^{+\infty} x^n \mathbb{P}(T=n)$ est la série génératrice de T. D'après le cours, T admet une espérance si et seulement si g est dérivable en 1. Or, pour tout $x \in]-1,1[,g(x)=]$ $1 - \sqrt{1 - x^2}$, donc g est dérivable sur] - 1, 1[et, pour tout $x \in] - 1, 1[$

$$g'(x) = \frac{2x}{2\sqrt{1-x^2}} = \frac{x}{\sqrt{1-x^2}} \xrightarrow[x \to 1^-]{} + \infty$$

g est continue sur [-1,1], dérivable sur]-1,1[et $\lim_{x\to 1^-} g'(x)=+\infty$, donc, d'après le théorème de la limite de la dérivée, g n'est pas dérivable en 1, et, par suite, T n'admet pas d'espérance.

Problème 2

On importe auparavant la bibliothèque random pour tout ce qui suit.

```
import random as rd
```

1 On propose une première version à l'aide de l'indication de l'énoncé.

On l'applique au graphe suivant.


```
>>> V= [ [1, 2], [0, 3], [0, 3], [1, 2] ]
>>> VA(V)
[[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
```

On propose ensuite une seconde version à l'aide de listes en compréhension.

```
def VA(V):
    n = len(V)
    return [ [1 if j in v else 0 for j in range(n)] for v in V]
```

On l'applique à nouveau au graphe précédent.

```
>>> V= [ [1, 2], [0, 3], [0, 3], [1, 2] ]
>>> VA(V)
[[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
```

2 Une première version à l'aide de boucles itératives.

```
>>> A = [[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
>>> AV(A)
[[1, 2], [0, 3], [0, 3], [1, 2]]
```

Une seconde version à l'aide de listes en compréhension.

```
def AV(A):
    return [ [j for j in range(len(ligne)) if ligne[j]==1] for ligne in A]
```

```
>>> A = [[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
>>> AV(A)
[[1, 2], [0, 3], [0, 3], [1, 2]]
```

- 3 On a clairement N = $\sum_{0 \le i < j \le n-1} X_{i,j}.$
- Comme les $X_{i,j}$ sont mutuellement indépendants et de même loi $\mathcal{B}(p)$, $N \sim \mathcal{B}(m,p)$. En particulier, N possède une espérance et une variance. Plus précisément, $\mathbb{E}(N) = mp$ et $\mathbb{V}(N) = mp(1-p)$.
- 5 On prend garde au fait que la matrice d'adjacence doit être symétrique.

```
>>> import pprint

>>> pprint.pprint(GrapheAleatoire(10, .5))

[[0, 0, 1, 0, 0, 1, 0, 0, 0, 0],

[0, 1, 0, 1, 0, 0, 0, 0, 1, 1],

[1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0],

[0, 1, 1, 0, 0, 0, 1, 0, 0, 1],

[0, 0, 1, 0, 0, 0, 1, 1, 1, 0],

[1, 0, 0, 0, 0, 1, 1, 0, 1, 0],

[0, 0, 0, 1, 1, 1, 0, 0, 0, 1],

[0, 0, 1, 0, 1, 0, 0, 1, 1, 1],

[0, 1, 0, 0, 1, 1, 0, 1, 1, 1],

[0, 1, 0, 1, 0, 0, 1, 1, 1, 0]]
```

6. 6.a Tout d'abord I_k est à valeurs dans $\{0,1\}$ donc il suit une loi de Bernoulli. De plus, le sommet k est sisolé si et seulement s'il n'est l'extrémité d'aucune arête. Autrement dit,

$$\{\mathbf{I}_k=1\}=\bigcap_{i\neq k}\{\mathbf{X}_{i,k}=0\}$$

Remarque. On considère que $X_{i,k} = X_{k,i}$ pour $k \neq i$.

