MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning

汇报人:严阳春

背景:

目前的深度神经网络模型对运行平台的存储和计算能力要求较大 , 为了使人工智能应用更加广泛,通过压缩和加速原始深度网络模型, 使之直接应用于移动嵌入式设备端, 将成为一种有效的解决方案 。目前主流的方法如下:

Category	Explanation	Applications (CONV, FC)	Training from scratch or pre-trained model	Combination
Parameter Pruning	Pruning unsalient parameters by measuring the importance of parameters	Both	Pre-trained model	Support, often with parameter quantization and low-rank decomposition
Parameter Sharing	Reducing redundant parameters using hashing or quantization methods	Both	Both	Support, often with parameter pruning
Low-rank Decomposition	Decomposing generalized convolution into a sequence of matrix/tensor-based convolutions with fewer parameters	Both	Both	Support, often with parameter pruning
Designing Compact Convolutional Filters	Reducing the storage and computation cost by designing compact convolutional filters	CONV	Training from scratch	
Knowledge Distillation	Training a compact neural network with distilled knowledge of a large model	Both	Training from scratch	

模型剪枝技术

网络/参数剪枝是通过对已有的训练好的深度网络模型移除冗余的、信息量少的权值,从而减少网络模型的参数,进而加速模型的计算和压缩模型的存储空间。不仅如此,通过剪枝网络,能防止模型过拟合。剪枝有不同的剪枝粒度方法和不同的判断权值重要性的方法。

随着相关研究的深入,特别是在对于剪枝后,权重和结构对于模型的重要性比较,产生了一系列的具有创新性的猜想假设和实验方法。例如最近有一篇论文《Rethinking the Value of Network Pruning》指出:

剪枝后的权重并不重要,结构相对重要。 遵循 这个思想,论文作者提出了基于meta learning 的自动剪枝技术。

Meta Learning (元学习)

Meta Learning = learning to learn

Machine Learning: 根据资料找一个函数f的能力

Meta Learning: 根据资料找一个找一个函数f的函数F的能力

Meta Learning

$$L(F) = \sum_{n=1}^{\infty} l^n$$
Testing loss for task n
function F after training

→ N tasks

Defining the goodness of a function F

Train Train dog apple cat orange Task 1 Task 2 Learning Learning Algorithm F Algorithm F Test Test apple orange cat dog

Find the best function F*

$$F^* = arg \min_F L(F)$$

MetaPruning

传统模型剪枝:

- •训练一个参数量较多的大网络
- •将不重要的权重参数剪掉
- •剪枝后的小网络做 fine tune

MetaPruning:

Training

Searching

在训练好PruningNet后,获得了能产生相应剪枝结构的权重的能力,采用进化算法去搜索最好的剪枝后的网络结构。然后再从头训练这个结构组成的网络。

Algorithm 1 Evolutionary Search Algorithm

Hyper Parameters: Population Size: \mathcal{P} , Number of Mutation: \mathcal{M} , Number of Crossover: \mathcal{S} , Max Number of Iterations: \mathcal{N} .

Input: PruningNet: PruningNet, Constraints: C.

Output: Most accurate gene: \mathcal{G}_{top} .

11: **return** \mathcal{G}_{top1} ;

```
1: \mathcal{G}_{0} = \operatorname{Random}(\mathcal{P}), s.t. \mathcal{C};

2: \mathcal{G}_{topK} = \emptyset;

3: for i = 0 : \mathcal{N} do

4: \{\mathcal{G}_{i}, \operatorname{accuracy}\} = \operatorname{Inference}(\operatorname{PruningNet}(\mathcal{G}_{i}));

5: \mathcal{G}_{topK}, \operatorname{accuracy}_{topK} = \operatorname{TopK}(\{\mathcal{G}_{i}, \operatorname{accuracy}\});

6: \mathcal{G}_{mutation} = \operatorname{Mutation}(\mathcal{G}_{topK}, \mathcal{M}), s.t. \mathcal{C};

7: \mathcal{G}_{crossover} = \operatorname{Crossover}(\mathcal{G}_{topK}, \mathcal{S}), s.t. \mathcal{C};

8: \mathcal{G}_{i} = \mathcal{G}_{mutation} + \mathcal{G}_{crossover};

9: end for

10: \mathcal{G}_{top1}, \operatorname{accuracy}_{top1} = \operatorname{Top1}(\{\mathcal{G}_{\mathcal{N}}, \operatorname{accuracy}\});
```

