Computación distribuida.

Aplicaciones de Relojes Vectoriales.

Integrantes: Aguilera Moreno Adrian Torres Valencia Kevin Jair Pérez Romero Natalia Abigail

Facultad de Ciencias, UNAM

Tabla de contenido.

- Introducción.
- Tiempo Vectorial.
- Relojes Vectoriales.
- Algoritmo.
- Desventajas.
- 2 Aplicaciones.
- El caso DynamoDB.
- Un problema de conjuntos.
- Determinando Propiedades Globales.
- Implementación en sistemas dinámicos.
- Detección de una conjunción de predicados locales estables.
- 3 Relojes de Bloom.
 - Introducción.
 - Filtro Bloom.
 - Relojes de bloom.
- Aplicaciones y comparación con los relojes vectoriales.

Introducción Historia...

Los relojes vectoriales son un tipo de reloj lógico propuesto de manera independiente por *Colin J. Fidg*e y *Friedemann Mattern* en 1988.

Esta técnica consiste en un mapeo entre eventos en una historia distribuida y vectores enteros.

Definiciones: Vector Tiempo.

Sistema Vectorial de Relojes. Es un mecanismo capaz de caracterizar estados locales (en adelante, eventos) en un sistema distribuido, asociando un valor vectorial a cada estado.

Tiempo Vectorial. Es la noción de tiempo capturada por los relojes vectoriales.

Caracterización Formal del Tiempo Vectorial. Sea date(e) la caracterización asociada a un evento e, de tal manera que se cumple:

- 1. $\forall_{e_1,e_2}: (e_1 \rightarrow e_2) \Leftrightarrow \mathtt{date}(e_1) < \mathtt{date}(e_2)$.
- 2. $\forall_{e_1,e_2}: (e_1 \mid\mid e_2) \Leftrightarrow \mathtt{date}(e_1) \mid\mid \mathtt{date}(e_2).$

Figure: Reloj Vectorial con tiempos locales.

Definiciones: Reloj Vectorial.

Reloj Vectorial. La implementación del tiempo vectorial requiere que cada proceso, en el sistema, mantenga un vector de enteros positivos $Vc_i[1, \cdots, n]$ con valores inicialmente $[0, \cdots, 0]$. Este vector debe cumplir con

- 1. $Vc_i[i]$ cuenta el número de eventos producidos por p_i .
- 2. $Vc_i[j], j \neq i$, nos dice cuántos eventos conoce p_i producido por p_j .

De manera formal, sea e un evento producido por p_i , tenemos que

$$Vc_i[k] = |\{f|(f \text{ se produjo por } p_k) \land (f \rightarrow e)\}| + 1(k,i).$$

Reloj Vectorial: Algoritmo.

Una primera aproximación. Inicialmente todos los procesos disponen de un vector con entradas igual al número total de procesos, este vector debe estar inicializado en 0 para cada entrada. A continuación se describe el algoritmo:

- ► Si *p_i* produce un evento, entonces:
 - (1) $Vc_i[i] \leftarrow Vc_i[i] + 1$;
 - (2) Produce un evento e caracterizado por $Vc_i[1, \dots, n]$.
- ▶ Cuando p_i envia un mensaje a p_i , entonces:
 - (3) $Vc_i[i] \leftarrow Vc_i[i] + 1$;
 - (4) send($\langle msj, Vc_i[1, \dots, n] \rangle$) a p_i .
- ► Cuando *p_j* recibe un mensaje, entonces:
 - (3) $Vc_i[j] \leftarrow Vc_i[j] + 1$;
 - (4) $Vc_j[1, \dots, n] \leftarrow \forall_{k \in [1, \dots, n]} \max(Vc_i[k], Vc_j[k]).$

Algoritmo: Propagación del tiempo vectorial.

Notación: Para, cualesquiera, dos vectores Vc_1 y Vc_2 del tamaño n. Tenemos que

- ▶ $Vc_1 \le Vc_2 =_{def.} (\forall_{k \in \{1, \dots, n\}} : Vc_1[k] \le Vc_2[k]);$
- ▶ $Vc_1 < Vc_2 =_{def.} (Vc_1[k] \le Vc_2[k]) \land (Vc_1[k] \ne Vc_2[k]);$
- ▶ $Vc_1||Vc_2||_{def} \neg (Vc_1 \leq Vc_2) \land \neg (Vc_2 \leq Vc_1).$

Figure: Ejemplo de propagación en un reloj Vectorial.

Algoritmo: Propiedades.

Def. Sea e.Vc el vector asociado al evento e.

Teo 1. Por el algoritmo mencionado tenemos que, para cualesquiera e_1 y e_2 distintos tenemos que

- a) $(e_1 \rightarrow e_2) \Leftrightarrow (e_1.Vc < e_2.Vc);$
- b) $(e_1||e_2) \Leftrightarrow (e_1.Vc||e_2.Vc)$.

Cor 1. Dadas dos caracterizaciones a eventos (fechas), determinar si estos eventos están relacionados o no, puede requerir hasta *n* comparaciones de enteros.

Teo 2. Sean dos eventos e_1 y e_2 con tuplas $\langle e_1.Vc, i \rangle$ y $\langle e_2.Vc, j \rangle$ de manera respectiva y $i \neq j$. Entonces

- a) $(e_1 \rightarrow e_2) \Leftrightarrow (e_1.Vc[i] \leq e_2.Vc[i]);$
- $b) \ \ (e_1||e_2) \Leftrightarrow ((e_1.Vc[i]>e_2.Vc[i]) \wedge (e_2.Vc[j]>e_1.Vc[j])).$

Algoritmo: Reducción de costo en la comparación de dos vectores.

Mejora en la complejidad en tiempo. Hasta el momento la complejidad en tiempo para combinar 2 eventos nos toma $\mathcal{O}(n)$, con n el número de procesos en el sistema.

Por el $Teo.\ 2$, sabemos que basta con verificar dos entradas para saber como es un evento respecto al otro. Así, basta comparar dos entradas para combinar la caracterización de 2 eventos esto nos toma $\mathcal{O}(1)$.

Algoritmo: Relación del tiempo vectorial y estados globales.

Consideremos

Relojes Vectoriales: Desventajas.

Esta mejora a los relojes lógicos de Lamport tiene un problema de implementación, que en un momento será más evidente.

Desventaja

Esta desventaja es que cada proceso tiene que cargar con espacio igual al número de procesos en el sistema y cada intercambio entre eventos es de este tamaño.

En proceso ...

En proceso ...

En proceso ... I