Les X_{i,k} étant mutuellement indépendantes,

$$\mathbb{P}(\mathbf{I}_k = 1) = \prod_{i \neq k} \mathbb{P}(\mathbf{X}_{i,k} = 0) = (1 - p_n)^{n-1}$$

Finalement $I_k \sim \mathcal{B}(q_n)$ avec $q_n = (1 - p_n)^{n-1}$.

6.b Il est clair que $Y_n = \sum_{k=0}^{n-1} I_k$. Donc Y_n possède une espérance et $\mathbb{E}(Y_n) = \sum_{k=0}^{n-1} \mathbb{E}(Y_k)$. Comme $Y_k \sim \mathcal{B}(q_n)$, $\mathbb{E}(Y_k) = q_n$ puis $\mathbb{E}(Y_n) = nq_n$.

7.a La fonction $f: t \mapsto \ln(1+t)$ est concave sur $]-1, +\infty$ puisque $f''(t) = -\frac{1}{(1+t)^2} \le 0$ pour tout $t \in]-1, +\infty[$. Notamment, pour tout $t \in]-1, +\infty[$, $f(t) \le f'(0)t + f(0)$ i.e. $\ln(1+t) \le t$ pour tout $t \in]-1, +\infty[$. On en déduit que $\ln(1-x) \le -x$ pour tout $x \in [0,1[$. De plus,

$$\mathbb{E}(Y_n) = nq_n = n(1 - p_n)^{n-1} = \exp(\ln(n) + (n-1)\ln(1 - p_n))$$

Or $\ln(1 - p_n) \le -p_n$ donc

$$\ln(n) + (n-1)\ln(1-p_n) \le \ln(n) - (n-1)p_n = \ln(n) - (n-1)f(n)\frac{\ln n}{n} = \ln(n)\left(1 - \frac{n-1}{n}f(n)\right)$$

Par hypothèse, $f(n) \underset{n \to +\infty}{\longrightarrow} +\infty$, donc, par opérations sur les limites,

$$\lim_{n \to +\infty} \ln(n) \left(1 - \frac{n-1}{n} f(n) \right) = -\infty$$

Par majoration,

$$\lim_{n \to +\infty} \ln(n) + (n-1)\ln(1-p_n) = -\infty$$

puis, par composition par l'exponentielle, $\lim_{n\to+\infty} \mathbb{E}(Y_n) = 0$.

7.b Comme Y_n est à valeurs dans [0, n],

$$0 \leq \mathbb{P}(\mathbf{Y}_n > 0) = \sum_{k=1}^n \mathbb{P}(\mathbf{Y}_n = k) \leq \sum_{k=1}^n k \mathbb{P}(\mathbf{Y}_n = k) = \sum_{k=0}^n k \mathbb{P}(\mathbf{Y}_n = k) = \mathbb{E}(\mathbf{Y}_n)$$

D'après le théorème des gendarmes, $\lim_{n\to +\infty} \mathbb{P}(Y_n>0)=0$ ou encore $\lim_{n\to +\infty} \mathbb{P}(Y_n=0)=1$. Autrement dit, pour un graphe dense avec un grand nombre de sommets, il est peu probable qu'un sommet soit isolé.

8 8.a Soient i et j deux sommets distincts. Alors

$$\{I_i = 1\} \cap \{I_j = 1\} = \left(\bigcap_{k \notin \{i,j\}} \{X_{i,k} = 0\}\right) \cap \left(\bigcap_{k \notin \{i,j\}} \{X_{j,k} = 0\}\right) \cap \{X_{i,j} = 0\}$$

Par indépendance des $X_{i,j}$,

$$\mathbb{P}(\{\mathrm{I}_i=1\}\cap\{\mathrm{I}_j=1\})=(1-p_n)^{2n-1}$$

On sait que $Y_n = \sum_{k=0}^{n-1} I_k$ donc

$$\mathbb{E}(\mathbf{Y}_{n}^{2}) = \sum_{k=0}^{n-1} \mathbb{E}(\mathbf{I}_{k}^{2}) + 2 \sum_{0 \le i < j < n-1} \mathbb{E}(\mathbf{I}_{i}\mathbf{I}_{j})$$

