Міністерство освіти і науки України

Київський національний університет імені Тараса Шевченка Український фізико-математичний ліцей Київського національного університету імені Тараса Шевченка

XXIV Всеукраїнська учнівська Інтернет-олімпіада з фізики 2024/2025 навчального року

I (заочний) етап II тур 9 клас

1. «Серед морів, серед крижин живе розумненький пінгвін!»

Пінгвін Понго полюбляє не тільки спортивне плавання, але і фізику, і вміє знаходити найвигідніші шляхи, добираючись до цілі за найкоротший час. Однак при цьому Понго завжди

поспішає і розглядає лише траєкторії, які мало відхиляються від прямої, що з'єднує точку старту та фінішу. Сьогодні перед Понго стоїть непроста задача. Він повинен добратися до фінішу F, який знаходиться у області з крижинами, де його швидкість пересування зменшується втричі, з u до u/3 (див. рис.). Радіус крижаної області R, відстань до неї L=5R. Виявилося, що якщо фініш знаходився достатньо близько до дальньої границі крижаної області, то Понго не плив по прямій, а обирав інший шлях, що представляв собою ламану з двох відрізків, у воді і у крижаній області. Однак при наближенні фінішу F до центру кола стратегія Понго перестала давати виграш.

- А) Яким було це **критичне положення** фінішу $F_{\kappa p}$, після якого Понго мав змінити стратегію? Відстань вкажіть від дальньої точці крижаної області.
- Б) **За яких відстаней** L такої такої точки не буде і Понго завжди буде вигідно рухатися по прямій?
- В) Нехай тепер відстань L буде набагато перевищувати радіус області R, а фініш буде поблизу дальньої точки крижаної області. Якою тепер, на ваш погляд, буде **оптимальна траєкторія** Понго, якщо він врахує навіть такі траєкторії, які сильно відрізнятимуться від прямолінійної?

<u>Примітки</u>: а) уважайте, що початкова позиція Понго, центр області і фініш знаходяться завжди на одній прямій; б) розмірами Понго порівняно з важливими відстанями у задачі знехтуйте; в) для x, значення яких набагато менше за одиницю, справедлива наближена рівність $\sqrt{1+x} \approx 1+x/2$

2. «Вангуємо покази амперметра!»

_У схемі, показаній на рисунку, потужності, що виділяються на резисторах 1 і 2 дорівнюють овідповідно P і 2P, напруга на колі U, а амперметр A_1 показує значення сили струму I_0 . Що може показувати амперметр A_2 ? Прилади вважайте ідеальними, опором з'єднувальних дротів знехтуйте.

3. «Важіль на намистинці»

На рисунку показаний важіль AB, до кінців важеля прив'язані кінці невагомої нитки, що огинає два нерухомі блоки C,D. Уздовж нитки може ковзати масивна «намистинка» E. Важіль і нитка невагомі, тертя відсутнє.

А) Де крізь стержень АВ має проходити

вісь обертання, якщо його горизонтальне положення відповідає стану рівноваги системи?

Б) **Чи не припущено на рисунку неточності** у виборі положення «намистинки»? **Обґрунтуйте** свою відповідь.

4. «Безсенсовий камін»

Уявіть собі камін, який не віддає жодного тепла в кімнату, в якій він знаходиться, хоча в ньому й спалюється вугілля. Висота теплоізольованої від навколишнього середовища труби димаря каміна дорівнює h.

Уважайте, що:

- при спаленні вугілля (який складається лише з вуглецю) єдиними наслідками процесу є утворення вуглекислого газу та віддача тепла повітрю, що підіймається по трубі;
- при проходженні повітря через полум'я в хімічній реакції задіюється лише відсоткова (за масою) частина β від всієї кількості кисню в повітрі (масова частка кисню в повітрі складає $\delta = 23\%$). Значення β є відомим і набагато меншим за 100%, тож склад повітря майже не змінюється;
- швидкість повітря в трубі каміна всюди однакова та описується наступним виразом:

$$V=\sqrt{\frac{2\Delta p}{
ho}}$$
, де Δp — різниця тисків на вході в камін зі сторони кімнати перед полум'ям та

в димарі каміна в його нижній точці, ρ – густина повітря в трубі димаря;

- повітря в димарі однорідне, має майже однакову густину та температуру в будь-якій точці. Питому теплоємність повітря вважайте відомою c_p . Площа поперечного перерізу труби димаря рівна S;
- температури навколишнього середовища та кімнати однакові та рівні T_0 (камін явно не справляється зі своїми обов'язками), а температура повітря в гарно прогрітому димоході T_h . Зв'язок між температурою повітря та його густиною наближено можна описати формулою $\rho = \frac{\gamma}{T}$, де γ відомий коефіцієнт.
- Питома теплота згоряння вугілля q та будь-які необхідні маси атомів хімічних елементів та молекул відомі.

Знайдіть, яка маса вугілля спалюється за одиницю часу.

5. «Гламурний кулькопідшипник»

Один з приладів космічного корабля потребує використання відшліфованих до сферичної форми алмазів, діаметром d=1 см кожний. Алмазні кулі мають розміщатися ззовні золотого циліндру і всередині платинового (див. схем. Рис.). Цей прилад має використовуватись у широкому діапазоні температур, але будь-які механічні напруження алмазних кульок або їх випадання з зазору між циліндрами не допускаються. Температурні коефіцієнти лінійного розширення при температурі

 20° С і діаметру кульок 1 см: алмазу $\alpha = 10^{-6 \circ}$ С⁻¹, золота $\alpha_3 = 14 \cdot 10^{-6 \circ}$ С⁻¹, платини $\alpha_{\Pi} = 9 \cdot 10^{-6 \circ}$ С⁻¹. Ці коефіцієнти можуть бути використані під час розрахунків в інтервалі температур 20° С $\pm 200^{\circ}$ С роботи цього приладу. За рахунок великої теплопровідності алмазу і металів температуру усіх елементів приладу у будь-який момент часу можна вважати однаковою.

- **A)** Якими мають бути **радіус золотого циліндру** r і **радіуси платинового** R_1 , R_2 за температури 20°С, щоб прилад працював у широкому інтервалі температур?
- **Б)** Оцінити максимальну кількість алмазних куль, які в один ряд помістяться навколо золотого циліндра? Урахуйте, що для унеможливлення дотику сусідніх куль між ними вставлені тонкі прокладки товщиною 50 мкм з таким самим коефіцієнтом α , що й у алмаза.
- **В) У якому інтервалі температур** за цієї кількості куль прилад вдасться експлуатувати?

Задачі запропонували: 1-2. Майзеліс З.О. 3. Гельфгат І.М., 4. Олійник А.О., 5. Орлянський О.Ю.