Basis Expansion and Nonlinear SVM

Kai Yu

Linear Classifiers

$$f(x) = w^{\top} x + b$$

$$z(x) = sign(f(x))$$

Help to learn more general cases, e.g., nonlinear models

Nonlinear Classifiers via Basis Expansion

$$f(x) = w^{\top} h(x) + b$$

$$z(x) = sign(f(x))$$

- Nonlinear basis functions $h(x)=[h_1(x), h_2(x), ..., h_m(x)]$
- $f(x) = w^Tx + b$ is a special case where h(x) = x
- This explains a lot of classification models, including SVMs.

Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary

Review the QP for linear SVMs

After a lot of "stuff", we obtain the Lagrange dual

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'}$$

The solution has the form

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

In other words, the solution w is in

$$\operatorname{span}(x_1, x_2, \dots, x_N)$$

A more general result – RKHS representation theorem (Wahba, 1971)

■ In its simplest form, L(w^Tx,y) is covex w.r.t. w, the solution of

$$\min_{w} \sum_{i=1}^{N} L(w^{T} x_{i}, y_{i}) + \lambda ||w||^{2}$$

has the form

$$w = \sum_{i=1}^{N} \alpha_i x_i$$

- Proof sketch ...
- Note: the conclusion is general, not only for SVMs.

For general basis expansion functions

The solution of

$$\min_{w} \sum_{i=1}^{N} L(w^{\top} h(x_i), y_i) + \lambda ||w||^2$$

has the form

$$w = \sum_{i=1}^{N} \alpha_i h(x_i)$$

Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary

Kernel

Define the Mercer kernel as

$$k(x_i, x_j) = h(x_i)^{\top} h(x_j)$$

8/7/12

9

Kernel trick

Apply the representation theorem

$$w = \sum_{i=1}^{N} \alpha_i h(x_i)$$

we have

$$f(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) \quad ||w||^2 = \sum_{i,j=1}^{N} \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha$$

$$\min_{\alpha} \sum_{i=1}^{N} L\left(\sum_{i=1}^{N} \alpha_i k(x_i, x), y_i\right) + \lambda \alpha^T K \alpha$$

Primal and Kernel formulations

Given a kernel, we don't even need h(x)! ...really?

Popular kernels

k(x,x') is a symmetric, positive (semi-) definite function

dth deg. poly.:
$$K(x, x') = (1 + \langle x, x' \rangle)^d$$

radial basis: $K(x, x') = \exp(-\|x - x'\|^2/c)$

Example:

$$K(x, x') = (1 + \langle x, x' \rangle)^{2}$$

$$= (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2}$$

$$= 1 + 2x_{1}x'_{1} + 2x_{2}x'_{2} + (x_{1}x'_{1})^{2} + (x_{2}x'_{2})^{2} + 2x_{1}x'_{1}x_{2}x'_{2}$$

$$h_{1}(x) = 1, h_{2}(x) = \sqrt{2}x_{1}, h_{3}(x) = \sqrt{2}x_{2}, h_{4}(x) = x_{1}^{2}, h_{5}(x) = x_{2}^{2},$$
and $h_{6}(x) = \sqrt{2}x_{1}x_{2}$,

Non-linear feature mapping

Datasets that are linearly separable

But what if the dataset is just too hard?

How about mapping data to a higher-dimensional space:

Nonlinear feature mapping

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary

Various equivalent formulations

Parametric form

$$\min_{w} \sum_{i=1}^{N} L(w^{\top}h(x), y_i) + \lambda ||w||^2$$

Dual form

$$\min_{\alpha} \sum_{i=1}^{N} L\left(\sum_{i=1}^{N} \alpha_i k(x_i, x), y_i\right) + \lambda \alpha^{\top} K \alpha$$

Nonparametric form

$$\min_{f} \sum_{i=1}^{N} L(f(x_i), y_i) + \lambda ||f||_{\mathcal{H}_k}^2$$

Various equivalent formulations

Parametric form

$$\min_{w} \sum_{i=1}^{N} L(w^{\top}h(x), y_i) + \lambda ||w||^2$$

Dual form

$$\min_{\alpha} \sum_{i=1}^{N} L\left(\sum_{i=1}^{N} \alpha_i k(x_i, x), y_i\right) + \lambda \alpha^{\top} K \alpha$$

