I. Metrické prostory

Obsah

1	Základní pojmy	2
2	Měření vzdálenosti, metrický prostor	2
3	Okolí v metrickém prostoru	3
4	Zobecněná koule	3
5	Některé význačné body a množiny metrického prostoru	4

1 Základní pojmy

Definice 1.1 Množinu všech uspořádaných dvojic (x, y), kde $x, y \in \mathbb{R}$ nazveme rovinou (dvojrozměrným prostorem) a označíme ji \mathbb{R}^2 . Každá uspořádaná dvojice (x, y) se nazývá bod roviny a čísla x, y se nazývají souřadnice tohoto bodu. Dva body v rovině (x, y) a (u, v) považujeme za shodné (totožné), právě když x = u a y = v.

Zvolíme-li v \mathbb{R}^2 kartézskou soustavu souřadnic, můžeme každému bodu z \mathbb{R}^2 jednoznačně přiřadit uspořádanou dvojici reálných čísel a naopak, každé uspořádané dvojici reálných čísel přiřadíme právě jeden bod z \mathbb{R}^2 (tzv. bijekce).

Definice 1.2 Množinu všech uspořádaných trojic (x, y, z), kde $x, y, z \in \mathbb{R}$ nazveme prostorem (trojrozměrným prostorem) a označíme ji \mathbb{R}^3 . Každá uspořádaná trojice (x, y, z) se nazývá bod prostoru a čísla x, y, z se nazývají souřadnice tohoto bodu. Dva body v prostoru (x, y, z) a (u, v, w) považujeme za shodné (totožné), právě když x = u, y = v a z = w.

Po zavedení kartézské soustavy souřadnic lze každému bodu z prostoru \mathbb{R}^3 jednoznačně přiřadit uspořádanou trojici reálných čísel a naopak.

2 Měření vzdálenosti, metrický prostor

Vzdálenost mezi dvěma prvky je pojem relativní a můžeme ji měřit různě v závislosti na daném prostoru a konkrétní představě. Všechny "druhy" vzdáleností mají ale několik společných vlastností:

Definice 2.1 Nechť $\mathcal{X} \neq \emptyset$ je libovolná množina a ρ zobrazení z $\mathcal{X} \times \mathcal{X}$ do \mathbb{R} , které má pro všechna $X, Y, Z \in \mathcal{X}$ následující vlastnosti:

1.
$$\rho(X,Y) \ge 0$$
 ... nezápornost

2.
$$\rho(X,Y) = 0 \Leftrightarrow X = Y$$
 ... definitnost

3.
$$\rho(X,Y) = \rho(Y,X)$$
 ... symetrie

4.
$$\rho(X,Y) \leq \rho(X,Z) + \rho(Z,Y)$$
 ... trojúhelníková nerovnost

Potom uspořádaná dvojice (\mathcal{X}, ρ) se nazývá $metrický \ prostor$, zobrazení $\rho : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ se nazývá $metrika \ prostoru \ (\mathcal{X}, \rho)$ a číslo $\rho(X, Y)$ se nazývá $vzdálenosti \ prvků \ X$ a Y v prostoru (\mathcal{X}, ρ) .

Poznámka: Na každé neprázdné množině \mathcal{X} lze zadat celou řadu různých metrik. Dostaneme tak různé metrické prostory, které budou mít stejnou základní množinu, tzv. nosič, ale v každém z nich budeme jiným způsobem měřit vzdálenosti.

Na množině \mathbb{R}^2 lze definovat mj. následující metriky ($X, Y \in \mathbb{R}^2$, $X = (x_1, x_2)$, $Y = (y_1, y_2)$):

$$\rho(X,Y) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2}$$
 ... eukleidovská vzdálenost

$$\rho_l(X,Y) = |y_1 - x_1| + |y_2 - x_2|$$
 ...tzv. listonošská vzdálenost

$$\rho_m(X,Y) = \max\{|y_1 - x_1|, |y_2 - x_2|\} \quad ... tzv. \text{ maximální vzdálenost}$$

Tyto metriky lze přirozeně rozšířit na množinu \mathbb{R}^3 ($X, Y \in \mathbb{R}^3, X = (x_1, x_2, x_3), Y = (y_1, y_2, y_3)$):

$$\rho(X,Y) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2} \qquad \dots \text{eukleidovská metrika}$$

$$\rho_l(X,Y) = |y_1 - x_1| + |y_2 - x_2| + |y_3 - x_3| \qquad \dots \text{tzv. oktaedrická metrika}$$

$$\rho_m(X,Y) = \max\{|y_1 - x_1|, |y_2 - x_2|, |y_3 - x_3|\} \qquad \dots \text{tzv. kubická metrika}$$

