

Grado en Ingeniería de la salud

Realizado por: Cristina Rodríguez Chamorro

Tutorizado por: Manuel Jesús Martín Vázquez

Índice

- ▶1. Introducción: Objetivos del proyecto
- ≥2. Fundamentos sobre el sistema circulatorio
- ➤3. La técnica de la fotopletismografía
- ▶ 4. Desarrollo del módulo analógico
- ≥5. Desarrollo del módulo digital
- ➤ 6. Evaluación de los resultados y conclusiones finales

1. Introducción: Objetivos del proyecto

≻Objetivo general:

 Construcción de un sistema que permita medir el pulso, usando la técnica de la fotopletismografía.

≻Objetivos específicos:

- Diseño y construcción de un sistema sensor que permita el registro del pulso.
- El sistema debe permitir el acondicionamiento de la señal de pulso.
- Gestión e integración de los circuitos realizados en una placa de circuito impreso.
- Desarrollo e implementación de los programas básicos que permitan la captura, lectura y procesado de los datos.
- Visualización del pulso en el ordenador.

2. Fundamentos del sistema circulatorio

Ritmo Cardíaco → Número de latidos que realiza el corazón por minuto.

3. Técnica de la fotopletismografía (PPG)

- ➤ Concepto: Obtención, de forma aproximada, del volumen de un cuerpo, determinando la luz que éste refleja.
- >Se hace uso de un sensor de reflexión de luz: TCRT1000.
- > Procedimiento de la técnica:
 - 1.Se incrementa el nivel de sangre en el dedo de forma momentánea.
 - 2.El led del TCRT1000, emite luz infrarroja.
 - 3.Se modifica el nivel de reflexión de luz, medido por el fotodetector del TCRT1000.
 - 4.Al medir la frecuencia del cambio, se obtiene la frecuencia cardiaca.

4.1. Arquitectura general sistema

4.2. Arquitectura del módulo analógico

4.3. Caracterización del sistema led - fototransistor

➤ Objetivo general: Se realiza para que el emisor de luz emita una fuente de luz específica.

≻Para ello:

- Diseño de un circuito de prueba con los componentes calculados experimentalmente.
- Objetivo específico del circuito de prueba: Calculo de la Id, para que la Vce del fototransistor se centre en un modo de operación adecuado.
- Modo de operación del transistor en zona activa.

4.3. Caracterización del sistema led - fototransistor

4.3.1. Curva característica de la zona activa del transistor del circuito de prueba

- ➤ Límite de la zona activa: 2 y 8 V.
- **≻**Procedimiento:
- Vdd= 4V y Vce = 3V (Punto medio de la zona activa)
- Vdd = Id x Rd + Vr; $con Vr = 1V y Rd = 0.5K\Omega; Id = \frac{Vdd - Vr}{Rd}$

$$Id = \frac{(Vdd - Vd)}{0.5K\Omega} = \frac{4v - 1v}{0.5K\Omega} = 6mA$$

4.4. Circuito emisor de luz

> Elementos de circuito

- Conmutador: Recibe la señal del circuito activando la fuente de intensidad.
- Fuente de intensidad: Hace posible la emisión constante y concreta de luz.

4.4. Circuito emisor de luz

4.5. Circuito sensor de luz

4.6. Validación de los circuitos

4.7. Fabricación de la placa de circuito impreso (PCB)

4.7. Fabricación de la placa de circuito impreso (PCB)

4.7. Fabricación de la placa de circuito impreso (PCB)

4.8. Obtención y validación de la PCB

5. Desarrollo del módulo digital

- > Algoritmo de detección de picos.
- Realiza el cálculo del periodo entre los picos máximos.
- De forma que: Pulso = 60/periodo.
- Para ello:
- Límite inferior, medio y máximo.

> Frecuencia Muestreo: 10HZ

5. Desarrollo del módulo digital


```
<-Escuela Tecnica Superior de Ingenieria Informatica
<-Ingeniera de la salud->
<-Programa para el calculo de la frecuencia Cardiaca
<-Realizado por: Cristina Rodriguez Chamorro->
<-Iniciando el cálculo de la frecuencia cardiaca->
<-Estableciendo la comunicación con el puerto serie-</p>
<-El pulso es: 75
<-El pulso es: 100
<-El pulso es: 85,7142857142857
<-El pulso es: 75
<-El pulso es: 75
<-El pulso es: 100
<-El pulso es: 75
<-El pulso es: 85,7142857142857
<-El pulso es: 85,7142857142857
<-El pulso es: 85,7142857142857
```

6. Evaluación de los resultados y conclusiones finales

✓ Objetivos completados con éxito:

≻Objetivo general:

✓ Se ha realizado un sistema capaz de medir el pulso cardiaco usando la técnica de la fotopletismografía.

