Beginner-level Dynamic Programming problems:

1. Nth Fibonacci Number

Problem Description:

Find the Nth Fibonacci number using dynamic programming.

Input Format:

• Integer n

Output Format:

• Integer representing the Nth Fibonacci number

Constraints:

• 0 <= n <= 30

Example:

Input: n = 5
Output: 5

Explanation: Fibonacci sequence: 0, 1, 1, 2, 3, 5...

Practice Link: GeeksforGeeks - Nth Fibonacci Number

2. Climbing Stairs

Problem Description:

Count the number of distinct ways to climb to the top of a staircase with n steps. You can climb 1 or 2 steps at a time.

Input Format:

• Integer n

Output Format:

• Integer representing number of ways

Constraints:

• 1 <= n <= 44

Example:

Input: n = 4 Output: 5

Explanation: Ways: [1,1,1,1], [1,1,2], [2,1,1], [1,2,1], [2,2]

Practice Link: GeeksforGeeks - Count Ways to Reach Nth Stair

3. Min Cost Climbing Stairs

Problem Description:

Given an array <code>cost[]</code>, where <code>cost[i]</code> is the cost to step on the <code>ith</code> stair, find the minimum cost to reach the top.

Input Format:

• Array cost[]

Output Format:

• Integer representing minimum cost

Constraints:

- 2 <= cost.length <= 10^5
- 0 <= cost[i] <= 999

Example:

Input: cost = [10, 15, 20]

Output: 15

Explanation: Start at index 1, pay 15, reach top.

Practice Link: GeeksforGeeks - Min Cost Climbing Stairs

4. House Robber

Problem Description:

Given an array nums representing money in each house, find the maximum amount you can rob without robbing adjacent houses.

Input Format:

Array nums[]

Output Format:

• Integer representing maximum money

Constraints:

- (1 <= nums.length <= 100)
- (0 <= nums[i] <= 400)

Example:

```
Input: nums = [2,7,9,3,1]
```

Output: 12

Explanation: Rob houses 1, 3, and $5 \rightarrow 2 + 9 + 1 = 12$

Practice Link: LeetCode - House Robber

5. Count Ways to Reach Nth Stair (1, 2, or 3 steps)

Problem Description:

Count the number of ways to reach the nth stair using steps of size 1, 2, or 3.

Input Format:

• Integer n

Output Format:

• Integer representing number of ways

Constraints:

• (1 \leq n \leq 44)

Example:

Input: n = 4 Output: 7

Explanation: All combinations using 1, 2, or 3 steps

Practice Link: GeeksforGeeks - Count Ways Using 1, 2, 3 Steps

6. Coin Change (Number of Ways)

Problem Description:

Given coins of different denominations and a total amount, find the number of combinations to make up that amount.

Input Format:

• Array coins[], Integer sum

Output Format:

Integer representing number of combinations

Constraints:

```
(1 <= sum <= 10^3)</li>(1 <= coins[i] <= 10^4)</li>
```

Example:

```
Input: coins = [1, 2, 3], sum = 4
Output: 4
Explanation: [1,1,1,1], [1,1,2], [2,2], [1,3]
```

Practice Link: GeeksforGeeks - Coin Change

7. Subset Sum Problem

Problem Description:

Given an array and a target sum, determine if there is a subset whose sum equals the target.

Input Format:

• Array arr[], Integer sum

Output Format:

• Boolean (true or false)

Constraints:

Array of positive integers

Example:

```
Input: arr = [3, 34, 4, 12, 5, 2], sum = 9
Output: true
```

Explanation: Subset [4, 5] sums to 9

8. Longest Common Subsequence (LCS)

Problem Description:

Given two strings, find the length of their longest common subsequence.

Input Format:

• Strings s1, s2

Output Format:

Integer representing length of LCS

Constraints:

• $(1 \le length \le 10^3)$

Example:

Input: s1 = "ABCDGH", s2 = "AEDFHR"

Output: 3

Explanation: LCS is "ADH"

Practice Link: GeeksforGeeks - LCS

9. Longest Palindromic Subsequence

Problem Description:

Given a string, find the length of the longest subsequence that is a palindrome.

Input Format:

• String s

Output Format:

• Integer representing length of longest palindromic subsequence

Constraints:

• 1 <= length <= 1000

Example:

Input: s = "bbabcbcab"

Output: 7

Explanation: "babcbab" is the longest palindromic subsequence

Practice Link: GeeksforGeeks - Longest Palindromic Subsequence