Puisque I_k est à valeurs dans $\{0,1\}$, $I_k^2 = I_k$ donc $\mathbb{E}(I_k^2) = \mathbb{E}(I_k) = q_n$. De même, pour i < j, $I_j I_j$ est à valeurs dans $\{0,1\}$ donc suit une loi de Bernoulli de paramètre

$$\mathbb{P}(I_i I_i = 1) = \mathbb{P}(\{I_i = 1\} \cap \{I_i = 1\}) = (1 - p_n)^{2n-1}$$

de sorte que $\mathbb{E}(I_iI_i) = (1-p_n)^{2n-1}$. On en déduit que

$$\mathbb{E}(\mathbf{Y}_n^2) = nq_n + 2\binom{n}{2}(1 - p_n)^{2n-1} = n(1 - p_n)^{n-1} + n(n-1)(1 - p_n)^{2n-1}$$

8.b Posons $P(t) = \mathbb{E}((U + tV)^2)$ pour tout $t \in \mathbb{R}$. Par positivité de l'espérance, P est positive sur \mathbb{R} . De plus, par linéarité de l'espérance, $P(t) = \mathbb{E}(U^2) + 2t\mathbb{E}(UV) + t^2\mathbb{E}(V^2)$.

Si $\mathbb{E}(V)^2 \neq 0$, P est polynomiale de degré 2 et de signe constant. Ainsi $\Delta = 4\mathbb{E}(UV)^2 - 4\mathbb{E}(U)^2\mathbb{E}(V^2) \geq 0$ ou encore $\mathbb{E}(UV)^2 \leq \mathbb{E}(U^2)\mathbb{E}(V^2)$.

Si $\mathbb{E}(V^2) = 0$, alors P est affine de signe constant. En considérant les limites de P en $\pm \infty$, on en déduit que $\mathbb{E}(UV) = 0 \le \mathbb{E}(U^2)\mathbb{E}(V^2)$.

8.c En appliquant l'inégalité de Cauchy-Schwarz à W et $\mathbb{I}_{\{W>0\}}$, on obtient

$$\mathbb{E}(W\mathbb{1}_{\{W>0\}})^2 \leq \mathbb{E}(W^2)\mathbb{E}(\mathbb{1}^2_{\{W>0\}})$$

Comme $\mathbb{I}_{\{W>0\}}$ est à valeurs dans $\{0,1\}$, $\mathbb{I}^2_{\{W<0\}} = \mathbb{I}_{\{W<0\}}$ et $\mathbb{I}_{\{W<0\}} \sim \mathcal{B}(\mathbb{P}(W>0))$ donc $\mathbb{E}(\mathbb{I}^2_{\{W>0\}}) = \mathbb{E}(\mathbb{I}_{\{W>0\}}) = \mathbb{P}(W>0)$.

Ensuite, comme W est positive $\Omega=\{W>0\}\sqcup\{W=0\}$. Si $\omega\in\{W>0\}$, $W(\omega)\mathbb{1}_{\{W>0\}}(\omega)=W(\omega)$ et si $\omega\in\{W=0\}$, $W(\omega)\mathbb{1}_{\{W>0\}}=0=W(\omega)$. Finalement, $W\mathbb{1}_{\{W>0\}}=W$ puis $\mathbb{E}(W\mathbb{1}_{\{W>0\}})=\mathbb{E}(W)$.

On en déduit que $\mathbb{E}(W)^2 \le \mathbb{E}(W^2)\mathbb{P}(W > 0)$, puis $\mathbb{P}(W > 0) \ge \frac{\mathbb{E}(W)^2}{\mathbb{E}(W^2)}$ car $\mathbb{E}(W^2) > 0$ par hypothèse.