≻Objetivos específicos:

- ✓ Se ha diseñado y construido un sistema sensor que permite el registro del pulso.
- ✓ El sistema realiza el acondicionamiento de la señal de pulso.
- ✓ Realización de la gestión e integración de los circuitos realizados en una placa de circuito impreso.
- ✓ Se ha desarrollado e implementado un programa básico de captura, lectura y procesado de datos.
- ✓ Se puede visualizar el pulso en el ordenador.

Bibliografía

- ➤ Ibarra B., C. A., Medina, S., & Bernal, Á. (2007). Implemetación de un laboratorio virtual para el estudio de dispositivos electrónicos. *Revista Iberoamericana de tecnología en educación y eduación en tecnología*, 63.
- Magaña, G. (2013). Diseño y construcción de un medidor de pulso cardiaco para personas con problemas de taquicardia. (Tesis). Instituto Politécnico Nacional.
- Mecafenix, F. (10 de Julio de 2018). *Ingeniería Macafenix*. Obtenido de La eniclopedia de la ingeniería: https://www.ingmecafenix.com/electronica/diodo-semiconductor/
- Merí, À. (2005). Fundamentos de fisiología de la actividad física y el deporte. Buenos Aires: Médica Panamericana.
- ➤ Olvera Téllez, D., & Gonzalez Escalona, J. (2013). *Diseño y Construcción de un Sistema de Monitoreo de Signos Vitales*. (Tesis). Instituto Nacional Politécnico de México.
- > oximetry.org. (10 de Septiembre de 2002). Obtenido de http://www.oximetry.org/pulseox/principles.htm
- > PatagoniaTec. (s.f.). Obtenido de https://saber.patagoniatec.com/2014/06/arduino-mega-2560-atmega-mega-arduino-clon-compatible-argentina-tutorial-basico-informacion-arduino-argentina-ptec/
- > Sepúlveda Saavedra, J. (03 de 11 de 2018). *Texto Atlas de Histología. Biología Celular y Tisular.* Obtenido de www.accessmedicina.com
- Sistema Circulatorio. (2004). En P. Gisela, & P. de León, *Anatomía y fisiología* (págs. 96-98). California: Universidad Autónoma de baja California.
- > Vishay. (8 de Frebrero de 2017). Obtenido de www.vishay.com
- ➤ Wikipedia. (2018 de 11 de 02). Obtenido de https://es.wikipedia.org/wiki/Fotopletismografía

Bibliografía

- (s.f.). Obtenido de Reflective Optical Sensor with Transistor Output: www.vishay.com
- > (2005). En E. Delpon, & J. Tamargo, Fisiología humana.
- > (16 de 2 de 2016). Obtenido de Enciclopediasalud.com: https://www.enciclopediasalud.com/definiciones/haz-de-his
- > Andrada, C. (2018). En *Todo Running*. Argentina: Grupo Editorial.
- Angulo Duato, C. (2014). Diseño e implementación de un pulsómetro digital basado en la fotropletismografía. Valencia: (Trabajo Fin de Grado en Ingeniería en Tecnologías Industriales) Escuela Técnica Superior de Ingenieros Industriales.
- ➤ Aparato circulatorio. (2007). En T. Gary A., & P. Kevin T, Estructura y función del cuerpo humano (10 ed.). Madrid: Elsevier.
- > El circuito Integrado LM324. (s.f.). Obtenido de https://www.ecured.cu/Circuito_integrado_LM324
- ➤ El Corazón. (1983). En G. Thews, E. Mutschler, & P. Vaupel, *Anatomía, fisiología y patología del hombre* (págs. 186-187). Barcelona: Reverté, S. A.
- El corazón. (2008). En M. Latarjet, & A. Ruiz Liard, *Anatomía humana*. (Vol. 2, págs. 924-932). Buenos Aires: Editorial Médica Panamericana.
- Electrónica de Potencia/Transistor bipolar de potencia/Estructura y principio de funcionamiento. (1 de Junio de 2019). Obtenido de Wikilibros.

FIN

Grado en Ingeniería de la salud

Realizado por: Cristina Rodríguez Chamorro

Tutorizado por: Manuel Jesús Martín Vázquez

