BUDAPESTI UNIVERSITY OF TECHNOLOGY AND ECONOMICS

INSTITUTE OF MATHEMATICS

FACULTY OF MATHEMATICS

Linear Regression through Origin

Author: Supervisor:

Dyussenov Nuraly Dr. Jozsef Mala

Associate Professor, BME Fac. of Nat. Sci.

Budapest, October 24, 2023

Contents

1 Introduction		oduction	1
2	Theoretical background		2
	2.1	Statistics Basics	2
	2.2	Simple Linear Regression	4
	2.3	Simple Linear Regression with no intercept term	5
	2.4	Comparative Analysis	6
3	Applications to Linear Regression through Origin		7
	3.1	Something to add 1	8
	3.2	Something to add 1	8
4	Theoretical results		9
	4.1	A theoretical resilt	9
	4.2	Towards some advanced topic	9
5	Programming simulations		10
6	Summary and closing words		11
A	Program Codes		13

List of Tables

List of Figures

1. Introduction

"Bla-bla-bla"

-XY

2. Theoretical background

2.1 Statistics Basics

Definition (Data) Let $(x_1,...,x_n)$, where $x_i \in S$ for i = 1,...,n. The set S is typically \mathbb{R} , \mathbb{R}^d , or it can be any abstract set. However, for our purposes, S (the sample space) will usually be \mathbb{R} .

Definition (Sample) In statistics, our data are often modeled by a vector $\mathbf{X} = (X_1, X_2, \dots, X_n)$ of i.i.d. (independent, identically distributed) random variables, called the sample (of which size is n), where the random variables X_i take values in \mathbb{Z} or \mathbb{R} . The common distribution of the X_i is called the parent distribution, and we say that the sample is from that parent distribution.

Definition (Model) A statistical model is a family $\{P_{\theta} \mid \theta \in \Theta\}$ of distributions on the sample space. When $\Theta \subset \mathbb{R}^d$, we say that we have a parametric model, and we call Θ the parameter set (space).

Definition (p-th Quantile of Data) If $p \in (0,1)$, then a p-th quantile (or a p-th percentile) of the data (x_1, \ldots, x_n) is a p-th quantile of the corresponding empirical distribution function \hat{F}_n .

Definition (Sample mean) Let (X_1, \ldots, X_n) be a sample. Then the random variable

$$\bar{X} = X = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is called the sample mean.

Definition (Estimator) An estimator is a statistic (a function of the sample data) used to estimate an unknown parameter in a statistical model. An estimator for the parameter θ , denoted as $\hat{\theta}$, is any measurable function of the random variables X_1, X_2, \dots, X_n .

Definition (**Biased**) If $\hat{\theta}$ is an estimator of θ , then we can define the quantity $Bias(\hat{\theta}) = \mathbb{E}_{\theta}[\hat{\theta}] - \theta$. The estimator $\hat{\theta}$ is called unbiased if its bias is 0.

Definition (**MSE of an Estimator**) Let us have the model $\{P_{\theta} \mid \theta \in \Theta\}$ and let us have the sample (X_1, \dots, X_n) from it. The mean square error (or the quadratic risk) of an estimator $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ for the parameter θ is defined by

$$MSE_{\theta}(\hat{\theta}) = \mathbb{E}_{\theta}((\hat{\theta} - \theta)^2)$$

when θ is the true parameter.

Steiner's identity: $\mathbb{E}((X-a)^2) = \text{Var}(X) + (a - \mathbb{E}(X))^2$

Interpretation in the context of mean square error (MSE):

$$MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\hat{\theta}) + (Bias_{\theta}(\hat{\theta}))^{2}$$

Definition (Sufficiency) Let the model be $\{P_{\theta} \mid \theta \in \Theta\}$ and $\mathbf{X} = (X_1, \dots, X_n)$ be a sample from it. The statistic T is called *sufficient* for the parameter θ (or, for the model $\{P_{\theta} \mid \theta \in \Theta\}$) if the conditional distribution $P_{\theta}(\mathbf{X} \in \cdot \mid T = t)$ does not depend on θ .

Theorem (Neyman-Fisher Factorization Theorem) If the model is $\{p(x|\theta) | \theta \in \Theta\}$ where $p(x|\theta)$ is a probability mass/density function and $\mathbf{X} = (X_1, \dots, X_n)$ is a sample from it, then the statistic T is *sufficient* for the parameter θ if and only if we can find nonnegative functions g and h such that

$$p_{\mathbf{X}}(x|\boldsymbol{\theta}) = g(T(x), \boldsymbol{\theta})h(x).$$

Definition (Likelihood) Let $\{p(x,\theta), \theta \in \Theta\}$ be a model. If the observed value of X is x, we say that $p(x|\theta)$ is the *likelihood* of θ : $L(\theta) = p(x|\theta)$. Thus, we are considering the mass/density as a function of θ , for a fixed x. If $x = (x_1, \ldots, x_n)$ is a realization of the sample $\mathbf{X} = (X_1, \ldots, X_n)$, then $p(x|\theta)$ is the product of the marginals,

$$L(\theta) = p(x|\theta) = \prod_{i=1}^{n} p(x_i|\theta).$$

Theorem (Rao-Blackwell) Let $\{P_{\theta} \mid \theta \in \Theta\}$ be a model and (X_1, \dots, X_n) be a sample. Let $\hat{\theta}$ be an estimator of θ with $\text{Var}_{\theta}(\hat{\theta})$ finite for each θ . If T is a sufficient statistic for θ , then $\theta^* = \mathbb{E}_{\theta}(\hat{\theta}|T)$ is a statistic, and we have for all θ that

$$MSE_{\theta}(\theta^*) \leq MSE_{\theta}(\hat{\theta})$$
 (1)

and the inequality is strict unless $\hat{\theta}$ is a function of T with probability 1.

2.2 Simple Linear Regression

2.3 Simple Linear Regression with no intercept term

2.4 Comparative Analysis

3. Applications to Linear Regression throughOrigin

- 3.1 Something to add 1
- 3.2 Something to add 1

4. Theoretical results

- 4.1 A theoretical resilt
- 4.2 Towards some advanced topic

5. Programming simulations

6. Summary and closing words

 $?\langle ch: closing \rangle ?$

Bibliography

A. Program Codes

 $?\langle ap:codes \rangle$?