8.d Comme $p_n = o\left(\frac{\ln n}{n}\right)$, $\lim_{n \to +\infty} p_n = 0$. On a vu que

$$\mathbb{E}(Y_n) = n(1 - p_n)^{n-1}$$

$$\mathbb{E}(Y_n^2) = n(1 - p_n)^{n-1} + n(n-1)(1 - p_n)^{2n-1}$$

On en déduit que

$$\frac{\mathbb{E}(Y_n^2)}{\mathbb{E}(Y_n)^2} = \frac{1}{n(1-p_n)^{n-1}} + \frac{(n-1)(1-p_n)}{n}$$

Par opérations, $\lim_{n \to +\infty} \frac{(n-1)(1-p_n)}{n} = 1$. De plus,

$$\frac{1}{n(1-p_n)^{n-1}} = \exp(-\ln(n) - (n-1)\ln(1-p_n))$$

Or

$$(n-1)\ln(1-p_n) \underset{n\to+\infty}{\sim} -np_n$$

donc $(n-1)\ln(1-p_n) = o(\ln n)$ puis $-\ln(n) - (n-1)\ln(1-p_n) \sim -\ln(n)$. A fortiori,

$$\lim_{n \to +\infty} -\ln(n) - (n-1)\ln(1-p_n) = -\infty$$

puis, par passage à l'exponentielle, $\lim_{n \to +\infty} \frac{1}{n(1-p_n)^{n-1}} = 0$. Finalement, $\lim_{n \to +\infty} \frac{\mathbb{E}(Y_n^2)}{\mathbb{E}(Y_n)^2} = 1$ et donc $\frac{\mathbb{E}(Y_n)^2}{\mathbb{E}(Y_n^2)} = 1$.

8.e Comme Y_n est positive, on peut écrire :

$$\forall n \in \mathbb{N}, \ \frac{\mathbb{E}(\mathbf{Y}_n)^2}{\mathbb{E}(\mathbf{Y}_n^2)} \le \mathbb{P}(\mathbf{Y}_n > 0) \le 1$$

Par encadrement, $\lim_{n \to +\infty} \mathbb{P}(Y_n > 0)$. Remarquons qu'un graphe connexe ne contient pas de sommets isolés. Ainsi, en notant C_n l'événement «le graphe \mathcal{G} est connexe», $C_n \subset \{Y_n = 0\}$. Ainsi, pour tout $n \in \mathbb{N}$,

$$0 \le \mathbb{P}(C_n) \le \mathbb{P}(Y_n = 0) = 1 - \mathbb{P}(Y_n > 0)$$

On en déduit par encadrement que $\lim_{n\to+\infty} \mathbb{P}(C_n) = 0$. Autrement dit, un graphe peu dense avec un grand nombre de sommets a une faible probabilité d'être connexe.

Un sommet i d'un graphe g est isolé si la liste des voisins est vide. En notant A la matrice d'adjacence de g, ceci correspond à $\sum_{i=0}^{n-1} A_{i,j} = 0$.

```
def Isoles(n, p):
    A = GrapheAleatoire(n, p)
    isoles = [i for i in range(n) if sum(A[i])==0]
    return len(isoles)
```

```
>>> [Isoles(10,.1) for _ in range(10)]
[7, 2, 3, 2, 3, 4, 2, 3, 2, 2]
```

On utilise la loi faible des grands nombres pour utiliser la probabilité demandée. En effet, on sait que si A est un événement et $(X_n)_{n\in\mathbb{N}^*}$ est une suite de variables aléatoires suivant la loi $\mathcal{B}(\mathbb{P}(A))$, alors, en posant $M_n = \frac{1}{n}\sum_{k=1}^n X_k$

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mathbb{P}(|S_n - \mathbb{P}(A)| \ge \varepsilon) = 0$$

On prend à nouveau comme paramètres le nombre n de sommets et la probabilité de connexion p.

```
def ProbabiliteIsole(n, p):
    N = 10000
    return sum([Isoles(n, p)>0 for _ in range(N)]) / N
```

```
>>> ProbabiliteIsole(30,.1)
0.7132
```