Dynamic Regression

Walter Sosa-Escudero

Econ 471. Econometric Analysis. Spring 2009

June 15, 2009

Motivation

Consider the following 'dynamic' model

$$Y_t = \beta_1 + \beta_2 X_t + \gamma Y_{t-1} + u_t,$$

where $t=1,\ldots,T$ indicates time-series observations and all other classical assumptions hold, and $|\gamma|<0$.

- Dynamic model: observations in one period are linked to those in some other period.
- For example, this may be a model for cigarrettes consumption: consumption (Y_t) today is explicitly linked to past consumption Y_{t-1} , even after controlling for other determinants X_t (current income, for example).

The ADL Model

A very simple dynamic structure that cointains many interesting dynamic models as particular examples is the *autorregresive* distributed lag (ADL) model:

$$Y_t = \alpha + \beta_0 X_t + \beta_1 X_{t-1} + \gamma Y_{t-1} + \epsilon_t, \qquad |\gamma| < 1, \ t = 1, \dots, T$$

where all other classical assumptions hold.

The model can be estimated by standard OLS regressing Y_t on X_t , X_{t-1} and Y_{t-1} .

Steady state

A steady state is a stable situation where all variables take constant values and ϵ_t is set to its expected value.

$$\tilde{Y} = \alpha + \beta_0 \tilde{X} + \beta_1 \tilde{X} + \gamma \tilde{Y}$$

Hence

$$\tilde{Y} = \frac{\alpha}{1 - \gamma} + \frac{\beta_0 + \beta_1}{1 - \gamma} \tilde{X}$$
$$\tilde{Y} = \tilde{\alpha} + \tilde{\beta} \tilde{X}$$

is the long run relationship. And

$$\frac{\partial \tilde{Y}}{\partial \tilde{X}} = \tilde{\beta} = \frac{\beta_0 + \beta_1}{1 - \gamma}$$

is the *long run* effect of X

An alternative approach to the long run relationship is as follows. Consider the effect of increasing X marginally at t. The effects will be

At
$$t: \beta_0$$
.
At $t+1: \beta_1 + \beta_0 \gamma$.
At $t+2: (\beta_1 + \beta_0 \gamma) \gamma$.
At $t+3: (\beta_1 + \beta_0 \gamma) \gamma^2$.
...

Then the sum of all effects is

$$\frac{\beta_0 + \beta_1}{1 - \gamma},$$

the long run effect.

Particular cases

Static regression ($\beta_1 = \gamma = 0$): The simple model introduced in Chapter 2 is an extreme case with no dynamics.

The simple model with AR(1) autocorrelation ($\beta_0 = \beta_1/\gamma$): It is interesting to see that the simple linear model with AR(1) autocorrelation also arises as a particular case of the ADL model. Let us rewrite it using the following notation:

$$Y_t = b_0 + b_1 X_t + u_t, t = 1, \dots, T$$
 (1)

$$u_t = \phi u_{t-1} + \epsilon_t, \qquad |\phi| < 1 \tag{2}$$

Using a trick from the previous class

$$Y_t = (b_0 - \phi b_0) + b_1 X_t - \phi b_1 + \phi Y_{t-1} + \epsilon_t$$

This can be written as:

$$Y_t = \alpha + \beta_0 X_t + \beta_1 X_{t-1} + \gamma Y_{t-1} + \epsilon_t$$

where $\alpha \equiv b_0 - \phi b_0$, $\beta_0 \equiv b_1$, $\beta_1 \equiv -\phi b_1$ and $\gamma \equiv \phi$. But according to the definitions, for the specification to hold, we must impose the restriction $\beta_0 = -\beta_1/\gamma$. Hence the linear model with serial correlation actually corresponds to a particular configuration of the ADL model.

Partial adjustment ($\beta_1 = 0$): It is better to understand this specification through and example.

 Y_t^* is the desired demand for money in real terms, and consider a money demand function:

$$Y_t^* = b_0 + b_1 X_t + u_t (3)$$

where X_t is real income.

Now assume that due to market imperfections or adjustment costs agents cannot realize their desired holdings immediately, instead, the observed demand for money (Y_t) is determined as:

$$Y_t - Y_{t-1} = \delta (Y_t^* - Y_{t-1}), \qquad 0 < \delta \le 1$$
 (4)

This is the partial adjustment hypothesis.

- $\delta=1$ means *observed* changes are equal to *desired* changes in money demand: full adjustment.
- $\delta < 1$ agents are able to fulfill they desired change only partially. δ is usually called the adjustment coefficient.

Estimation: We cannot estimate the demand model directly: Y^* is not observable.

Replace Y_t^* and solve for Y_t (we will leave the simple algebraic steps for you to check) to get:

$$Y_t = \delta b_0 + \delta b_1 X_t + (1 - \delta) Y_{t-1} + \delta u_t \tag{5}$$

$$= \alpha + \beta_0 X_t + \gamma Y_{t-1} + \epsilon_t \tag{6}$$

where $\alpha \equiv \delta b_0$, $\beta_0 \equiv \delta b_1$, $\gamma \equiv 1 - \delta$ and $\epsilon_t \equiv \delta u_t$ This is the ADL model with $\beta_1 = 0$. Can be estimated by OLS.