Experiment

(a)是针对没有shortcut的网络结构,例如MobileNet V1

(b)是针对有shortcut的网络结构,例如MobileNet V2, ResNet

Pruning under FLOPs constraint

Uniform Baselines		MetaPruning		
Ratio	Top1-Acc	FLOPs	Top1-Acc	FLOPs
$1 \times$	70.6%	569M	_	_
0.75×	68.4%	325M	70.9%	324M
0.5×	63.7%	149M	66.1%	149M
0.25×	50.6%	41M	57.2%	41M

Uniform Baselines		MetaPruning	
Top1-Acc	FLOPs	Top1-Acc	FLOPs
74.7%	585M	_	_
72.0%	313M	72.7%	291M
67.2%	140M	68.2%	140M
66.5%	127M	67.3%	124M
64.0%	106M	65.0%	105M
62.1%	87M	63.8%	84M
54.6%	43M	58.3%	43M

此方法在MobileNet V1上的效果

此方法在MobileNet V2上的效果

	Network	FLOPs	Top1-Acc
Uniform Baseline	1.0× ResNet-50	4.1G	76.6%
	$0.75 \times \text{ResNet-}50$	2.3G	74.8%
	$0.5 \times \text{ResNet-50}$	1.1 G	72.0%
Traditional Pruning	SFP[20]	2.9G	75.1%
	ThiNet-70 [38]	2.9G	75.8%
	ThiNet-50 [38]	2.1G	74.7%
	ThiNet-30 [38]	1.2G	72.1%
	CP [22]	2.0G	73.3%
MetaPruning - 0.85×ResNet-50		3.0G	76.2 %
MetaPruning - 0.75×ResNet-50		2.0G	75.4 %
MetaPruning - 0.5 × ResNet-50		1.0G	73.4 %

Network	FLOPs	Top1-Acc
0.75x MobileNet V1 [24]	325M	68.4%
NetAdapt [52]	284M	69.1%
AMC [21]	285M	70.5%
MetaPruning	281M	70.6 %
0.75x MobileNet V2 [46]	220M	69.8%
AMC [21]	220M	70.8%
MetaPruning	217M	71.2%

此方法和其他方法在ResNet上的比较

此方法和其他基于AutoML的方法比较

Pruning under latency constraint

在一块Titan Xp,batch size为32的情况下运行相应网络结构的时间如下表:

Uniform Baselines			MetaPruning	
Ratio	Top1-Acc	Latency	Top1-Acc	Latency
1×	70.6%	0.62ms	_	_
0.75×	68.4%	0.48ms	71.0%	0.48ms
0.5×	63.7%	0.31ms	67.4%	0.30ms
0.25×	50.6%	0.17ms	59.6%	0.17ms

Uniform Baselines			MetaPruning	
Ratio	Top1-Acc	Latency	Top1-Acc	Latency
1.4×	74.7%	0.95ms	_	_
$1 \times$	72.0%	0.70ms	73.2%	0.67ms
0.65×	67.2%	0.49ms	71.7%	0.47ms
0.35×	54.6%	0.28ms	64.5%	0.29ms

MobileNet V1

MobileNet V2

总结:

这篇文章从"剪枝后的权重不重要"的前提出发,将剪枝和MetaLearning结合,提出了PruningNet为剪枝后的网络预测权重。并在编码网络信息的encode vector 的状态空间进行搜索,找到给定约束条件下的最优网络结构,在ImageNet数据集和ResNet/MobileNet-v1/v2上取得了比之前剪枝算法更好的效果。