Nonparametric form

 $\min_{f} \sum_{i=1}^{N} L(f(x_i), y_i) + \lambda ||f||_{\mathcal{H}_k}^2$

8/7/12

Telling what kind of

f(x) is preferred

Regularization induced by kernel (or basis functions)

Eigen expansion:
$$K(x,y) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(y)$$

$$f(x) = \sum_{i=1}^{\infty} c_i \phi_i(x)$$

• Desired kernel is a smoothing operator, smoother eigenfunctions ϕ_i tend to have larger eigenvalues γ_i

$$||f||_{\mathcal{H}_K}^2 \stackrel{\text{def}}{=} \sum_{i=1}^{\infty} c_i^2/\gamma_i$$

What does this mean?

Understand regularization

If push down this regularization term

$$||f||_{\mathcal{H}_K}^2 \stackrel{\text{def}}{=} \sum_{i=1}^{\infty} c_i^2/\gamma_i$$

- In f(x), minor components $\varphi_i(x)$ with smaller γ_i are penalized more heavily. \rightarrow principle components are preferred in f(x)!
- A desired kernel is a smoothing operator, i.e., principle components are smoother functions \rightarrow the regularization encourages f(x) to be smooth!

Understanding regularization

$$||f||_{\mathcal{H}_K}^2 \stackrel{\text{def}}{=} \sum_{i=1}^{\infty} c_i^2/\gamma_i$$

- Using what kernel?
- Using what feature (for linear model) ?
- Using what h(x)?
- lacksquare Using what functional norm $\|f\|_{\mathcal{H}_k}^2$

All pointing to one thing – what kind of functions are preferred *apriori*

Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary

Nonlinear Logistic Regression

So far, things we discussed, including

- representation theorem,
- kernel trick,
- regularization,

are not limited to SVMs. They are all applicable to logistic regression. The only difference is the loss function.

Nonlinear Logistic Regression

Parametric form

$$\min_{f} \sum_{i=1}^{N} \ln \left(1 + e^{-y_i w^{\top} h(x_i)} \right) + \lambda ||w||^2$$

Nonparametric form

$$\min_{f} \sum_{i=1}^{N} \ln \left(1 + e^{-y_i f(x_i)} \right) + \lambda ||f||_{\mathcal{H}_k}^2$$

Logistic Regression vs. SVM

Both can be linear or nonlinear, parametric or nonparametric, the main difference is the loss;

They are very similar in performance;

- Outputs probabilities, useful for scoring confidence;
- Logistic regression is easier for multiple classes.

• 10 years ago, one was old, the other is new. Now, both are old.

Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary

Many known classification models follow a similar structure

Neural networks

RBF networks

- Learning VQ (LVQ)
- Boosting

These models all learn w and h(x) together ...

Many known classification models follow a similar structure

- Neural networks
- RBF networks
- Learning VQ (LVQ)
- Boosting
- SVMs
- Linear Classifier
- Logistic Regression
- • •

Develop your own stuff!

By deciding

- Which loss function? hinge, least square, ...
- What form of h(x)? RBF, logistic, tree, ...
- Infinite h(x) or h(x)?
- Learning h(x) or not?
- How to optimize? QP, LBFGS, functional gradient, ...

you can obtain various classification algorithms.

Parametric vs. nonparametric models

• h(x) is finite dim, parametric model $f(x)=w^Th(x)$. Training complexity is $O(Nm^3)$

- h(x) is nonlinear and infinite dim, then has to use kernel trick. This is a nonparametric model. The training complexity is around O(N³)
- Nonparametric models, including kernel SVMs, Gaussian processes, Dirichlet processes etc., are elegant in math, but nontrivial for large-scale computation.

Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary

Summary

Representation theorem and kernels

 Regularization prefers principle eigenfunctions of the kernel (induced by basis functions)

 Basis expansion - a general framework for classification models, e.g., nonlinear logistic regression, SVMs, ...