Empirical example: dynamic demand for cigarettes

- Explained variable: Isales (log of sales)
- Explanatory variables:

```
It = log of tax rate
Iprice = log of net price
Isales1 = Isales in previous period
d1, d2,d2 = seasonal dummies
Iwindup = log of industrial wages
d882, d893, d901 = dummies for "anomalous"
periods.
```

We fitted a partial adjustment model: addictive behavior

Coefficient Std. Err t- stat p-value

lt	-0.370	0.059	-6.300	0.000
Lprice	0.026 -2.530		0.015	0.000
Lsales1	0.406	0.065	6.250	0.000
d1	-0.084	0.009	-9.740	0.000
d2	-0.105	0.007	-14.900	0.000
d3	-0.061	0.007	-8.500	0.000
lwindup	0.195	0.038	5.210	0.000
d882	-0.087	0.021	-4.180	0.000
d893	-0.157	0.022	-7.260	0.000
d901	-0.088	0.020	-4.430	0.000
cons	11.043	1.205	9.170	0.000

Comments

- Sales are strongly related to its past (adictive behavior).
- The short run effect of price (short run price elasticity) is -0.066.
- The long-run effect of price (long run price elasticity) is -0.066/(1-0.406) = 0.111.
- The short run effect of income (short run price elasticity) is 0.195
- The long-run effect of income (long run price elasticity) is 0.195/(1-0.406) = 0.328
- The adjustment coefficient of the partial adjustmen process is: 1-0.406 =0.594

Error correction

Consider again the ADL model:

$$Y_t = \alpha + \gamma Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + u_t$$

Substract Y_{t-1} in both sides:

$$\Delta Y_t = \alpha - (1 - \gamma)Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + u_t$$

Now add and substract $\beta_0 X_{t-1}$ in both sides:

$$\Delta Y_{t} = \alpha - (1 - \gamma)Y_{t-1} + \beta_{0}X_{t} - \beta_{0}X_{t-1} + \beta_{0}X_{t-1} + \beta_{1}X_{t-1} + u_{t}$$

$$= \alpha - (1 - \gamma)Y_{t-1} + \beta_{0}\Delta X_{t} + (\beta_{0} + \beta_{1})X_{t-1} + u_{t}$$

$$= \beta_{0}\Delta X_{t} - (1 - \gamma)Y_{t-1} + \alpha + (\beta_{0} + \beta_{1})X_{t-1} + u_{t}$$

$$= \beta_{0}\Delta X_{t} - (1 - \gamma)\left[Y_{t-1} - \frac{\alpha}{1 - \gamma} - \frac{(\beta_{0} + \beta_{1})}{1 - \gamma}X_{t-1}\right] + u_{t}$$

$$= \beta_{0}\Delta X_{t} + \delta Z_{t-1} + u_{t}$$

This is the error correction representation of the ADL model.

 $Z_{t-1} \equiv Y_{t-1} - \alpha/(1-\gamma) - [(\beta_0 + \beta_1)/(1-\gamma)]X_{t-1}$, and

 $\delta \equiv -(1-\gamma)$.

$$\Delta Y_t = \beta_0 \Delta X_t + \delta Z_{t-1} + u_t$$

Intuition:

• Look at Z_{t-1} . Recalling the long-run expression of the ADL model we get:

$$Z_{t-1} = Y_{t-1} - \tilde{\alpha} - \tilde{\beta} X_{t-1}$$

- Z_{t-1} measures how far was the system from its long run equilibrium value.
- Error correction: Y moves due to changes in X (short run) and according to how far it is from the long-run target (error correction).

Error correction and cointegration

Consider the EC representation of the ADL model

$$\Delta Y_t = \beta_0 \Delta X_t + \delta Z_{t-1} + u_t$$

and suppose both Y_t and X_t are I(1).

- ΔY_t is I(0).
- ΔX_t and u_t are I(0).
- The model is not coherent unless....

The Granger representation theorem: if Y_t and X_t are I(1), the ADL representation is coherent (both sides are I(0)) if and only if Y_t and X_t are cointegrated.

Intuition

- Cointegration: Z_t is I(0) (by cointegration) and the system is balanced.
- Coherent ADL: Z_t is I(0) then Y_t and X_t are cointegrated.

The ADL provides an estimable model for cointegrated variables, that captures long and short run dynamics.

Estimation strategies

Under cointegration

- Direct: Estimate the ADL model directly and derive all relevant coefficients (long run, short run) using the error correction representation.
- Two-stage: First estimate the long run 'cointegrating' relationship by OLS

$$\tilde{Y} = \tilde{\alpha} + \tilde{\beta}\tilde{X}$$

and obtain $\hat{Z}_t = Y_t - \hat{\alpha} - \hat{\beta} X_t$. Then estimate the error correction model

$$\Delta Y_t = \beta_0 \Delta X_t + \delta Z_{t-1} + u_t$$

replacing Z_{t-1} by \hat{Z}_{t-1} .