3 Okolí v metrickém prostoru

Definice 3.1 Nechť $a \in (\mathcal{X}, \rho)$ a $\varepsilon > 0$. Množinu všech bodů $x \in (\mathcal{X}, \rho)$, pro které platí $\rho(x, a) < \varepsilon$ nazýváme ε -okolím bodu a v prostoru (\mathcal{X}, ρ) a značíme ji $\mathcal{U}(a, \varepsilon)$; tj.

$$\mathcal{U}(a,\varepsilon) = \{x \in (\mathcal{X}, \rho); \, \rho(x,a) < \varepsilon\}.$$

Redukovaným ε -okolím bodu a v prostoru (\mathcal{X}, ρ) nazýváme množinu

$$\mathcal{U}^*(a,\varepsilon) = \{ x \in (\mathcal{X}, \rho); \ 0 < \rho(x,a) < \varepsilon \}.$$

Příklad:

Jak vypadá $\mathcal{U}(a,\varepsilon)$ v prostorech (\mathbb{R}^2,ρ) , (\mathbb{R}^2,ρ_l) a (\mathbb{R}^2,ρ_m) ?

4 Zobecněná koule

Definice 4.1 Nechť $a \in (\mathcal{X}, \rho)$ a $\varepsilon > 0$. Potom

• množina $\Omega(a,\varepsilon) = \{x \in (\mathcal{X},\rho); \rho(x,a) < \varepsilon\}$ se nazývá otevřená koule (zobecněná otevřená koule) se středem v bodě a a poloměrem ε (tj. $\Omega(a,\varepsilon) = \mathcal{U}(a,\varepsilon)$);

- množina $\overline{\Omega}(a,\varepsilon)=\{x\in(\mathcal{X},\rho);\, \rho(x,a)\leq\varepsilon\}$ se nazývá uzavřená koule se středem v bodě a a poloměrem $\varepsilon;$
- množina $S(a,\varepsilon)=\{x\in(\mathcal{X},\rho);\ \rho(x,a)=\varepsilon\}$ se nazývá sféra se středem v bodě a a poloměrem ε .

Příklad:

Jak vypadá uzavřená koule $\overline{\Omega}(a,\varepsilon)$) v prostorech (\mathbb{R}^3,ρ) , (\mathbb{R}^3,ρ_l) a (\mathbb{R}^3,ρ_m) ?

5 Některé význačné body a množiny metrického prostoru

Definice 5.1 Nechť \mathcal{X} je metrický prostor s metrikou ρ .

- Nechť $A \subset \mathcal{X}$. Bod $a \in A$ se nazývá $vnitřním\ bodem\ množiny\ A$, jestliže existuje okolí $\mathcal{U}(a)$ bodu a tak, že $\mathcal{U}(a) \subset A$. Množina všech vnitřních bodů množiny A se nazývá $vnitřek\ množiny\ A$ a značí se A° nebo intA.
- Množina A se nazývá $otev \check{r}en \acute{a}$, jestliže $A=A^{\circ}$.
- Nechť $A \subset \mathcal{X}$. Bod $a \in \mathcal{X}$ se nazývá hromadným bodem množiny A, jestliže každé jeho redukované okolí obsahuje aspoň jeden bod $y \in A$ (nebo ekvivalentně, jestliže každé jeho okolí obsahuje nekonečně mnoho bodů z množiny A). Množina všech hromadných bodů množiny A se nazývá derivace množiny A a značí se A'.
- \bullet Bod $a\in A,$ který není hromadným bodem množiny A se nazývá izolovaným bodem množiny A.

- Nechť $A \subset \mathcal{X}$. Potom se sjednocení $A \cup A'$ nazývá uzávěr množiny A a značí se \overline{A} .
- Množina A se nazývá uzavřená, jestliže $A = \overline{A}$.
- Nechť $A \subset \mathcal{X}$. Bod $a \in \mathcal{X}$ se nazývá hraničním bodem množiny A, jestliže každé jeho okolí obsahuje aspoň jeden bod z A a aspoň jeden bod z $\mathcal{X} \setminus A$. Množina všech hraničních bodů množiny A se nazývá hranice množiny A a značí se h(A) nebo bd(A).

Nechť (\mathcal{X}, ρ) je metrický prostor konečné dimenze. Potom můžeme definovat následující vlastnosti množin:

- Množina $A \subset \mathcal{X}$ se nazývá souvislá, můžeme-li každé její dva body spojit lomenou čarou, která celá leží v A.
- Otevřená souvislá množina $A \subset \mathcal{X}$ se nazývá oblast.
- Množina $A \subset \mathcal{X}$ se nazývá omezená, jestliže existuje číslo K > 0 tak, že $A \subset \Omega(0, K)$.
- Množina $A \subset \mathcal{X}$ se nazývá kompaktni, je-li uzavřená a omezená.
- Množina $A \subset \mathcal{X}$ se nazývá konvexní, lze-li každé dva její body spojit úsečkou ležící v A.